diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 000000000..943d2e2e8 --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: a04223dcbcb6da5678cbc9859b05be49 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 000000000..e69de29bb diff --git a/CNAME b/CNAME new file mode 100644 index 000000000..4cf46977a --- /dev/null +++ b/CNAME @@ -0,0 +1 @@ +docs.stingray.science \ No newline at end of file diff --git a/_downloads/1027494781794f48a5d8afc7ff6c2fc5/simulator-2.py b/_downloads/1027494781794f48a5d8afc7ff6c2fc5/simulator-2.py new file mode 100644 index 000000000..9e2768823 --- /dev/null +++ b/_downloads/1027494781794f48a5d8afc7ff6c2fc5/simulator-2.py @@ -0,0 +1,20 @@ +from matplotlib import rcParams +rcParams['font.family'] = 'sans-serif' +rcParams['font.sans-serif'] = ['Tahoma'] + +import matplotlib.pyplot as plt +from stingray.simulator import simulator + +# Instantiate simulator object +sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) +# Define a spectrum +w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:] +spectrum = np.power((1/w),2/2) +# Simulate +lc = sim.simulate(spectrum) + +plt.plot(lc.counts, 'g') +plt.title('User-defined Model Simulation', fontsize='16') +plt.xlabel('Counts', fontsize='14') +plt.ylabel('Flux', fontsize='14') +plt.show() \ No newline at end of file diff --git a/_downloads/281ad6814950bcd6a32c9d01c96dd224/simulator-3.pdf b/_downloads/281ad6814950bcd6a32c9d01c96dd224/simulator-3.pdf new file mode 100644 index 000000000..c9c1e2a5d Binary files /dev/null and b/_downloads/281ad6814950bcd6a32c9d01c96dd224/simulator-3.pdf differ diff --git a/_downloads/28cbdc2e58c1d9bf4e5dcd02158d3f81/simulator-3.png b/_downloads/28cbdc2e58c1d9bf4e5dcd02158d3f81/simulator-3.png new file mode 100644 index 000000000..fb6c48313 Binary files /dev/null and b/_downloads/28cbdc2e58c1d9bf4e5dcd02158d3f81/simulator-3.png differ diff --git a/_downloads/53d6a719342bb95c167fbdcb1fc14cc1/simulator-3.py b/_downloads/53d6a719342bb95c167fbdcb1fc14cc1/simulator-3.py new file mode 100644 index 000000000..b2f48b24b --- /dev/null +++ b/_downloads/53d6a719342bb95c167fbdcb1fc14cc1/simulator-3.py @@ -0,0 +1,22 @@ +from matplotlib import rcParams +rcParams['font.family'] = 'sans-serif' +rcParams['font.sans-serif'] = ['Tahoma'] + +import matplotlib.pyplot as plt +from stingray import sampledata +from stingray.simulator import simulator + +# Obtain a sample light curve +lc = sampledata.sample_data().counts +# Instantiate simulator object +sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) +# Obtain an artificial impulse response +ir = sim.relativistic_ir() +# Simulate +lc_new = sim.simulate(lc, ir) + +plt.plot(lc_new.counts, 'g') +plt.title('Impulse Response based Simulation', fontsize='16') +plt.xlabel('Counts', fontsize='14') +plt.ylabel('Flux', fontsize='14') +plt.show() \ No newline at end of file diff --git a/_downloads/57e221082e8b56500cefe6d46e4708c5/simulator-1.py b/_downloads/57e221082e8b56500cefe6d46e4708c5/simulator-1.py new file mode 100644 index 000000000..fc3eac6e8 --- /dev/null +++ b/_downloads/57e221082e8b56500cefe6d46e4708c5/simulator-1.py @@ -0,0 +1,17 @@ +from matplotlib import rcParams +rcParams['font.family'] = 'sans-serif' +rcParams['font.sans-serif'] = ['Tahoma'] + +import matplotlib.pyplot as plt +from stingray.simulator import simulator + +# Instantiate simulator object +sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) +# Specify beta value +lc = sim.simulate(2) + +plt.plot(lc.counts, 'g') +plt.title('Random-walk Distribution Simulation', fontsize='16') +plt.xlabel('Counts', fontsize='14', ) +plt.ylabel('Flux', fontsize='14') +plt.show() \ No newline at end of file diff --git a/_downloads/5918583ff0fc69067a254ce95024dadb/simulator-1.hires.png b/_downloads/5918583ff0fc69067a254ce95024dadb/simulator-1.hires.png new file mode 100644 index 000000000..9e4c5155a Binary files /dev/null and b/_downloads/5918583ff0fc69067a254ce95024dadb/simulator-1.hires.png differ diff --git a/_downloads/62c21690ff66bac966d836faf3d3e8a8/simulator-2.png b/_downloads/62c21690ff66bac966d836faf3d3e8a8/simulator-2.png new file mode 100644 index 000000000..dce90c441 Binary files /dev/null and b/_downloads/62c21690ff66bac966d836faf3d3e8a8/simulator-2.png differ diff --git a/_downloads/9b1049a0bb3a88bde8ef9037e8090597/simulator-1.png b/_downloads/9b1049a0bb3a88bde8ef9037e8090597/simulator-1.png new file mode 100644 index 000000000..8bd9fd6c2 Binary files /dev/null and b/_downloads/9b1049a0bb3a88bde8ef9037e8090597/simulator-1.png differ diff --git a/_downloads/a8bca686e9c247f93d953deed8a266fb/simulator-2.hires.png b/_downloads/a8bca686e9c247f93d953deed8a266fb/simulator-2.hires.png new file mode 100644 index 000000000..cea569319 Binary files /dev/null and b/_downloads/a8bca686e9c247f93d953deed8a266fb/simulator-2.hires.png differ diff --git a/_downloads/a97179e14e3edfdc5f4c94b97302c0ce/simulator-3.hires.png b/_downloads/a97179e14e3edfdc5f4c94b97302c0ce/simulator-3.hires.png new file mode 100644 index 000000000..f5d1e4ec1 Binary files /dev/null and b/_downloads/a97179e14e3edfdc5f4c94b97302c0ce/simulator-3.hires.png differ diff --git a/_downloads/e6f4bd25496b463f5843540b50e92112/simulator-2.pdf b/_downloads/e6f4bd25496b463f5843540b50e92112/simulator-2.pdf new file mode 100644 index 000000000..24702d83f Binary files /dev/null and b/_downloads/e6f4bd25496b463f5843540b50e92112/simulator-2.pdf differ diff --git a/_downloads/fa0debfa94ffa24a10f2357632d98fa8/simulator-1.pdf b/_downloads/fa0debfa94ffa24a10f2357632d98fa8/simulator-1.pdf new file mode 100644 index 000000000..6fed4f76c Binary files /dev/null and b/_downloads/fa0debfa94ffa24a10f2357632d98fa8/simulator-1.pdf differ diff --git a/_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png b/_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png new file mode 100644 index 000000000..aaf977d38 Binary files /dev/null and b/_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png new file mode 100644 index 000000000..e13b95a28 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png new file mode 100644 index 000000000..827458b00 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png new file mode 100644 index 000000000..dcf45669d Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png new file mode 100644 index 000000000..102e9fde0 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png new file mode 100644 index 000000000..58e8cc2e1 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png new file mode 100644 index 000000000..f97067b19 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png new file mode 100644 index 000000000..ed68f5b6d Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png new file mode 100644 index 000000000..aad0393a6 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png new file mode 100644 index 000000000..602198ed1 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png new file mode 100644 index 000000000..2d427df90 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png new file mode 100644 index 000000000..4b3d2eed8 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png new file mode 100644 index 000000000..f62438bbf Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png new file mode 100644 index 000000000..bd3a41b10 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png new file mode 100644 index 000000000..ed2aabbc7 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png new file mode 100644 index 000000000..79cb7ff5a Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png new file mode 100644 index 000000000..fc6d6c980 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png new file mode 100644 index 000000000..f8d5bc72d Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png new file mode 100644 index 000000000..256a68be2 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png new file mode 100644 index 000000000..9eeaeb1a4 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png new file mode 100644 index 000000000..21506f036 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png new file mode 100644 index 000000000..c5be9a39b Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png new file mode 100644 index 000000000..5ca399421 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png new file mode 100644 index 000000000..92f37cb1c Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png new file mode 100644 index 000000000..7dd3b4c42 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png new file mode 100644 index 000000000..ff1d6c42b Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png new file mode 100644 index 000000000..a5ee3488b Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png new file mode 100644 index 000000000..7f76e95c9 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png new file mode 100644 index 000000000..a90fe0115 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png new file mode 100644 index 000000000..437c15d65 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png new file mode 100644 index 000000000..ec4c61c56 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png new file mode 100644 index 000000000..9331b87e6 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png new file mode 100644 index 000000000..2c22ec4ac Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png new file mode 100644 index 000000000..98d1704d0 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png new file mode 100644 index 000000000..6697462c1 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png new file mode 100644 index 000000000..0ef5eab4c Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png new file mode 100644 index 000000000..7f23bc867 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png new file mode 100644 index 000000000..d5b4275b1 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png new file mode 100644 index 000000000..9e5778d2d Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png new file mode 100644 index 000000000..343d072c3 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png new file mode 100644 index 000000000..20851cc74 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_2.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_2.png new file mode 100644 index 000000000..8d52581c1 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_2.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_3.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_3.png new file mode 100644 index 000000000..2316ef4fa Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_3.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_4.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_4.png new file mode 100644 index 000000000..cb77bf390 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_4.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_5.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_5.png new file mode 100644 index 000000000..cc2be2fe5 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_5.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_0.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_0.png new file mode 100644 index 000000000..8d52581c1 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_0.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_1.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_1.png new file mode 100644 index 000000000..2316ef4fa Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_1.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_2.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_2.png new file mode 100644 index 000000000..cb77bf390 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_2.png differ diff --git a/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_3.png b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_3.png new file mode 100644 index 000000000..cc2be2fe5 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_3.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_10_0.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_10_0.png new file mode 100644 index 000000000..453c0a0a3 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_10_0.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_12_0.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_12_0.png new file mode 100644 index 000000000..64465bcf2 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_12_0.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_15_6.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_15_6.png new file mode 100644 index 000000000..da29fbf9c Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_15_6.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_16_11.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_16_11.png new file mode 100644 index 000000000..4b6cfeb79 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_16_11.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_18_2.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_18_2.png new file mode 100644 index 000000000..222caa810 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_18_2.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_21_1.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_21_1.png new file mode 100644 index 000000000..135016749 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_21_1.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_23_0.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_23_0.png new file mode 100644 index 000000000..dd3161bd4 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_23_0.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_25_0.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_25_0.png new file mode 100644 index 000000000..0c3176681 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_25_0.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_26_2.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_26_2.png new file mode 100644 index 000000000..486183114 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_26_2.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_27_1.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_27_1.png new file mode 100644 index 000000000..feaeee8ae Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_27_1.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_29_2.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_29_2.png new file mode 100644 index 000000000..85f6ff67d Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_29_2.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_30_1.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_30_1.png new file mode 100644 index 000000000..14a59f689 Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_30_1.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_5_0.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_5_0.png new file mode 100644 index 000000000..7a913473a Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_5_0.png differ diff --git a/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_7_0.png b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_7_0.png new file mode 100644 index 000000000..8bf42442c Binary files /dev/null and b/_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_7_0.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_10_0.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_10_0.png new file mode 100644 index 000000000..39f9a4cdd Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_10_0.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_13_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_13_1.png new file mode 100644 index 000000000..c71354f8a Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_13_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_16_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_16_1.png new file mode 100644 index 000000000..d63f16ad4 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_16_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_24_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_24_1.png new file mode 100644 index 000000000..44f26a94d Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_24_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_31_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_31_1.png new file mode 100644 index 000000000..8ac5bd016 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_31_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_34_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_34_1.png new file mode 100644 index 000000000..ce4a59414 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_34_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_36_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_36_1.png new file mode 100644 index 000000000..c9e442d13 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_36_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_8_0.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_8_0.png new file mode 100644 index 000000000..bae0e7117 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_8_0.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_12_0.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_12_0.png new file mode 100644 index 000000000..bf7adfb11 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_12_0.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_20_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_20_1.png new file mode 100644 index 000000000..716233343 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_20_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_29_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_29_1.png new file mode 100644 index 000000000..3bc5c326e Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_29_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_30_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_30_1.png new file mode 100644 index 000000000..060778d9c Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_30_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_37_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_37_1.png new file mode 100644 index 000000000..acae871fd Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_37_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_42_0.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_42_0.png new file mode 100644 index 000000000..91ad0a283 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_42_0.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_44_0.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_44_0.png new file mode 100644 index 000000000..86c45e50b Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_44_0.png differ diff --git a/_images/notebooks_EventList_EventList_Tutorial_54_1.png b/_images/notebooks_EventList_EventList_Tutorial_54_1.png new file mode 100644 index 000000000..2fc4b3bcd Binary files /dev/null and b/_images/notebooks_EventList_EventList_Tutorial_54_1.png differ diff --git a/_images/notebooks_EventList_EventList_Tutorial_56_1.png b/_images/notebooks_EventList_EventList_Tutorial_56_1.png new file mode 100644 index 000000000..1166c35df Binary files /dev/null and b/_images/notebooks_EventList_EventList_Tutorial_56_1.png differ diff --git a/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png new file mode 100644 index 000000000..0e84b8b35 Binary files /dev/null and b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png differ diff --git a/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png new file mode 100644 index 000000000..2b5be7eba Binary files /dev/null and b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png differ diff --git a/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png new file mode 100644 index 000000000..169b63e93 Binary files /dev/null and b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png new file mode 100644 index 000000000..d63165e85 Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png new file mode 100644 index 000000000..3fc6988b8 Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png new file mode 100644 index 000000000..ddc490b5a Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png new file mode 100644 index 000000000..12a290e99 Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png differ diff --git a/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png new file mode 100644 index 000000000..573ada0e6 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png differ diff --git a/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png new file mode 100644 index 000000000..a2942e3c4 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png new file mode 100644 index 000000000..091446589 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png differ diff --git a/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png new file mode 100644 index 000000000..72e660035 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png new file mode 100644 index 000000000..f7fd26bd9 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png new file mode 100644 index 000000000..29daa4162 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png new file mode 100644 index 000000000..eac68eea5 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png new file mode 100644 index 000000000..7d96f57ff Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png new file mode 100644 index 000000000..c5aea668f Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png new file mode 100644 index 000000000..e7e05d408 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png new file mode 100644 index 000000000..e004cb22f Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png new file mode 100644 index 000000000..1c9f854c1 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png new file mode 100644 index 000000000..91d486909 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_109_1.png b/_images/notebooks_Modeling_ModelingExamples_109_1.png new file mode 100644 index 000000000..9264b473b Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_109_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_119_2.png b/_images/notebooks_Modeling_ModelingExamples_119_2.png new file mode 100644 index 000000000..74472e9fa Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_119_2.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_128_1.png b/_images/notebooks_Modeling_ModelingExamples_128_1.png new file mode 100644 index 000000000..b11639c2c Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_128_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_138_0.png b/_images/notebooks_Modeling_ModelingExamples_138_0.png new file mode 100644 index 000000000..23deac3bb Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_138_0.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_18_1.png b/_images/notebooks_Modeling_ModelingExamples_18_1.png new file mode 100644 index 000000000..c8ec9a1c6 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_18_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_43_1.png b/_images/notebooks_Modeling_ModelingExamples_43_1.png new file mode 100644 index 000000000..85f29ad86 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_43_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_5_1.png b/_images/notebooks_Modeling_ModelingExamples_5_1.png new file mode 100644 index 000000000..585d4a911 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_5_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_83_0.png b/_images/notebooks_Modeling_ModelingExamples_83_0.png new file mode 100644 index 000000000..11e745695 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_83_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_14_0.png b/_images/notebooks_Multitaper_multitaper_example_14_0.png new file mode 100644 index 000000000..6a0eb013b Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_14_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_16_0.png b/_images/notebooks_Multitaper_multitaper_example_16_0.png new file mode 100644 index 000000000..547d6defd Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_16_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_23_0.png b/_images/notebooks_Multitaper_multitaper_example_23_0.png new file mode 100644 index 000000000..2911baf6b Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_23_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_26_1.png b/_images/notebooks_Multitaper_multitaper_example_26_1.png new file mode 100644 index 000000000..885c8ace2 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_26_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_0.png b/_images/notebooks_Multitaper_multitaper_example_32_0.png new file mode 100644 index 000000000..4742e993c Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_1.png b/_images/notebooks_Multitaper_multitaper_example_32_1.png new file mode 100644 index 000000000..5c5db9c78 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_2.png b/_images/notebooks_Multitaper_multitaper_example_32_2.png new file mode 100644 index 000000000..8a9543916 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_2.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_3.png b/_images/notebooks_Multitaper_multitaper_example_32_3.png new file mode 100644 index 000000000..0ce418e44 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_3.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_37_0.png b/_images/notebooks_Multitaper_multitaper_example_37_0.png new file mode 100644 index 000000000..5b3b6b36e Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_37_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_39_2.png b/_images/notebooks_Multitaper_multitaper_example_39_2.png new file mode 100644 index 000000000..eed63d8a8 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_39_2.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_41_1.png b/_images/notebooks_Multitaper_multitaper_example_41_1.png new file mode 100644 index 000000000..4a3de608d Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_41_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_43_1.png b/_images/notebooks_Multitaper_multitaper_example_43_1.png new file mode 100644 index 000000000..35e82c107 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_43_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_47_1.png b/_images/notebooks_Multitaper_multitaper_example_47_1.png new file mode 100644 index 000000000..bb32453f0 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_47_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_49_1.png b/_images/notebooks_Multitaper_multitaper_example_49_1.png new file mode 100644 index 000000000..3a5336ae8 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_49_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_52_0.png b/_images/notebooks_Multitaper_multitaper_example_52_0.png new file mode 100644 index 000000000..bd182ea07 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_52_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_55_0.png b/_images/notebooks_Multitaper_multitaper_example_55_0.png new file mode 100644 index 000000000..5b2183959 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_55_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_57_0.png b/_images/notebooks_Multitaper_multitaper_example_57_0.png new file mode 100644 index 000000000..0cd425744 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_57_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_8_1.png b/_images/notebooks_Multitaper_multitaper_example_8_1.png new file mode 100644 index 000000000..6fa34b1d5 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_8_1.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png new file mode 100644 index 000000000..b8f494c2f Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png new file mode 100644 index 000000000..8cf61c3ed Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png new file mode 100644 index 000000000..2edba4792 Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png new file mode 100644 index 000000000..e13171be5 Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png new file mode 100644 index 000000000..c82a6d78c Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png new file mode 100644 index 000000000..fc049467c Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png new file mode 100644 index 000000000..817fe545b Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png new file mode 100644 index 000000000..e79c01933 Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png new file mode 100644 index 000000000..8c91c8f14 Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png new file mode 100644 index 000000000..8ad262519 Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png new file mode 100644 index 000000000..e88ffeaee Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_0.png new file mode 100644 index 000000000..f71430c80 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_1.png new file mode 100644 index 000000000..328bbf7d5 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png new file mode 100644 index 000000000..fd63e8a89 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png new file mode 100644 index 000000000..f68b2ffbd Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png new file mode 100644 index 000000000..7139aa355 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png new file mode 100644 index 000000000..b49dc5d26 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png new file mode 100644 index 000000000..9fdc2a792 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png new file mode 100644 index 000000000..f1de35fc0 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png new file mode 100644 index 000000000..4b34e09a3 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png new file mode 100644 index 000000000..352003772 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png new file mode 100644 index 000000000..346a9a89e Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png new file mode 100644 index 000000000..54a65aded Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png new file mode 100644 index 000000000..7c4ee5b7e Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png b/_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png new file mode 100644 index 000000000..089248ae1 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png new file mode 100644 index 000000000..69d93f6f7 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png differ diff --git a/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png new file mode 100644 index 000000000..5e33af2e2 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png new file mode 100644 index 000000000..94e535436 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png new file mode 100644 index 000000000..f0f83dec2 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_13_0.png b/_images/notebooks_Simulator_Concepts_Simulator_13_0.png new file mode 100644 index 000000000..3762607e9 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_13_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_21_0.png b/_images/notebooks_Simulator_Concepts_Simulator_21_0.png new file mode 100644 index 000000000..5bbd97822 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_21_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_25_0.png b/_images/notebooks_Simulator_Concepts_Simulator_25_0.png new file mode 100644 index 000000000..164bb2366 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_25_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_33_0.png b/_images/notebooks_Simulator_Concepts_Simulator_33_0.png new file mode 100644 index 000000000..de964651b Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_33_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_49_0.png b/_images/notebooks_Simulator_Concepts_Simulator_49_0.png new file mode 100644 index 000000000..a107380d5 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_49_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_60_0.png b/_images/notebooks_Simulator_Concepts_Simulator_60_0.png new file mode 100644 index 000000000..cbdb12993 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_60_0.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_13_1.png b/_images/notebooks_Simulator_Lag_Analysis_13_1.png new file mode 100644 index 000000000..e97e1e40a Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_13_1.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_22_0.png b/_images/notebooks_Simulator_Lag_Analysis_22_0.png new file mode 100644 index 000000000..1644b8350 Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_22_0.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_25_0.png b/_images/notebooks_Simulator_Lag_Analysis_25_0.png new file mode 100644 index 000000000..6955d3a6f Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_25_0.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_38_0.png b/_images/notebooks_Simulator_Lag_Analysis_38_0.png new file mode 100644 index 000000000..b10d96311 Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_38_0.png differ diff --git a/_images/notebooks_Simulator_Power_Spectral_Models_16_1.png b/_images/notebooks_Simulator_Power_Spectral_Models_16_1.png new file mode 100644 index 000000000..f76edfd21 Binary files /dev/null and b/_images/notebooks_Simulator_Power_Spectral_Models_16_1.png differ diff --git a/_images/notebooks_Simulator_Power_Spectral_Models_17_1.png b/_images/notebooks_Simulator_Power_Spectral_Models_17_1.png new file mode 100644 index 000000000..656bf56da Binary files /dev/null and b/_images/notebooks_Simulator_Power_Spectral_Models_17_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_16_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_16_1.png new file mode 100644 index 000000000..e274e201d Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_16_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_18_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_18_1.png new file mode 100644 index 000000000..0e8543dfa Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_18_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_20_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_20_1.png new file mode 100644 index 000000000..cf1cbdd97 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_20_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_21_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_21_1.png new file mode 100644 index 000000000..aaeb5bdce Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_21_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_23_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_23_1.png new file mode 100644 index 000000000..ee369fbbf Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_23_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_26_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_26_1.png new file mode 100644 index 000000000..b2c31baab Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_26_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_27_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_27_1.png new file mode 100644 index 000000000..68d095f4d Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_27_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_30_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_30_1.png new file mode 100644 index 000000000..c20803d16 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_30_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_31_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_31_1.png new file mode 100644 index 000000000..9a03321fd Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_31_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_35_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_35_1.png new file mode 100644 index 000000000..a45c44fb7 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_35_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_37_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_37_1.png new file mode 100644 index 000000000..f4733d333 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_37_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_49_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_49_1.png new file mode 100644 index 000000000..fcc526880 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_49_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png new file mode 100644 index 000000000..346865343 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_15_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_15_1.png new file mode 100644 index 000000000..91922626e Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_15_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_18_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_18_0.png new file mode 100644 index 000000000..426ec26b8 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_18_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png new file mode 100644 index 000000000..a1e11c5b8 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_23_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_23_1.png new file mode 100644 index 000000000..c2beb3fc2 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_23_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_30_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_30_1.png new file mode 100644 index 000000000..2d9711c00 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_30_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_32_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_32_1.png new file mode 100644 index 000000000..8ff46c7e8 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_32_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_33_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_33_1.png new file mode 100644 index 000000000..0b1458b4e Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_33_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_37_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_37_0.png new file mode 100644 index 000000000..ede9dbf89 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_37_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_41_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_41_0.png new file mode 100644 index 000000000..3a8350e3f Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_41_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_44_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_44_0.png new file mode 100644 index 000000000..6b5070e32 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_44_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_47_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_47_0.png new file mode 100644 index 000000000..869476dea Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_47_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_4_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_4_1.png new file mode 100644 index 000000000..b0be15708 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_4_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_0.png new file mode 100644 index 000000000..195451819 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_1.png new file mode 100644 index 000000000..27066eb51 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_1.png differ diff --git a/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_26_0.png b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_26_0.png new file mode 100644 index 000000000..1294d860b Binary files /dev/null and b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_26_0.png differ diff --git a/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_27_0.png b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_27_0.png new file mode 100644 index 000000000..4f055e759 Binary files /dev/null and b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_27_0.png differ diff --git a/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_28_0.png b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_28_0.png new file mode 100644 index 000000000..53bbd8b19 Binary files /dev/null and b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_28_0.png differ diff --git a/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png new file mode 100644 index 000000000..0b0877ac2 Binary files /dev/null and b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png differ diff --git a/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png new file mode 100644 index 000000000..5dc2a4dc2 Binary files /dev/null and b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_11_1.png b/_images/notebooks_Window_Functions_window_functions_11_1.png new file mode 100644 index 000000000..ae8515568 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_11_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_12_1.png b/_images/notebooks_Window_Functions_window_functions_12_1.png new file mode 100644 index 000000000..f976bdd8d Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_12_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_15_1.png b/_images/notebooks_Window_Functions_window_functions_15_1.png new file mode 100644 index 000000000..7e5342d80 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_15_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_16_1.png b/_images/notebooks_Window_Functions_window_functions_16_1.png new file mode 100644 index 000000000..dacc0ea44 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_16_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_19_1.png b/_images/notebooks_Window_Functions_window_functions_19_1.png new file mode 100644 index 000000000..ea65ecae5 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_19_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_20_2.png b/_images/notebooks_Window_Functions_window_functions_20_2.png new file mode 100644 index 000000000..9ec3462ff Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_20_2.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_23_1.png b/_images/notebooks_Window_Functions_window_functions_23_1.png new file mode 100644 index 000000000..e8c3d66d9 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_23_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_24_1.png b/_images/notebooks_Window_Functions_window_functions_24_1.png new file mode 100644 index 000000000..f8b10576c Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_24_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_27_1.png b/_images/notebooks_Window_Functions_window_functions_27_1.png new file mode 100644 index 000000000..652c55838 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_27_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_28_2.png b/_images/notebooks_Window_Functions_window_functions_28_2.png new file mode 100644 index 000000000..d66f07530 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_28_2.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_31_1.png b/_images/notebooks_Window_Functions_window_functions_31_1.png new file mode 100644 index 000000000..275d834a1 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_31_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_32_1.png b/_images/notebooks_Window_Functions_window_functions_32_1.png new file mode 100644 index 000000000..3bd6619c6 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_32_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_35_1.png b/_images/notebooks_Window_Functions_window_functions_35_1.png new file mode 100644 index 000000000..87e88e6a1 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_35_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_36_1.png b/_images/notebooks_Window_Functions_window_functions_36_1.png new file mode 100644 index 000000000..442bb1764 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_36_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_7_1.png b/_images/notebooks_Window_Functions_window_functions_7_1.png new file mode 100644 index 000000000..88500e0ff Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_7_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_8_2.png b/_images/notebooks_Window_Functions_window_functions_8_2.png new file mode 100644 index 000000000..728abee3d Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_8_2.png differ diff --git a/_images/simulator-1.png b/_images/simulator-1.png new file mode 100644 index 000000000..8bd9fd6c2 Binary files /dev/null and b/_images/simulator-1.png differ diff --git a/_images/simulator-2.png b/_images/simulator-2.png new file mode 100644 index 000000000..dce90c441 Binary files /dev/null and b/_images/simulator-2.png differ diff --git a/_images/simulator-3.png b/_images/simulator-3.png new file mode 100644 index 000000000..fb6c48313 Binary files /dev/null and b/_images/simulator-3.png differ diff --git a/_images/stingray_logo.png b/_images/stingray_logo.png new file mode 100644 index 000000000..971fb4f85 Binary files /dev/null and b/_images/stingray_logo.png differ diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 000000000..05accd463 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,114 @@ + + + + + + + Overview: module code — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/scipy/special/_basic.html b/_modules/scipy/special/_basic.html new file mode 100644 index 000000000..650a8e50e --- /dev/null +++ b/_modules/scipy/special/_basic.html @@ -0,0 +1,3252 @@ + + + + + + + scipy.special._basic — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for scipy.special._basic

+#
+# Author:  Travis Oliphant, 2002
+#
+
+import operator
+import numpy as np
+import math
+import warnings
+from numpy import (pi, asarray, floor, isscalar, iscomplex, real,
+                   imag, sqrt, where, mgrid, sin, place, issubdtype,
+                   extract, inexact, nan, zeros, sinc)
+from . import _ufuncs
+from ._ufuncs import (mathieu_a, mathieu_b, iv, jv, gamma,
+                      psi, hankel1, hankel2, yv, kv, poch, binom)
+from . import _specfun
+from ._comb import _comb_int
+
+
+__all__ = [
+    'ai_zeros',
+    'assoc_laguerre',
+    'bei_zeros',
+    'beip_zeros',
+    'ber_zeros',
+    'bernoulli',
+    'berp_zeros',
+    'bi_zeros',
+    'clpmn',
+    'comb',
+    'digamma',
+    'diric',
+    'erf_zeros',
+    'euler',
+    'factorial',
+    'factorial2',
+    'factorialk',
+    'fresnel_zeros',
+    'fresnelc_zeros',
+    'fresnels_zeros',
+    'h1vp',
+    'h2vp',
+    'ivp',
+    'jn_zeros',
+    'jnjnp_zeros',
+    'jnp_zeros',
+    'jnyn_zeros',
+    'jvp',
+    'kei_zeros',
+    'keip_zeros',
+    'kelvin_zeros',
+    'ker_zeros',
+    'kerp_zeros',
+    'kvp',
+    'lmbda',
+    'lpmn',
+    'lpn',
+    'lqmn',
+    'lqn',
+    'mathieu_even_coef',
+    'mathieu_odd_coef',
+    'obl_cv_seq',
+    'pbdn_seq',
+    'pbdv_seq',
+    'pbvv_seq',
+    'perm',
+    'polygamma',
+    'pro_cv_seq',
+    'riccati_jn',
+    'riccati_yn',
+    'sinc',
+    'y0_zeros',
+    'y1_zeros',
+    'y1p_zeros',
+    'yn_zeros',
+    'ynp_zeros',
+    'yvp',
+    'zeta'
+]
+
+
+# mapping k to last n such that factorialk(n, k) < np.iinfo(np.int64).max
+_FACTORIALK_LIMITS_64BITS = {1: 20, 2: 33, 3: 44, 4: 54, 5: 65,
+                             6: 74, 7: 84, 8: 93, 9: 101}
+# mapping k to last n such that factorialk(n, k) < np.iinfo(np.int32).max
+_FACTORIALK_LIMITS_32BITS = {1: 12, 2: 19, 3: 25, 4: 31, 5: 37,
+                             6: 43, 7: 47, 8: 51, 9: 56}
+
+
+def _nonneg_int_or_fail(n, var_name, strict=True):
+    try:
+        if strict:
+            # Raises an exception if float
+            n = operator.index(n)
+        elif n == floor(n):
+            n = int(n)
+        else:
+            raise ValueError()
+        if n < 0:
+            raise ValueError()
+    except (ValueError, TypeError) as err:
+        raise err.__class__(f"{var_name} must be a non-negative integer") from err
+    return n
+
+
+def diric(x, n):
+    """Periodic sinc function, also called the Dirichlet function.
+
+    The Dirichlet function is defined as::
+
+        diric(x, n) = sin(x * n/2) / (n * sin(x / 2)),
+
+    where `n` is a positive integer.
+
+    Parameters
+    ----------
+    x : array_like
+        Input data
+    n : int
+        Integer defining the periodicity.
+
+    Returns
+    -------
+    diric : ndarray
+
+    Examples
+    --------
+    >>> import numpy as np
+    >>> from scipy import special
+    >>> import matplotlib.pyplot as plt
+
+    >>> x = np.linspace(-8*np.pi, 8*np.pi, num=201)
+    >>> plt.figure(figsize=(8, 8));
+    >>> for idx, n in enumerate([2, 3, 4, 9]):
+    ...     plt.subplot(2, 2, idx+1)
+    ...     plt.plot(x, special.diric(x, n))
+    ...     plt.title('diric, n={}'.format(n))
+    >>> plt.show()
+
+    The following example demonstrates that `diric` gives the magnitudes
+    (modulo the sign and scaling) of the Fourier coefficients of a
+    rectangular pulse.
+
+    Suppress output of values that are effectively 0:
+
+    >>> np.set_printoptions(suppress=True)
+
+    Create a signal `x` of length `m` with `k` ones:
+
+    >>> m = 8
+    >>> k = 3
+    >>> x = np.zeros(m)
+    >>> x[:k] = 1
+
+    Use the FFT to compute the Fourier transform of `x`, and
+    inspect the magnitudes of the coefficients:
+
+    >>> np.abs(np.fft.fft(x))
+    array([ 3.        ,  2.41421356,  1.        ,  0.41421356,  1.        ,
+            0.41421356,  1.        ,  2.41421356])
+
+    Now find the same values (up to sign) using `diric`. We multiply
+    by `k` to account for the different scaling conventions of
+    `numpy.fft.fft` and `diric`:
+
+    >>> theta = np.linspace(0, 2*np.pi, m, endpoint=False)
+    >>> k * special.diric(theta, k)
+    array([ 3.        ,  2.41421356,  1.        , -0.41421356, -1.        ,
+           -0.41421356,  1.        ,  2.41421356])
+    """
+    x, n = asarray(x), asarray(n)
+    n = asarray(n + (x-x))
+    x = asarray(x + (n-n))
+    if issubdtype(x.dtype, inexact):
+        ytype = x.dtype
+    else:
+        ytype = float
+    y = zeros(x.shape, ytype)
+
+    # empirical minval for 32, 64 or 128 bit float computations
+    # where sin(x/2) < minval, result is fixed at +1 or -1
+    if np.finfo(ytype).eps < 1e-18:
+        minval = 1e-11
+    elif np.finfo(ytype).eps < 1e-15:
+        minval = 1e-7
+    else:
+        minval = 1e-3
+
+    mask1 = (n <= 0) | (n != floor(n))
+    place(y, mask1, nan)
+
+    x = x / 2
+    denom = sin(x)
+    mask2 = (1-mask1) & (abs(denom) < minval)
+    xsub = extract(mask2, x)
+    nsub = extract(mask2, n)
+    zsub = xsub / pi
+    place(y, mask2, pow(-1, np.round(zsub)*(nsub-1)))
+
+    mask = (1-mask1) & (1-mask2)
+    xsub = extract(mask, x)
+    nsub = extract(mask, n)
+    dsub = extract(mask, denom)
+    place(y, mask, sin(nsub*xsub)/(nsub*dsub))
+    return y
+
+
+def jnjnp_zeros(nt):
+    """Compute zeros of integer-order Bessel functions Jn and Jn'.
+
+    Results are arranged in order of the magnitudes of the zeros.
+
+    Parameters
+    ----------
+    nt : int
+        Number (<=1200) of zeros to compute
+
+    Returns
+    -------
+    zo[l-1] : ndarray
+        Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`.
+    n[l-1] : ndarray
+        Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`.
+    m[l-1] : ndarray
+        Serial number of the zeros of Jn(x) or Jn'(x) associated
+        with lth zero. Of length `nt`.
+    t[l-1] : ndarray
+        0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of
+        length `nt`.
+
+    See Also
+    --------
+    jn_zeros, jnp_zeros : to get separated arrays of zeros.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200):
+        raise ValueError("Number must be integer <= 1200.")
+    nt = int(nt)
+    n, m, t, zo = _specfun.jdzo(nt)
+    return zo[1:nt+1], n[:nt], m[:nt], t[:nt]
+
+
+def jnyn_zeros(n, nt):
+    """Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).
+
+    Returns 4 arrays of length `nt`, corresponding to the first `nt`
+    zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. The zeros
+    are returned in ascending order.
+
+    Parameters
+    ----------
+    n : int
+        Order of the Bessel functions
+    nt : int
+        Number (<=1200) of zeros to compute
+
+    Returns
+    -------
+    Jn : ndarray
+        First `nt` zeros of Jn
+    Jnp : ndarray
+        First `nt` zeros of Jn'
+    Yn : ndarray
+        First `nt` zeros of Yn
+    Ynp : ndarray
+        First `nt` zeros of Yn'
+
+    See Also
+    --------
+    jn_zeros, jnp_zeros, yn_zeros, ynp_zeros
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first three roots of :math:`J_1`, :math:`J_1'`,
+    :math:`Y_1` and :math:`Y_1'`.
+
+    >>> from scipy.special import jnyn_zeros
+    >>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3)
+    >>> jn_roots, yn_roots
+    (array([ 3.83170597,  7.01558667, 10.17346814]),
+     array([2.19714133, 5.42968104, 8.59600587]))
+
+    Plot :math:`J_1`, :math:`J_1'`, :math:`Y_1`, :math:`Y_1'` and their roots.
+
+    >>> import numpy as np
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import jnyn_zeros, jvp, jn, yvp, yn
+    >>> jn_roots, jnp_roots, yn_roots, ynp_roots = jnyn_zeros(1, 3)
+    >>> fig, ax = plt.subplots()
+    >>> xmax= 11
+    >>> x = np.linspace(0, xmax)
+    >>> x[0] += 1e-15
+    >>> ax.plot(x, jn(1, x), label=r"$J_1$", c='r')
+    >>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$", c='b')
+    >>> ax.plot(x, yn(1, x), label=r"$Y_1$", c='y')
+    >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$", c='c')
+    >>> zeros = np.zeros((3, ))
+    >>> ax.scatter(jn_roots, zeros, s=30, c='r', zorder=5,
+    ...            label=r"$J_1$ roots")
+    >>> ax.scatter(jnp_roots, zeros, s=30, c='b', zorder=5,
+    ...            label=r"$J_1'$ roots")
+    >>> ax.scatter(yn_roots, zeros, s=30, c='y', zorder=5,
+    ...            label=r"$Y_1$ roots")
+    >>> ax.scatter(ynp_roots, zeros, s=30, c='c', zorder=5,
+    ...            label=r"$Y_1'$ roots")
+    >>> ax.hlines(0, 0, xmax, color='k')
+    >>> ax.set_ylim(-0.6, 0.6)
+    >>> ax.set_xlim(0, xmax)
+    >>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75))
+    >>> plt.tight_layout()
+    >>> plt.show()
+    """
+    if not (isscalar(nt) and isscalar(n)):
+        raise ValueError("Arguments must be scalars.")
+    if (floor(n) != n) or (floor(nt) != nt):
+        raise ValueError("Arguments must be integers.")
+    if (nt <= 0):
+        raise ValueError("nt > 0")
+    return _specfun.jyzo(abs(n), nt)
+
+
+def jn_zeros(n, nt):
+    r"""Compute zeros of integer-order Bessel functions Jn.
+
+    Compute `nt` zeros of the Bessel functions :math:`J_n(x)` on the
+    interval :math:`(0, \infty)`. The zeros are returned in ascending
+    order. Note that this interval excludes the zero at :math:`x = 0`
+    that exists for :math:`n > 0`.
+
+    Parameters
+    ----------
+    n : int
+        Order of Bessel function
+    nt : int
+        Number of zeros to return
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Bessel function.
+
+    See Also
+    --------
+    jv: Real-order Bessel functions of the first kind
+    jnp_zeros: Zeros of :math:`Jn'`
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first four positive roots of :math:`J_3`.
+
+    >>> from scipy.special import jn_zeros
+    >>> jn_zeros(3, 4)
+    array([ 6.3801619 ,  9.76102313, 13.01520072, 16.22346616])
+
+    Plot :math:`J_3` and its first four positive roots. Note
+    that the root located at 0 is not returned by `jn_zeros`.
+
+    >>> import numpy as np
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import jn, jn_zeros
+    >>> j3_roots = jn_zeros(3, 4)
+    >>> xmax = 18
+    >>> xmin = -1
+    >>> x = np.linspace(xmin, xmax, 500)
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, jn(3, x), label=r'$J_3$')
+    >>> ax.scatter(j3_roots, np.zeros((4, )), s=30, c='r',
+    ...            label=r"$J_3$_Zeros", zorder=5)
+    >>> ax.scatter(0, 0, s=30, c='k',
+    ...            label=r"Root at 0", zorder=5)
+    >>> ax.hlines(0, 0, xmax, color='k')
+    >>> ax.set_xlim(xmin, xmax)
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    return jnyn_zeros(n, nt)[0]
+
+
+def jnp_zeros(n, nt):
+    r"""Compute zeros of integer-order Bessel function derivatives Jn'.
+
+    Compute `nt` zeros of the functions :math:`J_n'(x)` on the
+    interval :math:`(0, \infty)`. The zeros are returned in ascending
+    order. Note that this interval excludes the zero at :math:`x = 0`
+    that exists for :math:`n > 1`.
+
+    Parameters
+    ----------
+    n : int
+        Order of Bessel function
+    nt : int
+        Number of zeros to return
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Bessel function.
+
+    See Also
+    --------
+    jvp: Derivatives of integer-order Bessel functions of the first kind
+    jv: Float-order Bessel functions of the first kind
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first four roots of :math:`J_2'`.
+
+    >>> from scipy.special import jnp_zeros
+    >>> jnp_zeros(2, 4)
+    array([ 3.05423693,  6.70613319,  9.96946782, 13.17037086])
+
+    As `jnp_zeros` yields the roots of :math:`J_n'`, it can be used to
+    compute the locations of the peaks of :math:`J_n`. Plot
+    :math:`J_2`, :math:`J_2'` and the locations of the roots of :math:`J_2'`.
+
+    >>> import numpy as np
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import jn, jnp_zeros, jvp
+    >>> j2_roots = jnp_zeros(2, 4)
+    >>> xmax = 15
+    >>> x = np.linspace(0, xmax, 500)
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, jn(2, x), label=r'$J_2$')
+    >>> ax.plot(x, jvp(2, x, 1), label=r"$J_2'$")
+    >>> ax.hlines(0, 0, xmax, color='k')
+    >>> ax.scatter(j2_roots, np.zeros((4, )), s=30, c='r',
+    ...            label=r"Roots of $J_2'$", zorder=5)
+    >>> ax.set_ylim(-0.4, 0.8)
+    >>> ax.set_xlim(0, xmax)
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    return jnyn_zeros(n, nt)[1]
+
+
+def yn_zeros(n, nt):
+    r"""Compute zeros of integer-order Bessel function Yn(x).
+
+    Compute `nt` zeros of the functions :math:`Y_n(x)` on the interval
+    :math:`(0, \infty)`. The zeros are returned in ascending order.
+
+    Parameters
+    ----------
+    n : int
+        Order of Bessel function
+    nt : int
+        Number of zeros to return
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Bessel function.
+
+    See Also
+    --------
+    yn: Bessel function of the second kind for integer order
+    yv: Bessel function of the second kind for real order
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first four roots of :math:`Y_2`.
+
+    >>> from scipy.special import yn_zeros
+    >>> yn_zeros(2, 4)
+    array([ 3.38424177,  6.79380751, 10.02347798, 13.20998671])
+
+    Plot :math:`Y_2` and its first four roots.
+
+    >>> import numpy as np
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import yn, yn_zeros
+    >>> xmin = 2
+    >>> xmax = 15
+    >>> x = np.linspace(xmin, xmax, 500)
+    >>> fig, ax = plt.subplots()
+    >>> ax.hlines(0, xmin, xmax, color='k')
+    >>> ax.plot(x, yn(2, x), label=r'$Y_2$')
+    >>> ax.scatter(yn_zeros(2, 4), np.zeros((4, )), s=30, c='r',
+    ...            label='Roots', zorder=5)
+    >>> ax.set_ylim(-0.4, 0.4)
+    >>> ax.set_xlim(xmin, xmax)
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    return jnyn_zeros(n, nt)[2]
+
+
+def ynp_zeros(n, nt):
+    r"""Compute zeros of integer-order Bessel function derivatives Yn'(x).
+
+    Compute `nt` zeros of the functions :math:`Y_n'(x)` on the
+    interval :math:`(0, \infty)`. The zeros are returned in ascending
+    order.
+
+    Parameters
+    ----------
+    n : int
+        Order of Bessel function
+    nt : int
+        Number of zeros to return
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Bessel derivative function.
+
+
+    See Also
+    --------
+    yvp
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first four roots of the first derivative of the
+    Bessel function of second kind for order 0 :math:`Y_0'`.
+
+    >>> from scipy.special import ynp_zeros
+    >>> ynp_zeros(0, 4)
+    array([ 2.19714133,  5.42968104,  8.59600587, 11.74915483])
+
+    Plot :math:`Y_0`, :math:`Y_0'` and confirm visually that the roots of
+    :math:`Y_0'` are located at local extrema of :math:`Y_0`.
+
+    >>> import numpy as np
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import yn, ynp_zeros, yvp
+    >>> zeros = ynp_zeros(0, 4)
+    >>> xmax = 13
+    >>> x = np.linspace(0, xmax, 500)
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, yn(0, x), label=r'$Y_0$')
+    >>> ax.plot(x, yvp(0, x, 1), label=r"$Y_0'$")
+    >>> ax.scatter(zeros, np.zeros((4, )), s=30, c='r',
+    ...            label=r"Roots of $Y_0'$", zorder=5)
+    >>> for root in zeros:
+    ...     y0_extremum =  yn(0, root)
+    ...     lower = min(0, y0_extremum)
+    ...     upper = max(0, y0_extremum)
+    ...     ax.vlines(root, lower, upper, color='r')
+    >>> ax.hlines(0, 0, xmax, color='k')
+    >>> ax.set_ylim(-0.6, 0.6)
+    >>> ax.set_xlim(0, xmax)
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    return jnyn_zeros(n, nt)[3]
+
+
+def y0_zeros(nt, complex=False):
+    """Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
+
+    The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to return
+    complex : bool, default False
+        Set to False to return only the real zeros; set to True to return only
+        the complex zeros with negative real part and positive imaginary part.
+        Note that the complex conjugates of the latter are also zeros of the
+        function, but are not returned by this routine.
+
+    Returns
+    -------
+    z0n : ndarray
+        Location of nth zero of Y0(z)
+    y0pz0n : ndarray
+        Value of derivative Y0'(z0) for nth zero
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first 4 real roots and the derivatives at the roots of
+    :math:`Y_0`:
+
+    >>> import numpy as np
+    >>> from scipy.special import y0_zeros
+    >>> zeros, grads = y0_zeros(4)
+    >>> with np.printoptions(precision=5):
+    ...     print(f"Roots: {zeros}")
+    ...     print(f"Gradients: {grads}")
+    Roots: [ 0.89358+0.j  3.95768+0.j  7.08605+0.j 10.22235+0.j]
+    Gradients: [-0.87942+0.j  0.40254+0.j -0.3001 +0.j  0.2497 +0.j]
+
+    Plot the real part of :math:`Y_0` and the first four computed roots.
+
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import y0
+    >>> xmin = 0
+    >>> xmax = 11
+    >>> x = np.linspace(xmin, xmax, 500)
+    >>> fig, ax = plt.subplots()
+    >>> ax.hlines(0, xmin, xmax, color='k')
+    >>> ax.plot(x, y0(x), label=r'$Y_0$')
+    >>> zeros, grads = y0_zeros(4)
+    >>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r',
+    ...            label=r'$Y_0$_zeros', zorder=5)
+    >>> ax.set_ylim(-0.5, 0.6)
+    >>> ax.set_xlim(xmin, xmax)
+    >>> plt.legend(ncol=2)
+    >>> plt.show()
+
+    Compute the first 4 complex roots and the derivatives at the roots of
+    :math:`Y_0` by setting ``complex=True``:
+
+    >>> y0_zeros(4, True)
+    (array([ -2.40301663+0.53988231j,  -5.5198767 +0.54718001j,
+             -8.6536724 +0.54841207j, -11.79151203+0.54881912j]),
+     array([ 0.10074769-0.88196771j, -0.02924642+0.5871695j ,
+             0.01490806-0.46945875j, -0.00937368+0.40230454j]))
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("Arguments must be scalar positive integer.")
+    kf = 0
+    kc = not complex
+    return _specfun.cyzo(nt, kf, kc)
+
+
+def y1_zeros(nt, complex=False):
+    """Compute nt zeros of Bessel function Y1(z), and derivative at each zero.
+
+    The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to return
+    complex : bool, default False
+        Set to False to return only the real zeros; set to True to return only
+        the complex zeros with negative real part and positive imaginary part.
+        Note that the complex conjugates of the latter are also zeros of the
+        function, but are not returned by this routine.
+
+    Returns
+    -------
+    z1n : ndarray
+        Location of nth zero of Y1(z)
+    y1pz1n : ndarray
+        Value of derivative Y1'(z1) for nth zero
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first 4 real roots and the derivatives at the roots of
+    :math:`Y_1`:
+
+    >>> import numpy as np
+    >>> from scipy.special import y1_zeros
+    >>> zeros, grads = y1_zeros(4)
+    >>> with np.printoptions(precision=5):
+    ...     print(f"Roots: {zeros}")
+    ...     print(f"Gradients: {grads}")
+    Roots: [ 2.19714+0.j  5.42968+0.j  8.59601+0.j 11.74915+0.j]
+    Gradients: [ 0.52079+0.j -0.34032+0.j  0.27146+0.j -0.23246+0.j]
+
+    Extract the real parts:
+
+    >>> realzeros = zeros.real
+    >>> realzeros
+    array([ 2.19714133,  5.42968104,  8.59600587, 11.74915483])
+
+    Plot :math:`Y_1` and the first four computed roots.
+
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import y1
+    >>> xmin = 0
+    >>> xmax = 13
+    >>> x = np.linspace(xmin, xmax, 500)
+    >>> zeros, grads = y1_zeros(4)
+    >>> fig, ax = plt.subplots()
+    >>> ax.hlines(0, xmin, xmax, color='k')
+    >>> ax.plot(x, y1(x), label=r'$Y_1$')
+    >>> ax.scatter(zeros.real, np.zeros((4, )), s=30, c='r',
+    ...            label=r'$Y_1$_zeros', zorder=5)
+    >>> ax.set_ylim(-0.5, 0.5)
+    >>> ax.set_xlim(xmin, xmax)
+    >>> plt.legend()
+    >>> plt.show()
+
+    Compute the first 4 complex roots and the derivatives at the roots of
+    :math:`Y_1` by setting ``complex=True``:
+
+    >>> y1_zeros(4, True)
+    (array([ -0.50274327+0.78624371j,  -3.83353519+0.56235654j,
+             -7.01590368+0.55339305j, -10.17357383+0.55127339j]),
+     array([-0.45952768+1.31710194j,  0.04830191-0.69251288j,
+            -0.02012695+0.51864253j,  0.011614  -0.43203296j]))
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("Arguments must be scalar positive integer.")
+    kf = 1
+    kc = not complex
+    return _specfun.cyzo(nt, kf, kc)
+
+
+def y1p_zeros(nt, complex=False):
+    """Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.
+
+    The values are given by Y1(z1) at each z1 where Y1'(z1)=0.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to return
+    complex : bool, default False
+        Set to False to return only the real zeros; set to True to return only
+        the complex zeros with negative real part and positive imaginary part.
+        Note that the complex conjugates of the latter are also zeros of the
+        function, but are not returned by this routine.
+
+    Returns
+    -------
+    z1pn : ndarray
+        Location of nth zero of Y1'(z)
+    y1z1pn : ndarray
+        Value of derivative Y1(z1) for nth zero
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    Compute the first four roots of :math:`Y_1'` and the values of
+    :math:`Y_1` at these roots.
+
+    >>> import numpy as np
+    >>> from scipy.special import y1p_zeros
+    >>> y1grad_roots, y1_values = y1p_zeros(4)
+    >>> with np.printoptions(precision=5):
+    ...     print(f"Y1' Roots: {y1grad_roots}")
+    ...     print(f"Y1 values: {y1_values}")
+    Y1' Roots: [ 3.68302+0.j  6.9415 +0.j 10.1234 +0.j 13.28576+0.j]
+    Y1 values: [ 0.41673+0.j -0.30317+0.j  0.25091+0.j -0.21897+0.j]
+
+    `y1p_zeros` can be used to calculate the extremal points of :math:`Y_1`
+    directly. Here we plot :math:`Y_1` and the first four extrema.
+
+    >>> import matplotlib.pyplot as plt
+    >>> from scipy.special import y1, yvp
+    >>> y1_roots, y1_values_at_roots = y1p_zeros(4)
+    >>> real_roots = y1_roots.real
+    >>> xmax = 15
+    >>> x = np.linspace(0, xmax, 500)
+    >>> x[0] += 1e-15
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, y1(x), label=r'$Y_1$')
+    >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$")
+    >>> ax.scatter(real_roots, np.zeros((4, )), s=30, c='r',
+    ...            label=r"Roots of $Y_1'$", zorder=5)
+    >>> ax.scatter(real_roots, y1_values_at_roots.real, s=30, c='k',
+    ...            label=r"Extrema of $Y_1$", zorder=5)
+    >>> ax.hlines(0, 0, xmax, color='k')
+    >>> ax.set_ylim(-0.5, 0.5)
+    >>> ax.set_xlim(0, xmax)
+    >>> ax.legend(ncol=2, bbox_to_anchor=(1., 0.75))
+    >>> plt.tight_layout()
+    >>> plt.show()
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("Arguments must be scalar positive integer.")
+    kf = 2
+    kc = not complex
+    return _specfun.cyzo(nt, kf, kc)
+
+
+def _bessel_diff_formula(v, z, n, L, phase):
+    # from AMS55.
+    # L(v, z) = J(v, z), Y(v, z), H1(v, z), H2(v, z), phase = -1
+    # L(v, z) = I(v, z) or exp(v*pi*i)K(v, z), phase = 1
+    # For K, you can pull out the exp((v-k)*pi*i) into the caller
+    v = asarray(v)
+    p = 1.0
+    s = L(v-n, z)
+    for i in range(1, n+1):
+        p = phase * (p * (n-i+1)) / i   # = choose(k, i)
+        s += p*L(v-n + i*2, z)
+    return s / (2.**n)
+
+
+def jvp(v, z, n=1):
+    """Compute derivatives of Bessel functions of the first kind.
+
+    Compute the nth derivative of the Bessel function `Jv` with
+    respect to `z`.
+
+    Parameters
+    ----------
+    v : array_like or float
+        Order of Bessel function
+    z : complex
+        Argument at which to evaluate the derivative; can be real or
+        complex.
+    n : int, default 1
+        Order of derivative. For 0 returns the Bessel function `jv` itself.
+
+    Returns
+    -------
+    scalar or ndarray
+        Values of the derivative of the Bessel function.
+
+    Notes
+    -----
+    The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.6.E7
+
+    Examples
+    --------
+
+    Compute the Bessel function of the first kind of order 0 and
+    its first two derivatives at 1.
+
+    >>> from scipy.special import jvp
+    >>> jvp(0, 1, 0), jvp(0, 1, 1), jvp(0, 1, 2)
+    (0.7651976865579666, -0.44005058574493355, -0.3251471008130331)
+
+    Compute the first derivative of the Bessel function of the first
+    kind for several orders at 1 by providing an array for `v`.
+
+    >>> jvp([0, 1, 2], 1, 1)
+    array([-0.44005059,  0.3251471 ,  0.21024362])
+
+    Compute the first derivative of the Bessel function of the first
+    kind of order 0 at several points by providing an array for `z`.
+
+    >>> import numpy as np
+    >>> points = np.array([0., 1.5, 3.])
+    >>> jvp(0, points, 1)
+    array([-0.        , -0.55793651, -0.33905896])
+
+    Plot the Bessel function of the first kind of order 1 and its
+    first three derivatives.
+
+    >>> import matplotlib.pyplot as plt
+    >>> x = np.linspace(-10, 10, 1000)
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, jvp(1, x, 0), label=r"$J_1$")
+    >>> ax.plot(x, jvp(1, x, 1), label=r"$J_1'$")
+    >>> ax.plot(x, jvp(1, x, 2), label=r"$J_1''$")
+    >>> ax.plot(x, jvp(1, x, 3), label=r"$J_1'''$")
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    n = _nonneg_int_or_fail(n, 'n')
+    if n == 0:
+        return jv(v, z)
+    else:
+        return _bessel_diff_formula(v, z, n, jv, -1)
+
+
+def yvp(v, z, n=1):
+    """Compute derivatives of Bessel functions of the second kind.
+
+    Compute the nth derivative of the Bessel function `Yv` with
+    respect to `z`.
+
+    Parameters
+    ----------
+    v : array_like of float
+        Order of Bessel function
+    z : complex
+        Argument at which to evaluate the derivative
+    n : int, default 1
+        Order of derivative. For 0 returns the BEssel function `yv`
+
+    See Also
+    --------
+    yv
+
+    Returns
+    -------
+    scalar or ndarray
+        nth derivative of the Bessel function.
+
+    Notes
+    -----
+    The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.6.E7
+
+    Examples
+    --------
+    Compute the Bessel function of the second kind of order 0 and
+    its first two derivatives at 1.
+
+    >>> from scipy.special import yvp
+    >>> yvp(0, 1, 0), yvp(0, 1, 1), yvp(0, 1, 2)
+    (0.088256964215677, 0.7812128213002889, -0.8694697855159659)
+
+    Compute the first derivative of the Bessel function of the second
+    kind for several orders at 1 by providing an array for `v`.
+
+    >>> yvp([0, 1, 2], 1, 1)
+    array([0.78121282, 0.86946979, 2.52015239])
+
+    Compute the first derivative of the Bessel function of the
+    second kind of order 0 at several points by providing an array for `z`.
+
+    >>> import numpy as np
+    >>> points = np.array([0.5, 1.5, 3.])
+    >>> yvp(0, points, 1)
+    array([ 1.47147239,  0.41230863, -0.32467442])
+
+    Plot the Bessel function of the second kind of order 1 and its
+    first three derivatives.
+
+    >>> import matplotlib.pyplot as plt
+    >>> x = np.linspace(0, 5, 1000)
+    >>> x[0] += 1e-15
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, yvp(1, x, 0), label=r"$Y_1$")
+    >>> ax.plot(x, yvp(1, x, 1), label=r"$Y_1'$")
+    >>> ax.plot(x, yvp(1, x, 2), label=r"$Y_1''$")
+    >>> ax.plot(x, yvp(1, x, 3), label=r"$Y_1'''$")
+    >>> ax.set_ylim(-10, 10)
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    n = _nonneg_int_or_fail(n, 'n')
+    if n == 0:
+        return yv(v, z)
+    else:
+        return _bessel_diff_formula(v, z, n, yv, -1)
+
+
+def kvp(v, z, n=1):
+    """Compute derivatives of real-order modified Bessel function Kv(z)
+
+    Kv(z) is the modified Bessel function of the second kind.
+    Derivative is calculated with respect to `z`.
+
+    Parameters
+    ----------
+    v : array_like of float
+        Order of Bessel function
+    z : array_like of complex
+        Argument at which to evaluate the derivative
+    n : int, default 1
+        Order of derivative. For 0 returns the Bessel function `kv` itself.
+
+    Returns
+    -------
+    out : ndarray
+        The results
+
+    See Also
+    --------
+    kv
+
+    Notes
+    -----
+    The derivative is computed using the relation DLFM 10.29.5 [2]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 6.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.29.E5
+
+    Examples
+    --------
+    Compute the modified bessel function of the second kind of order 0 and
+    its first two derivatives at 1.
+
+    >>> from scipy.special import kvp
+    >>> kvp(0, 1, 0), kvp(0, 1, 1), kvp(0, 1, 2)
+    (0.42102443824070834, -0.6019072301972346, 1.0229316684379428)
+
+    Compute the first derivative of the modified Bessel function of the second
+    kind for several orders at 1 by providing an array for `v`.
+
+    >>> kvp([0, 1, 2], 1, 1)
+    array([-0.60190723, -1.02293167, -3.85158503])
+
+    Compute the first derivative of the modified Bessel function of the
+    second kind of order 0 at several points by providing an array for `z`.
+
+    >>> import numpy as np
+    >>> points = np.array([0.5, 1.5, 3.])
+    >>> kvp(0, points, 1)
+    array([-1.65644112, -0.2773878 , -0.04015643])
+
+    Plot the modified bessel function of the second kind and its
+    first three derivatives.
+
+    >>> import matplotlib.pyplot as plt
+    >>> x = np.linspace(0, 5, 1000)
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, kvp(1, x, 0), label=r"$K_1$")
+    >>> ax.plot(x, kvp(1, x, 1), label=r"$K_1'$")
+    >>> ax.plot(x, kvp(1, x, 2), label=r"$K_1''$")
+    >>> ax.plot(x, kvp(1, x, 3), label=r"$K_1'''$")
+    >>> ax.set_ylim(-2.5, 2.5)
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    n = _nonneg_int_or_fail(n, 'n')
+    if n == 0:
+        return kv(v, z)
+    else:
+        return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1)
+
+
+def ivp(v, z, n=1):
+    """Compute derivatives of modified Bessel functions of the first kind.
+
+    Compute the nth derivative of the modified Bessel function `Iv`
+    with respect to `z`.
+
+    Parameters
+    ----------
+    v : array_like or float
+        Order of Bessel function
+    z : array_like
+        Argument at which to evaluate the derivative; can be real or
+        complex.
+    n : int, default 1
+        Order of derivative. For 0, returns the Bessel function `iv` itself.
+
+    Returns
+    -------
+    scalar or ndarray
+        nth derivative of the modified Bessel function.
+
+    See Also
+    --------
+    iv
+
+    Notes
+    -----
+    The derivative is computed using the relation DLFM 10.29.5 [2]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 6.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.29.E5
+
+    Examples
+    --------
+    Compute the modified Bessel function of the first kind of order 0 and
+    its first two derivatives at 1.
+
+    >>> from scipy.special import ivp
+    >>> ivp(0, 1, 0), ivp(0, 1, 1), ivp(0, 1, 2)
+    (1.2660658777520084, 0.565159103992485, 0.7009067737595233)
+
+    Compute the first derivative of the modified Bessel function of the first
+    kind for several orders at 1 by providing an array for `v`.
+
+    >>> ivp([0, 1, 2], 1, 1)
+    array([0.5651591 , 0.70090677, 0.29366376])
+
+    Compute the first derivative of the modified Bessel function of the
+    first kind of order 0 at several points by providing an array for `z`.
+
+    >>> import numpy as np
+    >>> points = np.array([0., 1.5, 3.])
+    >>> ivp(0, points, 1)
+    array([0.        , 0.98166643, 3.95337022])
+
+    Plot the modified Bessel function of the first kind of order 1 and its
+    first three derivatives.
+
+    >>> import matplotlib.pyplot as plt
+    >>> x = np.linspace(-5, 5, 1000)
+    >>> fig, ax = plt.subplots()
+    >>> ax.plot(x, ivp(1, x, 0), label=r"$I_1$")
+    >>> ax.plot(x, ivp(1, x, 1), label=r"$I_1'$")
+    >>> ax.plot(x, ivp(1, x, 2), label=r"$I_1''$")
+    >>> ax.plot(x, ivp(1, x, 3), label=r"$I_1'''$")
+    >>> plt.legend()
+    >>> plt.show()
+    """
+    n = _nonneg_int_or_fail(n, 'n')
+    if n == 0:
+        return iv(v, z)
+    else:
+        return _bessel_diff_formula(v, z, n, iv, 1)
+
+
+def h1vp(v, z, n=1):
+    """Compute derivatives of Hankel function H1v(z) with respect to `z`.
+
+    Parameters
+    ----------
+    v : array_like
+        Order of Hankel function
+    z : array_like
+        Argument at which to evaluate the derivative. Can be real or
+        complex.
+    n : int, default 1
+        Order of derivative. For 0 returns the Hankel function `h1v` itself.
+
+    Returns
+    -------
+    scalar or ndarray
+        Values of the derivative of the Hankel function.
+
+    See Also
+    --------
+    hankel1
+
+    Notes
+    -----
+    The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.6.E7
+
+    Examples
+    --------
+    Compute the Hankel function of the first kind of order 0 and
+    its first two derivatives at 1.
+
+    >>> from scipy.special import h1vp
+    >>> h1vp(0, 1, 0), h1vp(0, 1, 1), h1vp(0, 1, 2)
+    ((0.7651976865579664+0.088256964215677j),
+     (-0.44005058574493355+0.7812128213002889j),
+     (-0.3251471008130329-0.8694697855159659j))
+
+    Compute the first derivative of the Hankel function of the first kind
+    for several orders at 1 by providing an array for `v`.
+
+    >>> h1vp([0, 1, 2], 1, 1)
+    array([-0.44005059+0.78121282j,  0.3251471 +0.86946979j,
+           0.21024362+2.52015239j])
+
+    Compute the first derivative of the Hankel function of the first kind
+    of order 0 at several points by providing an array for `z`.
+
+    >>> import numpy as np
+    >>> points = np.array([0.5, 1.5, 3.])
+    >>> h1vp(0, points, 1)
+    array([-0.24226846+1.47147239j, -0.55793651+0.41230863j,
+           -0.33905896-0.32467442j])
+    """
+    n = _nonneg_int_or_fail(n, 'n')
+    if n == 0:
+        return hankel1(v, z)
+    else:
+        return _bessel_diff_formula(v, z, n, hankel1, -1)
+
+
+def h2vp(v, z, n=1):
+    """Compute derivatives of Hankel function H2v(z) with respect to `z`.
+
+    Parameters
+    ----------
+    v : array_like
+        Order of Hankel function
+    z : array_like
+        Argument at which to evaluate the derivative. Can be real or
+        complex.
+    n : int, default 1
+        Order of derivative. For 0 returns the Hankel function `h2v` itself.
+
+    Returns
+    -------
+    scalar or ndarray
+        Values of the derivative of the Hankel function.
+
+    See Also
+    --------
+    hankel2
+
+    Notes
+    -----
+    The derivative is computed using the relation DLFM 10.6.7 [2]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 5.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.6.E7
+
+    Examples
+    --------
+    Compute the Hankel function of the second kind of order 0 and
+    its first two derivatives at 1.
+
+    >>> from scipy.special import h2vp
+    >>> h2vp(0, 1, 0), h2vp(0, 1, 1), h2vp(0, 1, 2)
+    ((0.7651976865579664-0.088256964215677j),
+     (-0.44005058574493355-0.7812128213002889j),
+     (-0.3251471008130329+0.8694697855159659j))
+
+    Compute the first derivative of the Hankel function of the second kind
+    for several orders at 1 by providing an array for `v`.
+
+    >>> h2vp([0, 1, 2], 1, 1)
+    array([-0.44005059-0.78121282j,  0.3251471 -0.86946979j,
+           0.21024362-2.52015239j])
+
+    Compute the first derivative of the Hankel function of the second kind
+    of order 0 at several points by providing an array for `z`.
+
+    >>> import numpy as np
+    >>> points = np.array([0.5, 1.5, 3.])
+    >>> h2vp(0, points, 1)
+    array([-0.24226846-1.47147239j, -0.55793651-0.41230863j,
+           -0.33905896+0.32467442j])
+    """
+    n = _nonneg_int_or_fail(n, 'n')
+    if n == 0:
+        return hankel2(v, z)
+    else:
+        return _bessel_diff_formula(v, z, n, hankel2, -1)
+
+
+def riccati_jn(n, x):
+    r"""Compute Ricatti-Bessel function of the first kind and its derivative.
+
+    The Ricatti-Bessel function of the first kind is defined as :math:`x
+    j_n(x)`, where :math:`j_n` is the spherical Bessel function of the first
+    kind of order :math:`n`.
+
+    This function computes the value and first derivative of the
+    Ricatti-Bessel function for all orders up to and including `n`.
+
+    Parameters
+    ----------
+    n : int
+        Maximum order of function to compute
+    x : float
+        Argument at which to evaluate
+
+    Returns
+    -------
+    jn : ndarray
+        Value of j0(x), ..., jn(x)
+    jnp : ndarray
+        First derivative j0'(x), ..., jn'(x)
+
+    Notes
+    -----
+    The computation is carried out via backward recurrence, using the
+    relation DLMF 10.51.1 [2]_.
+
+    Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
+    Jin [1]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.51.E1
+
+    """
+    if not (isscalar(n) and isscalar(x)):
+        raise ValueError("arguments must be scalars.")
+    n = _nonneg_int_or_fail(n, 'n', strict=False)
+    if (n == 0):
+        n1 = 1
+    else:
+        n1 = n
+    nm, jn, jnp = _specfun.rctj(n1, x)
+    return jn[:(n+1)], jnp[:(n+1)]
+
+
+def riccati_yn(n, x):
+    """Compute Ricatti-Bessel function of the second kind and its derivative.
+
+    The Ricatti-Bessel function of the second kind is defined as :math:`x
+    y_n(x)`, where :math:`y_n` is the spherical Bessel function of the second
+    kind of order :math:`n`.
+
+    This function computes the value and first derivative of the function for
+    all orders up to and including `n`.
+
+    Parameters
+    ----------
+    n : int
+        Maximum order of function to compute
+    x : float
+        Argument at which to evaluate
+
+    Returns
+    -------
+    yn : ndarray
+        Value of y0(x), ..., yn(x)
+    ynp : ndarray
+        First derivative y0'(x), ..., yn'(x)
+
+    Notes
+    -----
+    The computation is carried out via ascending recurrence, using the
+    relation DLMF 10.51.1 [2]_.
+
+    Wrapper for a Fortran routine created by Shanjie Zhang and Jianming
+    Jin [1]_.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+    .. [2] NIST Digital Library of Mathematical Functions.
+           https://dlmf.nist.gov/10.51.E1
+
+    """
+    if not (isscalar(n) and isscalar(x)):
+        raise ValueError("arguments must be scalars.")
+    n = _nonneg_int_or_fail(n, 'n', strict=False)
+    if (n == 0):
+        n1 = 1
+    else:
+        n1 = n
+    nm, jn, jnp = _specfun.rcty(n1, x)
+    return jn[:(n+1)], jnp[:(n+1)]
+
+
+def erf_zeros(nt):
+    """Compute the first nt zero in the first quadrant, ordered by absolute value.
+
+    Zeros in the other quadrants can be obtained by using the symmetries erf(-z) = erf(z) and
+    erf(conj(z)) = conj(erf(z)).
+
+
+    Parameters
+    ----------
+    nt : int
+        The number of zeros to compute
+
+    Returns
+    -------
+    The locations of the zeros of erf : ndarray (complex)
+        Complex values at which zeros of erf(z)
+
+    Examples
+    --------
+    >>> from scipy import special
+    >>> special.erf_zeros(1)
+    array([1.45061616+1.880943j])
+
+    Check that erf is (close to) zero for the value returned by erf_zeros
+
+    >>> special.erf(special.erf_zeros(1))
+    array([4.95159469e-14-1.16407394e-16j])
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+        raise ValueError("Argument must be positive scalar integer.")
+    return _specfun.cerzo(nt)
+
+
+def fresnelc_zeros(nt):
+    """Compute nt complex zeros of cosine Fresnel integral C(z).
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+        raise ValueError("Argument must be positive scalar integer.")
+    return _specfun.fcszo(1, nt)
+
+
+def fresnels_zeros(nt):
+    """Compute nt complex zeros of sine Fresnel integral S(z).
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+        raise ValueError("Argument must be positive scalar integer.")
+    return _specfun.fcszo(2, nt)
+
+
+def fresnel_zeros(nt):
+    """Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt):
+        raise ValueError("Argument must be positive scalar integer.")
+    return _specfun.fcszo(2, nt), _specfun.fcszo(1, nt)
+
+
+def assoc_laguerre(x, n, k=0.0):
+    """Compute the generalized (associated) Laguerre polynomial of degree n and order k.
+
+    The polynomial :math:`L^{(k)}_n(x)` is orthogonal over ``[0, inf)``,
+    with weighting function ``exp(-x) * x**k`` with ``k > -1``.
+
+    Notes
+    -----
+    `assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with
+    reversed argument order ``(x, n, k=0.0) --> (n, k, x)``.
+
+    """
+    return _ufuncs.eval_genlaguerre(n, k, x)
+
+
+digamma = psi
+
+
+def polygamma(n, x):
+    r"""Polygamma functions.
+
+    Defined as :math:`\psi^{(n)}(x)` where :math:`\psi` is the
+    `digamma` function. See [dlmf]_ for details.
+
+    Parameters
+    ----------
+    n : array_like
+        The order of the derivative of the digamma function; must be
+        integral
+    x : array_like
+        Real valued input
+
+    Returns
+    -------
+    ndarray
+        Function results
+
+    See Also
+    --------
+    digamma
+
+    References
+    ----------
+    .. [dlmf] NIST, Digital Library of Mathematical Functions,
+        https://dlmf.nist.gov/5.15
+
+    Examples
+    --------
+    >>> from scipy import special
+    >>> x = [2, 3, 25.5]
+    >>> special.polygamma(1, x)
+    array([ 0.64493407,  0.39493407,  0.03999467])
+    >>> special.polygamma(0, x) == special.psi(x)
+    array([ True,  True,  True], dtype=bool)
+
+    """
+    n, x = asarray(n), asarray(x)
+    fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x)
+    return where(n == 0, psi(x), fac2)
+
+
+def mathieu_even_coef(m, q):
+    r"""Fourier coefficients for even Mathieu and modified Mathieu functions.
+
+    The Fourier series of the even solutions of the Mathieu differential
+    equation are of the form
+
+    .. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz
+
+    .. math:: \mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z
+
+    This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even
+    input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input
+    m=2n+1.
+
+    Parameters
+    ----------
+    m : int
+        Order of Mathieu functions.  Must be non-negative.
+    q : float (>=0)
+        Parameter of Mathieu functions.  Must be non-negative.
+
+    Returns
+    -------
+    Ak : ndarray
+        Even or odd Fourier coefficients, corresponding to even or odd m.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+    .. [2] NIST Digital Library of Mathematical Functions
+           https://dlmf.nist.gov/28.4#i
+
+    """
+    if not (isscalar(m) and isscalar(q)):
+        raise ValueError("m and q must be scalars.")
+    if (q < 0):
+        raise ValueError("q >=0")
+    if (m != floor(m)) or (m < 0):
+        raise ValueError("m must be an integer >=0.")
+
+    if (q <= 1):
+        qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
+    else:
+        qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
+    km = int(qm + 0.5*m)
+    if km > 251:
+        warnings.warn("Too many predicted coefficients.", RuntimeWarning, 2)
+    kd = 1
+    m = int(floor(m))
+    if m % 2:
+        kd = 2
+
+    a = mathieu_a(m, q)
+    fc = _specfun.fcoef(kd, m, q, a)
+    return fc[:km]
+
+
+def mathieu_odd_coef(m, q):
+    r"""Fourier coefficients for even Mathieu and modified Mathieu functions.
+
+    The Fourier series of the odd solutions of the Mathieu differential
+    equation are of the form
+
+    .. math:: \mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z
+
+    .. math:: \mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z
+
+    This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even
+    input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd
+    input m=2n+1.
+
+    Parameters
+    ----------
+    m : int
+        Order of Mathieu functions.  Must be non-negative.
+    q : float (>=0)
+        Parameter of Mathieu functions.  Must be non-negative.
+
+    Returns
+    -------
+    Bk : ndarray
+        Even or odd Fourier coefficients, corresponding to even or odd m.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(m) and isscalar(q)):
+        raise ValueError("m and q must be scalars.")
+    if (q < 0):
+        raise ValueError("q >=0")
+    if (m != floor(m)) or (m <= 0):
+        raise ValueError("m must be an integer > 0")
+
+    if (q <= 1):
+        qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q
+    else:
+        qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q
+    km = int(qm + 0.5*m)
+    if km > 251:
+        warnings.warn("Too many predicted coefficients.", RuntimeWarning, 2)
+    kd = 4
+    m = int(floor(m))
+    if m % 2:
+        kd = 3
+
+    b = mathieu_b(m, q)
+    fc = _specfun.fcoef(kd, m, q, b)
+    return fc[:km]
+
+
+def lpmn(m, n, z):
+    """Sequence of associated Legendre functions of the first kind.
+
+    Computes the associated Legendre function of the first kind of order m and
+    degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
+    Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
+    ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
+
+    This function takes a real argument ``z``. For complex arguments ``z``
+    use clpmn instead.
+
+    Parameters
+    ----------
+    m : int
+       ``|m| <= n``; the order of the Legendre function.
+    n : int
+       where ``n >= 0``; the degree of the Legendre function.  Often
+       called ``l`` (lower case L) in descriptions of the associated
+       Legendre function
+    z : float
+        Input value.
+
+    Returns
+    -------
+    Pmn_z : (m+1, n+1) array
+       Values for all orders 0..m and degrees 0..n
+    Pmn_d_z : (m+1, n+1) array
+       Derivatives for all orders 0..m and degrees 0..n
+
+    See Also
+    --------
+    clpmn: associated Legendre functions of the first kind for complex z
+
+    Notes
+    -----
+    In the interval (-1, 1), Ferrer's function of the first kind is
+    returned. The phase convention used for the intervals (1, inf)
+    and (-inf, -1) is such that the result is always real.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+    .. [2] NIST Digital Library of Mathematical Functions
+           https://dlmf.nist.gov/14.3
+
+    """
+    if not isscalar(m) or (abs(m) > n):
+        raise ValueError("m must be <= n.")
+    if not isscalar(n) or (n < 0):
+        raise ValueError("n must be a non-negative integer.")
+    if not isscalar(z):
+        raise ValueError("z must be scalar.")
+    if iscomplex(z):
+        raise ValueError("Argument must be real. Use clpmn instead.")
+    if (m < 0):
+        mp = -m
+        mf, nf = mgrid[0:mp+1, 0:n+1]
+        with _ufuncs.errstate(all='ignore'):
+            if abs(z) < 1:
+                # Ferrer function; DLMF 14.9.3
+                fixarr = where(mf > nf, 0.0,
+                               (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
+            else:
+                # Match to clpmn; DLMF 14.9.13
+                fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1))
+    else:
+        mp = m
+    p, pd = _specfun.lpmn(mp, n, z)
+    if (m < 0):
+        p = p * fixarr
+        pd = pd * fixarr
+    return p, pd
+
+
+def clpmn(m, n, z, type=3):
+    """Associated Legendre function of the first kind for complex arguments.
+
+    Computes the associated Legendre function of the first kind of order m and
+    degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``.
+    Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and
+    ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
+
+    Parameters
+    ----------
+    m : int
+       ``|m| <= n``; the order of the Legendre function.
+    n : int
+       where ``n >= 0``; the degree of the Legendre function.  Often
+       called ``l`` (lower case L) in descriptions of the associated
+       Legendre function
+    z : float or complex
+        Input value.
+    type : int, optional
+       takes values 2 or 3
+       2: cut on the real axis ``|x| > 1``
+       3: cut on the real axis ``-1 < x < 1`` (default)
+
+    Returns
+    -------
+    Pmn_z : (m+1, n+1) array
+       Values for all orders ``0..m`` and degrees ``0..n``
+    Pmn_d_z : (m+1, n+1) array
+       Derivatives for all orders ``0..m`` and degrees ``0..n``
+
+    See Also
+    --------
+    lpmn: associated Legendre functions of the first kind for real z
+
+    Notes
+    -----
+    By default, i.e. for ``type=3``, phase conventions are chosen according
+    to [1]_ such that the function is analytic. The cut lies on the interval
+    (-1, 1). Approaching the cut from above or below in general yields a phase
+    factor with respect to Ferrer's function of the first kind
+    (cf. `lpmn`).
+
+    For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values
+    on the interval (-1, 1) in the complex plane yields Ferrer's function
+    of the first kind.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+    .. [2] NIST Digital Library of Mathematical Functions
+           https://dlmf.nist.gov/14.21
+
+    """
+    if not isscalar(m) or (abs(m) > n):
+        raise ValueError("m must be <= n.")
+    if not isscalar(n) or (n < 0):
+        raise ValueError("n must be a non-negative integer.")
+    if not isscalar(z):
+        raise ValueError("z must be scalar.")
+    if not (type == 2 or type == 3):
+        raise ValueError("type must be either 2 or 3.")
+    if (m < 0):
+        mp = -m
+        mf, nf = mgrid[0:mp+1, 0:n+1]
+        with _ufuncs.errstate(all='ignore'):
+            if type == 2:
+                fixarr = where(mf > nf, 0.0,
+                               (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1))
+            else:
+                fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1))
+    else:
+        mp = m
+    p, pd = _specfun.clpmn(mp, n, real(z), imag(z), type)
+    if (m < 0):
+        p = p * fixarr
+        pd = pd * fixarr
+    return p, pd
+
+
+def lqmn(m, n, z):
+    """Sequence of associated Legendre functions of the second kind.
+
+    Computes the associated Legendre function of the second kind of order m and
+    degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``.
+    Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and
+    ``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``.
+
+    Parameters
+    ----------
+    m : int
+       ``|m| <= n``; the order of the Legendre function.
+    n : int
+       where ``n >= 0``; the degree of the Legendre function.  Often
+       called ``l`` (lower case L) in descriptions of the associated
+       Legendre function
+    z : complex
+        Input value.
+
+    Returns
+    -------
+    Qmn_z : (m+1, n+1) array
+       Values for all orders 0..m and degrees 0..n
+    Qmn_d_z : (m+1, n+1) array
+       Derivatives for all orders 0..m and degrees 0..n
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(m) or (m < 0):
+        raise ValueError("m must be a non-negative integer.")
+    if not isscalar(n) or (n < 0):
+        raise ValueError("n must be a non-negative integer.")
+    if not isscalar(z):
+        raise ValueError("z must be scalar.")
+    m = int(m)
+    n = int(n)
+
+    # Ensure neither m nor n == 0
+    mm = max(1, m)
+    nn = max(1, n)
+
+    if iscomplex(z):
+        q, qd = _specfun.clqmn(mm, nn, z)
+    else:
+        q, qd = _specfun.lqmn(mm, nn, z)
+    return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)]
+
+
+def bernoulli(n):
+    """Bernoulli numbers B0..Bn (inclusive).
+
+    Parameters
+    ----------
+    n : int
+        Indicated the number of terms in the Bernoulli series to generate.
+
+    Returns
+    -------
+    ndarray
+        The Bernoulli numbers ``[B(0), B(1), ..., B(n)]``.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+    .. [2] "Bernoulli number", Wikipedia, https://en.wikipedia.org/wiki/Bernoulli_number
+
+    Examples
+    --------
+    >>> import numpy as np
+    >>> from scipy.special import bernoulli, zeta
+    >>> bernoulli(4)
+    array([ 1.        , -0.5       ,  0.16666667,  0.        , -0.03333333])
+
+    The Wikipedia article ([2]_) points out the relationship between the
+    Bernoulli numbers and the zeta function, ``B_n^+ = -n * zeta(1 - n)``
+    for ``n > 0``:
+
+    >>> n = np.arange(1, 5)
+    >>> -n * zeta(1 - n)
+    array([ 0.5       ,  0.16666667, -0.        , -0.03333333])
+
+    Note that, in the notation used in the wikipedia article,
+    `bernoulli` computes ``B_n^-`` (i.e. it used the convention that
+    ``B_1`` is -1/2).  The relation given above is for ``B_n^+``, so the
+    sign of 0.5 does not match the output of ``bernoulli(4)``.
+
+    """
+    if not isscalar(n) or (n < 0):
+        raise ValueError("n must be a non-negative integer.")
+    n = int(n)
+    if (n < 2):
+        n1 = 2
+    else:
+        n1 = n
+    return _specfun.bernob(int(n1))[:(n+1)]
+
+
+def euler(n):
+    """Euler numbers E(0), E(1), ..., E(n).
+
+    The Euler numbers [1]_ are also known as the secant numbers.
+
+    Because ``euler(n)`` returns floating point values, it does not give
+    exact values for large `n`.  The first inexact value is E(22).
+
+    Parameters
+    ----------
+    n : int
+        The highest index of the Euler number to be returned.
+
+    Returns
+    -------
+    ndarray
+        The Euler numbers [E(0), E(1), ..., E(n)].
+        The odd Euler numbers, which are all zero, are included.
+
+    References
+    ----------
+    .. [1] Sequence A122045, The On-Line Encyclopedia of Integer Sequences,
+           https://oeis.org/A122045
+    .. [2] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    Examples
+    --------
+    >>> import numpy as np
+    >>> from scipy.special import euler
+    >>> euler(6)
+    array([  1.,   0.,  -1.,   0.,   5.,   0., -61.])
+
+    >>> euler(13).astype(np.int64)
+    array([      1,       0,      -1,       0,       5,       0,     -61,
+                 0,    1385,       0,  -50521,       0, 2702765,       0])
+
+    >>> euler(22)[-1]  # Exact value of E(22) is -69348874393137901.
+    -69348874393137976.0
+
+    """
+    if not isscalar(n) or (n < 0):
+        raise ValueError("n must be a non-negative integer.")
+    n = int(n)
+    if (n < 2):
+        n1 = 2
+    else:
+        n1 = n
+    return _specfun.eulerb(n1)[:(n+1)]
+
+
+def lpn(n, z):
+    """Legendre function of the first kind.
+
+    Compute sequence of Legendre functions of the first kind (polynomials),
+    Pn(z) and derivatives for all degrees from 0 to n (inclusive).
+
+    See also special.legendre for polynomial class.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(n) and isscalar(z)):
+        raise ValueError("arguments must be scalars.")
+    n = _nonneg_int_or_fail(n, 'n', strict=False)
+    if (n < 1):
+        n1 = 1
+    else:
+        n1 = n
+    if iscomplex(z):
+        pn, pd = _specfun.clpn(n1, z)
+    else:
+        pn, pd = _specfun.lpn(n1, z)
+    return pn[:(n+1)], pd[:(n+1)]
+
+
+def lqn(n, z):
+    """Legendre function of the second kind.
+
+    Compute sequence of Legendre functions of the second kind, Qn(z) and
+    derivatives for all degrees from 0 to n (inclusive).
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(n) and isscalar(z)):
+        raise ValueError("arguments must be scalars.")
+    n = _nonneg_int_or_fail(n, 'n', strict=False)
+    if (n < 1):
+        n1 = 1
+    else:
+        n1 = n
+    if iscomplex(z):
+        qn, qd = _specfun.clqn(n1, z)
+    else:
+        qn, qd = _specfun.lqnb(n1, z)
+    return qn[:(n+1)], qd[:(n+1)]
+
+
+def ai_zeros(nt):
+    """
+    Compute `nt` zeros and values of the Airy function Ai and its derivative.
+
+    Computes the first `nt` zeros, `a`, of the Airy function Ai(x);
+    first `nt` zeros, `ap`, of the derivative of the Airy function Ai'(x);
+    the corresponding values Ai(a');
+    and the corresponding values Ai'(a).
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute
+
+    Returns
+    -------
+    a : ndarray
+        First `nt` zeros of Ai(x)
+    ap : ndarray
+        First `nt` zeros of Ai'(x)
+    ai : ndarray
+        Values of Ai(x) evaluated at first `nt` zeros of Ai'(x)
+    aip : ndarray
+        Values of Ai'(x) evaluated at first `nt` zeros of Ai(x)
+
+    Examples
+    --------
+    >>> from scipy import special
+    >>> a, ap, ai, aip = special.ai_zeros(3)
+    >>> a
+    array([-2.33810741, -4.08794944, -5.52055983])
+    >>> ap
+    array([-1.01879297, -3.24819758, -4.82009921])
+    >>> ai
+    array([ 0.53565666, -0.41901548,  0.38040647])
+    >>> aip
+    array([ 0.70121082, -0.80311137,  0.86520403])
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    kf = 1
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be a positive integer scalar.")
+    return _specfun.airyzo(nt, kf)
+
+
+def bi_zeros(nt):
+    """
+    Compute `nt` zeros and values of the Airy function Bi and its derivative.
+
+    Computes the first `nt` zeros, b, of the Airy function Bi(x);
+    first `nt` zeros, b', of the derivative of the Airy function Bi'(x);
+    the corresponding values Bi(b');
+    and the corresponding values Bi'(b).
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute
+
+    Returns
+    -------
+    b : ndarray
+        First `nt` zeros of Bi(x)
+    bp : ndarray
+        First `nt` zeros of Bi'(x)
+    bi : ndarray
+        Values of Bi(x) evaluated at first `nt` zeros of Bi'(x)
+    bip : ndarray
+        Values of Bi'(x) evaluated at first `nt` zeros of Bi(x)
+
+    Examples
+    --------
+    >>> from scipy import special
+    >>> b, bp, bi, bip = special.bi_zeros(3)
+    >>> b
+    array([-1.17371322, -3.2710933 , -4.83073784])
+    >>> bp
+    array([-2.29443968, -4.07315509, -5.51239573])
+    >>> bi
+    array([-0.45494438,  0.39652284, -0.36796916])
+    >>> bip
+    array([ 0.60195789, -0.76031014,  0.83699101])
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    kf = 2
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be a positive integer scalar.")
+    return _specfun.airyzo(nt, kf)
+
+
+def lmbda(v, x):
+    r"""Jahnke-Emden Lambda function, Lambdav(x).
+
+    This function is defined as [2]_,
+
+    .. math:: \Lambda_v(x) = \Gamma(v+1) \frac{J_v(x)}{(x/2)^v},
+
+    where :math:`\Gamma` is the gamma function and :math:`J_v` is the
+    Bessel function of the first kind.
+
+    Parameters
+    ----------
+    v : float
+        Order of the Lambda function
+    x : float
+        Value at which to evaluate the function and derivatives
+
+    Returns
+    -------
+    vl : ndarray
+        Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+    dl : ndarray
+        Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+    .. [2] Jahnke, E. and Emde, F. "Tables of Functions with Formulae and
+           Curves" (4th ed.), Dover, 1945
+    """
+    if not (isscalar(v) and isscalar(x)):
+        raise ValueError("arguments must be scalars.")
+    if (v < 0):
+        raise ValueError("argument must be > 0.")
+    n = int(v)
+    v0 = v - n
+    if (n < 1):
+        n1 = 1
+    else:
+        n1 = n
+    v1 = n1 + v0
+    if (v != floor(v)):
+        vm, vl, dl = _specfun.lamv(v1, x)
+    else:
+        vm, vl, dl = _specfun.lamn(v1, x)
+    return vl[:(n+1)], dl[:(n+1)]
+
+
+def pbdv_seq(v, x):
+    """Parabolic cylinder functions Dv(x) and derivatives.
+
+    Parameters
+    ----------
+    v : float
+        Order of the parabolic cylinder function
+    x : float
+        Value at which to evaluate the function and derivatives
+
+    Returns
+    -------
+    dv : ndarray
+        Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+    dp : ndarray
+        Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 13.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(v) and isscalar(x)):
+        raise ValueError("arguments must be scalars.")
+    n = int(v)
+    v0 = v-n
+    if (n < 1):
+        n1 = 1
+    else:
+        n1 = n
+    v1 = n1 + v0
+    dv, dp, pdf, pdd = _specfun.pbdv(v1, x)
+    return dv[:n1+1], dp[:n1+1]
+
+
+def pbvv_seq(v, x):
+    """Parabolic cylinder functions Vv(x) and derivatives.
+
+    Parameters
+    ----------
+    v : float
+        Order of the parabolic cylinder function
+    x : float
+        Value at which to evaluate the function and derivatives
+
+    Returns
+    -------
+    dv : ndarray
+        Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+    dp : ndarray
+        Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 13.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(v) and isscalar(x)):
+        raise ValueError("arguments must be scalars.")
+    n = int(v)
+    v0 = v-n
+    if (n <= 1):
+        n1 = 1
+    else:
+        n1 = n
+    v1 = n1 + v0
+    dv, dp, pdf, pdd = _specfun.pbvv(v1, x)
+    return dv[:n1+1], dp[:n1+1]
+
+
+def pbdn_seq(n, z):
+    """Parabolic cylinder functions Dn(z) and derivatives.
+
+    Parameters
+    ----------
+    n : int
+        Order of the parabolic cylinder function
+    z : complex
+        Value at which to evaluate the function and derivatives
+
+    Returns
+    -------
+    dv : ndarray
+        Values of D_i(z), for i=0, ..., i=n.
+    dp : ndarray
+        Derivatives D_i'(z), for i=0, ..., i=n.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996, chapter 13.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(n) and isscalar(z)):
+        raise ValueError("arguments must be scalars.")
+    if (floor(n) != n):
+        raise ValueError("n must be an integer.")
+    if (abs(n) <= 1):
+        n1 = 1
+    else:
+        n1 = n
+    cpb, cpd = _specfun.cpbdn(n1, z)
+    return cpb[:n1+1], cpd[:n1+1]
+
+
+def ber_zeros(nt):
+    """Compute nt zeros of the Kelvin function ber.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Kelvin function.
+
+    See Also
+    --------
+    ber
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 1)
+
+
+def bei_zeros(nt):
+    """Compute nt zeros of the Kelvin function bei.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Kelvin function.
+
+    See Also
+    --------
+    bei
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 2)
+
+
+def ker_zeros(nt):
+    """Compute nt zeros of the Kelvin function ker.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Kelvin function.
+
+    See Also
+    --------
+    ker
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 3)
+
+
+def kei_zeros(nt):
+    """Compute nt zeros of the Kelvin function kei.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the Kelvin function.
+
+    See Also
+    --------
+    kei
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 4)
+
+
+def berp_zeros(nt):
+    """Compute nt zeros of the derivative of the Kelvin function ber.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the derivative of the Kelvin function.
+
+    See Also
+    --------
+    ber, berp
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 5)
+
+
+def beip_zeros(nt):
+    """Compute nt zeros of the derivative of the Kelvin function bei.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the derivative of the Kelvin function.
+
+    See Also
+    --------
+    bei, beip
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 6)
+
+
+def kerp_zeros(nt):
+    """Compute nt zeros of the derivative of the Kelvin function ker.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the derivative of the Kelvin function.
+
+    See Also
+    --------
+    ker, kerp
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 7)
+
+
+def keip_zeros(nt):
+    """Compute nt zeros of the derivative of the Kelvin function kei.
+
+    Parameters
+    ----------
+    nt : int
+        Number of zeros to compute. Must be positive.
+
+    Returns
+    -------
+    ndarray
+        First `nt` zeros of the derivative of the Kelvin function.
+
+    See Also
+    --------
+    kei, keip
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return _specfun.klvnzo(nt, 8)
+
+
+def kelvin_zeros(nt):
+    """Compute nt zeros of all Kelvin functions.
+
+    Returned in a length-8 tuple of arrays of length nt.  The tuple contains
+    the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei').
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0):
+        raise ValueError("nt must be positive integer scalar.")
+    return (_specfun.klvnzo(nt, 1),
+            _specfun.klvnzo(nt, 2),
+            _specfun.klvnzo(nt, 3),
+            _specfun.klvnzo(nt, 4),
+            _specfun.klvnzo(nt, 5),
+            _specfun.klvnzo(nt, 6),
+            _specfun.klvnzo(nt, 7),
+            _specfun.klvnzo(nt, 8))
+
+
+def pro_cv_seq(m, n, c):
+    """Characteristic values for prolate spheroidal wave functions.
+
+    Compute a sequence of characteristic values for the prolate
+    spheroidal wave functions for mode m and n'=m..n and spheroidal
+    parameter c.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(m) and isscalar(n) and isscalar(c)):
+        raise ValueError("Arguments must be scalars.")
+    if (n != floor(n)) or (m != floor(m)):
+        raise ValueError("Modes must be integers.")
+    if (n-m > 199):
+        raise ValueError("Difference between n and m is too large.")
+    maxL = n-m+1
+    return _specfun.segv(m, n, c, 1)[1][:maxL]
+
+
+def obl_cv_seq(m, n, c):
+    """Characteristic values for oblate spheroidal wave functions.
+
+    Compute a sequence of characteristic values for the oblate
+    spheroidal wave functions for mode m and n'=m..n and spheroidal
+    parameter c.
+
+    References
+    ----------
+    .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special
+           Functions", John Wiley and Sons, 1996.
+           https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html
+
+    """
+    if not (isscalar(m) and isscalar(n) and isscalar(c)):
+        raise ValueError("Arguments must be scalars.")
+    if (n != floor(n)) or (m != floor(m)):
+        raise ValueError("Modes must be integers.")
+    if (n-m > 199):
+        raise ValueError("Difference between n and m is too large.")
+    maxL = n-m+1
+    return _specfun.segv(m, n, c, -1)[1][:maxL]
+
+
+def comb(N, k, exact=False, repetition=False, legacy=None):
+    """The number of combinations of N things taken k at a time.
+
+    This is often expressed as "N choose k".
+
+    Parameters
+    ----------
+    N : int, ndarray
+        Number of things.
+    k : int, ndarray
+        Number of elements taken.
+    exact : bool, optional
+        For integers, if `exact` is False, then floating point precision is
+        used, otherwise the result is computed exactly. For non-integers, if
+        `exact` is True, is disregarded.
+    repetition : bool, optional
+        If `repetition` is True, then the number of combinations with
+        repetition is computed.
+    legacy : bool, optional
+        If `legacy` is True and `exact` is True, then non-integral arguments
+        are cast to ints; if `legacy` is False, the result for non-integral
+        arguments is unaffected by the value of `exact`.
+
+        .. deprecated:: 1.9.0
+            Using `legacy` is deprecated and will removed by
+            Scipy 1.13.0. If you want to keep the legacy behaviour, cast
+            your inputs directly, e.g.
+            ``comb(int(your_N), int(your_k), exact=True)``.
+
+    Returns
+    -------
+    val : int, float, ndarray
+        The total number of combinations.
+
+    See Also
+    --------
+    binom : Binomial coefficient considered as a function of two real
+            variables.
+
+    Notes
+    -----
+    - Array arguments accepted only for exact=False case.
+    - If N < 0, or k < 0, then 0 is returned.
+    - If k > N and repetition=False, then 0 is returned.
+
+    Examples
+    --------
+    >>> import numpy as np
+    >>> from scipy.special import comb
+    >>> k = np.array([3, 4])
+    >>> n = np.array([10, 10])
+    >>> comb(n, k, exact=False)
+    array([ 120.,  210.])
+    >>> comb(10, 3, exact=True)
+    120
+    >>> comb(10, 3, exact=True, repetition=True)
+    220
+
+    """
+    if legacy is not None:
+        warnings.warn(
+            "Using 'legacy' keyword is deprecated and will be removed by "
+            "Scipy 1.13.0. If you want to keep the legacy behaviour, cast "
+            "your inputs directly, e.g. "
+            "'comb(int(your_N), int(your_k), exact=True)'.",
+            DeprecationWarning,
+            stacklevel=2
+        )
+    if repetition:
+        return comb(N + k - 1, k, exact, legacy=legacy)
+    if exact:
+        if int(N) == N and int(k) == k:
+            # _comb_int casts inputs to integers, which is safe & intended here
+            return _comb_int(N, k)
+        elif legacy:
+            # here at least one number is not an integer; legacy behavior uses
+            # lossy casts to int
+            return _comb_int(N, k)
+        # otherwise, we disregard `exact=True`; it makes no sense for
+        # non-integral arguments
+        return comb(N, k)
+    else:
+        k, N = asarray(k), asarray(N)
+        cond = (k <= N) & (N >= 0) & (k >= 0)
+        vals = binom(N, k)
+        if isinstance(vals, np.ndarray):
+            vals[~cond] = 0
+        elif not cond:
+            vals = np.float64(0)
+        return vals
+
+
+def perm(N, k, exact=False):
+    """Permutations of N things taken k at a time, i.e., k-permutations of N.
+
+    It's also known as "partial permutations".
+
+    Parameters
+    ----------
+    N : int, ndarray
+        Number of things.
+    k : int, ndarray
+        Number of elements taken.
+    exact : bool, optional
+        If `exact` is False, then floating point precision is used, otherwise
+        exact long integer is computed.
+
+    Returns
+    -------
+    val : int, ndarray
+        The number of k-permutations of N.
+
+    Notes
+    -----
+    - Array arguments accepted only for exact=False case.
+    - If k > N, N < 0, or k < 0, then a 0 is returned.
+
+    Examples
+    --------
+    >>> import numpy as np
+    >>> from scipy.special import perm
+    >>> k = np.array([3, 4])
+    >>> n = np.array([10, 10])
+    >>> perm(n, k)
+    array([  720.,  5040.])
+    >>> perm(10, 3, exact=True)
+    720
+
+    """
+    if exact:
+        if (k > N) or (N < 0) or (k < 0):
+            return 0
+        val = 1
+        for i in range(N - k + 1, N + 1):
+            val *= i
+        return val
+    else:
+        k, N = asarray(k), asarray(N)
+        cond = (k <= N) & (N >= 0) & (k >= 0)
+        vals = poch(N - k + 1, k)
+        if isinstance(vals, np.ndarray):
+            vals[~cond] = 0
+        elif not cond:
+            vals = np.float64(0)
+        return vals
+
+
+# https://stackoverflow.com/a/16327037
+def _range_prod(lo, hi, k=1):
+    """
+    Product of a range of numbers spaced k apart (from hi).
+
+    For k=1, this returns the product of
+    lo * (lo+1) * (lo+2) * ... * (hi-2) * (hi-1) * hi
+    = hi! / (lo-1)!
+
+    For k>1, it correspond to taking only every k'th number when
+    counting down from hi - e.g. 18!!!! = _range_prod(1, 18, 4).
+
+    Breaks into smaller products first for speed:
+    _range_prod(2, 9) = ((2*3)*(4*5))*((6*7)*(8*9))
+    """
+    if lo + k < hi:
+        mid = (hi + lo) // 2
+        if k > 1:
+            # make sure mid is a multiple of k away from hi
+            mid = mid - ((mid - hi) % k)
+        return _range_prod(lo, mid, k) * _range_prod(mid + k, hi, k)
+    elif lo + k == hi:
+        return lo * hi
+    else:
+        return hi
+
+
+def _exact_factorialx_array(n, k=1):
+    """
+    Exact computation of factorial for an array.
+
+    The factorials are computed in incremental fashion, by taking
+    the sorted unique values of n and multiplying the intervening
+    numbers between the different unique values.
+
+    In other words, the factorial for the largest input is only
+    computed once, with each other result computed in the process.
+
+    k > 1 corresponds to the multifactorial.
+    """
+    un = np.unique(n)
+    # numpy changed nan-sorting behaviour with 1.21, see numpy/numpy#18070;
+    # to unify the behaviour, we remove the nan's here; the respective
+    # values will be set separately at the end
+    un = un[~np.isnan(un)]
+
+    # Convert to object array if np.int64 can't handle size
+    if np.isnan(n).any():
+        dt = float
+    elif k in _FACTORIALK_LIMITS_64BITS.keys():
+        if un[-1] > _FACTORIALK_LIMITS_64BITS[k]:
+            # e.g. k=1: 21! > np.iinfo(np.int64).max
+            dt = object
+        elif un[-1] > _FACTORIALK_LIMITS_32BITS[k]:
+            # e.g. k=3: 26!!! > np.iinfo(np.int32).max
+            dt = np.int64
+        else:
+            dt = np.int_
+    else:
+        # for k >= 10, we always use object
+        dt = object
+
+    out = np.empty_like(n, dtype=dt)
+
+    # Handle invalid/trivial values
+    un = un[un > 1]
+    out[n < 2] = 1
+    out[n < 0] = 0
+
+    # Calculate products of each range of numbers
+    # we can only multiply incrementally if the values are k apart;
+    # therefore we partition `un` into "lanes", i.e. its residues modulo k
+    for lane in range(0, k):
+        ul = un[(un % k) == lane] if k > 1 else un
+        if ul.size:
+            # after np.unique, un resp. ul are sorted, ul[0] is the smallest;
+            # cast to python ints to avoid overflow with np.int-types
+            val = _range_prod(1, int(ul[0]), k=k)
+            out[n == ul[0]] = val
+            for i in range(len(ul) - 1):
+                # by the filtering above, we have ensured that prev & current
+                # are a multiple of k apart
+                prev = ul[i]
+                current = ul[i + 1]
+                # we already multiplied all factors until prev; continue
+                # building the full factorial from the following (`prev + 1`);
+                # use int() for the same reason as above
+                val *= _range_prod(int(prev + 1), int(current), k=k)
+                out[n == current] = val
+
+    if np.isnan(n).any():
+        out = out.astype(np.float64)
+        out[np.isnan(n)] = np.nan
+    return out
+
+
+
+[docs] +def factorial(n, exact=False): + """ + The factorial of a number or array of numbers. + + The factorial of non-negative integer `n` is the product of all + positive integers less than or equal to `n`:: + + n! = n * (n - 1) * (n - 2) * ... * 1 + + Parameters + ---------- + n : int or array_like of ints + Input values. If ``n < 0``, the return value is 0. + exact : bool, optional + If True, calculate the answer exactly using long integer arithmetic. + If False, result is approximated in floating point rapidly using the + `gamma` function. + Default is False. + + Returns + ------- + nf : float or int or ndarray + Factorial of `n`, as integer or float depending on `exact`. + + Notes + ----- + For arrays with ``exact=True``, the factorial is computed only once, for + the largest input, with each other result computed in the process. + The output dtype is increased to ``int64`` or ``object`` if necessary. + + With ``exact=False`` the factorial is approximated using the gamma + function: + + .. math:: n! = \\Gamma(n+1) + + Examples + -------- + >>> import numpy as np + >>> from scipy.special import factorial + >>> arr = np.array([3, 4, 5]) + >>> factorial(arr, exact=False) + array([ 6., 24., 120.]) + >>> factorial(arr, exact=True) + array([ 6, 24, 120]) + >>> factorial(5, exact=True) + 120 + + """ + # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below + if np.ndim(n) == 0 and not isinstance(n, np.ndarray): + # scalar cases + if n is None or np.isnan(n): + return np.nan + elif not (np.issubdtype(type(n), np.integer) + or np.issubdtype(type(n), np.floating)): + raise ValueError( + f"Unsupported datatype for factorial: {type(n)}\n" + "Permitted data types are integers and floating point numbers" + ) + elif n < 0: + return 0 + elif exact and np.issubdtype(type(n), np.integer): + return math.factorial(n) + # we do not raise for non-integers with exact=True due to + # historical reasons, though deprecation would be possible + return _ufuncs._factorial(n) + + # arrays & array-likes + n = asarray(n) + if n.size == 0: + # return empty arrays unchanged + return n + if not (np.issubdtype(n.dtype, np.integer) + or np.issubdtype(n.dtype, np.floating)): + raise ValueError( + f"Unsupported datatype for factorial: {n.dtype}\n" + "Permitted data types are integers and floating point numbers" + ) + if exact and not np.issubdtype(n.dtype, np.integer): + # legacy behaviour is to support mixed integers/NaNs; + # deprecate this for exact=True + n_flt = n[~np.isnan(n)] + if np.allclose(n_flt, n_flt.astype(np.int64)): + warnings.warn( + "Non-integer arrays (e.g. due to presence of NaNs) " + "together with exact=True are deprecated. Either ensure " + "that the the array has integer dtype or use exact=False.", + DeprecationWarning, + stacklevel=2 + ) + else: + msg = ("factorial with exact=True does not " + "support non-integral arrays") + raise ValueError(msg) + + if exact: + return _exact_factorialx_array(n) + # we do not raise for non-integers with exact=True due to + # historical reasons, though deprecation would be possible + res = _ufuncs._factorial(n) + if isinstance(n, np.ndarray): + # _ufuncs._factorial does not maintain 0-dim arrays + return np.array(res) + return res
+ + + +def factorial2(n, exact=False): + """Double factorial. + + This is the factorial with every second value skipped. E.g., ``7!! = 7 * 5 + * 3 * 1``. It can be approximated numerically as:: + + n!! = 2 ** (n / 2) * gamma(n / 2 + 1) * sqrt(2 / pi) n odd + = 2 ** (n / 2) * gamma(n / 2 + 1) n even + = 2 ** (n / 2) * (n / 2)! n even + + Parameters + ---------- + n : int or array_like + Calculate ``n!!``. If ``n < 0``, the return value is 0. + exact : bool, optional + The result can be approximated rapidly using the gamma-formula + above (default). If `exact` is set to True, calculate the + answer exactly using integer arithmetic. + + Returns + ------- + nff : float or int + Double factorial of `n`, as an int or a float depending on + `exact`. + + Examples + -------- + >>> from scipy.special import factorial2 + >>> factorial2(7, exact=False) + array(105.00000000000001) + >>> factorial2(7, exact=True) + 105 + + """ + def _approx(n): + # main factor that both even/odd approximations share + val = np.power(2, n / 2) * gamma(n / 2 + 1) + mask = np.ones_like(n, dtype=np.float64) + mask[n % 2 == 1] = sqrt(2 / pi) + # analytical continuation (based on odd integers) + # is scaled down by a factor of sqrt(2 / pi) + # compared to the value of even integers. + return val * mask + + # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below + if np.ndim(n) == 0 and not isinstance(n, np.ndarray): + # scalar cases + if n is None or np.isnan(n): + return np.nan + elif not np.issubdtype(type(n), np.integer): + msg = "factorial2 does not support non-integral scalar arguments" + raise ValueError(msg) + elif n < 0: + return 0 + elif n in {0, 1}: + return 1 + # general integer case + if exact: + return _range_prod(1, n, k=2) + return _approx(n) + # arrays & array-likes + n = asarray(n) + if n.size == 0: + # return empty arrays unchanged + return n + if not np.issubdtype(n.dtype, np.integer): + raise ValueError("factorial2 does not support non-integral arrays") + if exact: + return _exact_factorialx_array(n, k=2) + # approximation + vals = zeros(n.shape) + cond = (n >= 0) + n_to_compute = extract(cond, n) + place(vals, cond, _approx(n_to_compute)) + return vals + + +def factorialk(n, k, exact=True): + """Multifactorial of n of order k, n(!!...!). + + This is the multifactorial of n skipping k values. For example, + + factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1 + + In particular, for any integer ``n``, we have + + factorialk(n, 1) = factorial(n) + + factorialk(n, 2) = factorial2(n) + + Parameters + ---------- + n : int or array_like + Calculate multifactorial. If `n` < 0, the return value is 0. + k : int + Order of multifactorial. + exact : bool, optional + If exact is set to True, calculate the answer exactly using + integer arithmetic. + + Returns + ------- + val : int + Multifactorial of `n`. + + Raises + ------ + NotImplementedError + Raises when exact is False + + Examples + -------- + >>> from scipy.special import factorialk + >>> factorialk(5, 1, exact=True) + 120 + >>> factorialk(5, 3, exact=True) + 10 + + """ + if not np.issubdtype(type(k), np.integer) or k < 1: + raise ValueError(f"k must be a positive integer, received: {k}") + if not exact: + raise NotImplementedError + + helpmsg = "" + if k in {1, 2}: + func = "factorial" if k == 1 else "factorial2" + helpmsg = f"\nYou can try to use {func} instead" + + # don't use isscalar due to numpy/numpy#23574; 0-dim arrays treated below + if np.ndim(n) == 0 and not isinstance(n, np.ndarray): + # scalar cases + if n is None or np.isnan(n): + return np.nan + elif not np.issubdtype(type(n), np.integer): + msg = "factorialk does not support non-integral scalar arguments!" + raise ValueError(msg + helpmsg) + elif n < 0: + return 0 + elif n in {0, 1}: + return 1 + return _range_prod(1, n, k=k) + # arrays & array-likes + n = asarray(n) + if n.size == 0: + # return empty arrays unchanged + return n + if not np.issubdtype(n.dtype, np.integer): + msg = "factorialk does not support non-integral arrays!" + raise ValueError(msg + helpmsg) + return _exact_factorialx_array(n, k=k) + + +def zeta(x, q=None, out=None): + r""" + Riemann or Hurwitz zeta function. + + Parameters + ---------- + x : array_like of float + Input data, must be real + q : array_like of float, optional + Input data, must be real. Defaults to Riemann zeta. + out : ndarray, optional + Output array for the computed values. + + Returns + ------- + out : array_like + Values of zeta(x). + + Notes + ----- + The two-argument version is the Hurwitz zeta function + + .. math:: + + \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x}; + + see [dlmf]_ for details. The Riemann zeta function corresponds to + the case when ``q = 1``. + + See Also + -------- + zetac + + References + ---------- + .. [dlmf] NIST, Digital Library of Mathematical Functions, + https://dlmf.nist.gov/25.11#i + + Examples + -------- + >>> import numpy as np + >>> from scipy.special import zeta, polygamma, factorial + + Some specific values: + + >>> zeta(2), np.pi**2/6 + (1.6449340668482266, 1.6449340668482264) + + >>> zeta(4), np.pi**4/90 + (1.0823232337111381, 1.082323233711138) + + Relation to the `polygamma` function: + + >>> m = 3 + >>> x = 1.25 + >>> polygamma(m, x) + array(2.782144009188397) + >>> (-1)**(m+1) * factorial(m) * zeta(m+1, x) + 2.7821440091883969 + + """ + if q is None: + return _ufuncs._riemann_zeta(x, out) + else: + return _ufuncs._zeta(x, q, out) +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/bispectrum.html b/_modules/stingray/bispectrum.html new file mode 100644 index 000000000..472baa17e --- /dev/null +++ b/_modules/stingray/bispectrum.html @@ -0,0 +1,559 @@ + + + + + + + stingray.bispectrum — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.bispectrum

+import numpy as np
+from scipy.linalg import toeplitz
+import warnings
+import matplotlib.pyplot as plt
+
+from scipy.linalg import hankel
+
+from stingray import lightcurve
+import stingray.utils as utils
+from stingray.utils import fftshift, fft2, ifftshift, fft
+
+__all__ = ["Bispectrum"]
+
+
+
+[docs] +class Bispectrum(object): + """Makes a :class:`Bispectrum` object from a :class:`stingray.Lightcurve`. + + :class:`Bispectrum` is a higher order time series analysis method and is calculated by + indirect method as Fourier transform of triple auto-correlation function also called as + 3rd order cumulant. + + Parameters + ---------- + lc : :class:`stingray.Lightcurve` object + The light curve data for bispectrum calculation. + + maxlag : int, optional, default ``None`` + Maximum lag on both positive and negative sides of + 3rd order cumulant (Similar to lags in correlation). + if ``None``, max lag is set to one-half of length of light curve. + + window : {``uniform``, ``parzen``, ``hamming``, ``hanning``, ``triangular``, ``welch``, ``blackman``, ``flat-top``}, optional, default 'uniform' + Type of window function to apply to the data. + + scale : {``biased``, ``unbiased``}, optional, default ``biased`` + Flag to decide biased or unbiased normalization for 3rd order cumulant function. + + + Attributes + ---------- + lc : :class:`stingray.Lightcurve` object + The light curve data to compute the :class:`Bispectrum`. + + fs : float + Sampling frequencies + + n : int + Total Number of samples of light curve observations. + + maxlag : int + Maximum lag on both positive and negative sides of + 3rd order cumulant (similar to lags in correlation) + + signal : numpy.ndarray + Row vector of light curve counts for matrix operations + + scale : {``biased``, ``unbiased``} + Flag to decide biased or unbiased normalization for 3rd order cumulant function. + + lags : numpy.ndarray + An array of time lags for which 3rd order cumulant is calculated + + freq : numpy.ndarray + An array of freq values for :class:`Bispectrum`. + + cum3 : numpy.ndarray + A ``maxlag*2+1 x maxlag*2+1`` matrix containing 3rd order cumulant data for different lags. + + bispec : numpy.ndarray + A`` maxlag*2+1 x maxlag*2+1`` matrix containing bispectrum data for different frequencies. + + bispec_mag : numpy.ndarray + Magnitude of the bispectrum + + bispec_phase : numpy.ndarray + Phase of the bispectrum + + References + ---------- + 1) The biphase explained: understanding the asymmetries invcoupled Fourier components of astronomical timeseries + by Thomas J. Maccarone Department of Physics, Box 41051, Science Building, Texas Tech University, Lubbock TX 79409-1051 + School of Physics and Astronomy, University of Southampton, SO16 4ES + + 2) T. S. Rao, M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time + Series Models, Lecture Notes in Statistics, Volume 24, D. Brillinger, S. Fienberg, + J. Gani, J. Hartigan, K. Krickeberg, Editors, Springer-Verlag, New York, NY, 1984. + + 3) Matlab version of bispectrum under following link. + https://www.mathworks.com/matlabcentral/fileexchange/60-bisp3cum + + Examples + -------- + + :: + + >> from stingray.lightcurve import Lightcurve + >> from stingray.bispectrum import Bispectrum + >> lc = Lightcurve([1,2,3,4,5],[2,3,1,1,2]) + >> bs = Bispectrum(lc,maxlag=1) + >> bs.lags + array([-1., 0., 1.]) + >> bs.freq + array([-0.5, 0., 0.5]) + >> bs.cum3 + array([[-0.2976, 0.1024, 0.1408], + [ 0.1024, 0.144, -0.2976], + [ 0.1408, -0.2976, 0.1024]]) + >> bs.bispec_mag + array([[ 1.26336794, 0.0032 , 0.0032 ], + [ 0.0032 , 0.16 , 0.0032 ], + [ 0.0032 , 0.0032 , 1.26336794]]) + >> bs.bispec_phase + array([[ -9.65946229e-01, 2.25347190e-14, 3.46944695e-14], + [ 0.00000000e+00, 3.14159265e+00, 0.00000000e+00], + [ -3.46944695e-14, -2.25347190e-14, 9.65946229e-01]]) + """ + + def __init__(self, lc, maxlag=None, window=None, scale="biased"): + # Function call to create Bispectrum Object + self._make_bispetrum(lc, maxlag, window, scale) + + def _make_bispetrum(self, lc, maxlag, window, scale): + """ + Makes a Bispectrum Object with given lighcurve, maxlag and scale. + + Helper method. + """ + + if not isinstance(lc, lightcurve.Lightcurve): + raise TypeError("lc must be a lightcurve.ightcurve object") + + # Available Windows. Used to resolve window paramneter + WINDOWS = [ + "uniform", + "parzen", + "hamming", + "hanning", + "triangular", + "welch", + "blackmann", + "flat-top", + ] + + if window: + if not isinstance(window, str): + raise TypeError("Window must be specified as string!") + window = window.lower() + if window not in WINDOWS: + raise ValueError("Wrong window specified or window function is not available") + + self.lc = lc + self.fs = 1 / lc.dt + self.n = self.lc.n + + if maxlag is None: + # if maxlag is not specified, it is set to half of length of lightcurve + self.maxlag = int(self.lc.n / 2) + else: + if not (isinstance(maxlag, int)): + raise ValueError("maxlag must be an integer") + + # if negative maxlag is entered, convert it to +ve + if maxlag < 0: + self.maxlag = -maxlag + else: + self.maxlag = maxlag + + if isinstance(scale, str) is False: + raise TypeError("scale must be a string") + + if scale.lower() not in ["biased", "unbiased"]: + raise ValueError("scale can only be either 'biased' or 'unbiased'.") + self.scale = scale.lower() + + if window is None: + self.window_name = "No Window" + self.window = None + else: + self.window_name = window + self.window = self._get_window() + + # Other Atributes + self.lags = None + self.cum3 = None + self.freq = None + self.bispec = None + self.bispec_mag = None + self.bispec_phase = None + + # converting to a row vector to apply matrix operations + self.signal = np.reshape(lc, (1, len(self.lc.counts))) + + # Mean subtraction before bispecrum calculation + self.signal = self.signal - np.mean(lc.counts) + + self._cumulant3() + self._normalize_cumulant3() + self._cal_bispec() + + def _get_window(self): + """ + Returns a window function of self.window_name type + """ + N = 2 * self.maxlag + 1 + window_even = utils.create_window(N, self.window_name) + + # 2d even window + window2d = np.array( + [ + window_even, + ] + * N + ) + + ## One-sided window with zero padding + window = np.zeros(N) + window[: self.maxlag + 1] = window_even[self.maxlag :] + window[self.maxlag :] = 0 + + # 2d window function to apply to bispectrum + row = np.concatenate(([window[0]], np.zeros(2 * self.maxlag))) + toep_matrix = toeplitz(window, row) + toep_matrix += np.tril(toep_matrix, -1).transpose() + window = toep_matrix[..., ::-1] * window2d * window2d.transpose() + return window + + def _cumulant3(self): + """ + Calculates the 3rd Order cummulant of the lightcurve. + + Assigns + ------- + self.cum3, + self.lags + """ + # Initialize square cumulant matrix if zeros + cum3_dim = 2 * self.maxlag + 1 + self.cum3 = np.zeros((cum3_dim, cum3_dim)) + + # calculate lags for different values of 3rd order cumulant + lagindex = np.arange(-self.maxlag, self.maxlag + 1) + self.lags = lagindex * self.lc.dt + + # Defines indices for matrices + ind = np.arange((self.n - self.maxlag) - 1, self.n) + ind_t = np.arange(self.maxlag, self.n) + zero_maxlag = np.zeros((1, self.maxlag)) + zero_maxlag_t = zero_maxlag.transpose() + + sig = self.signal.transpose() + + rev_signal = np.array([self.signal[0][::-1]]) + col = np.concatenate((sig[ind], zero_maxlag_t), axis=0) + row = np.concatenate((rev_signal[0][ind_t], zero_maxlag[0]), axis=0) + + # converts row and column into a toeplitz matrix + toep = toeplitz(col, row) + rev_signal = np.repeat(rev_signal, [2 * self.maxlag + 1], axis=0) + + # Calulates Cummulant of 1D signal i.e. Lightcurve counts + self.cum3 = self.cum3 + np.matmul(np.multiply(toep, rev_signal), toep.transpose()) + + def _normalize_cumulant3(self): + """ + Scales (biased or ubiased) the 3rd Order cumulant of the lightcurve . + + Updates + ------- + seff.cum3 + """ + + # Biased scaling of cummulant + if self.scale == "biased": + self.cum3 = self.cum3 / self.n + else: + # unbiased Scaling of cummulant + maxlag1 = self.maxlag + 1 + + # Scaling matrix initialized used to do unbiased normalization of cumulant + scal_matrix = np.zeros((maxlag1, maxlag1), dtype="int64") + + # Calculate scaling matrix for unbiased normalization + for k in range(maxlag1): + maxlag1k = maxlag1 - (k + 1) + scal_matrix[k, k:maxlag1] = np.tile(self.n - maxlag1k, (1, maxlag1k + 1)) + scal_matrix += np.triu(scal_matrix, k=1).transpose() + + maxlag1ind = np.arange(self.maxlag - 1, -1, -1) + lagdiff = self.n - maxlag1 + + # Rows and columns for Toeplitz matrix + col = np.arange(lagdiff, self.n - 1) + col = np.reshape(col, (1, len(col))).transpose() + row = np.arange(lagdiff, (self.n - 2 * self.maxlag) - 1, -1) + row = np.reshape(row, (1, len(row))) + + # Toeplitz matrix + toep_matrix = toeplitz(col, row) + # Matrix used to concatenate with scaling matrix + conc_mat = np.array([scal_matrix[self.maxlag, maxlag1ind]]) + join_matrix = np.concatenate((toep_matrix, conc_mat), axis=0) + scal_matrix = np.concatenate((scal_matrix, join_matrix), axis=1) + co_mat = scal_matrix[maxlag1ind, :] + co_mat = co_mat[:, np.arange(2 * self.maxlag, -1, -1)] + + # Scaling matrix calculated + scal_matrix = np.concatenate((scal_matrix, co_mat), axis=0) + # Set numbers less than 1 to be equal to 1 + scal_matrix[scal_matrix < 1] = 1 + self.cum3 = np.divide(self.cum3, scal_matrix) + + def _cal_bispec(self): + """ + Calculates bispectrum as a fourier transform of 3rd Order Cumulant. + + Attributes + ---------- + self.freq + self.bispec + self.bispec_mag + self.bispec_phase + """ + self.freq = (1 / 2) * self.fs * (self.lags / self.lc.dt) / self.maxlag + + # Apply window if specified otherwise calculate with applying window + if self.window is None: + self.bispec = fftshift(fft2(ifftshift(self.cum3))) + else: + self.bispec = fftshift(fft2(ifftshift(self.cum3 * self.window))) + + self.bispec_mag = np.abs(self.bispec) + self.bispec_phase = np.angle((self.bispec)) + +
+[docs] + def plot_cum3(self, axis=None, save=False, filename=None): + """ + Plot the 3rd order cumulant as function of time lags using ``matplotlib``. + Plot the ``cum3`` attribute on a graph with the ``lags`` attribute on x-axis and y-axis and + ``cum3`` on z-axis + + Parameters + ---------- + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` method. + + save : bool, optionalm, default ``False`` + If ``True``, save the figure with specified filename. + + filename : str + File name and path of the image to save. Depends on the boolean ``save``. + + Returns + ------- + plt : ``matplotlib.pyplot`` object + Reference to plot, call ``show()`` to display it + """ + cont = plt.contourf(self.lags, self.lags, self.cum3, 100, cmap=plt.cm.Spectral_r) + plt.colorbar(cont) + plt.title("3rd Order Cumulant") + plt.xlabel("lags 1") + plt.ylabel("lags 2") + + if axis is not None: + plt.axis(axis) + + if save: + if filename is None: + plt.savefig("bispec_cum3.png") + else: + plt.savefig(filename) + return plt
+ + +
+[docs] + def plot_mag(self, axis=None, save=False, filename=None): + """ + Plot the magnitude of bispectrum as function of freq using ``matplotlib``. + Plot the ``bispec_mag`` attribute on a graph with ``freq`` attribute on the x-axis and y-axis and + the ``bispec_mag`` attribute on the z-axis. + + Parameters + ---------- + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` method. + + save : bool, optional, default ``False`` + If ``True``, save the figure with specified filename and path. + + filename : str + File name and path of the image to save. Depends on the bool ``save``. + + Returns + ------- + plt : ``matplotlib.pyplot`` object + Reference to plot, call ``show()`` to display it + """ + + cont = plt.contourf(self.freq, self.freq, self.bispec_mag, 100, cmap=plt.cm.Spectral_r) + plt.colorbar(cont) + plt.title("Bispectrum Magnitude") + plt.xlabel("freq 1") + plt.ylabel("freq 2") + + if axis is not None: + plt.axis(axis) + + if save: + if filename is None: + plt.savefig("bispec_mag.png") + else: + plt.savefig(filename) + return plt
+ + +
+[docs] + def plot_phase(self, axis=None, save=False, filename=None): + """ + Plot the phase of bispectrum as function of freq using ``matplotlib``. + Plot the ``bispec_phase`` attribute on a graph with ``phase`` attribute on the x-axis and + y-axis and the ``bispec_phase`` attribute on the z-axis. + + Parameters + ---------- + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` function. + + save : bool, optional, default ``False`` + If ``True``, save the figure with specified filename and path. + + filename : str + File name and path of the image to save. Depends on the bool ``save``. + + Returns + ------- + plt : ``matplotlib.pyplot`` object + Reference to plot, call ``show()`` to display it + """ + + cont = plt.contourf(self.freq, self.freq, self.bispec_phase, 100, cmap=plt.cm.Spectral_r) + plt.colorbar(cont) + plt.title("Bispectrum Phase") + plt.xlabel("freq 1") + plt.ylabel("freq 2") + + if axis is not None: + plt.axis(axis) + + # Save figure + if save: + if filename is None: + plt.savefig("bispec_phase.png") + else: + plt.savefig(filename) + return plt
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/covariancespectrum.html b/_modules/stingray/covariancespectrum.html new file mode 100644 index 000000000..8ebe1e40f --- /dev/null +++ b/_modules/stingray/covariancespectrum.html @@ -0,0 +1,685 @@ + + + + + + + stingray.covariancespectrum — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.covariancespectrum

+# -*- coding: utf-8 -*-
+
+from collections.abc import Iterable
+
+import numpy as np
+
+from stingray import Lightcurve
+from stingray.events import EventList
+import stingray.utils as utils
+
+__all__ = ["Covariancespectrum", "AveragedCovariancespectrum"]
+
+
+
+[docs] +class Covariancespectrum(object): + """ + Compute a covariance spectrum for the data. The input data can be + either in event data or pre-made light curves. Event data can either + be in the form of a ``numpy.ndarray`` with ``(time stamp, energy)`` pairs or + a :class:`stingray.events.EventList` object. If light curves are formed ahead + of time, then a list of :class:`stingray.Lightcurve` objects should be passed to the + object, ideally one light curve for each band of interest. + + For the case where the data is input as a list of :class:`stingray.Lightcurve` objects, + the reference band(s) should either be + + 1. a single :class:`stingray.Lightcurve` object, + 2. a list of :class:`stingray.Lightcurve` objects with the reference band for each band + of interest pre-made, or + 3. ``None``, in which case reference bands will + formed by combining all light curves *except* for the band of interest. + + In the case of event data, ``band_interest`` and ``ref_band_interest`` can + be (multiple) pairs of energies, and the light curves for the bands of + interest and reference bands will be produced dynamically. + + + Parameters + ---------- + data : {``numpy.ndarray`` | :class:`stingray.events.EventList` object | list of :class:`stingray.Lightcurve` objects} + ``data`` contains the time series data, either in the form of a + 2-D array of ``(time stamp, energy)`` pairs for event data, or as a + list of light curves. + Note : The event list must be in sorted order with respect to the + times of arrivals. + + dt : float + The time resolution of the :class:`stingray.Lightcurve` formed from the energy bin. + Only used if ``data`` is an event list. + + band_interest : {``None``, iterable of tuples} + If ``None``, all possible energy values will be assumed to be of + interest, and a covariance spectrum in the highest resolution + will be produced. + Note: if the input is a list of :class:`stingray.Lightcurve` objects, then the user may + supply their energy values here, for construction of a + reference band. + + ref_band_interest : {``None``, tuple, :class:`stingray.Lightcurve`, list of :class:`stingray.Lightcurve` objects} + Defines the reference band to be used for comparison with the + bands of interest. If ``None``, all bands *except* the band of + interest will be used for each band of interest, respectively. + Alternatively, a tuple can be given for event list data, which will + extract the reference band (always excluding the band of interest), + or one may put in a single :class:`stingray.Lightcurve` object to be used (the same + for each band of interest) or a list of :class:`stingray.Lightcurve` objects, one for + each band of interest. + + std : float or np.array or list of numbers + The term ``std`` is used to calculate the excess variance of a band. + If ``std`` is set to ``None``, default Poisson case is taken and the + std is calculated as ``mean(lc)**0.5``. In the case of a single + float as input, the same is used as the standard deviation which + is also used as the std. And if the std is an iterable of + numbers, their mean is used for the same purpose. + + Attributes + ---------- + unnorm_covar : np.ndarray + An array of arrays with mid point ``band_interest`` and their + covariance. It is the array-form of the dictionary ``energy_covar``. + The covariance values are unnormalized. + + covar : np.ndarray + Normalized covariance spectrum. + + covar_error : np.ndarray + Errors of the normalized covariance spectrum. + + References + ---------- + [1] Wilkinson, T. and Uttley, P. (2009), Accretion disc variability\ + in the hard state of black hole X-ray binaries. Monthly Notices\ + of the Royal Astronomical Society, 397: 666–676.\ + doi: 10.1111/j.1365-2966.2009.15008.x + + Examples + -------- + See the `notebooks repository <https://github.com/StingraySoftware/notebooks>`_ for + detailed notebooks on the code. + + """ + + def __init__(self, data, dt=None, band_interest=None, ref_band_interest=None, std=None): + self.dt = dt + self.std = std + + # check whether data is an EventList object: + if isinstance(data, EventList): + data = np.vstack([data.time, data.energy]).T + + # check whether the data contains a list of Lightcurve objects + if isinstance(data[0], Lightcurve): + self.use_lc = True + self.lcs = data + else: + self.use_lc = False + + # if band_interest is None, extract the energy bins and make an array + # with the lower and upper bounds of the energy bins + if band_interest is None: + if not self.use_lc: + self._create_band_interest(data) + else: + self.band_interest = np.vstack( + [np.arange(len(data)), np.arange(1, len(data) + 1, 1)] + ).T + else: + if np.size(band_interest) < 2: + raise ValueError( + "band_interest must contain at least 2 values " + "(minimum and maximum values for each band) " + "and be a 2D array!" + ) + + self.band_interest = np.atleast_2d(band_interest) + + if self.use_lc is False and not dt: + raise ValueError( + "If the input data is event data, the dt keyword " + "must be set and supply a time resolution for " + "creating light curves!" + ) + + # if we don't have light curves already, make them: + if not self.use_lc: + if not np.all(np.diff(data, axis=0).T[0] >= 0): + utils.simon("The event list must be sorted with respect to " "times of arrivals.") + data = data[data[:, 0].argsort()] + + self.lcs = self._make_lightcurves(data) + + # check whether band of interest contains a Lightcurve object: + if np.size(ref_band_interest) == 1 or isinstance(ref_band_interest, Lightcurve): + if isinstance(ref_band_interest, Lightcurve): + self.ref_band_lcs = ref_band_interest + # ref_band_interest must either be a Lightcurve, or must have + # multiple entries + + elif ref_band_interest is None: + if self.use_lc: + self.ref_band_lcs = self._make_reference_bands_from_lightcurves( + ref_band_interest + ) + else: + self.ref_band_lcs = self._make_reference_bands_from_event_data(data) + else: + raise ValueError( + "ref_band_interest must contain either " + "a Lightcurve object, a list of Lightcurve " + "objects or a tuple of length 2." + ) + else: + # check whether ref_band_interest is a list of light curves + if isinstance(ref_band_interest[0], Lightcurve): + self.ref_band_lcs = ref_band_interest + assert len(ref_band_interest) == len(self.lcs), ( + "The list of " + "reference light " + "curves must have " + "the same length as " + "the list of light curves" + "of interest." + ) + # if not, it must be a tuple, so we're going to make a list of light + # curves + else: + if self.use_lc: + self.ref_band_lcs = self._make_reference_bands_from_lightcurves( + bounds=ref_band_interest + ) + else: + self.ref_band_lcs = self._make_reference_bands_from_event_data(data) + + self._construct_covar() + + def _make_reference_bands_from_event_data(self, data, bounds=None): + """ + Helper method constructing reference bands for each band of interest, and constructing + light curves from these reference bands. This operates only if the data given to + :class:`Covariancespectrum` is event list data (i.e. photon arrival times and energies). + + Parameters + ---------- + data : numpy.ndarray + Array of shape ``(N, 2)``, where N is the number of photons. First column contains the + times of arrivals, second column the corresponding photon energies. + + bounds : iterable + The energy bounds to use for the reference band. Must be of type ``(elow, ehigh)``. + + Returns + ------- + + lc_all: list of :class:`stingray.Lightcurve` objects. + The list of `:class:`stingray.Lightcurve` objects containing all reference + bands, between the values given in ``bounds``. + + """ + + if not bounds: + bounds = [np.min(data[:, 1]), np.max(data[:, 1])] + + if bounds[1] <= np.min(self.band_interest[:, 0]) or bounds[0] >= np.max( + self.band_interest[:, 1] + ): + elow = bounds[0] + ehigh = bounds[1] + + toa = data[np.logical_and(data[:, 1] >= elow, data[:, 1] <= ehigh)] + + lc_all = Lightcurve.make_lightcurve(toa, self.dt, tstart=self.tstart, tseg=self.tseg) + + else: + lc_all = [] + for i, b in enumerate(self.band_interest): + elow = b[0] + ehigh = b[1] + + emask1 = data[np.logical_and(data[:, 1] <= elow, data[:, 1] >= bounds[0])] + + emask2 = data[np.logical_and(data[:, 1] <= bounds[1], data[:, 1] >= ehigh)] + + toa = np.vstack([emask1, emask2]) + lc = Lightcurve.make_lightcurve(toa, self.dt, tstart=self.tstart, tseg=self.tseg) + lc_all.append(lc) + + return lc_all + + def _make_reference_bands_from_lightcurves(self, bounds=None): + """ + Helper class to construct reference bands for all light curves in ``band_interest``, assuming the + data is given to the class :class:`Covariancespectrum` as a (set of) lightcurve(s). Generally + sums up all other light curves within ``bounds`` that are *not* the band of interest. + + Parameters + ---------- + bounds : iterable + The energy bounds to use for the reference band. Must be of type ``(elow, ehigh)``. + + Returns + ------- + lc_all: list of :class:`stingray.Lightcurve` objects. + The list of :class:`stingray.Lightcurve` objects containing all reference bands, + between the values given in ``bounds``. + + """ + + if not bounds: + bounds_idx = [0, len(self.band_interest)] + + else: + low_bound = self.band_interest.searchsorted(bounds[0]) + high_bound = self.band_interest.searchsorted(bounds[1]) + + bounds_idx = [low_bound, high_bound] + + lc_all = [] + for i, b in enumerate(self.band_interest): + # initialize empty counts array + counts = np.zeros_like(self.lcs[0].counts) + for j in range(bounds_idx[0], bounds_idx[1], 1): + if i == j: + continue + else: + counts += self.lcs[j].counts + + # make a combined light curve + lc = Lightcurve(self.lcs[0].time, counts, skip_checks=True) + + # add to list of reference light curves + lc_all.append(lc) + + return lc_all + + def _construct_covar(self): + """ + Helper method to construct the covariance attribute and fill it with values. + """ + + self.avg_covar = False + covar = np.zeros(len(self.lcs)) + covar_err = np.zeros(len(self.lcs)) + xs_var = np.zeros(len(self.lcs)) + + for i in range(len(self.lcs)): + lc = self.lcs[i] + + if np.size(self.ref_band_lcs) == 1 or isinstance(self.ref_band_lcs, Lightcurve): + lc_ref = self.ref_band_lcs + else: + lc_ref = self.ref_band_lcs[i] + + cv = self._compute_covariance(lc, lc_ref) + cv_err = self._calculate_covariance_error(lc, lc_ref) + + covar[i] = cv + covar_err[i] = cv_err + + xs = self._calculate_excess_variance(lc_ref) + if not xs > 0: + utils.simon( + "The excess variance in the reference band is " + "negative. This implies that the reference " + "band was badly chosen. Beware that the " + "covariance spectra will have NaNs!" + ) + + xs_var[i] = xs + + self.unnorm_covar = covar + energy_covar = covar / xs_var**0.5 + + self.covar = energy_covar + + self.covar_error = covar_err + + return + + def _make_lightcurves(self, data): + """ + Create light curves for all bands of interest from ``data``. Takes the information the + ``band_interest`` attribute and event data in ``data``, and produces a list of + :class:`stingray.Lightcurve` objects. + + Parameters + ---------- + data : numpy.ndarray + Array of shape ``(N, 2)``, where ``N`` is the number of photons. First column contains the + times of arrivals, second column the corresponding photon energies. + + Returns + ------- + lc_all : iterable of :class:`stingray.Lightcurve` objects + A list of :class:`stingray.Lightcurve` objects of all bands of interest. + """ + + self.tstart = np.min(data[:, 0]) + self.tend = np.max(data[:, 0]) + + self.tseg = self.tend - self.tstart + + lc_all = [] + + for i, b in enumerate(self.band_interest): + elow = b[0] + ehigh = b[1] + + toa = data[np.logical_and(data[:, 1] >= elow, data[:, 1] <= ehigh)] + + lc = Lightcurve.make_lightcurve(toa, self.dt, tstart=self.tstart, tseg=self.tseg) + lc_all.append(lc) + + return lc_all + + def _create_band_interest(self, data): + """ + If no bands of interest are given, but event data is, create bands of interest for each + discrete enery value in the second column of ``data``. + + Parameters + ---------- + data : numpy.ndarray + Array of shape (N, 2), where N is the number of photons. First column contains the + times of arrivals, second column the corresponding photon energies. + + """ + + unique_energy = np.unique(data[:, 1]) + energ_diff = np.diff(unique_energy) + + energy_low = np.zeros_like(unique_energy) + energy_high = np.zeros_like(unique_energy) + + energy_low[:-1] = unique_energy[:-1] - 0.5 * energ_diff + energy_high[:-1] = unique_energy[:-1] + 0.5 * energ_diff + + energy_low[-1] = unique_energy[-1] - 0.5 * energ_diff[-1] + energy_high[-1] = unique_energy[-1] + 0.5 * energ_diff[-1] + + energy_list = np.vstack([energy_low, energy_high]).T + + self.band_interest = energy_list + + def _calculate_excess_variance(self, lc): + """Calculate excess variance in a band with the standard deviation.""" + std = self._calculate_std(lc) + return np.var(lc) - std**2 + + def _calculate_std(self, lc): + """Return std calculated for the possible types of `std`""" + if self.std is None: + std = np.mean(lc) ** 0.5 + elif isinstance(self.std, Iterable): + std = np.mean(self.std) # Iterable of numbers + else: # Single float number + std = self.std + + return std + + def _compute_covariance(self, lc1, lc2): + """Calculate and return the covariance between two time series.""" + return np.cov(lc1.counts, lc2.counts)[0][1] + + def _calculate_covariance_error(self, lc_x, lc_y): + """Calculate the error of the normalized covariance spectrum.""" + # Excess Variance of reference band + xs_x = self._calculate_excess_variance(lc_x) + # Standard deviation of light curve + err_y = self._calculate_std(lc_y) + # Excess Variance of reference band + xs_y = self._calculate_excess_variance(lc_y) + # Standard deviation of light curve + err_x = self._calculate_std(lc_x) + # Number of time bins in lightcurve + nn = lc_x.n + # Number of segments averaged + if not self.avg_covar: + mm = 1 + else: + mm = self.nbins + + num = xs_x * err_y + xs_y * err_x + err_x * err_y + denom = nn * mm * xs_y + + return (num / denom) ** 0.5
+ + + +
+[docs] +class AveragedCovariancespectrum(Covariancespectrum): + """ + Compute a covariance spectrum for the data, defined in [covar spectrum]_ Equation 15. + + Parameters + ---------- + data : {numpy.ndarray | list of :class:`stingray.Lightcurve` objects} + ``data`` contains the time series data, either in the form of a + 2-D array of ``(time stamp, energy)`` pairs for event data, or as a + list of :class:`stingray.Lightcurve` objects. + Note : The event list must be in sorted order with respect to the + times of arrivals. + + segment_size : float + The length of each segment in the averaged covariance spectrum. + The number of segments will be calculated automatically using the + total length of the data set and the segment_size defined here. + + dt : float + The time resolution of the :class:`stingray.Lightcurve` formed + from the energy bin. Only used if `data` is an event list. + + band_interest : {``None``, iterable of tuples} + If ``None``, all possible energy values will be assumed to be of + interest, and a covariance spectrum in the highest resolution + will be produced. + Note: if the input is a list of :class:`stingray.Lightcurve` objects, + then the user may supply their energy values here, for construction of a + reference band. + + ref_band_interest : {None, tuple, :class:`stingray.Lightcurve`, list of :class:`stingray.Lightcurve` objects} + Defines the reference band to be used for comparison with the + bands of interest. If None, all bands *except* the band of + interest will be used for each band of interest, respectively. + Alternatively, a tuple can be given for event list data, which will + extract the reference band (always excluding the band of interest), + or one may put in a single :class:`stingray.Lightcurve` object to be used (the same + for each band of interest) or a list of :class:`stingray.Lightcurve` objects, one for + each band of interest. + + std : float or np.array or list of numbers + The term ``std`` is used to calculate the excess variance of a band. + If ``std`` is set to ``None``, default Poisson case is taken and the + ``std`` is calculated as ``mean(lc)**0.5``. In the case of a single + float as input, the same is used as the standard deviation which + is also used as the std. And if the std is an iterable of + numbers, their mean is used for the same purpose. + + Attributes + ---------- + unnorm_covar : np.ndarray + An array of arrays with mid point band_interest and their + covariance. It is the array-form of the dictionary ``energy_covar``. + The covariance values are unnormalized. + + covar : np.ndarray + Normalized covariance spectrum. + + covar_error : np.ndarray + Errors of the normalized covariance spectrum. + + References + ---------- + .. [covar spectrum] http://arxiv.org/pdf/1405.6575v2.pdf + """ + + def __init__( + self, data, segment_size, dt=None, band_interest=None, ref_band_interest=None, std=None + ): + self.segment_size = segment_size + + Covariancespectrum.__init__( + self, + data, + dt=dt, + band_interest=band_interest, + ref_band_interest=ref_band_interest, + std=std, + ) + + def _construct_covar(self): + """ + Helper method to construct the covariance attribute and fill it with values. + """ + self.avg_covar = True + + start_time = self.lcs[0].time[0] + + covar = np.zeros(len(self.lcs)) + covar_err = np.zeros(len(self.lcs)) + xs_var = np.zeros(len(self.lcs)) + + for i in range(len(self.lcs)): + lc = self.lcs[i] + + if np.size(self.ref_band_lcs) == 1: + lc_ref = self.ref_band_lcs + else: + lc_ref = self.ref_band_lcs[i] + + tstart = start_time + tend = start_time + self.segment_size + cv = 0.0 + cv_err = 0.0 + xs = 0.0 + + self.nbins = int((tend - tstart) / self.segment_size) + for k in range(self.nbins): + start_ind = lc.time.searchsorted(tstart) + end_ind = lc.time.searchsorted(tend) + + lc_seg = lc.truncate(start=start_ind, stop=end_ind) + lc_ref_seg = lc_ref.truncate(start=start_ind, stop=end_ind) + + cv += self._compute_covariance(lc_seg, lc_ref_seg) + cv_err += self._calculate_covariance_error(lc_seg, lc_ref_seg) + xs += self._calculate_excess_variance(lc_ref_seg) + if not xs > 0: + utils.simon( + "The excess variance in the reference band is " + "negative. This implies that the reference " + "band was badly chosen. Beware that the " + "covariance spectra will have NaNs!" + ) + + tstart += self.segment_size + tend += self.segment_size + + covar[i] = cv / self.nbins + covar_err[i] = cv_err / self.nbins + xs_var[i] = xs / self.nbins + + self.unnorm_covar = covar + energy_covar = covar / xs_var**0.5 + + self.covar = energy_covar + + self.covar_error = covar_err + + return
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/crosscorrelation.html b/_modules/stingray/crosscorrelation.html new file mode 100644 index 000000000..d7d81eccb --- /dev/null +++ b/_modules/stingray/crosscorrelation.html @@ -0,0 +1,482 @@ + + + + + + + stingray.crosscorrelation — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.crosscorrelation

+import warnings
+import numpy as np
+from scipy import signal
+import matplotlib.pyplot as plt
+from stingray.utils import ifft, fftfreq
+
+from stingray.lightcurve import Lightcurve
+from stingray.crossspectrum import Crossspectrum, AveragedCrossspectrum
+from stingray.exceptions import StingrayError
+import stingray.utils as utils
+
+__all__ = ["CrossCorrelation", "AutoCorrelation"]
+
+
+
+[docs] +class CrossCorrelation(object): + """Make a cross-correlation from light curves or a cross spectrum. + + You can also make an empty :class:`Crosscorrelation` object to populate + with your own cross-correlation data. + + Parameters + ---------- + lc1: :class:`stingray.Lightcurve` object, optional, default ``None`` + The first light curve data for correlation calculations. + + lc2: :class:`stingray.Lightcurve` object, optional, default ``None`` + The light curve data for the correlation calculations. + + cross: :class: `stingray.Crossspectrum` object, default ``None`` + The cross spectrum data for the correlation calculations. + + mode: {``full``, ``valid``, ``same``}, optional, default ``same`` + A string indicating the size of the correlation output. + See the relevant ``scipy`` documentation [scipy-docs]_ + for more details. + + norm: {``none``, ``variance``} + if "variance", the cross correlation is normalized so that perfect + correlation gives 1, and perfect anticorrelation gives -1. See + Gaskell \& Peterson 1987, Gardner \& Done 2017 + + Attributes + ---------- + lc1: :class:`stingray.Lightcurve` + The first light curve data for correlation calculations. + + lc2: :class:`stingray.Lightcurve` + The light curve data for the correlation calculations. + + cross: :class: `stingray.Crossspectrum` + The cross spectrum data for the correlation calculations. + + corr: numpy.ndarray + An array of correlation data calculated from two light curves + + time_lags: numpy.ndarray + An array of all possible time lags against which each point in corr is calculated + + dt: float + The time resolution of each light curve (used in ``time_lag`` calculations) + + time_shift: float + Time lag that gives maximum value of correlation between two light curves. + There will be maximum correlation between light curves if one of the light curve + is shifted by ``time_shift``. + + n: int + Number of points in ``self.corr`` (length of cross-correlation data) + + auto: bool + An internal flag to indicate whether this is a cross-correlation or an auto-correlation. + + norm: {``none``, ``variance``} + The normalization specified in input + + References + ---------- + .. [scipy-docs] https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.signal.correlate.html + """ + + def __init__(self, lc1=None, lc2=None, cross=None, mode="same", norm="none"): + self.auto = False + self.norm = norm + if isinstance(mode, str) is False: + raise TypeError("mode must be a string") + + if mode.lower() not in ["full", "valid", "same"]: + raise ValueError("mode must be 'full', 'valid' or 'same'!") + + self.mode = mode.lower() + self.lc1 = None + self.lc2 = None + self.cross = None + + # Populate all attributes by ``None` if user passes no lightcurve data + if lc1 is None or lc2 is None: + if lc1 is not None or lc2 is not None: + raise TypeError("You can't do a cross correlation with just one " "light curve!") + + else: + if cross is None: + # all object input params are ``None`` + self.corr = None + self.time_shift = None + self.time_lags = None + self.dt = None + self.n = None + else: + self._make_cross_corr(cross) + return + else: + self._make_corr(lc1, lc2) + + def _make_cross_corr(self, cross): + """ + Do some checks on the cross spectrum supplied to the method, + and then calculate the time shifts, time lags and cross correlation. + + Parameters + ---------- + cross: :class:`stingray.Crossspectrum` object + The crossspectrum, averaged or not. + + """ + + if not isinstance(cross, Crossspectrum): + if not isinstance(cross, AveragedCrossspectrum): + raise TypeError( + "cross must be a crossspectrum.Crossspectrum \ + or crossspectrum.AveragedCrossspectrum object" + ) + + if self.cross is None: + self.cross = cross + self.dt = 1 / (cross.df * cross.n) + if self.dt is None: + self.dt = 1 / (cross.df * cross.n) + + prelim_corr = abs(ifft(cross.power).real) # keep only the real + self.n = len(prelim_corr) + + # ifft spits out an array that looks like [0,1,...n,-n,...-1] + # where n is the last positive frequency + # correcting for this by putting them in order + + times = fftfreq(self.n, cross.df) + time, corr = np.array(sorted(zip(times, prelim_corr))).T + self.corr = corr + self.time_shift, self.time_lags, self.n = self.cal_timeshift(dt=self.dt) + + def _make_corr(self, lc1, lc2): + """ + Do some checks on the light curves supplied to the method, and then calculate the time + shifts, time lags and cross correlation. + + Parameters + ---------- + lc1::class:`stingray.Lightcurve` object + The first light curve data. + + lc2::class:`stingray.Lightcurve` object + The second light curve data. + + """ + + if not isinstance(lc1, Lightcurve): + raise TypeError("lc1 must be a lightcurve.Lightcurve object") + if not isinstance(lc2, Lightcurve): + raise TypeError("lc2 must be a lightcurve.Lightcurve object") + + if not np.isclose(lc1.dt, lc2.dt): + raise StingrayError("Light curves do not have " "same time binning dt.") + else: + # ignore very small differences in dt neglected by np.isclose() + lc1.dt = lc2.dt + self.dt = lc1.dt + + # self.lc1 and self.lc2 may get assigned values explicitly in which case there is no need to copy data + if self.lc1 is None: + self.lc1 = lc1 + if self.lc2 is None: + self.lc2 = lc2 + + # Subtract means before passing scipy.signal.correlate into correlation + lc1_counts = self.lc1.counts - np.mean(self.lc1.counts) + lc2_counts = self.lc2.counts - np.mean(self.lc2.counts) + + # Calculates cross-correlation of two lightcurves + self.corr = signal.correlate(lc1_counts, lc2_counts, self.mode) + + self.n = np.size(self.corr) + self.time_shift, self.time_lags, self.n = self.cal_timeshift(dt=self.dt) + + # Normalization that makes the maximum correlation equal to 1, and + # maximum anticorrelation -1. + if self.norm == "variance": + # Note that self.corr is normalized so that the maximum is + # proportional to the number of bins in the first input + # light curve. Hence, the division by the lc size + variance1 = np.var(lc1.counts) - np.mean(lc1.counts_err) ** 2 + variance2 = np.var(lc2.counts) - np.mean(lc2.counts_err) ** 2 + self.corr = self.corr / np.sqrt(variance1 * variance2) / lc1_counts.size + +
+[docs] + def cal_timeshift(self, dt=1.0): + """ + Calculate the cross correlation against all possible time lags, both positive and negative. + + The method signal.correlation_lags() uses SciPy versions >= 1.6.1 ([scipy-docs-lag]_) + + References + ---------- + .. [scipy-docs-lag] https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html + + Parameters + ---------- + dt: float, optional, default ``1.0`` + Time resolution of the light curve, should be passed when object is populated with + correlation data and no information about light curve can be extracted. Used to + calculate ``time_lags``. + + Returns + ------- + self.time_shift: float + Value of the time lag that gives maximum value of correlation between two light curves. + + self.time_lags: numpy.ndarray + An array of ``time_lags`` calculated from correlation data + """ + if self.dt is None: + self.dt = dt + if self.corr is None: + if (self.lc1 is None or self.lc2 is None) and (self.cross is None): + raise StingrayError( + "Please provide either two lightcurve objects or \ + a [average]crossspectrum object to calculate correlation and time_shift" + ) + else: + # This will cover very rare case of assigning self.lc1 and lc2 + # or self.cross and also self.corr = ``None``. + # In this case, correlation is calculated using self.lc1 + # and self.lc2 and using that correlation data, + # time_shift is calculated. + if self.cross is not None: + self._make_cross_corr(self.cross) + else: + self._make_corr(self.lc1, self.lc2) + + self.n = len(self.corr) + + if self.cross is not None: + # Obtains correlation lags if a cross spectrum object is given + # Correlation against all possible lags, positive as well as negative lags are stored + # signal.correlation_lags() method uses SciPy versions >= 1.6.1 + x_lags = signal.correlation_lags(self.n, self.n, self.mode) + + else: + # Obtains correlation lags if two light curves are porvided + # Correlation against all possible lags, positive as well as negative lags are stored + # signal.correlation_lags() method uses SciPy versions >= 1.6.1 + x_lags = signal.correlation_lags( + np.size(self.lc1.counts), np.size(self.lc2.counts), self.mode + ) + + self.time_lags = x_lags * self.dt + # time_shift is the time lag for max. correlation + self.time_shift = self.time_lags[np.argmax(self.corr)] + + return self.time_shift, self.time_lags, self.n
+ + +
+[docs] + def plot( + self, labels=None, axis=None, title=None, marker="-", save=False, filename=None, ax=None + ): + """ + Plot the :class:`Crosscorrelation` as function using Matplotlib. + Plot the Crosscorrelation object on a graph ``self.time_lags`` on x-axis and + ``self.corr`` on y-axis + + Parameters + ---------- + labels : iterable, default ``None`` + A list of tuple with ``xlabel`` and ``ylabel`` as strings. + + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` function. + + title : str, default ``None`` + The title of the plot. + + marker : str, default ``-`` + Line style and color of the plot. Line styles and colors are + combined in a single format string, as in ``'bo'`` for blue + circles. See ``matplotlib.pyplot.plot`` for more options. + + save : boolean, optional (default=False) + If True, save the figure with specified filename. + + filename : str + File name of the image to save. Depends on the boolean ``save``. + + ax : ``matplotlib.Axes`` object + An axes object to fill with the cross correlation plot. + """ + if ax is None: + fig, ax = plt.subplots(1, 1, figsize=(6, 4)) + + ax.plot(self.time_lags, self.corr, marker) + if labels is not None: + try: + ax.set_xlabel(labels[0]) + ax.set_ylabel(labels[1]) + except TypeError: + utils.simon("``labels`` must be either a list or tuple with " "x and y labels.") + raise + except IndexError: + utils.simon("``labels`` must have two labels for x and y " "axes.") + # Not raising here because in case of len(labels)==1, only + # x-axis will be labelled. + + # axis is a tuple containing formatting information + if axis is not None: + ax.axis(axis) + + if title is not None: + ax.set_title(title) + + if save: + if filename is None: + plt.savefig("corr.pdf", format="pdf") + else: + plt.savefig(filename) + else: + plt.show(block=False) + + return ax
+
+ + + +
+[docs] +class AutoCorrelation(CrossCorrelation): + """ + Make an auto-correlation from a light curve. + You can also make an empty Autocorrelation object to populate with your + own auto-correlation data. + + Parameters + ---------- + lc: :class:`stingray.Lightcurve` object, optional, default ``None`` + The light curve data for correlation calculations. + + mode: {``full``, ``valid``, ``same``}, optional, default ``same`` + A string indicating the size of the correlation output. + See the relevant ``scipy`` documentation [scipy-docs] + for more details. + + Attributes + ---------- + lc1, lc2::class:`stingray.Lightcurve` + The light curve data for correlation calculations. + + corr: numpy.ndarray + An array of correlation data calculated from lightcurve data + + time_lags: numpy.ndarray + An array of all possible time lags against which each point in corr is calculated + + dt: float + The time resolution of each lightcurve (used in time_lag calculations) + + time_shift: float, zero + Max. Value of AutoCorrelation is always at zero lag. + + n: int + Number of points in self.corr(Length of auto-correlation data) + """ + + def __init__(self, lc=None, mode="same"): + CrossCorrelation.__init__(self, lc1=lc, lc2=lc, mode=mode) + self.auto = True
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/crossspectrum.html b/_modules/stingray/crossspectrum.html new file mode 100644 index 000000000..ac480d850 --- /dev/null +++ b/_modules/stingray/crossspectrum.html @@ -0,0 +1,2481 @@ + + + + + + + stingray.crossspectrum — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.crossspectrum

+import copy
+import warnings
+from collections.abc import Iterable, Iterator, Generator
+
+import numpy as np
+import scipy
+import scipy.optimize
+import scipy.stats
+from astropy import log
+import matplotlib.pyplot as plt
+
+from stingray.exceptions import StingrayError
+from stingray.gti import bin_intervals_from_gtis, check_gtis, cross_two_gtis
+from stingray.utils import rebin_data, rebin_data_log, simon
+
+from .base import StingrayObject
+from .events import EventList
+from .lightcurve import Lightcurve
+from .utils import show_progress
+from .fourier import avg_cs_from_iterables, error_on_averaged_cross_spectrum
+from .fourier import avg_cs_from_events, poisson_level
+from .fourier import fftfreq, fft, normalize_periodograms, raw_coherence
+from .fourier import get_flux_iterable_from_segments
+
+from scipy.special import factorial
+
+
+__all__ = [
+    "Crossspectrum",
+    "AveragedCrossspectrum",
+    "cospectra_pvalue",
+    "normalize_crossspectrum",
+    "time_lag",
+    "coherence",
+    "get_flux_generator",
+]
+
+
+def get_flux_generator(data, segment_size, dt=None):
+    """Get a flux generator from different segments of a data object
+
+    It is just a wrapper around
+    ``stingray.fourier.get_flux_iterable_from_segments``, providing
+    this method with the information it needs to create the iterables,
+    starting from an event list or a light curve.
+
+    Only accepts `Lightcurve`s and `EventList`s.
+
+    Parameters
+    ----------
+    data : `Lightcurve` or `EventList`
+        Input data
+    segment_size : float
+        Segment size in seconds
+
+    Other parameters
+    ----------------
+    dt : float, default None
+        Sampling time of the output flux iterables. Required if input data
+        is an event list, otherwise the light curve sampling time is selected.
+
+    Returns
+    -------
+    flux_iterable : ``generator``
+        Generator of flux arrays.
+
+    Examples
+    --------
+    >>> mean = 256
+    >>> length = 128
+    >>> times = np.sort(np.random.uniform(0, length, int(mean * length)))
+    >>> events = EventList(time=times, gti=[[0, length]])
+    >>> dt = 0.125
+    >>> segment_size = 4
+
+    Create a light curve
+    >>> lc = events.to_lc(dt=dt)
+
+    Create a light curve with a different error distribution
+    >>> lc_renorm = copy.deepcopy(lc)
+    >>> lc_renorm.counts = lc.counts / mean
+    >>> lc_renorm.counts_err = lc.counts_err / mean
+    >>> lc_renorm.err_dist = "gauss"
+
+    Create an iterable from events, forgetting ``dt``. Should fail
+    >>> get_flux_generator(events, segment_size, dt=None)
+    Traceback (most recent call last):
+    ...
+    ValueError: If data is an EventList, you need to specify...
+
+    Create an iterable from events
+    >>> iter_ev = get_flux_generator(events, segment_size, dt=dt)
+
+    Create an iterable from the light curve
+    >>> iter_lc = get_flux_generator(lc, segment_size, dt=dt)
+
+    Create an iterable from the non-poisson light curve
+    >>> iter_lc_nonpois = get_flux_generator(lc_renorm, segment_size, dt=dt)
+
+    Verify that they are equivalent
+    >>> for l1, l2 in zip(iter_ev, iter_lc): assert np.allclose(l1, l2)
+
+    Note that the iterable for non-Poissonian light curves also returns the uncertainty
+    >>> for l1, (l2, l2e) in zip(iter_lc, iter_lc_nonpois): assert np.allclose(l1, l2 * mean)
+
+    """
+    times = data.time
+    gti = data.gti
+
+    counts = err = None
+    if isinstance(data, Lightcurve):
+        counts = data.counts
+        N = counts.size
+        if data.err_dist.lower() != "poisson":
+            err = data.counts_err
+    elif isinstance(data, EventList):
+        if dt is None:
+            raise ValueError("If data is an EventList, you need to specify the bin time dt")
+        N = int(np.rint(segment_size / dt))
+
+    flux_iterable = get_flux_iterable_from_segments(
+        times, gti, segment_size, N, fluxes=counts, errors=err
+    )
+    return flux_iterable
+
+
+
+[docs] +def coherence(lc1, lc2): + """ + Estimate coherence function of two light curves. + For details on the definition of the coherence, see Vaughan and Nowak, + 1996 [#]_. + + Parameters + ---------- + lc1: :class:`stingray.Lightcurve` object + The first light curve data for the channel of interest. + lc2: :class:`stingray.Lightcurve` object + The light curve data for reference band + + Returns + ------- + coh : ``np.ndarray`` + The array of coherence versus frequency + + References + ---------- + .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf + """ + + warnings.warn( + "The coherence function, as implemented, does not work as expected. " + "Please use the coherence function of AveragedCrossspectrum, with the " + "correct parameters.", + DeprecationWarning, + ) + if not isinstance(lc1, Lightcurve): + raise TypeError("lc1 must be a lightcurve.Lightcurve object") + + if not isinstance(lc2, Lightcurve): + raise TypeError("lc2 must be a lightcurve.Lightcurve object") + + cs = Crossspectrum(lc1, lc2, norm="none") + + return cs.coherence()
+ + + +def time_lag(lc1, lc2): + """ + Estimate the time lag of two light curves. + Calculate time lag and uncertainty. + Equation from Bendat & Piersol, 2011 [bendat-2011]_. + + Parameters + ---------- + lc1: :class:`stingray.Lightcurve` object + The first light curve data for the channel of interest. + lc2: :class:`stingray.Lightcurve` object + The light curve data for reference band + + Returns + ------- + lag : np.ndarray + The time lag + lag_err : np.ndarray + The uncertainty in the time lag + + References + ---------- + .. [bendat-2011] https://www.wiley.com/en-us/Random+Data%3A+Analysis+and+Measurement+Procedures%2C+4th+Edition-p-9780470248775 + """ + + warnings.warn( + "This standalone time_lag function is deprecated. " + "Please use the time_lag method of AveragedCrossspectrum, with the " + "correct parameters.", + DeprecationWarning, + ) + + if not isinstance(lc1, Lightcurve): + raise TypeError("lc1 must be a lightcurve.Lightcurve object") + + if not isinstance(lc2, Lightcurve): + raise TypeError("lc2 must be a lightcurve.Lightcurve object") + + cs = Crossspectrum(lc1, lc2, norm="none") + lag = cs.time_lag() + + return lag + + +def normalize_crossspectrum( + unnorm_power, tseg, nbins, nphots1, nphots2, norm="none", power_type="real" +): + """ + Normalize the real part of the cross spectrum to Leahy, absolute rms^2, + fractional rms^2 normalization, or not at all. + + Here for API compatibility purposes. Will be removed in the next + major release. + + Parameters + ---------- + unnorm_power: numpy.ndarray + The unnormalized cross spectrum. + + tseg: int + The length of the Fourier segment, in seconds. + + nbins : int + Number of bins in the light curve + + nphots1 : int + Number of photons in the light curve no. 1 + + nphots2 : int + Number of photons in the light curve no. 2 + + Other parameters + ---------------- + norm : str + One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'abs'` + (absolute rms) + + power_type : str + One of `'real'` (real part), `'all'` (all complex powers), `'abs'` + (absolute value) + + Returns + ------- + power: numpy.nd.array + The normalized co-spectrum (real part of the cross spectrum). For + 'none' normalization, imaginary part is returned as well. + """ + warnings.warn( + "normalize_crossspectrum is now deprecated and will be removed " + "in the next major release. Please use " + "stingray.fourier.normalize_periodograms instead.", + DeprecationWarning, + ) + dt = tseg / nbins + nph = np.sqrt(nphots1 * nphots2) + mean = nph / nbins + return normalize_periodograms( + unnorm_power, dt, nbins, mean, n_ph=nph, norm=norm, power_type=power_type + ) + + +def normalize_crossspectrum_gauss( + unnorm_power, mean_flux, var, dt, N, norm="none", power_type="real" +): + """ + Normalize the real part of the cross spectrum to Leahy, absolute rms^2, + fractional rms^2 normalization, or not at all. + + Here for API compatibility purposes. Will be removed in the next + major release. + + Parameters + ---------- + unnorm_power: numpy.ndarray + The unnormalized cross spectrum. + + mean_flux: float + The mean flux of the light curve (if a cross spectrum, the geometrical + mean of the flux in the two channels) + + var: float + The variance of the light curve (if a cross spectrum, the geometrical + mean of the variance in the two channels) + + dt: float + The sampling time of the light curve + + N: int + The number of bins in the light curve + + Other parameters + ---------------- + norm : str + One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'abs'` + (absolute rms) + + power_type : str + One of `'real'` (real part), `'all'` (all complex powers), `'abs'` + (absolute value) + + Returns + ------- + power: numpy.nd.array + The normalized co-spectrum (real part of the cross spectrum). For + 'none' normalization, imaginary part is returned as well. + """ + warnings.warn( + "normalize_crossspectrum_gauss is now deprecated and will be " + "removed in the next major release. Please use " + "stingray.fourier.normalize_periodograms instead.", + DeprecationWarning, + ) + mean = mean_flux * dt + return normalize_periodograms( + unnorm_power, dt, N, mean, variance=var, norm=norm, power_type=power_type + ) + + +def _averaged_cospectra_cdf(xcoord, n): + """ + Function calculating the cumulative distribution function for + averaged cospectra, Equation 19 of Huppenkothen & Bachetti (2018). + + Parameters + ---------- + xcoord : float or iterable + The cospectral power for which to calculate the CDF. + + n : int + The number of averaged cospectra + + Returns + ------- + cdf : float + The value of the CDF at `xcoord` for `n` averaged cospectra + """ + if np.size(xcoord) == 1: + xcoord = [xcoord] + + cdf = np.zeros_like(xcoord) + + for i, x in enumerate(xcoord): + prefac_bottom1 = factorial(n - 1) + for j in range(n): + prefac_top = factorial(n - 1 + j) + prefac_bottom2 = factorial(n - 1 - j) * factorial(j) + prefac_bottom3 = 2.0 ** (n + j) + + prefac = prefac_top / (prefac_bottom1 * prefac_bottom2 * prefac_bottom3) + + gf = -j + n + + first_fac = scipy.special.gamma(gf) + if x >= 0: + second_fac = scipy.special.gammaincc(gf, n * x) * first_fac + fac = 2.0 * first_fac - second_fac + else: + fac = scipy.special.gammaincc(gf, -n * x) * first_fac + + cdf[i] += prefac * fac + if np.size(xcoord) == 1: + return cdf[i] + + return cdf + + +def cospectra_pvalue(power, nspec): + """ + This function computes the single-trial p-value that the power was + observed under the null hypothesis that there is no signal in + the data. + + Important: the underlying assumption that make this calculation valid + is that the powers in the power spectrum follow a Laplace distribution, + and this requires that: + + 1. the co-spectrum is normalized according to [Leahy 1983]_ + 2. there is only white noise in the light curve. That is, there is no + aperiodic variability that would change the overall shape of the power + spectrum. + + Also note that the p-value is for a *single trial*, i.e. the power + currently being tested. If more than one power or more than one power + spectrum are being tested, the resulting p-value must be corrected for the + number of trials (Bonferroni correction). + + Mathematical formulation in [Huppenkothen 2017]_. + + Parameters + ---------- + power : float + The squared Fourier amplitude of a spectrum to be evaluated + + nspec : int + The number of spectra or frequency bins averaged in ``power``. + This matters because averaging spectra or frequency bins increases + the signal-to-noise ratio, i.e. makes the statistical distributions + of the noise narrower, such that a smaller power might be very + significant in averaged spectra even though it would not be in a single + power spectrum. + + Returns + ------- + pval : float + The classical p-value of the observed power being consistent with + the null hypothesis of white noise + + References + ---------- + + * .. [Leahy 1983] https://ui.adsabs.harvard.edu/#abs/1983ApJ...266..160L/abstract + * .. [Huppenkothen 2017] http://adsabs.harvard.edu/abs/2018ApJS..236...13H + + """ + if not np.all(np.isfinite(power)): + raise ValueError("power must be a finite floating point number!") + + # if power < 0: + # raise ValueError("power must be a positive real number!") + + if not np.isfinite(nspec): + raise ValueError("nspec must be a finite integer number") + + if not np.isclose(nspec % 1, 0): + raise ValueError("nspec must be an integer number!") + + if nspec < 1: + raise ValueError("nspec must be larger or equal to 1") + + elif nspec == 1: + lapl = scipy.stats.laplace(0, 1) + pval = lapl.sf(power) + + elif nspec > 50: + exp_sigma = np.sqrt(2) / np.sqrt(nspec) + gauss = scipy.stats.norm(0, exp_sigma) + pval = gauss.sf(power) + + else: + pval = 1.0 - _averaged_cospectra_cdf(power, nspec) + + return pval + + +
+[docs] +class Crossspectrum(StingrayObject): + main_array_attr = "freq" + type = "crossspectrum" + + """ + Make a cross spectrum from a (binned) light curve. + You can also make an empty :class:`Crossspectrum` object to populate with your + own Fourier-transformed data (this can sometimes be useful when making + binned power spectra). Stingray uses the scipy.fft standards for the sign + of the Nyquist frequency. + + Parameters + ---------- + data1: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` + The dataset for the first channel/band of interest. + + data2: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` + The dataset for the second, or "reference", band. + + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + power_type: string, optional, default ``real`` + Parameter to choose among complete, real part and magnitude of the cross spectrum. + + fullspec: boolean, optional, default ``False`` + If False, keep only the positive frequencies, or if True, keep all of them . + + Other Parameters + ---------------- + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the input + `Lightcurve` GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the `Lightcurve` objects before making + the cross spectrum. + + lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data1``, but no + :class:`stingray.events.EventList` objects allowed + + lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data2``, but no + :class:`stingray.events.EventList` objects allowed + + dt: float + The time resolution of the light curve. Only needed when constructing + light curves in the case where ``data1``, ``data2`` are + :class:`EventList` objects + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!) + + + Attributes + ---------- + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples + + power: numpy.ndarray + The array of cross spectra (complex numbers) + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging more than one spectra). Note that for a single + realization (``m=1``) the error is equal to the power. + + df: float + The frequency resolution + + m: int + The number of averaged cross-spectra amplitudes in each bin. + + n: int + The number of data points/time bins in one segment of the light + curves. + + k: array of int + The rebinning scheme if the object has been rebinned otherwise is set to 1. + + nphots1: float + The total number of photons in light curve 1 + + nphots2: float + The total number of photons in light curve 2 + + """ + + def __init__( + self, + data1=None, + data2=None, + norm="frac", + gti=None, + lc1=None, + lc2=None, + power_type="all", + dt=None, + fullspec=False, + skip_checks=False, + save_all=False, + ): + self._type = None + # for backwards compatibility + if data1 is None: + data1 = lc1 + if data2 is None: + data2 = lc2 + + empty = data1 is None and data2 is None + good_input = not empty + + if not skip_checks: + good_input = self.initial_checks( + data1=data1, + data2=data2, + norm=norm, + gti=gti, + lc1=lc1, + lc2=lc2, + power_type=power_type, + dt=dt, + fullspec=fullspec, + ) + + self.dt = dt + norm = norm.lower() + self.norm = norm + self.k = 1 + + if empty or not good_input: + return self._initialize_empty() + + return self._initialize_from_any_input( + data1, + data2, + dt=dt, + norm=norm, + power_type=power_type, + fullspec=fullspec, + gti=gti, + save_all=save_all, + ) + +
+[docs] + def initial_checks( + self, + data1=None, + data2=None, + norm="frac", + gti=None, + lc1=None, + lc2=None, + segment_size=None, + power_type="real", + dt=None, + fullspec=False, + ): + """Run initial checks on the input. + + Returns True if checks are passed, False if they are not. + + Raises various errors for different bad inputs + + Examples + -------- + >>> times = np.arange(0, 10) + >>> counts = np.random.poisson(100, 10) + >>> lc1 = Lightcurve(times, counts, skip_checks=True) + >>> lc2 = Lightcurve(times, counts, skip_checks=True) + >>> ev1 = EventList(times) + >>> ev2 = EventList(times) + >>> c = Crossspectrum() + >>> ac = AveragedCrossspectrum() + + If norm is not a string, raise a TypeError + >>> Crossspectrum.initial_checks(c, norm=1) + Traceback (most recent call last): + ... + TypeError: norm must be a string... + + If ``norm`` is not one of the valid norms, raise a ValueError + >>> Crossspectrum.initial_checks(c, norm="blabla") + Traceback (most recent call last): + ... + ValueError: norm must be 'frac'... + + If ``power_type`` is not one of the valid norms, raise a ValueError + >>> Crossspectrum.initial_checks(c, power_type="blabla") + Traceback (most recent call last): + ... + ValueError: `power_type` not recognized! + + If the user passes only one light curve, raise a ValueError + + >>> Crossspectrum.initial_checks(c, data1=lc1, data2=None) + Traceback (most recent call last): + ... + ValueError: You can't do a cross spectrum... + + If the user passes an event list without dt, raise a ValueError + + >>> Crossspectrum.initial_checks(c, data1=ev1, data2=ev2, dt=None) + Traceback (most recent call last): + ... + ValueError: If using event lists, please specify... + """ + if isinstance(norm, str) is False: + raise TypeError("norm must be a string") + + if norm.lower() not in ["frac", "abs", "leahy", "none"]: + raise ValueError("norm must be 'frac', 'abs', 'leahy', or 'none'!") + + if power_type not in ["all", "absolute", "real"]: + raise ValueError("`power_type` not recognized!") + + # check if input data is a Lightcurve object, if not make one or + # make an empty Crossspectrum object if lc1 == ``None`` or lc2 == ``None`` + + if lc1 is not None or lc2 is not None: + warnings.warn( + "The lcN keywords are now deprecated. Use dataN instead", DeprecationWarning + ) + + if data1 is None or data2 is None: + if data1 is not None or data2 is not None: + raise ValueError("You can't do a cross spectrum with just one light curve!") + else: + return False + + dt_is_invalid = (dt is None) or (dt <= np.finfo(float).resolution) + + if segment_size is None: + # checks to be run for non-averaged spectra + if gti is not None and len(gti) > 1: + raise TypeError("Non-averaged cross spectra need a single GTI") + + if type(data1) != type(data2): + raise TypeError("Input data have to be of the same kind") + + if isinstance(data1, EventList): + if dt_is_invalid: + raise ValueError( + "If using event lists, please specify the bin time to generate lightcurves." + ) + elif isinstance(data1, Lightcurve): + if data1.err_dist.lower() != data2.err_dist.lower(): + simon( + "Your lightcurves have different statistics." + "The errors in the Crossspectrum will be incorrect." + ) + + # If dt differs slightly, its propagated error must not be more than + # 1/100th of the bin + if not np.isclose(data1.dt, data2.dt, rtol=0.01 * data1.dt / data1.tseg): + raise StingrayError("Light curves do not have same time binning dt.") + + if data1.tseg != data2.tseg: + simon( + "Lightcurves do not have same tseg. This means that the data" + "from the two channels are not completely in sync. This " + "might or might not be an issue. Keep an eye on it." + ) + elif isinstance(data1, (list, tuple)): + if not isinstance(data1[0], Lightcurve) or not isinstance(data2[0], Lightcurve): + raise TypeError("Inputs lists have to contain light curve objects") + + if data1[0].err_dist.lower() != data2[0].err_dist.lower(): + simon( + "Your lightcurves have different statistics." + "The errors in the Crossspectrum will be incorrect." + ) + elif isinstance(data1, (Generator, Iterator)): + pass + else: + raise TypeError("Input data are invalid") + + return True
+ + +
+[docs] + def rebin(self, df=None, f=None, method="mean"): + """ + Rebin the cross spectrum to a new frequency resolution ``df``. + + Parameters + ---------- + df: float + The new frequency resolution + + Other Parameters + ---------------- + f: float + the rebin factor. If specified, it substitutes df with ``f*self.df`` + + Returns + ------- + bin_cs = :class:`Crossspectrum` (or one of its subclasses) object + The newly binned cross spectrum or power spectrum. + Note: this object will be of the same type as the object + that called this method. For example, if this method is called + from :class:`AveragedPowerspectrum`, it will return an object of class + :class:`AveragedPowerspectrum`, too. + """ + + if f is None and df is None: + raise ValueError("You need to specify at least one between f and df") + elif f is not None: + df = f * self.df + + # rebin cross spectrum to new resolution + binfreq, bincs, binerr, step_size = rebin_data( + self.freq, self.power, df, self.power_err, method=method, dx=self.df + ) + # make an empty cross spectrum object + # note: syntax deliberate to work with subclass Powerspectrum + bin_cs = copy.copy(self) + + # store the binned periodogram in the new object + bin_cs.freq = binfreq + bin_cs.power = bincs + bin_cs.df = df + bin_cs.power_err = binerr + + if hasattr(self, "unnorm_power") and self.unnorm_power is not None: + unnorm_power_err = None + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + unnorm_power_err = self.unnorm_power_err + + _, binpower_unnorm, binpower_err_unnorm, _ = rebin_data( + self.freq, self.unnorm_power, df, dx=self.df, yerr=unnorm_power_err, method=method + ) + + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + bin_cs.unnorm_power_err = binpower_err_unnorm + + bin_cs.unnorm_power = binpower_unnorm + + if hasattr(self, "cs_all"): + cs_all = [] + for c in self.cs_all: + cs_all.append( + rebin_data(self.freq, c, dx_new=df, yerr=None, method=method, dx=self.df)[1] + ) + bin_cs.cs_all = cs_all + if hasattr(self, "pds1"): + bin_cs.pds1 = self.pds1.rebin(df=df, f=f, method=method) + if hasattr(self, "pds2"): + bin_cs.pds2 = self.pds2.rebin(df=df, f=f, method=method) + + bin_cs.m = np.rint(step_size * self.m) + + return bin_cs
+ + +
+[docs] + def to_norm(self, norm, inplace=False): + """Convert Cross spectrum to new normalization. + + Parameters + ---------- + norm : str + The new normalization of the spectrum + + Other parameters + ---------------- + inplace: bool, default False + If True, change the current instance. Otherwise, return a new one + + Returns + ------- + new_spec : object, same class as input + The new, normalized, spectrum. + """ + if norm == self.norm: + return copy.deepcopy(self) + + variance1 = variance2 = variance = None + if self.type == "powerspectrum": + # This is the case for Powerspectrum + mean = mean1 = mean2 = self.nphots / self.n + if hasattr(self, "err_dist") and self.err_dist != "poisson": + variance = self.variance + nph = self.nphots + else: + nph = np.sqrt(self.nphots1 * self.nphots2) + mean1 = self.nphots1 / self.n + mean2 = self.nphots2 / self.n + mean = nph / self.n + if hasattr(self, "err_dist") and self.err_dist != "poisson": + variance1 = self.variance1 + variance2 = self.variance2 + variance = np.sqrt(self.variance1 * self.variance2) + + if inplace: + new_spec = self + else: + new_spec = copy.deepcopy(self) + + power_type = "all" + if hasattr(self, "power_type"): + power_type = self.power_type + + for attr in ["power", "power_err"]: + unnorm_attr = "unnorm_" + attr + if not hasattr(self, unnorm_attr): + continue + power = normalize_periodograms( + getattr(self, unnorm_attr), + self.dt, + self.n, + mean, + n_ph=nph, + variance=variance, + norm=norm, + power_type=power_type, + ) + setattr(new_spec, attr, power) + new_spec.norm = norm + if hasattr(self, "pds1"): + p1 = normalize_periodograms( + getattr(self.pds1, unnorm_attr), + self.dt, + self.n, + mean1, + n_ph=self.nphots1, + variance=variance1, + norm=norm, + power_type=power_type, + ) + setattr(new_spec.pds1, attr, p1) + p2 = normalize_periodograms( + getattr(self.pds2, unnorm_attr), + self.dt, + self.n, + mean2, + n_ph=self.nphots2, + variance=variance2, + norm=norm, + power_type=power_type, + ) + setattr(new_spec.pds2, attr, p2) + new_spec.pds1.norm = new_spec.pds2.norm = norm + + return new_spec
+ + + def _normalize_crossspectrum(self, unnorm_power): + """ + Normalize the real part of the cross spectrum to Leahy, absolute rms^2, + fractional rms^2 normalization, or not at all. + + Parameters + ---------- + unnorm_power: numpy.ndarray + The unnormalized cross spectrum. + + Returns + ------- + power: numpy.nd.array + The normalized co-spectrum (real part of the cross spectrum). For + 'none' normalization, imaginary part is returned as well. + """ + + nph = np.sqrt(self.nphots1 * self.nphots2) + mean = nph / self.n + variance = None + if self.err_dist != "poisson": + variance = np.sqrt(self.variance1 * self.variance2) + return normalize_periodograms( + unnorm_power, + self.dt, + self.n, + mean, + n_ph=nph, + variance=variance, + norm=self.norm, + power_type=self.power_type, + ) + +
+[docs] + def rebin_log(self, f=0.01): + """ + Logarithmic rebin of the periodogram. + The new frequency depends on the previous frequency + modified by a factor f: + + .. math:: + + d\\nu_j = d\\nu_{j-1} (1+f) + + Parameters + ---------- + f: float, optional, default ``0.01`` + parameter that steers the frequency resolution + + + Returns + ------- + new_spec : :class:`Crossspectrum` (or one of its subclasses) object + The newly binned cross spectrum or power spectrum. + Note: this object will be of the same type as the object + that called this method. For example, if this method is called + from :class:`AveragedPowerspectrum`, it will return an object of class + """ + + binfreq, binpower, binpower_err, nsamples = rebin_data_log( + self.freq, self.power, f, y_err=self.power_err, dx=self.df + ) + + new_spec = copy.copy(self) + new_spec.freq = binfreq + new_spec.power = binpower + new_spec.power_err = binpower_err + new_spec.m = nsamples * self.m + new_spec.dt = self.dt + new_spec.k = nsamples + + if hasattr(self, "unnorm_power") and self.unnorm_power is not None: + unnorm_power_err = None + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + unnorm_power_err = self.unnorm_power_err + _, binpower_unnorm, binpower_err_unnorm, _ = rebin_data_log( + self.freq, self.unnorm_power, f, dx=self.df, y_err=unnorm_power_err + ) + + new_spec.unnorm_power = binpower_unnorm + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + new_spec.unnorm_power_err = binpower_err_unnorm + + if hasattr(self, "pds1"): + new_spec.pds1 = self.pds1.rebin_log(f) + if hasattr(self, "pds2"): + new_spec.pds2 = self.pds2.rebin_log(f) + + if hasattr(self, "cs_all"): + cs_all = [] + + for c in self.cs_all: + cs_all.append(rebin_data_log(self.freq, c, f, dx=self.df)[1]) + new_spec.cs_all = cs_all + + return new_spec
+ + +
+[docs] + def coherence(self): + """Compute Coherence function of the cross spectrum. + + Coherence is defined in Vaughan and Nowak, 1996 [#]_. + It is a Fourier frequency dependent measure of the linear correlation + between time series measured simultaneously in two energy channels. + + Returns + ------- + coh : numpy.ndarray + Coherence function + + References + ---------- + .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf + """ + # this computes the averaged power spectrum, but using the + # cross spectrum code to avoid circular imports + + return raw_coherence( + self.unnorm_power, self.pds1.unnorm_power, self.pds2.unnorm_power, 0, 0, self.n + )
+ + +
+[docs] + def phase_lag(self): + """Calculate the fourier phase lag of the cross spectrum. + + This is defined as the argument of the complex cross spectrum, and gives + the delay at all frequencies, in cycles, of one input light curve with respect + to the other. + """ + return np.angle(self.unnorm_power)
+ + +
+[docs] + def time_lag(self): + r"""Calculate the fourier time lag of the cross spectrum. + The time lag is calculated by taking the phase lag :math:`\phi` and + + ..math:: + + \tau = \frac{\phi}{\two pi \nu} + + where :math:`\nu` is the center of the frequency bins. + """ + if self.__class__ in [Crossspectrum, AveragedCrossspectrum]: + ph_lag = self.phase_lag() + + return ph_lag / (2 * np.pi * self.freq) + else: + raise AttributeError("Object has no attribute named 'time_lag' !")
+ + +
+[docs] + def plot( + self, labels=None, axis=None, title=None, marker="-", save=False, filename=None, ax=None + ): + """ + Plot the amplitude of the cross spectrum vs. the frequency using ``matplotlib``. + + Parameters + ---------- + labels : iterable, default ``None`` + A list of tuple with ``xlabel`` and ``ylabel`` as strings. + + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of the ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for the``matplotlib.pyplot.axis()`` method. + + title : str, default ``None`` + The title of the plot. + + marker : str, default '-' + Line style and color of the plot. Line styles and colors are + combined in a single format string, as in ``'bo'`` for blue + circles. See ``matplotlib.pyplot.plot`` for more options. + + save : boolean, optional, default ``False`` + If ``True``, save the figure with specified filename. + + filename : str + File name of the image to save. Depends on the boolean ``save``. + + ax : ``matplotlib.Axes`` object + An axes object to fill with the cross correlation plot. + """ + + if ax is None: + fig = plt.figure("crossspectrum") + ax = fig.add_subplot(1, 1, 1) + + ax2 = None + if np.any(np.iscomplex(self.power)): + ax.plot(self.freq, np.abs(self.power), marker, color="k", label="Amplitude") + + ax2 = ax.twinx() + ax2.tick_params("y", colors="b") + ax2.plot( + self.freq, self.power.imag, marker, color="b", alpha=0.5, label="Imaginary Part" + ) + + ax.plot(self.freq, self.power.real, marker, color="r", alpha=0.5, label="Real Part") + + lines, line_labels = ax.get_legend_handles_labels() + lines2, line_labels2 = ax2.get_legend_handles_labels() + lines = lines + lines2 + line_labels = line_labels + line_labels2 + + else: + ax.plot(self.freq, np.abs(self.power), marker, color="b") + lines, line_labels = ax.get_legend_handles_labels() + + xlabel = "Frequency (Hz)" + ylabel = f"Power ({self.norm})" + + if labels is not None: + try: + xlabel = labels[0] + ylabel = labels[1] + + except IndexError: + simon("``labels`` must have two labels for x and y axes.") + # Not raising here because in case of len(labels)==1, only + # x-axis will be labelled. + + ax.set_xlabel(xlabel) + if ax2 is not None: + ax.set_ylabel(ylabel + "-Real") + ax2.set_ylabel(ylabel + "-Imaginary") + else: + ax.set_ylabel(ylabel) + + ax.legend(lines, line_labels, loc="best") + + if axis is not None: + ax.set_xlim(axis[0:2]) + ax.set_ylim(axis[2:4]) + if ax2 is not None: + ax2.set_ylim(axis[2:4]) + if title is not None: + ax.set_title(title) + + if save: + if filename is None: + plt.gcf().savefig("spec.png") + else: + plt.gcf().savefig(filename) + + return ax
+ + +
+[docs] + def classical_significances(self, threshold=1, trial_correction=False): + """ + Compute the classical significances for the powers in the power + spectrum, assuming an underlying noise distribution that follows a + chi-square distributions with 2M degrees of freedom, where M is the + number of powers averaged in each bin. + + Note that this function will *only* produce correct results when the + following underlying assumptions are fulfilled: + + 1. The power spectrum is Leahy-normalized + 2. There is no source of variability in the data other than the + periodic signal to be determined with this method. This is important! + If there are other sources of (aperiodic) variability in the data, this + method will *not* produce correct results, but instead produce a large + number of spurious false positive detections! + 3. There are no significant instrumental effects changing the + statistical distribution of the powers (e.g. pile-up or dead time) + + By default, the method produces ``(index,p-values)`` for all powers in + the power spectrum, where index is the numerical index of the power in + question. If a ``threshold`` is set, then only powers with p-values + *below* that threshold with their respective indices. If + ``trial_correction`` is set to ``True``, then the threshold will be corrected + for the number of trials (frequencies) in the power spectrum before + being used. + + Parameters + ---------- + threshold : float, optional, default ``1`` + The threshold to be used when reporting p-values of potentially + significant powers. Must be between 0 and 1. + Default is ``1`` (all p-values will be reported). + + trial_correction : bool, optional, default ``False`` + A Boolean flag that sets whether the ``threshold`` will be corrected + by the number of frequencies before being applied. This decreases + the ``threshold`` (p-values need to be lower to count as significant). + Default is ``False`` (report all powers) though for any application + where `threshold`` is set to something meaningful, this should also + be applied! + + Returns + ------- + pvals : iterable + A list of ``(index, p-value)`` tuples for all powers that have p-values + lower than the threshold specified in ``threshold``. + + """ + if not self.norm == "leahy": + raise ValueError("This method only works on Leahy-normalized power spectra!") + + if np.size(self.m) == 1: + # calculate p-values for all powers + # leave out zeroth power since it just encodes the number of photons! + pv = np.array([cospectra_pvalue(power, self.m) for power in self.power]) + else: + pv = np.array([cospectra_pvalue(power, m) for power, m in zip(self.power, self.m)]) + + # if trial correction is used, then correct the threshold for + # the number of powers in the power spectrum + if trial_correction: + threshold /= self.power.shape[0] + + # need to add 1 to the indices to make up for the fact that + # we left out the first power above! + indices = np.where(pv < threshold)[0] + + pvals = np.vstack([pv[indices], indices]) + + return pvals
+ + +
+[docs] + @staticmethod + def from_time_array( + times1, + times2, + dt, + segment_size=None, + gti=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + ): + """Calculate AveragedCrossspectrum from two arrays of event times. + + Parameters + ---------- + times1 : `np.array` + Event arrival times of channel 1 + times2 : `np.array` + Event arrival times of channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for `AveragedCrossspectrum`. + gti : [[gti0, gti1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + """ + + return crossspectrum_from_time_array( + times1, + times2, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + )
+ + +
+[docs] + @staticmethod + def from_events( + events1, + events2, + dt, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + ): + """Calculate AveragedCrossspectrum from two event lists + + Parameters + ---------- + events1 : `stingray.EventList` + Events from channel 1 + events2 : `stingray.EventList` + Events from channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + """ + + return crossspectrum_from_events( + events1, + events2, + dt, + segment_size=segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + )
+ + +
+[docs] + @staticmethod + def from_lightcurve( + lc1, + lc2, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + ): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + lc1 : `stingray.Lightcurve` + Light curve from channel 1 + lc2 : `stingray.Lightcurve` + Light curve from channel 2 + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + """ + return crossspectrum_from_lightcurve( + lc1, + lc2, + segment_size=segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + )
+ + +
+[docs] + @staticmethod + def from_lc_iterable( + iter_lc1, + iter_lc2, + dt, + segment_size, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + ): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 1. If arrays, use them as counts + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 2. If arrays, use them as counts + dt : float + The time resolution of the light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + save_all : bool, default False + If True, save the cross spectrum of each segment in the ``cs_all`` + attribute of the output :class:`Crossspectrum` object. + """ + + return crossspectrum_from_lc_iterable( + iter_lc1, + iter_lc2, + dt, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + )
+ + + def _initialize_from_any_input( + self, + data1, + data2, + dt=None, + segment_size=None, + norm="frac", + power_type="all", + silent=False, + fullspec=False, + gti=None, + use_common_mean=True, + save_all=False, + ): + """Initialize the class, trying to understand the input types. + + The input arguments are the same as ``__init__()``. Based on the type + of ``data1``, this method will call the appropriate + ``crossspectrum_from_XXXX`` function, and initialize ``self`` with + the correct attributes. + """ + if isinstance(data1, EventList): + spec = crossspectrum_from_events( + data1, + data2, + dt, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + elif isinstance(data1, Lightcurve): + spec = crossspectrum_from_lightcurve( + data1, + data2, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + spec.lc1 = data1 + spec.lc2 = data2 + elif isinstance(data1, (tuple, list)): + dt = data1[0].dt + # This is a list of light curves. + spec = crossspectrum_from_lc_iterable( + data1, + data2, + dt, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + gti=gti, + use_common_mean=use_common_mean, + save_all=save_all, + ) + else: # pragma: no cover + raise TypeError(f"Bad inputs to Crosssspectrum: {type(data1)}") + + for key, val in spec.__dict__.items(): + setattr(self, key, val) + return + + def _initialize_empty(self): + """Set all attributes to None.""" + self.freq = None + self.power = None + self.power_err = None + self.unnorm_power = None + self.unnorm_power_err = None + self.df = None + self.dt = None + self.nphots1 = None + self.nphots2 = None + self.m = 1 + self.n = None + self.fullspec = None + self.k = 1 + return
+ + + +
+[docs] +class AveragedCrossspectrum(Crossspectrum): + type = "crossspectrum" + """ + Make an averaged cross spectrum from a light curve by segmenting two + light curves, Fourier-transforming each segment and then averaging the + resulting cross spectra. + + Parameters + ---------- + data1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object + A light curve from which to compute the cross spectrum. In some cases, + this would be the light curve of the wavelength/energy/frequency band + of interest. + + data2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object + A second light curve to use in the cross spectrum. In some cases, this + would be the wavelength/energy/frequency reference band to compare the + band of interest with. + + segment_size: float + The size of each segment to average. Note that if the total duration of + each :class:`Lightcurve` object in ``lc1`` or ``lc2`` is not an + integer multiple of the ``segment_size``, then any fraction left-over + at the end of the time series will be lost. Otherwise you introduce + artifacts. + + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + Other Parameters + ---------------- + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + + dt : float + The time resolution of the light curve. Only needed when constructing + light curves in the case where data1 or data2 are of :class:EventList + + power_type: string, optional, default ``all`` + Parameter to choose among complete, real part and magnitude of + the cross spectrum. + + silent : bool, default False + Do not show a progress bar when generating an averaged cross spectrum. + Useful for the batch execution of many spectra + + lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data1``, but no + :class:`stingray.events.EventList` objects allowed + + lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data2``, but no + :class:`stingray.events.EventList` objects allowed + + fullspec: boolean, optional, default ``False`` + If True, return the full array of frequencies, otherwise return just the + positive frequencies. + + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!) + + use_common_mean: bool + Averaged cross spectra are normalized in two possible ways: one is by normalizing + each of the single spectra that get averaged, the other is by normalizing after the + averaging. If `use_common_mean` is selected, the spectrum will be normalized + after the average. + + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + + Attributes + ---------- + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + power: numpy.ndarray + The array of cross spectra. + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging power spectra of segments of a light curve). + Note that for a single realization (``m=1``) the error is equal to the + power. + + df: float + The frequency resolution. + + m: int + The number of averaged cross spectra. + + n: int + The number of time bins per segment of light curve. + + nphots1: float + The total number of photons in the first (interest) light curve. + + nphots2: float + The total number of photons in the second (reference) light curve. + + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. + """ + + def __init__( + self, + data1=None, + data2=None, + segment_size=None, + norm="frac", + gti=None, + power_type="all", + silent=False, + lc1=None, + lc2=None, + dt=None, + fullspec=False, + save_all=False, + use_common_mean=True, + skip_checks=False, + ): + self._type = None + # for backwards compatibility + if data1 is None: + data1 = lc1 + if data2 is None: + data2 = lc2 + + empty = data1 is None and data2 is None + good_input = not empty + + if not skip_checks: + good_input = self.initial_checks( + data1=data1, + data2=data2, + norm=norm, + gti=gti, + lc1=lc1, + lc2=lc2, + power_type=power_type, + dt=dt, + fullspec=fullspec, + segment_size=segment_size, + ) + norm = norm.lower() + self.norm = norm + self.dt = dt + self.save_all = save_all + self.segment_size = segment_size + self.show_progress = not silent + + if empty or not good_input: + return self._initialize_empty() + + if isinstance(data1, Generator): + warnings.warn( + "The averaged Cross spectrum from a generator of " + "light curves pre-allocates the full list of light " + "curves, losing all advantage of lazy loading. If it " + "is important for you, use the " + "AveragedCrossspectrum.from_lc_iterable static " + "method, specifying the sampling time `dt`." + ) + data1 = list(data1) + data2 = list(data2) + + return self._initialize_from_any_input( + data1, + data2, + dt=dt, + segment_size=segment_size, + gti=gti, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + save_all=save_all, + ) + +
+[docs] + def initial_checks(self, data1, segment_size=None, **kwargs): + """ + + Examples + -------- + >>> times = np.arange(0, 10) + >>> ev1 = EventList(times) + >>> ev2 = EventList(times) + >>> ac = AveragedCrossspectrum() + + If AveragedCrossspectrum, you need ``segment_size`` + >>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) + Traceback (most recent call last): + ... + ValueError: segment_size must be specified... + + And it needs to be finite! + >>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) + Traceback (most recent call last): + ... + ValueError: segment_size must be finite! + """ + good = Crossspectrum.initial_checks(self, data1, segment_size=segment_size, **kwargs) + if not good: + return False + if isinstance(self, AveragedCrossspectrum) and segment_size is None and data1 is not None: + raise ValueError("segment_size must be specified") + + if ( + isinstance(self, AveragedCrossspectrum) + and segment_size is not None + and not np.isfinite(segment_size) + ): + raise ValueError("segment_size must be finite!") + return True
+ + +
+[docs] + def coherence(self): + """Averaged Coherence function. + + + Coherence is defined in Vaughan and Nowak, 1996 [#]_. + It is a Fourier frequency dependent measure of the linear correlation + between time series measured simultaneously in two energy channels. + + Compute an averaged Coherence function of cross spectrum by computing + coherence function of each segment and averaging them. The return type + is a tuple with first element as the coherence function and the second + element as the corresponding uncertainty associated with it. + + Note : The uncertainty in coherence function is strictly valid for Gaussian \ + statistics only. + + Returns + ------- + (coh, uncertainty) : tuple of np.ndarray + Tuple comprising the coherence function and uncertainty. + + References + ---------- + .. [#] http://iopscience.iop.org/article/10.1086/310430/pdf + """ + if np.any(self.m < 50): + simon( + "Number of segments used in averaging is " + "significantly low. The result might not follow the " + "expected statistical distributions." + ) + c = self.unnorm_power + p1 = self.pds1.unnorm_power + p2 = self.pds2.unnorm_power + + meanrate1 = self.nphots1 / self.n / self.dt + meanrate2 = self.nphots2 / self.n / self.dt + + P1noise = poisson_level(norm="none", meanrate=meanrate1, n_ph=self.nphots1) + P2noise = poisson_level(norm="none", meanrate=meanrate2, n_ph=self.nphots2) + + coh = raw_coherence(c, p1, p2, P1noise, P2noise, self.n) + + # Calculate uncertainty + uncertainty = (2**0.5 * coh * (1 - coh)) / (np.sqrt(coh) * self.m**0.5) + + uncertainty[coh == 0] = 0.0 + + return (coh, uncertainty)
+ + +
+[docs] + def phase_lag(self): + """Return the fourier phase lag of the cross spectrum.""" + lag = np.angle(self.unnorm_power) + coh, uncert = self.coherence() + + dum = (1.0 - coh) / (2.0 * coh) + + dum[coh == 0] = 0.0 + + lag_err = np.sqrt(dum / self.m) + return lag, lag_err
+ + +
+[docs] + def time_lag(self): + """Calculate time lag and uncertainty. + + Equation from Bendat & Piersol, 2011 [bendat-2011]__. + + Returns + ------- + lag : np.ndarray + The time lag + + lag_err : np.ndarray + The uncertainty in the time lag + """ + ph_lag, ph_lag_err = self.phase_lag() + + lag = ph_lag / (2 * np.pi * self.freq) + lag_err = ph_lag_err / (2 * np.pi * self.freq) + + return lag, lag_err
+
+ + + +def crossspectrum_from_time_array( + times1, + times2, + dt, + segment_size=None, + gti=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + save_all=False, +): + """Calculate AveragedCrossspectrum from two arrays of event times. + + Parameters + ---------- + times1 : `np.array` + Event arrival times of channel 1 + times2 : `np.array` + Event arrival times of channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + results = avg_cs_from_events( + times1, + times2, + gti, + segment_size, + dt, + norm=norm, + use_common_mean=use_common_mean, + fullspec=fullspec, + silent=silent, + power_type=power_type, + return_auxil=True, + return_subcs=save_all, + ) + + return _create_crossspectrum_from_result_table(results, force_averaged=force_averaged) + + +def crossspectrum_from_events( + events1, + events2, + dt, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate AveragedCrossspectrum from two event lists + + Parameters + ---------- + events1 : `stingray.EventList` + Events from channel 1 + events2 : `stingray.EventList` + Events from channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float, default None + The length, in seconds, of the light curve segments that will be averaged + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + + if gti is None: + gti = cross_two_gtis(events1.gti, events2.gti) + + return crossspectrum_from_time_array( + events1.time, + events2.time, + dt, + segment_size, + gti, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + save_all=save_all, + ) + + +def crossspectrum_from_lightcurve( + lc1, + lc2, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + lc1 : `stingray.Lightcurve` + Light curve from channel 1 + lc2 : `stingray.Lightcurve` + Light curve from channel 2 + + Other parameters + ---------------- + segment_size : float, default None + The length, in seconds, of the light curve segments that will be averaged + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects + save_all : bool, default False + Save all intermediate spectra used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + if gti is None: + gti = cross_two_gtis(lc1.gti, lc2.gti) + + err1 = err2 = None + if lc1.err_dist == "gauss": + err1 = lc1._counts_err + err2 = lc2._counts_err + + results = avg_cs_from_events( + lc1.time, + lc2.time, + gti, + segment_size, + lc1.dt, + norm=norm, + use_common_mean=use_common_mean, + fullspec=fullspec, + silent=silent, + power_type=power_type, + fluxes1=lc1.counts, + fluxes2=lc2.counts, + errors1=err1, + errors2=err2, + return_auxil=True, + return_subcs=save_all, + ) + + return _create_crossspectrum_from_result_table(results, force_averaged=force_averaged) + + +def crossspectrum_from_lc_iterable( + iter_lc1, + iter_lc2, + dt, + segment_size, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 1. If arrays, use them as counts + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 2. If arrays, use them as counts + dt : float + The time resolution of the light curves + (sets the Nyquist frequency) + segment_size : float + The length, in seconds, of the light curve segments that will be averaged + + Other parameters + ---------------- + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. The GTIs of the input light curves are + interesected with these. + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + + common_gti = gti + + def iterate_lc_counts(iter_lc): + for lc in iter_lc: + if hasattr(lc, "counts"): + n_bin = np.rint(segment_size / lc.dt).astype(int) + + gti = lc.gti + if common_gti is not None: + gti = cross_two_gtis(common_gti, lc.gti) + + err = None + if lc.err_dist == "gauss": + err = lc.counts_err + + flux_iterable = get_flux_iterable_from_segments( + lc.time, gti, segment_size, n_bin, fluxes=lc.counts, errors=err + ) + for out in flux_iterable: + yield out + else: + yield lc + + results = avg_cs_from_iterables( + iterate_lc_counts(iter_lc1), + iterate_lc_counts(iter_lc2), + dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + fullspec=fullspec, + power_type=power_type, + return_auxil=True, + return_subcs=save_all, + ) + return _create_crossspectrum_from_result_table(results, force_averaged=force_averaged) + + +def _create_crossspectrum_from_result_table(table, force_averaged=False): + """Copy the columns and metadata from the results of + ``stingray.fourier.avg_cs_from_XX`` functions into + `AveragedCrossspectrum` or `Crossspectrum` objects. + + By default, allocates a Crossspectrum object if the number of + averaged spectra is 1, otherwise an AveragedCrossspectrum. + If the user specifies ``force_averaged=True``, it always allocates + an AveragedCrossspectrum. + + Parameters + ---------- + table : `astropy.table.Table` + results of `avg_cs_from_iterables` or `avg_cs_from_iterables_quick` + + Other parameters + ---------------- + force_averaged : bool, default False + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + if table.meta["m"] > 1 or force_averaged: + cs = AveragedCrossspectrum() + cs.pds1 = AveragedCrossspectrum() + cs.pds2 = AveragedCrossspectrum() + else: + cs = Crossspectrum() + cs.pds1 = Crossspectrum() + cs.pds2 = Crossspectrum() + + cs.freq = cs.pds1.freq = cs.pds2.freq = np.array(table["freq"]) + cs.norm = cs.pds1.norm = cs.pds2.norm = table.meta["norm"] + + cs.power = np.array(table["power"]) + cs.pds1.power = np.array(table["pds1"]) + cs.pds2.power = np.array(table["pds2"]) + cs.unnorm_power = np.array(table["unnorm_power"]) + cs.pds1.unnorm_power = np.array(table["unnorm_pds1"]) + cs.pds2.unnorm_power = np.array(table["unnorm_pds2"]) + + cs.pds1.type = cs.pds2.type = "powerspectrum" + + if "subcs" in table.meta: + cs.cs_all = np.array(table.meta["subcs"]) + cs.unnorm_cs_all = np.array(table.meta["unnorm_subcs"]) + + for attr, val in table.meta.items(): + setattr(cs, attr, val) + setattr(cs.pds1, attr, val) + setattr(cs.pds2, attr, val) + + cs.err_dist = "poisson" + if cs.variance is not None: + cs.err_dist = cs.pds1.err_dist = cs.pds2.err_dist = "gauss" + + # Transform nphods1 in nphots for pds1, etc. + for attr, val in table.meta.items(): + if attr.endswith("1"): + setattr(cs.pds1, attr[:-1], val) + if attr.endswith("2"): + setattr(cs.pds2, attr[:-1], val) + + # I start from unnormalized, and I normalize after correcting for bad error values + P1noise = poisson_level(norm="none", meanrate=cs.countrate1, n_ph=cs.nphots1) + P2noise = poisson_level(norm="none", meanrate=cs.countrate2, n_ph=cs.nphots2) + + dRe, dIm, _, _ = error_on_averaged_cross_spectrum( + cs.unnorm_power, + cs.pds1.unnorm_power, + cs.pds2.unnorm_power, + cs.m, + P1noise, + P2noise, + common_ref="False", + ) + + bad = np.isnan(dRe) | np.isnan(dIm) + + if np.any(bad): + warnings.warn( + "Some error bars in the Averaged Crossspectrum are invalid." + "Defaulting to sqrt(2 / M) in Leahy norm, rescaled to the appropriate norm." + ) + + Nph = np.sqrt(cs.nphots1 * cs.nphots2) + default_err = np.sqrt(2 / cs.m) * Nph / 2 + + dRe[bad] = default_err + dIm[bad] = default_err + + power_err = dRe + 1.0j * dIm + + cs.unnorm_power_err = power_err + + mean = table.meta["mean"] + nph = table.meta["nphots"] + cs.power_err = normalize_periodograms( + power_err, cs.dt, cs.n, mean, n_ph=nph, variance=cs.variance, norm=cs.norm + ) + + cs.pds1.power_err = cs.pds1.power / np.sqrt(cs.pds1.m) + cs.pds2.power_err = cs.pds2.power / np.sqrt(cs.pds2.m) + cs.pds1.unnorm_power_err = cs.pds1.unnorm_power / np.sqrt(cs.pds1.m) + cs.pds2.unnorm_power_err = cs.pds2.unnorm_power / np.sqrt(cs.pds2.m) + + assert hasattr(cs, "df") + assert hasattr(cs, "dt") + return cs +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/deadtime/fad.html b/_modules/stingray/deadtime/fad.html new file mode 100644 index 000000000..c6fd0793f --- /dev/null +++ b/_modules/stingray/deadtime/fad.html @@ -0,0 +1,560 @@ + + + + + + + stingray.deadtime.fad — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.deadtime.fad

+import warnings
+import numpy as np
+import scipy
+import matplotlib.pyplot as plt
+
+from scipy.ndimage import gaussian_filter1d
+from scipy.interpolate import UnivariateSpline
+from astropy import log
+from astropy.table import Table
+
+from stingray.lightcurve import Lightcurve
+from ..crossspectrum import AveragedCrossspectrum, show_progress, get_flux_generator
+from ..powerspectrum import AveragedPowerspectrum
+from ..fourier import normalize_periodograms, fft, fftfreq, positive_fft_bins
+
+from ..gti import cross_two_gtis, bin_intervals_from_gtis
+
+
+__all__ = ["calculate_FAD_correction", "get_periodograms_from_FAD_results", "FAD"]
+
+
+
+[docs] +def FAD( + data1, + data2, + segment_size, + dt=None, + norm="frac", + plot=False, + ax=None, + smoothing_alg="gauss", + smoothing_length=None, + verbose=False, + tolerance=0.05, + strict=False, + output_file=None, + return_objects=False, +): + r"""Calculate Frequency Amplitude Difference-corrected (cross)power spectra. + + Reference: Bachetti \& Huppenkothen, 2018, ApJ, 853L, 21 + + The two input light curve must be strictly simultaneous, and recorded by + two independent detectors with similar responses, so that the count rates + are similar and dead time is independent. + The method does not apply to different energy channels of the same + instrument, or to the signal observed by two instruments with very + different responses. See the paper for caveats. + + Parameters + ---------- + data1 : `Lightcurve` or `EventList` + Input data for channel 1 + data2 : `Lightcurve` or `EventList` + Input data for channel 2. Must be strictly simultaneous to ``data1`` + and, if a light curve, have the same binning time. Also, it must be + strictly independent, e.g. from a different detector. There must be + no dead time cross-talk between the two time series. + segment_size: float + The final Fourier products are averaged over many segments of the + input light curves. This is the length of each segment being averaged. + Note that the light curve must be long enough to have at least 30 + segments, as the result gets better as one averages more and more + segments. + dt : float + Time resolution of the light curves used to produce periodograms + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + + Other parameters + ---------------- + plot : bool, default False + Plot diagnostics: check if the smoothed Fourier difference scatter is + a good approximation of the data scatter. + ax : :class:`matplotlib.axes.axes` object + If not None and ``plot`` is True, use this axis object to produce + the diagnostic plot. Otherwise, create a new figure. + smoothing_alg : {'gauss', ...} + Smoothing algorithm. For now, the only smoothing algorithm allowed is + ``gauss``, which applies a Gaussian Filter from `scipy`. + smoothing_length : int, default ``segment_size * 3`` + Number of bins to smooth in gaussian window smoothing + verbose: bool, default False + Print out information on the outcome of the algorithm (recommended) + tolerance : float, default 0.05 + Accepted relative error on the FAD-corrected Fourier amplitude, to be + used as success diagnostics. + Should be + ``` + stdtheor = 2 / np.sqrt(n) + std = (average_corrected_fourier_diff / n).std() + np.abs((std - stdtheor) / stdtheor) < tolerance + ``` + strict : bool, default False + Decide what to do if the condition on tolerance is not met. If True, + raise a ``RuntimeError``. If False, just throw a warning. + output_file : str, default None + Name of an output file (any extension automatically recognized by + Astropy is fine) + + Returns + ------- + results : class:`astropy.table.Table` object or ``dict`` or ``str`` + The content of ``results`` depends on whether ``return_objects`` is + True or False. + If ``return_objects==False``, + ``results`` is a `Table` with the following columns: + + + pds1: the corrected PDS of ``lc1`` + + pds2: the corrected PDS of ``lc2`` + + cs: the corrected cospectrum + + ptot: the corrected PDS of lc1 + lc2 + + If ``return_objects`` is True, ``results`` is a ``dict``, with keys + named like the columns + listed above but with `AveragePowerspectrum` or + `AverageCrossspectrum` objects instead of arrays. + + """ + gti = cross_two_gtis(data1.gti, data2.gti) + data1.gti = data2.gti = gti + if isinstance(data1, Lightcurve): + dt = data1.dt + + flux_iterable1 = get_flux_generator(data1, segment_size, dt=dt) + flux_iterable2 = get_flux_generator(data2, segment_size, dt=dt) + # Initialize stuff + freq = None + # These will be the final averaged periodograms. Initializing with a single + # scalar 0, but the final products will be arrays. + pds1_unnorm = 0 + pds2_unnorm = 0 + ptot_unnorm = 0 + cs_unnorm = 0 + pds1 = 0 + pds2 = 0 + ptot = 0 + cs = 0j + M = 0 + nph1_tot = nph2_tot = nph_tot = 0 + average_diff = average_diff_uncorr = 0 + + if plot: + if ax is None: + fig, ax = plt.subplots() + + for flux1, flux2 in show_progress(zip(flux_iterable1, flux_iterable2)): + if flux1 is None or flux2 is None: + continue + + N = flux1.size + segment_size = N * dt + if smoothing_length is None: + smoothing_length = segment_size * 3 + if freq is None: + fgt0 = positive_fft_bins(N) + freq = fftfreq(N, dt)[fgt0] + + # Calculate the sum of each light curve, to calculate the mean + # This will + nph1 = flux1.sum() + nph2 = flux2.sum() + nphtot = nph1 + nph2 + + # Calculate the FFTs + f1 = fft(flux1)[fgt0] + f2 = fft(flux2)[fgt0] + ftot = fft(flux1 + flux2)[fgt0] + + f1_leahy = f1 * np.sqrt(2 / nph1) + f2_leahy = f2 * np.sqrt(2 / nph2) + ftot_leahy = ftot * np.sqrt(2 / nphtot) + + fourier_diff = f1_leahy - f2_leahy + if plot: + ax.scatter(freq, fourier_diff.real, s=1) + + if smoothing_alg == "gauss": + smooth_real = gaussian_filter1d(fourier_diff.real**2, smoothing_length) + else: + raise ValueError("Unknown smoothing algorithm: {}".format(smoothing_alg)) + + p1 = (f1 * f1.conj()).real + p1 = p1 / smooth_real * 2 + p2 = (f2 * f2.conj()).real + p2 = p2 / smooth_real * 2 + pt = (ftot * ftot.conj()).real + pt = pt / smooth_real * 2 + + c = f2 * f1.conj() + c = c / smooth_real * 2 + + nphgeom = np.sqrt(nph1 * nph2) + power1 = normalize_periodograms(p1, dt, N, nph1 / N, n_ph=nph1, norm=norm) + power2 = normalize_periodograms(p2, dt, N, nph2 / N, n_ph=nph2, norm=norm) + power_tot = normalize_periodograms(pt, dt, N, nphtot / N, n_ph=nphtot, norm=norm) + cs_power = normalize_periodograms(c, dt, N, nphgeom / N, n_ph=nphgeom, norm=norm) + + if M == 0 and plot: + ax.plot(freq, smooth_real, zorder=10, lw=3) + ax.plot(freq, f1_leahy.real, zorder=5, lw=1) + ax.plot(freq, f2_leahy.real, zorder=5, lw=1) + + # Save the unnormalised (but smoothed) powerspectra and cross-spectrum + pds1_unnorm += p1 + pds2_unnorm += p2 + ptot_unnorm += pt + cs_unnorm += c + + # Save the normalised and smoothed powerspectra and cross-spectrum + ptot += power_tot + pds1 += power1 + pds2 += power2 + cs += cs_power + + average_diff += fourier_diff / smooth_real**0.5 * np.sqrt(2) + average_diff_uncorr += fourier_diff + nph1_tot += nph1 + nph2_tot += nph2 + nph_tot += nphtot + M += 1 + + std = (average_diff / M).std() + stdtheor = 2 / np.sqrt(M) + stduncorr = (average_diff_uncorr / M).std() + is_compliant = np.abs((std - stdtheor) / stdtheor) < tolerance + verbose_string = """ + -------- FAD correction ---------- + I smoothed over {smoothing_length} power spectral bins + {M} intervals averaged. + The uncorrected standard deviation of the Fourier + differences is {stduncorr} (dead-time affected!) + The final standard deviation of the FAD-corrected + Fourier differences is {std}. For the results to be + acceptable, this should be close to {stdtheor} + to within {tolerance} %. + In this case, the results ARE {compl}complying. + {additional} + ---------------------------------- + """.format( + smoothing_length=smoothing_length, + M=M, + stduncorr=stduncorr, + std=std, + stdtheor=stdtheor, + tolerance=tolerance * 100, + compl="NOT " if not is_compliant else "", + additional="Maybe something is not right." if not is_compliant else "", + ) + + if verbose and is_compliant: + log.info(verbose_string) + elif not is_compliant: + warnings.warn(verbose_string) + + if strict and not is_compliant: + raise RuntimeError("Results are not compliant, and `strict` mode " "selected. Exiting.") + + results = Table() + + results["freq"] = freq + results["pds1"] = pds1 / M + results["pds2"] = pds2 / M + results["cs"] = cs / M + results["ptot"] = ptot / M + results["pds1_unnorm"] = pds1_unnorm / M + results["pds2_unnorm"] = pds2_unnorm / M + results["cs_unnorm"] = cs_unnorm / M + results["ptot_unnorm"] = ptot_unnorm / M + results["fad"] = average_diff / M + results.meta["fad_delta"] = (std - stdtheor) / stdtheor + results.meta["is_compliant"] = is_compliant + results.meta["M"] = M + results.meta["dt"] = dt + results.meta["nph1"] = nph1_tot / M + results.meta["nph2"] = nph2_tot / M + results.meta["nph"] = nph_tot / M + results.meta["norm"] = norm + results.meta["smoothing_length"] = smoothing_length + results.meta["df"] = np.mean(np.diff(freq)) + + if output_file is not None: + results.write(output_file, overwrite=True) + + if return_objects: + result_table = results + results = {} + results["pds1"] = get_periodograms_from_FAD_results(result_table, kind="pds1") + results["pds2"] = get_periodograms_from_FAD_results(result_table, kind="pds2") + results["cs"] = get_periodograms_from_FAD_results(result_table, kind="cs") + results["ptot"] = get_periodograms_from_FAD_results(result_table, kind="ptot") + results["fad"] = result_table["fad"] + + return results
+ + + +
+[docs] +def calculate_FAD_correction( + lc1, + lc2, + segment_size, + norm="frac", + gti=None, + plot=False, + ax=None, + smoothing_alg="gauss", + smoothing_length=None, + verbose=False, + tolerance=0.05, + strict=False, + output_file=None, + return_objects=False, +): + r"""Calculate Frequency Amplitude Difference-corrected (cross)power spectra. + + Reference: Bachetti \& Huppenkothen, 2018, ApJ, 853L, 21 + + The two input light curve must be strictly simultaneous, and recorded by + two independent detectors with similar responses, so that the count rates + are similar and dead time is independent. + The method does not apply to different energy channels of the same + instrument, or to the signal observed by two instruments with very + different responses. See the paper for caveats. + + Parameters + ---------- + lc1: class:`stingray.ligthtcurve.Lightcurve` + Light curve from channel 1 + lc2: class:`stingray.ligthtcurve.Lightcurve` + Light curve from channel 2. Must be strictly simultaneous to ``lc1`` + and have the same binning time. Also, it must be strictly independent, + e.g. from a different detector. There must be no dead time cross-talk + between the two light curves. + segment_size: float + The final Fourier products are averaged over many segments of the + input light curves. This is the length of each segment being averaged. + Note that the light curve must be long enough to have at least 30 + segments, as the result gets better as one averages more and more + segments. + + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + + Other parameters + ---------------- + plot : bool, default False + Plot diagnostics: check if the smoothed Fourier difference scatter is + a good approximation of the data scatter. + ax : :class:`matplotlib.axes.axes` object + If not None and ``plot`` is True, use this axis object to produce + the diagnostic plot. Otherwise, create a new figure. + smoothing_alg : {'gauss', ...} + Smoothing algorithm. For now, the only smoothing algorithm allowed is + ``gauss``, which applies a Gaussian Filter from `scipy`. + smoothing_length : int, default ``segment_size * 3`` + Number of bins to smooth in gaussian window smoothing + verbose: bool, default False + Print out information on the outcome of the algorithm (recommended) + tolerance : float, default 0.05 + Accepted relative error on the FAD-corrected Fourier amplitude, to be + used as success diagnostics. + Should be + ``` + stdtheor = 2 / np.sqrt(n) + std = (average_corrected_fourier_diff / n).std() + np.abs((std - stdtheor) / stdtheor) < tolerance + ``` + strict : bool, default False + Decide what to do if the condition on tolerance is not met. If True, + raise a ``RuntimeError``. If False, just throw a warning. + output_file : str, default None + Name of an output file (any extension automatically recognized by + Astropy is fine) + + Returns + ------- + results : class:`astropy.table.Table` object or ``dict`` or ``str`` + The content of ``results`` depends on whether ``return_objects`` is + True or False. + If ``return_objects==False``, + ``results`` is a `Table` with the following columns: + + + pds1: the corrected PDS of ``lc1`` + + pds2: the corrected PDS of ``lc2`` + + cs: the corrected cospectrum + + ptot: the corrected PDS of lc1 + lc2 + + If ``return_objects`` is True, ``results`` is a ``dict``, with keys + named like the columns + listed above but with `AveragePowerspectrum` or + `AverageCrossspectrum` objects instead of arrays. + + """ + return FAD( + lc1, + lc2, + segment_size, + dt=lc1.dt, + norm=norm, + plot=plot, + ax=ax, + smoothing_alg=smoothing_alg, + smoothing_length=smoothing_length, + verbose=verbose, + tolerance=tolerance, + strict=strict, + output_file=output_file, + return_objects=return_objects, + )
+ + + +
+[docs] +def get_periodograms_from_FAD_results(FAD_results, kind="ptot"): + """Get Stingray periodograms from FAD results. + + Parameters + ---------- + FAD_results : :class:`astropy.table.Table` object or `str` + Results from `calculate_FAD_correction`, either as a Table or an output + file name + kind : :class:`str`, one of ['ptot', 'pds1', 'pds2', 'cs'] + Kind of periodogram to get (E.g., 'ptot' -> PDS from the sum of the two + light curves, 'cs' -> cospectrum, etc.) + + Returns + ------- + results : `AveragedCrossspectrum` or `Averagedpowerspectrum` object + The periodogram. + """ + if isinstance(FAD_results, str): + FAD_results = Table.read(FAD_results) + + if kind.startswith("p") and kind in FAD_results.colnames: + powersp = AveragedPowerspectrum() + powersp.nphots = FAD_results.meta["nph"] + if "1" in kind: + powersp.nphots = FAD_results.meta["nph1"] + elif "2" in kind: + powersp.nphots = FAD_results.meta["nph2"] + elif kind == "cs": + powersp = AveragedCrossspectrum(power_type="all") + powersp.pds1 = get_periodograms_from_FAD_results(FAD_results, kind="pds1") + powersp.pds2 = get_periodograms_from_FAD_results(FAD_results, kind="pds2") + powersp.nphots1 = FAD_results.meta["nph1"] + powersp.nphots2 = FAD_results.meta["nph2"] + else: + raise ValueError("Unknown periodogram type") + + powersp.freq = FAD_results["freq"] + powersp.power = FAD_results[kind] + powersp.unnorm_power = FAD_results[kind + "_unnorm"] + powersp.power_err = np.zeros_like(powersp.power) + powersp.unnorm_power_err = np.zeros_like(powersp.unnorm_power) + powersp.m = FAD_results.meta["M"] + powersp.df = FAD_results.meta["df"] + powersp.dt = FAD_results.meta["dt"] + powersp.n = len(powersp.freq) * 2 + powersp.norm = FAD_results.meta["norm"] + + return powersp
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/deadtime/model.html b/_modules/stingray/deadtime/model.html new file mode 100644 index 000000000..df8de1f54 --- /dev/null +++ b/_modules/stingray/deadtime/model.html @@ -0,0 +1,326 @@ + + + + + + + stingray.deadtime.model — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.deadtime.model

+from stingray.utils import njit, prange
+import numpy as np
+import matplotlib.pyplot as plt
+from astropy import log
+from scipy.special import factorial
+
+
+__FACTORIALS = factorial(np.arange(160))
+
+
+
+[docs] +def r_in(td, r_0): + """Calculate incident countrate given dead time and detected countrate.""" + tau = 1 / r_0 + return 1.0 / (tau - td)
+ + + +
+[docs] +def r_det(td, r_i): + """Calculate detected countrate given dead time and incident countrate.""" + tau = 1 / r_i + return 1.0 / (tau + td)
+ + + +
+[docs] +@njit() +def Gn(x, n): + """Term in Eq. 34 in Zhang+95.""" + s = 0 + for l in range(0, n): + s += (n - l) / __FACTORIALS[l] * x**l + return np.exp(-x) * s
+ + + +
+[docs] +@njit() +def heaviside(x): + """Heaviside function. Returns 1 if x>0, and 0 otherwise. + + Examples + -------- + >>> heaviside(2) + 1 + >>> heaviside(-1) + 0 + """ + if x >= 0: + return 1 + else: + return 0
+ + + +
+[docs] +@njit() +def h(k, n, td, tb, tau): + """Term in Eq. 35 in Zhang+95.""" + # Typo in Zhang+95 corrected. k * tb, not k * td + if k * tb < n * td: + return 0 + return k - n * (td + tau) / tb + tau / tb * Gn((k * tb - n * td) / tau, n)
+ + + +INFINITE = 100 + + +
+[docs] +@njit() +def A0(r0, td, tb, tau): + """Term in Eq. 38 in Zhang+95.""" + s = 0 + for n in range(1, INFINITE): + s += h(1, n, td, tb, tau) + + return r0 * tb * (1 + 2 * s)
+ + + +
+[docs] +@njit() +def A(k, r0, td, tb, tau): + """Term in Eq. 39 in Zhang+95.""" + if k == 0: + return A0(r0, td, tb, tau) + # Equation 39 + s = 0 + for n in range(1, INFINITE): + s += h(k + 1, n, td, tb, tau) - 2 * h(k, n, td, tb, tau) + h(k - 1, n, td, tb, tau) + + return r0 * tb * s
+ + + +
+[docs] +def check_A(rate, td, tb, max_k=100, save_to=None): + """Test that A is well-behaved. + + Check that Ak ->r0**2tb**2 for k->infty, as per Eq. 43 in + Zhang+95. + """ + tau = 1 / rate + r0 = r_det(td, rate) + + value = r0**2 * tb**2 + fig = plt.figure() + for k in range(max_k): + plt.scatter(k, A(k, r0, td, tb, tau), color="k") + plt.axhline(value, ls="--", color="k") + plt.xlabel("$k$") + plt.ylabel("$A_k$") + if save_to is not None: + plt.savefig(save_to) + plt.close(fig)
+ + + +
+[docs] +@njit() +def B(k, r0, td, tb, tau): + """Term in Eq. 45 in Zhang+95.""" + if k == 0: + return 2 * (A(0, r0, td, tb, tau) - r0**2 * tb**2) / (r0 * tb) + + return 4 * (A(k, r0, td, tb, tau) - r0**2 * tb**2) / (r0 * tb)
+ + + +
+[docs] +@njit() +def safe_B(k, r0, td, tb, tau, limit_k=60): + """Term in Eq. 39 in Zhang+95, with a cut in the maximum k. + + This can be risky. Only use if B is really 0 for high k. + """ + if k > limit_k: + return 0 + return B(k, r0, td, tb, tau)
+ + + +
+[docs] +def check_B(rate, td, tb, max_k=100, save_to=None): + """Check that B->0 for k->infty.""" + tau = 1 / rate + r0 = r_det(td, rate) + + fig = plt.figure() + for k in range(max_k): + plt.scatter(k, B(k, r0, td, tb, tau), color="k") + plt.axhline(0, ls="--", color="k") + plt.xlabel("$k$") + plt.ylabel("$B_k$") + if save_to is not None: + plt.savefig(save_to) + plt.close(fig)
+ + + +@njit(parallel=True) +def _inner_loop_pds_zhang(N, tau, r0, td, tb, limit_k=60): + """Calculate the power spectrum, as per Eq. 44 in Zhang+95.""" + P = np.zeros(N // 2) + for j in prange(N // 2): + eq8_sum = 0 + for k in range(1, N): + eq8_sum += ( + (N - k) + / N + * safe_B(k, r0, td, tb, tau, limit_k=limit_k) + * np.cos(2 * np.pi * j * k / N) + ) + + P[j] = safe_B(0, r0, td, tb, tau) + eq8_sum + + return P + + +
+[docs] +def pds_model_zhang(N, rate, td, tb, limit_k=60): + """Calculate the dead-time-modified power spectrum. + + Parameters + ---------- + N : int + The number of spectral bins + rate : float + Incident count rate + td : float + Dead time + tb : float + Bin time of the light curve + + Other Parameters + ---------------- + limit_k : int + Limit to this value the number of terms in the inner loops of + calculations. Check the plots returned by the `check_B` and + `check_A` functions to test that this number is adequate. + + Returns + ------- + freqs : array of floats + Frequency array + power : array of floats + Power spectrum + """ + tau = 1 / rate + r0 = r_det(td, rate) + # Nph = N / tau + log.info("Calculating PDS model (update)") + P = _inner_loop_pds_zhang(N, tau, r0, td, tb, limit_k=limit_k) + + maxf = 0.5 / tb + df = maxf / len(P) + freqs = np.arange(0, maxf, df) + + return freqs, P
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/events.html b/_modules/stingray/events.html new file mode 100644 index 000000000..c614efd44 --- /dev/null +++ b/_modules/stingray/events.html @@ -0,0 +1,954 @@ + + + + + + + stingray.events — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.events

+"""
+Definition of :class:`EventList`.
+
+:class:`EventList` is used to handle photon arrival times.
+"""
+
+import copy
+import logging
+import pickle
+import warnings
+from collections.abc import Iterable
+
+import numpy as np
+import numpy.random as ra
+from astropy.table import Table
+
+from .base import StingrayObject, StingrayTimeseries
+from .filters import get_deadtime_mask
+from .gti import append_gtis, check_separate, cross_gtis, generate_indices_of_boundaries
+from .io import load_events_and_gtis
+from .lightcurve import Lightcurve
+from .utils import assign_value_if_none, simon, interpret_times, njit
+
+__all__ = ["EventList"]
+
+
+@njit
+def _from_lc_numba(times, counts, empty_times):
+    last = 0
+    for t, c in zip(times, counts):
+        val = c + last
+        empty_times[last:val] = t
+        last = val
+    return empty_times
+
+
+def simple_events_from_lc(lc):
+    """
+    Create an :class:`EventList` from a :class:`stingray.Lightcurve` object. Note that all
+    events in a given time bin will have the same time stamp.
+
+    Parameters
+    ----------
+    lc: :class:`stingray.Lightcurve` object
+        Light curve to use for creation of the event list.
+
+    Returns
+    -------
+    ev: :class:`EventList` object
+        The resulting list of photon arrival times generated from the light curve.
+
+    Examples
+    --------
+    >>> from stingray import Lightcurve
+    >>> lc = Lightcurve([0, 1], [2, 3], dt=1)
+    >>> ev = simple_events_from_lc(lc)
+    >>> np.allclose(ev.time, [0, 0, 1, 1, 1])
+    True
+    """
+    times = _from_lc_numba(
+        lc.time, lc.counts.astype(int), np.zeros(np.sum(lc.counts).astype(int), dtype=float)
+    )
+    return EventList(time=times, gti=lc.gti)
+
+
+
+[docs] +class EventList(StingrayTimeseries): + """ + Basic class for event list data. Event lists generally correspond to individual events (e.g. photons) + recorded by the detector, and their associated properties. For X-ray data where this type commonly occurs, + events are time stamps of when a photon arrived in the detector, and (optionally) the photon energy associated + with the event. + + Parameters + ---------- + time: iterable + A list or array of time stamps + + Other Parameters + ---------------- + dt: float + The time resolution of the events. Only relevant when using events + to produce light curves with similar bin time. + + energy: iterable + A list of array of photon energy values in keV + + mjdref : float + The MJD used as a reference for the time array. + + ncounts: int + Number of desired data points in event list. + + gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + pi : integer, numpy.ndarray + PI channels + + notes : str + Any useful annotations + + high_precision : bool + Change the precision of self.time to float128. Useful while dealing with fast pulsars. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + header : str + The full header of the original FITS file, if relevant + + detector_id : iterable + The detector that recorded each photon (if the instrument has more than + one, e.g. XMM/EPIC-pn) + + timeref : str + The time reference, as recorded in the FITS file (e.g. SOLARSYSTEM) + + timesys : str + The time system, as recorded in the FITS file (e.g. TDB) + + ephem : str + The JPL ephemeris used to barycenter the data, if any (e.g. DE430) + + **other_kw : + Used internally. Any other keyword arguments will be ignored + + Attributes + ---------- + time: numpy.ndarray + The array of event arrival times, in seconds from the reference + MJD defined in ``mjdref`` + + energy: numpy.ndarray + The array of photon energy values + + ncounts: int + The number of data points in the event list + + dt: float + The time resolution of the events. Only relevant when using events + to produce light curves with similar bin time. + + mjdref : float + The MJD used as a reference for the time array. + + gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + pi : integer, numpy.ndarray + PI channels + + high_precision : bool + Change the precision of self.time to float128. Useful while dealing with fast pulsars. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + detector_id : iterable + The detector that recoded each photon, if relevant (e.g. XMM, Chandra) + + header : str + The full header of the original FITS file, if relevant + + """ + + main_array_attr = "time" + + def __init__( + self, + time=None, + energy=None, + ncounts=None, + mjdref=0, + dt=0, + notes="", + gti=None, + pi=None, + high_precision=False, + mission=None, + instr=None, + header=None, + detector_id=None, + ephem=None, + timeref=None, + timesys=None, + **other_kw, + ): + StingrayObject.__init__(self) + + self.energy = None if energy is None else np.asarray(energy) + self.notes = notes + self.dt = dt + self.mjdref = mjdref + self.gti = np.asarray(gti) if gti is not None else None + self.pi = None if pi is None else np.asarray(pi) + self.ncounts = ncounts + self.mission = mission + self.instr = instr + self.detector_id = detector_id + self.header = header + self.ephem = ephem + self.timeref = timeref + self.timesys = timesys + + if other_kw != {}: + warnings.warn(f"Unrecognized keywords: {list(other_kw.keys())}") + + if time is not None: + time, mjdref = interpret_times(time, mjdref) + if not high_precision: + self.time = np.asarray(time) + else: + self.time = np.asarray(time, dtype=np.longdouble) + self.ncounts = self.time.size + else: + self.time = None + + if (self.time is not None) and (self.energy is not None): + if self.time.size != self.energy.size: + raise ValueError("Lengths of time and energy must be equal.") + +
+[docs] + def to_lc(self, dt, tstart=None, tseg=None): + """ + Convert event list to a :class:`stingray.Lightcurve` object. + + Parameters + ---------- + dt: float + Binning time of the light curve + + Other Parameters + ---------------- + tstart : float + Start time of the light curve + + tseg: float + Total duration of light curve + + Returns + ------- + lc: :class:`stingray.Lightcurve` object + """ + if tstart is None and self.gti is not None: + tstart = self.gti[0][0] + tseg = self.gti[-1][1] - tstart + + return Lightcurve.make_lightcurve( + self.time, dt, tstart=tstart, gti=self.gti, tseg=tseg, mjdref=self.mjdref + )
+ + +
+[docs] + def to_lc_iter(self, dt, segment_size=None): + """Convert event list to a generator of Lightcurves. + + Parameters + ---------- + dt: float + Binning time of the light curves + + Other parameters + ---------------- + segment_size : float, default None + Optional segment size. If None, use the GTI boundaries + + Returns + ------- + lc_gen: `generator` + Generates one :class:`stingray.Lightcurve` object for each GTI or segment + """ + + segment_iter = generate_indices_of_boundaries( + self.time, self.gti, segment_size=segment_size, dt=0 + ) + + for st, end, idx_st, idx_end in segment_iter: + tseg = end - st + + lc = Lightcurve.make_lightcurve( + self.time[idx_st : idx_end + 1], + dt, + tstart=st, + gti=np.asarray([[st, end]]), + tseg=tseg, + mjdref=self.mjdref, + use_hist=True, + ) + yield lc
+ + +
+[docs] + def to_lc_list(self, dt, segment_size=None): + """Convert event list to a list of Lightcurves. + + Parameters + ---------- + dt: float + Binning time of the light curves + + Other parameters + ---------------- + segment_size : float, default None + Optional segment size. If None, use the GTI boundaries + + Returns + ------- + lc_list: `List` + List containig one :class:`stingray.Lightcurve` object for each GTI or segment + """ + return list(self.to_lc_iter(dt, segment_size))
+ + +
+[docs] + @staticmethod + def from_lc(lc): + """ + Create an :class:`EventList` from a :class:`stingray.Lightcurve` object. Note that all + events in a given time bin will have the same time stamp. + + Parameters + ---------- + lc: :class:`stingray.Lightcurve` object + Light curve to use for creation of the event list. + + Returns + ------- + ev: :class:`EventList` object + The resulting list of photon arrival times generated from the light curve. + """ + return simple_events_from_lc(lc)
+ + +
+[docs] + def simulate_times(self, lc, use_spline=False, bin_time=None): + """Simulate times from an input light curve. + + Randomly simulate photon arrival times to an :class:`EventList` from a + :class:`stingray.Lightcurve` object, using the inverse CDF method. + + ..note:: + Preferably use model light curves containing **no Poisson noise**, + as this method will intrinsically add Poisson noise to them. + + Parameters + ---------- + lc: :class:`stingray.Lightcurve` object + + Other Parameters + ---------------- + use_spline : bool + Approximate the light curve with a spline to avoid binning effects + + bin_time : float default None + Ignored and deprecated, maintained for backwards compatibility. + + Returns + ------- + times : array-like + Simulated photon arrival times + """ + # Need import here, or there will be a circular import + from .simulator.base import simulate_times + + if bin_time is not None: + warnings.warn("Bin time will be ignored in simulate_times", DeprecationWarning) + + self.time = simulate_times(lc, use_spline=use_spline) + self.gti = lc.gti + self.ncounts = len(self.time)
+ + +
+[docs] + def simulate_energies(self, spectrum, use_spline=False): + """ + Assign (simulate) energies to event list from a spectrum. + + Parameters + ---------- + spectrum: 2-d array or list [energies, spectrum] + Energies versus corresponding fluxes. The 2-d array or list must + have energies across the first dimension and fluxes across the + second one. If the dimension of the energies is the same as + spectrum, they are interpreted as bin centers. + If it is longer by one, they are interpreted as proper bin edges + (similarly to the bins of `np.histogram`). + Note that for non-uniformly binned spectra, it is advisable to pass + the exact edges. + """ + from .simulator.base import simulate_with_inverse_cdf + + if self.ncounts is None: + simon("Either set time values or explicity provide counts.") + return + + if isinstance(spectrum, list) or isinstance(spectrum, np.ndarray): + energy = np.asarray(spectrum)[0] + fluxes = np.asarray(spectrum)[1] + + if not isinstance(energy, np.ndarray): + raise IndexError("Spectrum must be a 2-d array or list") + + else: + raise TypeError("Spectrum must be a 2-d array or list") + + if energy.size == fluxes.size: + de = energy[1] - energy[0] + energy = np.concatenate([energy - de / 2, [energy[-1] + de / 2]]) + + self.energy = simulate_with_inverse_cdf( + fluxes, self.ncounts, edges=energy, sorted=False, interp_kind="linear" + )
+ + +
+[docs] + def sort(self, inplace=False): + """Sort the event list in time. + + Other parameters + ---------------- + inplace : bool, default False + Sort in place. If False, return a new event list. + + Returns + ------- + eventlist : `EventList` + The sorted event list. If ``inplace=True``, it will be a shallow copy + of ``self``. + + Examples + -------- + >>> events = EventList(time=[0, 2, 1], energy=[0.3, 2, 0.5], pi=[3, 20, 5]) + >>> e1 = events.sort() + >>> np.allclose(e1.time, [0, 1, 2]) + True + >>> np.allclose(e1.energy, [0.3, 0.5, 2]) + True + >>> np.allclose(e1.pi, [3, 5, 20]) + True + + But the original event list has not been altered (``inplace=False`` by + default): + >>> np.allclose(events.time, [0, 2, 1]) + True + + Let's do it in place instead + >>> e2 = events.sort(inplace=True) + >>> np.allclose(e2.time, [0, 1, 2]) + True + + In this case, the original event list has been altered. + >>> np.allclose(events.time, [0, 1, 2]) + True + + """ + order = np.argsort(self.time) + return self.apply_mask(order, inplace=inplace)
+ + +
+[docs] + def join(self, other): + """ + Join two :class:`EventList` objects into one. + + If both are empty, an empty :class:`EventList` is returned. + + GTIs are crossed if the event lists are over a common time interval, + and appended otherwise. + + Standard attributes such as ``pi`` and ``energy`` remain ``None`` if they are ``None`` + in both. Otherwise, ``np.nan`` is used as a default value for the :class:`EventList` where + they were None. Arbitrary attributes (e.g., Stokes parameters in polarimetric data) are + created and joined using the same convention. + + Multiple checks are done on the joined event lists. If the time array of the event list + being joined is empty, it is ignored. If the time resolution is different, the final + event list will have the rougher time resolution. If the MJDREF is different, the time + reference will be changed to the one of the first event list. An empty event list will + be ignored. + + Parameters + ---------- + other : :class:`EventList` object or class:`list` of :class:`EventList` objects + The other :class:`EventList` object which is supposed to be joined with. + If ``other`` is a list, it is assumed to be a list of :class:`EventList` objects + and they are all joined, one by one. + + Returns + ------- + `ev_new` : :class:`EventList` object + The resulting :class:`EventList` object. + """ + + ev_new = EventList() + + if isinstance(other, EventList): + others = [other] + else: + others = other + + # First of all, check if there are empty event lists + for obj in others: + if getattr(obj, "time", None) is None or np.size(obj.time) == 0: + warnings.warn("One of the event lists you are joining is empty.") + others.remove(obj) + + if len(others) == 0: + return copy.deepcopy(self) + + for i, other in enumerate(others): + # Tolerance for MJDREF:1 microsecond + if not np.isclose(self.mjdref, other.mjdref, atol=1e-6 / 86400): + warnings.warn("Attribute mjdref is different in the event lists being merged.") + others[i] = other.change_mjdref(self.mjdref) + + all_objs = [self] + others + + dts = list(set([getattr(obj, "dt", None) for obj in all_objs])) + if len(dts) != 1: + warnings.warn("The time resolution is different. Using the rougher by default") + + ev_new.dt = np.max(dts) + + all_time_arrays = [obj.time for obj in all_objs if obj.time is not None] + + ev_new.time = np.concatenate(all_time_arrays) + order = np.argsort(ev_new.time) + ev_new.time = ev_new.time[order] + + def _get_set_from_many_lists(lists): + """Make a single set out of many lists.""" + all_vals = [] + for l in lists: + all_vals += l + return set(all_vals) + + def _get_all_array_attrs(objs): + """Get all array attributes from the event lists being merged. Do not include time.""" + all_attrs = [] + for obj in objs: + if obj.time is not None and len(obj.time) > 0: + all_attrs += obj.array_attrs() + + all_attrs = list(set(all_attrs)) + if "time" in all_attrs: + all_attrs.remove("time") + return all_attrs + + for attr in _get_all_array_attrs(all_objs): + # if it's here, it means that it's an array attr in at least one object. + # So, everywhere it's None, it needs to be set to 0s of the same length as time + new_attr_values = [] + for obj in all_objs: + if getattr(obj, attr, None) is None: + warnings.warn( + f"The {attr} array is empty in one of the event lists being merged. Setting it to NaN for the affected events" + ) + new_attr_values.append(np.zeros_like(obj.time) + np.nan) + else: + new_attr_values.append(getattr(obj, attr)) + new_attr = np.concatenate(new_attr_values)[order] + setattr(ev_new, attr, new_attr) + + if np.all([obj.gti is None for obj in all_objs]): + ev_new.gti = None + else: + all_gti_lists = [] + + for obj in all_objs: + if obj.gti is None and len(obj.time) > 0: + obj.gti = assign_value_if_none( + obj.gti, + np.asarray([[obj.time[0] - obj.dt / 2, obj.time[-1] + obj.dt / 2]]), + ) + if obj.gti is not None: + all_gti_lists.append(obj.gti) + + new_gtis = all_gti_lists[0] + for gti in all_gti_lists[1:]: + if check_separate(new_gtis, gti): + new_gtis = append_gtis(new_gtis, gti) + warnings.warn( + "GTIs in these two event lists do not overlap at all." + "Merging instead of returning an overlap." + ) + else: + new_gtis = cross_gtis([new_gtis, gti]) + ev_new.gti = new_gtis + + all_meta_attrs = _get_set_from_many_lists([obj.meta_attrs() for obj in all_objs]) + # The attributes being treated separately are removed from the standard treatment + # When energy, pi etc. are None, they might appear in the meta_attrs, so we + # also add them to the list of attributes to be removed if present. + to_remove = ["gti", "header", "ncounts", "dt"] + ev_new.array_attrs() + + for attrs in to_remove: + if attrs in all_meta_attrs: + all_meta_attrs.remove(attrs) + + logging.info("The header attribute will be removed from the output event list.") + + def _safe_concatenate(a, b): + if isinstance(a, str) and isinstance(b, str): + return a + "," + b + else: + if isinstance(a, tuple): + return a + (b,) + return (a, b) + + for attr in all_meta_attrs: + self_attr = getattr(self, attr, None) + new_val = self_attr + for other in others: + other_attr = getattr(other, attr, None) + if self_attr != other_attr: + warnings.warn( + "Attribute " + attr + " is different in the event lists being merged." + ) + new_val = _safe_concatenate(new_val, other_attr) + setattr(ev_new, attr, new_val) + + ev_new.mjdref = self.mjdref + + return ev_new
+ + +
+[docs] + @classmethod + def read(cls, filename, fmt=None, **kwargs): + r"""Read a :class:`EventList` object from file. + + Currently supported formats are + + * pickle (not recommended for long-term storage) + * hea or ogip : FITS Event files from (well, some) HEASARC-supported missions. + * any other formats compatible with the writers in + :class:`astropy.table.Table` (ascii.ecsv, hdf5, etc.) + + Files that need the :class:`astropy.table.Table` interface MUST contain + at least a ``time`` column. Other recognized columns are ``energy`` and + ``pi``. + The default ascii format is enhanced CSV (ECSV). Data formats + supporting the serialization of metadata (such as ECSV and HDF5) can + contain all eventlist attributes such as ``mission``, ``gti``, etc with + no significant loss of information. Other file formats might lose part + of the metadata, so must be used with care. + + Parameters + ---------- + filename: str + Path and file name for the file to be read. + + fmt: str + Available options are 'pickle', 'hea', and any `Table`-supported + format such as 'hdf5', 'ascii.ecsv', etc. + + Other parameters + ---------------- + kwargs : dict + Any further keyword arguments to be passed to `load_events_and_gtis` + for reading in event lists in OGIP/HEASOFT format + + Returns + ------- + ev: :class:`EventList` object + The :class:`EventList` object reconstructed from file + """ + + if fmt is not None and fmt.lower() in ("hea", "ogip"): + evtdata = load_events_and_gtis(filename, **kwargs) + + evt = EventList( + time=evtdata.ev_list, + gti=evtdata.gti_list, + pi=evtdata.pi_list, + energy=evtdata.energy_list, + mjdref=evtdata.mjdref, + instr=evtdata.instr, + mission=evtdata.mission, + header=evtdata.header, + detector_id=evtdata.detector_id, + ephem=evtdata.ephem, + timeref=evtdata.timeref, + timesys=evtdata.timesys, + ) + if "additional_columns" in kwargs: + for key in evtdata.additional_data: + if not hasattr(evt, key.lower()): + setattr(evt, key.lower(), evtdata.additional_data[key]) + return evt + + return super().read(filename=filename, fmt=fmt)
+ + +
+[docs] + def filter_energy_range(self, energy_range, inplace=False, use_pi=False): + """Filter the event list from a given energy range. + + Parameters + ---------- + energy_range: [float, float] + Energy range in keV, or in PI channel (if ``use_pi`` is True) + + Other Parameters + ---------------- + inplace : bool, default False + Do the change in place (modify current event list). Otherwise, copy + to a new event list. + use_pi : bool, default False + Use PI channel instead of energy in keV + + Examples + -------- + >>> events = EventList(time=[0, 1, 2], energy=[0.3, 0.5, 2], pi=[3, 5, 20]) + >>> e1 = events.filter_energy_range([0, 1]) + >>> np.allclose(e1.time, [0, 1]) + True + >>> np.allclose(events.time, [0, 1, 2]) + True + >>> e2 = events.filter_energy_range([0, 10], use_pi=True, inplace=True) + >>> np.allclose(e2.time, [0, 1]) + True + >>> np.allclose(events.time, [0, 1]) + True + + """ + if use_pi: + energies = self.pi + else: + energies = self.energy + mask = (energies >= energy_range[0]) & (energies < energy_range[1]) + + return self.apply_mask(mask, inplace=inplace)
+ + +
+[docs] + def apply_mask(self, mask, inplace=False): + """Apply a mask to all array attributes of the event list + + Parameters + ---------- + mask : array of ``bool`` + The mask. Has to be of the same length as ``self.time`` + + Other parameters + ---------------- + inplace : bool + If True, overwrite the current event list. Otherwise, return a new one. + + Examples + -------- + >>> evt = EventList(time=[0, 1, 2], mission="nustar") + >>> evt.bubuattr = [222, 111, 333] + >>> newev0 = evt.apply_mask([True, True, False], inplace=False); + >>> newev1 = evt.apply_mask([True, True, False], inplace=True); + >>> newev0.mission == "nustar" + True + >>> np.allclose(newev0.time, [0, 1]) + True + >>> np.allclose(newev0.bubuattr, [222, 111]) + True + >>> np.allclose(newev1.time, [0, 1]) + True + >>> evt is newev1 + True + """ + array_attrs = self.array_attrs() + + if inplace: + new_ev = self + else: + new_ev = EventList() + for attr in self.meta_attrs(): + setattr(new_ev, attr, copy.deepcopy(getattr(self, attr))) + + for attr in array_attrs: + if hasattr(self, attr) and getattr(self, attr) is not None: + setattr(new_ev, attr, copy.deepcopy(np.asarray(getattr(self, attr))[mask])) + return new_ev
+ + +
+[docs] + def apply_deadtime(self, deadtime, inplace=False, **kwargs): + """Apply deadtime filter to this event list. + + Additional arguments in ``kwargs`` are passed to `get_deadtime_mask` + + Parameters + ---------- + deadtime : float + Value of dead time to apply to data + inplace : bool, default False + If True, apply the deadtime to the current event list. Otherwise, + return a new event list. + + Returns + ------- + new_event_list : `EventList` object + Filtered event list. if `inplace` is True, this is the input object + filtered for deadtime, otherwise this is a new object. + additional_output : object + Only returned if `return_all` is True. See `get_deadtime_mask` for + more details. + + Examples + -------- + >>> events = np.array([1, 1.05, 1.07, 1.08, 1.1, 2, 2.2, 3, 3.1, 3.2]) + >>> events = EventList(events) + >>> events.pi=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1]) + >>> events.energy=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1]) + >>> events.mjdref = 10 + >>> filt_events, retval = events.apply_deadtime(0.11, inplace=False, + ... verbose=False, + ... return_all=True) + >>> filt_events is events + False + >>> expected = np.array([1, 2, 2.2, 3, 3.2]) + >>> np.allclose(filt_events.time, expected) + True + >>> np.allclose(filt_events.pi, 1) + True + >>> np.allclose(filt_events.energy, 1) + True + >>> np.allclose(events.pi, 1) + False + >>> filt_events = events.apply_deadtime(0.11, inplace=True, + ... verbose=False) + >>> filt_events is events + True + """ + local_retall = kwargs.pop("return_all", False) + + mask, retall = get_deadtime_mask(self.time, deadtime, return_all=True, **kwargs) + + new_ev = self.apply_mask(mask, inplace=inplace) + + if local_retall: + new_ev = [new_ev, retall] + + return new_ev
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/exceptions.html b/_modules/stingray/exceptions.html new file mode 100644 index 000000000..9e3ad0ca2 --- /dev/null +++ b/_modules/stingray/exceptions.html @@ -0,0 +1,102 @@ + + + + + + + stingray.exceptions — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.exceptions

+# Exception Handling for Stingray
+
+__all__ = ["StingrayError"]
+
+
+
+[docs] +class StingrayError(Exception): + pass
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/gti.html b/_modules/stingray/gti.html new file mode 100644 index 000000000..f65955508 --- /dev/null +++ b/_modules/stingray/gti.html @@ -0,0 +1,1757 @@ + + + + + + + stingray.gti — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.gti

+import re
+import numpy as np
+import logging
+import warnings
+from collections.abc import Iterable
+import copy
+
+from astropy.io import fits
+from .utils import contiguous_regions, jit, HAS_NUMBA
+from .utils import assign_value_if_none, apply_function_if_none
+from .utils import check_iterables_close, is_sorted
+from stingray.exceptions import StingrayError
+
+
+__all__ = [
+    "load_gtis",
+    "check_gtis",
+    "create_gti_mask_jit",
+    "create_gti_mask",
+    "create_gti_mask_complete",
+    "create_gti_from_condition",
+    "cross_two_gtis",
+    "cross_gtis",
+    "get_btis",
+    "get_gti_extensions_from_pattern",
+    "get_gti_from_all_extensions",
+    "get_gti_from_hdu",
+    "get_gti_lengths",
+    "get_total_gti_length",
+    "check_separate",
+    "append_gtis",
+    "join_gtis",
+    "generate_indices_of_gti_boundaries",
+    "time_intervals_from_gtis",
+    "bin_intervals_from_gtis",
+    "gti_border_bins",
+    "generate_indices_of_segment_boundaries_unbinned",
+    "generate_indices_of_segment_boundaries_binned",
+]
+
+
+def gti_len(gti):
+    """Deprecated, will be removed in version 2.0. Use get_total_gti_length."""
+    warnings.warn(
+        "This function is deprecated. Use get_total_gti_length " "instead", DeprecationWarning
+    )
+    return get_total_gti_length(gti, minlen=0)
+
+
+
+[docs] +def get_gti_lengths(gti): + """ + Calculate the length of each Good Time Interval. + + Parameters + ---------- + gti : [[gti00, gti01], [gti10, gti11], ...] + The list of good time intervals. + + Returns + ------- + lengths : `np.ndarray` + List of GTI lengths. + + Examples + -------- + >>> gti = [[0, 1000], [1000, 1001], [3000, 3020]] + >>> np.allclose(get_gti_lengths(gti), [1000, 1, 20]) + True + """ + return np.diff(gti, axis=1).flatten()
+ + + +
+[docs] +def get_total_gti_length(gti, minlen=0): + """ + Calculate the total exposure during Good Time Intervals. + + Parameters + ---------- + gti : [[gti00, gti01], [gti10, gti11], ...] + The list of good time intervals. + minlen : float + Minimum GTI length to consider. + + Returns + ------- + length : float + The total exposure during GTIs. + + Examples + -------- + >>> gti = [[0, 1000], [1000, 1001], [3000, 3020]] + >>> get_total_gti_length(gti) + 1021 + >>> get_total_gti_length(gti, minlen=5) + 1020 + """ + lengths = get_gti_lengths(gti) + return np.sum(lengths[lengths >= minlen])
+ + + +
+[docs] +def load_gtis(fits_file, gtistring=None): + """ + Load Good Time Intervals (GTIs) from ``HDU EVENTS`` of file ``fits_file``. + File is expected to be in FITS format. + + Parameters + ---------- + fits_file : str + File name and path for the FITS file with the GTIs to be loaded. + + gtistring : str + If the name of the FITS extension with the GTIs is not ``GTI``, the + alternative name can be set with this parameter. + + Returns + ------- + gti_list : list + A list of GTI ``(start, stop)`` pairs extracted from the FITS file. + """ + + gtistring = assign_value_if_none(gtistring, "GTI") + logging.info("Loading GTIS from file %s" % fits_file) + lchdulist = fits.open(fits_file, checksum=True, ignore_missing_end=True) + lchdulist.verify("warn") + + gtitable = lchdulist[gtistring].data + gti_list = np.array( + [[a, b] for a, b in zip(gtitable.field("START"), gtitable.field("STOP"))], + dtype=np.longdouble, + ) + lchdulist.close() + return gti_list
+ + + +
+[docs] +def get_gti_extensions_from_pattern(lchdulist, name_pattern="GTI"): + """ + Gets the GTI extensions that match a given pattern. + + Parameters + ---------- + lchdulist: `:class:astropy.io.fits.HDUList` object + The full content of a FITS file. + name_pattern: str + Pattern indicating all the GTI extensions. + + Returns + ------- + ext_list: list + List of GTI extension numbers whose name matches the input pattern. + + Examples + -------- + >>> from astropy.io import fits + >>> start = np.arange(0, 300, 100) + >>> stop = start + 50. + >>> s1 = fits.Column(name='START', array=start, format='D') + >>> s2 = fits.Column(name='STOP', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI005XX') + >>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='GTI00501') + >>> lchdulist = fits.HDUList([hdu1]) + >>> gtiextn = get_gti_extensions_from_pattern( + ... lchdulist, name_pattern='GTI005[0-9]+') + >>> np.allclose(gtiextn, [1]) + True + """ + hdunames = [h.name for h in lchdulist] + pattern_re = re.compile("^" + name_pattern + "$") + gtiextn = [] + for ix, extname in enumerate(hdunames): + if pattern_re.match(extname): + gtiextn.append(ix) + return gtiextn
+ + + +def hdu_contains_gti(hdu): + """ + Test if a given FITS HDU contains a list of GTIs. + + Examples + -------- + >>> from astropy.io import fits + >>> start = np.arange(0, 300, 100) + >>> stop = start + 50. + >>> s1 = fits.Column(name='START', array=start, format='D') + >>> s2 = fits.Column(name='STOP', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='BLABLA') + >>> hdu_contains_gti(hdu1) + True + >>> s2 = fits.Column(name='blabla', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='BLABLA') + >>> hdu_contains_gti(hdu1) + False + """ + colnames = [c.lower() for c in hdu.data.columns.names] + return "start" in colnames and "stop" in colnames + + +
+[docs] +def get_gti_from_hdu(gtihdu): + """ + Get the GTIs from a given FITS extension. + + Parameters + ---------- + gtihdu: `:class:astropy.io.fits.TableHDU` object + The GTI HDU. + + Returns + ------- + gti_list: [[gti00, gti01], [gti10, gti11], ...] + List of good time intervals. + + Examples + -------- + >>> from astropy.io import fits + >>> start = np.arange(0, 300, 100) + >>> stop = start + 50. + >>> s1 = fits.Column(name='START', array=start, format='D') + >>> s2 = fits.Column(name='STOP', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501') + >>> gti = get_gti_from_hdu(hdu1) + >>> np.allclose(gti, [[0, 50], [100, 150], [200, 250]]) + True + """ + gtitable = gtihdu.data + + colnames = [col.name for col in gtitable.columns] + # Default: NuSTAR: START, STOP. Otherwise, try RXTE: Start, Stop + if "START" in colnames: + startstr, stopstr = "START", "STOP" + else: + startstr, stopstr = "Start", "Stop" + + gtistart = np.array(gtitable.field(startstr), dtype=np.longdouble) + gtistop = np.array(gtitable.field(stopstr), dtype=np.longdouble) + gti_list = np.vstack((gtistart, gtistop)).T + + return gti_list
+ + + +
+[docs] +def get_gti_from_all_extensions(lchdulist, accepted_gtistrings=["GTI"], det_numbers=None): + """ + Intersect the GTIs from the all accepted extensions. + + Parameters + ---------- + lchdulist: `:class:astropy.io.fits.HDUList` object + The full content of a FITS file. + accepted_gtistrings: list of str + Base strings of GTI extensions. For missions adding the detector number + to GTI extensions like, e.g., XMM and Chandra, this function + automatically adds the detector number and looks for all matching + GTI extensions (e.g. "STDGTI" will also retrieve "STDGTI05"; "GTI0" + will also retrieve "GTI00501"). + + Returns + ------- + gti_list: [[gti00, gti01], [gti10, gti11], ...] + List of good time intervals, as the intersection of all matching GTIs. + If there are two matching extensions, with GTIs [[0, 50], [100, 200]] + and [[40, 70]] respectively, this function will return [[40, 50]]. + + Examples + -------- + >>> from astropy.io import fits + >>> s1 = fits.Column(name='START', array=[0, 100, 200], format='D') + >>> s2 = fits.Column(name='STOP', array=[50, 150, 250], format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501') + >>> s1 = fits.Column(name='START', array=[200, 300], format='D') + >>> s2 = fits.Column(name='STOP', array=[250, 350], format='D') + >>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='STDGTI05') + >>> lchdulist = fits.HDUList([hdu1, hdu2]) + >>> gti = get_gti_from_all_extensions( + ... lchdulist, accepted_gtistrings=['GTI0', 'STDGTI'], + ... det_numbers=[5]) + >>> np.allclose(gti, [[200, 250]]) + True + """ + acc_gti_strs = copy.deepcopy(accepted_gtistrings) + if det_numbers is not None: + for i in det_numbers: + acc_gti_strs += [x + "{:02d}".format(i) for x in accepted_gtistrings] + acc_gti_strs += [x + "{:02d}.*".format(i) for x in accepted_gtistrings] + gtiextn = [] + for pattern in acc_gti_strs: + gtiextn.extend(get_gti_extensions_from_pattern(lchdulist, pattern)) + gtiextn = list(set(gtiextn)) + gti_lists = [] + for extn in gtiextn: + gtihdu = lchdulist[extn] + gti_lists.append(get_gti_from_hdu(gtihdu)) + return cross_gtis(gti_lists)
+ + + +
+[docs] +def check_gtis(gti): + """ + Check if GTIs are well-behaved. + + Check that: + + 1. the shape of the GTI array is correct; + 2. no start > end + 3. no overlaps. + + Parameters + ---------- + gti : list + A list of GTI ``(start, stop)`` pairs extracted from the FITS file. + + Raises + ------ + TypeError + If GTIs are of the wrong shape + ValueError + If GTIs have overlapping or displaced values + """ + if len(gti) < 1: + raise ValueError("Empty GTIs.") + + for g in gti: + if np.size(g) != 2 or np.ndim(g) != 1: + raise TypeError( + "Please check the formatting of the GTIs. They need to be" + " provided as [[gti00, gti01], [gti10, gti11], ...]." + ) + + gti = np.array(gti) + gti_start = gti[:, 0] + gti_end = gti[:, 1] + + # Check that GTIs are well-behaved + if not np.all(gti_end >= gti_start): + raise ValueError("The GTI end times must be larger than the " "GTI start times.") + + # Check that there are no overlaps in GTIs + if not np.all(gti_start[1:] >= gti_end[:-1]): + raise ValueError("This GTI has overlaps.") + + return
+ + + +
+[docs] +@jit(nopython=True) +def create_gti_mask_jit(time, gtis, mask, gti_mask, min_length=0): # pragma: no cover + """ + Compiled and fast function to create GTI mask. + + Parameters + ---------- + time : numpy.ndarray + An array of time stamps + + gtis : iterable of ``(start, stop)`` pairs + The list of GTIs. + + mask : numpy.ndarray + A pre-assigned array of zeros of the same shape as ``time`` + Records whether a time stamp is part of the GTIs. + + gti_mask : numpy.ndarray + A pre-assigned array zeros in the same shape as ``time``; records + start/stop of GTIs. + + min_length : float + An optional minimum length for the GTIs to be applied. Only GTIs longer + than ``min_length`` will be considered when creating the mask. + + """ + gti_el = -1 + next_gti = False + for i, t in enumerate(time): + if i == 0 or t > gtis[gti_el, 1] or next_gti: + gti_el += 1 + if gti_el == len(gtis): + break + limmin = gtis[gti_el, 0] + limmax = gtis[gti_el, 1] + length = limmax - limmin + if length < min_length: + next_gti = True + continue + next_gti = False + gti_mask[gti_el] = True + + if t < limmin: + continue + + if t >= limmin: + if t <= limmax: + mask[i] = 1 + + return mask, gti_mask
+ + + +
+[docs] +def create_gti_mask( + time, gtis, safe_interval=None, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001 +): + """ + Create GTI mask. + + Assumes that no overlaps are present between GTIs + + Parameters + ---------- + time : numpy.ndarray + An array of time stamps + + gtis : ``[[g0_0, g0_1], [g1_0, g1_1], ...]``, float array-like + The list of GTIs + + + Other parameters + ---------------- + safe_interval : float or ``[float, float]``, default None + A safe interval to exclude at both ends (if single float) or the start + and the end (if pair of values) of GTIs. If None, no safe interval + is applied to data. + + min_length : float + An optional minimum length for the GTIs to be applied. Only GTIs longer + than ``min_length`` will be considered when creating the mask. + + return_new_gtis : bool + If ``True```, return the list of new GTIs (if ``min_length > 0``) + + dt : float + Time resolution of the data, i.e. the interval between time stamps. + + epsilon : float + Fraction of ``dt`` that is tolerated at the borders of a GTI. + + Returns + ------- + mask : bool array + A mask labelling all time stamps that are included in the GTIs versus + those that are not. + + new_gtis : ``Nx2`` array + An array of new GTIs created by this function. + """ + gtis = np.array(gtis, dtype=np.longdouble) + if time.size == 0: + raise ValueError("Passing an empty time array to create_gti_mask") + if gtis.size == 0: + raise ValueError("Passing an empty GTI array to create_gti_mask") + + mask = np.zeros(len(time), dtype=bool) + + if min_length > 0: + lengths = gtis[:, 1] - gtis[:, 0] + good = lengths >= np.max(min_length, dt) + if np.all(~good): + warnings.warn("No GTIs longer than " "min_length {}".format(min_length)) + return mask + gtis = gtis[good] + + if not HAS_NUMBA: + return create_gti_mask_complete( + time, + gtis, + safe_interval=safe_interval, + min_length=min_length, + return_new_gtis=return_new_gtis, + dt=dt, + epsilon=epsilon, + ) + + check_gtis(gtis) + + dt = apply_function_if_none(dt, time, lambda x: np.median(np.diff(x))) + dt_start = dt_stop = dt + epsilon_times_dt_start = epsilon_times_dt_stop = epsilon * dt + if isinstance(dt, Iterable): + idxs = np.searchsorted(time, gtis) + idxs[idxs == time.size] = -1 + dt_start = dt[idxs[:, 0]] + dt_stop = dt[idxs[:, 1]] + epsilon_times_dt_start = epsilon * dt_start + epsilon_times_dt_stop = epsilon * dt_stop + + gtis_new = copy.deepcopy(gtis) + gti_mask = np.zeros(len(gtis), dtype=bool) + + if safe_interval is not None: + if not isinstance(safe_interval, Iterable): + safe_interval = np.array([safe_interval, safe_interval]) + # These are the gtis that will be returned (filtered!). They are only + # modified by the safe intervals + gtis_new[:, 0] = gtis[:, 0] + safe_interval[0] + gtis_new[:, 1] = gtis[:, 1] - safe_interval[1] + + # These are false gtis, they contain a few boundary modifications + # in order to simplify the calculation of the mask, but they will _not_ + # be returned. + gtis_to_mask = copy.deepcopy(gtis_new) + gtis_to_mask[:, 0] = gtis_new[:, 0] - epsilon_times_dt_start + dt_start / 2 + gtis_to_mask[:, 1] = gtis_new[:, 1] + epsilon_times_dt_stop - dt_stop / 2 + + if isinstance(dt, Iterable): + dt = np.min(abs(dt_stop - dt_start)) + + mask, gtimask = create_gti_mask_jit( + (time - time[0]).astype(np.float64), + (gtis_to_mask - time[0]).astype(np.float64), + mask, + gti_mask=gti_mask, + min_length=float(min_length - 2 * (1 + epsilon) * dt), + ) + + if return_new_gtis: + return mask, gtis_new[gtimask] + + return mask
+ + + +
+[docs] +def create_gti_mask_complete( + time, gtis, safe_interval=0, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001 +): + """ + Create GTI mask, allowing for non-constant ``dt``. + + Assumes that no overlaps are present between GTIs. + + Parameters + ---------- + time : numpy.ndarray + An array of time stamps. + + gtis : ``[[g0_0, g0_1], [g1_0, g1_1], ...]``, float array-like + The list of GTIs. + + + Other parameters + ---------------- + safe_interval : float or [float, float] + A safe interval to exclude at both ends (if single float) or the start + and the end (if pair of values) of GTIs. + + min_length : float + An optional minimum length for the GTIs to be applied. Only GTIs longer + than ``min_length`` will be considered when creating the mask. + + return_new_gtis : bool + If ``True``, return the list of new GTIs (if ``min_length > 0``). + + dt : float + Time resolution of the data, i.e. the interval between time stamps. + + epsilon : float + Fraction of ``dt`` that is tolerated at the borders of a GTI. + + Returns + ------- + mask : bool array + A mask labelling all time stamps that are included in the GTIs versus + those that are not. + + new_gtis : Nx2 array + An array of new GTIs created by this function. + """ + + check_gtis(gtis) + + dt = assign_value_if_none(dt, np.zeros_like(time) + np.median(np.diff(np.sort(time)) / 2)) + + epsilon_times_dt = epsilon * dt + mask = np.zeros(len(time), dtype=bool) + + if safe_interval is None: + safe_interval = [0, 0] + elif not isinstance(safe_interval, Iterable): + safe_interval = [safe_interval, safe_interval] + + newgtis = np.zeros_like(gtis) + # Whose GTIs, including safe intervals, are longer than min_length + newgtimask = np.zeros(len(newgtis), dtype=bool) + + for ig, gti in enumerate(gtis): + limmin, limmax = gti + limmin += safe_interval[0] + limmax -= safe_interval[1] + if limmax - limmin >= min_length: + newgtis[ig][:] = [limmin, limmax] + cond1 = time >= (limmin + dt / 2 - epsilon_times_dt) + cond2 = time <= (limmax - dt / 2 + epsilon_times_dt) + + good = np.logical_and(cond1, cond2) + mask[good] = True + newgtimask[ig] = True + + res = mask + if return_new_gtis: + res = [res, newgtis[newgtimask]] + return res
+ + + +
+[docs] +def create_gti_from_condition(time, condition, safe_interval=0, dt=None): + """ + Create a GTI list from a time array and a boolean mask (``condition``). + + Parameters + ---------- + time : array-like + Array containing time stamps. + + condition : array-like + An array of bools, of the same length of time. + A possible condition can be, e.g., the result of ``lc > 0``. + + Returns + ------- + gtis : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The newly created GTIs. + + Other parameters + ---------------- + safe_interval : float or ``[float, float]`` + A safe interval to exclude at both ends (if single float) or the start + and the end (if pair of values) of GTIs. + dt : float + The width (in sec) of each bin of the time array. Can be irregular. + """ + + if len(time) != len(condition): + raise StingrayError("The length of the condition and " "time arrays must be the same.") + + idxs = contiguous_regions(condition) + + if not isinstance(safe_interval, Iterable): + safe_interval = [safe_interval, safe_interval] + + dt = assign_value_if_none(dt, np.zeros_like(time) + (time[1] - time[0]) / 2) + + gtis = [] + for idx in idxs: + logging.debug(idx) + startidx = idx[0] + stopidx = idx[1] - 1 + + t0 = time[startidx] - dt[startidx] + safe_interval[0] + t1 = time[stopidx] + dt[stopidx] - safe_interval[1] + if t1 - t0 < 0: + continue + gtis.append([t0, t1]) + return np.array(gtis)
+ + + +
+[docs] +def cross_two_gtis(gti0, gti1): + """ + Extract the common intervals from two GTI lists *EXACTLY*. + + Parameters + ---------- + gti0 : iterable of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + gti1 : iterable of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The two lists of GTIs to be crossed. + + Returns + ------- + gtis : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The newly created GTIs. + + See Also + -------- + cross_gtis : From multiple GTI lists, extract common intervals *EXACTLY* + + Examples + -------- + >>> gti1 = np.array([[1, 2]]) + >>> gti2 = np.array([[1, 2]]) + >>> newgti = cross_two_gtis(gti1, gti2) + >>> np.allclose(newgti, [[1, 2]]) + True + >>> gti1 = np.array([[1, 4]]) + >>> gti2 = np.array([[1, 2], [2, 4]]) + >>> newgti = cross_two_gtis(gti1, gti2) + >>> np.allclose(newgti, [[1, 4]]) + True + """ + gti0 = join_equal_gti_boundaries(np.asarray(gti0)) + gti1 = join_equal_gti_boundaries(np.asarray(gti1)) + # Check GTIs + check_gtis(gti0) + check_gtis(gti1) + + gti0_start = gti0[:, 0] + gti0_end = gti0[:, 1] + gti1_start = gti1[:, 0] + gti1_end = gti1[:, 1] + + # Create a list that references to the two start and end series + gti_start = [gti0_start, gti1_start] + gti_end = [gti0_end, gti1_end] + + # Concatenate the series, while keeping track of the correct origin of + # each start and end time + gti0_tag = np.array([0 for g in gti0_start], dtype=bool) + gti1_tag = np.array([1 for g in gti1_start], dtype=bool) + conc_start = np.concatenate((gti0_start, gti1_start)) + conc_end = np.concatenate((gti0_end, gti1_end)) + conc_tag = np.concatenate((gti0_tag, gti1_tag)) + + # Put in time order + order = np.argsort(conc_end) + conc_start = conc_start[order] + conc_end = conc_end[order] + conc_tag = conc_tag[order] + + last_end = conc_start[0] - 1 + final_gti = [] + for ie, e in enumerate(conc_end): + # Is this ending in series 0 or 1? + this_series = int(conc_tag[ie]) + other_series = int(this_series == 0) + + # Check that this closes intervals in both series. + # 1. Check that there is an opening in both series 0 and 1 lower than e + try: + st_pos = np.argmax(gti_start[this_series][gti_start[this_series] < e]) + so_pos = np.argmax(gti_start[other_series][gti_start[other_series] < e]) + st = gti_start[this_series][st_pos] + so = gti_start[other_series][so_pos] + + s = np.max([st, so]) + except: # pragma: no cover + continue + + # If this start is inside the last interval (It can happen for equal + # GTI start times between the two series), then skip! + if s <= last_end: + continue + # 2. Check that there is no closing before e in the "other series", + # from intervals starting either after s, or starting and ending + # between the last closed interval and this one + cond1 = (gti_end[other_series] > s) * (gti_end[other_series] < e) + cond2 = gti_end[other_series][so_pos] < s + condition = np.any(np.logical_or(cond1, cond2)) + # Well, if none of the conditions at point 2 apply, then you can + # create the new gti! + if not condition: + final_gti.append([s, e]) + last_end = e + + return np.array(final_gti)
+ + + +
+[docs] +def cross_gtis(gti_list): + """ + From multiple GTI lists, extract the common intervals *EXACTLY*. + + Parameters + ---------- + gti_list : array-like + List of GTI arrays, each one in the usual format + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + Returns + ------- + gti0: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The newly created GTIs. + + See Also + -------- + cross_two_gtis : Extract the common intervals from two GTI lists *EXACTLY* + + Examples + -------- + >>> gti1 = np.array([[1, 2]]) + >>> gti2 = np.array([[1, 2]]) + >>> newgti = cross_gtis([gti1, gti2]) + >>> np.allclose(newgti, [[1, 2]]) + True + >>> gti1 = np.array([[1, 4]]) + >>> gti2 = np.array([[1, 2], [2, 4]]) + >>> newgti = cross_gtis([gti1, gti2]) + >>> np.allclose(newgti, [[1, 4]]) + True + """ + for g in gti_list: + check_gtis(g) + + ninst = len(gti_list) + if ninst == 1: + return gti_list[0] + + gti0 = gti_list[0] + + for gti in gti_list[1:]: + gti0 = cross_two_gtis(gti0, gti) + + return gti0
+ + + +
+[docs] +def get_btis(gtis, start_time=None, stop_time=None): + """ + From GTIs, obtain bad time intervals, i.e. the intervals *not* covered + by the GTIs. + + GTIs have to be well-behaved, in the sense that they have to pass + ``check_gtis``. + + Parameters + ---------- + gtis : iterable + A list of GTIs. + + start_time : float + Optional start time of the overall observation (e.g. can be earlier + than the first time stamp in ``gtis``). + + stop_time : float + Optional stop time of the overall observation (e.g. can be later than + the last time stamp in``gtis``). + + Returns + ------- + btis : numpy.ndarray + A list of bad time intervals. + """ + # Check GTIs + if len(gtis) == 0: + if start_time is None or stop_time is None: + raise ValueError("Empty GTI and no valid start_time " "and stop_time. BAD!") + + return np.asarray([[start_time, stop_time]]) + check_gtis(gtis) + + start_time = assign_value_if_none(start_time, gtis[0][0]) + stop_time = assign_value_if_none(stop_time, gtis[-1][1]) + + if gtis[0][0] <= start_time: + btis = [] + else: + btis = [[start_time, gtis[0][0]]] + # Transform GTI list in + flat_gtis = gtis.flatten() + new_flat_btis = zip(flat_gtis[1:-2:2], flat_gtis[2:-1:2]) + btis.extend(new_flat_btis) + + if stop_time > gtis[-1][1]: + btis.extend([[gtis[-1][1], stop_time]]) + + return np.asarray(btis)
+ + + +@jit(nopython=True) +def _check_separate(gti0, gti1): + """Numba-compiled core of ``check_separate``.""" + gti0_start = gti0[:, 0] + gti0_end = gti0[:, 1] + gti1_start = gti1[:, 0] + gti1_end = gti1[:, 1] + + if (gti0_end[-1] <= gti1_start[0]) or (gti1_end[-1] <= gti0_start[0]): + return True + + for g in gti1.flatten(): + for g0, g1 in zip(gti0[:, 0], gti0[:, 1]): + if (g <= g1) and (g >= g0): + return False + for g in gti0.flatten(): + for g0, g1 in zip(gti1[:, 0], gti1[:, 1]): + if (g <= g1) and (g >= g0): + return False + return True + + +
+[docs] +def check_separate(gti0, gti1): + """ + Check if two GTIs do not overlap. + + Parameters + ---------- + gti0: 2-d float array + List of GTIs of form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + gti1: 2-d float array + List of GTIs of form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + Returns + ------- + separate: bool + ``True`` if GTIs are mutually exclusive, ``False`` if not. + + Examples + -------- + >>> gti0 = [[0, 10]] + >>> gti1 = [[20, 30]] + >>> check_separate(gti0, gti1) + True + >>> gti0 = [[0, 10]] + >>> gti1 = [[0, 10]] + >>> check_separate(gti0, gti1) + False + >>> gti0 = [[0, 10]] + >>> gti1 = [[10, 20]] + >>> check_separate(gti0, gti1) + True + >>> gti0 = [[0, 11]] + >>> gti1 = [[10, 20]] + >>> check_separate(gti0, gti1) + False + >>> gti0 = [[0, 11]] + >>> gti1 = [[10, 20]] + >>> check_separate(gti1, gti0) + False + >>> gti0 = [[0, 10], [30, 40]] + >>> gti1 = [[11, 28]] + >>> check_separate(gti0, gti1) + True + """ + + gti0 = np.asarray(gti0) + gti1 = np.asarray(gti1) + if len(gti0) == 0 or len(gti1) == 0: + return True + + # Check if independently GTIs are well behaved + check_gtis(gti0) + check_gtis(gti1) + t0 = min(gti0[0, 0], gti1[0, 0]) + return _check_separate((gti0 - t0).astype(np.double), (gti1 - t0).astype(np.double))
+ + + +def join_equal_gti_boundaries(gti, threshold=0.0): + """ + If the start of a GTI and the end of the previous one is within a certain time value, join them. + + Parameters + ---------- + gti: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + threshold: float number (units sec) + Maximum time interval to join two adjacent GTIs + + Returns + ------- + gti: 2-d float array + The newly created GTI array. + """ + new_gtis = [] + for l in gti: + new_gtis.append(l) + touching = (np.abs(gti[:-1, 1] - gti[1:, 0])) <= threshold + ng = [] + count = 0 + while count < len(gti) - 1: + if touching[count]: + new_gtis[count + 1] = [new_gtis[count][0], new_gtis[count + 1][1]] + else: + ng.append(new_gtis[count]) + count += 1 + ng.append(new_gtis[-1]) + return np.asarray(ng) + + +
+[docs] +def append_gtis(gti0, gti1): + """ + Union of two non-overlapping GTIs. + + If the two GTIs "touch", this is tolerated and the touching GTIs are + joined in a single one. + + Parameters + ---------- + gti0: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + gti1: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + Returns + ------- + gti: 2-d float array + The newly created GTI array. + + Examples + -------- + >>> np.allclose(append_gtis([[0, 1]], [[2, 3]]), [[0, 1], [2, 3]]) + True + >>> np.allclose(append_gtis([[0, 1], [4, 5]], [[2, 3]]), + ... [[0, 1], [2, 3], [4, 5]]) + True + >>> np.allclose(append_gtis([[0, 1]], [[1, 3]]), [[0, 3]]) + True + """ + + gti0 = np.asarray(gti0) + gti1 = np.asarray(gti1) + # Check if independently GTIs are well behaved. + check_gtis(gti0) + check_gtis(gti1) + + # Check if GTIs are mutually exclusive. + if not check_separate(gti0, gti1): + raise ValueError("In order to append, GTIs must be mutually" "exclusive.") + + new_gtis = np.concatenate([gti0, gti1]) + order = np.argsort(new_gtis[:, 0]) + return join_equal_gti_boundaries(new_gtis[order])
+ + + +
+[docs] +def join_gtis(gti0, gti1): + """ + Union of two GTIs. + + If GTIs are mutually exclusive, it calls ``append_gtis``. Otherwise we put + the extremes of partially overlapping GTIs on an ideal line and look at the + number of opened and closed intervals. When the number of closed and opened + intervals is the same, the full GTI is complete and we close it. + + In practice, we assign to each opening time of a GTI the value ``-1``, and + the value ``1`` to each closing time; when the cumulative sum is zero, the + GTI has ended. The timestamp after each closed GTI is the start of a new + one. + + :: + + (cumsum) -1 -2 -1 0 -1 -2 -1 -2 -1 0 + GTI A |-----:----------| : |--:------------| |---:--------| + FINAL GTI |-----:--------------| |--:--------------------:--------| + GTI B |--------------| |--------------------| + + Parameters + ---------- + gti0: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + + gti1: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + + Returns + ------- + gti: 2-d float array + The newly created GTI + """ + + gti0 = np.asarray(gti0) + gti1 = np.asarray(gti1) + + # Check if independently GTIs are well behaved. + check_gtis(gti0) + check_gtis(gti1) + + if check_separate(gti0, gti1): + return append_gtis(gti0, gti1) + + g0 = gti0.flatten() + # Opening GTI: type = 1; Closing: type = -1 + g0_type = np.asarray(list(zip(-np.ones(int(len(g0) / 2)), np.ones(int(len(g0) / 2))))) + g1 = gti1.flatten() + g1_type = np.asarray(list(zip(-np.ones(int(len(g1) / 2)), np.ones(int(len(g1) / 2))))) + + g_all = np.append(g0, g1) + g_type_all = np.append(g0_type, g1_type) + order = np.argsort(g_all) + g_all = g_all[order] + g_type_all = g_type_all[order] + + sums = np.cumsum(g_type_all) + + # Where the cumulative sum is zero, we close the GTI + closing_bins = sums == 0 + # The next element in the sequence is the start of the new GTI. In the case + # of the last element, the next is the first. Numpy.roll gives this for + # free. + starting_bins = np.roll(closing_bins, 1) + + starting_times = g_all[starting_bins] + closing_times = g_all[closing_bins] + + final_gti = [] + for start, stop in zip(starting_times, closing_times): + final_gti.append([start, stop]) + + return np.sort(final_gti, axis=0)
+ + + +
+[docs] +def time_intervals_from_gtis(gtis, segment_size, fraction_step=1, epsilon=1e-5): + """ + Compute start/stop times of equal time intervals, compatible with GTIs. + + Used to start each FFT/PDS/cospectrum from the start of a GTI, + and stop before the next gap in data (end of GTI). + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + + segment_size : float + Length of the time segments + + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving + window), this indicates the ratio between step step and + ``segment_size`` (e.g. ``0.5`` means that the window shifts by half + ``segment_size``). + + Returns + ------- + spectrum_start_times : array-like + List of starting times to use in the spectral calculations. + + spectrum_stop_times : array-like + List of end times to use in the spectral calculations. + + """ + spectrum_start_times = np.array([], dtype=np.longdouble) + for g in gtis: + if g[1] - g[0] + epsilon < segment_size: + continue + + newtimes = np.arange( + g[0], + g[1] - segment_size + epsilon, + np.longdouble(segment_size) * fraction_step, + dtype=np.longdouble, + ) + spectrum_start_times = np.append(spectrum_start_times, newtimes) + + assert len(spectrum_start_times) > 0, "No GTIs are equal to or longer than segment_size." + return spectrum_start_times, spectrum_start_times + segment_size
+ + + +def calculate_segment_bin_start(startbin, stopbin, nbin, fraction_step=1): + """Get the starting indices of intervals of equal length. + + A bit like `np.arange`, but checks that the last number is + at least ``nbin`` less than ``stopbin``. Useful when getting + starting intervals of equal chunks of a binned light curve. + + It is possible to make these intervals sliding, through the + ``fraction_step`` parameter. + + Parameters + ---------- + startbin : int + Starting bin of the interval. + + stopbin : int + Last bin of the interval. + + nbin : int + Number of bins in each interval. + + Other Parameters + ---------------- + fraction_step : float + If the step is not a full ``nbin`` but less (e.g. a moving window), + this indicates the ratio between the step and ``nbin`` (e.g. + ``0.5`` means that the window shifts by half ``nbin``). + + Returns + ------- + spectrum_start_bins : array-like + List of starting bins in the original time array to use in spectral + calculations. + + Examples + -------- + >>> st = calculate_segment_bin_start(0, 10000, 10000) + >>> st[-1] + 0 + >>> st = calculate_segment_bin_start(0, 5, 2) + >>> st[-1] + 2 + >>> st = calculate_segment_bin_start(0, 6, 2) + >>> st[-1] + 4 + """ + st = np.arange(startbin, stopbin, int(nbin * fraction_step), dtype=int) + if st[-1] + nbin > stopbin: + return st[:-1] + return st + + +
+[docs] +def bin_intervals_from_gtis(gtis, segment_size, time, dt=None, fraction_step=1, epsilon=0.001): + """ + Compute start/stop times of equal time intervals, compatible with GTIs, + and map them to the indices of an array of time stamps. + + Used to start each FFT/PDS/cospectrum from the start of a GTI, + and stop before the next gap in data (end of GTI). + In this case, it is necessary to specify the time array containing the + times of the light curve bins. + Returns start and stop bins of the intervals to use for the PDS. + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + segment_size : float + Length of each time segment. + + time : array-like + Array of time stamps. + + Other Parameters + ---------------- + dt : float, default median(diff(time)) + Time resolution of the light curve. + + epsilon : float, default 0.001 + The tolerance, in fraction of ``dt``, for the comparisons at the + borders. + + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving + window), this indicates the ratio between step step and + ``segment_size`` (e.g. ``0.5`` means that the window shifts by half + ``segment_size``). + + Returns + ------- + spectrum_start_bins : array-like + List of starting bins in the original time array to use in spectral + calculations. + + spectrum_stop_bins : array-like + List of end bins to use in the spectral calculations. + + Examples + -------- + >>> time = np.arange(0.5, 13.5) + + >>> gtis = [[0, 5], [6, 8], [9, 10]] + + >>> segment_size = 2 + + >>> start_bins, stop_bins = bin_intervals_from_gtis(gtis,segment_size,time) + + >>> np.allclose(start_bins, [0, 2, 6]) + True + >>> np.allclose(stop_bins, [2, 4, 8]) + True + >>> np.allclose(time[start_bins[0]:stop_bins[0]], [0.5, 1.5]) + True + >>> np.allclose(time[start_bins[1]:stop_bins[1]], [2.5, 3.5]) + True + """ + time = np.asarray(time) + gtis = np.asarray(gtis) + if dt is None: + dt = np.median(np.diff(time)) + + epsilon_times_dt = epsilon * dt + nbin = np.rint(segment_size / dt).astype(int) + + if time[-1] < np.min(gtis) or time[0] > np.max(gtis): + raise ValueError("Invalid time interval for the given GTIs") + + spectrum_start_bins = np.array([], dtype=int) + + gti_low = gtis[:, 0] + dt / 2 - epsilon_times_dt + gti_up = gtis[:, 1] - dt / 2 + epsilon_times_dt + + for g0, g1 in zip(gti_low, gti_up): + if (g1 - g0 + dt + epsilon_times_dt) < segment_size: + continue + startbin, stopbin = np.searchsorted(time, [g0, g1], "left") + stopbin += 1 + if stopbin > time.size: + stopbin = time.size + + if time[startbin] < g0: + startbin += 1 + # Would be g[1] - dt/2, but stopbin is the end of an interval + # so one has to add one bin + if time[stopbin - 1] > g1: + stopbin -= 1 + + newbins = calculate_segment_bin_start(startbin, stopbin, nbin, fraction_step=fraction_step) + spectrum_start_bins = np.append(spectrum_start_bins, newbins) + assert len(spectrum_start_bins) > 0, "No GTIs are equal to or longer than segment_size." + return spectrum_start_bins, spectrum_start_bins + nbin
+ + + +
+[docs] +def gti_border_bins(gtis, time, dt=None, epsilon=0.001): + """ + Find the indices in a time array corresponding to the borders of GTIs. + + GTIs shorter than the bin time are not returned. + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + time : array-like + Array of time stamps. + + Other Parameters + ---------------- + dt : float or array of floats. Default median(diff(time)) + Time resolution of the light curve. Can be an array of the same dimension + as ``time`` + + epsilon : float, default 0.001 + The tolerance, in fraction of ``dt``, for the comparisons at the + borders. + + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving + window), this indicates the ratio between step step and + ``segment_size`` (e.g. ``0.5`` means that the window shifts by half + ``segment_size``). + + Returns + ------- + spectrum_start_bins : array-like + List of starting bins of each GTI + + spectrum_stop_bins : array-like + List of stop bins of each GTI. The elements corresponding to these bins + should *not* be included. + + Examples + -------- + >>> times = np.arange(0.5, 13.5) + + >>> gti_border_bins([[16., 18.]], times) + Traceback (most recent call last): + ... + ValueError: Invalid time interval for the given GTIs + + >>> start_bins, stop_bins = gti_border_bins( + ... [[0, 5], [6, 8]], times) + + >>> np.allclose(start_bins, [0, 6]) + True + >>> np.allclose(stop_bins, [5, 8]) + True + >>> np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5]) + True + >>> np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5]) + True + + >>> start_bins, stop_bins = gti_border_bins( + ... [[0, 5], [6, 13]], times, dt=np.ones_like(times)) + + >>> np.allclose(start_bins, [0, 6]) + True + >>> np.allclose(stop_bins, [5, 13]) + True + >>> np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5]) + True + >>> np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5]) + True""" + time = np.asarray(time) + gtis = np.asarray(gtis) + if dt is None: + dt = np.median(np.diff(time)) + + dt_start = dt_stop = dt + epsilon_times_dt_start = epsilon_times_dt_stop = epsilon * dt + if isinstance(dt, Iterable): + idxs = np.searchsorted(time, gtis) + idxs[idxs == time.size] = -1 + dt_start = dt[idxs[:, 0]] + dt_stop = dt[idxs[:, 1]] + epsilon_times_dt_start = epsilon * dt_start + epsilon_times_dt_stop = epsilon * dt_stop + + if time[-1] < np.min(gtis) or time[0] > np.max(gtis): + raise ValueError("Invalid time interval for the given GTIs") + + spectrum_start_bins = [] + spectrum_stop_bins = [] + + gti_low = gtis[:, 0] + dt_start / 2 - epsilon_times_dt_start + gti_up = gtis[:, 1] - dt_stop / 2 + epsilon_times_dt_stop + + for g0, g1 in zip(gti_low, gti_up): + startbin, stopbin = np.searchsorted(time, [g0, g1], "left") + stopbin += 1 + if stopbin > time.size: + stopbin = time.size + + if time[startbin] < g0: + startbin += 1 + # Would be g[1] - dt/2, but stopbin is the end of an interval + # so one has to add one bin + if time[stopbin - 1] > g1: + stopbin -= 1 + + spectrum_start_bins.append(startbin) + spectrum_stop_bins.append(stopbin) + + return np.array(spectrum_start_bins), np.array(spectrum_stop_bins)
+ + + +def generate_indices_of_boundaries(times, gti, segment_size=None, dt=0): + """ + Get index boundaries and times from different parts of the observation. + + It wraps around `generate_indices_of_gti_boundaries`, + `generate_indices_of_segment_boundaries_binned`, and + `generate_indices_of_segment_boundaries_unbinned` depending on: + + + ``segment_size`` being ``None`` (give GTI boundaries, segment boundaries + otherwise) + + ``dt`` being 0 or nonzero (unevenly sampled, evenly sampled otherwise) + + Examples + -------- + >>> times = [0.1, 0.2, 0.5, 0.8, 1.1] + >>> gtis = [[0, 0.55], [0.6, 2.1]] + >>> vals0 = generate_indices_of_boundaries(times, gtis, segment_size=None) + >>> vals1 = generate_indices_of_gti_boundaries(times, gtis) + >>> check_iterables_close(vals0, vals1) + True + >>> vals0 = generate_indices_of_boundaries(times, gtis, segment_size=0.5) + >>> vals1 = generate_indices_of_segment_boundaries_unbinned(times, gtis, segment_size=0.5) + >>> check_iterables_close(vals0, vals1) + True + >>> times = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + >>> gtis = [[0.05, 0.55]] + >>> vals0 = generate_indices_of_boundaries(times, gtis, segment_size=0.5, dt=0.1) + >>> vals1 = generate_indices_of_segment_boundaries_binned(times, gtis, 0.5, dt=0.1) + >>> check_iterables_close(vals0, vals1) + True + """ + if segment_size is not None: + if dt is None or dt == 0: + segment_iter = generate_indices_of_segment_boundaries_unbinned(times, gti, segment_size) + else: + segment_iter = generate_indices_of_segment_boundaries_binned( + times, gti, segment_size, dt=dt + ) + else: + segment_iter = generate_indices_of_gti_boundaries(times, gti, dt=0) + return segment_iter + + +
+[docs] +def generate_indices_of_gti_boundaries(times, gti, dt=0): + """ + Get the indices of events from different GTIs of the observation. + + This is a generator, yielding the boundaries of each GTI and the + corresponding indices in the time array. + + Parameters + ---------- + times : float `np.array` + Array of times. + gti : [[gti00, gti01], [gti10, gti11], ...] + Good time intervals. + + Other parameters + ---------------- + dt : float + If times are uniformly binned, this is the binning time. + + Yields + ------ + g0: float + Start time of current GTI. + g1: float + End time of current GTI. + startidx: int + Start index of the current GTI in the time array. + stopidx: int + End index of the current GTI in the time array. Note that this is + larger by one, so that `time[startidx:stopidx]` returns the correct + time interval. + + Examples + -------- + >>> times = [0.1, 0.2, 0.5, 0.8, 1.1] + >>> gtis = [[0, 0.55], [0.6, 2.1]] + >>> vals = generate_indices_of_gti_boundaries(times, gtis) + >>> v0 = next(vals) + >>> np.allclose(v0[:2], gtis[0]) + True + >>> np.allclose(v0[2:], [0, 3]) + True + """ + gti = np.asarray(gti) + times = np.asarray(times) + startidx, stopidx = gti_border_bins(gti, times, dt=dt) + + for s, e, idx0, idx1 in zip(gti[:, 0], gti[:, 1], startidx, stopidx): + yield s, e, idx0, idx1
+ + + +
+[docs] +def generate_indices_of_segment_boundaries_unbinned(times, gti, segment_size): + """ + Get the indices of events from different segments of the observation. + + This is a generator, yielding the boundaries of each segment and the + corresponding indices in the time array. + + Parameters + ---------- + times : float `np.array` + Array of times. + gti : [[gti00, gti01], [gti10, gti11], ...] + Good time intervals. + segment_size : float + Length of segments. + + Yields + ------ + t0: float + Start time of current segment. + t1: float + End time of current segment. + startidx: int + Start index of the current segment in the time array. + stopidx: int + End index of the current segment in the time array. Note that this is + larger by one, so that `time[startidx:stopidx]` returns the correct + time interval. + + Examples + -------- + >>> times = [0.1, 0.2, 0.5, 0.8, 1.1] + >>> gtis = [[0, 0.55], [0.6, 2.1]] + >>> vals = generate_indices_of_segment_boundaries_unbinned(times, gtis, 0.5) + >>> v0 = next(vals) + >>> np.allclose(v0[:2], [0, 0.5]) + True + >>> # Note: 0.5 is not included in the interval + >>> np.allclose(v0[2:], [0, 2]) + True + >>> v1 = next(vals) + >>> np.allclose(v1[:2], [0.6, 1.1]) + True + >>> # Again: 1.1 is not included in the interval + >>> np.allclose(v1[2:], [3, 4]) + True + """ + gti = np.asarray(gti) + times = np.asarray(times) + + start, stop = time_intervals_from_gtis(gti, segment_size) + + assert is_sorted(times), "Array is not sorted" + + startidx = np.asarray(np.searchsorted(times, start)) + stopidx = np.asarray(np.searchsorted(times, stop)) + + for s, e, idx0, idx1 in zip(start, stop, startidx, stopidx): + yield s, e, idx0, idx1
+ + + +
+[docs] +def generate_indices_of_segment_boundaries_binned(times, gti, segment_size, dt=None): + """ + Get the indices of binned times from different segments of the observation. + + This is a generator, yielding the boundaries of each segment and the + corresponding indices in the time array + + Parameters + ---------- + times : float `np.array` + Array of times, uniformly sampled + gti : [[gti00, gti01], [gti10, gti11], ...] + good time intervals + segment_size : float + length of segments + + Yields + ------ + t0: float + First time value, from the time array, in the current segment + t1: float + Last time value, from the time array, in the current segment + startidx: int + Start index of the current segment in the time array + stopidx: int + End index of the current segment in the time array. Note that this is + larger by one, so that `time[startidx:stopidx]` returns the correct + time interval. + + Examples + -------- + >>> times = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + >>> gtis = [[0.05, 0.55]] + >>> vals = generate_indices_of_segment_boundaries_binned(times, gtis, 0.5, dt=0.1) + >>> v0 = next(vals) + >>> np.allclose(v0[:2], [0.05, 0.55]) + True + >>> np.allclose(v0[2:], [0, 5]) + True + """ + gti = np.asarray(gti) + times = np.asarray(times) + startidx, stopidx = bin_intervals_from_gtis(gti, segment_size, times, dt=dt) + + if dt is None: + dt = 0 + for idx0, idx1 in zip(startidx, stopidx): + yield times[idx0] - dt / 2, times[min(idx1, times.size - 1)] - dt / 2, idx0, idx1
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/io.html b/_modules/stingray/io.html new file mode 100644 index 000000000..02ff2637e --- /dev/null +++ b/_modules/stingray/io.html @@ -0,0 +1,1049 @@ + + + + + + + stingray.io — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.io

+import logging
+import math
+import copy
+import os
+import pickle
+import warnings
+from collections.abc import Iterable
+
+import numpy as np
+from astropy.io import fits
+from astropy.table import Table
+from astropy.logger import AstropyUserWarning
+import matplotlib.pyplot as plt
+
+import stingray.utils as utils
+
+from .utils import assign_value_if_none, is_string, order_list_of_arrays, is_sorted
+from .gti import get_gti_from_all_extensions, load_gtis
+
+# Python 3
+import pickle
+
+_H5PY_INSTALLED = True
+
+try:
+    import h5py
+except ImportError:
+    _H5PY_INSTALLED = False
+
+
+
+[docs] +def rough_calibration(pis, mission): + """Make a rough conversion betwenn PI channel and energy. + + Only works for NICER, NuSTAR, and XMM. + + Parameters + ---------- + pis: float or array of floats + PI channels in data + mission: str + Mission name + + Returns + ------- + energies : float or array of floats + Energy values + + Examples + -------- + >>> rough_calibration(0, 'nustar') + 1.6 + >>> rough_calibration(0.0, 'ixpe') + 0.0 + >>> # It's case-insensitive + >>> rough_calibration(1200, 'XMm') + 1.2 + >>> rough_calibration(10, 'asDf') + Traceback (most recent call last): + ... + ValueError: Mission asdf not recognized + >>> rough_calibration(100, 'nicer') + 1.0 + """ + if mission.lower() == "nustar": + return pis * 0.04 + 1.6 + elif mission.lower() == "xmm": + return pis * 0.001 + elif mission.lower() == "nicer": + return pis * 0.01 + elif mission.lower() == "ixpe": + return pis / 375 * 15 + raise ValueError(f"Mission {mission.lower()} not recognized")
+ + + +
+[docs] +def get_file_extension(fname): + """Get the extension from the file name. + + If g-zipped, add '.gz' to extension. + + Examples + -------- + >>> get_file_extension('ciao.tar') + '.tar' + >>> get_file_extension('ciao.tar.gz') + '.tar.gz' + >>> get_file_extension('ciao.evt.gz') + '.evt.gz' + >>> get_file_extension('ciao.a.tutti.evt.gz') + '.evt.gz' + """ + fname_root = fname.replace(".gz", "") + fname_root = os.path.splitext(fname_root)[0] + + return fname.replace(fname_root, "")
+ + + +
+[docs] +def high_precision_keyword_read(hdr, keyword): + """Read FITS header keywords, also if split in two. + + In the case where the keyword is split in two, like + + MJDREF = MJDREFI + MJDREFF + + in some missions, this function returns the summed value. Otherwise, the + content of the single keyword + + Parameters + ---------- + hdr : dict_like + The FITS header structure, or a dictionary + + keyword : str + The key to read in the header + + Returns + ------- + value : long double + The value of the key, or ``None`` if something went wrong + + """ + try: + value = np.longdouble(hdr[keyword]) + return value + except KeyError: + pass + try: + if len(keyword) == 8: + keyword = keyword[:7] + value = np.longdouble(hdr[keyword + "I"]) + value += np.longdouble(hdr[keyword + "F"]) + return value + except KeyError: + return None
+ + + +def _patch_mission_info(info, mission=None): + """Add some information that is surely missing in xselect.mdb. + + Examples + -------- + >>> info = {'gti': 'STDGTI'} + >>> new_info = _patch_mission_info(info, mission=None) + >>> new_info['gti'] == info['gti'] + True + >>> new_info = _patch_mission_info(info, mission="xmm") + >>> new_info['gti'] + 'STDGTI,GTI0' + """ + if mission is None: + return info + if mission.lower() == "xmm" and "gti" in info: + info["gti"] += ",GTI0" + return info + + +
+[docs] +def read_mission_info(mission=None): + """Search the relevant information about a mission in xselect.mdb.""" + curdir = os.path.abspath(os.path.dirname(__file__)) + fname = os.path.join(curdir, "datasets", "xselect.mdb") + + # If HEADAS is defined, search for the most up-to-date version of the + # mission database + if os.getenv("HEADAS"): + hea_fname = os.path.join(os.getenv("HEADAS"), "bin", "xselect.mdb") + if os.path.exists(hea_fname): + fname = hea_fname + if mission is not None: + mission = mission.lower() + + db = {} + with open(fname) as fobj: + for line in fobj.readlines(): + line = line.strip() + if mission is not None and not line.lower().startswith(mission): + continue + if line.startswith("!") or line == "": + continue + allvals = line.split() + string = allvals[0] + value = allvals[1:] + if len(value) == 1: + value = value[0] + + data = string.split(":")[:] + if mission is None: + if data[0] not in db: + db[data[0]] = {} + previous_db_step = db[data[0]] + else: + previous_db_step = db + data = data[1:] + for key in data[:-1]: + if key not in previous_db_step: + previous_db_step[key] = {} + previous_db_step = previous_db_step[key] + previous_db_step[data[-1]] = value + return _patch_mission_info(db, mission)
+ + + +def _case_insensitive_search_in_list(string, list_of_strings): + """Search for a string in a list of strings, in a case-insensitive way. + + Example + ------- + >>> _case_insensitive_search_in_list("a", ["A", "b"]) + 'A' + >>> _case_insensitive_search_in_list("a", ["c", "b"]) is None + True + """ + for s in list_of_strings: + if string.lower() == s.lower(): + return s + return None + + +def _get_additional_data(lctable, additional_columns, warn_if_missing=True): + """Get additional data from a FITS data table. + + Parameters + ---------- + lctable: `astropy.io.fits.fitsrec.FITS_rec` + Data table + additional_columns: list of str + List of column names to retrieve from the table + + Other parameters + ---------------- + warn_if_missing: bool, default True + Warn if a column is not found + + Returns + ------- + additional_data: dict + Dictionary associating to each additional column the content of the + table. + """ + additional_data = {} + if additional_columns is not None: + for a in additional_columns: + key = _case_insensitive_search_in_list(a, lctable._coldefs.names) + if key is not None: + additional_data[a] = np.array(lctable.field(key)) + else: + if warn_if_missing: + warnings.warn("Column " + a + " not found") + additional_data[a] = np.zeros(len(lctable)) + + return additional_data + + +
+[docs] +def get_key_from_mission_info(info, key, default, inst=None, mode=None): + """Get the name of a header key or table column from the mission database. + + Many entries in the mission database have default values that can be + altered for specific instruments or observing modes. Here, if there is a + definition for a given instrument and mode, we take that, otherwise we use + the default). + + Parameters + ---------- + info : dict + Nested dictionary containing all the information for a given mission. + It can be nested, e.g. contain some info for a given instrument, and + for each observing mode of that instrument. + key : str + The key to read from the info dictionary + default : object + The default value. It can be of any type, depending on the expected + type for the entry. + + Other parameters + ---------------- + inst : str + Instrument + mode : str + Observing mode + + Returns + ------- + retval : object + The wanted entry from the info dictionary + + Examples + -------- + >>> info = {'ecol': 'PI', "A": {"ecol": "BLA"}, "C": {"M1": {"ecol": "X"}}} + >>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode=None) + 'BLA' + >>> get_key_from_mission_info(info, "ecol", "BU", inst="B", mode=None) + 'PI' + >>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode="M1") + 'BLA' + >>> get_key_from_mission_info(info, "ecol", "BU", inst="C", mode="M1") + 'X' + >>> get_key_from_mission_info(info, "ghghg", "BU", inst="C", mode="M1") + 'BU' + """ + filt_info = copy.deepcopy(info) + if inst is not None and inst in filt_info: + filt_info.update(info[inst]) + filt_info.pop(inst) + if mode is not None and mode in filt_info: + filt_info.update(info[inst][mode]) + filt_info.pop(mode) + + if key in filt_info: + return filt_info[key] + return default
+ + + +
+[docs] +def lcurve_from_fits( + fits_file, + gtistring="GTI", + timecolumn="TIME", + ratecolumn=None, + ratehdu=1, + fracexp_limit=0.9, + outfile=None, + noclobber=False, + outdir=None, +): + """Load a lightcurve from a fits file. + + .. note :: + FITS light curve handling is still under testing. + Absolute times might be incorrect depending on the light curve format. + + Parameters + ---------- + fits_file : str + File name of the input light curve in FITS format + + Returns + ------- + data : dict + Dictionary containing all information needed to create a + :class:`stingray.Lightcurve` object + + Other Parameters + ---------------- + gtistring : str + Name of the GTI extension in the FITS file + timecolumn : str + Name of the column containing times in the FITS file + ratecolumn : str + Name of the column containing rates in the FITS file + ratehdu : str or int + Name or index of the FITS extension containing the light curve + fracexp_limit : float + Minimum exposure fraction allowed + noclobber : bool + If True, do not overwrite existing files + """ + warnings.warn( + """WARNING! FITS light curve handling is still under testing. + Absolute times might be incorrect.""" + ) + # TODO: + # treat consistently TDB, UTC, TAI, etc. This requires some documentation + # reading. For now, we assume TDB + from astropy.io import fits as pf + from astropy.time import Time + import numpy as np + from stingray.gti import create_gti_from_condition + + lchdulist = pf.open(fits_file) + lctable = lchdulist[ratehdu].data + + # Units of header keywords + tunit = lchdulist[ratehdu].header["TIMEUNIT"] + + try: + mjdref = high_precision_keyword_read(lchdulist[ratehdu].header, "MJDREF") + mjdref = Time(mjdref, scale="tdb", format="mjd") + except Exception: + mjdref = None + + try: + instr = lchdulist[ratehdu].header["INSTRUME"] + except Exception: + instr = "EXTERN" + + # ---------------------------------------------------------------- + # Trying to comply with all different formats of fits light curves. + # It's a madness... + try: + tstart = high_precision_keyword_read(lchdulist[ratehdu].header, "TSTART") + tstop = high_precision_keyword_read(lchdulist[ratehdu].header, "TSTOP") + except Exception: # pragma: no cover + raise (Exception("TSTART and TSTOP need to be specified")) + + # For nulccorr lcs this whould work + + timezero = high_precision_keyword_read(lchdulist[ratehdu].header, "TIMEZERO") + # Sometimes timezero is "from tstart", sometimes it's an absolute time. + # This tries to detect which case is this, and always consider it + # referred to tstart + timezero = assign_value_if_none(timezero, 0) + + # for lcurve light curves this should instead work + if tunit == "d": + # TODO: + # Check this. For now, I assume TD (JD - 2440000.5). + # This is likely wrong + timezero = Time(2440000.5 + timezero, scale="tdb", format="jd") + tstart = Time(2440000.5 + tstart, scale="tdb", format="jd") + tstop = Time(2440000.5 + tstop, scale="tdb", format="jd") + # if None, use NuSTAR defaulf MJDREF + mjdref = assign_value_if_none( + mjdref, + Time(np.longdouble("55197.00076601852"), scale="tdb", format="mjd"), + ) + + timezero = (timezero - mjdref).to("s").value + tstart = (tstart - mjdref).to("s").value + tstop = (tstop - mjdref).to("s").value + + if timezero > tstart: + timezero -= tstart + + time = np.array(lctable.field(timecolumn), dtype=np.longdouble) + if time[-1] < tstart: + time += timezero + tstart + else: + time += timezero + + try: + dt = high_precision_keyword_read(lchdulist[ratehdu].header, "TIMEDEL") + if tunit == "d": + dt *= 86400 + except Exception: + warnings.warn( + "Assuming that TIMEDEL is the median difference between the" " light curve times", + AstropyUserWarning, + ) + # Avoid NaNs + good = time == time + dt = np.median(np.diff(time[good])) + + # ---------------------------------------------------------------- + if ratecolumn is None: + for name in ["RATE", "RATE1", "COUNTS"]: + if name in lctable.names: + ratecolumn = name + break + else: # pragma: no cover + raise ValueError("None of the accepted rate columns were found in the file") + + rate = np.array(lctable.field(ratecolumn), dtype=float) + + errorcolumn = "ERROR" + if ratecolumn == "RATE1": + errorcolumn = "ERROR1" + + try: + rate_e = np.array(lctable.field(errorcolumn), dtype=np.longdouble) + except Exception: + rate_e = np.zeros_like(rate) + + if "RATE" in ratecolumn: + rate *= dt + rate_e *= dt + + try: + fracexp = np.array(lctable.field("FRACEXP"), dtype=np.longdouble) + except Exception: + fracexp = np.ones_like(rate) + + good_intervals = (rate == rate) * (fracexp >= fracexp_limit) + + rate[good_intervals] /= fracexp[good_intervals] + rate_e[good_intervals] /= fracexp[good_intervals] + + rate[~good_intervals] = 0 + + try: + gtitable = lchdulist[gtistring].data + gti_list = np.array( + [[a, b] for a, b in zip(gtitable.field("START"), gtitable.field("STOP"))], + dtype=np.longdouble, + ) + except Exception: + gti_list = create_gti_from_condition(time, good_intervals) + + lchdulist.close() + + res = { + "time": time, + "counts": rate, + "err": rate_e, + "gti": gti_list, + "mjdref": mjdref.mjd, + "dt": dt, + "instr": instr, + "header": lchdulist[ratehdu].header.tostring(), + } + return res
+ + + +
+[docs] +def load_events_and_gtis( + fits_file, + additional_columns=None, + gtistring=None, + gti_file=None, + hduname=None, + column=None, +): + """Load event lists and GTIs from one or more files. + + Loads event list from HDU EVENTS of file fits_file, with Good Time + intervals. Optionally, returns additional columns of data from the same + HDU of the events. + + Parameters + ---------- + fits_file : str + + Other parameters + ---------------- + additional_columns: list of str, optional + A list of keys corresponding to the additional columns to extract from + the event HDU (ex.: ['PI', 'X']) + gtistring : str + Comma-separated list of accepted GTI extensions (default GTI,STDGTI), + with or without appended integer number denoting the detector + gti_file : str, default None + External GTI file + hduname : str or int, default 1 + Name of the HDU containing the event list + column : str, default None + The column containing the time values. If None, we use the name + specified in the mission database, and if there is nothing there, + "TIME" + return_limits: bool, optional + Return the TSTART and TSTOP keyword values + + Returns + ------- + retvals : Object with the following attributes: + ev_list : array-like + Event times in Mission Epoch Time + gti_list: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + GTIs in Mission Epoch Time + additional_data: dict + A dictionary, where each key is the one specified in additional_colums. + The data are an array with the values of the specified column in the + fits file. + t_start : float + Start time in Mission Epoch Time + t_stop : float + Stop time in Mission Epoch Time + pi_list : array-like + Raw Instrument energy channels + cal_pi_list : array-like + Calibrated PI channels (those that can be easily converted to energy + values, regardless of the instrument setup.) + energy_list : array-like + Energy of each photon in keV (only for NuSTAR, NICER, XMM) + instr : str + Name of the instrument (e.g. EPIC-pn or FPMA) + mission : str + Name of the instrument (e.g. XMM or NuSTAR) + mjdref : float + MJD reference time for the mission + header : str + Full header of the FITS file, for debugging purposes + detector_id : array-like, int + Detector id for each photon (e.g. each of the CCDs composing XMM's or + Chandra's instruments) + """ + from astropy.io import fits as pf + + hdulist = pf.open(fits_file) + probe_header = hdulist[0].header + # Let's look for TELESCOP here. This is the most common keyword to be + # found in well-behaved headers. If it is not in header 0, I take this key + # and the remaining information from header 1. + if "TELESCOP" not in probe_header: + probe_header = hdulist[1].header + mission_key = "MISSION" + if mission_key not in probe_header: + mission_key = "TELESCOP" + mission = probe_header[mission_key].lower() + + db = read_mission_info(mission) + instkey = get_key_from_mission_info(db, "instkey", "INSTRUME") + instr = mode = None + if instkey in probe_header: + instr = probe_header[instkey].strip() + + modekey = get_key_from_mission_info(db, "dmodekey", None, instr) + if modekey is not None and modekey in probe_header: + mode = probe_header[modekey].strip() + + gtistring = get_key_from_mission_info(db, "gti", "GTI,STDGTI", instr, mode) + if hduname is None: + hduname = get_key_from_mission_info(db, "events", "EVENTS", instr, mode) + + if hduname not in hdulist: + warnings.warn(f"HDU {hduname} not found. Trying first extension") + hduname = 1 + + datatable = hdulist[hduname].data + header = hdulist[hduname].header + + ephem = timeref = timesys = None + + if "PLEPHEM" in header: + # For the rare cases where this is a number, e.g. 200, I add `str` + # It's supposed to be a string. + ephem = str(header["PLEPHEM"]).strip().lstrip("JPL-").lower() + if "TIMEREF" in header: + timeref = header["TIMEREF"].strip().lower() + if "TIMESYS" in header: + timesys = header["TIMESYS"].strip().lower() + + if column is None: + column = get_key_from_mission_info(db, "time", "TIME", instr, mode) + ev_list = np.array(datatable.field(column), dtype=np.longdouble) + + detector_id = None + ckey = get_key_from_mission_info(db, "ccol", "NONE", instr, mode) + if ckey != "NONE" and ckey in datatable.columns.names: + detector_id = datatable.field(ckey) + + det_number = None if detector_id is None else list(set(detector_id)) + + timezero = np.longdouble(0.0) + if "TIMEZERO" in header: + timezero = np.longdouble(header["TIMEZERO"]) + + ev_list += timezero + + t_start = ev_list[0] + t_stop = ev_list[-1] + if "TSTART" in header: + t_start = np.longdouble(header["TSTART"]) + if "TSTOP" in header: + t_stop = np.longdouble(header["TSTOP"]) + + mjdref = np.longdouble(high_precision_keyword_read(header, "MJDREF")) + + # Read and handle GTI extension + accepted_gtistrings = gtistring.split(",") + + if gti_file is None: + # Select first GTI with accepted name + try: + gti_list = get_gti_from_all_extensions( + hdulist, + accepted_gtistrings=accepted_gtistrings, + det_numbers=det_number, + ) + except Exception: # pragma: no cover + warnings.warn( + "No extensions found with a valid name. " + "Please check the `accepted_gtistrings` values.", + AstropyUserWarning, + ) + gti_list = np.array([[t_start, t_stop]], dtype=np.longdouble) + else: + gti_list = load_gtis(gti_file, gtistring) + + pi_col = get_key_from_mission_info(db, "ecol", "PI", instr, mode) + if additional_columns is None: + additional_columns = [pi_col] + if pi_col not in additional_columns: + additional_columns.append(pi_col) + # If data were already calibrated, use this! + additional_data = _get_additional_data(datatable, additional_columns) + if "energy" not in additional_columns: + additional_data.update(_get_additional_data(datatable, ["energy"], warn_if_missing=False)) + del additional_columns + + hdulist.close() + # Sort event list + if not is_sorted(ev_list): + warnings.warn("Warning: input data are not sorted. Sorting them for you.") + order = np.argsort(ev_list) + ev_list = ev_list[order] + if detector_id is not None: + detector_id = detector_id[order] + + additional_data = order_list_of_arrays(additional_data, order) + + pi = additional_data[pi_col].astype(np.float32) + cal_pi = pi + + # EventReadOutput() is an empty class. We will assign a number of attributes to + # it, like the arrival times of photons, the energies, and some information + # from the header. + returns = EventReadOutput() + + returns.ev_list = ev_list + returns.gti_list = gti_list + returns.pi_list = pi + returns.cal_pi_list = cal_pi + if "energy" in additional_data and np.any(additional_data["energy"] > 0.0): + returns.energy_list = additional_data["energy"] + else: + try: + returns.energy_list = rough_calibration(cal_pi, mission) + except ValueError: + returns.energy_list = None + returns.instr = instr.lower() + returns.mission = mission.lower() + returns.mjdref = mjdref + returns.header = header.tostring() + returns.additional_data = additional_data + returns.t_start = t_start + returns.t_stop = t_stop + returns.detector_id = detector_id + returns.ephem = ephem + returns.timeref = timeref + returns.timesys = timesys + + return returns
+ + + +class EventReadOutput: + def __init__(self): + pass + + +
+[docs] +def mkdir_p(path): # pragma: no cover + """Safe ``mkdir`` function, found at [so-mkdir]_. + + Parameters + ---------- + path : str + The absolute path to the directory to be created + + Notes + ----- + .. [so-mkdir] http://stackoverflow.com/questions/600268/mkdir-p-functionality-in-python + """ + import os + + os.makedirs(path, exist_ok=True)
+ + + +
+[docs] +def read_header_key(fits_file, key, hdu=1): + """Read the header key key from HDU hdu of the file ``fits_file``. + + Parameters + ---------- + fits_file: str + The file name and absolute path to the event file. + + key: str + The keyword to be read + + Other Parameters + ---------------- + hdu : int + Index of the HDU extension from which the header key to be read. + + Returns + ------- + value : object + The value stored under ``key`` in ``fits_file`` + """ + + hdulist = fits.open(fits_file, ignore_missing_end=True) + try: + value = hdulist[hdu].header[key] + except KeyError: # pragma: no cover + value = "" + hdulist.close() + return value
+ + + +
+[docs] +def ref_mjd(fits_file, hdu=1): + """Read ``MJDREFF``, ``MJDREFI`` or, if failed, ``MJDREF``, from the FITS header. + + Parameters + ---------- + fits_file : str + The file name and absolute path to the event file. + + Other Parameters + ---------------- + hdu : int + Index of the HDU extension from which the header key to be read. + + Returns + ------- + mjdref : numpy.longdouble + the reference MJD + """ + + if isinstance(fits_file, Iterable) and not is_string(fits_file): # pragma: no cover + fits_file = fits_file[0] + logging.info("opening %s" % fits_file) + + hdulist = fits.open(fits_file, ignore_missing_end=True) + + ref_mjd_val = high_precision_keyword_read(hdulist[hdu].header, "MJDREF") + + hdulist.close() + return ref_mjd_val
+ + + +
+[docs] +def common_name(str1, str2, default="common"): + """Strip two strings of the letters not in common. + + Filenames must be of same length and only differ by a few letters. + + Parameters + ---------- + str1 : str + str2 : str + + Other Parameters + ---------------- + default : str + The string to return if ``common_str`` is empty + + Returns + ------- + common_str : str + A string containing the parts of the two names in common + + """ + if not len(str1) == len(str2): + return default + common_str = "" + # Extract the MP root of the name (in case they're event files) + + for i, letter in enumerate(str1): + if str2[i] == letter: + common_str += letter + # Remove leading and trailing underscores and dashes + common_str = common_str.rstrip("_").rstrip("-") + common_str = common_str.lstrip("_").lstrip("-") + if common_str == "": + common_str = default + logging.debug("common_name: %s %s -> %s" % (str1, str2, common_str)) + return common_str
+ + + +
+[docs] +def split_numbers(number, shift=0): + """ + Split high precision number(s) into doubles. + + You can specify the number of shifts to move the decimal point. + + Parameters + ---------- + number: long double + The input high precision number which is to be split + + Other parameters + ---------------- + shift: integer + Move the cut by `shift` decimal points to the right (left if negative) + + Returns + ------- + number_I: double + First part of high precision number + + number_F: double + Second part of high precision number + + Examples + -------- + >>> n = 12.34 + >>> i, f = split_numbers(n) + >>> i == 12 + True + >>> np.isclose(f, 0.34) + True + >>> split_numbers(n, 2) + (12.34, 0.0) + >>> split_numbers(n, -1) + (10.0, 2.34) + """ + if isinstance(number, Iterable): + number = np.asarray(number) + number *= 10**shift + mods = [math.modf(n) for n in number] + number_F = [f for f, _ in mods] + number_I = [i for _, i in mods] + else: + number *= 10**shift + number_F, number_I = math.modf(number) + + return np.double(number_I) / 10**shift, np.double(number_F) / 10**shift
+ + + +
+[docs] +def savefig(filename, **kwargs): + """ + Save a figure plotted by ``matplotlib``. + + Note : This function is supposed to be used after the ``plot`` + function. Otherwise it will save a blank image with no plot. + + Parameters + ---------- + filename : str + The name of the image file. Extension must be specified in the + file name. For example filename with `.png` extension will give a + rasterized image while ``.pdf`` extension will give a vectorized + output. + + kwargs : keyword arguments + Keyword arguments to be passed to ``savefig`` function of + ``matplotlib.pyplot``. For example use `bbox_inches='tight'` to + remove the undesirable whitepace around the image. + """ + + if not plt.fignum_exists(1): + utils.simon( + "use ``plot`` function to plot the image first and " + "then use ``savefig`` to save the figure." + ) + + plt.savefig(filename, **kwargs)
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/lightcurve.html b/_modules/stingray/lightcurve.html new file mode 100644 index 000000000..70a1d3ff2 --- /dev/null +++ b/_modules/stingray/lightcurve.html @@ -0,0 +1,2209 @@ + + + + + + + stingray.lightcurve — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.lightcurve

+"""
+Definition of :class::class:`Lightcurve`.
+
+:class::class:`Lightcurve` is used to create light curves out of photon counting data
+or to save existing light curves in a class that's easy to use.
+"""
+import os
+import copy
+import logging
+import warnings
+import pickle
+from collections.abc import Iterable
+
+import numpy as np
+import matplotlib.pyplot as plt
+from astropy.table import Table
+from astropy.time import TimeDelta, Time
+from astropy import units as u
+
+from stingray.base import StingrayTimeseries
+import stingray.utils as utils
+from stingray.exceptions import StingrayError
+from stingray.gti import (
+    bin_intervals_from_gtis,
+    check_gtis,
+    create_gti_mask,
+    cross_two_gtis,
+    gti_border_bins,
+    join_gtis,
+)
+from stingray.utils import (
+    assign_value_if_none,
+    baseline_als,
+    poisson_symmetrical_errors,
+    simon,
+    interpret_times,
+    is_sorted,
+    check_isallfinite,
+)
+from stingray.io import lcurve_from_fits
+from stingray import bexvar
+
+__all__ = ["Lightcurve"]
+
+valid_statistics = ["poisson", "gauss", None]
+
+
+
+[docs] +class Lightcurve(StingrayTimeseries): + """ + Make a light curve object from an array of time stamps and an + array of counts. + + Parameters + ---------- + time: Iterable, `:class:astropy.time.Time`, or `:class:astropy.units.Quantity` object + A list or array of time stamps for a light curve. Must be a type that + can be cast to `:class:np.array` or `:class:List` of floats, or that + has a `value` attribute that does (e.g. a + `:class:astropy.units.Quantity` or `:class:astropy.time.Time` object). + + counts: iterable, optional, default ``None`` + A list or array of the counts in each bin corresponding to the + bins defined in `time` (note: use ``input_counts=False`` to + input the count range, i.e. counts/second, otherwise use + counts/bin). + + err: iterable, optional, default ``None`` + A list or array of the uncertainties in each bin corresponding to + the bins defined in ``time`` (note: use ``input_counts=False`` to + input the count rage, i.e. counts/second, otherwise use + counts/bin). If ``None``, we assume the data is poisson distributed + and calculate the error from the average of the lower and upper + 1-sigma confidence intervals for the Poissonian distribution with + mean equal to ``counts``. + + input_counts: bool, optional, default True + If True, the code assumes that the input data in ``counts`` + is in units of counts/bin. If False, it assumes the data + in ``counts`` is in counts/second. + + gti: 2-d float array, default ``None`` + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals. They are *not* applied to the data by default. + They will be used by other methods to have an indication of the + "safe" time intervals to use during analysis. + + err_dist: str, optional, default ``None`` + Statistical distribution used to calculate the + uncertainties and other statistical values appropriately. + Default makes no assumptions and keep errors equal to zero. + + bg_counts: iterable,`:class:numpy.array` or `:class:List` of floats, optional, default ``None`` + A list or array of background counts detected in the background extraction region + in each bin corresponding to the bins defined in `time`. + + bg_ratio: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` + A list or array of source region area to background region area ratio in each bin. These are + factors by which the `bg_counts` should be scaled to estimate background counts within the + source aperture. + + frac_exp: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` + A list or array of fractional exposers in each bin. + + mjdref: float + MJD reference (useful in most high-energy mission data) + + dt: float or array of floats. Default median(diff(time)) + Time resolution of the light curve. Can be an array of the same dimension + as ``time`` specifying width of each bin. + + skip_checks: bool + If True, the user specifies that data are already sorted and contain no + infinite or nan points. Use at your own risk + + low_memory: bool + If True, all the lazily evaluated attribute (e.g., countrate and + countrate_err if input_counts is True) will _not_ be stored in memory, + but calculated every time they are requested. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + header : str + The full header of the original FITS file, if relevant + + **other_kw : + Used internally. Any other keyword arguments will be ignored + + Attributes + ---------- + time: numpy.ndarray + The array of midpoints of time bins. + + bin_lo: numpy.ndarray + The array of lower time stamp of time bins. + + bin_hi: numpy.ndarray + The array of higher time stamp of time bins. + + counts: numpy.ndarray + The counts per bin corresponding to the bins in ``time``. + + counts_err: numpy.ndarray + The uncertainties corresponding to ``counts`` + + bg_counts: numpy.ndarray + The background counts corresponding to the bins in `time`. + + bg_ratio: numpy.ndarray + The ratio of source region area to background region area corresponding to each bin. + + frac_exp: numpy.ndarray + The fractional exposers in each bin. + + countrate: numpy.ndarray + The counts per second in each of the bins defined in ``time``. + + countrate_err: numpy.ndarray + The uncertainties corresponding to ``countrate`` + + meanrate: float + The mean count rate of the light curve. + + meancounts: float + The mean counts of the light curve. + + n: int + The number of data points in the light curve. + + dt: float or array of floats + The time resolution of the light curve. + + mjdref: float + MJD reference date (``tstart`` / 86400 gives the date in MJD at the + start of the observation) + + tseg: float + The total duration of the light curve. + + tstart: float + The start time of the light curve. + + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals. They indicate the "safe" time intervals + to be used during the analysis of the light curve. + + err_dist: string + Statistic of the Lightcurve, it is used to calculate the + uncertainties and other statistical values appropriately. + It propagates to Spectrum classes. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + detector_id : iterable + The detector that recoded each photon, if relevant (e.g. XMM, Chandra) + + header : str + The full header of the original FITS file, if relevant + + """ + + main_array_attr = "time" + + def __init__( + self, + time=None, + counts=None, + err=None, + input_counts=True, + gti=None, + err_dist="poisson", + bg_counts=None, + bg_ratio=None, + frac_exp=None, + mjdref=0, + dt=None, + skip_checks=False, + low_memory=False, + mission=None, + instr=None, + header=None, + **other_kw, + ): + StingrayTimeseries.__init__(self) + + if other_kw != {}: + warnings.warn(f"Unrecognized keywords: {list(other_kw.keys())}") + + self._time = None + self._mask = None + self._counts = None + self._counts_err = None + self._countrate = None + self._countrate_err = None + self._meanrate = None + self._meancounts = None + self._bin_lo = None + self._bin_hi = None + self._n = None + self.mission = mission + self.instr = instr + self.header = header + self.dt = dt + + self.input_counts = input_counts + self.low_memory = low_memory + + self.mjdref = mjdref + + if time is None or len(time) == 0: + warnings.warn("No time values passed to Lightcurve object!") + return + + if counts is None or np.size(time) != np.size(counts): + raise StingrayError( + "Empty or invalid counts array. Time and counts array should have the same length." + "If you are providing event data, please use Lightcurve.make_lightcurve()" + ) + + time, mjdref = interpret_times(time, mjdref=mjdref) + self.mjdref = mjdref + + time = np.asarray(time) + counts = np.asarray(counts) + + if err is not None: + err = np.asarray(err) + + if not skip_checks: + time, counts, err = self.initial_optional_checks(time, counts, err, gti=gti) + + if err_dist.lower() not in valid_statistics: + # err_dist set can be increased with other statistics + raise StingrayError( + "Statistic not recognized." "Please select one of these: ", + "{}".format(valid_statistics), + ) + elif not err_dist.lower() == "poisson": + simon( + "Stingray only uses poisson err_dist at the moment. " + "All analysis in the light curve will assume Poisson " + "errors. " + "Sorry for the inconvenience." + ) + + self._time = time + + if dt is None and time.size > 1: + logging.info( + "Computing the bin time ``dt``. This can take " + "time. If you know the bin time, please specify it" + " at light curve creation" + ) + dt = np.median(np.diff(self._time)) + elif dt is None and time.size == 1: + warnings.warn( + "Only one time bin and no dt specified. Setting dt=1. " + "Please specify dt if you want to use a different value" + ) + dt = 1.0 + + self.dt = dt + + if isinstance(dt, Iterable): + warnings.warn( + "Some functionalities of Stingray Lightcurve will not work when `dt` is Iterable" + ) + + self.err_dist = err_dist + + if isinstance(self.dt, Iterable): + self.tstart = self._time[0] - 0.5 * self.dt[0] + self.tseg = self._time[-1] - self._time[0] + self.dt[-1] / 2 + self.dt[0] / 2 + else: + self.tstart = self._time[0] - 0.5 * self.dt + self.tseg = self._time[-1] - self._time[0] + self.dt + + self._gti = None + if gti is not None: + self._gti = np.asarray(gti) + + if input_counts: + self._counts = np.asarray(counts) + self._counts_err = err + else: + self._countrate = np.asarray(counts) + self._countrate_err = err + + if bg_counts is not None: + self.bg_counts = np.asarray(bg_counts) + else: + self.bg_counts = None + if bg_ratio is not None: + self.bg_ratio = np.asarray(bg_ratio) + else: + self.bg_ratio = None + if frac_exp is not None: + self.frac_exp = np.asarray(frac_exp) + else: + self.frac_exp = None + + if not skip_checks: + self.check_lightcurve() + if os.name == "nt": + warnings.warn( + "On Windows, the size of an integer is 32 bits. " + "To avoid integer overflow, I'm converting the input array to float" + ) + counts = counts.astype(float) + + @property + def time(self): + return self._time + + @time.setter + def time(self, value): + value = np.asarray(value) + if not value.shape == self.time.shape: + raise ValueError("Can only assign new times of the same shape as " "the original array") + self._time = value + self._bin_lo = None + self._bin_hi = None + + @property + def gti(self): + if self._gti is None: + self._gti = np.asarray([[self.tstart, self.tstart + self.tseg]]) + return self._gti + + @gti.setter + def gti(self, value): + value = np.asarray(value) + self._gti = value + self._mask = None + + @property + def mask(self): + if self._mask is None: + self._mask = create_gti_mask(self.time, self.gti, dt=self.dt) + return self._mask + + @property + def n(self): + if self._n is None: + self._n = self.counts.shape[0] + return self._n + + @property + def meanrate(self): + if self._meanrate is None: + self._meanrate = np.mean(self.countrate[self.mask]) + return self._meanrate + + @property + def meancounts(self): + if self._meancounts is None: + self._meancounts = np.mean(self.counts[self.mask]) + return self._meancounts + + @property + def counts(self): + counts = self._counts + if self._counts is None: + counts = self._countrate * self.dt + # If not in low-memory regime, cache the values + if not self.low_memory or self.input_counts: + self._counts = counts + + return counts + + @counts.setter + def counts(self, value): + value = np.asarray(value) + if not value.shape == self.counts.shape: + raise ValueError( + "Can only assign new counts array of the same " "shape as the original array" + ) + self._counts = value + self._countrate = None + self._meancounts = None + self._meancountrate = None + self.input_counts = True + + @property + def counts_err(self): + counts_err = self._counts_err + if counts_err is None and self._countrate_err is not None: + counts_err = self._countrate_err * self.dt + elif counts_err is None: + if self.err_dist.lower() == "poisson": + counts_err = poisson_symmetrical_errors(self.counts) + else: + counts_err = np.zeros_like(self.counts) + + # If not in low-memory regime, cache the values ONLY if they have + # been changed! + if self._counts_err is not counts_err: + if not self.low_memory or self.input_counts: + self._counts_err = counts_err + + return counts_err + + @counts_err.setter + def counts_err(self, value): + value = np.asarray(value) + if not value.shape == self.counts.shape: + raise ValueError( + "Can only assign new error array of the same " "shape as the original array" + ) + self._counts_err = value + self._countrate_err = None + + @property + def countrate(self): + countrate = self._countrate + if countrate is None: + countrate = self._counts / self.dt + # If not in low-memory regime, cache the values + if not self.low_memory or not self.input_counts: + self._countrate = countrate + + return countrate + + @countrate.setter + def countrate(self, value): + value = np.asarray(value) + if not value.shape == self.countrate.shape: + raise ValueError( + "Can only assign new countrate array of the same " "shape as the original array" + ) + self._countrate = value + self._counts = None + self._meancounts = None + self._meancountrate = None + self.input_counts = False + + @property + def countrate_err(self): + countrate_err = self._countrate_err + if countrate_err is None and self._counts_err is not None: + countrate_err = self._counts_err / self.dt + elif countrate_err is None: + countrate_err = np.zeros(np.size(self.time)) + + # If not in low-memory regime, cache the values ONLY if they have + # been changed! + if countrate_err is not self._countrate_err: + if not self.low_memory or not self.input_counts: + self._countrate_err = countrate_err + + return countrate_err + + @countrate_err.setter + def countrate_err(self, value): + value = np.asarray(value) + if not value.shape == self.countrate.shape: + raise ValueError( + "Can only assign new error array of the same " "shape as the original array" + ) + self._countrate_err = value + self._counts_err = None + + @property + def bin_lo(self): + if self._bin_lo is None: + self._bin_lo = self.time - 0.5 * self.dt + return self._bin_lo + + @property + def bin_hi(self): + if self._bin_hi is None: + self._bin_hi = self.time + 0.5 * self.dt + return self._bin_hi + + def initial_optional_checks(self, time, counts, err, gti=None): + logging.info( + "Checking if light curve is well behaved. This " + "can take time, so if you are sure it is already " + "sorted, specify skip_checks=True at light curve " + "creation." + ) + + mask = None + if gti is not None: + mask = create_gti_mask(time, gti, dt=0) + # Check if there are non-finite values in the light curve + # This will result in a warning if GTIs are defined and non-finite points + # are outside the GTIs, otherwise an error. + # To do this, we use this ``nonfinite_flag`` variable and a ``nonfinite`` list. + # This list will contain all arrays with non-finite points inside GTIs. + # If the nonfinite_flag is True but the nonfinite list is empty, then there are no non-finite + # points in the GTIs. + nonfinite_flag = False + nonfinite = [] + + for arr, name in zip([time, counts, err], ["time", "counts", "err"]): + if arr is None: + continue + if not check_isallfinite(arr): + nonfinite_flag = True + if mask is None or (not check_isallfinite(arr[mask])): + nonfinite.append(name) + + if len(nonfinite) > 0: + label = ", ".join(nonfinite) + raise ValueError(f"Nonfinite values inside GTIs in {label}") + + if nonfinite_flag: + warnings.warn("There are non-finite points in the data, but they are outside GTIs. ") + + logging.info("Checking if light curve is sorted.") + unsorted = not is_sorted(time) + + if unsorted: + logging.warning("The light curve is unsorted.") + return time, counts, err + +
+[docs] + def check_lightcurve(self): + """Make various checks on the lightcurve. + + It can be slow, use it if you are not sure about your + input data. + """ + # Issue a warning if the input time iterable isn't regularly spaced, + # i.e. the bin sizes aren't equal throughout. + + check_gtis(self.gti) + + idxs = np.searchsorted(self.time, self.gti) + uneven = isinstance(self.dt, Iterable) + + if not uneven: + for idx in range(idxs.shape[0]): + istart, istop = idxs[idx, 0], min(idxs[idx, 1], self.time.size - 1) + + local_diff = np.diff(self.time[istart:istop]) + if np.any(~np.isclose(local_diff, self.dt)): + uneven = True + + break + if uneven: + simon( + "Bin sizes in input time array aren't equal throughout! " + "This could cause problems with Fourier transforms. " + "Please make the input time evenly sampled." + "Only use with LombScargleCrossspectrum, LombScarglePowerspectrum and QPO using GPResult" + )
+ + + def _operation_with_other_lc(self, other, operation): + """ + Helper method to codify an operation of one light curve with another (e.g. add, subtract, ...). + Takes into account the GTIs correctly, and returns a new :class:`Lightcurve` object. + + Parameters + ---------- + other : :class:`Lightcurve` object + A second light curve object + + operation : function + An operation between the :class:`Lightcurve` object calling this method, and ``other``, + operating on the ``counts`` attribute in each :class:`Lightcurve` object + + Returns + ------- + lc_new : Lightcurve object + The new light curve calculated in ``operation`` + """ + if self.mjdref != other.mjdref: + warnings.warn("MJDref is different in the two light curves") + other = other.change_mjdref(self.mjdref) + + common_gti = cross_two_gtis(self.gti, other.gti) + mask_self = create_gti_mask(self.time, common_gti, dt=self.dt) + mask_other = create_gti_mask(other.time, common_gti, dt=other.dt) + + # ValueError is raised by Numpy while asserting np.equal over arrays + # with different dimensions. + try: + diff = np.abs((self.time[mask_self] - other.time[mask_other])) + assert np.all(diff < self.dt / 100) + except (ValueError, AssertionError): + raise ValueError( + "GTI-filtered time arrays of both light curves " + "must be of same dimension and equal." + ) + + new_time = self.time[mask_self] + new_counts = operation(self.counts[mask_self], other.counts[mask_other]) + + if self.err_dist.lower() != other.err_dist.lower(): + simon( + "Lightcurves have different statistics!" + "We are setting the errors to zero to avoid complications." + ) + new_counts_err = np.zeros_like(new_counts) + elif self.err_dist.lower() in valid_statistics: + new_counts_err = np.sqrt( + np.add(self.counts_err[mask_self] ** 2, other.counts_err[mask_other] ** 2) + ) + # More conditions can be implemented for other statistics + else: + raise StingrayError( + "Statistics not recognized." + " Please use one of these: " + "{}".format(valid_statistics) + ) + + lc_new = Lightcurve( + new_time, + new_counts, + err=new_counts_err, + gti=common_gti, + mjdref=self.mjdref, + skip_checks=True, + dt=self.dt, + ) + + return lc_new + + def __add__(self, other): + """ + Add the counts of two light curves element by element, assuming the light curves + have the same time array. + + This magic method adds two :class:`Lightcurve` objects having the same time + array such that the corresponding counts arrays get summed up. + + GTIs are crossed, so that only common intervals are saved. + + Examples + -------- + >>> time = [5, 10, 15] + >>> count1 = [300, 100, 400] + >>> count2 = [600, 1200, 800] + >>> gti1 = [[0, 20]] + >>> gti2 = [[0, 25]] + >>> lc1 = Lightcurve(time, count1, gti=gti1, dt=5) + >>> lc2 = Lightcurve(time, count2, gti=gti2, dt=5) + >>> lc = lc1 + lc2 + >>> np.allclose(lc.counts, [ 900, 1300, 1200]) + True + """ + + return self._operation_with_other_lc(other, np.add) + + def __sub__(self, other): + """ + Subtract the counts/flux of one light curve from the counts/flux of another + light curve element by element, assuming the ``time`` arrays of the light curves + match exactly. + + This magic method takes two :class:`Lightcurve` objects having the same + ``time`` array and subtracts the ``counts`` of one :class:`Lightcurve` with + that of another, while also updating ``countrate``, ``counts_err`` and ``countrate_err`` + correctly. + + GTIs are crossed, so that only common intervals are saved. + + Examples + -------- + >>> time = [10, 20, 30] + >>> count1 = [600, 1200, 800] + >>> count2 = [300, 100, 400] + >>> gti1 = [[0, 35]] + >>> gti2 = [[5, 40]] + >>> lc1 = Lightcurve(time, count1, gti=gti1, dt=10) + >>> lc2 = Lightcurve(time, count2, gti=gti2, dt=10) + >>> lc = lc1 - lc2 + >>> np.allclose(lc.counts, [ 300, 1100, 400]) + True + """ + + return self._operation_with_other_lc(other, np.subtract) + + def __neg__(self): + """ + Implement the behavior of negation of the light curve objects. + + The negation operator ``-`` is supposed to invert the sign of the count + values of a light curve object. + + Examples + -------- + >>> time = [1, 2, 3] + >>> count1 = [100, 200, 300] + >>> count2 = [200, 300, 400] + >>> lc1 = Lightcurve(time, count1) + >>> lc2 = Lightcurve(time, count2) + >>> lc_new = -lc1 + lc2 + >>> np.allclose(lc_new.counts, [100, 100, 100]) + True + """ + lc_new = Lightcurve( + self.time, + -1 * self.counts, + err=self.counts_err, + gti=self.gti, + mjdref=self.mjdref, + skip_checks=True, + dt=self.dt, + ) + + return lc_new + + def __len__(self): + """ + Return the number of time bins of a light curve. + + This method implements overrides the ``len`` function for a :class:`Lightcurve` + object and returns the length of the ``time`` array (which should be equal to the + length of the ``counts`` and ``countrate`` arrays). + + Examples + -------- + >>> time = [1, 2, 3] + >>> count = [100, 200, 300] + >>> lc = Lightcurve(time, count, dt=1) + >>> len(lc) + 3 + """ + return self.n + + def __getitem__(self, index): + """ + Return the corresponding count value at the index or a new :class:`Lightcurve` + object upon slicing. + + This method adds functionality to retrieve the count value at + a particular index. This also can be used for slicing and generating + a new :class:`Lightcurve` object. GTIs are recalculated based on the new light + curve segment + + If the slice object is of kind ``start:stop:step``, GTIs are also sliced, + and rewritten as ``zip(time - self.dt /2, time + self.dt / 2)`` + + Parameters + ---------- + index : int or slice instance + Index value of the time array or a slice object. + + Examples + -------- + >>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9] + >>> count = [11, 22, 33, 44, 55, 66, 77, 88, 99] + >>> lc = Lightcurve(time, count, dt=1) + >>> np.isclose(lc[2], 33) + True + >>> np.allclose(lc[:2].counts, [11, 22]) + True + """ + if isinstance(index, (int, np.integer)): + return self.counts[index] + elif isinstance(index, slice): + start = assign_value_if_none(index.start, 0) + stop = assign_value_if_none(index.stop, len(self.counts)) + step = assign_value_if_none(index.step, 1) + + new_counts = self.counts[start:stop:step] + new_time = self.time[start:stop:step] + + new_gti = [[self.time[start] - 0.5 * self.dt, self.time[stop - 1] + 0.5 * self.dt]] + new_gti = np.asarray(new_gti) + if step > 1: + new_gt1 = np.array(list(zip(new_time - self.dt / 2, new_time + self.dt / 2))) + new_gti = cross_two_gtis(new_gti, new_gt1) + new_gti = cross_two_gtis(self.gti, new_gti) + + lc = Lightcurve( + new_time, + new_counts, + mjdref=self.mjdref, + gti=new_gti, + dt=self.dt, + skip_checks=True, + err_dist=self.err_dist, + ) + if self._counts_err is not None: + lc._counts_err = self._counts_err[start:stop:step] + return lc + else: + raise IndexError("The index must be either an integer or a slice " "object !") + + def __eq__(self, other_lc): + """ + Compares two :class:`Lightcurve` objects. + + Light curves are equal only if their counts as well as times at which those counts occur equal. + + Examples + -------- + >>> time = [1, 2, 3] + >>> count1 = [100, 200, 300] + >>> count2 = [100, 200, 300] + >>> lc1 = Lightcurve(time, count1, dt=1) + >>> lc2 = Lightcurve(time, count2, dt=1) + >>> lc1 == lc2 + True + """ + if not isinstance(other_lc, Lightcurve): + raise ValueError("Lightcurve can only be compared with a Lightcurve Object") + if np.allclose(self.time, other_lc.time) and np.allclose(self.counts, other_lc.counts): + return True + return False + +
+[docs] + def baseline(self, lam, p, niter=10, offset_correction=False): + """Calculate the baseline of the light curve, accounting for GTIs. + + Parameters + ---------- + lam : float + "smoothness" parameter. Larger values make the baseline stiffer + Typically ``1e2 < lam < 1e9`` + p : float + "asymmetry" parameter. Smaller values make the baseline more + "horizontal". Typically ``0.001 < p < 0.1``, but not necessary. + + Other parameters + ---------------- + offset_correction : bool, default False + by default, this method does not align to the running mean of the + light curve, but it goes below the light curve. Setting align to + True, an additional step is done to shift the baseline so that it + is shifted to the middle of the light curve noise distribution. + + + Returns + ------- + baseline : numpy.ndarray + An array with the baseline of the light curve + """ + baseline = np.zeros_like(self.time) + for g in self.gti: + good = create_gti_mask(self.time, [g], dt=self.dt) + _, baseline[good] = baseline_als( + self.time[good], + self.counts[good], + lam, + p, + niter, + offset_correction=offset_correction, + return_baseline=True, + ) + + return baseline
+ + +
+[docs] + @staticmethod + def make_lightcurve(toa, dt, tseg=None, tstart=None, gti=None, mjdref=0, use_hist=False): + """ + Make a light curve out of photon arrival times, with a given time resolution ``dt``. + Note that ``dt`` should be larger than the native time resolution of the instrument + that has taken the data. + + Parameters + ---------- + toa: iterable + list of photon arrival times + + dt: float + time resolution of the light curve (the bin width) + + tseg: float, optional, default ``None`` + The total duration of the light curve. + If this is ``None``, then the total duration of the light curve will + be the interval between the arrival between either the first and the last + gti boundary or, if gti is not set, the first and the last photon in ``toa``. + + **Note**: If ``tseg`` is not divisible by ``dt`` (i.e. if ``tseg``/``dt`` is + not an integer number), then the last fractional bin will be + dropped! + + tstart: float, optional, default ``None`` + The start time of the light curve. + If this is ``None``, either the first gti boundary or, if not available, + the arrival time of the first photon will be used + as the start time of the light curve. + + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + use_hist : bool + Use ``np.histogram`` instead of ``np.bincounts``. Might be advantageous + for very short datasets. + + Returns + ------- + lc: :class:`Lightcurve` object + A :class:`Lightcurve` object with the binned light curve + """ + toa, mjdref = interpret_times(toa, mjdref=mjdref) + + toa = np.sort(np.asarray(toa)) + # tstart is an optional parameter to set a starting time for + # the light curve in case this does not coincide with the first photon + if tstart is None: + # if tstart is not set, assume light curve starts with first photon + # or the first gti if is set + tstart = toa[0] + if gti is not None: + tstart = np.min(gti) + + # compute the number of bins in the light curve + # for cases where tseg/dt is not integer. + # TODO: check that this is always consistent and that we + # are not throwing away good events. + if tseg is None: + tseg = toa[-1] - tstart + if gti is not None: + tseg = np.max(gti) - tstart + + logging.info("make_lightcurve: tseg: " + str(tseg)) + + timebin = int(tseg / dt) + # If we are missing the next bin by just 1%, let's round up: + if tseg / dt - timebin >= 0.99: + timebin += 1 + + logging.info("make_lightcurve: timebin: " + str(timebin)) + + tend = tstart + timebin * dt + good = (tstart <= toa) & (toa < tend) + if not use_hist: + binned_toas = ((toa[good] - tstart) // dt).astype(np.int64) + counts = np.bincount(binned_toas, minlength=timebin) + time = tstart + np.arange(0.5, 0.5 + len(counts)) * dt + else: + histbins = np.arange(tstart, tend + dt, dt) + counts, histbins = np.histogram(toa[good], bins=histbins) + time = histbins[:-1] + 0.5 * dt + + return Lightcurve( + time, counts, gti=gti, mjdref=mjdref, dt=dt, skip_checks=True, err_dist="poisson" + )
+ + +
+[docs] + def rebin(self, dt_new=None, f=None, method="sum"): + """ + Rebin the light curve to a new time resolution. While the new + resolution need not be an integer multiple of the previous time + resolution, be aware that if it is not, the last bin will be cut + off by the fraction left over by the integer division. + + Parameters + ---------- + dt_new: float + The new time resolution of the light curve. Must be larger than + the time resolution of the old light curve! + + method: {``sum`` | ``mean`` | ``average``}, optional, default ``sum`` + This keyword argument sets whether the counts in the new bins + should be summed or averaged. + + Other Parameters + ---------------- + f: float + the rebin factor. If specified, it substitutes ``dt_new`` with + ``f*self.dt`` + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with the new, binned light curve. + """ + + if f is None and dt_new is None: + raise ValueError("You need to specify at least one between f and " "dt_new") + elif f is not None: + dt_new = f * self.dt + + if dt_new < self.dt: + raise ValueError("New time resolution must be larger than " "old time resolution!") + + bin_time, bin_counts, bin_err = [], [], [] + gti_new = [] + + # If it does not exist, we create it on the spot + self.counts_err + + for g in self.gti: + if g[1] - g[0] < dt_new: + continue + else: + # find start and end of GTI segment in data + start_ind = self.time.searchsorted(g[0]) + end_ind = self.time.searchsorted(g[1]) + + t_temp = self.time[start_ind:end_ind] + c_temp = self.counts[start_ind:end_ind] + + e_temp = self.counts_err[start_ind:end_ind] + + bin_t, bin_c, bin_e, _ = utils.rebin_data( + t_temp, c_temp, dt_new, yerr=e_temp, method=method + ) + + bin_time.extend(bin_t) + bin_counts.extend(bin_c) + bin_err.extend(bin_e) + gti_new.append(g) + + if len(gti_new) == 0: + raise ValueError("No valid GTIs after rebin.") + + lc_new = Lightcurve( + bin_time, + bin_counts, + err=bin_err, + mjdref=self.mjdref, + dt=dt_new, + gti=gti_new, + skip_checks=True, + ) + return lc_new
+ + +
+[docs] + def join(self, other, skip_checks=False): + """ + Join two lightcurves into a single object. + + The new :class:`Lightcurve` object will contain time stamps from both the + objects. The ``counts`` and ``countrate`` attributes in the resulting object + will contain the union of the non-overlapping parts of the two individual objects, + or the average in case of overlapping ``time`` arrays of both :class:`Lightcurve` objects. + + Good Time Intervals are also joined. + + Note : Ideally, the ``time`` array of both lightcurves should not overlap. + + Parameters + ---------- + other : :class:`Lightcurve` object + The other :class:`Lightcurve` object which is supposed to be joined with. + skip_checks: bool + If True, the user specifies that data are already sorted and + contain no infinite or nan points. Use at your own risk. + + Returns + ------- + lc_new : :class:`Lightcurve` object + The resulting :class:`Lightcurve` object. + + Examples + -------- + >>> time1 = [5, 10, 15] + >>> count1 = [300, 100, 400] + >>> time2 = [20, 25, 30] + >>> count2 = [600, 1200, 800] + >>> lc1 = Lightcurve(time1, count1, dt=5) + >>> lc2 = Lightcurve(time2, count2, dt=5) + >>> lc = lc1.join(lc2) + >>> lc.time + array([ 5, 10, 15, 20, 25, 30]) + >>> np.allclose(lc.counts, [ 300, 100, 400, 600, 1200, 800]) + True + """ + if self.mjdref != other.mjdref: + warnings.warn("MJDref is different in the two light curves") + other = other.change_mjdref(self.mjdref) + + if self.dt != other.dt: + utils.simon("The two light curves have different bin widths.") + + if self.tstart < other.tstart: + first_lc = self + second_lc = other + else: + first_lc = other + second_lc = self + + if len(np.intersect1d(self.time, other.time) > 0): + utils.simon( + "The two light curves have overlapping time ranges. " + "In the common time range, the resulting count will " + "be the average of the counts in the two light " + "curves. If you wish to sum, use `lc_sum = lc1 + " + "lc2`." + ) + valid_err = False + + if self.err_dist.lower() != other.err_dist.lower(): + simon("Lightcurves have different statistics!" "We are setting the errors to zero.") + + elif self.err_dist.lower() in valid_statistics: + valid_err = True + # More conditions can be implemented for other statistics + else: + raise StingrayError( + "Statistics not recognized." + " Please use one of these: " + "{}".format(valid_statistics) + ) + + from collections import Counter + + counts = Counter() + counts_err = Counter() + + for i, time in enumerate(first_lc.time): + counts[time] = first_lc.counts[i] + counts_err[time] = first_lc.counts_err[i] + + for i, time in enumerate(second_lc.time): + if counts.get(time) is not None: # Common time + counts[time] = (counts[time] + second_lc.counts[i]) / 2 + counts_err[time] = np.sqrt( + ((counts_err[time] ** 2) + (second_lc.counts_err[i] ** 2)) / 2 + ) + + else: + counts[time] = second_lc.counts[i] + counts_err[time] = second_lc.counts_err[i] + + new_time = list(counts.keys()) + new_counts = list(counts.values()) + if valid_err: + new_counts_err = list(counts_err.values()) + else: + new_counts_err = np.zeros_like(new_counts) + + del [counts, counts_err] + + else: + new_time = np.concatenate([first_lc.time, second_lc.time]) + new_counts = np.concatenate([first_lc.counts, second_lc.counts]) + new_counts_err = np.concatenate([first_lc.counts_err, second_lc.counts_err]) + + new_time = np.asarray(new_time) + new_counts = np.asarray(new_counts) + new_counts_err = np.asarray(new_counts_err) + gti = join_gtis(self.gti, other.gti) + + lc_new = Lightcurve( + new_time, + new_counts, + err=new_counts_err, + gti=gti, + mjdref=self.mjdref, + dt=self.dt, + skip_checks=skip_checks, + ) + + return lc_new
+ + +
+[docs] + def truncate(self, start=0, stop=None, method="index"): + """ + Truncate a :class:`Lightcurve` object. + + This method takes a ``start`` and a ``stop`` point (either as indices, + or as times in the same unit as those in the ``time`` attribute, and truncates + all bins before ``start`` and after ``stop``, then returns a new :class:`Lightcurve` + object with the truncated light curve. + + Parameters + ---------- + start : int, default 0 + Index (or time stamp) of the starting point of the truncation. If no value is set + for the start point, then all points from the first element in the ``time`` array + are taken into account. + + stop : int, default ``None`` + Index (or time stamp) of the ending point (exclusive) of the truncation. If no + value of stop is set, then points including the last point in + the counts array are taken in count. + + method : {``index`` | ``time``}, optional, default ``index`` + Type of the start and stop values. If set to ``index`` then + the values are treated as indices of the counts array, or + if set to ``time``, the values are treated as actual time values. + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with truncated time and counts + arrays. + + Examples + -------- + >>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9] + >>> count = [10, 20, 30, 40, 50, 60, 70, 80, 90] + >>> lc = Lightcurve(time, count, dt=1) + >>> lc_new = lc.truncate(start=2, stop=8) + >>> np.allclose(lc_new.counts, [30, 40, 50, 60, 70, 80]) + True + >>> lc_new.time + array([3, 4, 5, 6, 7, 8]) + >>> # Truncation can also be done by time values + >>> lc_new = lc.truncate(start=6, method='time') + >>> lc_new.time + array([6, 7, 8, 9]) + >>> np.allclose(lc_new.counts, [60, 70, 80, 90]) + True + """ + + if not isinstance(method, str): + raise TypeError("method key word argument is not " "a string !") + + if method.lower() not in ["index", "time"]: + raise ValueError("Unknown method type " + method + ".") + + if method.lower() == "index": + new_lc = self._truncate_by_index(start, stop) + else: + new_lc = self._truncate_by_time(start, stop) + new_lc.tstart = new_lc.gti[0, 0] + new_lc.tseg = new_lc.gti[-1, 1] - new_lc.gti[0, 0] + return new_lc
+ + + def _truncate_by_index(self, start, stop): + """Private method for truncation using index values.""" + + new_lc = self.apply_mask(slice(start, stop)) + + dtstart = dtstop = new_lc.dt + if isinstance(self.dt, Iterable): + dtstart = self.dt[0] + dtstop = self.dt[-1] + + gti = cross_two_gtis( + self.gti, np.asarray([[new_lc.time[0] - 0.5 * dtstart, new_lc.time[-1] + 0.5 * dtstop]]) + ) + + new_lc.gti = gti + + return new_lc + + def _truncate_by_time(self, start, stop): + """Helper method for truncation using time values. + + Parameters + ---------- + start : float + start time for new light curve; all time bins before this time will be discarded + + stop : float + stop time for new light curve; all time bins after this point will be discarded + + Returns + ------- + new_lc : Lightcurve + A new :class:`Lightcurve` object with the truncated time bins + + """ + + if stop is not None: + if start > stop: + raise ValueError("start time must be less than stop time!") + + if not start == 0: + start = self.time.searchsorted(start) + + if stop is not None: + stop = self.time.searchsorted(stop) + + return self._truncate_by_index(start, stop) + +
+[docs] + def meta_attrs(self): + """Extends StingrayObject.meta_attrs to the specifics of Lightcurve.""" + attrs = super().meta_attrs() + sure_array = ["counts", "counts_err", "countrate", "countrate_err"] + for attr in sure_array: + if attr in attrs: + attrs.remove(attr) + return attrs
+ + +
+[docs] + def array_attrs(self): + """Extends StingrayObject.array_attrs to the specifics of Lightcurve.""" + attrs = super().array_attrs() + sure_array = ["counts", "counts_err", "countrate", "countrate_err"] + for attr in sure_array: + if attr not in attrs: + attrs.append(attr) + return attrs
+ + +
+[docs] + def split(self, min_gap, min_points=1): + """ + For data with gaps, it can sometimes be useful to be able to split + the light curve into separate, evenly sampled objects along those + data gaps. This method allows to do this: it finds data gaps of a + specified minimum size, and produces a list of new `Lightcurve` + objects for each contiguous segment. + + Parameters + ---------- + min_gap : float + The length of a data gap, in the same units as the `time` attribute + of the `Lightcurve` object. Any smaller gaps will be ignored, any + larger gaps will be identified and used to split the light curve. + + min_points : int, default 1 + The minimum number of data points in each light curve. Light + curves with fewer data points will be ignored. + + Returns + ------- + lc_split : iterable of `Lightcurve` objects + The list of all contiguous light curves + + Examples + -------- + >>> time = np.array([1, 2, 3, 6, 7, 8, 11, 12, 13]) + >>> counts = np.random.rand(time.shape[0]) + >>> lc = Lightcurve(time, counts, dt=1, skip_checks=True) + >>> split_lc = lc.split(1.5) + + """ + + # calculate the difference between time bins + tdiff = np.diff(self.time) + # find all distances between time bins that are larger than `min_gap` + gap_idx = np.where(tdiff >= min_gap)[0] + + # tolerance for the newly created GTIs: Note that this seems to work + # with a tolerance of 2, but not if I substitute 10. I don't know why + epsilon = np.min(tdiff) / 2.0 + + # calculate new GTIs + gti_start = np.hstack([self.time[0] - epsilon, self.time[gap_idx + 1] - epsilon]) + gti_stop = np.hstack([self.time[gap_idx] + epsilon, self.time[-1] + epsilon]) + + gti = np.vstack([gti_start, gti_stop]).T + if hasattr(self, "gti") and self.gti is not None: + gti = cross_two_gtis(self.gti, gti) + + lc_split = self.split_by_gti(gti, min_points=min_points) + return lc_split
+ + +
+[docs] + def sort(self, reverse=False, inplace=False): + """ + Sort a Lightcurve object by time. + + A Lightcurve can be sorted in either increasing or decreasing order + using this method. The time array gets sorted and the counts array is + changed accordingly. + + Parameters + ---------- + reverse : boolean, default False + If True then the object is sorted in reverse order. + inplace : bool + If True, overwrite the current light curve. Otherwise, return a new one. + + Examples + -------- + >>> time = [2, 1, 3] + >>> count = [200, 100, 300] + >>> lc = Lightcurve(time, count, dt=1, skip_checks=True) + >>> lc_new = lc.sort() + >>> lc_new.time + array([1, 2, 3]) + >>> np.allclose(lc_new.counts, [100, 200, 300]) + True + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with sorted time and counts + arrays. + """ + + mask = np.argsort(self.time) + if reverse: + mask = mask[::-1] + return self.apply_mask(mask, inplace=inplace)
+ + +
+[docs] + def sort_counts(self, reverse=False, inplace=False): + """ + Sort a :class:`Lightcurve` object in accordance with its counts array. + + A :class:`Lightcurve` can be sorted in either increasing or decreasing order + using this method. The counts array gets sorted and the time array is + changed accordingly. + + Parameters + ---------- + reverse : boolean, default ``False`` + If ``True`` then the object is sorted in reverse order. + inplace : bool + If True, overwrite the current light curve. Otherwise, return a new one. + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with sorted ``time`` and ``counts`` + arrays. + + Examples + -------- + >>> time = [1, 2, 3] + >>> count = [200, 100, 300] + >>> lc = Lightcurve(time, count, dt=1, skip_checks=True) + >>> lc_new = lc.sort_counts() + >>> lc_new.time + array([2, 1, 3]) + >>> np.allclose(lc_new.counts, [100, 200, 300]) + True + """ + + mask = np.argsort(self.counts) + if reverse: + mask = mask[::-1] + return self.apply_mask(mask, inplace=inplace)
+ + +
+[docs] + def estimate_chunk_length(self, *args, **kwargs): + """Deprecated alias of estimate_segment_size.""" + warnings.warn("This function was renamed to estimate_segment_size", DeprecationWarning) + return self.estimate_segment_size(*args, **kwargs)
+ + +
+[docs] + def estimate_segment_size(self, min_total_counts=100, min_time_bins=100): + """Estimate a reasonable segment length for chunk-by-chunk analysis. + + Choose a reasonable length for time segments, given a minimum number of total + counts in the segment, and a minimum number of time bins in the segment. + + The user specifies a condition on the total counts in each segment and + the minimum number of time bins. + + Other Parameters + ---------------- + min_total_counts : int + Minimum number of counts for each chunk + min_time_bins : int + Minimum number of time bins + + Returns + ------- + segment_size : float + The length of the light curve chunks that satisfies the conditions + + Examples + -------- + >>> import numpy as np + >>> time = np.arange(150) + >>> count = np.zeros_like(time) + 3 + >>> lc = Lightcurve(time, count, dt=1) + >>> lc.estimate_segment_size(min_total_counts=10, min_time_bins=3) + 4.0 + >>> lc.estimate_segment_size(min_total_counts=10, min_time_bins=5) + 5.0 + >>> count[2:4] = 1 + >>> lc = Lightcurve(time, count, dt=1) + >>> lc.estimate_segment_size(min_total_counts=3, min_time_bins=1) + 3.0 + >>> # A slightly more complex example + >>> dt=0.2 + >>> time = np.arange(0, 1000, dt) + >>> counts = np.random.poisson(100, size=len(time)) + >>> lc = Lightcurve(time, counts, dt=dt) + >>> lc.estimate_segment_size(100, 2) + 0.4 + >>> min_total_bins = 40 + >>> lc.estimate_segment_size(100, 40) + 8.0 + """ + + rough_estimate = np.ceil(min_total_counts / self.meancounts) * self.dt + + segment_size = np.max([rough_estimate, min_time_bins * self.dt]) + + keep_searching = True + while keep_searching: + start_times, stop_times, results = self.analyze_lc_chunks(segment_size, np.sum) + mincounts = np.min(results) + if mincounts >= min_total_counts: + keep_searching = False + else: + segment_size += self.dt + + return segment_size
+ + +
+[docs] + def analyze_lc_chunks(self, segment_size, func, fraction_step=1, **kwargs): + """Analyze segments of the light curve with any function. + + Parameters + ---------- + segment_size : float + Length in seconds of the light curve segments + func : function + Function accepting a :class:`Lightcurve` object as single argument, plus + possible additional keyword arguments, and returning a number or a + tuple - e.g., ``(result, error)`` where both ``result`` and ``error`` are + numbers. + + Other parameters + ---------------- + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving window), + this indicates the ratio between step step and ``segment_size`` (e.g. + 0.5 means that the window shifts of half ``segment_size``) + kwargs : keyword arguments + These additional keyword arguments, if present, they will be passed + to ``func`` + + Returns + ------- + start_times : array + Lower time boundaries of all time segments. + stop_times : array + upper time boundaries of all segments. + result : array of N elements + The result of ``func`` for each segment of the light curve + + Examples + -------- + >>> import numpy as np + >>> time = np.arange(0, 10, 0.1) + >>> counts = np.zeros_like(time) + 10 + >>> lc = Lightcurve(time, counts, dt=0.1) + >>> # Define a function that calculates the mean + >>> mean_func = lambda x: np.mean(x) + >>> # Calculate the mean in segments of 5 seconds + >>> start, stop, res = lc.analyze_lc_chunks(5, mean_func) + >>> len(res) == 2 + True + >>> np.allclose(res, 10) + True + """ + start, stop = bin_intervals_from_gtis( + self.gti, segment_size, self.time, fraction_step=fraction_step, dt=self.dt + ) + start_times = self.time[start] - 0.5 * self.dt + + # Remember that stop is one element above the last element, because + # it's defined to be used in intervals start:stop + stop_times = self.time[stop - 1] + self.dt * 1.5 + + results = [] + for i, (st, sp) in enumerate(zip(start, stop)): + lc_filt = self[st:sp] + res = func(lc_filt, **kwargs) + results.append(res) + + results = np.array(results) + + if len(results.shape) == 2: + results = [results[:, i] for i in range(results.shape[1])] + return start_times, stop_times, results
+ + +
+[docs] + def to_lightkurve(self): + """ + Returns a `lightkurve.LightCurve` object. + This feature requires `Lightkurve + <https://docs.lightkurve.org/>`_ to be installed + (e.g. ``pip install lightkurve``). An `ImportError` will + be raised if this package is not available. + + Returns + ------- + lightcurve : `lightkurve.LightCurve` + A lightkurve LightCurve object. + """ + try: + from lightkurve import LightCurve as lk + except ImportError: + raise ImportError( + "You need to install Lightkurve to use " "the Lightcurve.to_lightkurve() method." + ) + time = Time(self.time / 86400 + self.mjdref, format="mjd", scale="utc") + return lk(time=time, flux=self.counts, flux_err=self.counts_err)
+ + +
+[docs] + @staticmethod + def from_lightkurve(lk, skip_checks=True): + """ + Creates a new `Lightcurve` from a `lightkurve.LightCurve`. + + Parameters + ---------- + lk : `lightkurve.LightCurve` + A lightkurve LightCurve object + skip_checks: bool + If True, the user specifies that data are already sorted and contain no + infinite or nan points. Use at your own risk. + """ + + return Lightcurve( + time=lk.time, + counts=lk.flux, + err=lk.flux_err, + input_counts=False, + skip_checks=skip_checks, + )
+ + +
+[docs] + def to_astropy_timeseries(self): + return self._to_astropy_object(kind="timeseries")
+ + +
+[docs] + def to_astropy_table(self): + return self._to_astropy_object(kind="table")
+ + + def _to_astropy_object(self, kind="table"): + data = {} + + for attr in [ + "_counts", + "_counts_err", + "_countrate", + "_countrate_err", + "_bin_lo", + "_bin_hi", + ]: + if hasattr(self, attr) and getattr(self, attr) is not None: + data[attr.lstrip("_")] = np.asarray(getattr(self, attr)) + + if kind.lower() == "table": + data["time"] = self.time + ts = Table(data) + elif kind.lower() == "timeseries": + from astropy.timeseries import TimeSeries + + ts = TimeSeries(data=data, time=TimeDelta(self.time * u.s)) + else: # pragma: no cover + raise ValueError("Invalid kind (accepted: table or timeseries)") + + for attr in [ + "_gti", + "mjdref", + "_meancounts", + "_meancountrate", + "instr", + "mission", + "dt", + "err_dist", + ]: + if hasattr(self, attr) and getattr(self, attr) is not None: + ts.meta[attr.lstrip("_")] = getattr(self, attr) + + return ts + +
+[docs] + @staticmethod + def from_astropy_timeseries(ts, **kwargs): + return Lightcurve._from_astropy_object(ts, **kwargs)
+ + +
+[docs] + @staticmethod + def from_astropy_table(ts, **kwargs): + return Lightcurve._from_astropy_object(ts, **kwargs)
+ + + @staticmethod + def _from_astropy_object(ts, err_dist="poisson", skip_checks=True): + if hasattr(ts, "time"): + time = ts.time + else: + time = ts["time"] + + kwargs = ts.meta + err = None + input_counts = True + + if "counts_err" in ts.colnames: + err = ts["counts_err"] + elif "countrate_err" in ts.colnames: + err = ts["countrate_err"] + + if "counts" in ts.colnames: + counts = ts["counts"] + elif "countrate" in ts.colnames: + counts = ts["countrate"] + input_counts = False + else: + raise ValueError( + "Input timeseries must contain at least a " "`counts` or a `countrate` column" + ) + + kwargs.update( + { + "time": time, + "counts": counts, + "err": err, + "input_counts": input_counts, + "skip_checks": skip_checks, + } + ) + if "err_dist" not in kwargs: + kwargs["err_dist"] = err_dist + + lc = Lightcurve(**kwargs) + + return lc + +
+[docs] + def plot( + self, + witherrors=False, + labels=None, + axis=None, + title=None, + marker="-", + save=False, + filename=None, + ): + """ + Plot the light curve using ``matplotlib``. + + Plot the light curve object on a graph ``self.time`` on x-axis and + ``self.counts`` on y-axis with ``self.counts_err`` optionally + as error bars. + + Parameters + ---------- + witherrors: boolean, default False + Whether to plot the Lightcurve with errorbars or not + + labels : iterable, default ``None`` + A list of tuple with ``xlabel`` and ``ylabel`` as strings. + + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of the ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for the``matplotlib.pyplot.axis()`` method. + + title : str, default ``None`` + The title of the plot. + + marker : str, default '-' + Line style and color of the plot. Line styles and colors are + combined in a single format string, as in ``'bo'`` for blue + circles. See ``matplotlib.pyplot.plot`` for more options. + + save : boolean, optional, default ``False`` + If ``True``, save the figure with specified filename. + + filename : str + File name of the image to save. Depends on the boolean ``save``. + """ + + fig = plt.figure() + if witherrors: + fig = plt.errorbar(self.time, self.counts, yerr=self.counts_err, fmt=marker) + else: + fig = plt.plot(self.time, self.counts, marker) + + if labels is not None: + try: + plt.xlabel(labels[0]) + plt.ylabel(labels[1]) + except TypeError: + utils.simon("``labels`` must be either a list or tuple with " "x and y labels.") + raise + except IndexError: + utils.simon("``labels`` must have two labels for x and y " "axes.") + # Not raising here because in case of len(labels)==1, only + # x-axis will be labelled. + + if axis is not None: + plt.axis(axis) + + if title is not None: + plt.title(title) + + if save: + if filename is None: + plt.savefig("out.png") + else: + plt.savefig(filename) + else: + plt.show(block=False)
+ + +
+[docs] + @classmethod + def read( + cls, filename, fmt=None, format_=None, err_dist="gauss", skip_checks=False, **fits_kwargs + ): + """ + Read a :class:`Lightcurve` object from file. + + Currently supported formats are + + * pickle (not recommended for long-term storage) + * hea : FITS Light curves from HEASARC-supported missions. + * any other formats compatible with the writers in + :class:`astropy.table.Table` (ascii.ecsv, hdf5, etc.) + + Files that need the :class:`astropy.table.Table` interface MUST contain + at least a ``time`` column and a ``counts`` or ``countrate`` column. + The default ascii format is enhanced CSV (ECSV). Data formats + supporting the serialization of metadata (such as ECSV and HDF5) can + contain all lightcurve attributes such as ``dt``, ``gti``, etc with + no significant loss of information. Other file formats might lose part + of the metadata, so must be used with care. + + Parameters + ---------- + filename: str + Path and file name for the file to be read. + + fmt: str + Available options are 'pickle', 'hea', and any `Table`-supported + format such as 'hdf5', 'ascii.ecsv', etc. + + Other parameters + ---------------- + + err_dist: str, default='gauss' + Default error distribution if not specified in the file (e.g. for + ASCII files). The default is 'gauss' just because it is likely + that people using ASCII light curves will want to specify Gaussian + error bars, if any. + skip_checks : bool + See :class:`Lightcurve` documentation + **fits_kwargs : additional keyword arguments + Any other arguments to be passed to `lcurve_from_fits` (only relevant + for hea/ogip formats) + + Returns + ------- + lc : :class:`Lightcurve` object + """ + + if fmt is not None and fmt.lower() in ("hea", "ogip"): + data = lcurve_from_fits(filename, **fits_kwargs) + data.update({"err_dist": err_dist, "skip_checks": skip_checks}) + return Lightcurve(**data) + + return super().read(filename=filename, fmt=fmt)
+ + +
+[docs] + def split_by_gti(self, gti=None, min_points=2): + """ + Split the current :class:`Lightcurve` object into a list of :class:`Lightcurve` objects, one + for each continuous GTI segment as defined in the ``gti`` attribute. + + Parameters + ---------- + min_points : int, default 1 + The minimum number of data points in each light curve. Light + curves with fewer data points will be ignored. + + Returns + ------- + list_of_lcs : list + A list of :class:`Lightcurve` objects, one for each GTI segment + """ + + if gti is None: + gti = self.gti + + list_of_lcs = [] + + start_bins, stop_bins = gti_border_bins(gti, self.time, self.dt) + for i in range(len(start_bins)): + start = start_bins[i] + stop = stop_bins[i] + + if (stop - start) < min_points: + continue + + new_gti = np.array([gti[i]]) + mask = create_gti_mask(self.time, new_gti) + + # Note: GTIs are consistent with default in this case! + new_lc = self.apply_mask(mask) + new_lc.gti = new_gti + + list_of_lcs.append(new_lc) + + return list_of_lcs
+ + +
+[docs] + def apply_mask(self, mask, inplace=False): + """Apply a mask to all array attributes of the event list + + Parameters + ---------- + mask : array of ``bool`` + The mask. Has to be of the same length as ``self.time`` + + Other parameters + ---------------- + inplace : bool + If True, overwrite the current light curve. Otherwise, return a new one. + + Examples + -------- + >>> lc = Lightcurve(time=[0, 1, 2], counts=[2, 3, 4], mission="nustar") + >>> lc.bubuattr = [222, 111, 333] + >>> newlc0 = lc.apply_mask([True, True, False], inplace=False); + >>> newlc1 = lc.apply_mask([True, True, False], inplace=True); + >>> newlc0.mission == "nustar" + True + >>> np.allclose(newlc0.time, [0, 1]) + True + >>> np.allclose(newlc0.bubuattr, [222, 111]) + True + >>> np.allclose(newlc1.time, [0, 1]) + True + >>> lc is newlc1 + True + """ + array_attrs = self.array_attrs() + + self._mask = self._n = None + if isinstance(self.dt, Iterable): + new_dt = self.dt[mask] + else: + new_dt = self.dt + if inplace: + new_ev = self + # If they don't exist, they get set + self.counts, self.counts_err + # eliminate possible conflicts + self._countrate = self._countrate_err = None + # Set time, counts and errors + self._time = self._time[mask] + self._counts = self._counts[mask] + if self._counts_err is not None: + self._counts_err = self._counts_err[mask] + new_ev.dt = new_dt + else: + with warnings.catch_warnings(): + warnings.filterwarnings( + "ignore", message="Some functionalities of Stingray Lightcurve.*" + ) + new_ev = Lightcurve( + time=self.time[mask], + counts=self.counts[mask], + skip_checks=True, + gti=self.gti, + dt=new_dt, + ) + if self._counts_err is not None: + new_ev.counts_err = self.counts_err[mask] + for attr in self.meta_attrs(): + try: + setattr(new_ev, attr, copy.deepcopy(getattr(self, attr))) + except AttributeError: + continue + for attr in array_attrs: + if hasattr(self, "_" + attr) or attr in [ + "time", + "counts", + "counts_err", + "dt", + "_time", + "_counts", + "_counts_err", + ]: + continue + if hasattr(self, attr) and getattr(self, attr) is not None: + setattr(new_ev, attr, copy.deepcopy(np.asarray(getattr(self, attr))[mask])) + return new_ev
+ + +
+[docs] + def apply_gtis(self, inplace=True): + """ + Apply GTIs to a light curve. Filters the ``time``, ``counts``, + ``countrate``, ``counts_err`` and ``countrate_err`` arrays for all bins + that fall into Good Time Intervals and recalculates mean countrate + and the number of bins. + + Parameters + ---------- + inplace : bool + If True, overwrite the current light curve. Otherwise, return a new one. + + """ + + check_gtis(self.gti) + + good = self.mask + newlc = self.apply_mask(good, inplace=inplace) + dt = newlc.dt + if "dt" in self.array_attrs(): + dt = newlc.dt[0] + newlc.tstart = newlc.time - 0.5 * dt + newlc.tseg = np.max(newlc.gti) - np.min(newlc.gti) + return newlc
+ + +
+[docs] + def bexvar(self): + """ + Finds posterior samples of Bayesian excess varience (bexvar) for the light curve. + It requires source counts in ``counts`` and time intervals for each bin. + If the ``dt`` is an array then uses its elements as time intervals + for each bin. If ``dt`` is float, it calculates the time intervals by assuming + all intervals to be equal to ``dt``. + + Returns + ------- + lc_bexvar : iterable, `:class:numpy.array` of floats + An array of posterior samples of Bayesian excess varience (bexvar). + """ + + # calculate time intervals for each bin if not provided by user + # assumes that time intervals in each bin are equal to ``dt`` + if not isinstance(self.dt, Iterable): + time_del = self.dt * np.ones(shape=self.n) + else: + time_del = self.dt + + lc_bexvar = bexvar.bexvar( + time=self._time, + time_del=time_del, + src_counts=self.counts, + bg_counts=self.bg_counts, + bg_ratio=self.bg_ratio, + frac_exp=self.frac_exp, + ) + + return lc_bexvar
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/modeling/parameterestimation.html b/_modules/stingray/modeling/parameterestimation.html new file mode 100644 index 000000000..79f9d9e16 --- /dev/null +++ b/_modules/stingray/modeling/parameterestimation.html @@ -0,0 +1,2132 @@ + + + + + + + stingray.modeling.parameterestimation — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.modeling.parameterestimation

+__all__ = ["OptimizationResults", "ParameterEstimation", "PSDParEst", "SamplingResults"]
+
+
+# check whether matplotlib is installed for easy plotting
+import matplotlib.pyplot as plt
+from matplotlib.ticker import MaxNLocator
+
+
+# check whether emcee is installed for sampling
+try:
+    import emcee
+
+    can_sample = True
+except ImportError:
+    can_sample = False
+
+try:
+    import corner
+
+    use_corner = True
+except ImportError:
+    use_corner = False
+
+import logging
+from multiprocessing import Pool
+
+import numpy as np
+import scipy
+import scipy.optimize
+import scipy.stats
+import scipy.signal
+import copy
+
+try:
+    from statsmodels.tools.numdiff import approx_hess
+
+    comp_hessian = True
+except ImportError:
+    comp_hessian = False
+
+try:
+    from astropy.modeling.fitting import fitter_to_model_params
+except ImportError:
+    from astropy.modeling.fitting import _fitter_to_model_params as fitter_to_model_params
+
+from astropy.modeling.fitting import (
+    _model_to_fit_params,
+    _validate_model,
+    _convert_input,
+)
+
+from stingray.modeling.posterior import (
+    Posterior,
+    PSDPosterior,
+    LogLikelihood,
+    PSDLogLikelihood,
+    logmin,
+)
+
+
+
+[docs] +class OptimizationResults(object): + """ + Helper class that will contain the results of the regression. + Less fiddly than a dictionary. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + + res: instance of ``scipy.OptimizeResult`` + The object containing the results from a optimization run + + neg : bool, optional, default ``True`` + A flag that sets whether the log-likelihood or negative log-likelihood + is being used + + log : a logging.getLogger() object, default None + You can pass a pre-defined object for logging, else a new + logger will be instantiated + + Attributes + ---------- + result : float + The result of the optimization, i.e. the function value at the + minimum that the optimizer found + + p_opt : iterable + The list of parameters at the minimum found by the optimizer + + model : ``astropy.models.Model`` instance + The parametric model fit to the data + + cov : numpy.ndarray + The covariance matrix for the parameters, has shape ``(len(p_opt), len(p_opt))`` + + err : numpy.ndarray + The standard deviation of the parameters, derived from the diagonal of ``cov``. + Has the same shape as ``p_opt`` + + mfit : numpy.ndarray + The values of the model for all ``x`` + + deviance : float + The deviance, calculated as ``-2*log(likelihood)`` + + aic : float + The Akaike Information Criterion, derived from the log(likelihood) and often used + in model comparison between non-nested models; + For more details, see [#]_ + + bic : float + The Bayesian Information Criterion, derived from the log(likelihood) and often used + in model comparison between non-nested models; + For more details, see [#]_ + + merit : float + sum of squared differences between data and model, normalized by the + model values + + dof : int + The number of degrees of freedom in the problem, defined as the number of + data points - the number of parameters + + sexp : int + ``2*(number of parameters)*(number of data points)`` + + ssd : float + ``sqrt(2*(sexp))``, expected sum of data-model residuals + + sobs : float + sum of data-model residuals + + References + ---------- + .. [#] https://doi.org/10.1109/TAC.1974.1100705 + .. [#] https://projecteuclid.org/euclid.aos/1176344136 + + """ + + def __init__(self, lpost, res, neg=True, log=None): + self.neg = neg + self.result = res.fun + self.p_opt = np.atleast_1d(res.x) + self.model = lpost.model + + if log is None: + self.log = logging.getLogger("Fitting summary") + self.log.setLevel(logging.DEBUG) + if not self.log.handlers: + ch = logging.StreamHandler() + ch.setLevel(logging.DEBUG) + self.log.addHandler(ch) + + self._compute_covariance(lpost, res) + self._compute_model(lpost) + self._compute_criteria(lpost) + self._compute_statistics(lpost) + +
+[docs] + def _compute_covariance(self, lpost, res): + """ + Compute the covariance of the parameters using inverse of the Hessian, i.e. + the second-order derivative of the log-likelihood. Also calculates an estimate + of the standard deviation in the parameters, using the square root of the diagonal + of the covariance matrix. + + The Hessian is either estimated directly by the chosen method of fitting, or + approximated using the ``statsmodel`` ``approx_hess`` function. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + + res: instance of ``scipy``'s ``OptimizeResult`` class + The object containing the results from a optimization run + """ + + if hasattr(res, "hess_inv"): + if not isinstance(res.hess_inv, np.ndarray): + self.cov = np.asarray(res.hess_inv.todense()) + else: + self.cov = res.hess_inv + + self.err = np.sqrt(np.diag(self.cov)) + else: + if comp_hessian: + # calculate Hessian approximating with finite differences + self.log.info("Approximating Hessian with finite differences ...") + + phess = approx_hess(np.atleast_1d(self.p_opt), lpost) + + self.cov = np.linalg.inv(phess) + self.err = np.sqrt(np.diag(np.abs(self.cov))) + + else: + self.cov = None + self.err = None
+ + +
+[docs] + def _compute_model(self, lpost): + """ + Compute the values of the best-fit model for all ``x``. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + """ + fitter_to_model_params(lpost.model, self.p_opt) + + self.mfit = lpost.model(lpost.x)
+ + +
+[docs] + def _compute_criteria(self, lpost): + """ + Compute various information criteria useful for model comparison in + non-nested models. + + Currently implemented are the Akaike Information Criterion [#]_ and the + Bayesian Information Criterion [#]_. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + + References + ---------- + .. [#] https://doi.org/10.1109/TAC.1974.1100705 + .. [#] https://projecteuclid.org/euclid.aos/1176344136 + + """ + if isinstance(lpost, Posterior): + self.deviance = -2.0 * lpost.loglikelihood(self.p_opt, neg=False) + elif isinstance(lpost, LogLikelihood): + self.deviance = 2.0 * self.result + + # Akaike Information Criterion + self.aic = self.result + 2.0 * self.p_opt.shape[0] + + # Bayesian Information Criterion + self.bic = self.result + self.p_opt.shape[0] * np.log(lpost.x.shape[0])
+ + + # Deviance Information Criterion + # TODO: Add Deviance Information Criterion + +
+[docs] + def _compute_statistics(self, lpost): + """ + Compute some useful fit statistics, like the degrees of freedom and the + figure of merit. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + """ + try: + self.mfit + except AttributeError: + self._compute_model(lpost) + + self.merit = np.sum(((lpost.y - self.mfit) / self.mfit) ** 2.0) + self.dof = lpost.y.shape[0] - float(self.p_opt.shape[0]) + self.sexp = 2.0 * len(lpost.x) * len(self.p_opt) + self.ssd = np.sqrt(2.0 * self.sexp) + self.sobs = np.sum(lpost.y - self.mfit)
+ + +
+[docs] + def print_summary(self, lpost): + """ + Print a useful summary of the fitting procedure to screen or + a log file. + + Parameters + ---------- + lpost : instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + """ + + self.log.info("The best-fit model parameters plus errors are:") + + fixed = [lpost.model.fixed[n] for n in lpost.model.param_names] + tied = [lpost.model.tied[n] for n in lpost.model.param_names] + bounds = [lpost.model.bounds[n] for n in lpost.model.param_names] + + parnames = [n for n, f in zip(lpost.model.param_names, np.logical_or(fixed, tied)) if not f] + + all_parnames = [n for n in lpost.model.param_names] + for i, par in enumerate(all_parnames): + self.log.info("{:3}) Parameter {:<20}: ".format(i, par)) + + if par in parnames: + idx = parnames.index(par) + + err_info = " (no error estimate)" + if self.err is not None: + err_info = " +/- {:<20.5f}".format(self.err[idx]) + self.log.info("{:<20.5f}{} ".format(self.p_opt[idx], err_info)) + self.log.info("[{:>10} {:>10}]".format(str(bounds[i][0]), str(bounds[i][1]))) + elif fixed[i]: + self.log.info("{:<20.5f} (Fixed) ".format(lpost.model.parameters[i])) + elif tied[i]: + self.log.info("{:<20.5f} (Tied) ".format(lpost.model.parameters[i])) + + self.log.info("\n") + + self.log.info("Fitting statistics: ") + self.log.info(" -- number of data points: %i" % (len(lpost.x))) + + try: + self.deviance + except AttributeError: + self._compute_criteria(lpost) + + self.log.info(" -- Deviance [-2 log L] D = %f.3" % self.deviance) + self.log.info( + " -- The Akaike Information Criterion of the model is: " + str(self.aic) + "." + ) + + self.log.info( + " -- The Bayesian Information Criterion of the model is: " + str(self.bic) + "." + ) + + try: + self.merit + except AttributeError: + self._compute_statistics(lpost) + + self.log.info( + " -- The figure-of-merit function for this model " + + " is: %f.5f" % self.merit + + " and the fit for %i dof is %f.3f" % (self.dof, self.merit / self.dof) + ) + + self.log.info(" -- Summed Residuals S = %f.5f" % self.sobs) + self.log.info(" -- Expected S ~ %f.5 +/- %f.5" % (self.sexp, self.ssd)) + + return
+
+ + + +
+[docs] +class ParameterEstimation(object): + """ + Parameter estimation of two-dimensional data, either via + optimization or MCMC. + Note: optimization with bounds is not supported. If something like + this is required, define (uniform) priors in the ParametricModel + instances to be used below. + + Parameters + ---------- + fitmethod : string, optional, default ``L-BFGS-B`` + Any of the strings allowed in ``scipy.optimize.minimize`` in + the method keyword. Sets the fit method to be used. + + max_post : bool, optional, default ``True`` + If ``True``, then compute the Maximum-A-Posteriori estimate. If ``False``, + compute a Maximum Likelihood estimate. + """ + + def __init__(self, fitmethod="BFGS", max_post=True): + self.fitmethod = fitmethod + + self.max_post = max_post + +
+[docs] + def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): + """ + Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) + fit to the data. + + MAP fits include priors, ML fits do not. + + Parameters + ---------- + lpost : :class:`Posterior` (or subclass) instance + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : {``list`` | ``numpy.ndarray``} + List/array with set of initial parameters + + neg : bool, optional, default ``True`` + Boolean to be passed to ``lpost``, setting whether to use the + *negative* posterior or the *negative* log-likelihood. Useful for + optimization routines, which are generally defined as *minimization* routines. + + scipy_optimize_options : dict, optional, default ``None`` + A dictionary with options for ``scipy.optimize.minimize``, + directly passed on as keyword arguments. + + Returns + ------- + res : :class:`OptimizationResults` object + An object containing useful summaries of the fitting procedure. + For details, see documentation of class:`OptimizationResults`. + """ + + if not isinstance(lpost, Posterior) and not isinstance(lpost, LogLikelihood): + raise TypeError("lpost must be a subclass of " "Posterior or LogLikelihoood.") + + newmod = lpost.model.copy() + + p0 = t0 + + # p0 will be shorter than t0, if there are any frozen/tied parameters + # this has to match with the npar attribute. + if not len(p0) == lpost.npar: + raise ValueError("Parameter set t0 must be of right " "length for model in lpost.") + + args = (neg,) + + if not scipy_optimize_options: + scipy_optimize_options = {} + + # different commands for different fitting methods, + # at least until scipy 0.11 is out + funcval = 100.0 + i = 0 + + while funcval == 100 or funcval == 200 or funcval == 0.0 or not np.isfinite(funcval): + if i > 20: + raise RuntimeError("Fitting unsuccessful!") + # perturb parameters slightly + t0_p = np.random.multivariate_normal(p0, np.diag(np.abs(p0) / 100.0)) + + params = [getattr(newmod, name) for name in newmod.param_names] + bounds = np.array([p.bounds for p in params if not np.any([p.tied, p.fixed])]) + + if any(elem is not None for elem in np.hstack(bounds)) and self.fitmethod not in [ + "L-BFGS-B", + "TNC", + "SLSQP", + ]: + logging.warning( + "Fitting method %s " % self.fitmethod + "cannot incorporate the bounds you set!" + ) + + if any(elem is not None for elem in np.hstack(bounds)) or self.fitmethod not in [ + "L-BFGS-B", + "TNC", + "SLSQP", + ]: + use_bounds = False + else: + use_bounds = True + + # if max_post is True, do the Maximum-A-Posteriori Fit + if self.max_post: + if use_bounds: + opt = scipy.optimize.minimize( + lpost, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + bounds=bounds, + **scipy_optimize_options + ) + + else: + opt = scipy.optimize.minimize( + lpost, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + **scipy_optimize_options + ) + + # if max_post is False, then do a Maximum Likelihood Fit + else: + if isinstance(lpost, Posterior): + if use_bounds: + # This could be a `Posterior` object + opt = scipy.optimize.minimize( + lpost.loglikelihood, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + bounds=bounds, + **scipy_optimize_options + ) + else: + opt = scipy.optimize.minimize( + lpost.loglikelihood, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + **scipy_optimize_options + ) + + elif isinstance(lpost, LogLikelihood): + if use_bounds: + # Except this could be a `LogLikelihood object + # In which case, use the evaluate function + # if it's not either, give up and break! + opt = scipy.optimize.minimize( + lpost.evaluate, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + # bounds=bounds, + **scipy_optimize_options + ) + + else: + opt = scipy.optimize.minimize( + lpost.evaluate, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + **scipy_optimize_options + ) + + funcval = opt.fun + + if np.isclose(opt.fun, logmin) or np.isclose(opt.fun, 2 * logmin): + funcval = 100 + + i += 1 + + res = OptimizationResults(lpost, opt, neg=neg) + + return res
+ + +
+[docs] + def compute_lrt(self, lpost1, t1, lpost2, t2, neg=True, max_post=False): + """ + This function computes the Likelihood Ratio Test between two + nested models. + + Parameters + ---------- + lpost1 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 1 + + t1 : iterable + The starting parameters for model 1 + + lpost2 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 2 + + t2 : iterable + The starting parameters for model 2 + + neg : bool, optional, default ``True`` + Boolean flag to decide whether to use the negative log-likelihood + or log-posterior + + max_post: bool, optional, default ``False`` + If ``True``, set the internal state to do the optimization with the + log-likelihood rather than the log-posterior. + + Returns + ------- + lrt : float + The likelihood ratio for model 2 and model 1 + + res1 : OptimizationResults object + Contains the result of fitting ``lpost1`` + + res2 : OptimizationResults object + Contains the results of fitting ``lpost2`` + + """ + + self.max_post = max_post + + # fit data with both models + res1 = self.fit(lpost1, t1, neg=neg) + res2 = self.fit(lpost2, t2, neg=neg) + + # compute log likelihood ratio as difference between the deviances + lrt = res1.deviance - res2.deviance + + return lrt, res1, res2
+ + +
+[docs] + def sample( + self, + lpost, + t0, + cov=None, + nwalkers=500, + niter=100, + burnin=100, + threads=1, + print_results=True, + plot=False, + namestr="test", + pool=False, + ): + """ + Sample the :class:`Posterior` distribution defined in ``lpost`` using MCMC. + Here we use the ``emcee`` package, but other implementations could + in principle be used. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` subclass + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : iterable + list or array containing the starting parameters. Its length + must match ``lpost.model.npar``. + + nwalkers : int, optional, default 500 + The number of walkers (chains) to use during the MCMC procedure. + The more walkers are used, the slower the estimation will be, but + the better the final distribution is likely to be. + + niter : int, optional, default 100 + The number of iterations to run the MCMC chains for. The larger this + number, the longer the estimation will take, but the higher the + chance that the walkers have actually converged on the true + posterior distribution. + + burnin : int, optional, default 100 + The number of iterations to run the walkers before convergence is + assumed to have occurred. This part of the chain will be discarded + before sampling from what is then assumed to be the posterior + distribution desired. + + threads : **DEPRECATED** int, optional, default 1 + The number of threads for parallelization. + Default is ``1``, i.e. no parallelization + With the change to the new emcee version 3, threads is + deprecated. Use the `pool` keyword argument instead. + This will no longer have any effect. + + print_results : bool, optional, default ``True`` + Boolean flag setting whether the results of the MCMC run should + be printed to standard output. Default: True + + plot : bool, optional, default ``False`` + Boolean flag setting whether summary plots of the MCMC chains + should be produced. Default: False + + namestr : str, optional, default ``test`` + Optional string for output file names for the plotting. + + pool : bool, default False + If True, use pooling to parallelize the operation. + + Returns + ------- + + res : class:`SamplingResults` object + An object of class :class:`SamplingResults` summarizing the + results of the MCMC run. + + """ + + if threads > 1: + raise DeprecationWarning("Keyword 'threads' is deprecated. Please use 'pool' instead.") + + if not can_sample: + raise ImportError("emcee not installed! Can't sample!") + + ndim = len(t0) + + if cov is None: + # do a MAP fitting step to find good starting positions for + # the sampler + res = self.fit(lpost, t0, neg=True) + cov = res.cov + # sample random starting positions for each walker from + # a multivariate Gaussian + p0 = np.array([np.random.multivariate_normal(t0, cov) for i in range(nwalkers)]) + if pool: + with Pool() as pooling: + # initialize the sampler + sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False], pool=pooling) + + # run the burn-in + pos, prob, state = sampler.run_mcmc(p0, burnin) + + sampler.reset() + + state = emcee.State(pos, prob, random_state=state) + # do the actual MCMC run + + _ = sampler.run_mcmc(initial_state=state, nsteps=niter) + else: + # initialize the sampler + sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False]) + + # run the burn-in + pos, prob, state = sampler.run_mcmc(p0, burnin) + + sampler.reset() + state = emcee.State(pos, prob, random_state=state) + + # do the actual MCMC run + _ = sampler.run_mcmc(initial_state=state, nsteps=niter) + + res = SamplingResults(sampler) + + if print_results: + res.print_results() + + if plot: + fig = res.plot_results(fig=None, save_plot=True, filename=namestr + "_corner.pdf") + + return res
+ + + def _generate_model(self, lpost, pars): + """ + Helper function that generates a fake PSD similar to the + one in the data, but with different parameters. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass + The object containing the relevant information about the + data and the model + + pars : iterable + A list of parameters to be passed to ``lpost.model`` in oder + to generate a model data set. + + Returns + ------- + model_data : numpy.ndarray + An array of model values for each bin in ``lpost.x`` + + """ + + assert isinstance(lpost, LogLikelihood) or isinstance(lpost, Posterior), ( + "lpost must be of type LogLikelihood or Posterior or one of its " "subclasses!" + ) + + # assert pars is of correct length + assert len(pars) == lpost.npar, "pars must be a list " "of %i parameters" % lpost.npar + # get the model + m = lpost.model + + # reset the parameters + fitter_to_model_params(m, pars) + + # make a model spectrum + model_data = lpost.model(lpost.x) + + return model_data + + @staticmethod + def _compute_pvalue(obs_val, sim): + """ + Compute the p-value given an observed value of a test statistic + and some simulations of that same test statistic. + + Parameters + ---------- + obs_value : float + The observed value of the test statistic in question + + sim: iterable + A list or array of simulated values for the test statistic + + Returns + ------- + pval : float in range [0, 1] + The p-value for the test statistic given the simulations. + + """ + # cast the simulations as a numpy array + sim = np.array(sim) + + # find all simulations that are larger than + # the observed value + ntail = sim[sim > obs_val].shape[0] + + # divide by the total number of simulations + pval = float(ntail) / float(sim.shape[0]) + + return pval + +
+[docs] + def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, max_post=True, seed=None): + """ + Simulate likelihood ratios. + For details, see definitions in the subclasses that implement this + task. + """ + raise NotImplementedError( + "The behaviour of `simulate_lrts` should be defined " + "in the subclass appropriate for your problem, not in " + "this super class!" + )
+ + +
+[docs] + def calibrate_lrt( + self, + lpost1, + t1, + lpost2, + t2, + sample=None, + neg=True, + max_post=False, + nsim=1000, + niter=200, + nwalkers=500, + burnin=200, + namestr="test", + seed=None, + ): + """Calibrate the outcome of a Likelihood Ratio Test via MCMC. + + In order to compare models via likelihood ratio test, one generally + aims to compute a p-value for the null hypothesis (generally the + simpler model). There are two special cases where the theoretical + distribution used to compute that p-value analytically given the + observed likelihood ratio (a chi-square distribution) is not + applicable: + + * the models are not nested (i.e. Model 1 is not a special, simpler + case of Model 2), + * the parameter values fixed in Model 2 to retrieve Model 1 are at the + edges of parameter space (e.g. if one must set, say, an amplitude to + zero in order to remove a component in the more complex model, and + negative amplitudes are excluded a priori) + + In these cases, the observed likelihood ratio must be calibrated via + simulations of the simpler model (Model 1), using MCMC to take into + account the uncertainty in the parameters. This function does + exactly that: it computes the likelihood ratio for the observed data, + and produces simulations to calibrate the likelihood ratio and + compute a p-value for observing the data under the assumption that + Model 1 istrue. + + If ``max_post=True``, the code will use MCMC to sample the posterior + of the parameters and simulate fake data from there. + + If ``max_post=False``, the code will use the covariance matrix derived + from the fit to simulate data sets for comparison. + + Parameters + ---------- + lpost1 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 1 + + t1 : iterable + The starting parameters for model 1 + + lpost2 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 2 + + t2 : iterable + The starting parameters for model 2 + + neg : bool, optional, default ``True`` + Boolean flag to decide whether to use the negative + log-likelihood or log-posterior + + max_post: bool, optional, default ``False`` + If ``True``, set the internal state to do the optimization with the + log-likelihood rather than the log-posterior. + + Returns + ------- + pvalue : float [0,1] + p-value 'n stuff + """ + + # compute the observed likelihood ratio + lrt_obs, res1, res2 = self.compute_lrt(lpost1, t1, lpost2, t2, neg=neg, max_post=max_post) + + rng = np.random.RandomState(seed) + + if sample is None: + # simulate parameter sets from the simpler model + if not max_post: + # using Maximum Likelihood, so I'm going to simulate parameters + # from a multivariate Gaussian + + # set up the distribution + mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov, seed=seed) + + # sample parameters + s_all = mvn.rvs(size=nsim) + if lpost1.npar == 1: + s_all = np.atleast_2d(s_all).T + + else: + # sample the :class:`Posterior` using MCMC + s_mcmc = self.sample( + lpost1, + res1.p_opt, + cov=res1.cov, + nwalkers=nwalkers, + niter=niter, + burnin=burnin, + namestr=namestr, + ) + + # pick nsim samples out of the :class:`Posterior` sample + s_all = s_mcmc.samples[rng.choice(s_mcmc.samples.shape[0], nsim, replace=False)] + + # if lpost1.npar == 1: + # s_all = np.atleast_2d(s_all).T + + else: + s_all = sample[rng.choice(sample.shape[0], nsim, replace=False)] + + # simulate LRTs + # this method is defined in the subclasses! + lrt_sim = self.simulate_lrts(s_all, lpost1, t1, lpost2, t2, seed=seed) + # now I can compute the p-value: + pval = ParameterEstimation._compute_pvalue(lrt_obs, lrt_sim) + + return pval
+
+ + + +
+[docs] +class SamplingResults(object): + """ + Helper class that will contain the results of the sampling + in a handy format. + + Less fiddly than a dictionary. + + Parameters + ---------- + sampler: ``emcee.EnsembleSampler`` object + The object containing the sampler that's done all the work. + + ci_min: float out of [0,100] + The lower bound percentile for printing credible intervals + on the parameters + + ci_max: float out of [0,100] + The upper bound percentile for printing credible intervals + on the parameters + log : a logging.getLogger() object, default None + You can pass a pre-defined object for logging, else a new + logger will be instantiated + + Attributes + ---------- + samples : numpy.ndarray + An array of samples from the MCMC run, including all chains + flattened into one long (``nwalkers*niter``, ``ndim``) array + + nwalkers : int + The number of chains used in the MCMC procedure + + niter : int + The number of MCMC iterations in each chain + + ndim : int + The dimensionality of the problem, i.e. the number of + parameters in the model + + acceptance : float + The mean acceptance ratio, calculated over all chains + + L : float + The product of acceptance ratio and number of samples + + acor : float + The autocorrelation length for the chains; should be shorter + than the chains themselves for independent sampling + + rhat : float + weighted average of between-sequence variance and within-sequence + variance; Gelman-Rubin convergence statistic [#]_ + + mean : numpy.ndarray + An array of size ``ndim``, with the posterior means of the parameters + derived from the MCMC chains + + std : numpy.ndarray + An array of size ``ndim`` with the posterior standard deviations of + the parameters derived from the MCMC chains + + ci : numpy.ndarray + An array of shape ``(ndim, 2)`` containing the lower and upper bounds + of the credible interval (the Bayesian equivalent of the confidence + interval) for each parameter using the bounds set by ``ci_min`` and ``ci_max`` + + References + ---------- + .. [#] https://projecteuclid.org/euclid.ss/1177011136 + """ + + def __init__(self, sampler, ci_min=5, ci_max=95, log=None): + if log is None: + self.log = logging.getLogger("MCMC summary") + self.log.setLevel(logging.DEBUG) + + if not self.log.handlers: + ch = logging.StreamHandler() + ch.setLevel(logging.DEBUG) + self.log.addHandler(ch) + + # store all the samples + self.samples = sampler.get_chain(flat=True) + + chain_dims = sampler.get_chain().shape + self.nwalkers = float(chain_dims[0]) + self.niter = float(chain_dims[1]) + + # store number of dimensions + self.ndim = chain_dims[2] + + # compute and store acceptance fraction + self.acceptance = np.nanmean(sampler.acceptance_fraction) + self.L = self.acceptance * self.samples.shape[0] + + self._check_convergence(sampler) + self._infer(ci_min, ci_max) + +
+[docs] + def _check_convergence(self, sampler): + """ + Compute common statistics for convergence of the MCMC + chains. While you can never be completely sure that your chains + converged, these present reasonable heuristics to give an + indication whether convergence is very far off or reasonably close. + + Currently implemented are the autocorrelation time [#]_ and the + Gelman-Rubin convergence criterion [#]_. + + Parameters + ---------- + sampler : an ``emcee.EnsembleSampler`` object + + References + ---------- + .. [#] https://arxiv.org/abs/1202.3665 + .. [#] https://projecteuclid.org/euclid.ss/1177011136 + """ + + # compute and store autocorrelation time + try: + self.acor = sampler.get_autocorr_time() + except emcee.autocorr.AutocorrError: + self.log.info("Chains too short to compute autocorrelation lengths.") + + self.rhat = self._compute_rhat(sampler)
+ + +
+[docs] + def _compute_rhat(self, sampler): + """ + Compute Gelman-Rubin convergence criterion [#]_. + + Parameters + ---------- + sampler : an `emcee.EnsembleSampler` object + + References + ---------- + .. [#] https://projecteuclid.org/euclid.ss/1177011136 + """ + chain = sampler.get_chain() + # between-sequence variance + mean_samples_iter = np.nanmean(chain, axis=1) + + # mean over the means over iterations: (self.ndim) + mean_samples = np.nanmean(chain, axis=(0, 1)) + + # now compute between-sequence variance + bb = (self.niter / (self.nwalkers - 1)) * np.sum( + (mean_samples_iter - mean_samples) ** 2.0, axis=0 + ) + + # compute variance of each chain + var_samples = np.nanvar(chain, axis=1) + + # compute mean of variance + ww = np.nanmean(var_samples, axis=0) + + # compute weighted average of ww and bb: + rhat = ((self.niter - 1) / self.niter) * ww + (1 / self.niter) * bb + + return rhat
+ + +
+[docs] + def _infer(self, ci_min=5, ci_max=95): + """ + Infer the :class:`Posterior` means, standard deviations and credible intervals + (i.e. the Bayesian equivalent to confidence intervals) from the :class:`Posterior` samples + for each parameter. + + Parameters + ---------- + ci_min : float + Lower bound to the credible interval, given as percentage between + 0 and 100 + + ci_max : float + Upper bound to the credible interval, given as percentage between + 0 and 100 + """ + self.mean = np.mean(self.samples, axis=0) + self.std = np.std(self.samples, axis=0) + self.ci = np.percentile(self.samples, [ci_min, ci_max], axis=0)
+ + +
+[docs] + def print_results(self): + """ + Print results of the MCMC run on screen or to a log-file. + + + """ + + self.log.info("-- The acceptance fraction is: %f.5" % self.acceptance) + try: + self.log.info("-- The autocorrelation time is: {}".format(self.acor)) + except AttributeError: + pass + + self.log.info("R_hat for the parameters is: " + str(self.rhat)) + + self.log.info("-- Posterior Summary of Parameters: \n") + self.log.info("parameter \t mean \t\t sd \t\t 5% \t\t 95% \n") + self.log.info("---------------------------------------------\n") + for i in range(self.ndim): + self.log.info( + "theta[" + + str(i) + + "] \t " + + str(self.mean[i]) + + "\t" + + str(self.std[i]) + + "\t" + + str(self.ci[0, i]) + + "\t" + + str(self.ci[1, i]) + + "\n" + ) + + return
+ + +
+[docs] + def plot_results(self, nsamples=1000, fig=None, save_plot=False, filename="test.pdf"): + """ + Plot some results in a triangle plot. + If installed, will use [corner]_ + for the plotting, if not, + uses its own code to make a triangle plot. + + By default, this method returns a ``matplotlib.Figure`` object, but + if ``save_plot=True`` the plot can be saved to file automatically, + + Parameters + ---------- + + nsamples : int, default 1000 + The maximum number of samples used for plotting. + + fig : matplotlib.Figure instance, default None + If created externally, you can pass a Figure instance to this method. + If none is passed, the method will create one internally. + + save_plot : bool, default ``False`` + If ``True`` save the plot to file with a file name specified by the + keyword ``filename``. If ``False`` just return the ``Figure`` object + + filename : str + Name of the output file with the figure + + References + ---------- + .. [corner] https://github.com/dfm/corner.py + """ + if use_corner: + fig = corner.corner( + self.samples, + labels=None, + fig=fig, + bins=int(20), + quantiles=[0.16, 0.5, 0.84], + show_titles=True, + title_args={"fontsize": 12}, + ) + + else: + if fig is None: + fig = plt.figure(figsize=(15, 15)) + + plt.subplots_adjust( + top=0.925, bottom=0.025, left=0.025, right=0.975, wspace=0.2, hspace=0.2 + ) + + ind_all = np.random.choice(np.arange(self.samples.shape[0]), size=nsamples) + samples = self.samples[ind_all] + for i in range(self.ndim): + for j in range(self.ndim): + xmin, xmax = samples[:, j].min(), samples[:, j].max() + ymin, ymax = samples[:, i].min(), samples[:, i].max() + ax = fig.add_subplot(self.ndim, self.ndim, i * self.ndim + j + 1) + + ax.xaxis.set_major_locator(MaxNLocator(5)) + ax.ticklabel_format(style="sci", scilimits=(-2, 2)) + + if i == j: + ntemp, binstemp, patchestemp = ax.hist( + samples[:, i], 30, density=True, histtype="stepfilled" + ) + ax.axis([ymin, ymax, 0, np.max(ntemp) * 1.2]) + + else: + ax.axis([xmin, xmax, ymin, ymax]) + + # make a scatter plot first + ax.scatter(samples[:, j], samples[:, i], s=7) + # then add contours + xmin, xmax = samples[:, j].min(), samples[:, j].max() + ymin, ymax = samples[:, i].min(), samples[:, i].max() + + # Perform Kernel density estimate on data + try: + xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] + positions = np.vstack([xx.ravel(), yy.ravel()]) + values = np.vstack([samples[:, j], samples[:, i]]) + kernel = scipy.stats.gaussian_kde(values) + zz = np.reshape(kernel(positions).T, xx.shape) + + ax.contour(xx, yy, zz, 7) + except ValueError: + logging.info("Not making contours.") + + if save_plot: + plt.savefig(filename, format="pdf") + + return fig
+
+ + + +
+[docs] +class PSDParEst(ParameterEstimation): + """ + Parameter estimation for parametric modelling of power spectra. + + This class contains functionality that allows parameter estimation + and related tasks that involve fitting a parametric model to an + (averaged) power spectrum. + + Parameters + ---------- + ps : class:`stingray.Powerspectrum` or class:`stingray.AveragedPowerspectrum` object + The power spectrum to be modelled + + fitmethod : str, optional, default ``BFGS`` + A string allowed by ``scipy.optimize.minimize`` as a valid + fitting method + + max_post : bool, optional, default ``True`` + If ``True``, do a Maximum-A-Posteriori (MAP) fit, i.e. fit with + priors, otherwise do a Maximum Likelihood fit instead + + """ + + def __init__(self, ps, fitmethod="BFGS", max_post=True): + self.ps = ps + ParameterEstimation.__init__(self, fitmethod=fitmethod, max_post=max_post) + +
+[docs] + def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): + """ + Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) + fit to the power spectrum. + + MAP fits include priors, ML fits do not. + + Parameters + ---------- + lpost : :class:`stingray.modeling.PSDPosterior` object + An instance of class :class:`stingray.modeling.PSDPosterior` that defines the + function to be minimized (either in ``loglikelihood`` or ``logposterior``) + + t0 : {list | numpy.ndarray} + List/array with set of initial parameters + + neg : bool, optional, default ``True`` + Boolean to be passed to ``lpost``, setting whether to use the + *negative* posterior or the *negative* log-likelihood. + + scipy_optimize_options : dict, optional, default None + A dictionary with options for ``scipy.optimize.minimize``, + directly passed on as keyword arguments. + + Returns + ------- + res : :class:`OptimizationResults` object + An object containing useful summaries of the fitting procedure. + For details, see documentation of :class:`OptimizationResults`. + """ + + self.lpost = lpost + + res = ParameterEstimation.fit( + self, self.lpost, t0, neg=neg, scipy_optimize_options=scipy_optimize_options + ) + + res.maxpow, res.maxfreq, res.maxind = self._compute_highest_outlier(self.lpost, res) + + return res
+ + +
+[docs] + def sample( + self, + lpost, + t0, + cov=None, + nwalkers=500, + niter=100, + burnin=100, + threads=1, + print_results=True, + plot=False, + namestr="test", + ): + """ + Sample the posterior distribution defined in ``lpost`` using MCMC. + Here we use the ``emcee`` package, but other implementations could + in principle be used. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` subclass + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : iterable + list or array containing the starting parameters. Its length + must match ``lpost.model.npar``. + + nwalkers : int, optional, default 500 + The number of walkers (chains) to use during the MCMC procedure. + The more walkers are used, the slower the estimation will be, but + the better the final distribution is likely to be. + + niter : int, optional, default 100 + The number of iterations to run the MCMC chains for. The larger this + number, the longer the estimation will take, but the higher the + chance that the walkers have actually converged on the true + posterior distribution. + + burnin : int, optional, default 100 + The number of iterations to run the walkers before convergence is + assumed to have occurred. This part of the chain will be discarded + before sampling from what is then assumed to be the posterior + distribution desired. + + threads : int, optional, default 1 + The number of threads for parallelization. + Default is ``1``, i.e. no parallelization + + print_results : bool, optional, default True + Boolean flag setting whether the results of the MCMC run should + be printed to standard output + + plot : bool, optional, default False + Boolean flag setting whether summary plots of the MCMC chains + should be produced + + namestr : str, optional, default ``test`` + Optional string for output file names for the plotting. + + Returns + ------- + + res : :class:`SamplingResults` object + An object containing useful summaries of the + sampling procedure. For details see documentation of :class:`SamplingResults`. + + """ + self.lpost = lpost + + if cov is None: + fit_res = ParameterEstimation.fit(self, self.lpost, t0, neg=True) + cov = fit_res.cov + t0 = fit_res.p_opt + + res = ParameterEstimation.sample( + self, + self.lpost, + t0, + cov=cov, + nwalkers=nwalkers, + niter=niter, + burnin=burnin, + threads=threads, + print_results=print_results, + plot=plot, + namestr=namestr, + ) + + return res
+ + + def _generate_data(self, lpost, pars, rng=None): + """ + Generate a fake power spectrum from a model. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass + The object containing the relevant information about the + data and the model + + pars : iterable + A list of parameters to be passed to ``lpost.model`` in oder + to generate a model data set. + + Returns + ------- + sim_ps : :class:`stingray.Powerspectrum` object + The simulated :class:`Powerspectrum` object + + """ + # create own random state object + if rng is None: + rng = np.random.RandomState(None) + + model_spectrum = self._generate_model(lpost, pars) + + # use chi-square distribution to get fake data + model_powers = ( + model_spectrum + * rng.chisquare(2 * self.ps.m, size=model_spectrum.shape[0]) + / (2.0 * self.ps.m) + ) + + sim_ps = copy.copy(self.ps) + + sim_ps.power = model_powers + + return sim_ps + +
+[docs] + def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, seed=None): + """ + Simulate likelihood ratios for two given models based on MCMC samples + for the simpler model (i.e. the null hypothesis). + + Parameters + ---------- + s_all : numpy.ndarray of shape ``(nsamples, lpost1.npar)`` + An array with MCMC samples derived from the null hypothesis model in + ``lpost1``. Its second dimension must match the number of free + parameters in ``lpost1.model``. + + lpost1 : :class:`LogLikelihood` or :class:`Posterior` subclass object + Object containing the null hypothesis model + + t1 : iterable of length ``lpost1.npar`` + A starting guess for fitting the model in ``lpost1`` + + lpost2 : :class:`LogLikelihood` or :class:`Posterior` subclass object + Object containing the alternative hypothesis model + + t2 : iterable of length ``lpost2.npar`` + A starting guess for fitting the model in ``lpost2`` + + max_post : bool, optional, default ``True`` + If ``True``, then ``lpost1`` and ``lpost2`` should be :class:`Posterior` subclass + objects; if ``False``, then ``lpost1`` and ``lpost2`` should be + :class:`LogLikelihood` subclass objects + + seed : int, optional default ``None`` + A seed to initialize the ``numpy.random.RandomState`` object to be + passed on to ``_generate_data``. Useful for producing exactly + reproducible results + + Returns + ------- + lrt_sim : numpy.ndarray + An array with the simulated likelihood ratios for the simulated + data + """ + + assert lpost1.__class__ == lpost2.__class__, ( + "Both LogLikelihood or " "Posterior objects must be " "of the same class!" + ) + + nsim = s_all.shape[0] + lrt_sim = np.zeros(nsim) + + rng = np.random.RandomState(seed) + + # now I can loop over all simulated parameter sets to generate a PSD + for i, s in enumerate(s_all): + # generate fake PSD + sim_ps = self._generate_data(lpost1, s, rng) + + neg = True + + # make LogLikelihood objects for both: + if isinstance(lpost1, LogLikelihood): + sim_lpost1 = PSDLogLikelihood( + sim_ps.freq, sim_ps.power, model=lpost1.model, m=sim_ps.m + ) + sim_lpost2 = PSDLogLikelihood( + sim_ps.freq, sim_ps.power, model=lpost2.model, m=sim_ps.m + ) + max_post = False + else: + # make a :class:`Posterior` object + sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost1.model, m=sim_ps.m) + sim_lpost1.logprior = lpost1.logprior + + sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost2.model, m=sim_ps.m) + + sim_lpost2.logprior = lpost2.logprior + max_post = True + + parest_sim = PSDParEst(sim_ps, max_post=max_post, fitmethod=self.fitmethod) + + try: + lrt_sim[i], _, _ = parest_sim.compute_lrt( + sim_lpost1, t1, sim_lpost2, t2, neg=neg, max_post=max_post + ) + except RuntimeError: + logging.warning("Fitting was unsuccessful. " "Skipping this simulation!") + continue + + return lrt_sim
+ + +
+[docs] + def calibrate_highest_outlier( + self, + lpost, + t0, + sample=None, + max_post=False, + nsim=1000, + niter=200, + nwalkers=500, + burnin=200, + namestr="test", + seed=None, + ): + r""" + Calibrate the highest outlier in a data set using MCMC-simulated + power spectra. + + In short, the procedure does a MAP fit to the data, computes the + statistic + + .. math:: + + \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} + + and then does an MCMC run using the data and the model, or generates parameter samples + from the likelihood distribution using the derived covariance in a Maximum Likelihood + fit. + From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit + in the same way as the data, and the highest data/model outlier extracted as for the data. + The observed value of :math:`T_R` can then be directly compared to the simulated + distribution of :math:`T_R` values in order to derive a p-value of the null + hypothesis that the observed :math:`T_R` is compatible with being generated by + noise. + + Parameters + ---------- + lpost : :class:`stingray.modeling.PSDPosterior` object + An instance of class :class:`stingray.modeling.PSDPosterior` that defines the + function to be minimized (either in ``loglikelihood`` or ``logposterior``) + + t0 : {list | numpy.ndarray} + List/array with set of initial parameters + + sample : :class:`SamplingResults` instance, optional, default ``None`` + If a sampler has already been run, the :class:`SamplingResults` instance can be + fed into this method here, otherwise this method will run a sampler + automatically + + max_post: bool, optional, default ``False`` + If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier + Otherwise, do a Maximum Likelihood fit. If ``True``, the simulated power spectra will + be generated from an MCMC run, otherwise the method will employ the approximated + covariance matrix for the parameters derived from the likelihood surface to generate + samples from that likelihood function. + + nsim : int, optional, default ``1000`` + Number of fake power spectra to simulate from the posterior sample. Note that this + number sets the resolution of the resulting p-value. For ``nsim=1000``, the highest + resolution that can be achieved is :math:`10^{-3}`. + + niter : int, optional, default 200 + If ``sample`` is ``None``, this variable will be used to set the number of steps in the + MCMC procedure *after* burn-in. + + nwalkers : int, optional, default 500 + If ``sample`` is ``None``, this variable will be used to set the number of MCMC chains + run in parallel in the sampler. + + burnin : int, optional, default 200 + If ``sample`` is ``None``, this variable will be used to set the number of burn-in steps + to be discarded in the initial phase of the MCMC run + + namestr : str, optional, default ``test`` + A string to be used for storing MCMC output and plots to disk + + seed : int, optional, default ``None`` + An optional number to seed the random number generator with, for reproducibility of + the results obtained with this method. + + Returns + ------- + pval : float + The p-value that the highest data/model outlier is produced by random noise, calibrated + using simulated power spectra from an MCMC run. + + References + ---------- + For more details on the procedure employed here, see + + * Vaughan, 2010: https://arxiv.org/abs/0910.2706 + * Huppenkothen et al, 2013: https://arxiv.org/abs/1212.1011 + """ + # fit the model to the data + res = self.fit(lpost, t0, neg=True) + + rng = np.random.RandomState(seed) + + # find the highest data/model outlier: + out_high, _, _ = self._compute_highest_outlier(lpost, res) + # simulate parameter sets from the simpler model + if not max_post: + # using Maximum Likelihood, so I'm going to simulate parameters + # from a multivariate Gaussian + + # set up the distribution + mvn = scipy.stats.multivariate_normal(mean=res.p_opt, cov=res.cov, seed=seed) + + if lpost.npar == 1: + # sample parameters + s_all = np.atleast_2d(mvn.rvs(size=nsim)).T + + else: + s_all = mvn.rvs(size=nsim) + + else: + if sample is None: + # sample the :class:`Posterior` using MCMC + sample = self.sample( + lpost, + res.p_opt, + cov=res.cov, + nwalkers=nwalkers, + niter=niter, + burnin=burnin, + namestr=namestr, + ) + + # pick nsim samples out of the :class:`Posterior` sample + s_all = sample.samples[rng.choice(sample.samples.shape[0], nsim, replace=False)] + + # simulate LRTs + # this method is defined in the subclasses! + out_high_sim = self.simulate_highest_outlier(s_all, lpost, t0, max_post=max_post, seed=seed) + # now I can compute the p-value: + pval = ParameterEstimation._compute_pvalue(out_high, out_high_sim) + + return pval
+ + +
+[docs] + def simulate_highest_outlier(self, s_all, lpost, t0, max_post=True, seed=None): + r""" + Simulate :math:`n` power spectra from a model and then find the highest + data/model outlier in each. + + The data/model outlier is defined as + + .. math:: + + \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} . + + Parameters + ---------- + s_all : numpy.ndarray + A list of parameter values derived either from an approximation of the + likelihood surface, or from an MCMC run. Has dimensions ``(n, ndim)``, where + ``n`` is the number of simulated power spectra to generate, and ``ndim`` the + number of model parameters. + + lpost : instance of a :class:`Posterior` subclass + an instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : iterable + list or array containing the starting parameters. Its length + must match ``lpost.model.npar``. + + max_post: bool, optional, default ``False`` + If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier + Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will + be generated from an MCMC run, otherwise the method will employ the approximated + covariance matrix for the parameters derived from the likelihood surface to generate + samples from that likelihood function. + + seed : int, optional, default ``None`` + An optional number to seed the random number generator with, for reproducibility of + the results obtained with this method. + + Returns + ------- + max_y_all : numpy.ndarray + An array of maximum outliers for each simulated power spectrum + """ + # the number of simulations + nsim = s_all.shape[0] + + # empty array for the simulation results + max_y_all = np.zeros(nsim) + + rng = np.random.RandomState(seed) + + # now I can loop over all simulated parameter sets to generate a PSD + for i, s in enumerate(s_all): + # generate fake PSD + sim_ps = self._generate_data(lpost, s, rng=rng) + + # make LogLikelihood objects for both: + if not max_post: + sim_lpost = PSDLogLikelihood( + sim_ps.freq, sim_ps.power, model=lpost.model, m=sim_ps.m + ) + else: + # make a :class:`Posterior` object + sim_lpost = PSDPosterior(sim_ps.freq, sim_ps.power, lpost.model, m=sim_ps.m) + sim_lpost.logprior = lpost.logprior + + parest_sim = PSDParEst(sim_ps, max_post=max_post) + + try: + res = parest_sim.fit(sim_lpost, t0, neg=True) + max_y, maxfreq, maxind = self._compute_highest_outlier(sim_lpost, res, nmax=1) + max_y_all[i] = max_y[0] + except RuntimeError: + logging.warning("Fitting unsuccessful! " "Skipping this simulation!") + continue + + return np.hstack(max_y_all)
+ + + def _compute_highest_outlier(self, lpost, res, nmax=1): + r""" + Auxiliary method calculating the highest outlier statistic in + a power spectrum. + + The maximum data/model outlier is defined as + + .. math:: + + \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} + + Parameters + ---------- + lpost : instance of a :class:`Posterior` subclass + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + res : :class:`OptimizationResults` object + An object containing useful summaries of the fitting procedure. + For details, see documentation of :class:`OptimizationResults`. + + nmax : int, optional, default ``1`` + The number of maxima to extract from the power spectra. By default, + only the highest data/model outlier is extracted. This number allows + to extract the ``nmax`` highest outliers, useful when looking for + multiple signals in a power spectrum. + + Returns + ------- + max_y : {float | numpy.ndarray} + The ``nmax`` highest data/model outliers + + max_x : {float | numpy.ndarray} + The frequencies corresponding to the outliers in ``max_y`` + + max_ind : {int | numpy.ndarray} + The indices corresponding to the outliers in ``max_y`` + """ + residuals = 2.0 * lpost.y / res.mfit + + ratio_sort = copy.copy(residuals) + ratio_sort.sort() + max_y = ratio_sort[-nmax:] + + max_x = np.zeros(max_y.shape[0]) + max_ind = np.zeros(max_y.shape[0]) + + for i, my in enumerate(max_y): + max_x[i], max_ind[i] = self._find_outlier(lpost.x, residuals, my) + + return max_y, max_x, max_ind + + @staticmethod + def _find_outlier(xdata, ratio, max_y): + """ + Small auxiliary method that finds the index where an array has + its maximum, and the corresponding value in ``xdata``. + + Parameters + ---------- + xdata : numpy.ndarray + A list of independent variables + + ratio : Numpy.ndarray + A list of dependent variables corresponding to ``xdata`` + + max_y : float + The maximum value of ``ratio`` + + Returns + ------- + max_x : float + The value in ``xdata`` corresponding to the entry in ``ratio`` where + ``ratio == `max_y`` + + max_ind : float + The index of the entry in ``ratio`` where ``ratio == max_y`` + """ + max_ind = np.where(ratio == max_y)[0][0] + max_x = xdata[max_ind] + + return max_x, max_ind + +
+[docs] + def plotfits(self, res1, res2=None, save_plot=False, namestr="test", log=False): + """ + Plotting method that allows to plot either one or two best-fit models + with the data. + + Plots a power spectrum with the best-fit model, as well as the data/model + residuals for each model. + + Parameters + ---------- + res1 : :class:`OptimizationResults` object + Output of a successful fitting procedure + + res2 : :class:`OptimizationResults` object, optional, default ``None`` + Optional output of a second successful fitting procedure, e.g. with a + competing model + + save_plot : bool, optional, default ``False`` + If ``True``, the resulting figure will be saved to a file + + namestr : str, optional, default ``test`` + If ``save_plot`` is ``True``, this string defines the path and file name + for the output plot + + log : bool, optional, default ``False`` + If ``True``, plot the axes logarithmically. + """ + + # make a figure + f = plt.figure(figsize=(12, 10)) + # adjust subplots such that the space between the top and bottom + # of each are zero + plt.subplots_adjust(hspace=0.0, wspace=0.4) + + # first subplot of the grid, twice as high as the other two + # This is the periodogram with the two fitted models overplotted + s1 = plt.subplot2grid((4, 1), (0, 0), rowspan=2) + + if log: + logx = np.log10(self.ps.freq) + logy = np.log10(self.ps.power) + logpar1 = np.log10(res1.mfit) + + (p1,) = s1.plot(logx, logy, color="black", drawstyle="steps-mid") + (p2,) = s1.plot(logx, logpar1, color="blue", lw=2) + s1.set_xlim([np.min(logx), np.max(logx)]) + s1.set_ylim([np.min(logy) - 1.0, np.max(logy) + 1]) + if self.ps.norm == "leahy": + s1.set_ylabel("log(Leahy-Normalized Power)", fontsize=18) + elif self.ps.norm == "rms": + s1.set_ylabel("log(RMS-Normalized Power)", fontsize=18) + else: + s1.set_ylabel("log(Power)", fontsize=18) + + else: + (p1,) = s1.plot(self.ps.freq, self.ps.power, color="black", drawstyle="steps-mid") + (p2,) = s1.plot(self.ps.freq, res1.mfit, color="blue", lw=2) + + s1.set_xscale("log") + s1.set_yscale("log") + + s1.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)]) + s1.set_ylim([np.min(self.ps.freq) / 10.0, np.max(self.ps.power) * 10.0]) + + if self.ps.norm == "leahy": + s1.set_ylabel("Leahy-Normalized Power", fontsize=18) + elif self.ps.norm == "rms": + s1.set_ylabel("RMS-Normalized Power", fontsize=18) + else: + s1.set_ylabel("Power", fontsize=18) + + if res2 is not None: + if log: + logpar2 = np.log10(res2.mfit) + (p3,) = s1.plot(logx, logpar2, color="red", lw=2) + else: + (p3,) = s1.plot(self.ps.freq, res2.mfit, color="red", lw=2) + s1.legend([p1, p2, p3], ["data", "model 1 fit", "model 2 fit"]) + else: + s1.legend([p1, p2], ["data", "model fit"]) + + s1.set_title("Periodogram and fits for data set " + namestr, fontsize=18) + + # second subplot: power/model for Power law and straight line + s2 = plt.subplot2grid((4, 1), (2, 0), rowspan=1) + pldif = self.ps.power / res1.mfit + + s2.set_ylabel("Residuals, \n first model", fontsize=18) + + if log: + s2.plot(logx, pldif, color="black", drawstyle="steps-mid") + s2.plot(logx, np.ones(self.ps.freq.shape[0]), color="blue", lw=2) + s2.set_xlim([np.min(logx), np.max(logx)]) + s2.set_ylim([np.min(pldif), np.max(pldif)]) + + else: + s2.plot(self.ps.freq, pldif, color="black", drawstyle="steps-mid") + s2.plot(self.ps.freq, np.ones_like(self.ps.power), color="blue", lw=2) + + s2.set_xscale("log") + s2.set_yscale("log") + s2.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)]) + s2.set_ylim([np.min(pldif), np.max(pldif)]) + + if res2 is not None: + bpldif = self.ps.power / res2.mfit + + # third subplot: power/model for bent power law and straight line + s3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1) + + if log: + s3.plot(logx, bpldif, color="black", drawstyle="steps-mid") + s3.plot(logx, np.ones(len(self.ps.freq)), color="red", lw=2) + s3.axis([np.min(logx), np.max(logx), np.min(bpldif), np.max(bpldif)]) + s3.set_xlabel("log(Frequency) [Hz]", fontsize=18) + + else: + s3.plot(self.ps.freq, bpldif, color="black", drawstyle="steps-mid") + s3.plot(self.ps.freq, np.ones(len(self.ps.freq)), color="red", lw=2) + s3.set_xscale("log") + s3.set_yscale("log") + s3.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)]) + s3.set_ylim([np.min(bpldif), np.max(bpldif)]) + s3.set_xlabel("Frequency [Hz]", fontsize=18) + + s3.set_ylabel("Residuals, \n second model", fontsize=18) + + else: + if log: + s2.set_xlabel("log(Frequency) [Hz]", fontsize=18) + else: + s2.set_xlabel("Frequency [Hz]", fontsize=18) + + ax = plt.gca() + + for label in ax.get_xticklabels() + ax.get_yticklabels(): + label.set_fontsize(14) + + # make sure xticks are taken from first plots, but don't + # appear there + plt.setp(s1.get_xticklabels(), visible=False) + + if save_plot: + # save figure in png file and close plot device + plt.savefig(namestr + "_ps_fit.png", format="png") + + return
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/modeling/posterior.html b/_modules/stingray/modeling/posterior.html new file mode 100644 index 000000000..926f8a729 --- /dev/null +++ b/_modules/stingray/modeling/posterior.html @@ -0,0 +1,1040 @@ + + + + + + + stingray.modeling.posterior — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.modeling.posterior

+import abc
+import warnings
+
+import numpy as np
+from collections.abc import Iterable
+
+np.seterr("warn")
+
+from scipy.special import gamma as scipy_gamma
+from scipy.special import gammaln as scipy_gammaln
+
+try:
+    from astropy.modeling.fitting import fitter_to_model_params
+except ImportError:
+    from astropy.modeling.fitting import _fitter_to_model_params as fitter_to_model_params
+
+from astropy.modeling import models
+
+from stingray import Lightcurve, Powerspectrum
+from stingray.utils import assign_if_not_finite
+
+
+# TODO: Add checks and balances to code
+
+# from stingray.modeling.parametricmodels import logmin
+
+__all__ = [
+    "set_logprior",
+    "Posterior",
+    "PSDPosterior",
+    "LogLikelihood",
+    "PoissonLogLikelihood",
+    "PSDLogLikelihood",
+    "GaussianLogLikelihood",
+    "LaplaceLogLikelihood",
+    "PoissonPosterior",
+    "GaussianPosterior",
+    "LaplacePosterior",
+    "PriorUndefinedError",
+    "LikelihoodUndefinedError",
+]
+
+logmin = -10000000000000000.0
+
+
+class PriorUndefinedError(Exception):
+    pass
+
+
+class LikelihoodUndefinedError(Exception):
+    pass
+
+
+class IncorrectParameterError(Exception):
+    pass
+
+
+
+[docs] +def set_logprior(lpost, priors): + """ + This function constructs the ``logprior`` method required to successfully + use a :class:`Posterior` object. + + All instances of class :class:`Posterior` and its subclasses require to implement a + ``logprior`` methods. However, priors are strongly problem-dependent and + therefore usually user-defined. + + This function allows for setting the ``logprior`` method on any instance + of class :class:`Posterior` efficiently by allowing the user to pass a + dictionary of priors and an instance of class :class:`Posterior`. + + Parameters + ---------- + lpost : :class:`Posterior` object + An instance of class :class:`Posterior` or any of its subclasses + + priors : dict + A dictionary containing the prior definitions. Keys are parameter + names as defined by the ``astropy.models.FittableModel`` instance supplied + to the ``model`` parameter in :class:`Posterior`. Items are functions + that take a parameter as input and return the log-prior probability + of that parameter. + + Returns + ------- + logprior : function + The function definition for the prior + + Examples + -------- + Make a light curve and power spectrum + + >>> photon_arrivals = np.sort(np.random.uniform(0,1000, size=10000)) + >>> lc = Lightcurve.make_lightcurve(photon_arrivals, dt=1.0) + >>> ps = Powerspectrum(lc, norm="frac") + + Define the model + + >>> pl = models.PowerLaw1D() + >>> pl.x_0.fixed = True + + Instantiate the posterior: + + >>> lpost = PSDPosterior(ps.freq, ps.power, pl, m=ps.m) + + Define the priors: + + >>> p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.)) + >>> p_amplitude = lambda amplitude: ((-10 <= np.log(amplitude)) & + ... ((np.log(amplitude) <= 10.0))) + >>> priors = {"alpha":p_alpha, "amplitude":p_amplitude} + + Set the logprior method in the lpost object: + + >>> lpost.logprior = set_logprior(lpost, priors) + """ + + # get the number of free parameters in the model + # free_params = [p for p in lpost.model.param_names if not + # getattr(lpost.model, p).fixed] + free_params = [key for key, l in lpost.model.fixed.items() if not l] + + # define the logprior + def logprior(t0, neg=False): + """ + The logarithm of the prior distribution for the + model defined in self.model. + + Parameters + ---------- + t0 : {list | numpy.ndarray} + The list with parameters for the model + + Returns + ------- + logp : float + The logarithm of the prior distribution for the model and + parameters given. + """ + + if len(t0) != len(free_params): + raise IncorrectParameterError( + "The number of parameters passed into " + "the prior does not match the number " + "of parameters in the model." + ) + + logp = 0.0 # initialize log-prior + ii = 0 # counter for the variable parameter + + # loop through all parameter names, but only compute + # prior for those that are not fixed + # Note: need to do it this way to preserve order of parameters + # correctly! + for pname in lpost.model.param_names: + if not lpost.model.fixed[pname]: + with warnings.catch_warnings(record=True) as out: + logp += np.log(priors[pname](t0[ii])) + if len(out) > 0: + if isinstance(out[0].message, RuntimeWarning): + logp = np.nan + + ii += 1 + + logp = assign_if_not_finite(logp, logmin) + + if neg: + return -logp + else: + return logp + + return logprior
+ + + +
+[docs] +class LogLikelihood(object, metaclass=abc.ABCMeta): + """ + + Abstract Base Class defining the structure of a :class:`LogLikelihood` object. + This class cannot be called itself, since each statistical distribution + has its own definition for the likelihood, which should occur in subclasses. + + Parameters + ---------- + x : iterable + x-coordinate of the data. Could be multi-dimensional. + + y : iterable + y-coordinate of the data. Could be multi-dimensional. + + model : an ``astropy.modeling.FittableModel`` instance + Your model + + kwargs : + keyword arguments specific to the individual sub-classes. For + details, see the respective docstrings for each subclass + + """ + + def __init__(self, x, y, model, **kwargs): + self.x = x + self.y = y + + self.model = model + +
+[docs] + @abc.abstractmethod + def evaluate(self, parameters): + """ + This is where you define your log-likelihood. Do this, but do it in a subclass! + + """ + pass
+ + + def __call__(self, parameters, neg=False): + return self.evaluate(parameters, neg)
+ + + +
+[docs] +class GaussianLogLikelihood(LogLikelihood): + """ + Likelihood for data with Gaussian uncertainties. + Astronomers also call this likelihood *Chi-Squared*, but be aware + that this has *nothing* to do with the likelihood based on the + Chi-square distribution, which is also defined as in of + :class:`PSDLogLikelihood` in this module! + + Use this class here whenever your data has Gaussian uncertainties. + + Parameters + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an Astropy Model instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, x, y, yerr, model): + self.x = x + self.y = y + self.yerr = yerr + self.model = model + + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the Gaussian log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + + """ + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + loglike = np.sum( + -0.5 * np.log(2.0 * np.pi) + - np.log(self.yerr) + - (self.y - mean_model) ** 2 / (2.0 * self.yerr**2) + ) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class PoissonLogLikelihood(LogLikelihood): + """ + Likelihood for data with uncertainties following a Poisson distribution. + This is useful e.g. for (binned) photon count data. + + Parameters + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, x, y, model): + self.x = x + self.y = y + self.model = model + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + + """ + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + loglike = np.sum(-mean_model + self.y * np.log(mean_model) - scipy_gammaln(self.y + 1.0)) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class PSDLogLikelihood(LogLikelihood): + """ + A likelihood based on the Chi-square distribution, appropriate for modelling + (averaged) power spectra. Note that this is *not* the same as the statistic + astronomers commonly call *Chi-Square*, which is a fit statistic derived from + the Gaussian log-likelihood, defined elsewhere in this module. + + Parameters + ---------- + freq : iterable + Array with frequencies + + power : iterable + Array with (averaged/singular) powers corresponding to the + frequencies in ``freq`` + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + m : int + 1/2 of the degrees of freedom + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, freq, power, model, m=1): + LogLikelihood.__init__(self, freq, power, model) + + self.m = m + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname] and not self.model.tied[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + + """ + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + with warnings.catch_warnings(record=True) as out: + if not isinstance(self.m, Iterable) and self.m == 1: + loglike = -np.sum(np.log(mean_model)) - np.sum(self.y / mean_model) + + else: + dof = 2.0 * self.m + loglike = -( + np.sum(dof * np.log(mean_model)) + + np.sum(dof * self.y / mean_model) + + np.sum(dof * (2.0 / dof - 1.0) * np.log(self.y)) + ) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class LaplaceLogLikelihood(LogLikelihood): + """ + A Laplace likelihood for the cospectrum. + + Parameters + ---------- + x : iterable + Array with independent variable + + y : iterable + Array with dependent variable + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + yerr : iterable + Array with the uncertainties on ``y``, in standard deviation + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, x, y, yerr, model): + LogLikelihood.__init__(self, x, y, model) + self.yerr = yerr + + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname] and not self.model.tied[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + """ + + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + with warnings.catch_warnings(record=True) as out: + loglike = np.sum(-np.log(2.0 * self.yerr) - (np.abs(self.y - mean_model) / self.yerr)) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class Posterior(object): + """ + Define a :class:`Posterior` object. + + The :class:`Posterior` describes the Bayesian probability distribution of + a set of parameters :math:`\\theta` given some observed data :math:`D` and + some prior assumptions :math:`I`. + + It is defined as + + .. math:: + + p(\\theta | D, I) = p(D | \\theta, I) p(\\theta | I)/p(D| I) + + where :math:`p(D | \\theta, I)` describes the likelihood, i.e. the + sampling distribution of the data and the (parametric) model, and + :math:`p(\\theta | I)` describes the prior distribution, i.e. our information + about the parameters :math:`\\theta` before we gathered the data. + The marginal likelihood :math:`p(D| I)` describes the probability of + observing the data given the model assumptions, integrated over the + space of all parameters. + + Parameters + ---------- + x : iterable + The abscissa or independent variable of the data. This could + in principle be a multi-dimensional array. + + y : iterable + The ordinate or dependent variable of the data. + + model : ``astropy.modeling.models`` instance + The parametric model supposed to represent the data. For details + see the ``astropy.modeling`` documentation + + kwargs : + keyword arguments related to the subclasses of :class:`Posterior`. For + details, see the documentation of the individual subclasses + + References + ---------- + * Sivia, D. S., and J. Skilling. "Data Analysis: \ + A Bayesian Tutorial. 2006." + * Gelman, Andrew, et al. Bayesian data analysis. Vol. 2. Boca Raton, \ + FL, USA: Chapman & Hall/CRC, 2014. + * von Toussaint, Udo. "Bayesian inference in physics." \ + Reviews of Modern Physics 83.3 (2011): 943. + * Hogg, David W. "Probability Calculus for inference". \ + arxiv: 1205.4446 + + """ + + def __init__(self, x, y, model, **kwargs): + self.x = x + self.y = y + + self.model = model + + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname]: + self.npar += 1 + +
+[docs] + def logposterior(self, t0, neg=False): + """ + Definition of the log-posterior. + Requires methods ``loglikelihood`` and ``logprior`` to both + be defined. + + Note that ``loglikelihood`` is set in the subclass of :class:`Posterior` + appropriate for your problem at hand, as is ``logprior``. + + Parameters + ---------- + t0 : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-posterior. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-posterior, i.e. + ``-lpost``, rather than ``lpost``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + lpost : float + The value of the log-posterior for the given parameters ``t0`` + """ + + if not hasattr(self, "logprior"): + raise PriorUndefinedError( + "There is no prior implemented. " + "Cannot calculate posterior!" + ) + + if not hasattr(self, "loglikelihood"): + raise LikelihoodUndefinedError( + "There is no likelihood implemented. " + "Cannot calculate posterior!" + ) + + logpr = self.logprior(t0) + loglike = self.loglikelihood(t0) + + if np.isclose(logpr, logmin): + lpost = logmin + else: + lpost = logpr + loglike + + if neg is True: + return -lpost + else: + return lpost
+ + + def __call__(self, t0, neg=False): + return self.logposterior(t0, neg=neg)
+ + + +
+[docs] +class PSDPosterior(Posterior): + """ + :class:`Posterior` distribution for power spectra. + Uses an exponential distribution for the errors in the likelihood, + or a :math:`\\chi^2` distribution with :math:`2M` degrees of freedom, where + :math:`M` is the number of frequency bins or power spectra averaged in each bin. + + + Parameters + ---------- + ps : {:class:`stingray.Powerspectrum` | :class:`stingray.AveragedPowerspectrum`} instance + the :class:`stingray.Powerspectrum` object containing the data + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + m : int, default ``1`` + The number of averaged periodograms or frequency bins in ``ps``. + Useful for binned/averaged periodograms, since the value of + m will change the likelihood function! + + Attributes + ---------- + ps : {:class:`stingray.Powerspectrum` | :class:`stingray.AveragedPowerspectrum`} instance + the :class:`stingray.Powerspectrum` object containing the data + + x : numpy.ndarray + The independent variable (list of frequencies) stored in ``ps.freq`` + + y : numpy.ndarray + The dependent variable (list of powers) stored in ``ps.power`` + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + """ + + def __init__(self, freq, power, model, priors=None, m=1): + self.loglikelihood = PSDLogLikelihood(freq, power, model, m=m) + + self.m = m + Posterior.__init__(self, freq, power, model) + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ + + +
+[docs] +class PoissonPosterior(Posterior): + """ + :class:`Posterior` for Poisson light curve data. Primary intended use is for + modelling X-ray light curves, but alternative uses are conceivable. + + Parameters + ---------- + x : numpy.ndarray + The independent variable (e.g. time stamps of a light curve) + + y : numpy.ndarray + The dependent variable (e.g. counts per bin of a light curve) + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + Attributes + ---------- + x : numpy.ndarray + The independent variable (list of frequencies) stored in ps.freq + + y : numpy.ndarray + The dependent variable (list of powers) stored in ps.power + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + """ + + def __init__(self, x, y, model, priors=None): + self.x = x + self.y = y + + self.loglikelihood = PoissonLogLikelihood(self.x, self.y, model) + + Posterior.__init__(self, self.x, self.y, model) + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ + + +
+[docs] +class GaussianPosterior(Posterior): + """ + A general class for two-dimensional data following a Gaussian + sampling distribution. + + Parameters + ---------- + x : numpy.ndarray + independent variable + + y : numpy.ndarray + dependent variable + + yerr : numpy.ndarray + measurement uncertainties for y + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + """ + + def __init__(self, x, y, yerr, model, priors=None): + self.loglikelihood = GaussianLogLikelihood(x, y, yerr, model) + + Posterior.__init__(self, x, y, model) + + self.yerr = yerr + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ + + +
+[docs] +class LaplacePosterior(Posterior): + """ + A general class for two-dimensional data following a Gaussian + sampling distribution. + + Parameters + ---------- + x : numpy.ndarray + independent variable + + y : numpy.ndarray + dependent variable + + yerr : numpy.ndarray + measurement uncertainties for y, in standard deviation + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + """ + + def __init__(self, x, y, yerr, model, priors=None): + self.loglikelihood = LaplaceLogLikelihood(x, y, yerr, model) + + Posterior.__init__(self, x, y, model) + + self.yerr = yerr + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/modeling/scripts.html b/_modules/stingray/modeling/scripts.html new file mode 100644 index 000000000..a3edf3a09 --- /dev/null +++ b/_modules/stingray/modeling/scripts.html @@ -0,0 +1,419 @@ + + + + + + + stingray.modeling.scripts — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.modeling.scripts

+import numpy as np
+from astropy.modeling import models
+
+from stingray.modeling import PSDParEst, PSDPosterior, PSDLogLikelihood
+from stingray.modeling import GaussianPosterior, GaussianLogLikelihood
+from stingray import Powerspectrum
+
+__all__ = ["fit_powerspectrum", "fit_crossspectrum", "fit_lorentzians"]
+
+
+
+[docs] +def fit_powerspectrum( + ps, model, starting_pars=None, max_post=False, priors=None, fitmethod="L-BFGS-B" +): + """ + Fit a number of Lorentzians to a power spectrum, possibly including white + noise. Each Lorentzian has three parameters (amplitude, centroid position, + full-width at half maximum), plus one extra parameter if the white noise + level should be fit as well. Priors for each parameter can be included in + case `max_post = True`, in which case the function will attempt a + Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one + entry for each parameter. + The parameter names are `(amplitude_i, x_0_i, fwhm_i)` for each `i` out of + a total of `N` Lorentzians. The white noise level has a parameter + `amplitude_(N+1)`. For example, a model with two Lorentzians and a + white noise level would have parameters: + [amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2]. + + Parameters + ---------- + ps : Powerspectrum + A Powerspectrum object with the data to be fit + + model: astropy.modeling.models class instance + The parametric model supposed to represent the data. For details + see the astropy.modeling documentation + + starting_pars : iterable, optional, default None + The list of starting guesses for the optimizer. If it is not provided, + then default parameters are taken from `model`. See explanation above + for ordering of parameters in this list. + + fit_whitenoise : bool, optional, default True + If True, the code will attempt to fit a white noise level along with + the Lorentzians. Be sure to include a starting parameter for the + optimizer in `starting_pars`! + + max_post : bool, optional, default False + If True, perform a Maximum-A-Posteriori fit of the data rather than a + Maximum Likelihood fit. Note that this requires priors to be specified, + otherwise this will cause an exception! + + priors : {dict | None}, optional, default None + Dictionary with priors for the MAP fit. This should be of the form + {"parameter name": probability distribution, ...} + + fitmethod : string, optional, default "L-BFGS-B" + Specifies an optimization algorithm to use. Supply any valid option for + `scipy.optimize.minimize`. + + Returns + ------- + parest : PSDParEst object + A PSDParEst object for further analysis + + res : OptimizationResults object + The OptimizationResults object storing useful results and quantities + relating to the fit + + Examples + -------- + + We start by making an example power spectrum with three Lorentzians + >>> m = 1 + >>> nfreq = 100000 + >>> freq = np.linspace(1, 1000, nfreq) + + >>> np.random.seed(100) # set the seed for the random number generator + >>> noise = np.random.exponential(size=nfreq) + + >>> model = models.PowerLaw1D() + models.Const1D() + >>> model.x_0_0.fixed = True + + >>> alpha_0 = 2.0 + >>> amplitude_0 = 100.0 + >>> amplitude_1 = 2.0 + + >>> model.alpha_0 = alpha_0 + >>> model.amplitude_0 = amplitude_0 + >>> model.amplitude_1 = amplitude_1 + + >>> p = model(freq) + >>> power = noise * p + + >>> ps = Powerspectrum() + >>> ps.freq = freq + >>> ps.power = power + >>> ps.m = m + >>> ps.df = freq[1] - freq[0] + >>> ps.norm = "leahy" + + Now we have to guess starting parameters. For each Lorentzian, we have + amplitude, centroid position and fwhm, and this pattern repeats for each + Lorentzian in the fit. The white noise level is the last parameter. + >>> t0 = [80, 1.5, 2.5] + + Let's also make a model to test: + >>> model_to_test = models.PowerLaw1D() + models.Const1D() + >>> model_to_test.amplitude_1.fixed = True + + We're ready for doing the fit: + >>> parest, res = fit_powerspectrum(ps, model_to_test, t0) + + `res` contains a whole array of useful information about the fit, for + example the parameters at the optimum: + >>> p_opt = res.p_opt + + """ + if not (isinstance(starting_pars, np.ndarray) or isinstance(starting_pars, list)): + starting_pars = model.parameters + + if priors: + lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m) + else: + lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m) + + parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post) + res = parest.fit(lpost, starting_pars, neg=True) + + return parest, res
+ + + +
+[docs] +def fit_crossspectrum( + cs, model, starting_pars=None, max_post=False, priors=None, fitmethod="L-BFGS-B" +): + """ + Fit a number of Lorentzians to a cross spectrum, possibly including white + noise. Each Lorentzian has three parameters (amplitude, centroid position, + full-width at half maximum), plus one extra parameter if the white noise + level should be fit as well. Priors for each parameter can be included in + case `max_post = True`, in which case the function will attempt a + Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one + entry for each parameter. + The parameter names are `(amplitude_i, x_0_i, fwhm_i)` for each `i` out of + a total of `N` Lorentzians. The white noise level has a parameter + `amplitude_(N+1)`. For example, a model with two Lorentzians and a + white noise level would have parameters: + [amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2]. + + Parameters + ---------- + cs : Crossspectrum + A Crossspectrum object with the data to be fit + + model: astropy.modeling.models class instance + The parametric model supposed to represent the data. For details + see the astropy.modeling documentation + + starting_pars : iterable, optional, default None + The list of starting guesses for the optimizer. If it is not provided, + then default parameters are taken from `model`. See explanation above + for ordering of parameters in this list. + + max_post : bool, optional, default False + If True, perform a Maximum-A-Posteriori fit of the data rather than a + Maximum Likelihood fit. Note that this requires priors to be specified, + otherwise this will cause an exception! + + priors : {dict | None}, optional, default None + Dictionary with priors for the MAP fit. This should be of the form + {"parameter name": probability distribution, ...} + + fitmethod : string, optional, default "L-BFGS-B" + Specifies an optimization algorithm to use. Supply any valid option for + `scipy.optimize.minimize`. + + Returns + ------- + parest : PSDParEst object + A PSDParEst object for further analysis + + res : OptimizationResults object + The OptimizationResults object storing useful results and quantities + relating to the fit + """ + if not (isinstance(starting_pars, np.ndarray) or isinstance(starting_pars, list)): + starting_pars = model.parameters + if priors: + lgauss = GaussianPosterior(cs.freq, np.abs(cs.power), cs.power_err, model, priors) + else: + lgauss = GaussianLogLikelihood(cs.freq, np.abs(cs.power), model=model, yerr=cs.power_err) + + parest = PSDParEst(cs, fitmethod=fitmethod, max_post=max_post) + res = parest.fit(lgauss, starting_pars, neg=True) + + return parest, res
+ + + +
+[docs] +def fit_lorentzians( + ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None, fitmethod="L-BFGS-B" +): + """ + Fit a number of Lorentzians to a power spectrum, possibly including white + noise. Each Lorentzian has three parameters (amplitude, centroid position, + full-width at half maximum), plus one extra parameter if the white noise + level should be fit as well. Priors for each parameter can be included in + case `max_post = True`, in which case the function will attempt a + Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one + entry for each parameter. + The parameter names are `(amplitude_i, x_0_i, fwhm_i)` for each `i` out of + a total of `N` Lorentzians. The white noise level has a parameter + `amplitude_(N+1)`. For example, a model with two Lorentzians and a + white noise level would have parameters: + [amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2]. + + Parameters + ---------- + ps : Powerspectrum + A Powerspectrum object with the data to be fit + + nlor : int + The number of Lorentzians to fit + + starting_pars : iterable + The list of starting guesses for the optimizer. If it is not provided, + then default parameters are taken from `model`. See explanation above + for ordering of parameters in this list. + + fit_whitenoise : bool, optional, default True + If True, the code will attempt to fit a white noise level along with + the Lorentzians. Be sure to include a starting parameter for the + optimizer in `starting_pars`! + + max_post : bool, optional, default False + If True, perform a Maximum-A-Posteriori fit of the data rather than a + Maximum Likelihood fit. Note that this requires priors to be specified, + otherwise this will cause an exception! + + priors : {dict | None}, optional, default None + Dictionary with priors for the MAP fit. This should be of the form + {"parameter name": probability distribution, ...} + + fitmethod : string, optional, default "L-BFGS-B" + Specifies an optimization algorithm to use. Supply any valid option for + `scipy.optimize.minimize`. + + Returns + ------- + parest : PSDParEst object + A PSDParEst object for further analysis + + res : OptimizationResults object + The OptimizationResults object storing useful results and quantities + relating to the fit + + Examples + -------- + + We start by making an example power spectrum with three Lorentzians + >>> np.random.seed(400) + >>> nlor = 3 + + >>> x_0_0 = 0.5 + >>> x_0_1 = 2.0 + >>> x_0_2 = 7.5 + + >>> amplitude_0 = 150.0 + >>> amplitude_1 = 50.0 + >>> amplitude_2 = 15.0 + + >>> fwhm_0 = 0.1 + >>> fwhm_1 = 1.0 + >>> fwhm_2 = 0.5 + + We will also include a white noise level: + >>> whitenoise = 2.0 + + >>> model = (models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + + ... models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + + ... models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + + ... models.Const1D(whitenoise)) + + >>> freq = np.linspace(0.01, 10.0, 1000) + >>> p = model(freq) + >>> noise = np.random.exponential(size=len(freq)) + + >>> power = p*noise + >>> ps = Powerspectrum() + >>> ps.freq = freq + >>> ps.power = power + >>> ps.df = ps.freq[1] - ps.freq[0] + >>> ps.m = 1 + + Now we have to guess starting parameters. For each Lorentzian, we have + amplitude, centroid position and fwhm, and this pattern repeats for each + Lorentzian in the fit. The white noise level is the last parameter. + >>> t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1] + + We're ready for doing the fit: + >>> parest, res = fit_lorentzians(ps, nlor, t0) + + `res` contains a whole array of useful information about the fit, for + example the parameters at the optimum: + >>> p_opt = res.p_opt + + """ + + model = models.Lorentz1D() + + if nlor > 1: + for i in range(nlor - 1): + model += models.Lorentz1D() + + if fit_whitenoise: + model += models.Const1D() + + return fit_powerspectrum( + ps, model, starting_pars, max_post=max_post, priors=priors, fitmethod=fitmethod + )
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/powerspectrum.html b/_modules/stingray/powerspectrum.html new file mode 100644 index 000000000..0866167c5 --- /dev/null +++ b/_modules/stingray/powerspectrum.html @@ -0,0 +1,1616 @@ + + + + + + + stingray.powerspectrum — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.powerspectrum

+import copy
+import warnings
+from collections.abc import Generator, Iterable
+
+import numpy as np
+import scipy
+import scipy.optimize
+import scipy.stats
+
+import stingray.utils as utils
+from stingray.crossspectrum import AveragedCrossspectrum, Crossspectrum
+from stingray.gti import bin_intervals_from_gtis, check_gtis
+from stingray.stats import pds_probability, amplitude_upper_limit
+
+from .events import EventList
+from .gti import cross_two_gtis
+from .lightcurve import Lightcurve
+from .fourier import avg_pds_from_iterable, unnormalize_periodograms
+from .fourier import avg_pds_from_events
+from .fourier import fftfreq, fft
+from .fourier import get_flux_iterable_from_segments
+from .fourier import rms_calculation, poisson_level
+
+try:
+    from tqdm import tqdm as show_progress
+except ImportError:
+
+    def show_progress(a, **kwargs):
+        return a
+
+
+__all__ = ["Powerspectrum", "AveragedPowerspectrum", "DynamicalPowerspectrum"]
+
+
+
+[docs] +class Powerspectrum(Crossspectrum): + type = "powerspectrum" + """ + Make a :class:`Powerspectrum` (also called periodogram) from a (binned) + light curve. Periodograms can be normalized by either Leahy normalization, + fractional rms normalization, absolute rms normalization, or not at all. + + You can also make an empty :class:`Powerspectrum` object to populate with + your own fourier-transformed data (this can sometimes be useful when making + binned power spectra). + + Parameters + ---------- + data: :class:`stingray.Lightcurve` object, optional, default ``None`` + The light curve data to be Fourier-transformed. + + norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" + The normaliation of the power spectrum to be used. Options are + "leahy", "frac", "abs" and "none", default is "frac". + + Other Parameters + ---------------- + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. + This choice overrides the GTIs in the single light curves. Use with + care, especially if these GTIs have overlaps with the input + object GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the input object before making + the power spectrum. + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!). + + Attributes + ---------- + norm: {"leahy" | "frac" | "abs" | "none" } + The normalization of the power spectrum. + + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + power: numpy.ndarray + The array of normalized squared absolute values of Fourier + amplitudes. + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging power spectra of segments of a light curve). + Note that for a single realization (``m=1``) the error is equal to the + power. + + df: float + The frequency resolution. + + m: int + The number of averaged powers in each bin. + + n: int + The number of data points in the light curve. + + nphots: float + The total number of photons in the light curve. + + """ + + def __init__(self, data=None, norm="frac", gti=None, dt=None, lc=None, skip_checks=False): + self._type = None + if lc is not None: + warnings.warn( + "The lc keyword is now deprecated. Use data " "instead", DeprecationWarning + ) + if data is None: + data = lc + + good_input = data is not None + if good_input and not skip_checks: + good_input = self.initial_checks( + data1=data, data2=data, norm=norm, gti=gti, lc1=lc, lc2=lc, dt=dt + ) + + norm = norm.lower() + self.norm = norm + self.dt = dt + + if not good_input: + return self._initialize_empty() + + return self._initialize_from_any_input(data, dt=dt, norm=norm) + +
+[docs] + def rebin(self, df=None, f=None, method="mean"): + """ + Rebin the power spectrum. + + Parameters + ---------- + df: float + The new frequency resolution. + + Other Parameters + ---------------- + f: float + The rebin factor. If specified, it substitutes ``df`` with + ``f*self.df``, so ``f>1`` is recommended. + + Returns + ------- + bin_cs = :class:`Powerspectrum` object + The newly binned power spectrum. + """ + bin_ps = Crossspectrum.rebin(self, df=df, f=f, method=method) + bin_ps.nphots = bin_ps.nphots1 + + return bin_ps
+ + +
+[docs] + def compute_rms( + self, min_freq, max_freq, poisson_noise_level=None, white_noise_offset=None, deadtime=0.0 + ): + """ + Compute the fractional rms amplitude in the power spectrum + between two frequencies. + + Parameters + ---------- + min_freq: float + The lower frequency bound for the calculation. + + max_freq: float + The upper frequency bound for the calculation. + + Other parameters + ---------------- + poisson_noise_level : float, default is None + This is the Poisson noise level of the PDS with same + normalization as the PDS. If poissoin_noise_level is None, + the Poisson noise is calculated in the idealcase + e.g. 2./<countrate> for fractional rms normalisation + Dead time and other instrumental effects can alter it. + The user can fit the Poisson noise level outside + this function using the same normalisation of the PDS + and it will get subtracted from powers here. + + white_noise_offset : float, default None + This is the white noise level, in Leahy normalization. In the ideal + case, this is 2. Dead time and other instrumental effects can alter + it. The user can fit the white noise level outside this function + and it will get subtracted from powers here. + + Returns + ------- + rms: float + The fractional rms amplitude contained between ``min_freq`` and + ``max_freq``. + + rms_err: float + The error on the fractional rms amplitude. + + """ + minind = self.freq.searchsorted(min_freq) + maxind = self.freq.searchsorted(max_freq) + min_freq = self.freq[minind] + + # To avoid corner case of searchsorted, where maxind goes out of the array + if maxind >= len(self.freq) - 1: + max_freq = self.freq[maxind - 1] + else: + max_freq = self.freq[maxind] + + nphots = self.nphots + # distinguish the rebinned and non-rebinned case + if isinstance(self.m, Iterable): + M_freq = self.m[minind:maxind] + K_freq = self.k[minind:maxind] + freq_bins = 1 + else: + M_freq = self.m + K_freq = self.k + freq_bins = maxind - minind + T = self.dt * self.n + + if white_noise_offset is not None: + powers = self.power[minind:maxind] + warnings.warn( + "the option white_noise_offset now deprecated and will be " + "removed in the next major release. The routine" + "is correct only with non-rebinned power-spectra.", + DeprecationWarning, + ) + + if self.norm.lower() == "leahy": + powers_leahy = powers.copy() + else: + powers_leahy = self.unnorm_power[minind:maxind].real * 2 / nphots + + rms = np.sqrt(np.sum(powers_leahy - white_noise_offset) / nphots) + rms_err = self._rms_error(powers_leahy) + return rms, rms_err + + else: + if poisson_noise_level is None: + poisson_noise_unnorm = poisson_level("none", n_ph=self.nphots) + else: + poisson_noise_unnorm = unnormalize_periodograms( + poisson_noise_level, self.dt, self.n, self.nphots, norm=self.norm + ) + return rms_calculation( + self.unnorm_power[minind:maxind], + min_freq, + max_freq, + self.nphots, + T, + M_freq, + K_freq, + freq_bins, + poisson_noise_unnorm, + deadtime, + )
+ + +
+[docs] + def _rms_error(self, powers): + r""" + Compute the error on the fractional rms amplitude using error + propagation. + Note: this uses the actual measured powers, which is not + strictly correct. We should be using the underlying power spectrum, + but in the absence of an estimate of that, this will have to do. + + .. math:: + + r = \sqrt{P} + + .. math:: + + \delta r = \\frac{1}{2 * \sqrt{P}} \delta P + + Parameters + ---------- + powers: iterable + The list of powers used to compute the fractional rms amplitude. + + Returns + ------- + delta_rms: float + The error on the fractional rms amplitude. + """ + nphots = self.nphots + p_err = scipy.stats.chi2(2.0 * self.m).var() * powers / self.m / nphots + + rms = np.sum(powers) / nphots + pow = np.sqrt(rms) + + drms_dp = 1 / (2 * pow) + + sq_sum_err = np.sqrt(np.sum(p_err**2)) + delta_rms = sq_sum_err * drms_dp + return delta_rms
+ + +
+[docs] + def classical_significances(self, threshold=1, trial_correction=False): + """ + Compute the classical significances for the powers in the power + spectrum, assuming an underlying noise distribution that follows a + chi-square distributions with 2M degrees of freedom, where M is the + number of powers averaged in each bin. + + Note that this function will *only* produce correct results when the + following underlying assumptions are fulfilled: + + 1. The power spectrum is Leahy-normalized + 2. There is no source of variability in the data other than the + periodic signal to be determined with this method. This is + important! If there are other sources of (aperiodic) variability in + the data, this method will *not* produce correct results, but + instead produce a large number of spurious false positive + detections! + 3. There are no significant instrumental effects changing the + statistical distribution of the powers (e.g. pile-up or dead time) + + By default, the method produces ``(index,p-values)`` for all powers in + the power spectrum, where index is the numerical index of the power in + question. If a ``threshold`` is set, then only powers with p-values + *below* that threshold with their respective indices. If + ``trial_correction`` is set to ``True``, then the threshold will be + corrected for the number of trials (frequencies) in the power spectrum + before being used. + + Parameters + ---------- + threshold : float, optional, default ``1`` + The threshold to be used when reporting p-values of potentially + significant powers. Must be between 0 and 1. + Default is ``1`` (all p-values will be reported). + + trial_correction : bool, optional, default ``False`` + A Boolean flag that sets whether the ``threshold`` will be + corrected by the number of frequencies before being applied. This + decreases the ``threshold`` (p-values need to be lower to count as + significant). Default is ``False`` (report all powers) though for + any application where `threshold`` is set to something meaningful, + this should also be applied! + + Returns + ------- + pvals : iterable + A list of ``(p-value, index)`` tuples for all powers that have + p-values lower than the threshold specified in ``threshold``. + + """ + if not self.norm == "leahy": + raise ValueError("This method only works on " "Leahy-normalized power spectra!") + + if trial_correction: + ntrial = self.power.shape[0] + else: + ntrial = 1 + + if np.size(self.m) == 1: + # calculate p-values for all powers + # leave out zeroth power since it just encodes the number of + # photons! + pv = pds_probability(self.power, n_summed_spectra=self.m, ntrial=ntrial) + else: + pv = np.array( + [ + pds_probability(power, n_summed_spectra=m, ntrial=ntrial) + for power, m in zip(self.power, self.m) + ] + ) + + # need to add 1 to the indices to make up for the fact that + # we left out the first power above! + indices = np.where(pv < threshold)[0] + + pvals = np.vstack([pv[indices], indices]) + + return pvals
+ + +
+[docs] + def modulation_upper_limit(self, fmin=None, fmax=None, c=0.95): + r""" + Upper limit on a sinusoidal modulation. + + To understand the meaning of this amplitude: if the modulation is + described by: + + ..math:: p = \overline{p} (1 + a * \sin(x)) + + this function returns a. + + If it is a sum of sinusoidal harmonics instead + ..math:: p = \overline{p} (1 + \sum_l a_l * \sin(lx)) + a is equivalent to :math:`\sqrt(\sum_l a_l^2)`. + + See `stingray.stats.power_upper_limit`, + `stingray.stats.amplitude_upper_limit` + for more information. + + The formula used to calculate the upper limit assumes the Leahy + normalization. + If the periodogram is in another normalization, we will internally + convert it to Leahy before calculating the upper limit. + + Parameters + ---------- + fmin: float + The minimum frequency to search (defaults to the first nonzero bin) + + fmax: float + The maximum frequency to search (defaults to the Nyquist frequency) + + Other Parameters + ---------------- + c: float + The confidence value for the upper limit (e.g. 0.95 = 95%) + + Returns + ------- + a: float + The modulation amplitude that could produce P>pmeas with 1 - c + probability. + + Examples + -------- + >>> pds = Powerspectrum() + >>> pds.norm = "leahy" + >>> pds.freq = np.arange(0., 5.) + >>> # Note: this pds has 40 as maximum value between 2 and 5 Hz + >>> pds.power = np.array([100000, 1, 1, 40, 1]) + >>> pds.m = 1 + >>> pds.nphots = 30000 + >>> pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99) + 0.1016... + """ + + pds = self + if self.norm != "leahy": + pds = self.to_norm("leahy") + + freq = pds.freq + fnyq = np.max(freq) + power = pds.power + freq_mask = freq > 0 + if fmin is not None or fmax is not None: + if fmin is not None: + freq_mask[freq < fmin] = 0 + if fmax is not None: + freq_mask[freq > fmax] = 0 + freq = freq[freq_mask] + power = power[freq_mask] + + maximum_val = np.argmax(power) + nyq_ratio = freq[maximum_val] / fnyq + + # I multiply by M because the formulas from Vaughan+94 treat summed + # powers, while here we have averaged powers. + return amplitude_upper_limit( + power[maximum_val] * pds.m, pds.nphots, n=pds.m, c=c, nyq_ratio=nyq_ratio, fft_corr=True + )
+ + +
+[docs] + @staticmethod + def from_time_array( + times, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True + ): + """ + Calculate an average power spectrum from an array of event times. + + Parameters + ---------- + times : `np.array` + Event arrival times. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + """ + + return powerspectrum_from_time_array( + times, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + )
+ + +
+[docs] + @staticmethod + def from_events( + events, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True + ): + """ + Calculate an average power spectrum from an event list. + + Parameters + ---------- + events : `stingray.EventList` + Event list to be analyzed. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + """ + if gti is None: + gti = events.gti + return powerspectrum_from_events( + events, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + )
+ + +
+[docs] + @staticmethod + def from_lightcurve( + lc, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True + ): + """ + Calculate a power spectrum from a light curve. + + Parameters + ---------- + events : `stingray.Lightcurve` + Light curve to be analyzed. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + """ + if gti is None: + gti = lc.gti + return powerspectrum_from_lightcurve( + lc, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + )
+ + +
+[docs] + @staticmethod + def from_lc_iterable( + iter_lc, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True + ): + """ + Calculate the average power spectrum of an iterable collection of + light curves. + + Parameters + ---------- + iter_lc : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves. If arrays, use them as counts. + dt : float + The time resolution of the light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + """ + + return powerspectrum_from_lc_iterable( + iter_lc, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + )
+ + +
+[docs] + def _initialize_from_any_input( + self, + data, + dt=None, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, + ): + """ + Initialize the class, trying to understand the input types. + + The input arguments are the same as ``__init__()``. Based on the type + of ``data``, this method will call the appropriate + ``powerspectrum_from_XXXX`` function, and initialize ``self`` with + the correct attributes. + """ + if isinstance(data, EventList): + spec = powerspectrum_from_events( + data, + dt, + segment_size, + norm=norm.lower(), + silent=silent, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + elif isinstance(data, Lightcurve): + spec = powerspectrum_from_lightcurve( + data, + segment_size, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + spec.lc1 = data + elif isinstance(data, (tuple, list)): + if not isinstance(data[0], Lightcurve): # pragma: no cover + raise TypeError(f"Bad inputs to Powerspectrum: {type(data[0])}") + dt = data[0].dt + # This is a list of light curves. + spec = powerspectrum_from_lc_iterable( + data, + dt, + segment_size, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + else: # pragma: no cover + raise TypeError(f"Bad inputs to Powerspectrum: {type(data)}") + + for key, val in spec.__dict__.items(): + setattr(self, key, val) + return
+ + +
+[docs] + def _initialize_empty(self): + """Set all attributes to None.""" + self.freq = None + self.power = None + self.power_err = None + self.unnorm_power = None + self.unnorm_power_err = None + self.df = None + self.dt = None + self.nphots1 = None + self.m = 1 + self.n = None + self.k = 1 + return
+
+ + + +
+[docs] +class AveragedPowerspectrum(AveragedCrossspectrum, Powerspectrum): + type = "powerspectrum" + """ + Make an averaged periodogram from a light curve by segmenting the light + curve, Fourier-transforming each segment and then averaging the + resulting periodograms. + + Parameters + ---------- + data: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object + The light curve data to be Fourier-transformed. + + segment_size: float + The size of each segment to average. Note that if the total + duration of each :class:`Lightcurve` object in lc is not an integer + multiple of the ``segment_size``, then any fraction left-over at the + end of the time series will be lost. + + norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" + The normalization of the periodogram to be used. + + Other Parameters + ---------------- + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. + This choice overrides the GTIs in the single light curves. Use with + care, especially if these GTIs have overlaps with the input + object GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the input object before making + the power spectrum. + + silent : bool, default False + Do not show a progress bar when generating an averaged cross spectrum. + Useful for the batch execution of many spectra. + + dt: float + The time resolution of the light curve. Only needed when constructing + light curves in the case where data is of :class:EventList. + + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!). + + Attributes + ---------- + norm: {``leahy`` | ``frac`` | ``abs`` | ``none`` } + The normalization of the periodogram. + + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + power: numpy.ndarray + The array of normalized squared absolute values of Fourier + amplitudes. + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging power spectra of segments of a light curve). + Note that for a single realization (``m=1``) the error is equal to the + power. + + df: float + The frequency resolution. + + m: int + The number of averaged periodograms. + + n: int + The number of data points in the light curve. + + nphots: float + The total number of photons in the light curve. + + """ + + def __init__( + self, + data=None, + segment_size=None, + norm="frac", + gti=None, + silent=False, + dt=None, + lc=None, + large_data=False, + save_all=False, + skip_checks=False, + use_common_mean=True, + ): + self._type = None + if lc is not None: + warnings.warn( + "The lc keyword is now deprecated. Use data " "instead", DeprecationWarning + ) + # Backwards compatibility: user might have supplied lc instead + if data is None: + data = lc + + good_input = data is not None + if good_input and not skip_checks: + good_input = self.initial_checks( + data1=data, + data2=data, + norm=norm, + gti=gti, + lc1=lc, + lc2=lc, + dt=dt, + segment_size=segment_size, + ) + + norm = norm.lower() + self.norm = norm + self.dt = dt + self.save_all = save_all + self.segment_size = segment_size + self.show_progress = not silent + self.k = 1 + + if not good_input: + return self._initialize_empty() + + if isinstance(data, Generator): + warnings.warn( + "The averaged power spectrum from a generator of " + "light curves pre-allocates the full list of light " + "curves, losing all advantage of lazy loading. If it " + "is important for you, use the " + "AveragedPowerspectrum.from_lc_iterable static " + "method, specifying the sampling time `dt`." + ) + data = list(data) + + return self._initialize_from_any_input( + data, + dt=dt, + segment_size=segment_size, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + save_all=save_all, + ) + +
+[docs] + def initial_checks(self, *args, **kwargs): + return AveragedCrossspectrum.initial_checks(self, *args, **kwargs)
+
+ + + +
+[docs] +class DynamicalPowerspectrum(AveragedPowerspectrum): + type = "powerspectrum" + """ + Create a dynamical power spectrum, also often called a *spectrogram*. + + This class will divide a :class:`Lightcurve` object into segments of + length ``segment_size``, create a power spectrum for each segment and store + all powers in a matrix as a function of both time (using the mid-point of + each segment) and frequency. + + This is often used to trace changes in period of a (quasi-)periodic signal + over time. + + Parameters + ---------- + lc : :class:`stingray.Lightcurve` or :class:`stingray.EventList` object + The time series or event list of which the dynamical power spectrum is + to be calculated. + + segment_size : float, default 1 + Length of the segment of light curve, default value is 1 (in whatever + units the ``time`` array in the :class:`Lightcurve`` object uses). + + norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" + The normaliation of the periodogram to be used. + + Other Parameters + ---------------- + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. + This choice overrides the GTIs in the single light curves. Use with + care, especially if these GTIs have overlaps with the input + object GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the input object before making + the power spectrum. + + Attributes + ---------- + segment_size: float + The size of each segment to average. Note that if the total + duration of each input object in lc is not an integer multiple + of the ``segment_size``, then any fraction left-over at the end of the + time series will be lost. + + dyn_ps : np.ndarray + The matrix of normalized squared absolute values of Fourier + amplitudes. The axis are given by the ``freq`` + and ``time`` attributes. + + norm: {``leahy`` | ``frac`` | ``abs`` | ``none``} + The normalization of the periodogram. + + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + df: float + The frequency resolution. + + dt: float + The time resolution. + """ + + def __init__(self, lc, segment_size, norm="frac", gti=None, dt=None): + if isinstance(lc, EventList) and dt is None: + raise ValueError("To pass an input event lists, please specify dt") + + if isinstance(lc, EventList): + lc = lc.to_lc(dt) + + if segment_size < 2 * lc.dt: + raise ValueError("Length of the segment is too short to form a " "light curve!") + elif segment_size > lc.tseg: + raise ValueError( + "Length of the segment is too long to create " "any segments of the light curve!" + ) + AveragedPowerspectrum.__init__( + self, data=lc, segment_size=segment_size, norm=norm, gti=gti, dt=dt + ) + self._make_matrix(lc) + + def _make_matrix(self, lc): + """ + Create a matrix of powers for each time step and each frequency step. + + Time increases with row index, frequency with column index. + + Parameters + ---------- + lc : :class:`Lightcurve` object + The :class:`Lightcurve` object from which to generate the dynamical + power spectrum. + """ + avg = AveragedPowerspectrum( + lc, segment_size=self.segment_size, norm=self.norm, gti=self.gti, save_all=True + ) + self.dyn_ps = np.array(avg.cs_all).T + + self.freq = avg.freq + current_gti = avg.gti + + start_inds, end_inds = bin_intervals_from_gtis( + current_gti, self.segment_size, lc.time, dt=lc.dt + ) + + tstart = lc.time[start_inds] + tend = lc.time[end_inds] + + self.time = tstart + 0.5 * (tend - tstart) + + # Assign length of lightcurve as time resolution if only one value + if len(self.time) > 1: + self.dt = self.time[1] - self.time[0] + else: + self.dt = lc.n + + # Assign biggest freq. resolution if only one value + if len(self.freq) > 1: + self.df = self.freq[1] - self.freq[0] + else: + self.df = 1 / lc.n + +
+[docs] + def rebin_frequency(self, df_new, method="sum"): + """ + Rebin the Dynamic Power Spectrum to a new frequency resolution. + Rebinning is an in-place operation, i.e. will replace the existing + ``dyn_ps`` attribute. + + While the new resolution need not be an integer multiple of the + previous frequency resolution, be aware that if it is not, the last + bin will be cut off by the fraction left over by the integer division. + + Parameters + ---------- + df_new: float + The new frequency resolution of the dynamical power spectrum. + Must be larger than the frequency resolution of the old dynamical + power spectrum! + + method: {"sum" | "mean" | "average"}, optional, default "sum" + This keyword argument sets whether the counts in the new bins + should be summed or averaged. + """ + new_dynspec_object = copy.deepcopy(self) + dynspec_new = [] + for data in self.dyn_ps.T: + freq_new, bin_counts, bin_err, _ = utils.rebin_data( + self.freq, data, dx_new=df_new, method=method + ) + dynspec_new.append(bin_counts) + + new_dynspec_object.freq = freq_new + new_dynspec_object.dyn_ps = np.array(dynspec_new).T + new_dynspec_object.df = df_new + return new_dynspec_object
+ + +
+[docs] + def trace_maximum(self, min_freq=None, max_freq=None): + """ + Return the indices of the maximum powers in each segment + :class:`Powerspectrum` between specified frequencies. + + Parameters + ---------- + min_freq: float, default ``None`` + The lower frequency bound. + + max_freq: float, default ``None`` + The upper frequency bound. + + Returns + ------- + max_positions : np.array + The array of indices of the maximum power in each segment having + frequency between ``min_freq`` and ``max_freq``. + """ + if min_freq is None: + min_freq = np.min(self.freq) + if max_freq is None: + max_freq = np.max(self.freq) + + max_positions = [] + for ps in self.dyn_ps.T: + indices = np.logical_and(self.freq <= max_freq, min_freq <= self.freq) + max_power = np.max(ps[indices]) + max_positions.append(np.where(ps == max_power)[0][0]) + + return np.array(max_positions)
+ + +
+[docs] + def rebin_time(self, dt_new, method="sum"): + """ + Rebin the Dynamic Power Spectrum to a new time resolution. + While the new resolution need not be an integer multiple of the + previous time resolution, be aware that if it is not, the last bin + will be cut off by the fraction left over by the integer division. + + Parameters + ---------- + dt_new: float + The new time resolution of the dynamical power spectrum. + Must be larger than the time resolution of the old dynamical power + spectrum! + + method: {"sum" | "mean" | "average"}, optional, default "sum" + This keyword argument sets whether the counts in the new bins + should be summed or averaged. + + Returns + ------- + time_new: numpy.ndarray + Time axis with new rebinned time resolution. + + dynspec_new: numpy.ndarray + New rebinned Dynamical Power Spectrum. + """ + if dt_new < self.dt: + raise ValueError("New time resolution must be larger than " "old time resolution!") + + new_dynspec_object = copy.deepcopy(self) + + dynspec_new = [] + for data in self.dyn_ps: + time_new, bin_counts, bin_err, _ = utils.rebin_data( + self.time, data, dt_new, method=method + ) + dynspec_new.append(bin_counts) + + new_dynspec_object.time = time_new + new_dynspec_object.dyn_ps = np.array(dynspec_new) + new_dynspec_object.dt = dt_new + return new_dynspec_object
+
+ + + +def powerspectrum_from_time_array( + times, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, +): + """ + Calculate a power spectrum from an array of event times. + + Parameters + ---------- + times : `np.array` + Event arrival times. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only required (and used) for ``AveragedPowerspectrum``. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + table = avg_pds_from_events( + times, + gti, + segment_size, + dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + return_subcs=save_all, + ) + + return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) + + +def powerspectrum_from_events( + events, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, +): + """ + Calculate a power spectrum from an event list. + + Parameters + ---------- + events : `stingray.EventList` + Event list to be analyzed. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only required (and used) for ``AveragedPowerspectrum``. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + if gti is None: + gti = events.gti + return powerspectrum_from_time_array( + events.time, + dt, + segment_size, + gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + save_all=save_all, + ) + + +def powerspectrum_from_lightcurve( + lc, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True, save_all=False +): + """ + Calculate a power spectrum from a light curve + + Parameters + ---------- + events : `stingray.Lightcurve` + Light curve to be analyzed. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only required (and used) for ``AveragedPowerspectrum``. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + err = None + if lc.err_dist == "gauss": + err = lc.counts_err + if gti is None: + gti = lc.gti + + table = avg_pds_from_events( + lc.time, + gti, + segment_size, + lc.dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + fluxes=lc.counts, + errors=err, + return_subcs=save_all, + ) + + return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) + + +def powerspectrum_from_lc_iterable( + iter_lc, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, +): + """ + Calculate an average power spectrum from an iterable collection of light + curves. + + Parameters + ---------- + iter_lc : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves. If arrays, use them as counts. + dt : float + The time resolution of the light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float, default None + The length, in seconds, of the light curve segments that will be + averaged. If not ``None``, it will be used to check the segment size of + the output. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + + common_gti = gti + + def iterate_lc_counts(iter_lc): + for lc in iter_lc: + if hasattr(lc, "counts"): + n_bin = np.rint(segment_size / lc.dt).astype(int) + + gti = lc.gti + if common_gti is not None: + gti = cross_two_gtis(common_gti, lc.gti) + err = None + if lc.err_dist == "gauss": + err = lc.counts_err + + flux_iterable = get_flux_iterable_from_segments( + lc.time, gti, segment_size, n_bin, fluxes=lc.counts, errors=err + ) + for out in flux_iterable: + yield out + elif isinstance(lc, Iterable): + yield lc + else: + raise TypeError( + "The inputs to `powerspectrum_from_lc_iterable`" + " must be Lightcurve objects or arrays" + ) + + table = avg_pds_from_iterable( + iterate_lc_counts(iter_lc), + dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + return_subcs=save_all, + ) + return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) + + +def _create_powerspectrum_from_result_table(table, force_averaged=False): + """ + Copy the columns and metadata from the results of + ``stingray.fourier.avg_pds_from_XX`` functions into + `AveragedPowerspectrum` or `Powerspectrum` objects. + + By default, allocates a Powerspectrum object if the number of + averaged spectra is 1, otherwise an AveragedPowerspectrum. + If the user specifies ``force_averaged=True``, it always allocates + an AveragedPowerspectrum. + + Parameters + ---------- + table : `astropy.table.Table` + results of `avg_cs_from_iterables` or `avg_cs_from_iterables_quick` + + Other parameters + ---------------- + force_averaged : bool, default False + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + if table.meta["m"] > 1 or force_averaged: + cs = AveragedPowerspectrum() + else: + cs = Powerspectrum() + + cs.freq = np.array(table["freq"]) + cs.power = np.array(table["power"]) + cs.unnorm_power = np.array(table["unnorm_power"]) + + for attr, val in table.meta.items(): + setattr(cs, attr, val) + + if "subcs" in table.meta: + cs.cs_all = np.array(table.meta["subcs"]) + cs.unnorm_cs_all = np.array(table.meta["unnorm_subcs"]) + + cs.err_dist = "poisson" + if hasattr(cs, "variance") and cs.variance is not None: + cs.err_dist = "gauss" + + cs.power_err = cs.power / np.sqrt(cs.m) + cs.unnorm_power_err = cs.unnorm_power / np.sqrt(cs.m) + cs.nphots1 = cs.nphots + return cs +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/pulse/modeling.html b/_modules/stingray/pulse/modeling.html new file mode 100644 index 000000000..0bdcb7dbe --- /dev/null +++ b/_modules/stingray/pulse/modeling.html @@ -0,0 +1,316 @@ + + + + + + + stingray.pulse.modeling — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.pulse.modeling

+import numpy as np
+from astropy.modeling import models, fitting
+
+
+__all__ = ["sinc_square_model", "sinc_square_deriv", "fit_sinc", "fit_gaussian", "SincSquareModel"]
+
+
+def sinc(x):
+    """
+    Calculate a sinc function.
+
+    sinc(x)=sin(x)/x
+
+    Parameters
+    ----------
+    x : array-like
+
+    Returns
+    -------
+    values : array-like
+    """
+    values = np.sinc(x / np.pi)
+    return values
+
+
+
+[docs] +def sinc_square_model(x, amplitude=1.0, mean=0.0, width=1.0): + """ + Calculate a sinc-squared function. + + (sin(x)/x)**2 + + Parameters + ---------- + x: array-like + + Other Parameters + ---------------- + amplitude : float + the value for x=mean + mean : float + mean of the sinc function + width : float + width of the sinc function + + Returns + ------- + sqvalues : array-like + Return square of sinc function + + Examples + -------- + >>> sinc_square_model(0, amplitude=2.) + 2.0 + """ + sqvalues = amplitude * sinc((x - mean) / width) ** 2 + return sqvalues
+ + + +
+[docs] +def sinc_square_deriv(x, amplitude=1.0, mean=0.0, width=1.0): + """ + Calculate partial derivatives of sinc-squared. + + Parameters + ---------- + x: array-like + + Other Parameters + ---------------- + amplitude : float + the value for x=mean + mean : float + mean of the sinc function + width : float + width of the sinc function + + Returns + ------- + d_amplitude : array-like + partial derivative of sinc-squared function + with respect to the amplitude + d_mean : array-like + partial derivative of sinc-squared function + with respect to the mean + d_width : array-like + partial derivative of sinc-squared function + with respect to the width + + Examples + -------- + >>> np.allclose(sinc_square_deriv(0, amplitude=2.), [1., 0., 0.]) + True + """ + x_is_zero = x == mean + + d_x = ( + 2 + * amplitude + * sinc((x - mean) / width) + * (x * np.cos((x - mean) / width) - np.sin((x - mean) / width)) + / ((x - mean) / width) ** 2 + ) + d_x = np.asarray(d_x) + d_amplitude = sinc((x - mean) / width) ** 2 + d_x[x_is_zero] = 0 + + d_mean = d_x * (-1 / width) + d_width = d_x * (-(x - mean) / (width) ** 2) + + return [d_amplitude, d_mean, d_width]
+ + + +_SincSquareModel = models.custom_model(sinc_square_model, fit_deriv=sinc_square_deriv) + + +
+[docs] +class SincSquareModel(_SincSquareModel): + def __reduce__(cls): + members = dict(cls.__dict__) + return (type(cls), (), members)
+ + + +
+[docs] +def fit_sinc(x, y, amp=1.5, mean=0.0, width=1.0, tied={}, fixed={}, bounds={}, obs_length=None): + """ + Fit a sinc function to x,y values. + + Parameters + ---------- + x : array-like + y : array-like + + Other Parameters + ---------------- + amp : float + The initial value for the amplitude + + mean : float + The initial value for the mean of the sinc + + obs_length : float + The length of the observation. Default None. If it's defined, it + fixes width to 1/(pi*obs_length), as expected from epoch folding + periodograms + + width : float + The initial value for the width of the sinc. Only valid if + obs_length is 0 + + tied : dict + + fixed : dict + + bounds : dict + Parameters to be passed to the [astropy models]_ + + Returns + ------- + sincfit : function + The best-fit function, accepting x as input + and returning the best-fit model as output + + References + ---------- + .. [astropy models] http://docs.astropy.org/en/stable/api/astropy.modeling.functional_models.Gaussian1D.html + """ + if obs_length is not None: + width = 1 / (np.pi * obs_length) + fixed["width"] = True + + sinc_in = SincSquareModel( + amplitude=amp, mean=mean, width=width, tied=tied, fixed=fixed, bounds=bounds + ) + fit_s = fitting.LevMarLSQFitter() + sincfit = fit_s(sinc_in, x, y) + return sincfit
+ + + +
+[docs] +def fit_gaussian(x, y, amplitude=1.5, mean=0.0, stddev=2.0, tied={}, fixed={}, bounds={}): + """ + Fit a gaussian function to x,y values. + + Parameters + ---------- + x : array-like + y : array-like + + Other Parameters + ---------------- + amplitude : float + The initial value for the amplitude + mean : float + The initial value for the mean of the gaussian function + stddev : float + The initial value for the standard deviation of the gaussian function + tied : dict + fixed : dict + bounds : dict + Parameters to be passed to the [astropy models]_ + + Returns + ------- + g : function + The best-fit function, accepting x as input + and returning the best-fit model as output + """ + g_in = models.Gaussian1D( + amplitude=amplitude, mean=mean, stddev=stddev, tied=tied, fixed=fixed, bounds=bounds + ) + fit_g = fitting.LevMarLSQFitter() + g = fit_g(g_in, x, y) + return g
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/pulse/pulsar.html b/_modules/stingray/pulse/pulsar.html new file mode 100644 index 000000000..bb2b00f09 --- /dev/null +++ b/_modules/stingray/pulse/pulsar.html @@ -0,0 +1,1107 @@ + + + + + + + stingray.pulse.pulsar — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.pulse.pulsar

+"""
+Basic pulsar-related functions and statistics.
+"""
+
+import functools
+from collections.abc import Iterable
+import warnings
+from scipy.optimize import minimize, basinhopping
+import scipy.stats
+import numpy as np
+import matplotlib.pyplot as plt
+
+from .fftfit import fftfit as taylor_fftfit
+from ..utils import simon, jit
+from . import HAS_PINT, get_model, toa
+
+
+__all__ = [
+    "pulse_phase",
+    "phase_exposure",
+    "fold_events",
+    "ef_profile_stat",
+    "pdm_profile_stat",
+    "z_n",
+    "fftfit",
+    "get_TOA",
+    "z_n_binned_events",
+    "z_n_gauss",
+    "z_n_events",
+    "htest",
+    "p_to_f",
+    "z_n_binned_events_all",
+    "z_n_gauss_all",
+    "z_n_events_all",
+    "get_orbital_correction_from_ephemeris_file",
+]
+
+
+def _default_value_if_no_key(dictionary, key, default):
+    try:
+        return dictionary[key]
+    except:
+        return default
+
+
+
+[docs] +def p_to_f(*period_derivatives): + """Convert periods into frequencies, and vice versa. + + For now, limited to third derivative. Raises when a + fourth derivative is passed. + + Parameters + ---------- + p, pdot, pddot, ... : floats + period derivatives, starting from zeroth and in + increasing order + + Examples + -------- + >>> p_to_f() == [] + True + >>> np.allclose(p_to_f(1), [1]) + True + >>> np.allclose(p_to_f(1, 2), [1, -2]) + True + >>> np.allclose(p_to_f(1, 2, 3), [1, -2, 5]) + True + >>> np.allclose(p_to_f(1, 2, 3, 4), [1, -2, 5, -16]) + True + """ + nder = len(period_derivatives) + if nder == 0: + return [] + fder = np.zeros_like(period_derivatives) + p = period_derivatives[0] + fder[0] = 1 / p + + if nder > 1: + pd = period_derivatives[1] + fder[1] = -1 / p**2 * pd + + if nder > 2: + pdd = period_derivatives[2] + fder[2] = 2 / p**3 * pd**2 - 1 / p**2 * pdd + + if nder > 3: + pddd = period_derivatives[3] + fder[3] = -6 / p**4 * pd**3 + 6 / p**3 * pd * pdd - 1 / p**2 * pddd + if nder > 4: + warnings.warn("Derivatives above third are not supported") + + return fder
+ + + +
+[docs] +def pulse_phase(times, *frequency_derivatives, **opts): + """ + Calculate pulse phase from the frequency and its derivatives. + + Parameters + ---------- + times : array of floats + The times at which the phase is calculated + *frequency_derivatives: floats + List of derivatives in increasing order, starting from zero. + + Other Parameters + ---------------- + ph0 : float + The starting phase + to_1 : bool, default True + Only return the fractional part of the phase, normalized from 0 to 1 + + Returns + ------- + phases : array of floats + The absolute pulse phase + + """ + + ph0 = _default_value_if_no_key(opts, "ph0", 0) + to_1 = _default_value_if_no_key(opts, "to_1", True) + ph = ph0 + + for i_f, f in enumerate(frequency_derivatives): + ph += 1 / np.math.factorial(i_f + 1) * times ** (i_f + 1) * f + + if to_1: + ph -= np.floor(ph) + return ph
+ + + +
+[docs] +def phase_exposure(start_time, stop_time, period, nbin=16, gti=None): + """Calculate the exposure on each phase of a pulse profile. + + Parameters + ---------- + start_time, stop_time : float + Starting and stopping time (or phase if ``period==1``) + period : float + The pulse period (if 1, equivalent to phases) + + Other parameters + ---------------- + nbin : int, optional, default 16 + The number of bins in the profile + gti : [[gti00, gti01], [gti10, gti11], ...], optional, default None + Good Time Intervals + + Returns + ------- + expo : array of floats + The normalized exposure of each bin in the pulse profile (1 is the + highest exposure, 0 the lowest) + """ + if gti is None: + gti = np.array([[start_time, stop_time]]) + + # Use precise floating points ------------- + start_time = np.longdouble(start_time) + stop_time = np.longdouble(stop_time) + period = np.longdouble(period) + gti = np.array(gti, dtype=np.longdouble) + # ----------------------------------------- + + expo = np.zeros(nbin) + phs = np.linspace(0, 1, nbin + 1) + phs = np.array(list(zip(phs[0:-1], phs[1:]))) + + # Discard gtis outside [start, stop] + good = np.logical_and(gti[:, 0] < stop_time, gti[:, 1] > start_time) + gti = gti[good] + + for g in gti: + g0 = g[0] + g1 = g[1] + if g0 < start_time: + # If the start of the fold is inside a gti, start from there + g0 = start_time + if g1 > stop_time: + # If the end of the fold is inside a gti, end there + g1 = stop_time + length = g1 - g0 + # How many periods inside this length? + nraw = length / period + # How many integer periods? + nper = nraw.astype(int) + + # First raw exposure: the number of periods + expo += nper / nbin + + # FRACTIONAL PART ================= + # What remains is additional exposure for part of the profile. + start_phase = np.fmod(g0 / period, 1) + end_phase = nraw - nper + start_phase + + limits = [[start_phase, end_phase]] + # start_phase is always < 1. end_phase not always. In this case... + if end_phase > 1: + limits = [[0, end_phase - 1], [start_phase, 1]] + + for l in limits: + l0 = l[0] + l1 = l[1] + # Discards bins untouched by these limits + goodbins = np.logical_and(phs[:, 0] <= l1, phs[:, 1] >= l0) + idxs = np.arange(len(phs), dtype=int)[goodbins] + for i in idxs: + start = np.max([phs[i, 0], l0]) + stop = np.min([phs[i, 1], l1]) + w = stop - start + expo[i] += w + + return expo / np.max(expo)
+ + + +
+[docs] +def fold_events(times, *frequency_derivatives, **opts): + """Epoch folding with exposure correction. + + By default, the keyword `times` accepts a list of + unbinned photon arrival times. If the input data is + a (binned) light curve, then `times` will contain the + time stamps of the observation, and `weights` should + be set to the corresponding fluxes or counts. + + Parameters + ---------- + times : array of floats + Photon arrival times, or, if `weights` is set, + time stamps of a light curve. + + f, fdot, fddot... : float + The frequency and any number of derivatives. + + Other Parameters + ---------------- + nbin : int, optional, default 16 + The number of bins in the pulse profile + + weights : float or array of floats, optional + The weights of the data. It can either be specified as a single value + for all points, or an array with the same length as ``time`` + + gti : [[gti0_0, gti0_1], [gti1_0, gti1_1], ...], optional + Good time intervals + + ref_time : float, optional, default 0 + Reference time for the timing solution + + expocorr : bool, default False + Correct each bin for exposure (use when the period of the pulsar is + comparable to that of GTIs) + + mode : str, ["ef", "pdm"], default "ef" + Whether to calculate the epoch folding or phase dispersion + minimization folded profile. For "ef", it calculates the (weighted) + sum of the data points in each phase bin, for "pdm", the variance + in each phase bin + + Returns + ------- + phase_bins : array of floats + The phases corresponding to the pulse profile + + profile : array of floats + The pulse profile + + profile_err : array of floats + The uncertainties on the pulse profile + """ + mode = _default_value_if_no_key(opts, "mode", "ef") + nbin = _default_value_if_no_key(opts, "nbin", 16) + weights = _default_value_if_no_key(opts, "weights", 1) + # If no key is passed, *or gti is None*, defaults to the + # initial and final event + gti = _default_value_if_no_key(opts, "gti", None) + if gti is None: + gti = [[times[0], times[-1]]] + # Be safe if gtis are a list + gti = np.asarray(gti) + ref_time = _default_value_if_no_key(opts, "ref_time", 0) + expocorr = _default_value_if_no_key(opts, "expocorr", False) + + if not isinstance(weights, Iterable): + weights *= np.ones(len(times)) + + gti = gti - ref_time + times = times - ref_time + # This dt has not the same meaning as in the Lightcurve case. + # it's just to define stop_time as a meaningful value after + # the last event. + dt = np.abs(times[1] - times[0]) + start_time = times[0] + stop_time = times[-1] + dt + + phases = pulse_phase(times, *frequency_derivatives, to_1=True) + gti_phases = pulse_phase(gti, *frequency_derivatives, to_1=False) + start_phase, stop_phase = pulse_phase( + np.array([start_time, stop_time]), *frequency_derivatives, to_1=False + ) + + if mode == "ef": + raw_profile, bins = np.histogram(phases, bins=np.linspace(0, 1, nbin + 1), weights=weights) + # TODO: this is wrong. Need to extend this to non-1 weights + raw_profile_err = np.sqrt(raw_profile) + + if expocorr: + expo_norm = phase_exposure(start_phase, stop_phase, 1, nbin, gti=gti_phases) + simon("For exposure != 1, the uncertainty might be incorrect") + + else: + expo_norm = 1 + + raw_profile = raw_profile / expo_norm + raw_profile_err = raw_profile_err / expo_norm + + elif mode == "pdm": + if np.allclose(weights, 1.0): + raise ValueError( + "Can only calculate PDM for binned light curves!" + + "`weights` attribute must be set to fluxes!" + ) + + raw_profile, bins, bin_idx = scipy.stats.binned_statistic( + phases, weights, statistic=np.var, bins=np.linspace(0, 1, nbin + 1) + ) + + # I need the variance uncorrected for the number of data points in each + # bin, so I need to find that first, and then multiply + _, bincounts = np.unique(bin_idx, return_counts=True) + raw_profile = raw_profile * bincounts + + # dummy array for the error, which we don't have for the variance + raw_profile_err = np.zeros_like(raw_profile) + + else: + raise ValueError( + "mode can only be `ef` for Epoch Folding or " + + "`pdm` for Phase Dispersion Minimization!" + ) + + return bins[:-1] + np.diff(bins) / 2, raw_profile, raw_profile_err
+ + + +
+[docs] +def ef_profile_stat(profile, err=None): + """Calculate the epoch folding statistics \'a la Leahy et al. (1983). + + Parameters + ---------- + profile : array + The pulse profile + + Other Parameters + ---------------- + err : float or array + The uncertainties on the pulse profile + + Returns + ------- + stat : float + The epoch folding statistics + """ + mean = np.mean(profile) + if err is None: + err = np.sqrt(mean) + return np.sum((profile - mean) ** 2 / err**2)
+ + + +
+[docs] +def pdm_profile_stat(profile, sample_var, nsample): + """Calculate the phase dispersion minimization + statistic following Stellingwerf (1978) + + Parameters + ---------- + profile : array + The PDM pulse profile (variance as a function + of phase) + + sample_var : float + The total population variance of the sample + + nsample : int + The number of time bins in the initial time + series. + + Returns + ------- + stat : float + The epoch folding statistics + """ + s2 = np.sum(profile) / (nsample - len(profile)) + stat = s2 / sample_var + return stat
+ + + +@functools.lru_cache(maxsize=128) +def _cached_sin_harmonics(nbin, z_n_n): + """Cached sine values corresponding to each of the nbin bins. + + Parameters + ---------- + nbin : int + Number of bins + z_n_n : int + The number of harmonics (n) in the Z^2_n search + """ + dph = 1.0 / nbin + twopiphases = np.pi * 2 * np.arange(dph / 2, 1, dph) + cached_sin = np.zeros(z_n_n * nbin) + for i in range(z_n_n): + cached_sin[i * nbin : (i + 1) * nbin] = np.sin(twopiphases) + return cached_sin + + +@functools.lru_cache(maxsize=128) +def _cached_cos_harmonics(nbin, z_n_n): + """Cached cosine values corresponding to each of the nbin bins. + + Parameters + ---------- + nbin : int + Number of bins + z_n_n : int + The number of harmonics (n) in the Z^2_n search + """ + dph = 1.0 / nbin + twopiphases = np.pi * 2 * np.arange(dph / 2, 1, dph) + cached_cos = np.zeros(z_n_n * nbin) + for i in range(z_n_n): + cached_cos[i * nbin : (i + 1) * nbin] = np.cos(twopiphases) + return cached_cos + + +@jit(nopython=True) +def _z_n_fast_cached_sums_unnorm(prof, ks, cached_sin, cached_cos): + """Calculate the unnormalized Z^2_k, for (k=1,.. n), of a pulsed profile. + + Parameters + ---------- + prof : :class:`numpy.array` + The pulsed profile + ks : :class:`numpy.array` of int + The harmonic numbers, from 1 to n + cached_sin : :class:`numpy.array` + Cached sine values for each phase bin in the profile + cached_cos : :class:`numpy.array` + Cached cosine values for each phase bin in the profile + """ + + all_zs = np.zeros(ks.size) + N = prof.size + + total_sum = 0 + for k in ks: + local_z = ( + np.sum(cached_cos[: N * k : k] * prof) ** 2 + + np.sum(cached_sin[: N * k : k] * prof) ** 2 + ) + total_sum += local_z + all_zs[k - 1] = total_sum + + return all_zs + + +
+[docs] +def z_n_binned_events_all(profile, nmax=20): + """Z^2_n statistic for multiple harmonics and binned events + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile (containing the number of + photons falling in each pulse bin) + n : int + Number of harmonics, including the fundamental + + Returns + ------- + ks : list of ints + Harmonic numbers, from 1 to nmax (included) + z2_n : float + The value of the statistic for all ks + """ + cached_sin = _cached_sin_harmonics(profile.size, nmax) + cached_cos = _cached_cos_harmonics(profile.size, nmax) + ks = np.arange(1, nmax + 1, dtype=int) + + total = np.sum(profile) + if total == 0: + return ks, np.zeros(nmax) + all_zs = _z_n_fast_cached_sums_unnorm(profile, ks, cached_sin, cached_cos) + + return ks, all_zs * 2 / total
+ + + +
+[docs] +def z_n_gauss_all(profile, err, nmax=20): + """Z^2_n statistic for n harmonics and normally-distributed profiles + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile + err : float + The (assumed constant) uncertainty on the flux in each bin. + nmax : int + Maximum number of harmonics, including the fundamental + + Returns + ------- + ks : list of ints + Harmonic numbers, from 1 to nmax (included) + z2_n : list of floats + The value of the statistic for all ks + """ + cached_sin = _cached_sin_harmonics(profile.size, nmax) + cached_cos = _cached_cos_harmonics(profile.size, nmax) + ks = np.arange(1, nmax + 1, dtype=int) + + all_zs = _z_n_fast_cached_sums_unnorm(profile, ks, cached_sin, cached_cos) + + return ks, all_zs * (2 / profile.size / err**2)
+ + + +
+[docs] +@jit(nopython=True) +def z_n_events_all(phase, nmax=20): + """Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2. + + Parameters + ---------- + phase : array of floats + The phases of the events + n : int, default 2 + Number of harmonics, including the fundamental + + Returns + ------- + ks : list of ints + Harmonic numbers, from 1 to nmax (included) + z2_n : float + The Z^2_n statistic for all ks + """ + all_zs = np.zeros(nmax) + ks = np.arange(1, nmax + 1) + nphot = phase.size + + total_sum = 0 + phase = phase * 2 * np.pi + + for k in ks: + local_z = np.sum(np.cos(k * phase)) ** 2 + np.sum(np.sin(k * phase)) ** 2 + total_sum += local_z + all_zs[k - 1] = total_sum + + return ks, 2 / nphot * all_zs
+ + + +
+[docs] +def z_n_binned_events(profile, n): + """Z^2_n statistic for pulse profiles from binned events + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile (containing the number of + photons falling in each pulse bin) + n : int + Number of harmonics, including the fundamental + + Returns + ------- + z2_n : float + The value of the statistic + """ + _, all_zs = z_n_binned_events_all(profile, nmax=n) + return all_zs[-1]
+ + + +
+[docs] +def z_n_gauss(profile, err, n): + """Z^2_n statistic for normally-distributed profiles + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile + err : float + The (assumed constant) uncertainty on the flux in each bin. + n : int + Number of harmonics, including the fundamental + + Returns + ------- + z2_n : float + The value of the statistic + """ + _, all_zs = z_n_gauss_all(profile, err, nmax=n) + return all_zs[-1]
+ + + +
+[docs] +def z_n_events(phase, n): + """Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2. + + Parameters + ---------- + phase : array of floats + The phases of the events + n : int, default 2 + Number of harmonics, including the fundamental + + Returns + ------- + z2_n : float + The Z^2_n statistic + """ + ks, all_zs = z_n_events_all(phase, nmax=n) + return all_zs[-1]
+ + + +
+[docs] +def z_n(data, n, datatype="events", err=None, norm=None): + """Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2. + + If datatype is "binned" or "gauss", uses the formulation from + Bachetti+2021, ApJ, arxiv:2012.11397 + + Parameters + ---------- + data : array of floats + Phase values or binned flux values + n : int, default 2 + Number of harmonics, including the fundamental + + Other Parameters + ---------------- + datatype : str + The data type: "events" if phase values between 0 and 1, + "binned" if folded pulse profile from photons, "gauss" if + folded pulse profile with normally-distributed fluxes + err : float + The uncertainty on the pulse profile fluxes (required for + datatype="gauss", ignored otherwise) + norm : float + For backwards compatibility; if norm is not None, it is + substituted to ``data``, and data is ignored. This raises + a DeprecationWarning + + Returns + ------- + z2_n : float + The Z^2_n statistics of the events. + """ + data = np.asarray(data) + + if norm is not None: + warnings.warn( + "The use of ``z_n(phase, norm=profile)`` is deprecated. Use " + "``z_n(profile, datatype='binned')`` instead", + DeprecationWarning, + ) + if isinstance(norm, Iterable): + data = norm + datatype = "binned" + else: + datatype = "events" + + if data.size == 0: + return 0 + + if datatype == "binned": + return z_n_binned_events(data, n) + elif datatype == "events": + return z_n_events(data, n) + elif datatype == "gauss": + if err is None: + raise ValueError("If datatype='gauss', you need to specify an uncertainty (err)") + return z_n_gauss(data, n=n, err=err) + + raise ValueError(f"Unknown datatype requested for Z_n ({datatype})")
+ + + +
+[docs] +def htest(data, nmax=20, datatype="binned", err=None): + """htest-test statistic, a` la De Jager+89, A&A, 221, 180D, eq. 2. + + If datatype is "binned" or "gauss", uses the formulation from + Bachetti+2021, ApJ, arxiv:2012.11397 + + Parameters + ---------- + data : array of floats + Phase values or binned flux values + nmax : int, default 20 + Maximum of harmonics for Z^2_n + + Other Parameters + ---------------- + datatype : str + The datatype of data: "events" if phase values between 0 and 1, + "binned" if folded pulse profile from photons, "gauss" if + folded pulse profile with normally-distributed fluxes + err : float + The uncertainty on the pulse profile fluxes (required for + datatype="gauss", ignored otherwise) + + Returns + ------- + M : int + The best number of harmonics that describe the signal. + htest : float + The htest statistics of the events. + """ + if datatype == "binned": + ks, zs = z_n_binned_events_all(data, nmax) + elif datatype == "events": + ks, zs = z_n_events_all(data, nmax) + elif datatype == "gauss": + if err is None: + raise ValueError("If datatype='gauss', you need to specify an uncertainty (err)") + ks, zs = z_n_gauss_all(data, nmax=nmax, err=err) + else: + raise ValueError(f"Unknown datatype requested for htest ({datatype})") + + Hs = zs - 4 * ks + 4 + bestidx = np.argmax(Hs) + + return ks[bestidx], Hs[bestidx]
+ + + +def fftfit_fun(profile, template, amplitude, phase): + """Function to be minimized for the FFTFIT method.""" + + pass + + +
+[docs] +def fftfit(prof, template=None, quick=False, sigma=None, use_bootstrap=False, **fftfit_kwargs): + """Align a template to a pulse profile. + + Parameters + ---------- + prof : array + The pulse profile + template : array, default None + The template of the pulse used to perform the TOA calculation. If None, + a simple sinusoid is used + + Other parameters + ---------------- + sigma : array + error on profile bins (currently has no effect) + use_bootstrap : bool + Calculate errors using a bootstrap method, with `fftfit_error` + **fftfit_kwargs : additional arguments for `fftfit_error` + + Returns + ------- + mean_amp, std_amp : floats + Mean and standard deviation of the amplitude + mean_phase, std_phase : floats + Mean and standard deviation of the phase + """ + prof = prof - np.mean(prof) + + template = template - np.mean(template) + + return taylor_fftfit(prof, template)
+ + + +def _plot_TOA_fit( + profile, template, toa, mod=None, toaerr=None, additional_phase=0.0, show=True, period=1 +): + """Plot diagnostic information on the TOA.""" + from scipy.interpolate import interp1d + import time + + phases = np.arange(0, 2, 1 / len(profile)) + profile = np.concatenate((profile, profile)) + template = np.concatenate((template, template)) + if mod is None: + mod = interp1d(phases, template, fill_value="extrapolate") + + fig = plt.figure() + plt.plot(phases, profile, drawstyle="steps-mid") + fine_phases = np.linspace(0, 1, 1000) + fine_phases_shifted = fine_phases - toa / period + additional_phase + model = mod(fine_phases_shifted - np.floor(fine_phases_shifted)) + model = np.concatenate((model, model)) + plt.plot(np.linspace(0, 2, 2000), model) + if toaerr is not None: + plt.axvline((toa - toaerr) / period) + plt.axvline((toa + toaerr) / period) + plt.axvline(toa / period - 0.5 / len(profile), ls="--") + plt.axvline(toa / period + 0.5 / len(profile), ls="--") + timestamp = int(time.time()) + plt.savefig("{}.png".format(timestamp)) + if not show: + plt.close(fig) + + +
+[docs] +def get_TOA( + prof, + period, + tstart, + template=None, + additional_phase=0, + quick=False, + debug=False, + use_bootstrap=False, + **fftfit_kwargs, +): + """Calculate the Time-Of-Arrival of a pulse. + + Parameters + ---------- + prof : array + The pulse profile + template : array, default None + The template of the pulse used to perform the TOA calculation, if any. + Otherwise use the default of fftfit + tstart : float + The time at the start of the pulse profile + + Other parameters + ---------------- + nstep : int, optional, default 100 + Number of steps for the bootstrap method + + Returns + ------- + toa, toastd : floats + Mean and standard deviation of the TOA + """ + nbin = len(prof) + + ph = np.arange(0, 1, 1 / nbin) + if template is None: + template = np.cos(2 * np.pi * ph) + + mean_amp, std_amp, phase_res, phase_res_err = fftfit( + prof, template=template, quick=quick, use_bootstrap=use_bootstrap, **fftfit_kwargs + ) + phase_res = phase_res + additional_phase + phase_res = phase_res - np.floor(phase_res) + + toa = tstart + phase_res * period + toaerr = phase_res_err * period + + if debug: + _plot_TOA_fit( + prof, + template, + toa - tstart, + toaerr=toaerr, + additional_phase=additional_phase, + period=period, + ) + + return toa, toaerr
+ + + +def _load_and_prepare_TOAs(mjds, ephem="DE405"): + toalist = [None] * len(mjds) + for i, m in enumerate(mjds): + toalist[i] = toa.TOA(m, obs="Barycenter", scale="tdb") + + toalist = toa.TOAs(toalist=toalist) + if "tdb" not in toalist.table.colnames: + toalist.compute_TDBs(ephem=ephem) + if "ssb_obs_pos" not in toalist.table.colnames: + toalist.compute_posvels(ephem, False) + return toalist + + +
+[docs] +def get_orbital_correction_from_ephemeris_file( + mjdstart, mjdstop, parfile, ntimes=1000, ephem="DE405", return_pint_model=False +): + """Get a correction for orbital motion from pulsar parameter file. + + Parameters + ---------- + mjdstart, mjdstop : float + Start and end of the time interval where we want the orbital solution + parfile : str + Any parameter file understood by PINT (Tempo or Tempo2 format) + + Other parameters + ---------------- + ntimes : int + Number of time intervals to use for interpolation. Default 1000 + + Returns + ------- + correction_sec : function + Function that accepts in input an array of times in seconds and a + floating-point MJDref value, and returns the deorbited times + correction_mjd : function + Function that accepts times in MJDs and returns the deorbited times. + """ + from scipy.interpolate import interp1d + from astropy import units + + if not HAS_PINT: + raise ImportError( + "You need the optional dependency PINT to use this " + "functionality: github.com/nanograv/pint" + ) + + simon("Assuming events are already referred to the solar system barycenter (timescale is TDB)") + + mjds = np.linspace(mjdstart, mjdstop, ntimes) + toalist = _load_and_prepare_TOAs(mjds, ephem=ephem) + m = get_model(parfile) + delays = m.delay(toalist) + + correction_mjd_rough = interp1d( + mjds, + (toalist.table["tdbld"] * units.d - delays).to(units.d).value, + fill_value="extrapolate", + ) + + def correction_mjd(mjds): + """Get the orbital correction. + + Parameters + ---------- + mjds : array-like + The input times in MJD + + Returns + ------- + mjds: Corrected times in MJD + """ + xvals = correction_mjd_rough.x + # Maybe this will be fixed if scipy/scipy#9602 is accepted + bad = (mjds < xvals[0]) | (np.any(mjds > xvals[-1])) + if np.any(bad): + warnings.warn( + "Some points are outside the interpolation range:" " {}".format(mjds[bad]) + ) + return correction_mjd_rough(mjds) + + def correction_sec(times, mjdref): + """Get the orbital correction. + + Parameters + ---------- + times : array-like + The input times in seconds of Mission Elapsed Time (MET) + mjdref : float + MJDREF, reference MJD for the mission + + Returns + ------- + mets: array-like + Corrected times in MET seconds + """ + deorb_mjds = correction_mjd(times / 86400 + mjdref) + return np.array((deorb_mjds - mjdref) * 86400) + + retvals = [correction_sec, correction_mjd] + if return_pint_model: + retvals.append(m) + return retvals
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/pulse/search.html b/_modules/stingray/pulse/search.html new file mode 100644 index 000000000..a4139eb7d --- /dev/null +++ b/_modules/stingray/pulse/search.html @@ -0,0 +1,741 @@ + + + + + + + stingray.pulse.search — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.pulse.search

+import numpy as np
+from collections.abc import Iterable
+from .pulsar import ef_profile_stat, pdm_profile_stat
+from .pulsar import fold_events, z_n, pulse_phase
+from ..utils import jit, HAS_NUMBA
+from ..utils import contiguous_regions
+from astropy.stats import poisson_conf_interval
+import matplotlib.pyplot as plt
+
+
+__all__ = [
+    "epoch_folding_search",
+    "z_n_search",
+    "search_best_peaks",
+    "plot_profile",
+    "plot_phaseogram",
+    "phaseogram",
+    "phase_dispersion_search",
+]
+
+
+@jit(nopython=True)
+def _pulse_phase_fast(time, f, fdot, buffer_array):
+    for i in range(len(time)):
+        buffer_array[i] = time[i] * f + 0.5 * time[i] ** 2 * fdot
+        buffer_array[i] -= np.floor(buffer_array[i])
+    return buffer_array
+
+
+def _folding_search(
+    stat_func, times, frequencies, segment_size=np.inf, use_times=False, fdots=0, **kwargs
+):
+    fgrid, fdgrid = np.meshgrid(
+        np.asarray(frequencies).astype(np.float64), np.asarray(fdots).astype(np.float64)
+    )
+    stats = np.zeros_like(fgrid)
+    times = (times - times[0]).astype(np.float64)
+    length = times[-1]
+    if length < segment_size:
+        segment_size = length
+    start_times = np.arange(times[0], times[-1], segment_size)
+    count = 0
+    for s in start_times:
+        good = (times >= s) & (times < s + segment_size)
+        ts = times[good]
+        if len(ts) < 1 or ts[-1] - ts[0] < 0.2 * segment_size:
+            continue
+        buffer = np.zeros_like(ts)
+        for i in range(stats.shape[0]):
+            for j in range(stats.shape[1]):
+                f = fgrid[i, j]
+                fd = fdgrid[i, j]
+                if use_times:
+                    kwargs_copy = {}
+                    for key in kwargs.keys():
+                        if isinstance(kwargs[key], Iterable) and len(kwargs[key]) == len(times):
+                            kwargs_copy[key] = kwargs[key][good]
+                        else:
+                            kwargs_copy[key] = kwargs[key]
+                    stats[i, j] += stat_func(ts, f, fd, **kwargs_copy)
+                else:
+                    phases = _pulse_phase_fast(ts, f, fd, buffer)
+                    stats[i, j] += stat_func(phases)
+        count += 1
+
+    if fgrid.shape[0] == 1:
+        return fgrid.flatten(), stats.flatten() / count
+    else:
+        return fgrid, fdgrid, stats / count
+
+
+@jit(nopython=True)
+def _bincount_fast(phase):
+    return np.bincount(phase)
+
+
+@jit(nopython=True)
+def _profile_fast(phase, nbin=128):
+    phase_bin = np.zeros(len(phase) + 2, dtype=np.int64)
+    # This is done to force bincount from 0 to nbin -1
+    phase_bin[-1] = nbin - 1
+    phase_bin[-2] = 0
+    for i in range(len(phase)):
+        phase_bin[i] = np.int64(np.floor(phase[i] * nbin))
+    bc = _bincount_fast(phase_bin)
+    bc[0] -= 1
+    bc[-1] -= 1
+    return bc
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+[docs] +def search_best_peaks(x, stat, threshold): + """Search peaks above threshold in an epoch folding periodogram. + + If more values of stat are above threshold and are contiguous, only the + largest one is returned (see Examples). + + Parameters + ---------- + x : array-like + The x axis of the periodogram (frequencies, periods, ...) + + stat : array-like + The y axis. It must have the same shape as x + + threshold : float + The threshold value over which we look for peaks in the stat array + + Returns + ------- + best_x : array-like + the array containing the x position of the peaks above threshold. If no + peaks are above threshold, an empty list is returned. The array is + sorted by inverse value of stat + + best_stat : array-like + for each best_x, give the corresponding stat value. Empty if no peaks + above threshold. + + Examples + -------- + >>> # Test multiple peaks + >>> x = np.arange(10) + >>> stat = [0, 0, 0.5, 0, 0, 1, 1, 2, 1, 0] + >>> best_x, best_stat = search_best_peaks(x, stat, 0.5) + >>> len(best_x) + 2 + >>> best_x[0] + 7.0 + >>> best_x[1] + 2.0 + >>> stat = [0, 0, 2.5, 0, 0, 1, 1, 2, 1, 0] + >>> best_x, best_stat = search_best_peaks(x, stat, 0.5) + >>> best_x[0] + 2.0 + >>> # Test no peak above threshold + >>> x = np.arange(10) + >>> stat = [0, 0, 0.4, 0, 0, 0, 0, 0, 0, 0] + >>> best_x, best_stat = search_best_peaks(x, stat, 0.5) + >>> best_x + [] + >>> best_stat + [] + + """ + stat = np.asarray(stat) + x = np.asarray(x) + peaks = stat >= threshold + regions = contiguous_regions(peaks) + if len(regions) == 0: + return [], [] + best_x = np.zeros(len(regions)) + best_stat = np.zeros(len(regions)) + for i, r in enumerate(regions): + stat_filt = stat[r[0] : r[1]] + x_filt = x[r[0] : r[1]] + max_arg = np.argmax(stat_filt) + best_stat[i] = stat_filt[max_arg] + best_x[i] = x_filt[max_arg] + + order = np.argsort(best_stat)[::-1] + + return best_x[order], best_stat[order]
+ + + +
+[docs] +def plot_profile(phase, profile, err=None, ax=None): + """Plot a pulse profile showing some stats. + + If err is None, the profile is assumed in counts and the Poisson confidence + level is plotted. Otherwise, err is shown as error bars + + Parameters + ---------- + phase : array-like + The bins on the x-axis + + profile : array-like + The pulsed profile + + Other Parameters + ---------------- + ax : `matplotlib.pyplot.axis` instance + Axis to plot to. If None, create a new one. + + Returns + ------- + ax : `matplotlib.pyplot.axis` instance + Axis where the profile was plotted. + """ + if ax is None: + plt.figure("Pulse profile") + ax = plt.subplot() + mean = np.mean(profile) + if np.all(phase < 1.5): + phase = np.concatenate((phase, phase + 1)) + profile = np.concatenate((profile, profile)) + ax.plot(phase, profile, drawstyle="steps-mid") + if err is None: + err_low, err_high = poisson_conf_interval(mean, interval="frequentist-confidence", sigma=1) + ax.axhspan(err_low, err_high, alpha=0.5) + else: + err = np.concatenate((err, err)) + ax.errorbar(phase, profile, yerr=err, fmt="none") + + ax.set_ylabel("Counts") + ax.set_xlabel("Phase") + return ax
+ + + +
+[docs] +def plot_phaseogram(phaseogram, phase_bins, time_bins, unit_str="s", ax=None, **plot_kwargs): + """Plot a phaseogram. + + Parameters + ---------- + phaseogram : NxM array + The phaseogram to be plotted + + phase_bins : array of M + 1 elements + The bins on the x-axis + + time_bins : array of N + 1 elements + The bins on the y-axis + + Other Parameters + ---------------- + unit_str : str + String indicating the time unit (e.g. 's', 'MJD', etc) + + ax : `matplotlib.pyplot.axis` instance + Axis to plot to. If None, create a new one. + + plot_kwargs : dict + Additional arguments to be passed to pcolormesh + + Returns + ------- + ax : `matplotlib.pyplot.axis` instance + Axis where the phaseogram was plotted. + """ + if ax is None: + plt.figure("Phaseogram") + ax = plt.subplot() + + ax.pcolormesh(phase_bins, time_bins, phaseogram.T, **plot_kwargs) + ax.set_ylabel("Time ({})".format(unit_str)) + ax.set_xlabel("Phase") + ax.set_xlim([0, np.max(phase_bins)]) + ax.set_ylim([np.min(time_bins), np.max(time_bins)]) + return ax
+ + + +
+[docs] +def phaseogram( + times, + f, + nph=128, + nt=32, + ph0=0, + mjdref=None, + fdot=0, + fddot=0, + pepoch=None, + plot=False, + phaseogram_ax=None, + weights=None, + **plot_kwargs +): + """ + Calculate and plot the phaseogram of a pulsar observation. + + The phaseogram is a 2-D histogram where the x axis is the pulse phase and + the y axis is the time. It shows how the pulse phase changes with time, and + it is very useful to see if the pulse solution is correct and/or if there + are additional frequency derivatives appearing in the data (due to spin up + or down, or even orbital motion) + + Parameters + ---------- + times : array + Event arrival times + + f : float + Pulse frequency + + Other parameters + ---------------- + nph : int + Number of phase bins + + nt : int + Number of time bins + + ph0 : float + The starting phase of the pulse + + mjdref : float + MJD reference time. If given, the y axis of the plot will be in MJDs, + otherwise it will be in seconds. + + fdot : float + First frequency derivative + + fddot : float + Second frequency derivative + + pepoch : float + If the input pulse solution is referred to a given time, give it here. + It has no effect (just a phase shift of the pulse) if `fdot` is zero. + if `mjdref` is specified, pepoch MUST be in MJD + + weights : array + Weight for each time + + plot : bool + Return the axes in the additional_info, and don't close the plot, so + that the user can add information to it. + + Returns + ------- + phaseogr : 2-D matrix + The phaseogram + + phases : array-like + The x axis of the phaseogram (the x bins of the histogram), + corresponding to the pulse phase in each column + + times : array-like + The y axis of the phaseogram (the y bins of the histogram), + corresponding to the time at each row + + additional_info : dict + Additional information, like the pulse profile and the axes to modify + the plot (the latter, only if `return_plot` is True) + """ + + use_mjdref = False + if mjdref is not None: + use_mjdref = True + + if pepoch is None: + pepoch = (times[-1] + times[0]) / 2 + if use_mjdref: + pepoch /= 86400 + + plot_unit = "s" + if use_mjdref: + pepoch = (pepoch - mjdref) * 86400 + plot_unit = "MJD" + + phases = pulse_phase((times - pepoch), f, fdot, fddot, to_1=True, ph0=ph0) + + allphases = np.concatenate([phases, phases + 1]).astype("float64") + allts = np.concatenate([times, times]).astype("float64") + + if weights is not None and isinstance(weights, Iterable): + if len(weights) != len(times): + raise ValueError("The length of weights must match the length of " "times") + weights = np.concatenate([weights, weights]).astype("float64") + + if use_mjdref: + allts = allts / 86400 + mjdref + + phas, binx, biny = np.histogram2d( + allphases, + allts, + bins=(np.linspace(0, 2, nph * 2 + 1), np.linspace(np.min(allts), np.max(allts), nt + 1)), + weights=weights, + ) + + if plot: + phaseogram_ax = plot_phaseogram( + phas, binx, biny, ax=phaseogram_ax, unit_str=plot_unit, **plot_kwargs + ) + additional_info = {"ax": phaseogram_ax} + else: + additional_info = {} + + return phas, binx, biny, additional_info
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/simulator/simulator.html b/_modules/stingray/simulator/simulator.html new file mode 100644 index 000000000..a58e69cb9 --- /dev/null +++ b/_modules/stingray/simulator/simulator.html @@ -0,0 +1,763 @@ + + + + + + + stingray.simulator.simulator — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.simulator.simulator

+import pickle
+from os import error
+import numpy as np
+import numbers
+import warnings
+from scipy import signal
+import astropy.modeling.models
+from stingray import utils
+from stingray import Lightcurve
+from stingray import AveragedPowerspectrum
+
+__all__ = ["Simulator"]
+
+
+
+[docs] +class Simulator(object): + """ + Methods to simulate and visualize light curves. + + TODO: Improve documentation + + Parameters + ---------- + dt : int, default 1 + time resolution of simulated light curve + N : int, default 1024 + bins count of simulated light curve + mean : float, default 0 + mean value of the simulated light curve + rms : float, default 1 + fractional rms of the simulated light curve, + actual rms is calculated by mean*rms + err : float, default 0 + the errorbars on the final light curve + red_noise : int, default 1 + multiple of real length of light curve, by + which to simulate, to avoid red noise leakage + random_state : int, default None + seed value for random processes + poisson : bool, default False + return Poisson-distributed light curves. + """ + + def __init__( + self, dt, N, mean, rms, err=0.0, red_noise=1, random_state=None, tstart=0.0, poisson=False + ): + self.dt = dt + + if not isinstance(N, (int, np.integer)): + raise ValueError("N must be integer!") + + self.N = N + + if mean == 0: + warnings.warn( + "Careful! A mean of zero is unphysical!" + "This may have unintended consequences!" + ) + self.mean = mean + self.nphot = self.mean * self.N + self.rms = rms + self.red_noise = red_noise + self.tstart = tstart + self.time = dt * np.arange(N) + self.tstart + self.nphot_factor = 1000_000 + self.err = err + self.poisson = poisson + + # Initialize a tuple of energy ranges with corresponding light curves + self.channels = [] + + self.random_state = utils.get_random_state(random_state) + + assert rms <= 1, "Fractional rms must be less than 1." + assert dt > 0, "Time resolution must be greater than 0" + +
+[docs] + def simulate(self, *args): + """ + Simulate light curve generation using power spectrum or + impulse response. + + Examples + -------- + * x = simulate(beta): + For generating a light curve using power law spectrum. + + Parameters: + * beta : float + Defines the shape of spectrum + + * x = simulate(s): + For generating a light curve from user-provided spectrum. + **Note**: In this case, the `red_noise` parameter is provided. + You can generate a longer light curve by providing a higher + frequency resolution on the input power spectrum. + + Parameters: + * s : array-like + power spectrum + + * x = simulate(model): + For generating a light curve from pre-defined model + + Parameters: + * model : astropy.modeling.Model + the pre-defined model + + * x = simulate('model', params): + For generating a light curve from pre-defined model + + Parameters: + * model : string + the pre-defined model + * params : list iterable or dict + the parameters for the pre-defined model + + * x = simulate(s, h): + For generating a light curve using impulse response. + + Parameters: + * s : array-like + Underlying variability signal + * h : array-like + Impulse response + + * x = simulate(s, h, 'same'): + For generating a light curve of same length as input signal, + using impulse response. + + Parameters: + * s : array-like + Underlying variability signal + * h : array-like + Impulse response + * mode : str + mode can be 'same', 'filtered, or 'full'. + 'same' indicates that the length of output light + curve is same as that of input signal. + 'filtered' means that length of output light curve + is len(s) - lag_delay + 'full' indicates that the length of output light + curve is len(s) + len(h) -1 + + Parameters + ---------- + args + See examples below. + + Returns + ------- + lightCurve : `LightCurve` object + + """ + if isinstance(args[0], (numbers.Integral, float)) and len(args) == 1: + return self._simulate_power_law(args[0]) + + elif isinstance(args[0], astropy.modeling.Model) and len(args) == 1: + return self._simulate_model(args[0]) + + elif utils.is_string(args[0]) and len(args) == 2: + return self._simulate_model_string(args[0], args[1]) + + elif len(args) == 1: + return self._simulate_power_spectrum(args[0]) + + elif len(args) == 2: + return self._simulate_impulse_response(args[0], args[1]) + + elif len(args) == 3: + return self._simulate_impulse_response(args[0], args[1], args[2]) + + else: + raise ValueError("Length of arguments must be 1, 2 or 3.")
+ + +
+[docs] + def simulate_channel(self, channel, *args): + """ + Simulate a lightcurve and add it to corresponding energy + channel. + + Parameters + ---------- + channel : str + range of energy channel (e.g., 3.5-4.5) + + *args + see description of simulate() for details + + Returns + ------- + lightCurve : `LightCurve` object + """ + + # Check that channel name does not already exist. + if channel not in [lc[0] for lc in self.channels]: + self.channels.append((channel, self.simulate(*args))) + + else: + raise KeyError("A channel with this name already exists.")
+ + +
+[docs] + def get_channel(self, channel): + """ + Get lightcurve belonging to the energy channel. + """ + + return [lc[1] for lc in self.channels if lc[0] == channel][0]
+ + +
+[docs] + def get_channels(self, channels): + """ + Get multiple light curves belonging to the energy channels. + """ + + return [lc[1] for lc in self.channels if lc[0] in channels]
+ + +
+[docs] + def get_all_channels(self): + """ + Get lightcurves belonging to all channels. + """ + + return [lc[1] for lc in self.channels]
+ + +
+[docs] + def delete_channel(self, channel): + """ + Delete an energy channel. + """ + + channel = [lc for lc in self.channels if lc[0] == channel] + + if len(channel) == 0: + raise KeyError("This channel does not exist or has already been " "deleted.") + else: + index = self.channels.index(channel[0]) + del self.channels[index]
+ + +
+[docs] + def delete_channels(self, channels): + """ + Delete multiple energy channels. + """ + n = len(channels) + channels = [lc for lc in self.channels if lc[0] in channels] + + if len(channels) != n: + raise KeyError( + "One of more of the channels do not exist or have " "already been deleted." + ) + else: + indices = [self.channels.index(channel) for channel in channels] + for i in sorted(indices, reverse=True): + del self.channels[i]
+ + +
+[docs] + def count_channels(self): + """ + Return total number of energy channels. + """ + + return len(self.channels)
+ + +
+[docs] + def simple_ir(self, start=0, width=1000, intensity=1): + """ + Construct a simple impulse response using start time, + width and scaling intensity. + To create a delta impulse response, set width to 1. + + Parameters + ---------- + start : int + start time of impulse response + width : int + width of impulse response + intensity : float + scaling parameter to set the intensity of delayed emission + corresponding to direct emission. + + Returns + ------- + h : numpy.ndarray + Constructed impulse response + """ + + # Fill in 0 entries until the start time + h_zeros = np.zeros(int(start / self.dt)) + + # Define constant impulse response + h_ones = np.ones(int(width / self.dt)) * intensity + + return np.append(h_zeros, h_ones)
+ + +
+[docs] + def relativistic_ir(self, t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1): + """ + Construct a realistic impulse response considering the relativistic + effects. + + Parameters + ---------- + t1 : int + primary peak time + t2 : int + secondary peak time + t3 : int + end time + p1 : float + value of primary peak + p2 : float + value of secondary peak + rise : float + slope of rising exponential from primary peak to secondary peak + decay : float + slope of decaying exponential from secondary peak to end time + + Returns + ------- + h : numpy.ndarray + Constructed impulse response + """ + + dt = self.dt + + assert t2 > t1, "Secondary peak must be after primary peak." + assert t3 > t2, "End time must be after secondary peak." + assert p2 > p1, "Secondary peak must be greater than primary peak." + + # Append zeros before start time + h_primary = np.append(np.zeros(int(t1 / dt)), p1) + + # Create a rising exponential of user-provided slope + x = np.linspace(t1 / dt, t2 / dt, int((t2 - t1) / dt)) + h_rise = np.exp(rise * x) + + # Evaluate a factor for scaling exponential + factor = np.max(h_rise) / (p2 - p1) + h_secondary = (h_rise / factor) + p1 + + # Create a decaying exponential until the end time + x = np.linspace(t2 / dt, t3 / dt, int((t3 - t2) / dt)) + h_decay = np.exp((-decay) * (x - 4 / dt)) + + # Add the three responses + h = np.append(h_primary, h_secondary) + h = np.append(h, h_decay) + + return h
+ + + def _find_inverse(self, real, imaginary): + """ + Forms complex numbers corresponding to real and imaginary + parts and finds inverse series. + + Parameters + ---------- + real : numpy.ndarray + Co-effients corresponding to real parts of complex numbers + imaginary : numpy.ndarray + Co-efficients correspondong to imaginary parts of complex + numbers + + Returns + ------- + ifft : numpy.ndarray + Real inverse fourier transform of complex numbers + """ + + # Form complex numbers corresponding to each frequency + f = [complex(r, i) for r, i in zip(real, imaginary)] + + f = np.hstack([self.mean * self.N * self.red_noise, f]) + + # Obtain time series + return np.fft.irfft(f, n=self.N * self.red_noise) + + def _timmerkoenig(self, pds_shape): + """Straight application of T&K method to a PDS shape.""" + pds_size = pds_shape.size + + real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape) + imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape) + imaginary[-1] = 0 + + counts = self._find_inverse(real, imaginary) + + self.std = counts.std() + + rescaled_counts = self._extract_and_scale(counts) + err = np.zeros_like(rescaled_counts) + + if self.poisson: + bad = rescaled_counts < 0 + if np.any(bad): + warnings.warn("Some bins of the light curve have counts < 0. Setting to 0") + rescaled_counts[bad] = 0 + lc = Lightcurve( + self.time, + np.random.poisson(rescaled_counts), + err_dist="poisson", + dt=self.dt, + skip_checks=True, + ) + lc.smooth_counts = rescaled_counts + else: + lc = Lightcurve( + self.time, rescaled_counts, err=err, err_dist="gauss", dt=self.dt, skip_checks=True + ) + + return lc + + def _simulate_power_law(self, B): + """ + Generate LightCurve from a power law spectrum. + + Parameters + ---------- + B : int + Defines the shape of power law spectrum. + + Returns + ------- + lightCurve : array-like + """ + # Define frequencies at which to compute PSD + w = np.fft.rfftfreq(self.red_noise * self.N, d=self.dt)[1:] + + pds_shape = np.power((1 / w), B) + + return self._timmerkoenig(pds_shape) + + def _simulate_power_spectrum(self, s): + """ + Generate a light curve from user-provided spectrum. + + Parameters + ---------- + s : array-like + power spectrum + + Returns + ------- + lightCurve : `LightCurve` object + """ + # Cast spectrum as numpy array + pds_shape = np.zeros(s.size * self.red_noise) + pds_shape[: s.size] = s + + return self._timmerkoenig(pds_shape) + + def _simulate_model(self, model): + """ + For generating a light curve from a pre-defined model + + Parameters + ---------- + model : astropy.modeling.Model derived function + the pre-defined model + (library-based, available in astropy.modeling.models or + custom-defined) + + Returns + ------- + lightCurve : :class:`stingray.lightcurve.LightCurve` object + """ + # Frequencies at which the PSD is to be computed + # (only positive frequencies, since the signal is real) + nbins = self.red_noise * self.N + simfreq = np.fft.rfftfreq(nbins, d=self.dt)[1:] + + # Compute PSD from model + simpsd = model(simfreq) + + return self._timmerkoenig(simpsd) + + def _simulate_model_string(self, model_str, params): + """ + For generating a light curve from a pre-defined model + + Parameters + ---------- + model_str : string + name of the pre-defined model + params : list or dictionary + parameters of the pre-defined model + + Returns + ------- + lightCurve : :class:`stingray.lightcurve.LightCurve` object + """ + from . import models + + # Frequencies at which the PSD is to be computed + # (only positive frequencies, since the signal is real) + nbins = self.red_noise * self.N + simfreq = np.fft.rfftfreq(nbins, d=self.dt)[1:] + + if model_str not in dir(models): + raise ValueError("Model is not defined!") + + if isinstance(params, dict): + model = eval("models." + model_str + "(**params)") + # Compute PSD from model + simpsd = model(simfreq) + elif isinstance(params, list): + simpsd = eval("models." + model_str + "(simfreq, params)") + else: + raise ValueError("Params should be list or dictionary!") + + return self._timmerkoenig(simpsd) + + def _simulate_impulse_response(self, s, h, mode="same"): + """ + Generate LightCurve from impulse response. To get + accurate results, binning intervals (dt) of variability + signal 's' and impulse response 'h' must be equal. + + Parameters + ---------- + s : array-like + Underlying variability signal + h : array-like + Impulse response + mode : str + mode can be 'same', 'filtered, or 'full'. + 'same' indicates that the length of output light + curve is same as that of input signal. + 'filtered' means that length of output light curve + is len(s) - lag_delay + 'full' indicates that the length of output light + curve is len(s) + len(h) -1 + + Returns + ------- + lightCurve : :class:`stingray.lightcurve.LightCurve` object + """ + lc = signal.fftconvolve(s, h) + + if mode == "same": + lc = lc[: -(len(h) - 1)] + + elif mode == "filtered": + lc = lc[(len(h) - 1) : -(len(h) - 1)] + + time = self.dt * np.arange(0.5, len(lc)) + self.tstart + err = np.zeros_like(time) + return Lightcurve(time, lc, err_dist="gauss", dt=self.dt, err=err, skip_checks=True) + + def _extract_and_scale(self, long_lc): + """ + i) Make a random cut and extract a light curve of required + length. + + ii) Rescale light curve i) with zero mean and unit standard + deviation, and ii) user provided mean and rms (fractional + rms * mean) + + Parameters + ---------- + long_lc : numpy.ndarray + Simulated lightcurve of length 'N' times 'red_noise' + + Returns + ------- + lc : numpy.ndarray + Normalized and extracted lightcurve of length 'N' + """ + if self.red_noise == 1: + lc = long_lc + else: + # Make random cut and extract light curve of length 'N' + extract = self.random_state.randint(self.N - 1, self.red_noise * self.N - self.N + 1) + lc = np.take(long_lc, range(extract, extract + self.N)) + + mean_lc = np.mean(lc) + + if self.mean == 0: + return (lc - mean_lc) / self.std * self.rms + else: + return (lc - mean_lc) / self.std * self.mean * self.rms + self.mean + +
+[docs] + def powerspectrum(self, lc, seg_size=None): + """ + Make a powerspectrum of the simulated light curve. + + Parameters + ---------- + lc : lightcurve.Lightcurve object OR + iterable of lightcurve.Lightcurve objects + The light curve data to be Fourier-transformed. + + Returns + ------- + power : numpy.ndarray + The array of normalized squared absolute values of Fourier + amplitudes + + """ + if seg_size is None: + seg_size = lc.tseg + + return AveragedPowerspectrum(lc, seg_size).power
+ + +
+[docs] + @staticmethod + def read(filename, fmt="pickle"): + """ + Reads transfer function from a 'pickle' file. + + Parameters + ---------- + fmt : str + the format of the file to be retrieved - accepts 'pickle'. + + Returns + ------- + data : class instance + `TransferFunction` object + """ + if fmt == "pickle": + with open(filename, "rb") as fobj: + return pickle.load(fobj) + + else: + raise KeyError("Format not understood.")
+ + +
+[docs] + def write(self, filename, fmt="pickle"): + """ + Writes a transfer function to 'pickle' file. + + Parameters + ---------- + fmt : str + the format of the file to be saved - accepts 'pickle' + """ + if fmt == "pickle": + with open(filename, "wb") as fobj: + pickle.dump(self, fobj) + else: + raise KeyError("Format not understood.")
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/stats.html b/_modules/stingray/stats.html new file mode 100644 index 000000000..6b86e6dc2 --- /dev/null +++ b/_modules/stingray/stats.html @@ -0,0 +1,1419 @@ + + + + + + + stingray.stats — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.stats

+import warnings
+from collections.abc import Iterable
+
+import numpy as np
+from scipy import stats
+from stingray.utils import simon
+from stingray.utils import vectorize, float64, float32, int32, int64
+
+
+__all__ = [
+    "p_multitrial_from_single_trial",
+    "p_single_trial_from_p_multitrial",
+    "fold_profile_probability",
+    "fold_profile_logprobability",
+    "fold_detection_level",
+    "phase_dispersion_detection_level",
+    "phase_dispersion_probability",
+    "phase_dispersion_logprobability",
+    "pds_probability",
+    "pds_detection_level",
+    "z2_n_detection_level",
+    "z2_n_probability",
+    "z2_n_logprobability",
+    "classical_pvalue",
+    "chi2_logp",
+    "equivalent_gaussian_Nsigma",
+    "equivalent_gaussian_Nsigma_from_logp",
+    "power_confidence_limits",
+    "power_upper_limit",
+    "pf_from_ssig",
+    "pf_from_a",
+    "pf_upper_limit",
+    "a_from_pf",
+    "a_from_ssig",
+    "ssig_from_a",
+    "ssig_from_pf",
+    "amplitude_upper_limit",
+]
+
+
+@vectorize([float64(float32), float64(float64)], nopython=True)
+def _extended_equiv_gaussian_Nsigma(logp):
+    """Equivalent gaussian sigma for small log-probability.
+
+    Return the equivalent gaussian sigma corresponding to the natural log of
+    the cumulative gaussian probability logp. In other words, return x, such
+    that Q(x) = p, where Q(x) is the cumulative normal distribution. This
+    version uses the rational approximation from Abramowitz and Stegun,
+    eqn 26.2.23, that claims to be precise to ~1e-4. Using the log(P) as input
+    gives a much extended range.
+
+    The parameters here are the result of a best-fit, with no physical meaning.
+
+    Translated from Scott Ransom's PRESTO
+    """
+
+    t = np.sqrt(-2.0 * logp)
+    num = 2.515517 + t * (0.802853 + t * 0.010328)
+    denom = 1.0 + t * (1.432788 + t * (0.189269 + t * 0.001308))
+    return t - num / denom
+
+
+@np.vectorize
+def equivalent_gaussian_Nsigma_from_logp(logp):
+    """Number of Gaussian sigmas corresponding to tail log-probability.
+
+    This function computes the value of the characteristic function of a
+    standard Gaussian distribution for the tail probability equivalent to the
+    provided p-value, and turns this value into units of standard deviations
+    away from the Gaussian mean. This allows the user to make a statement
+    about the signal such as “I detected this pulsation at 4.1 sigma
+
+    The example values below are obtained by brute-force integrating the
+    Gaussian probability density function using the mpmath library
+    between Nsigma and +inf.
+
+    Examples
+    --------
+    >>> pvalues = [0.15865525393145707, 0.0013498980316301035,
+    ...            9.865877e-10, 6.22096e-16,
+    ...            3.0567e-138]
+    >>> log_pvalues = np.log(np.array(pvalues))
+    >>> sigmas = np.array([1, 3, 6, 8, 25])
+    >>> # Single number
+    >>> np.isclose(equivalent_gaussian_Nsigma_from_logp(log_pvalues[0]),
+    ...            sigmas[0], atol=0.01)
+    True
+    >>> # Array
+    >>> np.allclose(equivalent_gaussian_Nsigma_from_logp(log_pvalues),
+    ...             sigmas, atol=0.01)
+    True
+    """
+    if logp < -300:
+        # print("Extended")
+        return _extended_equiv_gaussian_Nsigma(logp)
+    return stats.norm.isf(np.exp(logp))
+
+
+
+[docs] +def equivalent_gaussian_Nsigma(p): + """Number of Gaussian sigmas corresponding to tail probability. + + This function computes the value of the characteristic function of a + standard Gaussian distribution for the tail probability equivalent to the + provided p-value, and turns this value into units of standard deviations + away from the Gaussian mean. This allows the user to make a statement + about the signal such as “I detected this pulsation at 4.1 sigma + + The example values below are obtained by brute-force integrating the + Gaussian probability density function using the mpmath library + between Nsigma and +inf. + + Examples + -------- + >>> np.isclose(equivalent_gaussian_Nsigma(0.15865525393145707), 1, + ... atol=0.01) + True + >>> np.isclose(equivalent_gaussian_Nsigma(0.0013498980316301035), 3, + ... atol=0.01) + True + >>> np.isclose(equivalent_gaussian_Nsigma(9.865877e-10), 6, + ... atol=0.01) + True + >>> np.isclose(equivalent_gaussian_Nsigma(6.22096e-16), 8, + ... atol=0.01) + True + >>> np.isclose(equivalent_gaussian_Nsigma(3.0567e-138), 25, atol=0.1) + True + """ + return equivalent_gaussian_Nsigma_from_logp(np.log(p))
+ + + +@vectorize([float64(float32, float32), float64(float64, float64)], nopython=True) +def _log_asymptotic_incomplete_gamma(a, z): + """Asymptotic natural log of incomplete gamma function. + + Return the natural log of the incomplete gamma function in + its asymptotic limit as z->infty. This is from Abramowitz + and Stegun eqn 6.5.32. + + Translated from Scott Ransom's PRESTO + """ + + x = 1.0 + newxpart = 1.0 + term = 1.0 + ii = 1 + + while np.abs(newxpart) > 1e-15: + term *= a - ii + newxpart = term / np.power(z, ii) + x += newxpart + ii += 1 + + return (a - 1.0) * np.log(z) - z + np.log(x) + + +@vectorize([float64(float32), float64(float64)], nopython=True) +def _log_asymptotic_gamma(z): + """Natural log of the Gamma function in its asymptotic limit. + + Return the natural log of the gamma function in its asymptotic limit + as z->infty. This is from Abramowitz and Stegun eqn 6.1.41. + + Translated from Scott Ransom's PRESTO + """ + half_log_twopi = 0.91893853320467267 # (1/2)*log(2*pi) + one_twelfth = 8.3333333333333333333333e-2 + one_degree = 2.7777777777777777777778e-3 # 1 / 360 + one_over_1680 = 5.9523809523809529e-4 + one_over_1260 = 7.9365079365079365079365e-4 + x = (z - 0.5) * np.log(z) - z + half_log_twopi + y = 1.0 / (z * z) + x += (((-one_over_1680 * y + one_over_1260) * y - one_degree) * y + one_twelfth) / z + return x + + +@np.vectorize +def chi2_logp(chi2, dof): + """Log survival function of the chi-squared distribution. + + Examples + -------- + >>> chi2 = 31 + >>> # Test check on dof + >>> chi2_logp(chi2, 1) # doctest:+ELLIPSIS + Traceback (most recent call last): + ... + ValueError: The number of degrees of freedom cannot be < 2 + >>> # Test that approximate function works as expected. chi2 / dof > 15, + >>> # but small and safe number in order to compare to scipy.stats + >>> np.isclose(chi2_logp(chi2, 2), stats.chi2.logsf(chi2, 2), atol=0.1) + True + >>> chi2 = np.array([5, 32]) + >>> np.allclose(chi2_logp(chi2, 2), stats.chi2.logsf(chi2, 2), atol=0.1) + True + """ + if dof < 2: + raise ValueError("The number of degrees of freedom cannot be < 2") + + # If very large reduced chi squared, use approximation. This is an + # eyeballed limit parameter space where the difference between the + # approximation and the scipy version is tiny, but above which the scipy + # version starts failing. + if (chi2 / dof > 15.0) or ((dof > 150) and (chi2 / dof > 6.0)): + return _log_asymptotic_incomplete_gamma(0.5 * dof, 0.5 * chi2) - _log_asymptotic_gamma( + 0.5 * dof + ) + + return stats.chi2.logsf(chi2, dof) + + +@vectorize( + [ + float64(float32, int32), + float64(float32, int64), + float64(float64, int32), + float64(float64, int64), + ], + nopython=True, +) +def _logp_multitrial_from_single_logp(logp1, n): + """Calculate a multi-trial p-value from the log of a single-trial one. + + This allows to work around Numba's limitation on longdoubles, a way to + vectorize the computation when we need longdouble precision. + + Parameters + ---------- + logp1 : float + The natural logarithm of the significance at which we reject the null + hypothesis on each single trial. + n : int + The number of trials + + Returns + ------- + logpn : float + The log of the significance at which we reject the null hypothesis + after multiple trials + """ + # If the the probability is very small (p1 * n) < 1e-6, use Bonferroni + # approximation. + logn = np.log(n) + if logp1 + logn < -7: + return logp1 + logn + + return np.log(1 - (1 - np.exp(logp1)) ** n) + + +
+[docs] +def p_multitrial_from_single_trial(p1, n): + r"""Calculate a multi-trial p-value from a single-trial one. + + Calling *p* the probability of a single success, the Binomial + distributions says that the probability *at least* one outcome + in n trials is + + .. math:: + + P(k\geq 1) = \sum_{k\geq 1} \binom{n}{k} p^k (1-p)^{(n-k)} + + or more simply, using P(k ≥ 0) = 1 + + .. math:: + + P(k\geq 1) = 1 - \binom{n}{0} (1-p)^n = 1 - (1-p)^n + + + Parameters + ---------- + p1 : float + The significance at which we reject the null hypothesis on + each single trial. + n : int + The number of trials + + Returns + ------- + pn : float + The significance at which we reject the null hypothesis + after multiple trials + """ + logpn = _logp_multitrial_from_single_logp(np.log(p1).astype(np.double), n) + + return np.exp(np.longdouble(logpn))
+ + + +@vectorize( + [ + float64(float32, int32), + float64(float32, int64), + float64(float64, int32), + float64(float64, int64), + ], + nopython=True, +) +def _logp_single_trial_from_logp_multitrial(logpn, n): + """Calculate a multi-trial p-value from the log of a single-trial one. + + This allows to work around Numba's limitation on longdoubles, a way to + vectorize the computation when we need longdouble precision. + + Parameters + ---------- + logpn : float + The natural logarithm of the significance at which we want to reject + the null hypothesis after multiple trials + n : int + The number of trials + + Returns + ------- + logp1 : float + The log of the significance at which we reject the null hypothesis on + each single trial. + """ + logn = np.log(n) + # If the the probability is very small, use Bonferroni approximation. + if logpn < -7: + return logpn - logn + + # Numerical errors arise when pn is very close to 1. (logpn ~ 0) + if 1 - np.exp(logpn) < np.finfo(np.double).resolution * 1000: + return np.nan + + p1 = 1 - np.power(1 - np.exp(logpn), 1 / n) + return np.log(p1) + + +
+[docs] +def p_single_trial_from_p_multitrial(pn, n): + r"""Calculate the single-trial p-value from a total p-value + + Let us say that we want to reject a null hypothesis at the + ``pn`` level, after executing ``n`` different measurements. + This might be the case because, e.g., we + want to have a 1% probability of detecting a signal in an + entire power spectrum, and we need to correct the detection + level accordingly. + + The typical procedure is dividing the initial probability + (often called _epsilon_) by the number of trials. This is + called the Bonferroni correction and it is often a good + approximation, when ``pn`` is low: ``p1 = pn / n``. + + However, if ``pn`` is close to 1, this approximation gives + incorrect results. + + Here we calculate this probability by inverting the Binomial + problem. Given that (see ``p_multitrial_from_single_trial``) + the probability of getting more than one hit in n trials, + given the single-trial probability *p*, is + + .. math :: + + P (k \geq 1) = 1 - (1 - p)^n, + + we get the single trial probability from the multi-trial one + from + + .. math :: + + p = 1 - (1 - P)^{(1/n)} + + This is also known as Šidák correction. + + Parameters + ---------- + pn : float + The significance at which we want to reject the null + hypothesis after multiple trials + n : int + The number of trials + + Returns + ------- + p1 : float + The significance at which we reject the null hypothesis on + each single trial. + """ + + logp = _logp_single_trial_from_logp_multitrial(np.log(pn).astype(np.float64), n) + + if np.any(np.isnan(logp)): + if np.any(1 - pn < np.finfo(np.double).resolution * 1000): + warnings.warn("Multi-trial probability is very close to 1.") + warnings.warn("The problem is ill-conditioned. Returning NaN") + + return np.exp(logp)
+ + + +
+[docs] +def fold_profile_probability(stat, nbin, ntrial=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + stat : float + The epoch folding statistics + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + p : float + The probability that the profile has been produced by noise + """ + p1 = stats.chi2.sf(stat, (nbin - 1)) + return p_multitrial_from_single_trial(p1, ntrial)
+ + + +
+[docs] +def fold_profile_logprobability(stat, nbin, ntrial=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + stat : float + The epoch folding statistics + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + logp : float + The log-probability that the profile has been produced by noise + """ + p1 = chi2_logp(stat, (nbin - 1)) + return _logp_multitrial_from_single_logp(p1, ntrial)
+ + + +
+[docs] +def fold_detection_level(nbin, epsilon=0.01, ntrial=1): + """Return the detection level for a folded profile. + + See Leahy et al. (1983). + + Parameters + ---------- + nbin : int + The number of bins in the profile + epsilon : float, default 0.01 + The fractional probability that the signal has been produced + by noise + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + detlev : float + The epoch folding statistics corresponding to a probability + epsilon * 100 % that the signal has been produced by noise + """ + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + return stats.chi2.isf(epsilon.astype(np.double), nbin - 1)
+ + + +
+[docs] +def phase_dispersion_probability(stat, nsamples, nbin, ntrial=1): + """Calculate the probability of a peak in a phase dispersion + minimization periodogram, due to noise. + + Uses the beta-distribution from Czerny-Schwarzendorf (1997). + + Parameters + ---------- + stat : float + The value of the PDM inverse peak + + nsamples : int + The number of samples in the time series + + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + p : float + The probability that the profile has been produced by noise + """ + d2 = nsamples - nbin + d1 = nbin - 1 + + beta = stats.beta(d2 / 2.0, d1 / 2.0) + p1 = beta.cdf(stat) + + return p_multitrial_from_single_trial(p1, ntrial)
+ + + +
+[docs] +def phase_dispersion_logprobability(stat, nsamples, nbin, ntrial=1): + """Calculate the log-probability of a peak in a phase dispersion + minimization periodogram, due to noise. + + Uses the beta-distribution from Czerny-Schwarzendorf (1997). + + Parameters + ---------- + stat : float + The value of the PDM inverse peak + + nsamples : int + The number of samples in the time series + + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + logp : float + The log-probability that the profile has been produced by noise + """ + d2 = nsamples - nbin + d1 = nbin - 1 + + beta = stats.beta(d2 / 2.0, d1 / 2.0) + p1 = beta.logcdf(stat) + + return _logp_multitrial_from_single_logp(p1, ntrial)
+ + + +
+[docs] +def phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=1): + """Return the detection level for a phase dispersion minimization + periodogram.. + + Parameters + ---------- + nsamples : int + The number of time bins in the light curve + + nbin : int + The number of bins in the profile + + epsilon : float, default 0.01 + The fractional probability that the signal has been produced + by noise + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + detlev : float + The epoch folding statistics corresponding to a probability + epsilon * 100 % that the signal has been produced by noise + """ + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + + d2 = nsamples - nbin + d1 = nbin - 1 + + beta = stats.beta(d2 / 2.0, d1 / 2.0) + + return beta.ppf(epsilon.astype(np.double))
+ + + +
+[docs] +def z2_n_probability(z2, n, ntrial=1, n_summed_spectra=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + z2 : float + A Z^2_n statistics value + n : int, default 2 + The ``n`` in $Z^2_n$ (number of harmonics, including the fundamental) + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + n_summed_spectra : int + Number of Z_2^n periodograms that were averaged to obtain z2 + + Returns + ------- + p : float + The probability that the Z^2_n value has been produced by noise + """ + epsilon_1 = stats.chi2.sf(z2 * n_summed_spectra, 2 * n * n_summed_spectra) + epsilon = p_multitrial_from_single_trial(epsilon_1, ntrial) + return epsilon
+ + + +
+[docs] +def z2_n_logprobability(z2, n, ntrial=1, n_summed_spectra=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + z2 : float + A Z^2_n statistics value + n : int, default 2 + The ``n`` in $Z^2_n$ (number of harmonics, including the fundamental) + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + n_summed_spectra : int + Number of Z_2^n periodograms that were averaged to obtain z2 + + Returns + ------- + p : float + The probability that the Z^2_n value has been produced by noise + """ + + epsilon_1 = chi2_logp(np.double(z2 * n_summed_spectra), 2 * n * n_summed_spectra) + epsilon = _logp_multitrial_from_single_logp(epsilon_1, ntrial) + return epsilon
+ + + +
+[docs] +def z2_n_detection_level(n=2, epsilon=0.01, ntrial=1, n_summed_spectra=1): + """Return the detection level for the Z^2_n statistics. + + See Buccheri et al. (1983), Bendat and Piersol (1971). + + Parameters + ---------- + n : int, default 2 + The ``n`` in $Z^2_n$ (number of harmonics, including the fundamental) + epsilon : float, default 0.01 + The fractional probability that the signal has been produced by noise + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + n_summed_spectra : int + Number of Z_2^n periodograms that are being averaged + + Returns + ------- + detlev : float + The epoch folding statistics corresponding to a probability + epsilon * 100 % that the signal has been produced by noise + """ + + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + retlev = stats.chi2.isf(epsilon.astype(np.double), 2 * n_summed_spectra * n) / ( + n_summed_spectra + ) + + return retlev
+ + + +
+[docs] +def pds_probability(level, ntrial=1, n_summed_spectra=1, n_rebin=1): + r"""Give the probability of a given power level in PDS. + + Return the probability of a certain power level in a Power Density + Spectrum of nbins bins, normalized a la Leahy (1983), based on + the 2-dof :math:`{\chi}^2` statistics, corrected for rebinning (n_rebin) + and multiple PDS averaging (n_summed_spectra) + + Parameters + ---------- + level : float or array of floats + The power level for which we are calculating the probability + + Other Parameters + ---------------- + ntrial : int + The number of *independent* trials (the independent bins of the PDS) + n_summed_spectra : int + The number of power density spectra that have been averaged to obtain + this power level + n_rebin : int + The number of power density bins that have been averaged to obtain + this power level + + Returns + ------- + epsilon : float + The probability value(s) + """ + + epsilon_1 = stats.chi2.sf(level * n_summed_spectra * n_rebin, 2 * n_summed_spectra * n_rebin) + + epsilon = p_multitrial_from_single_trial(epsilon_1, ntrial) + return epsilon
+ + + +def pds_logprobability(level, ntrial=1, n_summed_spectra=1, n_rebin=1): + r"""Give the probability of a given power level in PDS. + + Return the probability of a certain power level in a Power Density + Spectrum of nbins bins, normalized a la Leahy (1983), based on + the 2-dof :math:`{\chi}^2` statistics, corrected for rebinning (n_rebin) + and multiple PDS averaging (n_summed_spectra) + + Parameters + ---------- + level : float or array of floats + The power level for which we are calculating the probability + + Other Parameters + ---------------- + ntrial : int + The number of *independent* trials (the independent bins of the PDS) + n_summed_spectra : int + The number of power density spectra that have been averaged to obtain + this power level + n_rebin : int + The number of power density bins that have been averaged to obtain + this power level + + Returns + ------- + epsilon : float + The probability value(s) + + Examples + -------- + Let us test that it is always consistent with `pds_probability`. + We use relatively small power values, because for large values + `pds_probability` underflows. + >>> powers = np.random.uniform(2, 40, 10) + >>> nrebin = np.random.randint(1, 10, 10) + >>> nsummed = np.random.randint(1, 100, 10) + >>> ntrial = np.random.randint(1, 10000, 10) + >>> logp = pds_logprobability(powers, ntrial, nsummed, nrebin) + >>> p = pds_probability(powers, ntrial, nsummed, nrebin) + >>> np.allclose(p, np.exp(logp)) + True + """ + + epsilon_1 = chi2_logp(level * n_summed_spectra * n_rebin, 2 * n_summed_spectra * n_rebin) + + epsilon = _logp_multitrial_from_single_logp(epsilon_1, ntrial) + return epsilon + + +
+[docs] +def pds_detection_level(epsilon=0.01, ntrial=1, n_summed_spectra=1, n_rebin=1): + r"""Detection level for a PDS. + + Return the detection level (with probability 1 - epsilon) for a Power + Density Spectrum of nbins bins, normalized a la Leahy (1983), based on + the 2-dof :math:`{\chi}^2` statistics, corrected for rebinning (n_rebin) + and multiple PDS averaging (n_summed_spectra) + + Parameters + ---------- + epsilon : float + The single-trial probability value(s) + + Other Parameters + ---------------- + ntrial : int + The number of *independent* trials (the independent bins of the PDS) + n_summed_spectra : int + The number of power density spectra that have been averaged to obtain + this power level + n_rebin : int + The number of power density bins that have been averaged to obtain + this power level + + Examples + -------- + >>> np.isclose(pds_detection_level(0.1), 4.6, atol=0.1) + True + >>> np.allclose(pds_detection_level(0.1, n_rebin=[1]), [4.6], atol=0.1) + True + """ + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + epsilon = epsilon.astype(np.double) + if isinstance(n_rebin, Iterable): + retlev = [ + stats.chi2.isf(epsilon, 2 * n_summed_spectra * r) / (n_summed_spectra * r) + for r in n_rebin + ] + retlev = np.array(retlev) + else: + r = n_rebin + retlev = stats.chi2.isf(epsilon, 2 * n_summed_spectra * r) / (n_summed_spectra * r) + return retlev
+ + + +
+[docs] +def classical_pvalue(power, nspec): + """ + Note: + This is stingray's original implementation of the probability + distribution for the power spectrum. It is superseded by the + implementation in pds_probability for practical purposes, but + remains here for backwards compatibility and for its educational + value as a clear, explicit implementation of the correct + probability distribution. + + Compute the probability of detecting the current power under + the assumption that there is no periodic oscillation in the data. + + This computes the single-trial p-value that the power was + observed under the null hypothesis that there is no signal in + the data. + + Important: the underlying assumptions that make this calculation valid + are: + + 1. the powers in the power spectrum follow a chi-square distribution + 2. the power spectrum is normalized according to [Leahy 1983]_, such + that the powers have a mean of 2 and a variance of 4 + 3. there is only white noise in the light curve. That is, there is no + aperiodic variability that would change the overall shape of the power + spectrum. + + Also note that the p-value is for a *single trial*, i.e. the power + currently being tested. If more than one power or more than one power + spectrum are being tested, the resulting p-value must be corrected for the + number of trials (Bonferroni correction). + + Mathematical formulation in [Groth 1975]_. + Original implementation in IDL by Anna L. Watts. + + Parameters + ---------- + power : float + The squared Fourier amplitude of a spectrum to be evaluated + + nspec : int + The number of spectra or frequency bins averaged in ``power``. + This matters because averaging spectra or frequency bins increases + the signal-to-noise ratio, i.e. makes the statistical distributions + of the noise narrower, such that a smaller power might be very + significant in averaged spectra even though it would not be in a single + power spectrum. + + Returns + ------- + pval : float + The classical p-value of the observed power being consistent with + the null hypothesis of white noise + + References + ---------- + + * .. [Leahy 1983] https://ui.adsabs.harvard.edu/#abs/1983ApJ...266..160L/abstract + * .. [Groth 1975] https://ui.adsabs.harvard.edu/#abs/1975ApJS...29..285G/abstract + + """ + + warnings.warn("This function was substituted by pds_probability.", DeprecationWarning) + + if not np.isfinite(power): + raise ValueError("power must be a finite floating point number!") + + if power < 0: + raise ValueError("power must be a positive real number!") + + if not np.isfinite(nspec): + raise ValueError("nspec must be a finite integer number") + + if nspec < 1: + raise ValueError("nspec must be larger or equal to 1") + + if not np.isclose(nspec % 1, 0): + raise ValueError("nspec must be an integer number!") + + # If the power is really big, it's safe to say it's significant, + # and the p-value will be nearly zero + if (power * nspec) > 30000: + simon("Probability of no signal too miniscule to calculate.") + return 0.0 + + else: + pval = _pavnosigfun(power, nspec) + return pval
+ + + +def _pavnosigfun(power, nspec): + """ + Helper function doing the actual calculation of the p-value. + + Parameters + ---------- + power : float + The measured candidate power + + nspec : int + The number of power spectral bins that were averaged in `power` + (note: can be either through averaging spectra or neighbouring bins) + """ + sum = 0.0 + m = nspec - 1 + + pn = power * nspec + + while m >= 0: + s = 0.0 + for i in range(int(m) - 1): + s += np.log(float(m - i)) + + logterm = m * np.log(pn / 2) - pn / 2 - s + term = np.exp(logterm) + ratio = sum / term + + if ratio > 1.0e15: + return sum + + sum += term + m -= 1 + + return sum + + +
+[docs] +def power_confidence_limits(preal, n=1, c=0.95): + """Confidence limits on power, given a (theoretical) signal power. + + This is to be used when we *expect* a given power (e.g. from the pulsed + fraction measured in previous observations) and we want to know the + range of values the measured power could take to a given confidence level. + Adapted from Vaughan et al. 1994, noting that, after appropriate + normalization of the spectral stats, the distribution of powers in the PDS + and the Z^2_n searches is always described by a noncentral chi squared + distribution. + + Parameters + ---------- + preal: float + The theoretical signal-generated value of power + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain the result. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence level (e.g. 0.95=95%) + + Returns + ------- + pmeas: [float, float] + The upper and lower confidence interval (a, 1-a) on the measured power + + Examples + -------- + >>> cl = power_confidence_limits(150, c=0.84) + >>> np.allclose(cl, [127, 176], atol=1) + True + """ + rv = stats.ncx2(2 * n, preal) + return rv.ppf([1 - c, c])
+ + + +
+[docs] +def power_upper_limit(pmeas, n=1, c=0.95): + """Upper limit on signal power, given a measured power in the PDS/Z search. + + Adapted from Vaughan et al. 1994, noting that, after appropriate + normalization of the spectral stats, the distribution of powers in the PDS + and the Z^2_n searches is always described by a noncentral chi squared + distribution. + + Note that Vaughan+94 gives p(pmeas | preal), while we are interested in + p(real | pmeas), which is not described by the NCX2 stat. Rather than + integrating the CDF of this probability distribution, we start from a + reasonable approximation and fit to find the preal that gives pmeas as + a (e.g.95%) confidence limit. + + As Vaughan+94 shows, this power is always larger than the observed one. + This is because we are looking for the maximum signal power that, + combined with noise powers, would give the observed power. This involves + the possibility that noise powers partially cancel out some signal power. + + Parameters + ---------- + pmeas: float + The measured value of power + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain pmeas. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence value for the probability (e.g. 0.95 = 95%) + + Returns + ------- + psig: float + The signal power that could produce P>pmeas with 1 - c probability + + Examples + -------- + >>> pup = power_upper_limit(40, 1, 0.99) + >>> np.isclose(pup, 75, atol=2) + True + """ + + def ppf(x): + rv = stats.ncx2(2 * n, x) + return rv.ppf(1 - c) + + def isf(x): + rv = stats.ncx2(2 * n, x) + return rv.ppf(c) + + def func_to_minimize(x, xmeas): + return np.abs(ppf(x) - xmeas) + + from scipy.optimize import minimize + + initial = isf(pmeas) + + res = minimize(func_to_minimize, [initial], pmeas, bounds=[(0, initial * 2)]) + + return res.x[0]
+ + + +
+[docs] +def amplitude_upper_limit(pmeas, counts, n=1, c=0.95, fft_corr=False, nyq_ratio=0): + """Upper limit on a sinusoidal modulation, given a measured power in the PDS/Z search. + + Eq. 10 in Vaughan+94 and `a_from_ssig`: they are equivalent but Vaughan+94 + corrects further for the response inside an FFT bin and at frequencies close + to Nyquist. These two corrections are added by using fft_corr=True and + nyq_ratio to the correct :math:`f / f_{Nyq}` of the FFT peak + + To understand the meaning of this amplitude: if the modulation is described by: + + ..math:: p = \overline{p} (1 + a * \sin(x)) + + this function returns a. + + If it is a sum of sinusoidal harmonics instead + ..math:: p = \overline{p} (1 + \sum_l a_l * \sin(lx)) + a is equivalent to :math:`\sqrt(\sum_l a_l^2)`. + + See `power_upper_limit` + + Parameters + ---------- + pmeas: float + The measured value of power + + counts: int + The number of counts in the light curve used to calculate the spectrum + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain pmeas. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence value for the probability (e.g. 0.95 = 95%) + fft_corr: bool + Apply a correction for the expected power concentrated in an FFT bin, + which is about 0.773 on average (it's 1 at the center of the bin, 2/pi + at the bin edge. + nyq_ratio: float + Ratio of the frequency of this feature with respect to the Nyquist + frequency. Important to know when dealing with FFTs, because the FFT + response decays between 0 and f_Nyq similarly to the response inside + a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq + + Returns + ------- + a: float + The modulation amplitude that could produce P>pmeas with 1 - c probability + + Examples + -------- + >>> aup = amplitude_upper_limit(40, 30000, 1, 0.99) + >>> aup_nyq = amplitude_upper_limit(40, 30000, 1, 0.99, nyq_ratio=1) + >>> np.isclose(aup_nyq, aup / (2 / np.pi)) + True + >>> aup_corr = amplitude_upper_limit(40, 30000, 1, 0.99, fft_corr=True) + >>> np.isclose(aup_corr, aup / np.sqrt(0.773)) + True + """ + + uplim = power_upper_limit(pmeas, n, c) + a = a_from_ssig(uplim, counts) + if fft_corr: + factor = 1 / np.sqrt(0.773) + a *= factor + if nyq_ratio > 0: + factor = np.pi / 2 * nyq_ratio + sinc_factor = np.sin(factor) / factor + a /= sinc_factor + return a
+ + + +
+[docs] +def pf_upper_limit(*args, **kwargs): + """Upper limit on pulsed fraction, given a measured power in the PDS/Z search. + + See `power_upper_limit` and `pf_from_ssig`. + All arguments are the same as `amplitude_upper_limit` + + Parameters + ---------- + pmeas: float + The measured value of power + + counts: int + The number of counts in the light curve used to calculate the spectrum + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain pmeas. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence value for the probability (e.g. 0.95 = 95%) + fft_corr: bool + Apply a correction for the expected power concentrated in an FFT bin, + which is about 0.773 on average (it's 1 at the center of the bin, 2/pi + at the bin edge. + nyq_ratio: float + Ratio of the frequency of this feature with respect to the Nyquist + frequency. Important to know when dealing with FFTs, because the FFT + response decays between 0 and f_Nyq similarly to the response inside + a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq + + Returns + ------- + pf: float + The pulsed fraction that could produce P>pmeas with 1 - c probability + + Examples + -------- + >>> pfup = pf_upper_limit(40, 30000, 1, 0.99) + >>> np.isclose(pfup, 0.13, atol=0.01) + True + """ + + return pf_from_a(amplitude_upper_limit(*args, **kwargs))
+ + + +
+[docs] +def pf_from_a(a): + """Pulsed fraction from fractional amplitude of modulation. + + If the pulsed profile is defined as + p = mean * (1 + a * sin(phase)), + + we define "pulsed fraction" as 2a/b, where b = mean + a is the maximum and + a is the amplitude of the modulation. + + Hence, pulsed fraction = 2a/(1+a) + + Examples + -------- + >>> pf_from_a(1) + 1.0 + >>> pf_from_a(0) + 0.0 + """ + return 2 * a / (1 + a)
+ + + +
+[docs] +def a_from_pf(p): + """Fractional amplitude of modulation from pulsed fraction + + If the pulsed profile is defined as + p = mean * (1 + a * sin(phase)), + + we define "pulsed fraction" as 2a/b, where b = mean + a is the maximum and + a is the amplitude of the modulation. + + Hence, a = pf / (2 - pf) + + Examples + -------- + >>> a_from_pf(1) + 1.0 + >>> a_from_pf(0) + 0.0 + """ + return p / (2 - p)
+ + + +
+[docs] +def ssig_from_a(a, ncounts): + """Theoretical power in the Z or PDS search for a sinusoid of amplitude a. + + From Leahy et al. 1983, given a pulse profile + p = lambda * (1 + a * sin(phase)), + The theoretical value of Z^2_n is Ncounts / 2 * a^2 + + Note that if there are multiple sinusoidal components, one can use + a = sqrt(sum(a_l)) + (Bachetti+2021b) + + Examples + -------- + >>> round(ssig_from_a(0.1, 30000), 1) + 150.0 + """ + return ncounts / 2 * a**2
+ + + +
+[docs] +def a_from_ssig(ssig, ncounts): + """Amplitude of a sinusoid corresponding to a given Z/PDS value + + From Leahy et al. 1983, given a pulse profile + p = lambda * (1 + a * sin(phase)), + The theoretical value of Z^2_n is Ncounts / 2 * a^2 + + Note that if there are multiple sinusoidal components, one can use + a = sqrt(sum(a_l)) + (Bachetti+2021b) + + Examples + -------- + >>> a_from_ssig(150, 30000) + 0.1 + """ + return np.sqrt(2 * ssig / ncounts)
+ + + +
+[docs] +def ssig_from_pf(pf, ncounts): + """Theoretical power in the Z or PDS for a sinusoid of pulsed fraction pf. + + See `ssig_from_a` and `a_from_pf` for more details + + Examples + -------- + >>> round(ssig_from_pf(pf_from_a(0.1), 30000), 1) + 150.0 + """ + a = a_from_pf(pf) + return ncounts / 2 * a**2
+ + + +
+[docs] +def pf_from_ssig(ssig, ncounts): + """Estimate pulsed fraction for a sinusoid from a given Z or PDS power. + + See `a_from_ssig` and `pf_from_a` for more details + + Examples + -------- + >>> round(a_from_pf(pf_from_ssig(150, 30000)), 1) + 0.1 + """ + a = a_from_ssig(ssig, ncounts) + return pf_from_a(a)
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/utils.html b/_modules/stingray/utils.html new file mode 100644 index 000000000..9f31d5cd1 --- /dev/null +++ b/_modules/stingray/utils.html @@ -0,0 +1,2280 @@ + + + + + + + stingray.utils — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.utils

+import numbers
+import os
+import copy
+import random
+import string
+import sys
+import warnings
+import tempfile
+from collections.abc import Iterable
+
+import numpy as np
+import scipy
+from numpy import histogram as histogram_np
+from numpy import histogram2d as histogram2d_np
+from numpy import histogramdd as histogramdd_np
+from .base import interpret_times
+
+try:
+    import pyfftw
+    from pyfftw.interfaces.numpy_fft import (
+        ifft,
+        fft,
+        fftfreq,
+        fftn,
+        ifftn,
+        fftshift,
+        fft2,
+        ifftshift,
+        rfft,
+        rfftfreq,
+    )
+
+    pyfftw.interfaces.cache.enable()
+    HAS_PYFFTW = True
+except ImportError:
+    warnings.warn("pyfftw not installed. Using standard scipy fft")
+    from numpy.fft import ifft, fft, fftfreq, fftn, ifftn, fftshift, fft2, ifftshift, rfft, rfftfreq
+
+    HAS_PYFFTW = False
+
+
+# If numba is installed, import jit. Otherwise, define an empty decorator with
+# the same name.
+try:
+    from numba import jit
+
+    HAS_NUMBA = True
+    from numba import njit, prange, vectorize, float32, float64, int32, int64
+    from numba.core.errors import NumbaValueError, NumbaNotImplementedError, TypingError
+except ImportError:
+    warnings.warn("Numba not installed. Faking it")
+    HAS_NUMBA = False
+    NumbaValueError = NumbaNotImplementedError = TypingError = Exception
+
+    def njit(f=None, *args, **kwargs):
+        def decorator(func, *a, **kw):
+            return func
+
+        if callable(f):
+            return f
+        else:
+            return decorator
+
+    jit = njit
+
+    def vectorize(*args, **kwargs):
+        def decorator(func, *a, **kw):
+            return np.vectorize(func)
+
+        return decorator
+
+    def generic(x, y=None):
+        return None
+
+    float32 = float64 = int32 = int64 = generic
+
+    def prange(x):
+        return range(x)
+
+
+try:
+    from tqdm import tqdm as show_progress
+except ImportError:
+
+    def show_progress(a):
+        return a
+
+
+try:
+    from statsmodels.robust import mad as mad  # pylint: disable=unused-import
+except ImportError:
+
+    def mad(data, c=0.6745, axis=None):
+        """
+        Mean Absolute Deviation (MAD) along an axis.
+
+        Straight from statsmodels's source code, adapted
+
+        Parameters
+        ----------
+        data : iterable
+            The data along which to calculate the MAD
+
+        c : float, optional
+            The normalization constant. Defined as
+            ``scipy.stats.norm.ppf(3/4.)``, which is approximately ``.6745``.
+
+        axis : int, optional, default ``0``
+            Axis along which to calculate ``mad``. Default is ``0``, can also
+            be ``None``
+        """
+        data = np.asarray(data)
+        if axis is not None:
+            center = np.apply_over_axes(np.median, data, axis)
+        else:
+            center = np.median(data)
+        return np.median((np.fabs(data - center)) / c, axis=axis)
+
+
+__all__ = [
+    "simon",
+    "rebin_data",
+    "rebin_data_log",
+    "look_for_array_in_array",
+    "is_string",
+    "is_iterable",
+    "order_list_of_arrays",
+    "optimal_bin_time",
+    "contiguous_regions",
+    "is_int",
+    "get_random_state",
+    "baseline_als",
+    "excess_variance",
+    "create_window",
+    "poisson_symmetrical_errors",
+    "standard_error",
+    "nearest_power_of_two",
+    "find_nearest",
+    "check_isallfinite",
+]
+
+
+@njit
+def _check_isallfinite_numba(array):
+    """Check if all elements of an array are finite.
+
+    This is faster than ``np.isfinite`` for large arrays, because it
+    exits at the first occurrence of a non-finite value.
+
+    Examples
+    --------
+    >>> _check_isallfinite_numba(np.array([1., 2., 3.]))
+    True
+    >>> _check_isallfinite_numba(np.array([1., np.inf, 3.]))
+    False
+    """
+    for a in array:
+        if not np.isfinite(a):
+            return False
+    return True
+
+
+
+[docs] +def check_isallfinite(array): + """Check if all elements of an array are finite. + + Calls ``_check_isallfinite_numba`` if numba is installed, otherwise + it uses ``np.isfinite``. + + Examples + -------- + >>> check_isallfinite([1, 2, 3]) + True + >>> check_isallfinite([1, np.inf, 3]) + False + >>> check_isallfinite([1, np.nan, 3]) + False + """ + if HAS_NUMBA: + # Numba is very picky about the type of the input array. If an exception + # occurs in the numba-compiled function, use the default Numpy implementation. + try: + return _check_isallfinite_numba(np.asarray(array)) + except Exception: + pass + return np.all(np.isfinite(array))
+ + + +def is_sorted(array): + """Check if an array is sorted. + + Checks if an array has extended precision before calling the + ``is_sorted`` numba-compiled function. + + Parameters + ---------- + array : iterable + The array to be checked + + Returns + ------- + is_sorted : bool + True if the array is sorted, False otherwise + """ + + array = np.asarray(array) + # If the array is empty or has only one element, it is sorted + if array.size <= 1: + return True + + # If Numba is not installed, use numpy's implementation + if not HAS_NUMBA: + return np.all(np.diff(array) >= 0) + # Test if value is compatible with Numba's type system + try: + _is_sorted_numba(array[:2]) + except NumbaValueError: + array = array.astype(float) + + return _is_sorted_numba(array) + + +@njit() +def _is_sorted_numba(array): + """Check if an array is sorted. + + .. note:: + The array cannot have extended precision. + This function should always be wrapped into a function that + checks the type of the array and converts it to float if needed. + + Parameters + ---------- + array : iterable + The array to be checked + + Returns + ------- + is_sorted : bool + True if the array is sorted, False otherwise + """ + for i in prange(len(array) - 1): + if array[i] > array[i + 1]: + return False + return True + + +def _root_squared_mean(array): + array = np.asarray(array) + return np.sqrt(np.sum(array**2)) / array.size + + +
+[docs] +def simon(message, **kwargs): + """The Statistical Interpretation MONitor. + + A warning system designed to always remind the user that Simon + is watching him/her. + + Parameters + ---------- + message : string + The message that is thrown + + kwargs : dict + The rest of the arguments that are passed to ``warnings.warn`` + """ + + warnings.warn("SIMON says: {0}".format(message), **kwargs)
+ + + +
+[docs] +def rebin_data(x, y, dx_new, yerr=None, method="sum", dx=None): + """Rebin some data to an arbitrary new data resolution. Either sum + the data points in the new bins or average them. + + Parameters + ---------- + x: iterable + The dependent variable with some resolution, which can vary throughout + the time series. + + y: iterable + The independent variable to be binned + + dx_new: float + The new resolution of the dependent variable ``x`` + + Other parameters + ---------------- + yerr: iterable, optional + The uncertainties of ``y``, to be propagated during binning. + + method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum`` + The method to be used in binning. Either sum the samples ``y`` in + each new bin of ``x``, or take the arithmetic mean. + + dx: float + The old resolution (otherwise, calculated from difference between + time bins) + + Returns + ------- + xbin: numpy.ndarray + The midpoints of the new bins in ``x`` + + ybin: numpy.ndarray + The binned quantity ``y`` + + ybin_err: numpy.ndarray + The uncertainties of the binned values of ``y``. + + step_size: float + The size of the binning step + + Examples + -------- + >>> x = np.arange(0, 100, 0.01) + >>> y = np.ones(x.size) + >>> yerr = np.ones(x.size) + >>> xbin, ybin, ybinerr, step_size = rebin_data( + ... x, y, 4, yerr=yerr, method='sum', dx=0.01) + >>> np.allclose(ybin, 400) + True + >>> np.allclose(ybinerr, 20) + True + >>> xbin, ybin, ybinerr, step_size = rebin_data( + ... x, y, 4, yerr=yerr, method='mean') + >>> np.allclose(ybin, 1) + True + >>> np.allclose(ybinerr, 0.05) + True + """ + + y = np.asarray(y) + if yerr is None: + yerr = np.zeros_like(y) + else: + yerr = np.asarray(yerr) + + if not dx: + dx_old = np.diff(x) + elif np.size(dx) == 1: + dx_old = np.array([dx]) + else: + dx_old = dx + + if np.any(dx_new < dx_old): + raise ValueError( + "New frequency resolution must be larger than " "old frequency resolution." + ) + + # left and right bin edges + # assumes that the points given in `x` correspond to + # the left bin edges + xedges = np.hstack([x, x[-1] + dx_old[-1]]) + + # new regularly binned resolution + xbin = np.arange(xedges[0], xedges[-1] + dx_new, dx_new) + + output = np.zeros(xbin.shape[0] - 1, dtype=type(y[0])) + outputerr = np.zeros(xbin.shape[0] - 1, dtype=type(yerr[0])) + step_size = np.zeros(xbin.shape[0] - 1) + + all_x = np.searchsorted(xedges, xbin) + min_inds = all_x[:-1] + max_inds = all_x[1:] + xmins = xbin[:-1] + xmaxs = xbin[1:] + for i, (xmin, xmax, min_ind, max_ind) in enumerate(zip(xmins, xmaxs, min_inds, max_inds)): + filtered_y = y[min_ind : max_ind - 1] + filtered_yerr = yerr[min_ind : max_ind - 1] + output[i] = np.sum(filtered_y) + outputerr[i] = np.sum(filtered_yerr) + step_size[i] = max_ind - 1 - min_ind + + prev_dx = xedges[min_ind] - xedges[min_ind - 1] + prev_frac = (xedges[min_ind] - xmin) / prev_dx + output[i] += y[min_ind - 1] * prev_frac + outputerr[i] += yerr[min_ind - 1] * prev_frac + step_size[i] += prev_frac + + if not max_ind == xedges.size: + dx_post = xedges[max_ind] - xedges[max_ind - 1] + post_frac = (xmax - xedges[max_ind - 1]) / dx_post + output[i] += y[max_ind - 1] * post_frac + outputerr[i] += yerr[max_ind - 1] * post_frac + step_size[i] += post_frac + + if method in ["mean", "avg", "average", "arithmetic mean"]: + ybin = output / step_size + ybinerr = np.sqrt(outputerr) / step_size + + elif method == "sum": + ybin = output + ybinerr = np.sqrt(outputerr) + + else: + raise ValueError( + "Method for summing or averaging not recognized. " + "Please enter either 'sum' or 'mean'." + ) + + tseg = x[-1] - x[0] + dx_old[-1] + + if (tseg / dx_new % 1) > 0: + ybin = ybin[:-1] + ybinerr = ybinerr[:-1] + step_size = step_size[:-1] + + dx_var = np.var(dx_old) / np.mean(dx_old) + + if np.size(dx_old) == 1 or dx_var < 1e-6: + step_size = step_size[0] + + new_x0 = (x[0] - (0.5 * dx_old[0])) + (0.5 * dx_new) + xbin = np.arange(ybin.shape[0]) * dx_new + new_x0 + + return xbin, ybin, ybinerr, step_size
+ + + +
+[docs] +def rebin_data_log(x, y, f, y_err=None, dx=None): + """Logarithmic re-bin of some data. Particularly useful for the power + spectrum. + + The new dependent variable depends on the previous dependent variable + modified by a factor f: + + .. math:: + + d\\nu_j = d\\nu_{j-1} (1+f) + + Parameters + ---------- + x: iterable + The dependent variable with some resolution ``dx_old = x[1]-x[0]`` + + y: iterable + The independent variable to be binned + + f: float + The factor of increase of each bin wrt the previous one. + + Other Parameters + ---------------- + yerr: iterable, optional + The uncertainties of ``y`` to be propagated during binning. + + method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum`` + The method to be used in binning. Either sum the samples ``y`` in + each new bin of ``x`` or take the arithmetic mean. + + dx: float, optional + The binning step of the initial ``x`` + + Returns + ------- + xbin: numpy.ndarray + The midpoints of the new bins in ``x`` + + ybin: numpy.ndarray + The binned quantity ``y`` + + ybin_err: numpy.ndarray + The uncertainties of the binned values of ``y`` + + step_size: float + The size of the binning step + """ + + dx_init = apply_function_if_none(dx, np.diff(x), np.median) + x = np.asarray(x) + y = np.asarray(y) + y_err = np.asarray(apply_function_if_none(y_err, y, np.zeros_like)) + + if x.shape[0] != y.shape[0]: + raise ValueError("x and y must be of the same length!") + if y.shape[0] != y_err.shape[0]: + raise ValueError("y and y_err must be of the same length!") + + minx = x[0] * 0.5 # frequency to start from + maxx = x[-1] # maximum frequency to end + binx_for_stats = [minx, minx + dx_init] # first + dx = dx_init # the frequency resolution of the first bin + + # until we reach the maximum frequency, increase the width of each + # frequency bin by f + while binx_for_stats[-1] <= maxx: + binx_for_stats.append(binx_for_stats[-1] + dx * (1.0 + f)) + dx = binx_for_stats[-1] - binx_for_stats[-2] + + binx_for_stats = np.asarray(binx_for_stats) + + real = y.real + real_err = y_err.real + # compute the mean of the ys that fall into each new frequency bin. + # we cast to np.double due to scipy's bad handling of longdoubles + binx, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), x.astype(np.double), statistic="mean", bins=binx_for_stats + ) + + biny, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), real.astype(np.double), statistic="mean", bins=binx_for_stats + ) + + biny_err, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), + real_err.astype(np.double), + statistic=_root_squared_mean, + bins=binx_for_stats, + ) + + if np.iscomplexobj(y): + imag = y.imag + biny_imag, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), imag.astype(np.double), statistic="mean", bins=binx_for_stats + ) + + biny = biny + 1j * biny_imag + + if np.iscomplexobj(y_err): + imag_err = y_err.imag + + biny_err_imag, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), + imag_err.astype(np.double), + statistic=_root_squared_mean, + bins=binx_for_stats, + ) + biny_err = biny_err + 1j * biny_err_imag + + # compute the number of powers in each frequency bin + nsamples = np.array( + [len(binno[np.where(binno == i)[0]]) for i in range(1, np.max(binno) + 1, 1)] + ) + + return binx, biny, biny_err, nsamples
+ + + +def apply_function_if_none(variable, value, func): + """ + Assign a function value to a variable if that variable has value ``None`` on input. + + Parameters + ---------- + variable : object + A variable with either some assigned value, or ``None`` + + value : object + A variable to go into the function + + func : function + Function to apply to ``value``. Result is assigned to ``variable`` + + Returns + ------- + new_value : object + The new value of ``variable`` + + Examples + -------- + >>> var = 4 + >>> value = np.zeros(10) + >>> apply_function_if_none(var, value, np.mean) + 4 + >>> var = None + >>> apply_function_if_none(var, value, lambda y: np.mean(y)) + 0.0 + """ + if variable is None: + return func(value) + else: + return variable + + +def assign_value_if_none(value, default): + """ + Assign a value to a variable if that variable has value ``None`` on input. + + Parameters + ---------- + value : object + A variable with either some assigned value, or ``None`` + + default : object The value to assign to the variable ``value`` if + ``value is None`` returns ``True`` + + Returns + ------- + new_value : object + The new value of ``value`` + + """ + return default if value is None else value + + +
+[docs] +def look_for_array_in_array(array1, array2): + """ + Find a subset of values in an array. + + Parameters + ---------- + array1 : iterable + An array with values to be searched + + array2 : iterable + A second array which potentially contains a subset of values + also contained in ``array1`` + + Returns ------- array3 : iterable An array with the subset of values + contained in both ``array1`` and ``array2`` + + """ + return next((i for i in array1 if i in array2), None)
+ + + +
+[docs] +def is_string(s): + """ + Portable function to answer whether a variable is a string. + + Parameters + ---------- + s : object + An object that is potentially a string + + Returns + ------- + isstring : bool + A boolean decision on whether ``s`` is a string or not + """ + return isinstance(s, str)
+ + + +
+[docs] +def is_iterable(var): + """Test if a variable is an iterable. + + Parameters + ---------- + var : object + The variable to be tested for iterably-ness + + Returns + ------- + is_iter : bool + Returns ``True`` if ``var`` is an ``Iterable``, ``False`` otherwise + """ + return isinstance(var, Iterable)
+ + + +
+[docs] +def order_list_of_arrays(data, order): + """Sort an array according to the specified order. + + Parameters + ---------- + data : iterable + + Returns + ------- + data : list or dict + """ + if hasattr(data, "items"): + data = dict([(key, value[order]) for key, value in data.items()]) + elif is_iterable(data): + data = [i[order] for i in data] + else: + data = None + return data
+ + + +
+[docs] +def optimal_bin_time(fftlen, tbin): + """Vary slightly the bin time to have a power of two number of bins. + + Given an FFT length and a proposed bin time, return a bin time + slightly shorter than the original, that will produce a power-of-two number + of FFT bins. + + Parameters + ---------- + fftlen : int + Number of positive frequencies in a proposed Fourier spectrum + + tbin : float + The proposed time resolution of a light curve + + Returns + ------- + res : float + A time resolution that will produce a Fourier spectrum with ``fftlen`` frequencies and + a number of FFT bins that are a power of two + """ + + return fftlen / (2 ** np.ceil(np.log2(fftlen / tbin)))
+ + + +
+[docs] +def contiguous_regions(condition): + """Find contiguous ``True`` regions of the boolean array ``condition``. + + Return a 2D array where the first column is the start index of the region + and the second column is the end index, found on [so-contiguous]_. + + Parameters + ---------- + condition : bool array + + Returns + ------- + idx : ``[[i0_0, i0_1], [i1_0, i1_1], ...]`` + A list of integer couples, with the start and end of each ``True`` blocks + in the original array + + Notes + ----- + .. [so-contiguous] http://stackoverflow.com/questions/4494404/find-large-number-of-consecutive-values-fulfilling-condition-in-a-numpy-array + """ + # Find the indices of changes in "condition" + diff = np.logical_xor(condition[1:], condition[:-1]) + (idx,) = diff.nonzero() + # We need to start things after the change in "condition". Therefore, + # we'll shift the index by 1 to the right. + idx += 1 + if condition[0]: + # If the start of condition is True prepend a 0 + idx = np.r_[0, idx] + if condition[-1]: + # If the end of condition is True, append the length of the array + idx = np.r_[idx, condition.size] + # Reshape the result into two columns + idx.shape = (-1, 2) + return idx
+ + + +
+[docs] +def is_int(obj): + """Test if object is an integer.""" + return isinstance(obj, (numbers.Integral, np.integer))
+ + + +
+[docs] +def get_random_state(random_state=None): + """Return a Mersenne Twister pseudo-random number generator. + + Parameters + ---------- + seed : integer or ``numpy.random.RandomState``, optional, default ``None`` + + Returns + ------- + random_state : mtrand.RandomState object + """ + if not random_state: + random_state = np.random.mtrand._rand + else: + if is_int(random_state): + random_state = np.random.RandomState(random_state) + elif not isinstance(random_state, np.random.RandomState): + raise ValueError( + "{value} can't be used to generate a numpy.random.RandomState".format( + value=random_state + ) + ) + + return random_state
+ + + +def _offset(x, off): + """An offset.""" + return off + + +def offset_fit(x, y, offset_start=0): + """Fit a constant offset to the data. + + Parameters + ---------- + x : array-like + y : array-like + offset_start : float + Constant offset, initial value + + Returns + ------- + offset : float + Fitted offset + """ + from scipy.optimize import curve_fit + + par, _ = curve_fit(_offset, x, y, [offset_start], maxfev=6000) + return par[0] + + +def _als(y, lam, p, niter=10): + """Baseline Correction with Asymmetric Least Squares Smoothing. + + Modifications to the routine from Eilers & Boelens 2005 [eilers-2005]_. + The Python translation is partly from [so-als]_. + + Parameters + ---------- + y : array-like + the data series corresponding to ``x`` + lam : float + the lambda parameter of the ALS method. This control how much the + baseline can adapt to local changes. A higher value corresponds to a + stiffer baseline + p : float + the asymmetry parameter of the ALS method. This controls the overall + slope tollerated for the baseline. A higher value correspond to a + higher possible slope + + Other parameters + ---------------- + niter : int + The number of iterations to perform + + Returns + ------- + z : array-like, same size as ``y`` + Fitted baseline. + + References + ---------- + .. [eilers-2005] https://www.researchgate.net/publication/228961729_Technical_Report_Baseline_Correction_with_Asymmetric_Least_Squares_Smoothing + .. [so-als] http://stackoverflow.com/questions/29156532/python-baseline-correction-library + + """ + from scipy import sparse + + L = len(y) + + indptr = np.arange(0, L - 1, dtype=np.int32) * 3 + indices = np.vstack( + (np.arange(0, L - 2).T, np.arange(0, L - 2).T + 1, np.arange(0, L - 2).T + 2) + ).T.flatten() + data = np.tile([1, -2, 1], L - 2) + D = sparse.csc_matrix((data, indices, indptr), shape=(L, L - 2)) + + w = np.ones(L) + for _ in range(niter): + W = sparse.spdiags(w, 0, L, L) + Z = W + lam * D.dot(D.transpose()) + z = sparse.linalg.spsolve(Z, w * y) + w = p * (y > z) + (1 - p) * (y < z) + return z + + +
+[docs] +def baseline_als(x, y, lam=None, p=None, niter=10, return_baseline=False, offset_correction=False): + """Baseline Correction with Asymmetric Least Squares Smoothing. + + Parameters + ---------- + x : array-like + the sample time/number/position + y : array-like + the data series corresponding to ``x`` + lam : float + the lambda parameter of the ALS method. This control how much the + baseline can adapt to local changes. A higher value corresponds to a + stiffer baseline + p : float + the asymmetry parameter of the ALS method. This controls the overall + slope tolerated for the baseline. A higher value correspond to a + higher possible slope + + Other Parameters + ---------------- + niter : int + The number of iterations to perform + return_baseline : bool + return the baseline? + offset_correction : bool + also correct for an offset to align with the running mean of the scan + + Returns + ------- + y_subtracted : array-like, same size as ``y`` + The initial time series, subtracted from the trend + baseline : array-like, same size as ``y`` + Fitted baseline. Only returned if return_baseline is ``True`` + + Examples + -------- + >>> x = np.arange(0, 10, 0.01) + >>> y = np.zeros_like(x) + 10 + >>> ysub = baseline_als(x, y) + >>> np.all(ysub < 0.001) + True + """ + + if lam is None: + lam = 1e11 + if p is None: + p = 0.001 + + z = _als(y, lam, p, niter=niter) + + ysub = y - z + offset = 0 + if offset_correction: + std = mad(ysub) + good = np.abs(ysub) < 10 * std + if len(x[good]) < 10: + good = np.ones(len(x), dtype=bool) + warnings.warn( + "Too few bins to perform baseline offset correction" " precisely. Beware of results" + ) + offset = offset_fit(x[good], ysub[good], 0) + + if return_baseline: + return ysub - offset, z + offset + else: + return ysub - offset
+ + + +
+[docs] +def excess_variance(lc, normalization="fvar"): + r"""Calculate the excess variance. + + Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source + intrinsic variance: if a light curve has a total variance of :math:`S^2`, + and each point has an error bar :math:`\sigma_{err}`, the *excess variance* + is defined as + + .. math:: \sigma_{XS} = S^2 - \overline{\sigma_{err}}^2; + + the *normalized excess variance* is the excess variance divided by the + square of the mean intensity: + + .. math:: \sigma_{NXS} = \dfrac{\sigma_{XS}}{\overline{x}^2}; + + the *fractional mean square variability amplitude*, or + :math:`F_{var}`, is finally defined as + + .. math:: F_{var} = \sqrt{\dfrac{\sigma_{XS}}{\overline{x}^2}} + + Parameters + ---------- + lc : a :class:`Lightcurve` object + normalization : str + if ``fvar``, return the fractional mean square variability :math:`F_{var}`. + If ``none``, return the unnormalized excess variance variance + :math:`\sigma_{XS}`. If ``norm_xs``, return the normalized excess variance + :math:`\sigma_{XS}` + Returns + ------- + var_xs : float + var_xs_err : float + """ + lc_mean_var = np.mean(lc.counts_err**2) + lc_actual_var = np.var(lc.counts) + var_xs = lc_actual_var - lc_mean_var + mean_lc = np.mean(lc.counts) + mean_ctvar = mean_lc**2 + var_nxs = var_xs / mean_lc**2 + + fvar = np.sqrt(var_xs / mean_ctvar) + + N = len(lc.counts) + var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc**2 + var_nxs_err_B = np.sqrt(lc_mean_var / N) * 2 * fvar / mean_lc + var_nxs_err = np.sqrt(var_nxs_err_A**2 + var_nxs_err_B**2) + + fvar_err = var_nxs_err / (2 * fvar) + + if normalization == "fvar": + return fvar, fvar_err + elif normalization == "norm_xs": + return var_nxs, var_nxs_err + elif normalization == "none" or normalization is None: + return var_xs, var_nxs_err * mean_lc**2
+ + + +
+[docs] +def create_window(N, window_type="uniform"): + """A method to create window functions commonly used in signal processing. + + Windows supported are: + Hamming, Hanning, uniform (rectangular window), triangular window, + blackmann window among others. + + Parameters + ---------- + N : int + Total number of data points in window. If negative, abs is taken. + window_type : {``uniform``, ``parzen``, ``hamming``, ``hanning``, ``triangular``,\ + ``welch``, ``blackmann``, ``flat-top``}, optional, default ``uniform`` + Type of window to create. + + Returns + ------- + window: numpy.ndarray + Window function of length ``N``. + """ + + if not isinstance(N, int): + raise TypeError("N (window length) must be an integer") + + windows = [ + "uniform", + "parzen", + "hamming", + "hanning", + "triangular", + "welch", + "blackmann", + "flat-top", + ] + + if not isinstance(window_type, str): + raise TypeError("type of window must be specified as string!") + + window_type = window_type.lower() + if window_type not in windows: + raise ValueError("Wrong window type specified or window function is not available") + + # Return empty array as window if N = 0 + if N == 0: + return np.array([]) + + window = None + N = abs(N) + + # Window samples index + n = np.arange(N) + + # Constants + N_minus_1 = N - 1 + N_by_2 = int((np.floor((N_minus_1) / 2))) + + # Create Windows + if window_type == "uniform": + window = np.ones(N) + + if window_type == "parzen": + N_parzen = int(np.ceil((N + 1) / 2)) + N2_plus_1 = int(np.floor((N_parzen / 2))) + 1 + + window = np.zeros(N_parzen) + windlag0 = np.arange(0, N2_plus_1) / (N_parzen - 1) + windlag1 = 1 - np.arange(N2_plus_1, N_parzen) / (N_parzen - 1) + window[:N2_plus_1] = 1 - (1 - windlag0) * windlag0 * windlag0 * 6 + window[N2_plus_1:] = windlag1 * windlag1 * windlag1 * 2 + lagindex = np.arange(N_parzen - 1, 0, -1) + window = np.concatenate((window[lagindex], window)) + window = window[:N] + + if window_type == "hamming": + window = 0.54 - 0.46 * np.cos((2 * np.pi * n) / N_minus_1) + + if window_type == "hanning": + window = 0.5 * (1 - np.cos(2 * np.pi * n / N_minus_1)) + + if window_type == "triangular": + window = 1 - np.abs((n - (N_by_2)) / N) + + if window_type == "welch": + N_minus_1_by_2 = N_minus_1 / 2 + window = 1 - np.square((n - N_minus_1_by_2) / N_minus_1_by_2) + + if window_type == "blackmann": + a0 = 0.42659 + a1 = 0.49656 + a2 = 0.076849 + window = ( + a0 - a1 * np.cos((2 * np.pi * n) / N_minus_1) + a2 * np.cos((4 * np.pi * n) / N_minus_1) + ) + + if window_type == "flat-top": + a0 = 1 + a1 = 1.93 + a2 = 1.29 + a3 = 0.388 + a4 = 0.028 + window = ( + a0 + - a1 * np.cos((2 * np.pi * n) / N_minus_1) + + a2 * np.cos((4 * np.pi * n) / N_minus_1) + - a3 * np.cos((6 * np.pi * n) / N_minus_1) + + a4 * np.cos((8 * np.pi * n) / N_minus_1) + ) + + return window
+ + + +
+[docs] +def poisson_symmetrical_errors(counts): + """Optimized version of frequentist symmetrical errors. + + Uses a lookup table in order to limit the calls to poisson_conf_interval + + Parameters + ---------- + counts : iterable + An array of Poisson-distributed numbers + + Returns + ------- + err : numpy.ndarray + An array of uncertainties associated with the Poisson counts in + ``counts`` + + Examples + -------- + >>> from astropy.stats import poisson_conf_interval + >>> counts = np.random.randint(0, 1000, 100) + >>> # ---- Do it without the lookup table ---- + >>> err_low, err_high = poisson_conf_interval(np.asarray(counts), + ... interval='frequentist-confidence', sigma=1) + >>> err_low -= np.asarray(counts) + >>> err_high -= np.asarray(counts) + >>> err = (np.absolute(err_low) + np.absolute(err_high))/2.0 + >>> # Do it with this function + >>> err_thisfun = poisson_symmetrical_errors(counts) + >>> # Test that results are always the same + >>> assert np.allclose(err_thisfun, err) + """ + from astropy.stats import poisson_conf_interval + + counts_int = np.asarray(counts, dtype=np.int64) + count_values = np.nonzero(np.bincount(counts_int))[0] + err_low, err_high = poisson_conf_interval( + count_values, interval="frequentist-confidence", sigma=1 + ) + # calculate approximately symmetric uncertainties + err_low -= np.asarray(count_values) + err_high -= np.asarray(count_values) + err = (np.absolute(err_low) + np.absolute(err_high)) / 2.0 + + idxs = np.searchsorted(count_values, counts_int) + return err[idxs]
+ + + +
+[docs] +def standard_error(xs, mean): + """ + Return the standard error of the mean (SEM) of an array of arrays. + + Parameters + ---------- + xs : 2-d float array + List of data point arrays. + + mean : 1-d float array + Average of the data points. + + Returns + ------- + standard_error : 1-d float array + Standard error of the mean (SEM). + + """ + + n_seg = len(xs) + xs_diff_sq = np.subtract(xs, mean) ** 2 + standard_deviation = np.sum(xs_diff_sq, axis=0) / (n_seg - 1) + error = np.sqrt(standard_deviation / n_seg) + return error
+ + + +
+[docs] +def nearest_power_of_two(x): + """ + Return a number which is nearest to `x` and is the integral power of two. + + Parameters + ---------- + x : int, float + + Returns + ------- + x_nearest : int + Number closest to `x` and is the integral power of two. + + """ + x = int(x) + x_lower = 1 if x == 0 else 2 ** (x - 2).bit_length() + x_upper = 1 if x == 0 else 2 ** (x - 1).bit_length() + x_nearest = x_lower if (x - x_lower) < (x_upper - x) else x_upper + return x_nearest
+ + + +
+[docs] +def find_nearest(array, value): + """ + Return the array value that is closest to the input value (Abigail Stevens: + Thanks StackOverflow!) + + Parameters + ---------- + array : np.array of ints or floats + 1-D array of numbers to search through. Should already be sorted + from low values to high values. + + value : int or float + The value you want to find the closest to in the array. + + Returns + ------- + array[idx] : int or float + The array value that is closest to the input value. + + idx : int + The index of the array of the closest value. + + """ + idx = np.searchsorted(array, value, side="left") + if idx == len(array) or np.fabs(value - array[idx - 1]) < np.fabs(value - array[idx]): + return array[idx - 1], idx - 1 + else: + return array[idx], idx
+ + + +def check_iterables_close(iter0, iter1, **kwargs): + """Check that the values produced by iterables are equal. + + Uses `np.isclose` if the iterables produce single values per iteration, + `np.allclose` otherwise. + + Additional keyword arguments are passed to `np.allclose` + and `np.isclose`. + + Parameters + ---------- + iter0 : iterable + iter1 : iterable + + Examples + -------- + >>> iter0 = [0, 1] + >>> iter1 = [0, 2] + >>> check_iterables_close(iter0, iter1) + False + >>> iter0 = [(0, 0), (0, 1)] + >>> iter1 = [(0, 0.), (0, 1.)] + >>> check_iterables_close(iter0, iter1) + True + >>> iter1 = [(0, 0.), (0, 3.)] + >>> check_iterables_close(iter0, iter1) + False + """ + for i0, i1 in zip(iter0, iter1): + if isinstance(i0, Iterable): + if not np.allclose(i0, i1): + return False + continue + if not np.isclose(i0, i1): + return False + return True + + +def check_allclose_and_print( + v1, + v2, + rtol=1e-05, + atol=1e-08, +): + """Check that the values in the array v1 and v2 are equal. + It prints the values that are different. + + Uses `np.allclose` and it has the option to specify rtol and atol + + Parameters + ---------- + v1 : array + v2 : array + rtol : The relative tolerance parameter + atol : The absolute tolerance parameter + + If the following equation element-wise True, then allclose returns True. + absolute(a - b) <= (atol + rtol * absolute(b)) + + """ + try: + assert np.allclose(v1, v2, rtol, atol) + except Exception as e: + v1 = np.asarray(v1) + v2 = np.asarray(v2) + bad = np.abs(v1 - v2) >= (atol + rtol * np.abs(v2)) + + raise AssertionError( + f"Different values in the arrays check by allclose: \ + {v1[bad]} vs {v2[bad]}, indeces are {np.where(v1[bad])[0]}\ + and {np.where(v2[bad])[0]}" + ) + + +@njit(nogil=True, parallel=False) +def compute_bin(x, bin_edges): + """Given a list of bin edges, get what bin will a number end up to + + Parameters + ---------- + x : float + The value to insert + bin_edges: array + The list of bin edges + + Returns + ------- + bin : int + The bin number. None if outside bin edges. + + Examples + -------- + >>> bin_edges = np.array([0, 5, 10]) + >>> compute_bin(1, bin_edges) + 0 + >>> compute_bin(5, bin_edges) + 1 + >>> compute_bin(10, bin_edges) + 1 + >>> compute_bin(11, bin_edges) is None + True + """ + + # assuming uniform bins for now + n = bin_edges.shape[0] - 1 + a_min = bin_edges[0] + a_max = bin_edges[-1] + + # special case to mirror NumPy behavior for last bin + if x == a_max: + return n - 1 # a_max always in last bin + + bin = int(n * (x - a_min) / (a_max - a_min)) + + if bin < 0 or bin >= n: + return None + return bin + + +@njit(nogil=True, parallel=False) +def _hist1d_numba_seq(H, tracks, bins, ranges): + delta = 1 / ((ranges[1] - ranges[0]) / bins) + + for t in range(tracks.size): + i = (tracks[t] - ranges[0]) * delta + if 0 <= i < bins: + H[int(i)] += 1 + + return H + + +def _allocate_array_or_memmap(shape, dtype, use_memmap=False, tmp=None): + """Allocate an array. If very big and user asks for it, allocate a memory map. + + Parameters + ---------- + shape : tuple + Shape of the output array + dtype : str or anything compatible with `np.dtype` + Type of the output array + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str, default None + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``). A temporary file with random + name is allocated if this is not specified. + + Returns + ------- + H : array + The output array + """ + if use_memmap and np.prod(shape) > 10**7: + if tmp is None: + tmp = tempfile.NamedTemporaryFile("w+", suffix=".npy").name + H = np.lib.format.open_memmap(tmp, mode="w+", dtype=dtype, shape=shape) + else: + H = np.zeros(shape, dtype=dtype) + return H + + +def hist1d_numba_seq(a, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 1-d histogram. + + Parameters + ---------- + a : array-like + Input array, to be histogrammed + bins : integer + number of bins in the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Histogrammed values of a, in ``bins`` bins. + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> if os.path.exists('out.npy'): os.unlink('out.npy') + >>> x = np.random.uniform(0., 1., 100) + >>> H, xedges = np.histogram(x, bins=5, range=[0., 1.]) + >>> Hn = hist1d_numba_seq(x, bins=5, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.all(H == Hn) + >>> # The number of bins is small, memory map was not used! + >>> assert not os.path.exists('out.npy') + >>> H, xedges = np.histogram(x, bins=10**8, range=[0., 1.]) + >>> Hn = hist1d_numba_seq(x, bins=10**8, range=[0., 1.], + ... use_memmap=True, tmp='out.npy') + >>> assert np.all(H == Hn) + >>> assert os.path.exists('out.npy') # Created! + >>> # Here, instead, it will create a temporary file for the memory map + >>> Hn = hist1d_numba_seq(x, bins=10**8, range=[0., 1.], + ... use_memmap=True) + >>> assert np.all(H == Hn) + """ + hist_arr = _allocate_array_or_memmap((bins,), a.dtype, use_memmap=use_memmap, tmp=tmp) + + return _hist1d_numba_seq(hist_arr, a, bins, np.asarray(range)) + + +@njit(nogil=True, parallel=False) +def _hist2d_numba_seq(H, tracks, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j)] += 1 + + return H + + +def hist2d_numba_seq(x, y, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 2-d histogram. + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + x : array-like + Input array, to be histogrammed + y : array-like + Input array (equal length to x), to be histogrammed + shape : (int, int) + shape of the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 5), + ... range=[(0., 1.), (2., 3.)]) + >>> Hn = hist2d_numba_seq(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]]) + >>> assert np.all(H == Hn) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5000, 5000), + ... range=[(0., 1.), (2., 3.)]) + >>> Hn = hist2d_numba_seq(x, y, bins=(5000, 5000), + ... range=[[0., 1.], [2., 3.]], + ... use_memmap=True) + >>> assert np.all(H == Hn) + """ + + H = _allocate_array_or_memmap(bins, np.uint64, use_memmap=use_memmap, tmp=tmp) + return _hist2d_numba_seq(H, np.array([x, y]), np.asarray(list(bins)), np.asarray(range)) + + +@njit(nogil=True, parallel=False) +def _hist3d_numba_seq(H, tracks, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + k = (tracks[2, t] - ranges[2, 0]) * delta[2] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j), int(k)] += 1 + + return H + + +def hist3d_numba_seq(tracks, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 3d histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + tracks : (array-like, array-like, array-like) + List of input arrays of identical length, to be histogrammed + bins : (int, int, int) + shape of the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> H, _ = np.histogramdd((x, y, z), bins=(5, 6, 7), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> Hn = hist3d_numba_seq((x, y, z), bins=(5, 6, 7), + ... range=[[0., 1.], [2., 3.], [4., 5.]]) + >>> assert np.all(H == Hn) + >>> H, _ = np.histogramdd((x, y, z), bins=(300, 300, 300), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> Hn = hist3d_numba_seq((x, y, z), bins=(300, 300, 300), + ... range=[[0., 1.], [2., 3.], [4., 5.]]) + >>> assert np.all(H == Hn) + """ + H = _allocate_array_or_memmap(bins, np.uint64, use_memmap=use_memmap, tmp=tmp) + + return _hist3d_numba_seq(H, np.asarray(tracks), np.asarray(list(bins)), np.asarray(range)) + + +@njit(nogil=True, parallel=False) +def _hist1d_numba_seq_weight(H, tracks, weights, bins, ranges): + delta = 1 / ((ranges[1] - ranges[0]) / bins) + + for t in range(tracks.size): + i = (tracks[t] - ranges[0]) * delta + if 0 <= i < bins: + H[int(i)] += weights[t] + + return H + + +def hist1d_numba_seq_weight(a, weights, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 1-d histogram with weights. + + Parameters + ---------- + a : array-like + Input array, to be histogrammed + weights : array-like + Input weight of each of the input values ``a`` + bins : integer + number of bins in the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Histogrammed values of a, in ``bins`` bins. + + Adapted from https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> if os.path.exists('out.npy'): os.unlink('out.npy') + >>> x = np.random.uniform(0., 1., 100) + >>> weights = np.random.uniform(0, 1, 100) + >>> H, xedges = np.histogram(x, bins=5, range=[0., 1.], weights=weights) + >>> Hn = hist1d_numba_seq_weight(x, weights, bins=5, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.all(H == Hn) + >>> # The number of bins is small, memory map was not used! + >>> assert not os.path.exists('out.npy') + >>> H, xedges = np.histogram(x, bins=10**8, range=[0., 1.], weights=weights) + >>> Hn = hist1d_numba_seq_weight(x, weights, bins=10**8, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.all(H == Hn) + >>> assert os.path.exists('out.npy') + >>> # Now use memmap but do not specify a tmp file + >>> Hn = hist1d_numba_seq_weight(x, weights, bins=10**8, range=[0., 1.], + ... use_memmap=True) + >>> assert np.all(H == Hn) + """ + if bins > 10**7 and use_memmap: + if tmp is None: + tmp = tempfile.NamedTemporaryFile("w+").name + hist_arr = np.lib.format.open_memmap(tmp, mode="w+", dtype=a.dtype, shape=(bins,)) + else: + hist_arr = np.zeros((bins,), dtype=a.dtype) + + return _hist1d_numba_seq_weight(hist_arr, a, weights, bins, np.asarray(range)) + + +@njit(nogil=True, parallel=False) +def _hist2d_numba_seq_weight(H, tracks, weights, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j)] += weights[t] + + return H + + +def hist2d_numba_seq_weight(x, y, weights, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 2d histogram with weights + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + x : array-like + List of input values in the x-direction + y : array-like + List of input values in the y-direction, of the same length of ``x`` + weights : array-like + Input weight of each of the input values. + bins : (int, int, int) + shape of the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> weight = np.random.uniform(0, 1, 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 5), + ... range=[(0., 1.), (2., 3.)], + ... weights=weight) + >>> Hn = hist2d_numba_seq_weight(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=weight) + >>> assert np.all(H == Hn) + """ + H = _allocate_array_or_memmap(bins, np.double, use_memmap=use_memmap, tmp=tmp) + + return _hist2d_numba_seq_weight( + H, + np.array([x, y]), + weights, + np.asarray(list(bins)), + np.asarray(range), + ) + + +@njit(nogil=True, parallel=False) +def _hist3d_numba_seq_weight(H, tracks, weights, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + k = (tracks[2, t] - ranges[2, 0]) * delta[2] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j), int(k)] += weights[t] + + return H + + +def hist3d_numba_seq_weight(tracks, weights, bins, range, use_memmap=False, tmp=None): + """Numba-compiled weighted 3d histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + tracks : (x, y, z) + List of input arrays of identical length, to be histogrammed + weights : array-like + List of weights for each point of the input arrays + bins : (int, int, int) + shape of the final histogram + range : [[xmin, xmax], [ymin, ymax], [zmin, zmax]]] + Minimum and maximum value of the histogram, in each dimension + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> weights = np.random.uniform(0, 1., 100) + >>> H, _ = np.histogramdd((x, y, z), bins=(5, 6, 7), + ... range=[(0., 1.), (2., 3.), (4., 5)], + ... weights=weights) + >>> Hn = hist3d_numba_seq_weight( + ... (x, y, z), weights, bins=(5, 6, 7), + ... range=[[0., 1.], [2., 3.], [4., 5.]]) + >>> assert np.all(H == Hn) + """ + + H = _allocate_array_or_memmap(bins, np.double, use_memmap=use_memmap, tmp=tmp) + return _hist3d_numba_seq_weight( + H, + np.asarray(tracks), + weights, + np.asarray(list(bins)), + np.asarray(range), + ) + + +@njit(nogil=True, parallel=False) +def _index_arr(a, ix_arr): + strides = np.array(a.strides) / a.itemsize + ix = int((ix_arr * strides).sum()) + return a.ravel()[ix] + + +@njit(nogil=True, parallel=False) +def _index_set_arr(a, ix_arr, val): + strides = np.array(a.strides) / a.itemsize + ix = int((ix_arr * strides).sum()) + a.ravel()[ix] = val + + +@njit(nogil=True, parallel=False) +def _histnd_numba_seq(H, tracks, bins, ranges, slice_int): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + slicearr = np.array( + [(tracks[dim, t] - ranges[dim, 0]) * delta[dim] for dim in range(tracks.shape[0])] + ) + + good = np.all((slicearr < bins) & (slicearr >= 0)) + slice_int[:] = slicearr + + if good: + curr = _index_arr(H, slice_int) + _index_set_arr(H, slice_int, curr + 1) + + return H + + +def histnd_numba_seq(tracks, bins, range, use_memmap=False, tmp=None): + """Numba-compiled n-d histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + tracks : (array-like, array-like, array-like) + List of input arrays, to be histogrammed + bins : (int, int, ...) + shape of the final histogram + range : [[min, max], ...] + Minimum and maximum value of the histogram, in each dimension + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> # 2d example + >>> H, _, _ = np.histogram2d(x, y, bins=np.array((5, 5)), + ... range=[(0., 1.), (2., 3.)]) + >>> alldata = np.array([x, y]) + >>> Hn = histnd_numba_seq(alldata, bins=np.array([5, 5]), + ... range=np.array([[0., 1.], [2., 3.]])) + >>> assert np.all(H == Hn) + >>> # 3d example + >>> H, _ = np.histogramdd((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> alldata = np.array([x, y, z]) + >>> Hn = histnd_numba_seq(alldata, bins=np.array((5, 6, 7)), + ... range=np.array([[0., 1.], [2., 3.], [4., 5.]])) + >>> assert np.all(H == Hn) + """ + tracks = np.asarray(tracks) + H = _allocate_array_or_memmap(bins, np.uint64, use_memmap=use_memmap, tmp=tmp) + slice_int = np.zeros(len(bins), dtype=np.uint64) + + return _histnd_numba_seq(H, tracks, bins, range, slice_int) + + +def _wrap_histograms(numba_func, weight_numba_func, np_func, *args, **kwargs): + """Histogram wrapper. + + Make sure that the histogram fails safely if numba is not available or does not work. + + In particular, if weights are complex, it will split them in real and imaginary part. + """ + weights = kwargs.pop("weights", None) + use_memmap = kwargs.pop("use_memmap", False) + tmp = kwargs.pop("tmp", None) + + if np.iscomplexobj(weights): + return ( + _wrap_histograms( + numba_func, + weight_numba_func, + np_func, + *args, + weights=weights.real, + use_memmap=use_memmap, + tmp=tmp, + **kwargs, + ) + + _wrap_histograms( + numba_func, + weight_numba_func, + np_func, + *args, + weights=weights.imag, + use_memmap=use_memmap, + tmp=tmp, + **kwargs, + ) + * 1.0j + ) + + if not HAS_NUMBA: + return np_func(*args, weights=weights, **kwargs)[0] + + try: + if weights is None: + return numba_func(*args, use_memmap=use_memmap, tmp=tmp, **kwargs) + if weight_numba_func is None: + raise TypeError("Weights not supported for this histogram") + return weight_numba_func(*args, weights=weights, use_memmap=use_memmap, tmp=tmp, **kwargs) + except (NumbaValueError, NumbaNotImplementedError, TypingError, TypeError): + warnings.warn( + "Cannot calculate the histogram with the numba implementation. " + "Trying standard numpy." + ) + + return np_func(*args, weights=weights, **kwargs)[0] + + +def histogram3d(*args, **kwargs): + """Histogram implementation. + + Acceptes the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> # 3d example + >>> H, _ = np.histogramdd((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> Hn = histogram3d((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> assert np.all(H == Hn) + """ + + return _wrap_histograms( + hist3d_numba_seq, hist3d_numba_seq_weight, histogramdd_np, *args, **kwargs + ) + + +def histogramnd(*args, **kwargs): + """Histogram implementation. + + Acceptes the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> # 2d example + >>> H, _, _ = np.histogram2d(x, y, bins=np.array((5, 5)), + ... range=[(0., 1.), (2., 3.)]) + >>> Hn = histogramnd((x, y), bins=np.array([5, 5]), + ... range=np.array([[0., 1.], [2., 3.]])) + >>> assert np.all(H == Hn) + >>> # 3d example + >>> H, _ = np.histogramdd((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> alldata = (x, y, z) + >>> Hn = histogramnd(alldata, bins=np.array((5, 6, 7)), + ... range=np.array([[0., 1.], [2., 3.], [4., 5.]])) + >>> assert np.all(H == Hn) + """ + + return _wrap_histograms(histnd_numba_seq, None, histogramdd_np, *args, **kwargs) + + +def histogram2d(*args, **kwargs): + """Histogram implementation. + + Acceptes the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> weight = np.random.uniform(0, 1, 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 5), + ... range=[(0., 1.), (2., 3.)], + ... weights=weight) + >>> Hn = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=weight) + >>> assert np.array_equal(H, Hn) + >>> Hn1 = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=None) + >>> Hn2 = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]]) + >>> assert np.array_equal(Hn1, Hn2) + >>> Hn = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=weight + 1.j * weight) + >>> assert np.array_equal(Hn.real, Hn.imag) + >>> assert np.array_equal(H, Hn.real) + """ + return _wrap_histograms( + hist2d_numba_seq, hist2d_numba_seq_weight, histogram2d_np, *args, **kwargs + ) + + +def histogram(*args, **kwargs): + """Histogram implementation. + + Acceptes the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> weights = np.random.uniform(0, 1, 100) + >>> H, xedges = np.histogram(x, bins=5, range=[0., 1.], weights=weights) + >>> Hn = histogram(x, weights=weights, bins=5, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.array_equal(H, Hn) + >>> Hn1 = histogram(x, weights=None, bins=5, range=[0., 1.]) + >>> Hn2 = histogram(x, bins=5, range=[0., 1.]) + >>> assert np.array_equal(Hn1, Hn2) + >>> Hn = histogram(x, weights=weights + weights * 2.j, bins=5, range=[0., 1.], + ... tmp='out.npy', use_memmap=True) + >>> assert np.array_equal(Hn.real, Hn.imag / 2) + """ + + return _wrap_histograms( + hist1d_numba_seq, hist1d_numba_seq_weight, histogram_np, *args, **kwargs + ) + + +def equal_count_energy_ranges(energies, n_ranges, emin=None, emax=None): + """Find energy ranges containing an approximately equal number of events. + + Parameters + ---------- + energies : array-like + List of event energies + n_ranges : int + Number of output ranges + + Other parameters + ---------------- + emin : float, default None + Minimum energy. Defaults to the minimum of ``energies`` + emax : float, default None + Maximum energy. Defaults to the maximum of ``energies`` + + Returns + ------- + bin_edges : array-like + Edges of the energy ranges, in a single array of length + ``n_ranges+1`` + + Examples + -------- + >>> energies = np.random.uniform(0, 10, 1000000) + >>> edges = equal_count_energy_ranges(energies, 5, emin=0, emax=10) + >>> np.allclose(edges, [0, 2, 4, 6, 8, 10], atol=0.05) + True + >>> edges = equal_count_energy_ranges(energies, 5) + >>> np.allclose(edges, [0, 2, 4, 6, 8, 10], atol=0.05) + True + >>> edges = equal_count_energy_ranges(energies, 0) + >>> np.allclose(edges, [0, 10], atol=0.05) + True + """ + need_filtering = False + if emin is not None or emax is not None: + need_filtering = True + + if emin is None: + emin = energies.min() + + if emax is None: + emax = energies.max() + + if need_filtering: + good = (energies >= emin) & (energies <= emax) + energies = energies[good] + + if n_ranges > 1: + percentiles = np.percentile(energies, np.linspace(0, 100, n_ranges + 1)[1:-1]) + percentiles = np.concatenate([[emin], percentiles, [emax]]) + else: + percentiles = [emin, emax] + + return percentiles + + +def sum_if_not_none_or_initialize(A, B): + """If A is None, define A as a copy of B. Otherwise, sum A + B. + + Parameters + ---------- + A : object + The initial value + B : object + The value to be summed + + Examples + -------- + >>> sum_if_not_none_or_initialize(None, 2) + 2 + >>> sum_if_not_none_or_initialize(1, 2) + 3 + """ + if A is None: + return copy.deepcopy(B) + return A + B + + +def assign_if_not_finite(value, default): + """Check if a value is finite. Otherwise, return the default. + + Parameters + ---------- + value : float, int or `np.array` + The input value + default : float + The default value + + Returns + ------- + output : same as ``value`` + The result + + Examples + -------- + >>> assign_if_not_finite(1, 3.2) + 1 + >>> assign_if_not_finite(np.inf, 3.2) + 3.2 + >>> input_arr = np.array([np.nan, 1, np.inf, 2]) + >>> np.allclose(assign_if_not_finite(input_arr, 3.2), [3.2, 1, 3.2, 2]) + True + + """ + if isinstance(value, Iterable): + values = [assign_if_not_finite(val, default) for val in value] + values = np.array(values) + return values + + if not np.isfinite(value): + return default + return value +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/varenergyspectrum.html b/_modules/stingray/varenergyspectrum.html new file mode 100644 index 000000000..3f5d1747e --- /dev/null +++ b/_modules/stingray/varenergyspectrum.html @@ -0,0 +1,1255 @@ + + + + + + + stingray.varenergyspectrum — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.varenergyspectrum

+import numpy as np
+import warnings
+from stingray.base import StingrayObject
+from stingray.gti import check_separate, cross_two_gtis
+
+from stingray.lightcurve import Lightcurve
+from stingray.utils import assign_value_if_none, simon, excess_variance, show_progress
+
+from stingray.fourier import avg_cs_from_events, avg_pds_from_events, fftfreq, get_average_ctrate
+from stingray.fourier import poisson_level, error_on_averaged_cross_spectrum, cross_to_covariance
+from abc import ABCMeta, abstractmethod
+
+
+__all__ = [
+    "VarEnergySpectrum",
+    "RmsEnergySpectrum",
+    "RmsSpectrum",
+    "LagEnergySpectrum",
+    "LagSpectrum",
+    "ExcessVarianceSpectrum",
+    "CovarianceSpectrum",
+    "ComplexCovarianceSpectrum",
+    "CountSpectrum",
+]
+
+
+def get_non_overlapping_ref_band(channel_band, ref_band):
+    """
+    Ensures that the ``channel_band`` (i.e. the band of interest) is
+    not contained within the ``ref_band`` (i.e. the reference band)
+
+    Parameters
+    ----------
+    channel_band : iterable of type ``[elow, ehigh]``
+        The lower/upper limits of the energies to be contained in the band
+        of interest
+
+    ref_band : iterable
+        The lower/upper limits of the energies in the reference band
+
+    Returns
+    -------
+    ref_intervals : iterable
+        The channels that are both in the reference band in not in the
+        bands of interest
+
+    Examples
+    --------
+    >>> channel_band = [2, 3]
+    >>> ref_band = [[0, 10]]
+    >>> new_ref = get_non_overlapping_ref_band(channel_band, ref_band)
+    >>> np.allclose(new_ref, [[0, 2], [3, 10]])
+    True
+
+    Test this also works with a 1-D ref. band
+    >>> new_ref = get_non_overlapping_ref_band(channel_band, [0, 10])
+    >>> np.allclose(new_ref, [[0, 2], [3, 10]])
+    True
+    >>> new_ref = get_non_overlapping_ref_band([0, 1], [[2, 3]])
+    >>> np.allclose(new_ref, [[2, 3]])
+    True
+    """
+    channel_band = np.asarray(channel_band)
+    ref_band = np.asarray(ref_band)
+    if len(ref_band.shape) <= 1:
+        ref_band = np.asarray([ref_band])
+    if check_separate(ref_band, [channel_band]):
+        return np.asarray(ref_band)
+    not_channel_band = [
+        [0, channel_band[0]],
+        [channel_band[1], np.max([np.max(ref_band), channel_band[1] + 1])],
+    ]
+
+    return cross_two_gtis(ref_band, not_channel_band)
+
+
+def _decode_energy_specification(energy_spec):
+    """Decode the energy specification tuple.
+
+    Parameters
+    ----------
+    energy_spec : iterable
+        list containing the energy specification
+        Must have the following structure:
+            * energy_spec[0]: lower edge of (log) energy space
+            * energy_spec[1]: upper edge of (log) energy space
+            * energy_spec[2] +1 : energy bin edges (hence the +1)
+            * {`lin` | `log`} flat deciding whether the energy space is linear
+              or logarithmic
+
+    Returns
+    -------
+    energies : numpy.ndarray
+        An array of lower/upper bin edges for the energy array
+
+    Examples
+    --------
+    >>> _decode_energy_specification([0, 2, 2, 'lin'])
+    Traceback (most recent call last):
+     ...
+    ValueError: Energy specification must be a tuple
+    >>> a = _decode_energy_specification((0, 2, 2, 'lin'))
+    >>> np.allclose(a, [0, 1, 2])
+    True
+    >>> a = _decode_energy_specification((1, 4, 2, 'log'))
+    >>> np.allclose(a, [1, 2, 4])
+    True
+    """
+    if not isinstance(energy_spec, tuple):
+        raise ValueError("Energy specification must be a tuple")
+
+    if energy_spec[-1].lower() not in ["lin", "log"]:
+        raise ValueError("Incorrect energy specification")
+
+    log_distr = True if energy_spec[-1].lower() == "log" else False
+
+    if log_distr:
+        energies = np.logspace(
+            np.log10(energy_spec[0]), np.log10(energy_spec[1]), energy_spec[2] + 1
+        )
+    else:
+        energies = np.linspace(energy_spec[0], energy_spec[1], energy_spec[2] + 1)
+
+    return energies
+
+
+
+[docs] +class VarEnergySpectrum(StingrayObject, metaclass=ABCMeta): + main_array_attr = "energy" + """ + Base class for variability-energy spectrum. + + This class is only a base for the various variability spectra, and it's + not to be instantiated by itself. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, floats + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax``], floats; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + return_complex: bool, default False + In spectra that produce complex values, return the whole spectrum. + Otherwise, the absolute value will be returned. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the error bars corresponding to spectrum + + energy : array-like + The centers of energy intervals + """ + + def __init__( + self, + events, + freq_interval, + energy_spec, + ref_band=None, + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + return_complex=False, + ): + self.events1 = events + self.events2 = assign_value_if_none(events2, events) + self._analyze_inputs() + # This will be set to True in ComplexCovariance + self.return_complex = return_complex + + self.freq_interval = freq_interval + self.use_pi = use_pi + self.bin_time = bin_time + + if isinstance(energy_spec, tuple): + energies = _decode_energy_specification(energy_spec) + else: + energies = np.asarray(energy_spec) + + self.energy_intervals = list(zip(energies[0:-1], energies[1:])) + + self.ref_band = np.asarray(assign_value_if_none(ref_band, [0, np.inf])) + + if len(self.ref_band.shape) <= 1: + self.ref_band = np.asarray([self.ref_band]) + + self.segment_size = self.delta_nu = None + if segment_size is not None: + self.segment_size = segment_size + self.delta_nu = 1 / self.segment_size + + self._create_empty_spectrum() + + if len(events.time) == 0: + simon("There are no events in your event list!" + "Can't make a spectrum!") + else: + self._spectrum_function() + + @property + def energy(self): + """Give the centers of the energy intervals.""" + return np.sum(self.energy_intervals, axis=1) / 2 + + def _analyze_inputs(self): + """Make some checks on the inputs and set some internal variable. + + If the object of events1 is the same as events2, set `same_events` to True. + This will, for example, tell the methods to use events1 for the subject bands + and events2 for the reference band (useful in deadtime-affected data). + + Also, if the event lists are distinct, calculate common GTIs. + """ + events1 = self.events1 + events2 = self.events2 + common_gti = events1.gti + if events2 is None or events2 is events1: + self.events2 = self.events1 + self.same_events = True + else: + common_gti = cross_two_gtis(events1.gti, events2.gti) + self.same_events = False + self.gti = common_gti + + def _create_empty_spectrum(self): + """Allocate the arrays of the output spectrum. + + Default value is NaN. This is because most spectral timing products are + prone to numerical errors, and it's more informative to have a default invalid + value rather than something like, e.g., 0 or 1 + """ + if self.return_complex: + dtype = complex + else: + dtype = float + + self.spectrum = np.zeros(len(self.energy_intervals), dtype=dtype) + np.nan + self.spectrum_error = np.zeros_like(self.spectrum, dtype=dtype) + np.nan + + def _get_times_from_energy_range(self, events, erange, use_pi=False): + """Get event times from the wanted energy range. + + Parameters + ---------- + events : `EventList` + Input event list + erange : [e0, e1] + Energy range in keV + + Other parameters + ---------------- + use_pi : bool, default False + Use the PI channel instead of energies + + Returns + ------- + out_ev : `EventList` + The filtered event list. + """ + if use_pi: + energies = events.pi + else: + energies = events.energy + mask = (energies >= erange[0]) & (energies < erange[1]) + return events.time[mask] + + def _get_good_frequency_bins(self, freq=None): + """Get frequency mask corresponding to the wanted frequency interval + + Parameters + ---------- + freq : `np.array`, default None + The frequency array. If None, it will get calculated from the number + of spectral bins using `np.fft.fftfreq` + + Returns + ------- + freq_mask : `np.array` of bool + The frequency mask. + """ + if freq is None: + n_bin = np.rint(self.segment_size / self.bin_time) + freq = fftfreq(int(n_bin), self.bin_time) + freq = freq[freq > 0] + good = (freq >= self.freq_interval[0]) & (freq < self.freq_interval[1]) + return good + + def _construct_lightcurves( + self, channel_band, tstart=None, tstop=None, exclude=True, only_base=False + ): + """ + Construct light curves from event data, for each band of interest. + + Parameters + ---------- + channel_band : iterable of type ``[elow, ehigh]`` + The lower/upper limits of the energies to be contained in the band + of interest + + tstart : float, optional, default ``None`` + A common start time (if start of observation is different from + the first recorded event) + + tstop : float, optional, default ``None`` + A common stop time (if start of observation is different from + the first recorded event) + + exclude : bool, optional, default ``True`` + if ``True``, exclude the band of interest from the reference band + + only_base : bool, optional, default ``False`` + if ``True``, only return the light curve of the channel of interest, not + that of the reference band + + Returns + ------- + base_lc : :class:`Lightcurve` object + The light curve of the channels of interest + + ref_lc : :class:`Lightcurve` object (only returned if ``only_base`` is ``False``) + The reference light curve for comparison with ``base_lc`` + """ + if self.use_pi: + energies1 = self.events1.pi + energies2 = self.events2.pi + else: + energies2 = self.events2.energy + energies1 = self.events1.energy + + gti = cross_two_gtis(self.events1.gti, self.events2.gti) + + tstart = assign_value_if_none(tstart, gti[0, 0]) + tstop = assign_value_if_none(tstop, gti[-1, -1]) + + good = (energies1 >= channel_band[0]) & (energies1 < channel_band[1]) + base_lc = Lightcurve.make_lightcurve( + self.events1.time[good], + self.bin_time, + tstart=tstart, + tseg=tstop - tstart, + gti=gti, + mjdref=self.events1.mjdref, + ) + + if only_base: + return base_lc + + if exclude: + ref_intervals = get_non_overlapping_ref_band(channel_band, self.ref_band) + else: + ref_intervals = self.ref_band + + ref_lc = Lightcurve( + base_lc.time, + np.zeros_like(base_lc.counts), + gti=base_lc.gti, + mjdref=base_lc.mjdref, + dt=base_lc.dt, + err_dist=base_lc.err_dist, + skip_checks=True, + ) + + for i in ref_intervals: + good = (energies2 >= i[0]) & (energies2 < i[1]) + new_lc = Lightcurve.make_lightcurve( + self.events2.time[good], + self.bin_time, + tstart=tstart, + tseg=tstop - tstart, + gti=base_lc.gti, + mjdref=self.events2.mjdref, + ) + ref_lc = ref_lc + new_lc + + ref_lc.err_dist = base_lc.err_dist + return base_lc, ref_lc + + @abstractmethod + def _spectrum_function(self): + pass + +
+[docs] + def from_astropy_table(self, *args, **kwargs): + raise NotImplementedError("from_XXXX methods are not implemented for VarEnergySpectrum")
+ + +
+[docs] + def from_xarray(self, *args, **kwargs): + raise NotImplementedError("from_XXXX methods are not implemented for VarEnergySpectrum")
+ + +
+[docs] + def from_pandas(self, *args, **kwargs): + raise NotImplementedError("from_XXXX methods are not implemented for VarEnergySpectrum")
+
+ + + +class RmsSpectrum(VarEnergySpectrum): + """Calculate the rms-Energy spectrum. + + For each energy interval, calculate the power density spectrum in + absolute or fractional r.m.s. normalization, and integrate it in the + given frequency range to obtain the rms. If ``events2`` is specified, + the cospectrum is used instead of the PDS. + + We assume absolute r.m.s. normalization. To get the fractional r.m.s. + we just divide by the mean count rate. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + norm : str, one of ["abs", "frac"] + The normalization of the rms, whether absolute or fractional. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + energy_spec, + ref_band=None, + freq_interval=[0, 1], + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + norm="frac", + ): + self.norm = norm + VarEnergySpectrum.__init__( + self, + events, + freq_interval=freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + ref_band=ref_band, + segment_size=segment_size, + events2=events2, + ) + + def _spectrum_function(self): + # Get the frequency bins to be averaged in the final results. + good = self._get_good_frequency_bins() + n_ave_bin = np.count_nonzero(good) + + # Get the frequency resolution of the final spectrum. + delta_nu_after_mean = self.delta_nu * n_ave_bin + + for i, eint in enumerate(show_progress(self.energy_intervals)): + # Extract events from the subject band and calculate the count rate + # and Poisson noise level. + sub_events = self._get_times_from_energy_range(self.events1, eint) + countrate_sub = get_average_ctrate(sub_events, self.gti, self.segment_size) + sub_power_noise = poisson_level(norm="abs", meanrate=countrate_sub) + + # If we provided the `events2` array, calculate the rms from the + # cospectrum, otherwise from the PDS + if not self.same_events: + # Extract events from the subject band in the other array, and + # calculate the count rate and Poisson noise level. + sub_events2 = self._get_times_from_energy_range(self.events2, eint) + countrate_sub2 = get_average_ctrate(sub_events2, self.gti, self.segment_size) + sub2_power_noise = poisson_level(norm="abs", meanrate=countrate_sub2) + + # Calculate the cross spectrum + results = avg_cs_from_events( + sub_events, + sub_events2, + self.gti, + self.segment_size, + self.bin_time, + silent=True, + norm="abs", + ) + if results is None: + continue + cross = results["power"] + + m_ave, mean = [results.meta[key] for key in ["m", "mean"]] + mean_power = np.mean(cross[good]) + power_noise = 0 + rmsnoise = np.sqrt( + delta_nu_after_mean * np.sqrt(sub_power_noise * sub2_power_noise) + ) + else: + results = avg_pds_from_events( + sub_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="abs" + ) + if results is None: + continue + sub_power = results["power"] + m_ave, mean = [results.meta[key] for key in ["m", "mean"]] + + mean_power = np.mean(sub_power[good]) + power_noise = sub_power_noise + rmsnoise = np.sqrt(delta_nu_after_mean * power_noise) + + meanrate = mean / self.bin_time + + rms = np.sqrt(np.abs(mean_power - power_noise) * delta_nu_after_mean) + + # Assume coherence 0, use Ingram+2019 + num = rms**4 + rmsnoise**4 + 2 * rms * rmsnoise + den = 4 * m_ave * n_ave_bin * rms**2 + + rms_err = np.sqrt(num / den) + if self.norm == "frac": + rms, rms_err = rms / meanrate, rms_err / meanrate + + self.spectrum[i] = rms + self.spectrum_error[i] = rms_err + + +RmsEnergySpectrum = RmsSpectrum + + +
+[docs] +class ExcessVarianceSpectrum(VarEnergySpectrum): + """Calculate the Excess Variance spectrum. + + For each energy interval, calculate the excess variance in the specified + frequency range. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a list is specified, this is interpreted as a list of bin edges; + if a tuple is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, floats; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + freq_interval, + energy_spec, + bin_time=1, + use_pi=False, + segment_size=None, + normalization="fvar", + ): + self.normalization = normalization + accepted_normalizations = ["fvar", "none"] + if normalization not in accepted_normalizations: + raise ValueError( + "The normalization of excess variance must be " + "one of {}".format(accepted_normalizations) + ) + + VarEnergySpectrum.__init__( + self, + events, + freq_interval, + energy_spec, + bin_time=bin_time, + use_pi=use_pi, + segment_size=segment_size, + ) + + def _spectrum_function(self): + spec = np.zeros(len(self.energy_intervals)) + spec_err = np.zeros_like(spec) + for i, eint in enumerate(self.energy_intervals): + lc = self._construct_lightcurves(eint, exclude=False, only_base=True) + + spec[i], spec_err[i] = excess_variance(lc, self.normalization) + + return spec, spec_err
+ + + +class CountSpectrum(VarEnergySpectrum): + """Calculate the energy spectrum. + + For each energy interval, compute the counts. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + use_pi : bool, default ``False`` + Use channel instead of energy + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__(self, events, energy_spec, use_pi=False): + VarEnergySpectrum.__init__( + self, + events, + None, + energy_spec, + use_pi=use_pi, + ) + + def _spectrum_function(self): + events = self.events1 + + for i, eint in show_progress(enumerate(self.energy_intervals)): + sub_events = self._get_times_from_energy_range(events, eint, use_pi=self.use_pi) + + sp = sub_events.size + self.spectrum[i] = sp + self.spectrum_error[i] = np.sqrt(sp) + + +class LagSpectrum(VarEnergySpectrum): + """Calculate the lag-energy spectrum. + + For each energy interval, calculate the lag between two bands. + If ``events2`` is specified, the energy bands are chosen from this second + event list, while the reference band from ``events``. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the lag values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + # events, freq_interval, energy_spec, ref_band = None + def __init__( + self, + events, + freq_interval, + energy_spec, + ref_band=None, + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + ): + VarEnergySpectrum.__init__( + self, + events, + freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + ref_band=ref_band, + segment_size=segment_size, + events2=events2, + ) + + def _spectrum_function(self): + # Extract the photon arrival times from the reference band + ref_events = self._get_times_from_energy_range(self.events2, self.ref_band[0]) + ref_power_noise = poisson_level(norm="none", n_ph=ref_events.size) + + # Calculate the PDS in the reference band. Needed to calculate errors. + results = avg_pds_from_events( + ref_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="none" + ) + freq = results["freq"] + ref_power = results["power"] + m_ave = results.meta["m"] + + # Get the frequency bins to be averaged in the final results. + good = self._get_good_frequency_bins(freq) + mean_ref_power = np.mean(ref_power[good]) + n_ave_bin = np.count_nonzero(good) + + m_tot = n_ave_bin * m_ave + + f = (self.freq_interval[0] + self.freq_interval[1]) / 2 + for i, eint in enumerate(show_progress(self.energy_intervals)): + # Extract the photon arrival times from the subject band + sub_events = self._get_times_from_energy_range(self.events1, eint) + sub_power_noise = poisson_level(norm="none", n_ph=sub_events.size) + + results_cross = avg_cs_from_events( + sub_events, + ref_events, + self.gti, + self.segment_size, + self.bin_time, + silent=True, + norm="none", + ) + + results_ps = avg_pds_from_events( + sub_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="none" + ) + + if results_cross is None or results_ps is None: + continue + + cross = results_cross["power"] + sub_power = results_ps["power"] + + Cmean = np.mean(cross[good]) + + mean_sub_power = np.mean(sub_power[good]) + + # Is the subject band overlapping with the reference band? + # This will be used to correct the error bars, following + # Ingram 2019. + common_ref = self.same_events and len(cross_two_gtis([eint], self.ref_band)) > 0 + + _, _, phi_e, _ = error_on_averaged_cross_spectrum( + Cmean, + mean_sub_power, + mean_ref_power, + m_tot, + sub_power_noise, + ref_power_noise, + common_ref=common_ref, + ) + + # The frequency of these lags is measured from the *weighted* mean of the frequencies + # in the cross spectrum. The weight is just the absolute value of the CS + csabs = np.abs(cross[good]) + fmean = np.sum(freq[good] * csabs) / np.sum(csabs) + lag = np.angle(Cmean) / (2 * np.pi * fmean) + + lag_e = phi_e / (2 * np.pi * fmean) + self.spectrum[i] = lag + self.spectrum_error[i] = lag_e + + +LagEnergySpectrum = LagSpectrum + + +class ComplexCovarianceSpectrum(VarEnergySpectrum): + """Calculate the complex covariance spectrum. + + For each energy interval, calculate the covariance between two bands. + If ``events2`` is specified, the energy bands are chosen from this second + event list, while the reference band from ``events``. + + Mastroserio et al. 2018, MNRAS, 475, 4027 + + We assume absolute r.m.s. normalization. To get the fractional r.m.s. + we just divide by the mean count rate. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + norm : str, one of ["abs", "frac"] + The normalization of the covariance, whether absolute or fractional. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + energy_spec, + ref_band=None, + freq_interval=[0, 1], + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + norm="frac", + return_complex=True, + ): + self.norm = norm + VarEnergySpectrum.__init__( + self, + events, + freq_interval=freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + ref_band=ref_band, + segment_size=segment_size, + events2=events2, + return_complex=return_complex, + ) + + def _spectrum_function(self): + # Extract events from the reference band and calculate the PDS and + # the Poisson noise level. + ref_events = self._get_times_from_energy_range(self.events2, self.ref_band[0]) + countrate_ref = get_average_ctrate(ref_events, self.gti, self.segment_size) + ref_power_noise = poisson_level(norm="abs", meanrate=countrate_ref) + + results = avg_pds_from_events( + ref_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="abs" + ) + freq = results["freq"] + ref_power = results["power"] + m_ave = results.meta["m"] + + # Select the frequency range to be averaged for the measurement. + good = (freq >= self.freq_interval[0]) & (freq < self.freq_interval[1]) + n_ave_bin = np.count_nonzero(good) + mean_ref_power = np.mean(ref_power[good]) + + m_tot = m_ave * n_ave_bin + # Frequency resolution + delta_nu = n_ave_bin * self.delta_nu + + for i, eint in enumerate(show_progress(self.energy_intervals)): + # Extract events from the subject band + sub_events = self._get_times_from_energy_range(self.events1, eint) + countrate_sub = get_average_ctrate(sub_events, self.gti, self.segment_size) + sub_power_noise = poisson_level(norm="abs", meanrate=countrate_sub) + + results_cross = avg_cs_from_events( + sub_events, + ref_events, + self.gti, + self.segment_size, + self.bin_time, + silent=True, + norm="abs", + ) + + results_ps = avg_pds_from_events( + sub_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="abs" + ) + + if results_cross is None or results_ps is None: + continue + + cross = results_cross["power"] + sub_power = results_ps["power"] + mean = results_ps.meta["mean"] + + # Is the subject band overlapping with the reference band? + # This will be used to correct the error bars, following + # Ingram 2019. + common_ref = self.same_events and len(cross_two_gtis([eint], self.ref_band)) > 0 + Cmean = np.mean(cross[good]) + if common_ref: + # Equation 6 from Ingram+2019 + Cmean -= sub_power_noise + + Cmean_real = np.abs(Cmean) + + mean_sub_power = np.mean(sub_power[good]) + + _, _, _, Ce = error_on_averaged_cross_spectrum( + Cmean, + mean_sub_power, + mean_ref_power, + m_tot, + sub_power_noise, + ref_power_noise, + common_ref=common_ref, + ) + if not self.return_complex: + Cmean = Cmean_real + + # Convert the cross spectrum to a covariance. + cov, cov_e = cross_to_covariance( + np.asarray([Cmean, Ce]), mean_ref_power, ref_power_noise, delta_nu + ) + + meanrate = mean / self.bin_time + + if self.norm == "frac": + cov, cov_e = cov / meanrate, cov_e / meanrate + + self.spectrum[i] = cov + self.spectrum_error[i] = cov_e + + +class CovarianceSpectrum(ComplexCovarianceSpectrum): + """Calculate the covariance spectrum. + + This is just the absolute value of the complex covariance + spectrum. Refer to that documentation for details. + + For the original formulation of the covariance spectrum, + see: + Wilkinson & Uttley 2009, MNRAS, 397, 666 + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + norm : str, one of ["abs", "frac"] + The normalization of the covariance, whether absolute or fractional. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + energy_spec, + ref_band=None, + freq_interval=[0, 1], + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + norm="abs", + ): + ComplexCovarianceSpectrum.__init__( + self, + events, + freq_interval=freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + norm=norm, + ref_band=ref_band, + return_complex=False, + segment_size=segment_size, + events2=events2, + ) +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_sources/_zenodo.rst.txt b/_sources/_zenodo.rst.txt new file mode 100644 index 000000000..009995b2c --- /dev/null +++ b/_sources/_zenodo.rst.txt @@ -0,0 +1,33 @@ +.. list-table:: + :header-rows: 1 + + * - Stingray Release + - DOI + - Citation + * - `v1.1.2 `__ + - `10.5281/zenodo.7970570 `__ + - `[Link to BibTeX] `__ + * - `v1.1 `__ + - `10.5281/zenodo.7135161 `__ + - `[Link to BibTeX] `__ + * - `v1.0 `__ + - `10.5281/zenodo.6394742 `__ + - `[Link to BibTeX] `__ + * - `v0.3 `__ + - `10.5281/zenodo.4881255 `__ + - `[Link to BibTeX] `__ + * - `v0.2 `__ + - `10.5281/zenodo.3898435 `__ + - `[Link to BibTeX] `__ + * - `v0.1.3 `__ + - `10.5281/zenodo.3242835 `__ + - `[Link to BibTeX] `__ + * - `v0.1.2 `__ + - `10.5281/zenodo.3242829 `__ + - `[Link to BibTeX] `__ + * - `v0.1.1 `__ + - `10.5281/zenodo.3242825 `__ + - `[Link to BibTeX] `__ + * - `v0.1 `__ + - `10.5281/zenodo.3239519 `__ + - `[Link to BibTeX] `__ diff --git a/_sources/acknowledgements.rst.txt b/_sources/acknowledgements.rst.txt new file mode 100644 index 000000000..ba8bcc193 --- /dev/null +++ b/_sources/acknowledgements.rst.txt @@ -0,0 +1,7 @@ +**************** +Acknowledgements +**************** + +Thank you to JetBrains for the free use of `PyCharm `_. + +Stingray participated in the `Google Summer of Code `_ in 2018 and 2020 under `Open Astronomy `_, in 2017 under the `Python Software Foundation `_, and in 2016 under `Timelab `_. diff --git a/_sources/api.rst.txt b/_sources/api.rst.txt new file mode 100644 index 000000000..8a84549f0 --- /dev/null +++ b/_sources/api.rst.txt @@ -0,0 +1,383 @@ +.. _api: + +Stingray API +************ + +Library of Time Series Methods For Astronomical X-ray Data. + +Data Classes +============ + +These classes define basic functionality related to common data types and typical methods +that apply to these data types, including basic read/write functionality. Currently +implemented are :class:`stingray.Lightcurve` and :class:`stingray.events.EventList`. + +Lightcurve +---------- + +.. autoclass:: stingray.Lightcurve + :members: + +---- + +EventList +--------- + +.. autoclass:: stingray.events.EventList + :members: + +---- + + +Fourier Products +================ + +These classes implement commonly used Fourier analysis products, most importantly :class:`Crossspectrum` and +:class:`Powerspectrum`, along with the variants for averaged cross/power spectra. + +Crossspectrum +------------- + +.. autoclass:: stingray.Crossspectrum + :members: + +---- + +Coherence +--------- + +Convenience function to compute the coherence between two :class:`stingray.Lightcurve` +objects. + +.. autofunction:: stingray.coherence + +---- + +Powerspectrum +------------- + +.. autoclass:: stingray.Powerspectrum + :members: + :private-members: + :inherited-members: + +---- + +AveragedCrossspectrum +--------------------- + +.. autoclass:: stingray.AveragedCrossspectrum + :members: + :inherited-members: + +---- + + +AveragedPowerspectrum +--------------------- + +.. autoclass:: stingray.AveragedPowerspectrum + :members: + :inherited-members: + +---- + +Dynamical Powerspectrum +----------------------- + +.. autoclass:: stingray.DynamicalPowerspectrum + :members: + :inherited-members: + +---- + +CrossCorrelation +---------------- + +.. autoclass:: stingray.CrossCorrelation + :members: + +---- + +AutoCorrelation +--------------- + +.. autoclass:: stingray.AutoCorrelation + :members: + :inherited-members: + +---- + +Dead-Time Corrections +--------------------- + +.. automodule:: stingray.deadtime.fad + :members: + :imported-members: + +.. automodule:: stingray.deadtime.model + :members: + :imported-members: + +---- + + +Higher-Order Fourier and Spectral Timing Products +================================================= + +These classes implement higher-order Fourier analysis products (e.g. :class:`Bispectrum`) and +Spectral Timing related methods taking advantage of both temporal and spectral information in +modern data sets. + +Bispectrum +---------- + +.. autoclass:: stingray.bispectrum.Bispectrum + :members: + +---- + + +Covariancespectrum +------------------ + +.. autoclass:: stingray.Covariancespectrum + :members: + +---- + +AveragedCovariancespectrum +-------------------------- + +.. autoclass:: stingray.AveragedCovariancespectrum + :members: + :inherited-members: + +---- + +VarEnergySpectrum +------------------ +Abstract base class for spectral timing products including +both variability and spectral information. + +.. autoclass:: stingray.varenergyspectrum.VarEnergySpectrum + :members: + +---- + +RmsEnergySpectrum +----------------- + +.. autoclass:: stingray.varenergyspectrum.RmsEnergySpectrum + :members: + :inherited-members: + +---- + +LagEnergySpectrum +----------------- + +.. autoclass:: stingray.varenergyspectrum.LagEnergySpectrum + :members: + :inherited-members: + +---- + +ExcessVarianceSpectrum +---------------------- + +.. autoclass:: stingray.varenergyspectrum.ExcessVarianceSpectrum + :members: + :inherited-members: + +---- + + +Utilities +========= + +Commonly used utility functionality, including Good Time Interval operations and input/output +helper methods. + +Statistical Functions +--------------------- + +.. automodule:: stingray.stats + :members: + :imported-members: + +GTI Functionality +----------------- +.. automodule:: stingray.gti + :members: + :imported-members: + +I/O Functionality +----------------- + +.. automodule:: stingray.io + :members: + +Other Utility Functions +----------------------- + +.. automodule:: stingray.utils + :members: + :imported-members: + +Modeling +======== + +This subpackage defines classes and functions related to parametric modelling of various types of +data sets. Currently, most functionality is focused on modelling Fourier products (especially +power spectra and averaged power spectra), but rudimentary functionality exists for modelling +e.g. light curves. + + +.. _loglikelihoods: + +Log-Likelihood Classes +---------------------- + +These classes define basic log-likelihoods for modelling time series and power spectra. +:class:`stingray.modeling.LogLikelihood` is an abstract base class, i.e. a template for creating +user-defined log-likelihoods and should not be instantiated itself. Based on this base class +are several definitions for a :class:`stingray.modeling.GaussianLogLikelihood`, appropriate for +data with normally distributed uncertainties, a :class:`stingray.modeling.PoissonLogLikelihood` +appropriate for photon counting data, and a :class:`stingray.modeling.PSDLogLikelihood` +appropriate for (averaged) power spectra. + +.. autoclass:: stingray.modeling.LogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.GaussianLogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PoissonLogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PSDLogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.LaplaceLogLikelihood + :members: + :inherited-members: + +---- + +Posterior Classes +----------------- + +These classes define basic posteriors for parametric modelling of time series and power spectra, based on +the log-likelihood classes defined in :ref:`loglikelihoods`. :class:`stingray.modeling.Posterior` is an +abstract base class laying out a basic template for defining posteriors. As with the log-likelihood classes +above, several posterior classes are defined for a variety of data types. + +Note that priors are **not** pre-defined in these classes, since they are problem dependent and should be +set by the user. The convenience function :func:`stingray.modeling.set_logprior` can be useful to help set +priors for these posterior classes. + +.. autoclass:: stingray.modeling.Posterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.GaussianPosterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PoissonPosterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PSDPosterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.LaplacePosterior + :members: + :inherited-members: + +---- + +Parameter Estimation Classes +---------------------------- + +These classes implement functionality related to parameter estimation. They define basic ``fit`` and +``sample`` methods using ``scipy.optimize`` and ``emcee``, respectively, for optimization and Markov Chain Monte +Carlo sampling. :class:`stingray.modeling.PSDParEst` implements some more advanced functionality for modelling +power spectra, including both frequentist and Bayesian searches for (quasi-)periodic signals. + +.. autoclass:: stingray.modeling.ParameterEstimation + :members: + +.. autoclass:: stingray.modeling.PSDParEst + :members: + :inherited-members: + +---- + +Auxiliary Classes +----------------- + +These are helper classes instantiated by :class:`stingray.modeling.ParameterEstimation` and its subclasses to +organize the results of model fitting and sampling in a more meaningful, easily accessible way. + +.. autoclass:: stingray.modeling.OptimizationResults + :members: + :private-members: + +.. autoclass:: stingray.modeling.SamplingResults + :members: + :private-members: + +---- + +Convenience Functions +--------------------- + +These functions are designed to help the user perform common tasks related to modelling and parameter +estimation. In particular, the function :func:`stingray.modeling.set_logprior` is designed to +help users set priors in their :class:`stingray.modeling.Posterior` subclass objects. + +.. autofunction:: stingray.modeling.set_logprior + +.. automodule:: stingray.modeling.scripts + :members: + :imported-members: + +---- + +Pulsar +====== + +This submodule broadly defines functionality related to (X-ray) pulsar data analysis, especially +periodicity searches. + +.. automodule:: stingray.pulse + :members: + :imported-members: + +Simulator +========= + +This submodule defines extensive functionality related to simulating spectral-timing data sets, +including transfer and window functions, simulating light curves from power spectra for a range +of stochastic processes. + + +.. autoclass:: stingray.simulator.simulator.Simulator + :members: + :undoc-members: + +Exceptions +========== + +Some basic Stingray-related errors and exceptions. + +.. autoclass:: stingray.exceptions.StingrayError + :members: + :undoc-members: diff --git a/_sources/citing.rst.txt b/_sources/citing.rst.txt new file mode 100644 index 000000000..6d23f5091 --- /dev/null +++ b/_sources/citing.rst.txt @@ -0,0 +1,97 @@ +*************** +Citing Stingray +*************** + +Citations are still the main currency of the academic world, and *the* best way to ensure that Stingray continues to be supported and we can continue to work on it. +If you use Stingray in data analysis leading to a publication, we ask that you cite *both* a `DOI `_, which points to the software itself, *and* our papers describing the Stingray project. + +DOI +=== + +If possible, we ask that you cite a DOI corresponding to the specific version of Stingray that you used to carry out your analysis. + +.. include:: _zenodo.rst + +If this isn't possible — for example, because you worked with an unreleased version of the code — you can cite Stingray's `concept DOI `__, `10.5281/zenodo.1490116 `__ (`BibTeX `__), which will always resolve to the latest release. + +Papers +====== + +Please cite both of the following papers: + +.. raw:: html + + + + + +Other Useful References +======================= + +.. raw:: html + + Stingray is listed in the Astrophysics Source Code Library. + Copy the corresponding BibTeX to clipboard. diff --git a/_sources/contributing.rst.txt b/_sources/contributing.rst.txt new file mode 100644 index 000000000..0f0819eb1 --- /dev/null +++ b/_sources/contributing.rst.txt @@ -0,0 +1,401 @@ +=================================== +Get Help, Report Bugs or Contribute +=================================== + +Reporting Bugs and Issues, Getting Help, Providing Feedback +=========================================================== + +We would love to hear from you! +We are writing Stingray to be useful to you, so if you encounter problems, have questions, would like to request features or just want to chat with us, please don't hesitate to get in touch! + +The best and easiest way to get in touch with us regarding bugs and issues is the GitHub `Issues page `_. +If you're not sure whether what you've encountered is a bug, if you have any questions or need advice getting some of the code to run, or would like to request a feature or suggest additions/changes, you can also contact us via the Slack group or our mailing list. + +Please use `this link `_ to join Slack or send `one of us `_ an email to join the mailing list. + +Getting Involved with Development +================================= + +We encourage you to get involved with Stingray in any way you can! +First, read through the `README `_. +Then, fork the `stingray `_ and `notebooks `_ repositories (if you need a primer on GitHub and git version control, `look here `_) and work your way through the Jupyter notebook tutorials for the main modules. +Once you've familiarized yourself with the basics of Stingray, go to the `Stingray issues page `_ and try to tackle one! +Finally, you can read `these slides `_ from a talk on Stingray in 2021 at the 9th Microquasar Workshop. + +For organizing and coordinating the software development, we have a Slack group and a mailing list -- please use `this link `_ for Slack or send `one of us `_ an email to join. + + +Contributing to Stingray +======================== + + All great things have small beginnings. + +Hello there! We love and appreciate every small contribution you can +make to improve Stingray! We are proudly open source and believe +our(yes! yours as well) work will help enhance the quality of research +around the world. We want to make contributing to stingray as easy and +transparent as possible, whether it’s: + +- Reporting a bug +- Discussing the current state of the code +- Submitting a fix +- Proposing new features + +A successful project is not just built by amazing programmers but by the +combined, unrelenting efforts of coders, testers, reviewers, and +documentation writers. There are a few guidelines that we need all +contributors to follow so that we can have a chance of keeping on top of +things. + +Contribution Guidelines +----------------------- + +Contributions from everyone, experienced and inexperienced, are welcome! +If you don’t know where to start, look at the `Open +Issues `__ and/or +get involved in our `Slack +channel `__. This code is +written in Python 3.8+, but in general we will follow the Astropy/ Numpy +minimum Python versions. Tests run at each commit during Pull Requests, +so it is easy to single out points in the code that break this +compatibility. + +- **Branches:** + + - Don’t use your main **branch (forked) for anything. Consider + deleting your main** branch. + - Make a new branch, called a feature branch, for each separable set + of changes: “one task, one branch”. + - Start that new feature branch from the most current development + version of stingray. + - Name of branch should be the purpose of change eg. + *bugfix-for-issue20* or *refactor-lightcurve-code.* + - Never merge changes from stingray/main into your feature branch. + If changes in the development version require changes to our code + you can rebase, but only if asked. + +- **Commits:** + + - Make frequent commits. + - One commit per logical change in the code-base. + - Add commit message. + +- **Naming Conventions:** + + - Change name of the remote origin(*yourusername/stingray*) to your + *github-username.* + - Name the remote that is the primary stingray repository( + *StingraySoftware/stingray*) as stingray. + +Contribution Workflow +~~~~~~~~~~~~~~~~~~~~~ + +These, conceptually, are the steps you will follow in contributing to +Stingray. These steps keep work well organized, with readable history. +This in turn makes it easier for project maintainers (that might be you) +to see what you’ve done, and why you did it: + +1. Regularly fetch latest stingray development version ``stingray/main`` + from GitHub. +2. Make a new feature branch. **Recommended:** Use virtual environments + to work on branch. +3. Editing Workflow: + + 1. One commit per logical change. + 2. Run tests to make sure that changes don’t break existing code. + 3. Code should have appropriate docstring. + 4. Format code appropriately, use ``black`` as described below. + 5. Update appropriate documentation if necessary and test it on + sphinx. + 6. Write tests that cover all code changes. + 7. If modifications require more than one commit, break changes into + smaller commits. Commits involving just the docs might use ``[docs only]`` in + their commit message to avoid running all the tests. *Very* trivial commits + (e.g. a space in a docstring) might skip *all* tests with ``[skip ci]`` in + their commit message. + 8. Write a changelog entry in ``towncrier`` format (see below) + 9. Push the code on your remote(forked) repository. + +4. All code changes should be submitted via PRs (i.e. fork, branch, work + on stuff, just submit pull request). Code Reviews are super-useful: + another contributor can review the code, which means both the + contributor and reviewer will be up to date with how everything fits + together, and can get better by reading each other’s code! :) +5. Take feedback and make changes/revise the PR as asked. + +Coding Guidelines +----------------- + +Compatibility and Dependencies +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Compatibility:** All code must be compatible with **Python 3.8** + **or later**, and with the **latest two major releases of Astropy**. +- **Dependency Management:** + + - The core package and affiliated packages should be importable with + no dependencies other than the `Python Standard + Library `__, + `astropy `__>=4.0, + `numpy `__>=1.17.0, + `scipy `__>=1.1, + `matplotlib `__>=3.0 + - Additional dependencies are allowed for sub-modules or in function + calls, but they must be noted in the package documentation and + should only affect the relevant component. In functions and + methods, the optional dependency should use a normal ``import`` + statement, which will raise an ``ImportError`` if the dependency + is not available. + +Coding Style and Conventions +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Style Guide:** + + - Follow the `PEP8 style + guide `__. Follow the + existing coding style within the sub-package and avoid changes + that are purely stylistic. + - Indentation should be **ONLY** with **four spaces** no mixing of + tabs-and-spaces. + - Maximum line length should be **100** characters unless doing so + makes the code unreadable, ugly. + - Functions and methods should be lower-case only, and separated by + a ``_`` in case of multiple words eg. ``my_new_method``. + - Use verbose variable names (readability > economy). Only loop + iteration variables are allowed to be a single letter. + - Classes start with an upper-case letter and use CamelCase eg. + ``MyNewClass``. + - Inline comments should start with two spaces and a single #. + +- **Formatting Style:** The new Python 3 formatting style should be + used, i.e. f-strings ``f"{variable_name}"`` or + ``"{0}".format(variable_name}``\ should be used instead of + ``"%s" % (variable_name)``. + +- **Linter/Style Guide Checker:** Our testing infrastructure currently + enforces a subset of the PEP8 style guide. You can check locally + whether your changes have followed these by running + `flake8 `__ with the following + command: + + ``flake8 astropy --count --select=E101,W191,W291,W292,W293,W391,E111,E112,E113,E30,E502,E722,E901,E902,E999,F822,F823`` + +- **Code Formatters:** We follow Astropy, enforcing this style guide + using the black code formatter, see `The Black Code + Style `__ + for details. Please run + + ``black stingray`` + + before each commit + +- **Imports:** + + - Absolute imports are to be used in general. The exception to this + is relative imports of the form ``from . import modulename``, this + convention makes it clearer what code is from the current + sub-module as opposed to from another. It is best to use when + referring to files within the same sub-module. + - The import ``numpy as np``, ``import scipy as sp``, + ``import matplotlib as mpl``, and + ``import matplotlib.pyplot as plt`` naming conventions should be + used wherever relevant. ``from packagename import *`` should never + be used, except as a tool to flatten the namespace of a module. + +- **Variable access in Classes:** + + - Classes should either use direct variable access, or Python’s + property mechanism for setting object instance variables. + ``get_value/set_value`` style methods should be used only when + getting and setting the values requires a + computationally-expensive operation. + - Attribute names should be descriptive if possible, use names of + desserts otherwise (e.g. for dummy test classes) + +- **super() function:** Classes should use the built-in ``super()`` + function when making calls to methods in their super-class(es) unless + there are specific reasons not to. ``super()`` should be used + consistently in all sub-classes since it does not work otherwise. + +- **Multiple Inheritance:** Multiple inheritance should be avoided in + general without good reason. + +- **init.py:** The ``__init__.py`` files for modules should not contain + any significant implementation code. ``__init__.py`` can contain + docstrings and code for organizing the module layout, however if a + module is small enough that it fits in one file, it should simply be + a single file, rather than a directory with an ``__init__.py`` file. + +Standard output, warnings, and errors +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Print Statement:** Used only for outputs in methods and scenarios + explicitly requested by the user +- **Errors and Exceptions:** Always use the ``raise`` with built-in or + custom exception classes. The nondescript ``Exception`` class should + be avoided as much as possible, in favor of more specific exceptions + (*IOError, ValueError* etc.). +- **Warnings:** Always use the + ``warnings.warn(message, warning_class)``\ for warnings. These get + redirected to ``log.warning()`` by default, but one can still use the + standard warning-catching mechanism and custom warning classes. +- **Debugging and Informational messages:** Always use + ``log.info(message)`` and ``log.debug(message)``. The logging system + uses the built-in Python logging module. + +Data and Configuration +~~~~~~~~~~~~~~~~~~~~~~ + +- **Storing Data:** + + - Packages can include data in a directory named *data* inside a + subpackage source directory as long as it is less than about 100 + kB. + - If the data exceeds this size, it should be hosted outside the + source code repository, either at a third-party location on the + internet. + +Documentation and Testing +~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Docstrings:** + + - Docstrings must be provided for all public classes, methods, and + functions. + - Docstrings should follow the `numpydoc + style `__ + and reStructured Text format. + - Write usage examples in the docstrings of all classes and + functions whenever possible. These examples should be short and + simple to reproduce. Users should be able to copy them verbatim + and run them. + +- **Unit tests:** Provided for as many public methods and functions as + possible, and should adhere to the standards set in the Testing + Guidelines. +- **Building Documentation:** + + - Use sphinx to build the documentation. + - All extra documentation should go into a /docs sub-directory under + the main stingray directory. + +Updating and Maintaining the Changelog +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Stingray uses ```towncrier`` `__ +which is used to generate the ``CHANGELOG.rst`` file at the root of the +package. + +As described in ``docs/changes/README.rst``, the changelog fragment +files should be added to each pull request. The changelog will be read +by users, so this description should be aimed at stingray users instead +of describing internal changes which are only relevant to the +developers. The idea is that the changelog lists all new features, API +changes, bugfixes, and so on that have been added to stingray between +versions so that a user can easily follow the changes without having to +go through the entire git log. + +The towncrier tool will automatically reflow your text. You can install +towncrier and then run ``towncrier --draft`` if you want to get a +preview of how your change will look in the final release notes. + +Testing Guidelines +------------------ + +The testing framework used by stingray is the ``pytest`` framework with ``tox``. +To run the tests, you will need to make sure you have the pytest package +(version 3.1 or later) as well as the tox tool installed. + +- Execute tests using the ``tox -e `` command. +- All tests should be py.test compliant: http://pytest.org/latest/. +- Keep all tests in a /tests subdirectory under the main stingray + directory. +- Write one test script per module in the package. +- Extra examples can go into an /examples folder in the main stingray + directory, scripts that gather various data analysis tasks into + longer procedures into a /scripts folder in the same location. + +Community Guidelines +-------------------- + +Our Pledge +~~~~~~~~~~ + +In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to making participation in our +project and our community a harassment-free experience for everyone, +regardless of age, body size, disability, ethnicity, gender identity and +expression, level of experience, nationality, personal appearance, race, +religion, or sexual identity and orientation. + +Our Standards +~~~~~~~~~~~~~ + +Examples of behavior that contributes to creating a positive environment +include: + +- Using welcoming and inclusive language +- Being respectful of differing viewpoints and experiences +- Gracefully accepting constructive criticism +- Focusing on what is best for the community +- Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +- The use of sexualized language or imagery and unwelcome sexual + attention or advances +- Trolling, insulting/derogatory comments, and personal or political + attacks +- Public or private harassment +- Publishing others’ private information, such as a physical or + electronic address, without explicit permission +- Other conduct which could reasonably be considered inappropriate in a + professional setting + +Our Responsibilities +~~~~~~~~~~~~~~~~~~~~ + +Project maintainers are responsible for clarifying the standards of +acceptable behavior and are expected to take appropriate and fair +corrective action in response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, +or reject comments, commits, code, wiki edits, issues, and other +contributions that are not aligned to this Code of Conduct, or to ban +temporarily or permanently any contributor for other behaviors that they +deem inappropriate, threatening, offensive, or harmful. + +Scope +~~~~~ + +This Code of Conduct applies both within project spaces and in public +spaces when an individual is representing the project or its community. +Examples of representing a project or community include using an +official project e-mail address, posting via an official social media +account, or acting as an appointed representative at an online or +offline event. Representation of a project may be further defined and +clarified by project maintainers. + +Enforcement +~~~~~~~~~~~ + +Instances of abusive, harassing, or otherwise unacceptable behavior may +be reported by contacting the project team at any of our personal email +addresses or through private Slack communication. The project team will +review and investigate all complaints, and will respond in a way that it +deems appropriate to the circumstances. The project team is obligated to +maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted +separately. + +Project maintainers who do not follow or enforce the Code of Conduct in +good faith may face temporary or permanent repercussions as determined +by other members of the project’s leadership. + +Attribution +~~~~~~~~~~~ + +This Code of Conduct is adapted from the `Contributor +Covenant `__, version 1.4, available at +`http://contributor-covenant.org/version/1/4 `__ diff --git a/_sources/core.rst.txt b/_sources/core.rst.txt new file mode 100644 index 000000000..ac15d1c16 --- /dev/null +++ b/_sources/core.rst.txt @@ -0,0 +1,104 @@ +Core Stingray Functionality +*************************** + +Here we show how many of the core Stingray classes and methods +work in practice. We start with basic data constructs for +event data and light curve data, and then show how to produce +various Fourier products from these data sets. + +Working with Event Data +======================= + +.. toctree:: + :maxdepth: 2 + + notebooks/EventList/EventList Tutorial.ipynb + +Working with Lightcurves +======================== + +.. toctree:: + :maxdepth: 2 + + notebooks/Lightcurve/Lightcurve tutorial.ipynb + notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb + +Fourier Analysis +================ + +Powerspectra +------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb + +Dynamical Power Spectra +----------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb + notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb + +Cross Spectra +------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb + +Cross- and Autocorrelations +--------------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/CrossCorrelation/cross_correlation_notebook.ipynb + + +Bispectra +--------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Bispectrum/bispectrum_tutorial.ipynb + + +Bayesian Excess Variance +------------------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Bexvar/Bexvar tutorial.ipynb + + +Multi-taper Periodogram +----------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Multitaper/multitaper_example.ipynb + + +Lomb Scargle Crossspectrum +-------------------------- +.. toctree:: + :maxdepth: 2 + + notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb + + +Lomb Scargle Powerspectrum +-------------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb diff --git a/_sources/dataexplo.rst.txt b/_sources/dataexplo.rst.txt new file mode 100644 index 000000000..df9b98a85 --- /dev/null +++ b/_sources/dataexplo.rst.txt @@ -0,0 +1,40 @@ +Data Exploration +**************** + +These notebook tutorials show some ways to explore data with +Stingray. + +A quick look at a NuSTAR observation +==================================== + +Stingray transparently loads datasets from many HEASOFT-supported missions. +In this Tutorial, we will show an example quicklook of a NuSTAR observation. + +.. toctree:: + :maxdepth: 2 + + notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb + + +Spectral timing exploration with NICER +====================================== + +In this Tutorial, we will show an example spectral timing exploration of a +black hole binary using NICER data. + +.. toctree:: + :maxdepth: 2 + + notebooks/Spectral Timing/Spectral Timing Exploration.ipynb + + +Studying very slow variability with the Lomb-Scargle periodogram +================================================================ + +In this Tutorial, we will show an example of how to use the Lomb-Scargle +periodogram and cross spectrum to study very slow variability in a light curve. + +.. toctree:: + :maxdepth: 2 + + notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb diff --git a/_sources/deadtime.rst.txt b/_sources/deadtime.rst.txt new file mode 100644 index 000000000..13784dd71 --- /dev/null +++ b/_sources/deadtime.rst.txt @@ -0,0 +1,12 @@ +Dealing with dead time +********************** + +Stingray implements a few features to deal with instrumental dead time. +This is particularly useful in missions with long dead time, such as NuSTAR or IXPE. +In this tutorial, we will show the effects of dead time on X-ray observations, and explain how Stingray can help model it and, under some conditions, even correct for it. + +.. toctree:: + :maxdepth: 2 + + notebooks/Deadtime/Check dead time model in Stingray.ipynb + notebooks/Deadtime/Check FAD correction in Stingray.ipynb diff --git a/_sources/history.rst.txt b/_sources/history.rst.txt new file mode 100644 index 000000000..b6a373925 --- /dev/null +++ b/_sources/history.rst.txt @@ -0,0 +1,44 @@ +******* +History +******* + +For a brief overview of the history and state-of-the-art in spectral timing, and for more information about the design and capabilities of Stingray, please refer to `Huppenkothen et al. (2019) `_. + +Stingray originated during the 2016 workshop `The X-ray Spectral-Timing Revolution `_: a group of X-ray astronomers and developers decided to agree on a common platform to develop a new software package. +At that time, there were a number of official software packages for X-ray spectral fitting (XSPEC, ISIS, Sherpa, ...), but +such a widely used and standard software package did not exist for X-ray timing, that was mostly the domain of custom, proprietary software. +Our goals were to merge existing efforts towards a timing package in Python, following the best guidelines for modern open-source programming, thereby providing the basis for developing spectral-timing analysis tools. +We needed to provide an easily accessible scripting interface, a GUI, and an API for experienced coders. +Stingray's ultimate goal is to provide the community with a package that eases the learning curve for advanced spectral-timing techniques, with a correct statistical framework. + +Further spectral-timing functionality, in particularly command line scripts based on the API defined within Stingray, is available in the package `HENDRICS `_. +A graphical user interface is under development as part of the project `DAVE `_. + +Previous projects merged to Stingray +==================================== + +* Daniela Huppenkothen's original Stingray +* Matteo Bachetti's `MaLTPyNT `_ +* Abigail Stevens' RXTE power spectra code and phase-resolved spectroscopy code +* Simone Migliari's and Paul Balm's X-ray data exploration GUI commissioned by ESA + + +Changelog +========= + +.. include:: ../CHANGELOG.rst + + +Presentations +============= + +Members of the Stingray team have given a number of presentations which introduce Stingray. +These include: + +- `2nd Severo Ochoa School on Statistics, Data Mining, and Machine Learning (2021) `_ +- `9th Microquasar Workshop (2021) `_ +- `European Week of Astronomy and Space Science (2018) `_ +- `ADASS (Astronomical Data Analysis Software and Systems; meeting 2017, proceedings 2020) `_ +- `AAS 16th High-Energy Astrophysics Division meeting (2017) `_ +- `European Week of Astronomy and Space Science 2017 `_ +- `Python in Astronomy (2016) `_ diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt new file mode 100644 index 000000000..d2db9152b --- /dev/null +++ b/_sources/index.rst.txt @@ -0,0 +1,308 @@ +***************************************** +Stingray: Next-Generation Spectral Timing +***************************************** + +.. image:: images/stingray_logo.png + :width: 700 + :scale: 40% + :alt: Stingray logo, outline of a stingray on top of a graph of the power spectrum of an X-ray binary + :align: center + +Stingray is a Python library designed to perform times series analysis and related tasks on astronomical light curves. +It supports a range of commonly-used Fourier analysis techniques, as well as extensions for analyzing pulsar data, simulating data sets, and statistical modelling. +Stingray is designed to be easy to extend, and easy to incorporate into data analysis workflows and pipelines. + +.. important:: + + If you use Stingray for work presented in a publication or talk, please help the project by providing a proper :doc:`citation `. + +Features +======== +Current Capabilities +-------------------- + +1. Data handling and simulation +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +* loading event lists from fits files of a few missions (RXTE/PCA, NuSTAR/FPM, XMM-Newton/EPIC, NICER/XTI) +* constructing light curves from event data, various operations on light curves (e.g. addition, subtraction, joining, and truncation) +* simulating a light curve with a given power spectrum +* simulating a light curve from another light curve and a 1-d (time) or 2-d (time-energy) impulse response +* simulating an event list from a given light curve _and_ with a given energy spectrum +* Good Time Interval operations + +2. Fourier methods +~~~~~~~~~~~~~~~~~~ +* power spectra and cross spectra in Leahy, rms normalization, absolute rms and no normalization +* averaged power spectra and cross spectra +* dynamical power spectra and cross spectra +* maximum likelihood fitting of periodograms/parametric models +* (averaged) cross spectra +* coherence, time lags +* Variability-Energy spectra, like covariance spectra and lags *needs testing* +* covariance spectra; *needs testing* +* bispectra; *needs testing* +* (Bayesian) quasi-periodic oscillation searches +* Lomb-Scargle periodograms and cross spectra + +3. Other time series methods +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +* pulsar searches with Epoch Folding, :math:`Z^2_n` test +* Gaussian Processes for QPO studies +* cross correlation functions + +Future Plans +------------ + +We welcome feature requests: if you need a particular tool that's currently not available or have a new method you think might be usefully implemented in Stingray, please :doc:`get in touch `! + +Other future additions we are currently implementing are: + +* bicoherence +* phase-resolved spectroscopy of quasi-periodic oscillations +* Fourier-frequency-resolved spectroscopy +* power colours +* full HEASARC-compatible mission support +* pulsar searches with :math:`H`-test +* binary pulsar searches + +Platform-specific issues +------------------------ + +Windows uses an internal 32-bit representation for ``int``. This might create numerical errors when using large integer numbers (e.g. when calculating the sum of a light curve, if the ``lc.counts`` array is an integer). +On Windows, we automatically convert the ``counts`` array to float. The small numerical errors should be a relatively small issue compare to the above. + +Installation instructions +========================= + +There are currently three ways to install Stingray: + +* via ``conda`` +* via ``pip`` +* from source + +Below, you can find instructions for each of these methods. + +Dependencies +------------ +A **minimal installation** of Stingray requires the following dependencies: + ++ astropy>=4.0 ++ numpy>=1.17.0 ++ scipy>=1.1.0 ++ matplotlib>=3.0,!=3.4.0 + +In **typical** uses, requiring input/output, caching of results, and faster processing, we **recommend the following dependencies**: + ++ numba (**highly** recommended) ++ tbb (needed by numba) ++ tqdm (for progress bars, always useful) ++ pyfftw (for the fastest FFT in the West) ++ h5py (for input/output) ++ pyyaml (for input/output) ++ emcee (for MCMC analysis, e.g. for PSD fitting) ++ corner (for the plotting of MCMC results) ++ statsmodels (for some statistical analysis) + +For **pulsar searches and timing**, we recommend installing + ++ pint-pulsar + +Some of the dependencies are available in ``conda``, the others via ``pip``. +To install all required and recommended dependencies in a recent installation, you should be good running the following command: + + $ pip install astropy scipy matplotlib numpy h5py tqdm numba pint-pulsar emcee corner statsmodels pyfftw tbb + +For the Gaussian Process modeling in `stingray.modeling.gpmodeling`, you'll need the following extra packages + ++ jax ++ jaxns ++ tensorflow ++ tensorflow-probability ++ tinygp ++ etils ++ typing_extensions + +Most of these are installed via ``pip``, but if you have an Nvidia GPU available, you'll want to take special care +following the installation instructions for jax and tensorflow(-probability) in order to enable GPU support and +take advantage of those speed-ups. + +For development work, you will need the following extra libraries: + ++ pytest ++ pytest-astropy ++ tox ++ jinja2<=3.0.0 ++ docutils ++ sphinx-astropy ++ nbsphinx>=0.8.3,!=0.8.8 ++ pandoc ++ ipython ++ jupyter ++ notebook ++ towncrier<22.12.0 ++ black + +Which can be installed with the following command: + + $ pip install pytest pytest-astropy jinja2<=3.0.0 docutils sphinx-astropy nbsphinx pandoc ipython jupyter notebook towncrier<22.12.0 tox black + +Installation +------------ +Installing via ``conda`` +~~~~~~~~~~~~~~~~~~~~~~~~ + +If you manage your Python installation and packages +via Anaconda or miniconda, you can install ``stingray`` +via the ``conda-forge`` build: :: + + $ conda install -c conda-forge stingray + +That should be all you need to do! Just remember to :ref:`run the tests ` before +you use it! + +Installing via ``pip`` +~~~~~~~~~~~~~~~~~~~~~~ + +``pip``-installing Stingray is easy! Just do:: + + $ pip install stingray + +And you should be done! Just remember to :ref:`run the tests ` before you use it! + +Installing from source (bleeding edge version) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +For those of you wanting to install the bleeding-edge development version from +source (it *will* have bugs; you've been warned!), first clone +`our repository `_ on GitHub: :: + + $ git clone --recursive https://github.com/StingraySoftware/stingray.git + +Now ``cd`` into the newly created ``stingray`` directory. +Finally, install ``stingray`` itself: :: + + $ pip install -e "." + +Installing development environment (for new contributors) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +For those of you wanting to contribute to the project, install the bleeding-edge development version from +source. First fork +`our repository `_ on GitHub and clone the forked repository using: :: + + $ git clone --recursive https://github.com//stingray.git + +Now, navigate to this folder and run +the following command to add an upstream remote that's linked to Stingray's main repository. +(This will be necessary when submitting PRs later.): :: + + $ cd stingray + $ git remote add upstream https://github.com/StingraySoftware/stingray.git + +Now, install the necessary dependencies:: + + $ pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm + +Finally, install ``stingray`` itself:: + + $ pip install -e "." + +.. _testsuite: + +Test Suite +---------- + +Please be sure to run the test suite before you use the package, and please report anything +you think might be bugs on our GitHub `Issues page `_. + +Stingray uses `py.test `_ and `tox +`_ for testing. To run the tests, try:: + + $ tox -e test + +You may need to install tox first:: + + $ pip install tox + +To run a specific test file (e.g., test_io.py), try:: + + $ cd stingray + $ py.test tests/test_io.py + +If you have installed Stingray via pip or conda, the source directory might +not be easily accessible. Once installed, you can also run the tests using:: + + $ python -c 'import stingray; stingray.test()' + +or from within a python interpreter: + +.. doctest-skip:: + + >>> import stingray + >>> stingray.test() + +Building the Documentation +-------------------------- + +The documentation including tutorials is hosted `here `_. +The documentation uses `sphinx `_ to build and requires the extensions `sphinx-astropy `_ and `nbsphinx `_. + +One quick way to build the documentation is using our tox environment: :: + + $ tox -e build_docs + +You can build the API reference yourself by going into the ``docs`` folder within the ``stingray`` root +directory and running the ``Makefile``: :: + + $ cd stingray/docs + $ make html + +If that doesn't work on your system, you can invoke ``sphinx-build`` itself from the stingray source directory: :: + + $ cd stingray + $ sphinx-build docs docs/_build + +The documentation should be located in ``stingray/docs/_build``. Try opening ``./docs/_build/index.rst`` from +the stingray source directory. + +Using Stingray +=============== + +Getting started +--------------- +.. toctree:: + :maxdepth: 2 + + core + dataexplo + pulsar + +Advanced +-------- + +.. toctree:: + :maxdepth: 2 + + modeling + simulator + deadtime + api + +Additional information +====================== + +.. toctree:: + :maxdepth: 2 + + history + contributing + citing + acknowledgements + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/_sources/modeling.rst.txt b/_sources/modeling.rst.txt new file mode 100644 index 000000000..14858fc1e --- /dev/null +++ b/_sources/modeling.rst.txt @@ -0,0 +1,16 @@ +The Stingray Modelling Interface +******************************** + +Stingray provides a custom-built fitting interface, built on top +of `scipy `_ and `emcee `_ as well as a set of general functions +and classes that allow the user to perform standard model fitting tasks +on Fourier products, but also enable users to implement their own models +and classes based on this framework. + +Below, we show on some examples how this interface can be used. + +.. toctree:: + :maxdepth: 2 + + notebooks/Modeling/ModelingExamples.ipynb + diff --git a/_sources/notebooks/Bexvar/Bexvar tutorial.ipynb.txt b/_sources/notebooks/Bexvar/Bexvar tutorial.ipynb.txt new file mode 100644 index 000000000..2df798bf4 --- /dev/null +++ b/_sources/notebooks/Bexvar/Bexvar tutorial.ipynb.txt @@ -0,0 +1,303 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Baysian Excess Variance (Bexvar)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Bayesian Excess Variance (bexvar) is a statistical measurement of variability in Poisson-distributed light curves. Bexvar is a Bayesian formulation of excess variance. A brief summary of theoretical understanding of bexvar is given at the end of this tutorial. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method implemented in Stingray, provides posterior samples of bexvar given a light curve data as input parameters. \n", + "This tutorial is intended to give a demonstration of How to use `bexvar()` method implemented in Stingray.\n", + "The method takes following input parameters. (Given here for completeness)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "  ```time``` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "     A list or array of time stamps for a light curve. \n", + "  `time_del` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of time intervals for each bin of light curve. \n", + "  `src_counts` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of counts observed from source region in each bin. \n", + "  `bg_counts` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of counts observed from background region in each bin. If ``None`` \n", + "    we assume it as a numpy array of zeros, of length equal to length of ``src_counts``. \n", + "  `bg_ratio` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of source region area to background region area ratio in each bin. \n", + "    If ``None`` we assume it as a numpy array of ones, of length equal to the length of \n", + "    ``src_counts``. \n", + "  `frac_exp` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of fractional exposers in each bin. If ``None`` we assume it as \n", + "    a numpy array of ones, of length equal to length of ``src_counts``. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us start by importing the bexvar module" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import bexvar" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now consider an example dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "bg_counts = np.array([722, 696, 701, 721, 722, 703, 722, 695])\n", + "bg_ratio = np.array([0.01474, 0.01158, 0.01214, 0.01308, 0.010877, 0.01177, 0.01058, 0.01138])\n", + "frac_exp = np.array([0.37416, 0.21713, 0.37937, 0.50140, 0.11617, 0.39221, 0.64275, 0.31160])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call bexvar function to get posterior distribution of bexvar." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-2e+01 [-20.4040..-20.4040]*| it/evals=3622/5046 eff=77.9595% N=400 \n", + "[ultranest] Likelihood function evaluations: 5051\n", + "[ultranest] logZ = -24.86 +- 0.0784\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1590.2, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.47+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.08, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.08 tail:0.01 total:0.08 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -24.856 +- 0.156\n", + " single instance: logZ = -24.856 +- 0.093\n", + " bootstrapped : logZ = -24.856 +- 0.156\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : 0.350 │ ▁ ▁ ▁▁▁▁▁▁▁▁▂▃▄▅▆▇▇▇▆▅▄▃▂▁▁▁▁▁▁▁ ▁ ▁▁ │0.575 0.461 +- 0.020\n", + " logsigma : 0.010 │▇▅▄▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁ ▁ ▁ │0.227 0.028 +- 0.018\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "\n", + " bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del, frac_exp=frac_exp,\n", + " bg_counts=bg_counts, bg_ratio=bg_ratio)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method uses [UltraNest](https://johannesbuchner.github.io/UltraNest/) python package to obtain the posteriors of bexvar. Ultranest gives a brief summary of log evidence (log(z)) and its uncertainties, and the parameter constraints. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then plot the samples to visualize the posterior distribution of bexvar." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEICAYAAACuxNj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAY3ElEQVR4nO3debRlZXnn8e/PQnACBbkaoMACG0w7FlpBE2MWOCLYgENr0VFwaHHATmxcrTh0HBJ6kcGJNo1dKiJGQZSwRIU2SAftdItQYFkMghSDocoSCmxxDA349B/nvXIo7r371K17huJ+P2vtdfZ59rv3eWqfA8/d+9373akqJEmaywPGnYAkafJZLCRJnSwWkqROFgtJUieLhSSpk8VCktRpu3EnMCy77rprLVu2bNxpSNI249JLL721qqZmWna/LRbLli1j9erV405DkrYZSX442zJPQ0mSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHW6396UtzWWHf+1ea9744mHLmAmkjQZPLKQJHUaWrFIckqSW5Jc0Rf7QpI1bboxyZoWX5bk133LPt63ztOSXJ5kXZKTkmRYOUuSZjbM01CnAh8DTpsOVNUrpueTfBC4va/9dVW1fIbtnAy8HvgOcC5wMHDewqcrSZrN0I4squpbwE9mWtaODl4OnD7XNpLsBuxUVRdVVdErPEcscKqSpA7j6rN4FnBzVV3bF9s7yXeTfDPJs1psD2B9X5v1LTajJMckWZ1k9aZNmxY+a0lapMZVLI7k3kcVG4G9qmp/4Djg80l22tKNVtWqqlpRVSumpmYckl2SNA8jv3Q2yXbAS4CnTceq6g7gjjZ/aZLrgP2ADcDSvtWXtpgkaYTGcWTxXODqqvrt6aUkU0mWtPl9gH2B66tqI/CzJM9o/RxHAV8eQ86StKgN89LZ04FvA49Lsj7J69qildy3Y/uPgLXtUtovAW+squnO8TcDnwTWAdfhlVCSNHJDOw1VVUfOEn/1DLGzgLNmab8aeOKCJidJ2iLewS1J6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnYZWLJKckuSWJFf0xd6XZEOSNW06pG/ZO5OsS3JNkhf0xQ9usXVJjh9WvpKk2Q3zyOJU4OAZ4h+uquVtOhcgyeOBlcAT2jr/LcmSJEuAvwVeCDweOLK1lSSN0HbD2nBVfSvJsgGbHw6cUVV3ADckWQcc0Jatq6rrAZKc0dpetdD5SpJmN44+i7ckWdtOU+3cYnsAN/W1Wd9is8VnlOSYJKuTrN60adNC5y1Ji9aoi8XJwGOB5cBG4IMLufGqWlVVK6pqxdTU1EJuWpIWtaGdhppJVd08PZ/kE8BX29sNwJ59TZe2GHPEJUkjMtIjiyS79b19MTB9pdQ5wMokOyTZG9gXuBi4BNg3yd5JtqfXCX7OKHOWJA3xyCLJ6cCBwK5J1gPvBQ5Mshwo4EbgDQBVdWWSM+l1XN8FHFtVd7ftvAX4OrAEOKWqrhxWzpKkmQ3zaqgjZwh/ao72JwAnzBA/Fzh3AVOTJG0h7+CWJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE5DKxZJTklyS5Ir+mJ/neTqJGuTnJ3kES2+LMmvk6xp08f71nlaksuTrEtyUpIMK2dJ0syGeWRxKnDwZrHzgSdW1ZOBHwDv7Ft2XVUtb9Mb++InA68H9m3T5tuUJA3Z0IpFVX0L+MlmsX+oqrva24uApXNtI8luwE5VdVFVFXAacMQQ0pUkzWGcfRavBc7re793ku8m+WaSZ7XYHsD6vjbrW2xGSY5JsjrJ6k2bNi18xpK0SI2lWCR5N3AX8LkW2gjsVVX7A8cBn0+y05Zut6pWVdWKqloxNTW1cAlL0iK33ag/MMmrgRcBz2mnlqiqO4A72vylSa4D9gM2cO9TVUtbTJI0QiM9skhyMPB24LCq+lVffCrJkja/D72O7OuraiPwsyTPaFdBHQV8eZQ5S5K2sFgk2TnJkwdsezrwbeBxSdYneR3wMWBH4PzNLpH9I2BtkjXAl4A3VtV05/ibgU8C64DruHc/hyRpBDpPQyW5EDistb0UuCXJ/66q4+Zar6qOnCH8qVnangWcNcuy1cATu/KUJA3PIEcWD6+qnwEvAU6rqqcDzx1uWpKkSTJIsdiu3e/wcuCrQ85HkjSBBikWHwC+Tu8O60taB/S1w01LkjRJOvssquqLwBf73l8PvHSYSUmSJkvnkUWS/ZJcMD0gYJInJ3nP8FOTJE2KQU5DfYLegH93AlTVWmDlMJOSJE2WQYrFQ6rq4s1id83YUpJ0vzRIsbg1yWOBAkjyMnpjOUmSFolBxoY6FlgF/G6SDcANwCuHmpUkaaIMcjXU9cBzkzwUeEBV/Xz4aUmSJsmsxSLJjMN5TD/VtKo+NKScJEkTZq4jix1HloUkaaLNWiyq6v2jTESSNLkGuSlvnyRfSbIpyS1JvtyG/JAkLRKDXDr7eeBMYDdgd3pDf5w+zKQkSZNl0JvyPltVd7Xp74AHDTsxSdLkGOQ+i/OSHA+cQe/GvFcA5ybZBaDviXaSpPupQYrFy9vrGzaLr6RXPOy/kKT7uUFuytt7FIlIkibXIFdDLUlyWJI/SXLc9DTIxpOc0q6guqIvtkuS85Nc2153bvEkOSnJuiRrkzy1b52jW/trkxw9n3+oJGn+Bung/grwauCR9G7Um54GcSpw8Gax44ELqmpf4IL2HuCFwL5tOgY4GXrFBXgv8HTgAOC90wVGkjQag/RZLK2qJ89n41X1rSTLNgsfDhzY5j8DXAi8o8VPq6oCLkryiPbs7wOB86c70pOcT68AefmuJI3IIEcW5yV5/gJ+5qOranqI8x8Dj27zewA39bVb32KzxSVJIzLIkcVFwNlJHkDvaXkBqqp22toPr6pKUlu7nWlJjqF3Cou99tproTYrSYveIEcWHwJ+n97NeTtV1Y5bWShubqeXaK+3tPgGYM++dktbbLb4fVTVqqpaUVUrpqamtiJFSVK/QYrFTcAVrS9hIZwDTF/RdDTw5b74Ue2qqGcAt7fTVV8Hnp9k59ax/fwWkySNyCCnoa4HLkxyHnDHdHCQ51kkOZ1eB/WuSdbTu6rpRODMJK8Dfsg9N/2dCxwCrAN+Bbymfc5Pkvw5cElr9wHvGpek0RqkWNzQpu3bNLCqOnKWRc+ZoW3Re4TrTNs5BThlSz5bkrRwBrmD2+dabIFlx39t3uveeOKhC5iJJC2czmKRZAp4O/AE+kabrapnDzEvSdIEGaSD+3PA1cDewPuBG7mn/0CStAgMUiweWVWfAu6sqm9W1WsBjyokaREZpIP7zva6McmhwI+AXYaXkiRp0gxSLP4iycOBtwH/FdgJ+I9DzUqSNFEGuRrqq232duCg4aYjSZpEgzzP4q+S7JTkgUkuSLIpyStHkZwkaTIM0sH9/Kr6GfAieldC/SvgPw0zKUnSZBmkWEyfqjoU+GJV3T7EfCRJE2iQDu6vJrka+DXwpnaT3r8MNy1J0iTpPLKoquOBPwBWVNWd9Ab5O3zYiUmSJscgRxb0j/JaVb8Efjm0jCRJE2eQPgtJ0iI3a7FI8sz2usPo0pEkTaK5jixOaq/fHkUikqTJNVefxZ1JVgF7JDlp84VV9SfDS0uSNEnmKhYvAp4LvAC4dDTpSJIm0azFoqpuBc5I8v2q+t4Ic5IkTZhBroa6LcnZSW5p01lJlg49M0nSxBikWHwaOAfYvU1fabF5SfK4JGv6pp8leWuS9yXZ0Bc/pG+ddyZZl+SaJC+Y72dLkuZnkJvyHlVV/cXh1CRvne8HVtU1wHKAJEuADcDZwGuAD1fV3/S3T/J4YCW9Z4DvDnwjyX5Vdfd8c5AkbZlBjixuTfLKJEva9ErgtgX6/OcA11XVD+doczhwRlXdUVU3AOuAAxbo8yVJAxikWLwWeDnwY2Aj8DJ6RwELYSVwet/7tyRZm+SUJDu32B7ATX1t1reYJGlEBhlI8IdVdVhVTVXVo6rqiKr656394CTbA4cBX2yhk4HH0jtFtRH44Dy2eUyS1UlWb9q0aWtTlCQ14xwb6oXAZVV1M0BV3VxVd1fVb4BPcM+ppg3Ann3rLW2x+6iqVVW1oqpWTE1NDTF1SVpcxlksjqTvFFSS3fqWvRi4os2fA6xMskOSvYF9gYtHlqUkabAhyhdakocCzwPe0Bf+qyTLgaL3+NY3AFTVlUnOBK4C7gKO9UooSRqtzmKR5D1V9RdtfoequmNrP7Q9E+ORm8VeNUf7E4ATtvZzJUnzM9cQ5e9I8vv0rn6a5gi0krQIzXVkcTXwb4F9kvyv9v6RSR7XbqyTJC0Sc3Vw/xR4F72b4A4EPtrixyf5P8NNS5I0SeY6sngB8Gf07n34ELAW+GVVLdQNeZKkbcSsRxZV9a6qeg69K5M+CywBppL8U5KvjCg/SdIEGOTS2a9X1WpgdZI3VdUfJtl12IlJkibHIMN9vL3v7atb7NZhJSRJmjxbdAe3T8yTpMVpnMN9SJK2ERYLSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkTmN5rKpmtuz4r8173RtPPHQBM5Gke/PIQpLUyWIhSeo0tmKR5MYklydZk2R1i+2S5Pwk17bXnVs8SU5Ksi7J2iRPHVfekrQYjfvI4qCqWl5VK9r744ELqmpf4IL2HuCFwL5tOgY4eeSZStIiNu5isbnDgc+0+c8AR/TFT6uei4BHJNltDPlJ0qI0zmJRwD8kuTTJMS326Kra2OZ/DDy6ze8B3NS37voWu5ckxyRZnWT1pk2bhpW3JC0647x09g+rakOSRwHnJ7m6f2FVVZLakg1W1SpgFcCKFSu2aF1J0uzGdmRRVRva6y3A2cABwM3Tp5fa6y2t+QZgz77Vl7aYJGkExlIskjw0yY7T88DzgSuAc4CjW7OjgS+3+XOAo9pVUc8Abu87XSVJGrJxnYZ6NHB2kukcPl9V/yPJJcCZSV4H/BB4eWt/LnAIsA74FfCa0acsSYvXWIpFVV0PPGWG+G3Ac2aIF3DsCFKTJM1g0i6dlSRNIIuFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTOIco1wJadvzXtmr9G088dIEykXR/5JGFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTyItFkj2T/GOSq5JcmeRPW/x9STYkWdOmQ/rWeWeSdUmuSfKCUecsSYvdOIb7uAt4W1VdlmRH4NIk57dlH66qv+lvnOTxwErgCcDuwDeS7FdVd480a0laxEZ+ZFFVG6vqsjb/c+D7wB5zrHI4cEZV3VFVNwDrgAOGn6kkadpY+yySLAP2B77TQm9JsjbJKUl2brE9gJv6VlvPLMUlyTFJVidZvWnTpmGlLUmLztiKRZKHAWcBb62qnwEnA48FlgMbgQ9u6TaralVVraiqFVNTUwuZriQtamMpFkkeSK9QfK6q/h6gqm6uqrur6jfAJ7jnVNMGYM++1Ze2mCRpRMZxNVSATwHfr6oP9cV362v2YuCKNn8OsDLJDkn2BvYFLh5VvpKk8VwN9UzgVcDlSda02LuAI5MsBwq4EXgDQFVdmeRM4Cp6V1Id65VQkjRaIy8WVfVPQGZYdO4c65wAnDC0pCRJc/IObklSJ4uFJKnTOPosNIGWHf+1ea9744mHLmAmkiaRRxaSpE4WC0lSJ4uFJKmTxUKS1MliIUnq5NVQ2mpeSSXd/3lkIUnqZLGQJHWyWEiSOlksJEmd7ODWWNk5Lm0bPLKQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ6+G0jZra66kAq+mkrbENnNkkeTgJNckWZfk+HHnI0mLyTZxZJFkCfC3wPOA9cAlSc6pqqvGm5m2Zd7jIQ1umygWwAHAuqq6HiDJGcDhgMVCY7G1p8DmyyKlcdlWisUewE1979cDT9+8UZJjgGPa218kuWYEuW2pXYFbx53ELCY1t0nNC0acW/5yi5pP6n6b1LzA3B4z24JtpVgMpKpWAavGncdckqyuqhXjzmMmk5rbpOYF5jYfk5oXmNtctpUO7g3Ann3vl7aYJGkEtpVicQmwb5K9k2wPrATOGXNOkrRobBOnoarqriRvAb4OLAFOqaorx5zWfE3yabJJzW1S8wJzm49JzQvMbVapqnF+viRpG7CtnIaSJI2RxUKS1MlisRW6hiBJskOSL7Tl30myrMWfl+TSJJe312f3rXNh2+aaNj1qxLktS/Lrvs//eN86T2s5r0tyUpKMOLc/7strTZLfJFnelo1qv/1RksuS3JXkZZstOzrJtW06ui++1fttvnklWZ7k20muTLI2ySv6lp2a5Ia+fbZ8S/Pamtzasrv7Pv+cvvje7btf134L248qryQHbfY7+5ckR7Rlo9pnxyW5qn1nFyR5TN+yof3O5lRVTvOY6HW0XwfsA2wPfA94/GZt3gx8vM2vBL7Q5vcHdm/zTwQ29K1zIbBijLktA66YZbsXA88AApwHvHCUuW3W5knAdWPYb8uAJwOnAS/ri+8CXN9ed27zOy/EftvKvPYD9m3zuwMbgUe096f2tx31PmvLfjHLds8EVrb5jwNvGmVem32vPwEeMuJ9dlDfZ76Je/77HNrvrGvyyGL+fjsESVX9P2B6CJJ+hwOfafNfAp6TJFX13ar6UYtfCTw4yQ6TkNtsG0yyG7BTVV1UvV/macARY8ztyLbuQurMrapurKq1wG82W/cFwPlV9ZOq+r/A+cDBC7Tf5p1XVf2gqq5t8z8CbgGmtvDzh5LbbNp3/Wx63z30fgtHjCmvlwHnVdWvtvDztza3f+z7zIvo3VsGw/2dzcliMX8zDUGyx2xtquou4HbgkZu1eSlwWVXd0Rf7dDvE/c/zPJTc2tz2TvLdJN9M8qy+9us7tjmK3Ka9Ajh9s9go9tuWrrsQ+21r8vqtJAfQ+0v2ur7wCe1Ux4fn+QfL1ub2oCSrk1w0faqH3nf90/bdz2ebC5HXtJXc93c26n32OnpHCnOtu1D/fc7KYjFGSZ4A/CXwhr7wH1fVk4BntelVI05rI7BXVe0PHAd8PslOI85hTkmeDvyqqq7oC497v0209pfnZ4HXVNX0X9LvBH4X+D16pzXeMYbUHlO9ISz+HfCRJI8dQw4zavvsSfTu75o20n2W5JXACuCvh/k5g7BYzN8gQ5D8tk2S7YCHA7e190uBs4Gjquq3f+lV1Yb2+nPg8/QOWUeWW1XdUVW3tRwupfdX6H6t/dK+9ec75MpW7bfmPn/tjXC/bem6C7Hftmq4m1bsvwa8u6oumo5X1cbquQP4NKPfZ/3f2/X0+p32p/ddP6J991u8zYXIq3k5cHZV3dmX78j2WZLnAu8GDus78zDM39ncFrIDZDFN9O5+vx7Ym3s6qZ6wWZtjuXdH7Zlt/hGt/Utm2Oaubf6B9M7ZvnHEuU0BS9r8Pu0Ht0vN3IF2yChza+8f0HLaZxz7ra/tqdy3g/sGep2OO7f5BdlvW5nX9sAFwFtnaLtbew3wEeDEEe+znYEd2vyuwLW0jl7gi9y7g/vNo8qrL34RcNA49hm9onkd7eKEUfzOOvNeyI0ttgk4BPhB+1Lf3WIfoPeXAMCD2o9+Xfsi92nx9wC/BNb0TY8CHgpcCqyl1/H9Udr/uEeY20vbZ68BLgP+Td82VwBXtG1+jDYCwKhya8sOBC7abHuj3G+/R+988C/p/QV8Zd+6r205r6N3umfB9tt88wJeCdy52W9teVv2P4HLW25/BzxslPsM+IP2+d9rr6/r2+Y+7btf134LO4z4u1xG74+SB2y2zVHts28AN/d9Z+eM4nc21+RwH5KkTvZZSJI6WSwkSZ0sFpKkThYLSVIni4UkqZPFQpLUyWIhzVOSpyT5VhtK+jdJKskHxp2XNAzeZyHNQ5IH0btZ6qiqujjJn9O7mfDt5X9Uuh/yyEKan+fSGy344vZ+Lb1hFyrJJ4f1oQv+QBtpQBYLaX6eSG/Yh2lPBS5L8mDgXyd5X5IzkjwwyX9J8pEkJwEkmUry6SRLk5yS5D8kOagtOyXJw9r6H03yZ0l+J72n3b0D+J2R/0slegNaSdpyt9F7QA9J9gNeQm+so/2BL1bVR5L8d+DtwIOBn9IbOI6q2pTkn4EP0ntWwXLgKUnuBi6hN8rudm2dZ9IbI+n0qjppRP826T4sFtL8nA4cluQK4FbgyKq6rT1gaG1r8xB6BeLY6nu4VZKH0Rso766q+kXbxpH0Brb798Aq4E/pjQC8J71i8uWR/KukWdjBLS2gJJ+gPY+B3uMyd6T3YJ+b6I1Y+g16xeD99J6XcElVXZjkcuC9VfX3Sd4G7ETviXHX0CsWr697HlokjZzFQpLUyQ5uSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkThYLSVKn/w/Mcv0r9yyyzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "plt.hist(bexvar_distribution, bins=20)\n", + "plt.ylabel(\"# of samples\")\n", + "plt.xlabel(r\"$\\sigma_{bexvar}$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the light curve is intrinsically variable, then the posterior distribution of bexvar should exclude low values. Users can compute \n", + "the lower 10% quantile of the posterior, and use it as a variability indicator (see [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529))." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method uses fractional exposers (`frac_exp`) in each bin to compute the count rates (i.e.$~\\scriptstyle{R_i = C_i/(\\Delta{t_i}\\times f_i)}$). In its current form it only considers time bins with `frac_exp` < 1. The `bg_ratio` parameter is used to scale the `bg_counts` to estimate counts in source region. The `bg_count`, `bg_ratio` and `frac_exp` are optional parameters, if they are not provided, the method defines default values for them as described in documentation. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us see an example to get bexvar distribution without these optional parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-4e+01 [-36.8486..-36.8486]*| it/evals=3615/5101 eff=76.8985% N=400 \n", + "[ultranest] Likelihood function evaluations: 5125\n", + "[ultranest] logZ = -41.34 +- 0.09729\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1692.4, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.10, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.10 tail:0.01 total:0.10 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -41.331 +- 0.174\n", + " single instance: logZ = -41.331 +- 0.092\n", + " bootstrapped : logZ = -41.335 +- 0.174\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : -0.517│ ▁ ▁ ▁▁▁▁▁▁▁▁▁▁▂▂▃▄▆▇▇▆▅▄▃▂▁▁▁▁▁▁▁▁▁ │0.383 0.020 +- 0.081\n", + " logsigma : 0.029 │ ▁▂▆▇▇▅▃▂▂▁▁▁▁▁▁▁▁ ▁▁▁▁▁ ▁ ▁ │1.236 0.213 +- 0.074\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "\n", + "bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bexvar: Theoretical background" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "This section provides a theoretical understanding of Bayesian excess variance (bexvar). This is an optional read.\n", + "\n", + "Given a lightcurve data ${\\scriptstyle 𝐷 = (𝑆_1,𝐵_1,~…~,𝑆_𝑁,𝐵_𝑁)}$\n", + " where ($\\scriptstyle{S_i}$) denotes counts obtained from source region and ($\\scriptstyle{B_i}$) denotes counts obtained from background extraction region in $\\scriptstyle{i^{th}}$ time bin.\n", + "If it is assumed that the counts $\\scriptstyle{𝑆_𝑖}$ and $\\scriptstyle{𝐵_𝑖}$ can be expressed as\n", + "Poisson processes. \n", + "$$ \\scriptstyle {𝑆_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((( 𝑅_𝑆(𝑡_𝑖) ~+~ 𝑅_𝐵(𝑡_𝑖) \\times 𝑟)~×~𝑓_𝑖~\\times~Δ𝑡)}$$\n", + "$$ \\scriptstyle {𝐵_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅_𝐵(𝑡_𝑖) × 𝑓_𝑖 × Δ𝑡)}$$\n", + "\n", + "Here, $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is source count rate and $\\scriptstyle{𝑅_B(𝑡_𝑖)}$ is background count rate in $\\scriptstyle{i^{th}}$ time bin. \n", + "It is further assumed that $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is distributed according to a log normal distribution, with some unknown parameters (i.e., $\\scriptstyle{log(\\bar{𝑅_{S}})}$, and $\\scriptstyle{\\sigma_{bexvar}}$).\n", + "$$\\scriptstyle{log(𝑅_𝑆(𝑡_𝑖))~\\sim~𝑁𝑜𝑟𝑚𝑎𝑙(log(\\bar{𝑅_𝑆}),~ \\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})} $$\n", + "\n", + "This $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ provides intrinsic variability on log-count rate and it is defined as Bayesian excess variance (bexvar). The posterior distribution of $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ can be used to identify intrinsically variable object.\n", + "\n", + "The bexvar() method in Stingray returns posterior samples of $\\scriptstyle{\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}}$ given a light curve data.\n", + "The samples are generated following the same prescription given in [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529). The method uses flat, uninformative priors on $\\scriptstyle{log(\\bar{𝑅_𝑆})}$ and $\\scriptstyle{log(\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}$ and obtains the posterior samples using nested sampling Monte Carlo algorithm MLFriends (Buchner [2016](https://link.springer.com/article/10.1007/s11222-014-9512-y),\n", + "[2019](https://arxiv.org/abs/1707.04476)) implemented in the [UltraNest](https://johannesbuchner.github.io/UltraNest/) Python package (Buchner [2021](https://arxiv.org/abs/2101.09604)).\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.10 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "f6246b25e200e4c5124e3e61789ac81350562f0761bbcf92ad9e48654207659c" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Bispectrum/bispectrum_tutorial.ipynb.txt b/_sources/notebooks/Bispectrum/bispectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..c54a68345 --- /dev/null +++ b/_sources/notebooks/Bispectrum/bispectrum_tutorial.ipynb.txt @@ -0,0 +1,1177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## Bispectrum Tutorial" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial is intended to demonstrate bispectrum Analysis on Lightcurve data.
\n", + "\n", + "Bispectrum is an example of a Higher Order Spectra(HOS) and contains more information that simple Powerspectrum or non-ploy spectra.
For detailed information on Bispectra visit : https://arxiv.org/pdf/1308.3150.pdf" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "In Stingray, Bispectrum can be created from a Lightcurve(For more information on Lightcurve, visit Lightcurve Notebook).
\n", + "\n", + "First we import relevant classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import lightcurve\n", + "import numpy as np\n", + "from stingray.bispectrum import Bispectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lightcurve Object can be created from an array of time stamps and an array of counts. Creating a simple lightcurve to demonstrate Bispectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1,11)\n", + "counts = np.array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])\n", + "lc = lightcurve.Lightcurve(times,counts)\n", + "\n", + "lc.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYXOeZ9/HvQxd1qBKCAdSLJYoA2ZJiy3FcY6+7HRcV\nZK8db5KNs8mm7ZvdJLvZxOnJJnFiJ7aQ3HvsxGluyLbAlkC9gdogQIUBRO/M8/4xg4ywQAPMmTPD\n3J/rmktomJlzay5xc+ac37kfpbVGCCHE5BdkdgFCCCG8Qxq+EEIECGn4QggRIKThCyFEgJCGL4QQ\nAUIavhBCBAhp+EIIESCk4QshRICQhi+EEAEixOwChkpKStJZWVlmlyGEEH6joqKiQWud7M5jfarh\nZ2VlUV5ebnYZQgjhN5RS1e4+Vg7pCCFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRIAwNKWjlLIB\nbcAA0K+1LjBye0IIIUbmjVjmJ7XWDV7YjhBCiFHIIR0hvOC9g3aqTrWZXYYIcEY3fA28qZSqUErd\nf64HKKXuV0qVK6XK7Xa7weUI4X29/Q4eeKKCH/xlv9mliABndMP/hNY6F7gG+LxS6pLhD9BaP6q1\nLtBaFyQnu3V1sBB+pdzWREfvADtrW9Bam12OCGCGNnytdZ3rz3rgFWCpkdsTwheVVDk/uTZ19FLT\n1GVyNSKQGdbwlVJRSqmYwa+BK4E9Rm1PCF9VUlnP1NhwALbXnDa5GhHIjNzDnwq8r5TaCWwBXtda\n/83A7Qnhc443d1F1qp21y7OICA1iR02z2SWJAGZYLFNrfQTIMer1hfAHJZXOwzmXL5jKOwfq2SkN\nX5hIYplCGKiksp7pcRHMSYkm12phz/FWevsdZpclApQ0fCEM0tvvYPOhBlbOS0EpRa41nt5+BwdO\ntppdmghQ0vCFMEh5tTOOeek8Z9w4xxoHIId1hGmk4QthkE2VdkKDFStmJwGQZplCUnQ426XhC5NI\nwxfCICWVdgoyE4gOd2YjnId1LJLUEaaRhi+EAY43d1F5qu3M4ZxBeRkWjtg7aOnsM6kyEcik4Qth\ngE2uq2svnZdy1v056RYAdtXJXr7wPmn4QhigpLKe1LgI5k6NPuv+bGscSsGOY9LwhfdJwxfCw5xx\nzEYunZeMUuqs78VGhDIrOVqO4wtTSMMXwsMqqk/T3tPPyrkp5/z+4IlbmZwpvE0avhAeVlJVT0iQ\nYsXsxHN+P8dqobGjl9rTMjlTeJc0fCE8bFOlnYKseGIiQs/5/Tyr88StHNYR3iYNXwgPOtHSxYGT\nbR9L5ww1b1oM4SEyOVN4nzR8ITxoU+VgHHPk1dtCg4NYnBYnDV94nTR8ITyopNLOtNgI5k2NGfVx\nOVYLe+pa6BuQyZnCe6ThC+EhfQPO6ZjnimMOl2u10NPvoPJkm5eqE0IavhAeU1F9mrae/lEP5wzK\ndZ24lUFqwpuk4QvhISWVdlccM+m8j02Pn0JSdJhccSu8Shq+EB5SUllPfubIccyhlFLkpFvYWSsN\nX3iPNHwhPOBkS/d545jD5VotHLa309otkzOFd0jDF8IDNlXVA6PHMYfLzbCgNeyqaTGqLCHOIg1f\nCA/YVOWMY86fNnocc6js9MErbk8bVZYQZ5GGL8QE9Q84eO9gAyvnnj+OOVTclFBmJkexQ/bwhZdI\nwxdigrYda6at27045nAyOVN4kzR8ISaopNI1HXPO+eOYw+VZLTS091DXLJMzhfGk4QsxQSWVdpZk\nxhPrRhxzuFxrPCCTM4V3SMMXYgLqW7vZd6J1XIdzwDk5MywkiJ3S8IUXSMMXYgJKBhcrH2F1q/MJ\nCwli0fRY2cMXXiENX4gJ2FRpZ2psOAtS3Y9jDpdrjWe3TM4UXiANX4hxcsYx7WOOYw6XY42ju08m\nZwrjGd7wlVLBSqntSqk/G70tIbxpe00zrd39YxqncC55rhO3MldHGM0be/gPAvu9sB0hvKqksp5g\nN6djjsaaMIWEKJmcKYxnaMNXSqUD1wJ/MHI7QpihpNJOfkY8cVPGHsccSil15gIsIYxk9B7+L4Cv\nAXI2KsD8tuQwN/5mM919A2aXYoj6tm72Hm9l5TjjmMPlpFs4ZG+nTSZnCgMZ1vCVUtcB9VrrivM8\n7n6lVLlSqtxutxtVjvCil7fV8sO/HWBHTTN/3nXC7HIM4c5i5WMxODlzd63M1RHGMXIPfwVwvVLK\nBjwLXKaUenL4g7TWj2qtC7TWBcnJnvnhEeb58EgjX39pF8tmJjI7JZoNpbZJOSempMpOSkw4C1Nj\nPfJ6uemy5KEwnmENX2v9Ta11utY6C7gDeFtrvcqo7QnzHW3o4LNPVpCREMnvVuWzdnkWu+ta2HZs\nco3/7R9w8F7VxOOYQ8VFhjIzKUqO4wtDSQ5feMTpjl7Wrd9CkFKsL1pKXGQoN+elERMRQnFptdnl\nedQOD8Uxh8uRyZnCYF5p+FrrEq31dd7YlvC+nv4BPvtEBcdbuvn9mnwyEiMBiAoP4fYCK3/dfYJT\nrd0mV+k5JZV2goMUnxjHdMzR5Fot2Nt6ONEyed4r4VtkD19MiNaab7y0my22Jn5yWw75mQlnfX/N\nskwGtOapDybPXn5JVT1LMiwTjmMOl2sdXAFLDusIY0jDFxPyf28d4pXtdXzlirlcnzP9Y9/PTIzi\nsnkpPL3lGD39/h/RrG/rZk9dq8cP5wAsSI0lLDhIGr4wjDR8MW6v7qjj529WccuSdL5w2ewRH1e0\nIouG9l5enwQRzXerGgBYOdfzibKwkCAWTo+VK26FYaThi3HZamviqy/s4sIZCfzg5sWjplU+MTuJ\nWclRFE+CiGZJZT3JMeFcMN0zcczhcq0Wdte10C+TM4UBpOGLMbM1dHD/xnLS46fwyOp8wkJG/2+k\nlKJoeRa7alv8Omc+3sXKxyIvw0JX3wBVp9oNeX0R2KThizFp7uzlnuKtADxeVIglMsyt5928JJ2Y\n8BCKN9sMrM5YO2ubaenq89jVteciJ26FkaThC7f19jt44MkKak938eiaArKSotx+blR4CLcVWPmL\nH0c0SyrtBCm4eLZxDT8jIZL4yFBZ8lAYQhq+cIvWmm++vJsPjjTxo1uzKcxKOP+ThjkT0fzwmAEV\nGq+k0s6SjHjiIj0bxxxKKXXmAiwhPE0avnDLb945xEvbavnS5XO4MS9tXK+RlRTFJ+el8PSH/hfR\ntLf1sLuuxdDDOYNyrRaq6tto7+k3fFsisEjDF+f1p53H+ck/qrgpL40HPzVnQq+1dnkWDe09/GW3\nf0U03x1crNyA/P1wuVbn5MxdsgKW8DBp+GJUFdVNfOWFnSzNSuChW0aPX7rj4tlJzEyO8rv5OiVV\ndpKiPTcdczQ5rsmZO2tkVLLwLGn4YkTHGju5b2MF0+MieGR1PuEhwRN+zaAgxdplWeysaWa7n0zR\nHHDoM4uVBwUZE8ccKj4qjKzESHbU+Mf7I/yHNHxxTi2dfawr3oJDax4vKiQ+yr34pTtuyU8nOjyE\nDaU2j72mkXbUNNPcaWwcczhZ8lAYQRq++Jjefgf/8lQFx5o6eWRVPjOToz36+tHhIdyan87ru09Q\n3+b7Ec1NlfXOOKaHp2OOJtdq4VRrDydaury2TTH5ScMXZ9Fa860/7qb0cCMP3ZzNhTMTDdnO2uVZ\n9A1onvaDiGZJlZ28jHi3LzLzhBzr4HF82csXniMNX5zlt5sO83x5LV+8bDa35Kcbtp0ZSVFcOi+Z\npz48Rm+/786NaWjvYVdtC5caMCxtNAunOydn+vMoCuF7pOGLM17fdYIf/a2S63Om829XzDV8e0XL\ns7C39fDXPb4b0fRmHHOo8JBgFsjkTOFh0vAFANuOnebLz++gIDOeH92abdhwsKEumZPMjKQo1vvw\nfJ2SSjtJ0WGGTcccTZ5rcuaAw78njArfIQ1fUNPUyf0by5ka64xfRoROPH7pDmdEM5MdNc0+mUgZ\ncGjePWjnEi/FMYfLscbR2TvAwfo2r29bTE7S8ANcS1cf9xRvpbffweNFhSRGh3t1+7fkpxMVFuyT\nEc2dtYNxTO8ezhmUa40HkMM6wmOk4QewvgEHn39qG0cbOvjdqnxmp3g2fumOmIhQbiuw8uddx30u\nojk4HfMSL8Yxh8pKjMQSGeqTn36Ef5KGH6C01vzXq3t4/1AD3795Mctnm9PUwDlFs29A88yHNabV\ncC6bKuvJtVq8GsccSilFTrpcgCU8Rxp+gHr03SM8s6WGz106i9sLrKbWMjM5mpVzk3nqw2qfiWg2\ntvewq67FtMM5g3KsFqpOtdEhkzOFB0jDD0B/23OCh/52gGsXp/LvV84zuxzAGdGs96GI5rsH7WiN\nV8cpnEue1YJDw+46GaQmJk4afoDZWdPMl57bQa7Vwk9vzzElfXIuK+cmk5UY6TMnbwfjmIumx5la\nR44seSg8SBp+AKk93cm9G8pJig7n92sKvBa/dEdQkGLNsiy2HWs2fQ78gEPzbpWdS+aYE8ccKiEq\njMzESEnqCI+Qhh8gWrv7uLe4nJ7+AdYXFZLk5filO24tcEY0i03ey99V28zpzj5Wmnw4Z1BOuoWd\nshiK8ABp+AGgf8DBF57ezmF7O7+9O585U2PMLumcYiNCuSU/nT/vPEFDe49pdXwUx/SNhp9rtXCi\npdtvF38XvkMa/iSntebbr+3l3So737txEZ8wKVPurjXLsugdcPCMiVM0S6rs5FgtHl0DYCJyM5zH\n8bfLYR0xQdLwJ7nH3j/KUx8e47MrZ3LH0gyzyzmv2SnRXDwniSc/rKZvwPsRzcb2HnbVNnPpXHPj\nmEMtTI0lNFjJiVsxYdLwJ7G/7z3J//5lP9csmsbXr5pvdjluW7cii1OtPfxtz0mvb/u9gw0+Eccc\nKiI0mAWpsTIbX0yYYQ1fKRWhlNqilNqplNqrlPquUdsSH7e7toUvPbuD7HQLP7s91/S0yVhcOjeF\nzMRIU07ellTWkxgVxuI0c+OYw+VaLeyqbZbJmWJCjNzD7wEu01rnALnA1UqpiwzcnnA53tzFvRu2\nkhAVxu/X5DMlzHfil+4YjGhWVJ9md633LjhyODTvHmwwbTrmaHKtFjp6BzhU3252KcKPGdbwtdPg\n/85Q1012TwzW0dPPPcVb6eod4PGiQlJiIswuaVxuK0gn0ssRzV11LTR19PrU4ZxBH12AddrkSoSn\n7T3ewvPl3pkjZegxfKVUsFJqB1APvKG1/vAcj7lfKVWulCq32+1GlhMQNpTZOHCyjV/fvYR503wz\nfumO2IhQblmSzp92HvdaRLOksh6l4GIfiWMONSMxitiIEHbUyIiFyeRkSzf3FG/l529U0e6FeUmG\nNnyt9YDWOhdIB5YqpRad4zGPaq0LtNYFycm+94PmT/oHHDxZVs3yWYms9PIarEZYuzyT3gEHz27x\nTkSzpNJOTrqFBB+JYw4VFKTIscrkzMmko6efezdspb27n8eLCokODzF8m15J6Witm4F3gKu9sb1A\n9ca+Uxxv6aZoeZbZpXjE7JQYZ0Tzg2OGRzSbOnrZWdvsk4dzBuVZLVSebKWzVyZn+rsBh+bBZ7ez\n/0Qrv75rCQtSvbOEppEpnWSllMX19RTgCuCAUdsTsL7URnr8FD61YKrZpXjM2mVZnGzt5u97jY1o\nvndmOqbv5O+HyxmcnOnFE9nCGN97fR9v7q/nO9dfwCfne+//nJF7+KnAO0qpXcBWnMfw/2zg9gLa\nvuOtbDnaxJplmQT7WMJkIj45P4WMBOOnaJZU2kmICiPbx+KYQ+W6TtzKXB3/trHMxvrNNtatyGLN\nsiyvbtuwg0Za611AnlGvL862odRGRGiQ6YuZeFpwkGLNsky+9/p+9tS1sMiAhuw4Mx0zyefimEMl\nRodjTZgix/H92DsH6vnOa3u5fEEK37p2ode379YevlLqQaVUrHJ6TCm1TSl1pdHFCfec7ujljzvq\nuCkv3bTl+Ix0W4GVKaHGLXS+u66Fxo5enz6cMyjXGi+jkv3UvuOtfOHpbSxIjeWXd+SZ8knc3UM6\n92itW4ErgXhgNfCQYVWJMXl2aw09/Q7WLs80uxRDxE0J5eYlaby68ziNBkQ0SyrtKAWX+EGyKSc9\njuMt3dTL5Ey/cqq1m3s3bCUmIpTH1hYS5YVEzrm42/AHfxV9GnhCa713yH3CRP0DDp78oJplMxOZ\nP807Z/rNULQ8i95+B89u9fwFKiVV9WT7aBxzuLwMWQHL33T2OuOXLV19PFZUwLQ48y6GdLfhVyil\n/oGz4f9dKRUD+MZq0wHuzf2nqGvuYu0kiWKOZM7UGFbMTuTJD6rp92BE83RHLztqmrnUD/buAS6Y\nHkdIkEzO9BfO+OUO9h1v5Vd35nGByUtmutvw7wW+ARRqrTuBMGCdYVUJtxWX2kizTOHyBb5//Hmi\nipbP4ERLN//Yd8pjr+kri5W7a3BypjR8//CDv+znjX2n+M/rFvpEXNrdhv+G1nqb6wIqtNaNwM+N\nK0u4Y/+JVj440sTqZZmEBE/+SdeXzU8hPX4KxZttHnvNTZV24iNDyU63eOw1jZZjjWNXbYtMzvRx\nT35QzR/eP8raZZmsWzHD7HKA8zR814jjBCBJKRWvlEpw3bKANG8UKEa2scwZxbyjcHJFMUcSHKRY\nuyyLLbYm9h6f+MVHDodmU5WdS+Ym+9W1C7nWeNp7+jlil8mZvmpTlZ1vv7aXT85L5j+v8378ciTn\n2y38LFABzHf9OXh7Ffi1saWJ0TR39vLK9jpuzE2blFHMkdzuwYjmnuODcUz/OJwzaPACrO1yWMcn\nVZ5s4/NPbWPu1Bh+ddcSn/r0PWolWutfaq1nAP+utZ6ptZ7huuVoraXhm+i5rTV09zkm/cna4eIi\nQ7lpSRqv7jhOU0fvhF7rTBzTB6djjmZmUhQxESFyHN8H1bc5p19GhgXzeFGBVwaijYVbv3q01r9S\nSi1XSt2llFozeDO6OHFuAw7NxrJqLpyR4LWhS75k7bIsevodPLt1YlM0SyrryU6LIzE63EOVeUdQ\nkCIn3SJLHvqYrt4B7ttQTlNHL4+tLSQ1borZJX2Mu1faPgH8BPgEUOi6FRhYlxjFYBRz3Yoss0sx\nxbxpMSyflciTZeOPaDZ3OuOYK/3g6tpzybVaOHCyja7eAbNLETjPB335+R3sqmvhl3fksjjdN2cy\nuft5owBYqLWWWIAPKN5sY3pcBJf7QMzLLGuXZ/HZJyp4Y98prlmcOubnv3uwAYcfxTGHy7VaGHBo\n9hxvoTArwexyAt4P/36Av+45ybeuXcCVF0wzu5wRuXs2YQ/gu/+KAFJ5so2yI42sXpblUyeDvO3y\nBVNJs0wZ9xKIJZX1xEeGkuNHccyhzix5KHN1TPfMlmM8sukIqy7K4N5P+Eb8ciTudowkYJ9S6u9K\nqdcGb0YWJs6tuNRGeEjgRDFHMjhF88OjTew/0Tqm5w5Ox7x4jn/FMYdKjgknzTKFHTIq2VTvH2zg\nW3/cw8q5yXznny5AKd/+/+TuIZ3vGFmEcE9LZx+vbK/lxtw04v1g7ovRPlNo5edvVrGh1MZDt2S7\n/by9x1tpaPe/OOZwuRkW2cM30cFTbfzLUxXMSYnm13fl+cUnbndTOpvOdTO6OHG258qPBWQUcySW\nyDBuykvjle11nB5DRLOksh7wj+mYo8mzWqhr7sLe5p1F3sVH7G09rCveSkRoMI8VFRITEWp2SW5x\nN6XTppRqdd26lVIDSqmxfY4WEzIYxVw6I4GF0wMvijmStcudEc3nyt2follSZSc7PY4kP4tjDjd4\nAZbk8b2ru2+A+zaW09Dew2NrC0iz+F78ciTu7uHHaK1jtdaxwBTgFuBhQysTZ3n7QD21p7smzQLl\nnjJ/WiwXzUzgCTcjms2dvWw/dtpvpmOO5oLpcQQHKcnje5HDofnK8zvZWdvMLz6T51czmGAca9pq\npz8CVxlQjxhBcelRUuMiuHJh4EYxR1K0fAZ1zV28ub/+vI99zxXH9Nf8/VBTwoKZPy1G9vC96Cf/\nqOT13Sf45jXzuXqR/wUX3Tppq5S6echfg3Dm8mXJHS85eKqNzYca+epV8/zixJC3Xb4gxRXRPHre\nH8KSSjuWyNAzh0P8Xa7Vwms7juNwaJ9ej3cyeL68hodLDnPn0gzuu3im2eWMi7vd45+G3K4C2oAb\njCpKnK241EZYSBB3Ls0wuxSfFBIcxOplmXxwpIkDJ0c+tTQ4HdOf45jD5VottPX0c6RBJmcaqfRQ\nA//x8m4unpPEf9/g+/HLkbh7DH/dkNt9Wuv/1Vqf//OzmLCWrj5e3lbHDTnT/WIJPrN8psBKeEjQ\nqFM0951opaG9Z1Icvx/00YnbiY+LFud2qL6dB56sYGZyFL+5ewmhfvwp292UTrpS6hWlVL3r9pJS\nKt3o4gS8UF5DV9+ARDHPIz7qo4hmc+e5I5qTJY451KzkaGLCQ9hRc9rsUialxvYe1hVvISwkiMfW\nFhLrJ/HLkbj7q2o98Bow3XX7k+s+YaDBKGZhVjyL0nxzGJMvWbs8i+4+B8+NsNB5SaWdxWlxJMf4\ndxxzqKAgRbY1Tk7cGqC7b4D7n6igvrWH368pwJoQaXZJE+Zuw0/WWq/XWve7bsXA5NlN8lHvHKjn\nWFMnRct9ez6Hr1iQGsuFMxLYWFb9seX/Wjr72HbstN9fXXsuuVYLB0600d0nkzM9xeHQfPXFXVRU\nn+bnn8klLyPe7JI8wt2G36iUWqWUCnbdVgGNRhYmYEOZjWmxEVx5gUQx3VW0PMsV0Tx7ofP3Dtn9\nejrmaHLSLfQ7tEeWfRROP3+zij/tPM7Xr57Pp8cxjdVXudvw7wFuB04CJ4BbgSKDahLAofo23jvY\nwOplmX59ksjbrlg4lelxER87eVtSaSduSii51smxpzZUboZryUOZq+MRL1bU8qu3D/GZAisPrPTP\n+OVI3O0k/w2s1Vona61TcP4C+K5xZYkNpdWEyVTMMQsJDmLVskxKDzdSebINGBrHTJo0ccyhUmIi\nnJMz5Tj+hJUdbuSbL+9ixexEvnfTIr+NX47E3YafrbU+EwPQWjcBecaUJFq7+3hpWy3X50z3u+X3\nfMEdhRnOiGaZDXDGMe1tPVw6Ca6uHUmu1SINf4IO253xy8zEKB6+O39SfrJ2918UpJQ681lYKZWA\n+6OVxRi9UF5LZ++AzM0Zp4SoMG7Inc4r2+po6exjU5UdgJWTKI45XI41jtrTXTS0y+TM8Wjq6OWe\n4q2EBCnWFxUSN8W/45cjcbfh/xQoU0r9j1Lqf4BS4EejPUEpZVVKvaOU2qeU2quUenCixQYCh0Oz\nscxGQaZEMSdi7fIsuvoGeL68hpLKehalxU6qOOZwg+cmZJDa2PX0D/DZJ8o50dLNo5MkfjkSd6+0\n3QjcDJxy3W7WWj9xnqf1A1/RWi8ELgI+r5RaOJFiA0FJVT3VjZ1yodUEXTA9jqVZCTy++SjbjjVz\n6dzJezgHYFFaLMFBSg7rjJHWmq+9uIutttP87PYc8jMn30n9odw+SKW13qe1/rXrts+Nx5/QWm9z\nfd0G7AfSxl/qyDp6+pks66uv32xjamy4X07i8zVFK7I40dLNgENPyjjmUJFhIcydKpMzx+oXbx7k\n1R3H+epV87gue7rZ5RjOK2cllFJZOE/yfujp127u7OWG32zm128f8vRLe92h+nbeO9jAqgsliukJ\nVy6cSmpcBLERIZNmOuZocq0WdtY043BMjp0fo71zoJ5fvnWQW/PT+dyls8wuxysM7ypKqWjgJeBL\nWuuPjTJUSt2vlCpXSpXb7fYxv37clFAWp8Xx0zeqeHVHnQcqNs/GMhthwUHceaFMxfSEkOAgfnpb\nDj+8JTsgxkrnWS20dvdztLHD7FL8wsMlh7AmTOH7Ny2edPHLkRj6U6CUCsXZ7J/SWr98rsdorR/V\nWhdorQuSk8f+sVspxUO3LGZpVoLrUuimCVZtjtbuPl6qqOW6nFS/X3rPlyyfncQ1k+hKydEMXoAl\nC5uf3566FrbaTrN2WRZhIZN/Z2CQYf9S5fyV+RiwX2v9M6O2AxAeEswjq/OZHhfBfRsrqPbDPZwX\ny2vp6B1gnczNEeM0KzmaqLBgOY7vhg2lNqaEBnNbQWBd2Gjkr7YVwGrgMqXUDtft00ZtLD4qjMeL\nCnFozbrirbR09hm1KY8bjGIuybCwOF2imGJ8goMU2ekWdtZKwx9NU0cvr+48zs1L0iZt3n4khjV8\nrfX7Wmultc7WWue6bn8xansAM5OjeWRVPjVNnTzwZAW9/edf1NoXbKqyY2vspGiF7N2LicnNsLD/\nRKtMzhzFM1uO0dvvCMjo86Q7eHXhzEQeujmbsiON/L9XdvtFXLO41EZKTDjXSBRTTFCu1ULfgGbv\n8ZGXegxk/QMOnvygmhWzE5k7Ncbscrxu0jV8gFvy0/niZbN5oaKWh0sOm13OqA7b29lUZWfVRRLF\nFBP30ZKHcljnXP6x7xQnWrpZuyzL7FJMMWnn4fzbFXOxNXby479XkpkY6bMXVTxRVu2MYsoC5cID\npsZGkBoXISMWRlBcaiM9fgqfWhCYa0xM2l1KpRQ/ujWbgsx4vvz8TrYd8701P9u6+3ihvIbrslMn\n9ZwX4V0yOfPc9h1vZcvRJtYsy5yUY7LdMWkbPkBEqDOuOS02gvs2lFPT1Gl2SWd5qcIZxQzEk0fC\nOLlWC8eaOmmUyZln2VBqIyI0iNsDLIo51KRu+ACJ0eE8XlRI34DDGdfs8o24psOh2VBWTV6GhZwA\nuOxfeM/g/yeJZ37kdEcvf9xRx0156Vgiw8wuxzSTvuEDzE6J5ner87E1dPC5pyroGzA/rvnuQTtH\nGzpk5r3wuMVpcQQp2FEja9wOenZrDT39DtYuzzS7FFMFRMMHWD4riR/cvJjNhxr5zz/uMT2uuaHU\nRnJMONcsCozL/oX3RIXL5Myh+gccPFFmY9nMROZPizW7HFMFTMMHuK3Ayuc/OYtnt9bwyLtHTKvj\naEMH71TaufvCjICa4yG8Jy/DOTnT7B0bX/Dm/lMcb+mWc2UEWMMH+MoV87guO5WH/nqAv+4+YUoN\nG8tshAaQdUIEAAARPUlEQVQr7pKpmMIgOekWWrr6ONrgf3OlPG39ZhtplilcvmByL4LjjoBr+EFB\nip/clkNehoUvPbfD6x9723v6eaG8lmsXp5ISE+HVbYvAMTg5M9BP3O4/0cqHR5tYvSwzIEZkn09A\nvgMRocH8fk0BKbHh/POGcmpPey+u+fK2Wtp7+mVujjDUnJQY5+TMAB+VPBjFvKMwcKOYQwVkwwdI\nig5nfVEhPf0D3FO8ldZu4+OaDoemuNRGjtUSECswCfMEBykWp8cF9InbwSjmjblpAR3FHCpgGz7A\n7JQYfrcqnyP2Dj7/1DbD45rvH2rgiL2DdXLySHhBjtXCvhOt9PQH5uTM58pr6O4LzKmYIwnohg+w\nYnYS/3vTIt472MC3X9traKqhuNRGUnQ4nw6QFZiEufJckzP3BeDkzAGH5omyai6ckcCC1MCOYg4V\n8A0f4DOFGTywchZPf3iMP7x31JBt2Bo6eKeyXqKYwmtyrfFAYE7OfHP/Keqau1i3IsvsUnzKpJ2W\nOVZfu2oex5o6+P5f95ORGMlVF3h2Nv3GsmqCleJuiWIKL5kWF8G02IiAbPjFm21Mj4vg8gCdijkS\n2dV0CQpS/Oz2XLLTLTz47HZ2eTDO1tHTzwvlNVybnUpKrEQxhffkWOMCblRy5ck2yo40snpZlkQx\nh5F3Y4iI0GD+sKaAxKhw7t1QTl1zl0de9+VttbT19MvJI+F1udZ4bI2dnO7oNbsUrykutREeIlHM\nc5GGP0xyTDjr1xXS3TvAvcVbaZtgXFNrVxQzPY48iWIKLzuzAlaAXIDV0tnHK9truTE3jfgoiWIO\nJw3/HOZOjeHhVUs4WN/OF57eTv8E4prvH2rgsL2DtcuzUCowF10Q5slOd03ODJALsJ4rPyZRzFFI\nwx/BxXOS+Z8bFrGpys53/7Rv3HHNDaU2kqLDuDZbopjC+6LCQ5iTEhMQIxYGHJqNZdUsnZHAwukS\nxTwXafijuOvCDO6/ZCZPfFDN45ttY37+scZO3jpQz11LMwgPCfZ8gUK4IdcaGJMz39p/itrTXbLG\nxCik4Z/HN66ez1UXTOV7r+/jjX2nxvTcjWU2ZxTzosBedEGYKzfDwunOPqobfWuJT0/bUGYjNS6C\nKxdKFHMk0vDPIyhI8YvP5LE4LY4vPrOdPXXurSLU0dPPc+U1XLM4lakSxRQmOnPidhLHM6tOtbH5\nUCOrLpKpmKORd8YNU8Kccc34yFDu3bCVEy3nj2u+sr2Otu5++XgpTDcnJZopocGTuuFvKLURFhLE\nnUvlwsbRSMN3U0psBI+vK6SjZ4B7istp7+kf8bFaazaU2licFseSDIliCnOFBAdN6smZLZ19vLyt\njhtyppMgUcxRScMfg/nTYvn1XXlUnWrji8+MHNcsPdzIwfp2iiSKKXxEntXCvuOTc3LmCxU1dPUN\nSBTTDdLwx+jSeSl85/oLePtAPd97ff85H7N+s43EqDCuy5EopvANuVYLvQMO9p9oM7sUjxpwaDaU\n2SjMimdRWpzZ5fg8afjjsPqiTO79xAyKS20Ubz57umZNUydvHTjFXRdKFFP4jhzXidvJNlfnnQP1\n1DR1UbRcVpBzhzT8cfqPTy/g8gVT+e8/7+PtAx/FNc9EMS+UKKbwHalxEaTEhE+64/jFpTamxUZw\n5QUSxXSHYQ1fKfW4UqpeKbXHqG2YKThI8X935rJweixfeHo7e4+30Nnbz3Nba7h60TSmxUkUU/gO\npRS5VsukavgHT7Xx/qEGVi/LJFSimG4x8l0qBq428PVNFxkWwmNrC4mbEsq9xeX8btMRWiWKKXxU\nboaFow0dNHdOjsmZG8qcUUyZiuk+wxq+1vpdoMmo1/cVU2MjeGxtIW3dffzfWwdZlBZLfma82WUJ\n8TG56a7j+LXuXTzoy1q6nFHM63OmkxgdbnY5fsP0z0FKqfuVUuVKqXK73W52OeOycHosv75rCWEh\nQTywcpZEMYVPyrZaiAgN4ldvHfT7eOYL5TV09g7Ip+kxMr3ha60f1VoXaK0LkpOTzS5n3D45P4Vd\n376S67Knm12KEOcUHR7CT27Lobz6NF97cZffDlMbnIpZkClRzLEyveFPJhGhEsMUvu267Ol89ap5\nvLrjOL9486DZ5YxLSWU9x5o65UKrcZBFzIUIMJ+7dBZHGzr45VsHyUqK5Ka8dLNLGpPiUhtTY8O5\netE0s0vxO0bGMp8ByoB5SqlapdS9Rm1LCOE+pRTfv2kxy2Ym8vUXd7PlqP9kKw7Vt/PewQZWXShR\nzPEwMqVzp9Y6VWsdqrVO11o/ZtS2hBBjExYSxO9W5ZOeMIX7nyjnaEOH2SW5ZWOZjbDgIO68UKZi\njof8ihQiQMVFhrK+qJAgpbineCunO3w7n9/a3ceLFbVcl5NKkkQxx0UavhABLDMxikdX51N3uovP\nPlnh03HNF8tr6ewdYJ3MzRk3afhCBLiCrAR+fFs2W4428c2XdvtkXNPh0Gwss7Ekw8LidIlijpc0\nfCEEN+Sm8eUr5vLy9jp+9fYhs8v5mE1VdmyNnRStkL37iZBYphACgH+9bDa2xg5+9kYVmYmR3JCb\nZnZJZ6wvtZESE841EsWcENnDF0IAzrjmD25ezNIZCXz1hV2U23wjrnnY3s67VXZWXSRRzImSd08I\ncUZ4SDCPrMonLX4K9z9RQXWj+XHNjaWuKKYsUD5h0vCFEGeJjwrj8aJCHFqzrngrLZ19ptXSNhjF\nzE4lOUaimBMlDV8I8TEzkqJ4dHUBtU1dfPbJcnr7HabU8WJFLR29skC5p0jDF0Kc09IZCfzw1sV8\ncKSJ/3jF+3FNh2sqZl6G5cyavGJipOELIUZ0U146D35qDi9W1PJwyWGvbnvTQTtHGzpk5r0HSSxT\nCDGqL10+h+rGDn7890oyEiL5pxzvrPmwodRGckw41yxK9cr2AoHs4QshRqWU4oe3ZlOYFc9XXthJ\nRfVpw7d5xN5OSaWduy/MICxE2pSnyDsphDiv8JBgHlldQGpcBPdvLOdYY6eh29tYVk1osOIumYrp\nUdLwhRBuSYgKY31RIf0OzbriLbR0GRPXbO/p58WKWq5dnEpKTIQh2whU0vCFEG6bmRzNI6vzOdbU\nyeeeqqBvwPNxzZcqamnv6Ze5OQaQhi+EGJOLZiby0M3ZbD7UyLde2ePRuKbDodlQaiPHaiFXopge\nJw1fCDFmt+Sn86+Xzea58hp+t+mIx173vUMNHGnoYJ1EMQ0hsUwhxLh8+Yq52Bo7+eHfDpCZGMmn\nF088Plm8+ShJ0eEeeS3xcbKHL4QYF6UUP741m/zMeP7tuR1sPzaxuObRhg7ekSimoeRdFUKMW0Ro\nMI+uzmdqbAT3bSynpmn8cc2NZTZCghR3SxTTMNLwhRATkhgdzuNFhfT0O7ineCut3WOPa7b39PNi\neS3XZqeSEitRTKNIwxdCTNjslGgeWZXP0YYOPv/UtjHHNV/eVktbT79MxTSYNHwhhEcsn53E929a\nzHsHG/ivV/e6HdccjGJmp8eRJ1FMQ0nDF0J4zO2FVv7l0lk8s+UYv3/Pvbjm+4caOGx3TsVUShlc\nYWCTWKYQwqO+euU8jjV28oO/HiAjIYqrz7Pw+IZSG0nRYVybLVFMo8kevhDCo4KCFD+9PYecdAtf\nem47O2uaR3xsdWMHb1fWc9fSDMJDgr1YZWCShi+E8LiI0GB+v6aApOhw/nljOXXNXed83MayaoKV\n4u6LMr1cYWCShi+EMERyTDjriwrp7h3g3uKttA2La3b09PP81hquWZzKVIlieoU0fCGEYeZMjeHh\nVUs4WN/OF57eTv+QuObL2+to6+mnaLns3XuLoQ1fKXW1UqpSKXVIKfUNI7clhPBNF89J5ns3LmJT\nlZ3v/mkfWmu0dkYxF6fFsSQj3uwSA4ZhKR2lVDDwG+AKoBbYqpR6TWu9z6htCiF8051LM7A1dPDI\nu0fISopi3tQYDtW385PbciSK6UVGxjKXAoe01kcAlFLPAjcA0vCFCEBfv3o+1Y2dfO/1fcxIiiIx\nKozrJIrpVUYe0kkDaob8vdZ1nxAiAAUFKX7+mVyy0+I4Yu/gzqUZRIRKFNObTD9pq5S6XylVrpQq\nt9vtZpcjhDDQlLBgfr+2gAdWzuLeT8gSht5mZMOvA6xD/p7uuu8sWutHtdYFWuuC5ORkA8sRQviC\nlJgIvnHNfOKjwswuJeAY2fC3AnOUUjOUUmHAHcBrBm5PCCHEKAw7aau17ldKfQH4OxAMPK613mvU\n9oQQQozO0OFpWuu/AH8xchtCCCHcY/pJWyGEEN4hDV8IIQKENHwhhAgQ0vCFECJASMMXQogAodxd\naNgblFJ2oNrsOiYoCWgwuwgfIe/F2eT9OJu8Hx+ZyHuRqbV266pVn2r4k4FSqlxrXWB2Hb5A3ouz\nyftxNnk/PuKt90IO6QghRICQhi+EEAFCGr7nPWp2AT5E3ouzyftxNnk/PuKV90KO4QshRICQPXwh\nhAgQ0vA9QCllVUq9o5Tap5Taq5R60OyazKaUClZKbVdK/dnsWsymlLIopV5USh1QSu1XSi0zuyYz\nKaX+zfVzskcp9YxSKsLsmrxJKfW4UqpeKbVnyH0JSqk3lFIHXX8asrK7NHzP6Ae+orVeCFwEfF4p\ntdDkmsz2ILDf7CJ8xC+Bv2mt5wM5BPD7opRKA74IFGitF+EcnX6HuVV5XTFw9bD7vgG8pbWeA7zl\n+rvHScP3AK31Ca31NtfXbTh/oAN2/V6lVDpwLfAHs2sxm1IqDrgEeAxAa92rtW42tyrThQBTlFIh\nQCRw3OR6vEpr/S7QNOzuG4ANrq83ADcasW1p+B6mlMoC8oAPza3EVL8AvgY4zC7EB8wA7MB61yGu\nPyiloswuyixa6zrgJ8Ax4ATQorX+h7lV+YSpWusTrq9PAlON2Ig0fA9SSkUDLwFf0lq3ml2PGZRS\n1wH1WusKs2vxESHAEuC3Wus8oAODPq77A9ex6Rtw/iKcDkQppVaZW5Vv0c7opCHxSWn4HqKUCsXZ\n7J/SWr9sdj0mWgFcr5SyAc8ClymlnjS3JFPVArVa68FPfC/i/AUQqC4Hjmqt7VrrPuBlYLnJNfmC\nU0qpVADXn/VGbEQavgcopRTOY7T7tdY/M7seM2mtv6m1TtdaZ+E8Gfe21jpg9+C01ieBGqXUPNdd\nnwL2mViS2Y4BFymlIl0/N58igE9iD/EasNb19VrgVSM2Ig3fM1YAq3Huze5w3T5tdlHCZ/wr8JRS\naheQC3zf5HpM4/qk8yKwDdiNswcF1BW3SqlngDJgnlKqVil1L/AQcIVS6iDOT0EPGbJtudJWCCEC\ng+zhCyFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRICQhi8Cimty5edcX09XSr1odk1CeIvEMkVA\ncc06+rNrUqMQASXE7AKE8LKHgFlKqR3AQWCB1nqRUqoI54TCKGAOzgFfYTgvqOsBPq21blJKzQJ+\nAyQDncB9WusDSqnbgG8DAzgHgl3i5X+XEOclh3REoPkGcFhrnQt8ddj3FgE3A4XA/wKdroFnZcAa\n12MeBf5Va50P/DvwsOv+/wKu0lrnANcb+08QYnxkD1+Ij7zjWs+gTSnVAvzJdf9uINs1DXU58IJz\nDAwA4a4/NwPFSqnncQ4EE8LnSMMX4iM9Q752DPm7A+fPShDQ7Pp0cBat9QNKqQtxLvxSoZTK11o3\nGl2wEGMhh3REoGkDYsbzRNcaB0ddx+tRTjmur2dprT/UWv8XzgVPrJ4qWAhPkT18EVC01o1Kqc2u\nBaTHM5b3buC3SqlvAaE4Z/7vBH6slJoDKJxrku70VM1CeIrEMoUQIkDIIR0hhAgQ0vCFECJASMMX\nQogAIQ1fCCEChDR8IYQIENLwhRAiQEjDF0KIACENXwghAsT/B7NiWFcKMAmnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['times','counts'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Bispectrum` Object takes 4 parameter.
\n", + "\n", + "1. `lc` : The light curve (lc).\n", + "2. `maxlag` : Maximum lag on both positive and negative sides of 3rd order cumulant (Similar to lags in correlation).\n", + "3. `window` : Specifies the type of window to apply as as string\n", + "4. `scale` : 'biased' or 'unbiased' for normalization\n", + "\n", + "Arguments 2 and 3 are optional. If `maxlag` is not specified, it is set to no. of observations in lightcurve divided by 2. i.e `lc.n/2` ." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Different attribute values can be observed by calling relevant properties. Most common are:
\n", + "1. self.freq - Frequencies against which Bispectrum is calculated.\n", + "2. self.lags - Time lags in lightcurve against which 3rd order cumulant is calculated.\n", + "3. self.cum3 - 3rd Order cumulant function\n", + "4. self.bispec_mag - Magnitude of Bispectrum\n", + "5. self.bispecphase - Phase of Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.5, -0.4, -0.3, -0.2, -0.1, 0. , 0.1, 0.2, 0.3, 0.4, 0.5])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.3885, -0.0915, 0.1685, -0.5085, 0.8135, -0.0675, -0.2708,\n", + " 0.0229, 0.1426, -0.0567, 0. ],\n", + " [-0.0915, 0.2328, -0.5162, -2.0652, 0.3058, 0.1968, 0.8135,\n", + " 0.5492, 0.0209, -0.2484, 0.0063],\n", + " [ 0.1685, -0.5162, -0.3999, 0.9821, -0.4989, 0.5011, 0.3058,\n", + " -0.5085, -0.2348, 0.2379, 0.0426],\n", + " [-0.5085, -2.0652, 0.9821, -0.3096, 0.5704, 2.1084, -0.4989,\n", + " -2.0652, 0.1685, 0.8632, 0.0999],\n", + " [ 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823, 0.5704,\n", + " 0.9821, -0.5162, -0.0915, 0.0872],\n", + " [-0.0675, 0.1968, 0.5011, 2.1084, -0.3823, 0.864 , -1.3613,\n", + " -0.3096, -0.3999, 0.2328, -0.3885],\n", + " [-0.2708, 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823,\n", + " 0.5704, 0.9821, -0.5162, -0.0915],\n", + " [ 0.0229, 0.5492, -0.5085, -2.0652, 0.9821, -0.3096, 0.5704,\n", + " 2.1084, -0.4989, -2.0652, 0.1685],\n", + " [ 0.1426, 0.0209, -0.2348, 0.1685, -0.5162, -0.3999, 0.9821,\n", + " -0.4989, 0.5011, 0.3058, -0.5085],\n", + " [-0.0567, -0.2484, 0.2379, 0.8632, -0.0915, 0.2328, -0.5162,\n", + " -2.0652, 0.3058, 0.1968, 0.8135],\n", + " [ 0. , 0.0063, 0.0426, 0.0999, 0.0872, -0.3885, -0.0915,\n", + " 0.1685, -0.5085, 0.8135, -0.0675]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 6.1870122 , 9.78649295, 6.29941723, 8.10990858,\n", + " 3.90975859, 1.49707597, 10.53408125, 8.44275685,\n", + " 7.73419771, 7.91909148, 3.40576093],\n", + " [ 9.78649295, 12.99063169, 11.9523207 , 12.31681 ,\n", + " 7.34404789, 1.93438197, 5.05536311, 15.92827099,\n", + " 6.61153784, 3.09535492, 7.91909148],\n", + " [ 6.29941723, 11.9523207 , 4.84009298, 8.98535468,\n", + " 5.6746004 , 1.71227576, 9.35566037, 12.00797853,\n", + " 1.60576409, 6.61153784, 7.73419771],\n", + " [ 8.10990858, 12.31681 , 8.98535468, 18.69373893,\n", + " 9.83780286, 2.72630968, 7.87985137, 5.32007463,\n", + " 12.00797853, 15.92827099, 8.44275685],\n", + " [ 3.90975859, 7.34404789, 5.6746004 , 9.83780286,\n", + " 5.93123174, 1.60598497, 0.51743271, 7.87985137,\n", + " 9.35566037, 5.05536311, 10.53408125],\n", + " [ 1.49707597, 1.93438197, 1.71227576, 2.72630968,\n", + " 1.60598497, 1.262 , 1.60598497, 2.72630968,\n", + " 1.71227576, 1.93438197, 1.49707597],\n", + " [ 10.53408125, 5.05536311, 9.35566037, 7.87985137,\n", + " 0.51743271, 1.60598497, 5.93123174, 9.83780286,\n", + " 5.6746004 , 7.34404789, 3.90975859],\n", + " [ 8.44275685, 15.92827099, 12.00797853, 5.32007463,\n", + " 7.87985137, 2.72630968, 9.83780286, 18.69373893,\n", + " 8.98535468, 12.31681 , 8.10990858],\n", + " [ 7.73419771, 6.61153784, 1.60576409, 12.00797853,\n", + " 9.35566037, 1.71227576, 5.6746004 , 8.98535468,\n", + " 4.84009298, 11.9523207 , 6.29941723],\n", + " [ 7.91909148, 3.09535492, 6.61153784, 15.92827099,\n", + " 5.05536311, 1.93438197, 7.34404789, 12.31681 ,\n", + " 11.9523207 , 12.99063169, 9.78649295],\n", + " [ 3.40576093, 7.91909148, 7.73419771, 8.44275685,\n", + " 10.53408125, 1.49707597, 3.90975859, 8.10990858,\n", + " 6.29941723, 9.78649295, 6.1870122 ]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -7.65814471e-01, -8.39758950e-01, 7.49083269e-01,\n", + " -9.35797260e-01, -1.22623935e+00, -3.13514588e+00,\n", + " 4.35308043e-01, 6.65460441e-01, 6.17269495e-01,\n", + " 4.39881603e-01, -3.14159265e+00],\n", + " [ -8.39758950e-01, 1.84719564e+00, 1.70902436e+00,\n", + " -6.50042861e-01, -5.76818268e-01, -9.16177187e-02,\n", + " 1.76512372e+00, 2.97853199e+00, 1.45401552e+00,\n", + " 0.00000000e+00, -4.39881603e-01],\n", + " [ 7.49083269e-01, 1.70902436e+00, 1.64851065e+00,\n", + " -5.51373516e-01, -1.32816666e+00, 2.45429375e-01,\n", + " 2.86246989e+00, 3.08272440e+00, -1.10623774e-15,\n", + " -1.45401552e+00, -6.17269495e-01],\n", + " [ -9.35797260e-01, -6.50042861e-01, -5.51373516e-01,\n", + " -2.97776986e+00, -2.96295975e+00, -4.83162811e-01,\n", + " 1.34000660e+00, 0.00000000e+00, -3.08272440e+00,\n", + " -2.97853199e+00, -6.65460441e-01],\n", + " [ -1.22623935e+00, -5.76818268e-01, -1.32816666e+00,\n", + " -2.96295975e+00, -1.30996608e+00, -1.24358981e-01,\n", + " -3.14159265e+00, -1.34000660e+00, -2.86246989e+00,\n", + " -1.76512372e+00, -4.35308043e-01],\n", + " [ -3.13514588e+00, -9.16177187e-02, 2.45429375e-01,\n", + " -4.83162811e-01, -1.24358981e-01, 3.14159265e+00,\n", + " 1.24358981e-01, 4.83162811e-01, -2.45429375e-01,\n", + " 9.16177187e-02, 3.13514588e+00],\n", + " [ 4.35308043e-01, 1.76512372e+00, 2.86246989e+00,\n", + " 1.34000660e+00, 3.14159265e+00, 1.24358981e-01,\n", + " 1.30996608e+00, 2.96295975e+00, 1.32816666e+00,\n", + " 5.76818268e-01, 1.22623935e+00],\n", + " [ 6.65460441e-01, 2.97853199e+00, 3.08272440e+00,\n", + " 0.00000000e+00, -1.34000660e+00, 4.83162811e-01,\n", + " 2.96295975e+00, 2.97776986e+00, 5.51373516e-01,\n", + " 6.50042861e-01, 9.35797260e-01],\n", + " [ 6.17269495e-01, 1.45401552e+00, 1.10623774e-15,\n", + " -3.08272440e+00, -2.86246989e+00, -2.45429375e-01,\n", + " 1.32816666e+00, 5.51373516e-01, -1.64851065e+00,\n", + " -1.70902436e+00, -7.49083269e-01],\n", + " [ 4.39881603e-01, 0.00000000e+00, -1.45401552e+00,\n", + " -2.97853199e+00, -1.76512372e+00, 9.16177187e-02,\n", + " 5.76818268e-01, 6.50042861e-01, -1.70902436e+00,\n", + " -1.84719564e+00, 8.39758950e-01],\n", + " [ 3.14159265e+00, -4.39881603e-01, -6.17269495e-01,\n", + " -6.65460441e-01, -4.35308043e-01, 3.13514588e+00,\n", + " 1.22623935e+00, 9.35797260e-01, -7.49083269e-01,\n", + " 8.39758950e-01, 7.65814471e-01]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plots" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bispectrum in stingray also provides functionality for contour plots of:
\n", + "\n", + "1. 3rd Order Cumulant function\n", + "2. Magnitude Bispectrum\n", + "3. Phase Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX+4LN1V1/lZVd1Vfe8959z76msCJoTwSxzQccRXMiOO\ngvwQQyDD6GDk1xDEyCgqIiPgOA8MwmNAGIgDI7wiIkJEQMGIUX7NMIEZYZIgiAR0IAaT8EJ4Q+57\nz7n3nqru6j1/7NpVu3btqtrVXXV+3Nvf5znP6a6qrqqurvqutb9r7bVEKcUBBxxwwAGPF6LLPoED\nDjjggAMuHgfyP+CAAw54DHEg/wMOOOCAxxAH8j/ggAMOeAxxIP8DDjjggMcQB/I/4IADDngMcSD/\nA7wQESUiHzjzMV5cHmcx53EuA4/ydzvg0cCB/B9BiMh3iMivicg9EfkPIvI5MxzjZSLy/4rIfRF5\nt4h8p4i8cOrj7HBev0NEvkdEnhWR50Tk34rIF4hIfNnntitE5NtE5Csu+zwOeLRwIP9HE68G3l8p\ndQJ8EvAVIvL7fBvu4pmKyJ8AXgt8PfAk8KFABvyEiDwx1XEGzqG1PxH5AOCngLcDv1spdRv474Df\nBxxPefwDDrjuOJD/Iwil1L9TSj0wb8u/DwAQkY8UkXeIyBeJyK8Bf79c/j+KyDMi8qsi8tld+xYR\nAb4W+Aql1GuVUg+VUr8GfA5wBvzlcrvPEpH/W0S+TkTeDXyZiMQi8jWlV/5W4BOcfd8Wkb9Xnsc7\nReQrjMfu25/n9P4X4P9RSn2BUuqZ8lr8e6XUpyml7prv7hzzbSLyMeXrLytHDd8hIqci8nPlSOJL\nRORdIvJ2Efk432etz39Hx3V7pYj8Qrnft4rIn7XWmd/kr5THeUZEXlmuexXwacBfFZEzEfnnXb/N\nAQeMwYH8H1GIyP8uIg+AXwSeAV5vrX4v4LcA7wu8SkQ+HvhC4GOBDwI+hm58MPAi4HvshUqpLfBP\nyn0YvAR4K/B84CuBPwO8DPi9wFPAn3D2/W3ABvjAcpuPQxuVrv25+Bjge3vOPQSfCPxD4Ang3wA/\niH5OXgB8OfDNO+73XejvfgK8Evg6Efkwa/17AbfL4/xp4BtF5Aml1NPAdwJfrZQ6Ukp94o7HP+CA\nBg7k/4hCKfXn0FLHfw38U7QsY7AFvlQplSmlHgKfAvz9csRwH79XbfBk+f8Zz7pnrPUAv6qU+t+U\nUhvrOF+vlHq7Uuo3gb9pNhSR5wMvBT5fKXVfKfUu4OuAV/Tsz8Vv7TivMfhxpdQPKqU2aAP324BX\nK6XWwHcBLxaRO2N3qpT6F0qpX1Ya/xfwQ+jfxmANfLlSaq2Uej16FPXBe36XAw7oxIH8H2EopQql\n1E8ALwT+B2vVbyilzq33vx2tkxv8Ss9uny3/v7dn3Xtb63H2OXSc9wWWwDMicldE7qK97Of17M/F\nuzvOawx+3Xr9EHhWKVVY7wGOxu5URP6YiPykiPxm+d1eStNQvrs0OAYPdjnOAQeE4kD+jwcWlJp/\nCbeU6zPA+1jvX9Szr38PvAMdSK0gIhHwx4Ef3fE4b0ePTp5USt0p/06UUh/asz8XP1KeQxfuAzet\nc47Rnv2uaOwPLd20ICIpWhL7GuD5Sqk7aBlOAo9zKL17wOQ4kP8jBhF5noi8QkSOygDrHwX+FE1S\ndvHdwGeJyIeIyE3gS7s2VLoG+BcCf11EPlVEViLyXsC3oPXsrxs4zl8UkReWWUFfbO33GbQU8rUi\nciIikYh8gIj84cCvTnnef0BE/lZ5TojIB5YB3DvAfwBWIvIJIrIE/jqQjti/i58BXiEiSxHxxTAM\nkvI4vwFsROSPoeMZofh14P33OM8DDmjhQP6PHhRa4nkH8B60t/n5SqnXdX5AqX+JTtv8P4BfKv93\nH0Cpfwx8Bjqz593AW4AbwEcopd7d89G/iw6g/izw0+hYhI3PRBPlW8pz/15GyDhKqV8G/ivgxcDP\ni8hzaI/7TcCpUuo54M+hDdU70Z77O/x7C8L/jB5RvQedafTajvM6Bf4i2vi9B/hUoPP38ODvAR9S\nymHfv8f5HnBABTk0cznggAMOePxw8PwPOOCAAx5DHMj/gAMOOOAxxIH8DzjggAMeQxzI/4ADDjjg\nMcS1Kjf75JO31Ytf7E2lvt6YNeju7js0tXxCiDlm81yU9b6ZeKBa2zQ/ubU+5xyigaZv49tEOq9H\ne7l4DuL/vGeZ9zf2LFP1d0PM+Ys5gcbnqmtT7dtZXu1o2ziF+nNS7lZV30UfIkIw300Qkeq13onS\n56lU+d56bf9tPcvM9xBpv446lrfeR8521nWyrtGb3/z/PauU2mceB79bfqs6Yz243ds4/UGl1Mfv\nc6yLxrUi/xe/+Pn81Bu/YfbjxBd5WYp82v1tOvZnli8S/XdRiOtjFWy8mxTb+uEq1Lr8v2kt61te\nHU6WnmWLwW18cD83Zh9x5F/vvbd898Amr3+n8hqa62eul3utOt9v9ft8q8k3K6T8H5HGW9JYkURC\nHC2IZUkszv9oqc+7yPV5bfLGOatN1ly3XkNe/yn7vUGy1H+ALOvX9nKWzjU012ORVNdEFml9j9n3\ndpwg0R/pm6kehDPWfFn84YPbfVbxo08ObnTFcK3I/6JQsLkYAzAF8XeRfdd62whcEcTRsiK0WJYU\nal0Rb6E2FdH2L28ShY+4Q0nfwJCob18+w9NYXzTXV+fq8SLj2HNe8are1/Zh45i7k327pcG+xL8T\n+ojfwCV+qA2iuYfjBLXJ9LgoTpr39tRO1SOIA/l34MIMwFgMkb1vG/tBcB+SORHg9Veblp5ysV0H\nkv3CIueaKHb18vvQZwTC99FtLFxD0XX8ELK3vfohpPF2EuKXRdpbf0Lw16cQm+BtA+AjfgPXAJT7\nnkvMlAjSVcDe7890AjPiCrLbY4JQzySE7Pu2LY+jNrqop9dLukJwjYAhOJfsbcPg3c8EpO+iUP0G\nbNpjNaWuEAlnLNJY0+Yc16oXybIm/mQZTvwG9n1eevmKUgIqruZ9fRVxIP8eXLj3P4bohz7jarLW\n64s2AENevw9GCgoZBVSfuWgSC8CQPNTcth3PGCPhjEEa6yBwHOlruq/cM8b734v4bTgyT8sAHNCL\nA/l7UGzXtQc6hwGwb85dCL/vcz7Sdx6Gapg8pwGI99/fGCnoojCGzP2f7wh6256+V8aZvgVxEsnF\n6fxo0lfr8nsmHslnF2za9zZMJwNFIiRpwKjqIPtcb9hZJxeCscTft71L8C7x+7wkmH0EsIvX78IX\nENavF5cmxQxv239e7r4uivAN0lhpkp+Q+Ie8f/J1eGbPGHQEgg/ox4H88ZP+bN7/Lh7UPqRvf/6S\nDMAUCBkFXDRCj+kzGobswZV0hKyIyLdCEs0z/6MK9M4waho0AAZTEb/BriPoxxiPNfkPefqzyj9j\nUzR9CPX2Nx5DcAEGYAqv30WfEZjTAPjmHwxt21q+bX7WF7TNt5r8s0I4SYpZDIDx+oELkXtaGErp\n3AcT38MSQZpewsTIC8BjSf6DpO/JG5/mwDukaQbsJ8jbN1rrcjm/AZhA7x88RMfcgDkMQB/xD+b7\ndxA+dJO+/tM6cxorjpcFU8EEesEEeacn/iDvf5cAbygOo4AgPFbkH6Lpt7XYGbz/rolXgyfX3m7Q\n219b3ye/QANwAfClhc5nAJq59Z3bbdvHtgkfhkk/K4TzAiCuyHpKA1AHepcX6/FXJzAj8RtMZABE\nCAv4XkM8FuS/E+lb3r9tAHY/iYGyCyM/O8rbzy/eAMwh+XTBTgud2gA08+3D5ByDPtIHOF3HXtJ/\nT/WTCqu4DvpOYQCagd75Hv9e739u4j8gCI88+YdIPH3rXPlnb+/fp793noB//U7efu75no/ICADm\nMQC9cs9Iwtevo3IbTfb38qhB+g8LOC/gbl4XJ1vFALUB0MHa3eIAdqDX3NcX7vVfBNbhWVmPMx5Z\n8t/F2x/a387yz9iHKZT0Ydjbd/8ny6YhmNoAXIDeD+0CaQWbSQ3AUCkFF32kr983JZ57edwiff0n\n3C1/5vONcCc1+9UGII13DwTbgV4og70zEn9w5s9U8I1090Qkh4DvtcG+pO/WcZlc/jEImKRlYy9v\n35V9TLZFlwTE5cwEDkHL6JbXI46TyQ1AdYgO4ncJH4ZJ30g8z+XSIv3zDdzNIcv1COE82WLPjT0v\nYm4n+vVYA2C8frACvdFydo+/ZQDmCMaGjnQvGSLyrcDLgHcppX6XZ/1t4DuAF6G5+WuUUn+/XPfx\nwGvQXsC3KKVeve/5PDLkPxXp2+99BqBaH+r9h87mndHbV84wuKInexRgGwDor5g4gKn1/i7Cd5dN\nZQC8ZaWdMgsuQknf1vVt0jdG4PRsSZ5pLz9PCzhaYwzAeUz5Wq8fYwDsOj7VHwvggiUepyjb3hga\n6e4JiQJn+Ibh24BvAL69Y/2fB96ilPpEEfltwL8Xke8ECuAbgY8F3gG8UURep5R6yz4nc+3JP3RW\n7hjiHzre3tk/9s3f421N4e0r9+FI9BT7uQ3AFBgkfU+Br30NQJfcA+Gevt62lnZcXf9u3ib9LI/I\n85ize0uykvxTQzqlAVgtoC7OEZdzAbaDgWC7jk/D6zfXcGadv+H9e6py7oSZSX8OKKXeICIv7tsE\nOBbdNegI+E1gA7wE+CWl1FsBROS7gJcDjyf5XwTpd3n/wfLPjjV8Jvf2Pbr/VTYAo0jfXjaZARjW\n+ftIf0jXv5tJi/TzLOb0nvb6zfujY+t7Hq1ZFVDLQOMygdxAr/5ilxDgNcS/qwHouu+t1+5I94Lw\npIi8yXr/tFLq6ZH7+AbgdcCvAsfAn1RKbUXkBcDbre3egTYIe+HSyV9EYuBNwDuVUi8b2n5u0q/r\nxiyrbftS4kZ7/wNe/yzevi/Vcw4DYNfvHxkfCZJ2+uZH2KSyowHoK8PgzsY18JG+IX5fMNfW9Q3J\n51lElsWcnSbkWcwmE5ZZwRn19ayNQR0HCM0EstM7wQr0bs4ujPgr77/Im78VhBmBvrTlrvt+AohA\nElLPH55VSj215+H+KPAzwB8BPgD4YRH58T332YlLJ3/gLwG/AJwMbagCcwf2JX7zuqXzd3j/XgMw\n0uuf3dv3ZfvMYABsvT/EAIz28ruu5SbfywCEyD19aZuurl9r+k2J57mHbdI33v6DewuWWcHNrGCZ\nFzwgqQxAkhrPvjYAq3g4E8it49MK9EKrCJosUv81ngJxUhsACBsFhN73PsNwvfBK4NVKN2X+JRH5\nj8DvBN4JvI+13QvLZXvhUslfRF4IfALwlcAX7Lu/KUi/67OTZP90eP2zevs+739mAxCCvUnf3T5O\nJjAA3XKPj/j7Jmn5grlZHpXefZP08yxG7m25meUs84IkK1hmmuyNAUhyW9bJOS+23EnsKvlxGdRt\nBoLbdXwsrx+r/641agupiLmLgTCfqUyTOwpwf+MpnJ09oWv7XNgM3/8EfDTw4yLyfOCDgbcCd4EP\nEpH3Q5P+K4BP3fdgl+35fz3wV9H6lhci8irgVQAvetHzLui0xqNT/pkys2GqG9tO9xyzziGJLjQa\nsnsM5E6a/q4ocu0XxwlxtCh/p2XzHD19AQq11ttvN2WKZNP71x5/m/gflhzdFdD1Ef8mE5bQIP5l\nviHJYtZJwYMsBmLyJCbPCvI0Jk22tYEpVFkOoj6fJCqcSV1OoNdcd3Ptzf/AeRpVZ7gdjYDaZM1R\nwD5xgGvi5YvIPwI+Eh0feAfwpcASQCn1TcDfAL5NRH4Ore19kVLq2fKznwf8IHqY961KqZ/f93wu\njfxFxOS7vllEPrJruzJo8jTAU0/9DmUX9HLh6+5Ur+su/dv3Ofuz9rYGnfLP0PDWrCfgYVgutRfk\nkrIh6rJOulrX773/DUw53a4m2va2i6T+DnHSfNiddQ3JxxkhAY3rBDSvVfXBvDmScEcXG4ekbMNh\ntvGNRKz5AABEVEbANxowr+NYr7sRmZGAQssuESdJURK/4l4eY7cQuZPo1Mxq0laiM26OTiDJtuRZ\nwek9c54xa2IekLBOCm6Rs05j7h8nrNOYRao4Os45PslJ0i1JUrCK4U4Kq1hr/6tYe/wnyZY01n/H\nSzvDx/L6LcnHe51GTNTb1Qi0RgEGIwyAmHvbbhJzhaGU+lMD638V+LiOda8HXj/l+Vym5/8RwCeJ\nyEuBFXAiIt+hlPr0oQ/aBb28662GH+113QG/ZqOQcDnHJjevAQB/kGvIAPjQQ/ANA+CD2dZa39tc\no4v446ST+Ivt2tLPneC59XuZa1W9dw2B24t1yAj0Eb8NYwTKz5rRAHWxy5r4XaMQwY0IkmiDMQBN\nQyCkRQS5HSBU3EnLQK99EOD4JNejgCTmjIR1qd3fJ2GZF6zTGHUScXSck6QFSbrl6Djn9o1tSfiK\nOwk8kWh5R//p1M86yLusPX87vZMeeWfkKMDsax8pCHP/98F2ghxvvy6IUWKf7mD2fgUWyYXOU74w\nXBr5K6W+BPgSgNLz/8IQ4rfRZwT2HQW42/rWuTCjgEEDYL+2yC5IE3UfAMezrx6Crm0sohe7wJaP\n+Ksv7iF+a539/b3XxdNnN3g04GvIvekwjmNjD9ZowJWE+kYDRHC83JDGhRULMLrwlttJxKpRpE2n\nZt4BzuMt58mWU+dUjsjJUy0Dre/BOo1ZpzE30w1JWnB8suboOCdNtqXXr4n/RqyJX3v9WutPY9WW\ne8y968o8Q9fnAgyAQcsQuCPhPhgHyGMYDvDjsjX/STCHEbDX2/sZgm0AoCSzIQMA42UgH4ZkIAOb\n+B0JqEH8i6Sb+Mt1oInbXHs3a8ZNkx09GnAlIXNsaKd67ooRo4EKESQYGciQrpTyjxkVCE8kJt1T\ncdfuLHu0Jku0fs+95unkJzoOcPNkowk/LUjSgjTZcieB1ULLPDdiuJ1o4teEr0oDIA25B6gLuNEj\n+XRdmws0AAaDspDrDM0EEVgst8MbXkNcCfJXSv0Y8GP77meOeID92VB44wC2J9tnAMptBmWgoVGA\nTwYq17WI38BD/PVFGE/87mvbEEw+GpgKg6MBbQQKtSDnoWUAwuMAd7NyWU8cIEkhSQrStODoZM3x\n0VpLPQu9nycSbQC0vq9KqWdrEb+V2ml7/bbk4+vv3HVNLiAO4MNUstABbVwJ8g+HELPorR0zVTxg\n31rnowPB5rW1zc4ykAVXBvISv2mu4SF3WaRt4jen4wR49f86XbKdQTNuNBAcIJ4DAaOBJIJCNsTR\nelQc4E6q6glfXXGALOb4JOfoZN0I8N5JugO8zfo9HV6/e83cEuN9BqC8FqGYahRgsJcsdEAL14z8\nNQwJ7GoEQkYB7ra7YFQg2H29jwzUMQqo4CN+Ax/x2+vKc7MDvK3v7QR8oXkdh0YDowPEc89SdUYD\nuU8FmCEOYDJ7bt/YNjJ7nkiopB47wOvKPQ2vH+o6Pn3oMwDmWlyiATAIkoWmOI5AfAj4Xj3MaQTs\n9ftidCAYvMHgygD4ECADAd3Eb7J3fMTvZPbY3wv8ck/rGnRkUfkMwU6S0EWg/L2S+AZFKQUVakG+\nfajXTxgHSLJtI8BrMntMgNcEedvEX1/fVovGUMwgA801a3iULHRAA9ea/A2GpCDYPR4wFYICwdA7\nCqi8nV3mBLjwEX+JIeLv0/lDA7563bAsFDIaiC/C+zdec3kt4jipFJ4kYvI4AFAFeO+kqjPACzSI\n3/b6vSjypt4/9J2vYBygC52jgQO8eCTIH/YfBUAzHjCV129jMBAM40cBvkJZBj3ZPl7iN5k9bu58\nuc6cd/V9BojffR1qCMaOBvSErRlhlz0uctgksDpqGACDqeIAbmbPE4kmfjfAa3R+G5UB8LVodL+X\n+d9F8hMaAJh3FGAw6f5FsVg+mubkepG/Gv4RppKC5sJgIBjGjQLcA/QFg2Hc7F3z3yF+tzSC/h8e\n8DUYyv5xP+Magsb+5/D+LdK3JQUBOD+DRUK8SIjjG9PHAQp/Zo+p32+I3+f1j/6O5v+uBgBGG4HZ\ncdXO5wriepE/BN9sU4wE5oIbCAbCRgFTlYYImb1rjmnO2SH+EImsT+LR68PTQO3tW6OB0rmeVP5x\nid94z4uEtq89XRzgbl7W6l+0SzeYAG8f8fd6/UPXpk/rnzgQPBvcSYh7QiJYJIc8/6uFiY3ARRsA\n2GEUMEYG6kPI7N2ezJ4hucdbF99ZFhL4dT9n91jwbTsZXOLPzloesirJTqyahJPEARKqQm1u6QY3\nwLsLgvT+LqKfOBA8KTrmoRzQjetL/gYTGYHLHAV0GgAIHgUEl8sNnb1rnwPjid+UQ44j/y0WEvjV\n6wINwRTef5e3v8n16Mkzj0Jlp0iRTh4HMAFet3SDjUGvf+i7Dq2/oDjAXuiZfHhAP64/+RtcYyPQ\nKQPBfimhXcFg3+xde521bEyA11cH322B6DMGfaOC0DkBeyOE+M3f0c3GRysZaOI4gB3g1XKRX+7p\nRFeg1/7OQ9fkqsYBBkh/qudXBOJDwPeaYEIjcBEGIKg7mFsaAgZHAd45AeaBDczl3+VB8vW77Vs/\nZAzGZAHt7P13yTwu6RucPSjnS6xhmcPqaDAO0DAEgXGAvgCvDdfr98IJWjdgauP4akbNEAfYK+Mn\ngPTnTNneByLyrYApZf+7POtfjq7pvwU2wOcrpX6iXPc24BQogM0ELSOvG/mr8Nl7ExiBOUcBXS0j\nXQNgn2PwKKBvTkAX8Rt0EP9Ynd+0PrTh06mHjEHXqKCzDhMjRgIjvH1lyT7tb3E2GAdIYFRdoKwQ\nT+mG5nXoyu7pndTlLreLoq3X3UUDLzsOMIL0+yYbjoWImjLg+23oJu3f3rH+R4HXKaWUiPznwHej\n2zgafJRp7jIFrhn5lxi64WxMZASmMgBdXoktY/hms45KCR2YGewl/oDMnlC5x0f8vuX7GgNvBtF2\nHeb970L85n2yhPUS4aZ311PEAYCqdIN9vXxyT6fX3yX59Mk9uxiAoXX7GIAdSL9Q60kNwFRQSr1B\nRF7cs/7MenuLmeerXU/yN7hAI7CPAfBnv/hz3oNGAWMmhtkGgAHi91ybXYnf6Nmux2ojZHTQZww6\nh/dD8o9N/NlpMOm7AV/FAyQvy2VMHAdIYxp9ePvknsYyn9c/NgA+lwGAcCOwJ+lfgvTzpIi8yXr/\ndNmFcBRE5JOBvwk8D93f3EABPyIiBfDNu+zbxfUmf4OZjMC+BiCE9O3lXQbAHBt2HwVUlDpA/GN0\n/iHid18bjDEIY4zBIPbw9snXqPOiJflUJD9xHCAroobOX31fH+F3ef32ebp6/1CwdygOsIsBgOFR\nwESkPxR7CoWu5x/kgD87hQ6vlPo+4PtE5A+h9f+PKVf9QaXUO0XkecAPi8gvKqXesM+xHg3yN5jY\nCHQZAOgnx1DSb9WtaXSMctZNkRJqEEj8IeUbdoFrEPYZHRTbTZ0sY8P1/icgfnW+QZ1vkFWBnJgT\nXKOObk4SByhkAzzExAFs4nflHp/m3/L63YldVj1/oCZ4TwprY5upDYAPE5J+l+x4nVBKRO8vIk8q\npZ5VSr2zXP4uEfk+4MOBA/m30OXV+G7IriFxefOFFI2rdjWS9H3vdX0hvxFoGByL8LzNYnywH8oA\n4h+T0gk2KQ8/fE2PfrcJS1cGZw/0Ny4rpsqtm81RgG0EStktXh0RO7OCzegvURtuLOrfvVGb39H3\nK8LPzvW5uOUo+tI9Q4oAdsk/feTet86XYtxB+j4nxGsAekaee0MgmrcUUX0okQ8EfrkM+H4YkALv\nFpFbQKSUOi1ffxzw5fse79Ek/y74HoCAINUYA7Av3Cwgg1icEUhH4DOOmw9rHB/Vb6ybuCb7hzvl\n7/dh19mn1wGyWiCrjjJyZpRgd0wz8QDXCJT/4zIeUMRNI1CoAMK3Zx2HEr6LLnI32IXkndF0YyKh\n/TnvLHJdFsN1Pvo8fEP2WVH/LidJHSi/KhCRfwR8JDo+8A7gS0Gnpymlvgn448BnisgaPQT8k6Uh\neD5aCgLN2a9VSv2rfc/n8SJ/H8YYBAvTZgANlKO2RgD1ZzoMw/ahkwniq6kzLdm3ztfN0JlIf50F\nnt9aKMcuTitAWQU+Lm5WkJFVkiXcuukYAZ0VZIwA8Q0KNuTFg/ZsXZfU3fLMoYTvw5Qk767vGW0W\n2zU4DsiQd+8jextpfDVr8Sil/tTA+q8Cvsqz/K3A75n6fA7k74P9AI3w/vtaRHYhRD8f2sYOFuv3\n3SMGe/1cQbIkulHtv1DryhhcuhFY1MHvSpjqI0tLDhFAnRf18qF+CeAxAlZ57bKstlodNYyAyQy6\nEZ9oUi+2sDlr6PeNmMXQdwiBPcHPB09crJPozf7s/y1p0T/aHOvdd2Gf2kctRIKkjyZNPprfakpc\nlWqFA+jLImovm5bsbSTxDU+tHpOxZBmoizQE5vfblyShW/Lpg88IGANQBlRVScCSHldGYFbCt9GT\n6gsDRG9/vnOy4KYK2PpGm76ssTFkf8BuOJC/C/ehsm5o1/vfRfoZmuQ1J+Ym3Lp/7KIcBVmZLNZD\nbra9iPNqZEYNwfX0ndV7+5LGCAAc3WwagTI4rJwSHKP0+13gzvp20UX07nu7CKBD+FCT/FCgNit8\nqVvhSOOtd07EzhDZzeBfAxzI30bfbMgZvP85JqT4iNQ8XHMHYnVmypIkLic8eaRX33e9tBEBNMls\nHfA7hEo+QwjIEJqN8G0sknZA1lnf+d7j3YNfVqzIf0cpJxSms9ncTZkeBRzI38AKojXg3PxTeP82\ndiX+IZK0c52NR6XLBex0uEHE0YIkukES3ag9baukgQ5a+0cB7n5gGiNgz43wH6xjBnAXpiB9F70Z\nQjMTmPH6fXq9732Hd18t68nQMaSv78V5PGkT6J3M63/EcbhK0E389jq4cO1/DAH6JrbUnlXE6Tom\n3wpQzGIAkuiGlnuiZSVVmJIGJpfdRZ/hm3s0YJe8aKBP+slnlOZ8GUJHN3V20FwwXr9b7tvAud/9\nbTyHs3TmJn0bSSTDpa5HQCKIDgHfRxA2sduBtRICzQfA5Gb3ZP6EZvw0mpzvSG59hK9fR+Rb7fXf\nyyPqmWHYS+EiAAAgAElEQVTTGgAT5I1lSVxsdT0bC77CZjaGrtfkhqDL4zeTnvowh/dvo2EE1rUR\nmHoUYHv9vd59+bqD8N33bqaOIX1zHwKNYnVTIo1VPRfiIPsM4vEl/wHi927bkQ4XKv305eqHoG/a\nehfp64fP1Iq3SylMYwDsIG8S3dC18AtrJGWlL/pmtNbEEXYtXENgyh4Ew6elu3WRDBLHGMxN/AZW\nEbmqPtDUBsD2+vck/Mb7DtI396GBDsxOV4bBBHqBeVp7PoJ4PK+SR+ZpEL8xBjjevxX8nWrW7xjt\n3oU7jd1H+lkR8VwuPCydrTS2h977G4BGkLeUe1R2Wq5MWhkyfaOAscZwtLbrI37fKMCQfL5Glsta\n+plT9jH7t+oIRXfq1pyTykAerb9P0tGvu0nfTdH0kf69POa80O0psyLqbE25L+xZ0ZPgkO1zVTBB\ntkof8Q81wDAe4p65/32TtkKKUvlIH+B0HTdIPyvbAb4nBzM/6UYsQH0zp/Fm5yygVpB3c1aXSC7h\nq2wZQ8cooD8YPAZ2ZdRRCJF+poZbPC6r/0fnBeIWj9vXANgZPovEW0dHv25no/Xn5Ut5D/qdD0P+\n9j2YxmoSGegg+YzHNSP/PTAk87jVEEsorPxnR/6xvf99yj3vQvh6WVR+vtb1bdI3D9zdXDgv7c0q\nNnSsH74kUqUHNt4ANIK82Vkt+ZhKma16NvUsVph2FLALWkFfd2RQjgC6yj3sDYf0t89lqPOCbaZ/\nrKi02JF1DtWvVM4QHg03uBsn3hm3+nX/TPAh0s8KqRwP/afP/k6iv0lWLKoaPPvIQK7k09XhbCdE\nEl7W45rh0fxWLkKJvyOvWm2ynYK/QwgJXnZVKHQlnnt53CL98wLuZlK91rBpJK5iAGMNQCvIuynr\nzGxyuP/A+xnvKMAxAKEpoaPhyjvuex/xu2TvW7YLekhfnReobMM2gyjNiLIN8fmG6HxDZFJC12s9\nL2DXOIAV6C1oT74yCCF9k0nWN+I8L7Tz4d6DWk0xIwDZWQayc/sr2acvxfcA4DqS/9jJL4H6fmOf\nPl3Y2UdfLRRfxk8XiXV5/aGk7xta2w/c3RyyPCIvA74crVktagOQxvWMylAD0Bnkzc7g4f02QQ6M\nAvZJCa3Oacog31zSj0X6mvA3XtI/v69/q8V6S0IzCcH8WjsHgp1Ar/b622ma+nU/6efb2ulwR5x3\n8ybpnxf6PtTYcr4R7qT63j8vYm4nddeyMTKQndtv9zo4YBjXj/zHIFTfH6qXUuRN+cfe1vL+Q6Sf\nPm+2rw55F+n3eVnnBZyeLcmzmDyrSX4Vr6lHAM1g1pOr4YqIsSy11u8GeTd5oyFKo3yBg5BRgIvJ\nRgGuA9E32WsK6ae8Jtu7Wa3nO6SfnwmbPKZYC5s8YrMWVrcKoCBBjwzi86IZB8jX4wLBTnpn7fV3\neP49pB8iM9qkn+cxZ/eWJOkWyDlPttVVPY/NFY4rMh9jAExuP1DJkMElPYYggqSHgO/1gUfmgRHE\nb7oXORp/Jf9Yy3YN/tqSzxDpAzt5WWenCXkWkWUxeVbfwElSoBnWDL/tAHD/LGAT5I1l2Q7yrte6\nbEEp+/gI3oYC2GS9o4BdU0JD0av77yv9DJB+cW/DZt0m/SIXNutI/88jNnnB6lZTIvTGAYYMQKfX\n3w7iQjfph8qMhvTzLOb0nnZCkrQgzyKOTtZwtOa8EHRSk+JhITyR6HsxK8JkIDfQW3n9Y/sWXwBE\n5OOB16A9rm9RSr3aWf8E8K3ABwDnwGcrpf5dyGd3waWRv4i8D/DtwPPR9/DTSqnX7L3jXfR989oe\n6tvt63z1fXqCv6HoT+NsBnP3eeDMewPjfRkDoIPAZv0SWHcagN4g79mDugUidFeytOvXLJLRo4DR\nZbNDi7tNVU8nX6PunTczdwJIP7sfs8mFLNsCitTxOFfW/aV8cYC+CWG9Xv+6RfpQlwXpStt0Zca7\nWfsezLOI03tJ9T7JC/Ks9uozyxFZVXNQ3FiU/znxBXr1pxfo+3t/SDSij0PffkRi4BuBjwXeAbxR\nRF6nlHqLtdlfA35GKfXJIvI7y+0/OvCzo3GZnv8G+CtKqZ8WkWPgzSLyw0FfqOshnYr4Tc11s8zS\n91vBX8cw9Ek/vhTPrrTN0AfO1fXNA5dlcen5x2wyYVk+cGfYoxRtAOo0ZhN8i/HNARgM8prJSWdl\nwNeSe0JGAReSEhpK8LbuHyr9nD1op2uWpL99LmObMUj6+fmWPNuSZYo0FY5ux9xaL/SIYC2k64Ik\nu090u5Ygg+IAfV6/0/e2i/RDY0t99+AaIT/R92CWxRyfrIGc82LLnaSUgQp4ItEykB4BbHtloEYn\nu8hx2K4OPhz4pbIxCyLyXcDLAZvvPgR4NYBS6hdF5MVlF6/3D/jsaFwa+SulngGeKV+fisgvAC9g\n1y+0j77vEr/5n3huJF/DdLPKTv20gr5ua8auLJ8+Xd9NmTMSz3MP2w9cXj505oG7mRUsc/3wPCDh\njIQkNQ9TzirWnqb5Fr5ZwCFBXmVknzKtwyVzVV7rrlHAhaeE2lq//Xqs9NNB+sVzWRXE3ZRkb0g/\nux+xWUde0j+9p69fnporGNOMzRStQLD0xQEGvH63ymZo2uY+9+DdLOXmiTXaSAs40rEo7WhrU+ZK\nkvYo4IpJPk+KyJus908rpZ623r8AeLv1/h3AS5x9/Czw3wI/LiIfDrwv8MLAz47GldD8ReTFwO8F\nfmpgQ//yoYwedzsbfcRv3jvyjzf3Hzq9/6F6P1Pq+uYhlHvb6oFLsqLy/KE0AGl7BGAMgG8WsHcm\nr/H6jcdfZbPUD3XrF3ODvx4vepdg8IXALffgmZy1vZu1snc2FeHHDU2/Jn5N+Ib882xLdq7gdgz3\nzO/WbwAiQFbl+fCgGQcY8PrdAoC7JhTY9+CDe4sG6bv34DqLeVCOQvMs5vhEP0dZUnD7hpaBzgvF\nnUR/d3dWcK/kYzqfTYEoeIbvs0qpp/Y82quB14jIzwA/B/wbYLZmxJdO/iJyBPwT4POVUvc8618F\nvArgRS96fr0idKq+D74bwyUh2/N35R+T/WOOae0vLptRx9GyIioj91TpiJEOrOmbVwHbygDUXvcW\nE9Z7WM6MdGkxA8uDt049i1l3ZCisE71uyYY0LUjSgjTZslqY2ZdU56EfMu1d2Q9YA4sEsPL6k2V5\nZoEwk5VMK8EdZ07brSwbr+2yzj7vvixBoTZZU8ozv/Xaug/ccg8GdQI7soqbNiqrDeEiMb8pwJZN\nbnm1qVBbt3oPSRqRpBFpGrFYFiyWinipWCwVki6I0kXZVH7ROE+VlCOAZA2LHBVnSJzAIieJbzRO\n/5iHnJa3uM62qc/RVOKs+U/fg1VHS6dRuoktLVLF2jJWSUn85r5cpzGLMtUzSYsyDoW+F8uPNe/H\nbfVsmNf6vuyIb1w92eedwPtY719YLqtQ8t8rAUR3a/+PwFuBG0Of3QWXSv4iskQT/3cqpf6pb5ty\n6PQ0wFNPffC0hUCGYAyC6/EtktEGAEzJgaYBAEP4W9KYclhrHhr9ID6R1N5XwwDc2HKebMmSoqHl\nH5GTp9oLWzvmdJ3G3DzZcHSck6RbkqTgTqJn/q5iuJ3oGb/6AdtaJXKXjQyfhpF1vHlZLRre/1jI\nIq2rTRpv1WkFaP8fhMVnsWtcxhoA2qWe5UR73eq8qH5uQ98xEGUbFllR5u/XJ7OiYJFoYj99zj5R\n/f/4JOb4JCZZCYtEESeKRbJlkWyJUm1oZBUjqf7f+B3KZjH2CKp6vzoijpfE5f0YRwuOlxvSuLBi\nUPocT5KCtIhYlbKP2dOdtBwBxFues45xfJLrEUASc0ZSGYD7JCxLR+XBcaLvw1Tfh8YJOT5as4ph\ntdCzgJ9ItAHQHv+2zEQrenv06uA+/T2Jx0BkqoJ+bwQ+SETeD03crwA+tXkouQM8UErlwOcAb1BK\n3RORwc/ugsvM9hHg7wG/oJT6X4M/OLYBx1j4gnk+/d9nAKz1oQYgqTI4dFqdyXNOY5NLXW6I8ERi\nAr6Ku/ZjnWzhWBM+DtnnJzEPsrgacquTiCTRD9zRcc7tG7XX/0RSe1XmIev1+l0DsLYIcrWoCcn6\nkz0qU/qIvxE/MQQvi7ZRsFi5ZQDMOZf/Bz2MpKy3v9QSi/35iBSVxqhVAXftw25YUbBZC/FSwf2m\ngT++HZNlAs8VQESS6tFAshJuHQvprYLVrYL0VkFypIhup8S3U6LbadPrt1Geo/6fwyKvJLs4PioN\n+oZYNta9qAAjrZhqsGFOyKlzeOOEPLhX3zvrNG44IGlacHSyroj/TqqJfxXXxJ/GqqX3XzcopTYi\n8nnAD6J9gm9VSv28iHxuuf6bgP8M+AciooCfB/5032f3PafL9Pw/AvgM4OdKjQvgrymlXj96T7sO\n87pmcebNoX5L/+8yAM65jBkBGAmoNgDaAzxJICvKfGtLJriT6MkxJsWORB/g6ASSbEueFZzeMyQX\nVx7YzXTD8UnO0cm6GmIbL0s/ZKrhXbWmzA8Z3mSJTlEe2Mb8OZJPn9fvg52lkrCpFQvzzWVpyW5l\nLCYqtWGfl4+/f2/zoPX9IdxEJXWWk+2PRndS5DxGpQXFc9oALEqZD2CxFjbLCO6DPvEIbkNyrnX/\nULlHTlad5N+SfzitzjFJj6pNC7Ug56FlAPQ9eJIU4U7I0ZosKdpOyImWgx6UktDNkw1JUlTEnyRF\nRfxmBGrfj7bOX92XZSlvu45PodbEXN3ZvSW3vd5Z9k3W638N/I7Qz+6Ly8z2+QkmKdM5AYa8fVf/\ntwPAgQYAmilpfQZAoykBQD0EJ28O5kOH4EBL7rmTNr0sI/nUD9j4KfN7lcAdIffYwco0VuRb5TUA\nLewrAzmofrWjmzoukKxxDWBMyjaLkfMC7m1wtf14beQ+vSxZxaRpVHr728rzj08W/XKPC1f+uUFD\n/zfyD0ASQSEb4mgNrBvnOOSE3M3KIzhOyGljJFoWE0wKjk/q+/D2jW15D+oA742YivTr2NO2X+6x\n4jyuDLsXppN9rhwuPeA7DiUxGuln6sBOX9DXfm8HgAMNgCb4dcsAQEmsJRkl6JzrvjjA7URrsGOH\n4EClr7pyT/NBazbBbk2e8V3zRE/kUs6yluQz5PUHoNke0JZP9LWopLSLkoHYLQ7AmWPgbxUslsIi\n0ZlAXTq/kXuiO6k2OEMYkH+S+CZ50SzGd2MBSaTjALb0A34n5E6q6px/a5h7fAJ5Vuicf5IG8Vey\nY6w/b4i/jjuZUWgd7AUOPXonwuEquuiawGPLP4nj+VteYasExIABsFGotS6fMEUcoGMIbuurq9gn\n99ReP9CUfMx37oMh9l1q4AR6/VCXHtB9ic31AJOymkSi4wFzyUCbvDmRKiAOsCVrZAIl6EDwZu37\nDlFD5+/N7hmCm/5JM28sTrUBKLZrcjuVtowDaOlHgp2QO7RHoeWJ6O9dEn8lO5ajT0P8zbhTfUK2\n19/5DG31M3QFA75XDgfy90Ct13Vgckj+2TgjkDjprAHUNwKo0xT1zRsSB9AemeV9DcQBAEtfVWWW\njw7y1hk+dnncPaokOl5/a12g198n9+g8dJswofakyzTCuWQgFwFxgAhQqwI5jynKdNgqDnCr0Jr+\nWjgnJk6aOn98stAe/50yyNul83dhIP3T3JsJVDOo8/K6NOMAtALBthNyN+/PRkvSbZVefCehMfqs\n78VtlW2mj+f3+g/tGvfDtbp6CjVcp6WUhFoFu4bgeKqdBsB+H2oAoJKGQgwAEBQHMB5ZXxzAHoKD\nzqPWgTXtaZk0OiP3uF5/45y6JtEtrRHR2k9IDcnHh4Agryv36NnQfq/5QmSgMXEAmrJKDKi0YJvF\n8FxmBYK1zr/Jo/C0zlC48g9nTvpncyJdEt3QhkA2wEN8geCWE5LoUWgrDmCy0aCV0tmX2WOIP8Tr\nN6jSPQ/oxbUi/wZc3X9I/3fLOhjd3ib9PgNgb2PLP64BgKrSZ4gBgLYHo4NX08QBzBD8vBwFuDn9\n5mGzh9cu6dclcgPjKyGyT4/XHyr3mBmoTTSD5JPLQMax8H2nvvkARzeRZI2sdJVP+2y5rcsz2HGA\neFmwSLattM5gnd+H1uxfav3//ExXVU2PvDOpk/gGcbQmidxgde2E2IFgqOMA9ii0lnpq4rdjTnZm\nT3VsM5P3MrT+g+zz+ECFpH/2wQoAhxiAZgropuXVhMQBuobgrTgAxtvy5/TbXj+YafOe7+xL93QJ\nfyjQa8Px+rGqV/bJPea1hiNWzyUDlaiIvej2/gEkWTZiAADRHXT5h4E4wF46fxe65J9qg7OqrHa+\n9Xw+Yq8JYRCW0glNuWc09uix/bjg2pF/wzO7AOzk/TsGQJ+4RZg9EpAxAGPiAJ1DcJqpeGaYXafS\nNasl+nKnW+gbXfkyfrrg8/o9QV7z/X1yj/nT8Gn/5v3EMpAdBwj4qsJNHQhO6oqnQ3GAJNXEv5fO\n34WBALBBYlVU9QWC7QlhwbPSGU7phLbc00pA6ND7r3qu/1XCtSJ/pZxHbarZvr4UT2g/aF2TvwYM\nQFUILtAAGEwZBzAt83wlHPryp+uT6Ujx9KGLoOxAr4Ht9VvfO0TuyYqo0Rc2jVU5EvCNAiaUgSyM\njgOUMYChOIA6L6bR+X2oJiw6+r+pqspxfU4jA8FD2WjG4x/K7AnF7C0bRfaalX6Vca3IvxO75vs7\nen+X5NMb/LWX7WIAKInF4qYW6RMWB9Cod9SOAzTlHjfIa3v91f+xer8NV/Kxv3eP16+/77DckxW6\n6F0N25++QBlohjjAFojL0g2TyD0uXPnHgspO67LaA4HgvglhvlEo6HvQEL+vVn+X1x+KKt3zgF5c\nyyvUKf2EGoG+5txuALh86HrlHx9CDUCJ7lIQ4XGA46W/JovxwKCd0z85TMaPL+A74PWPlXuM13/e\nKmxaZtfH2+BsoDiqpZ8gGcij9U8RBzCHiVcxslpMK/e4sGf/JksdAC5RLTeB4EUCcfPeNOiaEOYb\nhd6I2ymdQJDOP8bLH9tVrxPRIeB7ZaC9YuvH2Ff6GcpK6fP07deu9w87SUB2I/g54gB2CQef1z8Z\nfIFeA9vrt1I7zXcNlXvsjlJtmBLJECQDOXGA6lS7ZKAxcQB3QhhWHKCrMFxWTC/3+GDSPwF4QNVc\nZ3XUigPE1P2V3RnB7oSwaiFgj0KhndLpI/5BGfKAvXHNyH+mqn6Bmv9o+ceGzwCY5dCMAcAscQCo\n6/R3wS/5TAB7UhfUXj/N1E79HcPkHrurlP/emFcG6osD7DshrKqKumtaZyiq4K97HO3xqyJH0uPG\nmjhOqhnBhVqQbx/qFQGVQY3T4UvpNGjk9Hvkm8Pkrmlwba9iS/pxJll5RwO2JOTJ6R8s7cAI+ceX\n/++rA+QrQhUnM8UBjN7f9vp7MSbYi57Q1YifDHj94MzgHSH3mHoy/bU4p5OBqte+OID1W+81IcwY\ng4uSGzoNgIbilKq9JroSqB0HSCJjsIcrg3YR/1Ba5+yB3S4c8vyvFlrSz67oquZpv/aVduhb31cC\nAroLwUErZjF1HACocvpd2IHeToQYgPIatAK9A16/+Q7j5J66paBGXym2aWSgBrZ6AlzBZng+wAC8\n281NOq4DxANYL+sey86oo7pfy/7KvglhQ5VB9TbNb9ol9+wTtO0qAX6ZEJGPB16DTuz6FqXUqzu2\n+/3AvwZeoZT63nLZ24BToAA2E7SMvH7k3yjdarCP7r+D5h8s/9jweX6+GIATI5gyDmCjz+s3ko8X\nfdfZN7PXntTl0/q3Dy2vf6Tcs+nS/MNkIJ0aKoyVgew4wM7zAYYKw+1aHK8PPbPZbVQkf1aeR7LW\njQTtdcDQhDBfILgu2zBDssEcmMjzF5EY+EbgY9EN2N8oIq9TSr3Fs91XAT/k2c1HKaWe3ftkSlwr\n8lfOI+TN+hnK+PFk+rRSPAPy/EfLP+CtAtqbBTR5HMA/vO6a1LWz3m+uQZ/X7w3yDss9ts5vN7I3\n5QNWMcEyUHsEACEykBdTxwHWa78BGGMQOsheWdbStNuUVaEbwJfefnvS1/2yHHSy04QwE3fKiqhT\n7uny+u17M0Tvn0wZmBYfDvySUuqtACLyXcDLgbc42/0FdGvb3z/3CV0r8rfh/YH3qe/f91Dtor92\nNYAxcA1AUccrKkOwKdeX5BkDcdl82zxo2gutG5cbQ6CLcUEcrUtDYA7s74LkDfIarX+TV4ZJbbLm\ncoPl0p9C2+X1s9vQfBV3ZffsD0NKukx0uAw0SxzAEP+ydjaAtkEIkS4t+Ii/67PKnIcLX+8Ka8Ji\n7BpJ74SwpmEeS/xXkNyfFJE3We+fLvuPG7wAeLv1/h3AS+wdiMgLgE8GPoo2+SvgR0SkAL7Z2fdO\nuLbk3/rxXenHLsNrYDfktiDLsiSBz+PveF15/QHbNtDzwANNQ2C+R5FCRu01lnnXMXG57Ialnd9w\nsmZ04LhOVwwh/LMwwvfBvQYDXj/Uk4ZiWZLLw0ovNsFZU7/H1I0BPWMU6poxpkrkKq5nMpuZpOa9\nIRwT8Lbfu8i3un59PWO4KQM1pB8bQ3GAERPCbIhN+nZAfYw8lK+rLmt6BnH9+Pf2W+4qwW3Fbmz4\niNn83qH6/r6k3ztKGwORtuPmx7MT6PBfD3yRUmqrW5w38AeVUu8UkecBPywiv6iUesM+B7u25A90\n69LWCKDxoNnE5ZZotpf1GAFZDpB9F+kPef9dmNgYzEL4Bsb7N9fA9fpL8vCVa7Z7BRdqAaVeXNeO\nsdoIEpfef92/wJQNMB0k68lETcLXr/0phi6ajWK2rVaRrTkAVhygYQB2mRA2MNrsNAYu7O2s1+Ia\nDR/xH90cJn773D0FC6ssqTIZId+qIC9fvx9H+t544NXBO4H3sd6/sFxm4yngu0rifxJ4qYhslFLf\nr5R6J4BS6l0i8n1oGenxIX8Jafnbl/Jp36jrJsELztDaYApv30UI6XdhD2MATE/4Lsw1Wq8rcmiQ\nRRnk7YIZBYDOGjnmIWmsJ6WdruPGKACkqhtjvHxD/nWp6nGE70MtAznF4cYEgm2SdwPB7jqfp7mP\nMegwAK3Xhvhv3azf+4g/Peq+f4sc4vrCNEi7kn/CNf2x8s7kBkBk92e1iTcCHyQi74cm/VcAn2pv\noJR6v/qw8m3ADyilvl9EbgGRUuq0fP1xwJfve0LXivxhxAQPYwTch8ysM7Bu/mo7x/Pf2dt3sav3\n34cRxkAfbwbC98GQRpy0UjuHEMuyyh0HrDryzVEAxJUMBE2CN7LOVFklxgDUcwWGA8FTzggOQo9n\n3+qt7BndNkjfR/zpcdvb96Cao+JcepONVm03k55/FUcASqmNiHwe8IPoVM9vVUr9vIh8brn+m3o+\n/nzg+8oRwQJ4rVLqX+17TlfrCgVil5vDK//YD5h5aJbNksSTefsu3Nz/IYQaiD5jUGI2wrfhFm8L\n8PptGBkoFj2D1B4FANW8haxF/tMRvouuQHBfXaDQyqC9mUAzGAN3dODtuWBGbumxX+bpgl2ttnCu\nhZOoMVcQ1xuPuWQopV4PvN5Z5iV9pdRnWa/fCvyeqc/nWpL/IOx0ytLDqrx++wEzxOfR/yfz9l34\nvP8QjCVpXyaR2c9chO87fkeQNxS+UYAvGAwXkzvuCwQH9wdwDYCTCdQyABvPSNVe595HPQFjoBUc\nFnedTfyro359PxBdhH7FM3dqTCf7XDk8WuTfN9nLzf7x6f9QyT/mNUOv98G+ks/Qvvvezwnb6+8J\n8oaiKxicxhvu5bEVmJ0Xfc3iu/oDwI6poH2VQfe5b4Y0/xu3hgO7IejoVmfjSpP+Y4BrRv52lkDg\njeMEgFv6P7TlH5fc9/X250bIpDb7IZ+7OcXIIG8o3GCwPQo4Xc/fstuuC5TGWycQ3J8KahuAnVNB\nd8HQ3Bc7Mysko2cMqhnq7cyuAy4fg+QvIkulmmNYEXlyymnGYxB849g3ve8B6JN/hvL994Vv1m8X\ndvHY7ZFM2TXKNKuRWzd1Ct9cBsAN8u4o93TBloHclNA5DUC7WXx7RnBfKmgDQ6mgpQHwoTc2EArf\n8zA18Vtwa1NdL0T7X+8rik7yF5GPAv4hsBKRnwZepZR6W7n6h4APm//0ZkCI/DMX6XdhCknGV6LC\nIn3TO1blZfemo5twa4ZywYum3APTF9kyMpCbEgq6euTUMlBYs/gJU0G70GMU9FE74JNDXQPgEv/q\nqP9cQuHIPxcViJ1sktcjjD7P/6uBP1qmI/0J9Kyyz1BK/STt0h5XH0PyT0f652zYNfDr7sOFj/TN\nMoBk2ZyaP6UMZHv9MLnX78INBptsoDniAO1m8b7CcBOmgtqw5630oPcbL9LmbHd7f6Z3b2Aq5z6o\nixBevWwcL0R6De51Rh/5J0qpnwdQSn2viPwC8E9F5IuYravKBLC9nAG9M2j271XCUPvJDtJX5wXq\nfIPKCt0WMF+j8jVMLQMtmqmd+wR5Q2EHg4HJ4wBdzeK7G8RMmAral+2zA6QrIWJimaeFlvdf1p+a\nyQAcvP4w9JH/WkTeSyn1awDlCOCjgR8APuBCzm5qjJ39OzdCvP+hcwkg/e1zWVXQS51viG6nFUUp\nmEYGWlge/4RB3j64ncbMnIAp4wB2VdF2s3hfg5jtNKmgITLQLuhyiGb2+Puyf6Y0AgfiD0cf+X8x\nembZr5kFSql3iMgfBj5v7hPzwRQ7Cs70gX7vf0j+uSgj4CLkuCNIf5tt9LJME7+BnBd6FHB0s5YM\ndjUATl7/XHKPtyYRkKRHFNT3xRRxAKPxN71+LCPgaxDj7w2wcypoKMYYi66A7wXB7k0x1yhgsv2J\nPH4BX6XUj3Qsfw74ytnOaG54bvyW/GO2sb3yuQzB2P3uSPr5mQDCItPr4vOC6I4eAVQGcG0Fg8fI\nQCZP3QR6Z/D6K9K3CN8uUwEQL3RvWZgmDuB6/V2N4rX275I+NAPB41NBx2C0sbC337UR0lg4zYmA\nSRiKQ18AACAASURBVEcBdgHDA4ZxzfL8Z4Bv9q+v9IJdsOwysAfpb/KYYq2Jb7NUrCxiUecbovMN\nUUn6VTB4rAGw0jsnTe10Sb8k/Cp4Wf52pr1gvDqqmovX+9BxgDEGwNX67Y5h7Z4C7UbxTYMwPhU0\nFIZE97nm8UUaAqs5kduhbu5YwE6Q6DDD91rDl9Zmv/elf/qCbRc1GrAxAelv8ojNWihyIb21pVgL\n6bogye43ZKCoPN7odFA7vdNqzbjPZJ5e0rcbypf/FVS/Y7w6qpreQD0reEwg2N86srtH8CqGdktI\n2DkVtOu6uF3cJgioF6wrIxLbGUBzocwuillMNgpwvf6D9j+MUeQvIhFwpJS6N9P5TIO+Mg89n+ms\nse4agosYDUxI+tn9mE1eev7riPSWcVsLkrLim/58mQ0E4emgzqSuAtOSsa5zPwZBpL/J9TV3m5gs\nrBaDi4Qk1bnqZj6AHQjuiwPYE7psj79ufKX7B3TJQH2poBr+TCCoDUBXVcq5SK0oSu/bGII4asZW\n9kVH3G2KUcCB6HdDyAzf1wKfCxTomtQnIvIapdTf2vfgod3sZ8FAIBhoB4EvYjQwA+ln2Zb8fEue\nbTm6HaMvN3q7vGCVZcQnNZNFEJ4O6vX6Ny1C60NfY5lO0s895J/o96rIdc46kCwSinhZnUcuDwfj\nAF1ev1/qqUcBNyo5qHsE4MsEGuwPPDHcY7V+Hzd0sa8hcEZpjcKLE44C5vH6H+/Cbh+ilLonIp8G\n/Et0FtCbgb3IP7SbvYtRmT42hmqcQFv+6TICMP1oYGbSP72nmSvLFPl5zHG+YHWrZrMVG50NlG2I\nQ9NBO7x+aD+s3gbxPUHcIdJXrudvjBTA0uoxOzIOUGv90mwWv+kO+PqnvXSngjZfB6aC7oEh4jQj\nDSPVVe8LS7pzs5BCjYBL/Oa153ncZRRwnYK8Q86u6HTG1wAvBR4An6WU+umQz+6CEPJfisgS+G+A\nb1BKrUVkikleod3s50NHzZ/Kp3ONAEw/GrgA0s8yRZ5p0klS+6eL2azLeMBaSG/VMhCgZaC+dFCP\n1w/dD2TVOzgkiDtE+vZfWZGyIvxykt4ucQC7jIOd4XNeQJaXDJjoa7mKjRRUG4BVPJwK6isK15cK\nuiumMCCuIQiWhVzS7zIWA6MAYwDcc+o+3/Le216tVM9AZ/ePAR9U/r0E+DvAS3Z1lIcQQv7fDLwN\n+FngDSLyvsAUmv8LGOhmDyAirwJeBfCiFz2vWh77Tr3vJhxa5tmHPa37QkYDnkbcKmu7m9ustYgi\n98gXWdNGZ+eKpPxKebYly4RF0v6cOi9QabPBdwPrtS7968nw0ZLPphHwHSMBzdZkxvR1QFcHzbeQ\nRFQGwJ4Qpr11/dpk9qxiOLdI38A0jbeXdfUPbjYvb7aZBIijhYfoxhH4rqRXWPLTUNxhclmoB8YA\nAFc3IygMIc7uy4FvV0op4CdF5I6IvDfw4oDPjsYg+Sul/jbwt61Fv1IWfbsQKKWeBp4GeOqpD1YN\n0p+Y7BtwvH23vkdr6LPLjEyn+YZwE5WsqyJspXCASmO2ZJWfGANRtoGzZhZJvFZmLbDlmJg8E7hX\nABFJCmkqpKlwdDvm1rH29hdLRbxULJYKSRfEt1M9B+B2iqziVnNvU/Pd9frz8q9Qa4rtpiIUr6bs\nqWfTEFA6ZDqvyGI3HTfn6PYUSI8a6ZB2eWg7EAx23f66UfxdhDvWIW3SH2oab3cXs0lfNzKXxjUy\nhGuIDi4voNkpB5n323W3DBvSUCnweekzAJ3voxC/dlI8KSJvst4/XXKXQYiz69vmBYGfHY2QgO8X\neBY/JyJvVkr9zB7HfifD3eybUKpN1mPIfoxXUtSeYmvYN5cxoCS3o5t6FHD2oJFBrlYF3K0dr4QN\ni6zg/H5Mxai3ChZLQRsBvez4BJJS+knSiCSNSNOIxVITf3qrYHWrID5ZIKtY/6X6P0c62Fv1dy3r\nvkt6XDXyrjN81hXx59vmpKYWugxASRKtImTuNbIXuMbJnKNVs8ZXZ8gUhgPIecjxsjYAJ+a08pgn\nEjAGAJqkf6MkfkP6vh7Cpu+wTfpVaqWH9H0e90UYgGLb9P57t3UMQMGmWZpiDBbN58w3Z2EXAzAN\nVOgcimeVUk9NdNALQYh5fKr8++fl+5cB/xb4XBH5HqXUV+947MFu9l7MRfZj0NGH1cY+xqAit9II\nCA+qddGdFDmPKUptPmLDioLN2jYTsKJgYZjNpB6mMUkacXw71mSfKBbJlkWyJUpBVrH2+kvPv+VR\n37rZDvLGEcV2Xcs9JfFnhbQmNbVgG4A4gUUt93SFUVvXqBw5NYxT2YKwKk3cM+N4rAGAmvSNx29I\nvvb4a9K3jYFL+jbh6//N9y5CCC2OFqOln3xrRiG+Y/q9f++2rgHwef8GC8f7D9DVbQNQLesxAFcM\nIc5u1zbLgM+ORgj5vxD4MKXUGYCIfCnwL4A/hM762Yn8u7rZD3zq4ok+FB4Jw0awMShb68nZg/oz\nRzeRZA2c14cDVFpQPKcNwAIFtwripYL7RoDecutYe/mnz5W7XwmLRBEnitWtQgd5j7TcE6ULZKX/\nSJZNj99IKelRXfrXknuM12+Iv1nuwG8ACrUhLkkljpb9MpDnOolTqtor9wSUlbYNgF0TyHjsAGlh\nCmH06/k26ZtlhvS7SL71viPdUV+zeQyA7zjdRmiE/GPQNXHS3ffQb+VkAUG3AZgCCjVVZdoQZ/d1\nwOeVmv5LgOeUUs+IyG8EfHY0Qsj/eYA9Bl8Dz1dKPRSR7rF5AHzd7Ps/YD0Nl032QxhrDFwc3dRZ\nNpbXLycgqzXbu/Vlj0nZZjE8l2kDUDLGYi2c29LP7Zgs2+6m8x/dbOv8pYZek/5Diu2mIv46mwUa\nKY2RIRbHgwyJA4A+9jJvB8/dWIQtSQU8vMYA5NuHJPGN0gDU99u9HG6XFsIn7UCYnj9E+I0qpdGC\nfEcDsCuM9ONd5zEIg/JPX4p1gNzjQ6gBuErocnZF5HPL9d+E5sKXAr+ETvV8Zd9n9z2nkCv0ncBP\nicg/K99/IvBaEbnFRaZlgl/zvy7oMQYNcnPSRIWbsGwageiOzshpJF3c1lU6ubfBMOnqVsFmGcF9\nvdUiERbL7X46v6Oht+UenTdvPP+h8sYN9BgAFikqzrp//+WyJUmNLTAXYgB80o5+79fzQ738rmyZ\nJL5BwZK8eNBYPmQAxnr/PumnT+rpzQaqTsIj/xjsOXHKZwCqdZNq/tPB5+yWpG9eK+DPh352X4Rk\n+/wNEflXwB8oF32uUspEtT9typMZhLq6PWRGwyK4IX1bb7N/JpCp7bOvzt8n94BdHsE/qQlGBIIN\ncWzy/uu0g9zjQ1d3MBt9en5fALef8J30Voss4zipJqnZI4HZSj1M5f2HYKTX3/hoz0SwqTR/pdSV\nNCRTIOgXUkq9UUR+BVgBiMiLlFL/adYz6zqXniwQG5O0XiucINVcsOsKQWdT930zgRZLHeA1On90\nO+3W+Y9uNnX+DrnHeP1AJfe4LQ/bk5qgKw4AdZ2ZOF62SMRrAMpGJLvIPT4Y4kgiMynsISdJbQCG\n9HyvAQgl/Gqdc05lI5QEgg3AFNp/fZww7z9I/tlR7vHhylcFvcIISfX8JOBrgd8OvAt4EfCLwIfO\ne2o+bIMJOcRIXHpvzkVb3hgeAeyTCURD54/SRa3zn6xGpUzak7mM12/knnbAt1nf3u1za1YbMqm8\nttD5ALCX3ONDnwFw9fzxXj69M2DNvevGiWwDUKiyaxnTjQD6pJ+uZW7wtxcz1cg5GIDdEOL5/w3g\nvwR+RCn1e8sJXp8+72l1QHmyffbwzHtzyec0DG6am+XpD2W47JMJtMmjSuePy8BupfO72T09KZO2\n3GMHeZvEj2MAoK+6pZkQ1kJgINjOQMonaiTj7w9sr9vRy3cIv3Ef2kbAKlBXHddqhWjiE9BtAHb1\n/n3Sz5DOPyr3fwKvv7E7jwGYBuqRNSQhV2itlHq3iEQiEiml/k8R+frZz8wHo/nbw0d31uBVh038\nHedcFZdz15sZwTtmAi2WRaXzyyqudf5S4vHp/K6G7so9zSCvK/lAd3lj2DcO0GhIvmiWmZgSxvs3\ncoshfZ+Xvxfhe7JiFKeDBqBQG/LtjDGAQO+/sb7PAExM/AZ9QeAD2ggh/7sicgS8AfhOEXkXZf7I\nhcP2/F0NcWIjoDbZtN6/Z1KLufl9Lfi624bY24zLBDI9fLXXb+n8ybKt83do6GFyj10B01/eeGwc\ngC26qJgnDmCuq5lwNgdq+cfR9W0vf1/Ct1+v11XWl+K0jAvVRsBthm7KVfhGPUPev5mQB/0TvqBJ\n9ENG4TLQVQxuVyge74Dvy9Gawl9GZ/fcBr58zpPqhZvf3WUE4OqMBkoyBRpeT0VUEbV3ZKMsI9GX\nCgrhmUCyiqsA76DOb6V12t25+uQeoCqF/LDw1beHsXEAcOYFdMhAc/QNdmEMgFfWsUtSm2XQajfZ\n2MYlewNPgT8AlZ0iRQroJjWuAdDnyCjZS5fh6Jjda0k/Q6TuMwpe799sP8MIzcA3E/iANkJSPW0v\n/x/MeC7DUKou4dtXIdMQ7RSjgX0yfnq8fXNzmqbdrXrpFoIDwQOZQMA4nd+Re3LTqMWRe6AuhWyI\nv1373tfo3JxhfxxgsDDcjmmdY9Ep6+xL+Pkw8RvUVN1vAFoNdWbK/An19Eelf06Anft+PEbo/DVE\n5JTuLhVKKXUy21l1wZC/gW0Elsu2ZjqlERiLAW+/VfN+S+0l7WMAoM4EsgLB0R0tYUkah+v8A3IP\nNBudNztfdZ0hdMUB3AlhEBYH2Cetcwidss4Q4fvknC7vfgT5g2UANjoQ7zMABqEGoEv66cv5bx+r\n2/tvbHcBhnoqKKxn9BFD56+qlDruWndpKCtF9j4gIUYA5jMEgd6+t+WcpYhUBsCXCdRTF2goEByk\n83fIPfo7+HP6m52vTLNzVdXDNxhudF6/DikMVzAf6XfKOkOEP8a7t14rdzS7XiN5WV7DQWUAzs9G\nGYB90BXkHRP8PeDq4GoVwBiC7fmXaY+t1wY+IwDzjgZGePu97ee6dG3CZwN3BYLlZFUTvqPzd8k9\nIUFeI/dA3faw/2y72hxaFyCkMJx4ZKEd0evlhxL+PmTvbme6k509qGssWWgYgEVCnB4NGoAp5Z8h\nXGbwdzqJaftYB3yvFMwD4w1RDRkB3yzDHiMQnPHjSd+0vX2X6Ds9f6gmzDQMgOPpD6aCVts5gWCL\n8N26Pf1yT39OvyHvyuvfNLN9VrHqkYGageBmXCC8MNw+JDPk5bfaS5p14JdydiV732sskj970G0A\nADgjXiQQL3caAYRIP2O9/1GVP/fERcYUHgVcr6tlBXwrI7D0EL7PCNjoMwIwbjSwh7dvCLWzb+vA\nCABGBoLLJuwtnX9A7hnK6beDvOeW/NN1tu0+t9AlA7XiANu1JqWOaxZqBIK9fNvD7/Lu+4h7F53f\n184TywAkS7jlWWe+G/0G4CK9/8axJzYAB7LfD9fr6rkBX2ryGzQCvgyhrhrjboaPL+NnAm/fPICu\nATCVFIHpMoGgDvC6Or+b1jlC7gGH+DfNpuchZztFHMD2PPsMwM5evmkcb+AjfvYne2VdNF8Z8HrZ\ng0EDEMc3JisJPYX3r/dj5KfdjMAg4U9c9VcpLsVQXgSuH/lDW+sfMxIYYwS6MIW3j8mxLk+rK6gJ\n3ZlAZXek0KJw+kA9Ov8IuQdoB3lL4s9y64tYTc93jQOMLgznxAL29vJdot9XynENhkX46rxJNL0G\nIOmQhyzEHSMAIj+pjZnwNQau/h9qBC6a7C8LIvJbgH+Mbtb+NuBTlFLv6dg2Bt4EvFMp9bJy2ZcB\nfwb4jXKzv1aWge7E9SJ/sW7EpH3TiD35ybO+sWzpWe8WWjN6v11WYA/SNzAeVMKmesC6ioS1asUU\neZOcynMZHAFYhrJL57flHnMeSWS3NzQsojuFaZIQnkjgPTncSRV3M4EbW86Lus3hKq4bnlfvPf1v\n9T67O2OZY9qVNLuKqrU9fIvYXcL3Zen4rp39HnQ6rZmFu163t7W263yNnnthDICs9Dm7RsDsr9Gk\n3kFDuqtGpPV+6tHc2kv85poDDdK3Uz0btY56Yi6+dX1E30vyl0jwCtVw0mbEFwM/qpR6tYh8cfn+\nizq2/UvALwBuuv3XKaW+JvSA14/8zU1verf6CD/pMAJmW19TiZLMqwfIXueVdh6OCuT6EEcLbkTW\nw2HVjGnVi/HNIm3szDIAvlRQQzqW3GN/b1vuqXbpMQCmtn0a196/6XFrDECd7VOTvm0IfP1v69f+\nzlj6fZP0O6+VuQabs0Y+fm/gtgvLZSuQXqERXKcmfUuOIV9X7/tGCeKMDOSERkZWRfpHN2vjbRtw\ne/Rm+ioX96wRnJ/0NclfDOk/Ll78jng58JHl638A/Bge8heRFwKfAHwl8AX7HPBakn8w4dvbDRG+\nee8Qo0320KHdO7Mpx8AlsmqZTfruxKLOnQ0YAKivSUd2T/v8FrV2KxtMaeN7ecxJUlS6v+lx+7CA\nu7keERjSN0RvSH/Iy7fX+conu6Oi6joVWz/h++ScMfCNEn1wPPrGMixJxjUSHQai4eXbIzY3TmPH\narZriuK8no3d4eW3Tn1mT7+rU9kjhCdF5E3W+6eVUk+P+PzzlVLPlK9/DXh+x3ZfD/xVwDcP6y+I\nyGeiJaG/0iUbGVw78pdbVqrblIRvtrFnjDrefZ+Uswt016iyXkyoxDO40wED0JHdA/0GTBcOKwvR\nRWtgXenyJ0nd43ZVpX0qr7Qz5OWbdT4v371OjRFRiH6/L0KNgG+7td8gNJCvm5q9Q/j7evldMMR/\nIP02lHKr1HbiWaXUU30biMiPAO/lWfU/NY+plIi0tCYReRnwLqXUm0XkI53Vfwddfl+V/78W+Oy+\n87le5B+1ZR/AT/g26QUQPhj9/mHLu5+K7F0Yr3q0xDO44x4DYJeSXrTjFkPnm0Q6g+TGApJoAxSV\nt54Vint5zBOJVJq/6+Xr1939b6vrMOTlZ+e76ff7IiQhYNfP3fAsm8HLdxFC+n3rgki/a9b9YwSl\n1Md0rRORXxeR91ZKPSMi741unOXiI4BPEpGXorsqnojIdyilPl0p9evWvv4u8AND53PNyD9qe/g+\n7x6GCb9cZggfnIDYHlJOCIzXv7PEM3gAjwEo99mV0x923ou6fLATCLbjAGkRtbx8/Tqs/20n6Vte\n/oURvoEtCY7BjrPIG7+TaZ+5p5ffOrWo2ZNAvx5H+no/jq7fV/LC3IvXwABsFZW0OTNeB/z3wKvL\n///M3UAp9SXAlwCUnv8XKqU+vXz/3pZs9MnAvxs64PUif5F6GGwwRPhmG2+WTlvWmZv0DQzxV3Xi\nd5F4huAzAJ4SDqN368QBTJNzEwe4l8dWYNjv5YM/gFvvP5D05yZ8G/aoyYNR/R+69uMZpdn36r5e\nvvdUnG5k7nJ3XRDpQ2+rygaugRG4ALwa+G4R+dPArwCfAiAivx34FqXUSwc+/9Ui8l+gH/e3AX92\n6IDXj/x9mSp0EL7538jUMXnsTaK3H6h8q7ixmG4mogtN/Av94MxNYk4aaHWdjORjTUgbCy0BPSSJ\nb7TiAFnp+Xd5+dAOdnfKX12kb+fg32oXP5sUtubuIsSz9xGcu8ypdz+1l++DnWhgL6tfB5I+dHv7\nTl0kr4L+mBsApdS7gY/2LP9VoEX8SqkfQ2cEmfefMfaY14/806P6bR/hl8ttwoe2tFMtq8oXCKfr\nBcfLDXfS6S+P6Qsby5K42F6M91oaAPPancm7D0wg2MQBYI2JA3R5+dAj7UAY6Z89gHyNWte59lWA\ndA7YQXJned9nWnA+b4+8+uTHOWaZuqWa5yb96n35MQF9PVxJ6ApBQdWz4lHD9SJ/oiDCh7aXD35p\nxyb9rIg5XceV95rG68lHAEYzT6IbkJ1dnGzhSGBT1sC34wCUgeA0LjrTNM1nvNIOdJP+/QdVjSJl\nvP58rclkva5LVE9tAFy5zF7uvSDt5TXJN6/70FyRuUsLuFVR9yJ9+3VX5lW1w0QXTvSd1BUzAI8q\nrhf5R1H3A9jj5duvu0g/3wr38rhRswbgydV0BqAK8lpyj8pO/R7lnAhI7Ry9S2tCWCGbUgZqSzvV\nsj5pB4JIv/orUZU3mNoALJyZ0NWX7iJ525tvXuOudGHfKHSq0gpdMCNQ/bqf9GGcrh/U3IbrNQp4\n1HC9yF+izuCtz8vX/4dJPysi7uV13Ro90z6uDjuVAaiye1jA+W+islNNeGXhuNmNwAxevw0TCDY9\nZCfR83tIf3s3Q2WF7k5WnoOinC17dHOaOIAnSA5tkoduotevN63l3fdlOXEu3nI8k4qlR2PGGHsy\nfqYm/b4R7hUeBeg8/wvJ9rlwXC/yp9b8fV6+/t8O4kI36WdF7fE3+88KxgDoTJX9DEAjyJudlTNS\n85YXVHlAU8NTv2cumDhA98S1aUhfnW+qmjgqK4jOC93J7OhmTST7GgDb6/d0ZbMRQvaN91aBP999\nqXsbFJwkxeSjAFd+q5b7SB/6ydwdsfm28/XcXiSHUcAl4nqRv0hQS0Q3SNb1cBnib9ajr1sQ2gZA\nYzcD4Avyqk2mb+6H9xsSxSwGwJkcdBEw8lY9f4HJSX+bbRoVMUEX+bR/PWB3A+B4/b4ifgY+sreX\ndxE+wOl60bgnzWtdPkOX0T5eFo2JcPvAzu3vnaAF4bq+b1vzu0J3720PfNVJK1ywEdgCgTN8rx2u\nFfkrtkG18kNIPysinsulRfrnG7ibw/lmOgNg5JAqyFvk+v/D+zW5JWtY6lz8OWWgfVI7hzA4U3li\n0lfZhvxMWCybM+FtA6D74K53iwO4Xr+nmJ9+PeDxOyW8Q0ef50Vc9TowqbPHy2ISKcieq9EbzIXd\nJZ6+pjddWCT6PinfirvumkwOuw64XuSvVG/phVDSzwrhPXmb9M8LeO5hRJ7HcLSm6UPGVsnbcANg\ngrxJfLMR5GWTtwKWre/LBKOAmb3+3oqaMCvpb/KYYi1slorFuiDJ7hNlG+LzDdH5hqgk/Z0CwT6v\nv6PURyjhg77/TEaZfT+eF1j3pLkfFXcSbQSyIqoK6e0rBbke/4WRfh/5d/TcVpQp3b4JYgcjsBeu\nFfmDqoKJfaQPUj5gbdL3P2T67/RsSZ7F5FkZ4Dlas1rYBsC+XGEGoBHk3ZzVxF/mqjfy1G1sJhgF\n+GrBTOT1e7V8tzTF3KSfR2zWmgBXtwqgICFrnGcjEAzhBsDr9beL++nXTcIH18uPgkeedzO7E5q+\nX+8kioeFkBWLvaWgZqB32R/MtV/3EX8g6Xv7b/e1XL0CowClDrLPlYBCDZL+OM+q7jx1dpqQZxFZ\nFpNnTZmnOQIINwCtIK+RfDZ5Rfzka1S+hvUSyZ0Svo3vPnIUMAPxtwgfvF4+cCGkX+TCZu1mYnQY\ngPI6B2UCdXr93a04we/ld2WTGdK/m7fvxTzX92CSFpwfrTnfCKuFHglMJQVV96X5Dc3vZzCht6+c\ndYqOjnsGh1HAheBSyF9E/hbwiUAO/DLwSqXU3aHPKfpJ383Vtx+0u3kY6ZsHr4mmAUjjqLHOZwB6\ng7xW3nrVkJuBQJe7vs8ITEj8obIOdJRSnpH0758q8vMtyaqOy2zyiE1esMoy1HlBfF7oTKDbaXgg\nuNPr33TKOlB7iF2jziGp0Yw6zb14fJKTZzHZcc7tG1vON7K3FGRLPtVvaX4v+/9EEo9L/Oa115u/\ngqOALYdUz6nxw8CXKKU2IvJV6Ep1XS3LKii1baRs7utdnd1btkh/kwnLrOBu1qzhsoptA9A0Dkm0\n8UyV7w/yKqtEQYV8jUqWnlGAJxgMfgPgIX6Dqh6/DP/so2Sd8nUry2Nm0s+zLVmm4B7k5zHH+aKU\nf8rfzIlxBGUC9Xr97f7Ldi2j4QAu3M3E6+Wf3lu27sM8j0mSgjyLyE/WJEnBeWFaZNZSkE4J1VJQ\nEqlOI+CXfP7/9s49VpasOu+/1dVd3ffec849gxnjAcaA5PxhhB1sj0YoVmRiCCZjEoITozxw7OCY\nRHJiHGHZE5AFkhWLOCRYMVbiMZaCBIpDbI/AOHZ4iMQiEohhDAM2ToQSTMwbmzvn3rn3VHVX7/yx\na1fv2rXr2dWvc+qTrs7t6np31bfW/tbaa8XNiH9d0i8h9XVGATDUCVoHOyF/pdR7rY8fBv52o+1Q\n3JyDS/p9vWyTKOH6zZgwSnjiOOTW1HmIrq8MwCzIG4Anzxa5FLraIK+pTZOenMzmOamn8SiggQxk\nT3QLZJLl4LvwEz643bGgQcPzLZB+Rv75q8h9cg2ApIFgLbV5MoGqvH7H8QA6yYx2bMl2Pm6fjZlE\nCWE051qccDsKiU9C4jggigKOT+bEsZaCTkPzXCvuCrUR0Omhyywe4EpBudx+I/k4xjz7ba3PlcTf\nlPR95J56+pVEXoU9nhx2CNgHzf+V6K71tTCz7Zrm6pvgmU36cTTi5llYIP2rUcK1mzGTKGESrwjj\nFuUGwCUaYwAy7yoN8mYv0TxPiOo8yTXqdh/iWgPgBoNL5B63kJ1rAJp6+VBD+lBJ/OrsXBO+Q/zL\nxyOWESxSwreJP3oiYBELUbQkPlc54r95lhCdK6YzIY70vyhyU3PzBmB0OkWdJ0iYntfE/J3Uev32\nDNy2qcPNnsE4ewYB7YREIbdPwnS77lKQr25/TjvvKvNY/68lfvPXbXIfa8cnS36ILUfI/H8+X40C\nDLGnz79aRKtYgHGGeqqZNQR8O6CqZZlS6l3pOq9Dz5F/R8V+XgW8CuCp9z4pLQ88Qk+/WM2EdGnS\ndJICIFxmy+NoRDi1JwYFzAmYRAnxdEUa8TRgPtVBN/1vSRgmaU9aVWhAPg2Wuh4LiyzFJGFBMA7J\n4o+mJ+sT6F7EsznqfIHMxsgsyAd77abdnh6uGVId1H08gyBc3SZ7uafGjr4LNc1kAq25ynhave2m\nNwAAIABJREFU7BC2iFeNziF7cQW0h51CZnlSNhO0ZDpmxIIxCvO7msOPJ+b3tn5zQ45TzwUC41AR\nhIpxuGQcLhlN9bFlFiDTwHuvfQgw5SkWBLIgHC2IEnLPYJSsrsm+PHvu2SwgewZNPMl+BhfR6jU0\nz6D7PNrr2/+fWW+wfXxTRnsrSAlcJprAbUIv/LW3cZCrzurC17zJbOcWezxAiMiT0E7wM9H1+F/u\n68ErIq8Gfgz9ev2qUuoX22xvY2PkX9WyDEBEfgR4CfACpVShX6W1n4eAhwC+/TufoSD/8p2Eq/aB\nNgWehorzYDUCMC/f0QmE0ZI4Srh5Zh6WgNsnIZMoYR4mXCNmHgaokxFhGDNNDcD1K0tmY/2S3RXC\nSWhS7Wz9VxEs72jvejknCK7okhSLSD+4oa4+qdKXYXSankIX4jdoaAAakT6Ue02mWQ4rzbUOwlVU\nuPL+hdvZd6PTKXIeoKYJyeM4BgDGc2ExGWljaRmAYwLiSAgjRRzpqz4+CTi6HnDtWJheS5hdS5he\nSxhPlDYu03FqZMfFe+zcy0zj9pCJ0dfNM2i87LPYnGP6K4Rakrlh/yrhEo5jTepn1k5PtFG4HQVc\nPVvd+3mon8vxVBGGCccnceaEXL+yzByR01A/j9NA6/3a21deA6Clv/S1t0soWL8teDrAmb/GyJcQ\nfK0BgGIrVvNblHxXIH6rtlerBjodsFR5Q75BPAh8QCn1RhF5MP2ci4OKyHPQxH8/Olnm90TkPUqp\nzzTZ3sWusn1ejO5A/z1Kqdt169twXz7jDZr852kygtimQcXpNB1+O17i8UlMFAWptKNHAABPoIfa\nV6cLwmnC0cmc46N59rKZF20aqDTXOr/fZLkgljsEMiZhQjDWfVhVEuvAbThZGQDIP+htiT87aLkB\nCEb6PEzwt5i5U0P6Lqz+AE2MQM5YHF1Fwjky09p/tkumLKMAOU8YRQu4Zf++EMwV44mRdPK/PehR\nwHQ6YjzRhB9MlP57Mia4PmV0OtUZPyczfQ6m/LN9f801LSIkCGEcEwQTgpQwg9FYj+yyqyk6IVEi\nEK9c8HWcEEP8R8dxRvxHqdwzC+B0qon/SrAifuOMuH2RXSTL+SpJYewYAXuE52JdA2DQN/GXlXg/\nHLwUeH76/7ehG7W45P2twEcMZ4rI/wB+APiFhtvnsCvN/y3AFHifiAB8WCn1T+o2EiR9mPMGIBwl\nrHTeJdfDETMr6GbU81PgPFhyHi65mdtzTBwGxFMddAOsl26eyT3mZdONyZechH6XIF4qgpFuuRfI\nRHv/xgAsYp29E040+ZhUz66kb8OuEJpMYbGKA5hRwFqkb6PNKCCc6IJr5O386FRLP2oasCTKqVQh\nC8ZRkk3iMiQ/I2EcaqKPIoHHE8LpiOPrQertLzPPv6vcY3v/QXCUk34Y6XOLl6YvcdEQnYRJL06I\neQaN7Hh0HDMNV8Q/CzTxXw9XZO9zRgqXpxZ6ZGpkSduzh7wBWETZ58Jz2MUApM9D9lxsgvh3gyeL\nyCPW54dS1aIpnmL14P0S8BTPOp8C/qWIfANwB93h65EW2+ewq2yfb+mynZgR9cimnNWDPg0klX/M\niyjcFZo8f8cvPpoThUkxoJsOwY+OV3LPNFxyOiV72fTQetWX1odkuSCRhTYAo0n6koWpBJR6//EE\ndaRTDdcm/tzBK2QgX7B2HbQYBQhXYTJfyUC3bmNTu5olyHlAkgZJMhnoWqI9+blwnvP8R3Bdb+/T\n+UfXp9rrTz1/jq7mvX6on+2b5L3/RM2zEYBtAKYB6fPQjxNiJnmF00Q7IOY5DMlJjytHZJnFngCr\nFAmFNGRI5R8scm1jAKpy6usMgEHfxL8hLNH80QBfU0rdV7VCVRzU/qCUUiJSeJ2UUp9OU+PfixZD\nPw4Uzq5sexf7kO3TCsFoTLJcEI4ke/l8GmwhDpBqsOeBTv/Uy1YabBgtuWnpsMbbOj6ap96+9rS0\nl2X3pfV7Wcb7T9SYOLnNleBEe//JFDU7yrymjKD7In6DEgPQG+nbaBkLyNY7uqpJIpwD56vdAWqa\nZDIQZwsM4c+uJSwmI4K5IdoR41DldP7wSGnCb6rze7CSfvK/gc6UmlsSEORHotoJceMAxgkpxAHK\nnBBYjTynyeo5HGspyRC/cUTMTF99/FXrTBeFuR4+Um9jAFwZyIbPAMBmiL9Jh7UdoyoOKiJfFpF7\nlFJfFJF7gK+U7OPXgF9Lt/l54E/Trxptb+PAyF8Pq+sMgBsHsDVY0EPmLA3PGjkcn0AcJVlO9dFx\nrHX+MVZQbYkd5K3CncWcYDJJe9zeITTefxDClWv5YbD70PfxALsGoG/Sd9FqFJBfR05Is5+S7Bcx\nv2QAjCItA50/YXn+15I0DkBO5zcB3kqdH6q9/hLpJ4cR2XPoSpFNkhGqnJBwmmQjzyzelBK/jj2t\nEg6mQfUotPQSbd0fil69CXq3NQCOl+8+E4fg8Ruo7QV83w38MPDG9O+7fCuJyDcqpb4iIt+M1vuf\n12Z7GwdF/kLe82piAGClwc7SKfYa+SH4486xzDB7FugXbhVUsz2s+nS6OEkDv2pMEqTB32Sqtflr\nV4Hb/Xn7PrgGYNMvTZNRgJEF0jx7FaaT3tLtRkxR0wA1S+AGljFYMEPHAYKJgidSbXyy8vxNgLe1\nzu+BL/CbZPKP1s1dA6DRLBmh2gkZcZSLN61Gn3bCgZvZU+X128jOH1aEDnnP3/x/HQPgyEC5Z8D9\n2zWrZ089/ZZ4I/BOEflR4E+AlwOIyFOBtyqlHkjX+81U858DP26VxfFuX4WDIn9wShOk+fT28FvD\nr8HCiLtCu96PRYtXtAZrhuBhmHAargJrK0+rXf50vHRSP43mbySFa+mKmyB+AzsQDNvxmtJjNZaB\nUgmoKh10GQXweFRIBwUK+fyVOj/kvX77vrt6doX3bxsAKAaCV2n6pjbMKg5Q54SE0yRL6TTEX5fS\naev8Bj6930bCQicBbMkA6Itbk/jL5B7f5wOBUurPgBd4ln8BHdg1n/9ym+2rcFDkLylR255X/SjA\nr8EClbnYdTn9bYxAIfVzdoQYQjbYxkNrjwI2bQDGqxEAtJSBStJBRwDXKaSDjsNlpvNrr7+bzl9A\nEoNDPDmv3161JA5wPDEEnU9GqHVC4lEhl78spdNF0xLPuaAvbMcAZCfZA/FvAUu2JvtsHQdF/mDJ\nPq0MQPtc7LKc/i7wpn6aiV/bRPoyb9wAeEYxrWSgnOdfnw4K5CZyVer8LeFKP+bguWcvHY26z6Eb\nB2g7IaxNSqfP669C7ryN9w+tDAB0mAwG/RH/BfH6d4UDI3/j+Xc3AE1zsaty+rtMnfelfsr0WBd8\n89Un7xOeDJ+NGQCrvlDu+K1koKut0kFluprI1Ujnb9PO0Qn8Jsz9Xr8jR1bFAZo4IeeL6pTOdWDX\nddJB30knAwAUJ4M1DALvu8d/GXBQ5C8i9eWIPfprlwlhbXL6m6Ay9RM2ZwDsuvoOejcATmG5wLNf\ngZVkUIE26aBAFuCt1Pk7ouD9Ayw9pE99HKBVMkJJSqcr99hevy351Or9jny1lgGo+k09qZ5rE/+W\nvHyd7TMUdtsLlHr9nlGALxBsUDchzJfTr7fr7nUZ7z+X+skREoSbGQG4DVVA/722WqU3A+CpKMqI\nUgNgjp2dp/syhxPk1u1G6aAmwNtI52/bxN1BwFiT5GhiP045IvU9h3UTwuw4wNfjVWaPL6VzHbnH\nRaLmq9pP644Amk4GW7dWj2+fg+TTGgdF/lIn+7SUgaomhLXN6W8C2/vPUj8xgdHjVXOUPoxASSct\nTYi3dYmJK3rVtQ2Ah/gzUikxANBgUtjR1WbpoKCDvF10/iakYRd7Q1+PMQDJcl4g/dyma0wIq0rp\n9KFtQ3d35NJZAkrvUaNAsEFT4t+x3LNUcL6oX+8QcVDkD+ReuD4MQFkutpvTD/2UybUnfmVVPy1k\nhLiOAahooZinhyd0obnZUXcDUEL8WYPzlcJRLgM1OExVOmhZSewC1vD6czN+k3h1LSNyBsCgLg5Q\nNyFsFpSndBqs6/XnzzU1YF0MgLVOrQEw29l/2xD/4OH3hgMjf9EP5CptuhRdA8EmDtAlp78pchO/\nmBRIcS0DYBO/6RZmyT7+BjG3YBz21iTe7nUL2LO0mslAJShLBzWfe9P5fXKF4/0DEISF57GQ/dNx\nQphpylKW0ukSv+v11+n92WWlwd8yAwA0mweQ3o/G9YD69PgHg9AJh0X+adl/W3ctGwUUUDEhzASC\n7ThAn3KPC3viV5zcTtM/JwTBEaAbo7c2ABXefq7dHlUdwm61NwAlxJ95/jbWkYEq0kEb5fOvqfVn\n8NS/ceMAXQLBvglh66QXuyiOTIqtPH0GAFpMBIN6A2DWT9dtRfw7IPkhz3+fkM5UbWIAmspAtmtq\n4gDuS9f3KMBM/ApHqexjiHF6BGNN5JK+OLVxgCbEbwd8j65WG4AkRqbH1QYg9frLiD/n+dvoTQay\n0kFh7Xz+Jsj1i7XJjHwcoCwQvFpWDAS7E8KiZFRaPLAvuSd/jvZoZYMGwOAAiP+i48DIP33oN2AA\nijLQZmEHfzOUeMaVo4CmxJ/2DJZZoOWgSgMAipv6BZ0eF7+05Z7lHS/xJ8tVO8sCNiEDVdXt6cvr\nNzN+3d+hJg5QNSHMHwjWz2BdgNegbaA3d0nKvDctDUB2P+oNgL46VvetaVZPE2zYKGyxsNvWcVjk\nr5aFyUr2Cwfkht3rGYAVNqX9m9TPHNoYgJbEb5rFC2RNZNTR1eom8dHNVYN4KOr8JcTv9jP2oi8Z\nCLrp/B2IwzQ4z6Qxm/gsp6RrIFhD3xjfc9e3158/txYGAMolHccAQH4yWCnxD17/VnFY5N8QXs3f\nB08cwE7Dq0PbF9HnocXJHYLROO0Ulf5NX7ywbSZQA+L3boM1AqiSTbwBXj/xAzkDYLxLAxNkzAyA\n7VFC61nBlZjP/d6/q0E3+S4l+JwE5EHWPxnWmBCmURfcBX+A1/ce+CZJ5oh+wwagFF1SOquMwjAj\nuBYXkvwNushAhmq0EVif3JvgzmJOOFoUjIB5+YLpTMcCkhgx3n4So4JIxwfGsU7ZhHxevEmLtLNi\nnHTIQgexK9cygs88fof04+SsVN+3texwJOk1TdLfY5xWxsw3ki+0lnQyarJZwbB64c06TTV+d4az\nbQzs47mE4vsuJbPMky05ZG5U2sSfGPkSEpqRfVOir4O9TWHU0sQAQGlTmOLBamJKXb7rmfSXCqK4\navh6uDgs8pf0R7CyBYAsJc00KLexXiA4j3W01TrESwXLOTDPkWYgY4LlZEWc01nWdzULCGdGIMxk\nIPHJQOAnfLuXgCH96VHRy68g/dw9Tw3A2sRf2LFDIqZ2TBfY25UZAsgTjTsasIyAuNs4weAm6cmA\nZzS6nlffBI1HyjQwAFBM7bQng1VhTwh/FxCRHwTegG7Sfr9S6hHPOjPg99H9z8fAbyilXp9+9wbg\nx4Cvpqu/Vin1X6uOeVjk3xHdZaDNw0gkhWVL/2ggqBsNmMwgKx5gG4KM8K9dLRJ+Sy+/Cn0Tf5Y5\nYuAQ7FooMwTg9/w9RqDVKAAaGwHo06uvfg+qvH4bxsnqNBfAxZ4TvlJC7HQC3BA+he7M9SsV60TA\n9yqlbonIBPiQiPyuUurD6fdvVkq9qekBD4/8W3j9LtqOAnaNVqOBhoag4OVPj/1avkX68fJO63Pf\nqMffJ/G7aGIIfEagbBTgoLUURHOib+PBVx2j6X46ZwLtOeHvAkqpT4MuXlmxjsJMBIJJ+q9zSOzw\nyH9N5KoYHoABMFjHEKjoppaFZpR6+fHyTmNZpyl6If7CTnuUfupQJw25Gjc0GgVAs4BwYZs1yH1T\naB0H8OFiEP6TRcSWah5SSj3U90FEJAA+BnwL8MtKqY9YX/8zEfkHwCPAa5RSX6/a14GRf/o6dfD6\nXTR6kdI0vH1DmSEIR1dWspCZMTyOEdfr6tnLd5EZpZ6JPyf92KSySQNg4DMEZV7tpgLCG0IXr99G\nqziAwYEQvloKcdRI9vmaUuq+qhVE5P3AN3m+ep1SqrbhOoBSKgGeKyKnwMMi8hyl1KeAfw/8HPqx\n+zng3wCvrNrXgZF/v2giAxnvbB+NAOTjA1l2UNloAFoHb7tg4x5/WfbItmAMQQsj0FtAeINYZ2TR\nOA5QevD9IfxNQSn1wh73dUNEPgi8GPiUUurL5jsR+VXgPXX7ODzy78Hrz+3O88AfggzkooksZGD6\nCfRJ+Ab6mD0Tv4XSwO82vH+3DWELI7BOQHgTv9OmUBsHsHEAhK8UxNF+pHqKyN3APCX+K8BfBf5V\n+t09Sqkvpqu+DB1ArsThkf+G4E6/d7EJA+DL9OltvyWGoG8v34UrIfRJ/FsN/LqwCuM1MgKu1t0l\nIIx/lrAP68dn+osnVMpAA7wQkZcBvwTcDfyOiHxcKfV9IvJU4K1KqQeAe4C3pbr/CHinUsp4+L8g\nIs9FP2KfBf5x3TEPi/zTSHhfXr+LKhkowwbiAFHDNnFdpva7aaObRCHDp0/iLxzMoydvyvu3i+LB\nivSrjMAaowAgXyjOQtkzv46B2EQg2ZWBggOjmm1DKfUw8LBn+ReAB9L/PwZ8R8n2P9T2mMMv4qBJ\nNtCu4gBNjYR/W4AFxxP/pKG+kMk+GyT+gvQDmzMALvHb/+9qBFI0loJYOTxNjYF3fzvIFvL2Bjgg\nLJdC1Czge3A4rF/CQt9ev4uyglyHFAcAiBJtqeKlpC0rE07COVfG/ROB9vjH2/P4YbPSj0v8WRtM\n5/suRqBFQBj8hgCKxgA2/260hSsDweEZgYuIg/sFki3MvvWViM6dQ48GYB1vvnyfLuFLdpwoEeKl\ncDzpdxSwCvRaZNQ38RcOauWS2/Vk+vD+fcRv/4Ui6Ztl7mefETBoIQUBZFVDU/jeh3VGB5uCbQBg\nMAL7gOHOp3BfmOyzp0S0ja4GoM9gryH71b5XpH8WB0SJZDXJr4cqaxNoRgEmKLwOjNcP6Qu9YeL3\nSj821jEAVYTvW6/paKDKCKSoCwjn0MAQwP4YA/u47kgA9tMQ6GyfQfbZA2jC7OvhLRC+czuqOjP5\nAsH63LYjA7mED3BzHmReviH/8wS+Hq8aUtxJhLvCIPtejwISpkF3Kcj2+IPRZEX8m4Iv59/1/rui\nhPiVY0hkUkH4vmVVRsCRghqPAgxSSaiJIYD9MAZ2QDhbNowGtopLd5d9GmnhYavoFJZbbctxAB/h\nu9LOWRxwnsCdRBO+/iecL+zPirtCIUrGmaE4niRESTcpKJfTzxgWafmRDadhlnr/XeWfhsTvLssM\nQRtJKKw/t1zzk6aT2hxD0EQmzbzwDRsBk22US6qoMAKwe0OwxcJuW8fBkX/XB7TOyy+8XOlnO+Vu\nW3EAGz7CB036RtKxvfw7CdyIi4QfxSPiOOD8aM75QjhPFLMAzpPVKED3L1atAsK59E7j9cPm8++r\nvP8uqCN+V/qxvHyzTqvRQAcjAJsbDcAq1tU33BTTKiNgziNbPowGNoYLfUdbE35JMM7Xm7WPOIAv\n2FtG9lD08qNkxOOxlHr5j9/RhB9HQTZLMY4CouOY82TJ6VSPAu4kq1HASbhsHRDOgr2MgQ1LPnXo\nEvxtS/z2si0aAehnNADV8YG+DEDdxLNcE6CGo4HBCPSHnd5JEXkN8CbgbqXU1+rWVw2ql65N+CUG\nwO7NCjSOA/gMgBvsrSJ8vb4m+rN4VPDyDenfiKTg5cdRwM2ziSb/dOh6dBwTRyPikznnR3NOQ8mk\nIDMK0COAZmmhdnpndv+akFJPsz0z6aeq3k+VAWhD/E1kHTpKQi3hHQ0ENSMf655XGYJ1DICP8O32\nnbnj5EqO7KckpJZDwLd3iMi9wIuAz627r7UJv+myDnGAroFgn5cfJZIFb31a/s1bk8zLj6IgI/3b\nZ2MmepYXfx5d4eg4zr6PjmOuX1lmUpAZBZiG9lWjgEJ6Zxro9enwhf6tfRgIl/DbBn+7Er/9uSrI\ny5qjgYaoDBCX3QPHEKxrANqQvvt9UyNgzitbPowG1sIu79qbgZ8GGpUyddGa8KHey/cVnvKQyCbj\nAGVpmq60cyMqevlxNOLmWZh9XkTCJEq4GsVcu6nP/4ko5EY05erJItsmPplzfDTXxqQkIOxLC83V\n8TGBXnMP09GSQWVapoWckWgoa1SmfZbJP12IvyHhtzYC9rp9jwZ8GDvxEvwB4iaB4Kak767nzqRf\nLR8X1t+lJKSUsIg21751l9gJ+YvIS4HPK6U+UdW5Jl33VcCrAL75m+/uftA64m8J11sqiwPU9Qm2\ndf+uQdxbZ5Ocp2+I/+pZzCROCKMk8/yvoa/7NiGcwM0zy7s+mnO+gBu6ZTp3hTBNRpxZt+okTAhZ\nEAZXVj0E3PTOxPm7hYJeBfmnr5m/a5BxYUYw2giI2yFsk3CMMFDdWMUD3yigK+m7y4sj54XHifKM\nsPdAEjp0bOwOVTUuAF6LlnxqkXbDeQjgu+77C5lz45sxmPvBfWUAoLwVn28bGyXtI220CQTnG8Wb\nAIKttyvO4oDMhwtTXT7Q+r5eprc7OoEwWnLzLHc23D4JmUQJ8zDJSP+J45DbJyHjqSIME45PYo5O\n5oRhwiyA2RhOQ038swCmwZKTcJnOBVgSjiQlfqeUQ+r1N/Xwy6AWUVEiqoJFbMaMrjN9rvE+Qg+B\ne5Z5ib7htoXlZl82cTvPJVijp8CzngvHOPgkIB/Ms55fNi4YAN969nfFZc2a1YM/bXtAc2yM/Msa\nF4jItwHPAozX/3TgURG5Xyn1pZp95j7XThn31RH3dRTyGQCzreelqaoq2qYyqDsCmAZLVm2djCEQ\ncPKMT6cqGwXcsCLPxycQRwlRFHCLEAiYo7d9An0d82nAeKo4Oo45PokJp0vCMOH6FZ39Mwt0Cugs\n0F7+SbhkGuh/RvdfNWuZ5GfzmnvtaXC+lXK+6TG2YgQ2QfRl69n77Yv4K7z/pjGAdQzAoRC/LFU2\nar5o2PrYSCn1SeAbzWcR+SxwX5NsHygOAcuGf7WjgDoDYMPzklWhaYewJgYANAlPkxGzNOCroQsB\nnALnwZLHC2cRE4cB8VQHfLOtTkaE0yT9t+QoDfhqwlechmi5J1DpP+P1K+3lW81acnKPz+t3ettu\nrZ77BoyAu59eib5qHR/x26RtrtUeLVU4Lk2xSQPQlPhLz+0Cevwi8oPAG4BvBe5XSj1Sst4/B/4R\n+nH8JPAPlVLnIvIk4D8Dz0TX83/5Bevhq1GWEdCrATDL3GM37CXQpjR0yMJrAMJRAhivXy+7K7Tj\nAFYlmCtLzsMlUZikXr+FE1ZxgOki9frnhNOEaaiJ/3Sqif9KoIlfe/0J4UifVziSFekbz9/N63fr\n+dhZN5tAk2wg+jEC9n6AbkTf1OM32BbxlxjmTRgAH8qI32sktkz8orbm+X8K+AHgV0rPReRpwE8A\nz1ZK3RGRdwJ/B/iPwIPAB5RSbxSRB9PPP1N1wJ2Tv1LqmV239Y0C1jYAkCesll6/i6YlIcLsJTMU\ntZJzpoHJ8wdtMWriAMcx8TQoxAHCqc7zn6ae//HRnNNQ6/yzQBP/9VATvyZ8lRoAKco9dV6/ex9h\nc96/fYyKtMYyL74Tmmj0TVAX/O1T3+8J6xiAwr5aEP9FhlLq0wB1CTBozr4iInPgKvCFdPlLgeen\n/38b8N/Zd/JvB1XIBuhkAGBlBHyB35KXp2sHMVf3r6oJVCUDnYQQJaoyDnAjIgsEQz4OEEcB02nC\nUZraWRbgnQYqF+BdtYFcyT1ZkNfn9ZfVsd8GfL+nQZ/B4SYkv25Wz6aJv4EsVxYA7tMAFPZ9mAHe\nJ4uILdU8lCar9Aal1OdF5E3ouVF3gPcqpd6bfv0Uq4fvl4Cn1O3vwMhfo4kBACtP2ZcH3KQpyJpe\nv402cwHWiQOcTtN0UE8cYJrq/Caz53Sqib8swJvX+R25x0rnLM3wmc+LfW0beP+NMn7q5I2Wo4FO\nRqArubch6KYyT9v9+rBlA7CPAV4XomASN5J9vqaUuq9yXxUZkEqp2vlOInIX2sN/FnAD+C8i8gql\n1Nvt9ZRSSkRqH+mDJH/wGwDoOQ5g1qG715/bVU0qKFAbCK6KA2gjUB0HcAO8s6A8wJvX+S25B/La\nvuv1u5OcPGWLt9rMu8oQrGsENjmi2UJgtymapoBCdXrnap39J/6+UZYB2QIvBP6vUuqrACLyW8Bf\nAt4OfFlE7lFKfVFE7gG+UrezgyJ/t7ZPkwkhnecDbAhNM4GA1nGAu0IzE1ilE7VSpHEAoF2AN6fz\nW3JPE68fVkbArlvfJ3xBUKie3FVmCPoKDvd9jT6Zx17e9/EqDPM6ZSBs7/8yEn9P+BzwPBG5ipZ9\nXgAYqendwA8Db0z/1o4kDor8wUPuJfVB1jIA9nL68fpzu21gANaNA5yGOhDsxgFOQ038ZQHeUp3f\nqd9T6fX7etl2kH/Kb2DNdk2Ngc8Q9JwhtBa2Edj1GeWWv00b+ce7/R4Hd2WpCLeQ7SMiLwN+Cbgb\n+B0R+bhS6vtE5KnAW5VSDyilPiIivwE8CiyAPyCdAIsm/XeKyI8CfwK8vO6YB0f+UDLdu0MgGKie\nEGbvv+c6530aADcOQJzPa8niAMkqs6cswOvq/OZcV03ZazJ8bPjKFfct/zQhwCbGwDUEm8gQ6ohd\nZPRsSv8vbFdB/JfJ61dKPQw87Fn+BeAB6/Prgdd71vsz9EigMQ6S/KG7AQCajQIqyjj0hSYeTxMD\n4MYBroc6EOzGAUxmT1WAt6jze/ryZidX4vX7Whi6+n/nm9aD3FFnDOyMIU+G0DpoU/5iV/p+Hfoy\nAIdA/KIYZvjuA1zPyxvk7SsQbB9nw+3tmpaEgPo4gK4HZEYD+TjAebLy+o3UUwjwjixv3xgA+0Vs\n6vUbGOJ39X9Y3/tvko3VpDJok/IHi4bnWXO8VnWLDDZN/GUGuaX+D20koP0n/ouOgyJoJVbmAAAH\nT0lEQVR/aBjk7SMQzGa9fgNfWeh1ZKDSwnCsJnKZzB5/gLdE7qnz+h2o+Vwf2RB/S/2/dYG30htc\nQ5h1hfyaoKo0SB2qjMU2ZZ4ydDDOdQZgIP79wMGRPzQM8nYMBEN+PkDvWr+vgXzPBsAtDGfHAXwB\nXn0OY3xyTwZD9GVevyX5KLdufl/yj88DXjdm0NQ4lI0Oyr7zrdfl+E323weqfo+W+n8Z6mTOfSR+\nUYpJvHkncBc4SPI3qNP4m6xTVxe8D3gJ3731nvaQLroGgk0cAPwB3nCkDUMurdP1+jsgq13v61K1\nrvyzLU+4q3FpMGO8dH0b2/T4OxjkNvLPgP3CgZH/slbi6SsOYJZ1RSPCd74r6w5WNSEM/HGAaUDq\n2dtxAHK1+V25x3u+trxjvP6KQK9yJnnlmpd0kH8KqCi2t00EjP3nWjVSgP0g+SpsWP8vwz56/TCU\ndN47dNL4O8QB2qIx4ZfMKWhiANaLA0gxs8cj9xSCvF3hk3zq0j/L4COeDc4SriWtUXFRrUGA9kZh\nn7AhA7CvxH/RcZDkDx01/oZxgDZYi/A9ssemDEB+NFBP/Gt5/Y7Mo2Al/9Tp/y29/y5e/7qNyQG/\nPOcYhMIcktyOS9JLXezCKHTQ/6tQZQAG4t8dDor8nUZenTT+puuUoZWc06SJvGdZYF6u3uMAZAHe\nrcAi+Fr5x2MICxk/DQK9XaS6qolIrSpSure2bHQAzQwC7M4o9Kj/Q0kG0AEQ/5Dnv0dIlossFx3W\n0PgbrGOjFw+/apln5mvTOEBzA8B2vP6qSV5l8o+r/+dudDUJNSX88mbi5QRfN0O1Em1GB9DcIEB1\n9tGm0UH+gSEIvG8Qty/uPkNEvoquW7ENPBlo1FrygHARrwku5nVdxGuC7V7XM5RSd6+zAxH5PfQ5\n1+FrSqkXr3OsbeOgyH+bEJFH6upzHxou4jXBxbyui3hNcHGv6xDhUSUHDBgwYMBFx0D+AwYMGHAJ\nMZB/OR6qX+XgcBGvCS7mdV3Ea4KLe10Hh0HzHzBgwIBLiMHzHzBgwIBLiIH8BwwYMOASYiD/GojI\na0REiUiTXN+9h4j8axH5YxF5TEQeFpHTXZ9TV4jIi0Xkf4nIZ0TkwV2fTx8QkXtF5IMi8kci8oci\n8updn1NfEJFARP5ARN6z63MZMJB/JUTkXuBFwOd2fS494n3Ac5RS3w78b+Bf7Ph8OkFEAuCXgb8G\nPBv4uyLy7N2eVS9YAK9RSj0beB7w4xfkugBeDXx61ycxQGMg/2q8Gfhpdte7u3copd6rVFbP4MPA\n03d5PmvgfuAzSqn/o5SKgV8HXrrjc1obSqkvKqUeTf9/E02WT9vtWa0PEXk68P3AW3d9LgM0BvIv\ngYi8FPi8UuoTuz6XDeKVwO/u+iQ64mnA/7M+/ykXgCRtiMgzge8APrLbM+kFv4h2pLZYWXBAFQ6u\nsFufEJH3A9/k+ep1wGvRks/Boeq6lFLvStd5HVpieMc2z21AM4jIEfCbwE8qpc52fT7rQEReAnxF\nKfUxEXn+rs9ngMalJn+l1At9y0Xk24BnAZ8QEdDSyKMicr9S6ktbPMVOKLsuAxH5EeAlwAvU4U70\n+Dxwr/X56emyg4eITNDE/w6l1G/t+nx6wHcDf0NEHgBmwImIvF0p9Yodn9elxjDJqwFE5LPAfUqp\ng6+yKCIvBv4t8D1Kqa/u+ny6QkTG6ID1C9Ck/1Hg7yml/nCnJ7YmRHsbbwP+XCn1k7s+n76Rev4/\npZR6ya7P5bJj0PwvH94CHAPvE5GPi8h/2PUJdUEatP6nwH9DB0XfeejEn+K7gR8Cvjf9fT6eeswD\nBvSKwfMfMGDAgEuIwfMfMGDAgEuIgfwHDBgw4BJiIP8BAwYMuIQYyH/AgAEDLiEG8h8wYMCAS4iB\n/AfsDUTk1gb3/Q1ptcxbIvKWTR1nwIBDwaWe4TvgUuEc+FngOem/AQMuNQbPf8DeQUSOROQDIvKo\niHwyLbJnvvvZtIb/h0TkP4nIT6XLfyKtgf+YiPy6u0+l1BNKqQ+hjcCAAZceg+c/YB9xDrxMKXWW\nNtH5sIi8G7gP+FvAXwQmwKPAx9JtHgSepZSKDrlBzYAB28Lg+Q/YRwjw8yLyGPB+dKnmp6BLH7xL\nKXWe1rr/bWubx4B3iMgr0NVKBwwYUIGB/AfsI/4+cDfwXUqp5wJfRleDrML3ozt7fSfw0bTw24AB\nA0owkP+AfcR1dP33uYj8FeAZ6fL/Cfx1EZml9e5fAiAiI+BepdQHgZ9Jtz/awXkPGHAwGLyjAfuI\ndwC/LSKfBB4B/hhAKfXRVPt/DD0a+CTwOBAAbxeR62jJ6N8ppW64O01Lc58AoYj8TeBFSqk/2sL1\nDBiwdxiqeg44KIjIkVLqlohcBX4feJXpeTtgwIDmGDz/AYeGh0Tk2egYwNsG4h8woBsGz3/AgAED\nLiGGgO+AAQMGXEIM5D9gwIABlxAD+Q8YMGDAJcRA/gMGDBhwCTGQ/4ABAwZcQvx/iwq0yCPFTuwA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu8LdtV1/kdVet19nnkAglIci8kYPjYSIM2IdCidhBR\nvMSklW4ID5vwEAPGpgU6EO02dGv6E9RugwaMVwghRoMIESKGJoCG2AqSgNJI+DSPGMhNDBDJzXns\ns9ejavQfs2bVrFlzVs1aj3P22Xv9Pp/92WtV1arHWlW/McZvjDmmqCpHHHHEEUdcPmT3+wSOOOKI\nI464PzgagCOOOOKIS4qjATjiiCOOuKQ4GoAjjjjiiEuKowE44ogjjrikOBqAI4444ohLiqMBuMQQ\nkVeLyP96v8/jMkNEvkRE3rLH/b1QRP6ffe3viIuNowG4wBCRd4vIXRG5LSIfFJF/LiKP2PWq+iJV\n/av36dzuO1FV56Ai8re85c+vlr/20Oegqv9QVf+Yc2wVkd996OMecQQcDcBlwJ9U1WvARwO/Cfyd\n+3w+yRCR/B4c5teALxCRibPsy4BfvgfHPuKI+4qjAbgkUNUz4PuBT7TLROS1IvLXqtdPFpEfFpEn\nROR3RORfiUhWrXu3iLxURN5ZRRLfLSILZz/PFZF/X33234jIJzvrHhGRN4rIb4vIfxaRV4nIfwG8\nGvivq+jkCed8/q6IvFlE7gCfJSJvFZGvcvbXihwqj/lrReRXROSWiPxVEfn46jxuisj3icis56t5\nP/ALwB+v9vfhwB8A3uRuJCL/RETeLyIfEpG3icjvddZ9hIj8s+p4bxeRvxY4xxdV5/iEiHy7iIh/\nPSLytuojP199L18YipTcKKE69puqY/8M8PHetr9HRH6s+k3/PxH5gp7v4ohLhqMBuCQQkRPgC4Gf\njmzyDcDjwFOAjwL+EuD2CfkSDEl+PPAJwP9S7ff3A68B/hzwEcDfA94kIvPKg/9h4NeBpwNPA75X\nVX8JeBHwU6p6TVUfco7zxcDLgetAqkT0x4FPBT4DeAnwGPClwCPAJwFfNPD51wH/Q/X6BcAPAUtv\nmx8Bngl8JPBzwD901n07cAf4XZjo4csCx3gu8GnAJwNfUJ1zC6r6h6uXn1J9L/944Lztsc8wEd5X\nVH8AiMhV4MeAf1Sd9wuA7xCRTwzs54hLiKMBuPj4wcrD/hDwOcDfiGy3xpDIx6rqWlX/lbYbRb1K\nVd+jqr+DIWhLql8N/D1V/beqWqjq92DI8zOAZwNPBf5nVb2jqmeqOkTqP6Sq/1pVyypqScFfV9Wb\nqvqLwH8A3qKq71LVD2GI+/cPfP6fAs8RkSdhDMHr/A1U9TWqektVl8C3AJ8iIk+qjNznAy9T1VNV\nfSfwPYFjvEJVn1DV3wD+JfD7Eq8tCufYf6X6fv+Dd+znAu9W1e9W1Y2q/jvgB4D/ftdjH3ExcDQA\nFx//beVhL4AXAz8pIr8rsN3fAH4VeIuIvEtEvtlb/x7n9a9jiB3gY4FvqKSNJypj80i1/hHg11V1\nM+J83zO8SQe/6by+G3h/re/DqnoX+OeYqOYjVPVfu+tFJBeRV4jIr4nITeDd1aonYyKmiXfeoWt4\nv/P6dOicEhE69q87rz8W+HTvt/kSTKRyxBFHA3BZUHnnbwQK4A8G1t9S1W9Q1Y8Dngd8vYh8trPJ\nI87rjwHeV71+D/ByVX3I+TtR1TdU6z7GS7DWh4ydqvf+DnDivD8Ueb0OI4O9PrDui4HnA38UeBJG\nzgIQ4LeBDfCws737Xe2K1vV7xtse2/9tLN4D/KT321xT1a/Z4/kd8QDjaAAuCcTg+cCHAb8UWP9c\nEfndVXLyQxhDUTqb/HkRebhKkv5lwOrTfx94kYh8enWMqyLyeSJyHfgZ4D8Br6iWL0TkM6vP/Sbw\n8ECCFuDfA39aRE6qxOdXbvcNDOInMRJZqErqOkbW+s8YMv4/7ApVLYA3At9SnePvocknbIPfBD7O\nef/zwO8Vkd9XJd6/pefYn0g7//DDwCeIyJ8RkWn192lVEv6II44G4BLgn4nIbeAmRrv/skor9/FM\n4MeB28BPAd+hqv/SWf+PgLcA78KUTv41AFV9B/BngVcBH8TISC+s1hXAnwR+N/AbmCTzF1b7+xfA\nLwLvF5EP9Jz/3wJWGGL8HtrJ171BDX6iynH4eB1GWnkv8E66ifQXYyKD9wP/AHgD3SRyKr4F+J5K\nsvkCVf1l4H/H/Da/Qjcx/mKMnPR+4LXAdzvXdAv4Y5jk7/uqbb4VmG95bkdcMMhxQpgjhiAi7wa+\nSlV//H6fy4MAEflW4Hepaqga6Igjzg2OEcARR+yIqtb+kysJ7NkYmeqf3u/zOuKIIYSSc0ccccQ4\nXMfIPk/FSFX/J2YswRFHnGscJaAjjjjiiEuKowR0xBFHHHFJcSEloMWTbui1j3oKkikZINJYOhHI\nxBRwm24sZl0mznoUqbfRehu7LBPFvNoXxkRh/ccV6VsfXyf1f/GWuPt0loX2pWV3WWy9G3lmOUiG\nooCiWlI6rwsVVKFQoVQoEYoSCjXfnH1dAmUhlKVQFIKqUBYCqmRlczytrkfdS6iWSabu2/r3d7/W\nbGAb976D5t6x953dtu++s/t17zto7j3zm9ilzrW1IvrmdelcbGsL503ZWt7d3j0v97rsukyaLd17\npv2q+p6d82/dS+49Io1/au+N5hq1Xq7uVvUFaX3N6lxn6VybAr/8/777A6r6FHbAfykfobdZJ237\nbm79qKp+7i7H2ycupAG49lFP4fO/66+yyGGRwyyDRXWli1xZ5DD1Yp8r1bbz3Nwp87xkkinz3P6Z\nG3OeKdOseX+vMcniDTJzmUbXZT2NNfNqnFYuU3KZ1PtxP2OXicsYxSrpnJvtqwHBG+9z8xN0MqfQ\nNevyjFV5l0I3rMsz7qyVdSncXOfcXGXcWecsC+GDK7i1hrNCuLmCswJunuac3pmyWmbcujljs8m4\nfXNGviy4cqd5QDfVj7+emesr5ub/bF7U29jXk0nZej+v/s/mZXD9bF7U9x00956978Dce1ecbez9\nZe83d5m938yykkmWk8u0/m1ymVB4A61Lba6jUOe6y2b5smgegHXZEPDSfe1ssyyk9WzMq3NynwV7\nbmDuHf++sq+bc3fuKfdeKjaQVw9sPqsNdqHr+toKXdfX7b4utaiveVMW9TWsS6mvbVlkLAvz+g99\n9Je7I6e3wm3WfEv+7KRtX1j8xJN3Pd4+cSENgGTaIf9FdfOGyB/gbvVsnBVSPZgZbZ/Ifqj03rdx\nvwzDtvAf0mm2aBmSmvA325a1uwebNP+tMcgnkM9q8i90U5P/pixYlzk3K9LflMKyEM4KWJfmtzrb\nGPI/K2C1NMSyXO7WRXqI/Ps+d6/I3/3d+pBJXpNmnk9rcpxkjUGY5w3ZTzOtDcI8K2rSnNvzPTTx\nB15LPku61u7FgxnPWL+pUHJe1W8ReQ2mh9NvqeonVct+H6Z77gIz8vtrVfVnIp/PgXcA71XV5w4d\n70IagIwu+bsPYAx3W8+34BqBxgPyDQP1Q2q2O8yNtYth6fP+oU3+EyYmXh7r3Y+F5+GVZUGhG1bl\nXUot2JQFt9c5y4r076wzlkVmPP11RfobWFVfiyX/1bL5/lc7GoIYQt7/vSZ/S4Z5sMtGHLsYBPv+\nYMTvR4aTmeMozBBVcjHnbPdZ6Lo+lvu61MIcr7ouc84Z61IqI1bu7VmVDOaLREn4zuAWr8UMqnQb\nEv514H9T1R8RkUer98+JfP7rMCP9b6SczoU0ACLdB7CP+H00hsAYgWXhE3DXCMTgGodDYrR3BDWR\ntMh/ddqQ8z2AilSe/7oO8QtdmzC9FG6ujPe/LDI+tBLuFtbjF1Zl4/0DbDbNj+y+djEk/2wr/bi4\nl+S/ze/uYoxBuCfE7zserhHARAPbRQJgogE/EjhfUNW3icjT/cU0hP4kmj5cLYjIw8DnYUb8f33K\n8S6kAchle/K3aBsBiElC87xs6aZzj/Bd78nFvTIMMe8/Sv6blfmbnwQ/t1dU0k+h61r3L3Rd6/5W\nq7XSz92i0f3PKk6w0o/r7R/K87fo0/3vBfn78s8QIfp5AutFh9BnEGAPxO/KPBHi180Smcy7xiCf\nQLFCqqjR7r/29oFCN63XbqRg8mcmL3Cvnr8Aniwi73DeP6aqjw185n8CflRE/iaGeP5AZLtXYubD\nuJ56MhfSAGSyG/lb3C3M35Uc+iUhA98YQNcgWNwLw7AN+evyFlCZvUMagXzGhk2S7n9zlXd0f+v9\n+9hV/4dh79/F/ST/IWkvFakGwb4/JPG7r2sjkM+azzhGwD1WMqq8wD6NgAhMJslVgR9Q1WeNPMTX\nAH9RVX+gmtHtuzCdaZ1zEJs3+FkReU7qji+kARDiyd5tMCwJmYfY1RTt+lSDYBEzDPM9ObWD5L86\nBUzMKZPZweSgbXV/Czfxu1rmbDZZS//3sZlmTNbhkN+Xf8Lb9Ov+Q+Qfqi4z78eRf9sD303+iSFm\nEPZG/BHS9z3+VvmpawTqE9o+L9Akhx8IfBlG2wf4J8B3Brb5TOB5VY5gAdwQkder6pf27fhiGgDZ\nH/lbDEtCBvbBtsbANxRjDUIKQkQQ8g6TyN/1tJa3YX5t/0bAkX7G6v5u4ncsNt5NUQSsal/lT5/u\nD/ee/CUyij/FMPievU/6rmxk121F/AnefrQSCEyRwGbZHnWyQ17ATw7vAyLCbJFIOB/a6hDvA/4b\n4K3AH8F0hW1BVV8KvLQ6n+cA3zhE/nBBDcCh0CcJ+fANgVnW3bYvf9DarkrCbcqidyxADEnkf3Yb\nVg0J1MPd9mwEXO9/rO7vJn597T8VNgHsIkTqIemnT/e3OBT5u4TbSag6sPKIiwmTup7ewif9PqOw\nD+JPJv3NqlMB1MkL2PUj8wItnMNKUBF5A6bC58ki8jjwMky79W+rJlY6w0zDiog8FfhOVX102+Md\nDcAWcKOBZZFXD3VDEkYOkvq1xRhjANtHB773P4r8T9vT8O7bCOhkXg/2WpV3k3X/Plj5Z7mFQQhW\n8bQGhLWlH7s+Jv3cU/L3idPCHUjlIGQYfGLsMwqjiH+st+/LO74RwMqS/cnh0DVBPDm8D2QZzOf7\n6Qygql8UWfWpgW3fB3TIX1XfiokWBnEhDcC9MOzhMQOQYgggLhG1tvHqr0Pwb/ZdyV/vnCLTKUxy\nmJmHUDdL83DtagAC0k+q7h/y/mMwBqH/Ae+TfyAu/dwv8u+QbrHpkuYQAoah1tcdxIzCGOLfmvRj\nqEh+27zAEWFcTAMg5kG8e+A8j7t/dwSxnyR2DYF9bzEUFeyCZM3fIX9Wa3S17nT6aSKB7SuDQtKP\n1f2t9DNG97fJ310RagFhXre9/nNH/vsarOcZhpBR6AwQHCL+bUnfSpCzaRMFeBVArbyANQI7DBq7\nzLiQ34BIU3YHhzEE68obXXQcjHCSuE36/VGBWddmvHUpg5VA7d49ieR/eqdF/lYCCrW728kIRLz/\ndZmzLDJurrKW7h+SftxBXy76qn98uPr/LODlg/H+Xemnrzoohn2Sf53s9chfe9pzRAUJW1Y5BLdV\nh7+8T+ZJIf4Y6ceWTcKe/j6Tw7tABGbzc5hQSMCFNAAZ9sFrbo99GoF12Xin8U6ecVnIImYIzLph\niSiGIPkXqyTy15tn9dnX3+BsCpNV44EVI+Ugp+bf6P5LlsUZt9d9ur/5aKjmP5T8DdX/x2QgV/7x\nvf+Q9GPXpXr/Q+Tvj6gdJH/X63bJvycC6MseBY1DzDBY79q+ttuyZ9IPGYHZtLt8i7xAX3L4suNC\nGgARS5x1E2hgP0bAJX8zGrVtBNZlU4I6JAtZJBmCrHvyrnfjdocMkv/yNIn8y1srZJohizXMpuh6\njTiJ4W2Swv3ST6TPjzPa18L3/n35Z9sRwC7Rw27Szz0l/1gSeAAaJXtD6DLx5oy328eIP4X0Uwh/\nE3hArRGwkhB0KoBaRiCQF9h60FgiRGRvSeB7jYtpAIBJpkyygk1pPfHdjIAdQ9TRpTdwtpGqDLAv\nGoA+WQj6DYFZnwUjAr9t8y7kr8sNumzO1l6Ve3uPMgID0k+f7g9h79/FGPnHhSV2973v/Z8L8ne1\ndp/8+5KmruceQqRSCCIG4hCkHyL8Vg7AW+8aAYu+5HBCXuCy42IaAFGPRG00sJ0RaEs+YVmCOhqA\nVFloU0qLMCyCJaSlDA5dNySyG/mXT7R15agRyGdJlUFD3n+f7u8mfvuMgCv/9CWFQ/X/vsY/m5et\nZeea/MdWAfnoMxIxAxGq84+Rfgrhh7bzl03ysBR0TvICIjCZHiOAc4MMuDEraLd73c4I+JLPqhUJ\ntLddrQxRgFQJYq33EZKFmvMyGBsRQFv6mWVXdib/8vYamefoWYHOS/SsQGZr8xBO10156Op0MCkc\nqvm/s1ZubzJurnLurLOo7m8RI/5tq3+KeR4d9GXJ32Kb5C/skfwdzT1I/iHiHIs+I+BKLu579/Uu\nXr4DXXeXydTJAVgjcIC8wGXGfTUAIvK5wLcBOWZE2ysi230a8FPAC1T1+4f3S93zOzwRRJoRCJG/\nS/yrZc6KAFHU9+JQkhiGZCGwjefay9ybd5/kr2cb1BPf7Tc2qjIoUfqJ6f4p3v8uvf9n8yJa4bOL\n9BMifztye+/kP2QALGEOwZVdQuhL4O6R8P3tFM8IWOySF/AGjV123DcDUM1c8+3A5wCPA28XkTep\n6jsD230r8JbkfeMOnOo3AhA2BH3kH2xBEPIWE2UhdzRxTBYy59Q2BJZM9kn+yzvmAHO6UtAYIzBG\n+nHlNWhHWfWyEd7/WGPgev/nhvzdhGuM/GOSyrZIMRgHJPzWPiuPv6Xt7yMv0NpuP0bAjAQ+loGO\nxbOBX1XVdwGIyPcCzwfe6W33F4AfAD4tdcdZpwoobATMRBftaKAlRfSQf5SE5kVrfECKLGTQXza6\nLLJWJdChyH911xmL4BiBTmXQpvLCQuWhCd7/zVXOB1dt3T8k/fRp/5De/nk9y2v5x/X+H2jyH4oA\nQoQ5BLv9JPK97kL4kW2D+3SMQH3Puev3mBe4zLifBuBpwHuc948Dn+5uICJPA/4U8FkMGAAR+Wqq\nJkkPP/LhnfVtgwDulHCWrP2RvSHZx8VqmTGbl7UxmM0LVstGY7aGwFYLVWfKLrLQssiqyTkCZW2h\nplqt93Ey2Kz6k1i67skHeO0iUrx/i9D3epGwbd/+oTr/JAxJO30YMgS7nE/oOLFz2OfxDwQzEOyY\nBD4EXgl8k6qWIgMEZWbVeQzgU/6rp7cYdp6pM7l1tzrIRgFXWvdaJWwEvNLQCFK/SyS0RwnXmrZX\nNupGC26nUV8WgpJlbiqBNmVBLkXTqVELNJsiVdWGFHNTymeTd6s1Mp2iE7O9LNbIWYYuQRYTZF0y\nmW0o1pBPzfeTT0uzbpohi7z+z2za/gvMGSCqjsc7oZQp8/yskrCUZWE85iu5VOW1apLjkyYKWORd\n42ANrIv5vNjLJDAxhMZ6GDTdYH25bl2XHhe1z+EbgXbr5WlHk66P6BuBbcjcRyqp+sdaVUY/JMN4\n5C7TaTcKCCZwA/vrO8/Q9YeWua0t7LgG9zu+h9Oenmfcz2/hvcAjzvuHq2UungV8b0X+TwYeFZGN\nqv5g6kHcSa3neeP1Nw9tkxOwhNNIM10jgENCfpMwaMoGY3ANwZiy0UnWnnBmkq3JNG/qmjVnkttE\n2Mz8TSrpwEoB6+r/bIosCqQa3CBnGbKYkK+K5ngzRea5MQLzCbKYVISfO83iAg9edfxcppRSkMuG\nQjZMsryWRua5sClLFnnuRF1aS0GzrPmeQoZgMil78wAhQwGQLwtWJJCfWxaaIO02fZ4qg+CU627K\noh142nPx+tCoSNwIuHCjOpc8x3rKfYYktG4yA+4czghAbzQg0wHit86OW9GUB17H1u8CMQ7Tg4j7\naQDeDjxTRJ6BIf4XAF/sbqCqz7CvReS1wA+PIX8XfhTQTOkIseogQ+RhIwDUck8q+btYlePKRue5\nVESTMT9gFGClpyTvP4aqyiI1CjDXWX3nkSggROqzeVlXAsVI32K6KoLjAA4FGwW4A/fcXvs+WnKe\n15gtWgRsydhHSpQQ28YvCXXfn2Akv9uno4wAeDkBe+yUaCBojPL+9SHv372Wo/df4759E6q6EZEX\nAz+KKQN9jar+ooi8qFr/6kMc10YBQ0YAmtG/izxuBGKSTypS8wPzImNSeZbLXJgWGZNsXZ92oZMm\nCoB2FAAwWzdRAESjAFZFmvdv4RKEa3AgOQoAWlIQxKOAIaI/JLr5itCkQE0U4EtBLsmHp1yspCBX\n9sln/UYghj4jEKv795e7ROkO+rtGQ94xwt5VEnLusdr7d69pG+/fvaZqLMB5g4i8BrDz+36Ss/wv\nAH8eKIB/rqoviXw+B94BvFdVnzt0vPtqClX1zcCbvWVB4lfVF47Yc9JWKUYA2t6pbwR2IX+LlPwA\nK8HYyaKqCNJaXsg0NxNe1FGAIf46CrAykI0CqsqKWBQw6P1bhIikrrc261KiAJCWFAQmAT+royDz\nf+bJb1YGcvMAQ/JQKkKjvBeB0twYlqX0SkFNW+J24r6TD9i0jcEopBI9dMm+gutBK8Dcfv52+/OH\nkITGeP+ud1+dv0zmUelHRYJGeBuIQD7ZbvKmAF4LvAp4XbN/+SxMheSnqOpSRD6y5/NfB/wScCPl\nYJciFrJ5ACsDubkAiyEj4CYqXSOwC/H7GMoPLAqppSAbBUAjBdkowJDIZPsooEKv9j8kM1QyUEoU\nAFmvFAT3JgpwDce2o4Ch3bPJl4J80mk6UyYkhf32z7bssa/nzxDZQ5TwffK00Ykub8HimikBPlRe\nwEeKZJUi/Tjk3yfJ3S+o6ttE5One4q8BXqFqunSp6m+FPisiDwOfB7wc+PqU410KAxCCLwVZTFoj\niMNGANKSg9silB94aGYiAisF2SgAsjohbKMAwEhBbhQAVQuHcBQAk7YxWHi3RgrpRzAUBUC/FARx\n8nfzAD7GGApb0juEFBmoHrvhRAHLyli78zm73r+NCCwp9VYGWbjkHzMCIb3b328P6buSCfkEliDz\n640x2jIvEDQCEM0hBLe1SJV+PPLfawQwS44Aniwi73DeP1ZVMPbhE4A/JCIvx8wJ/I2q+vbAdq8E\nXgJcTz2ZS2cA3GRwvcyRgpr+O3EjYCWKQ8PND5xVA5H8KABoJYQLNT9pnRC2UQCYByUSBeh6ZSSf\nM0OmHflnS9gOjH1RANArBUETabkE7Ms920QGdvt5j8ff/A7pMpCNAuy9Zkemu1KQO1OVhZsnSK4M\ncrEt4UPYm3a0cslnRgIqnLzElnmBYHLYbhsbkezLP6ne//lK+n5AVZ818jMT4MOBz8CMh/o+Efk4\nVa1vBRGxeYOfFZHnjNnxpYVfFurmAzZlm5jaaJLCoakK94mmLYIhHz8KgLJOCNsoAGgSwjYKACMF\nuVEAwKboRAGQIP/0yQ7QasML/VEA0CsF+d/zzKnCsthmPMBmk3XmAnBRn0Nkt42xCkcBqVJQLpNo\nUrh5k1gZBP2E76+PkD5QE7/1mDPJySfzuhW45DMjBx0iL0BC8rdz/rN2zX9E97fe/wM0IczjwBsr\nwv8ZESkxZfG/7WzzmcDzRORRYAHcEJHXq+qX9u34QhuAkNaf9rkmH+CPFm5w74wAGD3cjQKo6tlv\nzBguC81npp97PvGigHVN6m4UAPQnfy36ukh66/qiADMYr18KgnAUAGEZaCgacEdsj13fHS/ShetM\n9ElBjeQzkBT2BoTJZB4fPdJH+JBM+igtqaTQtalmmszryES4fpi8gI++0s+enEZM+rEj1PcCUSbT\nvSWBQ/hBTDeEfykinwDMgA+4G6jqS4GXAlQRwDcOkT9ccAPgojUgrDUmoBsF2NcGaaOFD2kELOE8\nsWx8vw+bdRPCNgoAryx0ZBQApA/8SoCooiLRKMCMpu2XgmJRAHSbww1VAvWRu9vWw8dZogzUIn8v\nCvClIH96wtSkcMggtDCC9MEjfnzi31STqE+hPKOUgmm2QGYnh80L2G1DryddDz8o/fSQ/3mMAETk\nDcBzMLmCx4GXAa8BXiMi/wFYAV+mqioiT8V0UX502+NdGgOQij4jMDRa+BBGwPYhMonguBRUl4Vy\nBtnCKwudNPXktla/igIEzOCwKgqwSYeo9z/kffmzSTnvY1EAEJWC7HfgV1/FegjtUiEUSwTXCeiA\nTQnJQPV4jUAUEJOC/HyALwvFksItxKQdCJZ5hrx9+96So31dakEhG2bZFbOPEmMEbF5gyfi8QM+g\nsWDy137Ovy4/8duj+7vkv68qIMlgMtvPw6+qXxRZ1fHmVfV9QIf8VfWtwFtTjndpDUAsCuhsN3K0\n8L6MgNsN0xLaWV4w28QTwrGyUBsFAE1Z6MzpLFm1ipCFN1ozNPBrDJxZpfqigIYQu1IQUBm8+KAd\nV8cfygPky6I1Kbz7uVAiuDUWw1sOcRkoFAWkSkGuEbCwHnhvH/sE0oewt2/fB4nfMUSr8m7VhRYo\njeGahJLDXkBSwzUEqZU//v3ne/84Nf8Duv8RbVxaA+AjJgXZ9wbx0cIQTlhug9i8A2fVwLN4QtjA\nLwuNtogIRAGcFWHvf2gA2AiYlshNFABFVAqCJh/Q15LjEAhJRSkykJ3TAXCqy4aloL58QKuZXJ8R\nGCB9s99xxL8pq8GH+Zn5vbJFZQhMRLAR0pLDI/IC9XL3dcT778pfw9LP3stAD5sDOBgulQFw8wBD\nGGMEDPq91FSE5h2w0sRqmUejgJurLJgQrgeH2QfUHRwWiwL24f27iWBPBjL/myiAjKgU5OYDDtU6\nOkT0wWVlVwZat4x9W95xS4tTpKBQPiCYFFaPbHqSoL63D13id7X+EPGvy5xlKaxL4drUyIz2d1uV\nlcE6QHIYiHv/oWtO1P3tMiOZXm5cKgPgwx8T4EtBvhGA4YFiu0hBMfJv2hzknSjggyuAvJoDuZsQ\n7h0cFosCLHyPa8cowMpA0I4CgKgU5OYD+noyWfRJQKGGcKFS0NCykBQUk4egiQLGSEFuPmB0UjjR\n27fLYsQF9l5EAAAgAElEQVRvSdEl/uY8S1ibvM3VqelDVecF9p0cHvL+q2sOSj8O+sh/mwrBi4ZL\nbQDGYsxAsbFGoI/8rcRho4AnsA+OREcIu1GA8VyvdAeHuVEANO2iod8QjIGTB7DwowAgKgWFSkPt\n9xuKCFwdfxtpKJQIDpN/Wwbyk8HzvBwtBbn5gG2SwmOI3xqYMPFLi/jN/M0m0pznyo1pwZ21Ms/P\nmOeL9LzAmEFjIUzaXn6K9OPDJf9UNSAFe+wFdE9x6Q3A2Chg3wPFXOIHguS/2WSdssaUhPBgWagf\nBbjtomPyz7b6fyUDhaIAICoFNa+7UlBNypHKn13HAsS2OdtU+Z4K3ek92+WffVKQv60vBflJ4dio\nYftZC1fmsftKJX57/1vit/e6nZjoJrnT5nrHvIBFaC6AlL5TI6UfF35HgMuIS2cAxuQBLPryAbsM\nFIt5/UCL/N0OmKtlEZSCtikLjUYB0C//RKCbZdcri8CNAoCoFATd0lBfCjor3NHB24f1fiVQSh4g\nFB34I8pjUhA0UUCfFOQmhUOVQdsSvzlmP/G7y5rzV25UfsBB8wIuQt7/lrr/vr1/ET1OCHOREOsW\n2pcUdteljBEYknxc4m8kINPuYCghvCyEm9VI4WvTeFloJwrAKcHra8k7BH8sQA9sojMmBfWNEgZh\ntaoIuJ6PuWx9Z/uET/YxGchuY4k+JAVBOyHcJwXFksJm3boj85j/Xc+3j/jt/Rsi/rPCTlcqLHKT\nb7q5ypjnwo1ZcZi8wJbFB6nk7xq8y4wLbwCaMLz5sf0ooA7FPSnI/1zjAcUHinXRNQKp5L9a5uTL\ngsVqxXpm3g9FAazy+pxiCeFoFAD9XthY2EogmwfwZCA/CoCuFLQsmu85JAW53UJn86Ijlc3mBYXX\nRRm63r3/3k8Ed8h/QAYKaf4pCWFfCvLzAaGksH0fKuW0792KHmAU8dtKp7riaWXnqy64Wb3ea17A\nwu07lej9++gjf7/AY1uYgWDHHMC5hjs1n3nf3eYadLyCa5OyEy4unVGqzQNTth6iRfUATbNqIFNF\n1K3pDvOCs8pznUysZ2+8/MmkrDXss+WM2bzg5Oqa6zdWnFzdcO3GikVuCHCRa3UcuDEruDotuTEr\nuDYpKw+U/iigvprb7YfQHwPgtx72Wgp0Jt+ObBcqTTTv9zc0P2QM/PV97/0qIF/m8btlW/K3281z\nre+5iZPXaIxZM3dwk/coa+/fEr0dOGeXua+n2QKAdXlWn0fIMPjwtW+fCC35u+ireOqDie6qEb4i\njYvkj0y3GJoXoAcPQquH84YLagCk1Xd9TL2vbyjMsvZ711BYA7HMG69ikqmpmCgynoTrTSnr0kYA\nwmwzbAhOrq5rOcMl/4dmphHcQzPlxhSeNFOuTgtuzEpuTAun0ZrBsjhrX0S2YDI7qb4tOlLQQUnf\ncZZClRrm98q8ZWnemomQ2p8t5nmwBNQnfX8ksDvfM1Ab3Oa9tkjxikf+Ey+h7RoFl/wbQ5G3iB9s\npdS09doYhSlSySjTycIk+0vvN7bXr+taWmt/ryX+99wXzVono3UdrdeuAZvUBqs+X3f8QrHqTnCz\nA/mDN1iusxKMtHiYQYMPKi6oAWjDNQb722fzelMWTKvEq40OjDEom/K5nqhgtoEbU1jNCs5OioA8\nVDCbl0wmZRL5m6RcF4UGpCDXCHQu8jCkHzs39z+EqzTGDAYzxqD92/ttIHxP337PLkLev6v9TzND\n/i45GifANwDDXr9L/HaZ7/WLKizv1NNFSrExxjxbRI0AUJNgyAiEp0YF1xA0Bq65PntN00xrA2YJ\n3zVeomokwGLTnuYSzHt3mTcn8D5hv/ew8dsSIt0JlB4QPJhnfR/gl9y53kYuBZPM6Iw2OrDGwI8K\nbtDUVo+LCgpunBTcmMJDc+X6FD5s1kg+VoeNkT/QVAU5MA29AtNHHpD0fa/frVCxcGW3sVrtbF7W\nA8KsjOZ6/0Pyj10W8v7d53yRp5G/6/W7xA9bev3FBpa3jQddrJC5mQDKGoHeJme1EajfEI8E7Da2\n+spcT0P+Wl/TPC/JZdHq9eSeN97oZXvu9bwRR9wXHA1AAD7ZW4QeUGg862lmSMwaAxsVMG0n3VyJ\nKBQVQJMvsFEBECV/V+8fgh0gtirv1sumkwVCNwrYF+n3EVJQo3byMKnkv8hNn9xUhOSfUCfQRR6I\nACrpx036+uQf8/pd4oc0rz+TnAkTM6fD8rQppVyeAnWZgdlvPkEnC3dumi4ycx+4pbZtwnfRSEK1\nx5833r+9pkmWO+Q/bRst3/svxvxSDipjERp5Y+ef7kUnAtpT6WYGEkoqPgC41AZg8Iap0Pb2J8yy\nK/UNbhJPTZ22NQY2KoCuRGQNwdVpO3HsVl74EtFi0pZ85nk5mvwtloWp1IglhYNthUeQ/jZtdm0U\nENL/m/NOjwTmziAwWwk0JP/YZcGIIOtKP+B6/23yH+P1u2Rv/k+6BLo6hU1F/NVrTu/U52HmdVgi\n8+sIxqgPGQGDeF7AOit2WUj6seTvSj5uVddO8HMCOzYhfBAgIq8B7PSOn+St+wbgbwJPUdUPRD6f\nA+8A3quqzx063qUxAKlkb+EnlNybe5ot6gdTs2k92javjIE1BFPmVRVEOyqoE8cJUcH1qdbld2P0\n/iH0JYXNxQxU7gwkckOIdV8M6f/mHPdfpx2Sf0JtoGdVia2f+IWw9OOT/xiv3y+HjUo+y1vm9VlV\nrXVa/YarNVxbweJa7R0LMMvnbMQkh91qnBZ68gJtjNP9+7z/lvxj9X/blNBiT3mAzjUfIBksIkjf\n9HDj8FrgVcDrvGM8Avwx4DcGPv91wC8BN1IOdiENgDg15mMRIn6g9vrrJFz1YEo+MV9iPquNgWm+\ndqVVkmYlonne1CX7UQF0y0ltVGCJZh/kb9GXFIZxlTv+ftPPIawBd0sVxz9gbimo6/2HNf8y6v1D\n4/270o+r+/vkP6a00/wPEGdI8tlUg6ZOz+oZtPz++QpIsYL5tVHJ4WWR9SZJx+r+na6lKdhhHIqo\nBtpjhO+v5jrPF1T1bSLy9MCqvwW8BPih2GdF5GHg84CXA1+fcrwLaQDGIlY+Zm/oWXYl6JE1G1by\nST4xUopMzOQnlTEYlog2zSCVSDnpLpJPDLGksDnXhvRjhL/PCTZiCeAxCPX+CVUC2eV9+3G9/1CB\nx5VA0tcl/528/j7J5/QMVmv0zmkdAejJotHEV2s4WaHzkyYvMDshz6+3xgt0EE0ON+9Dur9/PR2E\nvP99wq0eShx9fp/xZBF5h/P+MVV9rO8DIvJ8jKTz8yK9z8YrMUbieurJXGoD0Ef8EPH6XY+s/sDM\n0c5PYTKrjYFmU6YYvd2ViKAZselLRKFyUmCv5G/hzx0Q0o334dGnfCbWojc0BmBMOag1DDH5Z8j7\nh7b3b6UfoF3x45D/mAFdHa8/JPncPoVN0RD/ao3eNIReJ+/Xa+SqE8GByQtsVsj8pJMXMCOLHQoY\nyAu40lay9BNCrBw0FcWqSQQnkH5MBrpPZaAfUNVnpe9aToC/hJF/+razeYOfrSaFT8KlMwB9g0Xc\nhzLm9df6ZVWBAcBkYwZSQdsYTDbVTdoYg0xzplAnj+MS0aZVTjrPdGfJJwY3H+Dr3YceTRnT/y3G\nl4D2jwBO+bzv/YfIf6giJqW0065vEebytCL+VVjyOT2D26foWUF5y9xzGSCrNVw7aVfIbPrzAlE4\nBLmuW1WU6SWfLoYqf8YagUB78eAlOM/5Az4i+OOBZwDW+38Y+DkRebaqvt/Z7jOB54nIo8ACuCEi\nr1fVzlzCLi6NAegdJUg7yRsccGO9fjcJZ2fSsn10JrPGGOQz0/hq0jYGE9u7ZCBf4I8tODQ6SeFz\ngG17tYRGA1vvfjYvam8/Vvo5hJj045J/Smlna5BUquSzWlM+saS8vUKrMEiXG7Jrs9qfVSqDcLKo\nz3nbvIDrJfeVfLqIef+18+QjZQTwxnnGYihWdTlozKGoeSCjajK4B2SYaVQPAFX9BeAj7XsReTfw\nLL8KSFVfCry02uY5wDcOkT9ccAMwRPoQ9vrrmuuQ1289sk1hblz7H0wbhZntbWKkoKgxqJPH806+\noCURZfduCjtrfPq+p0Mg1Kd91wogdzDYEKxBSPf+hytiYITXP0LyKW+t0OWmMgJV2+hrDQFnYLZ1\n8wJgjEtCXqDQTYsk3bxAX8lnuN1DROYJDf7qMwLW0YrBHiMSGbRbaDfH3qeUui+IyBuA52ByBY8D\nL1PV74ps+1TgO1X10W2Pd0ENgCSTf9Drtx5YzOu34fhqXffPl+nUMQanTWQQMAZSOAOsnOSxmy8I\nSURWqz+UIbBJ4dCo5zFh9Bhj4e43tU/7OvG5nQeSwikYkn5SRsJC2Ou3r6OSz+md5h67UzkajuRT\nfmiJnm0ob69Z3zT3gf219KxA1yXZ9aLOCwiYfVTRQLMsnBfowMkL9On+Lfhefij5u63+76On9bg/\nq9qDAFX9ooH1T3devw/okL+qvhV4a8rxLqgB6Eey128NgeP1653Ttudfla3pJNEYTDbo6rRpbesk\nj6VqbxvOFxiJyLTZPZwh2JQFG5qe9H2IGdltNNe+AWAu7o685GaimDwo/4S8/xBSdH9XFoEer986\nGf59liD5WCOwWQmru/ZkCyZnG7InNZPx2AYOWpG/a1a12MDspM4LpDaTa8h/0ro2c60J3r9vGGJG\nwPX4e7z/2AREthw0RPzhpPeOEEHmDyaVPphnvSV8z8wd0NXSYG1Y7g64Wa2bJJxTgQFnRv+bTTvG\noK7PtsZgtgbuOD3OI8agJ1+Qy4RVefdgEUEzHsHpJuo9KPbBj5WHpkRfLlI9tDGVP9ugT/pJ0f19\nWSTq9e8g+ejZhuWdnNXdjM2qGuOwFmZXSuY0XrYuN2RnG7KHDEHWnn+VLHaXpTaT8w1cs8whaL+/\nTyca6HEO/DEAfYPBYp5/ZHkzq9qDEw3cC1waA7A3r9+rwACQswxZGPnENQbKmbmBrTE4PTPrYsbA\nrSQK5Au08tSsd7NvQ+BOmGFmqsqr6QrbraVjBsEiZBhiRiF1FPGuk3d0S0C73r+LbXR/vwNmJ9E7\nQvIpn1ii65LyQ8vKCBSsbxYUa0P+Z3dyipVQbITZiTOREUt0WYTzAqt2mSiYNuBjmsnFpJ/OoC/H\nu++Vf7ZpAR2rBIosD0UDY52UXux3JPA9xYU3APv2+vVsUz+YFrLIkUqYtsZAFk5f/W2NgZc8tp5a\nHRHIlFV5t5Uj2LaaZ1lk3N5kTgRQTY3pGAOgYxDcOWyb77wbso/tDxSal3ZXuPKPi1DiF+K6P7gt\nHvKO7t/r9Vsnw7nPagcjQfJZ3snZrIXVacbd25b4m++n2AizVYH7C8TzAms4uTqqmVxI+mkO3uP9\nb9sAzoedZS5heSxSzWWylUx5EXFfDYCIfC7wbUCOyWa/wlv/JcA3Ye7PW8DXqOrPp+zb1frc5m2d\nroq+Blt5+v5DaR9GG47rukSXBTLPkbMMWCKLSWMMboFMI8Zg0kzAHjQGrbJSL3m8WSGTWWMIqoZ0\ntSGo3o8xBLfXeasvUTOdoSEyt7NlX3Rg8wauQUhpyXE/5mp1vX+LULuH0OQnfdJPzOsPtnPYQvJZ\n3slY3c1ZLZU7t+2550BGsRLmVy1zGyNgyN8QY29eAJKayfVGNxYx7981DkNRQEj7j5F/QPax0462\nz/0wMpBkHOcDGIuqa923A58DPA68XUTepKrvdDb7j8B/o6ofFJE/ATwGfPrgvqv/Ha9/s4TC8/rt\nA+mSvQ3FA16/rcDQsw2blTCZbeofX9alIwexmzGY5B1joJOZSd7tyRD4pHtzldWjbu3/SaYtg2D+\nb2cM7G/i4l5rsn7tv9/wbVfpp5UM3YPks7o7oVgLZ3dyVqcZxTrj1s2CzVq5VVUBLZfK1WXG9Rtt\nWaNYK/OrbflFonmBlGZyTclnvT8/8Vu/3tLjHykJBRPBAYNwcBnoAcX9NFvPBn5VVd8FICLfCzwf\nqA2Aqv4bZ/ufxoyCS8IhvX6rxRYboVgr3FHyadkYg9vrOjLYyRhsCnMurjGo6rlbEcH8pKkckpx1\n9cBaQ7Auzzr5AZf8b67yTgM6oEX2m1J2NgZwf5Nwrrfvev+p0k/KSNixko91MMrbq5YRiEk+y2XB\nndslt24WrM5KNhvl5Frz/V7H3JebtbC4aq7PJofVIf960FgsLxAYNNYr/VgE6/4H1qcgFBGEEr6B\nPIB1hizsuR9loPtrAJ4GvMd5/zj93v1XAj+SsmMha9f1u2H4Xsg/Y3W3qcDIp4p5pEpYFUxmjVek\n61WdINKzohoxOAE26JkxGK1GXtVNXvd2cSuJXEw2jQe3NO9ldmJu7sy0pl7VvbwWrUSxJf+b67yl\ntd9c5fV8BFequQgWOR2y38YYAEGDcGiEWj27jeDc5O+Q9GNeh5ugtWa+qkogW/eac2+177NNrff3\nkX+xzmryXy1LVmcld26X9fWs5o3ccf1GTrFSNtOMfKos7+TMWZI9aW6OMy8pn1gaI3DtBF2vkc3U\nyFJgIoHNEsmbsmSbHO5N/HoYbPy24xzAHUTyAAd3OjI52EjgQ+OBEK5E5LMwBuAP9mzz1cBXAzzy\nMU9pbtTC0dNxJkAHOAEwk2rIdNqeDQsqbX9C9hCUTyyr3WyAkhkm4QaQT2wEYPYgi4mJACo2qXMD\nVa2wiQCq17ZqqJ6E3byvid/KQT78aoeE/iguQvPturi5NmS4jTGAdt4A6K0q8qUoPwHsTpTjTp95\ntoFV/T5yndXcyi42m6z2/s+KRv6xczCYcxJsB+n266yeD9rtsV9q0XjF+aSS6ObmXtusmhwPmPEi\nGxsZFl4BwYQJG4q1MpmZJmzFRCnWMJ9nbNbKagmzRcZmY77j2SJjNs+Yz4X5PCOfluQz+3nIp6W5\nB6dZTVSymNT3lkyn9X1HNRZFJvP6mVERyiqCtEbANJKr5K581n7ONlXOisoIhNZborZOz8qJhu0y\n97635+bCVstZVOfuRgV2UKULO6bmiPtrAN4LPOK8f7ha1oKIfDLwncCfUNX/HNtZ1VL1MYBPfdYz\nFTwPJZ+Yv2KG5DOjy+YTc9Oc3Take3oG0zU6M1p8NpuaEH2aIfMJ5YeW5iG6vWZS5wC0IvO8Jn2X\n3GU+6RgCoCH9SfNepp4hCKFKDDfX1X7fjCIODYKZ1j1QbIMvOyE4WNKWerCVHXG7LhtjAHAlt3PE\ntsl+U1oPPy06sEghfnseMfJfVUS/2WSslllN/H5juLkzMAxgcVJFStVczO4o43lRRXXY8RFldZ1F\nraG437OtzJJ8BnPMvQZoPjORAMBq3XTvnOQIZlfqlBHqPK9lGxNdVr/fVDAJX5gtm+XXb+RcvZYx\nn2dcuabMTkoWVwtmV0ryacn0Rk52bUr20Nz0DHpobu6zk4WRf04WZmzAZAbzE1MWOr8GsxNUpJIU\nw150nQi2c0p72r91MxSC61uw5O88E/V/e987ExU1pdLOrHX5rDWPhTuI0i4rdLPVrHVRiPS3qjjH\nuJ8G4O3AM0XkGRjifwHwxe4GIvIxwBuBP6Oqvzxm53U43lkxqTycWZMMzicwOa1vQGMIpuidU2Q2\nRapksEwzytsrZDExeqr13CrSr72r+STJyzefnca9fGjfWPa1HThWz9nr3PihS66Sd/amt3PB2ijA\nEviyJnjz3yVD//XY6MAcp328eV62cg7beP2pxG9h+wNZGchGDrPM7N9+gVdyO/bAEL/7elpkgDEC\nbu+kvPp+ayNQeaKSz5qfZWIIUMA4G9XrOh8EdZO3OUYOstiszTnM5pM6AQxw9ZpJAOfTskX+86sF\nsph0yf/aiTE+LvkvrpnnIkL+MY/ZRgQtQ+Cies5ahiCwPgjX63e8+9Zc1Z5RUJGW1+82WbTXEHOQ\nLiPumwFQ1Y2IvBj4UYxb8xpV/UUReVG1/tXAXwE+AviOqhXqJq2XdnW79XkbriFY3m68tEkVrt82\n5K93Ts3DMpsit0+RxcTkBhZ5ren70s6gl2/X+aTf50W4XlB9DV3vPwWTLA9GAc0k4TLYcsGNDmA4\nOuiTiw5N/KG5AOx2dauIKgoAYZGrc/1G/mmMmJ2wxkhBpUP6fvmrqMLsxNxnWC/YeeSqCEABZtMm\nMetUKU2XBVCQT7TJO62U6ziJ3xs5sysF+Uxb5J89aU52fYYs8jb5nyzMfeiS/+zEEGuE/O21meuM\nyye5TGEyj+YHBGAy7+YHQoagz+u367fw+vfeRuUYAWwHVX0z8GZv2aud118FfNU2+06eji6fwMlD\nyPK0uTFXpnkbp3eQSd4kiSc5cnpGXpG/npkbrCb9mUfuvpcPXV0zhL6bacD7HwptLVGlRAGpTdcg\nLBcNRQcWY4kfSCJ/V/t3X7uJ4dUyB6caCLr5hLFSkEXLK55X5FdNZmIO2EQDdnrHjCYCANDphikw\nOWtId1PJRdYIzK4UzK8a0s8n2iL/7ElzZJq1yf+qiQBa5D+/DlV12YYNZVl0yN8lft8Q2JxA69pd\nQ5BPWmWiUUPgwtP0W5JPotdvz9v1+mMTD11GPBBJ4LGQdiPcNMxP6vwAk7mRhmx+YLU2huD0rM4P\nyGxtwvYxCdwQsQ95Dq7Hn+j99/VC9w2EjQKa5K0xDGeFMM3GGQGLMdGBT/ywu9c/1AHUbRPtRgZu\nFADaSgiPkYJ8BPMC0Pr9ZNMUIchsbeKwSnKEeF4AqMl/dsVUoLnkbyOAFvmfLMx9FyN/jZO/7/1b\nQ2BG166DhqAlCwUMQetq3PWus5Po9dtz7PP6U7vOXgZcSAMAbDcQJZYoXmy8RPG0aQcN8QSuT+4x\nsu+b5KJzftt7//VuqmQw1YQfy1LqCABMFGBVrG0MgI++6AD2J/ds0/q5/owXBbjnbRCXgsBMqxlC\nq2LGzQvglUlWyeE690RaXgCoyX96wxQitMj/xqKb8D25WhN+Kvm791Zfe3BrCLrLp938gP1mq+Rw\n2xCkef1A7zmHvH5bcbY3iMRzeOccF9cA7AI/P7BZthPFt09N3fTUK1cLJWwtUkg+2RBsp/3HEIoC\n7Otto4AY/OgADkv8dl1ownigMzm8HwW4iElB87z5DWIEaNY5eQGc5LC9t2BUXsDCkn92bWqSvi75\nV96+T/4yv27uo0TyD13T+Hki0iuGYl4/0JJ8tvH671W7kW0gIq8B7Py+n1Qt+xvAnwRWwK8BX66q\nT0Q+nwPvwEwi/9yh4x0NQB9sfsCO6qwTxbNmcA+0yT5E4qnEHjuH+rVX9xyo/AnptTGYAU1FXZLZ\nlHNKpyT0UHhiFSd+oJf8Y8QfWh5KBNv913D7AgX2myoF+UYgl2krWQwgTnJ427yANQJumafMJy3y\nb0k+LvnPTdWPTuadxGmfFx1q/pdqCJIrhlzih1akW+i6jna39frdyrO9YL9J4NcCrwJe5yz7MeCl\nVeHMt2KmfvymyOe/Dvgl4EbKwS6mAdA9T/XmJ4ptfmASaU7lfm7f8MJhNwxOgc0DuFUr08zSj/H8\nJ05EECoJ3Qd28fpjBL/X84tEAWArgOzyrIqg+qUgF7lMUZGt8gIAWulzlnJ2qfEPVc1AmEzd/7sY\nAvd76KsYGuP1Q2MUhrx+O97kPEJV3yYiT/eWvcV5+9PAfxf6rIg8DHwe8HLg61OOdzENwKHgJopD\n09wdGEPefx9iLXDvRxRwVsATS7kvxD+4vRslxKSgvGmWN8/VqaRqDHIKGbZ08fm1aF6gb9AYsHWN\n/1DJZH/VzPaGYLBiqF4R9/pTzjXm9duy471BpCn8GMaTReQdzvvHqkGsqfgK4B9H1r0SeAlwPXVn\nRwMwFl6iuIM99T0PGpcdvf/O7gJRgC0DNfX65vXYktA+uOT/xGo74k8h/XzZ/k6KeR6VgcYiRQrq\nnE+kfn6XQWMyn5iZv7ao8R9L/m7VjGnnYS/S+T5HyupDFUNjBnWN8fo3jlG4D/hA2limLkTkL2Pc\nkn8YWGfzBj8rIs9J3efRAGyLfGKSeZbwbemaKwmldD6MGIzQXKfNscPe/7bJYDcKqMcHOAPDdikJ\ndWH1/pvrxus/vWMIIET+sTr+EHzCD60v5vF9xHIBsShgSAoaIsOhvEB00JhtU0I1CXxqjX/VSnwX\n8m/aeJj3riEwYzsK+1V0rnEMmm6d4yOUFK/fNQoPCkTkhZjk8GerBjWzzwSeJyKPYlJYN0Tk9ar6\npX37PRqAbeCEpnlF1LXn4hK6V/PcwSYyr2kMAe9/G4TGA0A7CnAHhu1aEurq/Zb8b9+cRb3+FOIf\nIvw+hPbpzhGQgrMiLgVZIxCSR2Lw8wKt5LAdj0I3LyCLdXKN/67k7/7vYntD4M41YHEIr98n/r3N\nMX3gkcDVxFkvwcyNchraRlVfikkOU0UA3zhE/nA0AOloPUBLitI8KGvOWhODYA1CPQIy0gCr2AxX\nB4UiCM/737WplZWBbHsIoBMF7FISasn/5sq8vnnakP2tm1NH/ukn/W0Jf7oyn1vPmhHEKTJQixwC\nUUBfryCDKhKwLxmZF3CTwz15gWCNv504aI/k78sltrEf0IoK2qFP0V2UiJRWDtt6/fa3PXSF2zYQ\nkTcAz8HkCh4HXoYh9jnwY1VLnJ9W1ReJyFMxMyk+uu3xjgZgCO7D4w2Pt55LLuZG9SfLjpa79cGN\nGDrtb9O8/21b3Ta9gJooYJdksJ/steR/emdSe/2NBNQm/VTCtwSfgpgMtAxGBOH9dr3GrhTUNgKQ\nmheIDhrryQuYk5321vinkL9FjPxducSM4G48/rAh8K7fXxSAvXb3/Mz/zV69fr/b7c4Q9jYQTFW/\nKLD4uyLbvg/okL+qvhV4a8rxjgYghurBWZdnFGWb9F1vaQ1OBNA2BqUUHWMAND3UXdgoIVY6Wmx6\nvf9dB4MBnShgl5JQt77fJntP70xryce8bur9Y4Q/huD7MF0VdRRg4TeE8xGKAha5drZxpSCDxgg0\nOpQ48GEAACAASURBVLkxAqm6eGozOXMB4Rr/MeTvetUx8m+a+IVIHnAmEQ5FBSF5qA+H8vrdliOX\nHUcD4CIg84SI331QzBSBZt7d9jyxE+BuPV9szBhAxCBAN5+w6+U5paBuHsCtBnKbxG1TEhrS+13y\nv1Vr/znFTVis9lM1NQbu6GAfbjI4tN5tGQ1dKajJnbiRAMSSw0Mjh2G4mVynxv9A5O+XTrrGIC0q\nGCcPHcrrt8R/9gAlgQ+Fi2kAtCQ0N2gUPTLPulx2HpBlOWlpou5k4b4xKGQzaAxsUyuLVv7AvSyn\n/8mh4LeKtlFASkmor/e7yV5X7799c0a+LJiuCib7HmEWge2gGZKBXPnJTwb7UcDCu6XcttFtKQhq\no1CTYDcv4CNkEAabyXk1/tAdOLUv8rf/2/M8hA2BQez39eShwPdxKK/fEv/ZdkppF8d20A8gRnv7\neXDmKjNpeHPzu8YAVvUcstYYQJMrsMYAaA2RjxoEB3ud0Yj+KCClJDRV718tc/JlwZU7a6aroupr\nA+uANu9LNrsiJgP5/YAgHiX4I4TdMVnme/K9ym4kUEshCTJISjM5t8YfDkP+vsMTMgQ+xkUFXUPQ\nl4zexeu3xL+6N77HucbFNAB9cwEMJHV94r+9mXRIP5QUM5p51xhYmcg1BmWCMTDr2gYh5v3vOypw\no4CUktCQ3u+Sv6v3L26tmKxLpquCk5uN/DN1cgDWGISWuRhjICbrso4CIE7wq6XZxjcK7sxh/jIL\nM++BIfw2MdoPhZPDW+cFlraBXFPjD+MmRUkl/xQPPyUqcA2BC3++aLN9dhCvf7XvHMAxAjiH2DhJ\n1S20fSvzDE1QPs1sn/ucRd42Bsbb05YxAJhmbWOwZukkkafNFI6OVHQIxMYDuHDLQH1so/dP1iUn\nt1ZMlwVX7nT1/2KSMVu2Y/PVfLJXA9EnA807BsFMGLNwNj8LJIR9KciXPhoS3G9ewCzcbkasseRv\nCDNeDZQSFbgX2xcVHNLrb5ZHTvES4WIagCzvlsAlePsxmadvxqpFrq2JT67kwiLPWxOl28jAnR4x\nlEAuWzkDyGVTGwUXLjn4JZ8+cbjrfbL3t21Pk5e1vgv7cLsPWR/5L536/tUyJ2d/T9t0WXQIP2gg\nnAqi9Syv8w3rmZGhVs60ipNJGRkgVrRmDYNq/uCAFOQaATsDGpTVPaTV+ww7K5pBVnu9ZBWBO6XE\nfruEVkfNqn/O2EZpvnftE6xPrvG6+XA1UPv6+hCOJJYBz97+3wSigaEkr+/12/V7ayAoslvH3/uI\ni2kAJGva3B6I+C3OqvWLXDmrtmkMQTMVYmMItF7WlogKNtXo0S4BdLNVfUagrzw0NheqJQWL25us\nRf7LIuNDK6m/B7+Nc1+Zp034dq5hkpFvytZ7H6t59xYNefsuggYiUk7qGoFB+FVB0TYRFnFD4N4D\nxvvNK4egawjc8SY2OnCjQ3uPQ39f/BDxx7T+GPH7r21psJ36s0HYINi8mT1GIy82TlPzucMS/747\nyD6IuJAGQNHOhNZ7J36HcxcTd51vCMAlgk1ZOg9A1xAYgjhrGYJmyr1tvXmq47VJHqA9cKe97bIQ\n7qwbQ9D6LgKav9vWoQ/red7y2GF/5D+EkCE4rBGw5NjMiRy7B5alOJFhWTsETW+cJiJ02yekjZgd\nR/wu0ccKtdpRz34Ngntu5nWc+O2yI/GPx8U0AFqyKu8enPhXpSsHWMQNgUsElgRs5UjYGzyrCcB9\nqC3iJA/uAxcl+QHyN3/m9QdXzffhVvv4Cd+VJ/3EsJ7ntdbvk/8hiN+FrQZyS1D3YwRg2BC0o0L/\nHoC2IXAdAnsfuDIhDGn85rpSNf7QKNlttfJdDEKM+O1+90H8/sxyW0OyowR0nqAYA7Av4vdJ34X7\nvm0MmpvW5gma+XAbQ2CTZ26eoOsNnrWO6ZN8iOD75jzta4PrEsSddV5/L+534pd6bjZZh/wthlo6\nHIr8QzJQa33ACMAOhqD1u6dM0tBEhaF7wJKi7TDqGgIrD9lKsnAfny7x+wnUIY/aIj5gKnEyigpj\nDIL5f86J/wLgghoAIwEdivhDHtEib7ZxDYGVh6whWOR+nqAtDYRIYAzBx8h9qPWtv958P+a8bZLX\nH+TV19QtJcxezSetip9De/4+DpsXaIx/P3bLE9SH9e51oJf4fX3fJ/5Y1OufexfpRqHfIIwnfvs/\nhfhtue9eIBxm9r97gAfzrAegWnJnrcnEf6t6jnzi7yN99/0i7wmTPXnIJQU/YWwrRNyEsVs1EiL3\nPmIfIn3we9g0uLnK6+/HLff0R/iulllwovY+rGfdHMBB9P6BKKDe7iB5AYu2NGR+f7yIcPs8gVm/\nf+Lvi3rD1+lfr0W3d5JP9BauQbDvdyV+/77cK/FfAFxIA1CotKpYfOJ39WxIJ36f5G1r4fHGYLvK\nIRgm9ZSp7vokIAvXOIbKPS3521p/6D6AVv4JEaybCPbJ/5Befwx7zwtYeJKgwf7yBECQ+H0NfRfi\nH4p4w9dbfXYjnfYZ7vX7BsEaxr7WDX4t/xDx+6Qf6v66G7Jx83qcI1xQA2A82FgJ49Cw8BjpD81J\nm2wMOqQwnDAOIYXIzXbDRsFFWxLrL/eMkX8qzgP5W+xsBCBqCFYrdxRxWlSQkiewSCH+sd5+n/Mz\nCgNGwZfK+hyzfRL/eawGEpHXYGb++i1V/aRq2Ydj5gF+OvBu4AtU9YORz+fAO4D3qupzh44XNQAi\ncgMzEcHDwI+o6j9y1n2Hqn5t4jXdc5Qq/M7ZJKjvQ5j4U0l/1E3jkEHIGFhSsA9EX8I4BfsY2eh6\niLEWD26tP2w/gYtfDnoI8k+VgertD5EX8FHde20i7EYFIWegO7BsuJRziPi3cn52nVs5IVLYB/GH\nvP3zSPwOXgu8Cnids+ybgZ9Q1VeIyDdX778p8vmvA34JuJFysL4I4LuBXwF+APgKEfl84ItVdQl8\nRsrO7xc2pXQ8/thN795YFimk795wtm+MHw20PpdICq48ZENjSwT7nMFoqAmnW+sfK/f0scuDdT89\n/xB2zgtYBFtKO7KHZwxcadCNCsznunkC6PbCGaqRr69nhPPTe2+Pud6eZb5RGEP823j7+ysDlf45\nvEdAVd8mIk/3Fj8fM0sYwPdgJnvpGAAReRj4PODlwNenHK/PAHy8qn5+9foHqxnp/4WIPC9lx/cT\nG21XrkA8cWTRNyVh7EZZLTNm83L0jbSiaUJmHwT7348K3MqhPuzD+3cR6uzpl3vC9qRvE8H3gvi3\nPc7ejIBFojEIjSnoRoVNniBE/EPe/ljS35ksEwyD+76P+FO9/QtU/vlRqvqfqtfvBz4qst0rMXMH\nX0/dcZ8BmItIpqolgKq+XETeC7wNuJZ6gPuBUhv5AuINoMbc7LHqgdDy0UahxxicZaEk2uGxqiOn\ncLknxL8/V/7Z14xe9wt7yQvYzy2b+YhdJ8Ai5gT4UQG05aGYvp9C+qmOj73Pt3F4/GtvIfAd+J/r\nI/5tSX+vMpDImCTwk0XkHc77x1T1sdQPq6qKSEcvFBGbN/jZalL4JPRRyz8D/gjw487BXysi7wf+\nTuoB7geKEmyn4dDAEP91KuEPVQ/YTpJjS81aD0fAGGzTt3y2g7Pjkn+s3HMfD1CoJcShsEu0scug\nMRsl9m5DekTojyexGCNzpj4Hoft432WUUcPgnFtI5lkmGq7YNvcRH1DVZ438zG+KyEer6n8SkY8G\nfiuwzWcCzxORR4EFcENEXq+qX9q346gBUNWXRJb/38Az08/93qPQtvcK42/0PrKPdY2MfWY+LzrH\niBFDyEvsq52OYVtJyJJPX7ln6JwfBOxqBELYRRJyJ6MZcgJi8qDZLu7tjyH9Q5dLxu55ew7+HAw+\n8Y8h/dg9eZB79fCtIN4EfBnwiur/D/kbqOpLMUU7VBHANw6RP1zUMtBSat0atrvJR5cz7nhjhUJs\n26J4Ni9InTk35k2lwiWMULmnXRdDSvXP/cSueYdd8wLLZd6Zc6Czvx4nwJcHYRzp3+8yyb7rdw1E\nyNsfjtrHFSacx3tVRN6ASfg+WUQeB16GIf7vE5GvBH4d+IJq26cC36mqj257vAtpAMpSavKy2KYc\nbB9Jo1ifeXt8n7DdB2Qoydw3laGPsYYhVO4Z2v+D4v276JuGMunze8wLhH5vCEcHIWNg4ZP+NiWS\n9ypp2if79J1Tipcfux/PI9mHoKpfFFn12YFt3wd0yF9V34qpFBrEhTQARSHcuhmvUYf0m3tbgrM3\n+NBxQnPS2mOGZCXXe4oloGPH8REyIBahcs8h8h/7kIVm7LpXOQF7rPuRF/B/c5cQhwyCbwzs593/\nKYR/v3Xz2FzMoe1i57ML2e+9OOGi9gISkT/dt15V37jtwUXkc4FvA3JMKPMKb71U6x8FToEXqurP\nDe3XRgAu9nEzD+1j1iLn9OO5hO9iaKxB6DN9BqN73Gb/vuHwyz23wTYPWd9MX4fAeckLxPIBsYjQ\njywPlSg9pBGI3fexY28z4PBBr0I7NFLM1lcCfwD4F9X7zwL+DfDbmELlrQxANWT524HPAR4H3i4i\nb1LVdzqb/QlMwvmZwKcDf7f634uyEG7fvPe9OXbPA8TJPbbOf5Bj0YS/Px+WLOZV1OGT//2Sfu6F\nQThEXsDFIQzCUOHCvvTysVFdsaQz3/IQYoYgNcIcQ/J+xLYXyMXuBTQFPtEORKjKkF6rql++47Gf\nDfyqqr6r2u/3Yka8uQbg+cDrVFWBnxaRh2w5VN+OpVQWt5q0aWxy8POOYhlZPu+OxPXlAHeZRaza\nwkVYRhj+/u6Vxnoog3CIvEAf0kpI846hdz3/0G9+CLK/V160f7/780innsdBSP6CIsUAPOIR7m8C\nH7OHYz8NeI/z/nG63n1om6cBHQMgIl8NfDXA/MZTWjfB0A2xmabJHPsyJId4oEKE0pdsc+EahJDR\nCHlmfnTie335suh8X9NVEf2ut/1O9j2W4BB5gVT4v2Fvy4UI7G/pGoJQJBlaFvoN4fw4UKnnsZ7l\nR+knESkG4CdE5EeBN1TvvxBncNh5QTWa7jGA6x/9zM5IuVSSh/iN5j8g2zygdj+7eMyxEDtE9qFl\nMcKfe6+Xbjni2LLYEbLHZF3u9NBawt53NODvP+mzq67hS0GKbOL+VpNJ2WvcY79bqNY+Kr147W0e\npIqvsTLUrlAZ13H3vGDQAKjqi0XkTwF/uFr0mKr+0z0c+73AI877h6tlY7fpQEUGCX/oIQ3dQO6D\nYl9vnfjdpacM25G9v828voays70hhqYm2xoEuw/3WieTtPYAKde8i+d2qJHFh+5YGoL/W4bIfz4v\nmM3LYD7AwjXqoVLo0P0bG5AVur92MQq7fHaX8S67jpW5SEitXfo54Jaq/riInIjIdVW9teOx3w48\nU0SegSH1FwBf7G3zJuDFVX7g04EPDen/PlK8sSGyD70P6eipRGj3t+8HoI/soU0GltztZ0LX6xKC\nNQiWbFyD4G8/BiGjcB6NgMUu0cG+YMn/5KoZ/uv+7n33n1/p5RsOv2JsGZCLzOfaxj/l2KHP70rE\nqZ8PPav7NAKKtqbnfJCQUgb6ZzHa+ocDH4/R4F9NYGDCGKjqRkReDPwopgz0Nar6iyLyomr9q4E3\nY0pAfxVTBpqUeFYJE39fWDjkUffp5KHP3ItweRvCdz/nRzGdlr3OtViCd41cn/c5xiCsyKM5g21w\nr3sMdY49IAP560LSYuz9ydV17fmnRIF9v0GIGNu5g9BAw6y+r/yIIuU3D0lOu6CvoCH1ebjMSIkA\n/jymYuffAqjqr4jIR+7j4Kr6ZgzJu8te7bzW6vijMaQBpjw8KVp5DL6HfAiMJXz3Mz7p2/+2idyq\ndFoPnJjRp/YBD0UH9pjbNgvzI4F95AXu5aAyi323uPadEEv+J1fXSUQ6Vrbp26d1AKArEVr03ffu\n5/uQOkis73z9Z7TPAdodSqkPpqyUYgCWqrqSKskhIhP6JjU9D/ASMrEfetsE6WxeJoW+KfpsipGI\nVfOk3ORmeTdf4RK/JX237fQC01VylvUbA7vfFIOQcr2uIThvyeFDoM/798n/+o1Vfe/N5sXoBoEW\ni5Ph7yPUTNCNbmO/udluvCMQk5Xc44YQcsbGOj+XGSkG4CdF5C8BV0Tkc4CvxbSKPreQTPdC+tBN\nlIa8h77Qd0xeIAS3Emcs4fuvY96+21nSnZDDkL4MGgN7nH3JXg9aXmBfiN2zlvAt+V+7sWKRN8Z7\nm3bhQ4iRY4oTMBbLiIPjIhZ1+1JOzHiEIt5dWqZfFKQYgG/GjAb+BeDPYSSb7zzkSe0TKclSf7uU\nZGlMpz2k9t93s29D+mZ5M/XkNLOTkZvX67KZiKSepcqbtq/VlMz5bnYlhljF0IMgCU0D+YyxsL+h\nJf/rN9Ytz3+Rw41q8Oli1xMec16buBPQB1cycuHmFAaPHfh8X7TQJ3O6Ts+uUL2gSeCqXcPrVPVL\ngL9/b05pd4ikVe0Mkb77OZf4e0PHSG5hGxL0H5qUmx3ipA9hb98Sv39ddh7iadaekcqNClyEjMEu\n2Hde4DzANQyu/BP6Ld1yT/v6xklRe6/7IrBx2F9EGDIKff2pYFgeGsptudOsjhgadGHRawBUtRCR\njxWRmaqmtqQ/N0gp/9qG+EMJUwu/TW9zoP2QVirpu+fnevt2G3vzu8Q/z5V5Xlanm7EspHU9flRw\nr4zBvvIC96pENKUSKIYQ+Z9c3VQSUEP+D8213xGJneOOpOf/9n5E2EJiQtkiZBCGnuHQM+C+tt6+\nPXd774ccnu2hFNr3RZxfpEhA7wL+tYi8CbhjF6rq/3Wws9oRIpqk6zfr00okQzcV0CHAkC471jDE\nEr8pNzx45+fJPBAm/kmm9STjk6xgngvLImOew6KaeNxGBQ2sF2okoiFjkCoZ+Nh3XmDf2MWwxH5n\nt9xzNi94aObKF3Eyv7IjsfUR41nhOQKRPFEHA05AX4VQX1lsyjMQIn7X2TlvEJG/CHwV5uH6BeDL\nVfUssN2nAT8FvEBVv3+bY6UYgF+r/jJGzDZ/vzFUNTOmUiDmTbTRrjwKEeEoRB6Y0A1vzw3C3j50\niX9erXeJ37xvjMA8VyaZsikFMIZgWc0768pD7VwBxPIFY64zhH0YgUNEAf7+UkpB+wYfurX+ttyz\nln0m8NBMW/mabT3ZeaKE5BLlvMhqZ8CXB1N/d5tAtkjpWeWvT414Y8Tv3vO7Yp8DwUTkacD/iGnA\neVdEvg8zSPa13nY58K3AW3Y5XtQAiMg/UNU/Azyhqt+2y0HuNdwq0G1LJfuIP/TAtQmwPpP2Nuxo\nFOi/4e15uNulEL+7bJ6Z18va+7cRgTEE8zwsD7XRnIOdqHxbqcDHvpPDu2JXY+Lfd26tv5v0vTFt\n9Guf0FKQ4u1OsuF92cjQNQQQNgQp93vIGFjESN997ee3zLph4j/PEQCGl6+IyBo4Ad4X2OYvAD8A\nfNquB4rhU6s5J79CRF6Hx2aq+ju7HPiQyDI9CPHb9S6punKI9YYtUoxCkpfsXkfkhm+O2ZyL6yG6\nN3yM+KcOAUwzZZ4py9r7N4bAl4egMQR+VGDQloii1zwyT7DP8QLbwif/2dJc2Go+CVYC2ffW+w8V\nKsTKPd3kpSW1G7P+6x0i9D7jEVtnI8CQIbiS+4YAxkSDvjGA4YgXtiN+/36/h3iyiLzDef9Y1cgS\nAFV9r4j8TeA3gLvAW1S15eVXUcKfwszNcjAD8GrgJ4CPA36WNnNptfxcI6Vsclvid0NQl+S7GrmP\n9k3X8pIrWC01hFRv3y5PJf5mG/PhTVkwz2FaZLUhMBJQ1iEBmydYFvGOiEFSgC4x3ANJaFcZKPRZ\nS/7+uaQkgmdOlU+s3NOS241p87vGCH4bYjfruh7x3DuGjQxdidAaAjcqbJyAtgPg3tu2ggiacSch\npES9Y4l/npfM8/0U0CqMSQJ/QFWfFVspIh+GmQflGcATwD8RkS9V1dc7m70S+CZVLWXHLqRRA6Cq\nfxv42yLyd1X1a3Y6yj2GKQM9jMfvJk4t+shv2CBAd2B1P5E2r83/McRfV/kEiD+XKZmYneRSVLpm\nYwjWpTDPiiAJ+HkCPyqIX2+gkuQe5wXGIIX8Z8vNYA7AvQ9Tyj3tfWh/26vTwrsHh7z9sNzhEzzQ\n8Yzdz9YOQUAiDBUNRMeTQDQq8I1BX9Q7hvivTYvqPp+RSU4u53Ie3z8K/EdV/W0AEXkjZkZG1wA8\nC/jeivyfDDwqIhtV/cGxB0tpB/1Akb9FyojAWI2wXT9UKunCesfN630ahDZSiN96h33Eb7z9hvjd\nByKXCZnmtSGYZCYqqK/RMQShPIGVh4ahHMIIQL8h2CYKSPX8++DX/qeWe04z+LBZ8/v6kVwMKQQf\n24eNBu094t4HscjQdwbchDE0huCskJrMY1HBPoj/2qSs7/VcFvV9nst0jwZgr72AfgP4DBE5wUhA\nnw24khGq+gz7WkReC/zwNuQP6e2gHyiINDd4ylDwVOI3/9vk6hL9JCuqmz/dIKTA94gORfzuQ2FD\nWmsISi3I8ymTbF0bgjF5gn4oQa34HOUFUsg/35jvuphkvZVAfh17SrnnFec3vjotcT3b4PluQfJg\n7gEXNiK0r0stIKNlCNalAGXQENiigXjlEITkIYuxxH9jVnTu9RDxu9HueYKq/lsR+X5MC/4N8O+A\nx7wuyXvDhTQAcHjid8smY+S+T4Pg1nzHavjdc3PJoY/47QPvPxS5FhQ6odBN7f3VRsExBPvLEzha\n8RbRQN2gbM9GINXrt+TvfzaWA5jNi1Hlnk+a+R6u8W59xKIB+9vX5+sQvU+E7UiwbRAKXQcdgphE\n6DoDoYRxKE/gIoX4b8zKjr4/RPy5TBE9n60gVPVlwMu8xUHiV9UX7nKsC2kA3FYQY4nfLhsmfqc2\nukXuhzMIfYO33GUh4s/FJLz6iD/k/RlDsCYXYwysITDb75YnCOMwklDICAzJQNuSf74p8adTXM/M\nvMnWyx9f7tklO5/s+0ge2kTvyx/+tjEjYJ0C/z4IRoZbJozPCuklfpv/CCV2k4l/s4TiwRy9u09c\nTAOQaRLxQ7hcEoaJvxt6jzcI8c90CfLgHr99MArT8WOSz1ARs03l8dnPWQIAWoagL09gz9U1BAah\n76YxAq4mbI1ASl/51LxAzAjs4vn7x3OnJ7Xk77Z2Hir3bMizTXiNfJPu0fvbDhkCf1+NU9DcB26+\nKBgZbpEwhnbF01BFz2ji36zqe/0y40IagIx4ZU9sgBSEK2fscvO/S7KW3FwYKcTsx9745rXUr31s\nej6zPfkzSP52WU3+y9PqYCCOEUiBMQI5UAA2GlCMofO/J0ucTY7ATY4bEmiMgEWo6+o8sAxMwjX3\nZ+wKSDKhmch8/T6k6U+XRcvTd8cBrOc5p9dnbKYZ61lOfgOuzFdR2cd6/g/Nzs9UG+2IYdp6nWnO\nFCirCNHKg4WuKbINpRpjALApNyyr6HCZm9/aRAZl9UwIN2ikQ5vz2jvxHwzKprw/AxF3xYU0ACKH\n8/q7NfP2hzcHbEivbQjcbaBtDKxXBHFDEDu/fZO/Ls1UzwIw2SCzk3pfYB74tiSw7lZTZGCNQIOy\ncz3NcnO+bg8bd2yFmxj0B9bFJh/ZpT/9kJGwUYRrEFwDsZ7nrGc5m2nG2fVZrfeHqn1swjfU3M0a\nxHlu7wutHI6SaWZIx40CLEottkpw9hl6q5drVXfe3E++MZi0jYFu6sgAGmNgIwNoJ46tMQA6ye42\n6c+GSb9YAQHizy8k7W2FC/lNZOzH6/flnhDBNhxXVJ9j66jANQQGvsZ7IPJfncLyNrpZmtdUIkxR\nubf5BMlnSZFAbSBqIwDNl1S23jcPvfH2z1oRQH0WnXYCbhWNP9mOlYZc8rfkPVn3yzWpSIki7l6d\n1pq/JX93kJdb5x/r7Lkuzb1q7pFGFpznVJU32f/f3rvH2rJdZ52/UVXrcfbZd99LMDiO7WCDAlIE\nCQHfbiQjsMEB58aKMQrBNDEJHWSFNG5HBMU2UbdaQkjOP5HdLbqdixOcKAYTmZBYJiHOg6gVMBF2\nsEjjKyAKLyc3cRzFPvecfdaravQfc86qWbNmvdZa+3HWqU86OmvVqr2qau+qb4zxjccks5dvDPGw\nSG0IGt6/NQBh4tSPEGPGwJzbrmYMFqk5X98YMDPPiJ8zuJ3efhOFSvSZfxRwkgZA5Gq9fl87d6Vx\naTrzKgGGRQVxjxj7WT0qODb5lw+yI//1C0YbXd0vz0HzjYkEFufm92qNQK7bYR5m4jqKQwmoem8e\ndve+ygeEXN0VBcAwGcjX4q8SLuF7frHp1Pv9Dt82PLRyiPP8h0YBx4SfGyqRzqvPLGLGAKqKMqiM\ngcsZVMag6i3A2rFY49Zob78NUxQAnKgBSCTeLHUsr7+3izCICpr6t0PFckOigqOSf74xhO/If31p\nEmP3L6vTy+ZVhX46L/MCsdLA1t9H7XfRlReIS0FtUQCEQ8SOKwP1oa2803n9dxZ18o/p/X3k7+A6\naBdp/d7Y2rLbGHwZyHje+z3qvvdfv9CmQQijA98YzFia+0Rz4E4ZEThjMEtgkealMbit3v6p4SQN\ngPMjr8rr98m1E4EhcCVysF9UMIb8HQaT/+UD2Gzh0hs7PjcRjYJ5wKE0Au54MYzJC/jvY1KQwzKj\n0STWtQ4zHLY859DFXMLO3pS8VuMf0/vHJHtdJOSigCzJrRSUmCqrPAEMYR4iA7VVEdXul+gP2r9z\npKLG3Sf+MdxxEk07jQHAPLlzHG+/DUeKAhQnyT16OE0DIM1Vf47p9Y9uI29EBNVG3xAYxKMCc67e\nTJaB5xh9eNaXkG/q5H+5gs0WfWAiAAHYeeeb7apoINvB/AxRPVJeIGmVggy0MTDPR1gSGpOBoF4C\nuu+avV1z/NtGOwzR+/uwyqtkMNjyYq+nZB/03cOl9+/KJh0yj9i7DENgFHyDkJGhSWUMwoqizB2x\nHwAAIABJREFUydu/HpykAUhon39vXg/3+oFGGAoV4Y6aAVJTKZryUHdU0DbSYTz5G71/UyN/fXBZ\niwAUYDurqHi+KbfHksOH5QUKFqmUr50U5OAnhGOjIro8fV8G2of0Y4Tvvtd/7RP/vnp/G/xksEn8\n5mViGDhaFAAt3n+IXU/9fDaPG4Z8V/O6nbSYWRrSpEoigzESR/P2rxCqlMb4UcNpGgBpn4gJh3n9\nYfOUOd44Q1DVy8MYeeho5L+xer9P/pcruH+JWv3FRQCl17+xCe7dBl2cjc4LuK5R8wsrt5ZvmpMt\n2xPCfWhbYGQI2gg//F7/fRf5j9X729BVEuq2h9i3HBQC7X9o05Tz8LsMxG4TjyDSDMESUjq3x5sa\nta4aJ2kARNqbpszrw7x+v4Qy1E5HTwXskIdCHI38V/dNsneX18i/+PwatWybALK0OYDNFrlr+gG6\n8gL7No1ti7QWEeyKdimoLQrwsY6QfqwpzG3vQte6zDHiP0Tv70JXSSjUo4CxiP3NerX/GIZ21rr9\n/BxBTWKqjMKjgIJ46fejgEfjNzwSCe1zcmA/rx+IJKKqMHafsLvWVGXvn0oeqUcF5hr2IH/r7TfI\n/3KFbrc18i/ub8oIQNc7kvO5Oa35rIoEOvICfU1jUST+5Eoj/2S2SiiUgvaFLwP1Eb7/M23buojf\nST6H6P1t6CsJddhXBqpFtoH3r1ehv7d95xokW9gI8+z4x51Q4iQNgEj76lfAIK8ferpmA8/Ir4xx\nmvhQxAyBQSUP7U3+YY2/I/8HJgLwyd+PAGRVnYgsc4TxeYEQbrJoiEW6YogURHW0UWOjh5J/28Lk\nXcTvPm9bwevYCEtCod4Y1hYFjCkFDe9x3a2vdm5OJMrQzaUpNMg3pg/lEYkGHjWc5G9VqNfMw3G9\n/kZVhNtmyc99z1j4hiDMExxE/n6Nv6/5b7Y18i/ub1FbcC/emnuyLSpBJpYXoL1prAsuL+DPDxoi\nBcUXot8PbaQffjbU6z+G3t+GWEko0BkFDM0DdHn/ndhnomYsR+Bv22xhPivzTezWyOIJkzs4piEI\nylT3haoctN7HTeI0DYDEG6agklEO8voHPBhiqxs0WLOzs2nKos0QDCJ/N+2wpcbfkb/eW6GrXY38\nt/dy8q091iYvqzFkaYimlhcAZOYRfEvTWF9eoIwKEljnWjaJdUlB/qC4Epasw9EQDr4M1EX64ee3\ngfhDhCWhMCwK8OHfQz5avf+hRN9XIRR+7pyIssjA/u4vV3C2NPsvz9F8Y3JOV2EIbhlE5Cng/cAf\nxDxq/7Oqfjyy39PAx4E3q+qH9znWSf4WE/oln7Cpa7DXb9+XD4ZLhDoEVQ6hIXCJYn/G/tBoYRD5\n99X4W/IvXthQfGFtjYAh/83DlHxrh33tBDBGQLwyHFklpUql2daTg6xhyG2PAIzOC+wjBW0CPmkb\nE+0WjOnCIcQP9dn1rmrnSOOHSsRKQiEeBYxFp/ffR+w+2vb1Isba611evtfttowAZLM1RmCzhbO7\nJueUb4wROEJ+IHTO9v4eDlvxL4L3Av9cVb9eROZA40JFJAW+G/jYIQc6SQMgUlX4wHG9/poe6ryk\ngYagq2IoZghqpZPQSv4ZmUmoDajx98m/eGGDrvOS/NcPUtYPEtK5ks0ckeRk88r7E+vi+slhtn6V\n0Li8gI+hUpBPqrUlBPcY/RAahTbid/u2ef1h46H738lVxzQIYUmoeV2VELshcUOTwe4eG+X99xmE\nzbb9vfPyN1tD+O5zzxBwuULPltW95WShs7uVk2Gfu70MwZHkn2NDRJ4E/gTwzQCq2lYP+zbgnwBP\nH3K8kzQAcKDXD9WNH/P6faPgIWoIPAypGGozBJ3kP6LG3yf/4gtrdhupkf/mYUq6K8gzT0/eKgvb\njOOSw7otSJ7I98oLxJrGxkhB1Uy3ZhTgE3qsHDS2n8M+ck9smcLy+N4ymG71q2NEB22NYcZINofE\nDckD9Hr/XYQfkn1sW8zL97e7z1Y5utohy8xEAOdnVRmy2/f8rMoPpPO9E8XHWsZRtS7H9eBFIuIv\n8v6sqj7rvX8l8JvAPxCRrwQ+CbxdVR+4HUTkpcCbgNcyGYAmTBJ4+IA0t89gr99/IMLGFoIVTp2X\n4p/fgIohfy3eUeS/ut/Q+/0af5/81w9S8p3UyP+FezmLRcJ8UbnW2dwwVbrZMLuw3uIBeYGYAfTz\nIkOlIOdd+1GAT1OLgOTbZKBjEb/fc+LWwt15A9sWtlZ8aeWCQ6IDVxIK+0cBje2htx/z/mNk37bd\nEnarl7/ZVmXHqx26LVC36tr9Dcn5HFnlyMUS3eWQpZUhcPmBbL5XolhFqgf1evE5VX1Vx+cZ8EeA\nt9kF4t8LvBP437x93gO8Q1ULOVDGuhEDICJfBPxj4BXAfwG+QVV/O9jn5cAPAi/G/KmeVdX3Dvn+\nRLTT6zfvg6oZn/z7vP7dpv1BgLIiqGYIIp+PrRhqkP8eNf4++W8eJuw2SY38H9wv2G2V9Vp4wi6r\nuDs0LwC9w+RSqYhmiBRUEWCVEF7l3RNCh8o9fQneNvKvlx3bTu5cyv99g3CM6MAvCa2OZYbEmd9X\nfzK4EfmGdf9t93sb4dvPhnj5QEn6oSGQWYKucpInF8hqR/LUwkiOlvzL/MB8W0sUl/mBLkNg77/R\nTZvXg88An1HVX7DvP4wxAD5eBXzIkv+LgGdEZKeqPzr2YDcVAbwT+BlVfbeIvNO+f0ewzw74DlX9\nRRF5AvikiPyUqn66/+ult2LGbev0+qFuFJzX793MJZxGGYGC8VCyRfTztoqhEA3y36PG3yf/1YOU\n3EpAjvxfuJezWUgZASzWCXfODTmMyQuMGSZnEsPVvHgnBZkuYaEaGKfl6ztpMxJwBO2igPkiPhW0\ni/jd94zx+mNjusGN8aiG+rlRzs4YAOUMpLHRQVgSWo2EUG8uTbVgTPW7bXnk+7z/NocnJu14hqDL\ny28aguo9QPLkArXkb4zC2hiCzbbKD8xmtUSxOueqJ1F8LPkHoOB4C8Ko6q+LyH8XkT+gqv8B+NPA\np4N9Xulei8gHgI/uQ/5wcwbgjcBr7OsfAH6OwACo6vPA8/b1CyLyHPBSgl9GDCLSO8oh6vVDXfKJ\nef1huVoXAnmoUcvSUzHk4ML4WbI8uMbfJ//NZcLD+8J6XZH/5f2cy/twdu68fwVSIOnNC8CApjHn\npUEZBcUS3QA78jKRv859r9pbKJ56WagfBbiS0PkiZ7dLao1bx5B72tapdZhZUijnOnlLIJr/JSoX\n9UUHUBmAIVGAC8/CVb728v77vHz32QAvHyhJf7cxv5t8a2TJNNNScjT5pjmyTKvck8sPZNt6ovj8\nzMhCfqI4yA84+eeYRuDIeBvwQVsB9CvAXxWRbwVQ1fcd80A3ZQBebAke4NcxMk8rROQVwFcBv9C1\nn/cTNb0fmnN8gG7yd2h7CEKPKEsj2+bVd9vxuDVZKG1+7hbWCJOliaRVtLJz57mryH+XmwfSnpvz\n+HWV2/93pea/2yTkGyHfJiX5b9YFm1XBemW9/axgs7Ba8qxgvkiBwshBD1IWd3N2GyH7wtp6ajkF\nm1pOAICZ9zqrZLVyNLCXE/D1arOouJGC/FlB/thoNyLakWT4Osuq9YJ9rx+4MvL3JZesnHxajfUw\ng/7yg6OD0CD4jWFgoo9RJaGh1h++H1K5szfxm3sx30lZhpxvhTnAvZzZBRRsjNT4lIsB5wiXZdSt\nXBojcP/SyELW8a/noM6uRP5RPW4ZqKp+CiPz+IgSv6p+8yHHujIDICI/DXxx5KPv8t+oqopI650q\nIueYcqdvV9V7Hfu9FXgrwMte/jvHnaxP1MdAixTk0CYFOcSkoEJzNJkZ4sx2SL4wVUfZvNTaZTYz\nHtF8ZpO0O2SZIqsEWWakG6OrZ3ND5OmuYLFIrJefMF8qu535U8yXJhG8WAiLRUI6K0gzUx66uJub\n13M11RqzxBxnkZkO4vms/i9L7f9Gl5VsUdNoc92WD6SbBw+GPP3Q2n/I/Nd+Z7D/OmwKc1JQmBy+\nSjiDMMYYwPDoAOBinteM0sUsr0UjfhTg4JZoBCuFBmOaNWx09Jwbwco9kfu8fufuaFKM1fhtyJKV\n3XzhCnGQzgpzjy1Se49l5h6z95t/j8nMu8/Ce63MCZjGxG2xqt1njzOuzACo6uvaPhOR3xCRl6jq\n8yLyEuCzLfvNMOT/QVX9kZ7jPQs8C/CH/+jvVffH9T1+RzK1KCDNmt5OOY7Ww3zWnfhtg18hFKs9\nbvnchaeuaQwgz7fMkiWZba4SQN3NbdfydfKLzGeIv7wjMF+kFF+oD+BKM2G+yHjhXkWKC5sDuHue\nsFiYHMD8rCjJf34nJ5sryZOLMjRPzudloo6zpfHG7GvTxDM3Ibmr1LDX4Ifj7m/mX/O2kNpi4Tv7\nepUbD3hbwCo3S0ZurCyyWac13X+zTmsS0FXDv798mWGIMYD+3EHdGFQRycU8j0pRYI63sx3ChczK\nfMA8uUMhOUmakmZ3jSHI58bRcA2F2bxykjZbU43D0nj/My8isAQsziFZWv3/ibnx/hcFaq2WrnJ0\ntkPdYj3rnMyTgkrnYpHW7jFZZob8z8+qqiDnZFj5x3n6ki1K+UezhXE0ipxN8fC4OQA97niS68RN\nSUAfAb4JeLf9/8fCHcSkuL8PeE5Vv2fc1zcDimg5XIzox6LH22+FbwxCfdIibBQzG1fgjECaIevL\n+tXOZ8h8Vq7s5XwqWWQl+TvtPp0p6wfmAXQVP4uFfQBnwhMXKfM7OelcWd7Nmd8pSGcFs4uU5HyG\nLLOaEeD8zJC/S8yFD+TiifK1u07n/bslAd3/zvuPkf86F4/8zfVt7Gv/Qdysk85egKtAeI81ezoM\n8fjGAKyXzn5S0cW8aM1DhIgZArf0ojMEWXpmHSNjCHT9gnmfzWFJXRaNGQOXlN3DGMwx8pDz+pOn\nFqXX7zsYpddvX5dORpgAjnj9pUM1RQA3ZgDeDfywiHwL8F+BbwAQkS8B3q+qzwCvBt4C/JKIfMr+\n3N9W1R8fe7BY9YOKNBaxBiPPNEbfxiSiWETgG4MsTvA1+afH+3ev3U2b2geWYkUhM2bZEqOgulLL\nDLJqSUd3dcl8ht7z1voFlkvTAezjqZnw8L5hpDvnSprlLO4WpeSzuGvL8uzDWHpkF8u65++8seV5\n9UC6RJx9IMMIx11noXlJ/luP8M0/89qRvCH8+oLxzvtvmwl0THTp/20YYhDG5g3ceZzPhruhNUNg\nG8UqQzCrGQJx97/LkTljkG2M1u4bg529vgHGQG1HX8wYOE//Krz+ifgr3IgBUNXfwpQ3hdt/DXjG\nvv55IiX0YxCTgcz2luaYWERwrPxA2iIFBd5/kxgrz7iBgsoIZHNTGeR9LFkKMxMNuD5RMGWbxefX\ndtibHXU8L1g9SMu95mcFy7s56UyPLvnENH9H/rluK/IvpCT/nX3tSz9AKf2E3j+YTuBjGoNYvX8M\nsa7btqRj7N4cYwyGeP1dGGMISmkI6gUTexoDuaBKHAfG4Jhe/6Z46P1+j0/+BfWE/KOEk+wEVtVo\n+7sj18YD6kj4GETfFgXQ7f3HpB+f/FurFgqqhxTP82/JC6RL0xvgMAOy+a6UghwOlXxiD6S5pm09\nr2Gv0W3bFabqp1/3p7FQvO/9h01gh6KL8H20jVwYahQajom9jDZjcAj5+wgNwSxZkMquNASzbAnZ\nwgz3yze1PAHQNAZzr2cmZgwy+/uIGAOeMM9GGVn6Xr8j/1BatIbAef3bfDXJPQNwkgYghLsJok0w\nXXmAWIIYzM07pA/AfUd4PP+zQPqpe8bbmmfchly3VV4AKt3WQywvAGbuf/HCppYXMKfWI/k4j+zu\nWfVQ9kg+/rWZ/8fp/lAn/y7vP8Rmne6dBB464nnsGhBtxsI3DLXvjBiDY8MZgqr3xBgC9z6RlDRb\nGPIvjcGuShrv1rXtrcbgLlVJaWAMSvj3mKvwGen1Xwfxqx5/6ut14UQNgNYIM0b87oZuzQNAf4LY\neftZ8CQGnn+j+iecHRRp/AplkVgpXw02OZwuTCWHnwMgm8Plg0ZeQJZmMqjDgnVZhTG7SJGF8fZ9\nIzBG8uny+v3rHKr7d4XZofe/rr23TW1WChpTBnpnIMn6+v+Qlbe6iGnIAi5pWs2QcgnkY8I3BLNk\naftqTESwZdU0Bk4iWpw38wWLs/HGACav/xpwogagHa0ykENfZdDQctCY/DPA+/c9Yp/8/UW/W6OB\nYkUheS05TLaoRQMCrXkBmSXIffv7OYLk01bf7z+gfbo/EJV+xnj/IdbrtBwT0YXZABWpkmCqmVND\nMHQ/h3A0OPj38OpKjABYQ1A8qM3W8o1BIVZqTRNTRqrani+IGQP3LDlj4BoH/f4R38Hw1wpO5+zY\nUezh9d/SOUDXjsfGAHTKQDAsD9BF/rFy0Ngwqoj3XyfKetLX94zdak9ATzRg8wJnT8Hmsh4NzGdw\nv9omQGqTwj4GSz7uoWyRfEK5x70G6tENlfRjrjte8nko+Tts1of1BYRzf2CY574vugxGITN2XC2h\nNcpHxRVYVONWnDFIs0U8XwDNSiJXVuqMgZco9mXFmtdvo8tct1by6SiUCHAVxK9MfQC3CoVKQzJp\ne4BUpJbMasWQaqCoEZg3O389ovTR5xkbuIvqloQaeQFs09imag4TQOczuFzV8wJ+BYZfehdWX0Qk\nH1d2586hzet324aWfHahS/7x9wmnge52Se8qYTH0JYT3WQ96LGL38zpfRfY8Du5vK+M2SzZl2asz\nBi4qcOfWni+IJI9jxsA1n7V6/flgr3/y9ttxkgagD/X8QM/DOrZCKNT/y++Jj6jtk378ihg38dHA\nRgMJ5UTNBsK8QKxp7HJV5QWoFoOv1faPlHyGeP1Qj276Sj739f77VghrWyOgLfHbRv7VOhP7k/9w\n+ShsNtuRy44sSa9ECrq/Tbm3TWt9B1UF0oosSdna84pJREAzX8BZM3kMlTE4gtd/XcRvOoGnReFv\nDcwanRVBhhjyoA1OBMfQtyhFVCPvr4hxKz5VaL/GEm15gVjTWJYil9aLHCL5eA8lWu9dMNdUH+/g\ntvldr8NGPbRfXsz7j+3j/j9E9skiw9XqCw/V/+Zjdf4QbcbEH2fexPHyAes84f4u4d4m5cHWTTBV\nFql46x74zXCrQRIRaWLnD8WTxyU8WdF5/a6hq434J29/HE7SAOwNn7QPHREBlfzTs0DF0E5YAzP/\npS4JDcsLzLKleejCvAC2acyLBhqST8s4h329fmif8xObrDjG++9q/tpX9omhbdrmWOLvixrCMc5A\nNc4cf41rU7NPcnhlUEj+9zYpqzw2FbUZFUC/RNTIF3jJ4xLWwQjHOMTI/yaJX5VaN/qjhJM0AJHK\nzgZCGWhQHiCGsAS0DxHiHNoJW8GRWxG8r89+Dx+UocPkam32fm1/h+Qz1usHauQfK/kMpZ8QfWMf\nfPknXeewqLYvaiuHpSzPugkkbLZqSwB3kf9QeShMJjdI31+eFMzfM1lWP1BwUFLYST73NgkPtilf\n2Aj37OPyMIc7qbBMUxapsiuKMioARktE0ZJSiz6vfx/SP+YQuKuCiKTAJ4BfVdU3tOzzNPBx4M2q\n+uF9j3WSBgCoV83sKQN1wm8G80fQ+vpl6P23kv+wTti6/AP7SkJ9w+TK/zskH5eEg6bXHzZ8hV4/\nNMm/Tff30eX9+8nf+vbjV+aExiDU/4/RENZH+rWcVJoZTzr4u++TFG4j/89v3NoLygtb7FoJwp00\nrUUFvkTkDAHQIxE18wVdo1CGEv+jQPYteDvwHHAR+9AaiO8GPnbogU7WAFwZHEHuMxo6wDDdn44c\nAOW2hR0N0G30hg+T65J8tsWqPH/z/ziv37+mmO7vIxz17NDl/Yfb0nVe/oyTf4b2AkB31U+b/t+F\ntnLRwaTvV9BA+TdMswWF5HslhdskH0f+9zZYCUhqi+Zsi3hU8GALWZLUFs7xowL3u2uTiELi7yL9\nmyb6gub9uS9E5GXA1wJ/F/ibLbu9DTMm/+lDj3eSBqCAhkaepk2vLCoDeQh1cmD8vKAO79+cQ+Ux\n14gy4hlDtxGovx+RF6A5TM4f5+BPVRxS2glxrd9do399bpuv+7fN+uny/pvbxnn+Tt/ug28M/AYw\nh5j339UfsC/p1+TKfANrc3fMMk8KAoYkhWPk/9sbeGELn1+bCODepbmGlV09bVPAKrFRQW0FtXpU\n4EtEzhDc3yXRxPGWdSkRtRH/TZP9NeA9wHcCT8Q+FJGXAm8CXstkAIYjduMcLAPFEMo/AfaRfuqe\nsV3zNS168wJmnz5JqDlMDmhIPn1efziWoMvrN6+rvEZsyqdDl/fvY6j841cCjW0G88nfTwCH+n9f\nQ9jBpB/sp1iDbWvsw6RwVz4glHzWuUTJ//LBjM06iS6l6YxBW1TgfncmMRyPChqJ40eI6HXcgjAv\nEpFPeO+ftYtZISJvAD6rqp8Ukde0/Px7gHeoaiGRlQPH4iQNgKohzkUy/K+yF/wEsNP/Q0Rm4O+7\n+EkFf4hDVzSwR9OYq1QKGm6GNHQBg73+Kq9BQ/qJJX5j3n9s6meb/DPb5OR7TE/riwqG6P41wgfw\n15vYk/TDSLRc+5ZIUph4PqBL77+3gc9v4P69OZcPstLAunWV3YylzSIvo4J726ZEVK2rHE8c++Wk\noUR0CIaszXBD+Jyqhuv9Orwa+DoReQbTFnchIj+kqt/o7fMq4EOW/F8EPCMiO1X90X1O5iQNgEOj\nVLJFFz8YQQdwLfkLkcTvuCFojvybRsBdm/nALRJySHI4tV3LodffV9oJ8Qofsz3m9TfLPbsSv+X7\nFu+/9jPB+9nGfIGrBPJLQYeWhfo9AK4CKEYyYY3+YdJOC+l7i7ADcA5kc3S3Lmvr/XyA+7s7I+BL\nPutcesn/hXtzLh/Myt/X5YNZGQUsFnktKgglojAqgGbiOCwndRJRiFjZbdso7KuajRRDwXFGQajq\nu4B3AdgI4G8F5I+qvtK9FpEPAB/dl/zhxA1AH44mAZUDrSzhuwcxAr+aYUyYG2rUMc3adWqW7wuJ\nPkj186kWxyk0HzS8zW3r8/p94oe61++2xaSfWNlnzPv3cR3VP21oNoAFHv+BEk8r8bsqtM3WDFdL\ns2g+YFNQJoUfbLVX71/lTfLP7xlD+nCeki9MJOCigLFRQVvi2C8nhWbyPUb226Ipg4wxFI8CRORb\nAVT1fcf+7pM0ACLVMnn+cn31OuSI5+9mmPvjbP1tbrWj8AEscd+OSgBdv4DkpnxSgCydsxOYJ3fI\nNTMzTJIlqeTACki4mOXcK5OKuXkYNnbR7MSMJnak73tP1fvqus3P+EsVxq8//F00F9HZ2eqhaopq\nobn5mXIufVES+yLR0giEa9iabWZff5u7Pt8ILLN6c80yrRuBLCtqRmC+yEeRvt8L4EjMff8Sc6xZ\nQpl89+vc11aqcPmVRKscgDOQqcyqZUddj0nb+hL7wpuk6ebn6PqFznzAIl2ZVcVStYSr3ClJtxKS\nNpbQHdHfXxiHxpH/fJG3RgEuN+A7KJsC2EG8tEJY55UhcKuu+feHeV83+vWGSLutrIYzcMbA/9lH\nwRio6s8BP2dfR4lfVb/50OOcpAFIoJf8awOrWtYF6IRP/r4ndm63ZbvqcUqNUcjSOZrMoIB5Ysh1\nUzxkkS7Jki0PtsrFLGedCvcs8V/Mc9ikUeKv9NPjE7+Dq8hw+7qxxI7o/FLDmffwxYg+S5RdITWD\n4a7LzwEsU61VAIXkPwRtBqGtFHSzTsES18oS1dKv+LF9GE5iM79rW2Em1TgPGDAV1A0W3Lf5EGCX\nm/n5YMYouygAWqUgFwW4+8MYtRxIYSNsC2N4N4Wp9nFGsvydLeDOwhxjDPk7dBkBf/+d50A4hNHt\nbYIWcq0R5zFxkgbAx2DyH+L9d2GXG0/s/iXMt2Z9VEDzjfHI1kC2Q+ZnzJKl8RqLlY0ItlDA3ZmV\nVbYpF3OTG7i3ScrXY4g/FRP+dxF/bMRACCMRVWV59ddVZBCLAmrbrCFwRsDf5mMI2Yfkvljk0RlA\nQ+CSyM4olMfewcr7yqUlfhdxrUuvOSFLnERmR457UcDREMo/fiQ621ZRAFRSUEcU4HBvk7IrCpZp\nysPcGt9EjI4fRAHQJH5/Wxf5l5fREwm46jWISJqN90mvN19VGU2I4SQNgEhzoQ5gMPm3wj10bctB\nOiOw2QIPzAO5PDcLsqRzxJb2ite5mWpuHopSSlhxPsuZWeK8mFMSZ4z4Z6UE1E78TqPuI34/CvK3\nOyMQvo5JQZDYhcuHSUE+YjIQQRnoEKmnb5/YULhyf0ti4PoQ1L4GXwryO7NDKSjXrPwdN2SgCCRb\nVHmAEDHHw91/9n/dbqsoADoTwrnsWKRLIC4FdUUBQKvXD/SSv8MQIwAFseF7IUIjMCTvdWyoXm/O\n6Zg4TQOAT4iV99/Yz6/O8NDw/tvgFq7wcdS8gPGm75HWyuXaiN+vR+8i/jbSB8rfh6TzhhFwPxvm\nA2A/Kch8XunOXTKQ2daMDuaLYq8F4LuWh/SjAEdSbnWwUAqCwhrruhSUOuMY4pA8gNd97uQft7Ri\nGQVAPSEciQKAhhTUFQU4rK0xGCr5dF7KQCMAj44U9CjiJA1AIjpI+imnxoXST4gw+QvNkLzNEBwr\nL2A9myqy4XjEH5Ye2l4AUW2QWCwfYF6Pk4LCfX3EiD62LUwEt23bztOyFDREVDrySM9V07vIJJSC\n/HyALwXlmpFoWk8Gj4HveIRjR9y96BUjlFEAVAnhSBQwT2BTPOxMCG8LeGph79SznHtUBvMY5B/C\nj7QqDDcCNx0FqErrQMLbjpM0ACDjdX8fXd5/m/zTFg0cKS8w825y37gBjWuEjhHC/jWWrwOP1L33\nSln972vLBwyVgsw1aNDJXC3AHnYDG9IKto2s+tkXq8BLDaUgqPIBvhQUjQJ8GWjICnOc3v3VAAAa\ncklEQVQxuOTvLq8bBhcFQLMs1IsCgNaE8K4oeHKe4CKyUAqCcXp/H1wUsPRYKN7weFgkMOUB2nGi\nBqBCL/k7+IlfH877H4IuI3BgXgC7HmsoabURf9TbD6/Nv/4WMnJSUH1uUjwfAP1SkHldJYTNw21I\np+n1Gy807AloI/9jGQVXEVSiQwqCKh/gS0FhFLAXYlGA5/2r/YW5Ed663SJu3eqWKACcw9AsC3XX\n0yYFOa3/WJ4/NKWgZlVYuxHwMSQhPKGJkzQAIhLV/Wvk7xCTfmLev5/8tQ+jbrdmucRwv04jAPvm\nBcYQ/yBvPxb5RBDLB/hGwD9+rltbfpo3pCCIJ4RjaKsGatveVgmUL9JyHEQbwp/r6gwOpaBYaWiW\nbBtRQE0G2jcPEHj/6llGmW8HRQGpzKJloa4HpSshDMMTvWMQywc4QxsbguiMQFcUcJ0ykEkCTxLQ\nLYJEpZ8auqQfhw7v3yXhWo0A1A2BLx3tkRfwO3YHEf+epK+7tRllEWzvSgqb9/HSUCcFufexhLAf\nBTjEZCCIk/++iWBoXxO4cawWKShWGrorOqKAsBoofB8ahjDv5Hn/an9JsqR0PDqjAEDmZy1loUlv\nQhiOT/7lpbUkhZ0sGI44iRmBKQoYj5M0AMIe0o+PmPcfe21RNuSMiQbuX1ZGgP68ANAwZq3zZqCd\n9COE37geZwSC7wqNANSTwtAsDQWvG7MjIdyGNhnIIZb0deiThHa7+DRQv+TRxyomBaXU5hs5Kag3\nChgDG32G3r+uzS9F7cn0RgFwUFnoVWNIo5hffttnBK4rCigK2bsP5aZxogZA+sk/rPnv8/7bkr8e\nRktCYXLYtfG765iflWSaat7v7Q8g/WiVU6wUFs8f96actlUGmfNq5gP6pKA2zDo8fqjIuY3gh/QC\nhATvogjfKPjHr6KQqku4TQrqjAIc2hLBsW0R79/lAHRRNKMAqI+IcFFAvhtVFmpg7oZ7ezYtj0Ff\neagj+li3cBf8RPAUKVQ4SQPg0CB/h11AiC2fAZ0ef4zc98sL9CeHRy0R2Oflx7T+iCZdMwIOwZC7\nmCwUloZCe29AhboMFK4M5lA1acU/h+6ooA2uxt1HaCT8qhV3/DYpqC0KAKrfYVceIFZ6HHj/Lgeg\nyzQSBcyqSqGeKABoTQizqUtB1xEJQLP6qkK8W3iSgvbDiRoAiVde+Lp/LPHrEBqBIPlbe32oEaih\nPTlc04p7SL+X8NuIJ+J5xoyALwVVw8+qWyksDY1FAW09AG2IdQXHcMxKoHA8RGl8IlJQ2CXcFQXs\nM3eqdDos/ByArnJ0YayTLHuiAGg0hwGNslBIolLQkvgiPcfEpqhHW0O7hWNJ4euQgaZO4FuGqgqo\nXfePvu5qvrEIH8Ry34gRgCAvcEjTWBYfJQwB4Q/07gfXoOebXiMAzaQwNKWgtt6ACoZ4VrmUyT+D\nZldwCDeXZogW2/Dsg/d+biAWBcSkIKh3CfdGAWPQkvwF0HWOznboMkVmc3SVl1GAEgyKSzOzLWgO\nAxploRBPCBuIlWmuxhD4ndiuR6AZ8XUnhacoYBhO0gC4CKBX+nFo8/57kr81tJD7wXkBlxyG8lo6\nCX8M2Q8xAmlwi3g/05YUhjAi6JaCQgyd/hmS9jHglj00r7ujAF8KgnqXcG8UYPX49hOp5k7Fkr/m\n/9z8v0ijUQCuGsiLAoDe5rDzmRlIGBsZbWyP2r/R8Q1BY+W3YDLr0EYxHy4KuKqGsKkT+JZBkDr5\nt0k/Q7z/WPK3yxhcYV6gcc4hgexD9AOb3GrRSHn8TdQIQDMf0CYFjYGTgRyOsQqT7+37eYAxUUCs\nS3hQFOCMa6z5sDxYPPlr/rc5AC8KgKw7CqA5LhrqzWEkdCSEfXix4YGykJ9T6WrEG9IoNjQKuI3L\nRorIy4EfBF6M+QU/q6rvbdn3aeDjwJtV9cP7HO8kDUANfdLPEO/foiH/OOOQBTfSFeUFuvMUB5L8\ngH0aUpAXHbSPk67OOZSCoOoVqNDsCXBH75OBrgNuJbZ6QrjZJdwXBWRtj57/d+zx/ncb20tBFQXI\nIkNXPVFAvulsDgMac4LcuhRgavMflhGRloZv3/xAg/zpNgLQ3yh2nVLQkXMAO+A7VPUXReQJ4JMi\n8lOq+ml/JxFJge8GPnbIwW7EAIjIFwH/GHgF8F+Ab1DV327ZNwU+Afyqqr5h8EHCkk+LqPTT5/3H\npKBwQZhDjAAMywuE5xo75xiGjrIY8HNt+QCVamvX2gIOfm/AbYDv5XfJQE6eCqUgqHcJ90UBmngy\nUDqHMHHvD3xr8f7zrbvnCmYHRAF9ZaEXc7i3cVVbbX+v/fIDvuTjr/fcWJ8BRjeK1SqDbmBM9D5Q\n1eeB5+3rF0TkOeClwKeDXd8G/BPg6UOOd1MRwDuBn1HVd4vIO+37d7Ts+3bgOeBi8Lerd+dFkqbR\nROlY77/x8y1GAGrkvnfT2Lwl+TwEA3oYogjPxxrMoZVBEDEGgRR0bMTGO2/YzzvrkoGgWwo6KAoY\noP3vNkK+M3+FdEYtF9CIAqBz0Rjztr0s1E8IL1LXjCW1XE21lsPw/EAb+YdLffYZAehrFKuigFsw\nGO5FIvIJ7/2zqvpsbEcReQXwVcAvBNtfCrwJeC2PqAF4I/Aa+/oHMGtfNgyAiLwM+Frg7wJ/c9QR\nItLPKO+/a1vXgjBwfEmoNkeo5xyGYN+IwGsIK0sKPXQlhR380tBK+hkuA/keJlCXCWDUSIgYqff1\nA3RFAb4UNDwKyDwnZVev/+/x/vOt+f3kme1A7ooC/EVjMhN51EZEdJSFAqUUVP/7QHdEEM8PtEk+\njvjDv2FstbauRjHfCLhzh6uLAkYuCfk5VX1V304ico7x8L9dVe8FH78HeIeqFiKHRdA3ZQBebEMd\ngF/HJDxieA/wncATLZ+XEJG3Am8F+NIv/d3HOMfbi5sgfx/5ptEQNgT+AjKPK5zMkki631iIY2C3\nqRnzLizSgm2R2tdhyS6EhnpIfsCPHPy+jb4GvmVaRVwh/KRw2C3szvNRKQsVkRmG/D+oqj8S2eVV\nwIcs+b8IeEZEdqr6o2OPdWUGQER+GvjiyEff5b9RVRWRxpMgIm8APquqnxSR1/Qdz4ZRzwK86o9+\nmZYTF73St3LpPb8T07Xju/2cF+4SZ+58sPJNbMBb6PFD05MnIvu07Nf4znAf934sme/y9uPFju+S\niNnc/HNJ33RuZgWl3nabB8h1S6FO6tiV/wPl9l1hJKBtIawLYZ0nxlPOhZ33fpWbB3tbOLlAShJx\n8oGTDna7hM06YV17b16n65zZJmc77/fSYhKSHyXEhqK5HMAyVZ6Ywe+Yw8U85+6s4GKec54V3J0J\ns2RpZ1SZf6Xuvzhr7Xl1fnTIewuqaDadFcwuUpLzGbLMkEVG8sQcuViWf0O5ewZn9v3yHOZnprw4\nm8P8jB07tsWqXJCoy1CbJUndKI+6LBRHMz9Q/8LmsWLrDswT24zmxnCkeI14scog8CMBP0dgXh/J\nGVHtnTg7FGJY/fuA51T1e+KH01d6+38A+Og+5A9XaABU9XVtn4nIb4jIS1T1eRF5CfDZyG6vBr5O\nRJ7BNCBeiMgPqeo39h5ckibJu4+gbgQcYl6RMwKWOGtGIDAQbcQ6mPRDI+Lv00ba+xqCIYiRv5ML\nRpK/I5OrJv/Rl9gx9hnqM4Fi+/re6DI12ved1BCkW8N5YROpqSy7vf89jEC6MdKRT/7Jk4s6+Z8t\nR5N/DKZnIw22xUZ5uLOOoS4L+Qv9LM/yWlTg/o+Rf0j8PupGAOqkH76/lbX7rwbeAvySiHzKbvvb\nwJcCqOr7jnmwm5KAPgJ8E/Bu+/+PhTuo6ruAdwHYCOBvDSJ/HzGST+flraFg5YxIs1NMi7dGoPzZ\nCI5O+ENC9aGrSznDNQTXRP4+9iH/2s8H3v8Y+ATvKoDC7b7378g/JKVlatdtTg3xzxKzPKnrTG94\n/z58I7DbmMT/Loetmesjyy2ySpBliqwSZhfmhI5N/u7v6DArx3c0B/j5RiBLciu7JDYqMPu2yUJA\nMyIIft9jyN/hob1/TIVQvTrIIHx/GERpXXJ0LFT152m3oLH9v/mQ492UAXg38MMi8i3AfwW+AUBE\nvgR4v6o+c8iXK1qWJYqboeNI3hqBUhLyfzCIFoB4YnZjErjRRC6MJ/zwvTsH/1zKpqG2uch23z5D\nMNRYBORfjoceSf6OSNrI3/f+94Ev/YRw8s+hiBkBqC9lOEuM9NPl/c+TO8ySJRIjf4dsjuQLdHFW\nbvIjgxj3HZv8u+CPXIhtN4jnB+roloW6jOxQtDWLVef2aOQErhI3YgBU9beAPx3Z/mtAg/xV9ecw\nlUJDj1AuoKIiTSPgcEheYOOR/xDCj+3X5um7157mXiLWEexj39WmQlwz+e8r/fiIbYNu78yXeXz9\nP1wnwCf+UPp5YlZJP3dnORfzgotZzvksZ5EumSUL5smdYYnfNCsHAPp7thkBXeUHk7/v7bdhkSi+\nLR1uCOKyUFvZqJOF+vT+oeg3Ao83TrITWFUbtejik+gx8gIxjPHyoZv0oS67NI61iM/2dz/XZiCG\nwif/1ItIbgn5O8S8/0O6MkP5p8v793X/J+e6v/QTossIWGdEljmyLZoJ34Hkb/5GzSR9DH4lUPOz\npiEYIgs1Uc8P7Ov1x9BmBPoWIxoKUSULl7B7RHCSBgDqs2hcNCCqx80LxLAP6UPD26953W7fQLqR\nLqI/1ECElT7uHG8J+YeJ39D7H2MEwgRvn/dfVf3Udf+7s2Jc4rcLLu/iJsHOTX+A3D1rJIX3If9N\n8bBG/j7aIoKuEd59hmCsLHQs8nfojgQeX5yoAdDojV0uqjIkL+A+96MFZwR8SShmFPYkfWghfrdv\nTN7p0P67/Js+KjqE/N1SkEPIvw8++Tv4RL9uRATV6zb9v6/6J7ZPWIO+TDWu+7d4/xnZ+KhsQGWQ\nOdkO8s8Wg8h/aH+GX0sf+/sNMwSVLNTVTXws8nfwjcA6TwevJtYHKY6XBL5unKQBUPvI+AuTVAuX\nDMwL1Lb1JIe7CD983yfxRIl/RA4gPG5Lwrc3+PX1fvv+Ksi/z/v3EXaLrluMgm8Ehj6Yi0Vek3+g\nXobo4KSJUPd35O/X/M+TO2Xid5D0Ez2xbiPALu8m/8X5Uch/Fpne2mUMQkPQJgtVVxMer/eU9kJ9\npbnbMYfqJnGiBqA9jHU4al4ARpM+9Hj73naNtXtni7qkcAzdv/b9N0/+Xbp/9fq4I31dA1KIsBQx\n1P0v5vlxpJ/oSdnKoNzee355aFuT10DyPxaqJRqHG4JhstDx0bbc6L4QVWZHagS7bpykAXASUCqZ\nt1JV9bo1L+BXANm8QGkEQsloiBE4AvHnugWtvLRyvr77Wn/2TmgU3HftYxi8yOO2kH8o/YQYIv84\nzBd5Q+sPP/fr0B1C3d8v+Tyf5fsnfrvQkRQGqq7tPcg/9P67HKfFgAmubVFBzBC0dRM7WejYRB3i\nqr//UcBJGoCwCqgLByWHY4agj/T97QOJ338oneHquyYfEl6bO1aXYbgl5O8QGxQWMwz7NIDF5J8Q\nzvsPdf+LeVHT/Q3pe97/oeTv0GIEzEVcr+cfDlRrMwgxY9AfEdRloYmkrxYnaQAgrAKqcgFteQGI\nJIfLL+vJC4T7d3n7MJr4ux7cIQbBv0YfUcNgB7052emqyb8PMemnz/t3GJuY65s/06X7O+nH1fzP\nkqUd93xEWc4aAXbrqjII9ib/IU5SlqTsiry7FHSAQQglonANX++s7P91Weg2G4JJArp1MPPX+/o8\nepPDfcPkal/W4+3DXsTvvy5H9Qak738W+7zr+kPINZP/WOnHoeuzUP7JtgW7PbOKQ3X/Rbo8vvQT\nQ5ohiyfqzsiRyH9IQ9gQdBmEMCoIDYEvC121EXhES/ePipM0AIWam8YZgTrRZ503+t7JYXpkHtib\n+N25F5qXOYB9Sb8PJkralse7LeQ/xPvvkn+ybdE5DbTN+4fhuv88uXM9o56DyqDrSviGC6lsO3IB\ntdP1fq7NGDhvrR4RNCeNHsMI+PffMZAUMF8fP7F+HThJA6D4CahmJDA6OewQ5gV2635vH/YmfujO\nAfgGIURflNCHPvJ3v9+rIP8QIfl3ef9jEdP/Q+lnjO7vRj5fifdfO3FjBMg3o8n/WGsydK2s1WYc\n2qKDyhjUE8exaOAQI+DnnCacqgHQauk3Q0LGSxsT4g7NC5idr5b4HeG6h2Rnr8fsP8wgjMVNkv8x\nCb4L9QmglfcP43V/X/o5WuK3D25gX4T8bxptxiE0DM0VutpGNVdGYN8qobDgYMKJGoCCMBHVNAJD\nk8OdeQEfV0j8kNgHx38ovLu/hScPMQjXQf4x9Ek/zc/r253+7xLAbTNa/BJQ/3Uo/dxJ6yOe23T/\nwcPejglbqhsj/7He/3UZjb6owRmERZLbZ9i/ufeXhPqaDA+CKunu0UwonKQBgGpx6EWiHnnau2Wk\nY9mXF6h2vBrid8bMX9N0W1Trta5zjUYHY+Ebwusg/775/leF2Ox/5/076eepuZa6/8U8r+n+/qgH\nX/cvxz24cR1h1HgovHswTNQfQv5DcawlFdtGgMSNQ7hetL+t3wh0RZ23FSLyeuC9QIoZj//ulv2e\nBj4OvFlVP7zPsU7SAKiK1Q6bRmCRFr3J4cF5gXwXrfs/OvF7D8w690rqRhqEMYni6yZ/H2O9/32x\niKw8NUT3vzuTdt1/fRk/2D7GINIJXnrqXnPgEPK/TRhuSNx9bwi/viBNvyS09Yg+JjkeC6IcrQxU\nRFLg7wFfDXwG+Dci8hFV/XRkv+8GPnbI8U7TANj/fSNQoT053IfWvMAVEr+74f3qCH+Q1VUZhD7y\n98/rGOQ/puonRCj/DIGLAvzRD/OkubSjP+LZH/UQlnyKqnEIeqesdjxybYSvde89vJeGkH+X939M\n+Wff6DOOHN8I+GWjbhuYe9HlbpwRCJO9Q1aUuyX4H4BfVtVfARCRDwFvBD4d7Pc2zMLxTx9yMNHr\n1CyvCSLym5iVxq4aLwI+dw3HuW6c4nWd4jXBdF2H4veo6u865AtE5J9jzncIlsDKe/+sqj7rfdfX\nA69X1b9m378F+B9V9W94+7wU+IfAa4HvxywKP0lADof+QYdCRD6hqq+6jmNdJ07xuk7xmmC6rtsA\nVX39NR/yPcA7VLWQ2KDIEThJAzBhwoQJjyh+FXi59/5ldpuPVwEfsuT/IuAZEdmp6o+OPdhkACZM\nmDDh9uDfAF8mIq/EEP+bgf/J30FVX+lei8gHMBLQaPKHyQAcimf7d3kkcYrXdYrXBNN1nRRUdSci\nfwP4SUwZ6Per6r8XkW+1n7/vmMc7ySTwhAkTJkzox9X22k+YMGHChFuLyQBMmDBhwmOKyQCMgIh8\nkYj8lIj8J/v/7+jYNxWRfysiH73Oc9wHQ65LRF4uIv9CRD4tIv9eRN5+E+faBxF5vYj8BxH5ZRF5\nZ+RzEZH/037+70Tkj9zEeY7FgOv6y/Z6fklE/pWIfOVNnOcY9F2Tt9/TIrKzNfITjojJAIzDO4Gf\nUdUvA37Gvm/D24HnruWsDseQ69oB36GqXw78MeB/EZEvv8Zz7IXXRv81wJcDfylyjl8DfJn991bg\n/7nWk9wDA6/rPwN/UlX/EPB3uOVJ1IHXdLSRBxPimAzAOLwR+AH7+geAPxfbSUReBnwt8P5rOq9D\n0Xtdqvq8qv6iff0Cxri99NrOcBjKNnpV3QCujd7HG4EfVIN/DTwlIi+57hMdid7rUtV/paq/bd/+\na0z9+G3GkL8VVCMPPnudJ/e4YDIA4/BiVX3evv514MUt+70H+E7qQ4huM4ZeFwAi8grgq4BfuNrT\nGo2XAv/de/8ZmkZqyD63DWPP+VuAn7jSMzocvddkRx68iUcgSntUMfUBBBCRnwa+OPLRd/lvVFVF\npFFDKyJvAD6rqp8UkddczVmOx6HX5X3POcYj+3ZVvXfcs5xwKETktRgD8Mdv+lyOgKONPJgQx2QA\nAqjq69o+E5HfEJGXqOrzVjaIhaWvBr5ORJ7BDH66EJEfUtVvvKJTHoQjXBciMsOQ/wdV9Ueu6FQP\nwZA2+iH73DYMOmcR+QqM7Pg1qvpb13Ru++JaRx5MiGOSgMbhI8A32dffBPxYuIOqvktVX6aqr8C0\ncf/sTZP/APRel5in8PuA51T1e67x3MagbKMXkTnm9/+RYJ+PAH/FVgP9MeALnvx1W9F7XSLypcCP\nAG9R1f94A+c4Fr3XpKqvVNVX2Gfpw8C3TeR/XEwGYBzeDXy1iPwn4HX2PSLyJSLy4zd6ZodhyHW9\nGngL8KdE5FP23zM3c7pxqOoOcG30zwE/7NroXSs98OPArwC/DPx94Ntu5GRHYOB1/e/A7wT+b/u3\n+cQNne4gDLymCVeMaRTEhAkTJjymmCKACRMmTHhMMRmACRMmTHhMMRmACRMmTHhMMRmACRMmTHhM\nMRmACRMmTHhMMRmACY8cROR/FZHnROSDV/Ddf8FOOy1E5JFYlHzChH0xdQJPeBTxbcDrVPUz/kYR\nyWx9+SH4/4A/D3zvgd8zYcKtx2QAJjxSEJH3Ab8X+AkR+X7gSeD32W3/TUS+EdPI9hpgAfw9Vf1e\n28n8fwFfjRlCtsGst/ph//tV9Tl7nOu5oAkTbhCTAZjwSEFVv1VEXg+8VlU/JyL/B2ae/B9X1Yci\n8lbMeIenRWQB/EsR+RhmeukfsPu+GPg08P03cxUTJtwOTAZgwingI6r60L7+M8BXeKtHPYlZ/OVP\nAP9IVXPg10TkZ2/gPCdMuFWYDMCEU8AD77UAb1PVn/R3uG1ziyZMuA2YqoAmnBp+EvjrdnQ1IvL7\nReQu8P8Cf1HMWs0vAV57kyc5YcJtwBQBTDg1vB94BfCLNvH7m5glLv8p8Kcw2v9/Az4e+2EReRMm\nWfy7gH8mIp9S1T97Dec9YcK1Y5oGOuGxhIh8APhoWAU0YcLjhEkCmjBhwoTHFFMEMGHChAmPKaYI\nYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU/z/pw86qjP4jcAAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu0Ldtd1/n5VdWqWvucvc85994gYHJDItAorXbThofi\nEJCBIE/RHk3k0QbFGDEIGuVl+2iBMVBsJAoarjwigkQ6pulIRwkPUd6dBOlOJ2kbjGASwiO595yz\n9zl7Va1Va/Yfs2bVrFlz1mM99t5n3/UdY49dr1Wrqtas+Z2/3/f3+01RSnHAAQcccMABLqLLvoAD\nDjjggAOuJg4EccABBxxwgBcHgjjggAMOOMCLA0EccMABBxzgxYEgDjjggAMO8OJAEAcccMABB3hx\nIIgDJkNEXiUif/2yr+MqQkQ+UUTefdnXccABu8CBIA7oQER+RUTOReRMRJ4Rkf9DRJ40+5VSL1NK\nfd0lXdtLROSnLuO7nWsoq+dzX0R+UUQ+8zKv6YAD9oEDQRwQwmcppY6BDwZ+A/iHl3w9oyEi8QV8\nzc9Wz+cO8J3AD4jIYxfwvQcccGE4EMQBvVBKLYDXAh9ptonIq0Xk66vl54jID4nIXRF5WkR+UkSi\nat+viMjXiMjbK0vku0Vkbp3nM6vR910R+RkR+b3WvidF5HUi8lsi8n4R+VYR+V3Aq4DfX43e71rX\n849F5A0i8gD4JBH5CRH5Eut8LctDRJSIfKmI/JKInIrI14nIh1bXcV9EfkBE0hHPZw18F3AEfKh1\n/leIyG+KyHtF5Iut7Z8hIv+h+o53icjfsvbNReR7q/u9KyJvEpEPrPbdFpHvrM73HhH5+gsiwgOe\nxTgQxAG9EJEbwOcBPxc45BXAu4EPAD4Q+FrArt/yBcCnojvP/wr4n6rzfhS6Y/1zwBPAtwOvF5Gs\n6vh+CPhV4AXAc4HXKKXeAbyMavSulLpjfc/nA98AnABjXVCfCvw+4OOArwSeAr4QeBL43cCfHDqB\niCTAlwBnwC9Vmz8IuF1d958Bvs2yLh4A/yPa8vgM4M+LyB+r9v2p6nNPVs/kZcB5te/VwAr4MOCj\ngD9Sfe8BB+wNB4I4IIQfrEbo94BPAb4pcNwS7Yb6EKXUUin1k6pd4OtblVLvUko9je7ATaf7UuDb\nlVI/r5QqlVL/FMjRnfXHAL8d+KtKqQdKqYVSaqjT/9+VUj+tlFpXVs8Y/F2l1H2l1NuA/wd4o1Lq\nnUqpe8C/RnfEIXxc9Xx+vbqnz60+Z57J366exxvQ5PERAEqpn1BKvbW6zv8b+H7gE6zPPQF8WPVM\n3qKUul9ZEZ8OfEX1PH4T+PvAi0fe5wEHbIQDQRwQwh+rRuhz4OXAvxORD/Ic903ALwNvFJF3ishX\nO/vfZS3/KrrjB/gQ4BWVK+Vu1dk+We1/EvhVpdRqwvW+a/iQDn7DWj73rB/3fPbnlFJ3lFLPUUp9\nnFLqR61973eu/aE5l4h8rIj828p1dg9tJTynOu6fAT8MvEZEfk1E/q6IzNDPaga813pW3w78tum3\nfMAB43EgiAN6UY1kXweUwB/07D9VSr1CKfU7gM8G/rKIfLJ1yJPW8vOBX6uW3wV8Q9XJmr8bSqnv\nr/Y9v3LfdL4ydKnO+gPghrXuI7fLwD8HXg88qZS6jdZUBKCyOP5npdRHAn8A+Ey0O+pdaOvqOdaz\nuqWU+q8v5xYOeLbgQBAH9EI0Pgd4DHiHZ/9nisiHiYig3VElsLYO+Qsi8jwReRz4a8C/qLb/E+Bl\n1YhaRORmJeCeAP8n8F7gG6vtcxH5+OpzvwE8b4SA/IvAHxeRGyLyYWgt4CrgBHhaKbUQkY9BaycA\niMgnicjvqTSY+2iX01op9V7gjcD/IiK3RCSqBPVP8H7DAQfsCAeCOCCEfyUiZ+iO6huAP1X56l18\nOPCjaD/7zwL/SCn1b639/xzdub0T+E/A1wMopd4M/FngW4Fn0G6ql1T7SuCz0ILsf0GL4J9Xne/H\ngbcBvy4i7+u5/r8PFGhC+afA942/9b3iS4G/LSKnwN8AfsDa90HoiLH7aDL+d2i3E2hLIgXejn5e\nr0VrPwccsDfIYcKgA/YFEfkV4Esc//wBBxzwiOBgQRxwwAEHHODFgSAOOOCAAw7w4uBiOuCAAw44\nwIuDBXHAAQcccIAXvjjzRx4nkqoPmh0RCUSxECcgAhIpohhEFBKBJJHeEYu1HEEU6f8i6A9E+i/S\n/xUKpdYoFKGwfBUM1/djH5bc1GvwQXSIfv8xMuKYwHmECJFI71drWK/1f7WGdQlKQWm262W1Msuq\nWob1WqrDBbWGclUdUirKUqHW1U8oUv2vvj8S/TNXP7EIIFUbqY+x1gWIBImkah/1Q9DtSKrtBlHP\nsxl6bn37fd9hvls3dus4Z93eD3U7VkpZbUZV7VxZxzS/o4hUy1JvF2mv6w9WEc9KVX/r+vyYNq/W\nzX5z7KYY0RZtvOVtv/Y+pdQHbP6F8HvkCXXGctSxv8LpDyulPm2b77tIXEuC+MD4iFc9+fFk84jb\nd2Lmx4okXZPdXHN0siKZKeJbCfHjc2QeEz1+RHQrg3QGxzeQk2M4vgFpBvNjiFNkfgKzOcQpK1aU\nakVePqBU/oZRTkoCJngeG3m5HjxmG+SlfrmyOPyCZvE4ozOW2YhjEmKZkcU3iSUhIYHFfVgVqPwU\nFmdQ5HD2EHV6BsUSzh6yvp+jHixZ38spn16g8hXFmXB+mlAWwuJBzOJMOD9fc3qv5N7dsv7Oo6OI\nNBOyuf5vts0yiGe6nSQzRZwqZtmaJNXPPJkpogwkS4huJMg8QeYxkiXITX2vkul1QLelPvTt79kn\nWRY+Pp1VfxkkVZpIkur2m1jbqnasROp2V6oVq3VOqVatbaVa1u0uL6VuG1kcEcuMuMplNMtJlFXr\n+rcV09mXBSwXsCoAUKtcbwO9bVXo3xr073xBiD7yr//qtuc4Y8nfij9m1LEvKX/sOcNHXR1cS4KI\nY7YjB/OSGXJI2i9lLLPJBNCHfZGD6fDHHRtZy/p/Fvu+M3wdNnn03ZMhD/MM8/IBWXwTBJL5LVjc\nRzhp7J9jPS5Vp2dwfIOougrzbeXTC1JWwIrz04Q5JRBje1CLXF0+MWy6jwAxDH0+8eQSzuadTb62\n7G7LS6naiPn910BOFi+t33NJqVaaNCLq5VhmkGRInNZEIUmqBwKrvLnWahtwoSRxQBjXkiAkku3I\n4fg4SA6XAXsEt915wqP/Yt09d7GOSSPXmvATRBarXhIbIo8OSZSFJgWoOzoBKJYodNevsqbatVqs\nSFkAK1aF+a6YWaaXi1zfR5rJxRLDFpbEICmMOVfsIYnKerBhrAcbtvVg0LQhP1EYUjD/V+QkUeYn\nCggTBacHkrgCuJYEEccwy6jJYZata3LQL7smB8nihhyyrCGHyiyvkaTekZcxr8dYAJtiCjn0EYCB\njwj6PpeXbUvCTxrQb1mEySOLm2fXIok4haNbFUmcwo0TfdDZQ+TkGAUID4ken9ffHj821yRxtmZe\nHb54EHPrTsSy6n9CxADU20LEACA3Z8PEcJGk0Dl39/OhQY6v3RorwIaxHoq11L+9SxR5qcjivB4I\ntKyHNdOJ4sYJpJXb6YoThUSQzUcO3h7s91p2jWtJEBJBdrOsyWF+s6zJIbqT1eQgJ0cNORzfaMjB\njFh7rAczOurbP8YNNc69JNX/aUFnPjLwnefhSjr72u4l93t9nb3/2rJ4HSQ348+2n8FqnetT7Zgk\n4qpPvjRi2AcphM7pcy0FBjlGe+hub1sPpi3ZbSqNVKu9aCLZEVHEObp6i7mAq00S1xXXmCC2IAfX\nenDP70RZaNN69w04L9ejyCFEBM15up/1kYJeNt8X1x24a0U8XMXcSIZdT3YH4qIhjnWrMynW1fw4\nOyaJ1VL2Qwz71BUmnq8FH0mA170EjSAd1h66gwfT7rYlCoDYJQqMe7FoLuaKkkQkQpqNHLwdLIjL\nh4iqySHKqMlBsqQhh3TWkEM665DDZWsP9ujNvHxDRGAf68ImBPe4hhT6zj9kRbT3Z/Hae71+F8W6\n5cMu1apRoV2SiK3RbrGsOxJJl/UVqLnWJlIWJJXivsz1XqMz7I0YLoMUQsf0aGg+MrD3udZDu700\ny/bv3B0QrHuJoixXrcgnaBOFnN/XJDE/PugSl4RrSRBRTE0O8WPzmhyix+cNOdShrDM9KvWRgx0W\n6EESZbCeHtJqMGR12B32WHeRgUsI7rH2uc3yoopeerCCmwksSqHqa1shjhrTCANCpGEiY2ySWDan\ndEnCdBoAnGorEB3hJCfV2Z5eEJnJSJ9ZMKccFJ+BWoCeTAy7JIUpVsLYzwXcS0AntNWGbT1Au00Z\nC9K2HELuJ5coSrUkllWj4TlEEctMk8TRLWS5QC1Oqy+tdIkzy/V0zSAiTwLfg56+VwFPKaVe6Rxz\nG/he9PwqCfD3lFLfXe37S+ipaBXwVuCLJ8yw2MH1JIhIbUwOY+GGuu7SzeS6luwXr8/VNEQKer2f\nGBZl6/CaLDQ2tzBuJF13k3FVNOGT65ZoXZ9mBySRZlWi1ybEsE9S2JQQvOca+M6Ae8nAzXuAxnpw\n25ZLFuOsCkMUiixe9hJFLIm2Jqha3arQLkbQ7uArJF5LpEOmd4QV8Aql1C9Uc6O8RUR+RCn1duuY\nvwC8XSn1WSLyAcB/FJHvQ88L/xeBj1RKnYvID6CnpX31phdzLQkC0eQg86QhhyxpyMEkFHnIoWM9\njMBYQdpGiEx8riV32cBHCL5jfaQAfmJYWKQx70mYs8lCRym56+0Ow73WplNZW53I/khi/XC1PTFc\nRVJwYQVZhGDcSz5x2sC1HvQ2P8H3kUV7oDCeKLL4JmC5nExuTJw/ErrEpqgmh3pvtXwqIu8Anoue\nB6Q+DDipJuk6Bp5GEwvoPv1IRJboGRV/jS1wLQlCkgiZJ0S3s4YcWnkONxpyaH1ueAS2T9ghrbbu\nEDLz258Nk4K7HiKGRYfjzGdU/bl57B5jHxdCt2Np7qMhieY6R5LEctGQRGqJm3muK2IAqtIgZF5p\nC1YuQ00MG5LCpRLC0Dnd7OkAbHG6z3rIy6jjZvQRxjiyGCaKvHxALEmVZT9DTG7Mo69LPEdE3myt\nP6WUesp3oIi8APgo4OedXd+Knrb219AzFH6eUmoNvEdE/h56kq1z4I1KqTduc7HXkiAQGU8OW3T6\nJmPUjMRcN9MmlkVIdxjjPnI/767bxGDWbWKwCWMeW1rESpjXLWWILGCKddH0/Pp/43YaQRJY0S6c\nadeDtU1/6znR40eoB/pco4gh0PleOCHs6jye0hp98FkP9j4XTbRb2Gpsk4WJgoor61Efr8+jk+7S\nyHzfA5IoI42OrqwuEQl1dv4IvE8p9aKhg0TkGPiXwFcope47uz8VPaXuHwY+FPgREflJdPmAzwFe\nCNwF/lcR+UKl1PeOvTgX15MgYqk6gqTRGgw52HVqfK4laI+6AuJeN9R1PBn4BUG/7uD6fzclBegS\nA8Bi1SaGvMpCzoEs9eU72N/VdUFpcdt/fJgs2iShLYhujgSwMUlI1riVWrWLDDyd8UblLTbBtueZ\n+Hm37pJPpPZZD+5vZ+C2v+4gAPyuJnt7ZIVTr4FzYlmRRkf1IbEkrd/8KusS20BEZmhy+D6l1Os8\nh3wx8I1KV1L8ZRH5z8DvBD4E+M9Kqd+qzvM64A+gBe2NcG0JIrrVhLB2iu9BmBw2QBJlQStiDMbo\nDkMuJHfbJsRQFF2TwBCF32Jou6Bc9JGFgeloNAm6ZLGuo15a2IQkimWXGKyOtZcMdkEE+9QdoBn4\nbBBwYWAGKVMHIQaNJTFEGF2yMORQrGPyUnErLcniJcW6qVhgfnMjXgONLnGJSXUS6RpfOzmX1hW+\nE3iHUuqbA4f9F+CTgZ8UkQ8EPgI957sAHyciN9Aupk8G3hw4xyhcS4KQKBpNDh1MEKd3iT7XUig8\n1bdtLDGY7TYxFHlMUeULpNmaIo9JM+uEg0QBY8liHtvXbbuW/CQBTjixRRJ2tIubXCXpTG8znUZq\n6ij1VEWdin13/hug1h8c95LPenDhsx6gG+EG7bYQIo3udrs922K3ScBcc7+IK7dTzo0EivU5pQqJ\n149OUt0IfDzwRcBbReQXq21fiw5pRSn1KuDrgFeLyFvRzf6rlFLvA94nIq8FfgEtWv8HwKtvjMW1\nJAjtFJx1K7NChxy2sR7cqqRj3EzuaHi8a6l/BLcJMQAURdwihvPzpPoPR0f6A4YoiiImTcse9xMY\nspjHytuhgEsWbbHajm7y5UiA9Qytkq6mwxDQ/mnze5+d6XbgdhjblOO+ZjDidJ/1EPotQ9vBHQSE\n0c3aFytTvykGmEbU4nWtSxjx2ugSRrx+RPMllFI/xUDUh1Lq14A/Etj3N4G/uavruaYEEXUrs46B\naz0E9AfvRzdwM+3CteTLW3Ajk8YSQ5F3XUyGKIo8Is2cyp6McT+1ycKI32ATRZckwFhS3fDX2uVQ\noSFoHe3iIwng0en0L/E6Q9YDNL9bH25aP02YVKTTXtoRUuY3j6s2UHKVdQmZJlI/UrieBCHiJ4cd\nWg82bMthrFg9FNJqu5ZcgRDGEYO93SUGgCKPWsSgCaMqU5GVXRcTDVG4VgVBiwL6XFAhkvC7nfyR\nTSYDV4dJBkiiCMf8P/Jw9Icp7qWx1oObRBmKYBtDIiEY4tBkYYjBvAOPli5xXXCpBCEinwa8Eh2e\n9R1KqW8MHPfRwM8CL1ZKvXbwxHHUFN+rt+2eHNxIpiF03UvDIa3bEgM0OoNLDHo5bhEDRTV6LyJI\npT7GJgzb/VRff8D9pMNk9fI8aVxetlVhRp22JmG7mMbmSGhybpOEHlHStIVVwShcZ0IJoM96cNHn\nWtoGTea+cL/QgvVjGdi6xK10WV3vs0aXuDRcGkGISAx8G/ApwLuBN4nI652UcnPc3wHGJ3xEUTuj\ndExUx4bitO1O8rmZfBaF61ry6Q72C+rzAY/JZZhKDOm50+mT1ETRtSa2cT+BLwLKrvvUjWiKnAqw\n40iilYFbFu3f2UcWZttQ2Yo+XFFy2dZ6WIzQE8aicTl2B1mmzTxRuW2eyWOyWHgs0xbF/aIRr/V1\nXm5SXbTbUhtXCpdpQXwM8MtKqXcCiMhr0Ekeb3eO+zJ0TPBHjz6zRL3kMMp6mKA/wHg3k8+1pNdD\ny+2XcmrIqtEZXGIwyzYxpHnJzFQ/zWLSvKTIYoqqmRTEHWuiIY7x7ifbqrADVM16O/FqeiKdnyQA\n63dXq7zbNqYQSB+mkMs+yCTgXuq9jAnWwzZws/UXgcoAdzLF+3O4mQjzWLiVwjO5TrhrdIlHL6nu\nUcNlEsRzgXdZ6+8GPtY+QESeC3wu8EkMEISIvBR4KcDzn/d4s6O0XuiqQ6hnrcIiC/vFT1I9wbqN\n2dx7LlGqZS2YzGp7tjmbMLI4qklCj4ijznIIYwRoX8iq0RlcYgBNDjYxzIqu78AQBedQHCUt95PB\npu4ncy8uSehnsnkiXYck7N/OzIlsY1X0E4j5fB+BjHVf2Uiz3ZCErT/0YBvroVuKpR/b6BFgsver\ndlFEQV3CiNd28MKjVOzvKuOqi9Tfgo7xXUtPFUqAqp7JUwAv+m9f4BcHSucFjtMWWUBFGO6L7iMM\n+zNxWodgAnapGf21hjyqZR3Xv67EON2jFetmuVuzBmyh13Y33UyaF9F0voYk9Gi+OYcZ8Q9hlrff\nbNuaSM9XFEcJFIqC5lxtjSKhqR1GO0S2iDoWxdxphbZonQUKBrqTDbkw8w74b3De+3t6YU1mM4gr\n6mK6DrAHDGlUtlyO9UCsHiTM2iS/cgYFOyIIifRUttcRl0kQ7wGetNafV22z8SLgNRU5PAf4dBFZ\nKaV+cCdXsAvCqCwLqcx5OzfCzBfhg3aP2BO/R63lh6uGMEwIoO0D1r7bZlQ3j9vEMZYMhuBaFC5J\nGH3C/k5DEkafqPdZJOHmUdhWxM1Aq7Q7h/aUqA1MB2FPQrMTuG0lZD1cBjnsIbnTbW+bwPyO20U2\n6f8+HcsNg46lnUhpJiYSY+2bgAWDRyXs+RJxmQTxJuDDReSFaGJ4MfD59gFKqReaZRF5NfBDOyMH\nHzYlDLOvaogda2JtRrQNecQyI4uXlS9dZ4/mZVRF7HQJA2AeD1sRAGladspmdAgjlTpiyYdZvmJZ\nlcCeFSXLNK7dUH0kYX+fSxL29bmWhGtFGNiCdXea0wZ2LoQXUyyARwnbiOkXBLd9boJQKHTb7di2\nCFr5MbEOWmk5M3f07EQgnk2LaHxUcGkEoZRaicjLgR9Gh7l+l1LqbSLysmr/qy7r2mqMIQxoWxRx\n6tUl+i0JMKMgDeOCiurSA3kZVUQi9cvmWhGg3Uwm58Hg6GhVi9RT0EcSBi5J2ETkkoQRsKFNEn1a\nRMjFBDjuhfBoUIlMDknuRZ/1YLstrtgIddOZD3eBXZDEEOzAhVhmOqKwehUSkjrwRADlBiQc4MWl\nahBKqTcAb3C2eYlBKfWSCSceLxhOaSQBwvAZ4kaXGBKvzbJPl3AJw7ibmg61+T7fNhOW2hnBb+h+\nsknC6BLQTxIGIZKApuMIWREGbkG/kJvJoNeqmKJDjLE8fK4lu0DgATsliVDwghkwlKpqTEaPiBpX\nE9DVIw7w4qqL1PvH1MiTpBvZonBcT5Yu0Sdeu/DpEq54rSM5tBWh/bJdKwL8biaYTg62FQFhkgCd\nN+GShP19PpLQF9VvRWgME4LB3nQIH+z2Y6wHmxgeYZKwy6LsCtvqEib81mdZ2hn3k/WIbSDUc55f\nNxwIYioChGIam2tN9InXY3QJV4vISyPkSuclq8Vdj5sJ+slhmXXdRwZjSKLWJQZIQmPV5EtMtCJc\n+BLn9qpD+H5/23q4ZiSxL2xiTfiSLm2r0mTcQzv8uZ2jNKvdwtezetJucSCITeDmTJh12+Vk6RJ9\n4rUPri5hxOumNHLUEqxDVoSBznLeTIcIYZAk0Il1vqQ6EwabZuvGyrGsCAjNIxFOnBvCFB3C1ZmC\ncK0HlxzsEuOXTBJ9809fFkIkcTMZN1DQulx7ilRfcUc79BWaOUQOGMaBIMZgaNTooJnJzEJAvB6j\nSzRTNOoXQBNFW7C2MY9pRQjtJNzVsSJggCSsXIk+koCuFgHiLcGwKUzC3GYftn77lWfZFab7LAhn\nToqtcQERTN1Jn3Z//jGWRFOjScOu/mqsiFBxx0E9YkuIKJJDFNOzBEOahM+dkFr6Q6LdGB1dosKm\nukReSh0Cq3WItmBt09IU07040idIA+4lG9uQhIFLEmlWBK2IXaA3YW6X8CVdhdxMj6jLaZ50S2Xs\nAlN1CZscbCvCEINd3DGL29FbCVmTYX+wJAZxPStMTcGqaP+FUOQNObjuBLPPPk9ZoFa5dlesiiZi\npixqV0css7rzSqKsXra3a11Ch7iaF+FGoupJ3kNll0NIs7L+c8tlbAqTTDerSnYYsqmL/5kKsW65\nD3SElW3hPFjpTmjhlHowJc/tekGmfpDevm6VkTClrTvYRafQYz2oPK//zDZ7v3d5z9g2vNVuY1M1\noimYOjiw60XZFZDtsvluu7ALFqqB6gxjIQJxqkb9DZ9LnhSRfysibxeRt4nIl3uO+Z0i8rMikovI\nX3H23RGR14rI/ysi7xCR37/NvT37LIipUUvFwItukM6aY0O6hIWxuoQtXmtLQlsRD1fNLFw3E7sy\nqvVNnciK7XUInxUBjSWhjxmfUAfs3Yow6OgQQ6GuIfcSdC1JT5tQea6nNg1pEQdLogPfb2+L0+Hq\nwBo+i6K3FMfVwwp4hVLqF0TkBHiLiPyIU+X6aeAvAn/M8/lXAv9GKfXfi0gK3NjmYq4/QWxSQA36\niWGD0V/ddY9IqrN1CRtZvKxF6iaBLm69PBeBKSRh4MuVqPdZeRpZum5pEaGQV7sezxhspUPYCAnT\n0LYaqo6/Jgl7+wWK12NmNhyDuVvqxYQlX1Lunc/N9HAlrdkI3XlEfKGvVw1KqfcC762WT0XkHejC\npm+3jvlN4DdF5DPsz4rIbeAPAS+pjiuArcL2rt4T2gXUeu/EYDoD7wgRwrqE5yvHFvvTwrUmhkaw\n1i9BM42j34rYhVA9Bi5J9CXU2Ugz/azsEhxj3BnhaUmb59nRIaaGu/ZZDzAoUntJwl5+RC0J2K81\nMQbtqUrNtrYVYeYRCZXi2Ba6WN/oPIjniMibrfWnqkKj3fOKvAD4KODnR577hcBvAd8tIv8N8Bbg\ny5VSD8ZenIvrSRBT4ROe7eXQKJFw/kMIfUl1Q8X+YllVeRKqI1iH6jQZNCP21SBZZOcr8qP+phGy\nIqCfJKCbUAddKwJMxzOt/IZBPXKemDDXG+I6ZD30hLmOIonq2F1BibgzvO4FF0USbiSTjT4roiEJ\nTymOi8f7lFIvGjpIRI7R8+B8hVLq/shzJ8B/B3yZUurnReSVwFcDf33Ti312E0QowcndRpcYWsum\nA6iW2xZFV5foS6qDvmJ/+ufK4hxtRcTcSEx+RBP2amo0GbivQdMpb2dVbEISvoS65rrGWRG+Geey\nkbcyOh/CWBgr539AmLbX6/8OCXSszm0inIZCXC84QuciLYkhHQIawrBJwhv6egUhIjM0OXyfUup1\nEz76buDdSiljcbwWTRAb4+o+pX1iJDF4X/ye5ZALqcaIpLoxxf5cwdoX9mpbEVnAzaRLcPsD2cZY\nEUMYQxImBFaHv46zInxkYHcANwKXvbUO0SdMTwhz3bt4PXE2xF3hot1Nxr3U/B9OnPTqEVtCRO2s\n1IbouQ2+E3iHUuqbp3xWKfXrIvIuEfkIpdR/BD6Z7gydk/DsIohtiGFUFNNSk0RIl/Bgki6xtju5\nvCNYt+s0NWc2ZGEsh/Pz4OV0JgsaQp8VASNIouoImwqww1ZEE94YcSPp+tOMe6mXDKboEL56SxU6\nbcWt5jpEEvb2XYjXl1yh9LLFa6B2M/msCEMguxLv94CPB74IeKuI/GK17WuB54MuZioiHwS8GbgF\nrEXkK4CPrFxRXwZ8XxXB9E7gi7e5mGcHQQyFqk4kBuV0om4H36tLjEmqC+gSRI2w1lgRTfkNu06T\nuZLFSupG6wnBAAAgAElEQVTMahNKqovmmbBSgQBhjLUippKEQZHpqU+nWhG2e8GuxeNaFqYT0MlR\ngYS5vlDXFjEMWA99FkSg49+1eD1qrvULwmWL1wZDrqarBqXUTzHgiFBK/Tp6gjXfvl9ET7S2E1xv\ngpgYkRTa7yMGVXV0ksWofOXVH7y6RABjdAm7kzOCdUMO3TpNi1K/qCZsNE3bczWM0SB24WqCNkmA\nQxSOFaHrNJVBK6I9JWmz3bz8LlGs1nlLqB7UIUL5D33CtNmPbidiCHNAkN6ZeH0Fs4IvgiRCbiZb\nrA59Lli+YCJEOJTaeKSglFdMbP1nO2JQD7odvo/2B3WJ0PFeXaLRI7qCdbdOkwl7NRZFTtvNZEii\nOEq8pTbGEkOf9TAKjhUBDVn4rIh2TZ4uKZhoFZ/FMFqHcK2HMcI0TVsx/yVLBrWG3pDpa5BU14dN\nCWSMUG0QcjXZmdgH+HE9CWIqQu4BB8rpRFvE8WCJ3JwhWQz5CsmaEaAyL7cZLdYvvzkm166nSsRW\nZVFPaCKrZuarZH6LOGo6iWJ9zo3EuJvKOjHo4Uq4X8Q8kQnvz+FOppgnesS0SNecArfvFNy7m3J8\nq6DIY87I6tIYvg7fHv1PxXJEiFFd/sNeT9vPe+4pLZLF3alIszgKkkBnu+VeUqu8az2MdS0VS1S+\n6rSRFoxlEdIl7O22kD0q2umsbjemzchsThKnxNGsziLOyyYkvpl/xDfxjnH1uVWDd4u+Tt7sswcE\nZpsJdW7+N2VoDMw2817YAvaYUOnRELiIqUcuA89agmiNAA28pGBGhM2Lrx5UnYEn4cBYFposzCiy\nepnTWd0JtF5+e7RoNIpEz6Fbv/RJBov7yGxOmhxZVV9XFGu4lS65X+gXIKtcTHp0HbEo4f254om5\n8P4FcLwkT5v8g3t3des2ZbrHFO6biiJAEsWRDnc1BHF0tKrKk2vrYR435Z/r5ZiqNlXz4qdRU58K\npJ4gJpakVecK0O4lhwha+Q9uXa4RriVDDj7L0gvXwugjjDHhsRZcq9UOeMjim1Y9osTKrSnrgpBZ\nLDyTg0sSvhyEfU0jum9S0JWSDxjCs4Mg+vz/PdaDK0ZDlxx8JGEfKzdnqLxEssqqgIYoquXaB53O\nBq0KHacEcZKRxTdr0bpUCbfSc/Ky5H4R81hW8kwOt1LIShPd1Mwb8X7WcFJwRsrtOznn5wlnpBTp\njKLYrFnUxflGwiYHoCYHYz20yaERqA052NaDIYch66GlPbjitBvVNMa11Ilq2nSqtAHdArqWqL3/\nuH26PpLw1fxyrYnHspK8VHVhxKwqluhiarFIH9xXyD7nvkjhitZhunJ4dhCEwRii6HEt2eSgRjpP\njWA52QUFDVmAJov5MWpxiqwK5OiWnvhE9KgwLx+QRlTx3Xn9Muel4pk85nYKxoe/iPXyg3gNFK3R\nfZHHnN3fTPAsPKNZvSNgzluWg/5ryCGzxGnjWjKjSpscjPVgo896AKZZDxB2LVkDCWM99A0YzLFi\nufBMu9D7St0+YJAwWgMMgLOHTXu5caLPx3Yk4Xc57R4hD+QmpNAlBP0EXELYaR2mSFq/6XXC9byr\nAXizojvHtF1LxnVgyGH9sE0Q0Y1kFGl0rQrLxTDkggLtdgLk/D4kaUuXWK3zWpfQknRbl4CYedzo\nEiBwpHUJgDRb17qEi22yru35IFzYriWgJgebEFzXkoHrWppsPdhEULpupTzsWnJE6Zoc8tXogUMI\nmxBGNxDitLY+Q7oEdjK6hcsiCRfbkYKG3RZcQjhYEOPwrCSIDhzrwac72NvXD1cdV4IbMOd7ldSi\nROZxx6oAGhdUn1Vxdta4G8oC4UTrEvNbpFFbl6ASr40uATFQtnQJ0OK10SWMeG1yEezS4LaADNsR\nhg1bdzDf4bqWXN2hT5j2WQ+tzqAsusK0DVeYhsa11KM72G5He/CwbZc6ijDOHjYDi5Nj/3lok4gr\nXod0iftFjCEHX1LirmDP57APUtirBXGNcXhKIxByLdm1viLChNHXSXRdUI6wDW2r4vgGcAo3TlCc\nNrrEbF7rEtrddNTSJYBafLyVAkXEExktXQK0eF1kcVVIrxlR2wlsQD3i38U8165rySYHW6D0uZZs\nYboPnbyHPusBOm4kd7uPHIxlaQ8efJH2bntQixVixYOagUS9bpGBjzBacUanZ82AYge6xK20Ea91\nKPV+4HMz7ZIUXEKYUsBxCBIJUai+yyOO63lX0NUU3Gzp4P6ua8nXAaxzWC31C5PMFG5hSJswfGTh\ndgoGfS4oVSybxDsI6xKVeG10CTivX3Sgzrg24jUo7iI8ATyI19yDOsTUZF+HCvwZEnEJZCy09VC2\nXEvQ1h18QqjPtbSR9eALa+1zLdnbe9oG6NBHn2i9LWn4CCO6ZX0W9qhLXAz6SGEXhHCwIMbh8JQs\nTCWHVV3orv1WuYRhk0VpuwYermrtQuZJ0AVVC9sn1Qjx5Lh5+aGtS1QkYesS0IjXoO/tsaytS9ji\nNUdVclrZJKrl1b26xGHQn5kd9stPCWm1rYcpmBzWamC7lny6w9DAIZA34Fqb4LQLg6p91N9rkYZr\nZayx3JTHN6bpEvNbE0hiPHaRa7ApKQwRwkGDGIdnJ0EErAcbY8hhmUfMsrVFFAbOi7Rsp+J7rYsB\nstBuhXMk06Jk7W8+O4PjY0yilMnCNrqEga1LNOK11iVMUp2tSyxW7cnk5xZpgO7Qc+e+07TsEMcQ\npoa0hoTpQesBxoe11m4knxbRzneYMnBorsNfmsFHHJ0zWKQRskKFh43FGdAkwLImqvyaMbrENGzn\nkjK/3z4IYVTJ97EQ8f4O1wHX865cuO4l7z6/MA0EyQGo/w/DetXtDiJf1VmY9SjSRxbVvujxedMB\nQDuHwqNLmKQ6o0uYpDpbl4Aqqc7SJRb1NKbSqqlz06rtND9abz3N6VBI67YYbT14XEuAQxhd3WHa\nwMGGhzx8xFG1S7v/81mhMtdtJHpcDwrqco2nZ45+1cZUl9NFwUcKOyWEKTMKPovx7CAIH7z1c8L5\nDm4HUBZ9o6Nh0tDWffX2eQijtDNtoe4EgMbnfPawecF9ukS1z9YlgGqyFK1LmKQ6V5cwRKDnItaj\neTMncYgwYDpptFxLju6wjfXQwVBYqw3XtdQjSkO3bcCUgUMbrXbRun6HPCzisNWB9dPntcXp1SVM\nMubxcXdfhX2TxBT3TogU+iKURCldj83ARwahCr6bIKLl7rtOuN4EMVRjqUUS/bqDgSEH42cei7KI\nidP2KMaMNGEcYcSPzbWvuSYPXUW2diWcPWwiV4wusSpqXcIk1bm6hBGvH8uwkupgHmu3k0sWep+f\nMLzwdHjGPWW7lmAaOfShzntwOodgWKvrWpogSo8fODTwtQcDu124l9ohjyUkhiyc43t1CRMybekS\nwkn9WR9JXLSwO4kQbLiE4CODTeesf5bhehOEhaHqmzBelG77mX3wD7lWS+m4EOyOwow6tXtC70/S\nNZikWRZIlhA/Pmf99HnlTnB0CbBGiG1dYkqxP13xUtUlFjQhOC4mizDsMeioMs9VR+cLaR2Lra0H\nmxx6MChKW+QwdeAQQllpOb5BBeAQyBrur2q9Kn68O6PcGF2idk/2FPu7KIQIYdA6GEkGvXOPXyJE\n5LuAzwR+Uyn1u3uO+2jgZ4EXK6Vea22P0ZMJvUcp9ZnbXs/1J4iAxeBaD2NFaXuEWHo6g3imesnD\nNwp0icPuHFodwtm6Gi0uaqGypUsc32ji4KGlS9RJdSOL/Zk6PFlsiv7RIQsbbbKAKQLlNq4lH3qt\nh5DvOWA9uGU0QhFLhhz6Bw5tBN1J9jGeQYX+PpdA1iQoIlaUTy9ql6R9NR1dYmRSXWd2wx1g7Pla\nhLBLMtilBiE7LbXxauBbge8Jf53EwN8B3ujZ/eXAO9CzzW2N60kQjsnZZz10sqUHyMGsl0th6R2E\nDHeM5TImdl76lsVgtll5FtrSiDg6WcH9ZiTX0iWgEa+hSapLM21hTCj2l0alJWC3yUJPzkKQLKon\nGXwmdoTUtiGtY62HQWF6hO4A4YAFu11Mga8tuPC1jXrfUigLqduGIQm7QEY7wKHBxkl1HkyOChpz\n/BAhrAbch75zBD57VaCU+vci8oKBw74M+JfAR9sbReR5wGcA3wD85V1cz/UkCB88ZRIMOhVaR5LD\n+Xn7hT06igKk0cUy16/fzEnoLJeNn8V0HHUHsVwDCbNszRzdURldou4MbF0C2i+/pUsMFfsDTQB5\nGdVkkZe63IIpi7AZWUDLHeUJaXXRJ0y7CFkP+uFuL0r3WZXhQUM/lrl02oEPvrahodvh+aluG8ly\nTWqRRH3U04s6W18quWFSUt3kO9sCuyKDEBFcHkE8R0TebK0/pZR6auyHReS5wOcCn4RDEMC3AF8J\nlpi0Ja4vQYQE6hGuJYMhcijy5iVNM+kQxhicW/NBHx213ROGRAzmx+39uiNY1OZtE+Z4XifVeXUJ\nhov9lWpZdfxlTQJN6YM2WRi9YhxZgE0YvpBWn2sphJ1YD74r7GkboYGDb9AwFqYduG0gBLttzLIY\nbpqHXX2+ckeaQYTnG+tyLlOS6naGkR30XonArbm1KWKpy5+MwPuUUtvMGf0twFcppdYiza8mIka3\neIuIfOIW52/hUglCRD4NeCU6Y+s7lFLf6Oz/AuCr0O33FPjzSqn/a/QX+JKd8FXgHOdbDpED0Fnf\nBEVgop40Mw0h0p1BdV3zE+BMjxaN3xkqXQKa6JU6+3p8sT8dCtvMfQ19ZNEVt22ysKGjoZr1MYX4\n9PfswHqY4FoCRovSpm342sVUuG2g+e37EAExq5mqrEwDrUvwjB5ERDcSojvtTxrrYWqxvyHsRAQe\nSwTBcOWBaxgITriieBHwmoocngN8uoisgI8FPltEPh2YA7dE5HuVUl+4zZddGkFUQsu3AZ8CvBt4\nk4i8Xin1duuw/wx8glLqGRH5o8BT6AcxDSNcB33JcECHHPLFxWUQ5ZW1XeSK23diTGcAEKcRsKpD\nHQGiO407oaVL2MX+XF3CKvZnZ9HGMqNUOoKliXjqkkWxNoQQjoTyIeRaGhPWOtl6cLGhKN2nR+26\nXeQD4frZ3C7FbWp4E9QlgGBSHQzrEjX2mWi2KxIYIoAdEYSINFV29wyl1Aut73018ENKqR8EfhD4\nmmr7JwJ/ZVtygMu1ID4G+GWl1DsBROQ1wOcANUEopX7GOv7ngOft8gLGRCzZkSk2OWw7UtzEFXF0\npL8zzYRbdyIWD2LmlLXv2egSQB3BsoYmqc6nSwQmIYrjptyCHeLokkVersniphCgSxahSCgf+iYB\nAnZvPRgEBw/Doc7uwGEXluQUFHlJmok1eGhP9NCnSwwm1bm6xK799mPPty8SuIIWhIh8P/CJaK3i\n3cDfBGYASqlXXfT1XCZBPBd4l7X+bvqtgz8D/OvJ3zIQleLD2IilTf3N9aXl0z+vXQ5GDJeaJCAi\nSRuXgitemw6gVezPJglAKmEwibWvOY5mVdnwZU0QxrIATRZppF1SrmUBmixOZlCsu24ofazUbiWg\nJyFOenMeWuRg5TzUYa2BUt6dOR7oBiwYhEKdfVbltu1iOvSvfH5uyMGdDUg/7yQvWxFONuw2Ah6X\nUroHi2ETDWCbDv8KEoILpdSfnHDsSwLbfwL4iV1czyMhUovIJ6EJ4g/2HPNS4KUAz//g280Oe6rG\nkdBJSNVIcY+WdJpFG5FECKsiIpk1k9bE86Txp5t5A9IZKs8RZ5a66gTNyeK0Dl1MSEgkQYn0EIbe\nnkZwI1lRqiWgyMs1eSmczPRkRQ1hNF1UmBTSkaRwr+1O6iujUT0DADz6VD3XgkMQOhdhXZ2+cSfo\n6CPdGQ+5gy4bq6WQoIgDEVMqXzWk4E4fa+ZIH4Ndib+7xD7JYbd5EFcKl3lX7wGetNafV21rQUR+\nL/AdwB9VSr0/dLIqVOwpgBf97ud6YiVnQZGt8eJqf63dt+jYc3dU1p6CcZsRY5rpc2xDFKul1AlT\nq6WQZnrZ1AqSLKnzPcSUCDcvTDozGVuoVa6f0WzuddVIZVkMEQYYodtPGNCE0F4YKXggWRbM1jDl\nTHxtw05Os9uGdi/tpl1sgiJXHB0NH6fythXh7dwKayrTepB1BTv+A/aKyySINwEfLiIvRBPDi4HP\ntw8QkecDrwO+SCn1/13UhTUJSXbZZrsj0J2t8f3aoYmbdgqGKCBMFmNDINd5VTralIWuazfF1JMP\n5RUZuFZEkvkzVD2ksSlhNC4pRSyVO+siSMETpqlnwmiv62fVvBotklj628Yyl9r9B+u6XVw0SZyf\nr5ll49qJgetulY71YA0mrio2cD15qzsf0MKlEYRSaiUiLwd+GB3m+l1KqbeJyMuq/a8C/gbwBPCP\nqrCu1agYYpG6MYc6ABfuSNH139r9kOkI8sW6JgkD04nvwqqA8ZZFWXSTrdYPV5rW6pnIHCsiy2rC\nqP32cd59RknqJ43lQhNHBQGIUy9hALXobZZLtbwQS6G+hwmfc+PaTfvQ0WJdktDhx66FqY+5aJIw\n+tTGaQt2rhAewjigjUiuNnlugUt1nCml3gC8wdn2Kmv5S4Av2fd1mA7UJgmcQUfY1QSmM9g1UUCb\nLIZgwnKNDmFg+9NrKwL8VkRZ1IQqScU4UzpkizQM0RjRO5GENGkTxl5JwUWgxxw7iOChrqzrHUDM\njEPG1zYuniSAKuKqS2ZuOY7BUtX2CPxR6wgP1sNWuJ7KSgiWVWHDF9Fki5IhV5NxJWRzvzUB7MT9\n5EOfK8GIkbabyaCxIiqR2lgR0ESqVB36qGSnVd4QSb2tLh6k/xvrY6ZrASXVdyQmf2GfpDAGlT41\nRBLRjcRrZZZFHBhAgE0Yl0ESY+AK8kCPWL189EjCwYEcxuP6E4T98gdGE0F/szNS9JVyNqRgkwT4\nM6t3ZVVMgXEz2fBaEelMi5CVFTEFqixqUmnBIhhJMhz1vzqmaFdZvQhScC0Jt10EBhKt3BKrfehk\nRegOIOxtlydebwVbrIaqnVySJnFVw1Tl4GJ6NGE3Zgc2KZj5hQ3MSBHHsmisCl8nQL0esiYMLoMo\nbLhWRMvPvGm8u6/zt7/TJR17EHeRhdN8WoSrV1ltxrQT9WDpdUUmqFZYtN0+lrn5rS9flxiDQbEa\n2hbEVbEmQsThm2v+YD1MwvUliBA5BPIiWoSxaKZz9PmbfZ3A+fl6kjUB2xPFGDHShDTG1dzWNiSz\nRoLmZd9FKOOWkUV7QeyxjExcf4sQ2qGvZl9ItCZfDUS92Udfvi5hYCLdWuGurhZhvyN2QMO+SSLN\nLiakdlcWycGCeMQgXVdQ/eJ7RofQtiJkngRdTXaSVDyzje/m5bdJAui1JmCaTpHNo04Bt14xsuoD\n1WKFzF09YlWL1HuNVhl6Ea0S03uFTRKuJeEbOARcTQYR+hn2DyLMGS5fl2hqi629kxD1QeW5rtFk\nkwR0CeOq4GA97ATXkyBc+KwJz7banVCNtKMbCaVjdttJUqsiIp4pyqUOMW27FMB1OcFw1dc+q2Jc\nZc/xUHmp79n30tuYOtIaYfLbL6ucHOt9x8f7sSjcc9rk0GdFWM8j9OR15dw+kjDrmiSMpXmRuoTR\nzkJzYNvouJnMgt0mfBbEo5ArYeOq6hlXDNefIFwi8IwUTSVGY0XUeQOL1WAHECIJn8sJhq0Jg13r\nFF6x+ubMb0VM8OkO7ffO5mf/t+dJNp3NvojCxZAV4az7Mo5DkU3OVD30i9f6+H2QxKqIBqc1tdtG\nMOTVtI/MIlSfm+mirYmRHX1oVsmdQKR5LtcM15sgnM5OsqzdUEyEk8k0NnV47NLZng6gyTfwdQhd\nl5O9PsWagPHZ0z7Y4a6hWjEtKwI2LobWMd/daqnW//ZUrznRrUzPR3B8o3FjHN+oJ63ZKYybyUcO\njsVQ35PV+bXckvmq1x0JurBfN7gBLkKXKJfSO52p0SH62ga0XY/mmUgrPPoCdIkpOFgHO8P1Jggb\nPkvCsSLs+altK8KFiVoxL/9qKSTp/qyJTdA3cmwlztlWhF2CIwCvH9d9IT3kYJOCXTFV5jHqwVLP\nl1wsUelME0VNErOdEIUkWTivwxZFrXbRcjV1rIl4dHh0A78uYdrFReoSq6UEdQh3wOSzwGtNwuz3\n6RLW8ZOxQ6F6r9bDNcf1JYjAS+9b18Xs/FbE0Aixjc1IAsZZE2OxzKOKxJyrq0tvdJPnWlaEa2nZ\n6CMDa72Zla2sXXehqV3jx+eapLKkIYrjG2A6IUMUWwrZNUmExOq+Tq5jXayCkU3ddmL2gk+X8InX\nsJ17cZl35zs3CA0e6uKOfZnVFll6SaJv+SLgtMdeYXpXZHEotXF94HMz2aPC2qz2CNZuVc9Zpt1N\ncaocVwJMcTnB7qwJPZNY+zw+V8KQFQH4X6AeghhDCuYYMwFPMlOo/AzJkpooosePkIowaqKwNYqp\nROFL4oOuWB2yInJn+4TKwD6SMBbnZegSvYMHN+vejuwzCw5ZdlxOV4EkQnhErIcRUzH/VeALqtUE\n+F3ABwA3ge8BPhCd0vOUUuqV21zL9SeIPtG11RG0rQg37NV1NRmXko8kLsvl5HMb+Lb5Q16dQn4G\nAxbDWFKoavR5p3OdZWvmN1eo/Iz4sXnteqqJ4uSoPWfyriOeBqyIjqupR7RWi1V3MFETAoTFa7NP\nb2u0qukkcX6+9mpXYwcPQG3RdRDo+FthsLB5KOzYOSfM9/esX4j1ADvNgxgzFbNS6puAb6qO/yzg\nLymlnhaRDHiFUuoXROQEeIuI/IgzjfMkXE+CkICwO8KFELIi+l1NBl2XU3t7f2Id7Nbl5HMluCPF\nXn+zgcdK0Mvt2fnGkIKZqc9cH8D8Zskyr+ZPzhdEGTVRRLczJC+1z78iioYkRgjZzj6vm8nAZ0UM\ntBm3E5V5ZXHithXo0yXMIGJf4vWUwYO+j7abybYwB0nC2X4lQmF9QRNXE4NTMTv4k8D3Ayil3gu8\nt1o+FZF3oGfuPBCEF1PcBoStCJnHYVeTZS2MsSb25XIaE87ojgrNSL3ZXxGj53P2MZuSgiEEex7n\no6OIcpmQ3SwpixlxqmqiiG8ltbVjiKIV8VSHxY4kCl+Gt9nusyJGuJrsgQWA1OJ7e0ABblY+TE2q\ng/3mS/S5mcz9DZHmVdElHuGkuOcycipmEbkBfBrwcs++FwAfBfz8NhdzvQliCnqsCFuwtl1NTSkO\nMAL1rl1OsJk14fqa1zl1VjW03UwdK4LppKCtgnGkUOTr+h5P75Wc3I45ymNmGTVRzE9KkmVJarSI\nxYroTrZdxFNFAqMjmuptAXeJpUc0kzK1X6l2V99Ynqat9IvXZnsT7bTJJES+wYO7zedSmupmqvNa\nLiMUdmx49j6sh2kupueIyJut9aeq2TA3wWcBP62Uerp9OXIM/EvgK5RS9zc8N/BsIYgx0SkVplgR\nKtfzA6xzNyfCYNjlZNZDJAENUWwK15VgjxRDVoRNCua+d0UKRa7qbXpebkWaSU0U82NNqtnNNati\nTZJqolg/XG0U8dQpR24QyomAfivCuy/8KrW7+r4Ip+aoTYv9mWfZh6HBA4TbBdDOvodpLqcpukRf\nqGtPRz86rPVyXE3vG5j07D2MmIq5woup3EsGIjJDk8P3KaVet82FwnUmiIEZxEJupmZ/vxURIomp\nLqe27xlCLqcp8ImRBsFRIVXF0puzCeSAlxzKal9DDop8sa4toYYwmo4yzeJ6Tmc9z0VUkVqVlJiX\nRKxaFtz66QVyc6aPMBnZ1XJ1Un3t1ix5rfkm9A20/5sOqVg2baIO3XWiuwb0iNaz9YjX1V1U/8eJ\n1/b+fbmbfEEMXuzChXSREU6Phg4xOBUzgIjcBj4B+EJrmwDfCbxDKfXNu7iY60kQplifcTUUebcR\n2tEp7scxHWk4Hty88NxI9Mg2059JM1WRRemQBQ5ZlFUnOy4c1iDNhKOjqI5xj2eqdhUkM0Wcqnp0\nmKRNUbYoa0a50Y0EmSf1CFGypHYv2fdsLChDjrZP3dyne53mvrQV0fjTDQFowouqe9GfPDqK6iKE\nt+5E9T2Ze5nfLGvh2r5unXxnXDsr5ATU6VkThppW0U6c6d+5jxTcTt9HCn2dSg9JSJagKgvUPEPT\nXow1YdqJ/fvrMU7zHI+OjAbRfqZpJvXzM9FLs2xc2zCWg2RJ3S5AW8ymXdT6in1v9vsUWK6thxHH\nTopectEKohifFOebKGwjiGx3/RZGTsUM8LnAG5VSD6yPfzzwRcBbReQXq21fW83cuRGuKUHEkB2H\nK3fah1b/XaIYcuq0XE5m40SyAHsflVVBZVVElYuhESa3IQbjUvIRg68DMFaTsaTUgyVqHrd0GHm4\nIspXJHlZ35shQWMtxbPIuRepOzW7c7t9p9EgzP0cnaz08q2kQ2o21k+fVzWz0CXMj2+gTs90tNPZ\nWbsjWhVtK8HzX+UewhgDD0n4MvTNMzREEdXivv79TPsoC8EQRTwzllnUeo7ZvHFBmvZhymuYdrAp\nMZjrr+9nCimMOd7XqU6cO3w0HOuhXe7lamFoKuZq/dXAq51tP8Vw1zUJ15MgogiZn6AWp+Fj3Gxq\nHJIwL/vUrzYLI8nCZ1X4yMLAEIMhgDEvPzTEYF52LzE4VpZ97y5RqEVZzTGx6hAFNK4nmyhs4rOJ\n4ugoYn7c3Nf8RJ8nPVb1PUR3+kdoKl+xfnqhdQkeapcTNLoEVVvYNSm4sNwsPqKwNS2bKIxVluRl\n7b5ziQKaNmFrEn3EoM+zDg4adkEMk0gBusTQV213U4TcSfXvXXYmCjugi+tJEBLV8x+35jke+lj1\nP+R2srWI1r7A9jFkMeSCatwM7J8YAr7gIFHkq1ZHZ4jCvTebKICWVWG7QrKb616X0hAMScjNGdEt\n4OxhV5eAagQZsCJ2hQBRQDcR0xCtLoXSJQpoW2WGKEIDhzHEABu2jSnWwhRS2BQh91LPsSpftVyn\nW5VZj8sAACAASURBVEOii5v46oJxLQlCsUYlGVJFqchyoYkizvvnW3ashhBR9KEtaA+7oRLUKL3C\nwBCD7V4achfA9Jff+1wsF4qyiML42G2iMEToup9s8otnUatTG+tS6kNdyoO2LiEnx/snBYOAcCtZ\n4o2SM+suUZi2YesTLlGAf+Dgto9dEcNW1sJFdaI9YrQZRNgBGAeEcS0JYq3WFOtzYkmIDVEs7nfd\nSAMQ8Bau28TJFyILuzMd0it2QgxjR4SBe7efgSEKAJ9OYYiwT6cANnIp9cGI19HjR8A5ki2b3/0i\nolf6onI8RAHtgUUErbbhIwpg1MDBF5iwM2LY1IXkwt0/5F7y/IZjrAejO9ilYHYCkYMF8ShBsSYv\nHxBLQhJlpNERMr/VtiaM22mEvzNELG3XizUytENkHXcCeMhihF5hEHrxzXkH/cihF3/AvVTfv5MD\n0KdT1IJ21dm5RGEE901dSkOoxWtLl9g7fJ2mL5TTcj11QqqtiCeXKOyIp76Bw1DE2mRi2LW1sEnW\n+1R0dKaqbVbkUD6z2P47rjmuJUHYFkSpKvPdtiZ8RDGAVkfpyZuwjwmew068M1FCjuAbIguYFqo6\n+cUf6Dztmea8Yr4nE90QBdDRKRIrgmQbl9IQOrrEvkkinbVG23ViHXiJwkew9bonNNaOeDJE0ReZ\ntDNi2JYUpo6wDUlMTZYLuA/X93Mrt0dbt+txr/6zGteSIMq18ExecCtdEktDEFl8k1hmmiQq1NZB\n34T2FsYQBeB0mH7roj52BFkYbEMMvW4CN/SwZ7KWulNzM4ut+x6jU9j3tI1LaQhdXeJoP1/kPssq\n10Zfw3SiGIp4MlbmViGr6aw/d2EoPLWvrMkU2CXZ+3RCD4aqttqitFqUdcJnEwSwLSRcUv4RR5Ag\nROQW8DXoVO9/rZT659a+f6SU+tILuL6NsFbC6TIGSrI4h0QTBEASZWFrou+knrBY8I+mffA1RZ8r\nKkgWMH5EOHY06BsJui/2QIVTL2FaVoVky5ooalHWJoo9WA0+dHSJfZBEiIRp//597ayPKKArZOvj\ntiOGUQMHGCaGMaQwpiONN3QxeUKYXd2hrATqdd5EBx4QRp8F8d3AL6HrevxpEfkTwOcrpXLg4y7i\n4jbFSsEzue508lIBOVm8pFQrUrXqtSboK+TmQafyqb1iE4ZnlA1+68JHFvX3+YhhqpugbyQ4duTn\nIQOKZdCqkGzpTby7CBifs8wTJ6kuaXeA2yAwIgc80Uweq8KB265CEU/1fkuAnkwMm1oLQ23lMkbV\nPnKwdAdDDosHcWtOkgP86COID1VK/Ylq+QdF5K8BPy4in30B17UVSiXcL3TncyPRXXYWr0dZEywX\nfrdTCK5l4axPJYz6PA5ZwLiIpK1JwfdS2y63EYXtOmRR7ZN02XE/rZ8+737fDrG+m9cuhSZCit3r\nEr5nb//WZn2iVeHm37hEAf6otZ1ZlDA8eNghEdSVdoeE6lB9LAuGHNb38pbusFqKlYC4i4uOwgUh\nH3H0EUQmIpFSag2glPoGEXkP8O+B4wu5ug2xWsO9QoC4siCgWEvLmgAo+6yJqoFuO21Pp/MPFQm0\nO1doOlKnJlSHGKZaC/ZLbpZb922OG2FJ+absDJBFy6qw3E/AbpOWLBhyKO9rf3Ni126aN+Lv1iQR\nsh76zhmyKgKH+xI1W5nauyCGkLUwNIAYwMadp48k+sKUXevBEaWN7rAq2hNXHRBGH0H8K+APAz9q\nNiilXi0ivw78w31f2DYoFbw/BxDmsZCXwq20bFkTt9JzYlm1rIk0OgLbmsDjdvKOoJ1IC5cU+qyM\nMYRhb/O99LsiBefY1utjP4MhQd9DFh2rAqBYEgEqi+vkpV3ADmM07gTQlzmnhGcWxI/NtWjdKva3\noS7hWg++GkO+gpEeBMOKrf22Baav3bEqNyWGCaSwzxGzJBlqhFDttR48uoMhh+KsKU1vl6Xf/oKf\nhXkQSqmvDGz/N8CH7+2KdoCVgru5dhTNY7iZ+K2JW2nbmoAqHNa2JmbztttpLIZIw8IgYTij0skv\n/FhSmM17b2mQMHyuKJcsrPtVoCf84SHR4/OdkISPHIw7wZSgSJZrUhZIlhA/Pt9Ol/BZD3ZnYVtY\nBiPIouN+ci0zrOi3PmLYgavxkXCfVJapIYf10+cd3aFVmt4qS39AGNc0zNWyIBJYlHqqz3msG0QW\ni9eaAFrJdSQZohpa6CvBMSq5x40IgmFNwiKMSdZCr/vI6ghsUnBHiq4GU5Flcz6bEKy5nqFNGAGy\nsIlC0sqa2EKX8JHD4jSuR4vJck1ZCPMT4GxNyory6UVLl9BJdUwiCa/1YN+7DfMcDEJkYbcHc3+e\n/bJLqxJGWZZ7x6roj2RyS2m06jG1RWmf7rB4ENeTWR3Qj2tJEOsy4vRsRl6U3D5aVxaEtiYgIoul\nZU2YcNgyXpJGR6Osick++tC2wLzZLf+069feEyko6Y6oZAJpBAmjLLrXmFZlt6vRsMrzalS8mS5h\nhzAaV4Ihh/xBXBUGjOFmyeI0Jk4jYEXSEnubkONRuoT5LVzrISTq+gjDxoBl4XXTVdexsVUJ40gh\nZF0u95iN3DPo6uQ+BHQHoz/ZuoMhh3t3d1SLSWTQ+n5UcS0JoiyFs/sz0iwGChbpGmNNgOJm0rYm\nQIfD+qwJn4Bt0OlOfaThi4RyG74r9kI/adjzLnte9E1JoVR+F1gsTqflWFate/QRRnU9HcJIUk0U\n6M5PAZw9JLrVTEM0hiSGyOH+XX2283O4RcxqpphTcn6a6OqxaDfEJrqE13pw24qt19gYIgwDj3vS\n1AlrHbNPUgglsk3pGMeSSZKC/R6FsqmN9VCRg12EzxWlbUvSzHS4yWyNzzYMEoSI/PG+/dvMeyoi\nnwa8Ej1z0ncopb7R2S/V/k8HHgIvUUr9wtB5y1K4dzcjzfQIochKYMl8BYuVcCdrWxOgw2Fta8KE\nw5ZqVZFEEiSK1jV7rYYRxDGGNMx2+/8OScFYTmPRIg6bNGw3k7mG5UI/G6jvS8U5cKZnfTurKq7C\nJPHajVQ6P01aboT7d5spT7N5xP27a27diVg8iEmWTQdhxGtbl2iK/Xl0iR7rQWxCtJ+HQYgwxsDR\nIuptrf9bEMNAmxGlwpFMQ8LyWDJZLhqhekS461AynC1Kl0upp8E1U+BeNWzTLw59dirGWBB/BvgD\nwI9X658E/AzwW2i36EYEISIx8G3ApwDvBt4kIq9XSr3dOuyPogXxDwc+FvjH1f9+rODsfloTxNGR\n7mDytPRaE3mZcCtdt6wJEw471poYvN8AcYCnI3E7kJWzvidSWAWK06zISdxZ7WnChF3UxFFdX6tT\nsUhDlgtNCEkz9afAaF1iLDmc3is5P19zdKRas6/Nj6PqkvQ2LV43ugRgFfujQxJD1oMr7m5FGKH8\nk3p5P9aC22461qQ5b4g4JpbNGIQJmXZEaV8ynK07GHKwBww7m9Nbop3lgmzTL4787CSMIYgZ8JFK\nqfdWN/DBwKuVUl+86ZdW+Bjgl5VS76zO+xrgcwD7Zj4H+B6llAJ+TkTuiMgHm2sJIS7XpPeWFEcJ\nZ6QUecz5ecLtO0XLmgBhUfqtCRhIrtuEKByR16BDHj0j0H2SQq8FEXqXPJGCvcThkEY9qRM09+To\nEqBH8zZJrO/mnUil/EGk3QlnepR4eq+kyBX37q7IF4oiX3P7TlJvh3hQl/Am1fncOUPaAzskDJ+1\n6R6/Q1JoXdpYN6T57k2sjdncL1R7xGl78ipXlDYDBlt3MOSgLYgr6WLauF8EXjDis5MwhiCedDrk\n3wCev+kXWngu8C5r/d10rQPfMc8FOgQhIi8FXgpwdPwBpFWMeGGNsooqtT5PS0jXvH8BT8y1gK2r\nb5sM7BKIRyXXeeH66MfAQx6uS2afpBB68QexJXEkpgw7xuUEcFqFv2oT1RWv1/c2Dz85P19X2lSD\nVRG15lawoRZlKyHNoI4UcqwHSbKWW03f5B4Iww0pNphCDDtyO2pXbLf9xDLzBj7ABOIYWfp76uQ/\nO7MepuM5IvJma/0ppdRT1vo2/eKYz07CGIL4MRH5YeD7q/XPw0qeuyqoHvJTALc/8MNUkcUURwlp\nVlp/a9KsJEvXzGN4Yg7zWFsQ8xiyWJHFTceeRlq4NtAd3MxaD4+mNnoxfD7a5WK0f9i9pjGWwpjO\noK8D8H0mlsTrrkqirHu8QBKncHQLOb9vJYg54rWlSwBNGfGHK+asqvkQdHPWriPNUKf3Sm7fSSoX\nU0SaCSe343oe5+xm2ZoH257RLrqTNS4mo0Mc36Ce59qQw/xYk8P8RP9G5rdxXYYDCEXlDw41ttQV\nYLjd2JF9HQTyzUKWpD7PgMVxdKtdRNO2LnvahC5YuCDKV8CqFqi5WRLPIiDm/Fzfd5FH8MB/7VMR\net89eJ9S6kW7+db9Y5AglFIvF5HPBf5QtekppdT/toPvfg/wpLX+vGrb1GM6UCIURwmkUpPD7TuF\nXk7LKnmuIYebSUMOWbzmRtImBhvaD5v0Nv6pxNEr/LVOsD9SMNvyUt93FoezTM19u/dpXnqXBMzx\nLmnUhCHoelhVpzBWl2jh/oqjkxWQVDPVxfWczUWutYdsrgni1p0oOA+2EallHhM9ftSUr6gIQU6O\nG8vhxokWpTP9n9kclWSt59Jxq0GYOMa6IOsH6OhCO7YwfdalWW4NlMrp5NEH88zqastY1mUVHh1q\nE6ZumVqsSFnUE1Sdn/rbxXBvcuHYpl+cjfjsJIwNc/0F4FQp9aMickNETpRSp9t8MfAm4MNF5IXo\nm3gx8PnOMa8HXl750j4WuDekPwCUsbTI4ehoVZNDlq41OSTU5HA7bchhn5jsv/UQxy5cSC5ZGFLI\nS8GMY3XYrxm75nsjDNuqMEUTvbrE2UMd5XR6hpyA0SUA76gRtB/6FnEV1ii11RDPFPObZWsebHtG\nu+h21tQ2OjlqE8PxjSbMODvWI/ajWxCnemCyPq+ff+verM7TFvE7rsgxBSJD2AMpuOvub2rfl0/E\nLkv/QCoU+GCj1vncgYNPq0pnyNlDr4XZ1y52AYXa3EXbxcb9ooj81ojPTsKYMNc/i/btPw58KNrP\n9Srgk7f5YqXUSkReDvwwOiTru5RSbxORl1X7XwW8AR3K9cvocK5xwnjkksO6JocnMkMOqrIi2h8d\naz0keNwlHoSsDPe8/s92iWMf1oImBsjLqAr11e61vMR6Fs0zMXqMucYQAYwiDHNai3+S+a1qDvET\nFKd6pA69SXXQHjUCVjnnZtS4L5fSihXlekVePuh0rrEkrQ7RZ30GQ4brA0YQx5akYB8baiugP2MG\nDJsSB4TJw24LNUnEKTKbw/n9tjUBwYx8oJ53xG0XyUzVNbquErbpF0Of3eZ6xlgQfwGtrP98dRG/\nJCK/bZsvNVBKvQF9s/a2V1nLqvr+SRBRlVsp7+gOhhyeyNq6g0sKadR+QfNy3RpFm9HvEKbkFrgv\ni484tiUFaBNDXlbm9rohCY12zz2GLPQ9TCMM01mu1nnTMUhAvB6pS/DMQuc1eLAvl5ImhhXF+rzu\nEM291etlmzCA8aRBj35VYV+koNuJframDbQtTHCtTJcU+lyyHXgGDUFrAoIZ+WLyaDx61VWeLGib\nftH32W0w5hfLlVKFmEQZkYSJdesuGlFFEIYcTo6XHd3BJ0qb8NY+uEL1LjGWTKa6kMC1FvzE8HDV\ndDAPVzE3EteKcMnDXZ5OGC5JTNEl1OlZp9hfdEcf4orXpljfvlxKmhhWlGrJ/ULp8Gjredj5NHbn\naY+iXbfLGNKwsWtS8LWTYh3XgycjA21KGqF7rI9bt59Jy5oA7YaMU0jOvIMHnzVhXJGJq2FtBTVp\nIPgoYQxB/DsR+VrgSEQ+BfhSdCnwKwuJaOkONTlYuoNNDrb1MEaHMK6mUGLZvrGptaD/Ny+8WTbE\nkJdRfZx+NiFisEdf9rNTlitCuyE6gi1hIuyQBG1dQi1OtXsH4Jhe8dqnS+zTpVSqFQ9XOXmpp7s1\npVuaTjOvn4dNiub38hFG51EPYFNSgGGr0rQRM2iA5l1xScN+h4ZIw1xH76BLT8RdI5YZYizMvqAG\njytS5jHru3k9gDigH2MI4qvR2dRvBf4c2nz5jn1e1LaIItXSHQw53Em7uoNpzD7rYd+i9Vi4Heou\nrAXwE4P5r5djL1H4rQqYQhbQdjG19q1dgVd3CGOS6vp0iX26lPJyzf0irok3L/XztrWcEFmY33EM\nYfSJu2NIwd7W1058bUT/b357Y2W6223CcPfpdZc0upZnB2OsCajqe2W6dIvHFekOIA7oRy9BVKnb\n36OU+gLgn1zMJW0PETg+KTq6gyEH17XkwtUfbIwJcx2DqSbpEClAv7Vgr4eIYVHCg+rUuqChOW9c\ndfhD7qZxZKG3dUfT9npQvB6pS5hB55rKlfRwRXQj2ZtLKS9jTpcxD1e6c83idd2BZvG67jRDZGF+\nyyHC6DzyCpsFJvQPHhpSaNqI/i3j+v0ZQxj6/LHzXrVvwiUNlzBstxNR83xa1gRVu+gJkXYHELuA\nUurSvAn7Rm8Pp5QqReRDRCRVSu24qMr+IJGqyaFPd3Cth20thl35IUNRTX2jQL28PTG4CamLUpxI\nL7+7SXeCdgRUs922SpqOxeRb2C6opEMarnjd0SXcYn+VLuFLoDJzN+/HpRTxTB5XLhpxqgRLS88J\nkwUMhRSHsI2r0V53icEcb9qFaQ+GLPRxw4Sh0UcY7f162f8saquq2uUK2MHkutOzTmDDAf0YMwR+\nJ/DTIvJ6rLxDpdQ37+2qtoRIkwBnKre6usM2MEL1toQwFDvd51pyX3i9PJ0YQJPDotQvv4FeVzU5\njCWK9rb2dh9ZmOiwcKhvQJeAZpa/EUl16sGyPW/zDl1Kmhj0s71XCA9WjQVmyMJoEq7475JF+/kN\nWxcGu3I1muNtYrAHD/OY6v7abWJbwtDwtaF1axDRunfL7RRLUutVU5LrdgH1LBep/1P1FwEn+72c\n3SCSrih9O3V9nttZD4PCmuf4cccNk4JedsNStyeGxcp2MYHpgk3HoOFmgreJQnd+/VaF2deQRUMS\no3WJvqQ6jy5hRoz7cindLyIWpZ7JcFE2RSDNczREYbvqppFFv59+lxYlNMRgWw5m+zxWHbIwx7h5\nRRrN795HGGEXZtfaNPdsu51genLdAf0IEoSI/DOl1BcBd5VSr7zAa9oaifiT4XxRSy769IexmJJV\nGRp5jCUG89Lb28a++C4xuO6leiRclUY3nUJDHjbGaxJ+F1TTCWytSzjF/jh72HQGe3IpaWLQc6Hb\nz822wsxEVW0/fn+k2FiyCLmQYLy+4A4coCI7p4kuVube2mRhPttnXbTvtX1PoefQPAM/UUDjdnKt\niaHkugP60WdB/D4R+e3AnxaR78HpEZRST+/1yraASH++g8GYvAcfGqF6egPrM0WHSEEvhxLbwi8+\n+EeEtsWwKCEvIopCv9V5FQEGXaJotkGIKPQI2Q6NDFsVhiQal9M0XWJssb99upTuFs3zvHcesUjX\nzK3nZnekfQEAffknIbJo/97j3Ujmfx8xuNqUayG4ZGEjZF2E3FHt+/IR5ji306A1AXVy3W6w01Ib\nVwp9BPEq4MeA3wG8hXZPoKrtVxKR6Ib8REaHGHzWw9htbjb1WIwlBfMd+n+XFGDaiw/TiaHImx6g\nKOIWUUDTIZjOYBdEoeficEmiPyx2alJdPQvbvlxKK71snqV5di5R2NpOW6dQjLMiuts2bR9jXI2h\ngUPb7dhuGzZZ+I7TcNsL1XW5EXP2M2mWjbDvczuZNtKxJsCbXHdAGEGCUEr9A+AfiMg/Vkr9+Qu8\npq0hNKI0+F1Lm1oPBv3VXPsFqxAp6OXdEoNZHkMMRR5xfp5wdLSiyCPSzLou0J2dEa0domhgOvmm\n84cxRNG8/C5JhLKxJxX7MwSxJ5fSooTTs1n9HNNsrZez0iEKuyP16RTK00k2z9HnwgtZk277cCOS\nphCDO3BI05IcBslCo0sW47ULnwXh1yfaQn6bKNLoKJxcd0AQY8p9P1LkABBLV3cYg031h7ERDFNc\nSDCsL9ifHSIGaDqEvKpDUxRxixjAEEVcTddqiMKsd4lCz8rnj3jyEYVGW9A2JNFoE203ik+XcE41\nXOwvLZo5o/fgUiqKmLP7M87PE+v5mYx+hyhivDqF67tv31g4WmybtgFdDSo0cGjuZ13f46Zk0Q/b\numjuvxG1/W4nCAj51SE+a2IXeLZHMT1yEOnqDiHrYZvchzGNYqq14CMF6L789ud9uQxjiQGoO7XW\nKNEhCrPNdHyYzsByMblEYV50myj0cqjTW+9Ol/AlT5kZ33bsUjo7TSnyiHt3s9ZzS7OyXnaJAvC4\nn1SbPCz3U59VcRHEYNqGfT+2pbQfsvATRXhZ//fpEyFr4oB+XEuC2FV886bYxoXkbh9DDNAfmTSW\nGIo8hqJ6adPmeuxOwawXVZ0rH1GEIp58RGFcT43bqen8dqlLsCpqq2HXLqV7d9P6ORanEem5ng+9\n7jgt0jBEYTpUn04BXfdTG+1OcRtrEizdpG4HXYvS7DMDBHM/5+fshCx8Irfe7rOofBFO48Ji7XLk\nsTvh0gEdXEuCAC7AevBVphwmhimk4G6fSgwQfvl9xJCeN9dfkFAUUctqcIkCGn80gYinIaIwRGCT\nxD50CTNa3JdL6ex+CoXi+G7OLC9J8xIz7S2ptMjCnqdkqk7RxrTABLu9uIMGu22Y37plVVYDB7tN\nuP+3IQsNc38+yyJkTZj18WGxefmgtiZ2AaWenVFMjyxEppPA5vrDbqyFIVKwl/sik8YQg16PLYtB\nkZ6vSPOSWVXMrO7gPEQB1J2BEbLdiKcxobENUTQv/BhdYnJSnTXt595cSveWpHnJjdOCWb5iWSTM\n8rh+jkDHqmi7ajbXKXZFDJ22AdXAQbcNQN/LOUHi261l4ScKf9TX9LDYR003EJHHgX8BvAD4FeB/\nUEo94xzzEdUxBr8D+BtKqW8RkW8CPgso0MnPX6yUutv3ndeSIEIYaz2MJZWQ6KzXp7mSfBgihzFW\nw5A7yX75Z3nJrGhny7WIgrZ/XcMf8dQXGtugiXhqtIkwSdhJdWOK/dkkAbpjsMkBNHncSpfcL8z1\nxsCaWylQRDyRwftzBQhPAO9nDScFZ6TcvpNzfp5wdj+luD2DewApszRmaUjBsiLs59aa7dCaDhca\ni8s8sybRzj/yHpvH4NMYhtqGaQNm4NBCRRRFEe2ULLQFpduHRrvdGG2mQdc16VqgvoCHXUHRLUa5\nJ3w1/P/tnXuwLVld3z+//eg+5947d14gjozJYNRUqPJBghYVTARBhXEC0VKiFQxGE4Ikiq9SRqqi\nqZRVg6YMRkx0ApRYUBpUEMpHYMRQljGjDkh8TYxvAgyPuc6d+zpnP3/5Y/XqXr16rX7s1zlnT3+r\nTp29e/fu3b336vVdv9/39+C9qnqfiLw6e/49pXNR/WPg8yEvtvoR4B3Zyw8A92ad514L3Ou/38de\nE8RJlusuEoEkm9jMYE0GmpOEu/3cSHMrwm4vH0O9m8ImX4nzvJoNbW7IeiKapsOcJADGk/DNM82G\ny5SQfyDwnmzCK9/w9SQBBN1NsQ5/dSVPXHdTXeXdoYy5NYUb80n+3V+dDUmHxu10MDSlMy5N4GAk\nXBouSZPj3Jo4PJwbayIdcu3qiORoXiKFC+nMi2panRRCUXnu7+6PgfOjgiQAkmSRk8QqCBHF9HBk\nLNFakhjVk8R0kJOEPe/jOZ5GUX1sYceK/ziErmVyThFeDDwne/xm4H3UT/DPA/5MVf8KQFXf47z2\nIPDVTR+41wThos566OJe6posV0x+xeC1nzddSiNJuMewOO/cNO62694cbW/Qpm0hREkimwy6kkSB\nOElAcXP7JOG+Vi3dQMWK8FFUOI2vHM+NUs6NCqK4Ohvmv4kliksTM3lfngjXM6K4em1Mki6NWJ2a\nlfiqpGB/21iYdjxs24wPdwwc5MScvTdZ5i4mqC4e2o4NMEQx8xYW9QsIF9XfIEYSYF1qvpuS4Diw\n4wYoLSxiY+aM4Smq+kj2+GPAUxr2/1rgpyOvfSNlV1QQe0sQp6XZD/jRO1Vrwp0A7eC+MZcKSRhI\nxUrwJwJYf6UIhiRm6ajidgJyl1MVhfhanEyIJAC0dLNDOLoJqLiazHviVoQf2dQF50Yp6XBGOpzn\nUU3nRspjkyHp0AjXtnTG5YlwMJzx+FER1vr45SRICiWrYA1SqI7tQWkBYY5Tb112IQMLOw5miXmf\nSxLTdFhYTitYE6XrK7knm62I0OQfw6rVEOqgKhXrvgZPEpGHnOf3q+r99omI/CrwqYH3vab8mari\niq0eRCQBXoRxI/mvvQbD0m9tOtm9JQgXm7Ie1kETSfjb7co1VE7BIjQRQHWlaLHSpBCxJKAgiepx\nI+9xbvyDTGy9Pjffv3+zN7kM6qyIGLo0dRnKmHMjcqK4MjUuJ0MSRYTTwVC5PBXOj5Zcny9zoliH\nFNqUh6lWQTU6CVStCH/b2m6m6aJEEiG41kRXl5M5ycI9Ce2siNiYaXI57RiPquozYy+q6vNjr4nI\nx0XkDlV9RETuAD5R8zkvBD6gqh/3jvENwD3A81S1cfLbS4IYOPNl15IaqwyktgKVr0uYx4PWuoS7\nUgy5lCCsQ4Bxc9gQRhfTw1EuRtahTpeIuxSaXU7HpbfG9QiotyJchPo+l19v71pwieLKdJn/VpYo\nrkwHnB9pHgpriQLCpLAKITSNYX9swPYXD12siVVcTuakqgsK0EYrIuZmcnFGdYh3AS8D7sv+v7Nm\n36/Dcy+JyAuA7wa+WFVvtPnAvSSIGE7KeqieR9Wa8HUJKFxObgisXSmG3EwQJo02QnUbWJKYJcPS\nyrGNeB1aHZrz9jWJsB7hRqeE/MptxOp1YIVsExZriMIK2TYs9vyoELLrSCGWowNxMqhfuAxqNLI6\n/gAAIABJREFUrQgI61YWscVDG/jWxKZcTklSPlHf1eReU8yK8NHFFdUFS22OSNwQ7gPeJiLfBPwV\n8BKArOr2G1T17uz5eeBLgX/lvf/1QAo8ICIAD6rqK+o+cK8JYt2CfNtEF5dTcR1LJovyJBxbKVrU\nrgwTKTKnW6KNy6n6uWFL4mAYi26q6hFQ50IorIiY1WDdS+smNLWNeIqRQlPByNjkVr+YWWJanJat\nCLChxdWeDvlxN7B46Opyqp5DgCRauJrM87gWcYrdTCtBVS9hIpP87R8F7naeXwduD+z3mV0/c68J\nwsVpHBxdQ2Hd98RWivl+SZHAFsIqeoRFW5Ioo8ndVJCEG+fe5DaIWREhN9Mmo1ZiEU+PTYakzjn5\nnQstQuOxjUUbet906faQKKwICFsMQL5CX3UM+FhHwK7Cj7gou5qg3oqA8njxsWmhWinnN+0T9pYg\nmqyH0M3YlkQ2PcC6hMI2oc6VYLEOObhwicINeeykSwRIwl8VuuU47GPzWr0WsQu4EU9WyHZLmbuI\nEcAqi5fyStlUOI1ZEYBTIA+I6BCbwKZcTiYarjqIrcUZsyKgai3EdIgezdhbgnBxGq0HH+1CYW3G\naFmsNqh3JVhsihwsuiTVuTd/+aTKJGEjm8q9JcrEYCu/mufl1WNTTsSm4QrZk8WCK5nVVp+tv7kJ\ny2gzRSlsQxQuScRdkF1gw54b93OsiVVdTuBZN56rCcJWBPjkWSYL3+LsUY+9JAh3bbSqKX8SaKNL\nuPuGxOoYTCmM1cXIOmzE5WSTx0a+9VMWIG0pDiAvp1C2IuI5EfbxtuAShT33ODbpkljmVsSN+bA0\njtZFXoZlasuxZIEKLYliPZdT/ULCDXuFqhXhjhW7bRuLRZMHcdI1pLeDvSSIs4w6XaKwHpqPczCk\ndENt0moIIUQS+UTQgSSaRGug4mqCuBXhPt8FhjKqzcXYznlMcguzzoooPa8kLzoVer2xErIC2hJF\nkzXRRBJJGu/Z4Ie9QtiKgN7NtCr2miB24VraVpGukC5RvOZWrwxPAjHxetvoni9R3v96/puFSSLk\navLJIiRW28fbgCGFcU4Mo0FaScorVZb1sO55GYtliS1zba0IYCXXUpIuzG911LxvWYeKTycxa8LC\nT6zLt/sRVgHBGsJWBIQXE3BymtVZw14TRAibFAq3Dd/lZDWIG/PtWgPronuxvyxXIllU3EtuZBMU\nonXIfWCrdu7ixg+Rgt0GkAwOSxO/azn45LGq+8sefyjjTCgvWxGTxdCbMJXj+SZdW2U0WRW+NdE+\nsa78vRwcmnvVtTarxfvCxGBf26QGtKRcrn+fsLcEsakJfxuJNV0/3/cnF315wxErpwHdi/3N874J\nIV+zIY5qKKMli3C2bH3pja6oIwVRNU2JZo+bnccH5ubKWpuWLJphmBBGVC2PEELWyEJnlFuSDjJd\nomxF+NFM69brCqENUTQJ2P74cF1NvjhtUVjNYQLwNasezdhbgghhkz7IXZqoxWA30SrV19r5mjeR\nTd0FXYv9uT0l3PP2y3EYVEMZiyivsli9TjRTJ1KYT9F5NsEfXzX9rwGxrU6B0TABqJBG/nnD+kY2\n8+UkSHpDmZesCEsUvhVRKQef50NsfmzUEUWjNZGUf686V1PMioC4G7JHO+wlQdQUOTzz6CpWl96b\nRTK5mG4pHt6iW+Z1eBIIleMwaH/zd/Hzr0QKi6npez3PVrqjBJ1cM32wJ8AwyQmDUYJkhMEwYcQI\nlWZLcKHzYMmQxaII6zULhqJhjm9FHDgLinJ11yVHLTSHVVCnU7jWhEsSXVxNUAjWBcJi9Taww1Ib\nO8eJEETL1nmfDvwUpua5Ysri/siqn1lnPZzVlYUvVq8kTCfSSoxcF03idawsx8FhfWSTSxLl/0Wb\nyTY+fpcU7CTciRSmmeUwnZm/ZGz+ABJzPB0lccIAY2VECMNYQeHCg3a7tSImC82KGhZj5GBYza4+\nGJpTsTClLuIup/RozuRwvSkjZFWELEyoWpluL3QoE9zBCqe1oy5wZxonZUE0ts7DzBTfqaofEJGb\ngPeLyAOq+ke7PtkYNjXA2ruqltRZD37SXFvCmB6OShEl20Jdsb9Y/PtxTTmOdbFxUpjO0Ekx5Uqa\nZiRxwyGLcZQwcreURxjmvMLRT0MZwaCwIgDS4YSyFWFW0q4VYcXqtKUOYX+71Kn8uw5ZxIjCHRtT\n7/htkiy7LCI2ZV107AdxpnBSBNHYOi/rnPRI9viqiDwMPBU4NQTRhG1qFLHMahc5YbSYBKZpXDTc\nJIL5Eoc+QYCdCCbJIlqOYxUrojUpZK6i1qRgn9vXkjF67UbJkmgiDEYJupi2IgxXw3Cvb6FzTL8K\nzd2RtgSHtSKOF+WaRklS5B50ybS3ZLFJonDDYeM5NMUYSiv5HD02iZMiiE6t80TkLuAZwG+1/YAm\nQXqdMgirTvzrln2w8e7uJGhDXmNitbUiyuWTzUZ/Ipilm49oqYN1LcQmgiSdBkuE++U4DApySAZh\noksGh3FimE9gdlxPDC4B+MSQvaaTOTpZIKn5jiXN3pOM0WnxWNI0f5wThuuSGmVE4BCGOPqGq2EM\nZWyuaVkQxcXElCUPJc/dnsKliRkfB3Pz3U6z3IOjI6fURTbxG31gs1NFU86EC1+rcjGZDlpZETse\n2nuDrRHEBlvnXQB+Hvg2Vb1Ss9/LgZcD3HHnbcDqJBAjgDYT/CbDKkPwSeLWdMFkUfRN9kni9gNT\nn+n6cMnjpSMVJDGdDPMchV0jJ6VETCe27M/1N9vObG4DHjBupnSo2Z/Ji3B/83Q4KInNLkrk4KFE\nDj4CrqT8fRk5mMfFf0mHMJkbskjG5v0+Wbi6hX0MBVnMp4YshgnMJxWySEaHJStiunRJgowcMjF1\nOshJwo4PmBlrDRMx9PhlQ2B2XCSTBeNkd7PsLB2a/t6Ho9LYsPC79sWaM9nxsU0soXcxdcUmWueJ\nyBhDDm9V1bc3fN79wP0An/OMuzQd1vsYu5KAP8lsswhcjGQWOmeho1yMtCvEwqJYmHozC7fMgmNZ\nHC45TpZMkgXXSKhENCVjptNyh7ltaxP5JAAlcnD7OccmAKBCDsnA/PctKt+tVMJiWrIeSnCth6kX\nCVVyMxly0OvxaKmKZREji+xxlCygTBbZlQ5HKenwfC7GL3TExeQoLyB4a7rgsQlcTMjHyPW5chnh\nduASS7hpmuejHB2NuEZiQk7Lq4uNIeTWjJGDOzYgvHAIkcNZDUI5DTgpF1Nj6zwxLY/eCDysqj/c\n5eAidmDEXUFtiSC077pWwsrdzbxxfjEx1UOL1UtBFjcnZM1rCndCjqSYCJJ0yeOXk/ylKWVrwhcK\n80O0aFPaBv4k4JNDmixrJwALnxw2Yj1ELIiQawlArxuicCHpKEgatWSRjGEyiZNFkppzs2QByHyK\nHF40eRYC6fA8k8V1koGJboJJPk4mC9O3wo4R0CzXRHJL88JF55InQ0MU0+p3ualx4KKJHOzYsIi1\ndXXhW5dnESLyNcD3A38H+EJVfahm3yHwEPARVb3He+07gf8APFlVH637zJMiiDat854NfD3w+yLy\nwex936uqv9x0cEHyCSKE2ATfhgjqJvdtu5fy+d9B4XJaZBOk8NjE7gzW53x9XkwCQMlve/MtU6aT\ngVkxXkla9BCmnMjUsStdCQ3kYG/2utVhU++Pla0HKFsPbVxLbcvrlt5vyELSUcliqJBFThKFxWEE\n7muGJI6uwChhdHCR4cAcY76cMF0ecW4ERsxY5PqcdUvengqXJnBLqlnOyTKPHrMLiAsXp7lm5WpX\nfkLbWmPBRQM5uNYDUHoMcdfSNgr2qdb3X9kg/gD4KuAnWuz7KuBh4KK7MUsf+DLgQ20+8EQIok3r\nPFX9DVasiSxZhEdbIjDbmsnA3efEGp7XkkSzLmEngeN55lIooSpet4poSVevFutOAvnzoG85Tg51\n1kOI9FtbD9MqGQBR15JO5mhTQ44alPUKhyyswO1HQ1mysISymCLcBMdXkIOLuSgPWQ5IVorc6hIw\nxLolYZBbm7cfCJeOgQthXaJcTM/73dPI9gjqtK825OBqUhC2LNt08zsLUNWHwcxvdRCRO4GvAH4A\n+A7v5f8IfDcBr00I+5lJjQQnBwufDEIryzrNQVTNsmETWMTLGfsYDROGg3GWNTtnvpyUdAmzQmyv\nS9yOEa+PkyVX808pT3C1k0Fgv65EUZkEaiaAruRg0Wg91CEWzhokB/MdLG+Y73BwbtSZMPT6DDk/\nrorbUCGLXNy+cA64Cklq4nfmJixWxge5LmHcTYclXQLILU5fl7DNp6wucY2Em28pCNP2FYn97m3H\nQ8xaLQvS9eQQci351sMpIoUniYjrGro/0083iddhSOAmd6OIvBjjcvrfTSRjsZcEAXELoisZgEcI\nsQm9aaLZECQLawQq1kS1q1mZLGp1iWy1aHWJUG2ew8PmhkNdO9b5K0QgOgF0RWvrIZYEF9AZQrDk\noMdzljfmuQ4RmpJiqpgeL5BshtPMgoiShSduC5htF7KDHVxAj6+WdYlMvLa6BBxxMVkEdYk818TR\nJaAQr03fhmn22FyRjTrzx0fdeLD9H0JoG80Wci0Vj8vWg+te2mRk00I7ldd/VFWfGXuxLvpTVRtX\n/SJyD/AJVX2/iDzH2X4O+F6Me6k19pIgrAWxNhlAmRBcEoj5rHeAOpIAQxL25jc3hUsW0EaXiK8M\nyxPDuugqSu/UenBQaz145LCcwCClIliD91PdmDM4V38LhsmiLG7r1WvGooBCnxglhS6RkYSrS5jv\nxlqd5re+NbUVcoccDAtdAqSIgJsOigJ/02FlnCTptDI22iwsfMRE6Rg5uK6lk67AvA7qoj9b4tnA\ni0TkbuAAuCgibwFeCzwNsNbDncAHROQLVfVjsYPtJ0GI5AXWfAQJwUULQsgrdu4C7vnMs2SpUYIc\nXGwkiUKXMK4Eu0o0aKdLuJNBaXvNyjA0Sfg4OhpFfcurkIOPEFEEXY4trIcm1xJQIgeAUNXuEGnE\nCEOP58iBfWysixhZSGrcTHr1GnLTBbh2zdMlyMdMMjjMP87VJQrxuqpLQDE+bEOn44VZ0U+yYo9J\nssjHSHhsdHO11QUsABVysChIws2H2a57SdmZSN0IVb0XuBcgsyC+S1Vfmr38KXY/EflL4JmnNYpp\nywhrELXWAdRaCDkplCbs3VsRuWPo+AoyPqjVJUwVvnLmtV0l2oQp/8hWl4DyoHcnAwt3UuiOdlEp\nbSOWYmGtvvVQlNNYzyXo6g56XJDDfBb37Y4InPtkjnuKCytQQ5AwQmQxuO0AybKxlUzEtrrEuZtQ\nrpZ0CZtUZ3UJm1QX0iVsUp3NlzgYmUY950fGrXJwuMzHSYwwoDtpdBGlzTlXv9vQWDlFWkRniMhX\nAj8KPBn4JRH5oKp+uRf9uVHsJUFIpkHUWgdQnSRiVkKIFE7QxeQX1Yi5nGwMfDipbpkLk9ad4B/Z\nTgIW7mRgESIOaE8esQmgLhM25lqy2In14OkOYMhhXls+PTw5VYjDIY0QYVjhWw6KH0POjxlcBK7d\nQKezQpcAEwprdQnML+zqEkC+oPB1CcAJcDA1sA6Gpry2TxYQJ4yuaCNKW/iupRAJ7EM/alV9B/CO\nwPY8+tPb/j5MnbvQse5q85l7SRDgrBRdrEMI7uNY+OMO0ZYkLOqS6gBuT414bXWJvPLnyLZ2NPBJ\nA8LE0RaxCaCyX8C15MMnAt/NGLUeVnAtARXdAWC2gjZjvIbe9cxgNM4mtcwtNUgNYYBJwLOEsQQk\n3z5HbsJxN92o6hLzaa5L2KS6trqEGSPkXf58sgBvjDjX1YYwci2jBTnUVfS11sMuLIalrtb7+yxg\nPwlCl/GJwO7i6whdSMEt2rZL2Jj3rORCHveeoY143ZRUZ1G0+Swmgfw1jzRiiBGHK3RCu1IJoUzY\nOmHaRaP10BKhkFbXtTSfDlhM6yaK+OQ4mwwYp+XrqxBHgDSsq2l42wHLvz5icNshcISkM2OXJONC\nl7hwAbhW0iXcpDogT6qL6RLW4gSiZOGisqDoUH21DTm0sR56rI49JQgNZsd2shKgIAWXCE6KHCLI\n/ctWvI7oEtOl6QrUJamu5DpwCMM8X400gNIk0UaULr3Vcy256Gw9dHQtQTWk1SUHaz2EdIjRWBvI\nAxbTIcOk7Aqxx7Tk4Q7PUbI0pDGZA8e5XiHpKKxLgFlgZLpEnlTXstjfYxNTFXWyMOXl02ERNp1r\nEjVkUYFHFu7CIS2NkdVDnXush/38ylXL/YEtNkQKoXILu0Dd7dbocqJbsb9J3lym3CS+pEk0kEYb\nnK8hB4s611JTWGtt3kMITVFLgXwHSw6LqdToEO1WtpZcckshw8LRcyyJWPI4vGkOV4ofxmoTJV0C\nKrpEKamOdsX+JosB50aLPNAhHWo+XtyxYlAkOLYaF97CwVoPPpqsB9+9ZPUH+3zTYbCqHRZHZwx7\nShDLsPtgE6QQ2mcV+DVsWsAngabX19El0qHm282qsUoY8bNwUT8x2AkgVoCvybVk0eRmam09uGgR\n0jqfSYUcFp4FMRxrg3hdRcVScF+rWCgjxumSA8x5DW89KKVISjo3EvN0VugSNqnO0SXaFPsrJlvJ\nLc8mq8KgG1l0dS312A72kyDQaj3/ECHA6qSwrotplff7ZRaScaFLnDNaRFeSCOkS/o1v9tsUYYCv\ndRwMq7HsoSzYUM5DXVhra+uhrjsc9SGtduKPkQMQ3NYFi1lYjR2Oq9/taLYk4TiPfJLJPKxLgBk7\nVpegudifzdK3RGDHC5CPGfPYlnYpyKIMv9lTFV1F6Zj1sAss6JRJfaawnwSRuZi2RQqhDNldoNov\nzsXVkngd0yWAxmJ/pvsYJXeC2W8ThGHPnnz/cm8Hv+lP1bXUOazVsR7qCvKtEtKaWw8ZOcx26H2c\nTcx3Ps5KYCymwsFNwLUlCXMWfx3RJWxSXamrXXOxv+nSLeeyJB0aspgsTBc/s7gIu6BcYbtAMQ5s\nJJRFne7QxXqoC2/dZkvgfcGeEsSyWo1zQ6SgToOTuuYwPuT8Zqq/1pNEGSFrwt70zcX+IBksmC7L\nlkQbwihbCPWE0UZ3sPCF6VZhrS783JVYvaUWIa2+7gAwm8DR0Xor1+mku8vk5luGwJB5ZlEMkwEw\nz8Rrg8EtsPzrY6NLQCFeQ6dif0A+XhY6y8ZA2aooxkx3F5SFby3UJcT51kOPzWFPCUKLm99iA6Tg\nEkJXK2JVq0MCvXvXJYk2xf7K1kHR57kNYdibOEQYPnxyCLcOLbuWOoW11lkPFgHXUlNIqzl0VXfo\nMsFPjlcnE/9zklS4eMuA4+tDDlhwdLWsS4ARr4O6BLQu9jdfTvIFhkmuK5IxgdLYKVyWXYTtclAE\nhF1L9d0iq9/rNl1OO+wHsXPsMUHMtkYKqzSFWRXuZ0kW8y7nx0UNHl+XuHCuegy66xJmsrdRH2HC\nmC6rlkSMMMo9e8X5rPrqm75ryUWrsFYLX4/yhelVQ1od19LR0bLVpN+GRLpaIklqvtPDwwEwZDRz\nIoJYwGMRXSJLqmtb7M+Sw4g0t0CHMmahZnvIBeUL21CUe/GtCou6Oksu+ryH7WI/CQKaySFAEl3I\nYZ3GMBKK3dsUIuJ3V5Iw7oOBQxKFVVDclGaSNFbFMnt9kE/yxr1Q3tdFQTpVi8HFytZDCIESKX7Y\ncqi3tG8Buq4lC3/ib2tNtCGD6aR+nyQdMp0oh4dWFB9kobIDRsmSEcqAoqFRcX2GJMyH2HvDfh/X\nSiRhx4whhBkMyInCh7Uo3IKR5YFW1rrMeygtJEJupVBCnLuo8ENb3W3l4/T6QxvsL0HE4Pb2PaFk\nt6KWztn7+svi9DKzJsyNZ4misCbUsSaW+HpFSHewaBKmY1jorH6/UVIhCUnTvLeCeV70ZSi2jRgw\nh2w3m4vgHsqs4ge5FZGkspKmEEKSDhpJAgzZjNMismqY2BDbJUmqLG/MGQCazb6SDkuLKIHivhgl\nxgobpbmbToYJmnVsBCNejwZpNM2jCICAcsl587hYRAzyMWGXMm2Jwd12EsSwVFauOXXacfZmqLbw\niEDStHWCm6RDU0r5/LiTEN0Vbknn04CFzjLfcv01h0gCXIGybE3UkYTdXhy7Xpi2aNXydZiES2mM\nEvPfXSC4eSluvSOLLHrJrMrN+S6mwyxHYQAIR0fVj2pDEoeHg7XF7RgWU2GcBSstJzDMHhe6SpZU\nZ+8X26UOIDHfnQ4nFesTvN8gMw6sywmKx4XLyXx3xaKiShg+uhJDeSz1FsO6OD2z0yYRaaeXk4Rv\nReQkMtp5COtpIQmbPdsWvsvJJwmzzzLocnJJwqKNMG3+x78rMyFl5bFFylFMowT8/AdLCp4l6RKD\nHQ+2KF6dFWH8/9lq2NEiNkUSba2I2QSGY/f5IE+208mcJTC0vSayBZBta5pbEcm4cDWNpsbVNEqK\nZMNhgqjm7qahjIKuSos6l1MxRpalIAfzvtWJoSeF9XHyM9M2IFK++U/QndQGJ00SIR9yWxTuonqS\ngMLl5FoYdW0hzfs3cJOPD2B2jIxsGKdnVWQCrUItWbS1IqyrCdi4uylEEoaYyljMJDeUgJKbCcoa\nmmk+NM/dS0pmUZgPrC1xb3UJlyRspBNQbKfQtQwRFK6lsEZhENIX4HQRg6qs0RfldGM/KVacy8oH\nuvnvJwedFujxfC3he1V0tRxCcN0AdSIhxG/4LtZDk3upyUXGKKE0e7pIxllE2CjXIiwG50ZGi3Aa\n/AwTZTTWfIVuJ2sbVZQeFGPRboshNNGvg1B5j+UksyJuFL+7CefNQojcvJDpzFgRGTHkGehzp2zJ\nYppbEjaAYDRI86gyd7t9nA4Huf7kuhTdxcK5kZYsBruf/XPHWnGswV5bDSLyQyLyf0Tk90TkHSJy\nS2S/N4nIJ0TkDwKvfUt2jD8UkR9s+sw9tiCyu7jJcjgFbiYXu7QmGifSDlhVvO4S1uqjzt1U7BTR\nIaAYIxYBjaqS4BixIsCWvjDWw9HRMrca0oP2wvUmXU1Q5GyMA225/QWJpsPcvRQUrIkXyagTr9vo\nEiEt4qxEJOlSou13N4wHgHtVdS4ir8W0Fv2ewH4/Cbwe+Cl3o4g8F3gx8HmqOhGRTwm8t4T9JAik\nukIMCdY1ricrVJ8EdkESKhIuk+TAhri2xTridUyYbqM9xFDRIRogaVr+SgILhTotApYsZsNsMl6d\nJLaBopFREfLKufJ3WgjW2YVZwToZl91LwwSdT/KeEm6EE4TF6xB8XaIsXm+PGFoFOJxCqOp7nKcP\nAl8d2e/XReSuwEvfDNynqpNsv080feaeEgRlgggI0iXUEUVNJJM10wfnNv81nrQusSqaSMLdHhKm\nXaxzI1fCXccHAIXWAI1tY0NZ7JAVRp/Mo1bEYiY5SRgsO5HEpq2IGGzIq4+KYN0ytwaIitdtdImy\nFmGwCWI4ZYTwJBF5yHl+v6rev8JxvhH4bx3f89nAPxCRHwCOge9S1d+pe8PZm4HaQAbGtWARIIdg\n2OuKYvbSaS6/Sfj5Enq8iE5anTCM+N83hC4RTna7+966CWClm70p3NVF61BokxcxQplPy1YEDHKS\nmE2K6KZNk8S2oJN5HvYaFayzHAkT3ZRWc0vcREwoe5ACsPkS5UTM1Yhh14RgKvu0Jq1HVfWZsRdF\n5FeBTw289BpVfWe2z2uAOfDWjqc6Am4DngV8AfA2EfkM1biZvacEIUXEClT1CJcIguRR1SGatIlt\nkQScfWvCdS35JFHsGxamzeP21+6Guq4C380Uk5WtFQFFv4ZSUx/HknBJwr57E+6mJG2elGz0UnHW\n4LqZwtkHhRVRulcivdgrusT4wIjXK+gSPoO0IYVTZiGsBVV9ft3rIvINwD3A8+om9gg+DLw9e99v\ni8gSeBLwydgb9lPyF6NByCgjhlFiSCKLUMl3SwPKXen1bsKTGxmyaeQlEtYV0DNXy64Qimm3kSj2\ncRdhuis0khOzCdiIplFeRbWIaBoly7xfgxWI3QinNtFNq0Y1HR0tmU1W60Ohk3nRHMntkQFlonBD\nXxdOlJONcJod5xFORZTTKI9yso/d0ik2wgmIRiQVUVHF3xMFIvIC4LuBF6nqjRUO8QvAc7NjfTaQ\nAI/WveHsLUvbQAbFRDiPiNXZ43zFuKE8iW3qEmcVdbqEu4/FqtaDj2DZjVFS1iEC8F/vYkXYNdd8\nJnl+hG9JWPHazZWIWRJdXU3TiTaG01osJ1SsCDmwZUY8wbrl/ZHrEi2S6lxdwkUhXp8N62C5FI6O\ndnK/vx5IgQfELHweVNVXiMinAW9Q1bsBROSngedg9I4PA9+nqm8E3gS8KQt/nQIva7JC9ncWy/zs\nMp+WJ4OQeynw2rrhrtt0Oe0CXSOYmhAjiW5hrWtOFlnC3CbhaxEWo7GWSCLbu0ISri6xi+imUjRT\noCNdqXqwrdPkhr2Cdw9FdInAZzfpEq543aMKVf3MyPaPAnc7z78ust8UeGmXz9zLX0NRE+II5RXj\nfFqOfXcFa+e5Txx+JJPbWawOWxOvr886u7+AeHLYjhATr0NhrU3oPJHU5UN0hBsoELMiFlMpkcR8\nOsjzJLqSxKYE68VUHDG9gC2/MaBcQNK3ImITfwgV8bqFLlE53w0kce4CumRXeRA7x14SBCgLnZlG\nJxkE01IxiIgVsQmcdUtiG3DF67rGL5taTbbOh3D1J+JuJj/s2bcixmnmWqohCYPdkIQVqn2LYT4T\nI1Z7Upzf78QVrMu1mtwFla3bVFTLrUuqg/pif6tYE2eFUM4S9nLmUlUz0AbjfDACZT3CjciorcWz\nfsJcTxJVlF1OzdbDqu6lWPnvUpSbRSRKJwbrr/etiPl0kJOEhU8Sbq7EptxNk+NlSfyuw3w6cCwe\nA5sX4UfMuXWaoIUl4ZZUjyTVdS321ybrvyeUzWMvZy3Nbn07OcgwKRdrg6CrKYet28SPrz6tAAAV\nuUlEQVQGooYybFq81km3nIg8ousUISZMm+friNM1oa558EIHd5MzHlyE+kWMMMlzliRmk0FR9bWG\nJAyWtSSxihWxmEkeTWUxm1gCyz41E6tLVWwrVsSoFA6uZFGAMT3PQxddwhev3ZDYYtv6Vv6mLNSl\n7qzUxs6xlwQBaiqUZvfdUMaIn0kb8MfHrIhNorcmythpHZ22OoS7QIDG8SAHo2Lx62RYh0jCoEoS\nsYS6TZCEC1+HmM+k5HoKWRF6fVbUaXIQcyEB7ZLqIrqEG3wfinTaFmH0qOJEZioRuQ2TJn4X8JfA\nS1T1sci+Q+Ah4COqek+b4yvGxWSVt6GMy9nD80m1FMcO0ZOEQcy1tI1IlkYdouV4CFlt7mp7kJoV\neYwkrC7RRBLZ0daKbppNykX6fDLw3Uw6CVsRJqIvewwV/SGoS0TQRZfIBWwHPWHsFic1S70aeK+q\n3icir86eh6oSArwKeBi42OUD8gGyJE/IkbrQ1wy14qTnbvJvqC44rSSx0NlGQlw3aRmsG95a24bU\nLhzqXE5uafhYzS7HihgwL5GERYgkDOpzJXyS2ERUU9DN5MzFbvZ+papA4HhBF1JEvG6jS4RwWglD\nexfTxvFiTCIHwJuB9xEgCBG5E/gK4AeA72h7cCtSW9jHOUn4yVItyj5DtpLyfLPrkgSsrkvkNXO2\njG26gVaZ/DdiYdgx4HeZsyjpUIEy4F6YsT8uXEuiyIeokkSXhDrrfoLuJBESpfPXQm6mc079r4Pi\nWnNLwmoSENclGlBX7K/kcorgtBLGPuGkSm08RVUfyR5/DHhKZL/XYVLLG+8EEXm5iDwkIg9devRq\n3l8ZzKAp9VoeH8RLcZANcq8sx2lEa2JqWZwvFNVx0rX2N45hUl9uxBkH1deKZkIhyMEobyoExYrc\nTr6jZMk4NX9WB3BfG46V4ViDpTnANB9qmyW9KuqCMrbRn71C0B1yVUILBZ8wYvv1aIetfXN1VQnd\nJ6qqIlJxsIrIPcAnVPX9IvKcps/LSubeD/A5z7hLr0yVi8mMaeZiWuicdHgeBIaj1FgSx1cQbkKH\nE+CaOdAFTAkOMgvjwrksUch0pB8AaldUa7qIuhbgk4Oh6XR2fhxPlLPElqT1ndMyVMjTQxd30ypk\nEvpcd5sJg5w7z0eV9wxlzGJR3mdOMfGMBikLnZMMDgsdIlT+Gwo3SMjt6KyYg26WzIoYnBvBuRHL\nG3OGqZl0k1QxnV2L79NYC4VF4bqchmMyi2LArPS+AemBLc9RjAGXPA4PB4xT8uilUbIs1Ysap8vc\nmhiNizwISTOCy8alHW9QNE4qjTuXSNs8HjnuvNC4nB2vXSss1D536+GsS4Xpbvt77ApbI4i6qoQi\n8nERuUNVHxGRO4BQ44pnAy8SkbuBA+CiiLxFVVunil+ZKulwks/jk8V1hjIiHZ437qaDiyaK4uhK\nFtlkB+7VjBgy0/nqNeQmkzCU36a3VN0Ku4SkI4cMxoXVE8MoWzlnESOuhbUpbINMfDLwycNsixOI\nJQ+7ikwGh2ZxsJjGSQKM7zymTTnlWGLQ48JNU0ztBVGMxou825t9tXA92deKEh2WKA4PyVxPw9zd\n5BMDGHIIEQMUhOETA5hFS4gYXJSu2y9+6bb4dcuEh7CYljUgSxpOZFMd2ozf0D52fPR5EM04Kdvr\nXcDLgPuy/+/0d1DVezEt9cgsiO/qQg4WJhlrQjqckQzstuuMBmkxWRxeRGbH6PFVs8O5myCZwjVj\nVchNF4wf+toNBhdNa0adLIIm9zbbla5kPQyTU5kDsaoQ7hJLF+vDdTN0Igmohr3mr1uiqBco8zPO\nrIoBWVIdmpNBkWBX1EsqXiOLeLIVWstFjELEYN6vQWIA4/4KEYO5nlGFGOw15uRQIoBxuTJyyYJo\nHns6nxRjdA0rImQ9+HDJYVM6hCgkR/tJNidFEPdhmlV8E/BXwEsA/KqEm4IhiSVwxFCMq8Eu64Yy\nyktyCMB8ipIRxYULZpK4dqPkZhDilXbrOtC1RRPJdLYeWsDeMJsu0rdpdDu/YsKwFUItYbQmCai4\nlvwoN/t72UlVJ/OiKurxwmn4NN+4+8li28RQQlvXkksOMVena0VsGL6F4JPDlT11C20SJ0IQqnoJ\neF5ge6kqobP9fZhIp5VhSSIdFroEkFUoy3SJbN+2ukTRmtFvLtSuPEeMSKIi6KrWQ8S91KQ/bAK2\nnMZJY7JQLiZHJANjQUJHkoBqcccM9gp1sgi6ZELwG6x1dT9ZqwKoEAOQ6ww+MQC5zuASA5TdSf44\nK1kO9r8f1OFt74yYNrECYuRgH1+Zal4sskccTyh5f7KQbKIwg2W6PCrEa3zxmkKXsMh0Cb16rXRc\nq1W0RR4q2HIycYlkG9aDj9MyqbdF040+XQrJQLkyXdaThI/YZOWGd2YIkYSpulvkEoSsCt/9ZK2K\nJveTQZwY7PYQMUBYgIYaYnARa7rV0bXkouJmAqhxjfoEUOdecslhujzKyeHqbDO5C4OlkqxZr+20\n4glFEBZWvLa6hBWvc13CF68PLhTiNUaTyDttxUqEBz43d0VErICY1RGMIHFxhrSHtlhldWdbmYaO\nY7/aEEm4bkZwrIiFUyrCQ54fESAJ6GZNWLhWRVv3U7Fty8TgWgjZ/5wcPD2iQg5NVkFMrF4RMfHZ\nJ4fH9jS5bZN4QhIEtNQlMvE61yWseO3oEqRpMJEqhNi6vIk48vevYj2coHsphnVN+xARhI59Yy6V\nbea9Cy4m5ncHyuHP2X4lV1Me+lqe+EpJdF6BR/e37EoWbdxP1qoAKsQA7UJWzX5D53G9tRDcFnu8\nAkpWRAe41kPMtTRdHjFZLJkshlydDbkxlzNnKYvIDwH/CNMN7s+Af66qlwP7fTvwLzBD+Pez/Y5F\n5POBH8dEhc6BV6rqb9d95hOWIGAzugTTWeFicsnCdzu5rU7dbUTq+7SNhvKthxWwDYF6E/7dOiKI\nfY4lBfc141o022/N559FnicDlN2M2R7BHIkQSUA0R2IdshgejEwv8oD7ySBODFAfslpLDE2kQMC1\n1BTS6qOFpWAzqleFTw5XpgU5XJkOeXy6GYIQVca7cTE9ANyrqnMReS0myrNUgUJEngp8K/B0VT0S\nkbcBXwv8JPCDwL9T1V/J0gd+kKKiRRBPaIKADegSNa6l2hiJGsKAmtVck/UQEafbosuqalMiXxsi\nqPvMECmYx4YY8nSVbMW9NklAfY5Eqed5Ta5ERK8IIeZ+ys+hBTHUupFakILdFnQtQZgc2i5afDcT\nRMetayXErIc25HD9jEWmqup7nKcPAl8d2XUEHIrIDDgHfNQegqKm3c3O9iie8ARh0TmpzuoS7oTh\nNxvK/vu+6go5BETP0vYYXOuhAb57qS22EemxLiFAmRT8/VxiuD4nJ4jbUzZDEtAuRyLwe65at8vC\nWhWurdcUstrJWqhzE23JteQi5mbq4gp1w1ktOUyXkpPDZGHI4fLGLAgYT1tbEE8SkYec5/dnVSC6\n4hsxFbFLUNWPiMh/AD6EKf/wHodYvg14d/b6APj7TR/SE4SDlZLqrChs3Q/TSZQooAVZ2G0Qvnlj\n1kNHcbq+vMbJkULdZ9eRgnkeJobjhXA8B1DM/Gl7YdvjLUiHk/xuyBcGTSQB4RyJ2G/qu2ki1xkK\nkzYlt52Mcet+YgViaEsKge2dsqW7ujw75kSErAeXHG7MJzk5PDYZ5uRwaWLI4fhkLIhHVfWZsRfr\nShSp6juzfV6D0RDeGnj/rZhiqE8DLgM/KyIvVdW3AN8MfLuq/ryIvAR4IxCteAE9QVTQOaluPjGD\nejQti5mR9pWNZAHhbT6a4s1bupe2JVRvghCgSgr+e6xLrI4Yim3CLalyaQIw4GICj+U/0wIwJJEM\nDpksrrcnCcgJoHafwP4Wq5CFW2U1RAydSaHBEthUSGtrLKa1oa75bhVhuh05XOrWYXYnqCtRBCAi\n3wDcAzxPNdjg5PnAX6jqJ7P9346xFN6CqVrxqmy/nwXe0HQ+PUEE4OoStcX+FlMnyolmoqj4p4vB\n34osQtaDF9oaQpvaS+sK1JtwG1mESMF/X4gYwBCBTwyTzK10iSVbJwm8iZTAb9sCoW8gloDZmhg6\nkIJ/DaX960JaN4C8V0Sg5EbdGLZj/MZ8wmQhOTlMFoOcHI4X5ORgx8W6kKUy3mKJnfxzRF6AqW79\nxaoaK+fwIeBZInIO42J6HqbhGhjN4YsxScdfAvxJ02f2BFGDRl3CTsjjg7WIAoob0g+bdPfJUWM9\n5OJ0BDa8NYSuYX+7JgXzvBsxTKfDopnLTdPtk4SLDRFGE1kE6yRZtHQnRQkh9t424dWrwHMzxSKZ\nrHvJdS255GDzHCaLAVemg5wcLk8kJ4drV7dT4mOLeD2QAg+I+U4eVNVXuCWKVPW3ROTngA9g3FC/\nS1blGviXwI+IyAg4Bl7e9IE9QTSgTpcYyshMHE4J6ShRjJIihyKGkFUBhRBaZz34cHIfQlhFf+hC\nCE3HgjgphN67DjFMJwOOjsxQn6YLYAYIJkVAgYGjR5iyHJYkbOhzkCRqEumCOkS2PTQZ1xKOEwDh\nZu23thRiWkLd59W91jWkdUvwycGEarcnh8cvny2CUNXPjGwvlShS1e8Dvi+w328Af6/LZ/YE0QJR\nXcKZw2JEwSg1+RPuZGKJwrckIlZFCTHroUacjpFBU7njroRg0UVobnqfTwxQEEFbYphOim033zLN\n8uFn3A5czuyB21MT4QJwa7rIHhvrcbo0vUCqJHGTSaD0E+li5FAD/1tpSxilbaHHrEEGdftughya\nciFmx0G3aVmcLsjhylS5OrMuJUMOZpwYcrg+L8hhOhlsrE2oLJW0r+b6xEYoqc60MhzlDWlKFoWt\n7zM7znrvrkAU9rlFyHrwYcVpD7Hw1lCC3CrEsCopxN67CjEAGRmUicFOBNeumO9rKyQBwRyJEmqs\nisqk7pOAn7Hvvt6GENoSQdN+bY6zbsG9hbHAxTuO30Y4Rg5GlDbkcGlSkMPjRwU5PH45zcdDjzh6\ngugAP6kOihXMUEYwoCAKq1GsQxRQXRmGwltD4nTEvbTJJimbdCEV2zdMDFMlOcqSpm4eb4UkmDdM\nNNOArrQCQqQRRNtchq44CdeSF8nkL3LcyqyWHOzYaSSHvtx3I3qCWAFusb+iq9kGicJFKMw1YD3E\nxOmmpjoWbQXqbZCC+/nbIIZksshLIUwPR1zDfE+Hh5YsZxzMwcrP50cCmOOfG9lJZJL3lADTxjQZ\nHSL2XTYvxkWkhlMJ044RTiH3kv96F3Te/+QLQFqrIVR8b7IQHp/aiKWCHIzr0ZCDHR8XLm8mzlWU\nXZXa2Dl6glgRhS6xBlFkCXY5UbhJdyG0sR5ahgaGttVP4JvTFcqvS+m/m8sQC1e1OkNbYhhPF6Uw\nxCkFSeS4MOPSMRQxSpYkFliyuJgssL3JLYIkMa8Rry3akEcMdSSxwazm6rFbnOuG+jkA5jvyxnMX\ncrh0XJDDtSvjnBymVwdcuDzZ20l9k5BwrsXZhoh8EtOpbtt4EvDoDj5n19jH69rHa4L+utbF31TV\nJ69zABH575jzbYNHVfUF63zeLrGXBLEriMhDdWnzZxX7eF37eE3QX1eP7aLvudejR48ePYLoCaJH\njx49egTRE8R6WKVM71nAPl7XPl4T9NfVY4voNYgePXr06BFEb0H06NGjR48geoLo0aNHjx5B9ATR\nASJym4g8ICJ/kv2/tWbfoYj8roj84i7PcRW0uS4R+XQR+R8i8kci8oci8qrQsU4aIvICEfljEflT\nEXl14HURkf+Uvf57IvJ3T+I8u6LFdf3T7Hp+X0R+U0Q+7yTOswuarsnZ7wtEZC4isR7MPbaEniC6\n4dXAe1X1s4D3Zs9jeBXw8E7Oan20ua458J2q+nTgWcC/FpGn7/AcGyEiQ+DHgBcCTwe+LnCOLwQ+\nK/t7OfBfdnqSK6Dldf0FppHM5wD/nlMu8ra8Jrvfa4H3+K/12D56guiGFwNvzh6/GfjHoZ1E5E7g\nK2jR0u+UoPG6VPURVf1A9vgqhvyeurMzbIcvBP5UVf9cVafAz2CuzcWLgZ9SgweBW0Tkjl2faEc0\nXpeq/qaqPpY9fRC4c8fn2BVtfiuAbwF+HvjELk+uh0FPEN3wFFV9JHv8MeApkf1eh2kNuF4fz92h\n7XUBICJ3Ac8Afmu7p9UZTwX+n/P8w1RJrM0+pw1dz/mbgF/Z6hmtj8ZrEpGnAl/JGbDy9hV9sT4P\nIvKrwKcGXnqN+0RVVUQqMcIicg/wCVV9v4g8Zztn2R3rXpdznAuYFd23qeqVzZ5lj3UhIs/FEMQX\nnfS5bACvA75HVZcS6YzYY7voCcKDqj4/9pqIfFxE7lDVRzK3RMjsfTbwIhG5GzgALorIW1T1pVs6\n5VbYwHUhImMMObxVVd++pVNdBx8BPt15fme2res+pw2tzllEPhfj1nyhql7a0bmtijbX9EzgZzJy\neBJwt4jMVfUXdnOKPXoXUze8C3hZ9vhlwDv9HVT1XlW9U1XvAr4W+LWTJocWaLwuMXfpG4GHVfWH\nd3huXfA7wGeJyNNEJMF8/+/y9nkX8M+yaKZnAY877rXTisbrEpG/Abwd+HpV/b8ncI5d0XhNqvo0\nVb0ru5d+DnhlTw67RU8Q3XAf8KUi8ifA87PniMinicgvn+iZrYc21/Vs4OuBLxGRD2Z/d4cPdzJQ\n1Tnwb4B3Y0T0t6nqH4rIK0TkFdluvwz8OfCnwH8FXnkiJ9sBLa/r3wK3A/85+20eOqHTbYWW19Tj\nhNGX2ujRo0ePHkH0FkSPHj169AiiJ4gePXr06BFETxA9evTo0SOIniB69OjRo0cQPUH06NGjR48g\neoLoceYgIt8qIg+LyFu3cOyvyarVLkXkmZs+fo8eZwl9JnWPs4hXAs9X1Q+7G0VklMXXr4M/AL4K\n+Ik1j9Ojx5lHTxA9zhRE5MeBzwB+RUTeBNwM/K1s24dE5KWYRL/nACnwY6r6E1km+I8CX4opEjcF\n3qSqP+ceX1Ufzj5nNxfUo8cpRk8QPc4UVPUVIvIC4Lmq+qiIfD+mn8AXqeqRiLwcUz7jC0QkBf6n\niLwHU332b2f7PgX4I+BNJ3MVPXqcDfQE0WMf8C5VPcoefxnwuU73sZsxzYH+IfDTqroAPioiv3YC\n59mjx5lCTxA99gHXnccCfIuqvtvd4bTVjerR4yygj2LqsW94N/DNWWlyROSzReQ88OvAPxHTK/wO\n4LkneZI9epwF9BZEj33DG4C7gA9kwvQnMS1U3wF8CUZ7+BDwv0JvFpGvxIjZTwZ+SUQ+qKpfvoPz\n7tHj1KGv5trjCQkR+UngF/0oph49ehToXUw9evTo0SOI3oLo0aNHjx5B9BZEjx49evQIoieIHj16\n9OgRRE8QPXr06NEjiJ4gevTo0aNHED1B9OjRo0ePIP4/kadCXr3KWBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example\n", + "\n", + "Another example is demostrated here for a periodic lighturve with poisson noise." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "freq = 1 #Hz\n", + "exposure = 50. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*freq*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc = lightcurve.Lightcurve(times,noisy)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGZhJREFUeJzt3X+MHOWd5/H357xeJdpEYu88t0H+cZPT+f4IEUe4EWHJ\nSsch5QQELasTFxFpQ8StZJEjOqLN3u4kJ5FNpN2NbqUoR8jiOAkCFkKWbAjxMiYJy5LDOTBmbIyN\nfyTxETu2MXhig39gY2P8vT+6PO5p93RVd1d1V1V/XtJouquernqe+vGpp6uruxQRmJlZvfyzYVfA\nzMzy53A3M6shh7uZWQ053M3MasjhbmZWQw53M7MacribmdWQw93MrIYc7mZmNfQbw5rxokWLYnx8\nfFizNzOrpA0bNvw6IsbSyg0t3MfHx5menh7W7M3MKknS7izlfFrGzKyGHO5mZjXkcDczqyGHu5lZ\nDTnczcxqKHO4S1og6XlJj7YZJ0l3SNopabOkS/OtppmZdaObnvttwPZ5xl0DLE/+VgB39VkvMzPr\nQ6Zwl7QE+AjwzXmKXA/cFw3rgAskXZhTHUfKwWMn+eGL+4ddDTOruKw9968AfwqcmWf8YmBP0/O9\nybA5JK2QNC1pemZmpquKjor/es9z3HL/Rg4ff2vYVTGzCksNd0nXAQciYkO/M4uIVRExERETY2Op\n354dSXteOwHA6TPzHUfNzNJl6bl/CPh9SbuA7wBXSbq/pcw+YGnT8yXJMDMzG4LUcI+Iz0bEkogY\nB24E/iki/rCl2GrgpuSqmcuBwxHhE8dmZkPS8w+HSboFICJWAmuAa4GdwHHg5lxqZ2ZmPekq3CPi\nJ8BPkscrm4YHcGueFTMzs975G6pmZjXkcDczqyGHe8k0znCZmfXH4V5SkoZdBTOrMIe7mVkNOdzN\nzGrI4W5mVkMOdzOzGnK4m5nVkMPdzKyGHO4l46vczSwPDveS8lXuZtYPh7uZWQ053M3MasjhbmZW\nQ1nuofoOSeslvSBpq6QvtClzpaTDkjYlf7cXU10zM8siy806TgJXRcQxSQuBn0p6LCLWtZRbGxHX\n5V9FMzPrVmq4J3dZOpY8XZj8+Yq9gvgXf80sD5nOuUtaIGkTcAB4PCKebVPsCkmbJT0m6aJcazmC\n/Iu/ZtaPTOEeEW9HxCXAEuAySe9vKbIRWBYRFwNfBR5pNx1JKyRNS5qemZnpp95mZtZBV1fLRMTr\nwJPA1S3Dj0TEseTxGmChpEVtXr8qIiYiYmJsbKyPapuZWSdZrpYZk3RB8vidwIeBHS1l3qPk1kGS\nLkumezD/6pqZWRZZrpa5ELhX0gIaof1QRDwq6RaAiFgJ3AB8UtJp4ARwY/hmoGZmQ5PlapnNwAfa\nDF/Z9PhO4M58q2ZmZr3yN1TNzGrI4V4yPptlZnlwuJeU/KO/ZtYHh7uZWQ053M3MasjhbmZWQw53\nM7MacribmdWQw93MrIYc7iXjq9zNLA8O97LyZe5m1geHu5lZDTnczcxqyOFuZlZDDnczsxpyuJuZ\n1VCW2+y9Q9J6SS9I2irpC23KSNIdknZK2izp0mKqa2ZmWWS5zd5J4KqIOCZpIfBTSY9FxLqmMtcA\ny5O/DwJ3Jf+tW77Q3cxykNpzj4ZjydOFyV9rBF0P3JeUXQdcIOnCfKs6WuTr3M2sD5nOuUtaIGkT\ncAB4PCKebSmyGNjT9HxvMqwwf/LdFxifnOJvfrKT8ckpjp86PW/ZiGB8coq/WrN9zvAjb77F+OTU\neX87DxxjfHKKx7e9CsB/+Osnufwvn5jz2ubyvTj72r99Zhfjk1N84u71HDt5mqMnG+24+M9/PFvm\nhrueZnxyii/+w7Y5r//oymdmy+z69Rtzpj9z9CTjk1M8uP5X89bhG0+9xPjkFF97cmfb+v3x322a\nffy572+Zffypb2/km2sbrz365lsArNmyn/HJKXYffOO8aTX7t//zMcYnp/jAF38MwGtvnDpvOY5P\nTnHT3esB+PwPXpwz7uTptzMt9/HJKf7Hd1+YfdxYr0cZn5zid//qiUb7HtrE+OQUJ0+/PVuvQ2+c\n4qLbfzj7mh2vHAHg4LHG8nzg2d0AfHTlM7z3s+3rMD45xR/d8xwvv36ibV0feHb37PB9SZlHnt93\n3nR2H3xjttx/Wfn0nHG/Onic8ckppjbvnx12xxO/YHxyijffevu8af2vH+5obDNff2a2Phf/+Y+4\n+itPzdbhB5vOr8N8zi6P+9ft5sCRNxmfnOKh5/akv7CN1v3vF68ebTv+o19/hqPJPvuNp17ix1tf\nYXxyiv83c6ztNP/7g8/zvqZ12Y8bV53b167532tnh+85dHx2+K8OHp9dps31/uBf/mNf8+5VpnCP\niLcj4hJgCXCZpPf3MjNJKyRNS5qemZnpZRKz/n7DXgD+9pnGzvb68bfmLXsmeZ/xjbUvzRl+4Mib\nbcu/sOd1AB7b0thxdh88zivzlO3X3003doj/8/MZDh472bbM9O7XALj7//5yzvD1uw7NPt768pE5\n486G7Nnl1M6XfrgDgL/+0c/ajn+4KXC+/ey5g8Sjm/dz/7rGcv/1sVMArN70MgDbWurR6tTbZwB4\nLVlf+14/0bbcUz9vbB/3Juv3rOMnzw+u+Xy3pe2b9hwGYP/hxrp8eOO+2Wmerde+107wxqlz89iQ\nLPtfHToOwEPTjWmu33WITndEfGLHAX7eElJn3ff0uTadLfP9NuH+4r5zy/K5Xa/NGbf15UZb/uGF\nl2eH3fP0LgDeOHl+R+ebaxvbzvpfnttmjrx5mh2vHOVnyQGs3QFmPntfa6y3h6b38FLSsfj7jfNv\na914Ptn/Wq3/5aHZ7e2BZ3czleyfW/Yeblt+9Qsvc/xU9u2lk3UvnVtu2/efWy/bWh6fXabNXj3S\nfr8uWldXy0TE68CTwNUto/YBS5ueL0mGtb5+VURMRMTE2NhYt3U1M7OMslwtMybpguTxO4EPAzta\niq0GbkqumrkcOBwR+zEzs6HIcrXMhcC9khbQOBg8FBGPSroFICJWAmuAa4GdwHHg5oLqO1C+cMXO\n0+lcjFmJpIZ7RGwGPtBm+MqmxwHcmm/VupNll8u6Ww7ySpWisyI6zCCPZnaafhGGFa3KcaPwlVA2\nCJX/hmqW/WT+MvXdy4oOkDzDrq7mW0bu/NdHmfeCyod7kQbeK+1jdtFDn3bU8nm+5lY5azOv9wzr\nupvl0LZsXguyy+n0su0Xoyz1aBjxcG+/MkYt9Oyc1qBoPeDmsfvmsX21m0avnRH12f8c5O7S3Ebv\npp2NeLiPtn536lFS2JLqkMe9HgQGccps2FuOTwumc7h3UK43WeXUuoy8zHrTbVb5vL2lqU24Z3lL\nmnWHGGSPtvCrZQqabl5LqNv2D/pzkLLzu6/hKvM7iMqHe38Lt7wrpn/DaVudlyh0dzCqyrIozweS\nlqfKh7v1oSrpU7As7waK7qAV/YYk7+qX6XDgN3PtjXS4p+2wg95o+pldL3UdtWwv5TvoPuuUR6+7\nn1M7za/M6x1A1umU7ZRI2Q4yIx3u862Mkm0zPRrMlla2Dbpfae0pyymMTtvooD+XGGTIlmPpV0Nt\nwr2qIVPRag+t2z/o5XV2fsP44LLbOZatJ1uk0Wlp72oT7r1IPS0zmGoUpBqbf1l6wkXoN2u7XTLD\nuJKovmsvmzLvZSMd7qNuhDp6PaviImrXg897XVdxuYwah/sI6+tUQ426bF39pkre7a7ochx2tZvn\nX9VTskVzuJdIX1fsl6QrVfX9bL7lWPyvbHZXvohA63eaedWp03RKspm3VbZt3+HewSDOYTbPo4hL\nIQtrwrA+UC3bHlQHfaxLMbyORZmDvgyy3GZvqaQnJW2TtFXSbW3KXCnpsKRNyd/txVS3Xf2KmGb1\nN5ssTShk2XVZvmxhnWd95jvtlcf2VYNNtCcl21xKvR6y3GbvNPCZiNgo6d3ABkmPR8S2lnJrI+K6\n/KtoVh6DPBgNLDfKlpgZlDhTSyO15x4R+yNiY/L4KLAdWFx0xcqggtu85ayIbWAYlyxm+fC8zL1Q\n615X59wljdO4n+qzbUZfIWmzpMckXTTP61dImpY0PTMz03VlB2VUtvF82ulDYB7yyPthrImgfKfW\nrCFzuEt6F/A94NMRcaRl9EZgWURcDHwVeKTdNCJiVURMRMTE2NhYr3XOzSiEeKf9rp9zv1VcdmXp\nmc5Z7iX43CO3+eY0466vHMpntn0ryeY1K1O4S1pII9gfiIiHW8dHxJGIOJY8XgMslLQo15qmKKT3\nUJatpgdl29DyMuxvtFZ4k0jV74/PDeJSyHlnPiTNB6KybRtZrpYR8C1ge0R8eZ4y70nKIemyZLoH\n86zo/PXr57XzXc3Q+zT70c+52LJtWFlVpd69bBOZXlOGa8v73N7L8o7I5spytcyHgI8DWyRtSoZ9\nDlgGEBErgRuAT0o6DZwAbgzfMsesrXZZ2H1AOlGts9Rwj4ifkrIlRcSdwJ15VWpQ6nz8ydKyPOKh\ndRFWfYkOov55/ep5N2Pq0rues71VfWMrmL+h2sGwz+8WLsdTWnUJj/O0HL0G2SHo9otodV0FbY1q\nu7tQm3DPM4jrcIPsQW/wA8u8PuYz33rNUnffiHquMr3rHWZNyrxdVD7cy7xwR1H3Pz9QnpDI23zL\nIusy6nbR9LskK7cmvOt3VPlwL1KNcwfwvpFJBc83DaLG7a40y2t3qepuV7a8cLi3MbRLIft57ZC2\nrJJtz4Upa8ZnXe1Zqt9rE0u6aEaew9164h26d/kcEL0GrLPahHvZ3hJlVfgVOR0WTD8/PzDwG1Un\n7ajoara6KvExtvLhXuTb5UEfMPq7E1PrpYmD2epKvG2fJ49F0tU24W9+2hBVPtyL4H1qcMrQE+/4\n7ilJcwftXGW6yqlMdSkTh7v1pXW3KvNuVq8MyL8xPU1xiEc9XwbdmcO9g9p/Q7UPrbtVXXq2VesF\nzvlVwk43lu6wgvpadc33AM5p2VVsFcwqW1443NuoS1BB2u+5D6watZHHDlz0AWQQ67X5YDHK21GZ\nm16bcC/XMTO75v08z+vci7yuuf38c5xYh+kPq1dX1lMAVe3lWvEqH+5F7nLecbrX/c8PFFKNtgbd\nwyz2gFDOg42VR+XDvR8drgAfYC2KMbDf8arDATCnd09lMYh1MrzPJs6fbx3WWRGy3IlpqaQnJW2T\ntFXSbW3KSNIdknYmN8m+tJjqWrc6Hab6uodq9Y9/Pck70zqfw+9uIQ9lnQxpQ9DwZl0ZWe7EdBr4\nTERslPRuYIOkxyNiW1OZa4Dlyd8HgbuS/zZk7tX05+zyKzpIis6pQeRgfj8cVp2ttrmDVLZ3sak9\n94jYHxEbk8dHge3A4pZi1wP3RcM64AJJF+Ze2871zH+auU9xcPOoW6cmZv+XbA8y6re11YO6CUVJ\n48BTwPsj4kjT8EeBLyW35EPSE8CfRcT0fNOamJiI6el5R3c0PjnV0+sGYfEF72Tf6yeGXQ0zK7GH\n/9sVXLrst3t6raQNETGRVi7zB6qS3gV8D/h0c7B3WakVkqYlTc/MzPQyidJzsJtZmv/8N08XPo9M\n4S5pIY1gfyAiHm5TZB+wtOn5kmTYHBGxKiImImJibGysl/qamVkGWa6WEfAtYHtEfHmeYquBm5Kr\nZi4HDkfE/hzraWZmXchytcyHgI8DWyRtSoZ9DlgGEBErgTXAtcBO4Dhwc/5VNTOzrFLDPfmQtOPH\n4dH4VPbWvCplZmb9GelvqJqZ1ZXD3cyshhzuZmY15HA3M6shh7uZWQ053M3MasjhbmZWQw53M7Ma\ncribmdWQw93MrIYc7mZmNeRwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOzGspym727JR2Q9OI846+U\ndFjSpuTv9vyraWZm3chym717gDuB+zqUWRsR1+VSIzMz61tqzz0ingIODaAuZmaWk7zOuV8habOk\nxyRdlNM0zcysR1lOy6TZCCyLiGOSrgUeAZa3KyhpBbACYNmyZTnM2szM2um75x4RRyLiWPJ4DbBQ\n0qJ5yq6KiImImBgbG+t31mZmNo++w13SeyQpeXxZMs2D/U7XzMx6l3paRtKDwJXAIkl7gc8DCwEi\nYiVwA/BJSaeBE8CNERGF1djMzFKlhntEfCxl/J00LpU0M7OS8DdUzcxqyOFuZlZDDnczsxqqXLj7\ns1ozs3SVC3czM0vncDczqyGHu5lZDVUu3H3K3cwsXeXC3czM0jnczcxqyOFuZlZDlQt3n3I3M0tX\nuXA3M7N0DnczsxpyuJuZ1VDlwt2/LWNmli413CXdLemApBfnGS9Jd0jaKWmzpEvzr6aZmXUjS8/9\nHuDqDuOvAZYnfyuAu/qvlpmZ9SM13CPiKeBQhyLXA/dFwzrgAkkX5lVBMzPrXh7n3BcDe5qe702G\nnUfSCknTkqZnZmZ6mtnUlv09vc7MbJQM9APViFgVERMRMTE2NtbTNNa91OlNhJmZQT7hvg9Y2vR8\nSTKsIL5axswsTR7hvhq4Kblq5nLgcEQUdu7kzJmipmxmVh+/kVZA0oPAlcAiSXuBzwMLASJiJbAG\nuBbYCRwHbi6qsgDhnruZWarUcI+Ij6WMD+DW3GqU4oyz3cwsVQW/oTrsGpiZlV/1wt2nZczMUlUu\n3J3tZmbpKhfuznYzs3SVC/czPuluZpaqcuHubDczS1e5cHfP3cwsXeXC3dFuZpaucuHudDczS1e5\ncPdpGTOzdJULd2e7mVm66oW7z8uYmaWqXrg7283MUlUv3IddATOzCqheuLvrbmaWqoLhPuwamJmV\nX6Zwl3S1pJ9J2ilpss34KyUdlrQp+bs9/6o2+FJIM7N0WW6ztwD4GvBhYC/wnKTVEbGtpejaiLiu\ngDrO4Wg3M0uXped+GbAzIl6KiFPAd4Dri63W/NxxNzNLlyXcFwN7mp7vTYa1ukLSZkmPSbqo3YQk\nrZA0LWl6Zmamh+q6525mlkVeH6huBJZFxMXAV4FH2hWKiFURMRERE2NjYz3NyFfLmJmlyxLu+4Cl\nTc+XJMNmRcSRiDiWPF4DLJS0KLdazplXEVM1M6uXLOH+HLBc0nsl/SZwI7C6uYCk90hS8viyZLoH\n864s+OcHzMyySL1aJiJOS/oU8CNgAXB3RGyVdEsyfiVwA/BJSaeBE8CNUdD5E/fczczSpYY7zJ5q\nWdMybGXT4zuBO/OtWnu+zt3MLJ2/oWpmVkPVC/dhV8DMrAIqF+5OdzOzdJULd18tY2aWrnLhfsbZ\nbmaWqnLh7m+ompmlq1y4u+duZpaucuHubDczS1e5cPeF7mZm6SoX7o52M7N01Qt3p7uZWarKhbt/\nW8bMLF3lwt3ZbmaWrnrhPuwKmJlVQPXC3V13M7NUmcJd0tWSfiZpp6TJNuMl6Y5k/GZJl+Zf1QZn\nu5lZutRwl7QA+BpwDfA+4GOS3tdS7BpgefK3Argr53rO8g+HmZmly9JzvwzYGREvRcQp4DvA9S1l\nrgfui4Z1wAWSLsy5roB77mZmWWQJ98XAnqbne5Nh3ZbJxc6ZY0VM1sysVgb6gaqkFZKmJU3PzMz0\nNI0H/uiDOdfKzGywvv7xf1/4PLLcIHsfsLTp+ZJkWLdliIhVwCqAiYmJnk6wXPFvFrHrSx/p5aVm\nZiMjS8/9OWC5pPdK+k3gRmB1S5nVwE3JVTOXA4cjYn/OdTUzs4xSe+4RcVrSp4AfAQuAuyNiq6Rb\nkvErgTXAtcBO4Dhwc3FVNjOzNFlOyxARa2gEePOwlU2PA7g136qZmVmvKvcNVTMzS+dwNzOrIYe7\nmVkNOdzNzGrI4W5mVkMa1k/oSpoBdvf48kXAr3OsThW4zaPBbR4N/bT5X0XEWFqhoYV7PyRNR8TE\nsOsxSG7zaHCbR8Mg2uzTMmZmNeRwNzOroaqG+6phV2AI3ObR4DaPhsLbXMlz7mZm1llVe+5mZtZB\n5cI97WbddSDpbkkHJL3YNOyfS3pc0i+S/789zDrmTdJSSU9K2iZpq6TbkuG1bLekd0haL+mFpL1f\nSIbXsr3NJC2Q9LykR5PntW6zpF2StkjaJGk6GVZ4mysV7hlv1l0H9wBXtwybBJ6IiOXAE8nzOjkN\nfCYi3gdcDtyarNu6tvskcFVE/DvgEuDq5F4IdW1vs9uA7U3PR6HN/zEiLmm6/LHwNlcq3Ml2s+7K\ni4ingEMtg68H7k0e3wv8wUArVbCI2B8RG5PHR2ns/IupabuTm8mfvSHwwuQvqGl7z5K0BPgI8M2m\nwbVu8zwKb3PVwn1gN+Iuod9purvVK8DvDLMyRZI0DnwAeJYatzs5PbEJOAA8HhG1bm/iK8CfAmea\nhtW9zQH8o6QNklYkwwpvc6abdVi5RERIquVlTpLeBXwP+HREHJE0O65u7Y6It4FLJF0AfF/S+1vG\n16q9kq4DDkTEBklXtitTtzYnfi8i9kn6l8DjknY0jyyqzVXruWe6EXdNvSrpQoDk/4Eh1yd3khbS\nCPYHIuLhZHDt2x0RrwNP0vicpc7t/RDw+5J20TilepWk+6l3m4mIfcn/A8D3aZxeLrzNVQv3LDfr\nrqvVwCeSx58AfjDEuuROjS76t4DtEfHlplG1bLeksaTHjqR3Ah8GdlDT9gJExGcjYklEjNPYd/8p\nIv6QGrdZ0m9JevfZx8B/Al5kAG2u3JeYJF1L47zd2Zt1/8WQq5Q7SQ8CV9L45bhXgc8DjwAPActo\n/JrmRyOi9UPXypL0e8BaYAvnzsd+jsZ599q1W9LFND5IW0Cjk/VQRHxR0r+ghu1tlZyW+ZOIuK7O\nbZb0r2n01qFxGvzbEfEXg2hz5cLdzMzSVe20jJmZZeBwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOz\nGnK4m5nVkMPdzKyG/j9Mccz20QZE3QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, 'unbiased' scaled Bispectrum is calculated." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25, scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5000.00000001, -4800.00000001, -4600.00000001, -4400.00000001,\n", + " -4200.00000001])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.0021, 0.0022, 0.0023, 0.0024, 0.0025])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags[-5:]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.16469688e-04, -1.15175317e-06, -1.07527932e-05,\n", + " 3.12465067e-05, -1.49891250e-05, -1.13491830e-05,\n", + " -3.01378025e-05, 8.84909091e-06, -9.76499980e-06,\n", + " -4.03093430e-05, -1.39169834e-05, -1.06733571e-05,\n", + " -3.56900080e-05, -4.36904080e-05, -1.64739272e-05,\n", + " -6.07642325e-06, -9.40724231e-05, 3.20972054e-05,\n", + " 1.10825598e-06, 1.57445478e-05, 1.50738698e-04,\n", + " -1.53088049e-05, -1.06758132e-05, -8.50761732e-05,\n", + " -2.70732731e-05, 5.15575763e-04, -2.26276548e-06,\n", + " -5.46966498e-05, -3.49049233e-05, 6.93111630e-05,\n", + " -1.96629892e-05, -4.00897434e-05, -5.37940654e-07,\n", + " -1.25908665e-04, -4.04722751e-05, -1.95122973e-05,\n", + " 7.48985545e-06, -1.59418559e-05, -3.40950546e-07,\n", + " -5.28946188e-05, -6.77547458e-05, -2.58282563e-06,\n", + " -2.16597857e-05, 2.08264564e-05, 1.62145798e-05,\n", + " 6.20770115e-05, 5.74011370e-05, 3.04301082e-05,\n", + " 5.42455829e-05, 6.16520488e-05, 5.25699675e-05])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.10270301, 0.09674684, 0.1026435 , 0.10278492, 0.09607422,\n", + " 0.09961388, 0.10090391, 0.10316149, 0.09881147, 0.10027435,\n", + " 0.09052907, 0.10086312, 0.09964639, 0.09224589, 0.10189853,\n", + " 0.09783874, 0.1029246 , 0.10003251, 0.1003841 , 0.09654483,\n", + " 0.10021589, 0.10265071, 0.09913028, 0.10406698, 0.10248613,\n", + " 0.12079938, 0.10038381, 0.09376602, 0.09916139, 0.10218425,\n", + " 0.09798569, 0.10296954, 0.10377357, 0.10144925, 0.09848511,\n", + " 0.09731673, 0.10031293, 0.09733791, 0.10085873, 0.09769191,\n", + " 0.10021328, 0.1000008 , 0.10362033, 0.10352851, 0.09763424,\n", + " 0.10249754, 0.09752426, 0.09520164, 0.09959243, 0.12395456,\n", + " 0.10188173])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ -1.44942123e-02, 1.67988284e-02, -3.06544878e-03,\n", + " 1.24304742e-02, -4.69267453e-04, 1.80410887e-02,\n", + " 1.18875941e-03, -1.85154750e-03, 2.17338081e-02,\n", + " 1.03821918e-02, -7.09489717e-03, 1.05358508e-02,\n", + " 4.01625879e-03, -2.05403388e-02, 1.17686452e-03,\n", + " 2.56746832e-02, 2.17353559e-02, -7.69020683e-03,\n", + " 1.54447950e-02, -9.03814639e-04, 3.43660863e-03,\n", + " -5.37971533e-04, 9.42017522e-03, 1.42720920e-03,\n", + " 1.17025084e-03, -5.00982277e-03, -1.53439701e-02,\n", + " -7.63874625e-04, -4.10637611e-02, 2.41131565e-02,\n", + " -1.95500843e-02, -2.98681684e-02, 1.23914953e-03,\n", + " -2.75100800e-02, -3.88428578e-03, -7.87537903e-03,\n", + " -1.53613857e-03, 1.47624077e-02, -4.86162981e-03,\n", + " -2.76731089e-03, 9.30828311e-03, -2.86531767e-02,\n", + " -1.16465064e-02, -2.30165990e-02, -7.71187242e-03,\n", + " 2.00694116e-02, -5.16511843e-02, -1.98737477e-03,\n", + " -9.87738671e-03, -2.09922507e-17, 1.39146079e-02])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXv4ZlVd//16zzAMR0EYQI4OKHoFdWlIYPXTDoICmVQe\nLsgksSKe8DE7KURmP5Pfg1lZpImUphZGJKHTTwzBSn/2PKMcRJSTAmKAowgICDMMM3w/zx9737jZ\nsw9r7b3W3vu+v+t1Xff1/d73Xue99vqs9fl81l4yMxKJRCKRiMWKsQuQSCQSicUmCZpEIpFIRCUJ\nmkQikUhEJQmaRCKRSEQlCZpEIpFIRCUJmkQikUhEJQmaxOBIMknPjJzH2jyf7WLmMwaLXLfEYpIE\nTcILSf8g6VuSHpL0VUm/GiGPl0r6gqRHJN0n6UJJB4TOp0O5niXpnyXdK+lBSddL+m1JK8cuW1ck\nfVDS28cuR2KxSYIm4cu5wCFm9hTgZcDbJT2vKmCXGbekVwAfAf4CWAMcDmwGPifpqaHyaSnDNulJ\negbweeBO4IfMbDfglcDzgF1D5p9ILBpJ0CS8MLOvmNnG2df88wwAST8p6S5Jb5b0LeDv8t9/T9IG\nSd+U9Lq6tCUJ+DPg7Wb2ETPbZGbfAn4VeBj4rTzcayX9l6R3SboP+CNJKyX9ab7auB34mVLau0l6\nf16OuyW9fbYSqUqvonj/E/h/zey3zWxD3ha3mNmrzeyBWd1Led4h6Zj8/z/KV0P/IOl7kr6cr5DO\nknSPpDslvbgqbiH+P9S026mSbsrTvV3Srxeuze7J7+T5bJB0an7tNODVwJskPSzpX+vuTSLRhyRo\nEt5I+mtJG4GbgQ3AZYXLTwP2AJ4OnCbpOOB3gWOBQ4FjqOfZwEHAPxd/NLMl4JI8jRlHA7cD+wDn\nAL8GvBT4YeBI4BWltD8IbAWemYd5MZkAq0uvzDHARxvK7sLPAn8PPBX4InA52TO4P/A24H0d072H\nrO5PAU4F3iXpiML1pwG75fn8CvAeSU81swuAC4E/MbNdzOxnO+afSDSSBE3CGzP7DTJ10QuAfyFT\nbc1YAt5qZpvNbBPwKuDv8pXQI1SvFmasyf9uqLi2oXAd4Jtm9ldmtrWQz1+Y2Z1mdj/w/8wCStoH\nOAF4o5k9Ymb3AO8CTmpIr8yeNeXy4f+Y2eVmtpVMmO4FnGtmW4CLgLWSdvdN1Mw+YWa3WcZngE+R\n3ZsZW4C3mdkWM7uMbHX47J51SSScSYIm0Qkze9zMPgccAPxfhUvfMbNHC9/3I7NrzPhGQ7L35n/3\nrbi2b+E6pTTb8nk6sArYIOkBSQ+QrR72bkivzH015fLh24X/NwH3mtnjhe8Au/gmKul4Sesl3Z/X\n7QSeLJTvy4XbjI1d8kkkupIETaIv25HbaHLKrwPfABxY+H5QQ1q3AHeRGdmfQNIK4OXApzvmcyfZ\nqmuNme2ef55iZoc3pFfmyrwMdTwC7FQo80qyFUtXnpQemfprGyStJlMr/imwj5ntTqbKlGM+6fXt\niegkQZNwRtLekk6StEtufH8JcDJPFgBlLgZeK+kwSTsBb60LaNmZFb8L/IGkX5S0g6SnAX9LZn94\nV0s+b5B0QO6ddmYh3Q1k6qQ/k/QUSSskPUPSTzhWnbzcPybpnXmZkPTM3Li/O/BVYAdJPyNpFfAH\nwGqP9MtcB5wkaZWkKpvTjO3zfL4DbJV0PJn9yZVvA4f0KGci0UoSNAkfjExNdhfwXbJZ9BvNbF1t\nBLNPkrkq/ztwa/63PgOzfwJeQ+Zhdh9wI7Aj8ONmdl9D1L8hM65/CbiWzHZU5BSyQfnGvOwfxUMV\nZma3AT8KrAVukPQg2UriauB7ZvYg8BtkQvFushXJXdWpOfEWspXid8k83j5SU67vAW8gE7TfBX4R\nqL0fFbwfOCxXKX6sR3kTiVqUDj5LJBKJREzSiiaRSCQSUUmCJpFIJBJRSYImkUgkElFJgiaRSCQS\nUUmvGQdW77Cr7bzzk7c8aAnMUQz7hO2CluqvNeVbjmcrmtNqImb9qqgqe9P1JmKUvSr/tny6tn1T\n+n3TnAJjPTtNNJXpu/d//V4z67NHih/SnvYwW5zC3sH3Ljez4/rkNzZJ0AA777wXxxz3v5702+pN\n2UbqzTuO20SzclTRt2xNaYfOy5di2arydi17zHJXlaEuv7rylsP73JO+jJl3Uzkg3PPnWyeX/P75\nIyc3vd3CiYfZwh+tPMop7Gsf//Sa9lDTJqnOKhjrgfMhxAC6ecftnNMZuk1mZasrn0u5YwvHugGy\n3FauQqbuN5dyuMZratc+7dUn7qx9Zm1XbK++/c63XRJxSC07Mm0z9ypCPxCus/DVm7Z2zrucVqyH\neujBYvOO21UOhm0DZFM569KcKrO69Cl3U7w+/c6FJGDik1p4JJoGp1nH91HNxKCYV3HW2VYel8Gm\ni4BtKt+Y+A6wrquxMYRN37rEKncfVVpTmcbqQytWwI47OSqUvhe3LEMwjSd1Ysw6ZqjZ+9DxY1Al\ndMr/d2Wo1U5MXAZYn3qN2Qd8hEXVc9I0Uepbrimnl6gn2WhqGEvIzAOxH9AqO8c80KYOc6FL3WO0\n19A2wCHSSYxHunsTZSoeQXXEmrUWia2bj0FVu7jUYaj769OmTeHKq9pYNqep2fJC3SetEDsk1Vmi\nCzEHi9huun3sJEnYbMuYarI2u1mINvWdaMSwYxXxseGMLWSWI/P3BCe2oY+hM8TD4zqI1Nl5hmRq\ngstln9SUB7jZvXdp1y79pI06V/I6u1FiHJKNZqL4zv76bGr0DVtXBp/rY7lyw7ScNVz2CbXtKSrT\nto8nZJv6OIZMWWA2EcMGtmIFrF4tp88ikARNQEIPikMbxUMIG5+NgG16/aF39Q8Zv462eru2S507\nemzq8ovp8lwmVL+ZV6eUKZIEjQehl/0h863LewwPpvJs3CfskB5GUxE2xQ2PIalaycRazUyFEPVL\nAiY8SdA0UHwlRvk1GWOUZej8qj6u+A5qfV9h0lUYhxA2oexcUwrfh3kdpId8tlcIdtxxhdOnDUnH\nSbpF0q2Szqy4Lknn5devl3RE4dpvSvqKpBskvbEi7u9IMklr8u9rJW2SdF3+Od+pvi6Bliu+qqDY\ndHkQuthOmlYWsR7ELumW28O1fWK4jncRxn0Z28DtoxKN4YVX7qNjt8cYSFoJvAc4HjgMOFnSYaVg\nxwOH5p/TgPfmcX8Q+DXgKOA5wEslPbOQ9oHAi4H/LqV3m5k9N/+c7lLOJGgcKHbomO6TroTWg/c1\nNvehi6BoK8O8zqjLhFLVTmUAjtXHlvmGzqOAW83sdjN7DLgIOLEU5kTgw5axHthd0r7ADwCfN7ON\nZrYV+AzwC4V47wLeBFjfQiZB48GUOnPVbL5MqF3ZsfAVmD6rhrYwU7qXVfgY85sG2tj17OJNOMaE\nxoXyan5om2EDayRdXficVri2P3Bn4ftd+W84hPkK8AJJe0raCTgBOBBA0onA3Wb2pYryHJyrzT4j\n6QUuFRi9BReV2BsZZ8R0XS2mWeUyO2WvsFkasXasdy1PMW/feL5qUN8y9UnHN57rHiGfjZgxCZ2/\n15sB4F4zOzJoAQAzu0nSO4BPAY8A1wGP50Ln98nUZmU2AAeZ2X2Sngd8TNLhZvZQU15pRbMAjDXz\nir33JgRTUaO17W0p/j6ki/DYGxt9VjdTuZcT427yVUjOAflvTmHM7P1m9jwzeyHwXeCrwDOAg4Ev\nSbojD3+tpKeZ2WYzuy+Pew1wG/CstkKOKmh6ektUxpX0Tkk35+EvlbT7UPUZg7Fnen0ZQkAOOXDP\n0q3zUiy/HcFnw2Ms+kxUQpR/zM27MJ3JSEeuAg6VdLCk7YGTgHWlMOuAU/Lx9PnAg2a2AUDS3vnf\ng8jsMx8xsy+b2d5mttbM1pKp2o4ws29J2it3QEDSIWQOBre3FXK0UargLXEsWUWukrTOzG4sBCt6\nSxxN5i1xdEvcK4CzzGxrviw8C3hzlzL23RAWWzXTVo7Y6q2QuKpSulJuixi7+1135Jf7xbwOdKHb\ncMzNyUM/KytW4OS63EY+zr0euBxYCXzAzG6QdHp+/XzgMjL7y63ARuDUQhKXSNoT2AKcYWYPtGT5\nQuBtkrYAS8DpZnZ/WznHHIWe8JYAkDTzligKmie8JYD1kmbeEmvr4prZpwrx1wOv6FI4F6+mvobP\nPg+Wi5Ap/u37ENUNBKEf0JgCZ1bW0Bsti99dJydDD6yhianGi9kubc/1vEzMipjZZWTCpPjb+YX/\nDTijJm6rMT9f1cz+vwS4xLeMY7ZqlSfE0Q5h9neMC/A64J+qMs89N04D2GmnNU+65uti29d4OpTT\nwDw9RHUDcV/BPaXB3VXYTOm+uRjvYzmk9GXePRHnmYVtWUlnA1uBC6uum9kFwAUAe+x5yBN+4qE3\nRLbRdeBreqDbbBKhN8919abyzdfH62pehLfPKmg5EMtNf5bOVNpaK2DV6kGzHJUxe3Ifb4lVTXEl\nvRZ4KfCifNk4V/TZue4qGFxVb76EmKGHGGyGXC3OiKWSmze6COCh7lNZ2Mx7W88LY3qd9fGWqI0r\n6Tiy3awvM7ONQ1WmC64DquvKJZRAiv3Q+7rwTm0w8F05ua7EXD2/fDaujsWUhe6ENmIuG0Zr6T7e\nEnVx86TfDawGrpAEsN71fTy+hO6oXTYX9jFwx/TE6kIMIRPL6F5cMYVI33ezY2hnj9CEUM9OrU4h\nkWDV6qWxizEYo97Jnt4S28TNf39mRXBnQhloXdQHxcHK1YOtTtiEYAh1k68wDWUHmaW1KIxhjyrn\nW5V3EjCJKtIdraCv0bA42+zrAj0GsQbmrvUM6aJdTK8vUxFcY25k9HkeQqTlm0+fNKe6WpxHUgvW\nMNXONeT+C9eB2aVMId1TQwmc5YaPEXxIW1lMz80QjgkxXLa1AlbtMHd+Sp1J7zoLTB8DvStDD5RN\nhlMXQ7av/aGNqawk5omqfunjkNGHGP01lkNEU5ukftedJGgGYKiHwYcQXjehBxCfhzk99O5Mua26\n9CHf+qQ+NT7LU4ewzBl6j0Ob6iHGptUpMWY5m9q2bQUaUoVUpV4dQsiU4/W5DyHvoWSsXJW8zhKB\nadvJ79qJ63TnMWwkIWd4VXUMkb6Li/Y8CKMYdBEy5TB1quAxVsNtDjq+b7FIDMfyfAJLaMlvt3yM\n9y512a1fDF832I4tYMrpxvBoa0trUbyHXO9ryElH0+rGN82Z4Ap5H6qegUWwiy4ayUZTwNUQ2NUw\n2GbAbPOecaXrzuchDJ4+eRTrUf7Eznvq1NVl6vXr6+JeTCeE88ki0PNcr9+SdIOkr0j6R0k7lOL+\njiSTtKbw21l5WrdIeolLGZOgKVEUBmMMTD6Dx5CrApc4ofZduITrI3RCqeyGzrOqruUJUJc0QhDr\nWalKd4y9aaHrN3szgMunOZ0nzuY6HjgMOFnSYaVgxXO9TiM71wtJ+wNvAI40sx8ke8vKSYW0DyQ7\nzvm/C78dloc5HDgO+OvZQWhNJEHTg1iuzD6Dx9gzWB+BXHSFdgnnSt+Vji9jtnnXevZdCcYI25ZO\nX3tbLLfqifHEuV5m9hgwO5uryBPnepnZemB2rhdk5pMdJW0H7AR8sxDvXWTvjbRSWhflRzp/nez1\nYEe1FTIJmokypKvvGA9PLLVHH6eK2ITMsyg42oz+Lra/ulW8j8qqLo4PTf2+q4BdANZIurrwOa1w\nre7MLtrCmNndwJ+SrVg2kL20+FMAkk4E7jazL7mk1VaBhbgLYzIzbk5wpuPEUOUeUt0R8360zbKH\ndkyoEzZ9N762pdfkQTjEysmHKT6fWmGs2sHZvfleMzsyeBmkp5KtUA4GHgD+WdIvAf8C/D6Z2iwI\naUUTgHlUpcCw5XZRMw5tE+uS1xRnyKGFTBdCqC9jtu0U71sg+pzrdQzwdTP7jpltIRMwPwY8g0z4\nfEnSHXn4ayU9zTG/bVjY1u9LTPWAT/5990LU4eoCO4TDQXnGOeRemJDutvOijpva7L5IbBflNqE8\n5bap4YmzucgG/JOAXyyFWQe8XtJFZEfeP2hmGyT9N/B8STsBm4AXAVeb2ZeBvWeRc2FzpJndK2kd\n8BFJfw7sR+Zg8IW2QiZBU4GPmie2z37dsn8IIdOUf2ja8vFRzXTxCOuzt8RlRdFVIIR+o8K8rOKq\nBECISYGLI8oQ/T3UeTQ9z/X6vKSPAteSHXv/RfLj7Rvyu0HSxcCNeZwzzOzxtnImQVOii8dTqI7Z\nZiAPrd93LUPMh6+Pe/LY6pCqyUbTPezi3FGX9qKtZNoY8l5P0abTRM9zvd4KvLUl/bWl7+cA5/iU\nMQmaiTCUsTykR88UmfoAEXMlGiPuovQLX+ZN2Eyd5dmLJsaYs7UxDMchmMoAGGMvVd9Brqxi8k0r\ndtv2XZH28XDzyTuqsFkBK1YvH1+saTytE2HowWuswTLkXpO6tHzURF3UlSGY8v0OIWx88hqDLve+\nSbD72LOmon5dLqRW7smUH+g+xtM+QqZ8LfRGxTHjD0ls9c0YbVE14Iea+FQ5ZfTd1xTT6Wc5MT9P\n3USJMRiEnG11SSuWS3Vbek0PdYh8Ywysrvd/agJuzNX0UKsLn+fSReAEfc5XCO20Klx6E2davX9k\nuq4AYs08+z6AoYRLl/T6pNV3019dXULumXHNsw9T8vQLnX/dht1YalEXl/7yhuG0mglHEjQlug7u\nLh2764MUW58cQsjUlXHIzZdj0iRs+tohEhl9Vo8uWwRcNg4nurF4T3wgQq0m+uik68rUlF/INF3T\ndn04pyBgYq1qYHnvc5kCQ20RCIFWiBVJdZaY4bLruwlftUrXwWYsLxrX8i63DXezMoR2H+/71oGp\nDLR19FFfh2AKfWcRmXavWxDqluQxDesuDLXnY4zBbQxbTTkPl7y6vC6njI8toc8elKGoa7Mh7lsi\nDumujUhR4PisnPraPULP2ELaJ0Iyxuy0zjY3K09TuKGZstCZQvtERUI7tB5MuTBMq3dNgL6qiaZ0\nm2bYbWXwud5ETE+mPmrGKQ96Zerq6bJno0349d0AO1VcJyJj13Ps/BeVaT/RAxLL3TZkOfoS+yEK\nVXZf1WKTSmUIV9oQNjiXyUXbSnZq9oXQjiFTn4Ak6lk+L9uZAGM+KFMagKrYvON2T/q4UrSFTL2O\nEHdTYtf6x+iXocsy1LPj2/+mgKTjJN0i6VZJZ1Zcl6Tz8uvXSzoi//3Zkq4rfB6S9Mb82h/nYa+T\n9ClJ++W/r5W0qRDn/HJ+VcxXi0bCJiRuYzgK9BmAx9xB7hqu62A7lqde0+74qvL4vnqlKZ+qMFOj\nXO6pOZMEIdCbASStBN4DHAvcBVwlaZ2Z3VgIdjzZAWWHkh189l7gaDO7BXhuIZ27gUvzOO80s7fk\n194A/CFwen7tNjN7rk85JzTELg981EGuzGbzTYboLkxxEOpD3YrJt41iv6mheD/7rgyaVghjbgB2\nEYB9y9hXUIQowwAcBdxqZreb2WPARcCJpTAnAh+2jPXA7pL2LYV5EZkA+QaAmT1UuLYzYH0KmQRN\nDTFnM74Djs/1UIPUxB8ub8r16Vs/3zYKnb9vXmVbzqJTVKmGYORnYo2kqwuf0wrX9gfuLHy/K/8N\nzzAnAf9Y/EHSOZLuBF5NtqKZcXCuNvuMpBe4VGDxe5wHIXfxt+GzNB/SPTa2vj5G+lMzgrsSo9xT\ncWpZVIK14UqhnZ1VZ/ea2ZFhMt4WSdsDLwPOKv5uZmcDZ0s6C3g92UmcG4CDzOw+Sc8DPibp8NIK\naBtGXdF0NWI1xZX0Skk3SFqS5HxzmlyPp/I6kb4rlTZiCtXZJ1b5x9isOoS3WVX4oQzm5dVxCJXY\njNhCr0112JUJTmjuBg4sfD8g/80nzPHAtWb27Zo8LgReDmBmm83svvz/a4DbgGe1FXI0QVMwYh0P\nHAacLOmwUrCiEes0MiNWW9yvAL8AfNa5LEvtYWIImzGM0E2focoAcYRm1x34XYRU6HK7uDeX1V+x\n1GGxJ1cuZQ3RxstkBXcVcKikg/OVyUnAulKYdcAp+cT9+cCDZrahcP1ktlWbHVr4eiJwc/77Xvn4\ni6RDyMbm29sKOeadeMKIBSBpZsQqeks8YcQC1kuaGbHW1sU1s5vy33oVrskzqK0Dl72gusxaq9Lq\nSuhBKMYsMVSaTZsn+2wodcmzLt/iNRfVlk85523G7ipkiv8PITBc8gnZNtlLNfvXy8y2Sno9cDmw\nEviAmd0g6fT8+vnAZcAJwK3ARuDUJ8oh7UzmsfbrpaTPlfRsYAn4Bt/3OHsh8DZJW/Jrp5vZ/W3l\nHFPQVBmojnYIs79j3E64bIBr6pS+4Wd5tF3vSoiH1McV17VMQ9rD6srQBddVapMq1mX14ho2JL79\nLLS3XlObucTvQpVr/LythMzsMjJhUvzt/ML/BpxRE/cRYM+K319eE/4S4BLfMs5XiwYk99w4DWDn\nHbdp5yfwETZ91A2xBpUQ6VYNnjHSHHJgjbUyC5X30LYAX8cUH7qqNF3T6ELbyjMRljEFTR8j1iqH\nuI2Y2QXABQB7PvUQg266eh9XZZfBJYTwqkoXwgmHkJQFzpCzyq5qzaYVnk/es/Sa0hpK+A7tATdk\nGmWq6jm456IE2y+f82jG9DrrY8RyiRsMX72yKy52hJBMeaYWQ8C6ENOLzzX/qv/rwsQk5KAe4pmJ\n5UUXO5/EtowmaMxsK5lv9uXATcDFMyPWzJBFpne8ncyI9TfAbzTFBZD085LuAn4U+ISky13K46o3\nLxPLjTl22lOkSthMubyhcKnnUKqeEB6IUxMyTQJmuW1kHYtRW7anEWubuPnvl/L99/U401VF4Rqn\nKlyTt1Lslc08PVS+5V0OwqnIPN1LF0ILmUkiwQ6rxy7FYKRX0HhQ3ATWtq+hKp5L2qEYcm9MKELM\n2ic7sMwJIVaRXVdnMfpsmyOCi+oy0Z/5Goki4+N62nY9lKHZl3KeXVy0fRla1961HLFoc2meF0KW\nP7Trc0zm/b7NA0nQlAg1AHdNo04wVKXn6m4c06PGJd1QbtHle9N3MOvrwFEl1LumOyZNKwyXcF2Z\n+oo76v1csQJ22D58uhNl2nc6AdQ/kGMObF3zdHEtHct2tdxoassmm2KIe9BFyHR1fe8y0apyEkh9\nrztJ0JQYe5blo+YKoUsPvfLqWo6m723lcI03zwPF0P2y2DdCrUjr7pWPQ83MrhJb2MxzX5kiSdAU\nGGunuE9aQ9hcXBl8k1tF/lXfh9yDM8T+n1j3te3+hXabrst7yE2ps/xGR0Kr0obNZcfYKxlXQg8M\nk3joPGnzTpqXe+nCFOviUyZXTzLXfhhCWIRalSXcSYIGMMdW8HH9DO095srQgqNqplrl/h0rv77h\n+hLLPXYo9/SYefh6cPoImxCbSpPQGI4kaBzxHVD6DrZDCoy+eyea6jqWOnKe2q/I0AOgb7lDT7ZC\n7syflc2njIsgbHoeILm7pI9KulnSTZJ+NP/9j/Ow10n6lKT9CnHOytO6RdJLXMo4/60cgLaDz/ra\nRIbQ47uUwddYHuohDG3LaWv7mO0b0y7V1/XbN01Xr7PY/TVEPxvKbhmsLVaEeTNA4RDIY8mOS7lK\n0jozK57rVTxA8miyAyRnx6r8JfBvZvaK/L2RO+W/v9PM3pLn8QbgD4HT8wMmTwIOB/YDrpT0LDN7\nvKmcSdDkdOmUoV5bE9Po2oeQD6rrAO3qXVfn6jrWnhCXPGPgOnnwtauEYgwnFd/8x3Zq6UmfAyQ3\nkh1k9loAM3sMeCz//6FC/J0BK6R1kZltBr4u6da8DP9fUyGToCkwlBdRmUl5w5SIPVC4pN00EHR9\nK8FUVyY+dHHX7dLXXNpqzMHaRdjOuYpsjaSrC98vyI85gX4HSG4FvgP8naTnANcAv5kfhoakc4BT\ngAeBnyqktb4irUaSjaaFtg46pdVInz0xTUxRAE6Z2O3V1yYUa4f/nA/m2xDVXiZlbwZw+cC9ZnZk\n4XNBW/KObAccAbzXzH4YeAR4wsZjZmeb2YHAhWRvy+9MEjQOtHW4KQibvvHanBf6uFU3DYwuxtsp\nDapjE8KtN+TgWed1WHc9NC4rrS4TqSHr0JM+B0jeBdxlZp/Pf/8omeApcyEwO9rZJb9tSIKmgK87\n5ljl6BLeV1XSZCup8u4p/+br/VNOo67cXe5Bk40nFn3bIjR1m1urKJezi6PBFOxTLgJmAbzTOh8g\naWbfAu6U9Ow83IvIbTuSDi3EPxG4uZDWSZJWSzqYzMHgC22FnGzrDY2PB9kQHi59jOdlugwUxeux\n9oo00SRgutgZFkBPP6nVmattLRYhhIxv3KB2qBUrgnidmdlWSbNDIFcCH5gdIJlfP5/s3K4TyA6Q\n3AicWkji/wYuzIXU7YVr5+YCaAn4BjBL7wZJF5MJpK3AGW0eZ5AEDeC+YXPGUIbPtnz6CsdQ5ZgX\nZsKmb13GaI8QKrOq35tUmnXXpyCwm8rep3xT0Wr40PMAyeuAIyt+f3lF8Nm1c4BzfMqYVGeetNkb\npkqVOizkxjufcnQhVBlCpRPCrX0ouk5WptyfoV3F6xLX1xYz9TaZKknQeODSyWJ59MRKz3cTZ4i8\nY23QGxqfFeXYM+E2YeOqChu7HlX0mUTVxa8iaJ+TYLvt3T4LQBI0DnQxak+ZqodyCgbrNmKVcbmo\nWvp4aE2pHnXE2gM39ediHph+7xmZrh0spPG5Sh8dYs/NPKoA54kpDs6uO+VnYYvfu+TVlkdoyv26\n73OYnoUwTO9JmBAxDLAhyjHFAcyFUMb4kIRoy3Kd+rhgD+kW7Gqf8R2sXVXMQ9R1skJGglU7xEt/\nYszniDUQXdxoQz88sYTMWIN9kxfT0GWKuXHRlao9K0NNJMoCp23TrK/jQFu6oYVryGclhkfbcia1\nmgMh97T4MDUhE0MHXvb6Ce18MOUBYyorOx/vw2K7hVKNdXm2YrbdlPvMvJJajvZjAiDMnhZX9cpQ\nqjLXh9fFQNzlwa9KN5SwKXq4hR6UQqw6piJkfOl6n/vW1zd+aLtS+GdwBWy3fFRnrV5nkrY52FrS\nmjjFGY8YqvI5AAAgAElEQVTYXldVKhKX32KVo26QL/8+lJCbN/rcp3kVMjBdF+fEtKkVNJJ+StJd\nwIb8hLW1hcufil2wqdFnv0nXa8UwQ26arNrM1kSdfr6Lq2yM1ccQ+bjie7+Hvvcx4o7R1qHUw33T\nS2Q09Zw/AV6Sv9vmFcAVkl5jZusBDVO8adBVhz1kOaa067xut3Wsh7VKNeOzuXaoXf6+9XfZ99Il\n/S6qrKqVrovzwBADdJ3TQVc1WF25h3TUWDSaWm17M7sBwMw+Kukm4F8kvZnvn7a2kBQ7VJfBYYhB\nqGu+Md2u29KP+ZD2EWi+92zMwaatfYecebsIm3L4umtd8/cpj2/adcImCFqBtuv/Us15oclGs0XS\n02ZfcqHzIuCPyF4NvdD0UVmM5Q495CATI6+QDgVTZEr7RkIJ1hj5uaQ1xBsMptqP5pEmQXMmsE/x\nBzO7C/gJ4NyYhZp3qmZabb/NU6eOqQLzJeqsMwJ9jeltE6Cp2PzK9QyZZ1NaPipTF+bB+UHScZJu\nkXSrpDMrrkvSefn16yUdUbh2h6QvS7queFy0pHdKujkPf6mk3fPf10ralIe/TtL55fyqqG1BM7uy\n5vcH8XxF9KLgok4bS3U0I6Ye2fUh7mtwjrmSHFq91FQO6PeKo2I6rml13VjpYteo+72Ybsg9XOU2\n8Em7i7o0aL8J9GYASSuB9wDHkp2YeZWkdWZ2YyHY8WRaqEOBo4H35n9n/JSZ3VtK+grgrPy8m3cA\nZwFvzq/dZmbP9SnntEX1RKhz+R1qv0tV+i6G2JCEnI2GMr4XPbN80ogtbFz3SxWvD6Gmbcp/9n+M\ndgmxB62JPm03qrAJw1HArWZ2O4Cki8hOxCwKmhOBD+fn0qyXtLukfc1sQ12iZlb0LF4PvKJPIZOg\nITv4bCjPI9f02jyi6oRO7H0vvp5Qvtddw5TD+XoYueRx3767sOeGh53K0lQGF0K71ba1TVu7hO5T\n5UG6b5pdHAtC1WME1hTVWsAFZnZB/v/+wJ2Fa3fx5NVKXZj9gQ1kjl1XSnoceF8h3SKvA/6p8P1g\nSdcBDwJ/YGb/p60CXq0maQWwi5k95BMv4c9UvaCmqq8OWa779t2Fn/jFh/iB3R7kQ+t3ZafLNg5e\nhpBpTmESFSvNmOlGRSt8VGf3mtk2p2AG4n+Y2d2S9ibbwnKzmX12dlHS2WRHNl+Y/7QBOMjM7pP0\nPOBjkg5vkwkubwb4iKSnSNoZ+Apwo6Tf61qrUtp9jFiVcSXtIekKSV/L/z41RFkTy4M7Dl/Da37t\nQd78nN145dPXcO7x32G30xbamz8x39wNHFj4fkD+m1MYM5v9vQe4lEwVB4Ck1wIvBV6dq90ws81m\ndl/+/zXAbcCz2grpcvDZYbm0+jngk8DBwGsc4jVSMGIdDxwGnCzpsFKwohHrNDIjVlvcM4FPm9mh\nwKfz74lEKw8csyvnnPJNXvuMNaz65Md57K8u4PDvfZdzjtrEwW9Y4uHdl8+7qRJzw1XAoZIOlrQ9\ncBKwrhRmHXBKPnF/PvCgmW2QtLOkXQHyhcSLyRYTSDoOeBPwMjN7Ykkvaa98/EXSIWRj8+1thXRZ\nc67K33f2c8C7zWyLpBBTvM5GLGBtQ9wTgZ/M438I+E++7y2RSFSy+jUr+fOjvsXhrGLL+/+OL77v\nEb71zS284MZPsdevHsEfHnEUH9zlET708X1Ye0PZQSeR8ESClf2Pac69wl4PXA6sBD6Qv83l9Pz6\n+cBlwAnArcBG4NQ8+j7ApZIgkwUfMbN/y6+9G1hNpk4DWG9mpwMvBN4maQuwBJxuZve3ldNF0LwP\nuAP4EvBZSU8HQtho+hixmuLuU/Cm+BalvUAzJJ1Gtkpip50W7h2hCU9223ULe+6wFR5+nKX7H+XR\njUt8996tbHxwe3bbsoUdttuVvXfYBNsvq7cvJeYAM7uMTJgUfzu/8L8BZ1TEux14Tk2az6z5/RLg\nEt8ytgoaMzsPOK/w0zck/ZRvRmNgZla3+sq9Ky4A2GPPQ5ISfplzz1+v4E2v2YM3PO9hfuSMk/nR\nPS7lR+6CHV5xJBsPew4fvPEe/vGiPVl7+3fGLmoiMXe0ChpJv13x84OSrjGz63rk3ceItaoh7rdn\nPuK5mu2eHmVMLCM2//3jnL1hb37v2Ps49rRfZ7vv3sl3dtzKn137KDf/zQ7st+mBsYuYWBiMx5nc\nnpxouDgDHAmczvdVVr8OHAf8jaQ39ci7sxGrJe464Jfz/38Z+HiPMiaWGbtf+T3O/vB+fPCr3+TK\njfA7n9mVr5+3gtWbtoxdtERibnGx0RwAHGFmDwNIeivwCTKj0DVkxwl408eIVRc3T/pc4GJJvwJ8\nA3hVl/JNkSE2ZrrkP7V9C6HfhLD2hnu5+O6duffgXVn7xXFUZa6v02mL79IuU72vZXzfFp6YDi53\naW9gc+H7FjKD+yZJm2viONHViFUXN//9PrK3TDujpeaHLUYHd91hXyVcql4qONZrPHzSa9rN7TMg\nulzr2x67PPAou3zxUe9y9K2HD33P3Gk6v6Xviz+r6Jpm35eIhixLKAxj69Jjo5ZhSFxa+0Lg85Jm\nKqifBT6S+13fWB9tPvE55AziHYDlMpgN/d6lLm8rcH2hYuhVyViHVDXl2+WwsVCHmZXL1ZZujHOV\nuj4zXd4x1lbXsfrHcsXF6+yPJf0b8GP5T6eb2ey9O6+OVrIJUjd4unbY0O/CGvIlf/P+5umQhB7U\ni+n65lUXr6lcTSuXuolB6ElAjHTr0qubmM2LynARcGphM7tK0jeAHQAkHWRm/x21ZHNE24MT8g27\nPtd88wit8ujCIgkbn7T65OUTzuVlrXUrgGKYUIQa7H1e1lolcIbuc2bG1qVeloe5wsW9+WXAnwH7\nkbkKHwTcDBwet2jzSegVxhQG3aEfxC6vb59nQrVvzPNY6vLpsnLrUh7fVWQT895f5hEX9+Y/Bp4P\nfNXMDgaOITufYNlRZYTvw+Ydt3vSp+r6ULjOhEOmGSKtsewwQzhPuFzrU55yvC7pzOKEaI++KsIY\n9yURBpendEv+SugVklaY2X9I+ovoJVtAQpzVMiZD2aNcmXp7+TKWzaBJiE9t4A6hHkwMj8udeEDS\nLsBngQsl3QM8ErdYw+OyJ6Et7tRm3THydUl3aFfpqdFkYHdhCoP7rA5DeziG7LcxnoFQ7WAYj9v4\n93koXO7CicCjwG+ReZntBrwtZqGmRqxTB33xdTqINbMbe8YYas/QlIVVHWOtMsZyqa/C1027HKcL\nU6j3PNNqozGzR8zscTPbamYfMrPzZgffLDea7Cmz60NRpV9vCuuaTohyhUwn5uooVN3LfaJotwht\n0yv+dS1X1adPGbrED5V/VbouLLKg6HOAZH59paQvSvrfhd/eKenmPPylknYvXDsrT+sWSS9xKWPt\nXZL0PbLzpLe5RLZp/ykuGSTCUPeguD5AXfd2DJ1mOf0yY6kD6xhqclHOp6+6tq8XV5V60NdTcGiV\naNf7HENIGcZW6/9mgMIhkMeSHZdylaR1ZlbcTF88QPJosgMki0ey/CZwE1Ac068Azspf9/UO4Czg\nzfkBkyeReR3vB1wp6Vlm9nhTOWtXNGa2q5k9peKzaxIy84nPLNt15rnIM8U26gb/2Pm0lSGUm2/I\nvUCh4vRNZwH76xMHSJrZY8DsEMgiTxwgaWbrgdkBkkg6APgZ4G+LEczsU2ZPGJHWk73zcpbWRfmR\nzl8new/lUbTg4t688FhqhSdRfHBdhU3yMotD7DqHVmXNA777jSbAGklXFz6nFa7VHQ6JY5i/IDuy\neakh/9cBn/TIbxuWVw+LTExVwJBG4KKKwXX14xq2K0NvaHRNL6bqsCqPJvraXrrm24dyvx4i30kI\nVlvyeanmvWZ2ZOgiSHopcI+ZXSPpJ2vCnA1sJXvnZWfSXD4QXYWMz2pgyNmnj4otNlMTMnWG/1j0\n2czZlTHbfEoTljlY8fU5QPLHgZdJuoNM5fbTkv5hFkjSa4GXAq/O36Tvmt82JEHTk7pBxte+EVsf\nPgQxyhXCLXUi6o9KXL2xquow1XoV27zrZCXGfQvhbTfBZ6/zAZJmdpaZHWBma/N4/25mvwSZJxuZ\nSu1lZraxlNZJklZLOpjMweALbYWcXKvNC00PwRBG9Cns2h7DmOtK7Lbp2/5NLvJNHoZT2s9SRZ1A\n7HqPQ6nSpiYgsg2b/U9t7XOAZAvvBlYDV0gCWG9mp+dpX0x2RMxW4Iw2jzNIgqYTsR7yUC6iy5V5\naou6e+26AXGKTOW5KDM1IROaPgdIFsL8J/Cfhe/PbAh7DnCOTxkX+w70oKs6rO9qxncncwhh46uy\nKV7rovMeYr9NVb5D5+maRt0qxbetxnxzhYuA7FOmroI5MQ2SoKmg7+bILmnXhXMVbk0Pch81n8/G\nPtd8Qnoa9VVhToGmSU1Xwew7YZkHYnr5ufbBUHkumdi0dfmYyJdPTR2Z2gzJxyOt6Vps1UPTDvWq\n+LGN/LF3mMeky0bQLpOMNnwnRUMQw8uv6LgwhoffciAJmgKxO9IU3T1d6apea0uzixBsy2+eZ/FT\ncYzw8RqbAiFXxFP3VJxH5veJnCi+uuSqjXIxytR2zUdF1yXvIQd/17buSkwnjFgbFmM6mriGrSpD\nSPtiXTlC2XdC3pclg41Jdbb8GHrDXZNKKZTR02dmFkJFFyL9mIRUuzStxELvuXAdxEOEGRKXlanv\nc9I1r0Rc0oomAE3G7b7ea33UHl3juTgIdMkr1my9C6FWWq5tNVQ7tU1SuqTtEsdVtdpHzeoabp73\nIS0qaUXTk6J3UHkA7ipkyuFnHxcX0iE942C+7SEw3IATeyXYtsLqk2YIYdyl3/fJr44Yq/xEO/M9\nSgSkjxtpVdyQA3DTjDDWDM11xh9TKC3Sg97FthWyD4V0Ka+iqb+MaQupS3fsvrUEbHp8+czzk6Ap\n0CRsmjppLCEzBb17Vd18hV0fNdDYA0IIpuJtGEvY+KjGQvQVV1Vek/BznaBNSd07zywfkepI1R6G\nLvsa+jBl90rfvSuxbSBTpuo+hnQSKOflQmivr5A2l9DGfZe27rNHLOHO/D7FEZnNhpo6Yd1sO8RG\nxNCE8mJzSTvGIBpzZdOlvG19w2W2PoRbex2hVEh9VWJdHSWK/4fob2M4CJiJzY9rsPzGJq1oKojt\nGRMyja4z5FAz61DOB1NexfngsmfJJ05s+tgmQ8QZa0UVK51ENUnQAFqqHuyaBr+Yxn9X9+emGXKR\nNnXXmOqpNntX3W+x8nehT3sV+1lT/+ri8TUvg2Vd3duetxgahFna84yk4yTdIulWSWdWXJek8/Lr\n10s6Iv99B0lfkPQlSTdI+p+FOK/Mf1uSdGTh97WSNkm6Lv+cX86viqQ6c6C8RI8pZIppxnqw6vKD\nYR+6RdzvEELNF0LF1Ce/Jpr6ZCjnlbIRf+yJRoxnbskI8lJNSSuB9wDHAncBV0laZ2Y3FoIdT3ZA\n2aHA0cB787+bgZ82s4clrQI+J+mTZrYe+ArwC8D7KrK9zcye61POJGgcqdIHx14JdFGjhRjkhnDF\nHcvbZ0ourr64DLyx2s1l0hPalja2gJkTjgJuNbPbASRdBJxIdjDZjBOBD+fn0qyXtLukfc1sA/Bw\nHmZV/jEAM7spTy9IIZPqzIPZ8n1sdZMvUxOIrg95yMFgSO/BeeobbSyK7awrE7mXayRdXficVri2\nP3Bn4ftd+W+4hJG0UtJ1wD3AFWb2eYfyHJyrzT4j6QUuFRilFSXtAfwTsBa4A3iVmX23ItxxwF+S\nHVH6t2Z2blN8SXsCHwV+BPigmb0+dNkn0vFqKc8qQwuBqde/TAj3Vh+mMCinvR/tjL1Hawmv82ju\nNbMj24P5kx/D/FxJuwOXSvpBM/tKQ5QNwEFmdp+k5wEfk3S4mT3UlM9YK5ozgU+b2aHAp/PvT6Kg\nezweOAw4WdJhLfEfBd4C/G6IQhYNsj6rmFheVL57JRZNyPjch5irzjpj/hSETGh8nUyG7iN92nzs\n/hyIu4EDC98PyH/zCmNmDwD/ARzXlJmZbTaz+/L/rwFuA57VVsixBM2JwIfy/z8E/FxFmCd0j2b2\nGDDTPdbGN7NHzOxzZAKnE128fYr4eNJ0SbfrxjzX9OvSCu1V55Nendqr7rcxBruhhMyiCbOqyVyX\nyV2f/Oecq4BDJR0saXvgJGBdKcw64JTc++z5wINmtkHSXvlKBkk7kjkU3NyUWR5nZf7/IWQOBre3\nFXKsVt4nN0QBfAvYpyJMlV7xaI/4XsR2k+yjzqgSXiEfEN/d/qFwUV+4qL6GVBX5Cvqu+0361Cd0\nW4ytZmojRHsNXT8zgmzYNLOtkl4PXE5mYviAmd0g6fT8+vnAZcAJwK3ARuDUPPq+wIdywbECuNjM\n/jeApJ8H/grYC/iEpOvM7CXAC4G3SdpC9sq2083s/rZyRns6JV0JPK3i0tnFL2ZmkqxrPl3j5wa1\n0wB23nHPbVwqu9DWYbs+EH3tLk3lqUo/FK6usE2DclubFVd6U5mdlvc3+bZtUz3aBNgQ7u9Taeci\nfZ/fqQvTJszsMjJhUvzt/ML/BpxREe964Idr0rwUuLTi90uAS3zLGK3HmNkxddckfXvmXidpXzKP\nhzJNekWX+G3luwC4AGDPpx7yhKDqO6DH8v0PLVzK6Q7lmtplD1L5nrSlPeYqbKhBuElgNxF7tRTS\nNb7rarCIr4q2a76JZsay0awDfjn//5eBj1eEadI9usTvTV9D45C65ibqnBOG3hfUhq/QaQrjc+9C\nDCxN9zi24PPtX7EG0q7plp0rQtq8uqQ1xF6rJYNHtrp9FoGxBM25wLGSvgYck39H0n6SLoNM9wjM\ndI83kekPb2iKn6dxB/DnwGsl3VXwVOtE6L0cQ9L3gZ13Q2yonepNxHCUiMVy3gDpK8DGnnQtGqO0\nZu4e96KK379JZrSafd9G99gUP7+2NlhBc2Lopfss8WMS2ynCNf+QM9piuiGZyj1L+OH7PE/VLjVP\npNYbibKuP0ZnHsPA6auyalM3hRQ4Q6hE6vL2DRtLMA7tsTjUpCOGfaVY/tD35XFbHLWYC0nQjEiV\nsJn9Po/EGLxDCssx1KA+7ttD9IUutpyqOK716nr/uhjx6+IN4eSSaCa968yB2MbcMl08d3zSD0lf\n463PbLXp+pDCOYSQqSpz7EHSh7LQ8zHU93UyCe2k0qd/zOukb2qkVpwAfTqzyz6SqlllqM2jQ1E3\nM57qQBBjFj1EXUM4R9T93mdSEeL+z/NemXlnmk/pxPDRa4+p/mrKO1R5YjysfewGs7hTG0D6qIym\nsIrxJfT+mro8+u5zK5ZnzEnKEsvLRpNUZzWUO2HTJsGySmHsWfbYg26X/UOx1W/zRMgNjK5MIe2u\ndpmuLFq/mTJJ0JQoDo7lgTLWprIYxCxbkxDpu5oao01jTQya0p1S34mlLvNJ2/Ue9LG3VJUlhI0w\n0U5qwQIhXG2XW6d0dZn1UQmFUGtM5T5MXYU2tpCZwn0aQ41mBo8GeKnmvJBWNB64dMap7M8Y6sGJ\n9ZCW6zalFUAomurUpqqNnX8bbSsLF8+0oQf35H02HknQeNLXABlikKhLx9cuEqMMTfiWq6uKckqD\nQlvZqwSqS31DqG+7tJNL//J1625Kp+7Th7INcUr9pQuSjpN0i6RbJVUdIilJ5+XXr5d0RP77gZL+\nQ9KNkm6Q9JuFOK/Mf1uSdGQpvbPytG6R9BKXMs53C88R5X0JIfXMsR6UGKqP2CqhKQ0aTS7lVZsz\nQ+VTlV8I+qQXuixjqLtC9t3HDR7Z0j+dwknEx5Kd2XWVpHVmdmMh2PFkB5QdSnam13vzv1uB3zGz\nayXtClwj6Yo87leAXwDeV8rvMLIXHB8O7AdcKelZ+ZHQtaQVTQd8Z3R1RkifTtu0ionBPKqqpiBk\nqjwQ6zZnDrGZNhRdN6l2rafrqm5optDHSjSdRDzjRODDlrEe2H12zIqZXQtgZt8je3nx/vn3m8zs\nlor8TgQuyo90/jrZYWpHtRUyCZoCMTqur+qka5gxmOBDNzq+KpkhhE1MW0xd+NDeYU1hp/p8DETV\nScT7+4aRtJbsELTPB8hvG9JIUcJl1TCkcHARVIs44Pt4+s2Yyj6mvsTYR1PVT1wM9kPTZy/VPN33\nJb+Xaq6RdHXh+wX5wY1BkLQL2amZbzSzh0KlW2R+7syIjGVTGHOm1qaPHsoDr4tefN4GHR8X8TZ8\nXMj75FOV3tht7lqGKZTVk3vN7Miaa00nEbeGkbSKTMhcaGb/4lAWl/y2IanOehJL1z4FdUBXFUho\nb6hYOv4pEaoPuUxcYgiZEITyyGy6VmyDeesjNTSdRDxjHXBK7n32fOBBM9sgScD7gZvM7M8d81sH\nnCRptaSDyRwMvtAWaa7E+pTpouqpYozO76Jy6moM9iWk0J7DmWsQmlaBMfpXCG+sUOWqut8u+5XG\n2LC5eWv/DZtmtlXS7CTilcAHzOwGSafn188nOzzyBDLD/Ubg1Dz6jwOvAb4s6br8t983s8sk/Tzw\nV8BewCckXWdmL8nTvhi4kcxr7Yw2jzNIgqYXTa9b6fLgjLFfpMrNNoQba9fd8PPA1AXYPHpj9RVW\nfe1aU7+nTVSdRJwLmNn/BpxREe9zQKW0M7NLgUtrrp0DnONTxvls2TnAtePPOrjrAzHUZsyxB45y\nebqWIRbFMg2VT5EYDgPzSNdNp8utncYmCZqOhHiVhYvOPESedbSpFEIIG5e8ymFDMOTsNJb6ZQyV\nT9t9j6lqijnhqrP7jSVwlkw8umn5DL/Lp6Ye+Op5++YTYwd+CEKqE+rqGmvAaiNGOUK1l69L9xCD\nZsi0+7aTr73QxfaYVjhxSYKmgqEeXtf0Q3kC+dZpKjrreRoM+g6iY9fRZxDv0y/7rIxc8h67HRNP\nZhojyQSJuVFyaqqyoQRKVf4+7egqcFz3pExlMJpKOcawNXWd1DUJqjo7aBNDeVXOsCXx6KaVQdKa\nB5Kg6YGrPrsLQ82KxxQyxWu+rzkZU9j0EVKhhcoQ+2/64nKv+qbddk9CqDWnMiGYR5Kg6Ymv11gd\noR70oYWMi/fVVPdu9Emn6xsLQlJl4J6aW3koj8EQwqqvui/RnSRoejLruFNSxbgQw2g99F6EeWrz\neSlnSEIKvZAbomNpIRL1JEETEB933rp4XRlDXVYe6Pu4fHdNp0/cWOqv8mAWa/Aq2yn61CeGUT6G\nu3IIgTOFzZlLS7Bp4/IZfpdPTRuwFd1mxy5uk0Mwpk1m1m4hN3j6eiT55j2Ei3WT119TmFB5dUlj\nLGEzxqbLunLP0yp5nkiCpsDUdui7MIXyxtoTEXpz4JgDSN2gNiNm2Vz3hTUJjaZno4+w6dt3hlrZ\nTOV5n1dS65Vwefin0OmmIGBcqRsQXI3Z8+4x5FJ2V5WQ7+DqKziGXNlMoW+2TWZilXFpSTz22PJx\nb07HBDSwecdtX5M/hYdjKEIOzlVCZayyDIlvPUNvRGxahfjE6av+6pLmkKze9OQjuBNhSYLGkbLA\ncSFWxx1yNRND2HS1bc3bINDHOcLXIaIpTpd2K9rLys4WVR+XtOqudS3fEP1hHvqcpOMk3SLpVkln\nVlyXpPPy69dLOqJw7QOS7pH0lVKcPSRdIelr+d+n5r+vlbRJ0nX55/xyflUkQQNoKWx65Ydg6NlS\nF6HYRMiy+6iR6soSmi5OIE1tHKr9u7RVXd59hI1Pebrm61O+eRj827D8pZounyYkrQTeAxwPHAac\nLOmwUrDjyQ4oOxQ4DXhv4doHgeMqkj4T+LSZHQp8Ov8+4zYze27+Od2lvknQBGQIYRLDgydU3iFp\nEza+bR2rXXxn913SDxWvz4RniNW866bLoZm4YDsKuNXMbjezx4CLgBNLYU4EPmwZ64HdJe0LYGaf\nBe6vSPdE4EP5/x8Cfq5PIZOgyQmxEayNPoNQ04Pr6r3UdebeJ42uTPzh3oYp6vjrPN1irkx8w4Yg\nhoAvpz9h9gfuLHy/K//NN0yZfcxsQ/7/t4B9CtcOztVmn5H0ApdCjtKCkvYA/glYC9wBvMrMvlsR\n7jjgL8mOKP1bMzu3Kb6kY4Fzge2Bx4DfM7N/dy1XrI1cQzwEVftQquhSx2LaQzx0MYR2zMGvnHbo\nturrxjuka3VsIRNq39bYLC2JR903bK6RdHXh+wVmdkGEYlViZibJ8q8bgIPM7D5JzwM+JulwM3uo\nKY2xVjRN+j+gVfdYF/9e4GfN7IeAXwb+3rdgIXTZRab4QAyhOumKi2pwKuqpNqawunG187iEG0KI\nhAwXgok8v/ea2ZGFT1HI3A0cWPh+QP4bnmHKfHumXsv/3gNgZpvN7L78/2uA24BntVVgLEHjov9r\n0j1WxjezL5rZN/PfbwB2lLTat3CuuuI2VUnsTtrHZbiLmid2fdracoqrzbY2nIKwccXVgyxGnSYy\noM8jVwGHSjpY0vbAScC6Uph1wCm599nzgQcLarE61pFN1sn/fhxA0l75IgBJh5A5GNzeVsix7m6T\n/m9GlV7xaI/4LweuNbPNVQWQdBqZBwY777jnNtebNhiGVu2U3UddyjIFQqmIxtoYO8TgNhX1mW9e\n4G7v83kuYjJkG/VmyeAxaw/XgpltlfR64HIyE8MHzOwGSafn188HLgNOAG4FNgKnzuJL+kfgJ8nU\nc3cBbzWz95OZIC6W9CvAN4BX5VFeCLxN0hZgCTjdzKqcCZ5EtCdN0pXA0younV38UtL/eVMVX9Lh\nwDuAFzfEuwC4AGDPpx7Smn9502aowXGsByOkcIihMw/tnh0r/ZB9ITR96x3LyaQtjbHbbd4ws8vI\nhEnxt/ML/xtwRk3ck2t+vw94UcXvlwCX+JYx2h01s2Pqrkn6tqR9zWxDUf9XokmvWBtf0gHApcAp\nZnZb74p4MKSQ6fMwxniQQxrAu3pFua4GYwjFIQZKnxl72xsB+ryxYEgX/iR0FoOxbDSV+r8STbrH\nOuGpoSIAAAl9SURBVP3h7sAngDPN7L9CFbbNa6cuTBNj7QEZ087SRl/X26LdrM6WMMR+mrHxsTF2\nYch6Ts1lPBQy2H7TVqfPIjCWoDkXOFbS14Bj8u9I2k/SZZDpHoGZ7vEm4GIzu6Epfh7+mcAfFl6R\nsHefgjY9UF0Hl5gPzlADwNC79+vyWcRBqImiO3sIe968tJ/rvY65eTbRnVHuRIP+75tkRqvZ9210\njy3x3w683bs8DeI2pP2hz65+H7VJU1iX+rjWuSqfrk4QPvlWxZ0HQrzSpS2ebz/pwxgOCn3jTeFt\nEsuR1JI5fQfnNkK+OiZ2WXzospmzasAtbzb1sQn4eD2FdlxwFR5VZRtyE2yRqQ2gTcIgppPJVJ04\nFpHUogViuWmGSi/UqsYlbozwbftkyp5svnkP6RruMylx3WsT0xNuioNnXZnGUP8O/baBFUs2l6vy\nrqR3nVUQ27W2mE9MXfKUBpcpbfLrWxYXwVFeobmmG3JSMvsbsx90SXuK9pOplWfRSK1bQ4iON2+v\nponFlITMjCFmsF3rHVJ1NEQ929SnfWxxicUg3e2I1Kmv+rjwFv+P4fkVegBwtZvEwGXl0XVGPqRn\n3SzPLvH6pOGDr4NCH2G6CLYVJdVZIiR91ARN+0Fm133Cj6myCOl26hK/78bGEGUImV4ItdpU3cF9\n1Ysh0kkMy/xMAeacWHtt+hjNYxuMm1YMXRwvQpQvlsNHH4r2lBCOA7FWcn1oq5ur230bTenE9GZL\nNJNam/BHOfdl6L0JU/WyKxJSyEyJcplCqOVc7qursAml+nXBVUh0TXtKyIxVmx8fuxiDkVRnNG/Y\ndMXHE2lqFAemIYVOKJVJFXVG6aHug4uasIt7r4/qsS2sSzsM6TI+Ne+4RDiSoAlI1SDWZWCLsY/F\nZ8NocUCu+vgyloCNObj42MGqytFWtrKqs49tqynuVCY/QwiCRRU2ko6TdIukWyVVHSIpSefl16+X\ndERbXEl7SLpC0tfyv08tXDsrD3+LpJe4lDEJmgD4GuVDEvLhCbHx0sdxYQh8BnRXung9tW0srYsT\n+v52WaEM4R7dRMi+4tumsZ7jbMPmFqdPEy0nEc84nuyAskPJzuB6r0PcylOM8+snAYcDxwF/PTsI\nrbG+bQESYelivI8Rvi9dVzZTViH2waX9p7JRMYQ6LHb4Ij5tFqp9y/10wn236STiGScCH7aM9cDu\n+fEq3qcY579flB/p/HWyw9SOaitkEjQBGHPw6LIDPXTedd+r6DrYTmGAbmKig1BUhqyvqyCPlV8o\n1/wIVJ1EvL9jmKa4dacYu+S3DZNrtXnFx1so9AY6n3xDb/L0cZUtq4+6GqN9GNrVN5QLrU8f8c3T\n15Osj/daX5fkIlV9Zl4dCLTk9bytkXR14fsF+QnBg9D3FGRIgiYovu7CbQ9YDPfjWLPQLuk21W+C\nM0dvugqxssoG3NVdVeH73HMfQdE3n6FXLXPEvWZ2ZM21ppOI28Ksaohbd4qxS37bkFRnI+Oi+536\nwxVi30fINwf4MhWVV1M/8FVTutoUQnmkhWjDqdyHOaPpJOIZ64BTcu+z5wMP5mox71OM899PkrRa\n0sFkDgZfaCukzHqtiBYCSd8BvjFQdmuAewfKa0gWsV6LWCdYzHoNWaenm9lefRKQ9G9kZXbhXjM7\nriGtE4C/AFYCHzCzcySdDmBm50sS8G4yL7GNwKlmdnVd3Pz3PYGLgYPIxsZXmdn9+bWzgdcBW4E3\nmtknW+ubBM2wSLq6YRk8tyxivRaxTrCY9VrEOi0SSXWWSCQSiagkQZNIJBKJqCRBMzyDuSUOzCLW\naxHrBItZr0Ws08KQbDSJRCKRiEpa0SQSiUQiKknQJBKJRCIqSdAEoum12qVwXq/llnSspGskfTn/\n+9MLUKc9Jf2HpIclvXugugz6KvWhiFSvV0q6QdKSpFFchiPV652Sbs7DXypp96Hqs+wxs/QJ8AH+\nBDgz//9M4B0VYVYCtwGHANsDXwIOa4oP/DCwX/7/DwJ3L0Cddgb+B3A68O4B6lFbxkKYE4BPAgKe\nD3y+a/0GvD+x6vUDwLOB/wSOHLJOkev1YmC7/P93DH2/lvMnrWjCUfda7SLer+U2sy+a2Tfz328A\ndpS0OkL5q4hVp0fM7HPAo7EK7lHGGSFfpT4UUeplZjeZ2S3DVWMbYtXrU2Y2e8/NerL3dCUGIAma\ncNS9VrtIl9dyF3k5cK2ZbQ5QXheGqNMQDP0q9aGIVa+xGaJeryNbESUGYNpva5wYkq4EnlZx6ezi\nF7N+r9Wuii/pcLLl/ou7plvFmHVaJBa9fotE/q6urcCFY5dluZAEjQdmdkzdNUl1r9Uu0vSK7dr4\nkg4ALgVOMbPbelekwFh1GpihX6U+FLHqNTbR6iXptcBLgReZWZoYDERSnYWj7rXaRbxfy517xnyC\nzOj8X5HKXkeUOo3A0K9SH4pY9RqbKPWSdBzwJuBlZrZxqMokSF5noT7AnsCnga8BVwJ75L/vB1xW\nCHcC8FUyz5izHeL/AfAIcF3hs/c81ym/dgdwP/AwmR79sMh12aaMZF5vp+f/C3hPfv3LFLytutRv\nwH4Xo14/n9+TzcC3gcsXpF63ktlvZs/R+UPXa7l+0itoEolEIhGVpDpLJBKJRFSSoEkkEolEVJKg\nSSQSiURUkqBJJBKJRFSSoEkkEolEVJKgSSw8kh6OmPbgb6JOJOaN9GaARKIfjwJvIXuz9g+OXJZE\nYpKkFU1i2SBpF0mflnStsvN9Tixce0t+hsnnJP2jpN/Nf3+DpBvzM0wuKqdpw7+JOpGYO9KKJrGc\neBT4eTN7SNIaYL2kdcCRZG/Gfg7Zu7KuBa7J45wJHGxmm9NBWYlEN9KKJrGcEPC/JF1P9sqY/cle\n7f/jwMfN7FEz+x7wr4U41wMXSvolsjf+JhIJT5KgSSwnXg3sBTzPzJ5L9h6vHVri/AzZO7WOAK6S\nlLQAiYQnSdAklhO7AfeY2RZJPwU8Pf/9v4CflbSDpF3IXiOPpBXAgWb2H8Cb8/i7jFDuRGKuSbOz\nxHLiQuBfJX0ZuBq4GcDMrsptNdeTrXK+DDxIdv78P0jajUztdp6ZPVBOVNIdwFOA7SX9HPBiM7tx\ngPokEnNBentzIkHmkWZmD0vaCfgscJqZXTt2uRKJRSCtaBKJjAskHUZms/lQEjKJRDjSiiaRSCQS\nUUnOAIlEIpGIShI0iUQikYhKEjSJRCKRiEoSNIlEIpGIShI0iUQikYjK/w/N1dMGrR7RJwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2YJNdd3/v5dXVXdc/O9IxW2l3JXssysmxhy9gEIzuB\nSwwE4id24tybJ4ZLeHtCQhzia0hIwA43wL3AfRTghvAkThyHYOwAcUgCFwfsmJfgGBO/CSyELQlb\niJW9svZFuzvqmd3pqu7qc/84dbpPnTqnqnpm5JU9/X2efbanXs5L1anzPef3KkopVlhhhRVWWOGw\n0LneDVhhhRVWWOELCytiWWGFFVZY4VCxIpYVVlhhhRUOFStiWWGFFVZY4VCxIpYVVlhhhRUOFSti\nWWGFFVZY4VCxIpYVGiEibxGRf3K923GUISJ/Q0R+4xDL+3YR+cBhlbfCCjZWxLICInJGRPZEZFdE\nrojIr4vIs8x5pdTrlFI/cp3adt0nwKINSkR+yjn+muL4zz3VbVBK/YJS6uutupWIPPeprneFFfaD\nFbGsYPCXlVLrwC3AeeBfXOf2tIaIRJ+Dav4EeK2IdK1j3wZ88nNQ9worfF5hRSwrlKCUGgP/GXiB\nOSYiPyciP1r8vklEfk1EtkXksoj8roh0inNnRORNIvJAsfN5m4j0rXJeLSL3Fff+TxH5Euvcs0Tk\nl0XkoohcEpF/KSJfDLwF+LPFbmrbas+/FpF3i8hV4KtF5H0i8res8ko7nWKF/10i8ikR2RGRHxGR\n24t2jETkl0Qkrnk054A/Av5iUd5x4M8B77IvEpH/JCLnRORJEXm/iLzQOnejiPzXor6PisiPetr4\nuqKN2yLyZhERtz8i8v7ilj8snss3+HZ29q6mqPtdRd0fAW53rr1TRH6zeKd/LCKvrXkWK6xQixWx\nrFCCiKwB3wB8KHDJ9wJngRPAKeAfA3ZcoL+BnnxvB54H/J9FuV8K/Czwd4AbgX8DvEtEkmLH8WvA\no8BtwDOBdyqlHgReB3xQKbWulNqy6vkm4MeADaCtqOwvAl8GvBz4PuCtwDcDzwLuAv73hvvfAXxr\n8fsbgV8FUuea9wB3ACeBPwB+wTr3ZuAqcDN6t/NtnjpeDXw58CXAa4s2l6CU+qri54uL5/IfG9pt\n6h6jd6R/s/gHgIgcA34T+MWi3d8I/CsReYGnnBVWaMSKWFYw+P+KHcGTwNcBPxG4boKenJ6tlJoo\npX5XlQPO/Uul1GeUUpfRE7+ZrL8T+DdKqQ8rpXKl1NvRk/LLgbuBZwD/SCl1VSk1Vko1kcWvKqV+\nTyk1K3ZZbfDjSqmRUuoTwMeB31BKPaKUehJNCF/acP+vAK8QkU00wbzDvUAp9bNKqR2lVAr8MPBi\nEdksyPOvAT+klLqmlHoAeLunjnuUUttKqU8DvwO8pGXfgrDq/sHi+X7cqfvVwBml1NuUUlOl1MeA\n/wL89YPWvcLRxIpYVjD4q8WOoA+8HvgfInKz57qfAB4GfkNEHhGRNzrnP2P9fhRNGADPBr63EPFs\nFyT2rOL8s4BHlVLTJdr7meZLKjhv/d7z/L1ed7NSag/4dfQu7Eal1O/Z50UkEpF7RORPRGQEnClO\n3YTe4XWddvv6cM76fa2pTS3hq/tR6/ezgZc57+ZvoHdWK6ywNFbEskIJxW7il4Ec+ErP+R2l1Pcq\npb4I+CvAPxCRr7UueZb1+1bgs8XvzwA/ppTasv6tKaX+Q3HuVkcxPq8y1FTn76vAmvX3UzUpvgMt\nDvx5z7lvAl4D/AVgEy3WAxDgIjAFTlvX28/qoCj131kUmLrdd2PwGeB/OO9mXSn1dw+xfSscIayI\nZYUSROM1wA3Ag57zrxaR5xZK5SfRBDSzLvl7InK6UG7/AGDk//8WeJ2IvKyo45iIvEpENoCPAI8D\n9xTH+yLyFcV954HTDYp1gPuA/01E1gqF9Xfs7wk04n+gRYU+q7kNtHjvEnqS/3/MCaVUDvwy8MNF\nG+9koa/ZD84DX2T9/YfAC0XkJYXBxA/X1P0CyvqdXwOeJyLfIiK94t+XF8YTK6ywNFbEsoLBfxWR\nXWCE1o18W6GLcHEH8FvALvBB4F8ppX7HOv+LwG8Aj6BNdH8UQCl1L/C3gX8JXEGL0769OJcDfxl4\nLvBptHHANxTl/XfgE8A5EXmipv0/BWToCfftlJXmhwal8duFDsnFO9AipseAB6gaQLwevZM5B/x7\n4D9QVf63xQ8Dby9EV69VSn0S+L/R7+ZTVA0aXo8Wq50Dfg54m9WnHeDr0Ur7zxbX/FMg2WfbVjji\nkFWirxUOCyJyBvhbSqnfut5t+XyAiPxT4GallM86bIUVPm+x2rGssMLnCIWvyJcUosC70eK6X7ne\n7VphhcOGT1m6wgorPDXYQIu/noEW2f2/aF+YFVb4gsJKFLbCCiussMKhYiUKW2GFFVZY4VBxZEVh\nN920qW599glyNSHNO0xmwjiHvYmgZgKAUjCb/5ZKGSJ6t9fpqOJvfQ8s7jP3KssgVylBRNGJFFHx\nr9NRdIpbZspct7jeYGZtMNVMsDecdp12m2zY19vnpLM4oUptr17bFqZM0y8RhQilfiql+5fn+t8s\nF6TFcsc8+zbodNS8/VI8526k6Ecw6M5IOhB1YmSWA6A6HaazjL1ph71c2Jvotrn9sscJlJ9/mzaY\nZ2DKcoUH7vvpyKLf9jn3PjNe7LLdts+vLeqdzWR+n4gek26d+Uwq10fRDJFy+3zfit2e0nNxxobd\nJ6VEj5Ga5+qD+z7sfnWc/tvvxG6Pi0ufeuQJpdSJpRri4EVyo9pl0uraM+y8Vyn1yoPUdz1xZInl\n2bed5D2/+yYe2l4Exh1lHf74yQ73n+uxO+qRphFZps9naTmA7nivS38wJU70ZBTH+fycucdGlkaM\n9xaP29y7sZGxPpwQJzlbiWKvKCadSule93eW6tk3tc859dptakKSlK9N03DA4Lpr7XNxMrN+58RJ\nTtJVDIrL93LdzyyNyNKInVGP3Z0md5WirDj3PufgPXFOkuTEyUw/92NTvnhL8aLjU+7YHHM8OU2S\nacf/az3Fhb0LfOrJPvdfjrj/XK/y/g2ytDPvf6g9pu5F+3Ub7Hdpl2G/N9995hmU2+Efc2ac2GX4\n2p9l0XyM9gdT1jey0vMy5e2MevN7d3di7/VNMG0y19pjAxZjwu6DeT7u2LNR9x7MMw2N3WT+XGeV\nZwvwjr/4DY9WDi6JXSb8cHR3q2u/Pf/tmw5a3/XEkSWWySwrkQrA6fUJSaQfyf2gPTqoDtTxXpdp\nKoxbPD53crfJxSBLI+Ik95IKUJqEbLiTvzvZmt9tCKaOSJa5Nk2j+UeapZ3KRKP7tiAXWEySG8NF\nu0MTuSEVe4IITeimjPFel+FW2V0kTXLGuWKUdUhzIZtdI0mO6/umF9ib6uOmTlOWb9Ix/a60NTCZ\n2ZO9Syrzeop73efpe6Z1ffeVUSEXi1RkNGNM19tPm1RAP4vxXnf+D2C4lXqJ1CW4dP48Z1Z7m8my\nbuyFxsHGRua02xmTaVT9lmoIbIVmHFliyfLFQE+iGc/ZUAy6G5waXCaJ+vQjuC/JefzssdJ9hlSA\nCrm4g3FjI/N+VD5yMXBJpdRmzwq3DdxVcN110ExEpQnQ6XMc58GJzBAoLHYrpXuTnI0hZGnODnFl\nYrFJxZSZppF392ImSvOuRttJiVyyNGKcK9K8w3bWZaO3xzTSO5Z8NiGddUitMRKXJsq8VI4PbjvN\ns3B/+3bFPnIBSs/U1xYX9m7Evt9GapGvjGb00pzJCEaUn1eIOPuDaWk873y6hxom3HTy2rxOu72p\nQ3ht+mHKCY159/nZZZlvsC12dmLiVI/DwyYX6UDSbynWu3qoVX/OcWSJZVysRg2pbManiDsDIulx\n6/oFRlmHfgQf6+5y5sx6aaLqpYsBN6H4MItHaYvGQttqG2kaFeRTXbHtB/Yk65v07FW0b6Xsu9bA\nLreOHF1yMfeYZ5FOZS72mN9T7Armuxcy0nghovGRio9c7F3KNBXWRnq1OkkiRiT0B1MgI05njKdT\nxjmkuZCrKXkRAzNX0/luZWzpVux3mXQV6VSqIqmCxMvtXIivbPGULYIybfY9SwN3Uk5qyM4Vcc3b\nXUz0ZcKL9LNKc47tZFwl5loaVcjYxpzksnz+rDef2OPYKGM7HXAuPcb61gQdDKGMOhFmaHfugzvO\nTTvWtxaLkDbfICzehenzzgiSpMP6sJ1OZIUyjiyxXJ3ARy92ef7mjFODPQZdvcLKZntsZ/qxnBrM\n+LMnO9wQ7/LwuWSuA7AngG4wRmJ5ZXlYaLNbMZOs7yM1E19ptRgvZOg+nZGv3LZwJ7AFcs+xMkoT\np7N694lzDMz76SaKSaKPT5KI9cGkdduTqPpe7RWx2W25k7hBqJ1GnwAQpzOyNJ8TqH2N3ec61O1e\nkkQT3A6xdwdlrsmynG7SZZLodkySiG6ivKRi6yJALwBA7wgnccTVYTy/37TH3DN/JmYcOXqvuv7V\n6hKte40Yz4i/NIl6xnKgPr3wYFHniKcluYjIK4GfBiLgZ5RS9zjn70SH7fkzwA8opX7SOncG2EF/\nhFOl1EuL4z+MDrt0sbj0Hyul3i0iXwfcA8TolcI/Ukr997r2HVlimU473Pton+2bU57MjvHC4zts\nxVc4v9fj4t5ClnxykLMZC1vJmIeuZFy+mHtXgi7cwe9TkLaBUWz7PrA6LEsCcZy3mshC19ikBGG9\nglkt+8Rcphx7sgwpa+tESTbUUF+3PpiwXkw2STG597vQjzSJRNIl7gwAiKSLDgZc7p//d3lnECd5\nhbwr4kKjqD42Zedqd67Lm59fwujCbofvN1TFQZX2pDnDrZQRCdeIUcPOnFRcQwJDAvb7Mtc9wRqT\nUURyasb6xrhEQlnaqbzLtsr+Uj+z8oLIJWSbVJqgd82WMcQIvDusJcTOdeiIECctF5s1orAiv86b\n0cFQzwIfFZF3FTl+DC4DbwD+aqCYr1ZK+WLv/ZRNQgWeQKcu/6yI3AW8F52ML4gjSyxK6Q/w4XMJ\nV7KUcZ5walBWTp4YTHnOhiJXE4Zxn624y0PJHmcvJt6VpgtXkb7sALVJpYlQ7I/WXhm67WgqYxni\nmrcz8+903JWoTS72NfpY/c4lJJuvIxUDY7VkytL15vQjRRLNSDoz4miAFHaqUadH0slIohn9qEOW\nlj+TkCjLtMMllzgtW3NtJYqtBMZTGETaOnB3FOsxdYBJLLRDbhIHmWdiyMUlFddiyvQBYJuc9SEw\ngptOXmN3EM8txMw99v+mnT5RYbkv5fcdsnh0Sdi3EHEXPbYFmk0u60Ozi1x8bwd5H08h7gYeVko9\nAiAi70Sna5gTi1LqAnBBRF510MqKxG8GnwAGIpIUyey8OLLEAgtrkCztkE7H3HkDPH9TD/bbhymn\n1zdZ795IribEnfMM45StOOGhJOWTF7tzUYYpK2idtIRZ7PyefZKK+dsn6jJtsZX5vgnAp2z1mRG7\nE5mtJK5biZpn5epi3Lp9ZTSRir0bdMnO7avZrWwlOZH0IN3V53sDBt2dct88zyS0WHDJxYhjzIR8\n85r2oSGG7UxbySXHU+/u5SBwCaXN7rWOVNaH2dxcvF90eytRc3KJ01nlnqY669oXJMoaMgmNTbsO\n2+Rdo6ov8xndfI5xk4jca/39VqXUW4vfz6SctO0s8LIlylbAb4lIjs7q+lbr3P8hIt8K3At8r1Lq\ninPvXwP+oI5U4AgTy2wmi4kpi9jZidm9acz4dMqLjy8GmChFJL35KvbEYEoSdehHivuLXH9zu3yf\ndVKLFXXp+nQxWflk9/sRk9hoJe4qiU3aiyrcsn2TSppGJf8HewIOtcGGK693ScXXpjrfh2XQJHbz\nIcvKSnYzIfcjGOeL33v7bKJv0eHrb/MEX9W92OeWtZBaVsQVQt2CDer8phbEsPCbaSkWnhuSHC65\nSAeSpLWz5xNG9/EU4CuVUo+JyEngN0XkIaXU+4F/DfwImnh+BB3L7m+am0Tkheh0Cl/fVMGRJRal\npDI5XHqiz8cBSEnzAfAktxybks8mfObqlFGmRWXDeMbzNwEmc3KB+m1znbWLWdFW9Q6W+MAiwfl5\nR6G9H9hbft9Ow5Wl220O1ZtaxGivIA2pwEJJWrIWS8tmynVwLc6WgfYHiRjnM9JcCquwCXR1FuBc\n7bI31fUbq7DSTsljFRfSmRnLJHPfuULsYkhlO4XtVI/FXcdPpI1TYKlf1tiwzXzrx56to3Dffdnw\nIksjsiQnTcrOjFqMtz/xkSumanOdvRBpO2bK53LsBKS2Q6bvnqehOOwxytlATxfHWkEp9Vjx/wUR\n+RW0aO39Sql5qm4R+bfoBHDm79PoSNzfqpT6k6Y6jiyx+DDa1nmNPg6MpykwIJ3tMcoiYDG4TvQn\nnOiDzoOkyaVp294kDmv7gdnX++opXRPwS3FX/QbG9HleZqI91EGbkLhy7zr4ym5yZLQV3nWTqY9w\nq9eUzZMrYrs0YpxPSfMOe9OONjXuatLLp7rPxo9lvoOseYeGaNxoDMZQwK73HIsoC/bEDP7n6poW\n16EtyYbIpmmnYROM+dt1nIRFm6umzfWizqa6m8jFB7stCzRbJZp7DwsitFfe1+OjwB0i8hw0oXwj\nOi12izbIMaCjlNopfn89OkEcInKLUurx4tL/FT0VIiJbwK8Db1RK/V6belbEQtnp0XwoDwOglfrP\nWl+sRm9dT9lKNoiky6B7hSTqA/BQUnWm9ImGmgZym12Le60RJ7WBuytxdRZZWg57csM8wsp0Ti5Z\n2vGKr3yE1aSPcPsCZYKxy9V9rYY18TlT2n2NPSvaLO2wneqdQzrrkM8mqCJwlHGQBK1gd9tpjxfQ\nZs0uQua9powLhYTa7FLaEHXd5Gk/Xx9Rz9vVwlhCX+fqO6pjr0n/55/QD4ZlyCVk8LF0nfvQkT6V\nUEpNReT1aOusCPhZpdQnROR1xfm3iMjNaD3JEJiJyPcALwBuAn5FZxanC/yiUuq/FUX/uIi8BL2d\nOwP8neL469HZXX9QRH6wOPb1hYGAF0eaWMwq03Z6tEUcDwPjPGWcd7l1PWcY56x1uwwiHXtko7fH\nMM65eRDRj2bAVS5f7Ffqcb3D25oaG7jkYoti+oNpiWDq4H54toOhKTeNo8pk2O/CINdhULK5wUPZ\ncdGtx43b1GYlbSu9wUfMZVKxJ1Dj5OdO8iE9D2i9RtlBcuGvkOYyF1c1wVdvXf2hCApNurQQubhO\nlqUx4YmEsGibX+xZB5+Zd53ero4Q24anCbXRrdfUVfdMfWJaH4mGHEyfLlBKvRt4t3PsLdbvc2gR\nmYsR8OJAmd8SOP6jFCnG2+LIEouIKoWjmCRRyaPerN4vjLpspznbGdy2HpFEKXCeSLp85uqUs7ta\nfLYVw0tumvFgd4/HHx+U6jKD3XZEtOvZL2yCCoUZCSnHXdjnd0Y9NoZFPK3CUXAvX3xwdn2hckNm\nn03wrUjrJqf5CjzLWd8yxxarWNvU1xxzoUVeecnzHuqVrN1EBQnF9DNxdqghcdcyYyB0ryFanygu\nBJ8HfkinZrcfbM/7ZuOSNuI1H0IhX3zRI9x7QubJZd2cq9wv6wPtZ3sY6MhSyvvPaxxZYoHFgBmj\nRRuTJCp50puJKUsj7k9zzg2nbGcJo80poPhMQSoGz16fsRV3eCje49NXuhVlrFuvQdnJa/lVZH28\nKL9y3IbvAzVy8+R4yl4OO1e784jP83pbWJjtl2Dm1zqkGNJFhXRMWZp7RTZJkjsmp+0wHzN73eAu\nxbRzBx13KqTTMm2sQ929obaBXxTnE0n5yMUHX5TkOJmxMyr3YXcnnvsMmfa3ia3mnivtrOLyLrZO\nnAvtSMX0wedYutMiwvYK9TiyxGLyMtjkYmMhrliIELI0YjvN2M663FzelPDC4ylb8ZTtrEs/SthK\nJjyU5HPRmL1r8YbVryGXOoR2Dj5P8Toi8BNAR/tWwL5IRbfP35f9iBfcgJZt0Fa2bovB2sDe7YZE\nm75wOvuFj/ybwsP7zIRD5ALVd+W7tup53ymJO3e3eyXxaJOpcmhnVNENWbsvX5mhnYpBSAzsllH3\nTA8K6Szhef95jiNLLCKLlZC9CjWIPStF40x572jGc29OuXNLk9NzNzOesQaD7g1s9PaAlGHcZSuG\nh5I9HjlbZqEQuWhT3Kyov/wB16Fu4DeFj6mz1Texkua/G+A6Oy7qKIuifCLBg8IWzdhYxgfIkIv+\nv7pqdWOwtdGV2bqow0RoVQ5VUmnreFg3DtxwLsbceH04mU/Iu9s91kYZo0RHN06cazWqu09b52Tq\nc+F66vue587OwojDp/urg7nXl2fpsPygjhKOLLG4CH6EvolqR38E43yPO7d06PVcjcnVlGy2R5rr\nSenW9ZytOGIr2ePjZ7XYrLLqDMiRfU5dISuctmHx3f4etlLSRypgW6+Fd2K+sCg2ygpo//kmuH4e\nYLzvZ9oJVrT4z/zvQ93O0Hv9UzQpLfu+fe0MWd6555Ytf5rKfJG0bmVMtAN3uvc1+YykNWPI3Lux\noSNiLwu3zvGePx/NCu1x3YmlCKh2L/CYUurVInIc+I/AbWiTt9easAIi8ibgO9DLnjcopd5bHP8y\n4OeAAdpS4ruVchO2lqFUlTTWN7KlxBWPnB2wl+8xzruk+YATgz1GWX8ech10vLFhLPQjxb2P9iuO\ndga234UN14Q0hHn4EKf99qo6FETQDhLoTja25ZivPhttRHhuQEJXQVoxmXWMD9wglm1MWUM7RBuR\ndIvgkyYIZbOxg73brZqJ1xs3GBxmGKDS/R7nyLoxVEck9QYAi/dkIiQD7G73Gu9127qsb5Rdv93W\nkC+Q3R5fnS6ZHPZuRQTitvlYPs9x3YkF+G7gQbS9NcAbgd9WSt0jIm8s/v5+EXkB2hHohcAz0LFu\nnqeUytGhCP428GE0sbwSeE9dpXZ+cnsAmYFZmzPCmiy0BdgetgOlwYnBlGcd65KraRGGfcy9j/oz\n8flJJRyxdtnwMeXgkOXdme/j1OdnpWOuT4orfmkLX7Rb17ppfjwtmyD7nO5CE1Kpzz7SLf5MIkXU\n6dEtPoeo0yOJFoTsIy8Tkn4e98wzKZnrbHGjT3fgPgMbdf5CvvLs56TbXm7bfn1Kqgp+//s2xALM\n9S3u/cuiNtCrx3zaPO/9OJu2XRCsUI/rSixFmIBXAT8G/IPi8GuAVxS/3w68D/j+4vg7i+Bnfyoi\nDwN3F7kFhkqpDxVlvgMdKrqWWAzq8lS0jdP1+OMD0ukYgOdt6mvu2BxzY/8GNqLjKBGiG86iQ7GP\nuf9czqOPaB5t8hCH5SYDvzd1VenpS1TVFHXWjs9l9FG2BVCdqWq1TWViKFn+BMjFXBtyuvP5VYT8\nPgz6ESSdmd6l5LovkXRJOrM58dgIifvc+n16Dnt3aPpSeiaBKA1u0FC3bp/i2hYdtTLzrtHZNCEp\niL8/mLKblhdNJpqFbR3XZKlW1y7zt6vPc3fhBvazaRsCaUUqB8f13rH8c+D7gA3r2CkrrMA54FTx\n+5nAh6zrzhbHJsVv93gFIvKdwHcCJMdPVs4fRO9w+WKf+1iQi87x0YM8Q6K4WAWPuW0d+s+cECdX\n2B15FMQBE0jwT0Sl0Pwt226HDK9LhexDaNJzlfXLPMe24fp9q/dlRDiuP9Ey2I8e63OF0m6yhQWg\ni9BOt04UFArv4/r32M6a9vWtRGQtxIRNATftxWEbh86n8h3rIJQrq7CnFCLyauCCUur3ReQVvmuU\nUkpEanUly6AID/1WgPVnPU9Vw1SEk0e5HuE+v4jLF/t8YDTj3M0po2ydF9zwBLccO0aeTfjEFcXF\nPU0kNw/g5admPJSkXBh1GyfhOjPTkPLfPZdl0TzdqnuN17yzWOn6wqHESV5RcC5raWTD97zLbfEr\n8kMe1u51NkIk5sYKMyFdSn1xxHGmDnPOfd56ld4J7lLa6lHsyc6nxPZ5iLvm6yFxXoiYM6tf5Rhu\n5XLSdBFY1KCbqFLqgibP/FK9Lce2e62v/cExaevsnmbhWr5QcD13LF8B/BUR+UtAHxiKyM8D500w\nNBG5BTDxaEIRPR+jHLqgdaTP8V53EQIjy0s7AF9sJB982+sHHh1wJdtjOxtwx2bGKOuQ5ovzJwZT\nbt/MOTXo8cdrioeulBWsQZFYze7E6zTosXBzPyRXjOIjTbd/UB+Wxm27qzgN1d2GVNyJLnR/k89O\naWL2kAjgDenSRq/lIxj33uB4CiiQQ3GvmvSBuq79rZLLYzIgpguMC1fEa9ph2h4iFLc8N4p0k9Xm\nol2d4AIxdN8yYXT2AxHoxoe2Tn5a47oRi1LqTcCbAIodyz9USn2ziPwE8G3oHMvfBvxqccu7gF8U\nkX+GVt7fAXxEKZWLyEhEXo5W3n8r8C+WaYs9eEMD255IQ7sYWHwwZ86sc+nyhHOnU+7cXAym2zdT\nbtsYEEmXU4PL88yUZ3YUn75SfR3uxOHGhNoP6jyL3TAqdQmT3Ha6cOXbdZ7nbUjFbaN7v/1M9iO6\nsoNQ1iFEEO4k6MbtCl3nwvWhMF7uvok5RGyuwUNtfQ1Wc2YB5iI0/kwGSTs52Dw0/civEwo9RxPs\n03ZgbkMuoV3wMpEbVtg/rreOxYd7gF8Ske8AHgVeC1BE7/wldPrNKfD3CoswgO9iYW78Hloq7m3Y\nuxcb7t9u8Me6FdClJyI+OOqxffsuL7lRcXKQc2owYRCdmudXv3X9Ckk049Sgy1aidy9G9+LzebE/\nOtuZaxmzVncStmGb9/pWa254DYOQpZIr3/aV40Mb6xyXVKapzCegNn4I/QOOfpvkbdiRj92IDiHY\nE6i92l8flknOJRjX7Hl+nUd81kgwjm7MDtJqYMfT2017JV2Ku0sxzpE6dI5OAWwyTdqWke5z9NU3\nKawu695vSAdZNxZC4V5WOBieFsSilHof2voLpdQl4GsD1/0Y2oLMPX4vcNcydXZ7s3ka1mXQNGH5\nVt5nLybs5Sl/9mTE+b0eg+6IXE3Ym+5wfk9/YDozZUQ/gge7KZcuLxwqXVPhZbyLvcrNuN6j3zcp\nhc77Pe04Ia3OAAAgAElEQVRbiPJcoplbTZVNhEN98GFMe6KdW8cVOe+BUs57mHqtwnxttsO7QDmM\nvu3FXQf7nW5sZBVLpzq4pL7MJFkXasgsPMxkbk/4Brai3hvHa6pTL5s+mn5uDCfsOGmYzfM0sftc\nBCNIH0AZ76ZkeCohAr2nuI6nC54WxHI90IkUN940Xkr+vJ+otGZg71ztct+lKTo52B5J5yqjSfn+\n08cyhnFEP4p5KEo5e7HsrT+Pv9Ry225/ND4ltq9PbeESipkEq7qfxQo71G7XSdIllGVjp7UlpH4R\nuXnQ9ZsbV8oOtd9DLqDzx7d1sjMe4z4nVp9peMjyLhTvKxyzrewYW0dkY7rznYPZSRhFfZz4gl6a\n9vnLdH3H3L6N9xb1GbjhVppQ77MSHldPd897EXkl8NNoB7qfUUrd45y/E3gb8GeAH1BK/aRzPsJy\nTC+OvQR4C1rnPQW+Syn1keKc1zk9hCNLLFFHsT7MgkrUpo92HnK7xorFnlSyNOLCCO5Dk8tzNxf+\nHwDP2VCs925ibzoiiVL6UUI/Snn4XDmCso0mU1vfh1O25KoaCjQRTYhQQE+ASXc6nwTLzyPstBZy\nAAz509ShzWRT8ueJ1MI0fFIQS6/HoDsjiWb0u/oZxWmYpKFMLmbys3cejW1K/c9zXqeVCrgi9gq0\nx7zfpmcxJx/PriWOy0YtDJhP+DapuCbnofbYbfaRo0syZvdSybPTcifS9vn7cNjkIp3DUd4XpPBm\n4OvQ7hUfFZF3KaUesC67DLwB7dPng+uYDvDjwP+llHpPYVT148ArGpzTvTjCxIJOD9st0tA6/hx1\npruLa2ZkadmR0qd4tcsw5DLOY+46riey52wojifPpJvPiONTwHnSPKMfxfS7KZ+86DdJDpmxhpwc\nfROSHQjQ9Yb3xZJyyzVydMAKQ28+Hp+lWphg3HpCH7aPHNugksAsooiIUMQHm17Tv+O1xrb5kKVR\naZdilNelMrrlicWMO7ev1Weqc+K4BGOXZ67V103nidlM20IEZPrm21WWdhXxYpzbuo5y5OHwd1M3\nFutg6mprrNIUhHMZuO/raYK7gYeVUo8AiMg70Q7kc2IpsjteEJFXuTcHHNNBf7iGaDaBzxa/vc7p\nwAdDDTyyxAL6A2yDOtPjSv6UBtGHIZe9XJPLi45PydWYbLZH1B2Sz/aKQJb9Qu/SoR8p/nRnurCs\nCbSrTT/qJhcbdQEKK9dOpfED9D2zpt3RMu09bJidTD9ShZinXmTaVjxZ55Aa6m9TeebZ2+PZrqeJ\nXOr8XOr+bkIbSz9Xt9ZkRh/Sn/l0Jcs8zyafmeuAm0TkXuvvtxZ+eKAdwD9jnTsLvGyJsn2O6QDf\nA7xXRH4S6AB/zqrP55wexJElllkxDzZ5nrtbeB8W5qC+SbCaIClLIy6lEfdNM8Z5l1G2xu3DJzg5\nGLEzGfPp3UV642E848tPzNiKuzy0DdueXYArJw+F8/CJHnyOZK284K2djvkQfRNb6Pk1xfqyg00G\nzY6tti8bF8pLhMZBUrmWWDlgWzH5RYe+sCvLkKOtwDeE4S5+fOPVd8wmk7oUwPaYMGMopNC2RWal\nuto6eto6P2fn5fqZ+Mou3R/czfoja7dF9frDIxkRRdRrrS98Qin10kOrfN6GWsf0vwv8faXUfxGR\n1wL/DvgL+6nnyBILHA6p2LAdwcJlLs7tjmLuT3PG+ZQ0H3BxbJT7GsM4t4JYztiKYx56Eh6/1tx2\nU1dTdsAm/Uobqxldbl4KEWNPbD6E/GDK4fE7FXL0tX1ZAwTfRK/JZPFMTYRqYxlWl7dmGTQ9Fx+5\nzNvU6p1Hzv+d0kLDwN4h2NEVfO97sYBY7DQr4YQcT3+7Hh+hVP+u7lhCFo0+tEnJULdAWfzu1BLx\n0wQhZ/E28DqmK6W+Ge03+N3Fdf8J+Jn91ndkiaU+qP6CVHzRU234LHXsFZhvMkqdgfzxNGI7Tblz\nq8sdm1qOfKI/4ZZjx9js6VBpcXSeYe8qwzjmk09GPLgN5aRJ1V1HnYOjry0ulhF9GHJZ/C7vKHyT\nmjth+dpTzhpZ/yx9qK7AF78r5sRd4zhaNkNPuorMmnzb1m0Q2iW2Mw1eTpTjEko1tEvkHbOL8+X3\nFXpXtj7G56tUCerq0QUZGN2RLyiqDZ+1X8jAo25H6EOd3u9piI8Cd4jIc9AT/DcC39TmxpBjenH6\ns8CfR7t+fA3wqeK41zm9rp4jTCz1sm7743e9uOsIJmQG2hQjyvi6jPMuz9vM5yawMk0hiomky1aS\nk86mhey/LBpru5qu+3jqvNX9CZbckOxl/Y+7o/BH+20OWLkfUV0T9pPvHpqND+pgjylgHmLH9Qty\nc6nUyfx9hAL14sUmNFnj1UWmriOXZWGLmL3WhIHv0DVIabrPR8JN9ewLhxTSRSk1FZHXA+9Fmxv/\nbOFA/rri/FtE5Ga0OfEQmInI9wAvUEqNggXr1CM/LSJdYEwRsLfBOd2LI0ssEF7V+CYOexKoW2nW\n7VRMOfZvO4HVztUuDzJlnEfoXeoV/V8Ol8ZX2M60nH8Y59x1fAbEc3KJk6jWiqtuMjxIID7fxGc/\n14OSgLtbOaxV5V7ujwW2TJtCbXF1XPYkVxfWpnK8JRHUkYq7yvenZShPwK4IMqTwNwg5WNpwjQxs\nCzZz3u6Lry5fnLE6cjHn2yy67MRznw/e+Eqpd6NzT9nH3mL9Pkc5hqKvjPdROKYXf38A+LLAtV7n\n9BCOLLHMVFjn0LSqt1EncmoKtOebkNMk5093ACLSfMBdx6+wN+2Qzhavaiuezs1k+1HMfZcgKyyX\nbNJzveHdNoUCCi6bGdLXn1aZHRt2K3X17u7EQQshG1WCLROhne3TwFXem/t8Zfuepx0XzUzQ3gjS\nNcnamuA+u9Dz9vvcuBGu/TmA7Gfm1u2iKUqyqzMKGXq49ZVMhkf1C4tW/kLObsyI91zDhP045zZB\nhGWU95/XOLLE4sMyIg4zsUG9CKlaxyLel7m/rLDWuoo/3aHYuQw4vb6Y6E4NJqz3jhN31og7l4AM\niLmPqfNBzgiJqUybfW2a37+fnCUtxDG6bf6y/eKOxUrbnN/didnd7tFNtDOinWzMRtsVp49cSuc9\nSvNK3pxsOUOPEEJiVB9B6v/DkaR9Y2Du2NuC+EP6MeM/47VGy8pk5xK6uce2CvPBF3lgfUiJXHZ2\nYjbISu2z29VGzGqjbV6gFZpx5ImljYjFDadvJuFgIEfPpOybeEI7BNAf3OPXFHrn0uH0esawlzPo\nDhlEQ7p0ybtDTg0ukOYd+lGX+6KUc9f8pqelVXpaJRVfFFnQMZ0OgrYRdl0ELdCyiN3tHmujjEkS\nVRz1DA5LjNFGXGberU3OcVIvGppfF0jVsCxJ+RxkXYusRdmLMd8q4VZBEH4LL/+4chdLrr7IJRR3\nl2KTiglimaV6XBh9SJZGpHHVQda0q80zDHn/63PLR35YQePIEouayVI7FHsCsEN3+FBSYNYE9/OJ\ncsqDPOfMCLZTuDOLuWNzyqC7QyRdIumxO7lcCmL5spMd/vByxJmRn1xCOSpgkfnPbnfTpBNa9frC\nou/sxMRpzsawfK1PTNSkCzp+aswoSYrnaK2IneCZSWm17qzsk5xxrua7lVxNICr8xZacRw4Scr0u\nbYA5bkgqpN9rI4byWTlCOYVCHTG7id6AucNuRUfj6A7rTMbdttpY7HBsM/bOnFR2t3vz+jY2Mr2j\nodxXl3DrTPB9Ju+HCRG1ysfyhQ6l9qcINh+pTSq1VjuhtK8OqfitePSksk3Oxy7Bdtbl4l6X2zd3\nSDozLo7L+cVPr08Ki7GIh67Y/jK9WqsXQ5R27Kcm2GHPQ332HXezWPpIyFufk0NmuJV6xXt15DK/\nLu2wO4oZD1PSvMPetKMzSBbI1VTrtXLRYV8Kc+OmydFnxVUnJm0iFVPmsvA5yLZZvZsJe30jq4xH\nV4+Ypeb/xQRuRJTrW/vf5ZZJ0Ox09LndUY+dnbi0O9Tk0tO7l4Y+hvSh9oJrtJ1w08lr8+NPc3+W\npy2OLLG0gRs3y87vUPEHiMuTSR2alM7VgR+RJTkPTXO2U8V2lsz9XQzu2Byz3jvOM9Z25scMuZhJ\nuW5y8UXntdtb5x+xDGzrutrUsoE8LmDtpjaYTzS6bVVrqLrJZjvVoq501iGfTeaJvlr1o2UCtNI9\nnr60JZVld0V+cim3OXHEdaPtZL5rrVv4uL5FNqmsjTJ2iVnfWrQ7rGtbzuLNJRUbu9u9OanVfV8+\ncjHj+fL5PmujjCdY46aT1w591yKi03UcBRxZYpnNpHY12SYp0vy3a0XleiXXkJCNurAk+kPosZvM\nuJIt/F2SSHHH5pjjyWmSWYdBMuTFNy6cYh+60mktrw8la1r0Y0EqoTLbrrDdPOl1JstzyyBP8iuj\nRDeTjis6cmHanmU5e/meJpZcyNV0bg0WyiBZpwyuI8plCeUgsPu9zI58tJ0goxlrhc/IeOjPbeNO\nzIZU0vMdNnf2ODbK6GU519KY8bBbynnkkowpq06XERpzvnwtvTQnPd9hN6knGNvAwSbFzSd0+7dh\nTi4HiY58lHFkicXAlw1xP2WEdiyHYZXiHnv88QHpdMx2Jrz4eE6aC9nsGnH3RvLZHtemU9K8x23r\n0I9m8MVX+NSDN+yjZ9V2+BTV0D6hFbQzX62bxG2iLocsccipJoUxaB2B1rN0CClWbOW9b+XfZElk\n56xvI/oKwSWMUD6d+a7ac22ofTbJ97KcSVIvYoTybiPLcnaTHpM04uow5tpGzCSJWB9MWscVc6MC\nVBxJrX72B1OdK5Zy9k6Tu6WbqEaLzVI8tyynm3SZxBGTJJr3/4kLa8C1FbHsA0eWWDqdshLNJRh7\nVRNCSTka8Anx3ucZ7HZ4crt+3zXmgzgzErbTiCezYzx3c5db1y+znUY8cOXY/J6bB/DyUzOS7mXO\nnFmv7BRs2Cs8X2iVEHwr2zZphyvHnft9RJFlERtk8zY1ieXKimT/dUk0mxtEGKSzDmneYZwLO1e7\n7NbolOz22+PIlxPHFqUuC5+fTNO1BvUJr/S53bTHNTQpdPErmd10ALujeP4+RknCZBShhh2Ob40r\nz8BV8Jv/sywiTvPKTqjNzrjNpO+LbrA+nJTeQxznPMEak0S337730HaXHeg0RMn+QsGRJZYQfArg\nxnsOOPCqeVs6FYIJ5SnZToX3fVY4txdz23qVNG7f1KKIrTjhvniXBx4dcOmJQeW6Jqe30Ifuis/M\ntRWSWHJHWLfSNRZmbfU8ddfZ8cLc1MQA4ymtSMXAjXDsOviZ9rQLZROIjBzYZZes4Kw+7+7EZFn5\nHfnQTVQpgVeoT+vDbBH7y0qWF8c5u4OY9Y2xV5RqEIoz5tvpmx2Jayyz4fFdsgnMNfYwMKSyccyU\nl7M+pEi0do3dQcx4zzZSiGoNVVbw48gSi4hfF2IQks/vF6FJok7GbBNMk039Q1c6bKeKl9yoP/gk\nmnHX8T1ODk4CsBVfIIkGbCXXuH844dFHFna/tg7DhU+UYn/shlQ2PHoPc3/dBLgsmpT67nXzv52J\nCsqBETWZlDHO9T8zSYUmZlcc5vqR2A5+capjX+1YDrbBvlo6I+95J/xIWTxVFf3Z7fOhP5gyplsy\nh7fvMav8rUTNCXkcKbZLk7O//8A88Zh+BoHwNlZ7bT2KaZchlbKebeHzAiYU/6yyo7VJZRDpRcU4\n0sn+doCN4eJd2ouog3z3JYgg/aMx5R6NXtbAkEvIM70UfLJGVBOyw69DKOruMtgdxfMV2qPAlec9\nyZfeqLh13Uq5C6x1uwzjGc/fhK14wseOadFYGzSJm9zsgXUr8YM4StqWeb4wMvuFCY9jct6DVuiP\nc70jHG3rVAZ6ws1q+xCaVF00WcVB+76Fwstn2cL51XV8dUWvQMmM3jWYqLPgSrpqbhLc5Jy56FuY\nBA2h9Kz8RhMiGDjfo018ThrnzKnb7YMb2drdQZqUzHb7VmiPI08ssD/Ffd09rjw3NDGHFKs+MYlP\nx2H7p5jrP/5Hx0m/+ArjHJKozx2bZwH41JN9Rpku49RgxitPw4fjXT72yXpyCYlX3H48VagLrFi5\ntmkXk0a1ZtU2DNkk3bJYyBdJoN65c0G2tiOhHfSwCfu1XITyLsQVWdaVU043PCstGrbRuxbQxGv6\n5hMZ2WFczHVNdZs895MkKpEL6OdVDn9kUH7P7rO2Q8ukSc44WsQsWzh6+ndRBzHsOapYEUuBNitI\ng6YV67zMufhqxs7IsRbzWto0h9yf31+juP7UgzeQfdGIcQ6jrJq//cRgyqnBhCTq0+/u8sEHFuTS\nRh/SNDm7ZNDGSmlZcmq14vdMosvowxZJvtq/F3Nc97NDnIRDuDeRy7JRdl2HPnd170v94BKd3ba6\nXCfbFmGaBY5BUyQAtw0+1JGLXZZvl+x71jZ2RzEUeqJ0KvNdvw9Nu7VlIB1BkqduEfZ0wpElFl+i\nryarprqIp6FEVjaMbF3/9k/gJUsVT8hvXzRd36T36CNDsvQq2zenvOzkop7bhynP3riJuDNgo3ee\nJJrQj3b4n59c00RlKWJDfW0zObse9W3NZdvAFuO4ZrzuM2+bqjaSrve3L29L2wWI61TotsvWobll\nhnQnPrgh713YpOISiD3G3EWRO46rk3d4ld/0Xu0y3Wdh2mrIxVd2KPKyPlafnG/R/jIJ+aINrPxY\n9oejYfvWAklSXt3aMtZlYGTLRr5u/sVmkC7hoV+HNvc+/tgxPvbJdT58QV97YjDllmPHWOts0L06\nYjM+xR2bY25bh6/54mtsFMrZjY2MjeFk6QCUJq1rG5hVvdsn3z8D845MAqhy3Vo+bxOjrfuxV9+h\nGG82ko5/5b8sUs/q2d7JQjGBeXR5IVKxx5gpJzSB+hcvs8a/bVJx9URml7Lj7FT8jqB+onN/28/C\nHO8PptpSLdGWam65vn+2OM5+575dV1tSeToSi4i8UkT+WEQeFpE3es7fKSIfFJFURP6h53wkIh8T\nkV+zjh0Xkd8UkU8V/99QHO+JyNtF5I9E5EEReVNT+47sjsWN3tFm5Wx7HdethGAhWy7nge+UrrHr\n9a8KndAu+3C83N2J+dgn1xnnu7z8ZIdh7yrxxg6D9RvZnZznU0/2Ae3v8pVfNOa+YaZFBQHUBc30\n7ULqAhs2TUrmfl9AxNDzL1l9Wc/UF0QRFuKuXE3tlPeks6rPRakNmb+Pddc1RnOI/c/nIKKY0GTf\nJseOeU52JGJ7lxJ6Lu7O1Bd+vy2Mjsiu3+AgYe59hOIa7LRdJLXGIVmFiUgEvBn4OuAs8FEReZdS\n6gHrssvAG4C/Gijmu4EH0RkmDd4I/LZS6p6CrN4IfD/w14FEKfUiEVkDHhCR/6CUOhNq45EllrZw\nJ8taL2tre774MBdB9eqsq0Iy4pBJZluYyeHBP1lnO73Kub0BLz1xhVODC4VCfzEEbh7AK54x474k\n5ezFpFROXb+b2hOaUNtMDKF7Qx+9vRvx+eEYxHFeFXNFmlDzaeHDkpcTUul6/Y6bIZh3bwI7hhYm\nTVEXlhGHLTvZuk6JJsdJ1YCkPkK2IfXhVuo316+JdNyUvqJkQFHTvzpxdagu1yqtP5jO/X6eprgb\neFgp9QiAiLwTeA06dTAASqkLwAUReZV7s4icBl6Fzgj5D6xTrwFeUfx+Ozq75PcDCjhWpCweABlz\nryw/jiyxSEdVPmafh24Irt8CVGW7thVMnZOVkRm7IUNC+hRfOBUf3Anw8bPHuHwxZzsT7tws70pO\nDKbcsTkmzYXNeMAfr4156EonqNh0FdqubsagTkcw38EFdCRxXHUcrYP7HHwWXHa7Qshnk3k4fWMx\nZKdJqPMtMecN7HflkouvTW3Ipan+eTsajEXcOox14Q7x3BNe1+tPrez6Bhl9yGg7mZOLa6zh7l58\nhDjfOSTVSOJu/9qI+kL9tevKUh2Gv5fm7KaLJHJZlhN7jAf2hQ6Ia+ccxk0icq/191uVUm8tfj8T\n+Ix17izwsiVa8s+B7wM2nOOnlFKPF7/PAaeK3/8ZTTqPA2vA31dKXa6r4MgSi4uSb4THegbKg9F8\n3HZ4Dd8H5NbhOxbHi1VsG1KxFZrdRFW8k+sCXqZpxAcfWGf79l1ecqN2dDu9nvH8rT7r3ZvJ1ZS1\n7nlODISbBzH3JSmPnK166tv1LAix/PyaFM8maZOBnVlz4T/hX/m6z6h6jSXK8exWQIvB7O/cjm6s\nw7ks2mV8QWxyqYPrj2HEOaFslwa+xY6NOqU11KdfMOfdcWqej4lubCITl8uoxu6yCaWX5qwVE/Ak\niRiRBHcuprymdtfB9Ml1Em2+ryriNP1eG2Uc28m4WsQ6swnmOuAJpdRLD7tQEXk1cEEp9fsi8orQ\ndUopJSJGsXU32p77GcANwO+KyG+ZHZMPK2JpCVtBmqU5adxsCVOxwDEBAgMTfzAUu/Nx2jJnX16Y\nJpn/aDvhQeDCaMzdz5xwYtCZR/TN1aSI8hvz3M2Mk4OIT25c4wOP9Oe7LtfU16cfaopaa663raJ8\nH/B8ArH1Npby21gTpbGfPIJ/2+lsOzpWmEy1l1/U6TGM9+hHC8J2PdJ95s52G23dwIQiIGPSnDyt\nVF7mJ5iq4UJ9UEzXg95n6WSevz223J24Xba53+TxMQEggXkASlOu31fLb+7shntpckJeFj5rPNPv\nSRJxtYiVZgwGrhOpNOEx4FnW36eLY23wFcBfEZG/BPSBoYj8vFLqm4HzInKLUupxEbkFuFDc803A\nf1NKTdDitd8DXgqsiMWFmon3A2wjVzUkU5eBsk7W6/Pqb2OCayzVzERbtzMJtj3OGW6lbAwnZGnE\nR+bDccodm2fYTiNGk4WY7MRgyonBlH4EHzqf8fjZY95ydV/LIffNsbrrQ1iIQ/wy+VB4nBC5+55p\nv6tD3wy6M+LOGlzb1WUPBiSdq2zFsGVFynXNdu36fEEz54Q40DsV15y3znfCjjJgoyoWC4vUQkEx\nfZZOG2RaBGa9w1DbQn00O5jjW2PvvXbfzb023Bh5rue7753X6XIWf/t3faY/Or1xTjaI2N2O6SZq\nvhA4VIggyaFMuR8F7hCR56AJ5RvRk38jlFJvAt6kmyOvAP5hQSoA7wK+Dbin+P9Xi+OfBr4G+Pci\ncgx4OVqcFsSRJRYXbT5i/XvxUZq4R67+xEcq7kophDYTo20KvR9nQ9cbfUEufZJo0eZhL+fZGzcR\nSY+t+DG24mN8KNnlwT9ZX+y+HJ2Uz5/H24ak7K8zb4+zSs/SqjjNNzEuyNY/4Yb0F0mkWOt2iaSL\nunpJl3XsOWwlOUk0ox8t+tgmvEmln857cseEr63u/fsJjGqTS6m8xA01szi/QVZa4IR2RnVl++Bz\nivX5yNjPw0cwTbDraWOJFiIYqLdmvN5QSk1F5PXAe4EI+Fml1CdE5HXF+beIyM3AvWirr5mIfA/w\nAqVUndL9HuCXROQ7gEeB1xbH3wy8TUQ+gbadfJtS6v66Nq6IxULTADZRXW8oFvTjZMp2qj9U433s\nC4MBiw9nLrqpUdKC3xO60t6Q70JAVxOeMBbk8tITWgdw63rGif5tRJcfg2nGs089j7XuGZKoRz/S\noWDqJs0QfD4MbowmWBCMS+7uxJh0p3Nz2DJZucYF1efej0w8tS5duqhU71i6+Yy4M2AYz9hKOsXu\nzv9e3Xp8+ram5+IjmIOY0vrKsHcrSVdZFnEKm1zaTMTuAmkZM/KD+obsx+LNtzBx/14Q26SVOfa+\n0Dm8IJRKqXcD73aOvcX6fQ4tIqsr431oyy/z9yXgaz3X7aJNjlvjyBKLz/O+Du4H2e9qc1QTgM9V\nRPvubyMjrlsd1X/09bLopsnfJZe4M9CT7VVt/CHTlDgacGIw5qtuUcAuD59LvGW1aaMPJRm+CTbp\n0S24Dnu2r1AduYQQdXo6AGU2KR1LorJIx7cbc6Mk+Dzb94vQzgCaE3i5aPIg95H8fuGSzmH44/jK\nbgubKELRBEI76BX2h+tGLCLyLOAdaJM2hTan+2kROQ78R+A24AzwWqXUleKeNwHfgV5ivUEp9d7i\n+JcBP4e2sX438N1K1VPHEunNAQozTB36O+kqBvkiAJ8dK8kN4+GuRuvIJ/TRtBnoIVPlNh76izb1\n+EAaFel6p7zwhse48RkvBGBbbfPH23qiHcY5X3WLJtePnw2Ti6sH8vsvhMOCzK9xRZSe5+QzfV78\n7bHQs47lswnEMawV+qMoJs8mRWbJos4SgZTrqvPePqiT3X7FMG5bdkY9NuaucDmwCDFvm8X7Tcv9\noYXats1njv9UoU53tcLnDtdzxzIFvlcp9QcisgH8voj8JvDteLw/ReQFaCXVC9Fmb78lIs9TSuXA\nvwb+NvBhNLG8EnjPsg1qsvWfh4FIcnaKv0P+KW0cKm0sIzoJt68TJBRfzC4fdkY9fuePemw/b5dR\nlnP3SW3W/qc7ZSY+fUyLzPqR4v5zvdLEVKc4DbW3cq4mDtruKPYSVtOEYj+bJMkZ5zLPdz9lSlQ4\nSE6Zkqspad5lnEvl/lAfbDP0JgR1PkuIPE39LkKiqJ0RmMCYDE0WTn9oE5/pvFtulkXehFuhti8i\nT3S8u4j9IBS3rxK1wnLO9Juw677tjHqH8i36IB1Zxo/l8xrXjVgKR5zHi987IvIg2vEn5P35GuCd\nSqkU+FMReRi4W0TOAEOl1IcAROQd6DAGSxGLz48lpKhts8q2y/XBpxw8KKHUTcbl65styj72yXWu\nZLukeYfT64vJI4kUt20MiDsDTg5GJJG2GLvviZzdUVw2MqhxjGz17NKF347Pt8KUBWECb7K008Qy\nIVdTor6O8pyrKbmakOa9eR11KQNcv44m2L5PvvJCE5sv3pU7ifoWFrbPh4EJ2xOKRF1H+Pb42iH2\nWpH5SMOd7N1JvFJXnVFDg96k6X77G7BJxQ3Bs9r97A9PCx2LiNwGfCl6xxHy/nwm8CHrtrPFsUnx\n281Ni/IAACAASURBVD3eCLNq9E0MITPGkLNd6TqPl7zrvGg+4MMklWUmt3n7k6o1HOh+nTmzzn+b\nXuUlN8W86PiUJJrxjDVY7x6nm8+Iejdyx+ZZ0nxAP4KPddNWbQW/yfX8Oqsvxvlud1s7qw23dB0h\nB1LXqsedIO2+jqfaEdKQiyTaEVmTisyvCd0fbGvaqwRNNAg97/l5xzm3jWWdSy6+BYaPXCBARA0h\nakxf3T66Y9lV0sdJOM6YfY+7MHJ3USGyLVuYLcRvoVA6rnGHS5p2nSssh+tOLCKyDvwX4HuUUiOx\nlB+O9+dh1PWdwHcCDG460VpM1XaFbRAKhx+6pmkCCe1A2pBKk4OXrbwsHS+I7/Gzx9gdTTh3LeUl\nNyqGvT0G3RFxZ429fMSnd/XK99b1nFMD4Q/XUq/eJbSr8sbesvoSysNu2miX5et/naOk8WPxYW/a\nKelY2sJ1rKsTuyxjntuEiqVfVnUsdetoVa4TjduQhdsHO3xOWbdYbkeTgUsd3HA4rmgrpPvy35tX\nrtvYyCo7sENV5AuH5cfytMd17aWI9NCk8gtKqV8uDoe8P0Pepo9RNqsLeqEWsXbeCnDD7c+tEFbb\ncB3LOCP6/BAM6hzWyp7m7ayb7ARcdsbAUrmBCMkh2bP5wB4+l3AlS9nOBtw12eXU4Aqf3k1I80UZ\np9cn2kQ3VnzksV6p/KbwKzZcgjATdRtZ/DyIYIOuo2nCGHRrLPA8Ie7NOzL1+/wh6hz9bLQllarj\nXxFOP10klnOdaV0TcdsKr9RG3+KoxbgPxUJzJ3pX3Ox+AxUDjKy6k6iLYVenbyy3q1yG0RmtLMMO\nhutpFSbAvwMeVEr9M+tUyPvzXcAvisg/Qyvv7wA+opTKRWQkIi9Hi9K+FfgXh9HGg+RLgXJCKqj3\nU4GFGW06lQqZNJGLfb4pDW3FpNeze/BNIpcuJ7z/as52Bl9yvNyWu47vcTw5TTa7xjDeYSuGD16Y\nculyslDaNjzPkBjPiL9C7TL3mthcdviVw4ZvYnZD9bge+i6WHVe+dx8ilaSr2AE2hmASy4VIxe2H\nfY0N+3rfda5hSJORg12uTSq202Zoh9Pm2fkMKgzq9Efg1w0dGkQgDgej/ULC9dyxfAXwLcAfich9\nxbF/TMD7s/As/SV0aOgp8PcKizCA72Jhbvwe9mER1hah1WRIDux6FrsRkO2Pquy0Bna+dFNW087F\nBP5zY0K5sbZ8K8pFO8PGC1kace+jEeM85e4TevJ+8Y1TTvTvgEtnSJINvnjrFFvxY2zGAz4cpzzw\n6CC4U4JqdFwju2+7SzEwKWxVUs57ExJNGgdJ7STZg+m1oiD/xx+amG1yMUEmmzz0D0Iu7oKjMn6O\nTUkTbUxhvOnt9vrgWqmFrnOTv7mOp24+FoOQ46i7U9F9UGQW4fl0H6E+1AXL9F3vtsWHp4RkvsBx\nPa3CPkAptVIJXxu458fQOQTc4/cCdy3bhlpnxCVzMTxVJopPBVxS8ekh/KSy+Gg/flYrtl92Mi+C\nVgLdIp+JmrA37XBiMOWrblH0u3t88uJk7u9jh885qENeSXFuHbfD3C+LSHRJWv9StRR0EYqSUOfB\n7QshZODTsbik0tY7fJmx2EYE11RvyJnTLb9Jr9gWvlA37nMNjYP96LJWaIejoUlqQJuAe65fyjLO\njL7JM02jyrV2UqlF1snqas1NzLSouywnr7YjnAyqTah79/jD5xLGeUqar/NlJx7m5PpJstkeZ57c\nmetehnHO/3KzYitW3FesoivEZvQTznC0w+jP+xDQAdgRdrvU62TaTCZJVOyaurrfbSYhr9jLSocQ\neuY+pCUCWfx2y14gx3Z6tLOA7sdpsC6C8n6SirU1od7LyxkrkyT36qZa6zlrjGZsuEr9pwQrUdgX\nPqRTNZWs8yGA6ta+TfgO16TRLsedGMppjKsrVF876tAUj8yFj1RCoUsMzl5M+J08ZZwf44XHLxdm\nuouJ4TkbikiEYZyyFSc8tJby8LnEO9nZCnAbPisqH3mGTHzbIJIuKje6nDVgQS7QjoxCQSWXtSo0\naHKydRXYOrSQX1zahlya4oQtm0OlztnTZ7BiUnlX7vEYS4T8k9r4jYXa5yOXlRhsfziyxALViaBN\ndN7Qx9RW5FBvqVKexOvChTTJ6G1Fqis/d1f9Ib2QjbpYSpcuJ7xvmjHOE+46vnCmfP5Wn63uScgz\nBpspW/EFNuMBW8mY+8/15mWFCAbKIq2KiWvgXdSJwCpiK6NfsRCJle8mUkV73Da2n4R9Sus6NL1r\nnw7DNfFdtCWs43PbXD0WttIyu+VlogDXkcq83KlfOt4U8NT3XS6TAMzARy4+stsXOqsdyxc8Otb4\nbfqofLDt9u17mnxO7Hur1/gV3AeNctvG7PKg1jC7o5j3p8ZiLOeOzTFx5wZId2GaER8bstHrc2Iw\nJYmikre+qdu1sMrSaG5C7eY8r5ucDmOV6ZJNG7iTuP5dTmS1DFw9lCvqtAnG3b1UREBJ2ZmyTqTb\nxp/EF6miDodhbeV3kPST5TI60vBicbVb2S+OLLGIqMrAqYs55Toj2mgb+sEXHyp1VpdVM1L/ytiO\nGtAWrq+CKWc/8MeP6pOl40LvMuDLTpwnSk4TJX2ezM7z8EjXNYxzXnRcAV3uIyvpA1r1I2mXkM0H\nV4RZCulSHDMhXcznocdJmWh8O5iQCKpOX+FrX9UrPaAXcHYM+5m8K3ofqx9td+zu7tjb1hbGBq65\nvVuvL1yQK2ZcdlwEQ9dU9FdPL4jIK4GfRluX/IxS6h7n/J3A24A/A/yAUuoni+N94P1Agh7g/1kp\n9UPFuR9Bh86aof0Hv10p9dni3JcA/4Yivwvw5UqpYEa3I0ws1a1+2aSzLMrwEUpoImmCHRK+ya6+\nqcw2xOIS2jIigpDYKbQL2hn1CouxFFjjruOPkURq7qFvcKI/4UXHoR91+Vg35dLlpFRuXXtc/xxX\n3h4KwGmv8ONU596wIVE1YkAoZqBvgRDSUS2c9sqixDY6C9PXtouIxp12gNT8k3b7RUvTWE6sceR1\nxLXETUbX6CMX8/9Bd/F1CDl5HhiHpLwXkQidfOvr0CGsPioi71JKPWBddhl4Azpuoo0U+Bql1G7h\noP4BEXlPEWvxJ5RS/6So4w3ADwKvE5Eu8PPAtyil/lBEbsT9eBwcWWLpiCs7tUmmmVQW1+6PXFyk\nzqSzKKt+otggY2fHBBSsfrR1TppNCK6UGxwes7RT5GpJSfNjlSCWzzrWJY7WubG/U5j0xjwUpZy9\nmHjb5+aaD1mu2TlRfBOxu8I30Y3NrsU2lw6VDeUx4RoUbJCVdg4bx6YMItjrat8Sl2Dq0hzEcV71\nG/HERXN9lg6C0DjcL0IxwWzY3+Eg0pZhbo4dt30h+MZ5kyVnHZ6mQSjvBh5WSj0CICLvRO805sSi\nlLqAzk//KvvGIp3IbvFnr/ininN2dsljLBzqvh64Xyn1h8V1l5oaeGSJBZg7lFUH8kIOvbvTLKYJ\nBfjbz8fphhNvM1nEae6dcHzwieOWaWedSNCFMUe+M4u5Y9MKYtm7kbgzIJIet66fZ5RF6B19yoOB\nNAQuqfj6aOsQ5ivkwO6lYcEVhBubzdX/6PS2szmpmGyj/QjGkfISTLVtWH319NN+14H0wG13G027\noHojBUeUvI9IFS6pmP+N6X1Ib+kLBFu3i7V/tyGYp4GPy00icq/191uLkFSgg+x+xjp3FnhZ24KL\nHc/vA88F3qyU+rB17sfQ0UueBL66OPw8QInIe4ET6CjzP15Xx5EmFjN4fZYoxnehbZyuwyCXJnGE\nfzINWPnsI66TL6hfWVy4nNlslnY4ezFhO83Yzro8f3PGsJcSR3phlM32OL/XY5RFbMVw55aC23d5\n5OygsZ46IwnTt0o4D+f5mejG21mXrWSPteQkAHl+me00Is2FcV7uu2/y9Hl2bwx1QrJxpDSp5Asf\nDUMqIX8kt59ePx5nFd8kvvLpBVOLmEJRj3Vd4ejJzaK3OoOR3GtibPtzNZGK+bvOMdN3fBlyObRd\niwgSiOrgwRNKqZceTsVlFBFLXiIiW8CviMhdSqmPF+d+APiBIqni64EfQvPEVwJfDlwDfltEfl8p\n9duhOo4sseSzsGmjQTnZ0XLk4sqb6+T/7kfhKvRDbcgKWfMyK8U644F65WuzXNudYE1Zu6OY+9Oc\n7XTKk9mA507GnBrscH6vx9ndhV7DkEs/2uPTV7pcutivhHPPsog4zYOivWU9+nW2TCHL95h29c5j\nb7rDaBLxZNZhO5V5nhnXGdXnd2P/ztIO2XBSImqfCbnv/ZVD4Ojrd5zdsz1uyhkiq2j0YQksRNzx\n4T6DEHG3IQRzjyEXn4MwMI/YUBtMcolvoDYHjEcf9zREKCDvUlBKbYvI76ATI37cOf0L6KSJP4Te\nEb1fKfUEgIi8G20UsCIWF/lMgtYvtmmmi2VEDC65hMxHfWgzoH0JqJaRsy8XUsQfBqYpMrGNh89F\nRYTkmJsHVRHjicGUEwOt0O93p5xJrvL42WP+HCjusaIdbVIHmLaPc/1vlEVcm45Z7+0BcG06ZZT1\n5+e9z9mZiH3kkmXGPNbvj9TGFyl0bShf0DLwRZbwoY25uq6/ZuK3djdmh1W+vhBnOU7CbUhlXodn\nkVYXrdl3vxuw8lAhAvGhTLkfBe4QkeegCeUbgW9q1wQ5AUwKUhmgDQD+aXHuDqXUp4pLXwM8VPx+\nL/B9IrIGZMCfB36qrp4jSyyzXNgd9VqJqvyhOppFF2ag1wVgtK9z0UQuy66m6iY1XxDKZepyowuH\ncOlywkeu5jzvxJTb1rWYKIlmnF6f8Iw1rThPoph+FOsgkd1dHn98UFmtu0Ri6va2rSbasdmxbGdd\nNnpaRLeddYtjsJ3KUhZ1pj1G/wJlHdiyCBFKnQ7Bh2XC0SzrjLsM5t+E43Njxp1LKjs7cXgB6Im3\ndpDnHApYeegEc0AopaYi8nr0hB8BP1sE6X1dcf4tInIzcC+FebCIfA/wAuAW4O2FnqUD/JJS6teK\nou8RkeejzYkfBUx5V4qo8h9FK/TfrZT69bo2HlliyfMOl54YsL6RofOA11vVuFFs6+CSizkWgm+y\nagrncRC0Xf21he9jdLNxlvvT4w9GOY/fssdzNhTP39TXudZYt63DzQPFmbU9Pn52Vkkda2dtXEvL\n725SxNcy//vijtlIOu3MxJfFaDtpHQyzabfpS4Ngo63pedtr2oy9tjrIpnA8NrmUdiqpnbGyW8kz\n1OZ7tGH6tl5Y2+ncNWG9x9ONVAyUUu9Gi6rsY2+xfp+jnKfK4H50tl5fmX+tpr6fR5sct8KRJRYD\nbfW1MIdtK04Im+JWxV1tScVWkrZVLh4W9iNCc1d4oVhdIR1CmkZw2y7QIc2TwjoMLlpl9iN48fGc\nrXjMfU9kXL7YLymdd1M9KUySiF6a08tyJnG5Pl8aXbv8YTxj0J0x6GolxVZ8gYtRV++muqoxVYLB\nsmmhXYR2i/sJTdKEkC+NjYo4dJ+7gbZjq+66g8SBc5/f+nDCxjFN9mlxbGfk3JPU59TZFzod6Fd9\npb4QceSJBarkYsP+ANvsWlwiCZGKO3AXJsbNH7wvDa0Py3wQtiOeXWZInNdmEvWKFZyV65kz66Sn\nrzLOFeO8W3JITKIZdx3fI4kUJwZaPPZQssfZiyZ5mH5nu9u9eS4Wg16az8nG7Fpc9CPmori1bpe4\nMwBgrdtlGOdsxRE3xHCpsBC0YT8ne1UNB5sEXTTtUnzm40uV3yI4ZdKw26gvP7AAC4h/7Xa17Vft\n9+jUYUjlhlhHrt5OFQz1OLLJ5SlLT3xEsCKWArs7MVnmz7poYz/k4p6D6k7FPueLNVUXHNOd9JfZ\nfbgOhz4nQx+puLsAn7jHRyyuFVGWRVpBf2LMeDrlJTfqModxPs9KGUmXQfcySbSnIyQnKZ+82IWR\nVpB3k672Jy7g27VU69eikH4Ew15OHB2jW3wOg+4Gw96TbMYz+l39PJPEHwzURS/NmRCVkpXtB77x\ncRCz17qJvE1wSts3yJRXB3ect71Pmx7npR2/nW57Gdh1bwwnrA8zkq7ihhi2ElUsYgSokovvuzww\nVmHzjybsSa8tuXjLycq+IOAfnG4AS/t3EzGVjlkkV7Vw8++47DbUfUAlgrFIxZ5AfblPTABJqBKM\nO0FkWaRNi9MJ/W7KnZuKE4MpcWdA3BkgShF3BpwajEhzYRhH9CPFQ1adIxIm1orT1rHYbbT73u/q\n3cqgO9O7lVQ7JEe9HoPujCRS9KPy7sPd1dWJOe2IAcuER7HrMro/32LDhc8nZdmFxrysSgSIWYVc\nTF0hs2Nv5s6KQ2c1i2R9u8qLv3mkAGehVx3j+u9BpN+72a32I0U/0ubOmbWAcPuywnJYEUsB92No\nco6qk7vbH/hhDcx5GBVPuBmDOgWpb6Xty3RYniD8IoAx3VpSMW0xZVXMfX1WdlnEzggrzlhC0tkj\nji4RSY/dyeV5vLFhnPPlJxT9qMuD3b15GSMSrhV1mrZtJIWSto0SdprNw7r44FrV2c+qP5jCQJPo\n+mDinVzbkosbYaDOmz4UX2y/5OJzmtVllL8Dd/eyH/IMRRY4bNhje3ueEE3oR4rtVLiSwc7V7vxa\n37e2wnJYEQtlfYeNkMPgvkK1HJLJZp1PwcZGViIbO9CliyY/FQMzscXpjCzNi5AleWWyCnlwe8sL\nBFY05PKw7injfEA622ErnnJ+ryxCuHU9JYlm9KMYWJCLvUP0rWx9WORkmcA0I4rXSkm+7PubrPyG\nW2ltjpJlJ984yefiIfd+t0++vraZ8EMRAEILq5IFZbFLdBdRdUTeJv9PE+xvcBkza5dctlOp7LZC\n2TIPDJHahcsXEo40sYQsP+q80evMkl1xhf2ht5l4Q5OA++GY+GV2OzY2MkyI9p1R1blumYRMdnva\nmMC6f9tiudBEb08MIXIZ53rn8txNK1VtEcRy0L2BrWSPJNqjHyXcF+3xyFkdq8uuw/aQN17v9vM0\nBOLLIAk6UGXmEqBvl5BU9XPuAiRJNDG3ibMWJzPWh9lcFzCOFNuEScIXmHPZiAy7O/E89pn93n3j\n35xfH7JYdDQ4MrYhFBPyJoRQDLU58VsLnlBcuSyNuJASxH5SOa9QxpElFhFVm+fdRy4hebCrR2lD\nMG1QSXGbRYy2k7mOYzzszlfI9ge0MWROLiFPYp+Iw4jE5mKc+WoZlslJ4dP5uKTiM0Cw27oz0nEk\n9vKUcV4OYrkZn6Kbz4i7A56x9hhpnhUOlToUTLndBuH2z5N6TbPib/1Z6DTLthiy7BPTFHW5Ok46\n82dhl+fCTJx2H4zpc5YY89iec305+dW8To9ItByqaBFs1VjX7aY91reYt9U3/kPjoslC0X33y8Qa\ni5PqomQ/WLgENPuvHa4fmUC02rF8waPJ5PGg4qtQelo73IsvHlmduKM/mLKb9pgkEeuDScXKyY5F\nBeVdg91fXy6Qsmy9mUh8ylLfyr5VWR4T5p1RMfFNx2xnXb7keM616ZhBd8QgGpLN9ubhV4ZxzstO\nCv0uPH6tsboS5om+5mHzXZ3QjOyJMqlMU6n16Dd9CumT7Hfs9juNdb6YNMkZFDuqcV5ezftEmU3K\n/VBcOvPOuomCtGwu3fiNBHaCdaFU3ECnBrFDeL7oEMZrv25MhZ/Rop3z9qULhb1vcXmYUQeOEo40\nsYCfPEp6Cmuyz7K8NBDBv3qqy3du6z+Cbfr/2Xv7cEmuu77zc7qqq27fubdva0Z3RrJkWbZeLGz5\nBcuWbZ4QQhJ4vEuyZhNYA1nyAg9eAqxhHwgJeEn4IzxrWC/ECSxexRgeZxOcPISAd2PjYEhwAMu2\nsGRblrSyZEv2iJE0mlFP3zu3u6q7+uwfp07VqVPnVFXfe0ca+c73eeaZvt1V55yqOnV+5/f2/Xnq\n3EeR2xeUJkFBQuhi4W3LejbH2jUx026nqbxAW7Sd2dYiEewm/SLLOk2VAN6dzJllCZP0GDdt7XBq\noBiIT19cK84dRkvu3JZ87nzAl3dK81myUESS5uJXlEM26rGIeFONZ7nH2L73DjOla6xRUq2h0mTW\naWMsMEks9QJejqdurvHVEXKxDriEj960bAzK8ZvBLGp+9IjioNCcXIt1ZUzOLHt3tU1Tk9BULvY9\nKgVCtYKkLazTJGCHqPK+usbYxJd3RajsH0desEB9cvkctMXuTJMLesqx+tTnLvQuTedrbGymtYVc\n+ybMfnxY7YUxF5CqNtSVgLJpV29eqzbxqR90Vn2fjdGcNA34TNJjfP2UcRpzw0a1r2GUcfMwIJOL\nPEw45MFxyTvlou3w0uYvniZZ9kiyUntTO2UVQq2vU491TlAImOEoYWdCrUCXvlY7bNuVTKl5xoaj\nJO/f/bx8vgBXPzZ/mz1ntfDS4/FpBLWNUoNQKY8ptZcupiWTygWqzAm6rZ1JPRTe1y+0bOQ6CsQD\n44rz/uihyTlrL5imjX0Vk5HLRr+f/AZQwsXVtg2ficouUGWiTWsxX2QfCWRb9rnrHveTrJJBrz/v\nEqkkSODBRwPG119klsGtW+r364+lXHvsGFv9UwAEV50mDpTf5d5zimy03r9akF20+dmyLhTiOCNN\nS63FNU4SFfKs76svudHOBfLdr8lY0X/oMgE+/02TplLpZ1DrooYuSYhNVPom7Dliwhcs00QGqees\nLTCa3iFb0/NBJ+teweHgimAx4JuA5i7VeV5TpFfFYV43pxw0jl87yl0hwE3oqkXYC1jTjrPYwXt2\n2DZsp3ilrbTsd32SMo8DJsQMRwlnTh8DLjJOBa85ro4LRIiQEilKAXdqsOTNJ3vcF0x58NGNWh+a\nFl9pJlnhW8nkolLky4S+HzNCxGRZo5KZT0r+sjTNKqWKfYugnaVvzjVNYlmaYd1lmaFZ020S9KsS\nOdp9+SIenfO9oc6Jbww+FoO2Ma+iQet3p5J3dEXQ7Bve1VIIMQR+CsWQ+REp5b8xfvs/pZQ/9ByM\n7zmDb5ekJ2GXJD8fXOVjXRN5vzCFS6fjHQEDPtgBBXawQbEYEiJzW3ZIdSEoHLWOCCXzO83tBdQo\nWXSwgo6+ikPJmT0YJwEX0gGT+S4v3dwB4KFxwCRVz3IrWvKmkz1gtyJcXAubjgZT//vNm0UI8yBg\ndxyxPqnzzOm5lERBzVyzNlgU9ytE1u6Teb75uS3Z0mZW0PPMDCF2Ra+VfqfVNic2XIuyGUXZNtdd\nv/v45uwk5K5mWW/fjnDxQ4foXTGFAb8OfBH498D3CSH+JvA9UsoEeNNzMbjnCk02bx+FCrTvaJoo\nLezfuhZdMo+1d42dnadN5H8rCLouC5ArrNj8bAt0U9sxNaAwlirMNc4KynNQZWw/8bRgnEZM0qwI\nEdbYHiwY9jPiIGYt2OWBx8uyx7piYRwsCURYhh1T5rfMFjpwo75DLxiWiSpmPG160n4N18LnEiZN\nxcPse+fTWmwuOzN03M7oh2oItG/+dEmwdQWa7AdtC7tLALRl/tvkoLYZWLe5aQRKXO4QQrwFeA+q\nHsv7pJTvsn6/DbWGvw54p5Ty3fn3LwY+AJxCZYneJaV8j3He/wz8MGpn9R+llD9p/HYD8ADws7o9\nH5oEy00GP//vCCHeCfyhEOK/a7/sFw5ctmiX6u3a6cHc67w8COW2L1vcbsvFlwR+gee6Bp3Y5jqv\nkWE5qr/YXdHkF6poLQbfl9ZWfHkHD45VsS5tGgO4fmPOjZuKb2wUPwWssxZO+cyjSrgkC8EsKzcS\nQubJkr0+sCiYls3F1+bv0phNQ+YTi1XZEC42fLt4+xm37bxdz8jFCecSKmoceXRcx8XUN5+7zvMm\naiFzPCZWTbI175np+zM3jrYWp4WKmVBb9n+INe+Dg9Pm50W6fgVV/fE08GkhxIeklA8Yh50H3gF8\nu3X6AvhxKeVnhBCbwJ8JIX5fSvmAEOKbUZUjXyOlTIQQJ61zfxH4SJcxNs3aWAjRk1IuAaSUPyeE\neAL4OFA3WL/A0OuVE0wLFTPKZ2M0905kZwy+Y8d3ULV6v+e7xlJnMa4SG66avGm33QU+gad9WPql\n1w5tDa2t+KDzO86c6TNOprz2hOTkIOPUYM4gOEXUG5CGU7YHM64Z9HjdTVPuPx1zzbrkJRtLbthI\nafNsuxZmpUH1lP8jzgoiTFPrMiOyzGCPNoGi2zc/79dU49ScW8K+D4r9JDHapSNMEx24E3yLv42k\nU9MnGsbSWc7ANg3qfnRpZFey82WEO4FHpJRfAhBCfBAlEArBIqV8GnhaCPFt5olSyjPAmfzzjhDi\nQeC6/Ny/D7wrt0rpNsj7+Hbgy8DFLgNsEiz/D/CXgY8Zg/oNIcSTwL/o0vjlDCHUZByOkkJrmU9A\nDnsFiWBN5c6T0Lqqyl3zQnxom9CunZQrqazt/ErCWAsJ54Fqf9gMtMbO0NQO7V3+2mBRSexU5+Rm\nKCs/5cFHNxgnF3nt1RAHa9w2eoooGHDm4kUeuTBglsEokrz+JTNevrXkju09AtEnk4vC8Z8t50Vp\n4lnmjnzSYzfvx3CUMCEufEy1a2jwNfjuq4u5QN8HH5oSFeu5L47kRsvP0pZNXx1v85xtSuIs3y93\nkIiZWOxs2xIuGqZgL8dR9zeZ8+oyMIddLYS4x/j7LinlXfnn64CvGr+dBt64agdCiBtR1SQ/mX91\nK/CNQoifA2bAT0gpPy2E2AD+IUpD+okubXsFi2lbs77/PeCWroO/XCF6ZWVAPSFnhBUSQWcyX0Py\nY+U46yXoImAOTFXREHpp5uCY43L5DjRMwbhfgdJKb+7ZqfsyspMkMJLj6osiwJnTx9idzBmnCZO0\nxzBK+WIuVDRMoaKRLqfF/0m2xixTNe/9eRL17HC9UfHBnltt0VGrailes2ZazkObxscOUTZDept8\nZOZ1qGO7z1+fgKmMrcHno+fmKr4d+1paw+qLwJXD4g1bKY/lGSnl6w+p4/pIlLD498CPSSl15rHW\nNAAAIABJREFUwYkQOI7yob8B+HdCiJcBPwv8kpRyVwjhaq6GIxtu3BOgSRt1NcJGG26HnXuNrtxw\nfLZpL/X6Fx3NS1bCYpdomFUif3zMAdD8Erv8QT7h0taW/ZtJa+4TeDuTPp94oM/4pl1u3Kw+u1u3\nVBExU6gApEvFBTNOAiZpj1lWCuQa7UrDgmZen+0fgOYFzSVUupAiurSUprbN83zJlF3yrFyJlkV/\nLVpYedxqWnFXzaXr99Wx+P1/lxGeAF5s/H19/l0nCCH6KKHyr6WUv238dBr4bSmlBD4lhFgCV6O0\noe8QQvwCMAKWQoiZlPKXfX0cWcESBpITx5PCPq92wXntDsPmqmFzIplCw3y52qNa3EluFTbZGoGi\nG0mcsTtROyD9knWtsmcKl1V2xfWFpLtA1JqG6r8uvKuoJynW2uuQz/Hgoxs8vT3j1dfMGUVw+/GU\nl25KomBYO0/nseis+1nm353p+6Az7H3EpFXetnrggWIGtvirDIGyMayHMtvUJb6xudCkVZh+LlfU\nmtmfGU5tOr7NuZs4xmHPbX2MmcjoKypWOS+ps477UZ9Ltefg+Nunte0bh5d5/2ngFiHES1EC5buA\n7+k2BCGAXwMelFL+ovXz7wDfDPxnIcStQITSnL7ROP9ngd0moQJHWLCsh/D1J2Rea33JLCsXZFVV\nTn9W/6tj5swywWxBYVZZc2xs1lruqlmV0O6nfqzuv/7bLJPMrppVxqRDaAcdNlxmn+aY9fhcY9Lj\nmGXCeR2+9tV588p16IV75pCFejx2BUezXXMsRZuL6m/TDK5dV6avm4YJJ9bcO/9BMCQ6q8zWt159\nDXHvmTxEWRLFzwJqURwEeeVB6xnXx1lfzFz3aJwunM9uLSjL59bPWxrXOPfeC9fY7Pmm/Ej++WP3\nbc/DUVydL9Xju2yQNMmm2ti55sdhoW2+mn2r30th9YFDHcnBIKVcCCF+BPgoKtz4/VLKLwghfjD/\n/b1CiGuAe4AhSsP4MeAVwKuB7wU+L4S4L2/yp6WUHwbeD7xfCHE/kAJ/J9deVkarYBFC/I2Wi/zt\npt+fK7TFddtYD5fcsZ3kJIS9gowQVA6D+rcs8hns4zSPlI04WBZttEH30fV4DTNXo2lMuu22Mbj+\n1tce91Tp3umil+/kRdGvrx/ftTSN236pdZvDSN+fsg/XMzH/trE9WHDbKAPcz2yrfwq+8hmWd38e\ngMGbXsVtN7yOUfxF4mBQLEKjqBxb2/My76MPeuyTNChYAPT1rwWK/2wYZa192ffVPZ5ynulnCjBO\nw2IM5v3zzUs7T6i8Tnse+a+7rU3zOly/udB2nD1OPT5fP/Z7cLkhFwQftr57r/H5SZSJzMYfA86b\nJaVMgf+xpd+f7TK+LhrL9wPfAPxh/vc3A38KnEVtN553wdIxrruCqBdy03CTNJuSyQWZnFcESyD6\nKmmup+zwmj/KPtaFsnhUv8jm1ueaUL8FBL3qcb7ja78v5wYNSXX8ZR91nqwm6GsOREjUWy8SBzM5\nJ11OC4p537nVv8u+M1neP3Pse4tFTWjpxW8UZ0S9QfEMysz4ftFmJhdky3nucHcvDk33YCRGyPs/\nzuJPH+L8f70AwPHxPYTfsMu1t72R4MQZhtrkGUhG0cKoOFm9tiQTtblj3r/y+PIe6HHrBT7JekqY\nWNfvu7eudl3Q4yjGlp9/7XJKutwjk4v8XZhX2rf7Nftrgnmefn5dz9HPtOmaKsca998F1/sY9BQr\ntp6H/me45nw39wXRu1KPxUAfeEUe/4wQ4lrgN6SUf++Sjmw1tMZ12+hJySYbEB1nwUK9WMu9ymIq\npIQst3FHURmOKqsLugn7xRWGJmmer48t+lhYtvQwUvuKloloj8lefIVLk9XXlLdt8msJKSHZRSY7\nMDsHya46NIwYxBsQRope3rQV22Mv/rYWoTACIvV/ADKMC4GVLqek2bRYkKOeSmwMCav3Z5EiMzUm\nEcQQrkO8UTzDTM6rC4glhPQiCjBKQpZf+C/MP/4wT/zRgk/9kfr+Gy7ucurCZ+lfnHLyla8nGi3y\ntkphGxLW7r3Zd0io7l1tvMY9iCIWLEiXU0bxtFjkomBQv37zvi7S+r0FdS9q9zvHbFeNY5EW4wKI\n4g2itQ31TOOT9bkAtfliwp7Teg42zj8T9rWpUeVzRL1ztrDzvVOmgNAwBWTlfOu9NueH+YzJUpjt\nNl/DFdTQRbC8WAuVHE8BN1yi8ewXneK6hRBvB94OcMP1J8qKgWGcvxDlzsq14IugFC6BCCvnuHZy\nlQkcRAVJYm2CL6yXK4zU5zAqz3fB0aYam/UC+trIvxemgNHjWaTleem8HBNA4GnPuFdlmd8Slf1k\nGFUWCPXih8ZntbtmkVhCJSk/AyK/R0EYV9rS96HIpi8WmH6x+MksgXSOnC2YJz2SmTp2uhMgZwv1\nW5YQiLg4t1igpKyQXtpjZ5GU9yF/ljJL1D0w7mUQxgRiQSDmZMwr96F2b/NznPc2iKvzR5/jaYN0\nDlG/fN5BCmEKYeyfN/bf1vxTgtUhVJrmsDlOe/6j5mbtvTTaNN/JytAq70N5P33vtXle5Rmac+4K\nOqOLYPkDIcRHgd/M/34bRtLkCwl5gtFdAK+742a5E6Zkco8sqe44wTAJhVrl3oNF3fzkQlXl1mVv\n3XTsZh9BX78MMm+7+YXMFn6ad+e4HCaJbDmHrDQ5BCIkWhsQrZ8iENepXRtUdnXqf8fYQvOF7tdM\nUOX9kmRyl2yhzC/aHDaZB7kZ7AKj+DyB6BMFA4Iwf9H7/Uq7ehxNz7DsW/02TgKSpbKrv/hYyImv\nfzNR1OfGtYcZbCrzyKk39+j/xdvoveYbGAd7kJuJfHDtkotx9zdqmw997zK5RzqbVsyBAHHvAoNQ\n2faj3oAoGKh729fXZWkmtTHI+pj6fYL1U1VtHCraeibHZIl1njVnKnMtK++tOQbbjNxmSirmvTX/\nzXfON6YsrZqovX1Y5kk9VzO5S5pWzeHrYVhqzv0BQXRV4/hXgUsIfi2iVbBIKX9ECPHfA38x/+ou\nKeV/uLTDWhkrx3WnywWPTnYMx28ABpVIHGTEQWnfrTqtg/xv/+0rnX8z4zzXcbPK8ZXfelap1KW7\nDdu2bPZl/hY7NI3yuvrFOIbRLnGwU9j5zeNsf0j1WsprsMfuwmQekGQBk7SfF9wqHddxsGQYLRlG\n1QXdbLceTBCQZKExDiP0NQtJsrIf9V1KtrnDyTu/lejYgGu3HgIg/IbbEK/8RsaLgtGihj/fg9O7\npRA174H6Nyt8RSb0M9TjnqRhce/tgIiyrd1yPrXcV3uO2H4roBBa+nfzmdbnaVppx40w/72cQ+Y9\nKK6pw5ywr8M3prrzPTTGUYfvuZTXHeRt6GPV+x/3LhaBDlfQHV29Up8BdqSUHxNCrAshNqWUO5dy\nYCti5bju3XmPPztbmk/sMMqmMEtX6O9+UQn59Xxugz2eMvS0DCWFekixHe47y3QobchaIIsoKFe7\nbWgLoy7HB+O0HsK9FgasBT1GkXuKto2hfk/qIbWzTDEi3378EbZf+WbCofIhZde+nF2PUMnknPvP\nD/jc+YAn90R5nVZ4tO/6/c/KXhCDxrZcz6WpH/u8esh2/bymcHAXyvlThuy7w6W7j993v9z9u4XK\nbOEfU/VdqY6vafz7gXRokl+r6BJu/AMov8Rx4CaUP+O9wF+5tEPrDl9cd9M5F+dw91O56cGRkJgs\n6pN0lWzcVY51JUrqnAkbU8eLZR43zUpSxt1J38kDZtOJmFniPnr1Va5tlcTPnYthjZrF7NufeBh4\n+7GPU/9XqUuiOCN52SQv9LXOTcOv8pLrblbHLs47r+vP9+AL5zd4bFdw/+m4KHfsYmo4rKQ6O0mv\nU8XSlgRKXxsuRt/91H7f3EyL57d5bNEppwqqc9t8/1wlwrvAvAZ7TlUSORdlCWsNfczgEAXLUUIX\njeWHUVFXnwSQUn7RQaf8vMMV192ExaJXZK3v4qaiMCemDV+dChe61m1RC5RarGwmZXNclXPjDFN1\nNOvS2wWm9P+7lq5ZrS0eWhULq/eg27X0jazoul/H5InyLVyqv34lu9ocQ23BzYWhPU6b3t+kZ0mT\noEKbr3eTLn/KQ+OAz59X540iyV942Yz7nkk5c/pY0Wd1npRCJ4qXhRAy4Rqj63f7GF9Guo/iZBX6\nHNfxdnmAJqwNFuwQFXOnK31QXXi0k2yuWmtIEZj2gL6Trslk1GjaWF1BO7oIlkRKmWryMSFESLeU\n2hcMzN2gl8SxA2twG0dR06JsLxZdie98ZI2uNn3nmlUg2yoN+gpCrVJ/pmk37LuH/poxpdBM0/q5\nvvHonesoUrZ3lTOinOJTqpL3s+dCHr5Q7fclG0tGEdwX7/Kl0wPnom4uTptDKsKlrVa7DR/vXBdy\n0KZCXV3O39hMO2sttfK+TTV9PO9b29y3i5lVznVs+LqSybqeiWZcPhzI1ty0rxV0ESx/JIT4aWAg\nhPgW4IdQlPovaIi8HkubicHe9WvYO7cozhonte9FsGtMuNheu05sU1ux+wfHztXgaYJ6jQrXjs2+\nji47aRs+LaWNTt402bl2zrOpYqc223MV5dK/xaEsMtx13ogNW6isBXDHdsKL1mFvseDkYI3Pre/x\nuSf7nDu7Vhzn4vqK49LcZ16DXdGwGKODWbipZnwXNJGD6j6gvlGwF3PfhmaVmj4HKabVNK/t45qo\n+k2hMhnHda19nzWKjjq6CJZ/hMq+/zzwP6HMTe+7lIN6rmH6NSCrkU3axHu6cJCPBdZ8KV21xW1U\nC3C5hUs5Vr+Q8b2c9uJQHG/UJVfnt/s49HV02RWa43WZ5+wFqak8s0uomNUBNSbjuBAusTF+lzZ3\nVaRoWuJAEvTMnBeVo/TZcyGfOhvy8NmQO6+bsxYoEssbNwds9U+RLqfEwWlgwCiCe48teOyxjYKU\ncfOYKSwyojgorl8zCWuYNWi0kHEt3quYYG34WLtt5uny3tWLwvnmWJsJ6lIhNu6L6zfX5sg1F2fT\nEDFZsp5XAN1N+myMDnesUl5x3gMFVcoHpJR/C/iXz82QnhvIZdU5GMVZ4fQuvnfUZHeVOtW/V+pY\ntNmxrYXVpZkcpKjWQVCjhHeZEvaxwNkvslke1td/pQyBw3Snq39CWRZ4Qilc9H321W7x4cs7gocv\nBDw2EZw7u8YfJwGvf8mMJOuRZlPSQFGhjBMVen5qsOTNJ3sMgl1ngIWJNAkq44Zq1Uy7MFVbTRQX\n9it8zOdqF7Zrun+rzIe2kturYFX/p3kN9vttlsU2q00eZmXNo4JGwSKlzIQQLxFCRDlB2dcUtDNP\nvzzmArSzE1UWsi6lTittW5PRNP/UIpasF6Fp8euyMK7q3G2Dq2SAraG56s10MeG5TFouYWJDL7Yz\nQuYE1VrzE5gQkyYBG5tpYYIy29V09xrZcl5JXkuynsqnyaOHdiZ97nkcZpkiLr1l6wnGacjp3TJk\nfSta8k3XwmfPB5zZs64pv39aW9GlsHUZ46IsdlwX6m0+utYovZbSxDUNOS2d2HZBraZF1jWPm7RQ\n+3t7/nSdr76CYGka1AJQ7GPN+RfGkr1hRBhL54bnCrqjiynsS8CfCCE+hFHv2MHl/4KClA5zS/6C\nmULFBVOguFAIKavol/4N2qNr2tBW+VGjyUnrc8Q7v3NUGoSqb6mpmFkUL70LhX0vXFFIrrKyGrtJ\nNeKqn2RwNmN3GOXXYwm8SJnIbOr7KlFmfaw7kz6febQHTEmyqj8mDiS3H1fRZMNojc+fD3lwXNWK\nk1xALxJRxMpVtBaPUPH5E1aJ1uocwejRAHzt+SpV7scX1FZN02y3aWz27/a714RLK1SumMJMPJr/\n6wGbl3Y4zx2WS+GsROeL1jG1FtdvNpzCxSFU7FKw0GKvdjhOuwqZJrjyQ8xzmyoNNgkX039jCx37\nPtifKz6UQdmeXmzjOGOHiI0R7I77lUUaYH2SsktEGFed+rWdcSZySo/6cxwEVd9UkgR84oENZrfu\n8toTsmAIuG2UcTy+UdG59E4zjBJGUcxDY8GTe4KdSb+mrfQNgTePSjOMjHtqcXNE5vkCGGx/k+3/\nM5+N6TuzTb8mmiIOfTDn/UEd33a5ZBOrCEr7vbXbqrX9AtBU2sqECCFuA34deB3wTinlu43f3g/8\nNeBpKeXtxvevQeUobgCPAX9LSjnJg7behSr8lQL/QEqp2e6d8AoWIcS/klJ+LzCWUr6n+yW/sODc\njXnCILtWZ3T24wgA0JqPLyoIqhqHHUhQLBqeHa25213VDOZbGLRQ6ScZc4KKcGlDWQo6I4ncQlZD\nL5R6sS38MdZiu0laCJfZNGQ+oYJ+kkGiTGO+nWhJqx4a3y0bs64feHzALJvy2hM9tgeLCgdX0OsT\n91JODjK2IsFnzwek2zPOnV1TGxTq46zfq7qjHdxapn2vbM0H1PPUiYuufvQxNsxn0u0ZZ4ciXGzN\n2J7vq+QA2TC1YFsTfiGgY5mQ88A7gG93NPEbwC9Tr1/2PuAnpJR/JIT4PuAfAD8DPAP8dSnlnwsh\nbkclol/XNMYmjeUOIcSLgO8TQnwAi5xWSulOT36Bwk6ksxMTV81AN3fWZoipC3aYrwuu7xvLAHvy\nUA6KYmEkqJgNXGP3RhDlAkZfw2Qc147RQlc7tTcGc+diG8VLNklLQUXoXGhDkzcsCdiwaOejYFAQ\nbkbBgDjwk07qfqcZfOJpwSxTG7mbh6cJen0e25lydqrMcHEguXN7wSiSPHhswZkzA2VqHQTsjqOa\nljWPAzYG1tg8Gx37XsnclxAiG02H3mtq8cWY8C3cUaT9lFUNuEv/7WW9m8Oane9IbvbswhZhrwGH\nDXl4eSytZUKklE8DTwshvq02Dik/LoS40dHurcDH88+/jxIgPyOlvNc45guo1JNYSumlfW4SLO8F\n/gB4GfBnVAWLzL//moBzUUzdZoCKFhC5c1yK8GVrYdewa4tHcebcTVbG01ID3HU9vjyUetvNWpC+\nlso1OJIpfeN27ZL1v908adCXm6LvU1M/tqDSbc0tP4nZvrrmhSJ77C2VtlLUngmJe8tCWzH9Q678\nlHvPKeGSZAviYMYkLfvZHiwYRQuGUZ9RFHFfMOX02TIT3w47Nv13bc+7SYN2CQQ3pUm3iL8uC+3m\npr4nKbs7JRW9FjQbm+74H1cYdKVvYz62hbm7wvbjOCveVd1eeXzZbtMacJmhU5mQfeALKAH1O8B3\nUiX21fibwGeahAo0CBYp5T8H/rkQ4lellH//AIO9rOHa2ZswVe7G46wF2+RL8h1nC5WuqnhbBnyX\nPBTz2oCK36S6260nl5m5IXaCp32s/lv/tjFMCw6mabgozjMXWhtNyYPm/dwczqtmNkJnrouNQbgk\n6q0jE1XbPoquYhSfV+awsBoIsZHnqNi8Zw+OBbMs5NXHy/tx/bGU6ze2iHrrjOIJw/5F1oIBD8UJ\nD58ttVm9Odkdl0EIvh1+xZHf0QfSJPi7Hm+O1Xd8MYcnKmCioBAa9wuBaQsXU6i0zX9fMq6Po838\nvMG8jGyMAq/JWAukpvyY/UIiO5e4AK4WQtxj/H1XXvbjUuL7UGv+zwAfgmrdDiHEK4GfB761raEu\ntPlf80Kl+NtcMBO9SHaf+D6133SGR3FWtVtHzULA5MQyExjtJEX9AvjJ9uqaixZOtt9EO8p9pgX7\nZbMFrrlbLBLv8jHFoeQqsxDhsQU7qKx0FyWLvnYvXY7HzFHcy4E7sqzYzeZ06oEIy+Jbub+kQvne\nsKnQeOjZHrNM8JrjGduDBScHEYNgSJgtCcLjnFibcv1GyjBSzMUPxRm7k4id3N+iE/K6bjD2m/He\n1lb1++pmwc68jxyCIYqXRPl7MxnHhZ9L++O0cHEJFft5uuZgF6HSdE0+uLQd3wbuOcAzUsrXe35b\nuUxIF0gpHyIXGkKIW4HCjCaEuB74D8DfllI+2tbWIRVzfuEhCGTjLq6N6mVV6Im6n0gbfV4TKaZG\n/bdyZ2+2YQqn4SgpzEcbg3me+9G+kNp92uSSGpVchoVgltOX6791KG7TtYPlB/OEirvybFwOWue1\nGaV8VVho+Xp0ua9JErA7nDNbJLz2RI9hf0oUTIh660wXY87NlkDAMMp4w7ZkFIXcGyqLwo7lzPct\nZvb1dcnId7dV1fhS4xmaGqfTlOkwk5UbsKzI1wEYjhIjcGLu2HR1pCsyLAemWdIcXz3puB7lZs9/\njcS6/ib+sMsAK5cJ6QIhxEkp5dNCiB7wv6LcIQghRsB/BP6RlPJPurR1ZAWLDTVB6zueUSyZZore\nvXp8PZPbPL9LTL7dVxxKJ134KlnjOm5/06o+2cYjpp2cbQEELqoVO2Tb7ccp+56Giwq9fxfKj6aX\n20X/b8O20UdxVtQ7gbxWO6rEr3aw1gqo5QIwjntEceBcgMpnnDDLBiTLHU4NzvOV3QgzN2YYZdx+\nfAlEPBQkfElvPBy5T7rvVfIxuiSZdm7LMffsnfzOTslobB87HCWdOeXaxuMSMF3hmv/2vL2kAkUe\njvPeVyZECPGD+e/vFUJcA9wDDIGlEOLHgFfk4cO/CfwllLntNPBPpJS/Bny3EOKH825+GxWuDPAj\nwM3APxZC/OP8u2/NAwScOLKCRfSkY3dW7ng2jy24KlIFgkbAIFgwTqqUL91zRLpTiZhj0f+3ne8S\nWOaL7oLt3NRoc6TaY7RzWGzUI8UCdihNHqu8vIV2YJADdllsbaHiW9hEoKLTdIlaH/QCZIfEagJD\nNZ4es2zKLIu5/Xi1rRs2Ujb6x8nkgjiYshbEwJQvnR54Ew59C505Z92JrSV9jpnL04QmTjANV9Km\nmYxYtLWif6crmjSYw2j7MtRSKnCVCZFSvtf4/CTKROY697s9378HlRtjf/9PgX+6yviOrGDpCdMB\n3Cv+j+KsECqjWFVRVJXlBCAZGySVbThoeO+q/Fa+xMmmyJny3O5RZ0X7Rn8uU4w/UqwuNFexY1f6\nTeqEjjoMWo/TJVAq2mUmlOmrMIX5mRVcwkSHDK8bXGUAXzoN02zKLIt41XEVgXbDRspWdIr13iZS\nCF587DSQsBbErAVTHni8Tj1i5y9pmGSVriCRiu8sVuy91Vo7tm8sM9qr+8nMe1jmJNU1LfBHJpbP\n/hAEQMf3whdJqPFcmb2uVJA8InBpH1GyJIkzZnnpXrMQlHmejyhR/21TWqwyaW27fVMymG/HbmoT\n5njaalOsgtpi1pa0ZtnDD7K4uMKTzcx1PT4fd5W6X8tCM1GCZSP/vKvqwGe9oiyvvbjrBXtdE2Ca\nWfQ5V1nR72LGLAt5+daSU4M5mVS8ZJmck8kFk/y+3TaSzLIpp8/G7Ezcz9YXYlzRXIx7E8aylnNU\nXE/BpZVh8uWpNno1E6PNrFCP/qv6fVxj9MGXK1anXXL/bTNQaNgajQsurfoKDoYjK1iWsurwBfUC\nFU7UYYrauaqFZ5zAOBHsTqKq+WzFiBEfLYyazC1RZ1aI5Ko291Xs0k11YA4SKeMrsHRQ6AUUqCRD\n2jA3EONkwYW0x1PTPpv9KYtoCMA02WEyDyo10EvG3+pYC+LLKKgIl0VuNk2igPNn17hnsmR8TUKS\nHeOmrR1etL5DJufcf35QCJa1QAmXtSDhK3HGubNrRbKu7xn7mAvse2OzDhTRXZaAcQkUF1ybAnOc\nvnN9JSFMFmX9fRffWXm8J4nZIxRdMGmCrgiXg+HIChZNm+9yitrCRTvvdTLffphencckecivI3DA\nhGsh34/a7goTbh7fwarnNb3Iq5q/usBOOm2C8oGQ17zvkS6npEuVbb+3WJBkcfG7DybNugvlQq8C\nKR55MubZNGGcxpzdyEiyPklWLrTDKGN7IFkLQtbCBY/FFzlz+liNCcLfTx0ugWJ+bvKPdMGqvj/v\nsRVtdjWh0ql9i8uuSVve3EwviXCR1ANCvlZxdAWLrBMrmjCFS5oEKwmVNpg8YTZWMZftF7b20hyl\nc7hFmtruXxf6jSZUQos9XGm673EiGKeSSdpjnAQMQiVYlBlMNAoVs3yCqbVo2Fxq2q+RJj2SxYxx\nCjdulO1tDxbcsJHkeTURa0HEWiCJw10ee2wDF3ycYbaAXbWq46XizPIJIa9prUOUX3FsSyBIW56O\neUyaBAVNkMkgcAXdcWQFC7QLh52CbqQ9f8TXfjUzvUza03+7HKhmToHu1zZ9NRFXrjq2LgJGw5Wc\n2QWrCORVFrZVyw+4+k+yHsmyV2RFJ8ued2epx2YWh9L/V7jJYlkzyWmtIEkCdidzntxOuHFTcs1A\nkV6qRM1+LlyW3LjRYxRJrop2+cqzpcYM9Sqeejz9JCvYkZvgoi+xN1iHmYDp6hOqIb72eKAuVPwC\non1DYmstvnYLyiGdJH1ImvVSCqaLS1dN83LCkRYsPtK9aiJe+0RoIq+rRcsYE9ikcvFRUWjYwqWL\nUPHtPn2LhC+p0UabAHLltLiihrq+sK4cCB2RtLMTVUgsvT4shxlwFJc170fRgihQVSFG0bOcDUIv\ns7GGrXXqoAFNItlE4LgzgQcnfcbXX+TGoQTKnfHZaViYyEYRvPaEZBTPi0x9HzQ5qE1iaaMp+bVt\nvuwndLjNnNpUK6i60aqGjWsUfpQG4eL6vgux64ntg2nQRxVHWrBo2HbnVc+xv29bMLWJZmNYLkAm\n91SyEI0RMm00Jo0mASM6rGsGf1u4ZtO54A9FbeKfso81+9SC2LxOmyG5SZPRNDprgVq4h1HGehgy\nCIZ5bsl54pwdwCdcdH0eZ1a/I+zaFUIMKB/K9ozZYsEsi2r9bQ8WbK/N2R70GUUhD8UJT0/81zaz\nXunUoV366Ina5sSqKEOO6+HG5lig2Rrg0pxME+cqmxT3e7N0bsIulUnwKODIChYhqi9Sm0BpmvjO\nEF6fD6FBqAwCmGZlOVyfgGnSgsy/td3ZXPDsRdoXNt10P9p408zsa5dQscsC+45TbdVbZ4UiAAAg\nAElEQVS5zwb5oZrEsmjDMuWYVS7NdtX9TxnFkq1oybCfMQi3CAkJRcggHDKMppivh+t52j6MLsml\nLo323Nk10mTOLEt47YmS7ub6jZSbhwGD8GpODiZl8bB4wcNnq4tk0/NyhZt3WTTtOd8e7FEdj0na\n2XROF+Gi29TjsPNQXBpOl7G2XVMcSuLwUKjuWUplZj0KOLKCRaPrLs13nG9immR99uJj7rw19GKp\nhQtQULzsd+dUMSM4WIibXmhfmKZPqNjJdbpd04xRFWz+BaBNqOiFV/1fvvQ7hjnJLBBl9x/FS+JQ\nLeBxIBnFGYHoK9r8MCIQVdp82xyqx16/pvpzdcGM6NP5F+eeUXk9a8GU20aSk4OMGzZSBuEpBsGQ\nQPR50fpTJJkisRxFkgfHC86dj4t73QZXwqJ5LT60tW0Ky9k0LDcyDgHr3Ch5hIupifjysHx+yDbo\neaGZsM2xmhu9K9gfjqxgEb0qc23XFxPqPoQm4dK4kzRe6GlWn8gmb1gTmnw8redaL3+XMGkXvEIi\nruc22DkLleMdC0h5bIadFa/5xnTBLy1cbNu8TS2i7q0jMm+REvT7DMJlQZuv2XorGp0WpA52g1Vp\naiJjXj3yZAwkQMBT0z5RT4UnpstphcTy9dsZoyjiEySFcGnCKqSialz1nXVbHggYbABplZhStenY\nwJiCpKPmYqNrKQsTmr/MGVCwEMShdL6TV9ANR1awKEqXdk4kF2wBs8qL4CKtNCdycZxHqLQtDvtJ\nXjxIrooLTeSc2nHd5F+pLtK9QhClSUAaZySWqc+8jsjIK/E5nV3PPBB9WOypz9F6hTLfbs+ZU2Qk\nGfqQJGX4qi+qL016PPJkzCxLgJgkSzk1eJqnpn1MEstTgznDfgYMuC9IOH029jrBYX+Lr+8aoJvj\nWx/bFHBQb+NwhEuTWcy10bDrDen3L1lQq72zX1zJYzkCEEIaO6neoTsuof7y+QSRnsimb8UF80Ux\nx1vZiXc0Cbh2kW1ljLsSU7Ye40nG8+0g61Qw/j5Usa/92bFllhRElEDuwFfzxPQb+e6veV1uavn2\ne6P7OH02Zpolquzx8eoxL92UbEXXkck5g/Bp1oJj3BckPAKceybwCtTKeDrOddNXZtPjtKF9Djab\nymz/XxdN2tWmS3O1efJcx5e44sRfFUdYsFg7acditGpope0k9S3Excvq2SW1wa5yZ495FQFpR+zY\nY16VAHMVCnyXU91/jp+lufzc/fw0CZhl6txA9FWhL5RwCcSwVugL6sEeNc3FXAgtv4X5W9fcm3Pn\nY+4lASJu2VIkljcPA7aiU4QXJxBGnByc5I7tp4mDAWthwmcMipTDgpmdD90jJ81zfHA9Px8HHbSb\n49oYLJr8THDwDP8mSCkqTAtfyziygsXEQcMKVzE9mVrLpaAT17BDqFeJ6DHhMks1nWcKPTOJz+Wf\nsMfZBleUUnoJFtJV4WIeNmGHR2sTmDaHmYShJSeZutfnzsfcvUiZZSGvOr4gXU7J5IIwjCCMyOQu\n4zRke7DgG69ZMookn3qiv68F0j7HVYNlP3BpGy6m6S7h8m2+IqfpayXmAXOzV2rJV7AargiWHKZZ\nzIZv194kUOxzXEyxNuxCX0U/xm7Kt3P3jdFvXvKPvUnraPrN1gBXCeeGZsqPttBXH7mhD+r6Vdiz\nZhk2e1A1WaqvR5P21iRU7M+mgHGdZy/Eu5OITyUZ41QwSXvcNDzDtceOkWUXeGSSoYlS42DJ67dT\n1gK4+yl/MmWTNuUr6qXhMu+2mV6bIrpsoaLMwe650nUjZj57X6XIpnPs757PTYsPQoi3oGqnBMD7\npJTvsn6/DVWo63XAO6WU7zZ+ez/w14CnpZS3G9//78BfB1LgUeDvSSnH+W8/BXw/6uG8Q0r50abx\nHVnBImVTslSdgddEU46KiTZqfacpy1FF0mVm6mqiavNZmN91hev8jWFaGXtbPoFdArYJXfMpul5D\nkpv8ZpmoOFPLQl/7y1uwubp8cO3MzfBon1P//iRgnCRcSAfcPJ/Vjrl5GBAFA4b9C6wFAz4RlhFj\n9jNzR2j5n0dVw+huLrU3Nk2mr1Wd5F1zVroIl6Y5dlh8eUt5OM57IUQA/ArwLcBp4NNCiA9JKR8w\nDjsPvAP4dkcTvwH8MvAB6/vfB34qr1D588BPAf9QCPEKVPnjVwIvAj4mhLhVSumV9EdWsLjQ5nOx\n+Yu6mNAq2dZWpJRe4IAiR8OMDLN3khqrhEb7nJQHfVnMhcrMMRkEkmm4sIRj9VgNzcfURNXuo3Px\nXUebidHl3+rysvt3ukGFpwtKahfXNbhMgmbRMCiz520TWZIEfCnpMU5mjNOyeFgcSG4abrLJBsx2\nednwWgbhE6wFx7jbETHm2lSYEXo+s5XPn2VqLa6EXN95tkApQ3v9WktbrpBvXrcJl7boxMsMdwKP\nSCm/BCCE+CDwVqAQLHnZ4KeFEN9mnyyl/LgQ4kbH9//J+PNu4Dvyz28FPiilTIAvCyEeycfwCd8A\nrwiWFthhsT6iPv0SubSUAzERW+YvMxLM1VdbxnybKW0VHjDdZpuAtRcD147dF3TQFg3k0nx812IK\nrzjOiiJewIEr+y0SQd/4vDFqzjhva2tG6X8xYZJYjtOEO7cX3LI1I+qtw94uMtkh2jjBehgyjDK+\n6VrBJ/OIMRdMoWKaXH3Jny5ciojKVdFlo+Qap+sd1cLcPO8wsGK48dVCiHuMv++SUt6Vf74O+Krx\n22ngjQcfYQXfB/xbo7+7rf6uazr5eREs+7HlCSHuQKlwA1St5x+VUkohRIxS6e4AzgFvk1I+1jYG\nKasP2KcdgEHrbdXFaNqZtaHqpM1qCXtF3obDPKHHY/Ml6TEWY90HTU2TgPFpFbuTyCiMViYt2i+r\neW2rLLr2S17mtpSs0y5Nx9RefGOvIC9NrGveK+p84d0YVNiFcwJIaDeFFddlbVJMuvv2c3vcfzpm\nnMAkPcYd209wcnCS6Nh1nJ89xmfPqXbjQPLGkxlrYcL9p+NaG3a+0arRUTuTfoUZeRXGbT0PXHlc\n9hjsoJf9mIVXHdfzjGeklK9/PjoWQrwTRWnxr/fbxvOlsezHlverwA8An0QJlrcAH0EJoWellDcL\nIb4L+HngbW0DWMpmYaLRJCzcNC3NwsW1E6pmlrcLFVetelcYbFNehW9sJpW+nR9jjt/Mpt8kVZU1\nPVE9PhqPVVEkIkZ1bc1c2GzzkXmcjcMK/1wbLAoTlrd8sGUWtR33XRZlO+Hx9NmY30tSxukx7tg+\nT9xbcvpi1Wl//cacYaQixu57pldz6tvmOZdw8eWxuOj2mxZmf+CAHYxRmix9gTAHQcWHcki0+M8h\nngBebPx9ff7dgSGE+Lsox/5fkVLqHdLK/T0vgmVVW54Q4jFgKKW8G0AI8QGUU+oj+Tk/m5//W8Av\nCyGEcVMaYddasR2NbTsXV1y8areeE9JtPPV69zbP1yq8TrVF3kM5bv9tL8rmb7bJZGcnIkoyNof1\n8XTd+TUtFrXFyOG30nXo9eJeC989wOLRZmbp6kTWmIzjWrE3u9JjW8itid1JxMcmME7h1ccNn1Qg\neeVVgkF4nOmiJLG8L/Zn6tuwc3Ogrn3axJ9tAtIleGomP2tj1SXqzNlXC7FqrOdJ/gwPWueoCcvD\ny2P5NHCLEOKlqAX+u4DvOWijeaTZTwLfJKXcM376EPBvhBC/iNrw3wJ8qqmty8HH0sWWN88/29/r\nc74KkGtAF4ATwDNNncqlqDkt0yQgTbNKnRQNV5a+LVSqRIzm59Js4/UlWLtE2+5tEzja59pJk+ZO\nUi1iq73wXTOdTQezpmrZj0BtstM35TeYju9+kkECu0m/cr37yb9QVSR7hR/Gdz9MVl17vLbT3nwe\nusKkWY/ezj3ylRvw3d97Hl9jnCiG5GGUccvWjI3+9cTLHlF0ikw+QZKlbEUhn40T7j+tTFl2X/b9\ntjWrLqWQ28bqo1rRv1UCTRo0PbtiaKWPtLoBArfG3xQufTk68PN17keAj6LCjd8vpfyCEOIH89/f\nK4S4BrgHGAJLIcSPAa+QUk6EEL8J/CWUH+c08E+klL+GihSLgd8XQgDcLaX8wbztf4cKDlgAP9wU\nEQaXULAIIT4GXOP46Z1Syt/NjzmwLW/FMb0deDvA4OptoO4/0bU6NOzdaG0BL2Ld67vWpqTDJuEC\nmpokK9hXbZJD3Z8rFNl+GbQj2F68Kn0b12+2Y9YhN4+zd52VRbRj/L8rL8c1vpK80j+XZ4SVQlvm\ntfjMHmthtXKjTJ4FIIiuKkgoTX6uJuFij91+BnFcPkvtj/EJFde9aF6kS637EeDZNOHrTwRsD/oM\nwgkEQ9JstyCx3B4s+KvXLbhmILn7qZQzp485F2Vzw9RVI+siVHzwJWhWWI7jarJp05w2n0vbeKpW\ngbLNS53IvF9IKT+McgmY373X+PwkymTlOve7Pd/f3NDfzwE/13V8l0ywSCn/atPvK9rynqB6k0wb\nnz7ntBAiBLZQTnzXmO4C7gI4fstNhR0ijrOKFgKrZeM3CRfzdxNtIZxaC7EjuYoF3iFQXO3rdrsk\nubnG5fSPmItOQ7vtSYr1IIkmIkUXXHU4fIubeZ1FmHcuVAIRwiIFULT5gVRcYWG1L9d11sbkqaOe\nXzVRnDEZxzXzlwtdFmj79zJbPybJZpwa7NRILG/YSDk1mDOKjnF3vMuDj25U22zR8ppoeQ6SUOgr\nA26Pp6sWumnUg6lv/KzgBccG4TAhgdnlJ6MuCZ6vqLCVbHlSykwIMRFCvAnlvP/bwL8wzvk7qJjq\n7wD+sKt/xeUEd/kwzB26bdoyz3d93i9cXEalUOnWvktg+o6r9l2tgQKQ6IVbsbjXdu8HTVpsa6cr\n7BBZ18KtF5O1XHgEIiQkRCa7AISEiu3YatfZn7WIukxiLgxHSWPb1YCQBh+CpU1r6Gz9WQZv2O7l\n2pfCzcOAE9HNSCFYDx9jGIWM4l0+8UBVuOhx6P+bhH6XsOT62FdjkbDH1JRkG8dlkTFzDrcxLV8q\noXLU8Hz5WPZjy/shynDjj+T/AH4N+Fe5o/88ypG1Mg6DtuGwMnShbTHZ32Ld5Rq1QAEq1Rp10trG\nkEK4mG03oUs2d3UMqy1Odvi1uSC3agTBkqC3BlkKexfVl1lKFAyIg5Q1BxGl3Uc5bkPQWlnkcbhg\nxx57Q1KeKdzr1+yO4nIdd8/jATDjDdsqmfLlozVGYoT86r2KxPLaV/K6q58gDuasBTvc8/gaLmYF\nPSZfKL4txPdLGdQ0V9qSbM1xRnHG5rEFgwBGMcwWMAsk8fGEnYvhSsEWhxXOvJRXNJZLiv3Y8qSU\n9wC3O76fAd95qAO00IX6BbrvtA42Frep4HK0A7eha1LmKu3VzXEt1RHNKJ2o1FKyZbeESV/7ZhkE\n/XfRjakprxit1mVBtHM8/vThHrDHG7YX6roiRWBJECGFIJML4kDwhu0FMOOex9ca221iIVg1I94c\nZ5fratt0mGwWGmYibFcGcRMvxHfr+cblEBX2vMCMCtPQ5p04rtb/8MEWLm0ZyG3svM27PIfvJg2c\nn8Ht+2hyqptmtijWC0RGU9Kjvqa2F8+X8exzkLY5/5s4rZIkqCTRmffVjALcJC24wtJsilw7BbEy\nBckwJlssSLKQmZUp7UrQK8dlL6zVHbzLbOWqTWPnNzVFxXW5N0kS8J8/v8n41l0macadJx/n+LUv\nB+Ds9It8ZVeZh+JgmYcr14XLzqRqGjTbtvtv+t28Pt/vvn7s+26biHVbO5M+cdwjTYKCww7opKns\nt4LqFVRxdAWLhJ28mp8ZVrk2WJCmWaUaYGM0SUsVyibCSn947bK2qKhxVoWY3fZkrDKrTSp2E6aA\ncZFtul8qMwTUnV/TJFxcxcO6sgOYO1R7rLoSo2uH7Lq3dkLfDhHjZMokDdhbzEiXU6I1JVjS5ZS9\nxYIk8y+mPpLC6piDVqFgh7pWw37bNzd2kq+LhUD3c+/DG8yyXZKsxx3bjzNd9JjMS59DHEhu2ZoB\nazRpLi50IWs154sLNkuC2Y7JpGBuGHxalN5gNGk5+61WuV9cMYUdAWSZ2tGYeQVRMmd3GBHGIcNR\nUln4XE7acvEvFz9zd+7jITJ/g+pC6NNi2kwJk3GMmKhxqDwOd/yCrb1AuVCbgnWTtHKeLVT0NTQJ\nF/ueNWkuPuFkX/fOTkSaBOyO3ddo8zyZ/dh5GdNMJRWO05ATa3vE8aY6drlXy2Ox0cRr1kWLq+Ui\npXVt0HdscY5xvKZWacODj24wTi4yTo8VxcNAlTo+sXYVUW+d9fCp/GglXHYmfXZ3osbQXn0N9tj0\nvW7KN4GqFuN8hxy0PhptVgIz56wJdt6Y7utypM2/3HFkBQtQESrrO2lRL30eB0yInQmFXbLxTbTl\ntpgLoU/A+KB3u1qorO+kzPNciTlBkYWu+wEqL5kpKOzMdZ1zUY7bMhvqKDmPcKkL4noCp76GrtBC\nZTYNrWRIWTwr1/02s6qhJHncuRgyG82ZpEFuDjsBQDZ/imTZrIXWNI2k3ETY98W8B+r/MqTdfsZm\n8l+d8scxFsdzKftz39szp4/xscmcJ69PuG1Lcv1GynoYEvXWCUSoqPejGTduBIxumeW5Lt4h1DZQ\n5jVoxmY7aRXcz97UpF1s4vo7WxBp+EhgtRVCH+8TFhWC2UM2iV0JNz4CCIKl0kryBWePiHmUsTeM\nCGNZhIPadCqroCSaXE3VtmllVBseLrMoYzhKmBCra4hV4l1IudhG1kvo4jXT96Ipwa3CSeZYtPzm\nsDJMuwltO32b9BFUMqTZTxN0YS0zMXEtKCPDhBWlPsvKhcDWMG0BacLnxPY9w0rSppHbUt7rbr4m\ne77ZC7KdxHr/6ZgzewlfN4qYpBm3Hz9NIPr8+R6c3lVm1VEEb3nxkvvWd7n34Wo4so+926yQGcay\noK8xr62tHII+xmdO89UT8s5BB8+Zq7+2ROIr6IYjK1iEgM3NlCRSi8CEmL0kqNCdd02Ig/bELvvl\nszmJXH1VE+3coZ466U8LF1OgqPPKa/Hl6ei2dogqi6YPlUzolhfQ6QNpsG37TGqmttPWvm8caRJU\nqjZqp65d2941JheahEsTfGacNiaDLuPqupnRz+Dc+Zg/Pg/j6xMm6QZxsKzxWd20leS5LjuFaawc\nm7+fQsAYzA82mnKOmkOPq4ERrg1Y2zx2BTrYQuW58r98reHICpYgkI07do1VckC8znjrZfcxwTZl\n4/teHrMPM+nO/s0UKr7F2PSrrKqd+QRi+V2dGgfaX1xTuzKFS5twczqwDeESxRmDANbywwIRqlwW\nC9PMra24xu/yJ5hjt+FztNvHuJgSmuDSXGyt1YbWXt58slfck2GU8ZoTC7aiU9y4OWF7MGUUUdDA\ndNXEbaHiMhGa5kE1ZvccNxMfbXTVis3/XX1cKijn/cErSL4QcGQFixCyNjn3K1B8SWPuY9WENos5\n+eDKvtdjcpFa+hZbl6ayShlhu8/iuwO+hPbi3LW4kqmpedv2EBK6fo971WcciLxMsDaDWeY/fS9T\na9FvImc0718Xxl4bPvr/Nq3aJm1sumdnzgz4L4sZbzq1ZBTB7cenHI9vJLw4IT52khs3nybJZoyi\niLvjXT774FbjvGl6v/SYfZRGUbx0anMFFU8lAbWqvdTH4Q6uccEVmXZFa1kdR1aw2IW+XDAX42pY\nZzXEU8PnFLQXZJPdloG//6ZwVZ/20iZQNKqlg9tfnFWy/bvn5ngYbB0OWp/w3u9L37Sou2rez6ah\ndzet23L5tMzj2/ivDoo2f5wL2qylI6KSJODjyYw7r5vzld2Ijf6EjY0TpMsp42SHs9MBcbDkTSd7\nwAUefHSjCP32jmuf12kHL6gx5s89rguTVX2Zus0rpq/Dx5EVLEsJu5O+N4HLNhu5COxMNFFa2Lsv\nE7vjPhsj9xh9C3MT/5V9DRvDtDYe+0U0F75OyZSOsEwXumZb+8KDfTA1BrMdH3y+EF2xsCkCrDIm\nj0+oHFezlrQKbA3EpZmu4gNsG5P5HM+dXeOPk4BZBkm2xy1b5xknAY9Oyl2QFi5rwS4PPD7g3DPV\nHZLt29NwJVS68n5cbYGKDNSF5cw54JrDNryMAS01Ww4LUuINX/9aw9EVLJloFCo6Y3cQ5AvQMPUS\n2LmEUD05sVd7qftJxjzWORl+B6dtLvD5SPT1aEbXKM4Y5bkeY7KacGkyzfjyXcy6Ina0kW/H3LTw\nNy2+Ls3F5ydqy/Cuta39XfkhmVxAB/N3bYPRIjx8fqDDINus/N1istXmsKZgB7PNnUmfP324xyyb\nMkktbbFIpIQ4GLAWTrk/XnLmiWO19nxafBMtjGtc5n3WwuUgpkUffKbkyw05ke97UJTV75NSvsv6\n/Tbg14HXoUqVvHuFc38ceDewLaV8RgjRB96XtxUCH5BS/m9N4zu6gmVZX0VcQmUt//cskjQuKSTM\nfBBNeFe0Ey6cpqYoqvsytHAxc0j0sfbuq8Y4vBB1O7ZFwKcdsaNYVoSLGRHjCxu1d5p2sapWHq5D\neOFN4WKzLsfhomBd1kSEPv4xk6lAR+SpZyRJ9uFQbfLZuPJbzGPMxXYVs5XLP2DPj6Yxtn1vI0kC\nPvHABrNbd7ltJNmKlgyjJbeNMrYiVWcvDk4r4RJIHhqmfPHBq9RYLEd7K5VKy1yysWOZ3+xNU1Ow\nQNMYwB2efRhYcjh5LEKIAPgV4FtQRQ8/LYT4kJTyAeOw88A7UJV2O58rhHgx8K3AV4zTvhOIpZSv\nEkKsAw8IIX5TSvmYb4xHVrAAnbKJbdjZ54UD2iIddJ6bnxPGEhKViFn8TTV6prZweXMZVl+0tQnQ\nl9jmSkSzF2pTCKapP3LJzih3mQtXWVAqfRj8ZU38YRpmeDk4wo2DfLFa4BQ2BTPBCotg5XqNxeow\nmbBdaLoXrbVWrHnxyfu3ePJlE157Nbzq+JJM1gk6b9yAawZLRvF5xsnBIp+6CCEfzGfkQyU3zZEr\n05TkepngTuARKeWXAIQQH0SVaC8Ei5TyaeBpIcS3rXjuL6FKmvyucY4EjuX1rgZASoXjvI4jK1h6\nPclsGlYiZoajpLDfpnFGYmgHOxfDmk8mTQPOPRM0qvygFhGdNQ5KgJi0K20Fn0paCkUQmcZlFT1z\nUd3didjYTNkcwg7KwVmYwnINo3YNhlCxa8bbqOeXuG3nrqQ9F8xr8P0OFESNVZqZ+vV3QRyXNv+r\nolKjM2EyG5uap885r8fog7l4HYa5xkT1WZamIVO7hHoIdBMvl2qrOke++OBVpC+bME4Fk7TH7cef\nYLro8cCzZdLkWgBvOil56AI8NqkLF5f51U/o2f2Zmmgrv+3M9o+qm52u+TSXGFcLIe4x/r4rL1QI\nRjn2HKeBN3Zs13uuEOKtwBNSys/m5Uw0fgslfM4A68D/IqU839TJ0RUsgcqu18SNAOefWiNNgmJx\nVigXsCbnX5oGmAU3bNOIvXi6MpGbOJJsYkXzJTX5s9RCskcc99gYKt8KqMJPLvMXlJpKl0g1b1hr\ny8LadoyzTUvT2dmJiJKMzWE18KCiQXYgxgTYGM5ZC0vBki3nyOrL1Gi2cO10XcfElsZi/m8eZ+Og\n5kM7zBjK5D97E1R3qLv7fvxLQ3YnU2aLKRfSYzWhfH1elXJ7EDOKQh4ci0Iwu4SK+XkV/i+fac0X\nPOOCS7D6nsNhaS1LWQaMdMAzUsrXH0rHHZCbuH4aZQazcScqpvtFwFXAfxVCfExrPS4cXcEiqhNp\nkQi2npmyl0TMpuvoxTnKzVU2bbiLK8omRmzaPZmUMTbNiisM1+xLL5p6QdVcYVs7U/Y2I55hvWw/\nrvtUXBCTpeLfwjCJeV4ovevv4kMxX2CXgOlif1fjL80TOxM3UaH+3Kwlqfu8eWyRV5BcFnks2sST\nyQVJ1j6mJuFSS0pNlqRJVvENmNfUdN3l2BuCEay52JRTo9tyBSK0PYtzzwz45E7Es7de4OtPSEb5\n5bziqikv2byaqDdgFJ9nGE25ZhBz3zl4ck94Q641TAHjYxTwJb2ax6wKuz+naeyQtcxDgK+E+0HO\nvQl4KaC1leuBzwgh7gS+B/g9KeUcZV77E+D1wBXBYkMISRxnXH1yj2eeXmd9knJsokwte0TsDiIg\nbbVV64V9kQjWJynzOCh8J7uJEkamyQv8O0c7QcyVL2ELGpOA0hz/BKWJafORK4dCt7FIBH2gn2bF\n2PWCt0qior2o+xhru+z2bdi+CvN/H1ykmGY7LjOYjTgsE2ld/riKmSupsijYGeVp0iuO9+VedBW0\nLpjn1bP/63POZ8rs0s/9nz9O8nXP8qZTS27YyDix1iPqDQizJYNgyKnBhEka8MaTPf6/Cz0eYlaJ\nqmwTMF3QmM2/whxzCReNwxQqUu6v0JgDnwZuEUK8FCUUvgu1+O/7XCnlF4CT+iAhxGPA6/OosK8A\nfxlVqfcY8CbgnzV1cmQFi5SieMGGo4Tziao9sTeM2BjN2dhMG+PvNaJICac0DZjEccHm6kMUZ2xu\npp2c8V2y/k0CSoC9zQg57Cl/kaMf1wt0/FTGZBxzIR5UCDj91+DOZL4Ujs79OPabtBaf4z3o9Ys6\n94EIiYOMUQSDQF1XW5Z/mgYVobBDlNf0KWvfmNpKY9jvPoMZ2kKJXX5A05SoNZ02P4XZ191P9Zhl\niv4lEE8xCIfspuf54gX1Pg2jJa8+LlkL4MEwKQIu7HLCJlzvmovp2P69KTKvS/Si8zovQ+e9lHIh\nhPgR4KOokOH352XdfzD//b1CiGuAe4AhsBRC/BjwCinlxHVuS5e/Avy6EOILqKD8X5dSfq7phCMr\nWExEUcbxUzPOs8bxU7OKbbxpYbbbKATMuC5gtD9FL/Zdd6ZNwsUkoEwHARfiQU6iOa/04ztXjxuq\nXGn2cU3kj11oMmz4wnF9fZjjbGzXs4A03UMXAWXQ6zPsp6wFql765nCeVyWst6NNS3MAACAASURB\nVF1LWqwEVQTs7rgX/C67YttHY4fYNrVpwxYqXSKrinbtoA1rXPc90wMikmzB9toznJ1VzcbbgwXD\nKGMURTy2C49NTC2uNNX60MVEp4+rfWdohmakl2lOfiFCSvlh4MPWd+81Pj+JMmd1OtdxzI3G511W\nLP9+5AWL+bKZQsVlLnAtorbJI03KWh2mgDGFis6Gr75Y/rDcJpimqI0RhaZlJxLaL7GtjeldeatD\n2kMYuJ+XtItQ6aIpmG11CQVOkwCMvKNBuCQQYUGbr7nC4mDJWtBjY5h6Fz6XxmZf12QcV7TAKMrY\nHM7zY933zp6DaaKi4lzElV0y8FuLXCVlflIYS6/m4tN87numxywLefVxURHWt2zN2OgfJ5MLhv2L\nbEUxo6jHg2NZ5GE1MRq4hIo5N7y5OsY5vjDxLvP1MJMjpRT7NnO+0HDkBYuGK1/DlXxYYdi1EvZA\nhfhGccbupE8UZZVcGX18JaMf98TtsjiaJI6V2HzXuKxkSh+9eJP5r4kdeRUiTh/0AtBFqPjON9F0\nvk6OrMBgNx6ES+JAmXDiULIxnFshuNX7Z1O7mAt1P1FlGYajxFiY/dpP08YgSpbsTKrRguY5q8Il\nqLRwMVELRnCM/6Fne8wywWuOZwyjJTdsJGxFp1jvbbJgwbXHAC4yjPqMopCHxvBsCj4SyaaQ6YLt\nwREQYgsV/X9RDK5DpFcbW/cVNOOKYMlx2Cpx4YdIM2Mn2yteyGlGJRTTB5dgKNR6TyRNZdELF8b3\nBseXh8q90rdtx3bmGwReIaX7cbXrCnFty+fxjiu1Mq0dTvZVoH0tXdFELjkjZE7AxmDe4PdZLVnS\nxSqwX/gSX33PwjcH9G9pMme2gNee6CnzVzwl6g1Il1PSbEqyVN/fvLVkLYi475zgWSTQ1TTsfrZt\nSY9dLQCrsJqviqVsD4P+WsGRFSzLfEPm4rWKrQW8CeVEyWqZ91G8LMqh6rbtfFWX+cvODNefXTT3\nvvBkDSO1xmFSaBcuNvWIWjxKh7RtFnSd6/vbDJn2JR36FmNbezTbqFHmG0SHRd/WswpEv6bAdEGT\nz02PY0bJjGwz9tpoor9vgm026wLz2de5x+r+LZe/rZafMoEn44z7gFkWA1NetP4Ee4sF49QouxxI\nXnHVFBjw0AXBmT1JasSMNPn1bLiONSMWfSSnLv62K9rJ4eDIChaoZipDdbKVi6dbE3BBR7yYsHfn\n+uWrL7puoTLIT51mfu3FOZbWhagsF+wsquTxMWnYeT1t5/r6h6qAseEKYTZzftrgWgwPEnVla2ht\n2NhMGzWotrbaNjcu023b3GiCy1FvwsVObH6fJAG7k4gnC5aEGEgwl5q4t+TaY5qw8iJxEAMBySKr\ntOkak8+f1CRYu+RcNZWYuILVcaQFC7iJEtuytjW6UX7XM5wLZ69HuNhCRX/WWbum9uIclxH50tSP\nKVzs63HZ0W3KEFfOii1U2l5U3w7btQC4Xn7b1+SDS2sp2nVEhsWBLHwsPnQ1n7oWw8PkCvNdV5P2\n4qvQ2DXTvClLXmm1AU8WvpOYm7dS4kAyihacWLuKzeA4AMHGeQbhs8CAtaDHQ89CFJfC29Q4nCYw\nx3wt53XD9VtM3j7f0WGaruRSHOpzv5xxpAWLd6HxqMRNuScrmSDyREeV53Bw9bsSRmokD9o0MIfR\nT2kSK192VxRdl52fuQDYMHeZvii9FwrcZp12M6SN1LFRcEfp1QMJqu34+3WZh/YD3eeTZMwymGUR\nt2wtGEXuHJlhtOQN20vWgpAHw4Rz52PncfsdT9O77it1rM574c23ywFHVrD0hHvS+DLhNfw7QFcM\nfX1X10bfEcVZwZQ8zaqmMPBn7vqEi4bmYtLmPV8OQZMWVr0faUVLWUWg2CY9sx9XIICv/VV3k5UF\n9ZhjgVvk5hvDymfyhbWZOW20OYJdwqVrnZImQb7KJsfXX1cntk9IlYXiMsaJ4N5zME5DJmmPm4YX\nODmYEvT6nLl4kbOzUoi86viCURRyX5Bw+qxbuLj6UfO2e15Yk2Z+BQfHkRUsrpr3Gm2+AY02YVL7\nzVP3xGzbJVw07BovvsXG7Mv8bAsXe7yuwAWXRmG+nKsIFHAHJLgF/OH4RVw73DTpkSwEs8ztrV81\nKqyp36aNiu3jMgVVFzObzy/XlB/SRvToCrNtmvNtZkhzPn95B8ZJwIV0wM1bKZCRZOW93l6bc2JN\nRY2tBTEPxQkPnw1r4/ahqeqpC12ESlspjFUg5dEpfXyEBYv637bLmuiymPmc+113nvZv1XF015jA\nWgA8QqwqXNzj9Wk21b6qNmnXC2hrV10DEuxrabpe7Ux3MRybJrQa71oSoEovKQSiD4u9vOHqa+EK\nyiiuyaG1uDStpvH7zGJa0Lv8Q657X/rkmpMPfddRtu3WhlybDFfIu71BKY+FZJHxbArjNOLWrazw\nb92wkXBycJKoN2AQThhFzzKM1lQBsWczb/VW3xxu8ju5PtfuhzGfB0dDFhwqjqxggboTfD+7Yntx\n88FFU19va1l5ee3Pvv6d3xtOT7s/k6LcHnPTYqb7sxcYl8DQ3+v76xI8ZkCC73rs87qQ+Lkc0LWw\n7CRgli32VT2yC1yayn4cwa7Fsqu50RWe7mq3KbTXtRB3DVt3R1aqekL3LZTv5eVbS67fmLPZX6uQ\nWK6HOwyjjDdsy8LvsnMx9N5Dk+8sTbOa/3K/GvBhCpXlUlyOTMmXBEdWsJhMo/uN/DDNSV1UXDOL\n2C5FvEp/beY4m1SwqS8XPYhvx+kai/pMbu5wH2ea9qAuTKo1OwLr+pzdG8eXRc7MzH3fC+yKlEsy\noSjzQ7Ur1vT5SSYsH0s3Z7vdR9s9bKOUd/3m1mxL7U+37zN5+trWm4qmKDr7mnzalv/cHtDnc8k8\nF+494t6UoHeeQTBkNz3Ln+fKYxwsedXxBWtByL0s2KH+3rloX6qlGZYrv+NNc/oK2nGEBUvdvLEf\nZ3AngeKgzND/uxb8tnDnJsGSJr2aUNEFvFTVyrAxw92Vy+M8ruar6RIZV9VybMGuq1vGcfcF3Kb9\naKtDAvp5qAzxJOsxXfRywaKqIWZylyQThTbTNXdlP7tRX/E1aM4hcT+bcjPQRaC4YOdcuZ5Flcyy\n+R1oCg7YnfS5PwmYLRJm2YBXLqeMoh2emvZRJLoK22tz4mAJRNy9KOeYS6jY5mAdfan7NMfdhi7B\nAFfgxpEVLE30Cl0jddrQVHypn6jaJ6Zw6ZILE8Vmhn9Vqyh2cIZQaeqv3k/Zt20S85k6mv72QWsw\neux64dbsvV0XaPueanSpe26PNZOLQmMhg+lC/T5rMZU1kSV2QVO0oLOwVVT3ZTQl8+6Xddr8rpFz\nraV9fV/sJEdz7I88GTPLEmZZzC1bQS5EFG7YSNnoHyfNpkAKRNyty4evyHrcdV6ZTAOHiSsklEcA\nbclKXcKDwZ201XSe1iCA4v9Smyj9CYUGkCpWW9tZrmy/JQ2G7cDW6BuUMr7+CnI+o0/75Xfdm6br\nNe9LkwaWJgE7k763nG5XaCGqr8nHaGtjlkGy7FVKE2dyQbLskWTVnB0fDjJ2X5BFk0bZBRXtpkPS\nY1PEossE2wZz0Z9NQy9bsp5fp8/GTLOEWRZy61bGMMo4NZiz0T/ORniCtDflho3TTPJx3hsmnHtm\nrXVM+1nIXwiLvxDiLcB7UDVV3ielfJf1u8h//2+BPeDvSik/k//2o8APoNTCfyml/Gf59/8WeHne\nxAgYSylfm//2auD/Iq/vArxBSjnzje/IChaoL5BN1A/uyKhqprJZhtd1LJSkhCZsJlnzeHd7GTry\nR42tbmteGyyK2vX2ghdSFSj2dbaGYBrX2RpC3bD78wnDJthj1tfmKwnddTEMeu4Q49k+bOwuU2PX\n8sM2mjYuvt9cc9gVMWcfX+t7ReFmMg2vGmwCcO58zKcuZoxTwW1bAXEg2exPSXtT0uUe4yRgkgaM\nIvjmayVXRRd44PFB40bHZZ613wfXe2Ae01a8ryvkspuptg1CiABVfOtbgNPAp4UQH5JSPmAc9t8A\nt+T/3gj8KvBGIcTtKKFyJ0oF/D0hxP8rpXxESvk2o4//A7iQfw6B/xv4XinlZ4UQJ4B50xifV8Ei\nhPhx4N3AtpTymfy7nwK+H7V6vkNK+dH8+zuA30Atlx8GflRKKYUQMfAB4A7gHPA2KeVj+xlPk5Zi\nR8QUUTP5y6Tra5jwMazapijfQmjv+rXNO4pVZI2923fBjtU/7N2Yq3qieW9MIeRyGledrM1CwL43\nTYu1/Xy6CC9dj2VV+Agc2xh3wb9hMc93CQG72JY6z51T0pSLZNfmcV1XE5dbpR/P72ZJbrNdHx4+\nG3Jmb8GT05hbtzKuP3aGyTzg9O6gctwbT2aM4j0+92S/8M/ZYzfJSSubLvtajbHZ0ZSujd/zjDuB\nR6SUXwIQQnwQeCtgCpa3Ah+QUkrgbiHESAhxLfB1wCellHv5uX8E/A3gF/SJubbzP6DKEQN8K/A5\nKeVnAaSU59oG+LwJFiHEi1ED/orx3StQNZhfCbwI+JgQ4lYpZYaSuD8AfBIlWN4CfAQlhJ6VUt4s\nhPgu4OeBt9EBTvp2h0mnbfHz1ddwttcQ2mn2abYNVZ4xLWB0NBTgrFnhKq9sVy70+pk61qxoYve1\n6Wrs5L8mAe5qz+y36D/yO3Bdi6/dp48LLO7VHdSNARWOmuttWFWouP7uWpbA/t3OoTHZgM1+ChNs\nsiRNspqW6npePrNeE12M7SfaAT51EZ7cE7z2RLW9YZRx+3FFx789SLlmAPedW/Cl06XgMQUwVAWM\nOUbXXNHzSt+jw9AyDhnXAV81/j6N0krajrkOuB/4uVzrmKJMZfdY534j8JSU8ov537cCUgjxUWAb\n+KCU8hdowPN5x34J+Engd43v3ooadAJ8WQjxCHCnEOIxYCilvBtACPEB4NtRguWtwM/m5/8W8MtC\nCJFL6n3D3m2CW+i0cQ05z3MJlxU5mnZ2Iu+kj+KsqFJY2eUn9WRBLTib8gN8RY9s2nqz7/qYqrtp\nn2PaBR/Bpb6mNCkFjNmOj4fN7jvuqQqSutCXriBpwyVcXIu4SwjafTf5VPZTvMueU8V9NuZI1HAf\nq21VGRXiUJJoQWQVGmsSjvb1aHQjeFXtPvJkwLNpwptPKkLQ7cGCV14lOBHdDFnK4HjCqcHTbEUD\nrlkvtZe2DZVLoFxqynwpxSpmtauFEOaCf5eU8q6Dj0E+KIT4eeA/AReB+6hnYn838JvG3yHwF4A3\noPw1fyCE+DMp5R/4+nleBIsQ4q3AE7m9zvzpOuBu428tZef5Z/t7fc5XAaSUCyHEBeAE8Iyj37cD\nbwcYXL1dG1dXR73ezXd58Su7shbbtOsckz7F9qXsjh1+gUG1DTvZsmmXau5Au+y4zWixwyIvfC6w\nnyJgdkBDFzgTDzuUf/aduyqiqOpfWPW6zQjEOKzWS2k6xx6Dia6s4eY8P/PEMZKve5Y3nVpy/caS\noLdWbTNnon751hKY8zlU6Pr/3965x0hylAf8903PTs+cb/eWs8/GYDs+sHlDgDi2pUBiggHjoEAi\nXooSHokSESAPJRFx8D/8AwITgRNAMQ6g4AAJBIKwwMQESIIUAYYQ8/QBxrzOXOyzz+vd88327Mx+\n+aO6Zqprqnt69sa7t7v1k1Y704/qqunu+qq+V7nXrJ2JOmCT2Ujg9Ay4R1UvKtl3J3Cu8/2cfFut\nY1T1vcB7AUTkTTh9a25P+U2MacFyGPiCY664CXgqsPmCRUQ+Czw0sOtq4PUYNdimkkv86wEe8sgL\nCjOaqnUagKD+1rd7uFH4fhm2Ay+o1Sa86KGFskxnbkbowJhwWe2aRaWyLJko9EJtqtv5uELKLStk\nrA8tChaiLD16KFUIFF1qQ4bqUBk+Q68wx9140DdeYaveTxHKGO1fLxTxb+vqdnB+B1bIsjA2w508\nki4LWAxF0Je5iYe9AIvqIz+7dbGeAbVYiUo1lGrHv5+uuurI4dP4Eg+wOmgBqzx68W4SaXJ45X4O\nP2BGU65wOZQOOHa0KIBsffzvfuyWW4dTlK8AF4rIQYyweCnwW94xNwKvze0vlwD3q+oRABE5U1Xv\nFpHzMELkUue8y4FDquoO5G8GXiciezAG/1/BaJxKedAEi6peHtouIk8EDgJ2tnIO8DURuZhyKXtn\n/tnfjnPO4Vza7sMY8WszSWcM1R5froDxsWulbyRNOlSrKyxWuMxlA9SrgxvzEgqaK5RZU9C5nZWb\nKypEWVLFKqN6VUc9+q3H9f3Fuk4y7hc764K78fraMDgyJFwm1R/CthB/jZGqgNKNCBfLpAGDO+io\ninfplQnBKWxj9viCanlsTZ1iEGeZavbY0Ta3ZDYrQo+FVpej3WIOsQOdPrZbO8TqULjUcTyw9ZwU\nqLpRZF0L7v8bJdfMvBbT4SfA+1T12yLyqnz/dRg79JXA7Rj11SudIj7meHa9RlWXnH0vpagGQ1Xv\nE5G3YQSaAjep6qeq6rjpqjBV/SZwpv2e208uUtV7RORG4EN5Ix6GcZW7RVUHIrIsIpdijPcvA96R\nF3Ej8HLgi8ALgc/Xta9k3ojR10Wbz8UXcJKAcTsUa3vxX8xJhlX3uj6+lxdQiLA/keUBaa3qzK0h\nV+uq/e717f9Rx1MtNCddC8pf/Enb66ScgerOwaR06TPQtfx/Hzfye5p6Fa7pdKCh2Z05ZrQ/mLJn\nCgEzzYBhmlxxZamL/NgU344xidB7McnexzLcAnmescYwiWWaKOftzZifa3NWp0uatGkncFuzy5Ej\nnWB5IR4soTJrVPUmjPBwt13nfFbgNSXnPr2i3FeUbP8AxuW4FqeUu0MudT+CcZvrY6SpvbOvZuRu\n/On8D4yu8B9zQ/8xjMStjZ/+BOcZrKvndl+GXm/A/HyvQjCUpxmvswqjm5Sxlw5I0wYLixnLS6O1\nK6bRCZe1sU5Mjv1cZ9Q9yxd0GpfpugJmoGv01rvDz9mgXZitTOO2XJbU0bd3+N6GbnqcwvbeaFZo\nO/xxVdr0kfZ12Kh7emjkH1qpcSRYG4X3qOwZtsLlq1nC0kMzHrOonNkxAZXzc21aSYc92mehNWCx\nlfCU05VO0uWOw9WBvW4wpx+HNCt7oehsZizbgS0XLKp6vvf9jcAbA8d9FXhCYPsq8KLpr+t5MuUv\nqu+iOwm3DCCog4fyUZ8l5Ajg599yU6FYrO1mYTHjWNZm7+LasF69LCHzRsT+zMuU6193fLEtf7tb\nx4KefApvr41SNy7HdcH2swr4JDJHInPDBJSl164xKp9k4J/GmDwx6r/EnleF9WTsZeOxRX7ZVTOk\nUDzI8FzX5lUx+3VnvfP0WKEkPb5333pZg+/8uMN9vS6PXUzIBkLayFhMu9zVnePwcVNOO4Enn64s\npl2+d7QZfF5doeL+t8/ZrIX1bmDLBctWsb4+ruooEyplKU0mpTHxy3DPKzPyjl+7/KF2PV9arQF7\nF4vuxSvOfr8NVR1GlWorZPjdiAtxXapckF2XWktV7rA61F3kK02NV6DNb2YJ39v6asMyZhXY6rrH\n22el8Jw4s6MyXC/CQh1rZKuo2m+FS5nhPOSZd+RIh6y/ylJPyAYdFloD7u4Wzz2zM2BfS1hsKbct\n9Yfp93tZY6wt1h3YDWI+VdVhpzK7VrC4hALpLBsRKv6x9rPvuVSMV5g8Cve3+8Jr73xv7Bq9wNS7\njiG4bIEsf1udgDkf1/heWYcSV1XXBXtl2dYpXFY/k2HkdN36ucKlOwjbiIZ1yAZj6hS3roX2TFCH\nTcJvYy3XXc/ZwKqiFm00+YKJ3XGFC5TPusrum//bThL2ZQSX2J6gHjt2tM3x5XWWsozHLCaFoNcL\n9vU4OK8MdI0DnRaLrRaHlvr85D6n7oF7sJFlLSYhCnO93SGkdr1gceNRyl4MX389je1gTKB4L0nZ\nYkRl7qN12uPWcWWlFQwCq/TiKej4y1c3tNfxVQlVke9lXmKhNliqFmxyPfHceruBaLaTmDRrKQuM\nDNVldP+KyxRYTOT2gxNwV1fAFAR+HjC7d6HHYqospiYPWtpUeumA+QUjXIbP5yQPwYr9GxUqw7JL\nlti230PxRL2swR2HO3QHXZ5yugmmvGBfjwsWEvbOnQ5AIncBPfa1mjx0j5m93HssNYODvM7DRK1p\n8ZmOTMeu/tXKhAqMd2ChgEJLlUdVHV1zsG5pOCam9vle9HfdTi4cn1CMtrdllsVk+Nd3KRvxho63\naptp6mppploryrmdGI+iRJrDmUoiTdJkQDsxWaSrMjOX1i2fLZYNFsqepUnlQm4TDKhdx1ycHbdm\nd+G2brNPOyBj03RArzcqe3R/x9PyTKqfvVa70y90zkWHhfIVSn3cQYsfT+SWabYd57GLSjZo0Fvv\n5t5+a5zo98kGKQutdZ64f5120uRQkhUir49n5hloplpbfVoXWdfh2jA7nV0rWBqNehlfQu61mddB\n+BQ6XUfdUeVBVX798RmD/0KWvexuxzymD9+AkAtdO3TsJOrlsjLCfv4083KH1p2flB25LOPxcFv+\n9KeNdZLG3DAJZdKYI036tBMjeMaXNZ68eFYvS8ysJXMXQxs3tLtlFI3T1TO6kNdelcB2XYezdMB9\neYZrd7nfVroe7PjqeJz5AtLPzVXnuahzTB115r3HUm7t94Am2aDDhfvupttvcHQ1LRz3hP092kkL\nMMKl10topuM59yLTs2sFC0wwUFpVR1NJm/1aa637Zc9SuJRt9yO67bXHOuZ0wPHlEo+bQqS2H+0/\n7vLs44+86xg7Q3V262BVNu3ECIClTFmi6JIbCpD0R8h+W0YdbX5/80Wl/Fxhi60+aTJHu2k988LR\n6pMSea4sT7aFBLMXlzwn1sFkmlmEf/3jyy1Y6A09Bf1jfWE1zSzT3+cLGLtteFzprKV6pl4WzAjm\n3hxfbnErvXxLexjvAuaeH5zXfGaaASmQ5edGD7BZsKsFC5R3pDZepDN8zpRieovyzjioLvKES726\necbeCgcDey3X68d2zACriZLuzwoj1LKRt2vPCKbpmGBMrUuow927sMb8aX06CSymsNiyHYIAI+Fi\n4x5CuKPNKo+wdt7ZdJrrRg22lguWublh/qnFlua/w7hacmKKmoqZbUi96B7nts2NrQipbstS5lQF\n25YNMqqyUVcRupeh5I+hz/4KqTaYtGo2WJVZwZ7nCpdH7RuQJspCa8C5pzXZ1zrLuJg37gK6tJOU\nW5MMdyXTWSNKjGPZ6UiNCUin5H1yg7pOBQrpQvKX1A2kLB5r6m5dlUu93CrdkcOjaVe4nSyuZ49R\nSSntZPoFl2yHXOX5Ny1V7tVlQqzMDgIl9y8dZWyeVf2rntdi5z4+Ey6L/5mG6mSr1ZkiinWtcBzw\n6mmFi4nUX+dAe42kYWKWRPNZS2OdNFnnkjOh3ezyrcNFQX0K5ww7Zdm1ggWKi0+ZRJKjkbpRfY06\n55CO31JL5x5wTy4LivQ/h9Y0969t1UIryxgPH4z6y7qVdgcU/Pfduk5KjxJuc7XdwGWqALPcfTjr\n27obYbKUwVIm+PaAKhVjqEMOeZd1+w0TGJnuB2AwOEY2ELKBjOUKc38zN9sBhBdsK0uoGcJ1o7bU\nEdZ1OsFJ98C9Rpnaa1LcVkilV0YoCn8aJuWa6/WSob2olzX4RrbGUtbn/l6HC9ZWOTj/IxJp8tMH\n+hw+PrqPP79/QDtZ5dB9jWASy0g9dq1gkYYWRmRWyMwvmP1WuKRNrRQqLv4UetI6LlVUReqHEgge\nX2lxfGluGHlv27HEyEOnSqgsL6V5zEeThcWscJ2yevlUxb7UwdYlO5qYFTkXenQHSicpChVzrcHQ\n1bgsKWJVah2XbL1Bb9BFm/lSz4MuS70m2aDB6kCGv9tQxbLSqnRDDblbl+XkqsJfMsFSGrwacM2d\nhmkjzP3ZQd3zT0aohAYLZZ6XbpqlLEvoZWvc18tY6rVY7hnV2HJvFL+z0DIzmoXWHIutJofSLoeP\nFgcPJ4OoMtfbHU4Bu1awNAJalZGxtcHeBbs1/OD7Bka78JbdZ8srnFOiSqiynfh6bjetudvRZXc1\n2LfS5UTWYrW7BzhRaIffObr1W15KkeV19mQD1tKEXscKj7CHUEitU5Wxtg7WCG715yvLpoy9C2us\nlJxT6tTguZG77q8uqwMhG5h6DrTv5ArrD2crq/2RowCMhIosr7OWJmPL1oaESig/nB/hHnJ5D5U7\nlpLEv6fBWe1InVbFNPFZdd3LXfx4pGmEiq/SHJvpezYpF2ujMu/3HCsHTKT+Y/bp0HnjQKfPBQsJ\nneYZnNlZZqGVsdhKOZRmfO/oru0mN8yu/sXcF952GEad0YPlOq6160NjXy8zC281Ux1LZDcpgtzH\nFQKTRp1WqOxZ6XHasjFUnqDFPewZzjxsG0NYoTKXDThtxUTu35922Ls4HuTnL8BkYx7GDdP1BYyf\nBNSNkrcjzaoAydB6ML5QsbPOMgFjUuTrME+YTULp4wqVuWzAXC6IdaFRmuXXV2+FMvhW/X5VTMrR\n5newZQLGD3IdrlHvZIawhvhQ2paqHGyWkxEqZYRyedk22xgmayw/ns3RTEcC5vhyj6Vzujz59AZn\ndgac1Vmj03wInWSBROZ42J67WO71WchTwdxw0rWdXdr87cAuFyz5A74M0Cu8dHWm9a4HSSsdDB/c\nMoFSt05j1/Fe2mJH1KOVJiwvtTkx3yqMom0sRQhbRrvTZ5Uma/lysyfmWzRTrR49O2t81A0wtYyp\n9Zx2udHxvspjtMBUo1TY+dcYdjy5q7gvUNpOyvVEmrQaJrV1q9FhodWnnTRpN121W29Yz7Vlhr+1\nnw3XvV8j+1hjTKiEg1EHw87aYh0xbDt8e1Ido37VjKXVGhSCKavsQpUR9zMw8Ju2mvaljueXKyTd\nYE9/4GKfn1XMQGUtTcY6816WsEKLOw6TR+onLLTm2NM8BkC3v8zPTuTXiXwWvQAACZ9JREFUSpQn\n7t8d6qtZsqsFi2XvwtpwLe9J+Oovl6Ftokaal0mj1PHUJeEybTLEVmvA8U4L7Y7qZ1eTrEqR4naW\nJ2gVRt9VwZ9lKgkfK7xtJxCM2SiM8MeFFnij85JcZeB36mG1kHudNFkfBkg289ehlXRIG/eTJuu0\nkwbW3dj/vZqMCxW3Hi6hmYqtz3D2l5nUKr5Q6STG+cLHtb2EZhXTDnCmEQrT5DmrmnEWjivxZLRY\n4bJCi1Y2GLbZX35geHx+P9dIgpH0WZbka7V0WR20yAZ9DrTvYXktIRuMyjzQrs54vRWIyBXA32AW\n+nqPqr7Z2y/5/isxC329QlW/lu/7E+D3MZ4xf6+q1+bb9wMfBs4HfgS8WFXvc8o8D7OkyRtU9a+r\n6hcFS04rNS+1a78IzVrqZvKt6x3ldyJWZRMakU7KSOy+aH7uKres8TQpo87S1WWHruELhypCwtId\nZfpxPsPjAkLLN2DXcQUdufCOe4yZ76b8TnPdzFay44CJY1lMByy0jGCx+bScs2upctzUI1WBlKP6\nFO1a7jWM2Ws0mg9RlSamDtN4dUHYOaV6dj2ibFY2LDsNB0mWpYdx6zN2TkmeOHu+zZAMTR61TwrB\nlBfuW2Vf66xgudMyqzgWEUmAdwHPwqxH/xURuVFVv+Mc9lzMQokXYpYm/jvgEhF5AkaoXIx58f9N\nRD6pqrcDVwGfU9U3i8hV+fe/dMp8G6N1sCqJgsXBHV27lOX+Gp7n6KKrKNtv7QAwEi52e9nxIfY6\n0dRW9XLcquoq1FamXRtR25UvSGbbMsJXR5QLl9AI170ndWxPdlZYNtMZzVg0V4XNQf9Evs/o2c2M\nxXTqvgNB3RH7NK7cVkUzX1NwmboWBW5doe87YFQNWqpSGJXZXvw6VhEKRu6NzINj9rfgSq8Be9A0\n2GWPVwfwpP3GY8wKlT06O8+wGXExcLuq3gGQr2v/fMxswvJ84IZ8JckviciiiJwNPBb4sqqeyM/9\nL8y699fk51yWn/9+4D/JBYuIvAD4IfBAnQruWsFy7/fvuOeG57zkx5t0uTOAezbpWpvFTmwTxHZt\nJzazTT93sgUcW/rhzR/4+O+cUfPwtoh81fl+vapen39+OPBTZ99hzKzEJXTMw4FvAW/M17zvYlRl\n9jpnqeqR/PP/AWcBiMhejIB5FvAXdSq/awWLqh7YrGuJyFdV9aLNut5msBPbBLFd24nt1iZVveIU\nqMNtIvIW4DOY2cetBGIqVFVFxKoc3gC8XVWPS52UJexiwRKJRCLblDuBc53v5+Tbah2jqu8F3gsg\nIm+C4coBd4nI2ap6JFeb3Z1vvwR4oYhcAywC6yKyqqrvLKvgqZHsKhKJRCJ1+QpwoYgcFJEW8FLg\nRu+YG4GXieFS4H6r5hKRM/P/52HsKx9yznl5/vnlwCcAVPXpqnq+qp4PXAu8qUqoQJyxbBbXTz5k\n27ET2wSxXduJndimiahqX0ReC9yMcTd+n6p+W0Rele+/DrgJYz+5HeNu/EqniI/lNpY14DWqupRv\nfzPwERH5PeDHwIs3WkdRrbfgVSQSiUQidYiqsEgkEonMlChYIpFIJDJTomCZESLy5yKiInKGs+2v\nROR2EfmuiDzH2f4LIvLNfN/f5ukXEJFURD6cb/+yiJy/+S0Z1vGtInJIRL4hIh8XkUVn37ZtVxki\nckXentvzqONTGhE5V0T+Q0S+IyLfztN0ICL7ReTfReT7+f+HOOdMdd+2ChFJROR/ReST+fdt36Zd\nh6rGv5P8w7j13YwxeJ2Rb3sc8HXMgtoHgR8ASb7vFuBSTK6eTwPPzbe/Grgu//xS4MNb2KZnA838\n81uAt+yEdpW0Ncnb8QiglbfvcVtdrwl1Pht4av55Hvhefm+uAa7Kt191MvdtC9v2ZxhPpU/m37d9\nm3bbX5yxzIa3A6/DXXLSpEf4Z1XNVPWHGO+Mi3P/8AVV/ZKaN+AG4AXOOe/PP38UeOZWjbRU9TOq\nahMsfQnjBw/bvF0lDFNkqGoPsCkyTllU9YjmSQVVdQW4DRNZ7f7W76d4D6a9b5uOiJwD/BrwHmfz\ntm7TbiQKlpNERJ4P3KmqX/d2laVUeDijgCR3e+GcvFO/Hzj9Qaj2tPwuo+RzO6ldlrI2bQty1eJT\ngC9TkpaDjd23reBazCDNTTC23du064hxLDUQkc8CDw3suhp4PUZttO2oapeqfiI/5mqgD3xwM+sW\nqUeex+ljwJ+q6rI7EVQtpOU45RGR5wF3q+r/iMhloWO2W5t2K1Gw1EBVLw9tF5EnYnS7X89f6HOA\nr4nIxZSnVLiTkVrJ3Y5zzmERaQL7gHtn15IiZe2yiMgrgOcBz8xVCm4dLadcuzZAnRQZpxwiMocR\nKh9U1X/NN5el5djIfdtsfgn4dRG5EmgDCyLyAbZ3m3YnW23k2Ul/mMVxrPH+8RQNi3dQbli8Mt/+\nGopG7o9sYVuuwKThPuBt39btKmlrM2/HQUbG+8dvdb0m1FkwtoNrve1vpWjovmaj922L23cZI+P9\njmjTbvrb8grspD9XsOTfr8Z4qnwXxysFuAiTvvoHwDsZZUBoA/+CMULeAjxiC9tyO0Z/fWv+d91O\naFdFe6/EeFb9AKMK3PI6Tajv0zDOIt9w7tGVGNvV54DvA58F9m/0vm1x+1zBsiPatJv+YkqXSCQS\nicyU6BUWiUQikZkSBUskEolEZkoULJFIJBKZKVGwRCKRSGSmRMESiUQikZkSBUtkRyIifywit4nI\nzDMGiMiL8ozC6yJy0azLj0S2OzHyPrJTeTVwuaq6OaMQkaaOkmtulG9h1gp/90mWE4nsSKJgiew4\nROQ6TAr8T4vI+zApZB6Zb/uJiPw2Zn3vyzBR2+9S1XfnGZffATwLExzaw6wn/lG3fFW9Lb/O5jQo\nEtlmRMES2XGo6qtE5ArgGap6j4i8AbN2x9NUtSsifwDcr6q/KCIp8N8i8hlMhuBH58eehUlp876t\naUUksn2JgiWyW7hRVbv552cDTxKRF+bf9wEXAr8M/JOqDoCficjnt6Cekci2JwqWyG7hAeezAH+k\nqje7B+RZdSORyEkSvcIiu5GbgT/M084jIo8SkdOALwAvyddcPxt4xlZWMhLZrsQZS2Q38h7gfMza\nOQIcxSxd+3HgVzG2lZ8AXwydLCK/gTHyHwA+JSK3qupzNqHekci2IGY3jkRKEJF/wKRu/+ikYyOR\nyIioCotEIpHITIkzlkgkEonMlDhjiUQikchMiYIlEolEIjMlCpZIJBKJzJQoWCKRSCQyU6JgiUQi\nkchM+X8sWHGKYmCUNgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwZVle1/n57fd53nNfdTMrM6srq6kumqZhEKbpUWOE\nMERAtJ2ZCGUcQzBUpgeIcUJmFBxnwkGI6BBn1BCGx6ijjoNIGD56HBwcFAxGaaRBsIHuppqqrs7K\nyse9eR/nnnvO2c81f6y19l57n3Ozsrqqqwry/CIy8t579tmPtfde3/X7/b6/70+UUmxsYxvb2MY2\n9maa91afwMY2trGNbezxsw34bGxjG9vYxt5024DPxja2sY1t7E23DfhsbGMb29jG3nTbgM/GNrax\njW3sTbcN+GxsYxvb2MbedNuAz8Y+ZyYiPyAi/8NbfR5vRxORrxCRl9/q89jYxt4q24DPxj5rE5FP\ni8hCRGYiciIi/7eI3LCfK6U+qJT6C2/RuX2jiPx/b8WxO+dQmvGZisgvisjXvZXntLGNvV1sAz4b\ne732e5VSQ+AqcA/4a2/x+TyyiYj/JhzmZ8z4TIC/AfyoiGy/Ccfd2Mbe1rYBn429IaaUWgL/APgC\n+zcR+Vsi8l3m5z0R+acicioixyLy0yLimc8+LSLfISK/ajyo/11EEmc/X2e8hlMR+Tci8kXOZzdE\n5B+KyKGIPBCR7xWRdwM/APxHxus4dc7n+0Xkx0TkAvhKEfkpEfnjzv5aHpOIKBH5ZhF5XkTOReQv\niMg7zXlMReRHRSR6hPGpgL8J9IB3Ovv/NhG5LyJ3ROSPOn//PSLy78wxbonIn3c+S0Tk75rrPRWR\nnxORA/PZloj8DbO/2yLyXW8SyG5sY6/JNuCzsTfERKQP/EHgI5ds8m3Ay8A+cAD8WcDVdvovgN+N\nnpjfBfw5s98vQU/a/yWwC/wg8GERic2k+k+Bl4CngWvAjyilPg58EON1KKUmznH+EPDdwAh41LDc\n7wa+FHg/8KeBHwL+MHAD+ELgP3+1HYhIAPxxYAY8b/58Bdgy5/3HgO9zvKIL4I+gPabfA/xXIvL7\nzWffYL53w4zJB4GF+exvAQXwecCXAF9ljruxjb2tbAM+G3u99o+NZ3EG/C7gey7ZLkeH5t6hlMqV\nUj+t2sKC36uUuqWUOkaDg53Qvwn4QaXUzyqlSqXU3wZSNBC8D3gS+O+UUhdKqaVS6tUA5Z8opf61\nUqoy3tqj2F9USk2VUr8C/DLwz5VSLyilzoB/hp7kL7P3m/G5a67pPzHfs2PynWY8fgwNTM8BKKV+\nSin1MXOe/x74e8DvcL63C3yeGZOfV0pNjffztcB/Y8bjPvCXga9/xOvc2MbeNNuAz8Zer/1+41kk\nwLcC/0pErqzZ7nuATwH/XEReEJFv73x+y/n5JTSoALwD+DYTXjo1E/kN8/kN4CWlVPEazvfWq2+y\nYvecnxdrfh8+5LsfUUpNlFJ7Sqn3K6V+wvnsQefc53ZfIvLlIvKTJpx4hvZu9sx2/wfw48CPiMgr\nIvIXRSREj1UI3HHG6geBJ177JW9sY59b24DPxt4QMyvwfwiUwG9f8/m5UurblFLPAL8P+FMi8jud\nTW44Pz8FvGJ+vgV8t5nA7b++Uurvmc+eMiGtlUNedqqd3y+AvvP7OuB8K+yHgQ8DN5RSW+gclgAY\nT+l/Ukp9AfBbga9Dh+huob3CPWesxkqp97w1l7CxjV1uG/DZ2Btiou0DwDbw8TWff52IfJ6ICDpE\nVwKVs8m3iMh1EdkB/nvg75u//2/AB40nICIyMMn4EfBvgTvAh8zfExH5beZ794Drj0AG+EXgPxWR\nvoh8Hjr38nawEXCslFqKyPvQuSoAROQrReS9Juc1RYfhKqXUHeCfA/+ziIxFxDPkiN+x9ggb29hb\naBvw2djrtf9LRGboSfC7gW8wuZGuPQv8BDqv8TPA/6qU+knn8x9GT5wvAL8OfBeAUuqjwJ8Avhc4\nQYfuvtF8VgK/F51c/wya0PAHzf7+JfArwF0ROXrI+f9lIEOD1d8G/s9Hv/TPqX0z8J0icg78j8CP\nOp9dQTMLp2ig/1foUBxoDygCfhU9Xv8AnWvb2MbeViabZnIbe6tNRD4N/PFOPmRjG9vYb2LbeD4b\n29jGNraxN9024LOxjW1sYxt7020TdtvYxja2sY296bbxfDa2sY1tbGNvuq2rj3gsbG9vSz391B5U\nFagKqhKUAs8Dz9f/EPM/ehulAKW3dc0PUQKlKkgLKDvOZOApQk/hiY8nPoKn9wcgHgpFpUoUFcoe\nw1ilhMDz8CRAqgqqAspCn4uIOSea/30fwoSSikoVXBQ+WQmhp88j8hSeKH1ta0phKiUAZJWQlUJa\nQSAwCBRxAIFEUGSt88fz9P5Emh11x8oLwPMpVUGlSkqlz8AT8MRD8PDER6FQqqKipKwUpYKiEkTa\nKyXfUwSe4EuIVCXkKaSZPocwgCAEL0B5HkpVeOLrc7HjV1V6Wz/Q/7wARaXvTZFClqLmGWqRUxWC\neAoJBfE9JPQg8M2/AIIIvIBSFSgqPHzneKUeK2meK0VFZc5JqgrKHPIM8qK5j1Vzb1SpUGlJmUGZ\nC3mmyDKFeNDreQSRwk/A64cQhRAlqCAgK3MWpce80LvzRN9LEf08eCh8ARH9v70X9TPaeu6p3wWF\nvreVqupnqFIVldLPvlJCZR6BSpcmEXkVvtB+lu11ZzlqUVCmyhxO6kPbR0kPncKLQKJA34Mw0M+e\nmPfU/m+fRS0dWJ+v3lczriIegjTPRVVCWer7UJSotEQVFVUh/NLx9Egptb/ywrwGe6/sqhn5I237\nac5/XCn11a/neG93e2zB5+mnr/DRn/krsJyhlmd6Qi0yPZHEQyTs6Q2DTplIkaHyBZTZ2v2Wuzd4\n/uwW9xYhaalfooN+wdV+Rc8f0w+2CMpKH8uaOYYKYkqVU6qCUumHtKgy/Z10iTq9DdMTmC1QaYpc\nXfMuDHcod28wL7SCy9HyjHuLkINeziDUk7UvAb6EZNWCtGwrzKSl5/wsfGYWMY4qPn8Ssu3t6Otf\nnEE60+ftR3qsgqgZKzOWankGs+P6vGS4TxEnzIszFuUUX0Iir0fsD4grD3V+CID0tiAeUlDU274w\nbT+qvaDiHcOYSXQVjl6Auy9TfewF/f2nD/TYbF1BJtdI1ZK48vS9nh3CcgazuZ6o+wNIhkiyhRru\nIrMH+l6c3kZ9/Hnyj92hvDfH24oJrg7wnhjCsI+MhjDswc6BPoZXkZYXlCon9gdEXo+grPQ1lRmS\nbEEyrO9xVi30NgT6vp7dRb30CmSdySkKYTanuj8jf/GM80+XnN6NuP9KRRQL199Vsv2sEL17F++5\np+CJPeTaeznJ7/KJ05yXZyF3FrAsIfFhO4IneiUH/YLYqxhHJbGfNPeh0XN1HmrzrPoRBUX9fBZV\nVj+n9aaqIC2XTDOftPJYFPp5Oujp7WK/YhRuMwr3kOU56uhF1K3bqE/fI/v4A6qzlCJrFjFlrr/v\nhxXxjT7hzS1kb6Tv77APyXD9+2qeTSWy8k4B9Xtgf5bluX6uL47h/hHqzv16zLPDjMkP/sRLqwPz\n2mxGzp/33/dI235j+S/2Xn2r39j22IKPokIFMZIYHyBfQJA1k6k1C0jWgkhv3wWfz3wa9eAE/x33\nePez72ccfYrnz/SLHHtNLaUvIRTnbfCxgAb4QOBO5sEILo71BDW/0MBzPtOT1PEUdsbtc5tcq4EH\nYC/ZYhwt8KVP7A/08QFfAoJKX1cXgKzFvuLZrZTtuF8DT+u8XetejwWe46kGyt0cBQTs04+39Ol6\nET1/rF/809twdB+iEBXdhWSIHw8Z97YYxzfpbT/g9sWU06z9yIpSqCJDPTglf/EMSXzCcQKjASQz\nSGdEyQiy83qM1527yhfI8rzZ7+QavFtr1YQ353qiG/aR0cB4F6EGreE+he9RVunKRIwfaSC1z5Df\nPEf2PigRZHINVWbI1bwBnyhs/e9fneI9cZ/w5ozhJ46ZXIF4UJI8OyJ871XkHU/WQDgtHvDSLOVw\noY+3HcGi1P/v9woOejk7CQb8xw3oXByj8gfIaL91rvbnVwOe2B/oU/Z6xL5e2KSlVy/CwC5uTgDo\nx1sEV57Tz20cE48Tqvsz4s7tUWmJtxU3oDOZ1GO/1jrAk1Wr990uwDQw5RAn+MkICXsotHflRYdE\nSYA3ma0/zsZelz224FOpSq8+gx4yiJB0tnZiVfkC8kWzuoc2GN19GfX8S6T/7j7ZYUZ842Wirzzl\n2nvfR38345ceFMS+wpeIwIsQpVpgQ5nplfj8op541LDvgE+kJ/HZHHV+oVfsszlqWUIUIhZ8DPCk\nXqW1A4zF/oB+sKVXdy65pMzwA/1dXwKyakHhhBNjv6pXxGMZrY5N1yO0VmTau5ieoB6cwrEGQv1C\nhxqAgmvamyNAnbyMOruLunNYb0sU6ok+jlHDHvQHjPduEo+vcrR8mc/MnOkpnWlv8PiM8t4FoMNP\nfhTq48VDJIgeDppBpO9DZxsLQJyeavBx74lZpBRxQrlGWq5UBb4X6mOb8VJuWNKxGoDs+djxtQuh\nZIjaOkSe2MO/f0TyxJDo/gxJAuTpA+TGNf394S7T/IjbF1PuzZv7k/iwFakaeMZRRD/Yqj0vLo5R\ns5f0c5jlqItjGOy0QOhhwFN7egRQZqhwbDy7ixYI1bfMAFCpcvrBhPjgOX2fhj28nVMk7sIPEAUa\ndMx5qSCmUHl9zJZ1PJ6iygi8Zjzqc+2QrUqVw2BMEESo4DYShRAdEiabjhSfC3tswUehwyRgvIB4\nCDQAVIfW7O9l1g4xFRnqxRepPnGb9Bfvc+/XexzdSbhyr+Qg+XWiOGb7XV/Mb9kLOc+XRF6vWe3m\nCz1pmvBPDSpZXq+qZTTUL9ywr/+eFTXwVKcpAGJ+Z9ivJx+qRT2xU2aQZWiF/eXq5Bpk9OORDkGU\nIZksiH3aE5Mdgy5grjMLPMsZzBb62qZL1LLQGQQzqSg/Ihjto85NuOnOIdw9orw31+cV+3iTOcp6\nGFEIRUZ85Tn2kusE3h1emAbGi8xgtqC8N+fiJND5j+Ml/sEc9eAU6Q+gt9W+n93QlgEgZRcZ7hhN\nrsHkmv6ls/hQQQydUI5rpcoJrAfh64WHElnZrv58uN8K/SoR5uWUojqnPznQYzbY0SB0eqrHZf9G\nHVo8T29xuMi5twiJfQVUxGbePOgX7Cc5o3C7BgspUn0PLo7h9FQ/h1mOjBawk2lvbLgP8XAlbGWv\nt/aa0pkOW5n3JO5tESV7l4LQNPNJy7neb7BFb/u6Hvuds5VxAfRng506FJul9wENJPXz3hl7HQK8\nIKsW7XAogX7/gMCEdwG932rBKNoj3ruJslGOaM39+ixMPIiT9QuQFbt4Qw75trbHFnwEj8CLGrfb\n62kACvQE1QqtrcttmFCBJAGS6ElvNA5Ihku8vg4/qNPbjK5/EYEXtcMsYU/vO4ggyvUK350QOyEX\nPQE7wJSUzt9DvVo9ehEB4iACihWgaYWcXPBYnBGHPeLBLgWF9pCKFNLlan6rG3az4Q3XM1zjEUkS\nmHM1j1s6g7CnxyEZIqM5ajbHW5Zme1+Drr3eOK73XaqUnj/moHdGP9iCdApRgMQ+8cD5vsmVcP8I\n5Z5XYgSoI+feJsP2/XWv7RJvRZbnCOAHzirdLO7dfIISQZwQlvU+68mySNvj6RxXe6MZWbUgqCL8\nYKy9kd4WaqAnaRnt63N0FvEHvdyAT+PB9oOdFuhZYJSwp8dn2EeyQu8mChqAnR0iRUY82EF5PUqV\n1+EqdyKv8yUWyMtMfy8ZEoV7JvR1RODlXORtj6OoMjJZEA13kcFO6zM7/vYbPmEd3itV3rxbHS8m\nIMD39PXabSzgsjzWYWFAiowgGVL4zXzgS0DhQ7B7E+VH2gPa2BtujzH4tCeVUhUgejKxn0iyVU/a\nrcnVj/RnO2Pk6QOiZcHu8j7JMGB4Ffx37ukXuMjg5GX8rd36OFm1IB7saHArMj0JWmCBZrId9vTf\ntozIcnCsw0gPTuuXQXadbsxZjnrl12C8/dCQWOt/68GVGeQLnWui4/W533EBMsubUFQ3PxBE+vzT\nFMnyZlvnPNTyDEm29Mp6uA97h8jR/XoMWv+jPZDC96DSk8k4agCdYR/v+jbRi2dIEhDe3Kq/qx6c\nIFEAe0+sAlAXcOyYmM8sAIBeYdfnUqTawzM5nSAe4j5O/lqRbce6Ib7u/SozxI/qY9a5sc4EK2FP\nL5TMtv1gi/3eWX0O1jPxJVgJDdrnPRjsIEGkrwf0/eo8Q2p5pkPPvS2CICLwE5TX0+eTGhKHCQ2T\nFfrZjy5Q/VlN5oiTIYR7zItTCBfEfkng+ZeO1WWgD5gogv7euvBZPT5KEUtCYcZCA49DOsG8g/mC\nYLSPH4xbAF1QaG/zMk//NZonQhQ/YnXLxvP5zWue+ERer55cWkyYIDar1ZmeU9yVs++sjJMhspvj\nPZMTpSXeKzM98bkTbTojlmt1zBzQ7CsLQGYzAf3igp64+wM94Q50XibobaFOTRzavuRDJ0RUh+YW\n9ffr8+yQAdb+DHoFbP9ugab+v5m8VJo25www3NE5HddriDJkNNAeXZY3cXy7v24I0IKQPUaHHKCG\nu2TltP69H2w1HwYRsrtNePPEnE+//d07h/pcr1xv/uhH2otwfq+3F0s3X3CeH1GqnN34RuO9npvJ\n1lnhB8kQP+itYX/l7ZCQyfG1FjVdMzkoCyqlCvREf9kkaLbt+TaHpz2voKxQZ4eQzvDjYR2ea87N\nLLiSkX4W/Wj1GM4CxA092zxai1hiiTDWY50tYNiAUDy5hh/u6fCWrJIArFf1KNYNs73qtpbNZnOE\nM3P8YQ79TD+/vS2iZNS6h4XvEdiw68beUHtswYeq1K65P65jwml5QeBFRJ6hX9owHNSTk52YxMTl\n6WfIbo7/zlznKp55op0wLTLUgxcJhvsE8bB++VcAyGU59QfI3k3SKOA01b3PRuEe/b2bmhUWRJqg\nAA37zeRX3JBVTQc2oTnc41jL2itiCyztbfK1P9tqIYIITLikG1KsQ4NR0PJkXO8Hsw+bvNerdu0t\n2tX+3AEeoE2gMJ6Wd327tQ1Zjpo2k61EIewc6Al0cq0OM3bNMqTO8yOOl5BWHpF3xCS6qr2eCz3Z\n6pxchjJhWkmaMJw7gSmR2kuoJ2x3QoeVfKILQK2wkvneWtAC+p5hRy7PUA4oyGiIeuKYaLBTg1Br\nwZWMtAdkqOFAQ4SZLWpvhv5AL1LiYZO3PJ6iHpygjs5Ry0KHoseJzpWkaQNCQDDcZ5TssSinpOUF\nvoQtMsBlVoNvJ//YjUg0N7EdKlbLs/p61INTvYCDxjs390LAEA7iptzB39Tify7s8QUf0A9osMqs\nsR6KL2Edr18JA7jx8ihEdrfx7EQL7YkWzISSEQW9GuyU10OSYQNASxOm2LtJ6lXMi1OOzdzpyxl+\nuEe86wDQ9KTZv32BliXihvEeZmu8mdVtHq0ojk5+THuKFzqfddm+zfZFnOjJPr1FUem6E1+Cmhru\nS1CHoJp7E7T2Ye+BSlPjBeZrgFb/LmFPs6Gq5vq7IBR5PXr+mHF0QloqYn+wEvZqjV++QJKmoanN\ni3St9ugswDhAU4N553PpTqyPYpcRK9xfq6zOU5WqwPcDvcq/ONahKUPmUA9OmsWMDaFaj+i4vShY\nsSyvqcv2Oyvj2LHX4gGtXJs7Ti55yITZLn2e3fByENXnuI5o8dmaeBDHj0g4eAzs8QUfz0cFcR12\n8yUErwlZdKnJ9ucWCNkVoGE7CzQr/P5gbYGqAFHghFLsfmziO9bJb5+C2B+wk+jz03TpoD3J7xzA\njk6aMj2pV3DdsBOwCopB+yXVYb9crwofZjbfNBrqGqPhjvZeDBMpSNs1Q3UoZjRYOb4tOnXzKr4U\nOpHtRTVD0LLEoAMSSmnqbTLUIaMg0mOR5XrSHPbrnJNc3dd5H0uQKFKiYL33YI8xCvfoB1uUqmiK\nL33j5e2Y+2Cv3yStedhEFUR1Hcla2n6Z1aEtoKH4F1lNiqg/M2smSymGogHTfh9/8E6CA02jxniY\narjLopwyz16uCQNU1M99fQ75ogYv61UDOoRqiAkMe+2J3Iy1JHlNla/NhoQtGFySz3Hfue6En1UL\nIr+HH4wQpZCyDTZ2HHzrZVorsprZBsBkoj1gsyiS0aCpGzLPsc31vVGg87kwEflq4K+iSwP/ulLq\nQ53PxXz+tej27N+olPoF89mngXN0UUahlPqyzne/DfhLwL5S6sj87TvQjRZL4L9WSv34672GxxZ8\nFGql+Gwt8LiTAbQmwtZk0jcvQxS260FgZdUqSrVj1oEhMCzPWuEUX8JOHN8UqHbNAhHoFd5lNS12\nWzPx12PhUKgF2gDULXoEZHeyUnNhX9YgiPWYpAZ0DIVcnV/o79nr7QAP6HoRW5NRA0/RyS+t8wBM\nGI2w15Al+rMGiLJcA0/ceCbq/LDJ+TzEqwjKigBPv+L2+p0ktKUip2rJPNdqDv1g0vLMWpPhZUXK\nsLL6BifPssb7SdWSsmqUMNaefy+C3p6mHC9foKjKpuYmXBB5ELDm+o3Xo+un5kjsI8sSyXIN6p3N\nJY5RO1vrPYss1xO9u/sqq71Ye/w6tOaEuUpVcJrdAaifidgf4PuB+Vwvduw4+FK0VBpqIHXN5EPF\n5kZtwaqhXWfl6rzwRpgnkPRefwjPdLD9PuB3oRso/pyIfFgp9avOZl+DbuD4LPDlwPeb/619pQWW\nzr5vAF+Fbs5o//YFwNcD7wGeBH5CRN5lmjl+1vbYgs86XTMLPCvWWWWtnUyS4frV7LqJrQNo9X7M\nCrr1ZxMP9yV4aLjCssGCstJhORtmcJltUANG4Xv1tbrx9Fr17RIPSHYnsPeEritKRqTVgtQk5UtV\n0ItvILZeKiuaOp/hXHs/UahXlx0CgTXLzgoINA156axa3TDVurE1ObRWUt/mCeL2uIIBoHUUcSsh\nZAuArecRD2vpHwveKhnV+aFppse6VAWjcO9y1psFEheAujR29zrtfXEAKFVLzRyjCUVaa6SZ9Nww\nzXyjDGH/aTsgh3DheP3mszLTOcQHJ5T35hSv6IJWfydBlgVeljdekJPflDhu5y+hqV+z14StwclJ\nyyX9QN+X2qsvMvxgVD9Pp9mdWlppEi3YSRa1NFH3eut8Ybin66us12Pzo5aE4/482GnJOa1TQ3gb\n2vuATymlXgAQkR8BPoDuXmvtA8DfUVrM7iMiMhGRq6bV+sPsLwN/GvgnnX39iFIqBV4UkU+Zc/iZ\n13MRjy34KKVaseW1K9XXQLF0admflV1Gj8bxetaAjwWd8/yIeTajHwwZ7d5otOCc/ctwvw4PWQme\nGty8ED9OCNhvA5AzkdjQlQz3UcmoZoJZdYS09OgHU/oGQFWaopYFKi2b/SRDZLRviiez9jlYlpYt\nAnQLW3HIDR3Jo26YxPdCXTNySZIaqO9tK88CbUKA1YDLioYVZbxDWwS6KKc1MeGekbPROmZH9IMt\n7bkuV73V2mN2Ke1d+nXrd/O5H9XAMy/asi+BpxmcabnkcBlymoYcLgLuLBpdt9hXjKOSSVwS+xW+\nJC1Pk+UDo3RQQJZTzXN9/4DyeIm/kzR5RZvPsQAUBdqbcCWgrBkPVB29SBA8RxwOKFWhFQ6MtE89\nNrMHMBhznh9xZ+7x8ky/o9PII60K9pPlpXmh+l1ZM+b1c+OWTHSAZ16c1YtQOy5vQ7sG3HJ+f5m2\nV3PZNteAO+jH/idEpAR+UCn1QwAi8gHgtlLql6QdGr0GfGTNvl6XPbbg4yG1woFrbpIbxzvomii1\nkty8jIEEXB6GewQNLTwoVdCE6tzVvFkp6pfFN4nuAuKEYHKtBiALPKBDSaNQM46s2Yk7iIewOGvC\nbA5LTr30CpxfwNUZ5AvGk2vMK/2S+6JVFDRI6uu1RbhAQ781WmjzrKlHwUjf9cKxDrMVpmjRHe81\nY2snDAti1muqw6ZlezJ3ZXZqinvX83G2q4tTO56P9XbS4oLz/ITDZci9ecD9hc9WpJjEpbm2EJk9\n0IWaw/2VeiJxPZtuMW/XTE5LPxv5irfTD4aajacUo7BgFJ6x6E856OXsG8WDSVQ4QqLDRnapSKGs\noDjXwGs9hSjE64dUsV97Pt5WjIyTdgGwZVQ61ycYEotlldmiYUDd/SS94Q794T7M56j8wcq9Di6m\n7A5v4MsdYk8vGuy5+xLXhabu4tEKhFI6Gn3DfV3L4wKOW9tlPOKAALwehZfVRamXRkI+SxNPiJNH\nDrvtichHnd9/yILEG2C/XSl1W0SeAP5fEfkE8FHgz6JDbm+KPbbgQ6l1pWzoAuDufEHszxmEUq8E\nXXUC1zuqQ1aPykJ6BMZSV4FXqyQXbSqqu0q2agxK1XUvTfV3oemzNrfTCefJ8px+PGpRbkuVa76w\ne07LJqwrAMdnqCxHruaoMqM/uYYfhMyL05qlVqNJpCm3khiG1HgbkiHz4ozDRc5+r3mxAy9qigBf\nzYOMh8yrc4rOJB3ZwkdXNaA7kZtJ59L6LftzjGav2bE2itQ2zJhVC6ZZxr1FzOEi4O5CWJawFWkh\nWV9iIq+HOn1eqyzszJC9m22PLRnpc1Gq8b66Hp/NLYU9c47FSn5nFG4zlhHq7idQRYafDBkP9xkl\nzzAKp+z3zkyuZNKWl0mnqHzRDkC7Yc4oxD9oiAM18Liq3hZ0bMI+iJoFTxTUYTgZdcKes2OUYXd2\n3wurmCGzB2wPruAPHtTyOGvzsukMijlqdqiBxobSzD2WvZs8irlFufX+H1Zf9bm1oy4RwLHbwA3n\n9+vmb4+0jVLK/n9fRP4ROoR2AtwErNdzHfgFEXnfIx7vNdvjCz55RpwVzM1CZF7M+OjhsBZgnEQL\nxtGsDmXE/mCtq+/SsS+1RwCowrCVXOFGK09fA6EFPweAVL5A0hlBPKyBx5pVU2i9PLbC20yo8eQa\nhd8U27aYSFleh80k9k0Nh0k6Z7n+v8h08WC816hp25Wmo80mo4EOb/gei3TKZ2YRsZ8yjqy6cg8u\nppfrx9lmKLUoAAAgAElEQVTVqgGe8/yoJmOABl3tNT3iROGoHFhbYWEFcU3Fz6oF8+wOWbXgIldM\nc5/TNOJwEXCS6ZYFFqdjX9EPJnDyMurWbbh7BOd6Uq8BKB6uLXCOYi3zVAvdWhKFAS3X4wk8n0l0\nlTgrUHc/1rRkGPZh9x7sHNAf7tNLbuixWcxQyyM96TveTcsjcwRuLWvNW5bt+rHdSdPOwMlVWuKJ\n1UVjdtwUT9uC6Nm8XWezs6X356oquJJNF8eMkxEqjB1vVntpNUi72nSzuabcP/V0W/XazfldAiai\nVLOAcUHnUZ+pN89+DnhWRG6iQeDrgT/U2ebDwLeafNCXA2dKqTsiMgA8pdS5+fmrgO9USn0MeMJ+\n2TDivkwpdSQiHwZ+WET+FzTh4Fng377ei3iMwadA3f0ko3d8MQ/SW/ybu0P+5WcCnhiVXBuEPD0M\nDAgVjKNZneTsTvDwcABSXernms+73g40fVHS0iP2F/q4pZOPyHLt+QSNF2RriFwrKOqbrM4P9Ytq\nJxhTIBlMruEnOsZes7psjN7E++3/gAahpc7j2BqlYHKNfrxlwNnQrS3lNss1xXW0z7w4487c4/7C\nJ/Yj3r2dE3imX9GyIyrZNQd47sw99pOTWijT9uu51LpkkIfotrkJbNujpw06PtPM5yyTGnguCrsv\nxSAUYklQZ3drwVQfYDRE8SKyd5MiLlpet73/voQ6V5SMazC1XlpXw203Nrm9u59EvfQK1Qv3KU+W\nBFeHehKeLVA7x1qBwslhtSZ/Q4muhWy79WFR2ITZbEsJt4+OE4a04DwK9+gbXTS421D4jRCuJTEA\nBE+e4R8cwZW9BoTqkdQmAPlhc+kWFKzau9l3dX+GSkv82Vw/l0/psFsaBaTFg0ZQ9SGLQVkHOm8Q\n+IhA9AbU+SilChH5VuDH0W/s31RK/YqIfNB8/gPAj6Fp1p9CU63/qPn6AfCPjHcTAD+slPp/XuV4\nvyIiP4omNBTAt7xepps9+GNr6vmX8LOcg2ffz2+98imWZeP5gG5YllYeaakIvGYycmuCoCmKW1sL\ntOZ3aCjbdZLceDVuz51RaBS30yXq/kvNyxdEbaWBfFFX2EdG4sWukEtV4Ae9Vq+ali1nWrZnuM9o\nuKcnvNE+Kp0huwt8275hnXUmqpo664QYJY61mnUQoY5eZBQPeffkgP3kZbbjA/oqRp3c1pOje31d\nM55K3xvhRyG+HNEPdloV/SxnKzTylpnzsvdjnUqz/X/dZ4MwB0piryL2FbHvsRV5nGXColQsS90v\nx5dQH8N6f64ZDT5//wbbjmxLrZxhlRBy536Z87YsMZegQVAZEscQb2LEMk1ojGGv8fDcolO3GNoe\n/3zW5HCiQIdMMQCwo0NYsjtpvmcWPGp22IjTJjuoKNZ5rtOP1YucWrXdmJgckv25OW5nrCwpxJIR\n7DNiF0bnbS+tnV8M9L1ORjUoliqn9B1B1HWs065ZAsrbzJRSP4YGGPdvP+D8rIBvWfO9F4AvfoT9\nP935/buB7/4sT3etveXgYzjrH0WzLL5ORHaAvw88DXwa+ANKqROz7dpCJxH5UuBvAT30DfmTSj3E\n3YCaOabuHMLsJ7n2Bf8hX/PUaU2Xda3bAbRrj1SQ2j28AzzNfoLG7bfU59OXVknhQQR9WnkklS8Q\nQ/t2lZZXes0Y5YGWLWe1wCKm9kX2bmqttZ0x3DlsJo+u+vawr0Ma8ZCyOjdqyaNasZphR2kgnRHd\nn3Ft72YDOpfkZaxJstWaJGJJiKPrphL/k/r7bj8kaAOQk2x+GPDYmiL8qFZFtqKcNhwaeRrYd5J8\nxRNKS2ESFfhiQkyDHdjZ0l7PzlZbi+/wlq6Fgtb1Kzv2HevSgC0AqSCGK59v6N89/NmiLv5tvrxm\njNeZDafWXlCglQlgFbCKrOlSS1sXUNk2IWaf3WJULwoJk0BT8J8YIlef0OfslivYY7iMQ2grWNjz\nMv/Lkzu6zcjOlmZl9rYo6sVd2PqHDdF2wKeg0DTtTqj6jTDPg/hRhUUfA3vLwQf4k8DHqXUC+Hbg\nXyilPiQi325+/zOvUuj0/cCfAH4WDT5fDfyzRzq6qeJWP/uT7H7Rb2EyecpQiAvHK2kk8l+LtQpS\nO9ad/JqmWI7y7tF9DY7QdHB0w0edSVotzpDeltancibalbDfOumdItO9daApvkyGyPX3wvC2bppn\nV5pWpmY0rAttCxqvsPAKgmQIy7O1q2wA9fLH9A/r2kZ3a3k6ZIla/sWZmNR5M0HYFXsLgDrAY2tC\n6u+YJn+u2XHU0vw9Sq8Jx5Uqp+dnDMIp47CsQci2MihVrlXCdyf6XGyBrblmdX6hQd0dA/v/sxfI\nk+9qCk2T0UpN1AoFePu6DoEZdeqWda+r28LDHtsFb/d8u/fQKEhYq+WTXFmjdffVBYq9UHvru9sa\neLrerqMrV9O2rcezLFFLDUa2rXltwz5ydd/pQ7RsLcDqejkLyK4Mo+kVNAr3agJIi/23sTfU3lLw\nEZHrwO9Bu3N/yvz5A8BXmJ//NvBTwJ/hkkInkxgbK6U+Yvb5d4Dfz6OCD9RKvOrf/wL+1X0mOwd1\nBf55vlIEfLmtcePXAVC3l7ylF2tP53bdQ768daZbQ8c+wZNH+De22qtEeyxnlaYWZzWVVOLhpfVB\nrWtv/XxXJ/fNhF/4HuXOVeLhPhy9qM/NTjZRoLdLdPI8qxb4UhBUkfZ+ki2d3IZaSVg9OKkb4lkB\nykYI1SpxZ+06DD9q94w5PW2KYDuTkiR+U6cENcXZ9TTbC4ugvRKGdmGuzblgXpYg0ooHxBCMiP0B\nPf+CcbRgHGamdsaRMBpvN0y2zvWrtNR1NGYytXm16P4M7/NPkZs3kcm1lTye25jQNZWMIBnpsJcb\nKlqn82bFZjvjhx079370B+2QlwsI5lrKk2ULFHSfKx+vb1ihsY83iRugsFpxFngcz6mbm7KFyuvG\nK0xL/IO8HRoc7jT3vGruc80atVGFfKFlevyoBp5FOdU5RD9xzuU3ROHpbzh7qz2fv4Kuph05fztw\nqnDvohNkcHmhU25+7v59xUTkm4BvAnhqf7XiHdAv1HIGyRYBMEmutuphrL2WOgAXgFaAxwEGKwVi\nQwv6RdMvczXP8Y2XJgBPRNSK2+usyIBZU9tSZKt9ZNYpXWd5LZKZehWn6W2KqmQUbjO6/kUweBk5\nvGVaN/S1RxHEFPk5RVVSUNbhw8Dq1c2OG50wu3JNbeO3vO7GWgt1mvmprscoO+dvt1uzylZGAoas\n0K28bT1NrTbdrp96qHJEp5h15W9l1tKHG1un1IuMQoMZa9vwz4C2vf7uRGrvdV2UaxYj8cFzqIcU\nO1pChKXm93tb9IbPrILQI5hmNDpjaskFdiKmHfqy19IFUGuGdI+HI3rrUrXXePDAito6sBaoq3mu\n2Xg46huG8r1Om02/r22hWysyq5+Lsi45ULNDvdC5c/+1DOGl9kYRDn6z2FsGPiLydcB9pdTPi8hX\nrNtGKaVE5OG5m9dgpkjrhwC+7AuuqroZmxvXNn106nqQ5Tm9ZLxS2LcWeC6T0qGpB3KT2fWK1kOr\nC8RDXUG/q2PvgZPoD29u1as7dT7TsfgJqyEp15xYf52Qv2wV3P25yIjjIaNwr64rOc+PdDvnsFcX\nThaDMefZnbraPvD8ulJ8lOyt9CyyXolvu41aFpUtVhxvNzI23SJMwLZPoKuUbUOBiabrqTTVY7Sc\n6W6UQdTRDMuhMpOR6PDayiT4ENUJa6IUVoG7HkKvpz01O+bGs5ar+5ohuLtAzmf4LnC6nsfTB8iN\na8213/6YzgOtkQgC6tYgtj/VvDjTlfpRQL9/lTjZQh29uFZxYF0oq9mm+d32W1L5Qrcmr1stnOCP\ndfFpdZZqMOh3iCjHSyos0SCvgViioF5o2PGWZEvnAe09jkL9HcDfTlBpSXnciNd6/bBV9OqGa0u1\nJC0vSMtlXYCtW8UnWFks+85GXq+eDTXt/1jXIt05pLz19iMc/Gawt9Lz+W3A7xORrwUSYCwifxe4\nZzWIROQqYJcdlxU63TY/d//+cPN9eGJP/+xWt69hSsnynCAe4nthKw/k2lpKtZu0tAKRSjksuebl\nLlVBphb0J9daki/1DdpxmqeBFuq0QOEA0DolgLXAYybEFXPZUUFGLxhzXjWhx3lxRn+wRTDYIVVL\nzrO7pOVyZTfWW2wBkNXBsw3x3J5DVuBxjb5dSy7frMJlNGgntWmAp7as0JNkEEHYIxjsgLhU6rwl\nySMu2HQXEg8pNLT30wJQQKBDhC15HpoJcidEbLjJCWfVa2JXg6zIdL+c+QXsHOiF0ZpFjhWrDbwR\nqVwYD6/QsktRwPaV51B3P9mMy0Os9h7NebnesoQ9mFyDCWYB0jNe8Ax/PEcM3dma671bD8lK87TO\nwwBPMRgTAIrbuo7MHpeGLefvJLUX5G3Fq2w5J+SWVQsOlyGxV7HfWxB4kW5lYvNpTkjcApCVplJ3\nDqlePiH7eFuBYWNvjL1l4KOU+g7gOwCM5/PfKqX+sIh8D/ANwIfM/1bgbm2hk1KqFJGpiLwfTTj4\nI8Bfe9UT8EP9IkPj+ncZQQ7NUgrdVyUwml6vautaJTsA1N1HWl6wKKf40VViC0DrFIKtmdqJei+d\nCbsl19JVul4HQA9ptdAPtloyNraYdFFOa/HKdbYop7oFdDJuOmVigNVSejs1I2vDXF0z1ypoEF6R\nArI/x3EdRrXhNz8ZAU0M35Uv8oN45d7UNPo1+TXXXJo2y/Na0NKSNARgxwH7rSvtTqrG1NGLzTXP\nL1AvvYI6Oter+51TuHq8+t1Ormo02OM0u1uf/88fCl+6f8qeBaBovdfThEL1tKDSVIOLzY+4Cxvb\nyiIeQv+4BiEvClFH51Rn7RAjaCCS2AeWjRdsFoCSbJH2+5ymt9gd3DAABJIVjYhplGNryDyAfqgX\nHJZabdmfQVSHIS9yxb15YKjxGb5cGCWDtpKHtcjroWYv6Nzmp++RfeKYs/uPqGLyaibgh9Wrb/eY\n2Fud81lnHwJ+VET+GPAS8AfgVQudvpmGav3PeBSyQRDVvTvqkFoUaJFDQ4F1a0earps6j6LWNKED\nLl8hdyYICSKioFd3dJwXM6aZjy9HEO5pALLJ7qxo4uzQnmRni4YhFg/bCgHdifsyMHPbQKwbKgJK\nCSnQ+7PSMrH/6i+SBapeMtbj5o6HK8ti+gFBh/bcFQSF5lyjXHtA0KojsVaHduzqvch0Hx+/1xI1\nrfXw6i+29/PQFtaONeSRDtC7495qFni8so/RwTvxT+9pRt+DU6qXTyhPlvjLAu7P8I7PkKtT1M7d\nNp3aHR7TVXaaZfzycY9/fc8DCt73xIzt6+9FvfALr3ot7QWKybcZIooWptXeQH9yQDDa1wXM/WM9\n3lGIn+hWDNbqvFBaNvU4oMdqsEMxGHOa3tIK1mMHgMw7YNmMMtZ5wurUkl4aFQ13n77pijvNNQ0+\n9jUtfhwZL0xkbbGpFClqOUOdz6jOUvJpyezBGwQ+G2vZ2wJ8lFI/hWa1oZR6APzOS7ZbW+iklPoo\n8IWv6aBV0VJDriVt/IGWOCFAiqxZrVsG2CWV8VKkK39b601BLZopvS368aheNQfegn6wpQGwmJn8\nhqlAB2e1WjSNsBzPoT5P0BMFxgNyVBAAPZm45+jUwdjzcuti7CrSVY4ehELxCIs4mxsrVQ6+pycq\naLxAV6izvGhCV5bhZhQd6nCovS6bo1nOmuZglm69TvDSAVcrrNplkXXp1wD+6T3UxfGKLpv+cM2z\nYO+302JdnV/ocxnqFtZzSUmLi1oNvD1eIePJNV3k6wqzGqvuzzQI2fqYp55eGXML4uMo4ssPlsR+\nxPue8In9AXNSevs3wFEsFyOV1CIZDPtrikr1omueH7EopxwvYRyd0A+G9Ld2iUf7qMEhMrwLoyH+\n8ASJTygN683bihuZHquWsHUFtq9zmt7iztzjcBGQlsK7t28x6V8lvvIcKnhR68Q5VH/PsvXsfkzY\n1p5rUGQtYdLYV+wlW7UG4qXdUtfURAXRG5N21nXHb1gK+ze8vS3A5y2xqkSKFN8PWhTceXFGKhf0\ng4mW5TegcqmnA81q11XPtdYBoJouXGR6ghnua/21YIJfmuZxl2mU2Q6pGDDqijLaVsxOeETCni4c\ndbTg3P5E9bZu/ZALOkUbdKDRYstksZLvKaqSwPPr7axQY/25ASB3MluY9gqtfJodA8uw6oR9ZLQP\nvS09nqmpzrfyMF1PzubyXNVl08n0Yf1b/Ae3UM9/UntVV0+Rp9/TCm92gcf1emxuRAURMsm0x2OB\nx7DSHhayrPfp0JVdyz95hHfrTL/ADgDJcL/R2EOPpQWeepvJNbiqw3ItD8fmYCxoW5vNV57joio5\nzWLSygNSxuErjKOI0daeBqHhbWRnjDfs4zlSPq0FUxDB9nUepLc4XOScpvqYFoC+cMeoYFx5DpXc\nRobHTV2XiQTUjQ3tfXHeAVeY9FHaI6xjPW7A4nNnjy/4lAXq/BB/+zo2B2DVDQZhTpkXtZabLwHd\n9si1qrUDPFbmpgU+fvPSunUqtkeMAsgXxKN9/GBrNWyzjoFlWUHdcJT9Xic2X1CAn2iV624IyWlD\nDDYJrztkWm+ne939YEtTqSv9XQtAWoeucYcir7f2hS98r24Ylpmw4+pGHR27ZNhcl6GBW4ZgXQOU\nzJox6gJrJ5dlC3Ij43XZa7dAaYGn/KXPULwyI3r3OV5WwM13aeAzcjethnxrFgyuqnjqVRRm7F+1\nRXMQ1VprOk9iTv3OBemtORenIcnggnH8An4UwBXNuSnihCzTNVC+BHoR5fVqOjbAvDqnv3dzvYjr\nrBMKtKA0v9DsSnPuaekxzfQ/gFNfn+NTw1fYjvtM9p5p2njYWi+b2zNRBBXEnGZ3NPBk7alomvn8\n/OGAZ7eOuNLv6f0lW6hEFxeLBTQXeByz1yYXx4yDmCJYn+NZsTX3cANAnxt7jMGnhHSmJ3sxeYxc\nv0BpWRH7mQYhM8GsWzm1gMcQE2qmmhOiExMeIp01BZJZDra18NiIczpJ5MvyHG6736Ac6lg7rCU4\nqGRU55Ra7SGcrpW2DTGqmRAt6FzkinuLkF5QsZ/kxH5SN0gTpfAdVem0XOqYOhB4OMAdrujYAU5d\nyuok3KpAt5OMqb2yk/h5flRTnK0StM3V1ePVJQkUTofSomkMZwFIy+f08B/cgs98muoTt5n/0jEX\npyGT9D4x4EUBPN2jGIzJqgU9P1w//tbMc5Aa2m+jrhCarHnnNrvtM5xcRnHngvLeBWf3I2YPepw+\nUMRxyNPhIcNEl73K0++pK/Qjr6fzF2eHUGb4QN9Rn1ZDZ6xdG+7r+hYLQqagVDA50OFunUu5v2iz\nCxcl3JoFfN5WzlPD57XXcvBcc18MWSetFpQqJc2OOUnnpJV977okHOGXj3ukVUrWf4FRb49+clMX\nYtvFxLpSA6fY2y4IAzcq4TdFx63FQ8dc0H8jTLwNkLn2+IIP1BNcFPeY0+byx35F5A1NO+TVsMcK\n8NjJ0lmh29BVFPQQW7XvTChi20oHTiW/079FlU1Bo9uFNKvOSUsdGown1/TK38qqFFldg2Np3S54\nNl1C56jhbitE05L293r4UUHsa3Aahdv0gy39/c6L6obV0lKI/ZLIs/tz2x23W0bYv7WOKUED2Dbn\nleWtiSMGStMIzU6yLI8bZmLSpqXXiwDfUL1tozqTN3LVxIN0qb3RYQ9vEhOOfZK8RGJHjSGImBdn\n9TVEXq+pE7LPQCcfFEnPAfyiNdZufx4bdpVkCxUday20yRw/LanOUpJByfLcJ449ekNFOPb1eaGp\nz/3BOzVtv9L1LLZjal2wazy2y8KNNTMR4Phe3RBOATI7RpItRv099pOXuTFsT86xrzjo5WzHfUbh\nVX1t6MaG5kpB2TxgQM8fU6pbpGVez0TTDGIfw05T9cKn52/T90ZNd15XEcH+b73k8fYqHX0N8Oh7\n0YR6RalascMKlXpbMcnJw6npG/vs7PEGH9DMmGSELwHjUD/IsV/pBl3BrlZ8djsfug+9Czxd8UFH\nhfg0O6UfTYh3b+rV+7jpp2M9mXolFsQ1fboVWjP5ERumshOY8noN3dqu7gwA2XBeFBq16oupPl8j\nRc+V64z2nrlUQkiHbYZNq+O121iyhE/sNSE3O7lZJQhbQe62jOgey676S5XrTqzBNU0sKLOV+pa+\nik1/mjtNuwCrTdZvmpTZ0Fs5GNeMRqLd+jhFdQ5WWCHYQp2ZzsM7B8h7dAFadJriXd9G3v0scuU5\nTqpj5vmsvo7Cy7QHlrhCHeYeOmFO+7IFfoJt2qdEwG8mwZq4YlhxBBHEMf7ODP/GFuGtM3qvzNg9\nXBJEiuT9N5B3PKm/c3SfYHKN0hRNp2oJ/T6+jJt7YjrPFlXW9rK6ZidyI28jWa5bQiSHxMlNRuE2\nTw3PiP2q7nnVDyaPpIEYlJWmlAN7B8/hy11O0jZbsRdUjMPSANk1gosp6uzFVe/SpaWbiIJkOVyJ\nWs9LYdhvqOUKm1GPvX5eI79HYIRdJY6JEx9JVlmJG3v99niDj83TKEXsDxiE+gGcRNeJKw9175Na\n3BN0bHmw00p6t4DHsoUcZd5SFZyk95hmPjvJgp4/1gWaVq7EhM/KzgvhB7Ghgc6aHJJpPlZUWc2S\nijwtdtm6iQ4AwUyHlpKtGnTUnUM4PtPnen6BFBnjg+eYFg9WWgnYfMGlVOMOCSP2FWkppKUHlPii\nxUYDL2o1yFtXqFurDbuX4nsETtuB2i4TFrXsrd1tGF5Af1C3wg4GO5Q0gDcvTlvHC7yo8Xqs7Rwg\nXxLiH0/hySeRg+c4yfVEOc31d8dhE54t/bzV4A5o8lFrTMJefX+tblzLDACpZIgYoU1/5xT/xhnh\n/RneJEaefUfrK1aOJ1UNEcT1bl3rdkStwaj2IgqYzSnuzPC3E7ydGTI9QcVDRts6x2R75HDyMpz9\nir4fe0/onkX+alwxuJiijl5sGt8tZ2xfeY64P4D5Yd2uYhxFjMID/R4+uLVe/dyeq9WBOz7TKhFZ\njrjv62CnpoY/zOziqB9MtKRRECFRQLSuGPuzMBFFEG/qfKw9vuBTOdNMmRn5/JBJdEW/IKe3my6U\nADunyOgI5Uq/u8BjxQeNB1Sgq8ufP0uYZj77WcFB74xxpOnUfhRSVudrJwBfNNlB4mFNj9Yg1TQ1\nS0uffmCAwp6LLRptAZApXDyeou7cp7o/I3/xTIsy3pxriZciY3zlOabqvGao2XonNXtBT8jWi1hT\nD6SBowCyWtUZLHkhoCzboGNZXr5vCzMDc92rj2NB0YRESiO8enyvyZvZ1flSh6Uk9jW7yqUL9weG\nEaf3f5rd4eMnIU8N5+yZEJ0O6XyyGU9rw52aDnyU3jKts8M60b6IPHp5xTicMwj14mAUmsLJIm3Y\neNCePIusBsb6mF2qu/m7TK41gLCjFxH+O1brmgC9WAoior1n6rzakQlHjqNmjNeFkosqo24mWGS6\n1uU0rWtqvOMzGJmi0t4W42CEuv+iPuZLr5B/8gi1LAmuDvCe+TX8dz5tGuclWvXh3idRr7yCeuk2\n2ce1NxGZe9h/8l1cGzzJ0fLlVtRBnd1tlN279Hnr7czmqKNzijszffxlgb97BDe1wOi8OtcF3A9R\np3ebN+px15EK5UeNksjbyETkq4G/ir5jf10p9aHO52I+/1p0M7lvVEr9gvN5q5WN+dvadjYi8jS6\n84B5QfiIUuqDr/caHl/wWWO2JkXli6YRltXbsnpUWU6tutxZiSlLIDA5gbRcMs0GnGVC7HukZcQk\nLhmHhwxCcY6rH+6+yWPUYpdOEtsP2pX5sa/q2H7A5TRwoC3qmZa1iKUVK7UTWxBa/bmgObZLE6eR\n/VlXkBr7VfPyYkGm01nVoReXKm8REwLzOGqgbfJDgRdpkkN39btGl6wl4WK3icz3ooDT7A4vTAN+\n7UwfaxBONVi4hAHDJrQeZ0FBVk6JvJ4RD80Afc8mpmhRe3ywkxhZoXCPlhhqPQBrfnafJd/xPuyx\nq4VuoBcnuoB0ck2rNuQLDWyu522+K0qRlhfcvpjy/Jn21vd7BQe9OYNQGIWrHXmtqXzRjK3tZLu0\nHW1TXf9miRvTEy1Dc39GeW9e34docgajI1QQEezdRJ3fNuUFaVtMdbrUHVfzBb6MTZh3S7NCL47h\neKo9dYwsk9P0zuaj9DNQdJ6DFDEtQvxotyUE7IYbXXJNWvqGOj7Xz1+wRX9yrc0efR0mAsEboHBg\ngOP7gN+FFlL+ORH5sFLqV53NvgatAvMsuo3295v/rXVb2cAl7WzMZ7+ulPoPXvfJO/b4gk8UapmS\nyTXm1Tnz/MxQhu8wMSEFcbaV0aCmddYTk83JlBn0TYhssEPqVWS5Tvg+u7Xk3qJZOZ2mvgkt6JfZ\n1sS4LDLKTCfQ7eSCJhz0Bzv4YYgvp3XOZF6cUXg9xgfPwfC4XcdjbedAi0HunuIPD2sRSP+de8iz\n70CuPMc8VJznRzWjzw/GmiQRD1sFoe4K3ea0XI001+y1XfY3t7lXXHl6gkKz/gI/oXDEW7NqoRUo\nDp5DxbcbcUsbPuwUSdb3y3oXgx3OMy1+/sy4YJp5PDXMiLy+YZ5FjWxP4nge6YwgiPCDcZ2b6QcL\ntuMLzdTqMLSOlw0A9eMtgsABCli9Nw/rpJnONIvP67UIDr6ExP0BcaXJLcoy/ZbNs1JQsCinnGYB\ndxfClV7jkVqihr6H7dybKNWEHg3NW5IAfydpyxhZb262aBY1y4IiEzwDBJzPdLhwOdPXnQyRmzqf\nYq/ae+4pXae0fR1UTuwPtJdk+uioByeo6dLcl7wm7Cj3fkch3hNDrYiQlroA1/YjOrtLBOxu31jL\naNM1ZUC4QC+vNDhMs4xSHVH4Gf3B1sr33mJ7H/Ap05UUEfkRdMsZF3w+APwd01TzIyIycTQz17Wy\nseSnViYAACAASURBVN/5CvOz287mc2KPL/iYArd5OeU8PzJdKUP2kxkWgCTsNSKPNn5sqZ1+BDG6\nHwg0Ia5kxHl6qz7Mfi/kNFOtSeo0CxhHjQcQeT0NPMvzVRKDEeC0Xkc82MEP95gXZ3VSP6sWHGUv\nMxlcISiHLY+lnvQGO6bQcYLcP0LSVDfdcoBHV6zrScWXkCgZtT2dbk1QVayEDYEV2Z1uiMdSXK3X\no4HnEM7uamKFyVMFyRC/0xY8VUvY2m1YfoszJDXadbbplytSasBnbrqsWntqmJkwlHNuvhMCc205\nQ5jVuZkgiOmHI0ZhwYP0Fo7IMqdZQFpV7CcnBqhMsbKbN+tILT3UDAAFXkRZNgyteXFKKqFufb48\n1yDk0I/nxZl+pjOPZdmmMbuK7O71lyrX5+gApO3L06IdO96y2/4DoMw93S7iLMXfMyHR5LAdRnz2\nOb04yAoNPHvPtJiDNZDOFnXOCYyCtQFDcVXRQQPQ9W39vuxstYtkz+7qZ6Vbfwe6vs68TzAl9sva\ne7/IFRe5DpW/BbYnIh91fv8ho8oPumXMLeezl2l7NZdtcw24w/pWNnB5OxuAmyLyi8AZ8OeUUj/9\nGq9nxR5b8FGez3l+xHl+wjTzOc3C+gW1ADQa7OmeNFAz0sCyY8yK0SZVjVDheXaHrj0zLlotl21S\nXtO5e/SDLWR5rpPoDui4Peoly+tW18FoX4cmClqU2QfpLXr+WCtJGyq4uCGdsKe9tWSo+5+YinsL\nPLbQL/AW+vICiI1sT+vazQKyS5d2Q27WLms7bmt0WsBzbPomDS9QY32t0tsiiIctsgDAtHhAEEZE\n8QEB1wx93AljOQzCUhWcZ21G306ymmtqCWe6ahCXMKz8ZMgTe88QeXe4O7eFynoMDpch41CHbyKv\np49j2nLjJ00ey61NuszSGVHcazEFX74oib0F+70Fk/gKQTys73Xhe2TZotY1e5AKV43nE/sVsT9o\ny0GZiVj3IHLOJwprhYWuzE9dg2XybWpZUmRCkUkT0jXPsEyyVUA3RbEu8IB+NtTiXu31uDkn2yzQ\n64dwtqZBHTR5Pljpctu0B28AS5UZwXCfUaLzdAumQNl6lm3x+eu21yavc6SU+rI35sDOKTxCKxtY\naWdzB3hKKfVARL4U+Mci8h6l1Gqjs9dgjy34lCrnPD8hLT3SyiMtpRYg1A/ejFIVjCL9UJaGouqa\nXfWvq1lxV5elCohiGISLuuVyWgrjKGnCDFaC37J3LPCYIksVhTrxaTwD+8Kc50daNn6Rc28RctCb\nspPoPEY/HunJrUMSECOoOs2PWBRTLnLFaRbWsiaQs5Ms8MsQPzCPiFoN0XTN9Xhs/xQ7FqvbGpbU\n/IE+x9m8mSRMHx5z2FYhqFX/vjP3GIclg1C0BxUOiOJxfR8smeOyFhh1gapbOOzQ6Fu1WxZ8ulI0\nwwtd9zLYg/4RL81SU/nvHkmz4Sgb0HULfiNXdeIhnpANTy7KKS9MAz51FpP4cH2Y88z4VnO/Y8iM\nl7co2uPeC6rmvuRrjuXmm6xFWpOtuRxz7a0GfgVqWVDma6pmQSt6DLO2ermzOHBNilTXt5mwWnmy\nbLVosLkdSfx2gzrbF2o0qBXf6/fHUvBNFMH+k1hfl33GXABKSz3vTnOfe/O33TR5WXuZR9nmP2NN\nKxul1B/mknY2pnt0an7+eRH5deBdaMLCZ21vu1F9s0wpPVHGfsW+rwvZ3NWO/nmJL6cr390Or2jm\nVTiuGWgWiB7W2bRbuBl5Y4oqo/AKgt6WfukMU01s90tbkLo70cVzoCfH09vIcJ/xYJd5dc5+7wwN\nGjrZ3fPHsDxvREyNJIyldpdVju3cmJbWGzP/Ko+iyim9fC3gWPp1URdNmgnEo9Z2e5ROr4tySm+4\n28jr2xWpDZtZPTZfS+TbeiRfwrpldVFBUc10MW8nj2HDe7aosalJilaYT0pEswu7nohtmrYzbref\nyHJ9nka+3xcdsl0UXl2jYmtguscqVU5Z5i1wduu7VswBA19CDnoZ08yrizp9acKhtrA48no8NdTX\nsixDrg/1PTpeQs+/II53H36sVsuFQns+NQnBqIUP+8iz78Ab9oknMd7kzLDddnRd1FWt2KEenMKD\n09rzUKZQl2QIuzfah/c9gmQLNdQFtsHVYUP6cXTuqrkO9dXAaPOypihZ4lg76N1GiU7eSjk9lBRa\nad4Kj4IWTl0U3lqP/i22nwOeFZGbaED5euAPdbb5MPCtJh/05cCZCamtbWXjfGelnY2I7APHpn3N\nM2gSwwuv9yIeW/DpWuwnjELd4uAi16se6wH1g0bCYxTuabqvk5cI/BGF12ZoXWZ6xZ20JqO666cN\nkRUZaqBDPrK3Zl82LGfCcP3JNfwwBI7oB1v0vVEDPHYyNfUObvuAOlxWeWYM2iEBez0ugNSKAkWm\nQ5J+z4yVlo7pAo8VtGxo1u3rWZRT6IX0hp+PTIx3aVbFha0Lqs5XalXGUdQSNV3HrLPj7TKcalWE\njuRP3bfH/XKRNfIytvdQPRCh1s2LEzChz34w5KA3N6GtZAV815Ey3L8FDyEf6LHVhcuDMOepYVaP\ng9XQswl169WVquCp4ZK0FHqBXmyllcfR8oygHzUEF8dsK/f6d6cfD1A3glPnF3qsJhPddfXGNaL3\nXLQ8IgCyguoF3Q9SkuNW11EZDQmG+3oMjZ1md9kd3tAh16t6X8Ga9tzK6fLb8mb2btZqHxIFGoDW\ntRKxQBqFWicuiFDnhwSjfTN2OeNoRlp5KznMz9ZE1BvSz0cpVYjItwI/jqZa/03TcuaD5vMfAH4M\nTbP+FJpq/UcfYddr29kA/zHwnSKSoxkZH1RKve7K28cefLp6ZZrufLeO86alRz+w2w50IeLZXf3g\nmkr6BoQSlFF7fhgIrfMIFuWUyO8ZSrW2urbFVIMDGphsgd75BXJVa5TFk2v40ZVaPqcGHhu+CnQz\nNYmHWnHgEmHLLgC5Fnk9nZsyNFt73Zj+OLrWp5n8XBAqVaDB7pJF5KKcQmjAqUjXhjK74+dL0GpL\n4Cpq6+3CFgDWE7QhdtjmgLYFQalyDag21GbyDpiOmuKunIc7yGi/lXPzJaxradzQmh7vtsKDPR4V\n9Zj43novUUxLaPc4O7a1tKMMoXea4QdxXSsGmlxhdQvh/2fv3WMkybLzvt/NG498RGZlvaaqp7tn\nppecbVHcFSWvoJchQ34IkAgDNGxAlgTYpiBYIExCNuA/JFm2BdgQQMCwAMEWRBCSYBOQ9QBo2Pxj\nBcE2INgCTImkSGpJ7a5mOb3T7+6qrqrMysrMiIzI6z/OvTduRGZ19+y0uCv3HGAw1VX5iIyMuN89\n53zn+6SUlObPKGOZSfIA5MgGbsDUZj3r+cp/baprS1lZf9MRtT+Awz14VG+KzSePKL4h61RIFnDk\nAZ310F/8vb4399HEwM4D9nclI1JAp1g1DOqADctvNRzA3pE4oXYzIRfMzmo/rMsgow3K2V46yJW0\ngXR8k8qC9yguWCTfc5kPxpivIgAT/u6ngp8N8OOveI1/gLWysf/eamdjjPlZ4Gc/0wFvibcYfBS7\n6ZFnmZnpQ0w+I8oOGQ+O0eqU83zOs0VMqiX7cYOI5smJpPbDhTTHAxBS3Yw0oAk7UU9gq5yJA6hy\nXVwLVqOju5gXVlrk+SmcTVhf5HTesYviDStMOr4JZQt43E0WJTIwFyWgO433Eur39h1euS7QOm4C\nj23uO6OvaLDXyHBC4HFacA4IHAi1tc2cQV2buiwaX2vvPOkIGlrFUu6qYm/t4Hp2boaqBkF7HG02\nYZSgysIuVqnMTDmHS5v1MJvLuQZbfot9STDvrDekWhy5QHTq4job6chnd5/3VVlQGFrF/n2aqhCR\nP6/ehgJs6S1qZEqptkrUFoROljF5JfTtYXxgyQZBxhOaFyJlLp1q22OJ6/Kb/bs6uMM8NszLCQff\n/zsw3/plKEpW9ybMLAcnSkqgRMdrosSguhHdW49Rex/D/m1Olw/51iQDVujxE3bHN4X5aIenQ4O6\nRiaU9SUD27/D5eopqR7QtwOi8NQ7yXoVjGA2rAOyoXCmjAD5jF5XSuKDeEVv9YYyn8+FRRvx1oJP\nrGJ60ykwrdePFiNnECtfyamMmM8RJUE9OaqnrUNhSWwJReFT+OuiDUhuIW6rAYz27wgA2Sl9xz5y\nTdOXzos48dK4B9rShX0ZKiLqLEj1il4kM0iOBt4WBt08+Je8JzQXRHuMEVFjIXbZkFskwWwhLnQ9\n6NTCqFOSbN/33DxxZA1QNYZ4XxZO9Vh1IYl6cryOoOEsDbpVbdVsfXnKtEv1Ei+gRlQFSluCgdtE\nr93na9G9qQHGs+HKKelgjxy8m6w7d04SqTKRL9sZpTwN3r1n0oF+BLsBd6AfjUnXHcgDrri9jlWa\nSkmqG/k+S5virNJUzsf+HfuZAlLOeCxEA+oF15WcHPCo1L6WlqHs+7OUJwvo6phxsoD+U3b378gm\nx44baKB6Nkelurb9HgZGcu2IkpoxOsyaMkzdkPkWNYg5IfX7sPsajMTP41PHWws+W5lFWpqgYann\nqOdsBpZcFE/qm8EJg4YDia3XjrTQa4v1q/1bnOK00YpFNfVDha6MlJtlba1dlDLAZ4201Pim9+3R\n0VCyGzf3EVDFwxvUlWQiO+6nEyeP09zl1UOkEZEFMBOY0RFZleD1yjbet1ByQ7mfSJSl3UIppaba\n92cYby7ooRp3mHkpQPf79j0L2xxWfojXKWv7Y9qiSgFNAHJ/V84ILolRjnBgh5Jzs4TgGglZjzXD\nsaxBxb1mG4CoGXDuZwjESJcz6S/Or2DviHT/DlVHSnW1HMySVHfJ1ZXPOPOy6Y/kstKwDKpmL2C9\nWdJUvR25droZKutBdoEOWGIqTetNVxLXfkWIRFFfp5inVoVlPCa+e0DvIq83S0HJTXUj1PvvUo2P\nWOQPyKuYsb1cZRZuRj8Krvt9IQl0lhWduWQv6mBYn+OrM/p9K4J7dVbT72f1NaWGmYCqU0sPJZgG\ne7WzbjX196zLuj+PNxtvL/jM51KbPr7VyBpMlFJVQl+XfkG9KyzWC6blC0YHd64XOWxJvSstJZiX\nAZAv/S0mqLjnlQzm5YUvUVVmRWkVdw3I5Hi2h8oON2yok6iH6lJL40Nt2WDDLYKVKUn1gHJdMEqc\n0nPdQ9Gq3kFHutvUILNab22bBFeqc748ZrWQBnLc29Cdc/lJZM9ZQ2DTqwwsN0uJRSn1+cGXye2i\n7ejy47QirwyprhdXo1RNJtiSJW4zAlTZoZRu9qw4a7ZPfk22I4OfM6KOpsfI69a1KdQOgML+2Ian\njNOwc0Kws7lI0AC9gy+wYOqzPYmlPYaySR2HjRKguXgEk6esnV7a7Zuinu2fYDMfq+DB6ASm51vd\nYWXQOsg48lmzPwmo998l8QoFwWBo1heb8OO7otKxroCYnm1N5ZXiZBmT6lOS7m3ZDIBsvIoV2vV8\nAptvs1qI6oOz13DEnDyvKwTYaoH7t9VqdJYlrvwa9uZeR6n7tUKpzXmptzje2jOxviwo/+HX0T9w\nIZL0O8eo3o5fXBwrLOroxmK8YEoUJ+J7ss3u+jUAyOmVaRXLLm32wqs0myipnU3t5LV7jlYx6Mj2\ndora38faULtyXaVXIg0/2JNFBJqLBHhKrnzWukFergtPsQ6zHm/f4LIfILR5cPpYUjqzC2BVm+wB\nkjFp+Xw+3O7UCaNCc6ELBVzd/JOd3VCAGTwi3dkHJuSVYlIoL2EUkhZ8FhK13j+IrQBkJYXyztqz\n2hpftwXdeTnzPaek4+SGen5RDIuAAkAvyXZmJyLW+eTEN9r1bC6MO52QjI8a/lMOhPJKehQObGpN\nvBxz8THm7Jm85uMzVvfk+ckPnML7p6LabW0rnPcRqdCPCbKbDfCpChkSDh16Qzvz8Rj1gQzKbwiD\ndjMpX65mG3TmvFIsyg7ToiDpnDLMDuR72ysgz+mE14oLd/4c8AQzSaZYCdXbhTuObE+qFwHwzMvm\neMXLxgU+j+883lrwMZXxU9jC3rE6ZgGr6Lpwu6JE90B36z7EdVEVEKUNllm5LqTHUBU1vdWZptnd\nso6GG7IqAKRiiS0f5Ppynp9duSaUMV7MM1KR3KjREBOnHsgcUDorZmea5hvNy0v6KHrd2ySd01q1\n4OzRpgx+u+zl/m4zGTmpdp4ksYKgbrELhxvDeZOqIFVddtM+o0Sa6uO0asw7qTKH+Yvm4Chca7/s\njOzqXfAlVM3+TDg7JBlnl1RL2bIuva2uvcHCBS2kO9fXQotttqxk118VvnyWV5vf/SCW167nVQjA\n2xIoJrlnjq0vcrFKsCU+dXCHKrRCSLuBGVwdlSlFztY59M6v6o1Bq0Sn9sc1SLgNhbXTjoisCvgp\nqZ4xTmNvq+DmpNy16Gbh1P5KBkbDsJ/RuGOy81nmsibdGKzKQdZrSjAFmzh3b7dnwj6PNx9vLfio\nWBHdyEQHajyWsopSYK5nI11nmlVSot2kehChk6W7gZwRnKPfRs5tMkpksQVfzqitpsvGDRCyqCIi\ntB5RdVakZrBB43bHsE1UsXGsL+7B2TO/G0zdbtAO0oafNUozoAm2annJqFSY2Scv914JwwNJ0Hso\nyubuOPwviWV2w7Kt1P7Y9xx242M+3HnIUW9hDcgOrGnZxxinHBGKUVqFAvaOGmU4N33vlKzdtRAC\niu9BIaCdxALM/aiZGRXrBbo7sgzD0EGzRBNvXmO6g969JRnI+AzePUGfPqdzeSWf9d0vkvf7nM4/\nYlpsuogedHeaoGOPN0oz1PFd6eMkEToQDFUfHMmcjgV5c3lCNL7plcVfFY2Nk9vIOfFP+7NkHAtL\nlrGgkZzL9zg7QacZu8NDhr0DhnGd0YWzWVG1lj5fdwczKlD7C9l8uMFSqEH24qIGQiv/A7YMnTRn\nuRwDNNIZlWMNtt77jZXdOm/emvtf5nh7wSeJUO/uya7M+vO01ZnD/ocDHreoUS4x3WFjSFH+H9yw\nJnydJovN/d6VsvwC2xX5kRIxYjvP53Y3HcGaupcSij8iDfzIWlBvCzf9vhG2Tm9+49uYx2dSlz8+\ngBuHXg4lsk1Yn7VR1vMw7vUvHmHuSb3f19eTay4vpxDQnhN5WUSJeOt0M1Q2q+2Sg8xuP71NP5rK\nkO3VmfQ33EIETXkcgDwX2nC2VwNQYGOwbRPSsCK3oYAoSoj0EKOEMOLCzW9hLaRfFpUpmZcT2W33\n++jB9xEd3UXlM0x3yGn+gJPphHwtC6Rzjh0lFbvpkbi7Xk09+cSFEFFSYaV1d2D8SPxukggO3mke\nRD6DqzM7vxW9HIACoVS32K8vclS3knkgqBWow/JYOPRpJXFM9hSd7TFyqhYgSuPufUKn4DSDvZGn\nYDeiBTzri5zqfEmnH9PBAtDejpQwuZL3insQSSUilGPy5IxXbNw+j+8s3l7wiTu1ZI2jSQfRvulC\n4DEXj2QXNr6JDhblUPa+HW4YUeRsOgzile+vRCFV22c9l1yuzrk/k5LHD+wu6IVN7LZtt/tcUf06\nbSBqA5C5eAQnDzAffULxq8/IH8yJEkP0/oT4zikcH6BuHGLyGSo7JAoWtVJ3iOwpMvd/DfPr3yL/\n5eeobiRmYuN0U10YC0yfFnRCgkBAaVctl1NlDP2Vwszu1YZzZxMvyb9xroqVNJ6t5YKKew2acuMw\nbOmxwbprh+1p9YcyAxReF27eKAxHkwZ8ljsPhD3DgdmzixMr/Fq/Rpqs2eta5935HHP6zz0oR9kh\nxlLR3etrFaGzfdH2GzzaLBXbPokBL2DrAKitdNH4zDajXF/k3i9KLeXYG0AEDS8fQORxutqa/53A\nvs2+nWFjSG5x35tl4zWyb2vo6Mts9niq86Ucl81+PABhKdq2z6oANWiXVTc3ep8l1OeEg0a8vWci\nruVSVMssKpyxyasOoySpBUAvH3kBUDM7QZUFOttnUU1ZVNOGWVq4eLjXcuPs5bryjX1ferOPNUox\nLyecLGMezCK6GsZpxfuZlHzM5GHzhmj3VazrqOpmGyDkAejqDCZPMZ88pnowIX8wZ/IsJUrX7CA7\n9xh7k+6vvEKCq/9XpkQvJvIaH31C8fUzLr9dESUl6bMr9NGA6EZeg5B7/9f4alSoPLzl+8E5qsLG\nAmpmJ8ISs8Czfj6jOhfwcfMqLjoA2UwoxdZyIsxO3dR9gxzQdicNz7+zschnpOOblKn48Fyuzr32\nnJ9VCjYB0uSeMC0KpquYRekIBMoz+EILDsBaTVe11fTspB5+dooMgM72N9hbUSdB7+yTqpuyAfHe\nPPO6rzYuZHDZAtC1EZQzTV55a4W2JoADnPW8af7Xma8kK1lWctw2m1HDQAQUNl1fnTZcMEjtB2MD\n4HHyQCavvDWEV2lIU28PYZYTVJR4FXd5wVcLvn4e33m8veDTsbeHa1L6nV7PlluE6ebUbV2ETC+/\nK5u9oD/YgxjvYAr1gGgIOi62CU76OH/IwfAdkuElI1sDP+4f0jcp5vTjWv3aRVjGsGUk7zrazVBb\nAIhsH5YT1P4UPZuTHM7IVit0vLbAIf0wtT8WM7rxTcqgEZ3ORZaEnWPUhyuSYsVw+dwbj+mj/tbM\n59ooVuJYacs0CoR0QABYbbKCncsIQ2WH9UwIIs0S7jZVVwfnqS/il4e3fRalKTey18qUdZaKvQba\nWYMjTrhzfPGIaHzTKyU7Be32TjoCdDSy18KFteJuvn9edXi2qC0/5PU2YdwPP7dio5zsCCx6IE6d\nV2deD82rFtgBUaegri2dvxGOap3NIOvT2Ul9TyOc65FBXQtKWzIf5TOf/sYcEWDP67wp7ArNHp6L\nJIa9HTrJHNWNxFrdfud6t0vnncyW+qy9ghWHBfxmksFe8zN+Hv9C4u0FnzBcJgMNYcFwB1yuC4xW\ndv5BDNsaO/KrMz+fA6cN0ct2iI9PVqsbbEnrzeUJo7hHOnhXVAiuppjZY5m5mL1kst7ZRzsA8rvF\nes7BKUSP92+jdYLKeqRJTPRgIh4pTpH44B3UwZ0G6ACib7ec1Dfm4W3U790lPb63ffGwJZHG58sD\nP5nZvKHdpY9WNTPJRai2PLPN5v0rzCFNAEozEZdMM3E7HQ6EJQbN43KltlbpLiKi/W3k1dITRHTU\nqx1e82bZx/WWvFKyVR4fZtZfaZ03syT73ShkkFHHBxtaca78c9yf8nR+0nDF3XCKTSLI8yaz7Jpw\nStxG2/mnkGHnPoO1QvBGhrYf5krSRinU8LB+vM265FhqoPDWBRbY3GOh5bGzbaMym0sW6z+jpaZv\n6Suq4aDu7+3toPZ20MWqHpJ1lgvhNdBiPJrZicykhdfFmwKgjqo3P5/HWww+7ca8nZBuCwvSkDMJ\n+jPb4uqMtJuhk2MuV6eN+j3Ufjdu0fCaXNiFOFQOQJhEyUTUrc3sbGPOBdi8YUM2TzeThaG348Gn\nWC84XT7ko0mXD3e+zcHOLdKeZCh670Ru6ncOJNMZjLhcnZKqQaCIEMkE+9kU3jmod4lphvotX/aA\nbNqzPElcZwZhz8cCT/lk5k3DQGRUQsl7v7hbVpWZLmX4EuDdni/F5GaJ1pGwxoaHmO6jeqEPrMBN\nlG42ki2YJGmd/VZmxcky5kbf+hupQOnBgY+bonflJwIACn7eOC+twVtHWnClHrN44eeget2MOwff\nx24qxnVOidyHA7I0rRfWa6JYLzhbwmFvUV/TNPXc/HGfTeUzlQK40fAQHfVqkLTnVDQGV5vXZQCE\nW6kwQY/SfwdBP9OVT324Mpz72bHpnOzUcLD5Ho7q7bKc686NvccYF14FHriWxPN5fLZ4e8HHmC3y\n7/bfcY9etm/r5MW1/ZkNp0s7+BllhwzTA5z5l0zbN71d2s3bjcXahVVXDpupZrr0NfONklJgue3D\nAsKikt3zr50N+MZEMS0GfGnvsZT0bn0ZskeymIxvMi1fcDq7z/1Zwjg944s7e9JvevZNzEefYE4v\nUZcz1Pfhy19TnVOZQqyjO4F1dCj146yu87wBPNWzOaup62tY22Qnm28fG7KXzLIiWpZ03AJ0fBcT\npeTW88c5hyYHX/D2Ca6fMy+fM10UNSXb3QbeoVTmq9wi7YZWD3sLonWCjkaS/URJ3aR3xwi1UrL7\nbh34bVn0PPxZIPIDkvMrWXgdfXlvB/V9M3YP7tAfjbnY4ph7XYkzvNbcMOyzRcwoWYqYqsuKW2Us\nr47hftEvvMV5OthraCKq3g5mL7gX3GdtEwbaQ6rtyK2k0HImwHdWi4lCk6rstObqPtGmU6lnkLZl\nsOx352e/bEXBXM5QRRn0OLMGe/HzeHPx9oLP6hrGlV0kwhq5WF6XzSl/+7dGPyJkrYF460Q79PQm\nM8r3AMq8HtRbzmqWT3gTJ0VdTrPRZs000vlwEXIT9sZQrgvfxL4qhfOTV0qYXSqV92z1h9ykebku\n6C9WmMePWT88p3xyRdLV8H6BGh5yvj7jG+crpkWHo/4zbvTX9PRIGuyDvYbUD8WF9CeKldf6Wqfa\nqh7jRSe9HEsrOv2YKvRzsed7YZUWoNZZy6urDfHWfrRD0rF2ArMXG68PInkkSgGnpHrObtpHq1go\n82pBGiUyc1IWQFNLrS43lnaAmfo7vWbXvUGqwPZwZvNrS1I+c14VPvsylzPRLQvCESfyasnJUl5n\nnFaivr4WU0S6meieOfpyUC7zpS37GYTUcVKb/bnj3aaEEEpXBbbmlckpSxEiDb+fXnfk+3aNc8mr\nZ2R8vyrrb7imhtRzf4juupyd2PfZLGfnZrnhJfUdR0dtkF7e5nhrwcfkJebJiXdb9JFmnuosN6zi\nopBp8r3uKeW6IE0G6LS7dUq9fZFH1ZqRGlLqToO+rVVkvWXs7sv1cvaQuZNwkbL/Vk763c25wPay\nW3vwriogn5EmAw57Cz4c50DKe8OC436PUbSPefQ1zINH8tyqYDS+SdRPSPUzUt1lpIaY069hvxkW\n0AAAIABJREFUnjynfHJF9eyK9Y0B+mwKBzN0GtOLcnHY7LQk6IN5ENdbkJ7NGPbHRB+CduUVV5vf\nH8tncIv22RSTxHQSyfxUqum8k8njBnuY7pB5/mBjILQ9nAsIO2xyiupuKacE512rmHFyg1RPG9Tr\nvLoiiQ/q7Mcu1CbYcfuF2wEQbCoqWFaiC5/9dq0IbN+a2BWlzLVYNe356pSrlWGUWN2xci7X0ZPn\ncl24a9puovLqiodXop3m4rC7IunI8VyuTum7/t+7r6ngfPocMz1Hvfel5u+3KWq47z/oO14XvgwY\nJT6LaZMY5GcLRFm/0VsMM06nPWiUoqhq2az6RfASVN6AzqofKGtyN1+dem+v76VQSv0h4C8jFeq/\nZoz5ydbflf37DyOTvT9qjPknSqnbwM8AR8h+8KeNMX/ZPufvAHftS4yBC2PMb7d/+3PAnwQq4E8b\nY/7+Z/0Mby/4LMVhsZPEsoABjHZRw0NKyo0Bw4si4qKAo96EUbJFvZk6m3ERVWuv8KsHe0TDQxEu\ndYvi8lKAZ3ZW71qh2Qh1fYruDqY7kQUp6213Z4Ttu2S76CfdIUmnx43+FMi5NdDsxsdSSrNDpnS1\nlB3KQhxSu7ek3Pb0G5gnJ56WnV9FdO5N6HxhBssJUc+xuuo+ipcmKS8bk/C+ROXICeCBiPG4WSZx\n5ZHuCer0uUyoJ7E0tp06xfCQeTW1VGXNjb4bFIwa8iip6mKefZP1vXvw9BRjbaA3hDWDUMbQ74hT\nbbgDXlRT+ukQVRaioBCUe0IRS6CmL0dBNtsCnq3RzeAg8cw+k+1bteWmKKlZTuBsyvr5DJNX6OML\n1J7oqVWm5Ol8Qci2HMUVw3i38VbzckK6s0/SuVWXSx11vE0tP32O+egT+dmWPF1MyxdNgzqo1cyv\nGdZ0Ek5bw9o6QIupGPy9EU5pIbh/nEp829VWXlTKrApROyCfiZNuts98dSpiwqs3RBJQ6o0oHCil\nNPBXgD8IPAR+QSn1c8aYfxY87A8jdtcfIjbaf9X+vwT+cwtEQ+CXlFL/hzHmnxlj/v3gPf57EAFB\npdRvRay6fxB4F/g/lVJfNMY0+f+fMt5a8KkKKL5xRtqNasHDNPNCmbW6QfNiEcrrilQ3jc/ydYdR\nPOemY6dZ4DG/8W0A1P4FZnwGFoTAzovMzmRX/+JcegXFSna7x3LzKCt1EqWZ7NBavkEbse33y5mw\nv8rcM/luDUr209sCKvfuUX39Cat7wnZLlhUqz+HGjPTgDmb1Ak6fw9NTysczri5iZi8i0sGC9Ex6\nFEnnts14ajIFNJWaNxrzeW4nzZFs5+COH4ysLckv6Q92vDulSp5BmtbSKoM9St3hMj/l/iyxlgoF\ne93aSkGrCP3iAeb+t1l/8z7Ln3/M5HnCYLyi/0On6B94jPq+D7ywphOMNYuJJxXoNGM0PKTUHavC\nXFB2rNJDN4PkqrEQNth8BH2T0ebQJAT9w3Y4HbTxTXIvt7Ty154qc8zsDPNCSqHrSY6+PfEl1Pnq\nKR9Nuhz2SnrRmrSz5qC7Y/XUJOtxkVdXXK5OvSGeTizBIs0wz6xNwuPHmE8ekf+yWGOntsTlsrLL\nxVMaBnXhdWkVvV9HtsdllAI+ejvgbAMeqAktUUJJyaXNFEV0VajmWsWN6Qfdra1I6Gbk60Wj5/c9\nFr8L+JYx5mMApdTfBn4ECMHnR4CfsY6mP6+UGiulbhhjngBPAIwxl0qprwM3w+farOmPAP9G8Fp/\n2xiTA/eUUt+yx/D/fpYP8daCz7pSMm+wtCWgdw5Qw0NyL6tS1gZlLXfNiyKiF615No/kMZViWcFO\nYoDH3By8S1SWlihga/ZFKTdgPqt7H1diL+xYRuISaW8gO8FfUvoJ+aQ7FKHQvJ7zaRAV2uWtEIjs\n39J1Bx0fUJlSFi47n7Ker1hNK+IRXkWZYlUvikXpB/bKPKJadahWHTlm+z4iBrlld7tN0839P4n9\nnM18fcnl8uPN5yN9msj1Alzm0x8EQptx472FzSWLUFStgwV6xtV5xOyFXPrJ4xn6aAL7FxjbA3DA\n01DcBujteLHXeTkhWidELvvpz8T3hxbwuM/qsqFt5IMtG4ZG5qdlEdVKRDgrU9LTV75c6tiP7np2\ng5MlJef5nKeLPnkVcytbcZitiDp1FpLqgQWdc06WMRe5ZpzOGMViyJd0euIMOr4pMkx57pUMAHnv\n5QyihMvVKfdnKUe9OZV5yjA+ENX2ayIsizayH3duHLiEPaxtsz6t//veT5oxL18IgBQxvdWaUTxn\nECt6Og7Ks0If11oUICqzYr46E7+kdbyho/ebFAdKqV8M/v3Txpiftj/fBB4Ef3uIZDVhbHvMTSzw\nACilPgB+B/CPWs/9/cAzY8xHwWv9/JbX+kzxXQOf62qPSqk94O8AHwDfBv6IMebcPmdr3VEp9RXg\nf0K0/L8K/KcW8a+NuGfo/p53UR8coe7cQR3dlRmGdb4xlBfGOK047DqTt5L7l/UikleK+7OEVD/k\nqPcB+vB2PfcwHjeH1yzwECUiYQNWZ6zvDeJMdwjeljpqDig6am27gR2CUlA6CZvBUbUmsts+dXwX\nooQ46xPdeCZT4O/fFIn9gzvknbUvJXaAFDjgOdmLFYPfOqBz9z3UrS9TrBdyU6/W5OsOJwvpkRFD\nMhgRDfZs6fCkLhvabMedl35niG7tZiuzEmXq2QthQQWfHZCF7+k3ODi6ix4/tSUmifoYDui//xX5\nnEnMbv8J2b0JnZ2U5IeOpPT27heltKUUdIfghGLdOUwzcrPkMpf72ZVwSkrRQRvsidx/sZLP145Q\nRdm+j399x6wKSSYB6NDqI2oVMapSzKNfqvtJeztE706oupGUI23ZaRAr3s9EXeNkEZFXig93nkEq\nC/6imvJk3sH1g456K0aJkBFc5liuC8p0x1t5dGZzYgc+xwewcyw9zapknJRMV5rpquKw+1Ds5xMp\na+fli0ZW2yhRB/JFc3UJuwf09++gDmqNPmBTmimYIZK/i+CsIxksqqnt2Sp6EVYnscso2oeqEKsM\nf62VVl/vgnk54/4s5WQR8XTxZqjWqrNJFHpJnBpjfucbeeNtx6JUBvws8J8ZY9p0vj8G/K1/Ue/t\n4ruZ+WytPQI/CvxfxpifVEr9WeDPAn/mFXXHvwr8xwiCfxX4Q8Dfe9mbd0Ypna/cRb37RcrBiMo4\nVYLCTrRX5JX2UicgN6ZI9R/Z3fYpaWfJ/VkCdnckAJQC3+Zo/AFb90zt6fgoEWXh+ZU0Ox3w2PDU\n7FcJHKaZoENViLROuGvfBlIOwA7uyHvevifHcnCHucqZl885mclidLB3i0QndJKIbleTXOR0vvAO\n6os/RKk7lK3de77u8GQOV/EJo0QWlrQ/IB3chbFoo6nhYZNum8/w3RJ/vKn4HTng2RZlgXn2TXaP\n7qIHL3h0Vd9LZ0u4Wp0wSiYM3/2QdHwTtf/r6O87EfCzG49tIbbpKQuVMy8eNv4W7prRkZf7v5Zq\nbFlXnvG1lkxG2ya80kndE2ooYDcjIsK8uId52jweNRygj6zKwI1DATl7nEf9epM0LTS/dtbjvUzK\nbeG8UNoRrThHRAijMqXowrnP7973jlw77v5JtbFW5lhmXc5h92HgOVQv5C4z9UrSVjcvSWWOaL6+\nhF6M7n9IMngBk6fbVQ2gLt+C3EPDQ+blhKuV4WQRkWopOUYdzTA+8LJCqd1guXBivs8WNfBcfO/x\nDR4Bt4N/37K/e63HKKViBHj+pjHmfw2fpJSKgH8X+MqnfL9PHd818HlJ7fFHgD9gH/Y/A/8A+DNc\nU3dUSn0bGBljfh5AKfUzwL/DK8CHXg/14e/xlshNPa/Ni/u9rGCUJFJKWHfAgE6OgadAwf1ZwrTQ\ntgxnOFnGRJ0H7I9vizqBK49VdqbA7vwboOCAJ9tvvHdD4HDLhHzoPQNI+UDF4AYpw15CMNugxjcb\nr6GO7zJXOZerRzyZd7h/mfB0EXHcMzIPNDqk3/sdkPWF5fbeB9KjCQz4RnHRaNBOV5pnC8M4mTJK\nzulHGWk8oNe91QRTp0Jtj8WHm6V5VVgAGh3cIRomPJ2f+IXuo0nKUb/ksPuQYbrL6Ad/P9x85AHh\nunBKENNCvvsw2g1yY5vW7e/FAUm+XoBZUq2dbqAzFAy04ywQVWa1IYKnVQznDzFWj888lsxZHQxR\n+7tCeDg+qMuR9hi0ihjF4jNUA0Cn0QdyIcCznQThrdRdadIpFBzcsaoH8u9Ur6HVoP9o0t0oXdsz\nzHE/0M2zgq1RmjVUJh5dPWZ30Gd3+GXMw6/VquhhhBmz7QMWhZAFJoXiHfuxkk6PtCgxJw88Oy49\nuivrAHC5OufZIuXhLOa8gIsCO5bwBuLNKRz8AvChUuoOAgJ/FPjjrcf8HPATth/0u4GJMeaJ7ef8\ndeDrxpi/tOW1/y3gG8aYh63X+l+UUn8J2fh/CPzjz/ohvid6Pq3a45EFJpCV/cj+fF3dcWV/bv/+\npWHihPn6ckO9GLDllJrI8V4mA4n9aCw03csTsJpX4/TYz4Lcn8kN73oPZ0uAB4z7N0jXmTzPMdv8\nTAL1IFx2KM3lYFH2IpQOeNr9gShpWP+6OrpjeWkViQFc2+XRCaNaGZG5yjnPn/HRpMuDWY/zAh5d\nKZ5fat4ZVuRVny/tnXJzMGJ068twMAvIAfVCMIgVUDFdaS5yzckisv2wiFFSMU5zRvFcMhHXE8it\ne6cbQHVzM9uGJsOFvR1lgTm9R//oLrupKER/NOnyzYlmWmguetLPOOyeszs6Iul00ddYTVyuTjld\nTrg/S3gw63M7K/0GpB/tNNSPofbNIW3Os4SlpuY1FvnGtwOyJGyAhzR+60TK2TPMJzJn5ZxIo3dt\nfy7rCwgNQ+CJSfWAQbzgw52cvFI8W8ScLCKeLGBSxP5z7aZ9Ur1FHaB1PEYp1GBP+nRxT9ibtk8q\n7ELNYXfl+0cni4h7du/Q1fIfwG4ivdO97oJhbFmi5Qu5TqsClDDwPpoYfuGkz40e/L7j+xy9/0Po\nFw/kPtp2TUQJanho74clF3mXRYUVCK7oR2PM5IUM8BYrmYm6OoN+3/esHs5i3BhZV8PVpxBh/80I\nY0yplPoJ4O8jSejfMMb8ulLqx+zffwqpAP0w8C2Eav0n7NP/VeA/AL6mlPoV+7v/whjzVfvzH6VV\ncrOv/XcRUkIJ/PhnZbrB9wD4tGuPKhTANMYopd6YmYZS6k8Bfwrg9nsH1wKPX7Q7C0ZJTqq7Ajyq\nK6rWtmxmZidE5Q7j7IYFoHMAr2Tg9NvSdUd29e6GcRpcLgIXRrUFXNygqI9AhkfFojWWphk6irwK\nc1MOXmrbSbaP6mYePNX4JnOVy3kwMIx3+dLegg93xNZ4utI8m0cc9Uvez1J24zs1CEbCCot0Ata2\nGaAyETopGcQrP++TV4pRsmaclIySynsjJZ2eAKuf64g3P/t1sW1g0zLDnP5Yqru8lwkr8ahfMoor\nrzQxLyeUnbrJLd+XbI8dA+ygu0OqzxmnMTf6a4bx4YYYbOM8L+33m+1bwsqVXwTddQH4Jv6GZ4wj\nOEQJsKw/39IOIPdlfqsznotaONaSwIpyeofONPPfT19LH62nZWNy3McPnPajjFTveNvtl/nWuPk1\n73ezewsDDcVsrWJ6OqZQC270V/Z8G1Id2WtA/j1OK9LOmuN+j34kvchiLYO7aPlvXgib7gujkmnR\n4b2sINVdLoqnDPdukDhadPsamIlEVn//Dnl0xVFvwbTQvDcs/PlXcQ+cDpzd+FUmF4JBJQQJB5Sp\nNtzd+czr7BsPCxZfbf3up4KfDfDjW573D2G70pH9+49e8/u/CPzF7/Bwt8Z3FXyuqT0+c5RApdQN\n4Ln9/XV1x0f25/bvN8KyRX4a4F/5yveb62YLZBcnN1LVWXng4eqs6aUTJV4RezS+ubGQuQXFXNxr\nlo7cIGhLiYDZmcyMbNvdX+MMaqyHjCoLom4mRIJyCeW0Sd/duyFluQ6wI2W9vLpslHdGagh6CEnd\nc/jizkLM2azJGNQMO2VpqZFOQOFp3NI3izjslYySpbcEkCZ2r6nwDHL84VR7GNvKbk7Gv12es5Tk\ny9XT+jMlCV/aW9gNQV2Kas97uLJSO4bxLsMYT/rYGCx2tOzZiT9OBejByEv0hOGAp6dHAWi9aGSk\nbS+bhnHg7ZsYLD1g20Bu1JofqgpSOqRRs5TrNxFroNyUj2lsdoCot0MZ2GmLTNF25Y6ok4hNfGfF\nIF4wtsoV9TWQevBtvKelO+eBlb1WMV859J8YkM3BwfiWuO+GYT2c1P4KujsMBwdUvadcFLLx0Moq\nlwz2hNST9X2JLl9d+bKkq1ykes17WcFh7w2pEij1+irvb0F8N9lu19Uefw74j4CftP//34Pfb9Qd\njTGVUmqqlPo9SNnuPwT+h1e/f4ek02uUQ9yuLlyUIpK6NOQWCNf0zPA0U3PxiP7QMsoWM8zqhcyI\nbCuVvVQafot0/MvCLjimKiDsK4XW0YhYathYdfMcLka5wnz7H9Xvm8RooBclosu2JUxV+KHYKM3Q\nnVgyn8AkTauIflSXgK51h0yzBiOvsfg53xYX7nwlQfZjgWdavthQknADldcOMtpol8Y2QBKafSpX\nynTAcyaLuIlEJLRK6izJZcMeeKysklktBNSdA2exEo0yl8VsmelSt2/W1O29UZ05OsByA5b22msw\nH8tC3uvFRVMN45oypjvfZjQjChTOt83q1OXIntdCTM2AnnZU/EBSajEDBAgc2BTrBVpHXBbP/Ws6\nsG6D3Xx9ST879MoEovBwIuaBtu8VRQn9eIf3smf1R3LzWeOb4uEzvtlQM5HjXHPUL7k10AzjG6Sf\nxvzw83jt+G5mPltrjwjo/F2l1J8EPkGGnV5Vd/xPqKnWf49XkQ0AhfIltjbBoGEeBqJEsJjUN6+z\nB5jNRXOtDzCr2U4OoGxvB2haDUCt8mylZuoFdYtEy8vsqKFZggrNvZwKNMDeI9i7AcDH0yd8NOny\n+47F4GxUpZh//gtUv/rxtVRQNep6KZNwwTIgmQtC+9ZRas9p8xyGmaDLypz8iV80B3t+lx9SyM1i\nUgOQ/3xlnf1Ya4T5+tJnGm7RCsHDadZtszx3vaukI3JD0ocSVWmfkbnsysm2ONBxwGHVl1USYaLE\nq6PPyxlaxVbnT4DHXJ4I6AQCouZUtM7oTmp/m+vA4Z0D+9hsUy0hFMy0wrShuZ6TR1LdiM5OKs6z\nzufGqX246xIEEGcLAdX9O35w05XuHKhGRJIJQm3r3umBtn2ryYndxNUGcIzHJPb7y40InYr2Xk/s\n6pczzPKJdYh9xw/5zssJSXpMVO7IZ31+inl8RvlkRrSsRKeum/nyW5iBVqYU4kQ321AzSbXhB3Zl\nSLZvUszze5jTGgw/jzcX302228tqj//mNc/ZWnc0xvwi8KXNZ3y28ENwUUtC3+lthVI2bgF9HdfD\ndmbjbvJtGc+rgCcMt0A5JpIV7wwf++jqMfdnKd+eKd67EndULMH5dWYQvA322VR23S32nVOQdqDu\ngDxk3bmduCsZ+tfepnMGtehq2xeoWAFXsgBXhahYW9Dx2erioVdidhbjkX1P3Qk14Fy/LKbhVhpm\nXEFvzil0e+XpayjA7ajMqr7pogS4qgVEXYTCnk6ZuV2KtRm3o1TTBmt3vFYR3WnPOSXoULLGf+/u\neg6vH+cPFFyHl6tTThYrpNc9ox9dzxgMY6sJ38WFgPejj0kO3pHy61KOf1sHKiKiH+1AaTMla4pI\nEnmRWlFEkOMNRXLDXp1RCqUTtFIywNxJ0GrCKFkyjI+sceM9ePyY9Tfvv9bne/UJ+LzsFsZ3nXDw\n3YxwB+wEGCGYO+gkwALdidGDkcw5OBVq2FwQXBO0FFteRgWq/dgwogSSQmrP7cXrdS7SEPjC/4IZ\nH7U3AkDt3+HSzqqMkjUfZLUAqOkOxcPn8npKc2js5rXZ8hx1A/ENWi18tqLc4u4ByM4ouZ14SP0O\nFiMTKDcAjbLPtQZ6xUpq/WVBenBHehv5DDO757MSihKzNxKBVpcluMFOaICR/35dFnud7UZhJZG2\ngY4r0+iEsry0Pa9lQKkeCc27twN2sVV7I9QNa2PtSm42q9mQ3SkLeH4KSSRZmaM/uxKdK7sG4Kj2\nxSBQ3Tgk/uCKuC3i6kp8adbsMbnvIM2oxkdcFA8t8Nivr+oQdazXUSRzS3JfCemjWst9NU5uoLrU\npWFoOL8Cohn3+LFkdS0R1nBj4jItXzY++ILPvvXxlXyew9tyvPkD8mrpyQYCMvXAttIJERHaqpgX\n64UAz8UjePyY6lc/Jv+VzzOffxHx1oKPwfiyi6snT4ui4bsjbo9NZhNA1Ev8q0hYB06zFrXr7lDo\nqA6IZifXZ0QhgPVpPu5VYNSmmHZ3Nh7iylvz9aUH21605rBX+sZqZVYyvb5/sf292gv/2USUpYuV\n9B722OxNaMmC2jNKPqMJMyaQHborp71uFKXNQlcwPa8zknYprFjBi3NZ3MdjTLtU5c4f1H2YsFcX\nHJcHXlfaXG4yobzdhvUQuihc36eeh0qcgkKKDARnhz5j2ShHOiq6i9PnomCdxOLSuldgsj2xeHDH\n7oDn6Snri1zsxN9/V15/KA6vHLxT2w4EM0kbn8cYcrPkIn9gxweaUa4rFki/q0k6WXl9NHgiAGSN\n54Cm7fjlFdWv3qc6WxLf2aFz9z1474P6TQIChjJmcx5p95acN2v1kPf7XOQPvJV9zWKNfXYbXq8K\nWQwjPRQiw/1vU/3qx1z94xOe/UbTouI7js8zn0a8teADxt8ki2rK1crwbBF78cVU10DkLmAXNStm\nmzNpzaRK0p4XLDSLSS2psy3CXe7LhiqvoRc3FiwXdjdolGJub8S8kmPtRWt//K4GzsE7m++jE0ie\n1s30F+esn8+ozpfoZUmHYLHVLZkYHSgZu9+FjW+rK0dRilHey0pXriQU9sLCsABEsfK7fXecZlmh\n9+YyD+N2xqNdKfu54wwdWPOwt7Sqj8+CjjO0c94sW5WKdeL7SCcLN2S5Yq8rWULjoToC3QXLJqs3\nRWK9naS9urcxO/Pq4irVdIqVZKD7K4xTb1rOfI+nejanOlsSAfpGWauIf/CDVtmjFnClrKsBLtyx\n5NXypRpn5bqiUAv//GK98PfUySIiX+dUgweM02Mi3LZNMgrz0Sfkv/yc848MsxcR4288Z3RvQvJD\nz1E/+P2bFiPXhMn2IdtnXk05Xz689nEqzMJbm0KznGA++ibrbzzi6h+f8PgbA77+tZfY1n8e33G8\nteCjrLZZsV5Qriumq5hpISKhMkKx9gt1qGztdKLc7EovWnsRRqj1oYr1gjkT6UEkA9L0JvR2GpTc\nRsbigKMsRAMtbBi3ozVB74HHyrfIcayozNKXE8OGat6223EmeaFvfQg+cQ/DvdpSOa+8yKgXcixW\nm+Uh19MJez0uAuKAB552GeaaMND0ywGfATmShZkuMXnlRTBVV9NZVihv5RDXlGbqDHEjWoSQ0Em1\nWsrrMl9tBaJapkmul3zdoVyvKFRzMWuXf9sxjA+81bUHwPlKrmAPkCvfBwp/t55bwdG8ku9pb4S6\n9WWm5pJHE9Gpk1mctd9EnS1r2R0nL9WLrC2FLdUe9mLfJ2t+Fgdmck85iZpRojnsLrlcnTJMDwSA\nsj7mk8dUz+YsHpdMnva4nFZAwmD3ivXzGR2+ZQGoJcXUOn9ursr9nOqmoGnS6UlvZ8uS17guLRmi\nfHJFfqW5nFZcTr735nz+/xBvLfiwLul3hiRJTxSKO1NGsUyBb1VmtnHUq2VEUt0l6WR1g9sKFYYy\n9c66udID2cFGN31px83J+HDU2BB4rtNmC8KsFrbmLzVsmdEpfWYHm6oNi7Jjd7Iz//fE6sk12GBm\nSTrYk6aulQTq7EjtxQ04quFAegaBi2ujhBOlwobr7dTN8G6G0zJTSSSgscUYz8XWbCcMC0IqTT24\n6K5kByavRPPsYCjmgVbkdautAYEI69ie24AK3cnmdMbzRrmt4TOTxNKz2L3FZf6AqKO5la2k1Nld\nNQQ7m9YRlc+oXaR6zTDepW9SKGdSVjuWTNPN+aj9XSF+ZDbtscOo6gaYJCYGKbu9k0nP5/gupe6Q\nmgF73WkjW6+p8E/5aCL3gAdOd19EcGugOdCSJeeddaPMBm6OquRGf8Vh94qTpQzpOs24eTlhlO5D\ntocaTtFHfXrvzhiclei4w/i4QB+J2sL6+YxO9hinORjKIYXnD6SfE7F5nzTm7sJwPcqQrAHSF7tz\nSTZ5zsEZ3JoksF1s/dPF52W3Rry94FMWmItHRL0dht0D28C8sJnQeutTXC/IU0GtEKKZPMHMzqBY\nkewdMdy70QCg83zOKCkpO0VtK73Nu2Ub8IRlqFcBUNDw970q618SRtpZs0DsIqYFOACqdP24hple\nNCa1Q6BqtoDRXMptjn7tPF16O01RTEOtuBClKFsG9L0f5wRaWtKFy3xC1p9llV1LOAjPQZ57kFLD\nDIYZnb1ZraB941AWPKssvVEGdRPzASipuIe59dtQ4xdw8ag+lstZ0zzO0eitudp54ZXrOeqtGpnF\ndTFdaUaxgJrb3Iyi/cZxqu4OfLBT2wxke9teSgCoL72dzqWUGtXBHT8oqlVET49qNelqLVToqmD/\n4AtUo4/5eNpcHnrRmhv9NQfJ+5hPfgmAZOcYdm/5klu42XHzPrcGJVrVm4fKrEQNPDvE7J3B5Yz4\nTs7+5DlX5xHZDYhu1FI/5vGZUKcdANkMqJ0phuoTG35S1wBPI2zZ2BzMUB9ckSxL9qcnlEXvzYDP\n59GItxd8qgomTzH5DJUdknYzdHxgwafwGYuLxmT68hKzeIZxO2I3Q3GR0/nCCckP4gGoMiueLWKg\nYBBLD6AfjUkiO2znoj2b8TqUbahLW9B4TihS6Qy8oo4mr5o34QYABSSMcDeedG/IrnM1aqFxAAAg\nAElEQVRvBM5x1TGlnFWAk7ZZh69RC2gmnZ74EWGfH/cEhKwSt88C2+VEu1FwzLV2hPMojZIc1AOb\no13JaLqZiE6uL+m3Acid94C+PNU5jy4+Fk27m1+W4xjNmizGgByg4h5zlTfKUVKS1RvSPP5t1xUn\ny5hn84gLrXkvk+9xnBxL83t2Vmv/uc91cMdTkhvH347xGGUzvXIwavzJlaHMxSN/LTvfqXeOfwvl\n+iPuz1LL1is57K54p/sh5uE/xfz6t+Q4bkzh6ox0fJNyMNpQLQB8eS5klBbrBVGUymZgf06nWBGd\nL8m6c+I7TeKMWZaYTx5J/zJKrCBuugE8PrupCigv/TnxGW1ArPDlYHvveD2+zpp0fBNuzOgUK/p5\nxcHqYvO8fh6fOd5e8CkrO6uCl8iJhofoaETVWRGt5aIs10U9rLi8hMUL6dtMzzcG99aTnDiviIYZ\naXeHPO3x6GrFyUJO87gqGSUzKlNK9qTtIF1bu83Ftgb8a5Xf6ka/lNteDWRhCc4Z5OXr2Nb856R6\nSn94KDMz+3OZGXHltjSTRZ3SgzcE5buqNg1zzpi+5OZo4VAPy9oFwr2eTvqk3buY7iPv/ApN0Gn8\n34GPoywP9lDWwrxYL5ivzmToMIZeti9eQa3zb7J9XuQP+LVT+KdnPX7b3oIPd77F7uiIvjnc6Nu5\n4xUx0XqxatDNt0RlVkwL0dB7vtB0tQjZ9qPMm+BxNoVsJQuv7Q+WaRcGI3mM1erz4Bn2BC2bLZTG\nccellpdyLTs33SfPZaA0iVDZIbu9I6bFKQ9nQsTZTY9EWfvBI1bflMw+toQHkMVEW0X2hpp6KYQH\nopReMvIsOBOlUkocz+DyivjODnq3Pk6TV6znK/+zzs5ReyPZYOyL9bmvQFQFFC3AqZqbOC9F1WL3\nVWZFUTlh3pKkext2jlE3VujZnMH81fNbrxUd9ery8VsUby/4KFUPzjk9LJ1sZDz9aEcAYv6i+fzR\nruzEihWdYoW2TW191JfsYLBHYedqHKss1caLamoV24lwkZFv3CjbACYcNgwzgyDMxSNMV+y269JE\nrTotrD0pt/WitW8mL2j2GlyknTWH2Yrd9Iietjd9dogZz8T4rrWwa/tq9fuWjYXX9wQ6gd0D1Jmb\nM/ukpFhfemFOrWKID0j374iNOHgAaoRzjb0u26mmzMuJFZDsoJVkDh6A3Lkf7OGsoD/ceUhe9byw\n5bycQLRD3xrC1ddKnemketAsW7JFNQNXJipJdcEoEcuDVK+ZrjSpnjHsHaBdWc1mPmXa5XJ1ynzx\nVPpB0Q7R8FAyMkdXHyd1NtoVa3haWYIypu6/RYncC27ezF1rGO9Om3bWlOtCFu7hoAYJ1/Oz82Uv\nA1rKQjQI0wztJIasEZ+6UWCATjZvbCY6ywqzLOmMU+lvWSq9efQ1+gd3gC3c7y3v6z9n+O9gHECs\nLeL63LjnZn2iG683RPt5fLp4e8FHd2y/ou4BzNeXzYeomOhqyyLnWGmjXdRoF6bn6OML9GwuTd1b\nX+Z89dQvPk7RWex7RzXr5upss3QSvkeU+AyhATq9nU2K6OxEyiaZLRtFhXxGahVjp1R9XTxbxJ5Q\nAQKWB91bjZkK0x1KyWcxEQJBd9iYRN+WaeXVklR3RbBV15mAucbOoB2uXJPEPenBdDNI5k1l8Nmc\n9UWO6lawlzfcRE2UUlTTBuvPvW65LijUgtS5kVIrOGsVcdT7gPTwKQSN7Ly6sorczeOMiIhURGkb\n+K7E5M5L47FWfFOriEG84oh6BgvEiC2v7nO8e0g/kLSZL542XkerGJYvvOyTubQbgyiRTLg1rNlQ\n0HaZSTeDsaXMFyWMdqWEWsqGa5RU/nyZ7gEcvEPnlswdqRuHcHxLfKhaILd1QBYgnzWa/Gp4KAO3\nTkIpAB9/TC6LdVEWmPu/Jg604WYtKOsa+7jwOUDd03OZkJ0b8uy9fLZp+PgmItzwfh5vMfh0Og1b\n42n5gkU1ZRgf+IekRSk7yvYQZ5vyuXckIGQN2qbm0tNsU91hnJTsdamBp1rDsgU8LxtCDTMdu4sn\n7XpgNKuFLwOqohSr6iiR2RF4LeCZFh2eL3QDfI77h6TzOWb1QhYXy14z1ma6DRvuJq7MypMcynXF\ntNDsdUU1OpTcAbYCkJy70FG2Q9KRDC7qZsK8y/ryWS0AmenSz97o2Rz2x/7cOdl/R6sPWWUuMzRO\ndWBLjJNjKddZYUtHpw8/hyOfYNXFddTzr8+araKmUSfxJclULxknZcNZdLrSTCdn3OifBsfdnDFT\nxgTffz3n5ABIynBBD8wprS9amx4LQEL+OPTftRAf3DCylEHTgzvwvtiHsHckPZhraNDXRjsbcWSC\n1oybL5+Fv59fYX79W5hlRWe2gDtf9N9dbpakFoBYLTaHnwnK00E4pYNIRVCebVe3+DzeaLzF4KPl\nJsv2vXHYs0XMhzsT+tEO/c4Qc/FNkTEByHqY5GxT7t6GK3HMVU5RTho77E3gmV2f8YTRaryb7tD3\nLAB2B8fSML868/0nU6xQWQ+TZujukHI9eSXwhHbB92cJ72UFNwcj+iuFefzP7SzPrGHvvaimvnzo\nw8qVhGW2aaG5KCJSvUInpZXab5ULAwAySvmMQjIe6T+5hS/SQ+kTLGe1L9JsznqSy0zPskIfBaWb\nKCGvLmlbG/hDtkBXqIVdtOxN4dQp7OLX7+7Q777TMO7rRzv28a0sdrVA9XZI08xnQdvmd8D1hIQM\nMkoqpkXT2npRdviV04hRsm5sDMACWlXIsc4WIk66rAR4ZvMNiZoQILdmJO7xtnwWKmKEahgmGsGe\neDw64Gnbfm/NasvNeS/ffwHpm9nB1zr6wpa8eObVv9dfE8kbsyxJlyUaMHe+aK2zz6j0gH46RDnL\nkRB82iVt1yMLzke7//eG3EffaCil/hDwl5EhxL9mjPnJ1t+V/fsPI2ZyP2qM+Sf2b38D+LeB58aY\nLwXP+W8Rx+g1MgH8o8aYx9bs8+vAN+1Df94Y82Of9TO8veBj1n5XvKimfhL7qLcg6RRc0wbxEQ52\n+kZzdUm1Xtk5h4ikA6ku/YBbI64rSQQ3YqOnk2a+/OQW0pLylV+gL/3Fm4NyaWftpV/C2OtKr8vM\nntWLeMDAu1ydcrk6t3NOtXp0O65Whosi9nMicizyuAbTLyAcqCgREND22OMFqa7Iq4qk0xM5/K4Q\nHMgKuJTSlkpbApn2HFIWpMmARTXdUKoo1xVa10BZqqhuXjvgccaBy4nMKg2Exu68erZ97nYvbhvw\n9PSoVQKMgAWjpCKvjHcdnRaapwvFcU8uyNCQ73XjOuADtgu7lgWRzuhHonB92J3579pltpEbSN4i\nyfPSvo9/UFOKKTdLclt9aH9PUUezP74tPUW3GQzC5DmqKmRjsKwljNJu1tSSc/dWJf2lhh7eaygo\nfOZ4Q3M+SikN/BXgDyLOzb+glPo5Y8w/Cx72hxHbmQ8RG+2/av8P4gDwPwI/03rp/84Y81/Z9/jT\nwH8NOJD5DWPMb//MBx/E2ws+ZYmZnZDu3yHp9BgnC+/nUZmV3FCpbVxDQ3ixDTyO4bXtJm8Dj4lS\nVFQ0at6NaP3eXNraej4jSrPGa21Ma4cq2+Cbqa5E459nF65U1zd5qjv0FkLz3cho2ofYSbYvfg2S\nQ9sbx6BVIs912V/oPwS1MnZZkA720PEB83LCAlmQLlfnXK7OpdG+f5vIkgnYP6ezd0HyjtVG+/B9\nOBTfQbOYkKY3LUgs/MIm33WHqCPlwIikIYC64YHjxFOrwtpGlMzLC/LqSs5xf0BimV6lZXOV1kK7\nbVznPG0iRGS0UAvbRwKtSqLOilSL6+d0pRklmnFaNZxY/ffjjPj2ZkKBL1bSmB+PvS17sb6UZnon\nrq87p5O2ZdBW7oKZbAIsAG1sMAKKcvidh9T+cL5ro4cSMhzTpuL0S8OqVzslCdWNGgwyr93mzo3r\nEULz3moDUPC51NiqkXRPZP7M2Ux878TvAr5ljPkYQCn1t5GMJQSfHwF+xjqa/rxSauxMOo0x/7fN\nZhphjAkb3AO2C4u/sXiLwaeCs2eQHdJPxoySmS0POb2zFVFvB9O3cyBOjDKgabapxWF4fbfO5i44\nSpvlkHDnuJER2MFHs5Cdd5RmfhKdqvBCkk4yvw1AIVCEdGf5vziNptrQi+Qx4jY5kF7CtsxsSzgX\n0IhoqzBlfU4iOR9X01ooM1yELNPKlGJSF3UzL3d/nteGYCEIDY9/Cyp7AaMTGIrYpgMeH1dn9Ptj\niqLeBTtyRaorEpvlhgKom4Z8M8+0ctmPK6eJMO0Fcy7s+ahVCwBS3W0ZFEbeclt1IQn6QwJmUQBC\nqxbo1EOinrQRJX5ehqL0bEtHfy/XkslXJvIK3tukhDbo/pUw/IjGG+AQfs9NpYaCktqevDJ2vqvN\nNAtKcKqqyTGvDDfIG1hChLEBYm29w9bnM7CxETRKQXcoM2mhYd1vbhwopX4x+PdPWydmgJvAg+Bv\nD6mzGl7ymJvAE14SSqm/iBhyToB/PfjTHeu7NgH+S2PM//O6H+S6eGvBxxSV9ElGj0iP7tKPMnpR\n3nyQpY8CDf01Ywfcts20hKATOnaGNfEyoOWKhE3NvBrGBx6AGgZ2bh4mKvxiRXnZLF9ck9K3J7/d\nwuCOPeqsgIo0W1v5l3hjRsJFOD+0cU7tZ3RZYCjLIo1rMRzbcISFhnmZ2l9tzF7l0RXzsp5Duj9L\nOOpNOewtGPYPSAd3Mel2SqxZTkgHe/T0iMv1OXml/OyVHFuQpZU1oIfCp2T131Q+Q3eHnjDgYl7O\nOFm681KTA0ZxgVZXdfbgVKqtkrbqCkCVwcIp303P2rhv/059WDKMGVuw3DkWJmKUUrVM1HQnlkyk\n1YgPs1CfEdhIdbdxzYbRBh6f/a/xIFSs5TU2xGWDn3Uk51OvmzJQ4WdVcU+uiyS2PkS64TXkMn3/\nmZSSz3GdLUX7Z6uN2KDIW3LNG4lPV3Y7Ncb8zjfzxq8fxpg/D/x5pdSfA34C+AsIYL1njHmhlPoK\n8L8ppX6wlSl96nhrwQdjZGF5/BgTJYwPvkA1eEDSyRrEAM9ws5mPk8kP9aQAIpKNclU4aOca8dtE\nJN1N65rqDfUDV492C58tSwFNqwYr76LStLHTC7W73PH6Y+zUoJnqpRdS1SqC8jXmJ4LYZqssr2vo\nRYG0TOiT44RFtw2LLsXIzeQzSDPGu7eAJ5zncz6apHxzovkg0+Trghv9JwzjA5LxUaOp3iid5TOi\nOCHVXfJ1xbLCl1l9RhZmPaHwaZ7Xi/EIv1tOdM+rop8t4dmiy8kiamgDpnpNmq09saGnR1BO/Xfr\nZZFaHkg1Ffvli1VlVpLN2PkksE38tCYNOMady360imslcneOXhGvymq3HRfUA8Y6ssPF5UuU3d17\ntVTiUz2wA7cntcX7bleEbV2cPcPohOHuLTkHZe6HTj1oheVd9/9rsiJ3PV9X2fguxyMgTO9v2d99\n2se8LP4m8FXgLxhjcqxvjDHml5RSvwF8EfjFlzz/lfH2go9SkPVl4fvom6iy4ODoruX4vxzQZR6g\nznS0a1TnM0y3ufMikLmp1ttVi50gYgheJkpleNMdbosGbC6C68hlZ+DVmlVvh5LSz5q0m8DhZ3Cs\nMoBpUaCVVR4e36wtpAd7fhZqHrD5irU8P9UD/1pOTj9faz+38mTeQQ8mJMmxaHqBzy5UW8khC/xT\nljOxSqgKdvfvkOpLUv2MVHc56q047MX0o71meTPNxCfHUYq19OdYX9KPdrg1mLAoVxz1Vhx0d+hH\nO3JuQkFZCz5Ocdu4mRPwABQNDy3jTH6dVwrRG5VHHvZK3ssKdtO+P/eXq1OG2UHda7C77fZwcxjb\nfu82L6keQKe27pAv1zbwA3JK6GWjyvxTl5JKykYHwPUbayv6erZp05ZBNlaRiq5d7Othz6iRpad6\nQLruiKuopVurYUZnPBFx172dOps4eSCMy0CGSA62afXhAdeBvv0ewqiPIdpKKvmOQqk3RWz4BeBD\npdQdBFD+KPDHW4/5OeAnbD/odwMTY8yrSm4fGmM+sv/8EeAb9veHwJkxplJKfQEhMXxmtbu3FnxU\n1NzFmXv35PftC9dFWetAQV0KcLI75uKRPGawB3b35SIUGXUR9gC0ir3tM2m9wzRRKs3PVrPWnN6r\nS3EuApqs6srwZ1FNWVRTf5yvipr5NgcsAB2IjInpDpmuTv3ruah31/XcS14tma42d+wPryrgKePB\nsTDWnIp3OMvRnsn45LE4cd5YYMqC/sEddPcWUecJPT1qNMI3qL1p5hedsGzUj3b4wuiUng6AJwx3\nDEVZG8clcbMcNQLiHslgZBl/c1JtcC2IEHic4oGLy9Up/cGOAEhrsPm6CDPLyqy4WhlSvfSMu1QP\nSLSch1AdApolOmWMkFhmQS/TRXthtItzbmoX1vogbEYPENDrnZlcOGDrgNJ0enUZbMsi3M7QvY7i\nxaPmnI/TFyxWoi0YxtkzzHJm9d+C9wiHWsOSYwt42qW7hkzQ90gYY0ql1E8Afx+hWv8NY8yvK6V+\nzP79p5Cs5YeBbyE39J9wz1dK/S3gDyB9pYdIdvPXgZ9USt1F8uRPqJlu/xrw3yilVvZvP2aMeXUK\n+4p4a8GHLSUEc+8e7J97C+MNZ9DWHEtEhDl/KKKMz0+lPLNvbzoLQItq2pJZaS50/gZzts/drJ4W\nx9at06ym/M5O6vcazr2iNCD/T2VS3w1FXq1sjyYp7TE3b3o3yOm8V4RwEZNXC6reU4bJAVpFXBZP\nrp2VkddZ+SZ73ffYDAdA/WinNttzN/hyJsDqvo+PPqH6jVPW8xXRdInKxX0yPbjDfnq77qm1F4hw\nBsuKSBatRX4YHzQAuQFcttdjLmfiC7QsUd3KT837khVCikj1gEG88OW2W9mK97JcCBG2h2fiUWMT\n4gZWtw2fAo1eYij2CuK3c1HIORbq9cyDkHPgDQkPWgfkl+WlzMs4eaIslNMJzllAqpmXFw2QDwkT\n3pYAiHSC7sQU67p86I67XBeimbht528Zb+58eJXt84eYydNa7TzIiNX+uCkyO1vUtuZZH25cyQBs\nuJncBkZbhmP9teCuyW26i9/lMMZ8FQGY8Hc/FfxsgB+/5rl/7Jrf/3vX/P5ngZ/9jg/2mnh7wafT\naRpx2TCzuVdrNv3ZdhACK+j4SG7k56dy4c/mUp7pD7z0TGjPHRpcRdid3awWKmW2gOxKHEGtosBF\n8YRUD+hHqTW6Oqsn2cNSkAUeNZTp9Ly8qpv+6w6pXtKPMpz6L2D1rCLyqsNFrpkUiq7W/ghTXQCy\nYL50VgT8BH5eaW84Fg5LhvHwquJG/7RR09edGD0YoVfHojb+5IT1w3NW9yaiarysSLoa0lQW/YM7\nkEabdXwXLbXiNuhv01qDoPFelNYmu/S9BdVd1eZ5IIv2ckZi1Zx7UcVhr+Sot6IfZQI8VrRU9Xbo\npzu+ZHmey4I6iJXPXNzxhIt2W2X8ZBlzkWtPmJgmHS/fNEq2S8K4z+/LbfMrKSfigHQhIwWJLUWl\nQOSAZ9Iq3QUsS9iqFOCur1BVourY0pvuSg+mrTxgKexJB6J8KeXSiTjomhdWTcHpyCVxrUPXcq4V\n76alSPMUK8xBsVWBwVUXtso7uTmvtubiZw3V+c2ZJ/qXJN5e8NEdkdsnUEfGyvHvjerF3PVaAhVc\nZUxT1Tjrib9L1pfXtKn85eqUaVF4e+5RXJDqWucMTU0FTWJIVr5+bZTicnXKeT5nEC/QyQ3S8LHQ\nZM7Y4zFIg3UUpYyim+zvCABc17juR2P60ZhRcspRTxaUva6bTzr0MvXnq6cvzXxS3WUY9/zCmlf/\nH3vvGiNJlp2HfTfujUdmRj4qq6qrX/PoIWZnV1yakLlYGoJh2JZpy4RhQjJMCxQIWSIs2xThn+bK\n+qMfJrC/BFCCLGpF0CIJ0BIBm9YKokSAFGgDliiRK0jYJZfLWc6ru6equl75zozn9Y9zz40bkZHV\nNTs9w53tPsBM1yszIyMj7rnnnO8hbBICthPR8coDUJhzsrCCq6O9+1Rh9lfwRiG8YYgSgBwb76BA\n1RxIrwt3lnKdqrSrM2cXRgZwWEiv49cThvSZm8+D20rrXDmEWiNFE8W0QIcxCk1tsrN1hvcWISWN\nIsc4ovPa9w9M5QKrj+e6hSpP4k6XPHU+s0cJiqqdqAYkcR09+TmeCiJZrM31xyrSC6jRPfSjAwc2\nTdWtbEoRNRQ/XKADzxOVR/bhUqlKIoklq1j8FKaqytOtz8Ged6YSRDEQG+g7yDjPOruyd9PBLeJA\nRf3tzVMj59RabQxHd80PX8Qzj+c3+QQh8OBTAGj3ZomjTpIBdrCsnJ0fedwElaTJiEy7VuUc62JG\n+lzGnnudk84bqRhTS64TDejmYeRNRNVLYpQXSBanQEcuEYb79Pv9EfR8SbvA5nA+T6tjVgGxwsN4\naw7VjL5/gK4ycipGcVhPz0g2BsDewQOs/F4NbGBPpddBV40QighaCEhBCggsjdMWVlE79ywoYeCv\nIMU5BvsPiOuT5vBZ1fj+HsQrd62WGC9Wwt3R5mnt82uKiN4oAZlk4bbXBFfD/bhSfzabEx31sUqP\ncbmp9PGSIqqj8HoDrPILzLMrnG18vDfnCri05FuGoSNPLJTeHd67xx54HTKZAxyEHoCcqqmwt4/E\nWKiznxIv6hU6suVcpLmt+BB3adYSxuiO7tVEd9fFDDJoehPV6QOuNt8s85EUJQbBFQpNflahUUjQ\nqmEx4Mw36XM29xa3Bpt8OwA4ILVs64cVUuva8vCy84obtyOa17RUIaBCanl/m818vlPi+U0+KkQx\nOqpxFNJyAlkqoKxudh58ctSqHg4ZAMPbQExIm8Qrscpo3jJJpEGS0QI7SZXRyqJdqBQ+wpDk8vVm\nChENkUsPq+zSPh4ABsGaRBNdSwN3AbEtxAoQoJPEthTFKyekRm1Y+M2QQhHoYXkJvfh90k5zWx6v\nLNG9+ykEvduYpCd2we6qYdU+3BwDMsBgdA+h7NnKj6Lc2YZb55SkJolEKK+gvADdgweUAJKEBst3\nDoHDl6xbqn2PXIm29O6bTpfXhYXOS7MBgJOAmknH2bGvihlW+QKTlEzXrlJgXQgkRYh1nuHlmJB5\nszTFe4sIs1TahLwF9TYQcZd42lTGHqh9ss44+63db2awhzA+JAM5zySFpyyg7rWCwECx0wzokj5a\nd3QPK1F1CBhUwFWRmxyrimeDWSqxzj3rnDvwV1SRNWZugLm3Gi0uER9SBQSHa+dIWgFA4WvA94EO\niQLnZYo0fWRblUnhYRCsTWVZLXltmnuVSkOVTKV8Rsvks0O7fUfEc5t8cp3iInmIZUYSJpNEYpZK\nHHYyU52sLKucyZ8ACE7t7LA4hN8BjGnXKju3iC9uwwAekoJ4H7zoHEYbSDEB1Ahhb0woHCOHkpZr\nzDJpF+XDaIPAq6qf2k26WEHPjZfLYgU926CcJigu6V8ACD79BN5r70O8ctcmoVBE1VB1M6WE4ziz\nFqcr5O9Tog0XK2Cxhnz5VRzsP8BVdkI72NKrBsOXMyBQ0MkC4egeZHgbUpzb+QYHVz1uVcSLcihD\nAKdAeER+LbxbN8TJJhGwZs3QmPPYz9rs/m+iOaaFsCRMwZBwAwSxScd8ToneYJVNMUupur1KgYtE\nYD/UuEqBzZQ+/1FY4HQVGsM+GDg2RShLsLcTzxiYeOomIDfp6HffR/mINgUiUhXLnzcj4wkBZwZ7\nBGuP94F8Xhf0DEPoJKmSjjv7DHyaJ/ZjUwVRNe0moHl2jmWm7czKJS/zrCcpPExShVla/7yTIgNw\nbqWn7Geyw8ZAxIcNcvfcGr+5CSYpBCapcq4r3/xHVuaFPt4Cmrjhcnq47XnTzcuL+ODx3CYfrUss\nM23EG6ldcrwGpqmPWx2Wrdc46mQYR1RNuHYLHFz+s9pxUa4N3DTHYbSxz+MutNyCI/MwcwMZh09u\n90nhI/Qy+3h73EIQlJoXZTcJ8QB2k1sHyKdGk9G/63xtCO2Fk0fQmwX2br8BPT0jEugHjI4qEXpV\nJbTOPSOoKTAKcnRVjLxMkUif5Ptdh1MnLPPdRSc5BmE2rlFucSHMrW2ZMK7r+TmLIGBaYMEGR93c\ncqX2AvrMBkGBUVgg9EocdXNjGCfstcCOpdcFAzKsx8xibUAPBUQooTd0/CKSlRFcI671TLqpbYC5\nPjrRwCYebgnDX5NEUcnH7KMjfQRehp6/xmXLqOlsnWEQbGwbbishOOcaMEnAURVhjyqyHw8wS+n+\nvUjo3PYUwd73AuBWp8r2TPQVeQLkc6hGFcWvVUlRfXgh0CrEB7ee+A6OnclHCDEA8FdAzNh/orX+\nJed3/5vW+sc/huP7yEIKH3thFz2fCJFHXYlbq/rp4J1UKDMEHl34YRgDhrhorQ4afvIAcUkCrwPl\nzTDwC2tpwLt+qq5Ky21gUUuXbDeOMiRljoFfoKsI0ivypA79VAEQg9pwYQgdd+GNM3hOBSRCSTOT\nO4fA8DZ0vE/zJjkgxQS/QzpuvLs3bqAyvoI3DAlq/OpRZYQ1mUDnX93mGY1RVQxRH6vsHKt8scX5\nCb3SGJRtK233/T3n/JtKT6Vb6skKahtizQlUBTVIPD8XUO1o2yDODK6wtgM7wk1uoewZ/bxzhN4G\ng8C3CWcQFBZhWMkxVbv0vZDmdYXOqKXqgFty6VljtsDrADkZxrntMUJ2OTOTwAfGQ4Ihs4trb0wc\npzAiWPtmTjJEgwWEK3HkyhsxoMKFYBt0mtAaoexhL8wQykrtui04Cd3rwapAuOFat0PBCJluf9b8\nXHQujHV2Sfp6A3+FdUAbuUgK9BQlWk48L8W5Q0YeVtQGrjLzFKo3rgZ8XkVHqBHIX8Qzj+vO6v8O\n4E0QvvsvCiH+KwA/YqQW/r2P4+A+yvCExCi4g7Rco+9n2CuWOIwWZidVnRbeqYi6NcMAACAASURB\nVKYloXUCv1NDwHHiaZOXUV6AvneAwFvaJMcIMNIUi+q7d7Nz590uV0+sYhx4HZIMafMoMSg4qxbQ\nj4FxQsZqAA3rD18C9u5j7pBFO2oAoeoEWgwCoNuDMHMOkWYEbuBIc+h336dF7uBW9XPmGUWxtao4\n2/g1UAHAaLq4NlcDqgXGnXMkelNp2ZmoEf/aNLr471xOlpGr4Vjl05pCeM3hc1ficX7eTG40T5ga\nodYIgUebBW5taj+0yDtuGbmxyicIojsQWm/pqFnDOFZd2BQoVxm8rrl2WOPMUARc+/CmP5KbhOAO\n6fPUyjZdO5cojLagqs4bn99m8DUr8gT96ABSPMTZutqkMalZeWvCK6jR1mfN7999TgBGAdw3FRDr\nCCrb0rzTqYi+gyBA3z+gz4ITz5J4SjzXU1EMSHcepJ7uNvwiPlRcl3y+yyEd/d9CiL8K4J8JIf7L\nj+G4PvrIE4jFBcGXw74xe1ujqya1JMTVzyBIULjVj/EP2dUTdsU8A69jSIAV74H+RhmIrGp5bO7w\ncZRVmr62PRbFQAT7e+G6MTqJh1FXMFybMIwr4y13p3sQQMSLiuQHWP5NcbWBunMJcXdCiY0lfjoV\nYOJyA3MOPbzcp2M6jDJ05J5d+Jl/QmS+GYTfQRj1kUvPmrbxObThWh3wcbnzDOeUcJKQIrdVT1qu\nDRBi6hyH2laScJ5TZ+u6EnSDcAxQtWsr3qIEVgvoxbu2GgtNQugEA4cIWolxskGfG2STPadjc/lo\nm4Lk2rjyaUk8kEHrxqjQORAoBFGfbLZdpYkbtFGp8lOWm9QM+/7X9P61mZkdHL0BKU5wslojKT3L\nVQIIbi6LSnW9aVJoXxsAHNfRQg0xjs6RlNS2vUol9gIi+h51MuyFXYvEtIKuZrZJ5y2tqahLZapf\nTjqLy9r1/6HC81rVxJ/XuC75hEIIT2tdAoDW+qeEEI8B/L8gjd9PdmhNF5c0ysIqqO3oXokJ+ssc\nHa4+kmKJwO8QWm6Hf09bNaO8vk1CvOBseaTwDhRAqAKEah85clqgXRUENxx4uHth17xyDGl1ZhLP\ne4sQjxY+gARSnAP+ARlvmfNhgzXR1KUFIujzOfLjpQUy+JGkKutWYJ1OV9k50nJths0SmwKYJNLO\nOKxwa55Cr08p6Tk8JQCQUYxuNAR6dA52VSVt7HOdra2JmPBJzj8wXA8m/VIblNSmu2pUtVaeRih0\nqwOTgBQUpFfpmwl3d71aGg6NsouwiA8RRjG0GqDw6kKzq3xagwXX5jXOTK8WnHjYw8cRwXW5Am6y\nY6sD5QWV0kSeAJ3htihr8/3LeqXKIYUi8vXklGaB3NZbrElJIb5Ev3eAonOCN6d0YEyCzssMhZdV\nFUfeUJh3w0lGgSSDu8NogXXuYS+Qlug7CIIq8bgbljyt1BHSDFCOaK8M6onHRXy+iGca1yWffwTg\nPwbw6/wDrfXfE0KcAPibH/WBfeQhPAuXdXkhbkLZC7sYBDmkCGs3Wlqu7eLQHFi7Ngq1C14FUACU\n7ENLsZW4rPw7h3mcNItY68i4mXicobzgeYx57cQQHBmZ5YYUCtjMyN+Id878/ABgVIFFmgODFeSY\nFga5Z4ifTLgE7EwAAF6O6aZNCmF1zvr+gVGHOKv03Pg43VhcGvTdY8jeGNixY+SEu0sCRWdrYDOF\nyFN0e2NI34cUE4RyYRKhWZx2hWuvzK/ZdhwwMO08ocSTLEhJ4GJigQAizYG4sosQnSHJzRhZGrZQ\nmKQndH7N9dSPDoyxIRGZvdEKklUXBhGZxwV+pZLtzOLcpOZG3z+wyYjbkaHsQYYRVBiTx45TEQm/\nY++V5oCej1Ulm20dNoc8rbM1FMboqiFejsmf6aiToecL9P0jsm2/eAgYdNtTw1gxhLKHtFxjFOSY\nBZ59Tq5CsbgAq36LKKZrjys+sxlgFKW9dx1hWUYWvohnGzuTj9b6f97x838KUjX9ZIcKoON9k3A2\nKMqGH4mJrhpuSaq3VTy1xOPOI1z5dvO6AoDiobLznMrRcAOMjtt779A3t7aRdhyus2pzUCtMYk0M\n/DspfYvKCr0SgRcTzHfyGPpiQguro4eVhxFSX6MLo3CdJJBpRiCGWzGBGNjl1TkXygvQVTFejheY\npdK2P2zi4SqmidZzg+dXT86hxwMII3Jqw5FoaU1CRUq71zQjqaRsjbB/CGmUBLpquD1Mduwr6ARs\ny/ZYt8+mRAxACy/v+hfrujCpK4dk+DO8cRBm46CMPA215WiRv0ge4mB0H9ooP+jFCh4PN1ySMUCv\nbSSW+DqdZ+dbJNWw9ADZxwpze30zqZXljgKju8fHTElns0V8lUJBLWeUeFbLbcSdC1woUgSyY6+N\nUEYYBbchJ6fQb/8Byf7sj4B7r0H0HV22piePc955tjQIFhgEBPToyL1K9Je9k8LYdgE4tBBbGzva\nsJjP73KK/HiJZxMveD5uPLcwjlIXmGfnO2c2oexVkEwR2hkE7xSlrNsT1BKPs6hu7ciddphqSH/k\nyO0Hos/fhv7Dd1B8/dgs9E8qJFPX6bXLakaTI0dRbu9IizK3vAtG2xHgwVQpS2qr4XJKFc5d2GR2\nuv4mzjY+XuvHGLDCdZrBi42AY9yt31COzTQt8DFCmVcVxuayakftijQj3tLl1Ap7erdi4M4MuHt3\nt1ikmwgSsmLQF9TbF4wQA6D6h9cmHve92Odtmq+hpQLiAT4TdOc0LysnCfFxBhF0mgGGOItgCXR7\nRKJ0Ktiw27NSRoXO8PUrH9+7f4I9triYL83j/Up1oeUcFDrHPDvHWzOF1wYVfLjvH0CfvwXIAJ29\n+5iXleApyzkFXgeJMcCrni+rbcSkNICCxQVdr8dnlGz5uBgxFzTbc7593j3/NvTpN6C/8Qcovn6M\n/P0F/AdDePMl8OCB3XBY/lWDLOuaGypPGnfaqO4BNLsygIxDy81j+aot+kSR0n9pBn1B2oLF6bNK\nPi/Cjec2+RQ6x7qY2eE/AKsvZhfKxYVFuqhoCBXF0H41LHaN2pqJpzZz2YHIskgbwzVIyzUURC3x\npF+/AADIoyXUnQW8+ytqs4wHtJsz7RCtQqTFbKtKa0MhsVU4EwT15hh6vkT5ZAEP5PwpRvdwmryN\nf34S43gNAIsqAdk+ftVuc2dFPJBWXgCUqGZbmzmdT56DAPWFE7BJp3yyQHG1QXFKw155tYFvFm7c\nWWxXQQAdCw/NOfGYysOtOjgBQW4/RS2aXCpOQOY9t7b6zJxDJ4lNPJXp2QZiACICw0CamZtjqkdd\npAjifQReB/PsCl+77OAbU4lQZvj06BJ7o3vAnQUlsV2umHmKQnpY5RM8Whb45pRACa8PKfFQNXBp\nr59+fGCBKO8tIozCAgN/hZ4vai3mZkihKsuDyxlwco5yksAbhVWSZQkovk7y1IqPdnVYSzyrf3uJ\n5cTHcPoEISp6ljh4UImj7jgOdkHt+Rm6akhST/PHBjBAunV6PYUw99rF5iGOVx4OI7Jjr5Fd85RU\nss/nKCcJllcvFA4+inhuk48nPLrYnPEH78hab7aGeOLOcCTm7eLU9A9ptmqSBZQKINUAevaIetP7\nE8ijKTyjMCDHEe3+3RlLWAlsijyxfi5uAuKvA6+DvVBhEOSYpQlCWWI/fNW88QAiDOGNQnp+GWAl\nEvT9Axx2pgilxGGU0Y7ZBzA+AgJHUl85YIec4eKEMOPzW+jMzjdqlVsjBHOVuFIx2m48XxL9XiUs\n2ryRWZCySK0QpXZY+9z+EX6n/bOU1QJZ+6zapPh3hZkliDCEbgiT1iDRYVgTzWxGVw0Ryh4+O34E\noIPXhwJ7/m2qGoe3IfpGRmnHc1DS8HEYLXCro4zFw30DcJnXUY2oZkBHnTUGQVFTYHe9mgCuMgIC\njfB7DiY0j3LOtRUCbZ6zZEGE6vlj+jz2R5BHU/iDKXrI4A3pWhT9HknpSPcmbVQ/RUqzNq+D3EtR\n6Mr8bUuctCWswy4HK5fEHYiDPrzRAmHvZp5LL+KDxVOTjxDiz1z3e631//XsDudbDyHEnwLw06D9\n7M9qrb943d97Qtl5jmuGVkPwNIf5JlyXwxrAwH2cCipnSRc9xL/P07pVQ55CbBZV//neaxCBj9Dc\nNOLOrUptm4/LFVcEoIoSUg2QinWNK1Mdt2/ItcbGgN/r3n0gIXVgjAf0veEBfe++wipf4G63GvNZ\nhYUWlB0A4xIZwnVLTcs1UkESLfA70NF0ex4G0KIVd4D9EbyLCYJbZmZy+8CSZGuzgJYQ0RCaNdpm\nxuNlNKKkbqwu7N82Pzt+nAoIOOASaRsJqxU263fotVVA7yOekDCp2yJzk4UjlsnPmduZisJR51WE\nhyc4kLcsN0X4Hei4Y8+XTcQsqhr1kRvvoL6/h8+Or7AXHlXISsPFsl+bGAV3ALSbXTZt2K03EIz+\n2j1DTm5UcvY9ouHGmyyq++H2fYi4iyjuIjyfQ9wdQ3zXqxC336gnHjfca8ZsdtjIDoAViSX1a0M8\nNteNFD6127rnVm7H3sdmA4O7nwIGe/DjLtSdU+DvtB/GH1U8bb0TQgjz+x8Emcn9t1rrf33dY4UQ\nYwD/AMCrAN4B8MNa6yvzu78C4MdAzPD/SWv9ax/2Pdyk8vkxAH8CwD8z3/9HAP45gDNQB+OPPPkI\nISSAvwXgBwA8AvDbQogva61/b+djyhJdr4/cy+0sx21RaSEs+79tt3sdF8GGc/Nt2fg23BxbpdsP\nX4LgKoHVfHnB27XzB2mCSaF2+s+3yZkIFvKMD7Fy3EpD2TOLkhO9MaG12hZfVhiwSg11cc9VOUcn\n3qeFgY26QtTnK4arJOJuxbEYjWhQ7CzUuwbQgEkMvPOFEaXsjbcAGTWEE4cjqe+2UK/laLhIQxXY\nBGsXZKCeKPgxT/tMARzo0TbEnq+LJuLRiJ26sRce1cRxWaKJv3aDidfN+Q4nnV1QaNEZAnc7FSHz\nukTttqU54jHEHx9DLKiyK0ZHtV9vtbbdKKpWHsPd+RhEfFhtlJwIvA76/oE9L22OpSI+BD4db7ul\nfqshvGcir3PD9e4/BwHDXgfZaP9tAN//lMd+AcBvaK2/KIT4gvn+J4UQfwxk1f3dAO4C+HUhxKe0\n1tsSJR8gbpJ8fAB/jP2/hRB3APw9rfVfuP5hH2t8HsA3tdZvAYDxLf8hADuTD4oMevIYqjOECikJ\nbakUyPqO0v7YUcO9VjfLkQkhscqKxwOgTuxzINnoje1TiNG92vfV8dcXXmt8ZSoiFcaQkqqgQmf1\n3V2ygG29mGPUKoQ4eIBcepBOm6VN20oLYRfm2s85IdW4IGoL1LEuZoSmivefzt8xm2XRP9y+ca9B\nQNnz1/CLaYudCUgGABZ12+Vm8KLmIA2FDICQkpB2j9Gdi7UlHPN7BRAh0kC27eLpXodcuThJh2HQ\nPGe77jO0pOAWkAwTr5kS4Lqkbn1ejZak2H9QJ6o2Wphb/CH38TKAuP89u6udbyVUYIVJm/dwR7bQ\nIhphq6Bvr7jJevdDAH7BOJr+lhBiZNbuV6957A+B7LUB4OcB/CaAnzQ///tG3eZtIcQ3zTH8iw/z\nJm6SfF7ixGPiFMDLH+ZFP4K4B+Ch8/0jULavhRDiLwH4SwDw8j1nQTcILbf1xjeZXk/pAmxLAM1g\n9WOXN1Q6hl4qrCUh5OlOJ07RPySlgHwKVc5rC4h9rl07QfOeYBbcjhwYK4h5667T5Qgxc9zGDqfH\np5psOa/fFqGIqt1zy45fmPN9na/SzsTvwM5tS7Xp19J0MG1LQAC1pVzlh+a5dhL4Vvs26j/dD8ZR\n4rbvK0+qa6OtNSmDqmXrvNc247zWtjBAIIG2limHQ6BVOgSWM+hsvf05GL4SS02l5RoyjKrX5vfS\nTDz8foz7Ll/r0HOj21a/3j9o1N7zjorSfa9NoJBLX2jKHX1McSCE+B3n+y9prb9kvr7Jetf2N/ee\n8tgjZ60/AcDl5z0Av9V4zD18yLjJp/obQohfA/B/mO//GzjE009SmA/vSwDwuc+9odPhvtmVJ0CR\nbO3umDCnVUBtoutKZibjATQz2OUN7y4oUVwjBAJkrrUuZkiKS6CkFlkzmP8BAPBA9tOCqggtBJJy\nDaAEynW1yDe96F3ypCtfYtpTO6NIoU++QdDsg1u1mQG/J6t3Z+Rxmoi77jqDnnyVZjCN+U1NxRhA\nUW578nCLNPA6VRLmpA7YZODClZvcFGb41157l7VyU/WBj8OQLQtjtOZKKtUM6loSDFcUKOvtKwbB\nBNyabHKh+Fh5kVRBbcZWO3fGl6ZJotUXb0P/7tdoDvU9n68/cfM6L1Lo87evBdzwBk1E5GjLi3Wh\nM0B6kKpf+3v3/CZ6g6SYg9f3Nskevt63NnBALfFvZcYWGabr7mFXXshysPKUgDLPKJptzmviXGv9\nuWf2wh8wtNZaCHFNW+fDx1OTj9b6J4QQfxrAf2B+9CWt9a98lAf1LcRjAC853983P9sZbUZjNvEs\nL4kfcP6EHEPDEDoid0Q4QqJ2d8aVQLIgIiAARDG5ITrP3VpFODHTcxTpZe1nvHC0yb63waq3Wiym\nRVIDPADb8O88JQhwfEnHvyMB6fO3oR8+Bi6nxDd58MAmIOF3kEvPJh0+T27y6cxmRCY8Jt6Sy+Xg\n92VNwhpyMPwzAMizSunbQt6dxNWWtNzHA0BatszucE0V5Px+3ZirtIWbgNyfpeUa8+wceVlY2aY2\nkzPp+VZxgMEG1RPVOUi7jtfadZhbnRNP9pX34HV9iH4P4tXvtn+fS6+2KOiTbwBPziszvdhcF41F\nnCWNuOXrVgttn19SLLfOO8sucQXVfB+cTJuftZt0tq5/d1PoJBFrHujKKrntRJ7PPq1q+qOJm6x3\nu/7Gv+axp0KIO1rrY9Oie/IBXu8Dx03r2X8NYK61/nUhRFcI0ddafzvhD38bwOtCiAegk/JnAfzI\ndQ/Y5GVN2ZgTj548tqRLJs1pg8DSMgD27qPQOVb5BNI3LTq+cDcLaj8AlU5UWzT63bn0cJE8xNev\nfHxmL7M78q4a2UWHZd/5JmY0m3tTLzcaB9HQ7h5DEUGvH+/W6DISIlisLSGSGfOcgNxqQJ9+A/rt\nt1H+/mPkx0v4DzYEp335VVqMemOs8gu72LDRF3Mogstj6De/gexf/CGK0xXkURf+YgW8voC4/z0A\n6oZe/DxJsTHv2bNaYOtc4aizwiCoNMrYfbIt6bSpVLhkx5smoERvkORLmlsZlYTronksq3xq9fUA\nZW3VQ7mxsF8pcrv4soBnJ96HWFw4b4iSDmuSAbCt47b3rbw+JZ43v4HsK+9h+m9WUIHGcPgWvLhL\nG4DeGJP0EQ4CslzXF7TR0O+cEkx8PITYJ6t4NCp2e94WZ9amoKqA8tpmhH14Bv4KB6Z9qLyA5HkW\nZxDREGFvjERv7DnkZJUjrX3WbS25rQ5Dkdp70k2ahc4hPbp/rWr4Fvm5RbHhWwwNvZPU/gHjJuvd\nlwH8hJnpfD+AqUkqZ9c89ssA/jyAL5p//6Hz818SQvx1EODgdQD/6sO+iZtArf870JxkDOC7QL2+\nnwHwJz/siz+r0FrnQoifAPBrIPjgz2mtf/e6xyxzga+cCbw+PMNBNCRRUYZ/rpbWGZTY6QXEYg2M\nyc+kWlzzOos6zUjHysB0hQrMguBccI0ksBIJThZn+NplB1+58DBLJT47XuF29xDhalVJg6gAKoxR\nIEfTxXGWSscxcoq9MCOE2qbFfoGPgSud+bIiYs42lHQWK+joDAJA0SM0kJycGsmRFYor8gnKjxfw\nD64gjPRNoje2Iqh8ayT6foquCInYeHKO4nSFxTHQ28wg9yLI/T3o6G2IozeQ5/Ot5JUUHmYZ2THP\nUvJumaYCs9TDUTfHYXRlq6BmuEmnakdVCzS3BVmiv3ZdcQIyCubrYoZVPrWLZ+hlGEfkyLmTH2Zf\nmz63eXaFN6cRHi7ob291PAyC0iQhTnbu55Wi51NC7vaGdoHmjY7VKLMIwwrg4V4nXa9PhMuTc+Tv\nzjA56UIFGt23pwjfmAEHwCy/wKNlgcC7wKAIjbDmlDyhNhJesKqUHUaoJyCXPJ2tIcwclZXJeR51\nvPJwuurgyVpiGGh8djzF7e4hkZ3Xp1YlQqgAoSIJKreNCABFUc21XBRedbK3ZzjcnRB5CmG6EpVg\n71n1HtrM9W5quPcxxa71TgjxP5jf/wyAXwXBrL8Jglr/hesea576iwB+WQjxYwDeBfDD5jG/K4T4\nZRAoIQfwlz8s0g24WeXzl0HIhn9pDuRNIcSt6x/y8YfW+ldBJ/xGIQUwCErL9pfCB0JlEUpszuYx\nJ+PWAak2C2HhmVYuxuhA6fmCuBzdXgUqcNoDCqpWwufSQ4AOXo5fxiA4wWEnx2uDHPvhy6R1xbI3\ngU/HpALrJ88LMwAMgsI4gXo4iIaWxW6j2TZwyJPWhG6+oK8NCRJhTEKQiZlXJEaReX8Pco+EFtUd\n+h7xmNqMhribFJtalTLPrhBGPQTxGLh9AP/BCjGmkEcDePf3Kt265SW6vaGTeFIUXoZQ5gjlxpiP\nKcxSYBjQoj3wC+uLxBVjbffvAqdKrnjUVoXA37sJyFbCBXGyXGHSw6hupJaXaTuqzD5/BuUF2AuP\n8NnxFEcdWhRdl1oOviYBWNUNKxezJrVlfXxGVect2GuD+S5A5fZZ6AyzNEUo5+gMb0O8MkPwmRUO\nlhNIv0TwmfvArQMk3S6UznAYkUKAXpxWunRuuByl5izMtAKZxMsVCyceALjTLXGnm+JyQ9ftQXTf\nnn/VGVLbOqr4a6oooWTfmdVtt8rd1qm1HQHAOoruGXYVz4H6vBMq+MTo9betdybp8NcatHbf6LHm\n5xfYUVRorX8KwE99iEPeipskn0RrnQpuvwih0A4++kSF72mMghzKk/WBOAsP9g+hh2cQty7Novug\n1rvvyAHJxSzOqEVn2lbElelURFKndeMOn5sxCm7ju/emGKh96NNv1PXBAOL7dIZbw1sO5Un0/QEG\nat+S//j9NKMmwhnFQHdBx8wEweHt6phZoZnj1gG81xbwFiua2bDWmgwA5K27//cWIUJ5jtH+S5AA\nZEosdiYTWrmaxRlUFEPJCNojhWdeQElCZQ0gR0eRRt0oyK1EUCh7tn9P9gYtu1XH6hmomPptUWvB\nrpatwqTNaCLNdkVXDfFKn1pw7ibCDddAkE3p9PwxMD2hdvDJObWDAeBu1ep1Nzv83KfrEMAZbg8O\n0f3U90IBGIRvkerCH/8McP/fAUybr6uM0GyRVrYDbRHFddIoUAPSsFzUrjjs+Oj7Df6Y8ZXaaukl\nC4SKjRsrNXkXSl6DTNdOZFBLNjZ4htZ0480byQh4JtwcCr1N53iO4ybJ5/8RQvwvADpCiB8A8OMg\nu4VPdCiPhDWl2HFhcRIy1U4z24o8se0Pbl1Vbas1CUbyoNOE1aeyF7Nrx+BjUITQp181ycw85/mc\n+u37E+geaVMBqC1YNWuAhhmY8Dt1IzQzQNUqrGCw0bBSHGhWSS03s3jlLml5mWrQfQzL2yeFRlJ6\nmCQSSSFwtk4hxTlGB69BvJFC7D+h2UHz9QyZUqgASgU2EUnhQxY+xtEMy6yyqWbHULKaNjbQAFTD\nitkCRLzdVQr/jcgTUt5eXpKiNguBoi5M2kbidZNe22tYd0+t0Q36SPQGq3xSW6h5N89gilBElAid\nxJO9PYXX9SEBcpw9AOB3IHpOZV0WONv41rQtlKdA5wjdT30vydoFCuKV70PiVCZdNarml81gyZxu\nD9bryQ3FQ/oQheNb5QaZNho/pxI1J+AcOTmK2jdQAXmgCF6uDBqPLChMpbPL2dYE3wMA6rp/aWZ9\nkGwSalM1+fYDHHxHxE2SzxdAKgdfBfDfg8q1n/0oD+rjCCkqYU1eDJikCcBCdauZgGMSx4uTMZvC\nYoXyyQI6KajLEy+q6idZAKGrk+X0q/OyusGK1PjXTGqKzvnxghaZ8QQieAgY1eN5dmWTDkvHI79s\nvk06XtfrxxARU0P0tP4tZtdX4++4i5CL+oli4G5cI++xcRlL+ACpmdFIxw12ASnOMTh6A7phH8HB\nMy76kCq7gTCMIZUyn8XSEB/r799yslhpAPUk1ExAbtiNgdb0nhl0cnHVLkzaGUJGA0BWwAhuFXI1\n5cK7rUL6egGdXVAbUwUIZICwfwgdhEboNq1db+TyapTAL2fA5RTF6QrF6QplKEnxPJ5ABH5FCRA8\nY/JwulI4WQsAypgingOdA3Q/9b2ACuxQv7ovFJCv6FpIEmvZLUOjgRZQ61h0hlv8F0aguW02DlYT\nEJs59PQhXeumypFhDNUZ0n0iAfZ5sgrhBgSguxWPTnSGFQeryYVqazNna+cznUC/b+6VxQq4mJB0\nk+sCi3pifBHPPq5NPkaK4Re01n8OwN/9eA7p4wnlSYyCO47LobMQ7uhXd6TZFU8eVy6Hx0+sArN9\n+GBF3jiBD72eVoKaaHBJZGC1pGzvmfvpgQ9gQ3BYvvHTDPr9P0Bw+BKORq9aq2aaJ9ajttODUUrg\nxOPYU3PrqQbrZXh201a7TQ6mEdzuSQoCBExTer9JIZAUHroqox1u/xBgjg9zkJpVVmGOwVRkUgbo\ndobohreN/YQyrpPHdjHTAOm/OS0h1+7aXUjclpsdWidOsm1+Hq5IptNSrVU4DeBCjbTMihnZunbu\n9JwG3l2/A0R9IEuBfFZ9jolj+xzQ9SBCacRKVXV8RpUhz6ntOggCfHa8xiAIMQrofV9uAIASEKCB\nBmQ/8DoWyCDCGTCIIDc5vQ5baISxdaytn8N2iHztHDDYZTKhtt4th3StCNhhRXktMIacYJFOyIYi\n8Cl5h/HTJY92hIgk9Kag85Zm0O++D8QTYP8KGOzRc7NSiPeM0G76maHdviPi2uSjtS6EEK8IIQKt\n9TU07U9eSKHIUCvflnYBaMfcVUPLtq4ZU12eUtnuSP9rY+5VAvBmGxrem6+CUwAAIABJREFUX84q\n6LVhgW/NfMIYUGklxQLyntHmXw90o1h9qTQDHr8FWaT271uDXUJ51xjGFn0HMPmSEHssm28TUWCM\nxHrj1uqkOkl1dn9arrHKp7jcAO8tAgMQACLJ/kElvQYUnXenkrJab5uGcsLlaTWLCnwCYagAMowr\nq2ZG7ZnWmLiTQY/rwq3N896WeOi4zNA8PqyQXWlOSuJmUQIMoovbQbKdkV8bgnOEMS2uLQoRND9s\noU+slnb+Ivb34KUZVFJQAjro0649JsIuO9bal5MRXh8CZ87Y43ID5OWpAWrUl4C0XENGAwLXGCko\nBt2wsCv27lsLBp5Nue+7yaGja0uZ6p6qGeuzFChgVIEmhNmQ2YpmsSJ7isS0VENz/QYrIF4Q/y6u\nE5W3wlRKukhJZHROCUw0IdQLMupDPIHo96C5HffMZj4vwo2btN3eAvD/CSG+DMCC4LXWf/0jO6qP\nI8rc7jhr4VgGs1S7hWROHlO/+PiMEo/j1aI31Y5ab3II5gcZv5oaiqc5yDQ7VmH+DiNYlI4A2nkG\nJ49oFxrF27335qIMA1gwM4E25BB9vQaKai6hvABB2KFF+RoNNTfxzNIUp+vAuqUClHio5SMJDr1L\n2yuKATf5LC4rTx6nAmE7giZMXPMOPc0ogR+ktYXJJf26LTGbeFqEJTXvvtvOs3MeOAE10XJtum6t\nCWh6QrtvJ9Fa24Xm4H88hGQzuf092y7KpYdVVm+9spV0V61xsjpDUlAlOkslQpmi52e15JGXKVKx\nRhgSqVrDJAgDRBGje5hl5zjfTHG6DtFRJUIvM5uLiqtkz7k5J1L4wObCAmlwSe+dnt9UlH6HRGb5\nnOcG9LCoKnvtou/mS3J2zVNSy2irgky1r8IYWE9ps9Dv0fO4z5VmdiMp94x9ycWENn1Nt9hvMTR0\nq9Dv8xo3ST5/aP7zALRDrT6JkSUV4qUhjmgXfcOtweKiUjzgiscknnKV2arHJqKkgN4UVQICgDi1\nApEsdtkMHfUraKiTgABUO3tebDcFxCAi4l+/Vw1NudpxiaMA0O9VMwGv3n5yuTShVwLIMAg2NcSV\ndf50W3EsY1O4ice3c55NAawL0gYNvbJqbeUb2gE3bCFy6ZG7KwM5zHCdnUBtRLTA6U2BcprYz6Cc\nJhChhP8gh5dmEGkOfSu1tsmcIFxYtYXpMviiEWJ0zx7r1ufVAJTUqqu2Abjzex31aTEsUuDkEfS7\n7yP7xjn0poAcRzTLYX8lB94swpAUN24bePqtA0qSUR9pMbPvrauGxO1ZXkJvztGNhrjXu4vzzaMa\nL4x4UvWkYVURemO6Bo3GmRjdwyy/wPlmijenoeXqkP8PbTAI+l46hFma04k8sUaC+uLK3j8y8KsW\ndRhDFA7hc7Gia9hNEot6i1kvVhBpDsRLaJ7ZAPX5ZrmGlIPt6sckoPLJAvnxEsXpEslSIuzN4A2n\nUHdjyKMpoTpfxDOPnclHCPGLWusfBTDRWv/0x3hMH18wuqsN5cXh3gyAXfjdxKM3ueNWCZQrghLv\nfD3+GqjpkEkoGv7DJJ2Y2h7auVHs629yiIh/lu/UALPBu+fNAmEUAz65VyYF8WcYmRYaReGk5Mql\nwGF0ZZWNbRIycyGhAgSSLZc3GAW5nS9wjCOS6g9LD/riIb03d0jMMNpyXelorZb2vQKoqhqg9jP+\n3n6dFLXPwsqrXNf/57ZYG8wWqBa0FlHW1mhLPEbp2xWcDTtDqqbTvPa5lqvMOMoWEIGz8DoVsOj3\n6PvVkqwbIppN2M8o2UAv3q7IlnmKIItxd+91hPIhkrJAUgiEXllz8A28DoEcko09D2J0z1Z9XTXE\nIFjjqEvnm+3YO4ow7EkhEEpY6aCtYNQgf0ZuYrlOgNX5O/78AUAE5Bor4k79s3YSD/PFWqufxcps\nFnPkqUCeCkhfwDf3t7cpLNLxRTzbuK7y+T4hxF0Af1EI8QtA3cFWa90OrfqkhFSVTpX9mZm5sES9\nCdE/JH8WVG0weZC1uzAHPpXqzQF1FFcVj7kxmqKUVmfKzGfIlOzSzh30fEEumFgR/Jp3xbGDZmOj\nMObusF212SEDqCUgKSZQ3trCl6ukU0VSeAilox1nkGV8rpQKsBfeRldtsBduQ43D0oO+fEyVnxvM\nZgcgIvIhwuqi3s6KZC3x8M8Qd4Fzc+7GEQqapNMQPjSOoYGi894/tHphRZlZ5r+VVvIM/L1RAbvH\naV/bhe22xBaXq9FerCRmlpDhkCq9WymQJPDtpkJRVeu2e9par9yiuzyFzlOEo3sIw33oyWOah23p\n910CyQIHBw8Q9OdIe2t01YFF4umpaUM3+TtOKCgcBPfR9ze43zuvtPZauEp5WSAvaWbYCQZ0f5lr\n1huGtGFgd1rTEdAqrFUoIs1ps+K0yWoLkeuYGlUK2Wk5ty0ulwPGrUQA5Bd15xDq9QzyYoLwcoqe\nsQFH3DUE6s4zk9fBs5PX+Y6I65LPzwD4DQCvAfgK6p+5Nj//5IanaDFuk8hv2yVHMRmuqcd1x0ag\nSjINR8rm4xm6mZbbsnhb5EzmGXWG0IpmTQKg4SsH37h84/FMKU+tkye6ZijeGMrq+RnCzhBBdAfz\n7BzADKEsMEvRmoDoGI3+nUM8tSi99RShX5FrXfn8raTDweRS074SkYNycs5vZUVtksp4aHrxEwjT\nlpPjCOWKbmzbrhqN7CwkLWY26XC1d9ghbT82ILuuOrLHy+hEng06KEBr/8CyPA0FAC0EipISz/lm\nikGwxqh3m25C855F87pygobtJtLczIPMYja7ovPMrdddkZNK9WB0Dwj3jYju7xNacLGiTc54sIUY\nbEaY5ggxQh5GdUUKM/9zk9EqX6CriKCrE6MCEk2rTUTcJSHb3hjrYoZONKi1nKn63/GeePNlgAcr\nkSBvXG+B16mJ+gp203UQluLgFpCnkNydcCHdL3g+H0nsTD5a678B4G8IIf621vp//BiP6eMJT1KV\n4LpoPi1MC0K78jRmwddR3+qaNSU/AEIRJdm5vTldUUpb9Rj01NZwml8zuKQ5kvmVCMMKdOAa3/Fs\nB9hqx7ncCT1YQMSHGPT2obwAq3yKcZRhmRVWGofDIpaSxU4Soj0vvIjxzCnNzGwqpoWCXTjd44LZ\n3TS16Hhmxl/fuUVyPL0xgSjCEF7wBHpmKp9Qml2rmYEZsVOCl3OL0cckkQAyHHamgAICjxCON70W\ndkF8a1YKjQREoIwJrpIV3pyGpnV1gv34JQK63DEir0my9by1xGOf0CQgwFQGFRT52gXTJKCavp/h\nlelNDu9WDHFnBt0kEScLmscxvw2AHA8g4zHE6B5y1SFodeFjjZlNQLNUoqsmCII7dM/FnUrANgyt\nWkKOHKt8SsRao3ag8xSIMwgGmDRaYCxnJeJDJIHCPD2ucfJC2WtX/O6NIVrAIE0rDkAjb9ksfiuh\nXygc1OImlgrfeYkHQKkLJHqDmjEbx3ULEPfAAUASSW+eneNscobTtY9RWGDgFxgEQS0B8eIHVEgj\nYIq+f0BcI1cy39wM3LMOwg6UurfVhnPbbbwLbzp2FtKzkvw6W1PSYI4FKGEIFaATkV7dKp9iEBiV\nbJOE6hDptKpMOOzXjlDpYoVyklj+k5wk8EZTk4TWwHiwtUDubGe5UN+DWzRgj/epPWP0u4AnFpaO\nuFstSEbsdJlpzDJKOrNUWv6Rm4CkHFQtM2duY8mru8L1lEEjARkgg476SPKlTTzvLiS1M70NpDjG\naO8+vWZ3QRIzJoE/NZp/k+YkbsuzIk5EzerTVTM3ABqmDCgQvFoEis5vfEjq6A5Jk9FqSBKI/Qw6\nT6HiQ8iYPLIC3YEUOWZpikmqMI7WSMs1zbm6l/QZpRldwyEhCQu9sfy6wJCLEcbAAMDGaA9ycuZr\nLiajRx3vY548xPHKw8BfYS/skupH6cEKtTaSTCE92/pOiiVW+cLSA17ERx8f3CLwOyQ8IStlg4b+\nGprJyAlXsoV3SH0zOwllhcSZpSmAtCYSyTEICvT9vWowvDbcDgvHJrJdWjhkUNVA63B7hltXzuzE\nbQHZiMwcyX08y6SowLZNWHRTCt8mIVISGFbgi2a4aCxU7RK3eWf76Fz9tLQ3hd+xszUWPbVV3v4I\nGB/Re8vWwNUj4vw8OSdvIB5kbwpKRiZphOE9IwQ7Q1KUCKWHUJYYBp4dljc/XxeAoM/fpipxfFTj\nDfE5dc91XdzSGPixAnU8xmD/AVQ3QCiJY3PUyTAICqxyo/wwulepTMQmyTM0uRG6xntxPwtVF//c\nJRGjguoairsQmwJe10cJ0+Z0n8N9DP+8Bgev2s5V+42S4iAI0PMz9H1C5+VhBDW6V1kXjI/sZi4U\nUUX8NvYRloAdj+l8BD61JnmWOdijx2uNUXAbwAkCLyZx3RYEY2V0WOcihbKHUPbQ91MDI39Wc54X\nsSue2+QDXdLF2QhhFpOmAVj1uPan66oRQtnDPDvHMnOcGgtvKwHthUcVDNZl9jNax7TMeDGzaB1u\nybkyNy5T3iQgtmCwKseOXbWIhgbynVonUUaacdSNzRS6alQRQ83zINgxK1MBDXJNO8eL3babgYTz\n3/O/DRgzATOG0L01xGCPFpCmuR3rnF1Oa6g4ABUkPaIWYRj0UOgM44iESWGUscnGoKy9X8vN2ZCT\nrX74GFisiDd0r2473awyXR8ZvZ5Wx7hYQezPoPMU3dE9yOg+lHdcm4vMsyuokHhVMupbN12qms6A\n99+vv3/mPrnJhw3fbjKjiGLgIIDAE9vy9AASfD3o0ybB2dzYJDDYqytFO/MWrUKssvMtQdGOHNQU\nJmS8DxySN5ntIpgI03xbJorboSqokpBp3bqPV1AYBbfpWmVx3Qbgg2wn/Nb2V+B10PX6CHs9hPKR\n8Vx6dvFC4aAez2/yKfLKEwXYecM2b6Q21WZLUiw9BOFLkOLEVD4V9JRjLzxCNxMVDJbD3iQsNVIn\nRBY6h5IRLQLXHLPlz5g23NYQPYqtfAm1rVi/avumYMUDK9rZBs5wn9dUBnoztZUL+r2qRdjtbSPK\ndgE04FRCzWqLCZkO54letyKZMvycqx+oEZCjloBCqdvhwJsFOba++z70+5copwlkmlEldvjSFhoS\nQD1ZMCfs+AzloysUVxuoO3OIJAFeIlTafu8lzLNzrBxZp3l2bucVrDQhwwgqimmxdxOQhSwnVfXD\n878WVGHtvPdoRkM+RQFEcOqoOWQGBNDZvr54k9DtVfBj5taEMdbFbOt+YZKru9in5RrB3v2tVree\nn9XmnrVromnfwLdHg/irkk075SCvt95c3yOrObcgzbmgN8bR6FUA7zzzBPQiqnh+k48uKxHLLRXb\nSiCR215N6X0pVKUina9owc1TyDDG/t5LkOIYV8kKp2sfSenhMMoo8egQelLxL7bC/Lyt7aeFMLL5\nDa6Q+zW34eDAE9sSkIO+cxcGu/A5oInWFqSbAI0OlrXTVkGllN0mTHrTMMdo7Q2AaxMP/2sXRpZp\nSRYIoj5d7U4Coqonsgz8QmdQyxklnuMz6PcvkX79wnJSZPA+JdSDBxa6zX4+tuKZPLatwOLhFNnb\nU+LuTBLYd5+nUHiAUXwHXbW2qtZ5WWCZrSxJ01W37h48sAnIzjy4bRaG9QrEXIttmwWel82yc2o1\nsYoBYCHNFkF5zecCU8AytD/RGyTFEkmxsbI9rtK6MvNITk4s6cRAG5atqkkpuaizFvSoTUic9JvS\nTM2KWnEFRfe3TTpXb5HRobEwEfsTSID0Ez1yGP4khRBiDOAfAHgVwDsAflhrfdXyd38KwE+D5Fx/\nVmv9RfPz/xrAXwPwGQCf11r/jvn55wF8iR8O4K9prX/F/O43AdwBa3cB/6nWmm24W+P5TT5CtCce\nE03pGXZPrGx8q1NXE0F0Nkokrkk768OoUVlcRwgFgCKFlMppV2QotKqJlNaep22ovCs4wUXYsl5u\nJllrgtcMi6ob2iTBC0sQ9SHyhGZM7jHWZFOcmRXPooDq83CeUwoF5VZArtQOw97diLtWfZlfV+QJ\npKSFvNC5o+Cg7Odp0YncoolIvNMSIs3r6sUZRG9sraEDr0NIOV4s4yUQd+ENN/CGIen9jUJ6PlOl\n6Mljq9YNNbIIsaSoEn3FoUkB1aeFfjwAjhuyUIGiqjKMq9ZqtgawqF0fnHjWxQzrYkbACP8AKhqS\nYrSRMqr4bJWNhP383H9h2nEqRGKquFkqMQg26Pt7lZ4bc8L6hwhUp6YWD69TXdNuwnM2KzVIuxu7\nkk5L2ORVs9HOalc2J3U9X0IkC6jiEB05wFFne+b2rYVu5UN9BPEFAL+htf6iEOIL5vufdP/AiEb/\nLQA/AOARgN8WQnxZa/17AL4G4M8A+DuN5/0agM8ZN9Q7AP6tEOIfaW0XkD/Hieom8fwmH+lv9Zvp\n5/ULXHkBiqJu44vSVAhuC44X1aJetZCas6hpnT0tSbhzH+UFlixX6BxSdajKYC6NCw/mm9NNqM0b\nlttCeUrw3v6hdUd1EQLcipPCr5Ewrf6cYexzAmcYMS3uihZjN9nw+3atu5mn5M4pTCJi8EQoo5pD\npo7HhK5qnDOu8kQY0gLtEIiZ9S5VH1Lkpg2U1XXH4CgdqABifwSdZlB3EuhxBHnUrcRdTYXTHR1h\nlU/t56P8AJ2D1yghD/Yg9p8gOKCZD8ZDQuvxAmueQ8SHCHtjSMVipOstYdKuGlYQd1eTzB3+O4jH\nVmSbar/mpPDpOlotrZSRx8K2fQeuf8PNTVJ6UF713NhcEEpOBaQtGAFSqqqdC5CsEpM/+bN23Exb\nK+Y2EdraG6seY9ukTO42YAOr4M3nCKjke2ZXQHyIbm+Iw84NVC2+veKHAPyH5uufB/CbaCQfkDv1\nN7XWbwGAEOLvm8f9ntb66+ZntQdorV1towgf0lT0uU0+WsC2dOo/F7Wqx23JcPDXWog6N2Wxqs0C\nktLDpgBCk3jyMgXEU3rITvXElshuFNrIhGBBbYQ83V6IG+RHm5z4hl1cGrRbas3RIFXr3IcrLkvC\n5KTjvE6O3EJV+biVUNuVzmINfXEFfT4385k5cNCvJyFDlHTBE3XFgyH0IK1xf8B/B7Rq5vHnw9WP\n8gIDBfbrVY+TfNDtQexn5NiaZsDtg1riwPISqn9Y2xzkZYqL/CHZPvTIs4jBF1vilGkGpFf02WVr\na1DHKuocNbXtJsT9JtFIGO71bo3zElKZLk5XKC43kEkBb1MAB1lVAQXtr7sLHq+8gNqlxukXBrko\nAKjeGPDqbbQcOaHgGlw3a0HigoMYRchJ8Zp2rltFu+oSfK0r6chVLlaVpNFibZ11mY/3YaPUjU3o\n9XEghHCriC9prb+086/rcaS1PjZfnwA4avmbewAeOt8/AvD9T3tiIcT3A/g5AK8A+FGn6gGAnxdC\nZAD+TwD/q7Hy3hnPbfLJywzz7BxdNdw91zChvAAo21SgnRvI1VhzeELrAohM9VMLd/faeoDUm+ZW\nX/WaRg6GjbSAKinYAw5qNzCA6oadXVmuRNOdE7LTan3MbTnlVj/mdQgSTm2cs42Pw2iBUPagvY6F\nPGOxqgmy5sdLCw5QmxzeaEVmbQxMAC1AGmjv9zP3g99ro3WqF9tq5c3qp1JydqqeJr8r7kLcuUVz\ngH5v+znnZ+js3ce8PAcAC9E96pxhL1yiO9wnVj/7P3G4auNAtQlggzrUkwSSxc005Vw0ZPPvGUnp\n/rkXkHfQ7Mq6o2azAv40gTzq0uLASMUmqo7DqfSTguzNAeKFYXlZ2ScYsrCbgJpmdDlywCgmgE3u\nzGmwFbB7HQMAlrX2rZuIWJ3ASisZGDh/zcaCkIFFSJbThBoA4wRiQ2TqTrz/9HP/7ONca/25Xb8U\nQvw6gNstv/qr7jdaay2E+FAVSuP5/iWA7xZCfAaUbP6J1noDark9FkL0QcnnRwH8wnXP9dwmn00h\n8Hg5wziaoSMHlhdQKR9ndWQb3VO13VPgdXaewK4a4X7vHJNhjlBqjKMdf9iMxi6OB85uWP8dFVI7\nrM233tk5WnMuE6w8oGH0rWwbrTpIV/pdykYvHpXqN/fvl5kmYVKvRFctDbeGDzivCUq6QqxWATzN\nrG+L297a6aXCRmI8M3LnQ+GDCj1VVNWXNpJAQRgjZCO7kv/nnENewPMUiDuVpUAznPP+eDnDm9MO\npqkwatEJDqNH6KoY/f2XqK3kJiHefKQZ0K2ea+cmqKn84IZLJL0BOKvr9SEDnzT3Tr66DVVHJdYq\nBuYYm9I+QC0JhbKHnj9DJysNYs9RXrgmXO+fpu22q1IAoH0DxdeKG44sjpt4ANNGd77e6VfF1+tN\nkv4fQWit/5NdvxNCnAoh7mitj81spm3w/xjAS873983Pbvr6XxdCLAB8FsDvaK0fm5/PhRC/BGrr\nvUg+14UUPklwGFIgVAARxrVBvwvLdMMab+Up9CC1Gmu59ABdou8f4LPjc1s5rIsZIIHB7Td2628p\nkurJdQY4c4m2iqR6Ew76zeX9mBaiMpWBdmYGeraBcKXiVWCTqhuh7LX73TCPCFRF9HyBo06GcVRJ\nmtgbN+6QyCkAeXsC+dK0Ahw4u2p9bO6RMARi0JxCbbcVAVByAaz/klApDe8LIvcCNODW87PtRTtZ\nQE9PyICtOffjqoF30W2LpwUkDJGb2VgoyVoAkAilthbiyiNmv1SDimPV8CeiE3MNEpA3E1Fs0Ggx\nKTIHvhXlBEx1V6SUmI0jLVu0i2hY40qFIqLEY2Yc4u4Y8ngBEZKwpvW0uc5OgN1TDTimIwc4jK4Q\nyjG953ifSKT8t/HYwrITo2bgOp4C21QGq6K+vKwnHrZaaCQfER8iDyODHpwDGfF9XCANJ7Ou1wfy\nS7o3Dm4B8yVkMDUV76H1L1oVzwZwoIHtDshHE18G8OcBfNH8+w9b/ua3AbwuhHgASjp/FsCPXPek\n5m8fGsDBKwA+DeAdIYQCMNJanwshfAD/BYBff9pBPtfJJ5S60izbzCz0WuQpDfxrVZDvVD90o7Dx\nVhDvW98TMbpXQ4/1/QMLpQUoARVehrBDN0CbAyacRMe97lBGVgnbjRoj3z5RJfdCrcURQreiWqys\n4R3SDGxmVzQ0rKypXFvicRZ0nqEMggUCzyTuHRJFYn9EC8ainkx1kqB8QgnZYz23wN+ufly7ApNs\ndUF/I1hY0329ztBWPPa13n6byKlxF3gjhTh4UP2SNcXajt+tfqLYMPqrz6RKQBRJ6WGZFQg8UyWz\nWR4rA/BzumAL12bdfR9M8uz2LBfHavu5n617vjgJNaMwyg1szQ36XNSdS5Rd3xJNrzVRM7wtbony\n/KyrqtdbFzN0GUgggy3F6SbM341Q9uicFSWwaUk8fO26qMkwxsrXSLLz2nPVbM5RXdesogAY24yX\nUuKlxV3r2LoqZljlT0fTfZvFFwH8shDixwC8C+CHAcC4FPys1voHTQL5CQC/BoJa/5zW+nfN3/1p\nAH8TwCGAfyyE+Dda6/8MwL8P4AtmrlMC+HGTcHoAfs0kHglKPH/3aQf5nCefkuTWi7KSQeFZgyFh\nNqsggAlquU1MaQmEvTGECpBLDxKeHeZis0CoYqz8nlGPporpKlnVjoP+jYxUD30sCgp6/ti2l9hP\n3hU+rN1YziLEiedktcZhJ0cY3q92yJsCxdUG3shxiBQCq3xaoYBASaXN4bMtqIJkzowCZWnzuGbL\nKh5D3B1Cv/8HVRI6OUd+TFWXzyrWDJd2xV9d5FwjCeoitZ9bDSnFfze7gn73fRR/SPMNedSFn2bA\nZ1KI22/Q0yLfhrO7YeDULP9fOLvijiqRFBVpdZ17CL0SaUnVj5J9el5OIM7xNedaW5sKd54Td6vk\n3GjT6vXUqltwJHpDfBuAqqHzt0m5AajcUmGqn8GqsurYFWwzsNUi9rdaxCuRoLv/AFoIJOUaST7f\nmXT4ug9lr7J5YOJpI/GwCKp0zmE63Me7s2OzCWigVg3LihOanj6itrNz3q2AbxgDe/exNomHNRk/\nKaG1vgDwJ1t+/j6AH3S+/1UAv9ryd78C4Fdafv6LAH6x5edLAN/3QY/zuU4+1n8+c9BqjOphpriq\nBv+BB5tw8jK1ZEyAFi0Z9aG4fQdHQVoF6B48gAzuYJIe43jl4c0J7XxJX4ySzyAo8XL8yOq+oSDw\ngt2FL84goiFVMaEZwObbirtahZin54bkGgDIMApyyDyFni9RThPT0y/IKnh8ZAQdN0gKDzLIK8HT\nxCGJ1k5e9b0LirDnpOW4uM2VeCWSYonBa/8u9KOvErnPOJECIEWBSBLfgmdSwDZs2z0WTkaFIwRq\nqiARkWkbKw6kX7/A8kohnM0h9yLI/XPo3hjYu4+0mEGFfap+VABgacQ6/VriYR0zjlCWQCZrWnEd\nRf5IeUnXS+7lUFyJ3cAjpqaMnadV9dOG6APoPDlJh1Wi18XMaqZZ9BnbWLs6bf2Yvm87FlZS4MTT\nsBUn2RpaTpot6lWj0qH7hypEew/a89irNBc3CwsyAM8EraEizQ31fEl2CAev4Xz1Jr52GSOUGoed\n3GjnBbUqSk9Oa15HDJzhGaIY3SNXWDPLpPvixgi1a6PUu+1Knsd4bpNPoQWWmUZHLhGG+4YcmG4t\nMO7NXHFCOii8bBsl5yQeGw7yLBACo+AO8vIRJh2JP5gq0Oiedst7Af372mBGVQfvlJ3Kw3IbJo+3\nEG28ixObOfbUGN3eCIPgHH3/DuTFQ5JnSTOyHYBRgE4z4L13IAEcjO8DgKPccGnnNqJf9wMCYFnt\nbBMReB0kxRJ5maIbDisl7iK1SafQCaBpkbHmZXEHIpLW/dUbhnBNxujcOsmGVblblLFFfGjPi3WI\n7Q3oQn8lhZdmCJIC4u0p5FEf3mu3gLt3a739VTlHtzem2U83rSceM7PghT0t15ilKWYZLaDs6OnG\n2cYHQOisbjisOC0Nki4JXlY8H46a1xB/3m4Ccq4D4XfAauurfIJE+U5MAAAgAElEQVRVvsDZxocU\n55DBbSKUBqdVS82KgypD2mWgADvDOhBn/l0LdwwgwjIAuznjr+nfvPZ9MxjuzolICwHBUlDm+QVQ\nzbqigkz3GIV48vu4e/vT+BO334TyJDpyQAoO5lrW61MSonWOt3b8mwVtNkwiCvuHkP6Bua7rc9AX\n8WziuU0+mwJ4cxoilFd0kcaH0A67vlUZ2oTIE6g8BbBDR4r/zjLNqwi8DvbCI7wcn2GWSpysq9c4\nXgODwMPlBtWcoDPchg6fPKIdHwt1MuKr4U8S+h2EvfuEsjp5ZBcSbxRCJoVdgHSSQLz3DgIGJmQX\nNZQYAKCRfGZ6jnXaPojllh8A9EdEMUjLdY2SFqY5Df05bh9ATYxS80HfuEi2zDNY0j81HJRbB7Xz\nnQQKSTFHkdVbO93OEJ1XPwcxvA115y3Iz0yIRPngU0iH+1vzrlU5R2fvft04zoBJ0nKOVT41SUcC\n7Z62tTjb+JilMxx21uj6Q3SP3rCtqEInyLO509b17YCcRTAD1YGQQaXYbTT8AKd1xNeBEChKev+z\nVGKSSBxGG7LL6BkQQJOoyuc5SCuiZTO4AnSrTMAmRhbtlCIHPBiVdL814bCmnivjxOAWwCQp6UGZ\ndradx4KqNcEV2sgBHJgExDp7enFBVQ5vCJ/GkUozEHR7AV2kUNEQqjfemhl9q6G1MFD0FwE8z8kn\nE3h3ITEIQoTyHDK8bXv9lmhqFssaF4R1qNrC3JSu9H6bdE/gdXAQDfH6cIak6ODKrO9/OBOIpEQo\nfQwC4ssoVzl5s6BePTPRRyEwntAQn5MQHwdgbrwpcPKo7vsSd4lEyMGM9sdvQY9GdTIj/zta2N32\nSiR4vJhtwcfbFpq50RBzo6tD6PNv1J5f7I/g3TLD+P297arGTTyXUwsNFpx8VIC8N8D5+h0khbdl\nhjfwzzAIpugOhuj2vx+Yn0F0hlj5ugbwcGNdzNCJ9wm5JwTWxQxJtrTVRDPphF5V9bTakZceHi0L\nHEanSNSyATMurAK68iRkWS3KyguQlnTdiDAGlEOydbktJhlxyygpNpikIWapxNnGh/Jm1UZr1BDV\nbfoYuX5Crruq+3m0VKVEVagUM1zIfls0E0/zGuJ2tgCMn1UAEVxV0O9mFXby+1QprZaV9w+jCxkd\n2BLWqI7BHP0VnaOMPIhexLOP5zb5JInEV84FOtLHKFgj8Ka0SOrNlmiEZYLz8NP0oFv79k1yJA8w\nG8/XVUPc7mZIygT/6kmIxyuBd97rAVhiL1AYhT7xZYIBLQzLS+iHj6HfObVil94whLqTEAt/vqQk\n5Gqd2X/zLXdMMdgmHun5EpjvaDEsziCiGIlX4mR5hjenHRym1Ffv+aLarTtkXF6kQ2+Ne70BoaG8\nPvTF2+0VI8OuOfG4YIHV0srysPGZAiBWS2AcAwev4WLzFr52SVUAJyCOQVBgEJQYBecYR0B/cICb\nqIOwO21eplgXM1xugNN1hIcLhWFA6LZRSImw7g20OxFR4qLPY53zLaiMArrGKHC15/IasEQKI13E\nbTeHz8XnPSmWSMu1qbY8TFOBSSIx8AsE3gRBdKeCmLsJCKgrZixWVavrA0QToNP8nVvhNVUmKsuD\n6rHrYmYMFYPK74nvvU1FH7DXuYOEKyeJ5ZR5wxBwrLtFGFaQbaNuoJn0vFgR6Xm8A/n4Ij50PLfJ\nx/dLfNdA41ansNwURnm5fWoplDEHu+EF6DLuGbSQLLYSEMcrcYjDaIGvXXbQUwt8eqjx+pDQNat8\nga5aE0s+WRjL4UrskoUva6ZezTC7V8ul4Z83eCatNs1uhNRyOl+/h6SQjmadQM9HAyEXGJSQYbwr\nWKJfjXzqHgdA3Ao+h65Kw45zLyIzu4oPMcvOcbzy8GRdr0YiyaAObQEAl5sSl5tzDIICyiNTQffz\nB+ozCh6W0w49RSg1hgEBRVzn2sCjz3ieXQHwnsrpcFswHVWio6h64uPi1weqRVsKRfOQpiunc80q\nL4AsfQz8FOvAM865GrNMIpTGuK63bx/rvo6ScU3hmi22MR5StbFr09UIt+VZ/zpr/F0GhcCiR6vj\nycGupoXOkXspfUbxPrXh1lMrLOpGM1mKqHC+lhbJV4O68xzJfaLArys5PIMo8bHxfD4R8dwmn25Y\n4vOHOT6zlxESKM2h148gOkOoMIYWour1spcNz0F27ATFwYMt0zM9eUzJSAXWqG7rWFSMz98CjrpJ\nrXUzSyX6/hKQPYRGUl8ACGAcOwcRVQv7o8orZ7OoVT/W8dK0G+xA+f9n791iJMnS+77fiXtmRmZl\nVWV19X22Z3d2SHFXlLkEqRfbMmQJBGGDerBJWoIt2YQEwxKkB8MSab3owQSWsCFDAAUBtCyIMiRT\nhAyYfKBAi7L5JkoUDK72piV3p2emu6cvdemqrKzMjMiIPH74zjlxIjKre3Z39ubuD2h0VVZmZFzP\nd/t//7/tp7wAxeZnb/NY8975A2ypyaKJ9jIDX/WQf7VeGdqiS9JwZiJ4edgvVqLYqbfp+HT3xZ5D\ngH4pLAjliqBcidM1ctlECfVa6vqZ53ss6qkXrVvn1WYo1vG05pnAXXu72LcHji8ZxAsjRKed03HD\nkIgDlp6XlmwmWLeynzRYy755TOd+DwS6cylR6/y2qIDCxGULviVBj1ECUFLUygEhfPCDb9YpDONJ\ne1GYzVndPyda1vCx2A0LEyUoA6HWrW00xJ3WcXQdjkW6VYiTdWAVdem48iyIxdqibkAt/VSeUcdq\nbQUZTW9H7ZkAp1xJb6usGoVXaAc85cppTumLmfye95tnarD3Ygn11/YN2yvrfAaRbhzPOhAnsZwJ\nImaw19KneWnWEyWoyT3msaY1lmdLdKZc4DumbXMObw5zh56yEZJ7AMMB6eHbRvwrkjKbBRz4qLyu\njss2Rzkei6O0x+eXFbyeVxN9znhy0QZOWMfjI5TcJszC3e31yHGvKMI1qSn7+FG70OPErQVfad0w\naY8b3RllyTrtsRvfYh3LKKmdTHUUhFup7K2Wj/QbYhdk2AZ6ZIXHAut8TH9CD0iCywbC62vSgKiV\nJjeAx1gHBI3TGcSKJOi7c2XNggy6SDG/5Obvp3/NbF/KAhQsjcwgXnHYW7Wc3zYHZOHEabho+ozl\nCn18Qf1UAAjxxww/ZSTyDPP1Fjg9bMCq5bXtUgLOEa1nrtd1FSKu1ivnhPrRDmESi3yHpz7r2wY1\nTrd8VpXCzWwlRvJek9lZkbwrAqLX9s3bK+t8slA3juf4voh0XcwEAZVfokdSKrMQY6fZs7GhHDW5\nx1RfcDw/Z5KVjCJT0licG636S5e1KEOoaBfnZopbGKdVtsMkv83cIKr8Abcwioj2TQZkAACOet4O\nkIIQOtqIr+t8JtdQh28zrU6oV7ONxa8yQ4DlesHlShs0F6Sd/vkoqc3i3dD/N0ilhrgzDQcbnF3z\n6ozaOCY/yr1c2YW55xyCcLUZ1gGAvESVlZyD/fEGKtH2YA6yFWmY0Y8aNJxPKin73FD7Kx8m3xlg\n9Z1RpCJ00HNDkFxOm3muuTStdVWSTu4xTm4QqmOOFitGce2cTrfE15V00KHaWLw3ZB/cQbWb/eKA\nmmuSBCKed7mq3bUEcUB+2c86yEF8TC97U/bj4pLV/XOWJ5qMOfHpubBTGHDHRfGgdd3b2lPteZ4P\nMysjWkalm3vbqjJLg6Z0GWuQEAYxSYcA1C9FumvcmRPTq0UzxOxrH3Weq4/CtH5ddvPtlXU+cZCS\nnJ+gjx6gHx81ZaqLmWQWdsB020yAFZy6c0syHlVwvDjnD85T4Jw6XbEbX5cb2quR69kRzI6I8gNR\ndlycQ/FBS6xLm8i7j6Kf3nYcWH6EbXm+Wg+IPw/kpJQ7kd+tN1FDiVgvVs8dugrMg26C02bBCFlU\n0rs47K29TKdBYfmL6FW2jRXcL8lU61ogwWVMb7XmIJtR68pR2YeBN+cSJRtkn6oqSMMBB9nMLfK9\ncHcDQZUEPfo0yCWXsUwftqAHKu61r/u2vsJq0abtqcqGrcHMjYSDEaGKPPBAWz9ow6FYctEw8d7X\na95Tl0I1s1psyk0bZ6miRDI2JY5fCHAhTCpThvNF6lYtYEaxNswcywvX85HDUaIUa5GJ41suWEjD\nRrl0+7WXrNPeZ12zTsnfhxEytPtS4bVAslHWQn5r+3KLetq6v1pBTTxwCqZ2cBeQyoTb6Q7K8nX2\n8y2x74jzUUr9j8B/jDBAfg34L7XWZ+ZvPwf8DLIU/mWt9W+a1z8D/H3kafwN4K8YuvAUYU/9DHAC\n/JTW+t2X7kRxif63n2+QMdb8ZqrPbuyZc1bDATp7RH//HrvpJXfzBbuplFPm6wvhtdqSLTkqn+6k\nuilnNPs4E5LiaoVeHqOXs4aJAdD5qZs039C7N2JqLs6aXHNZXF+nVPEu/ahDz+M+L//tpglv0C77\nQDvC7do2luIuKapF+0l5SQZ207BiL1uZaDbvTLpfNOesez5NuaU/2KOKS9JQSjK2lwOycDs1Vit3\nvTjfinXboLmx/QRoR83zy6bPBnIdrpk+1vgWOt9nvjpuHbvVRirqS6eo6i/aYbQd9KGWF44glM49\nwHiM9qWmDb+d74B8Rg4wPbpiKVyFvbxVZpXep8wQqbc/STKbs5MdE93IUT/wCdTdTwFCyrmbXnpo\ntSYoadgBDA2V5xiae8BS6bSHT6v1h0PWDePd9j1i5exXC/rDA8IoZl4Jd90gtmCRgcuAnB6Qz9Jg\nr/22gPMjsDVfl57P/+/tO5X5/DPg5wy53S8APwf8NaXUH0LYVX8AuAn8llLqk1rrGvg7wJ8H/iXi\nfH4M+KeIo3qutf6EUuqngV8Afuqle7AsHMXIRmnKU4bUUdpGwczmTgwtSI5k2C3bYTiYUPeaocmi\nviSMYpmp8OeCqhL9uS9JM/SNW3DzZvO3bppfGQJIM3Phw0KBhn13XDbT2bb3EyZCjhg1C6Jvo2jf\n6al0HZCLshdbRLs8oEBkGbw984W6hFm43iifJEHP/etOvttSiiAMC+coNpgjfEXQ1QJVzBhmE9eU\nVlpLnaNuZzB6dgSnT9EnZ9Izu377Sh43l2H4TqerxHrnVguubKWqL1bHDqbtH7/sH05Guu3AFxto\nQDU7aa6BnV2x9wEYDSRxhPYesHIXDRegZAahioiKJfrJ51j/wXuOUoe8R9gfEEYJ2kdlpjnqM3+E\neO8+an/sHI9c6BnDdNKwfNQlVEtgSZrmhFFkrr9FCjZ9vK5Uu7s86xJCO6e0nU8tCkJXLmc+Q69O\nGrocW5W4PCWd3CNMJ4aFornnonotIxOeoKIbzt36ja/tW2XfEeejtf6/vF9/B/hPzM8/AfyK1roA\n7iulvgr8iFLqXWCktf4dAKXUPwD+FOJ8fgL4G+bz/wT4RaWUepmKnl5W1A/OhcE321JbNnQqF6tj\n0fqJe+jLU/TJGav75+hlRZJFkJ9B/5FTPPQlCebVGUl+A6zzmT5Hf/GrLH/nMatpTf8H54Q/WKDu\nCauyn/Xo2ZGwErz3QWteYT1fuXmE6GZOOJtvDpr6C4hF63RLCcuZzE0AsGz9Tc+O4PiZ40IDzEDr\njpsl0oYiPzIU9oAj0PRLaU8XGWmoeXPUOLo0HDTIMBv5e8SXVMI23EUxXRmBekqlaZiJ0/KP1Z5P\n43R4ckz9dC7X/uQM9cZNcdSetRyP7eWcnMmc0bMZ9fOlyA6Au35EiXM8L5LAsA7IyrP75hiXMY7n\n7JGjE/JJNdfnBSoNZcZrbwe1v3IADMt+oJB+VRKZaP/Jl1l/7V3qLz9m/jmhmkkOEqKbuZyLUSYO\n1T8faY76vk8LAKdjUbGEatq+VgCLc6LeDlE6pAqq1rnoAkpalzGQ85HqAaE6c8GLLQ+nYcY4uS4O\n9Ph+kwHa+R5vSJSqJJrcY5hP3KCzJerl/InwCRYFarZwDN1Xcua9tm+JfTf0fP4r4B+bn28hzsja\nQ/Payvzcfd1+5gGAyaTOgX2gzavesfWypvzyCcFOSjBOCSyVPBjuqB2qMGBRCM9aH0zkOTfEnJUQ\nYM7mZgDyiGR8uIFUOisfs2uExPTjI8ovn3L2fkBVRERfPiHbSV0ErrOhlFjsQvn4iPrBecvhrM8L\nqlJyMV1I5hZiEGBlJXQzUUMw2WJ4tqJqyyso4qtSnM7JGfqDU1b3zykeSJaVHCQE43OiG6feImVU\nUKNbVGHgolwBKsScFSFHi8jN2NwehEJYug5w4m3bGsDwYvG07j5HiVMqbb1u/rd0/PrxEfqDU6rH\nM+d8Ynu9ockUfVi96eXoi1lLidWSsybXzmH4zCEIp8bxXIXYsnbV7EtYx01paHneGq61A7a6qKlP\nJWCIgCCZN9c/X8Fot3UOVFWin3wF/Qfvsfr8Yy6/dMnTrwngY/C0Iv/gjGxfER72G4f6hpwPFfeo\nBiPzXVFDNGshzv618hr2TrE0zcFkuP4gaStAMPeqDUjCIKYO7TlZUNTaMb47BvqzszYrgdGoAkFC\nushztWA0vmXEBT3HY7JHbWmarPnVh4+o3GbtNeCgbd8y5/MimVet9a+Z9/x1oAL+4bdqPzr79BeA\nvwBwJ8+EmNDS96ehDG0Oc+mXRAlRsWQYT2Qqf/aVptRhiTnTsKHtiHuu39EeUKwhgt3JPZg+J/n+\nc8bnj1lNVyTfv4/62KH0Y7IduTutHovZbrCTuu/TRU2dRQRL2X4wTgkP+xL5Dj1YeFW2CCuBlw/K\nGskBykq2NVkRLStpNJvvim7kDTOCWQxtb6nWEuHKmiizLYe9tYNkD+MJfZ36g/9iXWJQ878PwtiY\nwvfJGWy/y0Kur5pGH+26bdubPtzNUDf3JJvzhOV0plCDvUaMjWZ4MQDhxQPCvawh6Dw7Q1efZ3T9\nbeZx4uQptlkS9OhHmwqc/hCujlIp4VWGSidN0UksjsYusmkoGWneb67/bNE4H3vOTAlW3ZgTHV+Q\nPZ2zcynnaTBeEY9Ckc2+kcv5MEJq7N4WUUN7KYzMtQUlWPn2jRJDmrtRBatB1XI8HWRZ12zPyGZM\nFiwgpewdIUcdzwT12CmZ2/tVPTkWx3JDqKOoyybzfRFjQ7d0/dq+ZfYtcz4vknkFUEr9OUTx7o97\nJbKrpF0fmZ+7r/ufeWgU9XYQ4MG2ffol4JcAfuj6jrYlt3A3k4f4+gT2Rq3yV1+nQgeznDlixWCc\nopc1wTiVhz7LYbBHUZ24UgFYJE8AzJgz4/CtHybcOyTb+wJZuUK9cRN185PNDvroqXwPtT9vCDTN\nAxPe2WkeHt/pYAhCy1WzOIeJa/j3wpFbLDYWaQsT9gTe1P4uQd4nHXuT4NZMGTDIz4TOHttM33yo\nbw1GAj1/GUWJ72DsrI0fXdv98kk0zTCwXSBrLcirFgu4//nRLmq0i9p/RvyxS5lyN4zWXQYKrRRk\nQ/m3ext2HqL2JGoO8+eEh/NmGNHabI5+/wv0b36SsC/lnu45cZLtS29Gxi3AKVSFCxh0NkQdvg25\niKmppRFRu7iUjNv2bOw+m9KTso10s5Aelw8Z7kxI4x5BEpONMvY+91S++sbYKZb6Tqc2SrogGUmb\nRWElfGtaC8+cRVf6DsVzPBtm+3hssqULErNdtPD7YPPqnKiX0M/edtmVzWJUForUgnVAp+fuPa5s\n2jXLZGDJVcOkfY+Z6/C9ZEqpPaSa9DHgXeAntdYbk8VKqR8D/hZSPPm7WuvPmte3AsKUUn8G+O+8\nTfxh4Ie01r93FSDsRfv5nUK7/RjwV4F/X2vtU+j+OvCPlFJ/EwEcvAX8K611rZSaKqX+KAI4+C8Q\npT37mT8L/Aukd/R/v+ygAVSoGsdjH7798Ubt3/ZH3IKfxIS7mfBF5X0jEX1AReW4v7qEk0Ut9CZP\nF+8y3Nll9KP/QaM50/0u3ybXpJTiW4fy3prjtEpTiXwNu/HJ8gGXK831PvTDoTxQqzYkuNVE9xY0\nlabwxq1G3trY6r6Un9Jx6vox1bo0x97YG8MJ/cUKPXvULv9tM29ex1HHRGW7lOYRv5brBbXRiQGv\ndBWNSfFAELZv429ncg01MT22DiNF187KxzyZL3hjNKHf20Fnj2QYcbZo0a84GhpTAkpuvcl4fJ2z\n8kmLPaAXjhoQwRWmJvcaB6QU9WBE5GVi6vJ0I1gANpGbUcK0OuELp3DYeyzX4+6nIIlJTMZme4Vq\nfItqMJIsxXOYERH65D7KMDxbkIrN8MPQ9G+itJlTMtfHN5f12OuxJRjZ5njszJcv01CtS6aUjK6/\nLWjSonCsHrqoUWnYOKDZXPqm2yiBrqIJ8gKhuSp4cvG17e/7Om2thU3/22A/C/xzrfVnlVI/a37/\na/4blFIh8LeBP4G0MX5XKfXrWusvcQUgTGv9DzFVKqXUp4H/U2v9e2aTVwHCrrTvVM/nF5HRrn+m\nZMH5Ha31f621/qJS6leBLyHluL9okG4A/w2NZ/2nNAf2vwL/mwEnnCJouZdbFDjHo25cEzLL3DAb\n+BF3R4IZcJkPeV8W+ixnXp1zuoSzMtqq6QKicjktpywMsWU/GMpAqGfue+0CbKlC/Fp0msvDOzuF\nUyNrYMkRbf8iEoqXd6YR0zIgDZ9CCv10CIvzpszWUYdUWSjbsNxX1yaovZE8wLbZ/nTOaloT3D8n\neUtih1qveH+WkIaau3nJrcFNmaO6//viGK08sYWGe86o0bKxoARvQetwmJXrBfPVWSvD7FoYT0S5\ncumhoDznYxFpvCBGWdRTnsyP+MJpj3dnPf7w3jmf2oP9698H6UPonzoZagvMWN2XaD6lUWkaj69z\nUjxw5Vt8EMEVZuXYdZSyqKc8L57KwGy8Qy+7jRoeCGLL7oMPRljWqPml009652zG//M44xPDiGJ9\nyht5yu4bn2mE9sa3qNKMs/IJD59fsKgC3tpRjBMJwvTZIylX9YXhOTJS2LWumFdnLai1vXb2Orrr\noTow9+V5u9cXJs7xvDONuJsXjvqoH41FBC/osWDqHFC5XjANYHT708Dn5f605884IHmjR7K7jV7H\nciJapKAB5+go5aR4wMPLms+fvEBO/LvTfgL4Y+bnXwZ+m47zAX4E+KrW+h0ApdSvmM996QWAMN/+\nM+BXzGdvcDUg7Er7TqHdPvGCv/088PNbXv/XwKe2vL4E/tOveyeU2nQ841tuobKDhNvmfMj7qGQl\nQAFDuFmWC4q1ofI3Uso+y/HCI5p8f6YYJWfczZ/ST3LXSN2AE0Mzr2MHSk2pCcwimj0SJ3Ixa2mz\nFMGaSCeMkykQEQUh8+qcMI5JfTXNZNX0rbJVQ7pozoll1LYql2q6NA92TdBvHuJaV6SGxFP4znov\nL7WFiZRmHEKudPDjULUdkXU6ta4o6iXTMqRYb0auN/oL5tW5lLbwzqdfy7dOrytVba+VgUjvpn3u\nDgsg4W5e0o8OpFzW2xF25SiB42cbn99m1bpEh4oXtps7M2YXq2OOl+c8XaSMkxV72TFFfSkL8vjW\nxj5YmQnKlQs+ns4jnsxhEMG1ecSN/kJkCux5SHPm1YnILxQZ0zLkbi4Dmsn5CTx6x8DSF3BTaKLC\nfN8J6cGiJf/gTncHTu3+toUs1ooSSjARGXRbM5dDVaCQzF2HIm1RrhfyHRonga7NCIL0b6M2inWL\n42n9ze6XeXbOlu9wudI8nac8vhq4+HXZGlh8+MxnopT6197vv2TaBh/GDrXWj83PT4DDLe9xQC1j\nD4Ef3fI+HxDm208hzspu6ypA2JX23YB2+46YipQrm1mFyioMiMK8mTTHNL4zUz/vD5qSC7jBTVvX\nHsU1Z0Vzw/vIFjfB7Sa6NUUd0I8ME7EpFVnxMmB7A70uHY2KzoamRJPIvNHpVHpW+/dALwlVzK3B\niIPeAktWebE6JsnuCLebzQp8ehhDptjs+AyeSSlEpSl87JAECMYzwo9PBKUXpYTriMPegjTUJMGO\ncI11nbaNLns76GzoJtGt+YuX3ytp08xEpGHGKFkyLTflCi5XmiSQPlea5Q3bg59BLc5hcd7m77N/\n86h60nDAJ3cGvDksGal9kVu377OByXiMQjp7bu/3duT14YHLiNNQAAjDwUTYLbIjd427YnBzVfB8\n8VWmZQgoR2IaqmaY0+3DNhBJWUFVkqQ9Rsmcj480N3pwNy8ZxhPCs6eiaouohI4m90izAVHwmMtV\nySS7TTqfC/vHex+wfjYjGJ+jcnF2KpMhYDuPU9FIYrtr2QkMHHN4NpRSqjnmKs2Ym1JbP8o57M0Z\nJYkbFO5S4iigH6X00jvyN3Pe1PW3oVwR7jUZZcNcHUlZdJt56qwq7kGaU1QnXK4kKHlrp6CovyPE\nosda6x++6o8vAnT5v5hB/G9ohOkqQJhS6keBudb6C9/Idq29ss6HIJDeRn9gMoghczMPkIYNnEqB\nRJirhUCYo6ShdckPpGRkImVLse87IMAsImKNExI5gq0N2a69AHWjo1TYhS3lTn5AoZvmi62X+99j\n5x7CNBP0khFM4/K03aCvS7dIufORpnBzj3iUCWAiP3ANf0vimYaDTadpB3czWfC3NeO3DR/6GjXt\n90ofrfAqnIsqIA3WQlBaxyTxRK7RogMtNz0TnTwRFJg3gNuCPatYYOHFCtiSlULjgMpKwodyhbpx\n4Mpei3LK00Us+1ovqHtPRMnUMEJ3CVzLarG1b5iGa8dFJzvaOb9er0cXhYig9fcZJ1Nu9GI+sbPi\ner9Hf6XQj95h/ZX3AVCFLO7p5B776R2G8UJYDo7vo9/7gPrBOav7Mg+X5B+4oWpLHeSTttqZHLnH\nm/0RMlUBpNThiiSU7AlwjseaRbY5OqlqtnH9VNyTrNYvRUeJgHdG23tpKnm+HXBgr6F5fgq9dJmv\nNStx8t1kLwJ0KaWeKqVuaK0fm5LYtvT8KnCX3cafYxMQZu2ngf+9s62rAGFX2ivtfGzWQ5azqKcs\n6qksPtFYBvO8tyuv/KbtDT/Y21hA02DNOMU5IOtkoN1sTFxszRIAACAASURBVOuAYh00KLGwQdRs\nZD8vMa0U7N6WGaFsCOtFC9qaxtddacMOgtqGcIveJY0ZZaafAGbW6JksbB6yTg1zGOZwcAeipOXY\nhNYmkml3Pyq3pY0sd9xytq7/MtumhhmqmEG8AhrCTKteWq1X1Db7SXPpcYFkcWaOyYErbsxFK8kg\n3mpdCbT+7BEcPWBtqZSSuBnk9VnE7b1wbdLcL6NdGOwxXz3hdImbdZL9EyXTKm6Yn20Z8ayMKOqY\nw17nngp1R3a6EaOTqf4tAUxdGl65mmu9mrt5wTi5i374b9B/8B7F78l6lCwrgnIFVUm4c11AFdbx\nfO2Y8ssnnD9LGIznhHvHhOY6RlmOlcy2mU9zDJvFRdE9mjOIFy4Lgk2Kpl442mAZ79Ib6cvT5t7K\n9xr26SwX5F23YlAJA4jqD5r5IGsdNpNideyyHv/8fxSmv32AAwvC+qz5/9e2vOd3gbeUUvcQR/HT\nwJ+GFwLCUEoFwE8C/659zTi5qwBhV9qr63zCwNGm6yilWl1wudKESWVYl1f0otHmABo4aKlWinpd\ntRZHuVFlxsU+iM3N65d02hoz36zVegVpRu07Hq9kkQKJoZ+ZV2feTI5Pt1/wRr5yQ7FueG9ZC2rI\n7wdlBjQQJqL+Cq0F0k6+W9OPj1A3gPyAMIlbRJs+ASjQGtK059YvydmFq6gvIV7gO6DmfFRmLiQi\n6u003HBl1YArRrgSlV6cOzYA/fwhnD9pSXarLGxgu3nZ9MPsIhclMuBblZL16Kuj5WkZUtTnFLXi\nrIw4Wgw4LxWPF3BZKW71I673RItonDSOpcUKcAViTC8rd5eFKmYY7/LWzjmT7LYMrs4v0cua1bQm\nSjT186WwJMzmclweo8N6vqK4DKmKgOIyJJuvCI2joiqJ4iYwmpYlxTpgWtqy8lUcZjXECzfn1OUJ\ntKqmdi7NlRY9+hygnektTfAw2BMi3vWFe9RCJVDqdP+eZPZRspkFmQzKBoJXkaB+D9lngV9VSv0M\n8B7iLFBK3UQg1T9ukGx/CfhNJM3+e1rrL5rPbwWEmb/9e8ADC1Tw7CpA2JX2Cjuf0JXbAPrRDrtp\nm3UZIAnbkbkbII01lZlmL+qlm+nxo75xUjFOBAHXbFf+Pk5rRklNtaYBAni9Ft/ptWdZKtBL6nV7\ncbYPb2t4sdPYVcsL4d2KhfPqoGe0g9ZSsupFUrIq9JI07qGt3HBiMx+DWMu3w5OrdS20MXrlbixf\nvls/PoLTKcnNmxxO7jWLd1lCZQKsKCFNcyq1nZTSz+iSoMe8OgemWEruUdxWAa111UgyVCUkZj4H\nmhkPf6I9SiWLHB5A/gj2x20KFl/rqStm5qMR9ZJ+NOZ6H4p14bR8fBbxNJR97kVrns4jIGRRa+d4\nQO4dcUAamLrSVS8bQTaU/t7kVGTOp2aU4+AO5c4+hSlpTbIdwyoB6uYnCWYL+pae5/au0Okc3HFD\npeHBHRQQlysGQPrelPBwQPz2REqtRgsq1IacFJxwHX2r0NpewMdJZYQH+4yTG/D8IdQlyeRNJ4+w\neUN1mCauGg6tSgmWVqL6WwSNJpD9Xwc9qV6YsnlLuXc5Q4cJUZS452deXVFm/R4wrfUJ8Me3vP4B\n8OPe77+BwKK773sRIOy3gT+65fWtgLAX2avrfIKo1ViXKHHSmjMQBE6zeHd1Spr69nbdEZA+yCip\nN6jjR0mTfwuJ4jG1kRDoOpRuX8gvVXT1UlriaNusEE63YTwxte1zLNVNGqybz2WG6SGXElxLuM59\neSnx0cvMj1LLFdy/Lwi9/qbYnEVgRcMDwqjnSCntsYnuzgl6tSDq7TDMrF6POCBZ3K3zMddKRURZ\nLvNNY08PaJjLMXnHY0XZdJTC5M0WAlJHacNdV504RU3VoZexszAgwcDtwTG1XhOqJlMQJ1oxSpai\nY+OheUdJe+GWzHRNUcMoEbkJe49EQQK9mLD/BuHhxwlVLPew1yMbKW9IMstRn/xBefCTyMw8iSzI\nxfIdqnXNZOc2aW8Hkpg47ztKJfUDn5DGvgFpuJJtxwGN4nZtyfKy9aMdGdp+8m/R9+8DoJYzYYVQ\nRTvLrYom65lvAQt0UWtVKdlqXZKOb1GFvQ1G8chDtG2Y4RBMB3tgHNCL4PzfiK35tpXdvifs1XU+\nYbQhaR0RMTRZgR85+QSHtlRS1HGrFmxne2wprVGslAfVotrsNqGtrlnUS6/U1HxXsQ5cVtJYU9JY\nVJH5vFHLDCX6DVXUyAh0rSpRVUk/HRLGMaE6Iw1nDhjhelBh0kzwv4B4seldBI4i336P497ybTZH\nPzluoOF24DFNZUHMZ+i6ROUHTtJcaS0zMhaZV5Xoy1PU+BbDfGIa8cd0A4FqXcosSpgJyq4uYa9s\n9IC8prVlx8abaNdRyoW+oKzPKMplS/9mL5syjCckYU9QkpENGtrBwjCebGV/aByI9K6arGHTbGl0\nWkIalqbfBdXKv4eCBuZubBTto88eNRRE4BwQUeJmfI4WMqdV1AGf2vuASbYjMzSRuQfyPur2p1s9\nyFaA03JAbQuVPFfR5RR9/PvoP3iP+mvHrOcrYsON2L/5SarBTuMw/KzHG/B+qc1O0VVJNL5FmI0c\neKDWFZEHJCKJml6Z5TxcLVCXp84BhXVsZotee4xvhb26zkeZMoTPNVWVjp3a55c6XUKxFqLMaRly\nXioWNewmdq6lpqhDxmntSitpmDmVxa65zCZoSw9Y5dBFJb0i/7t6IWThZvOzC2ZIw5S7uTggmXWx\nX7pJOaNAGvIm0ouCJlLUSsliPTKDmlcx/tYlSdijUJek4dI5Pb08b6QfjAPySTH1skJlEeFe5pjF\ndd5vSD49ckoVJU7pleXMDVaS99DRkcBvB3uESaPh4nbP1PErFREZtJ2DgG+LgL3zZOdsZFFWFLXt\nNclZvZ2vOOwdMUokk0wiWfS3Q0R6m5msWbDLNaThktHWz4lZp7RAApHpyr7e3CtPFordBD5zcC6l\ntnAg5ajzJ25w1V7HajDiYnXM89kz3p8lPJj1+OqFYllBUfd5azyT/t+tT8P4tA2yMGZ1ksIgxkqM\nb7vfk6BnHI8AGdYPn1N+WRiwgn4sIIYkJuIedb/fnr3yQSv+oKj/mv+/MT07QkUJvUiOU9hSM15o\ndSkQ8GJGYgIQuWYfzaDPWktP77WJvbrOB5qGvMeoLEqQObVDFS02Ib21LPbLGuwgtaB5GsVGKxwW\nbVmKbIPdN7sgTepLFvXUOaKzInwJE26w9e920X3pBS5mzgGFtRnmrAQd1stGruzU5VgD3OId1Wt2\ngz362VhkyZ9+pT18aUlS8z6UK4Kd1DkfNcqaDMjW4n1Yts/5ZksmZjskcTOnc3lKGiUk2Y0NaLnL\nAq0KqM12uqSmZrq91qutxKASVGjzs+ZuXtCPchn6XAfoU9ODnby5caq6dDPdnsRV5jLp5IomeAS9\nSO6/g17AYW/FrcHN1jHpLcdry7O7KQziBYe9Fdd6kvm8tbPk1kA46ES6fH/rMK77DuOErMR495iE\nrcKg0YY5Kjsl2JF6bbBjrrdBnda6kP7Mti/yHc+LsiB77yDP+DCeSDn17JHA7KvypZ8HWpWI1/bR\n26vrfPS6lW4DTQYUlS6KrfXKIaoaE4cwSiTTOeyt3IxLZdaIal1Trdty0NbSdSBQZHCOL0KcX9rb\nYZi9ySKesltfcpA15bDuQKVIXAuENzU9n160biHJnFaP11Tf4JQzDiiMIurVylCnnDOvzknCHsNs\nsjHs19qmPS4zH9Kijuk+5HkftbdDYMEL2yzfc6zczqJEQAC9HSM/PttQcLXDo6IlI591JbsuTVLX\nqdmf05xyLaSfoYoZJUkL+uxntv3o0FEk6bNHbhiXMBEyUmM2i3ZfbbKDDV66jqXButUb9M32+EaJ\nRYmFhCpkGN9sv3GwB6vFhqaTqgr64dAJ+vXCS/YyKVGNkxsbEPir2CDaOzVDmepBi6vPfi7NBZJe\nFMSWe+3mnsjRe6jTOuj0ZxLv/NhSKWz2H92Jy1t/U1Uh4wM+RNtuy9+el9lZxo1yvWjN6b22j85e\naefjhte8OQKb/agwMdP0A0Md0y6LiPNZM04q44SkzFaqtgpjUS9b5Tc3Q7JFIZOyQuc9GO3Szw/o\n5TfoRwuG8WVLpE22KwOVtidU1CYiN6CBq9Qit9IFgQMi9KNxC3RRrhc8W74jC5LHZNwyq5kzO21K\nbcZUmjrKfYcwunlT2JpNk7fl/MPkxSSk1gl15a6NAB6ANsAIlR8081lXZW9238x3aqVaIJNQRexl\nll0hdtfSSlHr2X2nvaQ/EJ6+IIkciwPgzqfLdk2A0s3QrPnIOH/g2VqtV0SB3T+574bxRAhL5yco\nj3+t0EvSDnO0zyodxT2iKCFN9xnGE15kVzogKz1hHfzyHJXtyLm3PITWshx140Dg3SBM2oM9GOy5\ne9z2Z1zWlniftxlcVzret45T0ovzDQ5FS0Ta2qZnFqxyudK8P/swqJqX21rD8kPMlL8q9uo6n/V6\nY3gNaGU/YZQSqsqLApektWKcStZx2Fs5UIFFmNk5BQvVnJYhUTBlGAijsZ0haTFJGyEsvaycYij7\nz2ByjTQ/IB3sN0zOekVRX5KGFnW3Mjxn4oQ+1EDcVQt7VZKmOUXQc98lxKQJb+18wG7aF3qWKDWo\ns1kzP3M6RZ8YqK+NKBGH45zO3gh1/W3msebJ7B3plfQnJMF+03v7MBYmsmBZRobzJwLjtiCGE1F2\n1flpk0X519c/D2GbTHIbG3MvbGaRrKCaXjxFW2Gyx88cEwBAloWuQV8Ea44WlgFiueFMushJm+1I\nJpNtcKb56D9X7jt7BLN3m4HY/THheEw42BNH7c0j6YsjcRKGR7BVkttC9eNnMNBxQDZ48OmZTDlU\n92fiBCyNEaYECHJN3jBAlL1DcdRKUVSXbtFvQaP9LNUvx6ZX9yGB9r7BZtDlZz00ZVfChHp9wbya\n8XSR8t7sdebzrbBX1/nob26QTPi21oQqIw0HQpVfFRSB1akPHct1Gq5Igkt5j30AfTMRWP18KX0Q\n+7r3sHSHLpuhvJC9DGBNLxSwxJUw6w9pQjE0oKgvOeyd04tCw7c19pQoy6Z/coX53FpMrgkVT5px\nUTzg/ZktZx07Hq/Qo+XfCAy8hdAdu4VPW/swaCi7ENvF1mY8WxzPxkdV/EIm7JaVK1nod/ZdQCAO\nJWoIM+kiIDvf1THp4SXuHkiCHpQX7vuusoqqCRg2/li2zrH2F3jzd2XOjzVXTnvJKQCuzk5Gu01G\nagZ8+9EO0TqR52R50XDyefNTXa2dRuLBY9kwsuEvNIvCHG+W3Gz2O4x3eXM0fa0++i2yV9f5+E1E\nP/rJD5wQVmmIL+fVjKIOmK78KXvt6GGSoCfUNotz0vEtCgNUACnPCbfXjFAdMxrsy4JZPpCSlFk0\nRASrbibUvSbs89UTR8NiI+S9TjVmGE+EtytuL1o6G26QdAKtiNovpWilnIxoGg64NRhw10b8dSmL\nnV/CCpOGeTt58e2kVwuiImE/vcP37z5w5aKN/fDQhw6ZZ6NnH3FlInWd76H2V+5cWmiwYyEAWVA7\njlJnQ4r1AljDekFq0VDhJpecnLuVnAdHx5IYaHifYGfpmuiul1WXpOuA3bTvzqfjLDMlquaMKbef\ndp/9jMNmPP7grTtfYSIchbOF6Dl1KGPKekoSQGTPl3W+3UzAztQksSACvcVedTIgMLyCmUfACzKv\n5JfFMmF9j2oT7PlaUu5/gdZH+QFh5jkeaPaXjiNbSmYVGWZ0e27AgDsCCK0Oku3J+TZbiPhi3m8H\nUFHSCkJ64YgfenE18kPbt5Fe53vCXl3nU9fuBrbWcjwG9TUty5bTAVuTX5MEkmlI7V96HhpId/bN\nDSyL4dEiMkCAKVGQ0B/fEkmDFhlkzfq8QFuvksSobIciWPPetDB9ncxAfgPeYukcUC8c0ZtO0Y/e\nEZLL62+3ItX23FLlGANsltSltrGWBD3pI6wWbgFomS83vHMdIq+huy0SN04lomlqK62bbMLPdnzm\nAARMYB1QaI9N62ax7g9Q++Y7PcezNfJOhV8u7GY6xiGkab7hgPxylzM7Le/LjluRQXscyxnDgaxe\nrmQ3O2pnHNZ8vjLbM7GIQnOuwyC+el/ynpz3/sA13W3jPFQxYRDLNm020YUx2wU5TcHMX2vbh4PW\n/JMtyyZhj2iwJ9mRzSptRpkKUedF+Yxxcp2IpOVMnM6Svd5V2VIRbtk2jkPPAVnH6GdAta6oqYQE\ndbVoAQ6s+imnU7iWSB8z7kGYUFSNEHIUJC0l1df20dkr7HzWgsqaeGUG87AUHtz56SJuDXjamryF\n2Eb1WhaT06citRAlpMMD5ioCVm5W5+k8Ig1K4BhixAEtZ2BIDuvTJatpTThfyZikkeY+XnyVPzjL\nWdZtiDdk/GgmsgmjOkXf/zesv/K+QJfnl6i7n0JnQ8r1govV887QagRo0ROKbL+qcgua6yOcPmVt\nNO/VMHdRPtBq/Dob7DVZyxUs0Hq1kPmiKIF1pzTiRcPO8fjzScYBKWg5VxX30IO91uJ9FSGrzoZc\nrI65WD131xAQwbKFRMdu/sk4IFvuAtPzsBszzsdqIgXjzca0Xi2I6rwBZXQkyx39kD+Mmx/B/tgN\n9roeRyROwC22xmm7Bb0/kOa8yXpERn3pYPe1NrNO3eyn23+0s1b5qhku9tgfbN/RZdRBT5ge7DXM\ncieEd7E6NhyCT8QBWee3DTlpz1G3/9QJInzgiJ0JU6kQnW5jA5lXZ4x3bzcCjFZ4cbqU4METbLRl\nvH60I8/29Agu3916L3299prhoG2vrvNZr9EXl6jkOewduhvPOh7p18QcLeQUjZKacdrcOU5XxbI3\nlyuJGueXUJWEYUyxLjgvFc9LyMLQlN9KQnVOkl4n3LkuhJ1Pjp3sr17W8kAYaYSjZczjBZwUZpi0\nkht4nMDpEt4Y7qCfH6FPnlM9nhEuK8IbC3mIzUL7/ix17NrTMnQPwLQMuJsv2MsWjk04XQfSq5id\nOmJNSlPSSuK2rLd9aK0yqUU2LWdSkqpKodEx4mZy4hrI91Wln5bj6fzdyo+rjM0MyWuSQ6dME4lI\n2EXxwEzz97ibLzjoVYLyqst25hWVpGFGGEWU64Vh626TtdrtkohzdmU/2+uyTX1okGDeveIczjay\nTJqeig6TNlza9GFax2/Pp90nzyzs3rFh+9nP/FIGds2C7L7/YmZYILzp/7oE0xvzyV8BcUDeNV7U\nU6dl1Nz3x4yzG8KzZ4/X9um23A8266Iut2fe9tyagEZFCWmYiUChrlpBZKiOGY1vSTlx9qx9zsuV\n3O9hQpgNJZg7f4CeGYRcB8H52j4ae3WdD2zceFGUOP2bUTKjWAetOYuzImScYmDNhkUgM5oxVSla\nJ3uH0lRfPOGsaBozooYop/uwt5IH0URjqqxIljUqOye+tyPw0ywnXcMbecof3qtajmNRwyd3xAm8\nd3HMm3s3SD5dEud91HCA+tgPUPT7nC1l6NGSm25rnFreMJA+kI5ikWmuS+mjmPNk5RTAROuzORQF\n6o4pWXR53kzJST823HBJLNwrdorc2hbAQquHYLdl32cXIl/m3DopI5PAQQcFleXieFbHFPWSUQKH\nfYHIh0qGInU02pRJqKVEGEYj43SaXoReLRoUleWos1lM3msWVSvl3ZlN2bgSvlP3SUw9eQ29WjRO\nyJwXJ0ntO0TzugKhignZFGazljT9SZDgR10F3KhEyDAJelRBSa0b8ERUryVbXs5gsEd/eEAYTwx1\nkwjE1brirHzMOL8h1+9FpVzf7Hm+imUDHHRc9XaIooTIBA4CBrqUgdnjd5ohZUuYazP5cgVHD+T+\nWs42z9Nr+8jt1XU+WhtE0qU8bJenEPccr1OtK0ax3IC+OJz9Oa0V8JyWOuXiHDW+xVn50NDmt5eY\nxwtY1lZmYQ48Znf/njiuoiAZZagb15wsMMBusMf37z6iWtcOUn1WhK3Bx3emj7m1P2E0uUcVBpwU\nD6BsBLjSUNOL1p68g3Kv2wl6gYjLouML1DmFVN+eHLM+KwjGc2lwX5Po3BJsWnirP/sCxgFZRmx/\nuNO3bQ/9NkRd1+mUldTxkxg12m2VA6swYL46bc1fCRtFExzUekVkekobzAfLi3aGtW0/+wM5q10K\nGJtR5P0Wt9rWhbRbbrrCrBPayA67WaLPVba8aB9T3JO+o7+fLzB/nyw7AtCAbc6MnPtsAXulI/gM\n4wlw7KH6Kk6KB4zH1xvkJLTh0T6C8fJUyuP2nG6ZyWkds3VCZn4pSnOSuCcs2tbyPdT+VCoV++P2\nBk6fbqImPwyK8kOYXivK4jVs29qr63zW2st8FoLwmQlPWJLvG1YCYXyWZn/jSM6KkDS0LNVzav2E\nYTIhyW4zXR0zLUvOynirpsnzEhZ1SBomwJxQnTA6NM5mKLM93YfrWvYm5boZNr3Rl+E3f58eXU65\nSJ63pIytpeHazSdBo6wqg4y6xbZsTSsl1DpxD13+ftOjePyM1f1z43xS4iSW8kyUNOwDZu6HJ8dU\nj2foZS0S00mMuiONaZXlG+gpwCHSWtmPv7huG8y1zWOb+QyfwS2zuA/2mFcnGxT5g7j93VZ6YUOE\nbHG+0Xtq7ZNvtudizfZSypWUK/donE60SR+kLdS8OxB51fxT1XE+XQcSSXlLddkdrjCHtsy62/Hu\nj7rJfgABpJgBX23njC5mqBsrR/A5zm5wYeRHrJ2VTxzsHARIEapI0GkWmVYL+s6Kv6ly1Tjxzj51\nsz83v2TKtBtlu72RbM9auWqJDJL3xTF9RI7ntW3aq+t8oP2wlitgJg9rlIheClDrYw5ZtRimbf+k\nobpfUuvHRl9mRlGHJssQev8sbDcaz0p4MDPN/fC5IOAm99C2d9J5kBQz0iwniScNyigQCLh1JO/P\nEt6bhVzvae4OSw6yVUOzE8aMkqVhRA5Iw3XLMXYHGa1ppSDfF60XHqBPztDTJfXTOatpTQKsn80I\n8jNU3m8W6rMz9Mlz1mcF9VOpl6/PC0LDYGxJKrfRykR+NuRHwP5Ca0XuzMJuG+XrswKV1XBxiTp/\nApN7Tha5JXR3xXFrpQTK3R2e9MtmV5n/921NfGictGFfsDB46U9cUBbC0DDsTwT2bYdoryoBddFq\n9n+/j9J9X2dg85sxtbyQczQVcTZ9fCGD0h5oQSMo0tFgn0IvRahRV6IjVUt5244s2IwqHRo13eVM\ngh7Tc9HWiSdeJrnNASdxc82iZHu/KN9z4APrdOz+AwTXpM+phrmUQb+HTCm1B/xj4GPAu8BPaq2f\nb3nfjwF/C6GC/7ta6892/v7fAv8TcKC1Pjav/RzwMwjf2F/WWv+mef23gRs0Ndw/qbXeJt/t7NV1\nPoGSG9gKikHjgM4eofID+oM9iCEJDCKtBeNctQgHLZdbV0r4Wq9u9WqWtbBTwyZDdYt/qzuTYhq9\nFv5raX+Kdc37FwnvzhRffK643leclyl38pC7eckkkwfHLzlts1BFzWBepxymoRUBqjTEct2pLGrY\nDOKeZEpjQfEF43mbQDLve/2RmSivdulllECpFThHrLf1B8pVMydlqFJUFpn9S2UxmX2R5NabXNt9\n00XdvsPrOlwLLFDQLPpGdlndONhcrK8AOOjluT2Uds8s7zdidMhc0zaEluxo2ZynFzm/bQ5om23b\nd8edFhlov7kxPaJX977BngdnXoGGMBsKeKA/Qw0XMFmhZvNGeHC0K+fDVBRsSXtenZGGSyBo8RBa\n2iLmJ236KbtPGIg0SIAxnDeVAgtW6DrXLaVdd50MKtPeRyoLHeFtcx6ij67spvl2ld1+FvjnWuvP\nKqV+1vz+1/w3KKVC4G8DfwJ4CPyuUurXtdZfMn+/A/xJ4H3vM38Ikdv+AeAm8FtKqU9qre1C+GeM\nqNyHslfX+SSxKDj65h7emUPR9Me3WiSL/oJ1Ujzo8LgFvD9r3+xpKKqUdj6nqBXLWpzSOKnoR7ls\n/3IqTeJuRBomTKsT6rIpxfSjsTR91yWj+Jw0XJOFkmENIk0WCsvxIFaO480vx/maNC3bBn8FM1xq\nkFxZiMoi4lFNMBYpBJWmro8hg4emLDIckBgGanXjGty82WyzKqXMpbbMZugKAhyXnPLLXtYZZTOY\nPpcF3jT6lSWg9IddH70jxKn5gcm4hq1FdOvCX5VN9vP4SBwZoO7cat4TGYkCj3nBqs2G+b78bTkD\nCwiwWa3/HdUpKssdqi5aS98tXQdN5rVtHujrsS6IwnvN6RuNG0dpS1vKQL3V+BbVYOTIVsGXvq7c\nIKcePELtPWnmjPzvW85koTdKo6EZLO5Hqw0ZdbW8aOagQLKOiy1lw9kcfXouQ6JeKZMo2T4r1Dl+\nrZSUfs8aeL0GgsQru1ny253rH/58f3fYTwB/zPz8y8Bv03E+wI8AX7Vy2EqpXzGf+5L5+/8M/FXg\n1zrb/RWtdQHcV0p91WznX3wjO/nqOp+g04/xB+zsImYgoZEfgYODzU4O3+a4fOgc0DbHY4EBFihg\nGahHydoQkg5E/8agp3RoiDMBwoTnqycbu26RS2k4YBBPGSVresb5ZKHAwtNg7dgX7GcE5CC2rBtd\nGgfDrTrAgisa2eFeJuWVvhGCy3tCnRMGlPWUMIhJD9+WMqKVP9g7bG3DOtquA/Izk0W9MmXDCMKs\nzYRQGDh3coo6nUqwYOv1/vdcXMLFfekDjccOQcaW724dd1WiHx+xfvic+vlSelZWzRUcVVCtK+r1\nhZl7qUxJ1JSQ+gOSfF8ACx2z2ZFFr0VZThQO2yU/v8xobVsGdFXGY+d9PC0e3/Ha2RzhWzMKr0Uh\ni65xPEW/z/Hi3VZprDLKt1EgpdNaxYTjQ6LhgbCa+2b7fyYgsEwGw2zSZJpOU6vjeKDJwPxjPD13\n5dww/wD19ifdn9T+PcN4sD1bkYBjSVFdSrl7/15DTrsHPgAAIABJREFUfAtSLkxThzhU41stxeNv\nxrRWlOV2scAtNlFK+VnEL2mtf+lDfvZQa/3Y/PwEONzynlvAA+/3h8CPAiilfgJ4pLX+nGr3ZW8B\nv9P5jBeR8ctKqRXwfwD/g9Yv5qJ6dZ1PJFPxVqLXwoddnXc2hxypu1+eNqSJtsENUJVMbn2a4/Ih\n07LkaBF5bMSN1AIIPNtnoRZuOGEkppjJv/mlyRgOnON5bybsBm/tKEIV0Y/GDn2V5PskQY9xsmAn\nidjPGsE5gRHHTs1U+NpmZl9EoM43pXUbZdRpvDtwRhKj0pBgnDaltNEuZDnz6twtKHWwIhkfElkQ\nwpa6u14IHNh3Aj6jNEBF6RgZAJfJJWmPKLolMzBRgjo7c4uIq+FPl6zPJSsKdlLUZIja33XM4So/\nIMpywqjnza0YaPPxM3hyLOAKs404PxJnmu+h833mpolu2Y+fLmKKOmacFqTBglHyXK5xaFinjRPS\ni3PpN/g9CQ9C7Up+/nnfdv++KCPaEulDk+1Zp5GmeTN3g8l8+gOR1o41Ty4/4AunA0ZJzWFPZsIc\nL13dsH3ba9O7/n2CLDNlM/34SGbF7IzYXulmmNI0FxTeFUPF1tRwINe0XKGPL6gez6ifztHLimwn\nRQ0/EKb08S2pEpj7xUdw2mOv1qWb/QGYZCUj3wHZAGa0ixrfckPJ3wE71lr/8FV/VEr9FrAtJfvr\n/i9aa62U+pCEhKCU6gP/PVJy+3rsz2itHymlhojz+c+Bf/CiD7zSzkeNb6GjI4GIfhMmWcXSOZ5R\nsnaM11bWOQpgEIPM1KyFi83IK+ijB80Cc/xMoNfX35boOViQJmtC1WOc3GgRJqqqYDfYY3cn4dbg\nhLd2puxlQl3jSjczKSsk40P6Uc44WTBNApZ16Pb3SvmFjQM1mUcWEfRj1CiTKDmVxm+aDLhYCfw8\n0VIWTJMBYXrYcMNZKO0WZyTOdaeVBVlqGGstuYNIxO5akasFIXi2nq9c70n4vDYbyDbjUsuLTeLX\njqn8gMrIq9ve33QVOyDKogogsvNgS8M7tjI9khcTXl51bj602YHRSEp91gm1e12RIMvqtQjs2Sws\nM1Lghi0iTPpOHNE3X7JDqJsMw/qqpoguGY4PiYqdzSyoa93jvMqZ2uxny7CnBQiQ5hRJxKI8oloL\nK3iie1vlReR+Kpt7v+5kWv2BA4RYNozvNtNa/4dX/U0p9VQpdUNr/VgpdQPY1vh/BNzxfr9tXvs4\ncA+wWc9t4P9VSv3ICz6D1tr+f6GU+kdIOe6189lmta7Q+b5h7DXcVcNBc6N34ZwessYuXmp8i7mp\nhfejnLvDokWJD5tN7VBF4kRmJ+izzztJaNe3SFNpclefZ3T9baKh8IL1dQp24epGvXXJSA0Z5UPj\ncB5LjX3Z1Mqj3g79ZMxetuCsFLSbzb62Wtg59us5alLC/nM4OSMsV9KEP7jjehnpOmAY7/LocoqA\nXhaAOERx0AOSwYhQ7TuqFumTyAJiyScju08qQ4dek7t1HpsZEQcJx8wSpak4mSQmzEKCZe2yHmzW\nc/i2RMnrU0wViXFyAz018yC33kQlMWkSo6dLET37+MdQk3uyj4ijrNYldbDi9qDiIBPi10ZGPW8x\nWIOZoTL7666lvc+Ws3b0HyUNdNufc/H/91FetmyWRELw6S2q/n1oVT03UGD+IC+QzmHSv81nDh4S\nBaFjwXClMiCMY4NgW7l7vtaVsB1kuWQtFhSS91p0QTpKDVHsrCn/eYzjvqn+QJ7PkzPiUUa4O0MX\nNcGb0kuUUrVoWRHQQs/5PHj2NddvKiv08VdalQ2SWGaktP7wgdmHsPX62wY4+HXgzwKfNf//2pb3\n/C7wllLqHuJAfhr401rrLwLX7JuUUu8CP6y1PlZK/Trwj5RSfxMBHLwF/CulVASMzXti4D8Cfutl\nO/nKOp/VupZp6+xGc+MvZy9EyRAmMsVvGpw634e66ZPc6FumgPaCvqG/8uTfoo+fNU7Hg8k6GhtA\nv/8Fegd3mh6Qbx1orz57JKUiz5G1LMtJD9+mF4447J17A6fNwuRP028ct/1/L5EhzqpsGu7efgyz\nCaPkeUv98feOE0bJisPekdE/6ok8A+1FQV88dPthzXJ3Rf4xh8mmtMFgT85Zdg79mdAcpanU8MuV\nOJ69kUBsJ29yXDxoLUppOJCAwN/mwR1Uf4A6O4Prt9uN7GJGkvacEqjt9QxjGrE5y15dnTgwBjQQ\n9m4WtBVW3QWgtO7PNiKsdS/5/TqPeaI1EAoNd9sW06sFyfmCw/HH5Ktt9jo/cfdJOjyAaAxVRyo8\nNPs4Hht4dNQQnkaNhEUS9FCpZFzKD6q680/DA3T2SMqep1Mnya7euGkqGCl1PXVZXRfI4HbL9Q0N\nlP34fhu6jym95QZ0otg6O/ddbp8FflUp9TPAe8BPAiilbiKQ6h/XWldKqb8E/CZSnvl7xvFcaVrr\nLyqlfhUBJVTAX9Ra10qpAfCbxvGEiOP5X162k6+s81lUAe/NCurBA8bpdaLoVitT2GqdRWBeT10Z\nSFQut38sDQetEptFUG01gzbSF5eGI+yBTKJ7FPXW9MURmO2t33lG9fgSlYVSEkvDBnqchTAcoNOc\n/viQUbJgnNZGj6h9C3Sn67vOyOm8dKHgnrT17uiQaSl18i+c9vjXx4qPjzRHvajVOxjGk2ZYcXnh\nJu71VUORPgPAtiDBZ1eOEnHiSSTRrHE89f4dTpbv8HvHCW/tzJ3cgVyfz7vttLbZdbJ2d8zjE6kI\nHfRshVVkm8+eynEszQCs10MAWajDMGqkBizCbtsxd352mYP9HHQ44qpmm/j79Ag9O236MNDAoi0T\n+JbjDM+eAoZrrQNC0eAQbD57OtDITli6oazhALQly3ItwVlrvstDEJbrBfPysdDkTN5EZTvo7Ahl\nnKea3IMooQuhbyHorJP3uPC0JRm1g8oe154G1HhmSo8f3ZDpeq1YLL71S67W+gT441te/wD4ce/3\n3wB+4yXb+ljn958Hfr7z2iXwma93P19Z53NZwedPUhbVird2DOOuXXS6zXbYfCjDBNYFUZC0HNC2\nwcleOILZiUyuzxZwei4EotDMVljzkT1pKj9Pn0O/lAfZNKZ9BU/9wSmr++eUR7If8Sh0zifcy1DL\nkODiElXMiBDoeBp0kG1X2FaqF4ue8uUB7LmKpEdzvd/jcycVXzhTvPNBxlm55OMjGCcRR4uI2/mK\nu/lTdtNDUXhdPH2x8/fOv0+6CbRE5sJsKBG0Xfjs5wZ71ONDzsonfPl5zOdOQyDlj0wWXMvelJKm\nPQ5PFkBnQ+b1lCTINolFvfvE6QzVZVst1CxuJLEALKzMwOrYAUhSlX048EDH8brF/aphUwQRqKKk\nYdSezRtGZ6RM6c6nKZVtNZ9FwEfgGWaLMBoK+s2AELRSjYx2X0pp1mkK8adV5DVzX958F2EiA6mr\nM8r1gtMlwrUYXdLvj0kHb6NTw4LgkHyVQ222HI/NkP1eoy1JWy2tbSSv5jiTbNgqm762j85eWedT\na6G6kSbxUmYWAnOzegvJtkhQnz2CqqQ/uUcRrMFkPF2kljVLpuhmKQDee7T1vc5sxGXISruqm9B2\nDAkQjGXxDnel7OeG5TC9pMjO/CQOhedoZ6IxSb4v7+2WtLp0L0sZxN02uKiyHTcI+4P7Iiuxn2p8\nH/u8hFEZMC1D+tHlN6aXEiUeQ8CSer1qehFmKFLZ7ADTF6JinFznU3tPSMMVb44qrmVvNpGxv8jb\nQdDlBb1s5GQJCAMIM5f1tAYvMQvo8KDt/KrSRf2FkTiwi+OGLo93fM68a+/MJxWNEifrALQHI43G\nlHPseV9KkNa8mR7Xj9m2DxaRltLqS1kNLFtyC1Xs5BYEkSiBgL1e5XrBfHUqz1unF6NmJwLBz3ZI\nB3sum9rLpkY7S2DuFRXR8ED2wclL4Oh6NhwPmGPLGycUJeacXErm52U/bm4NyRjt9762j9ZeWeez\nzTYWXUu1Ys0uus+O5UZdzkgn98wQ3qIV+Vkr1wuqdU2tH9Dv7dDP3kZnOSqJ0O99sB1Ga2cNkkg0\n7s3swlYaltufNkSJD4lvnm2hDKJp9trDUjFpmLn5pHk1a8kGWLPN1n5n9/Tvfw79+FkzOOrbYI/a\nm0361B4Udc17s3aGt4337qVmy269Hao0o6zb2duGzLWNtsHptACMk+t83/iYcXK33XexujWdbE8t\nLwg7irD2etRrea1aN5DwNDTzPd5iZ/e5Nou0i/i3HaP/3dnO1mzEcehZs/eMVTL1zcK67favTRrV\nWVNu8zWDts0EhWbgt5UBGYey8K6DrQTYf1GQkAxG1LpiXj52/TFoeqGhiprhUm8gNRoeiK7OBmS6\nElBKR1bdbmvD8fhmnVBVNuVZkwW5Em3eaxHTpuoKUM7XaVq/Jhb17ZV1Pnr99emyW3E1218BCAxv\nV3hwh97ubRb1tFV6syWDYh2TBitGyVOKKGe4f4co25FSzHsfNNxVls7e0npMrqH277VktC2z9aIK\nuJs/pG+3lx/ApGEWbomU2W16dfVuxF2tay5XTR/KQmyjIKSXv4maibqj/v3PUf72l6ifzonvnRN+\n/6wZ8jMlJd9CFfGZg4q7+YL3ZwnPFiELM+BarIP2gKfvLLvWcTwXq+PWAr51wQmvLiPtxtcb9KD/\nfrsgQWv+RFUlYb7fUoSdV2fuZ59uyTpy54S0duq47XNjh3s9WiMb7NgS22BPIv3agzwvZ40+kG9W\nybTLql2uJDPqew5vPJbj9LSYmoV807HaQCQMYsI0IzS9q0X94vJttS4p6suNY/fPgRNktKzYyRzG\nzYB3mI02Pm8HSV+Egmxe3A4eUmneLh17/bnmi74J2Ptre6G9ss5HBdoNZKZhJouxFa/qmHM8733A\n+uFzVvfP0UVNXNSENP2H3u5tLtbSaLeknzJ4KMiyYh2QBgvK7AHj/g3Su5+C/gD9tXebBjCmRDa5\nhjp8m+erJzyZLwxfXOaUUUHE4A77BQfZuwzjXYbXvw81lghSec1ULKGlZzL/EFKta4o6YLoKeTr3\n0V/aSTH0wmNGKPQHv8/6K+9z+aVLZqcxO9NT+kCYxKh791DDA2rdlCl8BzeMKw56xxwtFjxdNCJ9\nYCJrf+e6C6jtcXiO53kxZxCLCJ7jBLNMAj4Qwfzvvm2bSJ1t5Fv6m2pTJ8cSzoa2dFSduazW0hWd\nlSm9aM0oLhnEMgck7OjbrRUA+PvTkaEu6kunrAkvQMVB0zO0sGHwmDviJrvZ4nTqtXWiZWsYVc4b\nrTLhtvmZromK6KzDot440V4YN1xuVrzQyE9YTSF/INXPcrqsFC32ixeY3Ua5XghIyPYIfQHE9Iq+\n12v7SO2VdT5pCG/kNXfzgn50aAbuZu7BdGajYcv3lF14BJahyyqUmTMBiXwtwajV9UlD7Tmhmmr9\nkN30kL7R7tHJI9TpOeztSFlkco9pdUK5XpjtSI/keSms2ADPy1C+pxdy2Juyl03phSP6+3eIxrek\n8W37NYM91PDANXtBHtjLWibzp2XAs0XjAhrHvGYUn9PP7xKOdlGTIdn+M6qyIh6FhIf9RhNlOaNn\n+kZdC1XMOLlOP1qwlx1z2Fuxl0Gt18yrc0bDgxei3CydzVn5xJQLm7KdpRtyWi7DAxdIOCDCtoh4\nC5LMLeq+1LO1qkRVBWFo4buLlsaSCP4FLJKAcV2RhiW1PnYNa58JwLEE6JUgvTIjQ20QjVaG2s8a\n+tEOEdF2oIE1P9M1TkjZHlCUtJF8VYnOmsW463SsY7WWhssWEeiLrMub93QRm21IQJMGa9JQEG9u\nJiidCsOIdZRZ3obdGyJW3162H7IzbWCIRabW2mSjgZCebkC9rxq5+Abt20gs+j1h31Hn83VSdn8G\n+PtAD4EH/hVDHZEik7SfAU6An9Jav/uy785CuJuX9KPcwaAtVFh1bjpLwKj25WGOLO367V0ZtMz3\nIMs3SgN24v15Cb1QsZOIBIMVpIuCY4gnzgFZ7jB1/W3mqqCsZXvjpKKoY3lwQ8XSu399gbpiXTGK\nzxklEnH3dm+7aN6itoxoKVGQuP3tRWumZeCkH3zHY53m08W7TK69QfJpyIDk4XM5/u9/yy3cenbk\nEE7btHpCFbtotxeeu5LNop5SqgXjw49fuZhMV8dcLJpeksDEM8eNx/LUlaI0bMxGOQfkSmvtTKNl\nXYSjv8hXJVGYtxRvrVSFJY+dlgCRGeKtCVW1Ueb0S0YVFYSBEJJqLdmOoe6xpda9bGqOeyALJThS\nTGceBRLQZqbu8pNdnrpsjjRznG22vAt0HM/aOR5bUrTntWt+TycNM0aJbM9WAYo6RHDpoug7TCcS\nLFUlam/k9rdFxGoRiGY4+UM5Hfu5zvVTZm4sCjNXJi70slVOdM7TAERe20dv3zHn8w1Qdv8d4M8D\n/xJxPj8G/FPEUT3XWn9CKfXTwC8AP/Wy70+CNQe9mGE8kUXL8rf1y2bxsuy3lv9qVKLKFYGNKPd3\nZX4j2zGDj8smYlzHzvE4LZ9SkYUho6RmUQWcLtdA44D04AjV22GuCocYA3EE49RyxEUb+kBWoK6o\nRfZ7nNaM4iNGyTn92DzAW2rzsjgsYRVuyDvY77XlwqLWHC8figP6dxLCN562a+PG9OwIZR5wm0Fq\npVpZR0TEKNonChLHm1XrFSfFA0eN0uxjbI673UuyRJe23Oa0d6yZDEJ5jsXP+FSnqW5NWa44aOZo\nuqi+uiQNM2oja5GGzeImZK1yvs5KebxGyZJ+1GTTFpXX7VnYDMRmO5crzXQVC10PFXvZVN4fjbc7\nIK/U5izLZb5o0ZR1KWbw7BiSCB09Iprcw/oZgUBvgkG6jqfJ3KJW0NVFfAqcPAdmG1LuTxexIbv1\nHJDluNuCMu06oJfathIrtH5P8n1PbqPa6OXZc/JR2Gsl07Z9JzOfD03ZbSgeRlrr3wFQSv0D4E8h\nzucngL9hPv9PgF9USqmXMarGQVPG0LMjcTxGrRMLDx3sNRGzXUzHwv4LyOCiSc+1UtRrKwwmgACr\n43NSKPZTb3fc9H9EGq6wDqi3e5tivaAwglvWrBJpGgYGIh3yuNO/Xdbw7kyxm0ip7/9r79xjJFnP\ns/57u6qrunv6NrMznp2ze9Y+x5cTxU6Ui7ETEZCDczEmwglyQoQgQkEKEAgggsDE/1jKP44DOJBE\nOCZYBAjEwSFKZDAOSUBIUZzEGN8d+5z43PacPXtmdq493V3VVf3xx3epr6q7d/fsOZ717tQjjaa7\nuru6Ll3fW9/7Pu/z2CC01bruBEyX5ejDRmCstPU2+bMeH3ZQ3ZteZX19m053qzzwZWkh0toZ6UHP\nDNy2sOsK+GaG0uluEXR2OEy1AO+Xj0N2J61in01A1PtR3m47CLp0m+1hMXCSSa2upkd7KA0myl+e\n6cBgBz5LyV1RdI4abbKGru8M84zjtDi+dpA9TLXYbNiYEDUwVGBNMtA9LQ333TboHKcpx7PA/IYa\nngWGnmkBLgAxm+gbpywt5HWcnI1ukB1LQic0Bm15alxHnzdNuE1U3CVav0ySnxrSRPl42VmmH3gs\nSzAIY5fCWjVIW3bldjt1yu/WTFHDBKC1TcK8u/x4V5aJJ5bqw93oeIHnZoK5EkZEpo6Xqxknsz0n\nOmrPoTaNrPFS464EnzuQ7J6Zx9Xl9jNPAxjJiCPgArAgRSsiPwL8CMDlBy/oQWCJSdlS+E19G6Yv\nxdOp8i88m27bamdASCtQtINKHSWam7SMvrCT/NTNdm51x2UDUBVWzdo+nmQNdqdN+s3UmHdpDbpl\nNN9hnLuLbdksyMdBoll7nZe9nFhapu9pf8FFU80meiA3daeSaKZ5PZA+w2jHzIC8uliuU5SAcY8t\nBgBrga1TWXM30Kgb+o7VGo2p7j50NzSzcEkOf2UB2zOHU5VlPmzRvU2fjdYxyTwrBUyr89cJu86D\naRnsbMc6fAL0mzn9Zs62+Ug/ioAm0CzuzsOhdv0E3XDsyyoNLjqV55P0gKy5Tn94CXWjIvaZzjSb\nTykj6qqbU28XkiWEQUTQaJLO0XFrUYvU7cPrNnD7CDr1vR53HEnF6b15v5OV323uL29rFgTldVoi\nyd7jEEZEpq4Yxdq19wsHdsb9wlixNW4fX7HgcwvJ75/ghUt2v2gYP4z3A3zjN79Sgfmxd7dQNmVj\n9adaum4RYArV1TuodKaLH4C2hNaspN3JzBVXAbbaGf1ISuwx0IOL1jm7ObMmm+fsTpuuoG2hvYCK\nddr12c+swjgbuQY/SwUHzEA5v62LzabFxtkhY6AzuEA8vATD/cVB3iMROKfT2URrebULBetec5PX\nrp9ypXuw8D0Ap14cPp0pgkinSEJ7l57OCsZg1ERZ1pQNQlYo1lKYwfkJ2RpCrmbFXTOU0m/LJH1s\n4LIBaKdzXBKW1Vpvm8vrE5YM4bnTBhKy1izLxHTCAe2gz4mpAVnYmYYK+zpItrra2RO0KnN74Ojd\nx2nA7nTETueY4caONtYzVGsZXiKLW1hx115z05zbWwSgJTMRrXOnh5RVDddQBCE9k9osCZUu0N+r\nJIBlzqS3m4az273gk2Rm7KN9AmB78yGCjTGf3V+5ljuDUgTJ6mvzvOErFnxWSX6LyNfxwiW7nzGP\nq8vxPnPVqKsO0MSDm0IoN9CxtlFQUHtbTkVAvykttLeq0iIm5ZZkpxwkY65PyheHvQP2U1k6fx6t\n7m6nsOnenTZLFGhAm8c5xpByd46xtJwelu0y1+vKKDuuataSTi8UF+0wyhby8kkutCubWR1MXRDq\nDBca8qyXj98574JQqwfegNprbrrBb7F/47nSHfNxmtIJZ0Csz8lo4gzGrLSQjMZFEIqPncaYUx4w\ntTwxEi1OONPCUrDt40oDZj4vZks2AG21J0QNrf4czxuow+sFkWV4yQ2S/nmqHlvbKNmXHmr3cTj+\nHL2Nbdh8mBtJ4f+V5Kc6ndrq6vRb1/SpmEBrU0mWjad9pK5xsdNmePnrl/fIZIkLmKusBBZYg1bt\nADRzz7jsWlS/xwZlyRI9S0oXzfaWMhFvwjyzAWgl1bo667FtCBROuDy3x/wwoXH5SS68/o1802aL\nT+xN6tnPVwhnnnZTSn2GFyjZbZRTj0XkW9CEgx8CftaswsqH/z7wduB3b1XvMd9bfm4kUXz14duC\nucgn+XFpxlOYyUVAUOqP8LGKLWQDz1MnkVnf3K13GGUundNrbhImU9TzT6KOD6CzRtTqEne3UMYt\n0sq52L4U0LOH6kVl122bWO3rk6xBHBWB06cJ+9ibXqXXXKcfGrp1nha1HihLtxh2YCytotHPzj7D\nSCcVvcH+wvqDBHKNg0QHmOuTJuvxKZ1mz6TcDsie1Z+XVugEVrk+1l4+/VbZHjlqLujlLW1I9ZUB\n/MBj5Xb8tzYiHXRMKlIdPQf7x6iTEdLroh4YlcRFl60jkJD15kXUjcdRT30a9eQz5NfHBA8OkNfu\ns3nxEY6DxJxXPbMJwr5mZCYjPaNsDVBhTDY74XSmOEw0JT8O5iR5k8N0xpXuo6zH26VUoJW3sU6j\nlhCydCZ9E0ZgEMbEwdpCGtkGHQ6uwtHHdbrQBvVKgFmQE7oNyrMLPKv8kKYjF3ic79NoTP70EbPH\njxhdg+koZLC9Sy+d0fvmb+Bbt1/OF4ywao2XFl9VfT6rJLvNyz9KQbX+iPkD+LfAfzDkhH00W+62\nUJp5GD2wBfaTSbmtXolmuYGeJWimWU4/iogaZWmQqvRH4tE47Z2ilebP5uW0hzWos0GoFHiMRL66\ncYiMJoVbZJYSr22QYO+oMzJ078b1SdPNnkAHnrWmOMO7zHS321rLWlNoB4OSn0tGxjjTlOn9KTw1\nanOlewxr0A8v6O2yAcXWgLwAH2eJNjPzu9uh0CbzmiJlekInGhJIk73pEcepUUfwZqOqktLIp7kT\nbpVpRmNoLA3Q7phwqrWDwrSgHS9jWS0NPMutmuN5A3XyjK5z7R+jbhzowQ6Q4wMn9JkFjdKsx67L\nHbf966hrzzN7vGwZTatL7+LXcCN5miTXRnVRw2ioGWuC0vZ4dHlNcda4Omry6uE+l9cCLapL6BiD\nKoiQLKWztgFNbRhnyQYLs/UqG3A6QloQhTqoWa+fXnOTdtDXAc4eG2vZXTnX1pyweuzLJ9frx3oh\n8BmB+0fu+I6uweFzEYc3FBDT+uIe0c6zRGHEw4M70B5cAlHQTOu0m8VdDz63I9ltln8ceN2S5VPg\n+1/o9wqNIhB4SsXiCXeCKWYaB8qSXD9aVNH2CQyjHV63sUcgsRugS13XeQrZFDW57pop4+ElkqhM\nt7Wf6TXX6YTapKxKMwadkw+kSa+1qWtWWarTQ5blZAQfbYe83zNSpNa046ZO381L9ad2YLeDMsNp\nPEJNtVldEHfp97boxAPagRaA7DU36agY9cxnlgdtM5hYkc7QNFcqu+32Pf6Mw/2fEwdrrMczXj0Y\nM4yu6LSWSYNKXCZh2NlPYxAj/ZaZ9XR1cKvKy9ziLtuRE1SZnOAPxq7fCHQadyOFJNGssl5X12LM\nrCQ1Ukzus/YmJfFqjxsDbZo2zfU+XBg6EU//N+FqX9Yp1mij9YeXCBsRYWOPdjjnqZOIJBdH0z9M\nArZaU93ka2er/nE43afT6hI0N0v7mZHpVF/l/FpbDQFkLfLEUz0yhz23UVj8Xv3AEy5aZiy9IawQ\nR0qv+4QFnzbvzWwlClFAM2rS6BzR5QhIaXVDBtsJzUcecLqF7tjcIxCRDeCDwCuAJ4AfUEot5FBF\n5C3Av0Szl35RKfVus/xd6LaWXfPWnzD2C/ZzV9AThHcppf6ZWba0D/Nm23nXg8/dhE/JdN3xzTbS\nohSAcjUjCGMI44I2DCRR+fDZO0jyFPI5ZBV/+ukIxqcFK2unECaFxSKt309he2AstGSJtqzurW0S\nhpGW7DcziyxokM5PHIvKBh7b6KfXr9z/OGhjDec6AAAdd0lEQVSVZHFcYE5GqNEN/d/QmZ3pVhyj\nNp4j6G7Q727Ra2kNOLX3pdUH3dHSdcE8bzSdCKc62XXnoIosaICysz69nWE+14HcBh/Pv8h6GjWG\nsfGs6eqaj6/e7OT4F+EPaLcKOqVj5ZNSBhf1AJtqXTUZXiJb6ztxUXdIjOJBIE3U5Ko7TnJhSOPy\nmGYrRB7Y0A3IvS2S/MSk0RSd0GxLNi3SSgCMUDcepzO8RBDtEMgecWNq1CwK1Y3S/nosP4fpiDiM\nUK126SZJhbGm0rsTlDrKt60khmsbrhm3hLhb1Kd81+CKZcSq9Peyc+PD7+OysOoFyur9TUfamK63\nRrAxIHjwiObTR+T7U5oP7SCvfVXRPF1lCN4hGnNFdDaEg3cAv6OUereIvMM8/yf+G0QkAH4e+E40\ne/iPROQ3lVKfN295rw0sS/AvKDJPFqv6MFfi/AYfNV/ae6JyPYNYFoAc4tbCQBQmU9TkRtma2Pe5\nsUFn/4j58/q7FoRJOTbra+payOk+6vAJCCO2jc6bZSHZBsYkH5Or5+hFm8SxLmhP8mOS2WlJe+x4\n1nS5/6NUHO27HWJmPe2CdZSnqJOrOj1i+p/UifWmmTE/TLSF8SBGNnvQ3YULuulUTVezpOygZmsd\n2Tw1XfUzgkaTaP3yyoJxXhEsHUY72iPJ9LdA4Y3kAs/LujrwXBjqhlhPz8yqXAc3YUmt1hEr6ndu\n5jwdLXeBHVzUhAsjD1Tth7GprJAQsqQYR8NINzDvGGfbnS0dvIIGk+SYw1QrKLhts31WTkRUL1aH\nzxB3twjii0SNI/rRAU+NYnYnoWNeWpSo5QZqNtE1sSwlNCKn9tiE3o2YGu06S3i6M5dejFo9Ejkt\nZnl+y4I/26nQ4W/FXqvK91SxLAABRQ9Xa6DTjK0uMkzhwpBg45BgNEZe/oBWLbl38TbgTebxLwH/\nm0rwAd4APKaU+jKAiPyK+dznuQlE5HuBx7EUQb1sh9V9mCtxroOPZWKV6JetrutPkSBy0vmAGzBz\nNXPNgq64bAdqHzaNZHL/au+E7NrIDd7LhEklS1DHu3p9h4fFLClLWb/4CHG8xkFyneO0AdgBJCVX\n12gHfU+nywpeBk4bLskbHKVadQGgH9kZUKto2LR6cF6wVMdT1DQjP5iipjnzowQ1zWgMYsIHEl3Q\nH42RC5OSdUMJHi0dMrJ5asQdQ2dDkcjpQo3MokrYkCxZENhsdPRrNig66+zBxVLQGRvNPOv/UtVe\n84POspSofWxnO9UbGF8bUJpt6G2RBY2FwdKvn9n1LGDzZVpks78OrS7j7EgrH6QN2mHR+6Rmk4rC\nwWkRgEa7hGgSAbCSzo4hX5RM12yjpkmP2gCUzifk0tSzohNjhWCK+ALQMbWjeElfmdFy0wfy9mY7\nFqvOzTK430pFZBaAGGetAOj/G54/0r2NbaXUNfP4OWB7yXtcf6TBVeCN3vMfE5EfAj4O/LhS6kBE\nuugg9p3AP6qsa1Uf5kqc3+BD5U6v+qPz0kOWtlz9wXfCoaZ3Vu8Yq5YAUajrDemMYJo5F9PGINZ+\nKqYvA5/c4G+LzYl7WCwi52TzA9cNn8yLbbB3uMcptIKAdbOqfjRnqzUjkLho2HTffeq+W/ogrRnS\nCpkfGVrqINbpLX+gt4FnlSWCOaYBujmzLC2TLR3sVwUjwPW3EGk6dbBtPmtnO8OhNpHziCQBWlLJ\nl9qpohxkQqc+kJGWVCKc8gX6BsLOet1g6mncBRR6bqWZk6k3uhshKMRsLfrreuYUNEjTiUuZWWWK\nXGWEzTaqqulmj7upUzrqtVNMaHA6y4ka+oYlDo2atkmdrTp/aT5hnJmequambnRNRrrPyPrhGPO8\njKzsWAqFfUGW6pmhF3iWBXvJktJsqBA+XQzW1d9V9fyWZlQ2la6UZglWg46fMn8JIErRvP2026aI\nfNx7/n7Tp6jXdfM+Sgejf3lL9m8F/xr4SXRC8yeBfw78MFpJ5r1KqVGVLXwnONfBB7yeE1OktLUA\nFcauD6PqWWINw8CkH1rdok/Ih5vim6l9b41G95BoaC7ci5vIg5ecDz3e4KXy1AQszxLBWXcHLvgA\nroejmkYB2GrpC/E4DWiHDeJAOdrtMMqcZpd/PBRAJy0KtfY1IEgL+wNXR6kGxyWPpbvlKMaAm23c\nzII8VzOYQxCUBxCXmmt1nVupRE03+No0mwwvrRQ5DU+PTYBYfQlYt9JQQggw8jM6VWgRB2tOkFLM\n3Xz17t0Onv46lchi4LEpy7UN97u0UN0LnKTXSPIpcdDQ/WOmZpOrmf799df1OvwaimfNcDLbM03Q\nxfnR7QGmOTUcEplzVJKoATAMvfFsr3Q9HKbXNIV6+5Vam21ypNXTg4ZWrZiNXO+SKKVnSH6KrtV1\nTqfLYD/jZJqWoHQTk89WG/Wx2JC6YJBnYdOBfpPr2WJPKfX6VS+u6qMEEJHrIrKjlLpmUmLPL3nb\nqp5KlFKOWy4i/wb4sHn6RuDtIvIeYAjMRWQK/Bqr+zBX4twHHwt3sXuBx3q2VGEL8hYqjHWfhb8u\nKF1QamLzy0O4YC68l20iVtF6GVpd6JoLq5K/HkZZqa/I3sn6AajfzIkDne/qR1OSXLnG1Hao/wcS\nlTXfLDvI2gj7ckM+M8kW65fdFVYL12FUCjyAk7X3U10hkUtrWtj60EoVY9Olr8LIecBYtp+1bQ4I\ny+m6vcdRe1rbzAWpKqW3Iu8StXolarRlnNn0nZPaqViCO6p+ZWYtUNSJbMrNpm3DqBR4WNvQyt/e\nb9FS5EEH8KyREXa3dC3FCzo2zTjJj7k2bnCYLB5HPwDZ1CdA0GhCFLoesXF65HrQfGRz7YTbDvqE\n/T5Jvr9cYic3PkmmLYB0hnTbqLjrArc14nNIRvozgQ4EQRgvlZ8qO6Q2oeHNlCu07IWGVF8DzoqX\nrrqZujdgex/fbf7/xpL3/BHwahF5CB0ofhD4K6BrOF7a7vuAzwIopf6M/bBhxI2UUj9nnq/qw1yJ\n8xt85pWrw0uT+D4q+9OiBwbKs54S4m6hFVDpCwH0XZulwtqBfVhJi1YMxQA32EuzXaRwpEkcpAzj\n3NkzAKYORElup6hnhISNCXFQDBxrTanUUjxpE8sKGlIMnJaaPLxEoqYF/TorD9TVpsFlMw+r6uyn\nonKVGfZ3OQhl87Q8mFRhA5AdXMydd2rOYyA61SbTE9RzX0Q9+Szq2X1NUNgYwIXndW2lu+WstKsp\nFwHiaM39LnYnMw7TmGE0Iw5SZzmQzVM64aAIln4tp0pNrgYe1+ekxT4tczFRmg5dHfR98ddcafqz\n7VXy/YDG2chJNK2CDUB2P6CcsloWdHxk85yT+YHZrtbCuQoJdf+TMY1TzxpKevcQ6axBewBh7M5X\nIGEhGmuDt2GiBkG4QAbJ1cwJgsIxbfru91XsRFoKQG6Zf679c2V/wy+RuZzMIZ6sJkm8hHg38Ksi\n8jeAJ4EfABCRB9CU6rcaHcy/C3wUnRX+gFLqc+bz7xGRb0AnPp4A/uZtfOeqPsyVOL/Bx8IfKPNU\n54EN9MVWXLC+qu+yXLKsSPE4mEZWsd4qt5NLtnTP0S4CnlnbEXEwJW7MnXyKRdHk2nZOmrnKCPIm\neWNGHGSumXXVd1Z7I6Rr/HG8FE4nHNAO+zro+oHHd8dUU1BLGGLJyPVUVWshoFNtfl7/dgzMnIeP\nR2qwg5ObgRg7DGU8mdzMzhdCXQEdIGdOskYb/EUljb2t1oEjpLSDPtYVtaTuUMWqtE6rS9KYl6SS\nltkdWChTw0jnk5If0O5U2zJYWw6g1Fys/xcKFjbI2Ibk6uvLYBUzknmDfjMFUtPg2lo8b1XxXhNc\n/LrqgsurPS9ZSphBGPcIpMlheo1snhtTv6L+GcjEzOBW/Mb9dd/sNS8dfq9AKXUDePOS5c8Cb/We\n/3c0Lbr6vr92G9/xrsrzpX2YN8P5DT5BuCinMh0hYUq71XcXTNiYEEi0RE4+WbirX9oMt4QBVWzD\nkoGuehdmUzFR0T/RWdsgaDaJGqfEgR5gbBCygacTDnTnuznFQaPpZhe66FykkGwtoxMOCINu6W5/\noVKZjIiBOL6sUyLHV3V9ygs+Akvz8y7wnO47tQNLaV8WgEAHoWqacyW8gSQM9DEI5wVhQTd+biOj\niZYjjZplYoLf9xODePulWj1OjPVD1Giz05kwyeaGRSjOxVSnOouAp6ZH+m4fFgKQDC8VA5tH1XYz\nt/kElOkDUm1gAl5ASPIGYWNGrmxQ9BpevVRqv5m6dCtQmd0UzaCW3OETbOLApreK2uCyGWgQ+TMQ\n3PYlubacyNWM3nCb0NR3pNfVCgem5plEIYfJ02b2cgQhhWwQHonDwvwOtQleEVTtTdha0zBTG8Yp\n1kOp5mNUIUq/df/9y/yA7hCiFM2q39I5xvkNPhWok10dKMzgGcddCIcEedM1AeoO9qJxVNqDBUUE\nC0dbtus0NO7blgOxjCCXitFXtO1ej3tbRM1NU3M4JA50I6m1THDba+wMJIwIw4gwaKFMT884O/LS\nFzPG2ZHWJgsKcdBl8zg12oW9x4uLslIXslI1fn7ewebws3Shp6pKOlilh6dEFrfLH7zNQBWGkR7A\nvN4hsY6ZVsLHIybYdTuYmUSuZoxnZYeOqNHmSnfEo0etkkbe8SwolKnzFEZaSgYAL/io7gVduDcf\nDTodLDc6V0mpZmJTvbbmY2cYyRziYKZlk+bp0pmsVcrWskniUlp2vTbguJuqWUocX3DST3r2uPw8\nVP2h7OtR49Bp8IGeFWWBVlPvdTaJW484vyXZfIixJBxMrxZMTU+9od3qL/8NGi+p4fYrndjqJGvw\npaOQ1wz07D+QCbFa04QRFptTnX+TtTFfQS5Q06OFZTVePM5t8CkNMlPPydQOnkYXLQgN44lQD5xG\nQgRMQ2prgISpSzWJbTg0d7yMxnqd1mDtZp31QVRWzx6NdXMnhlk2GhdByHx3bORP/L6VdtA327Ff\nXDgeCcAGok44KAUgS8UlHBKF7fJFn6VOg80Wi5ciaiI76B6P3pbJz2eOVuyM3+yxzhYDEFRFIgu2\nmDtvPtnBBh7z3NfqFm/f7edkeMmJWloZolXyOX5vl4Xt8QqkyZXuEY8e6ZuP5yf6rnurNXHHjNEY\ndeNA31l3j9z5n+THzsXVr6VopYkiSNnAkM4paf4dJpbxqGc/0MZaZfiwxA772JEJTBAqftdXtVqE\nuUmKWwNY2yBrZAukmyoV3VHGZ/p3G69dJJAb7Jnf3vEsgFlAv1n0o/W3NdHG+g3pRujAuLbirLfB\nBKDpiTum6vAZx5YLu1tEkZ4VHqcNPncgQGhSoVM64QzlBeVqy0Q6N/XQ6myHSk2uxkuOcxt85io3\nEiGJHqBtwbdLIa6YjHQXd55CNlpsSm11i3x+mOo7KJPjZzoqmv68qbYbGCsBaEEO3nbum0FeJYkX\nDE7N9+iAFrYGhK0uUbOYnZW21a7P0pLNWsJAi5NaZp+1WghyPbjEQasIOqP9UrOs8oQ68ftLQG9z\nMtJFZDOLcjWXBVsKUxNB64GVnCjtdntY6Fq3r/v7SjkAAZUGw26J4eaLhUI54NiB184q/Fll1NSS\nM1e6Ex49anFtou3Mr3QDNltNrXhhGi9VkiBPPYG68gpkbYNktm9ssgMmWdEE3I9yrnR3C5uMeQPS\nE+K462y7tbdiYVq45tfUvcAZNjRxo0ghR0XQsYocyaj4rXrHVE1HMJsQtgcErX6JcViWpbrhjrdd\nJmFEJx7Qj7Qr6/VxSJI32GpnDPOMfnRQIgzoFGBOnAuEGOdXrQSfzVMmHNOJe4X6uS9R9cTnWP+a\nN5K3n+fRowbTXLv6JrkQNgJnO+Efn1KPkC2hCQRh7OqXS1PfLxIyf0F9Pvc9zm3wyeY5h+k1rQxt\nhDmdzpTx9AFKwcb130BJCsSRAqwIKRQCpHZAtuttD1Ctnk65zBOzLXqdYSOiE/eQLNXb051BkiBx\nXCg9W4zGwBi65SC0simuSiWmmEVEjTZR1CYOjp1qg74bfkYHETvbMdJAKsmZj2dF8PHg99ioVo+x\nKXzn4cClULS+1qiQVTH09lzNCFhS21nSeLs09bakUdjut5WFATNAR6FJbxUMv3agU3Rjb2C0s5JA\nMkc0CaQJ0xPXvb/RmrCVZhylTV7WztlomZRh5TyoJIFHvwjTEeubD9FZG7LpRF8nJHmDOJjTa64X\n7Dzrh5QZlekQttpHwMyxMNtBv6Q4vUx2phR4To9Rz35p8ThXj+XpvkuN6jVPUZMjfQ14PUkOtjk2\n7jLObpieJN3MDPMFKxCbZrUBoddMXZCrNvO6bfJvXNKZZs793ke58PXfxJseiOhHE1490Olnf3gr\ny2E1HaFFvzYzBBwTgFpGYHhypH8/nZsfqhp3hnMbfNK5cJB4umibD7lmttIAVik4SmtQKkw6RWTP\n3TJo9ZwStn+RWguCNDlkd1JOW1mywGYrpdfdNLUk07tSSXG5tFfULJpQo1OX2iuhwt4qKQZX0Gn0\n9IAzvVakxswFzv4R88PESeyoaaaNt7zZj+xswaWHHRX7JHmaR4+0FMx2Z5+dzh7toE9nuE3IJSdd\nlKuEbHaCld4PCYu02goWWq5MIbmaEjEByPUYBRHj+YmbyfgpF2tc546NSe20W30mHOvv8NhfegAP\nPXr5iCjW9bPt9thZapQUzeO4UB6w5+/pZ2B8SrSxrV1FTY3FKgHE8wYYbx2rBGDTk+UAhKN138yY\n0MIFnic+x/wzX9ZU84ub+oZhGbLUkSXc8+mosIqImsgjUVlOqD1gPD8pGdFtt2ckubDRgnZgAutI\nz5hC0HYQYQwS62ZWpx9n9fd0IF+qnWczA5/+BL1HXsO3br9cW4x7WBaMdbowLKUUdeo60ynnwGN8\nhktu5mq8aJzf4JMLjx7FXOmmwB55ONAXdnXWsCzf6zdRLknduB97A4K1vpZnMY1++1PdU/H0aLE4\nPIgUrx4cs9WeMIwvEoamd+XoudLdnhX4BEqSKtKbQHSoJXtsl7u3zas0tFydyhq6GZdHdaLTMWrv\nhPlRwnxciIparTcbfOTCOlx6mHy4zcnsOQ6SMY8exXxqP+TGVHhlP+Dl3Zztzoit1gFx0PL6eAoG\nF+wxjHZcCtKREyio1Fb2KGg0y0Vi+9/O8MLI9cgk+dQVtK3W3Tds7rkAFDXaqIlu7JYwIgqsG6ce\nnAp7gCZMb7jGxzDu0gmH5CozfkvKsfpupmmiru3CjUMnyBrFXeLeFqQmzekIJ1ayZuZSiQXdHqoE\nAh9+nSpqtEuBZ/qxZ5FWSPOhMcGDR8jOy1br8o1MT05FoxCgCcgjr3EBKItbnCRPlz4eB3PWmoG2\n22j0UAdXtdGeRRiV/gcmQxCaJtlAmpCdeCnbbLHmmM5QX/wS0fEB8QOv0YoQs72lTcq+gG4Q9kuK\nDZbpFzXahLZ37yVju1Gn3Tyc2+AzyeHJUUCSt0jmKTudPbLA0I2tLUJWvtuyd9PurtrUbZbVDAAn\nnpmrmRd0Qh47EZ46CIji8g9xGAlHaZtXDWY83H+aYbRDbIvjJgCpk1NdxDb6cGLkc4iaKH821J05\n+4BVgcfRnj1yhO/w6CtY5/taXFQlObPjHBCCaa5TgRsDuPIK8uE2N5KnuTZu8JkbHT57IPzx42vs\nXu9w9VVHXN5MTRAKTSrG+goVA0McjAhEB4WlaTXjBaSbEcPiB1wdIJwczD7HacrxTPe67E5CnpsI\nhylA5AJQSOh8lmi2Cdc29ExnXlB5XeOjL2iajLS8joSuSB42onINKmrq42nOmz2OWnn7CLq7yIUh\narjv5P7drNMX6zQW4BJGRHF7IZVkz6lOZ5Xv9sNkinr2S6hHnyT55PNc/5M2YaQYHO8T709pHk+R\nBzb07BXKg7s3+82vj8meHZHumv6r9ecJel146DVIb2up82nY8ALPoWe0Z1PKVXTbqI4+FmF3a7UE\nUlV9I53pBuIbh8jOFr3BRWR4ifH8xAWgkpAruoaoCR2T0vUKQKOtZZOyZMmX13ixkNtwnL4vISK7\n6O7fs8AmsHfLd91buB/3Cer9updwlvv0cqXU1otZgYj8D/Q23w72lFJveTHf99WOcxt8zhIi8vGb\niQTei7gf9wnq/bqXcD/u03nCaq2OGjVq1KhR4yuEOvjUqFGjRo0zRx18zgbvv9sb8BXA/bhPUO/X\nvYT7cZ/ODeqaT40aNWrUOHPUM58aNWrUqHHmqINPjRo1atQ4c9TB5yWCiPy4iCgR2fSW/VMReUxE\nvigi3+0t/2YR+Yx57V+JaJE1EYlF5INm+R+IyCvOfk/cNv60iPyxiHxaRH5dRIbea/fsfq2CiLzF\n7M9jIvKOu709t4KIPCgi/0tEPi8inxORv2+Wb4jI/xSRR83/de8zL+i83S2ISCAi/09EPmye3/P7\nVGMJlFL134v8Ax5E29E+CWyaZV8LfAqIgYeAPwEC89ofAt+CVkv5CPDnzfIfBd5nHv8g8MG7uE/f\nBYTm8U8BP3U/7NeKfQ3MfjwMRGb/vvZub9cttnkH+CbzuAd8yZyb9wDvMMvf8WLO213ct38I/Cfg\nw+b5Pb9P9d/iXz3zeWnwXuAfUzb+fBvwK0qpRCn1OPAY8AYR2QH6SqmPKX2V/Hvge73P/JJ5/CHg\nzXfrjk0p9VtKOY2WjwGXzeN7er9W4A3AY0qpLyulUuBX0Nv8VQul1DWl1CfM4xPgC8Alysf6lyif\ngxd63s4cInIZ+AvAL3qL7+l9qrEcdfB5kRCRtwHPKKU+VXnpEuArLF41yy6Zx9Xlpc+Ygf8IuMDd\nxw+j7x7h/tovi1X7dE/ApDG/EfgDYFspdc289BywbR7fyXm7G/gZ9I2c5+V6z+9TjSU4t8KiLwQi\n8tvAxSUvvRP4CXSK6p7DzfZLKfUb5j3vBDLgl89y22rcHkSkC/wa8A+UUsf+hFIppUTknumlEJHv\nAZ5XSv1fEXnTsvfca/tUYzXq4HMbUEp9x7LlIvJ16Fzzp8xFfxn4hIi8AXgGXQuyuGyWPUORwvKX\n433mqoiEwAC48dLtSRmr9stCRP468D3Am036wt9Gi6+6/boDrNqnr2qISBMdeH5ZKfVfzeLrIrKj\nlLpm0k/Pm+V3ct7OGn8a+Isi8lagBfRF5D9yb+9TjVW420Wn++kPeIKCcPBaysXQL7O6GPpWs/zv\nUC7M/+pd3Je3AJ8HtirL7+n9WrGvodmPhygIB6+929t1i20WdC3jZyrLf5pycf49d3re7vL+vYmC\ncHBf7FP9VznHd3sD7qc/P/iY5+9EM3C+iMe2AV4PfNa89nMUShMt4L+gC6d/CDx8F/flMXQ+/ZPm\n7333w37dZH/fimaM/Qk67XjXt+kW2/ttaILLp71z9FZ0Le13gEeB3wY27vS83eX984PPfbFP9V/5\nr5bXqVGjRo0aZ46a7VajRo0aNc4cdfCpUaNGjRpnjjr41KhRo0aNM0cdfGrUqFGjxpmjDj41atSo\nUePMUQefGvclROTvicgXROQlV2YQke83StJzEXn9S73+GjXOA2qFgxr3K34U+A6llK/xhYiEqhBM\nvVN8FvhLwC+8yPXUqHFuUQefGvcdROR9aHuEj4jIB9ByPq80y54Skb8KvBvdyBgDP6+U+gWjtP2z\nwHeiG2xT4ANKqQ/561dKfcF8z9nsUI0a9yHq4FPjvoNS6m+JyFuAb1dK7YnIu9DeL9+mlJqIyI8A\nR0qpPyUiMfB7IvJbaGXoR8x7t9HyQh+4O3tRo8b9jTr41Dgv+E2l1MQ8/i7g60Xk7eb5AHg18GeB\n/6yUyoFnReR378J21qhxLlAHnxrnBafeYwF+TCn1Uf8NRk25Ro0aZ4Ca7VbjPOKjwN82lgSIyGtE\nZA34P8BfFpHASPd/+93cyBo17mfUM58a5xG/CLwC7b0kwC7aZvnXgT+HrvU8Bfz+sg+LyPehiQlb\nwH8TkU8qpb77DLa7Ro37BrWqdY0aKyAi/w4t6/+hW723Ro0aLwx12q1GjRo1apw56plPjRo1atQ4\nc9Qznxo1atSoceaog0+NGjVq1Dhz1MGnRo0aNWqcOergU6NGjRo1zhx18KlRo0aNGmeO/w9iNRS7\nvTCLTgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window Functions for Bispectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Bispectrum` in `Stingray` now supports 2D windows to apply before calculating `Bispectrum`. \n", + "\n", + "Windows currently available in `Stingray` include:\n", + "1. Uniform or Rectangular window\n", + "2. Parzen Window\n", + "3. Hamming Window\n", + "4. Hanning Window\n", + "5. Triangular Window\n", + "6. Blackmann's Window\n", + "7. Welch Window\n", + "8. Flat-top Window\n", + "\n", + "Windows are available in `stingray.utils` package and can be used by calling `create_window` function.\n", + "\n", + "Now, we demonstrate Bispectrum with windows applied. By default, now window is applied." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "window = 'uniform'\n", + "\n", + "bs = Bispectrum(lc,maxlag=25,window = window, scale ='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'uniform'" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Window" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VfW59vHvTZhkhoQZJ9RSoFZLKdLWsQhOVSoOB2rF\nqXI4Tq0etVqPTD22Tkf7WrW8qK2F9uDLUai04FFqFastKkUUU6UiqEAgzFOAhCTP+8dee7sJO9kr\nyU729Hyua13Za/it9VsMz15Zw71kZjjnnMsvLdLdAeecc83Pi79zzuUhL/7OOZeHvPg751we8uLv\nnHN5yIu/c87lIS/+LqNIKpZ0evBZkn4tabukt9LctVpJ+rGkJxvY9nRJ61LdJ+eS8eKfpyS1kfSU\npE8l7Za0XNI5cfNPl1QtaU8wrJM0R9LX6lhnwkIm6VVJ3w/TLzMbbGavBqMnAyOBfmY2rH572HzM\n7KdmFmr/nMsUXvzzV0tgLXAa0Bn4D2COpKPilikxsw5AR2A48CHwF0kjmqmPRwKfmFlZfRtKatkE\n/XEuZ3jxz1NmVmZmU8zsEzOrNrM/AmuAryZY1sxsnZlNAp4E7mvodiVNCX6DmBn8xlEsaWjc/E8k\nnSnpmmBbXw9+85gazL9W0ipJ2yTNl9Qnrq1Jul7SR8BHcdOuk/RRsL2fSDpG0l8l7Qr60rqWvn4q\n6avB58uCdQ0Oxq+R9Pu4ffpt8PmoYLkrJH0maYuku+LWeZikp4NTWf8AvlZjmwOD35R2BH82FwTT\njw6mtQjGn5C0Ka7dLEk/bOjfi8s/XvwdAJJ6Al8AipMsOhcYIql9IzZ3AfAM0AWYDzxacwEzewqY\nCPzNzDqY2WRJ3wJ+BlwK9AY+DdYT7zvAScCguGlnEflSGw7cDswAvgccDnwJGFdLPxcDpwefTwNW\nA6fGjS+uYx9PBgYAI4BJkgYG0ycDxwTDWcAV0QaSWgF/AF4CegA3Ar+TNMDM1gC7gK8Ei58K7Ilb\nb7L+OHcQL/4uWnR+B/zGzD5MsngJICKFu6FeN7OFZlYFzAJOCNnuMuBXZrbMzMqBO4n8ZnBU3DI/\nM7NtZrYvbtr9ZrbLzIqB94GXzGy1me0EXuDzglrTYiJFFeAUIl880fFkxXaqme0zs3eBd+P28VLg\nnqCPa4FH4toMBzoA95pZhZn9Gfgjn385LQZOk9QrGH82GD8a6BRsx7lQvPjnueA0wiygArghRJO+\ngAE7EsyrBFolmN4KOBA3vjHu816gbchz9H2IHO0DYGZ7gK1Bn6LWJmhXGvd5X4LxDrVsbzFwiqTe\nQAEwB/hm8GXTGVheR19r7mN0G31q9PHTuM99gLVmVl1jfnT/or+JnAq8BrxK5EvoNOAvNdo5Vycv\n/nlMkoCngJ7ARWZ2IEkTgAuBZbVchP0MKJIUK6bBNo7k4CLXUCXBuqLrbg8UAuvjlklZTK2ZrSJS\nuG8EXjOzXUSK+gQiv700pNhuIHK6KeqIuM8lwOHR8/px86P7t5jIbyCnB59fB76Jn/JxDeDFP7/9\nEhgInF/jNMlBgvvt+0qaDHwf+HGi5czsM+BN4D5JHSS1AW4jctS/JAX9nQ1cJenEYN0/Bd40s09S\nsO7aLCbyG1G0uL5aY7y+5gB3SuoqqR+RL5aoN4l82dwuqZUizzucT3Bdw8w+IvKbyveAxcGXUSlw\nUSP64/KUF/88JelI4F+BE4GNcffzXxa3WB9Je4A9wNvA8cDpZvZSHav+FyIXK1cROWIdAZxnZvsb\n22cz+xNwN/AckSPoY4CxjV1vEouJ3Or6Wi3j9TWVyG9Ba4hc2J0VnWFmFUSK/TnAFuBxYHyN6zCL\nga3B9YLouIBlDeyPy1Pyl7k451z+8SN/55zLQ178nXMuD3nxd865POTF3znnMoCksyWtDOJL7kgw\nv6ukeZLek/SWpC/FzfuBpPeDSJBQMR85dcG3o1pbEW3T3Q2XZoe1a8FhRS1Qt66UWRWlZQVoS+78\nO3epsW3Hmi1m1r0x6zhehbaHMI/HwCfsftHMzk40T1IB8E8iKbbriNxdN87M/hG3zAPAHjObKumL\nwGNmNiL4EngGGEbkYc3/BSYGz6nUKqeSD4toy5SCjE3+dc2lHDrvLeCs8S1p+2/nUNqlDfe/2561\njxfQtizcf1SX+3477/JGP3i4hwOha86VVS8X1TF7GLDKzFYDSHoGGA38I26ZQcC9AGb2YRAi2JPI\nszpvmtneoO1iYAxwf1398dM+Lift3F7FnJ+Vs3PqfHqu/IwpX23J8Nsq+fSLhenumnOJ9OXg2I91\nHBxbApHspjEAkoYRedq9H5G8qlMkFUpqB5zLwU+RJ5RTR/7O1fT8U9WctvEdjrhxBz8ccQH9O5by\nwPyeHLO4NHlj55KQoGUrhVu4iiJJS+OmzDCzGfXY3L3A/5G0HFgBvANUmdkHku4j8tBgGZHMqapk\nK/Pi73Le4gX7GbLlMwZunMmFY8bQa+x67u3ZlU5zdqe7ay6/bDGzobXMW8/BR+v9ODiziiDO4yqI\nZWatIRIzHo1AfyqY91MivznUyU/7uLyw7M0yFk/eyv6Hn2a47efhczfR8ZYWVLXy/wKu4dQC2rRR\nqCGJt4Hjgpf2tCYSWzL/oG1JXeJePPR9Pg8bRFKP4OcRRE4N/XeyDfq/fJc31n1awf+bXMaeac9x\n9IZN/HSYGHwHbDq8U7q75vKcmVUSCQx8EfgAmGNmxZImSpoYLDYQeF/SSiL5Tz+IW8VzwZvh/gBc\nb2aJItcP4qd9XN6ZO8MYue0Nek3czG2njKLvddt59Pk+DFxSku6uuSwjKfw5/yTMbCGwsMa06XGf\n/0bkbXuJ2p5S3+35kb/LS4uerWDllE8omDuHK48p4sHvrWXrhZ3T3S3nmo0Xf5e33np9D2/cvZmK\nx5/gtNZVPHx+KS0mJnyXu3M5x4u/y2trVpUzf9Iu9t4zmy9s38aDp5bR50ct2N6zMe+nd/lCgjZt\nWoQaMk3m9ci5Zla2p5pnf2FsnvRnit5dydShHbngpr2sPr5RT/47l9G8+DsXeGF2JaunFNN6wfNM\nGNCLO6/exNpRdT2R7/JdC0HrNgo1ZBov/s7FeX3RPt66u5QD/3cG3+7amkcuXU/lVYelu1vOpZwX\nf+dqWFm8jwWTdrDvgZkcv2cnD4/YRvfbWrCnS5t0d81lGAlatVKoIdN48XcugWgw3NbJL8aC4c64\npcKD4VzO8OLvXB0WzKri0ynv0OG1v3Dj4N7cfO1WPj6tZ7q75TKEWojWbVqEGjJN5vXIuQyzeMF+\niid/RtWvn+TCnu35r7Hr2X95u3R3y7lG8eLvXAjL3ixj8T07YsFw943Y6sFwLhbpHGbINCn5lxvi\n3ZOS9Egw/z1JQ5K1lfSApA+D5edJ6pKKvjrXUB4M53JJo4t/8O7Jx4ikzA0CxkkaVGOxc4DjgmEC\n8MsQbRcBXzKzLxN5t+Wdje2rc6kwd4axYfIbdPrrm9z25S6Mu243Hwzvk+5uuTSIPOGbkkjnZpeK\nI//YuyfNrILIi4RH11hmNDDTIpYAXST1rqutmb0UxJwCLCHycgPnMoIHw7lsl4riH+bdk7UtE6Yt\nwNXAC4k2LmmCpKWSlu7GX87tmo8Hw7lslvFXqyTdBVQCv0s038xmmNlQMxvakVbN2zmX9xIFw/W/\ny4Ph8kUqL/iGuHbaWdIfJL0rqVjSVXHzbg6mvS9ptqS2ybaXiuKf9N2TdSxTZ1tJVwLfBi4zM0tB\nX51LuZrBcHee6MFwrn5CXju9HviHmZ0AnA78l6TWkvoCNwFDzexLQAGR10DWKRXFP+m7J4Px8cFd\nP8OBnWa2oa62ks4GbgcuMLO9Keinc00qUTDchnO7pbtbrikJClpVhxqSCHPt1ICOwcvbOwDbiJwV\ngchbGQ+T1BJoByR9LV2ji3/Id08uJPKW+VXAE8B1dbUN2jwKdAQWSVouKfY6M+cyVc1guIfGbPBg\nOBdVFL0+GQwT4uaFuf75KJH3+JYAK4AfmFm1ma0HHgQ+AzYQObh+KVlnUvIO3xDvnjQiv7KEahtM\nPzYVfXOuua0s3sfGSRWcVTKT468dwcMjqrm/qD1rnmhFhx3l6e6eSyEJClqGPiO9xcyGNmJzZwHL\ngW8BxxA5MP4LkdM8o4GjgR3A/0j6npn9tq6VZfwFX+eykQfDuXoKc+30KmBucMv8KmAN8EXgTGCN\nmW02swPAXOAbyTboxd+5JuTBcLlNgoLWFmpIIsy108+AEZHtqicwgMjp9M+A4ZLaBdcDRhA5jV6n\nlJz2cc7VbvGC/QzZ8hkDP3uSC8deQq+x63noiE60neX3MbgIM6uUFL3+WQD8KnrtNJg/HfgJ8LSk\nFYCAH5nZFmCLpGeBZUQuAL8DzEi2TS/+zjWDZW+Wse7TCs7Y8DTDrzmHn48q557uHdnxCyg4kPRO\nEJepZLRslZq70ENcOy0BRtXSdjIwuT7b89M+zjWTTRsPxILh+qzeEAuGK+nvmYWu+Xnxd66ZzZ1h\nrJ/6diwY7tqJOz0YLktJ0KKlhRoyjRd/59Lg5d+Xx4Lhxvbr5MFwrtl58XcuTaLBcOWP/CoWDNf6\nBr8M55qHF3/n0mjNqnKenbwnFgx3/zcqPBgui0SC3apDDZnGi79zaVZ5wGLBcF2XrYgFw60c2ivd\nXXM5zIu/cxnihdmVrJq8MhYMd8/4Eg+Gy3R+wdc5lwp/e2VvLBjuzHZ4MJxrMl78ncswK4v3sWDS\nDvbdP5vj9+zk4RHb6POjFuzp0ibdXXM1SEbL1uGGTOPF37kMtHN7Ff/z4IFYMNykIW09GM6llBd/\n5zJYNBjusEUvxYLh1o4qSne3XECCggILNWQaL/7OZbjFC/azbFIJVb9+kgt7tueBizaw//J26e6W\ny3Je/J3LAsXL97Jo0nb2P/w0Qw+U8fNRm+l4Swv2t2+V7q7lN0GLNuGGTOPF37ksEQ2G2zl1fiwY\nbvhtlR4M5xrEi79zWeb5p6pjwXA/PL6HB8O5BvHi71wWigbD2e9mxoLhdl3aMd3dyj8thNq0DDUk\nI+lsSSslrZJ0R4L5t0laHgzvS6qS1E3SgLjpyyXtkvTDpF1v4C4759Lsrdf3sHjy1s+D4c7d5MFw\nWUpSAfAYcA4wCBgnaVD8Mmb2gJmdaGYnAncCi81sm5mtjJv+VWAvMC/ZNr34O5fF1n1aEQuGO3rD\nplgw3KbDO6W7a/lBoFYtQg1JDANWmdlqM6sAngFG17H8OGB2gukjgI/N7NNkG/Ti71yWiwbDbZj8\nRiwYbtx1uz0YLvMUSVoaN0yIm9cXWBs3vi6YdghJ7YCzgecSzB5L4i+FQ/jviM7liEXPVvD1rSs5\n9sbtXHnuJfQdX8J9PYrovXBburuWsyShtqHL6BYzG5qCzZ4PvGFmB/3FSmoNXEDklFBSfuTvXA6J\nBsNVPP5ELBiuxcTW6e6WS249cHjceL9gWiK1Hd2fAywzs9IwG/Ti71yOWVm8j/mTdsWC4R48tcyD\n4ZqKlKpz/m8Dx0k6OjiCHwvMP3Rz6gycBjyfYB21XQdIyIu/czmobE91LBiu6N2VsWC41cd3T3fX\nXAJmVgncALwIfADMMbNiSRMlTYxb9ELgJTMri28vqT0wEpgbdpt+zt+5HLZgVhUnbyzm6Bt3cOM5\nl9K/43oefKE7h7+0Jd1dyw0tQG0LUrIqM1sILKwxbXqN8aeBpxO0LQPqFfnqR/7O5bjXF+2LBcN9\nu2trD4ZzgBd/5/JCNBhu3wMzY8Fw3W/zYLhGk1CrglBDpvHi71ye2LTxAHN+Vh4Lhpvy1ZYeDJfH\nvPg7l2eiwXAdXvtLLBju49N6prtbrpn5BV/n8tDLvy9nyIbPGLhxJmMvvpQjx67n3p5d6TRnd7q7\nll0k1CbzTumE4Uf+zuWpZW+WxYLhhtv+WDBcVfJ70l0OSMnfcogoUkl6JJj/nqQhydpKukRSsaRq\nSal4JNo5V8O6Tyt45se72TPtuVgw3OA78GC4sFoArQvCDRmm0cU/TBRpMO+4YJgA/DJE2/eBMcBr\nje2jc65uc2d8Hgz371/2YLh8kIpz/rEoUgBJ0SjSf8QtMxqYaWYGLJHURVJv4Kja2prZB8G0FHTR\nOZeMB8PVn/L8nH+YKNLalgkdY+qca3oeDJc/sv7KjqQJ0Xzs3RxId3ecy3q1BcNt79k+3V3LPErd\naxybWyqKf5go0tqWqU+MaUJmNsPMhprZ0I7404rOpUKiYLgLbtrrwXA5JBXFP0wU6XxgfHDXz3Bg\np5ltCNnWOZcmC2ZVsXpKMYcteokJA3px59WbWDuqKN3dyhwCWrYMN2SYRhf/kFGkC4HVwCrgCeC6\nutoCSLpQ0jrg68ACSS82tq/OufqLBsNVPv2UB8PlkJR8HSWLIg3u8rk+bNtg+jxCvIHeOdf0ipfv\nZfOkA5y+ZiZD/+0cfj6qgv/q1ZG1jxfQtiyPr7VJ0Do7Tzdn/QVf51zz8GC4ppXsYdlgmdMlLQ8e\ngF0cN72LpGclfSjpA0lfT7Y9L/7OuXrxYLjUC/OwrKQuwOPABWY2GLgkbvb/Af7XzL4InEDkNHqd\nvPg75+rt5d+XUzz5M+x3MxnbrxP/NXY9uy7tmO5uNT8JWhaEG+oWe1jWzCqA6AOv8b4LzDWzzwDM\nbFOkC+oMnAo8FUyvMLMdyTboxd851yAeDFdvRdFnkoJhQty8MA+8fgHoKulVSX+XND6YfjSwGfi1\npHckPRm807dO/rfknGuwvA+Gi17wDTPAlugzScEwo55bawl8FTgPOAu4W9IXgulDgF+a2VeAMiDh\nNYN4Xvydc40WHwx325e7eDBc/YV54HUd8KKZlZnZFiKhlycE09eZ2ZvBcs8S+TKokxd/51xKLHq2\nglWTV1Iwdw5XHlPEPeNL2Hph53R3q2lJqKAg1JBEmAdenwdOltRSUjvgJOADM9sIrJU0IFhuBAcH\nayaUeY+dOeey1t9e2cvGtVUM3/AEZ37vAo44v5Sf9uxE9fSKdHcto5lZpaToA68FwK+iD8sG86eb\n2QeS/hd4D6gGnjSz94NV3Aj8LvjiWA1clWybXvydcym1ZlU5myYd4NyS2XzhX8/gwVMLeLSwDX9/\n8jC6lpalu3uplcKHvJI9LBuMPwA8kKDtcqBeL73y0z7OuZSLBsNtnvRnit5dye1f9mC4TOPF3znX\nZF6YXZnbwXAiVff5Nzsv/s65JhUNhjvwf2fEguEqrzos3d3Ke178nXNNrnj5XhZM2sG+B2Yy9EAZ\nD4/YRvfbWrC/fXaGosXU7z7/jOLF3znXLHZur4oFw/Vc+VksGO7TLxamu2t5yYu/c65ZPf9UNZ9O\neScWDHfztVs9GC4N/FZP51yzW7xgP0O2fMbAjTO5cMwYeo1dz709u9Jpzu50d61+PM/fOefqJxoM\nt//hp2PBcB1vaeHBcM3E/5Sdc2mz7tMK/t/kslgw3E+HKbuC4SQoaBluyDBe/J1zaRcNhuv01zdj\nwXAfDO+T7m7lNC/+zrmMsOjZClZO+SQWDPfg99ZmfjCcBC1bhxsyjBd/51zGeOv1Pbxx92YqHn+C\n01pX8fD5pbSYmHmFMxd48XfOZZQ1q8qZP2kXe++ZzRe2b+PBU8vof1cLtvdM+nKqNBC0aBluyDBe\n/J1zGadsTzXP/sJiwXB3ntjRg+FSzIu/cy5jRYPhWi94PhYMt+Hcbunu1uf8nL9zzjWN1xft4627\nS2PBcA+Nyc1gOElnS1opaZWkQ97BK+l0STslLQ+GSXHzPpG0Ipi+NMz2Mu9ElHPO1bCyeB8bJ1Vw\nVslMjr92BA+PqOb+ovaseaIVHXaUp7t7jSapAHgMGEnknbxvS5pvZjVfx/gXM/t2Las5I3i3byh+\n5O+cywrRYLitk1+MBcOdcUtFmoPhUnbBdxiwysxWm1kF8Awwuil77sXfOZdVFsyqigXD3Ti4dzYF\nwxVJWho3TIib1xdYGze+LphW0zckvSfpBUmD46Yb8CdJf6+x3lr5aR/nXNaJBcN99iQXjr2EXmPX\n89ARnWg7a2/zdkQtUMs2YZfeYmb1es9uDcuAI8xsj6Rzgd8DxwXzTjaz9ZJ6AIskfWhmr9W1Mj/y\nd85lpWVvlrFo0vZYMNzPR23O5mC49cDhceP9gmkxZrbLzPYEnxcCrSQVBePrg5+bgHlETiPVKSv/\nlJxzDmDTxgOxYLg+qzfEguFK+ndpng6k7lbPt4HjJB0tqTUwFph/8KbUS5KCz8OI1O+tktpL6hhM\nbw+MAt5PtkE/7eOcy3pzZxgjNr1Nnxt2cNspozim43YenNuHgUtK0t21UMysUtINwItAAfArMyuW\nNDGYPx24GPg3SZXAPmCsmZmknsC84HuhJfDfZva/ybbpxd85lxNe/n05w7Z8wheun8PY8y+i1/fW\ncn/vbhTO29l0G5VSFt0QnMpZWGPa9LjPjwKPJmi3Gjihvtvz0z7OuZwRDYYrf+RXsWC41jf4MW4i\nXvydczllzapynp28JxYMd/83KpowGC7P4x1CPJYsSY8E89+TNCRZW0ndJC2S9FHws2uyfnQpSsXe\nOOeyXeUBiwXDdV22IhYMt3Jor3R3LWM0uvjHPZZ8DjAIGCdpUI3FziFyP+pxwATglyHa3gG8bGbH\nAS8H43Uq6NOFf5nanh69svOFys651HphdiWrJq+MBcPdM74ktcFwyu9I5zCPJY8GZlrEEqCLpN5J\n2o4GfhN8/g3wnWQdKVML2t58JSOndWXwie0av2fOuaz3t1f2xoLhzmxHzgbD1Vcqin+Yx5JrW6au\ntj3NbEPweSOQ8PltSROij0uvWbuPeaVlFFz1fYZM68Np57Vt2B4553LKyuJ9LJi0g333z+b4PTt5\neMS2dHcp7bLigq+ZGZHsikTzZpjZUDMb2r66PQ8/Ucgvijewb+QojpzyFc67vKCZe+ucy0Q7t1fx\nPw8eiAXDpYpJoYZMk4rin/Sx5DqWqattaXBqiODnpjCdOfLDrbzyUGumLdtP6YAjKJx6Fpfc2orO\nXf1LwDn3eTBcvktF8U/6WHIwPj6462c4sDM4pVNX2/nAFcHnK4Dnw3aow45ySu6r5uaXu7GiQ2cO\nu30c597dkQGD/Tyfcy4SDJcaRjVVoYZM0+jib2aVQPSx5A+AOdHHkqOPJhN5am01sAp4AriurrZB\nm3uBkZI+As4Mxuul5a/3ccvc3vxpL7S+7lqG/aQnXz/DLwQ751xK7j8K8ViyAdeHbRtM3wqMaGzf\nei/cxl2b+rD+olLGnjeaY4teo0NhMYuerWjsqp1zec4wqqoPpLsbDZIVF3wba8DSjcx+vCM/W76b\n7UOOp/fUb3LxjaJlq8y7COOcc80hL4o/QI+1u1h9TzW3/7U1a3r3oN1d47h4agf6HZl5j10757JH\n3p7zzzYVj1Zy88IeLK4ooM1NV3Pa1EKGndwh3d1yzrlmlXfFH6DTnN3c+tvDeWbdLnTZeAZMOYoR\n3wn9KjbnnAPALHLOP8yQafKy+AMMXFLCE9M7c+/yzez6xkn0nfw1Rl+Tt38czrk0SxaQGbfc1yRV\nSrq4xvQCSe9I+mOY7eV1teuzegfLHyrgx28ZJf1703nyBR4M55wLzTCqrDLUUJeQAZnR5e4DXkqw\nmh8QuWU+lLwu/gBtyw6w+6FqfvhSd5a2au/BcM65dAgTkAlwI/AcNRIPJPUDzgOeDLvBvC/+UW1n\n7eUH/93v82C4e4/0YDjnXCoVRUMog2FC3LykAZmS+gIXEkTi1/Bz4HagOmxnMi9kOo2OWVzKw6WF\nrP3uBq457QyOLOzCed3eYsGszLtNyzmXCaw+t3FuMbOhjdjYz4EfmVm14oLiJH0b2GRmf5d0etiV\nefGvIRIM14ZPrt3P7SccQc+pXbm038u8OL2Sndv9S8A51yTCBGQOBZ4JCn8RcK6kSuAk4AJJ5wJt\ngU6Sfmtm36trg37aJ4EOO8rZ/EBcMNxt4zlvWhcPhnPOHSQa75CCWz2TBmSa2dFmdpSZHQU8C1xn\nZr83szvNrF8wfSzw52SFH7z41ykaDLdoVzmt/nWCB8M555pEyIDMlPLTPklEg+HWXLiR8UEwXJde\nK3hhdt23bjnn8kG9zvnXvaYkAZk1pl9Zy/RXgVfDbM+P/EMYsHQj8x9pFwuG6z7tWx4M55zLal78\nQ+paWhYLhvtn126xYLijj/VYCOfylRlUVVeGGjKNF/96qni0kpv/0DMWDPfNn3T3YDjnXNbx4t8A\nhfN2xoLhqsZc6sFwzuUto8qqQw2Zxi/4NtDAJSU8sakLH1+2g+u/cRJ9C7swpscbzJ1h6e6ac84l\n5Uf+jdBn9Q6K7yUWDNdh0kUeDOdcHqk2UV7VItSQaTKvR1mm4EB1LBhuidrGguGGnNQ+3V1zzrla\nefFPkbaz9vLvz/SNBcMNnnqEB8M55zKWn/NPofhguCtPPcWD4ZzLcQYcqM7O5338yD/FIsFwrZny\n90pKBxxB4dSzuPTONnTuWpDurjnnXIwX/ybgwXDO5QczKK9WqCHTePFvQtFguD9ur4gFw5080r8A\nnHPp5+f8m1jvhdv42doelIyNBMP17/kGHYuWezCcczmgGjLyNs4wsrPXWab/is2xYLgtJwyIBcO1\n7+B//M659PDq00yiwXC3vtY+Fgx3wbROHgznXDYzUVkdbsg0XvybWfX0ilgwXOvrrvVgOOccAJLO\nlrRS0ipJdySYP1rSe5KWBy+APzmY3lbSW5LelVQsaWqY7XnxT4NoMNzTH2+JBcONvLh1urvlnKun\nyDl/hRrqIqkAeAw4BxgEjJM0qMZiLwMnmNmJwNXAk8H0cuBbZnYCcCJwtqThyfruxT9NBi4pYfbj\nHXngvR3s+sZJ9J76TcZMyLxfDZ1zzWIYsMrMVptZBfAMMDp+ATPbY2bR5Mj2RJ4xwyL2BNNbBUPS\nhEkv/mnUY+2uWDDcmt49YsFw/Y703wKcy0FFwema6DAhbl5fYG3c+Lpg2kEkXSjpQ2ABkaP/6PQC\nScuBTcAiM3szWWe8+KdZNBju5oU9YsFwp00t9GA457KAWSTeIcwAbDGzoXHDjPpvz+aZ2ReB7wA/\niZteFZzPnuNUAAAPyklEQVQO6gcMk/SlZOvy4p8hOs3Z/Xkw3GVXeTCcc/llPXB43Hi/YFpCZvYa\n0F9SUY3pO4BXgLOTbbBRxV9SN0mLJH0U/Oxay3IJr2LX1l5SoaRXJO2R9Ghj+phNjllcysNPFPLQ\nig3sOfUUjpzyFUZf49/PzmUqIzUXfIG3geMkHS2pNTAWmB+/gKRjJSn4PARoA2yV1F1Sl2D6YcBI\n4MNkG2xsZbkDeNnMjiNyJTrR7Ul1XcWurf1+4G7g1kb2L+sc+eFWljzQMhYM13nyBR4M51yOM7NK\n4AbgReADYI6ZFUuaKGlisNhFwPvBuf3HgH8JLgD3Bl6R9B6RL5FFZvbHZNtsbLzDaOD04PNvgFeB\nH9VYJnYVG0BS9Cr2P2prb2ZlwOuSjm1k/7JS27IDbH4Abr6qG7cM38XXbhvPeX3m8u5T+yhevjfd\n3XPOBcyUskhnM1sILKwxbXrc5/uA+xK0ew/4Sn2319gj/55mtiH4vBHomWCZuq5ih2mft1r+eh+3\nPfd5MNyQaX08GM45lxJJj/wl/QnolWDWXfEjZmaSGvz28oa2D26XmgDQ/rDChm4+Yx3+0hZ+tiES\nDHfZyFH0L3zLg+GcyxDRh7yyUdLib2Zn1jZPUqmk3ma2QVJvIveY1lTXVeww7ZP1bwYwA6Cwa/8G\nf/lksv4rNjN/U3s+vnIft54wgO7TunFJ31dYOL2Ksj3V6e6ecy4LNfa0z3zgiuDzFcDzCZap6yp2\nmPaOSDBcyX2fB8MddrsHwzmXbmawvyrckGkaW/zvBUZK+gg4MxhHUh9JC6H2q9h1tQ/W8QnwEHCl\npHUJci7yUjQY7k978WA451yDNepuHzPbCoxIML0EODdu/JCr2HW1D+Yd1Zi+5bLCeTu5c0M/1o/e\nwHfHXMqA7i/Refo/WfRsRbq75lxeqQYqsvTMq7/JK0sNXFLC7PWdWH/lDiYOH0Lv3t0Z0+1V5s7I\nycsezrkU88dHs1g0GO7upS09GM45Vy9e/LOcB8M5lz75fMHXZYhoMNwzJXvRZeMZPPUIRnzH7wRy\nziXm5/xzyDGLS3m8tJD1Yzdx7amn0LewC6ML3+T5p7L0ipRzGc6AA1n638uP/HNMfDBcyRf6eTCc\ncy4hL/45KBIMV82tfy5iaav2HHbbeM6b1oXBJ7ZLd9ecyynVBvurFGrINF78c5gHwznnauPn/HOc\nB8M513SM7H3Iy4/880D/FZuZ/0g7pi3bz5YTBtB92re45NZWtO/gf/3OZYra3ngYN/8ySe9JWiHp\nr5JOCKYfHrz58B+SiiX9IMz2/H9/nogPhlvRudCD4ZxLgWqD/ZXhhrokeeNh1BrgNDM7nsjL26Mv\ngK8E/t3MBgHDgevDZKF58c8z1dMruGVu71gw3Mn39+brZ/iFYOfSLPbGQzOrAKJvPIwxs7+a2fZg\ndAmReHzMbIOZLQs+7yYSoNmXJPycfx7qvXAbd23qw/qLShl73miOLXqNDoXFHgznXD3V8z7/IklL\n48ZnBO8jgcRvPDypjnVdA7xQc6Kko4i80vHNZJ3x4p+nBizdyOzSTqy/cjcThxxP76ldPBjOuaa1\nxcyGNnYlks4gUvxPrjG9A/Ac8EMz25VsPX7aJ49Fg+Fu/2vrWDDc2J929GA455pfXW88jJH0ZeBJ\nYHQQiR+d3opI4f+dmc0Ns0Ev/nmu4EA1FY9WxoLh2tx0tQfDORdSCoPd6nrjIQCSjgDmApeb2T/j\npgt4CvjAzB4K23cv/g6IC4Zbt8uD4ZxrZrW98VDSREkTg8UmAYXA45KWx10/+CZwOfCtYPpySefW\n3EZNfs7fxRyzuJQn1nZh/fggGK5nIaML/+rBcM7VotqgvCI1x9CJ3nhoZtPjPn8f+H6Cdq8D9c6P\n8CN/d5A+q3d8HgzXv3csGK5Hr1bp7ppzLoW8+LtDRIPhfvhS91gw3MhpXT0YzrmaTFRWtgg1ZJrM\n65HLGG1n7Y0FwxVc9X0PhnMuh/g5f1enaDDc6ks2cE0QDNe51zssmJWB76VzrplVG1SUZ+e7MvzI\n3yXVf8VmXnmodSwYrnDqWR4M51yW8/+9LpQOO8o/D4br0DkWDDdgsJ8GcnnMRGVluCHTePF39VIz\nGG7YT3p6MJxzWcjP+bt682A457KfF3/XINFguDXjd3NTEAx3ce9X+f10qDzg4XAuP1RX+wVfl4d6\nrN3F6nuqY8Fw7e4ax8VTO3gwnHNZwIu/a7RoMNziioJYMNywkzuku1vONTkzceBAi1BDpsm8Hrms\n1GnObm797eGxYLgBU47yYDjnMpif83cpM3BJCU9sigTDXfONk+hb2MWD4VxOM3/Iy7mIaDDcj9+y\nWDDcv0xt78FwzmUYL/4u5dqWHWD3Q58Hw7W9+UoPhnM5yTzYzblDRYPh5pWWxYLhTjuvbbq75VxG\nknS2pJWSVkm6I8H8L0r6m6RySbfWmPcrSZskvR92e178XZM6/KUtPPxEIb8o3sC+kaM4cspXOO/y\n7DxH6lxN0XP+YYa6SCoAHgPOAQYB4yQNqrHYNuAm4MEEq3gaOLs+fW9U8ZfUTdIiSR8FP7vWslzC\nb7Ta2ksaKenvklYEP7/VmH669Dryw62xYLjSAUfEguE6d/UvAecCw4BVZrbazCqAZ4DR8QuY2SYz\nexs4ULOxmb1G5MshtMYe+d8BvGxmxwEvB+MHSfKNVlv7LcD5ZnY8cAUwq5H9dGkWDYa7+eVusWC4\n86Z18WA4l9WsWvU58i+StDRumBC3qr7A2rjxdcG0JtPY4j8a+E3w+TfAdxIsU9c3WsL2ZvaOmZUE\n04uBwyT5TeM5oOWv98WC4Vr96wQPhnP5ZIuZDY0bZqSzM40t/j3NbEPweSPQM8EydX2jhWl/EbDM\nzMoTdUDShOg3aXn5rnrvgGt+vRdu466ZfZixciMV543m2KkDOGecP3Li8tp64PC48X7BtCaT9H+c\npD8BvRLMuit+xMxMUoMTvRK1lzQYuA8YVUe7GcAMgMKu/T1RLEsMWLqR+Wvbs/77kWC47tO6c3HR\nIg+Gc9nFjBaVKXmI8W3gOElHEyn6Y4HvpmLFtUl65G9mZ5rZlxIMzwOlknoDBD83JVhFXd9otbaX\n1A+YB4w3s48bsnMus3UtLfs8GK6waywY7uhj/Qyfyy9mVgncALwIfADMMbNiSRMlTQSQ1EvSOuAW\n4D8krZPUKZg3G/gbMCCYfk2ybTb2d+35RC7I3hv8fD7BMnV9oyVsL6kLsAC4w8zeaGQfXYareLSS\nGy7sxe0jtnH6TVfzzaOfo/tjO3jr9T3p7ppzdZJBq/LUvM/azBYCC2tMmx73eSORg+dEbcfVd3uN\nPed/LzBS0kfAmcE4kvpIWhh0KuE3Wl3tg+WPBSZJWh4MPRrZV5fBCuftjAXDVY251IPhnGtijTry\nN7OtwIgE00uAc+PGD/lGS9L+P4H/bEzfXPaJBsN9fNkOrg+C4cb0eIO5M/wagMtMMqPgQHYGF/oT\nvi6j9Fm9g+J7iQXDdZh0kQfDOdcEvPi7jFNwoDoWDLdEbWPBcENOap/urjl3EBm0qqgKNWQaL/4u\nY7WdtZd/f6ZvLBhu8NQjPBjOuRTxJ2tcRjtmcSkPlxay9rsbuPLUUziysAvndXuLBbMy70jK5R+Z\n0dLP+TvXNKLBcFP+XhkLhrv0zjYeDOdcI3jxd1mhw45yNj8QFwx323gPhnNp5+f8nWsm0WC4P26v\niAXDnTzSvwCcqy8/5++yTu+F2/jZ2h6UjN3I+PNG07/nG3QsWs4LsyvT3TXnsoYXf5eV+q/YzPxN\nkWC4G04YQPdp3bi4aBEv/FqU7cnOC3Au+6jaaFWenQcdftrHZa1oMNytr7Xnn1270e6ucZz/4/Ye\nDOdcCF78Xdarnl7BzX/oyeKKAtrcdDXf/El3hp3cId3dcnlABi0PVIcaMo0Xf5cTosFwT3/qwXDO\nheHn/F3OGLikhNnrO7H+Sg+Gc81DZhl5G2cYfuTvckqPtbs8GM5lJUlnS1opaZWkOxLMl6RHgvnv\nSRoStm0iXvxdzvFgONdsLPLvLcxQF0kFwGPAOcAgYJykQTUWOwc4LhgmAL+sR9tDePF3OSs+GE5X\nXeXBcC6TDQNWmdlqM6sAngFG11hmNDDTIpYAXYLX34Zpe4icOue/bceaLb+dd/mnzbS5ImBLM22r\nOeXWfs2DMT/MsX36XC7uV3Pu05GNXcG2HWte/O28y4tCLt5W0tK48RlmNiP43BdYGzdvHXBSjfaJ\nlukbsu0hcqr4m1n35tqWpKVmNrS5ttdccnG/cnGfIDf3K9v2yczOTncfGiqnir9zzmWp9cDhceP9\ngmlhlmkVou0h/Jy/c86l39vAcZKOltQaGAvMr7HMfGB8cNfPcGCnmW0I2fYQfuTfcDOSL5KVcnG/\ncnGfIDf3Kxf3KSkzq5R0A/AiUAD8ysyKJU0M5k8HFgLnAquAvcBVdbVNtk2Z+QMwzjmXb/y0j3PO\n5SEv/s45l4e8+NcgqZukRZI+Cn52rWW5hI9T19Ze0khJf5e0Ivj5rRzYp0JJr0jaI+nRZtqXlD8C\nH/bPpyk10X5dIqlYUrWktNw+2UT79YCkD4Pl50nq0lz7k1PMzIe4AbgfuCP4fAdwX4JlCoCPgf5A\na+BdYFBd7YGvAH2Cz18C1ufAPrUHTgYmAo82w37U2se4Zc4FXgAEDAfebOj+NePfT1Pt10BgAPAq\nMLQ596mJ92sU0DL4fF9z/33lyuBH/ocaDfwm+Pwb4DsJlqnrceqE7c3sHTMrCaYXA4dJaq7M4aba\npzIzex3Y31Qdr0cfoxryCHyYP5+m1CT7ZWYfmNnK5tuNQzTVfr1kZtHXZy0hcl+7qycv/ofqaZF7\nZwE2Aj0TLFPbY9Zh218ELDOz8hT0N4zm2KfmUFcfky2TyfvXVPuVbs2xX1cT+c3B1VNe3ucv6U9A\nrwSz7oofMTOT1OB7YRO1lzSYyK+qoxq63kTSuU+5JNf3L5dIuguoBH6X7r5ko7ws/mZ2Zm3zJJVK\n6m1mG4JfPzclWKyuR7FrbS+pHzAPGG9mHzd6R+Kka5+aWVM9Ap/u/Wv2R/ubSZPtl6QrgW8DI8zM\nv6wbwE/7HGo+cEXw+Qrg+QTL1PU4dcL2wR0JC4hcWHyjifpemybZpzRoqkfg071/zf5ofzNpkv2S\ndDZwO3CBme1trp3JOem+4pxpA1AIvAx8BPwJ6BZM7wMsjFvuXOCfRO5IuCtE+/8AyoDlcUOPbN6n\nYN4nwDZgD5HzsoOaeF8O6SORu40mBp9F5MUWHwMriLvLpSH714z/7ppivy4M/k7KgVLgxRzZr1VE\nrgdE/x9Nb+79yoXB4x2ccy4P+Wkf55zLQ178nXMuD3nxd865POTF3znn8pAXf+ecy0Ne/J1zLg95\n8XfOuTz0/wHRcxpuECIMWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Uniform window')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULMld3/n5ZVZlVvft7umZuYNGSLJ4iSMLGWMbJHbt\ns4vtRegs2PJjLVjex9hYa2sxa9Y8d22dBXYHG5vlYBkhswhpMZa1GC0ySMvLPAxrQAIDFuKskeWR\nJTFXM3fmtrr7dldmZVbsHxGR+cuoiKzqe3u4g7q+59xzq6syIyMzI+Ibv7cYY9hiiy222GKLy0J2\nrzuwxRZbbLHFRxe2xLLFFltsscWlYkssW2yxxRZbXCq2xLLFFltsscWlYkssW2yxxRZbXCq2xLLF\nFltsscWlYkssW6yFiLxORP7ne92PqwwR+SIR+YlLbO/LReQXLqu9LbbQ2BLLFojIoyJyLiKnInJL\nRH5MRJ7nfzfGvMoY8833qG/3fAF0fTAi8h3B969w33//090HY8w/Nca8TF3biMgnPd3X3WKLO8GW\nWLbw+DPGmD3g2cCHge+6x/3ZGCKS/x5c5j8ArxSRifruy4B//3tw7S22+H2FLbFsMYAxZg78EPAi\n/52IfL+IfIv7fF1EflREjkTkKRH51yKSud8eFZFvEJH3OMnnDSIyU+18noj8ujv3/xWRT1W/PU9E\nflhEnhCRJ0XkH4nIHwReB/xnTpo6Uv35bhF5u4jcBv6kiPysiPwV1d5A0nE7/L8uIr8jIici8s0i\n8omuH8ci8hYRKUYezQ3g3wGf49p7APjPgbfpg0Tk/xKRGyLyERH5eRH5FPXbgyLyL9313iki3xLp\n46tcH49E5LUiIuH9iMjPu1N+wz2Xz49Jdlqqcdd+m7v2rwCfGBz7QhH5SfdO/z8ReeXIs9hii1Fs\niWWLAURkF/h84JcSh3wN8EHgIeBZwDcCOi/QF2EX308EPhn4n1y7fwT4PuCvAQ8C3wO8TURKJ3H8\nKPB+4OOA5wBvNsb8NvAq4N8YY/aMMYfqOl8IfCuwD2yqKvsc4I8Bnwl8LfB64IuB5wEvBv7bNee/\nCfhS9/kLgB8BquCYdwAvAD4G+DXgn6rfXgvcBh7GSjtfFrnG5wGfAXwq8ErX5wGMMf+F+/iH3XP5\n52v67a89x0qkf9n9A0BErgE/Cfyg6/cXAP9YRF4UaWeLLdZiSyxbePzfTiL4CPDZwN9PHLfALk7P\nN8YsjDH/2gwTzv0jY8wHjDFPYRd+v1h/JfA9xphfNsa0xpg3YhflzwReAnws8LeNMbeNMXNjzDqy\n+BFjzC8aY5ZOytoEf88Yc2yM+S3g3cBPGGPeZ4z5CJYQ/sia898KfJaI3IclmDeFBxhjvs8Yc2KM\nqYDXAH9YRO5z5PkXgb9rjDkzxrwHeGPkGo8YY46MMf8J+Bng0za8tyTUtf+Oe77vDq79ecCjxpg3\nGGMaY8y/Bf4F8Jfu9tpbXE1siWULjz/nJIIZ8Grg50Tk4chxfx94L/ATIvI+Efn64PcPqM/vxxIG\nwPOBr3EqniNHYs9zvz8PeL8xprlAfz+w/pAVfFh9Po/8vTd2sjHmHPgxrBT2oDHmF/XvIpKLyCMi\n8h9E5Bh41P10HSvhTYJ+x+7hhvp8tq5PGyJ27ferz88HXhq8my/CSlZbbHFhbIlliwGcNPHDQAv8\nicjvJ8aYrzHGfALwZ4G/JSJ/Wh3yPPX5DwC/6z5/APhWY8yh+rdrjPln7rc/EBjGu0umuhr8fRvY\nVX8/XYvim7DqwB+I/PaFwCuA/wq4D6vWAxDgCaABnquO18/qbjG4/2BT4K8dvhuPDwA/F7ybPWPM\nf3eJ/dviCmFLLFsMIBavAO4Hfjvy++eJyCc5o/JHsAS0VIf8DRF5rjNufxPg9f//BHiViLzUXeOa\niHyuiOwDvwI8Bjzivp+JyB93530YeO4awzrArwN/QUR2ncH6K+7sCazFz2FVhTGvuX2seu9J7CL/\nv/ofjDEt8MPAa1wfX0hvr7kTfBj4BPX3bwCfIiKf5hwmXjNy7RcxtO/8KPDJIvIlIjJ1/z7DOU9s\nscWFsSWWLTz+pYicAsdY28iXOVtEiBcAPwWcAv8G+MfGmJ9Rv/8g8BPA+7Auut8CYIx5F/BXgX8E\n3MKq077c/dYCfwb4JOA/YZ0DPt+196+A3wJuiMjNkf5/B1BjF9w3MjSaXxqMxU87G1KIN2FVTB8C\n3sOqA8SrsZLMDeD/BP4Zq8b/TfEa4I1OdfVKY8y/B/4X7Lv5HVYdGl6NVavdAL4feIO6pxPgZVij\n/e+6Y74NKO+wb1tccci20NcWlwUReRT4K8aYn7rXffn9ABH5NuBhY0zMO2yLLX7fYiuxbLHF7xFc\nrMinOlXgS7Dqurfe635tscVlI2Ys3WKLLZ4e7GPVXx+LVdn9A2wszBZbfFRhqwrbYostttjiUrFV\nhW2xxRZbbHGpuLKqsAev75vnPf9BlsbQLgUDtEZYGlgshcUSFktoW6FpMtpWMEZgaRADYgzLTCAT\n8myJZCCSlv6Mkf7zku74zP0v0p8vttkV1vc+vUvj27Tt+v+XS/f30h/XXzPPzeB6qT6O/QawXA7/\n9sdnrrP6HsK/9T2J2P43BpZLYbkU2tb+G4N+jiKGPDfdZ98H/Rz8M8hze2yW2edQ5HBtYtiZGKZZ\nCc0c5s5Ba7aDmUyo2wVnTcbJgq5f4XNI9S1E+K6zzGDcvRvT37sx/Xjy70xk2E7/uX+m/jNAu7Rj\npV3SPVdYfUe+z+G40de2z2s41vR5HtkGW1Q9zmXkNYfjWo8JPd5SY82f65+nPj/z56j+6rGTZfae\npxlMM8gFcjH8zr979KYx5qH1d5nGH5IHzSmLjY59lJMfN8a8/G6udy9xZYnlec9/kLf93DdyXOfU\nSzvwqjbjuM44XeQc1XDjXHjsDG4dFTz2oWvUVU59kjGtWnZPas72CxZlDoWwd1BTlG3Xfqk+A1TV\nagLesmwpypaiWDKZLofnTww7wSnn7ueqsf2tq5xmkVHX/Sypq5yqyqnd9fz/hbuWviYwOFfD/961\n647z7cfupbuOO3cyXXbf6fuZ5TCbwLyBWzWc3J5wdntCXeWcHI+Hq9Tq2v6e/PX9Z/0M/L+9g5r9\ng5q9/QWT6ZI/cH/DSz+m5VMfPOdZO8+hOLkF7/8dAOQTXszZzpQP3X6C33xyl196XHj82E6VZpGt\nPA+P2HPRfdPPxff17HTK6cmUqso5PS6oq5yibNk7qCnLlr39xeBZaujn6p8pwFFlx4p+rvocYPD+\n/fM6dc++KFv23XjevdZQlO3KWKsT97punIf3v3LsxFA10l0P6J5PrE19L/4ZNYts5Rz/XP25sf76\nNnevNXzMQcNhCQ/vGA4L+G8+8Yt1poI7wikLXpO/ZKNjv7z96et3e717iStLLEtjBqQCUOZLylyw\nMX85NrhbgJq6znjyiR07odzGdvekZlHlLMqcU4puQYD0IrMpqkaoGjvR9Hd+QoeE4qEnbB1MrBDh\nd1WVd5PLt60JZqw9PXH9ec0iGyyI5y0ducwbmKu1pSiWK23E+ju4RmKBCEmF2gxIa29/wa0aPlJn\nHNc595dnlOU+Zs8Frs/2WCw/QtVmg2vVVR5d4FOLLKwuqqnzYs9zcO06S7QBlScY9zhCUvHPpnT3\noN9vSMLTk4bTffuc9t1Y1mS6jkh9O+E47MjKjQt/Xyn435pF1n0O37G+L31OuPkp1Yaqa189S3+s\nbvNx4PxaAwjzdmuHviiuLLE0SxmQCkCRGQ6KluM6Z7FcMsszHt6x5FI9YNmkrnLqOocTe860VhOo\n7glmbNLAqkSTgpZOIE0o4Bbn4De/IHZ9TCwM4cLWTdKgPb0IXQztgCQ3wabPKAa9UE6rljPsYunJ\nZXdvwVFtOFnkzNtT9mbPh/37ATCTkrZuqJfCvLXSgO17v3BNpnaB7Hb+jpRTi52GX1ghLjGmnu3K\ngl3r61uC8ced3V6d2n7joNvx7/P0uGB60lhJHDill15SO/ywb16ij93D3kHNyXFxIXKBoaQWXvv0\nuBiM71hbWuoL2/Pn6Ha91FhXtetjzbwZV89uCsmgnG3Y1u1LueQ9w5UlllAfXmSGMl8CGWVuqFrD\nfcUSaksu8wagoq5ynmSHxfFwkNsJWVDT79i89JJCaifroSenJ5RwBxqqA1ZUWBF1QEgMqYUs3HWu\nSAKR/hZlS61UKXrhLCfjOSY3JePU4ua/15LKtGqZ1i3TqqWm35menU45Oqg5rjPOmzn19JxyxxJL\ntTynNau6cK+m0f3UJBH2M3w3IWLn6vP8vYT3GBKuJxgvIXpSGSN/rSrVpLJzau/bk8u6MazHw/Sk\nYbeyxy/K/tqL0l5jHbn4jYd/zoNnUiw74q4T49C34/vsr6NVshp6o3NyXHB6XGBumk5i86j2NrOL\nbNHjyhJLY+CJ8wllbqUUsDaWeilUztg3zQzXZy2ni5wXHhoOS8NheZvf3V/w5MGs290AULtBWvQL\nj99Rwfii6XXOekJpCQWGuvCUdBEituMfW7RiC5HuvyelMaklJa01i4yT2xO41pPLeasksjVqPd2/\nMYLxC6V/H4sy7/4V+8vOdjGZLpnlhjI3FNlwEcujuTDXI7mbD9RYk+mS/WsNVSNM3Dn7B/Xg3Yb2\nulAN5L9feYf1qvpOj4OQ7Cq3GTAnq/3273L/oI6+a3+uv84pRU8ohUTbAWX3C8ilaiRKKneCMmG7\nhCGh7DsbksdT1U5nL+02KgkNwRZpXFliWSyF04VVeVWtcOAnWtsTC0CZG8q84XSRMcszDgvDYVnz\n6N5iYHhdpx5KSgXBbvaiE0svOF4Vto54YoRTq0VCG/l1u2FbWqetvwv12R6eXLTKJlTtbaJ3H1MV\neUnFwztXhAbx/WsNh4V9v3k2och2MPUTAOR7D5LLFKiZqUvFnCa0BOmfYUgw+p48qdxfwDw3nDsp\nTo+DGBF0fbigCjJmV9CLrb+H0/2CRdXCHtYpZX/CXmkdHnavNSvOHiFhATzw0Hly7EXHXMJutMm9\n+D6E43Fs/EFPKt7Wd97a7w4fqKJ9uVtbqUYmQlFuSFJbVdjvTyyWcOMcDouMWW6JZpoNbQAHxdKp\nx3DqsSV7U+GwyDksDDd2a26sIZgxKUBj6AVm9fn1mh1TTOe+0q5b6MYWqzGkVGxatx3aFlJGUrDk\nEnpWXRR6Jx6qv2yf1HtUHnueVCbTZedJtT9tKbJriDGY1u6oxRhymVBkq/khPalor6OYuhHiaitP\nKoelYd4Kswag4eT2hL39xeiz07jIghcSih5r9bWG2qmvTuuC3ePakspBzYMPnbN7rWHfSZlewoqp\n8ELpKLyPcMOTMvBfZFMVSseaVEJpJSSU2crjM+BUXjEvtC0uhitLLHULj54ID+9ad8JZnnFfsezI\n5aBYsj9tOShaqlacDUaoWmuD8QTz8K4lmFuHNbeOiijBxCYRDHXxfqGbb7jmpyZmjMjWLfZhG2M7\nPn2+3sWmrh29zgaEEvWAiqh5dN8H0oqTUrQapiiW7O4t7A61hPvcxiGTHNoaGmdPaGv7nYJ2gdXv\nOHp/Abn4z7t7i45UDguYt4Z5Dtbz0KrGOJ0Cq0Zm7yywKULVmyYU7Zp8fq2hWWS2n/s5Z86u4iUV\nT4TQS1gpgtH2jO47f+/EJVRgxXvQP8PR+wsILObu7jFGKn7O2d8M5WHNrtsshhLp3UIyKMvLcQR4\npuPKEstikfH48YTztt9BwpBcPMrcYEPOMqq2/+6+Ysm8zdy5EjXyaXLR2FRq8BNubDHW3j7roCdd\n6EUW9kkvFH4R0QvAysIy0odUHMyY99SmSNm5tGpkLRpFLAHm7aqkomNONLS6Tv/mCS2FnRwqZ36K\nuTQ/3dB2lKLsPanCWKoxpEglxEXUX2PS7d2MmXWYTFc9LLfYHFeWWJat8IFH93nwoXNOrjXcutZg\nVSiWXKpWnIQiyqifDewv4HZ/bgd4WBrqajlYXFKoqzAYsF94dLzKGMJjQiOv/j7ERXfAHjFXWb0g\npcgltEWkkHJzHj3Wt+cMxrEFpzvmdAp7C+aNce8zY2lamBT2H0BesGzazt34vCVKKuG9x/rmd/5g\n3+utLjbKqsJ8kGjVSLdL1giJPYXNpMWWsPCmVz0VxbJzIPBG9qJsOW/7Xb13tojaxor142ns99hv\nsfiZMY9Av7nS76RZZNTOruXjqLwLOfQaAh187O/PY1NJfIseV5ZY2qUdrI99cI+9g5qzg5qqqfCS\nyTQzgwC5GKlATyyHhWHeSKePhjU7eGXoLcrWeQfFjx/bPW2sflI76NSOONxlhx41IamERvtYHI1e\nEFLSWwybqOJCh4KV/kSMvQCcTrk1qa0kshRa0wyIxYj9rmozjtyiHyOVWNuhN1dRDJ/hkFz6zAOe\nuMJ7HCPyEP4Zj+/kh+QSc9cNVVqbqGcvuruPEWZILmPZHmKxNaFNS5NMs8jY3VsApiMXjzCjhT7/\nMm0tImxuvP99jitLLNKaLpjrqWpHLRhnWHKxA+rAbWJjpGLJp9/ReZUYWL11WdqYjpWFwKlsNllo\nPTn5yPSuiWBBWLdYp6QWjypCEtDrp2tlx67rjJPjIu7OrAIGddubODXEEFPP6c+xhVFjJebDL0KN\ncFTbzUNrFhgRyO3Lbs2Cuj2nagvmrU27olOe2IYCtVbRe4xpO1WMxHtyWY2QD89fl3qnazPo3zjB\nWHKJxYqMXiOQVta9Q92HmM3HY4xQ/L1phOl7tKSeckHv4MgFrPSSJJV6K7HcDa4usRjD7vFQp/5Y\ntec+WXKZ5bmzr4zDSix+F+TI5bAeunWGxmXiEyfMewS9SJ/amYftxX4LEZKRX4DX2SM8qYQOCIO2\nFbmMGbljfdYIo8RT9xG2t073Xlc2QHJ+f8VxndEuK1qzIM/tdGhNQ700nC4yjiorrfhFO9lf/15V\nMd9QWtE4cUGMOkdarYiFNYGJHuuCVmPuzxbxzUiMXM6DW7hTo/aYcT+Wgy0cOzF7WcxD0J+vN25d\ne3XWOSXESEWrwS7bM0wEJtOt8f6jGksXFKdTskxPGp58YoeibPmPkzmz3ACTzuU4NOovVEqYztaS\nwyy3XkdHRcMNt+t88uZsZQHwk+r0uBgsJLE8W50Rv+rjTXQbHmNSQYqEBlKActWMISZljZFLeH19\n7+HkD/u54iY9sqNOkVAVWXTA5gubh1Joa9WY1tXYup/PJuO2o+ENyqDvHmN2knCBjqnwYipGf43Q\nvqXbWYcVz7pIfjgdtOgX3TDP1tg4i7lcew81336ImDQe3lvokaihPfHCueal/5jaC4hKY+uyD9wL\niMjLge/Eqla+1xjzSPD7C4E3AH8U+CZjzLcHv+fAu4APGWM+z333l4DXAH8QeIkx5l3q+G/AVjxt\nga8yxvz4WP+uLLFIDmcHRZepGLA5paqSk+OColjyaF4Dhlmedca+Vf/3HjaJpXVdtgZCuzAdlVZ6\nOXqqTGbvjZFLDN0kcl48o4Zq9bdeRGILnXYhHqjI9G5ujY5/pa+Re4gt8qn2YilrotdRi09IrOkd\n+zjyzGZlmOVmRfKI9reQlWNidpdBUs81ed30ApoKfg3PjyGM7RhDjCT8GAjHyybjIBZXEovZCtv3\n52qSiLnBx1zew/P8fXT3WGddxgN9Xf8+wjl6Nznrng44Ungt8NnAB4F3isjbjDHvUYc9BXwV8OcS\nzfxN4LeBA/Xdu4G/AHxPcL0XAV8AfAq2+ulPicgnG2OSD+bKEksmhmJ/SY313ffk4jPhnp5MeXy6\nZJY31uOrsDssLZl4lPmSvenSBVHanW6ZSxepf1TALG+6XaVWe2h4ctnEcN1dO3FsKAmEnjLRNOwb\nuIGGUebrkJJcfBtjBvFN+qV382U53KXqzyuSXbCo5zK1sSz+s8Mst0Qca7vvRO/eHOLEpfUJs0Yn\n76dcdZGOefCF0kq46K4joJjtzLe7KWLXW0emQBdLA6tqthA6wDfmXNClhHHjYIxcdF9jBB9T72mv\nvruFiFxWHMtLgPcaY97n2n0z8AqgIxZjzOPA4yLyuZF+PBf4XOBbgb+lzvlt388ArwDebIypgP8o\nIu91ffg3qQ5eXWLJDXsHNacU1MWEM6zEAv0AO7s94YabhPNGmE2cFJL3dhVNKl5i8R5kmmDASi+P\nTeadasxfq/u/Nl1W2f2Dem2Q3Fg0fWjT0Tv6MdfQ1I425n4ZkktK5bOWsA7qteSyDnpBCfupP8cW\nmjxbnQa5TCnzpjunI0P/f50N3JsHx0R0/bUijJSt7CL3HyMVv+B6ddVFPLXGXHpTrukxh5LwOWtP\nRE1oHj4wMSS4FMKxpPt2IXJJ1DCqq3yQxHI3yCX2DMFzgA+ovz8IvPQC5//vwNcC+xe43i8F13vO\n2AlXllg89vyixqTLKwV0BlWwA7ZyAW47uXBYOvfiFrxrsjfyexfl0iU49ARz2OaAJahqbxFNKlkz\n1A2HKpixlPkhisgCqL+/aBzListzbaBkZTG/U8R2vxdpN7T5+AVl3WK9iXOG7uO+y9Crv1tRz4xJ\nN8Fxd0KmVUAq67CpQ8OYu/Im48VvZHSGb72RibWrE5F2bYxdYyS/mP8tJBdYdUnW14llTH46yCTL\nLuRufF1E3qX+fr0x5vV32wcR+TzgcWPMr4rIZ91teyncc2IJjUgi8gDwz4GPAx4FXmmMueWOjRqQ\nROSPAd8P7ABvB/6mMWbjFaMnl1WjXzfY3KCt9hact32Qm5VafOLK1UFjU8JkztCf2TQeLdQusZ+f\nAOGkjrpNbuDiubKoKTVNqUglBa0mG1OZXAZ0ht0QWi2xYryNJERMXiNi/PWYXYBUdHueXNYtPtro\nH0orKYkidi8xVU3KfrB5kOLQ5pC6tsbGmxGnTtYoyhZOp9TTZVeYDIaBobHrj7kR677D0E6ojfpa\nevFtacLRhOKP16R4j3DTGPPpid8+BDxP/f1c990m+OPAnxWR/xqYAQci8gPGmC8eOefC17vnxMKq\nEenrgZ82xjwiIl/v/v66NQak7wb+KvDLWGJ5OfCOi3TCk4uGl1q8AbgsdSW/GhCrGmuzzmNM74DL\nfOmSHJouDmbeWsP+uUqbnhq8Me+WWDqUGFK76G7ylasG09OTKUU5jL3wRtaqbKPFo7r2x+rKrMli\nm1JfhQ4Nvt+bxBjohSRGABdZMGKLpI9S3wT7ym4WcyeH8aJrsWPW9jkgi05FpW0L1aprbSgthi7z\nKXWnP29atSzK8Xo9Phret7OOVFJ/x7BSgC2iGgvvd3DtQBKv67g98h7jncALROTjsQv8FwBfuMmJ\nxphvAL4BwEks/+MaUgF4G/CDIvIPsWvvC4BfGTvhnhJLwoj0CuCz3Oc3Aj8LfB0JA5KIPAocGGN+\nybX5JqwnxFpiCT2U9pynVUxvHN/5WnIB40oa98SyP22dzcVQ5m1XrbJqndTSyCCpHwxVI3rgjy06\n61QhMY+a2EKrM7qmvId8saXT0SsO0S1wF0yR3vVrA8kghVSKm8uAlkYgHsSnj4VVUgnVi+FYuyzo\nHfpKZgS3qI+pgXq7yJBgvHorvPdp1bIg7wqr+XNCz6yiWA6yDej+hkhJ8zGDvia/lN0l1n6sH54I\nLwMil5OE0hjTiMirgR/Huht/nzHmt0TkVe7314nIw1hN0AGwFJGvBl5kjDlO90/+PPBdwEPAj4nI\nrxtjPse1/Rasc0AD/I0xjzC49xJLzIj0LGPMY+7zDeBZ7nPKgLRwn8PvVyAiXwl8JcDO9YeSndIT\ne8zbBWAnr50xX+cY66WWIhPqpaHoJJolD+9YY/68xeWLMszLmvMWbh0V3eSvqtUgMd2PdbaIlLok\nhE5X4r3SNt2ljbUbW8TuVrUQi4u4KDY531aQ3HwRiJUlhs3iSUKEi/CdEmS4WIbtRqUVp8bSRbwu\nglihLxjag8I55bFuwU+R7d3aQwaEx/C+L5PgLxPGmLdjtTP6u9epzzewKquxNn4Wu3H3f78VeGvi\n2G/FCgAb4Z4RyyZGJGOMEZGLK8ITcMav1wPc9/EvMHczWbXa7Ly1eace3sn4SD0kmKq10soT55Mu\noNKTiyUWTzCWZHbymsePJ6O7K92PGMZ2z9qH36shwjxeum1fiMrbmbq2Iw4BY/2808kfW9zu5L2F\nZGIrSLpCX7K6a45hE3VN+J0mm04aUUZmr26NeVT581J2t7ExEEq6YbsQz0HnSzh770Sgc7eNRcfr\nLAxF2Zd/9u+tK1F9gfEa3ltMivLfjY2FmOdXCC3F+zb1tVJeZXcCyWBarj/uowH3UmKJGpGAD4vI\ns40xj4nIs4HH3fEpA9KHGDLzRQxZK9ADbN3EHdpkauaNuAJOPcEcu8Gto/QB9qYte1P7feXsLmC4\nkYOVNuHoqeEoHOz0arOyK4whFlR2dnvSLWx6UQvVOjpCuVmsr0w5kPTUpNa2jpjUEssl5o/3O911\nZDJGYFG1VHCcGEO4g6la6ZIVbrK7TuH0uOjclP39+PYGpKLeqV+UfWGylKPDpmR3EYTkEnpQ6e9S\n78zfp+//7rWmS18z1s9Yu+s2J5tsvsY2W+F3FyHwLeK4Z8SSMiKJyN8Hvgx4xP3/I+6UqAHJGNOK\nyLGIfCbWeP+lWD3hpSBKMD42hCG5VHsL5i0cVTYh5VGdcVjYglIe08x0lSm9a3LV9mWRZ3nuvJV6\nclmZZLWJ6rFXdOMjqgytW1/5TU/k0+lgZxtO8tDTTOuk/S5RXyO289Sf9cLvF1ePTSZ8bHcbXtsv\n0lZiWa+a0zr2cGFdJ62dHhedesmPpVqd040flUPO3/ve/qKr46JdclNEvAk2VUVOqxZT9TXg/f3o\ne4ttLLT3m48B8TaaomyTHmBJQqkNYLpzdHqVmN1lzO7lsbaQXdl7ao61s0Ua99rGEsMjwFtE5CuA\n9wOvBFhjQPrr9O7G7+CCHmGwmd69H+hD+OC+Bx8658xVKbxVY+uat1aC8cGUZW7Yn7oFLrNqMq+W\n9tUp7WsxzPI+4vdELUDTqu2COVPkEmbH7e4h4rqaWqBi0ofWPYcLtV8AQyJaZwsKr6lLCafqkKd2\nzGE/w0LjDMD3AAAgAElEQVRiYdZmsLnBgGShr02uO9DTV0pd6t4XFdR1npYyC4HaDAh1Ml126U92\ncoM1Jw6vcSfwnl51lXcOGb69zkbSXch09+ExrVqmNN396M2AllKKsuWwNKoyqum8wSAt/XT3psb6\nosxZuI1cyvYTI4JwU5OaFyHCUIDLgAjk00vT7D+j8YwgFm1EMsY8CfzpxHFRA5JLlvbii1xTxCSr\nF8YMd+t2iXWV8+QTO90O206gBu81BvCsHXfs0pY6rgP1mN09Zzw4a/DkAkEqmNJOLh/MOebp1e2q\ng1Tz/n/fpj82VGOESElEfhHxUdTQSy1he7pPIWGFC5T/WzsSeNuT7nOsn2Mk5tub5XROFV1p4knh\nat73kff6flPXjY2LcKe/Vy66/oXn1VUOpbp3937uL2wRuXnjyFBVKdX2G02cm9ZsD6XDmMt9f7D0\nJEmfpWJRTLo2YqUCdMoWL3X538feUV3Z8b1AEV6QOic2HvX/oX0kJJVNHFTGMlRvkcYzgljuBWwU\n7PjOJcz6G6p2YuK8n9B7+wuXGr1hNhHmra394eNdQlLpFjh6cinzDB90WbpUMN49c0zlA+PeU54I\nvBE/jCSPfQ6/C9Udfmdq4RbA0+mg5K1GLPV6TNoKXUg3QdJLTr1PXXI3k7yXVpoa2tpJMc1K0tHR\nnGEJ7B3UScnJv08/rrxdZXdvYZ/pxAdyCveDreOyt1hpS8ebTKZLzm5PuveaSgRp76N3I9dtxlBj\npYZOgiiHhvpwPtln1BJWrfTwcyrMlDDY2HlyCZJ8pkgl9p3ONTZGKiHhX3r8isDk3gVc/p7iyhKL\niEkmlxvscrx6p8qj4nGoE9Z/7+0vqBrnTuzUATZKPxvo9ovMdH/3moiMqjU8f29psyufO4+x6VDS\n0H0IJ5s2wnvsdqlpeo+vcJcbS1UfU4f551FOTFeeuUev9ogR8BhphYtgiFiq9E2hFwtvY+m8whZO\nGmhqUPaXcIFJBXSG9xIjyLDfOh7EPxevAvMlGGadJCjsKJWSb3P/WjNI7DgvG47cdWNxItAXuQp3\n//Wa56rJRZ9XBvcZIlZue1N7z5gd0V97DClSWWdnGbvmFuO4ssSSZSY+SCd9dTlwk7Uw3Jo0UYIJ\nvXpOj4tOBVKUbVcG10st90GX/qXMlx2p9LnGxEkvSw6KvnLlLM+4kdssyTeCRWPMa6qLR3C2n3Ji\nOvXKrAFoOLk9YW9/0R3f9V1hRXXlFhFPUnpn3V07sQseUymGEd869cdgRzlCLpt4r62UP2hqqHti\nySb2gFSZhDDBoSZ3vZDtOulC23S0tHQ+Wc3A4NWK9pkykARnLhAXtynyhNI/f1ydmd4mMyh5rJ6p\nTgDpE0qmFu6B3cKRi1ZNhSqw7thOahlioN4cSRwZOnTo/zdR16auuyLxTK6G7eP3CleWWFLwhY00\nwprf3jhdlC0PPnQ+IBitA+5cSm9P2MmbLpDSJ620XmFW9QVLwoSIPltymRtbdCrPOSr6Gi+Puxov\nME4u3khbVznlpJfS9H1dtGb53UBP6sv2uLmIisoTei5TTHvaEws2u3GRWWnBv9OxtsfUeJv02ccU\nbbqL773ETJL8NsWYnU7/NpCSWSWhVDmGsC3oF/KTRJqgdeSSan/d80v1MTbv/TO+LNIRMUy2xvuP\nbqyWHOhRNULljKW6fOnAwyQYwA8+dL5SIEgvmr+7yLpAyqM65+Gd3Bnpe3Kp2rjtpcj69DB7U3EE\nQ+c1thG5uJxHlUslA31m2TtJWaHb28kN82a4u/fPLZVu3auAwmzBHmE23NDl9iJp4dfZo0KYtgKm\nlLkLopyYXiV4h0Q4cBdu+vvRpOLbnlQ5R51tQjpJ5KiycTWhQfwWhp0WZrkt7XBU2WO9a69WiYab\ni/CZamjVUexdhZuoTUjRS7iHLkRrJ2+6vobJI0Pje2iI19CeaL4/GnocRsdk2RKrZrnFneHKEksm\nq4vV6qKR1qXHdj0PXp+vGKUHye7qjJNrDR9z0Dg35AnXZy1lLl09F439acu+02KcLOg8ycrccF+R\nuTov1nju411i5BLmPPK2FU2WMbfKpyOzq45tqBrpDPypypoXwUUW/dnExhQVmVhDfdusSCz+ndxf\n5JwEnmkhtPF7o4JpCVLRC/T5pHHqSmHe0JFKuADav70azB7TjTcnSeuEivp4jVj9n4GkMPKuNAno\ndjpJzu36vRrWF87rvSYXG5FLDJ5U9gc201VD/DpyCft82RCBvNhKLB/VyOh1zHqi+gE3maZLr8Z0\n9h4xI3/oV98o6WXe5jxrZ0nVGg6K3mDsSaXIrY/yYbbgvFl0Npgy921mXQGxDz8+WyEXHZjn78tL\nZHphSyGW0E8/q1EvokDCWy1NO/Qeuxty2ZRUtI0hibaJ1r2PXW/M825df8NnX0UIwEsjMF5tUUvZ\nJ7cng0wJetOwzn02VjLBG/rXvSv9DvT9aylllttSE30l1r5w3q1J3anGQnLRCEnck8rAgSE36nn1\n9zsoWFf3BcJWitNtDfZ3hStLLCH8RPcIB9pFkjKmUorriOC6zqgeqNxONONhF+NyUPjMyIY8m5LL\nhNY4763M7u6q1leu9ISYAQIfM+fWUcHpyTRZPe+yMrVqnLe4IDhfGkDde4S0vPF6J7dqobvFpqRy\nN+6jdpEdz3S7yWKkx1msDspqRt20u24MHalEnrtWE2l1WOo4WH1XE+WNFnUjT5CLX/DD/2MI39Om\n9q0QnhBDzUSqvxdp+04gcndj8PcTtsSiMLZzj+1uxgZJGPMS/vbkE45JsBW05q3h4Z3w2EX3htpl\nw8kCqrY/xhr7fR8cuWA90jS5QJ8pWRuXY1UsUxMpVfL2zBVvgqbbWWv9fsy+cd6qXbCC729V2XgO\nTqddzEa4IMdUd+vcTvViPW8Mi6XNPN2ahjyfQOH0jrkl83ppVnK8hQgTTupkk36saDVMaowl64O4\n/npsLJlpdZyKo+muF1EBa9LsbQ4m+q68q/46cvH9v4XhfuAI4bAwHLmwoaPajpdb9bBPYfxSzHVa\n26RCAta2UX9srGT2mIei7v8WF8OVJZYlvb66U0tEBlgYaKgX4JQXT2rxCNv35FJXDfODBuvh41Qs\n+dKpvewCV7XS5RYDOpfkqs2ZZoZn7XjvMksuE+cxFtpcNMGksgmEi5DfMYZFlDyaRcato8KWXHbP\nUgf+eaTdUVdxclz05OKPDYhwTCU5UMP5nbp6L/OyoWozqlZozQIp9zF7uwBIXrq0+RdHWBjOj5MQ\nmth1n72H4f7BanqZlLSU2uCEAb7+b63C1KQS9lOTSywOZddVQdULftrLr1VqvaFDgiaVmHSi7Tyh\ndBdeQ6u2Y4SpoVPbxNqMqcieKRCRlwPfia3H8r3GmEeC318IvAH4o8A3GWO+3X0/A34eKLHr/w8Z\nY/6u++012IKJT7hmvtGl50dEPhX4Hlx9F+AzjDHzVP+uLrGYVQNqKslhbPHz8QqxBS6UAsLFQ+dd\nevKJHerKLyKWXD5uL1euxy0wJBUN7aLsyWWWw428N+rD6iQMU7XrPsX08SG5xKCllNgC488rJ03U\nCB3i5LjoF2f1TOsqpz7JKPb7pIQxMoT4u7M2Lquys2Wj5zC5D6ZugZzt0ZrTvuqn0hqtUwP5fzrg\nMZX00O+Y9fkeA7tcooSxlorGELt2uOjq9+bzfflzB55jgTHex0CF0kQoIfuqkTa2qY/HmSfGwYqN\nR6nuxuYltNF70yQbJkzVKmqfiXrsvd0xBCaXYLx35dxfC3w2tv7UO0XkbcaY96jDngK+Clv0UKMC\n/pQx5lREpsAviMg7fKFE4Ds8CanrTYAfAL7EGPMbIvIgOnFdBFeWWDy0V044UMdE5LrKuwHosU4X\n7EnFRy37iOKqylWK/Mbt5vpX06d7iSNGLp1a4IFqQC568fOZY31/AOqirwWzKcbIJIZYzEDy2JBQ\nqpzpScNuVXNGwSkqIHUkS4Duqy8HMG+tl11rGpgUMNuzB+UFy6Z1Ek180daG5cEz9ddR5LJuobpo\ntuLQGWTMEy3llh0jlPD6mlz8/2EAsQ6CHXi2JQzvAEf0Dhwxh4Shg0dvj6kUEcSyZjeLLGqc77QM\ngQQHvdRyclxYUjlR6tuI1PgMwUuA9xpj3gcgIm/GVtjtiMUY8zjwuIh8rj7RGGOgKwI7df/WTcaX\nAb9pjPkN18aT6zp4ZYnFmH6HDXag6TrmoSQS7pJCEikjf8fQRS0DPtOtP0+Ti3dHhp44QndkvehZ\n19ihyqzLKOv04bFJrknloggJJSXZxQmnHUiL64hp8C78sFX5o1JuqSmV2C69xAJgxgKbRlCW7aha\nMexD2I+VY2ozKJbl/w+fjz9ej7s7dQ8PyVGnpvfk4vvhNwWaEHQlyk3JBdqB40bcrjS0mdRVX2zO\nZxT30NKtbm+dC70nqm7TUjV2fpbDuX4ZEDHkmxvvr4vIu9Tfr3eFCsFWyP2A+u2DwEs374fkwK8C\nnwS81hjzy+rn/15EvhRb1vhrjDG3gE8GjIj8OLZs8ZuNMX9v7BpXlliWS4nqlMegd6GbHB/aZrpB\nH1TZ0zh6qhy4I8OE+4qli9aXlej8wfVcpL5V4eTMWxtgd678+3U24xA+ueAmGNvpDo5L/LbOEB+D\nf16nxwU1ky69/qbXXFU7LTsbS4d81Y12NsH7RCSxCcHA6kKXen4p+9FFMxWsCyKNqWl1WiJ/be2I\noI3ZfnPW7firPvvEenIZ71dt/VqoXFs+saaWuHUesYtcJ6bCvsjvvwe4aYz59KejYVdu5NNE5BB4\nq4i82BjzbuC7gW/GMvo3A/8A+MtYnvgTwGcAZ8BPi8ivGmN+OnWNK0ssxsR3qClVxSDC+IID7qI1\n2k9Ppp07MsBhYd2RF0sb7+Klk659lXOsajMO3K7ssM0Bw7wRfOEw6A3MYULBZP+Vu2YoYWyqvkkd\ndyexK3suY3IqtmQTNItsJVVPjFQuCh1jkVKPxfqqbW+henUsy8BYFuuLwF9/97jm7KBYIRcNnRZl\nUIX0JGP3uOLsoOj6rjdhsUV/E/dbTyoxlSN1XwRMb9RSc9Q/xzBOTaupN91c3UOkquleCMaYIxH5\nGeDlwLuNMR/2v4nIPwF+1P35QeDnjTE33W9vxzoFbIllHdapEWIJB2F1EbhIG+HxOrtwXeU8/tgu\ncMZhad2RD4uMZ+0snQvssosMLzLDQdFSZEKZux1iK65yZdZJLppcOpVFhFwGKr2ILSRFKqF6MKUW\n8vaGTXeXsWNTG4BNF9m6zpi3YiWWZUNrOgXlQC1m1Y+bqeh0EskxktP9HJNuUhmDU+radUh6MSo1\n0LRuB+TibQ2hK3V47unNKbvHNTu3rfR3RrGiVkv1fYxc9EYmlFa6mjBlL73EnokmtZjNLRxb06rt\n6sxcJkQgv5y8Y+8EXiAiH48llC8AvnCzPshDwMKRyg7WAeDb3G/PNsY85g7988C73ecfB75WRHax\nsvt/CXzH2HWuLLG0rWw0MVNqipguedOJHlOBaeiF5/HHdjnbX3De1q4ipa1GaWGJo8iCyeJiL7z9\nYJbDw7uG2URsbia3YD15c+bUSqt2n6rKu7T//t6091zsuXh1UEoKCVWJm+Ciu3G9SKzEbiQ2BDH4\noNSqzQZeYR5j9zC2SUm5co/hTl1eL5JLzS/Uk8WSRZGvLK5hvRZtmyzKlmI/Z1HlTOu2K8qlK4Em\nr0tPeDrLg/9eb2IGKujSOpqEWDe3PLTUVZYttXsPizJnsT/p2rkMafCyYYxpROTV2AU/B77PVdh9\nlfv9dSLyMNZOcgAsReSrgRcBzwbe6OwsGfAWY4yXTP6eiHwaVhX2KPDXXHu3XEn4d7rf3m6M+bGx\nPl5ZYjHLoUukxkXVO3XVe/7EaprAxXXMup0uJsQFC/pyx76uS9XKoCrlE+cTThd5p+rxpWEPi2H6\nDN/+k0/sdOTiJ+WpM4Z297pG/eULVNV1tuIEET6zUP+eQuhFlXIH3xShNDVvGA2ArJfi0u7AraMi\nWqs9hdECcoHkGzPmw7DkQWyRjZFSqDbz53SVTSNSS6EWVU8Mi9K274uUdSqmSKnrfXfMk+zwkXKH\nYn/JAwfn0WDc8P7C+RI6KoxJdClV3aYIA0L3DmpOKbrPl44MsvJy4mJcfMnbg+9epz7fwKrIQvwm\n8EcSbX7JyPV+AOtyvBGuLLHAatzA3exO9GT3f6cWznJksQyxGs9QdYvdvDXM8qwL9PNeYTfnq23q\nVBqz3HBY0hUOAzpy0dCSR+g5FOqzfSLAyXS5uvgk7nHdM4q50Y55oMXaT3237rm3ZkHVZhzV8Pjx\nJBrwucl4GSPRFdWqK/+77h70bzHVjj7vRHlP6YDNlN1mUeSDMsA6psUjpbp68KFzTkob3Onfna5W\nOlZ4TGeI0GQSkq//PCZNxLznNEJyjbU9OP6CG5gtrjCxLI0kd313QjCdl0pCx6vb1ru4mCtpDP73\no6dK6msN59ca5o1Nkz5vDYdt3kkmIcK8TMPCUU03mWyw5nBSai+y7jenz/bn7R/UXSJArzoLFyPd\n5hgBxxIMpp7FnU54f55/VvVyuJi3ZkG7bDiuS45qGZT59RjT23fHBJl6U/aNmG0qtrjFPM5SzyAM\nJj2l6OIyPLn44zS0GstLoWM2kDAbw4MPnUdLIJeTfmzEpJeB9K/GmXc5DsdbbHxp9dydjo2nRVK5\ngriyxOIRm9DawOyR0o2PGag1YuoE/X+4e40RjV5Qm0VG5SpCzl2w36aJ/nxJXh9IOW8B54F2EsQH\nDHaObjc9rVoWCUOpTtYYGnn9c9P/xxCTVPRvvr1NFpCx3/3zsck9gXa4qCyWwlG1+kzGpJAwM0FH\nLiP3M3DqiBTQ0hKHdmn25/vfPPzvp8dFZzupyQfk4hfmgQqKCdSmt5uU7WiNk02hAyF1Ekvd16FR\nvjdqeQP92UEB5VCiiD1r/Vlv3Pw9xmree0IKnURCu9JdQwSZXY0l92rcZQR5bpITZlNPrzA9vV5s\n9ISPqStSRZW0Z5HuWxUhnC6KfG9hbSiltaPM296uEpNW9lz2ZLDOAN2uUCUW1LvxjlzoyWUMKYcH\n/zw8xshTP4tYW96OEyOXkARiKMu2q8mSZxNb976xi24uVl0zzeLVGaNSaUK66lRTI+SiPcT0op5M\nBRMslmE/BseR2yQeSrXlCQOUZHlQWyIq6e0qxVDq0OlSLgJPKvpcn2csRE1unQZC199iaAvTSSpT\nzg3hnEqVJQ4JaNDGyCZnizSuLLGIxGvee4xN6vDvuuqTOoa7nE0rHYY7wzCbcCzXl18o6jrr1GO4\n7LExUrmvWLI37d2Ue9iYDh9IGUpQ3tNLT7xp1XbpXzxSOZ9if/trhCqmpD3mgsGssfbCDcPMxQPl\nMkWMwThiEWPJBmxwZFm2XQ6MTTC22I1hTAJLbUT89cJ2AGr/fz0krN1rTVcUy+f6AsDFB3m7ymS6\nHKRWsRuQeB9jJQAs2mTa+sl0yd7+YjAOOk1AxA2+I8YiPldS0HMLQhf6NpqAs1Tj9LJS3UsmyDM/\nRuZScGWJJc8N+24iQdxICPFdsx5oWr+cErX9wB9466gd7O7egsPSdFJGrMJjWFypUx+UfZSznVw1\nnlw8vOprb7p08S5DYqnaPtbFl4qdVPmK14zfAcfiXmIFpDSphs/GG3SBuB1nBHonOrbbDCULLTXt\nXmvcczGugmQNC7fAtrWrIGnJR6tfwvFSRtofI8dNvMW0ZBEeHy6SYwjVhnpRjuX60uf56+jiWRaW\nXGL3mbYVBuSgFvaqkW4chOdrN/jYPXu1q4cer6F0EuY48/d0C+PKPqzeT1jueIvNcWWJBSKuk2qx\nCAdTrNyq3y3FjksNRm249LuhcuLcgN3b6I3ww4njpSKdJ6mzNQz0wz25eFKxKWFMF0wJqCj+JYeF\nV4nZlObzshmUFairvFOXjNatGVEn6EmqbTHrUqEMFr2gDntoINfSY0xlpImgtzXRqcE8cplQ5pdQ\nhYy46kzvsv1vqXxn/vhwkUxfzz6nMH+dJww/3vq22qitInadsOpqKhNDStofSkC2rbECalr9qu0+\nsb75Zxp7Vvqamih38j65pbd3hfN/04SpW/S40sSSSkfuoQdXqmRxOCFiJU69NBHmxeoWlEaYdzYP\ne55e1H1fB4uvsnXEI45rl8rFABn3FcsuhxjYBbVeCse1dVf28S2HhcF7K89bYd5YkumC1vxiVYHP\nK5V6rmOLzMo5I9KKbsfv+seqMKba0AuHvb/08a1purT5Y33StVP8zltLpysbACW16LQoYT+7v4P7\ndb1bWexCVVMy1b7P7KxSAuk+anLztVg6SbrtrxUb0/odhjVl9D35Qm+6rXXonBEU9MYhVv21KONJ\nM/X1dVE6n+8szGq8rrzDxtga768OwkkxpueG9eoMDz+4Y4SiJ1+/g150uuhwsui0/v63QX6vyrqJ\n1vTSjM415gMqP1JrgrFpX04X/b0eFraiX1c3vDVQ+EWl7iQDu0C6gxS5XFbeqhRWFunEe0q5bofn\nz1sbq9Klzff1WPKiK8w5b2Xw3EOPuRh5xsZUrHDXuvv07YYOAL62iT5GQ2cb1vCkManyTt3qSxmf\nnkw7aRiUZLe34FZQPCuZZgUGGx6dcXg1gWV/3Cb556YnDXXtPNsczm5vunytetmdqDb8PXgvulP6\nmixhsbktNsOVJ5YQG5FLNV4DY3BsYkcXPTZRwnbl/Ihn1rRqobKG2uHi13DrWsP9BRyWfcR+CoeR\nbCy9Wm7e9ac+UW3UhtObU4r9YY2aFMlcVLWwzvMrhZAEwt+6XGFmsZKA0gZI2uj86GJXm85TyefU\n0mNHvyv/rHzgYOqeNrm/mOQzdn6MjL3UAv2irlWsvthV15ayEYZj0d+jdhHWEvRggR4+4bX3Gf42\nrVpMBU9VO1H1ImxenloTY++W3bB7UnNWFZzu2yScw83fXSIDScUAfJRhSywwmCThApGC1sWmyhPH\nCCXW5kDVE9llps5LZSVeKMnlwYfOu5gXH7F/VBsOCzr1F/R2mBj2pmDT8EP1QDXY3WmYm4bT/WJg\n7A6xVi1WG1s0deT4Sr0ruLOA1qpypOGkNyNipRb3uV02LJYT5q169iGhR9SR+rdp1XTv6LSwN7V/\nUA+cPULVqb6vdRJZynNxrDS29yL0zhmDlPcnGdOq6aTR0FMrRSjTqmVa9/1YVDZ6v5NqGUover5o\nwop3OrKJOmm61Cu+f5vAP5dQQtk9rpjWNk9aFzcDnNb9ZmmLi2FLLIy4xI4MqHCSpDzFNMJdlr5O\nTG0R9mmwGy4mLPbd69OTTxW/ApuqpXKqsfqaTUBpsyW71C6FN2JH7jE3XJ813edZPrEuupPbnYuo\nXmi0B0/s2YWODuXEwN5qBPWYV1RqAQqfq19EY/E40MexdO7GTYU5vw2ANBVFvsPetOWwzHvvwZKN\nMNZHb3z2CJ9JWJX0Qu1rb7lARaffSejBN0jCSN6NoU0XbJ9bzMed6JQw66DTAIWZKPRmLJZwcuX+\nyz6oed3c9cfU5Ctp8nVamy3uDFeeWPwE0rszj1QddVgNutLQwVt+EsdsLGM77qQaqWxHpZjUd/r7\n80nDrEkHUUJPKtdnzkMor11Qpa1kupPPefxaM9DPp6SIdWrD3YBcwuNjzzgWL6Sz48ZckXWf9vYX\nHBbWQ26a7cL8FGrXj6Ymz61XmHc31qk+1uWoGpC/W7TGgg49/PMbk8Cq1DMOveUiY9fHp3j39nOV\nZsXPA1+HRRN7bBx3Y2q/twn6jc6AxFRfdXv+N3+uJxj/7vRvY3V/YmQyVqbZ/7+3v+hc+OuDnNPj\nki4oU2U33pRcN4IIUl6NJfdq3GUCOs5Cx7R0v0cmLmxWnMhjd2/RJeDTO+nUdTbq98jxfuKHHjTd\nzl15Bc1b61oc4qBYcn224LCcMMsPAMizU8ClAclzZnnGYdlwVMHR3oK6yjtj6ib2D5/mwzsshOSS\ncuMOEctL5R0gwjxWGrt7Cw4L2J+2FNkupr0Fp2cAmOqE6d4e+9PbHBZTdlUFzjGC9NmdYyrQmLSy\nci8RaVZDjx0ticU2OWE/Q1I5LGHW4LzDFp1H2wqhqEU7HMdj+e3CMe6DMMO4kJS2wF/Lf7dOUr1o\nIGNRtuxiMwCc3Z4MtAF7ZR0lrGcSROTlwHdi3Ty/1xjzSPD7C4E3YAtyfZMx5tvd9zPg57Hy9wT4\nIWPM33W/PQD8c+DjsGnzX+lS5n828AhQYGMZ/rYx5l+N9e9KEwusBvGFv3msi08JMfCfD2JCYt4s\nYwtWbMKk+uG9dnS0/EBvX2dwOqWc1G5hsVLLfe78h3Yars8a9qa7TLOSHU8sMiWXU8r8jDKfMM0m\n3JznHBVwVMJRZSP/T25P2HWSzKb1QDS5pIyy/t5CNZInFB3IN8/73XhsUSrKlsPScF+xZH9qY1ao\nzzC3LbFIfUaRPcRB0Vry8RkJtDSrSExjV70Db7+AvmiXP1cTa+i11PUzMSY8wej+xAJyu77GSCX3\nbsTWpdh7iYVEreM//DPVBLNpn32/OgkmGSPjn0svTU2qvBtTsTZhGAip34l+99GxUlr1sCeYFRXi\nZaZzyS7H3djVUnkttkjXB4F3isjbjDHvUYc9BXwV8OeC0yvgTxljTkVkCvyCiLzDGPNLwNcDP22M\neUREvt79/XXATeDPGGN+V0RejK0D85yxPl55YklhjFTCyOEQsaCssG296KYGbypVR+p6Fn2wlzYC\nh4vrye0JO3nTLSxVm7E3bSgy0yVltGQydZ8bcplQZOIi901XodIvUkeVrVI5mNgbkkvqHvUC7kli\n05QpepEJ253ldM4KOk9YDD6ITvcn7J9HOB50sGas3fPIKx1T5YxlGoD13mYevUu5/Xzexp0J/LGp\nmJ9NF94xaSKcJ6E0q997tA/Buwnfe6diVKSi1/cwSHST53eP8RLgvcaY9wGIyJuBVwAdsRhjHgce\nF8MPvTsAACAASURBVJHP1ScaYwx0GYqmeN22xSuAz3Kf3wj8LPB1xph/q5r4LWBHREpjTJXq4D0j\nFhF5HvAm4FnYG3u9MeY7U+KYO+cbgK/AbvG+yhjz4+77PwZ8P7CDLX7zN90DTMIYWXHphfjirWNS\nbIDkant6QvoYg0q1pXex4a485ToapqhI9THcoYVxLwOPt3KYAuZob8G8sRUm560fDg3XZ+ddm7lM\nmbcnnDcn3Jxn3JxPOm+qQZ2XCey0UMUqLtb23n0MRqUWwLGdqH7Wg2dcqzgh116oCku1XZQt87Yv\n8tWaBfmkgKKPY/EBkvO2D6LT716TtkYqJsN7Re3tLzi5PenGhn8P+p5SzyJMsRM+Cz9GQk+rocpq\ngc+wAHBU2UXcx7PE3pOOrwrH8J3Edfnn6O+hauIErZ/tZrnXhvNCn28/t+j4GbCE2WWXUM/sovf3\nNOC6iLxL/f16Y8zr3efnAB9Qv30QeOmmDTuJ51eBTwJea4z5ZffTs1Rp4hvYtTnEXwR+bYxU4N5K\nLA3wNcaYXxORfeBXReQngS8nIo6JyIuwtZ0/BfhY4KdE5JONMS3w3cBfBX4ZSywvB96xrgN64K2r\nrdF1OrK4hW35drTKK5zkYeqIsZ29D4rrF9v4jmqsPjisxhdUVc7pyZSz/QW3DmuevQvzduIqUjZc\nn511bZ8uzrg5n/DEeXzI+Kh9u2AZjujva3WCry7MF0lXHpv8zSLjTB8Tif73ah7r4dVQtRn10tCa\nhjwvkC5ActIV+vLuxn7BDZ91rF+hR1MILRnofg6SmCacQ1JJTX3//O8xZ5Eelly8etZHnus++Gd7\ndnvS9SUkzKK08SmdKnnDBdjf+6DtiDSSmmubIk5GQ3I5b4fkDqw8gzu5dgySyUXiWG4aYz79Ui4c\nwK2ZnyYih8BbReTFxph3B8cYERmwsIh8CvBtwMvWXeOeEYtjxsfc5xMR+W0sE0fFMff9mx1T/kcR\neS/wEhF5FDhwOkJE5E1YveIosSzdOI5Fw/vJ4heilViDYOLq80OkdraxY1II03qErs3+GH+dGKnY\nH82g/yHBnDxQMb+/Yd7mLJZC1Wad5HJzXnAcmWB9XRcLqxazaTRCyU4/r1TRqqK0mYQ39ciJlYKO\nLahhgN5563arXYDkpJNYJC9pzaIrTRwr9BUiRp7hO6+rfBAwGJJqSiLVf2uPtxh0pcuwHx0pONdz\noLMrxI7XHl0r7r/V0DsttgCvuIpHgn7Dc8fuLUXSKaLV5/m+aknM/xbLjqHJ5RmIDwHPU38/1313\nIRhjjkTkZ7Ab8XcDHxaRZxtjHhORZwOP+2NF5LnAW4EvNcb8h3VtPyNsLCLycdg6zL9MWhx7DvBL\n6rQPuu8W7nP4/SiMkeTOMsxz5BFTcYztTFOIGj03JBeI7+TCfoVYCaaswJzAaenUrIVwclzQLG4z\nf7Bm3mZ8nCp5HCOVPqBySZnDzOUc61Utq/VdtGpOFw4D2K2qLg5CLwabEEyMpDy8O7n39CnKtsuD\n5bMQSF7afWwxhUnB0pxzXOcc1VZNEsuJFrvWMKBvGECp7R86o3PYhh9/2jXZ2xogTi6h9F0nxnZ4\n7Rhh6OcGvUJ++M76FCu1I8rwPaXylQ0CLdUGYpOFfF2lVX2dTc4ZczK59BRFwmW5G78TeIGIfDyW\nUL4A+MKNuiDyELBwpLKDdQD4Nvfz24Avw3qAfRnwI+6cQ+DHgK83xvziJte558QiInvAvwC+2hhz\nLNLbC2Li2F1e6yuBrwSYPfhQ931sQq3sNpVKJyzMlDpHIxVXEPr2x5DM/Dqi8giN9+xHPGUCaeb0\n5pQny5n/ArswToLaLRY6St9/3ptau8Qsz7mRG2YTm4a/KFvOTqcr9c7rOrNR2ypye1q3feQ2vRto\n7PklF09V0tbeyaqaLYRpnXhVL6CpySa5Cwod1u1Z+44jQZQp1+HY/eg+6jGhDdIxN+oxDzJ9jZgb\nbVg5cdSd3T3LTQIpYxLLunngj1snIcbKFXTXCSRB/XlMtZXa8D3TCn0ZYxoReTXWOysHvs8Y81si\n8ir3++tE5GHgXcABsBSRrwZeBDwbeKOzs2TAW4wxP+qafgR4i4h8BfB+4JXu+1dj7TF/R0T+jvvu\nZc5BIIp7SizO3e1fAP/UGPPD7uuUOJYS/z7kPoffr8AZv14PcPgJn5QkrBU7QCTlRKkm6Cb2mVjs\nSiwGIwavBx/0cU3SPn+NsYqNPo1H+F1ZthztLaynV2GY5dlKEOU0G96Pj32p2oybc0OZZ8zO+6zJ\ntyZ1tyB2CQ8pqIPaLqn7CD/r++rUeqHqb6SdzoMoX3aebz5A0rQVuexR5ktmuQuoC+KcYmqrWL30\ncIyESG0GxlyT62roGRdzhfdSWtj2WBoiTTDhwh1KGrpMcKzsdgwr1S2rPDoPTpxtMkUuYza4jpwS\n0mt43lgBOd+v/WuXUz7hMmGMeTvWnqy/e536fIPhuujxm1jtUKzNJ4E/Hfn+W4BvuUj/7qVXmAD/\nB/Dbxph/qH6KimPu+x8UkX+INd6/APgVY0wrIsci8plYVdqXAt910f5EpZSETneT71aOSRRs0rEC\nKbueD2LT5DJGKnqy++C+ZpF1QWp6Mp3Sk4uvCllVOWenU25NambnfV0X7QG2WEonqfjYl52J7V+Z\n19ycT11p39zaXSaqiJhbFMuy5Ul2WLh7GOSbKocLd4xQQnKJIrKr9u/CF/oCoG0wrtCXtA25TNmf\n2jiWyXQZJTL9vL3dZHDpyEIKjEoHunSw/k27Jofut+E4Kif1yuK8TkIO69ro/qci7y9CKrHnEhLK\n/YW/16bbTabI5SLXjG0C1nl77V6zkrYvwHcpEOk9Dz/KcS8llj8OfAnw70Tk191330hCHHOi3luw\nvtoN8DecdwPAX6d3N34HG3iEZdmGC5PDuoG8SdRvuGPWhDKbEI2Cn7fifO57ctG1WcL2NaGEkpBX\npfggPl8M6kl2esmlNtamcGLda3dyW+7Yx6r0k8zGvVyfNRwULXvTXWb5Hq1Z8OCs6gIpdY6xWQ6H\nLpjSxrzYRfapageAndt2YV8U8R1maqcafXeJPE+xTUBXQbLWFSR9322AZBjU2u22IyQeu44OnNQL\ndLSPgbTi40h0ka3umURiM2x6N5VtWC2sYUR9DKmgwzDyPtbndQgL5nlC0eN/3goc2MBFGJLLmMSl\n247ZjVbU3RGVmJZSdtx4jc3LLcZxL73CfgHvTL+KFXHMnfOtwLdGvn8X8OKLXD9V8z7UQ8PqDvVO\nEbajCw6FmG9QZGoMsXxRKewd1J1aSicPbBYZR5Vw3hruL6Sb/Na1GOeWvNrP1vTpWXSFSrtA9gR1\ngz4Fymk9pZnaiR4mBRxDuPvX9pQ7QmJHGVvIwnESuoSPPX//25hhuWqEndwMir953O2YDMfQZnEi\nTw/m7TBg0SPmMTgG/fz1+Zcxdy8FIjB5RnqZXTruufH+XmJssQhVHet2aJtOzM49uNs12niCnRZm\n+XCR1tHOPkjP2ydi8LuzTiVzOo3GB3THqx3b3kHNU9XOwE7g06tDy43G746lIwgGi/hZRyhHVcPJ\nwg6tMl+yNxVXGlk6zzG/C6yrhrqy9ouzyu5MNbGM2TVSXkzJ+1XHV40wb41zN7ZxLGGApMdODicj\niTB922GlR73QxbyPijKe1dp7I+3tL6iroYSwOs6GcRkAt2p7f2HpY+jfeSzoUru1byKBh+72o0Sa\nkGi8dx6VHf+zCcwbO96bRZaUOFKIhQJodWrM8SY8P+zXYbnNcnxRXFli8c5nsUR3o14xd6gCWAmm\nU9HNmmBCePXVOlLxffNGWz+JvF1l7F680XbvoF6dfIXeAaIi3H3Z474/+1MfdBg4OuSm+78jmDwD\nDPPW5oCqqpynTmbEsIntC3ppc2wh0h5083bpKkjaOBYdINn3fdnd47rFdl08xaCvzqYRemSFbrLh\nJidOpENyWVfud+CmHMs+ETPsB3FJY04jMYRt6nvqFnH6Esh1lSdjUda5HMf6Fg0fGLGh1m5DBcap\nFre4CK4wsZi1C8VYLRBdWW60kl9k4oaFmsJSsxp+Rxm66sLdORzEMLaD0/05g65wmCeXxVJ4cJZF\nXZPDIEpPMA+TM29NV/Y45qU28Pga/GAo9vtr+VTv66B3/vMW6qUNkJS8xCTUYLN81WAethd+DhEz\niutxE4s90Z5Tsfa1ylKnX9l0Zx/2O7ZgR8dE0Ff9fex4X1xsTBrS5KKlrZAk/DV0jEnY75B8LxKL\nsvrsWm5xSTaWrfH+auBOdK9JT6xEFUkYTtyBUbFcdQEd87Gvq2HAVqUWnxTB6Mm+Urcicf8rxvHI\nIlTXGTzgt7C25DHANMucXcUMSMZ/1uaTMrf5yXxlSoDHPrg3uE742dfMABtTUewvB/VD9LMKz4/d\nb9VmLE0Lkx3CyPvYcxlbtNftpFMeWak2YwZoDV06t5dMA7d2FRuSumY0DioVFxORIvTzXesEM7IJ\nqxrpnE0m016iw7l6h+8vRSgxD8J10Ju9GLlscTFcWWIR0YnvhgbYEJvEjMQQc+HU2W438UqLBcHp\nya0z56Z2kCvusTHb0hpvN51S3NsBgAG5+HiXxXIJWCklJsEUzk35oGhdokfb1qPYssdelRd7JjU5\ni2LSSSwhqXTXSOyc9X1Zd2PVv2A3WbXSReZD79Wl/w7bT8WBhAWuPDZxsvDPIoz+155put2wPR1M\nGZaISJJacJyWIvz32h53NwbyMBv4Tj5M4+/Vu+uwiXQS8ygMAykvNdpeYyuxfPQjk2Agt30NiJVg\nxCqexkVjXapzILmjTsG7DIfX7BYoNenWLRRdf9xxF3WP9oZUD7+Lts9q0aVyeXjHSiVV59U2JJci\ns1Ubi0w4WViJ4VlLATLmDfDsM/b2FzZ3mVpMVqSOcr36K0U2RWHdSWe57U8mwTObFLSmXzR9Isp1\nWYghTSjadVdDq0BjgbZdLq2I9KKPm0yXkSDb9QTjr5FK7e9tDeucJMrI2F4nwen+etdeD+8yrd2c\n19kYYxuMFML5ummqmC02w9UlFlIBiYZaRTWHMSN+YsfURetKosaQIqkwIr90O7hY/ZdY9ctQFZaq\nDBhDLAuAdzLQ7eqF/9akpjfoZ65Wi2vPdc2Tys7E1nnZ55yqbQck5NvyffQJNWMksa4krSb0MFuw\nLvaUgs9uPHDzDdSbMYTPOVxAPXwNFA9/P/q+unZc/311UO144X8L2w5zjHmE6WC8inVFtbQmq++m\nJYFX7kU9Ex2D0xcfAxDuZ1i0zbcTShmx2JYxpwmPcHO1SXaEu4JI7yDyUY4rSywidK6NMFxkfObT\nMXfHde6V6xBzDPBtpir4WQyLeunzoZ94WoIJd7bhYhdDeN2qtCnUQyOz3+naSO8+mNKTi/cIC0kl\nlwlFvsNBcUa9FJdjzNaF6aL03WKxbqeaQizbgX9G/n0PVGF+0rsklBraXVjf+yapelKxSj7gMazx\nktoAdJkTIuPOH6eDKfs0MOOF0lJOIKHEmromsELcYVup+9ekcuj2Kd6dfZ7TBdKCgb0FKG2C9pob\nvX6w6dtEWo9pCLbYHFeWWIzpSUXHi/jdqV5Ikvr+QD1w0aJAqd1vP4lbdtzCrHfNfvfm1TOx+IhQ\nXaJr3vu2Y/ALUej6vGIMr4315KLPlNssss5bzBYO6/t1ULQc1zmwYMeNurq1GYSrNmPhUtT7d+Ej\nnr30cvRUGY352ASxd+Kv1RvvC/sPbBzLouFkkXNU2yJYqcJZoU0lbvgdzwMXFuZKeX956dnD79yL\n0taj93YJ6N+fHise62KuNGHGXJPDfuqxnyLgVQyfS1il0r4f6e4lLMYVzTxRxEtc+P8vkv4ldv9b\nbI4rSyyLJdw4k5Wdu66kB3Fjn/5cV/nAO2dMFx1OhNiE07swO0kW0XNhtVqhRszmonX4ycVlz14v\nJdH4e55WDdPKZiJ+6mRGsb8cFA47qmx99aM647DIeNZOxt50Sb0UimxJmZ+7hJUTnpxPuHG+eq3Z\nBJ49waWVYYVcUpKkvn//eaUey6Rh3sLJIqdenmPKj4HSeqQ1NI70So5qGdRjSS36MQ8l/5y9HSX2\nzDeVxkIbl75O7WwQVSNd9U5/7CaBu0kPvMRx2ovMu/5CPOHmeHt9XNTcSaxei+BVkLpypX9Wd9Jf\nXWNpXQDo6XEx8Ni8NGRb4/1HPZZLa6Q/Y7Vw1iZptfWAPvVeTIHxMOVrv06N5r2u9g/qgegfIkUq\nqT7rtsfatDmvVvXy+p69y69Pe68JxtcT8QTz8K4lmId3Mk4XlmB8jZebcysVQLyu+iw3PLwLPveV\nJpeYFOX7ZevM+IdgbRK6Zsgg8n65oF6eUxbXbFvLc04WcLrIOaro7DzR5xXZSITFokKsW3j1Yg39\nrjlWHC1sbxLYB/011tlBxmJBwmNijgTQq+jGnlVo71spLe3GQqyyZezeY23H+pqqsRS2Ed5bOKef\nKRCRlwPfiY3e/V5jzCPB7y8E3gD8UeCbjDHf7r5/HpGS8MG5XwN8O/CQMeamy0L/va6tCfAmY8z/\nNta/K0ssbSucnkw7MX4MsV1pKlYiJI11RnXdfggdhBnDnXqyjE1Q//ve/oLdvWEsR7db9MWeVDbi\nad3CCSyOc04Pio5s9w5qzq7Puf+w5qiCh3czlTeMKKnYEscESS8NmlwGEkRt2D2uuiSWHj732Nl+\n0ans/OIyqWzk/eki42QB16ZnlDMrsSyWH+nUYEdVX+gr9Z7GPPJS6q11m4uQXNZlXNDnpSSLdbvv\n1FgN/06Nn4sauX2/dGlpT4wxQkmR8Fg//f9hzE/oNh7brOg+Xgouyd3Y1VJ5LbZI1weBd4rI24wx\n71GHPQV8Fbaarka0JLw/1xHPy4D/pM75S0BpjPlDIrILvEdE/pkx5tFUH68ssSxbGaQUhzV1HiJq\nrdSA22SChSqbp4NAdLtjlQKT/TqdDsildFJZ6tzJwu6Gp1XLAqsPf+pkxulxwelD55w8UHGrbnj2\nbk8eoZQSpuf3sSazPOOwMByWDY9da7h1tOCxD12jPsnYPa7Zub1g96Sy1y5trIuu83IGnNbTbpHZ\nvdYkE31mklNkPhuzGcSKjD2zjX9zhchiCTNj9jF//YFNIzgGhtJo+K7DmJN19VjWYWVBj9XBCTJM\nh33V0PNJq7zqKlfZGEzXbmpTFiPZUC0KdOM69fszHC8B3muMeR+AiLwZW7q9IxZXhOtxEflcfeJI\nSXh/7ncAX0tfrgTsg78mIhNsBvkaOB7r4JUlFo91C3ssDmUMm+7adF6uMTWFD7Bcp/KK4SJ+/R7e\nHpGqaukXubODIlqgK5WZWLsm+1T8IXzdF7CEcl+xdLnFhjnGZjns5Nao/wH2OaWwlSeLiQ2eTPXF\nLUj+Xc9cu/tTKLJdzMmTtn8HD3F9dsT1WcvDuzm/e30eJeNNdrPR38v+/HUoSpuOXyeUrKu4e/Am\n19ceZ4PvR7I+dN0u+3gXfe91lQ/uKbZQx9yqU33S+e3qKrcEVQ9JJVZUbQxeDarrrACDQEwALtju\n04jrIvIu9ffrXaFCsETwAfXbB4GXXvQCQUl4ROQVwIeMMb+hK/kCP4QlrsewFSD+B2PMU2NtX1li\nWZrN63WEky5FQn7ijUkEfmEOCSVlTNTBkLCZ9BLGQehrj/ULSJKKd33VC8si3HEnaqBoPXeHg2YY\nEKfqvXgpZW+65KBwElebUbXSFQ+zJNQAJ3yAfT6CrenipSaNRZFHCW+W28qXeTahyHagtoVHJ0zY\nmezz0M4ZD89z7j+0i82TN2fR6PfBI1ij3gr/XrFTVMM6L34h9J5fsXr3qRxf4e5dlzwOF/+6ygfx\nMpumFtLjIbzHtZu2YPyH5w7admPLb8i8SjNlb4rFBO1eawZ1VmAYiKnvb9CXyypNfDFV2E1jzKdf\nzoVjXVkpCb+LrYf1ssjhL8EaXT8WuB/41yLyU15iiuHKEssmSKXV1xPLfxf+HhLMOkIpynRsiR/0\ne/sLinI8vcUmfv3+uNi9jf3tz+t048R3pym7AqwjF/tvb9pS5jbuZX/qnpWTWKrW5iLbmwqzPMeq\njC25nFUFB0/NO9vK2P0VZdsRWJHtIvMTzMkt++POU0x3ZlyfHXN9NuHj93Og7ipJrjPmp1QrsYU2\n5m3mj/Pv+7AcZobQJLCJRDtQqRWpOKb+GN8+JOJXFPnEJKgxlXKsnTDm54jh89H995JHGDjqbTKx\na+viXb6oWKeKzQGkq9LK6XRl7jwD1WOpMu0bIVES/hOBjwe8tPJc4NdE5CXAFwL/jzFmgVWv/SLw\n6cCWWDbBpgNoZQEOIn43sdFsSirQ1zr37afUICFZaFLR3kIxySWljvP9qisnuQWqkDFdd3gd/51f\nLB4Hzq9Zm0sYsFjmpsspZoMsfYbkPlPy9VnLCw+H5PJkeW1FRbcoc2IlioE+pUvTV5A0bUWRHVBk\n0lWR3Mmta+zA3pGwK8SeTUz9s6JOUu2VZTtI0xKre+/flx9zYwSjpRXfHvTxLj5KX/dNHz9GMDGs\nVe9Gxn9fWnmYoj/Wpj/Xj+ux/HeeuPqKrb1ziC8yNnfPVqfY6TYCa4KJN4ZIH4R7d3gn8P+z9+7B\ntiVnfdivV6/H3ufsc+bcmbmjGfTwSEhCJSiSgJBcriRgG1FUwBEJThC4/MIFkUElKxWMkRUeqZgq\nsCkwNsRTihCUsEFxHraVshSFR8VUHLAliIESZSIhydJIurpz594zZ+97zl6v3fmj++v1rW91r7XO\nuffOjObcr+rW3WfvtXp19+r+vv5ev+9VSqmXwwqUN8My/xldCJeEN8b8PoBH2HWfAvA6FxX2aQB/\nCsAvKqX2AfxxAH937DmXXrDIzc0Zz5ykqkGdCWGmCAkZzmzTbOf+7l8nSwpXZYdVRdqQbHvKTCb7\nFYpq42OS/QolYvb6HBF4IaJTvx1Tha2DTbd1WnYoW4VCWwwx+3fiq1VyGH4SLovUCpcvFHs9TVEy\neTrV2t/Fu6062z4V+rIgmaxGSE8TDTMcqaWEtMPY3MfMiUQS0if2TmLJpPRuzwREEPXhvJUk5yVD\nxonP1VhFVXoGQfBLgRcKrZZ0XFLemsJRYXwS5nHZRf8FQWgDQu65JGNMo5R6K4APwYYbv8eVbn+L\n+/0JpdSjAD4C4BDATin1dgCvBfCVCJSEN8Z8YOSRPwvg55VSH4V1jv68Meb3xvp4qQULX4QlYzhS\nuIRoUuCMbPAwNLe4TzAQCsEkhrw5yb29WRJFB4057/vCo6OQ0MuLYUJljHkGx1aZgdmM97OqEqz3\nG2zbBhbIMkGWGIcsbIWILIHMhcsD+Q6PrxIADfJi7fMfYkmN9E6oHkuMqp1BvVM4LhXWt9MepM0U\nhUyfoX7EhMqY9kwMcCBURH0Xfn1Vap9nwtvmjDlkjgu1PYdkLk/INMW/I8h8SorkcErcnFwG1iMX\nKiEgT/mca00XjXjWdknRkp7Lcs1T5ATBB8R3T7DP12DNWZLGSsLzth5nnzewIcez6dIKFsOc9wNh\nMnLqmbPBuNYSOsXHTnWd9jIk2vgkVFCZUeFCz4lt7Nj15+kT0Bcq3LzjGULAXCT7K7UXwBYBA4DD\nHBhoFo5IuJSt8cJloQ2O9yrcqiw6NMH98zDc2Ml0MB8ONn/bDnHjYmYwEig0L7KC55RQCpnrJMWE\nCjd9cogZ/k5CiYI0PwRuuTqs/DVeKHJtN1IAb0roxph9jGTeVE8LFUEGNDbe/pjFgTDIJJK5pLsK\n6aJUBxv0AqdLK1hC1MNICgiX857aQo5Navu8RBuHhMreSYVTkYgYukf2h4gzIR5sEH1+NYQUCTGK\nPCBIfV5LQGsh6iMCdMKlcICWQOd/Id8LaRuH+Q4nlQW9XOgEx7nBUQUc5w1u7Tde2+iNtUo8Vlg3\nyNpH7VChr21rmRCHXhkzgxFxYS79AKH5Dvm9OIXwsui+sagqYsw091K4eIGyTpCVLfbKEpuqEzCc\nQkKGKHQoia2XWEAJN8txgZE5nJoqT3taCxEdTOjfihUGi4Fi9mCbJor03YfUPz9dWsGik13wdMgj\nW/jmBeb5XOg6ICxAQrb1OYB3tJlo05wiR34QHsNYVBZdGzuxc/PNVLXDkH9qwCxdYS55kqcx8b5y\njeCsrbBtDYDUR4l15Y13XrgQHVI4drsDLettCyzbPlp1iHwFydUegK6C5LrWvhaLnKMK7iQd8Ylw\nn4Y0N8lxh4hO5bxkr2eIAWY3icAbMUfy52dli6yyED1VnvpD0XmDVXqaHXsGCbSp4mZcO1wdVthU\n2SD4Qq43GQxBz6IoOC5M+PyFzN/U/l0XKPc1lhc+qWRcHY8h2EphQxRSzc9DY+Y3yazzokVVzIea\nCAoYZ66Tws0/Q0C/E8KvbJds91xT2QiThBQo0v/EzUvlZxN87OQKHnvJBusHSxxfafD4gcaLljuU\nrfECJpCbiYOsdQ5/AEidYLKM+SxtHLR/N37Amruq3RlQXAX2rWDB/oOo6897M1iUApnlIX8Kj9aK\nOu3F/YBdS2lpAyiIMW7WYdMNZ9ZBwErGmA8OK6wOalRVggMHdVKVNteH/vH3Nhr9lQ+rpMqxDZh/\nHjevcl+if8aBS5yMmPD8dQETKzCufYTAW+9rKXdOl1ewqHkhhNJGLZ39QGfP5fdMtUn3zXl+iOYK\nlWi7Ae1Ilu7Niy5DuXQO09BJW86R7Ke01/Pn8fb2TkqbQV+2+Hy1j/VJjqa+jVtVhZcfJHh8Zcse\nk4ChWi+AFSqUTNlRCnvaV/1EuE3WO+G3uwYNGuj9B2GvatCaumcmC8332GEgNi9zDhw9oZR30U8k\nVGJMT7YdE1xkIuLhvnYNu+sZQoHUWufktQAIQv9MrXtakzJPK2ZZiIVwc+J5MLwP/B7e3kXM1Pdp\nSJdWsCRJv/JiCLuIq/Qh1fu8FFu0oU0irw1V67uIHZhHzcRMZZTtXaQdxArF+HPNZMpRy81qSaui\nBwAAIABJREFUvd9ERFpVamTrBsvbNbKyRVrsrIA50V57KR87xbY1zkEPAK0TLjscZK2FZdFO48Ap\ne5oVLseuIuEtKhhF89EqVDuDaneGPYZufNbUKNvFqMYyGFdkTXANbsxPFbzXAaXeKfXeR975Y5ra\n5kXhsMIGnW+FC6DY8weRggLlARg3B8s1DIQDAMb8cqFxTglY+ZvUoO8dJYC+bwq7lNQTKA4sEAAo\n8Q2IM+Up9Fiu9fD7+X1TzBoIOxvn5JBIn8gUjeUUdI12WkNVJeAAgSEKmlUqg711ZZ3H6xJ1Zf0y\nJGBIezl98W0cP1Th8YMuauzqcty3QACWNilOYdkCgE0GtJn3THN19u/WVKxc8vlpzNzViyZjyZQh\nip2i6V3L9UZ1Robac/dMEhaUEJmKw8LdoilQVdLy5cHubmoM0tdDxANN6Dr6zPt93xx2cYoKFqXU\nIYB3wMZCf9AY80vst//BGPM9z0L/7hntdv2T/phAAcZDJWlhSkiLEMl25goV/pyY2W1MuITMeLET\nH51EeUXCYG6BDLkdwQqbCoCoc40lao9MzLG9stIy1806w/GqxnEBAAZHrUa9U3hokaBsWxzmVlO5\nsU3x1FmK2kWNdYjJBgvvgzFesOSJglYZ0Nj7dZZ5gbNtVc9hHmNWNM7g36HQ5Mj8zCW5bvjaqErd\nh52JCPtghjsLYyeTVDBpcCTQJOS3A/prn8/VWDkKujZkRpX30rU9s6MQ5GNE2nWs/3dMSgH6cpzl\nx0b58wA+Bosp851KqW8F8B3GmBI2pf+LmoxRvQS6gUABEIPnDp36Y/6XGEmhMpfmMKGYRsU1rjl2\nehmRdJ6Y/phGFu6w3fAxZGRqryw1jm8W+Hy6BWALdW3bBGWbYJXZJMqyTfD0tt9OD4o/7WrCe6ww\nvUSeLGGqpwAAeu/q4PlSqMzxr1yEpD9vzlqSz4wJQDKDzSEuXKZAJMdoqu93UyuQ5uuYQJfvjpts\n83w3CGy5T+enMcHypcaYb3Wf/6lS6p0Afl0p9Z8+C/2652R2fYFCsfKcuXGnIV+IMX9IyF47F9fr\nIhQzx035UaY2TF9w9kN1o/kugdNgzFYe0lrqQvtCXfQOJJgkva/17RRL3Tjtw0JzkPYSokLvcJQn\nOK4IRbnTZPLEQKsUyhiY1gYZaJUiT1gCbTXMAufjG2WwE9oKb2vKJMYpdLgJReWF+jcpEFwYtS9u\nNhNKPtZuLEl4TGCNzbP020mrQ3TOWXi4bJOESizv5T6dj8YES6GUSowxOwAwxvyoUuqzAH4DwOpZ\n6d09pJ1RTKi0Pob/FLkNt3Q5IlPlTIH+RpALlm+oOVoM0Zht+LwkfStT7cwRPFWpMQVBEmJ+8qRI\nARRVpXG2n3lhUufdPVzYl6XG6e0U1wEcuGJdRwW89sK1E0qo5ETFu7atQqF3KPTOglC2lQWiBKxZ\nzNG2CZyEBYXmtDdHAXPMlLYjoxB5u6HnzIWaOS9VpfaCaqzPPB8kthbm+iUlFP8YkVZ33rFTPwdo\nyUUf3TkGKnshUgpKF9PXvQBoTLD877CIlr9KXxhjfkEpdQ3A37/XHbvXlKY7n2xYOZt+VraoD2wy\n3+qwGsV5GqOgPXvER+O/51E1EjbjAtASU47Luadv/h3lPfDsZn7dLGYgToYPXT3DurDlgwmZuKc5\nHux676F3Si9akO9k28q6LokXMhZw0H5eaAub/tCi9UW+UHWCRRkDnXRbYw5USWhe/edieC2d4qV2\nEaK5kDxcM6hGmHNVahTMfzZG5znsSPiawbWBNT0lbOQaCwkiOpz4+Szi+5Xmn5u/KAqSXyOFy306\nH0UFizHm+yPf/x8AXnXPevQskdbGMjQOB5GnvUJCkgFOMZe5/g8gzhwmM6jRLfQQ45hKwqP7OHRN\nr+0yXmuG+kbCJbThebEz+TxpbuBjJc2QzC854rUwuBZoTXQ1itTgCoBto7BIOwEDdPDonI5ym/uS\n6yW0Sr3j/jzUM6Ow8ctr+Log/DBexiAmXPi8Ad2aCVb2DFSADAoVhwxM8ClBNAKhVU0dGKiPPDR5\nzgGD15SZo83MCophKQREfP57moqAwiFE8bJR/QPC3Sr0hfuZ9y94ShKDvX2HQcRMCVw13lvV/ToV\nF3TqhXJQiAYlYifszj3MKcFIpvDI+EmN+hW6TmIx8edT/w9CGkug8NTYyZGfCoGufCyRDP2U5kZP\nm8zV0bDvc9mi86Owok5ERznw0KJBoXfQKoVWGUxbArU7cbeVM4fNqDci5jSmrUpzi6zxsWGBJPL0\nfLcLT0lIld58BoQK/T96sBIFxAoByz+HxnyGszT+oo2uvTEtRb4L2vP0+/MR5Vgp9Y0AfhoWNv/d\nxpgfE7+/BjYA66sAvNMY8xPst/cA+GYA140xX8G+//cAPAHr6vgUgD9njDlhv78MwB8A+BHeXogu\nrWDJNfDIYYOz/a4q3+nttJccSNXmAIPjsukBAU7hHfnnRJgCX8w8X2Qh9tbCvaFtA2yLxhdmKhuF\ntNST9dCJUYU0BhoD34h0mqMyrlfcAWvbAii6OdhjfZQbk+aInkHjp3n142Xt8bFwYcNPwBJzS46n\nY2LG1/awmorCUW5wlFuIfSp5fFSkWOgDqKaEqU6BjdNathtkiwJXl2scFTrqZ4tV66QDCx8Djfuo\n6LQpG51WYW9V4/hmgaefWvrrCXZFCqIl08L4ewHQWxs0XwSeyTWlnmBzyaJ8nrl2FRJA/BC2Oqix\nt6pxVDgTJOMo2wZAPnSk969pfL2b0LoBhia2mFYvtSWODSYPi3Ieh42Z3pp/PpFSSsPWSHkjbL37\nDyul3m+M+QN22U0AbwPwLYEmfgHAzwB4r/j+3QC+zxjzL5RS3wngrwP4Qfb7TwL44Jw+XlrBcpgZ\nfP2LG2xqjW1rcFztsG1rHOX9uuuZAzusdwShbrBtd+MYUoIWgUUsHcwZA1XsJe05ooQ93g+g68fw\n//5JUdaUJyLfAxU9WmjLgI/yru487wNFXhHcCXeQ9+dqN/BrhJzqsTkd9jU+1oEwZvNNYyi0cVhi\nO5elv8RhdhVpuYW59RmYT/077D72eQCArmqsXvFqfPmVF+Eg+xyOcuC4OkOMxp7P+5ElQyiap7ca\nz1QJrl05w/FLtrhVoVc+l9Yjn7csiUeade+H5r90vqf4un6mstceV2d+Dcj+h9YXrSnqI29X9ifr\nVQPtE60ruxa6tTFnj4UEA7XB+8zHT30NkS19PfztZ6e7Mk13D4Ty9QA+TjXnlVLvA/AmWG0CAGCM\nuQ5bRvib5M3GmN9QSj0eaPfVsMFZAPArsIXEftA941sAfBLA7TkdnBQsSqn/fOx3VjP5OaUp1VDS\nMk3wNY8kqNpTrGu7oNa19hAhPnHOOXHbXYNqZ3yNjlCBKIm4y0kuVtpgFNaqk7QXjQTYsFei1lj8\nKt4PoA/7zvvUg4MH1XY3LhKKVad046H788TWms8T5fwPBRKlsTOt7wPNB80N9VurzFdebE3l+9rN\nz3DOaO4pB0X29UBgLvL2ZN+753TjpHeoVYYs2YdWGbTKkCdL4JnPwZxch/nEp9H+4TWUv3/DPn/b\nQN8+Rf7qV+KVj70Whf44TirN+jAchxS0fB6H8+TWlGlQtWdY18C61j6pM0sMDvNdTxAS8aACuV6I\n+DuitSLngu6tdmdod03vPVD/+Xj4GOldhdZU6B3zvofmgPrc7pxp2r3j0BqPCQRJc9YFkXyefU5/\nvp5n9GIAn2F/PwngDXeh3Y/CCqh/ClvY66UAoJRaAfgbsBrS981paI7G8lcA/AkAv+7+/pMA/h8A\nT8Fmzz3ngmWmatijxAAPJg/B5AWuFGdoTY16t0WidI/5KGNglF1wrak7Bm/q6IKbWoi0qeg6ZRyz\ndHkUFJ3U+7x4ANA5jFK+H0TESGJ/c0ZCPgV5LbVHv6umBJoKplwDaFyYpAbSA3vqyvN+f32ftf09\nza2Id33mRONt0OBK0aDanXrBRX3IkgXyZIl0ZIkaZZGJ6X3sjD2i8nfox2OM7W9dAc2pTYY8/gLM\nH30a9b/5HG7/4Smuf9JihT1ydgv7z5TIqhrq7DZe9rKvRLOX9OaJ5o7mj/qvVYpEaeTJHrRKbf9D\n7xUA0tyvv2p3ipeuNmh3jRPouZ+DwToBxtdKemD/z3I//378jZ0D05b2naYPAlmOFy2L3rqSa7Qb\nbxNcX93n8PvqvQO+XtKlnwtaL/Ru5do8D/E+8r3K1wQfU/e59nvf74Pt5tzPD5I6F1bYw0qpj7C/\n32WMedfd6UiUvhPA31NK/SCA9wOgxfUjAH7KGLNRap7PbI5gyQC81hjzeQBQSj0G4BeMMX/5vL2+\nhzSpGg7o7BTm478N7O8hX6yAfA97xYFlpu0GaBugrWD8Bsjtutc5g2VweBjtzIXfCsbi2jZNZR3H\nrOa6/0zFp+hflkGnOXQRSCWScBG8XyxPA/S8LLOIW25sSHO7ieoaZnMKVDWMc2gbACpj/eD9dH2l\nawfX0f9Z5tsCAL1YQescRb5vBSeZCcoNzPoWUD4Jc3a7Py98blZ7yJf7QLGCojZofPQeq1P7mc03\n6hrYnMJ88klUv3cdJx+r8YVPLPDR37U+li8v9/Ci6gyH208jP90Cm1PoKw+4KXZ9TC3Thk4dg152\n/d9urOC6fRPm9mnX31wcOPIMWO4jL1Yo8n0c7L+se1fbDUx1DLTXPWMz1Hc5D+4d9Oaf2s/ZnIvr\n/Dtd7QF5Bp1l0ItVf50w0nydhBgkrb/Qfig3/XVO/+Qaoc9undNzh8+awaB7+6Hs+sVzltLc72n7\nHnN7mKrsvJvbzPf27NINY8zrIr99Fk6bcPQS990dkTHm3wL4BgBQSr0aAJnR3gDgzyql/jaAIwA7\npdTWGPMzsbbmCJaXklBx9AUAL7tQz+8dzVINlVLfDeC7AeBlLzpwC7sG0mq4UOXJCugYR9vYRSsZ\n93lIMnnOJPj/8jMxDf48zfoVopBQAfpMiqgWgoIxRVPXXbHsPBsKlYoxLNlunvWfl2W2Lzq3p+fG\nMatWzHloPujvqgayCkgrmDa1bbgxmrbszwcXKo5M2cCUFhutLJmJrTRo6gSmbGHKxo4lNFfUjhiv\nfbYYA80Xn4+qBpbsxtatQ9//Ktjv3vjd58H8Z1lfoAmh0ruW9ysdeSZg9wD9PtgzYv2F9gQXKqwf\nnuQ80fOkcJnabzrv+sP3amhf0zV8HGxfmpF3/xzRhwG8Sin1cliB8mYA33GnjSqlHjHGXFdKJQD+\nW9gIMRhj/iN2zY8A2IwJFWCeYPk1pdSHAPyy+/vbwJImv5jIqZLvAoDX/QevMOrVXwUUq55JRed7\n0OpwYH4ImcOkvfg8FDSDiZOiaTuEQDpN0WlRmpeI+iaAbqNz9b9nUhFj42YwlOve5vRZw9QP3l9i\n5G6D9q4l4p/dGGje690Zquom8mSJbLlAvv+YNSNd2QyZANFiBegcDRrXDmmXgFYrb/aw4+9OxMoY\noNwgyTMURYoHi+tIswpFYWPdXvSKEoevypB/5SNQX/Zy4JGX9E60/B30zaPuFJytoNUVa0qluQxR\nmsOkBardmTMHPgM0QJJq5PkVaHW1b0oLETFJLkj5O+Bzzq8jIaZTqOLAj6lBE16bwkQ1ZZ7ieyJk\nBhusbTYn/n/2TE7SFBeiUP8GZlFgsA5bUyE/uoo8eVlnBqtm+atnUWzfnqsNYxql1FthnesawHuM\nMR9VSr3F/f6EUupRAB8BcAirYbwd1vJ0opT6ZQBfB2tuexLADxtjfg7Atyulvtc95n+DDVe+EE1y\nRGPMW5VS/xmA/9h99S5jzD+56APvEZ1bNWwT4GayRlvdjDqZuaNUOu+JyJkYinaZQ71nKWcDLuxz\nE9WHf9iZM7S7Ndo2vrG4AzTUV+64DDlJucM531v2+kB+hKo9BlwXdJJC55nzLfSvtWSjqVrT+LSQ\n1tRAC+80XtcaZZvgpNIodImHF7dxmLdYphkW6aq3Sqnd1jRo2w3aehhUIYMoQoETyzTD1Vd+NZBn\nyPcWODr6AtJ8DZ3tsHztA0hf8yKoL30Z8NCLoQ4fc8W/GicEn0FbD4MpYnPN1xGRVhnatsZZWQ8C\nQqyT+dj3k/sD+HvWSQqdZECOyPy3aM26e2ZB1xTQ6ggAUO+2aM0aVX2GqjTuHfTXiU5StPVwXYXm\nms833xPeEZ5kvh822KPzUVk682uF1rl06hPNLW1AgQYhh3zbdu/wpNKodgoHWTf3ebFEtjya9Zxn\nk4wxHwDwAfHdE+zzNVg+GLr32yPf/zRsANTYc39kTv/mHrV/B8DaGPOrSqk9pdSBMWzFPvd0btXw\ntDH4vadblK0GXG0PisjhVGjjwiFTX6qW/vVQcydyJmOhk/w+G665A1D5sFTapMS07GaKJ2yVbcFC\nN4HjaryvodDdhbb5HllSsVryCmWrXHj2Xq9N2+8qKFzpu054KQDa9TH3/TuuFLaNDbN9dJn6JMbD\nfI08Mb2oMeqLfSd5cByxeaexH+XA1zzyGbz0FV8DtdxHmmc4KK4BAPSXPQr1ipdBXXkpzOohPFNf\nZ8W/VE8Q1rvUv5+x8NhhqLUBYPvPw7L5O+hClFsxbwmA3Ldn1+xw/nmIum2n9O+k0DuUbeLeaYKy\n3cNxBQfUOQzN5f0cC/cOhVrzfha6RaGbwbqWfabx2v6nvWv5XM0N+w/Nqd3bCTb1ordfKHx6lbUo\ndOnLMdwpGZhZ2tYLgeaEG38XrF/iQQBfCuvPeALAn763XZtPMdVw7J51pfBrn7WnlsXELGwb9JK4\nTjedWSWWSU0UyjyOgTICiU/eomSzRYBZ8xwV+fu2tQz6VgWsb6c4vZ32IS1YMp9MOKT+8EQyniB5\n1to2KfFMZpIvtWAyYl63TdcW0LVHfVyf5D7p7spRhcf2Mhzlqc+joFwbGt/UHPPxSdrbb3Bc7eMN\nj3wSr3rRy5EXK6T7/5/98cVfAnXlpWiKBU6qz+Fzt0usa42TaoFNrT0Dpr7w8fD+8EQ9niAbSiil\n63kC7VJrvw7kGuTvSyb8cWZLfeK/8/dyXA7fwxAlQPWSLiX6RGhtyURgGgsQXtd8TW8b/v1wLHz8\nRDI7PoRoYdez7j2frydqt5vT1CW0Xtp0vwvTnBn7Xtioq38FAMaYjymlHrmnvboAhVTDMSobhU/f\nSqOwDnQNgEEWc8Wy1GNZyiGai9ba39Thvnf9VYPfTjfZoK+8/VCfOKNaHVbYrDOsDmqULjP7dJMF\ni0hxqAzKkI5Bj8is6qpK+lht7t/TTy2xuXqG9YMlDvYbLHVfqIdgdWSGeKh+CqcHr57hU1dO8KWH\nKb5k/xaKwxfBPPgF++PeEcziAGfN09jUp7ixLfD0NvXa1RRJBszhRWKYYrzMAq2BtcDeCrUpURV8\nH4QwDTF9oHuv9B48VpuAqqE+VmJex/DSuMC5BQjh6tqcOHgBGBwQOALAHOL9ueX21sF+BzlDqBu0\ntjmW2PWR0sz3KU5zBEtpjKkoflkpZYuIvwCIQ6FwZs0Xe4yhAh3SLgcajMF/9BB52edQbRdqq6kT\nh4EVag++74P7J6r7SegL37fKeCRe2a4seSvHRDS2CWMMInQvwZs0dYK1065CTDVEU0Kld23r8iV0\n7iPulC7QmBr1rsRJpfH0NsU1kXhvTSsGW92dthekvew3WN8ebq1Yn3qfR9ZQiPh6iQkrAJ5R0j1j\neFuyXxxYdOqdh5CJQ+txULmS0VjFyimhMjY23nd6P7SupGDluIF3DyvMXCgn54uR5giWf6GU+psA\nlkqpNwL4HlhI/S9qMoZl3rrFyAVKTEsJIsayxUwV98aYXu+ZZbjg0VygS77oybxFzDdGQaYWKI5E\ntdHtdQ5kMjL+ucQZxBQc/dNPLXtllCVTlkKSf54jVKKU5iwrPsOx4PMEY9KZ55xZxQmZRQMAFoMO\nzGwaOpTwec/KFpsDa3vkwiWNCFZOU3+TmZHak9fEAEnH5k+CZcbWsX8vVXewGEMMjh2Mpt5laF2E\nruHmPr6/Nyc5snWDqur2OpXPuE/nozmC5Qdgs+9/H8B/BWtueve97NSzRbSA02w3YExcNR4IlAAT\n5mB3dOqcWtySYtoL0aSpLYK8HEOyPQ/TjZ3cuMZGxIWlRGI+L6PfnOSgvOeBEMxVkIlMCZXQPBqO\n45TmqHYbFymU4NpZh4tFQsVGGQEPACKow2oxgMJWGwA1UmY28geUdYKsbHz9mayy/9dli41TG0nL\nIKEyZ65C8wDA188Zo6mT/nk11DGaGs+olnmHhxu6noT0xu3xbN1gb12hLjXqwhaf2yBHdZcEizH3\nnfcAPFTKe40xfw7A//jsdOnZoZ07MEnhwk+Gc4VKiHh5YPmdJK69zGlzrKQrRziOXUPP5P/fTQrV\nepHPkWPlwmnQJz/nZvg9Ey5zxkLjPzisvBObwlm9YNE5dk2Lk0rbKLjG1nkhBN/BeJmQAYAvnCVY\naIPjygqkW6lFbS6YYMlKy8QAIK0duGTZIi12qAvL0Igkui+f39GDghDAvBxCTBiP0dw5jtGd3Du1\nN2TfQgcO2QYX8oBBXWgvVOpCI1Ru+z7No1HBYoxplVJ/TCmVG2PmG36/SCio+ld9U5JkxFHKVc/p\nCfQXcoiRzqFipK0p4THVLj+tDUroCpoytcT8S7F5o+eHmNVsBjax8Xk7kqFKU0xragvtAUoCbFDt\nlAivVQ6JGSgC3Xto4bSPxGBTaydcgEWqAFTBMrdcqBBRJdPeWEStG+nLGJB4l/y53MQJtLNLQIS0\nZ87AQ2bdu+H4DgkVGVQg+yT7G/vbftfN1elh3tvLd2sMlu5rLJw+AeBfKqXeDwaZbIz5yXvWq2eZ\n5EknZMP2TGqkhjlfjGMUYpyhE9aYbbeaEC78Wb2/eflj99tGBCVEn1klQQHpo2jmCmFHvG4MtXWR\nU+3YnEs/APcFUMhptTOodmfYyy0IZemysMnE5Wu7NORHARYMXp3QiB9eWKZRaO1yRRIsdILjymDb\nKKz3G/+eQ1lgWeXqquxno0KeC5c5QoWocH6FvGh9+HHZhH0uU88ePHLErzF17xhNBWoAw8NXSHuJ\nfhZ7WQqU+/6Vi9EcwfJH7l8C4ODedufZI2NU74RFC25WCCM7KYfCLTnF2psrXEKbRN4XCjeVFCqe\nlbJ2Nic5Kgz72g9t7vpAZiguUAc1zdmcTpWVPRfDiWgqY4KNC5W8aMPFopwprDW1S4YssG0pSrDL\nezh2zOhFSytUri4bPLxosMosJMxBduay5zWyxGCh7al421qT2PokR8mSXLOyRVZZf0udp97fMjoF\nRb/k8cD/JOYqZ+Mu0s6kZ9/t/JP5lNmx519j2uFYOe3QuKitOQ55opB2z/vN/7fz1JkK5cFwrCLo\nfZqmqGBRSv2iMebPAzh2qf4vSJojSKRKLM0rd4v4CUmetHlfQ4JljEJCJfRs2S6ZSGLlZfkm5JUc\ngc53VUaECz91h95Bb66FILn7Joowla3yZrCyUVhqY9EBnNZStglWWROFNal2Coe5zXx/dJm4AIAK\nabbDF4o93PzsEnsnffNhXWicHuQXsu/nRRs8HNzpPEmT4oW0ynwYri6fwWmszPYcASMjCYcPPL+l\n4U7JwDDomhc2jWksX62U+hIA36mUei9EJp4x5uY97dmzTNJmO3b6XTlfwlxz1pwoFumjCGkfIVWf\n+4Ni98bi8Ck02WtBlUEF7QMXDg4rr9Wc3k5FMMPFU5l8iVwX7jlGIQ2O/o+ZZOaShfiw+FF5soQ5\ndRUkj672C0G5No9BWfOKZW93WyhPbLLLugZubLtxrTKCEVFY6ASLtEFerHFwWOHzT65wckM7raVF\nnWvUB2lv3LH8oVBuyVj0V1Vq5PkOZUMRa/0yxlOaBD1zivhhIkZTGsHUgWOsjwD8oUX68kKHw/NY\nGu7TPBoTLE8A+DUArwDw2xDI4O77FyTxRR0SFHxxrkWI51R7dJ8UQnTqB8I1vasqCUZbyb/zoh3N\nE+BChnwmPFIJJbBB7hkUT6oLmeGkZjXmrAfQq7vO758SCCG7d1G00fkf62dVal+XvtAGubYFxczt\nm0CaI09eBp2kHnuLIgWbOgFWNW7B4ArA8ltoG9k217XQKHVXlpdMY0e5waeKLfb2G3zhcA83n1oi\nWzeoi/66CB1yYsmKdOCh9xDSrKsqQVpqnKWNb5PGFwoKIRPnnHDnGMXMWOfREub4b2J/h7Tjuc++\nmwLG4GJFy74YKSpYjDF/D7aa2D8wxvzVZ7FPzzrJhEYedROC2vDQFI7pEnOTG5nukT4Syjeg6wgf\na28VjxghgRCKpBo9aUq/B2MQXFhk6y6noi70QGj2zHCBiCMJ4xJiRHRdXrTetk8n5bxoB3kYvD3u\nH+G5MQeH1XgCKwtJJqJ2OlDCAig3wO1TAKdQV0tolaHQjX+Ov3+TOTSEBvasRXNht5IEguyQfnn5\n4garTOEo1/hU0ddeUHYmGj8E1nceySeZp1xvMUHf1EkU+0sGhdBchw4qU4cB/k7yovWCT45viuYK\nlTEfI4+qo74RTQmPi5j+LjvNgc1/wQqVkJNREhcmsVPXwWE1gHuRm15m9wJWM3jw6lncmcyIIFXG\nTAihU/p5spjJFMOJCxR/z0RoMjCcy7xosbffeKFio5IMKjevEpGAjzEkVOR8BQUK+1xheGpeaOAg\na6FVZqsGbk6BPAO2G2SLAqSBhMyNFhJkKFwsIq4RkPH0eecFTHdNioU2+GS6RZ7v8PnP7kdNM55R\nu+TKqtLIDzqBLudt9BDiEAHGsvmpHQ5YyhnzmK/LRxpWBnsnJU4Pc9wsl1gdVj14GUmhkOoxn+Yc\noeKvZQeSmLCSfszgYeV5QEqpb4SFuNcA3m2M+THx+2tg66l8FYB3GmN+gv32HgDfDOC6MeYrAm3/\nNwB+AsBVY8wN9907YBPlWwBvM8Z8aKx/lxa2U2vTY1Sc+HcxgdK7njkA6R/5S+ikRKEm66BFAAAg\nAElEQVShltkPNwox3JijXG5sjNjSe6YMkfnOn1eVFg+JBOMzJ3v2ZFnUPWYO9M1+5FDvMRkXxspP\nwby/1A+OxBsjybQGDCZnyMwBph8SelyLXB3UvWRHXwRMlA4mbSN3JjfqF81LUycoVzVuVcCVHDgq\nDB5fadS7HawQ6fpBtVZ4u0CChxctLG+w0PcA8PSNRa8fg/HlylfFDpmZxrRZqXWHqBDvVfroaH2P\nnfRXh5WPNKTcEC9UmMAi8ut7hoAApiMNYxTTpLmmdu/8K7u7ksfiEtd/FsAbYavlflgp9X5jDC/F\nfhPA2wB8S6CJXwDwMwDeG2j7pbDliT/NvnstbCmSLwfwJQB+VSn1amPikQiXVrAoZSbDc/OixVFh\nPLKupKZOeoIDDldIMlP/f+AExn0rAILC5bxRMaFrQiYxfg1t+DHNgASQJO8HYKdg+ewpAT33ZCiv\nGZjBQppUIOSWzGBTBdoWuj930nexWWdW8Ow3uLXfADB4fEXj38FG6YfXmX2+wgM5XWeFS5rtcHyz\nGI2MosxwvqakeWfOfE5pyuSvCx1MiCHHGDH56TYn1meXF31zMu/7VD9Cz+gFs0zgj9FYYiQ1O2lS\nfJ7R6wF83BjzCQBQSr0PwJsAeMFijLkO4LpS6pvkzcaY31BKPR5p+6cAfD+Af8a+exOA9xljSgCf\nVEp93PXhN2MdvMSCpa/ic9pbdSfaRQocAdg2xtdsAOLMXgoVn3wmtBa6lhgdneTPxBqWGoB8HtFU\nNr6kganKaRxTQkAKF6+FRZjLXKHS/WF6gmAKoHOuQOJC/GC/wVFhHek8+itEC90dMkLP3YA0mhbH\nRYvysVMAOzy+SljRuAS8iqXNcdn5ip0dWeFyTVuT4ekmG2gvNJZgzlEZD9/mNMbUxwJDen0QibYx\nAUO+FT7/cj3E1gYd3Pj4QhQLDvC/h7SUgCbPTXCxZMs7IWMYfNA0PayU+gj7+12utDpga2J9hv32\nJIA33Gn/lFJvAvBZY8zvqn4J5RcD+C3xvBePtXVpBUuSmN6pi4jqf9gCP6ZDsdUAAQsel+N5HaHT\nPiEDTy1U8j2ENKSQMIip9qHrOYUKIe25zzwhksxWx+hrN1JzCUXbyOfHiqF5YtqGZDwxTcXfOjKn\n3ES5t6p9QTLSVnx9dmEKI9+INMd1fg773abIAGS+X8Aa29bgNQ9oAO3A39JpSlZTsZUMjddcFtrg\nuAA+n3bay1zmFvIR0BiAvknSEjuZ53EB4/svzGihw1kInYEnppLZd5zm+UAAZroTWsucSDa5h6Sm\n8hz6V24YY173bD1MKbUH4G/CmsHumC6tYDFuXdPCoSp/oUQ4oKu5QRpFqDph50NJvG2aayz8eTHi\nGovUVrzfIoIYTCdW2Y8Q8b7xvt8JSXiWwe+BLP4eU8r7uSPSdMifEWKc5PsJEb/+LG1cgqO9tjUN\nUl3AkGBJcwBVzy9C95JQ2Tupugx5Bs9yE7aOTPXYKYAGj6+0Exy6J0zIPMafIcv0PrYHUAABAF+E\nSgrUEAMM/T2o1xLx58XaCr3TKaESu75I4yd33q8YonZoH9Gal9fy36fo+eioD9BnAbyU/f0S992d\n0JcCeDkA0lZeAuB3lFKvv8jzLq1g2e26aoREPlcBdS8RDuiXcKU6LSHiDIwvdFkpka7pLeT9ZhAG\nytuUzwDCjDZnqvxoFJkQPCRsqpJfT/VYuiS6MfwmmWlPc8DbLvnpn+XSyDFuTixk+RzGSWOMMYaq\n1Pj8kys8dPUMTZ1gqSs8utS4sU2wTNcoFg8AS4sVZhYHqKvPeaywoWZk54QAJDk9cOPMCxfAChcg\nxQP5DmVrkyQLbbxAOam0qzuvBzXlgbBwCY0tOCcM3ZjWBGkNIZMuFbyaIr5uZH2dGJXudwpqCRVC\n4yTLZsdyd/yeKvo4cLIv0gzNx/JskYFBtbsrNRI/DOBVSqmXwzL4NwP4jjvqmzG/D8BXBlZKfQrA\n64wxNxxO5C8ppX4S1nn/KgD/eqy9SytY2lb5Ij+cDg4r64R2iXBLtw6Py34J0/NkIAMdo7R/dLkV\n3oSU7wZV7ULmH95e6DP/O2ebaU5BsZCWQ0KGJ9GdxywjtSiuyfFsft5f2bfznCI54wjdR8XD0myH\na3s1XrxN8aK9MzT5Fei9I3vf7gxVe4aTqgiWIqYsef43p72TCjdBvpFTbJsGj+4leHQJ1LtOwADA\npk7wjGNunWDpaxIkXIjZ+ui89ZApyr4AQI3+QUCiGcsqijGhHSKuLc8hXghvqtjXmECJ9WPsuh4i\ndECbj5r/nmfOe2NMo5R6K4APwYYUvscY81Gl1Fvc708opR4F8BEAhwB2Sqm3A3itMeZEKfXLAL4O\n1o/zJIAfNsb83MjzPqqU+sewwQENgO8diwgDLrFg2bUqmHtCCx+ATYRjWoQs/kX3TJHfGKECYaKd\nqRKsUuPpfhgiLvO288iJjVMPlJNtvJig42aYsXbJhNO7J1KUTJKft4CJa2ruY7+TgL92eGJr2Zen\nWOgTHBQWY7XanWJdW4wvYvIhgdqDuq+Gpp2ecGkbbFvjMMPgQpKBZ6qEmVs7bWUhotUe27PQ+0RU\nupn3RQo8AD4vqcpTv3ZCEYL0WyhJdYwuEpobw7zjaySYPzVBY4IhZBKLaSux/t0pGaO8+fXO2zIf\ngC26yL97gn2+BmuyCt377TPaf1z8/aMAfnRu/y6vYDEqWHEvlB0cKgs7xlSj2oRARaZ/PGEsVHdD\nbjLfZixJUQiZ85iNaDwh7SbEqPm1PDpICj9urojV7YjOZQBNOtaf3n0jv21OchyXFql4XWs8Ylrr\nW9E50HYweMTgyYSzOclRVbYgFFadOawuLN5XXWic7Wc+HPjmU0t7KLl6huMHSxyXBo/uGRzlnZZC\n/0uhwitWblsbpXglr3BtZfOMnnZthzQXIl+ZsugqJsrCYbGS08Aw2pHoPAJlLFJxrGaRXO+xvtC1\n/H9JMeEir+HXjqEl36dxurSCJVFmFLCPq+qDGHt2H1+gIUwwuYBJmEiIGIqUKRvVlbIVQoa3UZUa\nroLtLKLn8r5SH+V1vb8jaASDzR6A/ojNrYTQOU+/ed/HwD3HTDcUAntU2Ki/g6xFliyAM1sEWS8z\nFNpgle2w0Ik3BR64PKV1kWOTF0BlhgW6ig5EMmdw9J3vwmY2btsOhp+ICxTACpSHF61z/isstMZx\nbnBUGFxzOGPcnLg56fo0MIk5P0tIoPNorbtt9om9ax6NNVZaIrTWYtfyw17ocCfNpKG1TlFufB1L\nQXyfpunyChaXeU/kfQCR0zoQCJ+NnJ7HBAwlIub5Dnur2uev+JK3ucG2aHxSZlrqXmRMKE9hyv5N\nv8+FgxmtnSIEyAAjrAyXWQ4JVE4hBNopW/zqoO6Z1ErBLGKaGmmJRwWwylocZLDoxtWxvWb/MSxT\nK1wW2obmViJRNC8cttkBi2BCCgVgVYSLrUrhsgjsPilUri4bHGQtyjbBut5hlSU4yi2I5VHR4Piw\nwXUnYDi00Ok69wKmLvqHkn4FSbvO+AEhZiKSjv0xE2gIW08SIVxzTTdEMYFIfeDPBPp4arK/8lrf\nHjvg3Sufys4MI/9eqHRpBYvWBgdO85ij6sqTTM8kw5PFxMakzTcmUAiCncKbt63CogG22uAsbbyA\nkW1PCYrYZoziNE2YCmge5O/EpJYaHjUXwMCHRfcRsrAkEgwEuzKV8xCbF96WJGJ4e/sNjnJb+dGj\nG5dWY0mRIk+WOMhuY6EzLLWNKObgo2MHkLH1xIXLUWFwFNA6H10CDy1s8bCHFzvoJEW7a3CYtzjI\ndE/AXDtDJ2BOUqwOamzWmdWqTnJvohtjmDS/hVtre4FruKlpSisPaePyWX6u2DsMUWyfye8GwpBl\n/fN+htYj9ZNy2O7TndOlFSxKxRnsFHkTlcAUA4bZwkCfmRGjJKHiM/zdgl5ouAqFskrBiE2YaQ+x\nuP/Qtfz3ucXCvDYRSKKkMZTOdFQULSq2mTl8TYzJnW+jD+eFPwsYolMD6LLvcwKhXABtBTRO0yg3\nSFKNQu/8uyGmxA8YU8wwFoDho68eLHG23+BKTocLq6msshaHuf2X6z1olaJVDYAzn6lPSZaFTnBU\nJbimgYVucO20D19DeF05g5XJi3Ywr5Q/FU9cjPtYQqYmaeIlGr7PfgXLmIl1iqJarcMso37yd0Nr\nhPrZsxw4CmmVFyUDDHKjXqh0aQUL0RzICCCSEMkSFmWdE36yG7bbYqm5jX24mbcNfL31GPU0DA7M\nOJGMGcq6j0V8EXV5KM7UxZIdfU34SF9jpipqV84XvRNKVpVEcxKDfuc0B8E6UdoKlbpvSyezBc9l\nkXM8l/GF5rcsNU4PK5QPWu0FUFhog3qnULYJylZhmdo+taZGtbO+Fs6cssRm7G9bwhoDrqEGNpkX\n7IBlsNyvdjaSoAjEsfF4/wcRjZxx9zSI7jBC744EDH+H1FYvOGYGBtgUcRMrd9DTIYbCr6lvXLhs\nL0f5lLtOl1awKGWiJ/ygU3gkkUqavkJtlIxx2kRDdyJvgYVWvZORFCohBhqKoImdlKcivEJmpFjY\ncZ+GDIOezwtH0Xd0cpSoyTzqrSj62dOSAcrEPgoBn0NcW+tgXcaZFr0HidfGGV+I+DuQ0Yd87BTZ\ndXpQ49jX40lcxUkNoMFB1qDaGZxUWqAkd0L3yD/COAFf++fLfuX5bhLoNDgmeQAIOMpH73eIzPZg\n0j33NJIsyc1vc4JKxkgKFbknTl3uGmD8Qek+XZwurWCZojHtZWwjTflreIIYYM1GRWqcgBlqKTHY\njdAzx9BwgX44JS+0xUkKKMk8eYJj94xOwJSNGpxs+eebTy09KGGon3wMPENctie1lCkhyoVKXrS9\nU6lWWWcGc7QzLaqdrXm/vp0ONKIp+Bq6RjqRQ9rh+iS3IdpVgk+RY1/za1qUrR41oxR650OYO7SE\nXRDXjapIEsVKV0uaJXxmXCO1+yniibZSI5oqeyH7NRZAYq+hdzlmvrsY2TyW+877+4R5GyVUpGrq\nesr1WB3UqLKdFzDAPGEy1Tf5G7cnc5u3xzILMPiiGNq8JSOQAmYqnwCwuSBT80QhvpLGtDbeb94O\n72vPkSxh86uhKWzrtJVQRBQQhgqhvpFQoZLDAIKoxHQPtfn5dOt8O3oU1t9qW3yOdv38mMMG10V/\niUKmXbpuzhqW4b2yDSL+PuZGW/E2Y0gPfD3OKvJVjEclAnZOxmCN7tN8urSCRan5Cz1GMkM3FoUU\nzSJ2SXcUJ09ROWPEk9mmwobPQzJcOvR97zmMIfVQnMmmf1BHtZI5/Q19L5nghQo9BRinVhlMu+kE\nS1N55/1Yn2J95+Yvq/G562IAmS7Bkf7P8x2WuoJlaN0W5UKmK3lsq1L6Z7eJM6ElTiuzwiV4io9o\nYTHhzP8ns2UIGNO3X/ZDz7lWyXNDpM+P1zniZreQgIoGUAS+H1sv45rT3Qk/3gF3LfP++U6XVrAk\nCt4cBCCYiDhG8gQ7Fn4aqu/ANymPgFrqeGExH5F0ToY65rgOtRXauFMmi7zoiqJBQOyHQjyB7mQf\nCnPumZoihaZCFAtCoPtHC0pVNZBnMG0JrVbIE+PrsRRibUj7f8jH5ft6MIKJJa7dnOR4uqBS1Y1L\nmkxd/RZe8jgZCL48MTjIuNZFDv3Gl3qYEo5z/Rn0TmQlyZD2Jg8tq4Mae6u+dijzaqhfB5Fk5Fi/\n5vx+noNOXyO/T3Pp0goWrbraJ1XJQohnaAExoTKH4fONRuG3FOp4VPAolHiZ4rENxU+ToVDbMZL5\nOEQS+j/0zCLtwqZl/g1vjzN2yhwfM2uFHOSTlQInhAsAbIumb+9uyZtcA20DrTIfbuwjiEZO5rG/\nz3NfVrZACWyKzg93za3RozzBA/kO9U75AmJcUzlwiZ46SUGOewBYaCtcvP9OaMXUNwlVxH0acxIc\neenmGHGhYqPg+kR+r1D+1kWJwsKnsOnkGhwLzLhP03RpBUuiWFjhfuORhadqYocAKOegtXLioY/k\n86DCYgsNVkjM9E5vvT7dwWYL1UWRCaAhZsI1BxoDr345jPnv5ygA/Zr3Z639/nST9RgcJ8msZNLd\nlCkt5GSXvhutUqCtYFy4sXLf8cz7PN8NYHDGTvvSph/qD2+Dw7CcrnOsC/JDdRAw2zZx0V8uHLu1\nWstB1uKosEmdidJ4aFGi0KcodIosSQFoLLSNFjsubbE60iypFAL1pVon2CD3mHmyUiQRrR/aN6RZ\nxGD3pVAJJYYSLVIMEoRD8x2jkG+OCxhqK+TLqcohBP+dhjsTGXN5TGGXWiSfN/mpt/iEcCGGN1W7\nm99Dn2XUCSXLXZTudCNIn4k8tYY2+Fh/Q0Jloa3GWKTGn3xDxE1loUxuHkYq+87fl//sGEswP6iq\nncYShmSZ1Poq05ubXlImO4SEKCtbLG/XWN6ukZWtZ9KnmwzXTpX9d6Zw7cwiIm9q7ZlUoQ20ypAo\nbSPcBHEwy0f3LAjmldwm5/LgDaqKOfAFIixU6PuQj01S7Ht7mOr/40RrhNqYo3nP3YNBoTKyZp5P\npJT6RqXUHyqlPq6U+oHA769RSv2mUqpUSn3fnHuVUv++Uuq3lFL/Rin1EVfki377StfeR5VSv6+U\nGtbMZvScaCxKqb8D4M8AqAD8EYC/bIw5dr+9A8BfgT3qvs0Y8yH3/VcD+AUAS1i46L9mjDFKqQLA\newF8NYCnAXybMeZTU31od7Z4F9VZCdWVD5FkakRTeS6h0/j6JHcM1cbPHxWql8NCRcXOS7wvsfBn\nyimIRQdJCiE8HxxyBtz42jXkIwr5TngyJfcljT1fhpsG0QVEjoms4yFPonurGtvWJhy2poHWOXxp\nYp2jNc3gdBk9MUdQpqVfjX/H2yJNpckS//fpOscGrIRDucPZfoNtozzSMZCyPp5imdbQKsOmPsWN\nbYoTFzRgTXq2bTKJLbTBcaVw7DSJstRAnlsFqTLY3OgElJxzjptGRe/Gorc44kJV2uTMhbM8biPm\nXr4+aH9KugjD5wfCKZ/q3fatGNhSDHdKSikN4GcBvBG2/vyHlVLvN8b8AbvsJoC3AfiWc9z7twH8\nd8aYDyql/hP399cppVIA/xDAnzfG/K5S6iFwe2uAnitT2K8AeIcrWPPjAN4B4G8opV4LWw3ty2Er\nlf2qUurVrqjMPwDwXQD+Faxg+UYAH4QVQreMMa9USr0ZwI8D+LapDjTGChVZRVLSRU7/Y+VRJT19\ngwR/jbO2My9IQXfefkjmWrHTHhcIodDQkK08VDZgLcKGeWVIoBNanQO09cmUXEuj60LMqdc+E86D\nMrvsPilQqB3e9ukmw7YtUbYJWlMDOoXKSLB024LQBILvNFa2AMN3HhIoY+ti76TCKaxJjPrf1AnK\nVY1bFXAlBwCDo1b7TP2HFzWABus6xVNn3RiyxAw0yoXz3Ty6B3y63LFqn92FmxsZqrJfSiI077Fx\nhHyPTZ3g1nEOHIW1Qt/ujEqqYzljcyIGPcJDxDx5p1Gj95BeD+DjxphPAIBS6n0A3gRbiAsAYIy5\nDuC6UuqbznGvgS0MBgAPAPic+/wNAH7PGPO7ru2npzr4nAgWY8z/yf78LQB/1n1+E4D3GWNKAJ9U\nSn0cwOtdmcxDY8xvAYBS6r2wkviD7p4fcff/LwB+RimljDGjwee7ncLxTWvoDZ2sgfOFLE45Z8c2\nwdM3FqiqBHv7TTRPQ2JdDZ4VObFvTnJvoqFT2tNPLaM+ipgDNqYFAF0wQ0y76idUdsKFmAcvNBWK\nKgpRzM8x97uqSnBcAdVOoTU1FK95DwuhQs597uwOmYk8sQJrodPwXKGSVS3q3IJH8rBlQiXI8x3K\nVY1ta01b2zbxEDCFNjgJHJR4BBk5/Rc6wbY1uOXW3fokH9R2qdYJbpbdetnQUCeYLhcqofV66zgP\nQgvR3IT2wdh8ynZCflD+O++TjPiT9BzVY3lYKfUR9ve7jDHvcp9fDOAz7LcnAbxhZrtj974dwIeU\nUj8B6yb5E+77VwMwSqkPAbgKy6P/9thDng/O++8E8D+5zy+GFTRET7rvavdZfk/3fAbwJTufAfAQ\ngBtjD20aNWDeRDGbPWAXs4y4kr9zii3K0H3S5ttrj5ypM6JVpFChaKOqCuM7ceLfS20hJFSIeOXN\nUFgoCRegHzwQ0lbGTow9xh7TGJj/eKyNbatwUmnsTAukS28KU7qwWgyG+Gc9gSHyUqJm0gnGRMmT\nhETMv/NmqTzvR6dVCar9Bmdtg8f2yLmf4gHHMClyjEj+TfVmtm0KB4/YE/A0t7R2zLrf12qdgGq8\n8PH2nN4jAS1VNTQ9x+rc8znszWXo/bPCdjIMXAq6kG8odrC6G7Q7X+b9DWPM6+5JR+L0VwH818aY\n/1Up9V8C+DkAXw8rJ/5DAF8D4BTArymlftsY82uxhu6ZYFFK/SqARwM/vdMY88/cNe+EraH8j+5V\nP0SfvhvAdwPA8uGro9eGHMX0vYeTCGg3MvIkWttlZPFKm7w0J/SKaQWEDI/9r0qNKk99u9IBKk/R\nMpqJIO6poBS/jrc5CuHvTtkcaFD6YIqiDRZQ4yjFAwYdqCwZY+6S8qLFQhsc5m0HQukSJCmPhcKN\nKSqMtzlmsptDsh1i6PVB2vs9R7hGSFXaMFwbldXAxrJZ7YWc9aSlSKFymO/w8KJ2UWUGC51hoQ2W\neos831nYfUJgdmtHMvGsbFFDW+RkNvcHgWgyickXxVfjpl+xRkPvd4piAiVEtM5W7ADHv3+e0WcB\nvJT9/RL33Z3e+xcB/DX3+X8G8G73+UkAv2GMuQEASqkPAPgqAM++YDHGfP3Y70qpvwTgmwH8aWa2\nig36s+jXb+aTQfc86ZxMD8A68UN9eheAdwHAg698pZEn8lAdCZ70J80boVyPuSQX+cAsIBjZ3Axj\nLvQoeS12agsVyZJzcCBqp1w0h4dDb8hTYayAGmcGNPehTG8p3Oi7YD/cfXsONj9PzDDz3uexdL4J\n/n5k0qd8R2Po0iEBAYRhgaaYWlUlHk/tuLToyEd5l7MSSqK8urR1Xpap1c6K0qE+aI2FTrDQXenj\ngZ+OaYpUepkfVniJbbmeQ2Ul5iTdSgodYMZMYv5zBMIl9tuctXReMogjgJ+TPgzgVUqpl8PyvzcD\n+I67cO/nAHwtgP8LwJ8C8DH3/YcAfL9Sag824OprAfzU2EOeq6iwbwTw/QC+1hhzyn56P4BfUkr9\nJKzz/lUA/rUxplVKnSil/jis8/4vAPj77J6/COA3YX01vz7lX7F96EIYQ5oFCZVe0p8TMERzwixj\nFLqXY4XRd5RgODc6jG9aHvkiBSYA7KGzZ/P+U90Ynm+w1A2OXRsUBQTET4MxpsH9LXJM/GQu+8oT\n5WRuypiJIzY/VmOxp3qtMqBtujyWtrK5LbC/L7X2gQnUvjxU5EUf6400ilgABi8aBnTVMGPX0dzR\nYYDmhebwGFYD2/qor+HYSaissj0s9AoAoNWml/Oy0NqXPj4urR9yIGAwFOoHh1WvgFvMBDlWt8hf\nF9FcQmu4KrX3TUoKrYOxfTRX232uyZn83wrL8DWA9xhjPqqUeov7/Qml1KMAPgLrjN8ppd4O4LXG\nmJPQva7p7wLw0+6AvoWz7hhjbjme/GFY+fgBY8w/H+vjc+Vj+RnYiu2/opQCgN8yxrzFTc4/ho1Q\naAB8r4sIA4DvQRdu/EH3D7B2wF90jv6bsBJ4FvFse858qcIjVXfs0zDpD5AFkmZEpAhhwqOkqAbJ\nWWvxw4AhXPyUoOECRlZjJMh4nolNJZBp7FR86iincVHdmH6UodzsPdOaTEZjJrGQhka/y74Ctp/r\n26nHIOMo0bGiUiGieTwqbB2Tg6xLkORYYVplyBPVi6gamEVFH2OZ43y8oUMEEa/cKItj8VLVIYgb\nALhVAfSeCEa/0NafQtUol+khFvoAebLsjyU5Q54Yp6WlOMoNrp0Bx8UW10/SHkICD7Lgmoqcf4kc\nwdeHFJi964RGE3rHfr+4Mt6h58l5pAPb2B6a0nKeL2SM+QBsdCz/7gn2+Rr6Vp7Re933/zds2kbo\nnn8IG3I8i56rqLBXjvz2owB+NPD9RwB8ReD7LYD/4m70y58yS+0Z+t0gHnbbe9bIqWiswNccmjIz\njBXlKtLGnnrvweqQ/hb+/d0gYi4hAcOF81lqIV2qXUAQpZ25L5R3IE0vF6nfMRfBeg51c9niFqj6\nqBUui9bWdql2CtXOIDeNC0zoC5ZqZ6/huTs2YdEy41AphNAaPu+4Ygek52NS4p3Sztw1U9jznp4P\nUWHPCRmjsFlbO7PM0C7cRlpPQIf0Hd/d97FKjnITNnXik83KGao3Nx+FsI/GItCIOXCI/lABMd/H\n/cahiVhGQcmkp5vMm8K4+ZAzCMmE5mIwkWDnjJIgy3kipQxNDiVOkn2Vm178c5yWSgmS1e4My3wP\nat/pDDpHtTvDurZZ7rcqVwhKEM2nDUbAwBQ2lnQbWlek2VBww5T2JUOf6WS/zna45UBNjwrg0Z7U\n6yzPramxbTc4a2rc2Ha5L5RQSRr7UWFQlUP/GEUeco10jKbC5EPj45/lGg5dN2yj+zwWQBDymd2N\n6pWXlS6tYNnthlAO2brxMfvrk9yq+AH/wRhxYRKKv++Zz5hPIWgeEpuHNgb3cfD2ObPt9Yk5twmu\nvCrD2fS9gIaiY+xSqAyiogI+Fn7NnFwACiCIzTfhWq1P8l5VRiocNjeCp3QC7Lgqsa71II9F5fuo\ndqdY1xrHlc25oENIb8yOmfIaHtTP0BzExiSvPXqw7L2HudorBVYURYvT26kd46rGcQlse4mUZzgq\n7Do4Lhvc2ObB3Beg01oOHJ5eSCBKQR8imSsyx/kOCEifYhjKPCdoJiTgpw5l90K43NdYLgHtWtVt\niHWCvZMSy9s1zsoMdaGxKTJsTnLPtEJhlED/5COFSTD23lFetD2GXwmmKuG6Q8t+FNMAACAASURB\nVEKg177LV8nQDHMOaMOLUEqgA9WkecgP+s8knwohFMhn8/ZC8DBSYE0JmOFcdYyMnr85yZGtGxvy\nWmhsqn6exxzarDMcVxVOKo16VwKLh4CV01gWK9S7p3FSaRxXyoffyrmTSAXcNyDXQkzw0VxxcFPA\nChdKJo3NUwhtgDNh+nf68BZAhW2b4HGfR2HDjW9s8ygwood/SYFlaw8aJNylP436IMswU182rE9T\nNIaiUDHBMha0ERPucYij/jMOWJXT+3R+urSCBQATKpUH/wNc5nOpLdNCB1si0U6ldhI1l1GSIv++\n6hhuaLNwR/ZY/23blslmVfcMytyuC40aGijCpzQuVLKyRQU7ZsBBvzgTkDRBcQbmP4tcnjkbc+y0\nOoiIouey+fQJhS6ngn4PkkhoPC5vY1MnqNozmLwAlvsAAJMWqM7OsKkXOC77TD9m1pSmwbnZ4qSB\nSWENhIVL7PTdJcNa32BVaZdFbw9IVbXB2SNbWA0088JkTKjQv+Oqi468lVZIs52vU+9LL7t3sleW\nvXbqQsOs7f/c4c8pKHAjB7OYVhTz20kBPPc5FNZ+cFjdNX/PXQw3ft7TpRUsiTZYHVbYIMdpXqAu\nNPbWFercCpT6wKr9Dx6e9eLzgXg4K8/IB/p2dDplS4oxqlCCpnzuyuVTVHlq+39iNZK60L08g1VR\nB094JBR84mNux7w6rDxwoO/DJoueVHl/Q9/H7ilH2gNYngETvKQ5kvDzuRTo+8N8myRkAlnyC22T\nB3WSQhkD4+reK2O/yxIbbn1wWOHpp/rObqIYoyNmSWsixjzHmF6oqJucY5rDB6+e9QRM7znrhPWf\nhMu8rb/QwKPLDrjyqACO8wa39hvs7TcoCgsRVMEdYGbSWNKvXJec+FqQlSgH1+a70fUXvY9ZEmTf\n7tM8urSCRWvTy/beIMczjBlzgXKRfJWQDXmDHFJ7mTIPdKfV/iakzeJrq0Pj9FAwW7ZBZMgmMMwN\nIdMfbVieIOmd1EwY8E0+Njc872PMcR8jaXaTVQWlmYnXm4/BrhRFi0XaQc73oPLbyiVI2tyQsXc0\nZz3EhMp5KBZtxdum97wJYX45Rp3ntuwxwdPzfBfSSnrt6x1W2Q5lq/BArvBMlVi/S6qw1HZt5E64\nbE5yL1ykhk7X0fsLmbBi61K2cd76R3OuGzs03afz06UVLEp1ddm5KkwLn4oSjUfmhFVyItowlHDo\nN33gZBcTAF1Aj+klTvaINBfBbLlg9AxV5Ib0GBZpKkU7eD7Z16UTlhjbWOAB/V2VegjvwU7z59nU\nD109C6Il0Cmf6rGHnMo0P7L2B+ru9GsLfTW2gmS+66EYhCiUYAvMy8a/G0RzsDqo7diLvIcVV+U2\nD2WzznA922GhGx9OzoXMUd4Jl1XW4jC3hcQAYF1rl9ejcZQbHOfAQje4xg4WJNC5gAll6Z9rXTqS\n75poLKeLrpPrDsDAXMtNdXOrrp6HrPP+chT6urSCJUlMb3ES4yBmTJXu+AmO20dt8mKf2Y8lwnHa\nYHiilJQX7SBJTgqXUIGsmIAKJfJZMqiynTcp0H10D11bpMZrLYO+uj5MhcdyQdyD9oiYA2WdepnQ\nKiFEvGbh/EIHh1UQgoaT1VjENmgqQMNjhdHzC8GEQhQy74RMhGP3n0crjp36iTYnXY0V0nBPb6f4\nNDi6hMIipfVt8OjSjp0wxQopgAEUWsEC4LoyyenW92VzknufXp2nQGX6DDuwLmmdUfXIW2Jd8vGG\nir3RfE5FVxLR+gsJl969981gF6JLK1g46MsggsctprOWZVMLoQL0i1mNnZrKRvVKwHKK+Svs9124\nL7Xjr2GbiW+M2KnO3msGiXyy0BaNvyq7RMmxMZBpjDCrxmhqrrhmwT9PZUjfKbWmoXQdS2kOmDMA\n/fceq6lCJsJCvBOZDBqDKuFE3/t59eugCzkf5BxNtMn7yn0X9n3Kg4eyvpQ8QdnuHBqvOwCwBEpC\n6V1oC90PKF9jhfxKXosuAuPKhmt8oeEL3cm17scgAGD5u6B5lgnJoWvkvIz9fbeEizF2fJeBLrFg\nUdEEtqpK7Kl3VWPL4FWAaWgV/ndetANmS5stK20CYl3oqGmsqRNgVfv7+G9WOwjbsQfjIebXECwL\n/Jg8syr7hbtWB7VFziUfS6l74ca8DC8XxpLGBG4oaofajKJCR+BM+L2964Xpjvd52ypXQbIGdA74\nQl852rrBSaWxbS2yc7CUQaD9UJ/GtLwxknVuQnkxoTyLECo3oRGTH42bCE9vp9jbb3zektdSdYJC\na1QOfeCk0tjUCZ4JzD8XLhQ1Ru9WzgGPIpQJj2QF4Amp8p37/cn/RuC9BLDXYmtHmjljn+/TPLrE\ngmU6HLEqNY4x3BBzACFD9tzQczj8OD2D8lso3Feq9mRyigqXUIazf3Z3QvRaiMxPYTH8lBTHw31J\nMBKkOo3LJ1+K3B5g/mn6oppIyARCFGP+26YLtzVKeSgXo5Qr9GWFj4+2ivR77Bm8D/4z9wdNCBhe\n5wYYAnBKKlIDStQk8xPlNfE+UzsyF6fab2Bh+owvZ7zKrACudyooVCjf5aggOBnrUwyhFcgxAPBJ\npoANEpmzvyQyN42L+0kADLTIQTuRgw3/+277Wi4DXWLBoqKMYCz8VQIrjjGGELOj0753aoIJlyrp\nRTFxoEVCjqVFTsCE56XO/NBpIZTJTsWbSHuh0N5BXXMKZ61MlzsSoFjWNP3NT7Q8+IBfM0Z3YqIo\nS6uN1DuFdmfxs7QTLK2p0e4a1LvUCp8I4xmzzc8xVYWES+jwMXbw8UECRTyZkhcQo3e2YdqpZLzH\nResixAysH8WavkI5GD6J0nXxqLARY8elQZH2tRc+Fllmuhd4EnivXGuRpuueJimqpc4VDHPN1HdC\nO9zPY3nB086tXblpYxhYoUUti3CN1XzoMc5cdbkmRIFqfLJ/5FS/U+Kal9RCUNrggpVzfB+IbH1K\n5qxgI31CcCqh7HyuiUXDbx3To+eNmdiAoRko5MvgfedUFC2OClEES3daCYFT+pr3MzWvwZgEBU/N\nM0x7sedz4RACTqV5rN37ou9CPop+fynRsRMuMfKOd++PtACYx5UNST5zcDDHN4terhf3T/mnsv0X\n2lejQkVQJZ7DhYwM05Y5aPL+5xu50iM/DQt9/25jzI+J318D4OdhC3K90xjzE1P3KqX+e9hS7zsA\n1wH8JWPM55RSbwTwYwByABWAv26M+fWx/l1awRKigS14Bk4Qnbym6mbz7O28aFFBVAosxqOBfNub\nzNukvX+EmfQoUzgGT8/NDARVwsNSubDjCWIUPcMjrXIhKEIBBb2TaBEP4+Q2cbqvEN9dhIhhyACH\nowdLHOUWJl4nqc1lCZCEzJ/1jtC/h4gzLtJWQgcWfn9IE+LEhf/aZcP3UAqoHXSneP7OZOLnzaeW\n7BlWuGxbE8xxkX8/kO+QJcZjki00FR3rcl4oY1++k9g88XGH5ocLjKq0gQIXpZiAuVu0M3eOWg4A\nSikN4GcBvBG2uuOHlVLvN8b8AbvsJoC3AfiWc9z7d4wxP+iuexuAHwLwFtgy73/GCZmvgK3l8mKM\n0KUVLIngVxR/T6VJgaFdfAzIbupUE2I6PTPGCBPibVSlxuqgDmKH0Rg4rtkYPD03bREkTE+LQnda\nlMIldLLkn6c2ZywBDpXxzEEyn9gcx4Q/MRtpgstzm/i50MBh3kKrQIZ30pkki6KD3aE2el2e0Gak\nBup9VgE/QWwMY0KGTKbk4+LYZvz59O64uYmSSbtGjV9HValRPVhie9jgqOhq84SKiD28sDkvhbaR\nZCeVQaEVFjrxggmwxeKObxajY+ZzFfoMhIM7+BxdVMuI+WGeZ/R6AB83xnwCAJRS74PVNLxgMcZc\nB3BdKfVNc+81xpyw6/bhnLHGmP+Xff9RAEulVGGM6eP3MLq0goVTxRis1FpCiVVj7YQ+h8wXXCWn\njc6fNeYMDsH9E5DmprJM4aGrZ6P95PcS1lha7wZaS6/fTLhIoTtFXFvhwiqk6Y05xDmD6dnmJ/rA\n5zgvWlzJ4UsTxyhLjE8ilBpPjObY9CXzmxTCM4QLp1B7ElHBa5TuoEHCJCsbH0xC2kxTJzg7qrBt\nlHPQWyItZpW1uLpscJC1KLQtRVBojdLVgql3ygUCkIApe4798wgYIAAHw+aF3k3IHBui0Doeizx8\nFulhpdRH2N/vcqXVAastfIb99iSAN8xsd/RepdSPwlbofQbAnwzc/60AfmdMqACXXLDwkz6h5Z4i\nt9ArLDJqSrhI56GlDrqlqjRC9cGBLkKIqAcfkw/r0stnUt/3SgukCQCnyPE0lnjo6lnwxB/bdE2W\n+CzpuXRRB/ocgc2ZxVjkzlRfpFApUuPgXOz1gwTJwP0xvC/qHzBu3uFUzhQosv2YcKHfQp+p/1Ko\nkKOfhPsGAIcb4sKlLF2Qx37jtRfK1i/0DoU2vvqk1fQMytYA2OEwB06qBA/ktsbLNW3n/vPOsU9+\nl9B8nCeYI7TOuTl2KpgiGDAw412eh4w5VyG0G8aY193VDswgY8w7AbxTKfUOAG8F8MP0m1LqywH8\nOIBvmGrnUguWKYoxKmm3lydKEjD85C+FyhRycSiaLGT/XR1WqAqN07U1Z5we5sgPdt6pTtFkPNOY\nj8FCzHTLoC7CCLR8Ts5zmosxwrEiWHQfNxHypDsgzCzuxGShjAHXXXSSujK9xjPfKRpjkGP+lqk2\nY+aZmEmO05hfa4zJ8TB4biq7DuBsv8Fje8qhHlutZF1rJ6ipeJrySZSH+Q4nVYIsafHHtMJRZYuI\nHec2LPn4ZtEzWcZyhmg88vu5AmDM/8dzXuYEfzzH9FkAL2V/v8R9dzfv/Uew5Yt/GACUUi8B8E8A\n/AVjzB9NPeS+YHHkhYDTLIIOaQFBwmmwySnpsTI9beXgsPLYYXMYYZrtPHQLLXiJCkzPPkUnVHgd\n8kFf+eY5rLxw4ZhOd4OkIBwLpbVjMb3x8M8x85g3BRbxiLMYlW1YsElH/pxiUjEijXh1eL76HiGz\n4dw1QyTNj2PjyIt2ADPEhUtV9tGGrTNeOc3FaZZao2xNT6gQHeY7ZyIzHm/sOCftZYsvXF9Exxb7\nfgpjTq6T884f0d3LvI+nOJyTPgzgVUqpl8MKhTcD+I47vVcp9SpjzMfcdW8C8G/d90cA/jmAHzDG\n/Ms5D7kvWGYQMYSY6UYKoZ7vg0XjkFAhxOCCge3NEVacuMbET68S8r5Lpmw8ztjgWV64DMEaR+fl\nAhuujAiIrtG+01w+Zyyn46ICxhNHOAacxjKM2DtP9Bdpr5Q3MqYN+ucKYTDGEKNmwWLo0+r1MaSt\njJhApQZxXLToZ+krnFQ6givmsNa0FeaFtmazVaaw0Nq1sR1U6vRjc+blEELF1Hu+iHCRJrK9VRya\n/7kgY0yjlHorbHSWBvAeY8xHlVJvcb8/oZR6FMBHABwC2Cml3g7gtcaYk9C9rukfU0p9GWy48b+D\njQgDrEnslQB+SCn1Q+67b3ABAkG61IKll3Hs6knwzR+rL9L7O8D8JHFmnxetB90j0D9LgVyLXsJb\nwJQhmDRnJhKdOASa2RufEy7SBHURGgOX5KdMLoDpHdD1oXkNmUHGmMTYGKYwm6zW0nThxkzLGzMT\n0nO9mdEVkrPQPd12i7URAxCNvf9QO1O5VWMUDNwQkXoAnPO9dvPTZemXrfGCA7BChQdI5IkzbWou\nxKy2utQVrju/ixdkrgAdgB5CRWjMIQpp9sC02ZS/g2lw1WefjDEfgDVV8e+eYJ+vwZq5Zt3rvv/W\nyPV/C8DfOk//Lq1gUcp4LYIzOBICValHTUn8/5jzPUYUyy7xx0J0xVkfbiHOXIAhoyL4eB43HwP2\n88znsAMRlOaTuZFxss3Yxqa/fZGxcihUgu2KdxYylfnxjjjcAXI875AobbWV7QYAoJrSweZXWGgr\nkE8xtL8PfDzCNu8LySHHWDLp3aLz1inhRPNeVZ1JmL4H0AvD532+BjrN20TKB9izQ9oLEUHxd0Sm\n0E7i+7WBrk8hvxL3dfLxyGCVMZL3hlCU75SMOf8++mKlSyxY+syPABgLwShStyDlguBMlxYfaQTy\nWmrTq/mrGq6CbNQJWaTGhsT68E6FrTY97DJO0vziT3whrcudgrn2ImHzgXEhGQrzlTUyetpGhNlJ\naHs/lyQwAkmqngkyxsG1Nk6hpDoAPozYF/qqq64eS1MhSTUOMgttstTAOhLFFhNoRCRcvNZ6DvMe\nwOuUdAcLKcAk7E+MeVHCrDQJeeEs5nBKyG/WmYtatNFi2xZ4dJngRUsyfYUFC0WSAVbDOfRzERYu\noTnmfYxVepRlFohC893LdYqUm7hP8+kSC5ZhPZZQjkCIIYYECi/IhVXdQ1/lRMIlVqODFjMJlSPP\nc40rEmR8ISSqtBeLrtqsMx9iyomDWIaES6i2h4RLkVAzksa0OKllyGx+eV3vXl5/RTCO82ZNE5yL\nVhlMeQvYnAIATLlGnl9BoW+5mixDzWROPgkRBVNQ/7nfhIrNjZXhDc0Bj6LiRemWGjgurZNYvjOO\nxhDz6ZFmws2qfIyhUGlq62yfHPpWc7EAn4k3fwFWqBxkgE5of0j/xVC40DOmNNnQnuJ4bNyUORVV\nxoVKKCH0ImSMej7kxzwrdIkFy7hz2p/4xYlZ5gHEimdx4SI38WadDUwWvpiUECpHjN9sW4seS4WQ\npGksxCzoWRzEcin6SiayUAlmGidHnfUwMBylIOJ7khTzG4WKcvXaC2iIedF6jfI8p9Neu4myeSxt\nA1SOybUNtEqRJ8onSZKfY44pI4Z1JddOkTYehoXGL/0m9K6WGl7L5W1TMMhSA0fOD7LQBrfc4eNU\nwMvPSSSNRZLxyDSJl3d8s3BzUwFQeHxlw5ALbaPE8sTgMG/tfDsIHa1Sx4GmhUtM8PK+RgWx+55b\nH3qCJlB24D7dGV1awUJ0N22oUxQC2+PPv+iC5vfxTS+JhMtFKC866Hz+LF6a+GA/XFKWKFQRkzNr\n0jhCZgnqw51SVYbBGu82ze0rzSswDM+evJcxxA4I0mDbqIEg4jRWYiDWR7qPE2kR9M66iK7K9cd2\n6upy3rOsiUzh4UXrosUMFtqG5q8Oao+wfac0Vq74bvtVLitdesFCJM0+U4WrqtLeUzaWYZ61HZT9\n+nY6CwuqF9XlTk/2BGtNChQxtm3tv+NSYdvaZ0gG3qsWGfC3HPz/7X17kCVXed/vu31v98zszGh2\nWYldJIJkLFzmkUqMIlEVk/gBtlCciFA4KC4nAaegCBCTxCkHzD/6B4eHY+QYyrIssC0/AEeEsooY\nJBSnnJTLEiiEp2SHBWSBIiFW2tHO7Mztvrfvlz/O+bq/Pn36MQ/t7Ow9v6qpubdv9+lz+nF+53sr\n6WIdpY0lU6s4tx0XlVQgSek9J3E5ixGwGLG3fxpH43oJWumrXu33NaDqyaHpemtC3Dg3xNF4ismM\nkM0YOU8bfI0MxtNqtdAu7HViKhJLWs8rfa/cwNKucw1H9SJZvhxytTHUvNKq9jpXstLkYs43ts9t\nhMmMsDyaKcllgnhgWG9jAmxMymloNc6VS/IAC9EAawnj8cR4jLkp+CtJYJVE1kWcfe6RWxhvr5jN\nLsi8Y88IArEotD1s+kV09dSaZOTl1/74LrQx0kcuZ9ZjpMuTglAAYD2tE4r7kMok4kuBoqtDStW+\npjTz+qUUVYysfkW/X6ghrArC1E7XrXClrzI5FaQSGbXeYg6kdtWuDfDuxNZZ9rijaJt7vca5iamQ\nQl+IhkA8Kj7nPEU2M3muDgJFX202a6DMDLyv52lwBACqdgagvE+yX1PJiSyN8N0nFpAeS22p4QFO\nLJprvRobghGvsI2J41wxMKlgTKp+ky15LS6ll8eTaqS+W99F+u9TYRfncNSROpas5vyxz+QyLwjE\nouAaswVZGtXE5raSxC6p+AydbeQSx7MiTgDolgA0dNbaLK3nBJPVsK/Ko0DbewRuZUIAhWNAMjSk\nIh5s66n0tUoIQiprsaRTN+SynVdtUn6vnLIvO8i3VEMR4JcSxjkjzQfIeQKKkn2ZPnyLE3eSS6fU\nGRtRk7g8Rl+5T8+E15LcV228ToZV6dIHTS5PPLZksiPnU1ujJcKzZ2QrUg6KwEkANtdYGUhpvlNN\nepFI/TPrsbcq65PfWyw88Iq24zqpuHZGg2dWBcZMz1hK/gsNc00svpdbtrkxHy657KTuuvvbTsgl\nS+sG9TbUVB9pBF1AC6iWu/W54xarUscWoX/T2xaj0n0XqH6Wl7Z0cqhfc20PaHL11BUzXQnGLR/Q\ndZ2EbMe5WT3nbI3HVmKhKLGlieupSfS4uyLw+8K9Z4LU85z0wcLQSGSyGNhxfjfHdrMwLANK5RmI\nPRKL7rc8X2LU384zHI2N9LIWD3B8IUcSkSUNn3tyKbXIf3MvpPxxhjPrcSWHnNQVeipd9MYMaaml\nLEpWPltNkvFeFjLzirkllp1kGnXtED530ya4k4P+78YSNL2oQ2eVKJNu5klc7VaFLAp4eaKWfWOQ\nbcPRDOmUsBiVROvzbjMwktVaQlb1Uartyom+LPq0EHGh5htPzb5ZGhXXtXAUsAXN9Auv+1ArmewZ\nlzYuuxA144xzYLhYqsI8+/VxL256Jlzjt1GbluPptHckKrmp3m4JYNsuAAyhUHFNJaaqVkfIkaB8\nXnTLKxOkU8IZMBZVIK/2MmtzNnAdVbJsYFRjOXBiiTHOIxvvoomjfB/TfIDMqiEN8Qys67cpILYY\nETZGs8JFvrhOqCaD1Sl+ioXR8sR6VZbjcq9DwN4wx8RCtQlIw33IXFLpiupuKtRV/LdShG/lW0k1\nk9WN6kXKc+dYmUR8iR1dcmlTZQD1SatpX5k0siOmBK02MgPmeumX+SiAdQi5GGeEYgJ0jLEyEWzJ\n9VPVFuX8XZOB67lUG4NIJEPlzjqMkXNWq/Pex9W4r6pD7p2vYFtTXEWN3CSmyNoBFuytGitS14sg\nNxbH1+/aOSy5A6iQSlOAZ9P9kEDH7FiK7XyKk0tAWfLYEIdO/ZJ5bFsmeSWs2hVFyeOCXGxaokr/\nHYLTRv6+WSX2K/aEg/H+4sdsVkbINwWMCXykApQvVFf1x9pqukGK8E0eQF1HrIMxtdQi/dOrW8mz\nJJ/b8i3pvkrAmbuy9hnJZdLwSXSVCX15gnGh7qCKtCJVDwvyVStNfU1dia8PfOSiJ5Ocp4ZYRnbi\nHMaYcVkoTafFaZpkmkiuyUFD+uCSih6XjtHwEUGaGm8/E5+RF9dWrqkma90f99roz/r6Svu7SUPi\nthsnpgpnmkaYHh8jnU6seq0kl2r+sBJi0E8iwmRWlVpgyUV7K/qkS99z1ef5mRci2G/MMbGUwYN9\n4E4AAj1x+FQD+kXVpKIT6yFudmXVdd91QrwFqxeurHydSaQsOuYOptlwXJm4W4LOXKTOuSvS2arO\nGjwpjPxnMuP6u3VuWJlYi/MntgCV06Zcw81khHil7GMxuXSsoIVcjGeYmsxEaoliYFpdNTdNrql7\nfxWa7DCuDaxiI0CVNN28dLK/JAzV7Ws3cq0m3FQegfo66TG4CxKB2OOE4CpjcaQWn7rX3Kspskwl\nG02lwqlZFY3zAZ63bNrRNhcAhRSjpZm12Ny7tQRWSptW+lNZoNg+mB1K1WzmPDNA9wJxr5jtX9r8\nCx5zSyzaQ6PP6ldP2totFqg+kE1652LSs1mUdf0X/bv7v+bS6bg/CqloW0MhdazMgJXyYY6THDHK\nYEOpPlkZZzwsyDJO8sZcaV3Xyvc/TvJabIbPJiTXJUujSvLDoq2YCkLW10rQpEoC/Flwc56AiSrq\nsJzNdRG1EuBXxbnttz1LTbFMWlLpO/FIDJGgMKgrFZjuq7sY6purrDK2DpVQRdXW0eaT31s0+5wU\nRaeQywxprtPvq37mpc3lecvAWjbAegYsDAlH4ynOZGWsVdG+B+713mvc0UGAiK4H8GswUai3M/N7\nnN/J/n4DgC0Ar2fmL9jf3g7gjTBeEL/FzLfY7R8H8AO2iTUA68z8t4hoBOB2AD8Ewxl3MPN/bOvf\ngRILEf0CgF8BcCkzn7bb3gngX8L4/v08M99tt78UwO8AWIRJ+fx2ZmYiSgDcAeClAJ4E8Dpmfrj7\n3NYo7VPZeODznnJTd7TtL/u5htgmQnFRWc2PZthAqUop9Nct59Rt63Fuok4uTeiaWBJnYnHPqwP/\nJI7GVYGZA8wEoj17dKLJLI2ApD65+tBEKMPRrDEHFJM5v7axuBN127natvkkWnfS79ueL5eX9txz\nF06FCkjXGNkceQtmyf5SMM5372sSsqePspDyZSZO08jGpExhpA7jMbYQlTVcRgPjbpzmVIspkgj9\ntZixnhkJZj02sS6AIS/pgw+HmFQiAB8C8EqYmvWfJ6K7mPlBtdurAFxt/64D8BsAriOiF8OQyrUA\nMgCfIaJPMfMpZn6dOsd/gql7DwA/DSBh5pcQ0RKAB4noo23z7IERCxE9F6Z28iNq2wthKpq9CMBz\nANxLRC9g5hzmwrwRwP0wxHI9gE/DkNAZZv5+IroJpibz67ALbDgqA8AvgTTlgnKhJ0ONpsnD95C7\nE6JW37m6efdFkYmhqa8yeWwmcaXuxU7RRrA+1Yr0SZNi2alqtU2fmmsnKoquujJNGXiNC3JpX9qJ\nJNEHrnSpj9eLlspvKh+au13gsy+47WuVamZX+DqS3iWVwivRo8LTaLrWuoBck43nEQDjfIoTS2Kg\nN+cSY71Wj40GjEsXzWJIyh4vRBHGuXFnl1iXOJ7hydMLpi5Oy/07X9LLPlaQvBbAKWb+JgAQ0cdg\nKj5qYrkRRrJgAPcR0RoRnQTwgwDuZ+Yte+yfAXgNgPfJgVba+ScAfky6DuAIEQ1hFvYZgLNtHTxI\nieUDAH4RwB+rbTcC+BgzpwC+RUSnAFxLRA8DWGXm+wCAiO4A8GoYYrkRYJeaZAAAHBJJREFUwM32\n+DsBfJCIyF7QRgwGVdJompw12pILNqGLXPqQiQtdw6SqQioLMkmQmM5uXKze7aSyoSK5NxF7V3Zu\nXik9jjaCbVPriN6+TaoTUtH5zSTVjs+Wknr6pfvWBrcUcdGm9VrTasC+k2mtrQ5JZTdoG1uTbUkX\nmwPKaHottWjJRlRLosb0Zbcu2t7FpKzbeQLAdj4tgjIlQ8NCZNLxJ9EMy6MZVuMcx60LnCl3HBUE\nc0lMWNgeQGJdBF3k0oS9FLx7BnE5gG+r79+BkUq69rkcwFcBvJuIngVgG0ZV9oBz7MsBfFeVKb4T\nZp59DMASgH/LzE+1dfBAiIWIbgTwKDN/iagi3l4O4D71XS7GxH52t8sx3waKkp1PA3gWgNOe874J\nwJsAYOnS48X2wnBq69Nr1cFeVjHaTuLTP/uko6Y2tF5fPheuldaYDZQ2El/7vra3zg2Ng0Ditxv5\nUt77VDc7LS7VJnX0vd66LztN4LhT7LXtpoDUncKVWtquu3Z2kAWHD0MdD6IWJG3tNqnvNNqqOjb1\ndToZYKMSIEs2azPjxOIAy6OZMugT0twY9tO8lF5MRvAykNI9x4EZ0Gfc6jjj4DgR6Qn/Nma+ba9d\nYOaHiOi9AO4BcA7AF1FPOfBPAXxUfb/W7vMcAEcB/C8iulckJh+eMWIhonsBnPD89C4AvwSjBjuv\nsDfmNgA4/oLns2tw9ZWe1Z91ugrZXyf0k8j8piSBaQOhAPWXUAyshbTh0XMvi9++NWY3qbLcAk9N\nAWE1e48n15L0YS8rOd+xmsx9fXczHrSpxNzgPN9qeieLhTbbUpdtrus8u5nkCnLZBZk3EYZO9tk2\n8Wv1a9O+Gr5ro++HlAqQ/un4pTKGxpaLsKldksguJqIZNiZRJTtCEjEmsxnW4kGRMiidmjG7rvIV\nu2UPojzPOM3M1zT89iiA56rvV9htvfZh5g8D+DAAENEvQy3arbrrNTA2a8HPAPgMM08APEFEfw7g\nGgDnn1iY+RW+7UT0EgBXARBp5QoAXyCia9F8MR5FtX6zvpByzHfsRbkExojfCZ1QUbyNit8SfxxF\nE7kAfs+pOJ5VSKGPKkWTyopVBenCXnqlvqyCwsTTrEKYDX3TRl59jPRJdPGuxKTdXncjrbSpTHyq\nLU3cfUjFhzZC78I498dW9IF7fVz7SJLkNRtT3wmuVVJpIUKpiuoLfHVdmwEnc7TH06zPNdXlENxr\n4kqaupJr+YyazA5ie5ECbdmsnnLH2MxM22uxSQFzYsmUUPa9P3o8gNECLCvbXtfC4YDweQBXE9FV\nMPPfTTCTv8ZdAN5m7S/XAXiamR8DACK6jJmfIKK/AUMiL1PHvQLAXzKz1hA9AmNv+T0iOmL3v6Wt\ng+ddFcbMXwFwmXy39pNrmPk0Ed0F4A+J6FdhxK6rAXyOmXMiOktEL4Mx3v9zAL9um7gLwL8A8BcA\nXgvgT7vsK+a8ZfS66zbaJFG0kQvgX0k22V+aHlixK5SqAPnFX/MeUOTSQ8xuqyAo55exADqfWl4c\n34SKZOG8uHqy2AkRNcV8+LzOasdqlY3jxNAHaQOpuJO/71567U6ecUuBL9/90AuD/YZPam2zFfo8\nzdzjgXa1WE0K90jzhd0wcZ0YJpZYGAtWYln11IWT9C9pXkbpn1iy5SeSKdbT6gKtdu0zrpHLfoEY\nu3aQ0bAq/7cBuBvG3fgjzPw1Inqz/f1WGAenGwCcgnE3foNq4hPWxjIB8FZmXle/3YSqGgwwHmi/\nTURfg9Ev/jYzf7mtjxdUHIu9OH8E490whRm03Im3oHQ3/rT9A4xI93vW0P8UzIXpBZ38TyZnLam4\ndhGXXDRc6UXar+yjVvs+6EnXXxa1Ti6V2Br0W0G2kUNfI2yffdpSrviKLPlQkSid7dIPVy3jU3Fs\nno2RJVVPs52WnG2c/B1y6SPJuaVydb8rz90uVF5dkJiXnewv/Sv+20WMOHz0sef5SGWovNI2zxrv\nRNEcCMHIfmeGUywMRSVGOJtJ5mObAj+qXqckMiqx9Uzyk5l7Pk6mRd0kOUeWRsg2Blg6m2GSRNiE\nmQvcOKoLBcz8JzDkobfdqj4zgLc2HPvylnZf79m2CeNy3BsHTizMfKXz/d0A3u3Z7wEAL/ZsH2OH\ngzbHUaVoEFB6UvkmBt/EpicUn2rMxU5yDukEkE3w6bndF9zXn7aVaV+JwjvJOqoq3b+dqBN80oj+\n30U2FUnFmQD1ynicm3EW2Y0tcp4gn00B1BcP7rl0f91nYbeQFXMX3PvkevBpFa/uT9P9byL6om58\nUo0nknMA/W1FvuqVcTwrXNA3Uc/1JXaY6fExYEsfmyzJwCXxDGkuxEKVmBdRk63FMIGUVuIxCVAJ\ni1GpDpSYF6CUKjIMayW49wJi3heJ5TDgwInloDCbUa2Otquq8b6kCl3k4ntRtX2gS3+rc1TpbMG+\njLXSR32eYruHKGQ8XZX2+mR+dW0jrqrIN0ZfmdumCVnbKKRN6b97D32k4uvrdDJQKV3sfpFHt9IA\nd0L1uWHvZZFRpGFZzVqfEx+5+Pqp+9WGpj7rInJuu0B/YmlbtGjvRLft4s9mST6xZOr5jPNBofKa\nzAzJTDy2lzV7ayXg1dSHAYApts4Nsbya4anUkMsoyzHKcmxBkUvAjjC3xJI7+nM3GAyovjy63rvP\n3bJLcnFT7Xetas2+4hFTJxXXgO0jPn1uTZZivwH6kUvlGrRUauyaXGJnwvW15V6XJhvFcDSr5Iaq\n9aGFVATjnJDmhHw2Rc6TxtScO7IJ9ZBa+johZGk1J1hTe33612Q7kySmbilt7+IqLm1zTc9b2zPQ\nxxnBZ3PSnyVVS3YsxZkjUxyNTYG5tRg2OWW13SSaFcb+yYwgmZQWLPGMc8b2ZePi+k6SCKPM9HNp\nIzPkku2PezLNULR9sWNuiYXVu6hJpbLCU4XAdISySyxAM7m48CXrc1eSPnVBH/he3NSZKEpSQYVc\n9D4a/QiwKnFotVVjNLZjlPdJLFoP7xuf/l6ZjHxODDZGyXd+wOQGi6L66yCFydpW+/oaNBnz+8Ln\nsaRVfzshlyaHAh+8ixX1zPjUrtI/32fvOZyFkKBQtSlyEZuLObBUZ8r1SNMIW6tZUeNlnJeVSeUP\nMFH6pQ2mfC6W7TM1zodGcj25hTSN8NTGAiaqnzphbEB/zC2xSKZR0e22kQqAwu1X0PSS+4z6sr/P\n7bXJpiPHiLFepBW9X5uU4uuDW8t+2+m+Tw2ipRvfWJsmnS67ij6PTCTSjo66l/P7irKJaqTeONXJ\nxbEzxPHMGoHNfhENgXxqP48QDYZYjWdYiPpJdD6VmO/58NWY1/u32Y00uejr27YwkH1k8eSD9vhq\nIpAmeMfYcC3cRY6Ge42bMlZIuxJJL9LL9pEpxlMqpBeg3TlD7vvxhRyFLe3KDQDAU/Fi8fwEUtkd\n5pZYBsSNE7qQiq6LvZ0bchEbjFvXXuBzSdbbi3O0EApQ15XXdOd9Iq7Vvr5yv95jHXKRFPdt7s5A\n1ajetVr3qbfE9VOnoVk5Uqb3OIM6ubilAioTkUgnjqQSJ8YzTJJQJhEjjhZNWpe8NNJGNEISZViI\nzH2XhJkaTSUSXPuLayPSfWlDkwTnu8Zd5OJu95V29rXXhEZJ1CFA3wJMYml8WFqe1BNjxv5FhZDV\nVpGayHiNjfOytIS37yo1/2psVGRXLlv15MmtSnxRFu/fFEnMGE6eGffxCw1zSyyA37XWJZX6w8nA\nchnJC9QNt00uye55m1yTNYn4HAB2oyZzIfVc5BySEFJPQnGSd7o7y35iW2iCS6K6ep9WgejA0KNx\nmS8KoAq5FIbcFgnRbChT6wupLK9MsHJkWiQ3jGgIYgZPDbEQMyIaIh6kWIvNsyBlcH22sqZJuZLt\neQcp57v20c9t7dxO/3xefuLhpaXgrn64wbRNxNNX0vF5sBVaguXSSy9rGKdscyXm9bRUh43z0lNM\nIKRS1neZYXlknpETiwPg0iketosbb+btgF6YW2Ih9T5VDdp+UpEH1fzGSNaysqa7ikmQCdZHKj4p\npcl+0Ob66a5i9YOvJ2rf+HRszGIEpFbDJ+oFWDVUHJsMuAu1J6RdcpG22qAnFJckl5ZNrRYxypb6\nckMuj0/LcfpULgI98bqkMhzNsBgZT6F4wBhQZKSVaWZqsuQZBhQhiWYmFiKJijK4TWPM0qhUv9m8\nXIU6x5VUfLYsj8ebbltLKT6ycMfadJ6m/reh6Vnskkzdib8J7rN5BlzYNJsIVJ9DsGVr/cjzcmKx\nuq8mldXYtHs2i6yLMhc5xhYixvpShseXJwXB7Af2K0DyMGBuiWW/0VazomZ07pEVuTg+q9pVutA3\n8FD3r1iZbQywidirOtkJ+tp+mtCmqkuGbALblLTSZlzW9gghlbokpjBtjlmIk2oaHO10UO5UVdt0\nOT+0natGjj3ji9zz+aRhN01OH/TZ170XjYSgqqK6WIyqWZfdMbW1OUyjIpByPeMiBYxILfGAa4GU\nguWRsbcUEf5DYD3J8MQ+aAjmDXNNLFJOVx7cpSNTrBwxUbmLVkKRCUj830V95Or7fQnu9P9WV0vP\nb256FN2OL3+T7NemypCkfiKZpVMTJLpxNsbm2RhLZ1NsIcZGYlxcN84NiyAyN47GPXcb+uT1KtpS\nFSYBY4wd58B6SkUpYzm/lgybJjEfqbiOGTPOjaSyYOvjRjFm0xxpPkCaD7Ce2mtl08aLesT1WtK1\nZNyJsPJ9B5M5gNZMwy58rttd0fu+57ZtXzlPYxob+383mZzHuXnWXHVek1NEQe5K0ts6N8SGfZfX\nM+DEYoS12BCHSbNfSi4bkwhn1f1YHuVIIrKuyyIx9yuEF1BibolFcoUBVYKZTga2uh4X5AJUPai0\nnt+N7XBXsDtZsYr3k+9F0kTlcwjQxNPm4isEA6BCKqONqQkMS/NKjfR1tWrezSpX0DTJ6HGmaVSp\nMGmy+phr7ZKKwEcuri3C50penH9GyHlqqkbaAEkmQjbbxsYkwnpm7v3W5qhS/tmXm81HKnuJxtf9\n9tlD+uRR8xJAU9BmWnVt9qGLLHySu2/c9awWJmbLqGfrxvqma+e+F5sQR5Ac60mOMysTPLaW4aoV\nxonFqIjUTyKpElqeS9LDpDlZKccQzFrcO9V9K4gZo2w+SGpuiWXgzI0yWRQvjiUXDd8DX/ymXuou\nD5udqJl8L6r28a+0nTHilXL1BqDimSb7y29CKlLPZTiZYWkjw9NJ2b4b5KnPuRsVj5C4mzVa2tSe\nYcamYV5EH6lopwFNLq4tS5OKK60ANoULT4o4lmy2jXw2RZrHWLeEJqQibq6jjWmRTdqciGqk4qLt\nurm/xfGssDctRsD2cFqTGPWx7qLGVUfp69JGSPrYtjEIfHYfv9t8N8z7VSfrrj5UftsY2HxjceFp\nuLkxwsaxFOtHpzixVKaCGQ2qRv3VOLeqMrLSqiEYtyRyQDfmmFi4iPKV5HejNC/SOmTZAGvH0ora\nSCAPtq/mfO2h7yiyJNBBiyK1yDkE7mp5lOYY2YlXjIKTNMLmStw6ybmZZEdpKa1IW1k8LOwvegXb\nVPURaA6w9Dkz+AJFC9LzZCL2uVtLGnp9jkpcSIukApTSKGACJIdRYj9PkM0Ym5MBxjlhOhlUkiSO\n0imWNjJM0giTJMJkZdjrevtqy/sg/a4nIi0dJ7SatM+iJk7ySsbgNgmgy57RRC61cTjbm1ImVSS8\nBvJsa7cYd8ZYOlu1kaVJhPTRBWxcHmPr3DbOXDbGySXjASbqMcC6nRf2lwGAGZIIBcHsB2gWcoVd\n9Igjxtqx1Hg/JTk2EkMwxy7dBlCmCVk7ltZeJK0Skv2avHmQoDbp+HTe6ZRqgYBNL79kYp6Ij33G\n5eo5ps6U33oiWF7NsIkYW/b7JDYTpbTRVyqRYMZi3A6a1Cu+VXKWdkeuu9JTV2qUQjVkrzNQTtgR\njRAPFsHbpsTP4vL3Y3F4Bssjkx13OJoVeawAIEPkJZWuKpEuwfh+A/wE7SOXYv/EnzfN3cdHKvq5\n7QqQ7JLGffE62u7iphXqQl9nAen/5tkYW6sxRmmOpQ1DMJJC5enTykXssjGMipUBRMr2QjCkUsJ4\nBnZ2I8DB3BLLcGBSaZ8Zlisc30rIuDDa7y2TWZJUiSVN/Tp1d9Lp8gzzeTlt2Oy3xUudVH/3ndeX\n0l23JeTimyjlOJ/0IU4PcZIXwZRabVPpe4PnnKBJZeg6LOj9fZKQq/6rtJnYCppx6SUU0RA0TcHj\nTQAATVPEg0WsxltYi4dFgCRQpo7ZWo0bjfVt44o90ttuUFuoJHktg0HT/kCdBHzSRRNqEqbqhw/i\nfOBTSbapl+Ucfa5XnOTFO5HFQ2zBpmPJSim8qt41WZKFXIDcJq701MwZXXhSBhFdD+DXYDp/OzO/\nx/md7O83wNRjeT0zf8H+9nYAb4S5AL/FzLfY7e8H8A9hLs43ALxB12qxhcEeBHAzM/9KW//mllhG\nA+DKFcbCtqmLPRzNCmO2wPdAN8WnFF5HcVW895GQm9qiy7Dr/iYqvKZj2lQTbqJNaUvIxV3ZutUP\ntTQhvwuprCXAuLBNmpW1K6n43KFrhOIQmntcWyLMtnY1xonpqElSuABsbwJnnjY9X30SCytHsTLa\nwEJUBkjK5A2gUrvHJwn4yt/2QWJtIHKPFiITJCrXVeKoZELuWpjoc3tLNDv3F/CTkEsaNclc9vUc\n2xQnZj5z4XG4U7gSYkV6QYxJEmHpbFYmfswYWRrhydML0nNUycVE4os7ssS7LA4vrDgWIopgim+9\nEqas8OeJ6C5mflDt9iqYQolXw1SQ/A0A1xHRi2FI5VqYC/AZIvoUM58C8FkA77SFxN4L4J0A/oNq\n81dR1sFqxdwSS0RlQJR5uOq5wNK03X1YJhTtyioPtk6sp1/KiieXx5ffZ1w2qOrWVzpqRLgvuy+7\ncTolYHNUIRfZ34Vr05BtS8uTglTEPXOcExamwNhOGlp1I9em0rZHhab7kAwZkoW3L6no84nBWpcy\nEC+/JGJENAJn6+BzRiFI2RbiwXOwMjI6+LVkWHjHFdezp4pQE4tPHei20yTpAmWQrj7WfdaazuPa\nnlx0VbrsY5CvTPAthOKPIfLng9PnqzwTDZ8Foi7eWo0rdpfCe2xjZANlxfNQjPYmA7ImlXiwWGv/\ngHEtgFPM/E0AsOWHb4SRJgQ3ArjDFvy6j4jWiOgkgB8EcD8zb9lj/wymPPH7mPkedfx9MBV5Yfd7\nNYBvATjXp4NzSyxf/8rDp1/7/J/96/N0uuMATp+nc50vHPoxfci/+dCPqwEX47jO55iet9cGnlr/\n1t2//8l/drzn7gtE9ID6fhsz32Y/Xw7g2+q378BIJRq+fS4H8FUA77alibdhVGUPoI6fA/BxACCi\nZRjJ5ZUA/n2fzs8tsTDzpefrXET0ADNfc77Odz5wMY4JCOM6TDhsY2Lm6y+APjxk1Vz3wEgfX4Tj\nDUJE74JR4fyB3XQzgA8w86Yx3XRjboklICAg4JDiUQDPVd+vsNt67cPMHwbwYQAgol+GkWZgv78e\nwE8B+HGrRgOMNPRaInofgDUAMyIaM/MHmzoYiCUgICDgcOHzAK4moqtgyOImAD/j7HMXgLdZ+8t1\nAJ5m5scAgIguY+YnrJfXawC8zG6/HsAvAvj7YoMBAGZ+uXwmopsBbLaRChCI5Xzhtu5dDh0uxjEB\nYVyHCRfjmDphvbbeBuBuGHe2jzDz14jozfb3WwH8CYz95BSMu/EbVBOfsDaWCYC3KpfiD8IEL3zW\nqrzuY+Y376aPVEo7AQEBAQEBe8fOswkGBAQEBAS0IBBLQEBAQMC+IhDLPoGIfoGImIiOq23vJKJT\nRPRXRPSTavtLiegr9rf/bNMvgIgSIvq43X4/EV15/kdS9PH9RPSXRPRlIvokEa2p3w7tuJpARNfb\n8ZwionccdH+6QETPJaL/QUQPEtHXbJoOENExIvosEX3d/j+qjtnRfTsoEFFERP+HiD5lvx/6Mc0d\nmDn87fEPxq3vbgB/DeC43fZCAF+CMYZdBZN7J7K/fQ7GE4NgUiS8ym5/C4Bb7eebAHz8AMf0EwCG\n9vN7Abz3YhhXw1gjO47vAxDb8b3woPvV0eeTAH7Ifl4B8H/tvXkfgHfY7e/Yy307wLH9OwB/COBT\n9vuhH9O8/QWJZX/wARg3Pe0JcSOAjzFzyszfgvHOuNamVVhl5vvYvAF3AHi1OuZ37ec7Afz4Qa20\nmPkeZpY8N/fB+MEDh3xcDShSZDBzBkBSZFywYObH2CYVZOYNAA/BRFbra/27qN6Dnd638w4iugLA\nPwBwu9p8qMc0jwjEskcQ0Y0AHmXmLzk/NaVUuBwqIEltrxxjJ/WnATzrGej2TvFzKJPPXUzjEjSN\n6VDAqhb/NoD7ATybbbwCgMcBPNt+3s19OwjcArNI08nJDvuY5g4hjqUHiOheACc8P70LwC/BqI0O\nHdrGxcx/bPdx0zsEXECweZw+AeDfMPNZLQgyM5OuwX2Bg4h+CsATzPy/iehHfPsctjHNKwKx9AAz\nv8K3nYheAqPb/ZJ9oa8A8AUiuhbNKRUeRalW0tuhjvkOEQ0BXALgyf0bSRVN4xI0pHe44Me1C/RJ\nkXHBgYhGMKTyB8z8X+3m7xLRSWZ+zKqEnrDbd3Pfzjf+LoB/REQ3AFgAsEpEv4/DPab5xEEbeS6m\nPwAPozTevwhVw+I30WxYvMFufyuqRu4/OsCxXA+ThvtSZ/uhHlfDWId2HFehNN6/6KD71dFngrEd\n3OJsfz+qhu737fa+HfD4fgSl8f6iGNM8/R14By6mP00s9vu7YDxV/grKKwXANTDpq78Bk0ZBMiAs\nAPgvMEbIzwH4vgMcyykY/fUX7d+tF8O4WsZ7A4xn1TdgVIEH3qeO/v4wjLPIl9U9ugHGdvXfAXwd\nwL0Aju32vh3w+DSxXBRjmqe/kNIlICAgIGBfEbzCAgICAgL2FYFYAgICAgL2FYFYAgICAgL2FYFY\nAgICAgL2FYFYAgICAgL2FYFYAi5KENHPE9FDRLTvGQOI6KdtRuEZEV2z3+0HBBx2hMj7gIsVbwHw\nCmbWOaNAREMuk2vuFl+FqRX+m3tsJyDgokQgloCLDkR0K0wK/E8T0UdgUsg83257hIh+FsB7YILw\nEgAfYubftBmXfx3AK2GCQzOYeuJ36vaZ+SF7nvMzoICAQ4ZALAEXHZj5zUR0PYAfZebTRHQzTO2O\nH2bmbSJ6E4CnmfnvEFEC4M+J6B6YDME/YPd9NkxKm48czCgCAg4vArEEzAvuYuZt+/knAPxNInqt\n/X4JgKsB/D0AH2XmHMD/I6I/PYB+BgQcegRiCZgXnFOfCcC/Zua79Q42q25AQMAeEbzCAuYRdwP4\nVzbtPIjoBUR0BMD/BPA6W3P9JIAfPchOBgQcVgSJJWAecTuAK2Fq5xCA78GUrv0kgB+Dsa08AuAv\nfAcT0T+GMfJfCuC/EdEXmfknz0O/AwIOBUJ244CABhDR78Ckbr+za9+AgIASQRUWEBAQELCvCBJL\nQEBAQMC+IkgsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7iv8PZgt3\nsC/XeNkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQZFl+1/f53XdmVmVmVVd3Tbe6p2c0M7sgLUIKKSTZ\nOMwrsIRYkMA2yJgAyQJ5jRTGgWxABtsYUISAsDEhCT0MGMk8hILgIYMUEmCEwWglrYTA2l1J7OzO\nTPd2T/WjKquyKvO+Mo//OI977s3M7h5N78xA5zeio7LzcR/n3nu+5/f6/kQpxRZbbLHFFlu8kwje\n7QPYYostttji2cOWfLbYYosttnjHsSWfLbbYYost3nFsyWeLLbbYYot3HFvy2WKLLbbY4h3Hlny2\n2GKLLbZ4x7Elny0+YxCR7xKR/+HdPo73IkTk14jI7Xf7OLbY4t3Clny2+CVDRF4TkbmInIvIiYj8\nAxG5YT9XSn1IKfUn36Vj+xoR+efvxr47x7Aw43MmIj8rIh98N49piy3eK9iSzxZvF79ZKbUDXAWO\ngG97l4/niSEi4Tuwmx834zMG/hLwAyKy9w7sd4st3tPYks8WTwVKqRz4W8Dn2PdE5K+IyJ8yrw9E\n5O+LyEREjkXkn4lIYD57TUS+WUQ+Ziyo/0NEMm87HzRWw0RE/oWIfJ732Q0R+dsicl9EHorIt4vI\nLwe+C/j3jNUx8Y7nO0Xkh0TkAvi1IvJjIvJ7ve21LCYRUSLy+0Xk34jIVET+pIi8ZI7jTER+QESS\nJxifJfCXgR7wkrf9bxKReyJyV0S+1nv/N4nIvzT7uCUif9z7LBORv2rOdyIiPyUih+azkYj8JbO9\nT4vIn3qHSHaLLd4StuSzxVOBiPSB3wF8eMNXvgm4DVwGDoH/HvC1nf5z4MvQE/P7gD9mtvsF6En7\nvwQuAd8N/KCIpGZS/fvA68ALwGcB36+U+jjwIYzVoZQae/v5ncC3ALvAk7rlvgz4QuBLgT8EfA/w\nu4AbwAeA/+xxGxCRCPi9wDnwb8zbzwEjc9xfB3yHZxVdAL8bbTH9JuC/EpGvMp/9HvO7G2ZMPgTM\nzWd/BaiBl4EvAP4js98ttnhPYUs+W7xd/F1jWZwCvwH4sxu+V6FdczeVUpVS6p+ptrDgtyulbiml\njtHkYCf0rwe+Wyn1E0qphVLqe4ECTQRfDFwD/jul1IVSKldKPY5Q/p5S6v9VSi2NtfYk+DNKqTOl\n1EeBnwN+VCn1SaXUKfDD6El+E77UjM+b5px+q/mdHZM/Ycbjh9DE9H4ApdSPKaX+P3Oc/xr4G8Cv\n9n53CXjZjMlPK6XOjPXzFcB/Y8bjHvDngK9+wvPcYot3DFvy2eLt4quMZZEB3wj8UxF5bs33/izw\nCeBHReSTIvJHOp/f8l6/jiYVgJvANxn30sRM5DfM5zeA15VS9Vs43luP/8oKjrzX8zX/33nEbz+s\nlBorpQ6UUl+qlPpH3mcPO8c+s9sSkS8RkX9i3ImnaOvmwHzv/wR+BPh+EbkjIn9GRGL0WMXAXW+s\nvhu48tZPeYstPrPYks8WTwVmBf63gQXwH6z5fKqU+ial1GcDvwX4gyLy672v3PBePw/cMa9vAd9i\nJnD7r6+U+hvms+eNS2tll5sOtfP/C6Dv/X8dcb4b+OvADwI3lFIjdAxLAIyl9D8rpT4H+PeBD6Jd\ndLfQVuGBN1ZDpdTnvjunsMUWm7Elny2eCkTjK4E94ONrPv+giLwsIoJ20S2ApfeVbxCR6yKyD/xR\n4G+a9/934EPGEhARGZhg/C7wk8Bd4FvN+5mI/CrzuyPg+hMkA/ws8NtEpC8iL6NjL+8F7ALHSqlc\nRL4YHasCQER+rYj8ChPzOkO74ZZKqbvAjwL/i4gMRSQwyRG/eu0ettjiXcSWfLZ4u/i/ROQcPQl+\nC/B7TGyki1eAf4SOa/w48BeUUv/E+/yvoyfOTwKvAn8KQCn1EeD3Ad8OnKBdd19jPlsAvxkdXH8D\nndDwO8z2/m/go8CbIvLgEcf/54ASTVbfC/y1Jz/1zyh+P/AnRGQK/I/AD3ifPYfOLDxDE/0/Rbvi\nQFtACfAx9Hj9LXSsbYst3lOQbTO5Ld5tiMhrwO/txEO22GKLf4extXy22GKLLbZ4x7Elny222GKL\nLd5xbN1uW2yxxRZbvOPYWj5bbLHFFlu841hXH/FM4OBgpF64aWrvlMn4tVagWrZfSwCBkccKQpQI\nOtGqgTLlIwqFUgqFYqmE5WMMy0D81+u/HElMsFxCXUJZoeYlqlZIJEgUQBhAGOq/cQJRykJV5LXi\nvBbKBUQBJAEkoSIU1dqvj6WChTnufNH8th8p+pEiDlJYVM2YBSEEEUu1QJnMaSEgkFB/Z7nQf8MY\nJcJS1SzUgmqh1z1ijiUQhdA+KOWV5NRLQSlhaV4Hoo8nChKkLqEsULMCCcSMQ2TGImGJ0sdjr6fy\nMrwl0P/cANSwqKEqoapRRY2q118XiQTpp5CmEGcsVMVSLQklJJAIqlxvZ6n0hY4iiBI3XoGEen91\nCXUNZQVLhVoq3I2zBFUv9WFVQl3BYqGoSkUQQNYLiDNFmAVIL4IshaTHggWzWjGrhXklLJdCGC6J\nguZe8O83ez/EgSIKhFBifT2Wtb6G9hmQwF3rpVq6a7RUwmKpr0/Y2W4oEEiAIIiEzXbtOJcVKl+g\nygWLWl9n+wiqJSyXEJjdh7EiiECiAEnMdY5CiGIIIwgi8wz6Wfyd62autyDNPWrv08UCFs1fVS5R\nS8W/vHv6QCl1eeNGnwC/Qi6pc6on+u5rTH9EKfXlb2d/73U8s+TzwgvP8ZGf/At6ggD3V9VzPRl4\n7wHQG7qX0ttDJT392ndbVjkq6VGrknwxZaFq6mVJvSyJgqbcxH8dmvrIqFOOUqvSvd5d9lHHr8P5\nKer+MYuP3WZ5nBPsZ4QHfRgOkNEQhgO4fANGWhzgtDri4ycFnziNuTaouZQtGCc1O3EKwHlVMK/b\nxu+kjJjVDQlMiohxWvO5eyWHvZfg9A7Mz5qxiTOIM2T3sBmTco6an8DZPSgKyAs4uAK9ITK8ynRx\nzEU1IQoSoiAhlIgs3CVGE1StSupl4cZgoWry+pyTQtzx9SPFKyPhUnoD3vx51Kc+xeJjuj1OeNCH\nJEYOD+DaNWT/pr42tZE/s9c3SpCo584BgNkElZ/CyRHq1l3UmxMWD2bNte/HAAT9GBn3kVduIs9/\nHtNgxsITKxhEe8SzC33dTs9gNIThFWR41Z1jJAmiFOrsLty/hbp1F3JzbKWepNSsYjmrqG9PKe6W\nnN1LOL0XcvKwJusHXH/fgr1fFpB+/iHy0g248TL18IBPX7zBT98f8No5vHEuzCrhck9xKVO8f7Tk\npWFBL9ITdBaKuycH0Zhe4Ak2VDlqfqLHqT+monL3dl6fky/axDyvA4pl+54aJ3pcduKUNOw31/rs\nLpzdQ92+i3rtiPr2lOqNqb5EVUCVB1RFQF0EROmS4UFJeJARXd9t7vvL+3BwRd9/gz13z9TLwu3f\nf5b85ywLd/Xza695lcP5KeQF6v4xnF2weDBjeZyT/eG/+zpvE+dU/PHwi5/ou1+z+McHj//Wv914\nZskHQIkgcaZvOvNXop5ey9Wle89NTPZ38xPETGaqLs0KN9cT7c6IqDdk1xCUnUijQE/4dsIB9G8U\nZmLUD10zGe64Y1QPX3OTvaSpfvBglXh2RpoYzXGO4kNeGd1inMzZSxVZtEMokXsAo2BGFupJfRPG\nac2vvASX0peQixPU/Ew/oGcXkESQFZDmqCrXBF2XqNkETs9Q0wuY6PNieoFc3kfVJbu7h2TZbjMW\nswkqv6N/F2dEvSFxbw/iHTdRhxIRBTN6UcGkNIQd9PTk3b2uswoB1NED/df/0F9QxBkqLll79jsj\n5HIBeUlkCIfE/M0SPeaX95HD968QD8BFfcKgv0dUX4H+GMlGqEFzbew1UCKakDDyBbmZNEuzvaIg\nzAvCgz7R9Rnp7SnDu3MunUbEacXwc3vEHzhEXrnpFh4P56/yc8c9ZmYTV3pwESme31G8Mqp5aVhw\nKdvz7oO0uRZV3nbGxxlS6XtSiVAv9PHVy5IuslDIQsVJsWwR0KSMSIMlUFAvSxaqJg36ZKNr+n5H\n39dx/y7Bvn7Wkpkh31x7GCQLCQ8OkOfGkKXI7kBbeXuHyO4hVRyCWj2mLnwicguAOGvukx2AU32v\nZilhEhPY67/FU8UzSz7OTWYJyGIdAfkwZKMwq39/ki0rRwbq8j4MrxD39oiJIL9wVpXyrS1rGZjJ\nRiWRXiXHmbYUol7zfYvhgND89YmH3nDleC+lN0jDh2Th7grxZcmhsbwmjoCs1eNbSZfSG5p4pkeO\neNTpmZ4EyhqwRGRWjWY81GTmrIbwYAZ5geQFajYhGl7ZSFRyeIAaDvTEko2I44wouWQmywlaQcZY\njZb4N11nQ0Aka251S5wA9dxNhESJ3uZoiJR1c65pqrczGmpC2T1kImcbhXwu6hNGo2vaEjRW4dpj\n9Aioa3WLfX16RnjlgvDalOjOKb3jHMlCog9cQ15+Adm/SdUfcFrc4lPTmJMi4MLjQ594DnuH9BZR\nYw3WD/VrbwElu4fQN2Lg5m+tSmpVOqK1Vo+1nKwVGwUzzqtmkQCagIqltrTGyZQsPKeOS3YGl/TE\nbwggHJ6tHyRLOGbsrdWqBntUT0A665Avpvq5SHp6nK1lvAOkOZKlzaJgi6eOZ5d81NKtfJSInpTt\nxN0lINCuJvOZJYzuJKvyBZKdEj1/AUWB7J6hDq40FlSHbJR9nZfOzQJ4pHKKMvGEFrK0+ZtELubg\nVpGdDMbdcN/s/6RxPQHMT9gdXiWShCiYcH9e8dKwMO6RXece4eJEuyWsS+L0TB9zXqKyQh9HUTQT\nteeuWDzQ+1P5wt1sYlf1Huks7pyyNBNqOJkhz42RswtH4gJkyS6gLba8PicLd6G40NvKGzeLQ1lB\nEqOOHkCWtMZO0tT74gT6Yz3RWAKyY355H0lMLCVN9bEYq3ZS+fqi63FaHZGGfSJzr22CJaBNRKqG\nJ4ixOqNDj/xffBHZv8k8rLkoj7h9seDORUrfDPYgAlC8PKp4cbdiEO/RC3ZQk9dbbibstQNkdIEa\nnsLeoZ7kjasQ1VhsNSU7cdoQjiTOgsrCXdJwyk484/68cq7SWa3jbvM6oBcteY6JviT9XeL4piag\n2aQ5aXsN4qxxkfbHzhrWA7OeeKIgbbneuliomlAi7ZUIE/38sKfdxR7k8r6+7k8BQQC9/hPmeE2f\nyi7f03hmyQeMX9jcC84qeBQBPQHEN9Gz1D04KyhrJE3bi2YzWTpSgVXiSSJNYHYlCDqmAHrl6pOL\nO1Hv+DuTm6pLetmIXv86g+i8ccGUcyiMtWZdbd0JPmvOy03mWQp5SdCPtfvLzIKShc3Y2HMzlpPK\nCudKBJBxX29nOGidv51wQonIoh29cKgf6PF4FB5FPB65W5endcWqSE9KbqU9vEplA8aqZBDp1juP\nmuR8+HEeF2M0FpGbTOOm75vdbhSkxPFV6O2heiewc4YMB5Cm2kIx34mChDS44KWR/p2N5/WiJdcH\nIWmoLRgl0lh3dizKulnU2AUNaOv07C7S2yMGYuMK3Yku6TGz5+K5juOoRxz32U32GSU6RnRRaeu6\nWAbMa/0vX9RgCChKLum4jR+Hg8bd52I5560xte7sdXCubtrfsQQqpXlWFs0zI7299rVnAkO2+Azg\nGSYfpW9omxQTeDdll4D8+I8HSVPUWJvlIbCcVU0cZtfEYLKR+627oWPz0BcFkusHXWXGCvLdCzaQ\nbwnFTLKSptpq8nF6Bpxp19dbWalZd0t+Si8bAbWOv5jPrMunBd/yMsdj3VFSFM5V4bfPbMWnLCn3\nx7CT64n07MK5XOTyfhOgNxORSnrUCz25ueuklL4266we8GI0HdLxLRnPvWkD6gBRsofWSNXQk19j\nncYzY3HFmZuQ299tw5FOOXfuLom0u2edS65LaEp0LqBEPVRcQtqORcbEDKI9LvdKLx6zMO6wnkts\nAe1u6vX2IOo1i4s0Rawlbl1b7mDKxiIwt6KY367EPPMCZccWiOKMnd6Q3d41BjszHuYnpEE7KWGh\nan1M8Q7Cnjsvl3yyWL2+dpH0VuA8AsaSV1Wuk1G66I+Ryntm38Lic4snxzNLPjbmY1ej1gpybjiP\ngNh0AyaRnjwsAfWbmA+jIfSGLgMnSvYQNfZWifahz1sk1IopmCC1qLFnIZ06q6kF68abXqwcZuu7\n62IfaBeOsm1qukHvzu98i80Rj804qufaR56mkJ0RWQvouXETn/JdiXEGe1lDQuBiPZZ0QE+YPrJw\ntx3vyTdMEFmySjr2+LzYgZ/JBbi4Rr0sGUTj1grbZbGBu07inU/MmgC1RzoubhiXOtYERCY5Re+z\nPdn6riH9xrxNDgBVThxnDKLm/a5VYM+tViUq2dWB9iprk9AObWt7Q0xNQduFbF2xPnyLc3fAzo2X\nyYbP8zC/xUnRpEJbsoyClMizBF1yQ8dlGQWpHmPPveyTv0U3E5Uq1+7j2QTuH+vnxRKQJTxzHaKk\n14zPI2KKbwUSCNnW7ebwTJNPN0OJJW03nHXHoN1Ta+EREHnhsqBsWu20fuj8y5EkRHFKHI+bhz4/\nNZaQWTmaSdFm8FxUR4QSsTu8qo8hzSExD/zUi3d040atc8W489ruJwdLNpsmcNC/9SwIN6HbxABz\nvJHtAp3ecxlEMkSPixef0oPsrVyjpGWBNKve9U9hJAlUZjVebuglZ4/Zc/O5/ds4gonf5IspxVLH\nkkAH023acBrc5/rOSMfAqgXq+HXU7bt6LHbPUH6CSNWJGRmo+YkjHWclpLk+1/mJI6AuyVrUqnSk\n5tzBa9ALdjxCvmjF+PwMzHwxdZN9i4Ty02ZjfkzIjLOzuL17zqaDq1nlstO6CPYzwukF0Ysv8tz+\nTWcF+cgX0yam5KXZ18sSQlxcKSbWBGJhkhVWSNN73SKd0zPUm5PmPG4UcPkG0ttrCJqiNT5bPH08\ns+QTELRcEYBzw0VB2krD1B+ah3jDKmglfvMIVFQuw8bFFywJmVqYioqL+oRJMdXZRJLQ27/ZrDjt\nhLvJ5bQOedmK07R+/yji8T/3icvUFcnwKvPlORflA9Kwz46pM6IomtWxb3X4AWT7f+Pbr4x7y3e1\nPMqvvw7Sj13sTNJ0lXSgvX8PUZBQL0uyUIAl1DpmEklCXC3aSSNZqq9DUazG5nysu2fyohn7vraI\n/aSKdVDQWhA9Et26pqhxVYK1LMomUcCSEDRWUJU3iTXd++xx90v32GeV3oYZC52Y0NQX2feiIF2p\nkXO1ROFq/OaxqPImS7Nzry9nFWFu3LbGtV4vjt1iUV/+4i3ff1s8GZ5Z8hEJ175fLGdu1dV6MDGr\n1/4YmKw8jKoodOZbVujsKPRksTO61tqe23/ZSQywk4OZEOtl0aqlqFVJRUWcjVA7Ng130Px+javM\njwutdT2t+a06WtP6xiZCeNsVLyBNlbcCPK1YzL1j7XazsR77na6F0wkkW9iVvPLcUnY86A90lhQg\nSUToWXauDqRLOm4DpT7Geo5UOb3+2GVI2f0MbMjIWDyAcRMeInbMPBepdd35Malmf9719hcPRQFM\nXJxshVQscZmxUiKQ9PS/TXCft2NW9bKgqO+54tBxaohuiXbreWOzUkawcV8xksSE/cYC6iLox0g/\n1rG84RU3yVvoRIl+Y7XFu1zUbavovOrUCA32Wp/bmFzX5anqOTy45x1vpIuPszPCvNSvjcvYxvvs\norTr7nu7CALo9baKZhbPLvkoxU50ifP6oXvPmfiB939VtmsBqryxcPxAvK3zAdT0wrkBJOoRW/+8\nl+XUgl/kxqr/Ol8osqimXhZ6W3Yi606oNjZla0S6+/K/v26lXuVIEqFuvbn6mTuYYpW8aLKttDss\n14WjU51yrWM+Z5qUd0b6B/0x8+X5invFj1lk4S7q9A7Upa738RICwMRG4pR436Tp+vGcdYTjnadf\nWGxjL3FvjzhuV/cDOp3b25bsHja1V72hc909LG7pc4jHOiZF476VqtcE5/PCLQzkDJNN1RDQihKD\nzWK0FqU9/zWLmnWf22yzfKGYlBHzOmZWCy8Np4xTXf9l3XqqnjfWXVm7UgLZVGiZNAW4loT8hQrQ\nFOUemDR1c3/b2iBHPLMJqp4Ts0cYRNTo45/XAZMyYpzU7HFOHZRNrNZbkFhicgoNVa4VFO4ft7ND\nk0gTYVnrVPrdQ3N917utnzSbcYu3hmeWfFgukHLOTnKJfDE1K8Pmn3UH2AcgkoTMBmkxac2YFOei\ngLJi8WCmV3mgJ8Dz09UCxi68QLUlLFvM56Ne6ip/JeJUDNa5rcBYVb5ckEHrGDZMzLbYT90/Xo0j\neW47ZZMkOoiCFHX+QBPzZMryONfujTcnegICiBLtpqsn7txsjCUazEiDPlGQ6sJWI9GjdvQEHPvp\nznQIyIshdcd7JZZhXYJeMoaaHjVxKOt2sgsMW01vEiFsirMl0dP5q3z0JGFeZ7w0POXqQE+ENYWW\ncfEPpqydtanAG8dJO8vQj6+McldUCXDuxRIt0XWRL6YUC1trE/MwDykWAbMaV4D60nDKpSzS7qwq\nbxYvppBYTWbamjEWja3230hGw8H67MLR0E3yjjS7xDM9cou7ndE1Fqo2xar62AGK5ZJxoseloJE9\ncl6CCEc+anqkYzxvTpB+jMoLTToWl/ddsoGtY+riaVs/WzR4pslHzU+QONPulkXHv9xJ71wE+mmN\ngrSxPkZmcsoLHWydVWAeSjc5m5RY5fndwZscOxpp/gosChKysHlQ3QrVFMTZhyZfTJ07JQoSXdSY\nJUa7qrEkuhZVy41lVnc2riRZqrXGNiQxOHg+fCfdY1fspQ1E1yxnlVNtkeFVivqepy2nHU7FMjDW\nj9FFq+dNfIVTPTazCbGZ8FuHQUU8bLpF++cqSmlCtfpdbpsdxFmbdFqFl0PgCLWTu0lUJT1OqyPu\nXlzw6lnGvzoOuajgpOjxclnw4u45g7iTlVYYq8ePofk1NmuKkd3v6jmwx3n9kIf5CfM6YC9VbsVv\n049rVXJRn5DX57w5D7l9nnJSNO6eC0M+tg7IxrPU/KRxtxUFnF24RAKLJXg1XH5NW9JWgVhjhap6\njlQZcZyBIcy4WqDO7zakVxQwP0OGV0mDPjBlVoshTZsRFAGFictp2Oc2CkqXlk6Vo07PHHmGSay9\nEraUwbgA/YVY15qC9anzW7x9PLvko/xUz8LUGqgVoU2AeV3Riwp24rJZrVk5FEzFvtUAS2IY766V\nAlmLjivMF24EyCK9irOTi8300SnNey3fv3VjPA5r61Bs3cTFiSs+lMv7KD+w3Ml4c/U6dhtWKDOy\nWWZaF2uJFfuMoDfU51ifr4z19UHIKDlsamh8pKkmb6/o0GVGLVeDwqJUm2z7YyTOmnqVtEP6dmFg\nsu6c1t9w0Kp9senv+WJKYYjnYyc97ueQhdpx1o9MkkKQsBNdQi70PiUbofbM2PnZgjbt28LVgnnW\nj9HtmxtrZt19qhMiTojjjFFyqGMj0YxxMl35fi9acinbY3e5jzo/aVyC56crcR6t3BGuWjvGypHU\nFAT718qH5+ZU8zOdjp6NzLZPWYEZ+yzZ5VJWMq9P6UdKu92MRqEmpgbGmasXXCaeKvs34UbhwpHr\n6sd8j4HFZ8rSCQTSdCvWY/EMk0/bxq6XpdOi0iKIbeiqbE1CTpfKCCOqONOxEn9VZUmnt7eyrRWY\nCbxLPBYrxGNW8DZG4GdIWevDKfZ6D76YB23dw2ULIFuTQZauVwewqcuWEMzvWwSQpsjhAZF12wwH\nzuefL6YrYqaXe/EK8UjUQ+2MXEqyRD2XFn1RTRjE4/a5dERDuzJDegyMUoBVat6E3eYzVc9dXGdu\nSKdeltyfV7x6lnLf7HYQwSBSjNOa53oLBoZ4VH6q3XVoAiIboSzZbFiYKEuCxoqUbEQVhxT1mXEx\niSG41LmunAVh9teLMzJDQpasfQULdXqEqu63XXxnTWab6lg94LndnhsjN642ROPXxXXhXJdmH1aI\ntuv67Y816Xoegizc5XJvxl5aOtLxCWYFnloBcYY8/3kuztjEdjbjcbI8Wzw9PLvkY2BX0edVwcNc\nP0iXvPuzS0Q6+BkwXpywSGsG/b1Gl2o0aeo9enutVVVLydqH5zrzRRub/a8hntnETRaWgKK4SQ/3\niceu9O1UL52VXlseZb5yfDIaNtltfr0MrBQ6RpI0pB5nOrA77hP2K73q7A31BFrOXAAZ4OpgwCg+\ndBZCd3z0xhPojzXx1FqqJQpmTf2HJKj5ndWJfN1kY0noMbDjVKuBtnSKB9TL0snEPMxjbl+0LYrL\nGVzrVwxi3ZpATX9BWxPWXWfH1VhQsBpq0G7CcetaqKRHXj9sZUBmobgWBVx4LSzStJnco0SrGVS1\nlr+Zfxoe3GNpasS6xcrOJViuz1wDkBcO9fW8fKP9wbpWJCZjTtLUy8Q0CwxfRNePfXY0Cm0SiiUd\ndX5HW1Cbij9NnZw7Xq+IdOX4HoP3apq1iHw58OfReaZ/USn1rZ3PxXz+FcAM+Bql1M94n4fAR4BP\nK6U+aN77s8BvBkrgVeBrlVIT89k3A18HLID/Win1I2/3HJ5d8rHN2dBZMpMy4s5FRD/SBHMpW7h+\nJ74UyLwOeJiHPIxCrvUvuNzTGVq9/ZtgpXQ815CtV3Erzs5kWJmalmI58yq9k7YFU85R8wdrNNZO\nnYsijsfOj643nDcBZGgSHypTNBdnbdLZpP+WRC51fMWPvwG6CNIIXx4e6AltpAm5XhacVwWzOmWc\nwPWdEbvhPurha1rhGlbqcawFWVFRLHUA/c4sBiquDupmjGz6dJSspix3JVs83TRou1pcllg9bfUS\n0oST6OLTReAsHotBBNcGFZd7sc7UO7sLD+7pyffsAnWtWX3Pw5rCFBB3LVE34Rmdt0gSl2AANr4h\nJiZozj0/dXEqksIpdjtXl+kF5Yu4gm1V0Pdqoza7nIJ+jE88LSHUKtdFqtZq6aRqK1uy392+9RZk\nqbZQOhaotv38AAAgAElEQVRUHGdEYdImHXsuGyC7Z3pRZsd6eU69OG6Ecp/A+vlM4C0pHDxqO5o4\nvgP4DcBt4KdE5AeVUh/zvvYbgVfMvy8BvtP8tfgDwMdpK9f9Q+CblVK1iPxp4JuBPywinwN8NfC5\nwDXgH4nI+1S3o+ZbxLNLPmbFL+WcNOwzTqZcG+iH/VK2IA2Wzr8MMCm033yOVuTtR8r59ZvJYr0P\neS3WuB1slp1PPJw2D1wrAA36gTX6U1JlEIerLrWOqKkmmrnW6OqqNvjJD/Z11naldfHIWJZRY5Ak\ncoWUvQpu7rzMTnyLUXLdSNX8q3YSwMjbhtmHSnpE6B5F4c5D9lLtdtuJLukxOrunJ1+TleayAb1x\nXteobp22nxs6SVZVMDxc9i3k0LYLqEnDkUlbbsZXFQV86lNw+RQu36A3vLraR8eNf9S6NxR61V8v\nC9OyICELz3ViiSQQG9vJ19zz081t6n2aopjqOJwlHz+OU6662OzwSD/WrrZ1Ks/+AqbbIsPPAt2Q\nIefaFpg4nLME81N3//p9pNTRA5eFF3725bWp/3ocM9e4MF8oduJZq5ndkyCSZL1F/u7ii4FPKKU+\nCSAi3w98JeCTz1cC36eUUsCHRWQsIleVUndF5Drwm4BvAf6g/YFS6ke9338Y+E+8bX2/UqoAPiUi\nnzDH8ONv5yTedfLpmn8isg/8TeAF4DXgtyulTsx315p+IvKFwF8BesAPAX/ADPpmLJVeQfVOyEbX\nXGATaAU1bRprKBHFQjczs5Lw43RXu8UkcdpdVLmzLCJJVlWzOya//U6tylazt16wo2tc7t9aJR2L\nvDDNr7xtWXiV8K02CtCqBdoIO/nZWMC6IHKXPM2EHvfHq03c/Ey/ixMO4gPU0SdRdkLxC2KzR1tW\nO9GlRurmzZ9v9xgCXQB6cAVleNF3ObprYmbVdZaPa7IWJi6mkkVaeicNlqZFQOOO7UfNmV7uxU2t\nU5WvXDd1/9hYQWdEts7Ijqff9dVTgZA4IwaiZLex2iLcvalEmtojez90xy9N9Rq3KBAgmFXrCcEW\nFHeKR6UfN6nyoK1wqwnnkQ5r2moszb5c590ubMbf6ZleeGyIG9nuovUbp9S3z1nOapJZRfTyAYx3\n29t7EqyLO3mwxON0/N47+Czglvf/27Stmk3f+SzgLvC/AX8I2CynAf8Feh622/rwmm29Lbzr5MOq\n+fdHgH+slPpWEfkj5v+PM/2+E/h9wE+gyefLgR9+5F6V0g/6/Azp7ZHFOrBps9mycFffePUdAHaH\nV3WxaXDCTqwnWfc9G18xk/zKZAdt4vEeLvsdN+FZ4jl+XbdyXuNeaPnpvWJJP57TEkdt9fDxrCh/\nhbwOj3FPtIZThLzW2lxRaNyL9bxlvbjv5qdw9xdbhOFqipJYH1NXfNQ//3JONDc1QEary052LiBe\n1nA5h+GVRuyUZrx92ZS1igR2CIiJg5goSFvdVP120TYuqC1h3QeJ/MTTWPMC2FnqrCCnTt7V5rt/\n7DKzlJeNJzRuqK6qs0p6moDWZY/5Y7c7QGEEKdak0atZhfhFooaEGO+2M9p8vTSTlm2vg5ppa2dx\nnLN4kFNXAVCSmgQG5+azyBsldGe9dvXk7h2zeDBrtROvy5j96oxeviB+XwVXvBoeg7YgadI8a5sS\nFvzfGYva6vi9XbxFhYMDEfmI9//vUUp9z9s9BhH5IHBPKfXTIvJrNnznjwI18Nfe7v4ehXeVfDaY\nf18J/Brz+nuBHwP+MBtMPxF5DRgqpT5stvl9wFfxOPIBvdoyQfk4vsogGreDmp4rR9UlcTZi3L/i\nKvOjIG3aQHtxE7/7YUsd2/vrJkTzeRSksITeItKNvu6+gTIFckDLJ+9SvNcqVDewBKSr65u+PI7Q\nbCC4qzTtw3fB+SgKnZlk4lw2WcKliCe7jfVTl6tdUL3J1mZU2RUymVFDsCnQcWbiXidru5/aZn4L\n40qKZhXhNa899vDKyuFvbGtu4Wujge5R0983GWO6/Xi+qFu1JtZK0vJCGyY3Twlj2RHktAH+cD/T\nDQmtQvrlfVcrZhW04zhbbR8+2GtrBfrwrq27Lt6x2Oug67FmuqeSRZY06gDQFOeeHLWup38dLOnM\nThPyaUiUKHp5Te/BhPA4J7q+2xRk2/3bY7Nacp5waX17SvXGlLMHCdMHPY5u1xTFkqrosZ/P2Zkd\nkbyvQl44ZB386wR04pq9VhzQuruxxHNvc3zpM4gHSqkv2vDZpwE/2+O6ee9JvvMfA79FRL4CyICh\niPxVpdTvAhCRrwE+CPx6z3v0JPt7y3i3LZ915t+hUsouNd4E7N20yfSrzOvu+ysQka8Hvh7g+cs7\n676i4QXqASeIqKIEYeyI4qmgyl2tThSksFh4K+bSTUi2FNO+b0nIvue0wdYQSFco0p2TdU/4K/O3\nQkB2+8bqsYrQRKYYN94gK7OGeB4JS+7d2FdeNIWs+QI1q13zOspKZ+kVRjRynYjopnoO/1ztfWB+\n79QEIl3QuBF1uVpQao7LnneXeNTMtFLvL4wFUmo3lBUurUyKslHPFlPo2qrbikOtmr6JhEBf9+lF\nE/w3cZkWTEv4lk5eF/59s8aKqvKAuli/0vcLsh8HS9J1pbdXzqEo9LxYzqEqAlfIHL4Vod0NsMkr\nVqWj+sV3hXwehZ8CXhGRF9Ek8NXA7+x85weBbzTxoC8BTs28+s3mH8by+W894vly9Hz8q5VSs862\n/rqI/K9or9MrwE++3ZN418jnScw/pZQSkScVi34sjNn6PQBf9Mrl1nZdMFqVjYJBnJmsIW0VrKvZ\ncdYFTYxjXQGbnQyci8z7zgriTD/s411C+1B39bLshJamTSdTWC/l04nxWAXuVjW611itC7u97mpe\nenuu7cOkmDIpI57r6QQY24NGwKVJg7fqNpOE2N1lKaE9JitAacfYKhP4mX5eFX1XIjbox9pqsO67\ndZ1kaaRTWm3UO9fI3STWfahUS87GT3128N1thiCdy8pM+DKE0Hcv+QTlFymvw/ys6QVk3Yjeyr2m\n0IMSRkT9a64NRAt54Vxkm1KqN8K6fc3xiU2ZPj0jRBelqn5NXC2piiV12VyhoB81QqPjflsZwXZn\n7bSaD02xctCfEsVTojQh6cWUc7h0o2L8/JL4fXuE10baXbkzckKhNi0fYI9zN+Nlgz1XiOy3sYiC\nFPKLRpvwzinVG0+nuY4Ej9aDfVKYbLRvBH4EfaX/slLqoyLyIfP5d6HDD18BfAKdav21T7DpbwdS\n4B/qTG0+rJT6kNn2D6ATGmrgG95uphu8u5bPr2KN+QcceVkZVwErSbvJ9Pu0ed19/8lg6goUVtzS\nTJpGP83CFgl2NaBc4yk8y2RN1lsrBuN9r5v6G8c7erI0PXNUl3Qs7Ao6KxpfOWj1Y99qs+2SwbXf\nXkle8Dt6+gTrZYlptMl3vphyUT7g/ryiWOpbKV8ooqBsKtB9Yo4zGNnMJm8l7RNg10XmB7M7kDRF\n5YVTUnCB8b7XinwNufvj3Wog6LdRt/vojAWsFtRuJKCydrGosJPG7NxpPt5KLcpM15TpfklXm8QV\nP5MPqBclF1Iz3j3Urk/QY9khnq6ETtiPjYXdkf9Zd6wHnhoEOplhOauIZsYNmijzkyXST5r07sOD\n9rU39Tmu99FsoolodwDZsZushl6nteFBSXR9rInnxnONQnUcclGfGG04O+51i4C0rFbbUookQeV3\n9BjdO6a+rV197zUopX4ITTD+e9/lvVbANzxmGz+GDmvY/7/8iO9+Czo88tTwrpGPUmqt+WcKnX4P\n8K3m798zP1lr+imlFiJyJiJfik44+N3At72lgzExC7+jonMZxaWLOzwyAO8Fx5vixGYSeNQE14VV\nTWA4aDKg1rhuKKvVYG33ePwUXgvTAM89+BsKY1fSkj3Y+pc35yEQOPmWNAjYiTfoYdljsq4kaBOf\nqRtxEjiwkXgcrPLC2LOArNXjT5j+gkBt7mALPNE1ioldJmMoUaOIblHlqKLR/FOTGfKcsXpGQ7h2\nrSmE9I5NlNqcXdUVG7WKAVEPMZZlV+X57sUFkzLiA/sRO/XQ3QtWbfwtY5NieJxBX9+HYV6a866J\n0yV1ERClS6J4SdCPdcbblf2WtJBtSTFfnpONrulrkI2cu1UAspS4HyNZyLivXbzR9THRyweayIx4\nqRrskdcPyetzJmXkREnBCpNOGafrO6RKOUfNJqj7x9RvnFLcLZk+eArmyhYreLdjPuvwrcAPiMjX\nAa8Dvx3gMabf76dJtf5hniTZoAO/f06+mEK4awQ8nwxrLRt/+10XD+tb/zpRRFMn02pSZwjIThpi\nV6fQWBJFeyW3EZZ4dkattgC2MNYmENgxacZGH43O9god6cxqfS7jRH83DftGpt9D1/3lkY5uRnfb\nNaPTmYbzJz+fLEGsnL+1eqy7tOOGdO6pNQQErJCQOru7VhGhm7btlFM9srfxKAtHPPs3W11Fi/IB\n55UWyxyMxuyGN3WR6poaL5chl6XaqjT3aTTYI5KEYjljUky5O0v4xGmPezn0oinvH10iq0udIfhL\nIZ6VAViVBlJ7IDcKolKfd3x6wdysHYJ+RLCfIeO+divuHeptuOaJWhy3iGZarbu/S8xYyyHFGZId\noYAo0datmlVEz4808VhXrVHB8NGLlt7iSF+sSTFlJ05ZBLWz0l13XBOnWxznzE4jTo+fToBXBOL0\naQWL/+3He4J8fPNPKfUQ+PUbvrfW9FNKfQT4wFvesXXLxLq5Vb5QZJSmm2VBlOy23C7WRQar9SF+\nG4NWnY+BKNVIz/jfw5vE8FbdNuZkFQZ2B84HLn7TtHUqwuZ43d9NLhx/cnbWX5t4WkrfHi73YqNK\n3SYUnX68aIozbazEr2mxGWxGYmZupIWg6aEU98dwNl9b2OreOz1brSeCtaKnPmzCSKt1hRFM7iYh\nqFd/Uruorp0hh+9fP460f6cGezoes3tGeG2kYxzjvo5HHFxB9m86hQPfWtqJU02+0aVGLsemksNK\n2+qgH5u41kQnw6ix68KrG8VpReh+1MTiZPcQNTxaX2+Dl1U53n2kQjVRAqNrKBprq14WZIMXmrTw\nJAaOiOIpQT/ScZnPvqzH4erz+liSHtP6oWv9UCxD0uCipdadJbv6XtnJ3fV2sdDhYMW9moW7rg/X\nIJ7yXE8XmTYZb82izzaOs5mrqp67OFzQj4nTOb3ekyVGbPHW8J4gn3cbSoSFqo14aCcwaUQ7a1Wu\nzHJ+4ajzU8OqjA2spPE6xFoA001efq2JTTywyFLdvTTtuJN82P/7VoZtMtclIuvuiFf7mTyKeMbp\nrntox0nlBFlBW0T5oiaL9GQUB3ErkO8SL0wnU99NlIZrJsR152eJK9bp25JHmpjtdzyrZ53L1LdY\n3MRp2krvRJcAvQhQt/8V6qOfoH7jlOjlB/CBXBOQ2VbXtWivYb6YkpnGbwIwvtAT7t6hJp7leUtO\nyT//lmLD/eNWNX83M076EalNV44ziHrO+rHX6aXhlEm5IIt2NOkGsT6O57zala5o7LrMNo947KLh\nYaFrGP3zuAgmjIaHxC/2tJssSwj27zfSPNevalVpa+1URy33LegFzEmxbD2HPZsEVOWtWGirQ66N\nE/XHTsEgMgXJvmCvL2Pli61SdmSm0HGqp5EksMUqnm3yyXQmlI33TMqIXrQkX9REgW7eli+mG7We\nWjU+vtBhnDXZSNUj7txOsWn3PWDVkjGvbQKEhStw3dQwzq9b8Qlqjf/e1xCzxGJFQHfilEG01xTr\n9SYUywWz2rrgtItjJ9ZJB2vjXF4iw7qArxUodRpxvhVndd7i0Ai6Hrm4kKt7smKV3fHo7KdmvUvP\nEc/PfJT8X3yaiyPYOc5Jywo+t9BKyZaANiggtwhofqazCEfXtCr2cuZ6L1kMonGjauERj9VhW84q\nVztT5QFVERCnNUH/mDiJtap6nCH9dinAON1lJy7dYgFM8oxNdlhn1ayLE5rxl2xE1R/wcP4qn5pa\niyB2btdL2QI4YpCN6V19H6Qp0WioSW2NtaMTAqJWy4detHQE1Fvo+EwUpMS9PZ1Mk5zpote8aMRu\nDWzPIOddAKJ6zm7Ug/6VlnK8s3o2qI9IFhLFS3q7bzuxa4s1eHbJJ9A3u52c6mXJrE6AgDQIwE5M\noc4Ysisk8G5Wr71BSzXAw+PyxN2qtSP14dJ810y8VtrfqV2DfuAsVrLUMMWmWVuJYc3E3LhQylaw\ndpzUhnjGrm9Mrz+mDkue60202nfRrFzrZePS2qR1Z33zrcSMLtH7Y2JW3NP6IRe51nbb9TuY2viQ\n7xrqwO/z47vfrJtxJ7qEOn4d9YnXKH72iDc/GnMxCbhUVOxxRGpX3M9/Hlb4cxNqVRKNrrlrdu5N\nuLoRnJZUGkR7Wgvu7O4K8dS3p62CzboIqEuhMmMdZxdI9oDItqrePSRKeutjUf6YHlxpXtvWHzbp\nwRb0ztuJHo548lt89CTh35y2p4+LGq5kEfO64sXde5BdoXf4flT/yMV25stzCmPtnBTiZaI1cEQU\nQVEGwFSrSySXjLtviPiWLrQ1/ExHVD/LUwHsjIh6Q3aN1WX7QG1SHwEdp4qeUpxGgibzb4tnmXwM\nVD0nkj2yaIdL2Zw0WNKLlm3/O3Sq4OdtNxusj00YrO3XYutxfHKxfztuuS7p2FiBFSHNwl2d7l3O\nH5lt51xeVulg73BtkoTd9vUBpEHldOxsh1Gd79FsF3AK4OC73uomqL+ma+oTdYi0/YLM+dt9WpeJ\nKwg2Ei8kEeT3XPqulaeR/ZtrzlPHt4rFzJ2z3wwv3M/IdmfGylgS7pu6FKO+XHe6qa7bPgGapEwM\nIgt3GURaxdy2ywCTaGKzHJMIssTUtsSofk00q+mPamanEZZZokSRjAKdtjwaatLqH609V3s8VvrI\nbwPetCWvQNHO9DQqBgwHqN6QSPaIgoRL2YJJ0Uwfabg0DeoWpingDbNI8frzzCb0jGVmpYqK5aKV\njebr5IFOENiJ05ZyuSveBZ2EYZW8oVl4dD0JneQTl8W5pJGDsgRm+liFB30Wxzn90baT6WcCzy75\ndHrahKL7y2ShEAWpc4NgFG1bBZZdNeiuS8kSholr2Ifb1xATxi2LwE/7tIRgg6t+QkAX67Tjuj17\n/M/V9Aj1qU/BZIrcKIxqQ9MRtavifLkXOxKWzlhIlel+OkECLJyyszunZekm4C7h+G4P/1z8zDPp\njxFbZ90JKEdBqosnp0dtmRfQsbFuawGTymvHJV9MOS3vtfZvY04yvAqfA3GacsDPM759Tvy+PaIv\neAlufjb1/jVOTWbeL6XrZRSkLijuxkqVRIO95prb76LdPwBxvqAHLv4j/Yj08z9LN3WzmE2c9WPd\nivWyJF9qN5/r+TTYM/tvst5ckznbvuPBPSfmyXDgjmk0PASOgMIt1vRzkzCILmmJqLMHjbKFmdQV\nZ5CfEmcj4rhv4qlHQJuAQC9m0mDJ5V7srG01NS5Wv+Gdl/XH/WOdgLBDm4T6tBZwuXF9QpPgEklC\n1B8Q98f6mUhTyO6S9mPC/Ufr5W3xS8OzSz4dRJKwE6fmAeq4QTbBX2H5r70b3bparJVi97UWvgK2\nR0Dd+hQLvXpsgqW+gGarvbb9/Ph1uHMH9doRiwczorLSCtJXe2stIDu5WhJeR8B25b6u6V4Wlm51\n6ZNOXp8bift0fZIBDRnb4+o2wItnF6t6cWemSVleomwNjMkIVP2xq4UBVojH9sZx+xhehff3tJr0\n0QPkxnPIi7+CeRZxmt/izXnIODlxyuZPiqYp4B0ikzHmJz20CCjTWXvRuFNh76leyOFB+7PTM9Tw\npLWYaLLIKnrRCTtxSrGcMYjaRcNSzpsJvhNzCvZnWoECiKMeo/4hUXCy2ndqcqQlgM7NhO3kbpqF\ngUp1gWzUG3JpdIMoOCINLkyPJk08vpu3F+xovUOr6deVLMIjIesp3PPuZy+dOzd9kfwkiZqSguYZ\ntR2KdblDSrSp0PstQkQ9NRfevwt4dsknMJOZWZ1FZiJ0Uv3TO43LYR2SqFlVd1sixxlVHHJa3DIP\nfkAaXLRWiDbY3Fr9d3rLSNx2yW0KbotSjegmjcabdXeJUnpSuXOH5S+8QfGz9yhPl1oNONEFjXL1\nfdDXFeqDaNzEk6pct2e26DadiwfmXKpWPYWFLzZaL0sX75iUMeOk4nJvtpGA/HNf6bjq93fxVK0t\nXLsAQ0RycgS7h5D0OK2O+NQ0phctXQpyGvZXe7z0x8j7vwBuniK7h0yDGQ/nR9ydJdy5iBmn7YaC\nj4JdzChrUVhR12tnxPs3qeKQellwsTzxuuMetdUg/OC6lebpqlWUtS7KHF51Y65bQAj9KKBYLl07\neMARkG9FqvvHurr/jVMnEho8mBvR1xTS14m5ybh/xRDpQ5i9qoVw/SLYLoymnFNlT+5BXTLev0m4\nc0wvOuHuLGGc1I7Ue8GOXgTaAltP0685Z1PfZa81QDppWtnbWJOXYbhOlcLWWQG6xsh2KPbVvLd4\nanh2yQdacRq/pQFVI4dvH6Zuu+GW5IgVezRutvnynNP8Dm/OQx7mMZMiavnE9Qq0udEtGdmVd0tp\n2W4/6bUFTf2alK4Qpm2ilvRavYZUURiRxhoItLSKUUkAXLMyNw5e7dIm2GPYSxWTUtGPmg6wVmpH\nb1v/zUJhXuvVrR8nysLdR7uw1nVd9YRKrZIA8MgGaeem8t0ml+SLmkvZno7tlZ1sQHTNTm1ImYU+\nfv+4Ae7PK+r0HoN4vPYcWmm8VnbHKlOY84rjMbmaNq7KOCXePTSBcq/Jn7fAabU1sF1MvbGqg5L7\n84qHecpJEdCPmthMP1JkoY5ZOQvICs96xKFmNXUVkGBUx1870p/fKHTsy6qk+yocm7qhGuvEEVRR\nICNdo7Q7vKpFtjhZJZ77t1YWGfZau/YMXQIqCq24YDrg1kpn/IWhvr+tVX80P3LtMezC6Wr/hHFa\nk4Z9en5CyxZPFc8u+aQ95PD9TgOqLh4AeqXeWnn6pNOttjfSIH620Hx53hIz7EeKuWk8pltwQz8K\n0EH7xhJKg76zNGB10re9XGwWk53k3EQVX3V6X6yL+ZggdIhWDoyPc+L37SMv3YAbL1P1B5zmt1zn\n1lqVen9WBNWgFQ6OM/LF1HXXHCeV63FTLAOoIQtXV5h7qSIKQlITgHdk+4geKyrpQdJD1LghojhD\nDnJ4cA/GF417ap1Y5eH7mcgZeaUn3JeGmvxHyWHTk8mikwIfE6NEXBM7W7horzFgXk/WElCtSohD\nTSY2gcKIccr+TWc574b7LddfZX7jp/Dba5svpkSxjlGQjVB9Q0LmWs/DmofzEyZlwskaZekugTq3\nsc0ky0ukHxMe9EiYI0YQFNBtPoyyuiMcn+TXkY+9HvZ62mfp9MzVKGX9Xd1t1BLPsWktcutNV+tk\n0859rPQHAk10swkKiPdvgre4sZmqUHPYO+RofgQ1zAmY1WLKC7wU7+GqusUvBRJsFQ58PLPkswwC\nHqgHULZNcFtcmYZ9di69gGRerMOuuO1k4Fk7dkIoljqV1gptdmFrYcbm+bR+ZrfK8+G5uOw0Z5uJ\n+RIiLkg/WFXd9uETUJgXuvDxxsvUwwMe5rf41DTman/KON1tZUa1tuFlEamkB+Y4oiDhcg/nZgSv\nWDBtZzDZ9OIW6TwqBdy3RER0PCMxemZVjuoNdS2NjTN0FgUq6fGguEW9aMZTE8+VVjPAtVaeLY61\nhwLE8T470SUG8UNunzfB6HUEZNN5QZNJlOh4guqfttS+LbqZgZVpkdAI0J636oTSsK9dRIaEALeQ\nsKnyFzUMbLGmsXrSYOnuPXets5GO1xhNwdAjFJv04K7DZIYWS16FcNFqPCeb1LlzIxpqrn1cZU2M\nxxLPq7eofvHYFdYuTdsJ3aAOEvP/8KBv9Ao7JFTlqLO7xL09qPSzbF2fANmNlznc0QRULJeuXi0N\nglXLcIunimeWfMqlDsRqNCvYXrSEhdZ5W6iaNOuThdfaE5Qt8DSrRR3I1IVrk2K6Evewq0z7vjXz\ne+gJYCe6pIsL55sFNF27BHTDMJst5bLIlgU1RWvlDEb2x////k193LMJDK+0iOcTp7pY8KWht+rb\nIFGzKftuL1Xki9oVpxbLwDVds5PlTnTJyBGdtN1o1tVpxVztMdPO4KtVyUVtgt1hooUoh1dhd+KO\nrclqOiOf32kdYxQkjJLDdnFhp3lcCxsyHXeihJdH13mY33JW0JvzkOeYuDbs0CagWpVgsqpWMJto\nC7eV/kzr/mrqY2J60YJxcqKtBUNCAKflESeF8DAPKRaBIx+bjdh1eTpY6yfNdcfTvHBirdbqsdbH\n4oFZKNgWCR45hQf9VqsMhoPV+JTXqRTbc6nK6cVjTTyvfxJ16y7VLx4zf/WCKtfPTlUYUjfW3JAS\nMCKjz3uF13a75rzU3MgVmXbctkljUNZkL/0yDnd0Bt+81tZPL2pUFrpZmVs8HTyzo3pRBbx6lrqV\noHsYzfMxr4Higr30nItgoh/ueJco2WsJg+ZGl8zWiljY7K80WdKLglb1v95+wHM9IZTIaEqV61fe\nXZiJUvrjFRl9mzbacmX5LhsD2T0EIzt/Wh454vn4RLio9S3x0tC400yd01p05YZMEsVOAFC0fOk7\ncdwinlad1LoCP1tzESVN1bohlIt6wv155RI47PWJjLvHEs5JIdyZxczrjOs7Fc/1FqtW1yb4iRW2\nVbSPvIDRUGd+ZVfIFzoR4WGuV87agqRFQK3Nm4WCOwZbsAwtAqqXhbN0TgqhWIY8zENXYzNOQy5l\nDQmBtj6tasDMs3oAZ/V0O3taN6uzfrICGQ1ReUnQj116t01AmE/1RuOsJIpzgn5EeNBrSCgvm75E\ntq+SiUupdSrltlnjDJ30cHrG4sGM6o2pK65tLk1z7LPTiCguUflCt664Nlq7bZeOb+SK6tvaYo/7\nd26NlIkAACAASURBVJHhgF70Pi5le0zKKb7MT76ogcnqNn8JEFHE2dMSKZUvB/482pHxF5VS39r5\nXMznX4E2Ub9GKfUzIpIB/w/a+x4Bf0sp9T+Z3/ynwB8HfjnwxUYzExF5Afg48Atm8x9WSn3o7Z7D\nM0s+gTQuiHFSr1gnFieFuMwg0IFxXWipV+O9eAcl4tSEswh24q4SdE0aBIaElFlZNTehEmlX46+z\nNqyLz2I2ce2U/Wp2K0/Tkv6Bls6ctSAuTLHqOBGuDTTxXDa7vjtLyMJJS9nBR0zckqixbQUsdGFg\n2bJ6FqomX0zpxTtadsg2qbPn7jWyc+dqjrmKQ/L6IReVngj2UrAWqx3nRWBkgUxHVZvgMa/1Nc4i\nHcheSzzGtbZi/XhFli1Y4dL+mHqx2ulSp5prbbI06K/VgXPp5L6YrEFXay8KEvbS0kyGDTTxtNt5\nazen/72AvVSPxVqLBy8dv3v+WaLbVfR1t9PANIrrme0H/QjpJ876CQ/6WkT18KAZs0eRjoUtAO2P\ntfZcXhDmJfFxTr+6cJJC9nws+qNaH4PZN1nSbg0PLpFCbVJIzwtUPWdncI3nehPe9IZgUkZOWuq9\nAhEJge8AfgO6c/NPicgPKqU+5n3tN6LbzryC7mT6neZvAfw6pdS5iMTAPxeRH1ZKfRj4OeC3Ad+9\nZrevKqU+/2mexzNLPkmgWg9uFKQm4+y8FUj2YSd2lRs3Tn6KZCNHQlGQUi8LN9nYFOIsqsnC8xYJ\njZO65YqJox7Kd8X4bqdNCgnmtR8HcqtpSzxd68KmbXcmQz1JB25ymtXCm/OQKJgwSg5b37WJERJn\nLYmalfEKEnaCxiICKJYzPdat+NSqT73ylJIBLsoH65u2Gaz7LAuF53oL8kWTurtWp88ne3/yPTlC\n3bqryefKvo6ReZDdQ53Cu9AWhyY7VrL91rltXH0WXjdcqwPYccmFErn5difQSRzWstbJG2lrjPWx\nFPgE1CWefKGMhdqRNNpkgSdxo9CdhSyO9XfC/QwxSgwrpGOg7j+mDbXtNtsfM6nvMdi/RpyNWsKk\n9e2pi/lYfTuAZBQQXd/RxDMc6PjSsCO+28FK51YvPX0Qj0mLUxe3BFrCue8RfDHwCaXUJwFMq+yv\nRLebsfhK4PtMU7kPi8jYNunE+ilNCBOzzFFKfdxs7x05iffcqL5TCAPFc72Fe3CteySMI6DJZPJj\nM1GQ6j4z1g2TptpF0RsiVY84zoiNJQRtqfkw1nIiWVhyUqxZffbH7d5Bfo3PrG32Wz05J17qxYGc\nkkE9b00kKmonD/j9i3rREmo9QVmBSICHecg4KYiCk3bQ1ah4S9XTsYuAVjDfR3dSBLioT1qFmX4B\nqj62zbUYdpt2uzZBpDmv1d9cyvZa6sUb3W1xBnOcOrKNDSwezPSDYlfUAHu6aVlRHa3flnc8foEx\neOKpHvx+UH7rDvt9oKXRtpeWm+vFAtiJAQqKpSbEx2FFWHODpSDjPpGtoULHd1wLBtPCGi8Jwykk\ngOm11Lkfkkjf+709potjXpvOuT4otTDp858HaUqYpYQHuu5I5QvCWeUlGvQaa2tdd1jYXB+E6Y1V\nFDrlfTYh6+9yudcInj5NiEAUP7Hb7UBEPuL9/3uUUt9jXn8WcMv77DbaqvGx7jufBdw1ltNPAy8D\n36GU+oknOJ4XReRngVPgjyml/tmTnsgmPLPkEweBy0ryfe9NoFcT0LwOmsw0v8UuGL+/fumrWFtV\ngtj8jcImgykKEi0V71HNSmZZZxKKBnuuX5AysvL+RKHmJ46A3Ge+tIndpomjtPrYeNCB6Mb1OKuF\nu7METNtip/wwf9AUtFYZkaknsuSxSc3BxqWAlYK/fKFcjMhiXrcr3v2kBbtdm+btk5CdlP1j8C0N\nfaHbQq6ugVzU09lQptCy/MVjlJnoIqMebVs1z60w6iMsMlfrFODUADappHfbPtSqbL7rz1meNblR\nNcNYSNpl5GmwdZQoHBFal9uTxB2NFQQ0cR2jWK0V3V9v3JWmWBVoLCTbM8imxGcj5mHN7ekpr572\nnDBpHY/Zvf4rtSV4+YjoSlP8qvq6ONg1p7MWV3+88nw80uVmURRO51EXDE+AVcXtdxAPlFJf9JnY\nsGnC+fkiMgb+joh8QCn1c4/4yV3geaXUQxH5QuDvisjnKqUe4Ud9PJ5Z8gkJ2Q3NKukRgedZbQjI\nzhdGdHKdgvUK/Op8cBO0nSztBOImmDWTYXdbdH3ya7pJuuNcM5H4bQzsJB0FpYvPzOuANNETlCXd\nnTh1looTwOzq29ndepaOJXYfLWvQxIm6x2Bh95+F4uI1dnuiFPPHCHuu049bm1btu936Y8hP9Yo8\n0ZPlElO4aidLk6xRL0zHzWgHOGecWLfq0h23b504cuYR902Vt9K67XvRYM8ltzzuHKGxuGzyR/d4\n7FhqSZzXtN/FHxejj6d8pQKviSGYwmvTQVR6HdepCe5blYRwf435laXOgjydv8qrZxk/fyruzF/c\n1THHnqmPkp0R7A6IhgPUmxOWs0qT4HhXE8/eoU6YsK1CrMyPtXpMTVJguqD6HWZ9N50/xl3yfo/g\n08AN7//XzXtv6TtKqYmI/BPgy9HxnrVQShWYm0gp9dMi8irwPuAjm37zJHjPjeo7hvwCdfz6RgVg\nH36LgLi3h0rvrXR1dFXnm1KTDUKJqPGIZ40wKDT1NDFxQ45xhrDXtFrwxEudlZRoy0sA1aMhQCOs\nuSk2A5BRkoWq9b7VurNwWVHmGGxKs+2JZC0Ou8LvpnpbazAO4rXuyYG1EL2VfKsWZ9Gsznv9MdNO\nsN92o/XPawXOLTl3xO2ncoupapcs1cdbVjrmc/2qLuDMIlgWzjqxBGQJFNqk48MmXawjZj9BpBWr\nq3Ko50TDg5Z70/UECtok1BWHtZqFLR22ixNU/pp2G3utB4AmO+1yqqVlrFo4rPT/sdaOhavPMbpw\nKl+gZjWqv2gKQY3VI7sDJBsxrR+uNC3sRY2rm4VHEqYIlrwk7FeN5bUzwvWnsmNoXc6nZ00xbKKb\n74mxwGTc1yRqEh6qTvt4WLUW3wP4KeAVEXkRTShfDfzOznd+EPhGEw/6EuBUKXVXRC4DlSGeHjpp\n4U8/amfmN8dKqYWIfDY6ieGTb/cknlnyUdM56id/El45Mrpmj9bm0q6hKXG8v1bLzfVCeVT6roG1\nfFouk+7vNq3MDQE5t1GceQWIptg00UKhMvMSpuLVbqXdY/Jf+xMVtFeDyhCcTzzdCc9qw6n5g9Wd\neXwkUa8hJCLcLWknjnoOTNdaWgJEWeImizfnNs25dMH0FXQkenwFaT8mJsOrLhuPvGi1v26dp0dA\nThh2jUvMHyOrd+e7AqWcN72h7PmbNhGqKJDLBXHUo84aK8oSrSX92rWA9/sjeW03rGr15LUmbrlO\ng80P1hsSWhHO9duBGKjpkSae+8eoiZbAWTyY68LQB3PtIut7HUgPrqAGeyyqIyZlRLHYcNG65QKm\nCBbQxDMa6rirURmRyrPMzy5WREhJYsKDvo73ZInens1cXJ6vdPDdlCH4lhEIQf/tT7lKqVpEvhH4\nEXSq9V9WSn1URD5kPv8u4IfQadafQKdaf635+VXge03cJwB+QCn19wFE5LcC3wZcBv6BiPysUurL\ngP8Q+BMiUqEdwB9SSj0mi+TxeGbJp5oq8h97jXQyQ144Rl58ETl8/1ptLr8/TUVFnI3a/Xg8AoBV\nbbZ1k/6Ky21Thb39bI2CtiOdRbvOx61u+2PXZE4lvcf2z/EnqkZUVGf2xWssLBs7spO/nQQjSZx6\nc6twdp0b0L7wJzI78fqFiN2VN6D2IBu8oOtgForb57GTkrnaL3TQPVhjXXYyunwC6rrg5PnP0zE1\nI065dtw8ArLaYU4rsBOz8ZMq8sVU1z1ZYViPENTUtA04u9CTZK4TXHqH72ceQrGYubbvvWjprD13\nTOtIZ2pI5/5xO+254z4W0BO6HQ+b5u/dd5UqPTmoNvFwdqE7rx7nLjstmtVOj40sgcv7Lm6W1+cu\nvpeFijRcGgUGo01IR9w3TTXp2OPsj93xKZHmWtq+P36SQdJYX2LP3WTbKZGV9ubdeqj3CpRSP4Qm\nGP+97/JeK+Ab1vzuXwNfsGGbfwf4/9l71xhJsuw87LsRN175znp21fRrZnZmdrlr0gRpioAAW7Ag\nmCIMr23BhEzAFmXCAiEStgEDJmUbsGGAwP4SQMgy6YVESwQsWQRoSmuYNGHJEGjDXoqksLL3wdmZ\nnp3prqnqqq6qfGfGM69/nHtu3IiM7O7Z6eWstvoAg67JqsyMjIy43z3nfOf7frPh8d8A8Bsf85A3\n4saCj1oD6WQNebmEvJVQbbg7BmoSNZUBVPOgXtRrAGDCtkZ4jkxo6zFa/R17cTRAtzWLsRaThiY2\nB2c3/Bxb7r/+0kwusNWyc116ksI3NGbzGrO3SxDh2KZ0DBj2YB10KiKUQVAFoiyGUEr3o0q5obJP\n56PvHeoS01W52+djsey2m4KlfHLPfaZxXJ1I0EQAwBoGqOdZAukQPT5yOtVzZPUozIIda8O8LAZc\nqdWqPcNUXOVMu66V17R8kVqNzPfRZElQ+S44WgNTrmUiTr6emw1H4LRozm16RsCpy2EAyuMGkMWO\nYXmpZUbqB7rBHzlHyL0Ur2p1isB18XovwVG7XX53NeYmgBIcAaPhZpQwZufGi4iVDABUBUgBomZ3\n26bkxtd82Ssr//9lvPi4seDjegrBkQ95t08lAHanbCghAbQDMo1dqzTCizEDTlzMTF2+iell76pc\nV5pS2YaMjRcaw7lqxkJuk/ZrV9h0DHhbekjmWNclSEnhA5NTqOnFc/WtbFmf8vx0gast5RxLVqXO\nOhI2mADV5/mSynsMPPoxesPAHGfodnEYAaveEyRrB7eigiy21y2oR1+hXb4NZPp9RJoDx1xK0gOv\n1vmubCieEbalObDdPp3Lcyy4mqyXyFWKbu+InqNLuqx2Lfhc7h1AHL6FWXGNk9kTnC79iutnJNdo\ne8NNoVZbNigisBXc07HPpx2cTYR9c44r7DseaHaCMpO03UV1WcscG1gBQZNWtDCpiBOovSm63UOE\nrTsI5QjjZIbD6JAM6SanVeUPG3w22GtjuvYAyuwenRkAXC8zIw9kokH8tNzIPIVF+HHCERAvoOz2\nvRI39kw4EpC3u8DBDjF2oh6VpoqqcRc7Kj6teW0rH9vZhT2/Up9HAawdlW3lC1Qa8YtstHU40s6q\nzMKXVputG8+xwNKUY67/iEzmzi+pEXznCBhWB0uFtTjXV9bI6UA91q/xlCny8udSel8BzVmN/d5N\nwNPp0+Koz0PodnG7QzJHff8YcnoJ9ehrUA8e0WR+ffHRxyF67YrxGAu2PrNEaYO/nfHpcqxtXMfX\nha1EwerhAF0f4/wC7d5etUTIkcXIPBdX8Xv42sjHKg+QFA5asswu2Grag1cFHe598NCy9IHeQUlJ\n1q9fCRt4apkzgKqyOtuP1LJaMWjBliKts93UeAmkj4DZAtifQA4PMegeot0mq3YVX20e39Po0lyu\ntLIde5h0vczgbgBQsJHtVbLXZ82FvYyPFTcWfETown1tn9JuPeSW6R6GPXyZpE6l7EY3YLMApVA0\nbW4zkpKCBtbqEbqC3kdnTLaNNmcWk/QCj1cuAmeBo3bbsM4qN4TVK9oqjInSEbWSrU1OoZ48gnp0\nhuI9miJ3Wh686QI4uKahQRuEWB3BynqiQkKd/jOod99H8d4TAKjOcthh1d7JBjoz0vx8e5dOrLL6\nLweXyhoytI7cRdfdgTp/G+pb30Lx9RMkX3mC1UzCC9fw+07FGkACwJNrovDqxTYvrhszX446rdnQ\nldl6GtbMl+6TCaUq1Hn+nuvvs8hH5uf64OzjuYuTeYikIL02O4aBKq2m9QwWgOrirVW+OUTYJ3O9\nOkjx72rn1v4MDKSkSWjNBj0FgDjrsTXiAEDeXsI9nkEcLqD2x5C9A5qz4uN+1nxOrT/GhoKqrmIA\nvubKa7Ji8aD1A6UflRszK3t8GS8+bi74eC6V27bJvTfE1iFF62f7bxbZWItBygpds4k9w+U3FpI8\nWyzwYBriZOGgLYFPpQle7T7CbnhnuzAnsLVkZprqTL1ejKCmZV08P5khOSORSACQbMwGbGRBvDv0\nlguo6wdQJ2fmNQAYCZbKUCGqC8J6mQG6HPJcIARUd6lbDL5sq/DsmyNcfxhiNXMRdQvIyRpekCPq\nxkYPTA5mut93SA3nomoTYA+u0ofTb29bR/N3wYtlB0aBgs85A74pkdYICGwtbouxcu8qKVp40rD+\nLXOBo1aOtjek7HN+Vu2NVDIGUjG3DQ9ztSQ7BlgeSflq6zW0kWkvx+U1WHdU5edYAFRcLlFcx1DL\nHOmE7wG6ZtiiuxIMPEYhobpcGdCJU6jxkkzm7NkdbFpBmKj3t/R54ypGY/b4MUM4ojkDv6FxY8EH\nrksX82RK9eosJuOuVrfckW6r+T9lJ8TlmqQgT/hIJkZiq7TRrs5d2L0X6dL/3++2MAwucLvjInDW\nugF7t+zN2DtCmxrLu9xnhGoPSZuuOwUGLbg7S/jLHKLlQ97uQtwaUFY4PIToHpJ3j45KjwigDGk8\ng7tDC7et9YXQb7QiN/V44PlACNBluQTAFMAFlKY/wwvLnfnufQCEEQGAPVwgnaSQ3tooLwO0KMm7\nfZqMHx6ac1ZXS2gKZpFtAE/Dd2GsMLLIiLt68AwI8WZDOr5mrK0RWX5PHGQ9Lo380Sp3cNzKMAjI\nkK/CLKwpZcCLDRWZzBMvyhkhAHC78LwQ6vxtuhc603L+raYEYQObmp2X/+/LrUPX4hZdA5z9FIjh\n65vC3QnpcR4U5eFQjjgpmXn117cGR4W1yam8t37MbIJ6bT0o3C6Zblzujif0XfWOTGYtsvBl5vMd\nipsLPo61rMUJEF+Q6yEOEYStrYuPKTXAyiRsOZwiqZRTiKpZBR27h1Op8VtKCNL1IcMAbY8GEqNC\nUl9Fs3h4kRb9nl6QYd2c442ylE2VzZBhkpyjv3MMqYcpZejD3RvTTXznyEyuo3+82TyfnJI3CkcQ\nQLxxz1ga0DHJskR2eQH14BGEniwHsLFD3QAh/XmYbGCz3vg7E2lObqbWoGOuUmDnGN7OPTjHbyO8\n/y2E41m1wcwT+loWBrv3zWcsLRCah3EbgedpwRmFJb/ECtosCAuUMkHSKQeQbdp7hgyLfGRZKzjY\njzzjgFspf9VLZl1SEZjlV0hSKgOvcgf7USmvo67ehzo5A8YziMM9qCwuvZ9qi69ajQjoauwzATQL\nevoSKgwg4gRy0IKrsxQA5MHDoq3DwzKj5ddOcz3k6jUz9Mx7lGoUdnaxIeVTB516lreaUpWA3Uuf\ng4DzMr69uLng0xSXBEBR6y3kbrn7JT+a2t/maTmEyA81aKbZys6VuQsuYTRYR9ddM9X0jHozTyxt\nq7jQu/dFqebb1LCv3TgZMmMe92r3EXZ7d2iGJwgg+tf0fK3TlXkuFtl5VdZmMYJ69C7Uk+uqkGMQ\nQHzqPv1co+h6ehetHjxCPRiE+PMUui7vAhtZkF3XV8sM8u6C2HD3SpdWY66HBPLwNXiHb21X+I56\nQP+49n0F5IkkO8aagcOAQVY0A8+2RcrOFux+kPZlso0BORs2zrbTR1CTKWS/h8HOPaj26wjluXHb\nDd0usBgZxhmd//KtRdhH1mpjkZ0bo8NkLUvwYbHcs4covn6C9XUMOV4Syw6oSudkMWUHNmXdBpt+\nr9lqHoBgSao0B8Ip5IAOUhzu0TXUGtAmAih7PiB1AqVLtHZU1BL4sUGLVA/sx58XdFiKJ06Afgzo\ngVUAz5Rxeu5wnlIGvIFxo8FHzXQ5yGqUCgDKC9HZva8zmBo4MLUUukmpL1A2/mpqVrMQpj13sS2V\nb1wkdbbDpIDkLEUWO4i6OYrrGPJ2F+6eBUL14IzHc3EVP8LXRj7emUjtWvqQqK2Hb0G1zmnn2T/G\nLL/CIh7j8crFwJ/hlXZAi+7ZN6EePEL+cEKZUpJA3Na7xN4BRO8ISgisihkW6QnmWYKOF2DvzX+J\nbv6vvYvicrkpaw+YBcYFDENNDGBq+uyiyZbKKi7gARC+JD2v/nGFYZisaXedyxTS9xE4u5sCo7Xg\n7ykuZhUAqgzPZounZzxN7CyeY9K/V9rziWdTOAuiYdBzqNHXqR/3/jkxtfZawJ1rYH8Hg517yFoE\nCIIFQZfjcnHvxEb6ZuXmWKTn2mCOPretXO7Bg7r+AOrRY2TfHCGdrBEsM/gAZZd3Eqh9/cdsVc5N\nfmDTO8cqY9mKCLbQrZHsASracDwI7XUPqXc3XVRIBByi5ZlrZYPcYmc5QVDNwLUkFaAFZPleW47J\n4VT3kESaQ7XOIXbuUZUgvcDLePFxc8Eny5uHHoGNZjZruwEoL+A8rUxV50ViFrunv2/NsrmJNLAl\nHN1LYVKAYzG3nhrS17X+0cavPsoEt5qdlxP39dAlupll+AZYWaMXEj36zhFw+aDx9fmz1IkK/BiW\nGe0clw0T64BxlK3L4ZMyObnSspOpPZ1fD1ul25ZC2qpGbb9OHXhYHqdredzYWmjxhIRMtWSNyld0\nfQV68eSFlj+nXkRta26zGeLFs9eGONKZa3qJk0WBq9jbUGeeZyv0/QzSC6mE25KQy7g89zpTMMf1\nrLAW+Ir8Dpfu7AZ+p8w+uReFWtXgmUrUdqRlxrNR9vXCKoOPSTeZttfeEkoITBJy+n0ZLz5uLPio\nJDdlHRNhQMN80dDIfgAuTuae1gw7x26YotM/hlAKGTLEmpr7tAY1oMsbbL+t7ZI3dLxYKbtTswI+\nugvR70H0r+ENLuHshPD1btg09c3nSkj2HyhvvGho5ldC2cFnh3O0pMKr3Qx9/4D6SdcfAJcXph/S\n7R1pMsQYAZealuOtCwKLMtbZYsNAoe/rnaz2eTG6Wvxc2xuGG8K8a9XlGjVbwPU9qPHS9I5Mo3qP\nMq64uMaTVYZkXb2sj1opOl6AtqQSFyanVNqxd+bW5zAmeR81bGqwzkJY1FJBl562RZ6WemQ8i9M7\ngOi1IbUag9i5B9UeYpydV4aEAdD7jme0CMelPQBHHXgiucbZ0sc4PcVb+68gjHoIwsD0fHB8TGUw\nHnpdagp5oGd64oayGy/yWobJfDQtxwQ/AjCsiOgqPzLGgYDOxOLJVoq1vSGxB1lNpNnGPSDCPlah\nhHSo5CVZQJZ14Pgz8ufpkeBppsculvkLGjR1RCMp4qbGzQWfuED+7iXk58qav7CHTbXSLt+0V7GL\nZR5glU9w1K6antk/P1OKg+dy7B2y3h0z+Iha6cLIxLcGEL023MH19qyNw9Ta+1B+hCIr6+ih7ODV\n7rwKPKentFCGgbaTThF1DyH9Q1oQJh8YgLRLZsKqocfFbEPUsi0HkNPLanbQa0O0lpVMx5QM93c2\nSiTIU4jwnD5TOIWrsy9xawDBGmHrORbZGMm6WlMntYNh2asZv08aZLNFtWTEumU50aONSZ5KK/pw\nT/1eLeBRs4UBA7XM6JwCpRvqtp4DAOxbSvj6Z9E7wqy4RpJQ3yxfp5psIOm504WhG8uDHYjV1PSz\nmvxoWB1hlTv4ytUInxkGGHz/j0LFE8NupMV3TkO0XkgZGkd946a/L9UuNzp2sN26CVeDZ900b2EN\nrcZJY5Zdz4o51DKjEmWvDWjZHEgfs2CNJB+b8nduLCa6BECw5qYnU6N2EhezDbXtl/Hi4saCT545\nSL9J7C73tf1yar53hFUxa+zdrHIHD6YBkvWq0dedB0frANRo2GWDjr1IDVpaSXinspMUehbD+Jpc\nXpRzDhzMBuISj0dKvU2LwQbwaAl8p+VR6Sa26OeAWeCMdpfNVvPIWiFJSgXrtjcg0czFiLKM2hS8\n2bX6Xtl01j0joKry4MEj8O1Mqb+jmVOi3zN+MIuESBTLXGA3pGO7FRXo+wdltjO9MNIrZU+pVcry\n6zKNkn7FJM/+Ho36eK2PYTJXlvEZz0yfSi0ziGVGJIogAHooSQH8fO45gPsoB/SzjJC12pikJxtq\nyyY/zmKoyRT5yQzrZQZ5cQ3cPjKZ9jIXSAoHgUuzNU1zZt8YJXijnyLodwEsK5sVstHYKTcDPNMT\np3QQbEnQO8Isv3rqkG7FqsAtiSxATdm7YW6oUo5lR1ndOyIFbZrzcfcWwB2iS+e9PTwYneIqdnHc\nmhBDUNvb2xYk4PmmPsrNjxFv/UTM5L7n48aCj1oTAPk8TKl30KU9Qbr1ojuZe7iSrhEdDZw1Irkm\niXtWLkBDFmSRFcxCrP81u7aWLhsAxMayRB25dCF6RzSdPjun3fJ0UVUpBsqMSX8e27YaIEkcxGNa\nuJLESOCvAbhxSje/rtEzM6sxfAlImllhJYeOV8qSNPYKuPwUBoZia9h1+WZzN3BaCPvHRvxRhJMy\nS2woj/D3QdT2QDfltf6YZk+Zz9rSZSqwmjPKHoUfbRzLc4Vl18ymZWbQNkkgYPV/GLjMgp6UdgE6\n27laPNTXokAkFZn7uS3aPDz8fw31nokYADbKVvRwCUBN8c5EAVhUrunQFWh71txYPWPzZUlu0Nkn\n3weNp8YapB34I3S8ZVkO3aIcAjQAj13C1CralQgCYPc+Ppy/iy+ft3GVCNxtS3yqn+GoNcIg0KQS\nPeMkssj4X/F98zQQ/aRDCPFjAH4JxM/5G0qpL9R+L/TvfxxkqfBTSql/KoS4A+DXAByCEr4vKqV+\nST/n3wHwXwP4DIAfUUr9gfV6fwXATwMoAPxHSqnf+bif4RMDn20nQQixA+DvAbgP4H0AP6GUGunn\nNJ4Abe36twBEIJnx/1hLim8NL1ij9dke5OeOIT51H+LwLWSeizi/QlIs8WRFFzNZSz9fU75+wzVl\nQQDKhaHXptq0pp+6cUq7cCsLYJonU4DNTtwLqQcQjSgjsE2/2NIYtJsMPdpdbuiGtQakQdaiBa6l\nkQAAIABJREFUgVLBpSjr/TNkBCQoVRJc6MzlYAfYI6LBIjvHKndwuvSwGxa4FV0g93R/LCL/IdWi\nXa3g8lKnb2ZQFOhirIMknVc2P5uUGZRerFU8geeF6PsHeL1Hx8A7+3mWIHBngNeFxwZxQQCEZ6Rs\nwHNStdKbbbxH+npjo8UmnQAeq5rrTJSeF1M/BKDvAoCYLiDuU0Zk3ke7baI1MGrM0AQSMQUdR6dv\n6M0duYsiyNHx0ooDKa7eh/rgn5U9uEEX7k5I9tK+B3T0xmOdYpWHWJh1lDdUJQjZmyw6d6WbLWew\nanKq/6AH7Fslxn7PbBySfGrAZVVbt9kenZUbrN9AOtQnjLwOXbdhH9i5R0PQd87hNJnZAcZmQoWB\n6Qeulxmd594B4oKo5W0JLHKFYUCAys680gmotAZAhj5Ct+zlTpJHOFkUOJkHeHvyYjKfF6VwoL14\n/jrICO4EwO8LIb6klPq69Wd/FmT69gbITO6X9b85gP9UA1EXwB8KIf53/dyvAvi3Afz3tff7PpBh\n3WcBHAP4h0KIN7Ud97cdn2Tm03gSAPwUgH+klPqCEOIXAPwCgJ9/xgn4ZQD/IYDfA4HPjwH47ae9\nudPz4f3JTwP3XgN272NVzOjm0UN8HIGzRktWL75lLjayHrYobiIeVGZ/6iKMWtxQ9NqlzL9mjq20\nUdvT+g0iGgLR0IAQ70Lt2Co6yo3WnXt0s0/PKLvQdfskvzAA2m4N4eEeDXX6knom7OypyRnJmszc\nTuYOrmIXu+EMtyJauIOwhbB9n4CvqwU4Nb3Wjg13T1h0YitLMNnhcgwlfUS9I+yGKa7iKntpkY2N\ny2fY24MXDelzj3QPydI8M3bkOttc5KSyPE4lBv6sAgDSC+B5DSAElCW1YTmzZTfiuZcStodkAbAa\n0XMDYgnaQ7NCqYqmHyanwJOvQz062xTFvNtHcbmkMqZHCu12mW4TgJqDNlxrDIIuOnKX3tOO3gHE\nfjkHpNpDxPmV9uVxDNBw2IBjA91VTPdX6M4BqYU8DTEBQHtI12YWU3m4KfsOA4hYlv3AOKUqRjRE\nrpbmWA5C+lwDP0fgds3YQ872ICrFPL+i85SN8a2Zh3cnAR4uBBYN5M5POH4EwLtKqfcAQLuVfh6A\nDT6fB/BrehP+ZSHEQAhxpJQ6A3AGAEqpmRDiGwBeAfB1pdQ39OvV3+/zAP4nbaf9LSHEu/oY/p+P\n8yE+MfB5ykn4PIA/pf/sbwP4xwB+HltOgBDifQA9pdSXAUAI8WsA/k08A3zQiiDe+kEzgMceK02l\nNrtGvsqdrcADlKU2BiEeBtyINN+UC9k7MJkAO4RyVKi1DTchg1Bj1Gmu+jEBVKR48t4eJuk58tW1\nmaJnmvJ+lKLfOoTnaQDqj2kOorbjtc9TCUIrvXiPafEOWwjdTeWEuuU2R2WiPk5Kcgb7/+hZjU57\nFwirYq5xoXR5hcooriPR2b1fAnStjKSEIOBdLzFOZjhb+jhdeBgELo5bGYZBityh7zQXPkJfN63r\nMiwWYYRYkTMUGszp+0yReylCrwvPOyqzoNp3ApQ6aur661AnZyi+foLsmyOiRt/ulllorw3X9wxb\niwdubYdQG4CaSnAtqTDwcwyCbumnw8xAewRBqxHYPdK4UIbwwddCqU/XDHhEic8xxLziLwWUNiRx\nMUd//xVEcU50f4DOtT1bxAy3NCfVCi9EkU/1Z6I/2w0Lo/4tFrRJCdtDAzoAcBWP8GAa4J2JxFUi\ncLECxvNPZJncE0L8gfX/X1RKfVH//AoAe2L7BJTV2NH0N69Ar7kAIIS4DzKW+71nHMsrAL7c8Fof\nK74rej61k3CogQkAHoPKcsD2E5Dpn+uPPz38FrFgUgKeUSIwTn0DNCwEGknS2uIY+DClHVsypx42\nCJn+RzyhHg3v3KegEkGnb+YdeNCu7ptSUdmth1cazJm/s6fq7Zmimgo2ewZNsnO8P1vhZO4hKQgs\nuX1w3Bb6NJ+jLQeIdu4BYR+qPUReY7hxsPryycLBOxOJ/TDAIMgrQBS4LePkaVQImoIB0+6NQPdP\nYlkSMdSgkjnxZiJZO7RR0CCUFEvDfELD9DoDz4NpgNOFxEUMHOSkCrAbFjhq0aJeOOQcG7pdY10O\nlJ5Ai3yEOD7F41XTVLuLQTHCICBTNs6CKkxI/pyrETC9MMrh2TdHGD8kX4Pe5RN4d7twLpdwj/tE\nPdclROm4CF2BQZCDb3UbcPhaZ+YbZwa74dBkPIoHSwOt8RbRELOtYGErwQNlprPKHYwSxwI8irYk\nQOAMi/tzbC8O0H3zZJXhdOnhdNHCcXuMzw5T7B6+RuzJenihEXRlV1KA7uPAXVeyHil8qJzUv9n6\nolC5FvON8PbEQVxQxrPMXqCT6UejWl8qpX74xb15NYQQHZA76X+ilJo+6++/E/GJg0/9JNgpn1JK\nCSFeGNdRCPGXAPwlALh798A8Xt+x8U05DBTaXjWbKFSOgd5w2fL620pjbTnUFN8PqNTDDDfoIbon\nCcR0AfQmUJ0pEPUgQSUgD6CbKl5gw0q4/tm0arIBHht09OtBRlQeinp040VDzIprMxQ68BXdwDoY\ngPcjD225TySF5RgqJ/VkASBqDXTJZAlghkhKvfisEbgOuMQTuGvshgUGfm4a5h2526yRtkWxujFY\np02XzFhlggkjZtiUNtgA1hWXyqZwhcRuOETojtGSCsPANcdObKmaaVsWA9mo1PzrHZmsg8tefF3Z\nm5pB0DU9HLEYlUKdrD5thxdC9Htw9xZYX8doTeh6cPdCOJY4J1uEkIApcBi9Duk8wjxbmJ4kacg1\nn+PAaZG0z9X75n25l2VKgVp6hjM6nu3qeAGABIHjIJIOVjl9di5bMwi0pDKzV9KJzDm3I0dq/rYl\nCSDZ+TXs7dHCtU1lIk8h0hXa3hBHbYBJFPSdapkoy7kUIFXxceqZDC10FUIXuNtRANb4teZ3+qTi\nQwAWHx+39WPP9TdCCA+05v6PSqn/+QW930eOTxR8tpyEc65NCiGOADD9adsJ+FD/XH98I3Ta+kUA\n+OEffE115K753SrPzNkInLVecAcVi2NVq4VuMxyrNPa5Xn15UXXT5L6PFs+0QQjQcwdcVrC1qBoW\nZgEYOfitMvB6MTOmcP1jjLNzxFm58+94AQaBJXSpFbe9rICaj6Dyqwq1WHViIF8h6h2ZkmDozhEX\nuck4Is0KHPg5hoFCKLulwoBNItCfofFzSr+qnlwfQLQEUxf52CgcNA1W2sOm9e+PAYO/v7Y3wBv9\nJQZ+okGnXxq2LcdQ+WXptGnN+ag8pewQ0BuVGQY+NhZ/Pg/KpoEnCcR+AqWzYTqwlD7jvddoBom/\nd63MjV6bSCqsSBCWQ8pCKez5t7Eb6MHKmrupLTgLQNuof4CNYOCxVD3ifHMkgcpaKeIi1yC0xlVc\nZYbuRx76/t3N97C/B5fOU+jOEck1bkUFAndgfu9Fw7IEx8GzUh3KFj0M0faG2I9S/VrdyiZRyGjj\nngaoP8Rx3M5x3Pqua/r8PoA3hBCvgta6Pw/gJ2t/8yUAP6f7QX8CwESvqQLA3wTwDaXUX33O9/sS\ngL8jhPiroH77GwD+ycf9EJ8k223bSfgSgL8A4Av6339gPb5xApRShRBiKoT4UVDZ7t8H8NeeeQBF\nBrEYUZ8AwDAY4/EKpt5dyVg4agu/V79xOfgG54V1G/DUflbjGaDdRE3YCsy2RpUVZjK+yevevE65\nIGWtNq5WVYkblp0xu/nlGCqfAasPoWpzLACXvEiEUQHwIrrRXSERSmJn5evUzENtZjuXVWVkW7W6\ns3muzQ68PlwbBPS3Xoi4uG4EHl70+BhYlZozS1OyrKsarAEpfQSdtAo6trimPdujg5mBDEBMVABq\noK511TA6N6KxaplpdtyCWGV1e4x7r0H4Ep6W2xGHextsPfMczoD5OtTzQEZ5AdAEl9rz62EP/TLw\n6D5PfajYVucuQcjOoHdL0dQ8LZl/sDZ3DiARkNCqJ3HbWSKoEVGUHxEl2h58ZWFQ6MdkBM8boO9X\nCTjmM9Xuk0iudVnSwSAg0CETx4bnfzshxKbB4rcRSqlcCPFzAH4HRD79VaXU14QQP6N//ysg4tWP\nA3gXRLX+i/rpfxLAvwfg/xNCfEU/9p8rpX5LCPFvgdbOfQD/qxDiK0qpf02/9q+DCA05gJ/9uEw3\n4JPNfBpPAgh0fl0I8dMAPgDwEwDwjBPwl1FSrX8bzyIbAEBOzUsBoNPepXKaPyuBZ7mgndV80vz8\nIIBq0LIyJSRenHgIrg48cWoGS3lGgae57bqwoWYOWoA9lV+X4AEa+wX1WIUS54uHeDAN8HovQegK\nhLKDvndIrKbVlMCmvkjV5ezTDEqLMAIEgF73ENLfNQrNpA5Nv69kO1xeSppB2JR5ol6ZqT1FyFPI\niLKebIyz5WZmGDhrDANVgt/CKpFpnx1PL6p2sN2BAWMGHUuE0pwb/V2aY4IFQFz5s3t3WQw1OyW1\nBcvQb73MIJcZDUrqLIgn7k0c3S2levh3tmDm9KwEdvtYtUjn+jpGcbkyrq6mbMcqEyxrVAMkvsaZ\nkGHPs9lkASk2QYgp2zTs+wB4ck3fq63Bpvue5rtg23GrZWa7/XqtQbnhsoVV9TWk4gkEANkebrJG\nvdKCw87eIrnG671E+2fdoWvlsU0i++4IpdRvgQDGfuxXrJ8VgJ9teN7/hZpNlvW73wTwm1t+94sA\nfvFjHPJGfJJst60nAcCf3vKcxhOgh6E+95EOoKY9tRHmpquBT5NfSVN4IS2umoFT8aSxD6Pl0T22\nRUakMXh31wRADTs6fnzmLHG1OjdsHtZ3C5yWcTY1EQZb3SlLyZgFqQ1MpgZ4BWCsiA1hghUenj56\nVU74szVEPza6W1iOqSyltdJIwyw1dXvPewt9/wBv9Kl/ZS+IpqeyWAE43fQnYrXl+nm0fr8BPONZ\n5Vx826Gp9hzmO7d3yE3ZCOsA2psfDstV1RyrlU2Ty6w0PzvG8ybYtOQwz6kSDGy1748VaW6ACDiF\nsgg4XjSE53VMZmpHvk5IBTwallT1MClZpFamtjV0X2wgD7ByWgjlEgN/ht1wSHbsV+9DnT2EevT4\n433Gl9EYnzjh4BML1yUdNz2jwLTaVU60YmZ1qZropE2htXfKGTPNuO/CN8SyVHgWdvZTK18Z/5pt\nMeiWnvPW7m7j5moqnbCqdTw2Dfh9PfcQyg6VQeIPaBHgEkwQAPs0f6QenVVejqVM3L0WxHhGfzuf\nGOCzjdLiYmbKWUoIYhfxzA5Tpfl8sNoDqxekOdCz1KHPL6uL/TKD0BkYkgTh/h1EvdtankX3NVZP\n6PvoHaAe9aa+6SHUdcyATeCxjqO+cTAyOpp1tciJYs67b55nETv3SKlieA6xvwPvFp1no3GnfZE2\nenijc7MgijsJcHSXBoBZfZqBR5fy+LvCwQ7cA9KWk2NryHZbpqOVoJUf6Tm4C2sOTtD1A31clr04\nZxPsCDtKBKSzJJ+i3hGBv1UVMOc/SYB3Lg1xQvV7Zg7Ls2bC7BKpYtUPnnUbpgTG+u9XxQx5fmV6\nfJXsx9qkRR7dB4GjlSMu3wZOT7F++yHSb17jhYTjVEvqNzxuMPh4ZkZhkdGiTOKhAsm6OqEPwCol\nLenGSi8rdXyOCu1WD0DSC6RVPS/9bxMg2cFOnhuR5lQaYzkYO+qA2RqQdbI1cBi4mnrqtGhhPXtI\ni3uSUPPamqEQ+zuleyposVVxQSKWLQ9qQppr/HnNYKUXbgyNKiFoYeBSifU5zWKkXStVWErN2Au+\n0UvTWaPAAuqdD0iPrn9R6uZNpsYCQtw/hHjzM5sDpfz+8YR6c0CZifA52KLDZ4NOU/bD6ugni0LT\nywNCprU2u3MCwHMhee6IM1ldfuINjkjDEhiXY6h3PkD21XMiHKQZgfTxMcnDcNYzXQAX18i+eY3i\nckXmexp4ANAC/+qrG/M7NgHBzDxZRnSAKIdINXswRNnTagIe2vBkkO0l9bqiIdQwBabvledvMkX+\n1VPkJ3O4exG8N3fI4bQ7Bfo9ul40qMgG2SMDQtpOfaWP2+5JVa7Feolak12iLIe6fmDmqZKvPMHF\nt75NmaWX8dS4ueDjuIYdNUoErmIXJwsH+2EpA3LUGqEIyrkDnhvh7GHgL8y8D0AlCDNN73Yh20MI\nZTV/Oaw5G3pxy9On1oAXaDfvEKFrljYA1UsweqI+1goEdhOeB+4ipwM1e5vM6k4ncMZEmzUGcSy/\nA9BuO80qPQPR8kjaZLagPsRqWrp1Qk/w1xlFrJ9l65qNZ9WMpuVRac0SjmTQAUjYlMVNHX0u1KPH\nwKPHUOMl8pMZissVFudAljgYfvoawXgG8bk3SUGiNag25LnpD5QkD7Z1sMRCkWbGSbUeTWKrk9UD\nPJi0rCFVUnxwhURe6J6J8AEXCG99mi4H3ugUdDyh1zU3qjo5Q/7uJVYP6LxE2lAPbOrnhUY8NX84\nQfZwhtVMoo055N1rGkYFCIh3729+BvP+czPvRASOhh27hJmBy9dpRTjBBp6rmJo2kaRSZd8niSGl\nJaHU+SWyr55j+rUVZpcewm6CweWHkLcnkHe1B5RfglCTbQOfN6Z+2yKs5NpK17VhvFn3o8ksdY+X\nwX36tRUev9vGtx48Q0H+ZXxbcXPBRzh0g69TIwuzyIF2DgSug5Ys9E1HNznt9uhGGid02lhBeeDn\nRuWA+wz5OjHS7bzD5ZA+zw4NS521+lCoTeHdDwwBAEBZngJK3xL+WDrTYdBhgzW6EYUBIBrsi8r3\niFNaULWqNZKEdMjYAjuLyeHx0Rk5ii5zuDw6zkZecVKZE+LPVAcgJQRlhmaGhM4xZxKO9uvZNpBn\nL/IsEMoAxA11XnRnl/QayVkCeTqBPLwGegekWedHEObzJ9Wyp6bAm6N+ioVFBXQ4oh7m+RVGicCT\nGFjm/D1l2HdS5CjfKwEtjIt8vDGwGxcKuyHQDfvEjBvPUFzHWE4kvIBcR4vLJdkIWPNjLGiaZw6y\nxMF6Sd+vEwTA659G3OlisnpgaN82C8+WFTqZRxgldM20ZDmr83ovqczp2MELf7KmSsIoIco1GQsS\nQEStAWV6xgpihdVUItPvlU5yiFZMm5velMqDSQJ4sdEYFNZ1nqyXiPO5pbQhwC1lntszvUf+3ur3\nGbBxPKOrHKPLFyQwKsSmqskNjpsLPnmCqJCAf4BylMjTw2iFkc7h4B3ewM+xyrNSoFDvpFgrqsnv\nnS0NDFNHl1ykKCexzXS7Hcw6A4gRBJQyIkBpPGeV3Vi1gMOmw9qaWw8mAVZ5gs8Mpxjc/gE6Ph5S\n3DsgzTY3R5JfEFOtewjVm5CEyw69n7sTUrO61y6p4MxQq/WejJEeg5DdEPYlEPpVczBuuA/0UGCc\nwK1lQXVfF1arFqEL/80BnJM5oBXBgyOfFAC07tciH1F9vzWg/k4Y0HvZnkrcC+n0jZ4ddH+unvlU\nXFdvHyHv7aHIRzhqt3G7nWtlhFQPYlLYQGPv0jn4GuvIXajFKQ2ffg4IAOy2qAznvblDmYHuEdH7\n61Osj8m/XEHeHkDcPwTuvUYySvEjjBKBYUDH4LqSeh3zS7R7e8jXKcYpgSorFLAqweu9BK+07+rj\nrtp1sPtrh9Ix8/huWBjGYeh2y3EEzuJbEjJYw0sFwm4B6a2Ncy99CFm1IUcJQIYiLwFgjtClc2kD\nqz3TRyeHfHzM4DXff702xK0B5O0lepMpDmcRkkSRxPHLeKFxc8EnS6Fm54i6hxUAsvXaAFFh8/DP\nu6GsDRvqeRgAYdRD3Kn2OZJiuckK0tv1egO00VceoJJWYP0HbM6A2MOatbp4XXcNAE4XHk4Xa/zQ\n/gMcHr9OtODWgKTx80vkqV6YhITX0tYH0wXk3UUpca8N3VgQlf14tgXX5AHdIPdSUkZO85KFVp9t\n0grQfD5sILKjuKy6qMrbHfT2CqyXGfw3dyDu3AJ6B1i5OeK0FLP0wj5UJ6Yh3zroaK09RD2I6QUd\ng/YTqhyr9Txx+wcq1hCv9xIMA7XVHZWB52zpV1QQAKAtB1Vhz94BxA+G8Abfove9fbR5HbQGEG8O\ngO5DeL4HOV7S9/Tqq8DufRIBLRQiSccUuC101y2o87eByRTyDhC0Wxj4I1xJFwApQwduCTzymo6p\nqxWtmVrvCtkIQLeiAqHsmE1anWrvtDx4wQp54sAL1nBaUrPyvJIRWGcgSh9iiYrxH6uPAyjVI9IV\nYF13gJ4TYoIMk4S4H9inazyKC+zEK6Sr4CX4fAfi5oJPmlGTHagAUF0gFECVspuuoJYjYPWkOg+j\nWVtifwfhnU8ZAErWJHIZumlF1qQyaW1rsdWBhym9mn1monewXV6kBj5ccgNQkbNf5rSb/cMnbRy3\nR3ijL5DH17XSBUnnhG6XFun9HWAyJUYXT9ZbwKOEKEuJW6Lye9519tpliYsXf+3zQwOFI6jWBKJf\nzk8x+w0ofXMAog+b9wpdyJ0Q4v4hzcf0jpDkF3i8cnErmpfAmq+MugSrXYudexjnFxjP38Vh5xBR\nNIRqndMxaNdX8/fWnMq45kl01G4/02a9FDDNcdxaGzmYyOlAoWYGGPUgvu8Htn//5o21/fqTa8r4\nDt+iRrw2SaPSq2+AR737PhCnEGGAbvT9KLQW3+lCYhhUgUd98xv0HvvnkMNDeDv3Klk/z86w4kEo\niUnGbqX2cChnjVE3N/+6e91y9sjecNmxmkJFgMhoTgsuefRU7tXx+1DLceX7YdacEsKQFCgTGlAm\npC0j5DJD+3KF3eS7TuHgeyJuLvgUa6gn1xBhYCT5c68cOGMGW+VCnmuhRVuxQA/vGTM4ffNG0fdj\n5eaGwj3wc0Qy0btBDWiwVKo567Gb8LYpWZIQM87ajVd00WxpES2yWQ87+2HRUP733YmH0wX1u1hT\ni2MYUJ3ea+2Qx8r+Du3+g6ACPKv1vBTa5GHKp4UXlg6Sdq9If8as1SZxztUp2sEAnfZ9iO6KmF/B\nmEgGGoDWFvvM1eDj7rVKp9LbR8bwLM7nuIp9BM66BNZoSNp6ABD1kPf2cBW/p6X12/gXdq9wu+1i\nd/c+IE83CR56BiYuZtgcJNoecaEM8HBvaDcsMHQVlaeWYxoYtQdJtc8SAFLhsLXxbIkigLKiewSk\n9rwMa8sN5AH1kvSg63qZkU378BztnWMEDmWYtzsZbnf6NHx99hDqfc2+s1xvI61yjnU5aGrfT9IJ\nNnucOmjeSMLLGrIebVi38bzE6n2CWHCmIsHDzNpsEQCwHxvCgtKDp/XwdBlWdKfAoEXZs8XK/Fjh\niGbm6g2Nmws+QKX5t8250Nww7EJqWfyKLs3EUOM/JVfMQZeMvPwIi+QRzpY+lrlAJB3TN+r7h3SD\naEHKSnAT3tdDhLoJzrs/23Ih9Lu0ALNiAA+f6jKC9AIk67IUxUZhwNqoTi/0f6ziuxs6OAgdtCQw\nCHJ8dpiS5bbWuBNhH6rfK8uAFvBww9xWjW7y5+EQqAk8agBiq4ZYK2bHhTJzIqHfpWMAgH0iXKgn\n13B0DwignXRlYr9Xim3mBWV2DK70+jNIf9doqeW9PeTrhGag5ArDYK3VkfWsiHZVBWDIHcy0sq+h\nilimg0YyATMnj9sZAtc1jfnHKyCUIwxaB8Qc1Dv2eX6FJD3BPEtImNRt0ezM9Ax48oiugb2DijqE\n7Q3UdXfQkbtoy1kpcyN9OleDFhwsIbQ+HPdz+PObsJvmtZKYFL7+rIlp8LNxG2CRTaIelbyCAKrX\nhrtHmWvQyuDaigtceq0H6+Bx1qmz/XydwHM863PrDMsm5rC6wXqTRCJdn85HvwfMFnD3lvCaCCUv\n42PHzQUf3oVo18hVMcM4mWkGj9XnET5QMzMzTVJfAr6k0hPH3gHE4Vu4TB7hySrDMqcbgUyzBAK3\npXerDbLwgF4IaCDSuIda7qLssGnCpmYzG05nUtLXWmuugB4u0d+4g1VOQMTNZGrSCiN3PwhyvN5L\n0PcPK+Kq4CHRFSlwM/Cw3EpcKIQoJfYTuaxkkeZj8qClF0IsrWTBTKVr63DHR+iSf05l5wzQ3/VL\nmQy+mE22021XxDa55h+6okImAbRcS232J3BauN8FAmeB253+hjClnWEw0NbJJfxZ42JWYbgB0I6f\nVfq7/btvjBK80T9BuzNAsp4iXp1WZrX4tZHFVIJ6ck2ZCADsgUpSdXVsEAgZ4OHYv0N9rMECOD5G\n1mqjyEfmuMz58kI6nwMih5iSWE2Lz+5v8eApn2d4LnkYyciYEwJEkLAHYsX+Tpnp10RETck1CIDj\nsJLtG4DLV7qHV1WD2BZ8zMauPQiAllcp476MFxc3F3yEoN1Q1IPyIxqkS6XpzRSKBjA3sp44KWm3\n3Xb1NY/umj7Bk1VmBC755g1ll2Q7Lt8uyyPbbojegZ6H0Tu31oB2v0IgL2o7NjZZm2hKqlEt3jSX\nC5w1IIHdkJwk90MHiEtGk91Y3g2HxAgsqqUc0aOFg8kJts4XgMoCyUZu0vFROGUJJi+s8pxlSw3o\nWry1xoayU9JkeSPAUQMgAJvW2A1RshmFZgQmVHKhE2r9XQtH7QbLjAYlCT7G+sIL0HyJzTycZwmS\ndXn72UQDYwMB4J2JwsB/wp8MNn3YFZLESVeXVAo2wqRpFYDs42SNOt60RFZWcXTXmARy1slRsYj3\nQsNCRK/deB4Au5e5gqdVxzkyZDQH54UEQGEA9eQaLmerrPCgCQ0eLADSM2lqmUH6HoHXUZntV4Jl\nd/S10ATGTw3f+ygePE8PXnNeBoCbDD6uSywrGZms52ROF+ataE4Lnt5VbvZi9E3JGmRhAOzfAbRN\nwTiZIVlLUksoHAA00Nn3DqEmp6Zn1ChrYgMRLwxeaKyV2fKXg4+NaMApFKZkyZ2nEEpZix9lP3Uq\nLwC0td9KXMA0lo2+1eXb5TFYCsQMPGwkxlmP/frshAoAAz9DJBMDROzNYnpqlmwRUC24CSz4AAAg\nAElEQVSJ1L1eNqIOQCxUyb/T2RSfN8psG4ZEmQ1V69nYZaPKe9rP0WGXGYVSRs+Oy098rsrzkhtK\nNc/MRHJWEUj9+ijSRnxFpfwlha817x5BPXqM7JvXJEx6O4MLGACCjEo3WN0DUZowwdR6RD3qX2mK\nfbFmoBSVORm+TgVvvBoAfsNTSqsTeFavaqGzqrY3hKdlrATLLbG5Yu+I/KbiMXZbdyBjzUo7v0R+\nMoNa5lRiZZmgsA94bcpivRAi02xKTtz53mrYkGz7fl/Gdy5uLvg4wtq9Vns90qGFgvoyDSZuoV8C\nkLa+zlptxPkV8nVK7pE+Sckb8U53kwDwrBAyArpl3b6e9QilSp2sjxCc/VTUP+EAIM+VYaCqU+C1\nJrY9wApAl8RIwRgoLQ2uYteYc9kDuQPpV+0basQEoZTR4mIKb2PYs1EagDZAh8+jVcprCvs9pPCN\nojUfT/nhv31vw1xR+TBwW0bt+1lxFbt4fw7c17fqbggz1FwPEbrAtytyaikHSC0eGsoOhphjlJAG\noDlH3BMBqorXzxEeuAzdMq+XITN9NJWv6N/2EGMtjxMXijLTsA81On/ayzeHrWbgUVYovBChv+np\nVAk9f7ZV4PdlfKy4ueADmN1Z6A8xCJa43Vnhdts1ZmNsWW1AoHsINZxAsF2CVgBYrecAG5HpXb10\nUnQ8Yoq1PQKeeX5FWnFcwqvL4TQxeuzHQTu0vLAEEpnlxMy4mnAhNcI3BxiBKgEBIMfJ3bDQxx8A\nRUOjtWGGCKDsxHX5ckoASESyXCBbUhlPnb53CLEYodGdVZ8Xdmblw8tVinl+Ben6CPvHld01oDNA\ntniun0/AAHeh8rLklXOvC5v24/bx8Gs9YzfM1tlNDrf1Ra4th8jXSYUQAqCSFQHUb3lL/8tZkv1+\nqr1r+jUSgMszPfs7VEbjslUWVhI6AWjl8DJLVPkKIgsNa4xEYX0ziFqoHLPi2ugdAqho0NnnGtzP\n43Jq7dxFTlWtOlepkaMie4xSl42ywoDm6QADCGvQfJCwfK6ozFvTcONB7TAhq4Uspswqi+FZMj18\nLKo9JPWEqAfRv4Dov0hh0RfDdhNC/BiAXwKpBf4NpdQXar8X+vc/DvLz+Sml1D/Vv/tVAP86gAul\n1Oes5+wA+HsA7oMmm35CKTUSQtwH8A0AugyCLyulfubjfoabDT7QN5waIHBauN2uNbbrjo/QSr/a\nmE21iajAYfcFeCEOXGtqHwRA3Z171UXtI4bpK/BrVMzpUvp/q3xXBx2Ash9yGq0CENGP9eL9HP5A\n9eNi75VVnqElHaxyTevVFtR9/1B7ulxUF3Rb3JL/tQCIddAMCAkf0guMVFETtdwOLleSXbLEydzD\n671axmgLndZ19/IVRBZtDnTqiIsZFvkYT1aZAQjOTnjzwcG+Np6MIFtDU4ICoM3wqhuI253MmPLZ\nOoL8ubzeEdRRSgKjAy0MqzdGhv7tdeFhWK0o6nmm8iSlRpVc+lHl++QoVI5Jdo6+BqCn5YE2CFUi\ni03/xtPHyJ8FACZpNbuRjk+9LesxZycs6dhMxfZCFPm0fH+rJC0CbRHiJwRCQKlBqJmEFekdIQDO\nxrZ8559UCCFcAH8dwJ8BcALg94UQX1JK2cZDfxZkuPkGyMn0l/W/AHmf/bfAhjv4LwD4R0qpLwgh\nfkH//8/r3z1QSv2LL/Jz3Hjw4RuOU3AzJ5DV7KjtsoLud6AmLQKUAMQ1ZP5/u0w1K67Lss56vtGg\nFtsyoHrY4KC12YTlA7ONPs5RB6CWLKr1/abM5BmflT/jMBjDLmcOA4W+fwg5vaQexZPrDQkbswPH\nJgDZrw2QDhpQgrvd6N8gBwDIiwRJsTQisqOEBGIjmSKU1KtR+el2kdcgoEVIL1b2poGB52RR4Cqm\n88+20QBwC2MDQOwTg7OHUGEAuX8H/f4xJhktuLb2Xl1tox5MlJAu9WpUFpNWnUV/Z82zQuXUX6kD\nUC3YgI0VyeNiBrjYuI4m2bnphTWdbzsyZKbcpqZngLYMB0gz0Dt8ywBQE/AETqsk/ejgzAc9zWjU\n9hXUU0vgFQX9/WRKZByWTSo/gbEkUQCdtwaxUs6CvsviRwC8q5R6DwC0VfbnQUabHJ8H8GvaVO7L\nQoiBEOJIKXWmlPpdnc3U4/MA/pT++W8D+McoweeFx80Fn7Uy6TjbAHT8XeNa2Rh6kHChfU2k45t5\nFrZF3ghuODuBKR8VKsciG5sSXbJeGiXsSjQ0cj14tNgoVWUtNQSTAVjTjZvVvCg2ZUTA9ga/ylcb\nu9j6gl8CUtnUZ98gDx5J409JuUGF9oKgFwO2VM5XJtvg+rwtIEmeMgRyzKQzfi0NH6s8FyQiexED\nw8DFUYs+r1CKjs3uc9leQ35imuG2snJczDBJSTHhZO7hZEFSNEApxBk4a4TSsq9Yjmk3nuZAZwoR\nDRG4LQOoR63UEDOeFZzRSUEAhCw2GbmtSj3waaNkAOgp6ggqX0EsLd00XemzrRLiQiF050ahu05D\nN+U03bOT2kEWeVqOK8QJkWO6Y0APFHPmyCMPxl9ndl5RHmc7DZqFSwzBxmjHxaNyJs8SjLU3NiYM\nAIUbIrjcd3whIcTzm1ECe0KIP7D+/4tKqS/qn18B8Mj63QnKrAZP+ZtXAJxhexwqpfj3jwHY/uGv\nasfpCYD/Uin1fz7fx9geNxd8lKIFgP83T4lR1rSYW8KDHugGrkjusM1yw64YKPsNTEmeZ3QxsxGX\ndHyyd05XgPfshrZI9ZQ/g6QeiBMAUWD7JCNi3zQ28PDCtsqrzellLjTdfEzGX5ZNccXJUi9sG7YA\nOpJiafoqV7GL3RBk6eC0EGkpfdNzeBrbDxqE4glE2EekF0MCxxK86zvwpzWRA4eEY+8X1N8KXbEh\nsW8Dj7GgZnM7gPoG0BRmU2Z0kBROhbIOUMlsP/LoXKkUWasLD6QUDi807DImI7D0//NEvk7hupK+\nZwckMWMxItlGY5U7GOjTSp91BJw9pAdqxAFz3mHJ1li8FNct7bEZHAuVG+Yib0ZsoghnrbI9pNm1\nTkwzRQFJKNGGgxx1h8Hc6M2Fblfb2X8IXF6Ulhc6hFZgJ0Ahqazuzj1gQWVM0T2E2rccavl6A0oQ\nsPuuXoOVuvDLodU/3rhUSv3wJ/HGANlwCyF4MToDcFcpdSWE+CEAf18I8Vml1PQpL/HMuLngUxTl\nhasdMxV0T0dHZfreCi8rIDlLYp0q1mPTitD2zTzPr+gGNTv2UldLOr5pwKt4QjfC08Q5uV5ey86M\nAVyvDfQOoPwIeX4FoAQeFrfkRWMYpBgla5MZEUONX/EC8IFIH4stXc+7X6DsPSQg8VQG17Olb9hu\nVzExtKQzhmwdQu7fAYKLCuCYm39VU3zQ1t5K9yK81gDQGaJxBRU+AbdWi/A0SNZDOj4imSBZrzEI\ncmKNMaW+KKpltjipuJayuR2BZinrEu7ex8IZI5JVckZLkmrBrahAYGW0cTFDHvqIDt+C8iPM8qtK\n4yRwW5V5oKbI1yker1wEzprAShvUsVAtEyvY1gCgXpHJ8GZWBpHmdM3o0mJ5skpAZlt0icAoF9jS\nOUBZluPNyOYxE0AaAAKov9Q9NN+VdAKTSXV0pqSuP4A6Odu0tPCrgECZ5Hub9/DOvfL0NvVXWQnC\nUqqo6C7yRu+7Kz4EcMf6/9v6sY/6N/U459KcEOIIWm1ZKZVAK8Qqpf5QCPEAwJsA/mD7Sz07bi74\nrBWVf+IUagCIKQCcQ3U2WWiNU+J10NELFaszMwBlyIy5FZeKAJjswwDP9QdGrFIBBoAqQp0MPKNz\nsxu3HUexrwfpoiEya/dvZzu2dwskgIT6Ouy7wtRoCgIgABXQsed5ImkvCmy2VwIPacdxfyWBdEYY\n8JAqUCEdKCEgLJIHVtPSx6jXpkUkX8GLhiSHAxjQqZQg9d8oP9rIgkJX6OyHwNicC5Y54oFd/X0W\npzTkS/YNGR0DZ0H7gNhROvsq+2NtDTyvdjP0/QPTO7GZXTMnBfJl7dgIpPJ1UlncbSBi4DmZe7p8\nmm0AEJcYOethMdnQ7VLP5fQU6rHevMTUF6HBXOtguBQFi/hBXyWAEoi4jAzAGCk+LSoZUL4iLTgr\n2nJI5dnJKdSTR1CPzqAejzWxwCvZnPa4gw6VJBAfvAd1fFyRFxI796qDyVbYGQ+X2LgfK1gf7vKi\n8bkfOYTzouaHfh/AG0KIV0GA8ucB/GTtb74E4Od0P+hPAJhYJbVt8SUAfwHAF/S//wAAhBD7AK6V\nUoUQ4jUQieG9ra/ynHFjwUetFTXogTIDiiUqjUgvLXdRdffR+sDedEHSINB6Y1EPwjtCXMyMA6od\n0qFZF7OzYruANAeCCwNAvGB58Kp17zihBcNPKqUT0aUyLTfpCyfHIKiahdmxH6U4WRSmD0LlIs3U\nc9Zgpe/yMwjTNwGAccNG1waeixg4COmxSEqE7hwzIdFp71p9gVINOWoNgKkmeswnpuxlF0Psur0R\n1WT6e+1vpAVAnJlFkqSGGnsqtrPqeGnUstUyI6FSWBuWJAGWY7hBeRu1JQ3qclbForSh38VcZ6Jc\nlgxdYXb6UvimZyhdvzrjpC8dFqk9XXh4fw4chHxNEQBJSSaGZeZUnjXDGFtNybL6hHpAjv5c5pyy\nbw5f7yh7IUCNzGGV4xiA2D6kSVKJw6ZV12evpPBpEFuTUtTjMfKTmWG2GQ8nG4isUEkCcXkB9GOo\n3oEBF0MaqDM4vdBsUuxSoQ08bGvy3RJKqVwI8XMAfge07fhVpdTXhBA/o3//KwB+C0SzfhdEtf6L\n/HwhxN8FEQv2hBAnAP4rpdTfBIHOrwshfhrABwB+Qj/lXwbw3wghMtA3/jNKqY/NP7+x4COkU2qA\nNbGurFKQfbHyIFxFliQhF0x3r0U3hFZOoHmFcWNjnwUtPW+HXiucEPBo2qiQEZW68llZd5Y+6Wpp\nMVMA1bkBLzSNeqxGCAFEVkmhHtL1dX19hoE/wq6+mdn0LHD7xoSrLWe17GeT+suLO1Do8l3ZfKfy\nm2uUpLex8KQTUNZilzpqn9H+Xuj7SKs7SktGRVgKAwC038scwNrIKPFEfEWIMvQhWqWbqpFY0Yue\n0TTzQhRqimRNYHuVCOyHDpK1Q+dKpQYAC5VbANLGcTvDUUvrCT5Fc4xjEHQxCIDPDAmIQleg7Q0q\nDE069EOtIr00mWnfv1sp1bJemcMLedO5ZgBajSCw2cusB5dcbfsQlqmi35fOvtv6crlKjcI4ac21\n4LBa+V6rBB3bR8kOnl1iOSotxirXeUVPcNuoA/evTL+zH5e9vu+iUEr9Fghg7Md+xfpZAfjZLc/9\nd7c8fgXgTzc8/hsAfuPjHG9T3FjwQSuC+MHv3wSaWgoO5Ii8QWXHxAubikDpfadfSrfv71ATOZSY\nxI/weOVW6LMco2QNgBYDM7TXmZrsJfNcLLRUzyDolovyakpipkCpX8ZRb5oDUHNNeNm/U+klMRhJ\nQWSHsN3FINCSJ/JWaZR3+Ud07N1DhO1Do94cyrLEYlsoKCEgh+d4f7bCydwj7Tgd44SUD5J1hlvR\nfCPzIPBK4HkdEgLlxjT3JTp9Q/4wNtgeOVIqWzrFiJNCC6xGlV16CUAUrGotuoca1M9NX4JdS81u\nmzcrWuh15eYYr2ZY5eVn+aOJwDIPsMozvNp9ZECZymWRyQqXudDW0uV3Ureh2AbS9zqfopJjEkPF\np6aHQl9WD93eEX0vju6DWUxMsb8Dd4+uvQ0RVj6HHDUAstlgdtnN7gOOEqFBTxNr3Dna3qAkhDyL\nPeYFkLc+TfdWv0fW50Cpi2aXm2uKFra9BdtxjBKBo7aWA3LQzEq1IlkvkayXaPf26J5rfdf1fL4n\n4uaCj99CfviauRHoJpoC+bRyIwFA7qVEw+YHaiCEbgQV9YAhlelWocQiH+PxysVV7BrjrmXulj45\nkgAoLkYoghz9/rFhyq3WcyzSSz1wKAHMaCfLsv/9eLNBzMfFC9BEqxyzl8nBNXD7gnpRrcHGIufB\no/5TuoKaXtIQKL8GAOxfAHsH8LqH8Fo7tPizKsByTAugNu0aHL6F+90LBM4CD6ZBpY+UFI628M4w\n8DNNguBFKUXgtEpVYi8sJfuDoGIGlhcz5EiorNUakDK2/jpEVBVUNRp3GwBEUaic1Cf8XQK9IWAD\nkPBTs9uuaKH1j7FIHlX6KhwPFwKL3DOyQlexj3EijY1FW2qGnJUhAahsfJqyg75HQ7p49LsEOE27\n8t4EKk/hdQ/R92nDYA9MIyxVqTeAp4kK3CCzVD82uxeYrB0kaTXbv4WxMZR7VuTrhKzm64u/PYhc\n6xna5y3JLwzFnM97sl7hvuZ9SJdGK8znshQ77F7bIh/BdSQ6u/efeczPFUK81Iyz4saCT7qO8e7k\nBAAM24uDMpVyd3TUIoBoe0N4WdF4AfFiyb42T1YZrmIPpwupFxsHw2BtJv41fUjPYVL9PXBbyItr\nLLIxRokwjXt0UNKfI57RaJhFshw+i9MJ1tcxsof02v6bE8jxDDi8Bo6PCYSA6qKUp6SdpV9DjZem\nNyBvjyFuXVdAyACO7bo66AJZjMHhW3A7EpEc4avXUY3IQOZ1x22BZF1g4CfoaDVipgl7AC02nT4t\nEq2ByU5ji+pNEjABPFbGbgptlWwDUD2jMADUpk1GBYBC7Rujsy/2VJrnV4ZSztlt6CrEBQHRVSKw\nuJI4CKWhYC+stx0+x8hHvk5Nf5AGdH8P6p0PkL9bWnJwL4R/Rq9tDN4Q9eD1jgDUpJK0KvUG8DQN\nOCdJSS8HTP/EznqAEkyrpoXCEB+oxJiSNfhzRL5OkLvEKDSPbYBegry4rrBJCXQijBLqY9L3ESBw\nFqRQ7gTPyH3KYEWHl/Hi48aCT1Y4Zle+3FLSbVXOjj2k55ldoK0LlWuVZwDGDZRfg//lx+sT7Jxt\nMStunJaq2Fexi4Gfo61SwOuUcygNu1RlNd3XlsikigvjikonoDbPlKfEopsuzGust4lUzidQXlhl\n+nEwJTaLIXUPKZKb5nW881/lCoHjmD6BCVuV2NOK2tz0dkqTPCZQZMiob2PHUwZw61RhoFrv53kU\nQBNRuI+gbb3ZOK7jURZXevGQQCtQvX74533r/W53iIrd9gamtwaUwqasLiCFrz2giNiCdNMyfK3N\n9NQyg+iBMiINPhsRBKUqdRPwfIRwhTRGeUzkqK4qpJwx8HP9fWdANDbD2c+KXKWYWDpvG7+37per\nOMQocSoA33S8xoYiT6ls+zHEYl/Gtx9bwUcI0QPwV0D88N9WSv0d63f/nVLqL/8xHN93LHxX4XYn\nw8ncQ+BiY2ceuOVQ5sCnRaaJRsp9Dg7Ww6KFlABrmYsK4PDrEv25nLuhJrGPIebgu3iVE1h1vKCk\nymoGzobLYxBA3D4CggCuFl/MW3QM3ps7EHeOTNaj/EjTlK0FWpfoRBAAh/Qa7h5ZhIv7h1XTvBpQ\nVcILgdaAyh+pxOlC4sJ6m7YEbrfXRiyTS2/S8TfN2myJI4AGfb0QbbnpVcTfg1lMamQRoNqnqAdb\nPVfenwkI1vsLLyyb5g6wHxHlPJISkSxLq3zthK5oFHfdjzy05e5Wt1f7cTU/JdB/hoJ53XqaiSuC\nwZwrTFrfbCvo2I+1BtRP0SXPuCYr5Qqp56VI1Zwde4mMUmi2ZGnnQSoGI3JifUYZjlmbrpBIis0B\nXJ5lKu1LqtGWwP2OwvcNV7jd6ZO80fSM2KpZrNVNyII7x+a5ZYWFFxLC2RiivsnxtLP6PwB4B8Ry\n+A+EEH8OwE/qgaMf/eM4uO9kSMfH/W6EgT/TA5HV39sZit2X2Pp6NftgANgNhwjdsVl46swwAI2U\nVHsYMpJCD2i2S6qs7uUopiDbAOSFRHrQmlcel2Ms4BkLcsW8Fb5WLs7LMVHGoc3Y+N9+D0iSKvAA\nzcBjsZBYZ+sqdivAAwD7Iak02zIyG/RcezdqEwgAA0C2KrIdlca9NUNk/y2XszgMFV0b1pmoTcKb\nQxJ+ZfaFSANJJZsNZaecW7FsKBj42FbiWSHSFWU92shQLbMNd80KBRkonTu1BJApTS5R9bixY0vm\nw1lnHXhsRQnOgJg8wd8nM/H6foYPFw8NAFEWRGWw5+kD8abOBqCmbMjOevbD0pH3MDos3Vt5TCJO\n9PcalRsKa0i27x0CV+9DsRrEy3ih8TTweV0p9ef0z39fCPFfAPg/hBD/xh/DcX3HQxQ5BvIAgdNC\n6F4gkmszuGeLQpKacMkM21gYragDUK7IToG9W5qk9jdMrNZA4eRkHe2s0ZJEVmjLYZn1PB5ru2Eq\nixkA4ia9FwJeXNKBAQKew7cwzi/wjVGC00UL/8rxCfa8PcouJlMzzKfCoKSw+pKAzI5tGQ+Hlnh5\nsspwuojwcC5wt0Pn7CCEphhvAk/THNJWnxhWPGiQRAGamWPAZp+CAYjfe+M5TQuytpWwdc944e14\nMJYcYjGCunqPei9eiJDLh62DzSxty2cE9CwT65TVwu73VGjgnb6xDs9VCqx1o52zyecJne0wuzBv\nENIFSvkcttUwslOLEfUFsxjSC/HKzl1cxY8wSgSStYOTuQdggf2o7APVv38bnLkMaQNQ3Yoc4CHf\nHMetTGeXDcCjr2ERUgmZerauoYZHhYR69BWod99H8d4TvIwXH08Dn0AI4Sil1gCglPpFIcSHAH4X\nzfumf75iXQDLMcL2EIlcYuDPsAqbFYVtZtSzoiJsubYe4983WCxXnu/SjduWQ4RyhGEwL9Wgp1Ru\nW+vBx/UygxunVIILA1MeMeGFwLE2+zp8C5fpCd6ZKPzf5x4ezgUGAfAjB0t0ZQSV5tQ3AErdLaY3\nc3+HZWdYcLMeGrRE2KfeiUUt51Lb670Ew0AhlN0NwNmwX7aVxbX0UD1YeLTuLFpZ1Ld4EAGoHIPZ\nWNgkDD6PABEyUJ3652l4Mx3vBNSfGb9fkjeSkrCggrHRqttmz1Bhl+n3fVaYOaQwKK2tmZxRLI2F\neeh3qZ/FMkZbXntbtrMtbHFdWuQ/hJrrkmVMg9DEvjtAXJzj608iPImBSHoAMsj20rAtK4BvfY9s\nMCiFb/kgZYZJCjQBz6C0ggdKBQu+huOkZIl67RJ4zt+GOjkzQ64vJIT46Dbe38PxNPD5XwD8qwD+\nIT+glPpbQojHAP7ad/rAvuOhaY92KYYXSxt47NKMmXFxu42LmdDlGt6N86Q6R2VxBUjctGHXzn/b\n9w5N6s8DgjSjcU1lFp7RYP8WS9PKyNfox2bFtWbg0ULPDf9FNka39RrgSxriA8oFbHhoFBOU9GnX\nGFtSIzVjLJ5/Ue0hkF9hNxziz9we47jtW4vBfinGyourMa1bVQHHArxtsx0suSMyPcluH5A9HKy/\nF7hdotfLEni4t1LxcGpalO2p/yUqCt+eF9Ig8HJMA7LziVGiqOjC9QBgXCoKNACQ4mtL/ytA2nY8\nCC24xAaU14FNBeesx4+QZOdm8JPvdgYgZDHQtBhaU/+x1iVsytrtCN1u6dO0UY4NTP8t9IfYDVN8\n33CC0yV5Kg2CLgbygDKNyZTcgQ/f2ngPW9VdOiTvg4iYpeQdxdYgCsOAFK4jpwM1P4OQEWVxmrot\n+pYhpJ6rA7TJ3fgDY8WwlXTzMj52bAUfpdR/tuXx/w2k7fPPdzgu7eq09XU97JIQR6FyU6+vN4nr\nzXsBAJYmlrGLrjXAN4y27FiOSfPNjiCg/g3rcelhx9Iquhb6sSQ9qVDK2xbXVAlBsytPrmkB298x\nlOLMc5Gvk5Li3e/RZ7OZdrY6de/AyMjQ+wzwQ/s52vKwHFyN36fFtOE4zS5Ua7qpyZQ0vCpKFNws\nj8s5Dz7n/Jm2mMF5rYHJVowoqf29PKeHkopQLV/xj6tpKckSa+r7MjO6cM8CoLqrJgDEwRpdHOq/\nv4CKk9LjjUtt/V453R/1DBWcFRUGfo4h5nA9WVN0QON7M+hwPE23LXI6pUcRE2G2OHayRfpRO0ck\nZ9gNh+iuW1AP/gnU196lcvLxY+CNCcTRm43gbIMQHcAYLNOzzKvSRliOqWLghWa8QHQPAb2pqmvL\nqekZSVjNFhvacS/jxcaNpVrDkRvN6qr6c7UJbt+InPJv7JhjXWbQPvQAGnfiFXfUrFxAOWzDLfXo\nDPA9iMM9AhqgJBRogKhMefNrVCjgiRaaJMQhyZuyr5WrFDLqlaQCC3gmKdFcZXgHXtgn0Aitna1t\niaAHL6HBxygfLEZQ03ImCGluekYGUPi1amrSxeVS66otAZ5hYYIFu1JaWnyQfmlTbp1zeCFUBONT\nY7KvJjtu21BuW6ymm2w6DZr/P3vvHiNZdt6H/c69577qXf2Ynm7O7Mxyl7sU5ViGqUiGkSAOZCWK\nkICxEUuCBEeSBSuOJSj/RVSEAP4jBGgEECDHghRGMSQaViQhiSACkcGYMhQgsWhRUZiIy+c+ZneG\nPdMz/aiu6qq6zzr54zvfOefeutU9y51dcjn7AYPpR1X1rVv3nu983/d7tB8/6cJZDTWrjO0moFrS\nqWaYF0RWfm7QpwRUpEa8ls+Zy0FCMiAjOf1cQhsGmgRbQHq6XeVsnlzFgeZMjGMT4CapJNSjrwCH\nh1h95Q1qBe90gGtbdZBKQ3Ei8jrYSzpI0hLqtc9h9eevYvmvDrGcSXT3zhBNFvBenAPPfXBd5V1/\nXgJA3B2jVLm2oigASKp6vA61P2dHtKlivUUmIGtOnnSsWoOiosqN23H5E656npyw6LdFPL3JBzAi\njG64iYd9YvjmbFMZjv2+TTzOQtRmWtVs56iSF0vdNgKsmOGjU1SvPjL95vCFBcT5lG7o4cC2xFoS\nDuAkHb2YpBUlm0QKdCVprnWkRfEJmUBp0ILo76HodHGeH2nR0QDSO8Kws4dAL4AmeMFzYLjsTaTm\nx8BySr3/RlJR3M5wRSLZGEyLtKpFgeo0hVqUUGkFEfsEsuBKqO1DbZrBNT8DJ8Fte4QAACAASURB\nVAGZxzVFYx83WCvNmYGZisdJPCqtNECkAxHmUNBVa5YBgYb7FnYDUq4yQ1R+ZUrcFWBGCWjvRSh8\npe5RozlIDBAgaZmJUb++cwFcK/lWL9Y8g9zr+jIrB3h10ExSSarMDw+h7t5H/tVTqEWJ1WkKuSis\n+G0DsCIUWXsEiznU/a9CvXIX2ecf4uFrCeYTD8NphR08RATACyXUTUe1otEWFUGMnlY4Z/dcrnoM\nPF2rxYvlFEjGKAIfJ+mreLD0cbufGNShWh5aYVkd6r2229sWT3Xy4UG31SjLa+6kvDsOvAAFCkMs\nBKwUjH2xsCY/svmPho41t+MZzzdUkRpJGY9VfNmrPo5oodE2yQA2zoyaMYr66AU5ric5Djp0Q+13\nuzTkVcrAciFDqO4YqdM6owqJ2m9BZ0TDf0xMtcOIKNcyIHBJoj0AIOFUNQJZT/CLO4mH0XmsqVYd\nL+ClFaDPgb/TaReDdc3ogPrn4CaglgrRfN9W5Wz6efP3TgvSVCVpbq2egdqcxvBwGsGmgwAh5qid\nlOFwEeBG10dPblN769zx8OJ5isPDgTamu56QqO3tysMoskN44/YJrG2sHjekFwFeQH87lEAYwN+K\nUSGtX696dtgEi0gR0sajNwQGXcgbPfSPLgAESAYl5I0exPWRMUa86rOI/T4qRa3FyOsQ/675ID3L\nmhdHxk59FM6MfxAA+ixDPWNkseD34m2JK5OPEOJvXvZ7pdT/+uQO5xsPIcQPAPhl0Lr160qpj1/1\nnJrel48a5Jel8NXyDEImxsQsrWY1m+a1hVbaSqK5yBkbgE0HxDeXJouKKEIwIhkVsbdDcOn+3kaV\nagYyKCHWtMwAcqGM/I4RBe37WxZN5Agz8vFJLzT2y9JLLFKPeTeaxMjHHQQxSmRWm6vTJen8fAmV\nnJH23WIC9Lvamtppt7nvI5TA7hb8a3P4emBvEg6LqbbMLFqVipvCk3ohM6g4XtQ0WEGVy/oG4bLN\nhAyp1VjmAK9R0QTifErHGE/hs7aeO5vhSkC/DxcB5VbaXTlC1KOW0nZ0k4AnZ0f1tiUaMHh+HRGi\nG4zwbH9iyK5M6jQtR9TtG5jkfFUF5CIDxdYtqtziCDIOIadzao3ubtEccQNUnWedYu9FiP4egt0/\nx9bOqxjcmyF44RrEczeBm89DDPYtbJ6fg/o9xNp9kdcBpO5GKEXXcm8IMZzTtSYtty6RK+Nka15H\nJqTcsRNDDFNqcz86hRw9KbTbk2u7XbXeCSGE/v0PgiwVfkIp9WeXPVcIsQXgdwDcBnAHwA8ppc70\n734BwE+BdJp+Tin16bf6Hh6n8vkpAH8VwL/U3/+7AP4VgEega+CbnnyEED6AXwHw/SCv8s8JIT6l\nlPripc9zBCclIoNkCxBYh9IipTYJUE9AbdGWeFoWSGPLwMEVT3Nnt7tFCzEA7D9jpF02vRcjeMoy\nNE4CakK82/glfNwMZ2X5GADrw+YG6ZLfWxza88NJCD5IJBIBEA+hBsv6XKYZGtkuhnXflZpyMWBn\nbJvCPfeNxONaPF+ZgJrhHAMAwBUyjYdQAaHdRCihuJXISLQmas9V4277UyJEP9yiimcxWYe6p3bm\n1fbcbjDCDW+ByO/bGZzeVAEwG6vLktCaCSHqUHbB5oBRRJVmb7h27k20dQc6I4jv/LfhDQcIHbSb\nEqJ9o+aiGp3XIrWQBtAhGQCDc9rQORur2GfydkPRwr1vg9Qq1n8LxWOud/8BCBj2AZCZ3K8C+N4r\nnvtRAH+olPq4EOKj+vufF0J8CGRY950ADgB8RgjxglKqIRj45uJxkk8A4EPsgqftVX9DKfWTlz/t\nHY3vAfCyUupVANDufR8BsDn5EH3JJKBS5TbxLCY1l1LjLopLElDzhmjjnTg3ilnkeBF2L3AXSaYV\nlHkHuBG63WKSxe9N+qFB4/HfZOJj006CjlH7pwiJEvma7I3x0GmJZlKblxOzgEV+BzIOEfsH61ye\ntmA3ysb5ZJfWIIitmdymuMQugyVyTALi96D/N++kbFS0+vw2P2Py7tG2A8kZsJxCxOeXQsVr/+uo\nQdGLFCp93cLO89LAtxGH7arWsBUUKwOsbaq0ArkKcgOQuSwJua/bSrTujOh9N23QN0VLEhI3vgu4\ngdakU6t+NrS3+T5eC06GtUQVAlULV81NlPx1mz7eNzceZ737CIBPal+fzwohRnrtvn3Jcz8CMpkD\ngN8E8EcAfl7//Le1us1rQoiX9TH88Vt5E4+TfG427FePADzzVv7o2xDvA3DX+f4eKNvXQgjx0wB+\nGgCeubnb/LWRVlHl0gys1WyuocW0SAqM1p/D7a5yWZPzd1tjzdYBgHWmOS9S3NJyiH4KFkRgwmvn\nXKy97yZ/hRMVi6M6CxBAizovQsaEzbQhj40uFjojSsoNroj0IvJSMSrDAUYh6XlxJWX0soJ4HW7e\nSBKlWqAq7ZzDTWbx8MDu5N3k26xC114zr6kTmGrQmRuZCvWK1wIsSswXEnHQRxBQNaCas4pmNdZm\n0b4pMbcRe91w2lluuLJB5to+nxJSkPnTun3aJM+uHdOqgsWVo56AwwRl4Fu/nKs2F/p5LDvEygVN\nxQu+BtcS0BXnYu0Yl2eEkAv65u/U2pDcOWjZ8HwTYkcI8afO959QSn1Cf/04613bY953xXP3nLX+\nAYA957U+2/JabykeJ/n8oRDi0wD+J/39D8Mhnr6bQn94nwCAv/zh59XSsW8GQEZTQWzvrTQjO2VY\nvbONr72kna4qc0PM5OBFvKk5JgIHQqqfUktYoJu+KV7Kr+nqUMED4k5/LRnVOCwcTXhwMwlp1QBO\nQkIpWriWZxYCnmUQ/Smw/4xZuNyFtYaKkkTa7QWRUWtQ04e0W3aJsfq8mPfYMCuzPyfHzF5A9gvu\nYm9eo6Uq4WG+C4yQggzs3ETeVgW5r9tMYk0+zLw8oyF2d7vdNXMteZUoK+tKXLI4bdCFFGM6//EQ\nqkNtYDHo2o0Kw+2dz9O1Dl8LvflQszkwm9MczXm/zeuMbd4VsFFhgjcQZtbY0NVba5Hpx16UJ8iq\nRR09qm3FAdgNgp6x1u6hlmPe+J5dFOryDAHGQEBkY95UuYhVcx+ANpKXcvHeZLyJRHaslPruJ/aH\n32QopZQQ4m2V+74y+SilflYI8TdAPt4AZeDfezsP6huIrwO46Xx/Q/9sY6xQYV5OavyFWv9X36Bq\nsqCbZ3fLtHcYom0W+iK1mlGRVcqtuT62JSAnlBA4ye7SYNmN5hzHGUhz8OJ3nh8ZXbHa85tVT1s0\nk5CWs6nNV86OiLX/8JQgqKMOtQ93rq0lXDpWEkhFiVriwStfhjo6Jk+Z3S1yWb1EdsQdgLNhGVdT\n42hi9Lji7tica24dcv/GNWdrRXaxxRJ/Rm3tHSdpuMjHtmAfmMjvQAbd2jFU2rBwU2RYQHpWQsYX\nkjYWGryBvl4o2yqnlurHLMr8GevPEGFA4I8gpmu22QabnxEU+tGpdW9ttK9cSkHrIt0C/iB7eaqM\n3XATT+3Y9czSvYfa3p+x6XartrZrvkgRIIYMLajIKGrweeqMqFJKxldXWe98PM56t+kxwSXPPRJC\n7Cul7usWHcuZvOn19XHicaHWfwZgppT6jBCiI4ToK6WeEATkicTnAHxACPEs6KT8CIAfvewJeaVq\nfvMAXbyBF9CFeD4FJjPiZwAQ0zn0RkjvWC3UWi3PrI12aJVyeXjfnC+4wTvAexfn+OJZgg+NX8Xt\n/q5NIM6uudnTdmHfj5YFJrnEfucI23Fe84e5Mlw4sjYO47+pAn3zau4Ra12tFgX8rQUkLPqoyTsC\naLAb+4oSz+kh8PqrKP+fV1Dem8HfiiGfOYW4OYfS9uO84LuJgl0yAWjfFt+4h2arCpE3xzi6QCYX\nG1n4mxIFt8radtlmMeWk/JiJp3ZqtSUzJ1CbPGVNQ7DlmearZelhHGknUJ3Mgs7ILpY6DHm5iI11\nuDubVOXS8F6qY53YYkKqIRnUPzut5qzuPkB1eE6Qf71hYAUM87poqW7ccKrQtJphXk5wb14B8HE9\nsTNrVsEG6puFZosUsFWqm3ialY/bPq/9XB+vuEzKSVMJ2trK3wLxOOvdpwD8rJ7pfC+Ac51UHl3y\n3E8B+HEAH9f//77z898SQvwSCHDwAQB/8lbfxONArf8uaE6yBeA5UK/v1wB831v9408qlFKlEOJn\nAXwaBB/8J0qply57zrL08IXTRHvKkJ0zgPouRzOcV4sCIsvoYhWi1gYycvfTuSWzsVIuANkdG58Q\nt3fNcbR8BS+dhfj8SYL/70GAO9eBv7p3hu8YL0jvSiO6RGM2wosf2wXfu4hwb852zmdADIJSb+q5\nNwmYzXlCFNlzcXFObRpN/lwtClTH9Dt/sgBGc3rPyWBtJgbQjjYoKqjFBOroGOW9GapjIo+KTgA/\nPCZkWHBkKigpwpq/Ci/YJ6mPrPLwKCV32GXpYTuukK1WGIWzNT0+16K7Gfy7ZgKqARF0i6eZeJpI\nMAA1NYxmsiGHzwAnqV8zPGPZ/+24MomIVZrZFZSTLL2/C2vVoBPQ2ufbqH5qiZK15pg8meb0s9Iu\n9MFiTp/Vo1OULx+jvHcBfyeBtyjgQy/eaUZgGKAmuApgLQHx9X5RnhiX3pOU5kKRt8JuEtDmxN2Y\naQQqJxW3RWq8lHS0Wo5z+7xI7bXtAHm4cjTzS+0CvPYaZd6uf/cNhILa3Bp8M6+zYb0TQvw9/ftf\nA/AHIJj1yyCo9U9e9lz90h8H8LtCiJ8C8DqAH9LPeUkI8bsgUEIJ4GfeKtINeLzK52dAyIZ/rQ/k\na0KIa2/1Dz/pUEr9AeiEP1aswAZyFYmIyj4SrwdUKUGaQYRByfyMG/sQey+iUDm6ckxcARYhZBY1\na0FN5wCOoMYwEiCbYi95DrE8wna8xLUY+De2M2KyZx7UCcmWIJStpleTjHa1o7DEaKvEjZ7E9aTC\nMNyjgX6mxUib0G5g3QU1akBO3f97tNioNIO/o100dwB/K4YYdayYpWbXuwv0WSYwxgWWYQfx4BrE\n3inCFxYoOzN4WzH8gyHEzesEr9WVEy9WJgl4IcZRDrrugZMU2I09RD5xNRK50o6gm88zu21eFu6A\nm+dcbtuzJkwKOxjn5zb/HgDEyAGskGCFyPM0v4Q3CTCGem7SZE8cwB5zLHukuOz1KOGcvEpghjZz\nss7IfA48U4m8Dunz7VwDZnP4Owsivu7tmHPPM9CmxXR+vkLUKeBtOUnFJbc2BvTAutoGA1AAUhEZ\nR7lOonutoBnXK0liXQm+xmlzEHru74RMoDoj6/rbOEbTknMVKjItALtBm+5bJdrWO510+GsFWrsf\n67n65yfYUFQopT4G4GNv4ZDX4nGST6aUygVDhoWQuIQn+W6KyLeD8K6s93ZFfw94cQjsvk4X7PUP\nGogvACtauJhQsklzmg+5ApJOAtpEDAXItOrF4Qyj8IhMr9KSZEtcbbc4AvaTjdYAAHC7n5BiwfwM\nvFDX4ioXRXcxcULJENixO1sJGA0vsbdDLHS2l9ZD5IsiwySXete/AvAQ6F1D/NwH4QFEnh31yXl1\ngzCqqzgNYC0BuU6oTSvq5g7ToNJaEtAmdes1vb6GMKk5zqYHjd6xM1SZHD5JQQOokFZkKc3XnvSS\nGoem+bqGm3NxBjV9ha6Lo2PaFP3Fv1T/XIcHmDmDfG5XynICyBESbm1C6+ppg8GlX2Jekr01As2Y\nTXOotEKRepDHKXydfFiJwlibt6DC3HYYw+3d2I5vWlTcJZ5GNYh/izivy2kznwu/Htuhb9qTuK02\nh7hbP4CwvZX4XrzleJzk838IIf4rAIkQ4vsB/H2Q3cK7OjxYm+Ou3Ka2EA8YOYKYqp3ABxqLWVBU\ntDBlGdT5FGqysH44rN8FgBOQgTJvSEKx38etnpWlV/fuQ905QnlvBhH7kHFI1UUQA76zI9Z+Q2ZX\nPH8MnkUbAsshYTZDFNq6YJiaBORr1QFW1WYVZW6rZCs7m0mkQOStIL0J0Bshfu6DELsO2m0D3wWo\nJ6C6xThVfMazxX3vQUzLmrso6kqkacfsQnoNEIRbWS4sPVgXJq2dI2cBNX9vBWMBXanSVDaxBEbR\nupeQeQ3+bNK55WU5YI/iq6co3pjB34kRAbUExJ+Bbff5iLwVYj9HtlpABmMEbFcQxLXEc1HQ4tsP\nrSBodbzEckrLRJA6nZYgJusMHaXKa1tSboWxMOp1vZ+RXoid8Ab55ejB/mXeRmvnpA25qVvcrUmC\nE1CTkLwp8bCXFf/9TWrx30AotVoDCz3N8TjJ56MglYM/B/Cfgcq1X387D+qdCE8AB50C2/HYts8W\nkxpUWoUJzosj+JWsLTYBAqjZoUV/TbXB26LQM+sFxAjk4ZJKkkTpDS2E013kGzBQ6MSDh6co781Q\nvEGtNX+nAzE8hApixNu3MS8n2qa7bwy8FOxweeOQlJn7LUmnQIFSt15qighhQvMuvUAIgMiNgy7d\n3FpFOasWmtcjsSgFlqWHs8xDVpHHClCQXllvhKSpVMznoAn1Zfl8uY20msEPJKS3QCLJB6Yrx7QR\nuNAulYCt4LRYq2mZOVJKhlPickkaRFyzQLnH1xQm5XB342hwpXQltMml023xrSU9PYtQd++jfOMc\n5b0LzI+A2XEC+XWFvc5dBHEE8cJ3ANu3cXLxMiY53dbGshoeAG2pICQQ9BFs3aLPPPCRlVNcFJm2\nXigwDAvIIAbyAqtFieUsgoxW1tsmlNSmu8RkLlstjJ0DaaiV1rfn3v8L9fIdI5uEftdqFiaNMsW9\nP5qqIAB9zs0/3kwWnIDcc7sp8aR64+gY8hV4T1z07YhLk4+WYvikUurHAPwP78whvTPRC1Z4fniD\nhqup9sxxe9ZhgovypAYHjf0+LXRHXzStj+pwXXrDCEhy8E6K1ZOXZ4ZDUFu0NClRRBFUSGKaXkfa\n1wwlcP8NoEixs/eiTpbHpDbgVjIyrNs2OP+vkSb1fKBcXTjukLR4WMHVPgK+gc0DMmu9gALZamEQ\ndwwKWJQwg/VFKTByukObbKSb36vpfaMwEOtj7nduYDsSdZtqV3JGqzyzarjrreSCGNb+bkMxGUHc\nqoz9WFFom29+He+KxwObE8/RsUGniY4EV34yWkHE2hJAhuTfo1udbozCEolcIa1gLRU6NLua58em\nRcp8rHKVQSakQed1JJJ+hSBawd8iUVfsUKWbFUcA1qWXuOUX+8KI0sa+sFbwPB/NC1tpZBnx5NCY\nUTah0k30Wm9I3kpo4WTBuc4Clk7KDQjBKJADde+eNIf62usQe3Oo3Qkl6vfiicelyUcpVQkhbgkh\nQqWeAEzjWygCL4I8PVwfXml1ahHERikXcBPPV6BevgP1YHK5y2G8Yb7iJqA2dnt/D+qAxDUlbCIT\nN51K4fghHbd7U/INyTpfWhJEOcoFQF0exrhVboAO88/SagY0E1CQGnhuubpAWl4gW/lmkO4mHoDs\nGxK5gvSsaCsfx6bzpGZHVDXyAqFljjiZK16c3Z1rHK2hrhSodbhpXsbEyFYHU1cSp9EebJKG+bjX\nYjFBoJO8GwZ6z8lmQ+JRk4VBp/lbMbqLCwRxBhmsIJ/Zh9jdgkjGqNS0lni4rRz7AtwxuygyTdBd\nGEBItrLLwCgiq+pysAP5HR9EPJ1jt3MEeWMM/0M3IF74DpRbBzjP7hq0XzOxuvMdhlLHskcV+pL8\nnNhWQ4S57RCwL5Prp9TcWHClor8XuxkwTKn127jWm9FULsFEV24bfHvU0TH97W90A7L+ik8E7fbt\nEo/TdnsVwP8lhPgUAINFVEr90tt2VO9ElFdfUKyUW/MeuXsf5RcOjb/MWpXjhIiidtQMJyB+XOOG\nEf09A9X2OYm5Evx5CfXaa/T6zQgzgCkYThVU+xtc7VSzWrXTDLOIeNTDl77mvjhVFVc9PGNYlp5G\nEVLMS4ITAzSfiryOYc2b1lgThcRW1JpbdKmjZHPhmM6h0gyC24IsH1OkJvm0cnR48XejmVDawBgb\nSMP8PBewEAz2r27htCQerno45I0eRCeFp831WLuszI/NYzjxEKCBQA880wFgqh032EwR0J/39Q9C\n/OUUERv4PfdBlIOdms/TfqfOlWuL60lFgJ7FhM5JllGLelHA7zSqn8CZ7TRbY6xppxPXalHAT3P6\nrAGbgPgPB3FdHYST+9T6SgGbPXsEQITqybcSpfHbJx4n+byi/3kA+lc89t0TeUYtrDY/GMAsVrXE\n87XXUXzhCNOXligyD51hCRms4O/EBDvW/jsIGwmpubt3hthMZAPqSUjEQ6j9Zwjl5u769IK0WhRE\n/GuasRmoqKvb5SwMDgy3zRyvGfw7X0hS/Q61iZseFperC+2SqvkojXYbB8HZtcnX5I4hSCpdpXES\nqkn46LYmG7JxuBWnx5Uht58AYzhnFqEeIfaEGkF6kSF9GiO9NmFWoLXa4a9bdfs4uH3nckh6QygA\ngTYza86AaoTIRuKpTlPj62Te41ZMc8DdLSAZ6NZpDiCoJZ6upPecVrMa+u2VKf3t7ZjOK/Nt3ChV\njuDGd5lK2k08r5xHWJTUTj3oFBqJCLRxrCK/Q1VPem7I2zwjba1+dKIxbbFGwlmdpuYaUIsCMi/o\nut/NgPFeO+eIP9/zaQ0gdGnoewzvGcq9LbEx+Qgh/qlS6m8DmCilfvkdPKZ3JlZqXRG4KS/iCIay\nO6V7wRapBxmsyGmzoxfHpmFYszppa8s4qsm1vx8PoXY1Ee74Ie3+9DFYcEOj1+1WWq48jDM8Zf7H\nZeEuVMRVAaHstH+RWp5BFDHisF+zMSZggQ3m4GzHNymJT+/QL5h7od+/gobNljm1RfR7dROPXXDs\n59YgvtcWaJXpBa2HtUgrBek1DAGb0ZTXcX4u9LlsEofNZ9GsoorUtEKlCJGqGaHhGrBtY5nA7yGt\nc/l4g8MVt3p0CjF8iEAmGMbX8Gz/oUE/uoKZQbCF2O9jXp5hks3M52ST1LZ5fFNfENc/SMcNFuOc\nI/JXiHzbTm1chSbxbKqINjqEOtVOM/i6t69REvXdOXco0qspBW8irkxQbyIU1Js27ft2jssqnw8L\nIQ4A/B0hxCfRuLqUUqftT3uXRBgAt96//vMWRrNIxlSFAJrudqTZ+RL+Vo92oLoFIna3jOBjzRKg\nGY+pFyVkAvRJ1VrE5+TyGQbUMnArHn48L+gNwUgOF7q8KQG5iYdmCCv0PKuOrM4PCZW3nALJAP3B\nPnnFeGfYTewOmOVSgsUcqjlfa3jamKpPhsQhYdCF09b0ObHoBae5MDd/Ztqe2pJiubowkGJqOWVm\nAJ90RtRObEsaLuIKDt+pRcBThglJt0Dzo/g9BmQax1bjpupUeZ3UORxQtavN6JhT5SYcwC7eAnOo\nL3wV+ECGePcm4uFzlHAWE6hSn3O9uQlkglHnGrpyjFFEsPSuvG5tRGZfpsfr81U7rzohDYM9dIc5\ndpMjp3rUfCRHTYIrZn5M7PcRxEPSAcxLSJ75sDMtI946I5rz8Tl0jsE/GJqKRcQ+sEUoUAy69Pyd\na2RuFyYOJ6+gF+l0EQS3qJ2t7xcfjWiaGra1td+LJxaXJZ9fA/CHAN4P4P9GPfko/fN3b/ibZzVu\nSBECgaqpHkSgm98kHHan5ITjmJYVDtmOo1Q54g4BGB47CfEciK2ms2zDzEfam6jJQHfeE/u8NBNQ\nM/EQCsousEIpUqR+dEp/a5hClTmCeIhhd8/K0uRLqMUZ8OhlWkDG68KjV/In4rBmRQ3ALsKDLqpX\nH2F1as9fbZcah3R8vSHEYB+z6hRZxYi80AAjgBlG+nQlg32LruNosR8w2mAtx29ak0EMsSBoNsrc\ncFlKRXybtCSZnHKVIQh65ISLqW31RREZCcYR/Ifr+7zqmBQKuPJVX3udJG/Yq4mPHTBVpgpiID2H\nlCFGGtKsWGH8fGraXGJ3C2pnSlp7+nNy24oBAmxHN40VQjOaHkB0Tc0QdLYowQ/O6b4ZoHbvGJde\nYD0B6fazGAH+CFATjf67PjKuqcxZQgsEXHoRisBHwM6rzQe4mzWXhvCtp+v2bRMbk49S6h8B+EdC\niF9VSv3n7+AxvSOhfOIqqNnR1Y8VghabeAh16/104WZZbbdmGP7VrOY/4+4AAavKPI4m6AYj9Dtb\n7fOGlhDx0OymhYvwcsOdYXE4X3NbJWZDPB81rbpm4jlJfSRSohfQDaym9+sM+7wEBhlULwXKJV1Q\nUy1C6sxs5DND4NoWLRTjvfUbnKuDQnvghBZiblpqer4l9nbIZjuO4GkiLgBTjZrzoJUXZtWpITsu\nSwsFt7EhAXHiMS2g83oC0gKevACziCc74orOiFB2un3HLU9O8NLL4Qtprq818i/bOUcRnW9nQK7S\nylR5JgHdfWCH7zqM3TZvVHRCU9FDO186n0I9mKA6XkClFeSNCcTtOYnljvfWLBsYFRgDJqnSzIn+\nVuXVZ4n0XhdU/SRjqHFOiZI/J/03isBHWp2irxMEdFKsmfvpjZXQQBwxHNQSz3n+0Hg9AY4AKW/+\nPEAOD2rnqOnTBFjvrKZlxnvx5OJxLBW+7RIPQDfGzFugt32b+CIOA1qVy1aDM0Df5LfeD6F7+EIP\nkOflGdLlIc4yu6fKVnaBW5aBIV5mFemSPTc4x26ywDDcQ4AWCX83WBJFJsDWLeM9Yga0zWNtgiec\n3/EuVnqRGZqUsK2SpojnsvQgvVCTWR+agW1dSkjHxfkaEx8AqtMU8sYC/sEMYm9u5fkbopSG3xHr\nltl0bttNTvJiZQQRRQg691F81VYHohPQxqAzQtHpYp7exYOlbxQXrLCne/lTApJeRAvk7IjOm0Za\nGb0vB/nGXB7ZaKUBTgJiWHaYoHQ075alh9jPEfkdM0dDer7++QcxcBCT8KpDaOZozv54U9AM5cLQ\n8xIILdxYTRZa7NWSOINOYD4X4+XTov7Mm45AO6EWKGjhhq18lqWHXqARkZfIvwAAIABJREFUdGGf\nNlE71+hcDq7ZlqjmHCEGem6COKeNnLGUz0vbttVq6Jx4XjoLteySNi7ULq5ulCqvJaCC6Qba6qKp\nPm6r5LcWCupKfcGnKR7XUuHbLnwhSfVZKeozc7/f9bBp2laHSU1dmlFLWJGfTBR2ADzEazPb0mte\nuEzke25ADH3WYjPJhNt2zWiB/UKGNMRuyMA0xROp77/OgWDZfazsbjVGjthXSGSOUehpm4YcXXm9\nJuFvUXYOsCKIayKk3tYCvsNP8Xc0SZHZ4/x+itS2nPg9NVuMLOPP/CWGYh8dUws0bnTwdQUQIID0\nQoxCStDLkgbkk0waNWnmwtDCkyHg20JLJ2E6h7q2ReAF97PgDUm+RBL0jNeSGfTPzxybgxRJh5Bn\nRMokiwSAEpUMt2lRbpCDDQJwmELkJVSaUytStxtrAIQwoPO7IUQUWch+HNHrxRmEFg3lpCZi3yI2\neYjfxrlJHUSlrhrKKlsziGMJJJME+BoNYpqn6kpcehEif0YafeeHVrGiGc57wOAaVJggBoAQeG5w\nhF4QIfL79JqObJELc1/zANKtaEOYrTJkK89sGN+LJx9PbfLxRH2xEjKx3h36xqhZLuvgWQkAYGV3\nutKLaKGLIwB3awnIje24MgrMfX+LFqj0vC7l0tCXA3B5W84dbDfD1SYDakmId+3w9M3o3GNuEtqO\nx1T1lEs6Rl2RAM5QnxOHI0Lqg2Y0q0VB6tW6XbaxultMLEFWhsDgmpFGqSGYypwSz90HNcisabk1\n3ju3YGI/x1m2QiLpjTYVpelfBKRzywfRNhI+oEEAG4bQRYoAQBD0bNJxDMqU5kcFg33AX08QaTVD\nwm06h8RaqhwyPKDXGhDhUeSF4Zg1E4/od9uPD1inFUQTU9n4sCAGf6dDLVWuLi7OLQ/Hgf3XQt8v\nTRFR6YVrBocqTGyibcwia4mnxYvHxHBgkxe/Pb+P7Ti3SSdfAoXdADR5Vm06a/xcYAL2VFqW7y4d\nZSHEFoDfAXAbwB0AP6SUWhN9FEL8AIBfBn38v66U+rj++d8C8A8AfAeA71FK/anznF8Aya1VAH5O\nKfVp/fM/ArAP6wP97yml2IyuNZ7a5INVuQZFNn13ZxfnessD5DIJAF1ptb0MFyg9RxAPsd25ibYE\ndNAp9C5wG0kloeb3rQOqAy9ViRU4ZZn7JOhZcqpTpdmD0F83h+UXup0Y2arI8IpAQ3MDQACsWZce\nGvc83bZokjAZaceh0Vx0/KipYPtpfnniqe2op8B+bN+PrkRrul6sqdfCTGfej9L+SyhS9Lrb5j2N\ncYG0ssKksd+ACIsQqjyuma5xleEPptT6iSxsuvk+aq6YLmx4QEmBuT4y3K4N7EuV08IY+ICen/C8\nwReS5iBFSlXlZNaeeBomb5t4S0bMNR7WWmv+jk7io45NspxkNiUd6I2bEEjLmTZoZEuM0Iq+Nq3g\ng7jm9AswmKUB+GgLRsXJEKqhWmE8rJaHVkrHIXVvIvry5pFg6T1AshTRDE9qmVTqHWu7fRTAHyql\nPi6E+Kj+/ufdB2jptF8B8P0A7gH4nBDiU0qpLwL4AoC/CeC/bzznQyDzue8Emcp9RgjxguPt82Nu\noroqnt7kU5WWZe/6kegbghcGt4XgDuPL6CGG4TWbeE5fJ8TQcIAAtwznghPQfievC2Euz2qJxyCN\nAKA3BZIxVJhgnt2l45U6AQFGYcANs/ADtg3H7qoAKR/E2VoSEgUtAu78h8P3pU1MRYtatttyc6Tn\nBdYTEIZ6sW5KAjUZ7HEEMZwYm4Wi00W5ypBUYyu8qmcfTDrk8DqNajPLaH6naOddrjK9qOTa3sAu\nkgwNF0rRopXSMH51mppZiL8zh4ojgurqc1zTIOP352wmzPviuREsWo45UrwDZ8CCkTUqL6wlQhIi\n6e8Rkm02h8+JlwEYDmLMHFMz0WsRWQbGxOHYutACVklikzQUb46caoQ3bKxgfX8R4tl+YRNPJUn0\nFVi7z4A6wXdN264ZTGHgBNoZWYuF5sasrU2or3lOQIzMNHJPBamIiyIh6D2ggSjvOoWDjwD4a/rr\n3wTwR2gkH5BH28tKqVcBQDuefgTAF5VSX9I/a3vd31ZKZQBeE0K8rF/nj7+Rg3x6k48Q64mHf6VU\nDQ0GoDaMz1Ye0qpEV+WIRR+O6hBFEKPVTwd6Z710+tmRhpBGEQ2FzfNpljAM98wcwRAxndxTg1EH\nMdkfLM80GCGipAOst1waIqem/VY1fHC0i6QZiINabWrktNw6I8NhMUZeAKl482CZw2WvN8NtaelZ\nlRRjqsbSuX2PzAGCHlkx7J0jDKznjE7K7PfCbP+m+6ip/Nxj1XMP0ZH1mRInWzgimDyQ59+77zeO\n1mHxLDwaWPVrrOh8swVDLHuOF1AfKr2jRTmddtGmRAHUKuOaiKwjq5R0RvS5hlN6rencvKaB8+cl\nbTJCCeQlnX+3HRbESKtTnGUCi1LgLBPYTTSgpao2kqg3ShO1Vcd87TqahZi2OPQ23nfzdblKK6us\nbqXBWoIX51DjPdqQBaSG0ayO36HYEUK4VcQnlFKfeMzn7iml7uuvHwBo4TngfQDuOt/fA9ltXxbv\nA/DZxnPe53z/m0KIAsD/AuC/0YZ2G+PpTT4yWiPS1RSmgxiJ1zMs9my1MDvmtCJWuAle0OOMdmNB\njLI6RVopDVWmksLsrLni0bs47FAyEC7fgV+6qCBDp18uBLXk2sAF+lhEsE9zoyKF6qyrbpuWUEQS\nOS5qi9+rG2k1A4I+As11QjSBOJ+uwcwvyhP05DYlSJdr4i5UbDc+ndNuvUns0yg1ALRondyBlKEl\nGyYDYJeOl1FoPkuw8Gvs7ZBJGvNGnB0czxW4ymjaHJgkF0fAqA95gyRuamRGbjGyxURRRxa6u28x\ntPI6bqvO1SDj1qexfIBNhqxUgHNt4TGbGxts0Qno6ziD0HuZje6mm4IrhLw01aTA3NgdrPHJGALP\nX2+Y3xllA74OGuRtM88SIcBAnsK5bmLbPmy1gZ8+tOcVqG8e4yH9Lec1AEB1x2QD4Xz2hmCbntMc\ncTY3BGEZHqwpdr+VUFCmkn2MOFZKffemXwohPgPgesuvfrH2N5VSQoh3Ymj1Y0qprwsh+qDk87cB\nfPKyJzy1yWd1lQW5vgl4ZwrAOFMCF9SqEfWZByKS9lBCoFIlJrlEVnkm+UgR0sLP7bAmsS2ILbFP\nB/OQeIEH9MD2KoImv15nRC1BN9xWBCaWNAnbCnJhw2bm5SYgvQvlNs55cYRJNkMVlYTg0wN2E6mF\n9jL3x98pIK6P6glo2DJL0UoKJgbk4s58K359s0PXvI/LSKzuALx19x1FlGhGHfigOYjY3aLj02g8\nk9TcuUOYQKhRLfm2Lp64JAHBJh+hFClKPLqrHXOzGt9H6PeuAELjMWjjMZKQC65gsU8mr/o7HRLf\n5AQE1MVtmczsXO+JXDlyO/we5hbwwu/X+Vx45uUmIXN+zKZhTMmXYzklzysAgjcx3E6G1vFrCOku\nVxdr5FP2cFLpOXD/DdvOBSC0Lfya/NG3SCil/vqm3wkhjoQQ+0qp+0KIfQBtg/+vA7jpfH9D/+yy\n2PgcpRT/PxNC/BaoHfde8mmLSpWYVae0U7+sOlxMqAoKepZIJ9c9TCBD034qVO6IbVLfmBBVEVR6\nopWa9Q3NQ/ggrlU8anZEC8kj4q+o3YnhRCghTEV22bHz7jLYulUnTmobAiKIAgjSGmufNcCA+twB\ngElAhjgZ+JgXR7g/n+NwEeGgM4ffO0E/2KL2oENkxHSO8o1zVKcp1KIk7o9GwhmkVhC3ukwKx3AM\ngP0fqM9b+Dw2Es+aI+amc9ZMFKM+RBwSmdFpMfKcwxxCAzkldWUswzElI3ZHbRyzy3ESQWyG3ozS\nUgxeYM03XeHxrMvX1Q8A2sywGoMz27ssCRkE42RmSKYAbLWnExAAm9wB28ZtidgXzvxMv+cWzTUD\nc/aizbbneiM0csm/h4ekNr0oSEuRVUZCaVBwXGWp7hjn2nfI1fGTXmTV1TWAhYm2/qKg1mIyQDw8\nwNyb4F0WnwLw4wA+rv///ZbHfA7AB4QQz4ISyI8A+NHHeN3fEkL8Eghw8AEAfyKEkABGSqljIUQA\n4D8E8JmrDvKpTT5pJXDvgkieBpHD0Vyg9KLGZmRtpThDtd1Fj3aCWBPbXAtHeyzxepZPk1mRSZFl\ntpVzRdXTBExEfodIe+eHtAjqxQZ7WjHb2TVyGCM5PXeI/I6BoaoQgOMFlJYXmOQBJplERyrsVguC\nzLqhW0UAKRGsFiX8JjQ6L03ro/5cR3JfV0HGDdb9rDa0ItusmNXsyGrvcTTPK3NhACPVw8AKFw0J\n1FUigLqgpi8kySlhZFs8XKGgnoD4Pa25bj5GqCyzRMwN4c6+gqIi0vCjU/IMSitjBQ84CYgrK042\nrpagvu5Jx08Yz6ZaV+Ay8jTqiaYZDPgp5JgWq7OjhiWD03oMJZ2rDoAgJnvw7C4eLQtkKw+jcIZR\n1CebFBdEo7sAq4Z6+pWouzcZK/WOcYY+DuB3hRA/BeB1AD8EAFqr89eVUj+olCqFED8L4NOgyfY/\nUUq9pB/3NwD8dwB2AfxvQojPK6X+faXUS0KI3wXwRdBQ+2e051sXwKd14vFBiedK89GnNvmsVF2B\nwMRjaq1VqrQ3WGMRlILkPa4nEyzLAvsdQlbNyzOM+nvArjZIGw5ICLE7xqw8oRvNz9Hr0tyktii5\nMidFSgCAvKWdw/wkvWN0rQMAOBVFYRcr3h0HMZari9oiEHkdDIO2eaV9r91ghGf7lDCf7RfoymsW\nNQaQ7fLN6xB7JcT1KfwdMuLzdzrANStLrDYZdzUVwlsQURZ1tiSXWIcrs2Z3cP+rpAbd70LdfH7N\nbM8ct6k2dPJjZeqWcwxYUIqrbcYLsWnxuNYJWQaM621XJQTJ8iwcUc0egCg1gqMqy0hcVovK1sij\nax+Qhqp368TloKigTl83lu2b1JvNDAiNJKkTEKMJaXjPZN4G4ddNPA006VUR+R105cgkSrJYoGvE\noBuZk8RSPVu3MKtOcbI8M4t95K0cCHhUr8qGA4i8hH9ABF4x0vO9eIhlNav5IL0bQil1AuD7Wn5+\nCOAHne//AMAftDzu9wD83obX/hiAjzV+Ngfw4Td7nE9t8uGo4e6vSDzNXa4vpFYldpBWRUo+QCJE\nLHvY78zMRV+ucixliXj3JolNaj2reXGEtLzAg6WPUXiGKirRDcZGBBHAuuqBozawaVfpaoiVKrcf\nNhMnB11AkxKFTEixweE0SREiSUuo8tC0+zYFJ6BuoAmFbYkxlOS6ubsF0YJ2U3f0fKsxB6oRWQGt\niIB2bpP+/do5YTjv6etQd+9DPZgAow4t6PsvbHxf7CejYguVBmi3zrMwPs+TXCLyVhhHG8zVmCvF\nM79QrrWjjDCrJpyq5ZmFsXcA9FLiLzGZtI306qAa2xKPyJc0Bzw8JHmdRVGDrbvVj5HuCZ02oZvo\n9EZAatO6prEcWcPn5mtO3OypxARgjlrFBAsKUI++Qslaw71FJ6BK2lXZGO8B27cx0W1glzVNFRmp\nS/BGwERnRHv8LLMt1jGBVbLy4XsKB29TPLXJx5bA1Zuyti31PKftxuEQSpk+di+IagluXk4gB3sI\nENT0rO4vQhzOAxx0PSzLOXaTnNqBg/211pKR4uGKxZXO0YsuJ8hJLjWnRYdOPKvTFP7OHLi5rxe2\nEc7zezVBxiQtoe5/lSqA4UOaOWmAAQfzg0qVU4uO51BtXA03oexcg3rtNfO9unOEXOuzuXMgALbl\ntfZh5HVUHb8W9A69Y4nAJvG8fAfVq49Q3pvB31qYG0BwAnKBEnlJiWeyICFLpyrj68BqgAUOsrGo\nJaDaTpvnN+dTzWmyhFUmahruSRBTFVekdobB8kOdUX0D0qLvJ+IhVHdsUIhAPfGwWOlVnjXGcZTD\nnfXoW4ClaZgvtYYidNqVaUmt2rNMGIHdZhiJIm5TFumaiK7oUPXHdgrYvo0T3WZbfz1hqlBzffJx\nlTmdr90t2hTsbkHEQ2PQ13R8/UZjY7flKY2nOPm8+edw+4R10Phnpp3CUaQGtuw+luM8P0LkdzAv\nJjjLBA4XEQ7nEg9TYFEGOOgKZKsK15OHKIMccdCvQ0JdqDS3a1iXbgEEnREir4MUF/XjZFHQhTWk\nE2kGyBCz6hT35iTIuJfsUeI5fd2CI5hg6NgDNMNddGrng5NOFNVAEyKIgddfNUoC1TEtCB6z93kX\n2oaAc2YmTesA/vuiiA0SzbhoGuIogR78nQ7EdA41PidkoBDA0iHUMpnTgXIzuournZPUxySTeJQC\nXcmLSz0B1RQidFIzx1xalQNDMK1mtOtvctAwsq/HEjVNDbRG4pkXE9pMeD2qpLR6A2Alddq8kfj3\nXGWQuGq4Pltyqn1WAKmFw6dLq5mjMO6BRgcTY4AnvciRxnE2Wjq5Gn6R9rQyqtZ7L+I4u4uvnSsA\nEolc6SpU1SR+RL40pNe1ijmKgF1bNZarzLjDvhdPPp7a5FMq4CT1SWJFlnYxdIMXNYeNnXg9A9MV\n+RLq3JHxABErXdSY+XsNWY2sWujEQ4P6hynwxgXxzTuSBvdpVaLL1z0PoTUCziLAUDtGJt8lMkHc\nfQ7dQO96H3wZ6uU71G5yQs3mENOH6Ccv4kZ3gcjvU+KZHdV307zY6B1s04qbY16eETdleEBVUnJm\nWozMBUJ1iv6qA7WYUCtuOIC/M4F37wKiI+FpS3ISjmzRKmM+xo19w6sCYHbhrsx/Wp4AgJWnyUtI\nveB6WzHE7T3a6WrrBSP7v5xqYiWRWTHqG9LqUoMs7i9CnKQ+zjIPD/WlshsDk0xiWXq40StwPaEN\nQDcYE0yd26h8TvUsb+mXmOfH9CIMt0a0NrOqwbsZ1p2MrayPfv9u4jnLBGK5qKs7a9VwEYfwAfgH\nufHI2RhNe3gnuNqXXqgT8wzw+wgcvbrl6gLnOaF+R2EJThJWbNUJnqNq9XCqfM/rBnNxqLlXe8Bi\ngp3ODcjxQ92V6NfUC9TFGVCe0HObIBWgLoUUSigAydYtICSlkvfiycdTm3zyCjjLSLV5HF3QgqnJ\nnOZm3zBLEfkSanlGCxSw1l4ysGWtYszRNNjKVrT7e5QS+m5RCNAGVNtX+wJShBp+O6cdrvagR+pY\nEbgdKb24qXIJnC/RlwnU8ZehvvRlK7UDR/Azzeg1g9exff2D9N7So3qbwzGnYyWDk+UrRpW5Gdlq\nQURVAfjdCFL0UaoFUC70++oTd8XsYiXE9RHkDc0xYej17la9xVOk1kso13YOL9QrsHLrQMvjP0Ra\n2sqvUiW6e++HTAbwBl0EtwlwgP1nzJwgLS70Kdym1taQpGyQZob8qrpjzDPS7Xv5PDBJBwC6zt2U\nVR7uXdBiPQpnxjyuO9ih5DY4M/JB8/IMk+UMy5I4Yb2ApI3KVbbGM1mzuRbC8mN4ruUkHraS4Gs8\nScZQvSnxYwA7OwIgbtJmBNq8zrWsdhUkam65jWB1hkqVmJdnhIIL+iidxEPXgDAW3pHfMWoDNfpA\nEFulDKAOvODjd00KFxOMOtfM1yo9AYqvQ100iNZ83A5HjDloyAtKaEAtAb0XTz6e2uRTlB7emAt0\nZKB3X7Yi4IThEv3oSanRF6uRG93QjpfKaYGxarTrccKzgqwib5mHS2A6iYBBikXJxxGa4b1Kz6ld\nMptDPdBosbyAYr7QEHpeUa+w1HJKiafBD7EHktNur0iBkzt2Z+iYkClWstazhpPsLl46C3HQmWO/\naxcvXnjcmBeTmrkXoJFWZ3UTP7G7BfnMvC6S6YbjE8QzK7korDkdAGzfxtcvXjYSSIBvFvTIm2Mc\nXaDbHaE/+B5g9z5EMjZw3Isi075FC2pRJWNqMfantFixMV15gkfLAi+fJ7XEA1DV40ZWeXjlPMIo\n8rEdV+YYYtlD1CMy7zy9i7NMIFtJfdwrM7RvDt/NuWqKdMImIejqkisebgk+WFZU/YR79DkOWHDW\ncb1NBvBkQmjAl16uSxZxXKLqbVrNzjXAScjdCHD0NEjh0miSlYMYCFIDvRdNJYRT3ZZmZ1btV1Rz\nHcbcVvJ5aTho1fHCkJ8BloiKkfQ3oz3fTKh3Dmr9roinNvnkmYevPpKI/QKRH2AULgHQQsmIoxJZ\nXYKDPWT0bhjAOioLAEA3tkpIeiUIYiOjz7wFIqAKLEqn6ln6mOvcQAkx0XI8Z3RDTedm8eUevQ+Q\n2KX75lyCpq6SkBe1naw9ERpyfT5dn6G470szviflQ3ztXOGzD0N8cCgxyTM82y/WqiBG771y3kHk\nr/DduxYJp1y2uhvXtuhvcavN2aFy4infOEd57wIrnaGD26cQGl77YPkKvnCa6PNcv8lHUYlJrjAK\nidsVdTuo1NRUHLz4JzIj182QDOvUcKC5IyNCJqYTvDKN8aWJwLwEnunRxuRaDET+yngFuXE4l5hk\n0vx+O14i8mjnPsnrJoOjqETkrbCrXU43RTMBufYfdpYYmFniKPIxCme16odOIM2HuAIrVxfYfv57\nIXpDAoSwhXdTxXxDEmKgDSegcpUbqLKrkeaKubpVTy10NWfANK6Onkb/mZmQK+bqJJO6MGwCj32l\n+BrTgJLqeGHIzyqtLBAljvANjIffi8eIpzb5hNEKL+yWeHG4wl/YWhry2ZURR9SK4a911PSvNNTV\n5Y8ECCDlttFO2/VyJDLDdlxhHAXYjjy8kczx4R2F54aadLfK1+HNYbAmonnl8fIxoiYfRjwJFuF0\nocwtIfp7mHkLfOk0MwZ5XKGllUKsryReMLmyo8d4+jEtYqvu8cWNdg4fjzNkFp2AfHsWJXnaRBFE\nPMSkJAXxr5xT0nFbYF0JRD6980R6uCgy0wKlBXGFBCtEnkdtIK9j/HXIXTSF6O8hrWboBiN89+4E\nQGyShesLBACvzZRxgX2k8/i8JDACJ8XtGGYD0rYbZn7WGpSfQ+vxGcJrw/K5iapiV85eMEEc3bRy\nRcMDajmmp7oC8xD5J+hv3dID/wzqwcSADehzcEz1Gl5ShjCqzy9XlHw8DAIwj2lguqUIzTUvlFon\nDJtZUGKJuEC9BRhHgGO6xz5PIvbNNW+uu/QSpOumKu+9eCLx1CafbrTCX7lW4DvHOYbhnlUWCGKy\nPG7Cr7VsC2loZes8C0d117DvgRrkWIBsEVgxW3oL9IIco3CJGz2JG90AN3q2OrkoMnTlDMlgn3Zf\nmpjo6ypGjDpWloY9Ttyqhb1X2JJaH4OvqzYxHNAO0LGl3lT9TMQUXzql53WkwjNdhYNuafr2hj8B\n2oVvx2PEPrUyE7nCKKLKj4m2td1kQ4trTeIm0K6m/S78OITXCVBtLSCfJwFR1R2j1NYTnHT4/46E\nU3FU5njddk8saSHsBXWfpgIFgQSWZwQv1zOrbjDCv7VvCbwuSote7wh3ZkvcuwiwG1MC5uPgYxhH\nBCjhhZkSEf0egOVn6bnPmoxSQwQ39vtGcYLJnsvSwzhipg70DKqA9I4w1DbS55pjBkAnhQo9uU3V\nKaMDNe9HDOrzHle4lYVam7qAJMCbIcvpGLKVhwdLGGdZIDMwaACmGgJs21sG9SQgQ+ItGdkiroSC\nlGZCwwGBSNIMwW09ywHsvcLSQJlWbohDSO2NxOg+cX1Ej20I/b6VWGHd2fhpjqc2+fSkwndtA8Pw\nJs0gHn3FKk0nAwQuqdLdgfEgmoPJfM3Fe1PoHSsnoVLliPwZRlGJ6wm1qjgmucQoWlDrLxlDjXNj\nUS3CvJ54XIFSXphCibVLPZSUOJkNrpFhrANXavM6+HVS7ZfO6rOtg26Jg05hoKzcOgFgSqtuMMIH\nhgtIr274VQQ+6cPp41VCoNALZ+xrGRpXCgcwqDahE6kczUg1ob+HZTUzkFg36QDtiYelglw9traq\nt1xlkCHxbWYaNQdAH6PWYMtTqHIGlCfmmEd7L+K5wSki7xyvTCMAnkk8+53cHoMs0QuoLRV5HhLp\nIfJWRpiTQCkL2/rlYMg96rpwjO7i547CEotS1FqQJ6mPyCP9vUqVa7OYbjDSgBqamahFYc30zAmI\nDPiiqVTQlBmi80XgApcvs86dqRB5xJFKpKtGENb+d1uRsd+H7I7rSYht5Rn5uOPwzbQBHcO+1fKM\nkumj05qbqxh1DMTfFfR9L55sPLXJJ5YC29FN4PyQ9K3u3TciiqLfhdqZmp2dG8a2l3k1jk9KWs3Q\nE8manEsziJtBjO8giBEEW1BCoCvH6AYzsyicZQKTbEZVRbhNM4ida7TgsMgjJx5DOM0vT4Bsg+DA\nkUstqcMLBy8e3IZpawsddIo1mKzrhlquMmM53gQhpNUMMtw2yY7nFKzwMIr66AZjQj4FVmqfd7hc\nBWH/GaAzMvYVi1KsJR1WWW4mngABAq+9ZWkTcWb4NrHftyaA07s0g0LdWM3MAYsU/a1buN3fRSKP\n8Mo0MsmP27u88ShXesbkX5hKqHauygs6v07CMxI9YPNAMkATnZHhosWyh6SaYTuuaq+5LD0cLgIk\n8qx1BmOqHj1DWWlOmIh9alHtSlP1zMqTtc+2LaQXIkaOyFuZ9hu3HPlrDv7M+OvIK/TX9bkRQ7pJ\nU85JQm0qJY7UkjXvK4kOIBOoIIYIJc1OtaEhdreMjfuFs/F4L55cPLXJx1cCuPt52vXcvW+G8QIw\nOl4qPace8ybIdTJGEfhIq1Nk1QIXRYYs0EKeDbXsWitJ+9OrzsguHAEBEwKfEtEw2MMwJNMvhp8y\n4q01mjdd85ijqOa9s6xmyMrN/IW0UshWBNMFoNFalrQnva71mmkJ6UWmsnB3qwzD5RuazxsrPIwi\nHwcdR+HBa4FzB9oDSb9v6YfoBREOOkVj4Vpp6HKEyO/bikUrTDdVIThckzfzs/mZMRszKt21E+bs\n9s+nUIMlpLeDXhChI9WathiAmlCtNY6r21CvacOx2jn/fe3uqYLbtHzZAAAgAElEQVTcKF2suXD2\nYFB/gNU5YxSi4cOwfYPRUMvXSagxEYWLwEeWO1JMbmXSAuiSXohdz6pCABKL0jefFSegZelhWdLP\n6Pf0GPdzBYDrCZ1vhqTzvMi1tzAgjIo2Cm2JMtH3IIbEAQPr5AXWeO5xEuzjxErhPbSbE9+U5COE\n+G8B/EcAcgCvAPhJpdRE/+4XAPwUgArAzymlPq1//mEAvwEgAYnh/RfaKCkC+UZ8GMAJgB9WSt25\n8iDSBdSfvVRDgK0WBfx14n4tXKi1AhBs3QL8PjlPaogsL65rxmqAkYRX51OCCe9cI1QcYC0B9EMT\nSCTBNajpfajpKxY+6iDthFsBNcNdVJ3EkzpOlhy+kEaChW/avQQoB9ZvpcnDaNN6a/b+14RNdZgq\nyWdI+YWpUGp24xeOFYRLCASAiFpySX8PMtwDcIRE2hmC9BKzM15TiDifQnHrse2c8UBfh0n8qVUa\nrw2k3a93SIZoE0Oe5zhuu4oXbQOz1rMPPnZ1fmhNCN3k5+7Wo4jM5MolksG+SXKxfwGgMq/LmwaR\nL4FMtw0xs/YNALWc4ggyDuE/mFAr6gO3IPZfwDKWwCprdYN1Nx1rc1NPf9YS6AU5rieciOqLstuS\nc2ckNvFUBjlZ4wW5sjnanoKr27ZrVeRLqMnrwNmR4Q0Z76KLc8Oj63bGa899L956fLMqn38B4Be0\nrPc/BPALAH5eCPEhkK/Ed4L8Ij4jhHhBKVUB+FUAfxfAvwYlnx8A8M9BiepMKfW8EOJHAPxDAD98\n1QGoRYbquIXRzdBjwEI6Abv4cYtO82uUDBEM9hF5HZRevfedVjMkQa+efO6/AXX3Pgl7pjklj11d\nBWmdNhO8GDicBT5GAEbw0iShQbduUAeszaRYjdmNyOsgqSTUyR0AgJTh+oVRzmyrh9/P4BqgB9cc\nLBhZF9us84Hc4F29H0jclqVJgsLd5bvmd9rfB9DD711qPQX9PQzDPUT+bD1Ruknn0WnNSVWkGdTO\nNWuv0NYm5ecyA35DGJh4MiDQSnmy5lzpCtICWEtAsewZ8Ebs96niajl2U6l3AihuF/OufUhJOUjG\n6AZja4/BiWx6H5i+YpOoc24BUMsJoPba87chdsm1Vuy9iKVf1o6XP0OjxQYg8AIUKCys0vmsOXjG\nNkR9tggA40i3nHNZsyOJvBV2kwBduU0VcZECWLa32i4x8QO04Kk2kXOvqZoxX0Tdj+CqOe578Q3F\nNyX5KKX+d+fbzwL4T/TXHwHw20qpDMBrQoiXAXyPEOIOgIFS6rMAIIT4JID/GJR8PgLgH+jn/88A\n/rEQQlzlH76al8g+/wj+Tqx1xKi8NxpWzWAPGM03cdt0CkA8PFh3ADXDYh13X4Z65S6yzx8Rn2BR\nQOYFkeV2HUvgIq0nnLyuOuwuPOS34qguh5klnAJ2FsSggiqrHWNXjhEs5lCnVFm5i+va4gQ07KpP\ngVs52UJoxBObz9FsITScl2y1xO0+tUTahCclaMeceD2gueA2j0Mfg/Fwgd4EYEyzMU445bHdzTsL\nd/nGOVRaQcTnRGzVUj1q0GCyM4yXE6A5B87xMIqQE09vCDHYR9G4FgBqZfb0Br9pPsdhqp2igrrQ\n1Q5zyzRhkjkpfN2KTkAISM3FcXX4gv6eOSdUQT80NgobI8tIuohj/xmIrVvkBup+ZjrJBwhIJVov\n+HaWSQaMzefw5wNAX6eyNpfpyjFieVZLQqOw1IlnRBulScOdF1hXOecNY1N0NdLcHX29164v15gv\ny8BOv08iVkqs8c/ejhBCbAH4HQC3AdwB8ENKqbOWx/0AgF8G9TZ/XSn1cf3z1s6UEGIbtMb+mwB+\nQyn1s85rtXamLjvOb4WZz98BnSgAeB8oGXHc0z8r9NfNn/Nz7gKArqTOAWwDOL7sjxaZh9Ovx0hm\nJYI4Rzj04O+so1qUEFpyRnu8Hx2bxSvoBLSD7k2N5W7bcD0IOsDsCGo2NwKaZeEBWvhTAnSx8wXv\nOH8y69ocT0MA0hh+AVCYEkqHbyadeEQytsNWvcs0bTYNuDCLsyakAqglvLbw84IGtTIEhgfIVgu9\nWJDC8725h5OMU3lkKiCehzVbIdJ3bI254uOqhxcF10J6pLXp4ojmaDKhzQDrnHHS0OeTnSorLSzq\n75CGnB8GlicyuLault1wVW2GC3UX8dAazTVQX23RJFaa2cvymN6TVrVoJp7qOIXqlKSFp68JrxNA\ndIqa7YGSIZ0T17HzzhHKe1RF86ardkxhQIAO7RxbDnYsCpIfozcP1nk1NQg81/cnCKzdOImFntX5\nOek5JQ0NwBEgVZCu5IptgkQSQpBngOriviOu62xi3C7Fhs+MoOLrdh61awy6/ZZK6+P07oqPAvhD\npdTHhRAf1d//vPsAIYQP4FcAfD9oPf2cEOJTSqkvYkNnCkAK4L8G8Bf0Pzc2daY2xtuWfIQQnwFw\nveVXv6iU+n39mF8Eydr+s7frOBrH9NMAfhoADuIEMlohiFeQwQqiE9IuctQxOl6A1XEjhYN5zfGx\nFkGMsjpdW3BK5IAPQ9rz0wzhokCQVsS2PhhC7BFfBUCrmVqrzIn+uSXNhfW5g8M54jlPM/GI+Rkl\nHrPIs/lbYBZ51oC7KkqVG0dTgAAKzFlJ5Ao3uj62o/fTAjSnBajVI4gVmfW5ME6iDcKfgFNtsNEe\nC8AWiYVnY0JW4VkGMeoQnDatgB2rns0ClcYiWyZGABTJQKtGn+v5ijSGbjU1hiwDsiOoiGzXXX+b\nRK4MfJgBBAykaL5/bl0ZVCUcEEw8NXwUNlLztnTlzteBe66c6lfEQ6heSppuow485zPl1+LXEHs7\nRilaCQEJGLUPoJ4wC5VDhpQ0au/Ege9LXG73XgtHtDarFmtty1o0teVaREKV27KNo/VExHSEKKIW\ntq5mDR9I30fvsvgIgL+mv/5NAH+ERvIB8D0AXlZKvQoAQojf1s/74qbOlDaN+z+FEM+7LySE2Mfm\nztTGeNuSj1Lqr1/2eyHET4C8vr/PKc++DuCm87Ab+mdf1183f+4+5572Eh+CgAdtx/QJAJ8AgL+0\nM1SdYakrni4lgvfvQtzcB3btIajlmRH0xGSG1aIwch2mRad3d4zcciGsHBkW6B48h2TrFoKbXzW+\nIcw9qAW3czRLuxauwOOoU0s6pufvKCwYJWknTOI5fX0dxMARBhA6CXlo0YTTj0FMSs/lKsNZtv6+\nn+0X2I41l6qpAA6szYyWqwvE3TE5ucoQiB62AwJ4jqUXuULDtqUXrXM/llMLz45PEXQCWzFe2zL6\ncDWrCGGHzGKwD5Xcp+sgol21SOVaQmT4NYIYwd6LZg4YeQViXxjbgNjvA3Pqgmx6bwhiiGAfGOwD\n/QlZPuhq0L82h8/zv02hF06RjEmtu9NHENwyVZHPagWuE6pGzomtW1BhUms3uTOdmhFb4NOmJvCB\nwJ3rFWjtV7FYKFc+rPKtKQuux5UbV2rAtUQt8QBr17ipEHWVKFwOXG9oiOXunOutxEpZVZDHiB0h\nxJ86339Cr1+PE3tKKe0bgQcA2liypmOk4x6A7215nNuZ2hTvw+bO1Mb4ZqHdfgDAfwng31FKuVP/\nTwH4LSHEL4EABx8A8CfaJ3wqhPgroLLuPwV5jPNzfhzAH4My9L+8qtcIAJ6nEO0TW17e6EPc3qM+\nd7PvD+h5z5yMt05TrBYlysJDBNCFKwm5RF7xskYUjH1hqqHz/CHmMiTtrLZDLFK6KYcDukHTDIJN\nvJoyOq6FcjOcOU8z8Zghtk48lw3Q+e8aWZ62BKQTXbaa1lBKiVzhdj/BSO1CnR6SfUJzdjNMa06b\nF5o3UirtYRTsGxkVA4t2GPWlylE14OKsy2eSUB7Ta6TnlqQ6ncMfaDM3TjwOEpBfB7BDcKNG3Wzp\n6VDOLFBo1FmydQulnyORZ4YPVQMRNEO3oESwX/tx0enSe+kvga2UHufOsRoSMUK3cEU8RBH4OJmf\noRcsqG21dYt4La4yB5MvdZXcvDLZW6ctZDiugSaYKHxlOBsuTjyz6hTzYnJ5tQMYbs7aMbnXl3td\nXyah07Qgb/DgJuVD3DnfDFx4G+NYKfXdm355WWfJ/UYjgr+hsdXb3Zn6Zs18/jGACMC/ENR2+KxS\n6u8ppV4SQvwugC+C3vTPaKQbAPx92IHWP4ct6f5HAP9UgxNOQWi5q0N68LdiyOd3TNtLsJ5Vk5Nz\nPgVSQsetFgXKwkORelZ2RCaYl2c4XARYlh624wrZaqUZ2w3IT5Xhoni5thOmw4mofeG2nIaD9c2j\nm3DClo/P2fEuVxeYFzTYZWhqUFQ1r57aTCUv2pMcsDkBaTmidHmIkzQ2LP69ZA/xxQzq7ufWZyUs\n7wNAdcjErUBhKsdeEKFSJVUJuorhhJNpq4QHS38tydN5JAM/k4SCCEEwokpqeUaJOZpAMDLQcWdl\nCLqrSzbJSXD02f5ddIMResMDSh4yBB7dJXTUo1OoBxMzRwk6980sLB7sIPYnhtwq3JlWMxzdMq7A\nlqsLzMuJeW9R3EHcvQ2xpaAG9yGa8zq+LrQCwXl2F/cXIRJJ5oQIr1ECcuzZlVHCPkR6obAdj+vO\np7Oj9WPVQTw4mhvNyzNMshl6muv2OEmINx8X5QlO0jN9rCvt94PGZ3uJ1loj8axd127wNc5AHb6P\nGPWo+Xsn6at46SzE50++9TTeLussCSGOhBD7Sqn7uiXWRujb1GXi1/gJrHemNsVlnamN8c1Cuz1/\nye8+BuBjLT//U6wPuaCUSgH8rTd7DEIKSjw3rxs0z6w6hYxDxP6BnfUEsWmvmBkBcgTxSs8LIqju\nGJOLl7EsE2SVh8M5CU52JDs1EndhUQpMMmlK74NujoPOHONIoRuM0Pe3bFuiV+e0CHeHxtpUzu9N\nODveeX5s5HpuaKuAoPGRi6hFtddpydQeGwbwsLAJKG5vhZB2WgTAtoY4YRp7Bg4ZWvtoPSPhFku2\nWpgkkq0WVvUhD3A4D2rSOZyIYm1bUSI3SagUIWItk4OFRi8Fjz9E5gQHOPYay6ndYTcFKFvEXmtA\nFLfNugHGW6Awi7ldkGeI/QtkcoGRdCr03S2IQde4ztLMom7/cNAltexYEgLTXAVBbOYr7C4a+9r5\ntJJUIR8/tNqBzQhilDpBPloWOFywmsOZVujuWLKuU61wJau6Y5wXRybhL0qBRFpSLM/JXKKy2Ry2\nVT+XxWUivJx4BvuYVac4mZ/hlWmESSaRVu86PTbuBn1c///7LY/5HIAPCCGeBSWKHwHwo8ClnanW\n0EluU2dqY3wroN2+OeEJOy/RC6CRgVc5giCGgG6z7N6E6A0hdh8iuH4Kb+sRvcSLz0A88xcxKWhn\nuB1XOJwTlJIgxuTWCKCWeEjh2B6K8e1xCHJi6xZUcmarnOYi1XDvtC8WkuGZuaGpQihXFUqVQ4V9\nGqA6r2durSIlGf1muPDqTmAJ7DxrUgqx7OFGb4nIW0F61PsXMiEip/N4ActFElu3sPRLlLo1yDyX\nZnBbR3qhllkptZSOwigsa9VPUwusFm5Vqwm9jGwTQWzsAHxfmtcY6cM3pNfz163CgG7tiCgCro+s\nDP/eDm1oBvuYlw91lUaqDZHfoeopaRAXHajxrDzBPL2LB0sf9y4SDViAOaZhsAf14Mv1hTfSQ/KI\niLMqTFAV05q69ThSiLwOQesfUbtflXmNpFuucgzDazbxHB6Sed9sDvFsw9I7HlLFaqpF+kxOUlLG\n6MgM+50Zev8/e+8aI0mWnYd9N+LGK99Z1VU1Veye7uHMblPmUrJBmpL/yaBFEAsbS0A2RUiwbICw\nYNgL+YdhizIh2oBJYA0bNgRbMEDLhCjDAkXIMETAFAhQAn/YMK0lRa/JXe1rlj3TvdVT3fXIR2Vm\nvDKvf5x77iMysrpnt3d2h9UHGExXVT4iIiPvd8853/m+yGZ+ko3vdORGlw9GpcKCTmLO2VV5aLtu\nXvB9xjFb0DnsCq4WaEWDYr3E0yXdP6Okxg8MX80yuQF99z+C+ByAXxNC/AyA9wD8FAAIIU5AlOpP\naybbZwH8Johq/ctKqS/q57dWpvRrPAJReGIhxE8C+HHNkNtVmdoZtxd8nBAyI2FL7TbJch1RlEJU\neoeWAbg3gBg+g2Q1gbd/APNgiXpdtspmMACxVwsDz6Im4zHWHUvCDg3/rc6N6CFAJRHcpPYMeGrQ\nAKh2Xl84MiY2zOBrNvYXLt3grlBBRinUV/+5/VsbEaHlGoZCeqUS87pJsk2HzQbA8ITEOp1D5AWm\nOS/lBlsguNmO/f12rFW97RPTmP1QMt7yXfJOQw9mbikMOCVQ4SpMaFvu1eYak2JuAKTYUEawTmrP\nXI96V6RYUG9KnUHEXpYMrJGGglS3Lx5B/dEfWbYdX19NsxfpUBMw7KZhP12bTY6afxnqMfWjRV5A\nVTmivfsYxkc0a+UCz+OnqN+fIryzpPe7//32PDsj5C0MT45lLfDujOSFjjuUCbn+PQC2lDYOMspO\nttQTguRmxhxnQc0eaJQSiSKWOjNsOdYk8Xqkz1cVlrXNkkbJR4MYryqUUhcAfqzl96cAPu38/Bsg\nWnTzcTdVph7s+H1rZeqmuLXgIwJhy1dRqkUkFYBrc1VkGENomwKzW5MZDSPWJfJeH2tn10fWARZs\nAJghy+ct1QHWHUvDPu2mVzOoqPR2htxgF0pBuGrPHM5juS/SpizshnJ2n0yHnZZP8GSxxtvDPvp/\n8s9AfeX3ffq1G7p8YbIyra/GAOCZoLk2D5ztbK4xXb2LbmTLOE36sWuO1gxWSeZ/A36mcyMzitl2\nLqg65Rszze7I+XhzR88vjcKA6ERQxh1TA1AsgcEhVJxhofstV0WAq4IEWldpgFVNjqaA42hrbBUE\nJkXmbVSofAsSC81rqPe+AfXojNhab4yMhQAAw9JiaZ9VHZGdQ7BBV8914fQU629Q9s4qG6wSEUWp\nBzzVVy9RvT9HeJkj6UTUHzl+02Q9vEmg745wNNkoVjWVoS/yEHd7K9zthqYcCljfIve+aXNwlSL2\n5XPaoq06wESKbACRakHYSaMcrLOeChUW1cSMCzT15F7Hq41bCz4mWDi0MUTHA5lNsULEGWpFKX1R\nX7Uu8u7NyhlPt3Glk5AJCSEZaNVOWUCXhFi0lNV7uYHufjntl9iaiblGaWxyZlwjdWmJY1Fd4eli\ngXdnCZ4sJFb1Ap/a66L/qX8FeP//I+mWG4gIbpiSF5dIqiu7iGtqNPUyyGlTBksrHrqcQNVPadBQ\ni6yy/plRA9DaYPWmRIp2zbi24F2zWl3tlmJBg/bMJToGq8JnUBmySayb1i0KB6zr5pZZSatMYlLa\nn1c1gRODjdtjWFRAVyq8PSRJGlXPoQoiv4hOhHC2IDXmKUngcEmVxTSPO/RGd3tDGtCsL2jglvt2\nLCd1PaUFms9dv8f6fIW6ChAsa6KnHy7IpmDvPvK1VUngjBS1NcpzB40XdYBMhkiCCgcZ0NWePC8i\nJRgre1ZQYOdSZ0PjBVcNtJwUi+iygjWS92imp6UMx/fZKK4x+vDM7hfGRn1kZbePRdxe8IkjiLvH\nRhomDfsYJbYEwCWqpu9L03qAbAfCna6USbhB0hgi70hixGVyo8tjVApTwJZFA1NPrVimtR5u0oFd\nOwQONk5jw7NmdOUYd3sSmbxCJhN8YiiI6bS4ol20IR/4Fsqi36VBxL37pHBcz5x+S+KpQrD9g7qe\nQvaGuNM/wv5orCnHcyimg1c5FGbU+K3aQYh7MgxCL4ok6BhRUTNV3wzOcLQagPEOwsj+vZ9DHawg\nNM1a6rIbZxompAXg/fQegMemP9UW9PuN/ncA5AQ2vEilIQHXu9MEo/gM3zd4E/KttyDdYUiHpaXi\njHpGmuWYhgJ/YpwQmQWgYdx7x5CzhR0o1fYBYnBMBnq4T6aF36/JLk/mCHkOTn9n3KyHP3ciexAA\nJTGTQQiE9tM13upXhlijLt+jisLefa/fxeHNFPFGQKvBA/BVPDhc4HGGXL2IUj3TFNusXoNaFh2h\njmgwuW1m7XW82rjd4KOH6Ti6coxFbSWQGID4365gJpVKrOXALql0nvLnIDaPTyVd1BPI+AgRyAF1\ntbk27C5mILG3SSaJilyAgJIXYAYoN1gy391dtmVNadjHURYjDZ9hGN+jLIH7S64LqjuMqGdjVmGN\norb2ArzYq9W5kXNBXjogdgn0iT1lluMWVQdjEbADhKQgEC7Wu8k4SdCxWRXvmDmaDDUGoAwWdHTM\ngyW1X5MEUvSB0T7SezSvY463pR8nRYxhfIgfHD8z3kjtEaAj11jWG5DVwPYjljXwe8+7WNVP8M7R\n90O6JSVDE5+hLs49UE5lz2fGRSnE8Sdt2fH4TYj+EbEjNY19mB4iO/4kkCQI0wThiRYuvXsMcfQQ\nVRRuadO5AJSGCvlaIcMGoxgYxQEOsoiMG5cLqMsvQH39ET3x3tTcSzyw7RkJcvbZNifGmShrIgJG\nDNgFsq1Nl3NPA6DXjXKo1RX6A56xeg1A3+m4veCjWWHer0SMrhybvgnQDjqTMjJZDvd2eMEg22IK\nzm7cYNZS8/f5eg5EfdQaeJhie7qIsKzpddloaxS7cwt2UWO/HcACD89rtF4CJ3uSQYJhfLjFKBL9\nrjWu452+pqQySLphpvdnz8z8C1OzWa1BwUq57ByWTahUdxMIgaqWrT2uLeBpi13yLGYBAib1Mzxd\nLJwBWtIFy+QFDdHKwy37BQBGu85c12Di3UMcxSZw7gWi5idhgI4MWkHoS1cZgCd4MDrQz58hX50a\ncOMyK2CBR82emowaAP3/HvWUmVq8yMnM7yKP8fbgDPvpGP2jhwQG2uHXbNZalNEBv9fGAqoyiLGf\nSpPtqKfvQ737GNVXqWQnP5hAPLgE7k4o+8K4HXQagGOUzbX6tMl6HMJO8/PYCheAdGlYzZ6iNzzR\npAiij7+q2Ch8HGnb37G4veAT2FMXTiOTGU8MQK5KM4OOS5kG7P8PU+rxjJLaOFfeFG6mwlnWWtUe\n8Dy6phv2WR7gMA3Qkbt94HmuaJwob6jRRIOcAGwDkGg2dd1dot6hur0oDi4FmqFELUe0Pl8aMVRS\nh/A1xUQaksxNJ6KeSZpAzGDVufl4YXsyQnu1uJkQZ0FcYrR9JIda7f7/pqhyqDjDtDrDo/kKf3CR\nef2YRUX//pE7G/zQ/nsEQp3D1sFRKWIgALpyRMoNstaupXRPUd/PghDNuCgs6w2S0LIkO8439d1Z\ngmJDpcqLPMSqTs3jxkmET+2tCDw2HW2f8Mz4/IiMsmsusS00uJ4uY5wuJJ7llMW/PZjiuFtjdPQQ\n6E8aVutFKykAIHM3l81mjBAv39N2Ih+g+uolVu8SiCfLCvxK4qCAOoDv3+TotAEtSussxsuqHk7W\n0waQHCJJtkVieQZpcYW0S8oNB9nylQLQ67Bxe8EHDuhwyaVe0c5LT2y7njTcQHUp0xyHKWUmDDgv\nYsc0nSpdoU90DpEEHfSiCUbxCqMkwunCNdcClrX0MiwbVObw5iK0irBgejXvEFtUpQEabow6I4gq\n9YZPRf8IqjvGaj1HrUtdTROxCBFJ3V9P9fBlvCWKGmoVZRbHFC7ouGU99iVyyjAeKUCfhxSxASFP\n4r8JBPw6N1FynX/z/EkSbMzC35XAolbY1099Z1jhbjekuRt2AC0KiDf/ZOvu+yYWIoMQnRS2QAjw\ns2XOnjpSoSPXIO9FGHWJLK9BIsTbYdQidNZ63O1inFxjP13jIg/xg2M968Muss49w2DaBKA20VET\nVU73z3ICzBeQd5eItT6ivNu3Yr7jI5q10c/xgvXX+Bzc3yeJFf/UzFQlhLexApzSKBsC5sX2feCc\nL0BrQLHZVv5+Hd9+3F7w2dT+ztjxAJHxmKbqYUtKbrbRkf6g6Em3xtsDKyjacD0A4Gc5TeJAtpZQ\nH3wZ6noKJAmyvftIu/eQhBcYJxN0pMLXp/4iflUEWwDEc0P0+k7THySQuss2moMb+jmIZi4HdxDp\nEtRqc22GQQFs727LFVAtrOkaAKQJqWJjh3LyLvM7NxogogBDE3dLKQxCnlcMYBczN5qT8Q3CgMkK\ngxgHGXBSVubzZ+LAKK5xtzek7OKDL5PdBguLJgnE0UOzCAK+yR71Etqz10xuWBTDAyHv704waDFt\nfxi/iWhpLQOMDpqmE+/67FPZw4M+cLdbYj9528+AnWslotQAkLlkLiMNjvpAI8TRQ+2o20XKm5LD\nPUNiMM+pVzuP0/QfeYhUl4E5VL2CqNJtAGqeS1NwlEFIZ0+1KlGsySKE+7rfbmwUsRdfB8UtBp/1\ndhMamvGk/IZzG5mgKynbudurtK3v2DDjUk0WaAaDDuCYhmkjN2PwNegCBzPg+E30+0dI0z5SeYVM\nrvDuNDF9gGc5APgAxJPhDGqG6sznhsaSF2ceVXtRT8zcRYHl1vyFOQ/XubLKrUcL6+A5IToRQl5o\n2OzsnQe0EDUXGDbsc4N3qFyCk3ErzbaZxbZGUz288TtenCvHeqJGaejKAIwmX1e+ATk7h5o9Jm21\ns3PUXyf6rtTHJo4eAoCZubmuCnMvFZvAy3b8YVkNKNhQaS5u9g3tz65GIJcat8IpSQHt5Si+Z0by\n0DDMOKgiYMMAEP/sMtLqkogQ1Y7eS/+IvmONUq73WVYtG4a2c+LzagaXzxwAAhwPobJuNSR0VQ7y\neq61/WJ8bXp7l8nvZNzeq7pZ2y9qs/abjSEj+nIwhboZJ90aJ50Kx92ulV5ZnCOSGbLOISpNXHDZ\nWF62E/RsA/bxB6i/fm7cKaNPkrsmDs4gD+5hNDjGg/4zJAHP4wS4yNlDNTBkBPM+XGevt9WIDQB5\npYUCxWbpLI68PaP/s/Ych+klNSmwRYOFBBCYarabONgDjt8E9h/gvHiMOi+9LBAB+R6p2VN/GLSs\nPWqtyX4aJdNmcKbXVIFQ9cqX8nevR5Q6588SO5aqziU9NUbt/18AACAASURBVDulHoYjKlq9rw3a\nOhFC9oLZf9C4tjAEEQYg3jTw+7E+HYUPNPrMPCYjuZ5eQc3etU9zF2cZWy01IQBFALR1TrVDe2+E\nGQNwFnZjItekQQMm2zLv7YJLNgbeHJvjdHs0UtBgt1hiu/zmfkb6dbc+97rc6g8qITyKtun1lBXd\nX31HisfJeialxNenEd6/fk0S+E7E7QUfpVopvhxMJeWFgheOJKTFoI3J9qGiZZeuljXQibasvJu9\nGW5+d9cMQHQ8d7shunL/ZvXfRjDwtGVqHJwB9eS+ZwbnOX7uCi6TvPPAzJKw4CVNxBeemKgUMbLB\nMS2Gu167Lmlg1PkZgD0WXYbxrBicaAMcj5oLXVZy2zBBsq0t1qRrN6PKIcoVwkCiFyXoRfxa7RP9\n/LnxvVerEt0IrVJDJnNmWvuuGSbAl2wqV4gARNGeBveFZQPuGtx8mWiWMnc8xr3OlIHt9v0x5Tfu\n1TXBLEohqvTGDYj3ei7rsal0DZjsUAqB/eQeZHAGKiO+GlXr10Omftxe8Fm3NGa4cRlZV9JVHW2V\n3Wjmxu5W602BKOqZUgPbKLsN5p3T+GVNU+ZOo0h0Imq+94YQkia0J8Ucp8sExTpAV1LZbz9RpvR3\ntxtiGFvPqAoVJE91A+bLysZrAJDXFyjW1kKASz7uLtzdXd8IOu6ClSZArssZZe33dZYT9Dt7OO7W\nrdIqadinjUFnRIvPUGdUzWHOJuA0j+cFANSk2QO2h2RKNQ4AcTbpRW8IcY/O1/0ihSdD8obSC2fa\n6XsAY3pk/HLm2GllMhI/Ue9G5lYrsQLYOfXvnb+bXTavnbvY3/DaLNNkshSWUmoBiTbH1gjR7vNr\nfq4OWca8vxAAS0WxBJZz7Iadty6QRT0Cl4SILcpx690Vw+gID4dzsqJ4Ha88bjH4bMhNdOCn3Fzz\nXasaV4XYKrnxrA1lPfZvSgjSgYOV5mELgExuzNwDoHe4+eLmnWIs6UvUGWFRPjGMO+757KcKB6nN\neIbxEQFERAKhfBzo0PnVm8JIrrizS27IIEYvsOVBznTU4tw6kLrltTaygMsmczPLKLUlkSUw7B6Z\nAV5zTeCTCEQ2pvdtKncD/qLZpN+mzvS7jLcAqOp0MS0eoytHvryLW1ICthrr/sXSm4mevQsizlrv\nvWGn9usVoipFFPWcTMMx19vFtuLrqhdxC0jO9WbCDAOxm304Q6jNrETNz4Arp7fWFI9t2rG3HF+F\nCvW6oBIssyNXV62gw1baXujPT+jHeSw5PlY+L75OVd7a4zEgpJSnluCqYigh2sknzahyT04rDftI\ns5cwx3sdHzpuL/hsNqRplW9Te5lmy2KPxTow5TaW8QdsNuPqwNWqNL0e8p6RKDYbpKFuYus5CB5W\nVEVhdbY42J46HWK1ucbzVYWL3Ge7HabASbciyRJ5SMSF+RmQDRDpGQ7AJxIALABJ0cbAY5tnUa7I\n9lrTh7emygGaxUkLO2HuLpC8gLQsrqpeQSyArM0fxo2I9OC8BRbYngHRx2UGDwEAU4DdGZwFa5VK\nTPPH+KN5hOPOGfbT0g7iNvoLhlqMHUOKHAk5oppeg6twrV9XrWjw1tiWuzbYTZ08ls3R96Vq6XUA\nLygzOSBAkjkUan5melX8XgDaHXE5GhsMzuz5XpdBYixImo9jx9k07HusOOMI6wwQe1lVcz6LZ3nq\n0lN6d8PNovj4eKOVhn0C8JcsKTKBxRznxyiEEHsg6+sHAB4B+Cml1FXL434CwN8EWSr8baXU5/Tv\n/0sAnwHl/c8A/LtKqVMhxD6AfwDgXwbwd5RSn3Ve67cBHMPQHfHjSqkbU8bbCz5K+RRLxzfHLbld\nFbz1peFRGgTcoCllwzYM9aYwjpyTMsZFHiKTQqsPlEZK/8aFI42NvTFnPYBlOXUkHctxp4QMSBVb\n1af2iyozoNM12nBkKBea8iFnczyX5AqPGuBZXVETedd0OWuLAaCFfmgX+bq0X/Jm2USzoVS9glji\nZpo1QNRc3lW3DR/q41Luz4kejDXXg2r5q7DG2eoMT5cxvj6NcJGH+NQeWRwMo4bNfUuZ56YGOwOQ\n91gdiif1HeBRE0tEabNKVwBEWVuAd8BBNYHYjQatmoEiijQTbjnx2F5MBlFO9iOa4OlcQ84oPGWL\nDYwFiTksnRlZANA2JYjomNsWdHcOyz03c2xTILEisC5xxgOehsgu/VeQkWKUtjsAFwV9pjIDVlc2\n07+ebmeG32JsFLCsPhLyws8C+MdKqc8JIX5W//zX3AcIIUIAfwvAnwPwBMDnhRC/rr15/mul1N/Q\nj/urAH4ewL8PGhz7GyDrhDb7hL+krRVeKm4v+AhhywtlDTy/BAYFkA6RdvqapUa73UVjwtz2eujG\nZgO0ek03PNsvs6rvog4wKSROuhWOO3qxG57QYWjzWQlApCHkm0OIe8fGeuC6KrCs7cLD4HeiF6zr\nqoAMzjDk/k6Uap2uKy0LE7XOKTCQkXOlluTZMbVurhE08LDSde4wixKn3OMCxEzPnAy6ngwKvWHW\nvsi74ZbX3JJLG1lEi2W6ygi8EFdRiGl+CoAGMZe1wEmnwijpIxSSxF0bpS1e0NysR9Urk8F4jrJA\nu1yPCw7DAVGMkwRIHUp6M/toDto6x+S99g3B9Gg2yTPXuTOi+9wFa+f6cRYuhoMbCRVJ0Nke7OXz\njawMkltaNQDUGW0NCzOwmdIZb86KggAbDhgDREbJBsCKCBWm9BlRibNCZZQvjFljfmWvd9OtNy8A\nTG1ZjkGnrMm76eMVnwHwZ/W/fwXAb6MBPgB+FMDXlVLfAAAhxK/q531JKeWecBd6IVRKLQD8n0KI\nnX4/HyZuL/iE4XapYbaA6p0h6jzUrpk2O0lC6vWQU6cut3EpSzPFWGl5Uko8uaas6aIgOZZ8DTzP\nyf75pFvgrf672B/cQ6QBQyQJxBsz7c1yD1Wni0V5tkV24H6Ty7SbFFQm7KYj1GqJi8UVni5jXOSJ\n0Z7jsmEzaCg1MXYLW/I6TpjsoqwsI4+zx+nMLvpVvl1eKgoqJbmSOU4JaWdUuZ8lMgAldlfMx8XH\npIqChhC556OdXd2S49sDEmjlYJfXXcoPXuns+aVZkMTB3naZzQ23P8b/P0gguNfYNNrj/zd7G81s\n53pqn/8C8KaMhAgton9kNgxsKAcAyEvU70+h8jUtCmmiddM0MDbo0jJIgA084DEMRK0UIqKUZt8c\nW4x6U6BGgbQ7NteaWW+mh+Qef25BUunrKcqaNjMa6BRm9rrlU0DGiLKxB0JmA8H3dlu5UQOQBzp5\n6WWpH2HcEUK4WcQvKaV+6SWfe6SU4g/3AwBHLY/5PgCPnZ+fAPjT/IMQ4hdBdthTAP/qS77vrwgh\nKgD/G4BfUOqmWvVtBp/AX2DMYhJLoH+EMJGetAoHKwhwuE17N+O5KgK8vxB4tgIm1xJxssazCLjI\nCISWtcDbg/dJCiW6DxWlEFdnwPgIGJ4g126kLO3BoGPLZAmuq8J77+vqTANf5vnDAMBhuq2I4IaR\n42neL0lid8g5ZTLr86UxUwuhS0TaRZOzHTWdmccCQFhWULmzcPCi6bDxtjKNJvCYg9UDk272M1uQ\nbtyyQnhoy18iGxu2oBtsNeGG8W9ywqv9M/CcnWN9OrWqDWVtzdzccDO/uPBBigVaW+eMGtEcvtVu\nquZ1uSzXYANuDRXzOfWPoKocYrgw9/36dIr6yTU2mtESdSKvFO0Bj+5tbgEPl6oiKpOKKoPojDxJ\nHg4vI2pYg2S8LFU5bWD4XLlECADP9WaGgSdNQOskXVtVlxDpkDKwuA+UK+9eEklCr9Mswc0WXnbP\n9/qrCKUEyuKl1RLOlVI/suuPQojfAvBGy59+zn9PpYQQL+RZNEMp9XMAfk4I8dcBfBbAf/6Cp/wl\npdQ3hRB9EPj82wD+7k1PuL3go8Ps5vUNrtIEmJ+h33mIg2yJ0bIGILGfrnHcKdGLEjvxH/iWBgw8\nLND4bAV88DxFvqIbLs3W+ADAYFTgoiAK92rwHMfdLkZ794F0CNW1w6m8U2eSA0uomKFMwABQ871d\nAcyupMxrUQc4SP0siPs9Jm7MekqoJWU9TA1Xy8oaquXS7hgdkOLHGqACyAU+yin7ifzJe0NrbvYG\n3GwgG9ghVJ31mEWCd8vj1DiKNsGmqdoA2LJQE4A8ssB0hvXpFJvLHGpZgZcSARAAcdlxOvN6UV4f\nZXBorBCY9m4yg/Xl1vuncZ+IF+yomhe2FJQm272hthJd43eifwR1oEujkznUskI53aDKJYLzFYK9\nJcLBjDK0QdwKil6prYW2zcxGViN3AYgHOZsRCglEPWBemtKgKQXyg1wQgs5emAgTS7i9IbA6Q/O+\njiX9vk2wVGc7m2W1JYb7vRJKqX9t19+EEGdCiGOl1FMhxDGINNCMbwK45/x8V/+uGf8ryGr7RvBR\nSn1T/38uhPh7oLLea/BpjbCxA3F5/6enUADuHD3En9p/gutqgVHSRxKMvQFOYvrEZnqd/+tIYqPl\na2A5KpBm9F5xskYnUuhK4M2uwn66xkEWoSutjLwoU3IrDWLDkMvkhlSPsTGzMdxMXdUBTpe0A58U\n0oBNV1oBTNdFlYRJuZS3Rr5WkAFNuwPYHhZkB09dbnthDLrg0dcQMI6bgbFQSKwYJDfGASoPAcZf\nSQlBMyS4YVanM6LjSxMSp1xW9D5cx3/6PrCc4M7RQ6iGlNDLhFHo5lma4QCirBGelDbrcW2sXfbe\nkK6dmIHOVVPnRf/IKES7u3/An3Ux80BKEeuwSXBolo3KWltfFNszOm0sL91XEQcFZaSdCPEwgIxq\nhHf6CO906Lx6Q4hsbNiTvOKbLJlf181QG6w8Pu5mH6htM2As5Z3ymHDlmTiYMNHWlzJZdWMgdUl+\nTfSY3EpBlbW5jorfM40RzhYIOpHJ3j9G8esA/h0An9P//4ctj/k8gE8IId4Cgc5PA/iLACCE+IRS\n6mv6cZ8B8OWb3kwIIQGMlFLnQogIwL8O4LdedJC3F3yEMLsfw/SJI9vDOH9mAGgYV/6QoZml6GOt\naqRhiZXDQKbMIsCbXU1YqGp0IyANCXgONE36E0Nh5nPU/EwDUIlo7z41dIMSSVAZlYVJSaXAMajH\nxFRu930PUtvj4ZkkAFvCpMWaVLppWJbYS6aM4obpqWyzkwSrUqex56iJnt4xzxYIB84Ovd+l0lNn\nZGdQnKBSTW4GQFWc0fxG6SyczgIs0iHUmAkPCWUhfCwc0xnU9PPA8ZuItMNlFNww3MivXa7IBuD8\nGdR8QUOjAHCwB3GwR7bVbKrnOGfyc1Fpy+eezgY6I0/DTCi1pUQhkXh0ZFRXNttxg7OdllDzBUQ6\nBcYtA5nNc8zGUOMSAjAZ3OYyJ6Xpe8fAyQnE3n3MgyVS+LMuHvU8SiEiUqVAOkQziCq/uw8E2Dmv\nqFp7/ktmILQtZgsffGK5dX/xpqPeFJCdLqQYQ7CCRme6ZVJndN76XfqsyxrBw/a3/7Cx2Qjkq49k\nyf0cgF8TQvwMgPcA/BQACCFOQJTqTyulaiHEZwH8Jujj/2Wl1Bf5+UKIhyAe43sgphv0azwC1S1i\nIcRPAvhx/Zjf1MATgoDnf3rRQd5e8AlCulF5EQGs2GBR0IKmASjqHwFYbPUfoujYgEQmC0wa61hH\nZzicjXQkjNePOxhqdtfTGR1TOkTaHaPYLJHJAkXpm49dFdYDxh2CdYkITKMeJX3UGzo+V5j0eQ4A\nUveSSshAf0FDXQZj0VXOepzwbBLiiHbIw4FVJs7GUNmVBSHAUMfbQAeAuQas2+Y6zK7CmkQz3fIR\nD4SmQ6iDGEie0Wfm1vDLGursnDK255fAvWMDFjxX0pyylyIme+/5GWXAZ+em4WwACCAL8aOHxu58\nXT8zJdgk7CDt9BHxxL8Gn2a0zhC5wMX3hGvml+j/4sKbuTLl47ykv/fsQKab9bkR8RyVBvAQQHhn\nARzu0cKrgefJ9RQH2dJT0DCA6J6Xe758XExL39EH8q4B947c12haXvPr8mfijkukdI+5mwGeM1qr\nGsVmabQVZaeLqDOCkrGlzbuD0W1EkI9JKKUuAPxYy+9PAXza+fk3QCW15uP+/A2v/WDHn374wx7n\n7QWfMKIvi2bPqLzYHvYDCIBcZhHgTJ9nxnTKbf4DlHkUayrBuV4/40RpVWQtRrq6oi+yZlCJsiby\nQZRqaZttzTXOhJoUau4Nee+hM5kkvEQSTPHuLDEsPEAhCUNkUprsx5v4d0UYWyLoRMCobxaqVVhT\nzyKMkQ5PaOeZUSNapCSP4/Y5okr3jfTEvXp+STvd6D3jmnnNEkBhiTTqm+e45UEhM6iBtormXotW\nmeYmengnRfzJCcQbTz0Qgi7t8ZS9WFxRxvP8EurxU1RfvcRGG565mVu9d4KL/BuOpXpg7M5H8RV6\n0RJJ2KFrEY9bh1Q9oz/WJ3NAx7AFudw56BLQ8w7f7Su5s0OpBn29EWhmGRy80RAAAVCuSREHexBH\nDw3wfOkqw0lZ4RPDMwNAvBETlS3pGaUB53zMwq4BeKsP5ArUAu3zP43NIcrK9GHCvKQSZyypRKj7\npqQwYg0h26IbjZAO7iDKxqby0CxXiv6RtxF6Ha8ubi/4iMDs+oCz9rmHXdHSwO1FibG3bkrysAjp\nFvCwzAkzbKBZd0UBVDmyvfuQHRI4bFowF5sAJ53KZDq9KEESdo3YJJYTqOW5GUjs7T/AcbcGQMrY\nz/LAyPOM4hoySJAEnZsn+d3L14moz3KwBwwOobpjFNUZni4WGCcKhaTFNx2eeJTa2jEx60ZjCyZt\n71GukJrSpj4vtD/eA6Dnlzf3p3Z8zq7/0c4YHALDE0yLx/hgFRrVc1cJY5UGGMUVxskE3YgcTLfK\nma8ieFFubhDy0jtHHrrkYA8p5Fe+rcgdun4M/OtqprNruqd5WDMLelsyNa6cTRoTXdoTfwV2yuO8\n6BytfC5ay78AKPPWhodutgPYEYhm8PBrxLpvlV8i5Xm5yXVbH/7Dx2YDQz56HbcYfNaqQtXpIopS\nYlw1tciA3W6XXK7ojnFdX2CtasggxjgpAdTIZKBBwhp9uQv8LuAxkRdQX38E3CsgD+5hf3gP+XqO\nbmNq25XEyYKeFoucW92wxiI73H8AdM9A0j6J8SJKZd/I6rBqszsPglwP+uUFxEDvNsuKsh4tfgql\n6DjkHB+sJIAVkmCBcWKJNi54Mmh2ozEifi+eKenb8k5UrTGKDvUCuRuoAD2Lsqdp67GEjKknpZYV\n5JtDMi472AMO7qEe3NkequUsFKDdP4AojqAmS4gHR8DxmxCDYyhQaW0UXyEJAv15k+toRyrDiuzK\nkVMubAGfJrkDoEVwcKgzMir7GjUJltwxIquTrc94s6wQjkAlOf3aMkhQr52B0OUCan7zgiqUQleO\ncbdbYlWTjNMwPrTCr25ojTYupe2cFWuR6THGgPrXiq9BNrAMuh4gWGBWz+CEh5pFeLBHJdC9+6ii\nEHUDeOj8fR8tDmNHMXnP9n6MPuAQMh63siJfx6uJW3tlq80G0/KMFgi9oLzQIoAZNLqRycDDkcoe\nxrhGvq6dRYk8W9zFSE3eM8BzU6jHT6kUUpfI0iHQ2TNDc9yfSMM+MD2Fev4l0usyMzm2RIE4oi+3\njDEcnqDOHgMocJBFSMK+zSpKv6fFxl9YzaiJzcN3WrhTMLWYzz/soxdNMCkJJIpNgA9WwJPr7YV3\nP10DINZTEnaQ7d23Q6euxtfqCpjbst3LhOgfEQClCcLRJTCZk3MqlwdTiUfTJ3jQP/DLjKvGJPvB\nHjWgRwvrtqmjJ/exTmr0olJnpbUpu5nPei3ps9aZctM0rRleTzEbAHdgrzv3e7jH0pJBGEowZ31G\ncaDr3yt6XonPcZfEkRQxhvERPjE8Q1ceWoJElbdbVbAWXnlDCc15D9Njc97TqxnIjMYP6pUFI35/\n/p5qmw7Te2vYT5geT8Pmmx1vm7017veqwWrLVPJ1vNq4teCzqgN8barwVv8Z6qhEb3jiCx5yOCU2\nbmRWqJA3gAfQHiuyBxmUSENakACJcaJogeXsxAGem3oqAKgPUtZQA/K4j9IhNUqFAKanwIxcUNWj\nM9RP5jtfJ4L9Yu8P7wF4jCTsWOVqxxPGXehFNgbYipmViHmH6Oq5aTXgrhxhFJ8ZFt670wRfntI7\ns4xPV5INOEncLHCQlYAE+fg4ul5qfgacP6NFwWEyvQwQMRFBJAktsL0hxN59TMQMj6ZT/M5ZhmJz\ngbcHJCwqlNru7QFUzmEyRSOSoGPkW/gzl0HiE0mevk9ZyKBL2Z3TDK9VSX2PXRsebe+B5UT3b2hW\nyAiLRinN9sztJoZnYswiWq8gxZgYfhePTG8NzzT4TGdWpWHHNe3KkUf9bg0GWLal2KFd6Jra1Ws7\nVyV2fZ5RCgEHBBq6b6pLQ8SultuWWzCXPKscqK7s8a1mRkbHVeNQAMRqRqaS4YcsE94Qm43A6qNh\nu30s4tZeiWVN9GNSGiC9tW40hoxP7K6oTdYFdk7EzMY0w4zRFEaOJw37dPOvZh9aqFBNZ5pOPLGi\nilFKsx96IamfzLE+3/GF70gqHR3VlMUMjqkZ3hzm5C+0M/hp6M6dkd0pRjnMNLmjMiyU8rKfP7hI\n8LvnAo/e7yLN1kizGqNeTV5EqUJHMtuugAyY6g3b/D1/5qkvu6WZl5FnNGW4egUMTzCpzvBovsLv\nnCX4vecBgARJMMU7Q4fI4LKn9IIvZNbOVtMSMwDMZ87XFdWVEfFUZt5nQtcWI0v/ZXYhL6paeNW+\nCZXhtpQQzL+nelq/ZeMxnRFY87wSb3omc6s8EUeanm1nY8z140xml63ErniB7hyi1CjBsyipyUga\nunpbZIlQX/dIW4U0gIfBx6izN+zVPYV0HlJ2GZ3sbsrPCW/tEvkdj1t7ZTcKeJYD44RKYyO3veMu\nBO5OPCqBfIrU8Ulpzk+0pf5UlpmTe2Q2ANKpb03AsUPI0eze9a6f2TyRM6UulxVE2t7MFJ0I4sGR\nLTttrlGslyigWWRMC+YddpTaMkY1s19kFnzUkvxiuABOTrZsi7tyhDeyZ1gNKyzqCMCCBl9bZp2O\nOyVGSZ9IGGwLwaGHOpXRhRvYBXIXrRfYKgmJbAwFMgd7e3CBJJiiKzP8yMEKD/oHtDOOIktj5qFM\nFwReJICqY1FRz6jf2TODl4L9aHSJaLW5RrFZbm9euOznAkDDDNALbY7G9hyApsHreTXKtM6opMy9\nrEEXmM4QuDNaznm7184lEQDwsxQGzAZYAAC6YypZOSrgDOB0X11ireqtfooBCp1B8WvKICGgduai\nTL8uoPkoV0R0C3j4+gE+eYEzR0AbIDYGV6MUtfrYDZh+bOJWg48bXBs28wZNP5HGv9Xzxx5dl29u\nGST0hYUt3V0VAjIgGnOkB/uAM2qY8uu1lN9EktBiwTpgura9qM6Q19cYpofI9GyNSBKI0bl9sksb\nTxOIt94ydOhis/TYP8V6SV/atINaLbGuZ2YXma8VjrKOPf/VDOr5JdbfeI7wzsLIyrgAJKMEqezh\nuDPXzD9p5pzc4VcGnmF0ZGdr3IhSohfnjZJbZ4T5+hJ9toLm0DtaBbRnCqBezYN+DOA5HvQPiBDg\nvh9gylscrBC9C3zcXfdVIQBMsFY1uoM7iGRGz9d9wrku19YbR1WC7zdWAm8qBDgDrBxCKWL4RamZ\nhQk6LaSG2QJIJh6ZRgwHRqJGDAd0j90ArEYZwiEtSBED7vyQalGOCAEZdQF0yWrEmYUCYDIqCdtL\n8oaIo9QHGeFnZQDsnJYDQlvA4wKQHmNAlVu1A0xpk5MWFoz5O71ebon7vo5XE7cWfJQSyNf0hc7k\nZht43KzHmYD2lJpHl5SROCAkGzMBk1IikxuT/ch431K8nUanSBLa4bv9Bs529KzBvL7Aoprgj+YR\nlnWMtwdnVpgUsAOdwNaQnDh6iPn6EuuNtfbO1wpY84JRAJibmRUAWNW0mI2SpfYMWgHnz7D+xnPU\nT0gPTOrrI+7qch0AGY+RBB30otJYP1j3V2hvI4VuNCYjN7cJzsOUbFDXG5IpnMMwnFZnJBSa6gyD\nd/VNXbEdAJSGfbwzbFFzaICOCRbprLazDyvZQ8DDQ8DZ2iqNp+EJVus5iurMc5D1Bj/r0sq9LCfE\neNPHXqHyZW2g5Yf43NLEl6FxNh6qKCCeX/qOvYOuvadZ5BXwMi4362ENNiPr5AiwuufQlvG3/Ztj\np7U8Z1SaRce25lsKI5wlgQZmlRBUxmwDnmbwfFNUktROTPp7qiisi3DLOX07odRHpnDwsYhbeyU2\nG38naTxP3JuWd6KOSrNaVrZefmdJ2ctsAaXnXXi3VmBpZkAAWpBksKQZC+1nYpIvB4AA0M2vpWrc\nbOfpYoHTZYyvTSUuCmGESe/2hugfPYTKSEW9TSl5rksdbkYDwBuQvMhDY8HgxnFnjq4cQ9Yl1HPq\nLxVPS8RaLkECZgFTg0OjT5eEHYyTCYDKM+Bj6mtP7lPGo3tXRll8OKC6O5fZNPCw/fXzVYV3Zxne\nHkxxt+cAUGOhYbWEtmhT8BbZ2M96gW3yCWB2/PWmMNc0XysUG5r7WSFAsdlgVVeok2dYBNtOsp4Z\nYZVbkzeA7jndS1NxZvoabv9FCi32mU/JyO4GGRrTcwKMAoSRIHJ3+Y2oN4WXJXM/pUaJdVA7jyu9\n/7vnyfbvmSQpJzcOghKh7qk0Kw4GWDUAedff6d+432L3Od7jm+HQvJvfQwEQmMvYZJu8GXsdrzZu\nLfhEcoM3uwp3e2QoZprE0AOLkeMfD9iasKNwawUPpamX2x0j2SFMColVzfM+trEuu6RzpdgegIFO\n02ndbKdYL/WCm+Ar0wDvXwtMrumjK9YZgCmOu2RQ54tn0gJR7wAeXhgYdJ7n1oKBxUi7kgBqUV9h\nlA6B4QDhXop4WSO8kyG806Hd86DrNeUjRIChMU+21VEKewAAIABJREFUdMzqTYnr+sL2Rg5yu5C4\npUbHIG9anuHJYo2LPEKxJtAs1rqc2fyAeYFyJF2apStjXmYOujFzcpPbbONcWFTWDhgHgISWQqqc\nVxVm2BigHmHWGRGIDCyL0J0j47IoYEtf5AoKm62wDE1LCBY25V5GUzrGLfPpn5kQ4N4vAJDCZ5Px\njFvb9Sg2dG9R2Yr6kVxy5WoADYAWiIIPP4S7047C7Ue5PSf9N+shBOp11iu//5MkZECoytaM7XW8\nmviugo8Q4j8G8N8AOFBKnevf/XUAPwOaKPyrSqnf1L//YQB/B0AG0iP6j7RXRQKS7v5hABcA/oJS\n6tGL3jsOgZNujVFMjU/RnHFJhxYYcAaRS9PXMG19R9cMGfUkrnVp7INViCfXER5dA0CAByajoHKM\nkV4ZnlihQ6cxu9pcmzLNdVXgdEmyOPlaYFlR+v5sVSMNgSRMkEmf7fStDMe56tfNHk1eX2OejNB7\n+wcgiwLyTSrliIM94PhNswh6KtVRCoR9A3zNKNZLFOslkm4HveG/CLGnJ+IdKjKD6KI818BDVz8J\nN5pJ6JQ5m7t3bnhHJJ6JboumXNNDyNllC5lZ2X5nYeZwF+diExqlA9forxkMPPz51KrEfH2JdO+E\nNAS1sOq8vkBRPN7qkXifa5QCKz5mrVHIM0FwFK9dxe3GfFDbeTHZhO3gm+fETX0AXvktdJhhmSyA\nmizfgY3pm9jh6wD5ujaK6qaM2AyH1ONlsQ0igUt8aKODq3q1lQUbtqEmpDR7Qy+rfv6yoTb4MH4+\nf+zjuwY+Qoh7IEXU953f/Qsgae8fBHAC4LeEEJ9USq0B/I8A/j0A/w8IfH4CwD8CAdWVUuodIcRP\nA/ivAPyFF71/HNCgYy9KiAZdLLak+4XMqPSh+zOcopsvyahvdvwiGxsWGQPPV6YBvnxFX7p8rbCs\nI2PfnMkr9KLEiB2mnT6kGKNSJRa6Mctf/GIjMSmsR1BZhMhXIZaVwEUOPJEBMpng7cHc+PPUzg4V\nwFbWA1DvZQVaWNxymyuCyqrYgCYm9EZIP/kngIMzk51shbPrjKIUXTk2LMCbQEjGeiErn3jHDQAf\nrEJPy67p5npjVNo3qLSCpU25GQ+EmgDkZEBbDDDAZD2TQhrhVmCDzPl2cdkxlT0kQccwuPg48vUc\nObG/sVi966hB0HGRega8BR7QWboGHlHWvseNLt+yjUNbtKl7M/C4GUyGjbm32PXWDUMa8IKzb4km\nAK1qGE3Bpuhpc9DYPVbv8wE80KlVCShs9/Ia9HXTy2Il9yiFqDKy6IhyC8aba33/vQaM70R8NzOf\n/w7Afwrfa+IzAH5VKVUA+CMhxNcB/CjLeCulfgcAhBB/F8BPgsDnMwD+C/38fwDgfxBCiBdauAZK\nS95ktPjUNGTJDogmGv0Z7999Kg8ZHajyHM9XFZ5cJ3iyoPLYs6dMp2XKJpW6SO9tjSRY6Kn4pdGg\nYkfUVU1fmIs8xPMcXtYDEAgtoppEQqf0u/10jSSoME7803/Z8gGbzXF5ZBTTapqvFVKUWNQTyL0T\nRC3S+bsiQgQp95Gv56ZU4zbe+fWfLpUpW1nQo4WkqZfXkQppKAxL0aUbA9gmi8BuHFSc+btap4+y\ntcDxNH9LX4TPg7OepXaO7UgC9FUdIIk3ngmgSwOWYYzr+sK8HmfMTPTg86ZrUWOcOBuKDWypKkq1\nrfjCZjt6KJnvzXrTLq4JbNtKMPDQRoWu+6oOkIaK+nXa9XbnwKmrGoECxUYP8zgAxK+Zr2uksrYD\ntw1fILdEBjhGg85n0UYJ3zW8y8Ot3MvK13NIuW/HCKCrHo33/TiFEGIPwN8H8ADAIwA/pZS6annc\nTwD4myB0/dtKqc81/u5VpoQQfw5k1xADKAH8J0qpf6If21qZuuk4vyvgI4T4DIBvKqW+IPw6/PcB\n+B3n5yf6d5X+d/P3/JzHAKA9KqYA9gE4vGPzvn8FwF8BgJN7e5bmW65s2u2m8ZppFDUBiBvDLGYY\nZ1hUZxo0Yr0j392kbO7YaSdYIZM202kKVlJJTAED4BHIoG7Uq3GYAfuJMr2ZVa2QxBvka4VeYBlF\nzaynGexBdNNxckzLMyRJx2qFuY6WzWBVhChFGlsfF57JYLB9uoxN74mOZeMx5PjYGITcYxNKUXbC\nCgXuEC9/VnkBDHOzuchaekAfNljRYhTPjYkgQNeSgZvMAkeW/gsYogMPcS7qibkGp4vIA/+TTmVK\ndc25IKONxmKobCcxHPgzRfXMKDvvZJg1QgYxUpQANkANzU602dNNArQMTuuAvK44w+5IhY60+nyj\nuNZSRI7COzMLb6B+mw1Cy+xVrUqPuu36IanVDKJ/RD020OdnFT6ujAK3AoztA20YXpGN9gbYvFwb\n8duNnwXwj5VSnxNC/Kz++a+5DxBChAD+FoA/B1pPPy+E+HWl1Jf037cqU6A19d9QSp0KIT4F8gLi\ndXhXZWpnfMfA5wUe4/8Z6MQ+0lBK/RKAXwKAf+mHv18x8AAOycD0eSiYFeXNYbwgOlLhT+1X6MoI\nXUk78jd7Cne7G2PH7bGdTAjwl33VAIKOLoV1pUIaKlzkCvupwmHqWzY0rba5Jp/jGmkoPJbb6TLy\ndqJsA8H/cYZGYqk+EK1VbTxSkqADGSWIou3SDomdlmQmVuWIOiPIMN4CoV5U4rizMv0FLvFwT2dS\nzPF0GXtlQN6FG+WIpkirC0JswDYooHo5HY8eFN4Kd7DYZV8BnoAmqxvsp2Ok4cRkO2xr0Y1G6Id6\nFilo6UPo3TWdP4wqeiY3ho7OYp5N11MAJlsQ6dAytorClIHbwJWzzZcBIRnE6AVALyLlBvd9W3sr\nbHHRck2b908SbHDc7W4BT5OpJhrfxTYatfuZGEM+VijXdiUASOKoyoF8arQSjUvstdUuxKDY8tT6\nmMVnAPxZ/e9fAfDbaIAPyOb660qpbwCAEOJX9fO+pP++VZlSSv2+8/wvAsh0z30PuytTO+M7Bj67\nPMaFED8E4C0AnPXcBfDPhBA/it2+4t/U/27+Hs5znmg71yGIeHBjhCLySQY67W6dDXmRXIiO5jDa\nO8MKHUmlkZNu5SxKtvHdnCOQQYlmqcKPAA96wGGqPHM63kVyacezYRYCdVSa6XsAW8DDwQAEsNsp\n/6UGsPHYThzFZmlAyBvaXE6AmVa1jlICd73os6UyYMs+Xf0lN0OMsBTcbneMXkRsN/e4ZZBAXZ8D\n11MyjuNoWirkJQ0RFgWJtaZTqN6MGHVsbteg6boeM16vz5nlkoKAtBuN8AYmyNd1Q7HhK7SwaW25\nJmHBDSqVEtBzVo7pKbD6JtJsgHpwxysX5us5EPb9zDzKzcyZb8vt2wq4GmhutP2ujbxiREHbAChK\nzbC1DGJjiMhU61ZPKwYeV+IJoNdq3As3bgoAm8mwTxbfFzxHNyigkgkwP9vWdisrMtPrnd3oqfU9\nHkdKqaf63x8AOGp5jKkY6XgC4E8DN1am3PjzAP6ZUqoQQnwfdlemdsZHXnZTSv0BgEP+WfdzfkTX\nFH8dwN8TQvy3IMLBJwD8U6XUWggxE0L8GVBa95cB/Pf6Jdiv/P8G8G8C+CcvqjXSgWyXlHY1Oluf\n7gg3AtssKg4XdLh0wiWYZq26ViWgd5rUrJUAghaLbmDkZDvUyO5vgQ4bdQkAaadPw4Jr6idNCmle\nC9jeme4CIBYHbYumFbfKp3ZwMi2oLxGlemAzMwtHpK95BKkXlrlZjJRejOTgEPvDe0jCC1zkV1jV\nAWSQ0YR7XVLWM7FSKJulDz4kJ1MRCLFFAZfiVhqE+HN0B431z4CdG3I1z+pN4QFQNwL64R7U7CnU\n88dQj58SRX/Up4Xu4B6xG7GtCCCDGAcZSJh0uYD64P+FevLUqHLLkxNERw+x2lw7emaascWUYZ25\nKyGcARb7+jcBkPtvVw2az8+9T+uNIwraMvzZHLbmTM77Diyu/IFuLpvqUBkN9npzPo3PpintBGgl\ndD207DnRlhXNQjnD3GzEh5Lm98zgdJJARSnS/QdYBA0b828xhALi1UsPrd4RQvyu8/Mv6coNvdbN\nlSUTmhH8ciZd9LodvKAyJYT4QRCx69uqXn1Pzfkopb4ohPg1UOpXA/gPNdMNAP4D2IbWP4JN6f5n\nAP+LJidcgthy31q0AM9Ob5JGdOUYB1m5laK7DKc07NOu7PqUeg/9I5MBGJFFAAiAURIjDa9pWl4D\ng7vjZ4+gJoPKK004O0QpxnpxKQyBoSsDQ6cG2OYAYN8c7ju5HjUsnMlsLW7cck8pFBJSqxZ4wpqN\n6+x9G5pDne6AL5fOohQiGyON+thPqTnflWN6j6szqLNzM/zLHj5ucB7pHodZuIb6mFZXW+y2rc/e\nGTT1RDc3/Hn3gYVe/GYLYLbA+nyJsKy0dtwzrUZxrD8XKh0mQQe1Kq3iw/PH9Pxnl/R8ACKWUNkA\n6fAEUy2xxN/gNOz7GVwjmsBjhl0bmax7HwH6/leKSCP6PmUZGwY+vi5uNiKi1NhV1JsSvSjSWYRW\nmW4CD19X5/M2f7tpQ9jMSvXvjAuvBhXRieznP5nDuCU0gEfla7rehwVElUMo5ZUcP8I4V0r9yK4/\n7qosAYAQ4kwIcayUeiqEOAbwrOVhu6pMb2NHZUop9YEQ4i6A/x3AX1ZKveu81q7K1M74roNP0xNc\nKfWLAH6x5XG/C+BTLb/PAfxbH/6NN+2g0rjRlRBWKJG1tBKiXYu9+0bkE6Ada7elPuyBDteXwaWF\nsVfXbvoDHUuXJk1/c/siAP09FFK3i0iAUbIatf6WzesLTIo53p0lOF1ILGo715NJm0XZYxaQQegv\nGFUOFDmAGqqeI8rGSOMj4xyZytrZ0ToLQMv19bJM93OQGc1XuWZigMPaokyjG42MbYF6fgk1WWJ9\nmRvBTNHQOQvvdEhwM42tMRsrKLilN8DbaSt3fkmTUNxeCi/SvDCbUm5nBMQzYNAlou6gS4QA3Y+p\nsN3EZuDB88e0CMcSiCPSbOPj1sOPeX2NfK0gg9KWxXigMjo2r+nK/zSVLdpmdwwxos32W4MQa6nx\n71DlXumM56qizgi1iM1ck+ey6zrGut85R3HBWK835nw88k/L5yLSIVQvh8gLqLyAfFM/OCbbd1fC\nSo0ATOYI73Qc5ZKO1Xf7eAZXgz6n//8PWx7zeQCfEEK8BQKKnwbwF5VSX8TuytQIwP8B4GeVUv8X\nP0aD3K7K1M74roPP91zs2GkxCKE7htijW580t3QDV8QQ5YpKR83nuqDjNMUFABzfXOrrSloU8/Wc\nKKkb8o1x93pmR6vHEer1NkX0Ir/ygIeDmVlseAfAkBX64R7U2VeA6nFrI19pVlWWjaFiaopH1Zp2\ntMttl01PQ8xlm8WZ1zvw/Ft0rDbXgFOm6sl98qc5f2YsAtbnOVSnRrDnX8/w+w9oGNjVjWPAceZE\ntsIB7zZhTw6jvixi0NSnPsc7h1qwUoPdnUNaGOMMeX3hCWVmQY/O56lLLgItloA97s4Ii/qZFjAV\nukSrj8PNJJyylws8rg175vQTGRyaw9Zb4ZQdt4BnactTSsYQFTEcAdhyLAMPZzs8f+RS2VltwRk2\nNtc3zqj0WVlWKj8mr2mWrNsZI4ruG0NB9fzS10wE6F5gSaujBGo6QxhH1PMZdGkw15HYeRURbBSS\nly+7fTvxOQC/JoT4GQDvAfgpABBCnIAo1Z/WzODPghhrIYBf1sBzU3wWwDsAfl4I8fP6dz+ulHqG\n3ZWpnXGrwadNPqXNobHZGG6Vd2dxzLZw9eHy0utNcGMTUei9j2ne6y90pF1M8/XcK6G06WrZ47R6\nYk3g4UFSLt+NE7UFOur0C9h85X1slpVRTPYyikEX4mAGpQcZSSZmsu1gmRcAa4np8hn3LUzmsCW/\nY/sLTbtrk10tJ1Dzhcl6VnOJqNogvMwNAIUnQ2uW5qhisyMsNtf03i1VcT4GGSSQ2M0Oa6MdC5mR\navKBNt/T82DojMzALZ9XFvSgLt+zxnOx/VqKvjah63eBbKCNDK9xqpl/44TUMohuXhowcLNpq7Yt\njI4fAIz0KbHfFPdgdgmyAvBZaAwgDHiNLJfLYWnc951D3f5O1NjsOU7BgP/d8wgUzt95bievr3FV\nCBxkJTnJsjtuktjeoxvudR4OiJCSk8Cokcvaftb3fCilLgD8WMvvTwF82vn5N0C06Jte64Hz718A\n8As7Htdambopbi/47OAkuDIc7q6Lp9EX1QRXhUAmNzjKjiCDhL60zx8b47PmLqutqQkAsnMJ9LtQ\nUQq5/8B4nBhv+eun1uOlXiHKxoiivVbLYHdo0y2tTEqJZS1wuvA/6q7u9dCw6wapdBhaT/8p1Nfe\nQ/WHZ1i9u0CVB4jSDWS0QdCREB2JcC9FeIca+KKsyVfItaEoGiZdgBUI1QO53PCWQWyUHgBbeuTS\nUhoKdKOR6TUJptFOZ17WUxUxqiJAfL5CsJdS+eTeG8Dxmx7oLOpnZu4llb2dw4SuIgOXHz0gfEEv\nUMgManBIn6GWX6pQ6V36NcJIGnKCcRjVVgeuRI5IEpopy0gp4qoQRjPwuFOiy/sBBgOjbRZirWpP\n9BSAIwMk8Ua2RiikJm6szKA1ZLyb/em8lxlBqPLtTDdyhEHdx+oKgAmtWu4Cjwc6LTI3Neh3LuhM\nyohmxTYV3sgch2KZQXUc0Gszc4wlWaazjUlz3OJ1vPK4veDTFk0XSR35em5Ah3ePqBsDbbxIuME7\nq4J8QlBSBrHmZngc0SJT5RCLKyQpNXsN/VQPvTWnuXk71gQcXlwmZWQWGIAYazwA6Q5CuhRtj06b\nJORrkoaQEZVmmsBj+iosMRRZIzJXpt6IWTr6d1IIAzqApfJaVpX1xik2rIY80RblTuluOADmC4R3\nlggvc0TzGlG6QXinS8Dz9j0Cnr37usdC170rx1abTL+eu8BwD8uNtaqxqK9MXwTA7sygOV3PJb4q\nJx5gRM/vyX0iJ7jhiIN6gqCdEVScoSjOzedn5qF41olBv6U/3gQegJQzRjEpDCghtrXs2s6xIW0j\nlrC+OEP44rhOz+aFxasdwANsZ8WArynH4apgsK8SAPS6+xYA+bNpMOtMpNpYT8a0EV0AaYsm4Ov4\n9uM1+HA0S0WgG9sHHgoekONFSHXHVpUY2PbSSXWvJ00gJnNIZmON+taKIJ8i69y3NXQGHoD+72io\nucdUbKjR07a4mOMNt2nlLlvOlUxBtKbp+HuFuTmifA2RhrSgs1NmGlM5i60fGg17FmUVQ70g6ol7\ngMpUXTn2ylocrkbYOCkN248fU28KRFEPoiKLbFIA7yIZdRDunUN0Iurx3DuGOP4kVJf08tyQIoa8\nPtcLLGePdieeGcfN+ZZQRbFhbxt7nO7OPI39vklbGTeq1uTrtHBU1MdHRP3mshsvgtxk7x9h7kjx\ncMZKIJ4A+WLrfdzgAVj336s6wLuzBCedBdA9Q7czhhT0OTIIbZec/ZkX2elCijF9tk7mpWJWhS4g\neRi20jp0u6Ixm2TeozlPVOVGgb7X3cda1RjjGsVm7YwFWBNHKWL6XCJtodB0qG05Dg4GoFcRYqMQ\nF+sXP/CWxO0FH7eR6M5zSGvWVa+LLeABaEiuKXViDOI4mhlUkkBMZ/SlzguIuLSeKjrU7Kl/PIDd\nSQLmy1msl9pQzupuvShcZhPL1vCivmVnzIshAJmXtgmbJtZdlW2hd9B7BcZANiYghaUWczB1t1Wm\nxdEGa5suZ8kjnmFS996BGA4gmcl0cgJx9FD3Ry5MuY7fV33wZeD0FMpd5N1z0CVOGe+bLMgtcRab\npVkk+fecrRVyiW40RoR2bTFzfRoZj0iHUHcObebUaL6rOMO6IofZTCoUG9o8JLoUqGpnwNaAgH9/\nAfTZuxkCAxCwwEHWPnjqRrPH6GWwgYRMY7Kerpf22qiS9NPMNd7OOhik2/qpHgmCy3e6HC0AdDt0\nD47ibRWI64psTOhYExrIrTTVvy63s1RzjDZe1lrjdXy4uL3g0wz3BtSL/KImoUcAZjr7IKN5hWYp\nQHXHtrTQVN2VmaGWijShevcQtiTF4YKg28DV/1dCIK/neL6qcLrIHAVlG+7cDmBBh2Vp+Gc36wGc\nnbyzAGN8BHHP8TPS5RQukdxIReUde3S8/TfWe9vxPLZiMJdl4zedJRIqPzLzCSMgG5tjw1A7h+p+\nAJfromoN9f7vQ33tPdRf11kSU7AZuAZdvcBZDTgmJ7gg1PRHIk2+EElAi/gwPvIBiAdV3eFVwDK7\nAMpudYbbpBC7AqQA3Y9cchNK0WLaaPhLEeseotXD27VReXeWoNhURuh2V1i2HCs9rwGszPfDfa5n\nHqhNFFGvNNgv9PyX7a+YHuvGqly0ugtXuSEQKABRdN+ohqzqhWf+RoKodh6KRUcFHONAGW9XPlyp\nn9fxHYlbDT5bA4U6uK9Csw+UczPocKmt2YQUShna6BYtl+VPZGwJBC8b3Bx9TkoYveEJDrIlTspq\nq68D2F4AqVtvWhcDQH+5b9jlmvr/sR6ScDK51hkd/r8uubhEjbbh152h/9YEIHe41b32Ll0b+w/o\nPRuyMoCW2a8WWr+Lej9qWUEtKwLBXGeYeeGXTVvCBZ2mIR8BfwHgjBhX2DG8al6sNJbfbhZpyS4V\nam11/u0YmzE4JPEGo3jbndMFj10A1VzU3WAtwklptemYVcwmimnY380g0xs+lwUIoH3Itzk75mR5\nmdygKP1jIwIOAVCtSiDsQ7qU7SqnDaIjp7T1+q8ghFIfRuHgj33cXvAJtPsodH1b735EZnsEXTnG\n3R5dIpfptGsIj2OrlKTp0oZ+C7SWVwBs3/ilc7M+/jowe4Y7Rw+R7C219H3ukQ2aopzNklqbJ73b\nTOcBVfeL2Vw0Vb0Czs7aTz5KIfbuG/IAAF+Kpa3M0Xi++afjhuoCz5bqRCMD45JeGvYtVbvUbpX3\n3qFy4oAWK2/+h0GnQcl2vYiamQ6rQBTrAMsaSHRC4PViHIChP2bblGYNOPl6jnp92foZcbDHzgcr\nACBWV39wbEpJxuKjOsOkmLeCyXbmm5lSsqtaAVj2pDsXNLqhOrcFTJx9ABh2j6x1QVF4tg+L+gp5\nfY06KK1GoRasNfciZymcPfePoLpj5PUF8voaT5fxzsyt3pRGEsm7H3UYuSx+D8Ma/NgOm35Px60F\nHwUF1bL7oRvNTp+bqWyAFrAPG42F1gCQppby70zpYe4v6sopvYkkIb2q6efRu/cO+tkdqCwzxAim\nam8t1Ng2DWuWkQDbyzDP19cHs8Z5s/RLM/QirnTpi8OUUliK5UUAxNctSg0ANfXqbrrGgJ2Gp0/O\nIQBkY+CtHwKG79lj2TFn4vZ7mPYN2MXftb3g4F6aoS+zsnKHFDLMceghSgAGdHjR35WRuq6prrHe\naH0FpJQVC6Ww2lwbb6liQ19xzmwAFvbse/eKGQCtV8iyMao4tPNIQZN9dnNfqBdZI0QOzj5CIdFz\n7o2m7QONMRRkMhfQDFMtYsgogYy10giTclrcg6mfRRbm7jl715GlrHYAENA69vU6XnHcXvBRaz2w\n6SyyoGa2Wej0l3HXjXjjDAQa9X2nts8Oqea5TWkQfo288GYSVO70X770BRrcHA4gOyP0+0d2UXfE\nOVmYE9kAQmZUzopSREG0NS/ker64Za6ISxJ1CTx9H+rxB1askYdOY/1/R75EDk9QozCllFqV2y6T\nbrRdRwYgB3S2+ib6+nrReAzTfvl9xNHDnYfhAo9rrMagA6AVeLzDadKfMaHsh034Gr0ky14MMIrn\nRqHcnI5T5rvIQzO3taoDrNIAwBXWCW0+3Nfi40tiv2fpSiap63MakOY+ynAAOThEf3BsWX/OeTVL\nn+1D2EutTeiSYjam+e8BZT0x1PpJKVFsNrpkXHizYDwD535f2T34qhC4yEMz/7SfYicAmfuxKY7q\nlJJNmbStH/QtBikcvBpvoD8OcWvBZ4PN1k4fgFnotvxFOJwyWVPWnRd/r3bspO27Si1s/wuQHhba\negO5/gKUlck6VF6QR008g+LdNbBNWNC/U/q1RUWZlowz9LTDaLFZmoFOwCnzbHT/ZX5GDLHHT1F9\n9RKbZYVQqwiITmQVEAACxc7IZF2sPcdEgV1Eg53h9Ilagad5rVsyI9egzAUX97M3c0YN4OH5LoAW\ns2JDumjLmrIP14IcYF08XXLjgcpYk0ZAtGlmU7rAY2wuegBQGB8du9AXhiLNShUdGWBZbzApJQCy\nUWfgaQYDjxEvdSWfHAUAUdbAdAZ1Z4aofwTZ3bd/M5syYteJwfH2hiKAZ6cwKaUBAbdvxde7KXrq\nBjvo8uvm67n3mbnA15EKk8Jmn7a06MtG8fOaAATgdRb0EcbtBR+1QV5fQwbkuFirEmnYN4sj7Xyc\nL0SzN6Nja44jSr0b2G3EezpU6znWNX3hXdpqV44RZWPPNXVLnLMZZU2GWYMbHnfD4p6GfaQh+cd4\nPi2cRV2+C/XkKdSjM9RP5lifr7BZ1iTimdryj+hEEEd3SMOsf6TVBCZ4sljjjWyCYr2kXXfUh4zb\nB/da/WEcDTBT+89bhgSbemHOuXNfIV/PsVidAoD32UsRQ4axbxQX0mPGaPq5rCGDGKO40DRlC0Ad\nqUzGouoVecVMZ76ZHeC5qaZhH8O4wEE2AbAx9GlXay2LDqlkFS0xigtk2ifKHRQ2z5NLUyZMAjqu\ncaI84MG7X/YApzXOn+k+0spkAi5gAYB6e5tGX28K0yNjsIS0PSMZxOQgqm1FAOqvDuPCU7pobgw8\n64Y1zctE0R56ch9dSRuo4858q+fp9h+942wBIOMOy6GzoNfx6uPWgk+1Dlp3VWnYN/4yXgbSonzw\nUtEZaR2zJda6ru2ypNzI5Ap3u1qXihvI0I1Z/rKnthQnhgPv+bTDltsUboe9xf0l1fBbEUpBzZ5C\nNnx0UBRQzy+x/tITbC5zrM9XKKcbVLlEuKyNwUVQAAAKAUlEQVQQOuCDwz2asdm7j1VYY5qf4otX\nMU4XCZ4Y/6EpxgmpFTTD2Bo3BgpVvbJioxrERWdEemhuMEi7I1gyRj24Q83s/NobzH0jo88+DB2N\nL8erRyLRgq72WN0+SRLOAVxpC3DAnUiVgso1ar6grDUvoUaAmAHAmXFTBYBIl0Oz+K4959UVUF/Q\n56ABtd8/Qhr3IYMrZJJKYQw6bhktjY9IiWGzNI3+VPYIeC4eAe99A/Xvv0ubhze2RVxdzTOcPyPP\nI76+swXZV5xO9eWVwFt+/4pVKtz+1N2eBZ4k6FgvH9A9GYEy7AwDSjUqq54OwJA2+PqY0L3TTGbI\nOodGiLdNEqepXMHZfSsAuWW4VxRig49KWPRjEbcWfGoFPF3G2nqaShwuE4ZnAXhI8lsJYvA8M43U\nYhPgIo8xKSQe6c101/kEDlIAKPBG9gyIYQGoLoFkAkxnVn+qEYq9b3iH3QZC0mn4u8GiqM8vbZbF\n/aW8xPp06gHPcipRFwGy8xzhXkqL2KgDcfcY4ugh5utLXKyu8IeXGb5wGeLRTODBQGA/CXC3G+rp\nfFp43Jp8JjfUOHcAyJvvcI57tblG1j+yBI0qt+DrnG89uINvLt7XYO/LDiXBBgeZ7QHwexoAAmWF\nnsAoDz3mC0SdPSAF0pDYjKeLQD9Oz95oZW81IT8ZTOZQaWGp3UNdSmx+Jo6lM3+uYjiAOphADg4x\nHJ6Y7KAn90nrbnFOWQkAZANk2RgyGiMUEmtVkyvqxSOor/5zrL/0BIvPX0BGG0RvziHv9i0INe8Z\ngEpw2ulzfTpF/WSO4mmpJZe0T85bP2REU4v1EtdVYfpTbllSBrEWUv2C+Z2X6+6yQQd85icHk1yS\nBJifQTpEHg7OXDzlCh1tAMQ/GwB6Pe/zHYlbCz7lRuB0QYvRSacC19g5ZBhrJpzNEF560jlKPcbR\n6ZIA53kOXBQCj2YCs0mCNKsRJ1Q+6EQKFxmwrBOshhXe6jvCiOXKyNUYTSr9RTSgw0oEbBedJlaK\nXx8T/593p+yHg6fvkyfOB7SIui6g1mDLAk8+D1EVAVZz0noWnQjiE/chjh5iUj/D08UCX7rq4vfO\nBb74jS7Onnbx7HiBw+MlLgoCIVbV5oFYS4+98gHIHSx0Bi4X1QSIDy0AVblvWucAzx9eZrgqAs9K\ngt4zQiYLjBJriMbXiEtCnAWZ5vzq1KhHI5+iv3cfAHDcucKyFvY8uOc2W9D1XFY00AqQxAxvEhrR\n/DyNKd5sQYxHnRz1udS1uLKMuuns/2/v3kLsqu44jn9/nUmTOjUxmpDEROqFKigWtBoEpWi1mqai\nVSz64IP4IF6olQoSzYuPXh6UaiEWCbXU1ktUFEuMlxYK4gUviZfEyxhtnBibTKVxkMEY/fuw1mT2\nmZ6TmcxM987e5/eBTfZZ+5wz65+9Z/5n77XPf6XjYvZOYu4uZsyaQ2/fIenT/s5P4F+b+XrjAF+u\n38FnA+m4PnBomL7BYWYc/RU9h85Jx0vx2IKUQD/9L7sHhvhqyxDDQ70MDabjauEB25l1QKpRqKOW\nsjt2tSSekeP+0L7vsPB7oq93bqrkkfvabqqOtD6BQf6ROniFIqx7PnwUbp2PkbNl8phqT5r+Y+Rm\nhrEJaM8U4G3GgWz6aCIzTjeRpB2kuS7KMA8YHPdZ9dLEmMBx1UmZMf0gIuZP5Q0kPUXq80QMRsSy\nqfy8/V3XJp8ySXplb1Pi1lETYwLHVSdNjKmbjF+R0szMbJo5+ZiZWemcfMrxh6o78H/QxJjAcdVJ\nE2PqGh7zMTOz0vnMx8zMSufkY2ZmpXPymSaSrpcUkuYV2m6U1C/pXUnnFNp/LOnNvO13UipwJWmm\npAdz+0uSDi8/kj19vF3SO5LekPSYpIMK22obVyeSluV4+iWtqLo/45F0mKR/SNoo6W1Jv8ntB0t6\nRtL7+d+5hdfs036riqQeSa9LejI/rn1M1kZEeJniAhwGrCN9aXVebjsW2ADMBI4APgB68raXgVNI\nhXPXAj/P7VcDq/L6JcCDFcZ0NtCb128Fbm1CXB1i7clxHAl8N8d3bNX9GqfPi4AT8/qBwHt539wG\nrMjtK6ay3yqM7bfAX4An8+Pax+Tlfxef+UyPO4AbaC1TdT7wQER8GREfAv3AUkmLgNkR8WKk35I/\nAb8svOa+vL4GOLOqT2wR8XTEnpnmXgRyYZd6x9XBUqA/IjZHxC7gAVKf91sRsS0iXsvrQ8AmYDGt\n/9f30boP9nW/lU7SEuAXwL2F5lrHZO05+UyRpPOBrRGxYcymxcDHhccDuW1xXh/b3vKa/Id/J3AI\n1buc9OkRmhXXiE4x1UK+jHkC8BKwICK25U2fAgvy+mT2WxXuJH2QK84CV/eYrI2uLSy6LyQ9Cyxs\ns2klcBPpElXt7C2uiHg8P2clsBu4v8y+2cRI+j7wCHBdRHxePKGMiJBUm+9SSDoX2B4Rr0o6vd1z\n6haTdebkMwERcVa7dknHk641b8i/9EuA1yQtBbaSxoJGLMltWxm9hFVsp/CaAUm9wBzgP9MXSatO\ncY2QdBlwLnBmvnxR7OOI/S6uSegU035N0gxS4rk/Ih7Nzf+WtCgituXLT9tz+2T2W9lOBc6TtByY\nBcyW9GfqHZN1UvWgU5MW4CNGbzg4jtbB0M10HgxdntuvoXVg/qEKY1kGbATmj2mvdVwdYu3NcRzB\n6A0Hx1Xdr3H6LNJYxp1j2m+ndXD+tsnut4rjO53RGw4aEZOXMfu46g40aSkmn/x4JekOnHcp3G0D\nnAS8lbfdzWiliVnAw6SB05eBIyuMpZ90PX19XlY1Ia69xLucdMfYB6TLjpX3aZz+nka6weWNwj5a\nThpLew54H3gWOHiy+63i+IrJpxExeWldXF7HzMxK57vdzMysdE4+ZmZWOicfMzMrnZOPmZmVzsnH\nzMxK5+RjjSTpWkmbJE17ZQZJv8qVpL+RdNJ0v79ZN3CFA2uqq4GzIqJY4wtJvTFaMHWy3gIuBO6Z\n4vuYdS0nH2scSatI0yOslbSaVM7nqNy2RdKlwC2kLzLOBH4fEffkStt3AT8jfcF2F7A6ItYU3z8i\nNuWfU05AZg3k5GONExFXSloGnBERg5JuJs39clpEDEu6AtgZESdLmgk8L+lpUmXoY/JzF5DKC62u\nJgqzZnPysW7xREQM5/WzgR9Juig/ngP8EPgJ8NeI+Br4RNLfK+inWVdw8rFu8UVhXcCvI2Jd8Qm5\nmrKZlcB3u1k3WgdclackQNLRkvqAfwIXS+rJpfvPqLKTZk3mMx/rRvcCh5PmXhKwgzTN8mPAT0lj\nPVuAF9q9WNIFpBsT5gN/k7Q+Is4pod9mjeGq1mYdSPojqaz/mvGea2b7xpfdzMysdD7zMTOz0vnM\nx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdN8CmkvbM1neOKkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us try some more window functions." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25,window = 'hamming',scale='biased')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'hamming'" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu4fVdZ3/t5123/8iMJYIIRgxaoadXa2lIkrW0Fi9hA\nxdRqLeKV6kPpI7b29CLW46Xa9oSjT4+0ojRFBKotUioaa1TQ53DRiicBKQqKplwk4WawkIRk770u\n7/ljzDHnmGOOMeeYa8619m18n+f3/Naa97X23t/v+37fd4whqkpGRkZGxsXC5KQfICMjIyNj/8jk\nn5GRkXEBkck/IyMj4wIik39GRkbGBUQm/4yMjIwLiEz+GRkZGRcQmfwzziVE5DNF5AERmZ7gM/yi\niHzjlud+n4j85NjPlJFhkcn/AkBEDkTkx0Xk/SJyv4i8XUSe7ux/iohsCrJ8QETuFpFXi8gXtFzz\nsSKiIjLztr9cRP7VLj9PClT1D1X1SlVdn+AzPF1VX3FS98/IaEMm/4uBGfAB4MnAw4H/E3i1iDzW\nOeaDqnolcBXwl4DfA94sIk/d76NmZGTsA5n8LwBU9ZOq+n2q+j5V3ajqfwfeC/zFwLGqqner6vcA\nLwVeOOTeIvJfReTDIvIJEXmTiPwZZ9/LReRHC3vkARH5dRH5NBH5YRH53yLyeyLyF5zj3yci/0xE\n3iEinyyymeuK8+8XkV8RkUcWx9YyExF5g4j8QHGP+0XkdSJyrXPtbygyo4+JyHcX9/qSwOd5nIh8\nXEQmxfv/KCIfdfb/JxH5duee31K8/iYR+TUR+aHis73Xy74eJyJvLJ7t9cC13n2/XETeWdz7DSLy\nOcX254jIzzvH/YGI/Ffn/QdE5M9v8aPLOOfI5H8BISLXAX8KeGfHoT8DPEFEHjbgdr8I3AB8KvA2\n4Ke8/V+NyUSuBY6A3yiOuxZ4DfBvveO/Enha8fzPLK7/L4BHYX6f/2HLszwbeE7xLAvgnwKIyOcC\nPwp8LfBoTHZ0fegCqvpe4D7AitIXAQ9YMsZkV2+M3P9G4N3FZ/u/gR8XESn2/WfgrcW+HwDKWoGI\n/CngvwDfXnzO24GfF5FFca+/JiITEfn04nP95eK8xwNXAu9o+U4yLigy+V8wiMgcQ8CvUNXf6zj8\ng4AAj2g55t4iGv24iHwcQ7AlVPVlqnq/qh4B3wd8vog83Dnktar6VlU9BF4LHKrqKwuv/qepSNbi\n36vqR1T1HuDNwG+q6m855/vHu/gJVf19VX0IeDVgI+KvAn5eVX9NVY+B7wHaJr16I/BkEfm04v1r\nivePA64G/mfkvPer6n8sPtsrMEJznYh8JvAFwHer6pGqvgn4eee8vwv8gqq+XlWXwA8BVwBfqKrv\nAe4vPssXAb8MfFBEPhsjRG9W1U3LZ8m4oJh1H5JxXlBYFf8JOAaen3DK9RgS/HjLMdeq6sq5x8ud\n11PgXwN/BxOxWhK6FvhE8fojzrUeCry/0rtf3+NdfNh5/aBz7KdjaiIAqOqDIvKxluu8Efhy4G7g\nTcAbgK8HDmkn2/L+xT0onuFa4H+r6iedY98PfIbzfO93zt2IyAeospM3Ak8BPqt4/XEM8f9l4llI\nxgVHjvwvCAp74ceB64CvLCLILnwF8DaPlPrg2cDNwJdgrJTH2sfZ8nq7woeAx9g3InIFcE3L8W8E\n/hqGcN8I/BrwV2i3fLru/0jPXvtM5/UHgT/hPJ9ghOEe53meUjzTG4t/Tx7wPBkXAJn8Lw5+DPgc\n4JmF7RGEGFwvIt8LfAvGT98WV2F8/I8Bl4F/M+Bau8RrgGeKyBcWPvr30SJQqvoHmCzj64A3qup9\nmAzkK9mCbFX1/cCdwL8UkYWI/FVMPcPi1cDfFJGnFrbdP8F8r/+j2P9G4IuBK1T1bowddhNGwH6r\n7/NkXAxk8r8AEJE/Afx9jC/8Yan6+b/WOezTReQB4AHgDuDPAk9R1dcNuPUrMXbFPcC7gLcMuNbO\noKrvBL4NeBUmCn8A+CiGYGN4I/AxVf2A814wxept8GxMQfiPge/FfHf2+d6NEZp/D9yLEYZnFvUJ\nVPX3i2d+c/H+PuA9wK+f5DiHjNMNyYu5ZGTUISJXYnzzG4runoyMc4cc+WdkACLyTBG5XPjuPwT8\nNvC+k32qjIzdIZN/RobBzZjC6gcx4xKepTktzjjHyLZPRkZGxgVEjvwzMjIyTgFE5CYRebeI3CUi\nLwjsf6SIvLaY3uT/E5HPc/b9IxH5nWIKkG9Put95ivwvHVylD7v8qPEuuKdudJXT1vYeh+zr9+X8\n/FpmnFL88cffe6+qDiKMPyvX6AOkDJmB93H/L6vqTaF9xYDI38dMXXI3puPua1T1Xc4xPwg8oKr/\nshjB/WJVfWohAq8CnoQZwPlLwPNU9a625zlXI3wfdvlRPOOLv3+Ua63n+0mKlosTm25+MObHu+8i\nnC7zzAQZu8FPvvbr3999VDseYMn3TZ+UdOw3rX/12pbdTwLuKqbrQERehalDvcs55nOBWwBU9feK\nyQuvw4zf+U1VfbA4943A38bMHxVFtn1OEGeZ+ME8/64/w3o+2ZsQZ2ScIK7HmWIEE/37kwv+Twyp\nIyJPwoz6fgzwO5jJ/a4RkcvAM6imBoniXEX+Y2HXZHPWSd+H+3l2lQ3Yn0nOBDJOE0RgNk+0bddc\nKyJ3OltuVdVbe9zuFuBFIvJ2TCvybwFrVf1dEXkh8Drgk8Dbgc4/xEz+e8Z5I34f9vPtUgSyAGSc\nUdyrqk+M7LuHerT+GKq5m4By5PZzoJzf6b2Ykdyo6o9j5u5CRP4NJnNoRSZ/D7uM+s878bvYZTbg\n/oyyEGScJGQCBweJkf9h6947gBuKacHvAZ6FNz26iDwCeLCY1uNbgDcVgoCIfKqqfrSYHvxvY1bj\na0Umfwe7Iv59kf5qy+ef7ZhA9yEEWQQyzjJUdSUiz8esxzAFXqaq7xSR5xX7X4Ip7L5CRBSzENM3\nO5f4byJyDbAEvlVV26ZhBzL5lzhLxL8tyW97vTHFYVdCkEUg4yQgIumefwdU9XbMKm3utpc4r38D\ns4Jd6Ny/1vd+mfzZDfGPTfpjE/6Qe48lBruoD2QRyMhIw4Un/9NK/CdJ9l0IPdsQQdhFNpDrAhkZ\n7bjQ5D828Q8l/dNM+F0YSxB2KQRZBDLGhggcHJzNv9sLS/6nifh3RfrLg/4/3vnRqvugRAy1i8YW\ngpwNZGRUuHDkf95IfxuCH3K9IeLgft5thSBnAxmnCROBRWqr5ynDhSH/0+LtDyH8sYl+7GfoIwzb\nCkHOBjIyxsHJs8kecBqIfxvSPw1k3weh500RhG3toV1lA5CFICMNIjAfqdVz3zhb7NIDp6Vvvy/p\nDyX8XQ8o60u0/ufpKwYpQrCrInEWgIzzjPNF/nK6pmfoQ/x9Sf+kpopou28K8fYVA/sdnkQ2kOsC\nGV2QibDI3T7nG33INpX0zwrhpyL0fF0k7H4HbUJwktlAFoGM84hM/h3YRbSfSvr7Lihvgy4i7iMI\nqVnBtkIwhghkAchw0WtK51OGUZgiYe1JEZF/V+x/h4g8oetcEflBEfm94vjXFjPa7RV9o/0u4l0e\nzDqJ3y6QknJve0/3374ReobO78H5jG2f035fbd9Zn8/e57uNIS8uk3FeMDjyL9aefDHO2pMicpu7\n9iTwdOCG4t+NwI8BN3ac+3rgO4vZ7l4IfCfwHUOfNxVj2zwppD/Gfba57rZoi6T7jPhNsWhS7KE+\n9YGh2UDOAjLAjvA9m5H/GLZPytqTNwOvVLNa/FtE5BEi8mjgsbFzVfV1zvlvAb5qhGdNQiph7oP0\nk+sHJ1APiN0zRqgpLZ19hGAMW2iICGQByDjLGIP8Q2tP3phwzPWJ5wL8PeCnQzcXkecCzwW4fLlt\nfeQ0jEX8Q0g/1cLog11YFTHiSxWFLjHwr+OfP2Y2sG2BOBeDM84qTn3BV0S+C1gBPxXaX6yBeSvA\nNZ/yeB1yr30Q/7akn/Js+/aiu+7nE2JX8bePGPQVgl1nAzkLuJgYs+ArIjcBL8Is5vJSVb3F2/9w\n4CeBz8Rw9w+p6k8U+/4xZnUvxazv+xxVbV07bAzy71x7suWYedu5IvJNwJcBTy0so53hJIl/W9JP\nJfvlwe4toflRkyhDz9clCDEx2IUQjJ0N5CwgY1sk1k6/FWOJP1NEHgW8W0R+CngU8A+Bz1XVh0Tk\n1ZhlIF/eds8xyL9z7UngNuD5had/I/AJVf2QiPxR7NxCBf858GRVfXCE5wxirMLumKQ/hPCHEP1m\nFr72ZJVQQI3c1xcF//nbxKCvEIQIuq0+sKsCcc4CLhAEpvNRftYptVMFrioWb78S+GOMKwKGy68Q\nkSVwGfhg1w0Hk3/i2pO3A88A7gIepFiBPnZucekfAQ6A15vPyltU9XlDn9fFSRF/X9JvI/wuso8R\neh/0vYYrFl2i0CYGfYUgJRvYlyWUBSAjgGtF5E7n/a2FbQ1p9c8fwQTSHwSuAv6uqm6Ae0Tkh4A/\nBB4CXuc1zAQxiuefsPakYlKWpHOL7Z81xrONgW2Iv0+035f0Y4SaStKLg3EXUQc4PqqeKSWD8D9D\nlxjE7KG+QjC2JdQmAtkGOv8Qgeks2ZG+V1WfOOB2fwN4O/DXgT+JCYzfjAmcbwYeB3wc+K8i8nWq\n+pNtFzv1Bd9dYQyPvw/x94n2Q6S/DeH3JfmU412STz3XnhN6VisIKWLQlRV0CcE22cAYdYGcBWQk\nIKV2+hzgliKYvktE3gt8NvAngPeq6h8BiMjPAF+IKQ5HceHIf9dWTyrxDyH9GOF3kfcYEX+fa1jS\nD50TE4Q2MegSgpA1tC8RaLs+ZAE4rxCB6WKUXpSU2ukfAk8F3iwi1wF/GngPIMBfEpHLGNvnqcCd\ndOBCkf9pIP6xST9Gxl0kPZvthohWq+oZY89wfDSNCkKKGMSEIDUb6LKEdiUCWQAyYkisnf4A8HIR\n+W0M4X+Hqt4L3CsirwHehikA/xZF+3sbLgz5nxXi90k/lfBjRJtC8mPVAI6Ppp33W60mUeL3t/ti\nMJYQdGUDbXWBocXhXAc4ZxBlNh+nCz2hdvpB4Esj534v8L197nchyH+sqQ/GJP4u0ocm8fvkGCLR\nGPmmEvx8i7a15XKSdI+YOIQEwReDWFbQRwhSsoG+ltC2mUDOAjJOGheC/PsgWpjdI/H3Jf0QocaI\nuC+5t/n1fa65XMYjfv/5fTEICQFU35OfEfjF4pgIQDMb6CsCQ+ygLABnHyIwSe/2OVU41+S/8yUX\nBxL/2KQfItcYMQ+xevqee3w0DT5HSBBSrCP/eN8a6soGUiyhfYlAtoEyTgrnlvzHJP5Q1L9L4h9K\n+j7RtpH1bC9Ry/ZC44tBrGZgj40JQWo2sG8RyFlAxknhXJL/mNMbnyTxt5H+NoQfI/pdDPqqI/bz\nGHbfPkKwdPa52cBJi4CfBWQBOFswE7udzZ/ZuSP/k1j6cFviT432U0m/KRZNsh/SFTQ+Qj+r7QTB\nFYK2YrGfDcQsoW1EYOhgsWwDZewT54r8VfpPrTrU7hmb+Mcm/T4dQQeL3RDOwWLD0XGqwPqCUCfx\nvgVrVwjaRADqltA2IjB0nEDOAs4gcsH3/CHV7mnbvwvij5G+H+XHrmURIvpL47llTQTulyYK7kMN\nqx2cJRHIApCxa1xo8h/b7nExNvGnkH5bjcAn+xDR73ItmPkEQjx26YoNh85jtwnC4sBvM91uXEHt\nGEdc2uoC+xaBLABnAyLKbJzpHfaOC03+MQy1e7Yl/j7Rfoz0+xB+iOwvJf5GLJxzjxO56RJwGF5t\n0bt4/TPEs4P+WUGsNpBSF9iVCKQIgL1/RsZYuLDkPzTqd5FSZB5K/KFoP4X0XcL3P3KI6BcdX8ul\naTPK8UXlcB2vvSwWTbHwRaGRJSTVIra3h8YSAX/aiDGKwrkOcLohAtPA38RZwIUl/xi2ifpdtLV0\nQjrxp0b7fUnfJ3yf7EPkHrpOG+YTc40YT12aNgWiIQoRMfBtojDsh48fGLKEukTArQmEWkT3lQVk\nAcgYA5n8B6Kv3WPRNjlbG/GHov0u0ncJv4vsYwS/TTHYPccn7JBAuKLgi0HIMnKFIGwPDS8WuyJg\nawKxcQJjWEFdWUC2gU4ZBCYHJ/0Q2+FCkn8fy6dP1B9CyO4JEXgf4g9F+5ZoY1G+S/ou4TesoADJ\nd1lBKbDXaFg+07owzCdaRfl+hlB8HlcIahaRZw/NZhtniunubMAiNtFclwik1AOGWkHZBsoYCxeS\n/GNoW4s3eHxC1G/R1m+/DfGHov22SD9G+D7ZNzODxmMPgr2eS/i+MLiCEBODWmbQkhE0MY4IbFsP\nGMsKyjZQxlBcOPIfUugdEvVb+CQ+hPi3JX2X0BctQgBwEKkBWNsmBctNswBs9fHIiexd0l9MusXA\nrGdRCUGwmyhSLK63jbYLgRWBWk2gEJGQCAyxgvpmAVkAThgTQXoGjTGIyE3AizARyktV9RZv/z8D\nvrZ4OwM+B3hU8e+nnUMfD3yPqv5w2/0uHPn3QVsXzzZRf8i2iR27LfH7pB+K8mOE7xN9jOBjghCD\ne/yRV+g1ZC7OsdUxXWKQIgTWFrLZQHttIK0u0CYCQ7uC+o4NyHWA8wERmQIvBp4G3A3cISK3qeq7\n7DGq+oPADxbHPxP4x6r6x8AfA3/euc49wGu77pnJv0Bfy6cLNupvmzTNj/p3RfxtpH9QywzqpJ4q\nBn3gXsOSvr2PJf2qGCy1DCEkBm1CUP52J2YD24pA33rAkCwAwgJiz89ZwJ4hIOO0jT8JuEtV3wMg\nIq8CbgbeFTn+a4D/Etj+VOB/qer7u254och/15ZPKOq36LJ7+hC/X9QdQvouGfcRAhezBFFYBa2f\nOOnb/e4+KwZ+ZhATAlsjiGUDY4mARWo9ILUgPCQLyAJwKnGtiLgLq9+qqnat3euBDzj77gZuDF2k\nWKj9JuD5gd3PIiwKDVwo8u+DbSwfi5SoP4Q+xN832o+RfozwfbL3Cf5g2o9cfF08Wlffm732qoX0\n3e31bfWswBcCsM/dzAZ8S6iJpgjYBWjsOIGUeoA/PmCbgnCfLCALwP4gIkjqsHi4V1WfOMJtnwn8\nemH5uM+yAL4c+M6Ui2TyHwljRP0uYlYPtBN/X9KPEf6str1OIgcj2D8HE/OZjzy/H4wwuILgZghV\nBqCN+oGbFVjEsoGQJdRHBGLoawWNlQVkATjzuAf4DOf9Y4ptIcSi+6cDb1PVj6TcMJM/4/v9fdA2\niCvk8fcl/j6kHyJ8n+jjReB0knGj/mANYLIuRcEXhJVD/CEhmE+Ug6l0ZgO+JZQuAsOsoF1lAbE6\nQvnkWQR2A5GxPP87gBtE5HEY0n8W8Ozm7eThwJOBrwtcI1YHCCKTfwJifn+K5ZPS2mkR6gYKDd4a\ng/hDUX6I8OctGQDAVOyDpf8BXPZ+69Za3Nch+ob/XwiCie7rmYEVAvd4v0bgFoubReJ0EahaRNOz\nAKisoNQsYEhHUM4Czh5UdSUizwd+GRNlvExV3ykizyv2v6Q49CuA16nqJ93zReRhmE6hv596z0z+\nPTHmEpGhOXtCg7hcn7+L+EM2T0wEYqQfI/yK6GE6Cf/qTKJLNlbYeMRZmiobQ2ZWHNa6aQjCciM1\ny+hgCrOJeS6bFcwnUssIqhpBMxuwn7evCKTUAyx8Kyg2NqCrI6jP6OAsAHvCBGSkkZCqejtwu7ft\nJd77lwMvD5z7SeCaPvfL5B9AX4Jv8/tdpET90O7zm+3dxN8W7XeRvt1uyL6ITh2yDxH8dDKPfu7G\nsdSPXW9MPDyZmOtacZhSFwQrBtY2csXAzQrs5/aLw6GOoT4iEO4O6t8ZFBsbEBscNpYNlAUgw0Um\n/xHRZfmEEIr6Xfh2T1/iD0X7aaRfEb5L9j7Jt0X6U4n/eq21IixL+mCI34rDerOsCYI9aiqr4hqV\nGPhC4NcI/GzAfN5+IuC2iDYHi4WtoFhXUKgW0GdcwDY2UK4D7AAiyHw8N2CfyOR/Qoit4mXhR/1u\nr37I/4d24nej/b6k7xJ+TQg8ch8j+p8Wv5JrXXnEXxcEKwbrzaqRFcwnysFEGzUCtz6wdF7bArH9\nPrfPBKosIHW94VgtYOwsINtAGT4y+W+JULE3BV2E4Hv9IbvHvG4Wd7cl/i7SL987ZJ+aAbQJgiV8\naI/+fUFw909YRoVgvp7UsgGoRMB+B64llCICzOpzCMXqAbPZitWq3nY6JAvoUwzOApCRgkz+e0K4\nlz9s+fijeP2ov5YVOF090E38oWi/jfRDhL+tDeTDJXxwvf6Y7VNth7oYmHvb7GHtCME6mA3MJpOG\nJQTtIuC2iDKjkQWkWkEuti0GZwE4JRBBEmt+pw2Z/Aeiq9gb8vFjlk9jzV0v6m/6/9V7v32zi/jd\naL8t0g9ZPjEbSFSpRtQW2HQs2usUkqdOu6iKJNg+8zIz8LMCNyOYyiqaDbgFYlcEzLbYrKPKNlaQ\ni9ji8qnF4G3rAHk8QIbFKOSfMBWpFPufATwIfJOqvq3tXBH5O8D3YaYtfZKqunNinAj6dAH1ndrB\nou/8+m6kDyER2NT69tuI37d3atsChF8je5/kV8cdn9TCO262MNcubzYrRcEKQt32KZ6PdVAIrFiE\nsgGgVQT8wnB40ZmmFRTvCgrXAsaygXId4AQwAUZs/94nBpN/ylSkmGHHNxT/bgR+DLix49zfAf42\n8B+GPuM+0Ub67h99W5dPc3WtejTtR/3QFAHb1eN6/Jb4XZsnZPHUtnnZQEn4Ltm7RB+K9LuEoCB8\nAI6d8yczSnGYLUpBsM/vi0FICNqzgbgI2O/MFQE7TqDLCopPHJc+QjjFBsp1gIwhGCPyT5mK9Gbg\nlaqqwFtE5BEi8mjgsbFzVfV3i20jPOLuEVq4pQ/aLB9oev1QEX7I7nEHZ7nEbxEi/obt40T+hvSp\nyN0SekwEAF0ddXxqe17zOJkd4BJ/KQqOIMhsUWYGISFwrSE/G2BCqwjYmoD9/pYbcWyhej3AtYIa\ncwb17AjyVw9rs4FyHeDkIRfc80+ZijR0zPWJ555bdFlDobVzQ1E/VHZPbX6eiTaI31o9vs0Tsngm\nTMOkHyD8GtFvE/1bFFmAumRfXDsoCEUWIMV508msJgR126eeDbj7UkTAwi8Ku9uXm+2yADs6GNJt\noG3qAFkAMizOfMFXRJ4LPBfg8sOuPeGnCSPV/w+Rum/5WPg2T31fvcBr4RJ/uS1A/LVoPxTptxG+\nT/JdBV8fLbaPLwilGNSE4LgmBJPJJfMYrBvZQNkptCEqArCpdQf5ReGYFRTLAuodQemjg1MFAJp1\ngKECALkQHIWMt4zjvjHGU6dMRRo7Zp5wbiuKxRBuBfiUa/5k61zDs+Vm0IIuY6BLCEKPF7J8LELW\nT31/3ee38K0eiBC/b++sjivSb7OA3O0u1gliMLXPGqglOIKg5f3dzKA41hWCwhqaTC4Fs4E2EbDd\nQbDBnbwuZgXV98fbQr0PjG8D+WMCLI6Z1uoA5RU6CsHbCgDkFcLOK8Yg/5SpSG8Dnl94+jcCn1DV\nD4nIHyWcu3PMj1ZJ0zrPj9ejTuwG7VM/+IhZPuW1nCLv3PP9gZrd43v8dnvN5nEtHjfaj5G+S/Yu\nyR9Xg7nS4By/mNevZ4XBi/bLzMDNCtxjioKxzQZ8svdFgIn5XLY7aL6elOMEQlaQQXsW0N4RFC8G\nN2ygjjrAmALgnpsFIAABZhc08k+civR2TJvnXZhWz+e0nQsgIl8B/HvMyvS/ICJvV9W/MfR5U7AL\nku8DfzoHH26037Wuro36feK3aBC/7+13kb59HSN7n/hXiS2ws2nz/MWcUhgWnhi4mYEVAtca8rKB\nFBGw3UFsVoWQhusBNvqPZQHRwWGJYwJcpNQBYoVgvxU0C8DFxiiS1TUVadHl862p5xbbX0vCCvQZ\n9Q6f1FW2SiFwrJ4SXcTvi8B6VZG0S9Y+0ffJAPxjF/PqerOp2W/FYDE3zzAtsgBHCFxryM8G+ohA\nrB4QX8egngU0OoK2tIHs676F4FgnUBaAgRCpstMzhrOZrwzArnz/yWozuN3TR6zY2wW/pz9k9/iE\nX/P4He++JP62aP94WZG1S/jFNl1vKQLuH9VD5hoynTbvZd/b4xeeEBQRv26cbGBGqwgY2wdQoiIQ\nsoJSsoA+NlBMAMqv8gQFAHIheEx0DZYtjnkK8MOYeum9qvrkYvsjgJcCn4f5Jft7qvobbfc7V+Rf\n+tV7xPxonTyffwx+j3/t+jusTzfsHtezt4XdEPG3kb5P+NvaPqFjZ1MUh+gfWldiYDMDNytwMwIn\n4q+JgCMQvghMqLIAlEoQinqAawV1ZQF19LGB2usAFm4heJtW0G0EAMhZwEhIGSxbEPyPAjep6h+K\nyKc6l3gR8Euq+lXFQu6Xu+55rsh/CFKLvhbT5WbrmT37wp3BMxVdUX+jwGtREHyN+F2bx7d4HNKv\nRfgtmYDZ3qMF1BbU3Ai/uK7a2sDayQzsfvf4QDaglvTNxZNEYNsswI4L6LKBDtd+MDBltZKS6FvH\nAwzsBOorAJA7gRCp6lPDkDJY9tnAz6jqHwKo6keLYx8OfBHwTcX2YxrzpjRx7sg/pVjb1/rpc7y7\nbuvYcKdudv8Pd/n0UAuX5PsSvxvph/z+UgQcKylAMK0oji/7qe21ZrNG1K8s40LgZwMhEbBEPAPx\nWkTNd8XoWYArAOFBYfFC8NidQDEBiCHXAXrhWhFx5yi7tWhVh7QBr38KmIvIG4CrgBep6iuBxwF/\nBPyEiHw+8FbgH/nr/Po4d+Q/Fsbs+NmlIOwFfYjfJf0I4euRXwNI+G4W0/K8cjj90coIwmpVCYF9\nBkcISmvIFQGWVTbgioC1g2ytYLZAJjMmMmU+uZScBRj0E4DGLKEJdYDa15jYCbSNAISif4sLLQD9\nCr73quoTB9xtBvxF4KnAFcBviMhbiu1PAL5NVX9TRF4EvAD47q6LnTvsslVzF9c+Op60+v5jIWj5\ndEX9rscPceIPRPqW8Gtk7xB9QwTa4BC/2mvUBMHJDqwYFFG/zqb1GoGtDQCpIhCzgo7XD0WyAHrZ\nQP4soX3swV+BAAAgAElEQVQEoG8nUBaAU4mUwbJ3Ax8rIvpPisibgM8H3gzcraq/WRz3Ggz5t+Jc\nkj90k3TIyunr+7chFu3vOwsI9fZvBVvcLYi/VtB1/fUQ6ReE4pK9LpvfgTaXxCohxeg2e57Mp01B\nKMRADqYmK3AzglA24IrAgrAd5IrA4nKZBVjCX0yvCGYBxnIdbgOZZzNTQlSdPqdfAOCCdAKJmN+l\n4UgZLPtzwI+IyAzzG3sj8P+o6odF5AMi8qdV9d2YzOBddODckv9FhztXfxSpUX8K8a8s4a+ipO8S\nvkv0mkAS9hgpiMWeL5em6HJdEwOOp44QFBlBKBtwRaCsCRQ3dLx/XdXXFwhlAWwOa7WAxXQx2Abq\n2wl0mgQAcidQH6QMllXV3xWRXwLegYkoXqqqv1Nc4tuAnyo6fd5DMZC2Deea/IdaNO75oUzBdvzY\nds9Qr/9qNWmdwqFr/y4Q7PLpCz/ip0n8PulbwvbJXg/r5NIGPTT/SzHntS43yHwSFINmRuBkA9Ah\nAglW0OJylQVArRaw3Bx22kB1MegWgK5OIMgCsHeMOMira7Bs8f4HgR8MnPt2oFc94VyTfxe2HfC1\nragsl5NaoW5XFpA7b39jX8uC6kBa1O96/FBaPTHi90nfJftQ1B/rBnJnT9RlMaf/fFITBFcMZDkt\nMwI5mKIwTAQWl6ssYAYcP1jLAirCB8qsIG4DXTnfMJ8IDyzt9u06gbIAZGyDc0/+fYl6DN9/LFI/\nXAvumrhtk7qlIGoDuZZPHxR2T0n8js3jRvs+6buE7xL9pmvtF+fYyYE9vxIFXR6XYlAJQZERFEJg\ns4GgCAC6APE7pJ2FxtpqAfMEG+jBlf151ltD/UJwhZRFYnYnAC6yAAQgjNXnv3ece/IfiiHWkSsC\nviCsVlJbytHFYeE1+wO7TAAtnZO59UIb4bdF/T7xF7DE70b7PulbwnfJfr32o952rB80/0+nWorC\n5KASA18IgEY2wHHADtomC4CyFjCZzhs2kNsNdHmWVge4mmYnUPuI4KYAuNhWAFJmA20TABfnVgDO\nKC4E+bcReB/rJ8X3T0EsM7A10K7HWW4kOn9/DJ12jwu/vTMFRTRdK+pGiD9G+qvjpgBsVtW2SUAs\nVwizhdm+frASg5AQuNmA7R4SCGcCIRGAeBZw6SooxCBkA7XVAe5bxn5v+haCm6OBga0zAIvU6aBD\n8M89d51AeWK384UU6ycmKNsUfaF/r//ROp4BrHXTMHhsIbL+YIER4CnWjxP1h+BaPRAmfkv6LuG7\nRA+wWnoq6Awgnrm1k5WUwmDFICgERT0AHBGwdhCVwdagXNcK8rMAMB1Bh/dHbSDz4SjrAHBYGxV8\n9dxMEU3QlhsmALC9BdRnPYBU+8ciZwEnjwtD/kOi/66unxBi0X2o6Av9FnUpr1UsKDIb0wYKIVbo\nhdLr9+0eMB6/Ljc1m8cnfZfwfbL3xaD2SKtiGgObDRTCMJtvSjHwhWDCqlMEkqwgiwVw/GDcBiq6\ngezIYFsHMO+XsDmqTwsxXzObTPikL3p7EAAfKQLgI9X+scgCcLK4MOQP/fz7PoXfNutnW9+/D1Yb\nwXec1ptVM9LvvFAgE+gzC2cBa/e0EX+I9OvbEmsAS2E2r77D49XUCMIyIARrrWUDrgiAVxPwReDy\nFeaYBciDh/VawBXFzQsbyO8G8usA5ajg4n2zE4i9C8ASkqaD3rYDKCYcZ14Asu1z9rFN22cf68dH\nV0eQLfoWrnRnp8/ResLBZOS20di8+16Hjxv1uz6/RYz4fdL3CX8dqAGEsD4WpotKAMoVgD0hWOHU\nCI6aImALwxZ1K+ihWhbQeLLFCg4uw6o4J1AHYDIvRwW700IspgvOkwDEcG4F4IziwpH/tt07Q60f\n1/f3rR+7Hyj/eP3L12c+CPv9R5v69g1rpsyj78s57ncAG/W7xV3X348Rv0v46xbbx8d6JUyLLMoV\ng6pDchIVgUkxlLcsDC9nQStocrXz+R46bNpAPBiuAxTvfQFwO4HCraD7FQAguB6ARaoA9LV/4AwL\ngEj1Mz9jOJtPPRAxAfBJfR/WT2xbF6zf74vA0rOA/EJvsPBr4YuBu3Ri+bB9F2Ovd/RsVhIk/hjp\nrxvk13KfJUwLUbViUApBYQ8FRWCtTIssoDavgwMBNvcdNcYG1GwgaK8DeAJQnxCOshV0VwIA1OYC\nAqLrAQwdA9DX/oEzLABnFBeS/LdFSDSGWD8w3PcPtX0erSdcdn6yJuKP/KiLJQ7HQMjysbB2j0v8\nfrRvSd8l/NWy33ezWgqzuSXHuhAApQhYS8iKAIuiVdS3gpwsYHLlot4RVJC+Xr5U7wa60llEyRWA\nQhDCI4IZLADHZUBg710XgNB00O56AMCoLaAXQgBETNB0BpHJvwOx6H8M6wdoRPxHx5Pqj9bz/SG8\nopcdEVqL+L12z7WuSsvHiMF4q5A1unwcy2e9lkb/foz4Y6R/dLSdOPpCUBMBbKBsMoHNamPqAwtq\nVpCbBWw4jttAbh3ggQebhWAcunZaQccUgEVRu7b6e2lKLwEABreA+rhQFtAZw4Ul/1Trp8+1hlo/\n0N3yeVzubvr+ftHX7/hxLR8VceyIBawKc37ETMBFW9um7+1b4vdJv28WUEdVTA1lAismzIhnAZOr\n6tFdzQYqtpV1gCsuVQdeQdn501cADqb1IvBqE/oOzbbDNVya1u0fnz/N71wlANW2bgGwGKsA3CUa\nZ0cApPibOXs4m089ElKLv27036fwa62fWPQPlvTXW1k/Id//aFPPAjasyxGm9n1Z9HWIXmYHqPX7\nZ4tqhK9dEL0FMp+2zsVvsVpOaiJQ8/mXk2C07xP+8VEKITR/JkdHysGBO5NmXQRmVN1BoSxgA6UN\nNLnKXKHKxw5rMbjCKALQ6AKaW/Ku43AtTjdY3P+3TQXmd605CtjuD40B2EUB+PwIwNnE+SL/kcY6\nbTvbJ/Rb2D2l6ydk/UB9krelExGWKxy2+P61om9Kx0+xClb5us/i6wG4LZ2+3QNN4vcJf9mSAczn\n4h3fvLYvAlB1CFkryM0CfBvICIFfBzisjwdgNwJwFOjyevgCPnHckJ9oAdiP+u221A6gMQvAXTj1\n00Fkz//0oA/5wnatnymF39Ac/10DviC96yc2yZtr/ax1A471E/X9bQbgWj7TGbX5FEbG+lhqdo9v\n9fjE30b4LprHhYXAFQG3SwioCYAdJDZbK/NIHaBeCH5oawGYOl1A6/WqFICpTGpTQYTmAro0HacF\nFPp3AFl0RfIhpJ5zEbIAEbkJeBEmvXupqt7i7X8KZjWv9xabfkZVv7/Y9z7gfkxKt0pZK/jckT/0\nF4AQUts+hxZ+/X0+lhu4FNxj97tRf0GgAevHkn7U9y8/kJMJLOal5SPTYglEMG2OiQN7+iCV+I8T\nC8CLA/HOtd956Oc1wc8CNpb4bRaAqQNMr44UgotZ33oLwGQWHAfgjgR2p4KoTQmBKfgfTGtyUqB/\nCyj07wDatf1zESAiU+DFwNMwa/XeISK3qaq/HOObVfXLIpf5YlW9N/We55L8oZ8AbFP8bYv+21b4\n8qN/IDjXDwCLDZemzdG+Lty6st/1c7Q2RDGFckDRlFnY958tihkuV/UMwO31d17Lwaw2lbNZQWv8\nyKyN+I9a/P+Dg0nt2LoQxERgQj1TIGwD3WcKwZPyiAL3H9NLADar1nEAU5mVawKY2o2ZDM4IfiUA\ny437HcVbQMvvJtIBZL6n3RaAt7V/4LRG/6MVfJ8E3KWq7wEQkVcBN5OwFu+2OLfkD+MIQO2YHUf/\n2xR+3YU/rAV0tDYkZt+vA9ZPJQaTerTviIHBsl70dV7b1bHKhdTLydLSu4V8vz/m86eSfvwYW8w0\nIlDVBvz72/bQsA3k1gHgeDsBcOeCseMAZosymXDnAnIng7OzgV45X8NyihWA5mjvqgMIqhZQdznI\n8vZOBxCMVwBuQ+i4C2L/XCsidzrvb1XVW4vX1wMfcPbdjVmg3ccXisg7MIu8/1NVfWexXYFfEZE1\n8B+c60ZxrskfhltAbfbPrqJ/SCv8+j3//iyfy2Kd2MuzetdP0PoprAdWR2Hrp6XoKwfT2jz+Mp+g\nXatyJWBZCkGY+FNbP2dzcc7zfxfSsoBRBeCBB5sDwQ7vr80FZAXA/tzQYiW2CbBZOYQfHwNQtQV3\ndwDBOAVgi120f1qcKgGQSTWFRzfuTfHiW/A24DNV9QEReQbws8ANxb6/qqr3iMinAq8Xkd9T1Te1\nXWy8kT7nAEN8x9RU1rV13D88u2+1krr103atjYnijtZS8/5XGymif4O1Vs9m55ff2FWmoJa2lr/I\nbipbRKq1eWxm9bjBeN7O+x5LYaaSeBfxHx1pcEDYaqlOQXnD0dGG4yPl+EgdgdnUis6rpbJeTkw3\n0rEZlGZHKG9WZuDaei1sjmDzwHE1i+lhsaCNnfDuaFVf/cy+fuBB0067Oqa2bnLxv6gyYcqEKdPJ\nnKmYgrB5P+NgajK7g0IEDqZq3hf/gwkOLk3NiN9LUzXvZ/a9sX9msw2Lg3rGOZ9vakLgvrYBjB3H\nYgMrGwS5gZIbGPkZ87bddBZDa3qnEPcAn+G8f0yxrYSq3qeqDxSvbwfmInJt8f6e4v+PAq/F2Eit\nOPeRP+wv+rfH7Sv692f6rDz/ZuF3vVkVNs+cta7KLKDs+rG2g9v1E7J+rGVxvKzWzi1E0/f9JwfA\nkZlOufX7nUuvAVwx4g+9Boqunuo8mwn4dYH6uroWaRmAHGxwi8A6XwfHAeh67S0MQ0H4VAXgoh7g\nt4DGOoC2KQBbZy7V/7fv29YAsOizBnDjmLNW/B2v1fMO4AYReRyG9J8FPLt+K/k04COqqiLyJMwP\n/WMi8jBgoqr3F6+/FPj+rhteCPKHdAEYsmZvKlK8/5S2T3+mTzDEX9UBTNtnV+FXRRCX8K31Y8XA\nsX7kGNP141o/i2mr7z9baEGLm4I4XWx6Td4WQtf0D3a/KwK+AFQF4Q2Lg4knMAkCcF+9C2hz/zET\nFqUAyEFFeuVcQOXC3w9W00FPZjUbzm0BHVIA9sfg2T8Ff3tsABgMt398DO3+OVX2z0Co6kpEng/8\nMkaFX6aq7xSR5xX7XwJ8FfAPRGQFPAQ8qxCC64DXipShw39W1V/quueFIf+hOIno3+/8AcaP/gsf\n2Y3+ZXaAWuK3o32diL/s+pkZojKLnhQ1hMO6COyiJbT2eR3idwm7mtOneezBgZtpVJ7/UAGYHNXH\nAdg6iPmOnPxnNjWzgbozpk6Pox1Affz/1WbaKACnjgCG+AAwu21f7Z9nBjLe9A6FlXO7t+0lzusf\nAX4kcN57gM/ve78LRf5nLfpP6fyJzfM/avQ/nRVTFTuFXxu1rla1rh+7MLoeFncvrB8WcJwwP3+X\nBRSb8M0/J3QNKwi+CFQFYfd3o78A2KUi7R51f9cWlRDYdtlgB1AR8bsdQDKZlctBFo/GxhkQ5s4B\n5I8AXm4ksBDQsP5/aG//LI8fMPr3Ikb/+8aFIn8Y5v+f1ugfqs6frkFfSdH/8Soe/a/MAia6IBj9\nl9HupYIAna6fasDUBJwpHszo2oK8OiycvvUBF5boLewoX98GAmoZQP25mgJgh0ys1+ItDlMdJ8fr\nahTwzBk5bYvonv9viLnKBmQyMy3lxc8qxf9f1hb3qT53F1eGJoCDcPuni5Ma/XuyOLvTO4xSMheR\nm0Tk3SJyl4i8ILBfROTfFfvfISJP6DpXRD5FRF4vIn9Q/P/IMZ41FbFfurYUNXSO3WajEzdCinX+\nLJeTsvMnFaHOn6O11Dp/jtaTsvNnvVk2On/UprCTWfULPVuY99OZIf/ZtIpSnddyMIWFWflKLk0L\n28d0/UwOTFTsYjZXpgutTbHsYnEwYR6wboYiJhxuN5AtAi+XWusCil+z2QEE1DuAnCUvWa3KsRK6\ndrqAjpe1jh9dHdW6gWznz4QpU5kZIcAMDJuK+b4PJsrBdMNsUu/+cdd86Or+cbE4WJ/67p9z2Pmz\nFwz+1pxhyU8HPhf4GhH5XO+wp2P6UW8Angv8WMK5LwB+VVVvAH61eD8KUtPElKgj1r3Q5WO63RKu\nCPjRlG39XK0mHB1POFybyO1wZQlfzPu1O91zJQLW/jna2PcT1ptVSfxrXZUtnxvWRgAKwpfZQeVn\nzhY1AZCpKwKzsvNHDqZl26dcmpUiYC6h5QIq5n+trb0Lxorx/fpFUai1UXkIIY8/hnrrZ9g6cruA\nrAD0aQHVo1V9IfulKwArIwBF+6eu11UrqG3/hML/P2q0fwK92z/BEPy27Z/m57AuxWFxsC5FoGvR\noiHEnmq/npgAuAFT179ThjG+sXJYsqoeA3ZYsoubgVeqwVuAR4jIozvOvRl4RfH6FcDfGuFZSwzx\nCX1idwVg2+jfEryFjf59hATAhRv9W+K30b+1f9a6Yb1ZldH/Wlfhvv/ZwgiAjf6hIvzF3AhAIPoH\nkqJ/i+lMmc43AdIPR//2ONu9sy1iAmDHE7jjAKp93QIAsDmiFACg6v+H9v5/KwBe3z8bs01UHcL3\n/i/tH8ro3xK/FQFXALpgBcBG/xZuduBmAbHo38Uue/8z+mGMbzs0LPn6xGPazr1OVT9UvP4wcF3o\n5iLyXBG5U0TuPDq6b7tP0IJdDvyy0b9v//iZgBv9h+BH/24R2IqAXQhk6dhALuFbIfCjf/OghQ3k\nRf9A9boj+rf7uqL/2Vxao/9dwa81uAPKrP2TilHtH4jaP0DQ/rHRvxWCMewfOLnBX6c++j+jOH25\nSABFL2swbCzmsLgV4JpHPr5XJXBI989pL/66c/6A7f+vipVrNX3iZQuhUp/zx073sDEtirqimgJi\nUWQ6KzNgqSz+YvrZ7fAiKaceNn3/bufPCmozRhvvv97zbwTAPPNyqYUATDg62pSF34MDKYl7SDE4\nBjsGwCK1+4dC0NRp/5T5oiqIL6ZV+6dt+bxial4v5tViOvY756AQg4Wxf2RaK/7asQBrVmXR92gj\n5VQfUP1OhLp//MnfwI3wdzv4KwWnufirstvAZFcYQyo7hyW3HNN27kcKa4ji/4+O8KyjYhf2D5xc\n8df9f9virxzMgsVfG/279o8f/bv2j2/puPaP9f5D9k8f7z+GkIAMjf6BMvoHqugfSsunEf1DtPgL\n9Cr+QrMG4CIU/TeO8ewfu63xXZ2g/ZOj/3SMEfl3DksGbgOeX0xTeiPwCVX9kIj8Ucu5twHfCNxS\n/P9zIzxrA/vo/e+z3COYPyg3qrKwC76U6FjtC0x7p58FHJVR3oSpVC2Dk8m0Nu3DRKZVr7lt/Syy\nAXP/as4ftd1ukYFftvXTDvzqGvVbj0smHB9tSgE4PlIODsbPAKoFXuz7+ghgi51E/3YUtY3+7TaA\nxawa/OX1/q9ZllF/tPd/TY3wh/b+Q/fUzzGcv95/LZsnzhoGk3/isOTbgWcAdwEPAs9pO7e49C3A\nq0Xkm4H3A1899FljOAu9/0BwW9fI3+3sn3VJImPbP7Bq2D9mxaywsFZkPCkj78WB1ATAPXaXFhCY\nzp9FS9eRi9WxlHP/TIv58mwBWOZTE/1TTILneP/l1A9+7/9iZiL/QgzcqR/WLEsbaLNZl8Xf5WZa\n2UDF74Lb++83DLQhde1fGD71Qwyn2f45axjF808YlqzAt6aeW2z/GPDUMZ5vLIy95KMvABAf+bss\nvfDtRv5C+rw/9n+TBVwyA4zsXDOAWjJyR/6CEYCiECzFvD+KP+PnDFluzEAoRwDMADAXhrDcydh8\n/98KgBWyUAZgt4fgW0RDuofcJSndgV8WNvqXYpBur+jfIfzS+y/EYIIX/evaqQUcOyO+m9E/+NOC\np039YOGSfdvUD+U9A1M/uDiLC78oWnXJnTGciYLvPrCr4m/bcT5S7B934rcSCfaPmfqhn/1jswHX\n/qnm/Keyf668bKYoBlgXf+yXrzBz2ZsHLOa4L56kmPfHFYDNKsX+gZgA+BYQ0BCBNmxD/O6o36k/\nI+vSm/en+HnooRUBO7J3XS29dmxmT21E/1fMqpk/7cRvVgym88HRPzQneIuhT/Rv0UbEed3fk0Mm\n/5Fwmrt/wBTxll5Hx2zSbv+4Uz9MpvOiM8Xx/xfugiRx/988bPWssqz8fysA7tQPsQzAtYBcn90X\nACAoAjH4xD9G0djH5ggmhecPzgR4B9Oy8CuzWXvnTyD6D3r/PaN/oPfEbxZjRP+7nPhtHwJwYT3/\n84Shxd+xVv2C5vS5XfbP0fEkKAD2D99wTfXHPp9o0ftviHRe2D+mj7ywfbbx/wF58LDu/1MUgO3+\n+ZqKXYwAzNbdBWBfAEJFYKCWBUCT3P0pnmNoG1HszxNksT4WZvO42BjP3xGBozVify9W1eypul4j\nzKuuHxv9s0BXR72i//LznNLofxtk7384MvlviX11/4R6qqFp/4QG5UBoEq9qsJdzx2JKACsAR3Zz\n2P8vIv6a/39wGVPLpyoAX64WLZ9cDZv7DGlNWLC5/xhXAOZFmJneAYTzvjsLcNFG+qlR/9DsQJeb\nuPUDlf9vB9OtV6bV1vr/UOv7t8o6nczNpG9Q1APqff/gTPjnNQNsE/3bTPQ0T/u8y+hfNXv+5wan\nbdUvf2CNb/9s0/7Z5f+bAnAV8dv/l5tD5qECsL2fLQDbuzgFYKh3AG0vABCrAzS3URMBF7HI3cJG\n/f7I4pROn9VSmtM9X9HMBvRwXRbDa9YP1Au/tuXTKfxWbZ/HZeG3ivZnoBRWkM0YKATezPkPdQvo\ncN1PzGz032fWz7HRJ/o/C/6/iNwEvAjzB/1SVb0lctwXAL+BWczlNc72KXAncI+qflnX/TL5B3Ba\n7B/f/wfzB7Zt+6dFyP+HKcztH1JCAXhxGY4frBeAwWxzBQDQhw7L13DYKQDTqXL00KQhANOFsj4W\nUrOA+nYD2xoaI37X6nGJPzTHUJ8i8XotZdHXhS6r8RBAsvVjjj2uWT9go31z/HQyZ7MxP1Nb+AXK\nQV9hz798MtqWfNzW+x87+j9pAVDUTI0+EM4kl0/DTHNzh4jcpqrvChz3QuB1gcv8I+B3gatT7pnJ\nP4JdDv6y57gisQ//vz73f2A4f6QAbNaQvVTy6nxyqT4A7NJV6OH93gAwqhZQ+gnAhBUHbAxhHiub\nlTCZVZOmGYQEAPxagAu3LtCFtrmEtrV8/KKvRc33h7rd08P66VP4Bdfzb1pALmJLPkIVfKR6/yHs\nczWvU5wBlJNcAhQDYm8G3uUd923AfwO+wN0oIo8B/ibwr4H/I+WGmfxbsKvBX23H+Rjq/y83cIk6\nqoE99T94twDMcsqV84EdQE4L6DYC4A8E67KBjo7UGQ9ATQSquYGK76ClAygW8YcsH18I/Cmqk+H6\n/uDZPWHrBw7q26hH+7UsoKXwa7bZn0Z34ded88cf9dsW/adg19H/CeNaEbnTeX9rMTcZhCe5vNE9\nWUSuB74C+GI88gd+GPjnwFWpD5PJvwMpAjDU/tnG/3fn/5nPNw0BMAduuDQ1Uz+3+f/ldco6QLMD\nCIzfbwTgsDysFAB79R4CIAerWhFYl2s7XIsUAfBtoOZUD+7PzRFETwhC8DOHRct8Qn6P/2xezVzq\nQwIBwLbQ1ZHJviDZ+hmj8Ht03Px7mM83TiYaRsqo3y6MkSWMG/33mt7hXlV94oCb/TDwHaq6EWcy\nORH5MuCjqvpWEXlK6sUy+SdgiAA0jttx//+2BWBodgBZhFpAxxAAqHcBAUyuAp1P0OXGNng2BIA5\nDRtoOlsXo2yd53ZG+8aEoA1+pO8Tvxv1x1Ykm8yUWZENTA7a72fmQ3L+JG3R17620X/I94fOrh+L\ng4nitN6fisJvqvcfQ18hOYUTwKVMkPlE4FUF8V8LPENEVpgM4ctF5BmYRP9qEflJVf26thtm8k/E\nthZQl63TtwB8TNP/9wvAY3UAtbWARscAkCgA6+oPdXK1nf6gGgUMMLlqgc4nyMGGyZEpBK/XZrUs\nNwuYzZVVuSZwrCOo/rn6oG320Ol8UxJ/m+UTW8imF+xoXwj6/uBbPTM2Wswk63T9QNj6gWbh17eA\nLk3ZSdtnH+yzRtCFEad36JwgU1UfZ1+LyMuB/66qPwv8LPCdxfanAP+0i/ghk38vdAnANvZP23Hu\nPbsKwEM7gAyaLZP3LadcPV8TEoDj9UMsplcUAjBPEwB3HiBnHEBJQYs1crxmUwpBex2AuZ1Kofi+\nalaQ/UzDESN+H9by2RZ6tKraPXE6fkLo6ftDvevHvA9bPxaXpnXrJ8a5foQ/ZuF3V9H/aULiBJmj\nIpN/T+xCANrsH/+esQJwWwdQWR9ImgK6SQJ9BKBmAc0WpgtocdmMC/DbQK0AzKbw4GF5ngKTKxfo\n3Cx9aG2grixgMdPSCvJFYDqntlBMCF0jf2s2T0H8btTvjuy1axX0RWdNwHb8dCDm+4Pp8jnyWn27\nRKANs5lGC78uuqZ8cHF2iHy8KZ27Jsj0tn9TZPsbgDek3C+T/xYYOhDMoo8AmOO7C8CLg3VNAChs\nolQB+MSx8PAAt6QLgNcF5LaBQhGtFiOBZ9NqKggwI4Nny1ohuI5wFsBCy5bQuAhAlxB0tXC6kb5v\n9Vji9wu9s4UmWz61fv9ExIq+Prp8/3J7YtdPW8+/i7aov0/h9Rx2/pw4MvlviTYBSI3+284b0gEU\nEwDoHgMA8eivSwCmMivf+wLA6rgaCexOBQHIag3TaaMQrEer0gZqywI2R5RW0GK2boiArQm4QlAV\niPvBLeyGiL98fqfQC6bYKwfFesbFusZgprt2F74filjR17yfsV5XdZWY72/R1vWzj57/bYl8nwKg\nCutNtyV1GpHJfwDGEADf/99mBHCfKaCtPVT+8UYE4OpA3A3tAhDsArJ2j50Kwr4/uAzTY9PB4heC\nAzZQVxYwQSsriLoI2KOhXhyuZwVp8Iu6PvH7dk9b1C/NYbXNY6bDRMEt+pr3zd/XIZaPxbbWz3kp\n/NbmVUAAACAASURBVJ5FZPIfiG0soG0KwH1aQFPGANi0vZhkMnkUMIQFYMO6Ng7Avi+ngiiio/IO\ndmoIaBaCAzZQVxagxQIxrgi4dpAtDMPwX3rX23dJv3aMY/e4UX8vLCKF3oHwi77Vdg1M+9GNrqi+\n7zw/Qwu/sM/oX8u1sM8aMvmPAOtb+iLQ1vvftwDsbu9qAQ2NAWhdBAYaAnDf0owEbssAjG1AbSCY\nGf0bmArCzgZaLEaiUIwe9grBs2nQBmrLAsy6uE0RsHYQC2V1LGU24ArBoiDvTQ8LyI3sLenXtgWI\nv3zWS9b6mdYsHzmYVsct5tWUDj6m/f9k/Y4fCBd97XZI6/e3AYQbbEB9wNfQyd66SDxH/9sjk/+I\nCGUBfeb+GVMAoN4C2pYBdFlAi3W4CGzbKJcbqU0F4c8FNGHK1G8FtZ1AbiF4Wu/zr9lAHVmAgVkm\n0YrA9ICyJjC9osoGakJQfvmVILTBj/B90gdj9dgBXZbQfa8/foOWP8kdZQIhuI6U5dbFhCTfv4vg\n/eke+lg/py3636gUa2KfPWTyHxl9bKBQAThFAPx77UMAPnEsXJq6/fMW4bmAlptDNsUEY9W00PNw\nIdipC3AFtbns27IADqZNK+hwXWUCxbwW0wNTPLbZgCsEUCy0jqkTQHsW4LdvukVdN9qHJvGXz+9F\n/UmIEL/MOoYNtyDW8ePD/NppZzbQ5vuHRMFv+XTRJ6LP0f92yOS/A/gC0Mf+8ZE6BiB1ENgQATCY\nsNwoV9Yi4EoA5hPl8mzlED6s16tmJ5Az4rRhA7ntoAVCWQDuIvEUSyI6mYArAva1LwTgiIGFJwoW\ns8gIXp/0oe7xW+J37Z7aZ7OWz2xWWT6LuSn2tllAPeD3+lscTKv5/Ycg1dLZhfWzq3PPOzL57whD\nBKCtA6hTAKA2CGw3AmDm0JlP1BGCanTwgyvlYHpcdZY4nUC1QrBbB3BtINsOaruB/CwgYgXZpSJd\nEZBL09IGkksEhcA8YiUG5c8wsACLD5/wy9dOtF+JQEX8Qa8/FZOZGeg1aZ6nEo7Od7nalOvrW6RM\n9BbC2NbPrqGE1sY4G8jkv0OcRQEAek0GZzBx5oavplVwO4H8QrCtA0RtIDcL8FtCbUeQjYpDIrCY\nGjvoyKyW5VtCrhAApRhYaAK5+KQdivTLfa7VA027py3qX8zNv+msfXRvQAx2jYPILJ8uQuIQa/l0\nMZb1k6P/MDL57xhDRgMPFQCgdw1gNtskDQQzqEc8n1xOWG2Eo4k2O4GcOsB6vWqOCHYIv5EF+C2h\nNgs4XlZtoaGicFET4HjdzAYKIQBqYlB+Mmdf7RNHfpY1T9+J9KttdeK3rxt2zzaYtIvCWNMPpGIX\nSzieVgJXJdg1dRaQyX8PcAWgr//fVwCq8+JF4Npxo2YALqpOoFAdwI4ItllBrRsoJQsIWUEQrAlw\nMI1mA0BQDMpP56+EE4Ef5VfbHZsH4sRvEYr6LazVU/wvs4POeX7GWGIwhkvT7oVfuoq+2yJk/eTo\nvx8y+e8J7liAXQpATWhaxgG0DQTrMxeQQZsANOsADRvI7wbysoDeIuDZQUAzGwCkIIOQGFhoF7t5\nx0OA8KG0eWoev0v8rt3jw1o+PbBhneTzb9umOJ+EZ/j0O35C6BKBXRH1Lq67Yfvv8KSRyX/PKK2Z\nHQsA0DkQzPdhDbozgOONsJjAcqPMJ2Yw2GJtWkHNNi3/N/DrAE0bqC0LKKeGsALkWkFXzJoiYO0g\nRwRYzMtsQA5mpRCU6+ce1xdS1yPbMdQvUg0Rvt1eI32oWz0u8ce8fj/qh9o2FUkm/eVGzqxdkTEO\nMvmfAPYhALX7JAiAPxncbKbB9QCWx0Xf95Z1AGsDhbuB2C4LgGIkb1MEuKLIBuxC6MV2mc1KIYCq\nwFuSvv259IkUPbKvXgdIH5rE72UBnRF/wtTOPta62Vukmtrxk1r0HSNyHz36VynWvj57yOR/QnAF\nAEieBXQsAbBonw0UUqeDqKPbBgp1A8WygGQRWB03MgFWxWIoviUERgigVQxqi6pTiUP5SSPTMNc6\ngVpIH4gTf3n+Fl7/ZslaV2UmYP4fx/+/NCvWhfbQZue0dfxsi76+f3neKfX/ReQm4EWYP7qXquot\n3v6bgR/A/BGtgG9X1V8TkUvAmzAr+8yA16jq93bdL5P/CSKlELwrAWhbEN4iuCQkdNYB2mygUBbg\nF4ObWQDVuABr+yxaRGC2qNcE3GwA6kLgZgSWcK0YQFU0LpDUk+9P0dBG+va9u88e79s9PiKWz667\ne0LEf1FhPP/hkb+ITIEXA08D7gbuEJHbVPVdzmG/Ctymqioifw54NfDZwBHw11X1ARGZA78mIr+o\nqm9pu2cm/xNGSiF4nwLgLwlpkNYJdLiu6gAVtisGJ2UBMRGwSxq6hWGICgE4awpbMYC6ILg4Dnjq\noeP81s0Q6dvj7GvX6vGJ3436A8R/nrDr6Dx1vq094knAXar6HgAReRVwM1CSv6o+4Bz/MIqIS1UV\nsPvmxb/OEYqZ/E8JuuoAQwQASFoPoLxXz8Fgtg5wqacNtNpMo7WA3iIwIyACVCLgW0Iha6ioEQBV\nZgBNsk/px/fEoEH47nX8aB+6iT+Ayt4JWz7W77fF3qN1UY9Zy5kZpZoiCqd4rp9rReRO5/2tqnpr\n8fp64APOvruBG/0LiMhXAP8X8KnA33S2T4G3Ap8FvFhVf7PrYTL5nyLsSgDc7W0C0N2HvV0doLsb\nKFQLaFpB3SJwHM4EWDQtIWiSuxPxl4umO4JgUWYJAURbNS086ydI+tBN/Duwe6wIpNgYIW4de2BX\nCk56qgfVXtM73KuqTxx2P30t8FoR+SKM//8lxfY18OdF5BHF/s9T1d9pu1Ym/1OGlE4gH7sQgFgh\nuE8dINUGOlpLa0eQS/ZuPWCziYgAi1phGHCEgLoQ2IxgvapnBVC3gKAsEJfC0IWI7VN7HSJ9+754\n3SjwOsTvIxT1b4PDtRHtsbHNQK9THMmPiXuAz3DeP6bYFoSqvklEHi8i16rqvc72j4vI/wvcBOyO\n/EXkU4CfBh4LvA/4alX934HjglXs2Pkicg3wGuALgJer6vOHPOdZQ5sAxGYBHSIAQHA6iPhYAOiq\nAxwSt4EOvSzgoLbUYTMLWK/jVlBQBFQru6cg+jIbWB1V+6AiW9cagkoMoMoMXPIO+f7l9xAQB3eb\n274ZIv3ifdnLH4n4Ac/aWQZH9LZZPl0wAh7f1xf7yg72JRjKOAVf4A7gBhF5HIb0nwU82z1ARD4L\n+F9FwfcJmO6ej4nIo4BlQfxXYIrGL+y64dDI/wXAr6rqLSLyguL9d3gP3FbFjp1/CHw38HnFvwsH\nv9/ZFYExBQDCg8EsQoXgrjrA4bpYDCSSBVQDYut/NDbiD2cBxgpas0oTAabQYgnBgScEi7oQWBJ2\nBQGMKECY4GMIkT3UvXtPBGrRvmcBxYjfIuT1x+BaPW32RcrKXhnbQ1VXIvJ84Jcxf1QvU9V3isjz\niv0vAb4S+AYRWQIPAX+3EIJHA68ouHYCvFpV/3vXPYeS/83AU4rXrwDegEf+tFexg+er6icx7Uqf\nNfD5zjxiWcC2AgD07gRqR6AOAElZQKgW4CJcEK7qAZbsXRFYs6zbROJMHAdVNkBRIIZ6RmCPKbaX\n2+z2WH/9ylmFLHaMX6gNEX5gu0/81srxib/N7vGj/hiO1hKN6EM2kD+jZ9fUDucNquMVy1X1duB2\nb9tLnNcvJBDRq+o7gL/Q935Dyf86Vf1Q8frDwHWBY9qq2CnnX3iMKQDueakC0D0iGFptIEiuBViS\nDxWEjzbSHCHsicCEaaMwvGYZzgZY1DMCKLMCKOoEUIkB7jEeFh1/Sr4gOEKQQvpAMvFbuHaPj64u\nn+NN2Nbp0+O/zXz+GftDJ/mLyK8AnxbY9V3umyL96F79IoJtzxeR5wLPBXjYFddse/tTj10KAMRb\nQYHoiODy2i020BHVQt+1OXmiWUD9c7hW0Gxiq72w3EyjImALw1YE7CpWfjYABIUAqNUJrBgA9QzB\nh19HCKCx7GLIBgqQPtQna2sj/pDd0+b1t3X5hGxzf1u8LnT+MdYgr5NAJ/mr6pfE9onIR0Tk0ar6\nocJ3+mjgsLYqdsr5Xc93K3ArwDWPfPzW4nMW0CYAQFIbKJBUB7AY2wby5wYKZQF+QdjC7wqCpgi4\nNYHpZM5G10FLyGYDDSGASgygTuRWECwaGUDHerot0X9IBFzSB2p2Tirxu3aPi1jUH+ryOVxLYFv7\nR/WxS4E46XbPs4qhts9twDcCtxT//1zgmLYqdsr5GQ76FoLtH0WfQrC9z9g2kJ8FhGoBZbEYux3H\n6jHHtItAsztozbJhCQFhISisIaDeNWQ+ZfHsdpzAgD+fSOHXJ3wgGu272ypRaBK/hTuoq9oWjvpT\nLB/X73cDg5Po9w9hHx0/qtt1PZ0GDCX/W4BXi8g3A+8HvhpARD4d09L5jFgVu+384hrvA64GFiLy\nt4Av9ea5uNA4qUIw9G0HhZRagJ0m+tK0EgHfCuoSgXpNoBKB6WRWs302ug4KARTkD0ExAEcQXKRO\nmJaw5q4f2YcifX97F/GH7J4Y4bsR/nLT7PLpy6WnRQgymhhE/qr6MeCpge0fBJ7hvG9UsdvOL/Y9\ndsizXQTsuw4ABNtBfWyTBZgHAGsFXZrG6wExEbA1AVcEgIYlBESFwGYBm01dDKASBH+7Kw594Hfk\n+O2a7rYQ6dfftxO/hW/3pET9bZaPK/wXrdMHjOe/i8Fw+0Ae4XvGMYYAQFodoI8NVF6/VgyGrnEB\nvhW03BCoB5jXbSJwtDbrBx9MNGgJxYQATKEYqIkBUBOEapXk4lNN0gUgtNhKyOaBNNI3x1VdPa7H\n70b8LvH7dk9X1J9q+ZTnt3T62OOHTOecMRyZ/M8BhgoAbF8HAFqzgCYCLaHQagW5ImCJPyYC7mt3\nnEAzG4gLQRn9O1mBhRUEqBO+FYa+CAmBT/jucSHSh2a0b7e1Eb+FS/z+iF5fELoQEgIbEGQL6HQh\nk/85QawQ3CYA0F4IBpJtoJQsoEKVBdhjoW4FuV1BrghAvSgcEgH/9WozjWYD0BQCWyMArwYAZXbg\niwJQ1g9S4U/FkGYDNUnffl6o2zxdxO8P6Kq/Dkf9fSyfVLKfH20nnKcBF7ngm3HKEMoCYq2gkF4H\ncPfFbCBozwLCtQDoLAhDsB4QEgFDbqZF1H8dygZiQgC0ikEw+tftWcDPAOpRf8W+baTvbne7erqI\n3x3QlRL1D7F8UuFO23wBJnU7EWTyP4fYRx2gdp9BWQD4VpCdS6itHmBFwLWDjjcUGYKUZA+Ur202\nEKoNuEIAtIoBYBaYp273THrZXwahWTf95RbrhN9N+vYz2+NCIuASv8WytH6qvv7Dlbu9Iv5Q1N8W\n6adkAX72mooTndKZ/h1QpwWZ/M8pthEA2M4Ggv5ZQBORLAA6isLgF4ZDIuASvysKQE0IoF0M7H4r\nCEC5EP2aJglNnfbOlDV0/UnYQoQPaaQfe+8Tv+vz+8RvEbJ72qJ+u88X/VzsPT3I5H+O0VYHgHQb\nyD93jCzAzhKabAVBLxEoxwlM6paQKwRA8L1fIwBKMQCCgmDObRKaKxJtqNoxq+/CH4HrEz40Sd+e\nFxOBLuK3sMQfs3vK+ydE/W04y34/wEbP7oynmfwvAHbRDQS7zAIA1qxWM2azwIwdERHwC8NQ1QV8\nIbDwMwL//aogej8zgIqMfVGofW+TwPM7iE2s1pyOoUn4Znud5EPbQsTve/yWwI43TeIfGvXb98kF\n4JZlGne5ru9FQyb/C4KxbSD/3D5ZQD9EWkOhuXYA1LqD/LpArEsoRvyWPO02oCEI5nyKfc3I3yfx\nFMRm4az216P8rm2haN8cZ993E3+oyLtt1B+yfGJ+/5Bi774Wc8mDvDJOPfpODAdpNpA9ty0LgGq1\nsC4rqLxX1wAxC0cE6hPHgWsJWfjZgHtcyBpy6wT+dqDct3Ii/1lHxB9DaHUtfwRuW5TvbnMj9lgf\nf8jjjxH/ajWJEn9X1B/CGJbPeZrQLbbiobP/azHrpQhwP/APVPV/ishnAK/ETImvmIXhX9R1v0z+\nFwyuAED6CmHQLwuw17b3M9dJWyzGF4EK3SJgYUXAt4Ri2YArBH6NAJqk7y496WYIFqFpfuvLVcaP\nc9Hw/SNC4G4PdfK0RfuQRvxDkFroPWu2zkb7rXEQQ8eKhxbvBZ5cLHX7dMxsxjdi8t5/oqpvE5Gr\ngLeKyOu75kLL5H8BUYvKd5QF2P2pWUA/pIuAeaDify8baLOFQjUCN9JvI/wQyUPc348hPL9+XAz6\nkL57XCrxjxn1u0ht8TxrwtATbSseAqCq/8M5/i2Y6fEpFsT6UPH6fhH5XcwiWpn8M8LYdqF4aGYB\nEO8IsvvaCsJDRMAWhn0LyY4Y9i2hqksIYkJQbatI0s8MIEz4LkF3FXxjiBaCWyZhayN9sy0c7bvH\njUX8LkI/1xTL57T7/dC7z/9aEbnTeX9rsR4JtK94GMI3A7/obxSRx2KWdPzNrofJ5H/B0SUAEM8C\nIG1cgL8vVhCGZj0gHf2ygRQhAIJiAH69oNlFZOGSdSwjiB3vIzSNQIjw7XO7z9Y4tqWjZ1virz1X\noMPH/oxd4nej/r6R/Rn0++9V1ScOvYiIfDGG/P+qt/1K4L8B366q93VdJ5N/RmsdAOJZAIxcEA60\nho4tArWppC0KDnGFoGobBbdYHBMDc475fxGxx4f2g4e6SroI3z8v1L/fFe2bbWHid9Fm9/Qd1OVH\n7n2E4YxOB9G24mEJEflzwEuBpxdT4tvtcwzx/5Sq/kzKDTP5ZwDtdQAYlgXY81OsIHOdfiLQHCgG\nvgi4E8hVJ5p7uCRedgtB+ddRF4JmZgD+tNPm/1AmsC1CUb/Pcb649CV96E/8Q+yeIVH/acGIE7u1\nrXgIgIh8JvAzwNer6u872wX4ceB3VfXfpt4wk39GDW02EIxfELb720TArQf0zQSOj3BIv35eOYcQ\n4YzAFYK6PdQuCOX5AWHYBrFANpRJhAjfv0abxQNNm8fd1kX8bXZPKlKi/jNo+bQituKhiDyv2P8S\n4HuAa4AfNXzPqrCR/grw9cBvi8jbi0v+i2IRrSgy+Wc00CUAMLwgDPF6AHR3BoVEINQiWo0VgM66\nQAFXCKJZAd2CUB5XZgL9i79dVlFjlS2PE7tIH9qjfXf7UOLfR9S/b8tno+FpL7ZBaMXDgvTt628B\nviVw3q9RDWhJRib/jCDaFoq3GMMKsuf7AuGPD4B0EeiGSzYJ5/o1Ahce2fqC4OK46OCJ1QSax3cf\nE+oxjxE+hEkf2m0eCBd3Y+dbpBC/j4sY9Z8UMvlntCI1C4DtrCB7fpcVZK5VFwEI1wS6p5B20U8I\nfHvIL/pCM0PwcVj8HxMJSB84FOLRVMKH7aJ9/zru9tBgrra2zrMc9QOgMngA3Ekhk39GJ1IEAMa3\nguz+qAgMmjguhIqI3Enl/GKxWyuAcL0gJAo+lmkTfrYiVGwMz74Zj9JDpA/bE38b2uyeHPXvF5n8\nM5LQ1Q5qsY0V5F4vRQQg3h0Us4T6ZQPlXZzX/cUl2Fa6A3SRvUUsyvf3DSX9Meyevjip9s6Nnt21\niTP5ZySjqx3UxS5FoPEsPUQgFfVCMdBYcev0/MHHRC28mHoa6fv7Uojf7+ppI/4uuydH/btHJv+M\n3ki1geDkRQDqltDwbMDidIlBTNxSFlbfhvT990OIf6jds03UP1qtQSX4HZ8FZPLP2AqpNpDFSYiA\nuWba/EHDhMAfT+Biv6IQI6I+hG+uE9/fZvPA+MTfhhMl/jOOTP4ZW6OPDWSxKxGwx6TUBaCfEMSn\nmO5GXBR2h9izhqZk6EP6ofdtXT19iT+GseyeTPp1ZPLPGIy+WQD0aw+FuAi419gmG4D+M4qGxCA8\nxUSodhBGH4FIfdbQ88TOH0L6MA7x79Lu2RXxbza54JtxwVEblDWCCISygNi1+1hC5tpVNgDUbCGo\n/zH7xeKQPRTLDGKCUPs8803jnn3Qdf22a6fMx9OX9OHiEP9ZRyb/jNHgCgCMKwLQbgeFrhETAejO\nBqCZEYS6hmK1gi6ryEb6KeSdii4B6dMV1EX60D/ah/NH/Koy6s9wn8jknzEq/CgbxhEBSKsJuNew\n1/HrAu5z2mf1hQDotIZiLaRdxeMhNYRUtN0/du/UqZi3ifYhnfjHQo7425HJP2Mn8LMA2I8I+Nfv\nKhDbZ7VIEQKIiwHEydXu3/d0AG1CE9u3LenDcOIfI+rfF/FrHuSVkdFESAAgTtQh9BUB9/pdaxOH\njmsTAnOvdDGAeiG3iyS27QrqN8V1/NjY1Mtjk37sWHOvs0P8Zx2Z/DN2ipAN5GJX4wRi127rEvKP\n9YXA3CtdDKCdbH2yHzOCTL1WH8KHdNKH/jbPWSR+zRO7ZWS0I5YFWIwpAtDPEnKv55NHyBqC/mJg\nYUUB9m8XdC2q0jb7ZmxenjGifXPvs0f8Y0NEbgJehBkZ+FJVvcXb/9nATwBPAL5LVX/I2fcy4MuA\nj6rq56XcL5N/xt7QJQDQXwRgu2zAv0fseilZAcTFwDxDfBqEGFyRSEHf1bKgneyhfSK2PtF+2/Fd\nA7hOO/GP5fmLyBR4MfA04G7gDhG5TVXf5Rz2x8A/BP5W4BIvB34EeGXqPQflKyLyKSLyehH5g+L/\nR0aOu0lE3i0id4nIC7rOF5GnichbReS3i///+pDnzDg9mC43raRiMT9el/+6MFtu4qRztCr/xe4R\nu15o6oHYOfZzhT7f/Ggd/NeGyWrT618XUu8f+wxdnz/2M2j7GZ514h8ZTwLuUtX3qOox8CrgZvcA\nVf2oqt5BfUkLu+9NGHFIxtDI/wXAr6rqLQWpvwD4DveADkWLnX8v8ExV/aCIfB5mXcvrBz5rxilC\nShZgMYYlBP2zAfea/nVj9pBFiDwb3U8dArAPpApxDG0Eva3N03Xd1HvsA7qRPpH/tSJyp/P+VlW9\ntXh9PfABZ9/dwI0jPGIUQ8n/ZuApxetXAG/AI38cRQMQEato74qdr6q/5Zz/TuAKETlQ1aOBz5tx\nitBVDPYxtiUE4wiBf17s/DaiTf0OtkUKyVt0EWoXMe+D9Lvuc0pxb7Hg+qnAUPK/TlU/VLz+MHBd\n4Jg2RUs5/yuBt8WIX0SeCzwX4GFXXNPv6TNOBfpkATBeqyikC4F/rxBJbSMIFn3IeWykkugQ0ocL\nT/xduAf4DOf9Y4ptO0Mn+YvIrwCfFtj1Xe4bVVUR0W0fJHS+iPwZ4IXAl7acdytwK8A1j3z81vfP\nOFn0FQCLsbIBiNtC/r1i9/PJK5h1tJBWyuC3odjFlMlDST/1Pqn32ytUtyq2B3AHcIOIPA5D+s8C\nnj3GhWPoJH9V/ZLYPhH5iIg8WlU/JCKPBj4aOKxN0aLni8hjgNcC36Cq/yvhs2SccfS1gVyMNXoY\n2rMB/35t90wRg9g1TxJj+e2pUzGfFX9/l1DVlYg8H1PfnAIvU9V3isjziv0vEZFPA+4ErgY2IvLt\nwOeq6n0i8l8wFvq1InI38L2q+uNt9xxq+9wGfCNwS/H/zwWOaVO04Pki8gjgF4AXqOqvD3zGjDOG\nbbMA2M4SgvGEoO2+MZLrEoVdou9iKKkEfK6jfQei4xXuVfV24HZv20uc1x/GBM+hc7+m7/2Gkv8t\nwKtF5JuB9wNfDSAin44ZpPCMmKK1nQ88H/gs4HtE5HuKbV+qqqHMIuMcYkgWYLFNNgBpQgDpYtD1\nDH0JuEssxlzMvA/p9ll05TwQ/1nHIPJX1Y8BTw1s/yDwDOd9Q9E6zv9XwL8a8mwZ5wNDsgCLPtkA\npAkBpGUFoWfo8ywhjEnuIfQl212R/jbPsm+I6okW64cgj/DNOPUYIwuw6JMNQHd9oLxuYlYQehYf\n+yj8dj1D0rlnlPTPKlmPjUz+GWcGuxABGDcbKK+/hRiEnu20oe96uqdlgfVdEb7o6f55tSGTf8aZ\nw5giANtnAxbbiAH0E4STwraLp29rTY1NpDnKj+P0//ZlZEQQmnJ5CPpmAxZ9s4LyfhFiPSlR2Jbo\nXZwW0of9EL+o7rwGsytk8s84F9hVNgD7EYLavTtIeKg4jEHyPoYQYI72TwaZ/DPOFcbOBqC/LWSx\njT2U9Dw7IO9tMTTqPevEnz3/jIxTiNOSDVjsSgz2jTFsjrNq85wnZPLPOPfYZTYA4/brn0ZBOKlB\nY6nIpL8dMvlnXCiMnQ3A9rZQCKdFEHZRxDyPxC8bPVU2XB9k8s+4kNilCMC4A7XaiHioMOyrU+U8\nEv9ZRyb/jAuNXYgA7E4IfJz2NsOzWgxNhejp/xnEkMk/I4Pd1AUs9iUEpwm7Jv0c9Q9HJv+MDA+7\nygbgYgjBRSJ+UT2z2c3pay3IyDgl2DXJzI/XZ5Y4Yjhvn2efEJGbROTdInKXiLwgsF9E5N8V+98h\nIk9IPTeEHPlnZLRgl1mAxZjdQieJfRD/aYr6AdBxnklEpsCLgadh1jm/Q0RuU9V3OYc9Hbih+Hcj\n8GPAjYnnNpAj/4yMBPz/7d3PaxxlHMfx94doVbzUtlptK6IgYvVSKNKDJ3+UEsQoInhpq55y8CyF\n+A/UXnsoOQiVCt6CASvRih4UKtZflOCPJlbRWislVGiL1dKvh3kCQ2Z2M9n2eSb7zPcFw87uPM/O\n89lNnszMPk925L9ryc4Ehu3oeRjbvAo9BsyZ2c9m9i/wLjC2pMwY8LYVjgNrw9ffNqlbkdWR/8KF\n0+ePTO3+NdHuNgDnE+0rpRxz5ZgJ8syVMtN91/sECxdOzxyZ2r2hYfFbJZ0o3Z80s8mwvhn4rbTt\nd4qj+7K6Mpsb1q3IqvM3sztT7UvSCTPbnmp/qeSYK8dMkGeuYctkZrvabsOgsur8nXNuSJ0B7i3d\n3xIea1Lm5gZ1K/yav3POte9L4EFJ90taA7wETC8pMw3sCaN+dgB/m9nZhnUr/Mh/cJPLFxlKc3qQ\nlQAAAsNJREFUOebKMRPkmSvHTMsys6uSXgNmgBHgLTOblTQeth8CjgKjwBxwGXilX93l9ikzixLG\nOefc6uWXfZxzroO883fOuQ7yzn8JSeskfSTpVLi9o0e52unUvepLelrSV5JOhtsnMsi0XtInki5K\nOpgoyw2fAt/09YkpUq4XJc1KuiapleGTkXIdkPRDKD8laW2qPFkxM19KC/AmsC+s7wP215QZAeaB\nB4A1wHfA1n71gW3AprD+KHAmg0y3A48D48DBBDl6trFUZhT4ABCwA/hi0HwJ359YuR4GHgI+Bban\nzBQ5107gprC+P/X7lcviR/5VY8DhsH4YeK6mTL/p1LX1zewbM/sjPD4L3CbplgjtrxMr0yUz+wz4\nJ1bDV9DGRYNMgW/y+sQUJZeZfW9mP6aLUREr14dmtvj1WccpxrW7FfLOv2qjFWNnAf4ENtaU6TXN\numn9F4CvzezKDWhvEykypdCvjcuVWc35YuVqW4pcr1KcObgV6uQ4f0nHgLtrNk2U75iZSRp4LGxd\nfUmPUJyq7hz0eeu0mSknuefLiaQJ4CrwTtttGUad7PzN7Kle2ySdk3SPmZ0Np59/1RTrNxW7Z31J\nW4ApYI+ZzV93kJK2MiUWawp82/mST+1PJFouSS8DzwBPmpn/sR6AX/apmgb2hvW9wHs1ZfpNp66t\nH0YkvE/xweLnkdreS5RMLYg1Bb7tfMmn9icSJZekXcDrwLNmdjlVmOy0/YnzaluA9cDHwCngGLAu\nPL4JOFoqNwr8RDEiYaJB/TeAS8C3peWuYc4Utv0CLAAXKa7Lbo2cpdJGitFG42FdFF9sMQ+cpDTK\nZZB8CX/uYuR6PrwnV4BzwEwmueYoPg9Y/D06lDpXDov/ewfnnOsgv+zjnHMd5J2/c851kHf+zjnX\nQd75O+dcB3nn75xzHeSdv3POdZB3/s4510H/A/yoxBpC7OwyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Hamming window')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULVld5/n5xeOcvJl5bwFVxbsUVFg00D4RmLYfPgZk\nNShMOyLgA5e2DiqDdKsI0iprWmahMtqOqMhI8WgVtBUVBUTBB7YjSmlry2NaEUEKKYqioO69mTfP\nicdv/tixI3bss3dEnJOZdQvyfNfKledExIm9I2LH/u7fW1SVLbbYYosttjgpJFe7A1tsscUWW3xq\nYUssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLF\nKETkpSLy/Ve7H2cZIvK1IvI7J3i+bxSR/3pS59tiCxdbYtkCEXm/iFwRkcsi8nEReYOI3GD3q+oz\nVPU/XqW+XfUJsOmDisiPe9uf2Gx/5Wn3QVV/QVUf67StIvJZp93uFltsgi2xbGHxFaq6D9wH+Ajw\nk1e5P5MhIumd0MzfAU8WkczZ9nTgb+6EtrfY4pMKW2LZogdVPQJ+BXio3SYirxSRH2o+XycivyUi\nnxCR20Xkj0Qkafa9X0SeJyLvbiSfV4jIjnOeJ4jIXza//X9F5LOdfTeIyOtE5KMi8jEReYmI/BPg\npcD/1EhTn3D68zMi8kYROQC+RET+QET+rXO+nqTTrPC/XUT+VkQuich/FJHPbPpxUUR+WURmA7fm\nFuCvgS9vzncP4J8Br3cPEpH/IiK3iMgdIvI2EXmYs+9aEfnNpr13iMgPBfr4jKaPnxCRnxIR8a9H\nRN7W/OSvmvvyNSHJzpVqmrZf37T9Z8Bnesc+RER+t3mm/0NEnjxwL7bYYhBbYtmiBxHZBb4GeHvk\nkO8CbgauB+4FfB/g5gX6Wszk+5nAg4H/0Jz384Abgf8NuBb4WeD1IjJvJI7fAj4APAC4H/BaVX0P\n8AzgT1R1X1Xv5rTzNOCFwHlgqqrsy4EvAB4NPAd4GfB1wA3Aw4Gnjvz+1cA3NJ+fAvwGsPCOeRPw\nIOCewF8Av+Ds+yngALg3Rtp5eqCNJwBfCHw28OSmzz2o6r9sPn5Oc19+aaTftu0jjET6Tc0fACKy\nB/wu8ItNv58C/LSIPDRwni22GMWWWLaw+PVGIrgDeAzwo5HjCszk9OmqWqjqH2k/4dxLVPWDqno7\nZuK3k/W3Aj+rqn+qqpWqvgozKT8aeCRwX+B7VPVAVY9UdYwsfkNV/1hV60bKmoIfUdWLqvou4J3A\n76jq+1T1DgwhfN7I738N+GIRuQZDMK/2D1DVG1X1kqougBcAnyMi1zTk+VXAD6rqoaq+G3hVoI0X\nqeonVPUfgN8HPnfitUXhtP0Dzf19p9f2E4D3q+orVLVU1f8G/Crw1cdte4uziS2xbGHxpEYi2AGe\nCfyhiNw7cNyPAu8FfkdE3iciz/X2f9D5/AEMYQB8OvBdjYrnEw2J3dDsvwH4gKqWa/T3g+OHrOAj\nzucrge/7Qz9W1SvAGzBS2LWq+sfufhFJReRFIvJ3InIReH+z6zqMhJd5/Q5dwy3O58OxPk1EqO0P\nOJ8/HXiU92y+FiNZbbHF2tgSyxY9NNLE64AK+OeB/ZdU9btU9TOArwT+vYh8mXPIDc7nTwP+sfn8\nQeCFqno3529XVV/T7Ps0zzDeNhnrqvf9ANh1vp/WpPhqjDrw5wP7ngY8EfifgWswaj0AAT4KlMD9\nnePde3Vc9K7fWxTYtv1nY/FB4A+9Z7Ovqt92gv3b4gxhSyxb9CAGTwTuDrwnsP8JIvJZjVH5DgwB\n1c4h3yEi92+M288HrP7//wGeISKPatrYE5HHi8h54M+ADwMvarbviMgXNb/7CHD/EcM6wF8C/0ZE\ndhuD9TdvdgdG8YcYVWHIa+48Rr33Mcwk/3/aHapaAa8DXtD08SF09ppN8BHgM5zvfwU8TEQ+t3GY\neMFA2w+lb9/5LeDBIvL1IpI3f1/YOE9sscXa2BLLFha/KSKXgYsY28jTG1uEjwcBbwEuA38C/LSq\n/r6z/xeB3wHeh3HR/SEAVb0J+BbgJcDHMeq0b2z2VcBXAJ8F/APGOeBrmvP9HvAu4BYRuW2g/z8O\nLDET7qvoG81PDGrw1saG5OPVGBXTh4B3s+oA8UyMJHML8J+B17Bq/J+KFwCvalRXT1bVvwH+D8yz\n+VtWHRqeiVGr3QK8EniFc02XgMdijPb/2Bzzw8B8w75tccYh20JfW5wUROT9wL9V1bdc7b58MkBE\nfhi4t6qGvMO22OKTFluJZYst7iQ0sSKf3agCH4lR1/3a1e7XFlucNELG0i222OJ0cB6j/rovRmX3\nf2FiYbbY4lMKW1XYFltsscUWJ4qtKmyLLbbY4pMMIvK4JvXOewOxZFbt+icishCR7/b23Sgit4rI\nO73tnysibxeTdummRl3r7v+0JoVQ73zB/p1VieXa687rDZ9+LapQqwmKUIVShVqhrIVKoVSoFKoa\n6lqoyoS6FupKQBVRkOYeSuRWqtj/0n0XQRJFBJJEEVESl+abkyXNb2s1P6xrUBXsY7OftTb98fsh\nA8/X9ifW3x68YyXR4G5xGg9t67XTNKTqXUezcejeutflXocK1In07m+e1+R5zTyBearMEiVPISEj\nkcR0oCqgauIz0wySDJIUpabSkqpWylpY1EJRw6KCskyom3FR14JWkNTj97u9v8332L2M3c+he2pu\nXXdfg9+dewxMGsPdNYS2SfgY5/pEuj67n8f63xvr3hj3+zw2JiQ171qSKElq/qcJpGL+suZ/Is17\nKUoqJgjpnX/5gdtU9frhuzOMfyrX6mWKSce+n0tvVtXHhfY1mRT+BuP2fjPwDuCpTTYHe8w9MYGv\nTwI+rqovdvb9S4xX56tV9eHO9t8BflxV3yQi/xp4jqp+sbP/VzBT5Z+65wvhzNpYbvj0a/ntP3o+\nldZcXKYUKiyqhIMi4XLzd7GAjx4JF5dwqYCDw4zDg4yDyzmHBznLRUp5YAZwvqhICxPOkS+rXlvF\nzCTfrXLDHMU8pc4SZvOK2bwiy2r29s2Am83Nb7Os/+KVpWlnuUgpisS0XZr/y4U5f1LW5Iuubduf\nIdg++SjmqwmD66x/rO2r/z3L6uB+MJN820ZzHUDvWpKyuY8D9xQg866vzBOKWUqVJxTzlGxPmc0r\nrr/XITfc+4gHnFc+43zNp51fcp/dhHmyx15+d9LFEXr5o3D4CXOi3bsh+9ej8z0W9QFH1WVuP7rM\nR67kfOBSzocO4e8uCh/96A7LRdqOh/JA2Lkcnjj8Zx+7P/52ey+Hjg/Bva/ud3esAO14GbrPLuxY\nDsEdS3b82HFu+59lNbN51RsHK20UXZ/d/o+NDXc8lPZ+N+NhsZezf2HZvmuzecXuXsnebsn5HC7M\n4PodZZbANTNlP6/Zz2v28opclIfe41vcTAUb4TIFL0gfOX4g8I3VW68b2P1I4L2q+j4AEXktJjC3\nJRZVvRW4VUQe7/9YVd8mIg8InFeBC83na+iCmxGRJwF/jwnEHcWZJRZVOCxhUXWk4mOWwPlcWdoV\n3m4o44gZ8KHpZOwldVEUCXles1ykzOZVSyQuwfik4mITUnGP8wnGnsslGPtSg5kw7CRlJw7b97Hr\n9GFJJdT+OvCJZpHlbb+OKihqKJpnWdVlpwjOZkZCsUhO7rXwJ9t1SAXMvbHk4t/vGGKkYjFEKllR\nt5OyjyFScc9T5Qn5oqKYGyJYsjou7Hg/LkLvmE8qxTw+LhfLhJ205uISdlI4n8MdS8EOjkUl7J1A\nP08Y96Ofnudm4FEncN5nA28WkRdjbsA/AxCRfeB7MRLSqBoMzjCx1GoGzeWye1nKuhOf56lyVAk7\nKVzIFWhUIFnN7l5HMHYFdvnibKKQOw53grYEEzvOXcVZTCUV/zch6SVEMNBNTj7B2M9ZVk8iGheh\na7EoZunKJFLmyQqZZM7kZie1okhYLBNMkgCaRURNTUVVF6SkSDZHs3hw/zxd/56uSyoxuOQCYQL3\nySNEKv4xEJZUhsjFwl5baKzZseSTi4vZvIqSS57X7QIky+qVRdQUuKRi7nsnNVnY+3FUmT5cLARQ\nzKUJiypl/wRJRQSyPP4+91BxnYjc5Gx5maq+7MQ6E8a3Af9OVX+1KZvwckx6ohdgVGSXJaI+93Gm\niSVGKhY7KSxryJNGepkB1NxxhZZc3JfATvQuwcQkgjH4k8eQCgxWV5+bYKivvgRhicYnmI4Q+5Nh\nCCHJawghcun1cVm1q2p7LQXuBCLGNlILlTb9poKkCTBvJBXJ5kaKCWCemkUGGGlyGYmbHyKVdYkF\nOqLwpZehY0Ok4ksr0Fcl2Xvok4srrQyNZft7n1xi2ERysWqw0ELD9rVPKp0aLoTFMoFZbfI2IMwS\nAGVZw1X0b7pNVR8R2fch+nnf7t9sOy6eDnxn8/m/AD/XfH4U8L+KyI8AdwNqETlS1ZfETnSGiUV6\nZLKozGerKrHfZ+24UooaZomQJzWXiposq41uvVVbddIL0COYoZcrBndimGJX8UklZuuJYV3yG+pz\nTD0WmhBD+vN1Ya/V/vev1Uy2/ftT1QXtQjpAJFaiqeqiVZUuKuGoGRtlKRRF0j6T+WJVZnWfe8h2\nsu5qPEbY/nmGSMWFfeb5smonZp9QhsaFL7n49sQpOCm1mNu+ixiRm/fWOb4hFyuxFI0jxlFATb4J\nJIH5fKLEMlwI4h3Ag0TkgRhCeQomAepx8Y/AvwL+APhSTGogVPVf2ANE5AXA5SFSgTNMLKXCx45W\nB2FRS0sqYKQWMARjpBdlJ4WdTLiU1sxnCw4OM7JMOTzI+tILYduLxdCqM3TsFFJZx67jYh0jvg/f\nqG/7C51KzMeQUdbvl0uYQ1JLvigp5uEhPSQ9qQhTXndDKmYcLJbdsxhS4UH//vgr5ymqHvf+Gftb\n+Hj/Pg+Nr2Ketvfaf/YhZ5Mh5Iuq95xCRvzB3w+QyroSrW0/5CATIpgQuVh73PmZed476V3Lc1ZV\nSxF5JvBmTOdvVNV3icgzmv0vbbJb34Qxxtci8mzgoap6UUReA3wxcJ2I3IypEfRyTC6/n2iyjB9h\naihthLNLLLVw21HSEse8GTwuqVjsuOPOIZhZYjzGds6X3NEM3MMDc0tblQXx1eIQQjrz45KKqypy\nESKVTSSsEMYmwSmSyjrk4sP1ShqFlVoaY35VL6i0pKZiUQlFLSxrOCrNdfnSSuqoknz4KjBXohsi\nl3XIYp1jfLhjwCeU0MLBIinrlqRWCMrzDJv6HHwHjynk7UpWPqmEsGrH9O7ZrOboSmPQn02UMkYg\nItNtLCNQ1TcCb/S2vdT5fAv9Eg3uccFKqU1xvS8YafcFU/p3dolF4WJBo0eFWUMoO974mvdWK90x\ns8SsZHZSa/SrWyOglV6gM2i7xsvQCxKbWPyVvf39aUkqPqH4k4rf95i0Yq87pgazE0VCvZHqawpO\nihyruqTQpJVYihoOD7LW5bwlRl/1GJjgXHfbokja+xQil6kEMeW40Jiz98e9/3a1Dy4prz4f22ad\nJT1ycc9r97sYs7uNYcXWN+DKv06bllw6r8xG9Zl17/UW03FmiWVZw4cOhJ2scyu22w1p+KTSl2os\nAeVJ5zXGkhWXZLv6cj2mXPdL9wUIkUso/uDOIJXYKtVunyqBxbySQlKKbyPyV9EhqcX1DLNqsDJP\n2t/aSXw+G+mv526sItRaGeM+xpOsaIIjj6qO6F1pBfpeacfBmDfXSvdHVHGx52lJwT/eEkpsYeCO\n5xC5HBe+6jdIjCMqu6lu2b4HZllmrZv/cpFyOClyYwsXZ5ZYqtoEPRaN19eyloYgXMgKuYBLOGYg\nXiw6cslLYLdsV0mHBxm7e8XK5DBFLRCLP4Cw95ed1KbEIcSC2WJ99PtiJxM/tsU/3lX5uNewScyN\nD5dcoFP12et03UwhrCuv6oI6qUi9WBbXcH9YGtWpNdwvlknrTOFKK67rc1r0J2x/Jexuh+nuwT7W\nVbH6CD/zsArJJZPQ97Fz99voEIptCsGXrFwX+dAYDknMITfnsEPJpC6tBRGYz6+al9mdijNLLHWV\ncHCYscjMatbMCYZcXHXYolollzxZVY+55NK0gPULK0tpVR9jOnUI69VjdohYRPpQHMIQqQwF7sXI\nxSJEMiGPpKmu0bHYmhB8jyZ7XTE9+6JKmKUVlXYSpmSN23E2M6Ti2Fdcw71dSVvpcSoxuhOdey9D\n6k6LqcQRizcKTe5Di5ohFVJZJqNkchLqx6kqwKnOBX6QqSWX47a/RRxnlliqSvjE7XN290rKsmKR\n1RgyMEFS503Q9orNxSWVPNHW2G+PC5GLGdjaIxiLKW6ibXsDKrBQoOBYkNsQqQxNPpuupIeklJib\n8BhcQ76b0sWqc+yE4j9HF1VdkCZO7EqSUeuSmopltaTQrGe4d+NvQvEUQ3C95cbSrQwhpnIaihuZ\n8nyH7BG2zy652M/+ImMMVmKITfC+Gix2vWPqW1dS9MnFPcZt199+UkSTCMymuht/kuNME8vB5Zyi\nSNjbLxqdaoFPLjvpqtTi2lrcgDmLC7nxGAPYSV3jX4pVzaxDMJuqO1xyiemjfVLZJHhvCkJSSmhC\njnlVrYMpq+ZFJezWJXVi7CgqgjSqMBWhqrr4lUVlcsdZw31ZCstF357gE/sQQouHIa+nKXaLUDqV\nqQuGITIJSVh2+2ms7E9TWgilx3H3hZxLgGB80hbDOLPEohVNcGOjn291rn1yARskaUikcIIq3ZgX\nd0W8k3bxLheLvt3FlV4sXPWY603lG0djGJrUhiSX45LKJoTnG+HHYNVhQ7+xRDQkORw5u0Iu5S6s\nwd7+t4G0Q90OpZfJF5WJ/Hc8Av2Jesj2NITB+zFBYun1fSBLQmyiH+q/m5VhKMYptn3MaL8uXOlq\nqoOMJZPjZLLwYTJtbyWWT2mIQnkgLBdG/dF/sfrkkjexKzPHGwxWJ6hYvMulxHifXWqkF5dgrFuy\nj5A+/qS8bkITz1QPmnXUNaP9mBiPEnq5Q2QzFiVuIuZHDPh2m4YSjnaYzSuKRlKNXYc14IfyqllM\nJZRNM1VPXSyEJlz3nVgnTcwQucRIzHdicDF1zLtt+c4jft9DbU/Nqr3FOM4wsWi7orx8ccb+hSVF\nkTgTfUcuNneQxZFHMBYhtZiNd7lU0AVUpn3feKtagU56sWilF05m9WaxaUJE2IxU/EhvNwWI//KO\nqcPsBDpF+vEnKqPOEgoVKjWeX3k6X/t6oCPoUB/sNfiT7MpxJ+AdB+NBjcfJT2YRsjmEJuNQjrDQ\nRO+fK5aN4Tjw7SmhtscIZR015xAkEWZbr7BPfbiJCm1+r929YoVc3NxBedJJJi65WLtL3xbjx7wY\n4lnWtDEvscC4kKHUIjahjhnA3eA3WFWBxfJXhSaUKcbU0L6p5BKDvyqfQi7r6u2rutOpu1Kpbdqv\nlWMRUodN8Xw7LmJS2pCKc2quspCHosXQhOxnN/aJLmTjsNuPY2dxpcNYW6H+Q98R46TI5KzizBKL\nW8DOlVzAkEtZCocHOVC0wXXLzEgvRW0M+24wZQyWaC44ko91bc7LTnpxE1r6UdkWNvfYcdVhrrrA\ntelM1T/HMFQc7CSlLRdTJ+bFMoG9acemSU5am1djnipZou2ioCOXVTWcOymVedLL9DuEddUt68Yj\nhVbtQ886hKHgVp9UQuTin8dXs21qc4p5wcXsO/44HCsYdpJYK23+JzmuOrE0ZTZvAj6kqk8QkXsA\nvwQ8AHg/8GRV/Xhz7POAb8a4Vj1LVd/cbP8C4JXAOUz+nO/UCTWX3RcAzKCz5AKdQb8sK9gt22BK\nZn2XZAjHu7hw1WQ25mWWGOnFEoyb0NJVj1lsspKzLrgxxFQFU3TpLsbcPteNzo6pw9aJbXExFnmf\nkELZpJRNd7ptdLaWNiFpc7/qLGmTjPrk4ZLLSSKUPXhKxgQ/sDG2b2iMjRUIs7DOIv6zGiO42DiL\nEXObmXmAXGIYct0fc9PfYhxXnVgw+f/fQ1cS87nAW1X1RSLy3Ob794rIQzHpoR8G3Bd4i4g8WFUr\n4GcwmTn/FEMsjwPeNKVxd0BZsd2SS6cuaFLpZzXXnDPV5phJL6YlJLW4+4taVsglT7pU/C3BNAkt\n3Rcuz2sOLuetrYUNJJaxyTgcfRxfpbqYkqww1qeh1XxMtXdSnjqpJEY6SfLe9oTUbKtMgS/zZ57l\nTvPG2MDLoUJsU2KJ3GNheFIbI5WpmPqsfYwRihtP5C8MQoZ1t22XVIYmffecLnGN1X3xryF2/hCO\n6/5uYSLvtxLLqUNE7g88Hngh8O+bzU/EpHQGeBWmNsD3Nttfq6oL4O9F5L3AI0Xk/cAFVX17c85X\nA09iIrFAnFzs6qqrZmdiXbrVb+dl5Me7WFJxpRifXGwCTJ9gbEJLVz1mM+kCFOW4egVWJ6nYixda\nSU4lFYsxY7EbRLeud9vU2JaWiMbSvCdKLn3pUlSh7nuCGZVYl9tj5qjBrDRrpZbY81hXrRIjmCmp\n7NcldogTSuj5hFRG7rtjyxYMEWooOHEqqfjf3YJioT7792gdUjkpMjmruNoSy38CngOcd7bdS1U/\n3Hy+BbhX8/l+wNud425uthXNZ3/7CkTkW2lqDMwv3DO6EvbLqfqxLlY11pwV0KCtZSgVjDXsX8hp\nU4Wcz433WJtzrIncPzzIyfOa3T2jeFkuZisSSFbU7fXEgiJhmqrEYmyigXghKx+bRmifBGy/bDZq\nizTJSEgblVcHUe1tz0XbZze7E7QkY0GtMEwiU13HLWILh1h2BJdQ8kWfjPNFGZyUfS/EUB/GJCIX\nvg1rStXTEKaWkdhiPVw1YhGRJwC3quqfi8gXh45RVRWRUVvJVDQ1o18GcP4+D1o5r+81BX0DN3Tp\ntbM2BQy4kovvbhyCnaQ6qaarWtm5NneR+zbn2OFB1qZdX5D3XkbXeBwy7q6rMlmHVEI1T8Zqsk/F\n0Is/JY7FT+kyT7X9A0gla9ReJZRLc1Bdto8xTTJstoT2HI3EetLR51OzJNi2Twsxj8PMW+X7pAJd\nhmlYLbgVgn//pqqnQg4S6xDCcQrbbYqTNN6LyOOAn8Ck8/g5VX2Rt/8hwCuAzweer6ovdvbdCNj5\n9+He7/534Dswg/4NqvocEXkM8CJghvFn/R5V/b2h/l1NieWLgK8UkX8N7AAXROTngY+IyH1U9cMi\nch/g1ub4WJ3nD9EvaDOp/rOKjA5EqxfuudnmNVC1HmM+uVhPMZdg+kkrzeRmt3XqMcgTaUhG2sDK\ni0u45lxHLi6GKlQeRw+/KakcZ7ILuRz7pLKOq3G/Boq9v2ZflijztG4lEmu419KovYRVz7DWxtKo\nMoeuNWYTCGGorvxqWpbh1CxDWMfl1sUUKaXt/zyjmKU9h5G1Cq0F2nS/w8mqqKYk7LwronF4+ing\nMRgNzTtE5PWq+m7nsNuBZ2HMAj5eCbwEeLV33i/BmBw+R1UXInLPZtdtwFeo6j+KyMMxlSuDWiGL\nq0Ysqvo84HkAjcTy3ar6dSLyo8DTMQz5dOA3mp+8HvhFEfkxjPH+QcCfqWolIhdF5NEY4/03AD85\n2r70B9YU419ZJhxctoZe1z23Ixfrimy/++qw/bxuXVjLur9/PzdSS54kQIKVXC4uzSq5LKsVe8sQ\nuWzy4oyRiq+OcUklFKntwl3hu1UHQ+QQc6n1Efq9my7f9s/GH+UNqawY7uuys7GUS5J0DzCkM0+N\nJBMMgPUM+FODPccIxV5HLDvz1DgUt5/rSldDUsqQs4GVHIt52vZ/ireZixCp2O/2fvlSyxQMvROn\nKQUCIJAOlGFeA48E3quq7wMQkddiCKElFlW9FbhVRB7v/1hV3yYiDwic99uAFzV2bHsOVPW/Oce8\nCzgnInN7XAhX28YSwouAXxaRbwY+ADwZoKnp/MuYm1cC39F4hAF8O5278ZuYYrgX6Q2qhaP7jwVz\n+cZ8gN0986LtpMZbbJl1aWCahgA7oWlLKkD730XW8zRLWrvATibspGVv8rZqMWsAtdewycprit0j\nRCp+ZcRQnIJFLPeZJYcxCSWGXrCl00fbh9m8ar255qkx3Lv2FfE90xuCSZOcVHOorrTPxQ2Q9fsw\nZYILEYovXXb3dtm7Dhdjk+AQsccm+lg8R76selJKyO7hSit9FdhytL9jWSVs21bNdrJEMi5tn2Zi\nzAFcJyI3Od9f1qjywUgLH3T23Qw86gTafDDwL0TkhZia99+tqu/wjvkq4C+GSAXuIsSiqn+A8f5C\nVT8GfFnkuBdiPMj87TcBD1/9RRyS6OpgajN7rBY06qrMrb6wu3sld1xpVFYlTWZj5WIrSsiKOszH\nPI29WLY9E/eSJzXz2VEv1sXWeekCzU7mJRnyPLL3xJ283f+xdnypBQjWS4+178ON5PfbAaO6bPuY\n9NWSK/YVa2Mpl60B3xyXME/rNkgSjHoty+rWIYGFmexC8Rzt9YzYvvzKjf69ba95ZNXrpwWC1XEb\ncqZwCX61zLI7VZS97a76yyWV/QtxYnT7Y93ofck7Cyw23O+uyi1mS4wRSffdaS/Sz5OSZEQgm002\nGd+mqo84kYanIwPuATwa+ELMAv8zbEygiDwM+GHgsVNOdCaRJNp6WY2pE6ZELbvkYuNcrM1lJ+1s\nKYtKViQVSyq5KIVKgGQSZglcLFzpZcEdV5KVaP2QimRKcNwUb62Y6ms2r6KTnS/BhNqLEchQOV2L\nUN32kM3H9dqbpxq2r7juxo0B3/cYM+q07rudoIu5MSCPuQm7fQ5NelPu69SJzn3uQymCbJ981aRN\nUeMTjUsyIVLJ9rQnbYXGnJ8Pz96PMXIZkvjGnBzcz2NS4JDkfRdAzN58XNwMvK4hkj8TkRq4Dvho\nExrya8A3qOrfjZ3ozBKLSHgCmrqiHyMXE49iJJVZ0rkXrxry6zamYp4qVPTIxarPLhcJO6m0gZVW\neinOGYIpS5NAc2+/6EkxIfhEM+WaQ6TiSgX+PXTT0rhtut994vDVeEMk6P4GuonR2lfcyXk+q9uy\nxOZ+1mGZdkNkAAAgAElEQVT7SiOxaLlAyiXpfIe0zkiTjFyqnj2sC5BMWjtLSB02ZdLzc7W5hLK6\nqvZXvBHnikBKILddVyUWii9yyz6HJAeLMKn01aN+Ua8xD7EpkmqIVKbcW39/DKdhbxGBJJJnbk28\nA3iQiDwQQyhPAZ52Auf9deBLgN8XkQdjvMBuE5G7AW8AnquqfzzlRGeYWDS4Ggzl6YpJNDFyOapq\nE4eSmRoey3oiqdCRCwBpDSTs50YNc7lImKfCHUtpbS9HVUMwdT8df6hape1zTF0Vk1pi9hR7v3zv\nK3eyc9sfK8nsexBN0XuHJJ++GqxfoC1LlFSSsH2laiSWRnLpSTVU7SJhx3lrQuqwobiT0GLGV3mF\n72kY/v6yDHusuYlNXUxRibnJNX2JwXcpjpGKva4x2NgxX3IJ2VVCpDJE1r3znYwR/apAVUsReSbG\nOysFbmxs0M9o9r9URO6NSZV1AahF5NnAQ1X1ooi8BhOEfp2I3Az8oKq+HLgRuFFE3olxK356E/Lx\nTOCzgB8QkR9ouvFYa9wP4cwSS5JsHofgrr6jE2UTQGkkCyu1CEUtlHWnDitUVqLALXJR8qyiUCFL\nklaVlicJRS0mDX/hZEwmXq2y82Y7HoYklamY8puTXDH66qsVuPYVC8eAb1K7ONJK0kXfuyt/l0iO\nG3sylO49ehmR9DJDUov7OaSKchGa2ENxKiH1V6j9IVibi6uiW+nPSBXUGKlcNYiS5ScTlqeqb8Sk\nr3K3vdT5fAv9MAz3uKdGti+Brwts/yHgh9bp35klFpveeMzY7MNP2DeFXJa1cUNe1sKiSllUwr67\nYkrrqL19nipztLW/WIK5XFiXZGnrvbQR+5FqlQeX80GpYZOa5TFs6kkzZRIIZVq2KpzFgEecdTUG\nz3DvoyEZK80YldmCuRe5P5tXPfWOb4Ceouv3r8ues8vyIKNSiz3OPQ8QlFZduGM/pBZzEZvYh1zO\nY+q8UB8seuNzbvoWI7sxQhlre4vTw9klFuhNujHpJWQE91d6Y+Ri0+QfVXBUKWAkjqK2BJOAoxaz\nsPYA8xkWVeIQjAmyzJOkIRlWqlXeccWeqZNexsjFR8iAPjRhhFbNMSPyOhgiqlC8zdD502T6sLfq\nMNehYifVNvrel1pgWEoJ37N4VUVrv7EIkcwQqUwh+JDNBQgSjItYcOzYs43ZiUKqW6BX2tnvt/95\nKqm45G2/W5yWmuwEbSx3eZxZYkmad3EKuUC42NVQTIA9N2Akl6VVxxhvsQu5YF2JQ+QyT5XdDNKk\nS+OfSsk8bVbmVcI8TZinaUNACXcszbnbei9JzaWiS2bpksvK/XDTw3iTidWduyqOKaQSmiRiGAuu\ntFinXoft91g4TOsRtmzWxufoqcYsuWSJjcDvXI6Xi04laqUWt/114UstvkrM3mN33NrfWYRIxd7T\nmBuySy72t2PxUK5NJXRue0y3X1e2GduPYl38153UpxCK7zxgERufPulssT7OLLG48F9SHyFS8dO9\nhAjGrWfvptwfVI015DJvDPd2UqsbUkglodI6EvdiVGO23ovJBAA0UfuQ9iZC/5ospqYgj2FdNdi6\nLp1Ti0C5iBZj820rG57PGvE3hSu1hMgFCBKMPd5iiMzXuc9j9seTUjGFbD1Dn4+DmEQUgj1uSzCb\n4cwSS61xFYINNrTbY6nF3Uh9X5KxE4WdHHb3SsrSrPpN7i83cWV/sOdZxaJK2M06QqmcGAtLLmAM\n/Fmijs2mI5dZAuebtHGLgYnPSitDifzWCqz0VsxjarfYfv+eun2FcLLEpKxbDyjrFVbUJUfOPFjV\nJa1gkc2QbI4mGcwcSS7rJMV6IODUv4ZQ3RF/hR7DmME+tpJ2J8uQlBL77rcd+hzLRuEfaxcrlmBd\n+1O3Xxopry8Z2fcwdG/G1LbHIZyx3/rXcFyYJJRng6jOLLGgElzp9SPYzffR/FnOZ1cV4hPM3n7R\nSEcVR7slIXKZp8rl0thE5mm1UiPEwkaDQ0Kh5n/e2F12UuMlVtRdOV0/11gMllxcqSU04cXOMZVM\nQr8Z2j5GKFNQ1MKiSoCaSkuquiBN5oZEshmkzesQIZWy7hYiRwNc444Xf9ExBle96kqWfoDpkNPJ\nOvfePUdsAWW/D6nGptpyXHKJYapkcVyJJlaeeWvwPz7OLLHUdXxl7UopIbWLO7HZSbhFMyF3q7BZ\nO0HYQbu3b6lolVzmqZE+CpXGjmISJg4hF21iXlzY3yjLzKjEDkbvyjhcnby5vjS4/6RWku79H6so\nOAT7yMpaqLSmpqKmQkWQJIMk6wil+a4i3aOZ0N/lIiVhdUJeF3Zx4q/s+6qwk1lJ+6Qytb9jLswx\nuOQCcRdp/3z+ue2Cb13i9uH/9iRUblFsjfef+lBHYplCKLFVcmi73VblTdBcma4QzHKxSi6zhNbD\nK2uqHM5TWrWXTzAhwpmnSlGbv1llpBWTI8useqe4rkI4+tmf6Cx8Mom9nENuti6GaqtDJAniBIJZ\nVLbuTcJOWlBJQZ1UpI6EMvUcMaxj9xlopL3/ZSk91drU1fRonMiImtGF7ctJSC0dNr9PrhYhRIQx\nL7LYuSySsiahbu/5VnrZHGeYWOITYmiVbDFWgCgKj2Cge/l3UkMuXZLD/svbReV3fensLMMrV5On\nTLmItOowNzEjsBJ/4afHgLgHXOje+at2GFcJ+ROEf++HSMXut+Ti6vjL0rp5C0eVCTBdVEJN1anD\nSDs7CyCZUY/VVFR1QVUXjQrN4KghF1etuMlKd6pKL6ZqDSFE/DHpcqqHnasWjZFLSP0Xc8cPuWi7\n8NXS9vMYAUJX/dXvyxD867fnOK405ENE10lC+UmNM0wsMkgoQHBiWwfub6xR3JY8ns2r1u3XVqOc\nJdLaRSxhlLWwl1fkoiyq1KvvkrCopFWbte16thYwaUisOixklHTJZcxQG5IwQmTiHzMFQzXPp9SP\nzxdVGyRp3VcXy4Rlk7/tcpFwjx2hqkvqpFGHpTuItbOA+Z9kVPWCSsvWzrKopLWtLJbdPXIN91Mx\ntGCxFRGhr2oNTZo+xghlXbuVX0/enXTtOXrXsahM+TtvUo6RS3vNAQeETrpP2zEWWuy5ffVd5kNE\nGHpOLlG152i+f7IUALsr4QwTSzyCewqhTJnkQnAN4tZz6fAgZz5btFmRP7YwrsiWXBaVsJcbF+Oi\n7FLA+IQCRoXmq2tcRy+rDgt5F62jQtjE5dcilJHYxaak4vbN9fIry4SjsuaoMgb8gyLlMKvJE0cd\nZu0s0NpXau3aX1QmoBVoydpdRYfsK0PXZhEaX26J6RjB2OuE8YWAj1h9eeiKZ1npr6fWpZNeQoTi\nfnYn5SkOB+52X0pxvRZ9yTVUaMx3Phkj/BC5uufYxE4Wggik6VZi+ZSG1jJqmPdf+kkr5gmSTQGt\n1GLVNQeHWZsCxqbct5JLnmgTpd/kGGtUYj6phDBLjAeTtbO43mExTFFZxaS6KcW6fEI5KXVjvuxy\nSrmqluUipahNBgSrCjNEsSBPdow6rHE7Blo1GNCow0oKbc5bw1FpJr+QGsyfnGLXOTa2bGVEiBMM\n9KWYoZV16LkNlQC2BBNr318cBKuAetKNvU+hlPkQJpT5omj7GuqnHXPu/fL7EEJsDNrzhbwjt5iO\nM0ssqE4mFBgnlXUmQ6uucaWWFgFymSXCNTNtAymt22uoAmVZdytr6FbX53OnrG7Thp8F2Y8ZWMc7\nK3Qf3AnptOBOgGCeoy8V+naWojbqw0qr1jsM63YMjeRSt/aVSmsWVdZThQ25VU+tfOlew9B1xQgG\nVu0fQ/Cf3ZTyv5tek48hm4o/5nwp5dxB0SeTRb/QmN0XKvwVQ0xqdq/bJZcTgZhhdhZwZonFTcs1\nZfJzU4eHMOSV5A74lX3OyreXAgZ6ZY6XtXAhN6SRt6lFDNx0/EUtXC6M7eWil71vJ1V2znVlju+I\npNm3KWD89B4npRIYg71X7mTiqzzcZ+GTi1XFWKlwuUh7dhYjsZjjq7qAFON27JzfEErZi2OxhG2b\nDk2Sm0zAY2MLwtUn18FUUrFtudJKrDqj3eYXCJvSP5+Q/bixfFGxc1CQOZKVSyih/k4p/AWrheL8\n/rsYChreIo4zSywW66hh7Mu2jr7fnfBiL2i3+hXakHAneeUsMZ5dRxVcyIWd1Br5nX7bNPy1qdey\nDHQxT8ykeKGVXkya/VAdF9OfZHCledoIlci18J+FJRdXHQbm3rp2FhfG7bghl4TWxrJqX0koa6s+\na9ofUCWuXEdg8hq6tpPEVNVX21eHwNx6Ky78Qmuh1PaxSR1W3aZ9Utm5XLTkly+rOKE0ZZFduP2N\nqQaH+n/aEvZZwZkmlk0H0dgKc6jWuQ93wjYTusnpBSYNC9RGYsk6gskT2EmbxJltU9IU/iJIKm0b\nDrnMEkNAR3mXrNISDAxnyL0zJkUISy8u3GdhyaWdvDFSi9t/a8C3ROHaUvyrtPYVa5Mxv+/UYWNB\nin59lnUmr5BRel2sSypu234Rrxj8NPuuam5qzEvMnmJJJVhkzCmP7PfXbXssdsqvnmnJ0X1GJ0Y2\niSDzk5lyReRxwE9gJoufU9UXefsfArwC+Hzg+ar6YmffjcATgFtV9eGBc38X8GLgelW9rdn2POCb\nMRPUs1T1zUP9O7PE0qsc2GCdyXLsxR8qT2vhr9w6l8uOXO64YgzuRc0KwbT9bn52sQgnW4wmYLQO\nApk9zi0UZpJo7u51+jQ/3sVHSDd/UhgimCmqJNeAD/1Ax0qbFXFjY3HjVyqtKTSjqKWXxmUsGHRd\ng29sPMVUYEPnH3LZds8bel7rkMpJIOT1FZNUWo+1ZnJ2VWBDpBKSuMc81O7K0ouIpMBPAY/B1Kl/\nh4i8XlXf7Rx2O/As4EmBU7wSeAnw6sC5bwAeC/yDs+2hmPLHDwPuC7xFRB6sqtEJ88wSSwhT1RNT\nJs+pk4CF6xFjkw2WpTTJKxMOMN40pn475E3ef1smt5NcVgnTJxb73ZzHpNm30gtL2kJhpl82TXvd\n2SuyPOiyuu59CWHsZR6TYMZgm58fw+3TjWGBiES3hit1CENleMfgS0fuuHZViK4txW3TJ5WpxfDs\nNbtuui4xratOLeZZj1yGSMUiVvxrnYJ+p0YoAnIy9ppHAu9V1fcBiMhrgScCLbE0ZYNvFZHH+z9W\n1beJyAMi5/5x4DnAbzjbngi8VlUXwN+LyHubPvxJrINbYvGw7oo7NlGGJoCheIOxDLg2cd/hQb9S\nnyUa6Oq97KQ6WINkFtxnpJfzM0wVSmqgaAnPNeyDkV4Wp2DQn7pS9AlmTGoJ1WWZSi7W0L+s42rG\nKfdhneuyiC1QYgGKU+Ea5/22QqRiP08lhxi5+HClFRetRDXPMGmPCJJKe/yEuvdtzZyBa7gLSSnX\nichNzveXqerLms/3Az7o7LsZeNRxGxSRJwIfUtW/EunZEO8HvN1r735D59oSy5oYqr3tYhMVQshT\nJlQX4vAga8hFW6IB8wIVdc35mTQGekM2R1UnpcySuLrMSi/WLXmnqUK5u1eu1KxpY0Qcgpnilhm6\nV/7vQnru6PkCq3EfK4WfEg26aodgSWUsRxiMSyntcSNGcxgnFP/7GMHEFkx+O7HJGcIuw6H4mFgw\n5dg7MSTFxUjFdy4YKlPsVi8dIpfTsh+KCLIzecq9TVUfcSodCUBEdoHvw6jBjo0tsUyETyhDL/sm\n8KWWmDum3edWc8zzuiUaY7Kusd5k1l0ZOlKxK/VFJUGScQ37bhVKa9g/PMha6aV9See0KrIx+JNh\nLKZgHenFjfVwVTnuPd3JwqSaSvg1GKvDEpqcxvo7lpl56jjzJ8fQPR1yFpjqweXCL2Hsw7YTC6Yc\nS0fjq6L7UkvcrdieL0YqrhpsKrncxfEh4Abn+/2bbcfBZwIPBKy0cn/gL0TkkZu0d2aJRWW6u2js\nZfdfjk0GayxjsLs/9hu3Vke/CJQhlzwBZibupV8/JFxXZJaYv2VtAiqPKihyE/dylBtp6A6HTFyC\naYlwPl2XPiU2ZqpNZigwzk+6aUo5mxQ5tkJnQgrlkfmc7rXb5mm8wuTU572uhAKrkl1oIh5rP+QG\nHGpj6sIolFsv5CjgX9tY9LrdZ+1BFpn3PRQPNtVJYop9yPWeOxWInJSN5R3Ag0TkgZgJ/inA045z\nQlX9a+Ce9ruIvB94hKreJiKvB35RRH4MY7x/EPBnQ+c7s8QC01bEYys7X82yjpHQYig9d+g8NpFl\n6HdlKU19+4JrmoDAS4Wxu7iwrsn+NnefSzKXCrhYCHnSJxi3/PK6q0E/8NJOhOvAfT4tyTjSiv2b\nz+qWOF2kSU6a5PhIk7zN7G5ISCO2qVWsY5gfIxQIL2CmInRPp0jbY/m8fNtIKM1KLLjQbdN3V3ad\nDVxHg6Eg4zGMpY25U0jlBKGqpYg8E3gzxn30RlV9l4g8o9n/UhG5N3ATcAGoReTZwENV9aKIvAb4\nYowd52bgB1X15QPtvUtEfhnjHFAC3zHkEQZnnFggTi5jUopv1HQxJoXAatbVoeNctJNEswr0E0fa\nWJiyTDiqamOIz6BfUKwPVz1m4c9vs8RIPkXeEYxVkbnqMYtYSVk/4+1JRvX7KjDXycFcp7a2pFy0\nrWeTkBr386Zap3VFT5OctF5498E4TISw7uQ05jk4RZIIqcT8e3kcG2BoLA8lhYRhV/yQp1mMXIAe\nwbgIeYJNhU8qLoaSWx4bCUjc938tqOobgTd6217qfL4Fo7IK/fapE87/AO/7C4EXTu3fmScW6JPL\nkHHe19n7hOKu2CGeHylUpCiWdiKWz6ztG/2sxKH0MEUN52fgk4trc/HTxPjIE2EnTTiqaAlmJxMu\npTXz2aKVXtyysv61u/fGRWhy2RQ+qVjbk32fjRrM/KVJ1qrCTAc7tVdC2u7LxZYh6A51r8OfoELe\nab4X1hCpDE2UU6SVIaKecm5/vE4hlCnqPr8d+zn2/H3VmMWQetS3U7oLC7fkuAs/yaW9rlMhlzOC\nLbE0iEkuQ/aUk8RxV+zuC7O7V7TpYbKshlkNy1VyGVPtuGSTJ8I81abCpU0ZY4z8F53Yl8OD3CnL\nnLZ2n4PLec/t885GnhB0wU4la9ReJVoa6UTqkjQ1qrA0yZinZXsfjEqxb5+rswQWqyv3KTiJzLmh\nxYtvzD+ug0koiBEmZvOOuC/7/R+Kgo8t+MYi7EMISSuWwHyJ5UQDfkWQ/JPWYWAtnFli0YDtfqr6\nKzaIQ5mBQ66Z68DVkYf6N6RO63J+VSax5ZKeQd/GZITmNksqe3kzYSZJm1U5T0yiy1kCFwsz0e5k\ntNLLYpn0UsNYoimKLqOz2b4q2QxVBtwU7vOyrsZBw32jCqNckqR7pJL1DPjzhlSs5JJldVSFOYR1\ngh1j1xHaF+pLjFDGioC5iI3boQSWoej92PvjSvZjkmto+9B76UstIbiBpO51uPu3WA9nllhg2Fh8\nnIks5D1zHMT6MlZB0H+hFlnNNedqI2E0ksssMW7HbobkPNG2sJgtKmZqwCTs53Ub9T9PBRuQeamg\nlV5saphONUhrh/H7OBUnURfDV29bw31rX7GqsLpEVM1+zaG6QtZU5bTXbklzHU/Ak1z9bpKmxD1m\n6Dwu/HIJg7EmA9c3NPn7bsyhJJEhrCOFhaRkf9Hmk8uWUDbHmSYWmO41MyatWIyRil+kaQybqjBs\n+7b8sU0PY3OPgZlol3V/wt3P63ZFn4tyYWb6u6gSclEKFbIkadViVnoBm2G5iX8pV3OP2X64dhi3\nr2MYIhf3Obn2FSu12bg062qcStLZUSypOBILdUkiZn8qCfO0u2dtXJBXbncdHEdaGUtTEtq+ibQT\nqxIaUvfZCTkkrYTenZjU6vd9SmzN2PW5nmAWvtoNOnJZNx3TZIggZ6Ro2JknFtjMzTWEIVKZcv6w\nHWc41UusH21kfPObvlG/YCetG+8uI7Xs5/26LrnEjfnziPRyx7IvvViCKWqbqRkgZbkInjaIocJW\nx0HapMg39pW6ta8AaLlA6FyO0yQjl6p3P9bR6R/XCDzkMGK3hcbGOn2cElE/ZqCfSipDfYBpKY5i\n54x5Iw7BDdANqSm3Ne/Xx1UjliaL5quBe2GsyS9T1Z8QkXsAvwQ8AHg/8GRV/Xjzm2DqZhH5AkzG\nznMYF7zvVA2kL+53YK3+upP10KD3SWWKqm2KC3OsTz5su7H69Xv7RRvnkic1lxKjEttJ7cvTxIKo\nNJxmti8qU3XRRZcWpW6KYCVt6pOV5JaY9DD2/rkSi49YwSUIl+adct1H4ZIeGyOYeHLNKqJTCHLq\nxHzcSPIxUnFh87K5UgqsZj3wr2EqfKllCsm0fRshlbGAUhcnTigJcErZv+9quJoSSwl8l6r+hYic\nB/5cRH4X+Ebgrar6IhF5LvBc4HtHUjf/DPAtwJ9iiOVxwJvGOrBu/MRQOouhF9OHTypDqoIpffLb\n9T/7k+3evkkueamdMGwApUsuqTHcN13ySWWe1iyqhKwxhruGfUja4Eqb3DJv4j/KsgKMt5jf97Gy\nx7HSvL1jnOu1xnXTzgCzWNuK425MuYR0J5ruBaZJkEPSyhi5xEjFd6F1j9+EXDb5jSWXIe+p43pO\nrqPSGwoy9s8xhuOQ4hYGV41YVPXDwIebz5dE5D2YjJlPxESFArwK+APge4mkbm5SD1xQ1bcDiMir\nMTUIRonFRUwdFgpkjOm2xwjFtmPhxlzAam4j6Dy7iqIf0R5amUWJjPhKnt3SeHS1hVYC5BKBtTtY\ngrGqMWt/caUX66K7cDypQjYKl1BirrsuwQT3A8zjHkHWIaFHGnUZ/jyC4+abmkouEF5shGwV6/Rr\nkzFsESsHPGWl7z732CJq02tyMcXrDYbDCU6KXGRrY7lz0dQG+DyMxHGvhnQAbsGoyiCeurloPvvb\nh9ts1Di+1BJ6ycei5Ke+jDFS8QnFkok/oF1ycV9G65cP8SSIbg1420aWKVlWcyk1SSu74Mk+uVhj\nvkXrKYaRZLp9hmAOCtf+krSFyZaZcM25GpOOX3oVKhNq0qLukclxUmwssi5NS1maksJH1WqW4iRG\nuCP7piBU6ySEELkMSSlTMEV6iY3jGPxSBbEMw34/Yghdk9tv314yRjBDi75NXLHH+r9FHFedWERk\nH/hV4NlNHpt2n6qqiAzbStZr61uBbwWY3f2ek33nYZVc7DaLdaQUIEgqbmr8qTaWdfIdFcDlizP2\nLyxbb7FuzxC5dN/naU2h0nqIuXDJp2xsLub3CedzAOWoFOazmt29siVII7mYc1kVSy/3VKTm+RBs\nPrXTnhjcibCYpSsR21PcV4cyGJ9U39aFb9B2Fyz+NQ29NzEVlU8qoWh8e9w6xvgphDIUNHoctfQo\n5ORKE9/VcVWvUkRyDKn8gqq+rtn8ERG5j6p+WETuA9zabI+lbv4Q/Zw40ZTOTaGclwHsf9qDRwnL\n96ffNMDRPZc7cEOkMnUyWdfzpVcH3nNFpt0zTC5ZoiyqpCUXH6GYF5dcjiq4YKr/ssgMuRRF0qTa\nmK1MvD5J5ovSVBWckOQxX1QssqTnGXeasM85ZnNYh1TWDfQbGgtD5OLvi+UZm5IheR241zFF7TsV\n6wZ4+vBJ5cQI5QzianqFCfBy4D2q+mPOrtcDTwde1Pz/DWf7SupmVa1E5KKIPBqjSvsG4CfH2zf/\nfakFju8NEvMu8e0prlpqKqG4Ls3rSCuhc4B5ibsMxXFyKWptY1wsuVhYQmndcStWyKWolQu59FRi\nZVmxt1+0fSrKdGVlHCKXIdjfnGRwm1GJhd18bf6zNrvABoQCw6Ri4ZZJ8LcNYR0bxVgSy3XisGKe\nlG6fgKCk7qt9Q7EoUwI7h+BqIWKkcqISrwDZVmI5bXwR8PXAX4vIXzbbvg9DKL8sIt8MfAB4Moym\nbv52OnfjNzHRcD8U8etjigfZ2GQxRipt4sgGbsXG/vb1Jk23Rka+qFaM+bt7xSi5FLX5bMmlPbcT\n7+LaWlbJBRZV2lOJ7e2WbT6x3b2CTyx2ehPxlLxb/jE2G25aNBLmfPQUa2Mn6z9LO3YK4nmtYL0M\nCkOYkqYkhJAUENo2VJXyuDFEfr9DknqIXKZgKBgZ4n0fIxWX+LaYhqvpFfZf8bP5dfiyyG+CqZtV\n9Sbg4eu0b003/orkuDppi+NKPTFSgb60MqlvDanYSc8lF/fFHSKXWWVtJrRSSOcVJqPBlHmiXLtj\nXI0NGk+xu/ejJT/BDvODghCstDJEOPmipJilJ5s80EEocad7D6fUV7E4zhjZNOJ/KrnAqip4EwxJ\nKyFScUtg+xka/POG+haydbrjHobrKp2q+ksEZqu1fz4VcaZDSk0tkW5wx/4spk4EUwywbkR850Is\n7Z9/rD1uaELZZDK15+z3wdhDjko4qoRLhYlJuWNp0rdcLhIOioRFlXC5TClUWFTCokq4uEy5XCYB\nw77JtbWf11zI4Xxu7C3nc7j73Rfs7pXs7Rfc7R5H6D0SjvZzilnKlb2cK3vmsy1ROxQbUswzyjyh\nypONMt8Owc1MAGEVTtePNFoHxf6FYBcN/t9xMGQoH9rm4qSDBWOkMrU/FjFSSYu6/RtCrJ27ujeY\niDxORP6HiLy3iffz9z9ERP5ERBYi8t3evhtF5FYReae3/atF5F0iUovII5ztuYi8SkT+WkTe0wSq\nD+JsKPwCEOlWaqFVih+UdRoG4ClR6MAkUvGT6G3iquvrtXfSuglyNJLL+dyQi1VvHRRJI6kkRu1V\nrQZSQie1GLheZk4Kek9yOSTniDy4As0X5eQ0KaMTJtUkp2JfInMXJPa52PT5J1FWGPqR55ukbHHH\n9VBGaf98sX5NDSgOeVD6/XHb81XArtTi/tYf/0OkEsO65ZjvihCRFPgp4DGY8Ip3iMjrVfXdzmG3\nA8/CxPT5eCXwEkzmExfvBP4N8LPe9q8G5qr6T0VkF3i3iLxGVd8f6+OZJRaLsZdzXUKJSSvuZ1dH\n7hjniaQAACAASURBVJKLuwKeogIYwvHKuJrJ8o4rAHWvjotLLiZti7aqsQV9l2NY9RQzmE4uRWTa\njxnxrRospoIaKmY2Fb46zE2fP5RjKqYSWjfeZKU/a8S8uBN0rP2p6uGhzBIxcrEekDFSCWGMhMdI\nZcyR407zAhOB7EQWqI8E3quq7zOnlddiAshbYlHVW4FbReTx/o9V9W1N7KC//T3N+VZ2AXsikmHs\n2Evg4lAHzyyxjIXH+PXb/cF9UskQIS65uO2dVnEs/4W15GallqOKlSJhllx2UsG6EndFwbp4lyGY\nY2uOqoTzuSGXojaOBC7KecLli7PW7uLW+whJZa4ks5Y6I7l6r0Js4hyrAhnyujqNyfG0JPYpCNlZ\n/PfQYkztNVRe/C6I60TkJuf7y5pwCTAB4B909t0MPOoU+/IrGOL6MLAL/DtVvX3oB2eWWMbguzeG\nBrNvDIR+8FUsEthVn8DmBaNCqb+HMMUFt4ttqdpklQvgqKo5n8MyE44qOJ+bQmFHVcJOagz6Ra0r\nBIOT9qWspZfmZVFJm7q/qJXzM0tURa8/s3nFgjxYo9wiRDIhw7FNplnVJVVSUtUFadYE19j/SQbZ\njJqKSktqKvO7Jh/asu4T/VTSjwULTjFEx8aYj3U9xjaVlsaM5K7UMpbHawgxyd0dC6mXrWFqTRWf\nmEOahKE+rI31jPe3qeojxg+7U/BIjJ/nfYG7A38kIm+xElMIW2KZAPtyxSa2GMHYl2oIIZI5bbj9\nDKnoDi7nFEXSZkK2fVxkNfNZ3ZCBMEtMqd48GScYl1Qs5qlRpc0qk6RyltAmq3TJxfZzuUhZZIZg\nqkUyGLvjB0geVSZ9f1EbJwNLGAAkGZLN0UZqkWwOSUZVLwy51CWFmtxny7rLlOw6XsA0z6mxIL4o\ncUYk5NCkHYp38ffF+jIlNiSW9dhui5FLey2OyrcsZVQdNmRfHEpaelwchxBPGbFg8dPC04DfVtUC\no177Y+ARwJZYQhhyZ4TOQwfiKyR3ReSvMEMTzRDZ+CQzhJB6wk+94e+z/bL9GII9t8mEnJFl2rzg\nFYvMFPAyRa9MWWJDJoZgrplpQzCy4knlI0+UnVR6mZAN+uRSFEkb/xMimBDcOJbFMuGoqllUtJmY\nq7qgTitUBMlmncSSzVARaq2o6oJKaxZVRlFLS1CdF11HXgn12ipSX0IZen7rntuXXoZIZWwBNIVU\nLHxy8WHfuXUn7VBQMPRJJWZbnBrM6ZPyiZKLCJKeiErxHcCDROSBGEJ5CmbyPy38A/ClwH8WkT3g\n0cB/GvrBmSaWGIa8T/wXairJhM4F4azDV3OV5KsDgCbFvd3flea1aWmuOVdzVHYEs6yFRZW2gZGw\n6qprjeg2BmbWSDNFrTBbJRe38qQlmMsXZ4QjXjpYV20X1jV6lhriqJPKFP6ydpYkaySVolGDJS0Z\n2cddljJpMo4ReEjltc7qe8hA7iK0UAmpd2MY6mesr/7kPhaoOkVqiWHoXh0n+0LoPbirQFVLEXkm\n8GZMYNiNTQD5M5r9LxWRewM3AReAWkSeDTy0ycf4GkwG+etE5GbgB1X15SLyv2CyllwPvEFE/lJV\nvxzjgfYKEXkXZuX3ClX970N9PLPEoiqDRkE/CNFXUfgZXmEaybjwJ4ehFBhTMGa8dOHrv9023VWb\nH0dhbR5AEzFfUpaGYOYzQzBHFRxV2kov1p5iycR+L2ppVFNWYrFlf5Wdc7CTCZfSmvlswcFh1rqh\nupKmSy5WNeZPbG2sTt04I2DIZdezs0jWzH7ZrJFUyvZY+we053DP76+iIS61WmxCKC5i5RximJoO\nBeJR7GOkYuFLLb6N0e2DTYljycWStutmH5JWNlF/xQz3oXu3aYaDKE4wQFJV34ipPeVue6nz+Rb6\nORTd454a2f5rwK8Ftl/GuBxPxpklFoh7XcVIJTQBhCYy99gYXOKZsvIc6vs6cNUTY3ag2GTlEo91\nkzbSi7LYKyjqmmUtrfQyS4yR/nLRBUqCsXfcsexIpe1jcysu5MosES4ugd2y9dRz4xyWi9RIfYv+\nM7Eo6NRVR2XZOAo0BnytqDF/JPOe8b7WZWtfseo5Q5idncgNLHVhn/1QepfQBO1nRo7BV+sMkcq6\nKq8QgnbFwKRu+2/fidj1+/aW7nvY/XkdUom9jzGMkfFpeWN+quPMEotqWOccM9QPEUVIepmCKTpz\nP7Atdp5N2/W92HyEXK1d2OwEbvr7siw52i1b6cUa+HdSkxrGuCmbidonlV4/k65I2E4Gl1Jj28my\nmsODnL39oosfKVeLf9nvZtXbr8myqEzmgJ20oJICzQRpVGEqAkprXyk0az3CwNhrVty0J66i/f1+\nehr7PUQw7iTtL0SGCGNdMolJWaGFVaj/PrnAarE53+PKryjqBwWHJMKpGMowfqfiDKV0OcPE0teR\nu4QCcf/4oYljXdF8Ux2w31dYTw0Gq55sQyqbshQSVqW3Kk8oypTyIGsLl5nVpZnwrfRiDfwXckMw\nQ2SyE5gDd1LlUkErvew46rHlwijCbAJL+wzcia0kWfEMs15qrkuxdTu29pUQ/L73JNtlFSWKGGI2\niqnSyxDW9VgLYUhaj12bTy5DfYu59PoqsPmiex6uhAfDKX5iWIdU7mo2lk8GnGFimRY/4E/Yx0mZ\nEoIrPYytpEIDfKq0ElNLhFylY+d1V+R28tg5KChmqTn3gZngyzJp6qwY6cU38LtuyhYhQoEuyv18\n3kkvyxpY9mu67F9Yclhmweu0UpXxYuu2rxuF75KK62psV9J+gbKpcLMI2Hoz7oTc3l+GS/+uE2Q5\nrV/jHmBTEJJaQoZx1/bi21XseXxSsZ/9OjghL8ipksqpEYlwUpH3d3mcXWKpZTTNNsRdeEMrsamT\nSm/S8CaKWEyCj5D785hKbkjn7yJGKhb2pQ6tWOcHBZeZ9bYZm0jF3m5JUTeT+8xE8dvuGJVZ/1yz\nJEQ4yqVCmkwAqzVdjjCqBveensuO2N0rW3VcnmhbbjkhJZXM1FwpjwBI0j3SJCfVnLRetGlpQpmN\nXWnF3Ls+SbiYWglzE1KJ9WtTTDHW28ncHwexSb53TCDWJuY846sZY+3FECKVoZo2VzPTwKcKziyx\noDp5tT8UH+JiijQTe9mmiubuywbrORS4x69Ua5xg7/HbgE5t464a5wcFh2XWTg4mFsbYKGyQpbno\nPrm4sKRijf3zVJocZeCSy9Fu2d6X3b2CQ7rMAfae7u0XZFnNhZk57zw1pJJKYggkaX5Tm3OJrkoy\noXgcG7viSivufdikpLKFTVsTI5WhPGOxBdPUGJh1bXabOBy0vw0EB29qMA9JKzFSce/fWPnjLcms\njzNLLG1uRI8wYit6f/tgBtVIHit/sh+TVlz4br9uH0JtresdM4SQtOK2E0NByiE5ZZmwu1c0k79x\nT6YhhBC5WFLZz+ueuuqaGavkkncqsRBm84rdvZJrztXspNpKLLkoaWIklYTUkEm5bH9nt6dJxjwt\ne/1wJ6F8UfWklbH8ZUPwJZxue3yc+KvrodokY4sH//iptsVgnzcYe74zzRRpJdp+gFRCVSHdbN6n\n7gG2Nd5/6kNUoykpYNywPibF+NLLUP6idQyJQ1HHvsF3THLZ1HkgpPZxYfuRFiYy/vLerJUobKoY\noCWXZSZcyM2k70oqIfRVY9p8r7k0MxGcq5l+ld29gvMzuHYO1+5U3GOn5MKsImFGKpmRWBaHaLkw\nsSx1SZrmpHX/9XDbthOf+xwyr/6HvffuZDhGMm6SzSpPjhXFH0JIehlTfY4tkvz9U3N1xRCTEEKk\nMoW0Y++XjYcaIpettLIZzjCxDNskphLMGKbUQA/FIYR8+cdIxf6fSi7RPs87o7Tts22zVfMsK2No\ndsglX5SmgqO38p4fFCyIrNQacpklfvqXfl4xG0hpgxNde8f99pSPLYSddMEdVxp13KybhK4/B/fb\nVa7bqdnPa/azmlk6I092yJMdUk1aNZiWC6RcQrrTa99t20dW1EGSDd37TTyZ1o1xGkoQOXZM7zwT\npO7YNlj/3XFd/n1pZaqkEjuvm2TSfvdzvYUSzx7XVtWDCKRnY8o9G1c5gikEMwVjUkzoRfMj70Pw\n7Spun4/zwo3BzZpcOYTikksIoUk2Keu2FDL0ExG2ajGkzTm2rE3MyzWNH0BoYnfJ5dq5NuRUs+ON\n6mvnyvU7Jn/Z3WYluxnkyQ6z9JyRVqrSqMHqrt/JQPkv67XkqsFCGCL047gTuwuRkOu5Dzdgcwyx\n6xlaIG1SAyV0DaeBsTgsiGcyH0sMukUcW2JxMCWZXQz2RZpq6PfhSy2+3tw11o+t4DaRWmIqF196\nce1HrbovtFr3t12Go/2cyxdn7F9YOun5G3hqMYvOptJH2IPM1Irxj7l+R7n7vFOB5ck5cpkbG4om\nUB6h5aKzsdT9vttULm5mYwjbuIIeUHkyugCI2VeOiymBvWMYU23ZbetK+bGA3JOUVqa26e87FVIR\n6bI7fIrjzBJLyPPHxTrR9P6LFCKXKS+bP+j9Veim+ZHgZIz5vkrMvvCuSsxV9fjkUi0SE8tgo+UL\n63LaPIvGHRlMSv6i7ojClU5cUvE/X3CIxdpp9vOaPUcFZj3BWmnFEkldRgt+uZH3NpdVRhmd9Oy9\ntgQfIpfjSi0hhGKwxsbMVPdddwyHbDTHURufhtQylCopljdtnSzOW8RxZokFpum7N03X4mPIWB56\nAWIDPOZx5iM0aZ2kp1isTb99l1y6QLmU5cKs3DoX084dGWqjDsvCHmMxuHnI3G3GrlK1cStWWjHq\nLmfiGKkiaSP3p8Dea3sfTlNlGVKDDU2IY30JBRyeJKZI5zF7T8hmFXp/3XowoQziLqYk3DwZyFWt\nVHpn4mxc5QjGXjSbnsLCH9xTB2DIgOonhJzi2TP2sscM+dAnF7c/Y66oU6tUDsFPDnn5oiGXzqha\nNEbWspct+cIMOg+wMFzXZJ9csqbomC+t+C7GIbhFvja5Xksu/naYnrrFHROxBQgMJ4tch9jWkaLW\nHRP+Imoo7cxUNZibQsZFO743GLdbSeV4OLPEohKeKIakAd9ovclqztdDhxJC2u2bwl0hh6SydSQX\nOwkMp38fDwQM3tfm2g9vN7nGfIJxsyUbL7GOMCzJWCnFj3nJHHJxpRVrlDf/m2MC5GJziB0XU1WX\nvjddj4QH6vl0v4+rwE5DWoqNz6HUQe51xNS+m2Yv7gWmTgwWdjHmjHAi2NpYzib8wRybMHsutyOD\nNkZCQ9LCFFIZiiOwffRVU6G+D6nohtxc1022GDvOXVUeln2CcbMlg01fr606zCeVvdx7fk0UbE9a\nselbYMVI38JRV7jVI4u6ycjcBKtmbEY8oVgXFyvOFyOR80O57Y5DKuvGo0wpFwCrUkusOuu6GEqK\n6cO9v24W5k8WiMjjgJ/AFPr6OVV9kbf/IcArgM8Hnq+qLx77rYh8DvBSYB94P/C1qnqx2ffZwM/S\nFA4DvlBVj2L9O7PEogJX9vLeqs63X9gVpG+IXeeFi+13Jwl/Al8MTOihFWu1mJ4VAIYT9bno6cFJ\nWTSqOrfevA3mG4p58FUrfvCo/W8TWh6WOXVmEkuala0dv4ZcbAQ9dAZ6V0KxhGL3u9JKmuTkyQ5S\nFUZSWZrASJaHHdEsD0nmeyZ4UhLmaW2i9Zu6Mrt7JfsXlhQHCVf2cuf61ssFVuZJb4yNJVKEMNkv\nHBWq7yLur/6nSqqhcTsWrBnaH88sER5btv+273ZsrevkMDlCf+Be31UhIimmquNjgJuBd4jI61X1\n3c5htwPPAp60xm9/DvhuVf1DEfkm4HuA7xeRDPh54OtV9a9E5FoYLt4aJRYRuQA8D1OF7E2q+ovO\nvp9W1W+fdBfuoqgTocqTSQP4pAZfPC3HsJ4/BqtOWGTGFcqfXMa801Yzv/ZzKrloU+KTtiPKdTN1\nSRqGExD6GHPXBYKV/KwtxVWBhUilzQkmmSEVVUMk5RJdHnQxLItDAHRngVRFQ0Jzclmyn9dcyBPO\nz+BjTXqQw3lfrWHHUEzS9V2Kp5DJ6phZfUbLRdqW/l0u0nZhYifqI/JJueDGMDVQc2hsh56jG8/i\n9x9WF04uNqrP4txr/x3IGvXo6dRqOTHj/SOB96rq+wBE5LXAE4GWWFT1VuBWEXn8Gr99MPC25rjf\nxZQ+/n7gscB/V9W/as79sbEODl3lK4C/BX4V+CYR+Srgaaq6AB49duK7OiSFxV7eWyW5iE3AMG3Q\nhdKBu4kRgWDuIoteAKHth1ezwv+9648fWk74E4tLKKGsryFYgnHJzJ7XTgChFfaUCGaXYEIpzvMm\nVgXCKV9CpAK0OcHyZMeowRoyaUlleWjcjg8byeicIZ18vkOa5FyYXeETy6xNObO3W7K3X3B4kLPI\nzBjictePIanAV8GsSySh5+Mmb4x5W+le0k6aMYy5/A6N+9VUOuGx7Y9rP6VKqP92rPlwx946CWWh\nn3/NlFVYrrR/lXGdiNzkfH+Zqr6s+Xw/4IPOvpuBR00879Bv34UhmV/HlCK+odn+YEBF5M3A9cBr\nVfVHhhoZIpbPVNWvaj7/uog8H/g9EfnKiRdwl4YIrarFTsShidfCnYCnZGENDVD/ZXNfsj7hjNcJ\nKUtpKyja1BQ211FXcKtTMYTVXH1CGSI4n9TaaOZ5t22R5YOrPj+Rpkt+VmoEe98HJjGnK53U0t1L\nV1IB2tT4aZIbFdjy0JBKI7Vw5QqUFVw+NEkCl4ewPCSd7ZLLnFQS9vKK/TzlfJ6wk0qT3LJJ10/K\n0X5OtTD1aUJYRyIZm6RDk7O7397jdeq1+6Tknqffv1W47fh9DL8HbkJP6R1vr8WO59A52n55UtrY\n4sWXTlwyseW1TxWSmFx003Cbqj7iNLsTwDcB/7eIfD/wesCKmxnwz4EvBA6Bt4rIn6vqW2MnGiKW\nuYgkqloDqOoLReRDGFFp/wQu4qoin1Vcf6/DXrCeX9WuPTbwkrh116fCvlD+6tPmtfLdaX2tkC/1\nH1WmTK5be90G7/nXZNGTAJzrcl/2sSzLtp3Q9lASSPd4S4T9cyUsF1n7+3PZEXv7nWfY7l7BdXs1\n9zynXDuHa2bGYJ8nyl5eM09N8GMroUhCmsw6m4rM2cnOk1Y1HH4CPfw4XLkIy8JIKcsCvXJkyAWQ\nWY5mH0WyGbvn7kalJffcuYNFVVLUuTHiX39ElimHB0WvjO6VRXjiaCWwzPw/FyCQ2ELD3schqSW0\nyAlJIEPk4T7TdaQXf1y7fYyNbQubpmex7Prvp1iJjTWL0HjyjzfjatkjPju+7GJxPqvbfsbywt1F\n8CE6aQKMueJDx/2tqv5/GLUXIvJgwKrRbgbepqq3NfveiHEK2IhYfhP4UuAtdoOqvlJEbgF+cuJF\n3GWxkyufcV+j+rDePsHj1pzsY7C/s3msZo5ap93nteWuzN3qhbavpt81y7rmqCydbWa/JR0Lf0Jy\nXyS/f377XR9MO0cT7NTuuezxfv+AHjEC7O4Vbd/yBO55zkTg23xfJpK+Ihf17CgdmbhSyjzZM5KK\nJZU7PgafuNSRyeEVdFGil8wCLQFkWaCAlEvOn7+eVDIecP4O5umCPJmRJwkfO7fg0nIRJHgXIUJw\nk2Su3LfImLPVN80xfan2qAqdr1wppbz6TPvPswiMs6H+hca127+Qycz9fTeWq+a7YINW/b7F+ueO\nIx/ugscnjzwhWtH0VHBy7sbvAB4kIg/EkMJTgKcd97cick9VvVVEEuA/YDzEwNhaniMiuxgp5l8B\nPz7USJRYVPU5ke2/DTxo4kXcZbGTwj+5mxn89uVzX6ShYDwfY6sbey63IqIfzBeLGrewAXpuapFF\nJVwuEuMC61xD0X42UezLenVCCZFaLG3KPNWNAgRd2HvU76edTGqWdclRufqi76SrhGKlE0MmWZBM\n7LZUE1gcGEI5uggfvx396O1w8TL1xQUsK+rLS/Soor60RHYyMiBZFoZc7rNEgL3968x5dz9OLgvm\n6YyPHaVcLLprsddh0b+fjoNBZAKzzy0PPAd/7LhjxYyJuPp0UcmKTcp9nu6z8cdyaOHk92/mLYxC\nY3sM/vi2393+xBZXULWE5BOpXQj5Y8rts3s/1y1XfTWgqqWIPBMz4afAjar6LhF5RrP/pSJyb+Am\nGvdgEXk28FBVvRj6bXPqp4rIdzSfX4exs6OqHxeRH8OQkgJvVNU3DPXxzLobz9Oah91jSekN5Knw\nJ/h4O91L5rvGztO6F2tht1lYGwGYeArTVhcFXqiwqBLKJqX85UYl0L2c5rd+2d/Yix96ubJA5cRN\nYftp+7io/n/23j3Yku2u7/v8+rH3mfOYe6/ulZCQBMhBmAhIUUiRKFdsbF6RIS5hjJFCindJlkER\nOLhAWBWilE0FAQaDobh1zSsCY0GwKauwZBlB4qQIAl0wLylgBAj0RLqvmTnnzN67Hyt/rF7dv157\nrX7sc2bmzj3nWzU1+/Te3f3r7tXru35vaSdFV7243zWyq/V178I229rPrDPeOeJTsUNYk0nbuGtt\nQ4jN6eNw+gQ8+jjm0SeoP/IE9WM3WzIxRU11vaSqBChYrkqydUVKkzlTlVCu2bv6cST5A6TJNZbp\nMfcuM06KpHct7vp6kWrqHup77U+iPkLPxbVU3hXrqs9qevyH5NHjfOhaQmMb2BrfYZnU+YyTIdmS\nz5epT0bDix89pnx5taznsYiKQs6vpIsx5q3AW71tD6rPH8GauSbt22z/AWx+S2ifn8aGHE/CBSYW\n+KQjqGrrbHUTdwz+Cxl7GfyXXr9YfR9ABiTtZAj9Uu1uwtSoTNkmAVZ1YbPD67JJ4ks4bkwBoZfS\nf7GHJgAtZyvPGV+IqlnJO1lD5Khl06R7dVGRSkKeLFufiSMQK1v32eanrLr8lLqEG49Y01dDKtWH\njqkeW2HWJcWpsDlNKIucTdPL5XBTsF9ct8cuS6gqq73UJYvDp5MuHyAhZT+71rsedy2h++rurQ99\nH3wMjZ1YWf96IOjBh/9MnDxaFn/cW3nGx4yWsW39rOC+c/K697C/rZNPyxK6Z/6Y96HHVN982r2H\nIVm1XJeYjgtLLKnk7Kf3QEpbumPopdxL+wP/qPlsB7/pEVNoQvYJRK+0/e/d3xr6BayprNx1QZWU\n1FTspQVHC0c09npCkwKEtaKYnPY328MkNFmE0L6YzX12srprCsnbf+khTw5ISFmkV7a1ErDKuTuP\ny0/RSY/OOX96E3NjQ31j02oollQSNjcTbl7rrrMuSw7Wj5EXFenaHkPKCrM5JT18OkdHT2eRXrHP\nwJQU9aq9HjdZ6XsYg55E3RiKPRP9PKbe/+CzcIg8EycPECxr449vf1KOydlbODXb9fjQ758b21qm\nmIxaTn/MxwjZv59aJo0kPc+EycuSLi1E5EuHvjfG/JvzE2d3jJU42Po9CQfpPW3NMH9Q+6jT/sqq\nfeGSMCGFBm3oBWwnx7qEtVchQb04aZJBtiAlhcRGHplMmsmsoE6rrZfxIN++Fv/lGZNTTwZjrQaC\naHY30snqJhFfXjdxaH8J2KZcPTKpSquVBO5TND/ldEV9fU19Y0N9vGF9M6Euhc3NlM3NhPVJyrXH\n3XPMqEuhLBKO1tdYrCrSdUVSNppLubGmsf37YHFPe21FvV3hIrZAcHDE5I+jITMfnP1ZaHn8ZwJs\nTeohhAhkdIw7NGM9BTXZpq2pyGT993JIRv07vQD0Sc2XM2Qp2LqvsbI/lxjEFI3l64G/AvxK8/ff\nAP5f4GPYteIdJ5aJJQ76KDdw/IhtgJst7NBqBnVvKnCDXk3mEFbhNfxBGySQumwLIJpy3W3z5XRy\nNPJJtoRsgWAJJ80WkCxbonHQL2Ns5RyUs5Wr6uTxCjW28gYQitWX5h47gnTyAj1ydLJsmbeG7pmG\n+16Riq+t1GvY3EypS+H0Wsr6VHj80YKT4yYaaV1z3/0Z5UaoS+GwOmF5Y0N2Y0N6ehNurpD7b2KO\nrsNiH5KMdO+ouzYHdw8dsgV68oT+4kBjSytz40Zd/9hz6N//7pm0tJIt7PhxsnnPBIZNQSFtpB0/\nVd3vyqmfWWiyVvdEsmX3Xrp3Ur+HabdQcXBy6jHkyzq4kPMWJw5T7+8knKOP5cmOKVeZY6MJPgwg\nIs8CftIY87W3VLJ5GC1xsIW6xDzxQUUc6lb46mqStS+mNBO8exlTPYCTrBugeiKE8IulOxa6z9XA\nCim1E5dx51KyS7ZsJ2/8l3HIHBOQs5Ux1FFxpMw8ROKTHDE2//uThyPH9nxuEvVlGpIhW4STHpW2\nYoqa9U1r+tqcJlx/HE6PSx57tGyJZd1UENhfp0BKWUjrdzHaNHa6sgmV+3uY40csybh7HpJxdHGQ\nbV+/u3a33U3WE56DRvtM9Nh259PPpPl+a0IPwZGHw9Dz0p9HxrhRMvVk9t7D4FhPlpHFWbW9KIkt\n4rxrucR8TIncfq4jlQZ/AXzCLZJnV4TKFDzb/5GIvEpEHhaRhz/2aFODY8rkWZf9lUts0I0Mxt4x\nQuf1X7hN0f0Lyeafxz/m2EsR+P3WCm0mqYyimWS2zuMmH3/SDMnkyzVDPjNQ4r8sDGURNzGZdYlZ\nVZh1ZUnLPRf3v5M9Ni7U514rZCd76Pr1fud1/0Ny+TLNnVhjv4+N19DYhv47EDhmVIOItJUObZ9N\nKkNEeIkgpmgsv9zUiPlXzd8vRyVN3k1oau08BPCiz/wkw+ED7Xc9883Aqg76anjIVJAu9+yunhlM\nYis4Jgx2T7NyK952myefQ8hGXtW2wCLptpxbMp6TWSAmr/ZxuXuZLvd6ZgsJkZvb5psW3Cp/v/Gz\n3Fcijz9GkqXIMkX2UpKP3SRbbDh+NMdqc32N7mn3Z+wfply9D/bvqUgyQ7YwJIcLkqMFydUl7O/B\n4T5kKVy5Yq+nMYtFrx+2NLfY9UPnnxBfe4yR7URsjXVP+wW2fI9Rk29orNel1UbVGNrSuq4EubqI\nQQAAIABJREFUDhYa41pG7/OQf7Q106V74fdwiPxvlSkMon2gnmoYJRZjzGtE5G8Df63Z9JAx5hdu\nrVizMb/EQbpArn5cf5u2fQderNpses77mGMzqcLRJok02wMvo8RWfP4EGpgAOhntS1CbSKCBOyRV\nK6Mvp5axZ5Omsc3v6sxsJtGt+1n172dCCpXnEBad6t2PnvPDVBOW5FfuQcwDTUTYKWaxj+zvIVf2\nkIMnSA6vI3snpOkpsCBbJCyXGYulVeAPDhMO7q1ZXKlZXLHEku8bkqMFcrSA/SvIlT1LLmnWmcCS\nDNk7oofAczMiNoqsuf6tqMSq72xOJG2vuyWbXZ6FR3ohUquNHX/6ufRk81FtB4DkiR3fegwFF1VD\n8g0t5ExlZa62x7ceQ1om6L+H7h0MiqHfS7h04O+AqZ6k3wJuGGPeISL7InJkjLlxKwWbidklDowY\nNuK9LM2AtZ/ZIhE/dySGrXBRRzRuYIeIR5oBncdj/0FNpE5WoyKLCIQl0w/LbI9j6kE5k2o7JBpQ\nnt/xUFoNPYmOyajlCd4HN/8Gch+043+RXiFZLlnsfSImySDNkEVOssjJFimSJ9y3PObah+05sube\nLw+qHqksr9Tb2soih+V+u9qXxUGntbQ3qL+y1mRSmHVvPAFbIetpkg0/k7mLX9MtWvS985+Jvp8h\n2aCfs7UVflwd9+R15Oi0ZL1g8Vfw/sID2Fp8tN/3NJVAWLQiqnbB4sZTNTx+z3SfozCz8ozuZkwJ\nN34l8CrgacB/gfVdPAh83q0VbTpiJQ6G9qlNxWl1Lfhd6OXqJ8IlrKv4resSyKrmbzfo18FEst6q\nzyOfoOye6j+UUGaTyWQrAW9dZVE5l+nNqHxzkSZ5737qe2nlcMlu3eSk5VmmN5XM40mquVQsU3uf\n0/IaaZKxn97D/n3PQfaOrPayyHumsXuXJxx/sCBxxRSv1GR5zWK/Jk0N6dWsr62kqSWXxGorki17\nWsuWJmDs5011s8132VSb3nhyz6SsRSXzVUDVJPT1n8nQ+BjCdrjz9pgJPRc93v1kVuiPeffcFmlT\nu81sL6jaCd5sk5yW0x/foQoUWk4Hm7zpxpHBlXbR4ymVJLhAPK+xf5ExRWP5RmzU1a8DGGP+SESe\ncUul2gGxMgUxlHXNY6vj4Hd+VjhkbTmSfimSMGKlUvS20Atp/16r38a1onAWctLLYo/VX9IIlR5x\npUP6MnSy6GzycXSrZHs/s6h8PrQ8QyU99Da/bMdBXnH/8mMUZs3RlQdIkwyTLZBG68iWGZKnHHKd\nJLMTXLawpi9ZNoSSJ6Qff0jytAPk6ACe8TQ4esBqKYpQKqmtOdKoPB2l7Rb1msrUXN+kHJeLthyM\nuxY3tvzaVeESJOfTStcRxtiY8Z+RLl0TGu/u3juit9/7lScs+omO2wTXVbYYHzt+lYnQuzcF/fF/\nPvfaYC5MJv8UYlkbYzbSrMKaNpVP/kptI1hXwp8fb4dShl50oC306Io8riL1hGyxQQlWLPaL9cFw\nnS6/KOWQrP7fftFHdw1hmcMyjr2IY/JBdwy/FtWYfKEioPr7fpXb7ln4hQbvWWQ8tsz4hMNjqrrg\nKH+Axb3PxiSZtXCkXcD4QW4XGrKXkRzlSJ4iRwur2dx3hNx/L9x/H+zfi+zfB3tXVeLnmqKyodsh\n0+lp2RQNbQjl8XXKtY1sjSlbMFR6RUKHipieB2IFKfXf8fsNbrz7ci7TrEf0Wm5dg66sO3PnELH5\nhSn9gpNue2g8j0EfK1ZU8xLTMYVY/qOI/CPgioh8AfAN2JL6dzXWtfCfr4Uv33/RV6WuGDytHD10\nA7NXDXarLL00v42X0F8k2y+RlhX6ZNdOCsrsPFbePyTjIunLFiJTv3x77Jjd/ZOd5NOkMlQmXZdG\nzxO4uhCevmdJ7TkHG2r+gqP8AfbufbZdHaWWYNIsQ5YpZl11ZHKw1+apyD1HcN/TYO8qsn8fZnnQ\n+Ey2NZNQDbd1lXBSJBwXCY+sEh5dw/VC2rG1quDkNGt7h7jrsPe4u5/+s4H42NCIVVrWz7RH8t6Y\n9++9g5bRL+9vt0mPcDoZ1Lm8BU+4Und8bEN//PjVo909C7V6iI272L0+Ky59LB1eh82+/z3g72HN\nTT96K4W6HVhV8AdPhAeM318j1DyrLJPB/t2x5mCh34b6dIRIyWFqT4pYo6QYQs2+/GuMTeY+Qv1G\nNCHHGkz530G/e2WsmZOWRXcE3D8oefSoZFWlrKslhdlQ7X2Eo/x+63fJlrbvyiLvkroaM5lc6YiF\nK5ZQ2L+XKk0o6hNW1XHQB+Ds/8flold5+rhI+OgKHl0LH7vZEcnpSdYbV/o6INyQze8Wqe9lqANp\nqAmXD3/s6OZs/nNwiMnmE7yPUK8eB5/Q/LE9Nq7HOrD619Wet7k+3U1SN1i7xHQMEktTKuVNxpj/\nAfgXt0ek24OiSHj/R7qQQ93pULf7deTiBmFS1m1/7UI59UJ93vWAjLWb1d+FOggOvSSxF78/aYcn\nYLcyDiEkm39cjaGWxhpj8unt+rNrOevue1rUxKyxN/OU68sFdZZweNW2nt183E1gjc0HXgAb0sQG\nbhwcPmBL42ObewHB/BRZHLSksipvUJg1Rb3aIhNIKYxwUqQtoRS1cG0jPLqGj94UHjlJuH5twclx\n3hCL/X95UpAWNVWeUGCvA7bHU+h+T3k2IbKCbcLod/ZMJx3fb3Ed607q7xc67hChjS0sNGKLotA1\n6bbG+n6fJ6kYc+ljAcAYU4nIJ4rIwhgzMQX37kBVCSfH4ZBen1CSsibBEko6pWXkuqJY2hWfG6RD\nLYL1KtV9VxQJeV6zieRnTXnZhtrL+v3ntVyhiX9oYgmZBf1WxSEZQ0TiXvDlukl0a+53vlET5MAz\nKF1PeeD4+oLFsuL0pGB135qitrb6kyJlU61ZJiWV1LYcyGLfEgqEkx4X+5g0p6pXbTXjbVKxcI5n\n7ViOmavc/WjJc7M9kRXtb92E2/cNxnq919l2u21f0w5P7NuE4p8j98a4W6j4WpfWAjROT+JTz9AC\nZKxlsob/29gY24K6ts168aTUWMaK7orIp2IbdX0W8HpjzPeO7SsiPwv85eZn9wJPGGM+U+33Cdgy\nWW/QxwthiinsT4BfFZG3ACduozHm+ybs+6RFXQunJ9vE4msnQxPcENzKs+225aEo9aRqJwr98kPc\nZKF/42T2r2EMscnINy+UAxOAPVc3yfmk5JPOkEbiiBv69zqbed8B9tTKf03OyXHOyWnG9Ssl1zZw\n39JG++2lK1uFwEV27TcarEp6bPNTskVbwdj3oYTCnjU6p7P0zJix5zR6rWpM6YWO269Y2ONWjmSX\nKRvSnpY6pMnq/7WG7p9Tj3GfZICG1PNBbT2E0Jjx71Vo/LpFXOx7f3EYu8/FIlWa43RT8hgMJtiG\nYC4mFt19DHgt8CVT9zXGvFz97p8Cfj7G9wFvmyLjFGL54+ZfAhyN/PauQV0Jx9e7SVEPxOW6mL1S\nDmFognDH1+TjyMatkvREMEQe/kuUTAiP9CcLLdMc6MnLvYAxLa2VryESLUda1O390mSSr8tZ9z3P\nE06PupIly5OC8qqd7Fal7QFf1MJxmXC0sESRZ/ciiwPM8rQRcDvp0aQ5RX1CZcrGWT9MKkOh1CHN\nMqHeuv+h8eNvCxGv21bmSX+SbAgmhClEH5PJ/aY3lpdpVMMKIWZydWNbyxPFwPf++5yp8eaI2CEr\naso8Id9U3XU9uTBadNcY81HgoyLyxXP3FRsC/OXA56ptXwL8KUq5GEKUWETkp4wxX4lVh4LtKu9m\nSG3Yf2K4DpA/0Q1hLunolx/6qyTWFUWZ9lZ/Pnn4arx++ae8CLHJYu51OPmDRLmMrMhHNJO8KRTp\nXv6517Z/Y02x7Ib28fUlp/euuVGsuVHAcZFwb5WwqTYsm0Zpqa7zFUh6tKYv66h3zvoxTUVjkcBR\nbtjUwmrfXt9mXfTMPqfZkuVJX0Nu71lAe9P3SeMKDakss+Ak6caWgyZ6e9zt5+Pgn8sdX//OjeUY\ngs/wpBsvPomEjhUjhdBvfNn9+5evy954GTvObcIDIvKw+vuhptYhhIvuvmTicafs+1eBvzDG/BGA\niBwC34bVcv7hlJMMaSwvFJGPB75ORN6EV9jAGPPYlBM8WRFqlFTlSW8Qu0EbG7yxARebnPXvQ8fU\nq38fdZZsObFDst8JUvFNLxAnFf+7MS1paOIYQ1bUFIu0dcK6CKU86VrTthioX2VEbIa401bqskly\nDPgnVBSYzr0AG+l3/9LmOe2ljlxS8rxug0VOl3nr14PtZz3lGZUzVtgxkyh0Y6pYpO04ccfWcmhy\nge33wn+GoXHqj5dimbbX7r+XoWOG4H7jyz5lHwf/2s6GWSVdHjHGvOicTjwX/z1d0WGANwDfb4w5\nlolFNIeI5UHgl4G/BPwmfWIxzfanDNxAn6P2+gNeD+DQBKBfUH+7Typ+JJA2D+iXbgzueFN/PxVT\nSUWvjCE8kbljuHtWLLN2NRn7rcNZV5OpRPrHqwrXTktx/05Lq6GUHnE4hEgFujwORy4claz2S+X0\nlvazixRbqwUFdGR51useIpQp8Mf40AScb6pBIvDHi5NtjFymwr9f50cUdwzzi+5O3LdJgP9S4IXq\nNy8BvkxEvhvr1K9FZGWM+aHYSaLEYoz5QeAHReRHjDF/f6LQdyWGVtr+xKiRlHU7+N3KDuyLFCMX\nDX+Ax0hFyzK2wgwdbwqmaita5tBkMUQq/jZnzItNGO4eDk5KO0yyy9SQi+mVFQkiW2BEGi3F/rM1\nvlJOipTjxozlE8hxIN9jL+1nht+/NCwSmyy6l1qCWW8SssxsEwxpFxk2YVwBw6adxtke33d7QvdX\n/04W6MbOmFxTx8sQuUB8vOjxP6ThTNFgfNI8D5xjSZfZRXdn7Pv5wB8YYz7Qym3MX3WfReQNwPEQ\nqcC0svkXglRiE+JQqOGGtCUX2B7MoUnAf7mctlIs08Hz+hFX5wF/kgi9QFNWd7fbuallmrOC12VH\n5qCmajPrbSZ92iY8OoQ0lxD6JUYMRW0zu69vYC+tWS7WnJxmZJlpQ3IXy4rj64uWXPYaP4zT6vSz\nu9Wr8dC9nkp2TnOJaecaQ4uokPbij8EhDSdEMj78MfZkQqzoroi8uvn+QRF5JvAwcBWrYXwzthPw\n9ZGCva+gbwbbCRejAXMARmTU/KQ/xyb1MS1iF5xX3HxoZTpkThiblIb8QjBMzruS4tCkNRaK7K7H\nT9KbUuOMJOs57Yt6xabacFxmbWmWj636ZLKquhplMFy2ZJF0pXqsPFZ7yUugce67qKqT45zDq5uW\nXNwzPD1atsEO/rOLOaTPI8ppV1OcTyqxhdTYWNnVJBaTCYZNqnfIxzJ8pEDRXWPMg+rzR7Bmrkn7\nqu++ZuS8b5gi34UlFphGKH7M/XlpDS4UVGsrIUKZOimHXrYqT0aja3zMcZZPmaB2IcmYf8UhRjTa\nZKN9P0mTpe9qWEGgsKDqoui6XRoRalM1WfZrrm86E9jHVtISi05+vJqbUc3IFfjsazmmyXGxuS7r\nrGb/wN4HFzm2WFZsSIP3PXbPtNlH+zqGzGFT/HEhv8WQxqvH1dB4h90WIjoqcRfimUIwl5iOC0ss\nLjo0Vr5BZ8E7lGXS02BuhXnKP6f7e+g8sRcptn0sagfipNELK44gRtS3QmsZQhsUoEqZwDap1FTW\nfe+1v7Vaiu2hclrCcZny6CrlQ6cJHzwVbmy2NZEbG+H+PdAlZ/zii67ar41Os07+RQLXC0tMNk6m\n5tpNW9Ln4LBvl1+Tt2HJGj65OK3F9yk4rSUfCQs/K/yV/pRFFHSLt5A1YIw0zqrN3EqCMSbckOyp\niAtLLIj0BrivoeiaSkWRBAnmLBNlSFvZZXUfCx0OkcUQocSIwo8qG/vdVMw1H8bIJRhlp0xAxTLl\nSmN+WHiaRC8aTEWBtW2UTdUzgT2xTnlk1WgrN+Hxx7tETGe22j8oWVUlT78irfaiz+33V+mgtZ+O\nXKDg9CSfTC7QJxhtEmuj7nTOFOPO/BhiWksowGPuWA+9X6Hcnika9phmHSKjs4S5X+IiEwvTzDSh\niq5TsaszfCqGMqLHVlxDpBKaZIbClsciwWJw0XQu+W9M5pBD1Z8AHGmXeUKVJ+1EFioj4pzyDpI1\nRLHYb7WVmorrm5THVhmPrlIeXcOjK0sq157oyKgrPVI0n9esSuHqApz2MjVwIE/6mgsUbba+Lu54\nzKJHLrtqdnC+5KK/A4LBKWdFm+Q4kVyGMBRNdr4wgy3Nn0q40MQSgl9uI1REUdcvCtVSGkNMW3GT\n35TKrRpz1fbYizhlYvFzaIZIJVZBeUhbGfOvOPgE7aLD3OrcfvbK4NRNS4TKmp9cfaKqLkiTZTB3\npapLCmPzUlaVrfe1qmwRRb/WnK6RdXKawX7JXtZvc3BVpYO5XBfXRK53HzxyWVU1WVa3tbdOjnP7\n9zJndZJSrbd9C6HoLYez5Gv5CDnzQ/lNML1isE4SheFafWNZ+DH/YwhPwvItdyUuLLHISGSQqwLr\nV+WNkcqUIpVTtRW9ug6RTIzI/NXqnFDhOavVWGWAEHxflM4o19rKXPhJlNpJ7LQVGNZKq7qkTiyB\nGBGk8bEYEaqqUDXBMtZNg7JNbfuoFEXSqzXnru2UvGdWvZHWgDQkYbGohL2035k0BE0ueWnDkZ32\nosORT8l7LRwG79uUjPVAAu5YDokml1ARzKnail91e0rRyPa3M7SXsei4W+F3qttW5099XFhi8RFa\nXTtyiZHKEGKT/JC2Egpt1ufXCBXVi8kQS2rchVRCGJs0hkjFIVppdiDRL/adu0YrV7VVsr2obR/1\nynV/lII6qWz5fLbzVspaWo3lxoY2cTGkra6znNOTnDy32sVysYYNgDRO/P6CJkQqOpnSkYtLptTa\nixs7i2XF6TLn+Poi6HeZUpZk6hiYmh8SIpVQcEys+vVWmf6JWvlQxWIfPrnMSY6+xDAuNLFMUcmH\nSGVIW5mSHOlk8KOWfILp9c9QWdhnsQeflVT8l24sD2GIVKBb8fpkMdd+7rQVd127BETo7OheocnG\nlHZ6Yjs/7h03iYretRyz6AeB7JewgaMF3ChcW7FhaH+MrXHWJVNualjlNTdcxntmyPO6NY2dri3p\nVet+FBhMf95DPrWpIb2hc8WeR6g8/nmWIQqZy0Kk0ifBy9DjXXFhiWViLTUg3hNiDDpKJhYd43fc\nc9CRaEPndRPyFMdtzO7tMHeFNnfSjk0UQ6VbYivtobprMfkWA5eXkEK5AiBd7pHWtobYMi3JEhce\nbPu3u+OGJti0qK1JrPGFOHPVOrOaxlEOm7ofMeYQcu67aDIn+6Y2thd8DnuZtOVgtPYSalQ399nq\nkiowb5IPja9dCF6b5OYsMKZoLTFSGerSeVYYpldouNtxYYllKmKd9Ka+aL7DdCjkUhOJIxo/1Bms\n1sK62qo+Gwr3dJhbLHIIMbmd7H6oaMgJ6yNWlsSfUCrvfvqRcf0IpG6SWC7U75KmVpgkpElOmuS2\n2nWTY5CQ2u0mZ5neZJnafV11ZNcH/VRpVz2z3rpqTWIOtgZYxTqruedK3UaM7aUdwbjM/fa+JnDP\nost3AdqcF5ex35aDOSrJsrr1vRRFEjWvji1YNut0K4dkTuFTjdi4mhqgEiuXNLjPSGUA/x0I5bKN\nNSO7xDAuLLGIDJsjdslRGateHPOr5HntlR3ZJhhfHvei+5PrEKn4+89ByFQX+12IXKZMSj6hTCnD\nPzbh6QliLzW9iTtNrFaSkFpSKW33bTGm3Z5KQi5d3sle1pkvfbn0s0/Kuufcz/OaspSWYA5cT5as\nc+zrR+dI5TCvGzOYNL8RDvMuosxd06oS8qTmxmLdq5a8WactyYTuTajpWEs89BdTu1TVhvNZ/Q85\n2ofyUIYixkKLvFBi9HnBGEb79jxVcGGJBcIORBjvlT0H80nFrW6lNzmHfBi+qWDMwRmzs49pK3PN\nA6EosKkIFSkcklFXmB7SCB2hLFPT/gNbNj9NclivMKVt/CZ1SZrmpHVGmmQs07LRDuwx3LPbWtUH\nJi/tJyuKpCWYzTplfVBwzxUbNeYc+87s5TQVP5nS1TkrakswyzSxWkth99XmsfUmaU1i7pytrIH8\nrFhliTn18M4arqvPCfSKvDrEItYcQj2V/N/GSMUf476J+hLTcGGJRftYYpFXcLbaYOeRvRvKQHY1\no9zL7pc2D2HOZO3OEft7LBxaw01KvoYVk3VK5dsQYqtpTdpu/smaRl/O5NVqLK7cRrkhSQ8Al51f\nskxNz9cRgiZ23a3RtZp2UYaOYBrJgdrKtpCWwNaVtCQSssu776xGI+ylCdeLzjzmHPxFXXOtGd/u\nPviLFk1+c3Oozgs+oTnoVsq+30dDP/tYaPRQ+PPtMH3VcBlufBGgXy79Us0p1zJWUmXXsi1Oa3Hy\nxCoAxExiGnMm6zH5/BdwzmQ0NQETphOK37sDOlu5Nmu4wpC6e6QjFTHGmsEaUxh1iRjT87Nkjeaw\nl8JyUbeapvN3tfejqLf9XE2raU0w+wcFZSmNH8ZqLrZ0fheCvExtmHOoGrPTYmyJGGm0sKQ1jzkH\n//XCmsiKut7SYrKsVH3p488mFgUZQig/JBTKH5rItcbk76e1mJBsoSCDkPYU86lc4nxxoYkF4uQy\nhDE781j0VUjlDv+uIxdfJdcmihC5xMq0hF7OKXWbhuUMmxRjBD0ne38sjNmHdtpDd99cZWPd5Mtp\nLFSlNYMpjYW6JJHOz7JM663IMHd9xTLthZwXi7RHMG3FZforcICDw6JPLkVfU8mTPrEsU9NqXPY3\nSbs9TwzHRdIWtlxVTZhybn0wrueLy4Oxzytt65BZstnO24Lz70AawlytwTeZgefz8mSO5dQMoa9d\nnhFN19GLgIuhlwWgnfchM88Uv0KoS92crOOzDFgnl3/sSmWdt3JF8gnGVmz+92Mvfuz70PUXy7T9\n537j9+cImeOma3wdeWdZ3ZqwnM/CEkbTlrghEqe1mHIN5cZqLJINdpoMyZNvqvbflZOCKycFeycF\ne8cFy5OC8kQ4vr7g9CTn5DinLIWyTLh2M2FV2lwXXTXZOe41qeRimqCCmoO8IksMB3nN/XsV9y0r\n7t+ruGdheMYe3L+Eo9zwjCuG+/fg6Vfgnis1B02YsqugPOXeTo3OcpP6VN+MHo/6ubl/oe/1Z3/8\nAL3xFQomuB0O+1sFEXmpiPyhiLxXRF4X+P5TReTXRGQtIv9wyr4i8gYR+aCI/Hbz74ua7V8gIr8p\nIr/X/P+5Y/JdeI1lDLs4oUP+jNCgPc/V0K7hoOcJrbH40WF3exZzHoki3KxTEppExaIO1jpzFYad\nBuPMRcf0S8LsH5Rt0uNeasvoL1MJVELehtNg9FrR+V9sqLJwvQBXOdmtPdattpm1Y9F34p83Yhq7\nH2J/XueOmWDd+NTlm2Lv6XnA+ljOrrGISAr8MPAFwAeAd4nIW4wx71E/ewx4LfAlM/f9fmPM93qn\nfAT4W8aYD4nIp2O7Tz57SMZLYvEQMgNoDNmZp4THOsQGcV+Wzv5dFElUJt8kpjH0UvnYypfxZHQv\n4Lac4Rdv6PrGJg0/Gi72e034Nn8kaWXqmdHm8PfMnhn5uhqvYxUgnOVJwWmZtYmMm3WT8b9fYotP\nuiKUCYe9BUgCafiClmnNMoUssaVo8kQ4LhLuWUCPXBbWNObye7LMsLFBcdNNwiPFH31MjbjSrSpC\nZmo9FobKwMTg+26myvskwouB9xpj/gRARN4MvAxoicUY81HgoyLyxXP39WGM+U/qz3cDV0RkaYxZ\nx/a5JJYJmDJgz5p46HIc9N+wPfBjL7wmlyEMZWGHyM6f4N3551RiDvlJpvpOhsrDaPRML8tuXxve\nmwDdPueV/ezLFiuo6Rz5scrNBSmn9CslTyGXpUcuLt9mXUlDPO7Z1I05LcEnF/d9WVaUpey0Oh/r\nA6ThV5oYmrzPW3PR2Io+886hC9DeITwgIg+rvx8yxjzUfH428H713QeAl0w87ti+/6OIfBXwMPAt\nxpjHvf3/DvBbQ6QCl8QCDGcga8TqJmlMiXzyV/56kDtCGZLrrBgjF5imveyCsVXgVCJxCD0TLas/\nURYznKfJQMVgbSJNG0d9jDh0lFjoN2lRsyIPkstetk0uvmnMEUrPHFYBSns5KRwx9cllk3WtkF3N\nMf8a58CRTCxwRedu+dDh0NBpLjHsoq3osR8M4w9c83mFIhsza/w9Yox50bmceDp+BPjH2AH3j4F/\nCnyd+1JEPg14I/CFYwe6JBaFkKodK2sxpyrq2Kqss22HSSVmBjvLak5fV4hkYtrLXPPArj1mHGIT\nRohQ0qLT2FyEk8Ysc9gA/HbEDtaPstna7ldD0OTSks4xVOtkm1zY1lyAliR8rcVhmRqobKa3+00X\nkWTJJdStEroimzoDv4Be5OHUasOhfkM+tKbu4CcHTwmHPiti79idyu0ZwAeB56q/n9NsO9O+xpi/\ncBtF5F8Av6j+fg7wC8BXGWP+eOwkd4RYROR7gL+FLSj+x8DXGmOeaL77duDrsWuu1xpj3t5sfyHw\nk8AV4K3ANxljjIgsgTcBLwQeBV5ujHnfmAzG9E1NY9n3DkMayVwHtW/r9e2+/mpt1wE+1tvcvZhT\nGnXtQi4wP/luq2z6QGBCL5co4mdZnWOrcb9YZJUnlHnS1mubAkcu2nSUFjWrk5RymVAUCacnWa+n\nS54Yrm0suXQhyI2/pWo+N1hXslU+JEuMMqclyiS4TS4AJ8cdyWlycXLPaTA3tOrXC6r2fI1f0X3W\ni77Ywi8Wwu5jSGN33+nAk/PytZxjEcp3Ac8XkedhSeEVwFecdV8ReZYx5sPN7/428PvN9nuBfwe8\nzhjzq1NOcqc0ll8Cvt0YU4rIG4FvB75NRF6AvdBPAz4eeIeIfIoxpsKqaa8Efh1LLC/dnPY1AAAg\nAElEQVQF3oYloceNMZ8sIq/AqmovHxPAmDCp+AN3qJzFFCLRgzLkCHfnyvM6SihD2srYak6/bGOO\n/alVcKe+bHOTKWMReDFSCXVMrPJky89ij3uOzKJQZ4lNgGxyV4YQjBjz/BP5umq1LdfTBQpbByyx\nmsteah3ynd9Ik0tzLI9UlmnNukq2yKXraDlOLiEC8BErYQTTneEhUvGrBMQIZVeE3vEp79edQDNv\nvgYbnZUCP26MebeIvLr5/kEReSbWT3IVqEXkm4EXGGOuh/ZtDv3dIvKZ2MHwPuDvNdtfA3wy8B0i\n8h3Nti9sAgSCuCPEYoz5D+rPdwJf1nx+GfDmxjH0pyLyXuDFIvI+4Kox5p0AIvImbBjd25p93tDs\n//PAD4mIGGNGYzRjTYZi2CW5cAqm+Hh20VZ09z2NqrX3b/c598klRiIxX4xD3OwxTC5TJoxYtQP3\nXbFMz2WlWQ/049DHdgmSc7UVjUwltjrZiyJpc1xuFHXb5tiFIR8XCUVtOt9JxCyWi2lNYj655Eln\nXhsjl816sVMvoKk+Cn9hpUnlLISix7Pb343zEKHs0mZgCoyRWT6+4WOZt2IX2Hrbg+rzR7Bmrkn7\nNtu/MvL7fwL8kznyPRl8LF8H/Gzz+dlYonH4QLOtaD77290+74eWya8B92Njr6MwJuzPCE3yUwjl\nrHH/QyGQQ+G8Q2HRfja4g87OHzOTzZF7KqZ05Yz5UNrvPULR2kK1TlhnSbvyD2GINEIIVaXVARfn\n0Ss9K+q2n4t+rllmgiYx297YkkrM5+Lyb+LkkrTHsNgmFzfRuxI2Bd2zCBV5nFvCKEQoQJRURitf\nDERl6kz9WHRhsUy3TGKXmIdbRiwi8g7gmYGvXm+M+bfNb16PtVH8y1slhyfTq4BXASyf9oxRQon5\nHmLmLff3kAYSiqxyk99UQhmSOdbVcmpI6JzAAy3HnJdvij9rKOFTX8uY+elWontuC7W+D2PM/zL0\n3elJxmJZsapq8pLWJGZhtRbAK/3STPxGWlLxv3OEZLUW+7eFYVUKy4UNQ3YlXxw2pKwOcxtwMCB3\nnxzrniam4RMK9EllqpYSI5TQOxnSVvxja3I5D5xXguTdgFtGLMaYzx/6XkS+BvjvgM9TZqtYxMIH\n6at1OgrC7fMBEcmAe7BO/JBMDwEPARx+wqcYmB+yOEQqU6DPF8oN8SfdqVFVfjMtN/nO6Xe+C6k4\nhPJdxpIpx17Ys1YTmCJ/TWWDinXZFvW5Mp3ZyhWhdM2+9Hl0y2iHUPn2IYLxe9BAl4vT3qv9smcS\n29SwqPoOfRuOnDSf66C2lYshzyqOS/cM+pn7beTbfslmncbJxR1Pab4hDd8991Covf8bt30XUvEJ\nxf88xX8aMhFfYh7uVFTYS4FvBT7HGHOqvnoL8DMi8n1Y5/3zgd8wxlQicl1EPhvrvP8q4J+rfb4a\n+DWsr+ZXpvhXTC1bKvZUjE1Y/gppKDdEb9/Fj6LP4/eTd6v5KeTiY1f1v5+TEydM3xkbwxC5TNFW\ndjZjZIvBr0NmHk0uLjR3Lvzulw621D2sN0lrElskUNSuA6UzjaH8LjCUSGkRJpdVZU1iRQ37B7ZQ\nZohcoN8zJRRZqOHCd6f0QJpCKuFe9f3z6WPOdcafp7/FmHio+lMNd8rH8kPYuJ1fEtsY5Z3GmFc3\nkQ0/hy0vUALf2ESEAXwDXbjx25p/AD8G/FTj6H8MG1U2CXNDFccmqalRT/7xxhzhY8dKyrpHKpnn\ni3ARS36bZBhf6e2CoWTKMfNjCLM6FwbMfLHrabURRyIjZOKw17w1oZIkbrINmcY02cSqUIfgZ6Cv\nqho2tD1cwLTay6pKuGfhm8Y6cgkmU3rkUtTC1dwed1N3/pYQuQCwnFY9YcxMrHFWUgk986mRlJc4\nO+5UVNgnD3z3ncB3BrY/DHx6YPsK+Ls7CAGEB+1ZHdoaU1+40N9j+7lV3RCpuP/b0u2BDo27rMjG\nZI3lwIQ+325o01BVF6SkSLZsvRaSLdvv7P8l51EIPJZgOwX2flVAE5DQ1Pi6voFNtq29rKu00Vri\nmksrl7ofrv/LXmoTKK/mnb8lRC42HHrONWwjKeu2kOcYYsnIc0Oax6DNYeeVgFlzfkm6T3Y8GaLC\n7gjEhAtK6hfejxCBfqltXzuJaStDA1M7B0PJkmMmpBCp+BFTxSLdMoUNkcoQaYRMFg5DyZRnIZIQ\n+U912us8llVlnafrKqGqS+qkOW6SWW3F+Vaaz7XZtNFj66pLKBxLthx63nP9RtvVICpOT3LKsmor\nEy8XdeP7Ea4uwGoaYB370jjoDWUtHOQVVLCumoWGsffjpEi2QmEXidWKrraKnCUXJ5OuhtyXcfr9\nmILYAm8uqczNhbn0teyOC0ssEA9fHVtNjsXlj/kPtEakI898k0FsxT/kGxrKhtbJa+6cY9cxhxhC\nhBTa70wkMyPbW4cbu0ftJs/K1FR1QZ1WGBHEkQtAkmFEwFitpTLdfe71SSlcP/lwBFMMU8nFHwMn\nx3lbAsgVLXU+i3VWs1zUFDVsarGaRkVj0nKO/RpIe43CTorUZunXfkKlYVXZpmZFbWuKQdcoDLoA\nhl6GfsCkNWbKmouQ2fYsmsrQs7gkl91wYYlFnCnMc3RruDyP2MCa4pQeerGGCMYnl9hxtbYSmnRj\nocWx3JwhjURjbpXksePFMKUd7hhcxnhRW42lrO0qfZFWllySitTTWGqa76hYV7YEvZ58z2rKm9NW\nQUdS9c2J3bXZbqNOi6lZlVp7sT4TX3sBgqTi4Nok54k1iS0SW2ofaKovq+tRIcShMaoxlKA7hl19\ngbFFmf9uhlorn1efo0vn/QWAmDCpuM+tT2KgA2QMMVKJZcH7BOOTiz7u1CQxfQ2uPa5OXothTsG/\noUKW55FYNveF1uY+V9bFEf+qsu15wTTmMGG/LqmS0vpZkmXrWwGnqWzbvIq6035uJ3SEndOOdE6I\nLf+SsX9Q2tyTZuJ32gv4YclOkxvOq1j0Hqsttb+pgQ09cnF1zRx2Id5Qhnzs+56MapwNLfb8Yw9V\ndjiPhNeLjAtLLBplnrSEonuUa4xVaIXhlylU10pDa0ehrN+hY8e0En0tPqnM0U5g3E4+JSxzjg0+\naPNW98w9s1gYtQ7Z1eddVXYytQ5rQ03VZeErUximarSWsiUindxWlhI0g51ldaudxaHEPL/Srq/J\nLJYV155YcHBYsFmnrA8K7rlitZdVBXup1V4WSV9L0YmVYO/PuuraI2+RC8LRAtjoDpTbvVxCuT36\nOiFOFn4v+6EK3NoEO5QnNbQw89/PW0EuhjuzKLkTuCSWBppcYHppiliIsZ+wqOFMV64irg+fXELH\nHLoGN9mGtBQ/JHNsZTmUnXzWLplTCGXIBLYVkOD5kDTWmwQOPJOM8p0Yka4cowi1UdfZ1HhyWo+b\ncM+TVGA7EmksJ8RtC5nMOse61V6K2jr3+wRjj+HyXxxC5poouVBz7SZbvVxa+TxymVpvz13r1MVK\nbCyH3p+pY+xSc9kdl8SiEDIZaVLR2squsfA6ektrSS4kuK3BFCgOGYLrj+HKmOtrcMeJRc+MxfSP\nmQx8G/mUBmJD1zNkNpzjP4phU3fhnuvKylnVBZUUNppYZ9zXhXLcJ71jrDfxMh+xCMOp8MllM9Bs\nrJXJ02wdwRRF0movi2WYYPKkuyeLgLh+i4AOllzyhLb0C1iT2BaWWsZp5Dv3/fIXMbEF2Zhp2sd5\nkkttnDn2qY9LYlEIldQIYarvwJ+QQyHBfrn1tvTHuqIgvmIL9rf3zF4wHJIZSxib+iKOBTfEMKQF\nhV72Oa1vfYQmJ2fSWldJO3HWNA58+gUqbZixDTV2E3BZJm1EWCiXyMk4ZeIaG28+WccWGM6Jr7sj\nOo3q4LBoTXfOnFvUtkbYXmYd81qMTpOx/3dZ+v6kqNobN/4Wv/uj0+j9d2aoVNGUhMoQ5iRZzgkG\nOUvgyEXFJbEEEJso/R4qbhvEQ4x1MUgduZWvS4pltlV5ONba1bc5Ozl1V7/Qfg6hSLMQfC1l6KVy\nq7lQMlms/euc1WMoHyeEocl51wCCypRbFZBXVT+HJUQqWu4pJDgUhRRK0But7Iud3DUZXXtiyf5B\n0QtT1iYyF0HWJVh22Es7Il5V/QQ/+1vD3hXYy4S9tGyJxD13R2itfJFWw5pgdrUGTOnjcydJwnCZ\nIPmUh5Hpq1/fOeivtsZCjEOkEsOYTD7BaHJpjzFQt2nIaR8KD43ljYzJ6RPMVEKZkqcyRCRTtCe3\nAo9lovvwQ40hHojQ62/vLRpiiJlbNMFM9d+0++Am9UXPlKtbYYN1vt9zpe5l8HeVk/vQk+JeaonG\niW0jz4Q8sdrQqtFg1ptk6z3RDcP8vvZT6+VNDfh4qmobTb3FH8A26/pRY8x3ed9/KvATwGdhK8p/\n79i+IvKPsf2tauCjwNcYYz7UfBfs7BvDhSWWEMbMEm5iDkWehJIWQzkm+bpUpq+w1hJzQGvoCXvO\nxBOKNPMJxS9LP7eApcZUs9cYoWgz3xiiYalJZ+aZSip+mfOinhdKO1V7GbLln8WMw7qiKNOWYPoL\nI2H/oOTaTZqSLUAGNwphLx2t49qXUeW6bGo4wmp3R7klGoDVfhkgmr5fRJvOxgJXdrkvU8fZrUBt\nzqdFtoikwA8DX4DtTfUuEXmLMeY96mePAa/FNkScuu/3GGP+5+Z3rwW+A3j1SGffIC6JhXlO1rGk\nRdgusxImlXG44AH//P5vNLlMWbH7L2ysKrKDDjJw0MEGU3wtuxIKbJNK6Dz+JOPft3biPAOmProQ\nGU8hmPNcXfvHKqAXCOCy+MFl0BfYApT94pYOISe+01oc8qQLXS5quNok5DuH9aaGVUM0q6qLqLSm\nOSHPa06O89FirjEz7ZyqDNFjT9Qy7zBeDLzXGPMnACLyZqym0RJL0zb4oyLyxVP3NcZcV787oBsA\nwc6+2IryQVwSywjGypTMIRXYDmuGrpZXKCLNx3lWZo0VsIxFYPmhzDCsXQ2ZJoY6QJ5FQ9IIBSzY\nmlqGXAypJKRJTprkJKRQrhoh94LHyxO2fBAxxDS9Of6XqRibUPNN1S4AfO0F+qHJzgmvTWN7qekI\np4EjGp9wdGSZM50dNeVlippWo8lLWx7m2k3360570SVi9HiPNbFziC3a5oyn0HM5r6iwmXksD4jI\nw+rvh5p+UqC65jb4APCSiccd3FdEvhPbluQa8DfUPqHOvlFcWGIx0pk4/BDRUPHJKcmDsR7zvk+l\nnZyX2SipjCVI+s72oVyIkFlqKqn05A5USJ6CqSvy2KTsa0dTzH/O7LOX0pp3bNl4Q5pkllBCskrW\n/taHC0HXDb5C1zZkRrwVBBND7BxuTGnTGNCrO5YnlmCu5n1yseHK3bEWCW25fg1nSlwkrjyM6RGM\ny4OxsOQSKg8TwxQLQEjjnoo7mMfyiDHmRbf7pMaY1wOvb3wqrwH+l12Oc2GJJQZ/8hoqW+I7pGMR\nYCH4pLI6zBWhbCdkhjQVnyi07PYc4aKIeuWnZbyVpDKEsckhZJ6Yk4zoiiXmiSUKXYQRICFta8e5\nv7v/S7LEtKXk9zI7Eed53Xsm/gQUylWaem23AzqQIzR5uwKXLnIMutIwPhypHAYSJF2TSVeT7NpG\negRjQ5j75NLrmOnBf8fmYOxZ+M/hSZwcGeu0e577/kvgrVhimX2+C00sOkxXI+Y3GJukYTwCrFja\nW+5IZXWQR7UUnZA5ZnN259dhx778MT/HWAHLUCb/XMz1q4xpLbFz+LK5e+l20eVLElJSyUiT3Nop\n6u5ZpUkOlXXy23+mdf4vF3XvWYW0Ft/kOWTqu53aC2yXjFksq7aviq495kKF9w+s/8WRixb/am7J\n+jCvOcxrsub+ll4UXd6UkckT4bhIWg3GJVpCVzVZl4fxzWAwceE2cC+nBKSEoizPinMsQvku4Pki\n8jzsBP8K4CvOuq+IPN8Y80fN714G/EHzOdjZd+gkF5pYoE8uYyvj2AAL2XxdJrwjErcNdsvwD1W3\nnYKhyJmQvL6c7u+pzcFCeTbQv8/6XDHMMVvETGzunrn7upfSdk90/pUWdQmlLd0rxpCQkid7FPXa\n9odPTGtOcyVQ/GdSeSV6Qv40mGeaGVo16/sJ8UTSUBUGjVBelg5NLkuhLEtW+yWrUnjGFUsuC0XW\neWJaUgF6n5dpTZbYH58UCcvUcFwkKuKuIZemsKVL6nTyzB3zYwQdKgXkcCsI5bxhjClF5DXA27H2\nwx9vuu++uvn+QRF5JvAwcBWoReSbgRcYY66H9m0O/V0i8pexq4g/A9zxhjr7BnFhicXIdoJhKKR1\nbHANfe8Xt4S+03t9kDeEYic0fyJ08MkF7GSgI8JgezXvy+a3xh0qXulkndtt0vfpuP1i53ZlaCC8\nkpxinvDb/YLSVPKaLKvZy9REKNa/AvQc96ZcAyB1SZrmpHVGnixZpuvWL5MntoyJ7oVi/5dW3ika\nmb7O2MQ2hthvp+Q0haCrJvvIMmPvY1qzqmyXyU09VPLFYpnWlpizqu1UWTZdKm1ukDtARy77B7ZT\npXt2i6UNmW5NvDtqdiEijxEw7NZZdQi1aWrWnQOMMW/Fmqr0tgfV549gTVaT9m22/52B8wU7+8Zw\nYYmFxnnvk8uY/yDkDI8RlEMoXFZrKSFCCRb08yLUQuQyJPuQBjEkq77usfBnDT/XBqYRjC+Tw9ik\n674Plq+JmMJa/0pddqawckOSHtiIMZOzn623/CyLZdVOfO45MNHvE7rOs66U9X3ddWJ04zlUn0wn\nNW5qG93kk0pZy5amkovpElKx0XiFEbIkUeYyj1zaTpXWJGa1lkVbzHJoUTQVUwnlvFodXzRcXGJh\nOwckRCpDL6fb3+3jZ8BDeND6WopeXcegv3PmCqfJOBnHqsj6yZRDq//t4pXhF2ysW6SWxSdAh7GJ\nYhcnqiZrl8PSmcJM379SNWawxhRGXbbmsISUNMk4zCpO8oRFYv0DB/slpyeZmvhSimUaNcs5+Jqr\nvr6p4y7k6xuaFHWQwVB0oc7a98nF1htLWFU1ednlqIAts1/U0qto4AjFT0Rdprb+Wi6OgFz0XYIl\nFUsuq6pm/6BsNXXty4JuzMzNXYlpwL6ZMGaaPhOMTK4scLfjwhKLJKYdrMBW34gpTYX0pB6bNPXx\n/IivGKnEyogPEY+WZUgGX3vQGCuxP4SxGmTQn6yGSOYs0Tj2PluCsBqFncD2UtOb+Pz8FWcGAyzB\nKHNYQsoyLVmmRoUtS1sq3j3HMXNYyBwKcQ0jNg7GGrXp/2OTYixJ1sEnFzvBW3PYUd6ZwxaJJYsQ\nnC8rtN0RzEGur7Ejl1Uprb9FX9tmnbLO8jO3KRjSyP17d6m1zMfFJRbxSIL+AJ6yQtcImQ90vaxd\nB6ebGKeWGx9zdPpaVuh7mN9LfMrveiHTy07W9YhMtw2NKcyUa8Qzhy1TGw+7bEhlzLcQ0sCmEMrY\nfRz6PkYmul9LqFRKbIJ2ZfsXy6rRzLoWz84ctqltKLH1PfVNYesqCZKL+9vXZtaVbaFsYdjLBOgI\n31VL9gkGptUJ8xcssZYSPqEMLejmoDZnb2l9t+ACE4uJ9lcZenljK0D/hdUry5Bfwu+JMgZX9mJX\ngpoyoHclFYcpJgNdwDNGNHPgm4V2kt35V5QpzDeHQRfpNEehmhKdNYVMQvdG7ze2utbkMhWhBZE2\nhy0SrbVYc5j1myTk2fj9T8USz7qyhNTlwTgZnc9l3YREZ71y/DoPRy9OgKBZGsLmxpiv0xHKpcYy\nHxeYWMIDZmxyvJ2DzEUeQWeKCJGLX7zPbYtBay0x88uc6/QJWkOv9nRGtY50831GU+GbImPQ2kXm\nOe/bxMhyY30t7rMyh1F1q2zr/J/XrCnmZ3OYqu2FoCfDoZW1X65e3+upVQy0OWwvrdnUtmBlRwD2\nHId5bSPAKoCI1tJE5VXVhmVqKIwvu08uXUn+GMHoxUmoJbJDTEvR97BP2vMKckZhpBcE8VTGBSaW\n7VaqU17wuWrx0ESpK826nIHOnGG2Jh+fXGJ+lykEM7RiDq2E/eP7303xFfnE4SYHvX2sAKFvc3fb\nuuupJmlOvVIuTlPZNNPRsrTmsOZr6+TPeqabPHFtFPqRSzH/kG92mbKo8e9DzMS1y8o6NC7G8l20\nXE5rIbMmsesFaHIBOMgrloES/LqUjtZaSOtG4wlrLqu85kZRRwmmV3Xc8+fFghp8Ytbvn//7S0zH\nhSUWB78fxN2EuSv888RcUgltd8Q4l1xuG8pNtCDlHMQCIs4TZz1uSGsJHdMualw+RjMpJ1Zr2fa3\nuOivsNbiIxedZBkzi3XFK/cPwjXo/b5DY2bHS+I4f1x4YoFuQvQJJrQ9RkJdE6Nka1to8te+Fa25\ndKjACwjw1ejQcf3zuy6HCeFVvF/aIySbjyFS8V9S34ygr8Enxl2I0ndEO2ezk6kspS2jsa6kzZ3w\nu0NaAZoY2iRDsiU0rYpDcH1ZhuSNlZeJYRcynaJB63HoQqNDcg/lv/i/d10oaWqJHTVl9lcVrKqk\nDUEua+Egr1hXOhx505LMaQnrqju21QqTpp6b+5e0/pwbqnilKwETu2Zfa59jfnTjNMvMuS3e6vrS\neX8hEXtJh7SaUDmMoeZfvX0jlXW7InxVa/oagz9gNakM2c+dLdonmClBBUOkErNL6+1+f/T+77a1\nllC7Ati+v8534zSh9SZpJiF7bhvmqshlgEAcqrpkXYVfl6FJGqaFEQ8dL7QACZvSmjpdgfESGr9D\nfikf26TXLXzWWQ3UvRbHm1pYVynrSlpSccU/Ncn4jdRyMZB22sphXjclYxL20oS91HCjMbvlJW2Z\n/xhC43goFNsnIdfK+RLzcEksZ4BPKrE+LbGJPZSI5vbtXoZtR33vGIG2rj6pTClX7xNMjFyGouK6\n30x7Ee3vOl+RbxKLIUQqOrmPZTi0dlV1E1lVF5Da9gkCYXJJMqp6TWW6yctvUewjRihTzC2x6x4j\n+aHvNut0lql3zLfShyUXK3fRJqJusm3tJW+ivlx2fmFqlSTZYZmabsg3+S6uzpjFtmlMk0vXvCzc\niXKq2UsTzHk53I2Ru9bsPheXxLIjfNNXTEuJdbtr0VQgdgQzNfzYl2WIVMayk0M9aIbIBeIx/rus\n7uaQSUgL9O/xOssbWerGHJawqbfvf1UX2tesLmIxagY7pyq1QFwTc5iqQY4d97z8Vm6M6YCT05Oc\nsqxYZzX3XNnWXq7m1jTmNBBHMC5LH1CmMmN9NU35F4CD3jjrk0tRW60p5HPRgSy7XuulD2Y+Liyx\nhFYPY478KWYv6GspU8vFO+1lbJL1w3f9yUOTyt5JMdizolTVeKeSizPHuG1ucnF/69XdEMm437Xh\noepahvxUQ4SSb2zuQlLWrdbSaxpVW41jXUlrBqupbOhrkkHafx2MCLWpqKmojF1ta9NNr37Wuqtm\nEGq05psZNaaQaswf567Pv/daU4ktPELwI6h82UPmSV0F2fleDpTvxWouhqu5NY8d5jVF7fJWEmjI\nxZnI3D0ujLCuIhUwEtoKy0cLcD1dssxwcFhwcpyP5u5MJdrz0jLMZYLkUx/6IbsBONS5LmbvHzLL\nhMrpD030mlz8cw7J6Mxw5YmwXBfB1shb5/JaDYcanI1pLuMvyfa5Y6Y87Vj2f+uCD2L9ZPQ1up4s\nvvN2VSpzSbMKbk1cTjtx/zuicVdRF6yrrsz7qpK2Sq0LNXZywja5AFsE42PI3xELsHB/hya+2H0d\nIhUf/jP3TUruuh3ZaYJx+15rNJhNLRS14Si35jHXbTJELhAnlWVqKGqrqdiFgv2cJ3DPFVu88vQk\n5+CwCC4E/evTCAfRXGIXXGBi2V5tauzqOI6RSjZTc4Hu5XUaQgiaVPxWw/mm6jUa071hdO8Z93ms\nTlenlfRfwDmrMH8SDK2mYR6Z6HtbLGzY7LqZjLWcfR9LSZ1UVHVBmiyRbIlpyMRFhNXY7wFFKrS9\n3LW8m3Xai7zTXTzd9QzB98P5Dea0FqHv/5Bfxv3Wv69j8DWtkCkopHXp/CadF6J7uawqOMo75z70\nycUhpqmATVJdV9JqLWCsX6ek8fMUTeOy7aoBIfmnmCLPA+ayCOXFwNREPH+whcwxGrH2qaGukk5z\n0AiRy5CcmlSunBS98/SPvU0yTmvR5GK/39ZaNLRMU5uQxbRAbZ7RZDKFSHz45jB7HsHtYk1hSaut\nBCPDskXPce9+U9TSkoo2s+nr8sl5aqHEoQALRzK+1qLha2gxsg7JNVafberCIWQys4siqz2sDwqK\num58Ls5MaiPHQm2NfVhtRdrPq6qr2WaP5xaLllx8InEO/ZC1Ycp1PZkgIi8FfgAbmvejxpjv8r7/\nVOAngM8CXm+M+d6xfUXkacDPAp8EvA/4cmPM4yKSAz/aHCsD3mSM+d+G5LuwxDJm74xpJWMTRcj8\n5UNrDiHk6yoaMQZ9c0iIVPx2yKHzh7pEwniJ+jGSGUJIC9STnh/BNkYmQxWEQ+f0D9GLDEuyHrn0\n/Ct1SWGUKazcDt6AbW117F4OdfP0CSqktTj4xD7kTxkbv1N6uAy16AYoypTN2t5LRzJdEcsNrs0x\nbVZ+d07nwNeld4At/1bbGye1fpbrhSUXm6wJLsHSRR4CnBzn+JgTcn1WnJePRURS4IeBLwA+ALxL\nRN5ijHmP+tljwGuBL5mx7+uAXzbGfJeIvK75+9uAvwssjTGfISL7wHtE5F8ZY94Xk/GOEouIfAvw\nvcDTjTGPNNu+Hfh67Gh4rTHm7c32FwI/CVzBdj/7JmOMEZEl8CbghcCjwMuHLtjB1DJo7w6ZNaZA\nN/tyzavcpOiXU/cn93b7SEkNveLSPpUQek2lGkIrFmmwL8gQ/BXxFPPAFHNiKNBhqnbiw11LyM/i\nJ0muq4S91JJLnVSWwp1fxfOvVKZmXWUUtTXlOJGGTKJOjhC5+NpJ7NnF9vfvfyVlD0wAABmgSURB\nVMx/MIVUpvaAcRg6Xu+6vGhHF6FnTVQFjlycY3/VmL6sz6Q5vkcux54Z1ZGQ01Q2tV/LrW8WG/Kh\nxq7pSYoXA+81xvwJgIi8GdujviUWY8xHgY+KyBfP2PdlwF9vfve/A/8XllgMcCAiGXb+3QDXhwS8\nY8QiIs8FvhD4c7XtBcArgE8DPh54h4h8StNf+UeAVwK/jiWWlwJvw5LQ48aYTxaRVwBvBF4+KoAx\n0dXKrRxcPrnMneAd/Ekj5FPpnXdAS3GY04Fw7sorZk7UWspcQplDimCd7tA5iG20V+fAl2zZfu77\nV7puh04sHdXm+1c0NDmEzF0hUtH+L+gHA4yResjME82jmkkqPRknRj3qgJS+xmDJxd4ap70kbTM2\n2CaWLRl63+tWBn1yKUubb6MjKt390QVZfUzJ/5qDocVsAA+IyMPq74eMMQ81n58NvF999wHgJROP\nO7TvxxljPtx8/gjwcc3nn8eSzoeBfeAfGGMeGzrJndRYvh/4VuDfqm0vA95sjFkDfyoi7wVeLCLv\nA64aY94JICJvwqp4b2v2eUOz/88DPyQiYowZHJVipvVwcNil+VRIa3Hbdz1HyHQU8t2055qgpZyl\nsVZMPh9jYcIwTzs5qzzrStivS0hoHfidsNv+FZdBDp3242sK7ln49zc2puZ2P9SYYsYdTM49R1IZ\ne34FcHx9weHVTWsSK8uEazdtJNf1DThy2dSwqFxNsM6f4pOMztzX311FmjbU4QTK0xP7PvjpAu66\nzptMzoBHjDEvulMnb6xB7sa+GGtB+njgPuD/EZF3OK0nhDtCLCLyMuCDxpjfEelltT4beKf6+wPN\ntqL57G93+7wfwBhTisg14H7gkcB5XwW8CmB59RmTTBLavBLqSx56cf2e7n4/dx3mG2r+FKqCOyWy\np1hm5Ouy58PRWsqYHyXWq2IMoUluLFoOdjd57YL1JoGDujFldWOupgo68N12W8qlI5RV1c+/2RW7\nkEoox8RhKMBkCKHnPGVxoBc0WUDj1EiLmtVhvhWlZ/0fKmO/tqSwlxryxJq2FgmNk16iBOOXhdlL\n6UKRFx25dL2AXB2w5rx02r8zZZ+F9G8DPgg8V/39nGbbWff9CxF5ljHmwyLyLOCjzfavAP69MabA\nmtd+FXgRcPuJRUTeATwz8NXrgX+ENYPdVjSq5EMAR896voERJ3tgIvYjaEIRNbqnvO7n7s41l1Qc\npmSoaw3FnSvWuTCEs1bhHXLsDgU2+Fqd2zaGGCG5AAiWKqej7kKFCyNUptp24GM/62rvhZHRUi4w\nT/PbpV+7g+/v8jHUVRHGG40NjbO5ZmKtwfW0g7wGuox9V8wyT2CTWYIpakswnYkr/Az0s3FEs0jg\nKIc2FBnwo8V6pjFSCvoNws6dXAbM7zPxLuD5IvI8LCm8Ajv5n3XftwBfDXxX87+zJv058LnAT4nI\nAfDZwD8bOsktIxZjzOeHtovIZwDPA5y28hzgt0TkxcTZ9IPNZ387ap8PNM6le7BO/EGImUcqc1rm\n6hLkjlz0MTVipOIQq3kUklVDk1foGmIr36HeLHNX6aEclKF7PoVIQvsMaTs6UmrVvNTWrNWdq+fA\nV9uc496v++KSI6dCjwGNKeQylLjqY0r0V2yc+c95aLzpa5mqaepIR5fU6SdU7h9Y7SVEMEete0ba\nsOM8MVHCd2TkyEWX3HdVkf3KELeFXM4BjWXmNcDbsSHDP26MebeIvLr5/kEReSbwMHAVqEXkm4EX\nGGOuh/ZtDv1dwM+JyNcDfwZ8ebP9h4GfEJF3Y2/kTxhjfndIxttuCjPG/B7wDPd34z95kTHmERF5\nC/AzIvJ9WHve84HfMMZUInJdRD4b67z/KuCfN4dwLPtrwJcBvzLmXwEQY0ZXyFWebBGKPyHHzVJ9\nctHQZjXfUa6bEDn4lX61w1FPWr0IsAChTC2KOLWXio8hPwrMf0mnOOdDPiwtQ4E2I5a9Gl/rKmGR\nqg2NKSxYUn9HuGcQc+D72uwQfHJxiJkdfUwhFff3GLn4OVpz4I7pN7kD2npjPsGAUS2hpZfT4sM3\njzlyWbiS+xt6pjF93cfXFy25wNk0Sx8xv+4uMMa8FRvEpLc9qD5/hP5ifHDfZvujwOcFth9jQ44n\n40mVx9Kw7s9hQ99K4BubiDCAb6ALN35b8w/gx7Aq2nuxsduvOIsMWlOZEh011Bo31vJ1CqmESkv4\n5g99fPcChOQPnSN03BB0j3p/n1C4bSxT3sk4hJDjG+ImplhYt65/pmXXSZIuL+IIW9qlqgvSQN6Q\nLeWyW3DDeQZF+JhrUgmRSqxytdaQ3f/nle/heuaEcO2JBQeHRVtvzBW0tHm9NqnyettzuHPsx6Bb\nUh/lNorsRiEcLSAvrfaCamJ8cpxzeHXTkgucf2TYRcEdJxZjzCd5f38n8J2B3z0MfHpg+4qZbOrg\nr/BhmFCGamUNhS1OgfapxHrIh/IVQia62DXEJpQhxJIfx7KXd3khNakMmSBDZkYHHRgxBj0ppUkO\ngcZRy7Rumk91ciwX9aR76Ad8zLknmmT1cXTocQxD3w+NgbEmdWNRU0MLB13RwT+HD13Q0jn37e5d\nxJdz7Gu/S6jHy97WKQxFTae9ME4u5wUx5sIQ1R0nljsFo6LRfLPRVAe2v2rfhVzqLNkye+njR8+r\nIlmc5jKmCQ0d8zww2iJAYcpq3ncy6+t1GDqX/u6sPTVCORVDNdy0DDEfi0bI5BIjl10wN6RY47yz\n03WnT33/tu9nvxz/qqo5ymlLwujIMYu4aczluSySLpHSkdXtJJeLggtLLDBOKFOK7+1KLqG2tUPd\nAWG7dIc+lyOXqT6bIYyVaPFXs1MnnqkTo76Gnl/HM6EkZR11ssbMaqH5PZXmNSg39rjpAWmSk5qc\ntF63/UL2UhsKG5vA5uaxTEHoeFO0Fo0p41pjTpLlXMSSPUNFLbXvxdY/C/d76UeO9T+7EOXO0d8n\nmM6xbxMp3QLkVpDLWMDQUwkXlljqRFqTUezF8ydgv2mQLrq3S16DmziHSCWULewfw1/JTyGVoXDV\nmF8l9nsIaytTtRIfsTyeLVNkE8UzZg7rTZDNZleLKmnIKonY/R202WzbvNJHjNQcdjWPzTWJwXxN\nZc6iYSgib8wc6Ue3aZ+OX9H79CRrnr39+9pNWvPY0UInRHZwGfx5YiJ+mO1M/VWTSOmixUJFRi8x\nDReWWEwimKclZNgidWP+DZ3cdatKX98qM1VwUh54Wcb8KvpzzBwXwthEOESIu5K32zfLupVt3nQu\nXKa11UySHDEGajuxiDEkpCSkpEnGMh0u6gnbK/oxcgkhVkvOYZfQ96mYkg8TChkfC/eOYSxC0ff3\nhJqJrbMaXRbGaS8wTv6hfBeruZRt2f/Tk4w8r4PFK3dBKBL1qYoLSyxJatg/2FZyB/0aKkwyllsy\nJ5cglAS59dsduteFyt37q0GNWJ8KH3Mn9l1W1DGtcSyXR8MlhTqN9Eq2YbGs2MusCeQwt02lFumi\nJRDqsjWFUZcxaxewXdKlnYCbENxSmed2IRcfoQTdoXDjGHSUV+xe+guGKSYwn1xiQTFafhjOmWqP\nNUAw+wdlryzMJuvK8fuOfSAYnuwIKE+60vs3mlyXLLNFM2+lX/KpiotLLIlpmxGNQbd/9cklBr3K\nGzMJuRXSWTFmHtHkEvpO/z8F/oQWO/cUc0yMUPyouDmaiybwLKubciF2tbpMrVaSStZGhJlyDdjp\nKE1y0jprTGTbGovLjdEVpnXHzqmRaUOO/TFCcRjKrfJzXobIxN9/KHTcxxTNJeY7m1sp2xEMbJeF\ncWHJm1aU+ApB57v4fV1cOPJysZ6dEBvDpY/lAiDNau65dxONFtouP2EJZmhii5kOQgmRIfgkN6XM\n99yIHd8sNmRTP0sk0Rwy8f8OkYr7PGaG1NqKm8Dy3Cbc7TWEkjWmMGcGS0ihXLWmMMoNSXrQHnOp\nOhuuvLpUWltx0OSyi9YSKyE0FK3oB5Bo+Yb62IeuBeKkMqdyQqgk0lgIv4+QU18vjg4OC68UP7iC\nln62fgy+2cz1ddnUOt/lEnNwYYklSawpLFTltCxl0Lmt4RNNyB7tTywhp/15Y6j7Y8xX4ncVHOvD\nvgt5uHPOWbHmed0jWf+e+xqhM4G5e7xYVo1vpfOvpNKYsUh7/hV7cfaz1WS25VlvbDkSVy5fayu6\nCKjfnTOGsaKgQ76nqdqbe5ZjlSMGe6zMwNQ6eKHxH+p+qeGPn25B1pGLbfjVJxcHTTJOa7ERf120\n2FFubMHSfHsxcYlxXFhiyRJrm11VNetN4pm20laTGTO9uME/1rAK4trKVDOYv1oPrTB1r/WhulL6\nGCGz3VDr2iFCmXItY6Sio4IWy6qdxB1C97yVdaHNLRuyrGb/oGwd98vUkIshTbLRSLAp2CUMd4p5\ndKwgqY+pJsI5PYhuJakMLahCZmZf7g0d6eiqxfsHJeuspqhrjha2kdhRbibluwAtwQBcza0/bVOP\nVoiaBKnNaHfXpwouLLHkCdy/B9c3rjCdDWHs7KnD5OJ6Z4dIZchcEHPaT/H1QHgVF2qJq+tKxRAj\nwl0S8aZqIFr2od/5Iadu29Dk6SY0p61kWd2UCKlbx70LP+37VxrHvXPeT8DcMie+1hIjF98PMSX/\n6Kxm0jmkMlY7ayqpTB0jMbhrO76+aI+l/S5lWbHaL7cSKmP5LhDu+3KYh53+lxjGhSWWTOxKZi+F\n64V11hU1sNAvVLrlg7GJWn1SaX89s4/D0KptLBos5s9xnzW56N9pjDVqmpIzMZR0p6/PrUDnBCno\nCDZNKkOTeudb2bQT2XLRd9xPgQzUMR3y8+heOD7GTGIhUomNEbfY8ZNmHaYWpgxhrqYyFBYdI5Wp\nCykIE02rmdMlzupy+K5i8vqg6CVUhvJdwEYKhogFpo+ZMYi59X2Hniy4sMSSCjxjD64XTXE6Xfl0\nhFx8+J0cbxeG/DmaXDSG2gCH5PdX1UNlYsbMGzA/B8j//Vg2uNZW8rxuk92c4x7Ydtz7bYWV5mI1\nmpvjcu5QZj2ktYQ0lSkh8EM+wamkMpVQpviLxkhlFz8RhBdSBTREsmCztuX3/YrJB02/F629QD9K\nUCdTZon2w1wMMjhPXFhiScRwmNd0vTa6yqdsYB3ZL2QCc6TiJuhQ+fq5SW06Ei0GnZSoG4o5xPqt\n+5OfCxXV+/c+T6g9NlSNGfql0ofIJWYq0yZAfzV+5sJ+5caGGnsO/EQ6WbJ20pF2gqyzpC334e7p\nrhWcQ+Njahi6vqeObHTVbf/YMaKJlfafCz9XZUxTmeofimnn7Xnpay9+x0j2S7twbEKS91LrQ1mm\n/RbHPqkcnlOAjRhzYcKNb00K+V2ANLHEcpjXXM2to+4oN40d3vpb/BdbD/5Qz/mzIEYg+kV08rhJ\nDbqX+Kwl2h0ZTmlh7BAKD9b/Qr91v58SDadzRWKJe6P5FUrb9FvYbv9405FMA+uL6e7DXmpYLup2\n1d0+h0UazF0J9omJjBc/v2MKQiSvt4Wi94pl2v4LYZexVOXJVljxkKaVZabXaGuXPK58U5Fv7DuY\nFvZ9TMqa8kQ4vr7g9CTn5Nj+Oz3JODnNbHvp0pq/V4FTalI5zCoOs/pJqbGIyEtF5A9F5L0i8rrA\n9yIiP9h8/7si8lnqu28Skd8XkXc3DcDc9s8UkXeKyG+LyMNN80X33X8lIr/W7PN7IrI3JN+F1VhS\ngYNm0l6mhuMiwcW/d1Ej4dW1ToqL+SdgfPUayoIPQRfic1gsuwrHfjmV2IoOpuchTG1ENlY4U8Nf\nmfraS2zVGgqJPsuqel0lHPhVOmovWqfckC73oKIp61I3xQybIoYNeW7W/Ql6Fxv6UEFS6C8uYgsQ\nvxqEbxqL9Q2K+eDmaC9+3o1friVmArNym60gmTwfrxqtoce009JDvhdLZrYMDNhQ4k3d11bAaim5\nWA11P4M0WUyWZRDmfPq7iEiK7er4BcAHgHeJyFuMMe9RP/ub2EaJzwdeAvwI8BIR+XTglcCLsfrb\nvxeRXzTGvBf4buB/Nca8TUS+qPn7rzedeX8a+EpjzO+IyP0wXJvzwmosgl2RHOR2wjjMa+5ZGK7m\ndlW6l1n7q11dd4POmcDuhE8Fts0jvuYC26vHOZhiAouRSp7X0X8Oc1amvqZyHqQShCOVqrT/FMm0\nlY8jaE1izb0q86T95zCFbEIh3KF7Fbqn7XkiiaVjGgzEQ+HHxlEsmXMo+CDLjJfLsq25nFWDydcV\ny5Oi1V4265TTk4zTk9zmIdXbWov1tfikcj5h6eeMFwPvNcb8iTFmA7wZeJn3m5cBbzIW7wTuFZFn\nAf8l8OvGmFNjTAn8R+BLm30MtpUx2BbvH2o+fyHwu8aY3wHbaVI1YAziwmosv//bf/bIC572yj+7\nTad7AHjkNp3rduGpeE1weV13E27nNX3iWQ/w2BN/+vaf/oWvfGDiz/dE5GH190PGmIeaz88G3q++\n+wBWK9EI/ebZwO8D39loHTeBLwLceb4ZeLuIfC9W6fgrzfZPAYyIvB14OvBmY8x3Dwl/YYnFGPP0\n23UuEXnYGPOi23W+24Gn4jXB5XXdTbjbrskY89IngQz/n4i8EfgPwAnw23T1Jf4+8A+MMf9aRL4c\n2/b987E88d8A/zVwCvyyiPymMeaXY+e5sKawS1ziEpe4S/FB4Lnq7+c02yb9xhjzY8aYFxpj/hrw\nOPCfm998NfBvms//B9bkBlbb+b+NMY8YY06BtwJtMEAIl8RyiUtc4hJ3F94FPF9EniciC+AVwFu8\n37wF+KomOuyzgWvGmA8DiMgzmv8/Aetf+Zlmnw8Bn9N8/lzgj5rPbwc+Q0T2G0f+5wA6UGALF9YU\ndpvx0PhP7jo8Fa8JLq/rbsJT8ZpGYYwpReQ12Ak/BX7cGPNuEXl18/2DWK3ii4D3Ys1XX6sO8a9V\nZNc3GmOeaLa/EviBhjxWwKua4z0uIt+HJTQDvNUY8++GZBQzULriEpe4xCUucYm5uDSFXeISl7jE\nJc4Vl8RyiUtc4hKXOFdcEss5QUS+RUSMiDygtn17U1LhD0Xkv1XbX9iURXhvU3ZBmu1LEfnZZvuv\ni8gn3f4raWX8HhH5g6YcxC+IyL3qu7v2umIYK5HxZIOIPFdE/k8ReU9TZuObmu1PE5FfEpE/av6/\nT+0z67ndKYhIKiL/SUR+sfn7rr+mCwdjzOW/M/7DhvW9Hfgz4IFm2wuA3wGWwPOAPwbS5rvfAD4b\nWwDgbcDfbLZ/A/Bg8/kVwM/ewWv6QiBrPr8ReONT4boi15o21/GXgEVzfS+403KNyPws4LOaz0fY\nkNEXYMtwvK7Z/rqzPLc7eG3/EzZS6Rebv+/6a7po/y41lvPB9wPfSr/Zw8uwGaprY8yfYqMz/v/2\n7iVEjioK4/j/g0gCSgJKGINZ+EBdBAUhujFIYqKGMfgAxY0LcSE+UFw7G5eim4AKCYRgxCDIiCiI\nJEQXghgXhijCICQiwRiNuogiAVGPi3OHrh6mM52esmuq+vtBQfWdqp57pug5XfdWnbqtlFVYGxFH\nIz8BbwIPVPY5UNZnge1NfdOKiMORJR8AjpLXwUPL4xpgmBIZK0pEnImIY2X9D2COvLO6+rc+QP8x\nuNjjNnaSNgL3Avsqza2OaRI5sSyTpPuB01Hq6FQMKqlwVVlf2N63T/mnfg644n/o9sV6nPzWB92K\na96gmFqhDC3eAnwBTEW5XwH4CZgq66MctybsJr+kVYuMtT2mieP7WIYg6Qhw5SI/mgFeIIeNWudC\ncUXE+2WbGeBv4OA4+2bDkXQZ8C7wfET8Xj0RjIiQ1Jr7CSTtAs5GxJeSti62TdtimlROLEOIiB2L\ntUu6iRzb/ap8oDcCx5TPMRhUUuE0vWGlajuVfX4oNymtA36rL5J+g+KaJ+kxYBewvQwpVPs4b8XF\nNYJhSmSsOJIuIZPKwYiYL8Xxs6QNEXGmDAmdLe2jHLdxux24T1myfQ2wVtJbtDumydT0JE+XFuB7\nepP3m+ifWPyOwROL06X9Gfonud9pMJadZNmG9QvaWx3XgFhXlTiuoTd5v6npfi3RZ5FzB7sXtL9C\n/0T3y6Met4bj20pv8r4TMU3S0ngHurRUE0t5PUNeqfItlatSgM1k+eqTwGv0KiCsIYu/nSgfjGsb\njOUEOX59vCx7uhDXBeKdJq+sOkkOBTbepyX6u4W8WOTryjGaJueuPibrPB0BLh/1uDUcXzWxdCKm\nSVpc0sXMzGrlq8LMzKxWTixmZlYrJxYzM6uVE4uZmdXKicXMzGrlxGKdJOk5SXOSaq8YIOnhUlH4\nX0mb635/s7bznffWVU8DOyKiWjMKSauiV1xzVN+Qzwrfu8z3MeskJxbrHEl7yBL4H0naT5aQua60\nnZL0KPASeRPeauD1iNhbKi6/CtxF3hz6F/k88dnq+0fEXPk94wnIrGWcWKxzIuJJSTuBbRHxq6QX\nyWd3bImI85KeAM5FxK2SVgOfSTpMVgi+sWw7RZa02d9MFGbt5cRik+KDiDhf1u8Gbpb0UHm9Drge\nuAN4OyL+AX6U9EkD/TRrPScWmxR/VtYFPBsRh6oblKq6ZrZMvirMJtEh4KlSdh5JN0i6FPgUeKQ8\nc30DsK3JTpq1lc9YbBLtA64mn50j4Bfy0bXvAXeScyungM8X21nSg+Qk/3rgQ0nHI+KeMfTbrBVc\n3dhsAElvkKXbZ5fa1sx6PBRmZma18hmLmZnVymcsZmZWKycWMzOrlROLmZnVyonFzMxq5cRiZma1\n+g+lRR1J5URuGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQLdtd3/f59erdvWf2npnzPrrSvUIYRCoYUmWbEiRO\nyjgubAyyRVIJBuIyUGCiABUnxjGPPKzYUFGBY+yyMILwtsNDRbmC4ohAQYxNHMsgiGMb8QcCS7r3\ncnWe98zM3jO7e3f3yh/r0Wut7j0z596je66Z/Tt1avazH6t7r+/6/X7f3/cnWmu2trWtbW1rW3st\nLXvaB7C1rW1ta1u7fLYFn61tbWtb29prblvw2drWtra1rb3mtgWfrW1ta1vb2mtuW/DZ2ta2trWt\nvea2BZ+tbW1rW9vaa25b8NnaJ81E5L0i8t8/7eN4PZqIfL6IvPC0j2NrW3tatgWfrb1iE5GPisip\niCxE5GUR+T9E5Dn3vtb6nVrrv/aUju2rROT/fhr7To6hteNzJCL/XETe/jSPaWtbe73YFny29mrt\nT2mt58AzwB3gbz/l47mwiYh6DXbzT+34XAF+EHifiFx9Dfa7ta29rm0LPlt7Iqa1XgE/DXyme01E\nfkREvt0+viEi/0BEHonIQxH5ZRHJ7HsfFZFvFZEPWw/qh0VkGmzn7dZreCQi/4+I/DvBe8+JyN8X\nkXsi8kBE3iMi/zbwXuDftV7Ho+B4vldEPiAiS+CPisgvicjXBtuLPCYR0SLy9SLyWyJyLCJ/TUQ+\nzR7HkYi8T0SKC4xPB/wQsAN8WrD9bxKRuyLykoh8dfD6F4vI/2v38byIvCt4byoif8+e7yMR+VUR\nuW3fOxCRH7Tbe1FEvv01Atmtbe2xbAs+W3siJiK7wJ8BPrjhI98EvADcBG4D3waE2k7/GfAnMBPz\nZwD/nd3uH8BM2v85cB34PuD9IlLaSfUfAB8D3gK8CfhJrfVvAu/Eeh1a6yvBfr4C+A5gD7hoWO5P\nAH8I+DzgLwPfD/xZ4Dngs4AvP28DIpIDXwssgN+yL78BOLDH/TXA9wRe0RL4cxiP6YuB/0JEvsS+\n95X2e8/ZMXkncGrf+xGgAT4d+APAH7f73drWXle2BZ+tvVr736xncQh8AfBdGz63xoTmPkVrvdZa\n/7KOhQXfo7V+Xmv9EAMObkL/OuD7tNb/TGvdaq1/FKgwQPA24I3Af6O1XmqtV1rr8wDlZ7TW/0Rr\n3Vlv7SL2nVrrI631bwD/Cvh5rfXvaK0PgZ/FTPKb7PPs+HzCntN/ZL/nxuSv2vH4AAaY/i0ArfUv\naa3/pT3OfwH8BPBHgu9dBz7djsmvaa2PrPfzRcB/ZcfjLvDdwJdd8Dy3trXXzLbgs7VXa19iPYsp\n8I3APxKRN4x87ruAjwA/LyK/IyLfkrz/fPD4YxhQAfgU4JtseOmRncifs+8/B3xMa908xvE+f/5H\nBnYneHw68nx+xnc/qLW+orW+obX+PK31LwTvPUiO/cRtS0Q+V0T+oQ0nHmK8mxv2c38X+DngJ0Xk\nd0XkO0VkghmrCfBSMFbfB9x6/FPe2tY+ubYFn609EbMr8L8PtMC/P/L+sdb6m7TWvw/408BfFJE/\nFnzkueDxm4HftY+fB77DTuDu/67W+ifse2+2Ia3BLjcdavJ8CewGz8eA82nYjwPvB57TWh9gclgC\nYD2l/1Fr/ZnAvwe8HROiex7jFd4Ixmpfa/37n84pbG1rm20LPlt7IibG3gFcBX5z5P23i8ini4hg\nQnQt0AUf+QYReVZErgH/LfBT9vX/BXin9QRERGY2Gb8H/ArwEvBu+/pURP6w/d4d4NkLkAH+OfAf\ni8iuiHw6JvfyerA94KHWeiUib8PkqgAQkT8qIp9tc15HmDBcp7V+Cfh54H8WkX0RySw54o+M7mFr\nW3uKtgWfrb1a+99FZIGZBL8D+EqbG0ntrcAvYPIa/xT4O1rrfxi8/+OYifN3gN8Gvh1Aa/0h4M8D\n7wFexoTuvsq+1wJ/CpNc/ziG0PBn7Pb+L+A3gE+IyP0zjv+7gRoDVj8K/K8XP/VPqn098FdF5Bj4\nH4D3Be+9AcMsPMIA/T/ChOLAeEAF8GHMeP00Jte2ta29rky2zeS29rRNRD4KfG2SD9na1rb2e9i2\nns/Wtra1rW3tNbct+Gxta1vb2tZec9uG3ba2ta1tbWuvuW09n61tbWtb29prbmP1EZfCbtw40G95\nS1LSoTvQGl8KorV5LTTJQMQ9MY8lQ9OhdUdHR6c71p3QuP/abFFr6DS02nxtkoESmAioTJOLNq9l\nE0QD7Rq6FpoW2hbaDl236MYepwiiBJQgKgOVgVIwySEvIMvpdEOrG1/c0mnxp5KJRgDBviaC+weC\nYUVL/344Pnb/IJCp6PzRGvMP2k5IRtDs2+yOTLQbyQtZeKwZGUYezh5j9xi1pu7ahufjLpAe+S8S\n/1dZ/9jdB5nqtz02Xu51t4+uM//bDr02j3WHed5B1wm6FTYFJyTT5BONlAopcygmMJmAmqAzoe3W\nrDuo2ozOj7nZWCaQiybPNJkoMlEImT3mztx32h5fp80XMtX/l4xOt4Cm0y3rDhot1K2YobD7yuw1\nLjKNkgmZKHOd2jWsG2gadN2gq5ZuDV0jdHbYzCFo2s4Mb54LKocs12SZRnJBJgqZZOaen+Tm2FRu\nf6f973JwF4mMn294nQL7tX/14n2t9c2L32BD+2y5rhesL/TZj3L8c1rrL3w1+3u926UFn7e85Q18\n6Ff+TvxiW5u/TQ1NjW4r83jMclM+Iqo0j/MCnZfU3Sl1d8Jpc8xJ03BvNeHeaU7VmkmzaoVVazZx\na6djv2jN/0nL3mTKfHKdsm7Qhy9BtYB6jb5zHxYnUK9p7y7p7p3SVQ1ZmSN7BdmVkmy/hPkucvUA\nnnkTMrsOs2tUesVi/YA2KKRvtfkBKJmgkvpMlZnXimwXJTk5uRmXcExWC/OaKvy5S7kH5ZwGA3at\nXtv/DW03/MGpbNI/Do7Bfb7dIFqgJB8/xuVD9PJBfw2dueuXj5T7NDXUybG55/XajP3a/KWYIJOJ\nmeDnu+ZvXpgxmM77+yDYp79/mrofQ7td6jV6eQKLE/TxKd1hRXdYQd3RHla0Rw2rpaJaKpq1kE/i\nCTEvOtREM//UnMmnXyV7yy3kuWeQa5+Cnl/ncH2HOydLXlhOeH6RM1VQKrONUml/392cNuzk++yo\nfYpsB2nM9fXX2d6DFBOYXTPXeTr397q7l06bI+6vau6tzLXcL1rKTPvH88k19tQ1c52qY7PdR4/Q\nd+6jHxzRfOQR9fNLlo9ymjqjWQttLWYMqo6yzJhdbZhdaZjOWvJbJerGLur2LvLMdXPfX79l7vu8\n8PdieIzm/pmgZBKfqzuek2V/rolln/FtHxu9IR/DFqx5l3rbhT77Ve0v3jj/U/9m26UFHwAtgoSr\nHFUMJ69NtloYwGlqaAuoDBCV0zlFfp0i22UnP2E3P+bm9JSqzag6B0AZperYn7Ts5jmF2qXIdiiy\nHfLlkZlEq4UHnHCCzA5K9KolKzKkzGPgme2aidFNgm1Nke9QqJ1kMt/xgBCCANjJ3YJSTm6OIwTi\n9EdqJ2FtxyMv98jzAhDI5+Y9uahfY4DRAPjpALQc6KQTiF6+BMuH8OhR/+EQRJy5SWVkchmYPTep\n1zAJzrWYwO5sCLzQj3teQFMbH02VaI5HdyH1BF1MkHKNTFtk1aJpUAclALtlQ150NHUfHc+Ljnyi\nyUpzL+TP7pG98Spy+wYcvIFmts/CAs9vH5XcPc14VMOVAkA8AAEeHPzxuN9CXiCA9rriCyjn/nxR\nPZArMWO5k+9ze/eUUh1TKu2vkbtm8/w6rI6HC7piguztkN2syKuGvbKiq6BZm3umqTPataAmmt1r\nLdlBibqxb0Bnb8ec97UDOHiDuQ7JIjC0UeBxCxZ3T7v/81229sm1Sw0+MAJAgYkqTbgq/LG4VSz0\nfytAFWgWUB0j5d4AhIDIC1DZ1AOOkomZRI/uoZcPzT4s8OjlSTSBOsDRK4VM8yHw7M4G51Fku3b/\nwUSc7UTPW934id0dE00VezsOEBcn6PXaeAIQTcy6eGhecxOxKuLnqeWF8Rrs4xzIyz2KbMeDkLNx\n4HnggUe/fDjwXAB01fRhqQSAvDcTDdgkfhz+t6tqf9wjE3J4bgaE9tC5HcN0P2sLcmWDTE3YzgFQ\nVykKKvLKuMpZaa6/TBXZXmEm4t93E3nuGbj5HBy8kcPqBe6van77qOSoNsBztBamSjN9zMYKokp0\nXgPz+DoF18MtapRM2FET1DT3z90iRskEWR33XiD4vzIxAKxuzcyiqjTfL4Cu6hdMzstXt3eR6/v9\n/e68nekcVGE87wsAj14+6D14Bzzhfb04ie+XJ2CSQTm94EJs+cR2+7q1Sw8+MAJASfjEWxg+ceaB\nwd4txcR4QwEIleqaX/2HIS/RGqoFurpnv7M4E3icSWlmkQHwFJN4EmxqRBUU2Y59Yce/ZY5jxz5u\n/GtFtmM8ntWxCUeE3s7ixIeKqNdo9+NcEk/mztJJPDUHWG7ydp4EkJdzyNzxrYeT2RjwPDxE2wlL\nVy161aBtjFOmBqzd+Dkw0g4AOAOIwhCb83QS0Bl4d3lprq8qIK+RlfUkQgAqJgPvx5mmISOHA5BV\nawCnzKHIyA5KsoOyX/k74Fnf4cWTNS8seuCpO1g1cGRvoytF7P04zyU+9uD+D7w53VY247ZA8oJc\nFQPPuch2zHm3tUl0Nitg1d9L4eLNja8FYHV7ly5ASAdkQBxWdous2TUDPA509MqHe0NzoBPd1ynw\nBCFWTZKDfIIAtLXetuBjzQNQGHpz4QcYAlEICuFqu5iYv7uz/ia223Ere1RhvIowtu4sL6Aw25N6\nMqqOKZgVcAQ8zlrz49Z24pCmRkKvwz4OL3yubHxFphYMA9B59KgHHfcjrUyCWMoGKYNzLiZoNxbF\nBNaBx1aPhLxe4Y9atDZjtlrE4RJrumo3f7ccX/574Em9oxQYHfCoOJyYTnjOlEwQlxdKAahYD72f\nUqGnLXqlfHiVvd7jlVIhezv9tb/9LLL/DMfNAx5Vx9w7LalaAzBTZfKLU4NZXClgv+goVRcB0MBS\nT79aGO+eQJVVDe8pZ6NbTkEHzH27OEHYNb+VYoLaC+4f+zfKte1dNWM5Ajqhl2zGPo+Bx93bKfBY\nk0nwe0s93q09cbu04KPpRldIgJksYDPZIM0nJJOfMeMJ6aY2IQHweSFIktGp7c6gqM0Pb3Ficg6A\nLuL9DoCnXpv9FhP7Yy88CAHmb9V/PA2jDPI6Dw/7pLgFnKE34UAoj5O1yXh4L8kCkkwm/WeCySsl\nLjgLvR6fO2iTBL49Rr+t6fjt7YDbT2wwTiQIxk1U6UM7qZfj7iNHtHDH615TkpO77bXBBbD7dAsc\nz6Es17BfRl7cAHTs6l8OnuGkO+a0OeZorajaPj90ULitat6wMwSeUhkOXEo6AUy4tTo2nuXChrDG\nFlzhuYSP0/xaGnZ1z6/Y0OR8N/4dpaFOVfjwms5LGr2m1Svq7iQJZ0/s+I8Az/JBf3+nv9kwxxdc\nm40h1VdgmQhFecHqlm3Y7feuaa1HGVVKJsYLCm+4cMJwYDHGigJYr80q3//46p4ZBiYvZHMB/fZH\nACgv4h9sve5/GBaMRpOi7kflvBEHRm6bEB9Lun8XXnv5EBYndEcV3SNz/rpqTBwHIrZdD0IKqnGW\nmveQ7LFoMMB67WBwzlrEL59TppI0Vb96tStXHy45y+OZ5jElOVxRhxONS6xDzGAr52d6Oq1u/ERo\nciH9+0W2a+jzeYE0No+ShJ7c6j8EcLFrFnGfmdjjnO9CaVb/jcqom1NOmoaqHa7QDwrjAYVMt3Mt\nBB63AAnud318OjrWzqscgHs6xs5UcD+W9GMSepojbNK2PRolpITmgaftYPUw9uZtfseNfWQh6Lnc\nniOUbO2J2qUFH9AbQyUQhEvATBhpniel4rrXi0m/ivVJywQEKjYn4FNzBIIiAL2RPNBGynBom9he\n4cSyPIGHhx509HFNV/XeDtCvyMsWqRqyvcLnJZy3oVcxCPUeUr+y1PNdA6i7+B+5zsueop1Qwh1D\nabB6dV5PsE+f35nm/nUPPPPdfiIPJ5rpPGauJfmcsftljFbeEq/C6+4k9n7cWia5B4TdfmGRXic3\neQfHqad7nDYPqFvLpmzHk9ml0vZ/Fzzv7NgmU0AKPMEiRK8aQwk/rtGrtidyhOdgc1NpCYD3Kly+\nxoYiU0tJHFrE0qUr6vUjT8M/q1zAM0fbLqZSp/lUbDg4XMSF3o67H8qzegVe3CSDsrw48/P3ul1a\n8NFo6u50PORgzQNQXhg69aYwHIxP9mdZGA4b7DgO+fjPNzXktZmswxqVx913aCnwuBDbqkFXzUbg\nibfRmZWr+8xq3Ptxq+V0wgL8hOMmcWeOaJCTYzofcPZ1CI4hBCApVezxOA/CejuufiUMq/lw2hnF\nqy7XMDYptq35XqEMc0+pfZ/7o0rOI10YjIWtXJ2Nq2Fpj6hbV8eizvRuXLjNAU+ZmceGCm28BBYP\nTGjq+GUPPN39Be2dJd1xbYDH0qAN/VsxnTVkcfTWFLQWmclblQpx4eKJ88r7SMAY2PgxbRfGo7Tn\nGIJr1Sp7Xg2lMoSUQu1E9UqjjLYxc6CYejs2xHfWInVrr9wuLfi4Svk09BbH7E/NTT3dM0l7R70G\nv+J2dSA+HwPxqhriFWxKQU5fT6jHgFm5hUDlwhM+tJY8Tm1Tkj/NWXkvojWAU3cR8EAMHCEDy3k9\nGxP6YcgLDGvp2gHsXfUFsWGBqjM/MTZBfUhe4Oi/JmRlP1vG9NrBGLh8yViYzY31GV5OaCnomLBX\nRmlDXI6hF56HtzDXdxEP1QGknai1CG3XeKAOJ2Xn0YS5n9QM8HTeayiyHWR1jD56KWIOtneXNC8c\n09ytWC0V7Tq3h5/5Opx2LZSz1hfBZtjfU2nuHT1tfchVr+3vZdFfJz2NmWUu2qBkcuY1CL04JRN2\n8j2KbJdSpiYneE5+R1zzWuf5Bt5YWi+0BZ9Pjl1a8AGJ6hSA0cdKzI1X5DuI/aHovIB8YVZwIQg5\nS1kyY3HuhIEW5RcSgBIsAKXbaOo4wX8WK2fTeynNNPV6qiBkFVgEPGUe5VSkzAceUpRrcXTZc4AH\nTFhoUIflcmaq8A2wxdGm3TmNnH9ESQ+p027s7bheBHhOG5N3qFqhajOO1hOO6oxSaW5OG/aLdgBA\novXZwDN2jRK2Hcp5h+vA6zHTt/Fu3FQeS8pEXo/1gpynkLedUdS4ew/98qFRHPj4Ec0Lx5w8VCwf\nlbS10Kx7QGtqCz72LxaAugrc2sncSyPejzv3vDZhsQSAVF4OFoVpSLEvZM2j8/D5nWqECTm2CNsQ\nZnOeJZx/P1zURLg44eAS2KUFHxGJGEnARlmXVplJsVA75LNrPQA19QCELgw6aVI7oe+aG94cS17O\nbbV8barlQw8gBSDYDDQbvB69Xvex8MTr6Wx+IqOP7w+BRw09m7F9O8/j2oGv0dDTvd6LSCbrqNg1\ntXBsd832xXl/rs42XRCcBTwXtLo7oW5N8etRrSzDTMxjq0RQtcKzGFmZzRs6Z0LbcJzO6zHjNbxX\nNxEKHPDsT1o/cbu8iD58CR7cRd+5b8Jszx9TP7/k8G7B8lHOy/cMkNUjIdf5gaJZF8yuNMYDKjqy\nqqGrFFkxHFe9Xpt7w5FhdhkAkKjCs9XSc3Tn54DHSQNFYbaQVBCQgYTd+DcwEnYNvZ2tx/PJtUsL\nPun0mMbsIVxtBfUDmQWgamHAIC+s1E5tQGgMcGAcdCDKM9TdKeiRlVa2Y4ouWYznnjaBznn1CSlj\nL/B6Ntko8DhK8xjFNjgWuXoAV654ppaeDllEptB1ty9WDMNtrio+VJ4YC2OOUYIT2u5YsajLN6Tm\nPORQs+9onVvAUYGSgPuGGY+bnXBzukbJnskttlYtwk2OwdikYzXweBKvJ2R6mQnZSYe6cFS8yTIz\nem7hpL2rSwM8d15AP/8S7QuPaF44ZvVizeHdkuXLOb/7fE1ddRtX7MVKU5YZ1TKQAKpaOIwXDOLo\n4mVuC3vXPd1+vmvGppxDO1Jk3K3ZzWNdv4jN5nJViSSVZ6CmLNGQvJHkd8ZkeZ6UZbIlHIR2acFH\ntLYSLnGFPxCIgLofVMMAgMo55DXSFP1EqAJQ2FDXEOVzbFzZTCbDkBP0CXc/CacilWN2EdCx3w3Z\net7rCSwr8d7PJuDJ9sthqNGar6OZ7xrgcR5P3mepnTSL83w2gc7AUsr62Hlu+t4FvR13b8TAY0Dn\n3mnOYS08quHuqblnrpSxdpphXu3a6vqHZqGyibHoLMkRjnlnKjOEBucp7uZQqvj+9cfhPB01i5hg\n+sHH4KUX0Xfu03zkAc0Lxyxf0iwfFTz8RMaDuwZ4gFEAKkuhmArTWUs563rPx15aJ5aaHdeGERl4\nzjJdGDC6vo/UBxYQzGJCNzXS1OS50QpUk7h2xyuDLF9EB+obEeCMjWfo/YbsxiDMtkkdYWtP3i4t\n+KA7cnJamaCkp8emwGPEQDPGAEjlpW0+sGe9oJHwkLWxnE5KKx5LUm9U372onTVBhyCUUJUdiQDi\nkBuBoGkUanP05bG4ukvoBnIoo4dq5U+AcxltokrjRThr69iTC/+mx3MBCxckJsfTA8+905x7p7n3\ndh5V/WRfZE412iiWF2qnZ5K563cW+LjQ4RngqOw9O1Akt8+LxElR2aQHnVAB/KUX0c+/5PM7y5c0\nR3cn3PtdOD5qqKuOqrIMumTFXpbC/EBxcE1Tzjrywv6fDMN+3WEVLWoiqaDDCnXL1Ht5KnZTG1Ap\n50hTUzpKdrMyUlQutPbwsGdpBt67K8YNLcr3OeCxi6BN3k5UpPo6MxH5QuBvAQr4Aa31u5P3xb7/\nRcAJ8FVa61+37/0Q8Hbgrtb6s0a2/U3AXwduaq3vB6+/Gfgw8C6t9V9/tefw+hvV18q6FqoFhc05\nqKxB6QaXZwEDPAaETEijVGvaLqeVnLoDJY0hIqgCWGzuSTNCJHAhnrROxIGPBx6bpI4UEcL8Emye\nVMP9hknukbDEuNeT+7S1E7McyLyk9OXweMLwUSCJkioE9Bp34+rP/nOJIkNkqSeYAtAFJvWU5u0V\nttvTAfB84tQIdo6xyl1+pchMIlycIkMAPOEK3Y9GxF60hIqm7jP4gRnF6LEi6Tz6jPvrGW1OD+8T\n943H8/Ej1r/9Msd3cg7vltx5oaGqtAce5/lARmEPYwx41BjoRLRs835edEAL1OQTTX7L1AypqoHr\nlrjji1ItCFVOISSQe7Iisq7+yNUdAWQHFerW2hcwR+xTG/JlOjcFutbb6QlGDsB3+4VfkwjCvkKT\n7DEUDs7ajogCvgf4AuAF4FdF5P1a6w8HH/uTwFvt/88Fvtf+BfgR4D3Aj41s+zngjwMfH9n13wB+\n9lWfgLVLDT56+QABinInyfVkHngMm0mxX7TWKzLej8oaisyUuBTZDmLDcGdaQihIgce9HuU8Qj2q\nQFUaGDLcxkBoU5uIkHCQej2BOQAaBZ7Q2wn/J/mKMWmaVq/jlg3V8dnhNawqQhi2dIAcyuyE55ae\nrxsflytKiR7B/OnUCjYBz91Tq5sW5FamudNPc31yrpOT99fPAmQqGOt2G4EQmPMK67wwTDD/sdTD\n8WCTR8+lqdDHv2sU0wMqtfN4DPAUG4GnWpmcUl2ZyXN+oJjtiQ+zqYkmbPVQL8S3Qghp2f5yBkA1\nW9eUFjhU1ZLd6MHHA9G8jlU37i9MAbRV3Ehr0ZwKhwIDQO6+dHVSll152h6NkjYi4Fmdvyh6CvY2\n4CNa698BEJGfBN6B8UqcvQP4Ma21Bj4oIldE5Bmt9Uta638sIm/ZsO3vBv4y8DPhiyLyJcC/5gkK\n/1xe8Fk3JvyQF+R5QZHt0ioXWmtwyduqNcV7Ye+TVjco+joED0DnaECFCe1Qit7VNETAE/YbCdg7\n0cTlalzOolmPeDwhw81JpRglgLgIVFsvMCt64Ikq1l3NTAg6Y+0G/MDVfoLNIZY9CdXCA9pzdA7Q\nK01URGrbYdX62FjIWK3VBnOMtrB+x4VhnWCn41hMc5gq7YU7n5s3PDurmU+usaP2YWEZWMcvD1TB\nx3Jk0bWyHqvOrZp0UyO5zYWoKXokFxHR0h1LMBRhtYuX7sioV7RHDU1deOq0MxNmy6irjnJqQKco\nM/b2x4EHbA+eNRHwVMuM1VKRF9bzmXQ9PRsoZxmFBRG9auJFkX0si1308gT94Mjnkdp7sYjoqIUe\neQA8ldWEq9tEiDTrldOdeK1ePoAHd8/f15O3GyLyoeD592utv98+fhPwfPDeC/ReDWd85k3AS5t2\nKCLvAF7UWv9/EkQnRGQOfDPG0/pLj3keG+2pg491IT+EOem3i8g14KeAtwAfBb5Ua/2y/ey3Al+D\n8dv/S631z9nX/xDGldwBPgD8BYv4m61tTczYFo+Ws2u0mVuN9gDkOjK62ogxOQ8gyteM9Qc6r6Ha\nxkZX4aSVyMlImaMdEIQbcxNb+Dep56EeanRJ0vDFPfc1PKmw5VmAo2LQicx5Oq76vEk8F6dmkoK5\nAx73HddbyI6NPjaTSRgO3GRhbc8wBBoSUMICTlMrc9vO+c7zmSqjobZftDw7W3Ol3OvDbeE1dP2G\n7PWjahBH+HNFmGFLiqYPvUXekVMs33h2xIDtck12rPTxKd2jivbQFI82a6EKvB0XGipKqG0+ywHP\n3oGinDWWZDCkkqfAc/hQqO2ippgKpaXhOTCqlsqQFA4a00yvavrzcvnIeu29nfb+Cd1hxclDs53d\na+1QMaPIDAPTEQx2Z55dWXennFpliI2yPGFezFLQn4SJmDG4oN3XWn/OE9nxBUxEdoFvw4TcUnsX\n8N1a64WcM489jj118AH+AvCbwL59/i3AL2qt3y0i32Kff7OIfCbwZcDvB94I/IKIfIbWusXEM/88\n8M8w4POFnBOb1HWDvnPfFCeqAskLdqb7/n0la0plajlC4LmIndWgbszCMEnUpyZUlg7p0FZdWqYt\nGeB00kjqpdLyAAAgAElEQVQnLxjW82wAnjGLQCcs0gw1xhLhxz582Ycz8jD019S9N5e0lfZguTiB\nYm1qQFIQS/W5Au/NCaBmVdt7aM5CzbQRC0Og7rkz14EWeiXoK4UJuznQ2S9MDc2NadEXboZSNSPX\n0NhpBEDe3FgkwB15fmMe3FjoMgAeFmbydl5Pu84jTyQ1B0QOeKa2mHQsx+OAx7X/Xh5rFoctx0et\n30ZdaoqpUFVQlpnPCXWHFdleEd2T7rFemdbxrr348lFuFBdqoV0LsysNaj9g0pWGgenuV9l/xujg\ntUecNkeJDJLN8aidXsap6j0e/fxLdPefTM7nCdqLwHPB82fta4/7mdA+DfhUwHk9zwK/LiJvw3hV\n/4mIfCdwBehEZKW1fs+rOYmnCj4i8izwxcB3AH/RvvwO4PPt4x8Ffgnj8r0D+EmtdQX8axH5CPA2\nEfkosK+1/qDd5o8BX8J5ibGmo7u/ICvu+6JRyQt/E9ZiQjj7xbBHyEXsPACKAMd9zjW6GmmQlrYz\n0JVZKQJGsNMyhfweAyAKQWc4+Q3N1e0MQmxhE69AgsR7DbYivD9Hm4PIrGfm4udOpj8FRnfcXuxx\n6RUMRpvsBarbumrojms/NnrVkDnhy1T9+5zanrPUkp2VSnNzpwed/aI1BIN8n1KmfWvvxGsNE+S9\np9kDkOtr48YlzflEYLSZXBlb4CV2RzZsdVj5ib9ZZ9SrLmC39d5PWZqQmwOekFKdT/Sg3XUIPA/u\nNhwftRwftpRToaq0315ZCnWpmc4MgHQVdMe1bRMfEAhsTsd5O9XSFL4uj82d3qwLmjpjtl5TXrei\nplPVL5Jm12B2jYUVYHXAY/K3DXuTPNa3Wx33RbdB7dOTMCMs+kQUDn4VeKuIfCoGUL4M+IrkM+8H\nvtHmgz4XONRabwy5aa3/JXDLH6uZVz/Hst3+g+D1dwGLVws88PQ9n7+JSW6F1Ya3g0H6BHDbPn4T\n8MHgcy6GubaP09cHJiJfB3wdwHP7U7pHFdn+CVxd+5W4yvf6fEw2QdmbNaJAB4VuUZ8ZxkNuoYWa\nVRHwuFX9hgZpoYVFoHrVbNRTG615OMMi0BnTQnOgE1aCW7aQ+2Gb83I/6H51mZ/XI2mTbchZhUrL\n5v2un9DrUFdswy2en8E4zCYmp9flKLEMyEkb0e+rNotAx90TO2rf0MVH6nnS4l1zvOf8BE+WRIrm\n4VhsqK2KPKKz6sHOMcdqK8uMvNCoQntKdTG3ORz0gFAAUK/i30G10p4tF1oo2eMsZV1CX2sW7qte\naWZ7yb5tp1eZmboymV2n0itOm+MAdMTq8HW0uqGQnViM9PhlL6ra3Ttl9eJj3rOfZNNaNyLyjcDP\nYXgVP6S1/g0Read9/72YCNAXAR/BUK2/2n1fRH4Cs8C/ISIvAH9Fa/2Dr+1ZPEXwERHHM/81Efn8\nsc9orbWIXDx+dY7ZhN33A/zBW/taW+0yr8vW1IjWG6U93KS6yc4CHveeDmR9vFng8Q3SYNRLSSeq\ngbrAY1gKWH0dT1CzE6weB1XgIyvJqs16SRlbcO/UAXLJe4+jLfBdPO259pIrxPkkiMJzAw06N1EF\ndUle6DRQsvb/VXE2ZTswB0JKDCjt2iFyiwcHOl4GCPp+Q2mraCv/I2HOx437WO+b8HoGVfsQFwZ7\nnbxwX6G5MXTH4PT3popi3gAOmHJg4nM+Jj9jQKecNeQTTTlrmc5a1H7ua3W6qkGtWoqqoV6IISBM\nNJDbbUjk7bhtz/aEfNKxf6ti91pLfmuGem6PzDbRM55+3801B3ataoLb/mzPhNxmV43Xo27uoG7P\nkOv7XsKJck7dPhxc21DfLioCdq0kXnpAe2dJ/fyS5csXl196rUxr/QEMwISvvTd4rIFv2PDdL7/A\n9t+y4fV3Pc5xnmVP0/P5w8CfFpEvAqbAvoj8PeCOowSKyDOAo5psimG+aB+nr59pWhs3X1etSfSe\nsSJPSQZjXo/vW79xI1bhQGtPPvDfCanGjo57Qa/FF3pexDbprrn3UvHNoDBU56VJ1K4feUHLo9pM\n9lWXB2ywzkrcx8ekRYwyeF5AU/Sr+eC4vKW5jLR+px5vHJe5CnovdBocQ6q3d8HulEpylBof39F7\nYPVws3fnQKVeG6HNsEZqkxfjwnbhuQf5uqxeG4UAd83cWIVjWM5hvvbAl1V9TUxBRQhATW2Yafmk\nQxU96DhvJzsofb8ewLf5pu6QsqKoGu8dlTNFWU6YH9j2B2VmwKvoPGGhvK7In72Kur2L7O0YMF2e\nIIsTdNBSHMz13WXp2XXAAHiyG3Ozjb2rSLkXCdamyg+hqrdXwratJNo7J7T3Tlk+yjm8+3gLu00m\n0hMttvYUwUdr/a3AtwJYz+cvaa3/rIh8F/CVwLvtX8c3fz/w4yLyNzCEg7cCv6K1bkXkSEQ+D0M4\n+HPA3z5v/10nJjTj6J31Gt1WSFuj8hIlja8ij8JwZwHP2KTjJoGgS+Mg1Bb+T+pV0kk29H4GIZuL\neD9hPiEsBk3zOoH+2kkAOq7mpWoL6+2kUDaxemYNdKCU6+ppKGKibCdPT2lLbBOAn+X1YADHUcO9\n12PPzU/uSbFvWlTqLL3GmyxedFTjxcBjNkZTd8cXfi+hZmub+9CrFn1cQ5GhVw2qXsNy10y6KYC5\neqtgP27BktUdumzJKyMK2qyF0oqyTmdtVL+j9nPUQdmHtSwZJcxFKlv4JmVFPmm8F1QtMxOym7SR\n96QOdslu7qBuzYy3bb04p1AutQFMfXyKTHO6RxU5IGUPmKPAc+3A1JWVc1q9ou2GwGMIRDlFtjsa\nbmvvn7B8SXN4t+TB3VcWttza2fa0cz5j9m7gfSLyNcDHgC8FsDHN92EKqRrgGyzTDeDr6anWP8sF\nqnB15xLT7bkx8VTQcCPwjDWIi3rQMHzPTVgQT7xnHNNod87HDLv5z6d5nUB6pFEZp82DRNOs4KhW\no8DTNzNTgAlTOdWGVq/7Tp7tyFhYqrafvKtFP0ZpjdI5LL3oHMOxCZv0bbCN13jMXB3NORp0EQMx\nPJ6xolxVQx3XBHX3F76LKHVHa8NPIRU+Kybo5QlSHPREhVSY1IOPTcpT4IKvUwvc7dqEzqazlqzE\nf3ZQZGzvOynXEIXKGhv2rNk9rKwHZLziHnRmfadTBxhO+6+cw+4Cce3clycmXGkLqztMkqO0bItR\n4HG9j9w1zSaU6nQQ7vbSRycPogLu7pEhZVRLU//k2Hqv1kRMndPWjL0uwEdr/UsYVhta6wfAH9vw\nue/AMOPS1z8EDDSKzrJMYUIIVwJGlypj5eCRVTHYBDp5LPYJxnOCjaKiYVtm0boXG8VWubtwlF0Z\na0A2KEz7CSDNF8AAuPR6QxFqGmZz0iOuEK9dcNoc83LV+X41Dnge2Xk2LA1atQKEuSTjPfopOdtB\nucZ8q8VQdgiQlav4n/eTuXOS7HlIeY7q9kHZT46TGIDGGrJB3EQwAh53jdPaJeifB1RyyYuecegm\n/NTLDLcVFuK6Ylvo2XGumn+snfmqjag6HuRsbitU7g7rhDTmKumqoZsqKDLUQYc6rHz9mEzLgRho\nOK4uL+i8UZnjw3ou5JntFWS2A6qUCehYJmXY28m3B3fjY/NkLE7QmLJv6AEIsMdknjmgopgY9ipQ\nzK+bazsy03mvx4W8g9+NlLkNH+ptD55Pkr0uwOdpWDYBdWO3XzHNrhm9JxorNNh3qTQTUSDjTh55\nO95zscWAkoJPADoQTHR5GenC6an9fABKGy0FnCCfkIKQ73PjbJJ8xwIP03kwBqGKcw88h0lNiJsL\nHQj55mq1a3N8ahiD3Zo6O/WhjmJ+ffS0ZBoCUHi+a+TqgRlfQMo12k06CSEjBOXIuwgWAf0CY+hh\nRsCzWthFxZ7/rrOocNhfS3v9yz1zP5RJ/6VA3TwSRnVmadG+ot8WVoYUez9WY7m+tFWA61dji6m1\nKsz9MJnAeo3aO0HdMhRwl8cJPSqzHxV52GHI0BNF6jXMzEInK07I9kuzTQtCgPFQHOi4RY9rsREQ\nWvxiLLRg4SFTha6y6BgjJuDixANuWr8XmpIcmlWUZw3HV9l8197+OJt0a6/OLi34SJ6Rv3nf95iR\ncs8IDQbA46yX3bDtDVbHA9CJ/qo6WtWnoBN6VEomXhdOVhaAVgvzowyVC1LPJQ3feFZTsHIOQWfM\nKxoJtem8pLYV4CdNw73VEHhGmLCRzplrruaszDpKtfKhj1pOKdSOP/9wLHzH2BSA7Hk5APJJ+3o9\n7JyaJvKduWLYxOsJ9+/+e0FXq+ulOUaaXqNuzBpXWKsyVL6HaI1M58PQqwOp5cMYgMIQoy0GdRX9\nY9Yz5tQAZEPgaWjMQmdmatm09cikXpsyg8UJ2bU1WSj7k1oKPK4RW9KV1bSVn4yAUKKQYcNj4X1n\nWoucxm3r3flga6DqNTJtfY3bYEyc92OV350H5AAo/A2a6MWINiAGgPPCiJ/uHTyZaVIE1JZw4O3S\ngg+TzPyAgh/BKPAkXo8Lw0TAE8b6nRZXMtGk9SRm2xOjjO104abzHoDG8gfpRDrWrM71FMrtcaWg\nEwJSCDzlXiAvbzt1rvMLAY+z/j3z2d770bC2ShEOiLrTKKEf1gUNACjJpcnVA+MdFH0eyHt3Y8Dj\nwlDBOG3qUul1vZygq9edK0y3zRUDAAqvbW/2/FQOahp8tgG9MuNimxJG+7FFtK4YtDusqBe9hxWK\ncmYhYzzwYFPgMcdmPXg3sZd7/X7nCwMas4BVl5rbftD904NPU0OJOX4XNg5BaG6ByYFOQGjxx2jb\nGrhxLNQO+XTee0Hz2pAP6jUZDIRwQ1kevTwxj4uJ8VzBh8NdvZnKJtBUfY5xJJ+YW8LFdERGaGuv\n3i4t+MgkR27fMJRMm1yvm9NBK+0LKRqEK8CE4uo6lIZ5JAduhXUOTHsGW4g5ndsGdcdEjLANbbgh\nbjWg8zBHEeQQwmMMacdBQy3X16RuT32XTqfs7SzO8QyHYgyAjCQNlErsXx0DkdIoOzk6iwBoTC18\nvmsnuLUBIRh6eaF36LwBVXhw9UN70Wsc/N1UoBrbabT99L5SKjct0pu6l82xltZhpX1yPBnA/XdF\nlTZ8hSp8CDld7CiVo+bXjVe2WqCdd7a7GBb1QqxG4aSPwOQoQ5Zn4LVBXI+U1lqF9+94Td0EqPpW\nFIFSRHvXyO10VTNobgigbq1jpQj3WwjHVwXAGdRCZftGYSErc9R+S7l+gsAjerTf0WW1Sws+FBO4\n/Sxy8AxV1rGo74zTblOl28DrMQQFM/G7RnJh+wDTHTHOH7l6A9+LPjNJ+SLbBSFqUBcB0AawSckN\nPXlhA+07fD0ANBOKWvtwW9XFk990Q9g7BSD33IThhKkSSmXOt2pNHVDVCvsFhK2fd5M78Vx2XHjO\n1uvxSfWwf0uyyq70ygtLutCfHw4bAnQ1SeYa0At5OrKCDRH1i4pmsGjpt5n3mfKRfY2ez2wX6jXq\nduupy9DnYnwjtoMS9ewVs4i6dRPZf8a3C6i7Y6884YDWEyksc3OeX088zGJ43yxOhtJH9vXIi65j\n7cDInEc6mfTtQDwgLJBy7ruFtnptRFlDjcNAaqq9u6R54ZjmrpEHyidVzMorjTp7DpHHo8G06G6C\npo7hudrFjAZUMUHdmpHdXaJuVpQXUdDe2mPb5QWfvECufQrH7UNO6156YzdPi0nzMycKZ2MCm0bI\n8NjL8kNfkFmqjv3Jit28oVA71N2JDe31RAQBNrbm3kQZTiePtJ9PAkApw6/uTqlaFbQQ32wOkDYB\nkHvcg5D2LSqOatgvoMyGK0sjZ5T3INCUwwS0s2AC9P7ZBYDnpDHtM1IA8ubyMnbf4aLCN5lLFhUQ\nt7AulTbnopvN+wmvTXjt3Cr8pqEuQz/BesHX6/sGeK7f8izFk+7YH1fdWQ92Xdjj6Siz2nubgAGg\nvLb6hrUB+sCTca03nGnnTYRdXc7RDJRSQdX0OcxiAvmiBwQMMaDId2h1fi7wrF6sWb5cWPAxoTFT\nk1STTyryW2YRkIMBPHfMTYHO6548El7rojYABD6ca0Bojbp9URG9rT2OXVrw0SrnUXO3X+m3yqoX\nNx6AnNcDdqXanHET2ji4C7O5Sc7RlPv23G5ycpO7mQTNitRpozWbG9SdVZlvm49FbCEny58CkPtr\nvZ66NR07q1a8irM7VjdRjVufCzrbC3IghPX8LBgpoVQ94PhTCbq6Ds4pPI9kwvZ/AwFUJ6XvQoqu\nZslRwZ0M0KjZfbscW8iGdEoPbqxcE0KAMjOenhm/8BoHeS4bWgKG57E2k2Z2YLxcDziWyefZYref\n9cXATrU5BB2XszPH0bcGKZXm5vRl2rJhXl4zE0Fb9N5PGEJLFSaspYK3Tgg0BEtz7BYwLWU66q3E\n3JA52EMwE9J5wHN4t2D5ck5VdV4CyCgymLDWbF0ztftVBIuSovb7G3jTeeGDDGKZe+58s2tPpshU\nMiJ1hstulxZ8Wr3mtDkyzKx1mttoIg/oTAsUksMw22lzxL1VzlFtul/CcFVsXnMClacUQA2+Q2oo\nyJn2A0rFToGomZ1AnEdw740oCIQ5C++hDZQLeuuPfURQMvhtrYL3605H/W9SLVTTFjo+Hx96C8/J\nPRkDHjcxbgCeuFi2p4IXmBzTxqLSEZac8XjWEei4e8iFGP14+UUNXvVhozdtz0Mmtsp/D1RYW7NB\nhcIBz/1VHYHOYR3WZAlTZQs+lbt+hs13ML1tck8Erb5t75/2zsngMEPFaRiKgcpUkdmbQVeZ6dWz\nakx9EUR6ipRzc6+60OZqMQCe7t4pzd2K5csF1VJxfNiaTqsHYBZyrt09vkVDt1cY8A7qf3wIsLRI\nk/4eUgV0RkontvZE7NKCT9NpCw7KTyAmH5FRZZpSrWm7nFZyv7pVKidX834lFYBOq1c+HNMDj2m9\nXLUy8ArGhKjjVbGdoOxEGAqTmvcT4Bmrwk8naIjyPL7Blg0PGi9NcVRnQQtxOcfzGc8H1Z3p8Oms\nyIaN11yHWCd14ixijUkfhqQECdUkSmLWoV2tRq2SrQBq7w2YcQu704ZU+kijL6HQiyp6BYSsQWmr\neJ3YpkVGqXqar7lXemIF7jzy2gBLU5uq/lDBOgSdoCvn6fpOtNgxZJGMRzXcXQmrBq6U/bUIr5cb\ne9E6bjr38iH6wZHROLtvCQRBrVGXBAFCtel8osmqBl26+isDRK42J6uaXky2mMC8BwRN3/U1bAHR\n3F3adg0Zy2PtVQcK2+I7L0YWS3VHd1ih9mLJqgiENoWyx4qAX6WJMNoH6bLapQWfdSe8sBjeVFUr\nVMpMukoan0R2ORlfpW8FQlMm22lz5JliDtjOoieDicWn9S6bLBQmdc8vbEG4TVTpGW6nzZEvJnVg\neZbn0x/3Zg/IeW/OUuBxfXDCc98IQIF5ILLhSBnRiDP1Wsf+3MK8R3z8XUT3Hmj0pcA9ovtXqnXk\n5aTAY55nlFlrc4qmX1DrGXC5rcG5HodKS+LVuWNCWmaiIxWcNkccr1fcWxlv595pzqMajtbwqBIf\nDp3mvd/owKfvzDuJGvU5WZ/2zgnNC8dUD1p7WAY82nXuH6eWFx0VGDFS6xU5IHKECb1qex0MR8t2\nIARe3LO7v6C9s6S9d0q9EKqlGuk9BHso2ycnQxVt3x/I9rzSx6d9KBMMacJTxxmCjqstcgSTaZIj\n2toTsUsNPsNJM6NU5ofmVqptl7u3+hqEzLjmLvTS6iZSejZhPPHAExZgpuZoyGPkhmgVHoafLABd\nCHhGpH7cBOYT8Lam596pqetJLfR+zvOCQnMA5LyeyONRXdAhdrxVhQP1MO/m6lVQWfLZ3gM5bR4F\nRbLFmd5br+WWjwKPZza6sQtabjjvp1SGHRh60G7c/Bgmua2+Vbc9t7w01wUM8KRmiSxVd0rdPvTe\n3L1Vzr3TMgqxHa2FR5W5744XblzXvGFXKDId3Y9e1Xl51OubPTyk+fgR7f0Tqgcty5cnNGuhrYVm\nndHUpu024HMuAPmk8yKiTZ31RIB1R16ZkFtHTQa0d07IqtaQESz4uFCcfvnQt/rubMfVaplHXo/z\nfOpKqCuhqmTU+3F5KQk8SF2vDRAt7XUNASgs0M0LqqzjdH1n9N55miYiXwj8LYzS0A9ord+dvC/2\n/S/C9PP5Kq31r9v3fghwLW0+K/jONeCngLcAHwW+VGv9sohMgB8A/iAGM35Ma/0/vdpzuLTgU3fw\nsYVwpXA5iOHk5LwfwIWTITNeEBCBjpl4lA9bhV5P6PmkIY/wb2hhyM3srB4A0ONaKGFiwj4mAW8m\nsNyHasJjDMem/xsmTR0IjHtKZ3k8pdJRI7ZNVnendsIOi38n0fOQ7pyKoB7VGaUKgU+zP2nZzXMv\nLun7ucBQuQKbp2hMmNXXy4gjScSht7C9RPiaCee2BkCZ2OMOzsl61BDn+Dytu1lEIcR7qzIKsR2t\n4RMn4kGnrhR1lVFVyl6Ltb8e7joUak5ObkJurp3A3SX6uKa5W/lJPwQd53kALGiD/j/KAlHwYwno\n9BzFANQ9wmgr2k6ump6+7Vp961U73nHVNqsrSk1RaYqVNkA4ER9+7Q4rS71ujPeDkWUyX7Sg7KSm\nrhQDmZ9F84DT2oSjn4SJ6CdCOBARBXwP8AWY5pm/KiLv11p/OPjYn8Qo/78V08n0e+1fMCLM7wF+\nLNn0twC/qLV+t4h8i33+zcB/CpRa688WkV3gwyLyE1rrj76a87i04CPggWe/MKtw99flAmAk/NNB\nSxy7j0Mtna1hcZNQNtA/iybCTEfJ9vNk/B/bAi2xqBmcTcC/XHU+TzBkp+Ena3duIRCZ83aTC4AM\nPDw/2Rem66cBHnPOpmX55nMNvZm0hsZ7DkF9Te95DiWBSuW8WXMMV8uMnXyPHbVvgGf50EvpnNka\n44xjTHNkoRcUfsaF3sbqf/x2E9FTt9AxwJoHod1sEGZz3k5RtuZ/1bE3X3OlhP0J3N7R3NxpzBio\nfcMsWz70BIO0zTZg1ZjDxL55vZja8R1hnbmJtl2b0GM+MYw4322WhsjNs8oUupgYdtxegVQN+aSx\n6tgte3XuQ2511VGWwt6+itp8h3mV5u7SMOh82/LK6sEZyR9Hr/ahTuthngZ50Hur1900+TbgI1rr\n3wGwrbLfgVH8d/YOjIeigQ+KyBXXJ01r/Y9F5C0j230HpsMpwI9ixJ6/GbP2molIjukcUANHr/Yk\nXnej+lrZJIvDQPtFG4EOOPDofL1GamPA436cpprfAFE5koAOQ0/uh5zmerRI709sELQceEDKyu7k\ntVmpu4k0qFFxxYe9aGicmwpBMqTnhsdtLLMgpH3IKTT3udDb2c3zAeU4PPfRce7G8z/m8ynwqAHw\nuON2ALgReFwbh9BC5QpVQ17T2pCf27chZ/TnvinMV3VJ6O0MAAplmHqvbu1rsNKw7so+rkbCpvO9\nmisF7E80Vwq4udNwc7pmPrlF3naG2uwS/LZtg64amjpeSeSTjnwCeZHZHAuEjefMZ4ar+6bO+tsQ\no8vWAVlRDNvAW2KFOwttO6XOXMuHWrh+y9wrVaU98MyuNn7fedFF0kPtYWVYdscYNYRVT4RQeycw\nixluoeisqcs7P/95ETMtFS4csbghIh8Knn+/7cQM8Cbg+eC9F+i9Gs74zJuAl87Y522ttXv/E8Bt\n+/inMcD0ErAL/Nda62F72Me0Sws+SvowkCn4bP1qPp5IegqnLxq8QNFpP/kYcAlXwH5SD5heqQfg\n95PU9aSU6425nxH5f1ej4mtBrHbb2I/roOg9lv6Y7ThYkC6z1ta1hGL3Q4B1IS4lRdQXaczScNpF\n7DzgMR5cx37RcnPasJNfGweek+XmneQLK1I59/t0gAB9vuci7EDz/eZMAArlepx352qwwn2tjAgC\nq2Zc7qgoWg52Oq6UmjfsOOBp2JtMo1yPz7McVnQjbLZoKCwIOQ8HNtevrJaKthbz2bXQrIUs8H6A\nuP2FK/TEdGntNdxOPQABXL81oao6ZntCOWsGze9C01VDc7fpJXiOaxOOOzYtGZifIPNdE67LC6+F\nlyq0v8Z2X2v9OU9jx2DacIuIG8i3AS2miedV4JdF5Bec5/VK7dKCT56Z0IMDHSfvoaSxDKYehHow\ncpPreDV7/5k4NOFIDOHnnNdzESA7z84EIAtCA+AJtNsgbo0QAk+vwzYMvZmJFqpMW4Zg0Eo76z2m\nMK9TZLsefNKcjfm79u+5xLzKJgPv5yyPp2rj8N9+0flJdyffN8DTdrBKgGeR1LOExZBFPRqOC4ty\n09fH84g9qWUTAIWg456f5fWEVteKwi0Yio6pgisl3Joa4Hl2tubGtGA+ub7Z67EbbS1YpBaG1VTg\n6eQT7UN1rfvrSAr28qmJJq+sKnXa5twVB2PqgPR8l3jajwFoOsO3+A6BJyvx4BlRwKsGjhqykp4G\nfueEfG/HqHubk6Ptjm3302zj4uwp24vAc8HzZ+1rj/uZ1O640JyIPAPcta9/BfB/aq3XwF0R+SfA\n5wBb8HklVirhzUFBmfM86vbUvr8GOl9AaCrWXS2QRLmQeLsu4doDUMR6SialtLLfvNaLbKaeziYL\nAWjsO2kLARMCMgBstNZ6plYYhgzBxgBlP0s6PbYQjEP6rsqMErhXBPdU5hWw6m++vCB321U9rTVs\nRZEqggORwkBo+4VbJPTn8oYdYSe/ZuRkVscGdFYLAzwPD88f4KTeI/RMzLi5sZLgsY7Au2f3xdTy\nUaZfksva5PWACblNc5i2UBWtBx0DPJo3z4bAU8oUvXypr6lxVmTGOzjq22D7IUgAx73ntNUAOGqA\njnatDBBZooJjxLUjYAaBHl8gdeN6+DiVB+cpObHPiFEXeF5d1YNOU2dUS2Xen7X+mF3TvDFTMmEn\n3+fG9AgYyf+9UpNEifyV268CbxWRT8UAypdhACK09wPfaPNBnwscBiG1TfZ+4Csx3aS/EvgZ+/rH\ngYbgJVcAACAASURBVP8Q+LsiMgM+D/ibr/YkLi34KMlNsnXENk1qzjay09hcnzJmbhXs3Hz3/X5b\nzQCYxvaZ2iYQiujBWefDZi7k3mvOhaSAWbSNsfyLO8YiY+Dh5ORmgm8e9PL1sLm9eCqUqkpyIJ/O\nQe35njlhon+/iIUfw0l/f9KyN5myk++zm+3B6riXb0mlY0ILvR7besK3Fg/04YxMjzuOPux4FuiE\nY9YTTR7/p+hCbs6ulAAWeHKT4/mUubbAU3OlNHmuUqaeZOD127ASPqsWZRvAqXunTI9qP5E7r8KE\nr4qBqoEzk+OxXo+nZWeUs+SDRWaS/2HjPy8ke9KTD0rTw8cBYzFvaGqNmrTD/FIAOu1afNivWtrF\nzawlR58LAiEAlWp1/sV4DU1r3YjINwI/h6Fa/5DW+jdE5J32/fcCH8DQrD+CoVp/tfu+iPwEhlhw\nQ0ReAP6K1voHMaDzPhH5GuBjwJfar3wP8MMi8hsYrtYPa63/xas9j0sLPtJ1lF0Gqhj3FLQLv/Wv\npcwlYHRC8V5TNx4rTgsPfT1RFHpZD0JTY/u9aEFqSFVWkrNfnPqwmTefm5lGXos7HsAXR246pqjv\n0eoo6YkTNx7baMHE72HeTv65JU6khAXTI8ioZYd5pkLFE65ePohX+5t61zhznTaDRnutbjYKsKaM\nyRB4UoB5HOBxpIYw5FZ3sYQRGACaKs2tKdza6Ty5IAUevXwAjx4lraNV0MXU6Mip47ovFk3aF3T3\nTmmDRne6akw9kA3XNevMUrNNNGBa9zRot/1svxx2m63oX7Mad1IaTyWrO3TZMp01oyHBMOTnKOLL\nY+0JEk2dMbu6NgA0ok7hrofTFtzJ90c901dkmWz0th7XtNYfwABM+Np7g8ca+IYN3/3yDa8/AP7Y\nyOsLDN36idqlBR+aGn33twbNt4psB9fMqm6hr1kY2lhlfjjJmwmoz/2ksWOXrHfeT1QewfmeT3oc\nY5YqIijJaTHA5sJmcUO3vnFeqHOmA8n7UMU5agjnWk+fPIhzKa7AzxURri/uHYqrw5ifoKtF1Pwu\nL+feezXBupUH0ELtUWS2hqftTIhp+dAcz8NDU8UPHmj8fkILgcdrxPUCrKHXA/3iJPV2ovsjmcjG\nGH+Aj9qmFPM05Jba/iQgFtg813xyjSLbHQIwJOCTGw/DPZ/mcKUks0n/SNzUvV9ktEHLgdTr6WuC\nepDOSgNk2ZVyvOOsC70VE6Se9K0ybPtsmSqyqiFHRwAUejvVUtHUwvGhKUgtS2F+oDggAybMrq4p\nSm016uy96RZJQQGzU5rf2pO3yws+bWdX4q7T4R6wgOmenTAsgKiYrRbnP8bNvDe+qhoz5/14C/Cu\nZX3mhAUjsjAQ9//BVNB7xQFlQovpynsAOoGKt2nvUJBjaNKtDgDH7X/1YJjAD/u8wGi/l6gFdnhe\nZd57PusDU6U+X0Nrmq9JU5NP58zz65zKkT8fDzo25KerY6+S7PvTJO3E9XrdA1AxiYAnbLQXUp4H\n7L8IcIbe2ZidRzhJ8z0QK4g7/TynIuFqeG5ObR1PHgBPtYjbdo94fSG4eLsx78fFgQWQzU/859v7\nJ7RHzUaSwsCKLKZY12tD4k3aWl9koZJ6O6uloqo6FoeNl+CpKs0caNYZJR1NnVEwguBNjcr3kuuy\noR3G1l6VXV7w0drc4K4zZWtaX4esMafdNeb9hCv/YQGkZSYFSsepDUJe0fdjj6ft1hFQhIwx09Y7\naMUMPnQRNp2TKUYhOtvpJV2C0J3bn+lrH0xQ4TbbUGAzAKim7id4Czqu62TUbCzo9+Jk+CEAH5fA\nSPrXgAlsaydGac30g6kQVbI7u+YZixHoNLUBQws8gM8lmH0lno9r87yhHYMLx5g2Cf2ixHhbM3+N\nvGbaGbYppJo2p0tDbjBUoZiqOMy2N5la9YZdMy6rYzume0ZBenfWK2gvTnzLa682XcTHHgEzRG2n\ndWWu5WqpvNcDpgbIFKEaBQRlyQEpuPn9niyN1xPeQ4u+8LU7NHI7rrV4mtdxIbbF4dqDTmqmWNZQ\nw6XMLdXa5pzsAi6StYLxouNXYiL+ft7aFnyMe6/qyFN4nOTv2ATSr1TjCSM0U1PUM+JM6C0mG6TH\n4oDH51Sa437irxYxUKiibz+dF8gKmM7Jbb4k3Has5jxOKU5f81XhTW3COJY1FoFOADiuXiPs+9JV\nPQC1R41vDhayp8LulOp20+/b7T8v0OUc2orcaqNFoNPUhs12Rm7Hh32cavQZwBNeP0eZLrIdP9HH\nvXrGyR8xxTylkMfvjbHc0vnr9o5h9IV0cuf9KZkgFnj8tXMiprZo1oPQWBfSDea8R70y19J4PXmi\nbt0x27P0+9IoHORFh0yLGIBsO/SwO2oIPOb+ab1KtRMZTUGnXnVe8+0sc0w9dVAa8AlzjG2FuGJj\n17X4SYHP1iK7vOBzjo3J5l+keDDtDxQWqI0RFsLvbSpiDRlkfTLfhlAcXThkbrlkrUvi+g6OWOHE\neU99Bu+9bGSgpeZAx4Ge673iwmwXABwny9+srVpxXUSsKienkk8aoO9O6UbTy/EX6x6EVnbSaOvR\nXFNkKfBcO+jzSY5csAF4oAcXpw3nw3x+xRxPWmFDuhzTpdV4zblvc+0sLCp195KrXwrNeTuueNaF\n2Vz41OjVHfvxCU3KPd/63UjL1MPQbThuIR07XFisWjpLNAi9Hmf5pKMsjfTNWAGoM722Xq2tOQo9\nq+5RZbXmlh54li/nnsbt8jqh0nVZCkWZKG6UGaowFHK1b+V70hBjU5tmc+73kI7JqzDJLGlja8Bl\nBh/n+dRro+nktJ1egfVdSvuiVAc88YQxFJx0dhYVN5rc0hoV+2P1eQybpI0k490p55WdBGvTliBR\ncfb5ABvK8jbSF8iH2dxkEa1SHwd0suBxH64pZ21Ux7FrRSK7qUKVtiPm1YPhxUi6cI7lDGQyCYgM\ntjmb9XZS/Tsn5GmuSXx9wrCWWRAkwqTueOwYSlP2Wnt5L1JaWMX0ujtJansc8Lj7RnsVDhBTJF10\no2G2MA+o26q/pqF683RuO90GvZHCRUhJHH4aycPowHvdlOuZzlpUoVGTEYqza6cQPPdeVdV44GkT\nj6cPsTVe5+34qPWCo/VUKEpNWZpjckCUT7Q5noNZTHgIzY1Btdi8eNnaq7bLCz4i/QTtrLFhCDVO\nbxnP3VjA6XoACoHnsJaBanZIx+31zgoK5VQW4lxMlMPYBDrhD2SMuTVmToLHN0tLZoYNHlDYdMyv\niIsJcGoT0MrndmSqjLowOe15jY3cbicxOLv4fL//BpkzIA0AxnvJa2BppFrCsUnyGBGxwDZni3s0\nbabiDoFnMRQmjfIGNgza2j4xrnNnOR/S5jMoSOuXusH95zyeItvxobaoE6vtTRM1P3QhWRsGjHoj\nNUa/LvKI3MKjqEfbabu8XD4xEjerQJMg9HLKWcvutZbsoETd2EXd3kX2dmISw3w3yRGa+6WrGhOW\nrZUvGjXA047mdspp7PUUZcb1Wzmzq42hWd8qyW7ukN2YmwWMW4DY+6BfhG07mH4ybQs+wQSr2wrB\nTQbmh29i8EPRzBBszF/xf89qItcrO/fSM0bdeRJI/EwiNYBR0EkS+i5pL+XaFOal1NWgOdZg8nkM\n2yhHU0zMZAImf1DmsF/64+runfbJVvuamujeMZjEdFygr153k1jIea3X6GIdn2d4vntOWnxELLTf\nQe/xlPORolxTe6WC/NvGEGiad7PH2NvSdii1IORAwXqhrk2DNwtAV0tXb5ZBcqr7RRvld3LyuA0H\n9GActGOvu1NfLKxk4tt6OyASW1OpYXOrcmsyVagbu+hVS7luvaJ0KLnjcnjq5h7q9szU9riW4OEC\nMNm+aYVgCAbOO66Wmadwh8BTlBlFaUobijKLPJ43PldwcGvNwa2a4rkZ6rk9Azy3bxjQ2btqwq12\n8SWqBFWi88L87vLY63/FJhLfw5fcLi/4qMxMBunk29SQxx5AJDSaMNjSkNtRnQ1AZ9BWoGhxLQUi\n+RmXe2HVJ82d+x+CzuIkYo4BPtQl05asMOylaKUfhFu0SMTWOxeAXGO1M3TQxhhkADKHjCP0qjVN\nxJLByYuOJqmXSQUrs5KIJaSr1vRlcYlqN2mNqSXk1zafl20cFnaqHCOQeAUHu0iIC2kXDGqaYPjX\nj01tV9RzEzq0RBDXojsyy0fZzYmo+M5D2skPEgKKBT9biBsMqG31blh0Ifj052QYliovTVvvpvYC\nn2ZginHPZ2rJIDd3KDklt9ppzlNVByUUmfF4bs160HEMszPM5ZO6CtvF1JALXI4nNQM4mc/3lKVw\n+9mcg1sVsytNDzxvvGo8nmsH/eIDhnkxgFkZh1G39sTs8oLPBTXTnKXstTGP56yoUtjPJmRH+fi8\ny+WMxZsD0OmOKrpH5/wYbNw8Cre4v7atgmnQ1od7PAC1I6u8kPUT1O8MbBM9F0MUaAGpGrKqgeDr\n+UT39NyACuu8no1V4c77CfMG4QTivL3p3J9HZLZ3i7ONahJjxbdjwBOMi8+LuHFa206d811DkgDj\nBU2JmIiDnnwZtvFcX2vSyxltCPu1VeTNha3ew2Z0YEJ7ofetpKHId+z9sOgBKLzlRrwfMEDj2IlO\nCSG7UsaejgMdt/BLE/rFBJauA+mQwr08NvkdRy5wHg64vI7xfPb2FTffCLOrNXu3G/Jn98jfvI9c\n3zfAc+vmmcDjX2tqk597EiZPTuHg94Jd3pEQ6VeHmxqFdeuAcRTTXccK/tJ22XEHzzbSGdtR+zHo\nrBZDlhYMErCPbWk/ehHabtikzYf6Ui+otXF/t/pL82SBRSGwwAtyr2dBTYiRbOkFWE2yum9Epmxi\n2Hk9WZn39GtXIBVWxxeTYXjRTr7ey8t7Dye1sHfOK7ZXoODgzU7AyoKhUcqYRGKqYe2QB52TBz3r\n0S0cAm8v7FhrJIHEN6MDs6jan6zY1Y1dELnW5ztIOQcW5tqrAohbTgwn0gK1V5jrdVCaMOx8t8/n\nzHf9dXGTfkRyaOsemIPt50VHtTTHW5YZC1scOgQe2NtXzA8U197QMbvSMHtGyJ+9Sv7mfbh2YIDn\nyhVk/xmYneEVO3vMsPTWLm6XGHyymPkTTFheRqU75d6qsLLqYw28Nm9+rHX0QOAyBZ1Eb8xPYpZJ\nBr3+lmMYpUVrrmjOrzJVEXUxPUv41OeBwryB/fFJU/qEuZ8gxsDGjWn4o7UAlLnjDzTDHANuVsV1\nPtlBSVZOfYw8OyiRaaIFFv4PaNIup2V67gzrpVI7Twy27dYoldvPmiLTwaQ0BjzniZaOLHpED1mP\nfVFw3i8S0vsHYtHWkmih4dto2IVU2qOmajv2iyMwTguttkQXy9LTeR23O7DnJ64TaHJ+/v7bnQ0k\nrLQIjV6Tk5uaGkdycMSX2QnsnZBVLeq4pqiWwJpylqEeafIiZ36sqFd6tJNqOWt9fie7uYN69orJ\n7zhvJ6DSn2eP21tqaxe3Sw8+HnRsSMr0vTnhtDni3so0W7t3mg8Apx4p2XG5RFdxvhF4nL6WC62F\nBILURqiepg3w8LmUCtnb6X/4eWFCTgHwhJ5OaGF90Wh/oLxA2OtzAEVc0GpOfD5kzIFJ3LoEezEh\nL3O6o8prhjkAKsySOyowTc8tYkeFhaHTXnW61aug0Zu7Nruj5z1mfSfL2EMMRVbdxMzjpANSEkhq\nnnVo3nP1QO64B+FZR3BIczGz2PM5bY5Hex5B3/rbKXIrCSbkbMeEAp3SdDNsdwCJ+kEKONM5jcps\n6K+G9qHPPRVqh/n0OtJUyMoRHAqzjeUuWb2m26vIqoaybCmqxntB+cTmlDyxofW1YcVc92G2Z64b\n4Ll622v0Vd0pbXs0Cj5ndc191ZYNF4uX2S4x+Egf7w3CM653+1GtuHeac+805xOnPdisWsE1Vwwx\nYBpQqQ3wdB54TPFfADxHLw1laCyJwB9eQi0eHH6wc6/HVQThDesNSLnn8zyPY5sa1Em511fHQx/W\nSxhj4XclLwwAqcKE4CYTsnng5Q0Ye0mTMfc3DbO53IFdzbp2B9BL1IR2EQAKhWGhL/hUTILwVx63\nOHdjdpFwW0ICGQPrMO8mtijVFYsOuq6OkACoFjC7bjal10G79L7L66PaLZIEopZtLVfLU+9x5ZJ4\nP9bzlbD1tLsWjjVmPYuqO+W0ffT/s/f+wbZkV3nYt3r36T7317lv3ps3o0EjJEKEE6BSsZGRK3Ec\nbCwKVJVMYqpkQgrzQ2VCYIqknIolrApJla2qyS8S2SHIY4WAsDGQAoehLKIKoogrdoQFSogjcBkZ\nI2vEzLzf7/46p/t0984fa6+91969+9zz5t03M9J7q+rVve/ce87p7ttnf3ut9a3vQ9uw/UQ6lnB1\nzsO7++VllPN9UFc5yaQWtHcG265RXGr4vqgHDI1BXfPgsVE07rIaUO1zb9Ac7oIOKgaeJx8Hnv4y\n0OIp2P0raIYl2u4mz1RlbFOmTONSpusbIYjomwF8CPzH+4i19rnk5+R+/m6wpcJ3WWs/vem5RPSz\nAP6Qe4lLAO5Ya/9VInoX2G6hAhsc/afW2l+933N4eMEH5BvOUp6R2vjtZnBZj8HLS+DaMvR39Ne5\n6/EIDswNcKkKzpkBeFjOHic3g5S9Ah4ZzrznM9CgI4vzXgAeAQZLpGhL05GqK3gA0rt0mf2QYUkH\nOpwxHo9ew9AM1fzADVXWfBjVjPXEgKi3tWkxH4EOkAUeUSPYZEVRFdtlQNG1yZXeXm0kxnRRpKQI\nrSaRMB83ssW61hMMJOMZm9Dx17nvZbIjrVYut8VOUGdIsx+Aj0Ea93uXg2Nucx3H6xWO1ryJO2rH\n53vUGlydn6Kfr3lzVh8wwWF14me0isWZ1wEsqgKoB9DcYM9lyxpwfK/pigOeK0+ADp9CU5VYrl/x\ngBMIQyZyoY1YrW8891IfRGTAHjvvAvAigE8R0QvW2t9Wv/YtAN7u/r0TwI8BeOem51pr/6x6j/8W\ngLgs3gDwb1lr/4CIvhbsI/Tm+z2P1w18iOgtAD4K4Enw0vi8tfZDRHQZwM8CeBuA3wfwHmvtbfec\nHwLwXjBx6gettR93j38dgJ8AU4I+BuA/cn4Wmw4gKkUJ8PAHZuZ3iOyZEj9VymoAA8/cWCxmAXiE\nXKCBx7tnOi+ZHGXarrpRSQ0YZ0HScB8BzyxZnAFm67g5kk1Clvr7nMy/pmNHLDoPPEtF4V0qJe6l\nt6go9y5zFnR6MwwvTlGT26AyPcoo0qn46FjjUkqQLdKGfePnamUBf0+o3bH2eDFU5m3L05jSjtM9\nELmOQFbGJdcXlHsHcCoP51CWgeCwy35HPPwMxJbpERvT/WPxWFcOrA/C/EvtjlVlOlw1OFKgU+P6\nssQddVq66lQb4957CTM4SaB6H3T4VLBRAGAclX44avgzIsoZQMyoc9eYHjv0wNPVcyy7W1h2Rw50\nzMYZvQea5RSU/Xy/ivh6AJ+11v4eADi30mcAaPB5BsBH3Tr4SSK65Kyx33bec13W9B6weymstf+3\net3PANghotpae18c9Ncz8+kA/CfW2k8T0QGA3ySi/x3AdwH4hLX2OSJ6P4D3A3gfEX012C72awB8\nGYBfIaKvstb2YFT/8wB+HQw+3wzglze+OxUj4GmHpWMCsaTJnXZs1gWEbGdurJey18Bzdd5hUfWo\nzB6qYpf9ZJQcjaZNA2FGR77fdIOOSlIp8ERXWERTWw8esogC06KWOUXm7DyQYs+lbLG+V4A2rNGb\nNVODXRZkT2+6LMoNgVYJEInAZK6Bn6pSOBl8AR4Bz96us3p82ro8vRYp8GjwMumUZ+rKmomI6SWk\nCE3/nopUMDaZ85J7pwACwWQiguUDAxDvXYRq3XvFDelN6nmmSOEc4BJceSWcs8t2lt1NLLtjvLy0\nOGorXF+Wvrx3tCb/WdGM0MAgJVSFo/+bBUgASLJr8Aak2A9qHlGJ1pWZfa/z4LEAPC4b9kzVjNJ8\njsW6jY7j6xhvBvB59f8XwdnNeb/z5i2f+28AeMVa+7uZ9/5WAJ++X+ABXkfwcX7iL7nvj4nod8AX\n5hmwxSsA/CSAXwPwPvf4z7iT/mdE9FkAX09Evw9gYa39JAAQ0UcB/Ds4B3wsZDcczz7IP+8Uqdot\ncYmNsx1htaVDpEKnrmnOml8KeOzNo0gDbVPc01yAFhOV8+wblk0BUDpCRS7EJI2lY/IvPwIg10vy\nZZqkyS/hf266kAUtnmLJIJkiB9xxn2aJF5HfjkRGj88Us2h6P+3foIhtMFLQkR5PXJ4ZvPFeeLEx\n4JCzJZDvo2zHVN4ET8q9I+l+OVetaJHOed04Yb2zRsgaHcwTa7abkJJrcj2A1mvCyaK6qHr3lUEn\nHnzejbOenOCs0sCTjOfF0wrXlzNcWxYedO40wN1lgcOdwbusOl6JX+yP1ga7Zefnz4Tm7WeMqlmQ\nSZJ/+jons0O0dwVdPff3tNidbzMcrnthF80NIKLYw2hzPE5Ev6H+/7y19vmLPaLJ+PcA/O30QSL6\nGgD/JYBvuog3eUP0fIjobQD+MDhzedIBEwC8DC7LAQxMn1RPEyRfu+/Tx88NZgIdeeCRPk9uYHQq\n20nVC0TSfscsvI+KPb0ZqNQnZ+cCj1crqI2vawPIa5OlWU+uBKNUjVPLBgHf3nY461jKRUpvqdac\n9HMEgKZmhtIPNgDnf7PMZkEwdehpSD8hY/rGpn9J1K33YPEmgG4wUxMOtDSOnIt89ddiiF1a0xCq\nM3seqQHTRHBzcq7FKQ/I4KdXFFAgtAl47PEyEtoMltclCn99doGzU9j6GKXzOFpUTMLADFGPoy74\nvq2KnUg2yJcVlTBpRIyQUqsqs714WuPFk5nvkd5pgaYt0LYGJ0cznNQD7h60HoQAi1Uf7hHdZ9Jz\nRgTHlkxUpj0Ypde4rNgKw7HZQjXDZO9N0V9c9cDRGrjTUFRKl83l6xA3rLXvmPjZFwC8Rf3/affY\nNr8z2/RcIioB/BkAX6dfjIieBvB3APw5a+0/3f40puN1Bx8i2gfw8wD+Y2vtESnlAWutJaIL+8sT\n0fcC+F4A+PIvf8LZJsyAhHJZG4u54RtyXo5BBxgDT20s6iLYJhsqQV3Di0nfZnfzm4KbrEkJTgOR\n/l2oRXlKZkZF+JCHnSGXJAwW6FGbUJaKxCr7FtoqgMoKtZmji4zvShiSBXxA0xdexw7AyJUVUIOG\nx7djNWpl0SD9LVvNnFqAW+Bd9kRlhbreVxbka2ecNy4lpiU3+Z7vBe1z1GG3BAxVXkOt7AdgdWvs\nYSTXHgAkA8kAT4fOk1s0+SHb3s5YQmgraWAiMz45A9oXYbsWu1feClM/jf3ZWXS+ch3S6zIpTKpm\ndETxe9kd43Yz4MVT7u3881Pg5TP+3ByfxH/nqubdHGcVFk/Mg/ld2mfyhoYCOBp45FhKR3xISpmS\njcmmKi2v8de413NYWcBbQcSby6s7HZ7ee8PN+nwKwNuJ6CvAwPFtAL49+Z0XADzrejrvBHDXWvsS\nEV0/57l/GsA/ttb6DT0RXQLwdwG831r79y/qJF5X8CGiGRh4/pa19hfcw68Q0VPuQj0F4Jp7fArJ\nv+C+Tx8fhUtbnweAd/yRr7SVW5z6Yo3arByY8NT93BAuVYCmiQnRQFSqPegY60sX0ufhermSy0n7\nF1tGmiGxrplbePTj8n9vkOfq5bJjVTvu3q5xsr7lQedozQuFWD0IKFfF7mgh8DpXXpX5AGW9DzhR\n1N71lASERJNsSsvOnt7knb4mYijq+XCX34/mPajuWNPNgZAmPli3SFZep02AR8vSjPtYvU2UBFS/\nuSJ+ri9DCWlkkyV3GsI4TMgtWcZcushuiKwvjMgNue/RfgG2b1FffivqeotpfmCjMClnO0s/O8TA\nM8PnT0pcW3HWsOo549Gxv1ijqnqX9XBG4QewZ71zgY2tzyNJp6lrkkgp6cgpVQQ7inEcVhZz5RJ7\nWFk8vb/G03stdsrFFhdui7ggeR1rbUdEz4JZZwbAj1trP0NE3+d+/mFw7/vdAD4Lplp/96bnqpf/\nNoxLbs8C+BcB/DAR/bB77JustddwH/F6st0IwP8E4HestT+ifvQCgO8E88q/E8Avqsd/moh+BEw4\neDuAf2it7YnoiIj+GLhs9+cA/LVzD6DvQKtjVPUO2mKJ2nD2E5qy7JlyqQpNUm2NkAJPbYZ81iPl\nE33uDjy26fnYFbs4RsKaKiMaAZC8l8jiAP6rLLAn61u43QwedHSwr1Dpd6E4uRkDjrYLcHMZBKCs\n92HMIuiIUYm2DwQA8SVKRTm1Wre9fTeintuVAh93DTQIWThJH2e/bIFIh6sEEpr4uEdqyvGcTdbS\n4uRmAJ7UsTUNeUzeu973mebW81YTgEbzktlebcsDuWljwqkP0IwJG7h2nW2z6wzBQVPmdVltQphU\nylgygH19mQeeNlFPCMADLGbsvCquq8II9RsdbX+emrmdp7GmepBpbAIe/TtP7vDXp/dbvGmHsD97\nkufz3mBhrf0YGGD0Yx9W31sAP7Dtc9XPvivz2F8B8Ffu43Cz8XpmPv86gO8A8I+I6P9xj/0lMOj8\nHBG9F8DnwJQ/OGT/OTAlsAPwA47pBgDfj0C1/mWcx3QDgKGHPb2JsnwKO2aBflhjMWtxvedLEtgu\nsR+PZEcp8ITd267vCeisZ0qpYJTZJM2mbfTcoo/UbD0uvanFQ4Dn+io9zxCyC/UAqneemh7tVA4s\nAOpa0HwfVbnjswlDMz9FHtk6ixCmLl05J1TJduyqZzl9d/5FO3C5SYFQAYQMyPW6/F8tN7yZhsuW\nxFq8HaA2EK78pH2Ujm974LE3j7baxVJ9wBmnom17YgOF65S1bJ4EIFd62/D+nqDRrtlG3I9sJOH6\nhlbKhKaKhEkBRMBzpznG9RWz2a4tiwh4Vj0i4KkcqaGuGHiemFsPPNIjlUpBTfP4WvfJZwcY5QWs\nyAAAIABJREFUyzptKfhZFxYyRiebSym9pff/ourx9F6LS/UBD782K9i7OdLXq4iCtqLFPyzxerLd\n/k9k+scuvnHiOR8E8MHM478B4Gvv6QCGwOQx9dw/vM0OKfzu4J8DwGc92XC9im0ASEIDj036PZwN\nnfPnU0Ombc87VgGe60t+rs7gpGe1Vch5lC0DyRygjhdznU2I5FAEPN5ds00sk8V+u98KdG3TAS/d\nBA7OgNMzZwzGzLkRpMrQrVwXgBdZ5y4q1uKAU2eQ49TAk8zYpH+TKGQxL6so48kpL8gxBRWBNryG\n7vfUZTDpU+8rxBQ0HegAQTFCH4tQkc+LxHpDO7oer1e4vppxf+ekwNGaRxGi23Cf39vPwTmijgCP\ngM6bdgg75WXsmEXoox29xOXMVFQXCastvW6JaK7OfPjzDLdhDE8T5pvfTDpjx4PZHPuzN6MeCthb\nX4A9vQW8fOP86/Yo7jled8LB6xbD4HdXZn4AU8xQmxWwNv6G1aFpqjqk3BbNRkjdXMoal5w0u5OW\n0dRRGRqVMpMWDQUQdH2qYiQ/Y1dh4DQntEmm9kKpYfhv5hl9fJ4FarNBXUGYRjqiLO4U2AUDEADC\nwSibABADjyzouhfmnCs3liLbATZDFbfNCeh4yaCwn19gvWNl6ab03bkFssZJKNlNqAp4RQoHklna\nrGK5UX3ADfDupmcUArGCdktLVGaHF2EZwnXNfTQnXpRVQK9YALY2sHMBofgYRIA2jiUDF5AHIJX1\nTFmJC/C8eDLDK0vJdMImTYg5qy4eRwB4A8JzcD2u7nSunHU5DF+f3uRy5ss3Yo1DzXSUDFcrKygL\n8FzIRpCZlnEfqi561PPB29dXhvt6O2YBOrnJQHjtOuztuxj+4Hb+DR7FfcXDDT5np7B7jaPpTl+K\n1CoBgM8UpEcifRIdZGpYXTvfR7yYtGtQtfbOn7Y2vscxChmOQGbHnU7SC+jNmRK7dLRTGaAVKnm6\ndjKQZkoZsiinnvYyDKqGLS2OQThw518l2UTCXErKkSKjslXWk5YnVx2o6RmE5DG1gyhOzmLL5LIK\nfSuxt+54FfPlLz3gmSmdMgCpv4NWE3csLGEUip0BADS9swcwgdreW7bDrmqe8vczUPU+UN3ie8Zd\nc0Js5Jeeb66UW1yqUeBuDEB6LszEIrQpo01KbQI8OWHdubGYG0SsUOmVXt3pIuDZLQ6C3NTNa7C3\n78K+dHPy/qd5iaJdA2tniyDHv0VIqS18L+XVyvciPRDe+Cew6nj6V87Q38hf73sOelR20/Hwgo+1\nvKgcnAB7LQzNfAouiwOw2TZBgmck1E2lmTmRkRurDXiPm3YdNa4JzOoCxosrgDEAaUSUhUR70Ze1\nmzw/UjNMRbasKCXE+MS4pGFzfQilQhDiBOzQeRyVswAEBlOTYQDeo1eRgK9cI//c69MS+cOdBubJ\nJet+neyyi2WilGDLAKJZMz8vgNqPafB6wj7NetwcWaojVg+EureoTYfeHqEvkhkoDULlLd75n5w5\nosU6ynLkmKJr4hBi8MZsHQwwBiAZgFUyOZIty/ybBh4dOruJZKcScs4IeERg99p12FduYLhxgv7z\nx+g9uzGxCqlL2Kvq+CdkhfJOtDM3PjCL5r0MzZTK/D+BlZ7eKzfQXztF9+IxumsNTu88vMvkg4yH\n96oO0+NDGoTkM+D7IiZWq+aGaWimjyKlg8pUfqlKcSdnsG43S3WwGQAQGu6bmtt60FQpTGuF7pwf\n0XyilHhupACkQw20AoiAeGRHnPS/soC7ITzotAMvsMrjKH0tA2CYG5j6jEs4adZmVMlNjjlDEsmC\npIC+An/sXfbX//qqzIJ+03OJtx4IWAN10Tpn0WVQGhA5IjnG6rab/D/z/Z2gdtBH1wRAuC714H9O\n7ZqJKcp2w29WFPDIhkWkcgRc5NIunLK0Bh35nPD3gZjDw9eXRwK79vZdBp5XTtFdO8XQAEU9Vjgf\nAK/pRmkGKioeZR2L2ppSUa53orkmz2I8Db0me/sucOvuCHhOb1/QMvko84ni4QWfc0LmeGQyWgPP\n1fnaa2DJDAjApaUOHWAKmPIAZC0otQk2gSEGnDCDR8gIAM+xIOz8CtXzkaC6jNwi/Y5blXuEodTb\nNZqhjPSrZJqbQSjVtBJ69Iz9XPYuu8XuOBjJ7e8G4MmUbrRHkthUM3H9gF8H4NdyRmRCES8uubLX\nSqjoPcxBtbmx766PXfXojzrvfDqiIFcFZyoJUMsgpTSuvamZiQFISqXkgMseL72umL/+ly5x1nn4\nFBq78gSPo7bMqj6Eey0M4Wpn0ZEckbkV5GaE7n1y5lk7ct4MNryAF1XFStAHFYpLyf2iRE7t/CDQ\n5J2Dr47UoTcceww2uccWs94N6e4GBuXx7cBwXHXZOp7+mxfq+CPxXNWno66J2JYSoswh4AO4MrD4\nain1keGo8WxLdtd9FA8qHoFPEizCOKi6fPgQyWxCVez4ifdoIrxvYfwwocx6FICZh99zzVECuJxV\nuTJcO4N1C3pUfmt4sUoN1rxxnO5jCKPLVBBDtVQ0MZjiSe3e4k5LuFTJ7rzA1fmKT8eVgGoPQBKn\nsZyPsm/was3KTRRgBhwZNy1v2oiJJa9dVK60tXAgJDv6DBFBZzZSVurWLoOo47mooi7ZGXVRh2sl\ndgxCyZbj7yq3cB+7qX4l6eJkf0TWJSsaWh+wvUN3Z0TwAMJUvbczMABQBPBxfy8eWo5LcbVWBQdG\nfaDi0PWhfDmwDlJN8xLF4/uj+0Wy5EijLxnQTLPjMIwdjyDwV/d4EUYSZLarpjns6Ute51AWe7vq\nMTQdhgbsZgt2s5UwhzVvuGoz3jzoUAruOgPqraLO64Hp05sRi1Hki4bjlu+n1qBrx5uFR3Ex8fCC\nT3H+wBnH4LOgVLeNrOXekZqBSZWfZTeZypiUe5cBKUO1cfbDBASnYpDYZRfug4hqlgUemSsRnbIA\nPCHraQfgjntrNhNjEOIsaIamJzy9x7tvlAAKjAFIymsmAR1lzKdpr4Y6r9cFnARXVNMCl5GAG4cM\nzEqmEVtPmKjcNDTwC0V5xL0BmhsUdem8XpIsRTxolBOrJQKc1hopPTFPQKhbBq2z01C2k+xh74rX\nPDtxEv6a4JH66OiqIP9pBZxKNP3Az1FZkPwdqvlB0DvL9IEkc/bhgHx0vygPnhxFORd6xk2ESYGg\nms2/o6SUXLYhbD6sHMvRDRTb4yX3qVTJNA1zWEdZ28gyxIXtmzFr0UUJeLWRSDVBDzefnHHGc9z6\n++nCg2gsjvsQx8MLPpngxqTQMgcIPTNMYl8OA3Eq2wEQT/4bfp7UzkWoUwtbMrX2Cmc/u3sMOEn2\nAwTQ0dlO1NyWur3q9chAoA6d9ehp9JWzIebsB07scebPGzhGbzrAJABk2lG2o435UitqQwJCJbO5\nyjaU87DPAKQXlXYN7KnvnQGdVnMG4qynd2WSbk0ohJDhVACKRT0CHuukePxxiqSZE/z0QCSlU1m8\n6v1IXiin8Czq6E1feOFKbcEujrjzkkugEqvejkqhPFN97MtwO/NF6AMBKnucNphLS7P+uGWjkABP\nbawjQ0i5OXwvWY38no5IJ06JlZK1QfHDa/bxTNdUyY3mxgOP+PVEnlVGjQGUVQCgnC9SKtXjWIxC\nJJFyW5RFP4oHGg8v+CTNP9ml1Wbt517kw38wmwdhSdGeAngRMlUsZWMqQOjNbj4CALNtlFp0bzuU\nZs6LYNeGQUDswlZrX8svHKt05Fuiey16gFKF7vcACDYRSgZFT6Q3VQ9gwNxY1EuZkWjhDdo0AJVN\n6O0owcmxxQKDRGV2vJgmih0uw83hX2sydM/FARDVa7U14CibBt3Mekvl4rBGcVDBPLnHC9flQ/73\n2JNBct9bboeFV2wYDHWhR+BKhihbLsuZNpy/Ax5p1Le9s+ZYc6lNpPoFYAR0UjdRiVVHLgsN9tZS\nhnusDhsKNue7EogICL43o911yoTcuxLmerwaeBe9dj+UWFQiOZUvpU1Fyijji6wkctznrnBZ2eDP\nFLxpqMso4yke3483XJ5leRJR5gEExmIakSzU+HfEFbhoB9i6R9l0bn8xXBwQPSIcRPEIfLzVgPvA\n+J16yYrDeg6ga7xsju0bZwcQyjYAwlyNn+0wWRpzNFckH0iZ13HDqHa9DlptKegAvuTjp7wB7juZ\naaUF6fWcHFdoXT+pqgf188FlP6FBXps1+qFES2ehBNecRNmOnK82YQvPH9DbIyfdL9e3Q1XuMAB1\n1ajkJufi1YsdFV16HAUALGoUhzWGuw2KgwrlMS8qxUGF4rCGeWIvOFtePgQO3wRaMBmgdX8j/1YK\nJIVAErI2d71TN1ffX1v7Rv1Z16EZBHhMlPGkwJP/+3BmKlKxUoZzR8n2CO5Pa8oFb17kWrVjK/K0\nN+eBR56jTAajKIAKwGM1W20AiEBn01ycBh7Z1AFDmHvb3wVOmbRSVDMUixrDUQNy5JLisPZkmkid\nIR0gjqR3BFxiWSkfGnQyQ6xAkC0yhzVobrB7t0F78igDelDxCHxUxB424cNT05wblauTWH9rdQLs\nBbVgr4Glhgp5tiOoCIxmgsqKPzBlFZhvgCvDqdJTyiwDJjOecD4zSC3Jl906znqOj8IxNI0jV9QF\nDvbXvgoSN8nDQm1MCTM/cAtumIIP8yxlJFsfVL+XCtz5g1+VO56IEAGQpmybFsCJYscFJQOq1jCO\nUCADisVhzfM8e26e5+AxnmHZv4IzRSXOyyiJFl3Gx8jaeEGLJF061WOL+zy6zJbLeFJi3qp31gQ1\nl+E4x9MfVQYgQ7PQA+paYD/Z0Sf6fhHwqJDsJ41AVY4FYs+LsVXDDEATjknAZMb3t7iUFo+vQ/9T\nCB36vtdxkgx++p+r0mOVXI+MVh7NXEZdr1m0dtXDokOBEjgEKjQoZ9vPoD2K7ePhBh8g+jCGnZqa\nA+jbKNvxoodAUFGWspNbgHkRIr8Q1UWPpifvhpktWZgq/rAoEIpopbL4KUXiKLylNIduBkvJrW0N\n2iaU3CrVPG7awmU/1tsOixKC2EvLOWjLaXaLDGZ8KfiEBjovZnrnLH2gCAqEku5ng5ioIACEmRv4\nrAIpwRy476WxfukS93f2rjgG2k1fCj1aB4AE9JBtWGyF3S7HaoliAHJZTzucbcx6zi21Rcy3EEwK\n8VxAjABIjr3eB3VtPAwMRPeHJ1ekEWU/cRlaypF6Q6Z/7l8i6RfFr5NZYtJMHxjPjmkdNyF/yO9I\nz0iXGDWw6GxPf5WYEmytA0XfgmnqRV36wdf7jkdltygegY/TJCv3rgAmNU5TcjAbIggwLr1opLdm\nGMirXkvwTloJQxonKImM7L1QTjd4lwBhkZYFfFNNvm3yVr513aOuxiVCsZIWb562X8IU3NPx9uNr\nFpzMMbvmhvzjgUasMimZKdKy/652r3ss+nFZQPzCpTNEIRXsXYGdH6AZllh2d9D2S28lwSw0UTbm\nDtKiGoBZjAze/gH5BUgyHp31aDdcsWKfAh4dORmnHABJxmbIuaGaMsxjyX2gVb2nsmMliyQMMdHk\nS/tg9xKSKWZDtPUmNPii3ml03K7PKsDjDPx0thwB0b0u8tWMhVnFqsTNS1l0MIdbKKS/xkFE3wzg\nQ+B22Uestc8lPyf383eD/Xy+y1r76U3PJaK/DOAZcBvumnvOH7if/SsA/jqAhfv5H7XWru7nHB5e\n8JGQWvDqhOnP4vmiPpgSZGrYeXgsnZGQCOrWS+cMGj4iIqXfDkAvZZOuOb/xnoscKJo6zB0lIRIo\n+wctjo9m3l2ydl/3F2sWgJyF5wvwNIPxUjBCnujt2jfXhVIszC5gekevQ0zVvJMoELILReTw7C45\n57SkIuEyUQEeTQTg7IyB56g10byKDA9rYzPR+5r0k1ElOCF3aO08PU+Vs2XX10giB0Crjn1wVj1Q\nSyl0INeL4aHdHbNAOd8H5TYwuVidxNcsAaIAQuWktbh+LGfeFoUpGCCbE8DUTBXPRe5xJULrJZmk\n7KbKcpECNjANQjojygwQe/HYee8Hni8kLshSgYgMgB8F8C4ALwL4FBG9YK39bfVr3wL2PHs72Mn0\nxwC885zn/tfW2v/MvccPAvhhAN/nrLX/JoDvsNb+FhFdAbCZl79FPLzgo+d8vCDm+UGmBmRX6ZQE\npj6cPIQafyjTIb52QNi55pg42j00eTwXYd5BSh6tnzifG5a/r6sBB4s12qZAVQ8ehA7210qRePza\nzUARCDV9AJ6j1uBuS7ijZeBcEiVSPgJk+loYzPxOWb5G5S0NQDhwWVA1nY2W1UijLABPXBKUELmk\nHPDY05uh/9RXSUbRpmLJ0XU4WucJBlqORq6PjhwAScn0EGEQlQtvMQBNZRykjfQy9xigsialy7ep\nvBYed2rd2iqi0D93mRABRjZb8jfMDIqO7ncRoVWWFkFZ3LnbKrVru15HHk/bgJCXuRKh331EQPQG\ni68H8Flr7e8BgLPKfgbsdSbxDICPOlO5TxLRJecM/bap51prj9Tz9xASy28C8P9aa38LAKy1Ny/i\nJB5e8JFQH0SL48kSxaiMIUyvxJ3SFLPoQ2ioHO0K296VS4oOhtzCSzNU5Y6fLQHgF17qqvhDqReP\nXJ2/bycbw3MHQlXd878qlNouVUGZGAh9kLEkzOB6G8UIeALgBCivCp1JEaAOrR/WrrG9dtcqA0Dq\nWvjrYdR5JyXJzhTMZkuAJ/SjSHm5pBboO2Opf1m8yorZWjLfo7ygpM+TK7c1beGvcQo895IByftw\nec+iNoGNuOwYgOImP9z3PLekASha4JP7yZatUyY/OTcLSoFHZtr6YQ0U4f/8M0dhNyVKs+9LypbC\nvULWgsRUTo4tMWS0x8uR+jVFRIOkD5QCTyrNI7G/G0g+7TrqJ74O8TgR/Yb6//PW2ufd928G8Hn1\nsxfB2Y2O3O+8+bznEtEHwW7QdwH8SffwVwGwRPRxAFcB/Iy19r96NSel4xH4pDG1o9YyLGqK3//Y\nM6PGu6QcAPW2Awagx9qDkNagAuBN2fzAKTYsGvoxtyhWZgeLaomjtXET6QYAs6hwyMfuVYjdnSCl\nuUUVJtVZZDUAkOjdZRfcCSO+Vc/FYglNwNDXJAtAQMwyA5K5qrCAiV31OOPR5IKgtuwdNYtMxiMy\nML4JHt7elo3vk7CMEZfb7rSh3CbnnQu53qIapAU7t4lGZZIMpAxAQg7QpI6q4KygNFWwiUgt0ZMQ\nLT9tjyHlUUAN5iIGHv3VJ7nF+G/b64xqiD9HnsEnCui63ObtN8YXa2Qpn1MTSIFHf5VSrlKZh4iw\nXkTcG+HghrX2HRfzxtuHtfYDAD5ARD8E4FkA/zkYJ/44gD8K7h99goh+01r7ift5r0fgoxlk8n8X\nqe5XpFdmMdoF6t6F/kDp39P0XpF5l4lJ/oAGKR75wJbRvMKGvpBSWyjrfVTFLnbKDlfnx6iN9DgM\n5qbI7qrF9Ouw0lbhMsmuiQhhIRfx1bmRXk/IcjQQrXrgqA3WxQxEHXbLQGDQ7DINQADiPpa6Hhp0\nooVxkD6cvt7WMe9sRAHXWn1e+FIsFXRvoV2PsixPNhjI9b/4vO8042HequqBhNBxHvVanEBlUzDS\nUitiKRt/iXIKztqmulE9n3RnXynyS5Rh1v5vIzEGHn3fO6Dpw+wcZ1Cdp9qnmzK+B5QvlvZ9ArhE\nVq/Hyh9OcipL0Rb9QWAMOrq3K2Ve9z5525A3RHwBwFvU/592j23zO7MtngsAfwvAx8Dg8yKAv2et\nvQEARPQxAH8EwCPwuZCQUor7PvpqKlarRudBB8hTTDmDCR+o3vKQngiVNgP5wcu6t1hULuOR8kRG\nx9AUM56w79qxv04mbN+A+tYp/K5xMFujNktvflebAnNTZnfah5VV1tpDRNUOoba04IXwsAKAuOeT\nqrWtegBtgdrJDwkA1WaNCkCLMb3Zv5LOgrYMzkZlQDKUEHW5Tfd5yn7gjGd14pWOfRM7pbwDgKnQ\n9rcc8aJ2ZIsAPMcnM88srOo+qEkoAJoiIuiMVEqhaTlUwmupKfkmAR6vQZgCj56TSRfX/V14b6ay\n8QO1cv01DRuIPw9HSjGDj7NT/18Dw9ID4rkzQ7rkJuHApHAMNA86qQJCov7hP9vuXEbvUSsJHtPG\nthoXRY8m2jiXdw/xKQBvJ6KvAAPHtwH49uR3XgDwrOvpvBPAXWvtS0R0feq5RPR2a+3vuuc/A+Af\nu+8/DuAvEtEu+GP6bwL47+73JB5e8JEbQUnqR7MzKsvpM4zCXMlNdpu6/JCWfYJml6P2QsQY3etF\npTiplbud66ZGe1o6cSKnVbGD3r32Y3Xn5IM4C9LlM4ngW2QjDa84BCE5ZROq8twEfbhcyOPRAuUM\n1fQAqnKPiHoXUwB0riBmYb2Rm5aKCX2eXb6+q1thcdbOpe2a7c9VeAFX23kdN1YnAO4uCz9LBcAr\nSUSRobRH7p/Kilo7g2rmJN83g7tO5SjbyVqXC/A48BFwjc4NcJqBzAK1c6G8xwtnnN2vx4Z5Q5xe\n171kbYExmYJQUJ9uxyU3f+1mQUA1BZ5Ll/xnWovddhn7dUMzL5sEJLR+zQZ8g4W1tiOiZ8GgYAD8\nuLX2M0T0fe7nHwZnLe8G8Flwqey7Nz3XvfRzRPSHwB/szwGQ17tNRD8CBj0L4GPW2r97v+fx8IKP\nhPJySUtrIhWjI2UTpXIj/H+eYentejR4qZvd8v9F1cc0ZlWK49eZcfYjx9snIJSKmyr2XlnvexYU\ni40uEbIBLeNP/jHJCtL5JDknrX13BGBRAUctf0VGgj4Fo7tt0C2rTTC0Y1HXdMAzvt4agHSjOg1T\ncLmHrzNGGVxtBt/nqYodYHXMC3Q/0WMQqaNd+HtG5ro4myUcrWPgEdBpfPYzjGasUiJCDnTkX6oq\nzX8jy+fgvKVi0FFKzgnwyJxMLiyCRxB2EbKBUixD4sxeA8+0Uy7/HQB487zFLGS9k1lQruQls1xi\nbZHxJ8J831cs2uF4JLQLiITWrpOjmkX6fYHW/8YEIWvtx8AAox/7sPreAviBbZ/rHv/WDe/3N8F0\n6wuLhxd8iOKUPNEpC19z9eoANIEmHBqqAMLwZRuzrLyLqCFvZwDoPkicBXEvaM3Zj6j4ps1izQbC\nGcuslBVs14K6FuV8HzA7nlFWmzWDXdFHCgZSDkwXNS0zI9HbDlWxxm7Z4axbYzErcLQ2qE2B68tx\nSW+UDTkAkoW0MSJDxDpyfWr8lfsTJmUgIXakGwIGtRCiUTaSOpKQ3XTL0isRa8pZi8NU6N2ipktu\nWqiVwabwc1T8WGAYRrbT5SbAGYMOmxkufGnNq3GsjmD7Jp6JEvuAW3fHWUTuukrPZIsQHT8BnqMJ\n/xvZcHHw7xwBWKAHsPQA1Ns1bLETbBFEBSElD8xmzErTSt17VyKF8ba/5VVHsvJB7n6RkQjdXw3G\nh/vnDplvHzQmzjzE8RCDTzFKyzU913+o+iJ4lwzwAKQjXZRFUl9siEXZODd8qbMOWYDHAKQasClD\nyUnDy9Q3zWZ+RwiRXOkblHtXPOsJABbV0i0I4aUbV4oyNPMeLJV+78y5slL1ErtlKOk1feEzoFQx\nP5r9MUp6x8kQjf5M2i8pF0qZOY3KMJkhZdUBehB4gsygHWa1qGtZRU6xmu2n/e6qenwuAjyHO4PP\ncrYBHG9r4HpUO+VjPFQqgHN6FJhh+lppIU0lSZONqTkYXZbWIqq28/qFUlbOzVBJMGMy/L032bf3\ndo1S5rWm/vaqpyOZTmcKnu1qriudQULTV7g6X4feWHKvaEUGS+Q9uSLn3Udx4fHwgk9R+tS8sSu0\nwxmW3bEjBxReHFN2dVfnAQykRBCVHxTrJ0z9M/AI/TaNVQ8/q8GUWe0jFACIF/wEgHS2o3xJLBDm\nFaQ00bNzaL14KrDqbBcAzsVuWcBQFdtHnKh5srIKN0xZoTRzGMOlCwEhseF+8aTCahkWooj55unF\nLBlzdSen+u2a55lelj4e0SYja2GJRkORppjpudbw+oVWXFavJ1G1QUdOrqVYTpe1V8WWHf9UVHWP\ntjGo6p6HeB3AXKrHoMP09tiKWoNOZQ6wYxYsdHt6Ky6naWaef3M175Lpm0wf9HTmI2W22CU3lJN1\n+VaHZNUxAMnjfTRwDOwE0KsTxYbE9lxApx2WWLZHuLFqHRjWo1L31XmHRdXH/VqErD6nQ0emziuu\nv5q4OMLBl0Q8xOBjoin4ZXeE66sS4uSpb1yJxYypwbnFTD6UvBMUCZfCTbrHTXQd4fV5cDA2smMA\nEjpvSSUvOJmJbz2JTe0adn8XEOFFKRuZGvXeZcC44U5NzXWA6l1apQciQqoZOjrVByjLCmW97+vm\nZpjh6vzIXbsZVkvywppA7OI5XxHmjvhQG+uHT+VYvBryVNkjeZxcv86fkwBRjkG4wRJAn6MH8GrG\nm5X5vp8l4o3KLCqn5kIDz6WaQXcxG4NOlPEo7xyhgocZpM+F4VetdSabET1seQ9MrVFpK+mHWiI1\nYiCbNJr8vEhsynJ0hIFjHlcgVxL3z9a92Tpkn8v2CMfrFa6vZnjxZJ6VeJK/09WBnEli/J46dPYD\nYCvlk0dx7/HQgo+F9a6TfONWflofCBYEHKX/cLH+V3id2LvGTEq4SEyVV3Lh+y7Fjt/tYnUC3LkT\nZzvKYpp0HS09Zy29o2aRZLGX9yLlc+8zj9wgogxa9tyI5rp52FXyokNROWrqPGXYM7IpFwDcEJHy\nBHihKE211YrhZf912S23MxUvHOn12BX6Ye2JGVd3COz+ajFX2aQmD2wLNnI9+Niq2E8qHX5V90DU\nmL9HevCk+VwS2rcoGBUWClwGJp0A0blI5EAoYuulPTjDJU5PtHF9Wenn9LbDneYY11czXF/u4Nqy\nwD8/Hd9vUt70s26+vFyqDPiC6NSPYuuYBB8iWgD4IfAQ0i9ba39a/ex/tNZ+/2twfK+I27NYAAAg\nAElEQVRpyM5t06S5yJmksw6yC5Rg62FAtt3xnEZc0w+PxTteKX/tmAVwcpMXnuPbwXfe2f+OQjdp\nE5Vn3i2exTpcEObPjqe5RrbDOqTUBSgW1PalBM3qemJucVhZXN3pcHXeYX+mbMo3ZV4qbNmONdeA\nRBImnUvJqy6TqWMFCXlP0SDT9hvOeHBRrRWQzGISgdpgpLNTsSMoASAPNtlZnQR47O27QX0hjQQ4\nfL8qF1O9npqzPE3Gad1mTfopOuQ8dVlA09oBRJ8PeTwmf5TjUigQjT/ontOyO3Js0lBlyAHPE3OL\nJ3f4PosULRyZRlPTAdVnFOv0czZAWwcVj8puKjZlPv8zgN8F8PMAvoeIvhXAt1trGwB/7LU4uAcd\nchOn5l/bPhfAZJYjH8RFxXRieSxX0wfCB1Tozbrh7xee49vArbuwt+9G2U42ZPd6+ZCBpz4IDVnH\nANJkAqbpzljVO816NNtLg5HYSXeVk1/ZLpGel6yc/eSOxdP7a1ydr33GU/YDsLoVVAb8kOFpOAYJ\n9UFmN88mAiGRhNGhgWfyeNPp92TBCDM1wqZbu4b2gEVVbiyfmWIeLXRppDNjZC0D8elNT5W2t+8y\nc21T6PmXy4cbFblz5z+iKwsZR5kkjgRanR1FmvXIRk2728rvhYW/HIFAWv4Kxn3rYFfeGlxflkHI\nVWniCfBcqpSU0iwQamKn1SQ08DRvTLr1F3tsWi2+UvG+/1ci+gCAXyWif/s1OK4HHpTUZXSzdFNI\njVuztORxeR0J7+mTyKKkygH6w6pnNnwGkCw8w40T2FXwHhlFNeOsR1FQ7fwAbX/kWUpHrcFjdRct\npJRza03LOTrKMB2+TQjozA3L+HDGs8al+gD75WWUzSqwtpqgMpCeW/h+zcSAvmKPGGe7oP+KAkBp\npjqKUilI9M14sR4B0Iwtwd1GvzZrXDWdB5vdsswucrFflLxY0KeLRGX1nE7D5VYBHsl4dZmV6vh+\n0PcA5qFxn2aJQKwZKFYh4lMlPS5xf01N+NJMzhCfT+jdCaWZN3u1WfvPUFr6mix/KeM+0ey7vqo8\nrf9oHYRcdWYt99mi4uOUjV0KPLmsx9+LF0W1Jspe+4c1NoFPTUSFtXYAAGvtB4noCwD+HrKuZ1+8\nIcARNcMzpRMgP6zINGGeol9oV1Av5TJEmQ1/1bTPwn8Ipe8SZQCnt/yMBto17KobCSt6EyylcYXd\nPZ59qPcjsU2hoArDJ3zop72MNoYCICkTLWYtjtoCc1N4ZherZvO5X93p8PReGwOP2BfoYcjUo2WL\nyAHQmAmn6jM5KwsJnQWpQUtDTouu2Il05XZKNbyo3XDXLdCdhRkcf2x1IHBk9Mai8qf2mnH1pdwm\nhGTwUlmIa/DJZT2UgGGHDv3Q+cVe5qeYIemULYpeAW0VzYQBGUpzEUpmVcF/V3kOz9rM8jNd7u8n\nxyHkAl36qwrX2+mZSbiYAU/uSC9x7NW0EXhWJ/EmKN0APYoLiU3g80sA/hSAX5EHrLU/QUQvA/hr\nD/rAHnRYtQRI7TnV1dL1+kXVq0Yl36xCPBDK8ihz8mWIMIeS2xXy16S+r/sdura/vwuSXa8HHCey\nWJfA5UO2kb7yBGc8+1d41+rKbezkaTztdcTCcw1eP2B33oR3xs7bFDM8VncQv6m5KUfX8uq8w065\niIFHMbj8BL4oDACBubdtMz0yAqz8dfbHObXY5V6nrJwCQgOqD1DX+7AOeIQG74Vgvf26yuSS4/HX\nLt0JJ30mAnhWq6xCKe1gB5QQTHzWo0ttAjx7lyN5GZGLitiOZa1+vg4Zjxq0lmu2W0JZwlcjAJkK\n3X/r1aYn9Bqb0F+bKAsK0SNICxV4YsfisCLcbdl07007zqNJldp0KXv6ACeA540nLPolEZPgY639\nixOP/29gd7wvueCbWn8/ljLJ1YiDdP34NXMgE39Vjc6uAc5ujm9+vfOqZigWNawo+brHRovO4VPe\nyVOaxEwl18KPymHVrpkl1rcMQLLYpqF3yMIAUzRcfU0W1RJXXVYpDK8wKHkZ++UV0MnNUXbnZW00\ni2t/d1omPxM26f/k5oE2DrCmgCGLopIuIj33BKBEEQOO9Kymopcy4YEHcN/nUArLhAMGIDe/Zds1\nioU6N6Xe7O8BRzBBve/n2NLQ92IsmbOOgCdH0GDAKT14iGo2OudHlorzIpBAgB1fAi1Rxn1Gudau\n3zQ65mIGDFokt/czQ7UpcFhx9eHqThf0+1Qpe+oa+JKz/tul9+B9x6M5Hx0PLdVah6a9pv8XjTMN\nPCmg5CIHMunPQn050eDq29DvSG58ms1g93dBlZKYF20rzWqr51h2N9H2S08l3yqi+QY1Y5Frvmey\nHjnXHrxgXZ2vfU9AJGGqYpd3u8Lgc9IvwuDT5+xnl3AWAMid91ahjzsBoNHvAHnX2NzvdTfH6shA\nTJJI/34phblac0lJeQMBGBvp+eOvIgCKnDiF0abuAW0jHnnmqCFpLQmlZZQ08OgwVEaZzsiqQZiJ\ncm80sTWJ0Kb9Rqc7icuL8nsr5IdM3XGyDmJsL8EGe7EuoRgEbsrIvPiqHIMe2pUZqkdx4fHQgw+D\nQufT+JSpJGW20BjNM5Xics6ELpnfZcc7vaiuv+nGzwwP+p2uUGP3rnhW27I7dmW28fF6H5gpQUe3\n+/Z2x0Ydqwu/qEzuUPn7x2r4RUArJ3gm0a27YVgWAXD4+9Db8oB7D/0fH5K5KAAa/Tz3nE2vJYut\n/t2TMHfjZ3AkJDvR2mnSb6rhm+qA2qCI1Evtsh+nvADdC1P6Zt5GPMl6taSNicpoLiNXslE8xxN+\nR4z/dL/Ez4OtbkWEGH2eXqi3lGuvstGpvlbfAl3FStp8QUcApD+zEnXBQ8qaWahBEhh7BwEIowVa\n9Vu7pq4vMvN5FDoeYvDhD6K+IXPAw/TYGHTGytYTWQ2Q19pS30c7bdndArGZlYuo5KRIBV5UUUos\n/YkCHjOSPAnN171A557qfSTA4t1Uu1Y19k9A9b77oCstNxFrQABkT+dOr4d+D1dOtE0X9zRSg7D9\n3dgWQ64hEiPAzPmM7BlydhVTFhb6NWUHL7+rJW3S7zXwyD+VJQiVOM1GSH5nvs/vVa150wGM1ZzL\nKs54bKcYamGuTINOGqaYBdmZoURVYJzt6L7k8e2tFuitmF7p37Ksxq7BxQy7pfPXUqGrE7ky27hc\nnhktSIzrsL63gd2N8UheJ4pzwYeI/symn1trf+HiDufVBxF9M4APATAAPmKtfW7T71s7KAFRkfcf\nA4+mZQJ5oPHHYC1Py6e74fR7OYYUeLqWd3kyuFnNYv/41KM+p+TrNOpuN0My9JqKUx6E8lcOKHOR\nGT6NAKisYMp6DECAXxSiIVZ9XqcYfcgpyfSi0pLb5XvJFbmG+nrqSOy25XuaAlf5e+ivOjYtIl4V\n22Wwe/HjqGYxYDhCAFPh19H9JteOygrU1bBpGcq9ji9z1fujUlmg/Mel423mskR6xt8rku1I1nrn\nzrmvAWQ2A37T0IJEOdrdF6LZFntqpa7BpSf6RP1Td14CPJvOMTtQnXzeCLuweOOV3c5b74iI3M/f\nDfbz+S5r7ac3PZeILgP4WQBvA/D7AN5jrb3tfvZDAN4LoAfwg9baj9/vOWyT+bwXwL8G4Ffd//8k\ngH8A4Dp47XndwYeIDIAfBfAusOXrp4joBWvtb089x8L6XSEgZagx8AhlFojBxgONDg06uczmvEgX\nT23rC4QsRBZdN4+RKnJPAc/VeefPy6sibwM8amEYDaAipjYTMAYgYJz1JEGzGeei6S4zdahMJu9H\n1yaJ1PMn589EOntR5+JtCTLN8+z/5Tjktao2zmBTd829K9GmQfosfN8lbyUZgcw0VYoVVipbEDWI\nqSPNCs6Tk8mVkalrgtOrLrOdp7KQXj8px2nw10CkQWdQ1ui6XFjMoK++log6b4jYn5vc+zrryZwH\nYUxUeFVBxeR9ek8vs9169y1gYtjbwU6mPwbgnec89/0APmGtfY6I3u/+/z4i+mqw4+nXAPgyAL9C\nRF9lrd1yJD8f24DPDMBXW2tfcif+FICfsNZ+9/288QXH1wP4rLX29wDAWcc+A2AafOzgPqBqkc4A\nj9SLR2CzbTntvLJNLvSHVC1+0e5R61ypheus60YOkotZ0E2L+i7puaSK0SrGdfn4vM4DoGghyAAY\ngKQZn890ZPJevJfUi46voxyYnGZS85fylgcgHTJwmnlJXT6aHEjtWr+gRkAhwJnZNJx1cnxMEKhM\nUKAwxQxUCw1eRSKBI0w1fY7yNZawmQaf7PyLHnbWZJjzSlIbgGe0EXB0bwGdVBJpdJzFeFZnCniy\nVQp9H6s5KgCje/ENFtusd88A+KgzlfskEV1ya/fbNjz3GQDf4J7/kwB+DcD73OM/49Rt/hkRfdYd\nw/91PyexDfi8RYDHxSsAvvx+3vQBxJsBfF79/0Uw2kdBRN8L4HsB4M1vuTyay/FyH0puP08YUJFr\nnOrHJVJmVAaARjXxsgrqAcmHtrcd+sR/iIdHFZW6sFjMMv2drmGW0dS5JN+PCBGAUsq+wBq21qRL\nm+gKdNphiba7OXr6eUSQTQoHnnqdKcNtigiI9A/0xqHGOFN1RnT9sFbeM+yLw5sFtqYwBQ+zeit1\n/fobziUFoBR4tmFqAgkFWcpsmvqfW6z9C2U2TQnw6A2BdhvNgs0EoGxdEvcv7u5tfV6KKPIGAZ7H\nieg31P+ft9Y+777fZr3L/c6bz3nuk2qtfxnAk+q1Ppl5rfuKbcDnE0T0cQB/2/3/z0INnn4xhfvj\nPQ8AX/uH32ZTbSov95FrjudCA48eJkyzoglKcgQ2E7/jIwEeIP8B1QoMaRZX05zPRyR0tg09syKL\njXxI+wRI3QKjBxX5WN31lDIRDmCFMSb9LVnUVBN9VJ7qbrJEUL8cNc21yywwXoQlpkAoZZhF579F\nyY265DG9l1CgI1TmYMYWrNYXVaxwProXZROgNwc4BuHAZ5wA92hkmFOuy6sGHs1mU6oTAMaup/K3\ny2R5ve0Apwi+UepowzHlHs+ySzdVKfRGURTCFbttROW/QADaZP2exA1r7Tsu7I3vMay1loguzMoo\nF+eCj7X2WSL6dwH8CffQ89bav/MgD+pVxBcAvEX9/2n32NZxbtYzFV0bi2AC49qx/L9O9LUypQj/\n8+S9p4BHz2+I1A8APFYXY3pzczLWq9oEeBpM07KEfJ8BHlloZJHVUSmLZAKAvToMsyoixabylIhU\nenXxXoGOJziUGxe4YI8+BqhcH2iKwJA+NtVj6t2g5xTobIoRUSNTsswBUHpOm6Rv0ohUNnIW3HIf\npAxMTaRIiDAplXubmblciXBrdikwyuazYw0JrdoCTBaR+/GNx1DbZr2b+p3Zhue+QkRPWWtfciW6\na/fwfvcc21KtPw3g2Fr7K0S0S0QH1to3kr/spwC8nYi+AnxRvg3At296gl7bwxBpJuuZ6tnobEfq\n4LmGpW82t4HFpv+pjIZ38+M6NoA88GTmFsIw586YoZQ6X1azQO1OF9N0t5gCj3x1vVgBUwEe3YeS\nY+VzKLl5rsJnQe5a64VrmS0tlr48pYcNAQRFfwVC4Rqm9ufj67exD5Qw5rJZ1ZD+jfjrFOik2XfT\nx6Z6WZCY0qJzs1ibPI3OY7iRtWGTcnor6u+MgEdHNQMuXfIK6nrTILNGfH5B2bo2K+yWbuOQ+XtN\nZWoR4GzJLs32LFN7cX2P7yGmw19AMMnpQmaGtlnvXgDwrOvpvBPAXQcq1zc89wUA3wngOff1F9Xj\nP01EPwImHLwdwD+835PYhmr958F9kssAvhJc6/swgG+83ze/qLDWdkT0LICPg+mDP26t/cym5/SW\nZeHHniJbZD1StkosjO3p2bT8S7vm5nOp3BgTAUfeDcZU2/Maw+L82A8lDHV+EHA0j5H2a3ILiHzI\n0g9zqmydq/P7ctvKn4sQIDiWbmHn6xwt7GXFJSsBZ7dwaYUGXqSNl/JvesIRDFipix1fhRyS203r\nXbc/XTdYOZUlpX0gDTqpHE38Nd7ha9AU0Mn74Qz+K7O2yrHIrG74V7Mg8VtWkVkglJ3ElH9RNmRh\nXrlMfgp40kVagEeVSEVP8KzrcLTmv0WkiD0Qmn7AolrCOJZfOtYw0t/rW0wJ4J6rTiHAIxtFnfFo\nNQphKLrrGomyvgFiar0jou9zP/8wgI+BadafBVOtv3vTc91LPwfg54jovQA+B+A97jmfIaKfA5MS\nOgA/cL9MN2C7zOcHwMyGX3cH8rtE9MT9vvFFh7X2Y+ALvlUYspGCgV60Dc3GNGoJXWZzi0BkZa0l\nVKSBDkRZAh+AU1rGLFokgEAX9WKL4D9UaeYuSyrd76vMqAjPDTpbKjvbxCzbNB8jj8kAZaK3BhMa\n6U1SWjpqDY7WM7eohsyut2WcWUh5y723ZE+8IehQmyVqo9XCw9CsDAHnJFQ0+Iiqt3ZwnYpRdpDR\nhQNCNsffB+DRoMPZjfHU91QShr+PNQQPZvNgm60liFLL7GrGs1DpLJL6GwoQtsOZLzFus7FJw2+q\n3FdbqXtAAU9nCr9pCHqC4/fRM2ciTpqdO+tcgWUTi3RKiUJHWjqW3pUGIZFyqtZhNusNGrn1zoGO\nfG/Ba/dWz3WP38REUmGt/SCAD97HIY9iG/BprLUtuV0fEZVAloH6RRVEGAGP7LqmBCejGri2MT45\nQ3/tFHbVg+YGxWEdTeR7GrLIqGSiKnY8qHixRUUMkGyJysqXrUq3SPKOfMeXTDaCDpBVT5AGMb9w\nspgJbRjg45fXTJQVRM4l3eUvKnj/oHZYRotfxDDzjqWx/Is2veNrhWiYMFKS1mHU7e0lVta+xCOv\nL8cSPTW9DyYAyL/mPUTOVFD0yEbAc/TSyDZdHGy9+sOT4I1N10KrZGtglExUlxXZ9nza2E7Crtej\njJ5mMy9iK7JOTTFg2d3x98DRmq3pAURECj1zFtmEdw3QHsdAk7JHcyW2qUgZpqlsVQI6wYreEQ/S\nDeN9h82Weh/W2AZ8/g8i+ksAdojoXQC+H2y38EUdBVkPPFqdd6rcFkmJKNAZbpxguNOgv3EWwOdu\ng+KwdiDkFvm9Xb7Z62kAkkE+dGNigLeL7sbT/B7Y5Dg1M02XEmSXLP+X1xFmkpQD1SKWnWOR960P\n2KTOlViW3RGur8b9jKOWFxye3yh9libnDMCDkFbHlp9VqkKl+wCT1gWZuaiyrGDKxaj5vVUIEG8A\nIGA7EBJSiCzGaQawUy6wWxzA3v0D2LsvAy/fiCzTxcuJpYdKlHUZmv4mUPPlOnrgcdleDznG5UiC\nZgRCU5I54pArm4+9y2jsCifrm17E9qgtfHmUzzMI9y5mGRamLg+nmyZd/k3LflPHB7Bwq/xfW3XI\n903nAccq/21bm1hZ5FE8kNgGfN4PVjn4RwD+A3C69pEHeVCvRRQgDzznycykw3X29Ay4dRf9tVMM\ndxsMxy26aw26NaGcdTCrHmgH2FWP4lKN4vFZ9sMyAjrxE0nVrQEPHDaadM/sCnONVGCsKaaEHz3w\n6MzHvS5NleEATwhYdkfZRScsPCxqWRfWZz8ywa9pwBK5LGTkAro6Gl+nREnAKkUIqg9Ac6AqOQPS\nFgM6Exu9z8TcFmWYbZtCzAb5egTr9FTGabc44GxHgOeVGxiOGgx3Gt6htwOGpvMbHZobGCm/7e65\nvs++v7ZBoTq/mLKx247LvNcjMoj3U5LsR8psyiFX7oEbq9a7i8rfXjwPa2O8c61kd9l+VkrnT75m\nSQ+pLFM7i7P7VOj15Mw7wUag4w7WznsGnwsGIGsvjHDwJREbwcdJMXzUWvvvA/gbr80hvTZBVERl\nm2x0iZXuBPAAQFEDSO4rmpvI5hhAUCdIhS3FuldTaUdzNWsApwE4UkKAql/7Y5Bd8SbgURPy0fEn\nC1HK8moj4JlFiw4Q+hre1Kvq/bDreJGPyZOl/qqui93UNHbnTU8+PvbazWSbaRlqMiZKPMIqY+JC\nbJSmSSBTZoNpv6OmOTPMnLeRvR3uMwGdjbFNKUodh6EOBu6YrVN/lgwECPfKOcBzsr6F282A66sS\nL57MkJjs4rCa6Gelcj0TjMpIWToFhf3d85UWqvzmb2O88VQNvuRiI/hYa3sieisRVdba7e7sL5Ig\nkAeeiFGjp5+1v8cG4JEoZxZF7UDnoALNS1BdsrOomLylmmQSeniwa8dlMyDeyYnY4TZliDQco8wf\nS73PNsXDeIeckiH098EraOZr+zq8ptxOF3Tl3D8uLx7HgJsunrq+nwwCanaSLp8A3NKh1l1zF7Zv\nmFGXmYHR5zXaiHRt3HfTmZAv71XZbE2DUG877/4pETETJQM4egm4dh329l0u6V5fng86QPz371p3\nTKXP5vQ5jpStheGZjhbI8C9imSMhmLTDEsvuyLHZZiMG39wER9Gr887Nnrn+joCc0LkT4IkynExv\nRjIWA/BxuYiGXtOMaDZjHyT92Hy8BFJtAvA+igcW25Tdfg/A3yeiF8DawwAAa+2PPLCjeg1CMp9o\n0ZgCHiljuXQ9BzxUlyjAdfiiLrn3s6h5AZSp7/l+yDh05LKeTBYDICqD6P+nvZ0s5Vs+UMkQoJ64\nP48J5g/Z0aivr2bZIclF1UcMrqrYCTveXH0/zfLSjKZdwx4v/cIz3HWsJ6VeOjQdirqEXXUwT7uG\nsQBQQvbwfZAinu0Rlp08R9N3UyqvPuscAAExCMWP870XZQCnt4A7d2Bv34W9eYT+lVP0dxv0Rx1v\natx9BcB/3Sa0t9L4+MrAkJReo/9hxfeu0LrVfSMEk+P1KrLtkJBsR+6Bx+oCO+VB+PvrUvbE31sA\nR/dlfGlMAbIHoJwqgc72k8+SXXUR+ARb+nhZ3MoKYqt4VHbTsQ34/FP3rwBw8GAP5/WJqPyV67m4\nEshw44QXhOvL8WuoRYEOKhSHNbtO7gWNMm057QcZtYuivKfKeiZBRu36+aswddhe27qd6qjXo2T8\nJdtJJ++3DVl0hFwghmV+0ckxuPTC0yUgqxcf1RCWfsdw3Ppme3uSP85y1qB018S0Tirl8iETPdyu\nnokPrgGvACiKKeFYFVpMFQgAFCjNAXRy9GbfaJfrEQHPGfrrSzQ3ezSnJczMoqx6lLMxEE1FYLTx\nOfZDyOx62zmm2S5koDprm16rPuCclSc6UzjPqCMcrctRj++JHWeZXg1K1PYyK6n3QwDaNJvNgI4m\nWADIlh9pXjKBcX+XyRcp8NxDSNbjPzcXqV34KKKYBB8i+ilr7XcAuGOt/dBreEyvUSSL19TU+EQI\n28j/X5hudYniUg062Akuo3uXI0UDYSBN9hk2NFz1V5spx9imD8fVrgMTSgDQ+f/w9Pkyox6Qm7qn\naC4FCE3zRaXnb4rIwlj6GbLoIDOzMrXwDHebsOi4BWe422BogNVpWHTLRAutWxPMqg/PFcpsJlIt\nuFHvJ6OjFr9Zqxw3OaRPpgEoDf9Y32KqzJr+bfs1Taq82ONl0MYrb8F2LahrQfN91GbuB5FhYvq1\nt9UQAJyi5mfeWEDVW5EYwqLqHZOv9xlvsHIQ1RAHcFuWiVPgSX+GA0caWLjsJFdyKyvul4pvVCZG\npoUPIOwjqnUUmzKfryOiLwPwPUT0USSrtbX21gM9sgceCdPMBIZXFNUMeNPjoGqGopqNCASy0DPz\nqPSlNnryce7xKLO3Zliid8KSMmxZGkUcEDqvZuqIk2I7/ppz/PTHnCMYRAC4ikoATU8R8KQZkPxf\nLypp8AJTjV0vT29ND0omC24KOgDQ3218ttO53lK/JpiZRdcWIwDyWWhdhka527mL4KlWUMaAfPYj\n98M5XkdpBiR07M3qFDMAzdhUr5qBDnZgnmTGZNWcAuhDP1FlPIX/+/fAzSPXnwGw74gZzTGoPkA5\n30dp5nJxPHGEy30vjZmVuahm/HumRjnfx45ZuPNgBQNh8+kNiPYQyr6eCm8VMerJqPva4UshXh11\n6UcaoiqDHimQz7XIQAGw1QwF7saApUBLbxqlSvAoLj42gc+HAXwCwL8A4DcRf76se/yLNpj2GEoi\nvvRWVoCebRFguHzIdNZqFl00PUzqb/5k4rsdlui7k2jewhQywc8ulYjbCeeH+vCOClC676P1qRTT\nTrA3KAyL5tZ02U2Ah7OaWFFaz0r5+ZvTo5EUf1pWAzAuryg6MQD0Rx26dQw88nUjACngpfqAZV/6\nI/QDZ3mivDAFOrZv8hmx7q/hBMB+AKAt5oEAeKHQ0eOzGS+Oixr2aocSANWNP6dC9yOU45xteuAl\ntplgUcwzYH8XtjkBmv1o9smb5WmlDr0RmGjYo2T2JwGo9y4DRv7uS+yWzktKqYYA7ufaqltvgtJz\nBwOD/77JK7hQXQYgOlRVBq2ord9PYhceoD3QpZ8TEUd1wGPnB4/6NA8oJsHHWvtXAfxVIvoxa+1/\n+Boe02sUdrIsQqbmnSMQg9D+brB2RjI7I7vrBHTabhnNWcjiLoKKPCyp3lMyIcluZjNesNPsR0e6\nSMgHSnaBsgBvaJxy3X5cbgMQEQfYGygM5o4GPk+PYt07LcMvWU8TCANpliOgI8A0NBgBTxcx64KS\nqAYgmodNgahk66ynGUo0g8ECPQx1PvsBVA9Ql8OA6VKRE/SEZsMBEQD549pGKd0dd3FYw656+L1/\nYm/qM1/dOL91lxld1SwoM+8HZp5/d1ONy5+njkHpLM2pTUCoagGceKCt9y7DGL4PWLlijdok4rjK\nR8gft6nDDFYaa/d77RpUm2gOxz/fVRmoNqCDneD95Gjgo40jEIOQbCTl+ujqQEaR+6LAx8JuTeh5\nGGIbS4UvQeAJCrOij2ZoFmcQeo5G/u++klgsqYVNhjQ16ASpGcL4Uncw5D6o5QJUtpPZz0YAytSn\ncySDcc/p/A9BNKejgEdr4EWSPilRI5GE0Wy1qSxHgw4wBp40dNYj3xd1Geiy+2fA/NwAACAASURB\nVLvZrIczH4umsD77kX/olX6fFpycilJUKJqQ/QBRBjSKqVKeKrVSvUZxqYadG3990pBeoyzStukZ\nQysn6yQAgrPkXjmNQUcYnfq101IU4OanAgCVe5e9dFELwKg+WpTxpDGlmoFdWDnWphtRoT3oSMVh\nf5dHGTQNXFTn9RO1XJQ/DwT2aRmsyL3/0KtRw3gUW8e2lgpfciHNv3Y48xIjpqy5YVy2oBVg58g3\nmx0DSHZIok6tMx1R8k1nH4BAQxYV7agEU1bgT8ZJoLkilNb8B2qiKeqBJ619S/QtTFnzbh9c/qsA\n75zZmAxtOgM8Xn+uS2jiQJwtSEhfR4DHUdU18OgoagagcsYN7a4tYGZ2BEA62ymrgX+/Krg3srcb\nZT1C9NDq0drHqSp2XQP+FoOoAKjWNruoZrTLcMnUXjpJ5GCoZeBANUOx4KSM5mUAGN2EVyFANAAo\nFmBgAaalYhKmoUz9h3Dlvtrwfbg+5NdyczUWAJUVzPzAs+oiAsewjgDIKyiIQsdEMADxPU/12ue2\nEeikpW7llSX3YZTpmzpIRWnavVQE3OfY25u4jEeMCy8k7CPCgY6HF3zsELthaqHFsgb26/HQHRAt\n5j4tV5bIve1wuxnc0F3hfEuGSM24LjY3oz0Aleq9ZXo/t5Dox1Lg0eUNt/vjZricN9NwBYDG1uI2\n0uHyJTad7chrA2FGSR+XJxSE7Ebosrm5DYlCpNkQA5AeWuH/B+Axi9I3oH0p1FTOQTS8R20Gb6ch\njDxRGNDkCMkKRK0821/TkdnR+wZ/mgF5U70DtalwC6cDDrRrFMAYGIT5VRXRtbNNhwJOnwyu74MJ\nqw/FNLTHy2iORr8ewCU+03TAlXWQntlvYZ3YrZTfgPFCLTI/hkpW9ihZo3CUD5YVn3+75rLYbAZ7\neoYiQ52ONlkKeGzfTJaX/ePa1jvx1GI9vM4Dz6My2YOLhxd8EE/qMwFg7T9Ahmb8gSp5tCme8Hcy\n9c7SuR/Wfkam6QscrU0irFhElgBMUy5CmScXaVO2SqR09PeZnk8EPJkFcTRQ6QBIMiL+HT62jcCT\nap/lJH/gVAhkcXO6dxI54NFR1AGA/MGqKKsB1b7lBVLYTwIW9UFYWFREumrun5eWSYBHN+KtzE7p\n0Krf0UUeyxNFAKR+7gHIhOtHADBz2YsH6+RatePpUbvqMaBBcejsATCeSUI18304e7xkGruT8QEw\n2hx4hl3To3h8HSjsZcUMuL3L6M9Rx5bPjWQ/BHBGUmYULgRkqlnsk5Uw07CbeB8I+zAFoJxtiKtY\nwHlq8TEKFT22xvhiCiK6DOBnAbwNwO8DeI+19nbm974ZwIfAc7ofsdY+t+n5RPT1AJ6XpwP4L8TV\nmogqAP8DgG8Af1A/YK39+U3H+dCCDyDzK1yOkVq1KWLzszRSo7CzrmOQGfh3pZ8gQ3erHjiswqxM\nmH1QTdhNVF7Z1cmiVKpFXoOOBqJNtr++JFGNz68ADMJrevDZFnj6DEC6/2ezngR0hiZkO0A8aV6g\nQwnL4q3V4Ps7moJsDmuWNZKSmwPwEfAYBrKs6oIiScjCzLNThhfLk7M4C9LsMIkN138EQOr3GYCO\nEWW9AkLtGoDLTtQ1zAVDc8UCmXU4d/2u/jXbtQcePcSb9tzme0yBN+59CynpnZ3Cmpuc/dTzSb8k\nPUMl2Y8+Fn9sZcX3et9y9VmyICDPwstk9iMA0hs5leXocYN0c/kgMp4LdDI9L94P4BPW2ueI6P3u\n/+/Tv+B0O38UwLsAvAjgU0T0grX2tzc8//8D8A5nSPcUgN8iol+y1nYAPgDgmrX2q4ioAJuPboyH\nFnx6P9Mi0vbuJuzHO38gNg7TVsDNYML3DnAks+GIGWO6xyCEh9LMR3XwdOdmy6S8ZZIFP13wprIe\ntbvMimK6c5wsC2oihvb9SXetSSmQ6i7LXNJRTJPx/M+r2rqFMQBPcVgzyeCg4h26lB0d0cIb0zkW\nFis5r8fAo2yjPfNrUyQzVN6SAvDXP6d8HZXhTBXM9OAAqHTEjV2EjHfNIERND1r1wPGGDUvCiksn\n/XXmpgc47aqfpLWvTg126879nhrqVH9nz3Iby/zxa6mFtzRVOHdw7wgmljOC67/6a5D68wDKA0o9\nnmY5qrSmJaRSYz35vh3OvCLEF2k8A85AAOAnAfwaEvABG4R+1lr7ewDg7LafAbuVZp9vrdUfijni\n/cz3APiXAMBaOwC4cd5BPrzgYwnXV2VoPPcyqR36M/Hvx8AjEUvl6+cNqA2ink+w7A7lNrnRq/lB\nbF+gP1B9y6KYKYMnOsCY4gsgZuhpMFMZi5jTaRDS5wsEEO7Q8aIx3+fjAQII1k777NTNHstit85Q\nw11QXW4suW36mc54irpkkoEY+e0pna+uhann6lwYZFEkApeaYKCAJ9X5GjW6d/ciem5n3KJtV/x1\nWENTj+UYAJUFaQBKB45H1yweMB2FI1sUl2oeeJbhy1x4EkiPoenQ3OzRtcYDjgBQtybM93oMjdPP\ny73WBnWQIOmj7gP3MTJlDZQ1X4caoOaEQajM9FvTY2/XTNLYxWYZHGVXH9/XY8tu+X7ZHynvo4sJ\ni81zdEk8TkS/of7/vLX2+cnfjuNJa+1L7vuXATyZ+Z03A/i8+v+LAN553vOJ6J0AfhzAWwF8h8uC\nLrkf/2Ui+gawHNuz1tpXNh3kQws+3UB+0JB7Ms5REkCaDQH5m0aMwfT3tbGJHE3QuNJZjw6mc65R\nmeDYKYsXAFTlTmDh5UAo13MoEwBKwjbHESAR3EJwTngASt8HALlhS5zeiplbjjZM8x64GzfOzwOg\nXESlubkJ7LZ5yXMfyU4/Z69taBYDjzYJBMaT9rlhYg08e5fRocOyPwIQyrP8fusk8wrZZRaA+jHn\nXoZPgSVTq5sxBAhQjoBHbAd0KBKIzF01pyW6tkAnQ7xtuOdXMKj3+ki6yJNfJHs5R9WBr8vaZxzS\nd5S/CQCY+QGocwrkGoSak/AibpMQ4nQEQD4LLQMTVUc0i6Qt67sWZb2PqtjlYxvu3an2guKGtfYd\nUz8kol8B8KbMjz6g/2OttUT0qp2n0+dba38dwNcQ0b8M4CeJ6JfBOPI0gH9grf0LRPQXAPw3AL5j\n02s/tODTW+DassDcBOBhAGGNKtGs2iYk+9EAFP3chIxqimTQ2zWW/Tp5LDRBDc0YhADOZKZAKNdY\nRaLI7HaU7I3j3FFdA1iARcqCuejQRUAVlVP2rqhjct5Da1XyqctRyejVAJA8j2d61E5fl8JUjGwz\nugngyWRpEfDI8G4CPKLyPEXL5cHcdaD1KyXtCICEfq0HjpNjobkrvenHvbBtOQYeAR8lZSTgbFcs\n2NqeEFanxgNOtw7g1rWEOXp0bYGq6Tb+rXIWHLnIzZp5xqkpURoeN/D9oK4KahNqk+CN4wAuz2nK\ntfOoavujTImtHIGO9DKpa72CwxJHwHBBVOsLDGvtn576GRG9QkRPWWtfcr2Za5lf+wKAt6j/P+0e\nA4Bzn2+t/R0iOgHwtWAFnDMAv+B+/L+ADUg3xkMLPmsL3GnZc2RuCABhbtjemAFoQD0QFrP4Qz4G\nlt5lOq7EVvDvh1KciC/mIyUwxD9ztemCsyLJjkr1Zwsfznac5aRli5QYIH0JjCV6RKE5XSACIHbq\nMVXKKBdsNCYPtGuV/bhmdV2iTxfPDQA0RUTwWY+Y9qUlJp2V5Vxqz9Nt06E1vwR4nKGathHPzXVx\ndh3T+vlrDECA633k+mgTIdP+fF3cHEwKPPV+6J2kIJSJFHgkckO+ErZvQH3r+z25e8e/jrrn41i6\neasd9DTjUnTX8Mxd2cY0/qmQ7HFioNorcvQDvJ9UouZtAVDfOvp4eW42t20Mdiza+4DiBQDfCeA5\n9/UXM7/zKQBvJ6KvAIPOtwH49k3Pd7/7eVdqeyu4x/P7Ljv6JXCf6FcBfCO4d7QxHlrwsZZZpe3A\nVr8MQvBAkkYw4ErNuYJJ2G453RsKjy29mrLObJqecLTmNw5gxf9/rO7GKtjpcOd5C5U2ZvO7Xzfc\nKOWyvuEsyNlpSxlFZh6il1NDm/4xt5jslAumOHctS7sggJsB0MvXLUtwU8AjWc+o3La/y8oCigAw\nKm+Bh4RHDLCZuzaOwettyGUxP3iMe15OQmnZ3cSyO3azXWwjLpm0RD0QgOBoaooOVRHuFT/w62bM\naA5QV8UMsIqtsm01Q1GdxSrMQH7w0oEkyoozPB0iwTPn7LGcNW6gFzBV7zOgcsZgZCqLeo8V00d9\nMBW6rKhDM8j0fR+e5+7tAeiTBT8rvtrOgt2IZD5aHscZJBrMXAltHVQ5dLk1OkjptwWi1hcj1RoM\nGj9HRO8F8DkA7wEAJxT9EWvtux2APAvg4+CP449baz+z6fkA/jiA9xPRGlwW+n5rrRAL3gfgp4jo\nvwdwHcB3n3eQDy34rAfgTkPgTSN/6FY9IuARgoCET9dVz0ZTkwGgH2R3GwOLBH/PswXMliM0fcXg\n48Uuw/vWZuBFfii9jMnIfC7NaNLQszepgKS4QHa8W7SAIhPk+0W9XWPZHWWzHzNwLb+u92MKLbYH\nICBPNkiBJ8p6tEDkSME7KW8B+QHPNITmDPB1UirHZ8Mxlu2RcnJlG3EAURmX/+8UwdEDWKICS9EA\n8WItZSfp8UVZLeABaORZg4zOYCL7ZAFebNVr8TXl7LGogXqvB5xdhQBRtyaYqsd8j5W1Rx5CW1gj\naJUA+TxwBuA2W2YAfyYwcnv1MSHCGomBmirosimWYVXsoLdlbB9xeitPk594r4sIa0NF5EGGtfYm\nOPtIH/8DAO9W//8YgI/dw/N/CsBPTbzn5wD8iXs5zocWfPqBcKcFmKbBH/NVD8z7mIINjEFnUyre\nK7MuMe8yxPNAOtiIrfDDqEdtwcdTxT2o2pBzApUFfmc8ZwPk1ZeBeNhT63gBwFpN7FctRPDK4hjk\nfAND+S2A6bI7GhnPNb1x12bp6bZ1vQ9K+lIagAZXNpP5Eh0pCGWBZ0PWoxW8ZYDQA5DKfrjXNQFA\nUsEThp9TOT7pbuJkfQvXVyWuL2sctQavLAlH7rIuZv8/e+8fI1l2nYd999337quqrqrumdme3eWu\nSCoUFUiWAyUiKP3jRIDimCYSUBYkilYC24liIbYEG/llUfY/DGIBK0eRo1iGbEIWLAVyKMKAIiam\noFiyhfwj2iQEJRapIKYkcrnL2fnRM93V1V31ft78ce6599z7XnX3LGe5K/UcYNDVNV1Vr17Vu989\n53zn+xQOjAqgYzpfjmMA4rkyyajiQWc61hy5A3DoOh5ABcZnX0bEMZliHGd562jh5Wwmd95Msrzm\nmeNMa3eWDlH2IzyJdE5SO3JYk+WmAPqeVI7sAzig7pXP9mnuro2+66M2J+n71iayL0kjsvY4fQQ8\nPBk+n8+gHEg7G4rHMVh8GlePaws+fadwdDRBtaixP+1xUCqYLGQb/NNkU6/MCwR65i5lAp6XARBM\nvHq6qMYUEFZ1htc2wKpROK6AgxJYFsCBUdg3xJpbGe1UsAunqRYu9oEFNTC8PWLYBiBIr7jbfrBR\n9htE9iOBJwimIqpjU2npFMjp/ecTkQH5bAOAKaDLwFjqMQQgIKY6S+Dh33dlPUqXO2v+0fvioduk\nBCctCACQdXTWY9PcxXF1ilfOStzf5DipFe5tKYs+dqfswACr0joQghcx9eeos1iaEXHXfkNKC3yc\n2RS569couFkvzujOz+JykwBcWXbiuZbpZEnP4Ugmno3owETvl8hXZwD6UYJkXlhHvLhaz0LqooVB\nbCUGsIfOt0z4MVkTsvxdwe9dZHm7gCe1Kcf6HPbRSXiepgjEBVPQpqOtgXKCrm++Wn2aaxfXF3xE\n+kv9HosDA6JFmx6HkwaLYuKN0QYMmZHgVD+YxcWLiwSeVa2jhWvbASebDBPdQ1Y2DqctDictjF7S\nwlStg/ZYktVI0Inst3c1mC+bzne3eQGXwHN/m+/YERY4nDgAAsgtc+9mAKADhP4FKAMipeLci40C\nGEzwR6DDu2+Z9Yjmutq75ZWJ2UIh0J3b8DnKeai29tnegKaujWezHVenuL+lEhtnO8fV8Dxsu1B0\nnGjlSC3wZBZPSEnIKCzw6pU2smnSB3IKCPLY5YCrAyKea5GqzB6A3GupG6RSkDlx1/x2i0yUQXtR\nEc1KkIKEyzYHVgRCTUICD5XZ9GDDxfuMfQ/Ovc8US72B7p03lCyhtjVlf3LwVLjzpsGK66lN+UCp\n/BKx2CdVKuuBp0Am4tqCDwCYskNpekxyyjb2zdC3ZqqXAXAcRTdWoIa/zVTlLgGezrbCKZR2fSc1\n7ZS3ToJn2wGlU2g2GQEiH4vJghX1QOqf5zWaJgYj9/MiWqzacdH5hUyodafAwztYGaW2WNUAUDiW\n4Kl7PzOUezehcgObyqqIBnrvUNduO+iFIwqIspukE0uFY99g37sJtf+8F3xl6nOYK8kjfxmv38dA\nlMfZXtCEo0V8066wanKf8Wy7GHjSdggAyGRu66j9VdeL7FpkRJoo+4eTtC8U94H8/Iv8rNIpflZm\nTliUHoA4s3Pfgdyd377MvdI4J33eMl722GRomWluxes2g+9L1YUMkQk+9N7D03H2s+lWmOe3CFxY\niTopOfvyoouI1bhdB+WKhydUchaeUkCQGfKMT1O8YT2fpxHHtQWfLLMwpqNsp7B4dmp9lnGjzDDN\nF37B977zaa+lQijPtKE8Y/Ip6pHhNC41cH+HS20yJjl8BnY45WNxWc/5UXwhAXFWIy4q6ZsDxJRc\nDlW6x0ptRrHrt0qh7jY+e5ALyb1NvIMLTEHpiNqisw8xzVtAOxUHuJ23DgwubqDr0rmb7sO/h6B9\nH6b7fSlOUood8FRZj7o98se9qjVWjUGpeyyLbWR2xrRezoag+T0Ru5AUjjnrO410+7YdfX7pOeDP\nMA0GIdpoEAgBAXykdxIAHE6oLwTQZqTuqXGuuAzHM8iux+P1ykS2IwVvpdp0lAExoBUFtGO/qeMq\nsrwYMAsZ9JNSJ31fzv3r0rnX7rxlfpOVVld5TAGgOTnyWKLj3agVpvkyVkG4iB7PZJx0huvRSShB\nV23kkqqMqABcgUDxesNa9bR/JOLago9ScL0ei+emLstw/6b5fgCe7TpmlcnGfm4IgLShOYTcQG0B\ntWf87pqbp1WnPaONgSeVOptoAsJ9YwflNsUsnfOzaAcHILqYUqM2DnsK0aR3GUapoWS1QpRyOHvg\nrEcuJPc2md+98nHzgnJgVNTjoJ08mbhN8yUtfE4J2fKOXdCIlQBStcB4eUT+vLkPLG4I6vMx6m4T\nUZ9Z4shLHWU9Sr3FLG+950xKIkkl9cmfqfDl0lWDwecHBOCZaDtoj0gACudOOdCSoE2xLFowaERE\nBEeA4M9MZjudbVy2x987JtCE5wLgPwfpD6VMgcwUyJbn6FcV+uMKWUC+qMc2VnajY2gj4Lm/yf1m\nywmaD8+ZyH6qTqHStEhrFZQJ5GejdaJMkMxu+TLb+VnYqCXAI3UGeRNmsbsa8DSefFxb8JmaHl+/\nb/H2eY8X5zUOJy3mxc1Q3lrdp+ZsCjjpzugiBWmE2ZdS91iazi0GObadxTL5nk80/PE8N1WY5u54\nqi3syR3g9BHs3QfAwxPv7yKzmxRwohhpFPvJfcAvIkqXQDl3wHOOutv4kiG/j4nOPODIUhPf5gVU\nNpcPJ07rzDahD8RlOJkFySyuaXbW5r3SwOIG1P7zaMsJ1u1DHFenDiRDqeekJvIGHb9TsBgpkUlh\nyZhG3qLUFoeTxvUmckx0jtuT8d7fmOko30dzZQFg6t5i1YRS66QLpdkqs7upxyJ2zaH45+lpdo0p\n+7xUT9OB4HkzLIU6xeuLsh4yxCvRuTJn2KhkO4FH9sTo3KiR7KdB7c/lUGWeS6cmn3oQstVp2Cg+\nThaT9D9tV3kprDJ7WoZ7I+L6go8Gvulmgxf3ahyUC8zzm7TIn92HZSto+QUe+yI/xi6JdOM6f7vU\n+eD/S93jxb0Gz0xMrLicAE937yx2sxQeLDsFJxH3TfTtPfKyv7EPHBwMNMoYeDhro2PscTjlFeTi\nrw7X95cGvg9UdTVulFxKmgUx1XJBi0a5Dv0szoKK5LxLsJzPKAMo56j7UweU3NQOPamJlrM3Nurp\nRf0fYSHhWXKOdc+U+VI3WBYdlqbHqh5vHsvSnIwdTtgBeKLjZJdVI47RZWetU712Gx8pDFv3gNHk\nUUXMQ6mwHkdnm/ApjthhSCmf0azHlTuxd9NnyZ1tUPW5yLji98kANBG9Lj4vpfO+WtXwG54y67E0\nq/EZu3TcQW4WL1Fx2BnicWy6yKXQrzQeU1j0j3xcW/CZ5D2+fr/HvLiNWbaAXd2BPXltOIjJMQY0\n/P87hDY5JPNtWXQRw0kOky6LDgflIrhqro/8XILMeNh7BRg6gdqyC5TkHaFv70E9+wwtHgcHYXjS\nMcS4UZ/O8nAcTnlmI15cgtVEeAxN/I/3gdjC3IOQLMW1OxYQCT4OMJkUEUpjWXQMYTGn7GWW55jm\ni50sxoHNhFOjoIHiKUzWYJa3OG+HAqAA3NBp5odOOUPcBT4cEfhkFrM891brfjrfAY/tqkiRguex\neIFne3QqtbGuYFxWBBI686iunQ7MQknwuLlP35u9W9FmhYA32IukIQGIg8/LxH9/tBfoZWbgsiDg\n5/koADEdmzeLSdbjWZ/p+3K25APyBIcDMfKyOh3/m6fxFcW1BR+TaRxO3gm1PoJdfRa4dz92rhw8\nIAyheT8UTtWFH0saOiu8R1BQvO5xOGmF2KhbYPQylP3O7nh/GXv3AbCmOnx39wzd/U1k+AXAKxFj\n3cHM2xiERK9Hv3hA2Y7rlfDwZERNdj0DAL5sk8bhtBVOrUGWiAEpVXVI+0DL4hSzPEenBQjNb0FN\n5gS423WsRyZnWgA/+CmzHkljl0GzJL3PeKb5whvkDcQlgchmghfKaJedkc7edOTqIbmlDR5VDZam\nJwByzfZQorS+9DbMevpB1jMKPC7zsQCRD3JnZ52XvsJaA9A2yPrw8aEPfZModllfOHZhxCxkbTsn\n3Omz5B1ZjwTfMQACWGtRReQV2a+jjFO+lyAW6kkGV9B/U6Umg8CUGVI3RH6pmzA0W04itfmn8eTi\n2oJPhgw4+gLso7s+q7hqWCQAdEnfBwiLF+u/lbqLBlh5d0vAcxT8ZR7SXEL/YI3u7hn609obfqXB\n7p59Rc6fAAAps//MfAg8bgEB4P1O+GJj07VU143jUdW55nCwkpBlnphWq/xMBy9OZDMRQMgLpy6f\nB0o3n4F1DDjSoyjJeqquGKiKU68tntua6iUN6ybUedYQk9kES7MMI16Q0nN0o9wA4FQnR9kpTFwp\njs6J9cBzYILZoATJYF8+Ajwd9yId2cWpk6uJUyYXWQFLPgEYUM39+x9TEUBQpGDBUt9nc7NUgejQ\nJtkmfQ+qTo32BznS+5gNR48Jgr9V10eluBtlADfaPCRZj1TzGGG5pcaGTDSwbA/u+kdkr/BkwKe3\nT+d8ZLwp4KOU+h8A/EegzdnvAfhPrbXH7v9+BCTH3QH4K9baX3X3fwuAfwi66j8J4K86NdUSwM8D\n+BYARwC+11r7hUsPoq2AL/0B7N0H3irZbtsgST8WYgfuv6SyCe5mLljShRq8w11YOnMS2VRvHwaK\n6MMT2EcnEfC09yrvNJmbePvIv7PJGqs+62f3YuC58WzQwBIT4bTDvvpXYpqvcLR9hBUQLfrVCKuL\n7lcRMFwauSHNOfm7VB5wWY88xzw/Q7dpQT+ctLFldlsB24ejNhMABtlE5F8EDDX0tEHuzluYDQKW\nZuXfNwNu2dHAKSuq7xsbTfnLsqDJZsR0HAMeVjhgxQIHQmy5kZdzGlBVBWpFtPzUUkC1VZgbk72e\ngujv1tCireagrOfGPnDrdpCxUcrPEWmVo9QNyk7qIfZYGgB1Nig7XlaG3AVW9LlyVkgbNqQW6Anw\n8PUNJGxQCL9hYTeOoqHzqw1QrjGdLHcf6NN43fFmZT7/FMCPOGXVHwPwIwB+WCn1jSBp7z8G4G0A\nfk0p9fXW2g7ATwP4iwD+BQh83gfgV0BA9cha+3VKqQ8B+DEA33vpEdQN7JfuoF9V5GlyUgF1D7Uw\nsNuWHDF39U12CRJeIcYGHU02DdPY4iKyZ5Tx9MfU4+lPCHiqM74qRwDIyaCoiUa2MAQ8b7sRgIf7\nOyNSJKqtwhdCqmaPhNIlFns3oacFSn3XKR6M7+ouXkjsOODltJO3eR0sBiTwTKhMKJle8ZR8WMi5\nnFmqSRCWvGSQcMxmQmYIPkviSUw+tpzIIgBZYZR667Xd2H6DgDrovvmsJykLRsDDLC4GCikOWzdg\nhXLb1pS1AcjLedKgD3RyZS2VdlNlZxEMQgAo45HAk5ejLLtS907Fm78LBEChLBsP5Y7N/XCMfW9Y\n7Jeywmmc9aQZz/o8olanJJ1eAJAttR8yTbMfdYXKxlXi6ZxPHG8K+Fhr/0/x66cAfLe7/QEAH7PW\nVgD+QCn1eQDvVUp9AcDSWvspAFBK/TyA7wSBzwcAfMQ9/h8D+CmllLJ2hwYOR92gu3fmQYenulXV\nInPT9WrS7c6C0rjAQwQYBx2f7bh+gwcel/HYoxX64wrdg3P0JxXqNWU87DbJysMMQN5a2gFP/vYl\n1K0lkQskscDN8XAw8EVDtO732DESIfMDgMUNzG69A7p8EVrdxWsbdoXtPUOOKbZyIZGKz9H52eWb\nIlURxPF3Pc+zhBIKs9mWpvPZDpczsX0YZkD4fUWCkvEiE5ntAcN5LwCWS4Fu4JhLX0ZP0ekGM0sK\n5gBEeTK43crjpb7f9OrAA8QbIQYh9/motoZyQ8/+cxbGadJOfWefZD7zqtFexkaz7NLQlpqzn5hl\nt5txJyH+Ior6EuF7wz0wrYpB1jMGPP1xNQAdJur0CJuQbF8MnHLfZ7sGP3sDdgAAIABJREFU9BXX\ngLdIKKVuAvhFAO8E8AUAH7TWPhr5u/cB+EmQytXPWGtfuujxSqn/GMB/K57i3wLw7wD4/0AGcu8C\nVaz+d2vthy87zrdCz+c/A71RgHzFPyX+7xV3X+Nup/fzY74EAC6TOgFwC8ADXBC26yPg6U8q9JVT\nW3ZfSL8juoA5BiBiu1mlvHiWtAgeAx5Pm5UT2ednfnHpT2jSXApudo1C26jgt9LQLjM3vS+3XQg8\nQnBykHFt12GB4wt5bJFG6HnZ3KC8+Q7Mi5s4tJQBlZoWVtYzA9KGOrG5eMFlRtdo7AKeEYAHMA48\nrpwZlWbS9+UzCHEc7AU0NmQ88ERCKH3lBtplL9TLWlE5KusceSOoG0h7dd7Na5X7Hb1/bUmFvoxG\nnDtpGacHF6l4pxntLrUAATpeMVpI+FzkcRP6PWP/N7YnVBcyAum7E9yAfdYjy4ZSbsoBT39SRQPX\nEnQi2amyp7+bdLHqR90A+e7s/y0cHwbw69bal5RSH3a//7D8A6WUBvB3AfxJ0Hr6aaXUJ6y1n9v1\neGvtLwD4Bff4Pw7gf7PW/rZSagbgx621/1wpZQD8ulLqT1trf+Wig3zDwOcij3FrLTvj/Q3QtvAX\n3qjjSI7pBwD8AAC8/dYesv0S/UmFDDlsSVpWnDWkQ3UAxn+ODGdKXS0/oe3q4iybz43kyDo5r+MF\nfkJMNb1fojsB8qpFW1jk/M/00IXFZK8jufv9EvqZGfSzM6jnbxHwcHNYlErYYgBAWEy362hhto27\niE/p+JXT3Bz0vPg5RDUhqBRnKLX2lFmvIuHKS1oZv9OX4W0PJvOdMjI8VyJnkaSTrCw3RQtsbgCc\nDz9Lvi0Voq8aqYtsWw/EZ5mxlcauAVBWtPZK1P4YL2Zi+kiPXwIQqFzo7akBctNw81USdLwnED9f\nV3taN8BjBHHzfhdDcvDeR0pwMpgFyGK/y6JzG4pZIOYkStWyf8ubSwAR8MgYuOGm6g3lPJRWv8Lo\nk/f8BsYHQK6iAPBzAH4DCfgAeC+Az1trfx8AlFIfc4/73BUf/2cBfAwArLXnAP65u10rpX4LZMt9\nYbxh4HORxzgAKKX+AoD/EMB3iBLZqxj3FX8V8ZuRfuP8mFeUUjlIGexoxzF9FMBHAeA973rGZvul\n5/tLxeTsoKT5hoVjuSQLVWRiJYYzz/tTvyCyjPyqoYuWZF1qlHqLUlvSO4PQ68KadtBObgam8OKZ\nFi304RR6v4c+qTBZ1b7sppc51KQM/R0mFjz3jJ/DYBp1J7zo/e56ux5kBJzx8O4RoL26KpuwI74k\neCBVzmsMy0vT0YzHW1I4NWf6JVZqZjo4zfbs7jfR8yc71zTLkTIx0ppALDqRqZsM+Ty8uIu1KpQT\nZWkwLkOtGo0lOmhFNOhN36DTTTwDxZ8TEOjn8v1EbzpWuvYW3QlxQgGwEwi1aBOAlL/XaTAd3QMQ\nKQ+wL1Gg3mcR0eKqi67s8UgyxrLoiK2YTVGqSTSKwN9Ze7q5MNuJ3ntSzfAbzfmMrh9pHviEej5f\nxXjWWnvH3X4NwLMjf+MrRi5eAfCtj/H47wWBVBRKqQMQmewnLzvIN4vt9j4Afw3Av+dQk+MTAP6R\nUuonQISDdwP4l9baTim1Ukp9G4hw8OcA/B3xmD8P4DdBvaN/dmm/hw7Cm2jZMohuSrXkC0GHd4fO\nR6SyW2xacrYko7gimjnhktPS9G6g9NQvUgxAqq2phzCfAWfnkSIBPQmgTQY1qZHDGXstDM3v3N4L\nF87tQw88rNEmwy+I21MqKXC9nMUX10Hbiy9iu+2Irg0E91Oui18QPB0e6MN7nuGXRko86GwDzTRw\nziaddlnQDyviha2IWV0A4mPUhhbv9PN1C24EOnLR6ZyXzkVusaJMp7p6MEvjy1EjWQHrr5WaZlc2\n7WlMP5dyRDwDtSukJYTrQfL5GABQboJKNitHJ8A7GiIDCsZxLgMV7+8y4Nn1f6wwz+Bzo8w8TR7r\neBSBN0ssBSTJBJJkMFY+94KppR4I1UaOuE8grL180FjEM0qpz4jfP+o2zwAurizFr2mtUuoxKKZx\njD1eKfWtAM6ttb+T3J8D+F8B/M+cUV0Ub1bP56dAX/N/qmhX9ilr7X9hrf2sUurjoNSvBfCDjukG\nAH8ZgWr9K+4fAPwDkHf45wE8BLHlLo9MBVAxRRCxlOACMc+T7pI569m7hSrrsW6O8GBb4/7WRJpi\nfnpb07zCqqbdHKkEnKIrGsyLWwRAkzlQnXrtLMsqw5ydgQ3UhKvnfkm9Hd6tcZnNyeRsWkoCfYPW\n3fb1crF75DKbb9Ke1kFeH8HbNZPnQwQ9v00UHFydPpt6b6Q047mof8DA6Utt3SbKdi7bUe/yXkqV\nEga+OED4yWXRq0jt7wCnMAcVhx+i9L2gYCnd2RVqtfGLbqQEwVnQ2DElWY8ss44BEBElTOSUeuGC\ny0DrAJYzIADONmSocLCLZi/PC++z/AZNZMvMWFRMMOBRBAaeVTUgDzHo8DA2z75FIGQyqnQspkG5\ngTchnPXssJN/g+OBtfY9u/7zosqSUuquUup5a+0dpdTzAO6N/NmuKhMAXPb4D4FAJo2PAvjX1tr/\nadexyXiz2G5fd8H//SiAHx25/zMAvmnk/i2A73nsg1Aq7ODl3YVYVNN+QFKeSYHnlTMyGWMhRalc\nPclZ6ZjmPGggUuHFvS2AI5pByZfkqNnWwPwcaBoo7rlIGZD9MPTnL5hkaHTTrbwiNQC/+LNumf/g\ntQFwFt5/mUdy8wDi7Gvs3CDMjiwLatLwQsODtCYLZTbPunIX9ZiaNN/mn3GZLVgbPP7cUNKfSYEn\nNSWTjqc8d/Q6/F4u3v0HVljVu0w5s6g6oHSEBVYF91mQP/5A+w4lsdL3+DhbjN4S063loir9jMRz\n+dsXgBE/v1S7kOW2VHaJWX7+LQiJKQAjJdo9ob14BDy6G5WHeVwiDfoujw9Ie2+o0s31zQXwsOqH\n8LT6QxZcDXrJ/fzlkb/5NIB3K6W+FgQ6HwLwfZc9XimVAfgggD8hn0wp9TdBLY///KoH+VZgu705\nkeeULchId/Mp84kbsI41dt6fYl3fxRfXCq+sJ/jiWnmPnm0HVHWGutYwpsP+tKfsJycl44lWWBqF\nVaNR6g2MnZLj5t4SuSuvKFYPTo+Hf3JdOnHu3FT3hdV1jmVB/QSmxmqVw+ZlsI52kiQKgD07990I\nO9GA6/lwL4wvVA96TL21W1IAHvHLGYCOpPjmxi+CVqlBAzs25Qsip2MxBkRWKcoWpA1GJ26nMbbQ\n8ufeCguCPCnlSeUFtnfoVti0p5GNdNoL4Ui16OhnWIy9KrjrBZV7N/3f+0cy/ZvtMNqjiHEZvSVV\n0LmRmWFCSvDnIw0uLwq6e91vsGryyPNIiqtG1WPBehzcJ1iQRu/5748HnrOHO4GH+6MZcq/s0Vca\nSnhaec1DJzmln52FcrUro6u9W5FVxZOKHo9VdvtK4iUAH1dKfT+AL4LAAkqpt4Eo1e93zOAfAvCr\nIJLvz1prP3vR4138uwC+JMtqSqkXQeW+/xfAb7lq1k9Za3/mooO8xuCjiYJ8UUo9QvNFyf2deziu\nTvHKmcEr6wIvnwFfOFU4XReoK426ylBVGnWlsVjWqJcNFvMGk45KcCaz2Hd6Z+RWugn183KKvHwH\n1fdnzultzDZ5MkerM7fQ3BMlKQ0gNOFZnr7rcyeS6Upwkk114N4nqLnONHMOP3Qr6+IJE8jrkAnl\nBj+vMiZjk/QVlM+E8oGlwS6JH454wR4hH+QmvNdUCPYqPQ73GIVFTD6Qg6/uuVLgoR5gDDrSSlr+\nJOsc5Zhe9D72jfVZ8sy26DSZ8w2CNd0c6EgXUy55pjEAoF2RgDIzJ1NBUWkcx+9pDHi4tAbw4GjQ\nOZSgo1URvKwSR9JdGY+0D8mMAQRvIrJgL3VcshZ9UmaF7qL0v5XDWnsE4DtG7v8ygPeL3z8JGti/\n0uPd//0GgG9L7nsFIzPZl8X1BR9dQC2f3/3/6e7XKz4/xKY9xWsbi1fWU7y8znBvq/DF4wx3Xt3D\n+tSgrjRaZ69cVB3WpwbzVY36cIv5osbW9JjkCic1UGqNlaHsR/e0aNc90KkCZv9tgXGUzFgQ1fgY\ndbVJSlHjiyjNkoTsp7NOVNPVti0AzF3Zho3d1iELUospAQ/76LCdQXKeBkOS50eDshDflppkUr9t\njL4LxEwqek8XL5peuVknmQ/fHul9RJH+vwAg3x8Rw8X82aTAI/XsZC8wDOBSeVbqmklX1GUNUaZt\nvGwPgIF8kyxZxqU+2sHzuiyBKAKgkezHdlVMwnAkhojZ2Qf/nlS1gN+T1K/jLKfUvafdDzLltgK2\nR6E3KZmYp+MZya6ZvAhwBKEoVf6QpcpQ9n0yZbf+8QgHf+Tj+oJPlhOjJQmmpaax6VZYNw/xqOpx\nf5vj/ibHF9cKL68VXr03wdH9Cc5ezTE7rVGggRF9k7PK4LgqUdcat57JMF82mOgGywKOhKBdaWwT\nzQJ1toF2JbbOVqjb48gaOVgUT6PdplQS4Ci1BuCeV2Y/TMvlHX1ugPMznwH5syEzHjn/4JraRhEt\nPWjUnYbB1bEmfFuDhkuGUjYs6MnKx6wdRsZqLZYAVggeQwA8yYHlejgLk06XkQX6V9JElgwo6STa\nSyfRMHvEqt4stCr7gdsOONlkbtNC2XJZdjBlD1N2vmRb9xbbji7XQ+cOGzf0XZbrmWbh0l4WwxUv\nUoRG+N5HWdBYyc31QIJ/T+sznqqLgccDqJ/VSee8CmFlLqwtGHRYy04OBrN229gEqwjf02FFbiBm\nsXJJmzN4V0pnE0UP4iPajE/jycS1BR+LfryRKK49/gLW/bnPdu5viFTAZbY7X57h6MEUeKXHwchu\nrC41mlJjtmwxX9QwZY/FvMFBGXaDALOe3G6rj/smAAazQ0zjPqlpQeMd9LKwYuccJFzke+Lsh0o8\nYc5IYTF0FpXaXu5CjQYPxSI+UExgJt2uafy6cWXF+YUApFUDrZ2njmpQ6s1AnkcSHCJlAykbxDpm\ng6FTDH8X7yv6nui4pFf3pxFJgs9xaK4HvbnIzbQldeuqDsBzujKoaw0gXvS3psdxRaXaySa+ZNO+\nUZoNxgrZqRL3kIjgB3z9m6+jkqIUzQ3PoX05jV1uQxnUDkDH6MUQcHiT0J7GckIs8cRZD2J1AmmL\nEN1OAQeIQSclEI0EA8+TynyeRhzXF3yspQb/DlkXvriYMcbZzpfWOV4+C2W2hw+m2Ht1C1N1KKoO\njeiT1KVGYzTsMoMxNcqyw3xRO3CwUS2cmtFy+SVNsFJvQp+gCbNDdzcKqyYu2QDxbhPYXZoK789l\nK+UcyGtHuS1hJ3NyFp27BTulnyb6cABiLbJqDRwf0+yQ/JtdbMIdAMS9Iz+r4mZntJL04fA1HgUe\nXsykxAwwzn4DPPBwRlP3ib6dP4fDRSnYplsvL8MbgIkeupvWdegP+vtc9sNR1Rm2useq4Xx092Ur\nP+9AU967ki3ARfNAY7qFqZo4WZT34nc7Cjr+8+lqoN0C2MZSQqmOndRsu4JXz5Xm9HYEg+EbATgW\n4z5G1zWuL/igH935pfReGhrN8cra4N4mi4Dn3qszHL66RuFWmaJuPfgw8JwvDWZli8WyxnzZoDQ9\nDsqoJzoavKNdNaFBzZnOvS3w2rmKGHUhGrx9bncqSbOMi+zJk130lBQFHOXWgxA31AXocKmJw+9a\ntyLj4caw9EkyBSWWfPE3RdylbA3pkYm7cm0AxSSEwg1dxrp58vMbBZ7KASiDjlzAuB/EPY0R4Nm0\nwclSfmcuW9BpfkeWB+mkbzvx2TnQqSsdfY5VpWHKeKWi3rpyFtT5KF256oINN2vcjR3nZYvrAIB0\nPDM0RgJhsAFwMehUQiwVCD+lbp704bkC8HjQEQocg43OGOhEg8T1ILNlev/TePJxbcGntx027alj\nAeUR8HC2wxP09zc5Xl5neHmt8KWHBe68soezV3McPghy9EVNX9Ci6nC2NDhfmPFymwlZjyxPAEkJ\npVdRo3pVZ3htA9zbUJnt6Ggy2DEDgDEd7uket6eB/RWX9oRIqVg8KANyFsU6g84XUNbS4CsQNdQ7\nuwXsSJmNfYhYZ+to5eV5qPbOlFi3iMxn5J3CIp8zEGBgCECBhk0glAaDULS4cb9J9i6kGjRAlOlU\nzVopPydVdxs8qnr/mchLhuSSuGEeSqTsXEt/Y73eXNX12HaZAw/nZFp2qKsMRmQ6puywWDa+51Mm\nthkrd+gs3BqcP1nKKPYw2inamsTYZkwCUFxqC3+zNI1T8uhRaoyW14JK98PxDQHHY4IOAKL/c0lt\nbzbIeAa3LwgqBbreKJpL6f2PE6Rw8NRSgePagk+mNOYFEQ7kxSmpo6tG4/4mx70NMdrurjMc3Z/g\n+EEZAU/j+jpRtrNssWcqv5DcurXFgQEOSotlQe6VaROWF4+YmhsDz9019QiO7k+SjAe49Uzcc0r7\nPQAtUlq16LrWa3LprPD9lKCCEICIoo0m5QOFug7ZDpfZnPMqe6gAcT1+ELwrTUs9YmFSAKANcuTI\nVT5skHNJTS5uUn16tke/pwuS0HLzs1IdbT6ChE9qy937zysdogWAOts41fAGs7xNFvUcjsiOie6x\n7WhTAoQsdjFvovJpGFBOmHA6fMZSEeBGmWGa3/QmhRyXZTtSeWIwk5Ubn4WabEbW5+x42+e4UYb3\nKQeaYxJBkvG45901tKuKAjbyLKKfktEmsx1PIODPVv7kkEDGFhR/uBwT/sjEtQafy8omPJdxXAPH\nFTyNeizOFgbnS4O8tDhYEOgwa2m+qC8FHr97Vq2zDI77BjLqKi21UcZjyh6l6d1iFS9MgOsr9cR6\nA4BSuwuRlbcjh9VG3BdfwAOvGS6ziWxHijlSgzi5wpk9lzZ905mbdNLeRTQ4OuZDlO6YTZLhjAwN\nE5V+5bXjxgzySt37rEKCji/1AcjLBWVpGaub51gauTEgADKOocd9gG3XA+hdZhRKsww4sR+SsKfY\n4WEUGcclLM60bLlzCBiOau3o8NKgzmdC7jn8TNHIYPHAwE9Sui8AoFGrC4jMOGWu7QIdYAg8HC1p\n2ynMBw8hj6KnZbc3Iq4t+ChktGAkYbIZNqAaP4PPqlE42WR+0S8kjdqV1+wyG4AOl02enfceeFJf\nG8lG4uHKpVk5AkIMMNuOGtRVpXG+yjFbuovddFgsa5iyGyUzpLFqtJdviaN3qtuSbdfCZFKsMw/A\nc3Y0sPvuj6nMlsqa8DCgLJHAiAVjh42B7SoS9UyD7xrz2Rkr1azPCfU5EuCp7Nb3d1LtODnAejhp\n/eI+6GEwm24yR7l3C9aVvGp17gB9A/LaAkqdYd+VVTm2XchSh4OZserBGOhEM1bWUp3HLfAKoXzJ\nKhcc0tAw8vqR4J7XNN+ENVRuYPIpOsugM7I5EUA22t9JgwFIGuONhQSXugmzZ4km44WRmvHxXqet\nAUeiIRp4G5VQv9LoLTA2E3td49qCD/qWduzJbpiEEnNUfYOqy3zWw4s+R11qnC8MMdnKDvPFxtfp\nAfha/YGhsgmXTFitl0sk0hyL+05d1mBZbL3oJJD53XHtVBOKqkNdaQI4BjtD4MOvxQZcadCiyrfj\nHbEv4RROYdntZqfaOa92/RB47j4IrrDAKKXHbrtQekvprlJJQpfjQ6ljv+8CnGThsk0DhRnRvqVP\nzQ7gub8tonNTdQqHkxZLQ34yU03go+Qsk3RHna9ht2uovVsoJ3NovfQyLTfKjcs4i9GS6FhI2jL9\ndLI7bDOQgk47BA+vxIAAQoBjKLaJi60kAIhzTVJMNBOmAK84LjPj1C01mq1Kg8usYxmQJ6UkIJSU\nTXfSpne95hioSZ8ja90mUDL5Xrco9NO4IK4v+HQNlROAnTx/ynoo46Dsgr6QD6spTsopZssWxtQu\n6+ijpvEbEdtuWHIzhjOtYWM6fi+Zf0+pUgDfD8SMpbKzuFEy/TSPDbzu3fdltu7uuVfAznZMmIcD\nTjIeIJIO2qWG4EPSpVNWVNPEDCcXkTK5AB47WRC5xJXaHlU9Vk14PC86oY+yj6le0nk4/TKsBJ2R\nbMs6SZ98Mod22VKdbWD0BrN8g87WA8DZ5UskMx7OSo1exmoS9VDCKJy3CqiCpJFifTbOSrhkCYwv\n0KYYeP5wv23XYPZojJXYxjTlXKiiwK6l/8KMJ32dXSU37vts10R0cb2tPFtgqpfo8ubSXtlV46uo\n7faHIq4v+DQtcPIa7P5zAYDaGjpfuJp2fAGWpgcW4cu8PjWYL+qoxCaDAeIYPQ4QnBonXmbFAu56\n6fpG1M0bPzXOhAOaileoalqYjOlwXpaYla3PeiBe4+W18hPxKcDwYjfmGjkYUDRdvOCeHQEnrwGv\nPfBltu7uGXph9d1tO+j9pL+TOEVGYMBCnzosaqMlmktAh056A1s31EtKYz4LOm5iml0CD7mKxgDO\n2YWfH0oELr3rq3t9IGbqMa9NTehiyx0DrNNkijfn74AcUh2Zquc+i7RiL9WEzgtLGMmshSNl8vH/\nV4jLlRJAd7HE8jqmpbsY9JQEcYQnk0aP6TJ18EtYbpTRvs7nTl/HWY9DWGowtzF/Qn4+TyOO6ws+\ndQO89oAWrBvPUj1bfMlId4otEMJiPXcAlIKOMWE1Z+Dhn1vdY9sp32Dm4MFS1lzj4bbONqj63Mmy\nOMmSZPOVlzZ6TXkboDmgIBEadMNYCUGyp/j/D0xQRCgz60tMA+C5+wDtyyvY0xrdSejx9BWQlaQk\nnCWMJO8UeVmMzX7I/3NDhynoyMzDpmrgUhJIlNok8KSR0oW9l8zJnVBubMb7S9Y0UFyCy50SttBH\ny3ODPDco9c1o0d6lJcZSOBFzrKlhqztDkgUQACPfnVFEIC5s0/3j+Rzyc85nlCE44zmaAxMgcwkA\njYYssabHxsdxCQDtfKyMHeXYscfZ6pQcheVzvQ4LjadxeVxb8LF1B3v3AXnmALA3AJXfuvAxpelR\n1Rnmixp1qaMFPy15SQDamh7bNmQmpfQ7yazTLBvOWbBWFgFGfCwMeheV3HgQFUAkXMkZFBMhmFW1\n7YAlqMRzo8wC8JzcAR7dhb37APbOEdqXV+juUw+DQadt3BLTAAYVsE8ukWnWc6XGcAo8u7Id+XvV\nwlYdDRuuz2FlI1rqd00C8PAsV/QZO0l/2cAv1QRYH8Gu7hCd/O4DbzM+Fgqg168b6jMBNECLQM+X\n+nASlAB3UUqZH85wtivYrqLsJVUBkCDoz+95fK7TvpiYpWELakDooS2mAYjW7rkucFAdqGOP6efJ\nLKKtPWsxeiQv/i4LU0DYaCQxmv28HtASxxSdW84In0A8ppPpH/m4tuADa9GvKmRz9wWbrQHhWc/N\n+onOcFCGzIOymCHYjAVbKwDAZL/BtlM4rq0zkwulN6k60PVNJERJgBEuL5ltLZYX78i2HfDaeZgf\nkVYPALBO5o/4fS+LDtP8Bko1gT0j4MHDE+DhCbq75+jub4agA6CtM+TuvNhtB7BF8UUzPleNS4CH\ngwBILBZcbnN2563OUHdr1N3GMdnC51i60uOAzXb2MAAPzzGtRnbsLlTpjq3gMtZIj4MXudwQmOQm\nyo7S3bbXphspk6VlPzQFVF0MacoyO+RzKKwJ7GBl3JDDL0Aaf3XjB4GvPBujTfwz/T9m40kQSgz7\nBu9P3h4xhHxssPDlRvdZcWbNQ67rcXmlt2oopW4C+EUA7wTwBQAftNY+Gvm79wH4SZBBx89Ya19y\n938PgI8A+AYA73VGnvyYHwHw/SDa5l+x1v6qu//PAvjroHLLlwH8J9baBxcd5/UFH6Xi3bi7ODj7\noMZ7j2ensVQNAwELQ6YxutCvuCzWg+VRSs00bnriG2UL9FRyoSHTsKhPWBdM9J1Og6o+6koTOXze\n+KzGZ16JtxDfP1/EB28yYuIdTltiUGUz2v2dvBYx2roH5+hWbQQ6HLkAZOVod9IxcpTlJn2KXk/w\nzlhmIanluXazQ9oAaH0Jy885RedhOgSes6MIeHZlPABisz0WYx0RK90VbF8QlaNGduN+YQSGi23d\nwJqCQKgoor/xoANc+l58mZSzR5lB5mYn0eCyDGgwILyrz8fHLRf/EQq9nc/i7GdXVj0GxmOvlWSE\nlyloXzV6G6oOb3B8GMCvW2tfUkp92P3+w/IPlFIawN8F8CcBvALg00qpT1hrPwfgdwB8F4C/nzzm\nG0GOp38MwNsA/JpS6utByf5PAvhGa+0DpdTfAvBDIADbGdcXfDLXiyjEQpibqN7O+lgHhk7TtgOW\nhXU/AUBFAJQCz+nKYH1qAhnhmS1oiJAeC2ELcN4StZnKceHimWiSU5nkwKQDYHrUZYeyDF/iunIz\nSJE4ZchwUt0wDp4LOiitG3ylgVejly7r+aKf4enunaG/T6WZtlGozjR0YSPAAYC8sIPezmjJjYEn\n3wE+bPrGpbcrlFKk1bj/XMeeG9TAT+8dDI0y8DjJoJBpdbDbdpDR7QSex7RviBh/TApgdXDhaeP/\nPgEQef4tEOjKCVhxqXLcgjp8ZpF5oCtdsuHa4xrUXYkZ14UyqwRZfp8SDFTZhjKnfI7LpHVGBlf9\n67nPendG+JaPDwD4dnf75wD8BhLwAfBeAJ9nR1Kl1Mfc4z5nrf1dd9/Y837MWlsB+AOl1Ofd83wG\ntKDtKaWOQNX7z192kNcWfJTOQiN6tidq8LSYalWgzGgQ9Pa0R9Up7AMJW4y4TAxAda2xXhU+yzh+\nUGK2qnG+NACcmoIDIMwomymdnw8ALNH5rIfZbgBlJTL7qkyH+RJYr+KLR2Y4fDw8CzQWPBe0LHj+\nqCdml14Sm+vR3TA8elKhO6nQV0B1prE908gLi65RKPeGz5+Jktto1iNlbSCcQGX9nwHoCg1oVeZh\nEY4YWjG4Se0uFleVU/4mm7pZpofxLBPvhGWJTwDQhRnP64mREpue2t/8AAAgAElEQVQ0UvMzVRhK\nF1HpsaXy346eDwNPeC8j35EUePZuRcATVBIeD4Ci4A1GOtwqsw9xrAyUfLzZQQlgMwSgXdRref8F\n/S9bdeiPKyovn74phINnlFKfEb9/1Fr70Ss+9llr7R13+zUAz478zQsAviR+fwXAt17yvC8A+FTy\nmBestb+plPpLAP4VgDMA/xrAD152kNcWfKDUeFnGbv2fcOYDjLhodgoAU5pZAYEGUdenhhQIVjUO\nHmxQ1B1OMIUxbjF6ZouJ7h37LbhyruTzex8YYtvVfRCj3LpsY74cL6ulTqoNFJpSE0POqS4slg32\np73Peg6nLQ4nDYyeB3bb+hz2aEUXfN3DVi22ZxptnaGr+TJ3x+sAKCvjktvOrCe1r5ZABMQAlJuL\ns54Rza9o0WUQ6OIJ9rGfZIQXZzxpz4F3w1xSvLTUNgZCY1YOfP8uSwHRn/HkgDKPgEMl0hbR3nUE\neEazHrFhwHwGLG4E11rhYgowE6/1TDwZKQClzL4gvzPCaIx6et0AdHgT0B8TAHGfzYKceH1mk5Z3\n+TX4u5ECuzs3EnieVOZjrRqtQOyIB9ba9+z6T6XUrwF4buS//kb8mtYqpd7QKVmlVAHgLwH4twH8\nPoC/A+BHAPzNix53fcEn12She3BAF9beTbRwFtNuzmKW52AdtDCkaV2jGqi63NOVTwBf+mIFAgCR\nvw9AhAFe9CPFAyeTErx7tBcaLbXGRBNZAVA4gCM+mB6V6Yh5V/Woq45Kba5JzBkQS/7w65uyw2Le\n4LmZxdv3CHiWxlGLsxlQ16H04Q88gypz5KajkpuxyF3ZTRdOi2xOJbdsYZDtl8j2y2C/zQvzbC8q\n3wAYLUtFANTVl5fd0gUHCM3+tva21+wRFOjLYX6GX4skferwHPz88xkUzpHtA3biwPaZ+fD9XVZO\nlPePAZB87RHgGermhVKbBMUoknOnSk0Z0ggZRJU6vCd3fai9WwMX0zHAiZ4nyXwkHTsykJPnJj3v\nl4Tf4PDvY4oH5VCzzb+G/F6ZYPGRHZQEbAB6vCmZz4Vhrf33d/2fUuquUup5a+0dpdTzAO6N/Nmr\nAL5G/P6iu++i2PWYb3bH9Hvu9T8O6jNdGNcXfEwBPPsi1N4ttOUEnd36HZ3s+8xyakxzaazSoSTG\nBmHp9WvKDuduMahrUrqeLZ2nz6LGQUmlrmen1mUcLW6UmTP9IiVk6v8EECIbbFZDBo4rN3+UgNAc\nw4tWyvLzuvTczOL2xGU809b1emimBe3RoPGryhx6v4SpzgA0Uc+HQUfvl1ALg+ygDNnAjX3g5n5w\nQBUinv48R9nmJLwol2G0KJmYIvQw0hLKrtp+vvZqA8hr6LwcmNH5RbQVOmRiAVRFQYyvvRnR83mg\ndG9G70+CaipgKpvpLtPbOd/C/ySTjXfkDnhsRZkonQPaFNmqvdoclYho0Za3F9Poc1PlAjYvBxbT\nO5/3gnLbmMhpVHIDRoGHQVJNclfulDbZ+XjmyQaIu+aJTB2+N00AIeVKxtmypOznZDez8XHC9mqn\nMPETjk8A+PMAXnI/f3nkbz4N4N1Kqa8FAciHAHzfFZ73HymlfgJEOHg3gH8JKut9o1Lq0Fp7H0Ri\n+N3LDvL6gk9uoG6+A5Xdous3voYtp8tDLyBIxledQpVZB0IKJzX9TWn6yPwrLy0aaDQVWSzcXpxj\nvmzw7LzH7YkdAM80JyVkZFO3K99EIMQx0WSvcFBSuW+Suxke3QPTXvyd++nk+GWYjDQ2b0+DDD9l\nPaQNxhcql5vogu8AkyG/vQfgDHnh6v3LHGqiB9mOurFPi8Ct21GvoOo3qLuHqLuNn9qX5xpZACDV\nliL7MWHuoxaSK+lgJTCU2GmdfMoEUK3x2U947SIsmKmiM7PDiuT5WUU56Ye0OhtmA3lJz5+H5/bU\n4oEMTj3IeHgB9MAjg7zQ6VgdAKVlorRtHPXHkvthivDZufdlJwtsutXALnwsRoGHsxmX4UYAlJbc\nrjDQObDLlpJNBwdBQknYfyvM6Tsgz3dniF5dkyyTHdm8KFNALy53gX2LxUsAPq6U+n4AXwTwQQBQ\nSr0NRKl+v7W2VUr9EIBfBTGfftZa+1n3d38GVDo7BPBPlFK/ba39U9baz7qs5nOgktAPWms7AF9W\nSv13AP4vpVTjXvMvXHaQ1xZ8bJbhtHsYAY6UmScV4rAjZml8rQIrbVVroSI9zuJhQ7nFssHhfhMz\ny4y0OZ4FPxhn7y1BCGhdBpQByHFcAyazqHseXmVjsdj3ZZe6tbd0iFS1i1isUwTvNC1aAhhX3snK\nHGphoJ+dxSW2m/vA3k2/eNX9BnV75O0KVrV2Ctp2UPrSOifvGJetWCYeiJ2qHzy8LPvh9+GlYWqf\n/fj3Jso/kRCmOAeRbpwAHS5J+cygW7v3IoHVfZfcayo53wIM2W2y15OQC+i4evQOPLIyHwWgxwlp\nO+2zh8UNAtRy7o31UtkftjTfGam6Asso4YJznsTFVHAdvnMSMBOrd99fcpsP61Tr0brv1K6SrlR6\n+EMU1tojAN8xcv+XAbxf/P5JAJ8c+btfAvBLO577RwH86Mj9fw/A33uc47y24NP1jbdHTp0ZZfDv\nJiPfEgKrHMAGhxO+MAoAFttbW+dMGZMAbh1u8cLtLd4+t3huGkpdLM8/ddRmViNmufq6h7eMXhoa\n7CGnSlK6jje4tOMc8/HhkBkUkymkvfNVQpU5/XXZD0tsDDq8cO3dJDWB5i7qbuOsCjRWdenAhzKv\nUvdOWYCyobrfANkUeTkH2ofhxfOwUwVChmPHynCvJy7bdZtitIRY2S3q9gib9tR/l6Q3EhD6IxKI\nyCV0HQPQE4wxMoEMCToeeEwR+qATVvwmR1eZLQLwklBvZFCWJqnVYm4MiMttezcHVHCuamjVwuRT\nKO02NJUDIP5OcekNiJmZUgD3Kwxr4YfOn8Y1Bp+mB17buKn+zFGdE300Xijk751tUAMwAJZmg6pX\nOJyyBKHFsWmw7RovY1PXGof7zeXAw/pcIDUVnZcEeLYg18hs6l+PoxReM0CwzJbS+6XTkyMduUDf\nZv02ICgs1OocyGYo958PgphFMbAzZkbQKMuLS1AOeNbNER5s6wh0+BiWhggc5a4yuNw5cx+FB9oF\nTVali4MkHYims1yYLmyY5wbAHJg76ZaiCQtRPlTFlnYMVafd5+CyaecYO4bvOfJxlWdRRlJwnT5H\nDrBbDbvtkLlM57IshwFIjZxkW7X+3KXK39zn6brVaGWAY8x6O7zBcRkED9AOgMmltnYZiWPVcXYL\nIBub2eHjZtIQf+/KOaxSrnc7ks1wZi/JDbM9ei6APmsgHsPYRVh4Gl9RXFvwqboM9zf5wCtlaZoB\n4KTBWRAALIut+J88cqfcdj22bY/bU4t3zK1nlY0BjzTc8irIwrYYcBlQwew75eVgvDldFrKdUM5S\n7rFEmmDCRJoVkaCp62tlBcqb74DlRWCdTNO7hnsKOqwYbee3vHbag22NV84KrGqNk1p5fTnK0ILG\nXZl1g1JVcIzj0ysASDaLBx+QoFhz+S7dESeGagCGTDS3KPnXme353XVqx0DAk7nNAXGkIgWFJMHU\nzgp8VJVZ9rZMAbUgyR4qqWnYSQe7dWXQERpwynbblQF5QJIL+mzP06pHF29wxpMTKCXvaddj5GPp\np8tGsilUOQfymsAmj0twnjbNkapXOBq4ZON1fWpdjuFnnYb8rAG/0VDL52HnF2s+XjX6XkWeYNc9\nri34bHvgS+sc+yYuUZW6p7kFFFEjOl4Yc+/eOLPUj+EoddjZbztSQ5DkgtSQDNKQjGvggLd5yMs5\noNwApJ4C2KDq4nJVqXtnw11E0vvyuOt+A+NsnZm5JwGIsx8G1VblyJeUAWFP7BTbmphedTMAHV7c\nN90K6+YhXttYvLIu8fI6c75IQZooWH3H9hLpuR6Uo/w80HqcxpzO1/As0WQezagQAInZnrHgHS9b\ncF8CPCyVxEhDVugChAQAdVbYkztdNx+CNq4wg3UCocowG6uBdVRpf54umUXxGZBo1tuqC9ptO6SI\nPBEnUTNgAJJxERlBgkFQ7+YSpevxTeaiJzN3fb5ioLYtP2NJZtmZ7bjgmaKdPabZHrwOXzmH2n8e\nbTnBurm78zmfxuuPaws+m0bh/3mo8NwMWBYKz065HKUxy+mCYHAA4M23ctcw9T72uoUEBACivCVK\nXA7ggr99HjOsuBwABNl6IKIGa8W6cz3KXnkFZtlfkKATAybtUrVtsTTNQM0ZoMWj7jYw2jF5syny\n5fNRqSLyjRnJKGoBPL93UuKLa4WX12qg5jvpWFkh3vtHC9pFPZi0FMKkBCAGHQYrtpDueefdxtnP\nrtcq595ELQWeTbuK5rLCILIWG5okC3J30aLuFt2x15bsPcwCuYJByTSjIHRZjMkC+f6GyHr4XEU+\nQzvkdK4OOu7cuzIe9ffOKbNXrgwHkL2JuwYA7N5QuHIql9kkDTy9DrQqIB1Wd1pNcIl2/3lUWY91\nfRcPtm+9OZ8/CnFtwad3qgSsNOB7IZn1X9Zo+louEI6FZSYLf3FJQkC6FrAvT6k1Sr2B7t0FnE2R\n86IG+EFI38x2bJ10l039E42l6Vzjnhh4BkCHBjor3M40vvDrbhPKb73CqilogXR/RnJCW8zcrrbO\nNt5aINeuNNIaOs4SEaOIL372x7m/KVB1auCoLeeMUtafVrTI1D3tdM1k4fsBO6VqmBKdC7mZBHSA\nMF1vsqknh3kNt1TexX3G/vmFAR1lTudefZxLbWzUxyVNKotST24JIAWgTuUB4Mt5GKplRl6JiHno\ns03Xk7CG2HCRcd0lBIM0uGfn+1nC78gv5n2D87ZFIGy3vkTdWbJZ556WL8eNGOPJchuHti2MnqLu\nz520EYZEjAmicujYhoLVFoZl29C3VW01pFr7P47nstTeLbQ6w6Y99mXjJxFEOHhaduO4vuDTk9TF\ntpOS+rRbZYFJ34tJw31/FYDphJaWLmtQ6q1QKQhfspOaRES5ya/VJjyXniLfuwmVG9jqNCoRtWix\nEfTk+9scq9r4pj0DUKktlkWHUm/d+9gM6Mtcbqv6PGr6U3koFO7D89UERPkGRpOZGrOFPG1ZAE8o\nz7SeFCGzHT935IRMl0WYM/KAL+Z+aBfb+PPLkTITmbKrMI97NheIeZqM2ITRbnhXCCUCmQ3IBTao\nX2T+syd1CnggImYkAZBcoFMAYuCJ6NdlHQERg5EFHhuAdmrRlfEAMG8k6n6DqqPNiievdLJkSxsf\n9JtBVsSfFYMyAFR9WHKof0nED862TeY+V+4DbV0ZWoIOMFChB3bQ2/0mcr3b7ZUjly63p+T31Bjc\n31zbZfINjWt7Vns/bcylLOv/eRZUuwq+9iNhcwOVGxg9RacbzGyLqguMM/bjAcg+O5S6iDrdZQ06\n3ZBhWTmn0p6XMDn1FNdHVY9VY7CqM9+4P67JeZSVFvgnZzJlxj0sAqRVQ5baqzoTi2QMEkQEyJzk\nT+ZsJTosi1N0ReN9bnh3KllFPAdCg7gmGYyln2xcd2CCrBD7JmkVD34CtLBsutXgPl64qXxZQGu3\nyDyGerR3BL1CKGGtLPsVvCiHrEe5jQb83BdnPwA8AGnVRv0fCUA8iKogyoptHQgp+dr3JXy2tD4H\nqtDT2Ukw2AU8rN02IeDhLDtsWJgpGUCn6l3fMLPi/hSQ9YBlSf8XdBKXRYcbZVzu9UQE0QcCMJrJ\nchmVQ266/Gd8leFVUUJmCaFVrXF/k+O1zcUPvWo8prbbH/m4tuBj+8C559mYZeEcLLMZVFtFDLSd\nWlO6RL53EyabodMEKrwgyVkc6WDKjemlEd/qjIb2Orv1u87TZotVo3F/U0Sgs2oUSOvTqRxoFYFP\nxOBzryUN6qqOnoePja21jyuQ9E8NTHSOAwOUOndkiRo3yoeY5gtSvQY8q4iBR5IZ+LyaLAYdf65d\nhsV25btCDjdyn4bfD2dl1J+bDUgWQJi49/21VEuMy3a8KxblvUj01JEVpPYfHUfmzy2z+fjzpnOg\nogFkAqCW3GtHAEi73lkUekLAVJFMkD9uRwW3tev/uHovg0wKQqrUQyka1+fhUhNveCjjUVSeFZ8p\nZ/T8mXGJuezj3p3c4KTgM4zOXwtGh/MRz0NReNDZQSyIs50APFHWIx1yRwgztevn3d+WuLfJcG9z\nBRuIp/HYcW3BR+cWN5/Z4rlZkLohmRtHf94+DMrCO58kXBS8KIWLTVpg8x41ePjwhb0sqMfS6VAv\nD9lOgfubHPc2mQed4wo42dCKdVz33oV02ykcGAK8dNYHQOSMelzTcR1Xgfpc1RnWpwYni9oJnwKr\nxmJZ8AwTQDtbKkOabJZkPK1/vUOXzRCVnRZlySrk46NSIZWljGeBhaa0p36LnXLV5z6rol0zAVBn\nG68Q4afn5cIjQkl9tXRHzD0eke3IkhsHf35yceVzycG26ZL5XPXKzzV1diQDQlCL5r9hcDWTBWXH\n2zUxwsR8CuujS0UAplJ7e/ExkVenQtHqbDTjWdXaDwRzcKYtg0uN/twwEaNOh6FDMNOxGlEHiUDk\ngthJoR4jychIerjpBkNWBp7GGxNvKvgopf5rAD8O4JAtVy+waf0WAP8QZIzzSQB/1cmFlwB+HsC3\nADgC8L3W2i9c9tp50eMdB30Q15w0MNrt6pn+LGVmdk0558arYVNfxnjAuLcFXjvnL3AAoKrLsTR9\n1LdZFqeY5bknFHC2c3ejcG8bQGd9anDqfHwWywbVoqZ5opKo3UDYbdOiRysbL4xMeebnG7PXBmoA\nPQ5K5ckYvNhy2YuZRRJ4KOOg28uiQ5lZ3NcWS6MQypq9/38ZQaI/NKa5f8KlGyCUbCSbbKzE4hcc\nMbzLYGK/AvdU2e+Ru/sUeDgoexSgm2R6nW3RdbGsUypjM2DH5YZ0yVrjh265B8R07Jgth1g6R4qg\nsgpFeywILXGJ9qoRl9YuznYYkEMftHBsTcFO8ycpaMOxLlyQnxrRY9sFWCmrlJ87kV3SqvDf14nG\nQDj49QZVW56W3TjeNPBRSn0NgP8AwMvivlGbVide99MA/iKAfwECn/cB+BUQUD2y1n6dUupDAH4M\nwPde9vpGW9yekFHc4aT1JmpRjVhM9dODkklr4X5ad0QISIHn/gk9ZjtvgBn5/ywLYNtlmOjMg1Bg\nSVG2s6pJQPTlNT0Hm9StT00wi3OgUS8bbOcNtoaERqkcR4cZ7L9Due64Bk7XBdlvr4rIBwggVe6t\n6WkeR9PfL03oFZmMaNsSeDjiElqPF/dI3SAdgAXSxUqh6rbidy2M9RR2leYYeDhbjUDn/Cw4kKaq\nB/Iz3OW5Awx2xIDo94yUlLhpzrp6UYnRZYS7orMt6jZuMGhVeHacNySUxwZQD+jmPoHMnvj/dCAz\nAR3q7zwU6gwZVk0R9QVDZIPsB8AowMj7JCinOoPxbJ0REkROwTq1XHDacBKA0hjNesfo1V7zzwwf\nDwwA6Gk8+XgzM5+/DeCvIZb7HrVpVUp9AcDSWvspAFBK/TyA7wSBzwcQvML/MYCfUkopay/O1/MM\n4+W21jHcugvAxy1aLEGyae7itNnilfUUL68z3NsqvHZOC/zRfVJopoV960pj1pdjGIRWdSApnNQK\nL5/RcxwdTXB0f4L1qYFa9SiqDnvumM4WBnWtvYZctahRmt5nPQxEQCixyeyJQed8laOoOpiqwUO5\nwM0bAJT9EFU80MUNxuc7eEHobBMa7Zo1wLJEPSIuqwFwgBMyijAQG/ez+L4BM1GAjrREjjTMIs8X\n5/nTXQJCSEqrvRossmO0cklkYbYYL7DpDI1kSUo22SwPGZfOinFVBICyGo7USI37Gg50mNCyaVdU\nWmuKqC8IjAHLUBljrATHIQktcgHn88LvM3yOs/Fym8xcBQCNxi7gSZ9LRuvm6lo6V/z5lLpx5eGn\n5bc3It4U8FFKfQDAq9ba/zvxCX8BIzatIEraKyP382O+BABOJvwEwC0AD0Ze9wcA/AAAHL7tFl6c\nN3jH3GJe3KRyW0oySCOVc8mNb9De3xYu46GS1kRzd4RCWlnLnTHAO8NABGDwOjqa4M6re2juKygQ\n8BR1B8NGdabD+crAmA6njhRWlx1OETx8uNm97QgM16sCpyuD9alBWykUVYdZVWPvtEZRdTgGsC4N\nSud4ChOyFVkiAUKZaDyuIEPv17EgTZMCD5e0JlphaehBkhwy1cvgvProbmxF4OyQASATjO3gCcsf\nyOVzHKEcGJsLkjgqIHVmIpNAp0RB/S3r+1JATIOXM0MUWViY3cCzB+7cEN0/BUomyKWA4wYnx0CH\nqfd8rk/qeKFNhWrHRGvJWDEtz7nzUmc4MMPnYpmpVPEjIgo8yUizHr+pPPPsQf5elOUcXb7Ec9OH\nqLoWVfek5nyUdxh+Gm8g+Fxi8/rXQSW3r2o4D/SPAsA3fPM7LQOPyaZ+CC2oDJhot5zuJL3PSXPX\nDVWWVGIQycDhPn3BjemwP+3x3Mx6E7ldQVkLWTSYssN8UeNhNUVbkRV2UXVoTIem1LDLDAeLCotl\n7R1KOTyl04EHl9kql+20lcJsVcdgVmp6DViYskdpgs22p107C4gxUc6LFI5TSRUAVLrrWj8TI4Nf\nj5rdIfNh/yGZrdqzO8Cju7B3H0Sgw1bIADG/9G1XkxoTquTYMcgIO8z0QhbW43Dagwz/xKyUsKzQ\naoJdQcDCMk0SdEhSiVUx+PzlTviTTrobSEWYDdo1iCkFUFdNmPeSIC9jWDYcaggG0JEZEQMzPWEp\n+nRyLo0+w31vJ6IeE3RSm+5LY8Si2w/YgkYqGIBMOcU0X+DFvYd/6IgHSqmbAH4RwDsBfAHAB621\nj0b+7n0AfhLEgvoZa+1L7v7vAVWTvgHAe621n0ke93aQp89HrLU/nvzfJwD8G9bab7rsON8w8Nll\n86qU+uMAvhYAZz0vAvgtpdR7sdum9VV3O70f4jGvKKVyAPsg4sGFUWbwwJMjj4fQOGaigJ6qI+/d\nxLo98oNou5rOh/sNJhq4PbXCwK3z5Qo5gAcQ+HBmZAzZX5uyg3ELTF1p1O7ini/qCHiM6aI5gui2\n6++sTw3OVzlmK8p20mhKjRuLc5iyIwWCIrb6DvJAQ8VvjrEFwWbTyKcoPC53Jbo+zI6IUg4N7WYe\neA4nDWZ5Hijf6yPg5DXYuw9g7xzFpmvC9wYgCnL2TBHM4UaAJ7rNkjyi38NB/bmYdnw4bf0xs/SR\nyaZBiiklEojQKscsB2gItXCDl9OIQu7PpVJe7imihnPqI2ew+lMnexRYbLKvw2y0sb5M2HAEHUF+\n76Fs1iHYygcg4t956JrOS+/t4rUq/GdI119QIIiYhpfElQBoJOuxZ+funIFKs+K7YAHkuYHJZpjm\nLV7cGxk0fx2heoviMaSQvoL4MIBft9a+pJT6sPv9h6NjUUoD+Lsg19FXAHxaKfUJa+3nAPwOgO8C\n8Pd3PP9PgFoeUSilvguM4leIr3rZzVr7rwDc5t9dP+c91toHDjUHNq3W2k4ptVJKfRuIcPDnQE57\nQLCM/U0A3w3gn13W7wGATOkAPImqtA82MAMC8DjZdmIInbqSRYaTOpaS4Z7LRIdsZ2k6b1nNCyz3\nOFY17xaVt+Zmd1QjrB74tikZmALwlIayFbZyAAIA1VWGutIeeA4ebNAkMvt1qZGXFmXZYTEfGt+V\n2vqdeFSX72oAF9NZVW5QOh2uzoZ+h85aaCfOygOLHGF4tvfnjYHHZDOo7Sns6g7wGgFP+/IK/Wnt\nRTZt1aJnJ253H1GOETfmxfDi4yx8fIwyeHFl0OFz1dnGu9SOyc8ATJ4Ixn6R/I8YruTsh0POvhAD\n8VTcbnxZj7Md/s7uYugBw7IhZzuckTEgdpZ7Us0IEAUQ4tIjGRfu+U0MX39ykNbm1IOL5qwuiAiA\nUq08KY/l+n/eIgRJCVaqt+sS5d5NdFmDRbF70/AWjQ8A+HZ3++cA/AYS8AHwXgCft9b+PgAopT7m\nHvc5a+3vuvsGT6yU+k4AfwDgLLl/DuC/ArU1Pn6Vg3xLzflcYNMKAH8ZgWr9KwjI+w8A/C+OnPAQ\nxJa7NJTSQ+AZS/n5iy8UjdnZkcoXtGOSmmWyp8MXMS+ei2IC7SwSTNag1LQwLAsSp6TFjD8WBSAY\n1KUhQWdXMCOO+zyc8cxOKzS1RmNyD0Inz0xx+5lzN/8E3J4AL84bYfV90/dY0MZgPaqZJcEHCwBr\nqHIekRIA+OZukKPJBsQC6bhqspkrt30ROD6GfXSC/qTywMOltr4C2oYuoIwzoZNq3BaZy1SpEKlQ\ndU4zF+n/xFlBCjxcLpMEAwYjJhDw//P/+UUZiP1ncrYAJxtxX8rsW5+dpYDDs1GyxCatLdLg7+xY\nmU26znLw++L3JDcMEoTiz28EeGTVoQ09GPruYABANlkY+fedWZC0BJE/IQCIs5+OgFDlZiDv9FWM\nZ5RSstz1Udc2uEo8a629426/BuDZkb/xvXIXrwD41oue1AHMD4Oypf8m+e//HsD/COD8isf45oOP\ntfadye8/inGb1s8AGNQRrbVbAN/zuK+roGLttouotk5skO0CNi2BD81DEA34xXmD0tkKj/UnjJ4N\nJvF5XsZkZJVNCzDL2mQ4MDmWBXDPNACawfT8ZSHnd5gtx6W2piTgASjjOXlmitsvnOP5F87wb97q\n8PY9Ap53LasLvYeuVKPPDZVTmK20w2SMS28xo2rYeDfZlMptZw/Dbnbb+Ywn23d21duOQMfdpxaG\n/k/28NgsLBd9lB2hs8L3qMrORnpnfMyx7QDZNqTMNv67C7XIRs6hjNgaoh0M5cr5KAYdznZ4YBmg\nzBwYkmDi0lq4vVvZejw7YBAaBZ505iY3g+/TLpHY3QoHTheOhUmdXJGvYJgCkPbrkv2YRltDtZWz\nMvnKQ9nHKrs9sNa+Z+dzXdxT9+FmIR+jMXZhfATA37bWrlLxgBIAABhpSURBVGVWpJT6ZgDvstb+\nl0qpd171yd508HnTou/GRUNlCC+YVmdedkPuKmUcTlu/S+cdsNHz0FD1Mwg0z5LnBlovxcBcACGi\nNFssjcaBCSUSLu3xoGgKRFxyk8Dz8MEUatVjJno8nPHUpcbZCxN8zQuneP5t53jnwuLte8C79mvH\nBHwWs2zhQOdO8B26ihgnEMogufg5Ejygyos5wGoAQXiUFy8vfVQ3sE3jnFWHtG810VATjazMoRYG\n+tkZ1PO3xoctk2NOs540pP14Or8kY8zHJrxfvi2GZFHFoqh6/LhYjSCVHCLWZBbNSMneDqtbsKeS\njGjwk4Enu3jdSkF1rDkf9BKDlTj3eDiULmHl92OXJYZtRskf8ni8QR3WUFgIxfN17JEEJLR795m4\noVObV1BbIN+7eeE5eDNiV08dAJRSd5VSz1tr7yilngdwb+TPdvXXL4pvBfDdSqm/BeAAQK+U2oIE\nAd7jWig5gNtKqd+w1n77RU92fcHH7i5V8QUgVX6l9Ejo1cTT9mlNe6qXUNtToD2H7R7RxSUX7ckc\neblAXi7Qoh2A0LKosTIaSxOosIHYQL0kltxJQWgMeIzYdTWlxtnCAC9meMcLK7xwm6SG3r20noK+\nb55F2WfUV9mug9xQOv8EJAyyEYfRtgb0MOPRKkcnxF2ZNUXupqKUpfdgshly5MRuq9Yh67lgN5m5\nbEff3qNBzERMM5XRuSykW2cKOikJg2MMdGSZjZiWR770JOnR4YEx8MjBUBbw5JDZjvzOpLJKQKw2\nzu9FDn/K9zf2fsZ+HzsnXC6NmKVpiA1KCjwt2gh0xkgg/HqsC5dLZWzXRwIb8tXJAO5Y8Hf2AnHh\nxwllgaL+qhAOuA/+kvv5yyN/82kA71ZKfS0IdD4E4PsuelJr7Z/g20qpjwBYW2t/yt310+7+dwL4\nPy4DHuC6g8+YvhPgs53UpybVvJKsJtqZL8K8wvYU9vgLsPzFHRMordawezVUWyOfzKHzpWeE0U/q\nCS2LDiszHL6kmQyqWDMAcdYzlvHUgmBwvjDYe6HF8y+ucLjf4O1zsvp+136F56aKgKduYU/uxKCz\nPidjs3Tm6cztIoF4J8l/p8Mgn9Jm586VQ5beuA/izf3amgZJJQjWvc9+2EZaPzNDdlCSirMEHhbT\n5DLbY8rs0PR7Eykv7KKZyzLVuOKykHJy3xXb1k7NuY5ASNKlWfuPY6gWkfm5HZk1bxNW5rZTWBYs\nyySHP+Ny4q4YsgCHQBxkc/LYTXQsdgDPGOiMfYfYxyoyqJsIBXAANNszonYhf7qwXTUc6n3rx0sA\nPq6U+n4AXwTwQQBQSr0NRKl+v5uJ/CEAvwqiWv+stfaz7u/+DIjQdQjgnyilftta+6ee9EFeX/CR\nIemq0tPEEQtSxWYGHDk4KBvhWB+FaXupD7cjbBcWZb5gTUYKa3RkG5QdZQWS3stKBnVPt7ddYMMt\nXJ/0IaY4KalmnZeuvl92uLGo8PwLZ3jHQY+37zmZoWmL56YK8+ImZTyp0oMrc401bQEHg8WOXSRC\n/T7MzQzlecZiVDxSKhaUJJ+typzKbC7boT7PDjHNKwJP2sgfip0SAI31Qsaspr10jJBx8iUnzT2x\nhPINELvSZd+Pqh73t/kFygIxhToCHne6ub/DPZ8wANoPqNW7zkv8muFYQn9o+P45lC7juSQZDnAH\nhI8EdCQBRH6PYvLGLgDCcAPFt+X5b2s8qYbJVyustUcAvmPk/i8DeL/4/ZMgqbL0734JwC9d8hof\n2XH/FzDSmx+L6ws+KhvK50eT4BuvXsDunzJG2TtdT/piZ0ex+deuGFn45AImAWhpNm7gUhp6BdCZ\n5GRNzUOlxnSejn26Mn4AlenZt25tfX/ncNo6cdU29HjOHoah27FS25jskBe3HNHAc/bMkTXBjgVd\nBkuvDBrxuaFsxr1WDpBdAEDZzjNzAp3CDRE6w7Qo4xmLpN8DYPQ42RYDQOQEuzQbr8fGjrLp58pz\nZREbsFyQUjUTXET2zexKkvnPnUvsbsFPOXOWAs8uhttEh+HYy4CHX+OiYDBm5e7a3efVuVsnZ5Ne\nA/L89xeDTipPxMdVavqsWO2cZoqWQwASakTpMaQA9CRC9TYqfV/3uL7g48LvukbKbLzYSOBh5g/T\naX2Zra0IdGRDfp2wDi+TcXFMsDEA0rZFqVvnm8IipNI7JwCRpF7Pl4hmgfanvR96fcfcetCRVGqv\n6t2F2Ygo60kBNf29SHaU5TzKevyichXgSctZ6UIwn0HhGcAUyB34RJkOZ0g8o/UYJTbp35MCj9RA\nkz0RsskQfj0gnyaOi9xTVbmgLFhYqDO78rT5/9s71xhJrquO/09XdVfPzms9u8tm8Vp5CZASBQkI\nFhIRSkhIjIkIQSD4wIcoHxBJlIBAQgZ/4SNJPhDxkBwUWQQRSMAQgRIFhwASEspDIcQhxCReJ2Cv\ns4/xrHd6Z6a7q7vr8OHce+veW1Uzs69ud/f5Sa3prp7pubequk7d8/ifAbYHnUozwLokB19Tze/V\nFNNNyyw3We2wcyXXfV71/zQZwKKyGpwUIkbrWqSbrrh+yrQYkHElddy9f4TRsfJE2YSRJWNMuGe+\np6b5oN81OM6si13wyl1neY0PUWW1M4kMjwR0Q8MjUimpay2dIpWL9f5O6GaLVwtH+JZdoNUo9gII\nXHBCH8AYPZQdMkvXm/xGoMBrik67myOczMqCVzE+hWslsd7uunTqoImeN5eK4TlkRcedUeknj2pn\nglVPYyZZGDdo7NliLyBrJ2QFZF1+1uicWK1qnMX4GVZea2Y7tvhc8HvcNCk6Dycto8QQ1sG4mMfA\npKv7MUZDs+Fpu3bOYeIJhcccza42H+tyK+t6ioohOyzeExsem/AghcK2wJSDWi6LNUAJpa5Hki+/\nVOdWk/fC37X7wo7HHpssYWTOCA2QJf3yShe3LIepUbPnwJ3WlPMgxrQUDuaC5TU+gLiCXNvqfhDf\nCe6kTJFdreHxa4WmwIk0he2Zk5leOWeidNo6jS5bOCh/V0rVWMPjVhj+l6/BwFjtNNcZs458JEYg\n6dSueqw7EwgvIEcFuCtYA9RpA1ub9UrOx7mT9WtI3J332DM8LbPiCWVpaj7I/Gw7A9QhUSxwtS2W\nKLXY/hwnLfTHOy6jbXvQNqriRSTFdPiU5KalrOG3iht2tSPqFaV6hE2cKWv+61c2vpoBEGYm+vgr\nM79xXkIp8uIgKLYFqisbP2EBQLmSDOqmQlFa+39l7PIP5Xoftq3vdNdd6YNr0x3Hd+6iIVKW2fi0\n0uO52YJstmp1dlBwmZiLXoZqzKfpomjucseeNApQk87q3QWeSK0iQPnlB1DbdM3NI1IitmoL1vBU\nVhf2IhmtevhG3+mnUTdBaxMVA+RqJ2ysxzQsy8c7UdZg3elX3jXLfihXSNxaAXXXgMkQwFq43wHA\nFhTaolE/a6oOz+3jLoKMILvR1cmMyv49TYYnUG1u+3JEkmJs3W2HZXpxmmFS9APXklXOlov5pLbG\nzCebELpe3KfTKle8ZXyncLJJZ7pj50ZuXGUaZFySwNJpyT7LkupNRHkeAllib5ZGRkrJGpawgaDd\n7o/BSg0BcPJE/lhsRqh8Z8XYxDEr6RfUdn9jG/Ml1A5adAOR2rmXFKHceZbW+DDYBXLD1U6UWNBk\nePav1bfntfiGCCgDycbojJOW+SIMMRnvuaC2+3OvVUHctM2tvlJ5b70hlBRnkvmvbYbeocQJBvlI\nZGx2hya1WS4wdQbIBvhp9RQOihulKkSeOCHWupiJSNZYAxRmkPmKzi44D1Q6lTaueCI9ND+obT/f\nNga0NyGxSsBRgfay7UDhibCmZbLEERX8olxw4M4Fq6bg99sWCRsvzlS50TCrEc8Ixe0MfMXtjolb\nWh06uy9iKudTaxS4Jq3Gm2RllsbRj8XIca0e2xhrCK3hLsezEowjJ3HhbXTM9zdSnKjDKk8AqDVA\nPncyzZqY0c6Pzu5cFpbX+PAE/XEvCCT7X5jDEguCjpmHEWUu+S6+fl7/v52UTG2jtlJ00n1xkzC1\nNMbPFIoL88qWxdFp4Gu2eaueydX9QEONPL+PM0BWot4YgGGrwF5+LZDxt1IvsX6bRbKuvDkUI0wo\nxYSl1TJZn70da12qbhTHcfMxRsd3+9Vns9n4Shncj1tm1zVI8/ve2Cy9WimZmMR3S8atG8wdfUuW\nW6L8UL4fXujtnikCI2RFQmVFVhijs17VWYNR37D70duHqXeeyIqxzCaz+1TGO4If2qgUZBcEjICN\n9rg2qaQirDoeyni8ccTabrKvJSYa7rv6rL34e0DMlXNFubssrfEpUASrHXuHGzf+qqvMPnQp7qsj\neG41qUy/5tw5UqfRwnAiF07/yykZR4UTrrQrL18bLrigjQ+qvVzscMzzNOmCPVXlJm2sWnIjYWOi\n2DyYYNIbS3Qjk9fcnZSrn04bWN0Cr51Cf3QFl/uMXt6p6IsB5LmCqveYG5hI1pghcJfUqRLE8j0N\nK528OKgYHHsM7Lkgr8NW0s64mBVFsM3caVs3VqCHV9dd047Lat65+Y3kTt/T/+u0wtVtdUWbu/G7\ncbsVW6kS4Stw+KuK2huqtCMN64BadWm7V5LuumRkFkAngTPqWVIEiu3+zZW4xiQxQb5rY1e2sJJs\nlOe3dWsP9iqxMTumbHULSWKTOlIk1K/sH6ChVszbl9YAHrYKul2m2FJhLlha48NceBd869K4ScMT\nu3WiOIMzOl7wuDdKsN3v1jbwsr54AK6Rmrj9fF2sFOl+r9qb3sSX2BZR2nHEcRFDk0Ckoy4VuJuA\nhy2J9QzHsvLpyGsp9GyDzp4G7jkL2jiH66MruHKwj4t7GXp5C9dzWTH0RuS0xfKibCneTSRe4ZI9\nWuziCfmkLxe3Aq5wEIhUjGtWOXauLtHBuFljEU4fJxbamgBmF/kGSX6WwXQnQ2Pig7EQa2NLZ7Of\neZwDwxtOaikefxNNq9oyfpm7fVlqDZYrZ7+BW2Ul7xtI+9ye+kFRticBZIhbhYQ1cqVQrL8KW0nX\nsZaeEmWQ4QtgK+e0d1CWLHiFxWxf2/3WXUMnPYW81Xf7wk9kCNzYgQs7rMWq9AfS1dBdY2mNT4xV\n3z2W4YljDAY/TVbcEGGqbC/PsN1PXavsmI02I0vKi2/WkniTdd90WitIhwPRWrPyMkDYHKu9C7wk\nB69uSRuDihpymcnlN3YL4hIWL+ZDWYrWpt1eAJtAK0sDJQG67xxw9jxo66W4MbmG68MbuLif4Zm9\nFnqjUlPMGtyT8snw6867k/KOfZjYWpaqAUpo7AxyE3F1vB/PqTU6NXEC3y102GrRZomtpJtBJqTf\np0Y+pMb1NsmBcccZoQoN7roEcs6laQeiFJ6Jazcpszc7rRFOpGOnN1hRz44Nov/cjjU+34coL8qr\nOZC0zP4ZG29CaHh2c8Jmp9oiw8ZT19pbONFaB+9+F7x/Tc7tvQPwC7vA3gGKnlnV2+xKX91idRe8\ntelUK7LuGtjIVNnjbldGddTdhN10h1TlllDj43HLrjaEsjy2XmhvdA3bgxQX91bQy1u43Je7/ssH\nwM5O1xV+AlIYOuiQiR0Yd4kN65hWAulwIFprV7fLhlg2C204Bg8nomM2GoHOjsDruRRWAkAW1VIU\nI1FPaN1E0gGkGyitd9BycjZpreHZGbyAp3sZntpN8a1dMTp+kzsAwNqoYoAGk+rqxyYfAGKAktbY\n1T75Ei6xkbAtK3wXm1+vU5ceXKkxOkYGmE8lBd/TbDs05jPO5aLur1aPUVfFtqbJy6RMs3Wkq9Kl\n116E/VYezvDUrcp8gxO3m4bX8dO2KBjsIVk7BZu5JgklSWB4rufiVvV14wLDwxn42v9VWqFPrhyA\nb+QYX90vpZOyNJBSSr5nFdg/AN1zAD55Ehiu1Roh/0bLZlDafVG7X++CAdI6n5ClNj5xMLLJ8ATU\nZSt56gjiZuvh+UGO7UGGi3ttXO4DV/vyJdzZ6WJnu4u9GyJ5s7aeIzPSN8PTA3TTAic7Zb2L9c2n\nk0IKWXeuujtCa3B4MJYMNADF9SESK7Bp5W6sAYKX0VX00QFcbOE4F1hfvoYHibSl/t57xNUWGZ6L\n+x08u5fimT3Cc1e7yE1m3NA0xctMg7zheo7NlQInMzFAg0l19eNnv8kkjeoDNfWWKVc7fgq97w6y\nbrOmLp1+F9K6fdO0GgpjcXlZeGypMyJBVuGu23aswl5jfJyMUKcNPrEHTIaBYrods6x2yhV8k/s2\n1vMLVKDtz05bmq6ZlgP5pG8KPUPD0xsRugnj7ApcTDUwPLuXxPA8ewm80wuMTr5H2H+hg7RTIGmP\nkXZypG1GsiHGhwcTOd/zESgfAWv74PUcMEoRWdpxRig+R+pe++fTkQ3qlNuCjtFxeiEhom2I4us0\nOA3g+Sn9r2mxiHMCdF7zxDTn9FJmPnM7H0BE/wgZ83F4npkfuJ3/92JnaY3PNCGiLx/WlXAeWcQ5\nATqveWIR57RMNJdJK4qiKMpdQo2PoiiKMnXU+EyHP531AO4CizgnQOc1TyzinJYGjfkoiqIoU0dX\nPoqiKMrUUeOjKIqiTB01PncIIvotImIiOu1t+x0iukBE3ySit3jbf4SI/su894dEUs1GRBkRfcJs\n/yIRvWz6M3Fj/CAR/Q8RfY2IPklEJ7335nZeTRDRA2Y+F4jooVmP5yiI6D4i+lci+gYR/TcR/brZ\nvkVE/0RET5mf93h/c1PHbVYQUUJE/0lEnzKv535OSg3MrI/bfAC4D8DjkKLV02bbqwA8Aeno83IA\nTwNIzHtfAvBjEF2ZzwD4abP93QAeMc9/GcAnZjinNwNIzfP3A3j/IsyrYa6JmccrAHTM/F4163Ed\nMeZzAH7YPF8H8C1zbD4A4CGz/aHbOW4znNtvAvhLAJ8yr+d+TvqoPnTlc2f4AwC/DQRdeN8G4OPM\nPGTm7wC4AOB+IjoHYIOZv8DyLflzAD/n/c1HzfPHALxxVndszPxZZqdB8gUA583zuZ5XA/cDuMDM\n32bmHMDHIWN+0cLMl5j5K+b5DQBPArgX4b7+KMJjcLPHbeoQ0XkAPwPgI97muZ6TUo8an9uEiN4G\n4DlmfiJ6614Az3qvL5pt95rn8fbgb8yFfxfAKcyed0LuHoHFmpelaU5zgXFj/hCALwI4y8yXzFuX\nAZw1z2/luM2CD0Fu5HyJ8Xmfk1LDUguLHhci+hyAl9S89TCA34W4qOaOw+bFzH9vfudhSHvIj01z\nbMrxIKI1AH8L4DeYuecvKJmZiWhuaimI6K0ArjLzfxDR6+t+Z97mpDSjxucYMPOb6rYT0WsgvuYn\nzJf+PICvENH9AJ6DxIIs582251C6sPzt8P7mIhGlADYB7Ny5mYQ0zctCRO8A8FYAbzTuC3+Mlhfd\nvG6Bpjm9qCGiNsTwfIyZ/85svkJE55j5knE/XTXbb+W4TZsfB/CzRPQggC6ADSL6C8z3nJQmZh10\nWqQHgP9FmXDwaoTB0G+jORj6oNn+HoSB+b+e4VweAPANAGei7XM9r4a5pmYeL0eZcPDqWY/riDET\nJJbxoWj7BxEG5z9wq8dtxvN7PcqEg4WYkz6iYzzrASzSwzc+5vXDkAycb8LLtgHwWgBfN+/9MUql\niS6Av4EETr8E4BUznMsFiD/9q+bxyCLM65D5PgjJGHsa4nac+ZiOGO/rIAkuX/OO0YOQWNo/A3gK\nwOcAbN3qcZvx/HzjsxBz0kf4UHkdRVEUZepotpuiKIoyddT4KIqiKFNHjY+iKIoyddT4KIqiKFNH\njY+iKIoyddT4KAsJEb2PiJ4kojuuzEBEv2iUpAsieu2d/nxFWQZU4UBZVN4N4E3M7Gt8gYhSLgVT\nb5WvA/h5AB++zc9RlKVFjY+ycBDRI5D2CJ8hokchcj6vNNueIaJfAfD7kELGDMCfMPOHjdL2HwH4\nKUiBbQ7gUWZ+zP98Zn7S/J/pTEhRFhA1PsrCwcy/RkQPAHgDMz9PRL8H6f3yOmbuE9GvAthl5h8l\nogzAvxPRZyHK0D9gfvcsRF7o0dnMQlEWGzU+yrLwD8zcN8/fDOAHiegXzOtNAN8H4CcA/BUzTwB8\nl4j+ZQbjVJSlQI2Psizse88JwHuZ+XH/F4yasqIoU0Cz3ZRl5HEA7zItCUBE309EqwD+DcAvEVFi\npPvfMMtBKsoioysfZRn5CICXQXovEYBtSJvlTwL4SUis5xkAn6/7YyJ6OyQx4QyATxPRV5n5LVMY\nt6IsDKpqrSgNENGfQWT9HzvqdxVFuTnU7aYoiqJMHV35KIqiKFNHVz6KoijK1FHjoyiKokwdNT6K\noijK1FHjoyiKokwdNT6KoijK1Pl/Hws37LeDaxgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Another Window demonstrated" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag = 25, window='triangular',scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'triangular'" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXmUJNdd5/v55VJV6uqqrla1WnK31m7JqIXxNkIy8ww2\nCHkkgREeNttgbI8ZjeYhBuY8FjEGGw7MjDzmvYd4NtboGGN77MEYsLAeCK/gBR7ySJZl2Vqsvd1q\nrS2pVd0lV1Yuv/dHRGRFRsZyY8uMzLyfc/JUZiyZEVlV39+9v+2KqmKxWCyW2aI27guwWCwWy+ix\n4m+xWCwziBV/i8VimUGs+FssFssMYsXfYrFYZhAr/haLxTKDWPG3jAQReYuI/OO4r6MsROQBEfm+\njOd+TER+q+hrsljisOI/o4jIvIj8iYgcFJFjInK7iFzq2/9qEemJyHH38YiIfFxEvjfmPc8UEfWd\nc1xEvp7h2n5HRD4Ss9///j0R+Y7v9c+m/bwiUNX9qvrP4/hsiyULVvxnlwZwCHgVsAP4LeDjInKm\n75hHVXU7sAS8ArgH+LKIXJTw3iuqut19vKToC/e993bg28Brfds+WvTnWSzTiBX/GUVV11X1d1T1\nYVXtqerfAA8B/yLkWFXVR1T1HcD7gXfl/XwRuVZEDonImoh8VUS+391+CfCfgJ/JMXM4QUTeKyKP\nuTOWd4tI03t/EblfRH5XRJ4RkYdE5Kci3udSEbnF9/rLIvJl3+tb3OtFRB4XkVe6z68RkY+KyJ+5\ns6o7ROSlvvMuEJGvu/s+AswFPvcXXTfS0yLyCRE52d3+LhF5t+8eWyLye+7rZRHZEJHtab8vy2xi\nxd8CgCswLwTuTDj0E8DLRWQx50feArwUOBH4n8BfiMiCqn4K+C/An+eYOfwu8GLge3CM2auBX/ft\nPxNHcE8B/i3wIRE5K+R9/gl4sSusC8DZwNkisiAiS+77/1PENbwO+ACwAnwe+ENwRBv4JPDf3Xv/\nO+DHvJNE5DLgt93z9wJHgP/h7v6iey8A3wc8AvyA+/qVwNdV9Xjkt2Kx+LDib8EdFX8U+JCq3pNw\n+KOA4IhaFEdE5Kj7+NWwA1T1I6r6tKp2VPX/BOaB78py/SH8LPBOVT2iqk8Avw+8ybe/A/yuqm6q\n6ueAzwE/GXKNa8AdOML6ChyDdYv7/JXAHap6LOIa/l5VP6uqXRzx9kb+3w9sqOofq2rbdVPdEbj2\n61X1DlXdwDFaPywipwD/iGOMlnBE/33AC13D9Coc42CxGNEY9wVYxouI1HDEaRO4yuCUvYACR2OO\n2aWqnYTP/VXgbcAe9/2WgV0m15zwvoIzoj/o23wQ57o9nnKF1b9/T8RbeqPt4+5zxRHaE4gX28d9\nz58HPHfMHpwRux//te4B/t57oapHRWQN2KuqXxWRb+AYkB8Afs39eaF7Tb8Xcz0WywB25D/DuEL5\nJ8DJwE+oatvgtNcBt6nqeo7P/X6cEe1PAztVdQV4DmdGAY7AZkKdNrWPA2f4Np8OHPa93uWOlv37\nH414S0/8f8B9/kUcoc060n4MODWw7XTf80fxXbuIrOAYRu/6vwhcDBwAbndf/wjOzGJqU2ktxWPF\nf7Z5H46IvFZVvxN1kDjsFZF3Ar+AE5DNwxKO6+UpoCEi78AROI8ngDPdWUkW/gx4p4isishu4O2A\nP3W0Cfy2iMyJyA/hiOlfRbzXl4GXAC8CvuY+DgAvI5vYfglYEJErRaQhIm/AiU/4r/3fisiLXAN1\nDY4LyZtJfBFnxnSb61L6AnAlcKeqPpfheiwzihX/GUVEzgD+Hc6I8fGIPPk9InIcx+VxC06A89Wq\n+pmcH/9p4FPAvTgujw2ctFOPv3B/Pi0it2V4/3cAd+EEr2/HCcr+N9/+h3GMz+M4Qdm3quqDYW+k\nqkfd9/qaqnZVtQd8Fbjb3ZcK18i+DvjfgWdxRu3/r2//3wD/FbgRZxZwCoPxii8DizhGBPf+er7X\nFosRYhdzscwSbmrme1T17HFfi8UyTuzI32KxWGYQK/4Wi8Uyg1i3j8ViscwgduRvsVgsFcBtPfIt\nt/3I1SH7d4rIDW67kP8lIi/y7ftlEfmmiNwpIr9i9HnTNPLfvnNJT9xzUuwxIrG7IynTSma9pnFR\n1p9ML+N5wevpKrS60N6s09kUmu0e9XbWd7dMK88cfeiIqsYLRgLfI6t6HJPyGHiYY59W1UvC9olI\nHSf77WKcIsBbgDeo6l2+Y94NHFfV3xWRc4H3qupFrhH4GHABTrHmp4ArVfX+uOuZqgrfE/ecxK/+\n+WCR40I9/fvMFaD0WT53Wtno5n+PzRTa7X3ew8eEQ48vcPjbS5xwqMWeB1NnZlqmmI/c8KaDyUfF\nc5w2v1O/wOjYt3Q/H1fBfgFwv5dyLCIfAy7HSTP2OA+n7gNVvUecFuon49SdfEVVn3fP/SLwrxlM\nbx5iqsQ/SJIA5xH5UYj7fL0as7JWN9/UxOS7SjIQUb+rMKPgfd6ZS0qztkGjoTw2v8jBuVVOPrTG\nwrrZSM1iGSF7Gax1eQSnbYefr+OI+pdF5AKcSvBTgW8C/1lEVoHvAJcBtyZ94NSKf5jgZBH7okS+\nKkKehazXnsZoxH3PcYYhzigs1GH/srI812LbYpuDjWUeba6w+9Aa24+2jK/NYolCBBpNw7/zLrtE\nxC/K16vq9Sk+7hrgWhG5HfgGTrV5V1XvFpF3AZ8B1nEK/xLn21Mp/n4hSSP4eYR+1OLerJXzee1e\ncQEIk+/ExEBkMQz+3/vebcpCvcv83FEOb1/k8PxOdh86xs4nMrcnsliycERVz4/Ydxg4zff6VAb7\nUXldZt8K/b5cDwEPuvv+BKdPFyLyXxhuHjjE1Im/qYBnEfoiBb4s8c5LEdeVxoAkfadJxiHq9xg0\nCqvz0FxRFurrzM13Oby4RHuuzu5Da8bXarEEkRrMzxv+vW/E7r0FOMddV+Iw8HrgjQOf5TT5e15V\nN3F6bH3JNQiIyG5VfVJETsdxDb0i6XKmTvz9hI36TUU/j9BXVdhHRZr7TzIUcb+HOMMQ/D1vdGG5\nCS8+MRAHWFzl1AeetdlAlrGiqh0RuQqn71Ud+ICq3ikiV7r7r8MJ7H5IRBSnb9XbfG/xV67Pvw38\noknfqakW/yBRwp9F6IsW+EmOCfhJGxxO+h7jjEPUdxZ2Dd7vfqMLB1acOMDcfJfDje0cbK6y58Gj\nNhBsSY2ImPv8E1DVm4CbAtuu8z3/Z5zV9sLO/f60nzdV4h+XL+8X/jRCm1fkp0XUTUlzvyaGIu77\njzIMYdfgfdZC3TEAe7cpC6e0Wdx2lIfnlzg4v2rjAJaZYqrE30+WzJ6sQl+GwE+i6yhtsDhvQDjq\nOwq7Du+zWl3pDwT6cYCzj3Foe5uHGis2DmCZGaZW/P2YjPpNxDavyE+ioKch7f2ZGIssPv+w6/A+\na76uA7MA8McBnuWx5UUeba5w8qE1GwewJCIC8/OT2SVnJsQ/iTCxqEIcwGMSXEdZCsHy+Pshnc/f\n+6x2T0JnAUNxgEUbB7BMN1Mp/qYuH7/4jDIOkPbzJoG095PX3w/ZfP7NmkbOAsLiAHvvf9YWhFki\nqQnMmaZ6VoypFH8/WQO9HlWKAwA0Kug66mQoDDP9fsrw+cfNAvZuc9534exjPNDscaixyurh4zYO\nYJk6pl78ozAZ9ScJfxECX0UxT0vWezAxGmX6/KNmAbsXYLmpNGvrbFvscHB+mU6zZhvDWYYQgWZB\nqZ6jZmbFP4mggGQV+rLEfb5enWBkq5st4GXy3cQZiDSGIWq0HzcLeNmqFwd4lsOL221jOMtUMXXi\n7/f3Z+3V4wmCqeAXIfBVEvO0ZL12E6OR9N1GGYfg7y5ptB+1ff+SslBv02isORXB220cwLKF1IQ5\nm+1TbfxiEOXyMQ0AZxH7MsV9vgKuo1Ymv7/ZdxJnJKJ+F0GjYDLaj9q+dxs0d3fZccJWHOCUh56z\nBWGWiWZmxL8o4oQ/r8BXQcSzkvXaTYxG0vcaZhyCv6dOitF+2PawOMB3Fps2DjDjpGrpXDEKEX8R\nuQS4Fqch0ftV9ZrAfnH3XwY8D7xFVW+LO9ddsuy1OMuSPQC81aRZUVkExSSL0Jcp7lUoIMvSDtr0\nO4kzElG/C79R8H5/HcPRfth2EF62qiw0nDjAwfllDs7ZxnCWySS3+LtrT74X39qTInKjf+1J4FLg\nHPdxIfA+4MKEcz8L/Kbb7e5dwG8CvxF3Lf7xX5ErbTUG3EHJ/+R5Rb4KQp6FrNdtVOkb895RhiH4\nu2p1azRqmnsWcGCHstxs02gc5bHFRQ42V+0CMTOKU+E7uyN/k7UnLwc+rM5q8TeLyIqIvAA4M+pc\nVf2M7/ybgZ/MeoF5/P1xwp9V5MurBK7G6DNt9o/p9xFZ1GVoGObrvb4BgHyzgL3bxBcHsAvEWCaP\nIsTfZO3JsGP2Gp4L8G+APw/7cBG5ArgCYHXPaprrzkWS8OfvBloNIc9CWdk/WSp+/b+nVk/611bE\nLGD3grBQd+IAdoEYy6RR+YCviLwd6AAfDdvvroF5PcBZL9pXmr/EL2hhwp9G7MsS9rpUK+Wsq+nu\n0+R7iTMQSe2f52vanwkUNQs4qe4sErPQ2OgHgu0CMbNDkQFfg9jpDuAjwOk42v0Hqvqn7r7/iLO6\nl+Ks7/tWVY1dO6wI8U9cezLmmGbcuSLyFuBHgYtcl9FIMU3pjBKdvCJfNTFPS5brTzIYWTJ/YGvU\n7hnusFkAbBmBtLOAAzvoxwEONpbtAjGWVBjGTn8RxyX+WhE5CfiWiHwUOAn4D8B5qvodEfk4zjKQ\nH4z7zCLEP3HtSeBG4CrXp38h8JyqPiYiT0Wd61rBXwdeparPp7mgqH4+efP7w2jGxATiKEPY67Vq\nTuS6vY7xsabfS5SRiMv8GRi1h8wCgL4rKMssYN8SNGtbC8XbBWJmAIF6s5AZnknsVIElN3tyO/AM\njlcEHC0/QUTawDbg0aQPzK0WhmtP3oST5nk/TqrnW+POdd/6PcA88FnnXrlZVa/Me7158bt8TIQ/\nj8hXVczTkuU+kgxG0vcaNA5+gTeZBWSNBZy2qCzUYalp4wCWIXaJyK2+19e7bmswi3++B2cg/Siw\nBPyMqvaAwyLyB8C3ge8AnwkkzIRSiLoYrD2pOFMWo3Pd7WcXcW1FkNV9kyRQRYp7jQJzW0ukR9fo\nONPvJspIBL/7rvYGBD5pFpAnFnDSgvbjAN5C8XaBmOlEBOoNY2/BEVU9P8fH/SvgduCHgP04A+Mv\n4wycLwfOAo4CfyEiP6eqH4l7s+kYWpZAmhYOYcbBE588Aj8pgp6GLPcUZzDivl+/YfB+H54RKHsW\nMF9XXnqiMldrsW2x7cQB7AIxlmhMYqdvBa5xB9P3i8hDwLnAGcBDqvoUgIh8AviXOMHhSGZe/MtY\n0MVU+IsU93qtWdh7jZJuL1kITb6nMAMR/P67vQ51qZU2CwgzDOet9Fhq6kAcwDaGmx5EoD5XSC6K\nSez028BFwJdF5GTgu4AHAQFeISLbcNw+FwG3ksDUiX/aYG8aknL7/a6GoPBkEfpJFfQ0pLnHOEMR\n9/16hqFea/QNABQ/C4gyDF4cYKHuxAEesgvEWAIYxk5/D/igiHwDR/B/Q1WPAEdE5C+B23ACwF/D\nTX+PY+rEv4rECVMRAj8t7qGkeIDJdxVmILzvp0e3b5TLmAXEuYFOWlDmToSlucGF4m1juAlHlEaz\nmCx0g9jpo8BrIs59J/DONJ9nxT+BpGBv0v4wYTYV/FGIel2K/xPoqnlqp5809xtlKKK+226vPWQE\nsswCgimhsCX2ScHgHXMMxwFsYzjLmLDiH0LexVnifP1Bccor8GWId16KuKYkA5L0vQWNg/e9e0bA\ndBbQH827s4AiCsP8cYCH55dsY7gJRgRq5tk+laJ6yjEmigr2RuEXfVPBL0PYxxlHMAnueqS59zBD\nEfYdO4LfTDULCLqBIHoWkCYYvBUHOMah7Qs8tGgXiLGMlpkW/1T9eFIEez3CBChK+LMI/aQFhPNc\nb5zhSPruPOOwNeJv9t+vyFlA2mDwSQsMxAEOzi/bgjDLyJg58c+a6VMmYeJVpLBXPSBsUvhl+n2E\nGQnv++1qZ8AAeMd725zPMZ8FFBEM9scB+gvF28ZwE4PT2G0yf08zIf5Z2ytnCfamLeryhCmN2Fdd\nzNNSZOFXXMC3Lo2+AfDeI84NBMTOAooKBntxgIV6m8VtW3EAWxBmKZOpEn/xdVat0gg/SpCihL8o\ncZ80t5CfpPhA2sKv/nfh2uukWUCYGwiInQVkDQZ777VvCZaaThzggaZtDDcR2IDv9JCU6VPUKlxh\nwm8iaKMS9KIMkGkvnyBFFH8F78E/0k87C8ibEmrqBvLiAP2F4hdtHMBSDlb8CyBvsDf2vVOKfdVc\nQqMwIqbFX8GAr2ksoIxgcJwbaMccvGwVlue2Foq3jeGqiYjSKKa9w8ix4k+yiyjvguwmmBSDFS3s\nMvr1cUJRv78ugrwFYP5RfVDki5gFpA0GJ7mBmjXlvBVhoe5bKN42hrMUiBX/MZCUmpilJqAqQp6F\nrNceZTTicvzdFwPb4mYBYSmhYcHgstxA3gIx3kLxtjFctRCBeoXii2mYWfEvY4H1sEyftG6bOOHP\nLfApVtSqBAmZUybfh2cgokb1cbOAqriBTlt01gn2Foq3jeEsRTCz4p9EWYus+4kzDMbCP0pB72xm\nO68xl+28tPcWYiz835uKDI3qw4xCFd1AuxaUl63W3IXij3Bwedk2hqsCArX5cV9ENmZK/MeZ/pnV\nXx8q+mlEMatgF0nR1xBlTOK+l1oDUe0bAGeb8yNsFpAnJTRLTYCJG2h7s8dLT5TBheLnVjn50JqN\nA1hSM1PinxdTV1FaoU91vF/gihTVqriETIrkTO/bbyTc+xP3/cucBWSpCUjjBvIvFP/w/BIHt9s4\ngCU9VvxzkmeB9qH3iosPpBH9qgh5FrJee5jRCH5PjTnn/QOzgOhRfbZgsElNQF430L4lZaFeY6l5\njAe3t3moYRvDjYWaIPPFyKiIXAJci7OYy/tV9ZrA/l8DftZ92QAOACe5jz/3HboPeIeq/mHc51nx\n95G3lbMJuTt1Rgn/pLmCshAXO0i6/1rDue+AAQCoyeiDwUW4gfZs67HcrLkLxTv1AN9ZbNo4wAQi\nInXgvcDFwCPALSJyo6re5R2jqu8G3u0e/1rgP6rqM8AzwEt973MYuCHpM6de/IuqyM1C1mrc1PEB\nT/hKFHXtlONSkEaKaFna+wu6fTwDAFt/+RGzgKq7gYJxAGeBmKc5uGgXiBkpAtIsZPZ/AXC/qj4I\nICIfAy4H7oo4/g3An4Vsvwh4QFUPJn3g1It/VTExDEapnYbCX5Z456WI64o0IENuH/dnxCzAJBic\ntjK4LDdQcGZgF4iZCHaJiH9h9etV1Vtrdy9wyLfvEeDCsDdxF2q/BLgqZPfrCTcKQ1jxTyCsureI\nbp6FEBD+XEJa9ThBzPdrct/SmB8S/IHXmAWD/UYh6AaCsEri0biB/HEArzHcIbtATOmICLJg/L9/\nRFXPL+BjXwv8k+vy8V/LHPBjwG+avIkV/zFj5OIJE2ZT4a9KHUDWXH+PLPfhMxjaaQ0bAADvbXME\ng4twA2UpCouKA8zVaizNuY3h7AIxk8Jh4DTf61PdbWFEje4vBW5T1SdMPnDmxX8Uuf+F9eRJ6/OO\nEsxxBHzL/EzDvH9vtcd+U4ioWUDKYHCamoA8RWGmcYBdCz12zEl/gZiD88t2gZiyECnK538LcI6I\nnIUj+q8H3jj8cbIDeBXwcyHvERUHCGXmxb8qpAoOm4yC8waBq+YGinOrmdyjT9hDZwEFB4PLcANl\niQMMNIazC8RUFlXtiMhVwKdxUj0/oKp3isiV7v7r3ENfB3xGVQd8eSKyiJMp9O9MP9OKf8GMtKVy\nlMsnTPirJuZpyen2CQq9951tzQJ858QEg01rAnAnlEW6gbLEAb5rh7LUhHtsY7hyqIEsFPM/r6o3\nATcFtl0XeP1B4IMh564Dq2k+z4r/CDHJ8c9lPLKK/qTm/fsJc/0E773v33d/Js0CCq4JSFMUVmQ6\nqBcH8BrDHV5c4fkHv2PjADOOFf9ppkiff3fMM4d6wp9q0j3FCHtyMNj9mdMNlKYozDQdNGgABs4J\nxAG2GsN1+gvE2IKwnIggzWotoGSKFf8cFNnaIUhp/fk9kRy3mKclz/XWQ/z5AWFPGwwuKhtoKzbQ\nKD0OYBvDWfxY8R8DY1lY3UT0NydcAOYivlfvnuvDQm40C8jhBkrqDZSmRXSRcYBmDebnjnJ4+6Jt\nDDejWPGvOkUEaoPCn0fkx2kgosTdI+7a5prO/Wc1AJDJDRRXFBaXDgrDK4VljQOE1QPsW+q5jeG2\nFoixBWEZEEHmrdtnagir4E3bI6jw0f0ogrJVH/kXcX3BuHAF3UBFxwHiAsG2MdzsUojTWkQuEZFv\nicj9InJ1yH4RkT9y998hIi9POldEfkpE7hSRnogUURI9HZSRsrnZHhTWTneyH1H36P/pzYI8oxrM\nlHJf99NoE44TVUSVGvW+sHtGIPi6Lo2+Kyjs2K1tDfd45990vr4VC/AEfb6m/ViAt69R034swF/E\n2PRt87Y7cYAeLzq1xYHveRo5t8bBc1fpFlO4NP3UgLm62aNi5B75m7QixSk7Psd9XAi8D7gw4dxv\nAv8a+O95rzEtrW5tJMs45krrzNrPJzh69l5HiWbS+eMkyg0Udy9zTecexuAGKiMd1DQOkLQ+gG0M\nN3sU4fYxaUV6OfBhVVXgZhFZEZEXAGdGnauqd7vbCrjEGSBiRBob6A0Kf5WE3YQ01zvXDDcKI3QD\neW0gsqSD5o0D2MZw5SAz7vM3aUUadsxew3Nz0e5Jan/9TGAo/No1nBFUFKm7/5jeaL/ThUZ963UR\nswCDFtFJ2UDjiAPYxnCzzcQHfEXkCuAKgF17UlU3WxIIFf6qzg4iXED+e5C4mHlRBgD6/1VJLaLz\npoPG1QOYrA9gG8MVgBS3jOOoKeKqTVqRRh3TNDg3FncxhOsB9n3PvtKG+GXOIMaS959AXzTziL1p\nHCGJhsG0Ouk655pot+vMBMJmAf3jgp/t/kx0A7k/Dd1AadJB4+IAUX2BTNYHiKsIto3hpp8ixN+k\nFemNwFWuT/9C4DlVfUxEnjI4t1RaXWEUbZ0nCe120weCy6TAa1BX3GWTsbmB0qSDZm0PnTUQHIwN\n7FuCpWZ3oDHc7kPHbBzAQ4DGjI78DVuR3gRcBtwPPA+8Ne5cABF5HfD/4KxM/7cicruq/qu812sJ\nwRX6odF+mOhW1e0Tht8VFBB57XZH4wbKURWcJw5QZCD4pAWYOxFfY7glGweYAgoxWUmtSN0sn180\nPdfdfgMGK9BbRkiS8HfG0C8obtSVUPE7EjdQxnRQkzhAXF+gIgPBzZqya0FtY7gwRJIrzyvKTFVy\neFNci0sad8pAEVgn/DEOoq4l7Nr8Mxq3sE273XA31wiKwiC6yKteaw4UhcUd62wzKwjz8BeEbW3T\n/vH+gjAPryDsxae02f/Co/2CsI3FyRS/qpFULOse82oRud0tgP2ib/uKiPyliNwjIneLyPclfd5k\nOqsiKKsR5tSR1nUTFH5AW5PVFXTA7If4+iPdQFMWB8jaGdS/bd8SNGtd2xiuQEyKZUVkBfhj4BJV\n/baI7Pa9xbXAp1T1J92F3LclfeZUif+kM9JVwEwJCH+Y6GurAkHhAMHCG211nJS8qBlKlBto6LjA\n6wbZDQBb6aBFxgHiCsLyBIL9205bhIU6tjGciFk2WjImxbJvBD6hqt8GUNUn3WN3AD8AvMXdvgkk\nNgOz4j9L5ErbHBTN1IK/WYKBiOmXEnd9Ak6sIETks2UDuSenjgOYpYOmjQNkCQRnyQQ6aQGWm9jG\ncObsEpFbfa+vd1PVwazg9YVAU0S+ACwB16rqh4GzgKeAPxWRlwBfBX45uM5vkKkV/ywpnJ2eDPhA\nk+hqr9AFXXp0qzP6T5teWYa4F/mZc3W01UXm684sYGBfdd1AafsCZQ0EZ80EAnjpidovCDu8uJ2D\nczNUEJYu4HtEVfM0qWwA/wK4CDgB+GcRudnd/nLgl1T1KyJyLXA18NtJbzaTmBZttXx+0oml7FW7\nXBGuovvHwxN7hS0DUJQbaEQGAJL7AhVZEWyaCdTuSb8gbHGbbQyXEZNi2UeAp90R/bqIfAl4CfBl\n4BFV/Yp73F/iiH8sMyv+ZdPttStZuVsEAyIfEH5tV8sAeOureqN+Nrv4TXnfAMS4gSLTQfuzgMCH\n+t07BdQD+CuA8waC4yqC8xgAwC0IY7Yaw4ls9Y/Kh0mx7CeB94hIA+ev7kLg/1bVx0XkkIh8l6p+\nC2dmcBcJzIT4z2xztywLwKSJC/iEP43o60ZxBkIW4v/xwq5LoO8GGtjmERD5gTiAh2lV8IjqAUwD\nwUVkAkX1BAoWhNnGcOaYFMuq6t0i8ingDpwese9X1W+6b/FLwEfdTJ8HcQtp45gJ8beMjyKFPs/7\ny0IdbXeRpuv7984nwQ0UjAN4swA/Y44DpAkEjyITaMccvGwVludmoDFcgUVeScWy7ut3A+8OOfd2\nIFU8YerEf6PrpKCVyagWe6kaaXL7PVHWCv6z9w2AiRvITwXjAGkDwWVmAvm3AZy3ov3GcAcby7Yx\nXMWYOvFPIiwLKHxbNoHPkrEzbfEBv/DrRlWKwRpIszY0U/AMQKgbqOg4QAUCwVkzgbIYgHZP2Lek\ngwVh09YYTigqz3/kzJz4W4olmOFjIvxlzwYkZP1Z51q2/tw9N1D/NaRKB80WB3CPi4sDlBgINskE\nSpsKamIATlvUQEHYio0DVICpFv+qt2uuUl5/kSt2xYn7KNxA0Z/RQRYaQ/srFQfof0b/kgdfZwwE\nm2YCpU0FDasFCNt20oIOFIQ9trw4HY3hJrix21SLf9HEZQ11e52+P9USjie64+gLJPOe6G+paZwb\naBriAFkygcpKBfWMglcQtm2x7cQB5lY5+dCajQOMgZlRqzDhDtuWtso3C9Pm4zchKPy9Edf+1IZE\n39wNNLDH2idSAAAgAElEQVStqDhARTOBklJB8xoAwC0IU+bn3IIw2xhuLMyM+FtykLNds1/4PdHv\njrq9dkupzXvGZ8unktoN5D8wTxygv79/KZXIBEpKBY2qBUhrAPYtab8g7ND29uQ2hrNun2pRdLpn\nXIuHNP19utrpj8JGQmMuW6FXCfhdPVHC39ksxiA05oZ/V92uQMvrod9JdAMZpYMOfGgBcYCQQPCo\nM4GSUkGjagGyGICTFtQtCLON4cbBVIp/EqbpnkVRpcBuVSlK+GPfaw7qdaXXinYDmaaD5o4DGAaC\nTSuCg62hs2YCJaWCJhkAGK4GjmoH0e4JO+Z0uCBskhrDiTi/wwlkMq86BXlEPS7Xf1YLvdJikt3T\n2RR6nXLdQLWGOkbB87sH3EAjjwN4VCAQnDYVNG0xWFw7CG/b/iX6BWGPLS7axnAjYKrEv2pSPEmB\nXanXC033NMUv/J12eauKNty/Dse1rkNuoJHEASoYCA4zAM53Ep0KWkYx2Hxd2btNaO7usuMEpzHc\n4fmd1S8IE3G++wlkqsQ/CdOMn7TvEaRybp56o/y2zhlIEv4iZwMdajSaPXod6XtMgm6gLHGAVPUA\nFQsE56kFKMsA7F4QFupKs+YUhB1eXLIFYSUxteKfJ+g7inRPSzRB0e+08xuBBo4BcJ73BtxAeeIA\nmesBAvuMA8EVqQWIKwbLawCWEV62qm5BmPLYvFMQdvKhtQrGAcT57ieQ8ubZU4aX3xyHlyZXKFX4\nw2qM7hr8wt9pSyHC772Xf5bR6zivO5tCt+s8vDRUbXW20lM3nOdOu4qtNQu05TwG2lq33DWOvRmA\nJ/Kdbv9537UW3Oc9YGsG4GVq9Xyvex03ENyKPsb3ut8SwhV2b2QffF2XRj8TLfrYhnvslmx4RsCb\nDXtZcfP1LQPR6G/bMpVNg20HdigvOrXF/hceRc6tcfDcVTYWJ8ONOglUQFnKx7yZW7bgcJ7lHD0X\nkRcf8F6rSP8fF9hK26w1tv7Rp4yg8AN0C8wCAr83ZdANlDsOYNIXyKWoQHBoJtCIagGyVgOnmQG0\nusL+JWWh3t0qCJuvWEHYBPv8p27kv1nwrNCbvhaNF1jLTJY/uAkpRum0he6m++gU8wDHkHhGpdcR\nOu1afxbQ2dyaBYBTgezVJnhN6rxZADgN7LxMoP4MYLO7taKZV9fQ6QyO8sEJBHe7ziwgZF//Z7fj\nPBJG9wOzAHdmQGdz4LWoIqrUqFOjTr3WpF5r9l/D4CwAzGYA3qAnagbg35d1BrB3G7x0VTn37GOc\ncWCNQ+eu8uRpy0wbInKJiHxLRO4XkaFlGEXk1SLynIjc7j7e4dv3sIh8w91+a/DcMGZi5O+nyFW9\nsqR7Fl3oJY35rX/+GaGbKSto+PfkDJSVTrtWfhxg4IMzBoIrkAmUthq4qBnAchNefKIOFIR1mrWK\nxgHSIyJ14L3AxThr9d4iIjeqanA5xi+r6o9GvM0PquoR08+cupG/H9NFpNoh/vxOjI8/7PgovBG+\nVzxTGlWIDYwAT/g7bU318M7rdrZmFV4cwJsFFBEHAIbiAM4F++IAnW50HCBsBuBc+OBoHuJnAL7t\neeIA8cdt/c2NYgawUIeXrSov3NPinAPPIufWeGT/zjHHAdyAr8kjnguA+1X1QVXdBD4GXF7mlU+1\n+I+T0sU+D3Hunwq7hrrtWl/MW610D88AdNu1WDdQ/7kbawgzAP61CkoJBAeMQ2gg2O/ecS7aeZ8p\nNwDgBIJffEqbM/atsf1Ah0f3rXB8ZZ4JYJeI3Op7XOHbtxc45Hv9iLstyL8UkTtE5O9E5Lt92xX4\nnIh8NfC+kczGcJFigr5xPX48xt7auUL9fIrEE36AVivQibUd/jtpNLdmaIPn1Ai6gRpNdYO/W+mg\n/nqAqL5AmQLBaSqC/VQgFTRrP6AsawLEuYX2boPm7i7zc8c43Fzk0OKYGsNJzfmuzTiiqqnW2Q1w\nG3C6qh4XkcuAvwbOcfe9UlUPi8hu4LMico+qfinuzaZy5F900NcEL/PBUjx+H78n4n6XThRB14//\n3KAbyEsrDaaDAsUHgjud2ECw9zy4b9ypoHHHOdsGU0HDZgD+VFBgoJ7GMwKmM4DdC24g+Kx1zjrn\nKM+cu32SA8GHgdN8r091t/VR1TVVPe4+vwloisgu9/Vh9+eTwA04bqRYplL8/YT5/cN89nF+/LIy\nfkrFZPYxoWuPhrHZ6iU+/O6iMAMA4fUAwFAcwHPlBOMAznPHAATjAIVkAnmPOAPgvtZOyzECFTIA\nQKEGYLkJB1aU807f4Ix9a7QOzHHw3FW6IUt5loKX6mnyiOcW4BwROUtE5oDXAzcOfpScIiLiPr8A\nR7+fFpFFEVlyty8CrwG+mfSBU+X20XiPTGpMKn3zZPwEc/sjc/3z5PZndQM16kNuB5lvjGUVriQ2\nW873346ZBTj0gBqNpvjcQDXfvi0G6gEi+gKlaQyXKxOoiJ5A/hsbY0O4LC2hk1xAC3U4a7syd6pv\nhbAJawynqh0RuQr4NFAHPqCqd4rIle7+64CfBP69iHSA7wCvV1UVkZOBG1y70AD+p6p+Kukzp0r8\nkyiysCtNymhQ1DNTwUIvx5cdHdyWZq3UdXs3W72+6G+2on8fc/PiHucYgGGcOEC9of1ZgD8OkLUg\nLKkzaGhLiNJTQRlbQ7gyDcDebYMFYSNpDCfFtXdwXTk3BbZd53v+HuA9Iec9CLwk7edNrfhv9mAu\n48wvb9DXo/QGb2lG9XHN3TwhmTCCwt9qxRkZ/x9Dj7n5rQDy/Ly4z4cDwTDcF8ikMZxpILi/D8x7\nApk0hTMxADDUOG4UDeHKNACr89BcURbO9lYIW7GN4SKYOvEPa+gWti1tsVca986oM35msdDLlK2A\ncI/5+ZpvduD9LoMjhBr1Zq+fDlqfUzptMS4IM+4M6u4dag0dlgmUqSkc5sVggWyhrAYAMGoIV7YB\nADh3ZVQFYTPe3sGgLFlE5I/c/XeIyMuTzhWRE0XksyJyn/tzZ9J1xA78DEhTvDXwud2tRa/HionB\nSZvHH3K8zMfPZmRUwbYE/KmhTrC3R6vVY7OlvhlDb+g4fz1AsCDMed/ogjCTQDAQHQgOywRyg7yR\nTeH82/LWAvjaQUD6IHD4saMNAi/UnVn/gZWqFYRVi9z/pb6y5EuB84A3iMh5gcMuxclHPQe4Anif\nwblXA59X1XOAz7uvY2m1atxzVPoZPmEpn94IIWmbR1GVviMl40hE6tOT/ePP7IEtYXeebxmAdltD\nDQAQWhDmrwiG5IIwKD4TyHve32fSFTRDMZi/HxCYGQDTjqCjMADgBIJfeFKnXxB28MBqsQVhns8/\nf4XvyCliiGZSlnw58GF1uBlYEZEXJJx7OfAh9/mHgB9PupB2q8bDDy1xz1HhWE4XdpxBMGnvHIU3\nPe66LRmD7R+Cr1VKMjAVruTNSzCn35/nv/W813cB+Q1A8LgiKoLBrCWEVx2cOxUUog2Arz1EmlqA\nsIZwkK8ldFoD4JHWAOzdprxkd5czzzrGC/atT21juLQUIf4mZclRx8Sde7KqPuY+fxw4OezDReQK\nr1xan3uW5+6f4957VrjrSJ2nNraEs4h8/ywERT0z3sghzag+62gjzDAk9PSXZvVmDXEFYB5xGUJ+\nPAPgvK//+da/kH/h+J4vBJOU7RSXLeVcZMq/HZPjC8gWC4p8FsIMQJCwVhBb55ttW246cYD9ZzgF\nYcf2nZD1kqeGajhnE1BVBUL/OlT1elU9X1XPP6G5xJ4Hj7L5oPDAvSvc+1SDh44PGwD/qN4T+zh3\nUKd/jK/S1N3WDuzz/P7+hV2iRvWpR/9+A+BNJV1j0C8xDxoJ3zHU3X2euM81twq93G1910/IPhoN\nJzUR1+8/5zy8GIA068iC97yGLDS2ns8759bmnQBpva405pRaw3k0mj3fc6U+5z4aSr3pjgKbwvy8\n9J/PzddoNoVmU5ibF+bnawPHNZrSb/EQPLfqGNdTxAm9wdKd40oUyLr+RR4W6nDmkrJvj1MQVhQq\nYvSoGkX8BhLLkmOOiTv3Cdc1hPvzSZOLWVhvc+oDz1K/v8N9d+/krm8vcPdR6fv/TQyAf/Sf1wB4\nRqAUA+C9NjUAjbloA9CoZzMAkGgAZKHRDwJ7BgDoGwDnEh0DsPXc2e43APVmry/inrjPuYLvNwDz\n87UhsQ8agzA282YMpCDYDtqIYK+fIhlRP6g0WXBx2XVhM4WwbcEsv4U67F10AsGzThHin1iW7L7+\neTfr5xXAc65LJ+7cG4E3u8/fDHzS9ILq7R57HjzK0oPf4aH7VrjnoUXuOSqsuYOkURoAYHQGoDEX\nbwC812EGAOINgG+fZwCcR7QBkIX6lugXYACAvgEABgyANwuYm/f21YYMxVQTZxjSCHvQ75+TsBYQ\nScTV0WQpyAzi1AMU1Q5A6dE1elSN3CFow7Lkm4DLgPuB54G3xp3rvvU1wMdF5G3AQeCn017b7kNr\nbDvW4nBnJ+12jef2rnPeri6rvmC/v6DLy/33tvlrAbxtXssHf96/V/i1db6zz7+8o5f7H9XKIXPL\nh2DVb2MOwZ3OxxzTZ47BgiFfvx/ZdFsNB/dttp0YQKfTnwVoq+sYAP/fRrvbnwVou+e6gbaSyvsL\npbS036rAqZX12inUIv5Ah6t0O211ZwH+0WJ40da40I1O3xUWyqbzHZaGV/2b4Zw8uf+m+HP/0+DP\n84/bNlcbT9PHqlJI/pFBWbICv2h6rrv9aeCivNe2/WiLM+5+mkdbK2y26nQ6x3nhSR23FNw5ZloN\nAOCs8xplADqbziwgzAB0HNGPNAAeIQaAzW5/FuA3AA4NRwSbNed5q+PMAlpOy4TGnOJcstBo9uhQ\nc5+76Zeb4s4CenTbtZARfZgBiGZu3okZOM8rGALzWj/48X5XU4JX3BWHv/CrCILuoKwomj+ZY0xU\nL/m0BBbW25xxz9M8sb7Mwc4ym6111na3OLAy3QaAzqZb/et+EQ3iDYBHiAEAp998cB8wYADAjcz7\nDEB/+0Z3S/QjDAAAc/75Qc/XWiHIYJVuq6WuMaix2er1RT2Opi9uMBWYGAavunfM+BeBjyLOMITN\nFMK2LdTNV/WbJWZC/GErDvBke5n71nbS6Ryl3dvg3BVl2f1fiWv8VoQBAPcPfiwGwHUDxRmAbmdY\nODpbo36p1xMNgLY6TrsC6BsAbXX7qaBRBgCc9gi9lhMHYM5Jnaw11DEA7Zr73Em1rLtxgm5H3Gyg\n4TYNDvHiMlXCn5YsbqAC8K//Ow1U0Z9vwsz95e8+tMYpDz3HwbuXeeDgIrc/LRx+fmt/XMA3KQjs\njVCigsAwnApaahDY93ogEOxl/gTPMU0FnWsO72s0jFNBvUBw2kwgLx200fSlgza2soGCgWCgHwz2\nHn5GIfxltsDuV/uGkaI2YFTpnmUGfU23ZW32OI3MzMjfz84n1mm2OjzZWmb9eJPWvjU2dvbYvzQ4\nsg8b7cfNAJxtzkg/agYA9N1AY50B9Le7X4o3I/DPAMJcCN4MoOsf9ftjAg0n4OzNAHyBYG8GEBUI\n1nbPMQARgWCTOEDYeMZf7JVG8EeRIaTtbnUK5Ap2B4W1fE4iLuhbtN+/CFQn1+c/s3Zw+9EWZ9zz\n9EBB2N3PyVAaaLsnqdJAnW2jmQF0e+18M4DgcXG1AFBIKqjM1/ti158BeLMA77k7e/AKwpzLdArA\ngMSCMH89gHO8pHr4Zw5egdnEYlDoNUROl4zX5iENaRdE8jDtzFtUgLdMkhpk+o77XhHpiMhPBrbX\nReRrIvI3Jp83kyN/j3q7xxn3PM2jmyvc19rJ86cfY2PPBvuXnThA1iCws62cGQDQN9nesf3X4opq\nX9jdGw1k/ITPAEJSQYMzANNUUI+EQLA3A8gcCE4dBzCj0ZSxir634PsA48jwybjYS9GYZAP5yZoy\nmgVF+wO0PPiaXF6M0+bmFhG5UVXvCjnuXcBnQt7ml4G7AaPGRTM78vez58GjnHjP8YGCsCc3nH1Z\nC8GcbdEzgKh2EHEzgJG1g/Be1xtuJlDIDMB9LfX6VhwgsM9LURyKA7jPpVmPrQj2t4SA5IKwqDhA\n2sfEjfYncCEej6xtHvIUe1XU72/SIBPgl4C/ItDxQEROBX4EeL/pB870yN+PFwfwCsI2zjpGe1nZ\nu62cGYB/n+kMAHKs/+sf3bu/9dS1AB7BbJ+kTCD3swYygfrbhn3eaeIA/oKw6DiApSrpnR4mGT/e\nIi+mmBZ7jZFdInKr7/X1qnq9+zysyeWF/pNFZC/wOuAHge8NvPcfAr8OLJlejBV/H15B2BPHl7m3\ntcL66cfZOKnD/iVNNADAwLYyDAAw3loA01TQkH15AsHehZkUhHm3UAaeW8kzMJb0ZKn8rTaa5n6O\nqOr5OT7sD4HfUNWe+BrFiciPAk+q6ldF5NWmb2bFP4DXGO6Jza2CsM09Lc7arkC0AQjbVqQBAEZb\nCwBDsYJMmUC+fZ4B8EhqCeGQPw7Q3cw/8qvP6XSI/thy+8vL+JmSYi+TBpnnAx9zhX8XcJmIdHBm\nCD8mIpcBC8CyiHxEVX8u7gOt+IcQVhB27BS3IKxgAwCEVgMHDQBQ3VTQQN+fAQOQ0BMI0lcEQ3xB\nGMT1BcqGX/i9rCNLsaQN7OahKL9/ge0d+k0ucUT/9cAbBz5L9SzvuYh8EPgbVf1r4K+B33S3vxr4\n1SThByv+sew+tEZzs+vOAOpsdNc5d0XZvZDeAAAD1cCeARg8PtoAAImZQOUZgMFYAVBYJlCaimD3\nxMz1AEWQVvj9Rq50Ot3h7zny2NHEAIpy84zSMIwDwwaZhWLFP4GdT6xzwvFNHm2t9AvC9u3ssX+J\nVAYAGGoHkcYAAGMuBkvRFdS0JxDZA8EO0XEAZ+9WHKAsvJoDoJ+JZKHf3dPs2OQeP2GYBnjLDfqm\n8vnHv1NCg8zA9rdEbP8C8AWTz7Pib4DXGO6R9k4e6KzQ2bfGZq/DgR2jMwBA5mpgwKwWwPfaqC10\nWCaQR8pAsEdhcYCAG6gsJl74C44BFJ3rnzbjx2KOFX9DvIKwJ9eXBwrCDqzAjrn8BgAotCMoMFQM\nlqstNJhlAmUMBJcRB4AtmxZHr5MsLnHunokVfh/aaW3VfmQgi3tnHA3eig76qjLyeyiK6XWilcTu\nQ2sDBWF3PCMcWo9fEzhsW9pVwUZWDBbyOrIpXNL6wLDV9sEtCIval1QQBuZLRAbbQiThtYqIe4TR\nmNPRC3+ZSzmC8QpeRSzeHofJgu5Jx5u2fphV7Mg/A/3GcOvLWwVhPdi3lG8GANEtocGsHQSUWQuQ\nIxA8pjgAEO6WKpma4SA6dVM304BuXjx3UESLhzxMV66/ZopXVAEr/hnZfrTFCetOHKBfENZ1CsL8\nlb/eaD9qW9EGAKhOINgjriLYo+A4AATcQCPEE/7+LMa3jrFlPFSs0rcS2L/GHAw0hlvfyWZrzS0I\nc+IAaVtCe26eqIZw3r7KFIMlBYJNKoILjgO4HzKcDjpigsKf7twJaEFZEnEpnabpnqMU+p7KxKag\nWvEvgD0PHuXZ9UXua/kLwuCkhWLXBPDvK7oWANJlAkEJgWDTegDSuYGSyLPgSlwefxbhn2bK6PqZ\nRegrXuk7Mqz4F4QXBzjY2cn68SYbZx3j3BU4bbE4AwDx1cCQrhbAPQEg/ywgzFCYVARD+jhAQl8g\n7wI8N5C2432yRRdiWdG3TAJW/Ask2BiutW+NYzt7nLfSK8QAQHG1AM6xIwwEQ2xBWJFxgDA30Ljx\n/P1b/v/Zce2YBHjjCr3y5PqX3dtfodT3LxMr/gXjbwz3QGeF5/eus9lrcWCHI95hBsDbnrcdBJjV\nAgDjiwOYFIQVGAfYcgONHyc9dXZE31JtqvFfMWX4G8MdbC3T6fgLwpxjyigGA6qZCjrmOEBVSBT+\nuZj9o17Fq+KYdvcsG1UmtgLZin+J9BvDrTuN4dpnrHPm0mAcYJS1AJA+EwhyBoKDx40gDuAxHAdw\nt48h2jeSEf+oagAMSdPfZxTYdM9BrPiXjL8xXLtd47m967R3ddm3VLwBgPhUUEjXFhoKCASPMA4A\n4W4gbQ+KfVVcL/2F7Gc4tTOOcYzk09IDm+ppiWagMdz6Cp3OWr8gDOJdQDBcDOZsKycV1D0o8thK\nxQH6x06mGwh8wh/n8plixtHfx+JgxX9EBBvDbbbWWNvd6scBoqqBoZhUUEjOBIIxBoLj4gBErA+Q\n0g1USZJEv2HwL2rjAUMkuXgKm/ypDMUeJoXJnK9MMF5juPvu3tlvDPfUhgxMb70/2rBtnYFtzq/P\nH3AKawrnEdcUzt8YLrgv7PVAU7iohm+NOaQx7zSGizsO4hvDua+lXneaw/WbwQUbxTWQee9R32oO\nF/UYF1W4hgnFc3sObpuOBm4icomIfEtE7heRq0P2Xy4id4jI7SJyq4i80t2+ICL/S0S+LiJ3isjv\nmnyeHfmPgbDGcE5BWHgqaNgMANKlgkJ8JhCk6wkEvkBwGXEAj6g4QBo3UCsiwFtB8e13MB3lCmCW\nzDg+//wjfxGpA+8FLgYeAW4RkRtV9S7fYZ8HblRVFZEXAx8HzgVawA+p6nERaQL/KCJ/p6o3x32m\n/QsbE8HGcP6CMJNaAEiXCgr5M4GA4iqCs/QF8pHWDTRJ9IU/weXTb5FtmQYuAO5X1QcBRORjwOVA\nX/xV9bjv+EXc/AZVVcDb13QfidMhK/5jxN8YLlgQNl/XkWUCgVkgeOxxgLj20B4J2UBZyNr7J9fo\n3S/8QSNoffypqFDW0C4RudX3+npVvd59vhc45Nv3CHBh8A1E5HXAfwV2Az/i214HvgqcDbxXVb+S\ndDFW/CtAvzHcmtMYbmPPBvuX4aSF9MVgkC4TCEoKBEO+egA/ed1AUXTMRH0kLpioUb4V+kqjmqq9\nwxFVPT/f5+kNwA0i8gPA7wE/7G7vAi8VkRV3/4tU9Ztx72XFvyL4G8NttuocO3V9IA5gmgoK6TKB\nIL4lBJhXBEOBcYA0bqCoqmD/LCAMk0yacRF2r0UWcQVWbcuzhGPRmLZunjIOA6f5Xp/qbgtFVb8k\nIvtEZJeqHvFtPyoi/wBcAsSKf65vWEROFJHPish97s+dEceFRrGjzheRVRH5BxE5LiLvyXONk4TX\nGO7I3Qvce88KX3+yzoPHxJfBI4VnAsUtDxm2RKS3z9veoxt6bKYlImOOM10mMjIbaNIeQQKZTan9\n/cHvNem4CSVp6caiM4OUrf/LpEcCtwDniMhZIjIHvB640X+AiJwt4vxjicjLgXngaRE5yR3xIyIn\n4ASN70n6wLzm9Wrg86p6Dk4kOiw9yYtiXwqcB7xBRM5LOH8D+G3gV3Ne38SxsN5m3zeeQu/p8cC9\nK9zxeJPbn6lxvO1b6zfBAATXB271JHJ9YCDUAMStEextz7VGcNp00MacYwDqjdh0UGBwreBGPf1j\nlKS5pjTC73039YyzmyQjYSkUVe0AVwGfBu4GPq6qd4rIlSJypXvYTwDfFJHbcTT1Z9xg7wuAfxCR\nO3CMyGdV9W+SPjPvb/hy4NXu8w8BXwB+I3BMXBQ79HxVXcdJVzo75/VNLF5juPtaO3n+dK8xXI1d\nC25QN2UmEKQLBEP82gBgHgeAsL5AJVQF+xjIBgoS5QbyqFiPnIEMpiThLzpGMOEzgbJRlcKCyap6\nE3BTYNt1vufvAt4Vct4dwMvSfl5e8T9ZVR9znz8OnBxyTFwU2+T8mSWsMdy5KzVOWiguEwjSB4Ih\nZRxg3NlA3UCe/wQGURNFv2oGy1J5EsVfRD4HnBKy6+3+F27hQWaHWtbzReQK4AqAxRNWs358ZQk2\nhts46xj7l2HfUjE9gWA4EAzRBWFQcj0AGbOBEprDFcGQEclBYTn6ozJk1g0USlFFXuMg8Teqqj8c\ntU9EnhCRF6jqYyLyAuDJkMPiotgm5ydd3/XA9QCrO/dNR513AH9juLvWT2R9n9MYzisIy9MTCIYr\ngiG6IAziO4NCinoAGBb2ktxAsSS5gVzGVlSVJPBe0HsE9OM4FSCsp7/FnLzm/EbgzcA17s9PhhzT\nj2LjiP7rgTemON9CeGO4zV6Ls7ZraBzAtCUEDFcEQ7aCMEiOA8AI0kEj1gigE9XmYfLcQMBwb6OK\nUaVe/mWhOrmLwecV/2uAj4vI24CDwE8DiMge4P2qepmqdkTEi2LXgQ+o6p1x57vv8TCwDMyJyI8D\nrwn0uZhJvDjAfS2nIOzYKRucu1Jjz7biAsHO+xQfB3DOz1YVDBmLwmBrZF+GXzzKoMRR5HVUVPgt\n1SeX+Kvq08BFIdsfBS7zvR6KYsed7+47M8+1TTNeQdij68usn91k46xjbHRr7FsaNACQrSIYiosD\nAOnXB4BhYS+4RXQkhi6gPqMKtKa5h2CaZwkZO0kLss8KPWAzfN35ymOjOBNKaGO4tgzEAbJWBA+e\nEx8HgHxuoNB00LKrguMEfhJH0mHXHCb8wXqLijKD1b1jwYr/BBPXGG57s2cUCIZ8cQAIrwcAMzeQ\nf1ZQWjZQN+B7LkPg08wYyjYwpiP+Alo79H+PlonDiv8UENYYruiCMOd9zOMAEL8+AGR0A2WdBaQl\naDCSGNWMwfResozuS5oRlOUiqkKmzywHfC0VIbwxXHXjACN1A0XR2Yzel7UtwrgpQsBHmNNv1+8d\nHxP6F24Jw2sM92hrhfXjTVr71mj3YN9SfEUwVCMO4J7YP78wN1CUwBQ90o0zJnGMwgcf1TgvjhTX\nNasBYAXaNuBrqQJeY7hH1504QKfjFITtXxpNHACypYP295VVFJaWLCPSUQdS095XGuHP8zmWicD+\nVqeUgcZw68dYKzgOsHVOuW4gyFEUBvF/4XEj9WkQvDBjlOO+TKp74wLA0xgc7ilsTGt7B8vkEtUY\nLlgQBunjAIPnlOcGMi4KA4ZXCvMZgbCRfFEj9azunjiKnkVMgzGzFIr9i5hywhrDHWvXcscBoGpu\noKtzMiIAABJUSURBVJhZAKQXvzRunyrkzWcU936aZwqX0Kz698NQbJGXpcIU0RgOyJQOCuHLRMII\n3EAQu4B73zCEMWUj5dhc/oyxgFgXT8q+Pp7b0E9FFl0fGSJyCXAtThuc96vqNYH9P4uzXooAx4B/\nr6pfF5HTgA/jtMRXnIXhr036vOn6C7dEkrYxHMTHASB7OiiU6AaC4WAwhLpm8hQ3xRqOkil0vd0o\n4S9xNlPmzGHUBqOnsFFAtqpvxcOLcdY8uUVEbgz0M3sIeJWqPisil+J0M74Q5y/+/1DV20RkCfiq\niHw2qReaFf8Zw98Y7vn1YxwzjAPAeNxA7satfVlqAiCdmBn48Ku04HkkJvecNNqvmBtoils/xK14\nCICq/n++42/GaY+PuyDWY+7zYyJyN84iWlb8LYN4BWFPri/34wAb3RqnLUbHAWD0biDIWRMAW7OA\nMEaV/19VRuDamvb4QMo8/10icqvv9fXueiQQv+JhGG8D/i64UUTOxFnS8StJF2PFf0YJbQy3sxcZ\nB4DRuoH621IGgyFkFgDho/lR5f+PiqLEPMQVlDfNM/z44e9yikf2AEdU9fy8byIiP4gj/q8MbN8O\n/BXwK6q6lvQ+VvxnGH9juLvXV3l+39pAYzgYjxvI2ZYxGBw2CwDz0XySy2fSA8Gm30PEfWYdyU9j\njn/BxK142EdEXgy8H7jUbYnvbW/iCP9HVfUTJh844X/JliLoN4ZrbTWG278cv1A85HcDwYiCwWGU\n5fIpI+c/SFluqYjvKmzUP0oxbyUEcce5hm6Bjd3iVjwEQEROBz4BvElV7/VtF+BPgLtV9f8y/UAr\n/hZgsDHc+vEmx846xrkrcNoiRumgkN4NBMNFYWDeItrduLUvLiU0SJoR/KTl/Acpuao3yCws31g0\nUSseisiV7v7rgHcAq8AfO3pPx3Uj/W/Am4BviMjt7lv+J3cRrUis+Fv6eI3hnji+3I8DtHd12bfE\nkNgH4wAwWjcQpJsFJBFqIDwm3dVjgMl35BlV/6g/rRso7PiwHP8ksrZzLnqW0FNobRYTpwhb8dAV\nfe/5LwC/EHLePxJf0hLK9P9VW1LhFYR5C8R0OmustTsc2KHM14tzA8HogsF+aoQvu5hlhBtrMMZM\nlvuJwv8dpnH35Mn0KTJff9aKxUyx4m8JxWsMd+faLp4/x1sgBnbMFeMGAkYSDPa2eZgKUpSR8FOk\nwI6LNAI9a03bjFCh05nMDCUr/pZIdh9aY9uxVn+BmPYZ65y5tBUHgOLcQP79UTUBkC4Y7D8+Cr9h\n8JM3P93EeBRFWbn0RQl62PtkWcQlTRroOIPAk4IVf0ss/gVi2u0az+1d78cBYDj3v0w3EKQLBgf3\nh5FG4KIMRRhVL27KK+xR95cn2Js3x38c7p2ewmZrdIa+SKz4WxLx4gBPrC/zwPrgAjEQ7gbybx+1\nGwgGZwFgJsZJo/UyXRtxhmUcLhVT4+W/tjKyfJLSPC3ZseJvMaLe7g0sELPZWmNtd2sgDgDFFIVB\nscHgoXspyNVTpGtnVAJf1IwkSfTDPqeoTB8/Y3fvqNDpTKaBsuJvSUWwMZyzQAyctODsz+IGgvJn\nAX5MhTbJzVN1105W0hiiMkb7Se6brGmelkGs+FtS018gZn1rgZj9y85C8WGj/aKDwZB+FhBF0DD4\nyTIaTxMXGBVFzyrSCH5RwV5L8Vjxt2TCv0DMva0V1k8/3l8gJir1s6hgMJBqFuAR5qYxFbI4IzHw\nflOQ8phnNJ+1JiAp2FtEwze/i6iglgz0ejbga5lB/I3h7lsfXCBmh9vlIG9NAMRXBkPyLMAjyU0T\n58PPI4imhqNoymqzYOLuCgp/FhdZ1mCvX+RtgVc0VvwtuQk2hjt2yoYbBwgX+zg3EJQzC/BTRMA3\nTbB3knrd5I1jpIsXFLf47bhEXlVot22Rl2WGCTaGC4sDQLIbCPKlhEJ4YZgfE4EaVbC3yIyhUQWg\n07q2Bl1B8YYwjYiPPdNnwrHibymMYGO4YBwAkmsCvO1FpIQCA0YgSKybp6TiryBVyhgqIl5hXB/g\nG/Wn8edXLdNHbZGXxeLgbwx3sLPMZmvdFwdINwvImxIKDBiBIEUUfjmfMflB3jRkMVj+EX9ad8+U\nr+41Nqz4W0qhXxC2Fh4HgPSVwZBtFgDx7oYww+AxzsKvUVLkDCTuuzYV/iIqe/0upLJcRGobu1ks\nw/gbw3lxAGeBmHiff1RlMGSbBfjxjIEfk7zzOAPhp0punLLIkqdvIvpZg7ZpRb6oNM+iEZFLgGtx\nFnN5v6peE9h/LvCnwMuBt6vqH/j2fQD4UeBJVX2RyedZ8beUir8xnH+h+P1LGuvzL3IW4CdOhMIM\nQ/+8DIJnajCqQJGFV2ncOln9/VUJ9hbl8xeROvBe4GLgEeAWEblRVe/yHfYM8B+AHw95iw8C7wE+\nbPqZuf46ReRE4M+BM4GHgZ9W1WdDjgu1aFHni8jFwDXAHLAJ/Jqq/n2ea7WMj4HGcJ0Vnt+7zuae\nFgd2kJj5U9QswE/QIHiYiFacgRh6vymtZM3fj2f4O4wa9c+Qv/8C4H5VfRBARD4GXA70xV9VnwSe\nFJEfCZ6sql8SkTPTfGDeb/Zq4POqeg7weff1AD6LdilwHvAGETkv4fwjwGtV9XuANwP/I+d1WsaM\n1xhu/u5NDj64zF3fXuBrTwtPbQwW5Hgi0OpKX/CjpvWDI0HnT7nVk/5MwP9+flrdWuwjjq72Uj8m\ngaLvx/T7DfsdTVInT+0Jm6260QPYJSK3+h5X+N5qL3DI9/oRd1tp5J2XXg682n3+IeALwG8Ejomz\naKHnq+rXfOffCZwgIvOq2sp5vZYx4zWGO7i+zGarzrFTncZwuxfiZwGmhWHO9uFZQBjeZwQxGW1G\nzR7CmBQDkIaq9N6PGhiMItibgSPuguuVIK/4n6yqj7nPHwdODjkmzKJdmOL8nwBuixJ+13peAbB4\nwmq6q7eMhX5juNYK68ebtPatsW9nj/1L5m6g4PakWEAYcQIUZRg8sohfGoMxaspwr2QR+KhRf1H+\n/qoGe4HDwGm+16e620ojUfxF5HPAKSG73u5/oaoqIplXtA47X0S+G3gX8JqY864HrgdY3bmvuitq\nWwbwN4Z7oLNCZ98am70OB3Y4+9MEg73tcbOAKLIYBj9JRsLPtPmv847e434vE/NdqVLrFGLUbwHO\nEZGzcET/9cAbi3jjKBLFX1V/OGqfiDwhIi9Q1cdE5AXAkyGHxVm0yPNF5FTgBuDnVfUBg3uxTBhe\nY7gn150FYp4//RgbezbYv6wskzzaN50FQPSoO4th8JNFANMYjFFSRn+cLP57v/BXraK3LFS1IyJX\nAZ/GSYz5gKreKSJXuvuvE5FTgFuBZaAnIr8CnKeqayLyZzgu9F0i8gjwTlX9k7jPzOv2uREnIHuN\n+/OTIcfEWbTQ80VkBfhb4GpV/aec12ipOF4c4KHWCputY24cQNm9kDzaN5kFQPxIMothGDg/pZhP\nU6fJvMHZuN9LmPCb+PVH6e8XhWarGF+Sqt4E3BTYdp3v+eM4g+ewc9+Q9vPyiv81wMdF5G3AQeCn\nAURkD05K52VRFi3ufOAq4GzgHSLyDnfba9xUJ8sU4jWGe3J9mXa7RmvvOuft6rJ3m9loP24W4NHI\nEOA18dNnEcC0BmOUlJFtk9aNU8aIv8L+/rGQS/xV9WngopDtjwKX+V4PWbSE838f+P0812aZPLYf\nbXHCuhsHcBeKX1vtcGCH2Wg/artHnKBkMQx+0gZzJymd0YS8PnoTsS+yT/9mQbF3UaXerm4gP47J\nKUG0zAQDC8S0drK5b42NTsuJAzTjR/sQbQQ8/MbATxbD4Cet+FU588ejjKBrlhF98Hc4VBdQnVTO\nicKKv6WS+BeI8RaKP3NJ2b0QLfQQbRw8ooQiyiiAmWCZGIjB65iQbJaU5HXXJAl50oh/1Pn9otDc\nnEx/khV/S2Xx4gCHOztpt2s854sDwLDQQ7QryCO6sCteKOKMA6QXvbTGYpyU4X9PK8x53Tx+f39R\nLp9Jx4q/pdL4F4g52Fqm0znO2mqHs7YrC3WGfPtRgV+PrIVdeY1DkGlPYcw76jYV+3Gv1yuqNKzP\n32Iph4X1Nqc+8CxPbC47C8XvW2Nj91YcAJJnAR5xIp2v4jed8KQ1FlWhaFdKpirgkGuwcYD0WPG3\nTAReY7gn28tDcYDlJomzAI84UchqGCB94dYsiVOeEbnJ95T0/mWmeFqfv8UyIrwFYoJxgNV5xwBA\neEDYI6trJ2mknkbgqlrhm5ai3SxZDGLaa7D+/i2s+FsmjrA4wJluHAAGjUAVff7TVOGbhnHEASzR\nWPG3TCT+OIC3ULwXB+gfUx8WgiyuHZORehrBmVR/fxxFCm5RcYBRVPRKT2m2JnPRHiv+lollIA7g\nLhTf7m304wAb3a1ZgEeWPP8q+vuLNCDjGimXGQsIE37r8hnEir9l4ukvENNZ7i8Uv39ZWZ0fFoGg\nMfAYhb+/SF9/1V0bRbm2stynyYi/qFmBKDbV02IZJ/3GcK1l7m2tsH76YBzAI+qfPsooQHH+/jyC\nOK4g8ajiE1O6QEulseJvmRr8jeH8cYC9i9oX97mIrgpZjIKHiXDlddNMepC4iJlKFpEPc/UUaSxE\n1aZ6WixVwL9AjJMJdIz2KU4cYKEeLgZRBgGShcLEOEA28atyYLhMt1MecU7y61d5liAilwDX4rS+\nf7+qXhPYL+7+y4Dngbeo6m0m54Zhxd8ylfgXil8/3uS5vevs29ljqalDgh0lGHFGwaMo4xBG1f36\neShChNMGcEsRfqWQls4iUgfeC1yMs875LSJyo6re5TvsUuAc93Eh8D7gQsNzh7Dib5la/HGAzVad\njhsHWJ0fTAeNIk5cTAwDpBOcPIaiKpQhsFmzdKo8yg/hAuB+VX0QQEQ+BlwO+AX8cuDDqqrAzSKy\n4i5/e6bBuUNMlfg/c/ShIx+54U0HR/Rxu4AjI/qsUTKN9zWN9wTTeV+jvKcz8r7BM0cf+vRHbnjT\nLsPDF0TkVt/r61X1evf5XuCQb98jOKN7P2HH7DU8d4ipEn9VPWlUnyUit6rq+aP6vFExjfc1jfcE\n03lfk3ZPqnrJuK8hK1Ml/haLxTKhHAZO870+1d1mckzT4NwhpnM5IYvFYpksbgHOEZGzRGQOeD1w\nY+CYG4GfF4dXAM+p6mOG5w5hR/7ZuT75kIlkGu9rGu8JpvO+pvGeElHVjohcBXwaJ13zA6p6p4hc\n6e6/DrgJJ83zfpxUz7fGnZv0meIEji0Wi8UyS1i3j8ViscwgVvwtFotlBrHiH0BEThSRz4rIfe7P\nnRHHXSIi3xKR+0Xk6qTzReRiEfmqiHzD/flDU3BPqyLyDyJyXETeM6J7Cb1G334RkT9y998hIi/P\nen+jpKT7+ikRuVNEeiIylvTJku7r3SJyj3v8DSKyMqr7mSpU1T58D+C/AVe7z68G3hVyTB14ANgH\nzAFfB86LOx94GbDHff4i4PAU3NMi8ErgSuA9I7iPyGv0HXMZ8HeAAK8AvpL1/kb4+ynrvg4A3wV8\nATh/lPdU8n29Bmi4z9816t/XtDzsyH+Yy4EPuc8/BPx4yDH9UmxV3QS8curI81X1a6r6qLv9TuAE\nEZkv4frDKOue1lX1H4GNsi48xTV69EvgVfVmwCuBT31/I6SU+1LVu1X1W6O7jSHKuq/PqKq3fNbN\nOHntlpRY8R/mZHVyZwEeB04OOSaqzNr0/J8AblPVVgHXa8Io7mkUxF1j0jFVvr+y7mvcjOK+/g3O\nzMGSkpnM8xeRzwGnhOx6u/+FqqqIZM6FDTtfRL4bZ6r6mqzvG8Y472mamPb7myZE5O1AB/jouK9l\nEplJ8VfVH47aJyJPiMgLVPUxd/r5ZMhhcaXYkeeLyKnADcDPq+oDuW/Ex7juacSUVQI/7vsbeWn/\niCjtvkTkLcCPAhepqjXWGbBun2FuBN7sPn8z8MmQY+LKqUPPdzMS/hYnsPhPJV17FKXc0xgoqwR+\n3Pc38tL+EVHKfYmzcMmvAz+mqs+P6mamjnFHnKv2AFaBzwP3AZ8DTnS37wFu8h13GXAvTkbC2w3O\n/y1gHbjd99g9yffk7nsYeAY4juOXPa/kexm6Rpxsoyvd54KzsMUDwDfwZblkub8R/t2VcV+vc38n\nLeAJ4NNTcl/348QDvP+j60Z9X9PwsO0dLBaLZQaxbh+LxWKZQaz4WywWywxixd9isVhmECv+FovF\nMoNY8bdYLJYZxIq/xWKxzCBW/C0Wi2UG+f8B+dVD8sNSwXQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Flat Top window')" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwbVtd3/n5zddaZ784nAsXkHsVFSwDtNFo0E66uo0G\npCIGoxUkGtGK0SZKKx00onYI3WIXRqNt+UKiiHRUNK22RLB8P6LtA0QsBEpFcpH3fZ3jft295mv0\nH2OOuX5zzDEfa599PQf2+lbt2mvNx5hjzjXm+I7fW4wxbLHFFltsscVFIbrVHdhiiy222OIjC1ti\n2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYtJiEi\nrxCRf3ur+3GZISJfIiK/fIHtfbmI/M5FtbfFFhpbYtkCEblHRB4SkWMRuS4irxeRu91+Y8zzjTHf\neov6dssnwKYPRkS+29v+7Gb7qx/uPhhjftwY8wx1bSMiT3y4r7vFFufBlli2cPg8Y8we8DjgQ8D3\n3uL+zIaIxH8Dl/lL4DkikqhtXwb8+d/AtbfY4sMKW2LZogNjzBnw/wBPdttE5NUi8rLm86NE5BdE\n5IaIPCgi/1VEombfPSLyTSLy9kby+VERWap2niUib2nO/f9E5JPUvrtF5GdF5D4ReUBEvk9E/hbw\nCuC/b6SpG6o/PygibxCRE+AfiMhvisi/VO11JJ1mhf/VIvIXInIkIt8qIh/f9ONQRH5aRLKRR/NB\n4K3A5zTtXQP+HvA6fZCI/GcR+aCI/LWI/LaIPEXtu0NE/ktzvTeKyMsCfXx+08cbIvL9IiL+/YjI\nbzen/EnzXL4oJNlpqaa59uuaa/8h8PHesZ8oIr/S/KZ/JiLPGXkWW2wxii2xbNGBiOwAXwT8/sAh\nLwLeCzwaeAzwzYDOC/Ql2Mn344FPAP63pt1PAV4F/M/AHcAPAa8TkUUjcfwC8G7gCcDjgdcaY94B\nPB/4PWPMnjHmqrrOFwPfBuwDc1VlnwN8KvAZwL8BXgn8c+Bu4KnAP5s4/zXA85rPzwV+Hlh5x/wi\n8CTgTuDNwI+rfd8PnACPxUo7Xxa4xrOAvwt8EvCcps8dGGP+x+bj326ey09N9Ntd+wwrkf6L5g8A\nEdkFfgX4iabfzwV+QESeHGhniy0msSWWLRz+30Yi+Gvg6cB3DBxXYCenjzHGFMaY/2q6Cee+zxjz\nHmPMg9iJ303WXwX8kDHmD4wxlTHmx7CT8mcATwM+CvgGY8yJMebMGDNFFj9vjPldY0zdSFlz8O+N\nMYfGmLcBfwr8sjHmXcaYv8YSwqdMnP9zwGeKyCOwBPMa/wBjzKuMMUfGmBXwUuBvi8gjGvL8QuDf\nGWNOjTFvB34scI2XG2NuGGP+CvgN4JNn3tsg1LVf0jzfP/Wu/SzgHmPMjxpjSmPMHwM/A/zTm732\nFpcTW2LZwuHzG4lgCbwA+C0ReWzguO8A3gn8soi8S0Re7O1/j/r8bixhAHwM8KJGxXOjIbG7m/13\nA+82xpQb9Pc904f08CH1+aHA972xk40xDwGvx0phdxhjflfvF5FYRF4uIn8pIofAPc2uR2ElvMTr\nd+gePqg+n071aSZC1363+vwxwKd7v82XYCWrLbbYGFti2aKDRpr4WaAC/ofA/iNjzIuMMR8H/GPg\nX4vIZ6tD7lafPxp4f/P5PcC3GWOuqr8dY8xPNvs+2jOMt5cc6qr3/QTYUd8frknxNVh14H8K7Pti\n4NnAPwQegVXrAQhwH1ACd6nj9bO6WXTu31sUuGv7v43De4Df8n6bPWPMv7rA/m1xibAlli06EItn\nA48E3hHY/ywReWJjVP5rLAHV6pCvEZG7GuP2twBO//8fgeeLyKc319gVkc8VkX3gD4EPAC9vti9F\n5O83530IuGvCsA7wFuALRGSnMVh/xfmewCR+C6sqDHnN7WPVew9gJ/n/0+0wxlTAzwIvbfr4iazt\nNefBh4CPU9//BHiKiHxy4zDx0pFrP5mufecXgE8QkS8VkbT5+7uN88QWW2yMLbFs4fBfROQYOMTa\nRr6ssUX4eBLwq8Ax8HvADxhjfkPt/wngl4F3YV10XwZgjHkT8JXA9wHXseq0L2/2VcDnAU8E/grr\nHPBFTXu/DrwN+KCI3D/S/+8GcuyE+2N0jeYXBmPxa40NycdrsCqm9wFvp+8A8QKsJPNB4P8GfpK+\n8X8uXgr8WKO6eo4x5s+B/wP72/wFfYeGF2DVah8EXg38qLqnI+AZWKP9+5tjvh1YnLNvW1xyyLbQ\n1xYXBRG5B/iXxphfvdV9+XCAiHw78FhjTMg7bIstPmyxlVi22OJvCE2syCc1qsCnYdV1P3er+7XF\nFheNkLF0iy22eHiwj1V/fRRWZfcfsLEwW2zxEYWtKmyLLbbYYosLxVYVtsUWW2yxxYXi0qrC7njU\nvrnro69RGaE2UBuhUv/LGgoDVSXtX10LpoKoNogBI7YtY9M5td8HEa0PEDGIrP9H0fq73b/+7GCM\nYIz9b79j+2T6+6g9SbS5trueDy24hvaHjgsdr9t39+S2+8e7/laVqHvp9t97BIjqgBFZP/NIOtcw\nRtbPIBKSpG7+DKnAIoZFXJPFEYmkUOZQNA5a6QKSlNIUrCrDQ2XUjoe6tv0sy4i6FnU9utd2UH3w\nf/Pe7zZybBT1n59+rnqbbreupdNPH/6Yace1ep5+2/59+uPUhz+u9bgY6pMb10Cw/1Pn6+fpumcE\nJKYzPgHi2CBi2n4lEcQCidj/IoZ3vvWe+40xjx690Qn8d3KHOaaYdew9HP2SMeaZN3O9W4lLSyx3\nffQ1fvrX/y0nZcRxYZPjFjUc5jHHhXBYwL1nwgNncP1GxvUHF5yepJwep6RHJXFRd9qr0ohiMZFk\nN1u/DUlaky0qksT+XywqktS2mWV15xiAfBVTFhF5boXMsohYrWK7vYzIV3G73Z6wftnTVWX71lzf\nXWe0q811Ndw19HV0W+5+3OdF00bovlwbeR5xcpySr2JOT9J1/wP34KPzvDPptOvOTVcVxX7CwdUV\nj3ncKY+8mvP4Xbhrx/AJV3M+/iDiEdljSI+uY+69BwB57BMpdvd5cPVe7jmK+fMbGe89FY5yuO8h\n4fQ45fQk4egwoyyjzrPp9F9B/97u+ejfTvfZ3YseHw4L9XnsuZ6eJJ3xMQR97XRVERf1eiyrZ6ox\ndI9D9+3uNzTWhxAa36ExN3SuHju2AxL8DRx29wqyrGZnr2A/M+xncOfScJDCXmr4go/70ndzkzim\n4KXx02Yd++XVrz3qZq93K3FpiaWspUMqAGkEi9hQ1kJew0FqKCphtVe0E3q+iikWcY9Y9PdBgslN\nh1yGkOcRWVZ3XmA3CQ8RyhTSVUWBnSymJoYkrUfb9fvVO795cVermMWioiyizmSgv4/2xT2r3EyT\ndm4o6ZKqmyg5Kin37GS7s1dwlBvyJayqiKI+ozYVZDuwvNLcQGa36a5EBhAWiSGfQcwaeoEwC/pe\nZsA9z6lFx9C5mlTSfN3Pgnijfrh2YP0OlLmMjvk5i5wkqYOLmrF+dM7fNWSLMkgoDifHKeWiIs8j\n8t2SfLcEhLPKkI9IfFuEcWmJpYYOqTgs4ppVJWSRsIzhjmUzSK9ZNUm+ijksFlRpFCSXKo16L9d5\n4CYJ/f28pOLQkgt0Jm0fbjLxX/qQNNTZnwuw7lO2qFpycffgVtebrHo7E9PAtf19/kR5epyxs1tw\nepxyluXcyOG4iFhVQlGfscgOYNFkRMl2qMxJQy4xy+aW0hicJkOTxZBEoFfrsCbcuRh7Ru7ZOujn\nvOkYcc/qyklBmlckRc1DuylAf7yEoIh8eVJQZHH7LtgOQbHfn2pCi47QfeareP2sByTa8MlhyU9L\nff4zXHWeV0lR2UXmRUAEknQmSW2wDrkdcXmJZcQg4qQWh/0MwLTkAnDIgkKt9IDOas8RTI9cZkot\n7eEDq9DT43TWas9XIbV9GlEzacmmJ1moVWkIRdYdUnpCcKtqRy4+ec6C/+y8ycX1zZHKlRPLBGe5\nIV/FdkVaQ14Lq0o4LmIOsoeok0cQLfZtI1FCXXbvcRnDYQHZQJfdBAh99eDgrXj7SvoqHD2RZotq\nUq2lVWxD7XRPMi2pLE8KslUJezZ7TpmuzynwxrFamGgST4qapKgp04g0ryiyRs2spLApiXYWcsPy\nuG+v8NV42aJiZ9ce56tmHRyZOHWsVbvl9p3bKzirtp6zm+LSEktVC8fNy7aIG2JwC6zKvjRupbqM\nDVlkV6yL5Iwsq9sX+PQk5axIIDeckQYncvCkl+YlywL6cg09GfikElKXhNooFvGFSFBJ2qjmMulN\nMmPt+ytmrbIBRu0AgxLTAHxSAdqJzU2EjtSyyLCI508YZxMrSG0DCEFLK9miYnevCB4/JC32jhsg\nGH+7G6d+ey0B5UKVRpRpRJVG5M2UUKYRRRZ3bHNBBMYDrJ+7P9G7Sd6R4LnIZWBx00pIAXvKkL3P\nbTs5Ttvn4kuD7M0zuE9BIlgsZi4q5xaCuE1xaYmlNPDAWcQyXhPJIjasKulIK8vY/mWRJZiDFA7S\nnJ29omfEzVexXbEHBn5QevGQZXVwFT+o2vCkn6GJrXddT7Xk9vt99F/09nvavZaeWMYmB61qWDQv\nryNnH6F2xuwyIVIBO0Ge7Vrpbv8gJ0lrDlL7my7imjQyxJIQEWNKK5H6r74jlaKCvLbXtwbytEso\nze8xNkk6UsmyujO5DWEj28wGbTgvuVNSCqzqKmkk7yKLKbKYs720tU9o+IuFkogiSyhyQ7Wyz6Id\nR81Y29krNlYFzoUjFF9S0c4CECYV987t7hUsFhVHh+tcp6vV+Rdilx2XlljyGu49c8QhZBEdQnHY\nbQZjEgnLWDirLMHsZ3BflnO0V7CzW7ZeOG6yKYgnpZd8Fd/8yxZSrQ3pnj2vNCeBuHP0ZODbBzrN\neyvgruRkeueE9PxDNoDQytpvY4hgfFIB2lX3wW7eTjhps1iwzho1saRQl1Dl9qR6uCzMqhTyPOLo\nMOt7c8GoqlOTyo5aBW+sBjonQsbrsowoi5QqjVq7ykO7aUsqO7tF7zdIkjooMTmCaa+X1rjxcN5x\nPmYjqrSqboRUOqpJT1Ipi6izbf8g79ldLgoiQracqf796wu77C3BpSWWsob3nQj7mfX+WsY0nmB2\nfxIZDrKqVY8tYutF5AjmILXSy71ncNQQzI0HF+2qp1ysVVZB6SULP3q3gnKT5qyBrdxUg6TiEYr/\nuSWYZlL0XUQ7z62MesSh7Qtz4LvoDkFfJ0QwDu75djyalCrGrrorsqxmkZhWAl3ENYvYEEls41ja\nDuZEsT1/VTV9re2iwpFJWUaUJwJ0f9/WG8rZlBqVj08qi6T5nfYKOE4hsGIeem4OoWfh/za+Cg66\nxut8FVvpmxSOyh6pOClPnzc0Jn1Du09kc8eIv2AYsyv5bvQhF+22f55btvvsrqf3O5smbCWX8+DS\nRt6XZcQDRwkPnMEDZ8K9Z8KN3Bpop/TpSWRaFdlBaqWX/cyws1uuVS5JsyrNJKwCawhg7KXRRsVg\nvMNAm4P9HjAqt9sVAQ2pYG5GwirLtfro9DhtVUrub1Mkad0+3467t6/fVxgyvo8hr+2YcGqwo8PM\nxjOtqrBUqn4Hn5xb0lb9uEiJZWjy9knFXzwkaU2xn/QklSStgxPy0PiY66wQIrnZ99X85pP2H33t\nGWrHWdfeYhYur8RSCvd96AqnewVHuyX7jd86GK5mVi1mV6uNB0sVtbYYB2t3sRNOEdO0AacnSevB\nk6S1VREEVGNtwFdSty+YllTGBnTPk+schvmQpNFZzSX15GpzSM01dOyaGPsBbH4AnF79jrULXbWI\n++6eSacNRRLuN61NBcmuPSDObBxLfda4Itvji8qqwU5PErsYaLyppvqhr+8MxABHODfotJVQdcCl\nhq96GnoOPjm3YzBZS07aWK6xs1vYAFUiskXZsU2E0AaEDvTLv3YIfvtDzirB4NMBQsnVedr7zBng\nXXxYSJ3qe2C69sYWf5tABNLkcsTEXFpiqWtpV88nxxWnewWrayvYW3uBJZHghDqfVJLIsESaicqw\n7wb6bmlX4AFX0hC5gH05jw6zjVUGGiF1TO86zQsVNOZqlYC3yl4ECGhOH3tGXi8ivtNfpc7TL/7Y\nClzvc/fciRxv2tNYlUJRGUsWDblUpoAosaQCECVUVdEQT8RZZSXZ0+O0nfDSVdVxpx2CL+E5cnHP\nWmcecJNozw15glT82I6SrhpuiFz8Z7mzW3Qm5LZJNeGG+jW0uNDX1pgirZCn4KYSbYhgdptAZz/4\nGML32PHC3GIjXFpioYTTB5PWprD27nmoOcBGWk/BSS1gSGMhq+gYZt0A9yUXF6y4UWTzTAzFpQT7\nP2If0RPAUHyEfzyMEYrpeG8BnYBS3dcpzyoH91wdMY2RSp5H7GAlkLPKRd4LlSmpqYgSWzCxpqKo\nV5yUESdFxGEhrdHejZNlYaVT31lASyxDaiE9eWlSOVWkE1oABJ9ru1NFvTfjKkQuGiHbwZB9Qp+j\n+zEUEe9nbxhK9eNP8H6fhty4/UwO7r8/ZnKPpNrxHIil8rUF2rX/IhAJZHPdjT/McWmJJaptgJWb\nCA5PtBpiTS7LuDEMqiSALv7BeZEt23fBHr+MDYeJNXq6CcK51DpyAToTn/a42RShvGWbQMc6jBk/\ndV/H8ja1JORF6oektZA6yT0fNzn6bfvXsV+8eIqBvGj5KiZPyjZAMq+tKqwyJVFkX4eiXlGZgqKO\nWzWYNtq7+3HuuWXgeY951Wm3a+durVOrFIvpBccQqbjnOUQurk9TBukp24fv0deTZtT4CI3t0LiZ\ntCkO/KYhkmnhbJlF2ra9f5B3DvEdZXxSGQsI3iKMS0ssLvBeT2ynDyYkSUaS1iySM0BatRiVtARS\n1kISmVZXD+t4lxu5VYulMWRRufZGct5iXkI98HJnld3o5HbSVy+lr1bTRBIXdeee2n0TEf/ak2dW\n7MREzEbHpbWZJEOBdCFiGYr5GXQoCKx8df9C551VYffyWdCxQ9rlVanFrMfYtDu5dfeNghPY0LMN\npTVxzyuUbDSUUmYxQi6OCHTgop/5YbQ/G2SW8D2wplLR+PcUshH2bDHNM3LHhu5bS2K+pHIzgcUa\nIpDOTenyYY5LSyw+3AR3epKSLSquZzXZtZx7YyGL1u7IQEs0fg6hLIKrTfqXs8q6Lh9m1h35gUZ6\nuf7A0h7rreq1fcPHkLrKH/DpqurlMGtXsDNejjmksu7ztHogmLKkgSaZELnMhZa2eilRmknOEbOb\nKFeljPY/kphYUtLIc91N60GiKLK454VWnginpJPS39x77J8cdi0PeW+FYlhC5DJkcA+RSq9frj8z\nyWUoIDh0T52vQ1JrgyC5uC6u+mSvCWXS83KLWbi0xGJEgokkXUT1YlHxQFoDJcvYxrvYXFFrV2ON\ng9Sqy9wq2NlelrFTj5Xc10gv1x9cBNUImlxCOnG3D+hl8oUueWwyWY+tqp2h159UdLbkKYQmVl+K\nmervHCmqJRfoTnI3YXtdxjaVj1Vndl8XJ604UgmhPBHKop/XracupJt+x91Pr72hRKADUkoIQ2qu\nMUlhrkNJSNoMBSyG3H/nSivt98ZbbiiIdsjg72d60E4IPVIZKB1wHkgkZIvLEeFxOe4yAKcK89VI\nNMkKjw4zDm9kPHCUcN9Dwn0PwVEOh4VwWNiYFwdHKovYsJvWJJFhrwmgvHNpa3/csTR81J7hkVdz\nHnltxf5B3okVAKxHT7Fh1uJM1n8K7r7SvEkQ6MVXwDqtB9AG8YWw8klwJFFiCP413D3rOJRN7UKT\nUM8k1L+iMeAXG6jDXI64JG08z5rUJ52UIiHkpiGYdbxOyAY12sZgp6Sd/JyNbNMYkyGPv16tmTG3\nW52MMjDWbhZDar2xRdEYIZRl1P61cVUnQnqksi6oSP7bDSLyTBH5MxF5p4i8OLD/E0Xk90RkJSJf\nr7bfLSK/ISJvF5G3icjXBc59kYgYEXlU8/3pIvJHIvLW5v9nTfXv0kossF4hasnFRcWXpdX7Ht7I\n2NktyZsBtp8ZG7OSCTdyG/NyVsFe885pt2Rn8F8iXM3Wkf0r5TXm21503YiN4E1O7r70NjvRNobn\nZrXnrhVyc+1dwpuA5kotFxUH8HAgjcYnQBsMa+uwnDbbskXF6WL96oyRQSeNz4RdqlfLREXvu+9j\nmPP7DXqqKTVQyJts6jecW89lzClgTFrx+6XPGYOOVwm5sa/tW5ZQNlEdb4qN0uaPtiMx8P3A04H3\nAm8UkdcZY96uDnsQ+Frg873TS+BFxpg3i8g+8Eci8ivuXBG5G3gG8FfqnPuBzzPGvF9Engr8EvD4\nsT7ecmJpHtKbgPcZY54lIteAnwKeANwDPMcYc7059puAr8BWK/haY8wvNds/FXg1cAV4A/B1xoSK\n6PYRmoTTo9KmuFBwonWe1m0g5H5mCwEN5RkD60G2iA1nVcRBal2YzyrTBmzlecQj7zhrA+R8hFaT\ng+qQifvyM76GJoy5qzNdb+M8q7qhOBQH7Y7tu66OujX3LhRWZbh8Ye39SNLmCIslIZKYLOrmDEvS\neh3TM5DV14df5dK14/4PJdT03a57xw2k6RnCkO2k54FF2GkgNFY2sUe467p4LRfnNZRgNeQQEHpW\noXHhb4f1sx4j55ux9f0N42nAO40x7wIQkdcCzwZaYjHG3AvcKyKfq080xnwA+EDz+UhE3oElCXfu\ndwP/Bvh5dc4fqybeBlwRkYUxZsUAboel5NcB71DfXwz8mjHmScCvNd8RkScDzwWeAjwT+IGGlAB+\nEPhK4EnN30a1okOrk/SobLIXpxwdZpw0mYxPTxKu38ja1C/OMyyUBsaSSs0irlvVWBapFDBNAkv3\n98g7ztg/yMM2iVBm45n3FUp9Mesac6AnuLau/IYv6IDE41Qq/oTgYhPafp8zJYxDJPPvuSXnTfXu\nM8tCa8l57So7fG+b9GMsoLElCDWuNhkLuh6Lr37tqP+aMeZcrmeRivuvnoc/BnyMqQQ78Goq3UZ4\nlIi8Sf19ldr3eOA96vt7mZAgQhCRJwCfAvxB8/3Z2AX+n4yc9oXAm8dIBW6xxCIidwGfC3wb8K+b\nzc8GPrP5/GPAbwLf2Gx/bXND/01E3gk8TUTuAQ6MMb/ftPkarPj3i5v0xTecwlpySdK6zXPV8Zy6\nmuPSwNy5XLshA20CS1frZVVFlLW0XmNFJZAZ8qRkVYqdrJQqQqeV19jUY8WRSyhGpXUEUBOOjla+\nGd3yHPWJ69fYxKmrXoZqlWxKKNaVXOXymlCFrY/zvi8qIA5PghAkyzES0JObrkQ6q4LjCNz40b+1\nllz0pB4KsJxqV7tJJ0U/u7TfXm88D6VsCRSi0xka/LHg2150zM6YR93fJKmIbFCPBe43xnzaw9cX\n2QN+BnihMeZQRHaAb8aqwYbOeQrw7WPHONxqVdj/hRW79tW2xzTiGsAHgcc0nx8P/L46zrF00Xz2\nt/fQsP5XAWSPuLO3f4hcikXceva4iXfhkcuyCZrciwgWkFrENSdF1HFJdhlzLdHAWVZylIvNdqsQ\nWp3NSeHSQtlWhjAU4TxGLg+HHnoUIyqRKfhSxjLuBr0CbT2WsTZ8z7DuAesM0eeFSxPTKe17jvZC\nKi+fXELuta2NYSD7tm5bu52nedV6ybkiYX6RLwgvZtZtuQuEq5tuYq/aBL7jyCbJLW8R3gfcrb7f\n1WybBRFJsaTy48aYn202fzzwscCfiIhr880i8jRjzAcbIeDngOcZY/5y6hq3jFhE5FnAvcaYPxKR\nzwwdY4wxInJh7iXGmFcCrwTYffwnBNsNkovT9+drT6PrDy5ZrRojfEMuZ5UliywSlnHEblq3+ahO\niqhVl/nxLmcVkEJeW4K6D5tKXb9sY6lXRouIqZfa10cHI5yb+wutLDX8l9FJOJuq0qZI4mZLO0M/\n7iGLaCtIdgp9NcdExNbmQpdoplKqBD/r40OaZ6+0r0NoUg49qzl51ebC9aGtvqkWVPp6636XwcJq\nPqnsbFKBMZCloUOyeOW11UJDZxcAhtVr0C4CRovgBdq5GUgE6eJCmnoj8CQR+VgsoTwX+OJZfbCs\n8SPAO4wx3+W2G2PeCtypjrsH+DRjzP0ichV4PfBiY8zvzrnOrZRY/j7wj0XkHwFL4EBE/hPwIRF5\nnDHmAyLyOODe5vghln5f89nfPo5Iueh6E8EguTSDOThBXM0pmqDJLHLeYhHLOOrZX3QczEG6ts/k\ntWlVLvfRfRn9iX3wZdMIGK47L1soIEwlMfTPC6nhfMN9iFx8dUwPnp7brwioj2v/DxU3G8sucDOp\n071T81U8SCAanXG0Cjsp+Cn//UlZqxWHyAUuNv3+8qQgLmrO9lK7oGr72/WeChVWc/131Sd99ZRD\nT1rxsg/oazhJrnWjHyGXUULR8MaKfX6mc85FSEQXDWNMKSIvwHpnxcCrjDFvE5HnN/tfISKPxTpF\nHQC1iLwQeDLwScCXAm8Vkbc0TX6zMeYNI5d8AfBE4CUi8pJm2zMaB4EgbhmxGGO+CfgmgEZi+Xpj\nzD8Xke8Avgx4efPfeSe8DvgJEfku4KOwRvo/NMZUInIoIp+BNUI9D/jejToTmLyGyAXCbpRg3YjP\nKuue6gjG1mxZH7OMbVVKbXtpCvexqoSDdK1Wu4+ijUzW6rBQIke33a8CGfKgcp+H1F8h8hzyuJqj\nYtOfz2O3ae0weiEwVpMm4DHlVJeu0JcrTdxWkJyJuXFGfqnkoSzIQxO0IxVXI97Zx0IpgXTfYDh/\n26ZI8wqO6brj52t7ip8jrU8qFTu7RadAWCglDND5PfW1koD9Y4pcYDrNzNwcdDfjFBJCFFCTnwcN\nEbzB2/YK9fmDdBfcDr/DjOy6xpgnqM8vA162Sf9utY0lhJcDPy0iXwG8G3gOQMPIP411iyuBrzHG\nuNHw1azdjX+RDQ33HagB6LuTtpUKvczESdJE0+cR+a7ND+YIZr9Rebk667tpzZ4a1Gmk8je1l0uw\n2ZJhkZz41rSrAAAgAElEQVRx/cbaDfn0JB1Ue4VKC7e35U0socnRl3r8bLXt5K5UCH5Udaj986hr\n/FKznT4NSJo+Wrde517dfE9DXdCliRuMxbiURdSu3oegPaV8uMnRTdqd4mT7SSupuEh1f4LbRO04\nmGPNcz+u0qhHcE5aSAIE6AjTV3/5pBLMIBAgF18lqD3MQvV2Ohiyv3lSbigzQciLUUf1X5Qq7DLh\ntiAWY8xvYr2/MMY8AHz2wHHfhvUg87e/CXjqJteMIjOp+/Unx9agqVZALgWMRllEsFeQt95HKjAx\nEhYx+O8FrLftpjV34gyjAle9TMmLdLBGhBPnp+Bqb7T9dXEZI26xra6/IVQ3+elUHZtClxNwCNUv\n99EhGAf1uwxlwHWqxnXNe1WauGqIoi5bKWYRG7LIkEX9GJQ5zgu9IFXo9bvwvMncc7XZGWyfsqwO\negsGn81U0GCgXHFJZFV1nmTlJvkyjUgaAgx5frX3l8lokO9gOhlvDPTa9gisvV57IwOL8M54MMGE\nnFPS3M1UTdUQgSS7HDnIbgtiuRUQMZMDppNRWLtFBtREHXLZK0hWMVBxFhnSqqsOC8GpxjQ0ufiZ\nkrXefZMV1ZgbccidF/qrY991eSz/k8ZYDqh2YmkJpZzsb6j/oQSM/n9d894lnKQuaeveNzXvnarM\nhXs5rzD7P117gQ3AlyCThvDdvYWei5uUXa1596xbO5VHMNCfrIdUTqFElMH+NtCS1BDcZH+2l3ZI\n0ZdgNfR2netrjFzcdYJ9nREjNJaMM9Sv1TnVtltYXFpiiWPTq8swhtUq7sVm+DpdRy4L5ZaaJ2Wb\nl2oZhyP0F3FNGtmVcV4LYL3JAD4qsun67w3UeXHpxoeion34ROAmp6GYE1/vPNaWm/CmMJpgMAW3\nqgwVhnLQk5FudywBoyM9SypKny9pI7GctpH31CXEXbfxZQxHTTsnzTVG1XKeGm9sQtPGbU0qO41a\ndZEYFk28k0/w+t7c99OTpP1t3Zj0r+9P7q7PbmL3szYMYYhUpjAquWRJ36FGqQo7GCGVkLordP+b\n9O9mIAJRspVYPqJh8/aMrHC81ffYRKxTYbgyw/sHeZui/SxyMSvW1rKqota2okkF1pPe2g4TcW1h\nV9iHKaRna+nl9Dht+wX96n6d/s+ULoYM7EPlZTWpjE0oLl25NkCHMEQq7tkP5YmaNZklXaLo2FDq\nEvJGNVrmxNkOYNVlzoPP5QtzaV06bsCew4CTPEITmT/u/HvTpLKvVSeJwWYzUps8MnX3GLJrDU2q\nfq0fIDi5azj7iiOVJJ3OuOC7LY/mDQtILz0VWIBUhmwn/r3fbp5eH2m4xMQy4c3U1MZ2n3UxIoex\nyWzlJp7jFPaKtmDYYTFuZ8lraTPu7jWG/uMiYhFb1+VlbLjR1Hl5IMk5Okmsp5Kqa5F75HezOuKL\n0jHr9uYQTHv8RHT+JtCG+ywyjSqs/xpEEhOJVYe51PkUE7anYl1S2C+qNYSh+3IFyqx34cybg6bW\nzHjbGqMr87Tbhp7odfDmeXLFOdtRktacHIdr1gRtb801HXxSmavq2uLhxSUmFiYLDYX2aaOpThvh\noLMFAzbZ5HHK+1Y1Z/tlm1esrJM2gFKnfvGRRoZHLiqKumYRR+ymEQdpxL1n1uvsvqjkgaP+z+iT\nS+je/KqA2g05ZOR0uAjd8xwvtYuaCPx2QlH3thONxNImo0yBuq2t4yb4odXulCeegz/ha0mzVbFB\na6ejkUKcKizkVqslFLfQ0L+t8wAb6tPU9nwVt0Sj08x0pJBADaHeM/Gk2yTg1jtod5kglKF7CI2j\ni8q/thHEkKRbVdhHPFpVQYBAxl7+9vyJlXy+invlXfOrOUepVYvduYzYS4VFbChqOm7IYEllt7lG\nUQtpZFqCSaKY5Qqsx9k4ufj3cTPYlFT85zam497ECWHIpjToWjswWbRR9146F5fhOI2q1i6zjKWT\n1mXMjddhjBx1OV7/PkCPwXlxFW2yxzzi5DjtLRjmSJ5Dx3QWKelmgYNa7ZqkNju4I+k8sSQ+lipH\nO8uEyNtX896sdHs7BkV+uOHSEotThfnkEiIUGJ/0xlbffpGsPI9YXVu1WZHvXMKBqtHgyGU3qdlL\nK64ktj8PlRWrKmoJZi+tWcQJWRQ1K+qS+x7q5hkbSmTpqkL60srUC6Xvc0qacBKRf752S/a9m0LY\n1CHAX5V39OwRKjjSDMapmHJF1KySs8i0NVlsXJFpC36FpMEpzysHf1yF1JZ6wTNnsvTH8JjbsZ6A\ntY0nJNXo/ectteCklEVi7YxOJXmU05ah8DNYjxGhlqh9e9+QJkK3Pzbm9GLwIiERJDeR/eHDCZeW\nWGA8/cNqYBUZamMMIfXS/R+6Qn41J69LzirhzqXhoIq4YzmsFrMeStb1NVfkYuHckmnzjLn7cQQQ\nIpeh9Ok3G7m9aTLLTTC0uv9wQWih0nEE2bAoWoh89G/rFgx+BgbtWagRIhX33/V9jqQetHEkpmcv\nWsZ2gZV5k/nUgmMKY2ruscVi1lz34SKXy4JLTSzupfON80MvvY9Q4aTQee5F06n3oZkIVOp9XR4n\njQyrKmIRNx5fldhklqrdRVw3KjQhr6XJZ2U65KL7MJSyfJ0DrJuE0o//0HDParWKKT0VhK+K8fX7\nWjU49uz8CaqXNNPD2CRQFlFr3zqr7PMsaqEyJTUVUbLAZPaZSbKg5nxE2Aadevc9d5wM9d2H//z8\nhVDI/jfUZmjcu/OGFlhD+b/G3pejJgYI5el2WFjb0elx2iOChRp/obicqYXFebQP+v28aAgXl9Ll\ndselJRZjpEcq/uCdGrhjxlBfEhpNa6LIZRk36om4pqilJZSilibGpQsXPX6tzZpq2zlUHmMQkM7K\naB29r5L/zanF4cMVbXJVAV2pZX0t97Lq1aD7PpTHzHct7hDKQJbjKcnIxRSVzfOsTUVlSqIogYZY\niBJLOKYir2WwOqiPUPLNIZVZ6DzfEL8uVz1M7GPXd/C91Jztb4iM/HOH2oRhW9cYjqjIG+nFkcoQ\ngvE2M6435/mE3gmtmny4COYy4BITy7hnFNx8ArrOJAidLLF+6eNO0TCse7FGiFQcXHS4IxerbhDY\nLTlqjKKleolaUvGyCrfp0lUtjk1UWJpQ/NXv5Ao64HrsS1lOsnJ9dnm1htBzXCgF0nVMkZVYCmpT\nQZJB1LSVZHabQqhCqN9Xv/SA6/NQnIU7z7+3YtFNcrqp2/hQxL1GiFR8O1tIIvedLzQh6fP1WGsJ\ndqHT/lSsoCUVLa2E0vS767mAz9C13PY58H+H9v5PpFcq4MKwTenykQ8nsThSOT1Je0QQyrnlF9jy\nPVZCNTr8LMlxUVOtog652IFcslaLJUA5mghRw5HL2hGgyTPWkEubZ+zE5hlLj8pgxtq4qCma7MZz\nSSVEyv5+X8c/5FjgEEomqOt/6Oy66xxV4f6uVnEbN3FW2apyeW0DVWuTU5kCohQWNijSSiyF3T5R\nvTtEDK6Mi4u70HV8gvfZqCE1yTvJcSqB59hvNEZEoZW660tnTI8EGeptLZkNlZVQOFWSNIS9Mtvr\nqwleByeH+jqEKfd5vdBaHhdtMk1HMLdjahcReSbwPdi0+T9sjHm5t/8TgR8F/g7wLcaY72y23w28\nBltA0QCvNMZ8T7PvnwIvBf4W8LQmByMi8nRscuAMyIFvMMb8+lj/LjGx0Ka8mLPK8cnBbdM+9n1i\n6kPX3nCR+rYf7qfwyWU8zkXDHWPrwMB+ZidSZxh1UotOoHgzZVmnbB4OelWpV8H+qnYwM20DP5dV\nkcWdbSH1WRtXlEckq5g8KVs7iy3CJo3Esqs6nIGxMS2FkhSLkfnFT6aZrqpZJXUd/NLEQJs7bejZ\n6ucaDDCcoc7xScXP3O2eqbYXOXWm29/9/Qw607AvUYz2ZUJD4K6lpW1dtnrM2K7VksHSzE17OsHm\nUHmM80LEXEhKFxGJge8Hno6tmPtGEXmdMebt6rAHga/FlmnXKIEXGWPeLCL7wB+JyK805/4p8AXA\nD3nn3A98njHm/SLyVGwdmGCVXodLSyxVJcOkMpFc8Kauq2pbwNqt0uUXK4uI1V7R2AIMZ1XCXmpY\nxFGT/mXdls8Jdl/dGvPPKsN+UzMlVwkN7YovhZWqbaFKy86Br5IYfF7exOjbHQbjMwba00QSymXl\nT7TuOs6usyqFo3ydWmdVRY3EkkC8Lk9Qm6pRh3nedKV0auRoOHIJVibU9+UtQvx08X7ixyFHhzle\nS3PsO5pUlicNoXoVU4dsPZpUnBRcpVFnwj8vfHWd0ypoadth6nqO4DS5tPfQEOLNLLL+hvE04J3G\nmHcBiMhrgWdjS4oA0BThuldEPlef2JR9/0Dz+UhE3oElibcbY97RtId3zh+rr28DrojIwhgzWMv7\n0hKLMRKeGNwL7CUX9At/uRfILzYUmhD9c/0J0UktLY5TVUHS2gQOUmvIX8QmKL2spZqIRWxalVhe\nQxHbWAEttfj98tOhj638gob0Iah9oZd+LqFouEnbn7yH1EYhqSVvHCN8zzDAkoy6/ZB9ZWgV3pLL\nzHu5lQiRSlLUbfVIRxD6dwstDNxk787vqCiH6qRs0kdl//DLIbucZW3NltVaNaqhpafQwsa9B7p2\nzpyyCA8jHiUib1LfX9mUVgdLBO9R+94LfPqmFxCRJwCfgi2QOBdfCLx5jFTgUhNLeHtvdRggi/Os\nbNwg7ahHFHoTlUoDc1jAQWq4mgnXFrCq4g7B7KW1ssXUrYoni4SD1HBWCVll66fkubWd7OwVnB6n\n7UrPr0YZQo9UBiZOX23Y3qunDtLbNsXQS9+mQ/FSjbjcbW1i0Mp0PMOGsKo2nxD9ujW9e1SLkJCK\ndRYC6qY5HoqhdhypXFGEojEmDWhS8c93pY21Q8OY55rfX3+sLY/tYsvZ2BypODLrVOrUZaBV7ST/\nWbm2HVlpyT1dVR1HlpvFVOJbD/cbYz7twi7e64vsAT8DvNAYczjznKcA3w48Y+rYS0ws/VVUUOWg\nJgW3wvfVWR2pZQKhKo9jL/6HHsw42isortDGYaxru1j1mJ386o6hv2zjWppo8yuwjA2LO8+4rmq6\nnJ6kFFlCkRuq1drLqiykE4ntk0p61K+eWOwnPTVQcOLchExmVosMeWO1TTT9XyxsPZt8FXOUlY2d\nxZ5TmfW0WVNRmYJVtW7PqhbpSmp+V73JsR1PI0WoCvolsCfhVUUcUomFxpXfdycB+FUuXVEv3Vfo\nT4zOXqfbKLK4k/nYHTeUmbrXx57dpyulAO3k30pHXlr9qYSVeltJZPt6vL5vZ8C/TfE+4G71/a5m\n2yyISIollR83xvzszHPuAn4OeJ4x5i+njr+0xBJCyKNrDHqVPySJBBEoHdxeNkQyjWrM2lzsajuv\nrUSyjCOSaG2DWVURJ0XEYbFW4bg6L/uZTaWRXct5QNlcnK3JX50NrRxDJXmLRdzWVNHSzLlfTm8i\nc7aLUYT2Z9LasZzUMnfVaOOHbBDfUQ5H+dqTcMp2MTcB5RyMjktPGggFY865plvxw7paoy41TFuk\nLHRfMWdZRpVGLE8KznbTwdLSg9f3VGuaUIBg1cqHdu0Ka4xMHIZcvnWyyyqNeGg3XZPK0ILgvIgg\nWlyIM8AbgSeJyMdiCeW5wBfPOVGsAeVHgHcYY75r5jlXgdcDLzbG/O6ccy4vsdTmpnTgWmrxCWZ0\nMh0hFd9jRXvfcJySpzX5rvUas+nUTZP7ytpgToqIs8pOhL3LttKMNNJLyeFu2UovLgZFr8j1hNRx\np/Wg65y3x5/XzjCwwtSGcYdZZN64pLqMuS5YNa9pJbrK9B9YZcomQDVqvcjyVUyeR734GugHIfpx\nO61XnPfb+6nhexOolsS8e9f3HfLA0hN0sIzvQDEtV60x9Lv6XmY6E3Gxn3iEUgafSXtrQxKV59Cg\n7TYOLXn59+RhbsZp13+Oyh6p3Gw820XDGFOKyAuw3lkx8CpjzNtE5PnN/leIyGOBNwEHQC0iLwSe\nDHwS8KXAW0XkLU2T32yMeYOI/BPge4FHA68XkbcYYz4HeAHwROAlIvKS5pxnNA4CQVxeYjknfEO8\nRs9TZaB8amhwD7lD+rABj2WTUFEal2LTVqgMGZqXnabsZHLHEtJYOtLLyXHaqZPiJmHbwTWpaCKd\nqnO+EcF4UspQjQ6/rSlVUkHc8b7TcRNWjdg9X0fdW+lPWmll7iTjT6hDv/mFYEgN6AXAApMqW6fG\nqtKo97uOBbe2+1Lwy0r7hehC0l5I7ZV40oquee9UtmviMEE7jUaIIDsp+ovxgNubhki3INBNwBjz\nBuAN3rZXqM8fxKrIfPwONp4h1ObPYdVd/vaXAS/bpH+XmliGJqTRlZCyIWiSGSSVGfW4oZuttXM5\n7wVx2QJc+nFLKDbzriMQJ50sA2PYbbP/myDK/TI4abS2lSLq3Kd70Z0KYihp5Sw7w4YYcumdIvsi\nSzpGfIex+KCisasc5WtpxanBtJPATQfQqZLA4DlQ6OemPrsYF4feb+Ct+rVhW6/IQzXm3cQ9t9Rw\nKOPxWN17d7weXyEpxY2zWNl7tO1jbAES2hYK9oRpl+xtIsrNcXmJJZKg9DEpXnvb3Ivp2tqUUBz0\nCzyW2kSnxnAEo9OR72c09pe1FOPDGf+vZtCSC6ZRs4Wj4ov9hPSoDHqN6ey5s+5VFaQKIeS903Ef\nDrj0DpFMaydI61ZiyTJbvMtl2o0l7VSRDFWUfLjgO4x07AXeWOuMpRT8zBCdyTL3xqk2SCt1rKsx\n75w33LXd8/IljhCmVFyhTMW9gnh+myq+qvIM9JtWrZxbyuBhhwgSeiE/AnFpiUXEdFaKvRXvXGJQ\n5Vud8dueMyya+66hY6s7/3yfZHQditVeAZgOuWi4Koh7TRW7dXJFQ1FJpy6GrpXSeo815HIeDBlP\ng154M6K2ByUhJcmEpBhnvHfvd9qUJwZ6xb7mptMZc/UN5U4bQmdxMjD+Zk+OASkoZFBvpQZl69F2\nFV08ayyVvQ501X2eyuOljee+rUmTS+kZ6GfVgFGLtcn6Qa5vnlpxK62cD5eWWKCvVvEnorl1ScbE\n7lYlNFDj3S9UpDG2QvTzc2XOdnBtxVllePQVe6yTWjSpuBiYwzxuPMuspAPAbsmqFJKAW60jFwKR\nz2MTp1ZZaHWEI6xeoOWEG63fLiiCUnFH+jfNFlVnMk3bZ2KPjYg7639LNiOTkYrJGXPGgJm2lKbf\nWvIKqXpCqqnBVb83WWtS2dkteuc6KdDZVTrXnUEuQ7nGQo4Oc/rrZ4PQqteQE4G+pruOI5SxcdTa\nNwcyZ1+UpCMCckE2ltsdl5ZYXNaCoM7eWwVvpOYJiN1DE0Go+p2PTgVKP1ngSdJOFjo9jVVplTz6\nirSeY656oiMVl26/VHVcWpteajhMGoJpJpTrD9qodE0uYy6ZY15TIf22e6n9TAahgMeQJNhRrymv\nJ91HpwZzCNa9h7Z6pIPWXoQ8wkLouc+yweo35C7rPbvZK/AGeqXfq0s/kE9Mj8s8j4LkMpVrLNT3\nUP/9/upUQ9BVg4WSw/r3MLRYAzpjwKlxNy2wtsU4Li2xOOhVeS89S4MxVYeGk0r0Kk3bCLSEMTY5\nuT7pwkShtBZ+CovDG64oy5lriUdfEW7kprGnQBIJNmNvzaqS1ousY8zHOq8UleEsK1u33B65eJgT\nVa0nRqdm89Nq+K60/uRwXm8qneUYmF1nxT2jfnBhdxLVnkahHGhaAtPjoqPWG/DY8guHjdUb2XSS\n7NTOKdb34l9Dj8tQFoaOxD8guQzlGxvtn46xyY1VP08U4HP9hMD4USWcO4lodXZj5RxxYd57lwiX\nnljGMJR7akz1FfKQCa1exxCqh772zupHIduTLMG45JCaXPYzK5UcpOu8Yy7mJVfv3JpcGsN2iqoD\nkwNdcunFuTC8KtcryqnV9hipTKGX782bqPM8YofxTMWh6pGh381Pcb9+9l33WeBcbqybZgeeA3/B\no7drVdbpSdqO27HaLaHI+KE8YyFi7N3bSDaCNK/gGM5IGaqZoqWPIQL2F2yujMTSe68uOrsx0dZ4\nf7kQCjwbUcXMlWBgYPUaypml2nbn6W2h3FyhaOQiS3rkku+WHKRwVrncYWFvMe0p5TzH8nodWJlF\na3LxVVjt/Y7YRaaeWcfOdRPuyT65BCWeK3bCHyugNgc+udhG14TS7veNwp7L7Ry37FE71obVDoez\nKgyrssYIxU8J4zDUVvAeAimV/OSoLbnspb1aSO6+psjF1wAsj/OOi3NS1G1Uf8gde4tpXFpi8ZNQ\n6hVSSCWmB7zvCuu7CmuppSOlBNJx6LoXobLIQ+nV3Yus1QSAtX3sd8mlLGwq/kVivb/S2EovzqgP\naxvMkN3BQuBaTpLWHN6w0foh47s2aPtk4htTe4ZTBe291IsoV8eE4E9S/oTmoumHMJaY0kfcFEjT\nrtihCddNhq7PIenWR4ioQ1LHJiW1g8jDhcZ0e0OEoiUV6CcyDa385yzM/Jx8Do5cdEyLrnMTIhd3\nH36+u2VRc+WkIM3tvWerEvas3niTMhKzICAX3eZtiktLLB144vdUAjs/mHHIUD+p6/ZWp6MTQtPH\nYhFTrfovXOvr3yaRtGlMrj+wZP8gtyqg3ZLVomI/s7YUZ7R35OKTyiI27DX3vYgjsihqCKiJrE5r\n9g/yTjoY+wzWdowpD51MbXMxFe576Lnq1b3fjl5Zdx6dsutkmW13P7MecllkbNxKXUJ+CkBUG9Jo\nQRadtOTr3JTdhFUWqU1cqDAnmaR/XzqeI7Rin/Jm0ven77cdS87tOOCQ0hlvyj15Tp4sTZpOqtDx\nJqG4mZDjgH6X2t8tbVz3m4WKTzC9WKpAxgZ9nSmi1QSSN1Oii/Jvn8cWG+HSEkvHK6xRQehqkA5z\nCcXHYDoS6EhCQ95OsJ5sWjQxMy6grXvB/kTgXqijw4z9g7ytUpknZWtjcJKKj0VsuGNZspusiWUR\nRyzjhGVsAJtr7OgkYWe35PQk6QVV+l5AoUlS21uclDWUhSCUGiUkNfpw+xw5LBLTesjtpRVptLSk\nUubNhXLiKCWNDLtpzX4WtzE+Gr7NrE3iqTNi66y7jUdTKBhWT/Sb2JWG7lmnKfHTCe3sFiwaotfl\nfk+PUy8Wq9++dgl2RcGgOzm3mY0hSCpDvyEME0xwcg+kSRoiLlhrE1rX/zTmrEg4a4z2ZRq1arBO\nduOLSkYpgiwux5R7Oe5yAGP67aEYAn/bVPvuvI7nTaA87dz4mHYCSv09Zh3sFkgi6ZMLuyV3NO/N\nWbW2rQAcZBV7ac3VrOIgazy1cvdilySR/bxfCEeprRfjnqFLOeMjNFn6K/ShyaE9PpDfKRRcGoq1\n2N0r2Nkt2W/sTQeplcauJBGxpFCewtlD9uD8lHRnh4OsYhHXZFFkC6cFyCWoqmsm304htSaafcjx\nYyifmL7GFEISm5+hwWUfCP0eO3tFMHjXRy8+xkM3ut+01x1zN14FrqttUGGY3piZu9hzfXKS9lmW\nceZsTL3SFrd3wbbbEZeaWDR89coQoYQ8moYCxvx2Njlm1Mg5sS+YRFL18/QkIVtUFJUhj6WRQCwO\nsopHLip2k7qZWG0t+KuLM6AijUxTAjnmoIDDtEswq1Laa+tkj+d5BmPxP/oYPw7Iv65WgWWRDQY9\nSG2esFhS0miBye+D0zNIYkx+Qrr3SNJo2RCszRidVaztQXtFp18+6bln0JWCTZAIfbvcpgF5obgU\n3zHATaT7B/lgzFSovbnBjOsTuoTi2hsjFX+bWxi0/R+wRU3F9gy9lwt1vJbY8lU8mj3jphEJsrwc\nU+7lsCTdBOashKbcZ/22po4JHZctqll/+ngdNJg3/vqrZsI7PU47NVvAqobSCLLIBlFGEhNL0vyl\nzerdtMfupaZd/beTdWLaa2fZ+ATWXvecL+8Q0QNtSprOdRLTUfvpdC4tynB7ztaySEz7XF37oyv8\nC4jgHhoTm6LTzxnqttn9zaT98xdmfr8XG/ahPbZ5BvpvCotFX5LVdj43RnybzIdDGhcReaaI/JmI\nvFNEXhzY/4ki8nsishKRr/f2vUpE7hWRP/W2f7KI/L6IvEVE3iQiT2u2P11E/khE3tr8/6yp/t0y\n+hSRu4HXAI/BypqvNMZ8j4hcA34KeAJwD/AcY8z15pxvAr4Cm2vja40xv9Rs/1Tg1cAVbCrprzNm\nqPhwGFPxJVMGwEkDoed2HFQNDbwsm0xIPfdmJ96rOIp8FberudVeQVHB2dKwXme4YyvgmFhSjosV\nx0XMg6uEY/Ws1hP1OrjyEINLhzKWaHIoXqe1D5TrYL0hR4jO8Z50pn+TnSZVzVlk2Ffnz/X+cl5k\nq3KdPv/oMGv3++lbtHu4c+ENjRHtDRja76fA8VGWUec5hfriPuvznUrU/Q66H/q/n/5/yPV9Cjow\neGo8h8bFEPzYmLGEmW7bYrH2QhxL5X/RkAvyChORGPh+4OnYevdvFJHXGWPerg57EPha4PMDTbwa\n+D7s/Kvx74H/3RjziyLyj5rvnwncD3yeMeb9IvJUbB2Yx4/18VbKZSXwImPMm0VkH/gjEfkV4MuB\nXzPGvLxh4hcD3ygiT8ZWSnsK8FHAr4rIJxhjKuAHga8E/gBLLM8EfnGqAyGX3rHcT/qc9iZmunlu\nEu/hsAmhDAWuOaRNChYdWHb9wQWnJwn51Zyz/bIpfhVxbdFEHNfCblWziFcNocQdUlk0KrRlW94h\nTC7QVU/5k5k/GZfF2oA0J0AwlIPN35bnEckqhszFr6zLEgNIssAkcfu5NGVTnji1JYwre06+6qbP\nD7pBB6pstvEhRcrOXjHoWj6Wn27Ocwi16aCDHh1Cv4NG7/68ezuPx9QckpmbRWAsI4F/P9kI6XyY\n4WnAO40x7wIQkdcCzwZaYmmKcN0rIp/rn2yM+W0ReUKgXYMtDAbwCOD9zfF/rI55G3BFRBbGmBUD\nuERQUAoAACAASURBVGXEYoz5APCB5vORiLwDy4LPxrIkwI8Bvwl8Y7P9tc3N/DcReSfwNBG5Bzgw\nxvw+gIi8BsvSo8Ti5JmhGJPQoB8ikWCG3v4Vu18nPE1unlS6sQUtXIQ+aW9Sz6/mTeljgJiimXzT\nKOL6Km6KYoUxJrn4Efo6jYZe/S6PrVeWTh3fpn8PpJD3V+Qa+nc9JbWqwqwmr7vqv8oUnXr3AEQJ\ntamoTUVRpz1p5eQ45fQk5fRYeVDktnyvdjn2XWQduZwepx01pW5jnQhyrWbTNgf/fkPSXDAgVwX7\ndo4ZSD/Tg7q/XrzKOZI2zpEQxo7xJdtQssuxNvzYltsQjxKRN6nvrzTGvLL5/HjgPWrfe4FPv4Br\nvhD4JRH5Tqz64u8FjvlC4M1jpAK3ifG+Yc9PwUocj2lIB+CDWFUZ2If5++q09zbbiuazv30SfvAh\nrIO52hd/zktLuGTvGPzrzCmoFMIUqegkfp1Kgqyll7KMODq0iQZX11atK3JZJ6yqmkVcD5KKTWpp\nWFXSkVyyyFaoPMqNNXQfp61LcjspD0RvO9fVzgS26sYXBSfBTgYFtarOkrWkUQpFZY/rVI+MEsi6\nrnarypYmzptEndZO1bS1ijvPWvd3EjqPlp/1gbXHXygNjlttd+J6QmmERjJGt90IjOWxcTxUf94v\nvDWGniS5inv2mNBEPyZNudiioTb8gMkhEpp7D+fGZild7jfGfNrD15kg/hXwvxpjfkZEngP8CPAP\n3U4ReQrw7cAzphq65cQiInvAzwAvNMYciqxXPsYYIyIX5usnIl8FfBVA9sg7hw8MrBxhQBURSHc+\nio7v/To9uW9o9lPCDyUdHEsEWKVRsDCXXyu9LCJ29gquP7C0G6/ZxchZZfjo3YhVtf5NFnH451jE\nhoOsYlVFLOOIwwJ0ETHtReVwepxCs+7REdy62qG+F03+PsYm+CI306vSuu9K7DJBE7iey9vm9zGE\n4NgISLXrwMQmX1tgXPiu1FqyCUptLl+aFzeljw3Gcs1AqHDY2OIoFAnvx7csFlUbcOswpgKcq1Xw\nSShEQPoZzomPuoV4H3C3+n5Xs+1m8WXA1zWf/zPww26HiNyFLVv8PGPMX041dEuJRURSLKn8uDHm\nZ5vNHxKRxxljPiAijwPubbYPPcz30a3tPPiQG1HylQD7H/MJJhTp7GfWdfAHdy/Z4QTWRLGeNOak\nzQfa7VPJAH3MiaB2OD22uv+T45QsqzlMctJYuPfMcJBKL4jSJ5hFXLOX2r9FHJFErtaLYdm4NN9H\n4T0LOM0T4qLup6Zx95BNT3TnkhoIlCXO++QH1ksui/oBrWNBe+dC3h0bDqFxGuzniGuwayd0nA7E\n9VOvaJWdDlbUBcnGVvluEg8Ru6sJo98BoJPN4SKg8/350osP38NvzPNwcwgkF2LfeSPwJBH5WOxc\n91zgiy+g3fcD/xPW/PBZwF8AiMhV4PXAi40xvzunoVvpFSZYUesdxpjvUrteh2XOlzf/f15t/wkR\n+S6s8f5JwB8aYyoRORSRz8Cq0p4HfO9F9vVmxGb/JfZXZ5pQxtpL0m4a8xCpdFLSzKiA6U9Wp8dp\nU3wrsf2KSpZxU7a4bqL0G3WXJhZLKDb2RRvEbaR+1MTJ2HYOk5yjk66HWrUKk0oIY5LhGKkMedzF\n0os0hbokkphIYtJI5VNbVK03VZLWPftPKJjON7yPEsTIJK3JJRQAqt1o9X4/e0NI7dRRqw0E7erA\n3DY+x+vvILF5k/jQO+DbnabIZUySCHnnOdXzlGfa3AXfrYIxphSRF2C9s2LgVcaYt4nI85v9rxCR\nxwJvwhrjaxF5IfDkRiv0k1g79qNE5L3AvzPG/AjWAep7RCTBZrD9quaSLwCeCLxERF7SbHtG4yAQ\nxK2UWP4+8KXAW0XkLc22b8YSyk+LyFcA7waeA9A8uJ/Gej6UwNc0HmEAX83a3fgXmeER5tDmqBpI\n1T3kWTLZ7khqCaD3Qk21WxYR5WJdiz4kqfgRw/7Kt20rUH8DsIbuJq3KesIo26zIWmpJImlzie2l\nFdcWZUs2aR6TRobjVgCI0HYX+/PZa+/sFhwWC+KiJilqlidFT6U0pGICgvYk8CQdT4rwi/jNqXG/\njOEI2kDL05N0VkoRBz9ocSiRZkiS1cfp8/zca6EJMCQthFyY/ch/P0iyZ8tJQZPo1PgNBV2G3oFF\nYto0QWDJxT2vOSSm4auHtV1ziFxCpHJhdpdIena888IY8wasB6ze9gr1+YN0NTn6uH82sP13gE8N\nbH8Z8LJN+ncrvcJ+h7ZkYQ+fPXDOtwHfFtj+JuCpm1xfxLCzu3b7bCOJH6Y0DnP89+e2Y5Mgnk9N\n0JtkBtQsbaxGbiWNohL2M2t3uZpBWUtHallVEYs4EFHdqJuSSFrVmE3BrwpulRGnuX3hSpXI0EFn\nDg6pKmOVDFFjjJDmwAWFLmNLRovEcAptUF0IfuxHCHNW2hpBD7LbAHNc5n2ESEVjVTau7oGsDXOv\nNxVro+vc3Ib2k48I3HLj/a2CyICoP5DGQfveu+PHEJpgpuJcQi+Nm0ycR5VTgU3ZhzaZhLR+3WUm\nXjXXSFYxR1Tkia3jst8Yl88quDOQuKGohZMyar3I7Nxe44IvnWptqSQXiyWnpHAc7mNIzTWU4Xno\n/to+Nj/dqorC7sYeXKLOLFq35XsWhQI7xzAUm+J+N21DG3MgccF+SVr3KiPq63Sk1EDg41Q/Q84B\nur9D582Fa0efF3JY0aQw2taAJA+3MLJeLk5iud1xaYklitaG0qGXBoajvuesdkLkEgpQKxf9pID+\nis256c6C8gJy/ZwKroP+C9fNNVY1Dlxr6QUMB8oN2dlXfNdkTS6L2HAn2u5SNhOhTYB4RhpUSWoS\nCZFMJxutf1+BxUKwFkvgpU9VKYFlvE6V4wzAc55rsE8j2QR6wbQbGLEHbTQD1wu55foI2XQ6k3eg\nIJ5+Lr4n1pjtwkkbbSLVUJ8nFmFBSWUDUjnvb7rFGpeWWKAbGzBlzINwUOQcchna3ls5BlZ/68SR\naa8PtgPd8ru6SJnWJ89ByCajV8FJWrfSi4VzjbUuyQeZI5E11p5XEWlU4zghiWTdxrW8Pf4Gy04t\njsEStXRT0o97wI2rNWtT2TiWAVhpxRLhIjFkWc0J07nfhqRb34U1ZGh2k/WY5OlikPSEHXJN1zYS\n6KaB8ftwLvWQGn9jVR2nsIlqzR07Kzh5A1KZo8o8NwRILseUeznuMgCR8YE2R9T2Y12mKgL6nkFT\nA70Ta+ClVh9Sh3UbMMEX3WHoZfddLPM8IsvqdqLL05rVouKsUnEqCBC3sR+aYOyq3wZZphGkUY0V\nLuz9nVVCftUWI/PdqP24CietJEUdLCYFfYJu1TneCrmoN6sUmcbQeEyzCBm0GR83PqGMxkiFFgse\nNqnHrqXWuX0eJQMvZqrt34gU02l7wNNKn7PSZDhgB9T96V6gn6mh14e5DgBbbIxLTCzrgagHXVCv\n63tR6RWaklymVBbtylFdb0qa8COsXX866q2xIE2vvLLvgRbyXgvV69Cqubbmyl6BtbcIZ5Uhr8XW\nLQFgTS5FLUH12EFWUdYJdy4tMa2awMwTnSpFu7c2cBUFqzSi2E96zhZjxu5FoiZsvTvJ1qowJb0U\ntU1xk9dCUa2Ny87e1T6Tkcl50zo+PuYG385NGz8FX43Vi58qIsgG6sHfRByPG5vtAkzdz85e0U2h\nM/O65yUU14eLi2G5XLi0xALdVVOer8Vw/4X0VRWdCPANX6SQvUOvJP1j5wzsToT1CLTh2b+Ow1AR\nKB+nJ4mVMHZL8t2SolpHjK+zJNeEKjNYicZwXMTspjUHVcRZZSiuANdWZFndj8BW1TNbEp0IzvNj\nPxzSOFw1c31iRm0qKlMAcVPC2dplXGoY35nDxxCh6H7Mmvj1+Br5fYdsI/o6c21tDjpSfjKn1k1W\nWdTuxi7Nzo5XWG2SXFRbg92c8z4pddiFJqzcGu8/8uFUYa3EkYWlltYdOZAyReMiXBf1gB6SHAbP\nnSmyay8fh01qZOjMxK3HURHB1RyQZhLWKfi7arFFXLfljvfSiqKGvVTafFxnVTf9i05N36J9N/vB\niKEMCVP3ZglEOpJKZQpqU7XZja3Usn4GME0qUwsDty84YQfsAiXDLrQOIWktZHwfNOZ7rrg6hf5g\nSqNzwKlXXZ8dqWQRcE5y2SRb+FBeMj2ut+7I58elJRaHoRdxKrmjw5ygKx9DUsuoA0Eg8nrIZXXo\nfD3huXb8Y8ZQFlErRegVrFNZrPYKz+7SJRcnqWhPK7vdpkw5SK1abRnbCP0ktcFpJ8fpZBJChyC5\n6OC8If6NEqsOc58pWFVCUdOmzXfZjX01mEaIVELedn7/On0eyb3lyCVdVetqh0k/c4M/rv2qjHMw\nlf5kjh1jasHTIxVoySVfrY9p2yuV0T6QAy2UrsbfPmSc96XQi5daBIkvh8fZpSUWY/qD3tkR/EJD\nQ2gD8zxyOS+GVGLQ7avu31xX1JBBW78wuvgR9CcJN7mXZdRmJi4Lu21nt7BSTKMac9H6dy6tO/Je\nKhxkFZZo1mlf8tpO3KvKSiuHhd2exnBHDFlUWnfwzKaZGUrxMRVfoaXO3Hu0q0qsAT/Zhbh5HZKM\nojpiVUVtdmNfDTYUPT8UZ+LD/w1Dtju9WPGv5zz/SNc2tyFPqVCOuTFo7yzfXT1oMFc2vKH2HHpE\nqdzZacglr7uBklpKbs8JZG2e+/6NxZht0s4Ww7i0xFLX0uZ90nADOBQz4pLvafjksglCK7yhAR0q\nYNSRqGYgNNlCd8U8JjW16hAnvTUrysOTjGTXpoPZ2S04PSm4em3FUQ6PvmJLFh8XCXupYRFHHDde\nY0UND54l3HtmScWPLdnP6EgvMJ4/qiwi0iOrOklZP9tTbA60JK3btPk3cjguojZIso6EaGFrS9aR\nUJUlJ2XESRFxVsFR3nX/HYrjcGhJ+CQdDEbsRoibjqv44GTpqcLGSMRdw79uaL/flvbO6pGK7wq+\nmnYwCL0bOrDTeRtqEnXbO1LyifSySjtbpybE0DsxV62lz71QddgFpnS53XGpicUvXwsjumQF55Xk\noMllDtwEMlStckzt4/rotm3qDukmxyHPtCE/fr1KT1cly5O1HSQuaqpVxOki6Rx3uluSX805SoXD\nzBKMzZQckUSG40I4LMKk4qClF7ATnUvv70+K6VG3X66+yzFwmtpiXzu7JWdZSV4Lq8pmCSjqlY2+\nz3YAKOoVRX1GUccNqayllaAazJ/sUeTDcNqcoUqTsB5LnQl5JEUJ9CVdPU7OOzkOxYn4amG/qJkP\nf+Hl+qTLCbcEo6QUvyCcf11dQA2Gn1eoDMbgvaqklVucD5eaWEJSySCpTHhdbZKuPS7qtbvsgHdT\niPD8/aN+/LrfPnKzzszrQRf/0vYYra5xCSMddIGus1XK4UmmpJeEo6s5+7ulIhib0uVGTqtm0miz\nCUf6ngT2y7Y/J8dpR2JbPphz5aToEIvG9cUO+a4t1JUtKvYzQ1kLRS1UpqCoz0ij1KrB6kMeKmuO\ni5TDwqpm2hieVbjIV2fF7v0WclR3JKipsdJOlkp6mVNjfqw0sb+YGFZJBeDF1Pj34GemDtXTgXGp\n3hGMVntptasrCOfDvUed5+X11b/2VHyO/3noXdkcF5Y2/7bH5SaWCdfF1j1X5dLapBBSCGOTylhi\nQxhWWww36L0QI9Hs0FdnhNQn6arqFOTq7GuqQD60m1KtIg6LBacnKUeHGY+844yj3bIlGD/DMPQJ\nZRmvc3QtY8NBCg/EsLjzjOuZsmm4+8orslW/YJebeE5PUvYP1lH+jtA6QZJlThTbQE+XMn/Q4O89\nF43Q7zynNICr9NmZLGFWnEZYZWU6ErJ/jh9bNTWunDrYl9p9DJGLxph67vQkbRcyy+OiX7VSZV1o\nr+kFknbGs5fx240DX2sxx/PudoCIPBP4HmyU8Q8bY17u7f9E4EeBvwN8izHmO9W+VwHPAu41xjxV\nbX8pNnX+fc2mbzbGvEFEno7NOp8BOfANxphfH+vfpSWWKYRUVC7F/ljFyKkSxbqeu86kHEqn0l53\nIqJ/ThoLHesyqA9XL5+7ro9iEbcSS2jieGjXqwPfGJevP7CkLJpJfbfkgH76euiSykFq/yeRlXAO\nC0sw6ZmQXVvbXW6wpFpF3Wuzntwf2k0pFjE7i7Lzuy5jGi+1JWm0hIeOAEh390mjJdcWJdcWMY++\nIhztFdZFdlH1JN250qr/vKaIpljEJLumTQwK8zwAQ+04jJVT8IN3W5LxSM1fXA2RzNhYb/vjxfos\nfAnZvxc/jc8UvNIGO7vFdJ2Vh8sMckE2FhGJge8Hno4txf5GEXmdMebt6rAHga8FPj/QxKuB7wNe\nE9j33ZqEGtwPfJ4x5v0i8lRsHZjR8u+Xl1jq4VVJSGXQemwpcgmtIt1LN0Yw+kXbNDJ7LPXHutP9\nOiEOoVrrY3VFtCosSW1xqyqNKNOoV6Peh3aJhXVMiot78cnFJxVr7LcpYlZVRBIJx4V1R76R2ruB\nh4Amx1jR/EYqjX67cs5knVMrMS1hZZEhkphYEkx+Yvu99yiW8R576QMcZBUHqfDoK5Dv2oSZ2aKi\nPEk2Un/66Ky0PYLRKlJXvtrBj78YJRqtQvPGWyijg8Ygybh2oZPTzXdsCUkLEHb7HXN/d+PNoUMo\nMyu3+i7gO7vrBYb77AJyP0zwNOCdxph3AYjIa4FnY2tVAdAU4bpXRD7XP9kY89si8oS5FzPG/LH6\n+jbgiogsjDGroXMuL7FAkByG9NCdXEuOXAhINioFiU8ufmXHuYF0vW67yWQDUtEqj1Z68e55TFLp\ntL/qrr5HVR5evjL98q72Ch59xXTI5WpmVU97qeEgq1T8C21+sbKWRj1lgJKysOP7/mIHHsxbQgFL\nelW6TmWjV6lW3WXIoitEtcHkp02fT0mTJVeSiL205s4lHBawv1va6pqB5zNYZEyhs4KnOxlr9WKV\n2t9nZ69oV9jQ9fjSiSW1w8kcFakbb34s1FBVSRiJcUrX1+xIMiPjC8Kk4qv18lXcjjcgYJM0wXvW\n13PX2T/IWyklSWv2m8DLVSkkK2t72z/Igw49twiPEpE3qe+vbEqrg5UW3qP2vRf49Au67v8iIs/D\nVp98kTHmurf/C4E3j5EKXGJiaVOFDUgeU5hMJRKyx4xIElPt9oK0RvTAU4GOjlzGjLm9c5RLslOH\nhQpr+at457GjyeX6g0ts5VO4jzW5OBvLMl6XPnZBlTb+JWokGBt8eecSbG0XpRZLl5RFxJmyJxX7\nCQe7K3b3Cnb2CrLISkeLuGYR10QSQ5nbP2hKEy+IJSWNqkaygSySnvpEE0ri3btvB5ib82sIYyla\negsHjYGKojoifyhJZSig0k+e2VmseO/TeSQVfR13L6NlESbygXWurd49HYjpftepTOc3hc1Sutxv\njPm0h6cjg/hB4FuxjP2twH8A/oXbKSJPAb4deMZUQ5eWWIC+580IxlYxoSy1HZVZu7NfJ8VBe8UM\noRu3MkAsnoQwFJ0f8kLrqL0m6sgMFdVy5OITjO+Vc3SYtZPafRTsZ6YtApZFNGn1o7aWiwtWbPsf\nGZYIH71LU9ulJFsct5OlzpxwsLvikXeccfXaqlWDObRVMOvS/gVQ1jbljA9fhaVVgpvaArTarlg0\nRdZmpOXXv8tgVL03Jvw22v7fRH0Z/3p+4lN/vE+RStu35v1pXfoHnuVYcC/o8hNuyrP1hVrX+KaQ\n3m0irUzhfcDd6vtdzbabgjHmQ+6ziPxH4BfU97uAnwOeZ4z5y6m2LjWxhDAWdawxtKrpHe+7ig7U\nSfEj4X10or11IsyhjMZs7ocfincIEZKTxqYcFRzWpYPXw81NiNcfXHQi9rtp+K36q6ijXnZkRwhl\nLdy5bIz6MSySU45Okk48RJLWLalkUajmfdpc23Uup86Sxg05bnOFHeVi2yyjcRtaqE5MQMJMV9Wk\nncapiNzEOZV1oZO/TaNxMdfu5O2uATXa3Dx1QXjBo6G2fFLR96j7N/WM5sZyrVZx+/zafG+ByP5O\n2xsUWZuFkbo/G+CNwJNE5GOxhPJc4ItvtlEReZwx5gPN138C/Gmz/SrweuDFxpjfndPWpSUWMcOq\nJJ9cfEyJyoP2jEDKDqCjdnAIxbH47pduAhtcEauV6txJQueHmloxj63E3WTgVvVVGnX6o3NQWcJ0\nbsA+ucRrqULBFhBbv/QHqfDEfSv1nC1LjvKGCJr7caSi1W0doavM+f/Ze/dY27azPuw35nPtvdbe\nd59zrq8N9xoC2C41lmjABVSpTUhqC4m40DoRjzYEHIU4cOvyBxC7LpdKNZIpKBIJNFe3YBARgUQt\nUEeYJhCqINGQ2ICU1CgtNhB8L5h773ncvfdaZ635Gv1jjG/Mb3xzjDnn2mefcx/7fNLRWXut+Rhz\nzDHGb3yv34dqmANjKF36csaUy6IQ7psQqHCf3FQoa0wTnCOxonGxfA7vOJYrsl3lAzaB2PiZ5B6j\n5xUWoLms3fmuGYYax/JhxIYqNk/X53nPbzcDUF5pWozWulFKPQkTnZUC+IjW+pNKqffa359WSr0B\nxk9yDKBTSn0XgLdqrU+VUj8L4M/D+HGeBfD9WuufAPA/K6X+I5jJ94cA/qa95ZMA3gTgKaXUU/a7\nd9oAgaBcWWAhiZnDYrusfe2vns2bAwybuDGiv8HgtpoK5YtwGQMXAF6Wf8g8FuISk+DiLSIzkvao\nnQ3zvXCthT+jH5HTg4sxjxnhfhf6v0z7UsgLKDxxqFF1wJ0cOC2As6JB1cGBiqTMT1R80TD5LYzd\nmO14KeQ6FBEXSnyVvo+QtuJ8VgUvQdDLmLYiNwH8fqEs9d5Mq11b6H3lVYutDdGWJuIx3+CoGZeN\n9bE5RAv9Xou5yM+SY2zsPsB4Ps2+zBajopKe6PQeRWv9MQAfE989zT5/FsZEFjr3myLf/9XI9x8C\n8KF92ndlgUUrNc1vxCg5SPalx4hRYoT8LZMDnBVX4otF6DkGoZ/CBCefIeTQlxUP55gF+IJZF6m/\ng3dFucK7wNu3FsYMUu9QnVTYLswCa2hgzDEx7YW6YNcafi8jRuupWx9QisT3szghx2pWWCp9OHZj\nyr4noZBrklDCXkwmTWA2/4dEcldxX8iYX2yszIM5ud8cyM1KWnduXI1FDcaKzvFnBfzFvmI0LsAw\nMMWNMwplHvNXhTY3XFPP/LnLrx+by/tE2D2UsFxhYAl8GeNiqtSocz9mwrqMgTlYgAtlJulZMwqM\nIcJMalOMvVWGafIw6Kn8mbEFTIIK3YNfs2K78cqGf56dVDg7avD4Uhs/CugdJE5r4bLKO6zyDmZY\n9+BSWa2HA0phw5hdQa/isLd/Jxk6vcWuHVa+5DIWZk0knb6PRc/yqwCWQqYxBIxcw7wsBztnkwiF\nj1PI81TCrCyZ7UWHcbGLfcFMUFL4GGjW/Xybax6UtDpNpbBBPprzE+vL+wIqCj2D9mtcrsZThiQZ\njwIb5KCw0GHptwjaaPdgHI7Zr8cWkPrIvrpLpp+QoDJmPgP8fpIL5hgXmhTOTExcY2enBTY3tqge\n26LqYGj48zC4rPK+gBgWDco0AQ1vUyPG/pT6/zvJCqA8tJ1wiLY+c6DCI8JKa8rZlH6CZGzxI9MT\nBxTyGUxRnlyEINUdG4kc5ImXPHycC723sSz9mMjQY7nBkQErIXJV3nZ+/oCPbUaaQLM2AQtz2u3O\neaip3LNcWWBRSiNbap/+HPGFkvibgCHzrFw0owMzsIuLTY6p8OC+wXFzG03KGB17TDioUHx/w0wu\ndD9JSMgDCsZAZcAGsFZYnBsSScAns6T77V5/F9sW+LxlDy6ldcCv8hbLrLM1X4C8or5rkCUpzuth\nH2eM4LLTLZBmUESbjxatblBbBuSYzN1Jcx+G973g0wpdL6TVkQz6cSTgIvQ+nJYhcq5634qeBSpc\na4nm0gQkZJqS89Fr0+AC8zZVtGGJXi9Q9uD+SAKkr5rs/nuSKwssIeELZYj0LsakOjusV5oIRnby\nU4lpJPtMZC4h/xEwkXUfELkLB/aLbDKgUjtm4mLX4O6qcI7x+jzFn+6Wxtn6+ruoWzKNGTNVnuwf\nEkvaSm7pXO6HjLH/AnDPN0bWOGa2HCMsHdNqYlrI5TH49veheUH1UjytYEa486gEIi25hOZyrJ8d\nqM7QrB/KPIkCi1LqGMAHYCILfllr/Q/Zb/+L1vo7HkD77qvw3VFsVwkwmzNGdk5zs/cnspK9Q/cI\nEpgCl7nRb2MOeh6tI30FnEYF8PspVv+Fh5NyZmK6LjnHKcR3s85wumxwVFunfpu48sG1pcAHgHWT\n4LxOcGtrhvciNQ54mRhZJBqpyg24dA10M8pSAcD3DXAtNiYxokl6tqg5bGRMxXx63ngRCy7XQujY\nQb7Vbli4brPOL8ZhB9+PM8Y2wY+P+mj2kJDZMSacd0y28dLDjJWCysrLveYrVMY0lp8E8HsA/ncA\n71FKvRvAN1uOmK96EI27n6K1ujio8AkfiPJ6kDLgMJsLLoCXHU3nxyaTl7QWmfS8r6RMmd9C4hiU\nK+1MYmfrDC8kw1wX187WgMpa9AOBCpnAeqoYmyDZVEBrcmkS7k+z9WJ2jXKlq6sJcLkI2/FF+42/\nf3/n378jfm1Jeso3EkTVcy9VUUMyB1T4sZOay8g8C4HKpHYYoLzhAQkPZX8ZA5Yv0lq/237+RaXU\nBwH8mlLqv3gA7br/0umBuizzEmihlIASoqIHMBtc9uHoAuLmqSifk20Tfz5aXLyaFQGACWkW/DMt\nWhdh9r0IuORVi3aXuBwSKtRlaFwUtq1G1Sk0XYZda64tQYWkB5V+0U1UajWWHdBaW3zXIFUZHPsh\nMFi8pS8uBAxyYeMy5bg3NxuOJxmhJTXMmI9CmnmI+sZdpw6DY400GhU5513OGd/BJMuY1iLnWutG\nsgAAIABJREFUIKNNCm0QZb4XlxDLeKi9l559fwVkDFhKpVSite4AQGv9A0qp5wD8OoDVA2nd/ZRE\noT7KBo49D0zsoMtEDQkSGSk1N6lSJh1y2YflOJQ1TJO0QTKgNe8Pms/oLNtzuKpR7VJsZSq1MPFl\nzuQydJzyRXEDk4hHOS+0q2zypH8XRxkOS8PyS8EEpzZJPrf8YtsWOG6TYH4Kd9QTqFwrW5yUwCJd\nIdcp9OY2wNmN8wXy5Nyeq3BkKfOPjivT7qM8GvJN37W74YI00HonF0/tgYnk2PLAgRZA+2qaOnH5\nI4erehDtx+niD1c1Nue5yboPyQzT3Ni4HhPOrMyfw0WtFTxUXQ/GKDn9yVfCyVBDWqEPKI1Xo4Vk\nuaoHNDr3LEpdFqXLK17GnvKfAPgLAH6VvtBa/5RS6rMA/t79btj9lqJo8ejrN6hOjInn7q50wFCU\nLQ6yKriwcqEBd7isJx3t/DreQs7YcmOgFAtnPlw2juuIt4ez01a7FHqZeOA45qCXEWFcOyNTUFMn\ng9oVoYUk1HcyrJP6brPMcZsKaAkW6EeWG8NMvGw8ehbJiAz0VSGl6QuAq+1yrWzxOYc1ltmjOEwf\nAc5fBDZ3gDum0BdONsjLazgpgRsLU4+lbhVw0rMoZ1mHTZ7jkAFnaHH0nj3rcAA/85xn0fOEPW6u\non7kUXqe1gwExwFdExjSxvN3kOUd1ue5eSZWxGwMHGK095L9eU6YObVffseZBnhbZHIln3+OqBWJ\ndy3uz+Rzm/dJjCfvYfjx/hIFFq3190a+/z8BvPm+tegBSZZ1eN3r73pkhcQwHBpsocTHQ1vToaoS\nt8MZhNYGgMObJJnd2bOxO9h1H5j70KJZ2UtSLQlqE10/tJuVO125MPE28mc/KvTgntUudc8un21M\nYlFtshZGaLE6XNUOUKiPTNngYRb90J9i/l/lHa6XDW4sGhxmj+AwewTYnkKfvwCcnkK/ZIFlcxv5\n6lHkyQKrvMJji8w9P+xzZ3nnlTme9fyBBWxznjvGXQ4IsXHI+8D1YWfeC/UnMFyw+XX4Nc4qM4aK\nonNmRiljmyvexiM2JuaUc+btB+LPMHZv+ZwxcI0BiRxTJNsWQNF47bt3UZdG6fJKl6uhlwUkT4HH\nTxpH10ELpiQsJCbc+qAJLuwAcIjxHAMJHi7cNZCsV7AdthzolKhH7ahbja3lwpIgA5iJt1z1xIp8\ntzpITmPnEKBwbi1+T7C+kO3k7ZPCj8tTQ+y4LRocLRvX/66trP8I3GS/jd0jBCqvP6it+esRHGYn\nSKpdbwLbbIGNqUaJ85eAkw0W+QrL7EVTdCwHAIU8BYqk8fov9K6lyPFE7Tw7qHB6UuH2naJ/N4GF\njz87Aao/HrQhyjzoxzTQj9HQdUw7NE4z0//7hq3zNh7nQx62/tnjEV6VDY4A7NiCGRPmt9lNcc8J\nhDeBof6U7eXtlHPtoewnVxZYDlLgPzwxhIXblmz2ZkDTLthMYHM8HUcLPE1mAG5Cc+GLH+eo4n9z\nehH+dxaZiA3jrQJke3QU/Diw8cUNq8ax9nIT0lHR98ExL2HPJro0OXGRk5GH+kqw5O3dto3j9fL7\nx+8Pfi2+WEowocz8a2WL62WDVV5ika5QpkvkdWs0lfMXgedvQd+8je5PjcaSnNwBHvlTHL7uzbix\neAmfu6wB5Diu4RFc1gdN8D2TyE0Cb2+WaDSdwmkN3KmAG4sKZxWChJl8PJrr0mc9eN9b8T75O+Pa\nHTcdHtXD8TNHxsZKqD9I+PimMU1tHbZ/bqRl3xdYmbnIxzb153E+nNuh9nK2hkvTWB76WF77cpB1\n+LOPbrFuTK2PujOhqlQGF/BDUk0Wdn9cKCO76VTQUUzXAuBd2/xNi772/ubHALD37gtO8fbQ77tW\noWETkYMfX3x5u+RzkB+CMtrloj5/osPllYzJeZ0M2k5tlH1m2scSDwMAXCTafW/IKTXyZIFF+ogB\nFJ0C6zumvv2tP4G+eQd4/ibaPzlH/QcvmetuG6Sbu8CbN3j0sTcjPznD561ewmmVYt2Y90DtDkno\nXYfec90pl3NzWhmGAA4sy7xjZZn78RLTAPjYABCoYeNfo7K5PzSOTqvUGz/0LkhCv/HxIsc0fyck\noXdG7a1YLhK1fSz4MNb/fEyHxlRf7npersyYxvVyiVLqawD8CEys/Y9rrT8sfv9imJSRLwPwQa31\nD7PfPgLgLwF4Xmv9Nvb9DwF4F4AKwKcBfJvW+o5S6h0APgygsL99j9b618baNwksSqn/aux3rfXP\nT13jQchUR0spkgxvXC3R6gadblF3hnSwTPtsbJc8Bziywk633sANDW5JkEgLOc/yNsWlzHcmtNX/\njh9HTLvUBmoz/57axNvDF/Y86RfqKWDJk4VtV+n6wFDIG6H7cqG2y99bHa7KyJ/nbtM54ORtpXfh\n9wu9m8y7NrWvf3eZa3ueLHxA2dwBtneh/+QF4MXbaJ49Q/X/3cGdz5rktZPzF1HsGmRVDWzv4pEn\n3opHDl6PRxc71N0W2/Ycdbf1+oT6kb/rfvz075j3lykkZq55WqUOaJZZ5/rgIEvsdXL3XLK/uYT6\nvtOte5+hd1V3Ozu2t6MUNuY5+/HFxxOfMyT+OO7bLdkOqB+p7TS++Xe8r8PtUuLv4bwkyh/+bmLX\nlePoUkRdjo9FKZUC+DEA74Cpd/9xpdRHtda/yw67BeB9AL4+cImfAvCjAH5afP8rAD5g6738IEyC\n/N8G8CKAd2mt/1gp9TaYOjCPj7Vxjsby1wH8JwAIob4awP8N4AWY7fDLDiwzO9qTRGs8oo+ArECX\nKG8w88WekuWIP0oO+JjIwRiaZC4Rr2tsgp5fxdCIvU9WAMkCyI4N+y6oHf3iMbdNsYkNAHlSmnZ1\njfE9NBVARa1oUiQLdnIIOLKhys8nlP3NcXLlW6/9HBBSlfXtIWkqM/KyItgX3jlNBdw9g757G9ht\ngO1d4M4Z9N0t9LMvov6Dl7D9o7u489kFXnyOHMALnNSnWJzVKDZb43+5fg1ZeYi8PMLh4hqwOHTt\nl31I48drg9z0Ws6oLleoux0eKWrU3RatNjk05tnz/n3wvqbrxfqe9TEAIC+G59D4Ko6A/AaQZKj1\nbnIBN/3cj7MpIAHgv7+m6vvENVmMK/teAXh9LCXUVjkH/Dmd++/GXr8/NzJ+dpvg/V9G+QoAn9Ja\n/z4AKKV+DsDXAXDrnS3C9bxS6mvlyVrrX1dK/ZnA9/+M/fmbAP6y/f532PefBHCglCptsnxQ5gBL\nDlN57E/sQ3wOgJ/SWn/bjHMflEx29EB2W+g/+jfA4gCqPESWFlDF0vzG6D20zcZWaYE8K/sJG9p5\n8MmCOjjxOW2Ibi2Y0Hl0PFUy5BUNi9z8SzKgPISyC1POKSLG7LddA+DuoA0DaSvo1oJKVWNQVZFq\nlhT58Df6u8iHx/O22b5TaYa8PEJeHJpFpbjuAZqu7gDVxqzJso/c9Q+hLIFkQveg90f9W22Ac+Og\n13e3wJ1TdLe3qP/gDu5+psadz5Z49tMdPvPvTf809QJdU+Kk2ULXLyA/q5G8/gg4PAAOFsDJkRk3\nWYEszYC0MFQd/P67s74fuYjxo4pDlMXS/F2YBR7VBqgboDqFbnbQdI1QH/B3EOp/+a5C77PIgeLQ\nPUtMHB2JN84CmxnbPjmHsNvY91sPxzb/n/WRSjNkrE1BSpSxTQwtcU0FmpO62Xnzmq5L40dXa/M7\nbUQClUUvJnv5WB5VSn2C/f2M1voZ+/lxAJ9hvz0L4CsvoYFc3gPgHwW+fzeA3x4DFWAesLyR1UEG\ngD8F8Hnz2/dAZFZHK6W+HcC3A8Dnfc4j5suuMYtPWgwmhFuY0swsuABUBjM4PBARIha/4EIeApXQ\nItG0QCa8oEyzoY2wysrIDnaiHWNtqmpzf5IsNd+NLVT8O34czXXqOzv5dbODSjIzEjvRH7Qg0S43\ndH17vG52oE1y7Dl12wIN67tta+rACwLGatehqVL/e/vcum2hqA/QL2CD+8t+pPa6nTtMH7QV0JXm\nWk3l9YMDR+oD6hd+TflZ/h16V43Y6bN+BBAFF+pXNWPV8OYQ4GvjJDS25ZgqMJxjaT9eSBzIUJ8k\nHEQCwjccvE1p4b0/95t7Vy9LaNiLWuu3vxw3tiwrDYCfEd9/CYAfBPDOqWvMAZZ/rpT6pwB+1v79\nDWBJk68msYj/DAC8/c9+oVZPvNUMRmFS4VxRfNB2aNEw/0bI9irNTNK27o6TZjD5md/b3p+bCLzP\nCKv0wND3EGsTmWA8E0C1GbaB7s1lDGRJnLnDbz+ZX+pui7a9iTTJkWcL5IvXIcEbhm3gIt5dw57b\nMzdWG/tv7T6nz99CmSdQi1vIih2yokBRGlPMY08AJ2/Y4eCNOYq3XId6wwnU0Qo4XACrQ6MlHV6D\nKw4WGj8OACIai+2DLlFodGN9Nlug2yLJU6TFIfLVNf99kMj+kL+FdvAxjY/ab5+FjyMpoXElhfsm\ngMA45//LdvD2Bsa5bFsjTGRjZjzeLu/9sGs33BTW6fAceGXIcwDeyP5+wn53z6KU+lYYx/5f1Fpr\n9v0TAH4BwLdorT89dZ1JYNFaP6mU+i8B/Gf2q2e01r9woVbfP9m7o7skwXnWAGjQtmdom+Hg4Qtw\n2zRRB36oXO4YHbu0SzvHZpYDWcImwaHnYCQHKwC07RlonoUmPLUTgAtKmCPct5EuciTqwDma+2vf\n9Z8lSyafGdC2/8y5vD+58z5PNI6L1rWjSA6QpGEna6vveteh55fBD4lKUSwOkB++zvgsOg2cvIjk\ncIFy8QdIjl5Ckp0jseB38oYKB29ZIf+CR4BHr0HdOAGOj40JsjwCFsfoirJ3endbtG3veDb3Ze/U\ntVc41hu4IABerZJHs7nxwZWqlPU94I0ZCKod028Nkjx3v/PxZ/w6d9E2Zw7ggfC75OPJ/D+s5BkL\nfklVhjTJkaQGNPn1h4EhGp3ems9tP1ZC/SjHhQyiIJFtovdD857Pbd7v+cECqToc9MXFRI8C9x7y\ncQBvVkp9Acw6940AvvleL2oDoL4XwJ/TWm/Y9ycAfgnA+7XWvzHnWnMNfr8N4Exr/atKqUOl1JHW\n+mzfht9H2bujq67Bc+vbEyGxO3ssD8vMsWvL4GIdKpc7xqpuju+QJ2Y3yUNRZQTXVNQXtZO+37W5\nbWsSnWyDp20VjosWedKiTGsss7UXbi3vYdq6GbR9+Izwor6G/WnYiCnfYGlLDK/yCstsizLtWPjp\nsB3mt9yGpg61yDxpscpfwjK7bZ9vgcPlIzj8wi8Fihz54R9B5QmK1SkAIPv8Y2R/5gR47IYBlUdu\nQB0YDaUrSmzbc2yr29i1a9dvsn2cwJK31z8G0fe0cqHGLYpkN7gGSSyUNzSuZSg7D2E/r1MbSn/o\nHcNl15bueXnocYg2pw8/7mx4824QBu5f24+0jI03/10DQD5aPpo/Rx9m7Pdpf23zLsxxNZbZDnly\nHpzXL6fYqK0nYaKzUgAf0Vp/Uin1Xvv700qpNwD4BIBjAJ1S6rtgfOWnSqmfBfDnYfw4zwL4fq31\nT8BEipUAfkUpBQC/qbV+L4AnAbwJwFNKqadsM95pAwSCMifc+G/A+CWuA/giGH/G0wD+4n7dcf8k\n1tFj59xtEvybmwfu77F4fUpKpIS+U1GRsE+sSveKeecJWTL5LcTECwzDKkPtPa39ttZskySz1mux\ngcrTxCa76UESmUxg2yfRk9oo+5KSTeu2v+ZRkeI4T3CcZ1jlJv+AL2b8GiQysU8uwsd5huMcJou+\naHGtvIUvOj7EI1/4dmBxgKzIoUqrZXz+Nagb14DHrgOrR6FWrxsAys1thls7YzrjuUTmf+WemSe0\nhtrJGRVITMJhEkziiyXrzaVQCbEk0HipOoWziieopoNjZUKtOY6FtafmPJlkLPOo+IaDJJR/IhOC\n+f+y32JsEEWSuO9ke+RYojEok1kvQzTGw+/3upbWHwPwMfHd0+zzZ2EsN6Fzvyny/Zsi338IwIf2\nad8cjeU7YaKu/pW9ye8ppR7b5yYPQkIdPSZ3W+BTZ2ZgFgnV9fCF0zrUdgIS9Qjn5vIpPfxr8Mx9\nKSF+sH5SKzs5ZcJjXKi9Z5U59qxSQQJLkhB9B3E+vZCoAaULLf7yecJUIQCgHNDKvpRUOsTZxnmn\njnPgxsJcRwKQbAMXSe9hKGpMlvhxDpwUGU6rFNfLU+QHCxyePA688S7Sc6v9nxybyK+DY6jDa6jz\nFJv6RWzbc9zZAXeqAjdtETEOIvR8YZYGI3xhDnFkGdqRAEtC4Py+n6clxhBgxon/LrgMCDMDHGTA\nkAdPPoO/cVJAoM4L76chfZF/jOw73sYhxY7yNj18jIbG45D25cHXWXq1yxxg2WmtK6saQSmVYRiV\n/6qTVgMvWFcBDRzirwKGE5/IEgE4wkogzFosJxtJbCEH4JEMAgQ6anLhGO7Uh4v1HP4neh5Opnm0\nbFC0wBmGfcGvGXqGfiIPd56yfUDfp2uYPt2sM5wtG5xaYkO++PLzAAwYdSUhYZZ3wPUdqDAYZbff\n2mW4Vm6BwxvA4sAACgB1tARWj0AdXEO3WDpQeeGuwq1dhvN6qJmE3gVJaFE8W2fB8UTvQPKF8T6g\nfthH+HWkFnq2zgZ9SkJtpHYCPsEjvS9AkELatleZdmMI8OcaidSaQxuHMYJK2e7NOnNjYoN4WYgy\n08G5EiKqvBzRs/KEXgsyB1j+hVLqv4dJinkHgO+AodR/VUvbKtw8M2yuNOhpoAEYDDZi3o3VFB+r\nmcFF1naQbMNTNPpjIinUQ/VagOnyw0Sx3tQJDi2JZag/Ys/BgZWzQ8co3jl1PABs1obCfX3e4lRQ\npHN6dGC8BIA8plo2qKwmdJoD53WKbXuOo/xRqMMTqEdumxOPjaaC1aPYNLewaV7CzW2GP72bDeh8\nYqDCtRUJqpvzHLdvlY6i3vWNrXmyWZvaKZzqXi6esc1CrHZIqBQCXWdqvMj+pDZL5u+ibB3QZHnn\nFvgB43eELVnee4xSP/Sssh303CHh7N58DG7Oc6/wF2ewfijzZQ6wvB8m+/7fAvibMOamH7+fjXoQ\n0rYKp4xRFoCbwCEgoYmf71oo9OVbXfEgKK+AEIBBqVNgOHmmiiRNFf6KTS4JgFGtRRSaypamDPDh\nskZTtt6kXp/ne4GrbDuvryH7YxarLmurVwkTwKAIFX8uVyHTLhLLBke14fu623TYtuc4PLwGfWjT\ntQ5PDKi0L2Hd3MafbHLc3qVRUJHC7fW1MPmd3ilwdlrg9E7pisxldYMDVsG0LlKcrgpXb16CZ2hj\nMNWPWd7hcFkP3osE61jtn/5GzG+2zrzxLt8pB5p9JVRTxt1XPL/8nfqNPo/Vyal2KZq1ctUnj6q7\npuhcnmBTmve07wYvJlrrSXaM14qMAoulSvlprfV/DeB/fTBNejDSNH2xKhqEayAKJovaLAK83Ky7\nlgUXKlFLC15T58O6J6yMal2mbnIC/S5KTowxmWMSGSw2opQrly1yNHW/k6aF6Oy08PqFFkW+uNPz\nGrNhPgqssj8APSj3y4WXmwXglfulKoG8PDA/v80TbGy4LfXxdtFgXSc4r1NjDituACuTNKsOr6FW\nLbaN8amc1z6ohADFd/KSCVPjFArHAF5ojInm7NQARn7WYLGukdlSumndodiZPr27KpBXLba7HJuj\nfKBheMLeJQA3TqVsVzlO69IDGGAI8mEQ8d8N9W+bJ8Cur8hIZiQaN7HNlJQpDTr67METtD22nzdj\nc5BAneTAvpPGVqH0SpM/lNkyCixa61Yp9flKqUJr/ZrTCUMDOgQq0fPZQuaVNObHRHZ7UyKdkKHf\n58pgx2XnXF1kwFkTrF/Py8Xu5OSeUVPdHS/MJ7xNTZ0gWtucN7ca9oMEFSleedoy9SpoOs2KR/sk\nmWFYsJ+5LdyE4cZBBehDpAGgTE34NGDrnVha+mrZoKltaeMyw2K9/+5135opQA+4ZOIJaZPObMiv\nz8on07im+eCV+bXHcK1Rjt+L1I3fG1SozZXux5QFPNdG9gypBXUud5e5m8tAD5qXIw99LFx+H8Bv\nKKU+CjjTJbTWf+e+teoBiNYY7KwAYe8ekbHdcn8xjdHa5uK4UAXK4OEiKi0mc+qO10cZagugEmCo\nX6iP9nUYT4FjbJHk7QiBSkhC/c/BxYFK0aHM/KqTrW7QoXW8UcgKtHptEwZNjoosR8DPX+Ydbiwa\nLLMeWMo0QZYYKnxTK0ThzPoeCLBp7Mx9RpI5/TaQwrSD7h0bO9UuHV6fgX9dpuObLTYuQ/PrIrJ3\naWC+WRHzjoNKSAYbxEsDlaslc4Dl0/ZfAuDo/jbnwUvQYSh2NlzqInULgQSVe1KZZ4ILB74GgVLI\nPEptxLHNpUGCGv2OtC78YeH1EQMht5hbbeXCGtaE1sLNXlxi2goXDjhTtn5Ostg1JhO76vrzZd4M\n5cSs8g7LzIALAORVijzRNjk2BWA0lrPCBBCsz1tvwXLPsQOqMjM2/iI1mlakPDZf/Pk4zavW6xe+\nSHJtZRBJJ97PwHwktJcxcJmSWKXQ0DHeJm+fRV6MKQkoEsz5XOagcln+lasmUWBRSv0DrfVfBXBH\na/0jD7BND0yiOyE7gPliyxeovYBkD/MX4IfuSqejNNHVSNEg8c5z15kBKlnWhRd8C1r8Or39PVJ6\n17Z3zLHMj6XvL2LaGdUSJ2SfhcJoLCl2rYqGEpPEikaZGiAGXBapxiLtWabv5Ats1zkW57Vz2gPG\nHLNd5ciW88dOaAe+T/+EwAsIAMwMCWktoWvz70IAM7AcTADMwBcV2LCQFksbRG72Au5xczghGg+d\n9wDw5UqpzwXwHqXUT0NkEGqtb93Xlt1n0Xo4OGO7tBpisM0xb/FjI+q4PI6HOc6WiKbTNMnkdRwI\nBExhpLV4QBExmXGR4BICFd4u+bu8Nt997wMo3rN4AQZMg0lNtUkiJtQ7E3iuuke9azWdimTPK0CO\nDcBWhUxdRn6ZmjLEJqNbI08bFOU5lqsat28usFnmDmDaPEF9lA0AMKZZD99bOto/dJ1YuG1MYhsA\nLzov5NdAGJRiuSUDkfNnBqjwv2mDNJjDwDSgsA3WQ9lPxoDlaQD/HMAXAvgt+MCi7fevGeEDM7Tz\n8QeucQRvzvO9wcUzW7BJSdE67pTAZJOLizufgUvsXC7DKCDtOTLbPBlMqqZOkO/CEUdztQACFZnN\nPSVBk6Pt01C0kpR816LapdjtUhzahMuC8ValKgeqTU+j3lRIGJ0J5aLQZwA2M1zb//1nOBcLqeHl\nMtPnOFd405Hx8TyXbVEUJt/j9q0FNoXx8Uz1J4HK4ny4+x3Tprl2EMojmuVDs/0+ag6LBHcEL3cB\nH1zoOHm9AYCysVwX2XxLwp4WhzG5TEqXV7pEgUVr/XcB/F2l1N/XWv+tB9imBy4hahagN9Xw3/hu\n+3BVuzh4oAeNKXVa5sCgUCjKZnD/UizA9HuDRHIceoEC3Gkay4GQZrXc5lHw9nFT271OMA4q0tex\nWeeDmihSnO2bhWaTbyi0wHEbutzBU+Y5L3/sCowBQNc4VuJdmziKFklLQ74TQKHpMuzaLkpYyDnf\nFlB44tCwExznFV5Y1cjyDrezRXCBH0RHjYBKcOyJRZ1fT4JKyMdXlO2o2XKQUyR+c2G7R/5yMye4\nZEpims/k5iqmiQTG+b34k66qzKHNf82DSmwQcrPN+EDtwcW/gP8dTTJPM7BtoPvEHMwyumZMdee5\nBCRjCYmxnBGnDUWkX+hFkqUwh4U0FW6DNwepIVhakQsmnSvBJRQ+mtUmmVX6ohZpzzydqhxobMVM\nwNThKDJHtR4iyyTTWJ7y50881msOMsQmTL8toPDYgkxjQGm1l9u3yqCviucP8ecMOp0nhF/b+2zH\nxFgACfU5D0EOCX8fXs6RHTNyPkl/IoEZgF7jF/NptjkNcU2GP7d3L/EclyNXJ9z4yhoQldIDUMmy\nzvt3uKxxdFzN21kVJvN+7zBFO8lCO3ku3Iwxy1RCn5tkPFGtUNheL7Bd5ri7zHF+UuLs+gLbVW5M\ngEttnMj2+QCziHEtQO5iJahwiT4jmQoFMNxrglrD2kr3JvZaYLyGjHHem88hssLn7mS4uQVubhX+\naK3wR2vgvFZY14mj0u8Zj33fjsl70TjOgccWGjcWwLWTCteu7wyVS8Q/VpfjPpSgsIVy4JxnGycO\n2GOS5Z0Z3yNjnNpZF6kLTCBQOVzVg7lGIn1wXlt4fgouEIY89jxcCt8C8UoUpdTXKKX+X6XUp5RS\n7w/8/sVKqX+plNoppb57zrlKqS+15/xbpdQ/UUod2+/foZT6Lfv9byml/sJU+2YXYH6tiVLDQcyl\nKFuPDDDEj8UlyztjzmGTzdsVsZBeEgonnZLgfWckFo7lkchABcpn8SlpfHtw6Bn4vWIitZWYzNoZ\nSocqc2CP5YPQwlmULfLUmMMGZiuquS4qZHL/CoHKnVslmjox/pGiw+GqNuHEHfDEocbCc0kOF0Bz\nb/qetB4FnFSu/4ntgNoPwJkMZaj1WN9NATNpSHM5vADhu4iMQ35ft1Gx2vnYeJA+OK4lmS+H0WEX\nSSjmWlHIzEd+pItEH4bksihdLCPKjwF4B0wZ9o8rpT6qtf5ddtgtAO8D8PV7nPvjAL5ba/0vlFLv\nAfA9AL4PwIsA3qW1/mOl1NtgypM8PtbGKwwsOggqpDkYZ7rxexwCjpwuBDBugEZAJSR8sGZZ5+4J\njBPt8evLBfYi4rUz78FEmgCzrDO+kMhCEgsciC0iU0ANjGgrAVPFGKjUZYqDrPKSI40pTHtVDr17\niwWAGHgJVG7fXDgfVlEaNuY7eYez6ztsW+DzlhrHeV+4iwsVwsoTAy598iVRvNt3kHcePxsAozla\ncJ9rouGh6dJnuG/SK4lnZh3xwzktXuQ6jWnnOwESA5OY+yGcy8Ul9nychWEMXF6h8hWM+gy3AAAg\nAElEQVQAPqW1/n0AUEr9HICvA+CAxRbhel4p9bV7nPsWAL9uj/sVGAD5Pq3177DzPwlDSFxqrSPG\n6ysNLGG7LNdSjpYNisTa01c1sl1PnR9aFOdoH5I4UWoFIQmF7A6cqTM0GCmxZMoxEkyZTxNqa4jp\nOXQtuh5FnO2TgR6i5aDgA0m1w6VITETYoHgTr7OeZABqj3CS6tsQqJzeKQc75/593EXdAo8vNR5b\nYOB3WeWmqmLdKVYJ0QQJPLawmsuRH8zh+VwYuJCk1pdEG5ZB2Db3UQU2VFJrkQEDc5zkY9oLD6Uf\nM+c2dYKybL355bS1UG5KwK84BZZzTduXkQzqy14+lkeVUp9gfz+jtX7Gfn4cwGfYb88C+MqZ1x07\n95MwIPOLAP4K/HLvJO8G8NtjoAJcYWAhShcuFIZJWcm7RgFZ2KYrI2vk77GJI7PWOSeXlBiN+Vzi\nSZpslyljoCJJCOl4+rzbpbOYbmX2uPs+QlJJyW5jgDJoK6NocZOdmcBMHfrERoWZPJbNeY71ee6R\nSMp7PVcfmff2+rsAGgBDzcX4W/r2SwADTFEyQAPXd4MsebfABqZ2KBCjLlKPUWHM7AUEotAw7tDn\nxwUlEOBB15ujIUjmB0BEYApwCbXtQhn0DFxeBnlRa/32B3zP98BEAn8fgI8C8PghlVJfAuAHAbxz\n6kJXGFjUvIQwCim2dStC1PGhyRFioR1EmFTaEUJKDShUewQQIFZp0IR1i+6u353GQioHEVkzZCqB\njl937No8CGGzzqO5QCHtZdSPMAUkjfGH3Mw7LNIGJ4XGeZ3ivN5hkW5RFsdAYeu9F4eoqtuWJ4zZ\n8ateW1vUjdOQuKbUnjW4ky/sGQZctguT73KcK6e90KOcVoZPrOqAO4Lm1YGLrYlDLNObdY6mToK7\n6VC/5VXrcpMQIcueZDgOsBcPjp/IX4mNiZD2H2IZD7EsO4DhofGh55vBBhAEuQtYAh6APAdfm3jC\nfndP52qt/x0saCil3gLAmdGUUk8A+AUA36K1/vTUTa4wsAwHOh/MRdmaCX1uZuJmnQ0KAvUnTrDz\nCkDxwnnh7yB5zRL6jbcP8LOuSYKL7m5oenPnM+E7PR7WzClfoiawQBiobG/IseqAmQEu52Hj/XQZ\nQgmSm3WG02WD57cK18sU18sUx8VddNkjSIolAKDWO3S6RdUpV7eeCsA1je37qsViXXu+MmrvWbnA\nHSwMJxctYB2wbY320jDAOq+VqzlvjvP78qgwIckvwPf5kL9L5vFkEfBN686UaaiTgbkolNs07EA/\nCdedOxNU3GXYOJNjfaw9U+aofNcOx7sQ7o8JMhnE5JKIKDV87fQe5OMA3qyU+gIYUPhGAN98r+cq\npR7TWj+vlEoA/A8wSfJQSp0A+CUA79da/8acm1xhYBlOkpA0bMHfrPNZ7MexbPAg/Xtgos8FlRgL\nMDclcbObZ5dnkyXUDyHWZ/mMs/Mmar88sh+ksB9l/phmMhW9U1lT3O07BY7zyoQGNwl27doU+7Ia\nS91t7b/C4wjjpI8H69rUT7HmqKo0UymrOyzOa2yR4/Yto7lUJxWOlg22C5NQeVIARaJc4mUMVFwf\npMDrDjROM1+lkYmledUGxxgBdrtLBgSjvG/GFnEvp0kCzB6Z9vx+JLGcHbr2gPR0RGIAJE1mXF4l\nDnsnWutGKfUkjHM9BfARrfUnlVLvtb8/rZR6A4BPADgG0CmlvgvAW7XWp6Fz7aW/SSn1nfbzzwP4\nSfv5SQBvAvCUUuop+907bYBAUK4ssKDTwQkh1enYjl0OYFmvQi76xFhLEgq/JKelc86LIllzQEV+\nVxepm5QxXifv+SMgQ8KTEmWBMg6Q/k5W2NcpLJv1PycHHJOxxUW+gzE5rc2/c5tz0ukWyIzGgkhI\nKD1nXZp3mZbj06fapQ5cmjrBblWjPjDay3GuPdCqIiWOj3MTxbZtgaNCoUgqnK1qHC4bRwVT7VJs\n1ylw7mssfFy4PJIZEj0uBBYzzEQhZouxTQu/Nh/rc8BlMuyaE6zOzNu5LOm08vKZ7kW01h+DqebL\nv3uaff4sjJlr1rn2+x8BMCAc1lp/CMCH9mnflQUWlaKfKJHJISlROKVKjJgyFK0T4rrKlhpF2Qxq\nm5NvR0bGuDYF7s3rjoRkwB81sZsMRQANnL05AFY8y9X5sGHJo0L3F5E39BxRcsCxdrN3OFgYGWVO\nlps+LhITcrzKOxxkCfJkAaJ0SYscebJAnrRY5RqLVKHMNIrCJM1WuxR3l+FnvLvMsb3ul7w+Oy2M\nGbVKgOs7bFtTn2VMFqmJXjPZ+ea709rQwJwWwFlhAIZCkjdljk1RYLvKHd0LD2Zo82Q0j4SiwiZ9\nDlxioCLC7kN0SNLHEWRVzg2vF9ULmgOMNJZinHFj19ibAPahROXqAosSVQytTO1ePL6u4AHDxZJE\nZh6TlnK4bHyaEhsoEIuaiSVbApEaMgJQonQWM0VOwJD/JHpt0QbOPsv7K5T7EBKnIYXeh1j4qA5J\nUbY4KoDjvM9lyZMSqE4BAPnidUhUimVWo0w1isT4Rnar2jnwT1d9BJn3jgUzccjEWS0bVMvG3D+w\nzi1So6k8tugrU9YdkCUpjnOF01rjTm4A5qjY4uZZg826xnppItY2RQFUGu1OVNHM4xUkgf69yqRM\navu+Y0WydU+FnscSMRvETXghCeX5eBuWgF+wKFscLutZUYsXFa2BOmLufK3JFQYWjcNl7Zu4Zspc\ngjvp0zATrXEDmGspR8s+n2XXKGSsTSGwiwGbm4ByNxkAFf536F4xPqepJLdotBxrwyAXh+dmiL6S\nQvfdWXPhgFuK7s3ul2Wd01YoSTJLNJZZhzw5RNJpR5ufdI+iSA5QphuUaYdFmlg+L+2AKVtqbIti\n0LZofoZdrG/fXKCpK2caOyq0jf4yskhNLstxDlxfNK6IWNUprPIO53WCZZ7gOE+wbTWe3wKLtMHp\nssHtorMbldr5A7frvk9JQx5rZ0xT5hrNXMZhyRHHx0vs/mNZ/nOFb7wG4dcBrYWDijPbFQ81l3uR\nKwwscYDYh3U1xojsJXOxnXcMVAo+VzMNgO0WqyScXBiJz5damLtswNY9J+t4DFBC93emD7vbzM8a\nrzyAzHqWiZ6G9aAe7KxD96KFUJpUOGDSLp1A4Tg3ZqbjorVZ8AtDPClo8029lt4UVSTmujzaK/Tc\nsm+5NE0yMI0BPbgc58bcRZqKAT5TN2bdJDa5sie1XKQJFqnGUW38LzdzQ8NPoclNaSIYuZa8XPlg\nPbVwy0x46tcxuQio8KJyoevNEU4BM4ehgNrJ5+RYG+9FNOIBGq81ubLAkojMa1rk5gzgkHmDy4At\nNXAuH7iUiElZ/hTaOkdm2cFDIBPZ6Y9eKrLABMEtxMQcKZw0V1sMHTdVT4S0FVrYSpvwSuzGjm6l\nawy40OdAl1Qz15pQGDsJRdt5zmtmGtu2pm1EYkmgQiYUcv4aq45p0GOg6DoFwPiSKByetA+5I49J\njE5okFeyRx9QaDG9gwsnLM4QbzwHGAqkiZXAbLfzefvGrAUPZVquLLCQOJ9JJPkvFAo5JrFJF/ze\n2zm2QKaxa9Rg8hbFBTiMIo5VuZPk4DJmxuE+FZlBv1fbQuASis5j/S61tdiCNybcaZ+nZvEu0w6J\nSg1tPnxqHfPdUGRlxKmkUBeaznKI5DncNGZEo0gUyjRBmXZYN4lN1vT7TYLLIjXgskhNaHJmtRcA\nAy0l9mzSDHZR5oa5Y0KyS8S0lrmbPkBQwDDhoMLvFWozaS6XGYqs8dDH8poXpXx78pxokEntZELm\ngMtFnKSezAj/lJFeUxn13uXtBOcLkFz4JxejPTOZpzKzQyL5rMgMRgSUZHp0JJTNxmgqAekLew3b\nM7b7JlBxJYcpIZaxYNNz7HYmMKB8bIs8NeCwSBOUaYJQhC0xM9ed3VknRB2jLXga7WWucFCZTFic\nkkAyJU+2HUuOpGNDv+0DLk4CvjtqgxS3FuSdMVPioa/lonJlgYWEFsWpxXAyU3dGXe7geYAHLhcG\nlZHKdzUovLlX/XnOjLvEBXenNCFjjt/LFE4tM2WLl8XTykxbynzt2I2ddA1koS8A4Ob5mIlSmk36\nfKO+KFdetYNk1ZBZ8HbRAScVFhZcsiTFcdF64GL8QsY8RizJZWroYYiXjDMlc9MYALdo8vbHKITc\nOaH3GqA7keWyo+fKS4lxyMGF9+8UuPCotpDvju41xs/nrsUA5qHsJ1cWWKjQ19RCPqmlXIBHyFO5\ny/bCYOItZIGcHD/MONzOOTt+wDeHjU3uYJDBVD25kT6ke8lFT7Y7RHoZKs1ctxjwZaUqPg2ktjC2\n0ISyxaV431kKEuof7n97IWksE7Mxie3anm4fGJpU8gS4sWhdWHKRKGcaI76xgQZQJUFQGQOCgR+C\ngUso1F2SoZKPiaL9QuMltkGZo63wUGnuyJ+SkDZFcll+Fn2JCZKvdLmywBKSUElYKXO5kfaljaAI\nsdCxocWML7ZBgIm1cawNgQAGnv0vOcRieQlj5ZW5uN1ooN/cs9l7yfcyFtEnF0ZyzO4aBeTalhke\n75tEpaPVJYnnLCQSVMbYBIjjCjAgQxxjRgw7MpBglZv/gQ51FzeP9ZG0KQhUSPs5zZqB1uX5jGb4\nqrjI6Mcpinl6Z2OBBEUx1BJC81KyUsTuF/Mdyk2Hy71iNXbut/b9WpYrCyxKDe2nsx3zEVAZ29mE\ntCOeU8BzO7w2sV0lPy9UOyO4m0R4xxWbNCFQkRLSBPh9iDmArieP5ZnYYyzRFzXNyWtkWYel3bFv\niwZH9reBI5VMYRFfS6hdoYVUaipTzAh0Tlp3HscYYHJUgCE7MtANzGNL28+9ia8HF0AhT4GzSuOM\nhbJneTfpM5rM24ptmkJ16jPKten7+F40gqnNYHBO2U3RnMCcywQY47y/lEu94uXKAsuFhfGEcVPT\nWGLhWK6I3N3HIlrGJJZLE7uONC+FRIKBnMDc5CBzAGIicxnI5DG2OITMbmOAR22SJIfUD0T8OCd0\nOFW5TZAM3Ks2xcncsYEVg7MIyN18kHKkaoFzYFMUg9whzo5sJLEVKHtQWeUtylTjtDINNuHUCWAj\nxgwtv9VeagAwZti1vSJpYWNVGaN9P1Lkq6kTl0dzdFw5polRX4mdK6E5M6B/mQEu8rzQHCDfWFPn\nk+17KOPyEFjuVWbQjkizlZwotCCXNtyYJKStzGpSwEz2cguBCm9PqG1jQRJTEz20wND5O+YE5hFe\nra7R6qEVXvpdQtQrMSLQukiH/GyABy5ci8mrFpl18mfWwX+K0jxT3qFaNrhx1GDbkgmvBxeqRpkn\n2qtSuWb9sMo1zmuFE0vBf1r32kuV99qckwi4zImcDHFxhfjJ5s6Xi/w+9zxPU2b1XqZqu1xUOo2H\nPpb7KUqpHwLwLgAVgE8D+Dat9R372wcA/HWY1PP3aa3/qf3+ywH8FIADGGbO/05rrZVSJYCfBvDl\nAG4C+Aat9R9OtUHrofMytOvhux2Z0Ttl/iIJEuyhz8IGgMNlgzObc0BcYdKxSufsc7/Qbm/MDCBD\nkKUte86E5ot56DeuTckExyA3mv1uLLQ3+MzErJyb36sqcX6WbUuTPLzAtdo3h9XyMLE7536UEKhI\nCYEK/U2VKTd57kdLLRuQaYtMYyFZN4ktYtb3JQ+z5tpLtWzQ1AmOjiur2fWRDTFNIcghNqLJE/MB\n0Pu7shlm57lz4KImUwk0nlmT5Vu9EjUXpdTXwDARpwB+XGv9YfH7F8PQ3n8ZgA9qrX94zrlKqf8W\nwHfCTIxf0lp/r1LqHQA+DKCAWbO/R2v9a2Pte7k0ll8B8AFbV+AHAXwAwN9WSr0VpvDMlwD4XAC/\nqpR6i9a6BfD3AfwNAP8KBli+BsAvw4DQba31m5RS3whTOvMbphpA9VjOTotZi3UoymQsJp5k0m/T\n9BrJ4bKJRupImR1owJhhef7E4DghoRyXkC+Eg8JYP1xW5nVTJ8H2eiIWfdnebdGY3JQOozXIW10j\nlII/1u9jtO771E5P6w7bdYpNKRM1G9St6k1jraH9rzvY8GM9ABXHLgBgAeUBDKBcYuZuVwfBffRv\nG1ZNEgKVUCLi2DuMbfgmQ/4DEhtnY2N1n1pD+4iJCrv3BEmlVArgxwC8A6Zm/ceVUh/VWv8uO+wW\ngPcB+Pq55yqlvhqm5v2Xaq13SqnH7GkvAniX1vqPlVJvg6nl8vhYG18WYNFa/zP2528C+Mv289cB\n+Dmt9Q7AHyilPgXgK5RSfwjgWGv9mwCglPppmA77ZXvO/2jP/98A/KhSSmmtR8N+2lZ5oBLajQH+\nAj6VoX5R4TTzPHEstoCNmSSkej+IUEIaqIfSd5U0AUj7tMw8lzJ3dxeKRupNEvvJ1ILtar0zPwuX\nTrdAkgHFMNt+H9NFlO4/IrEKmRlV09z5+SeAfYYTKvjVO+Y5AIbazMEFMAADGHCqD4AX0DM3U+lj\nJ4FclVERoCLHhKRPGTwfhlQ94faMjBVRLXXOnA1FtV1m5v0lylcA+JTW+vcBQCn1czDroAMWW4Tr\neaXU1+5x7t8C8GG7/tI1oLX+HXb+JwEcKKVKOi4krwQfy3sA/CP7+XEYoCF51n5X28/yezrnM4Cr\nrPYSgBswKBuVrlPB8MoxZ7Hk1hoDIbpWTOS5xEZL96Hz+e5e7v5i95OgQgl6vOgXIkOCzHxkY4+b\nmOhB1AAkQjTpwJAKRpo4uHbFr8/vGSqkFpKYOaoHF5NTENxBJuPTgr+DUTARod+ytAFVdmyEluP9\nXWn/HZBJaVW7ui7bVtsyyhmyhPws4UW398NomJIyCdwCfX3Xmx3Zgj7V51JLGwMVkvV57rFUcxkA\nSqTePbUnpCVKZnGaR7I9TjMfCT64LNEAmvmULo8qpT7B/n5Ga/2M/ezWPCvPAvjKmdcdO/ctAP5T\npdQPANgC+G6t9cfF+e8G8NtjoALcR2BRSv0qgDcEfvqg1vr/sMd8ECZY/2fuVztEm74dwLcDQHn9\nscHv0kTDJwbPBuYyFj0lbbixSRa6hjznXgoQhQqNRYucCWr7YBVLxtpMx3IZ81VJcJH35v4rfu2p\niR9c4O01DleGKflw2ZjPicm+N3kf7JpVbbQWFm5M1ClB2nzKtIyGdWsv89u1zxavAoB2Z37ni7aj\nfxE7f4q+q6oEOM8tYwNLggRsYmTfghDAlKlhTjafEyzSDItU2wCFu8hyUzyMirbVR5nr+xi4hNo7\npb1KzrcpkcA9Vemyfx96dLPIz4uNv5dBXtRav/0B3zMDcB3AVwH4jwH8Y6XUF5L1Ryn1JTCuhnfO\nudB9Ea31fz72u1LqWwH8JQB/kZmtngPwRnbYE/a75+CX2aTv+TnPKqUyAI/AOPFDbXoGwDMAcPT5\nbxndnsRyL0IAE5tAPNdk6j736iAcmKommF3dLtWujdxkwMEs1K5QjkzwOJGtT8eFzH3ezjFyXQqc\nkAXU+LOR0DPSIre01RapFguxG7tESAITm8uSqswSUTKQTyRtPj1T4/qLnntSctOPZKarhRZo3kN/\nXaoyyqXapTYnpQeXE0u/v4By2guXMu1wrWwHOS9Z0o+VMtvibNng9E7hnqfapV41R4+e5gKgIp+D\nC++/WOb8+ILvA8mcTZmkf+H3eAU672Pr5L2e+yyAn7fr8b9WSnUAHgXwglLqCQC/AOBbtNafnrrJ\nyxUV9jUAvhfAn9Nab9hPHwXwD5VSfwfGef9mAP9aa90qpU6VUl8F47z/FgB/j53z1wD8Sxhfza9N\n+VfmCuVokITqUpBwtd75YiYc7HMLZ5FcJPpFmpVimgjPuufVLWlySZoNaaLjzzP2zFPPEDL70efN\nOvfAxT2f0LLctez5R8eV0zSI3ZgkVTlSlUE3O6Ax5+rG1/KpjPEZtSXvHCVJqObIwMQXERld1X/f\nDK4bzB63C+EYuAC91rLKTa7L9bLBQUbviAAGAFILugpneV/KmbSXpjG1XfiG5bJBJSR80ZcbnzGJ\n5ZOFjrtIYM6+0mmTQ3UJ8nEAb1ZKfQEMKHwjgG++hHN/EcBXA/i/lFJvgYkCe1EpdQLglwC8X2v9\nG3Nu8nL5WH4UQAngV5RSAPCbWuv3aq0/qZT6xzCOpAbAd9qIMAD4DvThxr9s/wHATwD4B9bRfwum\no+5JQgsrzybnpItSOLljzHzGZQxU6P40qfjivhfIsB1wKJ+AX0s+O1HNEP16rP3S9wP4NDDyN/o9\ndD0OKLJfvMUtYrbj7aLnkNoK0eZjJF8hUSnypL//IgUqaw5rAos+LxI1BjLBhFbR9lDej3dOlbj7\njWkuK/t4q7zD9bLBKm+xyktTihnASXmOMm1QON9MgiJJ8HxC5r8tbhfm/fOxR5oWH1ehZ4tJbPxG\nA1bEO566zxQH2Rw+tFegpgLA+ZKfhInOSgF8xK6d77W/P62UegOATwA4BtAppb4LwFu11qehc+2l\nPwLgI0qp/wcmrPiv2ZSOJwG8CcBTSqmn7LHvJOd+SF6uqLA3jfz2AwB+IPD9JwC8LfD9FsBfudc2\nSQf0HBn1F/BrR8KF921XTIKUKJfoiLzMyJh9KPpDMrYghKhmQhFIc3eNoVDkEMNxLHz6vjM9V/3u\nWoJL1ZlqlIByGgtVL2x1jRyll6tTuUJi5v9FaqLnyPwnOdyAYdjwRUtPuOvd49i4bJkKod9XTAXJ\nS7qW1h+DSbvg3z3NPn8Wvvtg9Fz7fQXgvwl8/yEAH9qnfa+EqLCXRbRmyV2An+9hKR3m5mdI4dFd\nsYnEExXlhAyB1VhxK3qG/CzMcTWVSTwn+ZHyCih6jbPWhp5j7iIRuie/Viz8msgbiR041B4gsNgt\nGxwDuFMB53WCutui7nYoiyX0oeHoUsUSjW7Q6hrndY7TGjirgNOaJVpaTYSPD77IhpJux0rvhp57\nbNPCk0bd9fMOm6LD2arGUcEjxhJcL3tAXLYdTspzdLrFaZVi3WS4vUsdFQyXo4ISM4HNOsPRceWS\neun+9I/mzGVILMmX9/e+85JfV455GUb/SmGseLXKFQYWFQzLJaekBJgxFTyUFTykixDCQiDpvLk7\nvkFsv30Gytgm4dngY+ASy3jnIkGFns0jvhzh+5orEhhkf1N/jtHPc3t8MB9o2eCo6MONW10DWdHn\nsWQF6m6Lu02H8zrBaa2wbYGzdYbNOjNZ4eK6fMELLV5jYMePGzAgBBa5GM3PbpdiDaPJEMCcFQYQ\nty3QdBnqBZFvtqi7zGbpJwNQWaRw4czHObCz7dmsMz+gQizIwXFkIwiDbMZT82kibyp2jdD1YqkA\ngzB6NjcvU2u5RB/LK16uLLCg026Hv1jXyOoOi7Wp9Hd3mQ8Ahkj0pmzDwwU/wpQ7stsmCTl3ZXw/\nB8UDCywEKFndeTkRMXAZZOjb5+XCkzjp2XgOy9QCERO5WMh+GGh/tiIjPWuTJ+55ZRRcU9EuPXXh\nuk1taF3OKo11bahPrpVboLgBFIfm8OIQdXvTAc+2Bc4q5RbOndAYB880shseo9PhOSQkAx/TCMUJ\nfbdZ5zhc1tisM2yWDc5WtaWk0TBTvh+TN7fZaDY4hS4fFT4rMonkvpNaM881CUXuTWnJ5sEEkwKb\nM1PaSyxzP2Q25oXxxor1PZRpubLAojTcgkygUuwaVMhwYIGGFuUaKTbnPbhwiZZtZdxJKeOC4uKB\nV4RuxdsdRkDlYF07bcu77kgdEAACAPvz+fNykffmEzC0s5OBAcF7B76PaXHmnLDviGswMtdiixwb\nUd1rW1SW5VgZX0OSAWkGpAWQZGibxu7mFc6qsAksxqUVesbY5sHv0wZ16fd9KcxssaJc/L1sjnJ3\nn7NTE6pcnVQAGquFZLixsCY3ASo8ge+kQE96SQSWmQGOougDOihTPz9rBmM9s++isaSbHGCkNiY3\nE+aPftF3EY6Cjj+k3YYAJapNYZh4S5uwKfDbRzQeaiyvedEK2K5ytLsEi3WN7TJ3izHtgrerHCiU\nA5R98lUa2BwFyrg+D1N4uIHMwoJj6re3yDIyzLvLHE2eeBoLPcMw2a7PjXBAxa7l57rMl1jfxEJq\nQyzPXKTvxp1bKLR54mkqvJ48yVRmflDSIvi1pM0PMSiH+otHFPLfozvniHBQ4W0Y9CcSj74m1K7t\nUV88LCbcwWwi6AxpJ7EiF0mDs8ofI5t1PngHnFUgNBaBeFThZp334b+MtSAWWh5LSubfBUtJiCJl\nobH0UPaXKwssSJSXREgL0V0CmKPM5itU0ZBgntci6V7cpLOJcNtVPgAXolnhElukQuHLHtMykxig\njPmJ3LUCuS4h801I5ka68T4amCQC9m3nm7DH10f9sJV5LOb5/US+e5FQLRZgCAhjDt9JkGamnnzX\noi4y966lE38qTDbUroEZE42N+DL35c8Yet7jHB4rMlWk3Ba+2WuDPDge5YZqKjx8xzQy09pkcG5M\nQv4Uuv5gbmIE2JlGdFk+Fq376LvXulxZYHE178XOn2spVEIViC8OIXCRUpSGTDAELp4IFZ/nM8Ry\nYyS4xAAllGw3SHrEkE9pkPw4M/R4zmR0SWkXCGfm4BJabGKgS8fPEVp489SCa90XxQIweF/7iueb\nmCB2lNpKTPYBl0VqNBDSUCTQFImp5UK8Yus6QZEAp7W2/yvgqAcXot3n/Z5aQk0al9myZ0OQG7Y5\n70VueDiQkHYb65+QqU1qRfswUD+UuFxhYGF/WM2FFmQOKryE6qAWd+6HxI7t2GkAEw3Gwbr2HOuS\nfDF2rSlwiWVCy8nLqz2GdsH7ZlCHjg+xFkwyEgS0Fu8+e2Rhh8CFnj+miUxJWbb+Is3AJaS1xEyB\nMcc0HwO0UQkl9U0lXQ7C6I8yr93U1qNl45gF8lRZkNEsiVRjlXespK65ruk/63858jUX8htxzZEs\nACFQCY1JKZIVIvrcM0tg0DX7L5VvcsPLyhP2qpcrCyxTUlkThAQTLjLsM5SzEPxpmvgAACAASURB\nVBKpsXDeJXktqVXILHl3fMSURZNoYFKphnb70D1iC6OUkOkhxFobOnZfGbPPx6Qo21Gg7NBiSvcg\n5z2J2wwIcOFtjPWZs/dLH4KVpu5Nq3JnPgUqfYN7c2BtC1fx4nIE0jRejgoNFD2FDQmBCjn6qbwz\n0CdhcnCRlPd6meCwHAa+0LHUFj7XYsX3pKM+FB03JWPjmG/wYpubi0qHh87717yMsYlx+3ZMpuqm\nBEvkivwLipghOntgGBIc2q3KSeVMcSO1yvm1AH/n75z4a7u0Bsw7rkZHIIJMhjCHwrInizVxyvw9\nTEyToBK5Dp/gMsO+s2G1VWdCjeu2b7fLNZHRSiwHwnsujO98PZJF8dwUHTa3eucwgq4XiuKja56d\nFsa8VzLaoABbMtCXFjivlQcqJtfFOvgPAApjbup49ceQ7Hapt/GJgcoYiMjIr7naRkhzdBGPmJ5T\nDyUsVxZYgEB0CP+NaQxAuGYEP25M6Fiy31Ip2rpIR8ElFuHC2xVqw1RGssvnEKGzlHPDwSIUzspD\nSkMRNHMXQgkq1Eeha05FycWO38d/ozLDn6VhwKbuqBjWSPKfbHOgDMGYiczzM4UA/TwPRzNhP1NN\nKJScM0sQ91kIXI5zZUOzwzvuIjH1YF5nwaXqTDIpPXeIN01uiuh3+m3M+T62OaE2x8L3gxJIYOYb\nhjHWin1E60CJ69eoXGlgmSMhjeFCKjftcCsRLy/AJXR+jPJljPJjbNGVE5jnIFDbBgltAVAB+t1d\nNPFySkS+DzcJyiS4+yG148/qn6C1dC5AiqozCyqZwVx/7Rqvvdzp6wGjfe985xsiAR0LYrhIcEOW\ndy5BVJpeCVyiwBQAlykTDgeXbWtCkqvOcKvRxiUEMqHNx5z5JcEkOIZ2E8XX3PlGpOPeS5h8KHvJ\nlQUWrad3M3yAj1WGDLHVuvNqWngazwzGExhjOSfyWiGCxYsKgcrmPHcmOp7NTjKgSGcSyqYO7R6n\nqkICwyTSy8x+zvLOZd4Tff5RQTVZ4jbRXZsMFtQsM4SMY7kOcoHiO99ZWsYcAtGIJkTCk0ljibKS\n48sb1wFwCQU8+KHKVGzMhCQbM6IJSz6rlClOJuQifjdJkzSViEzimSxjv99HeehjuYoibOQ8SXGq\n3PA4VcRwp08L9yDJz0bOxLLLJfcUd5C6yTZjMfZMVZYihZcvHggDgrpMXVhmKJnSM+tcEsNyqM9l\nbo0E3VDOgqTPzxKNItFIVIpUDadCmXZ96K2lynemozqcs0ESDFtlZhXPIR+gF5kUpgkNfrLvlbch\nVJSL7i0B5uy0w7UbW1TLBtWyQd0qHBWAHJcSaI7z3u9SdSapktgNTNZ+5Uxksr281MIkW0Mgki5U\n/A3AQKt8rSQ/2ppWPwJDff/jWusPi9+/GMBPAvgymKq9Pzx1rlLqfwLwdTAY+DyAb9Va/7FS6h0A\nPgygAFAB+B6t9a+Nte/KAotSvCRtv/hvV7m3s5wkruMSqM1NWorcSY1pKWOmH5c0xuk81sozzVCO\nRyyx0T+vdbQ2lHPgCQcqUV4XCNv5pVknqK3QZ7FISK0ltssfBC5MaJQF01aOcxPNdFy0yBMdBBXv\n/KQHJccGwExNIYkuYMJmH1ssZ0ulB/4E7i8DwqASIpKU2fpNXRlf3KrGttV43QHLsRKa3mMLYJl3\nKNPOcaw1NviB8l7yVAFocBap7cMBJuhH2UPbuFBi7H3mBzMJkvd+HaVUCuDHALwDpurjx5VSH9Va\n/y477BaA9wH4+j3O/SGt9ffZ494H4CkA7wXwIoB3WZB5G0wtl8fH2nhlgcWJ9B2cw4ELEAlrlKDC\nIoRiQMJlKjN+yiwgHeqkcRysa9xdGnMDTyCUQQDSEZ8xbco55Sd4xkIcT7J9A+AQBIRzfQex43go\n6BgY83rxR4XGUWF213nS17SXQmWJC3Hr0vZltRsx1U2BhHQIX4Zmx64ZKp8Qym8ikRpTUymc1uVQ\ne+ka3FhQrRajhSxS05fLvMONhbnvKjfgcl4nyBLlzGLGVKYcJQyZxvhYCPpcJkBl8JxMUrthCmkz\nAO47mNwn+QoAn9Ja/z4AKKV+DkbTcMBii3A9r5T62rnnaq1P2XFLWBVVa/077PtPAjhQSpVaa7/U\nKpMrDywhdmAOLsFFmSRAYEcLc8YAhri7AASykOdV3wtR5QM+qHA/CQBnWhuYXCYmaZMnHmdSzI4/\nuphLk9gFJrBHdBloMy8jOxmKaxfURervtstUI1U5khAVSdInClLmPeWXBMPJSeaYAeeCScAfBURM\nbdZZHXJYh1gYAPTaFwvgaPPEOfjpmGvXt057ed2BtqYxq80lGmXaCX+VSaosU+OrIoBZpBp3cuBm\niqhpzHXRTpCe7mHG4uYxDi7edcSYvN9hxVqHC8VF5FGl1CfY389orZ+xnx8H8Bn227MAvnLmdUfP\nVUr9AEzp95dgyhRLeTeA3x4DFeAhsKAuUy9CixZ+wE/EC/Jb2YEpKVXIpDRFwkd100OswGPCF2wi\n0gTgNJbtMvcynQfn2wU5RGJ5d5mbftjDPCdlEOl0wV2hDAwYiPAz7LMw9KWJh5KqDIlKUSQNskTj\nqFA4rTUqaw7bWZONpAYBwtrVXotibLHL/Y3BPtcLJcwOxAZweJq2Bapql3pJlY7h2CZSNp2pbVN3\nfX/u2r4fqAR0mWpkiUKRGIA5qhVeSBrcPPOXIblJ4KHowISTPQLqQY1FsiSP8PS9DPKi1vrtD/qm\nWusPAvigUuoDAJ4E8P30m1LqSwD8IIB3Tl3nygMLMBx0tKBxbQJAGFyAIMCE7iG1FD5g55Q45sLB\nhU80CSpjYcchyhPO6ny/Q333kjEtIBDS65065xm6Broxm7AExpmfJ1uUqXHwF4nqtRbmxAcwABgJ\nLiEG6+DzCQlyoEmgjvWJ2xQMubmk8AgyoDeH0rxoapOxb4q9Wf/dUWO4wqCt1qJwXifIE0C6N/IE\nyJNegynTBKtc4bgmcGrwwt3eNHZ0XOH2rYV3jVBodzSUOMBY7LUnlHcU2cBMzaGXSZ4D8Eb29xP2\nu8s892dgyhd/PwAopZ4A8AsAvkVr/empmzwEFiFSWyEZKysrd5WcLl9GTx0ua4+7KyZzdt8hcKnL\ndN4Ola5hwaUuU7Q76feZAKY5jMcRX0rouwENvohekuAyWGACIb30/EVhosGkJCpFosQ77RqkKkeZ\ndjYyLDF+hazXWrg5LMg9ZYVMle4ZQ+AS0FJidDUuGlBozVL2GQPeebYOkQyiIMc6JdeeVUbrqFKj\nzS1SZbUUv73cj0WPnifAKjcAY7jHzHt5AXXvdwmwN4z6Su5VBEcd0IPK0XF1KbfQWl0WPczHAbxZ\nKfUFMKDwjQC++V7PVUq9WWv9e/a4rwPw7+z3JwB+CcD7tda/MecmVxZYlGI1LGSuBtNWvAzpEWJI\nKZ65SdR0WYoCWjEZI+Ubuxdv+yxNiAAxQpsfk7FgA5lZHmx3zaKVMB7JI7m1vObv/EVwLF8kZ/Pa\n8wk0FdD6C0iZauQJETQCRdv7WtYYPr/M9ucRd1zGTHyy7y+iMd7r+Vx6M3HmtJYs75DtUpxmja3P\nYsofE0ElAQmBiswVyhPTplXeokxTLNIMi1QjT4GbWYXbdwq3mJ/eKaNtG/OXSK1lljDTWFG2joj2\nlUbporVulFJPwkRnpQA+orX+pFLqvfb3p5VSbwDwCQDHADql1HcBeKvW+jR0rr30h5VS/wHM7uDf\nw0SEAcYk9iYATymlnrLfvdMGCATlCgOLdmGo1S51TKwcBEIiCxKFfnchwXaXzUOXaWGaGqwEKq6K\nYyC5DBhSgsh7kYQYBLKs89vLaPPlwjQnQ3qqPwbPyHbf4UJjekCCmeWdrxm6H3uTxj4mvFTlJgKs\na4DWRlM1FfJsgUSlKNPO+RLqFDiz51F0mBQeEUfPtFjXvYmRtXFKQvQ9PAouxB+3r4YC+MzbwQJq\nbE4QOWtTJzhbZyiSBpRESSYx40+ZGN8WbEwEWYfHnOaigJMe4JsmMXVeRkx+9AwDERYEfnyoD4xo\nz6qQ5d3sDd6UaH0xFoXwtfTHYExV/Lun2efPwpi5Zp1rv3935PgPAfjQPu27wsASWAhzDPwqQHhR\nJcf7HJnLECwnx+Gq7s03qxoZs3G7c8TCHbtXjC1AamKzTWgzQMWZoSLX8qLtBDtz6LwQXbq7Rj6f\nAkYm9iUqBZoNUG1swzZI8iOkKkee8EgyhTLT2LBzR82BhXLgFwotD3GqybaHNE46lx/LNdS5jAxy\nTFAgi1dF0baZv98d00JvnmWolj24wHFEJ8iTiIafaKfF5Imh5QeA4zbBttWoWw4uW9fW0KI8O7jE\n7cuGABXrRwKVV5rG8mqQKwssSaJxdFx5tVRkjXUgPOmDkz0SFRRj+SUJXasoOgcqx3ZCnEID6E0t\nxLs0tohMFTySn6WWItsmqdunotnmBiTwMslSS+HtGjs31oboeTLrvmuAym4WumYQGUZFsTCyn4ht\nGvpgCj+0XGodnBvOey9WIy0lmCK+EMqSDpP9wbSWWH4Vbyd/tybh0WToc3Axjnr/PgQqx0XsPQ01\nl92uHrxnmb90Lw720Li/H6CitRotw/FakisLLORjmSNyoR0w1e6pKo+BiwQV8gkcA9gmGmeYzsqX\n30mNRBbgou9jbaIQWykELmPVAEN9Q5NrChxDpWtl22YXEBuRBKmJCLPAopudFxlGsrD+hKlxMxgf\nwrRICxeBRYxantv3eRAE1wT5Ikhm04yRPsYARm6Y6G8OgkDYtFbt0sE1b98psHO+Q6vdpYmNCDPn\nL7POBkRoFzBRph3qTtn/gVWu4Gk/Flw268wz54Y2ghf1R5HwsUug8oqJinyVyZUFFpK54LJvOLAU\nuXCEdvzA/iDlziPH8Qi1ydSuLtQm6h+5Ww75iXhQwthzBMFGAEPI+Xyv7+CiUqZGYzmdb/10EtMO\ngf3YB6ZkbByPFYsba8+YeS14jfPcRHYBNis/ccAxRvZJsnLPkLpkynyrUFyvcDPvsBlJptxXYlr5\n/TR7XaaP5ZUuVx5YAAx2j1Lk4BsbHLzOSYxQb87gqvIOWDYgi4GkIJ88n93Xq+kxQvIXkjE6Fa6t\nLFf1bFCkc6td6rQXrnWQjJkeucxhyK2qBLtGGbbd1iT1VZYyf6x6ZN0p7FrFCBUZt9ZIzZA5O90o\nTX7kOUKazRzn8hxQ8a7H3isv0RADF686KQOXbauxbTPcWHS2vLFCniQoEo1Vbo4/r1Os2fPmCXBc\ntNi1CT43UVikwJ3c5rqUrRvLNF8pcXPOs5GEoiUloHCT1UOtZX95CCxWpB17H6EFQtY5maKC4XxR\nsUxu7qR2fEp72GmJEqNBEtQyQlLYRSTWF7T488WH26PHwIiub4ISWu/Yuf4sklBZ6GCeUdY5bYrY\ndreteQdUPVJlpXPrqqxEhxatHnJuTUloEdrH/l+JZ+JM1vI++47Vi+ZQ0HubMqk5Oc/x3K7D9qix\n9WwSHOcJlrkBmDLtHKhTPRwSYyqjUGWT61IkiReOfLbO+kRN0TchUI5GeE7Mhcv2h3SduqdSF68m\neQgsTMYGmlwsxyaZxzw8wi0WK5BFwlX/0CAPRsnIcGeiT7f0HHMBJrZL45oFLW6HyyaeJU7tsr9T\nlFuRAMi0qfthQ6lj9u6x55XO79izNbV9J0XjNI+6U2h13Rf5KsIh3cTSy+WyFojYdS4pkW70ejLo\nQfrMuP+mqoYaPTdbhq5vqFoabFuFxxYax5b12GTed4OQ5NwGVBjQ4QDTYVWllrfN0MAUVntp+MaL\nzTs+lrgvJvRco/12RZztly0PgWVPCeWDAOEdcwxUeCIgBxeeze3uNTOZkgsn71uci/MJYIjyfYLH\nax+GgDLT2DWqB5+ID4EYg4sE2NlrhCbwGPjJBY5rdPS/PL+pEwMo1qxlMsVbo7Uk/lRodYNOt25n\nDVxuWdmYpiZFRoBd2v0vEOQQO58W7hi4UE2XU8sqfZwb8+Jx4SdRUm4L/U/ajDlG2xLJffGxKu9w\nuDRapdzIhULPQ7kp9P8YgDwEl/3lygJLyJE25UyN1eQe9aMEGJCBcN0RKUXZYn2e7+VgpNK5pKmM\n0febh/JpRojReXCYAFRvYbLgR3U2pJZVFLxfW6OpWCFAcBqFuCcvZcvPoTZwEPVyFCw9h2zrrlFA\nTgtXbwpDVvQaiwAZrq1MsdOGAiD4whszM475vkJBGLFjvZ268PdNtTt0r6lrhTZYXGsoyxabdYaz\nZYMbR0Z72baklaQoU3pndqG3GkvdqQGR5bpObCExE0xRMK326LjC2WnhzWFeX4ZrNEXZomGReQ9K\ntL58TfSVKlcWWLi9kyb5lLmLT6qxARKjp+egMqD5mDCLzXFg81LD+a7FYl0P7iOFqMRdO4pscoHj\nxcZosh4dV0Efy26XuknM7tq3uU5cKKlnQrT32KzzYDKhLB8wbKyfaU1JfYeAc8QDwK415jAkeQ8o\nWYFOt2h1jbqzCy4zh8kdbCjib67wBS+mae1zXboG9emYiUheM7bIxjZUseu4xZsv5HaRP1vVqA/g\nCl5dLwG4cW/pYwSokGSWDBQwYfhHhQm/52HYnhk48FxT/fFQLkeuLLDM3T2EnKnAjMiuAFki4IPK\nYNFnfpCQhMBlsHiIAl50z7pIBwSDdZEO+LlqWYQKvoM0litz+9YiaqoJ7RLpf1oAN+vcgSIANHXY\n39FrgMYEMkkfX2nnE1quaudnAXpqd6O15EZrAYAkQ6trdLrFrs1RdT0Q8Z39YLc+ErQw5uPgWhfx\nX2XLeHju1Lgdi0wc00jMAX6gB/dPzDGfSXMkAEe+utuZKMBq2eBoabQXwICLeY0JgC4IKlxMoTFD\nsUPEoACcv2XwTOy56HseJfmgRGv1QO/3csoVBpZ5L3l8p4ywjyIAKlTrIpM1LwIypr2EwMXteG2p\nYV5XI6/aILmjZLAlaXeJu78XkTZS4jj2N0loV1hViVsACVSo0BQQrp8hzYgEjGOMt3U59L2YSCWr\nybSJ0ViyYyBlGku3xa5VqDmo2G6UABLTUN3vkXfpA0oz8L2NgcuUydbThNa+Py0YEMHbzph+50rM\n9EtyWpc4tMBOJY9N8qOy4d8Zri8aINJX5GcxYeLGHJanCscAsGyiJkoPsBnZLPkY+Qbm/2/v3INk\nuer7/vl1T8/uvbt3Wa5eyBIxwggnEk4lQZGpsuPCgIQs25HfyKkY23GZIkAcVxzbsqmi/IepEnYl\nJrYpywqmDH4hgq1CBVaEMUlcRSGBEMhYYMIVL0sIhJ67d1c7z5//OOf0nD5zuqdnd+7du7vnW7W1\nMz3T3ed095zvOb/H95ekWxaHI0wss2d+M80EQand8nuR2iFTNSG8ypK+6F8dYgO7G0DqSMUvMua/\n9tsQIh+My1WA639sJTJPfo4/+3WrFxdh5K9UpgpN0XxN/M+bVi51A0Zv5A1GWQfyyYolUH8vHfeh\n36bV4OtNQqZMNC5qL4LQAR0LRy9PEUbHeea1ojc018cjjONeUIjfprqiZLFQ8LAfbn+HyoRmc8g2\nxfS9sORizJkdVlxCbkTE0uUTdTO4cNkkYe6MoMhNftJGp8/x1QFPPVFVRHY6dE1VN8GSzRksVXyU\nfCz7ui4TkV8QERWR871tvyIip0TkcyLySm/7i0Xk0/az3xYRsduXROQ2u/0eEXle2/M7u+/26aIc\noP0/93kTqXSKqp5Q+doV//J+pCNLIsMiK6s2hqTSJKk+HGZsbxVsbnQng/JWESWVch97rkE3Z2el\nYFRk7KwW5s9uXxTCa1Fph3XOuwFvc6NbIZXYj97pVrm/nVXbfttu//O27WuLkQ7ojTJ6o2zijxlO\n/DWuTxXEpNu73mDVV8/UN/9Pz+mL+e9nIrKKil6HyPNaV9Ml/I345wif99h2v2jYk091eXwHHt0R\nHt2Bx3cyHt/JeGKnwxM7HTb6ORv9nCd2OpweVK/vWgHrXbhwWTlvWTlvGS44pqyf7PHsk71SpbhT\njI0gaM1zUnn23D1qWzp6nyAi19kx8pSI3BT5/J+KyEdFpCci/7XNviJyUkT+SkQ+b/8/226/RkQ+\nYcffT4jIy2a1b99WLCLyXEyJy694267AFJ65Evgm4EMi8kJVHQG/B/wscA9G8vk64E7gZ4AnVfUF\nInIjpnTmq+ZtT9ycUV+r3f9xxn7gbVcuUz++wFwRPbbnNG8ilUo5ZJg6dlkq4HR89VKHWbOuumgb\nP0qn9Nt4PiHfxOWLIVb65Mvrz0JZW2NYHZC9poUJenWoc9zXnTO63T0LNf63NpMLaFaLnk6orUbK\nhWURHCrPa+R7sUJ3Iak4+DVQ6lac5Wq4GFd0xlziqlOgXs6lcr/cZ25l0xtJmWc0WcGYRMoQfu2l\ncCITXaktmFxU5zMv1kFEcuBtwDWYmvUfF5E7VPUz3teeAH4O+IE59r0J+GtVvdkSzk3ALwOPAd+v\nql8VkRdharlc0tTG/TSF/RbwS8D7vG03AO9W1R7wRRE5BVwtIl8C1lT1bgAReRfmgt1p9/k1u/97\ngd8VEVHVxqeiLPTlEUr4sJXmA4iavWLKwL6cuTu2e2Drfmy1xYpqEDp7ff+Nb/LySwyb9k6EBV1b\n+72cHQpGvWzPFfoqUvwNWfjlKjB2zQNSmcpFqVtk1/i8YoKQIcIMe5d17+Rc+tauv2gzxqwCVLux\n+cf8Yb55E+LCkjAhl7qVSuUcNaTi0LbAVvl8nC74KgM2u5PCasu5KSDWzZT1LmVdHD+DvzfKGIxh\no2/0xRzBhHVdyvN5RfFakcu5iauBU6r6BQAReTdmHCyJxRbhelREvneOfW8AXmq/907g/wK/rKqf\n9PZ/ADgmIkt2nI5iX4hFRG4AHlbV+61Fy+ES4G7v/UN228C+Dre7ff4ByspqTwPnYVg2PO9rgNcA\nLJ28cPKBN0CH2MuD5qTI3TlCgqkcu4a4QhIIiTAWFPCMNXmFx6qFV5TKvY/NWNvI8LdGbKbbwixX\nm3sQWR3OgzEjso6xzftHCbPunUmvLclUHOXes3C2EA6es0od1G3bDcLn3Uf0WTpd0PcUGhyRFLnx\nwaxb0nElo324fJhlzCRgrZgml0p5hsKs2IvN6qTijJLLeC4T2/kicq/3/lZVvdW+Lsc8i4eAb295\n3KZ9L1LVR+zrrwEXRfb/YeC+JlKBM0gsIvIh4DmRj94I/CrGDHZWYW/MrQAnvvmFjXc4ZkIK4Zse\n6pLGypl7hGBixw5Jpe5HHpZULrdPmVOm65uEcAQYHi9WmtmtyGKJgHPB2fTtzHFUZNNFpiKIqRlU\nEGxz190VZuv3cvqddhpgftZ9bzi/GSNccYTPQq1D2aKttlusjtA8qH3GvJLLU/k2Xmj0LMRWn75p\nLRaO7gim31ErxGrUjruZWZ2AiRRzq5XyuDbXZb2LJRhKM5sLbfef422Ks0su7fGYql61XydXVRWR\nyo9JRK7EuBpmjt1njFhU9RWx7SLybcBlgFutXArcJyJXAw8Dz/W+fqnd9jDVMptuO94+D4lIB3gW\n8Phe2l4xB80wT80aYKfkTfyZdWSV4vZpqllfHs+3GQf+iV2jprRvWPNkL+q9QOV6+OTS6njzzPht\n/kK/Vy+qGUOZkb9LhPcznGyEfY+1e54IpbDcQHmM8LC9PEpCsQmSv0/YNtfmVoOw14+Yf8edo4lg\nlnNlY2AmSsu52MCKILLPwvlnylULyjcY0LHS+34NnOOrg3OZXOpQN07udd+vi8jFqvqIiFwMlDXt\nReRS4Hbg1ar64KyTnHVTmKp+GijtUNZ/cpWqPiYidwB/KiL/HeO8vxz4mKqORGRDRF6Ccd6/Gvgd\ne4g7gJ8EPgr8CPDhWf6VNqi18Q+mRRz9LN5YRu9UeGbgJ2gilbZZ2DEzUl2holCUrzxWxL7uS6qE\n5NIKDSTaZoD1kyn940XNiRG4/IXW4cFZp+Jz2RnFNcJKH0ODT6fuGaj4oCKhsHsZ1KomU3Ot2k40\nXNRZmBTsry7ccf18o2h7I9cldj3C53h7q4gSzIZ1xnczbF2cjE6kxkspETOSUv7lhF25b3SGZf8c\nwTgZGOcTmtmvPUB0tl+tJT4OXC4il2FI4Ubg3y1gXzeW3mz/vw9ARNaBDwA3qepH2pzknMpjUdUH\nROQ9GEfSEHi9jQgDeB3wh8AxjNP+Trv9D4A/so7+JzAXam64Bygsy+rgR7HEyMX/Tqlh5M3MfBOS\nP1DOIpVZtTZCE1Y1mirOrzG/ySyTi5vlxSTcfcxSJvBNfeG1aB3pZcml6fuhz6zfM1UPnWihX5PF\nyLcMyQKNsDBirN/PSumZvaDpGsYCKGKr4lbkHiHsNitNv31T5/FXK/2ayK9d5IL4hBjmPJWSQCvD\n0t/SzYw/BSgJZqI7NsnOX+/CU31DLkWOzXcZTt2DbQoGTJQo3H04F1cu1pf8Bkx0Vg68w46dr7Wf\n3yIizwHuxRSfHYvIzwNXqOpGbF976JuB94jIzwBfBn7Mbn8D8ALgTSLyJrvtWhsgEMW+E4uqPi94\n/2bgzZHv3Qu8KLJ9B/jR+c87HS5ZJZXqkr0pIbA2dyOwfbeWg5kXnvN9VqhqucvSdGEt90Nu8u20\nJpW9OqiD0OjKNbaO19g56sQ+dwZGA80V/Koj3cqxghlxtztm6BNiP27W3Ctc250Cgi8J02Sy8jEV\n5BCsvptKQocrlgrss5YPxuUquWyvG4DnvCbhOfyJ25SM0nqfwWjizO9mlKuTcv8g4GK9a1Yu3Qz6\n+YRgdrrDUv3BiLdWZYR8clkERDUaILQbqOpfYtIu/G23eK+/RtV90Liv3f448PLI9l8Hfn2e9u07\nsewXVIMoIm+VEiuL26Q+GzON1Q0AdaQy01nfoP80D+p8N25FVecEbjUIlYQSDNoRKZHKPhaheavO\nlAeeQ3lrevCKKUjvFi70Nd6I6dwURwRNaHPvQnKJnr6lz6gu1LiuKmSbOdXQCwAAE/VJREFUFZkL\ntphqrz+7935ffmmIEKHfLqY35pKC+/2M3skeOyNjElsrtFydOIHKfuTyL9vwZUcwFLAxEPrrfaNf\nZicLdf1KmA9HllgYT5OKixzyf3gOvvigeVG1rzeRS2U/t6897yy0rgXhVi3BMf121JWbbTtAlTPH\nutozsVVKQ0RdG8yOdqqSS5go2vFm1q6kQL+XMzhmCn65Yl+zsGTFDh3ZleUJImHO7lnYa+RcOaj5\nsiM15RVq4bVvVlvakgqY9sQG3djsvk4ipq49ddL3vrmsv94v67yc6DopfSorF5jkvvjv1wpDPi7f\npXfSRM4OhxnbS2ZIPBOEIrqYyc5BwJElljKQriscXx1MzeSgOsN29R4giE6aQS4+Zq1WQrQNN50c\nqJ6o5gkI8H/ws1YqvoiiQ2wgaduP0Bw5K+LOYKJAEJLKpMHNpq9KXZYA4WBVHj8W6efpccX6XKc/\nV5dQOKU+7Qsp0kxgfvvarKJ8v0YjbH9930o+GFfa6n9WBlA0leIOQtnDgA23r2tnr5ezvTpg0yol\nrxXTBOMnVIKJIFu1hxyOhbUCQE1wxsmenXSslNd4kSvfo4YjSywqtCIV33nuyOX46sBoXDE9YNb5\nXUJ7t/uOTyp14cUh/CidWIb7LLmZWQgHl5jJpDIAxET+akKpwzaVJi0XhOCtHn0i3DpdI6OP6/s0\ncQyDsPFOZ7LicJndRabkUpCJ7d+wT768QiY53Wxo8yKMmaW7NCprrVcv2HTJ6RjJhxONSl5LmN9k\nUTtzDsiiiVyg+TkIzauxCcYs7CnE3SLq0wxKa/vX1axejFJyb3VQiQADSimYWEiyc/ivFcLOsnnd\nt8mUTz6xbBQpBsaPN+otxicqqjPrIx0WHFliIYuTSmVQ7k6/PrHWry1P7GOWgz422EYl8e1xnH8l\n3CeMVouRSlNOjH/sWKLdUoQEorNLPzqtwafSmOldUPq4uksjVlYHk3uwOpgil1gGfBh2XfRNfky5\nAuqOWeqYWW3HlsMtsiUKWYLxkwBk5OTSoch2WMpN3sRyDpuY52DLHrtO1Rf/c6r3KQZfoSHUsppS\nb264tjM13FokUfrP0KzVi0+Ei3BwR0PjvUlLbOXjCrh1bOLrYGQc9Mu5WnNX/Fwugmw4Fi5cBlBY\nt5JHdiLjQp8H3aM7TO4WR/aKZZnWkopPKP6S3G0vI5UilQ1rJUcimJUI6RAjlXCQ8Fcv7tgxNJlE\n/BDTulXLLHJpOkcbs1ZIKqUD/3QxRS5t/AGDrlE/Pr40LO+xqbuurHVHrBYjcilgPESHxtYu4yG5\nFKV0yHKeUeTGz7JduWDxstNQXbXEBvwwjyM0q0VDXCu6bzX+uwjC6+5/PxYM0soEG/iWwvbOQzQx\nn2bYTv+4PrlMkeXKkCKfrFa6GaX5y2Ep11ISpjcSljGZ+o5cvuEmIEuT0g6LQPKxHAH4agVNpOL/\nHw4yut0x/X7GyuqgksHrEMtSNgeeVi0Oo8BiZq2YCco/V5PMSiy6rTyO7Ydrv5PfHw6KciXnt2s4\nyKZMYjFyiSGWg1EHV+K42x1zfHXAUsdev9VBhVzqBtOoScYzg52wA48xg5lBJpMchn0YWV2pYZ8s\nN/XYi2zaAQyT+xwWcqttQ821iK06mxS1YzlSYZti56n7rk/OsQlRv5fH2zgDbVYzdZO68nfgklr7\n1evhk4v7zpI1U3aXRmz2Jxn3y7lZlfi5Lkv5GHeL1rojNvp5KQMDSpHDZrfPpjV5z6PYkGBwhIll\nd/4HmAzK5fu63AJfT8lz9IfnbTJRQfsIqnn74yKkHKksnx4wKjK2MeQyK9Q3du7dhkGHqKy+MujZ\nbf51nzKDBQ5wP2z5xFqf4yvDkiS6WaSY1Gg4qSJp4X8nlG+PkYp7D9U8lLZoIue96IE1YSpiMQg+\nmOueRqLkwoAMHxVTa5AMHDr4fThycZ+738q2nXws50o/F3ZGylpRJZcY/Iiy5dzss9GdEEzCfDiy\nxJJ5D1mvZ7Ky3UPuHnD/x+VmabHwX9+cELO7x7J3w0Gi7eBTF/IbBg24kFj33dC8NVwalcW2HKmU\nemO2Trx/ffxz+ecP0YbcmkxYmxtdTqz12d7qmD6tDujZc29vdcrVir9SMieOmJAskR9f6ZeDmiGV\nyADT6UZLE/dGWVnzfrMvZc7DcEtYblMDJ0DoGG9jxpqHUJoiD5t0wCrh4kFp4qmVdF2EnVtpzVCa\nDs2/JYH1s7jSRI3kj3Pqb58wz8TxlUFZQGx7Zciz1/tsFsLGwBQD62amdktvJKWPxdVzcVgrJivU\nZetfO9FdkBr1AhMkz3UcaWIJTTv+a59cHByphA71mOorUNEdimG3K6Y4iRnH46zMe5+QQlI5tmVn\nZqdhhwKoZubvVcqkDuHgurnRNdfGmb8w177OBDYV9htE3flO+xjGOjKk4pUmHo0GZa0Ppxfmrvn2\nVjEV2gz1AqCxSMG6UPTQT+Zyq2JoMsHOMlf5pBwmqYZ1iHYl/rnHMgYx1IVkF5um9PLGYInjqwP6\ndqK4vdXhSUswOyNhrXDZ+lUy8dHJlNXMrHAMwWgliz+hHY40sTjdqHIZbaNATqxNajg4gomRCkwP\n8nV1XRaF4TDzyvma9vvx9hXpec/ZGw485azbI5V8MC7JZdTLGHQ7bG8VtVFNuyXG2LFqB0Jrhmjy\nq1QbNS3Js7JqlG272SSLPhYtJLYeS7XQlylNvDOaqB8MBxnLg3rp/brVSqtQdKr+t5VIbfq63KIm\nKZ0wsGKKVALF4rIfNcebWoV7ZF4e0y/JHPSrzvwbWgS6S6OpfB+/jX576MF2v1N5BjY3jKLx5nqf\n804My1otJlN/8hx0Mg2c+hkrxfSKZi/IxtDttSvZcNBxhIkFjns/2s2NbsVe2+vlrKwOKg96+MN2\n4a6tSGUOLamYs9wnsGJzWLHrd2oSuabkQIJBws26Oza5rdsb0qdTvh/YxLTYoB9LzKsz2dTVqonV\nVqmTL5llhvPDrcM8Gf8/1IegxuAqSDoz2PaWIfVjW4aQB92cYZHNNIH5mBmKHgy+MfNQKAgarpan\ndzCDcvT6tiSPthUXfeIMEzRnJemW+wTHc7k+DrHVi5+kOSoyBgjbS8bcayYEPfrrfXaWpZSCAVc8\nrOrULzJznNXC1HxJmA9HllgKgQuOmToNPvwBaOt0wcrqIEooMXNU3aAyODH/ZfbJJXq8zWGpa1RK\nloQDXEhmwQzStXd5a8COrTo56OaTCpQtMrYdjq8MKhL7bTE1yHpZ1mWz62a3EVOO2x4Nse1OlI19\nZJKbcOPepnk/Pr+Sx9LNlBNd2O6axM3t0wXPrBSV6w019z/Qo5sXYS5Vvz/x+/lyPC5pNyzWVhn8\na3Jgwhya6UZM/Fex4Igm+KtHn1RCS0Ar1IQ4NykW5IMxo17GU5ikR6c1NjgG5y2rt2IR6rqzOo/6\nRQNENYUbH3Z0MvNgAWx0jHM3luHtzB9QdZyHpAIYJ+OMZKrhIKs4bpvMSTPJJfix1xJKCO/zUL7C\nkUqbQaMc1CypzCU/42EetWffR9Rmv74XlNEf29oqxYRcMslNHsuwDz2bpTLsU+TLrHWfZrUweSzL\nuR28tzqlWCHUVBqt8y2E21sSTV2Ir7+i7XTGFUUIhzZJqxUFgDrUkMss1JFKxd80D7lEED6rodUg\nH4zZ2coZLhk/Xbc7ZqPTr5Q8Hlqzp1upOCzlY1bOUDTeXiAi1wH/AyN9/3ZVvTn4XOzn1wPbwE+p\n6n32s/8M/CwmJvt/qupb7fbbgG+1h1gHnlLVfyEi12Ak9btAH/hFVf1wU/uOLrEIZcatecDMbLbb\nHZclTGHWKmVayLIOlSAAbzCY2c4Gcilnmo7MWlQdjM1W3eBTIZWa8NDKsWpmoWE4dgwuBwcm5pK2\nzt62pOIrCVSu/7gqm59JDv1N2HnGfmGbYuUERbbMUm4SKh/NTYKkk5vZ2DKOfp9UQokWh3AgrsjL\nN+m7effKPQf+qsV/Ltz1dM7r8hpEklbrEiZnTQzallT2zxNOOnxSmWrHAgjGL3Pto+iNpkiX9T5+\nyeMVa/Zy5rDVYsRKZzwdlr5b6GLELUUkB94GXIOpWf9xEblDVT/jfe17MIUSL8fUtP894NtF5EUY\nUrkaQxL/W0Ter6qnVPVV3jn+G/C0ffsY8P2q+lW7/13AJU1tPLLEIqKseqVLzf+hrdVBZfVSF/kV\nDip7UbJtynYOZ6y1hGRF9fxjuv0dphIsAzmWtvVc3LHqZqHlOfrVkO2YYnTbpLtZ5QJi53eChcdX\nzL3dyZQT3ue5FOTSQftbsL0DgPa3KFbPJ5OcIhtVRA27XXufvRo4TZOK0O/m1/cIo6/aIiQXqEZ5\n+SviJp22cFubBEs3Cag1mxFfpbh21/nAfNJs7nzzBCRGLk7WBxtG3+mMy5VnNxtayR61YcjmOI5U\n1rqjiY7cuYOrgVOq+gUAEXk3cAOmQKLDDcC7bDXdu0Vk3ZYb/mfAPaq6bff9f8APAb/hdrSrnR8D\nXgagqp/0jvsAcExEllS1V9fAI0sspz79pcd+6Pk/8eWzdLrzMax/mHAY+wSpXwcJZ7NP37zXAzzx\n1Bfv+uPbf+L8ll9fFpF7vfe3quqt9vUlwD94nz2EWZX4iH3nEuDvgDeLyHnAMxhT2b3Bvv8G+Lqq\nfj7Srh8G7msiFTjCxKKqF5ytc4nIvap61dk639nAYewTpH4dJBy0PqnqdedAGz4rIm8BPghsAZ8C\nwuXpjwN/Fu4rIlcCbwGunXWeM5PxlpCQkJBwpvAw8Fzv/aV2W6vvqOofqOqLVfW7gCeB/+++JCId\njGnsNv9gInIpcDvwalV9cFYDE7EkJCQkHCx8HLhcRC4TkS5wI3BH8J07gFeLwUuAp1X1EQARudD+\n/ycYEvlTb79XAH+vqg+5DSKyDnwAuElVP9KmgUfWFHaWcevsrxw4HMY+QerXQcJh7NNMqOpQRN6A\nic7KgXeo6gMi8lr7+S3AX2L8J6cw4cY/7R3iz62PZQC8XlWf8j67kWkz2BuAFwBvEpE32W3Xquqj\ndW0UEzSQkJCQkJCwGCRTWEJCQkLCQpGIJSEhISFhoUjEsiCIyC+IiIrI+d62XxGRUyLyORF5pbf9\nxSLyafvZb9uEJERkSURus9vvEZHnnf2elG38TRH5exH5WxG53Trw3GcHtl91EJHrbH9OichN+92e\nWRCR54rI/xGRz4jIA1amAxE5KSJ/JSKft/+f7e0z133bL4hILiKfFJH32/cHvk9HDqqa/vb4hwnr\nuwv4MnC+3XYFcD+wBFwGPAjk9rOPAS/BpPvfCXyP3f464Bb7+kbgtn3s07VAx75+C/CWw9Cvmr7m\nth/Px+gh3Q9csd/tmtHmi4F/ZV+fwISMXoHJoL7Jbr9pL/dtH/v2XzCRSu+37w98n47aX1qxLAa/\nBfwSFfEwbgDerao9Vf0iJjrjaiursKaqd6v5BbwL+AFvn3fa1+8FXr5fMy1V/aCquuIRd2Pi4OGA\n96sGpUSGqvYBJ5FxzkJVH1ErKqiqm8BnMZnV/rV+J9V7MO99O+uw+RLfC7zd23yg+3QUkYhljxCR\nG4CHVfX+4KM6SYVL7Otwe2UfO6g/DZx3Bpo9L/4DZtYHh6tfDnV9OhCwpsV/CdwDXKQ2XwH4GnCR\nfb2b+7YfeCtmkuaLnB30Ph05pDyWFhCRDwHPiXz0RuBXaSFxcC6iqV+q+j77nTdipJ//5Gy2LaEd\nRGQV+HPg51V1w18IqqqKyIHJJxCR7wMeVdVPiMhLY985aH06qkjE0gKq+orYdhH5Noxt9377g74U\nuE9ErqZeUuFhJmYlfzvePg9ZaYVnAY8vridV1PXLQUR+Cvg+4OXWpOC30eGc69cu0EYi45yDiBQY\nUvkTVf0Lu/nrInKxqj5iTUIuiW039+1s4zuAfysi1wPLwJqI/DEHu09HE/vt5DlMf8CXmDjvr6Tq\nWPwC9Y7F6+3211N1cr9nH/tyHUaG+4Jg+4HuV01fO7YflzFx3l+53+2a0WbB+A7eGmz/TaqO7t/Y\n7X3b5/69lInz/lD06Sj97XsDDtOfTyz2/RsxkSqfw4tKAa7CyFc/CPwuEwWEZeB/YZyQHwOev499\nOYWxX3/K/t1yGPrV0N/rMZFVD2JMgfvephnt/U5MsMjfevfoeozv6q+BzwMfAk7u9r7tc/98YjkU\nfTpKf0nSJSEhISFhoUhRYQkJCQkJC0UiloSEhISEhSIRS0JCQkLCQpGIJSEhISFhoUjEkpCQkJCw\nUCRiSTiUEJGfE5HPisjCFQNE5EetovBYRK5a9PETEg46UuZ9wmHF64BXqFe7G0BEOjoR19wt/g5T\nK/z393ichIRDiUQsCYcOInILRgL/ThF5B0ZC5lvstq+IyL8HbsYk4S0Bb1PV37eKy78DXINJDu1j\n6om/1z++qn7WnufsdCgh4YAhEUvCoYOqvlZErgO+W1UfE5Ffw9Tu+E5VfUZEXgM8rar/WkSWgI+I\nyAcxCsHfar97EUbS5h3704uEhIOLRCwJRwV3qOoz9vW1wD8XkR+x758FXA58F/BnqjoCvioiH96H\ndiYkHHgkYkk4KtjyXgvwn1T1Lv8LVlU3ISFhj0hRYQlHEXcB/9HKziMiLxSRFeBvgFfZmusXA9+9\nn41MSDioSCuWhKOItwPPw9TOEeAbmNK1twMvw/hWvgJ8NLaziPwgxsl/AfABEfmUqr7yLLQ7IeFA\nIKkbJyTUQET+ECPd/t5Z301ISJggmcISEhISEhaKtGJJSEhISFgo0oolISEhIWGhSMSSkJCQkLBQ\nJGJJSEhISFgoErEkJCQkJCwUiVgSEhISEhaKfwTznfSwP1j3gQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_mag().show()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmwbVle1/n57bX23me8w5tuvcx6VVlVUIqiHTRQ0I0d\nSBgMYmGhHa207YDh0Ah0a0iLYA9BKxVRDdHShKhQrTTQiEjYqNVSBLYoTm1JFYgKFLRFmVlZmVlv\nvMO5Z9jj6j/WsNc+59w3VL7Kl/DO98WLe+85++xh7X3Wd/2m70+MMeywww477LDDa4nkSZ/ADjvs\nsMMOTx925LPDDjvssMNrjh357LDDDjvs8JpjRz477LDDDju85tiRzw477LDDDq85duSzww477LDD\na44d+ezwKYOIfLeI/I9P+jxejxCR3yoiH3/S57HDDk8KO/LZ4ZOGiDwvIksROReRYxH5MRG54d83\nxnyNMeYvPKFz+2oR+edP4thr59C48TkTkZ8TkXc+yXPaYYfXC3bks8OrxVcYYybAdeAm8Jee8Pk8\nNEREvQaH+ZdufA6Avw78iIgcvgbH3WGH1zV25LPDY4ExZgX8beA3+NdE5PtE5Fvd71dE5O+LyImI\n3BORfyYiiXvveRH5ZhH5RWdB/R8iMoj2805nNZyIyP8rIr85eu+GiPyoiNwWkbsi8l0i8hnAdwP/\nibM6TqLz+asi8n4RmQNfJCI/JSJ/NNpfz2ISESMiXysi/15EZiLyF0Tkbe48zkTkR0Qke4jxaYHv\nBYbA26L9f4OI3BKRV0TkD0ev/w4R+dfuGC+KyLdE7w1E5Afd9Z6IyAdF5Mi9ty8if93t7yUR+dbX\niGR32OGRsCOfHR4LRGQE/F7gAxds8g3Ax4GrwBHw54BY2+m/Ar4UOzG/Hfgf3H4/Cztp/9fAZeB7\ngPeJSO4m1b8PvAA8BzwL/LAx5sPA1+CsDmPMQXSc3we8G5gCD+uW+1Lgs4HPB74ReC/w+4EbwGcC\n/+WDdiAiGvijwDnw793LbwD23Xn/EeAvR1bRHPiDWIvpdwB/QkS+0r33h9znbrgx+Rpg6d77PqAG\nPg34LOBL3HF32OF1hR357PBq8XedZXEKfDHw7RdsV2Fdc282xlTGmH9m+sKC32WMedEYcw9LDn5C\n/+PA9xhj/pUxpjHGfD9QYIngHcAzwJ8xxsyNMStjzIMI5e8ZY/6FMaZ11trD4NuMMWfGmF8Afh74\nB8aYjxpjToEfx07yF+Hz3fh8wl3T73Kf82Py5914vB9LTL8OwBjzU8aYf+fO898CfxP4wuhzl4FP\nc2PyM8aYM2f9fDnwp9x43AK+A/iqh7zOHXZ4zbAjnx1eLb7SWRYD4OuBfyIib9iy3bcDHwH+gYh8\nVES+ae39F6PfX8CSCsCbgW9w7qUTN5HfcO/fAF4wxtSPcL4vPniTDdyMfl9u+Xtyn89+wBhzYIy5\nYoz5fGPMP4zeu7t27gu/LxH5PBH5x86deIq1bq647f5P4CeAHxaRl0Xk20QkxY5VCrwSjdX3ANce\n/ZJ32OFTix357PBY4FbgPwo0wG/Z8v7MGPMNxpi3Ar8T+NMi8tuiTW5Ev78JeNn9/iLwbjeB+/8j\nY8zfdO+9ybm0Ng550amu/T0HRtHf24jzSeCHgPcBN4wx+9gYlgA4S+l/Nsb8BuA/Bd6JddG9iLUK\nr0RjtWeM+Y1P5hJ22OFi7Mhnh8cCsXgXcAh8eMv77xSRTxMRwbroGqCNNvk6EXmjiFwC/nvgb7nX\n/3fga5wlICIydsH4KfDTwCvAe9zrAxH5Ave5m8AbHyIZ4OeA3y0iIxH5NGzs5fWAKXDPGLMSkXdg\nY1UAiMgXichvcjGvM6wbrjXGvAL8A+B/FZE9EUlccsQXbj3CDjs8QezIZ4dXi/9bRM6xk+C7gT/k\nYiPr+HTgH2LjGv8S+CvGmH8cvf9D2Inzo8CvAN8KYIz5EPDHgO8CjrGuu6927zXAV2CD6x/DJjT8\nXre/fwT8AvAJEblzn/P/DqDEktX3A3/j4S/9U4qvBf68iMyA/wn4kei9N2AzC8+wRP9PsK44sBZQ\nBvwidrz+NjbWtsMOryvIrpncDk8aIvI88EfX4iE77LDDr2HsLJ8ddthhhx1ec+zIZ4cddthhh9cc\nO7fbDjvssMMOrzl2ls8OO+ywww6vObbVRzwVuHJl3zz33BvAuGzfYAEa+7tp6ZWEeHksSSBRGLrt\nrfVo3L+W1hiaVmiN0Bi7l9aI33u3S0CJQcSuAhIxqMSQiCAkCAIIiQGaEsoK6hqzrO05ikCaIEpA\nKUgSyFLQOUagbCoWdULZghJIE0Mi7pgPGB9/7o0RlBhyZdBJgpIU2hraxo6FG4/WNLS02OzphMSd\nu82sBmNaWgzGtNSt3b+480gE93v/rEw0WsYIrRtL4z6bKVCSIm0LtRsfsOOilRuTFBJl72d8j7dC\noK2gaaCq7ViXTZcQnrh9J/Y8RbvxTlNQGa09O0SUPafW3q9wr5LE/hdlx82Poz9W3ULTQmMwrX0O\nTQOmFdrW/mxqaBtD09pd5gNBZy3JUCGDFPIM0gGNtBRNy6JOWLhTUIl9Duyz0D17SgzK3QMlikQU\nYgc6utcCibbPvoi7n/Z+t8ZQt0LdSnheJHrOErHHTlDR2NTQ1FBWmLLGrGraEppGwNhDNo09h9bd\nrjQVEg1KGxJtEK2QXNl7nWrQ2p2jjp4f//1cu9Pink//XW9raFv7v2m731t7L372+Xt3jDFXH/C1\nuS9+k1w251QPte3zzH7CGPNlr+Z4r3c8teTz3HNv4EM//VfsH01pf9Yl1CWmKezvYB9KgKyrQxSV\nw2BLUbvKMCIsmzOqdkXZLlnWFWdlX9exbIUsMeSqZZqCSjRKUtIkR0nq/tvXxBjMvRfg9stwvsAc\nn1L/0k3MqiHZz0kOcuRwApMRcrgPl68hhzcwOue8vssLszNemqfsZS3TtGEva8jc5DmroGgebPzu\nZQ2H+SFTdQlz9gosTuz46Mz+z0ZIPsUMpjSmsuddF2E8ARhMMDqnbJeU7YJVcx6uM00G4Xc7Pksa\nU9GahsYJADSmYllXFI1QNAm5ark2nLKXXoO7z8PtlzEvvuLuVQpZioxHcLgPo4MtV+WguzIgUTlm\neWzP+fZtzM07tK+cYlb2HGSgkYFCcg2jgR3zN15HDm9Qj/dYNmf2MZCUUTKF+T3M7CYs55agBpMw\nVugMVuf2eHdvYY5P4dY9TFHTnhSYosasGtrTArOqKc+hXCTMTzTFXHF+Zshz4eitBXufnpJ9zrPI\nW94IV5+hufQsd1Yf40O3B/zyacJ/mNn7fZjBQW54bgLPjKve85CpIWmSM9GXkdUsjIkpZvZ+6wwZ\nHsL4EjW1e8YLGmMn06atmVVwZ5UyTZveEPvnPFNDBmrSjc3yGF55CfPSTeqP3KF+4YzViVCXQl0l\nNKWwmiuaSlCpYXxYM9qvGTybo47G9tk/OkSOrtjnfnhox9h9DxtT0Zg6nGMMJSlZMrTPqb8Pq3OY\nLywhup8sVpjZEv1VP/DCA78oD8A5Fd+i3vFQ235185NXHrzVr248teQDYMStfFRmCchNRIJbG/uJ\nM+kPk2kKmG8hqLqEbMRofBnyqxRmxUAt2M/6X0aARFT4AniSoSmhKoEa6kW38elt+4Wo7Jco2R9g\n8tpOhtNhN9FmaSBJMYaJvsyNScNedhYmGCW6O7Y6p2yW3FldTEBXBi3jdI14Tk86KyNLYTzC6BPI\nRiidQbnAeOKpKrvteASjA/J8Sj6YMMkv967ZFMeB0Ebjyxi9R2MqytbqZVbtCpWmDLUloSwR0mSA\n1AWmXMD5AhZOqq1u7KRxvoD5Ajlc2PMESwIeOrP3LqyUI1y9alftYPebpXaF7cd6MoL9A+TwBkWm\nKR3xgCXKRTtjNL5kn6VsZidvTzrR8WV4iLkMkqUYQMoKdVjZayirQD7qtGCwqpmcFoGIdGYY/7oR\n6WceWeK5/hzsP8Nx8QK/dJJxc5mwaizxDFWfeN4yrVCJJkvGpMmALBmi0RARDzhCzkb2vAcTO6m3\nm2pGKtEc5JCrkqLpW7C5MoAlA7/oyP3YXLfXrrUl9eTm3N6LosGsKqCiLVqSPEEdjVFHl0iuTmA0\nsPfh6ArsXUPGl+33GDaIx5OPkpQL4b/jfuGSpXaxBw/0EuzwyeGpJR/v0tkgIAdRuSOg6EN1aSer\neEVfVfYhnVuykDTFXLoN00Py4SH5YIJJc3sMj6aMrKzz/mTtEU9SZbRyy1KS/dw6t/bz7ks4GcFw\nbCe4CHvptQ2iA0tOWTJkmZyhknNOijpYQX6lOtRT0mTAyOQ94jHHp3ayd19Ujk+RNLXnAHY8POl4\nQhgNkPEdjJu0yUYYP5bLud3WXac5vAWjA/T4MjqfUlOjJKUxVSAhgCwZwvwMlnPMfEF7WthrG3Q3\nTTwJ+UklTTsicsQZLDj/MZ3Z8zrcR8oKMxl1n3PjTDZC9q+zkIKmjRYK/hbHBBRbyW6C7C12hofd\nJOfHwS02kgP7u6obzGyJWTXo0xWDk4LkIEf/+iPkbW+Cy8/S7F3luHiBj5wKL801qwac0cZBDm8Y\nWuJ5dlwyTg/JklG3+p+fWSvHkXEgSp0huN9VFiZza5X2LQolKRO3QGjamrI1gYjK1pBRQwKrZgaK\njoAuOxc0oI7G9hko+gQnuYaDafesj0cwmCDTI8gtKfpxx7BBPA8Fndnvs382JiO3eLgPaT0CJLFu\n0ofC/LEc8nWNp5Z8gOAi6hGQhycCPxGVi450YsLxE2xZ2S9MrsNq2xyew+jAuqTWXXl+X34fkWWz\nMUHCFgJig3jIRj0CEwCVMVWX7GRXrKDuVuhaZ0wGl53L65zzasFQp2TJmIGa2olpNcPMHfEcn1ri\nOXGr48giMFnaXcvaqh0gOchhurJjc76w5+yvO/4cdONXLgIJKT2kMdYVWbrJXqPthOn3444Vu8nM\nqoHTIrjLzGjQEVHpx7iCNHIjhgHK4OgKMnfkNRx393MwZdGc3Xdy8wRkLc60vwCJnzEcASW692wI\ndJZjWVkirCoS/8yNBsiN68i1t1KP9zguX+Yjp8LL85SVG8qBhusanpsY3rpniWc/22Oo9oKlY+Z3\n7fPtFwHjkR37yKUaj4uSlEYqBmoS/o7dpvHEH7vm/MKnMfWFBMT5ont240k/Jn1/Po50YsKJxz6c\na3SP/Dko0fZ+eDe7R5puElD5CAS2w0PjKSYfOxHED+k6AQn0H0yPT/Zh9ESWaDvydWkf8Gh/EruF\nvGVRVnayBExZWfePVvYL6d8/PYFxaa0J6NwIftKIrap4m2LGSOWMxtcZ6xVKtJ2U5vcwzbGdhGbH\ncM8Rz+IBXQiyNJCIDFQggq2YjOB8gTDCsAifl7Fb2fqJxt0TP7lkibOwCms19ojrQefm0CP4NO2I\nJ7hfovHzsZrxZYzOg3vOT7oPWl2X7RIltSVz72pcnW9s563W8MxtWayIJyN/PZefxUwu99x+lwc1\nk9SusKvWxsjesldwYyJAGsbRiEvx8O7HdIvl7a1y97dWOVpn5GTd8+wteHfOSmddXDS91IuDdjG8\n2i4ikj4BsV/2j59oa335/amMmtrux6wuzB2JXWwxMYZ45MpZejHihYdHmtrFyQ6PHU8t+Rhjeisl\n6B5YWSegeOL2q6KYgLQK2wbCyKIJTWfBbxy+KzUuaeG8m4Rja8dnUenMTQp+RdhN1D2iKisoT2Gy\n9kWJt9kGnWF0BsWM3FloplzYydFbeLG1cx/IeNS7RgFk4Igo1yFm0oNz1Ym3hLLUuuVGB2Gyb0y1\nEWfIkiGmeLmf5XbReQ2UjY3FMRvvQouIJwSstyAmHQCpC3ISl0TRvb5tlW1/d181RzymmHWT6vr5\nute642VhEmZAZzW7OJKhC6BfGcx6SSQ+ueVo1L3mY2lZAjqfdDFOAF1uTsLlwv5nba6PXc9lnxRN\n/PzqjNHwEDO5xll1y51DTWuaTQJyxBvGxX+HAuk8bAsmizhxx479XWctO09GnIySaLvoiJKLgG6x\n9iqRiJDlD1ndsnO7/VqGoWwXvQmiMXX3sMYuuCaDMnoA1yc7v9p3Lqiwqo6DzG6V2COhdQKKV7Rp\n2nfZaRfoxxFQVfUncu+2m/fjDxuW1DoiwjPpyWa2Txy32fbZeEI/ugJV1ZvMkn3nv/eEehH8+9PD\nkFUVB45jKNE20cC5QE1sDfjrHmj38wHEM5h0MQ6XyQV9F44STZyvKHWBOX0l3N88n4TPbUN4pnxm\nlZ/82hqTlP04ne4vfDzseDpLI9OdlRZtn4jiINeBqFVIlNmMM1gCApLhJgHFiDLAgC4uFxOOtzqd\n61ly3Xs2yFKbdXj1GfZdnIy2e6Z6BOTjri5jzZ/rqyKd1axzry1OrHvxnuvnd6mC/SiD2n9noe8t\n2OGx46klH4OhNRe7amICkjrHJCVW/HgN3u2lVUdAnjxclpDR+Ya/v8uooyMg6FaLUWzBugNza6Hc\ntStHccfdOgl4lJU9hp/0nYXWI4J5f/uLYjbxZB6uIU5pvuRSmt3EF09m4ici1txdMbw/f3wZ3GTe\ntPVGvCC4rlb37LHiRAU/8fnj3o94huN+TCOfUJgVZbsIz4WPXShJ2UuvBgIxp6+E9GNTLqCYod0+\ntqVGbSWe5TzEmQxst4JiIvIuLm8VNYXdPlokeesnUSqKbViXUxyHaU0TXWMKsmYBeatgOe9im+eL\n8Fz4dHA/5mbVYFY1pvBWruqlpctAk+zfQ84XmGcXjKZH1OND5vVxOHdPQJkeBrJpWpfG7Z6B4G69\nD3qk48e8Kew1zY43Lfn5wsZ0Ll/rFiG5s343jdJXBUkgz3e5cx5PLfkIQiLdRHpRLYAoZ7VsCf30\nsO4y2+Y/juFccT0Cci4P7/6pVcKyvmvrRmK/uPsS9eAmhq0oq4utjm2f8ckTEcyqDgH8HgF54pke\nWuKoy57bzXir6SLLJw4iu1qgOMUaopoMY6JC0Qhr+w0Tnycen63mY2SeeBJtJ3Dt6kLaqkc8MaxV\nvHb+9RYX1YPg4zeeNMfdWwZHMtuwlgwhdbb12PEzfb/UYn99Zbuwk7ojIHwcxBOPm6jj+qNwvi6r\nYT2u50mo99pAWavYWSAaHc61732oWDZnocbLu1xVoqnaolcLd180Zd/a8eUBFzzv1CUyPcQMpr1n\nb4dPHZ5e8pHtvteqXdFIt9pWkpINpnYijSeA84V9rbr4YaZcgMoR76dfh87sZKPclyT49V1BpvsS\nAtTU6MEEmgKGaxltUXouF50TkQsunqyjyc9Wm592yQ2riy3DEMMBa63FtVBucvVWmSlqZDTo78DV\n/cTursbUNFHgHOjqT9ZJZzBBdIZJtLWs0hTtr8tltPWuN06r9ueYaWtBrEAGtgjSI57a4hR1o3Mb\niwrj0JHm0mW/rU+OWyfK4GJ1P32qt+rubZzsEtKdPXRGrRIas6JsFhtWfGsaKjpXVTyRl04yYJKO\n+gSwclbZ6jwQj7l53Ct6hT7ZWKLvTyPrVo8MFHI4sQuVyMKLxym2WLJkRNkuegsAW9tl/26loZFq\nY1y3Lg7KxUZdmmT73f073IerV63VPpg8enr2Dp80nl7yIQkPuUfV2i+7f+grihAozgZTRxQu8Jza\n+hZ87GV9RVVVoC2pSP0QVpAjIe+m81X+cXaQ0kPriisXMIw+H/8ep+hCP47kcVESQlWFJAPKamu2\nWrB64sSK6DoCyZYd8ZhVY10bfvvJyBYG7l0PQeSyXVC1RUjfBTuZ6KaF+jwEnbs37d/iEybStJ+w\nsX7Nw5hlHdoaamdxrEAPJii9112rD1I3LSb6phi3GInv1aq6xWl5RtEI14bToJros+E0dOn2W2Io\n1urdkukWrrdvZdUqCRbCg7CsZ8zcYYomofQZcNOlc8lVwNC6BF2Mx1s8zc05zc3NOqYwRgO98Xvf\n3ZZ393wy6l1DlgzDGIXYDJDnE0oW4dzK1nBWKvayBlgGRZBWmh55WuKPUqiLGcyOMb4OLc52PNy3\nvzgFDMmn1ur+FFo9Ijx8wsFTgKeWfGib8PB7AtqWVeXRmIpMDdGDyDd+6FxLPsi/za1Ul73VbA/r\nbhOXSuolaKq2oGyWZGrokiM02sUpepaGL1ZU+fY03XUkF9z2tra1JGDdeM7FshFL8b+vZ/Wto6xC\nbACieM/+VWTvOot2FtJvy2YZVuSegHIZ2BqjKLMrJiEjgqjMVbe7mNi2cX3YwLEnbp8+7IsugVhC\nCAhSQmVzxrw+5uai5fmZfZ5m1YIbk2VUB7M23j6hI0u7mief5uxrfdbO3UAoVjU6Z1nfpWqLzX3H\nh3HyTndWOkg8FY2E9Otp2vDMuCbFEq0pFz3iqT92SnNzQXHHno9O297+kzzpip39a/v5drfneNS3\nkJsS5WOhcUKAuwfDfC/EhM5KRdkKZ6UiVy25slaQJ6F4DBqTokV3skD3nNswPg+PSWR9553V463X\nHT61eHrJB4PUBUrZB3jVnPdcEn2JkBmNsm6LodpD+/gLdATEYtP6cZNmz32yJbXWT6hddlfVW9E2\npiL10U/l3BYXpKL20kofNVunLjH7pSUgV9QYB7uCrtmWrL4NRAkQpqi7ZIz9A6sM0M7C5OLH/axU\nDLUdw1EytZp2PkbS1k4FYNrLhDIioHNknHXxknrNdeWLb/2+ouu19VZ0CgN+ElwvKh6WISYTa9Qd\nF8e8NM/46NmAXzqx5/TrDxKKpuIt0xPG6QFK9qCebZwbZWUn5LKy7jdfb7O+nY8t1SVmMOW8vsuq\nOQ8yQ/EknIhyKcxLToqaWaW5vdRU7brkTUuuWtIktwoWd36lpzEXE4+X8ilrRaLt90OnLW3RogZd\nPDBoDfpnJHZ/Zqkdx8WJrUVzCRPBGowI1xQztM4YqC7+YtPHrWhtrpqNaw4u8mSIOX3Z3r9qLSEn\nSyGtOoUETzwh5tcluDyUJM8jIpFdwkGMp5d82v7kDoQJ0P7ePSRFY9jLFmFizJKRTQt1MQdwE1da\n9bOpsr6Pe2OS9n9HxFO2SyqXhqpEM9RTElFdRfr8Xrciz0bOXecmY9OpNoRU8UdY9ZtiZgPN0HOp\nBd/9thTa2IUXq0JMRjBfkBzkmJUT4jzcR6ZH1CphVXVFlirRDBOYpCljfUhe1pj5mo6jTw5wuHBy\nWCceh14B55qMkU86CH/Xzr0aT4wuE69WCWVzxqqxihAfPcv5lTPN87PNScVqp42sSoQP5I8ObOA9\ndkPGEj+hODjakbd28wllu7TB+DWLVolmoKYhs83qta04yJdcGawoGnEaawSdv8PsbXD3ecztX+6y\n2iKLpzktaeu+KG4MfW0YyKZHOnE9l1vIUFVdDG5irT7jEz/WUdtaqHx8ibE+5Gh0zF5dOvWNUdCi\n26aJaObPd0Q2PQwLqZ7QrC8ajgpX1xUR4mzBHT41eHrJxzgZfmUD4Y2x6tOzavPLVjSWjKZpzTQ9\noVIFjZowHOz1ExHW1Yv9pHa/jChHHD7GU7X9eoZEFFkyssRTnPcL5OhW7JJ3UiePavmYYtYFZ+OM\nIK0cebgMt3XiuSiDLtHWwvGyMHVjfewuqFu2S8pmGdWhWP//XnoNOb/brzz3ahAeLg172ZwxVHvE\n2KhY34Ke1Qj9+6OinzldzQnW1VW0S1b1Kct6xp1Vwp3VJvEc5Ib9rOXKoCJLptZ1WLzSP97+1Y60\nXZ1ReK8bkf55O4279bonS3BDBsoei6ZEqwEmGdrXzZSBsm5hbxmERczHP9gpVzjtuPakCMRTV9vj\nEzpt0deG6DfvdzGdOI1/HYuVFXoFu513OaanQaC1fwCXSl6cM8qnoGGgqp4WnTm7bdUXoHvOIwX1\ngMvXQkLK1u9lrJjgx3QtTX1HQJ8aPMXkY4OSyvnwrSR8uqHIC1aVt2gS979hL+sCsFk+RPtajdjS\n8V8AdR/igYcinlwGfeLxGlweKgcd+dBjrBNQPMGtu5jW90sX34nrZXo1M2v76x3n6tVOF+tw306g\nKqGqV5StYejmtrE+tG6205f7ahLr5+1UlctmGdSRs8RNFsX5fcnWsObydCve8L5scYd4dQVTUzpX\n10lRc2eVclYmfHyuNiyegwwuDxqmKQzU1Aqylot+Qair4+qlTm9zx8bXnk9s7UuUiWUtgYh45vdC\n/Y8AWmdWCsdr+y3PMctbmNkx5uYdGwtxhONTqJubi16SSV1215dog05b0jdN0W/eQ44O7Rtrxc69\n3xerIPgK/ToxXGsKOV/YdP04KSTESi0BGRGnM/g8xukMbs3uLKsug82Pry9cjggnHOZC4onkeB5X\nt2cRdLpzu3k8veTTtphihowvOR+54axMqFohTezD5t0UfUJSLltoyUFe0SgXB9q7bifAtfgNbD7Y\nMXzswPvpfRJET+a+OO+LP55H8SWd2evApgsHde64N5GDqLyzmLxLyRPP/IKMpiztikTXieeirDmf\nNqyxkwpEqaz2y1400rnZ2sTGHGbHXZGt349rDuYLKst2GUhAiSWgTmB00X1u80K691zcppdSuza/\n+NTkuC/TnZXm9jLnvFJ8YgmfWPQnkoG25DNNG4Z6aq/LV9RD3xU7vrx5irHbMv7pVucxNiwevzhx\nqgn2IqL6tLNbPWHY5ua8VyAKvo1BTVu01FVCW/evb5145ChqOeOfx9QlU7g+OO1J0SOfdaijMcnC\nCc4e7juXNdb6KWY2xsc5zO8G0olrj7aitCobnoDk8Aa1iq24WIB0S3uIuFDVGPu9fp1BRL4M+E6s\nGPhfM8a8Z+19ce9/OVab66uNMT8rIjeAHwCOsE/9e40x3+k+818A3wJ8BvAOY8yHov39ZuB7gD1s\n8O1zjXlE2Yk1PL3k07Q2GyafMh4fUrZLrg7r0KgsCwTUZfjEmlm5Mj2VXi06VEbHq2gv2XMRYrPe\n/wzE07SY0xc2SCeoX5dVmNiMj1VErRnWRVF7mXDbLKhtskHx7zHxBNWE7OLsOYDpoc1gyqdQl+RA\nnl9noGbW2jl7BXN2q0s/zlJbe7QtE7ApyUlQ6VXSxLrddLHCzH4liJ8CVuZnrSYmqANExLMuobOO\nbfUeuTI5zOQRAAAgAElEQVScu5cPcp+d1/1/ZlxxNEoY68PQ7iG0nyhPILOuWTNYXJjZFgiKTnZH\nqwyVeDeQtZRjqzhgmwvvIdyvMfGAJZqaxOnfirV6rg1RR+PQQ2q9xCAoIThrp7k5tz9P7fGTPOmn\nZueK9nRlE1kWK4xf6DDHS2+Y1CpJhFYeJzPa2+fUL9h7rd+837emYugsxBjjRn+P5EYrzjHHLz78\n9vdBkjyeVGsRUcBfBr4Y+DjwQRF5nzHmF6PNfjvw6e7/5wF/1f2sgW9wRDQFfkZE/h/32Z8HfjeW\nZOLjaeAHgT9gjPk3InIZHrIl633wxMnHDeSHgJeMMe8UkUvA3wKeA54Hfo8x5tht+83AHwEa4L81\nxvyEe/2zge/DrpneD/xJs613boy2tWmlg2P0YMJYH/LM6DZlW/cyiDziNOyyNQy17Tzq/dD4OAud\nMOlFhYbejDciwXVkdbYiv3zTWhmX09u9fkG9YlJ8okMa/N+9dOsYcer17Pjiam/orJ20wmQubhOT\njk9XjYP0kavRBuyjjrCZ7k+GxTmjusLMPhwKAMP1zb0czxp5RNBNy5QJ5t5LG6thn1UlR1c6Kyou\nKK2zvm4f24lHiU0WCASkcXEc/1jZfjkD1S1Q0sTYXjn62ka7h416q2zN0ozvxWQE08OgJi11HmrB\ntMpQas/VDuk+8VwUW4wJzi8iBnrDcvAWj0+p1mkLKSQ6IZvYthhhoi+r/mKorCwxnBa0pyvak4L6\n1pLFqaaY56jMMBg3JLpGp7Y5nM+Sa08KVK7t/rbJL5WVLXg9Pqd+4Yzm5pzzWwl1lXBweov07Zds\ny44Y0eLIJ2n4mqCHSaUWZ/GY4xfh9u37bvsE8A7gI8aYjwKIyA8D7wJi8nkX8ANuHvyAiByIyHVj\nzCvAKwDGmJmIfBh4FvhFY8yH3f7Wj/clwL81xvwb97m7j+Minjj5AH8S+DDWnAP4JuAnjTHvEZFv\ncn//WRH5DcBXAb8ReAb4hyLydmNMg2X1Pwb8Kyz5fBnw4/c9atPY4rPxCDO/y3D/GSq9InOWio+3\nhM2jFOgsEiANRW3rAX6VIcZsJZ3475iAGmP3Z1fzN23q68073cS0RbuN1ImJOgukU81eW+22dScS\n6Zq9Xaiz5uGUDsKE4MU4oZed5YnHuza0slJBnoR6qEvbsti3aVjXptMK0lM48pN0P8stZOXFje3c\narg9tV4A/SaXKn64b7Ob/PmyOTnHxNNZslV4z99nO3GdEy/4fAaZ/W+t5f1szzW5uxcSOExc8Luu\npbcNc9dDxjVMM0kZXGiicktCOrPFtxG2Ljy2KmsoSyKn3UtmVQdXW03Sq+nJJrZ+J9nvq1Sst5q2\nyQrW2lmdCKt5xvxYszoX0hyKcUI+bi0JVc6zMLC9ltrTgiRL7T6rLlPO98pqbs6pP3bG8hMN8+OU\nk5uaojA0pXBY3CF7+0FoRBee6UTbTLbmfGtc5yJ4tQdz/CK89DLm9r37bv8pwhUR+VD093uNMe91\nvz8LxObYx7FWTYxt2zyLIx4AEXkO+CzsvHk/vB0wIvITwFXgh40x3/Zwl3Exnij5iMgbgd8BvBv4\n0+7ldwG/1f3+/cBPAX/Wvf7DxpgC+A8i8hHgHSLyPLBnjPmA2+cPAF/JA8jHNMautI5PrVTLasYg\ns26O0NPGE4rOQE17yQEQya7URc/d1bvGbQkHkXJvTEBKUhtUjYjH3Dze/LzfN876ydIurrANkdsu\nFok0ceYaF4h+xplt24jHycvEro0sGZHpYV+VeZ0wIqFK+74TJM21db8cn1qfvTteiHnFFfjnC8zx\nuZ3w3Erbrqgb1FFB4muVLu2Ddn2UVBmSM2LcTw6n/3efgGy9jAnWcpoMOqvHdVjddq33ky5K9m33\nVRsDWdhsMNdh1NSWiKTekr6vs+09qHytUgTJbeq8WTWYoqEtWsqFnQ40BH2hJE9C/Y7/HNAtGBar\nQDjexbY41cxPNOf3FLOzhvm5JbLDy5rJnuqRUHNaWiHSXGNmS0SrQGZm1fSsqLM7GWe3Bty73fCJ\nl1eURUtZ5NTVgMPqjOGqQb/ZrWGd9WxEel1XY+27dVhXpmug6InnpZvUHzu98DOPAnm0Op87xpjP\neSwH3nouMgH+L+BPGWPOHrC5Bn4L8LnY+NFPisjPGGN+8tWcw5O2fP434Bshcm7DkTMNAT6BDYyB\nZe0PRNt5Jq/c7+uvb0BE/jjwxwHedGnUWRKONOIMl56WWF2GDJlOjuTxw8uCxMKTfpK60K8N3UTg\nu3GuY73nTbjuaALcRjrxzy2JAOvEs3INxfyXPVNDawXN721c10XN30xRd6RVl5CNumSCyHLz+wh6\nY07Msi1aEp+tVTfWwrt45B4adqHhn4+CLLHFj+vuWSWpXVzEitvRta4H+bfCKQaEc4/69wDWxerv\ngf/qxC5QttQzPSTqKkFn9nxj4rG1XmvPYN2sCY1a66muEuoycfszlEVLlieURUtVKFRqySeG3Y8j\nVE/ScdZdldC4zDu/T/97XSraWrrt3UJJVE7tYntNa1t4KxN9x9fQS15xi6Tm5pz6hQfNza85XgJu\nRH+/0b32UNuISIolnr9hjPnRhzjex4F/aoy54z7/fuA/Bn51ko+IvBO4ZYz5GRH5rdu2McYYEXlM\neY7gzNb3Anz2mw439rtumstaKq4PUm88uCrrTw5rdSOhTXe8fQRv/WwgSx9MOlphMl+0aPXkNrDe\n70ZH+/QxgFj1eVvG2XqxrAvcL5szVpUtuDwrFVcGLY3UJE4vLGzfOGvJJS2E0XCCo74Rn6RpUMkO\nwfM14olTa720S2xJJAe5fd23GY87lbpsxO5e+tbP2+MA8X1TkjLRl1k2ZxcmkSjRUK+6++P/jwbW\n3TXySgoR+a7VyHRZX86N5C2XnvXiEhfoCmgDBhOEqNZldY7hpo3dlbbRmznuXHaSK5LcqhhAG1QM\nvGjohUWkkxEyGqCmK5KDpZXW+dgZXTaZZlTYa9OpMN1TDCY29jMYNwzfoEj2Rzbj7erE3q/DfYxr\nta6mQ2sN5Rr7lBSozBDLvl57RrN/rWD4BmWTDw4nXU3Z+BLL5h5ls2RWwTStKbEZpdvutxIXQ1uc\n9Kzq81uPR49NEkgfT5uGDwKfLiJvwRLKVwG/b22b9wFf7+JBnwecGmNecVlwfx34sDHmLz7k8X4C\n+EYRGQEl8IXAd7zai3iSls8XAL9TRL4c259xT0R+ELjpA2Mich245ba/iMlfcr+vv35/tGwNuq93\novQEtK2pWQ96jYAi4vE/71cvsPGeJ4V8MzC8FbH1s+09f5zUdZmMjhOIx8UYemTjakz8NfhxaExB\nVZ0G0cpZpSmahL2sQSVWDihkAcZjNB65VNhR7xziZnK97Lk4VnVBZp4M1Jq+2KC/zzg2FUmpQLfg\n8Bbt1njAWiLJUO2FSvh1K9i6Yc86K89ZB5I1fdJ3E23v+mPSj7G+eIif2yM62aEtdSxGhGacoIoZ\njMsQd9rm9ku0QWMTDdR+5vryqE11C9+iwsvVjEcwWqCmK5fNdo+2bmhKoak0oMhzYTAxjA/rQDz6\nTXs2TuPHwrfmiC3caL/DwRz9sZk9vzSjqYRLzxZM35Sg37RHcn3fJppcvobsX6cwK6q2YFZ18jye\ngOwF9y2gnrvUWT2rlwpObw02xupJwhhTi8jXY0lBAd9rjPkFEfka9/53Y2PfXw58BOsq+8Pu418A\n/AHg34nIz7nX/pwx5v0i8ruAv4SN6/yYiPycMeZLjTHHIvIXsaRngPcbY37s1V7HEyMfY8w3A98M\n4Cyf/84Y8/tF5NuBPwS8x/38e+4j7wN+yA3CM9gUwp82xjQiciYin48NnP1B7AA+6AQ2XrpwMoEL\nBUehE7jsPtQnnt5290vCa8pNf70P+sN2EvKxBK8RxsUKxPE+PQLx7B8E8cz1WpiynYVki1ia35KO\ncsW39izPSkWW1LRJ012zy9gyiSPnbV1bBxNkeLipUhATT7mla6kbnyTuhuytngckVMRk462g+DWJ\nMhjtRo6EgNypCHRk3D07PZeXc51KXnXkMxnZyXb/oG9ZunR0M7vZHTN2VcbXv1hZSwo6AtJd7ZBf\nKMyrY8p2yZXLz0H7kV6WXfw8yUCji5KaxKZE56rvblsnHm8lu3shLgsy0crZJffwFpBKFWCJZ7Rf\nM3g2t+oIVydwMO3GwrVOZ3WOGRzD+BxxJJRoT4SK5IUzcI0dJ9da9JsOUDcOLPFcvdpJONWnzupR\nUZlER0BeEw6sWzW0lLjXZdbNbqfcfrnvInw9wBjzfizBxK99d/S7Ab5uy+f+OVtbHoIx5u8Af+eC\n934Qm2792PCkYz7b8B7gR0TkjwAvAL8HwDH7j2DTCWvg61ymG8DX0qVa/zgPynRz6MUXdEYsovko\ncZ3HVgEdn4uzSEy0WhYuIKBHRK+1tq8sj9R9fWJF6ZST4z4wRWMVkb0ahCcdL1yZK6s8nCkv0rjm\nemtr+5K30BzpML5EYVZkk8uukv2u3faC3kQb15TrjoDWkyS2utzsfrcRENDLYDTFrCNlj6ZEVLYR\n7xFjgktxW1+l3grfV907yaCyXaKyEfn4M6wywuKkS66IMr9CmwpHCnJ86hYLGZJfx4gE8VGvyKAO\nXubS4Q2bsHB8ujXmlOQJmhYZZH1320VN+dIoCcV5CGUyIoFNAspMn3i8leJbGowvYwZTFs0Z2XjP\n9q6KScjdT+0SHqYDq8SQvv2SJZ6rl4J2oLXUu+uz6fFtSA4Ba/lWUoTSBqmL0FLCzBe0JwXlOazm\nivn5q//OgU04UOljnit+FeN1QT7GmJ/CZrX5HPLfdsF278Zmxq2//iHgMx/poCKRK8FOSlVts1ri\nmoBtiAtDe2nWa263RyYlp1htkrKf3uxX+qNBJ1cDFxd+PiyytN9J1E+CjZf7KYK/3PeB8bC1LUlP\noh+gaFq7bbMkTazlpHRuWx+AFewsZnixzCDW2c6ssriqOs28+d1ucvPxEG8BRNaQh48bBatnrX/M\nOrYRUC+WU5c26+n0BHP5mp3YHrC/AsjHlzF1iRwuMGVF4s/Jp37vXbOTre/b1HbWXm8FfnrSyeA4\nwmlPVyFhQQaadDq0bi9vaTUl6DxMqrk6Y5o2KBlQqwQ9PYLDE9TRvY0Gcf7vkGSwLqm03g12ZNk+\nToU3I6u2kWSpbdWQn5LogmwC+s3WzRbUEby1s2ddZKvqlhXWTVYM1NQuRHRfvNeUFeqoI4PkIA/q\n2dBpwmmdsa+v2oJtde7udX+668ol0k51PFow6LRFZ+1OifpThNcF+TwRKOke2mzUddLcGojc/DsQ\nS1N2feLjNNgt/vd1bHXDeQthMIGJy3ba0gdta/rz/ZCWXeM7sJO27yy5JisPXcaad631Dp10dS2e\nfDyKRihboWwNWVuE7pMAajBFjLF9aeqyJxLqG/mBncR1bK3E1+YMKTl0K/g4FuSsRBm7xmWPgM7S\ndQdorPvLPP+C7Vrr+hzFBNSPgXVEViQp+aU3d2nwvmfP9DCszAuz2tq1dVuqfXNzHggnViJI8gR1\ndE4yGlj31GABTrZHSUojFZN0RJYsu8XUYAKXr8G1U6SMMgHjWrJoMvdYJx6ZHlGP+8KuAHp8yVpg\n4xFJlpLt5yQHp0iuOwvl6MqGtbNqzkNPpyZx38V4IdLWMKlsDVTdkHgC9moL4GJjrtjafQdHOmeY\n7YUus3GrEut20/0s0whJnqBTw2hyn6SfR4GAzl5/LrwnhaeXfBIJ1fqST3sNzYZxvNs0vcDkelFp\nTxEa7MOfjSwJxRnkF5DQNgIK1s+27puxG2lLQ7mt8BaZz4Sry57Kb+yOAkJrh2VdhUQCX8WfJYYr\ngxaVaJZ15XTuBGg5LRNyJSEGNNSVa4Lnx865YJQGNaAxK1bNbHsih7cCs1G/Qt+vgqdHdpLLTrp4\niG9JvU7MDwk/MYkxVl3ihecxL96yFfiLlSWgN3cEtI14PAqwBKQzmC42rLyqXZEmXSA7S4a2uHh+\nN3TfNDePQ0V/rLdWlwl1pdFpy94Lp2T7uV1I7Ntn0roDdSiS7ikzq8y6+46uXFzkuu11P6bDMXJ4\ngyLTzKt+5X9jKgZqwmT/mS5ZJU3Rvq+PTwYYHnYp+lFvIuvG7TqW+n0O8z10feisSVtAnOxXmIHq\nrFwPLy2VlPYmuMSZ0WCC0XtBS9GOi7d6Crt49OnxdJl++bhhsvf0TpOfSjy1oypK7Ap5MHESHOeu\n1bAA/U6JibOGesWnsbXjxTmrqjfhGWZdFlJTPhwBrWfNxfCuqvX4w4PqObzUjdcS859dywDz/YCq\ntqBpa85KxVmpKBphzwlm7mUNmRpZ95S26atFk3B35TtlJsH11rQ28cBP6hU2BdmvwmNrx2NrnKgm\nnHMclxKdWXJyEjvB7faI7kd/foEE5/fgtq1sr375Hu2pVX3WTnbIJBrZv34h8fjfCyDbf8bGE1xL\nhrI5D+7MRtUM1KSTU4q7b96651pYz1mdCHWpQ61LXVkC0lnL6NYSdXOOOlggyzlMuyJaXxaw0Wp7\nMLFtHVzhahhrD5/aHid3uExEObxBkbScVbd48XzTrTxNT7g8KNgbX7Vq7zpDLjnB2Mja8Sn6nVvX\nC/Za922uWqZ0Bd2TyWXwnU7HI6tgkW1T/PDfhU5OyrAAF7fLBxNydSl4OoLVAxvfI8kVOmvIxw9u\nVb7Do+OpJR+SxLkRRhid01abVcxK0jA5KEmRurCSJt7i8fCEEf9N5Au/IPstxjoBhU6pDoFwnKsq\nThFWetpZY9sITpfIyu2vxk5wVWXTmiM0pnZtre0Xfi9rQpxnmjYc5JosGQfyUJKSq8p1xLSTxqrp\nXG+zClSy3JCtWUdsVfrf4yw5tvRF2nDN+cwrL076EIiz9/x5aHSXEu77GRWNjQ+6oLvPBCzru719\necQaYl6zr4mELXGJV/7Zsm+s1Yi5NHsZaKuHZo+C/7BOG1RmbEr0QHdxmAvQncsQrTJk/3p0A7rO\nsLKaRc/deVDFCPVSq3PU2EoIXRl4RQv7WZVoBuqAib5s+zItjy2J+QVZW9vkDZ2RKZ8pWAEXB/Sz\nZNg15PNtvr1qduHavi9WXdfUbe0Z1hB3LTXJ0DZkdFaSX7z4uFd2a0k+fjxuNxGD3iUcBDzd5DMe\nhSpoYKPT40BNGKo9RzqzzsXm3UB+1Zhou5r0XpSoS6Kt/t/UhlpX1w3V8zoPfvgeATniib84F9ak\nrBNQvLIrFyFWIoDJRlaDzcnNhGpwNw7PjGy7iUk6Cpp3/ritNGHiiVG14lKujT1XOkHWGEPdP/94\n33Ywsu2WYFOicQkJvmVBJL4qsBnzce5FP34+xhBjkLrCzHyCXH0bVBUaUEfnNkh+4zpy7a3U4z3m\nLji+rVBxw9JYg5KUTI96yQ01NTqf2my0oysItoDDFDWDvLMQrZKDwaxqkv2c7DdfQ549gjc/Z91Z\na/Au1Ka1lvxKzoMgbnd820dcF6u+mkTcvmDUxb00N9ibXOu1rw5egfk9zPIjmLUUeTupL2A8wpQL\n9PCQ6fiS+6wtUi4aCfHEaQpDPWWsD61VGGsdum6rEHXZHSyR6RAT0s/7NVNejSPOdmxMxXl9t9cS\nxSQaGY5hPLKWbq45/NjrTuHg1wSeXvLRKvSYiZElwlBPuz4pqzXSiQOTcRfKyH3hXUOFWTGv7vYm\nOd+9c73/fC/jymWHeYsl1N2EAPcD0o+3EFBoGnf7tv0Cu86SMhzjO3turXNKNPt62Jto7Pm7mphE\nkyVtIG6PohFmleq1pAAJWXM2/bViqLtr30qmF8gF9RrrnXerYYjUvj0BrVlMZbvg7mrJNK61VcOe\nkCz5BLn2VnvW904tIRzesMRTH3Na+lV/3evIGiMRtbFIiFN7oe33Fcon3YLjklU00G+qaPf77kmv\neiHTIfKWN8LVZ/oqB9EEW7UFJ0XNrFLuPi2ZpktWyTl76bWepJQpbndk7jqcmuNz2pMCGRQkRAui\npmDqe1jVC0zhLJPTk06FwrvsAvmkToljgRmfQzFjtH8dFRYhC2wdTkQ8Pg5291avF1Fz0y00clcE\nO1DISdFp0GVppw3on4EtXUsBp1iR2uQGryN4PUOyFDUabCpmf5IQwSk07ABPM/kkSRRot5PWBvHM\n71nXQWw5rBc5RgQUr64W7Yx5fRzqLLqAvf1pJwE76bXiYg5SBYXroK7gyHG9B80DZeFjAqpLO6k4\n4mlfsXUeKkvta9kIGV+yH2u7WFdMjv5v6NxkWTKiagtytSRXhoHybreENGkCAWWJCe67uCDV7sMf\nb/NR3CjejRvk+dW5J5447VorDIuOgHwcQGWU7Yx5dcKdVUrRNFwZ+HYIedcaw2N8CbkGZnqMTI9C\nkP3uasmdlT0vGwerOgvQ3bt1qaZePcnsZTtRO308PZhgtLXAdT5B6hIzrcNEn4xcMkukt+dliDxB\nbtx+50I9rxa8NM+DAjdYC3+aNjC6FQhI6sKekyee2/dob58H0VCvIOEJCLDbewsp6uUDm/VovqzB\nOCKSsrIutLYmnx6h8qsoOWZZzxinB1GvppshAcMTT/2xM4o7NW0tJLommxSuLklhippk1ZD4tiCX\nr1mrd81rEGe++UXCVitoPLIuxx0eO55i8lH3b128ji3KwFROSy3rRDaNzjmv77oJLuGlue18CbjY\niJfgNxRN0yOhDbeTx5Y4zsZ2zcVJB9v6+5iiy+zxbsSqXV1IPPeDbykwSRugs3Z8QWrRbG4fw3fk\nvG/r4ph4/GIgvh+RyKVkzda4T411t80qOHPCl3tZ49ogjLbXZY0vBWLGrFCiN87/rFTBVeQFLD1i\n1YReSm9dgqbXY0iJ02obTGxwfWizu0L/JN/Swi14NjTdIpTtgmU9485Kc3dlew+B7T8EthgYStT4\n2FoYtSOLuAUErv5nVdMC7WmBOl1ZN+TcNchzGmh22/u7G+O0bhN6RB07V94R4/yQRNQm8bz4SnC1\nNTcXLD/RsJrbZ2UwbmiLhsS5ds2qgX0sCZ4vYHxuyacpgzKFbflrFzdn1a2em3ReH5Mmg84K0tmG\nd+SThQi9VhVPO55e8tE5i2FKVd8O+mQWLpFAQT6+1FcI9m63qDp/vUDTp47eWSXcWWmqVui+k1Zf\nytbFtORK2MsMKrGN6bxmmJ2koq6jddk1EktSGzh2CIkHOt8+eXpSGh3AVTsBJEBydWJrLq5eRQ5v\nMGvucVqe2RX8Q+ooxm66zJGq7fPXIV5xe9iJ2iYwDNReiD/0WhfHUK5eKgeJW4RnI5gurBbYeBRa\ngYc6H19AO75MkWnOypc5cQT17LgKxOM7x4YxvwC5GpClQzs56WNuLvpdbovGkllG54rz96dsF5BA\n7l1rXjvPLVg8xBibDr13HfKpvcZy0WU6Rp+pL7B+l80Z8+qElxeKl+cpn1h2nVZ9A7zUxVYeBBlo\niNpgNzcXNDcXqKM5yf4gFKf2PuPiMOuvhQWBE1U1LFzTQptBqPX1jnh8yvmLr9C+cIfm5pzqYzPX\nnE6zmndJAFaTrkW5mGtoC15VliT1SXAt9xZidcn+pTdzWt/u3Svb/8d2is32n0FWa5JPOzwWPLXk\nU5uCO6tbnJUKiKv3G8r2jCatadSE4eTyhoqBf4DjicDXD3Q+9rTnXgIcCfVrZsDHAUY2YFsXfTff\nGkRlQZW3c8FZP3aWDLdbDB6jA3h2hExGdlV49Spy9W0spGBenvDSPCNXLc+M6q0E5Ffw/mfVdi3c\nc9WylzXcXvYfqXXy8enak3TUzySMCfd+hbk6D8kRvtskw0PM6ADxtVZ+QeASPsp2yVnxcrTAwFlq\no0A8vZTbi8ZP226iIzUly4ZkyTG3lrNee/WzUgUCWnfBrZoZKMgGU5thFWWZbUU+sduFnlJZkOGp\nqtOeHFCsyBETz81lwkkpvGFoAvHY699S3AxbLcZ1IoGOhLYh2c+te859bqsye91YazXWLgT0+LIl\nntPbgXjqF05ZvVSwOM0o5gnFXHF+1nWU1WkLI5ugEeDdsK6FudFr7nO3UDFtzf6VtwUCAreoapzC\nR7JgmG8W0+7w6vHUkk9RCy/Nt09yRWMomiUHeRUm2kwNQ0qzOGsiCG82Zy5Fuea8WrjCzC7GEcMT\n0CT1BCRdvGE164rkmsjygV7BaqwpFscWynbZJ6D17qpgJ5nLz1qLYXrEQgrOytthsvLE+MyoRimX\n1bYle2ubyneWGPaytqf5FuPKoHLB5D0rnxIm/agZ39pkC5sp6nFDP5WlqHyAHl+yROTSoIt2yao5\npSyXwdqJcXkwJE3yXqFhPN6wxV3ZFKGbqAb2x1dJRorj4tgtYuDOyn6l9rKGYXTrYwLyvY7U2nVt\ntVxVFgi0iWqEvOSRj7fZ8bf76xMPrGo4KeHAPe5e4yxXBt+tFdoudulaNazDrGrKcygXlgAA8nGD\nzoy1PtZcSjEB9UgtaqonWllXouvGa6BHPNX/dy90L13NFatzoSgMi/OGojDkeYrONDqrrMUTqZv7\nwmMpq651/Fpyis/g27/yNmbNvVDjBtBQh6SNxwLBta3YAZ5i8lk2wkfPUvYzG4cBvxq0rjFIOClq\npukJKtFUySq01lbKDlvpJDu8+OayrsIk5CeEqu1qM9ZhBTiHvXjAulvAwzRFT4p2GwH5Wo6QTbW+\nP+gqz8eXKZKWeXUrTFbPn8NAdbKQVwYLJumDg6120jMUjbVsvMoBEEjoyqBydULWbbWRYBCvSuO6\nqcgK8tZlaxrK1jVzi+NTaQoUrEqbYehdn+fVgMuDhiuDilwZhjqNiEd3k/4FxN8rxgSbDo11YQ7H\ne7RZQ9HMuLNKOa8Suq9VxVD343ONqcHVUm24G5v+NQcrp10FxYmzUjGrUs7KhKqVXgzR4+5KcVom\nrBo4KYTjEgZaWDWGgwwmaevkkaInamOR0tkRnnTaWljNVbA+wApvDsa25mgwbki0IVnVmFxhXDsG\nexaZFx4AACAASURBVPOq4J6LY0PiG/6VVXcO91xr9NMVzWnJap5RV0JTdcQzO7P7mJ01DCYJq7ki\nG5a2keB+boltRGf9QFcf5LqkmlWN0soWDmcjJvvPcFy+3C8JaCvizrWvF4jIlwHfiTX4/pox5j1r\n74t7/8uxaYRfbYz5Wffe9wK+n9pnrn3uv8GqYTfAjxljvlFEvhgr+Jxhq3f/jDHmH73aa3hqyScR\nAvHsZf7LuJ4ubIkoVxVoO6mX7SLEZrIEGpMGF5RKU7Jk2VN/zpWiaLoAvMde1my6PugKU01T9OsU\nPGnA1jhQVyi5OZmGz7tMPJ+yvapPOSlqisZOjj4uUDRJcJ9lyZJMDcN+vKsndvP4Op5cWWWDLDFk\nrqVCrmxa9TTdTJLw56x9Vt+aMGtILW/9CnQVSAfo1RD5RInGVCG12CON7utQp8HVlyXDTrHiIpze\nthOYaznRg86CyxO6BIs0MeH4WdK539ax0TvK/R63a48tzCwRctVStkKuvIq4CceOr3c/84sem3h+\nkBneMIRJ2ri23waVRHVb9ZmNLfmEg6jZnQw0GTXteuYIoFMTrJ9s2KD2M+t2i1pv24l+87M9d5wX\n+M1Gtkh0vkAVNfqkYLCM748idrBN9xSDse0RpPYz20jQi6J6sVHnYltvz+1fsy66BWIMaZIDiws9\nF68GIiY06nt1+xEF/GXgi7FdRj8oIu8zxvxitNlvx7ad+XRsM7m/6n6C7QDwXcAPrO33i4B3Af+R\nMaYQkWvurTvAVxhjXhaRz8T2EXr21V7HU0s+WgyXB00IftsvpESNpywsgXRfnFAFbwwa7SZ+O/FZ\nHTNNZmqG2lpCfkKOU40BN0FLsAB8Rb+HxERzkW6bX4FHVlCYTO8jueMLD8t22Ut9PogO45WqZ1XD\nQdIPbFvLxRGey5DLqDey2vx1Xhm0awRW0ZjIGvDxkXzg3q9poh5CQI90tl5TRETx/dvLGoomCS4/\nb3ltJZ7Y4qpLSzz3uoJcLkd6eq7ot3SdMmNZmBhlaxgm90+N9+Sio8aFHkrSkIpPYuWMfFLHgybG\ngfL31Fo8nbvNLraU5MHq6qSiqn7auoMMNGoAw33ITktKV/WfaEM2IZBNsj/YiPE0N+eu4d+Wpmxa\ndX2XshHi9PD8aykwHpyRfWzGItXo1KBSRe5aK0wuNbZB3YFBHdmuqDIdhg65AWvE07VfrzurqzhH\npSlDnVI0sTv7dadq/Q7gI8aYjwK4bqXvwrab8XgX8AOur88HROTAN+k0xvxTEXluy37/BPAeY0wB\nYIy55X7+62ibXwCGIpL77T5ZPL3kk5ieG8a7YDJVh5bQQBDO9GKjStJucncyON76sGm13SrdPsj9\nXjjeurIdP2N3jJOL2TjRbJNInDstThUPBHRRG4dYibm1NSDLuiJeRa7Hhc/KxPXnqZikfQmc0H7a\n1SY11G4V3k2+IRah+haDV8z21735XqSZ1m4v4lSSolS6oVIwqzYni2nabKSzXzRWYRL2xHP7nrUG\ncIWL+7ZwUfJp6JRZtmbrBOWfnW2FqNuIKMS21k6r197DEVCu6t4zuvYJ99Omvh9k1sq37jYTMhOt\n+Oiwe56r7cSzDrWfMXRNWH3TuWR/YJvDadVr0e3rhDgltGvoJTD4tiHTQ2T/OrPmXk+YVNKUdDok\n2c9RHzsju1ORjxsGjvw64hlb4jmcbCZNrLna/E9wVtl8gThvQpbvsZJzclX1GiQ+AVwRkQ9Ff7/X\nGPNe9/uzwIvRex+ns2q4zzbPAq/c55hvB/4zEXk3sMI2+Pzg2jb/OfCzr5Z44CkmnzSxQWclOqzk\nwabETlKAhRPVTIJMTKKsBDv1alOEECIXWOcCqtoVjdSoxPr/PRFtxQUBdlGZDaZDr9YlVPLH223J\nyov37yv8rdUjzoVjXJKF3SxevXuZHO9+8/EajQbpVuYq0dBWveC3JeSOtGJ4colFPb2qeOzyKFtb\nmb+XNUGOJ0ssibTGHjcm987d5eN4bsJVoyAr0ykMRIgtHifuaY5PaW+f29gA2HRul77trZ5tahOx\nO9Vbzhk2gWPdZdmNx2ZSxLryRUACGbVTf2ZtvCT0WnJ7JlddbMha+TbeE1xuq7vW5eaVCRy2NZyT\n3KkrDHQgktCRNPSVsq0gzKqhubmguFOHZASzqgNZAZ2yvEt++cT8hGvDhvH4sBMmzVKU09lLXjiz\nrbRd4L5HPNNhv/+Vb2MeEU97WoTWFOEafcHrnm0ulyY5Q11xVrbMKuXieK8ej1jnc8cY8zmP5cAP\nDw1cAj4f+FxsU8+3OusJEfmNwP8CfMnjOthTiTTJ2UuvbryuJKVyHU39ytX71x+k2XU/BDfVfbBO\nOrHgpeSTvjvtfi0UvLApUfDcyfOUzTJch3XB1O4aVchU864Zm71mJ/2Bi3Ntg03EGNIkXfzFn/dA\nTXqW0vp4eCvHKodbl+UkXXc9Zf3MNCyZeVmUhrpHPDE6y1b3iWd1vrFtGNNIYDK4kLxats5s3ZBZ\nhXEc6pQrg04f0I9dID6nFQiWZC5qVLguw2NhP7dszrY+fxfFJuyxCe/5FHcb8xpbFY82wZy+jDm7\nBb5bqr/WurGqAUWNrCIJm6ClpoJ7KzTJg17hb3NzTnNaUi40jCBZ1YG8wNUDjUewd406HzAvX3bp\n/la6aJwf2lYKV0trdU5OSV1bb3XTdjL1xNNryR3L+5QV7UnRa5y3FVtSzI9GCSyarZmbTxgvATei\nv9/oXnvUbdbxceBHHdn8tIi0wBXgtoi8Edti+w8aY37l1Zy8x1NLPlRL9PwMxpd6k76S2k1UnYsM\nnO8eO3noeJKCnsUST6hxEsDWnjUPQDwZGRHQOTLOEG8FrdWKhK6hkTspXFnUr8fDZztlCYGEgN6E\n6S3DGI2prctwzYDzSsWebIJMUVMCbd9arM/QOrNjqabhGrcR9FbFA2Co9mjNce+1uPeQX+HHcR6p\nC1tH4uRtekkd4UJGcP1ZWw/lpGDkcN++5loKlO2id089AXm1Az+GsfXnUbXFRhKCl7jpIRqv4WBv\nI739rFQPjEfYmFsZSCdNBlYsN2paF7LBqoh8spRkNCA5mWFc59CNzqa+mDfup3Mv1l+bUy4VdZXA\nArJJt+qXgYKDqW19nU+D+GmuLlDT8G3lD6YoTyT7eZ94Yhkcb/UU1tqJEbv9giI4BJHhmOSPRgn3\nU91+JCS2Qd1jwAeBTxeRt2AJ5auA37e2zfuAr3fxoM8DTo0x93O5Afxd4IuAfywib8dmt90RkQPg\nx4BvMsb8i8dxAfA0k89iifnoz4cKf9v3fdM9BN2qMsQi1HTDRdaYyvXD6RPP44YRAdcRtHdsIrUD\nrwu3/jk3fwd3S/Q9GCadzpp3awVLwZiQ9uuxrc7Hj51Xa9BNi5m/0k9Z9ogTKRwJ+PqZbenmBjay\n//RgYq8l0UAdkif84rpzt20hnlVE4F7xOj5uomH/qhVeXc7t7/vXA/Fss0LsBF9viMfG98ajaotQ\nR+W3pZ71CCdO+RYgy0YhXla25gJLr5vgrwzqHumEvkGnL2O81p/PBFtvz+5/XrvkxEDTLjFgnXA8\nbt7B3LZ9iNqTgvKckJrNGNqitrU/ue6sntEB5BOa5t6GO3rD0s5SqFLkcIJyVsz/z967x1qWpfdB\nv7XX2o/zvqfuraqpKtd0z/SYxCY8ApZtCSGhoCDHQkxQIEosktiJEqzYvBREHkiJpcTCisBgJcaj\nwR4HI2KIMIIBjWNhEAogGWwsEzwexunp6ZqeruqqW7fuvee9H2sv/vjWtx777HO7urt6euJbn1S6\nt869556999ln/db3fb/v90tmuTeU62YvnPXY8uEe6MCCIBsPdtiLHARA3zxhjGmEED8MYp1JAJ8z\nxnxRCPGD9uefAfAFEM36dRDV+gf4+UKInwfwz4H6Sl8H8FeMMT8D4HMAPieE+E0QpfpPGGOMfa1P\nAfjLQoi/bP/Mv8CEhPcb1xZ82mWJ5le+DPmJp8D9C1IGnt0BZBIsaKF8CjlzalNHmVJ34f8wgSeM\nBt764GC20AGgWOxS7X+fIGaClSuY8iFNntvFntUcDoGss6HYLb3lQR3U4DlC3x2mxPKCFja+q3g3\nztbfxpI9BqOpHQJs9oZbeZ6HF13sVgQ8y3M3+Y6s9kDYpVID9NjwCGJ6h6yv7c44JEVEv26zRSC2\niEiC59F74QeYnbBnuYyBOuhDGQB5/goqQWDBJn99dH1PsBjGZnWLUwKdywsS6uwSC8JrbUOkKZXU\n2C/IOuiKfOL9egBnv9CertBelvSvEdFMUDNLkFqHUBxNSBg1n8AI8Xwl7SyFqFKY8RDJTU3HG/Wa\n4kFWdxw28xGldirY7vxyRedoleO1Kb8hn98PGsaYL4AAJnzsM8H3BjSv0/fcP3rg8QrAv9bz+F8D\n8Nc+yPH2xbUFH6OtUKITILwA8gnk+Phdnxu7VsYAEP7sg/SIDr1u9/WA/fLNoTJVN6sLTeGkSKlE\nVq5gylNSLA7CZHACmDTv5Ic8+asDnYs3aZFjtWnAT7WHYqBr/21ohWy6yuEA7XgxBNVvamAAmHIJ\npTKMsjl0XmNZa9ffOC7Ij2mYTGAWj+h4rGIzvwb9PURmZ2EWFs5FlcHcTXxNQwp6Hl2PQ8GeSW2i\n7bDpAECQdXWAxz2mK+pxtSTftKoTlNoPSE8z7bIdAp1Oj4tVJPoYbV1qdWozHHb7ZV25wFdKFGOy\nG7889QOcLERatmiqwK/ICrmGCtkAYLbnECpDkU2g0wb3RhvMsimm6S0ypFs+3j/mqqbyn5KWibih\ne2m9odLc6TPoty5IAfuJz9aToHzGfauwl8fBBn/h5+OFhBC9UkXXNa7tlRBKuJQdY/sBK8bR4hLP\nRfjFPNTU4riKUMD1bM/koh2rbhto0SDpzr0EGcqhBc85YCLoibjeyr4QIrPxQnoc77qlSG2m8iAu\njXF0aMJ95zk0Oczp6zCcVXTBpgNC4RAjWSA8R6T1XmnFlEvkmGCe3wXGD6HbGqM0cNNcfqm/vOTo\n07PoPMXouOP9soNu6yjj4QjJD06c9DmDCQjsHDuQU6jRcS+tHgAwuoGlfobz3TneWOQ426mgt0XA\nc3eoMVDTOHsNyBUin5BKs2WQRe/JyL9XXWFWB8bueFY0h8aZ5Moy5Wx/xZQ08JnVDZqajlGlNA8E\nAM3XFsSSs/0001TIJ7eRje+ikAvaMJzZDQxvRDokguj+4e83O7TLLYHOgwUBYM3Or2G/Sfm5I+5h\n2XPL8sHee/vCwOdlRHF9wSdN7FzAjHZ32dB5+7RGu5LW8yj/coQAxFkPK2bvDwS2ViGhhjTKDqju\nKwDUbWmnrn1EYpyAW2D6rBMARPNAXTq4MMYznlgmf7LviBkpLCBm4uWbDcz5G1Tz75qIcfACEcis\nHAqR99+WTqcrCzIV0ByUAjDP70KbhlhcZ2/CnD50xnlRhMc1GgKh47Ld1YcKA13QCYOJFaGkEfcP\nrxQNDaI1Glu9ILmdYNAWAJCRJcOufoSH6xJvLge4rHig1R6yNDgpGozSeZztNCtn9873gJA5MLnt\n1bIDqxDB1yXIdnqD+3DlkrJJCwZhfwUAsjHQ2ve9GOlo1988uERaSGC1gVhtYG6syVxudAyz/IrX\nYrP/TG1lchq9dw+5gdFd47IdAh2bbTUCDRJkeUAVt6y5yPG2qaDyMRB+vnRFVPQXECIREdvvusc1\nBh/LtrFZj5C5HcDsqeMH6tPvJRh4wsZwl0GXgbKfbrRGWz+WBNOMShFhGUAEYpymXMalmrCRD6tF\npjOIJrfnmvlshz1TrD0xlISYX5LECYNQADohcWEgp8DlQ5izt50QJABHyQ2Dqa5uuO8KAArpvO6x\n7EAJM5h3UgBUU9E5vf0Q5u3HaL52aZ04VTTgKApJf9MZ0HkKdTfT6Zu14XmdLBl6x9u1XaTKJYTM\nyZfH9t367p2wLNsaTarXNlxPrW2wrIGnuxQP1wV2Gs6iYwYGnhqzbOpIHqiW8X0BwCRV5P8j8gkw\nOt536bXX4iDwBNfdyfGsNzRL07VWKBSKI1JkyAY08MphSo3mwQJyp5E0GrD6bs7Q7lC2Y4EnvJe4\nr+M16PYX+LbxpvTCas6JySAiKhhdQuiKKgS7/Wv4Ml5sXFvwgUx8oxLo7Or3b7ZIhPFdgoGDF424\nMRxryHUn31k0k/XJTrcKT3cKn5wuMMumGKk5gQbbSO9WsbtqlgJYO/aO14MDeZqwJE9Tec8UCzzt\n6cpbNPMBdQBINCWUzKBsaQSnD8lu+fE5mgeXEWh0fV3Y+yVcOPpCFNrOlwQgVNXAxTIerJ0EoGiF\nV83yMZXZLOuqebBAtQKyMS1QPJEvdgoyV7b3AyAbwhQTVM1ZBDqhwjHrxwHwpmdQ5HjL7wcAVBsq\nb7EKhbVi6PNjCods+fWq1lgBUYlSZ1jVict2wlGVNDG4N6psf2sCVdoMr7shaSqy/uDjsVYTAGin\nryufOXfknESfD459DbYwdyXWXv02AiBRBO+Vfe91cA94FTobIfBY/bXw3uHv28sS+rJCUyeU4VT9\nn9NQTVrktBEJxVPRVLRZCzd0DLBXSFW9jPcf1xd8hHBOjIC98ZsK2Wjqyi25rCMPmG70gRSDR1+p\njYcPT4r2SsfQNClQyBq3jMbd4RIyUZim96ic9Oztg818AJ4K243OUKopJgRAgw3EnJwlk1ntnx+a\nseWT+Pm6okbz6UO6lKMhMBlA3qb6VTiQiCx1E+bR6/cJwQXR6wFT1cCTZzDDDURlezWTOQErg+P8\nvlvEJCjDkju9PyCZKz8gadlsh/pOVWuizYejkofAE2YOHE1FIMSuoxaEclnAWE+m0B4CAJB42vtJ\n0UbKDUwlZ0bfvVFtDfnGyEUBU9IYh8gnEJgQYPAsk30fTTHBVi9QN16lPVMDCFUBzF4rxhCD/dJr\neF6RIsJ4CLHZ+U1Ht6keEgw6g6YsQoph4TeDHfJDJI0TAFB7WaItuafUoupkPAw4bPeQzAZuKNWx\n5Pg+VxnQNjDrM4jRMb1f0r5/HfLN+46XhIMoru+VCOvxdvdmjgGlMj9PkTQuS6lag+yKcm2oQEya\nafT3J4G1NFNgB2oSAc5+U3PgFiTXT2Dmz+npPk02bMLXVh2ZAUh1xDCt382qOcN4fOysggVge1+B\n1tZgDoxu7Kk+h8DDry9u3vBFFUW1dMeYevwUeHweZTtXZj65dGDV+2Hd7GC4VJOmNCviXjuDuPka\nML8P3HwL6b2AbICYVYfxkCj2N15x/Zk+nyTAq2a/F+BxX1UG02HSiWJMmZCcOhBKbP8PAA0kCuna\nUbfspmbbVE49+/YwwUjNqfy5OvOLZJBtgdf9fIzS7LCrnzgCzCil6+aM9JgsMiYyhmO4hcHZ9noT\nXVeEw5+dCDcS3Z9HygQ8JBre25sd9ON1AD6+v8PA4/6WMlD2K4dKW8hZFouO9gEPR9vAlMtos4Ar\n7MpfxvuPl+DDUdXA2ROap5jfh04KVMkW4azPoWDgYaMvXhw4ctkGA39+2n6PNBCEsouXAmCWr8Oc\nPSHQseWx9nLnFIRdf8XuGp0IZprSopIpV/4xKseifoLLiuRaRvkcSt2HSRTRzVVGmcDoGEbl2OoF\nBmrqpu/N+syV2qKy5Xhoy1fBPA5TdGdHAF6H2FFPyOz03sIRvTWlvnKHaMoG5rJEUtV0jrdBACRz\n7/8jAxAK+xocTeVVlIN7gWjkCG2dSJft3YAnaNzvBRM50pTKX0nlSnJCZVD52IGQHxRWcW9PZWiy\nOQq5cPcZWZAPfBnWstpMoiCUHxkwxQSr5mzPiG6gLBBoW2ZiBW9e/AcVTAjsAfBwxcBfOBr+FB0W\nI//MvbddSvd8Rv1FZta1DV3HLAXWG7rXL4hB5yjcNRMJZGRip9KWragAkJqAvD0hUVLOduYzPyRb\njONz4PcRiAEn7/ze+43kQEZ/TeP6gg/H3uDjOUw2xGB2F3W7Qy6XPUw1H0481Apj9pXpDs5eILbM\ndjX37oJmRS7N+SqikSZ54sUdg6+unJgFfZ8O8JCL6wLaNBipOfLZHfrA2TmO0uxQNWfYWT/7Cca0\n8FhygTlfAeEuMkujRYQa2jfQoIGa3gGaCklVo310CfN47RaQvmAzsvCD6gUhm4jdJLNnBLR2hxox\nzFSOKmmh045dd+BE2y21USZqG9mBlQGLkvrh2x7g6ZZBu7M04yH9nu3HmWxoiSCVy4SU4L9/Tr0j\n7ukNRpDZEJPRMUxx7HTtlG59v4lLsbxbVxlpptVPItZlZe0yts2SpJMaAWwu/KwObN4+5j6iBYXd\nioZJQ/AJhztZ1JPlapxVQjz8GcV8RiDApUmAzhkg6vTlzpXXqK8jXV+nqROotEWbiQiEkjwhCwjO\nduZjDzq8KeJyJGeL3MPi/hXfw/kYm3Z/dOFlfPC4vuDT2p03fzCCDwVrPHGwfpYOyiKhdQKXMRh4\numBFvj2+xBYKW0aA0yd22fMBFoVCgiaWCMGBXRVbKdjd70GNuUANIWS0hT+nRa4HXTnT4YypmJCN\ndXMKgEqH+fw+8FqNpPkq8OCy9xB48RBFRr2ZXKGPOQcE5RveXbsJ9Zp6GnaXz5ItYdbJmdyelpo9\nz9Augma6eliOKrOSX51yW99QbVUTQIc08fBcdAmsy4jOLmROGVJYEgrOEeCh4dYDoO3BiLndyIyP\nsbabjac7FfWM6lZgkmoM1A5QMy+myscYDl+qDKiY+p1Gw8FhiDT1pdtAsmZPBDcsUfIckV3o2Qr9\nUHBprakEVNpGFt4MOiKXcW9nPgNu3vS9Lx4gBgCZ032tAKSe7Sdk7j4z6/ri4PG8jPcf1xt8uhIv\n7NcyuoGqXVqqM1kWLyppJ8gXqNQWUqRRCeMqq2zqF1AZRUEBu56SDe9a+3Sz5jPa3Wcp1GQJkV+Q\nCVaunFtkVHoLP/x2cLJst86LfpwOcVJsMU6HlPWIgspI23P6fQB5PnZ24QM5pUUhKFuJXCEyAivG\nEPkETV5gaxlj7hqIAkaf0/EcTSBvj5BbqRMg1tlKZoXP3oIBQFHVVNIJWE/JLHeKymIwhykmbpcf\n6oQx+DtRzdWZm3+JBiitd5IsJg50WhHP+BghIhuLyG8pHGDteOMYbGigtfKZTzeMLqkc5/oNx5TN\n8WM2I9X2fXR6cG3jezDWHgBT/3dLLZwcTx2YGr65zFC1G7w6aTC/8+0Q2ZDkkJhwEFLsHQvOqgh0\njt3dBzdvxoOpfeATnrPKAzAV5Kvjrq0nicjCEkh2DQDjXFUZcNxxWPmc5Cj3hJKbNyE+9m0uK26C\nGTUxor6Ovx+oHItibC3MyytJR+8phDg4w3Yd49peCdO01Le4feIfnB25WY+dXllgoQ9sbe0VFpXE\nSdEAKFG1PtNgNeWuFTeZdqV+Aj6kSQegEy4cUfMVoF0aT6Wn5G0STXiHwYDA80v5BEbl2NWxBuBx\nMdgHniUBBDP/VDF2PQ5PPbWAzYObDHLZEMbutMNIkyIiLIjR0LHiAOyxzxxRIQTRzsyHA6JhQaW+\n4REwuuFKimGwOjf3a8TqLDpXV/4CqAQmc4imRKao98PZT3yNaWbK9FFwu8DT6DgbCjOfcFFmBhng\nCAPutSw1uuqUf4Qxvtez2hAVvWwg5jE9mDMedqcNH//qIseiavC7j76Ckxsfh7I9MNN5HfBmqaPH\nB8TAI+b3nUJEV+W9G1kyAILHnaNq+Nq2lOzEQe2G5VDRNrJ+4I3Jx74NS/2MLm0kRUVKJbKYELFA\n5g7oG5lg11xiVW+wrK/tMvmhxvW9qnVL9e31hkoilnLLsx6U1choxqKQwKoGVnWC1JmVhcZhlB2F\nRmZA3Dw25dKLba42vn6+2blsxrCE/3zm2WoKZO1yO4XIUg9WfXI1ASBgdANbvdiTBEqTYh94nl36\ngbu2AXRpJV8CXbDwNfifpSovm3gS3AGutiVOLu0cTTwzLkv9DtWy7FwwS69tgNEKIjhnU9tSlnXA\n3LRLXFYLl6FyyEQhTfJAbuexE9bcU2m2ZAABQIwy97653o/7o3Y3H66T4SR+ZzYFAAR2MBm9d5Gi\nQjhLYp9rVAYxue2uWZm0LtuJQvus2Zxfur6YWG8gLJBp09j72G+UuGLJVdqzncL/cybwbfMHGKdD\np6gR6tTlo2MCW75mXHrje+DOPYjJbTR5QWVovep1pQXgstJx6oVP3fmEYf2U+F8YIlcHB5WTWUED\n5LdPIL7ln8Bp9TVclA2O8n4XXikaopuPMghdEdGmOUPVbrGo5ItzMk1eUq3DuNZXwvm3z1PXryiD\nVJudTC/2NrgJCgn3L5etc4ok51MdeboQrdo6oFYbBzzh7jhspAt+vK5d1oMGQGabpDcziHnlWEdO\negSghZTLYKzaYGoU0jN2wg+g6zmFu/O69uWHQwN2StLiH2SL6/qCfI+U155zpaEgxGhoqbxpBPxi\ndBwzi3gxairKTgo/VCuqmhwwB3PapdYrN5gJeF0+7rW5XXUgUuka607lgJiB7rXl/v5am5pKp0Dc\nC+HoEe00O71fbuGBRi5lhoSFYDCUd+CAV8nOkgFUuYNZvgU8eptYkPBDvPx3hDHQhjyG+nzUdtoD\n0KqW+PtnAxwXDSZpGRjPDZz1g8gntCnJAur6fAYc34KY3EaZKazr0wOOtAKlTu3/qYpwc1Dh7vAU\nAzXBSPXPFbH9AoC9HifzyLvKGcksh7h/B+LOt+FZ/QhffJbgbDfEcdFgmlU4KTbWYNCWVUXQQ5MJ\ntF0Dtk2NZZ29MCfTFxlCiO8B8BOgauRPG2N+rPNzYX/+vSBLhe83xvy6/dnnAPyLAJ4YY35P8Jwb\nAP5rAK8CeBPAHzbGnAshUgA/DeCfAmHGzxlj/oMPeg4fGfgIIe4D+DkQUdaAPMp/4tAFsM/5iwD+\nFMic/t80xvySffyfBvC3QLnBFwD8W2z9evD1cwlx/xaV3Y7vQUxp97xrVjjbbfF0l+Jsp6IPR1O+\nqwAAIABJREFUKEcf6HQdLCcpAIhgmDQFmsWeQi8vxEJJiM3OZwEsb2MbpAbwU9gKtPAVY8oI6hoY\nBT2j41tuSFA0JWmGRRYKtAg0pgamN6FGxzBDa3/ATVlLtW6stIwXJwkWbFvyavICu+bcKjpkllq+\nwEDRAGWWDZHnxKYz2RAYXdAxpx70u0Os4PMF4jJlWNLKalK2LsYo5BgnxTbS4iu1QJZ4VeNhMEgq\nuGzUYT+FCgBU8ydCCVGwN8iSISBIGSC8JrDXxAmVMpBYBYUIZPMJvWaoxzcANbzr2vUcAEDpFoU1\n23OeRM/ehrk8hXkr8AbLUiRHOcxO0T2gssB2Yx98uvc038vuz9k+mTME3FHZSgzmMLPKU6Yt8PA9\nsKo3LlNgVl2phVvA4xEEgywxuD3cItGSstOR7XMNjyBukv2DvNVj/xBcYxHoBgIAbt0AZjfJe6ne\notR+Voks4YXbHLE6+06v3Kasard4vGnxdJfj7bXq2Xx+tCGEkAB+EsDvB7mP/qoQ4vPGmN8Kfu0P\nAPhW+++7APyU/QrQWvk3QetvGH8BwP9sjPkxIcRfsP//8wD+VQC5MeYfE0IMAfyWEOLnjTFvfpDz\n+CgznwbAnzPG/LoQYgLg/xZC/E8Avh89F0AI8e0gx75/FMBdAL8shPhHjDEadGH/NID/EwQ+3wPg\nF6989SyFePUV+uCMptjqZ6jb0gHPw7WvDYcfVP7+EPBQ2c0OLAbAE+28mZVkiQXCilsa7nd0gMdF\n2Nx2BzQGChDF2TaFo+n03Qr56EbnytsFz+7sG5kQCE3vBKKaJXRDpZM0KTAopm4gFSrzBmvTO6ja\nJap26xYaILF2yC1OinMM1ApZMkCRTZAVr0KMltEgXxShVTjTzxl4+qT1LWljUEyh0xpVex55+ixr\nYAJaYLSpMZ7dJTAfdggHfF5WzZoZc7yYnhRLZHLgrgeSwT4AjYMFkt9bft8YdPKxVctukI2PIXbL\ngHGVAQUiDTYA3g12c+Z1606fRYQMAKRVlttyZDYk+n975R6M/r69l6dZi1y2dA9bLyAuzYYhJrc9\niA/mRDLRC2ybZSALJKI+U1/mVWqBqhXYNjWkKAnk1QBQOdnGT+8A8xVw026MuqoetnxpOvNV4vYJ\nxOwOqnYVnT9/TmXiVUW6BomreoO31xnOdhkerOi4L8oXY6MtEvGi5ny+E8Drxpg3AMC6lX4aQAg+\nnwZlKAbArwghjoQQd4wxj4wxf08I8WrP3/00yGQOAP5zAP8rCHwMgJEQgov/FYBFz/PfU3xk4GMt\nXR/Z75dCiC8BuIfDF+DTAP4rY0wJ4KtCiNcBfKcQ4k0AU2PMrwCAEOLnAPxBvBv45DnEzddQJi12\nzXmkxRYCDwdnOgAOZjtcZgMQyedIofyiWvu+gEE8ce+mrkPgYeotevS1wmCp/D5ZlLJD4eYBVjuH\nw7HUz2iup1Ob5wyGZf/d9Lstt9XtDtumRtXS7eTLLdL1YCbpEpN0iYGaWBC6uzdY+1wzTxzcvLc6\nXCKnGapxWiJL4nkrBiAWCx2N5lCBV49B6Me0Q9VusNMrq6+ncLpVqNrGlWtgf38gpzEATRBro/Hs\nyuiGM6LT+pnvhcgaWT6AsgoT7v0Nhx8bq7u2Pach6LceoX10icbS1UNKMYaFV5eQnkVW91hthxm9\nv59bS79OnRdSxIIMhUltT8qMj7G182AsoruoEgc6FxVwUflqQRh1kBkNVI2qjQdXtalpaPToBoY3\nXoF59oA2Itu1vwcAP9zMMbsJo3K09WVgDd/ulWL5H1+ni7LB22vKdt7ZEujsNLB9sbZcLyLuAXgr\n+P/X4bOaq37nHuyaeyBuB1bb74CqUgDw34DW30cAhgD+HWPMs57nv6f4puj5WBT+vaDM5dAFuAfg\nV4Kn8cWs7ffdx68OlWMjSuyaldvdPt0pnO38JaGbFRG5gAkG/aAjIvFJ9nlhenXofQKAACiUoRn5\ncguailhP9vtoMe5GB6gOSr0gBjBh+xpVu8W6OcfjTWt7JjH4nhQ1jnICsIGc0tCobcxqS2YIgz/w\ndStwWSU42ymMU41p1uKkIBDK5CBy2XSCjl3Q4ePvuJsa7vswMOkKUirXLJ/A9x3onDRyWQMK0HVD\nPbB237UyFHal0qvEZbCYnhS1A9Gq3UJKyghFY+dybF+Oy5YbvcCufhTNHHFoUxMAJUPkoxsQ5cqD\nTbjRqDYR8NS//QzbdzQSZZCX1C+UZQMxH0dUfeoPCYzTfTUJBhwmyPB9PFApRmpOwMPDtDuavTEI\nsjI7jMwZIvVHFBZVglUtHejstMBFacFHAYU0OMro/2mHGUrX3luUk5xQbTPPU0yPbmJo7pC8U7Wh\nPThHCPi2d8v3JX9us8TYXk+8MdSmxuNNi7fXOV5fSLyzETj/MEpt4rBdSE+cCCF+Lfj/Z40xn/0Q\njqo3rH02v0HfCWp13AUwB/C/CSF+mTOv9xsfOfgIIcYAfgHAv22MWYhgQr1zAV7Ea/0ZAH8GAD7+\n8VvRzypLpQ5r3+GHk/7vzbvCDIcjBB0n2pgMgFCXjfWwuE692tCumRfTbOMZZ+lF/4xE1zoBVjIf\nfme6R1kN/Vz4z8gE6+Ycl9XCnjtdh+5iVMgjL9df7iKPmOHohvsgZ8kSWWJQtcLV/WeZv2aTVNO1\n69g7Y9dRDAjP0V6bPW+XqiZzuSsiSwRK7W0s/LxP3vv7vOhlCTfet5ikGstaWtAhXT7XBylXMKuH\nxAIL1Y+ntwCZ+Z5RD/B0B49Rrki6qG9zwcPH4yFEsUIyy5Fd2vcgl74pzwSOYgyzPUdWLnH7+DVk\n8iEqbZ1n7f0akk7YqgNA8D4H2XJ3VsfaqW/1AjtNm7ennU3bUUaknIuKaB2FNCgkcJTRPXF3VGOS\nahzlClkyiSzHORsh8GzccUuRAkkGMbMAFB5fJ7JkAC1rHOU1Sk1/46RokSWjvd9lYgFniIUC7lig\n5GP+yf135cOOp8aY7zjws7cB3A/+/y32sff6O914zKU5IcQdADw38X0A/q4xpgbwRAjxfwD4DgD/\n8IKPZVH8AoD/0hjz39qHD12AQxfzbft99/G9sDuHzwLAd/zeT5phMqHyiaqRJW0nszFuwfEfWKag\nHr5sESMJygPP5UU8+8HB318sYVgSpytPAuzLlABeqqUrXslxaLhPZdikBuvqIS7KBoGQPe4ONWSi\nkCUjP5S5W8KsT/cWWVNQySkf3QCkPfdkhW1Tu0WbG8yTVOOkaDFQ03jxDskEvHgf0kjrzNCYrCbi\nQhBU0vKP0fvZuveRZXIyqyqtTb8DLTMU745INmkPdNYP9ma1Qm8gyBzZ+JhMAhNF+nCdjYoD4HJH\nwHN56suJ4SBq6DB6ew5p2V0kITPy4pyh1h5AQHb6Om6cvIYmbToGaYGSQHiflLHxnmO4cdnNAk8I\nrCHwTLMWiypBmmjkUqCQiVvECwkcFw1Oiga3hwmyZII0KaJNG4c2qdsoZLL0lGzmEV0xuIqmgjDG\nAdBJQQoFA+U3Z77M6k0j0ySxYOOP95PTGvdG32SMA+BXAXyrEOIToLXuj4AAIozPA/hh2w/6LgCX\nQUXpUHwewJ8A8GP2639vH/8agN8H4L8QQowAfDeA/+SDnsRHyXYTAH4GwJeMMT8e/OjQBfg8gL8t\nhPhxUPr3rQD+L2OMFkIshBDfDSrb/XEAf+NdD0DXMItHGM/uojUa02zhaLq8UPJwYrgj2/szByyu\nndjjhhg7e8ZYPWGW2ygtN85rSPpdbXfIjxeruia2VLighJtozniKMZZY4XwXN+ZzaTBOh65U6Acy\nX/f6Yt1m/3gDMyORzHx0DCmn9vyJIZbL2r0GSf97wzOzfhSDDtPFuwDLQ6ZXDW+696JxUkfu6Ql1\nZGTitfVyUQBNSaRBWaARyikahO+nFClSACM19+/p+oFvfofvKV8TEJPOWEXkQT4lQBReMBSAzYxj\n4DGPn3opnnD+KAgxGiK5M4MCUY6dblk4d9UJ8/QrNFfVVDCBURsAX+4NsxvWNeP7KCjrMvDs9NKZ\nHYZBhAVfemUQShODmwMCnlk2dWrtALy4bhAyScHq7lJs6X4Mfk/YgdAoeFMEKilLRZ/dEHQ4+jYc\nuS0J7jRwb9Tgk9MS83yOsfr43u++r2Ablw8YxphGCPHDAH4JRLX+nDHmi0KIH7Q//wyIePW9AF4H\nUa1/wB+G+HlQX/1ECPF1AH/FGPMzoDX37wgh/hSABwD+sH3KTwL4WSHEF0E71Z81xvz9D3oeH2Xm\n888A+GMA/l8hxG/Yx/4SDlwAe3H/DojR0QD4Ict0A4A/C0+1/kW8G9kAAOoG2FxA5NQA1ynNN+Sy\ntaWAUf8HJByEkxmM/TnfzC7b4R29zXjcImUzna5A5p4LZKc2nBzlwGTnG8pVGgMQYP/PCsqVX1B4\nxz26gaV+hnc2F3hjUeDeqHalxH2pnddh7OBptMCGr8dGbE0F01RQo2PIYhooOhAI8S7fZ1FnMXWa\nLS3qGlgHJIzQ26XqAR4l/c9lBt0uI+DhCEVdw4yLF1SlMgIh+EHcSHG8XMGs33Q+Sub8MrJ05vfT\nRZZCjIcwiYLKX0GaFEgCSRcuee0Bz5Nn9HcmRLkHD0B3NhxiPnMT/nvAMxjFBoMM3Cwaar1x2kvK\ncJycEatLWNKLYauBsJ+Yj/eAp+ohM9A9ldi5NzJSvDeqcJQrjNQtt7GhNbETTLCxX9m4EN3PX5ek\nwVlzYK0uZOYy3FDuCcDe/7k0O041/vHjEsfFANP0Faj1Aub8N/DNFsaYL4AAJnzsM8H3BsAPHXju\nHz3w+BmAf77n8RWIbv1C46Nku/3vAPbvXIq9C2Cf86MAfrTn8V8D8Hv2n3FFdJxJ+3ZC0WsIQYuR\nzPYmsVlCxJUNutPvoAXVdBZMUQS+NcHEdhd49qaiVxsiKryHXZQZH2NRP8GT7RJvLHJ8fS1RtwJ3\nRzXuDjXSJPfAU16h4suLPcvrMFCwL5DKkKkBtPHHzLv8vh1uBGps7MfnVafxzwJtNwDUl9h8FWK1\ngak2GM7vIytol8pZKknDrGDWSwDlvmFcUO5TDNZNBWAXzxmFwHOx7AedA9G9t9xGJSgdiTQlBYTg\n93pBmOPQe98hZzjvJ6uVJ3IV3XOikA64ojIvEPtAsR9QADzhQK87LNvzez9hlo+JyRYKkobzV91S\nmwUgAPEcXBCHhHSdn5ak0t4s07g9JILDPJ9jIm/APHsAc/ownqf6ICEEIvfUax4fOeHgIwsh3A2u\nTWlVqVPbp9A4KZZUxkkOuxjKNl4AtKn35z9mcAuCsJLzzjOl4szhwA46PNzJIL5xueHeV6YKP7yW\nEr3RC1xWCyxrhboVKCQwTplaOyHx0BB4EuWlbh4/jRdAq8gQScZs167XIVRF9szWxgCwGSHTzUMp\ne3suZr3x/a/u0GAHdPYMy95+TGWw+2vI2c2Inu1mQGY3r+4TwILMOtxB2+haCYQA2Bf2PRD5BA0a\nJ+gqhUJrtGvwbwSQ3bhH9PXJY7o/+t7DpgKwjgHogt4nJ8UUXMso27lYor0sqS80LOww6oS8kIAo\n23GvGbrXMug0pwHodK3h7WFbokrVknki9/tCf6tDmzxz/hbMG1+jTQ1n95z1jYY0XzY82gehMFMK\njPMaNKjapbM76fZpw8FrbegeLeQE0xTIqwbm9EvA2w/RvvE26i9/YFbxy+iJ6w0+2RBG5ajrSyun\n4z8sVavtXIf/sIQlnXCOhyMR0hqRBQDEiwc/t6kgxuu4jAREopkRISHYtUZR1aSUjE6TuQd4yqTF\nuj53ckEANVNp/oY02FS5c/Mc/oQIgATvoG2Y5RbtRYnkCBCbnd+xpymZ0mnakap8bGv3oJmeQ1I9\nfD7LbfQQZ4DdEmUY1HjXEFZWRswvvdxQo12ZKXnlBOKTHycmWk8YtpAG9gkPPRp87UXZI/cShFWg\nqNotznZbx5DM5ADaNE4vTpsaMk0xuPkpUg/QsbUCVEalua33MTDrDdpLArQEdpMzHtK9wNcy8H9q\nL0rIXQP5uz7mjy9LIe7f8U6eHYUH7u1UdvaLqeehjTcQaxtyBtTNfuqWhkl12wCdS2V0CTx6E+at\nR2j+v8fQjzfO/C0ETFKIqIjkEs6ydTYUpiAKfNVuUFsqvW6bqO/jNAdBmbHiz7CuYNZnMNazSn/5\nHdS//QwXb1/fZfLDjOt7VZPE+fZo06DUfpajblu3WyMbbIqq9Ys3DeRtnVhhGF0AQg5fwtElnDlX\n0GwX4Y41rNf3pekBOJmsdnYLof8KW2BzqeSibOzx06IwTnWU9ZiLN73SM8vNAPR1dkQAVBEAkbNk\ng/YCkLmiRTlNKftQGVkRg2qqwqoG7AWrJIT9iE5G0wc4hzIOs2uAixLi0SUZkF2UaC9LVCugbQSG\nr1wifXyO5JP3gFdepfeA34/NBR3Ls36fIQdmAfCYsnFCsBzOV4nVslWOXXVm1R6MJbJsIRPlqMTa\nNKhRom53SAcFpBh2Xr1FPr1DTMPTh3RPXCyhH6/deUs7CedgwLrd6sdr6MdrVCsgLzWSoxzitpVd\n+uTHvQJ1oEJtQPM1bCRIg7YSp1tKK7oDqww+WSS027p7jT9HpO/WYBD0Wky5BN5+APPVr6P+7WdY\nf3mD9blCPtpi+LUl1K2BG6I1Q1stYJJLSIoAfLZj6d8MOkxxl1YiKSoB62Cmil1azy9h3n6M+jcf\nY/uVNU7fLPDowQuaMn1BhIPfKXF9wQewJTdS3a06cvMAZULhLg/wLJ5c8tcaAwVnVMZApE0DCJBc\nuzGuJCAA3zPiGz8cqtyuHRCZrpwIcNhKAXBZDwPPpl26OYxSy73zy6VBIiRJ/7RekNIJbKrMWjJk\nwJz0vMyGShAslmnKBmJICzSTD1ypSFZ7O9OropvV7P38EPCwGnjZQD9ew5Qa+rJCtZXYrSV0JZAN\ntkiO1hDzS4gb58CxXeQD2Z6uTIuLoNy1B5Dcpyuol+J7KENs9QJnuy3OdkNbhqKMepI2mKSARnw+\nW1ApLZzFAQAtxxiOjmHskDJlgt5M0JQNRBZbN5hd42yn20ba/2vaENy/AzG/j3JI10CbEghUs8PZ\nndNtjqc76RQROMnjOZ2usgdcwZmu06KSqNvWDmULV3I0uiSihVXj1o/X2K0Vdmv6ucoMksvSWiQo\nJFbJPSzxGl3acpt13rXKFPtsR8R+Tk0JoIrny6w9uGHr7ssSm0uF3Upgufjmkzj4nRDXF3y0hlmf\nIc9fsaKU585wK5z1CYPLCpNUu4FDTuFZ6bg0fk6CgC0o1XF6LxP6/WIM0WQwWMK5YqZpVI5zX8fB\njjgQJXWU3E75xHup1E5DC/Dg+XRHKsa/6+gC7UBjass+AFzZJWyMm6YCxmTVzAZ2yVFOvSiuz1s3\n09CZkg28RJD9CAAmAzAgEKasqkZy1DGrAyJG31XlN4AyMnquhLo1QHJZIlEN2kZA3RpAfXxG/ZHJ\nnAQs+VjsYiUCkNmjtD+7hMlSJMPCZUB7x2l7FbhzD3p6E4vd11DqBGM7XAsgkOePFzRWfqZMu7EL\nemNnrgYwRQpx8zUYUKkt5dcOPZBsmCyFzFK3cMvLEvI2UbTF/TsQtz6JZjSFbuMyJ9OZtamRJVuX\nzXRbbHdHNT414yPZV3weJLDDof6Jk1QjkwNkyZAYj1XQPwuAVGUtpHUndd48hfQ6dtwPY3KBrABV\nkSYcLIstOCQGOzc8G0o6qQzQVplcZUBGeovJLIfIJYpRhWKsMJnKq0VpnjdeZj5RXF/waTSVW/IJ\nBqMp6rTESVFiWcuIvQOEJYXWzqscOZM1lCugWbhGfT46RpnFl3Wnl+5D4Ep0yQBK9giFdudG+jId\nroGHoBOGynobu6HE/U4Du22Cy2qIe6MSv/voKxgVRwCA1lySaJGNkZpTU7zyRAlpJ+qdTfFoCExv\nRaCjTe1qQVKkPQBkAXVcx7THYOFnBhaTNLgnxn0njvay9H2QWe6+FrYXr16Zkdrx7ROS/09aojsX\nATkklMUL+2Yyh5mcQyzPXf/HARUfI1tZDEbAzU/hvHzg9OWmWRtl0GS74Tc2nHVTpk0SPu5SBKQN\no3Jy5MyGSK5YxNh0MDmaILm5pPmx+RjitY8Dx/ecU28YTINHU2E8Pkbdlsgl9aoK6bXgPjEtcX8s\nMM/u2mP3mnkc2jRAAkzSBrlskCXGfm5IqNSUj7xIbHB/FyMNzfbYaduv3hBG21D202QRrZrDUdqZ\n7NJ3rZxdOWg8wfpLydsjFJclRusG89VLwPgw4vqCj9ZU3y3GTpJ/mvUz2zzoTEn2nSf+eVZl65lI\nptogn993AMTUVCYohMZkkS5Yx6xtbyCViQcI5PlDAUqODhDptonKbXVLYom8m6XvSdPuE9NlJK0D\nwJVKxsUxZTVcfmN67nwGzI6cNUIjE2izwz6neR+AoO33FiDc8hz2sCZzmq7vDHYKJZHAZzvc3wGA\nvPAW3QCJbyZ3ZmSfMb0FU0ywq58gEdKKpd4gAAqoxV1rheHoNWDwjEDIlmgiVhr3IIoxnlUPsW1q\nd0Y89+LBX7iybWg5cGl10ej6U2YVSt8ARPnH8av0mtyr6htazlLneeTccY/vRWKwaVLY99gO0C4f\nEyFGZRhlc1Tp1t0HRxkBz6uTDNP0JuTiFAAwzCcwxbFr8keRABkaK1E1oiY/69dt13vzY4kykJmh\nkpu1x3Z22JzlM+jyZ4WzH6ysuCxlQA5wdgunGH7Q1psHslVGm4hzsqdIZjmGqxLl+gX5+QgRZajX\nPa4v+LSGdrC7FbBbQQ6HVrE4/iBnifDSKm0Cc/kQZmEVfzrOmsxWM9kQWfEqtpbe/HSn7C6wJk0v\nK+lOxmR8PLaM1Bmm3GtqB4s9gCsZZOFulBc5l/VoEn3keGcLvLnKcZQBtwctxinLDbW4O7yAFCn5\n4TQVcCMgOTDwTO9Q3V2v9o4jti72ACQwoZJj29DfAfyCzqym0Q2asRotyXNodEGOpmkKNBrCDkya\nHZXXAMuAy2UkPyNun7hy28bK/3NvxQl78kFa0NnqBda7Cyxr4LhYYTScIx/dgFk8Aoa2ZBhIzpTt\nFjtN1svxPURN+Fx6Pxv/fgisakkqypXAUWYwThWVqZJ+VQ0A0NYCI3Ki7UYwlIrpLSd2qjWp4WtT\n+80UC4jWNUx2hqx4FZkcYJKWKGSKu6Ma98eCsuD1wn0GTLGBaCrkxRiZOsZWLyBFisTUkEZBiwYy\nqb3ALks0rTYR8NBmoUEx0sgGGslsYMtf6qByg5OV0qW1rqiomqArYPcsJhKwHUjie5l7oTIgrQjo\n8iWSoxzZZYnR0dW9yJfx/uL6go/wrKSrmuIksVN4Qy12IuVdZRZQpNOa6u/5BGW7xaI6xdOdiur8\nWQI37U8yM2d+5sXWnYk2C++0CfRmGdzU9w6dLFpaQSor1pgoAHEZkYFn18BJxpcNqXJ/bGiw0wk+\nNkisDhcx4rJkgAYNld/axpMbJrcjVh37o0SLpt04EsOLZi6kyqn53eTU/wE8ANnzY/FKANZ64I71\nE7qg6+H/NJJZiWRVQqUtktkgshoQ8xlw82bkerqsiSwCrNwxsu8RubLGluB8/I1QbtGHyjy1tzlD\nazS2zRJZIlC1xjG/AGJKhhECz05TZgGQvMuqlnhjkeOT0xIDtXOyP9rUjj4MUDl0MD72ZcOzJ1b2\nKJ7ZCRdb0ZQYIkejbJ9y50ViTUDv5teYZtreBzWkGFypa8jvOzP5GIRS5DRHZgxl6+XSqnT4Xp8p\nG1Lo3jX97194ToDXSpwDSBR9VhrLrOxuyDqfbyeuyzNCfP04+7Glt2RWIpmVyFZXWJm8jPcd1xh8\nhKcm52NU+pktlfhgWZaBnALh7pB1sWYWuAJpdzanW1QP8XSXOODJrIR9Jof9wONedER/zw5v8rS/\n27kP5v3lttDnJCeGHQNALls3jf48wd5FJ0WD42IQWRybYgLRVFSiUtke8Hh6a9i32CKTtHBpwQtT\ng0wNIApY0gUcvZsYdnlv38otkmlF/ZssRaIk0kJCFARULtu5ecNrlw2PXK+DSBgJSg17nARAUvpS\nqTt2OcBRQjbkrvciBLGsgkVNihSt0T6bQuMAiBxV9yf/uQTKwVYDAAHQly8KlHqNk2JfcUJ2Jvmd\nSeF6QxuWcPC0J6j53lGuZqAaHTuiTJYITDNtfXACxQM+9+5xYD/TBQJ5KmntJuwGRoyHwPgSarJE\nMlsR+BzlXrOOjRU7gMLKDc6sD3Dkg6tP/F3Ylww+WQpRSJf9vJBIXhIOwri+4JMktkk8hBECrdHO\n+AwI9cCsdTFrtVk6JgAaFh14iXYGnnOrFr2sU6zqxJawWueVonRLkvB98vkcg5H/cAIx8HDfJLQf\n4AYu1jDZEqKgAU8pUuSydn2HdwvyXAGOCxJXLWQMdNrU1CPpUFzZe4X6Gp62zhYN02xjvVRs3yuh\neahMDSCklUmR9nzysZMs6n/vlKdzz2e2BPgUKZcnw93yYISu8R1Rcf1AcZY0qEUJKdjxNH7dEHhc\n2NmYPmFZbWqnZE3hZ1/4NcOpf3oNz6YMS3NfviiwHNWOhOB6caARAeeQu137eSlWnZjtKwGw+R6q\njVeq5gzAZtNhaQ6AM5iL+k+hgG0EwspdPwYr1V1meAA7GwLFxjElk2HhMrcoy88nrh8FgLIeK3Fk\nYAkWMxroFk0n80kUgMozQQ+Es6qvGg8+kwHERekILC/jxcb1BR8haHGXVKuv2q1juk1SasJmydD5\nzbjMIuzJjDYOfMT8Ppq8wKI+dYN5fibIYJLCs30uH/QDT18jtLCHGwAPCWCmXljRgiJWG1pw7cyQ\nzIuoTJJLg1W97ygZxlFmcFJonBQ1RukRmYrpyg0halPT63cnydsmMG6LexoALI24wST11gJasNim\nIjkeu2s1QvQSFqJh1fBajWh2xYTMs9lRRAQIje+qNsxCEuRSA4hpx+zJxOUjfiw8lu4IkmA8AAAg\nAElEQVRxUh+viQBIt03kK1TaTIeHNWdZbMcOAIvKYBVkqr91nuL2QOK40G62BjBw2x6b9bBwqFCS\nSlQ2sxdy4mdawvsYgLH+P2Iwd6oMEWMsUcilL6PRtdhduZBHYry6AlDtv3/52G5gJhaEbKaz3rhM\nVYyO3QYnn9yGOX+LwPH8Eu0pZUkSiDXxbEktUrx+nmynqTzzDVZrT1Hm076ozOcl1TqK6w0+9qYk\noBlgkq7d/M5IzW2DdL+BTk8KPtzz+86Ou9JbTFI4imkuJe6NKgzU9PmPjXf2QMzQ6VnwukOSoo/5\n1AkaFvQdpUICu4DVNM082+1QhMDDZmk8yMrsLSY3cNCOvsZRDme256iwHDKLSoZ70Z3NCGyrxbfc\nsSc49mrMHf8ZnnsKg7If+/IB6DDNeU8QtU8g9TmDZ8Sm2f5Qcxh83S4q4J2N726VmstgzZ4yM9AR\npU3TOEu8InzTnq6lM91raWaHHT+1qb0AK4L+SZ+KRd/rBGaRWiaQagKRj0n8NRsCw8pZj7M+mzY1\n8vwGlQUPsfv6gs+ZvYsUgKohgNHEMt0LlXngzlKIXL3MfD6kuL7gkwhXghDFGIWc4PZw6z1n3AyP\n3QkN5sBgTlRbLoXNbkLM7mAjStSahkt5V8+DdtNMY5YR8LRGY9MuMZzdic3T+qK7W2PgQSD3f8hW\nu/N3vcQJObXudGKzH+OyoJ0mt8lZ5qfRw9cOg1Uh9o3bWjuzIpEGu3wqKXkKtyNcuPmLKi4hKprb\nCNUitGmg0UDmBS1++SSWLArOmRloYbbGZTwqDUosKmkHOYM5E1teY5tl0ZRAs/QAt5eZ5vb4anc9\nSE3C06gPlTpPCsoUn+5ikC21iCRsQiLCOG0jZ11tGrqfbrwC0zaUCTOtOiCmGJVDNKVvrAMA1l5K\nKZAaEk0GJcekzmFLpHxPt0ZjqxeWnn7s7o0GDYDGKQuEQp5S9S/cwhgo3aKR9v7JC8p+QQC1Dcp+\nWTKkz2Lb7LHk4vejBwCZIBT6XQUg1GW9CZkD8/ukIWf7hXLYL7v0UYYQ4nsA/ARILe+njTE/1vm5\nsD//XpB3xfcbY379qucKIX4EwJ8GcGr/zF+y1g38Nz8OsrT5EWPMf/hBz+H6gk8YuxXy0Q1iD7Fp\nlQUeTt+dDfVg7oYjxfQONlY5lyNqtsoUWafEVbc7lDJFVlj2UZ9PUE+EO0b+fVdaCGeCOtbSrFsX\n7vZDmRT/GAFRmpDXPS84bCXhF/EmWsy7wcSKbnbB2mbj1BIuQsfMAyDcBSD+qhNE10/oKv47wZAr\nL4hh1rOsJVY1l9vgiCAu07GgE7msdlhjUFmUETHT7e01LYDh+YeAAZCd8yidozUauVy45/DzuhnR\nxwbkAEpgaVxviNhvO5QiRT6/D9NUEPPKg05BrMuqOaNrHg7UujcsHtw05dKJwiIZoBshANEx7PZ+\nh98n/spgziGa0om4KpvhAHBf2fLbHWIygCkfXr1Zc8aLQZbXNpQpMUEoS4lN6kwXK+oZdWnXVqLK\nJIpK8y+qVPaCym5CCAkyePv9AL4O4FeFEJ83xvxW8Gt/AGS4+a0gJ9OfAvBdz/Hc//gKYPlxPI9X\n2nPGS/DhKWlNpbE94OEbWfodnMgnMMUES0uvDSMs29D/6WvVbtzvEjNsExmLQSb7zKAD4bIeINYl\nq6y1tP29ULeuGww+IQiR0nXryAkHZ0yCrKfPvA2gBb1uKcuijKe1ZmJzb6J2oBYfedr0ABAAtzMm\nTxbeZU/c8em2CaySfdazrBUWFQ10kqUEMboKOXbUYwc6PEwKABmRS0y1oZIeJpZwQK+zbZZ4uJF4\nuN6/ZqUWuDeiY7k9TDBSxxjIqTu+LKHnsrgtqwl4oz8/c8URZqZVuwGSIfL5fbofeDhWL8jq2tLf\nGYDQdQDlcPc6scbICbSBFrGCQWs01s15dJ/zexFGeP0H0t7bFnhYU436PoV7f3d66YZf6Twt4Scc\n5g5VP7r+Qww+TeWYqY4gVPlyGoGQZS8C8RAq/18dU0+qj1360cZ3AnjdGPMGAFir7E+DshKOTwP4\nOWsq9ytCiCMhxB0Arz7Hc/dCCPEHAXwVwPqq33svcb3Bp66pyZ0oYLeCKBDvrrisFUy+m2KCrV6g\nrmnILpTN6VoshMEfTFq0G5oHsfRj39iOfUe6H+YIlHiu511q+QCVf0K9OmpwCxR7QqNt39P3sh4+\nh0NBIppxapUlBlJkdH7Nhq5r1ew3rgNWFn8VKnPlG+7dsENq9/pxVsbBiyZnPeECz2VI0hwbOIfT\nCHhYUYGlXWwyYECK3VrU2OkVnu4SPFyneCfetFtwl6jaBpNUQ4rcZVdKZkiTAlWyxSTl6ylxUugr\ne2550K/TpnEDy2WWQuYFUd517fpxyxo4yinT4JKZY1tWwfsY2lADEAWcZhpvnnxGw2QR/x50I3wf\nKqsq7TZ1gao7k1fWzTlW9QYDtY1n4S4fkZrDahNZe3A41QD7N93fZ6FYJlcg3ti4UBmAgL3X+Zk4\nsEl6z2FJTs8ZJ0KIXwv+/1ljzGft9/cAvBX87Oug7CaMvt+59xzP/TeEEH8cwK8B+HPGmHMhxBjA\nnwdlS//u857Au8X1BR/d+nQcfjFxwY1tHjyzjWvAs3mi/oBl9hiV7tFvWf8qXAxoAaH5F/qbwz1t\nqvADHgVPtXMvIqPF0cBK77j+RAspUkxS2umGki4AcLZDVOKh8hyZgOm2Qd3u3DmGGl48z0PnZuxz\nhRPHZIFWJhwUOrGlrg0KuXXln4PR/bDvVpFBHUfIRvOlnQG2etE7I8SlPz7Xm4PG+hkRIKBZRDYX\nobJ4tHANQKDZVJBZ6owIS53gohKWzOHLm8cFXStiU25spjuBtqrjF2Xj9N7GaeuONQy6ntSnYgHS\nSUoaatLEH+PwXqP3x/cKKbt7Blye+id0F0RWDWi496bcdU56LKm5J9cKb5S3p/VmIysmvvSXKOd5\npA3NUvHXCHguT0nYlYFHSe+hpCRtDqyth9MLzIbAhM5tT7YpcN8N9fuiMYaglGvW+wPH34B4aoz5\njm/wa/4UgL8Kenv+KoD/CMCfBPAjoHLcSnTL/x8gri/4GBP0SaxMR7mM6r8in3hbgKDpTkyooPG/\nW9IN2jZWEiZmtrG/CM/BUCbiP5zOY8Tuhhsczirc7jzMeJjuDbjZJcgMMDtIoTDNNnaXT78+SfVB\nAKJeCFHOZbKNFhPX7wl8UsIeBQtkhpP7dP70e4tKYqDOIdNbTk0gCnY6Dd8m/uAHBnWhQ2oE/lax\neKCmvVpjWSJcdndciFhpOZzlsn0CnpuJds5Z6nsGjbWegD/PMApJVGqeHQOApzuFUi9xlBOAP93F\npITwd/vYcAxCzBycpA204LmadE/kk8PRpMsVzPIxzOOnsW12Xy9C5q78liUxiCRC7mXAXRX3MOq2\ndMeVFRPa6DUVaQEGdg40WzeMgMc8fhptFIEOq49jvSH1C5aeyoauVwegdzA2dGzl/mYY7p745oq3\nAdwP/v8t9rHn+Z300HONMY/5QSHEfwbgf7T//S4A/4oQ4q8DOALQCiF2xpi/+UFO4lqDj9sxhQ8D\ne7Xf0BoA8EwdNEuvUsDGaKMVFO6jsQC01QuX7ZRaRtYGBGDKLX5MCVXWGAvghq1dGHQVN8H5+AA3\nlIpi7OmvNrLEU4k5JmnrFmIGIFo8EywqYwGohhSlPQ4POn2DpF2tMq8fR6/nQK2sIcU5dM/gppQK\nCr5hHH3wA4M6pTJIFcySsEsqMxN7ykVSpNDWqgBoAxfX3JYCd74UFFhQOydUPkg3P8OEj6EjZ4Tg\nU0jSyDsu9oFgWUssa4Ms2S97hvpvsSxSTBoh113SIpzYDDrpyZr5OXSfDWDWbwKnp3RuANiqwJUV\nuR+iKkc+EIVnrRHlOu1k6M3e6/b1C7mno01NJWc1QRWw2gCrs9cmMfBYy/DIWJFnewLLDYR27iGR\nwg6q9obKXEXDWYjYZdGsz6jcd3nR/9z3GsF4xweMXwXwrUKIT4CA448A+L7O73wewA/bns53Abg0\nxjwSQpweeq4Q4o4xhs0j/mUAvwkAxph/1p+C+BEAqw8KPMA1Bx/KelJ74/r+T1SCCz1pQmYaN027\nastV7ZSyy6R1/YCuWV2WGEzS1mU92JzR3wt2+A2YMACrLdcZdg13q1xC4F2dJo8TbWr3Lnd3pUdJ\nDZbBOdsBF9ZGfJzCSvxLZAk1McJMh76+O/CEEZb0QuFN7nFFvisMQGEJLA37ERMSJ9X+d0JyiAAg\nRr5cxDtuVh0oNWV/3go9KLmxa6nNitm1FAAZmgUlnvD4S23VwhsCnqMMtrfWukyTNx6LSjrli5AJ\nx6ZsnBWHWWWWaORSuOdeVomjZOey2mNVSpGSXp0Vsy3khARENxfOMA2w9hONhrH3k8DQO9Puld8O\nEVB8H2jb0OtpNHumeO53LfNwb/NhZ6vM8iF9rp5dOldWAOTtE/ondbM1/kyw1w+TCKw4bf+x10CH\nualEIID6XuaKvkFhjGmEED8M4JdAdOnPGWO+KIT4QfvzzwD4Aohm/TqIav0DVz3X/um/LoT4J0Ef\nszcB/Osf5nlcX/BJEu+Jw30SlsW32Q4t/jtI7Ftlg1lDzIRhnSmW7FE5dvUTXJQNnu726bcAlVgG\ntoeS27/HWRcN2FFzHQlgksHVjc/QjqFtgO05kCgM8wlQzFAmrStDucVYKBwXDY7yGifFDsdF6hbL\no1whS0ZO1y3s+XD5DYDt/Wj7OwaLSuLNZQZUSVR2u6iAXCYAlF2EN95lMlFBGW0LqaYQfeKQXXLC\nIRHJYFCSykXB4mF9ZqrWuDJVNDjJni5rWH0vqzfHhmZAoByQB7JCBXYaOK+AQgnstHG27FlinOIF\nA8dFBRxliR0aba2KNV2PPmFS/jsnRYN7I2K/jdMh0mSEgbzjKeIATJq7siPPMeWigFk/cE140eXa\nh4t5lnoyDnw/VASzZt2Iy8r0GAMfp41d1mJr9J7PVdVukecTmGLjzAtFsfXq1gBCYzkRDIQ6PyUr\np+Tkn/SzPfYpbxq6BAptasrAOXsaVC8OfF5c5gM7f/OFzmOfCb43AH7oeZ9rH/9jz/G6P/Jej/VQ\nXF/wKXLgE5/aq/mWTA5oTt0iO1LzuMdjd91idAyMjikLKsa0EA6PgNldLOoneLKluY9VvV+7X1QJ\ncqkALIAMkGoONb0DIwQtHHrlmsZQ9No5fyBSq7rQbRTzMF3AhjTpBaAy5JPbkKOpY4nxhy0REtIQ\nCE3SLWQSmOXpFibwbUF+wwJyg76GPgDMsh1yucSXL4o9AHqwSlDIBLcHpH5wb1TRLrm1jXO3OAVg\n0PnH75fLRq0sDyka+1JkuEjubRyszwwAR6BQuRVMBZy5nQGQzGqYQnrH1mCA04yPsaseWqto/3qP\nNsCuEdhpOs9xSlkKg05fUI/Nfxy7wqShx9Ism2Ka3vK0ZX0KVBuiIwPA8Ah5PkGe+xkas/BagiJN\nAc4ghkW8kIcReubsVkCnT9el3IfySgCwrHnui4gdh6QFma3HUWYp8pPXYLIhxF5JMADIUJWeN46h\npXb1NQeIx8XAERoOqmfYYFuIwewujVV0ZqFexouJ6ws+6QA4ftXqum3QNqeRKnNY8rg9PAcU9gGI\nY3QDwoKPKSZY1E+sj0+Gs51ycxsc3GvxVgtU906TYo8VR86WNPtg1DSWvg+DvYU4gtkfOokLyJt3\nMbzxSmT1DVgpFVD/IwQds7mg/gAAY83r1GBOsyIyqKGHQ575TSRDCeACbyxyADJacBmELqvEzr9U\nmKRwAESZSAolCzrXbOjo7pwVslyOIxt0pV06/+9dbIKFUJua9MM6Q5iCWW4sdhlYhYvpHWz0Aqt6\ng2Wd2Z6ZB6DzytpWaIOjbL8U2Xc/8LH2C5MC43SIaXqT/HTe+Y3YcDB878cXMBYgle11RGaF1jLA\nfR9mEPxYGNWGRDt15VQdgICE0jbuXu0ONNP5GZRaY5p5PysGAc48GID4/EsA2ewu3QODxzFZoCs9\nZasUW71wgLOoJJa1xKIqsKqldWA9jxTarwptaqyaMwzyKZS681zPeRnvLa4t+DSmxtPygdsZUVkk\nQakz9+Hh3WzV1rg7PMUopYygdzFTObRMsG3OcFnR1DrPfTD4sGQ+gZovpxAILTBQHvwWlXS0Zarp\nryj7KcZUUgMiSjD3nLDaOJtpY43WAEB9agex2jin1Sb3lOWIKh6AjjmnmrspGydxb26cU2kjNLML\nZjagMkxuvgY5SpHLJ3hjkeOiim+zi0rgoiIHVR7APCnoenBJ0NkWWLq7y1CtknTXLjkEoG5p6N08\naCj72UCGQ5iDCrjBdt+1d4+1pmyl2WHdnDtaebfHBZBP0leXAvOM1MI5Cmn2fp8sC3xpKBQmHagU\n0/QW8qqBeecfoH3zAfDkmetFdUNMBsDRJcTcg9CeDFOPVXn0OAfT+asNIHOIEV3ncO6Ldf1osU+i\nLBAAVjWVnCOKOOCy3S4A+etXIxvZ9wRwmwp+fxtTU2m6OcW2WeLpLsHTncLZbuRKvTsNXJQCO50D\niAHo3e4LOobFu2ZKzx/iSkHW6xbX9kq0RuOtlcGiyl0dvm93SpIzyjaFL9AajZGaB/2Cxsmc8PdM\n6Q1tDHinm8tYxZhVignwvCVBSFCIKLe8yLOZ1hX1aLMLFpzw95rKTZWHHyzH7tkGZbtggfPCpcGQ\nc9+Qa1MBqZ/CLyQtBBdlvCjtNAF81VKPYyxTO7ujYsqrit0qefI+olkDbnFiOSA+v0Mlwm5Ure03\njY69BM3YnvN8FlmFs2PrNNP2vRIA5J5iBH/tKkrksrW2FbXtr02jQU03u5NQRpy3Cb0/lzRs2V6W\n+32bvjikIRiW2a6iWx+I8Jry/V61ZA/eNyB7Ymed2EdpmmnK7DqlOL4GnAVV7RY6sZ81vdqbH1rV\nGzzdKZxuczzdSby5IpPEvqD5NWtNIVgufp+I040XBz4vI4yD4COEmAL4iyAe+C8aY/528LP/1Bjz\nZ78Bx/ehhRTSijsmKDXpmnXLY7xoeMkZH12dM/93iWV0d0g3dJoorGqJcaod4JBwp4nq+LRQEyWa\nmGXa/g6pGKdJ7pvGp6e9oCPSFJjPCCSGBeS8pjkVAOLebTJfs55DbuI8jBB4rNMk5rX/PxuUMQAd\nmtZWGbQht9BVneCd7f6C8LGhwSvjFndHNU6KxjbP81hwtCM2anQJrEuIfILcilAeUpjuAhC/Zxxh\n7b/b9I5o7KFmWEBk4H8DRe81a9oVUvVuMLrBckNZMtmTqYmOBXaoeb1wU/4sL2N2uh+AlPTZTDF2\nNGNTWspyqFfWBZxwAJO/su+PNQ50NhpMq04UjnImGDBzzw/LZolwZTmORSVxUrTQbbNnjNeV7PHk\ngJjezaoV3HPryz4LBbw6NvjktManZgYjddOZQ6KpoEY33PRw3yZlrI4hVi9oyFQkL4xw8Dshrsp8\nfhbAPwDwCwD+pBDiDwH4PmNMCeC7vxEH92FGIhRm2RSlXgJIbakgNvcqJCxo0AfJ+dCYpjdlD420\nAODuUFumU7sHOF6bS+x9+DI0yBIglxqlFk6ME2uaTDfnlwQqw8I3Y4MQqW3GjgAzHtL/b5+Q59Bo\nikV9ilW9we3BPXvcKf3tbUe26cbMT4ePO6/DWVc4MR5Ea7TrAbwb8AwUyfdnyTACnkhbLwAEUy6J\nDdfV3Or0ekIAerfgRW5PV6+vCa/yaFFEQjv7XFZRNsv2HF3pGd69p0nRAzr7C7FoSlK0qAMNv+Ci\nhgAUUZHTlAgqliggVEb9wmrz7osgswuZ5GEb+TSn058pDFRK9guJsjJCXvpolNY4L8+DPifwdJe4\ncmt4vvzVKWN3mGp8/Virr9TCVy6CQwvvs/tj4YWDWb+vqWiswQJQdxM5TCYwZ2/ChGoQL+OFxVXg\n85ox5g/Z7/87IcS/D+B/EUL8S9+A4/rQQ7QtRmpupU+27gYGvKhjmhhMs9btajliwcr+kg7X608K\nnuXYpxUfDIuBbMtQyDGRAJaPSWbk8bnd9W6BSQeEOjtZloUPgefNZYXTbYGBeoJ5dhcAaHHjgdsQ\naG7M9ogMzjuoS3PlhVpm0DUZ6l1U1Hyf27Xu1YnB7QEtCOyQycZ9pP1VHi4VAX4AtakiajrJIVXu\n9d3595Tg+hbPPR09NhbrTsfbvymFQpoUSEwNaRS0aHCU1JikNEDJEjFit4wzKZXRTrvTv+iGN2Ir\nqdzGhnGrDUzZ7PV7HABlqaX7+6yntEoXkpUFZO6zIGC/HxTYmYd+SCHw9Dm4AjTcy15NrNqBugLU\nGLJIkSWnbu6N+5mTtIF0JVdPhXYlVevv5LX7GlR6G2n1Ab5kztnOvVGDk6KxYq4WeFjJYkODo0wj\nV/kY2t4fWTKk/tr5l6j3+fhp73v0Mj5YXAU+uRAiMca0AGCM+VEhxNsA/h6AbzqZ1/cchnTP0iTH\nJN1immlHiQ5LJty7ifxtcPUktysT2A/LWPoPVJ8AYzdSBAoFEhianFwcL2lAkIkECQqIvCZ9q6yO\nG8fB7BJUFgHPVxc53tlSOfHb5+eYprcCG254R1SAACVNI9sGt/tGj1CjpTnTdS0BpBhI2oV+bACb\n7dQuK0iTwi0KqJZxxtMhMnRfZ88YLBQlDcEC4YS+tfEO3g82taNhUzsr03XC5MHFQPGZZoh8SU+b\nGlKlfnd98SapYId+QIFIrZA5gQEfa4+umPv6HAKynPWINKX3PxvCFBNUDZWNsmRIMyxsgx76IYWv\nF2Q7DRqnjh2CdndeZg9wNiuY8rHvnakMw+kdq995iq8uUwcek7SFFMoxLSlaAP49EIAbmub3jyNN\njKtUhMBzb1Q5irWzSgmHl8P3VlVOFSOvGtroWeBpH70gPx8h9tRHrnNcBT7/A4DfB+CX+QFjzN8S\nQrwD4G982Af2oUdnx5klpPYMAF0ywCSNS27Jgensbm8hMbUDkr5ywlXhdn3lCub0S07aX8xnSKzc\nSDLLiTLLNODx0BuEcZ3eUlHXzSnOdlucbnPX2yIGEs01yWy4n8XYv4O2sQOHa3qt1YaApy/zGR45\nCf9XJlMACxxlhQOdo5zmiLJkSE3fcgVsz/YBp2tZzrt5gF7HLeiIQYg/3J3FWhSAkpkTJuX3kKfq\nQ5kep53XzQiqjVd8tkKnyr6Xhq2jmxLm8iGBzvK84yUTzKa01sxMHUcvYYTwdGaVk18R7OBwtgG7\nazqgKRRN/k8GNHw5HlK2GtDBd3rllB7SpACSAWnk2ZfZ80MK6Ozc39m/Pz3o8DUkq4w3ex3QAQDl\niubFMuATk1Ortq0wUsdU4nr2gK4bW2h3QhjTYZsuAdRWCsoAUDjKfMZD99rYeQ8ZIQAWNrWgw70s\nzkBdX3V57rT9zCEGw8v4QHFwFTTG/HsHHv+7IIOif7hDJKjarasf57LFNGvd91liXLks7MloW2bp\ngk8WiF0CrE49iPpD/PMr/XqcZMyCSmHL87jslaXArRtIhhuvydVRaYiGMVWOrV5YKqo/ZnYXJd+b\nBiqf0CwPEA/t2b6KuWTJp7UnI3QXVDtZXrXeevyVyRS5vHCg43a3dmccZTeAn1cKFKXRaJp0H3UA\nsutO2cAPWu5dVyIqsDCpNvuK5HvA0804bL+EgGAYqTDwVmZPconPgd8rLouxmK3KyBtIeQpzdNjG\nurc2c5hZRbNHVY3kyA6M8uQ/l17HQ+D/Z+9dYyzLrvOwb599Xvddt6uqS92t1gxJUYop/1AsRQry\nw1EgC1GEBLSFmFKUhyQTViSLcJD8iCgrP/ISME4QAXQsSKEVwZIRRyLsJCISGYxJQ0mQiDZpQ4FN\nKrI5Qw5nunu6q6vrcV/nvfNj7bVf99yqmpme4ZA9C2h0ve695557zv72Wutb3zeZQ8xu6R7NEg/X\nHabpGuNkCLDxoUs2YS8pR+PMzXbCwUzfxiKhBfviAdTFI3rfehZqK3SGMYinQAoM4gK5nOhM40Xg\nwT1yYh0dQ91aQ0yO/Iy3rSBk6hFlZLQxRIdMKlxU0XapbUneUUobEKp8QiDU0xNUF9a+YVeJ843H\n01M4+EaIZ5ZqDWHJBQQuzRYpYBBvZzP0tZ/9pNGAGuWN3SHGACBTszPm+v2l5RMuOVVr4OSRmbMB\nAOxNDNtMzGe04PeBjpaGNzvX5gR1V2qzMmvR7JKkWlUTyHADXwMPexcBIKvmCw1ASQVjxhVMmDcy\nYrUdE3dGh7YUtdJzRO6MEoOrOxi7LsyskioaRHuZ398Ktb3c0pb7M44eYVJPlJT/vi/jCV+Dy1WR\n87f8HJoKbUBnXdCcVBZb/TQG7rH+7FwhW/iSLwwA8/Ftmj8ar4DVEIIN1XS24wHP5AiNjFA05zgp\nNnhcpEbSaBDv6jdaIyIXdAAaAJbSPs4Dni6COn2RrteHjy0RZn5u6Onm/MjMNPkH8ZTum9UF1Okr\nUK8+gHrlEbqzEvJoRCB2dArs37EZvA6hlAEgOpYSabTRVQoiMeRyaoBHaakp4YiIAkCDBhL2fbH2\nHVb682taff310OjejTcdzyz4KCgPUGgKWzllNiolGBqu8rWgWCnZAI92PwXg9x7cCGvsYTQV7boe\nPoY6PYc6XaJ9SAw0ebQBlmsCHi6taB0rF3SgLRlcF8tNUwOIzXuc6QyPxTXpBXxfk0YPzK7qM/qb\nGCQ3IjO6mePKp+Ey4LUXSCPqF5nMoikBXgSKJXB6boGGgwFIWxh05yW688KAjyobREVLcjesOIAd\nsieXAPwuYdKtz+UywgMDUKMzvEBpwJRrFhsjTCqyGNFeAzEZUFmq1qrMSQKlF0bXGbVVtef1I8Uj\nzKa3yCpbZz8A/MxXqzerfGKGnVllY1lHWi2jxl626X1rLuiFfk0yqk3J2CuzLR4a4FEPT9GdlbRR\nqPR81HhNckSBRI1Qagt46j96oj/3ErHONgQANTukMlyQNWz5akUbPZQ78VltiwPQtKwAACAASURB\nVFM6z3EKzG6jVTVWzSmqbuMTEZjY4X6W75bc3rJ4ZsGHw6hKxwBg5T/SaIAkyrXB2/Y8j7v72zVr\n8rqDd9HjIVDXEOuC6vt5bLTFkCa2rBGADjuOch+HpU/KlifLWxzk7Gza4eZgQrbWcNhNcUpDlE5J\nki2pW1XTtHm5oPPFUifBohBKp8TcSOe/TxNanJLEApD+Gcu+RLoC2KGAyCWiWb7d4wrLfhy7wJ8l\nejjkjiyJn6MPgMLXaaoejT39/rIYQlsqiFz3abQ4qemXObp1Sgi0nc12pEiwlxGlOIl0f4zPFQ+J\nBsCD0Q1rmx0nmCQtxkmEadoZogdf2/xZAbyZsqMCzNZ0iTbM8OPrXpXH9Jny8ej3a0qBfK26njpu\n6GxbjIbAZEAZD6iXKSYD+vlg1As87jG5PdRWNMjlRJcRNXlBXx9CZlDQNid6U5ZGhd5AOp+pU9qN\n9rKnV3Z7isKi3whxJfgIIX74st8rpf6np3c4bzyEED8I4GMgmfBfU0q9cPkjfMCg3VzjAQ/viGKZ\nQ0UDZ1G3u0ATuy4qdxHjJqfMtrMft78wsjpicviYbuz5jMoY+dhmKI4gKmAHXzmSiBbaiVNS4Uwn\nl1NMZGDopnffAC18raiN06q1HlhgK9jKQNfj+TyZYxIJ0vG+nTMBLAA5JTdexJUup0U3gcihfxvA\n8dxaLwn3906GBked2ZXlMbpufAr77g5XYwywO3reOBRLbTiXQKUJokCJ2e/7JLbEqcuk4WcoRYJ5\nNqaGfPmASrLhgHEPHRwgkDkaboyFNzfgDa0d/rA0AEsdV1Rqc1mdLrlANKXtr80OrRDrcO0LsO4C\nHgCQKcTB+4DBHJjPIPceQL5HZ/d6Lg07pHXCSD0iiW8Wp3iuKRgSHsToZ5/O9qyO3+k54slg+2++\nxnHVeifIcvRjIFuFNYCfUEr9o8seK4S4AeC3ATwPslT4kFLqVP/u5wF8GFRU/4tKqU+92fdwnczn\nwwD+JQB/T3//rwD4fwAcg663rzn4CCEkgF8GeYy/CuBzQohPKqW+eNVjvUlyOYAUMXI5oRtMp+1M\nic2yMRptpnWtcBeFkNrphtvgdmM+ozkdAJjMfdDRQMHZTt97avWNaAEkNtlcfM2k1yVLbBEluoaa\n/OCG+xIyn8DtH9i+RY00G5BatcygUsc1FPB6P8Lt5zAJYjTcYvGZWZWraMg9GeIuYVILQJpaHZ4m\n1yemJ5ST3QkNlN5MFIOOS+rIxmZT48rHcGN/HO8DyxO7QemTVIqdxdn5mKRIcHtIZnOegkRB5y6O\nU8QyR2NUBAhwQrtsHgI2VOrCkkoAGADCvPYJB7EjArorRjcgRjfoMS7b7QrA4ffH13+qiSRb5yW1\nmxULptteQ8xCNHF4SPdfYDj5hkNEW4PQb+hprrfe/WsgYtj7QWZyvwLge6947EcBfEYp9YIQ4qP6\n+58TQnwAZDr3HQBuA/i0EOLblOqxzH0dcZ0VKAHwAXa4E0LcAvDXlVI/+WZe+CnH9wD4klLqJQDQ\n7n0fBHAl+LjBNxgZt1mXUsW9jaZCnI8h9bzBzmHRvp1eAEAC2KYX9wWDjiOs6WY6u3mtFJGQPuCU\nS6jymHatvIgGWQSXzEKGE4ArF3rRlEilzX6KdkllO0m764GcmjkTxa9bOOUkDi5lcabnvH+2CYiz\nMb0f9GRjfDwBWDdoTBnRfb8hAIGz07Di4jAJ6cGBqkI+JpuDdAEMCFwNwcAlaLi9MiFQtTbr2dok\nFAs6lq4xfjy94S2u/qaKMp4BMQ2LJxa49TUQa2CWUYJWxVsg5ClAMDEmjNmhUSD3CAIMPFdkquLG\ncwAIbBpVw5x8dX19NTOvBVitP3Yx1Vm9+7f0fwJ3psg71klqbOrfQXGd9e6DAH5T+/p8Vgixp9fu\n5y957AcBfJ9+/G8A+D0AP6d//lta3ebLQogv6WP4/TfzJq4DPncda1UAeAjgW97Mi74FcQfAK873\nr4LQ3gshxE8B+CkAuPsth71P5C2yLiik/afKTqKjfxjSHRzc1UdwI2CPMV1agUskBaBwOfh57ycJ\ngMexpnbmY1DahVrEKTKn1ChF7C9a6zNaBAejneclbJgf5Bt9PBtIOfWHU/MxkMOCkAs4xtSvQatK\nIy7ZqoY2C+kQaX7bVxLg88j/OxliX/+Oz5OQuuwYV4aVZbKgAKhD62UjKisH2+DK14WbNTnPw0DN\n8zQ7B5F3CIS6PS4ZT7YUHLxFtllYRqX5g0yz0fyyFGDLTVQF0JsWNzvQZcdegLnGYKzxr9J256w5\n6Ort2c1QT7ayI1z6vIlyaaj2nDF5ZAN3IPiKDPdtiAMhxOed7z+ulPq4/vo6613f39y54rFHzlr/\nGoAj57k+2/NcbyquAz6fEUJ8CsD/qL//ETiDp19PoT+8jwPAd37Xe1XR+qUDc9O3zpT9ak204qv6\nC2yr3fpzGybCdDtOIfqEIpzM5ioag9tX4eiCTJim9xMjpLg9LV+Z3aoCaB6m8UHI2Ibz3NGTcyol\nzWtgP7WlN6dn5AYbpVFmObD01zBC4OUJe+3oaoBD204MYmtmlmZ6cFJHWKoxsix6kds+l45Kdk8W\nZI5P99jCXgn/v2l1CSgExTD7Ug2qbomuPvd8pNKIsqBUDozUS6plcRQfAwuDpolfjm0qiKaElP5t\nzZmLmfB3y52xVgyPNfsv9hdboSsAyt2IuddPkOWY8+T+z+FtAnyBUmbXcYm4L/gzcjde11Es5yxN\nAEDzBHE+Nn1cw4hj4Ak2m4olnJ5SXFdrEMBjpdR3P7UXfp2hlFJCiKfEpOqPK8FHKfURIcSfAfAn\n9Y8+rpT6n9/Kg3oDcQ/AXef7b9Y/2xm8aAGX7KR21NfdpjDN91T2Au4aosNyc7utfOAJQMgtoW3a\nC4yFP9nNfRb3ou3buXeqxaZZYBBbkzdm8gl3cn9nic8BocbPhsxOmYHn9JxmINg6fP8mtG6KPr5m\na4GnDGxoNerOz+ziycHlKDaN0+Wool16oMNeR2nUYZqSD1Id0cCiPbH+u3N7Km5m0KkWrQiHKHsM\n6oIMyiVV9IFZ1a3JxjodQma5l7mxWSCbFtogC2qa1ndtyzmj2qdyoMsyZODhaCrEctwjlBn7myru\nYySJIxsUvOfz+zQ4enrul0Tdr3UGpbCjrxMATtvVJsurWp/yTbqHvgRVeI+6AOSGYem5JKBgs2VK\nzQVs6Xt1Qtd9sbSU+dR57ncmO+06692uv0kueexDIcQtpdQDXaJ79Dpe73XHdanW/wjAQin1aSHE\nUAgxUUrtLrS//fE5AO8XQrwHdFJ+FMCPXfaAuo3wcN2Rqi57zCun5KaHINVqDVElwKzSu6AbdBM5\nrBpvql37yJsmfKi8DGz1bKpug4vqGPfXEreHZ5imh0YS5KrgUsVZ2eBxkeDO6AKzlB5rZmyKpe0Z\n8HCndzJqX7IGMMrHCnpHeH5mhl674yVU0UAejaC4sT6LgQyGLgzA7GYzqawlxOmL1qiOBy6ZTABs\nlaPqrjALtWuwR9bSShuUNZgkC680w8ELmQs64aLcBx5bABQAT6h1Fgb/ru5KQ2F238eitgt4aNdR\ntizz1CCT2mRQasFLp6TXu9hrFQH2PNr6nc56FMs1aQFS8kuiz4Akgh4Ax/dpcPRsoct7eqDV1RAE\n9DUTZDsOWcBliTLoPC4iAL6qNTPq+s9nvQVA4bn2H1D5Gy5zDjQIcYvHBR6XWMDKGQ1s5vsmI5wt\nfBNxnfXukwA+ons63wvgXIPK8SWP/SSAHwfwgv7/d5yf/00hxC+BCAfvB/AP3uybuA7V+s+D+iQ3\nALwPVOv7VQDf/2Zf/GmFUqoRQnwEwKdA9MFfV0p94bLHlJ3AvVWCRd0ZzbFISMsC65ptAzYn6GaY\nEgupWhs5Ffem9AAoJAqAbppVc4r7qxL3VhleXUkcj1q8d3qMm4OCBD95tiOfeK/PC6YLPBdVhEzG\nGMQ0PDeMJtTn6bMm4PfGxxsCktuf2qyM3AgP3pGZWUzU2tEamPSrHQOg2SmR0HsplmYI06VXe7v4\nbGz6AFXHduK+U+Z5FWGWdkacsmxb21dylMP7AIdBMTQyC8MAUFv1As+WjxM/v6MM4FqyL2r6jJa1\ntRbfS2G8nqYpf6bC+OKUrUAaNahFCSkSNCImxmC5e1hZNCmETL0MgY5PS+uEJoRNZXs3ShlTQd5s\ntA9X9FnPMsp4hzkNybKSOjMDeZF2gbq1GdymWWBRA4ta4njDSw+52LLI7GWfBf1/dd/HlBfd92ci\nYJ1yad1Va8dQl9qrnT3Nr2XsWu+EED+tf/+rAH4XRLP+Eohq/ZOXPVY/9QsAPiGE+DCAlwF8SD/m\nC0KIT4BICQ2An32zTDfgepnPz4KYDX9fH8g/E0LcfLMv/LRDKfW7oBN+rdCD246/zoAorUoB2Rii\nqUhLC9DaWSTUCJD4oJQx1Ys3p9vSIlUNjGtgVFGtvC0hRvsQDgABdCON4jmem6xxkJ9hmiZ4z6TG\nND2kuY7z+yT3AUDM70Lm283kNBrg5gDYyzY4K0vs5wNMk0PEZQE0T+iP3CZxnBLQ9DHLwtkZ12do\nXNPjmpYm2KGFTcd6wj4datBYoO4Kb6EBWgziAiq/Sedx7giTjodmHsQQLISARIw0GqJTLSbJApls\njXzKopbG7mKStJimZM2QS5vxhcFqD4AdoHQ/B3do2FNm0AtUrzCp2n37tIpssFM0oG1I5xx/h3FC\nyMdGhRMNQL71RuZTnIsF1OoeXROn53Tu9v2+L4N32CvbtBcYZhN7XTP48ICqdmiVodZZSRuNCIDK\npTGhM5+dVtlwVS5C0OGBTi4x8sCzq2zunvddYaj+LFWlg6WsTLhqI7uiqTzxWiOHBACJBud33niP\nib71ToMOf61Aa/e1Hqt/foIdSYVS6hcB/OKbOOStuA74lEqpSvBQnhAxru6Fv+NDChjl6nEyRC4n\n/hwLlzdYvkYDD4eRFlmc2nLUeUkeO3NaqA0IDSpabLMJRDb2ZhNYSj6NhkjlKUbxIQktrl4Gzo+B\nJ1SeUrpGneYTVB3QCn8OI40G+KYhzYRwk9ujcpsDT6mk4L2ZgP4bhAKAGczwJOJzyMlAa3jNaMZj\ntI91t0DRLrGs17q0RJkKKSpcIBISkxvPQXUNPZe7cO1oUidRjlY2kFGNNGo8ELJuoCMSqNTWyGF/\njM4zlXS4wc3ZkQs8LA5rNN8KJ2t0hEmlnHo9nzDcQU1EMOaAVae84wfgqab3HU+MGFg9IXsCDTrq\n4WOo0yWpAHw7fADqcRs1ChWyxni8b1WdAYjB3D6mXRIVXisBALDyRrmEkcEOyQ6B/YILOm3XYFED\nofnGNw33LKjuAJWt6JFC8kqPfWxSnt0Jf87ZvKsnqEVsFbQPFmeET63voy4t1T5rcR3w+T+EEH8J\nwEAI8QMA/gLIbuHrOiJBZY5JAuRyjKyLgOKJKZEBoAwo62GklUsqTSxOKeN59ATNV8+NrlVUtIgO\ndUO+qqlgCVuG63tOKWLM09vEBNMNeXV6Djx6Qr0RfnycbrGZzExI25GGmltm6xPJdG+mYOakLwzl\nmBcsgMoToyGwfxNitI8y6lA0S5wUGyzqGBeVNHpiAHQ5kKT9h/O7UOHArDkR7rwRqzGMUXcFLeSq\nwSCmBdUzbWtKqBWxRM3zgoYoAUDGzja2c2wv+oBH75w9goYjTCriVHvL+Hp/u4KVAga6zJdGDXnY\n9Dh+egoCF8fWmkETPboH52gfrkwpLAM8AGK3UZdBR/2xGgDR1EejOZ2XmKWUFiYzlCIx58wtsQIg\n+Ru26J7PSHVas/9CujSDzqKWRlOOrgOFg/wmhrUAmjWoInR1eJ5DzjWtsLYZers9W2RMAeGAjwYe\n5ZTb0LT0fsuGYLKqgXfceM83VlwHfD4KUjn4xwD+fVC69mtv5UG9HRELsrkeJXtU4rp4YHe4erpa\nCYFNe+ErAjDwnB9vAU93XkKVVgU3mjmGawEASS3p7s4IqVIrPp+fmUavERaNpQGBeH7XGKBtDY4C\nuxltfdlFsHPlcMsfIteAUy4MO01UNcmQDOZoshxFc4plvcbjIvX6MnQqyG/lrKwgxRKQIGOxHSGU\nQoyYym+Chh5djT0AdmC17Wx5crOyApLBrIbIYczC6BzZgUT+1ws8wSS/ESYFPIM6Pib6vm9I07nV\nNAjtKvWphe8HxJlO8/IFuvMSm9darE4TZKMW0ewhkmEOMRhBzO+iaBfYNAun1yS1onULoAZioK0b\njNI5gA5Fc+6RIdKoAOKZuUa68xLVEshyuq4FqzQM98iortt4enQ+qUKaHhfpCnaYZ3cosz9+8fLr\nsi9cKjT3KN2SsenlxYbZ5v2OS209wMMK6gAgMk00YtXxvg3oGwilnhrh4BsiLgUfLcXwm0qpfxvA\nX3t7DuntiSxWmGe3SRKerQI49AXeykg3mUGDkax6cHwf6pUHZhd6pfJt6twg+vm9Ibhdw4NcX89j\n+xwP7kE1FbL5Xajy1A798fNct0QQqlHrnSuHa46XxgMCoFhL2kz0ORruAaMb2LRPtF9QjJOCdrqu\nCn2oSO/V9due985acfprqXe9ccA6UpuXodjvaLm2MjY3ZlSvZ48f2Cb8pcEMqV2q4+7xxekWDT4s\npxLgDMx8EdBPy/aAh4cde4CHr7MoVpApvbZwvDFUPkFVUp8vjQTSCMhka3ot9D+VLzkYLDgiIcEK\n50gTRLMM6XgFkUkS/ORsd3YLi+bEsAhd6viipmWFPLJgvh4le9asjRd/17J917lmoHHVpvXPxHxG\nfSvncwljK/vh59GkF1U2nm2CKhuI5RpIzmkzc/kRvhtvMC4FH6VUK4R4TgiRKqWuHlf+OgopUmTr\ndf9Coxe/GKlxThTFgsphD+5B3XuI9pUzk5WEIXJJi4JrfOZIdKi2JPfIEHj45hkNKdOoaip1pA6z\nCCCqcnhT8v+u8KYbAZFAjPa3bJIBS2PtVIsaBSIh7ZyJHOtBUpr9EaN9lKpA3ZVY1NAUaB942N6Y\nS5xMub6qKezNFun35y0CbpPYLZtokzkxp8yMAQjXYcte1aSO+m8X15Ssr2HOmQ0THvyfJx4lHtWa\n/t8BPCKTSMcNuqZFOmgRzdjfqH8RZxBa6EuEsiEg67bLXQNtAQ4AYnYLeH4NWdWG6SbuHAHPPQ8x\nv4sFlljVZx6bry8y2eFw0GE/H9Bzr54YszZiliEwBwzYlyHgOKAB0D0ijg6oRHadjZdj3eFmOxzm\nPK8LGiN4+Pjq57x2vJv5uHGdsttLAP5vIcQnAZjVVin1S2/ZUb0NIdrmWjvcWI6BprTA8+VXUf/T\nJ73ZDsnmS2tzzPVxlkBxFy9dzuk9hjgFRrSrMwuuN9hXQ736wPsezt8J3lH2aVJp4OGSCdfp+6b1\nzVNGzrR9PIAYpRBtBRVnKOpHqNqNpjv3T2+PkxZppJDKAXn9cOnSfb8cDADcXD89p8XGfe9a4p6b\n4QDMz0QWQ2q/G1HVJEzKczHZ2JS/PBVnZ/rf65fxsV1DJqbPFdOU8QBtYDf1MkxPL40VMrTfUVhq\nE5nNcKJZhhwlRJ4S41BfX30LGxMZJtgYAAJg5qQ4CKS0G6/O6MT8LnB3hQjaN0gDz1qUWFVnuL/e\nIQPkRBopbe42phJpuSCzttNzABo8QnNAvp41QLmZiiob45Gkihbxc/pzZ9V3LrHpe830/0qYoXG1\nWntGhTujqqGwhtDH+m483bgO+Lyo/0Wggss3RnSN1bfqkwjhLKStoE5fAV7+CtS9h6j/6ROs/miN\nphKIU0W7zyyi0hg0AHGZjGnILgjo5+21VAhjPrMcocCkTBWtKbmIzPkY08QuvONggDNwKO1zrDQv\n55Ri2oia+2baPhpAantuKikpLGqJuhNbJTYAZobFDJquXiZwAegcs+Q9YBdfZ8aEFxoylaP/u5KG\nE6PM33GLPIYqG8iS5rSEPo/Uz6sAGZn3yu6c4WDqVoSkCMB+Xq4Uj8vaaiofzGISJM2yMaSMrWae\nYbNphYwAeOqvLlBtJKK4QZx0kLPUlMCiPcffyClJhsw5+x4XBoAeFwky2eEgp898EE98hQgW5bz5\nXspG8rEBHh6IPt6QQSH9s8Oi7AbMLL40GlHWszyxFtW8odBKGWTNnhirDcVDnzqjdc0Fu/PSuwZk\n0SIynzV2EmcAWBC7AnhU2UDouSseyH03nm7svOuEEH9DKfXvAjhTSn3sbTymty8YYLQ1wM6/aSqo\nmmvDDZpKoKkjxGlL/6NDhMYBILmd9byecHpD0JLu7g6QSwVhycADoTDSIWU8rnKAZiUBFmxsf0Dq\nn9PA4zT1LZgHMjEeKgBwZ7RGJmPs55ZCzIsQzR49p50r/9/LlZnd91k2O4Gnqel1YvjqABH471vL\nWgpejxhZCjKqkVynHsdA4/aQALM52SWTv5VFOdE7z+L8bbg4do2A4/hszOnU6RJ4+BhIEsTx+zBK\n5gZ43NdpVY1cTjCIF7r8VyOTSo8ZjI3zJxonI+XXmltlFSkS7QmltoDHtaB3TegYAHnDxf0aWuCd\nbCfxs3tzLhwzNz4nDDzmHGmQ8o7bZVMG9yC74wJX3DdPMRRUb8/vWY3Lzvp3CSFuA/hzQojfREDU\nV0o9eUuP7K2OKLaeI1eEmBwBz9NgXQJgiidQZQuRpbYezhPgexNbAmB3yR5DLE/2BnAABwSG7s0y\nn20blIUKBRxx0Gty9dJAu3OW7Oc5lDagY3P9vuqolp9G9oaJhCTlhGKhvWDI+yiXG4yTpZFB8WwB\nygLq1S9YAA3DlfYJ7bX5M+CMcpYhKhpE55w52syHFyT6e+c8TOZmiHLVnGLTLHBRSQBEPwZAzLl8\nDKx6MlL3eAISw9aiJoQhNghMAFlZccqY3UqJgJBGQ8QitmWhODXZbqRfSuQxpH6v0WxI1xjglR7x\nyiNzXofzu0TlhM94jOMUcZwiTW5qILog2jurYJx9xQw0s29S+N5EAWRxioP8OaTRI5xXF1ufE4GO\nX36suxJVt0GWTaByMotTyzXEEL7BHv9bro0bLABTxhY5lbTdMqQ8GiE6HAN7EyKaTG96XkDm2Ef7\npoQtQKP9pkdqTpIuI/aZ/r0bTz0uA59fBfAZAO8F8A/hX1FK//zrN6Kr69Um4hRicgR1hxaFNKPS\njshiKnvwxcrT+gw6zqQ5AGMHANBsznB0A8JpvKu2tHpSIQCNYAzKlAs+YbjH4tpLO89F4ECWBOiA\n1kn7yjbS1FyYPs4ksY9LoyGViTanZoGKswniOEOaUCZk6N/rBbB+Fer8zD9GFzjNVHnSmyX07UpF\nLhHtZWgfrrdKJ13ZIdaLFC8eTAfftBealRfhcRGj6gQO8hpSlJBiA8gB4mxC/kAupXfLORRa88tn\nV7GkTK8ytp4f8wVOa1JW5p05l4H1ZiNKE4hcojvr70169s4PtUr43XrbVhzwqOexzDDJx8BmCbV5\n0ZY6NYFDjIa0kE/mXp/Sqp5XmOUzJHneKzXkbmbaTm9wVA24Cguso+babTPo4RiCySMc2pZcHsWI\n9jJzTuTRiDZ8Rwc06zS73ctOEzLVoJRR/y/cwPFrMTnIlXu6rIz3OoJsUd4dMuXYCT5Kqb8C4K8I\nIX5FKfUzb+MxvS2hBEi1YPXkauKBDjE5gnqOLlxjEOZKjGgGGU+Yd83xVmmLmUEH+QJtUmOcW0UC\noyAdApAryc9y+oE+l6GecqkvSbwFx3sfShkSQSdaKqN0JH8SAs+yjjBNBdJIUM+mi3xV6iSBis+A\ndAipX8fMKum+Dara9iZcUUo+h+7ivgtU+dgzWnx4N9w+XJkhyKaOECc6+2EQnsyhxvvYNCco2qUZ\nfFzqsh1pqDkU83xKC6SrgdfrHKpZi01qdtmu2rkHQHHqWSnw30UaiGJoOrBbbh0NIe7eAtIEcmLF\nXC8L9fDU0JdF4iymgSK14mtjs6LhVd1L7I4pC4xmGbBaQ8zX1rodMKVpEuZcYJhNgHwGlWSmhwgA\nrbDWFwABUN0VaKIBZZflgsCNRWXj1G7Y4tTLUEjYtvXeg0gTSN6UMPDMDiGmRP/mQV3zmYrEZqT5\neMunyZsJczy0rJbfu4SDtyKuY6nwDQc8AC0Ui/YJBiM9qLjarnV7oUFADOZQd2LDqAkBp6i+aqa7\nOYso28Sbtag7gcdFhzujM+znJUbpnDoPlwGQG7PUloP04ijSYLFx6tymGe00yRmA6Fw0SKMGZVCO\ndtlrqSTtO3V+30qTmF2r/qOu8abx1elSz0G1ukG+BLQsD9KEFkgXgMISog7OfqK9DGIyAKsryzSB\nyGMz8e/9/TA3U/jr9sIY27EA63nF5Tq+BSwDLRvdANoSWK8N0UMgoDLr60FhQYtZPtntkKqFSdkE\nkLMeluCJpRbUdG27m4o2GkcHQJIgGuZGwikEIUMPziU18psWisuvK9hz7Z3ntR221M/LDX1VNJCA\no9BRa9KMn5mqam1kh4bZBKVIvFkxrogaENLvVWQTqElj5GtCXbh4dstmL7tKtUM6ZwZ4bjyHRfsE\np+UpMfcc91YvGICCTZ0LNq1aoq5OULUbcx+/G08/3nmSrW9TCERUQgKg4oxuANNYDkpVZgerhx/1\nTlDFGdbtBdrWtr9c4CFpEbFFQR4nHe6MKuznA4ziOWUTpTUdM2BhrJwDYVAO1mkbwe9LcNkAIFkY\nNrlzQShOjex+EtHPJ9iAJuEpI5gkLapO4PawRS7HNASp6ao7YzAyIqSiaREVLVTW+MARRjCnJEa2\nzm52uGlCWnJ63kmdnmvWX0NluFmGuNzozyfeInpIkWCSNChben91JzBOOkxTK0xqBkOZrbZZUfZW\nsVLF0AJkoxWPHQBK8wlaFfv6cCxMGlfGRZOD2WUNGsoI2hKA3oWnQ/rMNS6JlIYdozShLMgpuTHR\nxZwnBh79vZdthpsUBqe8Ac6D51sXllwx9un89uvh1gxVOM+UyoHp/0EpanoG+wAAIABJREFUyqTK\nBZD6sk7Uj0yAQnvsJHQtqGr7tc170gOvaCuM4310qkUkpJ3P488h9NSSqbEAqboN4Bwzbw6oUiG1\nOO7TiO7dOR8nnmnw8Si22RjcfOYyCQBdKtG00GADVAXMICkSDOIJqu5iK4vgmKZk4WCAR+SkKcfD\nhfkYGNi7WciMQCj0JXEBkndwbhnBDc3mY5M4Qz4AtEaZLb9NksYIYHIM4qmlyoZace5CxDt3HpLl\nU8Zlt3BWKTw5VW2l+lO96+8BOlUTXZbnPQBaMF3KuxtGviaKMdVGYWUr9OBraywfWO4GhVYZWFpq\nu2DByVCtgo+pJACKs7FxjfXYbm1qf8/zNDpa1QAyJrO4prKLOfcCoxio7tP5WxeU4QSVIG7Gu4ST\nnaDj9IQEz0RxU1839k1oAAKrR4TPxe9f+ziF7sBSJEiizPenklTeUm3p91PaikqebhncVfoIS4nB\ncK1oSrIh0V+jWdjz2COTY4AnOF54SfHXH1gIIW4A+G0AzwP4CoAPKaW2rIOFED8I4GMg/sWvKaVe\nuOzxQojnAfwhgD/ST/FZpdRPB8/5SQDvVUr98auO89kFH+EjiRLCsYHeNsFyKZKtstkCB2utAcAg\n3qBsG5P5cExTynjGydACDzfv3Ul+V11aN6qNttplQqF9syhuNqdLeaZxjAmETL3SRIWNEcDkBZIV\nvy+jDpvXjmK7k4V+rV2ZkpvxAJYuGy6azIDi0GWiMMyQb769U7UCoo2WfbGy/rQzz6zETbkwWQ/3\nWiIAIpZ0bDdm/pPz7Fa5sIunK3sEeMKkNHA68BY+BiAZ+6N0QimSNarWBiiw0BleFmsWoLSlxrCv\n5vZ8GHTcgefAKkMV7TbJQ8/kKH4+bYQnqgTYd8gFqsamqT1K/hbwcMRk0x6GqQBwMIi678UhBYhR\n4PzrAj9gn6vUGZwGoH7giY2WIBNH+Hp5GqHUNrP0LYqPAviMUuoFIcRH9fc/5/6Blk77ZQA/AOBV\nAJ8TQnxSKfXFKx7/olLqO/teVAjxwzA7+KvjmQUfDm/eoscEi2XpAd8cbJJsMIgnniqyUAqIBqij\nApm8QCY71B15zxwOGhzkDWbp1Mr/83ChllMxi3CcArrx2cgIrSqsgyUPI7rhKifwxc3As2USB6Bq\nHOtk63rZChogdd0kTfNW39ToK7uF4Nfor0f6hnfnlDgCwHFnLtR4SBmGLqtQGerYNMe53OaxvQAN\nPHr3zgtWU0Fm5BfjZncA+efIyIp6ptEAKAs6v09IWaE7txlWnMXWuTVJ0Cdp4ylhu+df21gQRdsK\nnbokBRrY3Ww9Z5oNEE+OKHNdra2ChnnfPcATgg5/PmwRwrYJo8pmP7z5KXsWyHJJr8MbBF0GFMUS\nmByZe4Up7IOYzidtyjRYuZYloarFZSoSrv4bs+KYieYqhbjP4d4H+vVUuTAbTFaa4NK7GfhtSsg4\nMz8H+qWI3uHxQQDfp7/+DQC/hwB8QB5tX1JKvQQA2vH0gyDDuOs83gshxBjAfwQyHv3EdQ7ymQef\nLS/4oGns/tzXseogo42VJOkJblTWmkGWRgKRkHYxB+xO1Js38AfjTHkwC5g6/LewpAI7Ue8cSAhA\nUWx6QQLwFJ+rnhutVbWR4PeO1S3hpHbKXgH25tdkBFHVQOKrNFwWpsnPpUhulNeJXnjLrR26cCnW\nDumCqeVSJkgiogfzZ8e9CO4PqNUJESr4ObMYIg+ygXBwOPy6wfad5WYbTF4BEMsUMko8EHKDtd9U\nW/YO55p5JvfY+F9oEsgZtf6e9APt583SNX3BBoK7gll8RLARGMScbcY+6Jg3ps9Z61zHfV48HM51\nBoCym8BewR5s7Jxr+zMqYacoVeHZcntKE5pAwRuWGqU3MPs2xoEQ4vPO9x9XSn38mo89Ukqx/tZr\nAI56/uYOgFec718F2W1f9fj3CCH+AFT4/U+UUv+X/vl/AeC/wXU9MvAMg49SnXez90mscP1Xqhit\n8A3NWAuLswSizG4/R9lGRtuMZU+MQyY0aEyOiGbL7J/Rvrnx4rbzm6UagCD7LRPodwEQhcE7c4cu\nzLbLrjIzv69Nq+0LnEE9U0d32EqNjMhBtS31ze+Ln5pejS5lccnIC7ePsFprSrttcIjREGqvxmUt\nYHF4Azg89DITO/Ef6z5E7mes/JlUzvzJMLeurVrKxgwf8gLOJA6318bnvEdexwtzDaRbGxijdK0U\neTRdPPKzYzeqmno9GuB7WYNMued/MrXHVtkeGpczw8+lOwOiPafnBd2D6SmdZVJ5oqloNKAFg59K\nCCDOLCU9gxXcDc9fGOszK0S6ayPgvG8xvUWg0y3Mr7gXaIBnc0qD3/kacfY+tI5SxNMIBeXJVl0R\nj5VS373rl0KITwP4pp5f/YL3mkopIcQbFuYOHv8AwLcopU6EEN8F4H8RQnwHaObzfUqp/1D3ha4V\nzyz4tKpB0S7MImRLH/7NzTeQcafUIBQuFq1qaAfbNb07WJKbGSGNBlAXx7TzdRYjMSCfnGsNtPXc\n8H2/E7Fm9IR1dM3kYptg04vQzfDKMVvjXlfV6SFMBiB3QdVU86I5xyibg8RXnPIgA88ZzauwDYXI\nY8ijka9Rpym0HKrWzDlH1VuMhrtl7tMEODqwmVicWhaVDvqaDNtQBeQAt6yYJhCTAfV7JgNfq49B\nl8+5U7KFzA1weIupG8HPXADaclPdnFoLAqdEea1wAEfI/uyFS6Kko6c9bQr9mXgEjuDxHqXfSuwQ\ngcNl/W3r4AHb9xr9TWT6XkIp2kyFQrTrMyOsa+y8XdX31C1JTqDG+1i3vhrDFvDw7NpyDdyoodIH\nSGe3eysB74RQSv2pXb8TQjwUQtxSSj0QQtwC8Kjnz+4BuOt8/836ZwDQ+3ilVAltNauU+odCiBcB\nfBuAfwHAdwshvgLClJtCiN9TSn3fZe/hmQWfugPOqwuMkwa57HMWtSk52QxYczCpHSzd3gjAQ4aW\nTcXBGliRkDRTVK01RRf+bnh0Y9vfpnAYeEyI4H+OEV1v6PkFEad083KZgr3roQGor/9jFK6DMqQc\nIJ7eIrVm3ZPatE/MHM1+3mCaHSJuKsrmqjMqtS2pV9OdF+jOS7TnlREFNQDE5aLAJgEA1HBtadhp\n4tOeOfjxw70t1l9o3LfVlOZsMCxtDXNaADnrGdmeSQg63CcEnOsnSpDmEy/bdV/bLegImdJiyE1z\n7h9pMorSxIDe0IOYiu3bAxaip3OmjxmAmaPhYd1qCcRJZz4bUbZGyobICLXHqAttJjJJDq1ccoMH\nvkuv4d/XfKfzt/HPYZYjbia236lNHAGQCsJqbVU92FpBlxib0RSr+hFa5d/nDDzq4gFlUWzguC4M\ns09kE6TpEEV07R76paHU9tjFWxSfBPDjAF7Q//9Oz998DsD7hRDvAYHOjwL4scseL4Q4BPBEW+28\nF8D7AbyklPo8gF/Rf/M8gP/1KuABnmHwKdsIL11kOMhLHA1r5HLs7Tzpf1uqua4sBu+oJglQti3G\nSeTMkSTWlIbLVoAZsNu0F7RYcSmo7L/olRD9dXTAW1yqboO2vSAvntE+AZAenMRyrSV4rMq2W35z\nG65SWZ02gOjnUlsyFM25I1mTAthAilNMxzf13Aq/39YIfqqiQVNHSDMt8KhndVDVRhFhi0zACsOp\nVi8eD7f7Gvx/3y4/BJ5NwDztaXqLhBTCt8ptumnPqgV95BT3GuLGtgdC7ufPr+9+xiFb642EW2Zz\nwbilfpNanxGx4mxB/Z6yAxBZsVwNQKpst2aJPEadfp9pNECmNeN29UEBK0MUWnhwlh3ea7kc0xzU\n5pRAonYIKgAQS7ouqhpIayAnLbcyjbGqj3FSEJgxSSiXE5PxgB1we8kwRFb5OowXAHxCCPFhAC8D\n+BAAaK3OX1NK/ZBSqhFCfATAp0BU619XSn3hsscD+JMA/nMhRA1KdX/6zWh8PrPg0yoYOZlNUyON\n2ktvmF0R2iADpNvWygYH+QZV12jZ+gSr5hQyuYlsMIdy7A2qboOifoRNs0AqB6giZ7EK3DIB+Lvo\nne/P3titShDz8EJTURZyek71eyYE6J0xS8BwuBTy8Pm5Sc7zM1VHOnBeRpgmxm0yGuakdDDLEGtt\nPHnkmOyVDdBTUhLuoCmHISDUvjBpU+lMrqfE5AJPsfQXZPP10j4/v6b7NQObo2rBoLNpan3OxNZM\nGH0ewbR9U9njdDYNJM2pNeY4tKySAlG+JRMrwrkePk6XCBLQkQFAnT8wEkikmrBbbdn1EjLnZqT/\n1xmj1MxPHtal96zVG5xzbLLEbrM1ExSGFLFhhqonL9txBD2XpMpme6ZpMoeY30UZdbioqdo0SUja\nKpVDu4kqFnQdMLnEyboFS/7kY08e6+sllFInAL6/5+f3AfyQ8/3vAvjd1/H4vw3gb1/x2l8BcOWM\nD/AMg0+niIXGjDTW2uLy2hsBIiAQ7QRwkPtWBKvmFHJ0iBgxLV5ac4ylXw7yDSbJBrUsLQg5czie\n8diuOr6jNeaFLiuxQZvxqc/t48xALXRpou2ApiD5mJAZqGqdFdZII4FJ0lpShVKU5DkLokgTYD6D\n3NOab0E0L19otYJ8m4hwmTICv06YTTjngkOVC2NRjTTRbqfO3+R62JiBrq599pieYypVgaIle4JN\nU+Oiknhc0GdxZ1RpOjeIsOIY2F12w3G2msYDEsIESBUbsBldmgCjtfGY6R0k5cWTNzhxRhsWfp0V\n+epwmYmzz9cTxoWUFRyUJRm4mw8zPwd4EjZFu+w3v3MyRnckAeszX2cvTUzWYzQWZ3vW7K62ma2M\nYgwimjlKowG5Eq9ObEmbn497iamm0csUrdYDfBrRqXeletx4ZsGnVcB5FWGcdJoaans5VwEPZwbh\nPAy7WXIW1IkW42S4xR5bNaeIhETdlVjWazwuYhxvMjwuJE4KidujGpPEghBiWAAqdQNa9ynImx47\ngcjzD+kaZ36lRJQuSDhSP750gMfcpIuH+nUXVLrTC4jPFCRWYCZrr+TiiWUCtHiPQIA3n0Hde2gW\nE9ZnE3nsaMHp9xPOrQD9mQkHlxGDspYqF7SIae05jEmJAfs39XM5TWvdCxFJYi0eNMGCHVw3zUIL\nlcY43sR4dSWRS8qo74xqHOQdEVBEg60rynHb5KzHdzmNiQCCJWVBzCCMUysuy+8/DBd4tHHgUE6o\n9Fgs6Rw8fOx7JjmSHEacNQhVNMDMucaq2vSvRFshlQMjLsrRqhqx3M54lvUaF5U0JWk3QuBRi4e7\nNd64Dzjbgzh8HwFPszXMb2aOjJsqs+Xc4OthTOeuQYO6K98FjLconlnwUQooWuAy/3k3vNKT/nMu\nSfFwGmBZSzy0CWxnIBst+0F9kgwnRYzXNsBra4G9LMJ5leEgb3FnVGOars1rZyK3Q6mrtd3hxilQ\naSBqU4imQjy6YXTE0mgAtbgPnDyCOn5i3EGjWUYZwIwyhqpbkkSQnEIsT2yWAAADTZAY7UNqQ7ow\nmOXkRZiJxCkwjIGZ1it75YEBw2oJxCXr50moQnskcdbD5AP9VEbd2xPM9F+Ly5VkLLcmC+eVVkpe\n6nOoZ4mY/KH0+wVAYA3Y3XA+3rJmcD8/AHh+Qq6uVVfjICd2ZG/ZjYN7R7qEBzCgDwiA4kqrZ2ui\nQjoEcs3C6iu/snGgBp6ipc81Q2TVG/Q5uKzcdu3gHpbMe0g4jZG62HgCr6kpe0+Sxrieuj5QKBbb\nTE3vfWrgOTw0Gc/jgkptaSRMFs4qC3FZUMZzfnypJQmrJ7izS08jFPDUnusbIZ5Z8GkUcFYBe6nE\nou5w0NVoRd+QX+x9Td8PnHmdwr854hQiG3s9ICkSVC0t1u6garhwvXougVmLXCrMUoFFLXGQd3Yw\nlW2Itdgly+czacAYnTUV0JaQAIbZBOrsK8Dxfagvv2pk8wHdY1mtITYrqPMHGO8/DwAQyxPzXtyG\nPg/pUXPdOqG6swtVdYE2adDKMQbjfcvmctl6ANXwtW2AeuUBolmGdLyCyFMy58s08ISacIB9730l\nJ5bmH93QZIALtEpbVzQV1L5eC0/PaeGaWwOyRkb0ucICHMa6kT2j521khKJe4nER4SuLFA83EV7b\nCHDVKo9pU/NwE4GtRydJg72MvJxyOSG1Cn1OXEvzTbPQ9hbQHjgJIADJszAMQk0FxZgeqiw0lQGe\npVPSlYMYMp6TX1FyRiWmlNSyo7MFolmO6OEKcdH06uOJXPb+3ISzyehUS+KcwpaxW1V75WUOMisk\nLcFBuAcMiRLa1VfAodrfIOVyABiqDPNsjk61/vBwsYA6vwfFoLPLJgO2nKjSIbLsOeRyjIN8O5N6\nN958PLPg07YCZ6VAMSAwWNTAXlRfOVRmjNLKY19pwDwx1eplPoHUYMayLm7jkifBzyrgrBI41U/j\nbkQz2SGVVC7wNMc0ddktEzgHqF9AO11Wa+DBPagvv9o/H8LMt8Ha6GJxeGUzzfBq0GDTXuDRxu3Z\nhLu5NZb1GoP4FKPBnNwyvXPkTKZrQoJcF+b45NGI5moYeMKFYl1QyShNIFJHZ20yB/afx7q9QN0c\nk1yNBv26K5EPxhiMv5VmqvZPTYbQyEgzA2mxHORToqfz8zYV0bdHN7Bpn+Ck2ODeKsPLy8hkOxx7\nKT2KASiJYu2N1CKTC0ySBQbxBMkgB6BQVPexrNdmQ5LJBnsZMQx9+ZcegzpgO7Mcafq7AzyLWmKS\nLBAJiQnbRXDPpqqBowPIqka0WgOPnni2Da7skUuHF6F6QhCUNTSoaSwEVbvB4yLCorbAwxbcfdpp\nraoJdLMJbabilHqTgxGwWVHpFgBmh95w7yS7QV/rexTVGkqb5ZnMOSy3BRqDlOEPgWyCwWiKIn46\nVOt3w49nGnxOK8p+ZmmEso1MfR7Y7vuYHRTXi/ua2wAtqpIavGmsBzaFvdh5kbmoJJa1RNECRQOU\njcBykeBgzE6nZGnATVKsHaVlNmhrWqvJxTMODB5cI1+uoe49pLq+pjm7FsxmAdqsoNKT7Sl8Le0v\nZEa79OYEr63P8EdnOfbzVg/P+rRvbh+UbYOz8hg3BwWmyU1LDw9pzeMhcPOGvRgDnTIFZ7JfS/Oo\noiU7ce5ZDUbA4bficfly4KckUbYRJkmJabrGOFkaEKIeyxJd05oSC3/uaTBQK0b7WHcLrOozPC4S\nvLqSW8ATJgZFCzwuqAR3UUVm3muSrDBNaejxopJY1Km5NqZpC6DBXrYxhn8cIQB5159Dr3fp74ua\n/ItIYWOJNBoiG+1bszwnBAAcHSN65QHUw1O6PvLYqlGwara5NrYHrcmOYFtslN7nNmmErx1XwoYZ\nmgAQO8oQpu+VDs0A8xaTj/USq7U1NHRdU8Po0RgUTQuMhlDDPcSjG71zgG8kaM7n3f4RxzMLPk0T\n4fQsxWtphb2UTN+qTkFGdDFGzkIUtx1QnFiKLu+ieuXqK1KlBiBGVrJGisTYVbPaddHarKepI1Sl\nxKYFckkK2JMEprznKi3z4ivyxpSIzK3LU/A8Ee9kFP0norWDidXa7vZdCjJSveu/wGl5ipcucvzR\neYS9TYSjQdcLQlUnzMK3qNe4O34Z8/Q2DfaVAdNNZz+K/XxccUyQj46qtK/OYmNkYEQu6X2PhhCH\n78OT6j6+dC5Qtqkx7eObfZxQmXOaVjjIH2EQn3olQx7+Myw1wCg6oKlMue3+WuKliwT/35nApgXm\n+jTtZQq5pM/OzV7PKqBoIzB5L5dAJklsFvAZl+5xZLIG4u1BZgNADggx6FTtGp1qHeAhAsu5Ab4K\nabSg8pu7aLs07xvPAbOXIeYv06aFFbRdDbmA/MHlWDiEFQYdqirEvYsuZzyZpCvYt5mgKoSKSYQV\nAJUcme/Am6RQRdy1BNeKGt05HZfrgmuOn0kXemMG6Jbuag2xPjPZz7vx9OOZBZ8sa/GB2xX+uZnC\nt+8VuD3KkMsbhlXmKfE2y94F0/ufw1u0LTMul2OS7Y+WAGpkUiKTCrM0wvPjCK9tGpzNVvjOfYX3\nTEs8P0mRy73tA+/bvXHsqGPzTERIXxa5BGJpF/tQFcCZQVl3CzwuHuGliwx1J1C0XmdE1+07495K\nmZ11DE2jGsB9TJObyNxyniMoKY4Ott9fkgBYa1Oxcysq6oiIisP3YYEl7q9KvHThDwVaIJCoO1ve\nmSSNXvQo+GsZJYYmz5JCMqaML4kyvG8aI41WyGWOQm8UxklrshoAuL9KcOaUUfkfAA1Qu3e/mbSZ\ncRo1qEW5NTPEWTiDhj+wuQ2oTKx5XCSm/DbO98175OwPoBm14Wgf6nBNwH7vIVSx9GatvHkifc2w\nnw+XOinzlOZaCBU/KCKkUYuyFUijHpFfnf3ImK/DzGbPGax6gjvMHKd0XCvQtZ1LiIKO3etZxXK3\nWsRbFB185ZNnPZ5Z8BmlCt990OCPzQvMszkm8oZWFCj0AuzMRTDwMNV1PPQzH8cnRQzmRrGAGWHu\njm4Uz5FGBSbJAgd5g4uKbtA7I1qsv32vwM3BBEnkLKIy9Zr/vBB45mEcLgUZMDcYU3MFV9W0FbWY\nz2jWhRv1zi640ZTqVtUGeAByYn1+HGGWUtYzSVpdu6fGMVNoM6mQRArTlBb9s7KBFKdIx7ctDTqc\n7Hc9i/h3s5SymzSBWq0huQ+0NwH2b0LlE9TV/V4mEWcjmeyMc+lB3ljFCSeYaeVGOG0fCYnnJlMc\n5GdY1LSQuswqAJgkBb6ySB2r7u1jcTMfN8ZJt7MPYvTSdCYsGhoMZk0+XqwHcQ3AKkzv6VNNABRB\nRktzrC41mh1A1dlXTG/R2Ffk0hMVpRmpwy1WHTuAci5OmxLlLbqupXzZCmRSYVF3SKMO03RtSnC1\nLCFFbE3+4N9LaTygCkOj7SFYTXz/JsRsDzg/g5ivIU5dxqIFT1VTWVqkJBukckkVhcmAej752Aya\nvhtPP55d8IkV/sRhi2lyB1nVQB3/oRbbHMH1PAHgL5DpkL4PG64sNKkn39FzwZobJwKiRGKgWowT\nWtzbrkLVKRzkNy89bpEk1GgHds++uBEOZ/INGIJONjbqBm23MAZ6zGhj4OG4M2owTVuT8fAiDADT\nlHeztMC6C+myXiOJTjDIdClDy5fwIp+NbhhpezMHw2A0n1GjWc/eiPkMYjBHqU3/+ko7LvAc5HTM\n42RozOM4wpJP39duzLPbOMjtXJgrd5RMnmCanuKlC6LRu1lPmCWFizKdR/tcraqROIKePGRMJdI1\nXXeAMagD9GxXDG0b7p+TRS2RlTWkWHrkGgYesTwhkspS6/EVrS5LxbRx4Wtutgcxu2XIDazy0HbN\n1vgCmfcBFwEY1x2XRsnzlkBImhJuJjdb4M7HzOXINB5A5IAoYAGIfgHsp8CsomvGvU94E1fXQKJL\ndLE0IMQ9R1LKoEHTd+PpxzMLPnkscJA9B5zfh7p4RCq5Zwur4zUeQs32tqmsgF9ai6wPvdox/8LB\nNw6X9txSift9XxjmGUuqAB6wKNfmmKNHeNPQi4d71KzVoFN1C9RdYTIdW6+XuKh8YgU1zVsPdGTk\n7EjRgJaC/mFFllVxtbx44UrlAKPhHFk3JiWHtgSQ+o3mowRitabh0HyMqlvq47WLNIMOgC3gyeXY\n82EywMH6b3JigViXtFhpwpBOKk2/Zatr5/1N5neRDu5gED/CK8sSX77IDAAyw4sBhqRfOBOIdrpm\nmuFdfn1nOj80qDPHkSxQtq3JMDgeFwkyucY4GZrMYiCndgDTmwPS/ZCssSXaOdGbGxlh1Zx6n5+b\n9ZjrIaJrgUqKOqvphJcZ5hJY6sufM0MGaTpfHTK5wURfZjKKzfWzBUD2lemaGfaUrwG6lpIEgntE\ny7WtJGhhUR40fRqh1LtlNzeeWfCRKgIefBG4d99jg0Wz2jbwTV+nB4A0/dbNdqqG5mNCYUUrUKp3\nyJrSzAZtscz1MOT2EKJQyk55Hx8Te8dRe3ZDAdsAxM8zn3mgo/IJym5jmsStU2ILtaw4w6H/eRe6\n21ysxW6CA918NdruDICdeyISRoJJUuJo+AijeI7h6AYEZ0EcnGnmY7MzlV2CQZyYjAuAt3BxmS2X\nU7PIYnXRc3T2NWL+XPRGQTQlsHZIJ8ahdPt8q3KBNL+NNBpgkiywnzfOMXUauJVzrPS4MItM5cCI\nvGYiJ18ftlxnBte4pgHgOCVr9GyCLBuDDY8O8gWABlUntp7fDF+2HdTFMTHgWMYGsNRjV9lgTIu5\nGu9jVVulfla54I1HJttgoY1wkDe6FBjhoqKyLWdI/qxrhLK1YATYjJGvxYO80bNQ/vDulsqH28cM\nbEVUxJ5UCURFFQXA3kOqLb1s6914uvE1OatCiP8awL8BoALwIoCfVEqd6d/9PIAPA2gB/EWl1Kf0\nz78LwF8HXWm/C+A/0EZHGYDfBPBdAE4A/IgWt7s8yjXUH/wTw54CYJrygoUTgW06taZwkoFXqoUe\nU0hpTyXvll0QMmDUVgQk2jiOJVtCKRj+X5ULmsh+cg51/MQw3VTRWOZO05osiAHIgBCTCQLgCTO0\nNBpiIKdbNFn3fXgeLQDW3WJLHLJqN94gbdXZ2r8bUpfUBhGQRg0mSYtF3WIviwl4oomlzbLdQXh+\n8jGweoLBeB+tqnF7eGZei4EylQMk0cQDHU9YlBWqnTCaZXFqPxf21WHgYW24HvARMkOjs1i3xBYy\nAl3CA33fmizSdVmN2w5qZaX/sXS03aoaSFmhnIzQRFNR+VJqN9FoabJKV0HAgI62+HDVnVkMVg4f\nk/jrMIe4ewu49Twwu41Ne4FISHSq9dXftd8VfQ6W/JBJQheyoG8xSSIv43P7QGEfzD1fBDwdRske\nfaauBUWf8VyYtLj9xM3Knktn8FSlNWXWOc2+jbJ57/G83lDY7vE9y/G1gvS/C+Dntaz3Xwbw8wB+\nTgjxAZCvxHcAuA3g00KIb1NKtSC/iD8P4O+DwOcHAfwdEFCdKqUyb8BAAAAgAElEQVS+VQjxowD+\nMoAfueoA1LpE+8qZyXg4urMScrJDBsWdHahqasDGKZBNIOOJmebmsPL6miDQlKQmfPLIqhMMRmaI\nzrPCrtaWNnpKQpzdeYnuvDDHSxI5OVGuGYQAf0EMgAdZfwOVdbTcC8LK+vskAJ59GUxvIp0e4qI+\ntqcoAJ7jDT3j4aAB1fU7LcPjZIaSvt6XxAocRhM9JKhnqoBeC2lgSbT2fIyBnKJTLW4PSSUgjUbe\nImtAZ3FKQM5lyhszGk51fGkMJLQlNfWBbeAxxI7aP9/52AOzNBKmlNbXHzPnwOlpkKKFznbYSG19\nRtJAPLeypoxVrQvqUbCnTbqGmhEDLBvtQ0rdW5PwS4erewQ6DDju1D8PcKYJAY6+VsXN96IZTVE5\nxmyhvmECmH4hA5GbSaeR3XgAbE/fOOATeQw5Xqy51MvAM473KRstnvhUa6B/o1L72Zw3juDO+vDf\nVDVtOKIYcXwLX08hhLgB4LcBPA/gKwA+pJTakmkQQvwggI+B8uRfU0q9oH/+ZwH8pwD+GIDv0X49\n/JhdycG/BeAvgW6f+wD+HaXU48uO82sCPkqp/9359rMA/k399QcB/JZ2zPuyEOJLAL5HO+RNlVKf\nBQAhxG8C+NMg8Pkg6EQBwN8C8FeFEEKpXYY3+hiKBs1Xt0sv7CtjVHs5usYCD3vOaKVmFcWU/UTJ\nVt+GywJCKQKe4/ukJlzVwGoIMVpbENIDnR7oaNtpBh1VNI7VsRXhFHmLiIf9R3bx6OvvuJ4zrFyt\nzl/2xRZ5QDUUdHS+FkfnkHcqzPefx2l1H4AdouUZE5KZocXjQJefWMOrb4bFAM/qxGix7dThGtvz\nRcOAE7NwpxE5lZqdvS5VuUAezTLg9Bxifm5BCIBbNVSh0ZwGHnN9GF+kxPQAw0zKJV64DXT3fbus\nroGc0rGvHtA5cI9dD9lyti7yGNGMmJeKVS+qGphXUE2FeLRP0kJcvt3cg+Ln27H4bqlmHB5CTI5Q\nDodonY3LLv+rVvnGi65sVchea1WNgbJDvgC0xYnyQGiatlqElEqnwtV9czPjcMjazWjca5nNCsPQ\nluRqtTabS89F9esjPgrgM0qpF4QQH9Xf/5z7B0IICeCXAfwAgFcBfE4I8Uml1BcB/BMAPwzgvwse\n05scgC6ZjwH4gFLqsRDivwLwEdh1uTfeCcXMPwdCaQC4AwIjjlf1z2r9dfhzfswrAKAzqXMA+wAu\nRd2uAhZf7RCnClGsjJJvNMuo/MZ/yIsE19mXazthP1wDI5KmYeOpMPsxqtKrJ55CAU9SqyoAuc2K\nduZ6SI5FQFXRGtmTruzI8Ku0O7wIWhLsMLG7el2f94kF1m0zjQYktrh46GUEWOpms36fuyJqWnOD\nTqeHOK3uG826ZR0Z3bNcKpwUsaY5Qzf8WTYmuARbx8HT3ZX3RaCqLGXslWIMgPE51Ys3u3Z25wXk\nkWNKBhAAhf4tgb02L2IKjrgpsAU6LriGwOMCDp0HW9oU2j7bZL8OULhDtu7nbrJfwB5XnELp0qHJ\nnrhsx71DPo+wUjoYri1DbHYIMbuFtSiBHVYjro6hUEpvwmJUDneCASf0vvJ6jTpjIhX3xlgZkEIF\nk0Umugx5sg06AeCout4G1/C9wvGLMp+3c833mAy+0ejePoWDDwL4Pv31bwD4PQTgA+B7AHxJKfUS\nAAghfks/7otKqT/UP+t73q3kAMDnQbfQSAhxAmAK4EtXHeRbBj5CiE8D+KaeX/2CUoptWX8BtM/8\nH96q4wiO6acA/BQAfPMo94AnyiK9i8wg5mMqYQxG9gJ3bIzdaWgA3kApM8Y4WlUDDTAd3yQ1giO6\nSQSbVmkfEpaxAVZ2SA7+YFyETGtONkgzWBFOLfrICtBuOck1rHMzHgM87GvCWY4Gnp0Lft95lZmm\naDfazZQYZuOkw/t01efOqMLNAblIslNr00NMUKznBZCydJ9aNX8/GBlwJTvvC1IajxLq1cQpndOk\novOsPz+2ahB5TBpy46HJPj1b6LDfl+p+SJVYcoczKY/qDBhVQDZBPLpBC20UI5P++wwznTBzaGSE\nOB9bgdM5PCULXr5EHnvDttz3c4eGWX3AaKSNnHNqxFiJ7s5SS0zDF5MjKiPKFKl+1RB8Nlq4VYrG\nZj6dDyZb9huXBF9HZFVB74dIGo6wb1O8PuBxpHOuFa5zraN2/nUUR0qpB/rr1wAc9fyN2bTreBXA\n917xvL3JgVLq94UQPwPgH4NWrn8G4GevOsi3DHyUUn/qst8LIX4CwL8O4PudEtk9AHedP/tm/bN7\n+uvw5+5jXhVCxABmIOJB3zF9HMDHAeBP3JyqfE9pzSqJaC8jQcujOU3azzQ909318oXtAk+a0IKV\njVE0xzivtkt5bUQZR5oNML37nRDTm7ah7bBzVFv6C26agKb5YwKhGWVmtuxGxmvRLLOLj7OQisHc\nyOK4YZvYtpcQ3qjXCqalxjRl32e6dZA3OBpGGMWHppyESrP98jGaYNq/6jaQWU5MQKaXs45exMO1\nE6MIHeqzmfcYD4hcAZhSmDAOn+fU14slLbQ3ZhbIeKFh4JEpZWPn+l5OtBpDHyhWNVCdQ+VjiDhF\nmg1QRwUyeaHPu/Ca/iGTys0GGhkBoylZY6yeQA33SO5ltd4enOyLwPiOzuktOp98LszJCoalOVvm\naCvELOfT+B18LjW7KgvhBsyN7bK0BSr2t+LBa3N4kYKM7DlDo6/nPh3DS0CnL4vfMi28ecOQLczG\n5ilZaSuErL5L40AI8Xnn+4/r9QvA5Zt77zWJlHVpC+LNhhAiAfAzAP55AC8B+G9Bffz/8rLHfa3Y\nbj8I4D8G8C8rpdbOrz4J4G8KIX4JVFN8P4B/oJRqhRAXQoh/EUQ4+PdAb5Af8+MAfh/UO/p7V/V7\nAABSGMMykcWQd/eAvQkBz2Dk/61zQbP5lomU5gFKVeC8usDjYvuUUqO5QSbJB2Y02sNAHtKN5Byq\nKJfUn9BT2ErLg3jnzpG2F7mknbtrpTwamhsHoxtYd74skBSJ7vHofoLOdtRqbdSiw9e71PNFL1h1\ndx4MFircGVWYZ3PbHF6e+M3htkQ8vWUyoKrboO4KsiGPErIecMFHqy+wsnZd3e+lhpvzrgEIxdK6\ngbId9WrtEw7YA0eb5QG8C18AAhjeeA7q4oERtATW/otxKQvapygdIs7GdhjSlNscvxr4mYDouWwb\nNGiHQ2KvjfahhifATJfFeLEF/M+Nsx5tfLeq7ltaNQOym9UxOLPCxdZBVAh7KqotIWSGdLyPTWtf\ne9WcXprd9PVEXeDpu38y2UGKzDAtPVZb0Iczmbs+Jy6hqM+t1bu/GHj2b5rrYS1KrHQ/822Ox0qp\n7971y8s290KIh0KIW0qpB0KIWwAe9fzZro3+ZbHrMd+pj+lF/fqfAPWZLo2vVc/nr4LUmf6urit+\nVin100qpL+gD/yKoHPezmukGAH8Blmr9d/Q/APjvAfwNXX98AmqIXRkiiSCPRgQ+R3O66A4P+/84\nKLkBzi4qodS8aM9xb5XipLCikSGVln+WyQUO8lMz8Gga/9kYKBeU/aQahMJ6NOCXWRz1ZwBen6dU\nhXF1HMXUTM9EbhvZTDXd5RJ5nWB9sboxC8dB3uD2KMM0uaVLe/f9xj2XSQYVIDPI8b4BHioPkg15\nK2qk2QBSW3i3qkHRHBvhTBv264M8oJDzAGKcWpmkOYxSgsl2dBbG/j9cLmJLhjapMZ7dJgUAfnLu\nw+gBRXWqaefjc4jRIyCbIE2HGGhJfpc+vTXgCjhDrtbana2602iAPJ0gy54jQsZwD1ifQXA/y3vT\nCZVxRzewbE6wrNdIo431E5reoh4kf35eP3BpaemApfvrr01oF12Rj032wxYOmaxNludGp9oes7k6\ncPSNMU2tvBDRsp2SG+u5NZWXsRvyhJPthCruwHZ/x3x/8wZtPCdziMEcaryPRXOC0+IU91Y9gPzO\nDt6Qv6D//52ev/kcgPcLId4DApAfBfBj13jereQAVNb7gBDiUCl1DCIx/OFVB/m1Yrt96yW/+0UA\nv9jz888D+OM9Py8A/NnXfRAygry7B3F4w/ZHtCnVFosmyERYqJBrwo2M8GixwP3VEK9trIZXmNG7\nApN7aYb9vMFBfoKjYYRcjilDYLl7zVpSmlJr1AxCPxXXYloDoRjto4w6rJpTnJkb79QAED1fSiUk\nd8Buh9Ciuzv0siANeOwWymA7TVsrX9NcPszphu2BMGuq1k1rsl5mwcrHRYKTgo7JVQ0AgEUNTNAD\nQADZUQO006/WNpsyAp3FpSoTW8GAz/05FnDl8pV+D23XGHYb2wUw+BinVaWMUnWrCgM6bL52kC+w\nl22QyzEG2RQxNBMv1SVWDUIASAePNx/1Ge6tUk1TJlFRKWO68TXwlKowLqr8/s3wKZM2+jIiJ4p2\nqX2OUkcBgxQJUjlAqxrvc+WouxJVuyGwilxFg3BWK9dEkid0X4bU+8D3qW/TtjM449FrQJPlWNWP\n8GizQNlKc6292ejU6yq7vZl4AcAnhBAfBvAygA8BgBDiNohS/UOanPURAJ8CUa1/XSn1Bf13fwZU\nWToE8L8JIf5AKfWvXpIc3BdC/GcA/k8hRK1f8yeuOsh3AtvtaxJCCqvhxP2RbAy0FQQm1rKYZV0m\nc4ijJcRK19urGuIDH0B78Bzur1/GvVWG1zbbCsZuuBde+Dt3eFPMbgHZBGpyak2zAL82D9iF06H3\nusBzf1ViUSeYJC3ajsgQTaRtAmRG1O4pyK+ma4DFKdSLXzUzJLyYeueNG9zQhltxSgwnEeMg36Bs\nIyPaaUokgNe0dX/WZLmh7zIDzo0+MCCpGlfJwJ2jsfIulL0Q1R3Sqmd78yBRDMgKiCsjTcODtZGq\njcL1ON631uKcuenPRBwdACMqXZInzoFZxIr6WGdpHabpBdJIoJYlqsiW7QwjEjDZFlt0l22m1RBs\ndidFArVyKiTpkP7xdTG9qRfQY60uLRyb6oRsLTanJA2lB1KljCEFkVIM8Jw/sM6546GlovO1oMt6\nVXOCqt2YYdGyDf2LShzk3RYI/f/svWuMZVmWHvTts/fZ59xn3HhkRWVmlava3TO2GTCSPW7zA+GR\nBmzTArVBeDyyZMAesBCMQDLSPBghWQJLbbCwgbEwLWPZxsB4DIw8lns02G1bCMHADBYDnu42dLer\nuiszKzMiMiLu87w3P9Zee+/zuBFZVVn9cOSSUvHIG/eee+45+9trrW99X/fzPUkbAJWlVMe21Ka8\nk28dDJKGLDardWh4EzZO6f4c88Bwn3DgNlG8kZvYc5hMsauf47pYIq/pJj1Ov7Xq1x81jDEXAH5w\n4PePAXwm+PkLoJnJ7uN+DsDP7XnufcnBnwHwZz7Icd5Z8EEU+f6IHvvGrFRQcgpnWSx9qcHoMTAu\nII6t+Oe9T+F89zVbblMWeHyjlI3igCGjMYOezlMdlDXSKUQ6pdfsRGh14L5aJeptvcSmvMTTbeNU\njRNJXkXaUK9kqo6pFIXAJEtq4JAEU83Xv0GzTNizg+SSH5MtQFkLq1rraEI7+/D9dI/fZozdxrSO\nxiia7eDfAbAL8bBqwD5dtNqUUN1LPTADNHUOUWkIqX15BwDLtkgRe+AJBzP5XACUqfJGYf6ak5+5\nyHaOAUiOopwReFt1AJ3B3MQbDdbAQlM2WTcVpLKq1pyNhOw8q2Em5vexq5+3AIH7JjoaUcltdUmf\ndUNjBSqdQqo5nasQeJ6eU0mLe2SpvWYi5cgsZZOjaEgUNJzgLxuBdUmCokVT4STdYqSYVGH1DDv9\nutNx1AIdZgO6rGcf9VnH5PtUtj8XJ5Wz2RJJxAKRu655A8oVA5Mhq9dYFn53OItfDvh8CzOf74q4\n0+ATXnSVjJBV135IUY3ItEsFttK8WNuF/jx/F4+3EssisqZhAlnVvsB29vtR56JbdKoYRD7oH6aY\n33elGQ5+mJ+RyFHXa6dC7YGnbVI2UqW1Z9515ICosV6aDAdv/OO0wLz7DszZ834jG/DAE2RlRN+m\npjotGgpOWLSi3g79rWepwTTB3yvakQtBMi2mciAUZgYAgUxXtucm4KlNDDWkz8UAVMFlP0p2Ppi6\nICNBBh7edbO8TlctOZ1CzO9jWy9tbyrGhS3TJrJxGQE5lqKVLaxLaa8juI1MVgGvjw0eTCLQUDmI\nGr/bANi01RmUdo6rISC4w4sSn/U8v7afIc0rsS6cUroNPFbSScxG9P4eavc6JLqZoah3Lc+erl5b\nVnvTvJO0xCyu2kO2nbmnLv2cyrc5ZT1cchvqUbLau/3efZ2MScH6uVewdgO1dgMqRocklFpe2FL1\nK8fRjzvuLvjIyGU9Jp2hqJe0KIvYlWt0NHJGVrzQF80WTeUX+WWhWnbYWU2Ak1d0G1QlXcS5HWJN\nlMFooOQWLtbMuCqaHcrq2u0SuwOZXTXhcPfMCwDrYYXkh6LZupu7bDLsqpXrpfyGxRPMT96CjBSE\nJjdLFyGrLiz92fcQCmG6naq1HDdNRWUedezOp45G9Li6oNkNoGUP0AUhLUeQUQkdVeCFuEvq2Kce\n4BrVPLhZlrSYVgWgbPaTwe/sObq77O6UPOBAhxlSucksecI4x1oKL5i5ttfFtd24XBUCV3n72gnj\nIpN4OCmo5FavPR2/KgCt3CBxbjKUdWazHoGTlIwLj9MRRnLuzwMfvx3UpXEB+F5n6WdlTGb9bsoS\nwgrqcnkqlGpKpGmJgQKwbr1koEfW8BFmcRMQbdrMuJ4IL+CVvAO1h17m6S6AoAca2KOgKqi83tHG\n4w0ojQtUe605XkZ8QKr1P/Rxd8FHKYjDN2Es04oHL+kCrFBbY6xwkQ5dGlelxNkuxnkm8f4OeH8r\nBhcOFTcOcFJJ5bdUGrw+8gtnUe9QyJ0rexT1svd6YYReMAQ20v7cv2lmcd3ysAHa9N44SgEFyGgH\noERsS2YimcHcu0f1fsADDt/YwRxEbpWxmWSgoxEtGLtLL8Jq2XtmewWkU4xHhwDKtmK1DVElEKro\ngRAxozLUosLCaYbt10hrabtla9+v4eASjV2cyJqAmvD+CTVMKoCppYsz+4vdV+2iH0bdWLfQeIyH\nE1qcLzoU4ryOei6n7vNVbUBNFfDuOrLv5zFO5r8OkufE7BDxtl6irM5Qmwrrctsq6b45FZjHxOSs\nZAQ5XgBHliURzDcZyypUOHUDrQZApK3VyOkJPXZ+H7nJWhmpz+SEY3tO7WX2xoS0/U7SCgd6jok6\nhMqZSBO1LMHpBBYAcldia5U7Q1o1MDyvxEZwbHeiNAysagZfv2Xc03BL1H1M1CFO0rMOm/JVfBxx\nd8FHxg54OFI5Q1avXKZRNjlKK4vLas3LQuI8U7jIFK4K4P2dwJPt8G51CHSYBccS8QDV/UN1aKYc\n76oS55lq1Z+BLvh4f5TQNZQe19hGrweeoYijFJGQWCRr3/Rng7zDg/bQK9/YeuwWIQ4dkT+MYGmb\ni2dexy4og4g4hpk+8wy9kEmlNEnd19qDUDJ1ki0sX1SbEk1Uu88v7B20gMdmYK2yWZcpZbMfV34L\nTpURAsvAOiBSElAJdHTYkokZCikUjtMRcguw6zK6cVfdJaF0472NRCI1vu/oMQ6PSF2K553amxR/\nLS4ShUP9oPU8Yn6fmHKwRJDJEc1OVRdoTI1Jcgil3iTNQoA+8+mYpHaO3urpA7KVwlzXPTdZFlM9\nTkdI5RHG0Qzm+bsw11aMlmesZNKyPmjNg2VrolUPjQXEnWHf8PoMn/OmKEuijm8uMDp4gDouIaM1\nnm6HS7mv4uXEnQUfE8lBdec4SlvOhWystiykNVaLWtnOVd4ur6mgvHaogUVCQBHSr8nojIFHWNfP\nnS8zOUoxzQ117ZiHIqv98/Jzn6TVrcDDIUVsSyHKlzvYMhzwIMHDmOwH1AlHz70m7yHz9JLKNuHK\n2mn2OikTHQPYuDKWB6ECouOxw2VJlvWvReUy1RbwhLYMYTAghkDE5Tf7IwMPUW79Z0DeOEs8mCSY\nqMO+Pp0Nnmk5HZdIZGGvH9nLgujUUK7Bn2M3ODt6tCGU/L6jxy0ZmryOnQAnN8gXicI8fs2RLXiY\nt0JFjEelYVTiLLD5ujtOK0zUIZKjt0gRYXRFn7sDHg8+3eDXTqSxjDWNOEo8W3D1ZfLQOrNzRotz\niMkYxgrguhJZuFEIs51QvQBw4r7u+vmgwON036j0KNYXmE6P7edGc0svqwxHhINXlgocdxd8bF+n\nK3RYNFQ+4pmHq7zCqlRu0WDQeX8rUJURityvFDqpHeikClhoWsQX2jtr9h0affYjrWU102z59a6K\nF7tgKbNSeDApMYtra6A2vf0PbQzu4meHXgrIyvWwcV63Zu8GWLdXlPFcrdBc5URxve4/tUg2iBZr\nYDZqOchSrJ02W5gJsceOkhpSzlvClKyO4EttHT+gbv9mSCLHPqZChU15iWe7Fb6+JPYZgFap7K1p\ng7dn77dAiM7HriUwK0UMkpPzALguI2R11AEag0XS/qxT2d68ZLUHIEC7bIqP6XQU4e2ZsUO+96A2\nS5j6EkImJFlkB0qrJKWNTnXhhkPPs9hm0jvUSUm+SnOi/bds1jvAw9nPKAJGylorBCVYBQVz/ZhK\nrhZ42M5Enu6Awykx0Y5Kf711rB56IqHhZ8iCJLbHc6MW25DZYlHSzJvSlvmYO4sOcoPd/3Sv4sPH\nnQUfISI3aS6McZpVIQtsV5VYlTR1fZ4RE+n9rcBl4TMdndCVeTKtsUgIcHhBCb92gSe0oR6pGBN1\nCB2NqP8UXSKRhX2sRLqL8JWrmwEolW0G3VzXTpIEuNmiO/z/ogEQjaAS0ieDTOiGtIzAoiPXA8DZ\nFyB7DiyfAU/PvdMmn+/uZDkLoQ5lP6NJm0bcVEDlhTUBkFimMVBQ1sJ75D/Prtw+0Crp0EF39MyC\neSkjBDblJXbVqrfr9ZlrgweT0urWHRLwLkn/bWTN1roR0sTzun+dEIAMK0OFrwt4O+Y4MoijGscp\n/R0LuM7j1yDWHYnDIBNgIkfZkFvncRpjFlNp+UDPSQlBpNR/Udrpu8ko7qlVA0Ac1Cq5/Oo2JqwH\nx5n0ZotokcBkA8KuHHFnaDSOh8ig7XLwkONwN4bkiAaCS+9FY3qlxA8bxvjRi1dxl8EHEe2Oq7Z0\nCKsRl4EFYtmIwcYwQGW218cGb89Mjz7NwcDDsiFcB6fp7zEtXk0EszzDOJlBJw+go0skcolEKsSR\nQlZLvLPyN8GuRos1Rz0l6iXN4trZJLOGWG0p1mF0AYl7XGWTecq5LUFs66VjTgN+gXH2BWz8dnnt\nmURAoEMXqHMfJG0Bx9DqOOpckpy12M0+O8eGM0R8VpTU3kphSO/NKRoU7d+xtpkt1eRW4oc/Oypj\n1j1r7gM9d4u82T0ik0AAqAqMjt92ANSdZaLnFCgbf0LjyLgG/ZDbZVeyKZxzArwMzVzfw9gkQAA8\nPWtpeMO3MLQcYRInXouvWnuw5iFmqS0xR6E2faZai6XGoOMAfwzce+DKZIIVtLslNwWnLOKisDYh\nPLfDCuOBCGhrg7FPo84+V8u1lP8/Uk4FvG5IYYIGZl+OwsGraMedBR9uMAJolWOE0pD2omc22XUw\nx8PBLLZPzIi59nBCDdeuJTCA1qI1s0QDHQmM1IyYP5sleepcX8FMxpDz13Awv484SjFSl9BRaQEw\nwvtbes7LKw0sCgdATGZw5Tw5go7GtIjALsyOzdff9bHMSdF4z5myyZGJFTHiguByinOSZJdPNsAL\nd6x2W+++zkYQD0+B+w8Ha/M9RlpYLgtJAUPBjLYQeDqLZ+v7DuhwDyQrn7XOETO52MJZyxEm6pQ2\nDBfvUDnp6bnzyOGrZHz0FrbNCo2o3fPRjJK04BGSQ7xSA9BmLtKQaBtswvmmRaKQSmsrvVmC7K+G\nwwjRmyfrMwMDW2oOdnVNp3YYl+dwAo26kKUWvmYeZMtKA8cP2/5JNmMRMrEuufCf0R5KteiwLl84\nwownlJMKBraNEG6EIZzTehUvN+7uWW0qr1Ac3CxGacjEC4zyACkHZz+vjw1eHxu8NaXyy0laYaRi\n1E3ZmrlZlbKX7ciIejEzeQSzfAJz8cj1SIjSuoWpCowP7kPGr0FOLlE0BfI6QVYD7ywF1qsYOqkx\nmtauJHOgG9twhs96thZg0ykBkL3reTHkwVQmVfjhzQaJpEyJNcW4x5OItG/WFqg60zm1Q3wsxZMo\nUg1/8z5w/BA4eGAp7u1LULHxGZfMdpv25xaQArzNdzEMOPtiD+gwzT0suQACs7i2C/zM21tvnvsN\ng/3sqm9c8yGSLh8IgK6brPXyOjLI6zao+QyLIhzYnAXrLoNPIo0TpnXOnteP3DwVHQhnK22A5w1I\nJKT3V8pWMPmZs0h3wec1UpR1Zmj13VAFlOgB2vzeOH44eGwipEVz9tMFoLBkysDTzXT2ZT+AEwnu\n2Yfba4FEbnOcZxGWRYT3+7yaDxUNXs35hHF3waeub12k8joKSm60GCwSIK2IxbbQvhzyQcPXw/cc\nwx6bAHdsAdFhkVD2dZzW1qpauEFZxaWMTrCasJ9bUoEUCy2ORSNwklYOdLx98RM/rBlmOi1XT9kC\nIPHwFOA5kckxtlY9uns+pJpTw1gWlFHFcZ8aXWyJhMDnKVTK7lK3w7gBdOpm54ZZ4yiBNAoyjjFS\n9No6GnngyW2GFcrsDEWxBTbPkY5ndqH3ag3dweGu2nPTsZb25ylxf+f6MusLOleAGzrthT1HAmsk\nSiNJjuj3+Romf0xyPTfdDwoAPry6c0sSyspBDUZdQFQJfb5K02cagk63R/cioTRwGy4G711HI8hY\nIZ4tMdeXSAbKlq/io8fdBZ/S7qo73j3OldOUTimgS48kJhtlGkO2CQACpQH2nmyQSNpNj25jbrJm\nmtQo6ufWYCuh0l9FNO7ZvMBkRCQHAp4KDycFdETHurO9rL0wcB8AACAASURBVElyCCQpyeXXa8fi\na9N02z48nKmdpA0m8WEgNGkXqWDuYvDYGYQCd032mAHg5im6PShnIQ04WnerbBaCShd0wh1st3kd\nBAOPSWdYVxdoSp+tdcuLkZCQhm4Rt9Az8BR+yl5MxjBFiejAHvs49Yrf+coJd9J79GnMkH8PAF/2\nYf2zIZAWytLan3hacniublqYqwKoBmaf+Byy3QTHEJhbiSkRgMhgW76jP/ixRJg5hZkUf33R12WA\nlhoKClN1jJGc40BfvpTDbIyX23oVdxl86hrm6TnEKfxCZRc4XpzzOh5Mkxe6n/XQrI6XuSka4ejZ\n07jGXHN5JXjCPcKbfCxGCJv+KydcyjGdlTjUwOsjg5O0xsNJYct+PmPaVX5glvs5eS3cXEg3wub1\ncTpqESFuBZ1udEskTKFuiCIsshV0OkCJrXx/QLCT6VBJpbNgOj+XUN8r/FxZ+VtpVEmKZfF473wO\ngFZPo6XaMCQuat9fdGAlgiZjf5xKA5vnUOnUHveSylPFts/eCspliqnRSgMyOE/umgnsDsLzARCh\nwmY/bjEOS8tMDgn9cMLhzc22Q3sPji9Y3HlUQexb3G9a/MNr/8OCUlhiBFoZbfi8BJL2Wtrn/MpR\nFY6QIkC90gO1x+frVXykuLPgY6oGuFpRHZsByC5QtVkP6HL5pv5Ct2vvHF6hOGrNBS1qVny+gbIZ\nlq5i647a7FDUO5ztEic4yTEZ1Xh9bHA6avBwUtqexBRNVLusB4CT51+VsVNEYDYVe+FwcLbjiBB5\nRn2NcMI8NO0C3C5fxIHeWze4XMJRFTBYeZC4aRhQjwP3UHhdti7o8DFtszYlOwAgtnBYlmd4vMkx\n11tM43FLT6wbjsFV5R54svVwuW08bLds8hWZBIb9McsIbPky8Vcdw7BeXGCXwefORVgqC8Ej5n5H\nkAFwT2Z7RX0qLpeGn2VwDZqi9FbhDEIBldkI4TY6gwAULPwOpPYZDDsTvY9Y1gtKeizGW5sSMNRL\ndDbsXdp2UTqVAwDtHtZt5cjvwBBCHAH4ywDeBvAOgB8yxvTSN+so/Z+C/Hz+rDHmc/b3vxfAHwXw\nmwB82nqp8d/8ZgD/JciMpQHw20Clnb8C4JMg0cW/Zoz5jnUy/fZHY/zNt97S4qjHdAPYezEEnxB4\nUgk3s9MNzizWpReMzGoa/qReinCDeMODC3A3UVZf4zyL3IAjUblpaeXSX2yb1eFMj5ajAHTIDIsH\nEUMQW+gIp6MG05iICsySS+XMKxWsLt05Yqtts9o51QIBEAh0BUeB9oLaURJosdZuaA4LmcBotBeB\nbqM4kMp3P8f2/0dwGl+5VtiUZ9b0LMGqlDhJdzhOR4HuXfuWYOBBZmnHe7I/kgziRboNtI46HAKP\n/XvDjy3tuWst+Ot+qZGDQZjfbxhlSbt3zlQAv5CyPhoff3De2P0zOgCgJAy2EBjb8xm8J6mt62m7\nHBgCUMgYI/Cp+lTsbuyrBISfq44B7YdCWxR8oEOsKO3XisAHGB4yBdwaYCIF7Cp/fkMR048YxgzL\ncH0M8RMAvmiM+ZwQ4ifszz8ePkAIIQH8aZDr6HsAflkI8fPGmC8B+HsA/kUQyIR/owD8JQB/wBjz\nq0KIYxC1MgHwJ4wxf1sIoQF8UQjxzxpjfgE3xN0Fn0jQYsklko31R8nX0HoMHV1hrhukUvaAJ9Rl\no2yChT2NW+yf7qJA9y1CVhtkNWcfFeTkElCHSA7uk6fKqb3Qjw4gZqfYihy7coVV2S790TH4AcXz\njPS+gB0Wie/lsNunp4nDSQEB7C9EJmXTmMttgV1xlVlGYNnW1CpKp1ogMgXZGR5tLSu8OG7QL+Mw\na+1FmrlhL6PLgApfO6/aw6zOAoJ6PFn5DFIoLBKFe6PKlRf3yQ+FwOOynjIA4g7Y9txlw2MHXBbG\ngp37sp5QymgwGABvWhRjel23KHP2GIrDBn9v8sp/rqmE0HUbRDmrSKeDdG0A7dmrgI7t/tuK9upo\ntL9UFwKQta9ozY0VnXMVnC+jx0QJlwkEsztB7FLH+uS/VRKhSjsAIs/wNcuSPred5+/M+CyAH7Df\n/wUAfwcd8AHwaQBfNcZ8HQCEED9j/+5Lxpgv2991n/d3Avi/jTG/CjjTOgDYAvjb9neFEOLvAnjj\ntoO8s+DjnEy7C0VVQCYptBwhkQUW2ht6Hej2sGg4fMbfr8uoBTyXVxpFEeGrZYmrvMZVofDWNELR\nFHhz+owkTE4+STuugy0wXqCazLEpHjuqZze6Ft2PNgp5LXBvRH0qBr+rggBnqG/FM5/h3IiMaN7D\n2V/zzc87wG2G5jpHc53DZBWEdXiUp7a0NQQKvKuGXQRDAAp25gDaQ4I2evRdfsxNAMT/b7NZMTlu\n6dDpaIQH45WzgAD6JTevfFG0s4bndpZpm1F5ajFrZ3tTa1AYRpjZjSYk7T+1FPIbXGlbfx9+vyFa\nu1MZH4qyhJMnCs9hOgWmVFIzRVvziD/X6CCFmKG9wLNsjdSD8jp8rsL3GgJQOGjbpdi3SBjuYOzj\n1+0s02WKG3jw50zRvrYDIato3QI67vtMx35wNYwu6Gyznpvvhw1jhFNGeYE4EUL8SvDz540xn3/B\nvz01xjyx378P4HTgMQ8BfDP4+T0Av/2W5/1eAEYI8Ysgi+2fMcb8R+EDhBALAP88qJx3Y9xZ8HFO\npmFstjDjlVU5UJjFOxri01ELeFg8ca7rFgCtSz+QysDz5NEERS4xnRcoTjJc5SWuCoHrIkJel/jE\n7Ax1XGJ29BYxqdIZlsVj7KoSRTMkQNmWY+E4zyTOM+lKa1c5yQBtdhIqbpzA6VCwuRmX7gQbd4V2\nxVWN5jpH/XTjwceKXpFUDvxOslMGM3kFUdW+jzAdOz0uA9ysxdWd4XHgU7bLedZ3BkC7lxQMjoYx\nUvSaXYozECymIbMtLJlZEBZpBaEkzHTsF8HuNdUqNwaLYCghFNK/B96/m70JSndYW8JCWO7co1PX\ni9EEmNo+h3Wsba7oMzV5jeY6IxWK4PHOmsBmPaEuohswtUAd7pf3AdDQ91Kotpnfxp9vFxb0+Xtj\nrznXn9IxMLEgVBX+uEMA5vMVnrOQdLHNKMO/5nPybdHEOTfGfP++/xRC/E0Arw/810+FPxhjjBDi\nw82D9EMB+CdBfZ4tqLz2fxpjvmiPSQH47wD8Z5xR3fZkdzOiaHjX2FRAvkaqZ5jFKxyndQt0eBhQ\nRwLnWeT6OAw8LDzKwLM+jxHnNZ7nIxS5xGxeoCozZFUNgMpwv35+CSSA1mNk5TNnBMZzRl1dL8+y\nkw6AQkOyq1xgu45RFBFWS40kqbGdlRhPyx4Icc8ICEpuaBx7yhmKrXZ0I2YV6usCVRlB5QVEItFc\n0+IQ6XiwhwAAIimpj6C5kV32F9tw4bltaHFf7b4TTNwYAhn3soH+nVtM88D/xxIMQuBprjNfdtTB\nQhYyy7ry/w44x44AEVKQuUnu1QJssIMnZ16bbXs6n3tuZafntu8cKU3unUUJwzv9vKL3lTeIDhKf\nQU69zTwfZwgc1LsMMkT2ReIHsCK5HXAO6eOhX5Z7vsiyFYONT2/xD34WiQKqmoC4jIOynM+4Udvz\nHm5ibOYzpJbNPc3mOoPJapjvQEE2Y8w/ve//hBBPhRD3jTFPhBD3ATwbeNgjAG8GP79hf3dTvAfg\nfzbGnNvX+QKA3wLgi/b/Pw/g/zPG/KkXeQ93F3y69d4gzOYCSTXD4fgBgMctyRkgcjdMIneWUk0D\nmizBs6tJcHQ2L7BeapRaQSc1dFJjOisdU+1AN04ZwdF5QTdo0mwxi+uWKRgHe/cAbativkcWicEi\nKbCrgdPXsp5z6q3R3TEHC51IFaIkgkKDKKESgkiUt0wYp262R2hywATgSh2u9xMOCyrdM3ADAIEZ\nTbtXGM5+pmPqn9hFQ6SVfy0AODuDqQokh29CT49bCtjupQbKbeHUPq7P2vM8IGqPSCUtfKzGfXTg\nLa2dRpmm3ktZ+kyHy1f2/XYt0snMTbnPwdGpmaG2L3gh1TGEPqDflQMAz+HKbwcwVQ2RkNCryC2R\nZDai9zWakIWGU4DYtbKeMFgep5fFsW6iFSbtAk/4XI5V+EEYZiq4wLt9M84qASKuMDU7LkCbd/hr\nyD6XmI0gkhIilZQR3ma09IJhDFoq+B9j/DyAfwXA5+zXvzrwmF8G8D1CiE+AQOeHAfz+W573FwH8\nmBBiDKAA8DsA/EkAEEL8hwAOAPxrL3qQdxd8pOyXSDiaioYDARyOHyCrV4M751m8cyrFoX3wSJJt\n9nRW4ujezmU8RycZTqY13p4ZK8dfOFXkcTQDshWSZIra2SBs3aBqV2ySlRc4mAmX1aInww8A76yG\nez9DIpZ8DrqsMpEqiLyiksx1juggQbSgf2I2grh3RItwl4kG+F5I6LeSTmFU4nrXosp99iMpIxBK\nD2u2KU1MNgQNfIAWj/BzvbymnW2+gjq4D6lYFHPYmtz1eXgWxmYa4vSEyjWahDDFmggHLIrJjqZG\nCOd42jJF40wnANku8ADwtuLZuq2ZFzTd9/W7UNW0cw8ByP3NuL+gzw6J1g/i2opUwWQV5OmEPst7\n9yBmp8i1QlG1FbJDOw0jBEQyBbCmz6t3XH0igo5okxWqXztWIRM7eG4rUbeXvriUNh27TYBIZi5j\nM0K4jBbJjD4XRbRzABAYk1gpl+/GKZ2XoW7Jd358DsDPCiF+BMC7AH4IAIQQD0CU6s8YYyohxI+C\nAEUC+HPGmF+zj/sXAPznoL7OXxdC/F/GmN9ljLkUQvwnIOAyAL5gjPnrQog3QOW+rwD4u5ao8NPG\nmD9700HeXfCJFF2YfGN0b8wAgPT0NQB9FejG1JjrpdNvoz0xRaIMqqTG8UmGooiwOMrx9tzg9ZHB\nG5MaDwM5/nE086Zn+Yo8VOzrzeLKyd6sy1BsMuqBCQNQ6JbKzqanI4l31yRM2v07VjhgNpK7KAb8\nU6KDlOi4AAHPQeqBx8rn8PlrnVfe8QeLQS842+hmQZMj0vxiIdgQhOyCIxA0o4Mwmy1weQ2x3tKg\n7HgBNb9vbRh8uM+2DoDn6TmZnlmdNnF64v/g9ASYv+ayAraxBkgpQScjyHTmS2gddlf3/bf6Jvz6\nYZnt1uHI2pWohLIbK8eiG3vRzvBcAwTipycQsC6tVQ0sZvS72Sny8RjL8hl0NGptwLqg7QAoX7d+\n7wC4ziFAfTYGoBboMFjvLn3JjcMODg8CUNjzYuAJsssKlbMBkSKGTFL/ufDgqR0nEDxyET53+PUj\nhjECxQsYQ3701zEXAH5w4PePAXwm+PkLAL4w8LifA/Bze577L4Ho1uHv3sMegYub4u6Cj4whZqe+\nobwn3ICgnToPB9lIdXqHWVxjWUQtQsCuhnM1PVwULfXrk7RywDOSc9LmWj31cj8ywciWiRbJGnld\nuwHVMAvqVgNCwDlJS2vZQOnBRbbDcRrj8SZ2fakw8lo4SX8AASiHJTdp50ASGFt2iu5NHfCIwzeB\nydHwvIbUdiEgmZ/G1E7UEggWIIBmVOxizQZmOp3ZBSgow4W7bAtAAPwcje3P0G5+RZP7h1cwxRZi\ndtoCOVd+yy68NcTlNZqzNZrrjG4UZye9gLj3SeRRg6JZI8vfx64qXYl0FhOTzhmqyRHkANi6eZfa\nS+OYzYVTHzCX1zQIvdpRia8rVxQQO7i/ZrIKMlGUrU3HLTJDeARePdr+4vSElKKLkuj+h2+imsyx\nLB7jm2sDHW1wOo6cOeHQQK4DIH4/YeYH0GBxYAgISaMNrcftK7d1AMj1EkNW3sGCDA9tRl1Yvb6y\n8b1DKVTLLkQoTUzTLWVALYNBHQOzQ3rOV/HS486CT2NqVEkKlUz3Wy2/QEgR4yTdoWgqCwqUkaRK\nIKsMspr6O0PAM45mbeApSqC4gqkKoM4xm9+HFDEeTNZYl1voyDjZHvZ/Cc3p5prcS3U0QhwtOnX5\nMySSQDaREqmkAVMSIyWFBCmUBYPVjaoDIlXODC4EHjM9Jg+bgT1QqCvHCzWrZY/kvH8hWgCTiur1\nDE4t2f2uUdzhAc1qBNFqFt8yr/FC/Ybj1yBOPolV/Ryb/ApFY6wauHLMR1IWp7krNrjrxqBrbMjs\n23esVd3ucQTRe69F2X4vXaWD7vs8PKBy1/FD+iyrC9RNhWWhMdc16qZCE9GmYSh6cjsvQxmgU2Jk\nAOKNkCuzsifQ5Ig2OfUSpVUT52FXGUjxUN9JeQkjpR1JgW0a2C5+O2AM+Co+etxZ8KlNhU11Sbvv\n6TFEOh309wHQXogD+Q5nkxwpnKSlK1/ldYSFNm648/URcGIVp0PgMcsnvrzCk9Q6BrAFykfeVkGR\nLfFIrbGrSgdCOiKKdOgN5AYjywKotm6Q83D6AFI8A7AEy66EVhA6ImUDUeW0M52dElUVlEkIu5gR\nE4klEmbU4wmNvHrnucRlfunsGqiEmFjQLCBFDil2pGY9oE4jqhwqa5dyhEwIoCPVvoKrgvox0zEw\nIZquHKeulCROT2gna/sYupuNcL8BoOcBFVLZ/A6nJxCjQ1cyk5GCRuUo96Fn0yyGO6dkvtYGkxax\nwIZj9yntXt8UJZXRgHaJCYCxDfMuUDmmmgWflgVFVXhdN6Df94xjypSMgY7GaFSNk3RjNzbznvhq\nGD1AVZqYevb7IQkckUwBVUBkwdwqs+sma4jNlo4xfI+lvxbF6QllPLNTmOkxKlNaSwRPz9bRCIis\nUGyg1Se6tiAM2Nq/FpMjXkY0zbeMcPBdEXcWfLJa4LpYoo4rFNGWdt/z+5QFDTw+ZPAYIZznB8dI\nxThJ6SLN6wZ5LZBKokKT8Gd5K/CYkmYvBOyCcH0G01RIZqfQ6TGVCqIVRmrndnI6mngdtuUj6lWF\n5YuyJJ2wOsf84IE9WnJIDYGHzcTQBIvF4ZvU65gGNyYfJ6yL5OzQU4Y7UTYZvrne4J3VqNej4pLh\nw8nWZWcjNfeq1oBnezWVJylwuIFU9EtwStMiakGIS0k4uAdxcB9bkWOZP8Zc36Oyp41e1nN4QHTk\n6ZgWuflrQDr1mw4RAxGgUbWM4GYxzRE5Jewqh7JlxzBcE9y+116WwgC02Q6rIQRNeaYfU1kq8Z9X\nWcJZUDQV9TfYe4nnYw4P2q9rg0tUp+MIOprcSFffF71ekwWeymriuEwpnUJUmqw06hyA9n3Z7uYj\nnJ2ymwmTzlyZrevQ2gMdY/p+VF3JJnustal6z/cqXk7cWfDZVQJfvkzxcJLjdFz6HsSULIRdFsQR\nDCx2da04FolCIgu3y5/rBssiGgae5bOWdlSoKmywpXkFluWvCmC8QDI5hlSHiJsUZZN50Ll6F+bi\nmafiDpRsxJv0u/nBA1vzvoKW45aLZWvht+9ZHL4JMw6k96uCbv6iBA4WbmalO/me1Wu8syrw5csU\nX7nq1+EWiUEiJRKpoKMVYPXuEiZtMNuLral1DDOauGaykIllLGm4NT28mpWm3tFoQsc9XjjgOc+e\n4evLBL9+/gynI+/KaoZ6f6cn9H4P7gUT/lnvYexMmkgDLceIo9SbztnsU9leRO/aGcq0mao9HVMv\nhiMwUiOVgrI98+Oes4Yp7UxVVQAoPF17vYW5XBOLbGGzWQagjoo4L9jhAn6TGvi+cJs3rhoEmm9d\nuR3HmLPaf2afzBAAMTlGJSNrAkgeVeHxsWJHC3R4kzEAPO6c2aAy8WropT9wGCNaPlx3Pe4w+AB/\n71JiXUqsyhKfmJH9QC8LsmUDk68gMHMe9kVDpmONqSGFp+7qqAqUDxrMNZzwp45G1GAt2uWS1pBb\nl1lTlAA29sZNoCZHgO0jhOKf3JzeG+stMNtCVDktIJE3MfPMowB8ePBRJUA6a2ucOZfJ9qJAz7HD\nprrEV68FvnSZ4CtXAv/vOxOac9INdFI7IsbTXYQ4UtCRwYOJnb+RAfOP1aM754VVEdz8BkDH0/Ww\n0V6qRszvY9ussCzO8Gij8bUlZ1vPcKgf0I0wBAJKAyl6E/7dIB8lOw/GvbO6M3hZeakXvl649GZ4\nkLQbo4nTaetll1ab0HQ2GyarqREf9n2YhMGSMVlN5BEdW2p27DcTQUgRoxYfoewUEh3s+ePNG4Nw\n0dgBZ5W0pXBsoiv2qF4bIVyZjYGHn9ORPey9EjLqHPB0Pm8TqGXw65XVNVYvp+r2KjpxZ8GnaQTe\n3wostMFxKrAqgWMZ1K35gg91xqoLYr4BSJIZdHrsLvzIKeiWQOOvVla5nsU77KIlZskRPUdVWIkZ\nUg529ftQKoXlWtIpMW4mR8hN5hk8oTCppQNz9DSr7MxGJSNkJfWOgBI62qGUOYpo26rZ1zWVOlxG\nqEbUk6lzYEtDj5hQRgFZUJahEgdkszjH6UjiqohwdX+LRBmMLAU8VehRzlM5dZRzgBZ701QkA1OU\n7RkhnpexTCkAbWUBpy3m3TMr0A57ru/hEzOiRH9iVmIeP/DAy4t7IL9/o91DEGzBsSwinKR0jaRy\nhmR+n44zyJrZMVVHY5roV7rvtNktIw6Zw02K1iwMkLcHfq0qg9Cx00dzxnf8HDwkO2kz4zhqUzpX\n1UbUqAUPmO4n50ihABkBMnVSRQw6RXXhQIKZju5v0ClFuv/sfwYhVZ16anZg1Xg2W0tFO7w2aj0I\n9E7B27IEmZ25Kl9lKx9H3FnwMaZdCkqkcRcrTbmv+rtR3jEBMNsrVwqrJF38fEPVUfvCXhYSs7iG\njNaQIsZ4ckxAwRmQtqWPONCn0jHtei3rppIRimaFrF7jIqMboiVMqscQB1fDb9YSCHKtnG5cqEmX\nyB2A3V5X1jhN4SY6AVe+EQVN0BtQqYTmN4g1N9dbHKc13q4jXOXGWkD4GaRuH4wp52GI0aHPaoI5\noUpG2NXPMU2PIbKVb6YHi2bPttlGCEBzfc/L6QC062eDshcEnTDYvZZkl1Y4TivUcgqpY9QmR12t\nW/0D2qWP3PG6DUgYkaIBVj4PNtz7Da4XHhIF4HfvVgOuJ37K54np46yiHfQ1uTTGjrPMZmMQ+iDR\nmJo2avZ+KhoDKLjMhAZOg6HVfbYLfNz2/8MNk47G7hgdhb8rVYTApgPw5VlYodfAT4uPd1l88Gth\nKMwrwkEr7iz41FYGh5vgOhK2BKXaCr1hs7Pr73G0gSm2UKNDqMkRKqFa9fy8jtxg6HkWW3bXGlLF\ntCN25Ia115oCBrOdrLrGrlrh8Vbi8Sa1rDEvTDo9eLBfoFNpbEWOTfnM0ZyLhueGIrez60r5MBiN\n1CV0NPKlqfWW5k+K0pZrAGNnN6RK7M5TYBbXmMYR3p7J1uBrIg1O0gonaYNUzjGSc2Ie7S79ZLoN\nN2OhtGsqb8oLrEtqLM/T19oAhAHgkRoImv0MQI4GzQud0mAm4AeJrnstQHTrvM5xku5aFN8wIiEt\n621PWEVuoxK6JhO4GRqhNPWobKZslHQZT8tWoqoJgFj8FB3vIbYcDwkdtn/nSllN5SSmahDRZZAq\nHoTz0mm8uy/gB5opSsg4RjSg8fYiAAS0QYhALMh2BqoXAFwp0Gj7fwq0B2AppHQKJFPU9XOsSrSG\nu1/Fy4s7DT5k7ERzMnxDsbZXK+vZ9GXWARAzrShhDmguR83vQ0djZNEaADHeru1EMwl4KujIyslL\nIOHJ/UhRFsS1/WDGYF1dIKvXuMorPNpoPNqQO+pVLnBVkDDpw8kVXhvVSLVftNtN7Ryb6tIBD9lo\nR25BCNW4AS/Lw9WbWZxhonZQSIg5dXlNg48AARELaiYzV3rTcoS53mJVSrwBP4/EVOREGozUHDoa\ne4JHZstTIbvN6r5VqLCrLrApr3CeRTjPEjycUHlrkhzShRwKkXYovd0+jesFBAuc6yHdJGjavY6a\nyp3TZUEmgnFkcLYj88BVaVqCtP71BZqIyllK9unLPCxZyQi76sKztZRtzte25xavfeaT3HA7s0pD\nAEBO8ijMDrkvUxNduTYlViWQ1xLevZdKtuF7ab2UBRvKBGUry6a/D8/DzvZM7dzNiy5JnT4Ql/YG\ngadTjuXvWZYJFXx/UNF5ZQt7vldeRjRGvMp8griz4KN1g7fnpLF2kpZI5cIzvtww437lg1YE4oVF\ns7W7PVqI3rc2MqmUVg3b4CQlckMtpxilcy8dwxpgk2PkUYOsfIZdtcJ5FuHRJsF7G4l3VgLvXUsU\nuURWFwCUBZEVFslu7yF2gWdZkGI2gw4rYtOxolUmo4X1DDr9dZCayjSiqr0fkt05s2KAFLGbhH84\n2VrQNS06so6oBxAJCa2OCWxtyctRty3o1CbDprrEutziPFM42ymUDffSVoijFCqZuX4cy7kgJ0AR\ngGOaAX2ZpPBzBCzbiqfyw9mbPUFATlkufU8kk7IRyGtaiHkQ2KmiW+WJrF7RRiSdOvAUyQwmnWFX\nL5GVa1dKiqPElXaVpGvOWIFQsLmdO8E2kwgEdFu9RP7cQrHTDpuzaHbYVSVWJS8TvAi3gZTt4/35\n8GBMslA0csDK7OvSq6kXjYE2lc1+5j4L/VYEkyGYOWkVH4RMUL3E+Z5XMRzfVvARQvy7AP4EgHuB\nTPdPAvgRkJn1v22M+UX7+98K4M+DEuQvAPh3rFdFAuAvAvitAC4A/D5jzDu3vbZSDV4fGRynPBA4\npl1XZctsXAPfRwyA3T1OvOT81vZkqDQW4911hH+wcqIvyGplyzMVZvEOs3iHTK5pyv/ggdu9raoL\nZCVlO+xIyrps711LPD9PA8pmAdIFTPBwUga70+EFYR/wZBVJAnUVsFPJfwtoeYajo7eAt5lwMHYU\n5t7gbQBAGABx1lbL6jWyeo1JfIjRvU/RsfK8RnXmVKjpXGhnrhdHxhngSRG3JGrCMKwawOZiydRr\nioULXXcq3wJQa7YoKEdRE75E0Rgn/sqzTF3ZI874+HtSMfe3XlavUAiJ0fwefaLNDlnxGEW9cwv7\nSFEzvVWeYiJCHLDehgZSuxlO6CFktfZYxqi2ygBFmIVAowAAIABJREFUs8NVXmFVkmJ7uHEA+tlO\n56w7wd2wlEslbg9gnH2PVIlUTIeeyD9jtwx3i1YeODu8KdTQZw433/MqPt74toGPEOJNkC3rN4Lf\n/SMgae/vA/AAwN8UQnyvMaYG8F8A+NcB/O8g8PndAH4BBFSXxphPCSF+GMAfB/D7bnv9RAKnI8p6\nRspqjGVtqjI1Jm1tfAiAprY3k8wci+zptsHZjoDnnZXA02dUUsmr3FppS5SNwDSWToaFQSiOEpRN\nHuzwE6xLifd3pEr9+ELj4jzFeqk76TsBED1vg7muCSyicHcq3E60bPxCyVYMlwVcGTJcPPn7vI5Q\n1DtcizMc3PskjH7SUnLeFwxAYQ9gKDbVJbJ67aRQun2C80y3FjJe0KXoWGB3CSIVWxoUpNhQFRCT\no73H22PNBd9zE56DS26c9bCiBQm8Rq1SG6tRhEO9DGIANeQ31SVqU2Fdbt3zcuioQi0oQ6hN7H1v\nGFCmY5f9AJ2y2njhs0k3QxPQnptVi9VW1DusSrTKs4nk8+5nmcIIswSN/Qu3HzSOQPvLTtwgwrqv\nD8T/H258wscN2rW7XiDFEGkFQC9j/yhhXpXdWvHtzHz+JIAfQ9tr4rMga9YcwD8QQnwVwKeFEO8A\nmBtjfgkAhBB/EcDvAYHPZwH8Ufv3/z2AnxZCCGNuzt/jCC7riaO0I2zp69/kKWMjACBH/9VjmHSG\nTfkMF9muVR5750mKd79Gw3tFvgawRVYBWR1hoSPbH1DWqC7HXG+xLCTOs6Rlx32Vow08qwhxXmGd\nkFHcY3qF1vNO46a1494LPDWpXOcVWfwmqrbadO0dfNFQ9iOjHbYqxej4bVSmBOykOkfXaKw2JVI5\n9QttBHQ9dQBYBl5jFzw6/0NeRhzcQ3IGeFXm548YcIrSWzBPS2BSEC0daJmj+QO2u+VwRzxQbmNf\nIDpGyiQ5i2RLi/Dc9XX3UkcPzmq/4bkuljjPlHv/fA74c1xEJWJ0VB5y+zUuiLnGM1FW4ZlJK6yu\nwOc+pNK731lg7QIPA6GOCCy6mRuA1qwbIiCRFYpGIJECZdMg6/RNsho9gPUnuA9AHF0A6gJPyJoD\n0CqfiuC+5hKs2AtALwdwvh0hhDgC8JcBvA3gHQA/ZIy5HHjc7wbZXUuQ1cLn7O//Y5AVdgHgawD+\noDHmSghxDFpjfxuAP2+M+dHguTSAnwbwA6CT91PGmP/hpuP8toCPEOKzAB4ZY35VtHfNDwH8UvDz\ne/Z3pf2++3v+m28CgPWouAZwDOB84HX/MIA/DACnbxzjE7MSk3hBNN8w6wkXHZ4L4LAABB1T1jM5\nxrZe4rpY4tEmwXnmmV08VAnAfeVFPZVc9+YdvrQ3vMBFpnBVAO/vBJ5syQobAGZzupHW0Ci0wjQp\noJMa4yndeAwoaR255+YIgYd36Jz17Dob0G7ZyC8+BruqhBRrlE3m5FZCefxueCqtp+xGpoS0njos\nNHqeKdew54iDzK1bRkxkAx0J6vdA0VDqxbNhd0rAyhZRkLtl3pcF2rPg3RRzXaNohPVXipDVBgtN\nrL57IxKSncZjpHLammuh80a3H/dWHm00LjLpPruQFchyPd0QMiHpHM5+WHmiQ9En8kCFLgsNQCvD\n5NCRgY5ITT2vIweg03i8V+EgjiwwNsAsrgDUFsDIONE/jl63J7Kbrdr33gt8Hlyq7kVg6+3GIywQ\niWQGoezrZGuveWfB1wDQBw8sK3KJafySgKgxQPEt6Wn9BIAvGmM+J4T4Cfvzj4cPEEJIAH8awD8D\nWk9/WQjx88aYLwH4GwB+0q6nfxzAT9q/zwD8+wD+UfsvjJ8C8MwY871CiAjADeUFio8NfG7xGP/3\nQCW3b2kYYz4PsnrFb/4tb5lJvMBUHfdT+c5u1+lTccmFhQcjRX2AuuNhAuA3LgxSVUAntOF448Cr\nWx+npILAEZbHAIlpXCOrJRbaIKsEAFIF0GWE6azEel6gyCWOTjJMRjXuj4kcsNA0PzPXjV2c24t3\naByX1cSY8+U2QMVNq+fDABVaLXCtP9T5ammdhe9EKKi6AaoVVDKFlHObNcRuMFcaBRnH0BFZU6xK\n2TluuvF5hiY8Z1qOvGrE8hnM03NvMwC0LJiFtVomLTP6bzKgCwAo7BG8gCIzC4s+GNfQkcE0pp4e\nW1ocpyNM1OnexTrMEnUknDYgf3ZzXeNAzwdBp2h2kFJBMWOSS2osJeSAZ9cCnnDOZm/mEYSODGYx\nqZ7raOJ+P6Tz5j7/iK6JRJaYxfRZLIuox3hcJMoDT2hbXmvn/QOpHcC07tOA7SaMcRuccFTC2aWs\n7KafBVmLbb/fE2bLB1SmTPUMhdrhJP2u6/98FpSBAMBfAPB30AEfAJ8G8FVjzNcBQAjxM/bvvmSM\n+Z+Cx/0SgH8JAIwxGwD/ixDiUwOv+YcA/Eb7uAYDm/9ufGzgs89jXAjxjwH4BADOet4Aud99Gvt9\nxR/Z77u/R/A37wkhFMjKtSPM1g8lFM2XDAyh7Q3u/8R+B2WEQGNqV54I4+2pQSrpwg0tFU5Sv5MK\nmUJ+BypwoKlUsUjInXQkDZDUzicoUQaHGnh9TKBzoBvX7wnr1JwxrEqJdekB5SoXPU+fbnB9vut2\nOrSYdgGIgYdZfMLOpqhkaq2UlZtKr02JOEqgZY5FUgIQLSCTQrnsgM9RIg3iKKGsZ3MBPD2n2aPA\n1wbw/i+RNcBzjqcMQFXR74fcADw8iNwIIhzwDM9JWiGRBfI6wknawG1s1hdU8rEMtrDc2BUoJeNA\nn2FM1CGSJoJZXTgGZPucV4AAmaNZ+SVT5y8EPF36cxjhtaMjYf2I1F5h0a7mW9FYJWkF5HVldQ7R\nVvyWI3p/IvXAw0PXlfX+6QAQvenh2R02qKP/y/1AeLb2pVfAq8aH0RXMLUoYPUaSvIVUTjHXvYrV\ntyJOhBC/Evz8ebt5fpE4NcY8sd+/D2DIj9VVjGy8B+C3DzzuD4FKeHtDCGEdJPEfCCF+AFSq+1Fj\nzNOb/u5bXnYzxvw/AF7jn20/5/uNMedCiJ8H8N9aq9YHAL4HwP9hjKmFEEshxD8BIhz8yyCbV8D7\nlf9vIIT+W7f1e+h1ZXvA8LbHMx2TlXYBy4qh+v++HSTbKXRLMLxTCxcHHVVIZO3YUwttG9hBmX8B\nIKsMFgmBTlji4fkZIGQj8WLdgEq79JyXA+vrIumfi6wmNO8G3+jdxZQXIQc81jfG0ag7IER/R1N+\nOqrcc9Br+MszNTOkkmSFinoHGcXQ0ZjkeK7PYC6vUX3jugM8Prtk87EI1qYAoD7QaGLLcMFuO4yO\nBfTQOQAAKWMsIjp2BxoX78Bcn7khTxzcgzq4j0qyc2yfykvAdYiZPIJZPoFZPiNju8Nn0PPXIOb3\nkVth06LZOqkblwXVhQMevja7JI68li6LbGfdAaEgEk549jbQ4c+Kv9f2VqhN5cpvIejEUUL6iXUD\nVAHwcL9OkfyNy0wB348bch5W9H/u82ENwiEL8k3wBkKr9zBbXpQQ0zMgmWE0maOMX3zu66YQBojz\n+vYHUpwbY75/73PdXFlyYRnBH6rWJ4T4KRD/77+55aEKlBD8r8aYPyKE+CMgFvMfuO2PvmPCGPNr\nQoifBfAl0Jv+tyzTDQD+TXiq9S/YfwDwXwH4ry054TmILXdrCIiWdfHgIBpHjwHlf8+lk5O0war0\n7Cb/tQlA54iyrSoHDGDUvA1CooKMSjwYV9CRwXlmkMgI6a4PbKn02Q7PD3WBJ5ys11GDODIu6+E+\nEot8JspgkQCpfY5UwpXxGDi5BMQLTVhCA+DKHi3g2fHdviaHSestA+UXi7BkwoDTZSyFttcs6JqI\nFGb3iKymL9eon7Z3tKG5mkkkmusMIpXkj8P9oLjwn6nsEAxuyICGy07K2SiYjbXMeH5NSskAEF/B\nKA1lAYSZbu59R1YPrqhgLr9Gr28dVVnKCDKBtqZ9jamJMGD11moRQ0rlgIfp4G3giVxvEfCsQc6W\nZzEssI+cRlo3woxt6PNiQOQeUNJsW2QLdw8wSPC55tIX4O85/kxuqk6EfSIWc20qX0YLQab3t7UX\n+OUS7TazJdsV1OTI97K+g2JfZQkAhBBPhRD3jTFPhBD3ATwbeNi+KhM/x78K4J8D8IMvsJm/AKWT\n/6P9+a+AWMg3xrcdfIwxb3d+/mMA/tjA434F/SYXjDEZgN/7wV+48X7zt9X3bUlGoD2LkEcNNhWl\n5FqO8KmDEruqIGXjiG9K3Qad9YW74cTkGDIhyi1JrdDFLyOF0zFwkhY4zyJMY3qu0EI7JBQQI0oE\nZTs+Qr/4nmca55nE+zsqtxW5dCSIRBncH5PY58KWR6YxgeaDSYKJOvUDuNu1G7xU1iYAcuZmfBzw\n8E6Wb/hQWyzUDzMlYNr9D4BZS4HzZFM5QU6AFmmzfOIUvZur3IFNdGCZTIkHCHk6QbRIIA6n5EN0\ndOCHY5Ue9iTqkBF4FoY+1xiNqXsgxMdMZbYtMN1CrLctWj5RtvsL4Tx+jcp0q061godC7TGFGfNN\n9gbhOe0CTwg+HJyZsM3GPhJJv7fXVhVg5XeOkSpbLL8e8ABtNe1gFqlLie5FhzoOldDAMgCMCmBK\nwG/KAeBxzyGBqvYDujw8vef9ftgQxnyQzOejBFeDPme//tWBx/wygO8RQnwCBDo/DOD3A44F92MA\nfocx5tZJe5td/TVQn+lvAfhBUAJxY3zbwefbFqHSLQJdMKAnw8G0TMDv+opmh6xqEw1SOcVExf0d\nYbaCWT+mRme2drs701RQ6k1AkkVDibx9oUdwIEQSJ1HgBtruw3Rr+GEZMK8FHm0UvnJFwFNZRhn3\nju6PqT/FZIVZXON0HGEev45ku4W5fkSls3BnWpQwdoaEF2/FSg2d90m09M7pv8EXiSMEmzCkiKms\nVWyB59fANkNznaNY03vq5onqrQNE96bkZnp44KwDxOT4VmZVSOVlth5HyPYLjw3G0DkZHZL0klUT\nEKNDIJn23nccpeTzdP2YBGvDmI5tiXDsVCSKZuU8Zlgpga85zjrC56esR7aAp2xEh03YuJLYTezF\nMFqq0Z1eDIvM6miMxtQOeFTdeK8moK3WzcKmHZWLFpuNde6k38C4z6em8zqScygGIKUBfQmx3rYV\nS3hTFJrz2QFdMRnTZslmXGHW/V0SnwPws0KIHwHwLoAfAgAhxAMQpfozlsn2owB+EVSP/3PGmF+z\nf//TICXBv2H78r9kjPk37HO8A2AOQAshfg+A32kZcj8OqkD9KQBnAP7gbQd5d8EH5nYNLws84VxH\nuOvkkIJYO6puWvbVAEgLjRfi0DgOtrEZKaiD+6ijuDUrQbvPxC0CI5W1mu4MRCHo8PcMTCG1+p2V\nBx7OekLgYTLEXNc4SV/D2CQwT7+G5p13+w6PHNMxxOQaODygXb4e+4ynW/IAaFGRiVuA94ELAFeS\n4t19uNCP5Bzm+jFlPZstmuuc/lUCRSXbnnJvHSB664RA5/DAD1xOjm4cju0OxQ6BpO939HtUsO6c\ncOrTlPlw1sPvL5UzAtLn7wJnNLHFyso0vxO3lJYrVMjqNc4zgtjTcdkrfXUzRq9u4YHnuohwktox\ngMjYebdksMzm3+8ty0XYjwkIAIPAw/cEZ58cDDx2DitUzRgKVt7u+vnoaNwW741jZy1hyrLvm8Xn\nHfAq3y/6vl8whAFk9fHPDxljLkDZR/f3jwF8Jvj5C6CB/e7jhths/H9v7/n9uwD+qQ9ynHcXfLpl\nTB5Gg9X26uhc8cVd1Dsrmd/gOB154Mkzb/k8MOjYmjuxzU0D66+iNJL5fdRRiRjtXSzX0atohLhJ\noaOsx/wKhwHDIVKe5+ky29jQLcx4eObiUL8BtVnCPPv7MF/7BqqvPCVzskAxWaTWiO4ggxlvqR8x\n3VJGEZxLFx1rYvJJ2fZcJ1t/YuXsVyWVhg703PYgRpRJFlvPUsoqmKxCtlFQcQOT1xCJ9MDz5n0/\ncBlYMgBwi21rwQ42Gtw7YdO9MLqgM5QtiMkxYGVs+HriaF03Z489VZwVqHlYlL2MUgJtUsCw/RRZ\n4DitEMPbB0gr7loiR9EYK5HTBp6s9ixGzno+qEtpK+vp9k0tAYAzMZauckQARwJgKwP6HPYBz5Dc\nTfj58D2xLCRO0is0qgYkyJlYaVIqUVckORQq03eDS5wt8Pmuy3y+K+Lugk83ulpeLVn5DLtq5Upf\nYVADPgbNX+0JK/jYgruq9h4rVQFsnkNP5vTSzgAr981U2ScdsKAliTdGrQHSq4IWFlJUCJhsts+z\nSDzwPJyUOEkb6Gjib7S4rZTsvqb8VfrFkU3vbvLA4b5KMgX3oroLXSSkn7h3TXJyhC2aXaAVB1qs\n7OtHizWigwTpVYFIGYgkRvwbjiDefA3i9AQ4fhi8Nl30I+nPNdDWeatRtRY2YoxVtiyqHBDdlA3R\nD7ZRHqgpUC/EO9G6BTvs64Q/2wxIjA5RyQib4tKqIPiNR/c4+Nhr47PkcGMCsMJAhLxuWs/xQTXN\npIipFCatIrS7Xm2PjAc3hWg5mjq6c9ALHAKem45Hitjp0DHwsD2IF+8tvXgvv3YcA2w5z+c6/BrH\nrhxoNhfeT+lVvNS4u+AjRF9CvyMrXzcVyibDdbHs9VQWibKU6eAUsh+Ma5YWxKbStEMnt1HvWOrS\n+6aCqXNajKT2oAO4r1LNAFhTr6ZyN1ooEupmeAqf5aTB4fH3qTQtJttc19ByTDJDvAin1JiXp2FT\n2NfF2cK51bh3j1PemI3fx3jRknnR0diV3YZ2ljzAydTfrqCmqBKY44cQowlEHEMnCtGCFhT1qROI\nh6fOvXVISkflvFnobxqSZOqMRX35L2T0UVYxFKxk4DYQnd6Eew2RAlng2npgB2DtuUVMChpchjLT\nYyyLx7jKK+Q1nQsvnxS51xAd7yKOrqwSQF/XZYRESiQ5KVd8mBKTs2KPYkAr1CbvDV5LoaCYQNBU\nLQJF+M+VufdoAPJz0dc4ACgPwB6AfJap5QjKZqFmj7+Si3DmCwRALyNEY6C/NYSD74q4u+ATREt0\n0O7auCexq1Yd10+io6Zy3t412wUR4AxnAIRYFy7uNDsBb1w3IOcfLlu1qWwpReIik70SWzagh8ZZ\nT+jTE1KoRyq29f6RPweRAu7dc15GTiGZj5uznfGi93ouIuV8UsTk2AEPANeM7oYUMYpmCx2NUGBn\n50SE+78whEyA2SnMJ8YQ0zHU+Akd55v3gYN7Tvi0G2ZpadD8XvlY7c8CHoBCx84QgIC2RA1AvbZZ\nvHOSTYNlOC5TZe3FWSQzmOPXfObAfka2XLeuLnCR7VzmwmoBQ+elNhVlbE0VlGSjQNSTgqWYloUB\nECOR21vUqim6FgpD1P7ucemoglQjep9V4TOe0NLB9gL3RY/WbZUN6FpqHzcD0FwHfUU58ooQQN9K\n22Wh+/ter+LlxSvw6UbQk2DjMo5ENlZmZNRuNnf6R750Fwym8iKny2H6MQIfGo6wD2VfozZUXrjI\nZCvbGQKeUOByob2fCishzGIvdkme9zFlXfY8oKmoUc8RNsIZoG45l8xaqgbKhvt22a1zGw08VrZ3\npgIzmPtvUyamyDKcs6yiWRE7TqQ0A3L9hPorl9d9fxv73lgFIUmmQGQ9moLyD/eiGAhCBiIRNi7R\n6Lo1ExWCjtMbC60NYG3DA8057hEV1kSvKzHUNagD0DLOC+0eOLoABFBWRPI3alDaCGiXm0MX3Lbi\nM8+b8XGVbuyABmKD7CcAfSah8H3XZdv1QCeoDGirGlFEOySycsSKRJqAkEMARIPcYyTJlLYzrP3m\nQMdvQNzvbsjAPmh8wCHTf+jjDoOPGO5RSI2iWaExtd3J0c3F4o48/9BaVPLAA6j7KkoDsghKe4WT\n57kxwqZ9VcA8fxfjg/uAOsTp+BJFU2Iad5WqfYaTyMZRaeea5VK83hurLN/YTI2UJxEMRTHAVrP9\niW4Z5YMGAw8LkLrSTgiQ4WsqDdybuZ/DqE0JiLQlHgnAD38C/Sx0z1zhTaZ8ZKeg7EK9RB1XRCqA\n8tcIPz9gy5J2c2FdW0VATMjKZz1yyU3BJcGu6jYTC0J3Wr4+OINi4VCOIbHREPj4990eaF4zGHsQ\nm+sSUuSQYgep5qQWYj8j7vMQ8OxQNjlJF4myBUIfpulPx9Y4ABopyzKUBFrCGIiALOHu0Y8BeF5F\nP+4u+ERysCSTmwxlQ30AHY3wYEIXINNQW6AT9mZuCl4cnWNiWxrE2UUDfvCOd198A0QK5voJxskM\nevIAen7ZYoTxrpjBJZRJGYrQj4VKeQQkWo0gYLMJ2GPpgsxuA6zPBp6UMgijx/b90nviUspNCwjv\nbruWDADcpH3oNDsYXLKyi4lSmhY7zkztjtcARLsNszjAZyJWh41Lr0zh5aZ21xspzEDdqYiEL2WG\niunK2nRwSZU/+06mk9Vr7Ko+aIfMxrMd377h57NDVq+dJ9QQaHXlmCj7nbiNVfieu6XFfRG+TheQ\n6FztcGzdwkeWgcafSW4yFNZUsG4qN7sUBlPupYhbMkeOXBGUGPl4ullh+2/6z9VSPQd86+wVCH0s\ncWfBx6BxGllhdGdPGHR0NAqG6V4QdICePYNQ2u+qu9PZsJ4i+ar3NE7ufXcJma9wcPSWm7ifa8/M\nAtCiBXc12Pgrs7g4ysZnEw6AKqvmHYLP9RXMN58A26xHQHB9odkh0YsTPxdFCg599Wt/fMM3OO9+\n3fkPz+tQdDJGJ50v/WLH1FtXHh0YKt5ZR082V2Mxzn3Aw0Gg3ziH1f0+UWhN8BshyDbbAsdQhJkH\nZzO+H7l1mQ8DDx9neGzHaY2TlFSqpRi1r+9sBVRbJOkUVTwnCZ+ohu7MtHWjNpVTPg9BOoy8jnCR\n7bBI6FodJdQT4/O8q1YByO0GASgMaQe/i3pJIxBBiXGf/QYfKxvy0fuJe5p9PRDCDSzODxDCGMTF\nKyDjuLPg05i6ZeTFQ4y8gLvBOCgCnMJrULV2rUC/3NZdGLumZN3hVZM5uZVROt8PQO7gK5jzr9EC\npwI75FADq+RSApV7fB9h7l63OzDbA6AUEFlwE56dwTx6ivqbV6ifbiBSheggcV8BwIxTiKNLWtzB\nWdXuA8+QAAPzTkMlktuizoEcLao1pIaY3+8ZkXHsqovezv824GlnPQZSWImZzdLLKYX2DQHwVKiw\nqwh4rvIKSXvd7sU+K4RZXCGRZQt4uCS7z19I1Q1JJu0e+WHo0QRyvMBscoxKRS0SQPiZ8LkL56Lo\n/WfQ0cr1Sz1oRrjKK8xir+LA2U6oPUflv2EACoVn/et7SrmfXfIOsvS9B2HWvAvfk5DaU+Nt3F7o\nfBUfJe4w+DROosTrsMVgXSsHPPm6xz4LiQAAyJisa9M7FAHoFPWyla2EO38HQFgBRUBX7sjbAKAy\nV7d8NJAVGAuALIMjFUn6SEk3Mpda9sajxzBnz1F99Rz10y3q6wLyQMNkFaJF4r4KbYUa7TEQY5AU\nuzkbGNIkG8qGPjDt96ZsVBbUb+PF3gpzAn2R0CFBTo5wV9013QNIc2+ua2/3kK+IWccMqzrYLATH\nwsBDLK26Z2dQNDsk0mcUvMiysCxHXouWyGwijdPpo77l3KsqLM9oWHd16W0HihLQW2C6gSm2UKND\nKKsG4TcAGUx+BiETqMlRS528NhVqUULLkXPm5WMmUKE+DHAFGSlHqabMxCCRdet9hxpzQ8O8LN8z\ni1fI69qRPtgPiZ5XuGuP57S6Gw7HXJXtTeILVzheIETzLdN2+66IOww+AWW0IVYOopsXPGerMPB7\nAP0MiPs4DDjNDmV5PahQAHBZhP7UAVBVgNxs94STsLGLxw3DnuEAbTeo9DIO/FWsFl1VUMZz9hz1\nN6/QXOWorwtUZYRw7XXDp/eOyIzr4D62zQqX+SW+vkxcUzuRu1Yvagj4h8KJRtphRpFhf/bTef9C\nJo79tqufu912+NqAd+JkJQVEgGx20FGFWdz0nD9pzqqdYcx1Y3soY9q4FFuiq+vSZcBGj92GRSmN\nmZpimhxjopauRNntLxohsFNLHGgaqnw42VlqN+zCqt3xsxJH6NsTuqGSavY3be9uj8QRS0EdFI6B\nabgHaRUKjI4hHmiIjv4ag3co60OOvZF1RzWYxGSoJFVfNUIK5SsOu7XL3ociSWZIknuYqENM4iVO\nx2uQH5Ru3ctDKuRDAORnpeAt1V8iAL0KH3cWfGrTbkoWjcHoZlNHH0OLe5h5BIOFRbPDpnjsauFc\nErnIJr2nmMZUbugBENDuuwxprVnNOLHe+sHPoeO1A7TdeQonW5M/8cKgmy1JAzHwWA21qozQVIKy\nnYPESu5IiDdfA956G+LwTaywxmV2iS9fpvjqUlqLhthRvf2AJNNzd3aXXjm/o6FgEMI0cUZtLlxj\nOGgiywTVZI5NddaahC8aiQfjanA2hVXG+byQM2cFbdevA0vJPU4rXGQ7B0JxRAArBRENTP7YL/CO\n0t0BoRyOdDJWGlAHtrS4dZRsAwCRwjiZAZN7qFBhojyJw4GUZQFW8RyFJCO5kSJSykjNiHm3WRLw\nPLVGk0MaZ8E1hbMz4NAuvnw9bLbU8wNIM+3+b6LPBF6AdVeVTtZnXUoksnL9sGk8dnNQLVHSzAJN\nVfiND2si7jlWY6WHpB5jNjnGNDneOys0pCW4F4B4QLgu9m7mXsVHizsMPqJV4gCsiOSLApCNkK0U\ngg6BzRKb8gqPt7Q4rcsRnu4ivL8TeLIFRgH1NVXAQksACfI6xwOLHS0A4giAx/AQKHuQ6BgoS4jJ\nloQ0B3oMXCfnBT4RqVdUtotl+Lwh8DR5g6Zq7yJFqiBODyHefgvi5JNY1c/x/vYKf/9qhF99LvHV\nC4nJqMahBhZJhFRGrbmjkPL7cEILBEvpkNhqVz6G+lWj6XEbgDq9NZHMkGvllAFoF66xLOhD1pEh\ni+TIExvoNfslwBjtciCDVBwtsajXuMoLnGcLY/KZAAAINUlEQVSxK7mJKneq22azBcoYogiEK3XZ\n2lGbcIGrCj/cy5uKyZgM6UZPIccLAiLAgxQv2AD9/+QYxpIGnNKzBR7z3hOYb5LFizicWoFYy34c\nAiM2ZFsT6NRPN2iu6ZzHShJ43vskICNLHihduW1dkuTTNKbMiAa0p6QwUS09+7PYeqAuSn/9VTXM\naufknbwygnTnUkxIaskcXOH/b+9eQ+Q66ziOf3+7m53NZnNPiCGptikqtCioNQgWaW1tYyxWRdEX\nvhBfiFa8oCDRvPGlbV9YvEAqJVix2mq0KJWaWhUEsS1ak1ib1ia9mUvNBbKby2Z3s/v3xfPM7JnN\nbJK99Exm5veBQ848M3P2+ecw859znnP+D739VCpTxtYgFTotzHUENJwSo/q5qEtA88T3+dTr2OQz\nEcUq0NUJtdIXW+3jV5w5MSueepuaeKpJZ3Q8Xe56/OwwB0/3cvB0DydG4bUzqcDnkcP9nBzqTZWl\nK+P0Vsbp7Z1g+bJRzo535/P5UxJQdTbQ6nhTITnEyeHaDJ7q66GrOhsjnJeAQqqVnq/efBlDh6E6\nY2aj7Y6cqxXvrE7HcG40pcSupRW61i5FG96IVl/N4LmjHBk+yZ7j/ew6Lp470Mcr+5eyYvUwi5eM\nMrB4rJaIUsLtqqu8AKksyso+zitfVL0kvHYxQIwx0CgB5ekSzmiEoZFDvHRyAUOjFU6NdZ93STSM\nsSZ/7zYs8zP1BseRU7Uv/J7KYgb6VubEdYpK95nJU26j+YbSsSk/DKqFLRt9yVcnNSt88aZJzc5B\npSdNCbGoHwZOEMUirsWitaNjsCKN12jhcvrz6capiefcK0MAdJ0YoWvZKVi8cHL7hcrrtW0Wks7E\n4Agjx3J9vjWDdC8/lI7iVqwjzeqrPG17F4OjKfmsX5SSfW/3wlSV/MTLdQmnmNyqU6FPDJ6tm5lW\nfT3nFbhVX+57f19t3qTIU1jUboSujnVWBqBrIeOxoHYUNBH1yaD6Y6eagKC+7p/NH13CjNNtSdJR\n0lwXZVgFHCvpb5WlHWMCx9VKyozpTRGxei4bkPR7Up8vxbGI2DSXv3e569jkUyZJf7/QfOytqB1j\nAsfVStoxpk4ywxEOMzOzuXPyMTOz0jn5lONHze7A66AdYwLH1UraMaaO4TEfMzMrnY98zMysdE4+\nZmZWOiefeSLp65JC0qpC2zcl7ZP0vKRbC+3vkvSv/Nz3pHQ3m6SKpIdy+5OSriw/klof75b0nKQ9\nkh6WtKzwXMvGNR1Jm3I8+yRtaXZ/LkbSFZL+LOlZSf+W9JXcvkLSHyS9kP9dXnjPjPZbs0jqlvRP\nSY/kxy0fkzUQEV7muABXADtJN62uym3XALtJs/dcBewHuvNzTwHvIVVtfxT4YG6/A9iW1z8FPNTE\nmG4BevL6ncCd7RDXNLF25zg2kArD7QauaXa/LtLntcA78/pi4D9539wFbMntW+ay35oY29eAnwGP\n5MctH5OX8xcf+cyP7wLfoL4E2+3AgxExEhEvAfuAjZLWAksi4olIn5KfAB8pvOf+vL4DuKlZv9gi\n4rGI2jwPTwDr83pLxzWNjcC+iHgxIkaBB0l9vmxFxOGIeDqvnwT2Auuo/7++n/p9MNP9VjpJ64EP\nAfcVmls6JmvMyWeOJN0OHIyI3VOeWgf8t/D4QG5bl9entte9J3/xDwIrX4duz9RnSb8eob3iqpou\nppaQT2O+A3gSWBMRh/NTrwFr8vps9lsz3EP6ITdRaGv1mKyBji0sOhOSHgfe0OCprcC3SKeoWs6F\n4oqI3+TXbCXNZv9AmX2zSyNpAPgV8NWIGCoeUEZESGqZeykk3QYciYh/SLqh0WtaLSabnpPPJYiI\nmxu1S3ob6Vzz7vyhXw88LWkjcJA0FlS1PrcdZPIUVrGdwnsOSOoBlgLH5y+SetPFVSXpM8BtwE35\n9EWxj1WXXVyzMF1MlzVJC0iJ54GI+HVu/p+ktRFxOJ9+OpLbZ7PfyvZe4MOSNgN9wBJJP6W1Y7Lp\nNHvQqZ0W4GUmLzi4lvrB0BeZfjB0c27/IvUD879oYiybgGeB1VPaWzquaWLtyXFcxeQFB9c2u18X\n6bNIYxn3TGm/m/rB+btmu9+aHN8NTF5w0BYxeZmyj5vdgXZaisknP95KugLneQpX2wDXAc/k537A\nZKWJPuCXpIHTp4ANTYxlH+l8+q68bGuHuC4Q72bSFWP7Sacdm96ni/T3etIFLnsK+2gzaSztj8AL\nwOPAitnutybHV0w+bRGTl/rF5XXMzKx0vtrNzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj7W\nliR9WdJeSfNemUHSJ3Il6QlJ18339s06gSscWLu6A7g5Ioo1vpDUE5MFU2frGeBjwL1z3I5Zx3Ly\nsbYjaRtpeoRHJW0nlfO5Ore9KunTwHdINzJWgB9GxL250vb3gQ+QbrAdBbZHxI7i9iNib/475QRk\n1oacfKztRMTnJW0CboyIY5K+TZr75fqIGJb0OWAwIt4tqQL8VdJjpMrQb82vXUMqL7S9OVGYtTcn\nH+sUv42I4bx+C/B2SR/Pj5cCbwbeB/w8IsaBQ5L+1IR+mnUEJx/rFKcL6wK+FBE7iy/I1ZTNrAS+\n2s060U7gC3lKAiS9RdIi4C/AJyV159L9Nzazk2btzEc+1onuA64kzb0k4ChpmuWHgfeTxnpeBf7W\n6M2SPkq6MGE18DtJuyLi1hL6bdY2XNXabBqSfkwq67/jYq81s5nxaTczMyudj3zMzKx0PvIxM7PS\nOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyvd/wEF11Qp3r+cqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_phase().show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb.txt b/_sources/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb.txt new file mode 100644 index 000000000..1c2056f6a --- /dev/null +++ b/_sources/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb.txt @@ -0,0 +1,1121 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation\n", + "\n", + "This Tutorial is intended to give a demostration of How to make a CrossCorrelation Object in Stingray Library." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve\n", + "from stingray.crosscorrelation import CrossCorrelation\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# 1. Create two light curves\n", + "\n", + "There are two ways to create a Lightcurve.
\n", + "1) Using an array of time stamps and an array of counts.
\n", + "2) From the Photon Arrival times.\n", + "\n", + "In this example, Lightcurve is created using arrays of time stamps and counts.\n", + "\n", + "Generate an array of relative timestamps that's 10 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset of pi/2 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 10. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "signal_2 = 300 * np.sin(2.*np.pi*freq*times + np.pi/2) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn noisy_1 and noisy_2 into Lightcurve objects. This way we have two Lightcurves to calculate CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGICAYAAAAnExYOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4LFV5Lv6unvZ89uEMiIBwGASEAKIiKjhg+MVMKsn1\n5iFyEwSMyVXJdUg0RjReImquGm+I8wAkGg03GEEc4uOAwGGUQUEEZD7AGfc5Z++zhx6qu9fvj1Vf\n11erV029u6qr+6z3efbTvXuqVVWrVr3rfb/vW0JKCQsLCwsLCwsLi+FGYdANsLCwsLCwsLCwWD0s\nqbOwsLCwsLCwGAFYUmdhYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsL\nixGAJXUWFhYWFhYWFiMAS+osLCwsLCwsLEYAltRZWFhYWFhYWIwALKmzsLCwsLCwsBgBWFJnYWFh\nYWFhYTECsKTOwsLCwsLCwmIEYEmdhYWFhYWFhcUIoDToBmSBDRs2yE2bNg26GRYWFhYWFhYWkbjr\nrrvmpJQbk35vvyB1mzZtwp133jnoZlhYWFhYWFhYREII8WQv37P2q4WFhYWFhYXFCMCSOgsLCwsL\nCwuLEYAldRYWFhYWFhYWIwBL6iwsLCwsLCwsRgCW1FlYWFhYWFhYjAAsqbOwsLCwsLCwGAFYUmdh\nYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsLixGAJXUWFhYWFhYWFiMA\nS+osLCwsMoSUg26BhYXFqMKSOgsLC4uMcM01wLp1wE9/OuiWWFhYjCIsqbOwsLDICDfeCMzPA7fe\nOuiWWFhYjCIsqbOwsLDICCsr6rHVGmw7LCwsRhOW1FlYWFhkhOVl9dhsDrYdFhYWowlL6iwsLCwy\nglXqLCws0oQldRYWFhYZgUidVeosLCzSgCV1FhYWFhnBKnUWaeCJJ4Dt2wfdCos8oDToBlhYWFjs\nL7BKnUW/0WgAp5wCHHgg8NBDg26NxaBhSZ2FhYVFRrCkzqLfWFpSZXLq9UG3xCIPsParhYWFRUaw\n9qtFv0F9yXEG2w6LfMCSOgsLC4uMYJU6i36D+lKzaZegs7CkzsLCwiIzWKXOot/gEwQ7WbCwpM7C\nwsIiA0hplTqL/oP3JWvBWlhSZ2FhYZEBGg2g3VbPrVJn0S9YUmfBYUmdhYWFRQYglQ6wSp1F/8An\nCJbUWVhSZ2FhYZEBaN1XwJI6i/7BKnUWHJbUWVhYWGQArtRZ+9WiX7CkzoLDkjoLCwuLDGDtV4s0\nYEmdBYcldRYWFhYZwCp1FmnAxtRZcFhSZ2FhYZEBrFJnkQasUmfBYUmdhYWFRQawSp1FGrCkzoLD\nkjoLCwuLDGCVOos0wPtSozG4dljkA5bUWVhYWGQAq9RZpAEbU2fBYUmdhYWFRQawSp1FGrD2qwWH\nJXUWFhYWGcCSOos0YEmdBYcldRYWFhYZwNqvFmnAkjoLDkvqLCyGFVbuGSrYZcIs0oAldRYcltRZ\nWAwjnnkG2LABeN/7Bt0Si5iwSp1FGrCJEhYcltRZWAwj7r8fWFgAbr550C2xiAkbU2eRBqxSZ8Fh\nSZ2FxTCCRu96fbDtsIgNq9RZpAFL6iw4LKmzsBhG0Ohtq40ODaxSZ5EGLKmz4LCkzsJiGGGVuqGD\nJXUWacDG1FlwWFJnYTGMsKRu6GDtV4s0YJU6Cw5L6tKElMAttwCLi4NuicWowdqv+YTjADfdBDQa\nnct/3z71llXqLNLA0JG6e+9V2fsWqcCSujSxeTNw+unAe9876JZYjBqsUpdPXHEF8IpXAJ//PG6/\nXV3+73qXessqdRZpYKhI3fw8cOqpwNlnD7olI4tMSZ0Q4lVCCGn4m9c+d4AQ4stCiDkhxLIQ4kdC\niBOzbGtfsHWrety2bbDtsBg9WFKXT7BrnsQIuvytUmeRBoYqpm5uTrkLTz896JaMLEoD2u5fAvgZ\n+78zxAkhBIDrAGwCcBGAvQDeB+B6IcTzpZTD0xto5LbTcot+w5K6fIKudcfpnCJ6ySp1FmlgqJQ6\namCtNth2jDAGReoekFLeFvDe6wCcDuDVUsrrAUAIcSuAxwG8B4oQDgdo5LYjuEW/wWPqpASEGGx7\nLBToDttshpI6q9RZ9AtDSersZDQ15DGm7nUAthKhAwAp5QKUevf6gbWqF9DV1m4Pth0WowcaHKW0\nDCFPIAbHSF2zqf54Toud51n0C0NJ6mo1NXZZ9B2DInX/JoRoCSF2CyG+LoQ4jL13AoBfGr5zP4DD\nhBDT2TSxD7D2q0Va4KO3nfXmB3TNa/YrqXRTU95r9p5m0Q8MJamTcggaO5zI2n5dAPBJADcA2Afg\nFAB/C+BWIcQpUsqdANYBeMLw3T3u4wEAlvQ3hRA/DdroC1/4wlU1umdYUmeRAn7yE2DqZgen0Qu2\nrEl+YLBfm00/qatWlXjfagGlQQXAhEFK4B//EXjxi4GXv3zQrbGIwFAlSuiT0UplcG0ZUWQ6pEgp\n7wFwD3vpBiHEjQDugEqK+ECW7UkdNqbOIgW84x3AH9/HSJ1V6vIDZr8S1261FJEDgIkJReQajRyT\nugceAP7qr4DTTgNuCwp9tsgLhkqp4xPQWg2YmRlcW0YUAx9SpJR3CyF+DeDF7kt7odQ4HevY+6bf\neVXQNl70ohcNxuiwMXUWKWBpCSjD2q+5RID9Si+XSkCx6H10bCz7JkZiedn/aJFrDBWps2EjqSOP\niRL3Q8XV6TgewBYpZZf1mltY+9UiBTiOJXW5RUCiBL1cKnnqXG6HBeswDBWGltTZsiapYOCkTgjx\nIgDHArjdfenbAA4RQrySfWYNgNe67w0PLKmzSAHNJlABszFsTF1+EFDShF4uFv1KXS5hx62hwlDH\n1Fn0HZnar0KIrwF4FCqujhIl3gfgGQCXuR/7NoBbAXxNCPHX8IoPCwD/J8v2rhp2cLRIAc2mVepy\ni4Diw1aps0gLVqmz4Mg6pu5+AH8M4B0AJgFsB/CfAP5OSjkHAFLKthDi9wF8AsBnAYxDkbwzpZRP\nZdze1YEGRRtTZ9FHWPs1xwjIfuVKHZE6q9RZ9AOW1FlwZGq/Sik/KqU8SUo5K6UsSymfI6V8i5Ry\nm/a5PVLKC6SU66SUk1LK35RS/iLLtvYFdnAcDO64Q62kftddg25JKtCVOllv4NxzgYsvHmCjLBQM\nMXW6Ukf2a26HBavU5Q9vextw0UXGt4aW1NnJaCoYeEzdSMOSusHgtNOAW24B/tf/GnRLUoFO6hZ2\n1fH1rwP//M8DbJSFQoyYOqvUWSRCowF89rPApz9tdH2GNqbOKnWpwJK6NGEHx8FiYmLQLUgFuv3a\nXlEz3qUlu0rBwGEoaaJnv9pECYtE4IsGG5KirFJnwWFJXZqwMXXZY/t27/lxxw2uHSmh3VZ/PlJX\nrXfes5PfASPAfuV16myihEUicFJnuMCHltTZwSoVWFKXJuyMN3ts3uw9H8HjTrvkI3V1b/a+NDxV\nHEcTMRIlrFJnkQic1BnULd6Pcl/dyCp1qcOSujRhB8fswUld7ke45KAx0ZcoUfMGR0vqBgxb0sSi\n37BKnUUCWFKXJoaN1PHBY1jBSd0IzgSpS/lIXXW0SN3KyhDHBtriw4NDjPGrVhvCaJgIpW5oEyVG\ncHzOAyypSxPDtPbrzTcDa9YAl10W/dm8YnkZuOce7/8RHDSMpK4xOvbrnj3AwQcDb3rToFvSI+wy\nYYPBpZcCa9cC994b+JGVFWDTJuDss7NrVl9glTqLBLCkLk0M0+B4992qnZwUDRsWFvwE2tqvQ4fH\nHlOncWhLDBqyX21Jkwxw113q4rjvvsCPPPMMsGMH8POfZ9iufsCSOosEsKQuTQzT4EhsILd3mhjQ\nj/N+otRhhEgd7V+1Oth29IwExYdze6kN02SUQBO4kI5Dw8Ew7RaARIkSQ0XqRnB8zgMsqUsTw0jq\ncj8qhGB/JXX10SF1dAqHltQlWCYst8MCDxsZluDGGKSOhKFhiIbxIUKpG9qYOqvUpQJL6tLEMMXU\njQKp04/zCJI6o/06QiVN6JIZ2vHeYL+6/wIYEqWONyy3zFMDkbqQjkPDwTAMxz5Ypc4iASypSxPD\nZGOMov06gjF1RqWuYZW63MBgvwLe/WsolDresNw2UkMCpW5YdqkDG1NnkQCW1KUJa79mC2u/BpK6\n224DHn88xYb1CVypGxbnzweD/Qp4p8ik1G3fDlx/fXZNjISm1N13H/DLXw6uOYHYskVl7QOJYuqs\nUjdAWKUudVhSlyYsqcsW+4H9aiJ1IqKkye7dwBlnAG94Q9qtWz34pTKUp89QfBjwkzpdqXvLW4BX\nvxr41a+ya2Yo2EloOy288pXAmWcOsD1BOOcc4OUvB7Zt8w5wiPozqkqdLqzmejJklbrUYUldmhjG\nmLpRsF8nJ9XjCNqvppg6br8uLnZ/Z/dudWj4srh5Be9+Q2nBRih1puLDzzyjHnfuzKaJkWAnoVlv\nYe9eYG4uh8PY1q2KwezaNdpK3fKy9zxCqQNyPi+3pC51WFKXJqxSly1otJ6YUI9DKfWEw6zUhduv\ndEqHgePyS2UoSR2Lo3UanmRCx96k1JEQk5v5FDsJzXrL9HI+QNd3vW5j6hhyPYRb+zV1WFKXJoYx\nUSLXI0IE6Djvd6Qu3H4dJlLHb1BDOZFnOyAd77kpUYI+mjtSxxrSarRML+cD1EEajVjZr6Na0mRo\nSd1QXuD5hyV1aYJfbXkfSUbJfh1hUqfGRIkyvPMkHKvU5QZsBzipo/uXKVEid6RuRJW6obVfEyRK\nAENE6kZwfM4DLKlLE8NI6nI9IkSAjvEIx9Q1m0AJ/lF8lOzXUVXq6NibSprkjtQNg1InpddBOKnb\njxMlqF/legi3Sl3qsKQuTQxLEU8pw0ndF74AfPWr2bapF9AxHh9Xj47TIXq33AL87d+GD3hSAv/7\nfwM/+lHK7VwFmk0tSQJAISapa7cz6oaf+hTwzW/29NWoRIlWC7j4YuCmm3psWz/RbALvfz+webP/\nNRcm+1VX6qQ0k7orrgC+/OW0Gh6BYSB1dPAAq9S554UMiqEhdVapSwWlQTdgpDEsRTyrVW+k00fu\nWg1461vViPEnf5J925KAT1krFS/WZnwcp5+u3nr2s4GLLjJ//b77gA99CHjhC4E778ykxYnhON2k\nTjTjxdQB6nDQ4J8K5uaAd70LOPRQ4L/9t8Rfj7Jff/Yz4NJLVXmygdd2u/lm4CMfUTMGakzAmk1B\nxYe5WMHzqi64QD0//3yPBGYGbr/mldTxA8dj6mIkSgBquCsMi6QRM6ZuYkJlvw8NqbNKXSoYlm49\nnBgWpY4zAX1EWFlRI+Dycv6nuNS+QkGROqDLc3zggeCvUzmQfftSaFufYFTqYsbUARlYsHRT5WUY\nEiDKfl3lz/cXe/eqxx07vNcSKnX8fk1f5f1vIMMGV+ryGlPHVR4ao4BYy4QB+R/KfIip1HGDIrew\nSl3qsKQuTQxLTF0YqeMz37wHZdFdp1gExsbUc23gCFtGiz7Kx9C8Ifekjs5BjxuKUuroMspFV6SD\nPTfnvcZ2oAgzqeNKnYnULSwYfy47sI3m1n7l5I0XZ0yg1A0NYsbUDZ39apW6VGBJXZoYRqXOZL+a\nnucRMUidqTgvgXYvFypQAEz2a4HZr47TTXgyJXVsQfvVfB0IjqkDckbqdu9WLEFK33XOz1NQSRPe\n13JD6thJaDujQ+r4UJDn4bgLIUqdlEMcU5f3+8mQwpK6NDGMpC5Mqcu7XG6yX0dYqWuUVZZvsRm+\njwMhdY1GT+sV8cvENObnktS128qK1eSfUoBSF2W/clI3ECI1DEodv655h4+R/QqMjlJnGvJyTer4\nhVuv53xNs+GEJXVpYlgSJeKSurzPrExKnXb3DyN1vJZprm5gDD5SV5kGABSdHJG6Vfb5KKUul/Yr\noCxYrdOYSJ2eKJFL+3UYsl9Xab/meTj2od0OdUvonBSLQLmsnuea1OmNy8WFPFqwpC5NRMTUPfoo\ncMopwLe+lWGbTIhrv/ZBqXvb29TC8qlM0Pi0tQf7lX80r4Vvuf1aL7ukLo9KXY8bi4qpy6VSByhS\npzEFOk9vwhX40r0vxjrsjqXUzc93v5Yq3vpW4JxzvItSI3VX4jx8GReGEqG771Zj2Y03ptTG664D\nXvAC4JFH1P/8YuUXda0WOLisJlHi4x8HXvGKAcxr9YvA3YnFReBlLwMuu0y9XCoNKanLu/szhLCk\nLk1E2K/f/S7w858D//7vGbbJhIyUOscBPvtZVcKMEgf7ij7F1AH5tWCbTaACxWga5SkAQKHlZzj6\nPmaacBZQ0iMuorJfc03qApS6P8Y38BsrP8NLcFs+lbqvfAW46ipvw2yj7Wod5+FfcSEuR7MRzIS+\n/301ln372ym18ZvfBO65B/jJT9T/vHPos5iATr4ape4971G1EVPbvyDoA5G7E3ffDdx6K3D55erl\noSN1QqjHvLs/QwhL6tJEBKl78kn1uHt3Ru0JAh8UWy3/TLePSt0zz/g303dwUhdQ0iROTB2Qb1JH\nCpBTHAcKBRRk25dpOcpK3TDar0TCS2gmjqlLndS1297BpKwNXpal5l0UrZXg65+GidTu0TxWEwhW\n6oBAmb0fJU1KWVd21bO23J2gw0G7PnSkblq5DFap6z8sqUsTEfFFW7aox127MmpPEHQWEBTYtMoR\nm/YXSGngiWG/xompA4aD1LVEubOfYwguazKwmLpRV+o4mQixXzmpS6rUpW6/8gNJHYevX8tIXbsa\nfAOmyyy1sAXqS7ShoJg6/b2Al3sldcRFMgN1EOo07k7oNQ2HjtTNzKhHq9T1HZbUpYmImDoiObzM\n1UAQxgJSInWp3JRD7FdSR8K2OwykjsfUNQseqSPiAAy3Uhe3pInj5CBxjh/oXbuGU6kz2ZgBSp2s\nRmeWZkbqVqnUJTmu/PqhAr+ZgTrIAQeoxwClbugSJYgdW1LXd1hSlyYi7FdO6gZ6gwpT6vpov6au\n1JnsV7fNcWbYw2a/NkW5s5+jotTFtV97/Pn+IiJRQid1ZTj5Kz5sKg2yCqUudfvVtCG9wweQul6V\nuoGu8EEdZN069ejuhN73h0Kpa7e9A2/t19RgSV1akNI/cmijQa0GbN+unjca4bZg6giLrB8mpc5k\nv7ob4qQuiEDrSt3y8oCzYPfu7eo3ubdfkyp1tZovbihoPkFxp/xwpLYve/bEm2VFxNRF2a+6Ukfn\nKVP7NUKp4zfdXCh1dNJ7sF/rdWAG+1CCk4icZXo+9L6nkzpNqSMMBamjhpVKnuQZ856ye3cOlPkh\ngSV1aUEfNbSp4dNP+98eqAUb134dJqUuwH4FglU4XbQ4+WRVpmEgg8kzz6iB/NWv9r0cZL+Ood4Z\nJ8M4eu6Uupe+FDj++M5dyqTUXXUVsGED8OEP+y+jVPblppvUxj7xiejPJlTqcmm/JlDq+POgn8mz\n/VqoLuNxHIHv4vcSKXWZlZi59VbV9y691HstQKkLI3W5iDc1gc5hueyRuhj3lOuvV4flk59MsW0j\nBEvq0oJ+1WmjMyc4QM5IXZBcskqljrJ9gQyVOnfQ4Ief3zQ5+O7t2KHqCD70UErlV6Jw/fXqUSv8\nFWS/VtAIDFPJtVL3y1+qi8G9AEwxde9+t3r8wAcyUOoeeECx+Pvvj/5swuzXMpz8lTQxKV6rUOoG\nYr/qHSGA1K2tbsN67MHJ+EUiUpeZUkd97557vNeog8zOqkfHAdrtrvnSUMTUcVJH43OMDnPnneox\nziVpYUldekhI6gaaAZuBUiflgGLq3AGfD+JBpI7v3rZt3nNORjPDQQd5z1lf8pE6+JW6KVW2Lh9r\nv+obNqHd9j7vkjrTMmF79nivpU7qeCZGFGIWH16NUjdo+1XU48XUZm6/ho1FAUShXVe/MY2lnu3X\nVEm2yX+nDjI15VO3htp+TajUkeBhcyriwZK6tBBB6nSikCulLmjR5VVcVfPz/s1knf2aVKnjpE4n\n4JmA+8WsMT77VZhJnT5ODsx+jdoYb1iIUkePxWIG9is1IIpNNRrqr1BQDVtY6PL1TfarrtTxMmR5\ntF/jKnWpJ0qElTTRYWCWUgJw1HmYwgraTvwDmxnJNnUA6lOTkz51y0Tqcr/2a49KHd0bbU5FPFhS\nlxb0q07T+4koTKo12fNB6qjKd1BdiVVcVToxyrpOXRxSF6TUDYTU8QPEGuArPiwqvpIm1JcGSuqS\nKHW8MQalTr83r1uXI6WO2NjMDLB+vXq+Y4fvI0TqKImFsl/DlLpms7sWeKqIUuoadfNnA34mNaVO\nt18TKnWNhnfdAIBcjp/enhmpC1PqJid96tZQZr9apS4TWFKXFvTROMB+ff7z1WMuSN2aNeoxhexX\nnRilrtRp9uvQKXX87hFI6vwlTYjUDdR+TcK6DKQurPjwAQdkQOqoAVF3RrpmpqdVFDcQSOqSFB/m\n5TN4c1JDhFLnI3UhN+CBFh/WYWhEreav5Zik3EBuSF2EUjdUpM4qdanBkrq0EDOm7gUvUI/Ucffs\nAa6+OuMMJhrg1q5Vj0H26yquKt1uzjr7lQulPJuNI4zUPfww8IMf9LGtUQggdT77VYupMyp1W7fi\npMeuAaBSeDNX6u69F7jhBv9nfvQjlYGSUKk74IAM7FdqQNTdm66ZmRmP1FGNIhdlOCighSJUo+PE\n1OkTjtSUOjoHCZQ6X3wdVBzwN7+pPp56okSSmDoDqavXNaVusTdSl6pyGmW/hsTU5SpRYvNmdd3r\nMCl1CUhdan1r3z7gP/5jwPWr+gdL6tJCBKmjkiannKIeqeN+5CPAf//vwLXXptw+Dp3UpbBMGF/3\nFchn9iu/T/DElSefBI45Bvjt31YZsZmAj8yMEXdlv0aRune9C++44Q/wEtwGYABK3cknA696FfD4\n4+q17duB3/ot4Nxz/Y1xD/jAlbq49itX6sh+3bnT95ESmj51SC8+HIfUpaIM0Tl44xtXpdR98IPA\nG96gJjupK3Vh2a86DO/Van5SJ5YWuz4ThMyVunrd20+y+Tmpq9Xya7+urABnnQWcfXb3e5zU0WAV\nNMNmSF2pu+wy4I/+CPi3f0tpA9nCkrq0EBJTJ6U3mG/apB6p4+qPqYMCeYRAJ9I+BftVrw2XtVKX\n1H7ltel4Kn2MMag/iGO/wrNfy3DMpM7tSM+CsgYHFlP34x+rR6oiunNnpP1arfrPydRUhokSUR2U\nyn9MTwMTE+q5ZunppC6O/ZqJUrdjhzoH27dHKnUFJ1ipI2GS/0yrldK1vUr7tV73269iOYf2K/9x\n2ig9rlnjG9PCEiUGWqducVEdbNMNjJO6k09Wz2+/PfTnmk2vpFRqSh1VNh/4ep39gSV1aSEkpo4u\nulIJeNaz1HNShqjfZzbbokFyfNw81euT/apfkKkrdT3E1AXt3kBW+4hhv3JSV0HDXNLEPZfjqHW/\nlwaCpLSf/Uw98kD3CPvVcfziV7udoVIX136dnvZuttrMpQyni9Tlwn4lQrqyEq3UOcFKHbVd/5lU\nbr5x7Fci1wExdVypQx5JHR93afZIG5+d9Sl1JlKnzWMHg7BJEb1WqQBnnKGe33JLaCfnC2yktl9x\nr/khgSV1aSHEfuU8isJxaJIQVyjoG6gxY2MeqUvBfqXNpJp2HzOmLo5SF4TMrvs42a8aqTMqde7v\nUAbmwIoP04w8gtTpx/epp7znrVZO7Vfq1IaSJrr9mlSpS6W/UduXlxMpdYWG/wKhtus/k4oFG8d+\npQK9hvd0pa6QgNRxdT6TOnVAt1K3dq0vucBUfHhoSF25DBxyCHDEEWqCYYq/c8HFs9SUOkvqLGIh\nhNRR5xwb81Z/2bPHb11k1r+oMRkpdTMz6jGPderi7F5mZFu3YtxGh5E6Y50693cyU+p4u7nEed99\nah+oAVTnjWBQ6oBuUpebOnUxlDqT/ZoLpY7a7jj+cxRlvzb8FwiFe62sZEDqwpYJIxCpi6HUDZ39\nypW6PNuvdJ5are71FTmpAzy1bvPmwJ/LhNTRoDLwDJP+wJK6tBASU6c7nmvXqrfn5wdov46NeRJC\nCjF1OqlLvU4dG+H0JYGSKHVU5YWQGdnWN+Sqddx+bQQodSb7NTOljrMQviZnuw3cdluwUmdIlAD8\npE63X1NRJHpR6ojU8UrCMNuvXKmr1fz7mzmpA/xr4Bns12IMpW7fPvNKIH1FHKWOLtYYJU1ySerC\nlLrZ2ciSJrlS6vTnQDepe/nL1WNMUmft13iwpK6f+Pu/B772NfU8hlJHEy9uwcYVClYFKYH3vQ/4\n1rfMSl2fig/fcANw0UVqE/RVGnezVOq8Qy/xYbwfpz55tfHrpt078UT//wOxX4EOqfMpdTKG/Zq2\nUnf11WpRVpqV8wOkL7R+001e49ptv0xVrQIrK10khrLEgRzbrzGVOr34sKkmXab2K+Bfg82k1DWZ\nUuf4LxDaXX1t5FSVurCYugj7lSt1hZUhJHURxYeHjtSRUnfTTWr8+OEPgXe8w/e9TJW6oJN7333A\n//yfA17LMz4sqesXnn5a5fj/1V+p/0MSJbj9CqhSDYAaHDNR6h5+GPjYx4CLLzbH1PVpmbCPfQz4\n9KfVmvSZKHUBpI6u2SPxGN6Pj+DtT72n66tSmnfvrLP8/w/EfgU6qYac1HGlLrCkSdpK3d/+LfDh\nD3txf0FKHaDSiHkD9AyUubnImLrc2a8zM7Fj6nSlTj88zWb3a5kqdcvLXXJosRmt1GVK6vqk1MUl\ndY7j/7lM6tQBisy1WupcCaEmDxGJErmyX/Xn/H+6zxx3nNqvbdvU/n74w8A//ZNKnnDBSZ3jdC3M\n1B9ETeQ+/Wng859XIsgQwJK6foHS9ChdJ2aiBOBPHsiE1NEotbTkV+qi7NeEU0AKMF5a8r6aakyd\nyX5lSt0BBSWNrG/t7Do9Qe1505uAu+4CXvMa9f/A7Ff3APaaKJGaUqdXnQ1T6rhka3p/bi4ypm6Y\nlLoyHEyVumPq6DIzKXX6PqVO6rhSByhix84hJ3VFx0zq9J/ou6LSbnvXdpyYuj4qdZkopwRdqaMO\nsmZNV+0k7F17AAAgAElEQVRNU/Hh3Cl1UaSOyCqg7jPUL1mH0quMpBpyEXRyqeTJQMogJIcldf0C\n9T7H6Q6WAXxTDF2p4wJZJvYr/Xi1Gp79SjXsCAlHa7oGeL2xzJW6RqPz8tqKugtNYxnbHvPP5ukw\n0PK3hNlZteoHVUsYmP3qNtBX0kTGKGniNjg1pY4OCB3kMKWOF1U1vc+UOuLkQ2W/ajF1JTQxXUlm\nv/JyR/Ra3xGk1NF7QUods1/bbW++l7pSZ8qoDst+7aNSN1BSR7Ni2q+I4sO5I3VR9ivgL0ND540d\n9ExIXZT9Su0ZkhUnLKnrF3jvW1hIpNRxUpeJUkc/ztmWKftVHzhXQeoyVeoCYuqmC56SsvW+3b6v\n0q7RohoEcnRMImaqCJASffZrnJi6tJU6ndTxduusJYFSRxN4vvJWLu3XiJImU5Vg+5X2lboqJ3V0\nLlOtUwd0y2xLS759L7XMSh0fCvSf6Pu9T1+8mMdK0IAChNqvulJXrOaQ1AVkvHdIXUTx4VyQuiT2\nK5CY1KUSVxc1kbOkbj+FTuoSxNRlTupoROA3WW6/ciWPI+FoQfe9Wi1jpU6zKogITAnvprv7If9o\nQbs2NeXdo2dmPFUlVeXEhBj2axJSl5pSpyt0JqWOBu5azd8AndTt2tXZbSJ1+qZyrdRp10cZDqbL\nwSVNCMRFTKQu00QJQJ0TdpBLPvvVe875a+r2q2mCo2deAaH2a5dS1yOpy7ROnU7qhiGmLon9CvjX\ngKXzxg66npswUKUutUyN/sKSun6B975VKHWZ2q/NpjfAmxIliNTRaNFH+zX17Fc2wtHLnNQtPOIf\nLTjRphsqjaWAOTE4VdCGiBAZ7NeG9NZ+raDR+ajjsBJRWvZr3wfFMKWOSBsdyAT2q4nU8dAqYMDL\nhJlIHcHtLCU0MVUOVuoIJlJH5zL1mDr9IGrqqk+pa3rXPyd1+k+kqtQBqg/RBctJ3bArdVGkLqT4\ncG6UupTsV14GqO+IiqmzSt1+iij7NWZMXaZKHeB12DD7ldJzQ0aLm29Wi97fcIO3CR5Dr9uvqdep\nM9ivnNStbDErdePj3hK4nNRlbr/ShjT5LUypK5cNs/XV2q+XXAK88IXBA5o+Cwkjdbr96pIL6UpX\nj9y6q3OuuKtGyFSp66X4MMGdrZXQxGTJHFP3JbwZ38PvAJDZkLqnngKe9zzgK18xB3zTta8tblxq\nc1JnVup09P3Gq1901P5SyTtQgBc7ESOmrpRHUhdlv5IK8KlP4WM/fCHG4e1nbhIlQuzXW25Q/1eb\nBqWOz/wNpO7gg9XjQGpTWqVuP0WfYuriCgWrAv9xinLmxYd1+5UGy5BO/cMfqkopP/iB+p/HjA9E\nqYsgdY2tflLHQwtNSt3A7FeSrAwxdfW2n9QZB/bV2q9XXw3cfTfw4IPh7QyzX7lSZ7Bfd4kDAQB3\n/Xhv5+d+8zc9m5L6TC7tV+7XE9wLuwwnUKk7B/+O38F/YS3msXGjej9V+/XWW9U5vPpqM6lbv149\naiyGK3WlAKVOR6qJEoCnJo6P+wk17cO+fV2rGXQpdbV4pI42VSiYm9JXBCl1NP6edprqGM0mjlq4\nG8fBuyaHwX69+XrVsKe2G5Q6voCwO7EgI0kIdK6RVHhVmP3aaHgbHUWlTghREUK8RAjxh0KIc4UQ\nrxFCbFpNA4QQ/yWEkEKID2uvHyCE+LIQYk4IsSyE+JEQ4sSg3xk4OKmbn49VfDhMqctsRkgz8zCl\njqSEkEJB9JN0XfL7hilRIvXsV1bShJo8CXYnmjMrdbmzX7W1v7rsV0bqjAP7aosPm8iaqZ0mhYv6\nT5BS55K6bU01Yh8gFjo/c+GFqg8tLqrapLSJzOxX3evVQaxmaiq2Usdj6kg1KsPBUUd5m05NqaNz\nMTdnJnVUAV1T6spt1n6m1GmJvj6kbr8S2Rkb8xPqAw5QB65W62KdXUpdTFJHh4rMioEqdS95iZqE\nn3YaAP94lnf7dedOYH5OncelhoHU8X7n7jf1selpf1hu3xGmzvNJzpCQulLUB4QQRQB/AODNAF4J\noAKAF36QQohnAHwDwJeklI/E3bgQ4o8BnGx4XQC4DsAmABcB2AvgfQCuF0I8X0r5tP6dgUNX6rgt\nAOQr+9VE6sJi6iYn1fsUE6XvG/tJuinx+waVvhIC5qWs+gWT/cpi6vggWJyfg5ReCROu1NEkf6BK\nXQ/2a5dSx4hJz0odHVMTu5Cy+33T54Ji6txOsguK1B08vdA5vsWid33wbNHMlDpAHWxdhSMQaaBr\ng8P9v4QmJop++7VQAEpFiYp7DstwcOSR3uZSI3V03HftMg8uAUodR6kVT6lL3X4NUuoqFUVOn3pK\njcc0IUL32q+lqhbPGQAax9auVeXKMkuUmJ/vJnWA2kd3Zpx7Usf2Z/Nm7/gv1w32K8+2cfebRziw\nxTT6jzB1nl8Po2C/CiHeAOBBAF8DUAdwMYD/D4qIHQPgJQDeCOBqKOL3gBDiS0KIZ0VtWAhxAIBP\nAXiX4e3XATgdwJ9IKb8hpfwv97UCgO7lAPKAHmLqdFLXaAzAfuVKXZD9Oj4eeVXpBd85qeOb4IWW\n+46gRImmYmlT8OSFWWfOeL0GKXUDK2mSwH7tGthZY1NR6vhrYbPdCKWOSN2atqfU8WQCsmEzJ3VB\nJ1tKj9VMTATarzqpK6EJIdQjIYjU9d1+7VGp4yjHJHWZ2a9jY2ZSBxiVeJ9SV1+OtTwBJ3WmpvQV\neumWHTvUcz4QAZ3O4Zuk+ktzDg4BMXWc1O2rGZQ6XuzQQOpYjkj/EWa/DqFSF2W/XgbgMwAOklK+\nXkr5SSnlT6SU90kpH5FS3iGlvEpK+S4p5TEAzgCwHsBbYmz7HwD8Ukr5DcN7rwOwVUp5Pb0gpVyA\nUu9eH2fHMoWUiWLqcmW/8pi6IPt1YsKfeh7yk3TP5omNfBOpxn3wOnWFQmd/2jW1MT4IbsAcnnzS\n+ypXT+mGymvW5cl+pZuTSaljrrOvsT0rdWGkzmS1mD43M6Mk0WbTPzBqpG6y6VfqCJzUZWa/AsGk\nznFUY8pl9Rdgv5bh+JU6oX672PZ+NzOljq7b5eXu+oGAR4ZClbp4iRKZ2a98lgiEkjpdqRNSxmpo\npqRO/3Faei8GqSuV/MN3KstpxUGA/cpJ3WLVQOpClLqZmYyUOtPJ5ZOcUVDqABwppfy/Usrg6RuD\nlPJ2KeUfAvh42OeEEGcA+FMAbwv4yAkAfml4/X4AhwkhDAUPBgidxC0soL6cw+LDTz+trvagmDpd\njqJBb2IiUtsPi6kLC9vrK3idOqAz4Mu6mdTRmAnEV+oyt181UndE4yGsgbophyl1jQb6o9SF2a/8\nYIQNjNwm42xfs18nnZwpdfq+7N2rCBG3XoHQmLrxgt9+BYASi1MbQwObNnmbS91+DUIflDrqqpnZ\nrwalrj5jIHXPPAOn1vIpdQBiLfuUCqlrNoGtW7tf1/czIakTwj9pfuaZDMcrgmFStLQEPHXXzk57\n91UN9muPSt3evd2VkRKDxjjDTWn+yRFT6qSUPV2eYd8TQlQAfAHAJ6SUDwV8bB1UHJ0OovMHGH73\np0F/CZufHHrZ64UF/NM/9lZ8ODX79fbbgec8Ry3AbrJfTcuEmezXgBGbftIUU8c3kapSx+1X2iCA\ndlXd0CZkMKkzlTThSt3A7Fe+9tc11+DexnE4Co8BAKrtsfCYurSVOpP9avrc2JjXf7gS5I7Ge7AO\nbQhMtpchHVfNMih1mdSpC7JfWy3gxBOBU0+NJnUsps5H6gxK3cEbHd8SdKnbr0GgmLoQUhel1IVU\nFFkdYma/1mUF//I9l9RR3dB77wUOPRR/cvc7fUodgESkjnhVX0j2294GHHoo8JB2+6P+RtlktPBx\nTFIHeIfjnnvUJv7yL/vQ3iQw2K+/uvpXeLr9bLwdnwEALKxE2K/VKuA4kTF1zSZwwgmdvJHeETAh\n3bUL+Ou3jBip4xBCHCOEeDH7f0II8VEhxHVCiLcn2OZ7AEwAuDTBd/INA6nbvSM4pi6OUtf3GRYN\nIA8/nDz7lSt1Me3XKKUu9UQJ2iAAWVVtnmCD4EbswpYnvbIHnGhfeCFw9tnAa1/r/XQe7Ff5oDqH\n23AQrsCb8DCeGzumbkLUOj+byJqhD5u+1ItSx60/txPUMI4FqBvXVEu9PzClLqh46vKykj5+/WtP\nGiDmFVLSZEz4Y+oAv1L3nIMcnwo8MKVu3Tr1GCJ7lKXn65lIHWWIpm6/cqWOHfs9SxU8XdOUuocf\nBgAcvPRQfpS6Bx9UITuPaDmF9OMnukUeaL8TkDo6HPfdpx7d3c8OhutH3H0XivDGj/nlCKUOABYW\nOl0xSKnbswfYtk0dzlXZzQFj11NPAVOtEUuU0PBpAG9g/18K4N0ADgbwKSFEkJXagRDiMADvB/AB\nAGNCiLVCCNJD6P8ilErXpcZBKXiAQcWTUr4q6C/uDvYMGkBYXAopDh3EUOrq9VAleHWgkZbLgUB8\n+zUiqCEOqeNjcOqJEkDnzihX1H5wpa4CBzsf9W5gnGi/7GXAt76lZrqEPNivtB9fwp/hAlyBZrsQ\nXtJEs197sr7jxtRFkTrqP4Z4rgYqHVI36ahBlJM64ugDTZTgLIZUoCClzu13JTQxLrzrhZQirtQd\ncqDT2b922xsb+r72a9QNicoWRREd90IJU+pSt195TB079stOBXPQSJ3bmHKzuiqlrq+kjsZVvQPT\nfp55pv/1mIkSgHc4iCNl5iwQDPZrad4veuxZZpMgk1IHAPPzkUoddYOY4ZHBCLjptlrALEZYqYPK\neL0ZAIQQBaiYuPdKKV8I4MOIlxxxJIBxqGzavewPAP7KfX4iVOzcCYbvHw9gi5QyXpGhrEADyNFH\nAwDkwgLQSh5Tx/tM38kDJ3W889KGTPYrT9ONqdSZ7Fd6L3WlTid1pNS5bZ5o++9Ei497g41OtHUM\n3H6t19FeUY2sQg2ErRYS2a89ZcclJXVB9itt3BCIz0ndtDszHliiRBxSt3Oneoxhv5qUumLLe+3g\njY7KiC35N8Mt2b4gTKkbG/M2GBWg5F4oebRfV5xyJz5T7nKvbXe/y61aR6mrwh14B03q9HPSA6mj\nLqjbr8SRMs+ENdivOqlbbpS9/mNKlACAhYXImDo+lMQ4lcEImJDuD6RuFsBu9/kpUEra1e7/P4Ui\nbFH4OYAzDX+AInpnAngEwLcBHCKEeCV9UQixBsBr3ffyBY3UYX7eV7YAQCyljveZvpMH2qiu1BFM\n9msCpS6spAnfRKpKnW6/dqqVq/0Yd5U66Tai9rQ32OhEW8fA7ddGA213P4jUtduIbb+OyRoqZUk/\nFR9xEyXo+SqVOiJ1ubNfw0hdiP3qK6Phjgmi6Z2XAw9wb3zu/tLhTi37lcADRsfHvQ32QanL1H5l\ng+hKVXSUuvYuv1JXaXlK3R4yfGIwAeK4tG99OR90LvSxlPrbSSd5drgQ3Qshu2PCJFY6fE8ndeSO\nDFSpc5+X9/lJnYMydhOTCLFfTUpdKqQuoKRJF6kbQft1BwCXteC3ADwqpXQjOTEN6CymG1LKeSnl\nT/U/9+0n3f+XoIjbrQC+JoQ4RwjxGvc1AeD/JGhzNiBSR6XhFxY6A7ik6rYxYur4QJmZ/Urgy4Tp\npC5GokSY/co3kalSxxeLBjBOSt1hhwFQs3k9fDCI1OXCfl1W+9EsqkaalDpfSRPWiQqQmKyoxvdN\nqeslUcLABjipm4W6GxXYyJSLOnW83VQ/LEb2Kyd1HfuPNXzjWj+pA/y1s1NT6p7FSokmIXUxlLq+\n3/vClDrq8JUKVlbg2a8aqRtrVzvnYi9F9vSQKJGJUlepAKef7m24oN2m3X43heWOa67H1A1MqTPY\nr5WFblLXCUMPkqQDlDqT/Qr0SamLsl9brQGw5ORIQuq+DeCjQohPQMXS/Qd770TATcnrA6SUbQC/\nD+CHAD4L4FsAWgDOZEQyP6AeesghwNgYRLOJGagpnqy4vdGg1GVqv3KlztQxuVKn2a8PPTWB3Uvs\nqpIS+MY3gMe8Ux6H1Oli4MMPA1dd1bVMYzSWl4Err+yW7HmdOtog2w+yX4VL6tZjDs884/tIru1X\nSvholj37VZbN9mujga5ONFPuoaxJv2Lqgg4sgDrGGKlb8BEcICd16sKUulLJf+NlpK7MSF1Rdqe2\nb5jtJnWVin+f+wKdaR14oPeck+6ogce9wGkJJz4JClLqvvc94M47E7aXI45SV6lgeZmRut1++7XS\nriVW6qRMidTRudA7MP14qQS8/OX+DXMw+5Xezk1MnSG0Z2zRT+pmsdAJSzWtTgTAR+pmx2o45d5/\nwUbsHKz9CgyFWpeE1P0NgO8AINWMZ6++DoqA9QQppZBSXqy9tkdKeYGUcp2UclJK+ZtSyl/0uo1U\nQT10w4bORbjedarbJXfqZIip0+3XgSt1AfbrP352Aj+5hRGkO+8E3vhG4J3v7GqvKaaOb4IH8r/9\n7cA556iqA4nw1a8C558PfPrT/tf1OnWaUjdGSt1zngNAnSMqQBxlv2au1BnsV+nuh1PySF2r6JE6\nIYLtVwCYLvdQ1iRpnboopc4Av1K34IunA/wlTQZWp44vdqqTOgCSk1b3eRmOf+1UMjNYw5+9ISNS\np6tCnNRxpS4KmlJHuWGAOfv1/vuB3/s9VQmmZ+iDIU/uYqRuZQXYDVWapbBnzpd5wpU6+kxY+Rba\nDyn9RkUmSl25DLzqVer5wQd3f5+RuoMOUi+RYqfbr3lQ6saW/KRuHms9pS5oXGCk7oSH/hOv+cab\n8Df4WDpKXVz7FRiKuLrItV8JUsplAH8W8N7L+taiYcQf/RFwzDHA8ccrUrdzJ9a5JfVMpC5IqRso\nqTNlv7pXyh5nGvvA2AIFRLA4iF6Uuu3b1fNOfEVc0Iigl5IJSJSgA96xX9070SRWOrXqopS6zGPq\nTMWH3Zi6VsWzX5uFCkrwVpkIJXWlfCp1olLBQiMnSl2SRAm2tqgsVyB4uAIUiSvxRAnZXVl87ZSZ\n1PV9EhFXqYv5O3Q4Nm5UNc0Bs/36/e/30FYd+kGggWP9+i771UEFC1iD2dY+ddc3KHVPYJP6DjU8\nANz+4+sPrwo8VZMzFCn9St2ppwL/8R/Ascd2/wYjdZdcAvzWbwG/+7vqLd1+zUP268SSEj0+/8c3\nYO3W+3HtDa/HK3X7VQcjdWsa6sMHYTvuTVOpi7JfgdEidUKIxwD8gUktE0L8BoBvSynjJEuMHs49\nV/0B3Upd2b2ZGdZ+DUuUyNx+NWW/ulfKEqZRAyNIdDdljQxbJoxvgit1dCEmvjnTvug3qqBEiWoV\nJTiqzlax2JnWjqPWIXVxlbqB2q/u/rbK3kDotIsoo6DqQLVaqFQUAzLZr1OlHpQ6GvBMhaB6iakz\nQIzFJ3X851NZMqgX+xXqOifbo1kaRwndMXUltNTNm58AJyOlTr9WNm70nidR6rRECa7UmezX225L\n2E4T9IuOztGGDV1KHaAs2FnsU5M+mtBJT6l7hELDefVxAzipo/Ox6nHZcbx4E94PuMtA49cb3gAj\nGKk76ijg5JO9t3KV/eoWxZxYUffCrYe/FNuPeQVaNyBYqZuZUTcPRuqoxuY0lnzXPBdaU7dfqV0j\nZr9uAhA03R4HcPiqWzMK0Ehdq9QdU6cTCCI6A1fqdPs1iNQZ1jKLY7/qm+iZ1NEB1O/qAYkShXoV\nE3D3f3Ky8/oEqrGVuoHbr/V6Rwlqlcc7u9hoKPuSPhOm1E0Ve1Dq+pX9GqLUoVLBPrdcpcl+HVid\nurjZr2CTNwBLTS/7lZcv6fy+qexD1vbrmjXeAMRLmkTBoNQRKL6rVvN4SyqkjsBJ3diYj9SpJ3Od\n/S5AYhpqwElK6mZm+nj9c8bLzwm3XqPASJ0+ARp4TJ0+KZqfR0G2MY9ZlCbK3Uvz6v2O/GRWp268\noI7TNJYGl/1K7RoCpS4JqQOAoJD2FwGItT7syENX6orB9muuYupC7NclTKPO7dcYSl1QTB23MSje\nuW9KXYj9OgU3JkojdXFj6gZmv46PK1YjJcSyOqhOaaKzi/U6vHPTaISTutUodf0qPmzaRLGC5VKw\nUkekTsqcZL9Sgg4ndSWvrMlC3SV1oolC01BgNoZSl7r9OjPjtT/i/ABAG24Wf4hSNznpz76em0Mn\nEUlP4EyEoIOwYUOX/Qp4awlzpQ5AJ3ntUbhVChIodcNG6oinDDymzmVvc9iAchnRpI6ystmKErRu\nta7UpZ0oIWt1TKAGByUvYHTYlTohxDuFEFuEEFugCN119D/72wXgMwD+K4sG5x4uqaOYupaB1A2k\n+HA/7VfDWmac1PGsMX6vGB9XZZdoM0FJYLH3Jab9KmpVr/o6I3Xcfs2tUseKzxUW1SjWLE+YlbpG\nw1/SRGvsZFKljqcl96v4sAHtUgUr5eBECSG8U8q7bqPRQ+Z0FOLYrwRG6jqKPIC9VS+mrovUNZuD\nVeqoxNL0tJ/UFYt+QqGdr2W4inFIogR3catV4Oabvfdosz2BjpfODDduDLRf1RM/qaOlqnbgWWiU\np9SsMiRZIhVSx8csfSFTAF0szYD2uEfq9GtFL5k48Dp1jNRVKgZSp08mSBFj9uuY9EhdkFIXVTM7\nFAErStB4u4BZSC3pLs+Imj89BuDH7p8AcCf7n/6+CeCdCEii2O/gkrqym+nWLMWPqUtLqfvc54At\nv45vv8qGg7/4C6A2F1+p00Mp6ILUQ3eA7oEnFsm49VbgvPNUVkVC+1XUNVLnNoTsVymBF2+9Bp/H\nn2O8ZB61U4up+8Uv1CKzZ50FXHKJ97qR1KkbULsSYL+6St0F+Ape+b334rJPakpdoZvUXXst8OY3\nB8SnmWLmOPqk1LVLFVQrwUodAN/+EnTlri+IY7+6cMqTuPBCVbKjWfRI0O4Vl9RJB8JE6tKIqavV\n1KLFP/hB8PuAd9PkpI4GIqaaVKWf1C3BLYAbotTx0MlaDdi82Xuv1VoFAaeLTi/CGxJTp57MGTt2\nAxXMz6qyRp/9m2617uc/B/7H/1DL/NJmucNw663qfT1PKxY4KTD0gzhKXWvMI3U6WdbnTjTxec97\ngK98pYf2JoU+YQlQ6u68E/jDPwSe2BGs1NE9pCJTtl/pIpPSd58mUjePtZDjbjuvvlplJv/TP61i\ng+kidFogpbwWwLUAIFTvuURK+XgG7RpekEzrojPYx1Dq+H2Dblj6TKwXXHwx8JI9VRwGxCo+XFtq\n4gtfAD5ZMJC6gJg6/pPVqrcv69erhZFpE0D3uBWL1H3uc6qUyVlnRSt1mv1aqNeMSt10qYblZRV/\n8sYnLsVv4E489NQFAE7r2nxq9uvllwPf+Y56/uMfAxdcoBad5YO8y4KLy8qvbpYnOqJFvQ6UNFJ3\nCT6IQ+7diu/j//o2NVHotl/PPls9vva1wOtfr7UtitQlSZQIUepk2U/qTH2+WOx2LgH1fwxxIz7i\n2K8u7n98Epdfrso1voSTukUqadJE2zGsGhBDqUusDG3erPrS008Dr3lN9/s06LzgBcB3v6sKpXOl\njh7dmIilRgX8dsuVOin91zdBr1H+4IP+JjSb8dzFLvD4Ur4iyfr1wBFHqOebNnXa1CkuvGeP0S5z\nUMb8msNw4NwD+N4XtuC17z+JqhwBAL74ReDf/s0rtaQnSrz2tWpuOT/vXbqx0Qf71SlPogz/2q8E\n/TJrt1WX+PjH1QT7wgsTtjcpdKXbLfdFSt2mTWr4XVxU62ufdsoE3su/T1nZi4seqWtlZL9S+93x\ndmLHEwCAnTgQR7gVB3DffcBNN/mzU3KGJJEOfw5gp+kNIcSUEKKXy3X0wKeuAFoFv/0qZXCduqBa\nlKtFrebFJZjs1xYK6i7ClDqBNibaKg5tBZMeqeN3VoP9CnghR1NTPodqdUodDYbLy9FKnW6/6kqd\n+/oB4+o3n3wSmKyryOKD1hhsNqRov+o3HfKsDEqdcKWOViXYfh0b8wb7NfAvyTWpKXW0MAIQIKTx\njNd+LRNmQKtYQW0snlKnK6V9jxmKs0yYi20LqnMvLanSMoS5fRV1TQEoNLTzGyOmbmysR6WOPwa9\nf+WVwEMPASecEKrU1RGs1DmOale57K+Ny2Nmde4KrELl1sv7ACrRo1JRpaQefhj44hc7p6hDQFdW\nusaItihCooD5NSqv7zBs8QrhuiDe+NBD6lG3X6kE03e/28O+9MF+bYoymiiigu6xXB9bAY/87N6d\ngrLd1Tiz/boLG1EuqwzpX/1KzV0BYH657Pfm3Q4lHadzPkutjBIlAN/xXP+AkppvxUvRJqWOFArt\nPp8nJCF1X3L/TPiC+2ehneymRupoPC+XPe4RNDnrl9XXbMLL/jQodU5hDHxVcek4mEAVBUi0xifR\nRtFHHMJi6gBv0Jue9sfBrkqp4+t5JUyU8Cl1U1Od12cr6pjcdx+wpq2szTUV800xNfuVfpAUh5tu\nUo8GUkfg9mu93h1TRwSeAsMJ48Kv1HF7zGiN9WK/9lDSRJYrqI9HK3VABqQugVK3dX6y85ZTYErd\nfBFN1wQpVJf9X0qo1MW+CRuuSR+IQKxdq4gQ4JEkrtS56PQpF1ypW2HzI33SxsmP3pRVkzpuv/Jx\n9uijgYmJTrtW4DZqZaVrjGgV1eCzZ0bZr4fjya6wOj0rXyd1J57ofdZU6ScUfbBfmy3h30cGkyBO\n+9NuR9ZbXj1C7FcinJs2eULX0rLw3ySI1NXVsZmaAkTdXb8XDto175ilptS52PiQGiA34wy0x9w2\nUubPiJC6M+FasQZ8G8Bvrr45IwDtZDtky7hXv2mN0aDruF+qkONoSp32w82S5gOzZc6a42og9ZE6\nGowMJU0AT6njCzEDq1Tq6EPVavCC2AGJEoUApW7GLcZ782bZSV0XDXPxs9TsVzpwr361eiSmZbBf\nCaExdRWJMXgzWw6q90SHjZM64zngg53p7hUWU6ezlDD7tVSGMzaNFgqYxjLGit0H2RRTF9ju1SAB\nqc+whr4AACAASURBVHt6j5nU7dpb6pA6UVXfq1KiUUBMHR8DeExd7P5mCInooNlU+1Uo+M+Lbr/G\nUepqtc7iGpOTfvEsitT1fO3o5X0A402V2uUjPLpS52Yp75lWpO4wbAkkdQQ9po4v8kBqXmxEKXVx\n7FcHPZE6oMc4wCSIyH4lED9fWoL/JuHWECVSNz0N33Eqrqj7Uq3mP3x9U+qo/Y6DDY+qejybcQba\n5XFvn4CRIXUHIsB+BbALwLMC3tu/oJO6gj+mTrdegXSVOgpQ7ih17XbXnbCTuec2RDSdDiFoTswA\nQH6UumrVO4hRSh2RuoY5UWKyoI7JnTdVO4ktQfZVavYr7dfpp6sDc++9agoaoNRVMY5SWQQqdeNF\nBwW38pBO6sKUOmNfi7Jfw2Lq6MSPuSpwgFLXRBGFchGVMYF9UAP6rNjX9TlT9ivfl74hgf365C6P\n1DUEs1/3FuHAvZZcUtdRuvTwh34lSoSROtNMEgi1XwOVuno9UKnT7de+K3Wc1PEMLBdG+1W7ntsF\ndV7mJjxSp69oYyJ1nGRzMsGvoViIiqmLY782h4TUGbJfCTMzrG0GpY4u7Olp+M5hua52ZkFb6KFv\nSh2dh3vuQbmxggdxLOaw0VPqCCNC6nYCODHgvRMBJF3saTSh26/Cb78mUer6QeroGuuQOqArLbtF\nsxB3QPGRurEQpS4hqeuLUteL/dowJ0rQMdn6IBshApYpSN1+nZkBXvQixcBvuSWQ1NUwjnIZgUod\nqXGAidR5MXVLS8A993jvRSp1SbNf6cTzArcEjTwUi6pP8PVfdeRRqXtsOyd13v7t3MOUOtfX7tyE\nY2a/Jp5EhNmvppkkYE6UoK+EKHUmUlcsqjanotRF2a8ujPardj23XKVu57hH6nSiE6bU6aePoiVi\nox/2awipM8XUZUrqIrJfCT6lLorUsXNYqqVM6qiTuid2M85QH6mMJqn7DoAPCCFO4i8KIU4E8H4A\n1/WzYUML7WTTDP4H32thxw5zPbQo+/Xd71bLyppKZUXBcYACWiqo1sWdN/l/qFXUlLpWs0MIGiZS\nF7KiBOCRupkZP3ntu1IX034t6kqd+3qlrU6Gj0QEKHWp26/lMvDyl6vnmzeHKHUTKJWCSR2pcYCB\n1Lm2bL2uKv0H8ZcOkiRKhCl1gNFiAVTbSyV1M5qHWlViraGOuR5TRz/H+86f/znw/OevYvkwraRB\nFKl7fAcjdYwE7at6pI7QUY/SqlOXlVIXQOroJ1JR6mLar3Fi6tpuTN2O8qFoQ+BgbMXeHQ3g7/5O\nxbXOzUWSulUpdbr9et11ys+98Ub1Wgr2K6/hpieF9B0R2a8EInWLizCODcIxK3WVhp/UUbJs3+1X\n98TeBDUmd4QPwoiQug9CrRpxlxDiFiHE/xNC3AzgbgALAC5Oo4FDh0oFtTHvpuW4M/hatY277zav\nXBCl1F17LfDAA8AjjyRvji+ezkWh7lfqHC2mrtjylDqnMsRKXcd+rRnt13JTHYc4pC51+7VcBp73\nPPWclrmgdSDZAathPJzUsXPdlSgBT6nT1zJftVKnZ7+GKXXkvcCv1D3prjR4dP3+rk3pSh39PG/3\nNdeosn96KY3Y0Pcxwn5dkurG2m4DKy1v/1oodghq5+t0E465okRfSV3QcilnnaXq1tFkIiSmbhHu\nOavVOmLT+Diwbh3wspcBv//76jU++cksUcJFLFLnKnXVZhmP4GgU0cbkw79QNSKfeAL48Y8jY+o4\nqXv88YSLDOj26w9/CGzbBvzoR+q1mParz2JmyJ396jLKBczGU+pcUldoOgBkl1I33lpCu+2RukMO\nYb/TK0yzWzfL9QGoMXkklTop5RyAUwF8FKoQ8fPdx0sBnOq+bwFgadw74XWX1BXR8o0xSWLqqMP2\nokD4Ml9d6P87Bb/9Wmh7pK5eDlHqYpA6U6LEqpW6qEQJzX4tBSh1hUYNhYJG6gZlv5bL3uBGU2va\nqKbU8czprpi6MKXOfa9a7S6MbtyvftqvvCNopI6UOrI6Tlnq9rR0kmNS6migj1j9KRj6PkYodR3y\nAGDJ8Yh3EyVsUVUhVRtR7sTYpVanzjDR6iBouZTXvQ7YulWxMiA0+3XRjXeUyys+jlgoKFHjqqvg\n249BJErEsV9JqWs0vP72ol9e6X1g/fqu1QlmZrzrrd3uJnH6BCkUOqmjRlPnHTX71d3fKiaMSl0X\nqZuY6ByDChpdSh3VqjORup6LW5vs1xV/LGwnmRBQFnFPBRezQaIV+aSU81LKD0opXyqlPEZK+TIp\n5YeklN1BMPsxFse8AcdxB0cidUmUOupfqyF1JqVOL1rZSeYgpU62OipPtRii1LGS/kHZr6ZEiVVn\nv9KBaLXMxEK3Xx0zqRPVKg45JEdKnU7qqGOE2K86qaMldQCP1C27NwB6z0TqjOegX4kS2j4E2a90\nkz1pX7enpZc50ZU6ng1HQmdihElLy/7SJFIIb+k8AIt1v1LnJ3UVz45Na0WJXpQ6wF8jjF2sjtCU\nuoJbamJ5pcvN5T9hInXUjfuaKLFKpa5e9/rbWU9d7m2q2uy6FoiA0L7RdqhgcaL+xtvTaHg/RsXx\nRin7tdnsDDQUC0wIzH6dmOjcICpoqPmfRupqNY/UrV+v9llXUBPBZL+6x5WOc7PMbmQ5VumAhKTO\nIh72VZhSp5G6pIkS7bZ3P0lNqSuy0dm9m1Bc07LQSF297h+dm0202/7rIsp+7VudOmoPIcB+LTqa\n/UqsqNXCEYc6sZS61GLqeOFCOkC6UpfAfqVyJoBH6ijIfcwl9/ohBDJW6qamOkyA26934YWoYhyb\nVn4FPSVRJ3W6UscDp/um1JnsV5dYOOVJAB6b2cdIXbdSV/GUurSzX5ModTrYOZIVLVGi2K3UmX7O\nROqoK6Rpv/KbeofwLC11bVQypY7ipcbZRKi+3H38gkjdc5+rHhP1tyilbpSyX2s1dX+AQAOVaKWu\nUPCVcOoodXX/mMZJ3eys9ltJERRHO6qkTgjxbSHEKXF/TAgxLoR4lxDiL1bftOHFQsk76RRAXUDb\np9TFtV/5NdtLpp/jRJO6BquxRYPKAVArLBAhMCp1ANBsdt14guzXvit1gJ+d6IkS7saLjSqmwIpr\nAZ2B5KhDaomUutTs10olkf0aWHy43R1T1yF1Mth+7UudOj5Ahil1bNkwrtQ5qOB2WqKNrwaPaKUu\nFVJH56bd9g6YG5ldL0z6PrpQ8zp1C8VOfCDQm1LXc/ZrUqWOg83AxJj/Il0hUrfSrdRxhJG6Vduv\nnNRpJU14f+4QHkOl3XbZU+oewdHYgQN979eWokkdTbKPPlo99pXUjZL96o5jNTEBQPh2jYbh5WVA\njrGJnxDdpC7EfuWkTrfNY0H3bIOUOm6/DjOpA/AEgNuEELcLIf5SCPECIYRvKiGEOFgIcbYQ4isA\ntgG4ECp5Yr/FPCN1NWmOqdso5oDt2wGE26+8o6ZlvzYK3bIhKXWLMiSmzm2kfh9JValbXPQTDE7C\naCm2QhEPPIDOIswl3X5ljTnioGqimLpU7dcgpS5B9isndZTtSqSO3uNKHW2yL9mv3P6mu4tJqatU\nOu9zpQ7wLDG9VkQmpC7IfuUHy7WOV4Sf1M2vhCt1PlI3qOzXKKWOk7px/2eXXVKHlZVQjmgidaF9\nLA5i2K+c21Rp1VrDRIQrdYDw+puL2mJ3MWid1FFzaGGORP1tFfarlCoJqFbrPfs1U6XO3XBdqA7A\nCWex6A3FpILJiQmVn5ClUmdS59nixnScndKIKHVSyr8EcDyAOwB8CMDPANSEEHuEENuEEFUATwH4\nTwAnAHgHgJOklHek2uqcY0+BK3XmmLp/uPElwEknAc1moOLuOP6O2i/7tQh3dQtXRfTFz7iDCil1\nC+0Ipc5xuu6FNEFOJaZOn30b7Nevfr2I448HrviGmyjRrAUqdUc8O55Sl0lJkxgxdbr92qXUye5O\nQpmLZYNSR+FtUUrdvr0RMXW0agGAjvTG265LtgalDvAsMb1WREEbqejn6PRzUtdzTF2Q/cqtV/cO\nstRW/egAd+34fY2YMXVpZ7+G1amLUurY+4VxTakreaQujCNmYr8Wi2q5M94+xm0kCqgXzPtKSh2d\ngk5/c0H26zHHKNFICI9L6hMLsl8T9bcgpY4UoxD79brrVIL8pZcyUqfFeubKfvUpdd18lU4nEaY9\n1QkcdRTgFDxSNzUpjTF1dBtYu1YrZJwUJnW+XgekhFMcQxtFXxsB5J7URRr4UspHAVwkhHg3gJcC\nOA3AwQDGoQoOPwjgRillr0PpyGF3wbMGam3VQcl+rdWAEhwctPQosARg716IjRtRKpmFAt5Re7Vf\ndaWOsIgZjKPuHwA1+3WhGW2/NgOmBtPT/ptxX5S6vXv9rxvs1y1Pq40+/ITyKQutFg6kxVDWrVOP\n7p3md8+s4pdHLgCPub8xSKWO7hp00g0xdbr9qit15Vb3ue4oda3uRIk1a4CdO6Nj6uZ2trBGf19X\n6uj/YtE7yaaSJhqp40rdrXgpWiigeOed6obnknD9hjrllU0D4Cd127ap42KyokIRZL/ywmzunYhu\nqgceqLokLwHSRAk72AI7EoX0s1/7oNS1xyc6s/zipKbUlVSihBi0/XrJJeo8aB1C4zaoFSYx1u6+\nFkipo8v8CpyPk3Avzn3OjRh76tEOqdu4EfjYx9SmqR/pfOuoo9TjqpQ6veEhSt3DD6vHBx8ETu0x\npm5hQXWR1JI3+Ul21UdKKNKvx5kZNfY0CuOYBLC3Og5HAvV2BWUoUrd2uumzSKexhMXFPip1uprb\nbHaOqVOeBNwhoRN3Dgw/qSNIKRsAbnD/LEIwh2D7tV4H1oAtg7SwAGzciHLZXAJgtUqdKaaOsIgZ\nbMScrxq+rtTtdaLt1zBSx0MWslLqGi014K+sQN1RlpbwHKi6Q50L0r0jrZuo4hUnznukblAxdXyN\nV33WrtmvXMnpInXt7k5CpK7UUu9x+zVMqauttDv5nRPlBPZrlFLH7Nc6xnwfX8QabFl7Mo6Yvwe4\n4w7gVa8CkIzUSanW3T7iiO4mhyLIfjWQuqp7U+0cP1YCpImSrxjxOuwOjqlzn/dNqaOsJT6bCmNh\nDK2yR+r0mLpq2d3RavJEib7Zr6US8IEPGD+iV5ypFSYxiz1dn5OaUrcPs7gQl+N3jj8fz37qUTRW\nVKOnp4H3vMf/Xf0cHeaKsVu2qD7Hs4ADoQez6ksjhCh1tI979/YeUwcote7Zz47R1l7AT7K7YbLD\ng5S6WkG9vyLVI1fq1k36x+NpLGFhIWX71SXaTnkSpIc0uFJnWKIuT7DZrylgl/RI3XKzO6bOZ/e5\nvdM0c0rLfiXQzb6O7pi6UFKn2UdBgzW3X/la4qtS6vSL0BBTV28yUkfkzd2fDqmjhvEADf33GIpF\nNWjryVKrhsl+JQTYr7xOnU7qik53+8l+LRmUOlqVx3QOd2z1jrVsxiB1PSp1nNQBwEMHunFOzIIN\nInW0H/q9sae4uij7lSt1bkwdWT9cqWvB39j12OO3XxPE1CVW6kxfCmNhDA2mRvCYujZEp16lWFnu\nWalbNakLkZdWtJDZqhbzSJAlv1JHqDqq4Y1ltS2ek0Hg52hsTJ37Aw5QvxV7pQad1OnOQ4x9XFnp\nPfsVSNmC5X3PnZxWXbKmE046xnXXniXyR2XAKmhg7YT/RKVO6lh2YqPk9SGnODz2qyV1KWBn2zvp\ni/XukiY+UucqT3FIXb/tV1pAnQJZAUAW/fbrXF3dtUKVuoAbD18mjBKbgB6UulYrmEnx0dn9jNNS\n3bqj1FFTixVvBKDXq1U/IwhhzqlYsGGkLsB+5Tf9ep0RikYDBSdYqSs2k8XUbXvGO+ZtE6nTS57w\npc3CEiUM9iu/GT18kBvnxJIldFLXmeUblDqgx7i6BErdivQrdbr9WqlArdZAP8Xt1wTZr4mVOv05\nEFup4zcuHlPXEqVOMHuhuoJ6Td2skyp1q7ZfYxAeiq4IJHWaUkdYdtwEiqqn1OngfZD2/XA3yTl2\nf9MnjXpDYuwjMCSkzkVVuiv4BCh19D7ZtA1G6mbH/MdrBov9JXUh9isndb5kQkvq9j9sb3onfV/N\nH1NXr2trW4YodVnYrwB89itVXKc27qrGiKkLGKy5UhdWwiWS1IVN8Q1KXZf96mJlcoPHLOlOo5O6\nkDV/UrFgOanTR2SD/UpKXVCihKn9HVLndGe/EimJVOqcGMuE8TqBuspYKnnHPkKpe+yg09WTW27p\nbCOuUkenNXWlLsR+baGoPsZIXWbZr/pzIL5Sx25chQmmPIoSRKnYSaxqLavOk7lSF8OapMSVzjJa\nUIWiO88DlLqVuvptZyWY1OnnCPBbsLGgK3VhG9EQh9SZ7Fe91EeqpM5wklcilDp6n5S6egipy8R+\nNZC6esEqdfsVvv51FX/x61+r/3c6B3TeW6qq0TnP9iuvjN9ySd2Eq+4RqWujiBYK3evkRNivQRUt\nOCL3K4z1GRIlTPYrAFSn2MUYZL+GNEbPgL32WuCG1UaYclJXKJjZb4KYOlP7dVIXV6nbuc0b8Nqt\nGHXqwpQ6IfyL/waUNAGApTUHA0ceqTr/vfeqtkeQOgq1PP549dgXUhcjUcJkvzZRCiZ1Me1XTo5+\n/nPgX/81ou1h9mtMpa7BlLrihF+pK5W8fZbL6niEKXWO072kW2ylrloFPvMZb/2tBPYrKXXLklln\nk7Od54FKnUvqmtX49ivgkbovfUndByIRRepSUOr4ZQlkr9StuGRN56t0jB/f7lfq6m22okQlZftV\nV+q4/Vq0St1+i6uuAj7+ceB+dx3ylbp3B5qruTdUtLC8nIzU9UupC7Jft+JgAMB8cb23zbLfAtyx\n7I1uHUWPNypCqVu/Xt3P13ub6K9SZ0iUCLJfjaSuB6WO6ge+4Q3AOedEtD0K+g2L33iTFh+u10OV\nOrJm4yp1O7d7A16kUqcnStDdlZ94Xog4RKkrFuEtMu/G1cVNlHj+89UjTbASIY79+iyV1UpFa032\na0epe+1r1WcLByW2X7lS99a3Aued52U/GhFHqYsgdVR6AvCTunYAqQtT6miTXLSNrdRdcw3w9rer\n9FMgkf3aUep8pI6VPynzOnUe5pdcpa4WT6mjrky16n7wA+Dcc9VSuqGgDhukyCUldSElTXhZP8Cb\nY2iLtfQXhpsBuQt6Igkd41sfUdfSHFQCQo2TurJ7vNwSNtNYwo4d6vxRaU/az34rdfWiptRRSSOt\nnE7esGpSJ4RYH/2p0QYRd5oB1evAqbgDv4vv4vEVdRMgpW5hoXelrl8rShAmP/RenI/L8aMNHjNZ\nPPoFvs/sk4zUEXngA0kIqZuaUvfAa67xKw2JY+ri2K9sxtVoMlLnU+pY1hK9vmePfyCKEVPnOGpg\nbDb7MEDqpI7H1QUsExaq1BlI3TkXqFFPOOpAx1Xqdm1fRaLEn/0ZcPnl6pHAkyYCSpp0dvsMfxFi\nnswphJ+TAx6pO+ss9XjHHT3YfXHs13PPBS6/HJ8uvRNAcKLE9DSAv/gL4MorcfazbluV/UrjimGB\nhK7f6XoOxC5pwmNrSxMlpcwDaBX8pE5Uo5U6zl0SkzraYco+SGC/0lyC6ggCQIOROslWlACUIAwA\nT25TjWyGxNSZ7NcLLgAuu8y7B+ixnV3QM5TCNqKBkzqaqIWROp170LHRM4X7BinNMXXuRFQHHeOv\nPPPbOA9X4l+P/BAAYNGt+ThdZnU33cnhNJY68Yuzs2osoH3u5f4Yl9Q12wXgO99Rf/oMM2eITeqE\nEH8mhPhr9v+JQoinAewUQtwphDgo5OsjDcpwprGoVgPuxKn4Pn63MzBSTF0cUkedNG379ZhXHIQr\ncb5vVrvrOH+FdR6b0iEPvFEB9uvEhNf3X/c64BS22BztK13UkRdj2AfooLAlwnwCCyNJtWmDUrdj\nh//3QpQ6br/S4K27aYlAS2uxNXd9pC7Afg2rU2fqJC89K5rUmfZhbkcEqdMTJbhSNzsLnH++twG+\nH5r9qit1pRL8Sp2UvnG0WAwmdUcfDRx7rHr97qTr2sSxXycngfPPx662uskQqaNz0IaAREH17UIB\nOO887Bg/PPEyYURiWXH78OskTvZrAqWuPF7qZPG2RQnFYrflF6bUmUhdbPuVdpiCwXqwX5daTGUx\nKHVUNejYY9XEc9+KanirFmy/mhIlpqaAiy7yVLDIfYwidTGVug6p0+Qp/nWd1JGKmRqpCwgApYmo\nDjrG88tl/CvOw7NecIj6v6o+PDvBJqkua57GUie0gg5h4kkDR4j96iN1TajySq98ZQ8byRZJlLqL\nAB87+EcA81CrSMwCuKSP7RoqcKVOSv/gSwNjEqWOF+tMY5kwAIAQKFXcmTi7Frce6VVYr6OCFitl\nWJfM5iMEKHWmQZFAFzgNwH1R6liQvk9gYSSpPsNIHd2R3KXavPz6eNmvfEYeFSYTCNPNKob9mlSp\nI39CNBooFtU4Rv0qSKlrt4G5ncx+TarUmRBTqSsWoXytDRvU+Xn00S5SRz+l26+zs13ObXxE2a/M\nz6KP6vZr211Fkff/YjF5TB3n+STGhN60+qDUcVJXmSh2xq4gpS4uqUucYETHmwiLHhQW8hVSb5bY\nRLU+3q3UEcpl1V/o/DTryexX/jtAjH2kA9MvUqdlQRQK3k/om0id1AUw2iiljnDSSepxfoWROhqP\n166FLBQwjjq2bXHoJQDe2JGqUtfvovMpIgmpOxxq9QgIIWYBvBLAe6SU/wzg7wC8pv/NGw5wUqdz\ngrikjt/UeLZYP+3XtmCnu1QylujYNXEYqm7A6hj8G+QZfh30QOroAo9N6uIodYzU+e7F7M7jI3V0\nkInUubFScbNfuRXW8yBpInUx7Fdep64r+9VESql4V6PR+XlOgnhTCDt3+suYyKi1X/VlwkwIIHVG\npU4Iz4LdvNlH6gqFYKVudtb3tWTQ20/7t6wtMcc+qtuvrYKZ1CWNqaPvAd4YEFup67GkyUrbe788\nwZQ6jdQVainbrzqpS6DUTU2p3eyoigBq491KHW/vGWd456fVI6mLRVzbbe/67Jf9aggko7YFKXX6\nIhZ9A+28JsvRRFRHEKmjmLo14w1f321Pqi+UHbUDqSh1jNTVCqNP6goA6AicAUAC+Kn7/1OAGzm8\nH6IfpI6PNXTv6Jf9SkpdtTTjvVEuG0nd0hJwD5hXytAvUpeKUrda+/VAt/v2oNSlRup6yX4NUerQ\naGBiXPlOZD8FKXVbtqiQgQ76odTFtF87XyfJ7aabApU6E6nTnNv40NM1TfYr/AWoOyEE7jmQhaLv\ndUD1myQxdbwKDH2FN8eIPhQfptISgF+pCyJ1qduvulIXs/jw2JhG6sYYgdLYRankV+pkXR3HmRl0\nwUS8CbH2kZ+HIIIdU6nrhMWsrHSpTdQ2nTcSyUtdqdP2jSaiOvRjfOKJ6pGupZmxhi90QE6pi2oa\nql/Q/vVVqWP2a63YrcwPA5KQuocB/J77/BwAt0gpqXscDBjWZNlPQKRu1y5vMKNO3GYxdVIqDpHE\nfu1nnbrOotwAUCoZq9YvLQE/x/ONv2UidR+9xMHOnd2fjaPUkVXSbgeEY1xxBfCnfxrubxqUOm6/\nynHvRtVYE2K/cqXOxASuvBIf23E+BNpdpK7nmW+E/dou9lCnztRJxsbUF6TE1Lh3oAsF/wSCY8sW\nNREhGJW6sOLDJiRJlAB8yRLFIvAmXIHLcT7KhZavIk2t5q31Oj6ulgd79rPVJOvBB81NMSJoXSuN\n1PFyfMSXSamj4t2h9mtCpY6QWKl75BGVok1p+VFKHSd1k36ljsfUFevJlLrE9itdULpSF6JicTFV\nV+oaxYmO+yANSt1JJwHFivrtxflkxYf57/CmGkHj2MREIMH+8r+UceON5q9zMiZRQL081f0Ga5tO\n6oISJdpt4MILga98JaTtcUDXDw8KRTylbmbGKw/jI3UsdEDMmEndqpS6EPu1uh8odZ8A8A4hxByA\nNwL4Z/bemQDu7WfDhglcqaM+SLMQrtQBKgQiLqnrd6LEctFP6kxV65eWgM/gbQCAa/E632+ZSN3t\ntzTx/e+r58ydCiV1Rx+tHp/3vJBZlpQqteyrXzUXg6P8eF2pY/YrADTL3o2sMcuyX+kgb9umHjdu\n7BAf4+jwD/+As+evxHF4EI6TjVI3vxgdUxen+DCXwtaMewd6YiL4+G/f7id1iFOnjrMdE445Rp23\no47q1IJ4GM8NVupOOUUdm4cfxris4oO4BOfjSjwPvzJWpKFBXgjg1FPVc+IzsRBUWI3S7dwMPL6b\n1Of3YB3mS+uxcpBa5f244/z747NfY8TU+Y6D/6NmmEjdF78IfPObwK9+pf6PUupa3vtcqZOaUldq\n9KbUpWm/8rBBXambWxrv1EATBqWuVAIOPVL9thMz+7WnmDoidePj5irBAO78RQlf+pL56/o406iY\nLdhjjlHt37TJ//mgmLqHHlKJ6h/9aEjb44CfJ3au4sTUHXaYOr5TU954Nl3x26+FaXVOp+C3X1el\n1IXZr2LESZ2U8usAXgHgowDOlFL+J3t7B4DL+ty2oYHJfg0idQCwNmKZsCD7dbXLhC2LePbrr3AC\nTph9Gn+E/9d5XQgzqSuhiX371HNeFymM1J1xhlKC/v7vQy5IXpTLpBKRb6gnSjD7FQActhCzM2uw\nX+l7hx3m3aVM7Nk9EWU46dqv7E7ZLLiva8uEhWa/mkhdudz5jZkx70CPjwffjJaWNPs1KqYujlL3\nuc8BTz2lUg7f/nZc+pYn8S38YbBSVy4Dhx4KADio9gQOhSpGOy1WfIkSFN/IlQkSXhMVWqV95LOq\nVkutbAEAL3uZb7c5qWtgDOed9hDW3XcDnngCePOb/fsTmP0qJdBqGUmdfhgTZ7/qa1dFKHX1hvDi\naaeYUlc0k7o4Sh2/v/dkv/IyGSGkjn9EV+qWnLHOagWmmDoAOPK56kkZ8YoP92S/0kEJUeocWmOt\nxQAAIABJREFUlI3jSbvdPc44Y2ZS9/3vA48+6ilzhCD7VU827hn8+mcHKyr7FfBUutlZjdQxy5oI\nOZ2jVJQ6x+nIviMfUyeEeAWAX0gpPyml1AXijwNIK/wy95idVX14cREdgkMd1kjqCoOxX/cJs1Kn\nkzoAqG84BA1We2tmxkzqynA6gwEndaaYFI7nPEcp9IGkjke500HloCs6xH4FgAarveWsYSUV9Rvc\n4Yd7A62JGLkjXxGtzGLqWsJsv4YqdaZOwqQwTurClLqlJV2pS1h82IRSCThElS2AEJibPExvHgBN\noXJH++fuuR1lqO1NiqpRqeOB4XrtyFig/eE1hX75S7WBww/vEEy+m1ydbsysh5iewuGH+wut+uzX\nRkP9gBC+u1EqSp2+rEZU9mvNq+o/NhkcU1d2Msp+pXouUQow/OdEV+qWmp5SZ4qpA4CjjlVPSkgx\nUSKG/eqgbIw2MQ1JToBSNzGhQoR1IhWk1NH2eirey8FJXQ9KHeAndZMlv1KHAFKXVvZrddSVOgDX\nAzg+4L1j3ff3Swjh3USeeUY9Tkyovs1j6ghrpLYsVb2eif1Ka70CCI2pA/wLAQD+i42jhKaR1IUp\ndRyBFyRbzD2U1IUkSgBA3V36aBHT/rsQT0gAopU6Ruqysl/bBlK3WqVuuuIndWFKnY/UtWNkv0Yl\nSmjg92qjUgd0Rvvj5jySPyFqofYr0COpM9mvNLmg7AuY7Vegu0sRfEoddRYuYcUkdYmVOp3URSl1\ndW/9TR5TJ12ljoLzidQlzX5NrNQBwN693g/pSxIwcD4RqtRVzErdEceo10to+opbmz4LBNuvofsY\nw35tohQ2p/TBGQ9fH0snUkGkjrZnyLlIhhD7NUqpO/xw9dhF6nhyifubFbcqQ9rZr/sDqQu+ooAx\nAKvpDkMPuonQcoXUB3WlrgQHk3JFjdikjy8sGO/rjUZ/7df5NlPqAuxXImgDJ3WrUOp8pM6tvTWH\nDf6bpInUBSl1bL3b1JU6duPtKHWa/Zp07dcgUsfvLSalLtJ+DSs+HAOmpWK7vu6SumN3eiR/qlD1\n2a99I3WmFehpckFJG/BzV07qgjiTL6aObuyVSiSp0w9jIqWu0fDiRaMa6KJW80hdoVJCW3gxdTxR\nYqy5HPhzfY2pAzxvPcR6BfznRCd1C/Xxzn6ZYuoAZTcDSgWanjbzx7BEiVj7GNN+NSl1pjGmGWC/\nEpIqdUHbiY0Q+7UXpW6iOACljmW/DiupCx19hRCbABzJXnqREEK/XU8AuABAL0tojwx0pY76oFP1\nk7o1cAnKmjXKL9qzxyV1XkUYuqcsLvoTMVdrv8634iVKAN3xGGvWJLNfV0Xqtm9XmXuEKKWOp89q\n9ivZLl2kjt+RhFC2YJBSx0Y9InVZ1KlrUUydIfuVksu6SJ1JJWOsqVelTiSJqVulUmeyXw/a5y3m\nOgGz/cpJnb7KS6IGcfuVSN3/z96Xx0tWVed+p+aqO3Xfvj3Q3dyGViZlngnghIBDRBBMMEoMoj4f\nOMT4jAMxaBKjEhVf4hCNitPPKRoTeY4YZRYkoMwCMvRA03Pfueba74991jlr77PPWKfq3tvc9fvd\nX92qOlW1zzl7r/3t71trbQNTR1JfJiO7oB9Tp8ivnKmjE02bqWs25epSz+IO2yas7o4XZLMS1AmX\nqXNAXbvH2a9+TF2AcTxRLAJTDNRN1YssUcLM1NE/ObR8fVdQTF3oOQrhOo1SSb141IEQE9Rxpo7u\nNUOjOpDyi6njvzczEx4642sB8mvJwNTx+cII6jJ1oM7Uij4zdXxhkHjXoHmwsCX16yELCwv771+g\nMnbCft4C7JTJZ6jpTB0Fodc0pm4ZWFQ39UqNqaPVP/kzsm7l130+oG7BMXW33qoeFATqHn1UBpCc\nZ2fqavIrVcnfhZXK/qHKDHzAAW49DMDL1DEv2M+YOgcI2BNAGxk0kVeYumaT3Zd6Xd0klYwxdQP5\n6DF1o3Hk114xdaTLMCtbNeRy8lTbbXf/3dTl14kJ+Tc6qqSzcjBqWXK8zszElF952QcN1NH/iZm6\nVsuVXo88UsYFAqFsF2fqkM3KmnsdL6grYw65nP/6gb6Lnqciv4a0nXe9Ugl4mm1vyJk6v0QJej0q\nqIstv158MfBdO/FMZ+pGR52OGkd+bZXthk5OAiecAKxdK/cmtU0HnhzU0e6EgOruuoqr8wF1NZQw\nZLh9dK9qNTOoK2YaQM3uZPMQU8dB3X7D1AH4CmSBYQvALyGB24PaMXUAjwghnrF16gCz/FooeGPq\nnHImAaCOJgfyZ9ms7HtJQF271sRy7EMHFrY1WUkPA6hrt4GHHpL/H3aY+j1+TF1PQJ0uG5lAHXko\nKkR27bXyMZtFk33X0wedhhWDh+L7Mxfi5X5MHQEHcrT6hdZAXS9j6kSx5KyaHPm1UgH++I/xw/8e\nBqqWQvIALFaSp6/lcmpKoH2hK3lVfg1i6saY/GpFAXUJmbooiRLcyqg6cU+zs26pwdTlV7Jjj1XA\nsn6aBOr81M1XvhJ47P48sA0qU2cAdbRFGP9+slhMHYG6o48GTj1V1q1YuzbgC+Tk+j1chIPXNrDi\nqKOcQsoE6qbtSa6COd9zXShMHZ+QJ6pF/AAX4ITVW1E/5mRje+mfseEmLrrI/BtdlTT57/+Wj8PD\nskPwPafHxpyOGoepaxOoe+wx4Le/9dTv0XEw1Tym2o76rixAl6CO+zN2sfxi6gCJdbdulYlzgHTr\nTxOosxpAPeM2XmPqaAroVZ26/RLUCSE2AdgEAJZlvRDA3UKIbhOf90vzY+r0mLokoG7FCrltU5KV\nSGViG7LoYCvWKfshIp/3JErce6/EBc96llrjiLL8/ORXGhepgTp9dAYxdbpp8uuewQ24/EUP44c/\nBM7zi6kj4LAAmLpOsQxqZsuyX7cs4Lrr8L/XAKhCYeoAoIoKmvky8rWqezNHRlwKi6GmgVzC7Fdd\npgBUh8gTJWIydYGJEuTtmVGMKIE6mh9TY+r0GVtjC3VCkph1P6bu8ssBrMoBr4bK1BF600AdWVfZ\nrwTqxscjFyCr14GP4b049O/fizcMy1g6QII6HlNXwZyvkpt6TF1Epi4oUWJftYTv4nIc/cHL8QJt\n3yMd1J15Wgtn/qP5N/j9iC2/0hubNkk08vGPu+9RZ0U8UNchUPfkk/Kx0XCrcGttpO5Wqch7Mzfn\n9tdeM3V+2a+AuxYnGxkBNtnzTAENONuW94qp0/0ai6lbrKAuTp26G5cAnb+FM3VSwXZA3bJlkeVX\nkkKTMHUjE7JW1WaMu8HagDGmjseE6w6hXPZn6siSgDqaHFIDdZr86lsRwQTq/BIlNFBXq6m7SKQJ\n6lo5VqdOW3PRNdKZOoDta8tBHRln6nIqU0cSol0uzbHpaTVRIhJTF6H0BLdITN3goCfAs2xVnfYD\nLrHLT3lwUH7n7GzwhiTGBumIRWML9dMMA3UA3Fk/JPvVF9wiZvYrB3URTd8iVtgnKHKq/BqXqYsl\nvzab6rnEBHXZLJS2AsBcp+h8hd41dfk1qJFdya/6WOdfwEBdHPm1rYM6QHFM/JLRz1Ff5d+XGlMX\nIL/6MXW6cflVgjpWVboXMXX7IVMXp05dwbKsqyzL+r1lWXOWZbW1v0V02ukbjUuetS47m4W2fZmz\naMdi6iiutitQNymdexCoow5LCadnnKH6HAo3CwN1tBsV0COmjkfwRmTqOKhTws34rKQzdSHy6969\nvm/HMwOo48WSdVDH98vWJ6fa0Er1hWEWP8mosHJWZero+wD1HuhMXSaO/JomUwd4gElZVJX2m+RX\nXmYoMlvnk72n/75+mjRRBiaX0j3m2a900s2m83Yipk7fZ09n6iKaZ4tYW35F1gvqwpg6Os3Y8quO\nwMkJxpBf9+zR9n61kyS44q23N0oju5Jf9bHOb3QMpo67QNrgXgF1DJXxn+gLqAuQX0MwuWMc1OWF\nuvcrZ+p4CHSvdpSYFYsT1EXzvtL+CTKm7icA/gMylm7JbFupzanE1AGSrcuigww6sUAdDTy+8T0P\ncI1iI1M+oE4raSKEmujH5UWaf8JAHTEu1WpKoG54WAI6Wq0ND7txY/PI1OkgoWegzlI9YRBT1xhy\nJwbk8673pvpexNRl3WFbZrHj9bqdKW2/5sl+FeknSvDD+Uc8RN+GDcDvfuc85fIrYJZfATlXbtsm\nQZ1BxfVvUDYrLwqdX6+Yupjyq++kpSMJDuoMiSZ+pjN1TgMSMHWUjBlbftUHU4JEiR07gBbyaCKH\nPFrOvryUXGNqrzFrDD7HImbxYdOuGD5MXRN5J5KB/x5dllWrXBcoBm2ER6saQEFlUZm6fsivSZi6\nTLMBtOwxwgKAC2h4hAggJaauWpVflM2i1nEbvb+CuosAXCWE+HCvGrOYjY1LAGoQehtZ5NHCc/EA\nTsKd8kUO6iYmkGcKE699RYdSskSrFerfFBud9mfqyMEJISuIbN8uwemhhwL33OMeWizK94/xianb\niMcwiwHk82tQLKYI6oaGVOl1eNitGeMD6oRWp25uTtkW1jVTooTO1G3eLCdeDdRRqBr/jUgmBHDH\nHcCuXXJ3AhOoy5rlV74lrRHUDbMOyEsmaMwAZ+r8VrpCeOvU9SJRgh9OuLPRCGfqSlDlV2JO+Y4S\ngDsmd+6UmPCoo0Ka5ocyNWBkSpQAYoI6Pss1m8iVvS9Hzn41gTraIqwbpi7nyq9xY+r481jya0JQ\nx/HEzp32V6GCEUwpTJ2v/BoB1AXF1AWeo97RgUD5FZBAa3BQ3pP77nPB1qpVMi8CADoDBifrw9TR\n/z1j6u65xx2IBvk1CVOnTApMfs2jqbj/VLNfab6pVNDuuOzJYgJ1cYoPDwL4da8asthtlRaAOzDg\ndjZKlvgtjscl+IZ8cXQ0lKkjGxz0T8wMs+UzEtRtwgYPqGMPyvaWluWVX/1KmgxjCr/DsfgFXoxc\nzo2r8yPSdAtl6pQfY899fmC25i+/Kg49k3E9nClRotMBTjxRZg6yOBUTUzcbdYO8m24CTjtNll85\n/njprQHFAdIOGADQFO4M2W5LsJXJyPPQGQdlX1tKc+PfbV/oUsYrv+orXTr9YpbJryamLsXiw6yJ\n3o/boKpu97+SUJk6MhNTBwBXXQUcdxzwzW9GbJB+ge3twcj00yRJjMeUekzXJbWYOrpd/JwSM3U7\nd8rfGR72jqEA05k6ywZ1Vj4+U8efx5JfdVDHgUKA8Vu30a6sSlnhzk4YQfJrBLonMVNnKl0UIL8C\nbjf58IeBk05y+64yz4SAuiCmjvssDuoS7f96//0yQ/zSS90fti9IO5NDG7nITN3oqM8OOUx+LaCh\nhNmmWqeOgzotD2yxWBym7joAz4MsbbJkmq1fLyePu+6STv51r3Oz2NtwvfNeLId4ycuw4uKLgRtu\nkC9Wq8ZECbIDDrDT9OckqIvKggHA2KybKLEKO903qC6TXfmC2CeqeqCDug99CLjj3gKIaCRbhZ0Y\nwgwOwpPI5YCPflSuJEOqJyjfDaQH6urNjFJz1TemDgA+8QnpBKnUOkfO1apk1ABwao6DupERKVNH\nZuoefdT8nN38RoaBOia/8ng6wDvhWyt9mDoNMZlAnX4PaF6oFNuAfW6hMXVdbhPG2+H5+Gtfi//5\n5sP4+d1jeD8+gpJQmToyP1B3xx3yUav4ENwgHn+goUe93e96l/ytc88N+G6dqigUXI2y2cThhwPv\nfrdcVJFFjqnT3yAgFHVlZRsPXwKAA9Znge3A+Mb4MXX8eVfyK42RNWsCP8YXCF/+sgRDN279GB79\nyaN4Gmud97ph6hLH1JlAXQSmDnBrsN91l3xUQJ1pIgiJqaOFR6ry6733ykc6T3bTW7kS0IiuLh15\nJHDxJQXg63D3SaYTsL/kzFOaOPMq9zN6GFGc8CTl++t1d9w/Q0DdvwD4mmVZHQA/BuCpSyeEeDyt\nhi1G++AH1ec8po7sdpyKZ//fb2DFWrjeUwN1ph2sElHMQmBszpVfl4NVM9aYOlq50e/ooG7dOuBV\nF3tB3RDk0q6COeSyAq97XZwRFUF+5cYnKZ8Jqy1Urx24H/hb3qI+50wdX76yunlcfj3ggJigjgMF\n/px537rF5FfG1PF4OsB7LsV10Zi6ouWVX/UJiRx7qdBxQF0vYup0pk7HoY6tWYMfv/IL+O3dP5Dt\n0hIlyPQuoce56pffY6b2G8CEjl1POUX+BZp+Uvm8AuosC7j66uCPRGbqiG4J1IO9xhMNAWBwWJ5g\nebA7pi6W/KrT3rSwCpGR+a1bvx74wheAa699LT70E/eYSIkSEUFdLPk1DNSxjqozddRniVCKA+pM\nxGBP5FeS+skUUFcGGt7r5WeWBbzj3QzU0bVjTN1Lz2oAL1U/k8+7idNRfwtAMKjT1qyLxeLIr78G\ncAiADwK4A8Cjhr8lY8Zj6sh2Y8yN/WGFgvgA1B0m35Y0lvw6MYFKewbTGMQElgXKr3qojykewzRa\nCNRlIFCy4ufOxGLqOMjz0bpaBlBnjKkzGb/IfPkaAOroNyKZH6jj8mvGLL+GMXXlAzWmjjpRF0xd\nucDlV0OdOt3TUSMTlDTh7TB9PJt1sxiLBvm1WPSyJ3qcayioMzGNdJMD2h3J9IO1vV9NlpipSwjq\ndKaOJ0pks1IWayODApoYKJgbk7r8ShYC6kyJ17ofNYE6Z+j1W34NSJQAvKCOTFmoJGDqepIoQUk5\nZOymN+xg0Thx4IpD4oGeAfeI3oodV0eTA12gZ5j8+gbIbcGWLKLpMXWABHUOo8BKelOn1GJMAciQ\nokSgbrPL0gGWJ/sVcP22Dup0pk79xzUCdQBQ6swB8FnC+xh9pXJeUeRXH6qgJVSvPTsbo3xaRKaO\n5NdegLoau378foUxdYMHRUuUoBpPdBg/RGfqVFAXElMHuDcxQUkT1kTjx7NZdwurokF+NRG3sUGd\nqaMY4ghiluOTpg/qfN6dUCKCuthMXWCNFa/pTJ2e/QpYqFoVDIoZDOWqALwztX6aiRMlRkeh1A4K\nyeI1gTod03Yrv/LPdi2/UmfP55XOq8uvep8dGXFJpcxw8pi6VJk6HdSxeFFK/IrFnnFQZ4ipMw2E\nQkGeU+y4Or02Jf1epYI2i53eL0GdEOIrPWzHfmkmpm4iO+Y6BIP8yuOnAXev+UTy62Y3SQJAIFPH\ny2cBPqDOEEjjBXWjnmOCLLH86hPUY2LqfGPqdOMDm3u6bducf6n4MNAFqKNSLQZQ5+xRCaDRicbU\nVSpAaX00+bVgeZk6fZWryK+2ZRAivwIuqOsBU5fJMFDX8cqvqYA6EzIwMHUxQwe93wmooM5nUCfO\nfu1SfvUraQJICXYQMxjOzgLwJmGkFlO3apUK6iIydfye6Kefpvwaq/hwEFNXqShB1GFMXaUi3WK9\nDlhD6TB1qYM6dtOb2QRMHa9Ibyg+3FOmjmwRM3Vx5Ncli2mmmLq5CptpDPKrXk1hzRpVWnrgAeCf\n/slbSg1CAJ/5jBqMv8lNkgCCQZ3O1BkTtZiXaGbk/15QF8/oK//wB+BjH7PZ7zCmzrTktq3VUbt0\nYEydbrykSYD8SkYkTmRQR4VUCSiYmDrLLL8GMXVjY1B1mYBECc7U6fLrY4/JRBc63VI+hKnzA3Ws\nA19/PfCXfymTAB5+2PzxqExdkPw6H0xdv+XXXsfUeUqaUANYTctZIcMeBrPmTp+a/Lp6tfp6jJg6\nMp2oDGTqYsqvsbYJCwN1JS8778fUDQy4qqs1aAhB0Zi6I/Ag3oWPo5xrOj8HpCi/CmGOqbMvCGXz\nJ2bqDMWH/Zg6oAumTm+gD6i7/XbgiiuA738/5u/00SK7JcuyvhxyiBBCXNZle/YrMzF1ykxjkF91\npk6vi3vllcDjj8u0/QsvZD/2y18Cb30rcNZZwC9+IV+zGaansA5APFCXybjBpyZQV8tUkO80UgN1\n//Zv8nHHDuCTfkzd6Ki8ZpStarBmx8vU+W2Q7jE/po4xBiZQV63KBV8oE0geeu1aiXB4IVrbqoI5\neENMHR3Kf2vlSrjbjtB5+DF1wl9+/ehHZbmp006zv4Yxddkgpo6KKBpA3etf74LErVuBb33L/bg+\nERMu5afi/H7Wy9SFya/r17u7oXBi1NdMoO5FL/Icloip01PaOW3kMxN1zdQllF9NTB0NjVk7WWI4\nY67jk1qdOp4RkMmEptNHkV8XFFO3YoV0TGvWOI9zO6ZQFbLR1arsjvoOiZWKvBRPPgmsWJ2TN8sH\nlWUywN/jb3Ehvo+r9x4G4BXpM3WTk946KGwSa2TcGoGRjSaFarX3TB2NeX2sDA4aQd1vfgN89rPy\nf2X+XUAWZ635Inhj6kYBDAGYsP8CzbKscwG8B8BzACwHsAvAbQA+KIR4kB23HHIHi/MBlCGTNN4p\nhLgvRnvn3UwxdW/7kBb7BChMXRioo0XRTladBIA7c956q7upsz1yZyCXdnFi6ug3/UBd1apgCBOo\nwPUIhVZyUEd2//0ASgGJEtdf70yQL1j1IPI7t+J7a96Kke2PyHM0gDq6zImZOmYc3IyPy4mDfI8+\nb3uMUIUu6XFQ1y6gAwsZCNSFN6bOJFGOjcGNzZmcNMfU2c/zwp+po32LqUJBKeeeaxZttNvaNeTx\nKHNzbiPtg9pttdi9XrRZB0ef/7y8/4cfDo9xUFfoeJk6vfAwIK/LDTfIye3UU12i1Nc4MnjsMeCh\nh4DnP99zWKKYurVr5QROF6RQcH9vATB1nY5X4uegbp1cF2LKllyHhBkhp8bUcVC3bl3kOnVhoG7B\nxNStXg387GfuVic//jH+/GVzaG6XF79aNdeMq1SAr35VCjLj45C0HfdV2ofWWDsAAayrPeZ8HkiR\nqdOlV0BB8pT4lYipo0YuX67uJZgmU+cnv65fbwR1CXbf67vFiak7yPS6ZVnPA/CvAF4b4WtGAdwF\n4LOQgG4cwHsB3G5Z1lFCiE2WZVmQNfEOAvA2APsAvA/AryzLOlYIsTVqm+fbTEzdhhOCmTpdfqX4\nYAcg2h3NwzrQC7UacPfdchazRyvJVnFi6vj/JlA3J7wIptSOWoXX+xtka9cC2OED6vJ54PTTnacP\n4QjsxBGodoogoqbVlkvxoSHp3+bmzOyW0fwSJZjpoK5SkYfOzaUD6uoNC1WUMYA5NA0xdb7yK/1D\noM4n+9UE6ug7iZCkqhLFvArq7N1zXCNPRwsIjanbuxdKzUB9wtAn4oMOkn8m4/JroR2NqQMk60hj\nZnoaXmDKjaO1jRvdKrY+h8WSXy1Lbqr8ve/J5/m8sk2YyRJnv9JkGIOp49KrU+eLgTqaxCYg0fNw\nJzqoSxxTRxaSJMF34eLXzCS/plV8uGv5FQDOPtv9/7jj8GvWtlrNzCxXKsCzny3/AEhQx6uha4Ns\nxJoEBLCqttn5PJAiU+cH6kh+tRLE1OkHk4PrJVOn39Dx8UUL6rqOqRNC3ATgGsg6dmHHfksI8W4h\nxPeEEDcKIb4O4FWQbN9F9mHnATgdwCX28T+1X8sA+Otu29tPM8XUKfJrhEQJnakj8wV1gLuJqz1a\nieGII7/y3zSBulnhZQHSYOrWroV/TJ12MA3g2ZbrvRs2U0cfjRVTpxcfNhjtdZvLSWxmcpK+FgHU\nNRoueOGJEqFMHf+HB2Fq8muu479NmNB4+GJOlV8Vh9npuKtcfQVtN07feUOfMOIwXib5NSymjn+W\nlPzAivkR0Voi+RWQoI4sQkxd4jp1ZDGYOk88HWAEdZP28mmwHR/UxZJfKc0TCJ1BqRtalgraFrT8\najB+f6tVf1CnGHVsilnQQZ291/hYtUegTo+nA5RJjOpuxmLqslmzg+tlTJ2hjpgJ1CXYfa/vllai\nxOMAjkv4WRJlaDicB2CbEOJXdIAQYhKSvXtl4hbOgzljmJe45vub8ESJnHA+0zWou+UW53sBH1Bn\n/0hSUDfT8dJSaYC6chn+2a+aU6TDphvuxWm2pTOgST5WnTrO1IXIr+vXy++LDOqEiMbU1d37Ve+4\nr0dm6ug8fGLqOKjTmTrdikx+zaCj+lLTPqkaU0egjmLew5i6IONMXb5dA4SIDOr4+4FxdRHRWiL5\nFQDOPNP9nw/0tOVXshigzhNPxxuQy2HZMjkck4C6RPJrpeJmBCRIkgDMdep6taNE4DnqWU4+lgjU\n0TUiilsbZMO2TL5iZpPy+SD5VV/cBRpRV3wrPYbka0mYOkCdGHrJ1PnJrxs2PHOZOsuycgD+AkBk\nWdSyrKxlWQXLsg4B8HkA2wFQCPVzAdxv+NgDAMYty4qxSdb8GvVLWi0BUD0DebxOBwWrqbxERp1H\nBz+BoO7WW2VntZdgUeTX+Exdb0BdqwU1uMdYW0UaDeCJOmPqbPm1UpEOvNVynVbkkiYBTB2BOrov\nkUFdtSobUyp5A8A0UOfcL0P2a2ymTpNfs21/pk63ohJT10Gjzrw9B0DUGK2kCYG6gw+Wj35MXVRQ\n10YOTeSQRUfZLxVICdRFRGuJ5FcAOPpo9//du3tXfJgsgfzqB+osS/Z5AnUDrR7LrzFAnd/iwFSn\nTt9CyvkMnStnoOFzLMxlB4EQ+TWEruKAhMuvPHEoFqjrdDAkZKbF8mkzU9duy9+l/b6FiJHND7go\n5/jj3dfYJFZFAqZO/0A/mDq9gQce6AF19boMic1mo2+DOR8WGdRZlvVLw98tALYB+DMAH4/xu3cA\nqAN4BMDRAF4khKDQ/1GA72flGKUgGlMfLcu6we8vRrtSNRroy4TpdGyzvShtfZQKU7dnD/D733vk\nV2ejZMAZdOTLYsfUwQvq8imAumYTKi3FPTO7MEIwpq7JQF0r6xxKDowkt8TFh5ll0cY5+Bn+5dGX\nADt2+II6IYA//3NZfgaAe39GRsyZkNT+BmPq2gli6ug8fJg6q9lwrnkYU5fPqZNbo8aec2SjgzqN\nqfMhEWLJmATInTp+tVospo5wdCRQ54PW3vEO4P3v70J+5d97113dya9vfSt2X/4BnHMWnw73AAAg\nAElEQVQO8OiD9uf1VUsCps5PfgVUUFdpTsqM+/PPd7fyMrQ5sfyaAqgzMXWAet+cz1iW++SGG4Bz\nzpFlBpixCi++O1M45ygEcNllwEc+0rX8ytcCsUDdzAwydm7j0NxOoFr1+CvO0JIwEkuCJVB3wgnu\na5ypQwpMHaXFx2DqrrsOeOlLvSEgHjMxdaOjwOCgZ2trSiQjlWahWhymLgPA0v6mAfwHgLOEEP8W\n47suAXAqJBicAnC9ZVkHxfj8ojCnkC/VBjOtnG3HO76qhlIJOOII+bmhIdlRSa3VQZ0nk49eIMf0\nyCM9lV95kVznKxs9AHX8mrGD+YCrg8uvGeej5MDISYUORJoE5+YC5ddLcS2OfvpnwPXXO7+hb1m5\nZQvw9a+z/Tw5qNO3ONOYuvtwFKooYVvhIOf1IKbOKVF34ony8bnPlSmkmYzsUPyDjQaOOkomFBLQ\n8WXqsmoZk0bVoEeYQJ3G1B14oJwzqUwDWVymDmA7blSrfZVf9+4F/vmf5RydWH4F5E7zgESHSZm6\nPXuAz3wGI1/8BK6/HrjtRvsNfcaPwdQZ5dfnPEc+HnYYABXUlRuTsi7mf/0X8JWvOB8Jkl9pw/VA\n46Du6KNlg44Ljuzxu23ZrAomTAlTSnvpyVe/KrPs//3fPecCmOuee+TXp58Gvvxl4JprIoG6dlsl\nCDlTd+ihMmfn0EMNX0GIj6R9jsj0SWLrVl9QVy67+DAyqGu37XIFkIl5ZPm803f+UDoSQP+Zui98\nAfjpT+W6I9D0HSUAZxGhM3WLIZ4OiJf9+oK0flQI8ZD97x2WZf0EwJOQWbBvgWTpTGwcBaMZaa+g\n9p144onzsr2ZZwCa6qvZM9PKwSq2bZMB/pYlS8xls65cEFl+XbNGLimqVY/82kHWKZcRR351+nsP\nmDrdQbZaUGNQfJg6Pg/yrbXqNlOXy7lzHE0koZMwebXZ2UCmLg/7x+fmfJk6+vjevXbGJTnYEKau\nXgcuwdcxjCmcmnX7S1CdOoepu/hi4MUvdl/YudNdFTCHeMst8vvo3vsydVmVqWvWQkAd3TeNqVu1\nSl7a6Wk5YRDAisN4OYwyLSaq1b7Kr3xzgzixgB573/uAN71JInFC/HFj6uwLS1J6u8ZAHZ+Ru02U\neOc7Jd1s96fxceBBG9SVahMuQ3fzzbK6NMygzrLcUobtdsh146Du61+XN2w0eJeaoMVBuexeXno/\nFNRRcTgtszMI1HnwOckDtVokUKfjFM7ULVsG3HefDyC+6ipZn5TuNb//emffvBkDBx0CwL3M5KcS\ngbr775fXasMG4Jhj3NdzOeDVrwZ27cJ1r5B9p98xdeRuQ6VkH1AnhAqyW63FEU8HLIAdJYQQEwD+\nAICStB+AjKvT7TkANgshkmxkMi/mWZ2YQB3LgKVyPIAcYPqG5dx8QR3fu4rJr/RdDlungTpTaEFs\n+bUXTB2/COxg7gQ5U0fZr5ypIwuNqeNeLQDUOWVNAkAdrYA7HdvBRJRf63UJviewXPFdkWLq9CdU\n4JR/sNFQpBb+lm4FjakzgroIMXVjY+YJoyumLqb8GgvUGRrEa+zF3A1NNcuKJCeZmuEcZl/YTKcN\nCx20CNTpIK7bRAnLUvrThg0uU1esT7o3mGJ4IccYj1vTFw6hMU80kAYG5AUOAXRAMMg2rQmN8is/\ngACZD6gzjReP/EodvV6PBOr0Pb2rVReYkMvQCX4A7j2qVLx0uAHUBcmvsUEdVVk480z1PpGjHRvz\n+K3I1iVTR6ceCupM8uuGDZ6wyv0W1FmWdZRlWd+zLGuXZVkt+/G7lmUdlbQBlmWtBnA4gMfsl34I\nYJ1lWc9nxwwDeIX93qKxOEydn9xHFhvUzc4qdepoMDugTis+TBZVfjWBumyv5dcITB2Vj8nnvU4w\nMlM3MxMov1JZkyBQx5307t2IFVNHxs9Rnxf8Eqp9LcAh+jN1AaAuRvarH6hLk6kzFR/m1q38ymNz\nCO93HVcTUX4lF6EzdQCQRxOdWvfyq5Gp02x83K1TV6gyULd3r4zhtU3PBeOPoaCO4hhCiz66FgTq\n+CWIzNT5gDq6H5HkV+rojUYipo7Lr2ELFgDSIXClAfB29k2bPOEinKmLHVNHVRbOOEM9NxaLEjGc\n0GtdMnWRQZ0PU9dWXZ8C6kLKJs67RRYQLMs6CcCNAKqQ4Go7gDWQYOvllmU9TwhxV8h3/ADA3QDu\nhYylOxTAOyHLmXzCPuyHkDtIfMOyrHfDLT5sAbha/86FbJ7ViWn2ZUxdkOmOZHpa25qqS6bO1Oa4\noC6XAqhTsl8TMHVU6JnLr2SRYuosS3pUH8+mgLrZWQc4+jF1gJz7DuNaSghTR8bjBvUVL6+3Fslh\nRljl6hZbftVAHalzYaAuDlPHQV2ZbXcblakL3FUiQH7loI7ubSL5lVtEUDc05BIwnQ6QYY0poKHK\nr9y6Zeo04zF1hdl9Kn15881OHFUu55U8IydLcPk1ogUtDugSZDKur/Rl6ugJdVKtBlss+ZV3dMN2\ngLqZ5FeySKAOUGMchocjMXX0O7GZOiFUpo7bPjdCatEwdfz3tN0kgP2XqfsIZKmRg4QQlwoh3ieE\nuBTAwfbrH4nwHbdDbv31VQA/AvBXkEDxWCHEIwAghOgA+GMA10PuPPEDAG0ALxRCbInR3nk3zxg2\ngbqITJ0+KIRwJ3bRasuRaFluUbC5OQiWKEGOKA6oC5JfTYkSuXp8UKfHiXTL1BGoM8mvoaCOr3Z9\n0qZSYepMVVENnwti6niMVySLyNRt2ABY6CCDNvKWxtTVbQfYaqnxc3pMXUz5NQ5Tl7r82my6nTAA\nZZpAXc+YuqZb3giQ/VhhgnSmrt69/BqFqVu71gV1pZ2b1aAjYm1gZur0U/Vl7Bio4xnuQRaFqeN9\n3Jep0+XXyUmlwySSX/n/CWPqYoE6/nv2FzyBg+TzzZuRz8vzaLXktaW+PFhsYnBAeJpOxocJALn5\n7LZtck7T9/VjK6f5YOo6HTcsUk9g85jJCa1dawR1iyVRIg6oOxXAR4QQSk12+/nHAJwW9gVCiI8J\nIU4QQiwTQlSEEIcJIf6XEOJJ7bi9Qog3CCFG7ePOEkLcE6OtC8I8g58AFze2VViQmZwtDfrXXyB7\nsBgacgc2Y+rauZI7HhIwdc6ADJNfE4A63YF0G1PH5dfYMXWAe/1YmQZufjF1uvPgGH3XLqgeOpdT\nL3QE+VVf8cYushmRqTvqSIHbcSpux6nI6aCuZke6H3OMuzqPkP3aK6aOJuxSKZwJMIK6qSnpoS+5\nRD6PyNTRUO0JU3fttZJlueUWpxn8/HRQV0DDBXUpZL8Ggbp83gV12ard4ekihIA6DkofeEAS1leb\ndBcCdeUyrrhC5n3pewbrFpYoQW0nC2XqCBEAMo1dezuS/Mqp9ASgLrb8CviCuvtgR0dtUgsQU+jw\nIKbxvf/ZgLfeIccBP31AdrcDDgAuv5y9eOut8vGMM7yOlYH9iHWXvcaDh/U0/RCmjhdQjiy/8nNY\nt84TY95sukwdbde7UC0OqAvLIJ2XDNOFbKefLmsy3nHZ52W5ife8x3tQQvkVcAf9A7fJf1oVFq81\nOwvL9tTtvAHURYipu/BC4NhjgRe+0H6BeUATqMskAHUvepH0C5Q8FSi/xmDqEsmvQCioW7uqjcM2\nukydn6wXyNQBauMiyK/6iveyy4CTTgI++9mQ8yGLyNQ9+4BZnIw7cRL+RylUDACteltmVj/4ILBj\nh3yRJ0oQsi2VUK/LeS2Xk6eszzc8uyxOnTrO1K1YIcukvfGN4Z83grp775XVRG+4QT6PKb92zdTR\noOb35I47nP2beUydEjOkMXWi0b38Sk0Iw4Hv/pC2ywsN3M0ucxfE1LVawJ13ysn2ppu0LxdCqbFx\n222ecD2jRUmU4O9Fjqmj87LtmGPkXsKvNexyvpCZun2rbCZtpywFSyXt7rtP/s5heBgr6k/jkL23\nO69zu+8+Caxvv529uG2bfDz0UPe1b35Tlp/5wAeU8wBiqenSyF+NjbkBxBGZOj7GI8uv2SzwlrfI\nSW/jRk+oHbGapZJ398qFZnHWmncAeL9lWb/gbJ1lWQMA3gMprS4Zs3XrZI1R4M32n8ESyK/Ll8uw\nBeq8uVn5T72yDHkaPXZcQw1FZPMZdyUZg6k7/3z555hlQRQKsBoNM1NXS1bS5OabgR/8AHjVq6LX\nqVOqr/skSug+NNIkTNHCNHGSVmHbn1zYBn7bkhvjzc05yoCu1uoxdUZQR0gwgvyqM3XLlwO/+U2E\n8yGjD+ppdlDv+ZqcAb1Qe2pt7wbePFGCJpNKxWFXyCfrQdh8gaxX+TeZiamzLNlvopix+DCdy+7d\n6q7wBnTAMX7qoI5fZ2pDo+E0o1wOZuocUKeDuBhMXdTYpyv/Ngt8fMgFPgccIPv05KTsz6OjofIr\n3QNfKdyu7ktdNWxiDoqpSyS/clmZ9feBAeC228xtCIypo8VOBFBH7oYzdWFJQI75gLrXf2Ac+Mus\npOAaDZxxRgH33ivJ1Y0bgTHI/lTJyUZQqBwZdTcFeNJv8DT617xG/hkOo6ZFNg7q9NdCmLpYoI4v\n5D73Oc/L+niIfC/m0eIwde+HLDWyybKsr1mW9THLsr4KWWPuSABX9qB9+78lkF+f9Sz5ODkpO1+x\nLntxrciYOntWraGkAJw4oM5kln2AKaYuUw0LYPA3ZaUbk6kzJUokiqkDvI5Rl8zbbXcWCQB1aTB1\nQTF1sS0iU7c6a9AZbWvVfUAd32IJACoVRXoFvJc17lZbJlAXx4xMHZ1LvS4n3n7Lr4Q4TPRso6HI\nrwpTxxBmHk2IZnpMXaSAdk4djY1BHwRh8qsvqNOyNahNUUFdVKYuVH7lZtqw3mC+2a/8/wigji5t\nKkwdLRqXLVPuEUVO3Hyz/B0CdQU0UC5LZpQvYgJBXQBaazZl185kYq0vpJlAXS+YOpP8CtUV8G4R\n+V7Mo0UGdUKI30DG1f0SwLmQSQ4vAfArAKcKIe7sSQv3d4spv1qWu5fmxISci5ZBDt7ZHAN1diR9\nFWUzqNN2lCALder2ASamzkrA1JE59fIabblap4ql5JWzWWXg+TF1QfJrFEbI46TWrFGfUwVVIB5T\nx4tOAb6gjp9XUPZrbIsYU0cOHoCHqWvV295JjoM6sgigLu5WW6ZEiThmBHX8XHbvnj/5tUumDv0G\ndZyuiAjq+KLNF9Rp2RpRmbq4MXWh8is3fRHjY2nJr9RPZ2YkGcpZ7lDzYeowMuLWRty9G2ecIf+9\n7TY5f9CYtxoNnHKK+x5ZUlBHBOXgYETfy60Lpo6HwsSSX5k9I0AdAAgh7hVCXCSEWC2EyNuPfyKE\nuC/800tmtJh16pYvd5NoJyftCv2Qg3fa8jJ1VZQVhaxbpi4I1GWqyUGdo3zUNUrKpJ/An6nzS5SI\nKvNFAnWMqWO+UrFI8ivZAmLqRjshoE6f5HhMHdliY+oASU1EzH5NrU5dyQBQozB1Wkyd1eyf/ApA\nndlWrnQBg03vpMXUxZVfo2a/hhYf5hYR1KXF1FG8lh3+hqGhiAlegDvIePYuIO8XA97r18u4uqkp\nGd+4ErucRhDg4xKsEdTRbwSAusTSK2AGdbTFkhDQ01OXmDrXAruLZVkZy7JeYVnWkQHHHGVZ1ivS\nb9ozxIKYunYbuPFGoFpV+jifoKanXVA3gfjyqz4xhYKGMKZu82bgnviJys7v6uiFJipttonL1EWe\ngP1AHSFCDdStWCH/pbAsslD5lVdGThBTF9siMnUjrXigrpPpL1PngLqYTN3QkLyF09NsPuDnEsDU\ntdtqCZnU6tTRSi1EfuVM3cQuNWiogAZyCGbqNm/2Br/rlpr8unUrjmr91nk7KKZuakoNX0vK1KWe\nKMEtJlPXbUwdXVq6LrFAhB646gPqADjg7frrGTvfaDjSLEtmdqTYuExdKqBu5Urz65ofix1Tt2+f\npCOfgUzdawF8C0BQOcJpAN+yLOs1AccsmZ8FMXXf+x7wghcAV1/tDIzVq9Wgb87U7WuzzeLtEaXL\nr7Ow37cnAN5h8/kIbJbdECptoNjcHPCylwGnnOLNiw8xpx06qAth6gqFaDF1iUHd+vXykS66Buoq\nFfk7FJZFlrb82i+mbrhmyAig9jQ6nkluy/ZgUEeg1w/UxWXqHAAfk6nLZNw5b3oaEoFHlF/37VMB\ne2ryawhTR65haMi9R1e/R63vkUdTSrCAb0kTGpLT0/A1AlBdg7pXvALffvIUjEFl7UzyqxBaSaMu\nY+qSJEoonzFRjE89FaFicnryq55ZGSswnwYZ+d4AUEfg7emnGahrNnHqKQKWJRP86FySyq+mXIrI\nRvOYHtPsE1cXm6m74gpZnuIue7+E/QjUhbnUSwBcq9eR4yaEeNKyrC8BeD0kAFyyOBaUKLF1q3x8\n/HGccorcC/wlL5H7KANeULer6d2Cipg66pgfwlV43v85GQU7eIJ32EgO/eqr8X8v/R0e3XWI81Ib\nGQhYyDWbstyFENITxMj9pkHpZPJFZOrOPhs4b7AEfEc+D5JfI5nupF7/ejkbDg0BH/qQJ6YOkP5y\n82a5oqWPK4zb5CyAffIcCOXElF+7ZuqcoEW7/cyJ8e+sVAOYuoY3pq7WzHmRWaWixNPwRwIWcQoP\n8+OSyq92szA1JW/bMkyqKGf3bl+kqUvrqcmvIUzdBRcADz0ky9fQ3LP3EbUxBTSQh1d+bWYKyNud\n/qmnZJu3b/efYFNh6nbsAB54AHnRxKF4BLuxMlB+BeT/jptgTJ0Q6TJ1JvmV1DzH+EGDgxIRbt8u\nkU9IcTIK7yBlMJsQ1FGhaTonqhgTydaulY9PPSUfIzB1gBpHO1xuYmiogKkpuUgdGXH7v5I432um\n7oor5A26+GL19bSYOqo/SP7smSK/AjgewM8jfM8vAJzYfXOegRYkv9KkOjmJXA74x38Envc8VX7l\noG5nzQvqKKaO/MktOBP48D8aY+qCCo869vKX46vrrwRgoWmvCaoou3IsURqhpbxVC5VffZi6gQHg\nzW8L3yasK6buE59wtkDSmTrA4y8BqHjoQNgO5MADXefRZZ262GZZ3r10vD+P8ow/qMtP7PZUi25B\ni6mzaWFWbgxA90ydqU5dXFNIcV1WC2Dq/OIlU8t+9WHqRkeBj38cOOII9x5l96mNyaPpgjrWpxpZ\nF+Dp+2GaLBVQ98ADTt8ah7y+QUydp02MqeNdNI1ECZP86jmev1AquZt8RsyAVUikhKCuUFBDIzn4\nCjXa6oBqBtKiZXjY46SOOMJdXyrJUfW6Z5ec3S6R5zLWEWi4rkDdoYcCn/ykGlMHpMfU0Rv0uB8x\ndWGgbghy79Uw22cfu2RxLUh+ZaCOmx+oe3rODOo4Uwf4Bw1HZYFoLmqZQB1ZaISqaqHyqw9Tl89D\nCQhPVX7NZtlsan+BDuqEMII6Ds5oglN2gu43U8c/7LPKBYDCtD+oG9r9hOcr29DkV/u8+J6SwPwn\nSvC2VKsIBnUhTF3q2a8+TB03pz5hJxpT18i4Y6JvoI7oRPiDOj07UWkTY+r46fcqUSIQ1JXLKkiK\nYIoEmzCmrlBQ81sSg7rpaYnAhobkCdM9sgPkLEuqj4AG6hoNzy45vP97YgZ7xdT5WVpMHZ0cPUYE\ndftDnbrdADaEHAMA4/axSxbXguRXcnIRQd1TM/7yK/mTXE6VHGLLr4BnH9kqyqh2CeqSMnWFAhSK\n0U9+TQTq+JLZBOo6HaDRCGXqHFDHNw2MEFPX6bhxvF0zdYCvQ6TvtCyNCdL65PBeG9QtX+681vQB\ndVGZun7Kr8r6idgXOhee/ao1St9cpF/Zr9zoHo0hgKnL5x32vGbJk+103K9MHdTRFk40ANh+Xjqo\nC5JfHWNMHce53cTUBZU08YA6flCpFBvUKRmwXNqn84oI6nh/O+KISD8tjeJ/t251M3voXhmc1Jln\nyn2eV4DFaTJQNzen7DaptDMKYouQIBvfYjJ1tZqWjENGnYpO6Bkkv94CGSsXZn9hH7tkcS2i/MrN\nD9Rtr42g1s4r3k2XX3W/kgTU6UxdDSVUrXRAndWKF1Pnx9TlcmqCaaKYOr5k5qCOp9PPzoYydRtg\n2Ak6hKkj4E0TlgJik1rIKnd4GLD4SWjecNk+G9SdcILzWiuEqfMDdUmZujTkV4Wpo3OZD/mVM3Wk\na9EN13b+cLLfEcDU5fPumLRBHZ/7UgN1RFesWCEHli6Rwe3zOlM3N6feOj+mjp9+WCRH0uLDvWLq\nPPKrfoDBTNf/kENi+C1A9qc1a2Q/fugh+VoAqDvjDFnjNAfmzzRQp/f9RgNqhgt3spotBKYO8Fn/\n6fPTM0h+/RSAsyzLusayLM9wtywrb1nWpwC8CMA1vWjgfm+6/PqHPwB/+7eyZ/owdX7ZrxNYht17\nLAUw6PJrL0BdFWVUMz2WX4OYOga++srUAb616uh2rlwZwtRlMs53t1oSR/EK7HSeiTfG5hbC1C0b\n7hh3Txc2wlwx8bh84fjjnfdaQkuU8JFfebWFL34R+O//ls9TZep++lPg05/2/Q6j/ErnEiNRIjX5\nlQo3czothKlzaorR6x6mTh5YE2oGKRAN1EWKq9WBggHU+cmveveamACuuQb4xS+QmKkLWiAEZb+G\ngjoKl4gI6kq5Fq7EP8C68zfmRscEdScmiVKnNt97r3wMAHXHHw+sL3pRWyioazRkPy0UAieNnoA6\nuob33SfnSftH/Jg6AKg98TTwN38jE17I9mNQF7jWFEL82rKsdwH4BIDXWpb1c4BoB2wAcDaAFQDe\nJYRY2vs1ieny6zXXyF3aN25UmTraZQEuqNu3T/bp5XbY4yRGsHs3sL5ScbhvXX5NA9Tp8mvdKkEU\nygCfZ5MydW0N1FFGl5baroCcYo9KmkQEdUHy6/r1wPiugJg6g/RaLHqLmabC1Jk2kAewapV8fM66\nSWBLG7p1snlkWw0sm5HZ2J3DjnBWg1a7FUt+3bEDeNOb3MPjMnUz0Mo2cHvb2+Si6FWvcvsNM2X9\nRBuSU3rh7t3e+EnbeI06IL50HGilkqSi6nX5+2ExdfZYb2dyyHZaCqjrZF1QN2eD37igLlL/on68\ncaPdqOUSKTFm109+1UHC7bcDX/sa8NznAve/ywV1acXUUTegPg7ESJSIydRd1Pgm/gEfAP74A+YD\nAi4uv/4bNwKPPw5cemmkn1VtfBy44w7g17+Wz8k58ZWnPZcUCsCLj90td3VnDeGgTt+Rq9FAZLTW\nU6buwx+WwO7gg4FLLzUydZSNXHr/XwHXfRv4r/+Sn+l0vIvC/Uh+DXWpQohPWZZ1N4D3ALgAcDb9\nrAK4AcBHhRA3+3x8ycJMj6vh1cBpudpqyU5oj7ahIdnRZmaAPbuFExOxG2PSaWpMXZD8mkaixOHH\nlZEdrAA3sYMSMnWWztQdcYSkdQ4/XDnej6nrOvuVZ3P5ya8+oI7HwtCtW7cOGP9tAFNnkF6LRdfH\n6HN8L5i6Aw+UNa6fLXYDL/B+rJMrINtqoNiUXnrWGnSyosqNCSC7wj3Yh6nTS6iRxWXqtoLFDelG\nY8ckfUFbP9GxBEz27HHTAbVGUVceHFS/umv5FZA3e3ZWjv/BwVCmjmrS1fODqNQnFPm1Zbnya7WT\njKmL5AOOPFJSa5QRnsnIa8cGwDJMYhiTyOVGlPbroO63dp3ivXvhK792A+pOP10SuCxiwF9+VdLA\nmfwaMft1FXYGHxCRqbvpJrn/6llnRfpZ1ajNP/mJfDz5ZPlYqchzqlblBbVl0795SwJQ14kWLNdT\npo7Ktjz+uPIyZ+pWrZKLyMzjj8oXqBaYKXRjP2LqIin2QoibhBAvh8xwXWP/DQshXr4E6Lo0namj\n0V2rqZ2PpYxZFisN9dgMimhgBgOooWwEdWnLr0T40AQyvKqMgZU9iqkDgBe9yMO8+DF1qdapS4Gp\nO3BdRy1pQhYA6goFbzxwL2PqAFkqZ21+l+d1QII6ACi2ZHDTZMO9LpXGRKSYukzGHH4Tl6nbhrXo\nWBkppejnQc+1eDQyRX6lGWf5cumpOx33BmqNoq6sO/TUmDrA7TAhTB0BuHq24jznoI6YutlOD5k6\nQCKOAw5wnzMJdjov9zE8EFs8i0ldfqXQr5kZ9CRRwrKAc89VFeLI8uvoqFvcMOji2bavsCr4gIig\nbt26hIAOcEEdOQyqMgwYJdjRTgL5dSEwdfvsohw2i0ov1+suiU+bAc08+zi1UaYOtR8xdXH3fu0I\nIXbaf16dZsnim54oQaO7Wg2IKHbZ9Jkn5ES8NyMHrA7qeiG/6kwdSiUvFZMQ1GV0+dXHFJDDtsLg\nTJ2JaAu1uIkSPqCOJqVDh7ejgCYm8itVkBhTfu0lU+eY7sFtEzn5ozkhG7Ov6l6XgaYZ1OnyK2AG\ndVHvC/ncNnKYXbZO6io6WxcC6hT5lc84NJgoWcGHqesJqNPLmoQwdQ6oy8mLyZm6JlxQN9PuMajT\njQZBsYjHRyUtNo7NofIrne7MDCBqyZi6pEk3ofKrZcWKq8tmQ7bjiRlTl8i4GpDPAyed5D43SQp6\navdCB3VOlXp7rNr3hV7eu1e+NTjoii5Nwe7rHXeYO9Qzjalbsh6anijBmTru2TSPTOOztlWOutkS\nA3Vs9uxF9qseU4dyuWtQ58ivJqbOYArIsSynUTymLpNxL29qMXU6IAph6g4pSqezLTeufo7ukY/8\nqtS8Qu+ZOgD+oC6v/ui+mntdhlr7ItWpA9xNyrnFnYgBYGbUJ9YpCVM3OOgN9I8I6lKRXxMydbWM\nl6lrCFd+nRMltFrzAOrGx7FnUAKhDdjkUQioi7GqOADkRNycST+mzmSRSprQ2I8RV1fOhGRk9xvU\nnXSS6sNMjsqA2hY0qNMvkMbUEUYdYdW9OlV2X26+OTaoo9tWqXS5qO6TLYG6+TY/+TWEqaPxSRuw\n14fkC7t2wcjU+cmv3cTUdaycew4pMXWeRAkf84Acu1FcfgXcZkUGdfw8TKBOB+zgfesAACAASURB\nVAxzc04o1p49bqw4HXagHTD+pF7uMSSmTpdfFwJTR7Znzr0ug60JY/ariakzWRJQN7vCMNEK4b1Y\nmjnrp6pWkkEHdVqjqKTGQmLqaplgpq6KMqrVeQB1GzZg36C8P5yp00HduLbGAYDmdPoxdSaLnCjB\nGxoB1JUs82LCsX6AOp6MpVcu3h9AnX4Nt2wBOh1P/+KgTlTZfbnllsTy62Jg6YAlUDf/FiS/RmDq\nqG5VZ9Qsv1JMXS+YunbGIL/yglSAHB3nny+zlQIsk5F/vDxDkHlAjsbU0XnxyiGRjAd/meRXA1OX\nz7thWRT6SKBmTV1OBo81xvHUUzJw+z/+A6ExddT+H/4QOO004NFH3fcSW0JQp9+L3TMlzEBeoyw6\nkWLq/CxuogQAzK4wbN/EI7pD5NfWdNVOiyvJC52QqZvPmLpZa8B5zpk6p6QJSpibU7+G7+SgW5pM\n3b4hL6jT5VcjqJuJFlP3+9/LcXTjjfJ50kLWoTF1vKERkiXKVnKmjo/9roziAAF/UPeOd8is0YMP\nBr77XfkaFcbUQN3p93wWP8M5KNulDUygbnpahj1/+ctyWL3mNcB73xtpJ7H4pl+gZhPYscN5mVRZ\nBdRxcuTXvzavbiLIr0ugbsmiGTl1KkDqlygRAuqya/xBXa+KD7ctJr8ed5x0DGefLV8jT/zEEzKV\n/HOfC/3eXC46qOsZUwe4S8uITB0Aha3jhw3MSc1xa3sNvv994LbbZJ02HHywdMDHuUG8PKaO2v/X\nfy3LPpD1lKmjqPVVWsC31jF2TpdxGb4EALhq9eciy6/veIfEzHxCT8LUzY0Z2BN+X0Lk1/akRiGc\ndpp70OGHe86XurK+RVBq2a9AbKZuRrhMHWXENlBQt+6b6yNTd+qpcvw/73mYHZIR6quxw7lGFLZI\nLm2DYZ+i1qx5m7BmU8XsP/qRHEff+Y79uYRMnWcsmeTXdevkI5XACTCdqetAi7HrB1NHPnj9epn9\nxI36+d69wJNPyr+5OTkwKD1YA3XnbP0SzsH1OGvZXW47NVB37bXAr34FXHaZvEzf/rbctpUSFnrK\n1AHApk2el8fG2DTI59G5OeCxx7zfsQTqliw1y2Rcx16rxZZfCdSV1gcnSvSi+HAnw+TXCy+Uo/iy\ny+RrNBPSZOVTZoJbPt8FU2c3isfUAf0DdXyXD4DtDFST5z2NIWdrzM2bIbdv2LIF+Na3nK8yya+6\n9Yyp63SAW2+V/7/whcpbmaLamJ1TJXwXf4oBzOAbA2/xgDp79zQAajHba66R14eqLADJmLrqSgOo\n4+cUIr96dKE3v1nORo8/Dtxzj4fWXYhM3UzHZeqIRalnyor82ldQd955cvy//vVoliQ1M4BZx7/8\n0R+ph5uYuvasmakD1LJi9H+3u5NEkl8JjRqKcutWgsrU7YMWONgPUAcAP/iB7Mt6h33Na4Dt2+V7\n/G/HDuDQQ52GkFAxN+fGOI+PTLrt1Cg4vu0kMbHNpnRvQI9j6gBg82bPy+PjbBrUOxMvQky2H8mv\naaw1l6xbK5Vkx9NBXQz5dXijdD79lF87WSa/AnL0co8AqKCOFVA2WRxQ52HqQuTXRKDOJL/GBHVZ\nG9TNYBB326Bu0yb7UmhxiCb5VbeeMXUPPijLBBx4IPDsZytvZUpqx9i2T6KjOQzIr9JAHatModxu\ny5KXljvHJExdKKgLkV/FtEEX4uU5NOspU8eZeiAyUzfVln2ngIYL6qxSoPxar8s/064RqYAKe9y0\ny/JxEDPOXHnCCfJUeVFu3dpz9jUolVDXasPOzcl1EOB+h76PcKoxddRZTHFoPlaC2u/2YAVWgFWu\n7heosyz/39KKuDvGfANn6qgawdoBA6iz7zcfz/wyETDqOVO3eTPyZ6ovjY+7VU+suiaLm1jXAKaO\n3losoG6JqVsIxpMlyLlHlF9p26Dlh7hMnSh75ddeJEq0M0x+JSOPQNHldD7ttu9kSxZHfvVj6vzk\n11h7KAYxdYaYOkAFdbyUXWbOBXW8JpeJNTHJr7r1jKm72S43ecYZnh/Jlc2gDrDBNe9EAwOh8XTc\nOSZi6laxmDoKookA6qjfWjPRdxon6S+b9ZZkSTVRIiZTN9lymTpiiGpWOVB+BfzZujRBRavkgjre\n/lNOcY8ZHfVefjFnXwMtUQJQ4+p0pi4uqItcfBgwlwHxMZ2p24MV6gH9AnVJzADqZmaAbEf2t9Ul\nf1DHx4VOgllWeFxtonZyMzB1Gza47co07M5ErKuJqVuSX5csVePJEhGZOuqfXH4dGJAfb+R6W6eO\n5iGhM3UAlGUeoM4qIRJsmkxdKvJrFKbOBq8c1NVdwgHWjAvq2C5KxmS6KPJrz5i6W26Rj2ee6fkR\nLr8Ky8L2PVptPS37NSzzNQlTx0G5GBqWX1KturJYDKaOgHYUUEcAwlTOoCfyK8/gJcAKA1PXlB27\njCoKaKIDC7VOIZCpA/oD6jhTx43H7Y+MeCdJUXUpXp+1EwB/UBe35mEk+TUGU1cUKqjbi1H1gEUG\n6nbuBHKQF5f2FzeBOl6L/eGH1a8dGIi5oA4zP6ZOe5nLr5mmfV8oVng/l1+XQN1CMF6rLsKOEoBX\nfsXYmPPadLu38iv5OwfUmZg6XX4FIoE6CvoOa0xYTF0q8mvCmDoOzmg7KmfPUtvCQF3f5dcApo4/\nF6Uydu9xNVWdqatlKsYkCW5JmDruczMZeEtNRIipo/YQqCNGKcioG5tAXU8TJbT/daZuwmbqhiGj\n0etWCY2mFRhTB/QH1HUqGqirVoF2W9ncYNkytx9QH/ArPgyooE6XX+PG1MWSX0dG5OvT0/5Kg72w\nKxrkV8W0DlStuiWQFiKoe/ppt78Ndhiom1aZbp7E8vvfq1+bqvTK2wnIZDMA2LQpMKYu27TvC0nP\nS0zdkvXcuPxKo3tmRt25QPPGlG0ZBdT1Kvu1kw2QXxOAul5kvxIFnxqo080A6nhMGRhTx81UIcG0\nTZhuASGJ4cb30uG2ZYv8W7ZM7qyu/zh73imUnKw2AJ6YugteW3ESQtJk6izLnYyzWXhLTcRg6nJ2\nnON3fjSIJ58M/t0gUJc6U9fpQKFz2TnpTN0c5DgbseTNqFllNBpQQN3sbDRQx5Pu0yiuKkpltJFB\nGTXZ/zduBF72Mpx2mnsPR0bcGEUnhLPunyhB0RxAn+RXR6tnezKakiV++lMZ7HfttR6mLgjUzc5K\nifBVr5LPFzyoa/kzdRzUUYgJWeqgjt+jo4+WjxpTl8vJLcIcUNfSmLrt273fux8xdUuJEgvBuGOn\n0U1RnmSaN65UgMFyG6NVOxB3dNTxPZNNVX4dHgae/3yprL3uderXJompO+UU4AUvANpHvg64Z5d8\nwhsG9Fx+9UxCl1yCrQ9O4pbHpMaTuE4dAPzZnwF/+IPcNJIsBqhTmDofUGdi6rhsqZ/+xRe7knti\nI4Sr3wcqgnfkkfJC6R2BNaaZk8hoxQo5xzWbgMhkneINU+2KU4IlTVAHyFvQ6dj3khIbaJuKGKCO\nklcmO4O4807goIP8f7PnoI4zdW1t58VGw7lnnjp1dp3A5dkpoAXUIEHdd/E6jGIvbsTzcdacdxFg\nAnUcFKUhleXyFmYwiBFMyVl++3ZgdhbDw8CVV8qna9bIRPlCQSZRPPwwYDWiMXXdgrpYTB0gQd32\n7VKC1fagxj33yE55993IC9nox079Myyf3oKfPXAu3olPuceyDrR1qwzTowXQQgR1zaYrvw5EBHWP\nPKJ+bU+Zuo0b5ePEBLIZAdhe6IAD5Nik88i1NaaON5gsgKn7kz8BHngAeNnLUjqHHtsSqFsIxh07\njW69UqjBG28cnUD2qQ6mcssxnM87oG5fQ90mbGxM+qKbbvL+dBKmbnhY1iUCLrD/mHUpvyZm6l79\naly3+9XYdbn68UTy6znnyD9uSZm6vSqoy2TkHGACdXTJBgbU+5LJAN/8Zpcsnd5IbtQYKh6mX3vW\nMWqWnOxWr5brjk4H6FhZ0NWZQ8VRN9KUX+lYSlrwxDrFkF/zLCO5GrJRQM/lV76g49IrEIupq0LG\noX0fF+H7uMhpu97moASdtABFLgcX1NH+vLZ8+Xd/56bevuEN8u+Tn5TPM41oMXV+2a89KT4MBMfV\n0Y/PzaHYkQ175KTXoXHWS7Hl/Ad8v5/8l772XUigDnD7W6UZDdTpeKmnTN2KFfJ5s2k3TPYtWu85\n9d2JqfPL/AUCQd2LXyz/Fostya8LwUxMHY0OcgQGb/ysEelkpgrS6ZDv2VtTmTq9YD63JKAu0LiU\n3On0TH41yUW8VENXoM5kIaCOpKQwpu7YY+V7QaBOBxCDgykAOiA6qAtg6uY6sq+uXOke1rbcTjSH\niqNu9IKpcx6DQF0IU1douPckbKOAvjJ1AaDOj6kbFvJeznXKRiAURX5NbTcD2wjUAXBBHeBb640m\n/kwzHlNnh+r1dpswIDgDlqEzYuoaGSkf1+E6JJHLKYN4sYA6YurKjWigTreeMnV82wjWQXRQl+vY\nnUkvqs4tQH5dbLYE6haCkWOfm1NjagC3I05OKtlwAHDQgHQyMyXpdEie2z0ne3MHFhoo9BfUZTIq\nSOXemQJsfawrpg4qqOsqUcJk+hfQc42pm5hwmYSBYguo1SAyGVQhEQVlAJrARBCoS8X8QB01huLU\nApi66ZY8j7Ex97AW3Gszhwp27JD/p1nShB+bySA1UBe2pWdfY+oSMHUD7Sn7eVmJOwOig7peMXUA\ngKeect/wySCl/p1temPqCAeZmDpAxqallihhKmkCBDN15IhmZ1Foy4bVraIB1OWNH6NQSlOx7r5a\nCFNXskFdvY5IoI4uX0+ZOh9Qt0ZuaIJKBbDQQUHYFzcI1AUwdYvNlkDdQjBy7DwCnWxoSL7fbns2\nQVxfkk6mWlGZul2z9qbqVhmAFRiLlSSmLtT4QIsRU9ctU8fb31WdOpPpo5sqoQbIr8vycpYVA4Og\neI/TTpMT1bZtXmdIk3Klok44qe2dGMbUEagLyH6dbLigzmHqhArqiKnzk195Ed/ETB11amJPYtSp\ny9XSAXWpFx+OwNRRdjgxdTRh1VDy3FY+/Cic0rT/a9qAIimoc2Kf2DZh1GVNTB0g14mpJUp0Kb8S\nU1eHl6lzksps42Of58fNO1NXr7NxK5CDRDelejym7phjlEPSbycQialzMpKLRW/1cG5LoG7JUrUg\nUFcq+U7GawvSydQGVVC3fcref1PI712hJWFxS52pA9SBljCm7oFH8sbLcdddcvODMKau5/JrAKij\nUx7JyvO1hlzP9qxnyfhGIdT5jn1V/5k6HdQFZL9O1mSfUpg6DdQRcIjC1MUB20r2a4KYOoepa6qg\nrloFfvITL0kO9FF+NTF1c3PAj38MTE0hnwcyaCMDIWvSQUXMVZSd6843daG+SBh4Xpk6nwK+tGih\n2Kd7H3GZuuX2Tlt+oG5mpo/yaxBTNzeHvM3UNSwJShtwL2jL8gd1HHzPO6hrNJDJyLFC0isAlGqT\nGMEEjr7n655NXXVQV6nILZSBFBekZBGYOl9QF5S+uiS/LlmqRo7dJE8Wi65no0w/29bkpZNpLVdB\n3ZZpuSKZxAgqFWXXMI8tVFD3z/+ax0c/qr5fr8ss3nPPDY+po/OixVnQNYhk+ugmB2HfMyNTl7NB\n3eCgA6wPOkjuxAV44+o4gOD3JXVQx+kaIWIxdXMwMHVMfuVgw4+p4/csZJMRxbqVX53d7ODux7tn\nD/Ce98jMti99yfuZvsmvJqbuW98CXv5y4MMfxtCQOzaayDulS8iqKDsJ89TnOVgg5UlPqgcWjvya\ntxMNznp5yWGtTaCOy68c1HWdKOEnvzpxLcGgjpjGmoGp0++XDuqoy6ZRUiaRaTUsKxWmmgAo1Kfw\nIVyFS67/c3nBy2XH4eprqLExuXgF3PuXejsBX1B35JHycXDQ3eVDcHLEZEtM3ZKlamFMHXHZd9yh\nvHXywdLJHPVCFdQ9MrUGez70aVyBzwTG0wF9AHUJ5dcm8p4t+qanpUS5davr2MOYunPPBT74QeB9\n70twHtz00b1ihbw309PA1JSRqRvOuDLFF78IfOELcn6gJCx9jug5U8ezOch275YXc/lyRpn4M3UE\n2kxM3SwqANxg8CjbA+lxYEHWbaJEoWDvPws1eeVrX5Pv//zn/u3refFhE1P3+OPO43HHAR++So6N\nlpVXWCBA3pcgUEd1WnV2GFgooE6gaMuXe2YKzvqVnwuZztT1pPhw1EQJLr9STB28MXVtjanj3XV6\nWt25ZF4sBNRZQuAU2PPPS18KfOUrTsCjztSNjQFvehPwN38DvPnNKbdTZ+oYLf3znwOf+hTwR38k\nX1q5Elg/JvtUK7vE1C1ZPy2MqaNS7LSVk22VOekklz1briT5PPfEy67AT/HS+Qd1CZm6JvLKihxQ\nV+iUSGeKqbMsdzCWSsBVVwFHHRX3JDTTR3c+7zJbW7ZIuSInT5cw00jGrbx+/vnS0QHecDCyvsqv\nlHSjJ0kAakfgFxNwEj44U0f7jVLwPlkUUBfSJRRTmLqhIXmRZmfVoCTAV36lfSh1UEf36+abPblI\nSpmZvidK7LVrUO7ejUwGeNfbbVDnw9TR4SZQRwV+TQk6PQV1HLUHgDqKFayjAIGMA+riMHWpxdRZ\nlnoxIsqvxNRVhWTqBDJo2mMjSH4lP5D6llpxzADquPwKAEfifvnP1VfL4m22mUDd6tXA3/89sG5d\nj9oJeJi6s88G3vEO923LAk4/QXaWuU4pWAv2YepSWbj12ZZA3UKwMKaOUiZpKycycjK20xm1txrc\nuxdOBmIYqOt5okQXoI6vyAF1hU6DzsTU9WQgmrJf2VZVluViJpqQnG2SNFTmN0f0XH4tleQFazbd\nmVGXXgEVvWSzRlC3cqV7WLMj39dBnZ/8yi0JqMtm4a30H4GpozbpoI5sxw7gscfU4+e1pAkDdQCc\n2bOV8TJ1YaBufFz2qZ074RlXPQV13AJAHcU+EbtFQEcHdUL0MKaObnC5rNYQigrq7JjAqnDr7DUt\neVGbmYLxYwDzF2knFcQxDdQNDKhMHQAMwgbo3FfADOp6ZnwQDg8b5VduJx8j+9VUoyQHLAd2/IIv\nya9LlqoFMXWlkgwSGBmRy+wtW9z3yPPZoyifl06w03E3CZgXpo5HanchvwaBOjJTTF1P4lL0JXQu\n59Z1s4GRDuqGrOSgridMHW8k0VMmUMc7QjarnDuXXx2mTphBXU/lV2oEIC9kRFBXLgNDMO/HC3jX\nTfNafJhQGo3zpiu/6kxdDaVAUFcuA+vXy/956Thg/kHdwIAb+0T9i1yFDuqaTTWhJUlMXaj8qq9G\neD/TqVwmv2ZbdkydcOvsNTPSKQXF1C1EUKfLr2Qz+WVukphtfQV11E6q0B4C6o5/juxX++bsyYFL\nsMSCAEvy65KlbEFMXbEoexYFCnAJVmPq+L+0sXIcUJdajSQaaLOzPZNfyUxMXc+CjfkIz+U8+4+S\nvyCWdEAsIlBHABVQfzyT8ZVfw5i6nsqv1AggNqhzGNQB98LSTndahMPCYeqEcGbPdghTx4EQB2za\nGsSxXoC6aRikLp/s10IBGMqrTB2ZDup0H9AT+VXvuJWKfK1e965CCNHU68h2Wmgjg3o75wF1rUUI\n6nT5FQB2lsY9r+mgruvtDIOMBiH5MT7XGOyQDfJGTNZLcqcbDup4FscSU7dkqVoYUwe4cXX/8A/A\n294mvVkAqKONlRdcTN03vgH8y78YPxZHfiUzycc9i4PwA3X2LEkMSRqgrifyK5CMqWPnXUMJpZJs\no87UUe00sijya1dMHc9KDIqp27QJ+Ku/Ap56CqWicEDdQc912/ue98hHAnXXXw984AMu6JyX4sPU\n4dtteb8YqDMxdXS4iakrFj3dFY89Brzzne7z+WLqAGC0ojJ1ZDqo031AqokSXH7VzW/QaoimjiKa\nLcu57p2cvKiNRQjqTEzdjmI4qOuL/KqDurk54Gc/k5kSjE3NNd3klVtvhTs4dCl2CdQtWaoWxtQB\nwNlny8cHHwQ+/Wngu9+Vx2ezyuqDavT87nfycUHF1E1NyXSot7/duGVQXPmVshnJRkflpaRrkLrx\ni6XF1AFepq7SMYM6vwoJfqxQqrWedFAXlihhYOrGxuR1pzbODssLvgUHKj8VxNRdfLF8vOSS6E1f\ns0Y2x2ECojJ1X/wicM01wFe/ipFSHTm0UUcBJ59RQKEAnHKK3NuxWJQbkk9PA+9+t1w/3XCD/Ip5\nYeq47d4dytSRERCamVFZOI1Yxj//s5wDv/IV95g07IADAkCdLl/atqxsZupodwBKojWBurhMHfkH\nj59YtUp2bNKp9fcAOJW1ybR7VkMJrZbbBds5W34V+weo2573B3XkWigppye2dq183LhRPvK55u1v\nl6uUu+5yj6+7ZWbuuYc1cmBAXXUuya9LlqqRY/dLlACAE08EbrwRuOAC+fx//kc+rlihdMhTTlG/\nKowK72tJkyefdL2yIQ0vrvyqT7JDQ8BvfiPrtfbEQpi6qKBuQcqvMRIlqP3UX/aOH4s/fPVWvBWf\nVn4qiKm79loJmK68MnrTv/1teX+dyZiXmggCdXSh9+zBaMFNkjjiCOn///M/1RDJLVuAJ56Q/9Mc\nrt8Ty0opUzGIqdPPwZ49OwamjoM6ChWanTWDOrrldI5PP+0ek4adcALwd5/QOi2lhvtQs8vLZqbu\nmGNk/3/iCdnOIPk16gR8xRWy73kWFGvXAnfeKesD6kbFJXlMM2Bm6ppuF+zk7VpuixDUmeTXbTl/\nUPfJT8op6qyzetZKiRjvuEM6EGooIJ0nyfs8MLbmMnUTE1AZPu6gtM4Tt08tJFsCdQvBqHP5lTQh\ne97zXMbu7rvlo4baKFGWbEHJr9wjG/Zniiu/mtp71FGu/03ddFBHP7R1K9BuO/6CSMhSOxjU8RCj\ndlteHsuS3aEv8mu1KmeUfF6lLULkV2o/gZxG08Kew/4IE1ArjQYxdaWSLCQdRypfvVoCBsf8mDq/\nDU8nJ52C0DMYxMiIzEEiNohAz333eddXOqhLTeIPKj7MjTN12TwEMsqeuxwMjYzIflSruQsFE6ij\nR+qHaY1/ywKeczLrtIWC2798JNiRksuocKtU5NZ6gJTG02DqikXZ94yxtyec4HYIbvrFI9NAXQ0l\nBdSJwuIFdSambmt2g+c1OpfRUTlFcfWkJ3byye68x2PqaNAaQJ2zjR4HdXxuXZJflyxV447d7z0y\nci733CMfNdR2wgnmupl+1ldQx80A6nT5VV+V6w6979XXdVBXLMoJoN0Gtm3z1LYst8ygTi+xBqjF\nR7m0afh4d8ZBHaVBrl+v0k4hiRLkT6m/NJvmeMcoiRJdWVT5lXbQMIA6bjS09AxYwAvqUnP2QcWH\nue3a5cyewt5HlLN1nKkrFt0+QwWJTYkS9EjkWapbVPFOOzISXBYEwLKSy6hw08t06j5herpPNcXo\n4ukKg3bP6iii1XK7o2Vf1HoAqCNmf6GBOhNTtyXjz9TNyxZnNNfs2uV2hFtucWX+uivre0Ddkvy6\nZD2zoLRT/T1yLuTdNNRWLMqFDNm8gzqfQrBR5FcdKOgOve9ORAd1gLKC10FC0QfU6SXWAFV6BfoE\n6kzSKxDI1HH51WHqGubM5CiJEl1ZVFBHTN3EhLPLhwnU0dDqK6hLIr/aoI7H1XFQVyi4fYYyYgsF\ndXu6qSnvlmF9AXU+GbDDBbP8WiioZTrTYOoSWUKmDiXpv+sdf1BHAk3q+6TGsYhM3WbhD+rmZYsz\ncpgUQwDIPkY1vZaYuiWbFwua/fyYOjIDaqOVLQBnz1E/62uiBLcITF21qsZVLyimjv4PAnV1d0cJ\n3XTiQgd1PZNfKftrYsIf1AXE1HH5ddEwdUx+Hcm6+776MXX33ef9KT0jOTUAwRMl9DRCbhzU5bxM\nHQdDfqBucFBKZPW6G5LLraegLmj/VABDBbbxOrNiUcYJ53JSnNClyoUG6vSYukwEUEe20Jg6HdS1\nkMVTHW8W2oIDdYC7Mlti6pZsXiyIqdNB3fCwWmvHAOpoZTsyEj7QMhk3BmJeQd2PfoS3f/EoPAey\nFgtNWHyujhJT11MLYepWYSfuxIm4DF+U7WvYTJ1hCa7PcfPC1JkyXwF1dsxkFIcXh6mbN1AXEFMX\nxNTRZTAlaJIsTpcmNWefzcov1bdK0I2BOpGLztQR4KGxEiQx9wzULVvm3qvLL5eZpOvWAd/8pnPI\nUF52oPIy19/ReqJSkWElnQ7wy1/K9+jrkiRKJDI/UBeS/ZqpSN9eay9wUEdzkEl+td/bivWoNrJ4\n4xuBt7zF/eiCBnWMqfMkSrB596BnZbFqFXDRRXIoLoG6JevOgpg6E+DjhWJ9QN0hhwAveUm0nz/t\nNOC441IsPkw7SvCaCnqqoO4c//RPsXrn/c5TAnV8ngvLfu25mUDd6tXycfdunNz+NU7EXfgLfAUD\nA8Cgz44SQDhT11f5dYMW/MyD+jSmThRKOPVU+X8YU9dz+ZXSPPftU4Fcp6NOthzUdWR83RSGfUGd\nyfT7kqqzp4EXVLTPAOr8Yuo4qOOvAcBhh8nH667z/kSqoI7vTD8yIuWDTEb6hF27gG3blCzTww+W\nKOiAg1wnxNtz7LHy8d575SMtipLUqUtkq1bJ+7Rnj3qfDPIr34o4W7Zj6hY6qNOYuhNPBAbydiOP\nOQad5aP4Oc7B7t3Al74EfP7zbpmZeQV1fPciwHU6jz8uH1lJk8lJyBOrVGQxf+agNm3JYNcu4Pvf\nl6EJS6BuybozHU1xAGSaGfnsY6hZMjgIPPywLAERxW6+WWbyp5a1RN6J7yjBt2QBZK0IzuJpHtkE\n6hYkU0d0VLWKNcsk6jxt3Wbs2gUUG8lBXV+yX/3kV8C9uFqixC9uLeP44+X/nKmje8O7bs+ZOtqj\ns1r1dg6nUFjbDVqanMSylrzgezIrPe0zlSfjPwW455wqgKAxHrS9Bgd1BMKp8QAAIABJREFUeSpo\n6w4AP/mVvwYAp58uH3kpL/2YVCyTcRsxMiIpkH37ZFbA//t/8nUmxdLG6+OHuufB3SKViaPcHg7q\n+iK/ZjJqUCKZIVGCu70cMXWdvLK92YIDdXwwC4GTTgL+/Zt2I1evxvQj2/G/8Hml3VSoe0EwdWTk\ny2ghx0qaTE0B4tDDZOjJlVc6HaytwaBabQnULVm3ZpJYyUz0GZ+EfTIh4gA0bd7u3njAiw7q8nlz\nzaejjlK+gkAdZ+cWVEydvk9kreY0MPv0UyjnW+4k3QVTZ1lev9WVRQV1PkxdflhlhADp1Ok+0eQL\n9AHUZTLuSl2P+ieqhJcJqtWwvLYNADBbGvOMkVLJJV4Bt4hqueyC1b4zdfTDLPsVXTB1eskjUzNS\nMw7qAOnXVq2SMgKgxtfZfqIw5DaCt4fGC6lsfQd1gFmCNTB13O1lyu7er3wNu+BAHY1zpj068ms+\nj8JAHoA6YBYFqLMvejtfQrttDzFqqO2721AHc7W6BOqWrFvTvSnXhcKYup7uyZLQTKCOMjYOPBA4\n6CD5P3eO2uiJIr/OK1NH/zOmzmlspyPlpQigjpIB/UDd4GDKdZ+obwUlSgDuxdVAHe+PJqaOg6Ke\ny6+ANyOAjPodOXfbxiYeAwBUB8zjhpRoy3K3W+bzRk9AXRBTR/QhY+qoEUExdXoYJ93Oo4/2z7JM\nfTzpoI7MVN7EHty5wZJzbU2gjtgucie8wHLPJ+AIoK6Ooi+o475swYE6wCPB8v5m6hsUtragQZ3d\nr+g+KO7AYepkx6HyhEugbsm6N332404wQUzdvBsHdeQgyAtv2GB2jtqEtmiYOg7qeGOfeMKL1JiF\nJUrQ16fu6KlvPf64nHlWrHDZLm50cXUal9FvdAiPqSPHmM326f6EgTqqUWfb6N4/yLeHzOOGuuba\ntS5TZwJ1qbJCOlPHZ9ADD5QIc98+9yLno2e/8tcAeV8IrALqgqFvoG7ZMtmvJiZcRGDfL6tUdA7n\n7dHdXKXidluqOTsvTJ0hUYK7PaskT2JRg7pcDtmsNyz63nuVLYkXBqgjFWhqSq4A7H6VrcjxoYA6\ne97tIIPhYdd3LcmvS9a9Bcmv+xtTNz7urYJKxzJbNDF1BvkVAPCQzOLFwIBxP6mo8mvPQB2ZX3ZA\nBKaOzwGEZ8kx9oWlA7xVdslqNXlxNaZueI8MoG6OBIO68XH3/74zdXqSAYUuUJVaA1PXzgfLr3zC\n5RIskeb0uVTND9RlMq4/IDBOHahUcg43MXVk5bL79YRBeg7qTH4rhKnLMqaOr/kWBahrufIrf5tM\nCOC22xYYqKNFaqcjx5N90bMVl6mbnLRBG2PqNmxwh+ESU7dk3Zs+WqLKr6VSygFXKZmpiBRNTHy2\njAnqFmT2qx9TR8XOTCwYwuVX6hKpO/pSSZ0t/UBdl0xd37olXSC9Dsnb3ibjtyjwx7ZcU96jzmgy\nUMexbmoWBOoGB11ad5uMB7QKXqYuN+jP1Om4nOpYrl6txkCmDupI56XaiNz0AUBjp1g0gjo9H4yD\nOrKFEFPXzJaU3JzsgLwvDRQWL1NnAHV0b+Yd1BWLKt08MuL2t8lJp1/lh+R9uO02ifuuvBJKTN34\nuOrKFzOo6/UwWLIolsnIEUODKUx+XbcOePObpUbU8432Elg2K0cIebFiEXjNa4D775ePxGLRdgqA\n4wW/hDdgCsPo2HEOQfLrgo2pA9yaEVRDQrO1a+UjlQUg5Y3m82OOAc4/HzjvvBTardt73ytz9wsF\nteAUNxNTl8spM6eJqTvkEODSS4FDD+1Bu02mz4SVikTIt94qgd711xs/9srLzKDugguAH/0IeNOb\npEx5/vnAK17hvt+X7Fcd1BFzb7NaBOocpi6XQ3koB7Atwfhl0cfJ6acDb3wjcPzxwH/+p/9xXdub\n3ywfX/hC73srV0o/QFQ1daBy2Si/6kXUSyVgubrVcO9BHSFL7rc0+VUUigArmp559YX49Wdux/en\nLsTLFiuosy8svx/PeQ7w29+qJSLnBdRRJhk50JER+ffUUxLU2ZRp3k7A+dGPJGD7zneAj54sX+sg\ng/Fxt2znYpdf+wrqLMu6CMDrAJwAYAzAZgD/AeAfhRDT7LjlAP4JwPkAygB+DeCdQghDrff9xIpF\nd3SEya+WJQsFLWQbHHRBTqEAnHQS8POfy+c24+DEOwnhTGhvwb+ixbP6DEwd4d++OxHTlgJ+8itl\n9vLtPZitXClv+d698tR1pq5YBH7wgxTbzu2DH5R/QcZ1RpKPtb5oYurKZeDLX06tpeGmz4RDQ/Ji\n0gU1bQ9hWXjxn4x6X4ckY6ibAt570Hf5dXDQfW5LyR6mrlxWLkM+Hwzqcjng3/5N/n/DDf7HdW3n\nny//TKbHH1AHKpUcooWvZysVF68Dsp/pkmzPJ2CeZESmoTNRKAFVtz3Z447GXx/9M9yn7VtrAnU+\npH7/jDoAaccB8uv69RLUVavzzNQBZlAHKExdwWbqqM7hk08Cu2dKGIPL1FF0w2Jn6votv/4fAG0A\n7wPwUgCfA/C/AVxvWVYGACzLsgBcB+AlAN4G4EIAeQC/siwroJLUIjc+YYYxdYvB+Kzil93LM5Q6\nHbTzRQXQAeaYOpL4FkRMnZ/8SuZTQ8KyXDVny5bAnIr5MVOdOq1GCV/Yc1DXVzOBOm6cVSEbHU3s\nrXsC6uiikWbHZ/ehIV9Q5zB1pZJzGYhYDQJ13Lir6et40kGdganT3QYHcfMK6nicpo7OSt6SLDxW\ny/djpT4wjWEWQ36lfIRabYGAOjId1NkAtTgsbwZ3B/c9ojJ1NAwXO1PXb1D3CiHEhUKIbwghbhBC\nfArA2wGcAuAF9jHnATgdwCVCiG8JIX5qv5YB8Nd9bm//jHuwMKZuMVgcUGczFO2SV38wya8E6hZE\nTB332Lo+bFlyuw4fI1C3adMCBHWmOnUaYuNMHYtz76/pIC5KvY4ukot6Ir/qoC6EqcsU/Zk6Uyzm\nogB1bFVgkl/5RwDZz/hzbTe73hj55elpGYjf6XhiOS02AMjtcbBApoM6v27bV4shvxKoWzBMHZkP\nU1da5nVMv31IjalbSpRIYEKIXYaX77Qf19mP5wHYJoT4FfvcJCR798retnAe7ZnM1BGoK3tBnUl+\npVpoC4qpq9W8TN3RR5uDxG3jcdcLDtSZYuo0xLYgmTq/wCSahfD/27v7KLnq+o7j7+8+b7IkbBKg\n4SEJJMiTkqOkEEEgYH0AA6YY09I2Fage6KHaWquW2nLsg9pabRTFh1aPLQekp7VSsNaCFBSx2IKo\nBRRbsBFpVYIJNAmUp/z6x+/+du7evTNz7+7OfZrP65w9s5md2f1N7sydz3y/9/e7zEuoK7P9GkLd\nVKVufHwqFNQ21HWZ/Rq/C8ys1BVS5QolUOd8sEvpodr4zNnhWSp1pR9PB7lmv4blE/fubeXa0gJQ\nhkpdWqi7855WqFu5sjkTJaow+/X06DI6ep7jgHtTbncfsMLMqvD0n3/xPVi32a910OldJf6iix1P\n99yCzqGuUpW6bhMloPPy/UxfISGEutKPqwnSZr92qNTFDokqVvLdMF7ljpunZYAKab92CXWDY4lK\nXaz9WrtQF2a/plTqkqEuPgM2GeoKe/ON77tSQl1Y5BZmVuriu4f4qYqhoqGuTfvVzM/Vg9YagcPD\nJc7Zi79eFi1KrdQtmJz+ZBoehnv+s9V+Xb68Oe3XUrv4ZnYI8AfAzc65u6KrlwDbU24eVhedBGYs\nvW5mX2r3d0444YQ5jbMQyUrdyIh/5pV+oMUsdarUjY76r6ee8nu6KNTtS6nUpbVfQxhq9/7dM1nb\nr4sX+x3Khg0df11tKnVtlqZIm/1a2UrdPIe6nrRfu1XqooPB0yp1tQ11Ke3XUIlvdyIKmNl+LWw3\nGZ9ZmbIDGlgwu/ZrJUNd4vxr4ceTk63xhs8hpbVeofVJeMECP5CUSt3Cpa3t8lM/BatXw/av+v3Z\n08MTDA1N35WHh65Ql0NUcbseeBa4sKxxVEZyqte119Y30EHnUAf+hffII/6FF0LdwolpdwmZD3xB\nL+wUL77Yv3a3bu3V4NtIC3XDw76a9dxzrTflD3zAD/y88zr+uvgxdUFlQl28Urd2LVxxRets8Imb\nJGe/Fiq5IFu7AVS5Upcsb7YLdZEZlbouoa7TERyVCXWx9ut55/lzvG7Zkn4X8Js5XrkrNNSB32+F\nlkHM8ES+iRJhRm8lQ12bSt2yZa3HFK/UlSa8PsKHzpRK3cIlre2yciVceSVcddWhXPutT3DMq/36\nS/GKauU6JzmUkhrMbBx/jNwRwOnOuYdjP96Fr8YlLYn9fAbn3IZ2f2/dunWu3c8qI75jHx3tGggq\nL37kb9q7xf77zwh1LtZ+XbrUr3wS9vXPPOOPSx4a8juVt5UxZSYt1Jn5vcHeva2zGqxdCy98Yddf\nF6/UhTesyoS6eKXOzC/m2+Ym8Updqe3XkZH2CabKoS4ZRDOGurTZr02o1C1cmP76rkSlLr6wbQg9\nCxdOVVGTi0BDevs13HXx4nqGuuQRA5UIdeHJHF96JqrU7XdAa7usWOF30e9/P8CvTF0fr6iGz+eV\nmMCSU+HH1JnZMPAZYB1wdsrac/fhj6tLOhZ4yDmXctbrBoi/GxY+A6AHslTqYHqoWzg91EFrR1ha\nJSgu7Zg6aG27cMqjjIMMBxs//HD64VSlypBeKlepKzDU9WTx4WAeKnXxCkOn3Um8o17obid58uMM\nB2WWPlECpgeG0KOLtWHTKnWd2q/h11Uy1LVpv8YrdZUOdbFK3X7LWtul3Ul04hXV8LgqsV1yKjTU\nRWvRXQOcCWxyzn0t5WY3AIeY2emx+y0Czol+1kzxN6M+DXXx+yRDXWmVoLi0Sh209tphUdKMgxwf\n96dpevZZ+J4/JWl1Ql18nbouN6lUqIu/duL9uXAgJtS/Ujfe/Zi6gYFWsKtkpW7hQr9fCAtFZzgo\nMxnqlsTWjy7sIP20iRJjY1P/eeF0VJCt/VrpUNemUnfAATM3UyVD3a5dU49h8QGtJ3e7UBevqKa8\nJdVG0ZW6K4HXAu8H9prZ+thXWFj4BvwZJK42s583s1dE1xnw3oLHWxxV6nApoS7s6ytXqUsLdWFu\nf45BhqwRP8amEnJU6irbfg0TpOLT9WDmiURz6OlEiaBLqBsa7z77Ndw1eV1SaaHObHoLNsMLPNl+\njW+D3btn3r4n0kLd8PDUNgqL3MLM9mvtKnUZ2q9BJUPdI4/4y9FRFi1upf5uoW7PHr+twpE1dVN0\nqDsrunwHPrjFv14P4JzbB2wEvgh8BLgOfxaKM5xzPyh4vMVpcqUu7fHE2xhRqLMOlbpKh7pkkskx\nyOQOpjKhLkelbu/e1vGOhc/tyRLq9tvPV4bC4KpWqcvZfh2OQt1zg+0rdeGuyeuS4hM4C9/txJc1\nydB+jWfx5M1KCXXxddyibTSyuP3s19pV6hLt1/B44u3XoNKhbmwsvommFe3jwmMKRwRMTFTz1Ord\nFL348CrnnLX5emfsdjudcxc555Y45xY4517qnPtWkWMtnCp12H6t+4TWSq3ar0GOQa5d2/p+2bIK\nhboclbowA66UbdOp/friF/tts3q13zuvWeMD3vLls/5zhbRfx8b8GA88sHXS05jRiWEmJ+HJpdGC\nyitXcsQR/tv4h4QsoW5oCA4/3C9TUfhMv/Ai/9GP/OXISMcPEUuX+q/DDmvdrMPa3r2RVqkL/4nD\nwwwuP2jqplnar8/zEy+ntl+pwvMwnEc1UakL63cffbT//48/r0oNdatW+cs1a/xleFKEHVP07zVr\n/HN89er0XxMefjzU1VGN18xomCZX6rKGukWtqUaVb7+mTZQAv7fLsYd7+9t99njySX8CisqsixSf\n/drlJmHfWcq26VSpO/JI+OY3Wzv5W2/1b1hzSM6FtF+HhuBf/9W38wcGUtuvd98NI0Pnw4+PhuOP\n5/hh/1Djb1hZQh3A7bf74kzhVdYwtTAsQNzlCTQ0BF//+vSn5P77tw5lLUS7St3118OjjzL68NKp\nm2aZKPHWt8KmTZkmy/de2OmGE6QmThN2+eV+UYYXvchfPT7eKuqVGurOPx+OOqr1CTm5fuD69QDc\ndJPfV7Vb3zTsxsPTUaFO5qbJlbpO7ddYqBtYVNP2a3xQ4+O5avYjI/AzPzMPY5tv8XXqutyk1G2T\nnOYZD3XLlk0/mj5lXbG8Cmm/Dg1NP61ZMoQOD0fFiQE4tLWwerzqC9lD3cEH5xnsPAoDDKWRDKXe\nZOtschK2b5/fYXXUrlIXlREnYgEzy2nCxsdh3breDjmz5IzkxGnCRkdbRzSAf1zhTI+lhrqBgen/\nieF0bmG2Q3Rmn4MOap1iMk3Yf4VMW9dQV4XThAn0d6UuOiBmYPHM9mv4dFub9mtdT+uWlKNSF5Ty\n0AcHW6En3n4dHOxJb66Q9muyZJYS6rLIGupKEwaYsVKXZjJtRdNeajdRIpK220seU+fcjLxUDcm1\nA1MeX1x8c1XqccD0GUCnnprpLsn5bgp1MjdNq9TFV23M2H4drGulLr7t6jhdKk2OY+qC0h56PL2E\n59rSpR2rjLNVyDp1/RrqZvGpoNRj6lKSWdpuL9l+jZ+CqlIH4rcLdW2e7PHNVdlQt2gRPP/5me6S\nfPop1MncVPoVMguzaL8OplTqkqGu8pW6poS6HLNfg0qFujnMcO2klEpdcgZD00JdCBGzeAKVFuoe\neyw19KTt9pLt1y4FsPIkQ12XcmItKnUnn5z5xZp8+tXxbBKgY+qqI7wZDQ9X7OPbLOVpv0YfYYf2\nn1mp+/GP4cQTc5+soTfaTZRoYvt1FpW60h56PL3EF9PqAbVf51HOiRJpKjH7NWP7NX7Kw8TdqmEO\n7dfKPcfCdsrYeoWZTz9V6mRuwjti5V4dsxSvLmRsvw4smmDDBjjttOkzlO68Ex580H9fmVDX9Pbr\nSSf5d8wOO8Xkvj6+vm+h4unlhS/0nwhe8Yqe/Kn16/1/S3Ts9fzo1n6d5aJgp53mX2YnnzyHsfXS\nPLRf3/IWn0Uuv3wex9VJ2DHt3j11XtH49hgZaf2z3TF1lQ11k5O+oLBrl6/S1bn9unGjnwG0ZUvm\nuzSl/apKXVWEPUBTQt3wsH9MTz2VHuriJ8bet89/PzHBLbd0/rVqvxZk3To/DaxD+9XM/zeELs28\nBp084qFuxQq/6GgPjqcDOOWUrv8t+XWr1A0M+NuEVJDxHfTss32Fu0f/FXM3D+3Xgw/2m7uw5sbg\noK8w7t7tww/M2F4TE/5H7dapq2yoGxrywW7nzlawg3q2Xy+91H/l0JRQV9WXe/9pWqUOOvd/Uma/\nMjGBGVNfaQGukpW6JrZfIVMaiG/aSoQ66HmKmfdf361SB9NbsDn2EZUNdNDabmFdjFm+uAs/WiXs\nu0IYTSSa5NOxNu1XaC1rsmNHvWe/zkLyPUehTuamaZU6aL0q0ip1IyP+FfTss/5raGjGY48v1hlU\nJtS1W3y4KZW6jJ54ovX9sceWNIjKHzzWhdn010i3UNeEd1CY+a5Zlw9EGUNd7dqvMP24usRpwpIq\n3X6dJYU6mT9NrtSlhTqYvpZQxhPtqf1aTSeeWGJVqNvzrA7iz5t+DXV1ee2E/VZYpTal/Qqtp+PQ\nkH9thM+vtQl1fVapg+mPSaFO5ibsAer8xpTUrYKSDHVtbN7c+j50akqRZaJEXaoN8+zEE0v843Wv\n1MH0502/hrq6vHbCfitM8OjSfjWb3oJtSqhTpa6aFOqqIuy0mxTqwkyxdp/A48vBd1gUKH4arXCu\nwVKoUtfWhg0l/vHwPKvza0eVuvq8dpLt18T2StvtxSdL1CbUdWm/qlJXTZr9WhVr18LWrT1biqEU\nb3qTD27tjqB/y1tg2zZ/XpZLLpnx4099yp+D/cIL4XnPgw9/2P/K0vTbRIkMPvpRf5L1TZtKHMSW\nLX4Qv/ALJQ5ijhTq6hPqQmoLs18T2+PSS/1VZ5zRum5iwndr9+6tUahT+7WWFOqqYmgIrrqq7FHM\nr40b/Vc7r32t/2rjggv8F/gdZHwnWQpNlJghJYsX78gj4bOfLXsUc6P2a30+EIVxP/aYv0xsj5e9\nzH+l3WXPnoqHujD7Ve3X2p5RQu1XkazUfpVeyVqpGxio+DolOYyOtj8zS5WFhNZmnbpOd6l8qFP7\ndUpdK3UN2TuIFKCfThMmxcoa6pry7gl+BkG8HFK3UNdlcd60u+zZ0zouuJKbUu3XKQp1Ik0Xgtzg\n4PTlV/q4/SrzJGv7tSnvnkH8nbMuH4iS7/Y5Q10tKnUZFh9uevtVoU6k6eKhLk7tV5mrfqzUwfR3\nzrq8dpLv9k1sv+7YAc8957/v0/Zr/DDWOlGoE8kqhLnkTk7tV5krVerq89ppcqVu0SL//Nu71/87\n2ZWIaWKlLuzKFy6s76GrNR22SAnahTq1X2WuVKmrz2unyaHOrFWtg46DbGKlLuzK69p6BYU6keyy\nVOrq8sYk1aJQV5/XTpPbr9Ba1gQ6PrYmhrrwmBTqRPpBlkpdXVpIUi3heWOW3vfph1BXl9dOkyt1\nkLlS18T2qyp1Iv2k3USJwcHWXq0u1QaplvC8aVcZ6YdQV5fXzhxC3e7dzQl1Ta7U1XXhYVCoE8mu\nXaUOWnuDurwxSbUo1NXntTOL9msICbWr1Kn9WjsKdSJZdQp1oW5flxaSVEt43vRzqKvLa0ftV0Dt\n16pSqBPJqlOoW7PGv/EedFCxY5Jm6FapO+IIf7zdqlWFDakQdazUjY21P2VgG7UNdX1WqVuzZvpl\nHXV/NoqI1ynUfeEL8Pjjfp0nkby6VepWrYIHHoDlywsbUiHqWKkz8+N+/HH/b1XqqvtYcjrjDLj/\nfli9uuyRzJ5CnUhW7SZKgA9zCnQyW90qdeCrdU0TDjYzg9HRcseSR5NDXXxJkw6DHB31m825Cj+W\nWTjqqLJHMDdqv4pk1alSJzIXWUJdE4W0MzbW9swFlRSvMPZp+9WsVa2r7GPpQwp1Ilkp1EmvdGu/\nNlU81NVJPNTNslI3MtKDcc2HjO1XUKirIoU6kawU6qRX+r1SV5dJEsE8hLrKBqGlS1vfdxlk2GyV\nfSx9SKFOJKtOx9SJzIVCXbnjyCtn+3VkxN/s6afhiSf8dZUNQgsWtJbQ6fLYFOqqR6FOJKvjj/cH\nq591VtkjkaY56ig45hh41avKHkmxjjwSjjsONm4seyT55KzUhQmzALt2Zb5beUILtssgzzkHjj22\n3rNFm6bPPhaKzMHSpfDgg2WPQppowQL49rfLHkXxxsfh3nvLHkV+OUNduMtjj9Uo1D30UNdBbttW\n0HgkM1XqRERE8sjZfo3fpRahLixr0m+HAzSAQp2IiEges6zUAezcmetu5cjYfpXqUagTERHJo+mV\nOoW62lKoExERySOcCQMyB59wl927c92tHCHUqf1aOwp1IiIiecyh/ZrzbuU48EB/WbdFoUWzX0VE\nRHKZQ/s1OOaYeRzPfNu0CW6/HS6+uOyRSE4KdSIiInnMsVJ32GGwYsU8j2k+HXggXHVV2aOQWVD7\nVUREJI85hrqXvGSexyMSUagTERHJY47t11NPnefxiEQU6kRERPKIJ7SM54JWpU6KoFAnIiKSR0ho\nw8P+xK4ZhEWHwZ/uVqQXNFFCREQkj8WL/XIfixZlvsuaNf5yYgIGVE6RHlGoExERyWNsDD7/eRgf\nz3yXzZvhmWdgw4beDUtEoU5ERCSvM8/MdfOhIdi6tUdjEYmoCCwiIiLSAAp1IiIiIg2gUCciIiLS\nAAp1IiIiIg2gUCciIiLSAIWHOjM71Mw+ZGZ3mNkTZubMbFXK7SbN7BNm9qiZ7TWzm83sBUWPV0RE\nRKQOyqjUrQG2ALuAr6TdwMwM+BzwSuCNwGuAYeBWMzu0oHGKiIiI1EYZoe4259xBzrmzgb9tc5tz\ngVOArc65a51z/xRdNwC8raBxioiIiNRG4aHOObcvw83OBf7HOXdr7H6P46t3r+7V2ERERETqqqoT\nJY4D7k25/j5ghZlNFDweERERkUqr6mnClgDbU67fGV1OAnviPzCzL7X7ZSeccMJ8jUtERESkkqpa\nqRMRERGRHKpaqduFr8YlLYn9fBrn3IZ2v8zMdpjZ9+dnaKmOii6/28O/Iflpu1STtks1abtUj7ZJ\nNRWxXVbO5k5VDXX3AS9Puf5Y4CHn3J6Un7XlnDtgXkbVRmj9dgqWUjxtl2rSdqkmbZfq0Tappipv\nl6q2X28ADjGz08MVZrYIOCf6mYiIiIjElFKpM7PN0bdhBsNZZrYD2OGc+zI+uN0BXG1mb8W3Wy8D\nDHhv0eMVERERqbqy2q/JRYc/El1+GdjgnNtnZhuB90U/G8OHvDOccz8obpgiIiIi9VBKqHPOWYbb\n7AQuir5EREREpIOqHlMnIiIiIjmYc67sMYiIiIjIHKlSJyIiItIACnUiIiIiDaBQJyIiItIACnVz\nYGaHmdlnzOxxM/tfM/usma0oe1z9zMw2m9nfm9kPzOxJM/uumb3HzPYre2wynZn9k5k5M/ujssfS\n78zsbDO7zcz2RPuyu8zszLLH1a/M7BQzu8nMHjGz3WZ2t5lpJYgCmdmhZvYhM7vDzJ6I9lWrUm43\naWafMLNHzWyvmd1sZi8ofsSeQt0smdkC4BbgaOB1wFbgSOBWM1tY5tj63G8Bz+EXqz4L+Cjwq8AX\nzUzP94ows/OBtWWPQ8DMLgauB74O/CzwWvxaogvKHFe/MrPjgZuBYeANwHnAncAnzexXyxxbn1kD\nbMGf/OAraTcwMwM+B7wSeCPwGvx2u9XMDi1onNPHpNmvs2Nmvw78GXCUc+6B6LrDgf8E3uac+7My\nx9evzOwA59yOxHW/DPwV8FLn3C3ljEwCM5sEvgO8Gfg08C7n3O+WO6r+FFUevgNc5pz7QLmjEQAz\nezf+w+mS+HnOzewOAOfci8saWz8xswHn3L7o+9cDfwEc7pzbHrt3nR5WAAAHWElEQVTNq4G/B850\nzt0aXbcY+C/gaufcm4oetyoXs3cu8LUQ6ACcc/8FfBV4dWmj6nPJQBe5M7o8pMixSFt/AtzrnLu2\n7IEIFwH7gI+VPRCZMgI8DTyRuP5x9J5dmBDoujgX+J8Q6KL7PY6v3pWSA/QEmb3jgHtTrr8POLbg\nsUhnp0eX3yl1FIKZvQT4ZeDSssciALwEuB/4eTN70MyeNbMHzEzbpzx/iT/P+RVmdrCZ7W9mbwBe\nCmwrdWSS1CkHrDCziYLHU9q5X5tgCb7XnrQTmCx4LNKGmR0C/AFws3PurrLH08/MbAT4OPA+59x3\nyx6PAHBw9PWnwO8AD+KPqfuwmQ055z5Y5uD6kXPuXjPbAFxH68PPM8Alzrm/Lm1gkmYJsD3l+p3R\n5SSwJ+XnPaNQJ40VfUq6HngWuLDk4Qi8DRgH3lX2QGTKALAfcIFz7rPRdbdEx9pdBijUFczMjgT+\nDl/tuQR4Et/K+5iZ/Z9z7poyxyfVplA3e7tIr8i1q+BJgcxsHH9cwxHA6c65h0seUl+Llvp5B/B6\nYNTMRmM/HjWz/YHdzrnnShlg//oJftb+FxPX3wS80syWO+d+WPyw+tq78ZW5c5xzT0fX/bOZLQU+\naGbXZjzeS3qvUw4IPy+Ujqmbvfvw/fSkY4FvFzwWiTGzYeAzwDrgbOfcPSUPSXy4HgOuxu/owhf4\nmX67gNLWdupj95U9AJnhBcC/xwJd8G/AUuDA4ockbXTKAQ/FZy8XRaFu9m4A1pvZEeGKqGVxSvQz\nKUG0Ft01wJnAJufc10oeknjfBM5I+QIf9M4AHki/q/TQddHlKxLXvxJ4WFW6UvwIOD46BjXuJOD/\naB2vJeW7ATjEzMJkPMxsEXAOJeUAtV9n7y+AXwOuN7PfBRzwh8AP8AeDSzmuxB/o/S5gr5mtj/3s\nYbVhy+Gcewz4UvJ6v3Yn33fOzfiZFOIfgVuBj5vZMuB7+NfPy9FxqGX5MH7x58+Z2Ufwx9SdC5wP\nbEup4EmPmNnm6NsTosuzzGwHsMM592V8cLsDuNrM3orvOFyGn7383qLHC1p8eE6i44S2AS/Db8R/\nBn4jvjihFMvMtgMr2/z4951z7yxuNNKNmTm0+HCposrCe4DN+OOD7gf+2Dn36VIH1sfM7Czg7fjW\n3hh+VvKfAx/XcafFifZPab7snNsQ3WYJ8D5gE35b3QH8pnPuW4UMMkGhTkRERKQBdEydiIiISAMo\n1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiNSSmbkMX9uj2/5l+L4qzOwK\nM/uHHLcfN7MfmtmWXo5LROpL69SJSC0lzhYC/pRX3wLeGbvuKefcN8xsNbDIOfeNosbXSTSe7wAn\nO+fuynG/NwOXAsc4557p1fhEpJ4U6kSkEaJK3O3OuV8qeyzdmNmHgPXOuZ/Oeb9J/LlBtzrn/qYn\ngxOR2lL7VUQaL9l+NbNVUXv2EjN7j5n9yMx2m9nVZrbAzNaY2Y1mtsfMHjCz16X8zrVmdoOZ7TKz\nJ83sq2Z2aoaxjAK/BHw6cf2EmX3IzB4ys6fM7BEzu9nMjg63cc7tAm4EXj+H/w4RaSiFOhHpZ5cB\nBwOvAy4Hfg74GL6V+3ngZ4F/Bz5lZseFO5nZi4B/AZYAbwBeA/wEuNnMTqCz9cD+wFcS128DtgC/\njz+f9MXAN6Pbxt0GnG5mY3keqIg031DZAxARKdGDzrlQhbsxqrRtxbc3rwYws7uAc/EnvL8vuu2f\nAg8BZzrnno5udyNwL/B7+JN7t7MecPiwGPdi4Brn3Cdj112Xcv9vACNACJYiIoAqdSLS376Q+Pf9\n0eWN4Yqo5fkIcBj4WajA6cDfAvvMbMjMhgADbgZO6/I3Dwb+N4TBmDuBC8zsd8xsnZkNtrn/jtjv\nERGZolAnIv1sV+LfT3e4PrQ7lwCD+IrcM4mvXwMmzazTvnUMeCrl+jcCHwcuwge8R8xsm5ktSNzu\nyehyvMPfEJE+pPariEg+jwH7gCuBq9Ju4Jzb1+H+P2HmcXI45/bgj/G7zMxW4tu9f4wPlG+P3XRJ\ndPlo7pGLSKMp1ImI5OCc22tmXwHWAnd3CXBp7gdGzOxQ59zDbf7G94H3m9kvAs9P/Pjw6PK7Of+u\niDScQp2ISH6/iZ+FeqOZfRL4IbAMP3lh0Dn32x3ue1t0eSIwFerM7A7gBuAeYA/+uL21wF8l7n8S\n8N/Oue/Nw+MQkQbRMXUiIjk55+4GfhrfSr0CuAn4IPACWqGt3X23A/8GnJP40W34JU2uwS+nshl4\ns3Pug4nbbQT+em6PQESaSGeUEBEpmJldgA+By51zT+S430n4ZUyOcc79R4+GJyI1pVAnIlKwaAmU\ne4BPOufel+N+1wG7nHMX9WxwIlJbar+KiBTMOfcscCGQp0o3jj/DxDt6NS4RqTdV6kREREQaQJU6\nERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpgP8Hd7IbZv/UczwAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Create a CrossCorrelation Object from two Light curves created above\n", + "\n", + "To create a CrossCorrelation Object from LightCurves, simply pass both Lightvurves created above into the CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr = CrossCorrelation(lc1, lc2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, Cross Correlation values are stored in attribute corr, which is called below. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 201.553125 , 1412.10121094, 2828.54304688, 3948.95050781,\n", + " 5370.02359375, 5750.04355469, 6222.50101563, 6664.92722656,\n", + " 5969.0503125 , 6770.80464844])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.03125" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cr.dt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Plot Cross Correlation for Different lags\n", + "\n", + "To visulaize correlation for different values of time lags, simply call plot function on cs." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEKCAYAAADJvIhZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmUZFd9JvjdiBf7khG5VmbWXipJaEESKiTZgNmMYTjY\nGA8wcvdpwE0DPdD2zHDsGdztbmOf4Uzb3dhtjKGbrQ222xhju8E2yMbC7FpcEtpKsqzaqzKzcot9\ne+udP967L15mRsTb7o3KrHrfOXmU9TJDNyIy3v3d3/f7ft+PUEoRIUKECBEijAOxq/0EIkSIECHC\n9YMo6ESIECFChLEhCjoRIkSIEGFsiIJOhAgRIkQYG6KgEyFChAgRxoYo6ESIECFChLEhCjoRIkSI\nEGFsiIJOhAgRIkQYG65q0CGEfI4QskYIecZx7cOEkCVCyBPW1xsdP/tlQshpQsjzhJDXO67fTQh5\n2vrZxwghxLqeIoT8iXX9EULI4XG+vggRIkSIsBXSVV7/9wF8HMAXtl3/bUrpf3ZeIITcAuB+ALcC\nWADwd4SQGymlOoBPAngPgEcAfA3AGwB8HcC7AVQppTcQQu4H8BsA/rdRT2h6epoePnw45MuKECFC\nhOsLjz322AaldMbt965q0KGUfsdH9vFmAF+klMoAzhFCTgO4hxByHkCRUvowABBCvgDgp2EGnTcD\n+LD1+C8D+DghhNAR3j+HDx/GyZMnA7yaCBEiRLh+QQi54OX3dmtN5+cJIU9Z9FvZurYI4JLjdy5b\n1xat77df3/IYSqkGoA5gavtihJD3EkJOEkJOrq+v830lESJEiBDBxm4MOp8EcBTAnQBWAHxU9IKU\n0k9RSk9QSk/MzLhmhxEiRIgQISB2XdChlK5SSnVKqQHg0wDusX60BOCA41f3W9eWrO+3X9/yGEKI\nBGACwKa4Zx8hQoQIEUZh1wUdQsi8459vAcCUbV8FcL+lSDsC4DiARymlKwAahJD7LNXaOwB8xfGY\nd1rfvxXAN0fVcyJEiBAhglhcVSEBIeSPAbwKwDQh5DKAXwXwKkLInQAogPMA3gcAlNJThJAvAXgW\ngAbgA5ZyDQDeD1MJl4EpIPi6df2zAP7AEh1UYKrfIkSIECHCVQKJDv5bceLECRqp1yJEiBDBHwgh\nj1FKT7j93q6j1yJEiBAhwrWLKOhEiHCN4LELFTyzVL/aTyNChJGIgk6ECNcI/p8/exr/6W+ev9pP\nI0KEkbjaNjgRIkTgAFU3cH6jjVwquqUj7G5EmU6ECNcALmx2oBkUza56tZ9KhAgjEQWdCBGuAZxZ\nbwEAGr0o6ETY3YiCToQI1wDsoNPVMO42iNNrrbGvGWHvIgo6ESJcAziz1gYAKLoBWTPGtu7Tl+v4\n8d/6Nj71nbNjWzPC3kYUdCJEuAbAMh1gvBRbrasAAD724AtjWzPC3kYUdCJE2OOglOLMWgvlbAKA\nSbGNCz3VzKraio61Zm9s60bYu4iCToQIexzrTRlNWcNdB83RU+PMdDpKP8CdWm6Mbd0IexdR0IkQ\nYY/jtEWt3XmgBABojFE23VF0+/v1pjy2dSPsXURBJ0KEPY4z66aI4K6DVtDpjY9ea8v9taKgE8EL\noqATIcIex5m1FrLJOG6cKwAYb6bTtTKdTCI+9qCz1uzhUqUz1jUjhEcUdCJE2MN48lINf/74Zdy2\nMIGJjCkkaI4z01F0JOMxzJfSYw86v/6Xz+ID/+Pxsa4ZITyioBMhwh7Gp75zFlI8ho++/Q6kpBgS\ncTJWIUFX0ZBNxTGTT4096Kw2eliuRYq5vYYo6ESIsIex2ZZxbCaHA5NZEEJQTCfGSq+1FR3ZRBwz\nhRTWW+MNOrWOimpHgWFEbgh7CVHQiRCBE15YbeJffPYRbI5x8611VJSySfvfE5kENsa4flfRkU1J\nmC2Mn16rdVXoBo385vYYoqATIQIH6AbFT/yX7+C7L2zgsQvVsa1b76ooWbUcALj7UBk/OLMJZUxW\nOG1FQzZpZjotWdvStyMSlFLUO2awqbSVsawZgQ+ioBMhAgd86/k1MM/L1TGe+KsdBaVsP+i8/tZ9\naPY0PHJucyzrdxTdDjrA+GTTXVWHopuBNQo6ewtR0IkQgQO+8ewqcsk4AGC51h3Lmj1VR081ttBr\nLz8+jUwijr97dnUsz6Gr6MgmJewvZwAAZzfaY1m31ulTalHQ2VuIgk6ECCFhGBQP/uMaXnXTLA5O\nZscWdOqWYMCZ6aQTcdx5oIQnLtXG8hwYvXbrQhEA8Mzl+ljWjYLO3kUUdCJckzi91hqbAeXp9RbW\nmzJeddMMFkpp/PBiDb/1t89D1cXWVaodc7MtZZJbrt+2WMRzV5rC1wdYphNHIZ3A0ZkcnloaT9Cp\nOxR6m1HQ2VOIgk6Eaw4XNzv4qY9/D2/5vR+MRcm12TI3vcVyBgulDC5WOvjYN0/jey9sCF2XnfbL\njkwHAG5bnICiGXhhtTXoYVzRljVkkxIA4PbFCTwztqDTDzTVKOjsKURBJ8I1h1//q1OIEYLNtox/\n/QePQdZ09weFAJPsFtMJLExk7OsPPHNF6Los6EwMCDoA8Myy+ADQVc1MBzCDzkq9N5YMk732RJxE\n9NoeQxR0Ilxz+OHFGt704nn857fdgZMXqvjs984JXY9RPROZBDRHo+LfPnsFmkCKi532nUICADgy\nlUM6EcPzV5rC1gYARTOg6tQOOi85ZI5WOHlevGS8Zr3nh6ZyWIuMRvcUoqAT4ZpCS9aw2VZwaCqH\nN714AbOFFC5siDWFZA4AxUwCP3vPAfzYjTP4t2+8GdWOiiWBooLqEHotFjOdCZwO0CLAzD6d9Fo2\nGccjZ8XLtWsdFcl4DC89XMb3Tm/g49+MJpfuFVzVoEMI+RwhZI0Q8ozj2iQh5BuEkBes/5YdP/tl\nQshpQsjzhJDXO67fTQh52vrZxwghxLqeIoT8iXX9EULI4XG+vgjjx4VNU7J7aCoLwAwEdcG2MI2e\nBkKAQkrCoakcvvAv78GtCybFJdIbjG28mUR8x88yyTh6qlhasW01grJMJxGP4e5DZTx8tiJ0XcDM\n8iayCfzaT92Glxws4YFTYqnMCPxwtTOd3wfwhm3XPgTgQUrpcQAPWv8GIeQWAPcDuNV6zCcIIexu\n+ySA9wA4bn2x/+e7AVQppTcA+G0AvyHslUTYFbi4aWY1ByfNoDORSQi3SWl0VeRTEmIxYl9bKJm1\nHZHy6XpXQTGTgHXG2oK0FEdXcNBhtFY2JdnX7js6hedXm7ZbgCisNmRM5ZJISjHcPF+MjD/3EK5q\n0KGUfgfA9mPRmwF83vr+8wB+2nH9i5RSmVJ6DsBpAPcQQuYBFCmlD1NKKYAvbHsM+399GcBryaA7\nNMI1gwvWfBWW6UyMI9PpqvZYAYb5iTQAYKUuLug0exqKaWngz9LJOHqquHoSpRS/9Y1/QiEt4WXH\npuzr7H1fFSwmWKp2sb9srrVYyqDSVmy6L8LuxtXOdAZhjlK6Yn1/BcCc9f0igEuO37tsXVu0vt9+\nfctjKKUagDqAKUS4ZnFhs4PJXBKFtBkEimlJfKbTU1FMbw066UQck7kkluviNt+2rCGXGhJ0pJjQ\nTOfcRhvf+ad1vP9VN2Aqn7KvT1qiBiYjFwFKKS5XO7YLwqKVVYqsn0Xgh90YdGxYmYtw33JCyHsJ\nIScJISfX19dFLxdBIC5W2ja1BliZjmCqp95VUczs3PznJ9JYEbgRtmUdudTOeg5g1nRkgUHn1HID\nAPCK49Nbrk/mzaDDGldFoN5V0VZ0O+iMg8qMwA+7MeisWpQZrP+uWdeXABxw/N5+69qS9f3261se\nQwiRAEwA2CGtoZR+ilJ6glJ6YmZmhuNLub7R7Kk4eV58UdmJC5sdm+IBzKDTlDWhM1caXW0HvQYA\n8xMZobWGlqwhPzTTEVvTeW6lASlGcHwuv+W6nekI7J25XDWDSz/omFRmFHT2BnZj0PkqgHda378T\nwFcc1++3FGlHYAoGHrWouAYh5D6rXvOObY9h/6+3AvimlT1FEIzTa0287re+g7f+14fGZj6paAaW\na10ccmQ6xUwClAJNgfLhQfQaACyW0lgWWNNpK8PptYzgms5zKw0cm8kjJW3NtMo5K9MZQ9BZLJl/\n57liGjESBZ29gqstmf5jAA8BuIkQcpkQ8m4A/xHA6wghLwD4cevfoJSeAvAlAM8CeADAByil7Cj3\nfgCfgSkuOAPg69b1zwKYIoScBvBBWEq4CGJBKcW//YtnIGs6jk7n8Gt/dUpokyTDUq0LgwIHp3L2\ntaKVgYicpmnSazuDzr6JDJo9TVi/zMiaTkJsTee5lSZusUw+nUjEYyimJWEuAWvNHj7/g/MA+plO\nIh7DXDGNpUjBticw+BM7JlBKf3bIj1475Pc/AuAjA66fBHDbgOs9AG8L8xwj+MfDZyt49FwFH3nL\nbYgTgg/9+dNYqnVxyBEMRGB7jw4Am/aqd9Ut3CwvqLqBjqIPpNdmHTNmhgWHMBhJryXE9ek0eiqu\nNHq4aV9h4M8nc0lhQecz3z2Hh6zmU6e79mIpg6Wa2CZgwBwncf+nHsZ7f+wo3nj7vPD1rkXsRnot\nwh7H2Q3TaPI1N8/ioBUAlqriqY+Lla09OgBs2ktUptPsadY6Ozd/e7CZANNRTTfQUw3kklch6Fjv\n5eQ2+x0GkUGnZgkUPvvOE1v6kxZKYutnDEu1Lp64VMP7/+hxfOnkJfz0730/Us35RBR0InDHlXoP\nMQLM5FM4YPVSXB5D0Lmw2UE6EbMzDKCf6YiSTdcdFjjbIXKaZtvqSRmqXkvEoepUCK1p298MWXsy\nlxQmJGgrJmX72hfNbbm+UMpgpd4VKhgBts7x+b+//BSeuFTDU2OaXXStIAo6EbhjudbDXDENKR7D\nvgmzyHu5Kp76uFjp4OBkdssJmDkwi2oQrbTNgDKZ23nqnxUZdKw60XB6zby1exr/oNO2PdeGBx1R\nQoJhdazFUhqqToWPsmAmqx/72bvwshvMlr+NyOXaF6KgE4E7Vupd7LM68hPxGPYV07g8BgpivSlj\nrpjeco3RXo2umGJ+pW1RTQOCTjmbRDxGhAadoeo1y49NBMXWkZnn2uC1yxa9JkIo2h5Sx2K9OqI/\nZyzTefHiBH7/5+4BAGyOYWbTtYQo6FwH+JX/+TT+8snlsa13pd7bMldmfzk7Fnqt0lZ2bP75lIRE\nnGCjLWZjGJXpxGIE0/mkkPkyLZdMJ2UFHRHWMB1G7Q0JOlO5JBTdsDMinmjJ+uBMpzyeBlEWdErZ\nBBLxGMrZxFgGBV5LiILONYzf/sY/4ZPfOoM/fPgiPv3ds2NZk1KK5XrX9h4DzA1hHEKCQUGHECI0\n6LFMZyqXGvjzmUJKUKbDajqjMx0RA+yYu3RmCL1WtgQGFQFWOGams3PdcbkS1Lqq6ShuCVSm8yls\nNCN6zQ+uqmQ6glj8zoP9GSNPXa5jtdHbQT/xRq2joqcaNr0GmP0UX3miC1U3kIiLOefImo6WrGFq\nQMZxYDKLSxUxNaVKW0Y6ERu6Ac/kU0LUay1561iB7UjbmQ7/mk7HRcQwZVnhVDqKrV7khdaQmk4x\nnUAhJQlXsNU7CorpBOKWo/hUPhllOj4RZTrXER58bs39l0KCdeCzkycAHJ3JwaDA+Y22sHWZRHdy\nQMZxoJwRFnQ228rQLAcQmemMptfsmo6ITMetpsMyHQGU5qjepH0TaaGu3oCZ6Tj7g6bzqasSdC5V\nOji73hr7ujwQBZ1rFKpDKru/nMF0PoknLokfI8w22LlifyM+Pms2ET6/Km58MnM1HlRbOTiZRbWj\nCpFNV9sKyrmdcmkGc1NSuEt5O8poIQFTr4mo6XRd1GssCDPqkRdU3YCiGUNf82xRTIB3or5tjAX7\n+44bv/TlJ/ELX/zh2NflgSjoXKNwNkO+5GAZR2fyOLsuLtNgGJRx3DCbR4wA/7Qq7mTG1mXUjhOs\nWVREtmPWkYZnOqVsArpB0VL4qudaVk1nlCMBIEa91lZ0JOOxoVQpc5rmnem4KfZEUZlO1Dpbg85M\nIYWWrAmf0uqEqht44lINL6y2hPcliUAUdK5R1Kyg8wuvuQH//k234NhMHmcF0lsMdtBxdKunE3Ec\nmsrhBYGZTj/YDa7pAIKCTkcZWEdisG14OI9XaMsaYqSf0WyHXdMRIZlWtKGNoQCQS8aRjMe4N4iy\nOlZhWNCxqExRnr5X6j1U2gpKjs/2tBVgx0GxUUqh6gaeW2mgpxqQNWNPuiFEQecaBZN2vuRQGTOF\nFI7N5FBpK0LdfwFzjko8RlDYZgtz41xeLL3GMp0RQUeEgq3SUuwaxiCIckRgBfVhg3BZMJIFOE13\nFH2oXBowFYMiGkTdFHszhRR6qmEHJ57QdAP3/X8P4mKlg9K2TAcwx2eLxie+dQY3/crX8ddPr9jX\nxnGQ5I0o6FyjYJ3T7FR2dMY022S+aKJQaasoZxOIxbZuhjfvK+L8RlvYQLVKW0Y8RgaOGCimJSSl\nGHfqpafqaCv6QErPXjsjxhHBHFU9vJaUEZzpDFPrMZQF+K+1bHpt8NqzBVMxKaKu4wxkmtEP5Eem\nzXlC4yjqP/DMFRgU+G/fPmtne3tRTBAFnWsULNMpW0qbYzPmzXFmTezJqNoefPJ/+fFpGBT4/pkN\nIetWrHW3BzvAPHlP5ZLcRyiz6ZieMh3uQUfdkU06IbSmI+vIuQSdKQFBx02xx7KONQFBhxm7AsCR\n6b5b+oFyBkkphtNr4jd/QszP0y+85gb89597KQppaSx1Wt6Igs41CrtzOmNuiPvLWWQScZxargtd\nd1CDJgDcdaCEQlrCt58XMw58rSHbm84gTOX5b4KjFHMMEwIzHW9BRwS9pg2VSzOIyHRchQQCve5Y\n0PnwT96Cf/myI/Z1KR7D0ekcXhhD0FmudfHG2/fhgz9xE04cnsTR6RzORfRahN2CWkexOqfNGzQe\nI7j7UBmPnBM7PrrSGRx0pHgML79hGt87LSbTObvRxtHp4fN6JnMp7oVtlumMoteEBR1ZtbviByEe\nI8gk4kJk4h1FH0pxMYjIdNysf0QarDat9/GG2QKkbaq9G2bzeGFNXL0SMDPWjZaCeYe91FwxLVwi\nLgJR0LlGUbP6CZx0071HJvH8atOeSSICZt/K4E34wGRWiMpH1nRcrHRwbGZ40DHpNb5rs011FL2W\nT0mIx8jYMx0AmC+lhdjCdBQdGZdMp5RNoNHTuI5WcAs6E5kEEnEi1AFi0Ht+w2wel6tdIT1RDFfq\nptOCs+l6Kp/CpiBPQZGIgs4YYRjUbuoTjVpH3aKyAYB7jkyCUuBRQdmOYVBUO8rQ4V6ZRByyZnDv\nLbi42YFuUBybzQ/9HRGDxRi9NkoyTQhBMS1dlaCzWMoICTptWXOt6bDA0OFYU3Kj1wghmM6LaRC1\nA96A9/zGuQIoFdv8zP6OC6W+vdS0RRnre6xXJwo6Y0BP1fHouQq+8NB5vPw3/n4sjWS1roqJbZv/\nnQdLKGUT+ONHLwpZs9FTYdDhNQ7Wwc5bUXXGUvAwscQgTOWT6Cg619NotaMgRjBwVLUTE5kE6hxH\nK1BKLSHB6HX3lzNC+ji6iu5a02GBoc1RvtyUNSSlGJLS8G2rnE0KyeQbveGZzp0HSgCAH14U5/jB\n/o6Lzkwnl4RBIZS5EIEo6IwBv/+D83j7f3sIX3lyGZW2glPLDeFrrjV6O07gKSmO9/7YUfz98+t4\nUsC0w80RDZpAP+h0ONMQZywFz5ERNR32XvCkIzZHKOacMIMOv0xH1gyoOh1KMzEsTGSw0VK4HnIo\npWgr2lALHAb2c9ZbwwON7miZOGAeLkRMLW2xoJPauf5CKYN9xTQevyhugijrMXMa6U5bNayrYcMT\nBlHQGQO+aRlt/tD6UIo8EQHmSfSFtRZuXSju+Nnb7j4AAHhcwHNwU3OxOgBv7vv8RhtzxdRQ2sV8\nTswPjN8NWmkNFk1sR5Fz0GFKqqIbvWbNmOGZ7XQUHQYdTDM5YdNrHOnkZk9FMeOimsuKmVra7KmQ\nYmSoA8Tdh8p4/IK4+/rxi1Ucn80jJfWDPfO422tD5KKgIxj1rorHtm3wPxR4IgKAU8t16AbFi/eX\ndvyM9e2ImKTJhpUNG5/AGhY7Kt+1qx11pP8Z0A+EPE/Blc5w0YQTE5kE1z4dpqRyo9cWBcyYYS7O\nznlJg8DoN66ZTk9zfc0ianeA5W6dHu4AcdfBEpZqXSFCGUbPv/z49JbrtgXPHhuXHQUdwfj+6Q3o\nBkXSklkmpZjwTOfJy2Yvzh37J3b8TIrHkEuKkdIyK5DZIf0youi1Rk91PfWzG5TnYLFKe7TvGgNv\neq05or7ghJ3pcLT/WartVFENApNU88x0Gl33v/NkLolGT9viss4DbsIN9n6ICDonz1chawZesS3o\nTOWjTCfCAHzr+TUU0xJed+scAOC+o1NYrve4Skm346nLNcxPpDE7JOMocj55M6w1ekjGY1vmjTjB\nrFN402uNbXbzgyCiX6Y6pBF2OwrphF0T4IF+0Bn9mlnGydMXjAWwRZegY2c6HP/WJr02+jWzzLPK\nubje7GnID6jnMLBakwgG4R/OV0AIcO+RqS3XSxlzmBxvpw3RiIKOQFBK8e1/Wscrjs/gviOTyCbj\nuPfIJIC+C7QInN9o44YR8uFiOiEk01lrypgtpoZSEKIynWZPc92M2CbISzlny8M9BJ1cMg7FmgXD\nA316bfSpPxE3lV486czlWhfxGBmazTLYmQ5H9Vqjp7lnOpZis8p5lk9LHm07JKoJGDAbn/eXMztq\nlrGYaay613p1oqAjEM+tNLHakPHKm2bwz+49hG/90qvs2S4ieGeG9aZsmx8OQjEjCTmRrTZ6Izcj\nUZLpeld1VTUlpRikGOEm4W32NBgUW2zuhyGb4iug8EqvAeZ7zjOzXKp1sa+Y3tGVv3Nd87nxdHxu\nePg7s4F6vDfiZk8bOlIBgC1wEMEgnNto2cai2zGTT+GioKm4ohAFHYF44JkVxAjwqptmrNNh2j4Z\niwo6lFKst8yMYxhEZjrDRASAU73GbyPSdNPK3k3VZK4f55ZlNWVv2QbgyPA4ZRzsbzdIvrtj7USc\nazF/qdZ1pdYA2M2jvN5vWdMha4ZrRssUXfwzndE1HVGZDqUU5zc6Qy2eXn3zDB46s4nVRo/ruiIR\nBR1BoJTiL59awY8cm9qSdZTt9F9M0Kl2VKg6HZlxFDNigo5rppPgT6+xk7TbCRgAckmJW2HbzjZc\nemUA/j0rbG032TJgZlldzvSasyt+GKR4DCkphjbv99vlNbNMpyKipjNibSYR531frbdktGRtaA/a\nW+8+AIMCf/b4Za7risSuDTqEkPOEkKcJIU8QQk5a1yYJId8ghLxg/bfs+P1fJoScJoQ8Twh5veP6\n3db/5zQh5GNkWMGBM55baeLcRhtvevHCluvMHFJEAxvQly2PclwupvnTa11FR7OnDRUvAH0hAc+g\nw16Hm5AAMDd/XmuPskXZDjbwjFfAa/RUFCxPNzfwfM2UUlyp97Bvwj3TAUxXgg6nQMtoK1d6Lctf\npWgY1JXak+Ix5FP87Y7OuTQ+H5nO4ehMDk9fFusezxO7NuhYeDWl9E5K6Qnr3x8C8CCl9DiAB61/\ngxByC4D7AdwK4A0APkEIYV1UnwTwHgDHra83jOOJM8vxuw5u7ZVhyi5RmQ7znRpd00mg2VO5eqC5\n9egAQEqKgRC+6jV2k7vRLoAZ9HitzdRobq4AAOzRzrwynXrXXcXFkEnwCzptRYdmULvXyw3ZZJx7\npuNGoybiMRRSEmpdfvfXRkuGZlDX3iSzH4vvYY7tI6PcNorphJBpqaKw24POdrwZwOet7z8P4Kcd\n179IKZUppecAnAZwDyFkHkCRUvowNQenf8HxGKFgev2Z/NaMIyXFUUhJ4jIdl14ZwPyQGhTcNgTA\nvUcHMA0Zsxw3QaBPZ7ipmgDOm+AI1+Gd6zLlHJ+16x13iXh/7ThHStF7gAcsOpNXptPzlukAZvbJ\n0/Nt2XJ4nnfJ8AoCjF0vVTuQYmRkwMun+L5e0djNQYcC+DtCyGOEkPda1+YopWxA+BUAc9b3iwAu\nOR572bq2aH2//bpwrDfN8cmDbO/LuSSevFwTYkXDpiaOFBIwpQ3H3hEvmQ5gigl41hgaPjKdbFLi\nqCDz5goA9IvqPDOdYb1Q25FNSdyCPDvFe9n4zbX5BXm2tpf3O5+SuJ78VyxHh3mXWtaEgFrp5WoX\n86XRasFciq9YRDR2c9B5OaX0TgD/C4APEEJ+zPlDK3Phwg8RQt5LCDlJCDm5vs5nsuV6U8ZUbrAZ\nZDmXxA8v1vAzn/gBl7WcWGv2kE9JI12A+41s/G4QlunMjQh2AN8aA9A/AY+9puOLXuNb06l5aIa1\n107woxTtbMODUhAwMx1eJ3A/a+dS0pbx0mHBMp0Fl0xHRNP1UtVdLZhL8g2yorFrgw6ldMn67xqA\nvwBwD4BVizKD9d8169eXABxwPHy/dW3J+n779e1rfYpSeoJSemJmZobL899oyZjOD96AnQ1zvO06\n1pujxzYD/ayA5w2y1uwhKcVcN0PefSN+azo8hQSEwNVtGRCT6fij18ZbzBextp/MspDmuwlfqXeR\nTgx32mDg7bEHmJnO/nJ25O/kUvxUmePArgw6hJAcIaTAvgfwEwCeAfBVAO+0fu2dAL5iff9VAPcT\nQlKEkCMwBQOPWlRcgxByn6Vae4fjMUKx3hq++Vc7/Q/mGueBU9WOux+YnenwpNcaMmYLw90IGDLJ\nONfm0EZXQ4zAdagYwF8ynU8NN4B0gqcbAqXUDDq+6DXe2Ya3tfMpiRu91upZQT7h/nfOpySutkPL\n9R7mJzKuf+timq/HnqIZWG32sL/s5nMnRfQaB8wB+B4h5EkAjwL4a0rpAwD+I4DXEUJeAPDj1r9B\nKT0F4EsAngXwAIAPUErZX+H9AD4DU1xwBsDXx/ECNprDM53PvPMEfuIWsxy1wnnIVrXtzveL6J5e\na47u0WHgTa8xJZe3zZ/nydt9tgsDTzeEnmra6fih11Sdcsmo+zUdb/RaNhXnJiRoyTpyScl1dhHA\nv7C+UusEOoDWAAAgAElEQVS6KtcAM9NpKzo3X8WVeheUuvvc5VN8bZZEw9unZ8yglJ4FcMeA65sA\nXjvkMR8B8JEB108CuI33cxwFSik2WsrQTOfOAyX84utvwt8+u2rzxbxQ76p40fzOOTpOsM2yybHo\nudqQcXyE3xtDJiGh0uYXaCseTTcBM8uSNQO6QT31uIxCS1Y91XMYeAU8dpL2GnScvVETmXBnTHZI\n8UJxAVZNh1Om05Y128/NDfm0ZKsLeWCl3sOPHpt2/b0J6zBX76q2A3QYsMFtXug1wHyPkpK3e+Fq\nYrdmOnsaja4GRTdsO/1BYBMAeWc6tY7i2kfBZL486bXVRs9VuQawXhl+6262ZU/jBQC+TZpsvopX\n5Didvv0GnSzHwXmNnop0YvS46O1r91QzyIdFS9Y8B3mmXjO1RuGg6QZWGz1PLgy8J3kOGlE9CCzo\n7BUxQRR0BGC95cUVIIF8SsIKx0xH0Qy0Fd2VXrNn6nCi15gbgZuAATDn2qw2ZG5UwGZLsf223MBz\ntEKr530TBKxMh0NNp2bZu5QyHgMta0zlEGi9jIsWtbbfoEMpH+eLtaYMg7r36AD9njzWPhAWzJ9x\nujD6b83eF559dyIRBR0BYA2abpvw/ETansTIA6wLe8KD8zFP/zW7EdZD0Ln3yCS6qo6nLvOZnlpp\nK5gckVE6YXugcdiM3IZ6bYdpCTP+TIdNa+WV6XgVEQD9LItHXcek1zwGnTS/k789KdVDpsMsoNY5\niYOqbQUpKWb/DYeBt7efaHj6KxJCUgD+VwCHnY+hlP66mKe1t+E1LZ4vZbhmOnVLFVfysDEU0/ws\nO5i7wig6keHeI1MgBPjBmU2cODwZal3doKh0FEx7pNf683zCv+6mi+vwdmQScS7BLii9xuPU72VC\nqxO8M52DudG1DYa8g26ac/ldNyzXvPXoAP1DFy9FKqtXuolk8o6azl6A10znKzCtZjQAbcdXhAFg\nH9R9LoqX2UKK26kI6EuxvXSrFzMSt0yH+cgNcl/YjnIuiVvmi/jBmY3Q69Y6CiiFZyEBzw3YL73G\nq5ciuJCAQ6D1MCzPiRzHTMcPvcYOAzxk034yHbMpO84v0+konu6p3B4LOl7vmv2U0rEYZV4LWK51\nMVNIISWNToun8klsthRQSj1Jft3A+H4vH9RiOoFVTtwzy3S81lZunCvgH85X+K3rUSnEa3KpblB0\nVd0z3cPW5hHs/Iw1ABwTPHlkOl0Vh6eGG09uR5ZjpuOHXstxHCC3XOshl4x7GmEBmNkO70zHDflr\nVEjwA0LI7UKfyTWE5XoXCx4GXc3kU1B0g5uKrObjFFzk6IhrZzo5702DPG4QNhveq3qtLyQItzbL\nGnIjrIa2g5clTFfVkZJiniXf2QRPes1nHesqqQXZ7/GwwlmpdzFfcm8MZTDZCz6HuWpHRdnLOPQ9\nlul4DTovB/CYNavmKWs+zVMin9hexnKti0UvEss8k1jyORnV/dBraX702mZbQdKaJ+IFzAU4rKSV\njST2mun0T8DhNmBWlM94cEFgKOUSqHbU0K+5o2ierHcYeAVaIIhMnE+BW9Z0qDr1Tq9ZE1V5bMIr\n9Z6nxlAG7pmOh3u5Xzu7hoQEME03I3gApRTLtR5eddOs6+/aA91aCo5xsHyrdhRIMeLp5mTmhDyo\nvWpbQTnnzRUAMDMdVaeQNQNpD7Ymw8AkpV5rOv33O9ymwG5uP5v/dC4FRTOsscfe6yLb0VH0kWau\n28HcJ2qdcAcMzep4Z5mTF7DnGXbzZ0HLi9URwFe9tt6UceNcwfPvzxbS+O4L4euVmm6g3vWW6aSk\nOBJxPo4X44CnTIdSegFACcBPWl8l61qEbah1VHRV3RO9xjvTqVmW9142//5MnfCno822t4InQ4HT\nprDRUkAIPA8VY4Ve5ogdFIwu8hN0nAeMMOgquq8MKyXFUUxLoT9jrMfIz2tmmWXYz5jt6O0xWLND\nFw/HjZZPSnGmkEKzp6EXsieLUeVe7ytezcfjgKegQwj5PwD8EYBZ6+sPCSE/L/KJ7VWs2Dbo7ik5\nr5M3Q7WteFY18fRfq7Rl+7V4gV34DMm5N7qmFc2oWSNOEEIwW0iFbt7r02veNyNGATJKMCjMTMdf\ndjhdSGE95GeMveasRysa5++G7U+yR4N7XDspxZCSYqFrpZRStBTNs4gA6NcXww5p7NdJvd1X+4pp\nnN3YG4JirzWddwO4l1L6Hyil/wHAfTBHQEfYhnUfjZKT2SQIAdY52WZstr135/edpsMHnWpH9ZXp\n8FLbtGR/GwJg0h9roTMdf3QP0N+MwlqkdBXdtVlwO2byKWw0w63bCUApJuKmZU7YTIep3/yoBUvZ\nhF3jDIqOooNSf+vah4uQQZ61P0x6vK/uPTKJxy5UuY9KEQGvQYcAcH5ydOtahG1gGn0vQUeKx1DO\nJrnRa5W24jnj6M/U4aEi8+5/Bjjpj7Bcv3cZLcNsMXym0wkgJJi2N6OQm7/qT0gAmJlO2M8Yo24y\nPmo6gBmYw6rX+pmO97UnMgnboSP0uj7oNV40KqtXep0Qe+/RKXQUHU8v1UOtOw54DTr/HcAjhJAP\nE0I+DOBhAJ8V9qz2MFjQGTbWYDum80lu9Jofx2VGw1U74W4O1ZJ8e6UBAH6FXr9qKsDKdJpyKBUZ\nG7ftp6DP/i5h/9Z+hQSAmemEptcC1HTM3w8/68XPlFaGUiYZerZNM8C60zk+dVpGe3u9r+45Yrp7\nPHx2M9S644Cnd5NS+luEkG/BlE4DwM9RSn8o7FntYWy0ZOSScc8n8Ok8H1cC3aCeBrgxsMFQlyqd\nUOuyG9trsAOc9Fq4TcFPlzrDXDGFjqKHUpGxTdTPBpyUYlwK+n6FBIB5sGHF7aBqwSD0GmDKecNm\nOizL8pPVFjMJXK6G+2y3A2RYdqYTsqbTsCelet9H9hXTOLu+++s6IzMdQkjR+u8kgPMA/tD6umBd\ni7AN603Ztjj3goVSxvZqCwO/ljClbBLFtIQLm+FuTCbF9SpgAJyZTvgTsN+gM1sM748VpE8HMDeG\njZCbURAhwUwh/Om7q/jP7tjvh81o/Vr/ACYtFVYkE4TWyybjSCdiNj0WFI2uCkKAvI/3e24ijdUG\n3/lcIuBGr/0P67+PATjp+GL/jrAN603Ztjj3ggPlLFYbcmiJpd2z4mPtw9M5nN8MdzIKsiGw5r2w\n6rVAmU7BVBWGERPYp36fWcN0PhWaXguW6YSf8xIu0wn32a52VCTjMV9rmzUdPkHHT4ZFCMFULnwN\nrdEzRTJeJqUyzBVSez/oUErfZP33CKX0qOPrCKX06Hie4t7Cekv2JCJgYDTXcshsp+9/5p3mOjSV\nC53p1Nk4BR9BJ50wbVx40Gt+hQTTHE79HVUzR1B7lGozTOaSoQrMmm5A0f01aAKOoBMiuwvSEAvw\nsf+pdRRMeOw/YyhlEugoeqi5TexQ5KdPB+h7KoZBo6f6pn/3TaRD96CNA177dB70ci2CuZl5FREA\nwIFJ0679UjVc0KnY5pfeg87hqSyWat1QMkuW6ZR8SKYJMV0TwmQ6lFK0fY4XAPhIxbsBKC7A3LzC\nUE1BGjQBZ50hPL3mN8sy3bVDNkp2VM8NwAwT1u+HERMEodcA8+AXth+r0fXn6A0Ac8U06l01NGsi\nGm41nbRVu5kmhJQJIZPW12EAi+N4gnsJsqaj1lF9ZToHJvkU9Dd9WsIAwMHJLHSDYilEwAtS0wHM\nGznMHPuuqsPw2UMB9Jtiw8i1O4rum1oDzGDRDbEhBK0l8RhZ3afX/NZ04qFrOtWO4nlSKgP7PPII\nOn4/Y1P5FJdMx8/sIgD2uPjdTrG5ZTrvg1m/udn6L/v6CoCPi31qew/sg+Yn05krpJGIE1wOm+m0\nvI81YGBZVpi12U3t9wYJm+kEkdEC5jA1KUZCFZmD1FUAIB1yvEHQugprJu2FoJq6ij93a4Zy1pQu\nG0ZwiXrdsnfyg37QCb75t2QNiThBSvJHo5qZjhJKlt/o+pvSCpjKTAC4wnEwpAi41XR+h1J6BMAv\nOmo5Ryild1BKo6CzDeyEsW/Ce9CJxQgWSxlcCinv3GzLmMgkkPBRZ2ABKgzVVO+qKPiwomHIh6Sa\n2GP90muEEBTSUqhMp634ryUB5pgBRTOgB9yAg3i+AbA3zTCZTtunuzXDZC4J3aChMg6vw8yc4JLp\nWOpIv4a4xUwCimZADhHk/Y5DBxyZDsfBkCLgtU/ndwkhtwG4BUDacf0Lop7YXgQ7Yewrupt9OjE/\nkcFqyNPJ5aq3GT5O8PBfq3f8n8gAM0MJ05hqUx8+6R7ActgOEWg7AaxoACCTtDZ/VfedoQHBPN8A\n82CTlGLoaeGyLL/UGrC1b8VPAzEDpRTVjv9Mh9UYw7hrB3G8APpZf6OnBu6LMuk1/zUdAFjb4/Qa\nAIAQ8qsAftf6ejWA3wTwUwKf154EM/t0G1O9HZO5JCohnQEubLZxaNLbDHkGHkX1INQHYG78YbKN\nIBYlDIW0FJpeC3Lqz4SsrQSl1wCTYpPVcPRa0EwHQOC+lZ5qjlTwI1QB+plOmKDTDCDJB2CrzoJ+\nvg2DoiX7FxIU0xKS8Vhofz/R8MqJvBXAawFcoZT+HIA7AEwIe1Z7FKuNHpJSzLfSZjKXtF1lg8Aw\nKC5Vuzg05S/oZJNxxGMklP9avav6FhEA1hC5kNQH4L+mY64dLuCZg9T8r8uyo6sRdNKJWGghQbig\nE4zyqdoj2H1mOpkEpBgJJY33O9aAIaxYpSlroNR/nZQQgkwyzmVgn0h4DTpdSqkBQLNcCtYAHBD3\ntPYmVuo97CumfXPA5VwSta4amOu/0uhB0Qwc9Bl0CCGhJ4jWggYdi+IKWmwNKmcFzKATVjIdREjA\nNu2gCrYgnm8MmUQ8FL0W9DVP5cI1ptZ8TMN1IhYzx1hcCUE1Ba3d9TOdYJ8x9ji/9BpgfsZ4jCYX\nCa9B5yQhpATg0zDVa48DeEjYs9qjuNLo+abWAGAymwClZhNcELAGz0OTOd+PLaTD2YUEpdcKaXN6\naC8g5RPEj8u5dqhMR9V9jTVgYJt2UC+ycJlOnIOQwP97Xc6Zn42g9Bq7J/zSa4BpCxPGeSKIzRLQ\nF7cE/Ywx5oFlTH6QScbtfq7dCq+TQ99PKa1RSv8rgNcBeKdFs+0JEELeQAh5nhBymhDyIVHrXPE5\nT52BFViDFtYvVkwrG7/0GmB+sIMOu6KUBhYShK0nNQOq14D+qO4gYE2p2QCbUVh6jZ36g5yAU4l4\naMl0kGCXkuIopKTAQacaMNMBzHaEMJlOM0DzMRA+02mEzHTCHC7GgZHvKCHkJaN+Ril9nP9T4gtC\nSBzA78EMlpcB/AMh5KuU0md5rkMpNTOdov+gwyiISjvYh/RipQMpRgIFvGKITKer6lB0w3fjHtCf\n59Psqbbqxg/asoZ4zH8PBWAGqraiQ9MN31JvWTOg6jTQZhSWXltt9FBMS4ForkwiFqpTvSVrgZSC\ngGULEzTT6frvP2PYN5HG989sBFoXsNRrAV4z+2wErZWyfr+JAIE2m5BCu3qLhts7+tERP6MAXsPx\nuYjCPQBOU0rPAgAh5IsA3gyAa9CpdlQomhGIXgtLQaw3TesdvxsoYAadsxutQOvaJqO5YEICAKgH\nvDGD9lCYa1uGo7Lmm7ZpdIOfQlmmE5RzNzNpf7J4hnQiHvjzpWgG1lsy5gJ8tgFLnRlQSBDU8QIw\nJcTNnhZI+KEbFB1FD6SOzCclEBI80zln3Y+Hp/zT5ZlkPDBNPy6MfEcppa8e1xMRiEUAlxz/vgzg\nXt6LZBJxfOKfvwQvmi/6fmxYWWklYA8EYNFrATf+apvN0vHeDNtfNxy91pKD9bpsWbsbIOgENIEE\n+jWdoJnOlUYv8MafluKBM52VeheUAgfKwQLeZC4VeLZNta0gk4gH6ndhHfqrDRlHpv39vcIIVWIx\ngnwyOG19Zr2N+Yl0sAbkZBzLtd1Nr3nt08kSQn6FEPIp69/HCSFvEvvUxgdCyHsJIScJISfX19cD\n/T8yyTjeePs8jkz7P50w6iBoTafS9j68bTvCKLlYb1GwTIdt/EGDjho46BQczXt+YfPtAU7eYWs6\nV+o97Cv6D/CA+fkMGuyYTdL+sv+aIWDWY4I6A9S6/s0+GRjVHcQWJsgANyfC9KGdXW/h2Ew+0GMz\nIdRrv/nAP+LDXz0V6LF+4GdctQLgR61/LwH4f4U8I/5YwlZ5937rmg1K6acopScopSdmZmbG+uQA\nk/rIJYPTH+EyHdMCPojTNOstCsK3224IAW/MIKOq7bVDiBjYRuK3hwJwGG8G2PxV3aS49gWm12KB\nlYIsS9kfMNPJJIJnWbWOEki5BsDOCoMYYIZpPgaYQtL/54tSijPrbRyd8X94BcKZyj52oYrnVhqB\nHusHXoPOMUrpbwJQAYBS2gHgn0y/OvgHAMcJIUcIIUkA9wP46lV+TjtQDtEgGi7TCS7vrARwtu6v\nGzbT0QPRD0C4Qm+Ymg4TPQQ5ia43ZVCKQEIVwDzY9AKegC9VuogHFKoA4bKsWgALHIapELR1M0Tz\nMRBclr/elNGStcCZTi4ZXEjQ6AUf4e4HXoOOQgjJwBQPgBByDMDudpWzQCnVAPwbAH8D4DkAX6KU\nis8hfWKmkMJq0/+JTNUNNHpaoGwDcNY3/G/+1Y6CGAm2AacTcSTjscAURKtnGo0GwUQmuKS1add0\n/L/mWIwEPvVfCWAm60Q6RHPo5WoH8xPpQEIVAEhLZpYVpBE4iNknAwsYQT5jYem1QkDa+tyG2f5w\nOABND5gBvqcGM5U1na2DvV4/8LrCrwJ4AMABQsgfAXgZgHeJelK8QSn9GoCvXe3nMQqLpQyeWar7\nfhyrA036GN7mBAsYQTj3StvcEPyM1N2ydia4G0Jb1pFLBTNT7NNrATIdu6YT7OY0O8b9r7sa0EyW\nIS3Foeo0kEz8crUbmFoDzJEOgCk39ysIqHXUQNJhAJDiMeSS8UCHCx702uk1/39nNmI7KHPhlOX7\nDZjNACajQeD66SOmJvUfAfwMzEDzxwBOUEq/JfSZXWdYLGewXOv5njtiU1wBT4NMrh1ExFDtBK8l\nAeF6hFqyhnwq2A2St+m1IJmOiriVsQSB6Qzgv7bCNqNyANEG0He4DtIgut6SMVsIRq0BwQUUlNJQ\nQgIgeMYRxtvPXDdYTadfMwz6dzafr9+DjWFQNGUtUK3SL1xXoJRSQsjXKKW3A/hr4c/oOsX+UgaK\nVSz20ywZpq5iPo41pvoPOpW2EjjYAUAhE0zVZBgUbUVDPmCmE4+Z47KD0C6NrnljBukPAlih1/+6\n9liDEMEOAHoBTsAdJXhWuWVtn/ReU9agGzQwvQYEr62EkUyb65rqNUqpr88KOwgFkeQDsCfa+g3w\nbcU0Gd1NNZ3HCSEvFfpMrnMsWvSF3yme4YOONe8kgCFjta0GPnkDpnNwEOv5jqqD0uDUB2CNNwh0\nElVD3ZhBJa1sww46nyUtBZdr9xQ98LpA8Eyn1g7eGMoQNugEFasU0wlohn9vwWaIPjCgT6/5/Ywx\nqnkcNR2vQedeAA8RQs4QQp4ihDxNCHlK5BO73sB6IPw20VVDBp1iWkIiTgLZlFQ6SqDGUIapXAqb\nAazn+9RH8M3IHG8QpE9HC3VjZgIab/YUHYQgkO0P4Kyr+F+7qwbzXbPXTvSH1/lBGAschkLAv3NL\n1pBOxHxN4t26LhMx+Fu70VORTcYDizYyAYMOe57jyHS83j2vF/osImDRmvq5VPOX6TDL+KCyUkII\nyln/NiWGQVFtK4EaQxmmC0lstBTfFET/FBp8IwzqxNDsqSiECHaZgP1YPc1AWooHpvXSVrDye/JW\ndQOaQQPTeoCT2vO3NjP7DJNNFzMJXKr4d0NoBRzgxuBsQJ71QZeHLeZnAw4KtJ2td0PQsQwz/4ZS\nerPwZ3MdI5eSUMomfNNrV+o9zBRSgU9kADCVT/neCCsdBZpBMZMPnulM51JQdMMqYHr/sLdCOEwz\nFNKJQE2DzZ4WyM2bIZeUAm2CXUW3M4YgCGrBw07MPOg1v1Jx5iE2EcBQliEojRp0rAFDUIVkoxvM\n2ZohG3B8Rj/T2QX0GqVUB/A8IeSg8GdznWO24J9uWq53sRCwaY9hKuffBZjNKfFzituO6UKwepI9\nSyeg6zFg0orBhAThajq5VMCajhqurpIOuPGz3w8yS2f72r5rOizTCaVeC+aBFsbxgq0L+O8RasrB\nRoUwBD1chLF38guv72oZwClCyKMA2uwipfSnhDyr6xSlbNKmFLxiudbFjXOFUOtO5pK46PP0vWY1\nss4WwtV0AGCjJfvyrLO7xUNmOoFOwCFpl1xKsjM1P+iqejiKK6CQwFbNJcNnWX7Va1U70wlXu1M0\nA7KmIyV5f//CjHIAgs/UaXQ1TAXsuQOCCwnCChj8wOsK/17os4gAwJzrzqaAegGlFCv1Hl5542yo\ndU3reZ+ZTtPKdEL0b7Cby292F7ZbHDBrOkEkrZ2Aw8wYckkJbdn/uj3VQCoMxZUMVszvhJRqOx8b\nJNMppKXARXVga8aRynt/DbWOEmi0wKB1/aDZUwOZBjNk7T4dvzWdXUSvAQCl9NswG0QL1tdz1rUI\nHFHOJn01ada7KjqKjoVSeHqtJWu+lE3rLOgEdD0GYNeD1n3Sa2HlrIB5AmYzU7xC0cyieph1cykJ\nBvVfVJc1HZkQNR2m9PObZbEglQlx6k8lgjWm1kJY4DAE3fzXm3Koz3YxoNWS6X8W/L3OpySkEzFc\n3Gy7/7IDzZ6p1vOTDQaF19EGbwfwKIC3AXg7gEcIIW8V+cSuR5SyCdS6qmePquWaSXEtlIJblAB9\nCx0/2c6aNcUyTJ2hnAuW6Wy2ZMSImRkGRSGA0zQrzobJdFhDq+/NP2SvDNvIWj43X1bT4ZHp+DUc\nrXWDm30yMKWhn81f0QxUO2qoLD6XjCNG/AU7SqmpXgvxuY7HCO49MoXvnvY3MbURsv/MD7wenf4d\ngJdSSt9JKX0HzGmcEeXGGaVsEopmeD4FL1vy6rBBh2UcTBzgBWtNOZSIAAAS8RjK2QQ2fAad1Ubw\nSakMrNfGz6bQVlhRPQS9lgpmU9LTwgWdbIBNEAjvhAA4hAQ+qb1qRw081oDBObDPK9jncSZEvZIQ\n0/XCj9VSTw0+Ct2JVxyfxtn1tq+ev7CqOT/wetfGKKVrjn9v+nhsBI9gpzqvFNtK3Qo6IdVrzA3B\nT4/QWlMOJSJgmMqnfKvXrjR6gcaCO1EIMFqha2c64eg1IFimE2bjZ5ugX7qno4YXEiTiMUgxEkgy\nHUa5BgRr0uzXK8N9vpkVjlew5xi2V+YVx82ZYA+d2fT8mMu1LhYCzmryC6+fpAcIIX9DCHkXIeRd\nMD3YdrVr814Eo4u8WsNshnQjYAjihrDW7HEJOtP5ZIBMpxeK+gD6NFfbB+XTljlkOlbAYv8vrzCF\nBOHOeYV0Ak2fwa6nhK/pAJYTg++go4aiUAHHeAMfr5vVK8NkOoB/uXaDU6/M4WnzfvbTh3ap0sHB\nEP1nfjDy1RFCbgAwRyn9JULIzwB4ufWjhwD8kegnd72BUQk1j5lOo2vKd8PQTIApSS2kJV+NqZVW\nOAschql8Cs8t+5tWuNro4cThcqh1bZWPj82ozSXTsYKd380/pGQaCOZD1uVQ0wGAlM85QrpB0eiF\np9dY0PHzd+63A4Q72Pi1WmKHzTAScQBISXFkk3HPh9dmT0WlreDg5HiCjttu9V8ANACAUvrnlNIP\nUko/COAvrJ9F4AhGr9U8Uj6NnsrNinx/Oes56BgGRUfVA7s8OzGTT/nKdGRNR7WjYi7khmBnHD4y\nHVbfCGO/wzbBtt+aTsjmUMAMOn6FBDwk04BJz/lR7NW7KigNbu/EkA2Q0a41ZBCCUP0yQF+W73ld\nDm0IDKVMwnPP36WKed/vlqAzRyl9evtF69phIc/oOkbZznQ8Bp1uOKWLE/vLGc/0WtdyeQ4jHWaY\nyiXR6HmXazOxw1zImg7bjPwU9HkKCfxkOpRS9DSDQ6aTQFP2V9NhmU4YCx7Av9Epy/bDSqaTVj3J\nz995vSVjMpsMZS0F+G9AXrPosDBSbYaJbBL1rjfG5GLFlFfvlqBTGvGz8VSdriP4FRI0OE76M4NO\n15Ncu82hT4ZhKu9vng/jqf3MHBqEILUVvkIC7+uqOoVu0NAbfxB6jdF6QY1GGfyOy2an9LCZDiEE\n2WTc1995rSGHrucA5md0tdGDpnvL8NaaMqQYCTWjisHP2BDmRjKumo7bp/gkIeQ92y8SQv4VgMfE\nPKXrF+lEHOlEzPNgs2bIRjIn9pez6Ci6p5Q87IArJ6YtCmOj6S3oXGmwsc3hgk46EQMhPjMdLkIC\n/zWdsLN0GPIp//RaV9FtG5swSPvMdHha7edSkq/3e73FJ+jcMJuHqlNc8GgxtWoFu6Dj350oZROe\nD68XKx2UsomxOEwD7jY4/yeAvyCE/HP0g8wJAEkAbxH5xK5XLExkcHbdWzdxo6eG9l1jYJt/taO4\nquE6HGgmBpbpbHgcrbBh8d7TIfl2QohlSeN9I+xwyHSkeAwpKeYv6HBwegb8S3gB828dltYDzOde\n9+G20TcaDb92LiX5cp5Yb/RwbGYq9Lo3zOYBAKfXWjg2k3f9/bVmL3TvG8NEJun58Hqx0h0btQa4\nZDqU0lVK6Y8C+DUA562vX6OU/gil9Ir4p3f94cThMk5eqMAw3GkuNjqZB/pqLvebk2emwxpTWTBx\nAxNZhFX4AOaG5ifT6Sg6EnGCZMBBagz5lORLSMAK8DyEBIpu+LI76ql8Mp1swp+7Nq/XDJjZpdf3\nm1KK9ZbMpZh/bMb0UDu91vL0++ucet+APr3mhS6/uNnGgd0SdBgopX9PKf1d6+ubop/U9YyXHp5E\nraPiBZcPqmGEt8xwwpbyerg5+dZ0LCscjzUdHiaQDLmU5EvVxOvUb9I9PmpJnGTLQXzIwrpbM5h0\nj/8Vt7sAACAASURBVI9GXE6vGTAPVF4OU4D5+VJ1yoVeK6QT2FdM44zHoGP2n/EJOqWsOS7b7fOt\nGxSXq7so04kwftx7xEzrHzk3upu4rWgwKL9Jf/3CuvuGxMNw0143JSGTiHvOdOoc/LgYssm4r/6N\njqJxe81+HAl6nBRkQYJOR9G4ZDqTOdPM1ksGD/Cx32HIpeKe3+/1Fh83AoYbZvM4ve4edJjfW1iB\nDEPJGnxXdTnMrdS70AyKQ1HQuX5xYDKDQkpyreuwjYN5iIVFzkc/Q4dDv4oTU3nvQ+RqHcW+ocIi\nl/RHc7U5FdVzybivmk5fthwy02FO074yHYMLxTWZS0I3qOeAx8QTYV0YAFbT8bYuk+TzyHQAYH4i\n7elAxTvYsYOZW13HVq5FQef6BSEExYy7vr/ByaeJwU//CE96DTBvEK9FTx7OwwxZn1M8OyEHezFM\n5pK+/OZ6nIJOPoAPWVfRbMVdGPRpVG8ZbU/RQQiQClk/A0x6zSuNut4KP5zQCfNedr+nVjn26ABO\nd5PRf2s2On3X1XQijBde+imYay4vO/JsEHqNwwYMmKIAr0Gn3lG5iAiA/kA1rwg7wI1h0WrE9TrC\nol9UD3e7skZLP6PJ27IeSq3HwCyTvPZjdVUdaSl8fxBgZpZeaVTemU4xnUBL1lx7dezx7xwEDEA/\n03nfH5wcaeR7YbMDKUYwH7LZ2g+ioLMLYQYdl0yny2aac6LXfIy5bcsaMok44hz6CQDzxvTq9lzr\nqqG71BlM9Zo/IQGPoLO/nEVb0T037/GQagOwh/0xd3IvaCsaFxp10mfA66kGFyoTALKWYMRLPWm9\nKSOTiHNRZgL9+9OtpmT7vXHKdA5NZXH74gTaio7vvbA+9PeWal3sm0hzEeZ4RRR0diG89FPwptf8\n9I+0FZ1bPQfwnukYBjVrOhyFBP4yHQ1ZDpvRYsnfKIk+nRm+T6eQluzhf17QkXUuNCobFOhW2Gbg\npZoD+o7iXlyu16yJoTwyLKB/f7rN81lryIjHCKY4mOgCpunnl//3HwEAXKkPpzRX6r2xjTRg2HVB\nhxDyYULIEiHkCevrjY6f/TIh5DQh5HlCyOsd1+8mhDxt/exjxPrEEEJShJA/sa4/Qgg5PP5X5B9e\n6DXWmV8OOdbAiZzH/pG2zEfFxeClhgUALUuxx4tey1pNg15oLt2gWK7xkbTut+YXefW6Y5Y5PE7f\ni6WMZ2NXRTOg6Aafmk7OX6bTVXUuIgLAQR17+GybNUN+95Q9RM7l873W7GE6n+TGHgBm4JnKJe29\nYhCu1HuYDznu3i92XdCx8NuU0jutr68BACHkFgD3A7gVwBsAfIIQwu6GTwJ4D4Dj1tcbrOvvBlCl\nlN4A4LcB/MYYX0NgeKHXfnixhiPTOW4bMMAkxN7oNV71HAAopiX0VPemxbrtx8VLvRaHZlAoHryx\nzm200FV13LowEXrdftDxtvl3FA0xwkc+vFDK2BNn3dC1nSfC/63TCdNu32tNR+aY6bAM0etnm4d7\nOgNr3najj1cbfBpSt4P5vw2CYVBcqYcfiOgXuzXoDMKbAXyRUipTSs8BOA3gHkLIPIAipfRhah5Z\nvwDgpx2P+bz1/ZcBvJbwypsFgtFrw07glFI8fqGKuw6O8mP1j7zH/pGWrHHjvIF+5uJGQTAvqbCD\nvRj8uDA8s2TO/LltsRh63YlMAvmU9/lFLSvI8/joLpTSWPZY02GZAS8qdTKX9CUk4BV02N/Zy2e7\nLWtcgiyD90xHxhyneo4T+ybSuFIfHHQqHQWKbkT0moWfJ4Q8RQj5HCGETetaBHDJ8TuXrWuL1vfb\nr295DKVUA1AHEN5USTAKaQmaQYfOH7lY6WCzreDuQ+EGmW2H18J6R9Ht0QA84PXGrHFyHmbw48Jw\narmOpBTz5KHlBkKIL5qLJ525UMqg1lE91bJ4CRgYpnLe+7G6Svj5QQwsK/fy2eZ9oCp6PFCtN3uY\nGXOms2LV9q6LTIcQ8neEkGcGfL0ZJlV2FMCdAFYAfHQMz+e9hJCThJCT6+vDlR7jApNBD6PYnrhU\nAwDcdYBv0PFa02kJqOkA7o1sPH3XAEem42EzOrXcwM37CqFnrDCUc94Ve22ZX5BnIgYvCjZm1cMr\n0yllk56n4vY4NaUC/g4XHc4iGZteG3GgUnUDGy2FW2+QE/uKaWy2lYHUNfsMXBeZDqX0xymltw34\n+oplMqpTSg0AnwZwj/WwJQAHHP+b/da1Jev77de3PIYQIgGYALDDX4ZS+ilK6QlK6YmZmRmeLzUQ\n+h/UwTfJmbUWYgQ4Npvjuq7XvpVah98cH8Cp8Bm9CbNOel69SV6DHWAWXHk20OVTEpoelXM8T9/M\nZmWUoomBx3huJ/I+3J55GY0C/f6kdQ/OALwPVLmkhBgZ/dlmjcK85NJO7Jsw/5+sD8iJlfp1lOmM\nglWjYXgLgGes778K4H5LkXYEpmDgUUrpCoAGIeQ+q17zDgBfcTzmndb3bwXwTeq1I+8qouDSOX5u\ns4P95SxSEr8TGWB26LsZUTaseeqHOA58mvC4+besqZd5Ts7atqLKgztAS9ZQ4LgZ5X3MeOEp3GDv\ntRdXAlbr4rV2xkeTptkcymd7WixnEI8RXNwcrRZUdQOKZiDPsaYTixFrgujw183GtU/n+QcddsgY\nRLGt1HtIxIl9H4wL/N5dfvhNQsidACjMUQrvAwBK6SlCyJcAPAtAA/ABSinbId8P4PdhTjP9uvUF\nAJ8F8AeEkNMAKjDVb7sefXpt8Af13EYLR6b5ZjmAubm4eVSxG5enQSBroHOzC2nJpjVKlhPtwqxZ\nvBS3ecvE/QwWa8ka9pf5vN9e62eAI9PhRDflknF0PPTKAHwznUQ8hsVSxnWYGm97J4ZiRhqd6Vif\nPxGbP8tiBsmm15syZvJ8hsb5wa4LOpTSfzHiZx8B8JEB108CuG3A9R6At3F9gmNAYQQPTCnFufU2\nThya5L6uF8v9CyzoTPELen7otVxS4naTTNqZzmjaxbAs4nluRl6VgoC5+fOS8fYlvF6UXHwznWzK\n+4iBrspPSACYHfoXNkeb6PKcE+VEMT26D61i+dG5DU8Mgn02nboz6Gy0ZEwLqCO5YdfRaxFGZzrr\nTRltRReU6cShWBTDMJy3blye9Fo6EUdKirkHHVnluiGkJNPuxE1RxU78PPs3cikJsmZA9dAj1Obk\nCgA4agxe6DXOmU424f75AsyDFU8hAWC6KF9wodfsceQc/84As3kaHuQZvcvLjcCJiUwCKSk2kF5j\nmc64EQWdXYjiiJrO2Q1z0xcSdFLu/QwXNtuYKaS4UxClbMJ985d1bvUcBi+9I23bEYCfeIIFT6+u\n3ryCrV1j8CCesDdhXv0y1mvouogJZCso8erTAYDDUznUu+pI9RzPOVFOTOaSdt1mECptBVKMcPNR\ndIIQYvbqDBASbLRkIXUkN0RBZxcil5SQlGIDFScPPHMFiTjBrQvhmxS3gwWyF1abQ3/nwmZHyMCn\nG+cKeHa5MfJ3mpzrKoC3oNPi5H3mRN5DgAcATTcgawZnibrkyW6/o2hISTFuZpC2qaw6em0WlMK6\najtx0MrMR2U7HUUMvbZYzmCp1h3a7F1pK5jMJbn5vW3HXDGN1W30mmFQbLYVbm7afhAFnV2IWIzg\nRfNFPLNc33K92VPxpycv4SdfvIApAScUFshOjdj8L1U6QgY+3bG/hOdXmyNPwa2eylVBBgDTHgbI\ntQVw/V6ySnNt1ivD03bIY6bDaVIqQ9bO7kZnOmyAG89Mh/UnjfIhs4UEHNVrbG1ZM3txBmGjpQip\n5zDsK6Z3vO5qR4FuUEznx6tcA6Kgs2tx+2IRp5YaW+zYHz5bQVvR8faXHhjxyOCYKaQwnU/i2ZXB\nQUc3KFabshCDwDsOlKAbFM+u1If+Du9ucYBlOqOFBCJoF0YTutFrLQH1JLfCNkNH5jPKgYHRdG4K\nSXtUNce12aY+KqvlaazqhJvBa6Ut20pKETDptR4opegqOn5wZsOeVCrCBcENUdDZpbh9cQJNWcM5\nh+KGfWhvmA1vxTIIhBDcsjAxNNNZa/agGxTzAjqY79hvGmk+cWl40OFZUGeYzKVQaSsjnaZFqJpY\nEGm5nPpZUOLrByZ5U68pfI1dWYHerUGUjSDg2YfmJejwGiGxHYvl0aMsKm1FiIiAYa6YhqIZqHVU\nfPJbp/HPPv0I/urJFQCIMp0Ifdy+aJp5vvaj38Y3nl0FACxVu0gnYkKbuW5dKOKF1aY9ItkJNodl\nQUCmM1tMo5xN4Ox6a+jvNHuqLSfnhalcEqpOR7oDiKTXXDMdAWt7zXR42u8ATg+00a+ZNQnzfM3M\n5XpUI7AoIYE9P2mI195mWzy9BpjUIqvlfe775wDwm5DqB1HQ2aW4cS6P19w8CwD44cUqAPOktFDK\nCCs4AsCdB0rQDIpTyzszDubVJCLTAUy7kmGuBJRSIfQaozU2RlikiGgaZBtwy6WgL2LtYsZbTafZ\n4ytRZ1SdW03nlOXofdO+Are1AXcqtS1riMcIUpycEBgK6QQmMomBBq+ypqPZ04QeJFl7wwtrLfsw\nybLNqE8ngg0pHsPn3vVSHJjM4JL1YV2qde1Tkygw5+qT56s7fsZcaUUZBE5kh08Q7akGDMr/FMoC\n6KhpmiK4fpaxuQkJzlsSeUbR8EAxnUBb0aG59AhVOgrXzZAJCdwynScv17BYynA/hbu5XHcUHblk\nXMihznQV31nT+drTJs11iwA1KsPN+wrIJuN47HwF600ZKSmGN9+5gJ972WHuwhwv2HWOBBG24kA5\na39Yl6pdIVJpJ6bzKRyeyuKxCzuDznK9i2wyLqSfADDn5AxT+DQ5+64xsCLvqMFmLVlFjPCV8Hql\n104tN1DKJrDA0ZSR/f2aPW3k5NlqW+U7mTbprabz5OUa7jgQfljedkzmklgbkdGKyKQZDk1l8fy2\nVgRKKT724GncMl/Eq2+aFbIuYB5g7zxQwskLVcQIwX1Hp/A7998lbD03RJnOLseBchaXKl10FR2b\nbYWbB9co3H1oEo9frO4orq/UepifSAuj90rZJGrdwUHHdpjmvCnsm0iDEODyiKDTlnXkU3yGqDEk\n4jEkpZhrpnNquYFbF4pc17Zth0bUdWRNR0vWMMlxdLOXURKVtoJLlS5evJ/vgELAFI1UR2Q6tY5q\ne9PxxpHpHC5udrY4UNS7Ks5ttPGWuxaF+5+dOFTGcysNXKx0hIxQ8IMo6OxyHJjMYKMl44xVYBdN\nrwGmmGCjpdhUxDeeXcWfnryES9UOFgSuP5FJ2COpt0NEvwpgbv5zhfTQIi8g7gRccPFfU3UDz19p\nchmR7YSXwWJsYB7PTCcpxSDFyMjs7vSa+Tm/mXM9BzDrd5sjlIqbbVlYYf3oTB6aQbfUddj9NV0Q\nryC7+/AkDGoGuqshHnAiotd2OdgMl8989ywACKfXAOCYJck+s9bCdD6F93zhJAAgESd498uPClt3\nImNawOsGRXzbyc+m1wRs/ovlzEh6jbfDNIOb0/TptRYU3eD+N/cyWIxJi3mrqtym0zIqmefsIobJ\nXBKyZliD2nb+PTdashC3DaDv9nF2ve8QX7XfY/FB4K6DJRACUHp1FGtORJnOLgej0/7nE8t4zc2z\nOD7H/wS4HcdmrBtkY6srr6pT3HmAP+3BwMZQD1JWsWu8JdOAOcJ5WA8FwH+wF0MuJY3s02F+Xbyz\n236mMzzosA2xzJFeA8zXPEpIwDJOERm9W6/OZksR4vQB9O+pc457SuRIg+0ophO4ydo7Zq9CQ6gT\nUdDZ5XjRfAH3HJnE0ZkcPvi6G8ey5sJEBulEDGfWdvbMjCPo1AZshkt2jxD/zWixlMFKvbvF/cEJ\nsfTa8I2fUYo8O/MBbzN1KpYxJu9O+UwyjvaITGep1sV0PsXVYZrBHto3IOh0FA0dRRfmDFDKJlHO\nJnBmvR90WPDjSWGOwonDpjL1amc6Eb22y5FNSvjS+35krGvGYgRHpvM4u9HeUvjcV0wLHW1bypg3\nn+kEvNVFe6lqKufKWf6F3oVSGqpOsdGSMVvc+fqaPQ3zAl53LhUfqtYD+tJi3l5gXmbqCMt0ktLI\n6aGXq12u8nAn+pnOTgUbaxoV6bp8fK6AZx39b5UxZjoA8MobZ/En/3CJ61iSIIgynQgDcXQmhzPr\nLfvGuGmugH/9SnH1HMDs0wEGj62+XO1gUVBjLNtYB2VYgOWEwHGsAYNbTYfVPnjPd/EyU6fSNn9W\n4hzkS9nhsnjAzHT2Cwo6zGpmkCtBf2S0uABw35FJPL1Ut9/3SltBNhkXktUNwutumcPJf/c6e4T1\n1UIUdCIMxIv2FXBhs2Or5v6v1x3Hu152ROiaE5nhQWepJu4EbNN6Q5RzzZ4mpJaUT0kj7XdEZTpe\nZupUOwqKaQkJTmMNGI5O53Buoz1QQWYYFEtVcUFncsR4cpGD1Bh+5Ng0DAo8erZiPw/emaQbJgQw\nBX4RBZ0IA/ESy5ngb0+Zvm/jGPZUygzf/EWegLfSeluh6qbaiU1z5Ym8S6Zj13QEnITdZupUBPmB\nHZ3JoyVrWB/QpLnRkqHoBvYLkuXnknEkpdjgoGNRbiLdnl9yqISUFMP3z2wAsIw+r4Lh5tVGFHQi\nDMSdB0qIxwj+5tQVAOMJOizTqW7b/FuyhlpHxWJJDBc9SsDAmlJFuDCYSi59qICho2jIJOJCGgfd\nZuqsNnpClFxHhygjAdi0m6hCNyEEk9nBVjgbY8h0UlIcdx0s2W4fogL7bkcUdCIMRDYp4daFIlas\niYPjMAaU4jFM51O2xxtgzvD5Tw/8IwC+/mNOTIyQajeZE4KgTAcwRwgMgtlPIobvd3OavljpCCk4\n9/tVdgYd5kYxkRG3EQ+bFLvRkpFLxrkrBbfjJQfLeHa5gZ6qm0FnzPTabkAUdCIMxStvnLG/zwm+\nGRkOT2Vx3jFD6OGzm/j8QxeQTsRwm6DG2EJKQjxGBtJ6bGMWUtNxMf3sKDrXOTpOjJqp01N1rNR7\nODyVG/jzMGBy/HMbO+X47P3nLV5wYmrIpNhLlS7mx+D2cdfBMjSD4hf/9EmsNnpRphMhghPve+Ux\n+3uR4xScODSV2zLH/snLNQDAQx96LY7OiBteN5FJDPR9Exl03Ew/27LGdXKnE8V0As0hmc7Fivn+\ni8h0YjGCw1M5nNvY6bhsW+8IPP0PG29wdr2FGwR9vpxgfW5/9dQKThwu4/57Dgpfc7ch6tOJMBT5\nlIS/++ArBxbYReHwVBZ/9ngPPVVHOhHH05frODSVFd5AV8okBmY6jF4rCqHXRk8PNTMdQUHHshwa\nBDZOQUSmA5gNvmw2kxOslicy05nMJVFtb/07K5qBC5UO3nj7vLB1GWYKKdwyX8REJoE//Ff37rB7\nuh4QBZ0IIyFqNPYwHLI4/4uVDm6cK+DppTruEOiCwDBslo/IoOM2yK2jiLHfAczX05I1aLoBaZss\nmtGbooLOvok0nrxU23G93lWRTsSE9q1M5ZJoyRpkTbfHYV+stKEbFMdmxbze7fjKv3kZpBgZG3uw\n2xDRaxF2FZjh4vmNNqptBZerXdy+yH+2ynZMDMl0RHq+eanpiJBLA3013qC1z292UMomhPV0zBfT\n2GwrO0aiV9uKLV8XBWau6RQTnF4zg+yxMdBrgOlsfr0GnP+/vTsPrqs87zj+/WmxFtuSdyzLxsZL\nbLwQAsZATIJZAg7QkKSspSlpkjId0gLTdCiQTkjbZAJDhzBpFso2DQWaklBCCmUxQwOEOIADNl4x\nBoL3FduS0eIr6ekf5z3SkSwvUJ1zbN3nM3PH55577rnvkW09913O84AHHXeYib9dr9jUwKrNUdGr\n6XXpZ9Yesp85nbin09fF4yCxem1/czop93Sg9xtxtza0MjrFu9bjVEpbG7rPrexqLqQ6tAZ01pKJ\nK8VubWzhkdfWA6Q2Z+i6yyXoSLpY0nJJHZJm93jtRklrJL0p6dzE/hMlLQ2v/UDhq4KkCkn/Gfa/\nLGlC4j1XSnorPK7M6vrcR1dbXc5pk0fw4MtrWbGpAchmiG9I9YBea/k0thSoKi/t8zvzIbGQYH9L\nplvTm9OJf/H3ll27saWQynBiLC4R3nNeZ1fT3tSDzrS6KNPyyvBv61+ff4dnV27h/Fl1qVUNdd3l\n1dNZBnwReCG5U9J04DJgBjAf+LGk+H/dT4C/AKaEx/yw/6vATjObDHwfuDWcaxhwM3AyMAe4WdLQ\nFK/J9ZGrz5jEtsZW7nz+baoHlKaSbLOnZC2fpIaWQmrlueNfco37ndPpve5LX5gwYt9U+7E9remk\n/YnFAW9zQ0u3/buaCqkPr9UPqaK2qpzlG6Og8/rancweP5QfXXFCqp/ruuQSdMxspZm92ctLFwI/\nM7NWM3sXWAPMkVQH1JjZ7yxK2nQ/8PnEe34atn8BnBV6QecCC8zsfTPbCSygK1C5w9ipE4czpraS\nbY2tTBo5KJPx7zh7dc9sCFHetXS+fVccoJJme4fRXEhvTqeuppKKspLOlWpJjS1tqQwnxuKgE994\nHNvZVGDowHR7OpKYXlfDik0NFNo7WLaxgY+nUBrb7d/hNqdTD6xLPF8f9tWH7Z77u73HzNqA3cDw\nA5zLHeYkcfrUUUBX8au0xRkXemYg3tm0tzM9T1+TtN9M082FuDx3OkGn636Z7Hs6gyrKGFxZxuZE\n0DEzdjfvTTUbQWzGmBpWbWpg+cYG9rZ1ZLI60nVJLehIelbSsl4eF6b1mR+VpKskLZK0aNu2bXk3\nx9GVDSGrJdtdae+7T26v3dHE0SmVMIZoYvvZlVt5b0f3X/5xzZm0MhJAlJKmZ9AxMxpbCgxKoZRD\nUl1tZbc5nQ/2tlNot1TqJfU0s76W1rYOfr4o+k6aZmFCt6/Ugo6ZnW1mM3t5PHaAt20AxiWejw37\nNoTtnvu7vUdSGVAL7DjAuXpr611mNtvMZo8cObK3Q1zGPjVlBPOmjuTMaUdl8nkjB0ffsLclgk5L\noZ2NKaWDid128cfZvqeVe3/zbrf9cS2dtHo6EM3rrH2/ibZEob7Wtg4K7ZZqTwdgdG1Vt57OljC/\nk0Vi2RNDBvWfL1rP6JrK1LKXu94dbsNrvwIuCyvSjiFaMPCKmW0CGiSdEuZr/gx4LPGeeGXaRcBz\nYd7naeAcSUPDAoJzwj53BBhYUca//fkcpqeUb62nuKeTLDAWp+OZMCK9ns7x44YwZkjVPkko92TQ\n0zl6WDWFdmNrosxA182w6QaduprKbnM6aabe6Wns0CpGDa5gb3sHn5w8vKjvmclDXkumvyBpPXAq\n8ISkpwHMbDnwMLACeAr4upnFd5BdDdxDtLjgbeDJsP9eYLikNcDfADeEc70P/BPwanj8Y9jn3D5q\nq8opK1G34bV3U04HE6up2jcbQpwVIM1v4fGqvOScUhzs0lxIANFigm17WjvLoa8LQSfNocyYJE6a\nMAyAuZNGpP55rrtcFqab2aPAo/t57bvAd3vZvwiY2cv+FuDi/ZzrPuC+/1djXVEoKRHDBw3oLFvc\nvLed19dFdU/i5cVpqanct6Da6i17KFG6d8nHaXg+2NuVGSBOAppGee6kutpKzGBrYyv1Q6pYu6OJ\nirKS1Grp9DR38ggWrNjC3MkedLLmd0M5FwwfWNG5eu17T67k/oXvAaS2ei1WW1XOhp3db5Rcs7WR\no4dVp5qHLL7xtCnZ00kxA0NS5706u5ujoPN+tGAjq6GuS08ax+lTR3a2w2XncJvTcS43IwZXdPZ0\n4oSUV8+bdKC39InehtdWb9nD5FGDU/3crowIXT2dhs6idSnP6XRmJYjmdeKgk5XSElGfQf0cty8P\nOs4FIwYO6FxI0NDSxvnH1XH9/Gmpf25cxTNa/xKl2v/D9g/42FHpLhePq2Q2JdLwZDW81tXTaWHx\nul2sfb+JcRkGHZcfDzrOBXFPx8zYvLsl1aSXSbVV5RTajZZCNKl+72/epa3DUl+51zmnk6jnEy8k\nSLunU1NZRvWAUlZtbuSSOxfSXGjvnNx3/ZvP6TgX1A+porWtgzVb99BcaM8s6MSryBpaCjS2Frj1\nqVWcN2s0n52ZblGx6oreejrZzOlIYmZ9Lb98fQNtHcaDXzvZJ/WLhPd0nAumjo7mUJ5fHWWlOCqj\nSeZkmYF46fAls8elXlWyujwOOt17OpXlJalk1e7p3BmjaeswBg4o9V5OEfGg41ww9ajuQSeL7NbQ\ntTquobnAhlDnZUwGk9xlpSVUlJV0K63Q0FxILcFpT+fOiLJNnDppOAPK/FdRsfDhNeeCoQMHMGpw\nBS++tR0gw+G1EHRaCmwM9W2yCngDK8poSszpLNu4m8kZFTMbO7Sam86bxmzv5RQV/3rhXEI8xAYw\nqiabGxXjlDO7mwts2tXM4MqyzHob1QNKeWPDbn7y67dpbCmwYmMDJx2TXRC46tOTOOFoL3NVTLyn\n41zCcWNrefGt7dTVVlJRlt6NmUldw2ttbNjVkun9IwMHlLFk3S6WrNvFmCGVdBjM8Z6HS5EHHecS\nrjlrCmdMHZVZOhZIDK81F9i0uzmT+ZxYdSKL9eNvbKK0RHziaE/179LjQce5hIqy0sznGMpLSxhS\nXc66nU1s3NWcaX2XgYks1gvf3sH44dWplch2DnxOx7nDwuzxw3hh9XZ2NhWy7ekM6Orp7GltyzQV\njStOHnScOwycMnEYm0Mhs7hqahaSQQdgvAcdlzIPOs4dBk6ZOByIFjLMrK/N7HML7dbtuec/c2nz\nwVvnDgPH1tVw9rFHcfmccQc/uA81tHTPbj0+5YJ1znnQce4wUFoi7rlyduaf2xBKKowYFGXY9jkd\nlzYfXnOuiMVF4o6tizJae9BxafOejnNF7I7LjufJpZs5eeIwPjVle2eNHefS4kHHuSJWV1vFV047\nBoAZY7JbwOCKlw+vOeecy4wHHeecc5nxoOOccy4zHnScc85lxoOOc865zHjQcc45lxkPOs45/L4M\nVQAABt9JREFU5zLjQcc551xmZGYHP6qISNoGvJd3Oz6CEcD2vBuRMb/m4uDXfGQYb2YHrcvhQaef\nkLTIzLLPGJkjv+bi4Nfcv/jwmnPOucx40HHOOZcZDzr9x115NyAHfs3Fwa+5H/E5Heecc5nxno5z\nzrnMeNDphyR9Q5JJGpF3W9Im6TZJqyS9IelRSUPyblMaJM2X9KakNZJuyLs9aZM0TtL/Slohabmk\na/NuU1YklUp6XdLjebclDR50+hlJ44BzgLV5tyUjC4CZZnYcsBq4Mef29DlJpcCPgM8C04HLJU3P\nt1WpawO+YWbTgVOArxfBNceuBVbm3Yi0eNDpf74PXA8UxWSdmT1jZm3h6e+AsXm2JyVzgDVm9o6Z\n7QV+BlyYc5tSZWabzOy1sN1I9Eu4Pt9WpU/SWOB84J6825IWDzr9iKQLgQ1mtiTvtuTkK8CTeTci\nBfXAusTz9RTBL+CYpAnAJ4CX821JJu4g+tLYkXdD0lKWdwPchyPpWWB0Ly99E7iJaGitXznQNZvZ\nY+GYbxINyTyYZdtcuiQNAh4BrjOzhrzbkyZJFwBbzez3kubl3Z60eNA5wpjZ2b3tlzQLOAZYIgmi\nYabXJM0xs80ZNrHP7e+aY5K+DFwAnGX98x6ADcC4xPOxYV+/JqmcKOA8aGb/lXd7MjAX+Jyk84BK\noEbSA2b2pzm3q0/5fTr9lKQ/ALPN7EhLGvihSJoP3A6cbmbb8m5PGiSVES2SOIso2LwK/ImZLc+1\nYSlS9M3pp8D7ZnZd3u3JWujp/K2ZXZB3W/qaz+m4I90PgcHAAkmLJd2Zd4P6Wlgo8VfA00QT6g/3\n54ATzAW+BJwZ/l4Xhx6AO8J5T8c551xmvKfjnHMuMx50nHPOZcaDjnPOucx40HHOOZcZDzrOOecy\n40HH9WuShieW3G6WtCHx/LcpfN68rLIDK/KcpJosPu9gDnbtkkZKeirLNrnDj2ckcP2ame0AjgeQ\n9G1gj5n9c66N6jvnAUuOlPQwZrZN0iZJc83spbzb4/LhPR1XtCTtCX/Ok/S8pMckvSPpFklXSHpF\n0lJJk8JxIyU9IunV8Jj7IT7rW+E9yyTdFe64R9JJoRbQ4lAbaFnYPyN8/uLw+pReTnsFEOeeGyjp\nCUlLwmdcGvafGK7t95KellQX9k+W9Gw4/jVJk0LP6bbw/qWJc8yT9GtJv1BUu+jBRPvnh32vAV9M\nXO/piR7l65IGh5d+GdrtipWZ+cMfRfEAvk2UWiR+vif8OQ/YBdQBFUSpZv4hvHYtcEfYfgg4LWwf\nDazs5TPmAY/3sn9YYvvfgT8K28uAU8P2LcCysP0vwBVhewBQ1cs53wMGh+0/Bu5OvFYLlAO/BUaG\nfZcC94Xtl4EvhO1KoDqcYwFQChxFVJOpLlzTbqKcbyXAQuC08L51wBRAwMPxtQP/DcwN24OAsrBd\nDyzN+9+CP/J7eE/HucirFtVwaQXeBp4J+5cCE8L22cAPJS0GfkWUkHHQIZ7/DEkvS1oKnAnMUFTl\ndLCZLQzHPJQ4fiFwk6S/A8abWXMv5xxmUa2ZuJ2fkXSrpE+Z2W5gKjCTkCII+HtgbOh11JvZowBm\n1mJmTUSB5D/MrN3MtgDPAyeF879iZuvNrANYHH4m04B3zewtMzPggUTbXgJul3QNMMS6ah5tBcYc\n4s/M9UMedJyLtCa2OxLPO+ia+ywBTjGz48Oj3sz2HOzEkiqBHwMXmdks4G6iXsJ+mdlDwOeAZuB/\nJJ3Zy2FtkkrC8auBE4iCz3ckfYuo97E80d5ZZvZRS18kfz7tHGQ+2MxuAb4GVAEvSZoWXqoM1+SK\nlAcd5w7dM8Bfx08kHX+I74sDzPbQM7oIwMx2AY2STg6vX5Y490TgHTP7AdG8zXG9nPdNYGI4fgzQ\nZGYPALcRBaA3gZGSTg3HlEuaEXpH6yV9PuyvkFQNvAhcKqlU0kjg08ArB7iuVcCEeM4LuDzR/klm\nttTMbiXKih0HnY8RDSm6IuVBx7lDdw0wO0zsrwD+cj/HnSVpffwAjiXq3SwjyhT9auLYrwJ3h+Gv\ngURzJwCXAMvC/pnA/b18zhNE8y0As4BXwvE3A9+xqLT1RcCtkpYQDYt9Mhz/JeAaSW8QzfuMBh4F\n3gCWAM8B19sBajGZWQtwFfBEWEiwNfHydWFBwhtAga6KrmeEdrsi5VmmncuRpEHxEJ2kG4A6M7v2\nEN9bB9xvZp9Js419SdILwIVmtjPvtrh8+H06zuXrfEk3Ev1ffA/48qG+0cw2SbpbUo0dAffqhCG7\n2z3gFDfv6TjnnMuMz+k455zLjAcd55xzmfGg45xzLjMedJxzzmXGg45zzrnMeNBxzjmXmf8D2liS\nG9l3gP8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr.plot(labels = ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given the Phase offset of pi/2 between two lightcurves created above, and freq=1 Hz, `time_shift` should be close to 0.25 sec. Small error is due to time resolution." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.26645768025078276" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modes of Correlation\n", + "\n", + "You can also specify an optional argument on modes of cross-correlation.
\n", + "There are three modes : 1) same 2) valid 3) full \n", + "\n", + "Visit following ink on more details on mode : https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.correlate.html\n", + "\n", + "Default mode is 'same' and it gives output equal to the size of larger lightcurve and is most common in astronomy. You can see mode of your CrossCorrelation by calling mode attribute on the object." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'same'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points in corr and largest lightcurve are same in this mode." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating CrossCorrelation with full mode now using same data as above." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr1 = CrossCorrelation(lc1, lc2, mode = 'full') " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYZVddLvyus88+U9Wpoauq5+50utOZA+GmScI8CUQu\nCH4fSrgqPF4eUEH0+/S7XvHKo1fBR7z4oegVRfGDoDJFhSgkCgmQRDLQCYTMU3cnPdc8nHFP6/tj\n77X3PvusaVdXdw293ufJk6rdtWrvOlVnvev3/n6/90copTAwMDAwMMiDwmo/gIGBgYHB+oMhDwMD\nAwOD3DDkYWBgYGCQG4Y8DAwMDAxyw5CHgYGBgUFuGPIwMDAwMMgNQx4GBgYGBrlhyMPAwMDAIDdW\nhDwIIX9LCJkkhDySuva7hJDjhJAfRv+9KfVvHyKEPEMIeZIQ8sbU9WsIIQ9H//ZJQgiJrpcJIV+K\nrt9HCNmzEs9tYGBgYLA8FFfo+3wWwJ8DuClz/ROU0o+nLxBCLgdwI4ArAGwH8C1CyMWUUh/ApwC8\nF8B9AL4B4AYAtwJ4D4A5SulFhJAbAXwMwDtkDzQ+Pk737Nlzhj+WgYGBwfmFBx54YJpSOqH6uhUh\nD0rpnTmigbcC+CKltAvgMCHkGQDXEkKOABiilN4LAISQmwC8DSF5vBXA70brbwbw54QQQiXeKnv2\n7MHBgweX8dMYGBgYnL8ghDyn83VnO+fxQULIjyJZazS6tgPA0dTXHIuu7Yg+zl7vWUMp9QAsABjL\n3owQ8j5CyEFCyMGpqamV/UkMDAwMDGKcTfL4FIC9AK4GcBLAH5/FewEAKKWfppQeoJQemJhQRl0G\nBgYGBsvEWSMPSulpSqlPKQ0A/DWAa6N/Og5gV+pLd0bXjkcfZ6/3rCGEFAEMA5g5W89uYGBgYCDH\nWSMPQsi21Kc/CYBVYt0C4MaogupCAPsB3E8pPQlgkRByfVRl9S4AX0uteXf08dsB3CHLdxgYGBgY\nnF2sSMKcEPIFAK8GME4IOQbgdwC8mhByNQAK4AiAXwAASumjhJAvA3gMgAfgA1GlFQC8H2HlVhVh\novzW6PpnAHw+Sq7PIqzWMjAwMDBYJZCNeoA/cOAANdVWBgYGBvlACHmAUnpA9XWmw9zAwMDAIDcM\neRgYrDJueegE5lvOaj+GgUEuGPIwMFhFPDvVwK984Qf4bzf/aLUfxcAgFwx5GBisImabYcQx0+iu\n8pMYGOSDIQ8Dg1VEs+sBAAbKK2UzZ2BwbmDIw8BgFbHYicijZMjDYH3BkIeBwSpiLpKtamUr91pK\nKQ5NNVb6kQwMtGDIw8BgFcFyHhU7P3l8/eGTeO0ffxfffmJypR/LwEAJQx4GBquIuahE1/fzN+ue\nXgyT7Lc/cXpFn8nAQAeGPAwMVhEs8uh6vuIr+zFRLwMAnj5tpCuDcw9DHgYGqwgWeXS9IPdazw/X\nTJsyX4NVgCEPA4NVxExj+eThRuThBRvTn85gbcOQh4HBKoJFHs4yyMOJ8iTLWWtgcKYw5GFgsEqg\nlGKu6QJYXs6DyVbLJY8nTi2i7eS/r4EBYMjDwGDV8PDxBTgRAZyJbMW+Rx50XB83/Mld+OAXfpB7\nrYEBYMjDwGDV8G+PnoJVIHj5RePousshDxr9f3nkAQD3HjLTnA2WB0MeBgarhJbjo2ZbGBssLUu2\nYnKV4wXIO9StE5HVRh0GZ3D2YcjDwOAM8bHbnsCXvv987nUdN0DZtlApWmgtI/fgBSEBBDS/7MUi\nD1OoZbBcGDc2A4MzwFzTwae+8ywA4B0v3p1rbcf1US0VsGO0iqlGF23HR7Wkb1PiprrSW46fy+Kk\nE0U6FIY9DJYHE3kYGJwB7olyBsUCyb224/qoFC3smxgEpcCh6Xyd4ukqK2btrn9vJlvlWmZgEMOQ\nh4HBGeDZyXDD3zZSyb2244bRwr7NA+H3mmrmWp9OlM/lHGPLZCtDHgbLhSEPA4MzwKHpcMNfjrFh\nxw1QsQvYPlIFAJxe6ORa76XueTLn2pg8jGxlsEwY8jAwADC11MVTp5dyr3t+tgUAOLHQwcEjs7nW\ndrww8qiXi6jYBZxezEcArh+gFuVITs63893byFYGZwhDHgYGAN7xV/fgDZ+4M3fuIP31b//Le3Kt\n7bgBykULhBBsrlcwuZTP4NDxA2wZqqBkFXAyJ/Gw0uDAsIfBMmHIw+C8R8vxYvnpn39wPNfaM/GV\n6ro+Knb4FtxcL2NyKX/kUS4WsHW4gpPzy5WtDAyWB0MeBuc92FAlAPjHB4/lWpvtr2Cbsg7ablJe\nO1EvYypn5OH5FEWLYOtwBady5zyMbGVwZjDkYXDeY6EdmhMOV+3cszG6no+X7B2LP89DAJ1U5FEu\nFnJ7VDl+ANsqYPtwBScW8uY8EpK751ljUWKQHytCHoSQvyWETBJCHkld20QI+SYh5Ono/6Opf/sQ\nIeQZQsiThJA3pq5fQwh5OPq3TxJCSHS9TAj5UnT9PkLInpV4bgMDAJiPyly3DJVze0x13QCXbqvj\nL37mPwEAGjlyJh03QDWKPIpWIXfFlhuRx9bhKk4vdhDkaBdPR0w/PDqf674GBsDKRR6fBXBD5tpv\nAridUrofwO3R5yCEXA7gRgBXRGv+ghDCWmM/BeC9APZH/7Hv+R4Ac5TSiwB8AsDHVui5DQziyGPL\nUCW3zUfXC1CxLQyWQ7MG3YQ7pRQdz0e5GP7p2xaBm9MrpO0GKFkFbBuuwPUpppv6UU/T8VAqFmAV\nCJY6bq77GhgAK0QelNI7AWTrFN8K4HPRx58D8LbU9S9SSruU0sMAngFwLSFkG4AhSum9NHRruymz\nhn2vmwG8jkUlBgZnCkYem+uVXDkLP6BwoqT1QEQeupGHF1BQGspVAFAsFOL5HDpodj08dmIBl22r\nY6jKiEv/2RfbHoarNuqVIpY6+SrMDAyAs5vz2EIpPRl9fArAlujjHQCOpr7uWHRtR/Rx9nrPGkqp\nB2ABwBgMDFYA862IPIbK6OZwqGWVVuViOvLQ28BZd7gdkYdVILnGyT50dB6uT/Hy/ROx9JVnsNNi\nx8VQpRiRh4k8DPLjnCTMo0jirNd1EELeRwg5SAg5ODU1dbZvZ7BBsNB2MVBKCEA3cc16JcLII9zA\nG129jZgRT8kK34K2RXo6xlVgPSE7R6txxVbb1Y8gFtsu6hUb9bJtIg+DZeFsksfpSIpC9P/J6Ppx\nALtSX7czunY8+jh7vWcNIaQIYBhAX4kIpfTTlNIDlNIDExMTK/ijGKwHPH5yMXevBBBGHsNVO5aQ\ndPMe7OvKdiEmnoZm5OFkIo+iVYgt1nXAqrrGB8uolcJ7tx399YsdD0NGtjI4A5xN8rgFwLujj98N\n4Gup6zdGFVQXIkyM3x9JXIuEkOujfMa7MmvY93o7gDuomWJjkMLTp5fw4396Fz74D/nHqi60XQzX\nSihHJ3jdvAerzCoXrTjnoZswjyUvFnkUCFyfaktm040uSsUChirFRLbKka9ZimUrG4tGtjJYBlZk\nngch5AsAXg1gnBByDMDvAPhDAF8mhLwHwHMAfhoAKKWPEkK+DOAxAB6AD1BK2V/9+xFWblUB3Br9\nBwCfAfB5QsgzCBPzN67EcxtsHNz8QJguu+/wLLqpKiYdLLQdDFeLSeShWa7LZKuKXYBtFVAuFrTJ\ng83isIth3YdVCO8dUMDSKAWZWupiYrAMQgiqpXCtLnnMNh0cmmriugvHULJ8E3kYLAsrQh6U0ncK\n/ul1gq//KICPcq4fBHAl53oHwE+dyTMabGzc/cx0/PHkYhe7NtW01y60XewdH4xzB7llq4ioBstF\n7WorljAvWazPg8TXrYKa+KabDsYHSwCQ5DwcvXv/3b3PRR/RZSXMJxc7eNff3o8/ufFqXLp1KNda\ng40D02FusCEw03AwVAnPQnllmGzOQ1e2Yl/H1g3kIA8mW9kRabD/61ZcdV0/ltmSnIfec/vRPX7h\nlftQr9hodL1cs8wffH4eT5xawg1/chc+c/dh7XUGGwuGPAw2BBpdDztGw2hjsZ1PhllouxipnUHC\nPEUe2jkPFnmk+jwAaPd6uH4QV2olOQ/9tcUCwZ7xAdQrRQQUaOYo801PTfz9f31Me53BxoIhD4N1\nDz+gIXlE0/zyRB4d10fXCzBUtWP5ieUyVGAnfTZ3fLBs5Y48GAEUc0Yerk/jaIWRl27Ow/GCmLTq\nFRsAcklXndTrs29iQHudwcaCIQ+DdY9mpPWziXyLbf2NkEUKg9FAJkA/Yd6KNutaKcl55G0S7I88\ndMkj9LUCgEKBoGpb2jkPx0+TRyh55UmaM0feS7bUcxUmGGwsGPIwWDNoOR7e89nv49mpRq51jU4v\neeTZCNlpvWpbceK5pSnhdBxWbRWuyyVbxTmP3sjDzSFbsR4RIIx+ckUeVpY88kVrADA6YKOlSVgG\nGw8rUm1lYHCmcLwAV//Pb8LxA7QcH1943/Xaa5lUtG04v2yVlp6GqvkknDTxAGHksZS32iqOPPLL\nVowA2DPoNgmmZSv2M+fJEzHy2DRQwqGppvY6g40FE3kYrAk8P9uMk8h5T7Nssx+u2hgsF2OjQx2k\nCWA42kh117dj2So8g+WJPLp9kUf4f1+zyzyUrZLEdcUu6Dc3pmSr5VSosWffNFDSjtIMNh4MeRis\nCaQrRfPMxAASmapesTE6YGOu6WivZZtfrWRhoGTBKhBt8mBr09VWLcfXmqvBmgTZWrtAeq6r1wcx\n4YTPX9Qm3bRsNZDT0BEIIw9CQrJuOfnKfBnmWw4eOb6Qe53B2oEhD4M1gU4qSZ13pgbb+AbKFsYG\nypjJQR4seqiULBBCMFy1tcmDTQIsRBv/YGSO2NTYxPtzHvkS5mkCACLZKkfOg5FWzQ7JI0+013F9\nVIoWaqWwzDfv7wsAfuov78Gb/+zuZRGPwdqAIQ+DNYF0+edCK1+TXywf2UWMDZQw08hBHk5vxVQe\n8mg7fixZAUnuo6NRrSXOeejKVrRXtipZ2n0e6ZwHKzPOY+fecQNU7EL8mi1Hunp6MiyKyOPHZbC2\nYMjDYE2A6fU7R6tY6nrxyVwHSfRQwNhgCTM5JurFCfNo4x/KQR4tx4/XAcjVJ5LtMM/f55GU6gJA\nzbbi6i/lvVM5j1KxgGKBxGXHOjgy00TFtjBQyh+1AEmHOxD6bBmsTxjyMFgTYKf1l+4LZ3zNt/U3\nlU6KAMYGy5hpONpySCtTMTVUKWJRs9SXyVYMZZvZm6iJL7ZkZ7JV1OehU6pLKYUX0B7yqJYstDTn\neWQlr1rJ0o48Hj+5iLuensbJhQ5qTKbLkS8BgIt/+9b44/mcUabB2oEhD4M1ARZ5bBsOezXmmvkr\npiq2hYnBMryAap9oO5ku8YFSES3NhH3b9eN1QL7II2ttEntbaeQ8WFK9lOrzqCyzVBfIl2xPR2Wj\ntdCYMU/00PV8E3lsEBjyMFgTSMgj7NXIs6m0XR+2RWBbBVwwFvpbPTfb0lrbyshWtRzNdi3HixPO\nAOIoRCfyCG3jCwhH14RjaIFeSUeEeIRtKudRtS3tUt1QtkpIr1aytPMWQSqi2zQQksdcS/93lW3g\nzLPWYG3BkIfBmkAnOonvjMwNpxr58hasy/uCsdBr6bkZvea1puOFun8k41RySDhtN0BluZGHm1Q8\nAYl8pSNbsa9hUheQkJ6OXNdXqZXjZ2YR02d//sUYi8gjT3UbI4/f/s+XAUCusmqDtQVDHgZrAt3o\n1Lw3Mto7PtfWXttx/bjyZ9emKggBnpvRizzmmg42RfILECaedSOPjuOjaqelI31vrK4XxJbqQCJB\n6ZS9ZkfYAiEB+AHVmr/e7ZOt9CMPlugfHyxjNCKP2RzVbayhc2sUYeZx8zVYWzDkYbAmwCSXscES\nhqs2js/rbf5AlHuINuJy0UK5WNDeDOdabrwJAvlO8C3X6ynVzZfz8HsiD+YxpdMgGec8UrJVPItE\nI+/hZO5dLRW1q62cVK7GtgqoV4rLkq3GB8sgJF+JsMHagiEPgxVHx/W1tPveNQEICS3Kd45WcSxH\n5NFKyVYAYBcK2gaDcy0Hmwbs+PNKyQKlenmLthP03DeOPDSih64XZMiDeUypCwW8TKUWkJCHTuSR\nLtUFomgrR3c6kERK44PlXBIjizzqlSJqtn7EY7D2YMjDYEXx5KklXPrh2/ArX/xBrnWsa5kQgn0T\ng3j85KJ2uW0nU/VkF3OQR9OJq4aAcCMF9JrXOm6mzyNuEtTNeSRrB0oWCkTPEdjlkAfbzHV+bl6p\nru4m3s2Qx9ahCk4tdLTWAojLoIcqNmrlItqa5cVp5G0iNTg7MORhsKJ445/cCQD4+o9O5lrXdHwM\nRH0D1+3dhNOLXRye1kt6tzPNesUC0bb5mG05cdUQkJgcqkpXKaVop3ItAHJNIux6ftwXAgCEENQr\ntpajr+OFP1uaPHQT7p4fIKC9Zb55EuaOx/y8wp9720gFJ+f1o8TEh6yYi7QYHjo6jxf+3r/jX390\nItc6g5WHIQ+DFUMeN9ssJhc7mKiHSdRLttQBAEc1patsp7dtFbTkmyCg4Qjaaq9sBai1eMcP4Ae0\nJ+Kp5Ik8MrIVEG6oOpEHy6mUiknOQ5c8suNvgZwJ88z6bcMVnF7qasuUpxbaKBcLGKrYqC5Dtvre\nszMAgL++81CudQYrD0MeBisG3fJYHk4vdbBlqAwg2YR1LUqajhe7wwJh/4NO5OH4AShFT7mtrmzF\nEtMVmxN56FZbZabw1Su2ljV6I55+mJAeIw8WlYiQNWQEwoR529VzA86Oz902XIUfUExr5j2em2lh\n16YaCgWSq7Od4QfPz4XPoRlZGpw9GPIwWDFkZSZPM+8AAKcWutg6FEYeifyjt7E0u36GPPRyHmyT\nL2ca5gC12V8yy6M34rEKpMfkUXxvnxt56FijsOhkqJr8zCwKUUYeXn/kMRD9DDrPnfXkYlViunNM\nnp9tYfemsJcnT2c7AEwtdXHHE5MAgAXTXLjqMORhsGLI9lbo1vC7foCZZhdbYvKISl41XWKbXS+2\nQwdCe3OduRjdWL9P+1PpSU9s00vLZUB4IteJmJxMnwcA1DWHSSUVS/2Rh4o8YluUTMIc0POoYnIb\n64zPk+cBgOPzbewcDS1oqjlzHs/NNOEFFJdsqWPOJM1XHYY8DFYMRzKRh65dxlLHA6XAaC3cDMs5\nSl79gCWuM7KVhrV51l+KrQXUHlNpP600bItoEld/zkM3YmIjY9mpn60F1KW6vJxHNXrtdCSkbINh\n0tui97ta6nhxdVvehDnLqV0wVkPb9bX/vgzODgx5GKwYDs80cd2Fm/A/3hRaT+huDOwUzwggj2zF\nBi8NLke28voJgG3CKvJhfSBpV10g3JR1791HHsWCVq5mqeOCEGCw1E8eKuLiyVaxVKdRNuv4vaSX\n5HnUvyvWw8LG/Q6Ui9rz4oGEPPaMhy4EN91zRHutwcrDkIfBioBSimcnG9i3eRC7NoWyhG4ylJ0g\nWeVSntNsK54imGykxYLe6b/j8iIPdoKXr88Oc0qv1823ZBPmdoFoVYktdjwMlorxBEMgSWC7itcs\nm/AGktddh+yzPSKxzKfxu1rIkMe+iUHMtVxMLekl29l6Vlr9B994QmudwdmBIQ+DFcHpxS4WOx4u\n3VpPZBBtd9peZ9tSjqolVnk0kMp56J/+I/LoiTyixLNiM4zJw+KRh6ZsZfev1Ys8vB7JCgDsKGG+\nHNkqrjBblmylH3nMZ8jjiu1DAIBHT+jNMmfk8aYrt/V8H4PVwVknD0LIEULIw4SQHxJCDkbXNhFC\nvkkIeTr6/2jq6z9ECHmGEPIkIeSNqevXRN/nGULIJwnL2BmsOB45voB7D83kWvP05BIAYP/memoc\naz7yYPKJVSCwLaInWzHyKPVGHjqbMNvweJGHSrbilbyGn6ujhyAyMMzKVkWLaJFeo+tiMEMeJd0+\nD65sxRojdavElmfJwjb/kSi3xezzT8zrdagvtF0MlovYPVbD267e3lNtZnDuca4ij9dQSq+mlB6I\nPv9NALdTSvcDuD36HISQywHcCOAKADcA+AtCCPtL/RSA9wLYH/13wzl69vMKjhfgzX92N2789L3a\ncgKAeG74lqFyTB66OY9kjGyvvbnOhsRyHrVyb94iV+SR2kjZOFhd2aqfPApq6cjvLxFma3Vkq44b\n9FV5JX0e+ckjnmOuQfaNbm/Uk0dizMpWbK2ulcxC243XDlftuHDAYHWwWrLVWwF8Lvr4cwDelrr+\nRUppl1J6GMAzAK4lhGwDMEQpvZeGhkc3pdYYrCAOPjcbf/zij35Lex3bxAfKRVRL4Z+VrmzVzkQe\nQLih60QebO1AafkJ8/Qmrp074Ezz0713l5NrYd9LK2Ly/D7iSbyt5Ou7nJxHbKqoQQBLHa8n6kkq\n49S/qyx5xBKhJnkstl0Mpcmj42o1NhqcHZwL8qAAvkUIeYAQ8r7o2hZKKTM/OgVgS/TxDgBHU2uP\nRdd2RB9nrxusMO4/PKv+Ig7SBMCql+54/HSutdVMt7ZOzqOdSbYDYfTgaWwqSc4jv2zlcjbhcL06\nWR+TVibnESb6dWeB9JMWoN6IXb+fuPJUt4WRR5JrYCSm40LMGvsYAeSZYQKwyKMYfw9KgSXN5sTw\nPj7+7t7n8LzmrBcDOc4FebycUno1gB8H8AFCyCvT/xhFEityfCCEvI8QcpAQcnBqamolvuV5h0dP\nLOKizYPYXC/Hncc6YA1mtVIx1tC/+sMTWp5HLQ4BlG092SqbbAf0pCOAHwEU49OwouQ1HsjUm3rT\nkZ4SuaxfevICqnQTzk4hDNcuv8OcPYd25FFOy1b5Io+KXYgPF3ZB3wmYrWdRCyMgHQt7hs/f8xx+\n+6uP4C/vfFZ7jYEYZ508KKXHo/9PAvhnANcCOB1JUYj+Pxl9+XEAu1LLd0bXjkcfZ69n7/VpSukB\nSumBiYmJlf5Rzgs8P9PCnrEBvPPa3Wi5vrbFSMvxUC6G9hzpjVxnuFHHSYiHQVe2ypb5AtHpXyvy\n6Jet2Iam2khFOY9QelKRR3+inq0Nv7eauHjEw/5NtTZ9r/THOmS91HExVOGQh07kkdr8AaBQINrR\nVnY9azTMM+v+4JHQF+ueZ2e0rW8MxDir5EEIGSCE1NnHAN4A4BEAtwB4d/Rl7wbwtejjWwDcSAgp\nE0IuRJgYvz+SuBYJIddHVVbvSq0xWCFQSmPvodFaKAvoOuWmzQnTm6IOefCih5A8dAYyCSKPXKW6\nyfOyDU232oqf85Bv/rz+EiCUrQAdixFOg2Gcq9FsEuTMAlERgOMF6HpBT+RBCNH+Xc233L7y2lJR\nz84F6CWPzfXQRHMyR1HHw8fDkuDD00184ptPa68z4ONsRx5bANxNCHkIwP0Avk4pvQ3AHwJ4PSHk\naQA/Fn0OSumjAL4M4DEAtwH4AKWUHRHeD+BvECbRnwVw61l+9vMOU0tdtF0fF4zV4tGsuh5CLSeZ\nbVEoEFx34SYA0Oogbrs+SlHUwlAuWvlyHj3zPPQSzx1OqS7ASmZV1VZsFCwv56EpWwkqplTP3nX7\ncx5WgcDSOMXzSE+3NDp2882UCZeLBa2y7ND+vtRzTbcvpuP66LhBTB7MB21ySa/M1/ECnFhoxxY4\n33t2WmudgRhntVCaUnoIwAs512cAvE6w5qMAPsq5fhDAlSv9jAYJHju5CAC4eEs9ljfmNd1LW12/\np+LpA6+5CPcdvh8NDZfYtuP1lZ6W7YKWSWDbCU/h6W5ru6jXqd12fVgFwm300y155ZXqqnMefNKy\nLb1GP56dO1u/nHke4bNYyp+5EQ9y6o0ewvyUHnnsHK31XCtpRi1Za5PxwRIICZtTdXBqoQNKgQ+9\n6TJ858lJPPDcnNY6AzFMh7lBjEdPhORx+fahWJrQdcZtOl5PrwXrBdAZbpSdyAfkkK0yI2iBMG+h\nk6tpOT5qtoVsv2nJKqirrfwgPu1n12pHHiLpaRmyFVuvm6zPEqbOJs5mjaRlKwDaczmWOl5fY5/O\n6wUk8ilLlBetAsYHy5hc1Is8js2HFVY7R6rYNzGIyaWu9phjAz4MeRjEeH6mhYl6GcNVO44EdP2p\nWk5v5BGTh2bOoy/y0GwSzI6gBcKGwYCqZ0y0Hb+nMZGhaBFl7sD1gzhSyLuWN0cE0JOtKKVcR97w\n+6k3YuZNlSVMnQIFJlsNVbLkUdQ6ZPAOCbo5j2yPCACMVG3tnBzrYt82UsVAuQhK9ZtYGSaXOvjd\nWx7FaU3C2ugw5GEQo+Ek3cPsNK9rMdLsej0RAJtyp5Pz6HCiB91qqxZnLZNGjinG2PI2M0Av4e74\nQZ9kpbtW2OehIVu5PgWl/fmS+N4aCfOsZAWEr7eubJXNeYTW6hpVda6PSh9h6lVb8cijYlvaf59M\n9hqt2XFhh+4AK4bf/udH8NnvHcHv3vJornUbFYY8DGI0Oh7q0RurqjmOlaHpJGuBfLIVN/Kw9ZoE\nO5y1u6JhQ0dn5c1gvPsCkZSiKPXNussy5OvzyEhHGrKVKF+ie2/H97nkoSNbLXX7h1ABenM5KKXo\nuD63uXH55FHQak4E0pMfi/HgMJ1KQIappS6+FTW93vboKeXf1vkAQx4bGDONrnYNPRCexAay5KEZ\n2jc6vXPE8/hb8fIW2rKVyyGPaMzp0Tn5G7zt8COPUHpS5zxEm7CyWkpS5gvIZSvR2nC9ulBARHo6\nr3cceXByHi3FFELXpwgo+iIP3YS5KPLQH1XsoVggKBULsbyqMzmR4anTSwgo8OuvvxiU9k/NPB9h\nyGMD4h/uex6/+sUf4JqPfAsf/uoj2usa3aR7uJLTn6rZ9XvkjELULNjSrJjqz3loeltxiGdT1ECm\n0sNbjtfTmMigcxp2fSqQrfTLZctW73PryFaiqCV+bo0qMZFspXq9F+Nqq97XbKBUVA6S4g3eip95\nGQnz8Jkt7cgjXUrO/sbzRB7HIwn0kq11AHpy7EaHIY8Nhtmmg//x1YfxtR+eAAB88zE9fymglzxK\nVgEFopfz6Ho+HD/gn0g11suqrVQVMTziKUR9CyoNv+0GfcQDRBuaSrYSJMyZxYjMsI9VgmWtTbRk\nq+j1FEVqaaigAAAgAElEQVQ9OrkaLnnYGjmPrgfbIn3EVSurIw/R5EWdXAsQksdAyeoh7IpdQEcz\n8kgfFJaT8zg23wYhwP4tEXnkzJdsRBjy2GD45O1PI73fbh+paq9tdBPHVELCyEFHtmLhf9YLq1bW\nW99yOLKVbYFStVUHL/IA9GQYXn8JEG7ijmJTcjx+wpydrGWbGtvgi4VswlxNHuz14Pd5qBvuRLJV\nydLIeXTCeRrZSq2w2kq+mcYNmdzIQ10ym7U2ASLZSjPyaDp+XEoek4dGkp/h+FwbW+qVuMlQp39p\no8OQxwbD1354HG+4fAs++c4XAQibqXRAKe3JeQDhG+5v7j6sDO+bcedxJpFqF/WqcBwfVbu/axlQ\nG+7xIg9ArwS0Jch5VDT6FlzOMCcgNQ9csp5tltnIJR6sJNkQE+LhRT3qnEd2EiCDTkd/q+v3/H0w\n1EqhfCQzwRT6eWk0ZAK9duwMYcJc3/b/jGSr+RZ2jFaXtXajwpDHBsJCy8Vcy8WL92zCT7xwO669\ncJN2LXvXC+D6tE96AoA7npjkrEiwFCdSezfiqmYVTlhu2y9nsOeSoe36fTo6wE7SCuIRRC2DZUvZ\nt+AKSnXjQgGJjOP6AYoFwj3BA/ITceLmu7wyYWHOw9aoEhNIXmxTluXHEtkqE3lojgzmRR5hzkM/\nYc5eX9aoqNsjAgDH59vYMVJF0SqgaluGPGDIY0PhyEwTQDLec6hix0lOFeLogUMeI4pZ0elBUGno\nlHC6PoUf0L7Ete6EOlHFlI6G33UDLvEMlIpKPdz1+AnzeKSrJIHsBfy1bA67LOrxBJ5a7JpOzoMX\nMZWsgnIOuUjySsbYin9mUcK8XinGs81l4MtWBXQ0TRXDJlYrft56uYhJTWsTP6A4Od/BjqgEfLBS\nNAlzGPLYUGDkceH4AICwE1h33gHLW/DIQyeRyltbKxWV5ME2yuymEk+ok2xorh/AC6g4byHZSCkN\n54jzNsOBclF5shSewstq2crxgriyqmetrbaEkctWmk2CvFJdW53zcASd7bFUJ4m24sgjs37HSBWz\nTUcpb3LJo2jBD6hW5JKtrNs6XMHJBXkTKcPtj5+GF1DsjMijXi5q9S+l8ed3PI1vPymP4NcbDHls\nIByZboGQpM9hqGprn5BYA1g6erjxxeFoFVVFi6z+v63YFJLmrf5qK0AeefCmCMbrFU2GIoNAIPw5\nml1PWunlChLmNY3+GC/gb+DxLHHJa+ZKZCutaitZzkODPGTRlkxuEyXM2YZ8XOEGIEqYp7+3CEFA\nMbXUxXAtWb91uIJTC3o2I//04HEMVYp48wu2AwDqVRtzmoahQHi4+vi/P4Wf//++n6vvaq3DkMcG\nwnMzTWwbqsRvqu0jFSx2PNx7aEa5lkUe6Rr+97/6IgDqEaNNgVV3raTOHbATZz95qHX0eJYHhzxU\nkYfIUh1IvLFkm2nYJMiJHmIJRxI9CCSvUrGAklVQRB5Rsr3Az3noDIMSlfkqnYRVOQ/Jc4tKdZmV\njKyhs+v12rEzsOj0KweP8ZbFeHaqgcWOh6t3jsTXtg1XcHxejzwOTzdx3d6x+P57xwdwaKqptRYA\nHkw5+LKZIhsBhjzWKD55+9N405/ehSPT+n+kR2aauGBsIP78567fA0KA7z2jnl3Q4EQe7I2uOtkx\niac/51FUNgkycsjKViypKZPdeIOgGFSdy6JhToBeNY4wYR5XW0nWBnzZiq2XvWZJ5NG/vlTUa1Dk\nd5iHxCPrTxF11bNcjYz04pxHpsSYVQPONsW/58V2+HqkIwcAYK/An94uH+zENuwX7U7IY9/EIKYb\nXeXIAT+gODzTjKVgANi/ZRAnFzraUf2n7zwUf/wP9z2vtWY9wJDHGsX/+82n8NjJRbz649/BI5qn\nldOLXWwbrsSfV0sWRmslzGiM6mxwch5lTVkgJo9M0rteCd1WZSWcjACykcdwVd0lzhsEFT+7QoaR\nkUdiXyGpehImj9WncNen3LXhveVFBqLxt+yaqmei6/UPkgJSc8wl5CP6mVmZtUxuE1VbDWo07ImK\nOf7Pa8LJ1C+7aEy4FgBORvJUepbIpduGAABPnFqSrp1a6sLxglgKBoBLokZB1Vq2/u5npvF//9jF\neMsLt+PmB47hmMI2Z73AkMcaRFY+ePOf3a1cQynFdKOL8Wg8J8OmgZLWnGde3kI38gjLIK2+2Ras\nLl92QuONoAWAkeiUqUMePFt1lQwjGuYEpDuQJUlvn3LzDjp9Hp4vjjxqZXmRgUq2UtmTiPpidHJM\nonxJHHlIE+b8Po8BjSivKZA2a6Uirtg+pOxPObXQCccMpNZfvGUQAPD0ZEO6lr13JlL9UlfvCiOY\nBzUGSv37Y6cAAK+7bDN+5bWhDHzX0xtjiqEhjzWI/+tLPwAA/NeXXRhfk53egfDN1/WCvqbATQN6\nkQcvb5FYlKirrXjNY0wjZrIDD6KkN1s7LxmDG0ctgs1Q1ufh+GKbj5qO9CSo1Kpq9DyIJC8gjDxk\niWeRtQkQkkdXUWHW8QR9MRpNmaIGw6Q8WUIeglLdcrGAYoFIySOJTvv/xiq2pSzoOLnQ6YnIAWBz\nvQKrQHBKUXHFEuOjteR9NTZYxu5NNfxIQxH45weP49KtdVyxfQgXbR7EtuEK7nxqSrluPcCQxxrE\nQ0fDP8r/ct1u/PFPhVN8D0/LT0jTjfCPfHywN/IYGyjh/sOzyr4FFtqnN2JCiNbMhEbX55b4sqFB\n0uhBEHnYVgGD5aIWeXAT5srIQ5wwZxucbL3QVddSn+Bdn8ZWJLx768hWWWuT8N5hzkNUJeb4ASjt\n38CBVOShqFCTSXWyXE0nHoDVu54QgoGyvK+G5VIGyv3PrWPLfmqxja0Z8rAKBBODZZxakPd6sMhj\n00DvoWzbcAVTGn0iJxc6uGL7MAgJm0JfsX8c//HM9IaYYmjIYw2CEOBtV2/HRZsHccWOUJt95Pii\ndM10I/xDzpIHwz8+KK5I8fwAXzl4FBeM1XpmgQPhRqNy1m2mDBXTYLLVokS2Ss9ZyGK4amO+LY6a\n5DkPBXn4YnfakoaEI5okSAhRNuuFUQtftgot3WXPLSY92yqA0rAJkYeOw887AEl+S11hJu6qVyXM\nS5lZ8wyDir4aRkq8vxGdLvNTCx1sHar0Xd8yXFFOBYwjjwx5jNfLmGqoyWO+5cQSLABcuWMYix1P\ne/b6WoYhjzUGP6A4tdCJDQ33TQyiVCzg0RPyEHkm+kMey8hWv/pj+wHIq5YWOx6Wuh5+5rrdff9W\nKapPduEsj/4NKZGt8uc8gJB8pNVWgkot4MwS5ipfrSCgQkt2IPSYkhGA51Nu5ACEJ2KZRCmTrVTT\nHxPpSBwxqfJEPNJi9vuyhHnXDfoaBBkGdSMPrmwl97dyvADTDacv8gCArUNlnFKQB4s8si4LE4Nl\nTC/JCcDxAjQdv2ft3vEw13JoSq4krAcY8lhjeGayAS+gMXnYVgH7JgbxrKKufKrBEnu9kcclW+oo\nFohUCmEbNC9qqZTUmnJDEXnIZKtOnPTmyUfycltRpRZwZglzVfLYDcRrAebXJCYAxw+4yXYglKNk\na2WyVUXRoBi/1hxH3rijX5YnEuQ82HrZ7yqcIth/XyCUo6SRB0uY82QrxUwPFllkcx4AsGmgLJVF\nAWCmEUYOWZlxol7GUteTEhf7u09HHnsnwpLfQzlK8NcqDHmcRfw/X3ko1zwNAPi7e59D1bbwhiu2\nxNcm6uVYlhJheqkLQvq1WUJI2KwneXMyWWmo0u9hpePz1HT45KHTL7HYdlEuFrgW4+WivEtc2mF+\nBgnzWMIR3DuxRRcTgKzkNeww58tWtkXgBermRp5kpjIoZJus6PUCxIQZBBReQMXkofhddVyfG/EA\nzA5G/LtKLP85spUtjzBZZLGFI1vVK8W4v0mE04sdbKn3r2WFKVOS6GMhklzTbsBbhyqo2pZ2k6Ef\nUPzdvc/hv9/8I7z3poOYVERK5xKGPM4CFtoufvqv7sHNDxzDe286mGvtU6eXcMX2IWxO/cGOD5aU\nIfJ0o4vRWombiB1UvDlZNVTW8hoIT01zitNZdgQtQ1WjT4RnO8FQLlrS6qHYF4tDPCWrgIBCKB/J\nEubxRipY60qilvB7ysfYup5Ytipa8jG2IkdeQD36N5H5xH0eoo3YkfSXsPWqCYi83xMQkoJM8mo5\nHgjhP3fFlhs6zggKSYDwfdFxA2l+6vRiB5uH+teOaEyrTCKP5EBXKBBcOD6AQ4oCGIa/uesQfvur\nj+BLB4/im4+dxq2PnNJady5gyOMs4H/92xO4//Bs/Pl3c5TmHZ5uYk+qmxWI9NWGI63QmG50hbM7\nVNUsceRR5Tjq1kpYUHThpodIpVGKyjBlCff5ltsT1qcRnmblvQMVm5+EZSdk0YYm87aKE+aCe6s2\nUpXNuBvIZCsiTHgD8jJfVZmwTLaqKXy1ZONvAdbRr/pd8cmjaBEpYTa7Pmq2xSVMValuRxKdMise\n2WCn04tdbrKdRemyYhCWFN9U631f7p0YwDOK/hKG2x49hfHBEr76gZdh+3ClZ19ZbRjyWGE4XoB/\nevA4royqpADgywePaq1d6riYXOr2WCEA4anJ8QOpvfp0wxFWWtXK8klvLOfBk61GFZGH6wfoegEG\nOZICgCiRKt5IpZGHbUnzFi1BwxugLj11JJuhSsJJ8iUi6Uk+xtb1A9gcwgMi8lB4conuy6qRVDkP\nXu6BSYwit1hXQraAjmzFd+QF1D5kix0Xdc7fJhASIbP1599XXFShklX9gGKq0eVKXjr2OQePzKFc\nLODirYM916+7cBOOzbXx0NF54VogTNY/fGwBP31gF67eNYLr9o7hvsOza6bM15DHCmJqqYuf+PO7\n0XJ8fPC1+/HUR34cmwZKWqNYAcSnihftGum5zipFnj4ttkOYbnQxJiCPwbJmzoMnW1VtLHZc4Zuz\nKfC1YqiULLQlsy3m225sRZIFm2MuQtsVk0dJYbchS5irejVUG2mxIJetPEmlVlGHeESRh0K26khK\nm1VzvePqNJFUV5QTgKg5EVBHHrIDhsoFIYm2+p+bRR4iwmx0PPgB7SvTBfQaYH90bB4v3DnSl8/7\niat3AADuelquSPzVnc+CAvjJF4Vff+2FmzDd6OJJyT5wLrGuyIMQcgMh5ElCyDOEkN88l/c+OtvC\n5+85ImX9f3/sFJ44tYQdI1W8cv8ESsUCDlwwijufmpKeJhnuenoaFbuAa/aM9lx/zaWbUS8Xpb0a\nMw1HLFuVilLriMW2hwLpn0EOhLIVpWJtt8HpTE9DNQd9UZrzkEshbdfnWpOwtYAs8hAnzAkh0nvH\nkpdkI5XJVmHlkUS2UvSILF+24jvbAmpzQ1lpM6COPMLBW6LSZvnrJScPVXmyuLdlsBzNIxcQZsPh\nT8gE9CoJZ5sON18yXLWxc7SKp06Lpaub7jmCv/ruIewZq2F/5KX1uss2Y6Bk4f1//6BULjtXWDfk\nQQixAPxvAD8O4HIA7ySEXH4u7v2PDxzDK/7o2/jw1x7Fg8+LQ83HTixisFzEXb/xmviNvGO0Ci+g\n+LM7nlHe586np3D93rG+k8pguYiLt9ZxZJpvqNZxfTS6nlC2Ug03WuyE86F5mvLoQPgmEc0vEA2C\nYqgqmgznW448YS6rthJMEQTSOQ8FASxjM2TXRQQgMyiklApLm4HoFC6NPCi3xwNQzwORSTjlooWS\nVRCewlWvV0lV3CDJeajIgze/PHnuKPIQRHpS2YrlPAQVV7KoerBURIHIcx7zEtK7ZEsdT0kiCCZ1\n/5frLoivba5X8DtvuQKHppq4ew34Y60b8gBwLYBnKKWHKKUOgC8CeOvZutlTp5fwGzc/hD2/+XX8\n+lceiq//y0MnuNEHpRTfPzKLq3YM9yRw3/fKvQCAv7/veal0dGyuhUNTTbxi/wT333eMVHFC4MPD\nygWzPR4MIzVbekJabLvcfAcA1NnpTLCpqGSraslCW7AJs/nloqhF1TsgMvkD1F3isnke4Xpx9VCS\nPBZthkS61vWp8PWyFdVWSx0vPjFnUdOsthK9ZgMSeVMm8wHq4oa5ltNXRs5gW0Ta23JGkYcbOgFk\nTTsBtWwV/21z8nmFAkG9Im5iDQLa112exu6xmnQAVqPj4RX7x/HzL93Tc/1tL9qBUrGgZcp4trGe\nyGMHgHTm+Vh0bUWx1HHx4o9+C2/4xJ34MmfIzGe/dwR/+x9H+q4/fHwBT51u4C0v3N5zfdtwFTf/\n4ksw3ejin35wXHhfdpJ45f5x7r9vH6ni5HyHO28htiap89+cE/UyGl1PaPS32PG4lVZAqiJFFNrH\nVu78DalqW+gINrOuF3otyZLeshkTstOsKundVSS9ZZGHLNkefk+xxQjbkOoCwrQK8j6PxY4be4Zl\noS9bichDHKGqIw9xzsPzAyy03Z6S1TRsqyD9mc805yH6eeuKIoG4v0RA9EPVoljOdTwEFBgR5PNY\nkyFP0p1udHFkpoXr9471VRKWigW8aNcI7ubM6Dkx38Zv/fPDeO9NB/GHtz7Bve9Kgv+qrFMQQt4H\n4H0AsHt3v9WGDvyA4rWXbEatbOGSLXVsGijhRbtHMVEv4yf/4j/wg+fn8cnbn8ZPHdjZc1pnTpk3\nXLm173tec8EoRms2PvzVR/Cfr9rGPYE9dbqBWsnCRZsH+/4NCKcCOn6A6Wa3pwcESEwRxwb4kQeL\nSKaWurhgrP9XLos8BnVPZ5LIQ9RIlZgiinsHgHDjqhT6N4CO62Nznf8zx7KVpGKqZBW4Uh3Aoh4R\n6YnzJYBctlLJfLaiVHex7fbMluh5ZibhCEhPZIvOIPOYiglTGnnw77vQdkEpsElwCi9GrxeltO/3\n4foBWo4vrcgDZIcEMXkMKg9GfCt4huGqLayAXIgqFLMDrBjYe3hqqYvdY72/z28/Ec46f9XFfBXi\n9ZdvwUe+/ji+fPAofvrALgQBxe/962P45mOncXw+jGZqV/OfeSWxniKP4wB2pT7fGV2LQSn9NKX0\nAKX0wMQE/4VXYaRWwsfe/gL8zluuwI3X7sYbrtiKiWiD+qdfeilu+eWXYaHt4r2fOxif+FuOhy9+\n/yiu3DHEJQZCSFzu90t/9wD3vpNLHWwZqgg3M/Z9eXYKSeQhII96Qh48hKdZ/h85uy6aySEaBMUg\ny3m0JDX4gDrp3ZLkPJRNbxKrDbZeFbXIZCuRhs9IWES2xcjcUFTdttTxhBspIUSacO94PsoCc0Ig\nIg9RzkOZMBfLfCJzQQbWbc8jzVZ8+ue/1qxnRRR5tB1xZ3vVtlAgYkm25ciJfqgiloP/PpoYmPXE\nYmDvycml/o7xWx46gR0jVVy+bajv3wDgZ6+/AFuHKrj5gVAZeW62hc9+7wiOz7fx5hdsw7d+7VX4\n0xtfxF27klhP5PF9APsJIRcSQkoAbgRwy7l8AEIIXrBzBIPlIu47PItf/3KYC7n/8CyOzbXxy6/Z\nL1z7v97+QlyypY77Ds9y67snF7vxHxQPw5LqjtgUUfDmZKecSRF5tMWylaoWXivnIdLgY0t1/lrV\njIm26yuJRxh5+L6CPMT5FvY8MtlKtJHGspXg9WLavIh8FiRRIiBPuHcc8SkcYPmpM6m24q9lfUKj\nAtmKuSLwfuauL054h9flB4yOK+5sJ4RIoy3V3/aQJOdx8wOhwi5SEljEnHXX9QOK+w7N4oYrtwpJ\nvmJbeOMVW/DI8QXc/vhp3P54YoH0i6/aJ7znSmPdkAel1APwywD+DcDjAL5MKX10NZ6FbfLffWoK\nh6ebePxkWDVx7YWbhGuu2jmMv3n3AQDAW//3f/RVS0wudYQSDJBop/zIw0G9UhS+wWRRCyCPPAYV\nXbgtyawFICz/Fb05ZX0HgDpvIdsMVbKV64lHwbL1os1QVW0ls2RXlTbbklO45wdodMVED4QTBkX3\n7kjKZQG5jb3ankRMtnPN/oFKPc8ck0f/z9wVzAFhUJfqygmzXrGFFVNLMXnIZCv+WkqBd167C3sn\n+Bv5BWM1FAj6ejZOLrTh+IGSAF560Thajo/3fO4gPvL1xwEAP3Pdbly5Y1i6biWxbsgDACil36CU\nXkwp3Ucp/ehqPcdf/dw18cev+fh38LHbnsBIzRZWkzDsiJxyAeD2J5LTQtvxcWqx05fLSEMWeUw1\nusJKKyBdVdK/lmnKolJI2yqgYhekurBtEaGEU6/YaHQ9boWazI4dUM9QlzUJqmzVQ2db/smOrVda\nmwgb/cRNbw3FaZZ5Xvmc9WytMvIQ3LvjiV8vgEl1/NdL1RjJEua83zMro61ynJOBhDC5kYci4onJ\nQ/DcMkNGIDJH5ByMKKX48zuegRXZzfMgSpi3HR8zTafn/Z5FrVTE/s11PHysV4V4biYsx79gjJ/X\nYnjD5Vvw+2+7Ev/1ZReiZBVwzQWj+OhPXiVds9LYUAnzc4WLt9Txh//HVfjNf3o4vvaLr9qnXJcO\nQxdSUcBXHjiKjhvgjSkn3SySsaz9/RbTS92+OR5p1EqRtsshAKbBiyp4gLCZakkS2os2QiB8g/kB\nRcvx+74uccWVd0zzEsCOF8ALqLrPQ5EwF6FctGJTvSySyCN/34Iq2oo3Uk71EWvgE2nwAGAVCkLZ\nqq2QrWQVU/EmLok8KA2jh1KGlLtxol78egEi8pCvTaqt+M/ddgPF3zZftmq7PlqOj7e8cLswDzlU\nsdFxA3Q9v+f5WNJ6x6iYPIBQjfjOk5M9hQLMqv2CsQHZUhBC8HPXhz0gv/jqvcKo7mxiXUUeawk3\nXrsbX/3AywAAP3v9bi3yAIBfee1FAIBnU8NgHjuxiPHBEq7bOyZcV68UQQjfSyc0RRRHHkzb5VVM\nxb5WgsgDADYN2MJke6PrCZPl4XOLDeSSaiv+etkscdkgKECdMA/ncUtO4RrVVtKch6K/pCgoEbai\nyIMXPcRuvpKISTaIquMFQsIDzqw8WWZEqTJVLEaHKt7PHN9XUZEnik5nGl1hLhAI5UMeeTDbkZdI\n3pOsAODkfG/SmyXBeZ5Yabxg5zCmG048AhoAvn94FpvrZWznzB8RYXO9IpQTzyYMeZwBrt41gs+8\n+wB+602Xaa/5tTdcgncc2IVnp5rouD5OLrTxxe8fxW5B+SVDoUAwXLUxy4s8JKaIDPWKzScPySwP\nhgvHB4STz8LIQ7whxe6jHA8g5nklSnrHw404G4PMLRXQk62WnzAPUCDJppdFSTIMKp4EKLRkF0s4\nriLvwNYLE+auLyyLBhRSnUa1FcB3InYU1WlnQjyyyINSislFvrEhw0jV5ronyJymGV59yQQICauj\n0mDTB1XvyRfsDD3svn9kNn7e7z07g5fuGxNGO2sJRrY6Q7zuMrHUJMK2kQoaXQ+Xfvi2+NrOUTl5\nAMCu0Rqen+3tSnW8sAFLTR5Fbs5DNsuDYd/EIG5/fJLrq9Ts9stRabA3H+/ezG1XJOEkNuH9G5Js\niiCQnqonSpiLBzIBavIoFcU9IrJSXbaxW5JhUAC/VDeOWgTEA6gS5r40L1eSRR4aOY/016XRVUQP\nRUm0pSqLlpXqLrRdOH4grWLcPFTB5GK3r8dE5jTNsHO0hku21PHg873d3kzuVOVAr9oxjK1DFfzL\nQyfx1qt34O/vex7TjS5euo/fKLzWYCKPVUD2jfCqiyfwoTddqlx3wVgNz830TiCLTzmC7nKGuig8\n1zhh7RkfgBdQnJjvt1MQTRFM7iuWrZgcpSQPzsbAku2iMkyrQFAqFsSlp8rIQ2wH73iBcDMDws3Q\nCyg3eczIQxR5xLIVJ+eRJK3FpCdNmLu+8PUC5AlzHXsSgF8yGzdVSma+A4Kch6KxsVAgKFkFbsKc\nlcHKIo/N9TK6Xv+4A5nTdBqXbxvC4ycXe67NNMKpnqo8hFUgeMsLt+G7T01ivuXgD74RVk29XOAy\nsdZgyGMV8OKMa+6H33w5tg3Lk2sAsGdsAMfm2j1vMqavqiIPZc5DcsJiw3B4fSJNRc6DJSt5slVD\nUQopsxhn80lkUU/VtoRauDphLs95iDYzIDmF86QrJluJch523OfBIx61bCVLmHfcQCjzsecWTV90\n/QBEItXJckxdL/SXEvUtyBPmctkKALYMl3HbI6f6bGxizzdJ5BE362XGu8YRuSTZDgAXbRnE6cVu\nz8FspulgU63E9dPK4g1XbIXrU/zrj06i5fj4tddfjO2SKq21BCNbrQIO7NmEpz7y4zi10AEhENpN\nZLFnfAB+QHFsrh0PjDqiWdo3PljGD47O93VWL2gkzJmt9GnO/ORm10dNkvNgmzuPABodD7WSxR2d\nC6RdYjnkoSh5BeR28OoO80LkvdVvmdF15WvTJ+ns1yXSk2AYVPRa8GQrNjpXKltJZqCrylbTfTXZ\n34nKzkVW3aaK1GR9Hqp8CQC848AufPzfnwq771N2ICw/KJOP0g20zPocSN4Xom5+BjYlcLHtxhH4\nTENsApnFzqgiizX6veyi9RF1ACbyWDWUigXsHqtpEwcA7IkI4khKujrCSvs2yUv7brhyK+ZbLr73\nbG9z4mzLQckqcGd5MGxhb7DF/shDZi8OJLISTz4KHWLlm79obVNhWwEoOqZ9VbWVFZeeZtFVSF6y\nk7QfUFiCGeRAQiqyhLlUtiqIZau260s3YRkBdDXINvy6/tdbFanFjZHLyJcAwKbI0y37u2Zl7TL5\niB2MsjYhrKFWNMGQgR260rLsbNORls6nwRSDbz8ZeuOJLEnWIgx5rCOw2eaMMNjH24YrUjkCAC7f\nHv5RnsiUFc5GpyRZdcdIzUbJKuB05g1GKVX2eZQlrqdLXVfoLguEp/CSVZDLVhLJrCLx1XIiKUWE\nZJpg/3pXIXmxUzsveewGgTDqCNeqZStZ5FGU9Jh0FbKVXHo6A+KRjKBlzwyIku3ynAcgLumea4Yb\nusgWHUhsQrIHo8mlDkZrtpQwAX414XRTPNUzi6wEqXofryUY8lhHGBsooVaycDRVcXV4pok9ioYi\nIDQ2hPMAACAASURBVAndmQ8Ww2xTHWITQjA2WOprmutGjXqy6KFcLIAQfgnnUsdTnuyqJX7eQk+2\nKohzHr58Q2Okx9tIvUA8RhZIGf1xcx5USh4lSdTCZCvZvW1Bqa4f0NCdWJowFxNAs+sLbffTa3mv\nl6o4gf398BxqVdVWQLLhZg8Zcy0H9XJR+noNlouolay+fN7kUr97NQ8894bZpiPtLRHhD85xh/iZ\nwuQ81hEIIZiol2MXXSCMPG64cptybblooV4uYqbZSwAzmiH2UMXuK7dtKcpl2TNXihZ30ltIHvI/\nwaptcZsEVZ5agNqUUdScCMg30rBkWdaoJyYAz+/PJ/TcN7YY73/uJGEuvneYMBf3xchyHjIjypbj\noSaJ8mTDt8LIQ/x72rUp1P2PzvZPylT1lwDiqrz5loORAfnhhBCCzfUynzw4I2SzyMpWrh9gvuUK\nxyPw8NfvCj3vXn95/rL/1YQhj3WGicFyXEWy0HIx13Jx4bhe3mRssNRHHrNNR5lsB8JS3mzFlM7p\nHwg3LN4mvtRxsX1EfrqrlS3u/PVG10MxKtMUoWpbXDPIIKBRifHyJByHk1BOQ0oeAdWSy0Sklf7+\n3HsLLNlVTZWAPHpQ5baS10uQ85CQVq1UxPhgua8MnT13scCfBMggqsqba7lath2b6xWcXuiVZKcW\nO9g3Ie4uZxjKzLthDYebNHMewPojDQYjW60zjA8mkQdLnOvIVkAoXc02kxMWpRTTja7WKWmI4z6q\nGmzEUBGUzC51vHjMbZ77AkAryrXIcjWinEfL9UGpnPTYSZf33K4vz3nYMQGIZCud0z+PPOTWJuzf\neHIZi/xkspXs3i1HXlUni9S6nlwiBMJqwec5kYdWdCqoytORZAFg3+YBPHl6Ke7LoZRiqqErW7Gc\nR/g3enpBPhJ6I8GQxzrDRL2MqSx5jOuRx9hguSdvMdt00HL8uFxQhiGO/TQ7ZckSkkBEHpxNpe3K\nN6TkvrweEV9aIQaIR+DqREyMHLgeU748epA1vblBID1Fy07/cbWVIlnPM1WMpwguU7ZS9fNIcx6K\nUl0gLInlNbHKRtAyMDmN2d0wzCg83xiu2D6MhbaLY9FM8bmWC9en0hEJDKViAcNVO/anSt6T+lWU\n6xWGPNYZtg5XMN9ysdB28exUE4RA6YvFMDbQK1uxN4tOufBQpV+2YtUsqtNduchPXKvKP9l9lzhm\nkB3JICgGUamuTsRkS+w2eDYtPWsZ8XA2cV8hW0lzLYoub4DJVv2E11bY36fvzVsfuiIvL2rpKEp1\ngVDa5PlT6ZFHv2wVRtV6+bz90ewMtvGzsl1Zc2Eal26t4/GTi+h6Pj74hR8AUJfObwQY8lhnOHBB\n2J3+nScncdM9R7B3fEBqs53G2GAJc00n7sRl5KEbeSx13J4uXiaBqciDVzFFKdU6kfIiHkDdpwGI\nR+A2dchDYVBoS/sWFLKVYghVuJafLwHkspVVKAj6JeQuxOnn5v3Mja48YR7Pm+dJXl0fNZW0WeQX\nNyy0XaVFCE+2Wup6cPwA4xqSbLaRlZXt6kQeQFgG/8SpJXz7iam+Z9rIMOSxzvCi3aOo2hZ+55ZH\nMd9y8f5XX6S9dtNAGV5A48342FyoMWuRR8VGQJP+CgCYbcrHizJUiv3koWM7we672O4fJuUojA0B\nlmsJ+mwrGoo54oC8ZNb1aWwjwl1blBOPtFRXUfIKLK9Ul53ql0MelNIckQc/0pMVJwBhlRlv7aJO\n5MFJmDN5VuX5BqTJI/y7YJVXmxWW6gyXbRtCy/Hx374SjqX+x196ida69Q5DHusMpWIBF44PxFVE\nBzI+WTKMRyE8k66OzrUwUrOVvRZAYpyYzj/MtRwMVeR19ABfktAmj2oRjh/0baYq6QhITn/ZtVqy\nlZQ85PdmCXFRtZUscpBVWzE5aTmW7DqyVRwxZWSrrhfAD6iUbK0CQa1kcf3TWo4vjVqAM5Otipxp\nl6yoRKcYJCt7sWpG7cgj6gpf6nq4YvsQrrlAPI56I8GQxzrEr7/h4vhjHSt3hqRRMCSPY3NtragD\nSHfS9jZDjWpUs/CqreLOYYXkxrsvwPeNykJkb5KYKmpspBzpSVe2EpKHokPcKhA4Pr/Kq0AgTbgX\nBZbsqnGuQCrayhBX3FOjIIDRWimeV85AaVgWrVXcwJE2dcgDCEkiXQzCmmF1ch4xeXQT8hgoWcoS\ndIb9W5J54wJPyg0JQx7rEK+7bAvu+PVX4TPvPqDl3MnAnHuPz4dy1bG5NnaO6JFP3AyV2sSXOq7U\njTdeW7Exn9n841GuCgIQNYCF9iLLJI/YF0tWqiuTnqi04ilZy3fVlSXMgXAT5/d5yPMlAJskKLE2\nkVWJRc+dLRJgOSJZMyjA7yNqR2XRypyHbcELaE++pun48AKqRR6bBkqYSZWhTzf0BjIBSbVWnPNY\n6mgny4Ew3/OVXwylKp6TwkaFIY91ir0Tg7kHUe3eVINVIDg0FVaVnF7oYKvmuMs4AkjJEuEgKHVi\ncPtIFVNL3R5NW1e2Ep3iHV9uEQIAFUH9f9xtreX0utId5lRJ+OEIXP59ZaQFiL2tYslL6sjLf24W\nqan6eUZrpb6pfDpEDaQmAqZ+bl1nW4D1MKUjD72BTEAy+6UVlfpOLXVzkQcAXLw5dOS98dpdudat\nZxjyOI9QKhawa7SKQ9EI3KWup/0miXMeqQhCNb+cYUckjaVnPSeGd3LyEclHjkb5J4s8hMl6Sc+D\nijyW22HuBuqISRx5BNLIAQh/5uwJHtCMPAT5FkYAquhhbKDf/6wVG1jKf8/J5Mfkd7XQ0iePrPfa\ndKOLkZqtPdt7oGQlspVmg2AawzUbT/z+DXjvK/bmWreeYcjjPMP+LWFNOksojmvaKLDIYyFFHi1H\n7qjLsGOEyWWJoaPOBg6I5SNVox4glq06rg9C5FGPKHlMKY3uLU9a89YCYZ+HrNoKCEleJFstV6rT\n6U5PKsx6n1uXAEYzp38gRTyqhDlnnGwceSiaUAHWw9SNq/Jmmt1c5oS1UrEnYZ438gBCAlwPs8dX\nCoY8zjNcvWsEh6abuOWhEwD0NGEgcQ9N91w0FPPLGSaicsm0oaOjKVuVrHBT6ScPjYR5Kfx3nmxV\nlswgD+/LTx6zjVVWJixay9ZbEukIEM9P15GtKoIcEYtEZLJVMgGRn/NQ/a4Hy0W0Xb+nNFpX8kpc\njDnkoRV5lNFxg5gAphuO9t82EOZzWo4XRuQd/Yj8fIYhj/MMV+0YBgD80W1PAtAnj6IV2jCkCaCp\nUb8P8BvIdKy2gaRZL3sS10mYV4SRR6BsrLQFEY/OKFjRfQHNhHnR4lvBa8hWNY78Ez53uKFb0gZD\nggLhkYdetRUjgHTCnRGP0g0glhiTtYs5cx4A4shnWtOahKFWstDoevi3R08BOD+8qc4UhjzOM2St\nTHZoluoCwIXjA3Gy3Q9o6E2lkfPg+R6xqhRlwlxgE+Lo9HkIch4d15cmywFx3sJlo2AV5FEqFrid\n8WGfh+q5C30+TeGzaMhWosgjUCfMgfDnzr7WTLZS+ZDFzropAtCxzgcSwv3HB4/F13JFHgO90e2M\npjUJw7bhKu56ehq/+sUfAgAmNOzYz3cY8jjPsC1jgZ7ndLZ3IiEPXTkC4Ftu6FZbiXR4VzHMCRC7\nrXa8QDrXAkjGwWbzFmxjVXW3s874LFw/kHanA8BgxY674LP3VuVLqqLIw1cnzIHw9XYzxQkN3ciD\n02Wu2yNyWdRo9+iJxfjaUscFIeq1AOLJfbNNB44XYKHt5vrbvnr3SM/nJvJQw5DHeYa0THRxqrlJ\nB/smBnFqsYNG19PWwdP37C5LthKU6p5Bn0fH9ZWyFSHhrBBeriX9XCIMVYp8Ty4NM8h6pcjt1Pa0\n8jx88ogT5grysYuFvgbFluOhQOSDpAB+hBlHLQrZaqJexusu3Rz/XQHMObmIgkYvE4s8ZppOXC6c\nJ/J405XbcN2FSWe4zoyb8x1nbRgUIeR3AbwXAHML+y1K6Teif/sQgPcA8AH8CqX036Lr1wD4LIAq\ngG8A+FVKKSWElAHcBOAaADMA3kEpPXK2nn2jY9emKqq2hVt++eW51u2bCMnm0FQj3iB0bauB3shD\nVwvnGRT6AUVA1Ru4OOfhKzvb2b2zSe8lDV8sAKhXbS4B6NiqhMTDl620I48+2SqMWlTVQOHP3Bt5\nMLJVreVNQdTt8wCAwUoRjal0H5Gn1UcEJEQx3ejiRFTVl6fcdvdYDV/6hZfg8HQTVdvSsuw533G2\nJwl+glL68fQFQsjlAG4EcAWA7QC+RQi5mFLqA/gUQsK5DyF53ADgVoREM0cpvYgQciOAjwF4x1l+\n9g2Lu37jtctad9Hm0Gb62alGPL/gRZlwnwerQFAskJ5N5eRCB7ZFlOWUbKNNn2Z1RpMCyfz07EyP\nrhugolgLhKfwbOTB7LpVpBla2PdHHq5PNSKP/pG/4Vo18fDsyQG95kQgfL15UZ7qmYEk8ui4vZGH\nqiyaYaBc7I08NEvBgbDU1rYI/ui2J/Gul1wAIJRZ8+JCzdk4BqsjW70VwBcppV1K6WEAzwC4lhCy\nDcAQpfReGhZr3wTgbak1n4s+vhnA68j5VFC9RrB70wAqdgHfemwST55awo6Raqw1q5DtXTi10MaW\noYpSkihzykcTd1n5WkII15a946llq/D7F/pyHlOajqtCK3kNua1eLqLrBX0VZjrkIYq2wvG36rd7\niZMw1+nmB0SyVSg96bxd6+VeuU41gCoLJs3ddM9zKBaI9pwbg+XhbJPHBwkhPyKE/C0hhNm/7gBw\nNPU1x6JrO6KPs9d71lBKPQALANQDhg1WFKViATe+eDdufeQkJhe72JyjIiXbu3BioYPtw+pKL5vT\nMxFP1NM4zXLJw/WV+j0Abs6D2XWr+gB4w7MopdEcEnXOA0Bf9KGafw4kMmC2wkynzBeQRB5a5NEv\nW7UcT5nvYBiISJPdP49slcWe8QHt7nKD5eGMXl1CyLcIIY9w/nsrQglqL4CrAZwE8Mcr8Lyq53kf\nIeQgIeTg1NSUeoFBbuwYqSKgwPOzrVzVLNnI4/RiB1s0fLXsOPJIIoBYttLYHCq2hbbTuxnq9HkA\nYWSTPf1PLnZRK1lac9uzJnk6DYZAMhc7mzPJVSSQTZgr3HwZSsUCt7JNS7ay+yOPZtfXJg/2mjLp\nqtn1tar5ePhPGnKqwZnhjHIelNIf0/k6QshfA/jX6NPjANLuYTuja8ejj7PX02uOEUKKAIYRJs6z\nz/NpAJ8GgAMHDpxH5sjnDszj6vh8G6+8eFx7XbnYO+xntuFo2UfETYKp07DOPG4G3hTDcIKh3kk6\nO6BI10m4ZBXQXWal1mAUeWRneuvIVqLqNJ3mRCAkn2aXR1rqtbFslcl56PQCAQl5NLoeRmql0Mp9\nmeTxkn1GmDjbOGtxXZTDYPhJAI9EH98C4EZCSJkQciGA/QDup5SeBLBICLk+yme8C8DXUmveHX38\ndgB30OxoOYNzgvTGqTNoh6GUkq1cP8BS11NOIASSprZ0BMBO5DqbOE+20pGOgNDqo+1m9X+9taUo\n2Z7+M9VN9Ffs/tJmQE+2SqrTet8e4fhbNQEMVe0e/7Lwe+kmzHmylZ7zMtBPmqFspU8en3/Ptbhs\n2xA+8Jp9+IkX7lAvMDgjnM1qqz8ihFwNgAI4AuAXAIBS+igh5MsAHgPgAfhAVGkFAO9HUqp7a/Qf\nAHwGwOcJIc8AmEVYrWWwCkjPk8438yCRrdgUxNEB9eZfiCq10idplohWzbYGIvJw+iMPHT28Zlto\nO/2ncC3ysAqgtHfD1408eM12QJj3UXWnE0LCcts+WxU92WqkZuPRE73kodPN3/vcvTM5RjR+T0BS\nzssin3B8rf4W9Yr9E7j1Vye0v97gzHDWyINS+nOSf/sogI9yrh8EcCXnegfAT63oAxosC+nT/ptf\nsE3ylb1IRx7zURPXiEbkwdb2kEdbP/KolKy+klnd6KFasjC5lFmrKXnZqSqxbLmxTolx+usZXM2K\nKV7Sm/V5qDDCiTy0E+acnEer62G75swYRhRLHQ+eH6DjBrmqrQzOLUw5gkEusJwHAO0yXaA38phj\nkYeG1TbANsNEhkkiD/XGUrULPTkPSmlIABqbYbVk9fVLaMtWnNkYcZWYMvLo94hi63VyD9nXK1yr\n9tQCQh+pluP3RD25ZSu3V7bKm/Nodn00NT2xDFYPhjwMcoFVAm3TPE0ylFLJZ2YfoZPzAMLNML2Z\nsUhCN+fRTElPccWTbplvtsFQ8xTO66p3NEuMefbkQJi30Is8SF+vhm7CfKTWP7fF0bCCB5JKrzTh\nhjNf8uY83Fz2NwarA/ObMciF0ZqN/37DpXjTVVtzravZFk5Em8rh6dBccfuInqPvpgG7Z0rcYseF\nVSBaJaDjg2VMLYVDgggh2hs4EHZr82ansz4MGeLII7WJM9sP/ZxHf7Jeu1eDk2zXka2GI0JfaLmx\nvYfraTYYFguolawe4mk6vtKChmGwxMjDN+SxDmAiD4NcIITgl169DxeM5bNx2DxUjruzf/j8PC4Y\nq2nNlwZCjyLWnAeEOY+hil7X8tbhCjpuEOdJ8vSIcGUrzZzHGUUeHCNJQG8YFMDPebh+oJUwr5f7\ny4QdP4hzOCoMp3Imrh92yevmLViE0uh48f115sUYrA4MeRicE2yul7HQdtFxfTw9uYTLtg7lWjuV\nJo+Oq1VpBQBbIhuRU4uhJxXbzHU2w6ptwfEC+KnJeHlKddnXx2vZvZXDoFi/REJcfkBBNcwg2fd3\ng96chx/oleryZonrJsyBXvJgxKvbJFi0CqjYBcw0u7jjiUkAenbsBqsD85sxOCdgXlAnFzpY7Hha\nZboME0O90tNiW69RDwgjDyAkj0u21nNFHrXUYCWWzNXdSBNblWQT10+Y98tWbO1yZSvXp/FYXhlq\nnGFSIWHqWckNVW0sRAUR7Zg89LeZwbKNm+55Lv7cyFZrFybyMDgnYBHAOz99b67NHwhlK8cP4v6Q\nxY6nVWkFJONJ56LxpHlyHkkCOJFwup6fM/LoPcHr3FtGHrrJ+qxspZvor3JceXXlMqC31JcVKuSp\nmMrKVMu1JzE4+zDkYXBOcOX2UKY6tdhBVzPpzMDsz1neIw/5MBmGleuyDVwnb1GNTsx9Ek6OUt0u\nJ+ehkp4IIVFfTHLfrqe3FkDUVJl1A+5goq7OMfHmgeg2VQIZ2aqbP/LI9v6oRt8arB4MeRicE4wN\nlvH2a3bGG69uzgJIk0eYt1jU9JcCEM/tiMkjR+SRuNumksdegJKl3tCYzJPexNmmqvOzl4uFnj4P\nRmA6lUvZOeSuH2C64cTRnwy8SYS6fR5AL3kcmm4AyFfWvT01Jvlnr9+N8RwWOAbnFoY8DM4Zhip2\nfPLPFXlEm97kIos89GWrOPKI7pvkPNSbMHvG9FwO/SZBq+d+QPL8OvOxQ1PGfjPIqoYbcFa2YhHb\nVg3yyOY8KKVwNftLgLBPpO2GTYb3HprBUKUYzyfXwbbIpn+0ZuMjb7tKawStwerAkIfBOcNw6sSd\nL+eRyFaOF6Dt+mcsW+kQwFDGGj0IqNYkQACwo8gjTR5TjQ5Ga7b2VL60bNXOQR7ZUt1T0dRHncij\nUuzNebCpgDoOxkDyO15ouzg218beiUGtCYYMrPcnK7sZrD0Y8jA4ZxhORQt5ZkQPlIsYKFmYXOrg\nf/7LowD0ZS+rEBoFsk2QJbB1uq2z5MGkIK0+D441+uRiV9tMsmz3Ds/KJ1sReKnNdzYqFmBzvmUo\nFAgqKUsXVixQ0yAtIPm9LLZdtB39WR4MzAcra0dvsPZgShkMzhnSG76OhJLG5qEKnpls4K6np8PP\nczj6VopWKvLQtyeJZatIw3dyVjyF90tHHjnIo2j15jyi59cfn5s2kgyff1iTcNO2LHGvhmbVE0t4\nz7dctF1f+54Muq4DBqsPE3kYnDOkN5Jdm/JtEhP1Mp6fbcWfb82RhC3bSf6ASUGsi1uGwUzCPK7U\n0hxhC6BnIFSr66Ne1ttMs7JVrpxHRraKjSQ1o71aqRiTBiMt3QgiLVu1XX1rEoZtI/kOFQarBxN5\nGJwzXLF9GFftGMbrL9+iZS2SxuZ6Gfcfno0/z0MeFbsQd2sng6TUf/q2VUDVtuJZ4nkaDFnkkZ29\nrmvzkZ35Huc8NDbjokV6mhOZNYtukUKvbHUG5OH4WmSXhqmuWj8w5GFwzrB1uIJ/+eDLl7WWmfQx\n6FQsMVRsC53oFJ9nkBQQbrjZyGPZ9iR+AFszeVy2ew0G2Rz25STMFzsuaiVLy5IdYJFH+DOz/1dt\nzabMSLaaaTjLijxYddWBC0ZzrTM49zDkYbAusHkoIYurdgxrb4RAeIpnCfPFtoeSVdBKegO9zrp5\nekQSe5JM5KH53GGfx/Kqrap2r6Fj3o7+9OjepNFPN2EeFjecWGgvK/IAgMd+741aJo4GqwvzGzJY\nF0gnyP/nW6/ItbZiJwnzpY6LuqYjL1vbzpb5anZ5E5KxZPdpXMKrQnp4FpDkPCoa/lSjAyW0XT/1\nM+v3xQChNBYnzHPmPAgh2D5SxdHZNrpekDvyCO9V1G5KNFg9mN+QwbpAWrbK67Sa1vBDX6wcp/BS\nQjy6Y2SByGLE6iUAN4fNR7ZJsO34KBA94mJDttjQrcWOm6s0Oh15sBnueUhg+0gVh6Ya8fcy2Jgw\n5GGwLpCWrfL2DoSluky2crWS5QzpslVW/aR7Ki5lSmZ1J/IBrM8jkZ6ajodaSS9iYuN955rMoDBf\nv0UtNcektQxn3B2jVRyKBn4tJ/IwWB8w5GGwLpCWrfKSR71SRKProeP6+O5TU/kiD45spZsvKWWk\nJy/Qt/nIelsttNx4RKwKowOs1yKMPP7/9s41xq7quuO/NTN3HvYM47cZbIxxcEkcV1XAcRwEKS0I\nYysKEIXUVaVQhQZFfahRVUVQpCQq4gOt0keiJlXaoBCUllRJKSgNSnHaiE9ACDKvgPHwSINr/GA8\nNp7nnZnVD2efuWdu7p05+86cmWv7/5Ou5tyzz75n3X3mnnX2WmuvNVaezLU+JKUzM9uKjbYC2JBZ\nq6GZx7mLlIc4K8iuEYl5CoZk4drg8DhPvHocIPdCPUhupL/q88h3Q8wqj8kpZzJKecw0Ww2ORCiP\nYLYaCMpjtBznuF6WcbifHi1TarXcChNmKo/YayXOHqQ8xFmBmU0rkM6ceZZSertKnB6dmK4m+Pnd\n783dt6vUyuh4fLQVzAyZjSnmBMFhPjnFVKgIODg8zoqufGV7U7NVWv9ktDwVNWZdQWG6O4NDZVYt\nb49al5PNovuRX1uTu584u9BjgThr2P9nv8krb5+OXmCYPrG/fjyxw+fJ8ZRSy2yV2+fRVvF5xBRz\ngsoq9vHJKTpbWhkcKdOXM3VH6hxP80ONTsSZrbraW3FPAgQGhsenZzJ5uWxdNwD33rI9ylEvzi6k\nPMRZw9qeDtb2rI3ulyqP/mNnWLGslNt0BJWncIhXHqVMtFWaJTZPQkaopE8ZK0/RWWpNfB45fTWd\npRZaW4wzYXHjyHik8sjUMT85ND5djTEvq7s76L93T9RaHHH2oasrznlSc89rx8+wJmJlOqRrRBLz\nUUxiREhnHonSSGceMelJIInwcvcon4eZ0d2RBAm4O2MTU9NFsfKQrekxMDw+7YCPQYrj3EdXWJzz\n9Iab7pFTo6yOvBGmT+FjE1NRiREBOlpbGJ+YOWuJibaCxF8xNjHF5JSzPKKed3dHklYldbp3RkRL\npec5cmqE148PRY+ZOD+Yl/Iws1vN7CUzmzKzHVVtd5lZv5kdNLPdmf1XmtkLoe0rFgzYZtZhZt8N\n+58ys82ZPreZ2aHwum0+Movzj63ruklTSq2JiLQC6CpVytiORawwh6QgVKo0JoLjO2/f6RK4Y+Xp\nkN28fdP+Z8bKlZXpObIIp6QLMv9u/yEArr083lQozn3mO/N4Efg48ER2p5ltA/YB7wduBL5mZul/\n79eBzwBbw+vGsP924KS7Xwb8LXBf+KxVwBeBDwE7gS+ambKmidz0dJbYdlFSCnVN7MwjY8KJSU+S\nHleuNlvl7NvbVamLMRYKWHVE+C1Ss1VMHZCUtNbKz35xkhXLSvz2e9fn7ivOH+alPNz9ZXc/WKPp\nJuAhdx9z9zeAfmCnmfUBF7j7k+7uwLeBmzN9Hgjb3wOuC7OS3cDj7j7g7ieBx6koHCFysXn1coCG\nfB4QlMfkFKVWy11XO7vOo2K2ytd35fJKuO20uSxi5tEdsgGnK+tjQnXT1fzD45Nc1KviTKI2Rfk8\nNgC/zLx/K+zbELar98/o4+4TwClg9SyfJURu0pDRGL8BzIw8Gi1P5ioilZKt6Bc788jmp4qN8oIw\n8xidqJitYlaYl1qn14qosp+ox5y/JDPbD1xYo+lud39k4UVqHDO7A7gDYNOmTUssjWgmujuSm2da\nnyIvqdlqtDzJqZFyVFnVns4Sx06Pcmq4nAnVzWu2Smce41EJGSvnbuPdsYmoCoRZ1l/QycnhMhtU\n2U/UYc7/Rne/3t2313jNpjgOAxdn3m8M+w6H7er9M/qYWRvQC7wzy2fVkvUb7r7D3XesXSsnn6jw\nB9ds4ar3rOZ3Phj3UNGVMVsNRuSXAvjElRsYGp/kJ68ey8w88qeC7yq1zjRbNTDzGIqsx5GyPvg9\nNPMQ9SjKbPUosC9EUF1K4hh/2t2PAKfNbFfwZ3wKeCTTJ42k+gTw38Ev8iPgBjNbGRzlN4R9QuRm\n/QWd/MtndkXltYKMz2N8MkkREqE8+oK/YDTjbM+7zgOS2cepkXJ0WhSA7o4SI+VJ3hkaSz4rQm6o\nOM2lPEQ95rXC3MxuAb4KrAX+08wOuPtud3/JzP4N+DkwAfyRu6f5pf8Q+BbQBTwWXgDfBB40s35g\ngCRaC3cfMLN7gJ+G4/7S3SvFrIUokGy01eBw/hQhkF3oNzVdUjbG7NVRSnJjNRKq2x1Cff9vKeN+\nJgAACIFJREFUcDT6vADre6U8xOzMS3m4+8PAw3Xa7gXurbH/GWB7jf2jwK11Put+4P75yCpEI6Rm\nq9OjE7x+YogPv2d17r5paG125hGz4K4UQn3HGwjV7QmBAYcHh4F45XHZum7aW1vYvHpZVD9x/qDc\nVkLMQqo8/j4smIshTQkyVp5ipDxJW4tF1RJPo7Vi15dAZeZx+OQIpVaLdph/9Nf7+ODmlayODG0W\n5w9KTyLELKRmqxNnEt/Bnu19ufu2tSYJCscmphgYSnJE5V0jAtDeaonZqsFQXYDDgyP0dpWiMxG3\ntNi0z0aIWkh5CDEL2Qinvt5Ort4aV5+ioy0pJ/vO0Hh0jqi0HshYI9FWYebx6tEzUZUThciLlIcQ\ns2BWMfnELjCE5IY/PD7JwbffnQ5/zUuptYXyhDcUqtuTkXWDnN6iAKQ8hJiDNElhd0PKo5Wn3xjg\nfweGueUDcYkRSm1VPo8I5bE+U83vL/a+L+q8QuRBykOIOUjzYTWkPEotHDmVhMtuWbs8qu98fB5Z\nx/wlipgSBSDlIcQcpGVrG5t5tEyXg40tyZr6PBqJtsqyrF1BlWLh0X+VEHOQzjwa83lUQmRT81de\n0nUex8+M0ttViq7O9+DtOzl6eiyqjxB5kfIQYg7WTM884tZKwEwndyPK440TQ7w7Wm7I6X3NVuV3\nE8Uhs5UQc7BxZeIzaGTBXJobq72tJSqdO1SSKJ44M640IaLp0MxDiDn4vQ9tYvuGXrb1XRDdN515\n9DRg8souKNy4UspDNBdSHkLMQVtrC1de0ljl49RPEmuygkr1QaiYzoRoFmS2EqJAUnNTI872sYzy\niE1sKETRSHkIUSAXr2pceYxPTE5vK8WIaDakPIQokLSC38rIYkygmYdobqQ8hCiQ37p8Hbu2rOLO\nPfEpQtIiUAArlsnnIZoLOcyFKJAVy9p56I4PN9R3LGO20sxDNBuaeQjRpGT9JMvb4xcoClEkmnkI\n0aR8+ZO/wVd/3M+6ng7W9qiin2gupDyEaFLW9XRyz83bl1oMIWois5UQQohopDyEEEJEI+UhhBAi\nGikPIYQQ0Uh5CCGEiEbKQwghRDRSHkIIIaKR8hBCCBGNuftSy1AIZnYc+EWD3dcAJxZQnIWiWeWC\n5pVNcsUhueJoVrmgcdkucfe1cx10ziqP+WBmz7j7jqWWo5pmlQuaVzbJFYfkiqNZ5YLiZZPZSggh\nRDRSHkIIIaKR8qjNN5ZagDo0q1zQvLJJrjgkVxzNKhcULJt8HkIIIaLRzEMIIUQ0563yMLNbzewl\nM5sysx1VbXeZWb+ZHTSz3XX6rzKzx83sUPi7sgAZv2tmB8LrTTM7UOe4N83shXDcMwstR43zfcnM\nDmdk21vnuBvDGPab2Z1FyxXO+ddm9oqZPW9mD5vZijrHFT5mc31/S/hKaH/ezK4oQo4a573YzP7H\nzH4efgN/WuOYa83sVOYaf2GRZJv1uizFmJnZ5ZlxOGBmp83sc1XHLMp4mdn9ZnbMzF7M7Mt1L1rw\n36O7n5cv4H3A5cBPgB2Z/duA54AO4FLgNaC1Rv+/Au4M23cC9xUs75eBL9RpexNYs4hj9yXgz+c4\npjWM3RagPYzptkWQ7QagLWzfV++6FD1meb4/sBd4DDBgF/DUIl2/PuCKsN0DvFpDtmuBHyzW/1Te\n67JUY1Z1Xd8mWQux6OMFfAS4Angxs2/Oe1ERv8fzdubh7i+7+8EaTTcBD7n7mLu/AfQDO+sc90DY\nfgC4uRhJk6ct4JPAvxZ1jgLYCfS7++vuPg48RDJmheLu/+XuE+Htk8DGos9Zhzzf/ybg257wJLDC\nzPqKFszdj7j7s2H7XeBlYEPR510glmTMMlwHvObujS5Anhfu/gQwULU7z71owX+P563ymIUNwC8z\n79+i9g9rvbsfCdtvA+sLlOka4Ki7H6rT7sB+M/uZmd1RoBxZ/iSYDe6vM03OO45F8mmSp9RaFD1m\neb7/ko+RmW0GPgA8VaP5qnCNHzOz9y+SSHNdl6Ues33Uf4hbivGCfPeiBR+3c7qGuZntBy6s0XS3\nuz+yUOdxdzezhsLWcsr4u8w+67ja3Q+b2TrgcTN7JTyhNMxscgFfB+4h+aHfQ2JS+/R8zrdQsqVj\nZmZ3AxPAd+p8zIKP2dmGmXUD3wc+5+6nq5qfBTa5+5ng0/oPYOsiiNW018XM2oGPAXfVaF6q8ZrB\nfO5FsZzTysPdr2+g22Hg4sz7jWFfNUfNrM/dj4Rp87EiZDSzNuDjwJWzfMbh8PeYmT1MMkWd1w8u\n79iZ2T8BP6jRlHcco8kxZr8PfBS4zoPBt8ZnLPiYVZHn+xc2RnNhZiUSxfEdd//36vasMnH3H5rZ\n18xsjbsXmscpx3VZsjED9gDPuvvR6oalGq9AnnvRgo+bzFa/yqPAPjPrMLNLSZ4enq5z3G1h+zZg\nwWYyVVwPvOLub9VqNLPlZtaTbpM4jF+sdexCUWVjvqXO+X4KbDWzS8MT2z6SMSsUM7sR+DzwMXcf\nrnPMYoxZnu//KPCpEEG0CziVMT8URvChfRN42d3/ps4xF4bjMLOdJPeKdwqWK891WZIxC9S1ACzF\neGXIcy9a+N9j0dEBzfoiuem9BYwBR4EfZdruJolMOAjsyez/Z0JkFrAa+DFwCNgPrCpIzm8Bn63a\ndxHww7C9hSRy4jngJRLTTdFj9yDwAvB8+Afsq5YrvN9LEsnz2mLIFc7ZT2LbPRBe/7hUY1br+wOf\nTa8nScTQP4T2F8hE/RU8RleTmByfz4zT3irZ/jiMzXMkgQdXLYJcNa9Lk4zZchJl0JvZt+jjRaK8\njgDlcP+6vd69qOjfo1aYCyGEiEZmKyGEENFIeQghhIhGykMIIUQ0Uh5CCCGikfIQQggRjZSHEEKI\naKQ8hBBCRCPlIYQQIpr/B6D+zdfha8DnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr1.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'full'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Full mode does a full cross-correlation." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "639" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also create CrossCorrelation Object by using Cross Correlation data. This can be useful in some cases when you have correlation data and want to calculate time shift for max. correlation. You need to specify time resolution for correlation(default value of 1.0 seconds is used otherwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cs = CrossCorrelation()\n", + "cs.corr = np.array([ 660, 1790, 3026, 4019, 5164, 6647, 8105, 7023, 6012, 5162])\n", + "time_shift, time_lags, n = cs.cal_timeshift(dt=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.83333333333333348" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvSeglQCAECCAtoHRICAGUtaCyrgoiIiod\nQQQLrhXd1d11i667rhUQFQhKFUGwoYhtpaVRQhEIIpBICb2XJOf3x9ys84tIEpjJnUzO53nmmXfe\ne9+ZM0A4ee99i6gqxhhjTFGEuB2AMcaYkseShzHGmCKz5GGMMabILHkYY4wpMksexhhjisyShzHG\nmCKz5GGMMabILHkYY4wpMksexhhjiqyM2wH4S61atbRRo0Zuh2GMMSVKSkrKPlWNKOi8oE0ejRo1\nIjk52e0wjDGmRBGR7YU5zy5bGWOMKTJLHsYYY4rMkocxxpgis+RhjDGmyCx5GGOMKTJLHsYYY4rM\nkocxxpgi82vyEJGHRGS9iKwTkZkiUkFEwkVksYhscZ5reJ0/TkTSRWSTiFzvVR8jImnOsVdERPwZ\ntzGmYJ+k7WLDT0fcDsO4xG/JQ0SigAeAWFVtDYQC/YEngCWqGg0scV4jIi2d462AnsB4EQl13m4C\nMAKIdh49/RW3MaZgM1buYPT0VPpMWMonabvcDse4wN+XrcoAFUWkDFAJ+AnoBSQ4xxOA3k65FzBL\nVU+r6jYgHYgTkbpAmKquUFUFpnm1McYUs6++38sfF6yje/MIWtWrxujpqbz+VTqeH09TWvhteRJV\nzRSRfwE7gJPA56r6uYhEqmreryq7gUinHAWs8HqLDKfurFPOX2+MKWbrMg8zZkYql9apyoS7OhIa\nIjz+/lpe+GwT2/Yd5++3tKFcGbuVWhr487JVDTy9icZAPaCyiAzwPsfpSfjs1xURGSkiySKSnJWV\n5au3NcYAGQdPMHRqEjUqlWPykE5ULl+GCmVDeen29oztEc3clAwGvr2Sg8fPuB2qKQb+/BWhB7BN\nVbNU9SwwD+gK7HEuReE873XOzwQaeLWv79RlOuX89b+gqpNUNVZVYyMiClwU0hhTSIdPnmXolCRO\nnc1hytBORIZV+N8xEWFsj+a83L89q3Ycos+EZWzbd9zFaE1x8Gfy2AHEi0glZ3TUNcBGYCEw2Dln\nMLDAKS8E+otIeRFpjOfGeKJzieuIiMQ77zPIq40xxs/OZOcy6p0Uftx/nDcGxtA8suo5z+vVPooZ\nIzpz+ORZer++lOVb9xdzpKY4+S15qOpKYC6QCqQ5nzUJeA64VkS24OmdPOecvx6YA2wAFgFjVDXH\nebvRwFt4bqJvBT71V9zGmJ+pKo+/v5blP+znn33b0rVprfOeH9sonA9GdyOiankGTV7JnOSdxRSp\nKW4SrCMkYmNj1fbzMObi/PvzTbz6ZTqPXNec+66OLnS7wyfPMmZ6Kt+l72P0lU155LoWhITY9KyS\nQERSVDW2oPNsWIQx5pxmJ+3g1S/T6d+pAWOualakttUqlmXK0E7c2bkh47/eyn0zUzl5JqfghqbE\nsORhjPmFbzZn8eR8z1yOZ3u35kIWdSgbGsLferfmD7+7jE/X7ab/pOXsPXLKD9EaN1jyMMb8P+t/\nOszod1NoEVmV8Xd1pGzohf83ISLcfUUTJg2MZcveY/R+fSkbd9mSJsHAkocx5n9+OnSSYVOTCHMu\nO1Up75t5xNe2jGTOPV3IVeg7YRlffb+34EYmoFnyMMYAcOSUZy7HidO/nMvhC62jqvHBmG40qlWZ\n4QlJTF26zafvb4qXJQ9jDGeyc7n33RS2Zh1j4sAYLq0T5pfPqVOtAu+N6kKPyyL504cbeHrBOrJz\ncv3yWca/LHkYU8qpKuPmpbE0fT/P3dqWbs3OP5fjYlUqV4aJA2K4p3sTpi3fzvCEZI6eOuvXzzS+\nZ8nDmFLupS+28H5qBg/1aE7fmPoFN/CBkBBh3A2X8Y8+bViavo++E5aTcfBEsXy28Q1LHsaUYnOS\nd/Lyki30janPA9cUbS6HL9wR15CEYXH8dPgkvV9fSuqOg8Ueg7kwljyMKaX+uyWLJ+elcUV0Lf7R\np80FzeXwhW7NajF/dDcqlStD/0kr+HDNT67EYYrGkocxpdDGXUe4991UmtWuctFzOXyhWe0qfDCm\nG22jqnH/zFW89uUW21wqwFnyMKaU2XX4JEOnJFGlfBmmDO1E1Qpl3Q4JgPDK5Zg+ojO3dIjiX59v\n5uH31nA625Y0CVR+20nQGBN4jjpzOY6dzmbOPV2oW62i2yH9P+XLhPJiv3Y0rlWZFxdvJuPASSYO\njCG8cjm3QzP5WM/DmFLibE4uo6enkr73GOPv6kjLev6Zy3GxRIQHronmlTs6sDrjELeMX8rWrGNu\nh2XyseRhTCmgqjw1P43/btnH3/u0oXvzwN9p8+Z29Zg5Ip5jp7K55fWlLEvf53ZIxoslD2NKgVe/\nTGdOcgYPXBNNv9gGBTcIEDGX1OCDMd2IDKvAoMmJzE7a4XZIxmHJw5gg935KBi8u3kyfjlE81KPw\nGzoFigbhlXh/dFe6NK3J4++n8Y9PN5KbayOx3GbJw5ggtjR9H4+/v5auTWvyXJ+2rs3luFhhFcoy\nZUgnBsQ35I1vfuDe6SmcOJPtdlilmt+Sh4i0EJHVXo8jIjJWRMJFZLGIbHGea3i1GSci6SKySUSu\n96qPEZE059grUlJ/AowpRpt2H2XUOyk0jajCxIExlCtTsn9XLBMawrO9WvP0jS35fMMebn9jBXts\ncynX+O1fk6puUtX2qtoeiAFOAPOBJ4AlqhoNLHFeIyItgf5AK6AnMF5EQp23mwCMAKKdR09/xW1M\nMNhz5BRDpyRSqXwoU4Z2IixA5nJcLBFh2OWNeXNgLFuzPJtLrf/psNthlUrF9avINcBWVd0O9AIS\nnPoEoLdT7gXMUtXTqroNSAfiRKQuEKaqK9Qz5XSaVxtjTD7HTmczdEoSh0+eZfKQTtSrHlhzOXyh\nR8tI3hvVBYDbJi5n0brdLkdU+hRX8ugPzHTKkaq6yynvBiKdchSw06tNhlMX5ZTz1xtj8jmbk8uY\n6als2nOU1+/qSKt61dwOyW9a1avGgjHdiK5dhVHvpvDCZ9+TYzfSi43fk4eIlANuBt7Lf8zpSfjs\nb1tERopIsogkZ2Vl+eptjSkRVJU/frCObzZn8bferbmyRW23Q/K72mEVmH1PF26PbcDrX21l2NQk\nDp+wvUGKQ3H0PH4LpKrqHuf1HudSFM5z3mbGmYD3APT6Tl2mU85f/wuqOklVY1U1NiIi8CdBGeNL\n47/eyqykndx3VTP6xzV0O5xiU6FsKM/d2oa/3dKaZVv3cdNr37Fx1xG3wwp6xZE87uDnS1YAC4HB\nTnkwsMCrvr+IlBeRxnhujCc6l7iOiEi8M8pqkFcbYwzwwapMXvhsE7d0iOLh65q7HU6xExHu6nwJ\ns0Z24dTZHPqMX8ZCW9rdr/yaPESkMnAtMM+r+jngWhHZAvRwXqOq64E5wAZgETBGVfOW1BwNvIXn\nJvpW4FN/xm1MSbJs6z4enbuGLk1q8vytJXcuhy/EXFKDj+6/nFb1wnhg5ir+9vEG2yPdTyRY18yP\njY3V5ORkt8Mwxq827znKrROWUSesAnPv7Uq1isExJPdincnO5a8fb2Da8u10bVqTV+/oQM0q5d0O\nq0QQkRRVjS3ovJI9a8iYUmzvkVMMnZJEhbKeuRyWOH5WrkwIf+nVmn/d1o7k7Qe5+bWlpGXYfBBf\nsuRhTAl0/HQ2wxKSOHjiDFOGdKJ+jUpuhxSQ+sbU5/1RXQG4deIy3kveWUALU1iWPIwpYbJzcrlv\nRiobdx3l9Ts70joqeOdy+EKb+tVYeF83Yi+pwaNz1/L0gnWcybb7IBfLkocxJYiq8szC9Xy1KYtn\ne7XmqkuDfy6HL9SsUp5pw+IYcUVjpi3fzp1vrmDvUVsX62JY8jCmBHnrv9uYvnIHo37TlDs7l565\nHL5QJjSEp37Xklfu6MD6n45w4yvfkbL9oNthlViWPIwpIRat28XfP93I79rU5bHrW7gdTol1c7t6\nzBvdlQplQ+k/aTnTV24nWEed+pMlD2NKgNU7DzF29mraN6jOv/u1IySk9M7l8IXL6oax8L5udG1a\ni6fmr+OJ99M4dTan4Ibmfyx5GBPgdh44wd0JSURULc+bg2KpUDa04EamQNUrlWPykE7cd1UzZifv\n5PY3lvPToZNuh1ViWPIwJoAdPnmWYVOTOJOdy5QhnahlE918KjREeOT6FkwcEMPWrOPc9Op3rPhh\nv9thlQiWPIwJUHnLq2/bd5yJA2NoVruq2yEFrZ6t6/DBmK5Uq1SWu95ayeTvttl9kAJY8jAmAOUt\nr/5d+j7+0acNXZvWcjukoNesdlUWjOnG1ZfW5i8fbeCh2as5ecbug/waSx7GBKA3vv3hf8ur3xbb\noOAGxieqVijLGwNiePja5ixY8xO3TljGzgMn3A4rIFnyMCbAfJK2i+c+/Z6b2tXj99eWvuXV3RYS\nItx/TTSTh3Qi4+AJbnrtO77dbJvL5WfJw5gAkrrjIA/NXk3MJTV4oW9bG5Lroqta1GbhfZdTJ6wC\nQ6YkMv7rdLsP4sWShzEBYueBE4xISKZOtQpMGhhjQ3IDQKNalZk3uis3tKnLPxdtYsyMVI6dznY7\nrIBgycOYAHD4xFmGTEkkO1eZPKST7T0RQCqVK8Ord3TgyRsuZdG63dzy+lJ+yDrmdlius+RhjMvO\nZOdy7/QUdhw4wRsDY2gaUcXtkEw+IsLI7k15Z3hn9h07Ta/XlrJk4x63w3KVv7ehrS4ic0XkexHZ\nKCJdRCRcRBaLyBbnuYbX+eNEJF1ENonI9V71MSKS5hx7RUrzPpsmqKgqT81PY9nW/TzXpy3xTWq6\nHZI5j27NavHh/ZdzSa1KDE9I5j+LN5ObWzrvg/i75/EysEhVLwXaARuBJ4AlqhoNLHFeIyItgf5A\nK6AnMF5E8i76TgBGANHOo6ef4zamWIz/eivvpWTwwDXR3BpT3+1wTCHUr1GJuaO60qdjFC8v2cKI\nackcOXXW7bCKnd+Sh4hUA7oDbwOo6hlVPQT0AhKc0xKA3k65FzBLVU+r6jYgHYgTkbpAmKquUM9Q\nh2lebYwpsT5c8xMvfLaJXu3r8VCPaLfDMUVQoWwo/76tHX++uRXfbM6i12tL2bznqNthFSt/9jwa\nA1nAFBFZJSJviUhlIFJVdznn7AYinXIU4L1HZIZTF+WU89cbU2KlbD/Aw++toVOjGvyzb1vsSmzJ\nIyIM7tqIGSPiOXoqm96vL2XGyh2lZjivP5NHGaAjMEFVOwDHcS5R5XF6Ej77kxaRkSKSLCLJWVk2\nqccEpu37jzNiWgpR1SsyaWAs5cvYkNySLK5xOB/dfzntG1TnyflpDJqcSGYpWJ3Xn8kjA8hQ1ZXO\n67l4kske51IUzvNe53gm4L0OQ32nLtMp56//BVWdpKqxqhobERHhsy9ijK8cOnGGoVOTyFXPkNwa\nlcu5HZLxgTrVKvDu8M4827s1KdsPcv1/vmVmYnD3QvyWPFR1N7BTRPK2PLsG2AAsBAY7dYOBBU55\nIdBfRMqLSGM8N8YTnUtcR0Qk3hllNcirjTElxpnsXO55J4WMAyeZNDCWxrUqux2S8aGQEGFg/CV8\nNrY7betXY9y84O6F+Hu01f3AdBFZC7QH/g48B1wrIluAHs5rVHU9MAdPglkEjFHVvCUtRwNv4bmJ\nvhX41M9xG+NTqsoT89ayctsB/tm3LXGNw90OyfhJg/BKpaIXIsH2hfLExsZqcnKy22EYA8ArS7bw\n4uLNPNSjOQ/ayKpSY+eBEzw2dy3Lf9jPFdG1eO7WtkRVr+h2WOclIimqGlvQeTbD3Bg/W7A6kxcX\nb6ZPhygeuKaZ2+GYYtQgvBLT7+7Ms71a/a8XMitIeiGWPIzxo6QfD/Doe2vp3Dicf9zaxobklkIh\nIcLALo34bGx3WkeF8USQ3Aux5GGMn2zbd5yR05KpX6MibwyMsSG5pVyD8ErMuDs+aHohljyM8YOD\nx88wbGoSAJOHdKJ6JRuSa87dCxk8JYmfSmAvxJKHMT52OjuHe95JIfPgSd4cFEsjG5Jr8snrhfyl\nVyuSfzzA9f/5ltlJJasXYsnDGB9SVR6fu5bEHw/wwm1tiW1kQ3LNuYWECIO6NGLRg91pFRXG4++n\nMaQE9UIseRjjQy99sYUPVv/EI9c1p1d7W4LNFKxhzZ97IYnbSk4vxJKHMT7yfkoGLy/ZQt+Y+oy5\nyobkmsLL64V8NrY7Lev93AvZdThweyGWPIzxgRU/7OeJeWvp0qQmf7/FhuSaC9OwZiVmjojnzzd7\neiHXvfgtc5J2BmQvxJKHMRdpa9Yx7nknhQbhlZg4IIZyZezHyly4kBDPUu+Lxl5By3phPPb+2oDs\nhdi/cmMuwgFnSG6ZEGHqkDiqVSrrdkgmSFxSs/L/74X851vmJAdOL8SShzEX6NTZHEZOS2bX4VNM\nGhRLw5qV3A7JBBnvXshldcN4bO5ahk4NjF6IJQ9jLkBurvLo3LUkbz/Ii/3aEXNJDbdDMkHskpqV\nmTUinj/d1JKVPwRGL6RMYU4SkfLArUAj7zaq+hf/hGVMYPvPF5v5cM1PPNazBTe2red2OKYUCAkR\nhnRrzFWX1ubRuWt5bO5aPk3bxT/6tKVOtQrFH08hz1sA9AKy8Wwnm/cwptR5L3knr36Zzu2xDbj3\nN03dDseUMt69kBU/HODa/3zDey70Qgq1n4eIrFPV1sUQj8/Yfh7GH5al72PQ5EQ6Nwln6tA4yoba\nlV/jnu37j/Poe54VDa5qEeGTXoiv9/NYJiJtLioiY0q4LXuOMurdFBrVqsz4u2IscRjXXVKzMrNG\nxvPMTS1Z/sP+Yu2FFPZf/+VAiohsEpG1IpLmbC1rTKmweuchbp+0gnJlQpkypBPVKtqQXBMYQkKE\nod0as+jB7lxWJ4w/LljH7iOn/P65hbphDvz2Qt5cRH4EjgI5QLaqxopIODAbz833H4F+qnrQOX8c\nMNw5/wFV/cypjwGmAhWBT4AHNVAGO5ug99WmvYx+N5VaVcsxbVhnGoTbkFwTeBrV8vRCNu4+Qt1q\n/t/qtlA9D1XdDlQHbnIe1Z26wrhKVdt7XUN7AliiqtHAEuc1ItIS6A+0AnoC40Ukb/ecCcAIINp5\n9CzkZxtzUeamZHB3QjJNIirz/r1daWzLq5sAFhIitKpXrXg+qzAniciDwHSgtvN4V0Tuv8DP7AUk\nOOUEoLdX/SxVPa2q24B0IE5E6gJhqrrC6W1M82pjjF+oKhO+3soj760hvkk4s0bGU7tq8Q+HNCZQ\nFfay1XCgs6oeBxCR54HlwKsFtFPgCxHJAd5Q1UlApKruco7vBiKdchSwwqtthlN31innrzfGL3Jz\nlb98tIGpy37k5nb1+Ndt7Wy9KmPyKWzyEDz3IfLkOHUFuVxVM0WkNrBYRL73PqiqKiI+u3chIiOB\nkQANGzb01duaUuR0dg6/n7OGj9fuYvjljXnqhssICbEVco3Jr7DJYwqwUkTmO697A28X1EhVM53n\nvU7bOGCPiNRV1V3OJam9zumZQAOv5vWdukynnL/+XJ83CZgEnnkehfxuxgBw5NRZRk5LZsUPB3jq\nhssY0b2J2yEZE7AKe8P8RWAocMB5DFXVl87XRkQqi0jVvDJwHbAOWAgMdk4bjGf2Ok59fxEpLyKN\n8dwYT3QucR0RkXjxbJIwyKuNMT6x98gpbn9jBck/HuSl29tb4jCmAOfteYhImKoecYbX/ug88o6F\nq+qB8zSPBOY7m+KUAWao6iIRSQLmiMhwYDvQD0BV14vIHGADnmVQxqhq3qWy0fw8VPdT52GMT2zN\nOsagtxM5dOIMk4d0onvzCLdDMibgnXd5EhH5SFVvFJFteG5+/+8QnlsWAfvrmS1PYgpj1Y6DDJua\nRIgIU4fG0aZ+8QxzNCZQFXZ5kvP2PFT1Rue5sa8CMyZQfPn9HkZPTyUyrAIJQ+NoZHM4jCm0ws7z\nWFKYOmNKijnJOxkxLYXo2lWZO6qrJQ5jiqigex4VgEpALRGpwc/Dc8OwuRamBFJVxn+9lRc+28QV\n0bWYMCCGKuULO+jQGJOnoJ+ae4CxQD0ghZ+TxxHgNT/GZYzP5eQqf/5wPdOWb6d3+3r8s69N/jPm\nQhV0z+Nl4GURuV9VC5pNbkzAOnU2h4dmr+bTdbsZ2b0JT/S81Cb/GXMRCtVfV9VXRaQ10BKo4FU/\nzV+BGeMrh096Jv+t3HaAP/zuMu6+ImAHCRpTYhR2D/NngCvxJI9P8CzR/h2eRQqNCVi7D59iyJRE\ntmYd4+X+7enV3m7VGeMLhb1T2BdoB6xS1aEiEgm867+wjLl46XuPMnhyEodOnGHKkDguj67ldkjG\nBI3CJo+TqporItkiEoZnPaoGBTUyxi0p2w8yPCGJMiEhzL6nC62jbPKfMb5U2OSRLCLVgTfxjLo6\nhmdJdmMCzhcb9nDfzFTqhFVg2rDONKxpO/8Z42uFvWE+2ilOFJFFeDZnsj3MTcCZnbSDJ+evo1W9\nMCYP6UStKuXdDsmYoFTQJMGO5zumqqm+D8mYolNVXvsynX8v3kz35hFMuKsjlW3ynzF+U9BP17/P\nc0yBq30YizEXJCdXeXrBOqav3EGfDlE837ctZUNt8p8x/lTQJMGriisQYy7EqbM5PDhrFZ+t38Oo\n3zTl8Z4tcLYBMMb4UWHneVQCfg80VNWRIhINtFDVj/wanTHncfjEWUZMSybxxwM8fWNLhl1uiz8b\nU1wK27efApwBujqvM4G/+iUiYwph1+GT3PbGMlbtPMgrd3SwxGFMMSvsHcWmqnq7iNwBoKonxK4N\nGJds2XOUQZMTOXoqm4ShcXRtZpP/jCluhU0eZ0SkIs5ugiLSFDjtt6iM+RXJPx5geEIy5cqEMPue\neFrVs8l/xrihsJetngEWAQ1EZDqwBHisMA1FJFREVonIR87rcBFZLCJbnOcaXueOE5F0EdkkItd7\n1ceISJpz7BXr9ZROn6/fzV1vrSS8cjnm3dvVEocxLioweTj/UX8P9AGGADOBWFX9upCf8SCw0ev1\nE8ASVY3Gk4SecD6nJdAfaAX0BMaLSKjTZgIwAoh2Hj0L+dkmSMxYuYNR76ZwaZ2qzB3VhQbhNmvc\nGDcVmDxUVYFPVHW/qn6sqh+p6r7CvLmI1Ad+B7zlVd0LSHDKCUBvr/pZqnpaVbcB6UCciNTFM6N9\nhRPLNK82Jshl5+Ty90828uT8NLo3j2DmyHhq2qxxY1xX2HseqSLSSVWTivj+L+G5vFXVqy5SVXc5\n5d1ApFOOAlZ4nZfh1J11yvnrf0FERgIjARo2bFjEUE2gyTp6mvtmpLJy2wEGxDfkmZta2eQ/YwJE\nYZNHZ+AuEdkOHMezHa2qattfayAiNwJ7VTVFRK481zmqqiKiRYz5V6nqJGASQGxsrM/e1xS/lO0H\nGD09lcMnz/Jiv3b06Vjf7ZCMMV4KmzyuL/iUX+gG3CwiN+DZfTBMRN4F9ohIXVXd5VyS2uucn8n/\nX+a9vlOX6ZTz15sgpKokLPuRv368kXrVKzLv3jha1gtzOyxjTD6FuWEeCnymqtvzP87XTlXHqWp9\nVW2E50b4l6o6AFgIDHZOGwwscMoLgf4iUl5EGuO5MZ7oXOI6IiLxzs37QV5tTBA5cSabsbNX86cP\nN/Cb5hF8eN/lljiMCVAF9jxUNccZOttQVXf44DOfA+aIyHBgO9DP+Zz1IjIH2ABkA2NUNcdpMxqY\nClQEPnUeJohs23ecUe+ksHnvUR65rjmjr2xGSIiNyDYmUIlnAFMBJ4l8C3QAEvHc8wBAVW/2X2gX\nJzY2VpOTk90OwxTCZ+t388icNZQJFV7u34HuzSPcDsmYUktEUlQ1tqDzCnvP448XGY8xv5Cdk8u/\nF29mwtdbaVu/GuPv6kj9GjZ/w5iSoLA7CX4jIpFAJ6cqUVX3nq+NMeez79hpHpi5imVb93NHXEOe\nuaklFcqGFtzQGBMQCrskez/gBeBrPMN0XxWRR1V1rh9jM0Fq1Y6DjJ6eyv7jZ/hn37b0i21QcCNj\nTEAp7GWrp4BOeb0NEYkAvgAseZhCU1Wmr9zBnz9cT2RYBebd25XWUbY+lTElUWGTR0i+y1T7Kfyi\nisZw8kwOT32QxrzUTK5sEcFLt7eneqVybodljLlAhU0ei0TkMzyLIgLcDnzin5BMsNm+/zj3vJPC\npj1HGdsjmgeujrZhuMaUcOdNHiLSDM9aVI+KSB/gcufQcmC6v4MzJd+SjXsYO3s1ISJMHtKJq1rU\ndjskY4wPFNTzeAkYB6Cq84B5ACLSxjl2k1+jMyVWTq7y0hebefXLdFrVC2PigBhbRt2YIFJQ8ohU\n1bT8laqaJiKN/BKRKfEOHj/DA7NW8d8t+7gtpj7P9m5tw3CNCTIFJY/q5zlW0ZeBmOCwNuMQ976b\nStbR0/yjTxv6d2qAbfxoTPApaMRUsoiMyF8pIncDKf4JyZRUsxJ30HfCcgDeG9WFO+IaWuIwJkgV\n1PMYC8wXkbv4OVnEAuWAW/wZmCk5Tp3N4ekF65iTnMEV0bV4uX8HwivbMFxjgtl5k4eq7gG6ishV\nQGun+mNV/dLvkZkSYeeBE9w7PYV1mUe4/+pmjO3RnFAbhmtM0Cvs2lZfAV/5ORZTwny1aS9jZ60m\nV5W3BsXSo2VkwY2MMUGhsJMEjfmf3FzllS+38PKSLbSIrMrEATE0qlXZ7bCMMcXIkocpkkMnzvDQ\n7NV8tSmLPh2i+NstbahYzobhGlPaWPIwhbYu8zD3Tk9h9+FTPNu7NQM622gqY0orvy1uKCIVRCRR\nRNaIyHoR+bNTHy4ii0Vki/Ncw6vNOBFJd7a9vd6rPkZE0pxjr4j9j1Xs5iTv5NYJy8jOUWbf04WB\n8ZdY4jCmFPPnyringatVtR3QHugpIvHAE8ASVY0GljivEZGWQH+gFdATGC8ieddDJgAjgGjn0dOP\ncRsvp7NzGDcvjcfmriXmkhp8eP/ldGxYo+CGxpig5rfkoR7HnJdlnYcCvYAEpz4B6O2UewGzVPW0\nqm4D0oGPtJVpAAARiklEQVQ4EakLhKnqCvVsuD7Nq43xo6yjp+k3cTkzE3dw75VNmTYsjlpVyrsd\nljEmAPj1nofTc0gBmgGvq+pKEYlU1V3OKbuBvPGdUcAKr+YZTt1Zp5y/3vjR7sOnuPOtFew6dIqJ\nA2Lo2bqO2yEZYwKIX5OHquYA7UWkOp6Z6q3zHVcRUV99noiMBEYCNGzY0FdvW+pkHjrJnW+uYN/R\n0yQMiyOucbjbIRljAkyx7AaoqofwTDLsCexxLkXhPOftUJgJeG9mXd+py3TK+evP9TmTVDVWVWMj\nIiJ8+yVKiR37T9Bv4nIOHD/DO3d3tsRhjDknf462inB6HIhIReBa4HtgITDYOW0wsMApLwT6i0h5\nEWmM58Z4onOJ64iIxDujrAZ5tTE+9EPWMW6ftJzjZ7KZcXe83Rg3xvwqf162qgskOPc9QoA5qvqR\niCwH5ojIcGA70A9AVdeLyBxgA5ANjHEuewGMBqbiWQb+U+dhfGjLnqPc+dZKcnOVmSPiuaxumNsh\nGWMCmHgGMAWf2NhYTU5OdjuMEmHDT0cY8PZKQkOEGXd3JjqyqtshGWNcIiIpqhpb0Hk2w7yUW5tx\niIFvJ1KpXCgzRsTT2NaoMsYUgiWPUix1x0EGv51ItUplmTki3vYYN8YUWrGMtjKBJ3HbAQa+tZKa\nVcox+54uljiMMUViPY9SaGn6Pu5OSKZe9QrMGBFPZFgFt0MyxpQw1vMoZb7atJehU5NoGF6JWSO7\nWOIwxlwQ63mUIp+v3819M1YRHVmFd4Z3tn3GjTEXzJJHKfHx2l08OGsVraKqMW1oHNUqlXU7JGNM\nCWaXrUqBD1Zlcv/MVNo3qM67wy1xGGMunvU8gtycpJ08Pm8t8Y1r8tbgWCqXt79yY8zFs/9Jgti7\nK7bzhw/WcUV0LSYNjLW9xo0xPmPJI0i9/d02nv1oA9dcWpvX7+pIhbKWOIwxvmPJIwhN+Horzy/6\nnp6t6vDKHR0oV8ZubRljfMuSRxBRVV5Zks5/vtjMze3q8WK/dpQJtcRhjPE9Sx5BQlX51+ebeP2r\nrdzasT7/7NuW0BBxOyxjTJCy5BEEVJW/fbyRt77bxh1xDfhb7zaEWOIwxviRJY8SLjdXeWbhet5Z\nsZ0hXRvxzE0t8Wy4aIwx/mPJowTLzVWenJ/GrKSdjOzehHG/vdQShzGmWFjyKKGyc3J5bO5a5q3K\n5P6rm/H7a5tb4jDGFBu/DcURkQYi8pWIbBCR9SLyoFMfLiKLRWSL81zDq804EUkXkU0icr1XfYyI\npDnHXpFS/r/k2Zxcxs5ezbxVmTx8bXMevq6FJQ5jTLHy5zjObOBhVW0JxANjRKQl8ASwRFWjgSXO\na5xj/YFWQE9gvIjkzWybAIwAop1HTz/GHdBOZ+cwZnoqH63dxbjfXsr910S7HZIxphTyW/JQ1V2q\nmuqUjwIbgSigF5DgnJYA9HbKvYBZqnpaVbcB6UCciNQFwlR1haoqMM2rTaly6mwOo95J4fMNe/jT\nTS255zdN3Q7JGFNKFcsMMhFpBHQAVgKRqrrLObQbiHTKUcBOr2YZTl2UU85ff67PGSkiySKSnJWV\n5bP4A8HJMzncnZDM15uz+PstbRjSrbHbIRljSjG/Jw8RqQK8D4xV1SPex5yehPrqs1R1kqrGqmps\nRESEr97WdcdPZzNkSiLLtu7jhb7tuLNzQ7dDMsaUcn5NHiJSFk/imK6q85zqPc6lKJznvU59JtDA\nq3l9py7TKeevLxWOnDrLoMmJJG8/yH9ub0/fmPoFNzLGGD/z52grAd4GNqrqi16HFgKDnfJgYIFX\nfX8RKS8ijfHcGE90LnEdEZF45z0HebUJaodOnGHAWytZs/MQr93RgV7tz3m1zhhjip0/53l0AwYC\naSKy2ql7EngOmCMiw4HtQD8AVV0vInOADXhGao1R1Ryn3WhgKlAR+NR5BLX9x04z8O1E0vceY+KA\nGHq0jCy4kTHGFBPx3HYIPrGxsZqcnOx2GBdk1+GTDJ6cyPb9J5g0KJbfNA+e+zfGmMAmIimqGlvQ\neTbDPMBs2n2UIVMSOXoqmylDO9G1aS23QzLGmF+w5BFAlm/dz8h3kqlYNpQ593ShZb0wt0Myxphz\nsuQRIBau+YlH5qyhYc1KJAyLI6p6RbdDMsaYX2XJw2Wqylv/3cbfPtlIXKNw3hwUS7VKZd0Oyxhj\nzsuSh4tyc5VnP97AlKU/ckObOrzYrz0VyoYW3NAYY1xmycMlp87m8Ps5q/kkbTdDuzXij79rabv/\nGWNKDEseLjh84iwjpiWT+OMB/vC7y7j7iiZuh2SMMUViyaOYZR7yzOHYsf8Er9zRgZvb1XM7JGOM\nKTJLHsVow09HGDo1kRNnckgYFkeXpjXdDskYYy6IJY9isjR9H/e8k0KV8mV4b1QXLq1jcziMMSWX\nJY9i8MGqTB6du4YmtaowdVgn6lazORzGmJLNkocfqSoTv/mB5xd9T3yTcN4YGEu1ijaHwxhT8lny\n8JOcXOXPH65n2vLt3Ni2Lv/u147yZWwOhzEmOFjy8INTZ3N4cNYqPlu/hxFXNGbcby+zORzGmKBi\nycPHDh4/w93TkkndcZCnb2zJsMttr3FjTPCx5OFDOw+cYPCURDIOnuT1OztyQ5u6bodkjDF+YcnD\nR9ZlHmbo1CROn83h3eGdiWsc7nZIxhjjN/7cw3yyiOwVkXVedeEislhEtjjPNbyOjRORdBHZJCLX\ne9XHiEiac+wVZx/zgPLt5ixuf2M5ZUOE9+/taonDGBP0/JY88Ow53jNf3RPAElWNBpY4rxGRlkB/\noJXTZryI5A1NmgCMAKKdR/73dNXclAyGTU2iQXgl5o/pRnRkVbdDMsYYv/Nb8lDVb4ED+ap7AQlO\nOQHo7VU/S1VPq+o2IB2IE5G6QJiqrlDPZuvTvNq4SlV57cstPPLeGjo3CWfOqC5EhlVwOyxjjCkW\nxX3PI1JVdznl3UCkU44CVnidl+HUnXXK+etdlZ2Ty9ML1zNj5Q56t6/HP/u2o1wZf3bijDEmsLh2\nw1xVVUTUl+8pIiOBkQANGzb05Vv/z8kzOdw/M5UvNu5l1G+a8tj1LWwOhzGm1CnuX5f3OJeicJ73\nOvWZQAOv8+o7dZlOOX/9OanqJFWNVdXYiIgInwYOsP/Yae54cwVLvt/LX3q14onfXmqJwxhTKhV3\n8lgIDHbKg4EFXvX9RaS8iDTGc2M80bnEdURE4p1RVoO82hSr7fuP03ficjbuOsKEu2IY1KWRG2EY\nY0xA8NtlKxGZCVwJ1BKRDOAZ4DlgjogMB7YD/QBUdb2IzAE2ANnAGFXNcd5qNJ6RWxWBT51HsVqb\ncYhhU5PIzlWm392Z2EY2FNcYU7qJZxBT8ImNjdXk5OSLfp+vNu1lzPRUwiuXY+rQOJrVruKD6Iwx\nJjCJSIqqxhZ0ns0wP4/ZSTt4cv46Lq1TlSlDO1G7qg3FNcYYsORxTqrKy0u28NIXW7giuhYTBsRQ\npbz9URljTB77HzGf7Jxc/vDBOmYl7aRPxyiev7UtZUNtDocxxniz5OHlTHYu97yTzFebsrjvqmY8\nfF1zAnApLWOMcZ0lDy9lQ4UmEVW45rJIBsRf4nY4xhgTsCx5eBER/nhjS7fDMMaYgGcX840xxhSZ\nJQ9jjDFFZsnDGGNMkVnyMMYYU2SWPIwxxhSZJQ9jjDFFZsnDGGNMkVnyMMYYU2RBuyS7iGTh2TOk\nJKkF7HM7iGJm37l0sO9cclyiqgVuxRq0yaMkEpHkwqyjH0zsO5cO9p2Dj122MsYYU2SWPIwxxhSZ\nJY/AMsntAFxg37l0sO8cZOyehzHGmCKznocxxpgis+QRYETkBRH5XkTWish8Eanudkz+JiK3ich6\nEckVkaAdnQIgIj1FZJOIpIvIE27H428iMllE9orIOrdjKQ4i0kBEvhKRDc6/6QfdjslfLHkEnsVA\na1VtC2wGxrkcT3FYB/QBvnU7EH8SkVDgdeC3QEvgDhEJ9t3HpgI93Q6iGGUDD6tqSyAeGBOsf8eW\nPAKMqn6uqtnOyxVAfTfjKQ6qulFVN7kdRzGIA9JV9QdVPQPMAnq5HJNfqeq3wAG34yguqrpLVVOd\n8lFgIxDlblT+YckjsA0DPnU7COMzUcBOr9cZBOl/LAZEpBHQAVjpbiT+YXuYu0BEvgDqnOPQU6q6\nwDnnKTxd4OnFGZu/FOY7GxMsRKQK8D4wVlWPuB2PP1jycIGq9jjfcREZAtwIXKNBMpa6oO9cSmQC\nDbxe13fqTBARkbJ4Esd0VZ3ndjz+YpetAoyI9AQeA25W1RNux2N8KgmIFpHGIlIO6A8sdDkm40Mi\nIsDbwEZVfdHtePzJkkfgeQ2oCiwWkdUiMtHtgPxNRG4RkQygC/CxiHzmdkz+4AyEuA/4DM+N1Dmq\nut7dqPxLRGYCy4EWIpIhIsPdjsnPugEDgaudn9/VInKD20H5g80wN8YYU2TW8zDGGFNkljyMMcYU\nmSUPY4wxRWbJwxhjTJFZ8jDGGFNkljxMiSAiNb2GPu4WkUyv18v88HlXishHvn7fX/ksEZEvRSSs\nOD6vIAV9dxGJEJFFxRmTCTw2w9yUCKq6H2gPICJ/Ao6p6r9cDcp3bgDWlJRlLFQ1S0R2iUg3VV3q\ndjzGHdbzMCWeiBxznq8UkW9EZIGI/CAiz4nIXSKSKCJpItLUOS9CRN4XkSTn0a0In/W002adiExy\nZhQjIp2cPVhWO3uyrHPqWzmfv9o5Hn2Ot70LyFvTrLKIfCwia5zPuN2pj3G+W4qIfCYidZ36ZiLy\nhXN+qog0dXoyLzjt07ze40oR+VpE5opnz5jpXvH3dOpS8SyPn/d9f+PVw1slIlWdQx84cZvSSlXt\nYY8S9QD+BDzi9fqY83wlcAioC5THs27Un51jDwIvOeUZwOVOuSGepSTyf8aVwEfnqA/3Kr8D3OSU\n1wFdnPJzwDqn/Cpwl1MuB1Q8x3tuB6o65VuBN72OVQPKAsuACKfudmCyU14J3OKUKwCVnPdYDIQC\nkcAO58/kSuAwnjW1QvDM/L7cabcTiAYEmJP33YEPgW5OuQpQxilHAWlu/1uwh3sP63mYYJOknj0V\nTgNbgc+d+jSgkVPuAbwmIqvxrC0V5qyCWhhXichKEUkDrgZaiWe3x6qqutw5Z4bX+cuBJ0XkceAS\nVT15jvcMV8/eD3lxXisiz4vIFap6GGgBtMZZsgb4A1Df6QVEqep8AFU9pZ710C4HZqpqjqruAb4B\nOjnvn6iqGaqaC6x2/kwuBbap6hZVVeBdr9iWAi+KyANAdf15r5m9QL1C/pmZIGTJwwSb017lXK/X\nufx8jy8EiFfV9s4jSlWPFfTGIlIBGA/0VdU2wJt4fmv/Vao6A7gZOAl8IiJXn+O0bBEJcc7fDHTE\nk0T+KiJP4+kNrPeKt42qXldQvL/C+88nhwLue6rqc8DdQEVgqYhc6hyq4HwnU0pZ8jCl0efA/Xkv\nRKR9IdvlJYp9Tk+lL4CqHgKOikhn53h/r/duAvygqq/gua/R9hzvuwlo4pxfDzihqu8CL+BJJJuA\nCBHp4pxTVkRaOb2VDBHp7dSXF5FKwH+B20UkVEQigO5A4nm+1/dAo7x7QsAdXvE3VdU0VX0ez6rA\necmjOZ5LdaaUsuRhSqMHgFjnBvYGYNSvnHeNeFaCzRDPqr+X4eltrMOzMm6S17nDgTedy0qV8dxb\nAOgHrHPqWwPTzvE5H+O5HwHQBkh0zn8G+Kt6tqztCzwvImvwXG7q6pw/EHhARNbiuS9SB5gPrAXW\nAF8Cj6nq7l/7w1DVU8BIPCsap+K5JJVnrHPjfS1wlp93trzKiduUUraqrjE+ICJV8i59icgTQF1V\nfbCQbesC01T1Wn/G6Esi8i3QS1UPuh2LcYfN8zDGN34nIuPw/ExtB4YUtqGq7hKRN0UkTEvAXA/n\nUtiLljhKN+t5GGOMKTK752GMMabILHkYY4wpMksexhhjisyShzHGmCKz5GGMMabILHkYY4wpsv8D\nOmuZIAzOx4IAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Yet another Example with longer Lingcurve\n", + "\n", + "I will be using same lightcurves as in the example above but with much longer duration and shorter lags.
\n", + "Both Lightcurves are chosen to be more or less same with a certain phase shift to demonstrate Correlation in a better way.\n", + "\n", + "Again Generating two signals this time without poission noise so that time lag can be demonstrated. For noisy lightcurves, accurate calculation requires interpolation." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "exposure = 50. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 * dt # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*freq*times + np.pi/2) + 900 * dt # counts/s" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Converting noisy signals into Lightcurves." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, signal_1)\n", + "lc2 = Lightcurve(times, signal_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAGICAYAAADLSrFdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXnYZUV1Lv7WGb7v6wEQFHAWicarxAn0EpOoaG5EvYom\ncYjBkUSj16tx+DlFQUUIV41er2MMGpwRY4JCjAMqOCGoiFFRgiDIKFNDQ3d/wzl71++PPZzadapq\nrdq79jn7dNd6nn56+FbvU/WetVatWu+q2kJKiShRokSJEiVKlChRbNKb9wCiRIkSJUqUKFGidFti\nwhglSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4JSaM\nUaJEiRIlSpQoUZwSE8YoUaJEiRIlSpQoTokJY5QoUaJEiRIlShSnxIQxSpQoUaJEiRIlilNiwhgl\nSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4ZTDvASy6\n3OlOd5IHHXTQvIcRJUqUKFGiRIlCygUXXHCTlHJ/3/8XE8aGctBBB+FHP/rRvIcRJUqUKFGiRIlC\nihDiN3X+X6Sko0SJEiVKlChRojglJoxRokSJEiVKlChRnBITxihRokSJEiVKlChOiQljlChRokSJ\nEiVKFKfEhDFKlChRokSJEiWKU2LCGCVKlChRokSJEsUpMWGMEiVKlChRokSJ4pSFSBiFEEcKIb4p\nhPitEGJdCHG1EOJzQogHaHr7CiE+IoS4SQixUwjxdSHEAw3PWxFCvFMIcZ0QYlUI8X0hxKNmN6Mo\nUaJEiRIlSpTFkYVIGAHsB+ACAP8bwOMAvAHAIQDOE0LcCwCEEALAmQAeD+BlAP4cwBDA2UKIu2vP\n+yiAFwI4DsCTAFwH4KtCiIe0P5UoUaJEiRIlSpTFkoV404uU8lQAp6r/JoT4AYCLATwNwLsAHAXg\nDwE8Vkp5dq7zfQCXA3gtgJfn//ZgAH8J4Bgp5Sn5v30LwEUAjs+fEyVKlChRokSJEiWXRakwmuTm\n/Pdx/vtRAK4tkkUAkFJuR1Z1fIry/44CMAJwmqI3BvBZAEcKIZbbHHSUKFGiRIkSJcqiyUIljEKI\nvhBiSQhxXwAfBvBbTCqPhwD4ueG/XQTgnkKIrYre5VLKXQa9JQD3CT/yKFGiRIkSJUqUxZWFShgB\nnA9gHcAlAB6EjH6+If/ZfgBuMfyfbfnv+zL19tN/IIQ4x/ar5jxqybvfDeyzD3DBBW69008HtmzJ\nfnfJBRcAd7gD8K53ufWuvRa4612B//W/3Hrr68AhhwCPe5xbDwCe+ETg/vcHVlfden/7t8Cd7wxc\ndZVb733vA/beG/jBD9x6Z56ZYfP5z7v1fvITYN99gbe/3a13/fXA3e8OvPCFbr3RCHjQg4DHPAaQ\n0q171FHA/e4H7Nzp1nv1q4EDDwSuuMKt96EPAXvtBZx7rlvvy18Gtm4FTj3VrfeznwH77QeceKJb\n76abgHveE3j+89164zFw6KHAIx9JY/Pnfw7c977Abbe59V7/emD//YHLLnPrnXxyNudvf9utd9ZZ\nmd4nP+nW++UvgTveEXjLW9x627YBBx0EPPvZbr0kAR7+cOARjwDS1K37F38BHHwwcOutbr1jjwXu\ndCfgkkvceqecks357LPdet/8ZqZ3yiluvUsuyb6TN77Rrbd9ezaPZz7TrZemGS4Pf3iGk0ue/ewM\n75tvduu99a2Zbf/iF269T30qiyNnneXW+/a3M987+WS33mWXAQccALzudW69HTuA+9wn8wOXSJn5\n06GHZv7lkhe8IPPTG2906514YhYTf/Yzt96pp2bYfPnLbr1zz81i9gc/6Na74ooszr3qVW69nTuB\n3/3dLH66RMosDj/4wcDGhlv3RS/K4vtvf+vWe8c7srX0Jz9x633+8xk2Z57p1uusSCkX5heA+wM4\nHMCzkB2CuRrAQfnPLgHwWcP/+WsAEsA98r9/DcB5Br3/kes90vCzc2y/DjvsMDkryUxdymOOces9\n9KGZ3u/9nlvvJS+ZPNMln/gET+9nP5vobdtm11tbm+idf777mYXee9/L0zv6aLfe4Ydneve9r1vv\nla/kzflzn+PpXXzxRO/66+16GxsTve98x/3MQu+d73TrLS1lek9/ulvvUY/K9O5xD7fe617Hm/MZ\nZ0z00tSud9llE71rrrHrJclE7+tfd392oXfCCW69rVszvaOOcus97nGZ3oEHuvXe/GYeNl/5ykQv\nSex6v/nNRO+KK+x6aTrR+4//cH92oXfssW69O94x0zvySLfek5+c6d3hDm69k07iYfPNb070RiO7\n3rXXTvR+9Sv3Mwu900/n6b3udW69u90t0zviCLfe056W6W3a5NZ717t42Hz3uxO99XW73o03TvR+\n+Uv3Mwu9U0/l6b3iFW693/mdTO8Rj3DrHX10ptfrufXe/34eNuefP9Hbtcuud+utE72f/tT9zELv\nYx/j6b34xW69+98/0zv0ULde2wLgR7JGDrZQFUYp5S+llOfL7BDMHwPYCuD1+Y9vwaSKqMp+ys85\netv0H0gpj7D9qjuXJnLlle6f/+d/Zr//3ETQK0JV7QpRqzmunby6C7vhBrve9dfz9KRSbaIqSoVc\nfrn758Xu+Fe/cutdcw3v89Rqjmu3ysVG3eVTO/5Ctm93/7wY16WXuvWKqgplF9ddxxvXNsWTdukN\nIIpwsVGrQ9umvJQeg0l27Mh+p6ptF1+c/a7arkmonxdy002TP7tsm4uNagO3mPgTg1D2VeD9y1+6\n9QrsqMom155VPdczudgU3zFA+0oh1PdYxIeLLnLrFT5HMSlU5bMQdZ6u/8PFZm1t8ufbb+eN4dpr\n3T8vqvpUJbKI1VTlXLUBdU3QRf3OXLbGxWY0mvxZtSGXXH21++eFL1GVyK7KQiWMqkgpbwVwKSY9\nhxch60/U5QEArpRS7lD07i2E2GzQ28if2WlZJo7lFA4ohFtPDRYuUZ3KFXBVR+QGepceNxlThcJm\nfZ33HC42apAKMWeunhrAKMqpkJUV98+52HD1Qs+Zq8f97lSh7Ib7TFXPtbjNCxt1ERwO7XqqhMJG\nTZpcScK8sFHHFAobrq+o7Sfqd6RL6Dmr8csV21VbXlqy66kSym7Ucbn+T2hs1KSTm0xTMbYQCpuu\nysImjEKIAwH8NwBFl9IZAO4mhHi0orM3gCfnPyvkTGT3Mz5d0RsAeCaAr0kpmS4+W1Ed1rUQ2f6P\nSXrKt+/SVSsgruoFV49bDalTNfGZM1dcCRl3jG1iSFV2CgmFjVpldi2Iob/nOlhzK0qhsFEXNFdV\ndV4+pS583Kp9KGzUTY7rs+flU2rSRvUPFxIKG/V7cflzm77i0lP9nJsEh8Km6+uPuj5QvbSFcNfw\nrslC3MMohDgdwI8B/BTAbQB+F8ArkV2pUxzZOAPA9wF8SgjxGmTU8xsACADvKJ4lpbxQCHEagPcI\nIYbI7ml8CYB7Azh6JhOqIaqTUvQGV9Sd7NoasGmTWU/9PFcgbVPPRQmoTuranQPAYEDrANWFf3U1\na1xvMsZ5YagGJiqYDZjRQP9s2255XvbAfZ4qFC1WB5sdO7IGd0qviz6lShvY7NyZHRKg9LroU6q0\nhc3++/P0OM+bJYaqUNj0+5M/S2lnxLrgK7P2qa7KolQYzwPwVAAfB/AlAK8C8C0AD5FSXgIAUsoU\n2VtbzgLwQQCnA0gAPEZKqXdlvQDAKQBOyJ93DwCPl1L+uP2p1BPVKEMljHpS1PSzQ+vVGV8dOpJ6\nZugxzlJPpfK5lQFKFskeXHpqAh0qgHfdHrjj86mAcNmP3cWnfEStPrmYiq77ShvYqPHIFbfn9T2H\nxnp3kIWoMEop3w6AuOAEkFJuA3BM/sult4os6SQO6ndH2jBKbqLF/ezQeqHH5yPzGuO8MASmF37b\njr/rcwn9ucA07aRWR7owxtAYqlV4qn9Y35TY+ri6/j1z9Xw2GlymYnfxFZ/WKX2MNoZrXt/zPAsW\nXZVFqTDu8cLd7ehO6nLaru/kQ48PqAZ4F0Xb9Z18G7tfbjWy63Npo2rS5iKzyBj66Hb9e+bqcStj\nbXx21zFUNxpU60/Xv+fQWKtrT6Sko7QqdRwWcFcHuu6IofXSlN8L2vW5tJEUdX2MEZvu6c3zs7uu\nN8/P7opeiBaF3UVPTSzHY/4BmS5JTBgXRFRj41IMlG4dQ+d+dgi90OPTq2ZdHOO8MNQD2CzH2HWs\npQzfb7VoGHKZikX+nuuMb2PDvfB3YYzzwlBKd5WxC2OcF9bUM7sqMWFcEKmz26F0u04JtDm+UM9c\nNAxtC38b2CySPayv22kiPbDvTvbAeV6a2hf+8bja39n17zn0+Ex/L0TKboxxXhhSul0Y47ywpnS7\nKjFhXBCZZ1K0SHquhX9Px8a18O/p2AD2hT9iY9eN2Nh1dUaj63OZJTZJUo1FXZ/LrJPprkpMGBdE\n1MVMdzabHhDGYbt+So274+diI2U35tIGNjbdNqpoi6Tn0o3YRGxsei7diM2eh836up3F8ZlzVyUm\njAsiunFxK0XcxJLba9J1PZcuV29jo+r0XZ/zLLFJkupBqq7PeZbY6BRk1+c8S2zqfnbX9Vy6uys2\nScJvbdnTsHHp+sy5qxITxgWR0EYZHTZiU0cvbjTseqNRtR2i63OOGw27XpLwW1v2tI2GSzfG2Jgw\nRumA6P0wtutyQuvpul3Xc+lGbCI2Nj2X7u6KTZraT/iGnrP+713HBrAv6KGx0ZPTRcBmVr6i31Cw\nJ2DTZYkJ44KI/lop16lFjp7+767djvrMWepxL4ENjQ1XT//ZPDG0UUTc77kNbOZlN6qelPakaJ52\n0wWfcunu6T7l0l0En2oTQ5duaAz1Km8XfaqN77mrEhPGBRHduGy7E64e13j1u7Rcu6LQenWToqbY\ncPVMY7QJN4DXwTBEUsQN4D7YtGk3PknRrOzBZxPWBZ/S/5/r37vuU6ExdOnOC0Ndd15xyfXZbWPY\nRZ9qI3Z2VWLCuCBS1yibGq+eiIQOPj5BSg8yNr3Q2MwrmQ5RKepKUjSvZNr1zHn5lK47T59q+j2H\n1tN/Ni8MXbrzwlD/2TyT6Vn5yp7oU12WmDAuiMxr4e9KRcn0d9u/z6oa0nYyHaIaMq9AL2U1wY8V\nRvvPok/ZdeeZFM0qdrYdY+eZFM0rmQ6N4XjcvO3H53vuqsSEcUGk7Z6iptSBrhtaD2g+xnlhqOuG\noJLa/p6bYu2TTNeZcwjadV72oCfT0afsuqF9ZZ4+FRqb0Bi6ToZ3Zf3ZE+yhyxITxgWRruzwYjXE\nf3z6z/aECmNXqiauZ87LHvRkOvrURPQ2j9C+4joZvqdXGF26XVl/9oSKc5clJowLIl1Z+EMnRW0s\n/KGxmVcyvScGep8FITRFtLv4lOsQVNd9qm4y3YavzOp75ur5VKa7khTNK5luY/2Zpd93VWLCuCAS\nuoTPNd62adcQ1ZC2adcQASD0dTltf8+zwlrX9aGauSfDZ2UPXWllcOnurj4VApuuY9hGMj0vvw8d\nl3x6ptu2mxB+31WJCeOCSOgdXtvXGnD1XM3EbV8JMysM9Z/57GqbngzvOob6z+ZZKeqanv6zENh0\n3R5m4VNdi51t2E2dSmSIz54Xhm0fQHTptvH9dVViwrgg0hVKgLvDayMp6hp9xh2frttGj1no77nr\nlDSwuPbQpWR6UTHUdee58HcNQ/1newIlvTv5VJclJowLIl2hBELQJV2nfkKPr+6p2FmOcREp6a7Z\nQ6SkIyXd5uf62A03KdpdKOm6PuVzMjxS0jFhXBjpyg4v9O7X55ld28lzx1e398jns7u2k28jmd5d\n7GF3qoZ0qcI4r0NQXcNQ/9k8T4Z3LS756MYK47TEhHFBJLSD1e0hCX2azaU7rzG2Pb42kqJZjbHt\n8bWRTM/KHkKPz9TI3/T1mLuLT+k/a+Nk+KJiCCye389ro+HSnZffd1liwrggUhjb8nL174umtwhj\njNjMXm9pafJ3KilSdWc5xjpzafK8YlHt97NfAJ0Udf17DqWnJtNdt4cYR7qjtyhj7KrEhHFBpAiO\nmzdnv1M7N0qvMNZQz+PqLcIY2xrfpk2T/0edDF/079lXb2lpkhTZDkEV/75ly3zGyNULPb7BABgO\nwzyz6/bAHV+ROPd6kwW4a2OcF4ZqMl3EnK6NcRHWn3n5fZclJowLIrqDUbuYeekVAcrVTDzvMc5L\nbzjMFn+APhne9bm0gU2RFHFtrKtzCT0+H2y6/j3P0266PpdQemplmlt97epcQuupyXRX/b7LEhPG\nBRHdKKmEg9LTd6BNn6cGcC59Nq8xzgtDn4Sx699zG3Yza2wWRS8kNl23h+hT4cbXZZ+aF4ZqMt1V\nbLosMWFcECmMa2Wl+ve6eoXx+j6PersGFaTU5vSCSpr1GOeFISeAz3uM89KbBzZd0WvqUz6fvTv7\nVFfHOC8Mu+xTbcWlYk1JEnPbzyLEmy5LTBgXRHQHo6p3belRAWAwcAdwdYdXUEmzHuO8MKSwUemS\neX/PXcNG1VXbHmY5Rq6e7/ia+lSdMe6OPtXVMc4Lwy7Yzaz1lpayvlbA3BLVJjah4lKXJSaMCyKL\nQglQO7c6u9+uUz+hsDEl0139nmdtN6ZkuqtziZT07Ma3J1LSy8uAEJlPmJIinyraonzP81h/IiU9\nLTFhXBCZ96IVigZp02G7nkio/Z1dDWbzwnAeyfSiYOjT5tF1H/BJioAsIXJViiifanOMXbWHOnGk\n63azJ60/XZaYMC6IhO6T4Bq57+cOBu4AztVrc4zzwpCiz3ywmff3PC+74SQI854Lt7qiJkWufisu\nNj6N/F21B1Mi6GptoXzKp2d6UXyKsgeVdu2qryzC+jMvbLosMWFcEJl3bwi3P4NqQufqtTnGeWE4\nT2y6gKEpKVokbNqwB1dStKdjE2LOpsr0ovtUKGxM9zV21R72pPWnyxITxgWRPbGHpK0xdrXfqg26\nZN4YcpvQd4feo3n5yu7oU/PAZlF8itu+0eU2j66vP/Ns8+iyxIRxQWSRKAEu7bq70GdLS7wmdB+6\nZN7XqHTNHtrAZt5688Bm3vZQ52R4E2pxT/Sp0BjWGeOirz8+yXRobLosMWFcEJl3NaTo/7ElRdwm\ndK5enR3ePA9shDjMwn1enTHOs0E/hD10AZt52k3Exq4Xfaq5Xter9nV6X2ftU/HQS5TOiK9Rhtar\n0xsSItD7VE18e0jawCbU4jbry8/bDODzohbn5Std9ak6Y/TtRZun3TTBsM4YfX0qFIZ7ok91uc0j\ndOzssixEwiiEeJoQ4gtCiKuEEKtCiP8SQpwkhNhL09tXCPERIcRNQoidQoivCyEeaHjeihDinUKI\n6/LnfV8I8ajZzchfCuOigk9benX6ZlxN6KH0THOhKIE2sZnFnFVahWrk75LdhJoz1civV6ZnPWfu\n587ap1Rd3zkvgk81wbDOGOeFYRdi7Dx9ivsGl1ljEyredFkWImEE8P8BSAC8AcATAHwIwEsAnCWE\n6AGAEEIAOBPA4wG8DMCfAxgCOFsIcXfteR8F8EIAxwF4EoDrAHxVCPGQ9qdST+a9w/O5yiFE5bBO\nhXGe2HDnMksM68xlntiE2PEX/+bTyD+vasisfaXNyvSi+1SdMbap57pRoA27CU27tlFx9n2Dy6xj\n7J5QYRzMewBMebKU8kbl7+cIIbYB+DiAIwB8E8BRAP4QwGOllGcDgBDi+wAuB/BaAC/P/+3BAP4S\nwDFSylPyf/sWgIsAHJ8/p3My7x6SWZf626RL9kRsFv2S4S5gs7vYjVqZ3h2wKRKIJti0eSrW5/Bc\nrze5rLxI4nznsjv7ysZGpttFbGIPY0dESxYL+WH++93y348CcG2RLOb/bzuyquNTlP93FIARgNMU\nvTGAzwI4UgixHHDowaQLOzxur9C8G/nn0W81ywb9OtjMs4dxlvbQJjZt2k1XfSp0D2Mbh+dCxqU2\nKpE+dwjOy1dCJ9Pz7Gmd9/qzO1cYFyJhtMij899/mf9+CICfG/QuAnBPIcRWRe9yKeUug94SgPuE\nHmgIGY8yjqIIuFSfRGg96i0SJj3qIt0Qeqa52BxxFtjMYs5NsJmn3exp2FBvcNkTfarNucwCQ1XX\n1x4oDLvqK4Verzc/n+oqNqY2j6ZzNgaNjshCJoxCiLsho4+/LqX8Uf7P+wG4xaC+Lf99X6befobP\nO8f2q/YkuHLbbcBf/RVelH4IALE7+eQn8fhbT6X1vvQlPPGy9wGQbr3zzsMR3z8JS1h397lccgkO\nPeMt2Bfb3Dv0G27AQR89FvfCFW699XVsffdb8RBc6NaTEnj3u3HE6Cx6zp/6FB6/7dO03le+gsdf\n8l6Q2Pzwh3j09/4eK1h1j/HSS/Hg09+M/XCzG8ObbsI9Tj4W98av3c/b2MDmfzgeh+ICGpv/9//w\n2I2v0HP+zGfwhBs/Qet97Ws48uL3QCB1N6FfcAEe+e0TsQm73GP89a/xwH99M+6EG91627bhbv94\nLH4Hl7r1RiMsv/NteDh+QFeK3vc+/PHal+g5n3YannD9x2i9b3wDR170bvSQVL7nqUXhwgvxR2e/\nDZux0z3GK67AIZ87Dgfgerferbfizh86DvfFJW698RjDt5+Aw3Eejc0HP4g/WT2DnvO//AueeN1H\nab2zz8bjfvoPJTbWz/7pT/EH33gbtmCHW+/KK3H/U4/DnXGd26duuw0HvP843A8Xu5+XJOi//e/x\nB/gejc2HP4w/2fkFes7/9m94wtUn03rf+hb+x0/eiT7G7s/++c/x+187HnvhNrfeNdfgfp8+DnfB\ntW69HTtwx/e+GffHL9wYpinwf/4PHolv09icfDIed/u/0nP+4hfxxCv/kdb77nfxxxe8HQOM3GP8\nxS/w37/8VuyN7e4xXnst7vOJY3E3XO3W27UL+77nzTgEP3frpSnk29+BR+OcSjJtnMspp+DI7Z+j\n5/ze9wIvepG5/N4BWbiEMa8UfhHAGMAL5jyc9uUb3wD++Z/xJpwAIOtzAczOgOc+F//3t3+JvbHd\nvqtNU+AZz8CLf/FyPBQXune/f/M3eNK5f4dn4VT3Tv7v/g4P/4+34tV4l1vvPe/BwZ85Ae/Aa916\nn/kM9n3PW3AKXuDWO/dc4NWvxueTpwKQdmxuuAF4znPwjmuejf1ws33OUgLPeAZe+PO/xeE4v6I3\nlRS95CV4wnffiKPxafcYjz0Wh/378Xgd3u7We+97cdAnT8C78Gq33mmnYe93vRkfx/Pcej/6EfCK\nV+BzG0+BQGqf87ZtwNFH44SrnocDcL0dQymBZz0LL/jPV+KP8F30+46k6KUvxeO+/SY8Dx93j/Et\nb8FDzzgef4e/d+t94AO4x8dPwHvwCrfev/4rtr79OHwSz3Hr/eQnwMtfjlNXn4IeEjs227cDf/EX\neMtvXoC74hq3rxx9NJ594avxGJzt/uyXvxyPPec4/BU+6tY7/ng86Atvw5twglvvH/8Rd//nt+F9\neJlb74tfxOaTjsVn8JduvYsuAl76Unzq9qdggJF9zjt2AM98Jv7u13+Ne+I3bmye+1w868evwZH4\nqvuzX/EKHPHN4/A3+LBb78QTcci/vQ1vxlvdev/0T7jLR96GD+Clbr0vfQnLx78Rp+JZbr1LLgFe\n/GJ8bPufYgnr9jmvrQFPfzpee+mLcDAus/sUADz/+XjGD1+L/4kvuT/7Va/CI7/+ZrwEH3LrnXQS\n7v/5t+FtONat95GP4MAPH49/xIvdel/5CobHvQGn4ZluvcsuA170IvzTtqdhBat2bEYj4GlPwysv\neQnuh4vddnPMMfiz81+Pp+IL7s9+zWvwB197C16G97n13vEO3O9zJ+BEvNGtd8op2P9Dx+NkvNCt\n941voPeG1+HzeJpb78orgWOOwftvfCa2YId9zuMx8PrXAx/5CPCd7xgAmb8sVMIohNiErCfxYABH\nSimvVn58CyZVRFX2U37O0dum/0BKeYTtV515eMlTnwq5soK74jrs07vdvsu6+OLyjwfj13ajvOYa\nYFfGxv8OLnMnlj/9KQDgAfiFuzT/r9mu8sk4s5JImIIUADwD/+LW+9a3AAAPwX+69fI5b8Eu7KMk\nyVPj+6//Kv/oxOb664Hbby/1BoPsDS6AtuGTErjgAgDAg/BT9xg/+1kAwJ/idHdQ+fjHc70vuJ93\n7rkAgN/DRW69X2adGsvYwH7YZp+zgo3THrZty34hw8b52eefDwA4FD92633ykwCAp1P28OmsMvyk\nfFG16v0wa2u+Hy5hYTNAggNwg33Ov/pV+UcnNtu3Z7YD4N643P3Z3/0uAOBwnO9Ouk85BQDKzZr1\neZ/LqhZH4mtuvQsvBAAcjMvR70kSGwC4C66z+9Rll5W7qPvgUjs2O3cCV2dhmsTm7Kz9/A/xPbfe\nP/0TAOA5+KQ7Lp1+OgDgj/FN9/N+9jMAwD1xFQa91FnJKuRurg3EZZeVAeO++JUdw7U14IorAGT2\n5RzjWRmLcgTOcet94AMAgOfjY269f/93AMCj8B13XMrnfBf8Fsu9EWv9uSeutGNz+eXlPzrtZjQq\n/e+++JV7jP/xHwCAP8FZ7jm///0AgOfhE269r34VAPAInMeKI3fCzdjcW7OPT8HmIFxhn/NVVwGr\nq8Bd7gI8+tHooixMwiiEGAL4PICHAXiilPJnmspFyPoTdXkAgCullDsUvXsLITYb9DYAXBpu1AFE\nCGD/AwAAd+7faDfKq64q/3hn/Na+q9X0itOSU03oN99c/nETVsleIQBYx7Jbr+j6BdF7tLZW/nG5\nN2LN+S7KXIw7vFx8sLGOcfv28o9L2GBhs4GlMNjsmrTebhKOIFXTHqzBTMHwQFxvH+POneUfe0hn\ni43yvewldgTHhqN3AG6wj3F9vfxjgj4LmxGGYbBR/Hnf3nZ3NSSXINhcPdnT748b7WNUsilyzrmM\nMXDrKf/g1MuTfQDYv3fz7HzqmmvKP94RN9vHqNAbZIzNhbQvLjbXXlv+8cBe+PXHqnfddeUf74Bb\nWXNew4qLlHjHAAAgAElEQVRbT7Extk/1pJP+L+QuvevD+dTBB6OrshAJY37X4qcBPBbAU6WU5xnU\nzgBwNyHEo5X/tzeAJ+c/K+RMZPczPl3RGwB4JoCvSSnX0TFJ77Q/gKrDTu1Wb7ut/OOdcJN9V6vo\n6QG8oqs9z7rTUoKZnjxNfXYxKBDNxErSsV/eF0nN5cD+Tc5epkL2x42tYGMdYy4DjN0VJS42eQW0\n+GwONvvjxjJIzcNuKGyGGPHtRgng1Fy42HDnHBIbZ4KgCIlN8cUCGPRS9px940jrPqXY9b64pZZP\nTY2x+AGAJTFizfkAwcOGO2cfDK1zVjaJ+2A7C5slym6UuL1ZrNrjUovY+GBojZ3KJmwLdrrnXFQU\nQMRYJWHcW9zOs5veTSwMWTF2n33QVRnMewBM+QCyBO9EADuFEL+v/OzqnJo+A8D3AXxKCPEaZNTz\nGwAIAO8olKWUFwohTgPwnrxqeTmyS8DvDeDoWUzGV+TedwAA7CNusy8wSsDdC7fbg5SitxU7SscZ\nj7NfpU9pertsi9vqavnHFayxFkGgWPgFa4yDwYGk3l49R0VJe54vNlO6mt7NNr2NjfKP+sLv2v0O\nxRiDXNE5Z1cVTdHbxwMb6+63JjZWPaWcLSDd2Cg4LosNDAbL5Bi52PjYQ2i74VSUAH7FeTN2YTDY\nSo5x7xZ8ZWbYaNLvT9pGpvR27Cj/mMWRfckxtmE3M/MpTZx6UzF2E6nXpt0Uh+eK71LXG4fApny4\nLzZ7k3pcu2GtzXvtha7KQlQYkb3dBQDeiCwpVH/9NQBIKVNkb205C8AHAZyO7O0wj5FSXqU97wUA\nTgFwAoAvAbgHgMdLKX/c7jTqSbolWwScDqvsYrgOuxduZwUpXc9WGXA+DzAsbrwxspIi106wRjJd\nF5vawUxZ3LZIXvBRd78h9GaKjTpfrTIQwh7Y2OB2eyvDDLGp2KzSkkFuwmpg46NnrYbMy25UuhAJ\nuxof2m585qwnRTa9xthoJ2uddKoam+R844ixMhcaG/X+GwADkYSNN72A2HQ4YVyICqOU8iCm3jYA\nx+S/XHqrAF6V/+q8pJuzhHEvscNOvwRw2FqOqCSqzuelaeWZW9Lb0e9vYY+R0gvisNy5hMZQyqkA\n3u/fgT1Go16lwsjTC2I3dTHsSfT7dMU5s5s7scdo1FPGOFNsamC4FTsx6KUY93vkXDJs7kKOcW/B\nn7O1OqZ9z1yfGgX0qRWsY4gRxGBIfnbmU7wxhraHwcDyBhdNb3tTn1JaeQBgBavo9zezx0jqueyG\naw+W7zlJMt1iHLreTo+E0TjGtbVKwrhF7kC/vw85RqfdaBvPYOtPhxPGRakw7tFSJIxbxU72btra\ns9agckgH+h3oC0sflRbMtqT8iiBHr84iGBIbSm8T1jAUY3sfjjJoLjZqZYDCxrf6OktsBkiwLNfM\neuNxpe2BO2cfu5mnT1GLIABsSnaYnydllXZtERtOwmG8UaBFuwGKJJkeYxu+4mMPvhvKINgk/Dhi\n7b+zJEXzXH9C2U3oGMvBkIVNTBijNJF0U5Ew8ijpedGuALAp3cnSUx02CF0SYofXNjZjyxhrYtMG\nzcbpt2oDm82JZYxKQgR0A5uiUmTTmxk2O3dWOM7QPrWPBzYh5xwEm/X1Cn0d3G48WhmCt7bYqGYu\nNklSaQ8Kjc28YuwmrGGQX4Du0gMc2BjYnpljExPGKE0kyRPGvcDrbduCnSyHdfaOOfRcO7eVhJcw\nWhPLNK1UIzdLi572TG71tW1sXHPmYmOdsxbMuNhsEUw9BRtXv9U8sbHajaZbvEmF0tvqgQ3HB/jY\n7LKf+K65CWPbAxObLR4+FdIeljAq3+7h0gOq2LgwDI3NvOymB4nldLWZr2ibsOB2g52sjWcn48jq\namU32GaMjQljlFakSBiLgxOAwdiUHeMK1txvaFD0rHSJQY8TfJbkOvk8AFiGRW+qD2fNPmd1jK47\nCRW9ZaxXKIFKUqTpcbDZhDX7Rcj6nKVljFwM19YqwWxZWPRMY+RgqNlDZXGrgc0ASXn1iUsPyLDh\n6FntYTyuXLHBtxsehr6+wpnLMOX5Ct+nLHOWsuJXXGw2CZ4e1x64egCwnPLsYSnl+ZQ13ljGSOlx\nseHGTh9suHbj41Oc2Mn3lXXe8+a4/nD12L7CxHDZ9YagQm/rVnRVYsK4AJIMs5dPOh1bWyytOzzD\nomqldHJZwqg8kejSAxwBXNOzJk+aHnfOzqRIm/NgkDWhA/Y7vbjYAMBQbrD0lmyLYF1sbHr6XFzJ\ntGHO1Bi9sEkti0dH7MYXG+qzfbDhzpmrZ7WH0aiyM/LxqXlhM0z49tDIp9K08g9t2U1InwrtK9aN\nhmGMLLtpyafmsf4se/oAR8/aylDoFS+b7qDEhHEBpEgYVUc0vmYql+V8h2dsQnc4rC15ArIdma8j\nup7H1oNjzjUD+GBAz5mrB1QXtxBzXrHNmaun6W7iYtgCNsHtoSmGmm4b2HB9ir1ozQubOfqUuvCH\nwJDtU64YG8BuXElRaJ/iYrjiOnCmLB517IbChuMry9iwX0o/L1+R0ppMN8ZGeVFB1yQmjAsgSX5R\n8bKr1K8FMyEsQYp7x5uiBziCj0Ov1g5Pe561aiLl1Fw4yXSQaog2Rms1hIuNrheiimbBhtLjzDlI\npSg0Nly70cbo3GiExsZhN+7NWmCf4toDc4PKtYeifSOoPTDjUpCqvQUbH7uxjXGABH1pObDBraLV\nxDCI3bToU4CDqeDG4pq+YtVTXiZQzIUz501YQ6+XFXOmXscbE8YoIWScVxjZ5XGRGajvrtblYIMx\nzxEbJwhcxx6PqzQbN0EIkUy3TC0uNw30UlYCWiu0K3Ph5wbwxrSrD5XETaZrYDPE2H5Ss66vMPXa\noNkaY6ONcZDy2zeC6nEThDnR9QDfHhonRW3Qs5pPFS0/UzcKtLz+NE6mZ9ACAxC+EhPGKE0k6ecV\nRlujLjDliACzb8Z2YMMQzLg9JCH1uD1KPj0kAI3NMjbQF2lQbEJjaMVG3/3a9LRnFoGe+uweJPrp\naDHtJkkqZR4fbLh9VIPE4qddx8ZAswXHZjwnX2Hq+doDYDg8V9tuOhZHGmAjBP3uZx9s5hZjuXoh\n15+YMEZpIqYKI9UbAtC9IX2kFRqE26fH3SWH7lHi9jpyHJbzzEGy7o1NiDkvceccug9Uq746sRnz\nPpuLzbzshtt75NObWAcbbtWkVbsxVO19kqd52E2dCmMtbLSq/XLuK2olzfRMrwpji9i06lOaLjfG\ndsVugsSRkNjEQy9RmohaYeRSAkDYUn+bi2AtKilQMHM9sz/yx6YW5aTPmasX+jR1y3bjxGZWtH6D\njYa1lSGAPczSp3woyF4vbFIU3G64B86aYmPoWQP8+za5SVGIOMK2m6bUtV61Z2Lj07cZes7B442r\nPcg3xsYKY5QmMh7kFUbX1RDKWw0WIikKvfAvQlK0B2ITfHFrYaNBNqEjx0Za+jZ3U7tZkTx7WMII\nPZnMx25m1etosBuAGWMTXt/mvOwh+EbDB5uub8qb2o1WtWdhExPGKE1knFcYrZeNarvfwig5vRf9\nEa9Hw8dh59WH47P7DY0Nd87cRTA0NsYmdG33u4wNIE3ZgT4oNly90L1HTF/pQQIjXt8mG5vQvsLV\n495d6OErYoPXt8m1B64ed+EPbTcrnjF2Lj7lEWO5SRG3nxwIG2N9EstOrT91sIkJY5QmMupnFUZq\n95tu3gIgo0GoasjtyG6TpxxxVy97JuWIa/2Jnut560vZ51KVgdFKpkcFs2RT9rlq43alCT3Xkysr\nSNDDAAkwdtMgXGx29ray5rw24GG4Mcz0qEWQjc3mXE9amtDz3a8cDLCG5fL/usa4E1uCYrM6yO2B\nmHNhNyQ2y1t42Ch2Axh2/ErP2o58zlhzP3OH4M258Kkh02642LThU4C7GuKLDRlv+p4+RSz8G0s8\nnxpvmvgKx6eWGdX4ApvehnuMOwUvdrKxGfJ8qsSGSIrGK7k9EHaTbsmxYdgNO8YqPuUa42qf5yts\nbJZ5vlLYDbXRKNbmWGGM0rqYKoym+7zkyiasI3/Fy8aG85TaduwDoLrDM+nd3sv0VIc16e0cZnrq\nzs2kt7bE09vYlOulbr3xlkxvKc2SoqnLyouEcWkZa8ibidfcz7xN8LDZ0edhs4uLzYofNktMbPQq\nWqmrBCguNtsF0x5ybPqE3mqOzYCY8zoTm9FmHjbJVgKbPFmUS0tYxabs3wLZzc4BExumrxTYLAXC\nJi2wSS3YjMdAkkAKgR35wk9hczsXG6ZPldgQeqXdEHNmY7MXgY1StS9iLIlNz89uuNhQPlXGEUJv\nXGAjPXxKSnccybFRk+lZYNPa+kNgk27ZCykEhhgD47FTNyaMURpJUWEcpusltQgYkqLlFawXlaLV\nVWdySSaMud4OymFzvV3cYLZMOGz+vHIRtDlsrkcmRUUy7ZEwzhybXC9YMNOwWbItbj7Y5LpFUkQG\n+mLhp7AZEgt/gQ3TbrjJdMLEBjWwIe2GwkbbaFA+tc7EZkRhU9jN1skiCLg3Gt7JNPE972D6CplM\n63GESqaZ2CRb9s4+FyMgTad189cwyn6/rMaz7Ya5CWNjQ+ix7YaZTMvlTdjAcKp9o9RN03Ijdhsy\nHMU6gQ1VsMj1fJPpxnbDxcYUY9cthZ+YMEYJIUWF0bqrLRx2uIyNosJoclhl91tUBnqJQU955o7e\nXtlnpm69XQOe3vow0xsQeqNl3vPGm/LnyezQjxWbpWWMkL/E04SNons7smf2iM8Ojc3aUq4nedgM\nCL2kRWyouexsyW5IbFZ4euPNTGyWa9gN4VNcbFa52HDtZoVnN2lOQfaRAklixQY+diPyMS46NsNl\nbLjmrCz6XGx2cLHpe2JDzGV9mYnNJl7MTil7UKr2znVKeWaBDeVTu5jYrA15ehtMu1HXn0IvTQ0t\nUUMCmyTJfqlXMXRQYsK4ALLRyyuMMjO+qWsuFIdVHXFKLz9JnfWsZc/sjTec12ZMgtlGxSF0vdJh\nE/fzih6SfurW2yj7stx64yLQp1kwsmEjl1Ym2GwYnqmcNN8p8wWTwGZX0ZdFzHm1DGYUNvlciOcV\n/TUDCpuyL2sDkNKBzbIbG0W3TIoIbMqFn7KHPg/D9SFvzmUyTegly5uRQpRJUQhsik0YNRcTNu6k\nKBQ2PL1kaWXS2qLEkalkeoXwKUWXi82uHtOnFGxccalIGCmf4mKTDgl7UNgePjY8X1llYrOW9wVT\ncy6xoeymTKbDYINlvk/tZMbYXcx4szrk+VSx/pAxVrGboh0KmE4YU2r9KbBZWUHlQR2TmDAugIx6\nWYVxmLgrjKm6izH1MBocVoyZu9/UsHAoeqXDEjuyItBTu1Xf3e9Qjsx9M5Zk2rX7LQ6AkNXXYvdL\nVdv6vDmvMatoG0u85yXDTRhjolC7Mj0eZ5Gt18NOuTkbI1V9FbydfLnRIObMrQysc6uvwxX3nGtU\n7W+XzAqjARvXJoxrN5TexjJPLx2Y5zyVFFHYKLq+lWnKp1YVbFxxie1TXhVG2m5AxRtFl4vNDs8Y\ny62+ctmegZxgLaUhKWJiI1vAhl2ZZvoUFxvVbgD32syymw7T0UBMGBdCxrJfqYZMGVvRJ6Ht8Fh0\nCXE4ZodSUWLRJYTeWhHMErfehlIZcC78g5VJUmRqJq6RTBd61JzLpIjQKxb+HjGXAhtqzmUynVLY\n8OZcoZKojYYcsuYyoZJ42FD2sDrkYbOhVE1mgk1x/6ly0pxtN4GwWRvy7GFjmYkN01ckhY2hak/G\nEa5PMePIpAUmDDYp026kR4y9nRtjezxsVpl2s861G4XFUd9uM+UrTGx81p9JmwcTGyqOMO2mbA8i\nsFEZDSBMMafLEhPGBZAkAWt3kiytuPskauzwJr2ORABX6BK3w04oafcOL9ejKkUDXpLsk0w79RRd\nbh8oF5s1JjYbCgXJxoZbRSMWwUKvNyICeEFBksl0gQ2x4+dis1QDGyIp4lYG1mWODZkUbWXprXLt\npmzzoCrTYX0qXSL0ivthl5awJnnJdElBUpUiX2wIvZGBggSmq6oJt4pG+ZRStd8lN/lhQ8XY3Keo\nKu0aM46o2ADMKloTnzL02lNxpLjGi1qnCmzI9YfpU6P8aqK+TMyHoDyxiQljlMaSJGAlgj5G6bvD\nIxuymfTsZPfLPORABIDxgGgmNu3wCCrJ+wAIe/fLpJIobMrdL73ws6poXGwUu6FaGbgHQHZ5VwZa\nwIZrN+zqK+8ACOUrZWWaWvi51bblaT1Tg37KxIY8LFUDm7Iyza3ac7HhHo5JCWqRW2FsAZudvgdA\nuJVp4nnFfY096T4ElTDjCFmZVqv2ktcetJN5cGgXN44wGY3xgHcIiotNTBijNBZ2wsitKFE7vDq7\n3x5vJ1hWGNnVNmLh7zOrITWqaEa9GifNi8Mx7N0vSSXxKgPjPs8e2BsNqqKk6HIr02W1jTz5ycRm\niadXqzLt8im1+kr5Crf66utT5EnziZ6AtN5Zyq4wemxQudVX76o92QLDrDAONiFBj0yKxswYS1Zf\nG2HDZXvCVO3HveXKIShrUhTYp2pV7akYy6xEFnZDxaUxd/1hYhMTxiiNpZIwOozNp/fIN5iJprvf\n4t49bmWAW2FkJkUklaTcl+VMzk27XyrQ9/wqA1ZsijsJh7znjT0qjL5JkfWetaJnrXjLBVGJ9O3L\nouxGvbapJybvcC2TouI+PY9k2vcgGXk4hqq+lvd88uyB27M26meHoHqQQZIicuEvfGp5UoXhVqa5\nVXt6o0FUGIu7J/u8ClCrSRFlD4ErjNyqPRlj8/FxK9M+PdPrKW/9IbHR1h8u20NWGAOvPzFhjNJY\nkoToYcwX6bQ/ZAd6b7qEbOQndm55P9MqtzLA7CGpBHpih+fUK09J85PpNSrQa7tfOikiqiH5GNeL\n16KlI/R7WVJkohZDJ0UklVT0rNWqDFCtDLxK0UafOASVjzF4Mk1hkyT8qn0+xl2U3RQ+NeBhOOox\nkyKuT1F2o9hDeSuDqfe1TtU+FKORj3HU4/k9u5XBJymSRTLtHmOJDbefL1DVfkTZQz6+NpLpcv0h\neqZJbAqfCl1h7IVdf2LCGKWxVCqMroSxN2T1hsjB0O3YRRVtOFQWfovj5Lq7ioqSLdDneqv5e3St\njpjrrfeL61vG6IvUqpf0iCSZm0wr2LAqjMMhNlIi0NfFhtAbiSWMkF3uKpLxNLWoYMOxBx9sOHqZ\n3RB9WQU2gjg964nNGLwx+tgNr9/KBxuiaqJjQ+it5dhYF/4CG8HzezY2zDmTPlX8odfDqszuhyV9\nyhMb0m4Ez+8r2ITwqeFEzxhjpVSq9ptZc1ll+tRanxeLE8H3KdY6NWD61HBIb8p1RoPpU9YKo4YN\n5VNcX+HqYThElyUmjAsgZMKYv8E87Q14wczDYdeZSVEZzKiFX/D0soV/knQA2t1fhR4zKUqYC3+t\nZNq2+y0TRiY2PSY2zIWfnSB4YMO3m+KezzDYrOXYcJIilj0w9SoLfyhsqKpJTWw4dsPCxmOj4Z1M\nE9iQjIYeRwh78LEbVuzkbso9sCEr00AlmebajbX6WmzKQ/sU11e4eoo9WCvT+dpX3A87D7sJ6isx\nYYzSVJIE/gu/I7GU/YF7t5PrZX16RFKU6+4qHJbQKxzWGsxyvTEmYxRjw+W8uV4CIknmJtMFNr2B\n27EVbMpk2rZbLbChFv5cb00QQUrBhjPGRAzCbDRMdkNhQyVFOjYEhuRGw2A3FDZcu2H51MADm5Sg\n6z3tZrIIujGsYOOYS+LhKyy9Ad+n1lJHta0GNmQyXWAj+D7FwTBl+oqP3RSMBtceqLhUJkXjjbK1\npYlPpUwM0z7Pp6BgY0wYlWS67Cdnrj8UhhtiGSkEhJToI7Fjw4wjXJ/q8msBgZgwLoSQFUZl98vd\n4XF3OxPa1UKXaDs8imYjg1lBu6JGNYTAhqPnQ7uWixux49+R0yWhKMhRHdqVWzVpQi2aKowUlVTY\nTSBKeuRBLbLsxqNqwseGOACi0WwUhq1WXwlsQvsU2c+nU5AEhqslNiNzUlRhNDxpV25FKZBPrXFb\nGZiV6XUsI8lTAGNSZLKbALRrrao9gU1ZiWRjw4+x/WTDqsf1FW68iRXGKI2FmzCSDlvu8Hh6Ug1S\npuBT/KHfp08Mc4NZ/tlkUlTu8IjgU+zwmEGKpOuLnWBlcXMn06vFIYemu19uMq1gw6owUtiU1RAP\nur5IimZeYWTS9VQyrdgNr8LIe16lhzEQXT+pMI6dlSKuT5EbDU+fIul6FZuylYFXYbRiWFSKsFwe\ngurL8bQeN5k2YRPAp7zo+sA+RSZF3BjLTaZLpoLnUyQ2it1wN+8+60/5xi9TS1Shx1x/uMWcmDBG\naSyVhJEoe/N2v7xexyol4NgVDQbKIshc+KlKkeSNkaTZijkzqaQKzUbMuQhSFF2yK80b+Zm7XwpD\n7pxJ2rUM9LznkdgYqEVrMq1XGIlAv4o86U4T5yEoNu3KtRtmXzDZ5mGyG+J73sm0hw05LA9BFRdP\nk9g4K4w1sHH5VA1s2Au/RxwxYtOST5HYcO3Gh67XsSEwJLHx9ak6duPcaNTwKWZ7EMlwySodPtUS\nVdhDHbshvucuS0wYF0CShHetDpcS4NJnfocceI38EyrJo4rmGGPwRn7mjl893Whc0E10SaCkaMSt\nojFPN3Ib+b1ONzKT6bKRn1gEN+TkEJRrceO2MnAPS6UeJ4a9D5LZGvmLhZ/ZyJ9hQy/8oX3K5wCI\nd2WasIcd+bupKZ/KkuncbhzUItun6rTABDos5fQpRZfbyqBi0xtvlD/Wb1vwibFBT5CH8ikDNpz1\nhzPGUeD1J1YYozSWSoXRuYvhUQK1KEjXrmg4xGpCVE2KpEiuZM3EaepsJiYDuIku4dJs3EBP0CVc\nmq3AhmrkX0+H5RsVXAu/GuhdY+TSbONQrQxKMu2k6ysUJNGzpmDDqRSpyZMzKfKgZ719qomvFH/o\n97ErWbbrKXNZT4mkyJM+C+5TVC+agVoEdSo2Le6ypH2qvLbGcdsCmUyXVbQadL3Lp3x6phMimdb7\nyQnqmvQVbiuDKbF0YUj10CvUNdenyKp9kTBKn6o9PcZarVPE99xliQnjAsh4jIrxFuXxcidooQSm\n9BRKQHVsmx76Zop7Sk89MTwyjE8Z40Y6mArgFT2FEuCMUT8xbNNLBKFnOd1oe55OJVkxVLEZW7Ap\nEsF0MLXjN2Go0/UubFj2QGFTzLnHwxAKNsLxPJ2edWGj2oMRm3Lh542RtAcLlVQbm8qcp33FRE1x\nfUq1B5dPjZk+ZcPGRC1ysNZPU/N8xTA+pTJd9EyrGw3KbsRoY/rOUstJYBY2s/QprQVmSs/U5uHh\nU64xknqWmwdc6w/Lp/oePpXwfGWncptH8SYoGzacMYZefyIlHaWxsCuMdS5qJugSLpXEpUvIaogn\nRURWTWrQJSwqaViDSjLpKboVapHAhkW7tkklBcKGSyVVKowubGRgu2HaQ61WhkA+ZaIWbVU071aG\nEHbjQS2W1VfTnGtiw7IHD5/i2g0XG1+63lh9Vds80uIAovtkOBcbn3tfQ7Yy+GDjtAclmV5Ll1iH\noMgKo4mpCOArscIYpbEkCa+H0efEMOv0rA+VlO/wwKDPuNQii3ZlUkncqyHInrUadD2JjUKflck0\nQUkHoUFMtKvLHkJdo2Kikkx6im6lF81hN+w+PS4F6UHXc09Tc6/X4PbzqT7lurOUS7uyqUXudUwe\ntzIUrQyU3awnxZuOLP2+3DhiSqYDYMNtbfG5jsnZyqBgk6RicgjKlBR5xli2TzF9hUvXs09TV5Jp\nd5tHkoowrS2hfSomjFFCSaXCGOROwhonP4nT1OQOT6GkWRXGOqekuSc/ndcf8E6a63RJbWwUXZWu\nd/aiSd5nkxd8c7Hh2o1yKpaNTZFMe2DjatAn7aYM4Hy7YdkD06fgc/k5NylKeWMM7lNMe+D6lN7K\n4LKbbOFnbK5S3hjZPuVhN7yqPd8eilYGyqfU9cIVY0lsPH0qYcYb8oLvGuuPszKtYKhiM0jd6w83\nxoZcfyIlHUCEEHcXQrxPCPF9IcQuIYQUQhxk0NtXCPERIcRNQoidQoivCyEeaNBbEUK8UwhxnRBi\nNX/uo2YxlzpSSRid1Tbuws8/Tc1t1C0c1rnD6/UwTnusE53cwwvchuzg75z2wGaSFBkoIi2Z5jbo\nh8SGrAz4YuPRyL+R9N2HoAxVNNczgx16KQP9/LBJUsE+BBXUHrjvDg6NzdADm2TCugzkDLHh2k3g\nOFJpZegqNh7vnA5pN+T6Y8Gmiz4VK4xh5D4AngHgFgDfMSkIIQSAMwE8HsDLAPw5gCGAs4UQd9fU\nPwrghQCOA/AkANcB+KoQ4iGtjL6hqEbeaOG3NPxzK0WuBv2y6XhjYzop0hyWc6KTrJooSTJLj7mr\n5Z+K5b/ubJT2kaBnfs2UlkyrDfq2wwb8E3zM151x9UJVXxUqaZwIO9VsqUwHqRSx58y0B+YrJW3Y\nmBr5udUQtZXB9dlNfWrqkAP73lfuqVi+T6nYFBXnJtXXDaqH0TPesF+Tx/Up7q0Mg0HlkGSIGMuv\nvjIvP6/zCkGX3SivIm1cfTW0BzXChms3yhi7LIuSMH5bSnmglPKJAP7FonMUgD8E8Bwp5alSyq/k\n/9YD8NpCSQjxYAB/CeCVUsqTpZTfQJaMXgng+DYnUVfICqOy42/tkAOxKxqnvUkzsZ4UaYFer6IB\n0wumT7N6kGqIEsC9KwNEE7Nzx2/Rc41RP8HHqoZw7cG14+f2d3LtRrOHqaTIUplutOP3vCqEffl5\nqAqj2ovmqoZYKtPOpKjOgaBZ+pTHIQdupYisTBcLOtenuAdAQlXRDDcPeFXRXJR0qCqaieHiVhid\nG09uHCGqr1yfUrHh0vWhKozKGLssC5EwSilTWgtHAbhWSnm28v+2I6s6PkXTGwE4TdEbA/gsgCOF\nEN33WxsAACAASURBVMtBBh1QKgkjsYvh0iWsXkeP043OaohFj1rcuM3qoU8Mc0/wcZuYnbvapthw\nT34SwYyFjceJ4Tp2MxXAW8SGO2efw1KtYqPbjZZMc8a4wbUHpk/Veq8ykSAE8SmfynRLPsXdvLOx\nCeVTii5ZRZtFjCWSaRY2wyHG+SEfjMfT/b4WbIyV6TmvPzFhnJ0cAuDnhn+/CMA9hRBbFb3LpZS7\nDHpLyOjvTgm3wsilBFJmAy7ZyK9QAmnq2NXaqmgEfcZtVmcdcuA2J3MvNWdiQ1bRLHquMVaqJiGw\n4R4IYlbb2Njo1dcm2HhW29jYMN+r7HMgiNvI76wU1fCpEdOnSF/xPTjE9SmPAyBObLRkOkj11RMb\nn0N2LJ8aKElRYjgExcXGpzLNjSPc6mtobBS7ASaHoKwsDoWN8szgMZa5/nSdku726PxkPwBXGP59\nW/77vgB25Hq3OPT2038ghDjH9qGHHXaYzxhrSWVB4CaMBCVQ2ZE5dngcPQyyzyx0B9CuctCCGeeZ\n6ynvs0fg6Y3FEOOcKjfqKUlRUGzyBX1su+bCouca40jyxsjFJhFMPWrOBYYDrt0MwmGjLPwsDLnY\ngIc116ckE0PSbmr4FIlNaLvx9anBECkmNxpnSVFvMX2KaQ9sn8qTohEGGGKcz3mJnHMv1bDRkumw\nPqVhuNwyNkoyDWRzXsIox2bZ7FMb09gAWUtUT0zua9xIefawIYcYstcfnt93WXanCuNuK5UKI5c6\ncBlvj6dXoQQYDlvSIEQA5zyzQgkQAZw1Z8HTS7jYDJjYDIfZvbEBsalQSQGwGQXGRjLtZooi0he3\nRbIb5pzTwRBJ3us7SYroOS+yT7HjSH8ItVI01QvdAWy4c2Zjw/UpLcZObcoJbNI0v22hTWxC241H\nvFGxqW0PWjI9jxjb9YRxd6ow3oKsiqjLfsrPi9/v5dDbpv9ASnmE7UMf9rCHSdvPQknFyE2VQ6Xs\nXe5iHHqJ4OmlPZ5eRgkoO369b0bd4a3B/kyNLuF8dqUyQGIjaD119ztLbPRKkeOZlR1/AGwSpt2k\nHnZTJkVJkp+aF9PYDIdI08DYMO2G6yuVykAAbGSvWinKFv4lcs5On2Jiw7WHKb2BWW/MnHPC9KnC\nVxIxAOQopxaHJDbF4bm5+JReRfOMsQk7jgwVbAy0q2XOYjyCEFloTVOgXwMbtt2Ah2Fb648vNsUz\nkyT7NUR7PjVm6nWdkt6dKowXIetP1OUBAK6UUu5Q9O4thNhs0NsAcGl7Q6wnZMLYFgXpufsdC2KH\np135QO3wuNR1yJ1g5YoZompS6SmyXCVUYJMw6DMnNsrrrdYT3hjZu18PWp+LTZEUOeecB3pOZWA8\nRlB74OqNmfZAUk5KJbLQ58yZrL5SPqXNmUuzhawoVa5RIe1m8j27qmgmbMo7S7k+pc455fsUl7oO\nymj0+L7irKK16FOVK2YCsT3c9iAgs0cKG6c9KD7Frb76tE7tDhVGr4RRCLEkhPh9IcSfCSGOFkIc\nabpAe05yBoC7CSEeXfyDEGJvAE/Of1bImcjuZ3y6ojcA8EwAX5NSrs9muHxJEt5hCNIolSoaRy/t\nDw2VIoNekRSJhj1FWtWEM0YygHP1uEGq3P1mSRF1lVBJJQnLwm+rFDVJpk1VEwIbDtY+vUfAxB5s\nPa1kMs21B1tlusnCX2DD7D0iF37Fp5zY6JswDRsbtci1h5A+xU6SuT5FJdMWXxHJuHpnKdenlDGS\nC7+nr3B71thJERVjuXOuEWOD9b4q6w8LG6qVQYsj48Drz0x9akESRrL+KYToA/hTAH8N4NHIThIL\nRUUKIa4BcCqAk6WUrVTohBBPy/9YnDJ5ghDiRgA3Sim/hSwp/D6ATwkhXoOMen5DPtZ3lIOV8kIh\nxGkA3iOEGAK4HMBLANwbwNFtjL2pVHZFTWg2pYrG0svpszH6GCDJHXE4pSfz3W+x8Pfq0mfaDo8z\nRpKCVCpFY8CuZwr0jucVO/5EDDCQSU6DDOzY5HSJ9eoYas5cDJVnTtElSy5sGPbgQSWpc86w2WRP\ninK9KWpRxcbVymBLpn2opC02bHj2QGKj2Q1FNctB1aes1OJwiGTswEZaGvl97MbpUwEo6bJSpNiN\nCZvSbgaVVobimWma6Q584ogpKQqBDdceuK0M2kajdhxpI8aakqIA6w+JjSEWG7EpfIWLjUeM9Vt/\nFp+Sdo4uT9JOAnAPAF8F8CYAFwK4EcAqsr6/ewM4HFlS+SohxMcAvElKeX3gseoXdn8w//1bAI6Q\nUqZCiCcB+If8ZyvIEsjHSCmv0v7vCwCcCOAEAHcA8J8AHi+l/HHgMQcRbnk8OLXYK4LUMEuKYEkY\ntSpa30GfOefCpVW0OVf0Bi49QT6PS5+p1OKyXGdUivIKY1MqyYMumdr9bjLrtdHIX+gD9h1/2d8p\nhlnCqFGLogbNVhubhpQ0m1rsT3zKiY3qU3LyzPE40+2r9rDumLOWTM/lsJQvJU22tlQPORTPHI08\n7UFLpoMeCGqJkua0MszLV1qlpBNDL7RWfQ2GTZMY21Bv0SuM70VWnfuYlPJWi84PkF2C/SohxOEA\nXgfgRQDeFmyUAKSUgqGzDcAx+S+X3iqAV+W/Oi/6biePHVNvR9GDWa+n6ZkogdHIqpcUCWNvACQT\n+kzX02m2olI09bozw86t8tmOKpptjOvpEKmSJPeWzHqjSUuz+XlKMON87iSZtsy50BvoemYMyTlz\nMVSeqVdNbHr6RsNlD87nTSVF1R0/hY2ziqbOWR+jj92YNldcbBx6Os3GtRtrFU075FDbHmr4lM1u\npqrxFDaFTzHjDddu5EDDRlmAp+a8yzFnR2Xaig3XHgTfp8q2n/E4u9oForZPFbcyeNuDPkbHAcSm\nPsWNsUne9pOIPvoyQU8mAAadWn90ur52HNlNEsaDpZRr3IdJKc8H8GdCiJVmw4qiiu7YtvutalEC\njF0ttbjpVFLtPj0bXULsaiWbEpD251kCvZuuB92LpukVwWyqikbN2ae/RsGG13tUg1Zx9R7pdmOt\nMFYDvbOKVodmc/UeMXsd2fbApdkobEoKsqpX2x5q+hQLG6496BjaKkWCazdVur62PbToUz5tHhI9\nJOihjzTvhR5MYTiVFFlYnClsXPaw7vApWzLt8ilmryNpNwo2xe99btsPHD6ltzIQ1VerXo02D66v\ndJ2Sdh568UkWQ/y/KGYhy+PFLqYFSqDQBxxJkYVmm2rQb4GSDn23HJs+K6uvbhpEp0umGvQ7QJew\n709j02dM2lWlpF1zXgCaberwguXUfNnK4Gk3te2hIz4l0Ssv5bbdPcmlpEtseoHsxsOnRi3cZQlM\n4ogtxnIpaf3Giln6FNdXfE6Qq3OxYqPZjf1GAXMrw9ScKXvQkuk9iZJmn5IWQvyuEOK/K3/fJIQ4\nSQhxphDif7czvCgA2Ltf7qlYdrN6vmNLbRXGkmar7vAKahGg6TPjjp+qKLVxX2MRzJj37iV6NcR2\neKHAptdwzlwMlc8OfZflVBXNlhSJ6pytdqNXGOtiw9VTxhj6brkx8qRI5EmR5dT8VBXNRklrPlXb\nHnyw8bQHbhVtkhTl1XjLPXlFHEnLKprFp/Tq6wx9Khg2ljhie61dsdGgYnEwbOr4lIeveK0/TLuh\n2zyq9mWd8zx8SklWuyw+1+q8H8DTlL+fCODVAO4K4P8KIV4acmBRJhLMYU16nB0eVQ3pEzv+Ipjl\nFzU3viOsxg6PfR2GR7VNxYjCxkotcnfyWjDjNPL73FHJpWcrSZHlfbYJs8KoHwCpTRH5VEMU+qyV\nShHRopBQdlMsggMCG649cH1KGWMwbAqf0uZsw2as9kzDfnhOahWl1n1K+Wz2vXueLI4VmzIpqsZY\nOyXth02nfUrv97XEkfIaLxs2mk9xsBmP+dVXlk8xfWW3qTACeDCA7wGAEKIH4LkAXielPAzZaeMX\nhR9eFABshw1NCRSOVezgqIU/pZIibn+NJ10SpPpazLmoFCE7fWGjz4qFPCWCWfCkiOrL0pLpkAmC\nf1JEYaNVX9u2B1vvEWEP3GRanbsVG3YvWhXD2vZQg1pcD/3OaWhVNCvtytxoDJjxpoX+Tp82Dx+7\noWJsolVfSWxm5VPKZ7fxjvts7oQ9WBJLvSVKaofsZulTI6ZP7U4J4z4Abs7//FBkr+H7fP73cwAc\nHG5YUVQJlhTp9BkEjO+ztVDSJCVgo121YDZTusSTEtADuG3ObNqVSUnLwWDqdOOsKEguRVToWLGx\nLW4EJU1SRKHswZZMO+bMfWUcmz7T9KwHyTQMW7cHpc1jFLjNYyopstiD7lO2V/7tTm0epU8RlHSq\nbcJIbOZASXN9hR1vPCnp4ndbSxTbblqIsdzDMbsTJX09gPvkf34cgMuU+w23Avm2MUpwCeawtqSI\nSZ/ZqiEJVUUrkyK/ZvWQOzwuJVDokJUiT0qaqobo9zWGoCDZ2HArSlQVrVz4eXaj02yt20MNCpJ9\nJyG4lSImJc1s8whWKdKS6aCUNLf62vNjNLhV+5BtHj5vPfGq2vfd9mCLxfrrEFONnp0lJR38Na1M\nFkdvgbF9z2SbR8sM1+5ASfuks2cAOEkI8XsAng/gw8rPHgjg1wHHFUURn4Xfa3HrD4F0lO/clujK\nAEEJpESFUXpWTcq5cCsDJCWQmp+nzplZRRvri5ulUqT311gTxr7yvNQxZ9OudsjAhthojJS74Fw0\nG2vOTGy4VTQymVbnrN2719/cDBvfKhq3T6882GF5uw1ZfXXZgw2bjRo+5cKG2TOt+xRlN2VSRGDD\nbWUgsfGsTFsxtGHDoaSJAxt61V6Ms7v89LfblEkREYtrJ0WmyrSnr4wwLE/MTxiunn8ybYk3xWeP\nx44Y68LGszLtvSl3VRh3o4Tx9cjennIksuTxROVnRwE4K+C4oiiSGRVNNbNPfkotKbJWingU0RTt\nSlTRrP01tlI/V4+kBBI7hloyLW1JcoGNtghaG601WsVGb0i1ny81jdGRJK/UwFAZY2Y3fRLDqWTa\nVinS7YaoolH2MIUNlyKq26OkjNGnzUOdC0W76nYzdVGzRrO5fKrSyuDyldUaPqXoTV1GzL2TkNp4\nEtgUn92zUJAYaZeL+9qD/nrFunFJw8aZFFnmzE6K8s8uE0aNkrYyGk0paaIyzcUGEEh6A/TTcR5H\nlmr7FHf9IXumbZR0XQzVNg+mr3SdkmaPTkq5E8ALLT/7g2AjijIlSQL75dRSlla3nvCbjgE6SFUq\nkQ69yYJAUAJN6JJNZr3xmLfDy+iS1K6nU9J9XqWIoqRtgV6fyyR5stFik2DmnHON3W928rNH6m1I\nwh4KDIWmR7Uy9N1z8Tnk4MRmzMRQm3MdStpqN5p9qQmjlIAoEgnKV4oEQaXZpEGvBgXp41PlW0oc\nSRE3jth8JUmyXz2urxTJtAclPV6rUW0jfUUg6Q/RT0bTSVGhp9mDPZk2+8poZI4jnBg7diXJLfqU\nag/GhNFznWKvPz2e3QS7eUBJpkcJ0eah4Nhl8bmH8ddCiAdbfvZ7QohISbck7KpJKrz69IrgYmsm\n1isDtipawiz1myoDrJ4iQs95KpZbfVVoFWCyU7cfetGwsVRfuQs/m0riVgZ8GvmZ/TVTSZHt0AsT\nG371lYchm4L0PORQJkVJMn33JDcpKuxBS4oKahGoNuiz2zz6LfsUYTdFpQiwJ8lTjIbNp7RNmG2M\nU/GGSqabUtJcDKewoVmcsc5o2Chppq9MVe25c2nqUz5sj44Nuf74+ZR1/dFbGbhV1bYxBCqxqcvi\nc+jlIADLlp+tALhX49FEMQprh+d1wSqPWpycUisqRZaeooKCZFaKyN2vJ7VoDeDKDs+nkV+di3VX\nW2BI6JFJUbHwl7RKoN0v9bYCrffImRR5znlCJVWraICWFDGrISmVFHHnzNVT5lIkRcUY7JVDgj6z\n+JR1zkx7aN2nXL5SbK6oarxWcZ5qUdCwkbZEUI83tsRSS6ZD+xT3ihl1ztZeaFRjZ+0qmqfdsG9l\naOFNQlPYUD7V5yXT5PrT4/lebXuoiyGqul0Wn4QRQPEy3il5GIBbG44likVqVU2cDsujiMpDDn1L\nhZFLu9p2vwEoAdYimOv5VIqKxYYO4FVs9Lu/SmyoYNavVhrYu9W62GjJNCcp4vZ3ThIE9xgLbKgE\ngawwcufsU5m2VccIbEjalcJGr5oQelON/G37lDKXSYuCu4o2RS3a4oiFdtXHyI0jJDY1fYq/0ZjE\nkaY+xW1t4erpr3Nt3adMc2bH2OrG07b+ULHTd/1pbA8+PrUglLQznRVCvBLAK/O/SgBnCiE2NLVN\nAPYD8Nnww4sCZEaV+iYIZVIk6KTI0kxcOKzUkiJbMJPMKhqXLmFRAhv8YAYIpL0+emmSB/DhdDDT\nKGkuNsXdX1JmSWOfG+g1SrrxCb46GOZzS3sD9JLxNDZTtCtVRTPPJUmyX8OS1q9Js+kYisCUdHG6\no0ymc18ZFZWiTf4bDYvd2MaY6BsIK83Wgk+59LQ2D3XOtiqarsf1KdsYuT41dciubZ9S5qLTrtzN\nle1keOkrfU9fsehVsMn/vb9cY85cDB3Y2CjpqXhDYcikpNkHEH3tYQ+gpKn6568BfCP/8/MA/AjA\njZrOOoBfAPhI2KFFKSQzNt4uplZSxKRdi2BW3P0lPCkB7iEHL/psFXZKWnsekAfKDQc23IM+GjbF\nGMfjTLevB3pmf+fMKGkTNrakyEIl2atoZmz0zy571siKEoGhDExJT/kUTZ+RGw0LBcmmXZtWX0NR\n0sWElGSasgd+9VX7nilqse/2e6NPLRnmHIqSNlSmi8SMSqYbHywsfYrnexWfSuwYtklJS2aMLQsW\nZDLNw4byPam2eZhurOAmyTa9xFDMUXS7LM7RSSm/COCLACCyq9OPl1JePoNxRVFED1KVJvliF6Mv\n/GmSO+Jw6sqOcoeXO0axuOl6+g5PJOPy7q80nSRFpsqAaYypoRJpavg3NZe79KzYGBb+apVj09RV\nITrN1rNgM0W7WsZooqSNhxwMu1/j92zYrVrnvMHUU5NpVF+tpc5Zp9mKAD513Qp437OpMu3ExoZh\nYq8cNsbQaDcuX8l+F4kZQ5evmKpo0mZfekVJ1Vu2z8Xbp/Tx+WBjsYcpu5nyKfcYXRXGit0YKowh\n7MGKoSGZ1jflNruhfKq0GyLemA5LmfRMGw1fezBhmCj3ufZElhSlKaYuPwemmQqrTw2qlLR3LPZc\nf0q76Q9QXOPFsgdy/ZkUc6bW5gWhpH16GP8GwA2mHwghtgghuj3TBRbWLsaw8Nt6ivSFn02f1e23\n0isDTCqpcd+MgXYle4qm6DN3XxaFzZjZi5bqCULdKkcb2HBpVz0povr0dJqtbu8Rd86OjYbxefom\nzDTnuj7F7O/kVtsa97626FNlpcjWC83FxpZM2+JIvx2fUpOiSi+0AxvrFVR6Mm3p09MPgDTFpkiK\nKD22T+UYSvQg86xpIJKJnq3Nowk23HWK61OF3bTkU9lkDb6iJNNdrzD6JIwn579M8mFU3/wSJaD4\nUAKApafIRJdQ9zAWdMnATf3Y6Fldz1QpctElVAAgT0kbaVc3tVgu/Fq1zRrAB+65FH0wZC+aB10i\nJcMe6lLS4PSiVXf89sWNR0mT9lAEcFv/Vs05e/mUbRNm3Wi4KWkSGybNxr53r8ml5mpS5PApm6/o\njEbtpEjDJqlDSQdo81CTouzuSTs2OotDxVgrNnr1tSntSvWTh/YVk90QMVb3KbX6WjlYyPUVLl1f\n9+YBxvqTmrApftjroSxRdlR8RvcY5PS0Qc4A8MfNhxPFJN7VEMIoyx0eFcw8qyHWBd1Bs7H6soiq\nKreilM3ZkkwXu1rmwq9X22xjrH1K2oJh2azOfL1inco0tfBThxe42HAPgBTVV+9T0hYMjXqmpMhB\nu9rsgVr4SWy0yjSll+pVNOJ75r4a0Fop4voUYLUHOt64x8g9XU9i47IHpq8MMXLrcU9J2w69OChp\nFjY2n2Ju3uscnjNuPAP4lEjGyDrjqpQviU3N9cfbpxjrD0y+siB0NOCXMB4ACyWN7CDMgc2HE8Uk\nvsHMWPZWEsvij0Wgt5b6tYqSdXFjV5SI3W9Jzw7Ksbr0yAqjI5muJEWmZNpWRZtKLN1z0ek4azBj\nV5QIPe175t7fqY6RSqbZlSJb9bVcBHlzmbIHWzKdj79xpYi7CQOmsAG18HN9hVu1p6ommj003nhy\nfQqTMZKV6al4Q9Cuut3YkmlmRYmsopliJxFjp7Cxba4s2ABaUgRevCkZDcL32C9RqMNUEHYzWX8s\ndmPZvDdef5jxhjw4pGHDfb2iFRsFw66LT8J4A4AHWn72QAA3Nx9OFJPUraJVgpRrh0ecbqQqjNy+\nrKmmYwftmunz5uyFjSnQuzBsiA3ZU2Srhtiw8bxLTKIHmd/3Y6TPKHswJNMIZDcJt4LNxKbsy2Ji\nA6AM0kPhtgfjnA2N/GWliOrvtG2GPO2Giw35zmlXNYTyFcIeprCx3Fnalk+1EUe42ITyFd/e11Dx\nZk/GZh7rT9fFJ2H8dwDHCiEepP6jEOKBAN4I4MyQA4syEdYOj9tDYtCzXVfg67AgdoJcSmCKLuHQ\nZ8ykqAxSajLtoFVIbGxVLw0bsteRS0HqzeqcinORFBH0GUw7fkfQs1XRvClpyh6YtD5JJTWhz0yb\nMEMyPakoNaSkmTQb+xWC6junHXp1sDH6lKnNI8ewuLMUqFbRJj7lHiM7QWDagxzUp6TZdkMl00T1\nPLhPdYGSNvmUCRtijFOtU8T6Y73L0pZME/YQKWmzHIfsbS4XCCHOFUJ8TgjxPQA/BrAdwJvaGGAU\nTCVFlZ4iQ6kfpiBlKI9bd3i57kaaB/qhJYBPLQhuxxl70iXkCT51zkNDT5GJBhk6kqIKhmEoaZ2q\npChpCsMSGwLDyvfMpogcwcyAobVPr5gzRUlDsy+CgqSTJx6GJrupRZ85MBTjPFHL7ywtfYrChusr\nGs1G+lS/vk+R2Jh8SkmmR0nPPWfdHogxTmFjswemTxXfmfWuW6NPuSnpqTiSmJPpIsZS9kDGWM1X\nSNq16IEmElWytaWGT+lJN7X+UGMsWxlscUTzKcoOfWLsWG3zIDC0znl3pKSllDcBeDiAkwAIAA/J\nfz8RwMPzn0dpQZxByrHj5+7wbFW0YocHZoWR3ZAdeIfnhY0pKaqx+y0DKLPC6E1BBsTGmAg6sKEq\njHqfnk4t6hQkhY01mfalkhpUX9nYEG0exVyKO0t13ZEnNqF8yreR3wsbU4XRYYe2z2ZX0bh0fQew\nMVYYlWRav2KGHUdCx1huKwMHG6Y9GPt91ds8dBbHlkyjZhwhGA2uPaRFGsVhuAi76bp4pbRSyluR\nVRqPa2c4UUxSGttwCIxGeVK0bA9SriqagYIkT3QSDksmRRolYD3MUpMuUZ9pTRh35HqmqqqBVimD\nmQWbqaSITKaJ3S/3/jTP3iMWNuuFHtduJkmR6XWIU8l0oN4j9klzqopGHRBrkEzrVYk0zXQHto2G\nrYrWBZ/yxKbiKw6sqYWfrqoa5rxi0KN8ShjaPBImNlxfMcUbB4ZWpkJPimbkU+V3IXqAhJIU9azf\ns2Ru3tnJNFV9pVqndJ8K3N8JCMjhEGI0ynuhl/ziyG5KSUeZk+hUM1XqN1ZDjJSAIdAbeo9AUD/k\nCT6NPvM+FcuhiAoaxEKn6no2SkBPuos3dujUIpcimtAgYShp6XmCr4JNMLsJQ59xWxS4lDSJjeF7\n5mPjpqSnFn7KV7iUdKBT0gV2HEp6ylcoapHrU76+QuhxT0lzfar8YZqSp+bZsbho30hm5FPcFgXq\nbtNyg5rHhIGYtP2YDohRMdbhU8aNhqF1qqlPcds3uKekS+wACKKdh7XRWHRKWghxhhDiodyHCSFW\nhBCvEkK8uPnQogBKogL402fcCqMazIw7PCYlwKRnKT3fQy8VbLiVIoouUXrRSmpxPE2XUHPxrZqQ\nFGSf97m16DNTb6KrGkLOOTDtSvV3tkm7lpsrioJ0j9Gbrqcw1CuMhE+pP6TuniyxYfoKhQ01Rv3S\nfDY2gdo8+gNRPpM6NV8myUwanl1hbOhTU9XXhj5VXsreh7evsH0qIfSI3kTv9iAmJc31qX4f5o1n\njfWn60JVGK8AcJ4Q4nwhxMuFEIcKUXTLZiKEuKsQ4qlCiI8CuA7AXyE7CBMlgCj5GwTXKF07PAeV\nBADphknPvdMikyKtUkTdz8d9vZVpzsYdP0XXO3aClc8eGV5vRe74eXMhA3ix42dWadU5G+3GpEfQ\nJTqGlc8eOyrTVIWROvTS0xZLm56eFNkqRardLPHsYZIg8HyKpBaJOU8o6TD2YEqKKHsosCH1TCfD\nHRiS2LDpeq7d8Kpt1oXf4SskNqZNGNenVGy4PkXdyuAZY8mkiMviNMGG6VPsWBzo4FB5gEVNppn2\nsFtS0lLKlwN4AIAfAHgLgB8CWBNCbBNCXCeEWAVwFYB/A3AIgFcAeJCU8getjnoPksLQfIxSuHYx\nJvpMdYg1h95oZGzkJ6kkvTJA3tfIex5JCRjmLLQkmdzxc7EhqCRy90udEPWtFFUCuKPKQVHSXLvZ\nmOxsyvsafZvVCXqWamovkqdKUmR6SwlFLRrswWk3FCU9NryWk/IVMPWY1bZKUuSqopnsgbKbYQOf\nMvgKFxsqLk21MhA+ZY2xAXzKWEXziSPcfnLdVwh6lqyiGeyG6ytsbOr4lCvGcu3Gho3O4vj4lOnq\nMg+76bqQI5RSXgbgZUKIVwN4BIDDAdwVwAqyy7ovBvBtKeVv2hzonirGhJFIipxGaSr1546YJFlS\nNNT16lDShiZ0Ls1m3P32JABRL9DXoaSHhjGu2Z/XmJJm0iCFXn8gUHxp2ZyH1WR6MMzuuFOeSVJE\nTEpamMZYAxtve2BS0qU9jMd5AB+Sc+G2KNB2YxijK5lW5my6kzDUyc9ErxStreX2sImNjTq+S6RS\nqgAAIABJREFUOtSi0W6MbR5uStr3laVe1KJr4TdVimz2sKM651BtHnP3KRY2hK+Uh+x4dkNeORSY\nkq5lN+yDpm5sui7slFZKuQHgW/mvKDOSSsLIpEu4pf4yKVIdcb0GXeJJSXOppEpSJBIAg4peOiAc\n1kGzkY3Whjkb6XomtRiKZpuiz5IkrxQNK3rFc4SYUNI0RWRY3Bz2RWFDzYXfyM/D0JgUMWlX6mCH\n026ozZXBp7jUImVfZaWI0Cv6srzoMxddb2h56DFp/coYDW0e9KGXwLS+6lMI277BjsWmMdZo82DH\nYoqSRouU9C4zNkAWR3pT2ISlpElf4bZ51KCkqVjcdYmnpDsulYRR261Wdvwm2jUxVAYMeiqlIzfc\nesZqiIF2LZ5nekk8pWekQeT0XKRBz1gN4WJjqYaUY1zn0fW1sHHQbKpeYlj4TXMuX9cWChtqzgZs\nxJDAxlAZMM7ZQJ8Z7UYw7cbQytBn2gOJjWHOJp+i6FRfn1KrJk18ymQP3BaF3tjfp7jYUL5iikts\nuzFU0ShfKTdXTHsQJmwoXxm5K9ON4ggXG26MrSRF9X3FGGNNesl0m0cobIqDZGKQG9V4jJ6Q9bHx\nsJuuS0wYOy6mhNH2WqEpSoBLSauVonWDHkFJlxd8U9S15+lG667WFejJOXtSRA2xIQ852JJpDjYF\nRWToRauFjamK5sAwFDbCVOk2UUlMWp9qUWjVbrg+RczZ9y7LUD5VaWVgxhHRpIfR1MpA+AoXG+4d\nlVy7IStFro2GWkVj+kotn/K0h4qeoRe6jq+Uc2bq0b7CbPNgxhESm1yvN+ihyChNvdAp06fY/Z2x\nwhilqZgSRoo+E1z6jElJ672OQJUuKXduFH3GvXePSZ8Z6RIimXZSAgYKko2NZS5TybTeD6PTZ0wK\nkqKIyP4aB81mvDPOgGFjup5pD2Rflo2StmHDbWWoVIDy5JbwKWOfXg1K2rfNg6TZqH7fRq0M+f9R\n7ywd8XzKfCuDJwVJ+JQ1KbK1eTDmLEzJtIPWr4yR6SslNkSrTNWn/Oh6a1LkirHM9g3yRgFmjDUy\nXDO4zUOdc2VT7vCpPrX+EGtz1yUmjB2XSsJYJkWG3YmDWqT0Ko7ooha5OzxLk/BURcmilxioRVOj\ntZESoLAZOrChghRBu1aSaRtdYtv95smTMeGgqiGGwywuCpLEpsapRYqud1WmKXvgnm50UdKVKpqD\nSiIrjJRPuaqvlN2Y7IHSMyXThkqRyaeMdmNoZeDOuXJnqaFy2MinXNgQPkVVirg+JfuDyZ24roMd\nphir2oPhtgXTnE3VNgob7q0MxhhrYCq4dmNMprnYUHEksE9R61SzGEvEzjLGmrHpusSEseNirDCa\n3sRh2sVYyt7FfxGmHT+TBil7jwiKwbm4EXqDAYJT0lz6zLnwqxia9JTeo0T2yv8TAhtf2nUwmOiR\nlCGTkqawcW40lGR6I2Um0zk2Jnttgk0tu0nc1CLbp4hkh9vmUakUCZH9l970+2yLvizVp0xzNl3U\nzMWmjj0YfYr4nn3pejIpYt62oNpNedAnkK+EboHhtnlQdCrXV9RWBirGTr5nrt3UX6eM2DD1uHZD\n+ZQ5md5DKWkhxB1DDGTWIoS4hxDi80KI7UKI24QQ/yaEuOe8x6WLMWG00Ge6I1IngY3BbMP0vGla\nxalnpWcHLL1iJ0jRZ8Xut+Kwltfa6WO0YeNMpk0UEaFXPK9XBEcLfTbyxMaaTPvSbOoYDQ3ZKrXI\nxcZpD8qp2CKZpuZcYFMmRVIa6TMTNqY5m+zGdsJ38v3x5myqXrCxUdo8imSaiw1pD6ZKkcmnev7Y\nNLEHo08RlPQUNjZKmukrCdNuSEbDhQ1lD8sNfMpgDxQlPVLnbGJxPH2qqEyrL5ig1x/mnJv4lMtu\nCEqaazfWSqQjjtiw6bqwE0YhxAuFEK9R/v5AIcTVAG4QQvxICHHnVkbYggghNgP4JoD/BuB5AJ4D\n4L4AzhZCbJnn2HSpJIyuXQxFu5oqkS5HpHbJLj1rAGf2olGUgLOHxNwboo9RhMKG3V/jXgSLXS2V\nFHGxcZ2mprEZF8UqpKMAdqPoSebzKnZjqBSZk50GdhPaHtRqvGnOJh8wJdM1sDEu/F3ApoFedeNJ\nVNE8sWHbjeEaFXaMpWInM45Q2JBtP1osJn2KejVgrmesTDPjTZ31p04cIe9rdMWbButP+dYd0Gtz\n18WnwvgyAKvK398N4FZkb3fZB8DxAcfVtrwQwMEAniql/IKU8osAjgJwLwB/M9eRaVLZfDiMUg6G\nZX9NucNLiMTSRZ8ResbrMAjatawUDftlUlR5dZvWa0LRJabmZDKZXq5i03TOTfTqzHnMnDNZYWTa\ng2RiY+49qq9nsht1LmS/lYtmC4QN127a9CmT3RixMegZ7caAIdXTyraHBnNOR0l2mkYIfptH4Dgi\nDXYTCpvQMZbSY/tKg3jTJjZ14gh5OLMDdtN18UkY74XsrS4QQuwD4NEAXiulfB+ANwM4MvzwWpOj\nAJwnpby0+Acp5eUAvgfgKXMblUEqFUbHzq1KCVQp6Qq1GKgC1GT3G2zHb9jhUTv+nmkugefcKjYN\ndr/BK85zrDAaq2gGPbOv7D7YmOyGXXHmVk3InmneXIy+1wWfYlbjTdW2Xp0qWugYO0rLZHos+7Wx\nGTTApqs+5axMN6wwtoFN18UnYewBKG7o+iMAEsA5+d+vAnBAuGG1LocA+Lnh3y9C9u7szkglYTT1\nFJl2MblRivGopBa5VS/uKWnj8yiKyNDzYaqGmHZ4pp2b6QSfcferXtRsnMukjBtizo0rRSZsHBiS\nu18HNuoYe6Y+Kq49GK5RaWw3jgojd86u3tfqwk9VQ5hz4VacW/QpbjXEdKLT1KdHYdMzjNHUm8ie\nM7faZmvzcPgU1x5CVdF6JrvpgE8Zq2h1YmyRFJnWnw74lJpMF5Xp3qC4NZ7BcHn6lMkeSGwqNGK3\nxWeEvwLwP5H1/v0FgHOllMVLfu4KYFvgsbUp+wG4xfDv2wDsq/+jEOIc24MOO+ywcKMyiLnCaHBY\nw31ZheOMx5i8cokKZmqQ2sj+yG5W96UWV1cxqJMUmQK9o9HaRAmQSRHRhO5MupmBvrLjr5MUcRv0\nXdj0B1OnG8m5GLBhb0hq3S3HswfuRsOIDXEPI3XoxbUIGjFsy6dg3mhU7KbHXPi5hxeMc6lvD+zk\nyefwXAifMm00kjrYMPW41LUJm+ItJWmaJ0W9YDGW7VMENmyfamAPprjUH4hsjKNR7itLfnbD3Wi4\nfEptidoYlWvzc58L3HYbcMopwL5Tmcj8xSdh/AcAnxRCPA9ZUvV05WePAfDTkAOLkok5YTSUvQ27\nmKLkPh7XpEFW7XpGysl0EthAl1SqaIZSP5dabEIJUBSRiT6rzHnswKZF+qwJNiYapHpRM28ubGqR\nSVV2ARvyYIdhLmy76QAlXcGm39xuKL8PPWcj1kWlKEnyuydFc2xC065cur6Br5j0+gORjXE8NidF\nTNo1BDZFS5SoOZeK3qbsj03aPMoxjkZ5HKmHTYj1J0mqvvLlLwM33TQpyHZN2AmjlPIzQojfAPh9\nAD+UUn5b+fH1AL4YenAtyi0wVBJhqTxKKY+wPehhD3uYtP0shNzvfsB55wErKwD+wa/sTdIg7EpR\nfRrEREVUFn4mJW2sDDDps1rYUNTPuic2pt30OEVR3isuP6doEFNloM+kZ02tDKbdL1kpYtJiJqrS\nqGfAkKqiNaHh2XajtDIY59LksBQbQ0ulyJM+q1V95dL1Db5nrq/AVimqJEXDYL5C2g2Xkq5DIa80\nx7Cci54wBvApNu2a37YgZTZGUXMuxnWKaYeN1x+XPTSgpIsxJkkWY/umMXZQ2AmjEOJRAH4spfye\n4cfvBHBosFG1Lxch62PU5QEAfjHjsThlyxbg8MPzv5gclkFJA0QTOqXnokEqu2keXUKV+o27WuN9\netNzboSNGsxclHQdbCisU+GPjYM+M707mMTGlEyb5mwM4Iqeo5XB2ZelVIoqybShMk1iAzs2pnfA\nmnqKqFYGZ6Woia/YKkW9BDq1SC78Dp8y0fAmuzFio1zUbPQVijIcNsewHON4nM95aK8wmvr0uK0M\nJrtRkiJg8jpEvYrGjiMun+JS0iZs1tb4MTZwvCnGOB5bvmcuNq6+c9WnqLjEXH+a+JT5jkpi/THM\npasJo8+hl7NhPxByv/zniyJnAPh9IcTBxT8IIQ4C8If5z7opZcJoKo8bdjEmSse0wzOV8E0LehM9\nEyUACw1i2uGZ5mzsKfKj6yvYcCmiGthUFsH81W3WZNoTm0GL2Djn0kRPT4pyhWLHX74tZzCoJtNt\n2c3Yv5WhNWxs1ZCchqeSadPpZ2MVzWAPLmzU2xZkXn31amUI7FMmbKwLvyftavIVEzbq6xCbfM9N\n6Ppg2MwixjaJnZReIGzYrS1MbKi12TrGDopPwigcP1sGkDQcyyzlZABXAPiiEOIpQoijkFHqVwH4\n8DwH5pTSeA1lb4PxkhQRk5I26TlPBJaVIrMeRYPUOiXNpQSMO7z6NAgXGzUpKi7kDoWNiWo2YmO4\nl7MWNg3unqTmXCSMC2s3M8CmssCYKtOGOTfBRr3IXTbApkm8MfmeCZtkLFEoVJJpzzlzD3aY2jfU\nd05z7SF0LP7/2XvzcPmOom78U2dm7vJdspIEAoGwhZBAWBIwQUCIsioCLwHZwqYssiqLEUgEgUAU\n/EVeFA2yKdGoyCI7GiGyBTECAoGQH0ISggmB7Pku987S7x9nmZ6e7q7qM31mztxvf57nPnPvTN0z\n3Z9T1V1dVd3Hyg2jD7HHG658Q9pnqa3UsSlbn2fZgGgdRzhuXCUFLYQ3JV1E3e6kvXUCEe0wxNYB\nPAfAFVFb1iCUUruI6GQAZwP4AHJn+N8A/I5S6paFNs6HWdKuoSv+GnKVUzQcVjVFdaJotmJ12wrP\n9vQK6wqvTqTIslrFLNyU3z0cYoX6ALq1oq9WbqyrWhk34iiaq8/bhHJBK/51lhtbFG2CG3JH4216\nQ0UUTU8tRo9Mz6I3GOtDrcj0DBuC9M1z5ThSJ/rKRtH2uuVstmeLFJX9mDUybY8Uufvc74/7UnKj\nn4lbSx/0vgyEHPr0QXOmbRFG6xhr05tAboL6PGeb8j0OsQ439uyfnxvbOLKUDiPyx+a9DoAqft6B\nyUijKv4eAHhREw1sCkqpKwA8YdHtCEJVN+NOCWQZHAY7XsVMHaMykUqSycFyveq7h8PCEHvjAbzX\nm5aDMYAbq1pdbsJgy9QcTctNDPTF9RTLjaWN+uBjKUKvzc3GRuUUeeVMbow0iJMbT7E6WbjRD3y3\ncmPpMze5ibjRB3rtu8sBvHTgnNx4+pxlQLUT2GYrFg7L1OJoNC7Q1yd+GzeYQR+C9QYWpyjEpoS2\n4htHcodxHEXzcaNsbbToTSxuyj7Xsaly4udsih1jpdyI+6xxuOmTm76e15nudDBSJOqzbbzxpaSl\n3ADx9cFWC60vXLz6oD3HvXoiWQ1uOnXG2CVKSXMO4/uRH85NyM9ffBGmN4VsALhUKbVM5zAuJyqD\nFaYEuCianhIofp1YoXtTRA4l7/Vyp6hOalFahK7ccrYCfS5dYtuBGaUInemzjes66RL7hiBtkDJS\n0mUbCYJ0iXBD0Cwc2vpca7NUhPSZXqfHpl2F3Ig5ZPRBalM2fRhY9MaWqWBTi7aatcg2VUdvrOl6\njhtf2rUON0K9gbjPHg41p8g6Zmt2L7Up66YXjhtpStrgRm/fzPpQRKZtGS7p/KMG4w9tZR5WmxLO\nP9wYC82ZnnD4Wwivw6iUuhzA5QBARA9Fvkv65nk0LMEC32BmC3vbBinXLrUyiibc0alHOUROEbdL\nzbLCcw5SI0ufDadoNMonNz1SxE78zA4+W1+kct7JzSFnG6Qm0q5w64Ntd2PZxuFQcxg5boR9tslx\nejMxOAbqDctNKRfITb+vOUWR9EbMoXBHZx1ubH2W7pK2tXHYpE1NbRAj8TgSjZtAvQFQjbHRxhum\n7CevhfaUtoRyI+wzO//4FhqxbEqX22X0RXcYa+iNbVwS643lsHKpTU2cievbMbJAiDe9KKX+PTmL\nC0aZPrOtYoRF6HpBNpcSqAxsVShnSYNw9VZlqL9a4WVZ9Qgnm5wzMqClFitj23SnZ521Qt56GMuK\nX8qhhRs97crWHlWRos6UXCZMSdv6wslZI0XWPlvu8wx6w8n5ShkmuBHudrWlz1hupLbCnafHbRAz\n066uSGSgrdjSZzY5W1+sm+wi2VSnl6HcepwfJRTADSNnrUXj9EZqUyU3TO2rrY1sDaOlL3kttJwb\nbrzpNGhTiMyNeBxhOKylN1JupHpjm8NbCrHDSEQrRPQ6IrqEiHYT0dD4GfBXSZgJpVKWhg/5xG8q\nZZZpESBp6lpSd1FG0TinqFzhcZNgtXJjBnpbGt6XSrIMZhMpgTWLnJAbNtXMbV6oVvwFN1qeacKZ\nLuXqcONLn3ETv63PvvSZ7hRxaVduoDe4YSPTnFNk0wcpN7Pog+UoITE3XJrNtiGI40ZoK1K98aak\nuYVGDX2QjiPsxD8LN77Fex29Ye5zdG6E44itFjqW3ojHm8i2ws4/3EJjBr2xOtMtBVfDqOOtyGsY\nPw3gw8hrFxPmCS1y2O3m+limFq1h736/8h25dEkpFyt9NjUJRkolDQaoUtKuFJHODVzcWPo8kRJY\nscjZ+lxGlAYDdDtGoXWvh+Hu+tyUfXbKZZOpxcFgLOvjBkClDyw3tj6vTeuDtY1a+mylE5Y+k8qN\nBuNKdpszHZI+M/ss1RuXrXg5LK9ZI30mLWXQ9cGWri+5kejN1CKsBje63oi42djAShamD7FKGWzc\nzKw3nrIfGzfOneHFNaXcSEtgSg5ZvQlIu5r6wM4/Qm7mPf90hWMsWUqiaqXrW4oQh/EUAK9TSp3Z\nVGMSGBi1iYMBqkFlwBYd108JTKTZipoiLr0hTQl0qhWe/3qTK7yw9BmfWrSsfqXclOmz0ahIn3Wj\npV073OrXthNYmFoUp6T7slIGb/psWO6aN7jZa8hp3LDps5FMjo1MR+AmThp+nbWBrtSm9DKP4jnu\ntjKPOukzc8fwlNxaKWeJFNlSi9JxpMGUtO2IGTYyXYeb7ZNyPDf++xxqK+wYK+yzLlc6ReJShlgp\naWE5T6yUtJQb/bSFss+DOvNPSxFycPcOABc21ZAEAXyTG2ewvhWebZCyRYqAIlLkkLOF+rmUQDXx\n+69nnfht0RBbStoRffUO9FJu9FWt5dgTURrEJTcyOIzIjTfCaBvM9LPltFKGKhqy6W9j7fSZK1I0\nksmVC418cVUO4DIbYPXBFw0J0JtxLZpMb7gyDzE3AXojiqJxTnINbqQ2VTlPQ5nejPoOZ7qMFFme\n/BPNpnzR11lS0qzeyLjhoq8TdeLl/CPsczRuxDblH5eqhefQPy7ZUtI2buwlUZxNWThsKUIcxo8D\neHBTDUkQwBI5FBuizynSrkdcNIQ72qOKhjCh/iqKln/OTYK2oxysq1qdG1/UhEsJ2K7HtLHkhq3b\nBCNncMOtkikWN1b98kQGbClpRm+qPjv0geWm1IdSb4ZcZGA6fSbmhj15YJIbwLUTWGZT/Caoss9+\nmyq5yVzcGOmzJmzKaver03LO8aamrbAR55GMw8lnRAttpdIbGYfWyDTHYQ1bCR1jucj0ZF9kNiV9\nQpBVH3Ruilpobp5ijy5z6Y1rnuLGWJ8+CG1lGSKMXV6kwjsA/A0RjQB8CsDUuYtKqR/GaliCBTZl\n25Qqb7nakUUirYNKdej0Grsi6wo3vYw3djiuV27SsURDbIX81hU/U3RMvglBlxOmiKRpEI7Dkhtu\n4p94DrLnjEp2Q5CuDyuTHHLRNu4+B0cYXdyUA/jQiJq4uJlh0wtbrG4b6C02xbUxlBvWpoYyPayz\nkQw2vbHKFWlxvZQhZPOCz6Y23NxwHLKlDFoUrUotSksZSn0Q6o01+lo5RZ6yH6neBKZnpdG2si+D\nQe4IEuS2Umv+sZX9CG0q9qbL0WCEUqEHI4szbRlH+PHGMv+0FCEOY5mOfj3yp7/Y0OKubgF4DIw1\nxLIYt05K2jdIueS4iX9qAHdcjyxOkTRFxMmtTMq1LSVdK7U4kqVLxBxG1hupkyxNn3EpSFtqUcoN\nOwnO2aaCnSIhN4BWiya0KWlqceJUhvJJHJpTFDvVzMmVtiJ1iiYcxljc2NpoO3Q6dHHV62G4Z3Zu\nuHtSaxyZJSU9FbDo2jm0La5C9YZxGCeuZzngexZuttqml+cAUE01JEEATzjbqZRVEXpYCnLW9Nk4\n1M+kz0ZM+qysnSvkRoMRyrNvrCu8WVIC805Jc+lUM30mSUmruClpa/S1DSnpkUwPJ1KLA0+BvuU+\n254Va+PGma4XbhALTrtyKWmOG+M+N5mSnrCpbDpSFLt8Q5qS5tK9ZV/6fQc3M9iKqTcoqEG3K9s1\nb+hNFjkl7RyLffMPozcVN9xTcHxt1J4gVislbdlkJ01Js9xESElvqQijUur9DbYjQQKPgbGDWVvT\nZ2YUzTnxW1aC3ApvKE2zxU1Jcw7eVBQtUkp6NBwBKJxp/YDvCCkiZ+2RMH1WOzo2Y/psIrUoTUmL\n064WbixOkTh9Jo6+MvrARdGM+xxU5iHkxupMA+5IEZeS5kpghGUemdCmrJEi4cbCWnqjcZNv2FgX\nONPCVDPHjVGiII2+lr9PcePrMzPelGPi1GPyCtlyMwtbEhU4/wRHGBmb0vvs5KYI5pi2koXsLJkz\nWty0hCnMkpL2pQR0B5QJ4UtTROMoGjMJclGTymBlcuKUgMWZdq4Ey0OnhX2OlS5hC/RLp6j4vIPi\nQ5czbemzNCU98Sg40g6dLp/EwekNyfRhSm+kqUWXPhR9JoxAI48zzUVNPLYyNFNJ5uIqkt5M2QoX\nfW3SVoTjiNUpgh5xFo4j0vKNUJuSRIp8pQw2fRCmpKdSkKG2Ihw7O0J9CLWpOtwMOL0pHUbzMXmu\ngIV0/nH1WWhTVMemhjKbsupNSyGOMBLRexkRpZT6zRnbk+BDnZR0NdB7wuN9+fmK4hSRrW5mY1qu\nHKTYHZ3F91VnE0rSJb6UADeA10iflYOZOEXEpqTDVrU9LpVkiapK02wjM11Sps+KSBEXfZ1a8TtS\nP+IomjR9VvRZ9R3OtC3K4dslbYuimdwY6TOnPhjcSOXYlLTQpsb3WYEKAdujJ1m98USKpiZBM1Ik\njExztlLaFMdh+TnHYZ0oGtnkbOlZ28kDGjfsQsNlUzNmKijQpnQenfpgRNGGHIflPOVYaEjLediI\nc6k3pq24bGoQalPwl3lwQZ+WQuwwAjgZ0zWMBwHYCeCG4iehSVhX/LKJ37qKsTpF4xWe7SHs4gij\nkhnYlFPkMNjy7K9yVS1Z4ZXX5DY5WGuPiu8Yp4i67iiHMUjJB3pNzvJEGHYwM/rSnTWi5HGmpyZ+\nM33GtLEbmnYVOkXSFT9BxqHeZzbN5uLGcIpiF+izNsVxY9znKsIpKPPwRhgtE78zwsiNIz5bqaM3\nBjfylLTmTLsm/nLznDDCWJUHMZFpbuEpXUCIbYpzpm02UDpF0kwFswgbR6btNjXe/Sy1Kb/di0tb\nAm0qJ0U4/1RO8haKMCqljrS9T0QPBvCXAJ4WqU0JLngijKWzUxVPA94BvKqTmIiGjKNoqjNWDVtK\nQF/hjcZPZ/Omz6xyllWtTa7sc2/AyHmOK7BdLxeYTJ/ZuZlcyduc6a4lomTv8/SkZZOzpc+83MDf\nPttCw8qNVG+A6dSio41dT1TVpjcT3GxauLFM/D5uMsg4ZLmxRYo6Dm4sR3tYubFETaz6ILSpUm+q\nNC1jKza9mepzdaJABJsCvDZl44a3lTCbqja/MPpQOdOdDkaKvH2ObVNg7rOPmwmnyGJ7Vm4CbUp3\npofFASmsrTC10Jkx/zhtKtL84zuzdJIb4Tzlyeq5uVmeCOPMNYxKqS8AOBv5OY0JTcKTEuBXMQ6l\nLGTNYmJXuoStTQxd1ZaD1MhxPTOKBv/3Thgily4x5bhVbbnjtmMfLHrS8xW5uhlXFI1JEbHcWPrM\n7pK2yXm4cX23NKIkf/LC9MQfixtp9LWyFYdNsbVoNdNnwdFXJn1WR2+kNuWKvoo3+ki5kZ4oEJiS\ndnLjidpztdCcTUkjh+KNPpUjyEXRwmyqqpnudPgyD1tdsKcW2jVPhdqUs8+BNlXqTelg8ilpQWTa\nWFwN9gWHscAPAdwn0rUSXLApZWmIttojW9ExyQZwV7pEnD6TpqTrps8CUtLi+k44BimTm6IgO8uK\n6GvgQF9FGEf+vpTcVJEiLiUdwI01XRIy8U8tNJiUNDeAm9FXFzc1U9K9gJS015mexSmScjNjSjo0\nfRbNpnSnKFZKWphqDrWpbOTnkOXG50zr3FicIm6MFddCCxflUjlWb2awKWn5hpMb6RjrshVGHySn\nLRDJ9cHpTHsjke1PSc/sMBJRF8CzAFw5c2sS/NAcwW5XU8ossz4PFf3x8yqtm14wll3JJlNEroGe\nLdCfSkEyA3jA+VbdLibSZ65BKu+zw5k2rqe30ekUldyUp/2zq19moBcWq0/tzJuVG73PvtrXAL0x\nI85TZ8uZcq5NL2b0VXh0jLQInY0UWbixOtODAbqdSaeIi9qztsIV8rsi085JUGhTxX2W6I05ubki\nReWz5jmbktqKLe3qnfiFNsU559FsSuvzajbZRnEUzbXQkHIjfVRkUcLTFepDHZtycWPOP7PalPRE\ngakSmFn1oY5NuaKqLYS4hpGIPmd5ewXAUQAOBvCCWI1KcCBKZIBZ8Y8cylszJc2lN0LP/hKlpNc8\nzrQ0Pav1eSrCyDnTbBRNlvqpduZFT7uqqo3OHZ3lrnkhN5mLGzMywPSF1RupMz1DStqadrVtEGPS\nZ6atuM6WG0dD4tgUScs8ZkhJW/VhOBxvEJu1lMGV0XDZipLZVOkUOVOLM6Sk2T4bjiAJGFehAAAg\nAElEQVTLDdMX8SNGbWOs5fGKNCz0YV42BUzNP85xxGFTtbkx5h+n3mRGn/vN2dQUNy1ESIQxA0DG\nz80APgzgl5VSfxW/eQkT0Cf0jmcVY8gBY0OcCntLUwLmAM6kfkJ3dHIpyFAnmU0daOmzjFn9Tg1m\n5dNnSuspJ3SOG2mKyEgtindJW/psK8jOMC7AnHCmS6cI0+mzqfrOqdRif4Kbus60dNf8lDPdQEra\nGQ0xbIVNSY8m9cY8W05qU9KoarXbNbJN6X2eiL5auKkeV+lyprk0vGkr3HgjTKeWB7lLIkWicaQG\nN9Wi3GFT0hMmfNzomx+bGmNr2RTZx06pTQXPP0w5T+2ARUSbKtswVS7WQogjjEqphzTYjgQJ9FXM\ninD1W0WK/E6Rmd7gVr8d12BWDlLcQadVNCT/vMPVFEmdZMvOz8kVoyVS5BrApyID3CQoTBEVfXX2\n2eSQizAGLiCccmVftKOEKn0w9SYwamJL/dijbTJ9qM7lZDgsU0nSzVIZhiClpp3psi/6+YqMTY0X\nGoUzzWwkY88QNCPTjE1JnSIS6E23KPNwLq4c+uCqmTbHG9XpQhWHttl2u/LjjVwfOh2gyzlPnK1Y\nUotOfTCj8a60q8ENW5vIcVONN6XeyPRBMo6E2JTODZeGly40OH0YjzdMxNkcb3o9jPRHCGaB+tDv\no7NNziGwdSOMCYuGdBXjixQxm14y1wrPrA0Rr/CY1GLs1a+ZEjDltL6Yq9rQCKNr9ctHTWQcjg+L\nnTGqKpXT+jI18TMRRic3gfogjYZUtWjCczmDuXE50wiIhmBy0hJz49IHM6I0azSEsxVpZFrry9Q4\nIiyB0aP21o1kbPSVcaal9zlChHFqjDWcIjbCaHA4VcogiDBOONPmLulI+hAlMu2IxnM2JZ1/xFH7\neduUZdf8MkQYgxxGIronEf0TEf2MiAbF6z8S0T2bamCCBmkUTZOtGw1xnrTPrfCMyY1b1Y5TizOu\nfqVyWl/M9Jkz+qom2+iaBKfSIIxTxHHIPt1mjty4dpBLuQk9yF1SoE8Uoc81uDFtxVUXbPbZZVOx\n9SZan2fQGz4aP9kXzqbY8SZw93NsbqrINJHAmWaibYZNlZFps5RByk15L9gsTixudOepLPsJnX9m\nHEfEesNlKmJzo28Qy5i5uYUQp6SJ6H4A/h3AHgAfA3A1gFsDeAyAXyWiByul/quRVibkcEXRXAP4\n5mYxgK9VKyi2QL9c8btSi1yUw4iiSdNnHW6FF1hM7OWmdvrMz2GHK7yfcqaZdEnxfRN92TstJ+ZG\nqjfQVvyu6KsriuZIu05x44qGcBuCzBU/80jC2twIoq+VTTnLPIwoGpuu97eRjaJJ+6xz2MPEoea1\n9cbUh5HMpipuHM60dDPL+AiqGe+zLrdNqDeZko03XPTVoQ+ujAbLjSv6asplwuirVB+Msh9CljvT\ngNuZpsk+sw7jaBx9nShlkI4jZqYipk1JbGU4LPrcW6qUtNhhBPAWAN9BvsHl5vJNItoJ4Pzi84fH\nbV7CBEql3NzkJzdH+oxLCWRsukSW+hFH0crIgCu1OIeUNLviF6ZLOsZgJnaKmJRO9YzoXg/DXW65\nJlLSzonfjAyUEUZXKUNoSprTh/I+648I23T0uaut+OumKrW+TJUyuJwiY0IXc8PZVKwzBKsTBWTp\nM4lN9UI3vRgp6Smb4koUqkVYoE3NuunFcIpk3Ew6yS6bMqP2Lmea5aZaeDJyEDrTLg5dfS5qobvF\nU2DQ602eSYhxG83FlcumXM50VcpgRhi5TS/cSRR1bEoy/xTcEFaRqVEemS54arPDGJKSPhHAW3Rn\nEQCKv/8IwEkxG5ZgQUiKSJv4CaNcKeFe4ZmhflfqIDhFxJyM34rUYjlIMWnXDpd2DeQmeOJvdbqe\nib5ymxIaThFJI0UhelO2kdUb16aXUG6ENtVU+kykN6E2JU1Jz7oJKrZN6X2mfpjeBDrT0WwqcmmL\ndHEl4kaoD9KxWFqbGKo3scdYL4ctRIjDqGb8PGFW1DTYCTlzheeIHDrTJaPJSYtLCXRihfobSknr\nzvTEAd+aHMuNNH0mnfhjp5pD0mcOZ5rb0cnqTWBKmi1RiJ0+A/hIkSMNX3vil6YWjfRZNJsKtJWY\nKWlTH2rblJGSZs8sDUlJS8fYTMYNu0B1cONMSQvLN6b0pmmb0vvM6U1pK+aGILZOvODGUQITalPi\njMY8baqFCHEY/wPAa4oUdAUi2g7gNABfjdmwBAtCUovaxC9KQQpT0q7BzEwJRE+fhaSkpekzCJ1p\nc+J3paQNZ9rpFJl1m3VTP6HpM8idItaZdkWKHHrD1m2Wk5t013zs9BkEK37DmebSZ5XzpBib4tLw\nNaOv0dJnJjeMTQHhKWmnTQlT0tVzkIW75mdOSWttZMdYY1EuTUmzUTTheEPcmaXzsikfh4Y+OBca\n5gKVsSkuJT3eWDjnlDRy/nQOR+NDCFqLkBrG1wC4AMDlRPQJAFch3/TyaADbADwkduMSDKys5K+B\nKWlJeLw604tJs5lpEPdgZgzgTORQdN6Z73yrMn02HKKXDWVpEOnqt5Dh02eTHLoekyd2pgOjr6Lz\nFYWpRakzXS0gSqdIyI07+lrIxUqfSSNFIdzQAIBCR+UCLme6I0yzZUrGTRUpimVTIekzITdTEUbX\nOKLstuIaRzh9KCf+rotDqmdTWURuzFIG6eY5boyV2lS3jk1ZnggTtHmOBuiVyUfJGMuVeRjzD6c3\nbEnUYJCXRHHcNGBTyxhhFDuMSqmvEdGJAP4AwCMAHATgOgCfB/BGpdS3m2liQoWQsLc0wlgZbFgU\nrcOkS8ZHOUSKHEpX/MOhfFUrjL5W0RDljwyw3BhRtA6XBokVfS37UhWhx4tMSyNFZjREdY0VtVRv\nYkemtTbW0htfZNroMxdF42xFHClqYhNUUKZCc6YdaVfTprgNQSw3XJTWfMSbUG/QoK24NiCafa6t\nN5WzU8jV0Yfdbm7kNqVYDk1uuDGWs6mpXfOcrQwEcl2jz32LnCTDJR1vWoiQCCOUUt8CcEpDbUng\n0OnkkTSlplKLU+FsW0qg252WM1ICHSNSZF7PrJspV3hTcpVTNF5pTXy3Nkh1dUM05TSD9cqV372x\ngdXOgJfDdEG2S25qR6fr6BhHfY3Jte2YCxc35mo1lENzwF3NhPpAMg47jvTZlJzpTDvOlqt2LSpG\nHyxPm6jFodZG1lYc0VcXh676TpetOPtscBPNpjgOZ+Wm08FIkVXOPFFgihtj4udspTqey8VhNsmN\n1KYguM+sTTki0yPqWOXMlDQ3xtr0ZsKZLp2iYSSbsmwQ8+sNpuTsC43p8WH68auy+YdC5x/L8VxT\ncmsGNxuanLZrfqUzFNuKNxLZQniz5USUEdFjiOgeHpl7EtFj4jctwQpt4o+ZkjZTAuzOPMWk2aR1\neoGP4Iq5a7GLgX+FV/ZZmC4x02eudIltMJtLShoh+iDkUE3eZzYlXXLjir4Wcs7UojT1Uzt9xtdl\ndSEs85CWb6jJPrsekzflFM1qU4Hps6g2pWTjjTglLT1tIWTTi3TXvJQbNelMi8s8nHXBQluJpQ/a\nrvmJgEUkvcmd6SLCyJREdTm9sSwgRNzUtSntu1e4ubns8xKmpLnyyqcBOA/ALR6ZmwGcR0RPidaq\nBDccK37RIOUbwI3omKvouHpmK5MSYIuJG0yf1U4tulJJRp/ZlDQ30Jvc1E0tNpF2LQd6Tm/MqKqL\nG0eKyLVjeEpv6urDrNz4FmHSMg8zas+lzww58zF5VZ0et4s1pEBfmD4LSbtKOBTbStPlG2YbQzaI\n2aKqUm4ENmVme1x609jjMT1tnIiqzqI3mq10MP7Q6Uw3lZKe1aa0Nq7GKolqITiH8VQA71NKXeYS\nKD57D4BnxmtWghM2h5EZzCSRyHxyU1XEyFnI79jY4Yqi1Sq09hhs7BW/bEMQEykyBinn6rec+Gcp\nQp81UiTVB2kUzeDGGX01oqpOvamcIkYfQiLTwkiRODLN6U2pD8KNZFJuoumD4RTNlRtp9NVhU66N\nZE1EVcVZHGk0XmhTmTAyzY6x0rFTalPad4ecPSmdf0JsioswRpt/QvQmMKvX4/rcQnAO430B/Ivg\nOucDOGH25iSwkBqsNvFLIpEdNRiv8LLMecD3VDTEabBh6TNp2lXSF3H0NSh9pjnTTEqa2zEsPsqh\nifMVpTvDuUiRuYBg+pyZco6IUrlrkdUHLjJQI30m1QexTXGRIkf6zCUnPvYkwFbM+rtZ+yy2KUMf\nXDZl7gznnOngccS32BbaStM25cpomHqjOp6aQwk3IZspA06YkM4/Ijnh/BOako5pU+LjubZgSnon\ngOsF17m+kE1oGrY0CLPCk6akJWF0V/psKooWKyWty0VOn4WkpDOMR2KxM+1wimCmFuum2Wqcrxh7\nl7TpFLl2xbILDWmfG0yfSVPSoWUezonfwY3r5IEm0mfi8g2hXN2UtNMpGsjGm2gpae2a0W1FmJKe\nKvtxZirsemOeiduash/fIkxoU+ZpCy6bYktbWmBTbJ9bCM5h/DmAOwiuc/tCthEQ0cuJ6ONEdBUR\nKSJ6vUf2uUR0CRFtENH3iegFDrnHEdE3iGgvEV1ORKcTUYtvVQGpUgamz+Tp2cl0qjMywKUWG0yf\nRU9Jj4TpEiMN4q7TGyDLPH3WuOl2PXJaG9n0WWCKqKPkHGYYIoPyOtNmisgZRWsgfRaNm0CbyiNF\nqjqBgEtJz8xNg+mzlVjcGM40ZysVN2C4KXb4Rj17UprFEfa5K7SpjlAfSme66yplaDAlHX+8CbEp\nnhtzvHGWMizSpjj9aiE4h/FLkNUmPquQbQrPBXAogI/6hIjouQDOAfAhAI8E8EEA7ySi3zbkHlHI\n/CeARwF4O4DTAbw5estjI9AQpSmiTDFyjlWtO8JopBZdK7yQp01ksjaKi9A5bspJi+OmWv2WgxkT\nYYz51ABtkIoiJ13xS7mpJn6GG2mfa0RDekK9kepDR6gPHS4yXdoKl66XclPHpsQRxkjcVFE0WdrV\nLG0RR18j2BQ73thSi0w0Pgo31VgsHG+asClhn8VlHtIx1ph/OG6i2pTwCWLiCCPHTQvRZT7/UwBf\nIqKzAZymlNrUPySiHoC3AjgZwAObaSIA4Fil1IiIugBcEcMugDMBfEAp9dri7c8T0eEA3khE71aq\nrIDFWQC+pJR6nia3A8DpRHS2UurqBvsyG2xKyaz4pfVWErlxNMRfQ1KtyAaylRv73Rsb4nqrXgA3\n0miI5HqVMw0ZN90+U18TWKAfXKIQQ2+GMg6zUG6c3x1eb7UaUKAfk5tsKJQbBNqUMBoSs95K2mep\nTWWjfv7oSSiAiI1Ms/Wd0hrGwA1iQ/16u+1yOTfDaBxmRvSVy+LMbFMupygkOrbp63PGXi94/mH6\nbGa4ate+aucrio8SChhHtlSEUSl1IYBXAHgpgCuJ6FwiOrP4ORfAlQBeDOAVSqnGniWtVPFAWz9O\nAnAIgHON9z8A4GAUDi0RHQHg3g65HvKIY3thU0rfyg1MeFxb/com/mJVC/9gZhpi7ZSA1kb5zrwa\n56LN4hSVkQEjReSs0wvc0VlrAJ8xRcTqTagzzXEj1Yca6bOQZ0RLd4ZLd3RKrmdObnNxirQoWsx0\nvVQfpDZVctPjuOH0IYZT5MloSMt5pCnpypkG3M50rJR0nbIfqVMkTUlLy36MlDRfEjXjIkyTjX72\nMTf/tBBchBFKqT8loq8DOA3A4wGsFx/tQf5s6bOUUl9srIVyHFu8fsd4/+Li9RjkjzG0yimlfkRE\nuwu59iJ04hcX6MdNSZuh/topAb3P0rSruAh9tpT01NMFjJS0K81mTvz6Y/JsTtEsKSLb00ek6VRp\n+kykNwY3ztQi1+fOAtNnlU0JORzKOFxk+qyHPrJ5puulelNFGIXcSDeImZEiRm/6wkV5FWH0cSO0\nKTK5Mc8kNPTGHGPNcQmDATo9wRhrZnFi2JQaoIvOlNz0k3/kKemJyHRx7emFRlESVcOmrE+jKZ41\nL7WpCTkz+iq1qRaCdRgBQCn1BQBfIKIMwK2Kt69VqnjGUTtwUPFq7uq+zvjcJVe+d5D5JhFd4PrS\n448/Xt7CGLA5jL0ehnvyX4PD3loaRCRnrPi5CGMpV/tsOU02WhQtkBtx2jUwUmRyYz4mbxm4keqN\nGUWT6s3UNWnSKYrZ55AomjQNL+JmKIyiSSNFhVMk1RuKaStSvZFyI40w9vvo9AS2UjhF8W2FT0nH\n1huEcLMm46aZcUSWko7KjVEStZTzTwvBbXqZgFJqpJS6pvip5SwS0a8UO525nwvqXH/Lw6aUKyve\nNIg37F2ufoX1VjQaiNIl5oq/fs3auI21zleMkD7LODkjfVbKuo6YmYq++lLXAemzKLVotkgRM4AH\n1ekF6sPUY/K09Jn5zNbGuZHqjS2KJnKmHXoTYita+kzSRvFZg8IUZEgtWh2bEp9ROQs3Ur2xZXGY\nlHRMm6J+H1kmGEdCxtgsrj50OTlb9NWnD0Kbijr/BOqD1KY6WzEl3QC+AuDuArndgdctI4YHArhK\ne7+MGF5nkTNxoCZXQSn1ENeXnnDCCSqolbNCM9gVbFbv+QaziUika5BSzHN0y0lwYFzPkS4xa4q8\nKQE9UuQL9XPP+tVS0hNyZrG65hSJ+jySPWOYhgNkGKJT7IydSpe4IoxmetZ4kL2oz0JuJmoTez0U\nwS3/in8Wbsr7XKTPqsi0Y3ejS2+qs+XKNprRkCa48TjTIpsaytpHg0luvLayMpabKmUoZYv0mcim\n0AckfZZyI9QHktrUQKg3ZqRoHvqgLVB7wpS0yKaGQpsqbWXk4MZwpiV9iW5TUlsR6sPU/MNxEzje\n+K4ZYlNRuGkh5u4wKqV2A7ikgUuXtYrHYtJhLGsSv2uRu7AUIqIjAWzT5NqJwAhjV2mOpS8SOZTJ\n0UAmV54hWMoOOyuTcppTtNodiq65msm+e8KZnic3Q+OeOJ6HynJTyhZOkeS7pXJT3OydjZtMyE02\n6I+daVvtkc7NuoybtU5cfZiSczjTsbnJU4sKq4Wsr/ZV15tRN+emKmXQZKW2skJ9IKKtROem7POg\n4CZbccp1Oog6jqxQH31xnwesXGfUEDd9h6049Gb+YyxF44YCuNH1IQY3tcdYT4RRl5t4Sk9L0eKm\nBeNC5IeHP814/+nIo4ZfBgCl1BUA/tsh1wfw6WabOSOkEUYtDeJ1LG2RIq/ByuSmIkWuiR/Gys3T\nxolVrW+QgkyO5ca2+vW0j+XGFUWbhRtb9HUWbmxRtFm4KfVB40b5nGmDm9IpmuAmUB+kch2h3mSx\nbWowQI/yD1Wn43amF2lTkfUhC7GVTGHFFX11cKN6K5OlDCHcSPXGFomcRW9mHGOnnGlXFM3TFyk3\n0j5LxxuxTcWaf1wZLp/DKLQpMTdcn1uIRaSkg0FEJwA4EmMH9xgiOqX4/VNKqd1KqT4RnYH8oO6f\nIH++9ckAngPgJcYZkq8B8AkiOgfAeQDug/zg7re3+gxGYGLlpivb1OpES4PojuWUXDXQM3JaTZFE\nDv0+OitaNER7bFWFMn1GsjaaTrLruyeiHB45lptqkLLLTQ30fVk/0O+js03ADYwVv6eNLm6m0yCy\nNoq5EeoD9ftVBE1f4Fj1psNwY4uG1OCmtt449GFq1zwnp/V5vbMJDHg5lhut3ldqU1SHmw0HN9Jx\nRMgh+n2sdsp61g5GxRQg5WYi+irlppr4hbYSS2+k3Oh91pzpqdIWfbzJlKgvUm6kNpXrg5qS82Zx\nfDYVMv/oEUZzB7lR9mMLvgT3OXCeMm0lOYzx8GJMPnHmicUPANwRwGUAoJT6SyJSyM+OfBWAKwC8\nWCn1Tv1iSqlPFQ7n65A/peanyJ/ycmZzXYiEauUmjDCOZKnrzEynetJnIrl+H511z+pXk53Ytcik\nBKRpeFFEqUFulCBdIooUCfscUqIgixRF5qbfx1qnDwx5uYVxI+yzWG8CbGWt088dxgVwQ4vQm1Bu\nODkjUhSFG9XHoI7e7HL0WWgrIdxUznS3Ox21J8r/GA4naqF90VexrQjl8l3ziu+zkJupsh+frWQK\nPdeml1LWrIWe5/zDybUQS+EwKqWehdyxk8ieg/zxgJzchwF8eKaGLQKlYY82RQW4HTUQbY7Jhoyc\nli6RyJUpAXOFZxvAeyRrYxey75bKsdyUfR7J2keDAdZoE1B+OZObqZq1EG4C5VhutM0LUbjR9GG9\ns5k7jF253li50dKpc+WmnNyENhXMDfKNLHx6Nq5NdSLailhvuHFE6/Na5uHGcIqicBNqK0JuWL2p\nMcaWeuOMUHW7OTfZYIqbiY1kgTYVNsaOxnLm8W9a+YZ0jJVyUy40VM+yObOULTaIlde0biRraJ5i\nbaWF2Eo1jPsGtFWMt7DWFvaeZYWnpRa9UTQtJdDL8k0OyrbJQZONVmht2xnurTGTXS8L2OgzHsAl\nq19HXVYIN7Z0ibc2UViQzUWKpNxo+lBN/IzchFM0S6TIlk6dxVZsqcVZIkVan1czj5xxlJCXG1va\ndZZIkW2Hr7fGTMZhyOYFb4RRu6aeqZiJG6lNaZEi0TgiHWPr2JRtvNHaqPc5hk31hH3uRt7oQwE2\nxXJjGWOtG8kC9SHEprzXayGSw7hssIW9vasYeahf7BQVhuiNFGmToOpZNjlosk2kXUUrvAbSIFWf\nmUL+lc4QGRRUltmdaRs3viha5LRrrQHct+LXJn7rAD7lFHmcacskKNYbX9REmnaV6k3AQsMbRdNk\nWaco1Kbq7H72RdECuBGnpOs4Rb4IY+TyjVo25YswhqSkM49NabJSvTHr70TcRJh/mrCpihvGpnRb\niWFT4tM3uGOWWojkMC4bApVSGuoPOftL6hSxk6A0DRIoJ94ZHitdL+2z5hRtozw3w61+J/rM7MyL\nkj6z7VqUpl2F+mBdaGiyFTedzvTB8AY3kjZOcOONvgq5kabPAmzK60xrsrlTxEemQ9JnkjaGnLYg\n5UZqU+zEb9nh64swRkstho4jwtMWEGu8MbjxOtM2m5KONzHGWKHeIMSmhBFGKTdSfWDPV7SNNynC\nmNAIpCs8aSqpToTRV28V4hRZVm5lSqC81ESfFxVhrFGgz/V5B+WV8SGrX++KP/amlwYijNJoyLbi\nzP5RVx5RihFhFEdDpDbVQISxtKlRx7LJwdXnSNGQtkcY17JNfpNDIDexN88tKsIojaKJI4yRbUqa\nxdFPouA2FlZjcaQIYxM2lSKMCc1ipVDoOrUhzCAlKiYOGMC3Uz7xqw5vsKJUktQRjM2NUC5o4q/h\nFHl3N9bhhnGmg/UmklNU6Q0jJ53cxLVoAU7Romyq1BvJJCid+GWbFyLbVL9Jm/JscgDQk3IT2aZC\naqHHNh+HmzXaQLd4Go2vBEZcpyccY6XjiHk8lzdg4etzSIQxdP4JSNeL+pxqGBMah23161NKYSop\n5NBpaYqonPhHgrSrJJVU69BpGzeBKaJa3DB9Zp0iGzee3Y3RDuSehRsP1zo3nD6wznRg+kyqD2Ju\npPrQgE1JuZHqA3t4sLZrXlqi0Bw3Qr1xLVCrzQuRDmC2ceOzFSmHgwFWyTOOWJwiTh/WkUemh11H\nPXmNMg/RGCudf6R6w42xtgwXow9rtCHanBl7jGVtqoVIDuOyQRpFs+1ajLTCG69qmQgjirQrE2Hs\nYXyoc4wVnjgaIowMhESKVmlT1GdphFHvsy9dEjsaIo2qBhWhkywaUukNF2HUIgPlocWAvZRhWSKM\nnD5IbUocYYwdtRf2eSK1yG6eK7mJb1PRI0WRIozBtdAcN0poU1JbqfNY1UjzT6kPnA2UZT/OBWoh\nt660hQZT5hE8/0jHkRRhTGgE2gAuijAGPM82uG4m0gC+poq6rMyxycE2gM9SGxLIzUT6TDjQc4NU\nOYA7oyETEz+/Y7hWLVqMXYu1UovCAZxL10NWexTbKQqp9y3bx0WKpM60lBt9clO9FefZcrUO5I4x\n3vT7+ZmlLm7K8xUBbEPpFMlsKppTVCftKq3TkzpFXJ+FY+zYKfLLSTNXXamTLLWpoIVnYC00M8bW\nsakou+aX8EkvyWFcNkgdhNB0yVC+27Wc3Lg0iDR9tg5mMKuRZhNFXxeYPqvS9Yzc6qhIJWWOTQ5l\nn+ukZ6W7XSNxI02fVdww+pAXoXs2OYSmXWOn63VHUJg+k9rUMCBd7ztbTryDXKgPIanFclMC1+cd\nmXAcKSb+Iac3sZ4RXaOUQX6iQFhpi3SMleiN9ESBxtL1rN6EzT/cWMw606H6IN1BzvW5hUgO47Ih\nMIoWkloM3e0qTxExK7xROdD75UJSRKJoiDR9ViMlLV7VMnJrI5mcdMUfUqAv0i8utag5Reu0N++L\nNIom5GbIpJIaTS2y+iC0FeEGMSk3PSXb5NCR1kILo2O1bEU6jnD6IORG1wdfKUOt1GKsMVY4jlRO\nEac30nFEuvu5AW6i21RkvRGnpOtE41OEMaER2JQydmpx1gjjVNqVSUkXD1/lrhdyzEVwimiW1KKe\nPuMiRSY3XLp+JOMw9rN+Q9Ku4wFcVn/Hps+KPjujIYbeOCNKNqeISS02diRMLG6kejPMJ8FBx7HJ\nwbbQkKbPInGzwkXjA7nZNpLJrShmk0ON1GLsY5bYDWI1bYobR/TTFrylDA0cyC0uiSKZTW2TcjOU\njTchB7lHKftpIZLDuGxoLBrCPJs6y6o/5AP4Lbkct/od5nLDjIsMbAqPhNmUDWYD2fVoc7PalKOv\najPdegrZHbhlSs478TMD+Pqg4IZzGEf2vkxFTYayPmecPpR6s7k5XkBwZ09irA9TE5Emt03J9KZa\naHB6o/fZO4AL9UGoN9jcxErpTDN92S50BLcVtsL1eW0g47ArfSb9QGhTfTk3a+Iomqzet1pocAvU\ngTbeeJzpjsOmao8jfRmHuk1xkcPtFluxjUvlWMxlcVaGe5BBYUQZRpQLTJQy2J/2TnwAACAASURB\nVMaRGmOsOS7RplxvKmdayA3nCK6PxjblG5e6ajwPiOcfZoxNm14SmoU0GrK6CgDI+ht+pSzkaGMs\n55z4C1l94vfJbeMMtpBb45yiQq43lPWlM9jwDz4lN5uy62Fjgy9Cn+LGL8cO4FPc+OW6IyE3Un0Q\nyk1ww7Rxu5SboUwfSm4GjNwENx59EHMTojecMx1qU6NAm8oYboQ2lQltqgluKqeI6XO58OQ4XO3L\n9Ks7iGxTmzIOJ7hh+sw6RVPc+OVWB8zi3aY3vjFWyCE4vel2c691NKqOCGK54QIWBjecPqz2iwUJ\ndaAomz4Tt9SHGW0qa7FX1uKmJVjhiDCWKyNTeam/MbHacclhY6OKhqiORQ4A1tYAADtxM4B88PHJ\nbR8Wcpn/eusDRq5yGPdWdVnodqdli+t1BhsTzrRLjuWmkMsH8PGq1roKLSd+dfOUnK0vFTcMhyU3\nQ0auN7T3pWqjjRuf3mzW4Kbrb6POjXVwLOS2jWQcrvUZueJ63aFMHzKOm1JvOG50m8qm9cZqK0p2\nn7cJbarkZshw2HHozZRN9YU2JeWm38cabfi5KW1qxPTF4IbjsOKG4bDLcaMtykW2sslw2Olom1nG\nUVWv3oym9cHqFA1k+rC2KeNQOsa6uLE5014OiSrZ8fwj5EY8xvrHpVWL3kxEX7WAhUQfMoc+pAhj\nQjxII4yVUu4NX/ELV7XiaEikSNHKZiGX9QAi2Yo/djQk1opfGGEUr/gHeyac6VlX/LW44SKMgdEQ\nsd6ERNHmEWHUoiHbFhYNEXIj1IdMaFNspIgIWMl3bVelLVzEWcmiY2tcut6MMDLciCNFsSKMmuy4\ntEXGTSybGnPjb19HGmEMGEfY9GwoN8Ixli37KbnZjBuZJs6mWojkMC4bpDWMtpWbx7HUI4ycIZaR\nIm6Q0lf83oG+z8gVbVzZyOUGWf6IPNdqNRswfZZyU0xseaH1hp+bqSiaX27bIJAbZnJb2cgHs362\nwjrTEn1gucmycTSEq2k1IkWsgzBg+myu+LlShv4edDDCCPnmJJ8zHUVviKzReL8zLetLGQ3hFlcs\nN2WkyIiiNc6NJltxw9jU9lEz3LClDFyfbVE0xikScyMcY1luyqiq1KY2x2Os12GU6oN0vNG4YcdY\nROKmWnjKxliWG1umgllopE0vCc1CusNKuqrtdvPJfzisdvhyK7JycuNW8uNVbZwoWhlhZFMCdSKM\nNjktGrKDK7w3V/yc3HCc3oix4u9p3AAIrpuZKRpCgRHnSHpTpc84bjY0bjzOtDSKFsKNnj6TTG6c\nnDiKVuoDcXqzGx2MMETmd6YD6u+Co2hCbvhIkdCmNoVRtMGGf5ODNFJk4cZ5uHjZZ8juM7sJyojG\n82OsjENxnXgAN9XGQuY+75DOPyMhN8IxdiVAb6KNIy1DchiXDTWcIumqVrphY7uw8H5duHJbE65q\ne2WEkfxyIWnX0GgIt1rdLoyirQ1labGKGy5dv3fMjVJwFmRLoyFs2lXnRhgdqyb+SHqzIky79vaO\n9QvwONMNRIrKiZ+NxgvLN9aF0bFVod50N8YcAm5uQjZBiccbod6EboLi5FaE4013Y7zJAVk2s95M\nbCyccxZHqjfjsh8+wrgiiEyzY6x2XM4al8WpAhay+yzOcAkj03qGy8tNQIlCijAmNIsqDbJXlEpq\nJBoijjBKV/wyucopYuTMQusoUbTASBEbRZNGQ8qBnosUBXAjXfF7OdRkK2eai4aMZHqzJo4UFXIc\nNxtjDr2lDA1E0XYKbaXcBMXdPyk3K1Ju9o7lAKEz7bOpjQ2sYryZReYwyqLx7HjTl/V5ZUNmU929\nYznA40xLszh6TSvHzUjWF3mmQqg3G7Lv7e4tHEv4nWlRFicwU7FDGI0vS1tYmxJnKmR6k8/N+ROo\nfPXkKcKY0DzK2qON3WOlnGVjhyYrjaLF3swirZvpaVE0sVMUqdBaHEUTr2ql0RBZJFLMTcAmKCk3\n0hV/5RQJ6zZjRUPKya1PK95SBuK4KcoTqN/HGvKn1jgf3RbIzbo04tyX2Uo58fel3HDRV24c0Wpa\n2UeCmgtPYaSIr00M3TzHcLOn4JAYbjYYvdFkK6dIupmF1ZuwWmheb8Jsio3aB3Ajnn+E3EizOKuB\nNsVzk0em++QvgRHNzS1DchiXDaXDeMuNAIC9tOZVyjCn6CYAkok/l+MG5vV+cT22mLi4HucU7cnl\nuEkw27tbtMlBj4bE4mbbUCZXcsP1eXVD1ueulJuNveO6LNcO3ywDjUbVxM+nFgO5Ydoo5mavUG92\ny+RYp0iraWU3bNTlhtObTaFNCbnpFtz0mVIGNiWtye4PWV92jITcDGR9XhPqzUogNwPGYQxZlO/X\nEDdcX9aEetPbKxxvdo31BnBzw+6a12T3E9pKMDecY7kRNv9wi/LObhk3yWFMaB7lGWGFw7hJ+d++\naEg18a+tMQabX3PY88vtGOZyg+6632A3c7k+I7e6t+hLxy/X21PIZf72jZ3pdbszrUVDyokf6/7v\n3llys+KXG3Pjb+N6bG5253IbmV8u2533dxM9eypJk90f+TVHK4zejGTcbB8U3PT8ciU3g47/e1cq\nbvxyXSE3tLEHK+jnCw3WKZLZys6RTK7kps9ws1Zws8noTclNn7GV7q5pm8oyW/R1o4qqsuMIZPpQ\ncsPZyraBTG5to+gzYysr1Tjilyu52Zut5/3xOEVSbvaXcjOUyW3rC/Wm4oaxKSE3nV1jmwL8TlHF\nDTPG7ie0KekYW3LDzVOroXrDjTfF/LPhmpu1YA7LTcuQHMZlQxlhvPkGAB6l1GpDykGKG8zYAbw8\n5oIbwMsDUfvMIFUe5bB3etLyTm7kv16HM1hNtuRGrfqvKZ3cqomfGVRKp8g5+JRHCe1hJv5yASHk\nJrtZwI3UKSqPuQjUG04fysmNG5hXuAXELNzYFhqarNRhLCe3PsNNNbkJueH0geXGsKkNhhvadQs6\nGKGPrr0uS5MtueH0IXTin1lvpNxY9KYsZQAs0de9e8ZR+9VV7zXLRTnLjdCmWG4Mh5HTByk37Bhb\nOYyb1ZNZpAELTh8qm2Luc7Uol+oN0+dyUe4cRwxn2hnM6XaBTgc0GlUbTZ3ctAzJYVw2lIY4yAvQ\n9xZKORjX2E7JVgc6r6155cqayGHPL9dV+Yf9jl+uM5LJZaO8ff1MJrfByFHx4YaAm7LPoxWmzwWH\ngy7TZ1X0hZMTclPKbcbiphiVQrjh9EEqJ+ZGyfRBzM2w0AchN3shtykxN0yfS5sS65fQpqTcbJLQ\npgTciMcRoU0FjzfSPkttxSVXPge58Cb3YhUgijrGSvVhINUHTk7ITWVThTNdljJMZHHKh0xglG+O\n6Xaj2JSUG6neiLlpcP7B6qpdrmVIDuOyoTxou8Am5YpXrk5sSgkAI9DErjKXHDC5woshp6/wfHL6\nCs8rRzI5c/Xrkx12V+NyI+xzX9pnodyGlBsEcNOLqw9ibiLrjZOb8oB2TQ6QcdN2W9mYlZtOZyLk\nsTfEpiLrjZSbuemNlsUBxguNVnMzL70xZLcSN9L5Zy+t2U9lMGQ3sDJRHpQcxoR4MBzGDeRK6QuR\nA7nBDkf+1W8JbuVWglu5leBWbpUcs3IrscFEQ0pIIkVAXs83RGch3Ig5nJWb8ryzApLIdIlhZ2Ux\neiPsMxcdK+HkRouGAHK9AfhoSAkuqlrJxbapWbkxZEO4EevDgvSGixRVclggNwsaR5ZBbxY13oj1\nxkhdV3XBhuzeYg5PEcaE+LCsYqRKORwuaKBvwBCtckY0ZMMwRK8zHZub2AP4rNw4oiHcNfcELDRi\nT25SuZn1xpCVcjNAB0Pyp9kq2djczEtvDNkgZ7rrSLM1zE1sp2jvEjhFcxtHkjMtd6YDuBmNksOY\n0AQsE7/VIQImopGmU+RynoBJg/XJ6Ybok9MN0StHMrkNl5whWxoikNOWZW65tnPj7LNnkOK4AcKd\n6TZyI9abfZAbqd7sDbApQMLN6sRCI0aft4pNDZFNLDSWmRvv/ONxiry20lltdZ+dcmYWJ4Ab5zjS\nMiSHcRlhcQQBfhUjjaL1M1lkYG5RjhlW/FI5MTeLSjU3ECnSi9WlznSsPkvrqBaiN0pWb9UUN1J9\nkNaYibiR2oqSRYpKbqS1aIuKoklqWkPGG2dq0eQmctR+buOIpaY15hgbUh7URBZHWpsozeLMzE3L\nkBzGZYTuMKowpeQMoo8uhtSNWkwcvUBf6CTvCXSmRZObdrhrjD7H3swiXkCoSTmulCH2pgRp6mcR\n3OwpnOkyOs0504va+DWTU2REQ0JsCojvTIv6LJQTb/wKqGmVjiOjkZybtm8YDBk7pXIL4SZAb6Sp\n5rlx0zIkh3EZMRFh9GzHrzGAhwz00Vf8rhXZDNGQmNw0Uc83MzdmNETIzZ7I0deQer651VuZ0ZAA\nvQlxpqNG7aV1m7NGVWeIhuhOUYy6YOl9jp3RWNQ4stDIdAMR54XNP/Pa+FU3U5EijAmtwAwRRqus\np9bRJQd4BjNzJ7fLwKRyvd7ErO01RO2aXqeoRp+9tSbmcUeuATw2N1k24TRKa1r3+PQmAje+vjhr\nimpy4x3AjTaG6k1IXbCrjRtYwVBlwdzEkPMW3te0lc3ijOqpTXY1uBmBMKDefGxFKmfpSx1bcel2\nkK2QY6HRsE0tAzfOBUSEsdjL4Tznn5YhOYzLiIkVnuPJAgCwvj6W8xlsDTnAM0jVlHMaLNFUG50T\nuianO0VNcDNh2LH7bMh5NyU4uJkaeObIDacP1vRLTW68mxL0Ngb0uXSKfBw2wY24z66nTZh60wA3\nGxsyOT3N5uXGtTmmaZuCg0ND1ruAMPrSz5+nML3JroY+mPV8Um5i2FTTY6yrjSG20qeV6HrjrGnV\nbuZc55+WITmMywhtdXIzdrgdhJ07q1+9dRI15ABgE456PkPOWcshlXO0kZPbo+TXGwwic+Nyigw5\n5yBlciPsi7du09JniZxUbyQcAp7oRV1uGtCH0imat02J++zicPv2yWi8rxatpt6EcMPd5yZsyqkP\nq6sTtYneKLvexgXqTYhNzSTX6VidGK4voWOsUhZnugY3ZXlQzPnHeyTZjh389cy+xJh/WobkMC4j\nNMO+eSRzGG/GTtEALpfb4U6zGYa4u7PTPblp2JU55CxtlMjdpHZWK/55crMXq+jDkWaTcrO6OvFG\nbG5uxk7R5BabmwE67miIlJtud2LRdAttDW4AYE/HYc8mNy59MCa3XVJuVPu5ceqDVM6QlerNTUvA\nzZ6ujBvxOLKFuJHqTRPzT8j1rJvsWoYWNy3Bif32q3690aeUmlyplNYUjEV5JQYrkQM8BptlE5Nb\nE4boTC3WHKT0Ps/KIeAZpIhqTW76xD+V2jDauHev4HoB+iDmcOhIQRrcSPssnvhrOIwchzFt5RZs\nFy/CYjvJTUz8MbnZwAo24XjiUNN6E8DNImxqiAx7sG63KW18BeqNI7G5madNAZ5F2NraRGN0W5G0\ncep6htyNo3o2NVEX3DK03mEkoqOI6B1E9F0iuoWIriKijxHRvRzyzyWiS4hog4i+T0QvcMg9joi+\nQUR7iehyIjqdiFpcPaDhgAOqX2/BjiqKxil5qZRZZiil4Vg66yk8g5lLbogMe2ibyBD1wWxKzuL8\nctcLmfid9VbSAbwGhwCwO9sxOzfSAdxoo5ObBvXB5Hqijcbkpi80ouhDgDNdJxoycc3YHK6vT4Qe\ndmU73fV3jsnNx+FNNbhpwqZqcdjrTdR164swSRs5uRt93EhtagZbEcm5Tm8wFuVebmrYVB294cal\nmDa1C9swUI46UGNRrtuUJPgydT1DLopNtQytdxgBPBzAyQDeD+DXAbwQwCEAvkpEx+uCRPRcAOcA\n+BCARwL4IIB3EtFvG3KPKGT+E8CjALwdwOkA3txkR6Jh//2rX2/BDvHkFjva5pTbtq361XtIrXHN\nJlb80j6XclPOdGxutIltBEJfOY6isVyz7dHXmeU6ncnz75TnyKgtmFr0yhFNlHDspu1JbxzfHT36\nGhAp2te4CYmibRVupLbizf5JuWkZWt48AMDfA/hzpcpnUgBE9DkAlwF4GYBnFO91AZwJ4ANKqdcW\nop8nosMBvJGI3q2UKmJxOAvAl5RSz9PkdgA4nYjOVkpd3XivZoHmMIZMblK5VUHRsTdSZMTUSxnJ\nd0uKhG9SMrkmuNk+KzcaMii/XEu4ce78NOSyAG6cA6mmO86idsc1ObkbR/G5kRToR5EDJsiXLsIW\nzY10Qucizrdgh58b7Y2+cjx4wPLdUqeodXqjLR72YN3PjXGc1pa3qYkHUfT83OjRV8gXYdI+S51k\nJzctQ+sjjEqpn+vOYvHejQAuBXBb7e2TkEcezzUu8QEABwN4IAAQ0REA7u2Q6yGPOLYbWkr6Bhwg\nUsobsb/IYG/E/qKB3iunYYTML1dj1+INan/ZQB/Q5zrcuNIgN2E/ETdDjhttoJcOZteP9re3z9KX\nJrlxTW7lxO9sY/kB4OdGu6Z0xR+iN/pZgz65wcBRrC7lJuQA39JzB8ONNgmWbbTKOfSmNeOI7gQW\nE7+zjVK9qaEPreRGX1ih47cpbcUuXWhIubkB+4s2FurccDY11/lH42YwykRj51znn5ah9Q6jDUR0\nEIB7APie9vaxxet3DPGLi9djfHJKqR8B2K3JtRdahPGnOMytbLe6VfXr1bi1WM5pYJoDUx6pwxks\nFVE0icF6BzO9jeowt9whh0z0xdnnGnI/xWGiyc0cwGtzo62T+iPH81XNvvi4kepDbG6MbX/eFX/p\nfYGZ+LUJc0M5NkMYbfzf0a1Fcl6b8nAzEVjXuL4Gh4om/iBbEUbbdqt1kT5IuQnVB6szffDB1a8/\nx63ijyPCRdjNaoebQ60vV6nD3E5RTZtytvHAA6tfr8eBcbiROtPaQuM6dWB0fZh5/tHmPanDGM2m\ntCDNz9St5jf/tAxL6TACeAcAAvCn2nsHFa/XG7LXGZ+75Mr3DjLfJKILXD+1Wj8r7nSn6tf/xeHu\nldtd7jIh54ya3OY21a/mIDVVJFzAjKJNXfPudwcAfB93E8mZ0bYpuduOg8m7Ro4dgQBw5ztXv3r7\nLOVGG8ykkUMvhwBw73sDAC7GsX65u92t+tUrd8QR1a83Dj3HLEn7LJUzNl9521h4DNfiYD+Hv/AL\nAIDv4yj/9bQ2euXucIfq12uHB4iup9vUVPuk+mWkurxtLI7JMp3uKbn73x8A8CMc6ZfTxgev3JFH\nVr9eMzxYzI2zz9r3XoXbTIxLE860dizYbmzzt7FwEv4Xh/vljs/L2X/CyWn64DwwHADueMfq12tw\nqHtjoZQbjevyPpfOyYSs9tQmlpvC6fgxjvDb1H3uAwD4meGc+8YRLzfaff4pDgseR6bap90Tc3E1\ncU3tD5ab290OAPAj3NEvd9xxAIAbubFdm3/0xbtv/rkKt5l9jG0Z5u4wEtGvEJES/Fzg+P9XA3gq\ngBcrpX4w18a3BSeeCBxzDP6l92jc5AtnH3448KAH4X/Wj8W3cU+3HBHwrGfhuvXD8Rk80r/SetOb\nsGftAPwFftsvd8YZ6K/twBtxhl/uBS/AcH07XoE/8cs95jEYHXQw/gwv8svd977AUUfh8ysPx3U4\n2L/Ce+hDcdn60fhv3MvPzXOfixvWb4OP4zH+7z7rLOxZOwB/zrXxNa/BYHU7/hCv88v91m9huG0H\nXoU/9ss96lFQhxyCc/A8f93fcccBRx+NL6881L/iP/BA4OEPxxXrR+G/cLx/9fvCF+LG9VvjI3i8\nv41vfSv2ru2Pt+Nl/oH5tNMwWNuO1+EP/dd79rMx3LYDr8ab/XIPexjUYYfhvXi2n5tjjwXucQ/8\n5+oDcSVu59/R+ehH4yfrd8Z/4n5+bl76Uty0fig+iCeyerOxth/Oxu/65V71KgzWtuMMvNHP4TOe\ngeH2nTgDb/Bf7+SToW5zG/wNTp14osiU3NFHA/e6F76+dhIuw5HuPm/bBjz2sbh6/Y64ECf5uXnF\nK3Dz+iH4OzzV38Y3vxmbazvxNrzSL/fyl2Owth2vxZl+uac9DaOd++ENxbjk7PODHwzc9rb4e3oy\nBui5+3LXuwL3vS++tXY//AB3ccutrgKnnIKfrt8BX8SD3JvsAOC003DL+q3wAZzKjsWbazvxx/g9\nv9zLXobB2na8Gm/xyz35yRjttz/ejFf75X7xF4Hb3x4fyZ6ADd9h5Xe8I3D/++N7a/fB93E3t1y3\nCzz5yfjZ+hG4AA/xf/drX4td6wfjfXi2X+4Nb8Dm2k6chd/3y73kJRiub8dp+CO/PpxyCkb7H4C3\ncnr4C78AHHkkPtF9LHZju7vPRxwBPOABuHT9OHwXxyxNhHERzfsKgLsL5HabbxRH5LwZwOlKqfca\nH5cRwwMBXKW9X0YMr7PImThQk6uglHqIq5EnnHCCcn3WGLZvBy6+GE8/FMDP4F65EQFf+AKe+YAR\nNi/M/Er5vvfhFaMRrvobpubjta/F/zd6Nb7+Bxke4ZN7ylPw0ew38M9PznCKT+6kk/DtL92Etx+f\n4Tif3BFHYM9l1+Al+2VY98lt2wZccgmefrgCrobfEfzc5/DsXxph7xcYbt71LvzeaIQr38NEQU87\nDe9Qr8LXXp3hwb42PvGJ+Hj2BHzolAyP9cnd73743oU34m33ynCMT+7ww9G/4mq8YJ3Q5SJZ3/0u\nnnYHBfyY/H3+7Gfxm788wp7PMdz8+Z/j1cN34PJzGL15+cvxF+p3cOErM9zf18bHPx6f+Yeb8A+P\nzfBoJmryg4tuxFnHZLirT+6ww6Cu/F/8Zo8An9zqKvCtb+Gpd1HAD8m/4v/kJ/HcR45wy2cZbt7+\ndpwxOhs//DOGm5e+FO9SL8YXf4exgcc8Bv/24Zvwt4/O8DCf3HHH4fJv3oA33TXDkT65Qw4BXXkl\nnt0lQHlspdcDvvENPO1oBVzK6M1HP4rnP2aEmz6R+Xd+vu1t+MPRH+P/P5vh5oUvxHvxAlzwogxH\n+eQe9Sj8+8duwl8/PMNDfXLHHIOffPt6vO7IDLfzyR18MHDFFXjWOgGbHm66XeCii/D0eyqoixl9\n+OAH8cLHj3DDRxm5s87CmerN+N4fM9w873n4AP0Wzn9ehmf7bOphD8NXPn0T3vPQDA/0Xe+oo/DT\n716H194uw2E+uQMOAC67DKfuALDbw02nA3z1q3j6fRWG38zcmTAAOO88vORJI1z7wQz9vuOJMADw\npjfhLPUGfOfNDDfPfjbOwzPxmedkONUn99CH4mv/ehPOeWCGX/BxeOc747pLr8XvHZbhIN/19tsP\n+OEPceqBAG70cJNlwJe/jFPvN8LgIkYfWoS5N08ptRvAJaH/R0SnAngngD9RSp1pESlrFY/FpMNY\n1iR+1yJ3oXb9IwFs0+Raj1K5nIfFFuj0siC5wcCfdu2utFsOROj08mX7MnBTDor7EjfOFXpAX6Ry\nWTcDUT4JeQfmlnAzTw6RZej28kWnty9Lxk0MDktuNvZRbrhxpFvsV9xK3ESxKSk3kPe5LViKGkYi\nejyA9wF4t1LqlQ6xCwH8HMDTjPefjjxq+GUAUEpdAeC/HXJ9AJ+O1OzGYTqMrvqHULl+3/+YolJO\nNxzbNRclp8vG5oYdfBbUZz21xa1W58GNtC/z4LBOX7gBfB7cLLutJG5ml0s2Vb+Ni+KwTl84ubag\n5f4sQEQPBnAecifv/UR0ovbxhlLqGwCglOoT0RnID+r+CYDzkR/4/RwAL1FKbWr/9xoAnyCic4pr\n3wf5wd1vb/0ZjBrKE2n27MlfXYbYE652TLmpYnVDrt/3G5gu51u5Sa9XtkcpTxre0ZdYcnpfbMZd\nhxtfhFF6vVKWjRShWW6kfZ6nXCnb78v7Etum2s5NSF9ic7gvcpP0Zna5fYmbtqDlzQOQO32rAO6L\nIkqo4XIAR5Z/KKX+kogUgFcAeBWAK5Bvjnmn/k9KqU8R0SkAXgfgWQB+irw20pbqbi3qrtxiybEh\nfE2ujFhyct4UUfG+ZOJvqs/OxysaciHclL/7BikpN7rDGHvFP6szXWfFL+WQ40Y6MDcVNeHaKL3P\ndaIhEr2R9KUuhzHHkdhy3MS/TGOs1PaSTbmvF2NcCulLchgjQyn1egCvD5A/B/njATm5DwP4cO2G\ntQBNrfibiAyURwrGihTF7ssiufE5jOV7IavaeffZ5kzbShliR5xD9KZ8P3bkMJY+SO9zbA5D+tIU\nh4uMFEmdomUYR+YdRQvVh3lzE9um9AwXV/YT26bagqWoYUywY18bzOq0MXHTPrl9kZuNDc/OT+zb\n3LTZKdrXuGnCKdoq3NRpYyy5tiA5jEsMcyXvCvU3JceF8G2G6JOTFBMvus/SqImUm1hyddrYBr3h\nUkmL1pt5c9gGvZm3HLfJLnafywi47hS1mZvQPs9iU3XauCibatJW2jZ2tgXJYVxihNZ8xJbjQvjS\nmg/p9eq0sSk5yU7zGH0OSZ+FtjF2DWOI3khqhWJxWKeNbagDnSXNVtbYSjaINXWf63DtqwuOqQ9t\nGUcktlI601JbmcWmQtq4aJuKNXZKx6U6bdxqNYzJYVxipJRAe+Vi9VnqINRpY+waxhBuYu+alx4l\n1Fa9kd7nkAXEou9zW21Kl11U/XdoHWjMEysWVdPapD5wTvKy21RbkBzGJcaiB7MmHMbyma1tHcDn\nzc0y1RQtcuJve58TN7PLJW7ccvsiN6UzLdlkt+zctAXJYVxi1A31z/tQWW4lqB9Rwz2Evam+lAYb\n88gH6RENsWqK6qZLZuUwtH1crVAIN021cVEcxtSbRd/nRY03IdyE2n1bx6VkU+721dGbto2dbUFy\nGJcYdYuJY8ltbo6Py5EWq8+7jU3JhRSrz7qqlQ64TRehx2qftJA/ZmpxWThs8+HBdTmMJddmbhYt\nl2zK3b46etO2sbMtSA7jEmPRKQFdjquvaft5Z7Frmbhi9WXipon0WayNMcDtOQAAGp1JREFUPovu\nS+JmfnJNcLMsNYwxuWlr2nVReqOntNta9tMWJIdxibHoVW2syEAb2hh7AJcWq2/F6GusaMi+yE2d\n41Ha2pdl4KYpu5/3uMT1WXeKFvVY1bbqTRvamCKMCY2jVK5YO7Gakov51ICtJreIXYux5ULbxz0R\npgm9WRYOQ3Z+chvEFn2f520r+lFCsXbNL4vcIsbYRetDrA1BbWhjijAmNI66tSFtO+C7DW1clFyd\ns7/a1pem2lenpmjZOSwdHdcTYWyRomW/z4vQh60mtwhuFq0P0va1WW+kHLYFyWFcYpRKuXt3/sqt\nYhYlFxJFW1QbpSvBJriRHiXU9vscS053iqQpnbb2JbbcMrSxKTnu8Yp1rrkou4/dvmUYY9P8U1+u\nLUgO4xKjVK5S2VZW2inX74+jIW1t47zl9KOESqfIJWsOKm3rS+z2LUMbF9W+ZWhj0+3r9ex1wfP4\n7rbKbWzkm+yI+DTpVtMHrn1tnn9C7L4NSA7jEkOqbIuS0yNF5Uq5bW0s5Xbtmu/3NnHNrSK3DG1M\n3LRPrs415233i2pfk21su5ye7pVGptvWl7YgOYxLjFLZyrMQy7/bImf7jAvNL6ovrr+b+t4Q2ZKz\ntt7n2O1bhjYuqn3L0MY2jDdtbeOixqUm2th2fdhKNtUWJIdxiWE6X5xSluDC6LHkTNlul08lzbuN\ni+LQJss5066/Q787tlzs9oXILqqNi2qf7Zrz6ktdDhdpU22z+0W1b5bvXlabMk9hCLGpNtp9G5Ac\nxiWGqVyzKmVsOfMzSbok1nfXlZsXh+ZnvZ7bmW77fY7dPttn3G5E7ppbhcMQ2bbc50XZVMg1l1Uf\nQpyituhDmn/c76eUdEJjaMtALzXEkMFsXm1cFIembBOD2bJyaMqurCzOmZ4Xh9KIkvkZkdyZbpuD\nV9cpWuTE3zabMj9rYqGxrDZlyi7z/NMWJIdxidGWgX5fWOE1zY1PLnZ6I7Zc7DSb+VmMqEnbOazr\nFM3TpupyGNspksplWXxnum3jkikbw1a2ik0Bk21s4/wTUlLQBiSHcYnR9jocUzaGU9T2WqG63MQY\nzNpehxPiFEm52Sr1VmabpLYyT5uqy2GMybKOPoToTdv0IWRxVafPvh3D+7pN+WRTDWPC0qItq995\nRoraLle3pmhf4Mb8LHHj/ixx4/4sceP+LHHj/kwqJzl+J1Ybk8OYMDeYyjWvlEBdpygkijbrjuG6\ncotKn4WsftuW+mlixR97cms7h0C9iHNKSc8uB7RPH6TtM2WTTU2ijk3N05lOKemEuWEZ0ql10me9\n3uKO34lh2LHTZ2abuOeSctdsy5EwKSXtblOIrUjkfN+dUtLt04emU9LJptzXjMFNSkkntA6LWiWb\nn8WOMC4yXdL2aEjIjuF9LRrSxI7heUZD6tjKVtoxnCKM4e0zZecZYVwUh01nuNo4/7QFyWFcYixq\noDdlYxviMh8NYcouikPfNdsy8S+KQ9vfrvfnxaEpG3vib+OO4bqRon1BH8zFzyIXGvMaO9P8429j\nG5AcxiVG02lXn/LWSYvFTl37ZJtOOcXmJjaHvmsuikNTdlEcAvOzlbakFpuwqVnTcXWfxBFbLmTH\ncNv1oQlbmdfYmeafFGFMaBBphZcijC453zVThHF+tlL3fMXYEcZFRpTarg9ttClTdlEcdrvxS2C2\n0vwTu88pwpjQGEwldClbbDlTdlFyPtnYciGGva9xQyRfoe9r3JiybZfzySZuEjcuOZ/sVuXG50w3\n0ec2IDmMS4y1tcm/XasYqVy3K4+G6NdclJxvk0NsboiA1dXwNi5KzicbW86UbbucTzZxk7hxyflk\nEzeJG5ecTzakz21AchiXGOvrk3+7VidSOaJJWd9qpy1yrhVebG5maeMi5HzO9L7OjU82cZO4ccn5\nZBM3s/e515PXtLahz/Pkpi1IDuMSw1Q2PQJWR86UjSGnr6Dm+b3SPpsrvEW1cVEc+mRD9KYN91na\nvk5H7kzPU2/awCHgnrSkfTYn/rbrwzxtJcsmo0ht1wdp+3yyUm7MgMVWsqkY40gbkBzGJYapbKaS\nhsqZsjHk9M/m+b3SPpvvL6qNi+LQJ7uyMhnBbft9jt0+n2ynM+lYtf0+S+XW1tw7hqW2QrS4+9wk\n1+Y9d8ktso2L4tD8P9/7bb/PbZ1/2oDkMC4xpAa7uhp/4l8mOZ9syMTfhr7Mk5uQib8NfZknN01/\nd9vlFvndbZdb5HcvSm51dfaFRtNtXJRcrIVGG5AcxiWGrlwrK26DNSd+l2NpXjOGXB2HI3b7ssz9\nbOq2tHFRHIbItv0+x25frO/eihya/9f0dy8T1yGyW0UffO0z06xtbOOiOOx2J+em5DAmNAapMYTI\nbsWUwPq6e3NMm9q4iPb5FhptaeOiOCSS74Rs+32OLbfI724j193uZF1sG9u4KA4XWaLQdg7Nz5PD\nmNAYQhRtUaH5tqc0gfa3scnB0bf6rXvNZebQPOg3xkJjq3BocuFbaCyqjYviGphcXPgWGltFH5oI\nWLT9Pi9y/mkDksO4xAiZ+NtuOLHlpCf8N/HdbZfTJ3rfpN/Ed7ddLgRt70viZn5yJua50Gi7HDAZ\nfXWdUNDEd7ddDpCf79sGtN5hJKKdRPSPRPQDItpFRDcQ0deI6OkO+ecS0SVEtEFE3yeiFzjkHkdE\n3yCivUR0ORGdTkQeVW4fQiZ+qcE2mRKIUWsildMHbN/gDcgjA21Iq8TgMASxa1/bzmEI2n6fm0if\nSbFMKelF2tQy64MuF+s4mLbf57qZCim4uWrR8GwFaA1WAAwAvAXAZQBWAfwGgA8Q0SFKqbNLQSJ6\nLoBzCtnzAfwygHcSESml/kKTewSADwF4D4CXA7gPgDcD2AngtDn0ae5QSiYXewWlG9i2bfP73rpo\nY2QgNoch0BcX0o1D87zPsTkMgfQ8vbbbStPOtHSh0UZ9kC4mQ7BM+uCTkwYhgH1v/gkJWEi5aQNa\n7zAqpa4F8FTj7U8R0VEAngPgbAAgoi6AMwF8QCn12kLu80R0OIA3EtG7lVL94v2zAHxJKfU8TW4H\ngNOJ6Gyl1NVN9qkJ+CZzANjclF1HN6r992+33H77ueV07Cvc6APYzp1uOR37Cje6Qyd1GDlu+v3x\n775Joe3c6JO9NFLEZTRGo/HvvghL27nR72ssW5Eeat52bnTE4kZ3yrdvd8vti9y0Aa1PSXtwLfLI\nY4mTABwC4FxD7gMADgbwQAAgoiMA3Nsh1wPwqCYa2zT0ycsGaVhcN1LfYHbooePfDzxwfnJ6m6Th\n+1jc6A6qbzBbFDf6xD8cuuV0xOLmoIPGv/sc+UVxo+sK12epnJSbQw4Z/37AAW652H2Wfq8OKTe6\nQ2hDHW7mqQ+3utX4d+nCM5Y+6HK+MWxRtqLb8o4dbjkdsbjRHUbfomRR3OhOojSLE4ubNmBpHEbK\n0SWig4noeQAegSK6WODY4vU7xr9eXLwe45NTSv0IwG5NbqnAhbXrDGY+SA3s1rce/+6btA4+ePy7\ndJAaDHgZgOdGmmqSDvSHHTb+XcqNT07/TBoBisWNVB/0dvkGeik3UjldV7iVfAmpM81Byo0+sfj+\nR6oPUm7075UurjhupBxLudHvn28ClnIjldNtXqoPnJNcZxzxQR8vfWNibJvSF57ScYTjUNpnqX7p\n84Uv0iedf3RufHJ1Fp6x9KYNWBqHEcCLAPQB/BzAnwF4mVLqb7TPy3XR9cb/XWd87pIr3zvIfJOI\nLnD91OhHVDyvSKq/wLq1Z4zf/M3JVxce/OD89UEP8svd6U75661v7U/xHX74+HiS8n9s6HSAI4/M\nf7/73f3f/bCH5a+PYmLBL3rR5KsLz3jG5KsLD3hA/nrSSX65sh8HH+yPXtz61mNH6853dssRAXe9\na/77Pe/p/+5HPzp/fexj/XIve1n++ju/45d7alEM8pSn+OXud7/89YQT/HIlNwccMDnomzj00LED\nUfbdBiLgmGKJd+97+7+75OT//B+/3Ctfmb++6lV+uSc+cfLVhbJd97qXX67kZseOyQWZiVvdahzh\nPuoo/zWPOy5/Le+PC6eckr8+6Ul+uZITjpvHPW7y1YV73CN/PfZYv9wd7pC/rq3lY4oLBxwwdiB8\negMAxx+fv5Z27cKTn5y/Pu1pfjmpTf3ar+Wvv/qrfrmjj85fjzrK7/CX3KysAEcc4ZbbsWMcPeS4\nOfHE/JWbB049NX991rP8ci9+8eSrC494RP768If75cr23/GO/vrJI47Iuet2xzzZsLY2dho5m3rg\nA/PXk0/2yz3nOfkrN+c+//mTr62GUmquPwB+BYAS/Fxg/N8hAE4A8EgA7wQwBPB87fPXFP+3Zvxf\nt3j/jOLvpxZ/H21p25UA3mN5/wLXz/HHH68WiZ//XKl3vUupPXv8crt3K/VXf5XL+zAYKHXuuUr9\nz//w3/3P/6zU17/Oy11wgVKf/zwv981vKvWRj/Byl12m1F//tVLDoV/u2mtzbnbv9svt2aPUu9+t\n1DXX+OWGQ6X+9m+V+sEP+DZ+7GNKXXQRL/eFLyj1b//Gy33rW0p96EO83OWXK/X+9+f30Yfrr8+5\n2bXLL7d3r1LveY9SV1/tlxsOlTrvPKUuvZRv4yc+odTXvsbLfelLSv3rv/Jy3/62Uh/8oFKjkV/u\nyiuVeu97ler3/XI33JBzc8stfrmNjfx6V13llxuNlPr7v1fqkkv8ckop9alPKfXVr/JyX/mKUp/9\nLC938cVK/cM/8Nz85Cf5fea4ufHGnJubbvLLbW4q9b735df1YTTK2/fd7/rllFLqM5/J+83hq19V\n6tOf5uUuuSTXWY6bq67Kx4fNTb/czTfn3Nx4o19uczO30R//2C83GuV6/Z3v+OWUUupf/kWpL3+Z\nl/va15T65Cd5uUsvVerv/o7n5qc/zbnZ2PDL3XJLzs311/vl+v18bL/8cr/caJSPh9/6ll9OKaXO\nP1+pL36Rl7voIqU+/nFe7gc/yOdIjptrrsnn3L17/XK7duVy113Hf3csALhI1fDfSM15iw4RbQNw\ne4HobqXUFZ7rvB/AEwAcpJTqE9FvI3ckD1dKXaXJHQrgpwBerJT6cyJ6FIBPAXiAUupC45q7ALxT\nKcWsn8c44YQT1EUXXSQVT0hISEhISEhYGIjov5RSTD5oGnPfJa2U2g3gkgiXugjAMwEchjwyWNYq\nHgvgKk2urEn8bvGqy1UOIxEdCWCbJpeQkJCQkJCQkIDlqmE08UsAbgFwTfH3hcjrG81Kk6cjr2P8\nMgAUUcv/dsj1AXy6ofYmJCQkJCQkJCwlWn8OIxE9H8CJyA/ivhL5ETlPAnAKgN9XSm0CQJGWPgP5\nQd0/KeRPRn5W40tKuQKvAfAJIjoHwHnID+4+HcDb1RKewZiQkJCQkJCQ0CRa7zAC+DaAxwJ4G/Id\nzD8H8D0Av6aU+qQuqJT6SyJSAF4B4FUArkBeu/hOQ+5TRHQKgNcBeBbyGsc3Iz/4OyEhISEhISEh\nQcPcN71sNaRNLwkJCQkJCQnLgrqbXpa5hjEhISEhISEhIWEOSA5jQkJCQkJCQkKCF8lhTEhISEhI\nSEhI8CI5jAkJCQkJCQkJCV4khzEhISEhISEhIcGL5DAmJCQkJCQkJCR4kRzGhISEhISEhIQEL9I5\njDOCiH4G4PKGv+Zuxev3G/6eBDnSPWkn0n1pH9I9aSfSfWkf5nVP7qCUOiT0n5LDuAQgogsAQCn1\nkMW2JKFEuiftRLov7UO6J+1Eui/tQ9vvSUpJJyQkJCQkJCQkeJEcxoSEhISEhISEBC+Sw5iQkJCQ\nkJCQkOBFchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF2mXdEJCQkJCQkJCghcpwpiQkJCQkJCQkOBF\nchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF8lhbDGI6Agi+iciupGIbiKiDxPR7Rfdrn0FRHQ7InoH\nEV1IRLuJSBHRkRa5A4no3UT0cyLaRUTnE9E959/irQ8iOoWIPkpEPyaiPUT0fSJ6CxHtNOTSPZkT\niOgRRPQ5IrqaiDaI6Eoi+kciOsaQS/dkgSCizxRj2JuM99N9mROI6CHFPTB/bjDkWnlPksPYUhDR\nNgCfA3A0gGcCOBXAXQF8noi2L7Jt+xDuAuBJAK4H8EWbABERgI8DeCSAlwB4AoAe8vt0uzm1c1/C\nKwEMAbwawKMA/AWA3wbwr0SUAemeLAAHAfgvAC8G8HDk9+ZYAF8lojsA6Z4sGkT0FAD3sryf7sti\n8FIAJ2k/v1J+0Op7opRKPy38AfAy5BPjXbT37ghgAODli27fvvADINN+/y0ACsCRhsxji/cfqr23\nP4DrAPzfRfdhq/0AOMTy3jOKe3Byuift+AFwt+IevCLdk4XfiwMBXA3gKcU9eJP2Wbov870XDyn4\n/hWPTGvvSYowthe/DuCrSqkflG8opX4E4MvIFSqhYSilRgKxXwfwv0qpz2v/dyPyFWK6T5GhlPqZ\n5e3/LF5vW7yme7J4XFu8DorXdE8Whz8C8B2l1HmWz9J9aR9ae0+Sw9heHAvgO5b3LwZwjOX9hMXA\nd59uT0Q75tyefRG/VLx+r3hN92QBIKIOEa0Q0V0BnIM8qlU6KemeLABE9EDkEfgXOUTSfVkM/paI\nhkR0LRH9nbE3obX3JDmM7cVByGvnTFyHPMWQ0A747hOQ7lWjIKLbAngDgPOVUhcVb6d7shj8B4AN\nAJcCOA55icA1xWfpnswZRLSC3HF/m1Lq+w6xdF/mixsB/AnyEqeTAbwRef3ihUR0aCHT2nvSXdQX\nJyQkJMyCYqX9z8jTns9ecHMS8o15+wG4E/LNSf9KRA9USl220Fbtu/g9AOsAzlx0QxJyKKW+AeAb\n2lv/TkRfAPA15BtczlhIw4RIDmN7cT3sKwnX6iNhMfDdp/LzhMggonXkNT13AvBLSqkrtY/TPVkA\nlFJlScB/ENGnAVwG4PcBvADpnswVRYrztcgjWatEtKp9vEpEBwC4Gem+LBxKqa8T0aUA7l+81dp7\nklLS7cXFyGsZTBwD4LtzbkuCG777dIVS6pY5t2fLg4h6AP4JwAkAHq2U+rYhku7JgqGUugHAD5Af\nTQWkezJv3AnAGoBzkTsY5Q+QR3+vB3BPpPvSRrT2niSHsb34GIATiehO5RvFodG/WHyW0A58DMBt\niajceAEi2g/AY5DuU3QUZy3+LfL6n8cppb5qEUv3ZMEgosOQnyH7P8Vb6Z7MF98E8FDLD5A7kQ9F\n7tCn+7JgENEJyI+h+o/irdbeEyrO+EloGYrDuf8bwB4ApyM/l+mNAHYCOC6t/OYDIjql+PWXkafW\nXgjgZwB+ppT698KB+RKAIwC8CvnK/dXIi/7vpZT68fxbvXVBRH+B/D6cCeATxsdXKqWuTPdkviCi\njwD4OoBvAbgJwFEAfhfArQHcXyl1abon7QARKQBnKqVOL/5O92WOIKJzkS+ivoHcVu6DnO/dAO6r\nlPp5q+/Jog+yTD/uHwC3B/Ah5Ip1M4CPwjg4Ov00fg+U4+cCTeYgAO9FvottN4B/Q27YC2//VvtB\nXhfnuievT/dkIffkNORPermh4Pr7yHfnHmnIpXuy+Hs1cXB3ui9z5//VyBdWNwLoA/gxgHcBuM0y\n3JMUYUxISEhISEhISPAi1TAmJCQkJCQkJCR4kRzGhISEhISEhIQEL5LDmJCQkJCQkJCQ4EVyGBMS\nEhISEhISErxIDmNCQkJCQkJCQoIXyWFMSEhISEhISEjwIjmMCQkJCRYQkRL8XFbIvr/8vS0gov9L\nRObh5j75dSK6ioie1GS7EhISlhPpHMaEhIQEC4joROOtjyB/+tLrtfc2lFLfIKI7A9hPKfWNebXP\nh6I93wPwAKXURQH/97sAXgTg7kqpflPtS0hIWD4khzEhISFBgCKC+CWl1NMX3RYORPQOACcqpe4X\n+H8HArgawKlKqX9spHEJCQlLiZSSTkhISJgRZkqaiI4sUtYvIKK3ENHVRHQzEZ1LRNuI6C5E9Fki\nuoWIfkBEz7Rc815E9DEiup6I9hDRl4noQYK2rAJ4OoC/M97fQUTvIKIriGiDiK4hovOJ6OhSRil1\nPYDPAvitGehISEjYgkgOY0JCQkJzeDWAwwE8E8AfAPgNAH+JPL39SQCPR/5s2fcR0bHlPxHRfQF8\nBfkzZZ8L4AkArgVwPhEdz3zniQAOAPBF4/2zATwJwB8CeBiA5wP4ZiGr4wsAfomI1kI6mpCQsLXR\nXXQDEhISErYw/kcpVUYPP1tECE9FnvI9FwCI6CIAvw7gFAAXF7JvBXAFgJOVUpuF3GcBfAfAGQAe\n5/nOEwEo5I6ojpMA/L/27p01iiiMw/jzkhDUzmCjKGIpKGnUdPoFtLOziam10MbbF7BQJIKFRQqF\ngGARsJGIVSwEhVikiRaioAhRiUhUvJDX4uzqMm4mLLqwWZ8fLIc5O+/OmWb5c85cpjJzsqVvuk39\nE2AIaIZWSXKGUZK66G5le6HRzjQ7GsvAi8AOKHcrA4eA28BKRAxGxCAQwH3g4BrH3AZ8bAbNFo+B\nsYg4HxH7ImJglfq3Lb8jSYCBUZK6aamy/a2mv7kEPAwMUGYSv1c+J4DNEVH3370B+Nqm/yRwHRin\nhMfFiLgSEZsq+31ptBtrjiHpP+OStCT1lg/ACnANuNluh8xcqal/z5/XJZKZy5RrKs9FxE7KEvhF\nSlg907LrcKN91/HIJfUtA6Mk9ZDM/BQRD4ARYG6NcNjOAjAUEdsz89Uqx3gJXI6IY8Ceyte7Gu3T\nDo8rqY8ZGCWp95ym3K08ExGTwBtgC+VGlIHMPFtTO9toDwC/AmNEPATuAPPAMuU6yRHgRqV+FHid\nmc//wXlI6hNewyhJPSYz54D9lOXlq8A9YALYy+9AuFrtC+ARcKTy1SzlsTpTlEf6HAVOZeZEZb/D\nwK2/OwNJ/cY3vUhSn4mIMUrA3JqZnzuoG6U8Smd3Zj7r0vAkrUMGRknqM43H8MwDk5l5qYO6aWAp\nM8e7NjhJ65JL0pLUZzLzB3Ac6GR2cSPlzS8XujUuSeuXM4ySJEmq5QyjJEmSahkYJUmSVMvAKEmS\npFoGRkmSJNUyMEqSJKmWgVGSJEm1fgI4zeCrbh2lFgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, creating CrossCorrelation Object by passing lc1 and lc2 into the constructor." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done\n" + ] + } + ], + "source": [ + "cs = CrossCorrelation(lc1, lc2)\n", + "print('Done')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2.86241768e-05, 4.71238867e+06, 9.42481318e+06,\n", + " 1.41372717e+07, 1.88497623e+07, 2.35622831e+07,\n", + " 2.82748324e+07, 3.29874082e+07, 3.77000087e+07,\n", + " 4.24126319e+07, 4.71252762e+07, 5.18379395e+07,\n", + " 5.65506201e+07, 6.12633160e+07, 6.59760255e+07,\n", + " 7.06887466e+07, 7.54014775e+07, 8.01142163e+07,\n", + " 8.48269612e+07, 8.95397103e+07, 9.42524618e+07,\n", + " 9.89652137e+07, 1.03677964e+08, 1.08390712e+08,\n", + " 1.13103454e+08, 1.17816189e+08, 1.22528916e+08,\n", + " 1.27241631e+08, 1.31954335e+08, 1.36667023e+08,\n", + " 1.41379696e+08, 1.46092350e+08, 1.50804985e+08,\n", + " 1.55517598e+08, 1.60230186e+08, 1.64942750e+08,\n", + " 1.69655286e+08, 1.74367792e+08, 1.79080268e+08,\n", + " 1.83792710e+08, 1.88505118e+08, 1.93217489e+08,\n", + " 1.97929821e+08, 2.02642113e+08, 2.07354363e+08,\n", + " 2.12066568e+08, 2.16778727e+08, 2.21490839e+08,\n", + " 2.26202900e+08, 2.30914910e+08])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.corr[:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "9.9999999999766942e-05" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cs.dt" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAERCAYAAABsNEDqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2wbddRH/hbe59z33syEMPYcQgfY4a4SJGEUBkBKcJM\nQUIIJMyQSYDAZCaEIjgmwIRJJQyBIVRIQiBUppJgD8aZGGIDJmCw+TJy+DAYg8GWZFuWbBlkW7Il\ny5YsWZ/v456z95o/9u61un+r+55zJd17n553V7169667zj77Y+3u/vWvu1fKOWORRRZZZJFF9pXu\nrE9gkUUWWWSRp5cshmORRRZZZJFjyWI4FllkkUUWOZYshmORRRZZZJFjyWI4FllkkUUWOZYshmOR\nRRZZZJFjyTVrOFJKL00p3ZdSunWPuf9jSunmlNI2pfSV9LevSyn94fzv607ujBdZZJFFnh5yzRoO\nAD8G4Ev3nPs+AH8XwE/qwZTSJwD4HgCfB+BzAXxPSunjn7pTXGSRRRZ5+sk1azhyzq8H8KAeSyl9\nekrphpTSTSml304p/cl57p0551sAjHSYvwLgV3POD+acPwLgV7G/MVpkkUUWuSZlddYncMryEgAv\nyDn/YUrp8wD8vwD+4hHzPwnA+9Xvd89jiyyyyCIftfJRYzhSSh8D4PMB/ExKSYbPnd0ZLbLIIos8\nPeWjxnBgCss9lHP+7GN85h4AX6h+/2QAv/kUntMiiyyyyNNOrlmOgyXn/AiA96aUvgoA0iR/dsfH\nXgvgS1JKHz+T4l8yjy2yyCKLfNTKNWs4UkqvAPBGAJ+RUro7pfQNAP42gG9IKb0NwG0AvmKe+zkp\npbsBfBWAH0kp3QYAOecHAfwLAG+e/33vPLbIIoss8lEraWmrvsgiiyyyyHHkmkUciyyyyCKLnIxc\nk+T4s571rPzc5z73rE9jkUUWWeRpIzfddNOHc87P3mfuNWk4nvvc5+LGG28869NYZJFFFnnaSErp\nrn3nLqGqRRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiVn\najh2bbaUUvrClNLDKaW3zv/+2Wmf4yKLLLLIIlbOOh33xwC8EMDLjpjz2znnLz+d01lkkUUWWWSX\nnCni8DZbWmSRa1kOtyN+8vffh8Mt7xm2yCJPH3k6cByfn1K6JaX0KymlPxVNSik9P6V0Y0rpxvvv\nv/80z2+RRRp5/MoWr3jT+zCMthfcz9z0fnznq96OV9509xmd2SKLPHm52g3HzQA+Nef8WQB+CMCr\no4k555fknK/POV//7GfvVTW/yCInJi983R34pz/3drzhjg+b8QceOwQA3PPQRTM+jBk//nt34bEr\n21M7x0UWeaJyVRuOnPMjOefH5p9fA2CdUnrWGZ/WIosUuf/RK/jpN78f3GX67o9cAgA8+PgVM57g\ny+/c8WH836++FS/8jTtO4jQXWeQplavacKSU/lia93lNKX0upvN94GzPapFFqnzvL70D3/6zt+A9\nH37cjIuBGInKyOXv1oRc2gwAgD/40KN2fs54+e/dhfseufxUnfIiizxpOet03GazpZTSC1JKL5in\nfCWAW+eNl/4DgK/JywYii5yBvO+Bi/i5m1te4rYPPAwA+Mjjh2ZcFukVIsE3wzj/PbvjjEje/+Al\nfPerb8X3veadT/DMF1nkqZczTcfNOX/tjr+/EFO67iKLnKl880/ejLff8zC++DOfg487vy7j3QSI\ncfFwMPPFv7m8seMy78rGGpTHZ26j66zpeOTyBgDw5js/0pzTK2+6G5/z3I/Hf/vfPOPY17PIIk9G\nrupQ1SKLnLa8895H8Eu3fKAZf/s9E7IQcltE9HxrOKb/LwWGg8cfvzL93iffcPRkUB69vME//pm3\n4QU/fvOR17PIIichZ10AuMgiV5V89YvfiEevbPHX/swnIqWWyr54aLOeBHEwstjO5AaPS/0G13EI\n4mgNxDS+6tmgTOPvvPeR5hx//q334NOf/TH405/0R5q/LbLIUyEL4ljko1JuvPNB/Oo7PtSMPzor\ncFHMLJcIWYgw4hBu43CwBmKcociW6jtk/pbY9GI4yKA8fkTa7j/8qbfi77z0TeHfF1nkycpiOBb5\nqJSvfPEb8Y0vi3eJZKQgwiEmMQQbMhBS+LcdsjvezJ+Pw0hkO8/j40T1HnLeDxJZDwC/+o4P4fff\nsyQlLvLkZQlVLXJNy+vedR9WXcL/8LzjFYUygojGt4EhKMgiMBBsCMbRRyIyf6BkwghxPBogJQDF\nUN75/X8tnLPIIvvIgjgWuabl63/0zfjf/1MctmGFL8JcRjS/IogAWYyRgYiOM7rzuXVJbDg27vhR\n8oY//DB+zQnbLbJIJIvhWOSakF982wfw5juP3y8zQhYRlxEhi1bhz/O3exqaAInIfK5e4voQkSiE\nNZLh0fK//affx987Imy3yCIsi+FY5JqQb33FW/BVL37jsT8XGQgmtUU2W6uARaGHISlGHNlHHGOA\nUOTzY/aP05xfcN7Mzewjb3rvg3j1W+459ucWufZlMRyLPK3kJ37/Ltw611SIcBhHJPKydfOBSKGy\n5y+yCRT+4b4k+A7EwQhFDARfY2AfwvEnYji++kfeiG/7L2899ucWufZlMRyLPG3k8mbAd73qVvyt\nH7HIIlKKl7d1XGcraTShFfs2GNfShJ6iUFUUeooQyvxry33Y49Vx//wiI6qRFX+3SLRHCI/fcvdD\n+M+/e6c7d5GPDlkMxyJXneSc8cO/+W68+/7HzPgjlybi93EKL0XhJj2ujYse10pRh5VCw9Egi/mz\nNF8MRhSSakJYQfru8RFHnaeRlU4v1tegUVlEuPP9/fsvvwnf8wu34cr2+ChmkWtDFsOxyFUn9z58\nGT9ww+34P17xFjN+XCL7klGWVdNe3vjIQitdDj2V+WwIsh+qqqR5FMIKQlWjb4AYSHB6rjeur0ff\nO424NMkeEe4XN9ag3Pvw1KmX26/ccd9jeNHr7mhazC9y7cliOBY5M9kOI/7tf30XPvDQJTP+0MUJ\nWbyXWpWHtRWb3Z7yJghDaQWulW4UzmFyvBb6BQWAHHqK6juigsEAcUT8zWhQU4Q46ndHxlXLvjUt\n3/7Kt+EHX/uuYlgWuXZlMRyLnJnccs/D+KHfuAP/6pdty/CohuLSHgZCK06DLJTC13yBVpZjEKrK\nwXz9magSnJFFWOgXIJHo+Prz2qhsDWraHYbThiPKJIvbrNjncecD066GH37Mbl71gYcu4Qdfe3to\nmBZ5+sliOBY5cbl0OOD7XvNOPEAK5bG5yvkeQhziyXLEY59QlQ71aG//MAxJ+cpVh570fA4l1RBT\nxFnsR6YPQZpuSL4HhsAYkWBcG9EIlVkDvB/iiMb/zQ2340Wvezduufthd/4iTz9ZDMciJy433HYv\nXvL69+Clv/NeMx4hi3jcV1Q6Nm+I3wApWOXqE8WbiDQPQlVRttXeJPiO8TGTIYhQkxn3w3DaWJps\nszBRYHemlv5ufn4femRyGB66aDmRBx67gn/5S+84smHjIlenLIZjkadM7n/0Cv75L97WtL24dDgp\npA8/ahWH7EHBIgaCu5pHIZMhUPjaSd/soXQNxzFGyni/OotSOR5ViIehqiNCUgHxrY1NFJIahn0M\nzX7XLMKhLflIszcJsjv+sjfehf/vDe/FDbd+0D3+IlevLIZjkadMfupN78OP/s6d+K+32b5HUQZQ\nhCwk3ZZbiUd1BpGy1Mo/QhzxeBCqCkhtvsYyvmddRtRuXX+3/tmgo9EPMR3uYyz1/O1uA6SFn0dB\nHFcYiUz/8/OWTaq4k++jlzf417/yzoYrWeTqkcVwLHJsueuBx/G9v/iOJo//wTkU8REKSVycQxGM\nIMRAkH3AZTEcvV2eWvlpwnoMwjBaZ2ulaJVlNN8f5zoJ+bWps9iRDdXWZdTx6NoiEjwycmEYbg/S\n/ChjGY3XKnpGIj7ikPm8Ln7rD+7Hj/zWe/DyN97lfu8iZy+L4Vjk2PLvfu0P8dLfeS/eTmSnKCre\nOU9i2KwsLwa73kX9mbaB4gyV6B5e9saEeQKEkv1j6svZ20BEBX3BsULEEaQORwrfEP9Bhtnhdvc9\n0sKGQ/ZLb8N50/9RS3quH5HW8JymvRlG/PNfvA13PWDTtBc5fVkMxyKh3PaBh/F9r3lnUzNw36NT\nnr7UW4iI4r1EIYnH5tAFKwj5vUlB3aN2IcoAssrPNwRWWQ7ueMQn7POz/jyHsCKDoq9hCBBHlIK7\nDwm+T6LAcREHFz3KNrr7ti6R588hLDEwByurnm65+yH86O/ciX/xSzZ9e5HTl8VwLBLKd/7c2/GS\n17+nSZcVRfU4vfCibB6jGLfUX0T8QLvr3Yw4SLlG2U1xuAU7x62nX38eA+9+b8MhqIl0aGRQLH9R\nx6NwU0TkRzzIPgYiSlnet29XHyKO7I7Lc+ckCWkt0xFyfeTStI44O2scM/7VL7+jaX65yMnJYjgW\nwY13PogXve6OZlwMBpOUogCi0APn/YuhaQxEVDw3K8IolRUArgx+0V+k/K6YVFMflUQcQuTpRyEs\nfU6xQYkNhzm/AHFERiG6hn0MXoxc9gtViZqPOgXz8y/b5TaZZP76EkeF7/U9D13Cf/zt9+KfvPIW\n9zwXeeplMRyL4O+//Cb84Gvf1eTTywsf1U9E81kR7BqPq67j1NRQyQVxeo0ajEe/B7IYj6mM9TmF\nBoURR3B+kYHY5zz2MS7hfJ2+q+7pUVX08b7pwXOW8cCh4PUi2Vp8rx+eEcq777NNMQHgB197O373\njg8344s8OTlTw5FSemlK6b6U0q3B31NK6T+klO5IKd2SUvpzp32O15LccOu9ePFvvbsZf2BOh+S0\nSHmBeVe5gznbKUIcEbI47viYY+UfFehFiGAbGJrjGoVxD8U8/c0fl+/O+QjFbpAM3DnRZ0NOZA+u\nJJq/byPIITIQxRDY+SHiLAjVri/hQjj5QtJ6V70dv7wZ8KLXvRvf9BM3Y5GnVs4acfwYgC894u9f\nBuB587/nA/jhUzina1Ze8OM34/t/5faweykbCFFOUWVv6EEGoSf2IKNNkMLU0UErLZ8cj8I545Mw\nFqHSDRCK/ttR7dAjEjw0EGF21+7r2ctIBSG8fQyK/tu+SCRaF5FDEdX3CPfRk0GR5A1BJFpe8vp3\n47/ethQePlE5U8ORc349gKM2iv4KAC/Lk/wegGemlD7xdM7u6Ss//eb34+VvvDP8exR6YsMhdRS8\nUdIYhSR2kN1R6Ik9S62oNDcRIYjIWOyTvht56yHKCAwQ13dEXMY+RLs1BL63r2+lQVPHDE/F4a96\n/DBNd2/OatfzZ+MahKqCglFBHB0ZFEbQWr7vNbfj+S+/Kfz7IkfLWSOOXfJJAN6vfr97HmskpfT8\nlNKNKaUb77///lM5uatVvv1nb8F3//xt4d8jBMGGQ7Jk2BAUsjtAFlFWTeRxRntW8GciInsfxPGk\nCOQ9Ql5W8cOd0847ngK3BsI3qPsYzv2MiJ/KHHXf1Z/ntOttsC52GxQ2HIM7Lp/nup+HLvmG46gN\nqF7+e3fhFW96X/j3RSa52g3H3pJzfknO+fqc8/XPfvazz/p0TkVe8vp342dvuvvYn2MDIXKFkIU4\ncK3CPxpxtIpDFASHczCP+8dvf9bHjDgOf9yktQaKdq8QVoQY9jAC/B0xeR+MZ/9e7GMIo3BWOB6F\n1ILv0iirec47EafvUPA6ks+z4o/QXVRPchQS+e5X34p/+nNvD/++yCSrsz6BHXIPgE9Rv3/yPLYI\nJrgNAH/zv/9k9++bYcS6b32D0HDQi5aCgq74hT/ueE27HcdcQg37xOAjhRrF46M5oVe+T0gpqreY\nP9slJ+02Z6y6hO2Y9/L8I6MQhtXCIkZ1Dtq4Ru1KNKIJwoKDueZ6/Cj0yOvruIhjV93PUehOi7Tz\nP4686i1344MPX8E3feGnH/uz16Jc7YjjFwD8nTm76s8DeDjnfO9Zn9Rpyw/ccHvTQTTaAU7XUOiQ\nVLTBkZbIQ4vI7uiFb8aD0FbEU0TK6bhx/WOHsHL0vUfPP+g7V5Gv+85VZmLM9wlv7ZVGG87fHeYL\nw3B7oBj7zPTxYSQqANy5XgIDEYXCuNiS0Z43ngM0xQkk/+d/eRt+4Ibb3eN9NMpZp+O+AsAbAXxG\nSunulNI3pJRekFJ6wTzlNQDeA+AOAP8RwD84o1M9M9kOI374N9+NF/y4JfIeC4jCR5U3pX+2vYoC\nwxFkPV2JPMJj1mtEHiT/PIYKyVd+UUjquHH9XW0/Vl1yP7vuk4tWDvoOObcNGddz2igbiAPHoByb\ndwlCezbMFxnR3TUwkWGyjSCfXEgq4kp2hUib3mbqvuTgful7oTshcEJI/az97htuvRf/8pfe4c69\nluVMQ1U556/d8fcM4JtP6XTOVHLO+M5XvR1f/ll/HH/hTzyrjHuphEBtyyCflbCS9t6uBNkwETl4\n/JBU3m9+2NiPDURvjsOfOW4VtTFA0d7izmdT8hXwuu9chXqw6lyuZL3qgCvTsaTGYBhz6cHEXXfX\nfcLhsCenEnA2IeLYg4PZq75jD8TRtIYvoSTY8fkjLRI5Ok23MShBqIrPSQy2Hr+yreFc3frk0uGA\n6w5a9fjI5S0+4RkH5ff/62ffjocvbfCP/8pn4Py6b+Zfq3K1h6o+auS+R6/gFW96P77lJ22xUmw4\nqnek02sjA6H3bNi3CZ14V1HIoA09+VlS8sI326Ie00DslRkVxfj38ZoVUvC+92DVuefAIakyf1ZI\ncixpw15CVYw4Vk4IKxgfci5Zb/sU+oVhu33uV5T6vEdITX+m3ZvENxBDme87GpGDc1RRZbS7oR5/\n7Ep919g4ifAmZfJ+8nv6u3d8GN/+yreFNVNPd1kMxynL4XbEt/3UW3DL3Q+ZcSlW+shFf2GyaC9N\nL/5oXL/8UfHccRFHs11q9MLPCqJRKHuQrsclimND06Kvg75zQzgNgsg7DMSqs+cs81fJfF4OWQwB\nfaYgEVLg1QDZ57YrtMXGQrLkQo4neh4RWtmDE9Gf521xi0GJHI2owPQIB8TsIa/XfPCOaOdKIw5t\nOPRnI4PyCL2n3/Fzb8dP33g3PvjIZXf+010Ww3HK8p4PP4ZXv/UDDdHGHT9FHgkyQBhui0Re1iaY\nv09efpj1EozzCy8vcKRQ+Lz3K9wLMoOc9hiSxSSiQ0yeQTm36tzCu3MB4jhYWYMiH2USXCMUvv5x\n9ElzE9oigyKhF/b8PSQyKsMUheeOWwOzz8/e9fN4sy6CcY0s9LEMmt6j5sSg8o2eHxmU+g5yA0+R\nRwiJvO/BiwCABx6z7/Vb3/8QvunHbwqP83SRxXCckDx8cYNvfcVb8O77beO1+x+dOs2+/0HbqjxE\nFmGDObX4dUjKjEcch/+yHNJ3xQbCz6rapQiOCiXEIRAfHfF86TbhKcV137nfe7Dq3O9lLiMMVUWh\nLTU+nXd7fL5+jSwawyGIgzz8g1XfjI9HHKdPCV3D32j0tY/BPp6B1/UdEeKMxtt15K/bIUAW0dre\nBu+Ifnd05uFjxnD4iOPSoT/Oe9a86HV34Fdu/SBu/+Cj7vyniyyG44TkxrsexC++7QP4EWoqKIaD\nN6nZB1lEW4Qe92WJ4r36JdLvbBOqkhe7CTH4Iako7h6Fp46bJbUdR5zzeIA5PLPirCelLL2iuojL\nYOUqxigkxynEVI/jI4VjIY4xl2u2uwEGnMiMRFadb+TOsRHdEeY7+ufd2W/6b+H4Ed2Ro3Wxj4Gw\naz7gBzd+2CpCCpxwIo4M10zdMXfw5e2V333/Y/iGH3tzGHm42mQxHE9SPvDQJXzzT97cbHMp0JWh\nqngs0aY2LDGy2B16CkNSe3AfUZsJ/XtjIEJP0Sp5kSjt9qjqalGW1vtuiWigEshRGu3BqnPbeLCB\n0JxFZFAiMl1/fjgCcRgSnNJ3oxBTSevV2VlHzO+7hL5L1gANcq49vKr7nu7dNvL6A6Vu04Z9Q9CS\n6eN87Ucg1MCJCjv5GoPivzvxO+UbDn18RiJy2WxQ5N4zJ/LSN7wXv377ffidOx7A00EWw/Ek5TVv\nvxe/fMu9eNVbbEG7GAxGFrI42wZxvuGIuIxtYFBsB1k9HpDpo/9C7ROz5nPexXHoOfwzKycvTh95\n06MK23hedt8FdRYNskAddwrDopDUuoSk2EDMyGKk4wRZUjxf5vgFg/pe+KQ516WIEfUUe4M41Dh/\nrz43keNmv+nzPirbLg6H+Y6N/tnyeoM7R3McYTg3QC7aiERI5BI1FJVnw4bjofl33lXzvkcv4wUv\nvwl3f+Sie/yzksVw7Cl/8KFH8Q0/9mZ8hPrcSCosd+6U0BNn44nh4JxzTmH1xvdDFupl2UTzfa8p\nUvBRnv1xyU4AlDHln58Ow4SIg5RFFKrq0+xlO+dwwFlSyqB4ynVNoa1RGRp9Thyq4joWH3G0oS2Z\nE4WevOPoe8Ghp75L6LrUGJqUJiPnrQXmgWScjbHclxahxA5IjDiOZ4RChyd0WHzHyXIcvqGJjMXl\noDYqKiTkcdkm92HiRF79lntww20fxCufQE+6k5TFcOwpL3/jXfj12+/DG2g3sbKdJQEGUbbsQdSX\nxc6PFr/xdsxi3geJBJlHexiL6IUdx1z4j31DWEeRqJHCjwxEJX41H1ORRcNxHBHXZ8ShFX4c2hqb\n4xTEQSEp9vybUBWn3QbZU+d2cB+swLuuJcG3sxFddanhnPo0GZSI4N+LTFfGeB/uSt+XzZBN4keU\nMRU5M1GoKuREgp/DkFwQwrq89Z00LU0IKxiXZ851IkK6s/P26OUNvu6lb8K7zohkXwwHyU13PYhv\nfNmNDcQUUpvHxUPgdDxZbE1fnaAFdIwI9jAQAdy2L5HvWcXwPyDlg9YN+ru3Y47bbJCiFgPBisAL\nwwxjxrl1G5LaRiGpcWoo2HXt9wJzqxBHcZzjUJVSolr3jWq+nIc+TotEMI8n83nJPKpGUX9HHNo6\n6B1DM1/zqmvDbZ1nXLMY1+TWz0SZZOfWcRW9N5/H9X2ZPu+PRwh1H1QTrecwrXufd0Q9nAhx6HNg\nZCGf59CWtAe6TPpiU+bb8Tff+SB+6w/uP7P+WYvhIHnhb9yBX33Hh/DODz5ixmVRcdqs8AVsUGTh\ncaty2e2OeQBDzG38BRwRefuQ2nHWi2+M9mki2CKOCDWNOCepo/QCe4ZgyFnNJy/bIcHHcc6eojBM\njeu3iGMlSjSo+I7DNu01slGMQlLyWR6Xr4pCUj7ZrefDzO9SaywjjmMc5V7ExY0eYozSd4+qgfG4\njK6kUQfOT7A+owzD2Cnyf97sgUSi77Vhq4Bkp/dfDAkbgsdmx5P1iCAQNkAffHjOznS6X5+GLIaD\n5A8lXY64DHnZeXOYzbwI2YPY7EAc7bhvIPbJ6IjDXL4B2uzxou1DULYtJOJjHSskNRwxf+3F9Ues\nuq6Nuysk0lRRi1e+TwjL9KRCM39XoV+pHBfEsed8+Q6v0M9Wjtvn3zvXJqiscziIEsLaIyQlCODc\nmjPJRnXv6j3SBkUfR+qEzjlJDfGuh7vRRBiGNT9HSGT3zxvzPu522Fjhy2eYExHnj+cLEmGDIpwq\nRy5OSxbDQSIkFRfuyGLgQh/JjmLDIQu1GZ+Pc2U72oK+wEBEHtEmeEE2pBRE9jI00c96/hEx6+2Y\ncd5V7L6BOMqgFC+bi968tNsRbhhGK0VO93Xj+lF4Ril8L22YkYI2NHq8pvVajoMLAxuU5RT6bcdR\nGSzU+Rku3zOOPsehQ1jevTi37v1Q1ap379E5rsYf6nwvNOWiqUEVdNLzl/W1j1HYZ81HjlP43qnG\nniY9Pkj35aSXijj20xcSAufkG2mPwu/gacliOEjEu3uIQlIl1rj1kQVDzwhxRH1vbBptAM8Dwi4a\nDz+7j4GY5zPJKsc5R5lH45iRM8IQk4SkWBG483NgULKPOMYscf0WcUxEMXvTUPUdrSFYR2m3q4nj\nEIMfI47pcwdBCCtCHLVrrr1HLuLIrQGa5o+K72mRiJeavHLuRTEcR5DjnlfOBkKn++rOAVu1joDW\nIYmz59r1ctyU3f3CU3sgkT3CYhqJjGMu738UoeBxMTSXSL+IIYn2YT9pWQwHibQn3/fBllAVGxSF\nLLSE6bIhT+Ev1H0yozaO59fMj7JQSoihb4zANB7HuPm42hDwyxyR4HHRm69QOickVZRi36aOVq8c\nZj4QV4JHCv8cKXA2BIxE2BDUDKajEwhYgfdJ0l/JQKT22uSaV13XkOAFcThJEBHHcW7dHkfme3wa\nP89BHUePy8/nC/dlr60iDju+KnU/kWIPeL19HKoQofg8o+VEVCRh63Mi+jtaB3Qav8SIY/49aoFy\n0rIYDhJZkA3ZvfWhZA1VHS+EBVAO+R6GIOQsgkUbvzjt8SfF0R7n3Lpzjcv5de8e8zyR3RWJ7OA4\n6Lxr7LtVEB5SkEyiyKBwfLzvEvrUKt2UgPURISx9DzjENAbjsUGB+VyYphuEsDrH+I0zmuJr0xwH\nH6dPk3F1kUVgRLlgcAjG2aGoiQLVMdHjAOZkCsm2s89N1hcjC3cdBe/UJvhZ36+odckmeAcjx88Y\njoATAaq+iLKwLjYchx/yOi1ZDAeJPBB+gIeDbyBEeXL2RBlv0usihR8gjiB7KkIKu1IWV11yc+DP\nBy/8eUYcQzUQoxN6OE8eJCuIKITFoaeIE+lSG27ZjqPysq2S84nficvqnR5W03ECcpzIa1EoO8lx\nGj/orVEs8x3julUoi1u9r1wDMfohqfnerajlSDEoKRnnJcqGKllVDcchjkZPRoCf/3zNQz2+Hpdj\nsQMiP/stZ+L5kdGt5xcYggiJPAmuJDIoQHUcm/GA+7g4cxxRm/eTlsVwkFwKLHkUqpL02tbQVGUR\nG4XjeUTHQSI9GYitUvh2wY9l3OvbxPn6TWyavGn2IDkksVdW1RhXS6/6tuZgHIGua9unS1y/S162\nlbMVbBYv3je6bRotIQgOPUWhqpXtMcUFg2z8PC5DFH4bbpsSBVZ9agyNzOe4u/A9XvfhthhyLOd6\nVJqu8ECoOyfbAAAgAElEQVSldQk9f8198DVrjoOzlcRAcMV3mU9r2wuFbcZxRzflhCice7iHIdgH\nfTSbnc1/4551pUURza+hqgVxnLnknHFx4yOOkOPY+sgi5g58BLEJ5hz1s+TAezntF8gQ1BBT53qW\nHHoqhmbVuwjlHGW3cEhCPsOGhsNnu3a92xdxSDqum5rK7TTGPM1PPkLpovqOQl7L+PR/7TGVzf8h\nCU4hKW5d0qTjdgkpoQkZyb3gNF1BIp4RbZocZsnCaqvoSwKBuRfT/+fWQQiLDETDfbFDMTsavIZd\nBDFknHcyzOx8H7lwGPZ8+d5W4Z9b9S6CmAyKF57tjnD8IkeR9UWEOHyDEjm4pyWL4VByOIxlMXAL\ngUJSBaGqpmlhkCUVIYjBeFBRfNV+dt136JI1KJsSMurdbKtz1AVVjhnFrM83iKMaFH39EbKIiGLZ\nRvVYvad04Z4ZR0jwCuLg0FPXTZ+xGUwoHIrfJj2V4+r/I6XI8yNOpBYGWnI854kf6jxDkHWWlHVS\nutn4NRs8pdQYy5qF1Xr9JfznIdEAcewyEI1BWbfrYjtqxU7roswfabydvxn89HBJvuC95aewoCRT\ntO/O+XXvvpsXeFy/X9vsjh8SgjgMkIXcp8igLOT4VSCaEG9CT1t5sL5B4e0s98myiKAr/3zB85pG\nyRjyewOFCn/duQjlHCGUjXrh3dh34FmeJy6DFUdjaAIS/JxXuzBIKKndO2LledM6DOMo0dabHkMl\nPZ2rjcc3pHYTkvLTdJv5gjgChBKhoC6JUSzDcRhu1KEt7160bVYErfn1HX6abkOCD9ZxKOti4PUy\n39P5kHFo00MoY2AgRtcAbYYR6z5h3XWNYZLMMw9xXFjbd0He+WZ8h9PYpVaPRAZC7l8bwprGL2+H\nM9nXfDEcSvTDaVuIRIYj8hT2QRDWq/GJvxEXDpxMkmHEqu+mDCBX4XcuNGaOQ5PaXiy75TjYEFhF\nECEOvrbIQ5XPsLcO2HqNdj9tnxAWr9lFIg7HIeNAG3rqOw5VEYIofA+C8aORC7eGl2sRY8b1HW79\nRZ7CcE3tSvaLJKV4sqkoH3y0ZtO0nRAmrYuRjG7ds2XmSppsq9Ecx9YfjSr5ghCHkwZ+VFpvMYr0\nbq67rglJFcNx0JvIQkHl0fiaEgsChKJ3SWz26ZFQVaB3cm7/dhqyGA4lUc8n/TuHpEqb9DGbF0xD\n1H1QxnbMykBY7uOCB8MLrKZ02WHEqktY953bBuHciudXz88zcFIhLF5NDXmxIaAXvnAc8hJFSCSo\nUei6ua+SvQYvY0gjDj5Oqe/Q3vqsFNuwzZxtlVrFLuEcPR4ii4bshpnPhX67Qlv12sqpEoKw476B\nGFV/LjTjjFBq3UfM94zZyRgL026twm8cCjpOQRBDNd5jRohE3TRdTZoTil/J+iInqu+dd2eoyMLL\nmLrQ8IPTz9cdrKweEIRysApD0IwstspwaGShz+MsMqsWw6EkIrUABRmbbIjAQDg8gswRBcHZF9fN\ni593K3OLnmblt+7bNMqjQgzn135BX4s47AvcptcerQgixBFl1TAi8JoQmt5TmV541xDU43DoSRBK\nSwgDfVPxPYeLkkUiley2BX1RCIsRChuIyKBUA1Gff2mf3rXdcUthoDEQUNesEQrc6vqa1kuFfowg\n8q51Ich1P46jRbSj+R5ej/LZKE131QdG1DMQ42xQ6J2q58qJItWgHJJTJ+MuJ3LQhU4qRy7k95yt\ncxXVmZyWnKnhSCl9aUrpXSmlO1JK3+H8/QtTSg+nlN46//tnJ3k+Ud99QJNXR3AZxhsZi8fJi1MQ\nBPMg592QlE5BtN7L5DV14HTcdd+5xXBAm3arxz2EwtktQzAeIYtQoTSxb4He2XrTHINOTmuR7Pdn\n0uQ4k93RfMm2stc8FmNsxpuWIzB/jyrEo/oOPo7o96Lw9yK7J7TWGJrZKHqciIc4hlHuKSlpeW5s\nFIP02i3ND7kvSV+nkGfMlVkjFxUGrvvpXnCxbekoQOHcVTdxH4zKuzQlBHhK/sJB36B+ALjuoCf9\nMI+vV65Bue6gb/RL1AU7CoWflpyZ4Ugp9QBeBODLAHwmgK9NKX2mM/W3c86fPf/73pM8J3kwXCQH\nHM1xiPLbkBcgoSdebNcdrMqcMj76JPhmzFj1TthmUBkgxInU9tlOSGrdNXHjadznPjiUcNzQE4cw\nmOPgKmr2stv6i67ZxU4XvbUIwt+8KGqr3nXTdwMqVDUrUUEcJX5PCp+9Yw5hNdlZDrIw35vruFb4\nkpHWBdfQd2gNSq7hmebeuQ0fR7cYsn1uovAtZyHPueE4Aodi7/ESwrKcwnknyUJCm8wDDiVUxe/C\nXCfEBmV+B9er5GZFsjO2CQxBmX/AiSjV0GzH3PB3zxA9srXffcGJUJyWnCXi+FwAd+Sc35NzPgTw\nUwC+4gzPhx64fRnlWXohrOsCA+FxE9thdLmM7TAqJEKwOgg99cJlGCTiGxSp++CCLmtQ2vHqEVLo\nYccLr7kffRwOz3BWlVaWfpVzmzE0jr5XLgilI8UhYZ6pt1UZrl48k+N58jjLOJHgXN/BdRxMjtc6\nDpi/8za3sj6kKJERSjF+DvHvXZvHfejiSa+ivO9gw4V0L9ihYCTCCv+42XYNEonSt9ctl7GdDYTX\ncmYKVTHiqJmK9l0QHoh2gFTvgpeOO6H41hm7bt27WZeiF+Rv4zih7+vOTY7mlaEm7BwOo6t3TkvO\n0nB8EoD3q9/vnsdYPj+ldEtK6VdSSn8qOlhK6fkppRtTSjfef//9T+iEZFF8zLkVGQFZCFOanpBU\nknN+nRdKUg+WuQzPQGiEwqEngc98TmsHiYg3NRkUJ37b0X7a6kXdi+OgF3jDBqUJYVlPNPYs7fdG\nnVx7J2Noq4lfuobOMUA6zGMyg5RB0edYQmccwiqhJ4sUasHY0Wm6LpeRqvGTU+Md/RokEvBATXfc\nWeGrW1TDc7SO6nFsJXhNWbX3olaIWwehNQRkIBqOo75r3rjf2+oIA9FFXIakstt7VDMV2/nrPjVc\nxrpPOOB3LUAcjETknsqcZ8yRiBLdUEhEf16+44IzflpytZPjNwP41JzzZwH4IQCvjibmnF+Sc74+\n53z9s5/97Cf0ZWLpryPDcdg82Gz+F4+Ae/KzByGfcQ3KWA0Kp92u+y6Az7N3RLDXC9tM6buzlxUU\nDLKCABzPbyQFERiUiBzn9N1VL4VYVqGUuowGZcFpyIe6/an2pnNAjo817XbMtU16qRxnEpzSdHXo\nqUto5of7ccy3PWp+WMhuMkw97ejH3AeHNmrdRxk2iKMpGCwJBzDjUoE+XZO9d32ALBrEMfj3gkOh\nG15fYT2QhzjGQoKzs9T3TueAoYZ/GRG43Mc4zvO7Zj0WMt3JorxwRKhKk916vr4X1dBM+kWHpDbD\n2Bia05SzNBz3APgU9fsnz2NFcs6P5Jwfm39+DYB1SulZJ3VC2iMwD2nLD9byHVGoqhoIuwg97sOQ\n4OztFAPRIgg2BIOEqoLipqamQYWqZJ4cx46P5u9xhfDRoQpWitweQ3vfmuCvpHnX9p6aDYRXc+C2\nWyevWf6k75E+R2nvUedbg9J3PmcRk+P+/Nq0sH4vUOs4GOn0nWRPWcQxzYej5CRRAGa+IBGzSdWM\nvpqEgDFIIOBkh8Gea+xQ2FBVi0TteG0h0l7bmsN249SupX0XarID84Al24oQxKqTpphWeUfIBQAu\nrFdhqEpfk/zPemRbHFbLZUikw3NMT0vO0nC8GcDzUkqfllI6APA1AH5BT0gp/bE0b5CRUvpcTOf7\nwEmdkBgI5jjk5wZKqvxuPS/nPCEIxyM4ivs4WM0ZIE2oqpvgsJMBwntIS+FWU8Q0Z1vxJkUbfoGL\nt1ORCOC88PQCR4WBNd7PHuR0/IKOCOn0HXnZ8ylLVpWJxw9VETTkeLKGCWgVvq4EjwzBSiEODmEJ\n4mjapzdZUnacjWiXbIV4vRcw49W4eoV+dQ9x75p5N0SdhaUNiijLjg3EWPd3N9fMKcV8L4IkixaV\nWUeDHYp1nwxClTkespzehW5eF05iiZN5WOuH7LiEhVvkMoWqjKOpnC6N4rVjCqjivqJ3LLLQEZDp\n86N7HK4tOw1Znfo3zpJz3qaUvgXAawH0AF6ac74tpfSC+e8vBvCVAL4ppbQFcAnA1+QTrK+XF+oZ\nBys3z/q6c/aBNw9QxW9zrp4C13G4CKUghTZF0O+fMy3aMbOhkdCW91II4rAEnxia6TxGXECvPEIb\nSpDvCj3IHU3u2IMsWU+ShUOIo/HK+xY1jVlnHrVKlHtSCYKoIaY63+Uyihff1nFEZDoQh6SaOo75\n+yupbedLUWLDiSSf1GYyXV8zumrIyjXMWVgN4lAoqxqzKWxTwnYqxJRSRVNtOjZxHxTa5Fb1UZdl\n6Y6sHZOcJyPachmV++K6jOu6Dut+tIZgHLF2jK44Jn0T2lKGhuYDMKFn7cgVh3Jr34UWcYjDOo1f\nKfNj7uO05MwMB1DCT6+hsRern18I4IWndT5CfF04mBSneJQxx+F7BLIQopDUBScdd0IQsvgt3K7p\ntXaRP2O9wpizaXRm5lPW1lrgOb1E8nIBuvGeNQTsQe7KqmJPsfE4B40sUqNoeH8No0S7ZAugVAqy\nSU0dKjnOmyMJWpPf5Tu65CCOI0JSnTpOvebpexoSXJHa/jgsOV7CeZ3xpnU4r8kYU8bMu+Yxt913\ni8HKE1pOM0Jb9ckxENXY870TpDP9PjtRlKY7NAiV07StY9KsCyLBJaQkDgUnQax6py5jNhCHe6L1\njToO84a1e4M9DmDR+rq3hYFA1SO60tyOWz0i84RPKfM1VDwludrJ8VMV8QCikBRDQ/YI2KBUj8Mu\n2qgAUMhrrkCXEBNzHJL1Etd9kAEib618r6v8rOcXh6RsPJbTaxvEIchCcRw6BMAZRlwb4VeU1zBP\n05PKqVGQZomsFKXNRulVpZSiJs21Yvfm8xaxzFlweK5wGRKqEgSkQlUaicjxSw8r1xBQJ4BBbxGr\nkIXymvV3Mg9UDcRoUJZOarDZVvO93uFQhBXlAaKVDDMm0z3nSjISe3VPAW0g2k2qhE/kosfKcTiG\nqecCQ58T3bIeCSIXHKripJkm2+qjrI7jqpMSqmIEIQaCxg8bTyGKQU6/55xD0lwMBBNtNbfcLlrh\nPtptTjVhp49f03F13LVkyXRtgV5KuuK3KgjAS5eMFAR5nA6X0etUUwpJFSU6KGXJseax8j1N2m3v\ntEnPwn3AntPgKz8mikel2IVD0efOHAeT4yXttjEQfkiKa1RqqMreixq2ma6Nw3alTqQOz1lY8Pmb\npHkdef7V8On5JZsr2flRhlmELGIOrXJimrOQz4liN9csThSHecdcKspb9C3vFIe82uJJ/U7pLKko\nw1BnVQFHOKbl2iJD4yOU05TFcCg5LAbCIohDerDy+3aHZ3GBoKRWrh21VhYDsaY46qakDrZxV+E+\n9MuyUQiCuQwTnlEvsBB/+pqEfO93xKyjkFRVotP3y94hHrLQHIccr0tWQQwBQuEq6ibt1iPHxViS\nURSDwsqPEYeer+s+2ni8XzneJdtjSpPjroHoLH/DoSpZLjZ9N26rzuS4DreN5FCU8WLkauorX7Mo\ndT3eIAhCZY1BGSpai9K0NWouad2CRAKHgkNMbvh3qJyIl/reku81fRew739KrVHUbdj1OOuRkqAy\nO5wX2IgG3Oppyl4cR0rpHIC/CeC5+jMn3QLktCVMu92y5bcP9jpKo2VDw6Gt1YwsZCFJep2MN/HY\n3jMEc5gkt3uIX1j3LZcxiLKshmDVKy/bSbv0Cr10u3U9Htd9KE9RGT/jZasXUsf1ddqtrqLWSlQu\nMa77sG3SRaFqElwjiHMrzffIOIyBaEJYTqgqeZlHhCy8EJZXx8FFjPY4bSFhWPQ4ow2Tjpstx6Wf\nz8Gqpt3qdNkIZa1mL96MN963fRfikJQlnbe0Xnjd9X3bn6siyM41BNN6tO+OVxulw7kW6VZORJ/L\nZpzaszOKl3vBrUI2NM4FgIUTHSmEdYbpuPuS4z8P4GEANwG4cnKnc7ais6qA9sFySKpNl/M9AllQ\nMn/aRCaBeQMhr7n1hxQZeaGtcTY6df6I/tzKXeQWWdTv9hSHwPYyHpGagUEpWTLKU9TptVpBaFKz\nkuZwlSWH7XQII0IW+poPZo9+UkDzvOL51/Yeerwo16IsUf7v3fGokHD6OyOCJoRF3IdkhnFtBHMZ\n+h416Ev4mAzDD3HtChc9shEte5c7yKJzDEpJu+3ZobCOBoewuKutNShVsZf5hCC0M9aENgPOYlMS\nVNp+XtNxPNQ/nY/8LueqnbGyS+j82QsHfqJIlFV1gdqptNzq1Ws4Pjnn/KUneiZXgUR51qUlwDlG\nEBTConQ5JsG3xXBYZGGQiArbyLGkKOmx7baOz4t/yGi8qXUvpHmrIGSR6zTKlVr8jDia1uBNuqRP\ngnvIQnt+ukbBhB7KeGeVpYzPjffqJksox9fjgFKWjAhGCQsRYV+MaJs6LFXd+lxkC9riZavQkw1h\noRwfQPmMhyA6R1lyexQd8tJbvnIrEplXtqBNCXkOF0r2lN67nJ+b5TLqWvWQqN4TRR9HelvtCmHx\n8y+9oUi5NhxHM+47Gpe3tc+TGJR1N7aFhE6693aY0BejfkEuJZVdJcdI2rA+R93zSn6X+YAKbXPW\nJiGOhuO4isnx300p/ZkTPZOrQLgQJyLBrwQkeIGSlC7HyrJmYgi0rUiE4XPxjhwEUVINHXjOFeWa\nE9HnKtWvLbKg8chA7PIgSwy6I2UpSMF2u424DA7PNIhjVqLaIxxHuEpuKEoO5jtbr1mOk+eaiTY1\n2WQYDaOan9AR+d6S476BaLgPev5Rhpk2KDoFmfmB6RrquXnp2PUe+dxHDWHVe6e9bJ3WLWEncy9o\nHXn1PS7iIK5BxouzRIap77wQ01gcBOYHxVlq2rD3sn7VtZXEFequMOTiHPI9Wql3sDEQ1B27FOFG\nWZtPgzqOLwDwd1NK78UUqkoA8txD6poRUaKymHmfcc6GYrKL4TNvZynHWdM+GlW5SjpuC7ebtgkz\nrB4T7TxYYHVd5JKO6mXDlLiu41nqcUYiHMvmmHUTVimpwALnUa5ZhxhEgXDLcMuJ1BeeEYcNw4xE\naisD0bVV0WXPCkIW9ZphjlOQRUnTlc9N55Nm4+FlSXUB4vCUZRmfjy/3Sq6Ba2+k/qJJOBBLJvem\n62uabmrXha1pQblm39CMrkGZyHe062X+v9mLvBg56SVlUTwbAl3f4TkaHvqujUDHhh9cd22FuCSW\n6GaWHRJ0tpV+LpqU1+eyGUas5y4Q8ru+hjbSMY035Hgw/zRlX8PxZSd6FleJFB4g8gg47ZYQSmMg\nVnOrkLJw5sW8so3U5HOFHCfva935LURW/dQmggsGVyrEJHH97TDiGTP3oY89GZTOzZ4yHIdCR8wb\nyPfKNXvZMG1Bn+ImjBKdroNRllWibUycx3W21YqU3BSnrwhCe/KGNNehJ4ezKMhiNijchl3OixFB\nQ44rZKH33dCGRhO/3IbdQxxeIWHfJYhdHZUhsHUZ1qFwM8w8ByTDGBTtUHhcmVzLem5yycYvRByd\nRRYtr8MhrM44LIDwgz6KFwdHumCnlBTqr+tl3U/zz6/ru6bT8SXdV48XZ6xBKBZZsF64sLZh4SiJ\n5zRlr1BVzvkuAM8E8D/N/545j11TcrgdS5tkQBsIa+G5XiPqalnIbuJEattzUcbVO5JFO80XD3Iy\nKE2oaobJLfGnFT4RdhTX17ueyTx3vowP2VcQFA6JsmFajoPn+55lQwi74ZxaoyK3JMoYktCWvobS\nzJCM6FE9rMw4hXMAGEQwsMJXJLse50LCVWBQmpCXvkdOvF/6fOm5oiy9azONHefvLtl5zTWP7nop\nZHpnjXH0/EU5HrWONNcg72Idt+soKtwrISnOYOyqYtdr26JybRTb9aI7UdvjSJdd65hKGUCjX0bR\nL9T2Zx4/t+rRd+2mc6chexmOlNI/BPATAP7o/O/HU0rfepIndhYifZ7WFG4pLUfO+SEpLtzRiEMv\n/mJQKL2WDUp5KQz3wS2j6yL0+vPwIpeCQeY4dI66vuajsq1cg0IIohoa9QIHCMIlhGm+JkE1spBb\norOexmwNUEuO1y67erz0tmqyoeJmhhqJDOYedeX7tWECVPv0xviB7gXMNbuV410yMfcy36T71uM0\n1fIjIQ66F40DQoZgUE5O37UJBHU9UkhKhWej56ydIhPC6luOQ5yoZnzOYNRIVGqjGHEMQ22KqM9V\nwsLNNY82sUQrfI1QKp84dettdsMsHMeqfB5QyGJN5Pg8ftB3JrR9mrJvqOobAHxezvlxAEgp/QCA\nN2LaI+OaEd1BFogrNeVBH5YH6xfoSMiIjyPEGSOUsm0lvVzsTcniX3cJQ4JZ/A03obOnPENAXpM2\nBJZYrshl3XduOiagM4BovD+asI0MB9d3TF6z4ocUOa6vQZSl9pqt8YOjIPyCvrIFbd8aFG10TQhr\nVqA6ZCRKt4yTQZFqdr4XXBi4JaXr3SMzXxlRET4nL8QU1a6s120IU5BFcSi0cfXQmkJHXn0PNzOM\nyO7K61huYjPqe1Q5Do1EOfVdQlhuyrqTWFLQuowrQ7CeN4TicYs4bEj6Atd9NQXGhKb6FjWdluxr\nOBKAQf0+zGPXlGyGceIf5gfL6bhNnvX8wM+ve1MJbg2EA597u4/GdlTzFQm+UfO1oZG13ncdMBPo\nujndpNg7c4zNOM7Ku82GsjHr6h3pgi6NRCKOo0tOBpB5gVtFIEqxSceltFttgIT4B8ibVp6/zjzy\nEIRLjnO8X4dzVLZVQyDz+HwcAKYz7zDCjPvEf2REu0bpHkWyd2niM0Z1L5gc1y1KmvRaRhzm+Vcv\nW4eejnJMWo5jWkeSQNCS3ZbX0SEsb7004yqbT3Mc8m6KYbIkuDV+OnklQt/mHaGU5ZYfrPt96HPh\nLKla6DcbFHJMZXz9NDAcPwrg91NKr5p//+sA/tPJnNLZyaFkPaz4wZJHQKQ5V5vWkNRsCEZ7nDUh\nCO1BrtTLsqX5g7P4O4k9j7V1c9+l4u1oJbR2FIR02eXMEEEoHhKxHIcKec0vnAkxkGfJ7dPLzm0b\nItM763Ear7xrja5Rfjmb3lZ8DRKecdNrPe94tE0RNQch4Z+UbChM5hryeq77kOvwQk8dIZTpGDBI\nxGSSBa1I9L3Q4TxNjpsWJW64rTWitV4DZZ6+RzWcY0NbYrPYGAMwCSE6JGU4scGuo0ubYT4Oc2I2\nzLvqfb5HwmfCiQHVWeK6DOYmNB+nE1E2yrhKjywzf7AtSmoYeXpnD/g48z08NyecMJm+Fgf0ag1V\n5Zz/n5TSb2JKywWAr885v+XEzuqMpHAcvfXKw6wqZSAO+jZ8UrZqDchu9jhKqMqd71Sa9wmDeuEl\n08PlLAabPaX7Z3ne0c5xx/vulbJswm0paJ8uoYRxKMeRe6Fbi2jyfYrrT89MZwzp+H1VioCXjrvq\najy+hjEovZaRiNNmQ8aYpNbkOFeUy/l65HXf1ZbxNQurs9yHNijuuN3mVofzoBR4CYU5yixKCNgK\nyhKjq67BOBQZZjwlq9h5vQzKAZIxt6CvFOixoQmQ6+xEaQQ0ze+w6uo7IGuEs6fk75qn0byO4ROV\noVnr+eqahccEKNuq04WE5DiuOqx1JEJnYXbd1ZeOm1L6uJzzIymlTwBw5/xP/vYJOecHT/b0Tle2\nQ8Z6VR+gDlWtOifbqlj+OV5K3MdBLzvutfPXfSr7aFSlKNlWLTmuxzUMT6iL6fy6r4u8Sa+18Vsd\ny9ZeEyMLr6J8NSsmE2KYjzOdV9u9VDzCJqwyK5QmJJVsKIFTWTllmb3soix7G1bh7VhlnK+Nx1kZ\nT+dUaz449FQNhFWucoxOFfo14RnnHunCQGNQUg3bMSdSr7meo8gwZKN0XcThpumOJhFBG2Oz8ZN6\nPhp9cQhLvt8PSfkFfeu+NQQN96HekV4hXe3UrZSDmFJW460CjxNLaqGfjixo501HItZ9zWC0410x\nrlx4LO/ztnFYJ6L9aiTHfxLAl2PqUaXPLs2//3cndF5nIoeEODgvu2ktsCVugr3jeXFKJbnhProO\n22Frxgsh6MJzf/OaJB7kDLnFq/G8HRu/1cpy/zitIA4ARGqOBc2w5yexbI/j4E2KNILQaZSsXMdc\n9yEHarxfrqGEc1Ta7dYgkTaE1So/OSeqB1GhJFECHHoqypLqKayX3RpFk75bjByM922MaxiGqc9N\nI5QEFc6jMKK55nFGqB7KmsM/8txl/LxDmg/KQPRdUska/nqJSHAOYfG9WEsvKScddyLBWyetIo7R\nII52F8Na96HP5Shy/BnnVo0zVkJeZf6oxlO5Dk7Hlx5zOrQFTIXEXN91WnKk4cg5f/n8/6edzumc\nrUhlZzEcsqHKXN/BHoHO3DhQ9RraQFgSvBqUdZ8KyWUWSO81cJO028k4aG8qoRq3raM42KthZVlJ\n81ZBnF/3rQc5pyYCaF5g60F6hkYVsYmC6CVOb+F5jd/XWHkZV+fqKUsdvzfkuDI0fe+Q44IsvDBc\nQqsUVYhDh1s04rDkuB0v4ZwgG4p7TzXZVh3ccX0No7pHEoKR58kbS+ljSOaZx/eYehB9zcoBsanM\nar3kdr2YddRkjHnI0josMu69a5JMUdY7efHynQLGPKeL+3M12VZMpo82bKcdUI3utSGQMR252Awj\nulRTk7m4cUr3PxtyfN86jl/fZ+zpLhyq0g9WCPO1yhWfHvhsUMz4/GAlo4NikxVxECfCi19BUl2U\n5MHtYVQGRcFn88LrxazTax1ksRl9xKFj0/raIo5DsnPKOPE0qy4oVuvsC69Tk/U5mfmqytkjx818\nLwzDxWrmmjtwdpZGEF3SoS0cQY4LErHpu3KubqEfV4gbI4pmnNNfOeQl58gorr0XTpt0qnUxiDah\nCfDO27IAACAASURBVGFJ+E+eNa9H+f7diMNmVUXcF6+jdWc3O9NciTYE5p1STpftsksIgrkJ9f5r\nMl0jFB250N23JZnlQHOfM0KR6+O6slWXsF51xQE9TdnFcZwHcB2AZ6WUPh41BffjAHzSCZ/bqctm\nGPEx5yvE1ByH9ggOVSW45ymUrIeVZFtxVpUtYuIsLC99Vys/7ZXpc+cW0zIu/3v1HUKatyEs6rdj\nMkbmF763XEbJqtIx5cEqCLl3pScVcRkVKdiQhA2rqPi9g0RMxlAHgyxc5FK4A8sP2Epw7X2jjjuZ\nQdLSBCDSXM3na9PGmLOtIsQhhiDy1uXY1bgC8goPo+J7jrjmFY+T920RSlcyzDzEyQairheNykYT\n2ry0cQyKete04+CFcyT5QlKTN4M+Ti3Q08hRcx8eotX9s7STpgt6bUNR++7UsK1C8UqP6FC18KpR\nCOvgagxVAfj7AL4NwB/HxHOIpnoEwAtP8LzORA4Hynoo3EQuYweG7K7elPEUTCW4IsEVl6HnGy/I\nQFUxNJF31CGleoyKOPyUUk12c0phnX80x8EepIdEOjM+2ri+8srlGF7BYNe1x5dj6HPaukhkNLUu\nLjnuIA6+F23lOMrv8jlNdoehKnXNvZ6vx5N3j+y1MffRd3aTKt5JUOaOajwFtS76+Qt3JIbA3iOb\nKKCzsHxkQc9fpWPXcUuC995xmpR163QxCV4Qhya7x1GNd+i7utYliidO3XQuowkve+E8fjfrNbTO\nmHRvkOuozVJzQSHrvrNJOb04JjYFvZMQ1hmFqnZxHP8ewL9PKX1rzvmaqhL3ZApJpaIkdHbDWj1A\nMSiHKoSlPQWd9bDuOzx2eSbByUBwCKvua0weZK8XYV3ME7ytXlNd5BahCNzW7RSMQenb8JyMi3dk\n4fn0nZwuG2VVRQolpbZgsG5exG3YWyWnlaVBHDkXJa6bEBoPsrfptWYL2tQqRVG6WoFLmu70/YjJ\ncTOOcr4l7VaNMyciY6ERlWtQ2VNmfMxG+WlyXHfZ1ZxFMbpuooBFHDUzjAyE41Csus7lONhArMtx\nvP1bbLZV4TjknaJ3h8NwGonoNd8XR4OdNGWwKOQ5FU+26fu15xU7Y1WPHGgDsa2Ri6nl0NGG5lAh\nlPWqw6VLujb7dGTfOo4fSin9aQCfCeC8Gn/ZSZ3YWYgOPZm0WHqwOiSlwzM1xjl5rimJR5DLcYBp\n0bhkV1+5kpxz+X69yDeD9bLLuWskopGFUpaWy7CoySVBFakZchwhskAznxVBDfN4bbL9vHzedChC\nIlWJwiAO7zhjzkZZspfNrUK8e2FaixDiCOs4vPTdhBZxcIW4RhbKEbCdglXYTl1zRRyjaVGiOQsd\n7/fSdFedj0SjeyTvDhsUN023WV82K7DWg9j1Imu75T5s4Z5GInrDrlGtRd17amucuohntO8Ut/3h\nwkD5nOkLVxCHJccPTLZVPf5BiYCcTZPDffcc/x4AX4jJcLwGU5v1NwC4pgwHh6Q2Ko3WjCuYvF6p\nUNVWednOQjAtRzrVBZfG5RgDGRTAek1T7nf1sEwFugO3e5VDbklthWjk2mavSY43KJh8bm66pklt\nzWXYvHzrNUXkKJOgovxK2wxCIoAd5/CMVEhPBC/qPXUQijaumsvQaKcrhkBXjlcSnJFCVYrUnl3m\nJ3/+kVvKEipjZOHxPVttIDqFOJRB0cpvGGtluhfOK/t3yPhQz9XNkhqn1uMyziHSOl+tFzE0vW9Q\n+q4tAKwch+XQmNerxnXaARCY3mNZIxJeBuZ3yhiaNkS66vy6DG//9SlrUwyUre8yDqhK6zWGRjum\nEgG5mrOqAHwlgL8E4IM5568H8GcB/JEn++UppS9NKb0rpXRHSuk7nL+nlNJ/mP9+S0rpzz3Z7zxK\nmpCUSq+zoSqfNK87AOrxNttqUuyqC67mMhTs1em4sgg3g427rnaMm8Xfec0J/Rz1YfBJzSb0oMYL\naa5gdZs9ow2K56Gi3iM5J1PlbDN3TAjLCc9octymptputzojiWPWJh5vwnOk/HS9hlNRLq1O3Pnq\n+JxtJZzCmOfaFY+baMJzOmznGxRtdPW+G16SRdM1N9H4UI0fd7W1DsIYjPuIw3AlqTpjHJISRDBm\nS4JPWXu1QE+38fFCWMxlVHSvs6TqcaK6jGkPHeIT1TulHccJWdTQk60faw2EdnDXK7tJ1WnJvobj\nUs55BLBNKX0cgPsAfMqT+eKUUg/gRZjQy2cC+NqU0mfStC8D8Lz53/MB/PCT+c5d0oSqhtYQcCW4\neBtcf1HmdxZ6yjF0Z069kVNN7RuJK2m9nb7TnmI2sNp6R9WLL4YmyFHXxrJ6NT6X0b7w1YhGWTUS\nErLjncmqAWxBnyVyrSdnlGLfjnfJJgTo8I/udqtj2Zx2q69ZIwLJwuJ7wYkCXIEu5yWKvrmnlECg\nuYYxW+7DGsX2OWtkoVOQbeYZZaoJ4ujasN12rH27dPaURhwdhaqi+p6I+6rjNrS5UutFIxegchzN\nczb3QjsUttmgdkD0uA5JaYRaG5M62VOEOEx9h2MgJLQFYE4dbh1T3bpII5epHuzqRRw3ppSeCeA/\nYsquuhlTW/UnI58L4I6c83tyzocAfgrAV9CcrwDwsjzJ7wF4ZkrpE5/k94ZiLHlve8NUErwzhXs1\nVJXMQtAIRafXdWletKaOI0IKKh3XkOPVAFUkYpWfrlr14LYQwvJCNoqAFHvMcTgIYs/5ZbzfgTjU\nNUgVtYyPFM7h8VXXmT0iPGJZKxpvu1RNdq8aQzDN4bTbkBz3yPRRh8I0JzKWMQ8pcC1KMTSdRRAe\n4hgiJDIwV0ZINFT4fkpxHJKM03R9xJGLY+BxHMzT1TXf0TtVkYJFHA6CGKPwLxkgxYnI/1wnIs9i\nra5BZ1WttN7Z1mvT/JBO35U9g9YKifz0m9+P7371rTgN2ctw5Jz/Qc75oZzziwH8ZQBfN4esnox8\nEoD3q9/vRlsbss8cAEBK6fkppRtTSjfef//9T+iEPu1Zz8BzPu4cAMw9YFpoqCvEDyk2abIeFBIp\nHsRoY5YMq6dUwGogTGir8xezMRBD+1JsFaye4ro1FCbef1m0lBZpuAllRP3K8dF94ZtwjoqJC0Kx\nNQo626oiBZ1tpSu7TX6/E2LoiBw3nWiNl61DWCjnKMfTIaZi5IIWIsb7PkJZejsG6p5U3CwRILJb\nIwLTQkTxNApZ2MJA3wCN6jiMOHSaLj+3hoNw1pEZH2Luq6yXno9j73XOuUnTneaOFmW7qFz3pPLr\nNUzCSd/ReH1npW+bRkfrrnPqNeo1c5JN5T4S9IZwuhWJDnnLuaxX1QDd/L6P4LW3fRCnIbsKAENO\nIaX053LONz/1p/TEJOf8EgAvAYDrr7/+CQX9fvFbv6D8vOpsiEnHGjWUPFCGwGQ9rBSZXrKqbEEP\nIHHXlsjbjDZ11HIfVYlmVKNkKtA7PV/BbfUS6dRE+b+S3Vbh786qqtdsQxVwFYruYaSRiM626kWB\nawOhQk8cvzdKbn6OpleV8srZm9Zhm5qCPJo0Xbk2FykkW69RkEVSKCs4zpC5dYm6dwqhyFyNssw1\nKOJXz9fK1SPHLffhK9EJxdV7Wp9bhCwqsuyc9dUgDp1tZxyQ+TiaHwg8fw9xrHrtgDAPWJ2unPU1\nt6nvenwgwzQdb8rCLP3i+nbNaz3CG7yZ5Bs97tV9UEj90HFwT1p2ZVX92yP+lgH8xSfx3ffA8iSf\nPI8dd86JiOE49INadbg4501vh4xza51tpbMkNCStpJnmDeQYuudVyZ4aLGehi5i0oRHQOAz0sqis\nKk8R2GKoFj5vdWigt4pdvxTa47xgPMia3RJzInV8zJX4LeMKTZneVk5dBu+nXdFUVRyj8iCZQ9GI\nQ47HNQ18DRHiMDsAdglXtmo81XG9x4VGFn5LkzYkxQkBmhPRqaZm4ycvHbfT3IefQGC9b98QmBDW\nfN/C0FbOOOel6Q4+QplQnIzXdSEGKCVG5TqNtkXrE89YnS6dGq57WHnV+NtBh7ZmQzC/O9rQyLjX\ndYFrTsy4ys46v9Ycqsd98Pi8wE5YdhUAftEJfvebATwvpfRpmIzB1wD4X2nOLwD4lpTSTwH4PAAP\n55zvPcFzKrJeEcehQlVb9aCecW66hfzAa0jKbvCkQ1iALM5a9xGS4+plEUOjF4kOSfHLYuK3oiwH\n7a3V9EebRusjDo+8PCrEYDzI4pXb0JYcQ3uWLqmplGKEOLZjLr2ceYe+XUVytf6Cj1+Px3uOT/Nt\n00JNjrs1LTo8lzUqgxvC8pCFNn7jqHteQV1b231XxrmhpNwjzxiPdO/kfybN67ifPaXXRe1IawsD\nQ46D7sV2nGqdNBfXPM/O5w0NWhsycqffnRoiNVyJk3xhQtKDzbbS16w7VwOWm9iMPoLYDiNWs35Z\n0zul0/114eHqKkEcAICU0nUA/hGAT805Pz+l9DwAn5Fz/qUn+sU5521K6VsAvBZAD+ClOefbUkov\nmP/+Ykw1I38VwB0ALgL4+if6fccVTXZvthUCRmlx7BEcqAdbM5g0VFUIQnsibojJpuPqkMSU7NZ6\nhFbROF7TaOO98v9mtJXmMq69JtPtVHlNu8lR1RIi1+/VCt8gEUXwcmM/me9lz8iWqHI/hRy3leZV\nAfKmRvI5TbLXVFMbqqrn6pPdelyHpHTdxzQfZdyQ7Aqh1OdZx3RISocwTUKACsOUAkDNZVAhoQ6R\nmvUi6y6p56lQk3E0tDJT43WnRx+JDgqVcysSPR+YFL4JeRbOwqJpy3HM42QgOkGWHdVAqZCUvheb\nwaKv9ZwlWbY8EMQxc5zaCZTP1Z532c5XjqbWO3IubZZnLlzp1RKqEvlRTNlUnz//fg+AnwHwhA0H\nAOScX4PJOOixF6ufM4BvfjLf8UTFGoixZE/pvGkNDTWXoS3/qpsarAmnoBcCILBXp/XWxa/JcV2U\npMdLyxGCybX61XIZuoWIVhDy90GT5l37AhvE0Sdc2Q7NeJglY7KnWsQh5DUriJG9YycMw2EVMRya\nHJ8MhOYBqgLSVdQAyiZVHHowNSdZG0u1/ekRISzhgZpKc3V8N31X3aOq8P0GjuaaR2sUTahKQl49\nh7yqQZE9wXWarkFHQ+toTKFHZfy04zDWMK/lyhTH5SKO0ayjae5oDEqUdms5Di99tzY5XPedKeiL\nOJE2zGsRh8mG0iFVRY4/fqXux1OypPqAW+11wXANYWmu9DRDVfuap0/POf8bABsAyDlfRG14eE2K\nbless6TWXfK75nZ2hy79wGWubFbP4yaP20kFlH06pnG7OAtnMVCoqq8Kghd536WCdOTc5XOeN6U5\nC9nTXI4jx96MflaVhucmC2ewyrVc8+iNj0ZZVgVhwzC6LsNuKYtyfMMDaO9bHUdfm1aigK3L0HUc\nXVcrrnUWFu/0Vw0ByrmE5Hhu0ZfwMV1CcQIAygxLFomY7CkdqlIhL0OOZ7su5JyY45D1Io5GRJpH\n6btynE4hWnZAhLi2hqYihek4VUnLuBu2VYZANydsDI16d/RxeJ1O86vDJ2Fne49SCakBMBEHs1dO\nMYqdMRA241FHLjpzPOFj5JpOWvY1HIcppQuYI8cppU8HcOXEzuoqEOYy9H4cZmOWvn3gnCUB1NDQ\nuqMHPr+QqwaJ1JCUVpaT97Ij1VCFGDYmrluN36CIP1u4Z8l0GY8UgTe+Tx0H74YHzJ6/Yzgkri+I\nyVY5t0qxzQyq5Hj1vlFqV9jQyP9Djkhzrdhh5sv3eJlEuo5DG5SGHM9TokB0LzhVGmiz7aJqea0U\nveysUSldvgY2ooIsGLnqcNuWrs2uC+V0eQjVPH9bkCpz7XyNCKa0bsNljNkgV43KB6XYqzOmQk+m\nxkr3sKpIZQpV1VDY9LnOfK910hSX4WRVyQZy8v013d+m9U7nOhq9c9Kyb6jqewDcAOBTUko/AeAv\nAPi7J3VSV4NwUzHvATJprquxdSuSaWwKPUnISxsI63HoRTt9b0oaVqu6jz4hz8BvM3Koqn1Z1koR\n6Ji1RiKuN8WKoK+KwCKIdj57kKIUvRBDUQSJFMfcToNDFbqmoe+t911CVUyOq8JAoIaetMdZznXM\nJhQGxE0LOzYohjR3QlJ0T5vwXKbUZPU8TTfdVK9Zk+NaifK+HtM4jDLT3vTIiGO+Ng+JMM8kfw+z\nrXR2nlkXso5GXHdQe6HJXA6FATXzkO+dZCoy96Gf80plVU1GtB5Dd7s1dSLqOI1z1SVrUJSR0xXo\nkiloQt5kFG3rks4cR+7RgeiRvhq/jbp3Jy07vyVNbNrtAP4GgD+PKUT1D3POHz7hcztTEQQh7Sjc\nrIfRkuOay6iL1j7YFSGOjSx+QhyCIHSB4TRft0HoioIcaNyH1fWcjLdOLzy/FMxZ7EIivVn8tupa\n5nLsG6hZTL3yXIGKsrSSno7tF7Hp3j06VDWae4HyHYYcN/UXdv8OuQarpFvlN4xqPPmJApx225Hy\nKyEpHpd75BgUw/eo8Jx+zm5/LuIyts616fAPG9eWNKfsKZnfx1lSEUIt1+YagnHHfJu+q8luk5o+\nVOQo3RhSmkNVhey23XH1FgnT/938jlfDJH/3nDcOedteVdUZWysDUcLCSi8cFD1ik2xOWnYajpxz\nTim9Juf8ZwD88imc01Uh6znrocYm5welPYWt3WgFaCHjulMPdrBNy8r80eE+5kwM5j6YsB0dTkSy\nZ4oXNNrFXGLWAxuIjkJb9VwvbYamclj3mNJIpMmSUYpD5rInasdtGEYyiXi+Jop11ouMybiOibuG\nYGyJX8l68hCH5gHcZoZRCCtbhW9IcDKKcm3a0AA19KS76co1m5CUukfu5lXDWPkeMhDjyOvChqR0\n2G6rSHZ9nJo9FfWqGs26M7UO5FBIhmEUtmvQ/UwUN+uLyW5VJ5TpOUuGYU3HrR0FpnVK4d8+GUem\neaccgyKkec5VH6y7VAoJbQeK2tuOWyNNY6PJtjpp2fdbbk4pfc6JnslVJrLTn1j/UiGuIONm1KEq\nHWvUoS27+PVCAKoXVLgPell0dkYZ19lWTs65NkKG+1Dejs70sK0fRseg2JCEz3GM7riXXisvPGcM\nDfM5yQtqveyx8b51KMEYDgqfFMQRKj+bpit/Z2J5+p94Ayeu35DjOrSlrsHbSbCQ2mM283XYzmSe\neVxGOiIduyAONA5CRRB0zTNnxUZ0chC843RFGRtHo+E4fOTK1ywKWfMDQG0VEpHmPTlj1lnyO07X\n0JDNkhJ+LXpHVvM7taF3rcynNN1V0S+c1lsjF9rR1L3tbLaVzQC7KgoAlXwegL+dUroLwOOYwlU5\n5/xZJ3ZmZyzS5FD6UulWAdv5pTDkuIK9OvSk6zUOh4wLB+wp5KZyFEBZtJp8k+Po3HLxrW17hLr4\nOaUQqCGDslFUb1/gSnaSQeHjdD4JagjhsY3fy3es1/X4QPWadeUwUMMwfBwTnknWcIjoFiUczgEU\nsigGRaVRjo6h6Ww4T/Mx+pq1IahIhFuOYB63mWdyjzRC0WE7L/OsMZZOcSP3qmoSAig816tr4D1R\nAHFMxuYeyb2Qx8BZUnJeGk3pdcTOklyD7Oths6F8jsNNIBgtaa5RvIBU/S7od8c2G/SctM4aII0s\nnPkHfYfDrZ7fGgLetmHMNdxaj6OMn0IoJy37Go6/cqJncRXKqp+aGZZW6CtrCK5spxdGcxzATHaP\ntnBnGpesqhY+2+6YYmgCAll5FpMHNJ2vZG3puX3HWVLKoAQIgkNhchyLUDSyCEISJgXVvsCy+Buy\nczZOkVJsuJLZ0KQEs+WrMRwdhxhaJWfGVeiJM5KAWjnukuaCICgkZZslynnBjJ9b2WuW7CZGaxJ6\n0plN5h4lm6bL5LhOx5VQFSv2JlEgMceBci80Elmpe6STLzSy8ByNFd+j4ixZR6MNeY42TZcyDJuQ\n1zga0lw7MrJGmndh4LBtsu19VKjq8sYnxy0SsZlk1TG17/9h4SzI0RzHZkdSQEc6rhLDMe+b8dqc\n8588hfO5akT2BBYCix/UpcPB/F5CVWM2UHJtPALFWawsgqgGpRogjzTnFMTSgVMrdvXd2zGuy9Cw\nHdBetv/Cc7ZVizgq95Fz9VLrC2+5Bh+J6HoQhRTUfLNPx6izsOp8EQkxSBiGDYTUZRRyXIeqlNLV\nYbLD7dhwJfuQ4CYkZbKw4JLgtg07XbMznwsPy7iuXRHDpIohm7RbRiJ9opTlqvzG3KbvrvheB4iD\nDdaUbdcqfAnbsAMia7JdR2NjmACUd0S3/ZDxLpFTJKEkeqcK4mhCUh22w1YV59b3VqNBjSy2Jt3X\n6pfLm0m/HPTtNegQeYtQZgt4wrLTPOWcBwDvSil96imcz1UjEpJijkMe7MWNGA7r7Wy2QoLb+aLA\nK2mukYgXqsouab4V8l1B0r5LpreVMQQOUpBxr6DLRxx28fscR5z+6GVVechiO+Smb5M5DqfpjkQg\nK34gDMOwIUjWQHDhnla65d5FSlGR4F0wzqGncTai8r4zCc48kJDmuh6kXHOARNwtZQfv2jrTTbdB\nHOWaUc7JXV8RUZyY+3KSIAaP4+BkCstl6JBqOc7YFuEOo814lDoeL8NQdugbGCkEGYlS0Mcp7tIm\nfTM483Uxbxmf9cvsmK7IQEjnCE6akTDZVYM4Zvl4ALellN6EieMAAOSc/+cTOaurQNZz+tvljUUW\n8qAuHW5pvMLhw6HNtppCWDZmqcc/Zt7HuxB/RJpzDrlOu6sFfX5lL6dRMoLgNNpmfueHHiQbppKg\nvnfMRO6kVEbDDwDVC9bHB6pyLQVmutBvaMnRIefS5FAbFe0dR8Q/E7YDKcteEAoZIM1ZaC/Y7jXi\nJApE9y5bI9p4zb2dL6iJ7/VAz19CMl64re/mBIWgGJIziSRRpJmfiAdSz1OjLy/bbutcm5DLTHZH\n2Vay5r3x9t3pZqdkOh/p5dXzO2LQukYQikzXKL7JYGwjFzmj0S/yPRdn/VI5zun/w8GGyE1Sjsry\nPGnZ13B894mexVUo9QEO5vfII+C6DJ2dAcwxS0N2z/NH2yqAM0Bq22brcfSEOAwBZ5RfS9j1wnE0\nsNoeZ02Lv0EcTKY3nuJ4pEHpe//F9jzO7ahCUuoeRYhDRHdg3SqlaKqfHSXXERLRIanJu0f5ffpc\nTevMuT0+YJGIaemeHYMiSESdD+DUceiCvrE9Pve20nuNiDetDW/YfkUhFG10L22CAsCsEYpdL42j\nkWhd7EAcPa0vdt6ENG95xtF/d4bRJA4AtXttm21lW4uYa3OzqjqfHxQHdGP1ixgCCYWXnUc7P0Ru\nkMh4lVWO55x/K6X0HACSkvumnPN9J3daZy/NA6QH9fgVjkFO41e2I8bcIhRR+OuVt5hVFpZKNdSk\nuYHVFMuUDpzifSWltDyksO5siiAjkYbj6JLxpjhmXRRE4yn6hVsNEmlCDDbDSDKAQgPEiGPMpZFa\n9fzbnf7KNWS4ytJL35W02zZ99wil69RraKTgpSaPc5prM39kA4RybH2PNELRva0AMX4o7d51K3nP\nQZBr072tyrWNPoobhuBeuMcnxEFJE5xJpkNS054V9jjSHVevazn+MNp3R4xZp97ZMu4YCEYiZmMm\nHZ7T5LjDlaxDQ0AGhQqGL1GI3JDpw+ml4+5lnlJKXw3gTQC+CsBXA/j9lNJXnuSJnbXIA7jYhKTk\nAdL4yi4EnaYH1KIkbi2is6Ts+BTOkZcEEC/Iwnn5TE1BtPN1T6q1eiFNw7cgtBVl2/BLcbQiGF2D\nsnWUKHMf1dDAhh7YQy3xfqjvZW+3Mwq/yTxzkMjgHEe61zbkeAcyKBUpuHUcITcxz80TqqlkfR2P\nEgK0MdaIQytjOTdjROn5D861mXRcCtswac7hP8txjI2jobPtPIUfORot92ENijeu15H8TRCBHpfa\nlQbF0z0yztWgN2WrhsCS6b4h4LT7i4fWQAjyeLyEsCzKktTeqy0d97sAfI6gjJTSswH8GoBXntSJ\nnbWIIeAHGIaqOmtQDsjQtPUdlstoCwPt4pe/Sb2GXiBa4a/M4pcXta3XmFIHj/YImePgGPekgKDa\ntltPkRU7hx48pOCFZ7aEOFhZyrjOnkoJ8796LKMUlTKT7zX3QqqinQwjlxynEFanjFklx22XXaDu\nCd6EpGYjVI195Xt03y42KDqkVu5prr2t5Jy146ANr1ev0QfKUsJ5TJq3aM2ul4G+V2fbeVlVNZOQ\n+MTiRBFCEYPijOtUeUDI7oyMTCi+ouwutZlnTfZU35V3XD4//Z12BiSHsugXSvdnJNJkc65onJDI\nScu+5qmj0NQDx/js01LkhRULzw/q4iGFqhqDYg1NkyWlYLjJkiihKglJOVzGMLoGRb8s03f73Efr\nTWmOw0tB7Ezu+rqzykk2pGk5DouCOkIK9fgw85smh4REdHim8RSVgTD3qIvTcYcRPiHszC/1HVEh\noVeBPmpyXM5zvgbmLBRSGJSytJ1/x8bQsLfe8EbJOhSy94m+n0LwVuNaz9UYAsU1WUfD58r6cny7\nXrzQk8dxxIjDonLTS2po07pLz7MGcYwhEtmMdle9khBAGYna0Ezj1ejacJ41EIUc73z9woZD9vCo\nWVi+oTlp2Rdx3JBSei2AV8y//y3QBkzXmkhzsYtXLMfBD4oXAj9wTRTrZmY1/3pCBLJwps12tDel\nvaDaBmXlGJQNGZTiWVLoSTgOXvwyv4w3cLv1voGJ1zHjir/JWSkUygzj+VKsuDeXQbUL8hnpjtuR\nsvQQx6rcC4fLyHo7VmVQvFCVFAbSuFHseY9mhoQUSpquNpbZqfsY/ToONij1XrSFoWxEdS2CJngZ\ncXBISvbXYIQq53yFHA2dbRfWZQz+VsNuWvd8TmXTrK42LfRQ/DBmZHW95ZrH0ewwKMfSiEOHDHVd\nhlbsGvXrjEegdTTr+LZ8Xv8fGRSOgJy0HGk4Ukp/AsBzcs7/JKX0NwB8wfynNwL4iZM+ubOUUTPz\nkQAAIABJREFUXZa/hZhMdlnEcWUz2mZmOgVxYM6iq00OzWKuip25DE7TnOb7OediIDZkUEIDQd43\noybZBZARR0EiCrkALcdRFQEIiZDhUCSuGXeMZZdgxiUdl1uGi4FovOkGQVRlOR6BUDzyHUAxNk0d\nhxg/Gud4vEYiXt1Hk9YbjMtnJAtr+h3lmnVrGbnPXQdjFC3H1ZLmklXFWVi8Xvq+KnZgCucaR2Mn\n4qCMRJk/h3OvI6QgBsWEquYMwz63vGHlDey7KcfpUn1esnOfl46rnbeCLIJQuLRLZ73TcBykXy6R\noTlp2WWe/h2ARwAg5/xzOed/lHP+RwBeNf/tmpVqIHY8KKV0p/kWiURpd01WlQOTvewpjxyviIMM\njWSAzMdPKsTgE3xdaCCsAbJx9xZx+EhEK4JRh2HK+Gji9Ls4EZ/UrHUWNvRgw3NVwbabHQEOJ8Ik\nOCOLztZ3uKgpSLvlNuxANXIeZ+GhsoIs1PmkVJEOh2GkNqZLMFl4GmVx9TNzIhKGEV6n1NmQQeFz\nbUKbPY07adrbMRsS396LFtFuRwd9UwhLzmEYfQOxGW1ab51vuRX5bjm+PhfZ14d5xsKJUvINIxGu\n14giIDz/pGXXtzwn5/x2HpzHnnsiZ3SViDwQsfA1xCTjNs+aDUoESV3SnBeh8vBZKQ5jWzmu4TAb\nFO4gKuekFYH1jtotZZkEbz3ItqXJND40xwFUSMKr48jepkb2GuRSmB8o10AhL/mMKMvp9/p8NAmu\nmxPqNhvMD3F4RjxaPr7mdXT4rK3jqOcv4/uF7eq9G8lA6KaFbtgut9lWGnFYHsjbJbHWTOhxLpKL\n1kvraAx0HOsgsKHZSpjXMSicKKLDbWvnHdmS01VS1gc/zMc8oxjRDSOLvjp1ctzpGo6OaDCCiOvH\n5nHKzjpp2WU4nnnE3y48lSdytcmaLfyKLD+n6ZKBOMdZEoQ4So+p0bYokWNuqNJcPrsZfYPCue5y\nHDEQ7DXxpjbyv1UENmTApGZ54Td+VpWMxw352vHt0PIAUrgnv5siNte4ojEoFU3VewCg7BXuNvzL\nXtjOb8/epYSca/hHz5drMOMKWTBSKONR7YopeqzzWclJ40X2pgsqG9tsq+keURaerAsieJvaFUIi\nNeTlGwg2KJc3bZPO6d5J7ynmDY9OCODQk2cI9DvSoHipveJ3x01999/z0jW3IJGjkcKaHNM2Kcc3\nKKdNju/6lhtTSt/IgymlvwfgppM5patDShZDgDgaElzGmxYl0/+XNy15pTM3mqKkofWapCe/zsKS\nY/K+HoB4U5ZYlHHT4VM8f+I4OC2SSc2Q4xDSfIhDDxpZ7IplM+Io1yAGgrxsz6CUDZgkHq+8Wt1O\no+MwTFQ53iCUauRknv6cNMv0DIEJ26lKcIuy5vFdabfGWKqQVOM1O2itkN0wx2YSXNeW2Kwqe04b\nJsFlHW34Xsj6IsTR23vH66IofEZfxYlqOQ4OPZV3hHlDFWLiBBUJYdlQFb3nXVLHaUOkrBdCQ9AJ\nx+Hrnb6bkmnYkT1p2ZVV9W0AXpVS+tuohuJ6AAcA/peTPLGzlpr+5lv+Ujm+Otryc++ZA1qEV7YT\nad4SdnNIamUX+eAs/nWfcGUztl5WV+OxbJhsW/XOzI9IcFnku7gMUV6sICp5yaEna1CqZ9nVcfaa\nxUA4WVXDCOTkxPUd7qPrfL6nT7BKVHn4o6NcS/x+aDvOAjXM19RxlMpxOZ/pf04I0FzG6CCOYnR7\ne4/qPVXXnPxsq1WfcGWrs6EqahKko5+LbHbUrJcg2644GlQMJ9d+JUAc7XHqutBdc4XXka4Ia1oX\nPiqXzrzk1CknakXzN9vWMdHZlrLlAVDfdzYQcszQAS1lAFa/PO4YiFXfNdlZJy1HGo6c84cAfH5K\n6YsA/Ol5+Jdzzr9x4md2xhJxHGGoSuZfOTqExaEnrjSXYxWYzIvWQSJT3H1wUg1rDrnLcRRlpo9T\nq18jA8HEf4tErAfJioA9SK4QjpQoe9Mu4ugmg5K7FBgIkJctBLL8XhWyVpa1/oLSbuVcxcsuyKKe\njzuukUVu03HLvhvsTR+ByrZ0j/QmVd7z97OtvGyoroS89HcK99WS5vNz3rKBYIdC7tH0wyGHc4Lk\nC9PPjRBBQRbOmq+GwDpj2yEjJad4drAdrYGaEr+ld1M+e2kzWK6EuQlVMKjHGxJ8RwGgvuaDvmta\nI5207Nur6nUAXvdUfWlK6RMA/BdMBPudAL465/wRZ96dAB4FMADY5pyvf6rOYZcwx8EtQR5vPIX5\nwW4sEpG6jHociywubtoHrkNPDIdL6xK9mDtNjlt4vikZI/yyjAWJlGyr4IWvBsIu2hp62IVELIKQ\n47i1COpcm3YavVWKJSTFBiUDuQlhtd66nJuEi6bjyvygtUhv27PrJoeAgyzIoDStRUabpts0cPS4\nDzdUhebaalqsvUd633R/vkVNxYg64Ta3uj7x84f5ew3bWc6CQ1WlTojCP726pw0SVSjb5TickNTj\n2y26lHBurd+pmsrepMoLcqFxYFLsHNoC2tYipRfexnIWbFB4O4fHHQOx7tOpI47TMU+tfAeAX885\nPw/Ar8+/R/JFOefPPk2jAVhoeNB3Rbm2WQ9Hk13ADCWdlgDrPtUsLHqBa5PDdvwoIo+PM3EZgVfm\nhCqAOCTF5GWTVUWG5rBRHDDjjFDYC5ZTq3nz7TV4XIZvUKqnaA1HEIYJUpaP2hnQXjN73/58Dp9Z\nLqMqz13puBGv4yELCduNznxJRGjWkUZlGnGMQEuai4GQdUTjDfdhkUi8vqwzxhwHIArfOiDyHVvH\noMj4hubr/m+aK5n26ZidLspsBCYDYZw61cOuS4pb20GOc0TjYOXrnelY3alzHGdlOL4CwH+ef/7P\nAP76GZ1HKGLRH7+ytcq+Y46jo3HbhGz6W8LlIFTlVXyWnlSq0lzGa6ohw2ep+7DzuW07YElwLjAE\ndpPguzgOHteEM+AoV8Vx6P0VTPZUbj1LjzQXJcfet2RPTQQyzHGi0JNXAFjmEzneorXWO/bu0XZs\n27ADwkGMDeIQI9eitTaTTBP5HMLi9i5yziXkpe9dCWG1z81rUdLUZexYR7vTdCXLy6L1Q+pMMM2R\nym6vtUicpss1UzXkNVK4uHMTTnTbc6svqoHgdkAyX9+zNu3WIhTROxyqemzWO+dW17bheE7O+d75\n5w8CeE4wLwP4tZTSTSml5x91wJTS81NKN6aUbrz//vuf9AnqkNTBSnsQ1iOQBypeEIeqps90uLhp\nPYJ119X5zksxZpBin8jIQ1rkETyX8Ta0JSmInG1lQ09tSIqQBSmCqI6D2680LSf6qizHsW0VIt1x\nm8ygoQ23lMZ7Hq/jZmd1bg8rNigaEeSMukteRI6Two/IcW7bzf28WLnWynGLyvxrqzyQJc3hZluJ\nQdHb+sp36/Raru/hnmclOWJH+rZGENN84gHK/LZGoe9Sw5XIHAlh2XdEIRE3NZ0RR1d6WEWdqD20\nHnEc03hraC5S9lTcscLXO/K3ajh6nIbs26vq2JJS+jUAf8z503fpX3LOOaV5w99WviDnfE9K6Y8C\n+NWU0u0559d7E3POLwHwEgC4/vrro+PtLbpd8TMvrMt4W9lpvRE3VNUF40eQ4yUsRONloyhGFoPX\noqSr3XRdg5IbLwtwQk+MIChm3aZX+goi8iA18asLugDxmoNYtoc4Zo8THVwvW2dtTceHH5JSYR45\nD/13RhDVQPh1HM34jjTdqXK8RSKcypxSqllSGY7hGBvSXLeiYQMxOkhE6kG4nUpFWT6CCOt+omyr\naB2RowFgzgBr0XpxosjRWPe1eJaPMxm+1kBsxmx255yO0ynD5BgIRhyz03mZDIduObLqkkGQKbX7\nAMn4446+WPVd0RcHp4Q4Tsxw5Jy/OPpbSulDKaVPzDnfm1L6RADuplA553vm/+9LKb0KwOcCcA3H\nUy0HzqKYfq6LOSX7oq77DhevOMhCGQiDRBTEZEPz8KWN+T7AvhQNZ3EE3N6otu0yPl2D9Y4qlzGY\na9Pj+lyjF1tvagU4SIQ8SE0gj6T8CpfBCl8pdv1CSqsQfX5ynHHM81azqPO7Gs5JiTc7ius1GFlw\nSKpzrk3PqwaIW5oI4rDddE2zRAd9CandGI7ckual6DHTcVSleU/rSCMODp9Fxi9CHFFrkSbbjrPz\n6JyYc5PPFAdkD45D3p32ODos3DpvXigMmJCFVt4HBSkQ9yHzD7cNob3uu3KP5H1OKWGtsqc8owVc\n+6GqXwDwdfPPXwfg53lCSukZKaWPlZ8BfAmAW0/rBPXD1A9jeoDT39aKNJfPcAFgGad0vGm8a5oi\nynxW0jJ/M3oV5Z16KZxxRha98oIcxHF5M7jEXxNiIoPSKg5LjnJ31MhDZT5mdAyENhwe8csKovSe\nyi2vw9XbfHwgVvgt4ogMhG9QOIHAkOPKWBqDkgkRpFpbYlBWCuo15rAdh6R0yNO7F7LPScTr8DVf\noXE2BG22na1YbxGtNgSd+470XSoOiGcgGieqr6nJK3LeJMzrZTZyKCwKSWkkYpHxjDiITAfQ1J+I\nHPRdrePoWuMEXPuG4/sB/OWU0h8C+OL5d6SU/nhKSdq1PwfAG1JKb8O0++Av55xvOK0TjCw6UBc6\n50yv+2kDev7bugs8hS417dlljkearzuf4JN0XL3D4HTMuk+H5x1d3rQGSMaP5D6CF343EvHHpXCL\n0zSB6gU31e9JKTnjTasd3Yzyq0pUHb54ol5Gkm4twnUWUV1G42XvXd9h711V+PP5zKcm2VYdP2eX\nm1D1GgE53vJJXsqy4tAcpcbIkh2H2vwQ9h6xoSEkWtbptuU4JsRhHRb5rsigCIJgVL4ZJMXdIgtg\ndqLIQEgtlcdxXCZOtKbXbi1XOs/P2dEjqr2RdkzXfSr6RacOax3xtOc4jpKc8wMA/pIz/gEAf3X+\n+T0A/uwpn1oRvVg4brjuEy5t7BzAegrrlV1UohQPaLzs3KUXW6fGyUupnIX1vmSLWOYyxjwp5I9V\ncVqNFPhlBKYX1UMiuxTEcWPWbMxqPUgZDpGFKHzdrkOOsxlGYOTjV3JcG+nqrfuEsNeGHahedmmW\n2BOyaMI5bZddPV9ud7Qtrs4wGynDTMJtnOygq+JlX275LiHHPe7La+znFWFy6Kk+/86Mt44GJ1/4\nCEUcCl5H8tkrFM6ZvsMPYUm9RtsqxN+PQ9bUpc0ATseVa/jY8y332SKO6efHrgz4uPOWK9HnoIW3\nXhCxIbDWCAHWoJyknBXiuOrFhqTIQFBRjsgqQCleloX8LHFjTvm75IWquoTL8rJw3NUpANReExOC\nMs4KApheVM+zZA8vzJJij5MUChsaYFKoHuKoNQTtBjxj4AXH9R2i/GCPH6Sgjtkjtae/s1IsXEaE\nOIK2LKx0dbW8nHe5tiQZZi2XUch0M94WDMr9jdJxo82xPD4pQpayBHdyHNE6ojUfGwgb8pKfvb5w\nsi64G8Oq6wrisHylrHlKx11pg9LOZ6fuIEAcXjirfiaZ7+J5B31HxL9vUE5SFsNxhJSQVPAAm9ik\n46UDdgGwIfDm9F1qCET5OXopJEvKvtg1lMTxW8AJVRnE0Y6HIamNfeGjvHwOVbCH741HRWx6i1j2\ngqM9KLgyvRx/8MMzgFPxLdl2hbPg+dSihI4TkuNsdGm+fBdnW8kcX7F3rtHVYbvGuHp7nKRqXF1H\no6nvkdCmbyAuh0i0JcH70EBUZNEYlGB9HQaGKQphTefqo+/Hr/ghKT4fnV57QO84z+Fj6XUKVKPA\nqEKn7GqDcpKyGI4jhDtWlvE53BQZlCY26Xj708++EfFaFkxzOndT+tIGgYg/brzG38UhqV692B5B\nJy+w/KlpRdIogiBU4ZKdKQxh7WoNviIl5zVFLPUdY5tJFB0faPcgafdZt4hjZx0HIY7GoDASaVKT\n///2rjRIsqpKfyez9uqN3umNhu6GhoZma1q72ZpVaEUEEcUVN9QZRUOdkWVG0XDCbYIwxiVGGAl3\nDWccBAVFUEdH3FCHpRFRwEFWQRwUUKprOfPj3Zt577n3ZL7srqqsyjpfREW9PO/me/e9fO9+96w3\n9n34Y2Y1C0pL1fs+58x2NY0jQxBaIAJQ/M7VSlq6pr7SX54gZH6PFiWVn2hUAt+HeI6G8wQkS577\nvjWqdisnXWF58x7t/W1gYfAgomRtnno7N74olg7px/DtJ8u/ARhxNIQnhoEe8UMpzvF69idl5fI7\nuZlJeHwgnTV551jONzE0kiYGAo4gMmG3Q8NxyGKNCIZHRR2e+PjJAJHMLCu144Tn812WYZe+jTyO\nlw+7DOFcAqCsGaTb6eulx2XUlo8YamS/Dxd4AkIiiNsnGeI1QmmcDxLWhYqOk4v0yoTR5ggldHZr\nWlxFEFC2EnFwL0KyDxP9pObi5YA+oVA1jkSzSE2b4fMiyazmHBfRUzl5PRk2X7SwaJO+p0/JfA2F\nIEKfpj5e5Cegfd1i3OnyBKFMWCcpogow4mgI/4P0yx/Q/7CSUPwMQvlh5bY2M4k0DkUdlg4+wNtX\n04dfFl4LfRxx+0pNHsfA1+W5aCs586tW4wEijEWPneDxsXK+j8hsJ2fBPnehVGRQ3a6vDbpScwGK\nwVJqLkDO9IRIXtc4Ynli71c0DukTia5N8+vkcl0y/huviWRDk2uRaulEY2cmeS53jzRTpRZ2HZpO\nw+P6NjkfR3eVAs0lvhfacXJyf0/TsuqN37WdI2PCVBX3rX7ekEQEcfjrV4ijV4w7PTVCidt7TWOy\nQnEBI46G8A9Df09XVt4nCUKUDai1V+yZucFctsnlUyTbIlu8fsy6up1rI4lAmh6k/OmR0aw2NCRe\nSG3g8NuajyPn16kGpgotATAZXLP2+Hq5jjwBpeU3gEJTkJoOkHFqSxOWN88IIkhMVbL4odREJCly\nPs9Chu+G9yi95opqtmukcQwJ06amcdTvUTzDlyZP/3zWfV+ZsNuAIDQfh/QXaBOQnH8wp6FLuW4x\nUKwEoVzxbwJ1IpEDvj+flA+4cUiapGa7aC1pGZlIGHE0QDONo1/8UDWi6ZZyZfCPknia+zs0DUV7\n4GX4opQ/PZKuhgZ4TSRv2pJmoeI4SgLgcN70IAddv50jCM1pHtUeUmblVUGWtZBVMegyw1VHjWfl\ngDPP5ExYo3I2Xam1L74f34uyiYGJc1xoOyOZyLOCUNIih6FfR+a0aITi+ySd4/7acrb8IRG1F5qk\nwoRBzVQlfV+ybI7m48hFHsZO8/xz1J255qK9QiIZc25y/Oi9zr+PCUFUFJOUoll4YpDO8Vm9BXEM\n9k5edoURRwP4HyrxcSgEof3goRNMZprnt/MPc7k2zX0o/gVMcheEL0O2f1oUcNN8HEkynHghtegZ\nGccPFIOO5jSvm1VS4pDObj+Ijon8jlAjiGbfQfRU3t4vNQW49nGUVM3er/o+NFNVWjYlJt2auJYh\nLsnSBxDI8ul+rfA0AbD4P5QkgDbRLEbHkvMW90i7d419H3pUVfo7S3kRVZXTXBSNQJmY5XyCUt6r\nmqryE8LEVKVZLrxcjC+eICQBzXIaR/hbTjSMOBrAE4PULFTnlapx+AckfxwgVj9V01Y0C8rPmnIz\nyGI7T0DxbK3Y1sMu8wOBNA3UEreUjF8tX0MWy6vLldm3EqabS1arlaTPJMkBGYLQCEXWpFKioSSJ\npiYpRO2lXPpE/HY2uz4kS0H4uUquzTSOoUyeCOB//7wmqvk4coOu5vuQ63X77Wweh2K29RpkIVfe\nnRLmKW1b1pqrbYeEEi4IpZBUuE/VOMR4MdDrxqPuvKlqtyu7tgAjjgbwD7rUOPzMQfvBpVOrppJK\n01bw0PZFJQSUWVATh13YB3l87Zg5XwaQ95sUoYnpS/e0GzgibaqSj3qpVipq9FQ22op0QvH5GvI6\nteKHhUM4f807R8ays++dowrRKLPmdKW/WK7md0iiUaKq6ppOTVxcWyaMtkhizAQKUECi1cw1qxOE\nvO8ruUc1jVMvognUn9X6RCPNswiJQJsgyQWYctua1iArMGTbtxjQEo4LkX9E1Sw0E1YsH3Q+jjBj\nHahrIpMJI44G8Iv1zB/sieRzXZn15AdXfSLKA6JoHOEDGRGKSgTN5bJSaLa98qLJSqmyjXSa+n1D\nGSIIZ5CJj2NYM201DtOVIaJZx28F0CrIAm6wzDh+d0rzjDQxCZNUUm49yRCvxMdRCCjrB9Ky60Nt\nKhNhlmoc+RpW9YW28hUFknsU/P65Zyq5d8IkFexClXSTVO24JbRpdfBv8d3RtZW86UmrUBv7MZUJ\npYye6qKs3DvH5UTWj0fh/ZxoGHE0gP/h5vTHDO9VQ8n8g+4HTQnCPQhK4k53ldSHvFeZvfRqNtsS\ns6/YkdcqMaWzrzGx4JTfpzvBlYV5lHUXmjvTw/PW1wTPRhKNprNywJlnMv6nnULuSW14dCwpww40\n10RkSXLpHCeSBR/jgbqmfYlBtwhBzvsB0sizMBw3JKbifyOTpKataaYqzcchNdTw99RMUqp2XGKQ\n1/0a1FQevoOaCStqHxBHpUK1z2H9uvD7kiD8uyRN5IPOVCWzww9duQf2WTiINx2/FpOFthQ5nC54\nzVF74+5HnsTG5XMjuR9swqJlQJ1gkhlENe8rkRnVNXmocSizl95SmoiiVivtq0p7fdaXP47cJ4+l\nObs1X4amoeRm3xVnwuKMeQZAWp8pmB33B/e0mcYx1CTaSiYMJiVKFOe4387di+geVeNrbpzrkiFR\nzqzrEYRvywrF/l5oJqw5fRkyHh6rTbLCvg2NjGZzGobEcX1f5feLvjYnFH27jFk4TwSaxhH2QYbL\n9nVXMTQyllgi/Heks9sTxBwxMfUahw/t9pg70I3vvH0bJhNGHA1wzL6LcOMFxydyuTKehycSmSE6\nS5HLvAePuNqlonEoznRNrr04GqG0rOaLa2h0rHr2uySUzJolCqEUpq28M7WIFsoT286R2K4fJvTN\n6q3fu1BTyJlONHlS4VUrUVKbfaeRQZUKZZ3jFaJ6LSxBNFJz8fJ6hngZjUPRIIJoO82ElfMhaBFp\nOQ1V9UEo2q4W8qoHfjSfXEVRUiWip8L3OdSeZLis3zUo8sH8syEnlP4dlr6Lbfstwoo9+vHSZ+6F\ndsOIYxdw5mHLcd3tD+O49YsjuTddhQ8pUCcU7zPx8A+8VD21hzY8bp8SuaG1z+VlNNpW80HE7J4I\nzs+gaxy5mTmQzhrHONOmEjrNBaFkBku/zCkjHnQiDUIpLRIvr5ofFEOi0QglvLZWneOA9GWIe6EU\ngsxFJFUryiJYCqGEGkHumncqUVXS9+GvfTRTDia3DdSfT6Jyz6fu42g++dEmS1omePhOadpHCKlB\n+CNJgvD3XmoW/vvyHi2b148fvCOdyLYDRhy7gAOXz81rIu5hk+HUXl33azZ79AQvS+44gP7Ah5pF\nVX3482q16vtQTQT5F81/lmudh+0qlNaYyp9Pl+fi9TXzTJdrz+K8YQSQanfPOcdH80mSkoC0UiR1\nuViPI3Ga5wlC5rTkyFIzbVUrQSmSrBN8LCGg2rWVIJTI/JcxbRXf1eTxc1Rb16SB5qpt62V88hMn\nTYuJtfW8PKwiIUsL5dqHGOwVpip3zXOFD/W0g5fhe79+FCfsH09MpxKMOMYRx6xbhL0WDOAlz4hV\nST+jkJqF94lIm2X4YMsQVw9NfY7V7eZytVSCNqhnfBnDYgEpoH6tjUwSmiZTZtbYpWko3lFM6awc\nKLKctbyMXJHD4ZGxKKghIo7MbFoO4NL3UY/CQu288hoqFBRFDM9B+eV1wwACec2+DlM8Q0etTzkt\nqzAl5QmlLNnntisVKpIVOX2Oulp8XppF+sljjZfGMRCYjge68wSRaBzeJNUdD7feaiCJ48Dlc/HN\ntxyTPfZUgRHHOGLl/AF87++OS+Tex1EVqoV/YGTijnSue+g+jtBprvlE8rMyzcGnD9hp9BQQDyjh\ndxKThHLcVrWS3CBfbBf9k+azWgmRRhpHbrBUalUNj3LiZ/DysJ1KKI2c44rGEZbfKBNAEPuHamJV\n42j2++eithq1l9u+3VhGQ/Xfb6RxqAEeJSIDY+d1CSe48o4MBFqDVhtqQPgmfJmY2SKY5rVH74N7\n//gXHCiCb6YD8rqWYVyxcfk8rFs8C289ad9IXiMOwRzS5ukRE0QZjUMxbZXQUHpESKEfv7ToqbID\nQauDTauEEg2QURhtsWNYIQKZLV33cYg6TMGAH/tW4NprpipFE1FMTHIdEH+OVjLKK0RBqZNU4xhj\n6NFJmXwNKS/zm2nPS+rjIKV9eD1B+/B6lGvQ6r9pZl6dUOrtw2NKn4WHJIglc/oAAAtn9UbyrWsX\n4jtv25bkiU0HGHFMAuYOdOP6tx6LrWsXxnIlkXBOf14RDGc4+kuhhQjmzVBae7UEtDIj1NZNripy\nud0qoegkogwoislPiwwqQxA5W34tuU0MkNL34fM1tOippr4P0T5HNHF7BPK836HMb1DGKa21L/YV\nn3VCyT93PV0Vtc5b9C5oPotQ3p1/BrWlXUN52AeNOGSY/kXP3h8Hr5yHvRYMZNtPR5ipqo1YOX8A\nB6+YizdsWxPJpc3TI0xE1NYc1pKVdIJoHtbrvzM8ygmhNNMsdk3jCPvaWvSMpnG0avJqZtffOTIW\nhUuGPgstxDXpa4PoKZVQsqatdMGp9JpDskC+TYtO7VYDHcJ9idydQ9Zz8uTfW80/d/I70TPcnX92\nymgWXUqkYoiB7vzwucdArEEct99iHLff1HV07wqMONqIvu4qrnrjUYlcM1VJFdgjHMBUjUOZZZXX\nOApfRpKL0sT0IOXaoBInoilEUMpUlb+enEM8PU763THOt9dKjw8rGor0ffg+5argVpTyGz5iDEjN\nM5pzvN4/RO2zbTJRZbK9vt2c4MPPUrPQTFheO5YRTP46e4Um0qqpStMsQjKapb13Qv52C5XrAAAX\nP0lEQVS+Mw/C1299cFqanlqFEccUxLyBbhy9biGes3HPSF6GUMLs1HBb9XF059VwOcvyL2SicVQV\nudZes4WX0j6af1ebTXcpA2TOgZ6eqy73A6pWQXinssaJFkarFjNUNJHwu3V5sTZJwzZKMT9V4yiR\nma3KG4Tdqk7wWvkd+bwUn9MJiybPPyNhwEmZGlNhsp5WRHCesAycs3kVztm8Ktu202DEMQVBRPjs\nq5+RyLUojvDBDtuEMyJtNqXFnGsvZEIE5OX5yr+lj6OYjyqK+SSX3AfIAbK5xhE7yjXzTPPZtD/O\nyBijvzvtWy5KKvJBKBqEdl80sixFriERliAFLUAh2hbO9AqlUVjhOVJNpJL0Ifws6zx5opEh7vK4\nHuF7EbbRJl3hceUk6j2nb8DN9z2enHsmoS3OcSJ6ARHdTkRjRLSpQbtTiOhOIrqLiC6YzD5ORRAR\nzjx0OS7avj6Sh/bYWGvIax+NFpepfbc7P7DnfB/ymKE8nUEq7YN+x87O5oNZl+IE14mg+YCqnSsi\nKWU7H76r5WtkEv1Ij57K9qlFLUDTOMppgM2JPOyHHMj9/Ss9oajm22vHl0saeGir42l+wxDhOwUA\nL9+yGpeefUi27UxBuzSOHQDOBPAJrQERVQF8DMBJAO4HcBMRXc3Mv5ycLk5NXPrCXXtgw5lVI5OU\nR9kX2w8emmlLW09ZWw0NiGeXrUbu7BYRiFDWmrzEjL6ZSal5GG0sH6vV89p101CpAAL13jW/R1pE\nlv88PMpqfbayps36c5fXaOWqd7N6FeLoUfwUihwA3rBtTc3XZIjRFuJg5juAlMkFNgO4i5nvcW2/\nBOB0ADOaODScd8w+yUsaQrPTyoqdHvIF9oOkNvNLB4Lis9Q4/IueRM8EA0/kIwg1kciRn2+jmp5K\nmGSi8uxK1eAyxJQjl2xxwkq4SFF+oG7dSd38uxopqhqHVuZciWYqPhfBFNKprT4vlJ9o1DVUTaOJ\nxLUKshKy3IdHI3PTO05Zr+6b6ZjKPo7lAO4LPt8PIDX8OxDReQDOA4BVq2aGgyrERdv3b7i/SyEV\nLVJLM2FpmkJ5DSVvwtLMHlrYZTiOaOGYrSYV5mpPFW3q5yrjE5EVAqqVIhqKqKTZSzEHaW1arwUW\nHFOtjtz8vBqpA/VkPRlGq/q+apqI4itLnrtK0gdA1yw0UxUAvHzLXrUkPUM5TBhxENENAJZmdl3M\nzFeN9/mY+TIAlwHApk2bJnP53SmNC09djwce/6u6Xws1lC9abVncFqOnykbJhLZvrT5X+J1wwAtn\ntZrtv4wTuFTOSInZemK2IcIoOEso9evRSKH5OVp3asd9q7VXyLLMuZKJQLWJxqlqFuU015qpStxr\nTbNotLzqe04/UN1nyGPCiIOZT9zNQzwAYGXweYWTGVrA645d03C/lmw4W7xo2szPFwBMfBmqZqHN\nIPMmLC3RMRzwtFUMexSnuRqdFJqqFEJpSBBOs0gcwhUAo+kgN24ah5q4h2x7de1uxTxXxs9U2meh\naKjaxKRZFJ6Ua5pFX3cVZx62HJtXz8/uN7SGqWyqugnAOiLaGwVhvAjAi9vbpc7Bh87aiB/d/Zga\njis1ET82SVOAn+FpL3aioajx+vmZaFTkTqvw25UfRLWFfEK56hyPtIy0n3K7aOc0i4xc9ll+P9Qs\nYp9NIC9RETbSFBSiDdtEgQglnOyyhllNrkTJqRqn+J19uKym0UpfnC/rIeu8aaZXADM+Emo80a5w\n3DOI6H4AWwBcQ0TXOfkyIroWAJh5BMAbAVwH4A4AX2bm29vR307ECzatzEZo+RdyXn+c/epfUEko\nPrFK92XkB1Fdnh845Hc0TSSeQTcnjjImnDKRR0Wf3P9YXK9b1cBUJRfIysl1s5KiKUT5La2Rq1Y1\nWQvAUMOuG2R8h/BObdne14OScTS+rMdOsSTB0jl9OOmAJbjsZYdn+2kYH7QrqupKAFdm5A8C2B58\nvhbAtZPYtRmPS88+BP/+8/uweHZcydNP7DRbsUxO1GzcTX0iDWbluklKIwjFxKLII00ksvHXt7WI\nJyDULPLXlpqq8tuao10lmhKmt7j8Rn67DLmWDZrQoqG85iAnDv75kcfx2dk+Ks1jD1fWY+nc2KlN\nRLj85WpqmGGcMJVNVYY24MQDluDEA5Ykcu8LkT6ROqHEck8wCaE08X2ky+jmtYwyg5w6+JVo32qh\nxfBzks3sBnatfbVCar0lTVPQiE3TPjRS7FFyZiKNQ9FQQkg5uydD0yA0U5U0Sc2tEUesWayaP4AT\n1i/G3xzX2IdnmBgYcRhK4aLt6/Gx796NtYtnRXJ2NiwZzeKJo1/4RLwmktjEfQmJxJyTH6ha1SBU\nJ7BaxiMkmnDwRrZ9eG45tsoS6/Vj5U1YakHGyMdRhtiCvirf1ciyR2mvmao0TUQSijdR9VSr2Xay\nvT/ufFFxtq+7ik+ee0T2nIaJhxGHoRQO32s+rjg3jUjxznLthZf2fp/ZqzmQ01l5vj/lNI4Sdv1q\nXl6JBt36B6Jg+VO1wmveUaz5OCQ3qpnqJfIpNFNarGUF11bJX7N2L7R1tqVJqltxgnvIicYY+zXZ\n43aHrdoDR69b2DQ60DC5MOIw7BZed+waPPLEELauWRDJ/QAwJqJevCYiE2384CzGDV3jUAfF1ggl\nNsM094kAxWC7c3QsXWe9RhDyGhqbqkqvs62apOpy1ZehkGhoqmpVEwmh+bJk1J7mK/MmKmnm22Ow\nJ1vw09BeGHEYdgtrF8/Cp1+1OZH7AX9Q+Dhm9fnlcmPq8O0koagaR7X5gF8qHFeZZWtO+dp3RssX\n3vNfl3Lv10iisETBw9rxFZKLIsy68oSiEYEWtaWVGy9rkvK/o9Qs/O8u1+U+49DluPHux3D2ppUw\nTH0YcRgmBGccuhw/+e1jOGvTikjuTVWjQhXxYb5jglDKaBya2aZMyY14Vl7OIVyLnlI0jkSD0Mxw\nlJ43bCed5qWSIZUcle4SJqmQjENNRDtvCK3mmcz78ZqGjJ5bPKcPn8lMQAxTE0YchgnB0rl9+NQr\n04HAD2bzhLPTDyiSOAaUASkkBXUFOHUN6d0zVfmBVA74tex3pUCk1CxqPg7FOS6JpqtFbaqqaCLx\nOtvavdB8GXn5gKJZyEzu1x+7Bn98ahhb1yzMHscwPWDEYZhUPHPNApy4/xK88fi1kdxn/I7FUZdq\nLS05qObksUkqP3Bqs29SCCU8R5JzQk3kZSsFK2tWlCnjrvl74igsKPLmxKE5x2VV2mJi8FQSvr3P\noln4t1dYnsV0hxGHYVIxp687O3D4PJCFIvFQKyGhDWBqOfAS+RoyvDbXJmwnNY66JqI4wVuUa4Qi\nUSbpsUczYSkZ4hpxaAmg0pf1rtMOwGXfvwdrFg9m2xumN4w4DFMCey8cxGkHL8Nrj947ks/uzRdh\nnKMQSrTOdBDRU1EdywjkmuNX8WWULJui+j5qmovSvkH5lVx72aZMDkioHYWH71eWKZYJnfMHe/DH\np3YmpseNK+bhoy8+LHsMw/SHEYdhSqCnq4KPnHNoIvemKmnymN2XJ5RwZq37LHYvK1od8JWseK1k\neEUhGv9Ri9qSCOWav0dzgodLrYbflRqEh9Q4PnrOofjarQ9i4ayebHtDZ8KIwzClscdAN87ZvAqn\nbdwzkmsmLG2J3HAQDSOAGjnB6/J4APettAFfmrx21YSl+VYkf2jL/2omrPD6pQZRa1OSOLauXYit\na83RPdNgxGGY0iAivO/MgxK5Fv6p2eDDwTUcFBs5wTV5bT1wzVSVLIvq25czSWmaSC3BUDBHn3Iv\n+jRtIoiAKhs9ddnLDscvfve4upKkYWbBiMMwLUFEeMO2NThk5bxIrg1sEXGUGGijYwqTlA8ZLh1t\npcqL/9p62pqPg4STXM2hUEk03z6EPMfJG5bi5A25BT0NMxFGHIZpi3ecsr502zKahTYAy/Y+00Rz\ndpfVILSSI/6zRijSVKURnuanaIQPnrURjz25s+XvGWYWjDgMHYcLT12PRSKsN4ScTXvIXAQPae9n\nReNoShBae7kcb3clf5xaiRJpqtIKCbb+elvJD0MZGHEYOg67WklV0zikfGTME4cSbaU6u/P5INKE\n5TUIyW+1UiTSVKU5uJXrAYB3P3eDSjgGQzMYcRhmDD74/I0YGhlV9/f15AdSaQoadsuVygHbj+fS\n9FTP44gHfF8SRWoifkCX9bx8u6S94rOQlWZDvGLranWfwdAMRhyGGYOzj2hshtGcxilBFAOyJBQ/\n0Kdl2PMmqfoyqtJUpRSCrNXzaty/EBecuh6rF1j2tmF8YcRhmPH415cejnsfe0rdL00+nhik3K+L\nLQmlzw3smkkqIQ5PYMIk5ZMeJaFoOS1AUVTQYBhvGHEYZjxOOTAfZtrfXcVfh0cxfzDOivYahCQI\n7zSXhOKJQEZb+axtacLqdaYqaWnyZVbk+tsDPV04/4R12LJPvJiWwTBRMOIwGBRcce4R+PE9jyUE\n4U1VMuva+zb6ha/Ef5bOaE8wWkKfjJ7yGsf6pbOTvr71pH2bXI3BMH4w4jAYFGxZswBb1qSz+CVz\nevHoE0OJJuIJIDFteUKRmogjEhk9VYuqEuddPLsXrz5qb5xx6PKWrsNgGG8YcRgMLeIDz9+Iq29+\nEEvn9EVy7/vQnOxSc6mbrmKK8KskysKOlQrhH59zwK5222AYN7SFOIjoBQAuAbA/gM3M/DOl3f8C\neALAKIARZrYVYAxtx4Zlc7Fh2dxEvsBpINriU0niofOJSPHGFfPwyiNX45Vb4xLzBsNUQbs0jh0A\nzgTwiRJtj2PmP0xwfwyG3cZbT9oP8wd7cfCKec0bA+h3mepzRIn47moF7zptw7j3z2AYL7SFOJj5\nDkAv/WAwTEesWjCAd56WmpLmOJPTbFECZPtBS7HjgT8li1cZDFMdU93HwQBuIKJRAJ9g5su0hkR0\nHoDzAGDVqlWT1D2DoTledeRqPDU0gu1iTZGBni5c8lzTLAzTDxNGHER0A4BcgPzFzHxVycMcxcwP\nENFiANcT0a+Y+fu5ho5ULgOATZs2ca6NwdAOzBvoMae2oaMwYcTBzCeOwzEecP8fIaIrAWwGkCUO\ng8FgMEwOpmx5TCIaJKLZfhvAySic6gaDwWBoI9pCHER0BhHdD2ALgGuI6DonX0ZE17pmSwD8gIhu\nAfBTANcw8zfb0V+DwWAw1NGuqKorAVyZkT8IYLvbvgfAwZPcNYPBYDA0wZQ1VRkMBoNhasKIw2Aw\nGAwtwYjDYDAYDC3BiMNgMBgMLYH84jOdBCJ6FMC97e5Hi1gIYKbV5LJrnhmwa54e2IuZF5Vp2JHE\nMR1BRD+badV/7ZpnBuyaOw9mqjIYDAZDSzDiMBgMBkNLMOKYOlAr/3Yw7JpnBuyaOwzm4zAYDAZD\nSzCNw2AwGAwtwYjDYDAYDC3BiKPNIKIPEdGviOhWIrqSiOYF+y4koruI6E4ielY7+zmeIKIXENHt\nRDRGRJvEvk695lPcNd1FRBe0uz8TBSK6gogeIaIdgWw+EV1PRL9x//doZx/HE0S0koi+S0S/dM/0\nm528Y68ZMOKYCrgewIHMvBHArwFcCABEdACAFwHYAOAUAB8nomrbejm+2AHgTIhFuTr1mt01fAzA\nqQAOAHCOu9ZOxKdQ/HYhLgDwbWZeB+Db7nOnYATA25j5AADPBPC37rft5Gs24mg3mPlbzDziPv4Y\nwAq3fTqALzHzEDP/FsBdKFZAnPZg5juY+c7Mrk695s0A7mLme5h5J4AvobjWjoNb2vmPQnw6gE+7\n7U8DeN6kdmoCwcwPMfMv3PYTAO4AsBwdfM2AEcdUw6sAfMNtLwdwX7DvfifrZHTqNXfqdZXFEmZ+\nyG0/jGKRto4DEa0GcCiAn6DDr7ktCznNNBDRDQCWZnZdzMxXuTYXo1B7Pz+ZfZsolLlmw8wDMzMR\ndVwOABHNAvAVAG9h5j8TUW1fJ16zEcckgJlPbLSfiM4F8BwAJ3A9seYBACuDZiucbFqg2TUrmNbX\n3ACdel1l8Xsi2pOZHyKiPQE80u4OjSeIqBsFaXyemf/TiTv6ms1U1WYQ0SkA/h7Ac5n5L8GuqwG8\niIh6iWhvAOtQrL3eyejUa74JwDoi2puIelAEAFzd5j5NJq4G8Aq3/QoAHaNxUqFafBLAHcx8abCr\nY68ZsMzxtoOI7gLQC+AxJ/oxM7/e7bsYhd9jBIUK/I38UaYXiOgMAB8BsAjA4wBuZuZnuX2des3b\nAXwYQBXAFcz8T23u0oSAiL4IYBuKsuK/B/AuAF8F8GUAq1Asd3A2M0sH+rQEER0F4L8B3AZgzIkv\nQuHn6MhrBow4DAaDwdAizFRlMBgMhpZgxGEwGAyGlmDEYTAYDIaWYMRhMBgMhpZgxGEwGAyGlmDE\nYZjyIKIFRHSz+3uYiB4IPv9wAs63jYi+Pt7HVc5FRPQdIpozGedrhmbXTkSLiOibk9knw9SDZY4b\npjyY+TEAhwAAEV0C4Elm/ue2dmr8sB3ALcz853Z3pAyY+VEieoiIjmTmG9vdH0N7YBqHYVqDiJ50\n/7cR0feI6CoiuoeI3k9ELyGinxLRbUS0xrVbRERfIaKb3N+RLZzrne47O4joMpc1DCI6wq2ncrNb\nX2WHk29w57/Z7V+XOexL4LKKiWiQiK4holvcOV7o5Ie7a/s5EV3nSliAiNYS0Q2u/S+IaI3TYD7k\nvn9bcIxtRPRfRPQfVKz/8vmg/6c42S9QlLv313tsoNn9DxHNdru+6vptmKlgZvuzv2nzB+ASAG8P\nPj/p/m9DkYW+J4pM/AcAvNvtezOAD7vtLwA4ym2vQlEqQp5jG4CvZ+Tzg+3PAjjNbe8AsMVtvx/A\nDrf9EQAvcds9APozx7wXwGy3/XwAlwf75gLoBvBDAIuc7IUoMs+BIjv5DLfdB2DAHeN6FBnqSwD8\nzt2TbQD+hKJOVgXAjwAc5b53H4ryLoQi2/nr7phfA3Ck254FoMttLwdwW7ufBftr359pHIZOwk1c\nrI8wBOBuAN9y8tsArHbbJwL4KBHdjKKe0BxX2bQMjiOinxDRbQCOB7CBihUbZzPzj1ybLwTtfwTg\nIiJ6B4C9mPmvmWPO52IdB9/Pk4joA0R0NDP/CcB+AA4EcL3r8z8AWOFm/8uZ+UoAYOanuah1dhSA\nLzLzKDP/HsD3ABzhjv9TZr6fmccA3OzuyXoAv2Xm3zAzA/hc0LcbAVxKROcDmMf1dWMeAbCs5D0z\ndCCMOAydhKFgeyz4PIa6P68C4JnMfIj7W87MTzY7MBH1Afg4gLOY+SAAl6OYratg5i8AeC6AvwK4\nloiOzzQbIaKKa/9rAIehIJD3EtE7UWgBtwf9PYiZT27WXwXh/RlFEx8nM78fwGsA9AO4kYjWu119\n7poMMxRGHIaZhm8BeJP/QESHlPyeJ4k/OA3lLABg5scBPEFEz3D7XxQcex8A9zDzv6DwY2zMHPdO\nAPu49ssA/IWZPwfgQyhI5E4Ai4hoi2vTTUQbnJZyPxE9z8l7iWgARcG9FxJRlYgWATgGjSsM/wrA\nau8DAnBO0P81zHwbM38ARYVfTxz7ojDPGWYojDgMMw3nA9jknNW/BPB6pd0JRHS//wOwPwotYweA\n61AMpB6vBnC5MyUNovAlAMDZAHY4+YEAPpM5zzUo/A8AcBCAn7r27wLwXi6Wmj0LwAeI6BYUJqat\nrv3LAJxPRLei8IMsBXAlgFsB3ALgOwD+npkf1m4GMz8N4DwA1zjneLhuxFuck/1WAMOor055nOu3\nYYbCquMaDLsJIprlzV1EdAGAPZn5zSW/uyeAzzDzSRPZx/EEEX0fwOnM/H/t7ouhPbA8DoNh9/Fs\nIroQxft0L4Bzy36RixXiLieiOTwNcjmc+etSI42ZDdM4DAaDwdASzMdhMBgMhpZgxGEwGAyGlmDE\nYTAYDIaWYMRhMBgMhpZgxGEwGAyGlvD/O0gluv+Hnr4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2495504991004161" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_shift` is very close to 0.25 sec, in this case." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has also separate class for AutoCorrelation. AutoCorrealtion is similar to crosscorrelation but involves only One Lightcurve.i.e. Correlation of Lightcurve with itself." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "AutoCorrelation is part of `stingray.crosscorrelation` module. Following line imports AutoCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.crosscorrelation import AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create `AutoCorrelation` object, simply pass lightcurve into AutoCorrelation Constructor.
Using same Lighrcurve created above to demonstrate `AutoCorrelation`." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = lc1" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac = AutoCorrelation(lc)\n", + "ac.n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.12500000e+10, 1.12499978e+10, 1.12499911e+10,\n", + " 1.12499800e+10, 1.12499645e+10, 1.12499445e+10,\n", + " 1.12499201e+10, 1.12498912e+10, 1.12498579e+10,\n", + " 1.12498201e+10])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-25. , -24.9999, -24.9998, ..., 24.9998, 24.9999, 25. ])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_Shift` for `AutoCorrelation` is always zero. Since signals are maximally correlated at zero lag." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "5.0000099997734535e-05" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuwbdlVHjbmXHuf++jW02oLLJRq5ACOwstVMjaYJA7B\nWDYVk2DjCk4RSKAUDHaCDamYGGIcUiXjYBdxCQwKCAISQgEjYWGBQEi8hITUrQfqltRS69Xdklrq\nVqvVj3vvOXuvufJjrTHnGN8YY+911Oee7nPvmlW37jnzrL32es1vfvMb3xgrDcNAS1va0pa2tGun\n5cf7AJa2tKUtbWkn2xZgX9rSlra0a6wtwL60pS1taddYW4B9aUtb2tKusbYA+9KWtrSlXWNtAfal\nLW1pS7vG2uMG7Cmll6SUPplSum3Gtv9pSultKaVtSulvw9++NaX0/unft169I17a0pa2tLPRHk/G\n/nNE9PyZ295FRN9GRL8oO1NKTyeif0pEf5GIvoKI/mlK6Wknd4hLW9rSlnb22uMG7MMw/D4RPSD7\nUkp/NqX0mymlW1NKf5BS+nPTth8ehuFPiKjAbv4aEf32MAwPDMPwaSL6bZo/WSxtaUtb2jXZVo/3\nAUB7MRF95zAM708p/UUi+gki+pod2z+LiO4Wv98z9S1taUtb2nXbnjDAnlK6kYi+ioh+OaXE3ece\nvyNa2tKWtrSz2Z4wwE6jLPTgMAxffozPfJSI/or4/fOI6HdP8JiWtrSlLe3MtSeM3XEYhoeI6EMp\npW8iIkpj+7I9H3stEX1dSulpU9D066a+pS1taUu7btvjaXd8ORG9iYi+KKV0T0rp24novyWib08p\nvZOIbieib5i2/QsppXuI6JuI6KdSSrcTEQ3D8AAR/TARvXX6939MfUtb2tKWdt22tJTtXdrSlra0\na6s9YaSYpS1taUtb2sm0xyV4+oxnPGO4+eabH4+vXtrSlra0M9tuvfXW+4dhuGnfdo8LsN988810\nyy23PB5fvbSlLW1pZ7allD4yZ7tFilna0pa2tGusLcC+tKUtbWnXWFuAfWlLW9rSrrG2APvSlra0\npV1jbQH2pS1taUu7xtoC7Etb2tKWdo21BdiXtrSlLe0aawuwL21pU3vw0hH9yq330FJmY2lnvS3A\nvrSlTe2Fr3kvfd8vv5Pe8/GHH+9DWdrSHlNbgH1p11372IOX6VVv/6jpf8+9DxER0Wcub1T/paMt\nvfTNH6FNj29mXNrSnphtAfalXXfte17xDvqeV7yDPv3okernN3dd2fSq/2ff+GH6gVfdRr/97k+c\n2jEubWmPpS3AvrRrtt35yUfoNe/6uOl/590PEhHRfY8cqn5+IeOlIw3sH7r/USIieviKZvJH20I/\n98YP0WXYfmlLe7zbAuxLu2bb3/1/3kzf9bK3UV90MLTLI4RHgHwZGPu0OaES8+t/8jH6oVe/m37+\nTR8+icNd2tJOrC3AvrQz3/7kngfpdY5M8smHR0aOmjm3CMBt//gH1Nh5v/d8+rLqL2Wgn3vjh+jB\nS1rqWdrSTqstwL60M9/+5oveSN/x83EZ6EtHW/U7Sy7I2JnXHwKws/aOEk2qf9ff97a7Pk0/9Op3\n04/85h17j31pS7sabQH2pZ2Z9kd33k9/8P77wr9H/nMEcAZqZOYs2Wx63M8w7UdPENtpe8D1ut8P\nfPIRc3y/8KYP00cfvExLW9rVbI8Z2FNKz04pvSGl9O6U0u0ppf/5JA5saUvD9nd/+o/pW37mLeHf\nr2x8OyICeJkmAHS/bCdA34Lkcjjt9wgAnyeMBJS9TiSA+Pc+dIV+8Ndup//1V/4kPIelLe0k2kkw\n9i0Rfe8wDM8lor9ERN+dUnruCex3addpe+3t99ItH37g2J9DAK/9wNiZaW8BqCtjh2DrlW0/ba8B\n/9L0fdsC/dP3ZQD2hy6PjP+d9zxojvHlb7mL7rh3SYxa2sm0xwzswzB8fBiGt00/P0xE7yGiZz3W\n/S7t+m3/4y/cSn/7J9907M+hls7tylYDbwNw6B9YitH9vBLA/kuH4/ddPtL9j07HkYHJP3K4cfuP\ntoW+/1ffRd/9i29zj39pSztuO1GNPaV0MxH9eSL6Y+dvL0gp3ZJSuuW++2KddGnXT/uVW++h2z76\nmWN/bq6Wzg2ZNn8eGXspvhTDkg0y+cNtBPjM2BHYx/4OqPxDkz/+TtDkiYj+3Ts/Rrd+5NOmf2lL\n29VODNhTSjcS0b8lou8ZhuEh/PswDC8ehuF5wzA876ab9r5ke2nXeNv2hb7vl99J3/gTf6T6o7R9\n6UWXWroE+aPgs7jPyL7YGLsGcJ4ANgHzj6QYdMs8csVn8g8FdsxhGOh/evnb6W/9mz9y/760pUXt\nRIA9pbSmEdRfNgzDr57EPpd27bSffeOHDBt9dAI/BGO0FHKT+rmUXA4F2Fo3i9+fc3L7myvGB/wt\nMPZwIpiAHlcELNF0MOoeuuJLSNH5EI1xiN9737LyXZrfTsIVk4joZ4joPcMw/KvHfkhLu5ba/Y8c\n0j979bvp7730VtUfZn3O6JeAJ50tUkIpAoSRUbMSgpJL2RNUxUmoRBNBwOR5O8yEfSQA9igYTDTG\nIb71JbFDaGnXdzsJxv6XiehbiOhrUkrvmP79jRPY79LOUCtloBe9/v3Go83Zme83jN0HM8nGpcwi\nAVwC6ZFg7BJ4e/HZzVYDaaI9UgwAchl87Z3x30wEAZPniQCBHScAbmjHnNPecMcn6dXv/NixP7e0\na6utHusOhmH4Q7I5Gku7ztp7732YfvS33kdvu+tBesm3/YXaz4FEbHPqtGzLQOvOJhNtIgAXQCrB\nM3S/oLRS7H7kvmy/Hzzdx+Thaw3Qc/tsiov99z/7ViIi+i+/7M8c+7NLu3baknm6tGO1w21PP/ra\nO+h+qIzIzPyjUDclZuZzJJcGjJIVhwAu2HsZ/H6i2P0SMvM9QI39kU9+W4HdnziwRVLM4fb4gP/W\nDz9AL3/LXcf+3NLOZluAfWnHam947330ojfcST/+hjtV/+XNCOADaZCKWGcE+FJOkRKKAmqlpbfP\nSkmjVxr7PKkkYuYl8Lfzr7j/ytgDSQfdmscFdqnJR5/FyembfvJN9P2/+q7ltX/XSVuAfWlue+jK\nhl74G+8xNcgZwO9/RFcu5CQdxI0IwK8EgC+xUGnmAsAiLV2m/Ef7GYahHuNxJRTje48miD0TAYJx\nH4CtvEbyM48KeSsC/0tB/8OH+n7c9tHP0E/93gfcbZd2dtsC7Etz28v/+C76qd/7oHmFHAYiuXHQ\nE//KGjtr5dyQ5bZ+aV8UUoxk4DOkGLmfcPsgeIpSSQkmgj6QdCqTDyaCuVLMpUCWkhNV5AqKVkoY\n8/jOl95KL/yN99YkqaVdG20B9uu83fuZK/TC17zHODA+fWkc6OixrgAO4MTMEeujsB6MhbIkmMmf\nJehJYIykGC25+Ex+GzD8yNYY9SOzjiSaEkg6vF+E8ehaKFlKyk/BOWwVq9/vOiJqteTvf1jHTO78\n5CP0f732veGks7QndluA/Tpv//fvvI9+6vc/SG+FolsM0AjgvMRH9YDZZZf1I8Vgg/uJmHN/XClG\n9UdSjN9vtPHBB/B9gG8TlAIphvdv3Dj7Jy35HTqQHASMg+SmKGiN/f/s1bfTj7/hA/ThTz3qbr+0\nJ3ZbgP06aXd+8mH6F7/5XpW4Q0T0iYdGpoYMj7dC8AuX+BXYdX9luzt0ZQ1mAUs9pvtlDmOPAByv\n0T4JBX3okbtG+tjlRBcBu/y+o+icA7kqKs0wF9g5HwGZ/EcfvEz/4jff+1l57Jd2em0B9uuk/eCr\nbqef+N0P0IeAgUUvcOaBi4DPgTvMwmTgiVjtLu+21sDbNpFffRtIF9FEEG0vtxmGoR6jcdFUAJ8Z\nPA3K/4ae+zle/BlMvhc/Y8DY249sGOTm78Ag7E//wQfpJ373A/RHH7jf3c/SnhhtAfZrrL3trk/T\nj73ufab/IxOgf/pR/z2cCODMzA/BA85a+pEpiMUvo/DlB2whaB2TjUYMPNTwA8CXGGyDpz6Tb371\neeV/50xC0TkfHfNa6FVNOwa8b9wwqMqTLfZ//MErRKSdOUREn7m0of/9125b3vP6BGkLsF9j7btf\n9jb6sde9nz5zSbscOHj5CAA4xzQfgYFai3QBEDCQRFY+0y9YZCQ/HIVSjA/ISpYIQDsE/CHYPvhZ\n/h751XE1wv3DEO83CnpG5xZKNHM0eXFN51bA5H0hk+d9oRTzy7feTT//po/Qr9x6j7v/pZ1uW4D9\njLY/eP999DN/+CHT//HPjIzqAWBODcD1QGUAwGzGy0H1RQabkLFj/ywJZYYUEzlnIgY+42cF8sGk\nI39Hxh4FQ/UxBcAb9M+pd6OCp9sZTH6G9o73bb2aXuB9iMA+7gufo09PzxvGYC4dbemfvPJd9LHl\nPa+n2hZgP6Ptv3vJW+iHf/3dBmy4YcVABnZcWu+VVqB/n+Mj0pvxM3Em6f7t5wB4OKHMkGsQqGPt\nPdheHZPcfv+5RauIo753t4+uRczkA2CH/tXkbsL7uZ6i4xiT4RrzKL39wfvvp5f98V30k0sS1Km2\nBdif4O2Vb7+HfuFNHzb9PH4eCTI7kVFtA2bOA/24AI4vdq6lbYOXURAB6wzkhygRKQKwOSuCOZLL\nLLcMau/scsHt1THt99BHqw59rORuE2nv8ppG90A2vM9MBBDwOdh+CFIMfwfGZHi/904rSXl8P/Cq\nd9H7PrG85/VqtAXYn+DtH77infSDv3Z7+PeoljcGQ5vk4gNvpLEaoO653x/Yu4Knc1jkHHkkBr/P\nfvsI/OUxRTVndtkXJWNXTP6YWr+cICLrZ3RNo4lAtugtU3j/+bgPgxekoBTDz+cKMo8/eP8j9NI3\n30UvfM173ONZ2mNrC7A/QdrPvfFD9G93BJ6i4k3IzLnZAewDLzNHA8gBUDcm7+vKR9uiQS5Ipok0\n89i1EgDnHGnlmPJLJK3slFzEn0rE2INzeywT1Rx7ZCRvyTa38Jm8z7JxRisSBy5VgJnHD07B/Q/e\nr+23wzDQj772Drr1IzphbmnHawuwP0HaD7363fS9v/zO8O84YLg9HDB2lFwiBhYtoSuT3/oDfpfk\nEmnaYSmAAJwiKWKORBFNFiWQXCK3jPzbriSr404qUWwgunZzvPva/RJNBP5zFN3/6D5bYPdjNQ9d\nnp5P4CVsi1xDRtunHj2iF73hTnrBz+s3bi3teG0B9lNuP/a699Fv3nbvrG2lPzqq/RH5ku0S2u/f\n1pdF+Awcl9yh9n5M1hkC7BypZBZ7t8eM/VGQU24vq0HuKgUQH7fY/pgBXXXOweR3pJh5+65QYw8s\npIaZ9/59riu8ANiRUPDv2M+MfQXFhdgn/ykn3+Jf/dYd9Pr3fsL0L822x/wGpaXNb8Mw0I+97v1E\nRPThf/71tT9Kz5aD8NHDnv7UjXabSDOdbUesDEwfQ12KH3M/c38O5YcZVsYI5I4bPPUY/iqnWfKO\n2W8YD/ABds5xh+AfSld+PoDcp2TmUUKT/EwYJIfnbl8QHlcE/MxjQHrXy0X+9evHdwDIsbM0vy2M\n/Sq0YRjo//z1d9ObP/gp1R/V6eC3DxEBixKDM3rg5UCS2jYOpG0wIPtAWtmnvUfOEfld2B8D0vFY\negR4keTiAXhKPtCuu+wec5eTOef4PNs2kd1xTvA0Dqr6gdE5Gv5cf3u0MtvumdjnSjpRrCZ6ziPJ\nkYjoJ3/vAzvjU9djW4D9KrSHD7f003/4Ifr7v/h21f/gZb/mtXQSyEw/VfsjyEiUS9yImcm/RS6X\nyH8evSYuqqey6+dZ9sWIUc8AxXCCcNj0QZf1fgYG9uRKKQddpmHYodeHmvnxgqehPTKSk+Zo+DPc\nRZaZ71vhzQuqbgKCEL0mMCoytwvY//lvvHdnfOp6bAuwP4a26Qv9b698F9320c+o/k9NbxfC94JG\ndTTkALuyiWxqvd8feMDnDry4v5h9EgnGjv0znCCPxY54bMlFSCseAz9YZXc/B6vO3Z5fFIKSC5s9\n5sQSwoDujJVGH8gsUeA5zAeIiobNzGOIpJXG2NEGu3uCwOeI39CFLbL14udle+mbP+JmZ18PbQH2\nx9DueuAS/eIf30X/5FW3qf4HHj10t8fCSdyiWh6y/zAIhkVBskhCwWBodb+Y0rN2n/L3Xd7tOZr5\nY7EvegC+7pLL8BHAa3+XXUA96JKrlx+ssntM7OqIj5vc/tD9EgQ3owqYx7d1+iuCHu9/AOx7GftM\neyTvFx1I/IpFbPiKRm6R3ZeI6AdedRv98K+/O/z7tdwWYJ/RHr6yoe962a30fsiSe2CK3N8FpXCr\nxQvaNtA3twFzivo34UTgbz8MQwPkwP2CAB4x9jnsOpRcZgRG9+nzOfkSzbrL7iSyBgDvg+35Mq5X\n2U0qOugssJeB6NzUj0DNbo9toIfPyoYNLZ775Zo5tsno2OTvUawGa9DzMR1ugokgJBTI2Oe9q5Wb\nBPa5L+p+1ds/Sj/62jtmbXtW2wLsM9o77/4MveZd99aoPDeWXNCLGyaBzJBQ5FI2TBEPAH8Okzcv\nheCBihpr7wP+HJ041JsDNjrL0y2Ys3cMB6usrkvE2KUU47lrDrrs6tzrlQPgZaj9eA4HtZ9a/wxf\neiS/zJKrwnyA40lj8veo30wEwfNyXAkwcohFJgEp0UQ16FEe+p5XvINe9IY7Z08EZ7EtwC7aJx++\nQt/x/95C93z6kurnZSC+Teahy74XFx96bnKAaeCd0R8w80M1QUQ/+8Ahf0fAP65fPQLk47o2Rnlj\nvJ6eJn0ArpUmoWTXEmiCpMzMQXJpwdNMZWjAgIwdZaCDgLEf1IlAg2pl/oHnfo6/P9LPI0kn8vRH\nK6thGMRzgc9LMZ+Vx4eSXitBga4rX3uXwdMoCC2feSnRyPiU3iYouwGB2te/9xP0gyCrntW2ALto\nr739E/S693yCXvHWu1U/v9gZ612wXh15erFJ54lkEZtIipnBwCPtfU42p/wdB3B9/+dJMnaod9JN\nEyIy0wqWDvDEQc/snqfpFwDu2h2ZaQ92e/k7nwOXt52jvZdCgskHzBwA2ZeA9oN/H0zyc+IZ8pab\n+9/7RCCW+nwAjzR5ydg3wXWRz7z+uX1Wgnm0CsCXznznL7yNfuHNH6llEM5yuy6B/YP3PUJ/76W3\nVo2cG1eswxmea013wMz76aE0y8/gRcJzAHmWxh68mCJiYFFa/7hdcA4B4M/J+oxWCwiwDbTa/svQ\n5A15bmUYHSir7GvmO5m8M9GcCwC/aeb6urjB0yEOnvqTUxFMXu4nCs4WOuf0z5Jr5rD98Of92nvU\nj5p5lMEspR55fPL53ATPcyRXSn1fau9XQPfnhnklPMmwxMrtLR96gP7hK95hrL9P5HZdAvsvvfVu\n+o3b7qXfeY9OT+YbnaFgEc/4CNj7Ao/jZ3xAPgr6DyPGfsw6K3MyNUsR7/mcqbEjUMl+z/pXhCyB\nx3fgAHhfBupSGm2KAE5dStRlcL9IzVwB3vj/egV2R2bmAeAzA+dDkj52+flSxlIDHoD38twUu262\nSWTs5wKJxpsI+LNRIFkep/050tv398u/hSu/KEhqVrU+mKtkqigOtfHHlxw7l458xi6POwrUPgT5\nJv/yt+6gV779o/SRBy652z8R2zUN7O+4+0H6rpfdqm4yUfOX4zKwvgVmM+8tQ9wPz3gIyGo5ufEH\nkgJ2ORFENcuPyeSilyibgSqkGBlk2mVTPOeA0LYfXNYpA4zI6rucKAOA98NAOSdadQlAaPx/DUFP\n5ZZxmGwk3aDkIreX21WGv3IkF7EaQYdNdM4ugA/+5CdlqTC2EU34M/qj/ci/2f7ARTVth8ld8nwO\ng1WqAvwAwCN5M5JuHg0AXzZcsb/j7geJiMwK/133fIa+62W3hnWcHs92TQP7i17/fnrNu+6l2z/2\nkOrnhwFvIL9dCJdo/FAZ6xd7cTHVfAaAHwVLzmMHSWe883KOEyIKntrtYg3c04P7APD7aPsJ2Fc5\nGafJKifqUtIp+wJ4vYJbGFSN7JFyeyK7YqkJSgX7/XPwgqfbEkk3YuKA+xkx9pR4MrPn1kFSFm8T\nlVHAn3fWpq9SjM/Mo6AqnkMUP4qsvJr8+AxcJ/eJiUAAuAThiLE/cuhr7Pge4X/ze3fSa951L71z\nAv4nUrsmgP2P7ryfvvsX32aWgfX9nzDTslSOSy5mCDiTV50QtLpNfcj1wxxJK5vgYVMPbdAfsauN\nGiyBXKNeEB1tYwdkV73YPmjh8Z1bd+b4dgG4x+T7YaDsSC5bIcV4cQVjUxSsNgqeajY9/r8GCaUA\nY+djivr5uyNnjy/dBNr7NJnlZO9Vuxb2Hh4EgH8OAs/H/Xn83XfFzJIl52TMhnGl/SQnYuxXRL/c\nJ74Fyts/UZvsPwN48YmHxpU/lgr5yKcepW/72bfQfQ/7iYqn0c4csHuOkx957R307//k43T3py+7\n2yKA801HZs4gicGWCvhbn8njyyXCQM+MhzMKJIVByBkvWohZur8fTmhygbccn4FHgccQzDoLWqWM\nUgz2S5+5y+QD98sIcsXsB88BmTm6hVz3yyAAH6Svc4H2fhAEYbtsJ7l+aKsaTw8Pvf7mWozb2/34\npED+zRABrjm0Y+UXrwL9sbDp7bESwUoxWB3L75LjWe5TMnZVfwmDrfy+YJgIeJJAwP//brmbfveO\n++g17/o4YTutAOyZAvZ//Tvvp29+8ZtNPy+FPgW1Wc6tRgaJF35TpZVIcsF+n7HHWvr+YGjEXjbR\nwx+UGtiU/eC/L7kFmRz/eM4Dp12M3ZEfRu29c7eP9lODpw6YuYCfGJzsNTVBUlGCoAyxXx2BHYG6\n+eF994tvdxxCu+O5te+H73K2k1nvX4tw0uL+dQf9JLbfP+HLv1lmPv4+DDu0+x2Bd25zgqrRWIgM\nCXIFLrePfO9I4PglIcjw+V4ivnxyYvKYAHX/I4f0n//L36U77r3673k9U8De5US3fOTT5kKyGwP7\neTlsmHmVXPxIvekvPuDPcrMEwdBN8JD3wTZzAmD7tjm3yjARRAyvTNt35vi2woJnkm8890u/I2AY\neLRdZl5Gt9JuwCe1H+/cegBk/lNl4Ctd7KsAk6+MfVfwtJBY7bRjkk6g8FrAfevyaPF0zzlZuaqd\nM6n98LEWdTzTfV53alLkY/AkHT7NXYlrcyTBOFjrA3VEfjbRxDHjZwn40mCBBI4/gRJNhC8sYWIM\n760feoDufuAy3fnJR+hqtzMF7M966gUissycB+mDENzg+x9p5tjfmDwGSYed/URowZrDOoIHOwDq\nOSDfWGpyB9G5II3+3KpTgI8sVTNkchn4NpBoImeHlBlwclo5oNWXMurNaHcskyaf0C0jQM7LYIXJ\nCROR8D2nCMhRUJX3FWWeRolLXgIUr168a9TlRF2X3EDn6NH3r4Ubh+iQsTPg+5IOBmHrOQerF/w+\nuS/cZo7dMay5FOwnMiTIsSllGbNiL0Hsra7kfYkGE53unjLa/5MvfAZd7XYiwJ5SeklK6ZMppaua\nj/uUC2sissycXecY5W43RAMyX3hb4GjqD/YTbU8Ey8Aonf+YS9HojTjRoJBA7U0Q59edK/WcX+ta\n4xIgvO9j0FKvWQskl9AtU3zW2TNQG9CiQFduIBcFSaN+IulX9wG8wPY99B+n6mPZAX7rLpsgaRFa\nOt7nVU60yn4dHHP/Rb8HrgjgkUSH/Sw11JiMJyfNWGlGjFqzcX8lGyc0+SvlaD9XFLALKbEMFT8i\nIoj9bKnEypMPXd5STkRPOnf1X1x3Uoz954jo+Se0r7A9+cJ4QRDYeeyYCz+9iNkEPUPGvru/L0P8\nIEXLxkAPDLNEZ2jv8X7G/vPr7PbvGsDyOHox4OXvwzAmNLnZkH0JGH4w4IWE4gUMEbRGicZa+aQs\ngd/L5+adMyYQxcHT8XP7gqcV8IveD97ntSPd9ANV+QmJQLSqycm6ZaqEsqNQWuiWcZ5HOxHw86Un\ncEkoxuPWJMRzV4Ur2VLo4kG3dxt5LWp/OAajn30pNfp5rnTL0ozXf/FgRQkSIK9GOxFgH4bh94no\ngZPY165247mRsWNd84EiQD7eTMsPxpXArz7+vJ9FhNuH4LxfV+8dVrNCt4Ri7DqAWfudwYJMe4vg\nFAC+/o4A8Pcw9lVO4BwZwduA1h5Zwl6L8X98I1IP52b96j6AHwQ+dpwg+Bg8AC9laBmmMJmveJKD\nSYvjCsh2G2Mvans+Jh0AnSb2zgd8BPC9QVggAvz/+YCxtyC8D8iSzGz6gS5ME0f0boJoTG2ccxv7\n/f1sgnEqcUGqACGOAHFswK77L2+2dGGatK52OzWNPaX0gpTSLSmlW+67777Pah/84FwBm9LeoOfM\nmZYfBnyxb5RAFLLoYwJ4qKtzcLPzl8TnweUgl9aeBHR+HSytAaiRgfHAiyYC/uxxsioZqHNGbbxU\nxu4HSbGOetuP+walqNgXaNr7JBfsj+IQGGzFVYp/LTgwbBn1qhtlJiNXOQHjvoyJS8bWOP2Iz4XW\n3v3+aCKQv++S7jb9UBk+xpL4GqGEgisC/FmvmsXPgVFhltSj3DI+sEe16Y0UM0kw2D8y9msM2Idh\nePEwDM8bhuF5N91002e1D77hcoZUP0dSzMyZlrV39OJGqc3Hf3h2s/pVTm4QE5kTTyjn19ll+CMz\nj5i8PU60NUrtXZ5DY/5eNqRk7PocfIuf8GIHQI22u1FysTp0rhmpGhSrDdIpiYBVGSXD1/0+gO/z\nvZ8Lztm7FjWrNiezomqBYT1BrLKTrDXtx1w7QRB8oM5mP0Rsj/QIhV7tNMZupRhZyAyfyUooYOx4\nzH/TDzWxcI4fXjtn/IkgKrin5JqtD/jy88eRYng1crXbmXLF8IMjazZLqxEGT/clFkXZc/hi5zAr\nLwri7EimaG/WcQYeuFYq8JoBNi2to2BYyLSyGnRSopHbWcauB3BLf5/B2HeUFPB96TJIqmWGMSPV\nMvDG/EltP0o6iYaheYpRiuFrgMFTtDUahg/MP9wejnXtMPnttErpnEnI698Kxo4M3yvHoFdyOjBI\ntDtIKoOhT3BBAAAgAElEQVTqyNg3sMKLmHnr1wDr2Wk3vWTsmiB4E0ekn8+RN0M3TpQzYgqZ+ZJu\nBXbAncvXImM/icYzuVwSSZA37pc9fnXMAuPf+zLAm3+Cpd8MwEcPuPfwb8qYgo46sQ6G2skC+3ux\nvZd5en7dUXEHqgYhBPAK+Mjwp/4WVPWX0G4AkIt6gX4sQc4DrS7j/ttEEGVtymOKgDfqb1UfwQaJ\nJQV6vf2+EgGYqZqnSQillcrMe30tVs45b0tQAVMAsp6MRb/z3Jmgunju5DUy2yMzD5xD5x3GrjV5\nDbY8djAjNfpe+dn6s+zfBmA+I/A6nvf4O8bkojyZR4+2dPHg6jtiiE7O7vhyInoTEX1RSumelNK3\nn8R+sR10mVKKrUmWmfsAzhf+CG6UuolBanOU5oyzvOuK6H3WwSC07jJ5ToDza5+Zn19H0krM5OXv\nlfkDo+phoPLvPTD8SK5AhrTK2bU1smyAejCzUXyhhMvwhVvGXNMkgD1g2ngOofsFJwjcDwZPA7uj\nx7RbMNT60usqBRk7A7hJaLKrHRkMj1aKURBe/o6JaxtBhIhIAK/+7nMuIPvau9TkcSK44DL/Ud5K\nyfaPx4qkaH/wNNTwEUdYug2AHW3Tl4/6Uwuensj0MQzDN5/Efva1lBJdWHdhirANkkYAXtT/2E80\n3mi2m+4KgK67RJt+oI0B8ExHfTHLPdSt+XvXTuq4ZOaeVn9+3al3PkoN1JdugGkBA0e9GTVQBHBM\n7ol0ZQYhw6iTXaWUMlCXyOrKpUkrCHKrnCmnZN78kz3GDlp6lWJEqQG5HQZPm3Qz/v0A6qvvYuxV\nA08RgFvA91YpNaiak3mz1qrLLmNPydamnyPdjb8XIurU8yWvafQc8c/nnf5NKfSUyeU2a1XbN00e\ng57rLtM6wxiZbuCFg06Nf3msnutmzM6OGLuvCMyVaC5vFikmbOfXnS7qs9U3mVsp7b2NUZF/I8U4\noMo/uxF8sTzEoNeFA8tSNv3I5F3LXseM3Q4w43LohUTjBb322Bqt+0WfGzKzKDAYAz6C0xQY7vX9\n4brrCNRcH0XGsOVEgCCXE1nwE/52dQ77XC6Rjx1KBETaewuqasAfhjEd3y2LMF2jnNHfzpOT4xBK\ngfbu7J8nFM91Q9TyG2ocIgDqfa4Y1NJb4pLW5Pk7znvuKhk8BZmxMnZnlTISLGe1C2OBj+HCQefm\npFw46Fx3zcFKj035HfKaDoNw6QGTP9w02ehqt7MH7KusgqRR4Z9NIJPI3/FGMfCa/ZZSgRqB9IKz\nzNz08iG0kksH7pdNP7JO+xKJ0d+8CiSaOMN0j62x9wdqKK0E/Sg/YOCxnXM2dsRt8QN9ZQK5kXXq\na5c96aZe09gGOe637T8nav1BwhEGQ6uPPdo+ukY8EUz93ktEeDIzmaSFyyv4cQtvkltN1wLBj1cE\nPjP3g+SYWBZN7Ohj32C/G2z3GbjU0o09MpBc1tMYweJgXU5GZuJjvrj2nWMXAgvxDTARlNJe6ReV\nF/Zwh5+Xq93OHLCPM2cgjWztDcSfiaREA+V2ldVKyzIXHP1w0w8+4Afe3U0/LpXXRhttCSobeAhX\nXTJJNnIgRRmD3sN8HphTlVBCH7sGLQPg0++7si1Hbdy3HXLAEF00jcmT2r6brH9eEo/H2PMEivJc\ne8Pk2/ZE7YXlGDzFejfRKoUfg1X2mbyXbVuma5STYwlNjqdfEAS8/36AuWn4Uc16dQ5BLEXaIIms\nxs7b4yQXumUgT6L2Oxo7O8rGlR9ci2mMmLGTxzduebVizh90Lim8sO7cvJWLB6tZxHGnJr8Ae9ww\nwMg34YbgRhHZN7GUwS/eNKYzj8K6jpgPIs1ZPjz+8lDqhBhsXXnsggE8I+uYAo85+zVeVliGtUk0\namltgHrafo+PfZ8NEpeiTd7QS3Fm7J48YLItK3u1/atuejUe+NW9kgImeCqAOov+NpmNnztAacWc\nG6l+9Lfz/jo4N8nYPSlmNTF2IzPlRDnjcxqVGiju6mVb2monqvqpzwGei3oOOlZTBn3OuMLztfrp\nmAKXy1ZINHb1Mq1qYJyvnf5tGar27gVPLwIDl3ErL6iKq+CwvDCvCA70BMGfYdy52u1MAvuRY1O6\nADMqgzlquxsxA4+/j/tibaxq41FABxjSBaeuhUyLNkA9sQsvqGaDp2UEM3Q5SH97wNiJrK6MA8xs\nH0grEUtFVluPtQYkx+Ny66sXoQcbCYUsky9cH8WvFdMkFwYh0v0CqPlaj9uT+ntka0TJJSrny/9z\n0hROip13DnxujkTD2rg7meG1G2g6t5ixI+ATeRM4BNtrTIqfu90STX1eYKWIx4S1iMZ9Frd/U0qd\n2A3gcz+Qri4nWq80w+fPXlyv3GDrxYPO7GfsXyntnX/uYAUhGX5ftG16Yew72hqkGL6QN5zzZ1oT\nDOEbe6DrUXC/J7lsA8BXWjo8bFVvxBs7BQaR4a+6XB028ljrEhq2H1PH9aQV+cz3aenWFaMBvO1n\nGvCdz/AwY5S3X3VWcmE92NPM8wROKLlEBbGYBfN2RMIG6QRPef9qe8PMg/69TH78fzUxbXTR+LXm\nOa7g2yMjTb7LGVY1ZcoN8MoxjM+dTDiymvk0FgRxGL/Pl1zw/iP5QX+7thO3aqD8DJeii8x58QZv\nxd7lPPYXvf8xNwS3n1a1u4KnxeILumt4m4tr3E/DI7ndMAx1FXEa7cwBO4JZW/roGXgjZmAvRRiZ\ntlxCyd95mwr4kIbsMfNNPwL1CMg2eLrK2WSnskTjglbA8FddVhY/y7SnATwdAzItXEJbKQZBjtR+\ncCLAYGgFszSeQxQ8RW3cY6l9IZ+xFx0klcfk9Vc3TuiWAYYflQ6Itp/+jqUAau2abC2bLD9FWbUm\nwDywJRR0677ZKdV++mniSHryqxIaVroM7r+RVvY8Lwj4NpNUb89jYj2NHSwOxhKdLXk8aezgZlnl\nTAdoPOjH4Pm5FTrQWMb0CeLFAy178mcvnvOBHRUB/n+RYoJmZ+xphjzoIDrN/SvalBYkrTMtALi0\nQcnPE2nJRQNsofOe9s5sAQB5I4KhKKGwLxlZhKe9Nr3RBsO6CfDlueGAjJj5PiZfJ4Kg6iPWV5dg\nhglKUfCUAR+ZPLtlXElHBUMFsEsmL45Jau9YUgBT/lvmabB9UAQMz4GvXc52kuMAM7pf6rXAa9T7\nE0Gt3w4vWhlry2TqnMCwd42QIGz2ALhh/sFEIGXPEdghVtOL58UxGKzZEuw989laf+u1AKbdVsd2\nJX/ByJuCIDo2yBsOVlQGMTn1Gl/4M1sxaZ1GO5PALpdEcqmkC/y0GXVQF37qX/OMOn6mMnkI6LCt\nKXTFONlwzBZwGdhPSzFk5ry0tiVmm8aOLMLV5GGg4hJ6LzMf/AGJbomongq+8IKlIS+TNAqetjci\nWe11xUlc6ChxMkx5wNt+8ieCIWDyAPimP0erF1LnzI8HO3v4msoAsxc8dS2hPBHsCKqaHIAAwN2y\nC3D/Cz4XMyWaSGOXHnMiQUAY2LtRWrGT2RQ8V2RplDeNjNkzuYIx2IsVIeyfyLpiqkSz9hUBJIIV\nd6CfzRirBdj9tu6yDmJIZg4+ViIJ4Pzw6BtiNPYDLa1UJu8FT6VEAw/DKngIeYChZXM9uRlQJ/T2\nsy2Fugr40v1S6vbj7wjUu1+QsC9IKksWyN9RivHkB8nAZLKODQA2L7Zmo1T1Zg+0GJBl0JOlG9k/\nZrYGwVaHyfNtRSlGMvOULPhFUsyYiCQAf9r/eEwaqGVcAdkou6WspMMTh2WvfC1kkJSlHnlus4Oq\nuH31pWuWeh7666S4SsqX3qQYn7SsOyvFtOApMvZSrcVR3MqzTZ9b+4rAxUl757GGAI5ZqDewFDOd\nA//9YJFi/HawCjT2czjT+gCOwY0qxcASqgK+CKrI7YjGm3bB0eTrw4ZpzsWXaHjgrVGT74Xd0Tyc\nuc7+vCvL2H0GZlwxQemAaCJoE4ceqKjvSvlBsle5vQkk9i24afVm64fvhyZvyH1L58i4nWbmpoaM\nCbaO++eBbOWq8e9otZSAL8+N2Ws31c2JGL52v0jfO4n+XdeobT8M+lrwcyHzEqRDCOUndLnI+ity\ne1ltVF8j/Rzh5LfOkx0RiIMnM1aXixs8tf526WPHCo3jqhlI1zQ2144VmWjEBbnybxLNSm1XceTc\nIsUcq0Ua+0XwsfOM2gBcP5wXQIrZQj8uD5srRjN2LkzmsoXOC55aiWYrHjYv4QRfTs3LSevFbmyX\nf+f98LWT/fu0dKOlCgYuAVYGDCVjb8k6ug5KZbUAivwdXro8a+k8cSjQmuyReKyetDKCorN9ZfJU\nt5N/j0oHoO1QxRuc1Qszdr79bSKwmvl2YtQ+Y3fkhEBaqftx4gddJ62f+v7E0h1IK4EN0hCHun1R\n16i6cdhFFciMPpOfasWYzFPJ5AHwuyk7F8byynXXoOTiE0GZ9EgkGPsixcxrWE9FXshNL4KkzNjX\nGJ0OmHm9gXrZaKWY8Xe2ZnFiEUox62yZ+WaSXDB4KgNA2mdc3Id5U4piYFozzQ5j1xJNFNxChm/t\njgKQBVBLJi819pqsA+nsEaut16JztPdBT2Z6lZJdjV0mItWkrCB4WoOwDsMnEu4XYKn1HERMhs9Z\nul9w8kP2isFTLoVcVzsgP3kOIVkcDK8FryzksUhZQh6LYeBGY9/nYw/6IZiPvvSmsXsW32YMwAxT\n7znaMFBnJ3iarWNNGhtc2zRkbTcpZjX9rokj4gv/v7higjYGT50LHyyVqp+09y88fx5v1AYeNtTY\nlTULmPm2Z33PWq1WHlD3jY349kgnU7GTjH0aSMDk5SvteOLgz8u/H3S7a8VgwgnWCEdduTHC8XgZ\nVBDMXCmG5YTALYNstNaWQWZeJZdpvwjgTkkBD/ysv53U/3ysYekAmMxWUxYugiK+RIRPvTmK9HPh\nJSJtYTKT95PB0lyLZFc1oW3WrORA0gNNnp/9qOYQAyx+LwfhXUadbUniancEssTBU5RWfDm01FWQ\nNluMOSPn1760YoOkWqLBwnoHC2P327mVlWKyvPAA1JHGfhGWSvgG9i1sfx72I3ViLD27qctAz7XC\nEX8HwM3D3DR2Y4+UjF0ArKexy1evyX6+jJEvvS25p+MM5AcJWrJfptfLdHYGuyh4ytu7bhkELdDM\nKzOfJggjxQxacrFSDDL5cbvoDUqZg6HBqoZvG587M3OUehCoVWmCzr4dqlZ9BIeQei7EMalrJ54X\nbyU3An5jl3aF5wfPMdFJAngnAJnHVC1Y5kx+WBBNxgO8ev/G7tiLqo9IHLJdEYyTX662VkkE19OY\n5d/l37HUiI3hLVLMrIaJCEfMjqEqo4lOg5Zuo9m6vwH+1I+MHaxZaGvkh9bWjtYyBlHz1tpyq83u\n6NkpWTNtrygrmskHgN+L7Yn2v0EJg6S4iuDv4RdeVFli0Nub4CmsXkoZ3TJ1/w7gY5JNVPullPF4\neJVSUJYAAJfvTpXHyN+Tky7SFU5yfI1SUtvXUgMgSxlNHuyRzV0zg7H3IEuJ7/ZiMk1jt/efwZKo\nTQRxTGb83/jSpeTirFIawOqx2Z4vzcy5tLWVXBzZc9Le3doynY1nsHzK9tWGF6VKNLK/4YXGlyMg\njhVfhOPnNNoZBHbQs7djrfQDuPC4VMKo9Xno3wYzsLRBySAp96+BmbMveVV96Rj05IcNWYc3ETQm\nXwbN8thFw7/j9rKf2YgH+ETOK/C4P0hEwmCoZmbZDOwu2D60BDp1U/icTYbpoPult36UPUidc1+a\nzo3nFmWq5jS+5EWyyApOVesm3Z91cFP2S+0dg6c4cYRyFTP2oou9sbtGnpvUoeV3NgC3z8u4EiGz\nHyIifNl0RBCM5LJHYzfPF1iLWzkOK28aTV66YnC121lDAsundfUijnXdScaOK39f6m0S8IQ72ybd\nnkY7k8Auy+22lGK48KCZ8yv06oxqJBdgHdDfLFgWtKStUaYO+8zceRFC708Eox4oBt4gHzbLzOUE\nwdeGt+e0ft6O/0/JVmWUwJ6SHajMCiuTE44Pj5mj3mzYLgL+xJz9ErYYxGya/Pg7tXMWDLwdU6ng\nqvdDLvjxxDEeV1DsK1tmXuUn73npPF1ZlwjA5C4X2Ou5UT3WlWDsSASsFDfVpq/+9sacJWPH+7nv\nJef7Jna0NRr5CcgSGxWqtGLIT3bqscsaMpqx8zWSZInlU8SRo17jC8YPLiKAV9OG1uQbLizA7jZM\nc+a6LFWKQQCHhKNQikH3CzxsXFAItfd1zsor2wpfBcHTSTPF6pHIgvkYmJkRgR7sMHPjiukbSHju\nh9gVMQ1IWELXgZq0g6c5RPzAIAZD5ZLbc8ugnVKec4ZjlS+5lt9ZX7FnGD5p94v4bs/HzlIPn4eZ\n5DB4KgPGzkRQGbs4TiKq1R3t6sXx7u9YmcnJbCv25QWeOZuX98OPZBn8iWCfi6reN5D6sA4SljZ2\nnxe5OhLOJJzkVK0YRZYKrQMm7wE1rwiq5CL65TUK3S9bjQs3nAO74yLF7G6odR1NUszaAXwiMjVe\nTH/kV3e09JVgC5E1qzF8K9EwkK49xu48hNWmCAOssQ47wFbuAPYnCPl6OtyeqNkU8YUaXaezJBnM\n+Fi9GuQegLdkGsvwctaVCFEDl5/ZNfnVc4t871LGkD520OSJSAOvWF3o4Ol4MYzMhNcUHUKwkmuT\nq61lX8/NuFmKe/9lwFD3EwB4UfuJYzI6U1kycCmhbGACRwBHsmQnCCQCebI7+vKmBvxhGrPjBCFX\n+HJVI7+DkwrH34vqx0CysVNXGyRINLz9IsXsbrhUqjN2Bo09DJIiM9eaOfrVq5aek3KzSGYuI/Ko\nE2IBpVW3w+WCNWR61Mbbdyj7GgA4PoSy5ozsjzRWHfR0NHOjN2sww2sRSS4cPJXsW+6HyAKvYeZD\ny8KU25dhUPuJZAlVgkBMHErDZ8aek8vAPYdQdfZgUDX7gI8OoV5daz+JCyW6AkCtQMtZ7dRgu5es\nJQF/ZkwmZ1I1XuR9lkweJRovDjGOHT3WeJyroKcwDGBJkXVuuKCeeTEWNuKYpEOouuv6MQkRAX8D\nAI6TWWXsixQzr6HkwlFuTxsjii88+kx5+/b6OIexO2ykJiJBsJXlIWTBOwM3OcgwdGxnkoG1GhzM\n2KxrQQ/4Brzukhv96gDgRjNnxt7tHqhesk72WG1OqhIhJ+uEzNyxNeK5SaBW1j/F5H2fPAOiBOR6\nP801orqtt30sP2V9TWWmamolAlrRMLEaEV5pryBarfoIk5mxQcJE4DH/LGyQJhhabY1+vyn2NUkf\nnotGFsTT0h2Qop7rtFvJpctOpVOQJeW1k5KuijcI6QZrS6HUuy8BcpFigoYa2NGW/aeBFFNLBOgL\nHNVjb7qc1sb45lophpeHgzqudYesQwOBx9gxoLPtW9IEkR14qLHKuhnyO1misYzd339fxqSMlmHq\nrEaSjStwgDYEdgNaO6QbAdR6PwTH6js+mIHXIKkE8OwFT8f+lHRRLx08tQwcJRctV9lzxmCo9rfb\n1UsHKyomq+M1IrXvvpAqERBN7NI37j1HfRlqfEXun1d4NgjbJvyVel6Exp6Teu6IdhEB311Vy3RM\nn5fyJhYBq+8XrnjRgHfVWavwBgB/KwFfaO9bIIJenkxO0uuvJZqFsQetzqjiQh44UgxXUuRl4xFc\nYGTySlrpbKAPg6QK8OUysyZfABtR/U7yRSSVBP388Mt+lmiQmbft/WDb1K33L+QH6TQhsuAkg56K\ngQfuFwyeYpBMMe1hUP2ojZeBXNZpGTjVz3lMnqUbIgySNj1erth0kNS3bEoJRfnbs5VuOHiKiU5c\nW4b7dOKSZpcmJtOLa5GzLSkQEAEEcJxEk/HiU70+0X2WMqPW0jOh1IPXDmvIYGJUW+3KMdWCp/JY\n2FFmZMxg5c9Z4SuHyRPZImBH034OOk00+dgWYA+ar7E3xi6XXBwtV/3TBcbaD9KmKN0sTVrRD5UE\nfKmlN+mm+Yzl9yJLUfW4nSJdCoTqA138h5P3EzJ2f1ma6kCaAEKwVNmvXCvBUlk6OJT8kOxEgIFE\nDDASTVa3CTgy9LdrZEsKIIDLpByt4ZO61kSkgXfaP38/lg7IiaUSfc41Wcuzfia7SsH3xUq5qkoo\nQ7sWclVTxMTLpQnkdUZJTz5f/NpC7M+JwueFv18ydl7h6clPnxuCYpvY/ZiMJw3KZEAdeNalAHoj\nxbTxLONKEhfYVy/33aRerb03Zm5t1lxmRPULHDmNdgaBnW1H0wXeaq+39p86MzC8Gg+1cWbmzaak\nAR+DrSzR2Ap1XAvaOgdW2Uo0a8WcxLJRWK3kwPBAq2nsgd6MAxtkBumh9gZw5EvGQCKWDugiicYE\nT0nth78Tq0rKY+FJ0TJ2mAhAWqnul3otSGnpUutWwVPBwHMiw16xCFjoEMKJAJKy8JrytpK92uBp\ny0jFayQBXxKBnBypb5IfspG9Sn2GMBjKxyKrKW7wnOE5WsPqeF+wFUmRlDcNkBYA5ArUEYBr774c\nt7G/XeCLvHaOnXKRYvY07wJ7F37D0Wy8sdP/51Zj8g1mjNVSnxgMZSmm1/vBgkLKBtk5y8luN8jJ\nffRFB7H0UtlZZtaldXb3EzH58fx0ZmAFObnklkxrRmBQgplktZKZ5zTaGke9tKjtiUawksk6fnne\nBsqyTg3HAsbtqf4fB0+pfr/UutW1YIY/IMPn/fsAbmQpnvxE8FTGGzCAzddfrl5s8DS2fsprgRq7\nmfAL6ecInjs+Lj25Ov1y7ADD52vhSS5IEPqix6D0mHO/qWvT4yq1rQp0XEmTIlzht9IEdqypiUO4\nX+TxHG315HRaRcBWp/ItJ9hM1LqMAI6JSzzTHsBSbDMlLqSky+3Kao0HbpA0qSCpAnxHJ1xPUozZ\nT27JF8MwQKITZLcVHcRSQN350o03ULelQFKO1N4laFnAj/Rjl6UimIl+BALZz30ym1OyUZmsYxh4\niTJS2WNOqp+llchFw8elGDsDeCJg7Mzwg8xTp9RADbYO+rng5Chk7DgJ1YnACW7WlZnxt0NJYgF+\nUns3NkjvWgtmLvfPQNnNYNobHAso3Uz3H2XSVR7HrCdvDtTq2uigqpZQ2P1i4gqVyTuumOwTR197\nb/giV+YM/IsUE7Rmd5wekj1SzKrDpVWp+5DldiXwekHSdce1nR2GnxMZiSbrCL7OSG0DLAI5/n8t\nlod6qRzJEtajGzE2Tu7g89Ys2OkvQ9NSO4exY1BNBlW9CSJrb7UMwtX+Hl0xbftWYdG+9q29FxTA\nD7R3fJUefw/652t/MBF4qxRZakCClvuiDcHAS/HPuS9tklOMXcRGfCnOf2VijU+Y1Q4EVaUOLQDc\nY+xucDPrICkGPfE5Gt1VWVXqlNein0gR2iaJxmde7h+JIBf7wtUxMnOppWtJt01OnvbOWj2R9vTL\nipan0c4gsNughC/FDFNiAd6ooW4rL/y2HwNAlV06TFv51QXgK4lGBU9t4aO1YNTbMpjaMnwO0q/c\ntvc1dtQ6DTMrzfeck2VyREQqhVtp7Np2xv05OQy8wyV0A17/dXA6MIhZm9yv67II8IMVBPfzd+ga\nMpppG1miSGaugTfLfjlBJL+f+3TZBQB86EcGjoFn3hZZ7dhPtTKmx8z5OUJHUS0pwNuDXJFzmmoF\nFbUf/n7lAa9MPpbo8JWMvLpkAlLgWshYExEpIFXxhk7Lj1vnmkppVQO+YOyCmW8B2DHOVQE/O0w+\nN+JY823KMNVeWoDdbZ7GfuDNqFsIYqgbxTNqEm84GdlxSjry3qLZuqCQHGBqgpDBU7G9dALwjd/K\ngSoe2r60hzNyvyjdTw3g9rChxs7HhUyOzwO12vF4NSjKge1p5l4/D2Cf1UoGTrV/5VwLrZkPeuIA\n1snauFf1sROg5fnVkWnzd646HTzlCVdJN+I+y1WKlpms9U8z8MENnuI5y+JdWA1SXgtcyTWXk101\n8f/1WqTkTuxdTmostGvX5Mp2/9FCHGnslpnL/cj4wbYfDOkiGsdrI1GOO6XAS2oEEVw5AM4MvAG4\nxpGa6wESMNGop9eJYMKj02pnVmNHLX1tbgjXXR5ZqtbGWGYQbpa+XXj1EE7/M/s3maedLiWKbKHp\nikVtTzSCwEY85J0D+NLxgUtfy8yneu+osfdNWtFSCYkBqfVdOVB9f7vjP67MzC6to7opKkgKfnje\nFgtljcc+GD1b7ru+As/T0h2/uin2JZJ+cgBySqLBIGkaE4hkQFKe267Vi5LowKPPhE8CeCnkPi+R\nRLMFpu1JgAeTHVjLUkUzdmC7RKRzOup9IxfAmWlb6UYHW+UqWEoubT+ZiNokoycOZOZlkjdxMuPS\nJA6+ZPsCDg6e8rWQ9utOMHauMstk7LTamQP2A/OGE+1jb9UdteQimbMCcKUfNlbr+9i1dMP9srKc\nSmjKo7+dZRWiibE7eqBKpihFaXLocqkvF4CHEJlZ5H5RQTIB7K59LWvLXsTkeVvJXnFp7QZVOwlm\nkxQDrDMCP2V3c8BJylgKwKdtpV/dZJiqSY5av0gs8pxDSvdXrFPITOLayUlRxgmiVc30I9znIvbT\ndNwtPBcmGNr773mVEp1ayfWgpctrLVYvSvbInNAUA7jP2P3tJSmS1k8WH8axI8aUYOyy/K8xHrCj\nrLpiGlB77hp+wQ8RKbMFJzSN359Jx/wWxh429JlarWu6wNtSHTHrLteZ80gw9gPhctn0pTprZN0J\nFZEXwdaNejhFpF4Avnx4MHGJ+5vFS1uqpPbaiQHMn9OgGGnsgkXwwOs001IMbOymfnLRjMelE0hW\nYrUTJSIZ33vS1Rojpl2zOYGlesFWZPK4etn1RqQ6mSVd72Zv8BSYttuP+3cmMy/zFAO6ejJrCUfT\n5upalMFf4WEFTMtS/bopOOErglB97BlesddY6uEm0ORh9coTr2eD9I0HbUxtSlFSDEPmRgK+kGhR\n3odqjxgAACAASURBVJTxLN6fSiySqxG5UhDkil/uI/NeJIlS+LItp8rYz57GDple/HCuvZlWSSt+\ncKO+nFY5RHQVR2YdMvkC36DkJTRJptWYuXbwyKBqpCtL7b1auTyNPbSvIWOXQO0w9l5vr4KtjkNk\nTMenysxQV1ZMGwODATOXgIyVEXnfCJbyO2vwFNioklayCJKWxswxS1YxfDERdEG/mwMwtH27madw\njXRtGar3BUsW8Hc26YbUcydfN2jeDgUOIRlIrIAMtkYp6fmuGC3dMZh1nX7u5Dm3fqr98tqpzFNn\nxSbdb1J7V5OZAXwrV7Kdcvy94ct6Cnpq91sjObLq60YweYUv5XSlmBP5ppTS81NKd6SU7kwp/eOT\n2GfUjL2o16Vt29IHpBiZWLBqrEPfEDkDN8Ze7UvZySQF7T1KmtgINqIAXDyE8s1Hcv9qoE4AEblf\nVp3vfpFL6Aioa8bo4C+5ObOx9Rez/6jUgAQVV2YIbI1yAEugliCnmTnVapCqCJgEs+pmgaJh3J+T\nmSD4+7UUQ6a/L6XtP+t+Iqp5CW6lS2c1shLPRRn08yKDp+3tQzoL18vaVc/LRFrkteDEJT4ulyB0\nUrorLhGIGDtq7HKlwOcmJcNGcvTrHTEI265FI1fSbKH9821MKbLUtf2P/xf1bMtqsFJyOVJaeuvn\n+3LUn27w9DEDe0qpI6IfJ6K/TkTPJaJvTik997HuN2oHnWbsm9ISAqKljwTkoylNn2h6MXb1saIN\n0mf40vdKxBH5rECOSC+he8Ei1llOQsA6HHah9lN0sNXLMG0DKbuALINVcgCjTU0CuCxM1al+qvvv\nBBDsZOwFAoOSgdftG+uUzFzZHQfhokk+89eTH5lrZFYd3A+Si8vAJeAHTF7HM9qxSlkqWqWowLMo\nEaCuaceTVivHMMs5JFZ42Xle1ESt7n9R185j7BhI9CQdVV7DMSrwG5T4GkkpRtoU1QQhbZCQLY79\n/JJrPha5asbyvOyiGf+uY28qH0bksTRZKtORIw2fRjuJb/oKIrpzGIYPDsNwRES/RETfcAL7dZtM\nOOqnZaYCalWnvS0nZSLSgQPgHOghImDgMtgqt9fLQ3xotV5XQD8Uup/DOiSTR3Yhg61ehunKAaGQ\nsUu3DDCz7IJTAdASjD21fk97jwKDcvUiS9VKZoZFw8btyZ0I+r5oTX4iScoG6WjpRZwDJhBp90vb\nn5RoeCXFshSRP8lxhinvw61oWUB+EhN7715TwdgxPuFMcp59MYuArmTmRmMPGLi3YosYewsk28ky\np5YARwQJR/Ic+qInCBF701Zh268nAr069gLPkvzI2Jsigk7w9OCMSzHPIqK7xe/3TH1XpUkpBium\nrTpd+a1d+KSCpEpy2fo3SrEOxfy15MIDbxh0MBSTJrxEJLlslA/bRrER+bBJ94PQ6ouO+BNp5oQD\nzBuoOMDc/oEEEOzOwkQnEH9uV/BUBVsl+AVgpiaCun1jrzkJmaGeg67W6JUOwAQifW6lnkeTaAAU\nWVfOnpae98pSKKFEtenrNR2g6mO219QLMOsM46zIjLTsRSUoIo29BUl1opvMzpRp966kJ45VvlBe\njX/F5KVE054L1S8mCFd7z3ps8jPciKPOb6nEMSf1Qg25vSf1nkY7tSkkpfSClNItKaVb7rvvvs96\nPzLTq3nDm6bVXsBRNFCLDDDPBqkZvvbQcsBGMv+NfDiFpaq9WUkGNzHN2T6E8h2mfcRS1DJTuxkk\nEBCB+0U8nJrJy2p9GCTzBnAJmLzenvuU5ML9M4KnObfJWnu0MVO1MXZZE0Yy+XrOAqh9m6JwxSQ9\nmanMU0fSwXIJ3opAero9mSm+Fj4Dx/iEJhR2P9KyF03gcjKTzh6fsUsn2I7iYAL8ogmiDFye2T5H\n4wpPW47rtXBWtX3RgC9ruUiJRk1+wrFWJV0gY+P/0tYo3HUrrQhIonnkbH8a7SS+6aNE9Gzx++dN\nfaoNw/DiYRieNwzD82666abP+sv4Qd+IpZhi5kKKYc+7qtmw1UEPlazReexF9uvsOSkBEWlpRS33\n5OpCLK23huHb7VG6aROEL9HIGi8R8CrbpKsTy4kgK9bpM3ntluA+DULtHLBoGJ+zx+TlpKjZqA48\nVtCSoCjOzQ+egq3R86sXWfUR68A38JPecL0ioLqfnKiyVHPfAgllTn+Bc3ZXBF1uspRYUemJWgBv\nZ+8zJrpt1f13ti+Djk+piaCRK95W2SYFacEXxBNxgpI0KgjJRZCr9gIebTmW39smAhlLK3ZMKXcd\nJigN9bianVrXljpNH/tJAPtbiegLUkqfn1I6IKL/hoj+3QnsN2wc9MQbgkV3pLcWX8xBpOUKuWyU\npQZk8ASZvPT0Eunl3qgfB4GeCmbai6uTdTzpRi8nZS1w2c/HNKeWh9IPxcDey8wlqxVghiDEYMZ/\nR8lFBk/lOSjQGixoGUlH7F9OHPw9XmBQSSVDcG6wvZfQpHRlpcmTu73KtpWTViC5qMnS0eS3Ra/Y\nJEGQE4F8XqbuQForOyZ8y8C1XCElQD9TlatHynvE51yvtRg7arWrckDaGFFBUuVAa/ZFWd9JyaF1\nItDPfCsAaImgLk0ig6p+ouNpM/bHnKA0DMM2pfT3iei1RNQR0UuGYbj9MR/ZjsYXEm+IBGSZ8rtW\nF1j7T2WUm19zpas+ClfMtPzk2uEyKk6kkyZ0LRehpQuJRgOy1Mz9xKVenDMyJ1mjRPbz90gNVLpl\nPKaFtkZXouk0Y0OmxWAjv5ePRckMTvBUvjWoF44PCX6G7UpQHPS1YNAapgQf9ao7cc7S7livhbRB\ngv9c9strJwur8fd6MkNf9teE0f2FigBcFZ/orXQjJ0UMhkrw479791kTgeJnmAbPkc5U1S/gkBME\n7xttk9yvy24wA5djIVEabL8BfGV4sL53xAUp9fD/RwGOXDra2v6VzkjlMXIa7UQyT4dheA0RveYk\n9jWnHQCwqxtSSwqU6ldfr1o2XKSlG/+p44qRgRucmXnbbdFVImu/1MZVkNQGW3tgEZ3DRpA5yf3w\n/1GJAMXYeaBGrDaBdCP2o0AOGLvVTKluK1+xF7HUBlqF+qFNYnN0aDlB8OdQz+bPuUXAgnOWjB29\n/h4zb6sR7RyS9W7ceANMTnKSy8nrj90vZsJP+lp47hc9sYuqn7DCUwxcjAW1fWefu763kxyvLnLQ\nz/uQsqesvyRXFbpENks0entJKJCZs/ul5p4o94uQeoUE3MaOYPI5KcbO0vBptNObQk6wsZvFXSox\nKwCm7ZXVlAB+tC16gmAtrYg0ehGIURqbsE6NwVbs1wEaCeDugOw1CHmarBwwm96CFg/UlnkobI2O\n710vucVSHO1rIsDIyR1ak5eTkC4aJvt52wjMtJZuGZuSYiaZISX0w7dj9Zi88at78sMOf3vnMHZ9\nTamdW9Hy1ngOOk4gJy0pJ8lJ7njXzmfmKBniOSuNPZHuh9UIETJzUTqg2OJz7SUYzgqvaDm0nUN7\n5sMx4hoSdO0Xb0zp0gQCLzyJptMxNmmnxqJh4zloReDMMfbTbijFoJbOGuK+zFOpB0rGrn3sRWlv\nRDQBaVHgyvtWVSJFerKUXOTDKa1cciLYOA+zq6VPbMVq7MkMCiI7gOW18wZ2tERv2ZAMilT3T9T0\nY8te/eCpDbbKfqr7kFJMBSd538Qkisxc2iC5X5cUEP2D6HcAvxRSqxQ3OJvFOTtMfhtM7BiHaLEX\nzdiV5CKvnVgFlcFei15ZRS1j11p6s+yhxh4x87a9lVbGSU5ajrVmjs+XllB0kFSOkYGlGLQQVwDX\nwVMZnMXJj2tFSW1/7M+tvrqQXA463wa5Xvm+99NoZ5Kxc4Yp+tgZ8OuSSwC4Su11mDxmjDEb1VJM\nA2qlE0pLVdFyxdiv3TIyIi+tXLLEqHzPo6cHGo29YH+Gfsk62kDNglFHGrtaoovlKu9DendRA0f2\nqtjiLCdIA7+cG4iz1CO/kzVwyeT5f81qqf7vSTEqMBg4Pkw/2xp7C+AMWjJQOZ4DhYAsZSadiBRI\nLgGTR2a+mo7VIwJFMGr5fPGEiP16lSIdJZK9tpUf72NTHClmus/eRCDlTfW88DiHuFVzoIkaL0Hw\ndCMmDpXQWHSFVf4744IsJqhicmqSy0KTP93qjmcS2FlLl1FxIhL+01J/J7JLJa7iGGaSZfkQthuo\nZIa+uNvroKp1y+CAVFauyiKaH77L+k02RkvPrLH7jL1HkFMMvADTsswcGbuUK4gYhMgMVP5uOdEQ\nacZutPHBAzkSmrxMRPLlJ9TqW7+WPfiaKAaupBWy/Vl7vXVQler5mWs0nXPrp9Y/SOeQmLQcl4t6\nmxRs35h/rklZMqgaXyNNBKZupaXHjN3GcOT7fJHJ87a9lCthEsLniDNGUaKRSXydIEVSlsRYmqoG\nWR1Cckxp+yKudvn9Dbz/A9Evy3PzsYz+9jZ2Fsa+p7HkIhMOZL8ESyItuXAtcyJm/l5QtQGytCmp\n13JBIgJvr4KqQnvnOhvjG5qm/l4nLklW0x5O7UuPgl49LCdrPwxs7QTxNValH8vtB524wuembG3S\nsqlskNTOzdkPgpBk5o11krI1Shsk70u+gKOl/FsJiP+uGXs7Vu1Xp7Z/cS3kagTfViSPC2UpzLa1\n7NWPQ5iENk+Wmo51VYHaPi+9s32XfU1eEYFe2xS9uEKbhDTDV3WTXAAfVFAVA8Mr3E+BZEAxpnAy\nY1ecDJ7yd0hy1dx12ViRuf9I+eEZwDXuSEm34s7yBqX9bbzApS5ztBQjiv1wffXpxvIyUy+hhN6M\n7pcpgGLdLyzFaNbBN1c+OOP2GvA1Yxee22Bg8/+9eAg78bBFGrtcfvoaO9THkcxMPJy1CFRvE5FK\nIfUmJlUTZpBBVa2lovtBMnZZrZEDwLxvXc6X9DXq0gSiU39q942PR20fBEOltBIm3/R6cmoSjZa9\n5LXo4Dnqi2by6u1Q8pwFY58ItZKl+iInLSGhCMlF19f3ts/+aifMPNVOEPtsg7QCJAfjULjCkzkg\nkoypiUBMQsxQeZVNRGacWwaeXLtjZfhFE0d+H4PZ/4QvyPzZzDEMeuV/Gu1MAvvB5GbhG8KSCwcx\njmBm5iCGnVHFhVfaewNk9So9ZXfUtkkioTdj8LTo5aS0R8plo3zIpT2SPyOXmdKForV3ZPLI2HMd\n2EUCcsDAcGldGWEnB3AxoMUBvRpgTBqEOpAr0IJXmXkUVFVA3b5Dn/PYn5PW5NGvLqUh/rt8C5SS\nXCZkVf52KaHMYOyYrGV05V5MTllLd9OPWpaSREBc122vy//y/7OC7d5kVrS01srt+kzbY+aNgVvA\njzR2STRkFrYcz2XwVjX8HdnEJ7i/LzLRERk+TAQTULOlGu3RqBQc1HdHDGcy8/TU23pa+hhtjGdU\nB8C9pRj60q0UU4DJC6Du7fLQ+NuVdKML8BNZ+5pk/r6bxdfYdS2a3Uy+aqyDP7D5eHGSKwMpBq7f\nfBT7ktEGiWDmyQ+yRICs/aKKeg2WdVb3C0o0cM6SjSp75F7G3nR6dc5C999C1ib3K3lLOIR6sXrR\nhc/K1CdXR7qejt6/lVB0PR09mcnXEPI56MJq7RmW56y1d/m8wNjhZx6AusqYMzV2thDjSpFlTJY3\nx/8xwAyaOUq3PHbMRACuGGbsGSWXhiNHQhrGFftRX9RYOI12JoF9hTOqkCUwEWH8P1XQ1f2SUVst\nfRM8hJy8gA6Rlj3nSDFF2ynH7cUx5SyCpM5D5QSAiDzNdLdbBicCXKITWU83n5sEoTogAbSQmTHD\nlMxcZ2dqJs99nhQjJzklV6H7BcFs0t573D7r7cN67I5zSPnblSRC/ipliOUnJAI8mVXQAqfReP31\n+z+Z4etrVMw572LmpZDTL7OtA4dQP6jni6hN7HLlx+eMdd3bucX2yMaOGxnbiP0QMdPWDjT+X2nm\n8hoJu6N0xW2K3Y9x3YHkgmSM/375qCeixuBPo51JYOcghlsELLzwUqLR7GKzHZQvVWnpva4JQdTS\nlkMt3TD8QdngtFtmtHLxoF9P0gc+VBbAJWO3QdXILdPlVANYdnvBzDo98MZB72ipvV4qI+B7iUtR\n8FQyZwZHFTyVmaTAXts1aoFMCaSlCB+7ZK+DfiEI90spxguS6rK9+hzkfuq1c2IsPYKlAnBxvjIg\nLa4FrhSIcJXSVhjtfu62wSIR6BJOKPK5sxY/SQRUPAtWZm6dpd7PPMUEKL4W275VXq3n4Kx213my\nRxcfkE0Vx6z3YzJSDY6MY4c97uusCSKXG1iJY73a7UwC+8HKDwy2GVVr76sdTJ6I6Mp2nFFlhhlR\ne8ORZeY6oKMrxel63EQcbHWY/PSQr8USDQFcauyeW6Zt77hiertE5yW0GcBZp4KjZjou08kdYJLV\ntsqCxQ2SMiB77LUvQ53kZLVGdLkwo0ZAZrkK/e0srVhNHgpxgbuGv98Ntg4O2NQ4RFbf02yN/irF\naPWTtGKkHnmsXbPBoj2yHatYmQmrpbZHilWNy+S1pCdrxZTBxg9QG7cSndbSo2ArVn3EVTa/gEMy\n9rqSE6tgIoexqzESSbpyTLXv9qWY8f8rm75+XvZfOurV/k+jncngqbnA6sLbxCX2m7YLr5n5Zbjw\nUqKRQVXFIopTUmDS2cwEMT3kRoqZtpcPJ1ukIv+xSRGfAjeGUXW7g2E+w28uB09aCfXjwQa9tj3I\nDGrJHQdPm82S6vci8Oa8Q1oZrJzAoGVBjgPJVPdb9x/42Me+wfjea/8gy/wKx4fDzE0gUa2CnElU\nuGKwtIP/vMhroSdwdMvUlZ9jj42eFz4m77lgYPTuv9TMZekAd7IUVmH1vWBsGPfFQVK9Cl5ljDdJ\nWdIGPVeTDdq3TccEkQG8q9trYGccOo12JoGdHSKelub6VeECo16H/TWIudVBVR08tSUFqiaPVq4J\nqD1dUa4I+BzkQ4glhk3En/sLDuxcl6tE+iGXVi4MqqFbRmugpF7MQdSWxIaBD9rWOMe77RXQQpbK\nn5GMvX0HuF/Ed8igqpRW1Is5KiBjRirpYwKHEMoD7jkM+loT2dWLDJ7KV+xJLX2A76yrEXP/NWPf\nB9RIHKq00kE8A+yr4wRuwSxi7KiZ6+fLJwKejMVkSY2d3NxvchXcYmwWL+QYkQmH2rHWcERlpMJY\nuLzpYXufUJ5GO7NSzFGva0UQNbsjLpX4ocALX4Mbm63bz8X8V7Affni8pAkVPAXphvfLUfzmrmkP\nZ9NA/USRpplCkLT32UiUoBIxsJobEAzI1k/1WqjEJbG9eok2eK5lYJNoArlAS40CgGEw1JFoVNEo\nlGgQFAN/u3qBhaOlW8mF1LVzpZsoeFqEpAcTCp6b9wYtjL3guXkau9sPE4R5Xrb+88Julkhaaftn\n8sOTYuCimq4Nlwjo6/41Y8c6TuO5gd1RxBs2vZ3M+E1pMseEiF0xjeHX6o4rWPnnpP7eiOMC7Dtb\nywzTwYpVzlSGNkPWUgMr/wLzjbx8ZGdyIhKzv3442WqJAxI1+VrjBdjLeKyNCcmZfGQddhnIHtp9\n/mMr3XjB1mKYPP+dgb2D1QjvS8oYqt8BZLlEV1a+wQJEZeypDeCc0K/e9uVZ+TAwKDNS1VuG5H48\n5p9TyPyJhLMHgqelBJmngXNoi9cOMkmlBMRuqWYJpXafnXPjVYo3yemJPddjVc+LuG/eCo//P5zi\nU/i8tGcegbq4DJw19ponIS3ERQO4jB9JAOdVyqa3Y01JKEIGwgxW7tfmDD3+mSDWSSsgjk0p2Kr9\nnEY7k8DOUowpArZioIYLXLX0rdreLKGEVk/UHlr0n9floRPZlyxCB08tgPe99vryd8iJIBmbGg4w\n0NjFAONKl/IYUcZAgOW69Vhu1zBwyVJFP2aG5jpQ28CW706VLFjaIOuxQhYm98vkGyWtuJILBFsj\nxg7BU/S3G2cHrF74M76V09oga0KTEzwtAuT4u+VqJyV9bn5gsK381IpNTYpi/86KINTYOwb2gLFP\nTNjGlfRqRI0psdptTqBixkiNpSFZ6lJ9x4HR3icZMyc9+bkSTc7gEGrkikjgy0rjhQ2ejv/X4Oni\nY9/d1izFgOQSLX1WcIFrpipPBMENaUFVDeCs43v12FVGam5Mvi8FrFmNXaJO2Bfr0cWIv2XsvnSD\nQTW5UsDtiQRjdxi1XEKj+8VnozbwzBY8BEtm4Cs4Z1UiAMAprLsOJQXY1rhPlsCXXHsMn6gBctS/\nwmtUJRcrM4SOkkGzVMmo1XOxwyFUhjgj2Ssp4BEErsfv7YdIMHaQH3dp7F5QdTwHLXsQ2eeu3R82\nKggAzw3APbK0EbIqUTNhoERTbY3GHsl4MRLEgwBf8H2uGMM7jXYmgR3foIRaOi99DgDwcQllmTww\nfMPkgXXUh7AxdimtjCVXW/qzlWJ0zRkiwbTQo5tB65TWrEADVf5joSsOA7XVDlgwD+EaSQD3QAgT\nUXSSjZUxcD9yIpBJPEQkSgS0LEz+TFQiQEsuvB/aLbkAM8cMVlf3H+xkVoHXSDR+ILlKNM7qZQyq\n1kvRGLv4Xv7uSIqTMRbUzK1bCkoTiOeid54j/tyVDTJ2raUjwzc5HWrs2DyJcVJBBp784Gm1KQKw\nTyv8HgCfk/6sRIPve9DnfAkI3wEwdpRurmwWjX1WW3cjOB1u+1qnmagtjfDCr4CBr1f+THsQbO8l\nX+g3KwnGXlBa4bex6IezpS0X8xBiXXf+bvUC7z0MvL2Aw/rYiYTkYhgYa+wa8Dnxxwy8QQ8wzBi1\nAzXQoZnhCdCq6e8DyA/JZ+AS/PDcJJOXstGu4ClKNBnO2Z2cis3O5X7GoMZqtR9eMXbnWqBDRJ/b\nvBgLWzltcF7HJ1bQj55u/r8+L8C0x6J7dvsaDOX9S4YfAL6NT+XJ7ogAztcImXlLOEJJx5NoapZ3\nvRZ+kDRy3a2A4TeNfQH2nU0CMi7FuF9uZ5ZEsFRqTN7vtyUIBiW5dPVhtgNvnSfXgvNwNk+vZh11\nuQoTAT/88jvNEjooHYAAiwOSBx67HJCN8kCNEosw+YalFfR6j+8w9aUe6d3mv42slhzAL/UtRxjo\nM4CMwVMp0RTymfzQXqKNwc0yfcYLqkomj7bGWtOmTn569YKVMb1rYVY1yKhrxuhul4sXVC+DJQJ8\nLkfbICaz1Ss8/hzqzSvxHCmNnfuBzHSKLOkCWl1ONUFJj5EsSFeC/vHlGDKtf3wRxqCSB7m/L04M\nD/DlAADcBFUN4LdjutrtTAK7XPrIi8XBU54hz3Xd2I9+9ZW+8IbJZ32jUDM/2hYqg50IWHKRDxsv\nibG6G2fD9UUX4OcIvpR6xv6Tc8UQ2QEZ2R3b9pGtDROUGtNyg61FW/80+PlxhRHMarcKJBKRzobc\nydj9YCtq8hXMON6QqG5P5NTHUZ57Z/ILfO+RWwatn/Ja4IoQg6E5iX6XgQc2yNyeR7k9jy+MvUQE\noXm3/e0ZMP3nwst41tINEbtZxv3g5FcrryrC197fIAGcM9j7Xk8ENSMdJyfU0tEtc+QTwcuLxj6v\nyZkQl1ZERI8eagBf1Zl2q35HzQxtjVcgGLKqE4qt45ISV4PUr8BivW4Eag/wLZjVCQIeWqlPV1mC\nXTQOIOultQ7cHRnGPg1UGJC5DmAIkgEIyZdaENliT03G0MHTem6DTuIhanZEvHb8hiO05lWQg1VN\nzVQ1JQUQ8En9jz5mnWGqGT6fs/T0qwqYbvKVlqWUX1344fkYOJDsMfbILeMFhr2SAru0eiIbe0EX\nlYzhEFniIF9SowFcSC5OpjK/k9SQpX4wTF5KK672jv25BU9RPiWS8QME6m3Q708Ejy4+9nlNArtm\nuyyh6OApLonOrfz+SHtvtiafyY/fnUw1SCIB1KVUZsnb88DTTL5ZrbyH2Va0g6V1ECSVtjYiy8Cb\nfU2nRctVityPfaGGHqhjso7dDwZPiZp+XIqVH5rUU7una1qEhNL6scyv3I8bbBUMHz36fO1Crz8G\nSQPtHX3vfLzmzUq5+dXl+2X5OziQrBi7dMvAROBr5kFMhic/x0VF5DFzDeA44dsVHsuYXAp7IhpG\nY9cEBIOwRDK4WYKxFks0aINk2zSumolGxq5ieBiTQ7wAs8UBAv5id9zdGvBu1Q1h++Kjh/4NsUEP\n7tfBDeuK0aCFMzb/zCzVMnanEl1u/R6YWRbRNHa5H1Otj8HMBEkx6KUBfB+Tb/362vGxImNn2cAu\nxckAezcxc5nQNO6rATtOBCp4CnVTjL890Js5eGqBffyeDQJ4MMmF8QbJzIPJD7X0EKj5/osaNfzd\nKG+N3+EncaHLZZ90h5KLcVGFBMEPwmOmKmrsMsO0HpMjS/GqVo81KcVo8sP96IrZOAxfMvA1jHGi\nBuCVOAIuGKmXieZKsJOr3M4ksPMFffSoN8EQogb4vCytEg1kgKHvHZeNVjMDxi6/Wzwk9iEsJlI/\nArWuA8/b80Oo99M0dgy2eq/9agNyAnDwjZsldAoGKrofEqm/V3aJoNVH1SCLkVxGsCFfZnDAbwVy\ngpJcipRcNDM370jtfL2Z/84BQ2TsbRWU1d9LoKUzOHmTH65SqrTiWD8ZwG225Qj4qL2HZRQCYJf2\nSJTuIiLAz0U2z5cfVLVB++ka9XpSlMe0LVozr/XSzWQ2OcqMFMMlAixjr/72rMcm0Vj1FccaEdGl\nQ40ja0Eoifb720+jnUlgb1r6VgG71NjPdfZGRZILA3VbWmnGjiyCSxAoViCSHdDWuJmWhyjdeEAt\n33xkSg1A7RoiwbQgLdr4jA3g2/rdYz8O4PF7joCBoX3NVn2EKpFKV9YDkl0uUp+W51ZwwIuknJRI\n2SDlm5XMS64dxu752w2AwzmgvIXMPHqhRuRv93zpGDyv/QOp7auEIrJ5eXvpBEJm7sVetHTnr1LQ\n5XIIsmRkg0RC4b50xlh/k6uZV/mxR8mlyZXeGMTV9KpLtNnyuxXk/htjl98rCaVUBDCGhxmp0HJW\nPgAAIABJREFUqL2fRjujwM4z5LZebKK21Ll0tFVsumnpkDEG9iWb6KRnYKLxZmLRMO6/Ag8t0fiQ\ntNIBenWBJQh4P9WLi6zWtU2yrVGXKkWgxoCO0dI7PYDbwEbGrsHpCNirYuaiGmTTj4uRExicpKTD\n3+HJUjn7Xu+IjVbvtueW8Vwxhpm3/YzXCLV6ms4Z3+c69QfauyczdfJazJBc5CrFMHax/1aaIuuS\nAsi0A6kkYtoRgF8JGDv38/MiC+IVZyXHBgN3VVtsEp/n9eeM1I3xt2dT6I9IEz4vqHr5qKcDoQhI\nwJe/V5xafOzzGl+gR4CxM0A+etQbnZvIArgtQZBge52RSjSyBW8GXuckGD4CdRCphxIE4zm0ZAoj\nuRSr1Y/MjOjIcdEQWW20DsgN9u9mWkcwQXRmItDfW5k5Mm2oLUPUwEkm8fAxVMYOS24ES7k9+tub\nrREAOY0stb59CALDPGmhj92wWhk8dVwxXpC0bh9JMaY/K6BW19SdILK7IsiJCYIu9hbd/9qPrpga\nw9Eyg9HkgURdAbcMfwa1d/6sN7HXVa2RN30AX3XTGNl6GrvjQJMAvrKA/+iRJpQrQTSJHNPGoTZt\nnEY708B+CS58u5A6qFp96Ue9ejkw1kuWbyVKKXC/dNkkLnH/lSP70NaHx9HSfc281VHHpIw6gJ1J\n63DbA/PfsyTe+kvicCIAxm6Z3KQ3y0QkB7QwqMr7bPKDvkbF0dijoCqz3VaVUe8/KhFQ7ZGGsUf9\nvnd7ZxKXk2HKjiJXS8egao4nAs/r3aVWpsEjCCYLd7pWhyA/1v49KzmzItzo2E5X+/V++Biq773z\nz806xIqRN7nUANogpSyJLjr2w6+BvBFZ192BAGpPEXj0cEurnEzm8SMM+Auw727yrSvn1AWebshG\nAz7//CgCvnDXjJ+XNze7dZTXXaLLVXLRkwdq9URaA3dZB+qBAvyMdDNp9Qh+RONDiy6asR+XxG0i\nkJ/ft7TGAdwCjP7S3WWXOVUPuGWp4/2U8SUlJyjmb+u18DEVR3KpwdOZkktl5mjxzPqcMasWJwJV\nqrh4Wbh29aIm8DmMPbfAMG4fOkoGwdjhubCJSADg+1wxzMwhtlPBdWvJUpeTCfLzZ/pSJlJkyZIv\nb1obpIyZKc1clAjAYCvRiAseMx/NGfp4xn6NOyklWnepXiO5r6vdziawS9Du7Mw5DLq/MvZNr7dn\njf3QPmzrLlUGjrM8lv/ln7E0wdgvkiBc94ujjU4RfHQ/tIfWspHDTW988mN/EPQKmblmbAhmVqKx\nOnRKFIBNwNgzlwgAZi6YdiRX6IAhvJhDHKu0QaLkgn51/r/2wyolysKMfO9Y9VH27wqe4mTGhdV8\noLYM3712Im7Bv8tzw7LN0X3G5wX7EcBNMD/rcYuEgn8+2nLNGXuNUN7k5wvHjlyxuyv5DdgaA6CW\nNmh01xCNZAZZuYzbLW9Q2tPkTVBSjLM8Imoz8KYf1DY5Ty6XQFq55EoxgpkD4CNL4c9eqW8vd9gI\nRvYF+HlM3itZQDQCNU4QY3+ggcLS1/QjgENma11ab228oSXT+GV4pQ2yXovJl45BVS49a1iq5wEX\n2jsfB5GXecrnTNO5oeTC/X7macTMjUQjVi+qDopg8lENehsk58S14k4Etmhc3jGJ2ozULJ4j/j55\nLlEJCgRqDJ5iUB1Xfvw3rwKilGhwbG4qk9er6VoHPlssuLLxY2/I2KUrxpNiNv3gau94nPJ6nKYM\nQ3RWgV0Y/RWwZ7//AG6+bAyY499AcnGlmNzeuJQTbK+DJ0Tjg33oBFX5JdSeBctbQtcEJccSRmQ1\ndvSf80dWewZq9Gq8QxyoIMUYB8fgxA8kYzeJSMVMBDmn+uo93yGCTM5n7GxrNIBvJBcfwCMbpHUg\n6WunXpwxDApEeVWDgUEJvBIwcrZvaOLv8iQdnhS9yZVovM+eDl3vZ9b9sSvGr4B6CGSG3S9XvFWt\nAHCURLxg6zr78mZ7J6k1KhCxy8WRbo961xXzKEgunvVxPB4fa4gaDp1m4JTorAK7M4tif3RDcEbl\n33NCFplFgFEz5MvgV639G8tepVvG9bGD3VHWr9A6ZEtQ8vTAw61lZkRTobSsa4iM/cFANYwdNVa9\nPU4E/PNmO5gldKuyCEEy5ezIqr++gKPT+6nWvzn+9gwZphFQR9o7MvngWpj9CC3dSiuywJl/LfTq\npZWa8OQqzx7pvXRC3mfveTncajKT9z0XUI8da5Djd2BhLexfG8D3nGZMiuxq1ysRsBYSiocFPEZa\nP0/INIuZ88qfyAI4X6dzq45Os51NYA+kmOjCy5uGM2qL5vv95mcJ1KClezUhxonAsg62NW6AOTX9\nEANDbYCtYf9EttKlZFrI/Md+/6UjKN3wV+1LOFFgkxMd9b6tzatBL4On8ja0VYqVaNh/jt/r1nWf\nbI1eFibRjuBpKMWAJh8x/9yAHQPGVR7y5CqwTbbtHcbeCcbe4X7IuKiiFV6ceRww805v367RuL/G\nwPUzjAlK3B8DvpMb0smJQE9+fEwesRsGO2aJHL+6I+OM37V75Y/bEzV1YZFiZrRQigmYPEencXv5\nGQR8LzjCP0/4YLV09yHMLuuovnTDwP0AkGRUHoCjK0YOvDWwHe6Xx4RLaMvYoxRxOyBXOZnaMvyZ\nOPmmhK+D8yQaL1mnAr4TbCWS2bMakKvGntv+5fbI5E0RsDpBRCsCLQ3xZ0vItHUJgnpunlyVpMau\nr3UtuOUQgcNtccnLvkQkm9msiUBKSQM1MvatI8V0OZwI9jN/S+yOttbfjtsQtXGKwVC5zbkZMTwi\n+bpNH0fOlBSTUvqmlNLtKaWSUnreSR3UvqYLfwXAHiyJzIxaZ1p/Bsa/xauCXAc8PiQe4LN9Eb3b\nq9zADJelRCOAR0toj+Ff2fQG/Mbtd2cYGskFBnxK42v/sDQBb9MAglQ/OkSINBuNAom+19uy4LGE\nsQ/s+4t66fgBAjJaPPncbP323cy/nlsht1YMa/LeqsYGSUWwVTzC47V2Cq5JYHcnv/F5kZmqREJa\nCbR0JCFef8TMVwLwMfkOJxSiKc7lyJs64zv4OXLRBTgSrvwRXyLiyFLM+gwBOxHdRkTfSES/fwLH\nMrvJiy21qy6nuhS0M2cA4GxHMlLM8ZZjnoecj6np0Jo54TsSx37hZnAYu2EXwjd8nAEc+tiBIUXB\nM/7upjfrc4sYe3WIwLXjgmgemO2qIeOxYM/fTjSjcmUI+NO16DRQY0mBqOoj7qedQzGSi7pGZjIL\nkr64ZjlIK1xbCL3hfEzehL/rOSKyjB1XcvxzqyGjV4ue3TFm4DmUaOqqWR1rxNL9MatxxAfwCOSj\nFT7iS5ViTtHqSPQYgX0YhvcMw3DHSR3M3CYv0g0HOijBF/hi0B9p6fZG7QftaPkWTQSRVo8lC4im\nLDnnAcNAjwRqXBHw9i5j3/hghkwrCqoSjYCGlkD+bi9FnIOhXiCxd2yQDGYeS+XXuBnr32Qh9HRl\nllwwuNk0cz4vn2lHTJ6v9VEQhEUmL48VVyPVu4/n3ElZSgN4lJFaBjLuKmlrRNlr7O8Na+bt1bXY\nNeF3uVp8O/UM72Dse7X3YBzNMExE23vJSuN+/JW/JI6RCeMAgqQX1yuzn9Nop/ZtKaUXpJRuSSnd\nct999z2mfcnZ9eK5lfobX+Dza32B+SZiPxbsqdvnxvBT2v9gRAzfS//n7QePdXQM7NqCFWmjfNxx\nkDRi7EW9wHdvIoqz6ljlbFwRRCNARgkn+KYc7i+FfKD2QC6L2uQAisNAtMHgKZxb5GZBAEdAjpK1\n+JJsYFLkQ/MYO78FCie56t13ANzLSJUBZi8mc9QXA6JEU0Kb87xETD4Ktkf2xUPHYBBJK132c0lU\n8FROEOGqOVhZq58FmAcMfKcvPdTSx89cBHy58fyITzccaJy62m0vsKeUXpdSus359w3H+aJhGF48\nDMPzhmF43k033fTZHzHpwWwZ+/i3C2ufsV9Y443yAR+LF9X9BA+G5y3H7aNtvJ9NULUyeawJ4/fL\nAawDUuPPtrYMDmCtN0dyAgN+BwMs2n5bBvX2+tavq0FyfxnILWTFVkHv2h1toYTt9GOUYWoBnNQ5\n8++2omUwEYhAYk7+qmb03NuKhuzdj5xAptJlAPhyAtf9bXXhyRiHW1sWmmhcQUoisE9jr4x9jsbe\n+Ss8qb17xzRuExGtGYxd7Edq4Fpy0YSPxzPiC+8XlYIbJuJ5w7nTBfa93zYMw9eexoF8tu0izITM\nrmNghxtSgxv+BIEzMy45cT/yu3CbSLqJ9hMx7ZXDUmZr7F1ytzcv1BDgl1OQYSqYmQZeq+Hz+aAO\nzd8xBk8tYx8BP5v9VEeJIzNsDGi1fpR6iJxVShD03KfJY3CW/+ZNcrvkqvZqRH1ufT+oOuD8WQ/w\n5SSnYzjj/8bHnhpBiBi7B4pRUS+2lkbB0JDYgCbvrWpDySXYT6Sr69IkbfxHduq2354uAICfnyYG\n7L9xAnRm7qfVTlf4uQrthnP6QvItxAtcmXzQfz5w0ZwHhh9Fyec9bAGrDz8bLA8dph191kg0cqA6\ngO8PvOwOYB0Yhu2d/eTsB1WllQ/lisjZ4ZX/lQCbPSmmx4mD6vby81ibnr8j0t4xHR/PwZViZHzC\nsbvGjN2px+7U6d/H2A/h7UBye09jRzstZ896wVMv6D9u4xMe1OG9nzWhCIiQE6vCbeR4Pm4+jPwd\nV/hPOrcmIsvYnzQB+o2nzNgfE7CnlP7rlNI9RPSVRPTvU0qvPZnDmt+efH6tfucbhBc+uiFx/3hz\nMWMsSiue0x89hJ4kIo9h7Pd1+2iy8Aat/BmZf01QcXzDUjNHphVJLn5QNblAoPRmh/lFZXuNJi8Y\nuHduqB9HpQNMIhIEW2OG7/jVo2uU/BrkWTh7fO++c408Tb4y9kCiC3zsR1vfjXUIQXveF7tTjgvg\nsRS5X3IJ7cdq7PhjUI5nmQ9zLgB2BGreLa78mZFfAAXhXIBHV7s9pmlkGIZXEtErT+hYjtU4gPaM\nJ51T/TwIkcmzxhVpY8jMI8bO/QddNi9/aPv0AXmO0yZcTmb/AfbYGO7HW2V4OjdRzNiPHGklJ9+v\nPEo0Ntgqt8fkmwjMdr1copSmf+M5eMFTI8UIJs/7lf0I1EaKMf3BSyScVU0WsgQy88rYnUlucPYT\nlfOt18KZzMZ+//5LPTjq579tev2GJjzPeY6y/WMEs7Pd7cV+JJBGtkaJBVFtKQRqfp4vHPjBU8SX\nBP+fVjuzUswLv/FL6Es/7yn0OU8+r/q5HshTLx6ofp55jfY+PSRzXTSVyRvA9x9atSQMZZz5Gjvu\nJ3II7GPsuP9mCQyCpI5ffdU1jR0TlNp+SG3vgVzT0m0Z3p1WPvRuCwDHhKaxfyDR3QA/KAK2175o\nGL5m/ryNm6AUMXaxPTL5BuD6GSnFvi9UTkLefT7cgK1R2B2j2Itl7Gww0P2RPBjLhv6zPc+XHgRD\nA1+6HLdSlsU66nWbYPxjP7+s5ek3aAXhv/rzz6JnPfUC/Y0v+Vw6zXa6ws8Jtr/zvGfT33nes00/\nA/jTAdj5wUV7ZJVuQHLhWRv797lo8G9dINF0wQN5XH0+BO1oP8FSlzVTLtyFDKwxbVKf95KvtESj\nGbuvNzf3Cx6rW0BLMGoveIpgJkHODZ7uqa+OkktYaiAIhoa1xqvGntX2frB1BPCByMhMbratYub+\nKmVWsD0gAvJvBvCDeFDE5OdJNP7PcqwpySVwuUgpRhovopR/lGL4GUPTBpsvbjyngf05N91Ib/zH\nX+Pu+2q2M8vYo/a//LUvoufcdAN9wTNvVP1ci/tpF/WFZ43eSC4hMx9/t1XcxMOmSgmLh2rtP+To\n3W3HELGXzx7wI/CXn+9goIaSU46BOspIjECLXyuHssFOjzaCkGLmEbD7DF9+PgLq6lfnySzwq2Pg\n1gX8qL+L4xackeoHhufVFopiLLJQVsSyu5nPS7N77nh25qxegwQiuT2+E8HtD/YjWXdUfRHNFvyy\nlqcBM/+Or/58+rM33UDPu/lp7n5Ou51Zxh6153/x59Lzv9guexiInwTB1idfWE3/636ekQ0zzxFj\nb4M8SmKKlofeW1qIdmjyoSsmcgvsB3/+HV/su+szYxle/zuOE1TNKQVWwVbyVoGZCG6iPk00Aixm\nDBIxSyW7n+2e4Klh8rpKJNcaPwTA520wCMv7uuJYRbsUy1VjDRmfvRoJRSUczYixqGMLgvmQ01EZ\nOybxTP24ffwc7g90ngsyQzUzl4xdMHlJrpzngih2raDkwrjwNFAEvuzZT6Xf+d6/4u7j8WjXHGOP\n2rd/9XPo859xA335s5+q+vmhQqB+8nk/FTgqnN9egRUzefmgzgH8OW6ZectbIYdMkgtuT2QZq78v\nn/F7GrjXjx5w3idWXhy3z7Vaow9mANSBzCCB2pN0DsOgqv9ijsjlsnEYu2LmnT6maPUSFVbzgqRa\nftKyFxGZiQADsnjO2L+LCPDfIiKw6zmK3p0gJwO5ivYmaiJbK6r179feZbt4zmfsT4UV/j/6q19I\n/+GfvpG+8JlPcrd/orRrjrFH7Ss+/+n0hu/7K6a/LrOTfgiZwWN/lGiAy/XaH7ALzSICTd55UTdR\nHFSaA/78+wZe8CE/P5exx4wv/tkFuQDwK2OPtPQeg6fj/0ZLF+CHgU2iMXjq2SYrUBvGvtuXvgr6\nZwF+0N/l5CbryKB3NJlHoB1tPydoT9Se1Uhjj6Q+IlJB7Ege1Ixdulx8oA6LegX7lA0Z+43nVvTI\n4ZaefoNm5l/73GfS1z73me4+nkjtumHsUfubX/5n6DnPuIGe/8Wfo/o5sSDB9izl8ODmFvlU57CI\ng0iTVyxlv0QTsZqIOZmBNw2MDgA/ZHnR4Ax+ZmeHPb7AjZOaj937XnS/SDcL7p+3d4OqyPBBS8fg\nqcuok+9+2VUB0w2qRtKN/Lmz5zwMCMj1x1nMfE5uROSKQe2dn58o2GrqLwVMPmbsfv8qkGLkPiPJ\nBa2cP/K3vpS+4uan0+c+5YK7/RO9XTeMPWpf+Mwn0esdJs8PDILikyvgA5OfHgzWX7lJENYBnf26\nn9YJ9wN4FEiyL9jNRFRiwJ/J2CMd3wtcmv0kvR8/uWfcv7EvTudztC3u5HKEPnYRVJWrJlk6IHKO\nyONmGevI0dJ1Vq1mpmGCkhdX6IKStE7CldkmWk3tWEF5+4w+i0SgAnUgP1rtnWVMTPoZ+3OK2XjM\nwPcHT+U2TwpW3H8KmPnXf+nn0td/6elaFE+yXfeMPWpf+Zxn0Bf86Rvpf/jLn6/6K5MHKs8SDdfI\n4CZBNWIpSqKJ7JHHZP4Sm6N6N/O10TbJpRmSS6S9ezLIeKwRUI3/Y0BXZ5Laa7ELqHXi0rT/qdIl\n7t/VzMNAb+BXz37AWMUbQoCd0R/KLBT0758UZD8XMsN++Xv0fGEp7C7YvjrQVp16vs4HxCaKW0k2\nLn+W+0Qp9Ye/4T+mr3vuM089M/Rqt+uesUftc55ynn77H/1npp+lGGQvTwqWeNHSb1YAKLBHzmHs\n/IoyfCm23NdsiWbP9kTkMmTcJg68tn16Wjrun7cf67SLzwalA6KSAjJI6gYknVVExMwjv/ou777H\n/Oew68hRMufnVdjvfxd/BuMZcjtbT4WB2mfyYT9YiyXYSnCO9HYZ6ET7ctte93/LV95M3/KVN7vb\nnuW2APsx23/0uU+mL3nWU+j7//qfU/03Bkwe7ZXcpD/23CyN3X+wV4HeyJ/ZliFmVGZJ7AN4DR7C\nyc0JvoUJUcHSP3ZkWMcH9vP+vRdzEMWAb14obmrFkPqbHzxNtDkKqju6hdJaMPTYsolaybVj8+rj\nmH6x/RqkJK+/fncfT/j2+cpuf/T6uAjwIwcLW5SJKGT4CZ7V7/2rX0iffPjQ3d+12BZgP2a78dyK\nXv0Pvtr0M4Dj8jPS9CSTnxPBnxPxt1p6osOg3zvWaAm9z9ZGRMamiPvEnz03C342OyydaB7b974X\nJRppFTy/Xpn+0SdPRn66vHFKBwTMvFMAHkxsx5RZMCC977NztPdoEpV/2xUM9baPAB8Bm+uxDFrF\nDOURLPw3p/2D/+ILjv2Zs9wWYD+h9h88/SL9pec8nb7tq25W/XOAXQaZLgZMXkkusj/5/fIzpr8y\np7kDchrA0B97ou0+8VhjsLHfi9tEoBh9Fx8nZm2q4GmQqYryg8Q2m0DkHXf0c3SeAYAH53bcEhTz\n8h78FVsUDI1WfhFBwOApF+zD+FTM2GNg/7avutkUALwe2wLsJ9S6nOiXXvCVpj9iF5H2HjF5CbZy\nYOQA8PmYiLwBlt1+Bs//v71zjbGrquL4f93HzMBM22nL9N0ZWmkH26G0MNCiECgUWh5SXpICtgUU\nQkKiFQNSa6JCMCFEIlE0qRUlBkETRfhCQiEm4IeK9RFFkVJBsQYLRYgIaJnO8sM9+95z1tnrnj2d\n6dy5567fl7mzz77n7n0f/7POWmuvrVn4mmUWf634eYLbA9wyIYIfEnj0jVlu2OH6Dw0zOsp+KxUY\nefZPULBZiVXUW/2b1e4rQSAf109rrH/BVwVc+Lnd8+V53GrOISnsisUud02L8+WLl6rHWgkT9iNM\nZ3sJ5w/Mwln9Pal2rb+jI/YF7gwoWCR/YM6FoLlcQgVc6x/iKgizUmPtmghlZM7I/pqIqsHZRLt/\nPJV+2QHHoNfQBFkR/IJqpWfHJ7THWtaVJuDt8vui3fm5dtHfCbL8frl2abFPUSxzIsJlJ83FwJwp\n3uOGCfu48O1PnJxq03Ytj4t2V0zMtcUa9c7pShhrwaqRBlXr+eRD0iB1Ucy25HW/crY/X/VnBzyO\nC23lvPHH8deotev5+tlWvfa+6Jkz8PZP3hH43ViyVG2BKiUI1OBmWf/8k/39lrkzWoR+Vyuuirca\ns6ckS3LHuffK5eoxw4S9oWxc1YfeaUcn2kgRlXo1oh3yB+Yq0WmWttYuN/AtZfTXLHw5piCLPcg/\nnf3ckKCib5OOeo+BmggTpYOqtfMGuEdC5hbklsm+g9AqI/oWrh08NJwS5IIq4BnfI2EgOAGXlrmz\n2KUPv7O9hAuXzcZ5TbCEf6Jhwt5A7rxk4LCepwVkUyVGo99PaHpZluCXlWCrDKrGRaWcCABn+95D\n/PZqfnuAu0b37Scvos56VQOJsj3A4g9LR/RfeHwFvurOLXFxjbUrtYiqr3fI43JR7vA0y1zLuuqK\ngprSveWCodJAAID7rz4p1WZkY8I+AdmyZlHKqomjFSKTmwK4c4zcx+7/AY/U8o+fE4CawRP/PeuW\nbHqclXb/xULzz2spl7LYW7FAGBZ13ePP19pTj2PdtAuJ9h6VlbsddWNndfs4f4BZfm6sGAJa0NNd\nJLTPX2anuCCpXOux4JhOnLHoGNxwxkIYY4MJ+wRky5rFdY+HVqhzC2mkJV8NqgamR2q34llZEUCd\njRMCqlKG5X3D20dbJJV0h6TnkuzHqXb32lpOd/rxyGIABU2Qldo/iYtlgIDXC5JqMRn3fWsr+vcm\nkAaFW9Mh3zuXACDPXy4W8INProQxdpiwNxF3rF+Kl994Vz0ut/1zu0ZJy+mQ4nvXLfb6t+LyFtoJ\nVYF0AdOsTk2cEnVwAvzZui8dSp8wy7y6GUegKyZ5p6EEN4NW3tbOE/98Ckp7iI9dxlKqrrvAGi/u\n9WSGl/u+yQqoy3u78ZEPTceta/thHFlM2JuITRk1LeQ+r+VipWSs3J+xasmnshyiW+7AdEcnZtqF\nQFpsmiWfdDP4BVwTrbLmihmh+yVlgVP9OaQs+eh/orA0ysT4lKX9WqlabfNzrYRtqMVeLFTKJMug\np35hr7TLYL7bJ1ju/9nVXsIPb1gF48hjwp4D7tuwHM/sOZByuZQLhINI5sADNYtdWvhZP+DUAiXF\nx1qoipzf2pXPCak1r66SVFw36qKfgAyUeD8tSKpdCOoFVUM2v1AvfprLRbPYE3c7tceUOE9awA/C\nH8QE0i4X9x7Li9yZ/T04+/gZuOrU9Gbzxvhgwp4D1i+fi/XL56bap3a24d2D72NaV9qSB9KC7wT9\nKNFeKPgFvJYt478QiN97IpCoiVObZrErZRRKipipqYWxMfhK+NbG5He5ZAVP6wVVNZ9+UImExHuh\nuLFKSn/xudXa/WPVfO8yhuN879KgmDm5Aw9ce4r3NY3xwYQ9x9x16Ql45LlXMWtycqGH+0HLfR6d\nBZayzDKCpJrrJrVqs+i3zAsBQq25XNqKfuFsC7DYNes9PqZQS746Z8WSrzsHJX6glWfWLXl/+WdN\n2LWFblLA3d4xMhvrmpW92LP/HZx9/AzveYzGYcKeY85c3IMzF/ek2l3esFyyrWU5OEGXF4KC4odW\nrdcAv7fqitFcLkqtcc1X7wsMHhr2pTWmn1uZg789666mWCA1/z6581W2xa5mFJX8F4XQlcou3VEG\nQ93uQlLwF/Z0WTbLBMWEvQX57JrFKBUIH541OdFeCwAmRctZajLNMiuLRuYry515aq9b66O6YhQx\nKykWe4jvHagI7CFwWpCrgWH/RSvtY0fd/qnMocTc/HcR5QCLPVFqIt4eL/ks/UwRUqg1l8st5y5G\nsUBYOif5fTEmLv5P3Mg1J87vxo7Np6R8o064jxZZDl3KUnBnFafdEoXory5mvv7xc8rna64bNT1S\ntYJloDfdJz5WNXgauFirasnL3YcCKlGWlTTI+HsRz3gqKxdF+Tk7pGXeM6kdQPpObmDuFHxn02Aq\nu8qYuNgnZVS57qPHYt9b76d8pk54pLC70gZi/+6qBV4v3dHXH9AXKOkWe3amSfxCkLKolZTNqmWu\nVDTUUj99dwSAJ8BcrN3VaDVntItZ/FzxVEOt6qdWn1wGz+++fBkefu5VzOk+ytvfaB5M2I0qfdM7\nsWPzYKrdiZu05JywD4mFKFpddyn0jqTwKsHTAN97IUTwFYtaFWRl8dVISxtr56m33aAoILHJAAAI\nlUlEQVTmQorfjcStcc2XfnTZ/zOP7xEKAKsWTseqhdO9fY3mwoTdyGTd0ll4ds8buHplb6LdBWGH\nhMneVS3PmmzXtjorKYtvNItdC4Zqtcbj15OyEuhNu2j87ZqPXXO51PLe5XnSc5HnTVT6VNIgNbdM\nHOmK2bFpEL/Ye0D9PIzmx4TdyKRnUju2b0pb8u7Wf8bk9kS722w4VZ5VcQmE5HdraZCayyVu4ZJy\nnvjzdRdNoOum6nKRF47K31RhLXdAuLG0OERJuetILDgKzH5Zs2Qm1lgp3Fxjwm4cNifO68aFy2an\nipa57QA/OCTrbisWpWbJF/2WaZCPXcndli4XzTeuWexZaY1py9y5pZLnd1b00HDSjaXFIWSqaQj3\nbViOVw7otYWM/GLCbhw2ne0lb71sJ+xyE5GQ7QDjFJQMETWnO9HfL5Cp7BRVkCt/Q33vWqVL10+e\n37lBZHVmLYNF2zu3Hr7VyEZrYMJujDlzujtw+UnzsPG0vkS7mp2hCHs8yyMueNomFVree5zgYOgI\ns2U0V4wTcFldX/NvT1Lei3r+8LsuHcAHQ8PqcaP1GJWwE9E9AD4G4CCAvwC4jpnfHouBGc1LqVjA\n1648MdXuBFzb5FjrDyRFXitVmxyD4qsOFGo1j13zyWdY5oeEy0VzP2mbqNTjmpV92Z2MlmK0FvtO\nAFuZeYiI7gawFcDnRz8sI49M7ijjU6cvSOXJa9kccQs/EQAt+C35OCMtfCUFvKQIvrba1q30lO1O\nwIeEz0Ubt1z1GefWtf2Y061v8GwYjlEJOzM/Gft3F4ArRjccI+988aIlqTY1m0MR5/gyejXwqmaX\nKBa+kqaouW5k/6PatCBppV2OpkPZBUsLMAPAzauPU48ZRpyx9LFfD+BH2kEiuhHAjQDQ29urdTNa\nlFvX9mPRjK5Em6xZ42vXhF2ziKWLxuXap4KkGUHVlIBH45DFxFy7nIsTfEmhQPj02cdhRd9U73HD\nCCFT2InoKQCzPIe2MfNjUZ9tAIYAPKSdh5m3A9gOAIODg/pOzUZLcrjWqLaMXhN8eRfghD20eFfN\nJ+8PkkrT3LXLS5Rb3DWtsw2SW86zreOM0ZEp7My8pt5xIroWwEUAzmFmE2xjTLnzkgF01cnh1hb0\naFkkHcKSd99YzRWj5b1LV4p2h1Cz2JPtPV3tuOGMBbjghNne5xnGaBhtVsw6ALcBOJOZ3xubIRlG\njY2rDi/jQxV2IciuHIL08zshltvH1XaZEsKekeXSLfajJSJsuzAdbzCMsWC0PvZvAmgHsDPyIe5i\n5ptGPSrDyOC+Dcvxzn+H1OOqBS3anStGCrOz5DvEht9O2KULqFrLXrxe/8xJ2HxaHzZmbERuGGPJ\naLNiLExvNISsVZVabrwUapc9Iy185+GR7W7lqlwx6nz3qV2pigV8Zf1A3bEaxlhjK0+NXPG9607B\n3v3/UTNqZAlb56OXWSrOApeWvOsv89JXHz8Dm07rs5REY0Jgwm7kitX9M7C6P7258vTONrz57kFM\n60r6up2AS9+7C5K2CwvfBXJ7xHk6ykXcYZa5MUEwYTdagh2bB/HsSwdSKzudXR+6gvWKk+dj31vv\n42IrsGVMYEzYjZZgRe9UrOhNL/qZMakDf33zvVQ++dQoi2WSqN0yrbPNLHNjwmPCbrQ0X73sBDz6\n232YPzVZYnjLuYswqaOEUxdMa9DIDOPwoUasKRocHOTdu3eP++sahmE0M0T0a2ZOb2cm8K/HNgzD\nMJoWE3bDMIycYcJuGIaRM0zYDcMwcoYJu2EYRs4wYTcMw8gZJuyGYRg5w4TdMAwjZzRkgRIRvQHg\nb+P+wqPnGAAHGj2IcaTV5gvYnFuFZp1zHzP3ZHVqiLA3K0S0O2TVV15otfkCNudWIe9zNleMYRhG\nzjBhNwzDyBkm7CNje6MHMM602nwBm3OrkOs5m4/dMAwjZ5jFbhiGkTNM2A3DMHKGCXsGRHQPEf2Z\niH5PRI8SUXfs2FYi2ktELxLR2kaOcywhoo8T0R+JaJiIBsWxXM4ZAIhoXTSvvUR0e6PHcyQgogeI\n6HUiej7WNo2IdhLRS9Hf9B6CTQoRzSeinxPRn6Lv9Gei9tzOGTBhD2EngAFmXgZgD4CtAEBESwBs\nALAUwDoA3yIi/47IzcfzAC4D8Ey8Mc9zjuZxP4DzASwBcFU037zxfVQ+uzi3A3iamRcBeDr6Py8M\nAfgcMy8BsArAzdHnmuc5m7BnwcxPMvNQ9O8uAPOix+sBPMLM/2PmVwDsBXBqI8Y41jDzC8z8oudQ\nbueMyjz2MvPLzHwQwCOozDdXMPMzAP4lmtcDeDB6/CCAS8Z1UEcQZn6NmX8TPX4HwAsA5iLHcwZM\n2EfK9QCeiB7PBfD32LF9UVueyfOc8zy3LGYy82vR438CmNnIwRwpiOhYACsA/BI5n3Op0QOYCBDR\nUwBmeQ5tY+bHoj7bULmte2g8x3akCJmz0XowMxNR7nKgiagLwE8AbGHmfxNR9Vge52zCDoCZ19Q7\nTkTXArgIwDlcS/z/B4D5sW7zoramIGvOCk095wzyPLcs9hPRbGZ+jYhmA3i90QMaS4iojIqoP8TM\nP42acz1nc8VkQETrANwG4GJmfi926HEAG4ionYgWAFgE4LlGjHEcyfOcfwVgEREtIKI2VILEjzd4\nTOPF4wA2R483A8jNHRtVTPPvAniBme+NHcrtnAFbeZoJEe0F0A7gzahpFzPfFB3bhorffQiVW7wn\n/GdpLojoUgDfANAD4G0Av2PmtdGxXM4ZAIjoAgBfB1AE8AAz39XgIY05RPQwgLNQKVu7H8CXAPwM\nwI8B9KJSTvtKZpYB1qaEiE4H8CyAPwAYjpq/gIqfPZdzBkzYDcMwcoe5YgzDMHKGCbthGEbOMGE3\nDMPIGSbshmEYOcOE3TAMI2eYsBuGYeQME3bDMIyc8X8krMmsAi63ZAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another example is demonstrated using a `Lightcurve` with Poisson Noise." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "dt = 0.001 # seconds\n", + "exposure = 20. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "lc = Lightcurve(times, noisy_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AutoCorrelation` also supports `{full,same,valid}` modes similar to `CrossCorrelation`" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "ac = AutoCorrelation(lc, mode = 'full')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.00487599, -0.00485198, -0.99992797, ..., -0.99992797,\n", + " -0.00485198, -0.00487599])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-19.999, -19.998, -19.997, ..., 19.997, 19.998, 19.999])" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOW9x/HPL4ngAigIIoIaEFzAnRQ3XHHB0BZt1Ut7\nq3jrXrWLtr3gigKK9aq33roUq3WpG3WpVAQE9w01gLIjAWKBsgmWRSUQ8tw/5szknPOcmYQkMLF8\n369XXpx5njkzz0zOnO95lgnmnENERCSsIN8NEBGRpkfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiKco3w2or7Zt27ri4uJ8N0NE5Ftl8uTJXzjn2tV2v29tOBQXF1NWVpbv\nZoiIfKuY2ed1uZ+GlURExKNwEBERj8JBREQ8CgcREfEoHERExKNwEBERj8JBREQ8CgeRRrRpczWj\nyhZRXa3/fle+3b61X4ITaYoeemcBvxs3Fxyc9529890ckXpTz0GkEa1evxGANd9synNLRBpG4SAi\nIp5aw8HM9jazN8xslpnNNLNfBOVtzGyCmc0L/m0d2mewmZWb2VwzOyNU3tPMpgd195qZBeXNzezZ\noPxDMytu/JcqIiJ1VZeeQxVwrXOuO3A0cKWZdQcGAa8557oBrwW3CeoGAD2AvsD9ZlYYPNYDwCVA\nt+Cnb1B+EfClc64rcA9wRyO8NhERqadaw8E5t9Q5NyXYXgfMBjoC/YHHgrs9BpwVbPcHnnHOVTrn\nFgLlQC8z6wC0cs5Ncs454PHYPunHeg7ok+5ViIjItrdFcw7BcM8RwIdAe+fc0qBqGdA+2O4ILArt\ntjgo6xhsx8sj+zjnqoA1wO5b0jYREWk8dQ4HM2sBPA/80jm3NlwX9AS2+sJuM7vUzMrMrGzlypVb\n++lERLZbdQoHM9uBVDA86Zx7ISheHgwVEfy7IihfAoQXeHcKypYE2/HyyD5mVgTsCqyKt8M5N9I5\nV+KcK2nXrtb/yEhEROqpLquVDHgYmO2cuztUNRoYGGwPBF4KlQ8IViB1JjXx/FEwBLXWzI4OHvOC\n2D7pxzoHeD3ojYiISB7U5RvSxwHnA9PN7JOg7DpgBDDKzC4CPgfOA3DOzTSzUcAsUiudrnTObQ72\n+xnwKLATMDb4gVT4PGFm5cBqUqudREQkT2oNB+fcu0C2lUN9suwzHBieUF4GHJxQvgE4t7a2iIjI\ntqFvSIuIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWD\niIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuKpNRzM7BEzW2FmM0JlQ8xsiZl9EvyUhuoGm1m5mc01szNC5T3N\nbHpQd6+ZWVDe3MyeDco/NLPixn2JIiKyperSc3gU6JtQfo9z7vDg5xUAM+sODAB6BPvcb2aFwf0f\nAC4BugU/6ce8CPjSOdcVuAe4o56vRUREGkmt4eCcextYXcfH6w8845yrdM4tBMqBXmbWAWjlnJvk\nnHPA48BZoX0eC7afA/qkexUiIpIfDZlzuNrMpgXDTq2Dso7AotB9FgdlHYPteHlkH+dcFbAG2L0B\n7RIRkQaqbzg8AHQBDgeWAnc1WotyMLNLzazMzMpWrly5LZ5SRGS7VK9wcM4td85tds5VAw8BvYKq\nJcDeobt2CsqWBNvx8sg+ZlYE7AqsyvK8I51zJc65knbt2tWn6SIiUgf1CodgDiHtbCC9kmk0MCBY\ngdSZ1MTzR865pcBaMzs6mE+4AHgptM/AYPsc4PVgXkJERPKkqLY7mNnTwElAWzNbDNwMnGRmhwMO\nqAAuA3DOzTSzUcAsoAq40jm3OXion5Fa+bQTMDb4AXgYeMLMyklNfA9ojBcmIiL1V2s4OOd+lFD8\ncI77DweGJ5SXAQcnlG8Azq2tHSIisu3oG9IiIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4ag0HM3vEzFaY2YxQWRsz\nm2Bm84J/W4fqBptZuZnNNbMzQuU9zWx6UHevmVlQ3tzMng3KPzSz4sZ9iSIisqXq0nN4FOgbKxsE\nvOac6wa8FtzGzLoDA4AewT73m1lhsM8DwCVAt+An/ZgXAV8657oC9wB31PfFiIhI46g1HJxzbwOr\nY8X9gceC7ceAs0LlzzjnKp1zC4FyoJeZdQBaOecmOecc8Hhsn/RjPQf0SfcqREQkP+o759DeObc0\n2F4GtA+2OwKLQvdbHJR1DLbj5ZF9nHNVwBpg93q2S0REGkGDJ6SDnoBrhLbUyswuNbMyMytbuXLl\ntnhKEZHtUn3DYXkwVETw74qgfAmwd+h+nYKyJcF2vDyyj5kVAbsCq5Ke1Dk30jlX4pwradeuXT2b\nLiIitalvOIwGBgbbA4GXQuUDghVInUlNPH8UDEGtNbOjg/mEC2L7pB/rHOD1oDciIiJ5UlTbHczs\naeAkoK2ZLQZuBkYAo8zsIuBz4DwA59xMMxsFzAKqgCudc5uDh/oZqZVPOwFjgx+Ah4EnzKyc1MT3\ngEZ5ZSIiUm+1hoNz7kdZqvpkuf9wYHhCeRlwcEL5BuDc2tohIiLbjr4hLSIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiI\niKdB4WBmFWY23cw+MbOyoKyNmU0ws3nBv61D9x9sZuVmNtfMzgiV9wwep9zM7jUza0i7RESkYRqj\n53Cyc+5w51xJcHsQ8JpzrhvwWnAbM+sODAB6AH2B+82sMNjnAeASoFvw07cR2iUiIvW0NYaV+gOP\nBduPAWeFyp9xzlU65xYC5UAvM+sAtHLOTXLOOeDx0D4iIpIHDQ0HB0w0s8lmdmlQ1t45tzTYXga0\nD7Y7AotC+y4OyjoG2/FyERHJk6IG7t/bObfEzPYAJpjZnHClc86ZmWvgc2QEAXQpwD777NNYDysi\nIjEN6jk455YE/64AXgR6AcuDoSKCf1cEd18C7B3avVNQtiTYjpcnPd9I51yJc66kXbt2DWm6iIjk\nUO9wMLNdzKxlehs4HZgBjAYGBncbCLwUbI8GBphZczPrTGri+aNgCGqtmR0drFK6ILSPiIjkQUOG\nldoDLwarTouAp5xz48zsY2CUmV0EfA6cB+Ccm2lmo4BZQBVwpXNuc/BYPwMeBXYCxgY/IiKSJ/UO\nB+fcAuCwhPJVQJ8s+wwHhieUlwEH17ctIiLSuPQNaRER8SgcRETEo3AQERGPwkFERDwKBxER8Sgc\nRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwK\nBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGP\nwkFERDwKB5FGVFlVDcDGzdV5bolIwygcRGK+3ljFl19tTKz7a9kiigeN4fnJixPrn5j0OQB3jp+b\nWD/y7fkUDxrD+JnLEutXra9kw6bN9Wi1SONSOMi30toNm3j6o3/w+aqvEuvPf/hD/lq2KLFuY1U1\nRw6dwGVPlOGc8+q73zSeI4ZOYNTH/v6/eW4aANf+9VNWrN2wRW1etPprbntlDgCXPTHZq7/vjXJ6\nDpvIgTeO8+qqqx3nPfgBhw4Zz+Zqv80Aj39QwaWPlyXWzV+5nic//JxvNip4pG4UDpI3X1VWsWp9\nZeIJetPmaooHjWHcjOQr7EOHvMrgF6Zz4p1venWrv9rIO/O+4DfPTWNTwvDO/jeMZfVXGxk/czmr\nYz2E9ZVVme3fPj8tZ/t73fZa5Pbrc5ZHbk/5x5eR28f/7o2cjxfubVRWRU/i5SvX81HFatZuqGK/\n617x9t2waTM3vTSTV2ctT+x59LnrLa5/cQYH3eQHD8C4Gcs49e63qE4IHuccK9dVKli2MwoHqdWP\nH5rEW5+t9Mq/2biZ7wyfmPUEPnfZOsZOX+qdgNN63DyensMm8r0/vOvVnXLXmwBc/pfJvD//iy1q\n75FDJ2S2u10/NlL3r6+jbZnyj39Fbh988/jI7WxX6Ul++mj0qv0H979f533jIXbkrRMit//83sLI\n7XgAhHsb4ddfF+NmLOXyv0ymfMV6zn/kQ6++9x1v8J3hE7MGy6r1lbw87Z/8Y9XXifUvTFnMcSNe\nTwzqMdOWcvFjyb0dyS+Fw3ZgxdoNTI1dxdZVn7ve5P35qxj4yEde3YtTl7ByXSWX/2UyS/71TaSu\nfMV6zvjft7niySkcOXQCS9dE63uETjQzlqyN1H2xvpJFq2vu/+OHoiesr0JX9wBrvtlU59dz68uz\nIrf/7/V5Oe8fbne8J9BQ85avy2zPXhp9D76KXaU//VF0iOvP71VkfdyvY/vGf/fxXsnlf5mS2X6v\nfBXrNkTfz/Dvtv9970Xqpi9eQ89hE7nqqamccOcbLFsTHWorX7Gea0Z9ypJ/fcOHC1Z7bb3yqSlM\nnL2cyxOG2eqirGI1q9ZX1mtfyU3h8G+ganM1f3pngfehT+t122ucneUqdtDz0ygeNIbiQWOoil3Z\nra+sYv7K5DF9gOtenJ7ZPm7E65G6WbGT3QtTlkRux09+4bY/8cHnWZ8TUj2OsB8/NCmzHX8NACvW\n1Zyw4u2YtnhNZjtpeGve8vWZ7aSeQF3nHeavXO+VPRua03j6o3/U6XHS7hg3J7Nd8YX/OwoPD8V/\n9wfckNwDSGrX1xujQfzpomhP69H3KyK3K2JzQKfe/VZm+ycP+72StHEzl3m9ocqqzZlj897X/BB3\nznHOgx/Qc9jExMf8qrKKR95dmDhUJrVTOGxDX1VWeVe9aVWbqznghrF8XOFfXa35elPWE/jGqmq6\nXj+WYWNmJ37oiweNSdyG1FDGM6ETwcFDoifd+BBL+LnjJ424nz89NXI7PJ6e9GHt+7/vZLZ/n3Ai\nyBZ8ADP/WRNEh9/qD6n0/8N7XlmSd8v94av/evTjnPu89Mk/6/TYfe56yyv707s1Q0XxnsGWOOl/\n3vTKzr6/bq95fcLxOGzM7Mx2PIghGqLPT4mu2howclLi/ZLKcg2NQTTE7p7wmfd4nQfXzL38+q+f\nes/V4+bx3PryLLpc94o3PLhhU03wrPna73m+MWcFR9z6atZgWbdhU62fgW+7JhMOZtbXzOaaWbmZ\nDcp3e+rj5Wn/5LH3K7Jevfa4eTw9bh7PjCVrInVvfbaSrtePpbKqmnMf/MC7Ejzs1lcz211jY+jH\nxq7Yz7jn7cx2fHgAYHnoSjc+Hr9hU027kz7Y4ec+7e63vfoL/+wPPSV5NmEV0cKEq9+wXMMoYUkn\nu6Vrcl/dr1yXGpZYt2HLP+yfr87d7oZIn5jKV6yr5Z6+Txevqf1OwHUvTM9Zn3AYMGHWcr8wQfjk\nnXZ16KIhaVVWLuEhwc+WR9+T5yYvZmNVzfEbvxCKD4uGnzv8+QKYs2wt//Xox3z59Sa6XPcKi1ZH\n51LembeSQ4a8SvebxicGRGXVZoa9PKvO71NT1STCwcwKgfuAM4HuwI/MrHt+WxXlnOOaZz9JvNqo\nrnac8j9vctVTU7l59EzvBL5szQZ6Da9Z2fLd/4tOwMYP3PCV4LkP+kMZi7+sOVi/iI23zl2+LnNi\nP2RI9KAHOCpYYRMfG05Lf8Cejw2/xMXnGADenJuatM72HYH00MngWk5ISUaMTQ2jZPt+QfjEsKXS\n8wpjpi/d4n3/Min1msIniQuO2TeznRSydfXi1NTv4OOK+s91ZFsM8M/g9zf607r1fMKeCn6PQ0bP\n3OJ9X56W+z3+aGGq55w0XPfn9yoyr+f0e/yLk7OC+ZCkq/1wrzA+NAbw5twVme1wLxaiq8ycc5z/\ncM3ntftN470e0AE3jONP7y7kksfLuPKpKZFjYNX6ysw55Hfj5jTo+NjamkQ4AL2AcufcAufcRuAZ\noP/WfMLKqs2s3bCJDZs2s7Gqmo1V1ZlfWvrn4XcX8uVXGxn18SI6D36FF6bWnDAPu/VVlq75hg2b\nNtPluldYELvyTV+5rK+s4ujbo0sew/XpVTlxI9+eDySfGHrfkTpY73ujPHHf0nv91T9xSW2C1DJP\nSO6mQ+7hnbQ7X03+AlhtoRBfkZPk2iztumtC8nOGhQPxshO6ZLa/Hww7jQmduL5/2F6Z7bpMeHa/\nqWb45brSgzLbl2T53kFY+Mr08hP3y2ynX2v4fevdte0WtevaUZ8kll+TpTxs+JhZieXpi4D4fENa\nXRY/JPVqAc774weAv0w4LTyHEZee5+qSsNQX4KVPUp/f+KQ6wIV/Tg0f3vbKbK8O4J4JnwHJvaED\nbxxH1eZqnHNej2XMtKV0HvwKVZurmbd8XWR+5P4359N58CuMnb6UFes2ZL4gGf6p2pw6N23YlDpf\nJY1KbC1F2+yZcusIhMcaFgNHbY0nGlW2iN8+l3v9etrQl2cx9OXkDwjAMbe/nrUO/K5t3AE3jM38\nuYW4216Zw/TYKp6wJyZ9nvVbuLOXruWdef7S07S/1+NqMe2AG8bxyIUlOe/z1Ic1k6sP/qQnl/+l\nZiVK/ITWdY8WlK9ITdbe8vdZbMnc4VUnd+UPQUD+8a0F/Ob0A3LePxw+F/XuzB/fXpD1vnedd1jm\nqvofq7+OXHn+51H78OSH2SeQd9yhMLM9cfYK7/sBPfZqlZkneWfeyshqq0FnHsiDb83P+thDzzqY\nk4Oe5eIvv2H3Fs0zdSfs3463Q0uOq6sdb8ytuf1fxxVnhucmJawcCvvb1CU89E7N+/XzU7py7+s1\nFyPx1/S7cw7NfK7Ovv99FtxWmvWxy1esz3mSz2X1Vxv5Q44VZrP+mf0z84tnPsk5xDjy7fmMzHJM\n/P61eYlzYWnx0YItqb/iySlZ67Lt95szDuDKk7vmfM6Gaio9hzoxs0vNrMzMylauzH7yy6UpfZEn\nWzCk5TqJ3/i3GZHb15y2f+R2uOsLUHrInpntq2OTxff+6IjI7XiovfvfJ0dux9fzh4VX0QCccuAe\nkdu/GhW98h/3i+Mjt8NhfON3oyOL8e77tadHX/PU0HBBx9124nuhq/9fPftJJAz2aLVj1tcAsENh\nzUfjvjfK+cUzNVfaw846mF7FbXLuHxbubV14bDFjfl7zmn/z12lc9dTUpN0SdW67S2a7/33vRX5X\nh3XaNXLfxV9Gh/5u7Bd9P+PDf+cfXTMc9stnoz2La2LBe0Ps+Du3Z6fI7dJ7o0MzYfFg+GDwKZHb\n8eNvyPei7f6fVz+raUe/gyJ18ecdfOaBkdvp4ckk6W+vfxvs3Kyw9js1UFMJhyXA3qHbnYKyCOfc\nSOdciXOupF27dvV6ooHHFlMxoh9zh/Vl1GXHROo6t92FucP6MndY38R9R191HAtvL6V4950T6/90\nQQmzb03eF2DWrWdkrbvr3MOoGNEva/2C20p5b9ApWet/3qdbzue9/z97Zq3//mF70W2PFlnrO7VO\nfr3pdt3zH4dlbj/wZvSqt6jAIrfDV7bThpxOUWH2Q/DkA9qxU+gqPLxkFcAs+tjnPvhBZvuJi3px\n17k17Xpxau45lLVZhjkgdfUff96bQies+Bfr4r5YX1P/s5P3i9Qtq2UpbHhOKfx6kvzq1P15/opj\nM7dPuDP6jeyC2O/iiNCX5UoP2ZOzj+yY8/GfuKhXZju+Sin+u5izrGbC+OGBJcwbfmbWx+2w605Z\n6/ofvhcXHtc5a/3Fx3fh4+tPzVp/2Yn7Za37+PpTc7arYkQ/+h3aIbGu1Y5FTLnxtKz7zh3Wl/v/\n88jEunN6dmLh7aU8d/kxXl1RgbHgtlLmDO3LgXu2jNSN+Xlv5g7rS8WIflx4bHHW524sTSUcPga6\nmVlnM2sGDABGb80nbF5USK/ObagY0S/z88avT6J5USHNiwqpGNGP8b88AYC2LZoz69YzOLTTbpgZ\nb/z6JKYNOT3yeOXDz+TU7u3ZqVlhYggsuK2UnZsVUZ7lYPxhcOWVLZgKCoyOuyV/iG75fg8gFV5J\ndm6WffTwot6pD95fEw5UgGcvPRqAH/XaO7G+oMA4+4hOiXXXlR5IQYEx8ZoTEutb7bhD1nYBdGnX\ngknX9cncDn+b+b4fJ3/wwvs2K8p9eKdfG6T+HEfaQxfkHjYDOKhDq8x2ePnsHi1Twzw7FNacLMNX\nyu1Cw0DZhF9bSWiM+sxQ7y9JQYHRc9/WiXVdgh5HvIeZdvd5h3PkPsn7ph3fLfmCbMYtqeP9rMP3\nSqzvc1D7SE8s7MmLU6PHD/4k+eLlznNyByJAu5bJ7+mbvz4JSAVMtv2ytSv9Oc12nE258TTa7NIs\n8fO88PZSmhcVUnpIB+YMjX6eZ9xyBneecyhmRklxG2bccgaHBj2+t35zEuW3lVJQYOy4QyHjfnlC\n5PzUY69daV6UuliKh/HW0CTCwTlXBVwFjAdmA6Occ1u+FKKRHbBnSypG9KPshlMjJ1gzo9WOO0R+\nceEr4J2bFTE9FB4Lby/NXLUVFRZQdkP0Sic8Ppv+5YeFexSTBvfx6gcGVxGHdtrNq3vwJzUHdzzQ\nAP67b6rbvdvOzbw6gKO67A7UhEjYR9f7bQm75PjUpG/XPVrmvN95JcnhArDrTskBkh4m++i63G1I\nkn5P0q8t7rTu7Wt9jMKC5A/n48HVdbaAyfWhPmKf1O+vNEsIpI/Bkw/Y8l7z6Kt7A3D1Kcnj1OF5\nkriJ15yY87FbNE+165bvH5zzfi9d6V+8dGuf6rH2PTj5NacDfuYt/gVX+MQ79Cz/uYuDQPz9gCO8\nuvDnM6nHHv48x3sXn9x0Wqa+qLAgUj9naN/I73jHHQoj54kWzYsi9S2aFzH6qt5UjOjHvrvXDBk2\nBU0iHACcc6845/Z3zu3nnBue7/Y0VMtQeMRPCG1bNKdiRD8u7t2Zpy45yuvufzbsTEae35P+h+/l\nHbh77rojvTrXjHcvvD068ffOb6PzA30PrukWJ12ph6+u4yeB239wSGY76QS/R8uacfv92vkHdl2v\nbtIhEvbjo/bJuU/6sWubO0hy0gF71H4n4I/n+1ezLZvnXsOxYxDuLWvpFSX5v2Dup7b37Z7/ONwr\na7Vj7nalT+BJj92pdU2PNB1QYW1bJF84xO26s/+aw8F/2N7+Y4ePoctOjB4H4WGbXRLe93CghedL\nAG+oKXwBdlHvzt7vZ+HtpVx2Qheev+JYPhsWDYMdCgt46uKjGHrWwVSM6OddSO1QWJD5rOcK2W+b\nJhMO26MbvtudY/dr65U3Kyrg9B57Jl7xAIy67JiswbN3m5r5gaRexs2hsfLw+DSkVg6FDfhOdCgp\n13DL6Kt6R27/foB/Agt7/oqaYaxu7f3gOXH/mqvjof175HysuPDwW9J4dF0/wH0O9EPk71f3Trhn\njfTVarbhnbSnLvYX4+Wa2wlL6uWFh99a1BJgceGhm/NK/OHD8POF5x0AfhCbp4hP1Cdd0ac9ExrW\nAxjUNzp53GaX6Ot8IDSGn3R8vXZtzcVNfKipoMAyn5n4QgdIhebg0oPouW/rxOHIY7u29QLo353C\n4d9Q+kOw567+VfWFxxYz9cbTmHjNiYknsN2DD+T7g07xgic83PLqr6LzCLs0L4r0Hg6LDXHFezg9\n98292uf00HOdGhvm+d0PD82578OhpbbZxqPT4osLWoauwJMmy4tDq4XiJ8bahCcoj+3qXxTk0mOv\nVjnrw8OeIxN6PGFXnBSdpD0ktMrpPxLCISw+73D3edGT9PWh1UOndW/vDZO+8LOaC5KjY8N6ZsYr\nwUqu/dv7CyTOPKQDE351Ap/efDr9D/ff+/3atcgc+9JwCoftjJnRepdmXi8hbfKNp1Exoh97ZZn8\nTn/49k+42n/t2pN4eGAJo686LnISTT9vSRBG8aAA+Huo5zH71ui4bXw1y3mxHk18+OfAPXOfSMOe\nja1Ye+TC79R539pCKq70kOSVL0nCc0VQ+wR82DH7RU+68QUBvzw1urIt3NMoKLDIcE56UjcsPURz\nZsI8wWF778bzVxzDExf1SuxpHrlP65wn8O57taJiRD9e/VXyPEe39i2zzkNJ41I4SKPqc1D7xIlx\nSJ2I5w7rmzjufUinXTMnjZ0S1nDfeU72E/EZPWpOUjclDBmEg2dqbPlh+9icRXw1UXgY5aTYRHC8\nZ3F9aXTNfa7lxXHxE3i8XfGwfT+0rDn+PQEzi4zfx+eLwlfzSV9obLNLs8zvIv68kAqQOUP7Zg2s\nnvu2ybqySb49mso3pGU7UFhgFBbUb8Lu3JK9Ob5bO1pkmXgt2bc1J+7fjp8mrKo6pNOuFBUYV5/S\njda7ZJ9c/elxnb2TYbiH9OdaehWXnBCdUL3mtP0T/9R02vzbSjP/q1txbKXKEfu0pv/he2X9q697\n7bYTF/fuzPNTFid+T2DwmQfhXPT/jAibNuR0NmzcXK8Jfaj7vI18e1lT/sNPuZSUlLiyMv0PUtJw\na77ZRIElrzDatLk689drk4ZCJi1Ylfkz1Un16W/7TrzmxMShvHR9tmGWtRs2YdRv9ZNIEjOb7Jyr\n9cs8CgceVBE4AAAEqUlEQVSRBhpVtohdmhUlfpv2hSmLKSosiPwhP5F8qms4aFhJpIGSln+m/eDI\n7F/wE2nKNCEtIiIehYOIiHgUDiIi4lE4iIiIR+EgIiIehYOIiHgUDiIi4lE4iIiI51v7DWkzWwl8\nXs/d2wJfNGJzGovatWXUri3XVNumdm2ZhrRrX+dcrX8Z8VsbDg1hZmV1+fr4tqZ2bRm1a8s11bap\nXVtmW7RLw0oiIuJROIiIiGd7DYeR+W5AFmrXllG7tlxTbZvatWW2eru2yzkHERHJbXvtOYiISA7b\nVTiY2Z1mNsfMppnZi2a2W6husJmVm9lcMztjG7frXDObaWbVZlYSKi82s2/M7JPg58Gm0K6gLm/v\nV6wdQ8xsSeg9Ks1XW4L29A3ek3IzG5TPtoSZWYWZTQ/eo7z9L1lm9oiZrTCzGaGyNmY2wczmBf+2\nbiLtyvuxZWZ7m9kbZjYr+Cz+Iijf+u+Zc267+QFOB4qC7TuAO4Lt7sCnQHOgMzAfKNyG7ToIOAB4\nEygJlRcDM/L4fmVrV17fr1gbhwC/zvexFbSlMHgvugDNgveoe77bFbStAmjbBNpxAnBk+LgGfgcM\nCrYHpT+XTaBdeT+2gA7AkcF2S+Cz4PO31d+z7arn4Jx71TlXFdycBKT/m67+wDPOuUrn3EKgHOi1\nDds12zk3d1s9X13laFde368mrBdQ7pxb4JzbCDxD6r2SgHPubWB1rLg/8Fiw/Rhw1jZtFFnblXfO\nuaXOuSnB9jpgNtCRbfCebVfhEPNTYGyw3RFYFKpbHJQ1BZ2DLu1bZnZ8vhsTaGrv19XBUOEj+RiS\nCGlq70uYAyaa2WQzuzTfjYlp75xbGmwvA9rnszExTeXYwsyKgSOAD9kG79m/3f8hbWYTgT0Tqq53\nzr0U3Od6oAp4sim1K8FSYB/n3Coz6wn8zcx6OOfW5rld21SuNgIPAENJnfyGAneRCn6J6u2cW2Jm\newATzGxOcLXcpDjnnJk1lSWUTebYMrMWwPPAL51za80sU7e13rN/u3Bwzp2aq97MLgS+C/RxwYAd\nsAQI/y/xnYKybdauLPtUApXB9mQzmw/sDzTahGJ92sU2eL/C6tpGM3sIeHlrtaMOtun7siWcc0uC\nf1eY2YukhsCaSjgsN7MOzrmlZtYBWJHvBgE455ant/N5bJnZDqSC4Unn3AtB8VZ/z7arYSUz6wv8\nFvi+c+7rUNVoYICZNTezzkA34KN8tDHMzNqZWWGw3YVUuxbkt1VAE3q/gg9G2tnAjGz33QY+BrqZ\nWWczawYMIPVe5ZWZ7WJmLdPbpBZm5PN9ihsNDAy2BwJNpcea92PLUl2Eh4HZzrm7Q1Vb/z3L50x8\nHmb+y0mNCX8S/DwYqrue1EqTucCZ27hdZ5Man64ElgPjg/IfAjODtk4BvtcU2pXv9yvWxieA6cC0\n4APTIc/HWCmpFSXzSQ3N5a0toTZ1IbVy6tPgeMpbu4CnSQ2XbgqOrYuA3YHXgHnARKBNE2lX3o8t\noDepYa1pofNW6bZ4z/QNaRER8WxXw0oiIlI3CgcREfEoHERExKNwEBERj8JBREQ8CgcREfEoHERE\nxKNwEBERz/8Dbm/uLf2AoOgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb.txt b/_sources/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..1d84d7b80 --- /dev/null +++ b/_sources/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb.txt @@ -0,0 +1,1057 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve, Crossspectrum, AveragedCrossspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create two light curves\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The first is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. The second is a sine wave with amplitude = 200 cts/s, frequency = 2 Hz, phase offset = pi/4 radians, and mean = 900 cts/s. We then add Poisson noise to the light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*times/0.5 + np.pi/4) + 900 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy_1` and `noisy_2` into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we're plotting them to see what they look like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAGBCAYAAADfUj3ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADl1UlEQVR4nOy9d7gjR5ku/paydPKZ6DweRzDG2Bgw2QFs7oIxcQNhyRcuC7vknC6L8Q8WFi5hl7zLAktckjFgY2xMcDbB4Oyxx57xeOLJyi3V74+qr7u6Vd3qlrolnTn1Ps95pNOSuqu7q756+/1CMc45DAwMDAwMDAwMRh+pYTfAwMDAwMDAwMAgHAxxMzAwMDAwMDBYJTDEzcDAwMDAwMBglcAQNwMDAwMDAwODVQJD3AwMDAwMDAwMVgkMcTMwMDAwMDAwWCXIDLsBg8D69ev5li1bht0MAwMDAwMDA4OuuOmmm/ZzzjfoPlsTxG3Lli248cYbh90MAwMDAwMDA4OuYIzd5/eZcZUaGBgYGBgYGKwSGOJmYGBgYGBgYLBKYIibgYGBgYGBgcEqgSFuBgYGBgYGBgarBIa4GRgYGBgYGBisEhjiZmBgYGBgYGCwSmCIm4GBgYGBgYHBKoEhbgYGBgYGBgYGqwSGuBkYGBgYGBgYrBIY4mZgYGBgYGBgsEpgiJuBgYGBgYGBwSqBIW4GBgYGBgYGqxqcR9u+mmGIm4GBgYGBgcGqRbUKHHcc8OpXu7cvLQFbtgD/9E9DaVZiyAy7AQYGBgYGBgYGvWL7dmDbNqDddm+/7Tbg/vuBX/5yKM1KDEZxMzAwMDAwMFi1aLXEa73u3r60JF6bzcG2J2kY4mZgYGBgYGCwamFZ4tUQNwMDAwMDAwODEYdR3AwMDAwMDAwMVgmM4mZgYGBgYGBgsEpAiluz6U5QMMTNwCAsPvpR4HWvG3YrDAwMDAzWAEhxA4BGw3lviJuBQVh85CPAZz8LzM0NuyUGBgYGBgc5SHED3O5SQ9xiAmPsTMYY1/wteL43wxj7EmNsP2OszBi7nDF28qDba9AD6PHnYBstBgYGBgYjB1VxU4nb4qJ4PdimomEW4P1HADco/9uXnjHGAFwMYAuA1wOYB/BOAFcyxh7BOd85wHYaRAU9/qijycDAwMDAIAF0U9xaLbH0FWODbVdSGCZxu41zfq3PZ88E8HgAZ3POrwQAxtg1AO4F8DYI0mcwqqBRpI4mAwMDAwODBOCnuBFxA4TqlssNrk1JYlRj3J4JYBeRNgDgnC9CqHAXDK1VBuFgiJuBgYGBwYDQTXEDDi536TCJ2zcYYy3G2AHG2H8zxo5UPjsJwF80v7kFwJGMsfHBNNGgJ1A+tnGVGhgYGBgkjLCK28GCYbhKFwF8HMBVAJYAnArgXQCuYYydyjnfC2AWwHbNbylNcQbAivoBY+xXfgd85CMf2XejDSLAKG4GBgYGBgPCWlPcBk7cOOd/APAHZdNVjLFfA7geInbtPYNuk0GMUKsfGuJmYGBgYJAwdIob54a4JQrO+e8ZY3cCeJTcNA+hqnkxq3zu3ceZfvs//fTTeb9tNAgJlbgZV6mBgYGBQcLQEbdq1a0dHEzEbdSSE4hg3QIR5+bFQwHczzlf0XxmMApQR4pR3AwMDAwMEobOVaqqbYAhbrGDMXY6gBMg3KUA8GMAhzHGnqx8ZxLA+fIzg1GFIW4GBgYGBgOETnE7mInbwF2ljLFvQNRj+z2ABYjkhHcCeADAp+TXfgzgGgBfZ4y9FU4BXgbgowNuskEUGFepgYGBgcEAsdYUt2HEuP0FwN9BrIhQArAbwPcBvJ9zvh8AOOdtxtgzAHwMwL8BKEAQubM45zuG0GaDsDCKm4GBgYHBAKFT3Gi5K4Ihbn2Ac34RgItCfG8OwMvln8FqgSFuBgYGBgYDhDrV1Gri1au4NRqDa0/SGIkYN4ODCOoIMq5SAwMDA4OEsdZi3AxxM4gXpo6bgYGBgcEAsdZi3AxxM4gXRnEzMDAwMBggjOJmYNAPTIybgYGBgcEAYRQ3A4N+YFylBgYGBgYDhFHcDAz6gXGVGhgYGBgMEEZxMzDoB8ZVamBgo9U6uCaM1QIqCWEwOFjW8Pp6kOI2MSFeD6ZxaIibQbwwrlIDAxuPexzwiEe4h4VBsvjJT8Rk/e1vD7slawuPfzxw6qnD6etBitu6deLVEDcDAz8YV6mBAQBR8PP664FbbwWWl4fdmrWD3/9emJ4bbxx2S9YO2m3R12+5BVhZGfzxgxQ3Q9wMDLrBuEoNDAAA8/POe2+8jUFyoEmcJnCD5FGtOu+H0dd1ihsteWWIm4FBNxjiZmAAAJibc94b4jY40ARt4twGh0rFeT+Mvm4UNwODfqAGOBhXqcEahlHchgND3AaPYRM3r+LGuSFuBgbhYRQ3AwMARnEbFgxxGzyGTdy8ilu9LvpBLgeMj4vthrgZGPjBEDcDAwCGuA0LNIkb4jY4jBpxozZMTgLZrHhviJuBgR9GxFXabgPPfS7wgQ8MrQkGI4T/9/+A884bbMC6cZUOB0ZxGzyGTdy8rlJD3AwMomBEFLedO4Hvfx/4/OeH1gSDEcKXvwxcdhnw5z8P7piq4kYZbgbJgyZok1U6OJTLznujuCUPQ9wM4sWIEDcy2iY/wgAQNdWAwaowRnEbDoyrdPBQFbdhPKQYxc3AoB+MSAFemqgPpsFq0DuoH6j1ppKGiXEbDoyrdPAYtqvUKG4GBv1gRJa8MsTNQMUwiJtR3IYDQ9wGj2ETN6O4GRj0gxFR3Iyr1ECFUdzWDoyrdPAYNnHzU9ympgxxMzDojhGJcTOKm4EKQ9zWDkxywuAxbOLmVdwozs4obgYGYTAirlIy2pybcnLDxF/+ArztbcMnLsNwnxlX6XDgd6937ADe8hbggQeSPf7NNwMvexnwwhcCb3yjO+PyYMWwiZuquHEOHDgg3h+sxC0z7AYYHGRQWFK9bCE/pGaQ4gaIAZtOD6khaxyf+ATwla8Ap54K/N3fDa8dg1bcODeK27Dg5yr90peAj39cLIH0zncmd/yPfQz42tec/x//eOB5z0vueKOAYRM378P5vn3i9WAlbkZxM4gXygiy6sNX3AAT5zZMkNowbNVh0MRtZcU9mRjiNjiorlLOne1EpJPui3SvSyXxurKS7PFGAcMmbl4bb4ibgUEE8JbjKuXW8GPcgINrwK420H1Q78egwblj2AdF3Igk0DqJhrgNDup4Vx/g6B4k3Repj61f39mGgxXDJm5GcTMw6AOthjOC2o3h13EDDq4Bu9owCsRNfRofNHE76ijxurTkDv80SA7qeFfdpRSwnrQ9oD42PS1e1yJxU5XOQcAobgYGfaBRc4jbMBU34yodDYwCcfObyJMEJSZs2ACMjYmJbNju4rUCb2kIAilBhrjFD5W4tdvu/wcBo7gZGPQBa0SIm1HcRgOjRtwGrbjNzIjJAzDu0kHBj6gP2lU6NSVe1xpxAwa/7JX34ZzaoxK3YdqguGGIm0GsaNYdf1C7OfwCvMDaIm71OvCjHwHLy8NuicBaJW6kuM3OGuI2aHQjbknbAzrmWlXcgMH3dVLcikX3dqO4GRiEQLOmrpwwGorbWnKVfvObwLOeBfzrvw67JQJrlbiR4maI2+ChjvdhKm5ribhRGEChIF4H3dfpno+NubdPTgK5nHhviJuBgQ8sNTlhRIjbwTRgu2HvXvG6e/dw20Gga79WiZtxlQ4ew1bcvMRtLSy9RYrb5s3idViKG5VgAUTtzmLRKG4GBl1hKa5SGFfpwEEEaVQmi1FYemyYyQlGcRs8dPe72XQIlUlOiB/DJm6kuFH5HUCMO8YMcTMw6Aq16C4fgbVKgbXlKh1V4mYUN0PcBgVdVqka85lkX+TcGXt03w1xSx401aiuUrr+hrgZGHSBa7WEESkHcjAN2G6gSWlUJotRIG7qsU1ywsEPneKmXvsk7QGNu1zOCZQflbGYFDgfPnEjsq66Sg1xMzAICauhrpxgCvAOGkZx64RR3NYWuhG3JPsi9a9iEcjLhZoPduLWaIjabbmceFABRiM5gcqxGOJmYNAF6soJA1PclpY6mMpadZWScTLEzcGolAMZZG2rhYWDq26VL6jSqgJdVumgFLdhErdGY/D10wBHbSuVhveQoktOMIqbgUFIuIjbIGLcGg3g+OOBs85ybV7rrlJD3BwMIzlhmIrb8jKwZQvwjGcM5nhDw8UXAxs3Ap/7nL2Jc7fZWUvE7QUvAI48EtixYzDHI4wCcdMpboa4GRiEhJu4DUDq2r8f2LMHuPVW12bjKh1uOwijRtwGobi128DKing/MeG4bAY1me3aJZSXG24YzPGGhttvd7+ic6yvFVfp0hLwwx+K14svTv54KkaBuBnFzcCgD1hNpRzIIFylPjn+RnEbbjsAoX7Qk/AoEbekF8CmYxSLopbUoCczutYLCwd5fBV1LuUGe8c6nf+gFDcad4WCU4x2EPfgiisc8nLppckfT4WOuA1rySujuBkY9ID2oBU3H+K2VmPcRimrVL0lo1LHjfPkSSSpbVRTatDETT3fPXsGc8yhgAa2MsC9Y32tKG6XXea8v+KKwY43lbgNWl0mBClu6bR4bbfF38EAQ9wMYsXAY9zIUlqWS0oxrtLhtgNw34NRUdyA5N2ltPzPsIibeq0PauJG9kVha2FcpQdjjBsRt1JJPDhce23yxyQM21WqxjXqiNvBWITXEDeDWNG2nEcaNgjipjIUxYAbV+lw2wGMLnFL+toMW3FTr/WoLH2WCDSKm9+9Vl13B5vitm2b+JuZAV7+crFtkO7SYRM3UtFSKcc9DThtAQxxMzAIRKvpkDU2SFcp4BqVa9VVOkrlQEaVuCWtuBFxo3gbo7glhB5dpQeb4kZq21OeAvzVX7m3DQKkMA+LuNE9T6edaw4Y4mZgEBpthbihPUBXKeAalaOiuO3eDTzsYcC///tgjjcyitt3v4t1T3gIjscdANYmcSPFbWJCvC4tJZ8YAQxPcTtwADjtNOCLXxzQAUO4SoeZnDBo4nbuucCTniQK4d54o7gfg4CquFFfX1x093XOgQsuECVL4gZ1g0ymO3FbWAAe+Ujgwx+Ovx2DhCFuBrGi7VLchkfcRiXG7frrgVtuAb73vcEcj8673R6y0njxxchuux1PxlWudg0Dw45xy+XEX6s1mHinYSluv/kN8Ic/ABddNBiCGsVVejAnJ2zfLl5PPVWovI98pLj+f/5zssclqMQtnwcOOUT09Vtucb6zZw/w4x8D3/xm/KHPURS3668Hfv974DvfibcNg4Yhbgaxot1UY9yG5ypVjeUwCYzuiT9JqJPSUFU3edGLEPdnLRE3r+IGDDZQfVjEjSbwe+8VMVeJQ1MOZC26Sul8cjnxeuyx4vXuu5M9LkElbgDw1KeKV9Vdq7aFxkdciKK4kQo5qBVUkoIhbgaxglsDdpWq7GQEFbc1S9zkRR9DWf13mE2xMajkBLWmFAVND+KeDMtVSkojMKAYqx4VN08CeqxQiRuRBctKtgwFnT4d75hjxOtAyDM6idu554pXNUFCbUvctjCK4maIm4GBBipxY0OMcTPEbTQUtxKEVV/ritsgiduw6rjRBA4MKKuxx3Iguu/FBZW4MTYY1Y3OZVSIGyluv/61cz2SJG5GcTMw6BNqOZBU27hKDXFbe8TNG+MGrA3FTSVuAykC26PipvteXFCJGzBY4pbJiFdylQ6LuG3cKOLtajUR9+htyyAUN8bc489L3IaevNUnDHEziBVGcXODDHalMhgCOYwF1bWQDVmLxG2UXKVLS4NTF1TiNpAisAHlQFTC1GqJ9jDmZD0m1R/VrFJvO5JCkKt0EEkiXuIGOO5ScpkPWnGbnBT3m2AUN4NVg5/+FHjtawdLXLTE7XOfAy68MJkDaogb56NTDkSdqJeXkz+eOiENddkrj+LWbg9mIQ0dBkHcPvc54EMfEu+DXKVx35P3vAf46lfd27ykZFDuUprAafJ89auBZz7TUV1iR4CrlAharebcj4kJp20Ho+JG5GT9enGui4uDKQlC991+UPnkJ/GKhY8BSI64cQ684x3Af/+3c/u9xE2Fl7i1Wqu7ppshbgcxPvQhUT9skMuftFsaV+nb3y5mmCSYiyY5watsjYLiBgzGXToyrlKP4gYMT3UbBHF7xzuA974XmJ8PziqN857s3i2eh971Lvf2YRO3Cy4Qr7fdBlx8MfCJTyR0wABXqUrcaNxNTjqZl0n1xVFwlTI22Dg3l+LWbgNveQuO/cLbMFls4s9/Fv1g/37n+3HYwfvvBz7yETHmiL+n08Bhh4nrQO5igpe4AatbdTPE7SAGDZaFhQEeVJFVUly+pxGShPXSKG5eozwKMW7AGiNuHsUNGD5xo4ktietCcW0HDgwuxo26vre8gvc6DyrOjSbw//W/gBtuAD74Qff22BFQDoSuvZe4JV1BfxQUN2CIxK1SAVotMM5x7hPEB5/7nPv7cdhBup7lsltx27ABuPVW4Pvfd3/fEDeDVYO5OfGqrtOXOLyuUs4dy5KEtdQQN6+RNIrbEDCCxI3cJ3EbbMtyJo+5ucHFuNH19J7PsBW3Ugk4/XTg8Y8X/ydGWgJcpX7E7WBU3LwxbsBgExRcxE15ijjvieIDrys/DjtI5VXqdXdyAgAcdxwwPe3+vrpyAmE1JygY4naQot0WbhtgsOvGqYpbum25WdOAiJvXKK8V4tZquetFjZqrdFj3wes+i5u4qfdYJW5JK27q85AaP+gtyDpoxY2C1BMnLT24SpNW3PySE5Ici15FGXAUt0EU4fUjbmc9RnxAwgFd+ziEBOrvlHwCuM/fC5XUEoziZjByWF52JvFBEjeuxLgx3hoKcfNOFKPiKk1a+fQSVqO4CSStuKnX2S/GLYnkBD91lbYffrh4HYbiBgyHuNFbIm71+sHtKm1JpwZjjuIEDNFVqhC3rZsrOOII53snnSRe45iPVOLmVdx0MMTNYFWA3KTA8BS3DLeSr8uhSU5Yq4qb97xHKasUWBvEbW5ucDFuar9Wz4muM02agyZu5CIepuJWKgky02w6noeD0VWqc5MCgyVu1N9LJbiWz2DVCs47z/neqaeK1ziJW7vtXFujuBn0hf237cNvXvYVVOeG1zPIWAHOQLn9drHIb1LgXKpsKpSZ6vfXNeNfCmfUXKWcA1/7mm0xB0ncBr20UyBGMKuUiFvc10W9x6ripsa4JeEyU69nEHFTXaXf+15yi48PXHHziXEbxzLOuvfL2JwXRnDvXvHZwai46RITAKG25nLi3qtLkQHAH/8I/OAH8bXBT3FDpWLXcwOA004Tr3ESN/X4QYobEXYVhrgZuPCXl/4Lnvifr8BN7/jO0NqgU9xe8xrgBS8AbrklmWPW60AKnkX5lNHxxtc18YxnxFwVZNRcpddcA/z93wNvfnNHWwatuBlXqcCgFbdBx7gBeuJ25JHilRS3bduA5z8feMUr4muDiqG5Sj1ZpS/HV/Cy374Sr4FIZ9y1S3w2NXXwKW66+DZAkBhS3bz2/iUvAZ7zHOe69Au678UiOojbOecIUjk2BjzsYWJz3MSNiGlUxc0kJxi4kJkXdTj47r1Da4OOuO3cKV7VmjpxolYD0vAobkotgNpKE81mzPL9qCluNEvK1zVL3FyKmyjfPmzillRygnqd9+8X+2fMmbyB4bpKSXHbvl28qrYhToxCjFuzCWzAPgDAurRQ3G6/XXx21FHDS04YtKsUAJ74RPF6+eXu7fvE5YnFhc65099yObiJW7mM2Vng5z8HLrkEWLdObB6G4mZcpTGDMfZzxhhnjH3Is32GMfYlxth+xliZMXY5Y+zkYbUzClJNMUpTtaQKGHWHzlVKBjspI6IlbsroyEJYy6SJ21DLgdDjn3xds8RNzigZtOz7PmziNgjFjR6OxsaAlGJdkywH4t0vbd+wQRCHlRXRHYnAJTX+R8VVWoS4wYW0uPGkOB177NpxlQLOslOXXureTm2Mk0Cl05I4qX5Z2SHOPht48pOd8Tcqipshbj2CMfZ3AE7RbGcALgbwNACvB/BcAFkAVzLGDh9oI3tAuims6DCJm1dxa7edGjZJTehhiVusKeoByQm0Vt1AXaX0xClf13pyAjD89UoHSdzuv1+8qvFtQDJZpd0Ut3we2LRJvN+zx1FYkroPo6K4FSBuSD4ltlOM2zHHJOsq5Xx0XKUAcM454uHh6qvd4SlxEjeX2gZ0uEpVJEXcjOI2QDDGZgB8AsCbNB8/E8DjAbyYc/5NzvnP5bYUgLcNrpW9IW0Jw5Gujw5xW1x0FhxOirhpY9yUwTsoxY2MCcUYDVRxGyHiNgquUsAhbsOu45ZUcoK6vx07xKsa3wYkr7hphgFyOTdxI8UtCdLSbAr+lMk4k6RKWhJZ7NynHAgpbvm0s71YBA45JFnFjcZ6LueorcNU3Kangcc8RlyTX/1KbFPXcR40caNQhaWl/vuDiXEbHj4C4C+cc12e4zMB7OKcX0kbOOeLECrcBQNqX8/IjABx87pK1f8HqrgpB8tBjPLYiJv6iAt0uEpJ9TDEbQgYQcVtEAV4vQ8NhCSySrspbtkssHmzeL97t6O4JUEiXCUhJMh9xnlCqreP4mYTt5RzgbZuFQp8koqbV20DhhvjBnS6S9X+F0ddSbWvAdC6SgmZjOgfnHdmukaFUdyGAMbYEwD8PYB/8PnKSQD+otl+C4AjGWPjms9GBqNA3LyKm/r/sF2lsRE3n2A2MiY0iQzUVUoWqVoFWq0hlgPhmN5zh3sphQTRagF33qk8SSuNGYO4JsMmboNwlRI25+Zc0d/DSE4Io7jdd188a4l63aSERIkLzd5UhRZu4pZLOQOfloBKQnGzLOCOO5x7QPcaCD7/RqN/WxjkKgVg11GjMkxqPxm04gaIzN44jq0St8zunRjHsnMNduzoYIaGuPUJxlgOwOcBfIxzfofP12YBzGu2E/2Y0ez3V35/sTQ8AjItMUozjdFQ3KpVdwZRkskJYVylO3bENIl7R55HcRuqqxQAKpWhKW5/je/gIz86EfjUp5I9qMSHPwyccALws5/JDSOouA2SuH3xlscCJ59sX4dhJCfkcnrFrdUSf7t3C0LzN3/Tf1uGQtzUJzL5XnWV5hTFjUpjJKG4feADwIknAhdfLP4Pq7j90z+J6//HP/Z+7CBXKQA86lGCLN11l0icGTZxozHYr9pHxG0KC3j3V4/DxThfKG7794uL+uxnu75viFv/eBuAIoALh3DsgSDbElY00xwNxQ0QT9aEYSlu4/kmtmwRIhCVJuj7gCo8ittQXaXy/bCWvDoWMgPk3nuTPagEJZxs2wZxg5Uglsn0cIkbHXeQxO3Q6jZRd0E++Q8jOcFPcaPv3H+/IDpxdJFRIW5qckKOOZ8TcUtCcSNbRnFkYYnbnXeKV9U2R0U3V2kmI8qgAE6pGsIwiVtcitsheBC5Vg3HYJtQ3EgV8HRq9fpQ/OFqJm4B4XzxgzF2JIB3A3glgDxjLK98nGeMTQNYhlDbOlQ1CCUO0KhxnPMz/Y57+umnJxEa6wsibtkhKm5E3NJp0clVopQkcZsJIG6HbWjimGNEW7ZtA44/vs8D+ihuo0rcVlbEvQiKxegHqhEda5TdGxMG3YpaDR0XfLZQAcrDV9zUhcdpfcc44B1PaVhI0woi8qQHmZygU9x27XLqd9F3qG/GMT66EbdEbI7qL1OIGylu2dRgiBvt6y8yuCcscSNT0Wp1fhb12EGB+WQHKxX39+IgbmoiDIDAGDcgPuJGESBE0ouoCrtKA8Fzg1Xitn69yDQ2yQnhsRVAAcDXIcgX/QHAW+T7kyFi2U7S/P6hAO7nnK9oPhsZ5NqSuA1RcSNXKS00PQjFrVtW6SHrm7YBjaUkSBdXKRmsocS4yffUFiJrKwn2XJqwJyaUFQsGxJaoT9Xr6LjgM/nRcJUWi+I+tNvxTtzeSTmPzmyFYce43XKLO9yxXnfaEsd9GRXFzeUqxWBcpXQfqNCvrvCy7vzJVMRB3PwUN8C5J+Xywae40VgroCZIqU+nVq8PPcysZsVt0MTtjwDO0vwBgsydBeBuAD8GcBhj7Mn0Q8bYJIDz5WcjDZu4WcMhbo2GGKTpNHDYYWLboBS3IFfpIeubdpBwLAkKI6648WVHcVu/XrwmGeemugQHTdyCFLfp3GgQt2zWmVTjNNre8eQibrIDDGOtUlVx8463QStug3SV2oqbdJWm0467MEnFjZoTNjkhDsWtm6sUcO5JpXLwErciqkineCjFjR5mVjNxG6irlHO+AOBX3u2i3i7u45z/Sv7/YwDXAPg6Y+ytEErcOwEwAB8dTGt7R57LGIshKW6kts3OOlk8quI2rJUTNs40weWTbyzEzSfGbSTKgQBoLa6AczFxzMyIOKM1Qdw8ihsRt2HXcSPitrIi2ktjo18EErcBKW6aOtTI5fzPUSVuq1Zx6+YqlYqbutRVEoqbV9GP6irtxyMQxlWqEjeVVB5MxC2Ntij/QoYoQHE7GIjb0Je80oFz3gbwDAC/APBvAH4AoAXgLM75jmG2LQxyXHSmnOVfrMayxKBLoloDxbfNzDgDRc0qHYTi1qRnAmXwbphxu0qbzT4LMYZU3MgwJlIE1AvFcDUXxPt8Pt6q4X5Qsydt4haBLfVzfYKI22RmbShudtFVjeI2DFdpNivc5iqRUJuVhOLmXTHCS1xiHYM+rlKKe8pIxe2YY5wDJ6m4EQYa49Zwn5cOg1DcwtRxA5IjboAk7GtEcRsJ4sY5Z5zz93i2zXHOX845n+Wclzjn53DO/zSsNoaGZSELYTDyLb3i9uUvi8Gdy4mFd2ktvbhAxG121hkoKpIkbhTj1oB8BFNGx/rJJrZuFe9vv12c/1ln9WHMI5QDqdeBk04CXvnKHo8VForhai2K9/l8fPWLgtBPjNsllwh3rndB6rAIcpVOrBHiRm7JIMUtTuUpjKuUMWei8v52EK5S9bzvuktco3/7t/6PB8BN3ORJqIpbhovPn577BbBxI3DppSND3CzL2dYzcXvnO/GUV27BNOaHTtyGrbgBQIGHI24bN4pXk5xg4EAZobl2XTsqL7nEsTkLC8B118XbBHKVqoqbiiSTE0hx0xG38UITExPAc57jSPtXXdXHZBYhxm37duC224Af/rDHY4WFYrisxcEqbv24Sn/8Y0H4f/vb3o4dlJwwkRod4rZhg3ivlsboF3TuhxwiXkcpOQFwCKUKVXEblKv0uutENt8VV/R/PAD6GLcGR0kSt5nxJg4/HHjG1K9FLYzf/nZkXKWqMNUzcfv5z1Hafz8egttCEze1/8VO3Fot9wGGobjR8S3LpQgYxc0gGF7LrOkdNGk87GG+X+kLw1TcvMSNqysncDHT/M//iEmHFLGejai3VHnAyglkQw4cSDDWqtVyGau2JG6FwmCJWy+KG8Uc9nptghS3MTY6xO2YOGMsJWhS1hK3BF2lOsWN885MwzCKW78uzDDEjb4TW5a3JsZNZUiTJQs7dgDHHNG0vz8IxS1McoIqTPVM3KqUPdsIHeOmzjXVav/XwVUOxLuO1QBWTlDHWp7X9Iv2whA3gy5olT2WWdN5Kd5syxbxGjeR0sW4qRjEygk2cSs7o4NZbivR99MvXTgq0BVQDkS1KXv39ni8bvDc6/bS6lHcYiVunpl5mMSNc8fIq8QtlnI0EtQNDz1UvOoUt6TXKqX9qqSN6tR1I25A/2QqCnGLhTR5ijzTCaQbmolbSftMshwIIYziFgtxkzc9i2ZPrlKgf3vkUtzopIidDdNVqjYOhrgZdEFzxTNCNZ2XFLejjxavcXcgXVapikEqbu2ycv5NPXHr2ZDThSNr4FHcCgWnfppqKOJ0k7ngeeLkK06M27AUNx5ihqIq+kAyxK04xCWv6HzSaUFkklDcAombnLHVvt5PMLoKnau0I+YIblcpTVqqq9S7r14wcMXNuxP5P6vXOr+jELek1ipVMTBXqaK4jRRxo9pH1WpH9l3cS165FLd2NZTiRjFuhrgZ2GguBytuKytiU7GYXAcaKVdpWT+QgBgUNx/iRkYyl3Ni6VQDpWbYxgpPdV2+PBzFrVhUiFu9+8Xdvt2xr71MaK2Wc2ydq7TIh0/cyHAnSdyCYtwYiz9BQecq7ahkD7fidsQRzm/rnc3sGQNX3LxsR7KnVD1AcWu1+n9Y1GBoilufrlIgIeKmpjJ7Dpik4pZvV92Tm4a4lUpOiI5JTjCw0Y24EWnYtCmZDDdgeMkJqqu0ySRxqwyeuNH+8nlnwKpPeIMibih3Erck1ytVjWgU4qaSmF4mNHVS0iluhfbw6rh5iZtaADqu0hRhiBsQP3ELUtx0leIZcwpyH6yKW6ZZ7fyORnFLwlVKrulhELdekhOA+IhbNgtHRhwfdx9UQeLErYurdGoquXl3kDDELWZYK8HEjdx0mzcn14H8FDdSsGnw/td/AS96UXwTqppVajHKKu3uKk2KuOVyeuI2KFcpW3GI22yhgm/gBVj49qV43OOAn/0s/sPbakuWKzFu3W9uv8RN7b/1urOTNsRMRmVxhqm4UV+j8IHlZZFoGAdoUtaWA1Fm7LgTFHSKm85VSorb+vVO3KdXcVv1xE2egCvGbcCuUopZ3rr9CuDZzwb27fONbeybuFmWfeCRc5WOCnHTKG6Tk+J9KuW6hKsOhrjFjG7ETae4xa2AEUmZmnITN1IE6Hgf/zjwjW8AN90Uz3FdBXhTYuZwxZzETdzoROgk5Y50rtKBKm4ysI5VnBi30xcuxwvwTbx35W245poYa1kpsF2lqTpSEHJSmBi3OImbqrgtQySN5KzhEzcy3EnEuVE3HBsTtQI3TgUrbnGNd11ygo64nXiisDWnnuoec3G6SumZZdiu0mEmJ5x5png9/Q9fFHWHLrkkuRg3pRN1c5Wqi8wPhLiNjfkSt6kpYR4XFvpTnnXELduq+SpuRx0l2vjQhwobsNpVt0jEjTGWY4ydwRh7DmPshYyx8xhjWxJq26pEWMVt0ybHkMfdedQq5jriRgNmedndpn6hEjdS3FK1AbhKPVmlOlfpQJITyHBJiSNVdRS3LRvFTTkFN2MzHkxksXmbuPFK58YAqBmWcRK3JYjOl22ODnED4s8spTm0UACuvRa46P16xS3uzNKwitu6dSKO8Uc/chOpg0pxI1epFZCckHA5kA9/GNixQyHuc3PJuUqVQdeL4kZxXv0SN5eiHUJxy2SAI48UYQr33tv7caMqbps2iQSsb31L/H/QEzfGWJox9jzG2M8BLAL4HYDvAfgagJ8B2MYYu58x9hHG2LHJNnf00aoGZ5WS2pOkq1Q1okGKG42zOImbHeMmFTftE7BE3/EmIZIThhLjJn1m6YpD3NTZ+im4PFHiRjFlro0BiF1xkztZhEhpzjRGk7jFrbgVCmLOGssMXnELIm6ASIQqFJJT3MIQN1KZYiFNYWLcBqy45fPA4YcrO5+ft8+/0XDHVA6buJH7PFbFLUSMGxDP+KNkKpfiZnmSEzw3edMmp/8nUVdxkAgkboyx5wG4HcDXAdQBvAfAUwGcAuB4AGcAeAEEkXs2gNsYY19kjGkqB60NtCIoboMgbmNjTtAslSvwEre4iIzbVZrv/EJSihvVPAmZnJB4jJu0iumaQtyUWfI8XDowxY01gy9uuw3cc4/zfy+Tqmr8dIpbulZ2tW+QGDRxA+DLiJJMTmg03Nm9XuJG8CNuB43iFjI5IYkYN7uP0U2Ym0Mq5YRrqP0/TuKWRTNyVmkixC2E4gbEM/50iluu5a+4eXGwK26fAvBZAJs55xdwzj/OOb+Cc/5nzvndnPPrOeff5py/iXN+PIAnAFgH4H8n3fBRRbsSLsZtUIpbKuV4EmmwNpvij44bF5FRkxNaKc3MMeA6bkMrB2ITNyfGTWU3T8UvUFlpe3/dN2zFreUE0HQjbrt29T+B+yUn2MStPlqKm5pZGgfo1hJJcV3QASUn0H67EbeDxlXqE+OWbQUQt4RdpR3ETab369ylfce49ai4Ud9LlLgFxLgByRG37BoibgE8HQCwlXMe2sxwzq8D8BzGWKHrlw9SdCNuquJGxjVuudZrRCcnxQBdt05MHrWak3kKxKu4kavUSocnbrElJ4R0lc7Pi+/kNaJgX/C4SrN1vat0E/biqMWbATwi1sPrXKWpllyzj2RXD7zGs1/i1mgA7YaFFJzkhFSjjhRaaDTS0XfeJ5JW3Dh3+puWuA3IVUr71dVxU5G0q5QC4QmJJSf4KG5Za3iuUlv1UhQ3QFyDctl9vftW3DzJCSPhKg2puMXx4BQ1OcGL1U7cAhW3KKQtjt8dDODV8FmlSSQntNudrhviNbOzzrYDB5zf9Ku4XXkl8KY3iXPrRXEbRB23hQX3TxNZ9ooM17p1QCqFjFVHGlYHcQOAJ5QvjeeYy8vAv/wLsHOnE2vT8hjLgJmSjCcVZu2VuB2B+/FmfAxjWIFVkwt+I4sKEwa8iOpQ6rjlbr4Rr8G/I5txAowOO0z0jT17OkvvRYVliTGXySgT9xAUtxfjv9C+4lfaOm4AgC9/Gbj66p4Ut3Yb+PSngT/9yf873RS3Wm0w5UCyanJCuy3+EnSV0spbjDmrtNg7D1Dc1H7X0/XwKG5RXaVU/H3QddyABBW35gAUt3vuAV79auArX4n4w3gROquUMXY8Y+zRyv9FxthFjLGLGWOvS6Z5qw9E3BqQFkLpuJwnX8eN9lUsCjcp4BTdPOIIx4ioNaz6Vdxe/nLgE58Alpc50lJxa6U0j4ADyirttnICkFCcm2q4ZNrWGMou4sYf+lAAwOnt6+J56v/2t4G3vQ34+McdwuolbgEHuu8+8XrcceK1V+L2ZnwcH8Nb8Vz8D5oVsRNB3IQEU0JlKK7SLR99Lf4dr8Vx1m32tlRKZLYBIguwH3TEt6kbAde1jzurlO7VZrYH/4WXYOqtr9K7SrdvB175SuAf/qEnxe2mm4B//EfgzW/Wf657WCQMuhxIrlXt3K5ZOSGuvqhTdHWKGzA8V2kuJ/p8o9ERzdF3QfBeFLetW8XrPff0XnyYfleAM5i6JSeo6Pkh6uabgS98AfjudyP+MF5EKQfyGQDPU/6/EMCbARwK4BOMsX+Is2GrFbwmRuccZsX/ylqdy8uio9CyG0kQN92T7+c/L8oKnXyy02HjJG40+D/0f2XcFmPgac0j4AisnEBGNJE4N9VwSeI2jhUXcWPSjVpAzVuvtzeQdLhvn2NErfDEjUrCUHHmXpMTJiGY8TQW0KyKSdRCBrWU6IjDIm65PWIRVmofgVx6/ZIoLWEZsKv0qHEhn6cW5vTEjeT1xcWekhNIrd63T/85DcNSqdMjP+jkhEDiloDi1uEmBUIRt0FmlTLmzAfUFYYZ4zY+Lo7faAAPPNDbcXWKW8YagOJGMiHJhkNCFOJ2CkQpEDDGUgD+HsDbOeePBPAhrOGEBBVcWmUibu1lZ3ZW1TZgcMTt6KOBCy4Q73Wu0nK5P5cRDd5/er0kbuk0eEoTzzTElRPIzh99tHhNRHELIm5ktaU6mEUznsxSsrxLSz0RNyKPMzPitVfFLQvxwzzqsKrivYUM6ukhErdWC7lFwTYK6Zj7nkRHYgLQ1VUa91qlG0riJrJ6TU/cFKnLz1UadB3oM79J3s9NCgyBuLWDiVvca5V2ZJQCzgVbWADa7aETN8C5N17FLdY6biFdpUD/7tKhuUqpwRSoNyREIW5TAGi6PxXADEQZEAD4FYCt8TVrFcND3FTFTY1vA5JZOSHIiAJ6xU1tWy+wJ4u0HE3pdCjFre86bprkBDVYXHWVEoi4Ja64SUnHq7gNgrhlmuGJG7Vhelq89krcMhAzWB51WHUnxq0+TMVt/34wWfApn3ZP9HERN+prw1TcNhTFTUzVq2jURSyfH3HrRXGLg7gtLTm1t5JylXIui7CqoBR6+Z241yoNdJW228DSUjLELcLKCUDnvRlmcgKQEHGrL7sJfRLJCatQcdsDgGjmuQC2cc4pQmQcwCpd9SteMDmg5iEkDJW4eRU3NeYlrgWvwxI3VXFT2xYVnCvGKyVHUyqlROoqSDrGzbJgNcWFzGREM7xPohRfkWiM29iYb4xb7MSNfMAKccs2ohO3OBW3Vs1xldYzQyRuCjvPp9wn5lfRPiq6ukoHkJywviBuIuMcVkVs1BK3RqOn5AT63uKi3k6FIW4yTh9Acopbu+2OebK/l2A5kEDiBriK8CYV45ZFM7TiRog7OSEqces3s1Rbx6284P6ScZUCAH4M4CLG2McgYtvU6LyTAdyj/dUaA63NaStuFX/FLZWKP2BZ5Q46xK24kf3MZADGFVdpBOLWkxHl3J2JIY9XL1uufXsN2sAUN58YN5W4xRLjplHcsj0obkm4SpvIojFM4qawcy9xi9tVOkzFbTbnPAG0y2JMRFXcwrhKWy39RBdE3OicvcSt7wdVDXFrNkX2sgsexS3u5ATV/tlQd+6z7NWgXaXqfJDLCScFY2K+6DVBAOgtxg1ISHErz7u/FHdyQrMpEn0AZyIZEqIQt3cA+AmA8yBI3IXKZ88E8IsY27VqwRru5ARUKqhWgZ/8BPj1r8UmIm5A/HFu3RQ3XVYp0LsC5Rq4LcdViqSTE2gNmWxWHE9arkZZEgh5ngNV3MIQN7k9h0a8rtLFRcdVGkFx6znGrV4HrrkGaLVQq7ldpa26o7ipxK3ZjE9ZXlgQ2Y4dmJtzPlDYeS7lnujjUtza9+/E8bgjFHGL8yFNVbpncs4TAK8EELdGoydXqfo9nUITRnHzluPphywA0JYD0RK3gOSEeh24+ur+FECt4qZezADiNo5lnI4b0LJ6GBQRyoEA7ntTLArSRhEmlKDUC3zLgagr22vQ73rBWsVtec79pbgVt/vvFwc+/HBnB0NCaOLGOS9zzl/FOT+Zc/5yzp11dTjnj+OcvyOZJq4usIZbcUOlgg99CDj/fCeDmJaeAgZP3Pxcpb0qUP7ELWFXKc1+dAGl5VyecxO3kYlxG0ByAl1eWqnARoAB6znG7aMfBR73OOD739e4Sp3khKYkbpMpYdRjcZNBlFI6/XTg1ls9H7zkJeKDO+7wELdkFLeT3vBU3IjTMZFRBvAAkhPoOqbTwARzOhKVI3IRCTU5IcftNkRV3AA9caP5Ooi4UXybt/09QxPjZlldFLdWyxXF8clPAo9/PPC1r/XejDCuUq+602iI330Sb8ANeDSO2ntD9AP3mJwAOCaTiFs/7tJeFTdyld51V28kXptVmrSrdETcpEC0Om73MMZO8fnsYYwx4yoFkPIQN1at2LWiTj8deNWrgOcpRVXiTlCImpxA8XaxKG5knQcR4+b1UUnLdd1vxTFOPdW1GYBo0rp14n0sbkovQtRxS4y4KRJKB3FLwlVKefwPPNBB3NoNJznByooOXpILr8floqLD33+/5wNyZfzhD25XKdP3vX5JVH7/TkxgBevTiptmAK5SNZtvXCVuQYob53YCUbXqJk/9KG6kphH5V+G3OknfMWZhXaUexQ1wbAIVFO61JAWgKQeiSqEAMDdn2xyyuWQmjoTovDMrPRQTjLByAjAA4payxD8U/0MH9DG069cL8rayAtzQA2/VETfmlfPjTk5YjcQNwBYAPsMQBQBH9d2agwBpDXGjMfaWt4jafbOzzvfjXj0hquJGfTB2xU2n3cdJ3LzrDEnL9etfimOce65rMwBxTUjBj524WZYwpoyJizzoGDcAhYZ4nxoEcaN73Wx2ZJWqrtJ2Vtyf8XStW1Migebtjgd6OqFt21ydOuvjKu23PbQW7GRGacgAkhNUF9U4D0nc4JRF8brHwmSVAvpJnpbPoz6kwo+49a24+RC3wOQED3GjB+p+SGRHORDvzubnOx6OqYsSyUxbPTw99OkqBeIhbnS6Be4p5tdFcQMcG33ZZdGPSxqBStx8G6fBWiJuAODnjD8dwEJ/TTk4kG66s0pV4uatKg4Mz1VKwcLUB+OPcdMobp5ZMgnidvVVYrCed57YrBq0UimUPekNqtrG2ODLgQAoNCVxqw0gxk1ZwLtDcas7yQmtrOhwpUERNzqhbdtCKW59tYdzpFpivxNpH+KWsOKWzQJFrjwBVIOJGyVpeCfrflylZEvUB1L7eEkpbt1cpbRsjMdVCjjXJg7i5rvAPGFuzo5ppueIJIhbFMXNuxRiHIqbvVoLHSiEoSUbfWkPq/+1WkAalr1ST2DjNOjJ00UBeUOu4QZ0WWSeMfZGAG+U/3IAFzPGvFejCGAWwLfib97qQ9pyE7dUrYJalQNgI0XcCNQH+1Xcslk4xjSVAjIOcWuDIQXeYSH7qqnkQ9wWDzRx+OHAiSe6jwGIa5LPC17VaIjJv9uTamioxE159UtOiIW41euuizeJJZHdKztBFQUUUfO9wKpI6Fk1rDsU4lar6V2lFjJo50SHG0sNQXFTUhmzHuIWS3JCq2W7ZwZN3NQHplLL6Uis1oW4SfMdRXHr5iolxS0KcUtKcbOJ28SEqF/SbDrf9Shu5CKNg7h1LDBPmJ/H5jPE26QUtyyawLBdpVZ04nbmmeK6XXedcLfrXO1+aLUcta2BLHLQ3MSAG9uTp2sVKW73APil/GMAblT+p7//gSB3r0qumasHNAiXMYEGsmDtNto10bt1RmxYWaUEVXHrJePPVTm77ZQDUbNKy5D+yVbLdZAkFLcsmjj3XGfpHS9xU1X8OFescCUmKK92jFsSyQkeizuJJXFNZSdYwLT4wOcCq1yTJh5al7srAhQ33nCSE4i4lWImbvSM4JoX1HoVd9/tUtyyLIECvMrEMMa6u0rjzCpVlZ6CQtxo590UNy9x60dxC3KVZjKdy2ABA4hxo3GoXmxaXSHn3kWsrtIQihuNu1FxlfazXmkHcaNYlBDEbXJS5De1WsAVV0Q7rkrcyhhDU6dBxekq5VwsrgqMBHELvN2c8x8B+BEAMDH6Psg5v3cA7Vq1yEjFrYYCKighh0XZefOBitugkxMImzaJsVYuC2NOgzks/FylTFHc6shjPF0Fa7XEYJKWs686bgHEjSR4oNNVSq/lsrhWpDT1DSWjinOADSLGrQtxm8cMDsFu+yY1Gu4JXeWajIlLSJ4lP6XERkCMW7vpJCcQcSuweJMTtIqbekF37XIxBu8TeSzJCUrHHU+FV9zUj9Xogl4OncsBBcshbql6sOKWQ8PbdO3/KnSKm9qXglyljIm+5LVvsStu3nIgk5NCUlM7iEdxU37aM+i3xXQDQK5zZ3NzvjFuFI/XE3HzJCe0hq24NT2pxSFjUs49V5TJuuwy4DnPCXnQZhMtK2MTtzryyMBCFp4n4TiTE3bvFucyOxtNGkwIUWLcXg1gr+4DxtgYY6xL11kb8BI3QMS5AfoYt2ElJxBowV+gtzi3MMkJTWTBM50ly+NU3Nppsf8cmjjnHOdrXsVNfY01zk1av1p6DLOzwNe+P4AYN8+jspe4LUrFzao2cckl4l5/85vO99XsfcC5VqEmsiDFrem4SnledLhiQq5SF/n1MmFF3c16iFssyQnKj8egHDtkcgLnwCMfKUpS9HrobBbINyO4SlP6mxs2OWFxUWTyrlsHvPWtYluQ4gboHwKSKgdiJyfQE5lqWD0xboR+idvr8Gn86Kop4MYbta5SVXHj3Bl3JUkyM63BxrglQdzsot9eI1suB7pyKEHhF2GrwFYqwDHH4B03PMdF3KrQ1FWLU3EbITcpEI24fVH+6fB5+bfmkW1FI27DjnEbH3cMbi8D2K8ciKq4NZBLnLjV2mL/xxzZtNPvAT1x61Ibsjdcfz0A4E4cj4UF4MobuituiblKJYGpZKfE60IDv/mNuPSqgfSG5UWKOaSZt9HoIG5oOMkJPCfuT5GJ8497cW/XPQy4oEm7Skt+rtKAGLflZVGS4rrroocpqK5SW+2Ao7i5JnKF0Ga5/oSjuEpvuEFc6iuvFNuCFDdAT9xic5VSEoJlodng7hg3wG1YE1DcLAs4A9ci364Bf/yjc7HIsM/NYXxc/FutinvuKG7DcZUmkZxgF/2mA2Wz4q/dDuxcD3mIeA0dY3333cCOHXjo3G/9iRtd+ziTE+jphOTTISMKcTsL0m2qwY8BnOPz2ZoCEbe6Qtwoy28UiVuIWomBCOMqbSCnlXPiJG7Vptj/lsP0CRBAwoqbzGn/YVX4ae96UIlxS1vi2qRS9g1Io43ycphgsgB0cZVWC9MABHEjw6hWKveG5UVS3BRXqXflBG45ihudbxEDSE4IIm4+iltfrlLlZEpUj7zddl/AAOKm3r6oCpQ67nJ157zTjfgVN6+rlPoSvQYlJwAJKW60A7qolgWr0kAKHE2WdbaHcJX20yddJUhqSiIQTfDz82DM+XfPHsGjU2ghL93W6VWquHGuLPnlJW6AY1iCxmXUtWNlpytZS/7EjU4szuSEbhPrgBGFuG2Ej6sUwD4Am3w+WzvgHNm26EyZsbxN3Kgg6igStxDrAQfCl7hlnUfAQRC3iiRuR2x2D1a/GDcgRuJWqQC/+Q04Y/i3O58CADhQV1ylXKkHwxi4TNyor/QpO3Qhbo3itGjeYsN2g6trA/ZF3AJcpbQDlbgVBkHcAoIGMz4xbnEpbgUibq4BIRsqlegg4hZV9VEVt4xC3KgAuB9x8xJYQhTFjfoSuf56cZXGVg5EIW5Uw66RKjgDfwCuUi1xm50VbSiXgXrdFY6ysuKuN7daXaVqHySvkutA5NoIIG50m0ITedn5cryBSYiGdxC3qSl3AzWIPO+uYuK2F2IxeR1OBnDA57O1A0vUlWkig9JE2iFu8mkkKKt0UMkJ3jbEStwCXKUsFzNxowsmT2ilriduA1HcrroKaDSweOzp2GMJP+0KFFcpFYmUkwyXjYqbuE1hEcWMzC5IpdAeE22oLzmK265djrFKKsYNSnLCQIkbnVCq06xleQLJCcrJFNsV9w4LhY4O7s0qjYO45XJAphZecUu39DegF8Wt2RT9qVaTZUlC2hwgGcWttULEregwgoSTE1xxdSpxy+cdJqsU4d2zp5O4ZXshbhFXTlAXmac5h/hNr8TNZft1Ew89EQY8UNFQDZ3NrvhUN2AfAEHcalAUCWKkcSYnrGLi9hMA72WMPVzdyBg7GcC7AVwcZ8NWJWpOfNvYGGzilq2LjjtqyQne1Ul6ITKuApQBrlKmYQVx1nFbromdHbZxCMRNukmvmzrX3qQSN3Kfe5fnio24bdwIQChu9pqZpRIyJRn/t9RwJZ5QVrtfjFsU4sYbTdTrblcpWo6rlBXFOeeo5tIgiNtxx9mbFgvi2lD7CLEkJygXKu8lbvl8Bzv0ZpWqE2bUdthB4RmOdM2ZGDPNYOLGrKaWSEVR3NR4pNtvF68zM/qyH8CAiFuziXZFPhyki05n1hC3RBU3lVGT71hJUNi9W4w7dWmufhW3LJpDWTkhNHELUNwomx0I2ScUQ6YSt6iu0rVE3N4HsTrCTYyxqxlj32GM/Q7A7wEsAnhPAu1bXVCI2/i4Qtys7orbMIgblYEYiKs0bsXNQ9wWq2L/h24YgqtUlv7+6m4R33bWWQ5xG0MZrJ4wcTviCACSuKWdDpAdExe4vtzAXiXIgdylccS4teQqCarixizVVSruD7mLB0LcTnYcA3MlcW0yPopbbK5SqhyvKsEedpiEq3QsXQNTpIpuxA2NhuszamKUJa/Uh4DbbhOvfvFt6jF07e8ZQa7STFHvKm23RThLzOVAtIpbNusobkpJEFLcXMSt3S9xs5BNB8tVo0rcgIjuUuWpYaOM3PIlbnEmJ6xW4sY53w/gUQAugijG+wj5eiGAR8nP1zY8ihsVni2hglxO68Hpi7h997vA+ee7CsRHJm7qd0PXFbvwQuD5zwfabT1x87hKrZRecYurjluzCSxVxP43ziSkuFWrwNOehsanP4/zzgO+SPnVO3YAt92G9tg4vrvzDExOAi94AdBEDk1kRP0wsoxyBiO3cbPS7KnosQ2539/cpyduuXFxgRf3N1zVEyhBIY4Yt7aWuDmu0pRU3Ii4/Z//A5xxRn8LeyuH18e4bdgAHHYYAGB/8XAAncQt7uQEuwCpTnELQdx6VdwmU+5JMWt5iBvn7ovUdCtuYVbM8HOVAsCttwLTmMfXHjgb+O//1v6ejrcZD+JKnIkL8MP4FDfauULcmmkfVykAtFqxEzc7FEJdySRAcfMSt2xU4kb1MBlDA079yg78v/8nJohmM5GsUteqObqJJ+TC0JHsTkyKWzYrRItms7OyjBarlbgBAOd8gXP+Ps75Yznnx3POH8c5/wDnvI/aywcRPMSNVJdJLGndpEB/xO0LXwB+8hN3ba5+iFtoIvNv/wZ873vA9u36GLd0GqmsQ9xaqWyiyQn33QdfAxYbcfvjH4FLL0XjM1/AZZcBX/qS3C5Z0PyWU2Ehi8c8xllui+4/9stnGnnxicSm2s3+iIO0uH/cL8iJl7jlJ+QyYPvc18SruPUT49auNcHQttcMzMJCSsZRWcggNynOeTInxsbevaL8xY9/HP40Aw6vV9zGx4XsOTaGbVOnARDrGqqIW3HTEjcPO8xkxHFpgYc4FLcJ5iZuGctTDsQ7MzWbLsWNbEBYV+niYqfi9kT8Bo9cuhL4yle0v6fL8GRchTNxFV6JL8VXDkSjuDUzBecCeA2rZcXqKvWNccvlnCCyxUWX4nbrrW7ilmuFlX3gHAcALxRQh7i4mbbmBn7+82KCuO22g1JxI+JWQ0GfnBDQqRmLOPeuZuJm0AV1Jz15fNxZr3QG876V6PtJTqA5QoZYAXD6lxqMqkIlbhFWJ3GDGlup+LtKc46PspVKNqv07rtlILxn/0CMrlK531RFGCF7sMvGV7m4kYcd5tRotInbAZm343GV9l3LTRbg3QmHuNkV/EslFCbEBV4+INpIMUhE3PqKcZP3ut1odsaPybpiTWQxc4g4540TNdx3H/CWt7jb0Cu0S16pTPSrXwUefBB7c1JxayebnGAXIA1Q3ABXvHpfxI12Oc7cagbFednkxNvJPa5SuvdhFbdm022rbrsNdnafn7JCto9WbdiEPYkkJ9CgbGYCFDfLGoyrNJdzBTWS4vaHPwC33ALMFJXkhKiKGxmfYlGEoQBgTY0RpRtVr2uJG9375eWQiQEeuJY77IO4xaG4aZMTuuzwoCVujLEfM8ZODbszxliBMfYmxthr+m/aKoRHcZuDkMpnMO+ruPWTnEA24oorRB9VvSLFov43KoHsWXEjSx5A3NKq4pbJaf2icRG3bdv8iZtqpHsmqsp+U1Uf4ibXnNm0SdRsKpUGQNzkzK8SN3vNzFIJhUlxga2qaCOFfsUS46a4Sr0qJy3BZCGDdYc5/sEjjwROP93dhl4gQ5UABChuqRQwMYGGLMyc9nGVxqW4ZYKIm8J8FO9ZX65SOvS4Z5mfjiWvvJ3cx1UaVnHzYs8ekc0MwHeCtlelk/0kFuKmiXEj+2tli/6KW6s1mHIguZxLcSXFbedO8XrGw/twldI5FRzipr1JtK3R0BK3dFoMFXU1hygYuOJmWY73Av25SoGDmLgB2A7gWsbYdYyxf2SMncYYc+WvMMYOZYw9izH2ZQAPAngFRMLC2oMnOYGI2yzmEnGVUr9cXgauvdbximSz6HiqJMTiKvUjbmo5EIW4tdPJKm5hiVscilvaS9zk9kpTnMzmzULZ2rrViXH0ukpV4tbXeqVdiFtxSrSJlI7HPlZ8tH27sIFxEDfe0BC3ljgpCxmsP9ydSklqZD/ETTXw2hg3OiEAjbYwV2merKvULkCqc5VqFLe5uXhcpUTc2tKUkwsuCcXNL2vUVtx8Jmi72yvErdnoJ7gTgYqblR2c4hboKlWCGklxIzz6ZIW48d6IW7tQdOxeF+KmPsgXNRyn71Vz+ohxC03c9u1zLTHSlbh1GdyRvF2ribhxzv8RwEMBXA/gAwBuAFBjjM0xxh5kjFUB7ADwfQAnAXgDgIdzzq9PstEjC4/iprpKkyBuar+87DJnfAT1rb5dpe22K8DIT3FLKVml7cxoErdIpEmesyi9wDsUt3LDUdwAQVD8YtziVtx2YzNaSKGEKibaUv0olVCadhO3LVuEK9eyxHqTfcW40b3WuEoLLbFjns5iepO7eBkRt3vuib7ME8FL3Oz9eJkogDopbh5XadzJCVripungquKmLjXba3JCqS3OuVJaDyAEceshOYGOpS4lJxOZAYR3lToJLA2klhb8DxgGmnIgNChbGZ8CvPJ3dG1kFZ34khO85UAU4jY25uqWOPVEJcatR8WNd1PcqC/W6+qiLa45IFHiFrer1LMuVr+KWyRvV5jJdYDoGuPGOd/GOX89gM0AzgbwLgD/BbH81b8CeCmAoznnZ3DOv8o5D5OjcXDCx1WalOKmjtVLLw33UNC34qbOdJWKbx23dE5R3HyIW1x13AYa49ZuIY+685Qmt1MBYHKJuIgbuUrtGSxe4raIKSxBGKtZSxq3UgljM27itnmzW/HyClSRsnxJcWt2Km4lLnY8tS6DVMmdSjkzI8hLuRxhfUL9oQF4lkL0MlE4a9h6iVvcilu61j05AXCIW1yKG13r5nRI4uajuIVxla5f72w75RTnfTfFzUvcACCzf7f2u6GhcZWSm9jKBbtK6SMin/0Qt1bdQpYeXNSs0mwW3jRieqjbsgXYPNWH4ib3184VHOKmOwlFcQMcuzcwxS1uV6nHYORkf6ojjzqLlpwAHNyuUhuc8wbn/CrO+Uc552/gnL+Gc/5uzvnXOOf3JdnI1YJWVQzAGgooFh3FrYO43XYb8K53AUtLoeTaP/wBePe7Fft/ww3Ae94DXhcd8zG4Fuff8D7suFf0/KjELdKi6x7i5lcORM0q5dnuxC2y+iLb0c7mcc89g3OVAsI9Va3KNsvty3VhQMk4H3us4ir1xrjJmTMu4raESYe41eWEqCFumza5iVtcS155iRsZ1Kn1WTdDkq50tQ3Ut6Oon14DL1ccw71/7lTcGi3pKm3rXaVxKW4pHXGLkJwQlUCefOWn8Gx831bcmGRV5LYb//zHgJ/+VKu4qcQtSjmQDRucbQ9XyrDbxK1a1dZWcJITFLV9PgRrL5eB97/fqRitQlMOhNWk4pYL5yo9XEQY9EXceE3pQAGuUsB5qDv3XDi1HQHkenSV8nyA4sa5S3EDkiNuvuVA4lbcKDHBU1erjrxY5oygKm6cAxddBPzylx27WxPEzaA7WisyODaVRzbrTk5wZZV+/OOiM118cSi59sILgQ9/GPj5z+WGf/5n4MIL8Zjly8Xuiu/Be/HPuOc/rgIwWMXNtxyIklXa9iFu6bT4A0LW0tG0Y6WZR60GpPMJEzeFLYxjBZxLwyUvwFLNrbg94hHhXKU9x7g1GkCthhZLCzeBNFZba7eIz2dm7AK8dmzRJkEoATdx63fJK6+rlDC7MSMCozxLBhBxu/tu4E1vEn378stDHNNzaEKlArzzncDe7Z0xbrSiRtLJCSyIuMWtuO3Ygadc/E/4Il6FoiRuucMEqyqiiqNxD4rvfSvwutd1dZVGUdxU4nbkkQ4JtYkboGXgdLxSNiJx+9SngA9+EPjXf+38LCDGjecDFDfLwiGHiLcPe5h47as0ifrE3YW4nXSS+PfZz3a3q1fi1goibq2W8zQsPzv8cMF51Hi7VRXjRorbUUe5NteRRz3t4yq99VYhkrz97R27M8TNAABgSeLWTBeQzXoUt7wiKVFwy/JyqM6zvCxe7aKlcpStb4gNR2XE64Hb9gII7luZjPPA0lOMWxjFzVPHzZUt4bGSPbusqPQKk0VtfYhb3K5SQKyGAMh7Rq7SRs5VLP2xjwXOfXaCMW6yU5TTkwAYpo4U7oFj77lMfP6kJ9nH8XOVxrFyArM6FTfCzAZ58X2I25/+BPzud+J9lFABHXHbu1fJsJQn1G4DO3aLkypmki0HYi+yPYjkhLvuAgCswxzWrdwPACge6RA3qiiPBx7oVDsiJieowo3qKt20ySEAvRC3/HwIV6lckcRexV6FxlXaWhbHTk2OBxbgfe1rxa5fI2sfJEbcPK7yj3xE9PenPQ2xELd2LoC4qf/L99/5DnD11fERN205ELUOVURXaWjF7fjjXZuF4uaTnEDV6WkSVXDQJicYREOr7CZuDeRRRgkZtDCdUTovDdp6PRRxI8Npl7CRG9Y1d7teF+4VnbRb3yJbF7viprpKFcUNPoqb/Tv0TtyakrjxjD7WIylXKSDvmWx4E1ls2uTOvDviIQkSN2lpV1LSSE2IV9ZoiIv65CfbF5eI24YNbrUrjrVKg4jbus1yh57V1akNX/uac6wo5SF0xG1+XiFucvLYtQuoNEU/zHiySuNX3GqCKUZITujZVUpLXwDYvPdP4vgbnBi3Wcw7O921q6PNUcqB0LXOZIDpaWe7L3HTdGg6nkqeC0tdFLflZYfV6waJrgDvkvheZmY8MDmhUBDuSuIYfRG3enjFbXoaeNzj0NGunhW3IOKm2mn5/ogjgMc8xv212BQ3XfB+RFdpaMVNR9z8FDc6tuYJLVJygiFuBy9s4pYp2J2R3KXrmPLU2CNxs2MzpSFYb+1BDnUUawviuHvEMYZG3BRXaSavKG755IhbnbnJUBjiFimmj+BH3OR2Im4ueA+kSU7o2VUqVdsVJo3U1KTz2ROeII6tELf168Vh445xY5a/q3TdJo/iJvstuWuVkkyRJk+vgV9ZEaIMKaF0QkHZxnEkJ9ByXzaq1dDJCQcO9KG4KbVUNu0WxI3ksCKq2JhRbM2997p/G1FxU8f3pNLFNm92wgJCEzdFcSsudFHcfvUr50aHJG6sLL6Xnx0PdJUSIvV3HzDVHnYhbi4o7bKzUsOC6tXlAsqBaBQ3HSiOf1UkJ5Bycdxxrs0u4saY2/8fQNx6cpX6VbYfMAxxixEtWbXcSncSt1koxlSpaK2Obb8A/Q7FTf5+Q2s3NsF5cp3m0YjboFylLJcccatxNxkKcpXSQO03xo0IQq3mHK+BnD2R2VDz/4FEFDdKSkipxO2888SrQtyIVM7MiL9KRTQ9nXbuQS+u0lTLX3Fbf4jcoWcCI/Kooh/Fbfdu8czgdZWGIW71eu9lSVpVT6etVEInJzzwgLtafaT+rxC3QnVBvJmeRiuVQQoch6QVNcsb2B+xHIh6OipxUxW3KRbOVVpMOwcpLXdR3MhNCoQjbs2mXRw7PzvmDHxv8GzsxE0hZfW6bzmQDijbMmhFC/JVyp5EUdx0iEVxy/pUfo97rdIAxa2ZLjjHV3dILtJ+iJtliZNNpeB66hki+iZujLF13b+1NtCWWaWtrEPc1FpuNhTFLZXqXlPKT3HbiD04BM6TKx1jkIqbK85BLQeSdxgTS1BxI+JGC7f7KW6FghPbl6Sr1IUBELdFLixvekaZVc89V7wqxE0llaR4URPJvduL4hZE3DYcolfcDjmkc2WPKMTNO8ft3Alk0EQBdbTBwPPieEHEjRJjOO8hMYbaUfOct5e4BShu27e7f9qr4mZjbAytrLiohzPFPUqKm8LQopQD0SluExNiDEVV3Aou4tZFcVPX8dNN/JoYN1FjEShtHHdL7brfwd3feyXvrOHjKtWUA3HByxaiBFsqhYZ9y4GEVNziIG5jaXl+qpEFBqq4NTNFdxso643iyfshbvSFUsm/CvWAEZq4McZexRh7q/L/yYyxnQD2MsZuZIx59YY1B1on0NK4Sqdaelcp0N3X7qe4bcZuHJZxnlxJ1YtK3KgDl8shDJhGcTsOd2LDtmtdKyeoddwQoLj1XMvNj7h5dkT7V69JrMRtyIrbQlsSt1lpgTdtcmo1aBQ3wK14qU3slbj5uUr9iButLKHZXSh4v/vAA44KuoJx7D8gjOvdd4vVG/wO0G+CQofiVi6HVty8XCQ0cePcFeNmY3wcXA7kw/CAs52IGwWoeVylxaKY5/wIrE5xo760aROQRQMFrhCTkMRtbCVAcbv3XpGAQSTAs89GA9i9s7McSK4uvje2adwttatQ+kEq5RyiV/KeVombzPQG0LFWaQfiJm5BilsI4qYWgw4Lm7gpq7W40I243XQTcMst4ZITmk0RX5BKAUceiZZCXVzEjSYzWzmRgkkAceuanDBi8W1ANMXt9QDU3vavABYgVkuYAvDB2Fq1SsGrVBgxbxtHUtwmW3rFDejO/FXFjXM4BR2xB4eloytuNFjp6T+TEXZGzSDzhYa4/QgX4LHvfLIzSDwFeFOF5BS3ajtYcSPboQZW0/V2Vd3vBk85ECCE4uaNh4izHIi0tHMtcTOzh24U288915mNFOJGNauAGIibMsun2/6K26bDPa5Spe+ceKJ4pb7YD3HbudNN3EiQClLcgP4TFDpi3CK4Sr0I3YZ9+4CVFbSZx3SPjyM1Jjr2oariRrMSBTN5XKX5fPDDk6q4UVYp9aUjjvCobYB2kqZ7rMa4jZf3+K9s/tvfileK5Pfs81vfAm68rjPGLd8U3xvfHI64Af27S1MNz6xPrjk1qzQhxa2ZCZlVmrCrtAQfYkP2b2Wl09DW6yKB6mlPC5ecQAGx69cDmYwdIgJI4jY2Lf4hQ29PwHJOarU6DhA6OWEEiZtP79biKAC3AwBjbArAkwE8i3P+U8bYAQAXJdC+1YWKjD3IFjsUt4mmv+IWlrjVamKATckNk1jGVuYEH4dV3P7lX0RauFpEs1QSA7FScdd6820MYBO3I3E/Us2GqMkAiOSEgtO1whC3yIaTVqno4irdvBn47GfdZCWdFja1Xhd/gedL6FIOZOCKmzRIc3wG2SyQfsmLgAN7gVe9yvmOvLizE0287nXOZvVaqNwy9CSmTLgp3vYNrp6eleRCM4FdeKFYcP7BB0W5rn6JG5FpIm5nnCGI21QAces3QaHVjbhpXKWZjHA1eqsThO7/kpXeP/VwHLpwi1PUdmwM2QlhSE6afsD9iA34Km7ELyk8y+vCVonb4x4HfOhDwFOfKraddRbw/jcsAZ9UfqB5EnnqU4H/+3+BR1zfBKS5Srct0YfXaSJt6OIcd5wgcZ597tkDbIDbVcotC0W5ikRx/RjwYHdXKSD6vN+5hwFrePo+MaAIyQmAKOQb2gkn99cMUtwG6Sr1U9wyGcfQ1mruC7y8bCvUoVylnhT4ZUxiBgsAgFe/Po+pZx4N3PJJpzifPQEr82697iL0oV2lI0jcoihuKQBksZ8AgAP4lfx/B4CN8TVrdYLb9XU6XaUu4qYkJwDdJVuVK+3ZzV1ffBi/2X4flrg94QnA297mdteHdh96iFurbmGMnrjI4HpcpelCcnXcKi0xOaZ86rgBwGtf68TrEyK7SzWu0loN0WLc4lzyiogbZsW5jI8D73sf7OqiynEm8w3X2pJ9K24eC1vsYAlAA1mwlOxgmgnshBOAd7zD6fv9ukrpnpQxhrvvFvZ6YQHIl5JzlfJa9OQEwFG6VYTu/5K47Ro7DvfiaGf7+Lh9nccWdnX+LoTiprvv6umk02KVi0c/WmzLZIDXv6S74lYsiq45PeY5gN+aZ3QxJibEQdWgf9lO2z2vKG7UB9hEeMWt5wdHiXQzQHELmZwAAK1KD4pbOlo5EB3iqOPmq7gB/u5SYkuWhVy65dqfFvR9aTBUxe25L8jjKU8B8E//BJxzjtjoVdyAjuuwVojbXQCeLt//LYCrOec07R0KqGmTaxOMiFveUdzIVTrW6N9VCgB7drojaU+y/mS/D+sq1aEn4lYuI1NVpAManAN0lYYhbjpEJm5+rlKlHEiH4hbCVdozcZNPkvOY8b/fPhfXm5xA6JW42YZbQTulTJwBE1jo4pv+h9cqbuQuPWzLEF2lPllHOuIWVXHbVTwG2+Bh4EGGJEBxC+sq1cI74wd1aO9J2kG7PgfN550OqqhujYZC3HI5gDGwdttx244HJCfE7Crtmbh57hEltoWCTdwKfZcDiUNxK/ZD3AAUU+LcAx/ePMRtAVPOZ65liSS8MW7AmiVuHwPwBsbYfgAvAPBp5bOzANys/dVagkwNb+U7XaWlmuS1rZZjJeSADvK1e+PO9u90G4FDWzvt90XUUEC1p1IzvSpuuZoy4sloeVyl6WLyxC1dSJi4hUhO6CWrtOcYN6/ipoPPxVWzOnsibh53Uz/ELXTxTQXe7zYanTFuFL9/xNburtKeFbe6RnGjcwxQ3HRxbqGJgzyxHflj/YmbDkTcPFmlajO7KW5aRCFu8jpUINvZTXHLZt1xUnDaaRO3TMZm/xOQ9mc8QHHTuEppn72gg7hFdJXWpWLWC3Grh1XcEiZuJR6CuHkNnXJNCky0NazixrlbceuXuB3UyQmc8/8G8CSIWLazOOffVz7eA+BTMbdt1YEWOeaFTuJWqMkOpLKzEIqbd8wdeCC4l81gfnCKW6WCfF1D3Lyu0riJm71QKFBuih0MkripMW4WZRZmsrY3ykaSMW59KG5qVmdPMW5hFLe0oniEUNz6IW6Av+J25Fb/A/StuDXEhaqmlM5E46NQCOUqjZxVLU9sR86juJVKwcQthuQELbwzftCTiOxYOyD99n6Km1pjSDPxN5tAWsa4NblD3FLgsJjMtBpQckLGCiBuQXWepLFfxDSAXhW3/pMTqErM0lL0kih0iEI7gNhoiDeAvhS3VisEcQvhKl3NyQlRyoE8CcCfOOcf55z/2vPxvwDoVTtY9bAs4JprgPaKJG4aV2mhIhW3iMTNO+bmH9QTNy79dLOY6+xf7bYI+AlAaCKjTr6VCgoNveKWLTjELVMKSdwqlXBlrJUn8lpDdOFhuUrry+J4pelcZ4mfJF2lYRS3dFpkmLbbHUoDxbkl5Sp1TZwBE1jcxK2WGsOePcC114rtRx2bXHICpOJWzkyL/4NcpdWqWPD61luxccLp4xSb73vNm033mKPkhKxC3IpFca9V4lYowPUk0SU5wa8NdDpdiVuYml3yADsh01K7KW4qcVP2q7pK55fSrr5Wz3qWAfHCh7h5+4A63xM471w21ddVGrKO20JKzA+BxM1rv+X+6qn+67hls6LbtNtAZbGpXdPTDzZxC6O4BRA3UtwCbQBdw0IhHHHzS05Q0IurdGkJ+POflXXDh4QortIrATzU57MT5OdrEi96kci4WtnvPBV4Fbd8WXYgdRD3Qtx2awZ4LgcmJRQtcXvFK0R65c6dnb+V6FVx8yNuagHeIOJmG846B049VaS6dnv0UyZHepsp9kbcQrsqfVyljRVhvcZmNBNFNouOWZK2Q5TpCFU7TwdpkAKJG9A1zi0OV6kuOQGZ4ShuqSlxQpdcIrYffXyCrlK5z0pWEiS/5IR6HTjtNOCkk4CTTsIHfngKRG6XU2JDO7dalsjiOPNM0UkWF0Xmdj6PB3AY7obnJqrp0bOz7tXEfRS3QiGc4tbVVXrooeI1BHHrqrh1IW6qq3T/QsZF3Bo5+f0+FLfPfU5cvp/+1P3TT35SEO0rrnC2pS1P56HB7C0H4h3kciwssWkAXYjba14j7uV994n/yVWa6j85AXDcpelnPE1I8aHWgFL6Rise4hbWVdpB3HRlAXRPIzEQN6rG8PKXd/lNwohC3IKylfMAWgGfH9R44hPFa7sse0Chc+WEXNnfVRr0sOodc0t7NU9vmzbZ/pennDaPM87wfP6nP4kd3Xqr7zn0StxKjQXnfzXGTVmrNDuW850daHy1yjXgzjtFDM+DD4ZrQz5vc4FhuEprNcCS1fNLkz5P+Coz8ihuxXQTnIe2k26EcZUCvsTtxS8W5Rye9zxnW6+K23hKXkRlsiyMR0tO6IW4qQon3ZOHPWYcJ50EPOQhwF/9FfD4J8l+2G531A3r11XKpau0kvMhbnSABx4Abr/dPtkN83fZJVQCFbfFRVGM9rrrxO+vukpsP+00NKwU7sAJOPC0FwJveIPYripuMzNwZcv4KG4BtbHp6/b3tPAStxCu0j2QhNLPC6AeVONqazQcV6mXuFmFLopbiBi3v/xFvHrN5Y03itdbbnG2ZVo+oSu5nFBBs1lB2rwXVw765ZToO4HE7eabxUnfcYf4XxqterrUdzkQwLl16Vv/LOql7dsX+H3vbgthiJu3X2jWao3VVaq7/70SN2p7qTQyXtPAOm6MsS0A1BrnpzPGPIE7KAJ4OYD7wxyQMXYegLdDqHczAPYBuBrABzjntyrfOwLAJwA8FYI0Xg7gDZzzUMcZJKjURAFyECuK2xIm0UIKmcqyGLwa4hYUIOolbsv7gonb+143B0x4PqfeptP/JUIvvO5p0Exzr9I4J8ZNdZW6iJuPq9TFWrdtc6xJUBsU4pYpDSc5gTILc+M+M9v4uCPXe4hbKdsEWuLUIxmCeh2oVNBOpbHcngj+rc91f8Qj3MpBwFc74bGw09kKUIc4VzkZq8kpcRM3mnsnJ52K73RPTnn8OP7yHvXbTBzEssSfwkD6VdyYnLmquWmxwU9xIwZwyimiby8soIQK6igEK27qjbjsMrGaAACcdx4a3wM4UnjgI1/HOqrHqBK3AMVNXZtWXX6xL1dpBMXtANa5f+uFTnHzxLjZitu821XaLkpD5lXcqJ5YCMWN3vu5T9X+kg0iboDo++Tupm3ttr2TlZQw/rwW0AlpziBjJV+rLIC4hUxOAETYxB/+oLQhpA2lrwUqbn4xbootIOLWs+IWFOOmIobkhFEhbt0Ut5dAEKZfQGj7n5b/X65svxjA+QA+EvKYswBuAvA6AOcCeCeAkwBcyxg7CgAYYyUAVwA4UbbhxQCOA3AlY6yHnMlkccwxwNFHOy4jVnKIG0fKVt2wsNAzcbOXpTog4xumNjhf2rzZiXjWkTPqbd4ADQU9KW4A1lmKu0MpB6Iqbpli9zpufEV5ItOtxahrg0Lcsj26SvuNcaNaXoWJHhS3jGhr5Dg3eY8bpRkArCfFTYdeidtEVvZpXaYDkJjipi56bi8wr0up9jmxfhU32l+t0MVVSmPy2GPtjkdxgYGKm7rx0kudhdfPPdf+yCUseImbqrgRcWs07PP2eO77c5VS/cCkiJuPq3TffMZ9EcZ8XKU+BQN1XYO+4iX0ZD5dxM2bnEBQiRvg7vtKvFYjJQsI90DcaqlSuHIgXZ5MKGwi1YxG3OzbZA0gxi2IuOnUtTgVtxEkbt1WTvhPiCK7DIJI/QMAr7+tDuBOznmoOm6c828C+Ka6jTF2PcSqDM8D8HEAr4JQ+k7gnN8tv3MzRC25V0MstzUyYEysNFT8fCdxA4Q7az0OiJHfI3E74gjhSazMiUFf2bgF+UUpaW/a5NQY0JGzEIpbr8RtQ2t352fpNDJZhhZSSKMt1KhGF+K2rAxs3VqMujaoxG1Iihu5y/ITPpKESiRiJm7V0izQTa1Lgrh53E2TaXkRVZKa0Shumgmkl6w+HXGbYCvi0dKbyUsHqVZ9i6/2rLg1xTWtFabFBj9XKeGYY8T6jHCIGylu2vNX79nll4svTU8Dj3qUK/HShtdVqipudLEUxY2aN7KKWzbrm5xArtI9B9yuUjbh4yqlPhjCVRpJcWt3IW66xByFhDQa4vNA4kZGTkPc4nCVikQljgzF64V8komLuOV4H8kJ+bx+4fcQxK2XrNJVQdw45/cBuA8AGGNnAfg95zx82kl4HJCvdOueCeBaIm2yLfcyxn4H4AKMGHEDhLuUiFtqzE3cKEEBc3Pa5IQwxG16WnwvvSR+XxvfgCoKKKLmVtyCiFsCitsmrgkwTqXAmFjgO42GIG7LwcSNlT2u0jBtiCE5ofcYN45qlQHNCIqbR+KgRbcj13KT97FakDUCh6y42TFuukwHIHDNxrgUt5lsGWhAT9x8qvz2nVVqyRp+xS6KG+GYYzoUt9CuUnp/zjlAJuPiNjb8FLdSycXOYlXcyFcdIcatK3FTWWmXOm5759zELTXZv+JG70Mpbi3xT3tsHCnVhoVR3IpFWFYI4uajuFUQ0lXa5cnkmGPgXm84ouKWbcYT49aTq9SvY0ZwlUYibgfst0NFlDpuV8VJ2hhjacZYjjF2HIDPA9gNR4k7CcBfND+7Bf6ZrUPF2U9sIoMWLKSRLWb0xG1+Xqu4kRcjiLjl8+IB2u7kmaIT5Ksqbl5Vrd12jhmCuHUlEZ7Ovxka4pYWbtIWxGtuvHuMW6/ErVfFLXRMH0Ex+ClwFFEVx5bHK3ZLTshk7OviJW6RFTd5H8s5cc+HTdxKKY2rVKe4JUjcprODd5UySdyafsRNp7j16iolnHuu6yMXcVOz61TFTSVuSnKCl7jFkpwwgBg3tRzI7n3uGLfMtE+MWw/ETe0XnOsVt5xU3PjUtPt4tGNd31dISDMliVs1INBKJW6KPa/yQmyKm2u94cjETd4b3dgLUcct10NywiKtnOBH3JJwlY6NjYziFqWOW44x9n7G2O2MsQpjrOX5i2B6AQDXQbpZATwcwNmcc4p0nwWg8+vNARQw1tG+X/n9RWxXT5jKi4FXRdGVqQU4maX9uEqJuFECRDOdx27IJ2qv4vbpT4sFSZeX3QbDz1X6wQ/i7//9DBRRER3zfe8DHv94fOBdDTzxiZ5x3ANxy094iNtLXwo8+9kA5w5xq3hi3DgHXvAC4P/8n8CLQqeXGxuc4gYId2m1CjC5vTTdxVWqTqoBxO3ee8U6yd/6VkBb5H1czg1JcfNbOaGbqzQO4vaZz+BZ//cRmMUBTE0B/4RPYj/W4Ynln3e2gRDw0PDPeA/+6qInhIhQ7kRKqq3NsWmxoZviFhDjFqi4qa4gSdy0hCpIcVOugZ+rdG4OOP104KKLnN2EdpVu2CAyHTzriurOZxFTsJAWtrAbW+wS4+Z1leZmfVyldG1CuEqpLx5/909FCZebb8bysvNTHXGzs3btDwIUN5oDCgVY6S6Km5p2rq7MUSzCaqf867hFSE447DBgIhuCuL3mNcDTn25nZ9vErdGDq1S5Hrn2ABW3cll08pkZ5A5dh7fho2g2O7qFGyPoKo1SDuRfALwXIs7skwA+6Pn754jHfjGAMyCWz1oC8AuZxbo6ITtWDUU84Qk+xK2P5IR8Xthih7gVcBnOFaUIHv1oh7gdOAB86EPA734nqpCqzMRPcfvqV7F5+3V4BP4ovv4f/wFcfTWu+6878NvfegQwD3HbiL3ogCRut294Iu7Kn4TpLdPOBVlcBL76VeCHPwSWluzNqYoysOfmgN/8BvjmN4EvfCHwotD4T62fFRdpzx6R0t4FsRE3S1iv0lQXxU1D3HKpTuL2i1+IcgM//GFAW+R9XE4no7h1/ap3kXmuIW5JJSd885tYv/NPeCyuwcQE8EJ8A+swhwxaggU97GGdv/E5SD4PvBhfw6H3/E6k1UUEa4n7Z43Jp/877xSDeHxclKT3Fkw75BCbyD/iuAoe+1jnkgUqbiefLM7raU8DtmxxfRToKj3xRBEc+6QnuW7usceKpjzpSe59XH21CMH78ped3YROTpia8neLec6niSzK6QCj16UciLpywq69GXCFuOVnFYVbhbIYvYogxe3h234gMoJ/+UvfOq453gdxUxQ3X3dms+mUsalUXCSi2UTfKycAwlwfd2QI4vaNb4jidtu3uw6R7oW49VEOpN0GtmMLdqaPcmpxeeGnuN18s+jkCwtgc3N4IftvAF2e20aQuHVLTlDxPADv55xfGMeBOee3ybfXMcZ+BmA7gHcAeA2E2qZT1vyUOHDOz/Q71umnn95LidNokB1r/ZFFbHiUu96i/XTgNVKtFtBqYXIyrf0YcBO3bNYhbo1UAe/HB7H35e/HZ45KO1/805+cEVAuu5mJn+ImC2Fuwh5UytyuaE61hbSKWy4HNBpIw10bC4B48gZw+u5L0LbaYvkrGkh33ul8b2kJOVkDK131DOx/+zfxSvW3Usozhkrc5DXLTxXEIL78cvH3t3+rP1eJfrJKARHnVq0CqVYXxS2AuOVTnTFuVJM08OlT3sfFdATFLYQS2aur1F7yZhCuUjmD0tJusxD/v/dpN+Cff/Rw/ZN2gOJGv8e2bcBjHxuyEQIpSdqt8WmxgeoPnn22mA3VtmzdKvqwvFkf/UAF+FtnhYdA4jY+Lh7EFHRV3GZmxO/uvVccl0r1NJuYnAR27HA897SPHTvE6333ifuRyURQ3CYnxfGWlkSH9hIZ5XyayKKcmsRUa158n2RH3cl1cZXOL6dh8QzlViI91UVxi0DcirS+dLXqS9zyUnFj08oqFYw5F1eXmKOQEFLcfMmVZ6WanohbiIe2Y4+sA/SA7mcAqC3btgFbt9pfy9T7i3HLtqMnJ9RQxFlHbsNd3/DRnvyIG12/I44AduzABFsGpKjpu8b3CBK3KIrbOIBrkmgE53wBwN0AlQLHLRBxbl48FJ1ZraMB2RGZNBCMOX3HRdy8DvV6PZTiVigI22MrbjKN3K6XRoqb2vtXVrorbsp3NmM3Uovz9sCluAvXgKIG6VbKJkijxVLMWbOULobanqUle0LoIG7/8z/Oez83gKK4FQqw3Ui47DL/tkn0qri15JAhxS3dEkZxYrYHxY11Km60ClAgeaLiuywEcYuwGGavrtJcS/bpbopbHEteyXOfxRyyWYd4NQ8/2p9d+JxYId3EBJUR6ZbJrAGR9taEZ5FaKuyotofWGJM3K1WruGqoBbpKNZNQKMUNEGNRNUbyh8Qr1H0QcbMs4P773e3SKm6WJQYQY2LW67bslULcltMBgb0RXKUWMqg01XIg/ce40VdKCnHTLXnJOZCHhrjlco57W5eYo7o7uxE3db7QEDffciARkhMA4JjDuihuVAcRsF0woRS3MDFuPLqrFABYJq3PKAX8XaV0/WRM5hQWvc3pxConbhdDLDIfOxhjmyBqthHn/zGAMxhjW5XvbAHwePnZ6EGJWyCQUahm+idu+bybuNUlcbP7p+4J16u46YibsuzMJuxBYXGP85k0MFrFLQRxc0H3BKQQt0zd80SmGtgA4qZeH5u4XXpp13WkeiVuS6lpAApxa4vtYzNdYtzUmc9e8qpH4iZnEXLB+z4pAgNJTrDLAfjFuAVklUYqB6JEiM9gHtlUyza8hc3T/r/zYYdTbWU27pYQowGR9vaE59jUD9V77iFu1PECz9+HuLVa4lKowg6AzuQEFQH9wEvcAIfHBiYnkIo3OemQNyAccWMhXKUhyoFYyKBcV/qamgykoodyIGMN2T9qNa3i1mo5bj6m2l/1YnVxlfZD3CwrPsVtyyFdiJvaPtk5bOJW689VGkpx0xA33TTj7LSL4ibjP8fbSxAVAgL2NYLELYqr9NMA/osx1gbwUwAdLIBzfk+3nTDGfgDg9wBuhohtOx7AGyFKgXxcfu2LEAV6f8QYew9EhaZ/BrADIgN19KB0LAL1nVpuUpzd0pJ74WcAqNcxsUG8XVpyDLLyMQCHuJGhaDAPcctkhAFVDaFXcatWhQFRDbyy0PNm7Ma+JYfIUfxGZOKW0jwPdCVucmBv2WLHUNgIq7id8HCRwbFrl4hNOUkn2gr06ipdYtOYwRzGUEatBmR574pbVkPcQrlK5Syyvz0a5UDscgBJJyeUy3bjZjGHpdYiUuBYwBRm1gdYcZ8Tm7QUE9YDcSPFzTWmt251KpqqEzht83S8XhQ3XzKlU9wIpLy124JxKLMe7UddX5wuR6CrVHWTAsExbsqyT6GJW4hyIC2ksVzTELcYXKXjjWDFrdlUVsvphbgpyQmhiZuy/FKgq1Tdn2V1hpt4cNTmLsRNbb9HcUuFIW7ePqHsL9NDcgLQhbh1U9xmZoBcDrlGA3nUUasVOr9PGEHiFkVxuwZi9YIPQGSE3qX5C4NrATwLwFcBXALgTQCuAvAIzvmdAMA5LwM4GyLj9GsAvgHgXojM06jFEwYDRf4muIgb4Ku4pdPCPnHe+WCiErdCQVHcIAa8q396yZSXuAGdcW4exW287BA5bdBoQopblojbKad0fs87oulae4kbVUIGurpLe1XcFpg4b1LcMlxs74e4qTYtiqt0X2s0iFtaxnolvnKCInvMYB4TTWe91qDumBRxI7WVTyrEjfofkJji5utBVYmb9wER8I131A1NuhyBrlI/4qZT3ORsy1MpcKSw7Bf3q7YvRIybhQyWKiEUtx5cpSpx0yluvsStW99XSUhGXFjW6M1VGkpx0/3vwREbIyhuHuLGVoviVqu5rh/120ksrTrFLQpxezmAl8m/l/v8dQXn/COc80dyzqc55yXO+Qmc81dzzrd7vnc/5/y5nPNJzvkE5/xZ3u+MFAIUt3peMVLeyatLZqmfq7TmVdwA5ylbHSzdiJtHcZusOETOjqeT4/hb3wIOPNgjcdM9ASnELUfE7eEP7/xeWMUNcOKLaHkgH5SKHB/GO/G4Xd8L/J63DQtsGoAkbhVuuzvHZ3yIW0A5kEyvipu8h/usIdVx88udD6O4XXcd8OpXO2uaRiFuSt+dxRzGmuL/Ocx2CEwu0Il5E0wayljYuxfvf9My+Pf+B/jwh0M0Bsi0xTVNjSvlNlTipl4DH+LmvT0f+xjwuc/J3/SquE1PBz88+dRSVKFV3BoNUZ7n/PPFH5XqIeNFfX3fPuCNbwSuUUKiPefim7DlPUHNxG812khBhEK0kcKBBeU6+8W4RXSVZtFAqS3JYhjiNuWJcfMet5ur1I+4Kb9rlwNcpc0m8OMfA296k2stVBtdxv/maec4VjVYcWvesQ3nP4PTEEaqGiLGbf9+0Wc++1nxv0rcWiEUN09yAhCBuNG9oXIg1NY+iFtgeMoAENpVyjn/zwTbsfoRQNwaxWDFDRB96MEHxVcOO6zj484YN2iI28kni3Tn5z9flPTwxrgBnXFuHsVtsuYQOS9xe/e7gcfP10X5TIW4LaenMNFadPYZxVUqJ9xsQw6ohz7UKebJubgofsStUOgkbk99qni96qpOt7CC2QN34Z34/7Bt1/EQCdNdQMSNTwMQxC1tP/Wnkcn4PAPRhH3UUc42edMybTdxK5ed92EUt92N0VDcbIRR3C66CPjRj4AnPxl4wQv6UtyW6+L/OcziuOMCfuezcoKtqEhc8ok78P4vvAysvAz8zd84906HVgspLjKqc8U0cMIJwkV/9tnOdxgT2WuVinP/AxS3SgV461sFV3nNa9CVuHUMqU2bhKE4/nh9m30SVUIrbr/8pcIqFZAbmEjWv/+7IOi33OIo35TwlMkCdWAxLHGj66UQt3ZTzNytVAZoM9RaGsWNAgBplo/oKp1Rixf4uEotC5jo5irVLXmleGdsxS2Eq7S8t4IJhTl0KG5vfztw++3Ai18c7DrVgBIEAGB5rtlZ0kEhbtlGBTdeshsWDsHMNAdWFDLkxdgYsHEjsHcv8JOfiAfq177WdV6ZVkTFTb4N7SqdnRVlqFRXaVjixrnzm2JxVSpuBkEISE5oFsIRN/qK5uMO4lblBdcxAACf+Ywwlk9+svhfp7h5iZtHcZttdCpuNKCqVaXCtkLcFnKb3PuM4CqlzbmmNMzT08D114s/Gh0+xI3n8p0xOBs3AqeeKgzNb37TeUyJQ0qCaJasLk9bBHkR5rg47wlWtl2dTeaTmAAAp50G/PGPwKc+5WyTJ53mbuKm3Ap/8qQE6O+uj8bKCTbyeYck6ZIT6nXgLhlREYfiJhWzR507gxNOCPidz4mV6m71+YX4BlJlGei1b19wW+S+6sghl2eC1Pzxj50uymuuEXWj6D4EEDfqB3Z/9CFummdEgelp8eD2k5/o2xzRVcq5R3Gje/f0pwt158c/Bi65xCndQ6TpuuvEK31fcy6LvPcYt3ZDdJZUNo2rrgIe/TgNcQPcfTCiq9RF3HySE5oN7tjDHhW3KK7S1kqAq7Raddj20lJkV6lK7JpdFDcAOAbb8IMfAH+4pgZmWeI8ddJtKgXccIPoK/m884SixrhFJW5RFTcqN9MLcavXZfpwHkinR4a4hVbcGGNf6fIVzjl/RZ/tWb0IUNysUvzEraZT3CYmxJP/X+RqYRFj3Eqo4simE+vjVdyaTT1xW8nNAO28a5H5DnSJcSsQcRsbcyRHPyYhj0NGL5fziHznnisKql52maPAeZCpieONYwX33iuEvkDINhxoi/Oeza8gV5N1vJiPm5Tgjdsj4tZ2x7iFIm5Uwn1sDItVcfEGXsfNz1WayQgDvrKid5VWq8A9Mn9JdnQfL6YeHsWtJBW36aOD/KT+B7HLPUi8FP+pPZYWSqB9Pg/xwKCDKp8Dga5SGqp21mhU4gb4q23qfgJcpTMzYiwdOCBMg8stS8TgyU8Wbi8vvKtW3H+/2EEu10nc2iGJGy1D02za++JNeR8zGVFE+MgscLWmDdmsY5MiKm6HqLl31SrmNNU8mlULabTRRAZZVW2OkJxgE7dmd+LGqh5X6R6lHMjevc5vVlYiu0rV77dCELfj2DY861lPAPZ44hx1OPJI8Tc9LYycZx5Mh3GV9pOcEIK4+Rbg9TC1USFuURS3swGc5fl7LoCXQiQbnBVz21YXApITbOK2uNgXcSsUHOJU45rkBIL6lOrN5glQ3ADg4fxP9nvv4r9+xK2WnXT35G7EjSZ1NcbNku3U1QLzIW5NGR/S4Q0NE+cmn+DHUMa2u0PUZ5ZtmJOu0unMiq24tVJdiJsX8rwoK5HEBIVD+xsxun+zs+GMSBJ13PxYVjbbuQAmIO53KiUYCY0T2dF9vJh6KH13FnMO8QrMTPA/SLEqfn9fVrhEZ7DgfOhXrJqgEDff4rQ6eBYF9rpKCZaFDrJD0JiacPBRX9Xdb9rkeIi3bfO4Som4kWvUC2/gT7stqvkCHeey0FZsohdeX7Anzq3VkDO3Tt3tVgQ6ZIzbrIe46VylrbIMW2EFtxFKSHFL1wMUNxUrK5FdpS7iVutO3E7IKOoeEEzcCJN6AWOkFTfl+5w702nksRczQhM3zvkWzvnRnr8pAGdCLBD/3KQauSoQoLilSgXxT6PhGCoyRn26SrWThpqJRR2PjJhfcsIGUZNkCk4DOhS3BkdBR9zyHuLWLcaNynQoxK1orbjbrv7Gj7gxH+L2uMeJ9vz5z041ey/kCEyB477bQ/hKpVVZwDQAYDKlErcoMzd8iVsoxU3ePz4z0xnfp0MEV2locS4McVMnTcY6G+khblFdpVlYmFqQVWIDMxPg24/yFbG/69und/6mm+Imr2cDud6IW4DiZje1F8UtCCEUt82b3cTN5Sql4m5+sX+6dWKJ7MljMnmw+VZIxQ3ocJfaihvN3H7ETRdn2WOMm7aOmyRujVTBnXYbhbhlxeepEMkJeSskcSuXO70fURS3epesUgDHMtkXohA3cid7BIxMU1N2SoXqs8/noytuZB96IW5KMkOjIZ5Fslm9A2mQ6DvGjXP+awCfgKjztnYRQNwKReZ0bJqdKZhVdkjq02GJW6UdgriprlIK+FctEOeOzKMpw+GNcaOR1U5nhFuW2pgLobipxvW008Sr6iptKa5Sgp9aRMQt5UPc8nngLCkA/+IXnW0BXDEzD9wRosKMPHcqejvOyshBFmDNxK+4+dpZef/aU05igl/xcACRiBuV+uK8y6LLQa5SneIGdN4k+QDTa3ICAEztl6QgLHHzrlVaEfu7tvWozt9EUNx81/HUwUPc1Guu1lELUtz6Jm5dFDcS1FyKW6Ylls8CRK06HVTiRi5iInt2iQ9xsHk/V2mrJWZHtbqw8iDabgOs7bhKXa+0LiBB/dyno/nFuEVR3BqpiIqbLjnBx1XarijZl2iCL8gHf29WqQpVcSM7HUFxawcobq0ZoV5t5fEpbmmri+KmlH9CKhWf4iYn3bCK26i4SYH4khPuAXBqTPtanQhITsjn0ZW4+Sluap/ti7gdfrh4VSe/5WVxgFJJ+xStKm6cAyk5wNrZvKv3NgohiBtjjvE8VXaVxUUnZrvtr7j9/romrr7a2UzXrOGnuAHuVRR0UIjbnm1u4vaDHwC33aZsUIqHEnGbgKO4tdO9KW7M6iHGTc4gzYkQiQlAJOKmNC1YdYuquAGRFbf77gP++7+d9bUBdBC3SSJuPbpKc2VxLf+AU+2lzMpThwAA9t0xh0su0ezrppuAn/88NsUNcK656jUMo7gFKq06qJLqD+QC6p7dq4rb3Xc783lp/gFxzps26ZU1wF1D7WUvE++9ils2i1QKWITPk6paw42eSGi/Cwtofe2/sR77xb68xM3bLtqezTrvg1ylc3PAf/4nMo2Ki7jxatVVsoeuSbviQ9zUC6rLKlUXTM+Kz1M+xM1acjOK6s4D4o1U3NpIg3s9HDriFkFxa+sUNzkRNY4V3pItLXlfqdNGIW4LC672pLoRN8+TyrBcpQcVcWOMZSDi3Hb23ZrVjCDFrQCn01KHJYlNDoiortJyK4C4qa4F6m30BKw+OpLEs3mzvQSICpW4qcu7tDIa4qYqZX4VuqemhAH1KG4Mbf1C5fICvuftTTz96cok7iFuWsXjKU8Rr57FuW0olnjfvc77e+4BnvMc4BVqmo08MGcMyxCGcIyv2Iobj6qbe9hRpSKub6gYN5nt2BwPUQoEcC5OqNTZBImb9yZ1IW5vfSvwwhcCv/2tslH23TbEhD42J9do6tFVml2WZVWwGXdB1BO589S/BQBcc8kczj9fk1z6/OcDz3iGHQzer+IGOGOY6mLZTU1KcbvtNtHJX/pS1/EB/xi30oNyog4qkbJJZpc/8YmOgu8hbshmkckE1HHTFakjQvbRjyL70hfiXfiw+N9L3LwxdnS+KnELUtw++UngZS/DC2tfdrlKac1mmv+bTbkARUVR/qMobtSpxsfBc8HErbHoHre1BwRpJdcdAPCsZxJQkxNiJm61Q49GFQXMtg+IB/9eFDc1kQJAutklOcHT4WkeGHRywigRtyhZpVdoNucglqxaB+A1cTVqVSIgOcFF3AghFbfO5AS34qblDLoYN53iRhLPpk2O0VWgukrVYpOtdA+KGyAklGrVaYssB1JEVRTULBa1q1/zZhMLC6JM1uGHI5ziJmP2fNdNVJI2Fh4o26sA7Zd20RUap0w65YaYHIqo2Ipb5IAHUtyaTZRKTkH0UIqbzMqsbj4aQAgjQtehW3kLd9NCEbc2mF0I1f5xWFdpF+JG62bS/QBg99250uFYX9lh11Hrqrj5nFRmyVl54UX4Oo7CfXjBERmcik8gV5m3K6/QJQTnomGtluiMEIpbMYriRuRCo7ipxC3R5ARyecpXP8Vt2zbndhZ3dUlMAIAzzwS+9CVRy45ORkPcsllgqRGBuNE1++lPAQAPgZTDvTFuYRS3IOImCcWJrVtQgmI3JHFYt040lxJcSXFrpiO4SqtV2O6DRz8a7S+Lt76K27KbuLX3OsSNXOs8mwPqCvMol/tzlTb8iZuVKWIfNuBI7BCpx70QN09CXK+KW8AKXu5Orca4ETzEbdsqU9xCEzcIdc6bfrcM4PsAvsU5/1VcjVqVCKu4EXyImzfJyqu4ZaXqVWkFZJWqmWtEXIgshVDc2qk0Uu2WK6tUzSi1PIpbszQVjriR+5LaIBW3cTKSPk/MRJC2bXMTtxoCiJvORaFCIXSF1gp27BDLpNLXXfOJUjy00hDnWWhXbMUN3ifebqDr025jYqyNSiWFcjkkcZMT4fImMbt2NSJEyD3G0g+hiJu0nDUUUIJi8dQYt5CuUr9yIPR84XoSpvp1Y8dgfUVZEb2XGDfOkVkW+5vHDHbjENyE0/FXKVH7b0ouh+XqPisrzj4OCJdVE1lMrzbFjfrCgQOAZSGXc+7Vpk3CFJRK4mO6nfkdXRITAOHaJKmaBtA99wiJJA7FTX52KARpdhEz9Xve881mnTEX5CqVqv/RfJsrdozVqgA4ZmcZdu0S363XHSWuGSXG7be/Fe9PPRXYuBHtrDD4vsRtxS0FZeblA1ip5Fw670NSn4obD1Dcmqk85jEjiNv8fDzErZvi5snC6qscCP14bMxuzxQWu7tKx8ZGirhFySo9k3N+lufvf3HOX7PmSRsQG3EL6ypdsQJcpem007tIsiBXaQjFrbpOkDzVVeoibh7FzSqFyCpVQcZkaQm5LHeIm4/hVYkbAPui1Hk8xG0cKx1L/CwtCYEFgD1Z83QGFTjEjdrFchEVN8bsc5sZdxIUQrlKZUMX14UkbkTI1Z0HIIriVoWHOfQR4+Y9HnF7F3GjFSNKHvLQjbjpDrKyAmZZKKNkr0ICODGMU1w0wNV91IcehbgNK8atZ8WN+gLnwL59HYobYw4/o/PP3h/CVapiclJIlbWaUCeVEh+ZDFDGGDhj4uFSJVO6ZSE8dmETpKstbIxbLtdVcWs0YN+TY7DNFePGOEcODczMuM2KrbhlCmL/FJMXRNwo5laWLCJXKQXoe9FacTOKUrmTuLG8xlVK19FTvcAXKnHTKW7k5UgVMAc53ubmYiVuJsYtPMzKCXEhIDmhg7gx1iFhx0rcAEe9ongCNcaNggR8FLelGbE8j+oqbTQU4pZyE7fWWEhXKSGTEd/nHLlmGWOQbssuxI0S1GzFLYi4qYHYrgh3CQ9xo32ry9nYpEFV3CRxy7cU4uY1nGEgz22qJPaxe7ewETQZazM7ObeJ2/zsEBW3MMTNz1VKrrYAVynnGsXNssRvGMPuwhb3MbtdBN1JzTtqm4oDXExKNHG75jv1oUc+EEVOTqBq0Y2GfdJDU9wAYPfujqxSoJOfpe+LSNzU727b1uEqBRj4hDR6ajptkOLmhddV6lXso7pK5cx8JO7HJrjHSxFVzM66iRspbla64C55E7TkFS0BJr0PFJ+WthrKk6KDVtnNKHItGa6SL6FcFoe17Q+d/+Ki2Fc67XSSKIqbbvCT4pYuOGOmV8WN5iR5vaiGXSLELZNxz7Vrkbgxxk5mjH2PMbaPMWbJ1+8wxk5OqoGrBhprSuPXlVVK3/EM6NiJGxk7GiRTU6IDt9uOofRR3OYn3MTNq7g1UyLtvsXEyIlM3JQTzteXelbcqu0A4sZYcEalEuM2hnKH4gYo90JD3HKW4ypN5Xso6uMhbnT8zZsDyNPevaLdMzNYTIdMTlBj3AJrfLiaFdpV6kKQq5S2n3yy6B+1GtBoaOfTlRWnqTZxI1YzM4OFzHrny7OzXeqhKCelHoTi5eBW6/a35MoYmAPAQylukZITGHNumrQZOsUtTDmQyFmlOuK2Z4/LhtACEG5+xsHuiY+40T1vj2uMXlCMmxfdFDedq9TDDly1C+XMnEELWyHi/yhjs4BaJ3GrUeiIvBE64qYqbrt2idqSY2Oi1iSAVCaFBq1+oLFTvKJnFGUu+tDEhFMbDw9/uHiVfRO5nNPgCMQNATFudRaj4ia9TlTDLmxyQiRX6fi4+6YdJMkJoYkbY+xRAK6DWCHhJwD+Rb6eDeBaxtgjE2nhakGU5IRCoSfils+2kZdkYakeEOMGOEaM2lUqOUHcpByoitvYGOpZYSD3jW0RzfQhbo1UHmAMzazowe2J3olbtrrUEeN24IBsYhfiRoqb78QZ5C4NcJUehp0ooNpB3NrpLOrIow2GbKtuX59UIT7itmlTAHmSsmD10GPwxz+KTV2NSDYLrF8vCLsa6c+52J/nKd97bN7muO+KbeBt5Xv9Km6TjtJCXnXOHWFUFbZsg0obZ2awmFJUsm5uUkDvKp1zEhNULDaKaOcLyKGJEirxK26A73qlYV2lfScnqFl9iuK2bp1zKJWfbUofAFtaEvdtvUKauyFQcQPaYxqjp5YDIZAtGx9Hc72S/R53ORDv8oAAWuvFA20RVdtVmoaF1vYd4HbAvoe4qfdLJW5UU/LMM+1xkk4DdQTYKUncGmk3S19piz40OQnnWlEmL/VTWjLMb98qQipuvsTNu0avDjTuad6Rv2EhXaW1VNH1UBdKcVOJW7UqzpMxsW2NKG4XAfgLgC2c85dxzt/JOX8ZgKPl9ouSaOCqgUZxo/5SKiEWxS1lCdJWRw5Ly0Jl6ErcCKWSM8mRcqAqbgAqsobVg/ktADqzSm3iJrM561lxDD4xFS3GDbBPOFNxiBsfG0e7LezPaacJhQtwu0o5RzjFDYhE3GgJzdTe3bgHW/FdPN+ZSJUYN4ChlhLnOgXxhXSktEIJaVgmi+Lcbr9dbA4kbpLd/eiWY/DP/yzb7uNFcoHUVDXO7T//EzjuOODLX9Y1yz72r//6MzjqnGNxzZu+63wpiLhRP/B2TNp+zDGuzq6W9yPDratSb/fZ2VkspBSy1i2jVHdSyv68ilulAliTjrvUj7jx/ULVsJDtEBe7wmf1hIG5SlWGuGePPX7UikAqcbOXN9q6tbu6qYJ2cs89WsWtRcRNbY9OcaP+ctZZaGw83NmuxrABrqLgdCz7NYKrlLCCMbTGBblQidub8XGc8NQjcci1PxDnIYvodlXcfvlL8Z6StBCCuEnCVC6sc21eshTiRsfwErd8vjfFLYC41VgMrlLydkjFjVFB9S7JCZf8soinPjUkcaNrMjHh3A/6IVUtX8XELYrJOQPAiznny+pGzvkyY+wjAL4aa8tWGzTW9OUvF337/PMB/CKYuCnx+mKBaeb6WHydBg8K9njpGuNG0CluJKnLp+g/nf9e3P0fv8b9E48Rx/TJKiXi9rPT34c9V92GzMYjgGpvihtbXsJ0pgxYQKs0jkYNeOAB8ZUGssjDIW6Li6Lp6+ruzNo4iBtdz/wD9yCHJk7Bn3CXRnEDgHq6hFK7bBO3TLF3xY2IGz2Mn3aaU3rOj7jdjWOxebNYOcxVb84PmzcDt9zidpGRZEeM1d0s59h33gkAqP75budLcvLTukpf+Upxbf/qr9yfveY1YqfPfS7w2c+KbUqcm2WJv1zO7ZHUKW7zexWyFUZxC+EqpdULKhWgOTaD3L5dmME86vUjnN8oDeP794Ohh3VqgVCKWyIrJ+iMxe7dOOUUUS9X4ROuqh9HZnYBdQBHHNHx80CQOre4qCVulk5x0xG3v/5rMSje/nY0/uE9sC0b2ZnnPAe44QbgJS9xH19V3HxcpUHEbR4zWJ8TF7mIKiYmhEk5Db8HABx+4w8BwF62yrY3fsSNqnqffrr9cTfiJjJagWpxHWbKD9jbF5sKcXvDW0VRaLqB9ATQo+LGghQ3nu/fVUqgBL2QMW7LVgF33x2SuD30ocCrXgU86UmOwmZXk5bjr1gET6dRbNXQLDcA3SoUBwFx67YSd4iVug9iaAJPHv1o4Nvflv+oUrKGuOVy4qe1mtgVdQ4/4qZLvnIhSHGjSVBZsBwA9pz393jVf/w9XlsT8R1+rtI6E+d4xfGvwRevAj6fA8B6I25YWsJ0ZkUQt/yYy75UGm7iBgjuEgtx88S40VfYsjBEm7AHNy1yAKyTuHkUt0ypd8VtPC/2Tbb2vPOAz31OvPcjbttwDP72b4FPfCLksXQJCqS+eYvSeohbui6sFRUbFf8Iy6lV3M44A/jWtzrb8MQnij/AvWah/FmtplfcOojb7CwW9ikqWxjFTecqlSRskc0AXJSZ2bFD2Ona2CzGEKy4kavUirpOLTB8xU3Fnj3IZICvfMW9+cgjHUJ9SMqtzIeGep4aV2mrFJK4bdggakACqE8rbaD7unWrYmjR+XmPrtI5zGJGkrIiqiiVhEmh4rypttiXTdy6KW4UD6HImd2IW6ou3YTj6wAl0mGhoRC3v/kb8eddpi2fD79yiou4ab5rl2AqYA5ybomquHndqeQqbTQAcFiWj5orO3wVRVdFj8BpJpUCvvAF538dcWMM7fEppBfnkCovQ5Sj9UAlbvvdPx8morhKrwPwLsaYS49mjI0BeDuAa+Ns2KpDN2vaxVWqfkW1Y37EjRDKVZrJCAulukpbLecRXz750PHnK2L/vsRNxpa5bGxUV6myOOt0RqhfVmHcFSS60nBcpXQ627bBcR9Y8SludFwibjk0UXtQGkIqOJsSxr+eEec6jQXRvj4Ut4mCQyZmZsTDeDdX6TYcEy0gXlcShEhcV+ImCC6VPgAQ7CoNA09HD3KV2v2BJqWZGbd7M4ripolxoyQPWn6zUgFqRR9XqTIxphYXADhkPhL6jHHrOzlBhU+ZmEwGOErkKOEQpsTCRoEPcbN5dEmz7FWXJ9LatCbGzQ99ukrnMQNLKm4F1FAqiWvuWscUXYgbDdSlJdF/xsacDBB4iJsmQj7VEDe7OeGQilYqg4WyVOxVvuT1svSYnEBL8bkg21bliqt0bq63Ja8IpZJ9A3JodE1OqKKIWi0kcfNCNZjKXEWZzenykvcXAhrFzS9XZpCIQtzeBeAkAPcxxv6LMfYRxthXAWwH8DAA706gfasH3SKGuyQnqF+JnbhRT5vxDDjOBYGSI4COf6DsJm7eGDcqfOtL3KIobouLmEgJctDMe4hbzSFuj5SpL9u2wb4oPStunPsSt9SKc/FbD7hVqbZ0izXSbsUtVehdcVOJ21OeIi5d7MStD8UtIxW3drWTuGldpWHgQ9zomIGu0tlZLPJJe23Rfl2lK1kxJo4WC1GgUgHKebFNuErR8RsVrajr1AK+xE1t3sBcpQFlYkgYsktjxKS4OcQtpOKmoDKhtCFM2SF5zK7ErcG1ipuVdVylY2PCpHiJWzsXgrgRjjnGFSfYTXHLNMXNtqacft7MjelzAnI5d1+J4ipVDG8Qcau0+8gq9cYgKgJGHnW02/rKTSpxIxEBiIe4YcqJtdZiRF2lUQrwXg8R53YFgPMAvAnA0wBcCeAMzvkNibRwtSAGxW3K8wBqWaIjp1LS7miIm6/IoT4WUE9TFTdFwfA2cf9KsOJW66a4RXSVTqYFiWrk3MRtWSFuj3qU2Hb3Xdy+ZqS4Rc4qrdddFsJF3NQnL48qRfFMjaxbcQutNKnwuEoBJ0RFS9yWloB9+9DIFPEgDhmY4pZpSmulELdWQ5YDYUpfT6XCKa1Ab4qbQtyarRQWMC3+79NVupztVNxWso7ipisArCIOxU3HURLJKo2guAEOcdvI+1TcymWtq7RZ6IG4TUZQ3HQxbj6uUlqQuZ3JYh9EbN48ZmBlHOLmdZUSWkHEjeKrCJ5yKt2Jm7jZ7WlHcaunS/58SX1g79VV2gombrbitnu32K+aTR4ENVkCcM2DY+mAODeFuAFOlEscxI0d7MQNADjnN3POn8c538Q5z8rXv+ac/zmpBq4KUGS1Kpd4EcFVurAgRCH6yFaUaMUAOKnkvp1XHcDU01TFzRPfph5//7JUslAHwDuJWztm4sYEcatnx1wT5VLVIW4Uz7v9bktcnFQKlYYwzJEVN8/6pWMQa5VaFpBRiFtqr5ywpDVpSVdpMxMfcRvLhSRuUm07MLUVHKn+FLdazQmo6kLcspK4MWUtxOqKtK6FYucPw8BL3NIiPJaMtqq4dWSVzsyg1VKyQft0lZbz4veq4rac8VHcvDFEAFqZ+BQ3FYmunACIe5BKievg46OiBIUN7WQUt4ZC3OyqNF2IW3lcE+PmhwiuUorlbBdKuBvixOcwi6aHuBWyLczIcc+lckarH2iTEwC3gfKs9dqNuGVb4mbzdQ5xq6VCEjfVVRohOSEVVnEjezI5GT7b2MfzNJ7VEDfqFB7BIk7ilpLELd9Y0qt9q5G4McZSjLHzGWMPC/jOyYyx8+Nv2ipCmKCTCMTtqU8VYRC33CL+t/ucpwMH1o/SETc1OSGAuC0up1CXGTY5NDpcpVWpuLlKLvVYDgRLSxiXxK2RHXfZF4rjUInbzm2O79izhF0nQhK3CXn8Wk3UlSNkDoRU3CIX8kIHcTvxRBEQrnykJW57J8QTe1+Km1rHqwtxy1mdxK22LKxrejwG4vaZz+D6Bw/HVmwLrbhZllJ/LUo5EHVWkCSsnOt0lVLcW2ByggTvR3GTM1BUxS2W5IT1651YK7U/KCBxaL0Vb4wbNYOI2/z2RRx6qKhQQ9/77o9y+OY3O3e5Mt6j4taFuNEDSrtQwjaIE5/HTAdxm2ELAIB6aRoPHiqMEvcqbn41DIHIiltOErfUeoe4VRBA3FRPS4+KWypAcSu38ljCJNophTWFcZPqvqvMg6W0pySIZQGPehTwohd1KG5EoOJU3HyL8K5G4gbgRQC+CdCaRFosA/gmY+zvYmvVakMYS1oqOYTGh7g9/enOONu/H7j8cvE+duLm4ypVS5KQMSmg1qG4VVvxKm7jsnvVMm5X6YP7HXJDlQhW9jtsrW/iJn9IxK1edxO3woI7DoyIWzMnjON6uUB0P4rbI05qYutW4E1vcj5yVXMnSNJ1oHC42vRw8CpuAYuieolbnoibsgh2rSzcTZkJpRFRipmpxO2738Xm1i48EjcFE7edO8Xr5s2wLOCHeBaah2+B7UMPgo4JS7Jy2rnrcdJJYs3vdFp8ZV8rAnHLxJecoCKRGDd1P7Oz+vp+Cp7wBOFCTkxxo4Lf91ewe7dcDUoalflKDp/8ZOcul0sRYtxCrJxAX8k0ZPZ0voTv4znYhUNwBc5GM+2EjZRKjpu0VpzBNY99E7bjKNy39Syxk6c9TaQnn3GGux1hiZuXXDWbSPMWLKSRWecEs1V4D4pbFOLW1hA3O664AIChUZp2PouBuI1lPIrbnj3ATTeJbGFpr5MgbmotN039ZUfeK5XUt0NHGOL2H5zze/2+wDnfDuDLAF7i952DHmGCTpSCf37JCa96lfj3rW8V/993n3j1I26BfEEX49bFVZrJiJ9x7hxDR9wqMbtKx7gcmGk3cXtgrwzgzzftuNtcy0nt6Zm40QiUExGtlVqrAbmaQ9yKy3LCIlcpEzOOJRW3rbOSuPWhuG2cbmDbNnHvPR+5OZW8X0uZWdephcKGDeKhYf9+cS5qQHo34tYW1zvddG5MvSLX2JyMQXGTq0HkUde6Sms1uNZoxbHHwrKAi/Au7Prtvc6SXkHwxrhxbhO39312E/7yF9F9qQs/WNO4SptN95qaEu1eXKU0NrvFuPlkWPacVaoeaGbGUdB8EhTWrQO2/WkFuWZFHMwbXN4NmYw4ZrvtPCypyQmSFLVWpF2rwT7nBnK44YZOrlxOT6JKMb69KG4+MW65prABrVwJP8BzcBh24TqcgXrKrbhNt0WDasVZ/PHEv8XR2I7lzceJnbz0paKmzIknutsRNsbNS65oxQAUkJt27Otyu4cYtyiu0gDFjZZabIwrIQr9EDfZiYspD3Ej425ZwB13AEgmxo3aM4VFPXFbpYrbaQAuC7GfywGc3vVbByvCPgJTp1U6rG5AkT29/37xmqji5okRoiaqxM3rKq1YbuKWzcJNFCO6SktE3FLuGLfFqtudOD4OlOCMHlfGrQ7dFDcibtxxlebrDnGbWPEobky0x8rJ60lxYn0obrr4oiDiRqsGRCJu6bRwjXEu1iyNoLgVJHHLWDU75KRRFtY1P90ncduzR6zfCMclD2gUt337BGmamrJdpUAEkc97UvPz4v3kpGvM0jDZUdYobspaqa4D93Lvo8a4eQZ6LMkJIRQ312ebN0dbNYFA57roqNO2qzQliZssNVOtwkXcOHe8DoSmxbAHst0JuEqtvHtWbqTdxG2qLexmpTDjJ4h2oqAQTU8R40xGnCuATjtFJThQRH5GIW5WBMWtB1dpWqe4ybYsN8W5WBNKiEISrlL1WsiYIS9xC5sLBaB3xW2VErcJAJ0RuZ2Yl99dm+iFuAUEjZI99VPc6Aktlhg3T4yQjrh1KG4xu0pLLUGcKim34taEm7iNjbmJW9+u0g0bAMZQ4hWk0EKtBhTqTjGtyZo7xs0i4kbGnfY7COImifaCXKczEnED3HFuERQ3Im4F1GyD2aiKya80W+j8YRjQvafVG+Cu49RB3NTCpYz1TtzohyoZUUBd+L4ljeJGDzrr1rlqMPBsMskJiZcDCaG4uT6L6iYlaIibrbilRCduV2UIhkLcaOxf5pENGg1gN2S7o7hKuxA3iuW0H8okiCyUUBXLW1pOUouded2tH5KB2rKl48thFLcqiijMOu1atEr+5dPUB+gekxPCELfWVAyKm+J5KnmzStWJQBqeJJITDlbith/AUSH2cyRcdZ3XGML6LkISN7KnHcRNqV4N9EDcxsdFby+XnckrhOLmJW4rVrzErdAWI7HM3MSNnkRLWb3iFpq4eaNOibhNTtrtLqEiiFvTUdxmG+6sUiJuLc9TeT+u0qiK2zx6UNwAd5xbWMWt1ZKZxaIf0FN+oyrcTaV1CnPoJcZNaQe5SptNd+5IvY6OivORiZvXVepDRqgL3z2nUdzUBx1l8uExKG5RkhM4H1yMm+uzqIkJhBCKGyNlyaO4AYK42RmnEJekJ8WtSzkQm7hl3WN72RIXeSJTBWPARFPW/8s5ym9oxc3jJgVEs3wVN4W4Fdc57Vppl+zbEks5EKo7JZHhAa7SpiTbKnELs8A8wUdxI1epbY40mQIDj3GjiS+dBnK5VUXcfotwsWsvld9dm0hIcaOOEpurlDGHqNEalT7EjZ4C1QnVz1Way8FtHCO6SguWmKnLzJ1VSk/dxUyfxM0vxm1szL5OYyijVgOKCnFb19orDJqtuImJoO0lbgNU3OZ4n4rbnj3hFTdl5WWVuFk1MWNNbOzTVaqAXKXeihsuxU2WUujbVdpFcbt3XkxE01hEsyYnejUmVGk/G4SrVPkCdeVcLqKriH5EmJ0duuJGS+elGv7EbccO4Pbbnd1FIm4RFDeK5Wx6iNuSVJjGM2IsjDdFB13J9OAq9ZQCATzEzUOuWit6xa2Ckp2rE0tygsc+dihunDuKW0Psj0/H6yr1jXFTkEiMmySdWuJG9k8uSr+aiNsnAZzDGPsEY6yDJjDGsoyxTwI4G0DYlRMPPoQNOumSnEDw2sieiJsuOQFwXKM0GYZwlZ67+6s449tvtEnTSjMPzj3EjTHnOFEUt/l5jNfFYvcrfEzrKtUStzDJCWocIediofPPfc6RdMbHbUM3jhXU60DJWpLHziCDFnDggEPcMADFbW4Ob/j9i/FYXK1V3A7wPhW33btDK27NRceS5VG3iVurX+KmeUKnBwTVIwloXKVwjHtow+11lXZR3NpIY14W+M2sLIiNaha2Ovn0cu9DKG6qq/Tfv+Rc254TEwD3PZqZGZriZmeVSsWNEl+qVdjn3EDObu4FFwBnnw1cf73HVdprjNtf/gI897nAnXeCMdGPyK40Pa7Sxbro42Mp0caxupMkFJq40WD1Udz8XKW1BXGzG6kCUuNu4kbCYcdQ6iU5QX7G5ZNAh+JmydqZmYxdO5PP9ugq9VmzuySv78CJW5Di5mFqq4a4cc6vAfBmAP8IYCdj7OuMsQvl39cB7ATwOgBv5pxfm3xzRxRhFbeHPlS8Hn98IHFbt87dKWNT3ABHYdu3z/2/hI64vfqB9+HUqz6Js3AlAFHHzbKcsWW374QTxLqncu3TQORywpBxjhRvYwcOx3KrpCVuhXQMMW733AN8/vPAe9/rS9xqlTZKLZE5eC9EYa/Gjj32ZNKUrtJ2MUHF7QtfwJPu+zpej09ridv+do+K25Yt4vXPfw5U3FTvcm3OsWQuxU2unDC9WbnwvbhKFZDiRsLWoYc67aDM09hcpV0UNwA4IBecLqzICBA/xS2XnOLWboj2XvjRrLcWaXQ3qfdAs7Nd67gBSERxo2aQjclDn1X6rGeJ7911F3DllcBXviKuyx/xCPEBFd/zAylcxxzjdpV+/evA978PfOtb1CSHuGXcY3uuKolbWtj4kiRui5lZ2+x3HYvHyaxTb5kQBLtKa/PiujTTRVfnrMB5r5p50VBPjFsYVykRtzGxsw7iphhae03ndTFllcqLV2DhXaWxEjd5vcaxEkjcWi1NQfwhoqvYzjn/JICzANwA4NkA3in/ng3gRgBncc7/X4JtHH2EJW7vfS+wfTtwzjnuAaUGcUC4QJR1iJMhboQQitu0JRSx9RCvdYjitx3r5V15JXDnneF79o03Ar/7Hb7wkt/h4bgZtUZKS9zy6RiySoms7d8PPPAA7B0qA9daLCMFjmWM4wEcBgCo3LPbiXGDJABxEDdtsTbY0dglVJyPOLcVn/1Wj8Tt7LPF6y9+Eai4Ubcpl4H6XNneTsStVoN9PcbXKY2Icg3GxjoyFL3E7ZBDxGutBvB+Y9y8JLmL4gY47rixFfldH+IWh+LWzVW60sjavKfn+DagMzlBzTL3Q4KKG7lK7fqQHlfp3/2dEMfe/37x/eVl8fEP8Gz8+1vvAd74xuBjv+hFwL33Aq94hVtxo7bIV5W4NXyIW4mJC1+siWu1yGb8EvM78dGPinY89rEdHwUpbnWpuDWzRdcNJ+JGIcsu9LJyAn0mf5tFd+KWXheDq1TxPHW4SjXtjS05wVukGML+BBE3j9d06Ahl+jjnvwbwa8ZYCpALuQEHOOetgJ+tHYT1X6RSwFFHOe+zWWGcG42OmXjzZuDBB8V7v6zSwLmyWBQ9jHO9q5TQRXGbxBJKvOz6Th15LC+L5mQyymkrClYoTE8Dj3sc9l0JLMjTIw5bLAJNWQ4kz2KIcVNH5c03i1dPjFtrXjDRJUzaE3f9/j2AjPkgItkuJOQqXVkBfitCRYuoOh9VKqKPFItYahZdpxYaJ54oShHs2OHe7kPcVlaAxkKn4rZ3L5CBsK6pXMbpw1GIG9U0pAkUjquUqm6sWyd2mW8ug+3dK074sMPAuRNH3bOrNITiRu64yYr8ro+rNJVPPjmhiSz27BHDpS/i5lXcVOLGuX5Giktxoxp4iuKmFvkGOolbsQicdJJQ3ADRJ8UlYahsOhroNoEy5ijNquJG/U4+eQYRtwMVD3GryCSh1KyuFKYe6bTTDs1HfoobETcrUxTzRaEA1Go2cdPypV6SE+i4ktBk0HL3Bx1x23CQKG7KIvdBxG2U3KRA9LVK25zzvfLPkDZCr9bUL+sRbjvZU1YpY86ThZ/ilst19EQvcTsED3bsuo687WmNskydH9RQNLIhW7Y4RCkXN3H7s1xa1+MqbS84xG0uJybu5gOKq5Rn7WO7EJer9Kqr7P9dxE0hDV1VRj8w5iyGqsJD3KjLlMvuGLcialha5Ni92yFuyGSU0vMRXKVAh7GnciDqZFgoAFshk2i2bgVSKTu2J52O0O/6UNwmq8GKW1KuUssCmOUQN+KasSpuVE+yXnclorgQl+JGUBQ3VdUHRBO4Ug6EzlF9mPApbdcdjDnZHHQvNcStni7Z2wDgQFm0sQhxffIVMRbnMatbfCYygpITGovimG1aUotircISt4jJCayQR1NqObyh2AUlJobeZjbGm5xAxC1MjBudSizETXakborbqiZuBj7oNfAkREkQ9WuRXKWAM4j9iNvMTMfs580q9SNu6vrC/YKIV63mXMqjjnKIG0n3fcW4qaOSHtk8rlIy5EuYREUuZs13dbpKuddVGpfiphStchE3hTT0TNwAN3Fbv77z+HBPktaS25KV5xvYswdIQ7InlbhFJa+ejuNNTpiZEff1GPTpJlW/HCHGjRS36Vqw4sbyySQnNBscTJ4sKW5AjMkJZAeIdejcpZzHp7gpbbBdpS7FjQs1teoobnSOLhW40XkqoUEHpnMNIG7U7L3LwqYXuDA2ubIYi3N8JrziFoAgV2lzSdzsVl7OK2GIm99apSFcpSyft22uVdUQt0LByWreFK/iRu7yIOJG8x7BEDeD/tCv4tYlszRW4qY+HmosTljFjeKZkyJuquJGxE1V3NrFEppNwTt9jbgfcSN4FDeVuNWm5aS+x1HcGkkrbpdear/VErd+FDcAeMpTHKJOFdwDiJuquAFAZb7uVtxkfSPX+YQFdRwlxkSNcSPF7Vj0mZigto3qVVHnVQNJoVfcphvBilscrlLdpWvV6WEhDYDZXDOW5IR83tmBWpTbCwpqVEIKIkMzVuw6bq00rFQWKXB7jLdqblcp4I677FlxA5xOQ+eqiXEj4kbHnKvJ0AQubHx2mZKEElDcPPOAJZcC41GIWy8rJyhGhWxufaXZ8TlXXKW5zTETNz9XqRyjzXQe3ENXjKvUoD8kQNxUMeCwyl3Au94lgvkRo+IWgrgdil0AgLlxZ6mWuImbK5NRo7ileSdxo0KZhUKAyywCcRtDGWzZIW6t9WLiTu/frZQoEO1hYwkobvfdZ6/JBziFjwG4lifri7jNzjqLsh9+uHj1GHSVuLWW3destlDDnj0+rtJeidsJJwBwiFtu+514PT6FdVOWS3F7cOxYfOYzTnN7Im7Npijv0mqJ2dZzEdVhslgQA3AdFWH2I26FeBS3Z+JHOA8/dy6jEt8GoENx68tVqirt6vrFXvSrtgGdM10u58oTUBdxB4C2hriRiBSb4hbgKq1J4kbHJPdcvl0FqlWkm3XUkMcDc0VYlvheTyRSQqe43XEH8B//AVjL4mbzQo/ELZ+PlpyQz9tFxhvlTsWN5wvgXFyvVBzJCUr7Cn6K20knifakOiXmuBU3csTYMMTtIEev/ouQittfXfNe4KKLRMYmgH3YACCEwSD2p+5MfTzUPCr6Ebe7Nz8R23EUmsjgANYlrrgddRSQKQgjQosej487C8JTEHHgJe9G3BQlYRwrYCsOcWObxZNedn6vbU2abWH4O4hbHIobuUklsdIpbnymT+IGAM94hnil0jQBMW464rZrl4+rNGqMG9X7OO00AI6r9IIb3oNP4Z9w7P2/RD4PHAWxfMgXfnE0Xv964Fe/6uFwqqs0gIyoRrk2JT5f15LfV8vnKJ0+Xejh3hMjqVQAzpFHHd/BX+M7+GtMTYrsnHbdTdxiiXGjBzV1vcygzFK5jmzP8W1AoOJmWZ2ZpXTeOsWtrxg3wJnpKQNGR9yYnrjlWlVl9ZIZ7N4jiG8/ahs1yau4vfWtwMtfDtz2e8/NlvfBjr/s5ioNq7gpMWxBxK2dlSS7IL6LDRvEP1EuwvS0OJ/160XMocdV2rFW6SMeAaTTWCps7NjVWlbcIlpbAy0uuAA47DDgiU+M9ruQittYQz4hvvKV2HH0k/Cbd4vjdDVen/0s8PvfAw9/uLOti+JGpT28rtLl3Cxegp9hE/ZgPza4khP6hbdOLu33376YBV4MsKYT48aoCHBbjKBAmxFGcVNi3FLLwnWyhEnkN04DADKVpQ5XaaLE7YILgBtu0CYntKfEyWYyPVTNJ7z97aK+1dlnAx/5SKCrlJc7idv9tZgUtwsvFGVxJieB//xPW3Er1sW5TpYfRKEArJMlaO5dEQ8rRGB6dpUGBNurRrm5bjOwB9jQ2i0m+AMHREfdtMlVRLQnxS2dFpNXVag4RauCPBrIo4ENk3XsP1DoIG6xKG5HHgn8+MfuCv5BrlIqw7J1aw8HkwiIcWs2gRp3Z5ZyRXHTxbiFLnqrAx2Y0pJ1xC3VnbjNYRb7ZXm/fuLbAH1yAlUT2H2vuNmpkrwQn/0s7v7O73HzO4U9D+Uq9YYJ6AyHRnFrVjqJW0slbgDwk5+IJ7wogkU+D/zsZ45t7hbjdsQRwE9/io/9fxsgy4jaGGSMW98PzDHDELc4cPbZTp2sKAipuOVa0lq/+MWoHfIk8HeLf7sar61bO41uSFcpyffjUuFazszidjwEt+MhAJCY4kbErVAAHvU4N7kZHwe4NLBLVkzETVXcpCGvpCdRWC9OLFftJG6pMc+s2a+r1LKAyy8X/z/rWcB73qNV3JoTPa6a4G3r3/2d0+cCiFvbQ9yayzVse8AT49YrcTvkEOCFLwR++UsAjuKWkVX0S9U5FApivVAAeLAmbjSJJT27SkMqbti0CbgV2Mj3OAWAZWZr34obIC50tQqsrKDYcq7zoeNLuA2FZFylAHD++e7/g5ITPPXzekIAcbMsoMrF4N88VcPORYDXO12lFA6hJr/2RdwIS0sA58hmmU3cqinB2Ii40QNsxqq5FDdCHMTN6yql+pgUV2fbm61bwZ6/VVRRRUhXKWNizDca4k9HslTilsoBLb3i1spIkk27ePSjo5yqgyc/2d1GADnuQ9wKBeDcc3HHpzp30zNxUweP7BNZWKiW23A5IRXi5lolaARgXKXDREjFLWc51lrtcz11ooiuUsJSxm2hknaVFgroUKXUGLfFppgQAg1nxBi3lHSVVjKTyG+QxK2+ZFuTuiRumULGffH7VdxuvFEwkmOPBR4iiHEBdVgNqQwQcRvvsfhut+MrBaDVeCJ4iFt1vob77ovJVUpQnngtC8i0RAcoVOeFFwaCUOysiBtNxC2S0VYlnpCK29j6IhYxiRyaaN9wk9hISpXS6TPFPogbAKys2Gv1AsCmouiDVI7Bz1UaW/X2MIpbP8RNdd0B7uSEBlC2xIlsPVQqbvXOciCMOZeL+GVfrlIC50C57FLcqh5XaQsZNJFBijtJLXNwjE4SrlIibqRCpsYdo68eT7u2u9dVqr76uUsV4tZK+btKLam4xao6eYhbR3KC7Oi6pkfyOlCjczm3rWIMraz4rLHiOYiGuI2K4maI2zARQNxmZhQxo5UQcdOwnokJ8eolbvSUSbaPiJvWeESELjkhn0cgcZuv96i4qaO9VHK5StNlYTGr2UmMzebRQBbZdsNedaHRkk9nWegNZBSo50Zu0nPPFbXK0mJ/vCb7hZytGuMxKG6EVMq5Fi2nJKMa4+Z1le7ZIVSxfCoGVylBySptNoFMS5xzoTKHYr6NaSwAAHYsTwNwaqf2rLgRA+qiuE1MAHtlLBH/7e/ERiIw/SYnAC6GnLecqOjNJT1x27PHtdZ374qbF0HJCUTcNIujh0aA4rZvH1CVdmbdmIyjksSNZ3KuoWpnec7Zu4kOXadZWkI268TOUuC/OrzJXUorrqjELUnFjWrHpRXiNjXl5JVoH5ozmQ43ZNcEBQ1xc7lK5edWxuMqjQNhFDfom96T4qYLUsuKMWxVPMSNshUUV6lR3AwCBxRjztySbcZI3HI5xyppWE8uJwt0e4gbLW5OxC7pOm46xU2t4zZX61FxO/548VosipGvuEozVWExa7lJTE4xLEGe3AG51FdblifJwm0A+lXcqAyIrLNm5eRNJnlFzlb1sRiJm7cNErQSBudAa8VN3LJSDculY3CVEmQnJlepfYyVOcymF5ECR6M0heWKsNI9uUpVkhoQcK/e0vFxYG9afudqf+KWLfWpuJXLyDcdxW1DXk/cmk3B3/t2lXrhl5zAeccasT0hIDlh507HzoxnZckJSdy8hDgWxS2AuHkVN9Xj6CVuqqu0X8Utk3ErbpblmCoibtkJ52an087Dsq/tpcb3oLi1U/513OwM4ASJW0dygvxc1/S4iBuXn1llzzxsXKUGWnR5EiLilrYcNqMOmp47ERlrH9YzOdlJ3Pa33cSNJpBhuUoPVHskbiefDHtnyusYysjXxKRZz0+KFZkgLaSMRE6EuN19N3DddcKCn3UWAKAliRuryYssZ6taUcwSsRlOn4Xu6dK0PcSNXDc5neIWk6s01xbHyKzM2/Ft1aJzk3tS3ACnnbROrUZxU1WW8XHgQFqWhLlHEJideUlgSiW0pOlMF3schIqrNNdwiNtsRvRBddUEwp49CRI3r+I2Nycu9vi4yB7sFQGK2z33KLG0GTnw5QzpLWxM94aIW0/PCbqZ3kPcyjxAcZOkP27FTU1OoJXBMhmVuLkHPB0zNHEjO3jJJcAtt3R+XyVu6QDilkqOuGWHqbjlfBS3EU5OMMRtmFAZiwZUMSGjKG6pVOeDVGSQIabq+R7MzHQSt71NQRqIuBHiziqlAdKNuO0r9+gqPeUUd8PlCa3DARSaDnGbmoKjuMlJrdFWXKWazKRIoN9fe61wVT72sXabbOJWdytuRGCSVNwAZdKSrgIufTNE3DIshpUTCEpWmWUBeVmhPrM0ZxO3laxzk3smbipbAEIpbgey7u887XXHCjcWY3abVDdWJKiu0mYncfMqboDw8sZO3PxcpWp8Wz9r2mmIG7V9717HzoylpQ2UfdFLiImLkFc/blepl7i5SsOQLbz3XgDxx7iprlLq34ceCqwriZtdnHXfbDLfvscmSc675OGrXw2ceqoT50JQXaVE3FQSYxM3T3JCHCDi1g4mbn0rbtSBvBMY0J24jY2NnOJmskqHCRpgymLbKt75TpHBn/2S21oXi6Ij99yJPvhB4MorgUc+UvvxRRcB89/OA992tu1puhU3QpJZpTpXKaSB3bvSo+L2qEcB7363Q+COPRZWYQzH1e7Gvqa4D43CJA4/HLjD4yqttWJU3M45B/jf/1vMxpkM8OY32x+1bcVNGi85qVbyMSYnAF0VNyavWa04g2JlziZuaR5jjJtHcSPillqYw/RhQl5ZTDs3uSdXqdq+HTvEAKI6dgpcyQljwHxuE2ToEyykcUf9KOzeLfr8p7f8Kyp37cT/2tCj5KIobtlG1d48nZIBTs1gxS325ASvqzSO+DZAS9zOOw945SsFf1h/UwF4wCFurBnsKiXE6SotZFt2AVjKctW6Sq+/HgDwx9QjAZk3FKviVq/b8W2Tk8BDx8rAbcDDHuNO8PjAB0RYrG9S54c+BPz2t04f/9CHgK9+VayFvLAgin2rq4YoT8s8QHFrJKm4taMnJ0QibiefDLzlLe6MVglWEG1oV7u7SkdFcTPEbZgISsWHEGEe+5g28FlVhhLzzuJi73Mlnv508eeDZz8bwLqCm7g1RFu9BjRR4kYjs90G2m1kMin7yfi+fT0qbmNjwpAp31k67UzMXn0JNnBRnK5ZnMSmTcDv05NAC3a0sK+rtJdZZHwc+PzntR/RotKpelVIDIuLAGOoZKdcp9U3uhC3VF1cs8b4rJ64xRHjpiQn1OuOqscW5jHd7iy/0DdxA4Tx1sw+XsXt3ryjuN2PI2Eha0+sF8/8Pa4HcEGvD09KjFu27rikJ+DvKt29e4DJCXHEtwFa4jY1BXzxi/L/FxWAbzjELWWJGTJTCiZucSpuJSbYsJUvoWkJdVHrKm21gOlp/Ll+OqQXM/bkBJW4TS6Kp4b0lPvkn/Y08eeL8893l3159rPF31OfKsoOee+16irNiAvbqnUSt3oquazSbopb367SVAr4l3/RfyTd8rRqhw2Nq3RUFDfjKh0mglLxCWoHli4LMtqJdiJlYlvBGBar4mBJKG6+WaXqQqTNJtBsIgsLFtK4Z4fYHllx08Q4lB93ruv/ZmkKjAF83H1y9ZaPq7RnBq1HWy5xk25UHaYyNYW6JSzVoIhbpiGuWZOyWaUqwdrxlwPJo47ychs5uWYlm5/HlCWUzn1WDDFu6g/OPVf7FS9xWyo6cXDbIAgMTax9x7woilum7rhKJ9ryBBXFjZqeSIzb9LR4XVx0ZRfHUgoE6L6ur7QzpZR8KGhJ4uYps+KtKhJLORAAWFzEGBP93MqW7KGgJW4AcM45ohyQRNzlQFTiRtnsPa8T64WfUKB0Zq4jbvLzOpJT3CibPDHFLQCkuKVbdbcpNMkJBlpEJW4SgyZuc5i1+3ASxC2bFRzNssTckUop86xKLmQjKihhx05BYkMTNyW124v6mee5/m+VxEmmZ90np3WVMhafBZGgRaVT9Wp865Tq0CXGLWfJCW1SXOQCalg3y8GsGBU3xVVaXVAeqznHupXtAIDdDecmE3HpS3E77zztV1QyND4OLJUcxe1uCJchTax9G3Ilxi1Td8qBjLU6FbfDDhOfJRLjlk4L8sa5O2RjwMStmBL3PtMWF9Yvxs1vN6Ggdhoas0tLNnFr5kq24uNL3M47zzX+4k5OSJS4+c033YibnINqLEFXacujuHmMXd+KWxD8Vk8wyQkGWnRxlQLQWmoaOIMibvOYSZS4MeY2Bq6F432IG/GwwCfedFr8ce7MuBriljrxeNyHI+W+i/bTfn59COKWwE2gRaXTzaprcfNBETeaJ8gt3ZpyiNtxx8jgHsYEw44xOaG24E7S2bAg3HUPVDtvcs/E7bDD7CLHXqRSTj8cGwNWxvwVt76Jm6q4VR3FrdTsJG5Hiq6ZjOIG6N2lccW4UfV+grefyPtfZDUAHDkuLmxuzP292IkbZX4tLdn9XFXc1OvrStQ691zX+Is7OUFL3LxyY6/wc4urhiWIuPEEiJvc2TAVtzDEzShuBg7CKG4aSz0QxU2xTnOYtZf3U4kbY/HZFC9xs6EhbmU4B+36xEvnQddYQ9wKRYZLIVSYJUzaPxk7xE3cqpaGuMXsJgUU4taoOe2emRkYcZssif9pQmvPOMTt2KMVN6m6j15dpek02iyFNNqwFsuuj2bmBXnYVeu8yT27Ss87LzBLkm7r+DhQmRiAq7RcRlohbvmGP3FTFbdYJ09vgkK5LBbMzGaBww/vb9+MORc1ne689vJE8qjZS6lZSCNfcs/KsSQnqDP9EUeIV4W4NRTils06x7AVtxNOAI46yr7nntXPeoKfq3R63BKdjLH4WLpfIoqquMnxTGvlqlWf7XVlE1Dc0oriZllAuyqOyfMxxbiFaEPHQvMjnJxgiNsw0aPiRm8T4AwOPIobQTWgk5P9VQrwOVxX4kbVzXO5EDaNRhpZZA1xy+eByyDinpYxYf9k8vAQMW5JsGd6Cm1Wcc9Nom/cdWBAxO0738Gn/mMCf4VL7AkNCnE77mglo1TdRx+dsS3XQLRnLYmp/YK4qf2P0LPi5hPfRqDbOjYGpIp5zGMaQLKKW0ohbrmqP3F78MEEkhOAzgdIWfYCRx8dz+wY9JAj+3oBNeTQuU4pQbNyVnSonYYIqULcmh7iRuPMJm6y79D2mZmIyy5p4CJuzSaWFkV21rqCfIgZH4/PyIZwlUIlbs97HvCwhzl1JJOMcZO1SqtVkQxL6vvzX1xAu624UBUMw1VqFDeDnhW3v/1bUY7njDMSbJsnxo2gKm5xuEkJKhlxEZMA4jY7G8KmeVmOxuoUCsDP8L9wKc7FF/Eq+yezW4ajuNG9zjSr2PmXBQDA9sUBEbef/xzZVh1PxS/sCY3NCuJ06GwNFzxdiW8DgAsuAB7+cLt4cC9oZYQ1ZCtu4paVyRFq/yNENtove5nIqgvIpgaAv/97cSrHHiuu85fxCty88RzcClFagYgbverKQoWCEuOWrjlKY6rcSdy2bBGVg3bvdsrQJeIqpQdIWf7GVTKiH4QhbryGrExM0RG32MuBKMRtPCX6WT3lxLipitsPMn8tSie99rUA3MStX4h+zNCQ2cPleUFeZ3Mxx7cBoZITXMTt0kuBW28VpUUAVNoJZJVOTACMIV9fQhoW7rkHuOsubmeXX/G7vItMq0Q5UcWNc2UJi+LIuUpNOZBhQiVunOtZiCY54RWvEH+JYsDErRfFLZThVK1MqaS9xvk8UMEYngax9NRr5U/WHT184oYlMZMsticHQ9xkbNNJuAUpcNSQR3pSkIwXPKcOnORR3LqUlgkDLolb2kPcCLEobm96k/jrggsvdN7n88Bb8TFc8lCgJWuWLi2JZ6laLaTi6wdFcWP0cAYgJa9BquUQt1JJlP37/vedHJtEFTe1dE4cCEHccrzuUty8z1exx7ipxG1a1itM6RW3a8efAtx4o/1T+8Guz8QEwCEfTZZDjjdRXWwAyDvELa57AIRS3Bhd2HrdibGTcxARt1gVt0wGWL8ebN8+rMd+7Ny5GVk0kQJHExksljMuu9duO90zCcWNxpdr3k2lTHKCgYJiUfSERsNR1rxIJBo5BJRHC3XiHCXiFspweombBpmM26bTT9IznuQEazCuUlYS9zprVcGWxUQ+Zw2WuD0cNwMQ19pecqdWc0pG9BrTpkErK90lFX0hap3iFuPhfUHXed8+Z9vSkivRt3cvlkLc7AkSDnFjCnHL5zs9vIkmJwySuFEdv7bjKm0iG+gqzWR6vO7qTK8Qt4m0Y1doKGQyztD2Xob4FTegwcROKwviGkxnFVdpXAiTnJAT9yi30ukFKrcSIG6AvfzcZuzGzp1O2aE68mi3HXU7n3cfO27i5lLcPOWjRk1xM8Rt2OjmLh0WcVNSPdWJU7UjtPBDHBgmcfMe0/6J5wRrsgBvJoNEFTcibhmrZrsPDwyCuFWr9lqemyAkpgpKyI4rhfYsj+IWA3hWPvFW9YrbKBG3xUWHuPU1cRMbKJcdGQ2wiXpKcZXmcgkTN2/QekDNw55A5xqguGXbwTFuqt3pecj5KG5UDqQCvavUexmSUNwozq22KAb5VDoBV2mI5AQmiVuhfKDj54kRN7n83CbswdycU4S7LsuPkOc+l0uIuClFwLsRN6O4GQj4DSbCsIgbYPfSoSpuZD0bjXhcpSGOb//Ec4JUDJUxJKu4jTmKW0bGPO2vD4C4UQCVgg7FzfLEuMWAtlTcxnkncWsga99vFYMgbtQn9u93ti0tuSq09A4fxY3VasiigXTbTdyOPho47rjOtsUCP1dpXMQthKs02xo+cStzvavUj7jFqbhRSZDakrgGEyxB4uYVCZSq5ylJ3IqVTuJWaSWQVQq4FDfAIW60xBY1N593275+E0Ns6JITPGPAJCcYuOEnXxOGSdw0ituqc5WqOwuYiLTJEZ4TtJBxJo0EFbdUScb9tKrISBVqb20AxI1qdymooITcZLKuUlLcptDpKhV9j7maG/PhfUHXmUrhAAkTN3mCE1h2xbhRO6hucDYbc81nP1fpIImbFZ649Tx50kXLZJzEi6UlFNtC8Vxu6V2lg1Tc6ktikI8jgRi3Ukncg1rNHZqjKm55cY9K1f0dP1+xklfcAIe4NT3ELWnFzbhKDcKjm6tUk5wwMAyQuPWSVToMxa2DuCUwklNSccu1qsjVBHHbU510LwcWB0IQtypKyIxrFLcEiNukXKdzubjB/kxVezc7CxkMlLipUGPc+lJciIksLzuuUqk8TGEJWSXei7oYuUtjf4ZL2lUagrhlPMTNa+5U/tK34jY56cg3loWxurC9yy23q7Sb4pYEcWusiGtQ4gnEuDGm9/AoxI0Ut7GaVNyOPtr+2nIzgaxSwFdxa2YGRNwiKG7GVWogMMqu0lNOQTk7ZdewSqXczVgVils/xK1YBFesg4u4nXii+OLDHhaiEdGQlsQt364iXxdkZoFP2l0kaeJmTTkXtpYuORenXk/EVcpz4oSIuC2NH2p/pj40HOpsHipxi0Vxo4FUq4mM8mLRZoKzmSW7NIaquJ11FnDUUcDpp/dxXB1ovVJaF3cIxC3dqievuKnEDbBjWKfvuA4AsItv1hbg9V6GU04RHOjUU3tsh6ZJ5Col4lZsJ+AqBfQeHkUcSEnFbbwuidtppwGPfzxw1FHY115HX4sXkriR4kbJCZaHuA00OYEyIuT1X9OKG2PseYyx/2GM3ccYqzLG7mCMXcQYm/B8b4Yx9iXG2H7GWJkxdjlj7ORBtnVgGGVX6f/8D97wnB1YgjBw2ax74Kw64hbgdtASN8ZcJ+lylR5+uFiD6POfD9GIaEiPyxi3dg0FWUl/CZPYu9fTvn7hJW53iyWmqo9/iv2VukrcElLc4FHcyhOH2B+pxO0QZ/PqV9xSKXd/HB+3+9pM2k3caLIYHwduuw34xS/6OK4OaqIEMFjiRpXzG+HruPWsuNFMT2Navo7/6XcAgF+lnxLKVfqmNwlzfeaZPbZD06QGFwdrVQVpyTcTIm46oYBc9RMTSBeku74hidvUFPDLXwJ3341yQyYuJOQq9SpuVJh7UK5Sl+Kmpo7DKG5vAdAC8C4ATwPw7wD+D4BfMMZSAMAYYwAulp+/HsBzAWQBXMkY63P9lRHEKCtumYy94DowesQtcVcpAKacpEtxA4RRiy1C1gERt0K7ipLlEDfKbkxacWs/5Tz7K410yTlgUjFuebfiVpl2pDVylSq8Ju7D+0J3nRsNsYIBEIOrTJ2Ux8a6EjdAmIHYu5wabwcMRXFLNYPLgeRynYt1RIZXcVM61J04DrfXjw7lKgUckbJfEPmowSEPExNAqiJJdJwxbkBnaA7nDmEfG7MVt7HWsthGbuVMJrmoHY/iRsStlRus4uYibh5ZfdQUt0EX4D2fc64k1+MqxtgcgK8COBPAFQCeCeDxAM7mnF8JAIyxawDcC+BtAP5xoC1OGqOsuMFtJFVjBgyBuEkDMzBXKeCvuCWI9JiMJeFVjLdEwP4ipsCSJG6WBWzfLo5/nqO4NbMDUNxy7uSE5uQ6sX/LshW3yf+/vTOPkqws8/TzRkbkVpWZtS8UVEFRQgvSgpSAaEuBrIqoPSo6oiCDLUxrj3ocHdTjKA0y2u1GK7Yztva0ijDt0ujpRnCFbgekGRURFAXZSmSxdqqKzMrMb/747s24cTMyKrMq7v2+zPg958SJiBvLfe/+u+/2DTbqnFDCDSZW0/5XFc6f77226es0dNfVPFRaGDEIt5FccUJOHKTjIm/b1sZQaebYvonTeeqpeiFKq1BpO8l73HoYbhxgvqhQaeoo2L3bi7feXujqmvC4TZBZR6nXqejihKGep2EYXE64dXc3HpOFFidkxoiG+IRbqR63nGhL+ffkeVXyfA7waCrakt9tw3vhXlashQGIuTiBxgtkOuRIuvPOpeKE7NcaVnWykHuoAlaOcEs8bgPsoM/tZowKu+ifaEvRtl0hu24fecSLsgMOoO+wg9hGstxTCbd2ljV2N4ZKra934rhIPW554dbWqsopyAum1Mvy0EP+eb89blOFSm3blB63QkiPi127GlvTlyjc7Omn6atMneMG9e1fhMftRs5g506m1Q6kndTbgdS9PoUKt/z1Jjefal9u5WZ6WRZ2KVqyBFepsJQ/UGUPK4b8jNIB5gvv49bM46ZQ6V45KXn+ZfJ8JPCLJt+7G1htZm3ekwMTc6iUxpNkegGZGIR9tuW47YfHbdwyoyYUTbKtlyVNcLczCFj7m0CmCzMyUq8oXbeOrqrxgPmClNHunHArIFRKLlRq/XXhlvW45bvnF01+Pa9Kbi3bJtymCJUOWcket0qlUbwFEG4MDzO/e3rCbb/bgeSFW7XKrd0bGB+ve1Za5bi1kzTsPZwJlQ4NUbzHbQrh1pUXbpmTfNur2lO6utizwFeSL+VJlg40CrcgxQnyuE2Nma0CLgO+65xLB4NbBDRTMalLqqmfxcx+ONWj7Ya3k1kWKoX6wRNauE0rz6RdodJaLftULE2FW51CQqVJYQKHesH2cHcT4ZatKm2jcrKcx63S1ztxXDxVa+5xK1u49ffXhVrqlWlLqDT7egrhVsrFIhsuDSHcnn6aebVAHrfnP7+xzxFeFJQh3NJ5pe1AJkKlmbyztpJ3FOTmU20RKi0y+DO6qN4SZMmAd29Zr4oTpiKYcEs8Z9cDo8AbQ9kRnFnkcUtfH3CAPwdm+2rtLzMRbuM9/Rx00DQv3m0Sbl19NczqDdcLJdnWNbxIKkW4bdzoX69ZA8Bv+p7t5z3/gMbRK9Jbz3bGKpMT9AA+IbrS3zvRP+rRbv8cWrgNDk6+USkqVDrIHBNuqasySUJvIFP4MlhNBnunt+npLl1d+7w+0qa7q1f75+QmhZe/fFLVqlm9ijk1vyiywi26UGmyT+7a5S9RZu03CWB0aT3PbfE8rxCtv/zihLQLSLY4YWysmEDD/hDEDDPrw+esrQVOcs5tzHy8heZetUWZzyfhnNsw1fzWr1/v9s3SEoh1rNKEfI4bwNe/Dk88AYsXt28+MxFuV32uH5tuL6s2CbdqT5Xbbquf8wsld0tbinBLb6eT5b1u1Tv43tbnMLDuRfyFmZ/p8HD9ot5Oj1uPP3FW8Idp1/xeuPwTcP753Pn6E2FnnMJtvysLp/C4DbCdXZnWGKUKt+zYqe0Sbhs2wLe/Dc997uTP0pU8PMzK+T45/QmWNfXq7LfH7c1vhsMP9w3xAC65BI46Cl70IuZ/rv61dN965zvh+OPh1FMn/1U76eqqh0p7GKZrEHiwpOKEvHDrby7cbrnFnybWr2+/ExBgbEnd47ao35+LKkmFSnoJLGPkhLTlUjZUmnrYu7uT4Q4joHThZmY14KvAeuA059xdua/cDZw+6YdwBPCwc+6pJp/NXtLkz61bvazP743pBTUij9vatf7RTmYi3J55bD/80TT/eB+KExqEUbp9ajWOO26a89xfctu6FOGW87JUB/u5gRfzuvS60dvrhVt6oi9AuKVU+3tg6VI4/XR6k1UROsctL9wGB9tgwxQ5bgNuO3vw54Exq5VSiDGxcovwuFUq9fG68mRuClY7nzz4OMuLCZX29cFZZzW+P+00oPnIDPPnN369KPIet/6AHrfaFB63m27yb09vdmVuA25pvSXIgl7v3kqr61MKqyrNeNwee8wX2VomVBpbmBTKb8BbAb4MnAK83Dl3W5OvfRNYZWYnZX43CLw0+Wxu0dVVv3XfNnmsxonbjUBVpc2EWxHMpKp0RheUNue4lUIEwi29XkyYkq6g9ETfRjWR5rKkVAfqGyObTxnS4zY01FBg15bhjqb0uLl6qLS0/a7IUOneSDbyqjEv3B5jRTHFCS1oS4PffSTrcZsIlRaV45bPqc7NpzaFx+3GG/3bqfT3/jK+rN6Ed6jHOyvywq3oUGlfZZjdu+GpHa7B4xZbYQKUn+P2aeBVwEeBnWZ2QuaRZg99E7gV+JKZvcbMzkimGfCRku0th1YFChGGSotgJh63IMKtzOSGSmXiDhzCCLf0ejGxXvLCrY3ro5L3uM2fLNyGhuIKle53YQJMmeM2fyygcNu5s74vFBETa0aykVeOeOG2qWt504tyak4Rq6TsfStL0+KEoj1uU4RKm/Vx27gR7rnHf+WEE9przgSZJrwDNS/csucBmBwqbVsj6uRAT4tjHn9wt8/l7e2Fvj553IDU8fxevDjLPi4CcM6NA2cD3wGuBr6BH23hZOfcIyXbWw6tChQiLE4oghkJt5lcUGajxw14ulLf3lF53NI79HYKt77GBeqewuMWU6i07R63TKh03nhduLlqycJtx476vlDWOSdZ0cuHHwZga2/zqqe57HErrTghm+M2Pj5pPtadW/iBgYkh1k4+uUCvU2bYq3k1r5Rq8xvPC1mPW6XSxnyzZKH6q164bb4v7lEToOQcN+fcwdP83mbgwuQx92lVoCDh5p9HRvYtbDxLhdtwpQ/Gk5EE+gZhd/2zOSfcehvPiN2D9Y2R7Rk45zxuU4RK52U8bpMupEWRquJNm3yST09POV2OYWLfqo37K+T2vibVp7Qhx60FzXLcyiJfnLCgf8Qfk9lmcu2iWvWtT3bs8APv5kOymfm5efOwrq7Cw6QAtqLucZtXeQYAtcGpPW5tHfYtOdD7Kl4wbnsg7h5uEEcDXpGv9MkSuDghmlBpmv8308Ea91e4paWzZYWNEkYqdYMqQ+V73NJdciKvq8Act0nCbaC+gKlYWrw4LuFWSI5bsrIHRreEC5WmZXVl5bdBw8E3TDcj/Quafi3dJ4toRxGTx21BLSOmiihjzDoK8p69zMKPzRtkbIwJj1tRhQkAPWu8x20Vj1Ib89e8nhbCra33FIki6zWv0HY8HHcPNwjUDkTkyHYtz6PiBP/8u9/55yVL9v2Pp1lV2nBndcwx8KEP+SadJTLSVRfq1UWD8Jh/Xam0UbS0EG4XX+yvGeedl3w3XUElhEp7hur7+gc+AMce6ztKpL1/2zz7KSk1x23ePH/xXLiQni1bOBDfIak0j1t64X4yGZUwkHB7nOX09TcXK+ee608DFxYQhwmd45YtTlizuKAwacrChX74j70It52VQX79E/+1Qw6BdeuKMQdg/sFL2NMzj6HhbfD73wON5wHwx2N6TBYh3HrwCu3pRxUqFdMh9abt3t043bngY5VGEypNG8TOtOvvDD1u6XisE5jBpZfObJ5tICvcupfWyxnbeteXnon27JnUu2v1arjiisx3iyxOaBEqPfZY/0hnWan41JyyxyotxeMGvinsHXdwMD5Rv/RQaWCP21QVpeDX+eWXF2NCyFBptdpYnLB6UcHCLZtT3UK4PblnqKENSKE9zMyoHbYW7roL7r4bgO6hkjxuyYFeIxm54/HE45bcncXocVOoNAamEm7ZweHaGtSfPtEIt0eSupRm3ddbMUPhFsvBmRVu/SvqiqGt9s2kYrfIUGnO42Z9zW9Ssl3bQ3vcChVuGUr3uAUWblP1cCuaWEKlC/pH6B0tSbht3jw5xy2z8Bu3D3LDDf51kWHSCdJ9P/G4dfU3jqCRLU4owuNWHfMKbXxT/B43CbcYmEq4BS5MgIhy3NILyv543Fqsx9iE255q3daepYMTJ43gwq2AUOmkM2IL73KZwq2rq3Fc8sKLE2CScKv0dIBwy+zUj7EiSHAhllDp4nnDxfVwS8nmVLfwuG3aM8iPfuTtO+WUYkxpIB+L7elp2C5Fe9y6xrxCsy0qThDTIRUUqYctJXBhAkTkcUvZV49brdZyAWITbqNd9ZVQXTQ4IRo6Qri1WMj0WlbWxTU1pZAGvPkcN5h08erIHLcO9rgN9Y8U1wokZZrFCWkbouOPb8PwbtMhd9NCb285wi05/1RGvUKr7oi/OEHCLQbSvXEqj1ug/DaIULjtq8dtLxei2ITbnlr96lVbXLBw27Fj7y0gCgyVTlqoSDxu0NiOpK+vvtiledzyDVGLIhWO7R6ndDpMM8etSGJpBzLUW4JwyzZ8T7d3C+FWSpgUmgq37HYpLFSanExsdBRjnN5dCpWK6aBQ6d6rSlNm6nFLj/S9hB3SrwXUyA2MVhuFW+rtKUS4pa1WWl2s0xWTfrcgj9sYrctmyxZu2QbAZvVwadtz3NJ1nxduZXvc8vaUQWQet5AjJwx0D5fnccuGSpvkuO1IhFuR/dsamIHHra3bKB0vF1g0b4QF442h0hg9bqoqjYGIhVtZHrdqFd76Vn8MNdxN7a/Hbc0aePWr4eijW37tiCPgnHPg1FNn9vdFMZrxuPUumV+sx206wu3ww/3z44/754KE20ill74W5Wt/9mf+5H388e2bfSve8hb4+c/9bgTwtrfBvffCQQe14c/7+uCSS/wCpcVHK1cy0tVLd9LLqvQct5RAwm3l0Ss4+7wW3y2IWEKl82ojxee4TTNUevxpg7zxQHjuc4sxYxKrV/vzStr3Jyfcenr8cXjuuXs9nc+c7m4YHuagZcMsfKAxVBqjx03CLQYk3AC46qq9GAAz97hVKnDddXv9Wq0G118/s78uktFuv823M8D8wUp44ZaPl7RTuGUWaqTSS6u9/bzzMr3lSuA972l8//73t3kGV1/d+L5SYdOCQ1m5ybdEqPZ1lnC76rrlcFh5s04JLdzSUGlfpQSPWzZU2kK4nfYfBjntzcWY0JRqFQ4+GO67z7/v6WnQrt3d/nR+7bUFzLunB3bsYNXSERY9oFCpmA4RFyeUFSqdkv31uM1Sxmv+YradwexoSO0N5abrNo0FtLpYH3qo78KZ0s4kk8wZcbQronhEIDYvrIeMSvO45b07gapKZ3xj1iZC57ilHrfqeInFCZs2TS5Kyh7X2TLqssiGS5uESgsj+fOVi0dYiPq4iemg4oTpGdDb68fZ6wDGJjxug9nxx4vxuKW0ulibNXrdCvK47emKJMkwIFsX1S9eXWUVJ8TgcevtDSMWCJ/jlnrcGCmxOCFtat7fXw/Vm9XPC5EJt0KFUyLcVi3cxUK24swmysjlcRPNUah0arJHy4oVBbfvjofxnrpwy3rcggk3aMxSLijHbbQq4bZtSf3iVVqotK+v8dgqc2zeVLgtXx7s+M7u+iE9bgyX0Mct9bilKRJ5gRiLcGvSx60wkhPrmj7fx/DpnqEJ76M8bqI5Em7TMyBQGCUEUQq3U06ph1IKCpWOSbixbZnv5TZKF909JQmZ7LAUEMbjFjANoqurfpoNKtzK8LjNn9944xWTcEv7GCYJbfl2IIWRnIMOrPpBoXfU6mXj8riJ5kQs3KLKceuQ/DZoFG59fZEIt6EhOOEE/7qgUOlYTcJtx1LvddhDrdy7/OxVMoRwC3xjVnarmZSGUOlwCcUJZo2NCPOevRg8bsk+UbbHbbnzwu3hpxaxYoWvHZJwE82JuDhBHrcwPHHgc9hJP7d3/wlmvv1FX19dN7WFmQo3gAsu8GewdtbjZ86I47WI4hGB2LXsYO7hmdzK88q9WITyuB1zjN+5SxlXaWqaFFaWwgknQK0/43F7zIsHFi8ubqbZRoR5gXjiibB2LaxaVdz8p+IZz/CP5z1vkmllFCcc0vMoAH9wi3n8cfjiF+MMlaodSAyoOGF6BnSQx23T6mNYwFaWLKrxEXwvpW3b2rwN9kW4XXQRnH9+ew3JnBHHu+Vxq/ZWOYq7ALiyE4Tbc55TwM49c0IJtw9+EN73X3pgMV4l3H+//yDfkLadZD1ueeH2T/8EY2Plux7BC6h77pkolii7OGFgy8MAHHPWCrjB9yiO0eMm4RYDCpVOTYd63Go1GKVWbJuCfRFuRRjS1cUYFboYZ7xHwq1ahXF8DmFHhEohuGiD8sfBzVKbl6iCtDBhYACWLCluhq08bmZhVkJKZt75Pm6FkR5oD3vhNu8Qf63ZsiVOj5tCpTEQsXCTxy0M6WIXlebSMJOUsi/WGUYryVlZwq1hs3REqDQSQnncms503bpiK2yzwq3MCuIZUlpj5PRAS4Rbz2ov3DZvrgu3mDxuEm4xkIZCh4dhfLw+XcKtoz1uULBwq1Tq/Zsg6MV6T8XfzrpYBosNSHaXL/UuX8INCHSeq1QaZ1xkmBRah0ojIjWtu7vgTjHpgZb0tqsdtIK+Pj/61pYtdRtiQcItBswaxVuKihMk3Io+p2bXbwQeN5Nwa4hSyeNWHkGFGzRu7KKFW6tQaUSkphV+A5Ou+3Sc1OXLJ1ZRWiuiUKmYTLMChQiKE6LKcevAUGnhUYzs+g0YMkk9btYb0dkxEMFCpSFz3CIgZI4b0KgMyvS4RRwqTU0r/DjIz2DFiknCTR43MZlmeW47dvjngHdEXV11F3UQ4dbX508yBx0U9Z1huznwQP+cHR60ECLxuKVnxXlL5HFTqDQM6bGWHnulI4/bJJYt85eAwrdJ/kBbvnxC2z7+uH+OSbipqjQWmgm3dI8JHCKs1XxJdBDhVq3CHXdEUXVWJqedBrffDs96VsEzikS4LV7RDdth1VoJNxUnhOHtb4cNG2D9+kAGZDd2OoJAUcwS4TYwAD/96cSwocWRXffVKixaNLGK0uhpTKFSCbdYiFi4VateuAW741i7NtCMw2Hme7cVTiTCrdKXhEr7JNyyobogHrdKJS73Qkl0d/tG18FIN3Z3d/HNb2dJcQLA4YeXMJPsgbZsGVQqDdoW4jokFCqNhfzoCc5FI9zSa3uHOb06g0iE28RZUcUJ4XPc+vuDDfbe0aQb+5BD2jsWcDNmSTuQ0sgeaEkudVbbQlweNwm3WMgXJ2zd6t1cg4NBq0pBwm1OE4twS8+KMZ0dAxE8VNqBYdIoSPf9ovPbYFZ53Eohe6AljhJ53MTeyYdK01KWCCop09CNhNscJBbhJo/bBMFDpRJuYUiPAQm38skeaIlwy3vcJNzEZPLCLZIwKcjjNqeRcIuO4B43hc7CUKZw6+6ub28Jt6ah0rzHLaZggIRbLETscUsregYHw9ohCiAW4bZgQeNzBxOsHUg6Nmb+iiXKId33n/nMcua3cqV/Xry4nPnFTBOPW8yhUlWVxkLEHrfPfhZ+85viC51EAGIRbh/8IJxwApx6ajgbIiGYx+2oo+Azn4HjjitxpmKCK6+EU04p7xj4/Ofht7+FAw4oZ34xM8uKEyTcYiENEaVVpRF53E480T/EHCRVCaFbQBx2mH+IcENemcHFF5c4Q9HAEUf4R1m84AX+IVScIPaRiD1uYg6TCje1gIiGYKFSITqV7IE2hcdNwk1MJuIcNzGHyQo3EQXBQqVCdCpNPG5DQ433sjEV50m4xYI8biIEEm7RESxUKkSnknrcarUJV1ulUve6dXfHFZCQcIsFedxECCTcoiPdJF1dxTfQF0JQv0NavrxBoaXCLbaUBQm3WMgWJ4yPwxNP+PfLloWzScx9JNyiI71IqKWdECWRHmw5R0laoBCb51tVpbGQ9bht3gyjo17uxyb1xdwiFW5quhoN8+fDu96l9lpClMZxx8FrXwt/+qcNk7Oh0piQcIuFrHBTfpsoC3ncouTDHw5tgRAdRE8PXHPNpMmpxy02/4lCpbGQFW7KbxNlIeEmhBBNiTVUKuEWC/K4iRBIuAkhRFNUnCBaky1OSIWbPG6iaCTchBCiKfK4idY0C5XK4yaKRsJNCCGaIuEmWtMsVCqPmygaCTchhGiKQqWiNVnh9tBD/vWqVeHsEZ3BSSf5XoEbNoS2RAghouL44/1l+IwzQlvSiNqBxEJWuN1/v3+9bl04e0RncPrpPjQf03guQggRAStWwCOPxHd6lHCLhbQ4Yds2L96qVVi9OqxNojOI7awkhBCREOPpUcItFlKP265d/nnNmsbRpoUQQgjR8SjHLRbyAxMeemgYO4QQQggRLRJusVCpNJauSLgJIYQQIoeEW0yk4VJQYYIQQgghJiHhFhPZcKk8bkIIIYTIIeEWE1mPm4SbEEIIIXJIuMVEVritXRvODiGEEEJEiYRbTKTCbeVKDUEkhBBCiElIuMVEKtxUmCCEEEKIJki4xURanKD8NiGEEEI0QcItJlKPm4SbEEIIIZog4RYTS5f65yOPDGuHEEIIIaJEg2HGxGWXwQtfCC99aWhLhBBCCBEhpXvczOxAM/sbM7vVzHaZmTOzg5t8r9fM/srMfm9mu5Pvv7Bse0tl1So4/3wNLi+EEEKIpoQIla4DXg1sAf61xff+DngT8H7gbOD3wI1mdnTRBgohhBBCxEgI184tzrnlAGZ2EXB6/gtm9mzgPwIXOue+kEy7GbgbuAw4pzxzhRBCCCHioHSPm3NufBpfOwfYA1yX+d0ocC1whpn1FGSeEEIIIUS0xFpVeiTwgHNuV2763UA3PtwqhBBCCNFRxJoFvwifA5dnc+bzBszsh1P92bHHHtseq4QQQgghAhKrx00IIYQQQuSI1eO2BVjTZHrqaduc/8A5t2GqP1u/fr1rj1lCCCGEEOGI1eN2N3CImfXnph8BjAD3lW+SEEIIIURYYhVu3wJqwKvSCWZWBc4FbnLODYcyTAghhBAiFEFCpWb2yuRlWjVwlpk9CTzpnLvZOfdTM7sO+ISZ1YAHgEuAQ4DXlW+xEEIIIUR4QuW4/WPu/dXJ883AhuT1G4ErgMuBBcCdwJnOuZ+UYJ8QQgghRHQEEW7OOZvGd3YD70geQgghhBAdjzk39wsukzDsQwXO4vDk+d4C5xEzWn5PJy5/Jy87aPk7efk7edlBy1/08q9xzi1t9kFHCLeiSZv/tmpJMpfR8nfu8nfysoOWv5OXv5OXHbT8IZc/1qpSIYQQQgiRQ8JNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswSVFUqhBBCCDFLkMdNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLjtB2Z2kJl91cy2mdl2M/u6ma0ObVdZmNmBZvY3Znarme0yM2dmB4e2qwzM7JVm9jUze8jMdpvZvWZ2pZkNhLatDMzsDDP7vpk9ZmbDZrbRzP6PmR0R2rYQmNm3k/3/8tC2FI2ZbUiWNf/YGtq2sjCzF5vZLWb2VHLuv8PMTgltV9GY2Q+n2PbOzL4d2r4yMLPnm9lNZvaEme0ws5+Y2YVl2hBkkPm5gJn1A98HhoHzAQdcDvzAzP7YObczpH0lsQ54NfD/gH8FTg9rTqm8E3gYeA+wETgG+ABwspmd6JwbD2hbGSzCb/ergSeB1cB/A24zs6Occ0WODRwVZvZa4Nmh7QjAXwD/nnk/GsqQMjGzNwOfSh5/iXeAHA30BzSrLP4zMJib9jzgY8A3yzenXMzsj4HvArcBbwJ2Aa8E/s7MepxznynDDgm3fedNwFrgcOfcfQBm9nPgN8Cb8TvyXOcW59xyADO7iM4Sbi91zj2ZeX+zmW0G/jewAS/q5yzOua8AX8lOM7PbgV/hT2QfDWFX2ZjZQuDjwNuBawKbUza/dM7dFtqIMkkiCp8A/qtz7hOZj24MYU/ZOOfuyU8zszcBI8C15VtUOq8BuvDn/6eSad9JBN0bgFKEm0Kl+845wG2paANwzj0A/Ah4WTCrSqQDvEpTkhNtKan3YVWZtkTEpuS5IzwvCR8GfpEIWTH3uRAYB/42tCExkESeXgV8yzm3ObQ9JdAN7AF256Zvo0Q9JeG27xwJ/KLJ9LuBjszzEZyUPP8yqBUlYmZdZtZtZs8APgs8Rs4TN1cxsxfg77L/PLQtgfiymY2Z2SYzu6ZD8ntfgPcqv8bM7jezUTO7z8w6dR94BTCAjzR0An+fPF9lZgeY2YLE4/givOe9FBQq3XcWAVuaTN8MLCzZFhEYM1sFXAZ81zl3R2h7SuTHwLHJ6/uAU5xzTwS0pxTMrBsvVP/aOXdvaHtKZhs+FH4zsB2f3/ke4FYzO2aOb/8Dksdf4Zf5frzH6VNmVnXOfTKkcQF4A/AEcENoQ8rAOfcLM9sAfAOf7wfeA3exc660ULGEmxD7iZnNB67HhwjfGNicsnk9Pll5Lb5g4ztm9gLn3INBrSqedwF9wBWhDSkb59xPgZ9mJt1sZrcAt+MLFt4XxLByqOA9TBc4576eTPt+kvt2qZld5TpkOCIzOwA4Ffikc64j0iOSyMLX8JG1i/Eh05cBf2tmTzvnvlyGHRJu+84WmnvWpvLEiTmImfUB38ILl5OccxsDm1Qqzrk0LPxjM7sBeBBfXXpxMKMKJgkJvhe4COgxs57Mxz1mtgDY4ZwbC2FfCJxzPzGzXwPPDW1LwWwCngF8Jzf9JuBMYCXwaNlGBeI8vJDtlDApwIfwHraznXN7kmnfM7PFwCfN7Ctl5H4rx23fuRuf55bnCGBS5Y2Ye5hZDfgqsB54sXPursAmBcU5txUfLl0X2JSiWQv0Al/C36SlD/Bexy3AUWFMC85c9zbdvZfPO6lg63zgTufcnaENKZGj8Mu8Jzf9dmAxsKwMIyTc9p1vAieY2dp0QuIufz4d0M+m0zGzCvBl4BTg5Z3WFqEZZrYc+CN83s9c5mfAyU0e4MXcyXgB2zGY2XrgcPwFbC7zjeT5jNz0M4GNzrnHSrYnCMn2PoLO8raBL746OslxzXI88DQ+x71wFCrdd/4X8BbgejN7H/5O8y+BR/BJyx2Bmb0yeZkmqJ9lZk8CTzrnbg5kVhl8Gp+UfAWw08xOyHy2ca6HTM3sG8BPgJ/jE9QPw/cyG2WO93BLPIs/zE83M4CHnHOTPptLmNmXgQfw238rvjjhUuB3wFXhLCuFfwF+AHzWzJYAv8WfB06ns/Jb34A/1kvJ6YqITwH/CHzLzK7G57idA7wW+LhzbqQMI6xD8igLIcl1+ThwGmDA94C3dUBi9gRmNtUOdLNzbkOZtpSJmT0IrJni4w865z5QnjXlY2bvxo+acSi+t9EjeDFzZSft/1mSY+EK59xcTs7HzC7FX6jW4EcLeAxfVfjfnXO/D2lbGZjZIHAlvtH0Qnx7kP/hnOuIBsxJisij+D6mLw1tT9mY2VnAu/GpUr34CMP/BD5bVl6rhJsQQgghxCxBOW5CCCGEELMECTchhBBCiFmChJsQQgghxCxBwk0IIYQQYpYg4SaEEEIIMUuQcBNCCCGEmCVIuAkhZiVm5qbxeNDMDk5eXxDa5hQzW2VmO5MO9NP9zdvM7K5k1A4hRIeiPm5CiFlJbrQK8MMR3Ql8IDNtGD928DHA/c65J8uxrjVm9nlgmXPu7Bn8pg8/YsGlzrkvFGacECJqJNyEEHOCZDSLf3POnRfallYkY7o+ArzCOffPM/ztR4CXOOeOLMQ4IUT0yOUuhJjTNAuVmtnfm9lGM1tvZv/XzHab2b1m9pLk83ckYdbtZna9mS3N/WfVzC41s1+Z2bCZPWpmHzWz3mmYdAGwA7gx959nJLZsM7OnEnven/vttcARZnbiPqwKIcQcQMJNCNGpDAL/AHwOeAXwBPA1M/socDLw58Dbktefzv32S8D7gGuAl+DHrvxPTG/Q7TOBW51zo+kEM1sLfBMfCj0XP3D1x4B5ud/+DC/6zpzeIgoh5hrV0AYIIUQgBoCLnXO3AJjZo/gcubOBI9IBo83sWcBbzazLOTdmZn+CF1fnO+f+Ifmv75rZZuBLZna0c+5nzWZoZgYcD3w899FzgG7gEufc9mTa9/O/d86Nm9mdQD6/TwjRIcjjJoToVHamoi3hV8nzd1PRlpleBVYm788ERoCvJiHTqplVgZuSz1/YYp4LgD4gXyTxM2APcK2ZvdLMlrX4jyeBA1p8LoSYw0i4CSE6la3ZN865keTlltz30ulp/toyvHdsJ15spY8nks8Xt5hn+h/DuXnfB5yBPyd/EXjMzG4zs5Oa/MduvPgTQnQgCpUKIcTM2AQ8DfzJFJ8/upffAizMf+Cc+wHwAzPrAZ4PXAb8s5kd7Jz7Q+ari4A/5H8vhOgMJNyEEGJmfBt4NzDknPveTH7onBsxsweAtS2+Mwx838zmA9cDh9Ao1A4Bbp+x1UKIOYGEmxBCzADn3A/N7Cv4HLeP4UXUOHAw8GLg3c65X7f4i1uA47ITzOxifG7cv+B7vC0BLsV7736R+d4C4DDgr9u0OEKIWYaEmxBCzJzzgLcCFwLvxeesPYjvzfb4Xn57HfCGJAT6YDLtTuAsfFuRZcBm4N+A1znndmd++xJ8zt032rIUQohZh0ZOEEKIEknGGv0N8AXn3OUz/O0NwB+cc68vxDghRPRIuAkhRMmY2evwDXYPcc7tmuZvjgZ+DByZVKEKIToQhUqFEKJ8rgFW4fPi7pnmb1YAF0i0CdHZyOMmhBBCCDFLUANeIYQQQohZgoSbEEIIIcQsQcJNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswS/j+3tENHiYAiLgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `Crossspectrum` class to create a `Crossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'frac'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "cs = Crossspectrum.from_lightcurve(lc1, lc2)\n", + "print(cs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Crossspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Crossspectrum(lc1, lc2, norm=\"leahy\")\n", + "```\n", + "However, we recommend using the specific method for input light curve objects used above, for clarity. Equivalently, one can initialize a `Crossspectrum` object:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(events1, events2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s, are created internally.\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(times1, times2, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Crossspectrum.from_lc_iter(lc_iterable1, lc_iterable2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the cross power. The cross power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[-3264.54599394-1077.46450232j 1066.6390401 -2783.16358879j\n", + " 3275.00416926 +196.64355198j -8345.12445869-6661.52326503j\n", + " 5916.3705245 +3602.05210672j]\n" + ] + } + ], + "source": [ + "print(cs.freq[0:5])\n", + "print(cs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the negative Fourier frequencies (and their associated cross powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"Size of positive Fourier frequencies: %d\" % len(cs.freq))\n", + "print(\"Number of data points per segment: %d\" % cs.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Crossspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of cross spectra averaged together. For a `Crossspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can compute the amplitude of the cross spectrum, and plot it as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtEElEQVR4nO2debgcVbW+33VO5oSEBAgzhBhmkIDgRVEIg6CIICKOKE4IjhfUq6KoKIgT4oxXUfx5FfVeEA2KCCIkIIKCGlDmIRCmkEAmyJyc/ftj97bq1KnqruquHs/3Pk8/1d1V3b27u2rXV99ae21zziGEEEIIMVzoa3cDhBBCCCFaicSPEEIIIYYVEj9CCCGEGFZI/AghhBBiWCHxI4QQQohhxYh2N6ATMLN/AFsAD7S7LUIIIYRomBnAYufcvmkrJX48W0yaNGnbmTNnbtvuhgghhBCiMebNm8fy5csz10v8eB6YOXPmtnPmzGl3O4QQQgjRILNmzWLu3LmZ0Rzl/AghhBBiWNH14sfMRpnZ183sfjP7p5ld0e42CSGEEKJz6YWw13nAKGBX59yAmW3V7gYJIYQQonNpufNjZtuZ2bfM7GYzW2VmzsymZWy7vZldZmbLzWyFmV1uZjvE1o8D3g183Dk3AOCcW9iSLyKEEEKIrqQdYa8ZwOuApcCNWRtVhM11wG7AycBbgJ2B681sfOy9lgIfN7NbzewmMzummY0XQgghRHfTjrDXDc65LQHM7F3AkRnbnQJMx4ezHqhsfwdwP3AqcAG+/TsADzjnPmFmuwE3mNmBzrmHmvw9hBBCCNGFtNz5CeGpHBwL3BKET+W184GbgOMqTy0AHPDTyvp7gNuB/UprsBBCCCF6ik5OeN4TmJ3y/J3AiQDOuafN7Grg5cAVZrY1sDfwz7Q3NLM5GZ81s9HGCiGEEKI76GTxMwWfz5NkCTA59vg9wA/N7PN4F+jDzrl7W9A+IYQQQnQhnSx+cuGcexg4POe2s9KerzhCh5TWKCGEEEJ0LJ0sfpYy2OEJZDlChUiEwGY2+n5CCCGE6A46ucLznfi8nyR7AHe1uC0igXPtboEQQghRH50sfq4ADjSz6eGJSjHEgyrrGsI5NyvcgHmNvt9wYu1a2H13eNvb2t0SIYQQojhtCXuZ2Wsrd19QWb7CzBYDi51zcyvPXQS8H5htZmfhk5nPAR4FvtfK9orBPPYY3HsvrFzZ7pYIIYQQxWlXzs+liccXVpZzgVkAzrmVZnYY8DXgJ4ABfwROd84912gDlPNTP+vW+eX69e1thxBCCFEPbRE/zjnLud0C4IQmN0cUROJHCCFEN9PJo72aSnzYu4a6FyOInw0b2tsOIYQQoh46OeFZdChyfoQQQnQzw9b5Uc5P/Uj8CCGE6Gbk/IjCxMNeqvcjhBCi2xi2zo9yfuoniB+AjRthxLDdi4QQQnQjcn5EYeLiR0nPQgghug2JH1GYuPhR3o8QQohuY9gGLJTwXD8SP0IIIboZOT+iMGvXRvcV9hJCCNFtDFvnRwnP9SPnRwghRDcj50cURuJHCCFENyPxIwqj0V5CCCG6GYkfURg5P0IIIbqZYZvzo9Fe9SPnRwghRDcj50cURs6PEEKIbmbYOj8a7VU/Ej9CCCG6GTk/ojAKewkhhOhmJH5EYeT8CCGE6GYkfkRhJH6EEEJ0MxI/ojAKewkhhOhmJH5EYeT8CCGE6GaG7Wgv1fmpHzk/Qgghuhk5P6Iwcn6EEEJ0M8PW+VGdn/qR+BFCCNHNyPkRhVHYSwghRDcj8SMKI+dHCCFENyPxIwoj8SOEEKKbkfgRhVm7NrqvsJcQQohuQ+JHFEbOjxBCiG5G4kcURgnPQgghuplhO9RdRQ7rR86PEEKIbkbOjyiMxI8QQohuZtg6PypyWD8KewkhhOhm5PyIwsj5EUII0c1I/IhCbNwIAwPRY4kfIYQQ3YbEjyhE3PUBhb2EEEJ0HxI/ohBJ8SPnRwghRLch8SMKIedHCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotuR+BGFUNhLCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotsZttNbaGLT+lDYSwghRLcj50cUQs6PEEKIbmfYOj+a2LQ+1q71y5EjvfCR8yOEEKLbkPMjChGcn3Hj/FLOjxBCiG4jt/gxs33N7HIze9rMNpjZfpXnzzOzlzeviaKTCOJn/Hi/lPgRQgjRbeQSP2b2EuBmYDfgZ4nXDQCnld800YkkxY/CXkIIIbqNvM7PF4GrgT2BDyXW/R3Yr8xGic5FYS8hhBDdTt6E5/2A1zjnnJm5xLqngS3KbZboVBT2EkII0e3kdX7WAOMy1m0NLC+nOaLTUdhLCCFEt5NX/PwJON3M+mPPBQfoncB1pbZKdCwKewkhhOh28oa9PgXcBNwOXIYXPieb2QXAC4ADmtM80Wko7CWEEKLbyeX8OOduBw4GngI+CRjw/srqQ5xz9zaneaLTUNhLCCFEt5O7wrNz7u/A4WY2BpgCLHPOrWpay0RHIudHCCFEt1N4egvn3BrgiSa0RXQBcn6EEEJ0O5nix8w+XeB9nHPunBLaIzocJTwLIYTodqo5P2cnHjt8rk+SMOpL4mcYoLCXEEKIbicz4dk51xduwF7AfODjwDRgbGV5ZuX5PZveUtERBPEzdiyYgXMwMNDeNgkhhBBFyJvz823gB865L8eeWwB8ycz6gO8Ah5fduDyY2RxgR6JCi5c75z7XjrYMB4L4GTUKRozwzs/69TB6dHvbJYQQQuQlb5HD/wBuy1h3K3BgOc2pmzOcczMrNwmfJhIXPyNH+vsKfQkhhOgm8oqf5cDLMtYdSYHpLcxsOzP7lpndbGarzMyZ2bSMbbc3s8vMbLmZrTCzy81sh7yfJconTfxoxJcQQohuIq/4uRj4iJl9x8xmmdnuleWF+Fnef1DgM2cArwOWAjdmbWRm4/DTZuwGnAy8BdgZuN7Mxic2/6KZ/bMilHYt0BZRkGTYC+T8CCGE6C7y5vx8Gj+q63TgtMpzBqwEzmPoyLBq3OCc2xLAzN6Fd47SOAWYDuzqnHugsv0dwP3AqcAFle3e6pxbYGYGvB24xsymO+c2FmiTyMnatX4p50cIIUS3knd6iwHn3KeA7YFZwBuBQ4DtnHOfds7lHu9TYNtjgVuC8Km8dj5+jrHjYs8tqCydc+5iYAI+AVo0ATk/Qgghup1CFZ6dc8uoEqoqmT2B2SnP3wmcCFCZamOCc+7pyuOjgY3Ao2lvWBkZlsbMBts6bFDCsxBCiG4nl/gxs4NrbeOcu6Hx5gxiCj4vKMkSYHLl/kTgKjMbBQxUtj/GOafTcZNQwrMQQohuJ6/zM4eoknMW/Y01pTjOuUXACwpsPyvt+YojdEg5reptFPYSQgjR7eQVP4emPLcZcAxeNLy/tBZFLCVyeOJkOUKFSITAZjb6fsMFhb2EEEJ0O7nEj3Nubsaqy83sa8CrgKtKa5XnTtKnzdgDuKvkzxI5UdhLCCFEt5O3zk81rsTX7SmbK4ADzWx6eKJSDPGgyrqGcM7NCjdgXqPvN1xQ2EsIIUS3U2i0Vwa74pONc2Nmr63cDfk6rzCzxcDimMt0ET6cNtvMzsLnHJ2DH8n1vYZbLepCzo8QQohuJ+9or7emPD0KP9v7O4HLC37upYnHF1aWc/F1hHDOrTSzw4CvAT/BF1X8I3C6c+65gp83BOX81EcQP6NHy/kRQgjRneR1fv5fxvNrgf8F/rPIhzrnLOd2C4ATiry3aC5KeBZCCNHt5BU/O6U8t8Y591SZjWkl8WHvGuqeH4W9hBBCdDt5xY8DnkwrHmhmI4BtwjQToncZGIiEzogRCnsJIYToTvKO9poP7Juxbp/KetHjBJEzahSYKewlhBCiO8nr/FTL0RlJwdFenYASnosTD3mBwl5CCCG6k0zxY2ab4qspB7aN19ypMBY4GVhYftNEp5EUPwp7CSGE6EaqOT//CXwGn+/jgMsytrPKdl2FEp6LI+dHCCFEL1BN/PwaeBgvbi4GzgUeTGyzFrjLOXdHMxonOgs5P0IIIXqBTPHjnLsduB3AzBxwpXPu6VY1THQea9f6ZdL5kfgRQgjRTeSd2PTHzW5Iq1HCc3EU9hJCCNELVEt4vg54r3Punsr9ajjn3OHlNk10Ggp7CSGE6AWqOT/x4e19+KTnPNt2BUp4Lk6W8yPxI4QQopuolvNzaOz+rJa0RnQ0CnsJIYToBfJWeBZCYS8hhBA9QbWcn4OLvJFz7obGmyM6GTk/QggheoFqOT9zqJ7nE7DKdv1lNKhVaLRXceT8CCGE6AWqiZ9Dq6wTw5AgfkaP9kslPAshhOhGqiU8z21lQ1qNRnsVR2EvIYQQvUDeWd0BMLOJwF7AtsDjwD+dc882o2Gi81DYSwghRC+QW/yY2aeBDwMTiOr6PGtmX3HOnduMxonOQnV+hBBC9AK5xI+ZfRb4FPAD4BfAU8CWwBuBz5rZCOfc2c1qpOgMFPYSQgjRC+R1fk4Bvuqc+6/Yc3cC15nZcuDdwNklt010GAp7CSGE6AXyip9JwNUZ634PvKec5rQODXUvjpwfIYQQvUDeCs9/AQ7IWHdAZb3oceT8CCGE6AXyOj8fBH5lZhuAS4lyfl4HvAM4zsz+LaSccwNlN7RsNNS9OEp4FkII0QvkFT93VJZfrNziGPDP2GNX4H1FF6GwlxBCiF4gr0j5HPmmuhA9jMJeQggheoFc4kfD2AXA2rV+qbCXEEKIbiZvwrMQCnsJIYToCYpUeN4deC2wPTAmsdo5504us2Gi81DYSwghRC+Qt8LzW4GL8Xk/i4B1iU2UDzQM0GgvIYQQvUBe5+dTwGzgnc65Zc1rTutQkcPiZDk/CnsJIYToJvKKn62A03pF+Ij6kPMjhBCiF8ib8HwTsHszG9JqnHOzwg2Y1+bmdAVKeBZCCNEL5HV+3g9cbmbPANcAS5MbdENVZ9EYQfyMHu2XSngWQgjRjeQVP48B/wB+mrFeVZ2HAQp7CSGE6AXyCpaLgNcDvwbuYehoLzEMUNhLCCFEL5BX/BwH/Jdz7hvNbIzobFTnRwghRC+QN+F5JXBXMxsiOh+FvYQQQvQCecXPj4A3NbMhovNR2EsIIUQvkDfs9QjwRjP7A/B70kd7XVxmw0TnkRQ//f1+uXEjOAdm7WmXEEKIzmPDBnjDG+Dww+E972l3awaTV/x8t7LcETg8Zb3DT38hepik+DHzeT8bNvhbcIKEEGI4snYtDAzA2LHtbklncMcd8Mtfwl13da/42amprRBdQVL8QCR+1q+X+BFCDF8GBmDvvb0TfuutMGVKu1vUfpYs8ctVq9rbjjRyiR/n3CPNbojofNLEz8iRsGaNkp6FEMOb1avh/vv9/fe9D37+8/a2pxNYtswvV69uazNSyZvw3HOY2ZxwQxOb1sS5SPzEHR4lPQshxGB34xe/8LfhztJKdnDXOj8AZnYk8B5gV2BMcr1zbnqJ7RIdRnB2RoyAvphkVq0fIYQYeoJ/73vhpS+FbbdtT3s6ga53fszsaOAqYBywG77K8wJge2AAmNusBjYLTWxajLSQF6jWjxBCQHSC33lnOPpo73q8853eNe9l7rwT9tkHrrpq6Lrg/Gzc2HnniLxhr08B3wGOrjw+qyIa9gT68cJI9DC1xI/CXkKI4UxwfsaPhx/8wCc8X301/PjH7W1Xs7nmGj+q67LLhq4Lzg90nvuTV/zsBvwG7/L8exJT59x9wNl4cSR6mCzxo7CXEEJEJ/exY2HrreEzn/GPr722fW1qBc8955dhZFecpbGKgN0qfgaADc45BywGdoitewJ4XtkNE52FnB8hhMgmOD/jxvnl9EoWbJoo6CWC+HnmmaHresH5uReYVrl/G3C6mW1tZlsAHwYeLr9popPoBOdn2bKoHUII0UkkxU+o89Pr4ufZZ/2y25yfvKO9LgF2r9z/DHAt8Fjl8UY071fPE0TH6NGDn29VwvOKFbDjjnDAAb1vIwshuo942AuGj/jpVucnb5HD78Tu/83M9gZejh/9da1zTjO+9zjtDnstWOAF0I03+s8akbtIgxBCNJ+k87PZZn45XMTPkiVD53jsBednEM65x4AflNwW0cG0O+wVrNV162D+fD+cVAghOoWk8zN5sl8uXeqnvujr0ZLCQfysWwcrV8KECf6xc53t/PTo3zF8efZZ+NGPYPnyct+33XV+wgEGcM89zf0sIYQoStL5GTECJk70wqfs/riTiPfNcZdr9erBOZoSP6KpfPe78I53wLe+Ve77tjvsFZwfgLvvbu5nCSFEUZLiB4ZH3k9c/MTzfuKuD0j8iCZzVyX76qGHyn3fTgl7gZwfIUTnkQx7QZT3k5YM3OncdtvgfjeLLOcnnu8DnTe/l8RPj/Hgg3755JPlvq+cn+aiOklCdDe95PzcdpsfWfvBD9beNt43VxM/cn5EUwmOT6vET6ucn2TOT6fNl+McXHhhfa7UBz4AW24JixeX3y4hRGvoJfHzwAN+ef/9tbdV2Eu0ndWr4Ykn/P1WOz+tDHstWwZPPdXczyvKtdfC+97n862Kcv31vnO8887y2yWEaA3Vwl7dJn6CcEm6N0k2bIA1a6LH3eT8ZA51N7P5+Hm88uCcc5rios08/HB0f9EiL0iCOGmUTgp7gXdYttqquZ9ZhPvu88tbboGnn4bNN8//2tBJ9PKIECF6nWrOT7fl/OQVPytXDn7cTc5PtTo/c8kvftqOmb0duBg43jn36zY3py2EfJ/AU0/BdtuV897NCnstXuyLYtUSC8FaHTnSf9bdd8OsWfV9ZjOYP98vnfMzOb/5zflfG66WJH6E6F7SnJ9uDXsF4VKr3fGQV3L7IJxGj4a1a7tI/Djn3tbCdjSEmU0DTgFuaXNT2kpyhNeTTzZf/KSFve65x4ual760+nsODMC++3rxs2DB4MqgSYLz8/znw9/+1nkjvuKu21VX5Rc/a9ZEtrHEjxDdSy/l/IS+KIiWuKCLkxQ/ac7P1lv7/rHTxE/Lc37MbDsz+5aZ3Wxmq8zMVcRL2rbbm9llZrbczFaY2eVmtkNimz58tekPAGub/w06lzTxUxZFwl5veIN3Ze69t/p7Ll0Kjz8Ojz3mD7JqBPFzwAF+2WkjvuLi5/e/h40b870ubitL/AjRvaSJn1YMdf/DH+CGG8p9z3jIqlroK4/zs802ftnV4sfM9jGz15nZW5O3Am8zA3gdsBS4scpnjQOuA3YDTgbeAuwMXG9m42Obfgi4yTn3tyLfpRcJ4idcbZQpfoI4yRP2euQR7+pcfnn191y0KLpfqwZEOMiC+OlU52fKFN/R3XprvtdJ/AjRG5QZ9lqxIl///dxz8KpXwVFH5avJk5e84id8ZprIizs/0KXix8w2NbObgL8DPwf+X+X2o9gtLzc457Z0zh0NXFplu1OA6cCrnXO/ds7NBo4FdgROrbRrL+AE4NwCn9+R/M//+Llgbrut/vcI4ufFL/bLMPKrDPI6P/FS7r/6VfX3jA/tTibOJYmHvUaNgkcfHXrV0S6efdYf9GPGwBvf6J/73e/yvTbeKUr8CNG9lBn2OuII2HXX2n3cgw/6C9M1a7zjXBZFnZ8dd/TLXnR+zgM2Aw4GDDgeOAy4BHgIeGHeD3TODeTc9FjgFufcA7HXzgduAo6rPPVSYBpwv5k9DBwIfN/M3p+3PZ3ClVf6He7HP67v9c5F4uegg/yyFWGvpPPz3HNRDZ5bb/UhrSzizk9e8bPpptGkprXCaq3ikUf8cscd4eij/f2rrsr3Wjk/w5tTT4XXv77z6lZ1CitWwMUXd8exUdZQd+fg9tt9nxf6lizig1xmz87/GbWI/97V2h7Ezw47RNuGfbknnB/gKLwACgnFjznn5jjn3gpcC/xnE9q2J/CvlOfvBPYAcM591zm3tXNumnNuWqV973bOfTvtDc1sTtoNmNmE9hdi4UK/vP76+l+/erU/2Hbd1T/XypyfIH6SwxurHZD1iJ9NNoHddvP3OyXvJ4S8pk3zuU5jxngHL08tolriZ84c2Gcfn+QteouBAbjoIvi//xt63AjPd74D73wnfDu1R+8s0pyf5MzueVi2LOpv431kGg88EN2/8sry6q0VdX422wzGj/cRgNBX94rzszXwkHNuI7AG2CS27nLglWU3DJiCzwtKsgSY3ITPaytB/Nx5Z30F/ILr87znRTtbOxKekyfwaqGvImGvcJBtsgnsvru/3yl5P3HxM24cHHqof5zHhq4V9rr8crjjDvjFLxptZTksWeJHsl19dbtb0v0sWxZdJXfbaKBWEepnzZvX1mbkIk381DOzezgXQO1zQdz5WbasvMTnouJnwoShNY3Ce4TzUbfO7bUQ2LRy/xHgRbF1M8psUCM452ZVq/FTWT/kBsxrVRuziAuVetyfIH6mT49sxmaIn9GjBz+fDHuFHX6PPaC/3zsXWR17XucnVBHt6/OWcic7PwCveIVf5gl91XJ+wm/XKdWfv/pV+NnP4MtfbndLup/4cdEu8fPMM17M/ulP7fn8WoSwT6cc61msX+9HePb3Dy0sWzTvJy548jo/M2f6ZRmhr3XrBrs0ecVPPMS3caMPWZr5qXuge52fP+HzaQB+AnzGzL5nZt8BvgI04zpwKekOT5Yj1LWsXDk4U78e8ROuAKZPjyofL1yYf8h1GvE8hLxhr3ACDyGgjRvht79Nf/+84if8NhMm+IOpk50fiMTP1VfXrnxdS/yE9Xfd1UgLy2H1avje9/z9+NB+UR/xk2G7KgDPnu3F7Ne+1p7Pr8WCBX55332dMfnvunVw3nlDR3OmuT6BosPd485PLfET+v0PfcgvZ89uPH8s2Q/V4/yE95g0yYfDoHvFz2eJBM5XgO/gQ11vBK7A19gpmzvxeT9J9gAaPhV0Us5PUPqhyN911xV/j7jzM2qUP+AGBuqfLPPWW71d+8lP+sd5w17B+dl0Uzj+eH8/K/SVV/zEQ14Q5TTdf39ndIhJ8TNjBuyyi/8tzj+/ugDN6/w88kj7R7f97GdRB75gQWPCWnSG8/P443756KPt+fxqDAxE7Vq/fmgds3bw/e/7PvFTnxr8fDixp4mfZjk/a9f647CvD173On/Ru2CBT5ZuhGT+WbV2xy9M485P6Nc23TRKAO9K8eOce9A5d2Pl/nrn3Iedc9s556Y4597knGvGdcsVwIFmNj08USmGeFBlXc8QlP5++3nB8cAD0RVPXuLiBxrP+zn/fH+yPe88f7Wfd7RXXPEfVxmTd/XV6fHevDk/8WRn8FcSO+zQOR1iUvyAH8UDcOaZ8JKXwD//mf7aeMeycuVQMRcXR+10f5yDb3wjerxhQ/mT59bDwAC85jVw+untbklxOkH8hP+w2qjMdrFoUdTvQPtDXxs3Rg7Z008PXhf6t7RKyEXFT96cn4cf9sfljjv6dIRXvco/32joKyl+6nF+wntMntzF4sfMRpnZEjM7tqwPNbPXmtlrgRdUnnpF5blDYptdBDwMzDaz4yqfPxt4FPheo23opJyfsLNvtx0cfLC/Hw99rVwJn/ucz7e48kpvdSavuuMJz9BY3s/ixYPdmve9D/7yF38/72ivTTf13+eAA/xOn5YgW0/YKxDyfv6VNh6whcRr/ITYNngb+vLLvQi95RYvbNNGrCQ7lhUrBj+Od5jNFD8PPVR9xNGcOV7AbblllF/QCaGve+/1++qPilQa6xDiYZB2hb1C/7Bw4WCh0QkkLwDbLX5+/euon00WFMwT9irb+Qn5PqHPDxebv/51vs/JIlzAhvzOPOJnk0160Plxzq0DNuBHeZXFpZXbaZXHF1Yefzb2uSvxtYTuw+cZXQLMBw5zzjUcAOiksFcQP1ttBYcd5u/Hxc9HPgKf+YxfHnOMD6tstVUU7121yndiI0fCttv65xoRPz/+sRczr3wlfPzjXmiFxMMs5yc52mvSJL8Moa/kAblhw+AOv9pIgGTYC6K8nxNPhBe+ED72MfjrX2t+tdKJuz7JucmOP94Llve+13/fj3xk6HDXZMcSD305N3h9s5Ke77zT/56vfW32NsH1ec97fEgPOkP8hFFAnXbizkMnOT/OdYaTFycpftqd43f++dH95EVKWo2fQNGZ3fPm/IT+f0ZlyNHhh3tXfN682vWBqhEugoKTXdT5WbJksPMzerTvG0NSeKeQN+fn10CVrrEYzjnLuM1KbLfAOXeCc26ic24T59yrnXMPl9WOTiFN/Fx3ne+QbrgB/vu/vbA59VS/g2++ubddzzvPbxtmFJ82zY82gEj8FK3y7JyvPQLw7nfD5z8PJ5wQrS/i/IBvLwyNQydt4yJhr9C2l77Ux7tvvdWPPjrooKHvW4snn4Q3val2Neos0kJecSZN8rVKpkzxMfpkBxhOemFW+7j4ee65wWGwZomfr3/di4e5c9Ovzh56CK64wv/3p50WfddGOtiyCPtVO8XPnDk+9JC3qnegk8QPdF7oK4ifffbxy3Y6P3/+s3dwQx+UFD/VnJ9mhb2Szs+YMfDyl/v7VzSQGBL68J128suio72eeWaw82Pm2wad5f7kFT9X4UNTl5nZSWZ2uJkdFr81s5HNoBPDXlttBXvv7XeiRx/1J7tTTvHrPvEJL4KuvRZuvtmf9H/yE79dMt8H6s/5ueEGP7Jim218teK+Pj/1xgtf6HficEAEsur8BOcnnCiTV3HJROyiYa899vBtXbrU19OZPt23Ia2DfPRRn6iYNnnqFVfAz3/u80Y+8pHiRcJqiZ9AfAReIO7shN813qmGdX2Vo7QZYa+nn4af/tTf37AB/vGPodt8+9u+rW94gw97he/aCc5PED8DA+25qnTOhzgXLIguGpLrv/51f8wmafdoL+cG74+dlvQc+oyjjvLLu+9uXyXs4Pp84AO+H1y1avD+1qyE55Urs/vGpPMD0cVmI3WRks5PvGpzkjzOD3Rm6Cuv+PklsC3wGuB/gD/gKzvHl6JO4uKnr88PEQcf0rnvPh+SOPPMaPsZM3x2//r1Pg8oTfzUG/b6/vf98h3viEJa48b5OiCPPDL4QIPsOj/B+dliC6/6ly4dHCdP2rlFnZ/AhAm+c3xhZYKVtATos87yrlnakPu40/LVr/rOo8hvVlT8xN971Sr/u40ZA1OnDm1P6Cx33dW7LvWM+Hr8cT89wOte5wXWJZcMXn/RRb6GUiDkdgU2boymXPngB/0yzOPTCeIn3smnidtmc9VVkWC84YahYc1rroEzzvC3JO12fpYsGeyYdarz84IX+AvCZ58td77CvDzwgA/bjxrlxU/oh+L9WbWE5yJD3QcGIvET+oSsEbtB/ATnB9Id5KKE1269te+b1q/PTkvI4/xAd4ufw4BDU26HxZaiTuLiB6LQ1z33+KuMH/xgaHHBIIYuuig6YcUPgnrEzzPPwC9/6T/zne8cvG7kSNh++6GvyarzE5wfs2jel7j7E8RPCNMVGeqeRvju8YqngZAUnWYhh/d+1au823XjjT5JO+8MyY04P6GDmDw5+r3inVZYv8UW0fD+vO6Pcz4/bLvt/H956aW+raecEr3H+vVw4YX+fsj3SeZNzZvnT5I77eRPQtA5Ya9Fiwb/nq0OfTkH58amVF6yZOj/84fKZWGasIifDOsRP41+32Tf0GniJz5nXsjxa0fo62tf8//1SSf543jiRP983KUtK+wVCgROmRL1t2n91saN6Re9QWzkmS7lmWfgu98dGsKLX8DGp+dII+7K96TzU5nHa261W7MbWjadmvAMkfgBP9IqzNIe5/nP9wnJq1b5sA007vz85Cf+6vmoo2qfzAPV6vwEgviJnyzD1Uw4wOt1fgJZ4sc5Xw8o/j5p7z1rFvz97/43fPxxPzdXHvKKn/B/xE/WoTOcMiVd/MTX71mpeJVX/Dz5pB8ZOGKEF3bf+Y6fcX71ah++WrPG5zk99pgfOXfWWf51SecnJN6HKTsgcn4eeST/fEXNIJlHVlQM3HGHdzjrTfSdM8eHs6ZMiUbaJKcXCOJn0aKhoYNGwl5XXulPOD/7WbHXxckjfq67LrtMQ7MJF0s77NDequ7BMX5/ZbrsNOcnT8JzHvET+octt4ycn7Sk58ce8xcvW28dFRGEYuLn61/3gzGSIyXDaydNqi1+8jo/QRR2nfgxs4fMbJ+MdXuZWQdUW+lO4nH3MFR611294NlrryipOY1PfGLw4yzxkzdOHnIWQp5RHqrV+QmEk2Wa8xNyXYrm/CQJ3z0Z9lq0KHp9NfEzYYL//YPDUmuusUAznZ/QWU6eHImfvEnPQWjus4/Pa3rve329phkz/Mnsox+NRnB94AP+/ceN88nzcZs9FNyMC/Lx4729vm7d4O9ThOeeg3339d97883977PLLum5MVkk8xqKhr2++U3f8dcrIILrc8YZPj8OfNJ44KmnvMACf3wkTyDxk2GRiS/Bh6HXr/ciqF6C+AnHZzLn58kn4cgj4ZBDWj+r+qpVPh9t5Eh/XLbT+Ql9RLiIK+r8FBnqHr8QriZ+QrJzMg2hiPgJfWUYMBPI6/xs3OjFjJn/3vFt430XRKKwk+b3yhv2mgaMzlg3BtixlNa0kE5JeF6yxHdikyZFO4gZ3HSTv7Kt5na8+MVRXSAYLH7GjvU77/r1+a4q58/3rsLkyVGxrDzUGu0F6c5POKCDaGhW2Cu4PlBd/MQLKNZqT2DFCv//xXN2skjL+ckb9poyxSd4Q3Hxs2PsyNxkE+8SjhwJ3/qWH8EyaRK89a1exO6/v98uhL7Wr/dhQBjs/EDjoa/bbvPiZcUKv38+9ZT/r046KX9eU6POT+j86/kOf/6zF4YTJ3pHIByHN9wQXWz88Y+DXxMPXwwMRP/v+PH+NUUERhCojdS5CvviAQf4ZdL5ueMOf4JbutTvL60kCLHtt/d5kO2c0ibp6hQVP0Vmdg/7yJZbRhfDaeInLd8Hiomf8P8nHcCwH266aXXXKvSRYdqhkSOjSVzDMdULOT8AWf7B/sCyxpsyPEmGvOL05fh3gvuz1VZDxUGR0FfoqA89dOjEfNWI1/lZu9aHU0aMGGz/xsMkgXqcn2riZ5ttfF7U4sWDRU5c/KSdVJPCKrhLecRP+D5pNX6SpDk/zQx7BZdtx8Rlyf77+/IFgXe9K/rOIWk8iJ/bbvO/z667RqMHA42O+ArtO+EE/5899pgvnvjQQ75mUx4aFT/hireeUU7hN/zAB3wHv+uuXgAvXBhdlYeQVyAuflas8CeJiRMj4Vwk9BVKOtxzT/ERioHQL+y3n99/n3xy8HvFXZYLLhiaG9JM4iEvaJ/z41w0ICAM1y4a9ioys3ua85OW85Pl/IR+ZNmy2o5/SB5Pnh/yOj/xkFcgiKVwbHVlzo+ZnWFmC8xsAV74/CY8jt0W4+f5+n2rGtxrVBM/eTjySJ/PcfHFQ9cVET9p4Y08xJ2f+BVDXAykJTyHK9eywl59fdF7xd2f++4b+j5p7510fvK4D3lDXpCe85PX+Zk82V/hFRnxleb8BD78YXj1q/37hhFcAP/xH34Z8n6q7RONjvgK+8KMGT7ste22flTZyJE+CTvpmiRZs8afCPv6YOed/XNFwl4bNkSip56pZH73O3+VH6bVMIvcn7lz/YkniJ9wgopfwQehM2VK8QrAEB0/69ZFJ8KihH5hhx18/5MsdBiEdn9/c90f54b+d0nxs8MO/vdeuDCfq1EWQfiMHh1djBZ1fiB/3k/c+akW9spyfkaN8m3YuLH2BVwt8VMr5ydN/IR9OVyIdKvz8xDwx8rNgNtij8Ptl8AZQIEskc6gUxKew8kwnByLYubzOcJM4nHyih/nohNdqBORl3jCc1q+D+RzfopWeE4jdATxvJ+8Ya9wABcJe4UTf7L2URqN5PxMmeKvHkM+Up6r3/Bbh5NHnL4+P6pv0aLB64P4+etf/T6RluwcaDTslTy5gU/i/8xn/P13vKO603DXXb6D32WXqIMt4vw8+mhUp6Wo8xMKYh53XDS0GAaHvu691yfOT50KRxzhn49fwYf/drPNiteBgcF5WfWGvkK/sPXWflQgDA59hf3sox/1ywsuyD8KsghnnOFHNMYvWpL7R19fsf2/LNIcnTTxU63OD+Qf7h6/GK4W9spyfmCw+5PFc89F/2UznJ9AVzo/zrnZzrm3O+feDvwY+EB4HLud5pz7pnOug9KYuotGnZ9q5C10eNddvmPeeuuog8lLPOE57vzE2W47L9KeeCKy1Yvk/OQJe0F63k/RnJ8iYa8izs/kyV4oLlsWdQDxnJ7QoWY5P1As6bma8wP+ZBL+u8B22/n9cOlS/xk33eSfD3Wn4pQV9kqKs499zOegLFjgiwdmEUJe++wTVR0vIn7iAnnx4mKd8uWX+2WYuiUQFz/B9Tn88OjYThM/U6YUn/4ABlcyL0P8hFGXQfw4Fzk/73ufr56+ZEn6/HSNcvXV/jj85S+j59LCtu0Y8ZUmforW+YHizk+1sJdz2c4PRP1vtRBb/JywcmX0XTZu9PfNfJ9UTfykOfJB5IF3y0KosKvET4JTgdRZRsxsvJkVyBLpDDol4bmZ4ifvFBchxHD44bVzV5LEw15xuzTOqFG+LQMD/mp47Vp/1TRihH/ezNvLWRV684S9YKj4GRgYHBJIEz9JV6lZYa++vuhKLnRm8RERtZwfyC9+nKstftIwi9yfb3zD/yd77+2vypOkuXlFyBI/I0ZE4a+LL84eYhtGesXFT5GwV3KES94aNwsX+hFpo0cPdVv32sufeB55JApDv+xlQ/93GPzfFg17JUeOlen8BBds8WLfnk028RdRwZH76leLF9qsxsBA9F/Ec6TSnMt25P3kdX7KCnvlGer+1FNesEyZEomTOHmSnpMXxOFx+E6bbOL7rGrtruX8xNvWzeLnosotje9Rwizrw5VWiJ9azk+9+T6QHvZKOj8wOO8nWPZTp/oDLHQYWaGvvM5Pcrj7E08Mfs+yR3sVET8wNO+nSM4PRCO+aiU9L1/uv9f48UNt6FqEpOf/+R+/zNon4jk/RacccC5b/IA/ye2yy2ARlyQ4PzNnRgVAizg/SfGTN+9n9mzfriOPHCrG+/v9fHMQibMjjqgtfoo6P8nt6hE/zz7r9/ExY/y+lwx7BYGxxx5eFB9xhB9d+swzvmRCklWr/Hx7ReeUevLJSLTeeGN0ckzbPzpZ/FRLeIbi4merraKLjqefHnxhWM31gXziJ3lBHM4RydG69eb8xN8Dulv8HArMzlh3BVAwU0QE2i1+NmzwxdqgPvETD3tlOT8w2CkIVzLh4A7iJ0twFM35CZ1DCHmFhNik+Nm4cegVW5GwV3w4bh6SeT9Fcn4gv/MTv2ou6uQF5ycIiax9YuJE3641a6rPPJ3GkiX+991kk/R9BaKTXlo+jnONh72C+AniPW/eTwh5veY16evjpSd23dXvG2lX8PGE56I5P/HBAv393t0selKJuz5mQ8NeQWAEwWEW5f784AdDBe/FF/s6YZ/+dLF2xMOPa9f6+kUDA+nHVjuGuxcNezWS87Nxoxc6Zr5vHDnS7xsDA4P3jeSEpknaKX560fmZSkbYC1gMbFlOc4Yf7c75+cc//An3ec8rFiIJpI32SjuhxZ2fcBIIJ4VqbkuaQMkiJB4/8ohvTxA/++3nl0nxEz94w0iOvGGvgYGoI4snvVYjWesnLm7iHerGjV6UrljhO8Lwe+Yd8VVPyCuw//6RYOrrG3wyT1Jv6Cuez5ElztJGCAYefdR30ptv7k/ejYS9gtOVx/lZtsy7pP392bWw4r/Xy17ml9Wcn802Kx72Cvk+223nhf3AQHFBEBc/4b0gEh3BXQyCA3whxy239J8VrwTuXDQn4H33FSvWmCxK+oc/+P5h3Tr/u8SrF++8s//t588fPB9dI2zY4Odf+8AH/PxdScpKeM4jcBcv9r/d5ptHF5VpeT9pE5rGKRL2CsdfeJx07/OIn/hFaS86P4uAvTPW7Q20YU7ixui00V7Ndn6yQhMh36ce1wcGh73SChwG4ifKeNgLqoufNIGSxZgxfsj0xo2+Ew/iZ++9fae5du3gOiZp4bS8Ya9ly3xHtemm+esiVXN++vsHC6D4bxm+94gR2dV44zQifiZNihJL99sv/b8M1Jv0XC3kFQhX/GmiJISUZs70nXcjYa9DDvHLPM7Pb3/r9/NDDhncycfZd99oH0oTP+E4bCTsFY6fLbbweUZQPPQVTnbhAqla2CswciS85S3+fry0xl//Gk2BsXp1sTnCgvgJjuMf/pC9f4wa5S9wkrl89fDww17wbLutn87n29+Gj3xk6HbVnJ+0nJ9Gwl7xYe6BtBFfoXxHGc5PONaTzk+44CrL+ena6S2A3wKfMrPnx580s72BTwK/Kbthw4H16/1VXF9ffvegCBMm+Nvq1dmZ//UOcQ+kjfaqFvYq6vzkDXkF4qGv0Enssku6VZ323uFAruX8hKvvIv9bPOfHuaGT/8VDX8mQVyBtSHKSRsQPRCeitCHuceqt9ZNH/FRzfuIhLyju/Kxa5U80I0dG3zWP8xOGuCdHecUZOdIXHj366Ej8TJjgT4qrV0f7VZr4KRr2KkP8hH1ym22iQocbNgwNewXe/na//MUvohN+cH0C996bvx1B/Lz1rf7iZd68aF69tP0jHN/JnK2ivOc9XvAsWhSJ+LTSCtWcn7LDXmkXwmkh01CENDjaSYo4P2Gy4jxhr+QF9HDJ+fk0vorz38zsz2b2f2Z2E/B3YDlwVpPa1zQ6YbRXXASE2c3LJpws00ITIcYOtU90WeR1fuJTXCRzfqqJn7zJzoG4+Inn/KSJn0acn3rET9z5CeGtCROi3zCInxUrhiY7B7bd1i8ffzz7c7KqO+flzDPhbW+rPtQc6q/1U0T8pDkyYb6spPjJ6/wEsbbjjtF3qOX8rFoFV13l77/61dW3/cQn/Jxb8elqkuGLRkZ7hX2vTPEzapR3GQYGohpFo0cPTebfYw8vGMPQ9BUrvBCCyEWrR/zsuWeULB4m2kzbf7Pm8CtK+P6XXRbtT2kDLlqZ8FxN/IT9ZtEiL/zGj49yAJMUcX6CgMoKe40e7QXdhg1DLwjTRuHWyvnpurm9nHNPAwcAX8AXPJxZWX4eOKCyXhQk7HDNCHkFwpVbWpLsLbf4g3bvvWvPTZVFmc5P2oGRd5h7IIif++8fHBuvJn7i790K8fPkk0Mn/oPynZ9q4qIau+ziT0C19stmhr2qOT/h5Br27aJhr+Aa7LTT4M+pNmrtmmv8sfLCF0b/QRGSeT9pCc9Fw16bb16e+IHoe4Uh57vumn5RFtyfMCnsqlW+FtQxx/jn41XVaxFEzPTpkVOWx/lJzuFXlHDsP//5g0ebJveBomGvRnJ+8oS9Qq7VAQdkXzDnKXIYxE8t5weyQ1/DxfnBObfMOfdp59yLnHO7OOde7Jw72zlXpZSSqEYz830C1UYINTLEPZBW5yfN+Zk0yV8xrVoVWep5wl5FnZ9wZThnjj8ZbrONPzjzOj/NDHvFnZ80Zycufmo5P80Me+WlmWGvbbf1jsnjj/urzkA83yOM4isa9oqLn0mT/H++cmX1k8XsyljXrFFetUiexOLiNn6lnlXrKk487DVjhhd/CxYUm3srTfyEPKsgfuL5PnHe8AYforr+evjSl/xz7353VCA1r/OzapU/FkaN8sdpED+BtP2jLOcnfuz39/vfMG2ajbxhrzISnvOEvW65xS8PPDD7fWoVOQzVnUePjv7jrJwfKCZ+4lMb9cpoLwDMbHMzO8bMTjazKZXnxphZofcRnnaLn3AgBbu5HuITm1Yb6g7RyTIkrDYz5+fvf/fLcILMm/PTqrBXo85PVthrzRp/BTlixNDJSMsmHvYqUusnT1hu1Cj/ew0MDB6t+PjjvgOdOjX6vYqGveLiJz7Mu1reT3BW6j1W4s5PfOhymLpk003zz+weFz/9/dEJLE/l70A15yeUvkjm+wQmTfIT0oIXvptt5vOgioqfIGCmTfPf4/nPH1xQs1XiB7JrjaWJnzFj/H+2dq3f55zLn/BcbWb3NOcnKX6C8xNy1dKoFfaKJ7tPmeIvYJcu9X1Ho85Pf3/02p5wfszzFeAxfF2fi4FpldWz8UnPoiCNzuuVhyzx45wf5g6R9VkPfX3RaKTQoWeNEAqdWbi6KpLzUzTsFagmftKcn/iohGpX4fWIn7Fj/Ylj/frIto+LmzzOT62wV8hd2W675uWRBTbd1Ld55cr8IZt163zn29dXW5ylhb6StZugsbBX/HOq5f2E14STb1Hi4ufZZ/0JcJNNIue0SOgrnvMD9YW+qomfcCLPEj/g514LnHyyFwQ77eRFwYIF+U5y8ZAX+H0izIMG6eIn/Gfz5xcbUh9nwwZ/oo8XWC0ifswG9ydpk58myTOze9rFcHy/2bgxSnYuQ/xsvfXgyvMLF6YXqi0ifiDal3vF+TkTeD/wOeA/8Pk+gd8Ax5TcrqbTCUPdW+H87LKLPwk++ODgHe+JJ/wV5OTJjYdHQgcerkhrOT+BZoS94vNkQT7xEz9481SchvrED0T/dQj9FXV+aiU8N5rvU5SitX4ee8wL7223HTq3WJK84qeRsBfUdn6efdaLkjFjBl+VFyGeuJr23xYZ8RXP+YHi4mfNGn8iGzFicI5GMpepmviZNcv3LSNGwCmVaa1HjvRCxrnBc+plkRQ/EIW+Ro5M/60nTvTfe82awZMEFyF+0g4hmiLiJ7QDfKixVrJzoNZ/HJ/aIhB3fu6+2++LO+xQ/YK5lvgJ+T7h4iNeEiXN+clqd5Yrv+uu/neN/6/dLH7eBXzOOXcefoRXnAeAjIoDohqtED+jR0dTBcQLoYWwUKiV0ghB/IQroFpVe8EfDEH0lBn2Mhvs/uyyy+DX13J+arUn0Kj4CUXkauX8JMXP1Kn+hLN4cfrJvlX5PoHw+37qU/kKz+XJ9wmkiZJq4qdZzk/Yftq0+o+V+BV8PNk5kHfEl3ONOz/xfifuVMSrKff3D/6Nk/T1+ZzBv/0tqhUDxUJfaeLnqKO8EHnBC7JdlEZDX2kXPUXFTzzpOW8R1vAfZ7U7PqlpIC5+QsirWr4PDE54TgtHJ12/NPFTb84PwCWX+LpP8ZGC3Sx+tgVuyVi3Dhifsa5j6YSh7q0QP5Ae+gohr6xaEUWIX8GPH599RR8/IU+dOvSqq4ywFwwWP0XDXvHPaob4CR1NcH6ywl5pOUHgT0rVJqxttfj5zGf8b3DVVXDssbWHshYRP2mipNGw19Kl/vcdPz7678JJP0v8hITuIJbqIZ7wXM35qRX2Wr7ch2022ST63kXFT1rICwY7P897XvT+WWy7rc/TidOo+NlmG1/HKSSYpxGO70bFT1q4u6jz8+yztZOdAy9/uV9+9rNDRcn69f6/7+8f7MZtsol3HFeujArSVgt5gd9+zBj/nmlio6jzU1T8bLrp0GH43Sx+Hgf2yli3D9BgyanhSSeIn333bfz94xWOq1UEjp/w4omNZYa9IOoc4y5Q3oTneHuqjfhq1PkJJ9qiYS+onvfTavGz115+1M/UqX6U0DHHVBeNRWoQpYW9wjDqesNe4YQZkp2zPidO0imqh7jzE5/aIpA37BVPdg5sv73fhxctyhcKyhI/8RysaiGvajQqfsCPYKtWeiNsnxzuvno13Hpr7c+tJn6S+26esFetZOfARz/q/7ebbvI1kuLEa5/Fc/XiNaJCnalazg9UD31VEz9Fcn6KXJh2s/i5FPi0mR0Ue86Z2S7Ah4FflN6yHuHPf84eCdNO8RPCXmWIn7jTkxXygqHOT6DMsBdEneP22/srIIgO0E4JewWKDnWH6nk/RZyVsthrL5g713ei118Pxx2XnYxaj/MTXrNxY3TCjM9rVCTslSZkajk/zRI/9YS9kvk+4E+QB1V65uRJNY0s8TN6dNTOZoufgYH6f9essNcnPuHrMF19dfXXl+H81BP2mjgRzjnH3//oRweL9WrngtBXLlvmLzTz9NnVav1khb2eeCJ/2KvInIvxbbpR/JwN3APcAIRUtkuBf1Yef7H0lvUA55zjO6Xzzx+67rnn/Ml17NhiJ/Z6SIqfZ57xJ5SxY6POqhHyOj9bbTV0wj4o3/kJVvzMmdFzeROe44+zxM+GDb4jMKv+fdNIdm61wl6d7vwEdtvNC6CpU709H5/7KU4jOT8LFgyu3RQoEvZKO+HGf8+0EX7xnJ962XRTv++vWBFdedcT9kpzfsCPuIKoOnI1ssQPRL9FVo2fWsTFT7XyBwsX+hyxzTcfPEAhD1ni53e/88twYZdFu8JeAO98p++P58+Hb34zej5tmHsg/tw++9R2mKA+5+f++70oHTducJ+e5kqG32n8+NpzLkJ0Ebp27eALo7PPhs99rnqNrWaRt8LzamAW8Dbgz8C1wK3Au4GXOecKTCk4fAjl9z/+8ah2RiBe3bnRhONa7Lyz35nnz/cn9BDy2mefcoZDxw+Uas5Pf390QksTP2VUeAYfE7/qKvjv/46eqyfhOSvsFRcmRX+/5AmnTOcnTOgKrXV+AjvvDN/4hr//sY9F7licIqPRttjCC5ulS/1/kZbvA8XCXmniZ+xY/1kbNgyePbvaa4rS1xft82n5XnnDXslk58CrX+1PeH/7WzTJaBbVxM8JJ3gBVG/h0y228O1YsSL9twwE4ZI1OWc10sTP4sVRSLTWxKplip8iYS/wAvirX/X3zz03ErN5nB/IF/KC6oUOk5Pahv0gDIhJXtClOT9Z+T5ZmEUCKD4w4utf93mDeYp7lk2RCs8bnXM/cc6d5Jw70jn3Rufcj51zG2q/enhy7LF+nqSBAXj966OT1dKlcOqp/n69dUOKMHJkNOLr7rvLzfeBwWGvWk5IOOk1M+fHzCcXxjv3enJ+spyfekNekC/stXChP5GPHp3eoWY5P2FSyqlT83XEzeD1r/eT5C5Z4gVQHOeKOT9mg5Oe0/J9oPGwV7w9ybwf58pJeIboCj5N/DQS9gJ/YnnjG/39pPuzZo2/+ArisJr4OfNM/xsEgV0Us3yhr6x8nzxsu63v0xYujITHn/8cra81T1u7wl6Bo47y/dOKFT5Mt8ce8F//5delOT9x8VMr2TmQ5fw895z/3NGjo23CfhD6tWaIHxg6v9eaNV6cjRiRfpHXbIpWeJ5hZm8ys/8yszeamYa41+Ccc3zhrkWL4MQTfQf+4hf73IittoquAppNPPRV5kgvyO/8QGSnxzu9snN+0ihztFezxU84wU2enO4KZjk/7cj3SWIGF17oBcnFF/vkzsCSJb7jmzix9n4SiIuSLOennrBX8qSblfezZInfTyZObLyDDie28D3SEp7rDXtBNOfWT38a/RYDA7768qGH+rDd5z8f/QZZtWIadaKD+Kk2x1cj4qe/PwpBhu8S389aIX7Swl5FLjjOP98fIw8/7MXwkiX+ex188NBt44KoqPOTFD9x1yf8z1tuOfg/Tx6b1cRPkX45mfQcn+MxT+isbPJWeB5jZhcDdwM/Bb4EXALcY2Y/MLMagyI7j1YVOezv95P/bb893HyzFyH33OOXf/lLFBprNnHxU2ayM+TP+QEf373sMu+KBcqs8JxFkZyfWmGvRsTP5psPDpXFf69k7kNavg9kOz/tyvdJsssuketz2ml+yC3UN9t8XJQ0GvYaGMh2cbKcnzJq/ATCSSzMVdaI85Mmfvbf3yefL17sZ5UH+PKX4fe/921fuBDOOisKbzSrsnyo/VTN+Qkjtep1vpPD3ePip56wV1bovUjYK6/zA9F54JZbfImC+fP9f//KVw7dNjg/m22WP0xYS/zE//sRIwbvT9Wcn5Cv04jzE37TVg34ySKv3jofeDPwGWAGsElleTbwFuArzWhcr7DFFnDppV4kbNjgq5jedFNrr9CD+PnLX/wV2YgRUX2QRsk72gv8yf+EE4bWBoLywl5plFnksBHxEy8nP2nSYCHU3z+4M8kSPyFW/+STg2PlnSJ+wIdPpk/3HfvZZ/vn6nGm0pyfcHIN5A17hXDi5psP7bSznJ8y8n0CyeHb9SQ8Z+X8gBc48RnX//QnL3YAfvtbX4og1JrZZpv6q1XXotlhr/jrHnrIh09uu81///5+/xtVG1VUdtirSMJznJ128mGsPff04jor8Tv000cemV+AZ4mfZLJzIC6GkuJn5Eh/vAwMRL9dPRelSfFTLcm7FdQoMP9v3gB8tlLhOfAQ8Hnz/8YZwAdLbltTqRQ3BLwLBBzSzM/7j//wV2D//Ce8972D3ZJWEMTPjTf6PIY996xdxCwvRZyfNNoR9ooP1QyfH2hm2Av8lc4TT6SHUSZNir5zVphl9Gh/8lu82FvHoePqJPEzdqxPOH/5y+G88wbXL6lH/Dz4oBciyQrekD/s9ZOf+GXaMO5azk8Z4ifZycfFT5gNO8zsnpVIn5XzEzjpJO+6/e53Pvl540Y/rProo/36I47wgmH06NrTi9RLK8XPgw/677lunRcJzz3n3b3HHsuuUF122KtIwnM97LOPnwy6yGjDPGGvOFtv7YtLxl8bZ/Jk/9suXTq4j+pm8ZPX+RkN/DVj3V+AUeU0p7c57DD4z/9svfABXxdl1Kho+GlZIS8o5vykES8wFh8eOzAQHWRJgVKUuPhxLhI2EyYMjTc3M+wFkc2b5uzEr/6ynB+I8n7iFv8dd/hlvAZOO3nZy+CHP/T3zzgjGn1Xj/i54QZ/Io/XbgrkCXstWOBDrhC5IXFa4fxUEz/x2bCrDfutFvYC7y698pX+t3riCZ9feO65g7eZPr3+hOY8zJjhhdxDD6UL0lWrvAs3cmT97Yg7PyHkddBBtSf+hfYnPNfDPvsU61trOT/JkGf8cdrnJPN+yhQ/nR72uhY4MmPdkcB15TRHNIsRIwbX9ClT/BRJeM56/ciRXuzET2BBoIwb1/iQ/FGj/G3jRm+TV7Ntmxn2gqijyXJ+AtUSbEMnH5Ken3vOz/jc1xcVvOsE3va2aPh7mM+siPgJoiSczNKu5vOEvU4/3Z+kTjzRhw+SZDk/IUeokRo/gbj4mTAhancgT+irWtgrEGZcnzwZfv7z1l9sjR3r3cd4Uco48Tyqeo/rLPFTq2AllD/UvZ6E52aTVeSwmvMTyHJ+oFzxkzaRayvJK34uAF5nZt8xs1lmtntleSHwOuB8M5sebs1rrmiEeI5PWSO9oPGwF6QLjrJCXoG4+1Mtl6gVYS+oLX6KOD9//rPPJ9tvv/oEaDP54AejyrZQn/gJpImfWmGv3/0OfvUrv49dcEH6NqEA56JFg/PCmuX8pP23tWr9rF7t98lRo6ofE696FVx0kZ94tF0j/6qFvhoNeUH0fzz0UDTM/cUvLlf8rF8fhSCTAjIt7NVM56cojTg/aX14SMgPr69H/CSrPHdL2GsusAPwHuCPwL8qy9Mqz8/FV3oON9GBhLwfs3JHmTUa9oJ08VNWsnMgr/hpdtgrdNBpB329zs/11/vloYfW16Zm88lP+pFHr31t/lol4P+L+JDwas5PWthr9Wr4wAf8/c9+dvDknXH6+33NFfC5eVB9dFg9xBOe08RPrRFf8XyfaomvZvCudw2ucN5qglOWNgVLcB+y/os8TJzof4e1a/3xuOWWXkyVGfaq5uiUkfDcTBpJeE7rw1/0Ir8MU4f0Qs5P3pS3tze1FaIlBPEzY0a5U2qU6fzEO5+yhrkH4uKnmqtUy/kJYYl6xc8b3+gdhpNOGrquXuen08WPWVTIrSg77BD95smRXlA97PWVr3h3YK+9vANVjeOP9y7Cr37lw2PVRofVQxAtzlV3frLCXrXyfTqJINzT8pfCc43WTXre86ILkYMO8r9tmc5PXvET+olOCntlVXiuN+x17LH++L3ySu8wl1Hnp905P7nEj3Pux81uiGg+Rx7py+Aff3y579tozg90pvPTrLDXxInwqU+lr6vH+Xn2WT/Ut78fXvKS+trUyWy/fVSYs2jY67LL/PL882vnvhx/fNTBr1tXzpxecUaM8PvM4sX1hb3y5Pt0CtWSt0PeSL0XSoHp033pDojy3FolfkaP9re1a6P/q9Odn5Urh1Z3DtQSP7vs4kOZ997rc6zKGOreLTk/QzCzPczsBDPbpvbWohMYN85f1b71reW+bwh79ffXPyqrlTk/zz2XL+E5Ley1bp3vQPr7m5NbU4/zc+ONPjdh//2bP0luOwh5K3196eGnamGv8B/mGQH3vOfB3nv7//e668oNeQVCRx8P5QWKhL06nXACjVcFDoQTchniJ5AUP80Oe8VfHxyMThI/Y8b442Lt2mgurRCC3HrroWHTuPuS9b+EwrSzZzce9mr31BaQv8Lzt83sv2OPXwPcjp/Z/S4zO6BJ7RNdQLiinjSp/iq41ZyfZoS96k14joe8mjEhbV7xE3d+Oj3k1ShB/EybNnSEFET734YNg2eMhuIjcV7zGr+8/PJyk50DQfz0etirmvNTVtgriJ8xY6LRq5tv7veRMJVKkrVrfSLziBGD65zFy20Eau07Iek5iJ9OCnuZDf0PQimM3XYbuv3YsZGoThPmAMcd55dXXNGY87NqVTS1xZZbtmdqC8jv/LwCP5t74LPAb4F98PV/PlNyu0QXEZyfRq7kOjHsleb8hNBDVgfRKHnDXhMn+o5n1Srv5kHvip8QdoqXaohjFomiMJVGIFz15j0xhZDw7NnRFAxlip+Q9FxN/IR9LEk3hb3y5Pw06vyEhO5DD43+/76+6MIgLfQVP+7jFy/1OD9B/HRi2AuGip9aczpedBF861vZ+9eBB3qB9OCD0RRJ9To/7U52hvziZ2vgYQAz2w7YE/iCc+6fwDcBOT/DmLjzUy+tHupe7b2r5fw0mu9Ti/hvWOvkEDr5Bx/0/0En1fcpk2OOgY98JCpSmEZW6CucwJKFEbN4/vO92Fm0yAsgKC/nB3zhxwkT0v+rkIQaRuQk6UbnJy3sVVbOz377wdy5Q2exrxb6yrroaSTsFegk5weyxU9WjbdXvxre//7s9+vv98ciRPtiveKn3fk+kF/8rALC1zwEWAHcVnn8HH6uLzFMCeKnWc5PM8Neae89apR3szZsGJpE2yrxM3Fi7ekH4tVxX/jCxqtgdypjx/pRW/vvn71N2oiveNHMvOLHLHJ/wkm6TOfn7W/3J6MwdDhOrWTdbsz5aWbYC/ws6MkTaF7nJ86oUd41Wr8+cg/zOj+BTnN+koUOa4mfPMQnpIbGnZ92jfSC/OLn78D7zGwv4H3AH5xzIbq+E/BkMxrXTFo1q/twIJyky3Z+2hX2MssOfbVK/FTL9wnE66T0asgrL2kjvkLIa8yYYvlZydGQZc+VllXVOJ7Hlcxdgu5yfloR9sqimojMOu7jx3wQPUWdn04TP3EBunChv02c2JiYf9nLBudKDYew1yeBA/FJzrsCsXqtvJrseb/EMKAM5yct4bBdFZ4hO/TVbPGz226+AOWJJ9beNu78DHfxkxb2qnfagRe9KOqUt9kmv2vUKCHpdP366OQQp5tyfuKuQ3y+PufKC3tlUU/YC4aGvoo6P50c9gquz8yZjSUYT5jgJ8cN1Fvnp2vEj3PuVnwl5xcCOznn7oit/j5dmPDsnJsVbsC8Njenqykz56cTihzGP7PV4mfsWD+D85e/XHvb4BSMGpUeRhlOpIW9iiY7B/r7o5EtZYa88lDNtegm52fUKC8mNm4c7J6uWeP/o1Gjmicq6wl7QWPix2ywI9IJxAsdlhHyCsRDX0Xcrvj0Ft2U84NzbqVz7m/OuRWJ5690zt1XftNEtxAs7kZmim5X2CtLWLUr7FWEULvmJS/pvKvOVpMW9iqa7Bzn7W/34dxDDmm8bUXIEj8bNvhRRWb5QqKdQFreTzzfpxmlIqC+sBcUFz/x9xg7tnnfp17iv38YnVXGnI7HHOMvEKZOLTYxbafl/OSd3kKITE45xXfIJ5xQ/3t0Us5PVnugs8TPEUf44anDPeQF5Ya9wA/rfeqp1k8Sm3XiDvvdlCn1z4TeaiZP9iPXli2LvlezQ17QnrBXp+X7QHrYqwznZ5tt/BxfRY+ruPgJ02600/mR+BENM3Giv1JuhDSxEYrMNeIoxSkiftoV9ipCmMBSpIe9GhE/0B6HJUv8hJpDZQ67bzbVnJ9mip/NNvNu37Jl3rmNu7vDUfw88oif32706PQCh/Vw+OHFX9OtQ92FaCpJ8bNqlT9oR4zw0w6UQT3OTyeHvUREtbBXN4UEs8TP/ff7ZdrcZp1KWq2fMoe5Z2GWnffTzLBXpxF+/z/9yS/33rv2/HbNJPxGy5Z552fkyPZNbQESP6JDSIqf+ypZZDvvXN4B2w0Jz6I+yg57tYteEj9pw91b4fxAduhrODk/IWQbvnMZIa9GCL9jmGNs6tT2TW0BEj+iQ0iKn7vv9suybFqIOrzly6PPySoMmBaGW7XK30aNKm8EmiiHMkd7tZNa4meXXVrbnkZIC3u1IucH5PzA0N+4U8RPqGHVzpAX5J/Y9Dgze3vs8Y5mdrOZPWtml5mZTgWiIZJi4557/LJM8ZN0c8aPz77ySAt7NXtSU1E/ZY/2ahfbbuv3rSef9CO8At3o/LQr5weyRWQ1x7fXnJ9OFT+BrhA/wFlAvLrEBcB2+Bo/BwNnl9ssMdzIcn523728z+jvH9xJVRtFlhb2Usirc+mVsNfIkX7478BANMeXc90tflqd8wMKe8Fg8dPX5+etayfJ37Gdw9whv/h5HnAHgJmNBY4GPuSc+zDwCeD4Kq8VoiatcH5gcKdXTfykhb2aPaO7qJ9mjPZqF0nXYuFCvx9OmdI9NX4gPeenVWGvLOdnOIW9xo2Lph7abbf2C7S+vug4he5xfsYAlV2BF+OHyF9TeXwvsE3J7RLDjHjHs3FjlPDcTPFTLW8nLewl56dz6ZXRXjD0xN2Nrg+0N+zVSM5PuOApIn7aLSzSMIt+53aHvALx37JbxM/DwEsq948D/uacq5QpYiqwPO1FQuQlVEhds8bXpFi71uc/lFXgMJDX+VHYq7volbAXDA3ZdLv4SQt79YLzM2JE9JpOFD/QeeIn/jt1S9jre8DZZnYb8F7gh7F1LwLuKrthYnhhFh0Yf/ubX5bt+kBjYa8wt5LCXp1HrVndu4lecX6qDXVvds7P5Mn+GH722cGfX038JOcXzCOew/t0qsAO88C94AXtbUeg65wf59w3gLcBNwPvcM5dFFu9CfCj8psmhhuh8wnip8xk50BR8RMPez3yiF/usEP57RKN0cs5P90qfto51N0sqob98MN+6Vy5zg9ESc+d6vx86Utw7rlw8MHtbomnk8RP7uktnHOXAJekPH9qqS0qiJn9L7A7sBFYD5zpnPtjO9sk6iMIjttu88t2Oj9pYa8wxUBZFadFefRi2KsXxU+rwl7gxc+dd3rxM3Om3x8GBrwTOCLlzNeI+OnUfeylL/W3TiH+O7U77JVL/JjZLsCmzrm/Vh6PBT4N7AVc7Zz7dvOaWJNTnXPLKu3aF/ijmW3unBtoY5tEHQTxE2YgbrbzkyfhOS5+HnjAL8Ns6qJz6NWE54GB7hU/QRgsX+4HMfT1tV78QOT81JrSph7xE96rU52fTiP8lu2e2gLy5/x8G3ht7PHngQ/jR3l9zczel/cDzWw7M/tWpUjiKjNzZjYtY9vtK0UUl5vZCjO73MwGBR2C8KnQ4jmYRZkEwbFihV92Qs5PCHs9+6yf5Xv06Ggkiegcesn52WorX5Pqqaf85L5r1vipAFo9w3yj9PdHbV6xwh9DAwP+2GrFHFOtED+dHvbqNMJvOXVq+wvF5hU/+wA3AZhZH/BW4GPOuRcA5wLvLvCZM4DXAUuBG7M2MrNxwHXAbsDJwFuAnYHrzWx8YtuvmdlDwC+BE+T6dCfxqSYmToStty7/M+oNez30kF9On97e+WhEOr0yvQV40bBNpXjInDl+2W2uTyAe+mql6wONiZ+BgUhIV0uYD5+hC6J8hGOx3fk+kF/8TAIqxf3ZF5gMXFZ5PAeYXuAzb3DObemcOxq4tMp2p1Te99XOuV8752YDxwI7AoPyjJxzZzjnpgNvBr5sZqOGvJvoeOLiZ7fdmnNlUO9orxDyUr5PZ9Ir01sEQujruuv8UuKnOI2In/hIwWr90Dnn+P/oyCMbbe3wIIifduf7QH7x8xTesQE4EnjQORcqKEwANqS+KoUCrsyxwC3OuQdir52Pd6COy3jv3+OF2d552yM6h6T4aQZ5c37iBc8GBpTv0+n0UtgLekf8hLyOpUtbN8w90Ij4ybvvTJwIhx4qNzgvneT85B3tdQXwBTPbCz/k/XuxdXsDD5XcLoA9gdkpz98JnAj/TrzeqiKKMLMXAZtltcfM5mR81swG2ypKIB43b0ayM+R3fvr7/YG6erW/hZFeEj+dSS8NdYdI/Cxc6JfdKn7izk9//+Dnms1mm/kLquXL/ec3Q/yIYnSj+Pk4foqLo/BC6LzYumOJprookyn4vKAkS/DuDsBY4GdmtgnefVqJz/lJe53ocFrt/NSqHj1+vO8EV66U89Pp9NJoL4jET0Dipzih1k8Y7i7x036CG7fnnm1tBpBT/DjnVuJzcNLWvbjUFhXAObcEX2E67/az0p6vOEKHlNMqUS9x8dNu5wd8WOzpp/2IL+X8dDa9GvYKdKvoThM/rRziXET8hP1k1apoxFc37judzOmnw6xZsN9+7W5JgSKHAGY2BS82puAdmJsrAqQZLCVyeOJkOUKiywniZ8QIP6qqGeTN+Ym355ln/DxL/f2w447NaZdojGqjvbo54Rn8qMda+2qnEs/5abXzA4PzfmqJn74+v6+sWRNVopb4KZeRI+GAA9rdCk9u8WNm5+Jr+4yOPb3WzM53zn2q9Jb53J40c2wPSphLLJH/M7PR9xONE8TGjBnNqwNSNOwF8M9/+tL406a1pj6JKE4vh726NeQF7Q17wWDxE6o6Vzvux43z4ueZytjmbtx3RD5y5aib2enAJ4CfAofip5M4tPL4E2b2wSa07QrgQDP7twdQKYZ4UGWd6DHC1W2z8n2geNgL4Pbb/bJbQw/DgV4Le22xRfSdekX8tHqoOxRzfiDK+5H46X3yOj+nAd9wzp0Re+5eYK6ZPYef6f2beT/UzEK16DDX7CvMbDGw2Dk3t/LcRcD7gdlmdhbggHOARxk82qwu4vk/yvnpDF7+cjjqKHhf7nrhxYl3fOPHZ28XXx/Ej/J9Opdk2CtvkbpOpa/PF8576KHuFj/xsFdwXlqd8wNe/ARhI/EjIL/4mQZcmbHuSuA9BT83WdzwwspyLjALfJK1mR0GfA34CWDAH4HTnXPPIXqO7beH3/++uZ8xbhwcf7zv1IINn0VS/Mj56VySYa+8Reo6mR139OJn113b3ZL66aSwVwgl5ilu+vTTfinx07vkFT/P4CcxvTZl3Z5E1Z9z4ZzL1R055xYAJxR577wo52d4YgaXX55v2xD2Cna9xE/nkgx7dXPIK/DpT8Mee3hHtFtpt/iJ1/p5tFKWV86PgPzi51fAOWb2DPBz59wGMxuBLzb4OeDHzWqgEO0iGRaT+OlckmGvbh7pFZg1y9+6mXYPdY/X+rn7bv+cxI+A/NNbnAnMw4uc1Wb2FLAauAS4HZ8M3VU452aFG/67CTGIuPgxg512al9bRHWSYa9ecH56gXjOTxg+3krnB6LQV9g3JH4E5C9y+KyZHQy8EngpUZ2fucBVzjnXvCYK0R7itVW22667XYRepxfDXr3A+PHe8QlFA838fFitJIifgMSPgBzipzJD+i3Ax51zvwV+2/RWtQDl/IhaxJ0fhbw6m2TYS+KnMzDzTk8QExMntn4S0HrEjxKee5+au6Fzbh2wEwVmbheiF5D46R4U9upc4jk+rcz3CSTFT7USF0H8qMJz75NXg/8BOLKZDWk1yvkRtYiHvVTjp7MJlbfXrvXVuHsh4blXiOf4tDrfBwaLnwkTqjtPQfyERA6Jn94l72ivbwE/rYzw+jXwJL7o4L9xzj1UbtOEaC9yfrqH/n5/27gRNmyQ89NJdJL4qVXVPYifgPaf3iWv+AlVlz8EnJGxTY2ScUJ0F3HnR+Kn8xk92ifWrlsn8dNJxAVPO8JeodbPypUSPyIir/h5e1Nb0QaU8CxqEXd+FPbqfEaN8uJn7VqJn04iLnja4fzEa/1I/IhA3qHuKmIohh3B+dlyy8EukOhM4iO+JH46h3aHvSASP7WOY4mf4UOm+DGzPnxdn/nOuX9lbLM3MM0595smta9paGJTUYtdd4WTToIDD2x3S0Qe4iO+JH46h04RPyDnR0RUc35Owk84uneVbZ4Ffm5mpzjnfl5qy4RoM3198JOftLsVIi/xQoca7dU5tHuoO0j8iKFUG+p+EvAj59z8rA2ccw8DPwROLrldQghRCIW9OpNOcH6OOMILryOOqL5dsgaQ9p/epZrzsx9+iHstrgXeXE5zhBCiPhT26kw6QfzMnOmrTJtV307Oz/ChmvjZBFia4z2WVrbtKjTaS4jeIh72kvjpHDpB/EBt4QMSP8OJamGvp4Edc7zHDpVthRCibSjs1Zl0Qs5PXiR+hg/VxM+fyJfL87bKtl2FprcQordIC3sp4bn9dIrzkweJn+FDNfHzdeBwM/taZWb3QZjZSDP7OnAY8LXmNE8IIfKRNtpLJ6/2063iZ8QIfxO9SeZf65y72cw+DHwVeLOZXQM8Ulm9I/AyYDPgw865W5reUiGEqILCXp3JmDHw0pf6OdeqzajeCcTFj/ad3qaqrnXOfd3M/g58DDgeCLvDamAO8EXn3I1NbaEQQuRAo706l7mV2SHzJB23k5EjvduzYYP2nV6npqnnnLsBuKFS8XnzytPPOOc2NrVlQghRAI326lw6XfTEGTcOVqzQvtPr5I5oOucGgEVNbEtL0VB3IXoLhb1EGUj8DA+qJTwLIUTXEA97aXoLUS8h70fip7cZtrnsmthUiN5CYS9RBhI/wwM5P0KInkBhL1EGEj/DA4kfIURPoNFeogwkfoYHEj9CiJ4gOD9r1vjQFyjnRxQn1CKS+OltJH6EED1BED/Ll/vl6NHdNcRadAZyfoYHEj9CiJ4ghL1WrPBLnbxEPUj8DA8kfoQQPUHS+dHJS9SDxM/wQOJHCNETBPGzbJlf6uQl6kHiZ3gwbOv8qMKzEL1FCHvJ+RGNsPXWg5eiNxm24kcI0VvI+RFlcNppMH06HHVUu1simsmwFT+q8CxEb5HM+dEwd1EP48fD8ce3uxWi2SjnRwjRE2i0lxAiLxI/QoieIDg/AwN+KfEjhMhC4kcI0RME8ROQ+BFCZCHxI4ToCULYKyDxI4TIQuJHCNETJJ0fJTwLIbKQ+BFC9AQKewkh8iLxI4ToCRT2EkLkReJHCNETyPkRQuRF4kcI0RPI+RFC5EXiRwjRE8j5EULkZdhOb6GJTYXoLTTaSwiRFzk/QoieQGEvIURehq3zo4lNhegt+vvBDJzzjyV+hBBZyPkRQvQEZoNDXxI/QogsJH6EED1DPPQl8SOEyELiRwjRM8SdHyU8CyGykPgRQvQMCnsJIfIg8SOE6BkU9hJC5EHiRwjRM8j5EULkQeJHCNEzSPwIIfIg8SOE6BkU9hJC5EHiRwjRM8Sdn2TFZyGECEj8CCF6hiB+Ro+GPvVuQogM1D0IIXqG4PYo5CWEqIbEjxCiZwjOj8SPEKIaEj9CiJ5B4kcIkYeuFz9mNtnMfmtm95nZ7WZ2jZnNaHe7hBCtJ4S9NLWFEKIaXS9+AAd83Tm3i3NuH+C3wA/a3CYhRBuQ8yOEyENbxI+ZbWdm3zKzm81slZk5M5uWse32ZnaZmS03sxVmdrmZ7RDWO+eWOeeujb3kz0DqewkhehuJHyFEHtrl/MwAXgcsBW7M2sjMxgHXAbsBJwNvAXYGrjez8RkvOx2YXWZjhRDdgUZ7CSHyMKJNn3uDc25LADN7F3BkxnanANOBXZ1zD1S2vwO4HzgVuCC+sZl9prL9u5vUbiFEByPnRwiRh7Y4P865gZybHgvcEoRP5bXzgZuA4+IbmtlZwNHAK5xzq8pqqxCie5D4EULkoV3OT172JD2EdSdwYnhQcXyOBo50zi3PejMzm5Oxamb9TRRCdAoa7SWEyEOni58p+LygJEuAyQBmtidwNvAgMNfMADY45/ZvURuFEB2CnB8hRB46XfzUxDl3J2A5t52V9nzFETqkvFYJIdrB5pv75dSp7W2HEKKz6XTxs5SKw5MgyxESQgxj3vxm7/686lXtbokQopPpdPFzJz7vJ8kewF2NvHEi/2dmI+8lhOgMxo2Dk09udyuEEJ1Op1d4vgI40MymhycqxRAPqqwTQgghhChE25wfM3tt5e4LKstXmNliYLFzbm7luYuA9wOzK0PZHXAO8CjwvUY+P57/o5wfIYQQYvjQzrDXpYnHF1aWc4FZAM65lWZ2GPA14Cf4xOY/Aqc7555rUTuFEEII0UO0Tfw45/KO0FoAnFD25yvnRwghhBiedHrOjxBCCCFEqXT6aK+moZwfIYQQYngi50cIIYQQw4ph6/wo50cIIYQYnsj5EUIIIcSwYtg6P8r5EUIIIYYncn6EEEIIMaww51y729B2zOyxSZMmbTtz5sx2N0UIIYQQDTJv3jyWL1/+uHNuu7T1Ej+Amf0D2AJ4oIS3m1lZzivhvTqZmZXlvDa2oRXMrCzntbENrWBmZTmvjW1oBTMry3ltbEMrmFlZzmtjG1rBzMpyXhvb0ApmVpbz2tiGVjCzspxXwnvNwE+XtW/aSomfkgmjyOI5Rb2Ivmdvoe/ZW+h79hb6nuWjnB8hhBBCDCskfoQQQggxrJD4EUIIIcSwQuJHCCGEEMMKiR8hhBBCDCs02ksIIYQQwwo5P0IIIYQYVkj8CCGEEGJYIfEjhBBCiGGFxE9JmNn2ZnaZmS03sxVmdrmZ7dDudpWJmb3WzH5pZo+Y2Wozu9fMvmBmm7S7bc3GzH5vZs7Mzm13W8rGzI42sxvM7LnKvnubmR3W7naViZkdZGbXmNkiM3vWzP5uZu9od7vqxcy2M7NvmdnNZraqsm9OS9lujJl9xcyerByzN5vZwW1ocl3k+Z5mtr+Zfd/M7qlss8DMLjGzndrU7MLk/T8Tr/l4Zbs/taiZDVPke5rZ7mZ2qZk9HTvf/GdZbZH4KQEzGwdcB+wGnAy8BdgZuN7MxrezbSXzEWAj8Ang5cB3gfcAfzCznt2XzOyNwD7tbkczMLNTgdnA34DjgROBS4Fx7WxXmZjZ84FrgZHAKcBrgFuBH5rZe9rZtgaYAbwOWArcWGW7H+K/86eBY4AngavNbGazG1gSeb7nG4A9gW8CrwA+DuwH3GZm27eikSWQ9/8EwMymA2cBi5rcrrLJ9T3NbH/gL8Bo4F3A0cBXgf7SWuKc063BG/CfeFEwI/bcTsAG4EPtbl+J33OLlOfeCjjgsHa3r0nfeTKwEHhj5Xue2+42lfjdpgGrgdPb3ZYmf8/zgHXAhMTzNwM3t7t9dX6nvtj9d1X2zWmJbfapPP/22HMjgHuBK9r9HUr8nmn90o7AAPC5dn+Hsr5nYvurge8Bc4A/tbv9Jf+ffcBdwK+a2ZaevVpvMccCtzjn/j0rvHNuPnATcFzbWlUyzrnFKU/fWllu28q2tJAvAf9yzv283Q1pAu/AnyD+u90NaTKjgPV4oRdnOV3qfjvnBnJsdiz+e/9v7HUbgF8AR5nZ6CY1rzTyfM+0fsk59wiwmC7pl3L+nwCY2ZvwztaZzWtRc8j5PWcBuwMXNLMtXXngdyB7Av9Kef5OYI8Wt6XVHFJZ3t3WVjQBM3sJ3tl6X7vb0iReAtwDvMHMHjSzDWb2gJn12vf9f5XlN81sGzPb1MxOAQ4Hvta+ZjWdPYH5zrlViefvxAvCGa1vUmsws92BqfRYv2Rmk/H77Eedc0va3Z4m8ZLKcoyZ3WJm6yu5et80s7FlfYjETzlMwccwkyzBh016EjPbFvgccK1z7rZ2t6dMzGwU3lY+3zl3b7vb0yS2weemfQX4InAk8Afg22UmFrYb59y/8FeTxwGP44/V7wCnOed+0camNZtq/VJY33OY2Qi8m7kYn/PUS3wFuI9I0Pci21SW/wtcA7wM+DI+TPazsj5kRFlvJIYXZjYBnyi7AXh7m5vTDD4KjAU+3+6GNJE+YBPgbc65yyvPXVcZfXGmmX3TVYLw3YyZ7Qz8Eu94nIYPfx0H/LeZrXHOXdLO9onS+TbwYuCVzrk08deVmNlL8U70fr1wXFYhmDI/dc59unJ/jpn1A180s92dcw07enJ+ymEp6Q5P1pVXV1OxHn8DTAeOcs491uYmlUqlRMEngU8Boythkk0rq8Pj8kYdtI9nKss/JJ6/BtgS2Lq1zWka5+FzX45xzv3WOfdH59wHgf8DvtHDIxWr9UsQOUA9g5l9EXg38A7n3DXtbk/JfA/vZD0W65NGAP2Vxx2fw5WTav0SwL5lfEivHvSt5k58fD3JHvis9Z7BzEYClwH7A0c75/7Z5iY1g+nAGOCn+BNIuIEf7r8U2Ls9TSuVO2usz52E2eHsDdzunFufeP6vwGb43JBe5E5gp0opjjh74Ee/PTD0Jd2LmX0S+BjwQefcT9rdniawO965jPdJBwEHVu53a9mGJC3plyR+yuEK4MBK7QUAKqGDgyrreoLKFfIlwGHAq51zt7S5Sc1iHnBoyg28IDqU3jhx/KqyPCrx/MuBx5xzC1vcnmaxEJhZyeOK8x/AGnrQAanwG3xtoxPDE5V8mNcD1zjn1rarYWVjZh8EzgU+6Zz7drvb0yTS+qTb8YNtDsVflPYCVwFrSe+XAErJL1XOTzlcBLwfmG1mZ+FrF5wDPIq3KnuF7+A70s8DK83swNi6x3ol/OWcW4avnzEIMwN4xDk3ZF2X8jvgeuB7ZrY58BD+/z2S3srj+ja+cONvzOxCfM7PsfjaTV9zzq1rZ+PqxcxeW7n7gsryFWa2GFjsnJvrnPuHmf0v8PWKYzsf7w7sBLy59S2uj1rf08zeAHwd+D0+Zy3eL61wznWF+57j/5yT8pplwIhu6pNyfM9nzOwLwKfMbAW+gPD++EKdP46XlGmIdhc96pUbsAM+qXIF8Czwa6oUqerGG/AwXtil3c5ud/ta8P17qshh5TtNxIvap/ChkDuAN7W7XU34nq/AC9rFleNzHvBeoL/dbWvgO2Udi3Ni24zF10tZiHe5/gLManfby/ye+JFPNX+LTr/V8x3osiKHeb8nYMCH8A77OuAR/MjikWW1wyofJIQQQggxLFDOjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIMcwxs7eZmcu4HdHu9vUKZvYCM1tlZtvGnptjZn/K2P5dlf9gWoHPeLWZPVWZeFgIkYHEjxAicCLwosTtr21tUW/xFeBi59zjTfyM2cCTwH818TOE6Ho0vYUQIjDP5Swdb2ajXQ/NDdVszOwF+PmXPtDMz3HOOTP7PnCOmX3BObemmZ8nRLci50cIUZVYWOxgM7u0Mp/QXyrrRpjZmWZ2j5mtNbMnzOyrZjYm8R7TzezKSthnsZl9w8xOTYZ1Ko/PTrx2WuX5tyWeP8TM/mhmz5rZSjO72sz2Smwzx8z+ZGZHmNnfK5//LzM7PuV77mNmvzKzZ8xstZnda2ZnVtZ9qxJOGpl4zSaVz/9ijZ/xXcAdzrlaM1ZnYmZnVwlPvi226f8BmwKvqfezhOh1JH6EEIH+ipgJt/7E+kvwk2O+Fvh45bmfAmcBPwNeCXwBeGdlWwAqs6n/AdgXeB/wNvzkmmfV21AzeyXwR+A54CTgTcAmwI1mtn1i8+cB38DPcfUafFjoUjObEXu/FwI3V7Y9o/JdLgC2q2zyXWAqkBRNbwLGU3sC45cDN1b5PiOSN4b2zz9gaFjyl8BG4L6wkXPuaeBuolmwhRAJFPYSQgTuSTy+CXhJ7PFlzrmPhgdm9lLg9cDJzrn/qTx9rZktAX5qZjOdc/OAk4HpwIucc7dUXnsV8M8G2voNYK5z7rhYe67Hz0z/YeD02LabAwc75+6vbPd3vAB6HXBeZZvzgWeAA51zqyrPXRfewDl3l5nNBU7FOyuBU4FrnHPzsxpqZlsC04DbMzY5CFhf5buGNjwGPBZ73xPxYu5059yfE5v/AzgQIUQqEj9CiMDxxE6u+NnP4/wq8fjl+BmXL6s4FYFrKsuD8bOnvwh4NAgfAOfcgJn9H3B20Uaa2c54h+a8xOeuwrs3Bydecn8QPpXPXmRmi4AdKu83Di9AvhITPmlcCPzCzHZ2zt1vZgfg3axa4aVtKsvFGetvx4fFkhxHhjtmZvsDPwYudM59M2WTxbHPFUIkkPgRQgT+VSPh+cnE46nAKGBlxvabVZZbA0+lrE97Lg9TK8sfVm5JFiQeL0nZZi0Q8pIm40NMj6VsF+dXwEK82/MR4DTgCeA3NV4XPicrQfw559xtySfNbGbaxma2HXAFMAf4z4z3XB37XCFEAokfIUReXOLxM8Aa4KUZ2z9RWT4J7JmyfsuU59biBVWczRKPn6kszwSuTXmPdRntyWIpMABsW20j59x6M/sB8F4z+zLwBuCrzrkNNd4/tHdywXYNwczG48XW08DrnXMbMzadEvtcIUQCJTwLIerl93h3YZJz7raUWxA/NwPbm9m/c1DMrA+fc5PkEWCvxHOvTDy+F3gY2DPjc+8o8iUqoa4/ASeZ2dgam38PP5LqUmA0cFGOj3gYLxKnF2lXEjMzfIL51sAxzrlkWDLOTvjfSQiRgpwfIURdOOfmmNnP8Tk/F+ALIg7gk3uPBj7mnLsPn5vyceByM/sEsAgfMpqY8ra/AM4ys08Ct+BdpTcmPteZ2fuA2ZWRZP+Hd0K2BF4MLHDOXVDw63wEmAvcbGZfxYfApgMznXP/rs3jnHvczK7A50f9xjn3aK03ds6tM7O/AC8s2KYkHwNejQ91bWNm8ZyeB51zi+HfIumF+BwlIUQKcn6EEI1wEj5p+bX46sKXAe8H7qeS0+OcWwe8DJ/8fCFeDM0Hzk15vy8A3668x6+B3YG3JDdyzv0On9g8Hj8E/Grgy8BWeKepEM65W/FJz48C3wJ+h6+SnJYHdGllWWt4e5z/BQ6rhK3qZbfK8hv47xi/xd2xF+NDbL9o4LOE6GnMuWQYXwghmk+lMN+PgJ2ccw+3tzX5MbNL8EJpunNuIOdrJuKF1Hudcz9tcvu+C+zlnMvKxRJi2KOwlxBC5KCSszQTX9voQ3mFD4BzboWZfQn4qJld4pp01WlmW+HrKqnAoRBVkPgRQoh83IyvKP1j6sunuQDoxycsP1Fj23qZBnzYOXdDk95fiJ5AYS8hhBBCDCuU8CyEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFf8fCwEpuI7VzCYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cs_amplitude = np.abs(cs.power) # The mod square of the real and imaginary components\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(cs.freq, cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the cross spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together multiple segments of data.\n", + "# Averaged cross spectrum example\n", + "You could use two long `Lightcurve`s and have `AveragedCrossspectrum` chop them into specified segments, or give two lists of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here. Remember to check the Lightcurve tutorial notebook for fancier ways of making light curves.\n", + "## 1. Create two long light curves.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and two signals in count rate units, with the same properties as the previous example. We then add Poisson noise and turn them into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGBCAYAAAD2eQAbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADtf0lEQVR4nOxdd5gkRd1+a9Kmu73bS9xxcBxRsgiI8qlkSQoSRVRUVAyAigiogIIiAoKIImYFCSIZRJQkGckg4cgc4Q64u720extmdma6vj+qq7uquqq7etLu3db7PPvsTE+H6uoKb7+/UIRSCgcHBwcHBwcHh/GDzGgXwMHBwcHBwcHBobVwBNDBwcHBwcHBYZzBEUAHBwcHBwcHh3EGRwAdHBwcHBwcHMYZHAF0cHBwcHBwcBhncATQwcHBwcHBwWGcITfaBWgFpk2bRufOnTvaxXBwcHBwcHBwSMQTTzyxlFI6vZnXGBcEcO7cuXj88cdHuxgODg4ODg4ODokghLzZ7Gs4E7CDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDOMCoEkBCyLyHkPkLIACGknxDyOCFkN+H3HkLInwghSwkhg4SQOwkhW41GWR0cHBwcHBwc1jS0nAASQr4K4CYATwA4EMChAK4B0On/TgDcDGBvAN8AcDCAPIC7CSHrtLq8Dg4ODg4ODg5rGnKtvBghZC6ACwCcSCm9QPjpNuHz/gA+BGA3Sund/nEPAXgdwEkAvtmKsjo4ODg4ODg4rKlotQL4RQAegN/F7LM/gHc4+QMASmkfmCr4ieYWz8HBwcHBwcFhzUerCeCHAbwI4FOEkNcIIRVCyKuEkGOEfbYA8Jzm2HkA5hBCJrSioA4ODg4ODg4OaypaagIGsLb/dy6AkwG8BuYD+GtCSI5S+ksAUwC8oTl2uf+/B8CA+iMh5B7TRbfbbru6Cu3g4ODg4ODgsCah1QQwA2AigC9QSq/3t93l+wZ+nxDyqxaXx8HBwcHBwcFh3KHVBHAZgI0B3KFsvx0s6ncWgBVgKp+KKf7/FboTU0p3MV10++23p2kL6uDg4ODg4OCwpqLVPoDzEn73/H220Py2OYC3KKUR86+Dg4ODg4ODg4M9Wk0Ab/D/76Vs3xvAQkrpIgD/ADCbELIz/5EQ0g1gP/83BwcHBwcHBweHOtBqE/C/ANwN4PeEkGkA5oMFgewJ4Eh/n38AeAjA5YSQE8FMvt8HQAD8rMXldXBwcHBwcHBY49BSAkgppYSQAwCcBeBHYL5+LwL4DKX0b/4+HiHk4wDOA/AbAO1ghHBXSumCVpbXwcHBwcHBwWFNBKF0zY+P2H777enjjz8+2sVwcHBwcHBwcEgEIeQJSun2zbxGy9cCdnBwcHBwcHBwGF04Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODikwvLlwH77AbfcMtolcXBwcHCoFY4AOjg4pMLppwP//Cfw8Y+PdkkcHBwcHGqFI4AODg6psHz5aJfAwcHBwaFeOALo4OCQCpSOdgkcHBwcHOqFI4AODg6p4Aigg4ODw+oPRwAdHBxSwRFAh9Udw8PMl/XZZ0e7JA4OowdHAB0cHFLBEUCH1R3nngv86EfA1luPdkkcHEYPjgA6ODikgiOADqs7XnxxtEvg4DD6cATQwcHBwWFcgZDRLoGDw+jDEUAHB4dUcAqgw+oORwAdHBwBdHAYt6AU+Pe/gXffTX/cmgheH++8M9olcWg2HAF0cBgFAkgI2YUQQjV/K5X9egghfyKELCWEDBJC7iSEbNXq8jo4rKn45z+BffcFNtoo3XFrKgH8179YfWy44WiXxMHBwaH5yI3itb8J4DHhe4V/IIQQADcDmAvgGwBWAPg+gLsJIdtQShe2sJwODmsk/vtf9n9oaHTLMVbw4IPsf7E4uuVwaD6cAujgMLoE8AVK6cOG3/YH8CEAu1FK7wYAQshDAF4HcBIYeXRwcKgDmRr1/zVVAfS80S6BQ6vgCKCDw9j1AdwfwDuc/AEApbQPTBX8xKiVysFhDUI2W9txayoBXFPvyyEKRwAdHEaXAF5BCKkSQpYRQv5GCJkj/LYFgOc0x8wDMIcQMqE1RXRoODzPedmPETgFUMaael8OUTgCaIfly52LyJqM0TAB9wH4OYB7AfQDeB+AkwE8RAh5H6V0CYApAN7QHLvc/98DYED8gRByj+mC2223Xd2FdmgQPv1p4KqrgFtvBfbaa7RLM65RqwK4psIRwPEDRwCTMTAATJ0KdHQ4ErimouUKIKX0KUrpCZTSmyml91JKLwCwN4C14Hz71nxcdRX7//vfj245HJwJWIHzAXRwCDF/Pvs/PDy65XBoHkYzCCQApfRJQsjLAN7vb1oBpvKpmCL8rp5jF9P5t99++zV0ylqNsaayiNUIjgDKWFPvyyEKpwAmw/WHNR9jLQiEN7l5YH6AKjYH8BaldEDzm8PqBCe3jDqcD6CMNfW+HKJwBDAZrj+s+RgTBJAQsj2A9wB41N/0DwCzCSE7C/t0A9jP/63laGVnGBcdb1zc5NjGaBHAsfro3TvJ+IEjgMmop5+O1T7uIGM0VgK5ghDyE0LIQYSQ3Qgh3wFwK4C3AfzK3+0fAB4CcDkh5FOEkL38bQTAz1pd5rvvBmbNAm6/vfnXeuABdq2bb27+tUYVboQYdYyGCfg//2ldX0oL1yTHDxwBTEat/aFUArbaCjjmmMaWx6HxGA0fwOcAHA62wkcngEUArgdwGqV0KQBQSj1CyMcBnAfgNwDawQjhrpTSBa0u8J57ApUKC1pt9iRx8MHAkiXA/vuv4RPSGn1zqwdEBZBS+0mxnke3555MaWtFX0qLsVYeh+bBEcDm4b77gHnz2N9FF412aRzi0HICSCk9C8BZFvstB/BF/2/cYNwMTM7eNuoQCU+lAuTzo1eWsQBHAB0cQtTaH1x6qdUHY8IH0CHEuOk8jgCOOiqV8PPIiP1xaypRWlPvyyGKcfOiXQdq7Q+5MZFbxMEGjgBaoJWDxbghgG62HXVUq+FnRwDX3PtyiMIRwGQ4BXDNhyOAYwyt7Dzz5wMf/zjwyCOtu2YAN9uOOpwCKKPV97VoEfOJ/MhHgGeeae21m4mVK4EDDgD++c/ajr/vPmC//YCFCxtZKhnjhgBefjnwyU+yyIyUaIQC+PGPA/ffH7//JZcAn/oUUC7Xdj2H2uHEWgusqQrg5z/Poo5vuWUUJvU1lUWsRnAEUEarvRL++U/gjjvY5yuvBLbeurXXbxbOPBO46Sb2V0tb2dlP/pXLATfc0NiycYwbAnjEEez/PvsARx6Z6tBGKIC33JI8v/BiHXAAI4IOrYNTAMcYWuk/sWhR664VwZrKIlYjOBOwjFbf15Il4ee+vtZeu5lYurQx51m2rDHn0WHcEECO1WA9twG3vEPL4QjgGEMrFcBRHQRdEMioo1YFcE1Fqwlgb2/4ub+/tdduJhpVj80cC8cdAayhMmt9juKLpcPYhiOAYwytJIC1rgTREKypMtJqBHGgTuMitKY+ula/k4gEcE1SABvVPpppDRl3BLCGyhT7Q5pnWms/GnfPZAzAEUALrKk+gI0ggHfcAfz61zUcmGJEef114PTTmXO5Q+PQSh9AzwPOPrv2yWHBAtYGGmVe1KGelQ/OOCN9IIdoAm6lAvjUU8xPr1lO9+ONAF5xBfD3vzfufE1BCwmgUwBXH7ggkDGGVvoANoIA7rkn+7/TTimd2FOMKB/+MPDOOyxq+dJL05XPwYxW+gD+/e/A97+f/jiOvfcGnn8eeOKJ5i2TWCtxufBC4Ic/ZH9pzjFaJuBtt2X/e3qAo49u/PkbpaSuDgSwrw/47GfZ5zEdwFBDZYrjg+fZzxfOu2f1gVMALeAUwGSkVmZSjBLvvMP+P/FEyms4xKKVPoDz59d3/PPPs/8PPVR/WUyoVfF49dXarjdaCiBHvc/EhPGkAL7wQvh5TLtGOAXQQQNHAMcYVjcFsOZz1TBaOh+RxmJ1TAPTzMlFrI8012lvT38tSkffB7BZS/+tDgSwUZg3L/w8polPAxRAWzgFcPWBI4BjDKurAtgKAujQWLTSBNyox72mEMC+PuaDx0lYf3/ru0SzCFajCMDqEAUsEkCx/YwJ1Fkg8TmmeaZjmgg7SBg3BPCee4C33hrtUiSj1kFvaIglXk2T7qmRippTAFc/OAVQhhgUkeY6bW3pr8XVv3XXBQoFdu0aFmuoC81WALswwLJd1+hfsDqYgFtJAOfPT15VQ0KxGH6uoXAd8+dhWzC/m1ZEAa8u+M9/WFBaWlQqLCn2WIr4HxcEcHgY2HVXYL31ajt+dfABPOoolkn9tNPsj2mkApi6jpwCOOqoVQEcTYxFBbAWAsh9ZqdOBbq72edW+wE2mwBehcPYmm6nnlrTeVYHAvjyy+HnZitfG27Igu1eecXyAPGNoobCfeTrW+IJbI92DDsF0MfDDwN77AHMmZP+2PPPZ0vj7bVX48tVK8YNAVxdIJKyNBzpb39j/6+6yv6YUVUA1/TXxNUAIuFZXfIAjkUCWIsJmKuNbW3ApEnsc6uVgWYRLN4+PoZ/sQ9XX13TeVYHArhqVfi5VSZgHhCViDoJIMdErGqJArg6aAJPPln7sXxt7EceaUxZGoFxQQDr7eytVADFzlOLKjN3rv2+o+oDWMMo4UzAjcXquBTcWCSAogJoWzf8/NnsmqsA1otWBYHUU946rax1XzMWDSKAWVSdAuijnjmzUGhcORqFcUEAVyfUosqI+62zjv216iWAdYl4zgdw1NFKH8BGkYJmkk/RB7DWydy2z44rAlhjx20mARTLWI9iJVqXxjQBrKNwGXhNiwKuNdXMaKGewKRm9bd6MC4I4OqkAIr91Lajv/RS+DlN56uXAIplTT2Itqi3VypyvrVa0NvbvFUTRhNjPgikvx8YHATQmj6oKoDlsl3bERUPv7iJ4P0lkwkJYKtNwGORAIp12cxnXmuEq4hKRT62VQTQ2l1DowAuWpReocui2rQ8gGKd1VN/S5a0pv7raZNOARwlrE7KUS0KoJiM1HYCAuqvl9WBAO65J7DWWnIdpcH8+cCMGcDOOze2XGMBYzoNTKXCnOMmTADQmvRIKgHceWfWdt58M/44sR6HhuyuNVoKoPgcWpYGJsVA0yCrZSLEeqj1Oqpv+ZhWAKtVPPIIMGsWcOCB6a6X1gScZt9GEMDnn2f9dLfdajs+DcSmnHZMqyVYrNkYFwRwdYI4GNkSQHHiSEMAG6kAph5EW+QDePfd7P9116U/FgCuv579b+YKFKOFVq4Ekhqidz1aQwDVNDD8mT/wQPxxYj3a9j+RAPKJoRXPQLxGs97BVgefukYogGOeACqVyZfRTLuUYr0+gHF9txEE8IYb2P9UKXJqhNh/0gaXOhPwKGFNVwDFztlKAihOmGNVAeSodZBftqyx5RhLGNMKoNJpW60Aiqbf2bPjj6vHBJzNhvfWCud5kRM063r1mIBbpQCK40Gt11GJ2JgjgEplplJ8hYdYrwk47rqNMgG3CmLd26r9HM4EPAYw1iOUaiGAtZiggFFWAB0BHHWMeR9A4YKNjFg3QayPZ5+VLh+LWgggPyaTCfthKzIjiWNKs663upmA11gFUKnMVAqUUEF5lOsyAa9JBFB85mnEFmBsEsBUXiCEkAKAbQGsDaADwFIAL1FK32h80ZqDcjm9mjBaQSBjXQFsNQGs5znUOsjzhL1rIsZ0GhhFoslmm58TRGzPzzwjXT4W9foAtlIBbAUBbJQC2CoT8LhQACuVdAqgUEE5VOoyATsCyDAWCWAiBSCEZAkhhxBCbgXQB+BBANcCuAzAvwG8Rgh5ixByDiFko+YWtzaIA1IrfZ1uuQVYe23gwQftj6klCrgWBQIY5SjgFucBPOMMYIcdWJ7En//c/rjVQQFcuRLYeOOEVWDuuovZMv/zn2BT4svGk0+yYxQHytEhgPaH9vWx+vjhD9NdUnRpSEMAa/EBFE3AH3z5UizEbPz+G89im22aO0a1QmFT28f815MDaTjE8l1xBfDe98aPg4sWpe/TahnPP5+tEvX22+nOoSqArbIutdoEnEOlrkTQzfYBbCXGlQmYEHIIgBcBXA6gBOBUAB8F8F4AmwD4IIBPgxHCAwG8QAj5IyFkrWYWuh7UMrjWSjw+/nHg3XeBgw6yP6aVCmC9ymata6cCGJWkT489xiaiE06wP2Z1IIB/+hPw6qvAj38cs9MeewDvvMP++0g0AR9xBDvmkEOkzeKja9pjVPJrpCGAl17K6uOMM9Jd0mQCTnpXqdcEfMSdn8dsvIPv4Ww8/XRy0Ek9GA0TcLlC8NOf2h2rjnnPPAPccYd5//POS9+n1TKeeSZbJ/6ss9KdY7QUwFrTwKQyAQsVlNYE3OogkFZOJWuaApj0TvArAD8DcAmldKVhn0cBXAXgeELIBwB8F8BXAKQcfpsHsYG0esF19fpJaIQPIKV25G5NTwPTiEusDiZgq2g0TWWI7SZNnkM1eatNO0r9LMTCVaup1OpaczaK7Vkk/s02AXO8g7UBNNflpBUEUAUFsSbwOnVrxQrz/rXWle7e077Erm4+gLk0BERRAMdyGphWoh4CKPaBSqV1K93EIakIG1BKbZsbKKWPADiIEFLD6pitwZhLd6GgXgXQ89hxNuuTruk+gI0YUFYHBdCKABISqXOxfrSkyVDhtWTvrytNUEoTcK3P3UQcm2EC5ufsqoY5nF7H+gBaRwBbFgUM+/WSdWPeypXm/WutK10ZxzIBFLuDtelRSQOT66ztgmlNwGo9xtWL8p435iFWaVoCKD7DYjFIcTqqiKUAachfI45rFkbLB7AW1KsAAvYNc3VLA5N2sE+bp0kH/jy6uuo/V7NQ630mKoCGBiIeZ/vcU0+OdZiAa52ITcc1wwTMz7nuqueDbRSsgTeTAIoTWKuCQDxkrJPg6sa8VimAaeujlSbgmjI9xPgAJg6/DVQA4+qlEQpgK4M0xbE2rQ+g+AytVdwmw5oCEEI2IYTsIHzvIIScRQi5mRBybHOK13iMjAD/+hfzy4tbeolS4GtfA375y9YuJVevAgjURgAvuQT47GfTdcJWJ4JOi3o7mUiKJk+u71w2OPFE4Cc/SX+ctQKooBEKYNMIoCINjCYBbKYJeJ3+ecG2DFhlNmtCe+UVYK+9omXQglLgqKOAiy5KfR21TVAQtLUB3/wmcO658ceOJgEcywqgWLbbb2fzUiKEyrzztmq6RQYa6AMYV6+N9gFstmdRLQrgKacAp54q10MjxIlGII0V+tcA/gfm8wcAZwI4FsCzAH5BCKGU0vSjRQugKoAf+xj7vPHGwDnn6I+ZNw/4/e/ZZ75UU61IM0iJjURZDMHqGMB+EhIJ4JFHsv+HHAIccIDd8a32AWy1Aiianpr9lrlyJXNoB9hgkQa1EsBEBdBw0+Jxto+xLgVwNSKAixbZXSsggCtbRwA///kUqv2jj7LoIgA45phU11HbBAXBwoXAn//Mvp94ovnYtASwVitGI0zArVQA1Wd13HHAt76VcJBQmc/+r4J5W4c/DQ8nmOUbGAXcbAVQNSM307curQ9gpYIgAOpYQSZb7RRAsMjfBwGAEJIB8DkA36WUbgfgJ2CBH2Meogk4zr9LHIhGSwHs7bU7phEKIEca0tSKKOBGLStVC0Qi3Wz/lHrOXyvRXZ0UwDQTfa11afIBTLpH8d7mzTPvpzvn2itDE3AWzW1k776rL4MWdUTL6fqsrS9tq3wAV2cF0BpCZWZRlcazxLGxgXkAm60AinN6s1280pqAxfYstuOxogCmIYCTAPBu/D4APWDpXwDgHgAbNK5YjYXJBzCuUY/W8nG1EMBafQB191ir0tKsPID1OAnX28nEemy2xbqeRcabRgDHkQ8gpY1RAJ9/3q5O+DFrr4gqgM1CpxIEEHtfday9pzMBx6l4InQEMI48jkcfQGsoBFDs44ljRgNXAqlWzWPa6kYA05qAxf3FPrA6EsDFAHii5z0BvEYpXeB/nwBgzAZx1xIEIg4so7USiLgeaRxqVQB1nTqNfN6KKGBx0Eo7QKxOBFCsjnpNUVo00ATcEgVQMQHX2i5ruZyKtD6ANkmPq1WgG33oGVwYbGu2CVgNZIp9dnVEiOkIYJyKJ0LXluNehBtpAk7bx1cnBTCHilS+xLGxgVHAyukkNIIAii8NzU7zltYELJZHJICrown4HwDOIoScB+A7AK4RftsKwPxGFqxZEB9IXKNu5NqjhLBVQf7yl/j9PE/uKL29bBGGK66IP65WBVDXKdPcdysUwHoIYL2dLDUBfPJJ4OyzgwcyOAj86EfAyy8nH6oIXqkgDko//jHL3RyBwir+/nd5vyQCeOaZYd+x9gF86imWXbdSST+BtTgIRHf//JppTMCAnRnY84DN8by0zZYA9vcDp58OzE8ace+/H7jgguAhqQpg7H2JFU4pXn6ZJda2GVvUZ52GAOom8LgX4bFkAm6mm0gaUhVAGABVBTBxbEwRBbx4MRt3uP+rbl9Tn1ydFcDf/CZ59RgTARwrCmAad8nvAWgHsBcYGTxT+G1/ADH52kcXJgWwlQTw4x9nn/femy0Pp4PayZcsCRdhOPhgs9Ou2uFsg0B0HTVNEt1W+ACK10ib4LfeTibWoxUB3G479n/aNODLX8YJJwC/+x3w178mT9bi+ctl+7xpajlPOw248UbGRU2oVoHDD5e3JZmATz2VPbJTT02hAG67Lfu/1lqoVL4Ys6MGCiOu9cWknmM6O1kglq0COGkSyyyQSMz8YzZQ3pltCeCxxwKXXQbccAPw9NMxO+60E/v/3vcCu+6azgQs9s9yGVtvXUCpxOrjZz+LL5+uLushgCtXsrLqXgJqHafXBBPwyEjCOCFMdllUpfGwkQrgkUcC//43y67x8MP6slYq0KYCWt0IoFpvv/1tfOaGNUYBpJQOUkqPopRuRSn9IqV0SPjt/yil32tOERsLWwLYLDNMXGSv2gHEtwvbZJpA7elj0hyrlqlZUcD1DBAtVwA5XnsNAHD99ezr668nHyI+w3pN3U89pdlJaNC689uYgPnyaKl9AN98s6VRwOK91BOlzAmTLQHkiV1tXlSqVeZbJcLWB/Ba3/NaXK84FguYp456j7HPTryJUikYF7RtS4FOAYxLuSXC1GdNL7VjIRE0b5utJoCJY7VwUOogkBQ+gI/6eUEeeYT95/vuuKO2KBJWVwLI3/WTfFvHugKYJg/gfELIew2/bUkIGbMm4FoUQNPxtcB2kOIdoLOT+eKJnTRucFI752gQQOcDKMCfEbjpykalqMcEnNYHsFYCyJ9x6pVAurpamgdQrA9b1VhXvo6OaFHijuVqjM01PS8a9csJYFKd8nbNy2d1MUTNt7H3ZUhIatMP1LrkCa5tYOqzJtPzaJqAeTvjxL8VaWDWWYcZGIB0BDCHSl0KYNxznzpVf9l99w3zp9oEWNVqQh8NE/BRR7H/SS4RJv/E1U4BBDAXgCmfezuA9eouTQtgSwDrUWRqBb9OPg9Mn67/TQd1XdFWEcC6TMBrog8gh8L4NrCIj2+UD6ANaiWA/LjUCmAtBDDGBJxEkGohgLr9uAJouxIIN3HZ3Gu1yiZWEZwQxvUl8d7XXTf5OgCMBDD2vhwBTAQv68SJ7H8rFMBsNmxnieObUKB6FMAkE/CUKfJ3XrfZbBhUuCYogJUK+8tkQmKb5G5lmk9XOwXQh6kZbA9gZX1FaR7ExnvDDfrtKhQLVF2wHaT4dXK5dASQl5UrArUuIQcADzwAvPSS3fGtMAGPlg/gggXMr4UjrQK4dGn4VX2WOiRG5Kro7QVuuw0vv0SxeHGKsiEFAVSI7Ky+F/HCZY9LUZlNI4Ax0kBSfxSfu+11dfvxqFlbEzBXAG0JoEkBjKtT0S3Ednk1XkB1srI2AQtsoRYCmAYmYmJFAJcvB2691aqQcVHAd91lCKRSwMuahgAuWwbcc/lC0HvuTd5ZgEgAeTu78cYE38oYE7BpbBwYYL585VJYh0kmYK4AroVFwH/+E1w2k0k2j69OBJA/7/b2cGxIUgBN7Xm1IICEkG8TQt4ihLwFRv5u5t+Fv14AFwG4tZYCEEJuJYRQQshPlO09hJA/EUKWEkIGCSF3EkK2quUaIv71r/CzLQGs980urQlYRwDjJiH+G1csbJUvXae+8kpg003tjm+FCbieAaKeTjZnDovc5kirAIqRvzaEPHV722EHYO+9ceqm1yTvC0iNUPesbBTA396zGTb73PvRg+XBNmO9iDfR1qa9p9gmoLyBqUEycRCfeyMUwLQEsF4TcFxbE1/O+vuTryOecHU2AZuUFukd5UMfAvbZJzndAsxBIPfeC+y+O/Ce9ySXlY+znAzY9NsddwR2OWJdkF13sXOo9KFTAL/1LXa7iQfB3gR86KFspaxfXmAfBcwVwNewIbDHHtjg9f8EZV2TFECRAPKxIY0JWMRqQQDBUrv8x/8jAB4XvvO/6wB8G8BRaS9OCDkcbIURdTsBcDOAvQF8A8DBAPIA7iaErJP2OqaJplUmYNu1CkUCqK49a2MCTqsA1pvbrtUKYK0m4O22Y74z9SCtAig6vdsQ8tTt7Y03AAD74N/x+2lQqwLIIUavGh+jyE6qVe01YwlIHQSwFhOwLjiL9yfbNDBpTcC1EECxWm0DK1QCyB/raJmA47p+XQrgiy+y/7cmaxGmIJDbb2efBwYSTxG0Ld5ObJ77K68IX2JDuKNlA2QCCLCo28SDYG8C5lV38032UcCTJrH/XWAXmLvwAQCtUwBblQeQP+983l4BNJXHNlNHsxGbBoZSehOAmwCAcTL8mFJqEdOYDEJID4BfgJHHvyk/7w/gQwB2o5Te7e//EIDXAZwE4JtprlVLEEcjE//aOrqKBFBdf9jGBMzfSlpFAFP7AIoPogYfwFpNwAcdxDrsccelO15EWgIoDgw2b3tpCI6IdljKvQlBINo3ZwMBnBosCBRTL5YE0JjgWWHEzVYAdWparQpgMwmgOHH397MulWhhUAjg+eezvlCLAmgzliYRQM8zLzSS1gdQ20QtIoZMCqDtknVAbcRfQoocNiYCaHUQWFsTn3ealUCSFMBIm/B3FhXANcEEzOsgkwkJYK0+gLa5epuNND6AXwWgTclJCOkihORTXvscAM9RSq/U/LY/gHc4+QMASmkfmCr4iZTXMcJWARRRC2myNe+JBJC/Vdkcp5qAG0EA0w70VvVSw3IXjVAA29tTREwakNYEnMrhGvZtREUHLG0JDYgC5phiYwIWGVWl0lAFMKl+xPq2rUudmtZMAlirCVicuD3PUkmosiTAlYrsQ5YmDYx4zSQk3X/TFEAOC2JlCgJZvjy63YRanruEFKHt9RJANeCokWlgIml/PHZsJrNmmYDFZ1CvCXisKIBpCOAf/T8dfu//WYEQ8mEAnwNwjGGXLQA8p9k+D8AcQsgE22sB5gEnrlGbfqslIMQ2oGQ0FMAZWAxdbE+ScrJ4cdQHcOlS+0ndq8g7Ll6sf04qyUxDxMR0GWkSK+tAaQoluQYFsFaXA2sFUEAtBHC68O4nEkCe/T8CkVFVq9p2EdtWFNk8VgGkFGIkTKMUwFpNwInXHBxEbnhVQAC9DCMCwXfD9VatihIUKz9AzwvaY1eX5QonDTQBe8o0Y0twRaSaMC0IYNiXadC2+/sDzworqM897dwwNEywbJn9CwPAbq1WBVBEIxNBmwhgNlu7Cdg0H+hQLwG0vZZIAOs1Aa+OCuCu8M3BGvwDwO42JyGEFMDI4nmUUlO86RQAuhSLfPjr0Zz3HtOfTblUNJIANtsEXKsP4J6LLsVizMRPcGrkt7iO9OtfAzNnslXPOJ55hgWu7LlnzAWFSh0eqOLVV9nnSy9l5zv55Ogh6mSapv75INcIBRBIQQAzmdXKBEwIu7dI3QrHLMFawWeRAH7wg2xViggaqQAmmYBPOYU1IL8go2UCtjYFdnfjzAu7g0TQXpYZT7gCaCLL3d3AiSfK2638ABUCyPnRaJqATUhrAtYihQJ4Dr6LJVgLh+NveOYZ4LHH7C9TrwL4xaMymDYN+MAH7K8lKrjWByE9AeQkDkg2AavtaOVytnOtCuBf/8q682mnxZeRox4CeOWV7FqnnJK8r44AjicT8AwYTMAAegFhhojHSQA6IC8l11TUGwRisz0OtRDANCbgWhXAoxayHnYKfhr5La4jfetb7L+oRlx9Nft/110xFxRGkSyquMYPYOUdXSSUHOoEnoYc8c7Z2Sm/NTcyd1gAsTEpBLBUSp44a1UAOzCM92rTs5uhnj/vO29E6tYwkU7DUun7D36g2amJJuBIOc86i/3/0Y8A1BYE0jITMKXBvU0AizSgOZkApsnPmVYB7Oy0VADrSAMTUYRSEMC0JmDtuVIQwJNwLgDglBqmo3p9ALkyGrdsI0cjfABFJBEXQu3TwKjPe8liewVQN+7x+eCMM+LLyFEPAfzhD9l/PoTEQWcCHhqqrT2PFRNwmrWAlwDYCsDdmt+2AgTPcAMIIXMAnALgywDaCCFiU24jhEwGsApM/YuofGDKIKBRBymlu5iuO2vW9trp1zYNjAhbAijuJzZKGx/AbLY+BdA2DUyGmm8mriPVHDyiEEBOIOPOp07gaQZZ3sn42xpHrSu7WE+Ynhfp4MVivApZqw9gO4q44gpgyy3tj9ERwJERzRrEBqY8Q3kP1JITxQSsu6fY+0xjAlYwWiZgqzQwQufk/puqApimf1kRwGpV6gutjgJWEdf/0iqA2vE4lQm4dqjPvVYCaING+wAmEpAUiaDVZzA8HBLANAog36dQSCibgnoIYJp0LOIzyGTYcy8W2TnUOYZjTVIA/wngB4SQrcWNfm6+U8ACNJKwAdiqIZeDkTj+BwAn+J+3AvP120Jz/OYA3qKUWgTph6hFATQNdLaDs9gQbZd0a7UPIIlZe7QpzrSSY3ElWBsxrk7qIYCi2UtFvcE8ESgsX+3gSaS8VhNwG0rBc49FjAnYqAAaCOB09Erfte2tiSbguDZAqVyeeoJAuHrRUBOw0BA6/bQZNgqgqQytNgE3Ig1MIxUT3bkoqS0IRIRNfEa9JuA0+REbrQAmERBRAUwyAau/8XZcaxoY6/vzUQ8BTLNalPgMADs/wDWJAP4QbLWPJwgh/yWEXE0IeRDAkwD6AI0jWRT/A/MlVP8ARgp3BfAqmE/hbELIzvxAQkg3gP383xqCZpqATQvS2yR0blUUcK0KYM1QRooVy5IVD/W+05Aj0eylcpl6g3kiECusWo108KQ3zXqCQJpGAA1KSmoC2Ko8gJRGBvS0CqCo0jaFAAoNoQuskVALBdDU9sZaEAilrfUB1J1rqFQ/AVTXt9WhUSZgG7SaAIo+gGlNwLwd15oGJq0CWE8ewDQEUAzEAez8ANcYAkgpXQrg/QDOAksKvY3//0wA7/d/TzrHSkrpPeqf//Ob/vcBMJL3EIDLCSGfIoTs5W8jAH5mf3v8uum2A+HD3gQv4U3MwedxCQBg/fUhLYVlgolA2aaBURXAuElo9sp5eBNzsOMbLJ2iNQFstQKojCL/uLGKQw9NZwLebLNkMvX882wlD+7QrVMAkyb1s8jJmIfNMQFhhmBTOe+/H9h2S6HCvvc9HPfvvSBGV6dRAI1t5M03gblzgd/9LtjUgWE7AihAvfe0CqBqAtbemyhNff/7+MPCfaBGm6+/PqQl84yFtCWA8+cjv+2W6EQ4uu6yC5uI5syJiVhGSKTEtpJIlDwP2GknnPvWYQAslSChsjgB9BIUwDPPBDbaSN7Gn/lxx7GVe2KJ4KmnYtOzPh8cZ6UAGtLAJJlOtYqcZSJoSlP4AFIK7L03jvzj/+E1bIBv4/zgpxUr6zcB25CQ2hTA8MK1EkA1CGTOHOCFF2IOQnoTsKoAphFLCOpLA9NKE7DY3k49lfUlXVJ4oH4FcAs8hzcxB4fjb2PGBzDVWsA+gfshpXRHSukmlNL/o5Se7ufoaxgopR6AjwO4A8BvANwAoApgV0rpgsZdx/wbf9gfwf2YgwXY21/pbtUq4KKLks9tmqSaYQL+ytPHYA4W4PCbPwNg9VEAs6ji2mvTmYBXrADuuSf+Mscfz9by5ejqYss7bbZZuC2JAH6PnoXN8QJOnnNF4pqw++0HLH1XrrD3Lr4d62Bh8D2JtFoRwFNPZSTw618PNrWjGBC4WBgUwK99LT0B7IbMNrQESbnhXYZvjeQsrFaBP/zBUN5aFEAAuRfn4ZO4OnKqBQviV97ifFUk04lEacUK4P77sc+qq9GFATsfQKFeAhNwns14pjQwp54aJcpr+SF3/f1sebjrrou5JoA591wKgCmczVQAw8PCwZUoxN90jnI5miSa12lkwhweBm67DesufAgb4HWcj++EPzVAAbSxENSiAIpKnFovNuXRpYFZsAA44YSYg5BeAUyTCJpdJtxfVACbbQKmVO5vaectsV7PPDO+L6kE0CYXoDgXn4cTMAcL8Dd8ZvVTAJsJSimhlJ6qbFtOKf0ipXQKpbSTUro7pdR+7RzpXOx/bIoSBbzBTwKbGcTJy8aBuJUEUC1OIwhgU5bUUSqOD0px19LVo1o3KlT/nc5ONpHMm2e3cLv4jL731RUBQTINgpQCBURHns3xfPA5jQnYSCA0hW5HMXVUMz/N7rsDv/1tegLYBovGoSmrbsIz+usrNvE0QTJimhrTKVVwBU0kgIkmYOGHzfF8ahOwyQfQhnxwAshhmxqkrS19EAgtpieAcUTHdA5eNeIz4H1dqwAaULWY1kxl2Gkn/xwWzyBt+p9KBUHqHyBKyuLAy2syAWt9FhvoA5gkloj3xcfCViiA6phVq3Ah9h/TC7VJAbQ1ARcRXmRwsDGBSPUitqcQQv5BCHmf7ckIIe2EkOMJIV+rv2iNh9qwbEzAXO0Q863ZrOBTrwmYExWb46pKMPfqYgLmg5JJcgf0952keKkmUd5RCbHz6xKvSfr7EifMbFZPirbAvOB6DTEBaxpsG0aQqaZbI4+fn9djWh/AHKrIJE1emptQzVDitSNQFEDx1pP8+iZjpXZ7wwmgUJAtMC+1CThNEIgKlQBG3AAMg1t7e3oTsDcUljlpXNARQHWcMd2fuHIPx4QJ7H+EsMQUvkrTm4A5SZ0yJfH0AdIqgKWS3AfSEMAkH0DtC0CMCTiNAmjjAygSQD4WtkIBVNtjrfOW6PtrIqC1mIDFcX8lJkvnSru0aTOQ1FPeAPAwIeQRQsg3CSHbEkIktkEIWZsQcgAh5M8A3gXwJbDAkDED3pbVB2vj2MoJoKgA2igu9SqA6twbSxzlR9L0NDA1w0AA46Crx6SOo6ZbSTWpQ6nrvmQCmMvpFcAtMC9wJm9WEAgAZAYsIgE0JmD+dp5WAQQsVEDNQxInCQ7j236NJmAA6NHmkI9/5joTcKKpVCjI5ni+dhNwAwhgJMWQ4SRtbelNwN5w+KyTxhYdAVT7uenFW1y5h6MWAuhZEEDTvff0JJ4+gJoGJumYYtGsANoGGtVKANPmAVRXAkmaK8Xxj48NrVAAG0UAxfozEdB6TcAiAUw6rlWI7SmU0m+CpV55FMDpAB4DUCSELCeEvEsIGQawAMD1YGlbjgOwNaX00WYWOi34gJPmzSLOBGyjANZLAE2/ac/ZbAXwT38CjjwSqFbrMw03iAAmESRxAunokJ8X77z77w+8/LJ83JtvAgceCPz3v8LG3/0O3xhmcUdxCqDJBDxtGvucRgF87TXggAOAR9VeZJg5M8d+XbtdQqsJYD0K4FVXAZ/9rHSuNARwBpbgMnwWh+Nv0va0CmCiUibc4xaYV7MJGA0ggBFoT0IlE7BtGhiRACb1//YfnIjv4uyGK4ARwhJTyVVkcdJJMcl9KxWc9uoR+AwuDzbxQBV+vbi6ef55Nk7wMtkGgZRKZgKYRFxE8qEjSNq5rWJWGxNNkCnyAHqePP5xa1mtUcCpFMASxW/wdRyDX7PvNRLA3ap34Bocgh4sT60A2pqA+xCm9iDwcNZZwDHH6J9DaUVrokQSE0FTSl8D8A1CyHcA7AjgAwDWBsvntwzAiwDuo5S+2cyCNgJpTMCqAtgoE7BNwANvYBtuyMgAkEQAZQeQhgeBHHUU+3/ggejfcX+7k+tQAwFctiy6LYkAiJO4ahrjdfvww8DBBwPPPhv+9tWvArfdBtx4o+xX+cPB7+I0nJRaAdwcz2PqFAqApAoC+fGP2f+bb7ZTIsg116ATgxiCIRspUBsBjGnoTSWAn/qU/F1RAJPa9yfBlpj5LK7Alfg0OjoY7zLVZbnMzpnJyOVJYwJeBwvxZso8gEEamHx6Ajhjhvw9ck1NobOooq0tl9oH0CtaEsDFi9H12/NwNoDfIfQCast5EB99kg+g+ALH+2+k/8R0jMEhgnPZAh/4/vc1O9xwA/Zdfjn2FQggB5/U4+pmr72AhWF8VyoTsEgARWI8MhKfKF4kH7qypVUAq1V2TRPZUlcCGapRAaxlJRBRAPG8+PnWe/J/+DpYVoSLcGwqgUIc7y5dxAIEFmIdABfor6WkgeHPK25sN5WnBytw7rnMPHT00cAWStbjob7W2IfTpIEZoZTeSyn9GaX0OErp1yilp1BKLxvr5I8TPXWySeMD2CgTcNwgwUkX75TPPQd89KPJx1Va5QO4YIFd3jETlApfd1Yyu5k3L7otjQnYRAAB4O235d+S0vukVQAnoR+bdLKZIkkB1M1nkesp9deLacHnDts1gdEYBTBxDWJLE7AVFAKYNoUCDyQwcQb+bDo65H3SmICzqNopQToFMCEKWAdVAYxcU3OSPMr2JmDh3qitAjgQ5ucXCcdGG3p45x1g9mz/fIZxV6cA8rYZeXZxPoAVL363mAaUFPEPyOQPaIwPYBoFUFe2tD6AQEI/ShkFbPIBTGMC5qskivsmrrW7TF4TIg0B1Pme92BFIlnl/cemH4nlEecIMZWW7npD/Sn9gGrEmIgCbhUaFQRig1pMwHwQ4OVsbwfWXpt9TqMAVip2k0hqArhsmd3KAyYohVp/TnMIoPhcVQ4jEkD1tzAHnL5hpCWAALAFYTeQRgE0QmmwqzARywozAQCdGbl9RtrZGFUArRyhFRNwWt8ZHlBl6nv82bS3y8VONJUaCKDtUnAFf9LkaWDqMQHbKIA5VGoyAYtRwLFji3Bvkg8grWLWrOToY50CaCQQcSbgUriztq3ERJHZrv/MQUg4XrfKBKwrm1Y9NCiANsELaaOAa1UA1e3Vqrwtqa8XB+XKSJPYWTeXlZG3JoA2/UgkgOKzF5Pp6yK4HQFsIOoJAtH5ANr4GdRiAlYJIJDsQwHICiB/G7V5E8rWQADrUgCVCp80IX6UHR5mJnC1gyQNtOIErO4rnkvlN3xgNJmmayGA6w82jwCOoIBKlj3wjoz8wONISDN8ACPlbyQBbKECKJYn0QQs3GMGXmofwACKCbiWNDBpCGDaIBCqDCbGsUX4QUoD45OJeghg5Jg4BXAkgQDGRBnYKIAicjm7MRqIJ4BJ47VoftRdR2vKNRBAvspULLlKqQDqCGBaBZB/T0MAS0PyidMogLq5LA0BtAkoNBFAUQHU+fyrxLZZGBcEcEJpOT6OmyMvfnEPLk4BTGpk5TJwxhnA2ngbp+AnmILQkS2NCRhI7kAAa7Qc/NiLL44vo4gqMpG0M9p7rJMALn5XHkW62uMb+YsvApPpcpzX8xOsjbfxEdyHo3ERZt/2F1z3lduiQRI+ymVgBhbjFPwEOw/+CzjvvOCBigRQIpblMj694BxsiWeNZM40CE6jvfgxfqj9bXYfI4C1mIAj0BJAJju1E3sCuMUtPwOBFyGAaRyoVQJo46SvI4A213zjtWpdCmASARSJh1jsZpuAAzTDB1BzkhwqUhoYWxMwhsPG+1HcjnuP+JP+GOHexMmOE0D+PrF0KUu6q7pg6EzAxvEvLgp4JKwM7ctCjAIo+gAm5WnbDo/jBHousoTd3/Ll7L5ef12/f1wUcBoFUNe+tO9qBhOwDQFUfQDTmID/Dw/h1zgGU56+O7UCWKnITS/uZe+ee4Drr0lPAG+/HfjLX9IRwAceAH75S/ZZJYBrv3IvS6iqgTjui/OKqADqDC3Dq1qjACYGgawJmDH0Om7G/ji1IPdom2TAsg8gc+hPamRXXgncdx/wFD6GbfA0tsMTOAg3SOfVoVYFUDQBcwJ4zDHAHnsAm2wSX1aALUn0pS8BF1wQLYuEZctic/Yl4agvedJCzhM65MpQB7HXXwf+gK/gkKXXYa/81dis7Eds/IFFIpE/Uu0gXS4Df8XnsTduY6tUnwhggw2Agw4ym4B/+1scMe97OALfw2RDGhHTIHjG4q/gvXhG+9u0/vkA0kUBcyQt8TaCAio5dhOqAhh5fsLN7nDdd/FlTEY29xUAMQpgzAyoI4A8glJ/Mr0PoI0C+NeLq/C6w++NJoAi8fjYx4AHHwS23z6dCTgDL7UJOEANBFCqa10ZNYXmPoBpTcDigHc79gKuAxbd+xHM3Pk98jHCg5Hah6IAHnkk82++6irgGaHb8KoRX4Br8gFMUgBjsM02rKtwfzRtgmUfj+P9QAV49fapAL6IZ55h93PRRcA770T3b5QP4A47mH83bdQpgHHkSlwLOK0JGACOwW8weOHdyO31vLl8iM5rxaK9ArjrrsBeihXLhgDutRf7f+GF0d/KyGvL+pGPhJ9VE/Bhv92FfdhhB2C77aTjxOcqjn9TBVFI19+HB5wC2HAU8vYE0POADKqYCOZkmgENGnlSI3v3XfZ/G7CFS3bEQ8FvzTYBr1wZbn/xxfhycpBcFmefzQavHXeUyyJh2bK68gM+/7xc/6oCqA625TLwYTwAACH5s0C5DHwQD8sblyyJXEN683rppeCjOpjxlQVME/PWww/rfwCQ80aCMsXByq9HowB6OTZbqoQsyZz7UdwR1IWRAMYwEfV6kYG6gQqgaoJqlg9gRwdbUuuGG5hKkCYKmEXYss+tUABVEctWAazJBFyJVkDldc2KnMKDEfsQ8djxvL899xz7/6zSpdUE5eLnND6AXjmBAGoaXS4H3HknsOWWdqY9ET1P3Cl95+O/ikb5AO6xB3DLLfJYZksACQn7Q6wCKBCrJBOwmgYmOG5oVeL8pZZ76dJ0JmDVXSeNCfitt6Lb4kzAwTUVBTDAkiWRfXm9tbfLz14cC3XPrjiwmvgAEkKmNqIgrUAHSXCUF+B5wETIchc3Ayc1Mv6GFVxHUOhsTMBpCWBZIIDiJP7885qdNcjmM2hrA7baCth5Z7ksEpYtqysPoBp0ohJAVQr3vGiAiw3KZWAZlGbpZ2Q2moCFL3wwW5JnETjZhIl5MDspss3z84plaSUoUxx057YigHm9D2DShLIJXg7aFm9vo0EAbRTALOrzAUwTBJLPsxyMPT0WREnxAbQKBtApgIX0BDCmKAwNDALRPaTqSo0pQHgwEgFUTMAmqD5WQI0mYIEAatuK5n7aChS7784+W5nIBbS//ZrVfklpYOIg1g0hwL77AjNnRn/XHoSw7+Xz5gTG4vBCq+lWAtERQFIZSW0CXrJEfjzNJIA6a5YNAeTtI0IANbZcXm+FglxHYrl1dTvmfAAJIUcRQk4Uvm9FCFkIYAkh5HFCyMyYw8cEgrQLPpJMwOqi9zwQJMmcpzYskcQ0RQGkepKki6DVQmi4/NrNUABVAthZkG9K7T/VKjNPp0W5DCzHFHmjzwKMJmDBE5d31HJG9KymZgKY645s4+s+1kMAk0zAJbSFBFB5uUlSAEUCWIsJWI2KjwzUDTQBZ1GV2l1aBZC3aZsgEBFpo4CtggG0CmD6NDAqmpkGhp9cVIWqKzQOVCYTsCebgE1oFAGk5bAytG1F0+jE3pFWAWyrkQDWqgByiM88UlZKlUAOtkMuZ05gLFaLV00XBazr25lyKdGHnW/nfa+3V76vpJc9mQDSVFHAtRJA1QQcQPOGIxLANKvAjEUF8BsAxNHrfAArwVb/mATgxw0rVZPQSeXRIEkB5BHAHDYK4NNPAw89JG8TTbR1E8D+fpat2N/wyCPA8j69K6c1ARRGFW7G0g5IfX2NJYBt8SZgz6uNAG7y9t1RtcnviWLEldSBNQSwQgrBTqoKJWIwF1UAh8FGtKzHymEaVFauZOZGHRFKWt91BAV4bZZBIMrg1IEicll2vkaYgBsWBKKZaXKopDILqdBO6MUicOutQLEoKYCJx4lQfACN9cjR28uyeysgKRTAHfFfrI/5wK23YoJgobBVADurqzDp4duQTTDriScsFyvoRh/2Fzx46dKl0WOMJmA7ArjWC/dgPbyBHd66FvvjJmRRqc0ELJisbU3AYv/gz/2WW+Kj94tgg2Vu5TKYUkeJ0BFAAg974A54S5fHHisRwEcfBebPl+rEFCVdFcZPHvhlSgMjtlsC2QewJgWwnKwAdhaXY0/chlkz2fWWLElnAlYVVdPcPDzMujv/fWs8je63X/B/De+1LhNwjALY1mZWAHXjS2lw7BHA9cBW/QAhZBKAnQGcRCm9EMBpAPZqfPEaiw5Pbk21KoCmRlYqMSfiG25QzmWpAPLzxhLAffcF9t4buOACvPUW8MEPAsWqngDa+gBK5k+dAiiECFeGameARBkkVQLYEAXwzjtx2r274X34n7w9KQpYIICc3JSzoVySgWdOX5GdGN3mE8CM39FNpGC33ZhT8h/+EP0tktxVKcAICqAF3weQpDMBA8Dk4iIAjSGAQg5ghlpNwJqKSr2OqXq8jsh961vAPvsARx9tVADT+gAmKoAf/SiweHF0u0IATdfbCK/gv/gQ5mNDYJ99cCMOCH6z9QHc5icHY+Nv7I0Tca61Cfjdt8q4DXvhRhwYbMv0Rv2dTCZgfqFYAvjf/2L/X+yKN7A+vnLHobgJB2A/3GxWK2MVwAQCqOuMwvsRv+ZhhwFf+Yq5yOLarmJaDxOKxWgQyGdwBe7AntjhWx+MPZbf/5SBt4APfADYcMN4BTAggFlU/PmHt1GTCdhEADswXBMBzFRGEvvE6f/7BG7D3vhy9i8AogqgiQAGqd0UUmWam7/yFdbdjz8eKKCEp7ENfnPP5gCi41IjCSB/LqoCKF5TV7el4TFmAvb35UX9MBhtvsf/vgDADM0xYwod1J4Ael6UACYpgLqXYqA+H8DIG9SDD7L/N9wQLBNHhdHrgXur+PGP2XHDw5Y+ERoCKB0nqDJesXYCGFEAc/K5dD6AqQngPffot/s90RgEolMAM6ECGEcAeS4+EQEB9OJNwE89xf4/rIkjiQzqCqsbQQHwCWB7UhCIBh2UTdi1EMAJOfl6EXNKrQRQw1x165jag+qJ3B//yP5ffLE2/xxg4QsmrbXqJRPAp5/WbiaWQSCbQ3bq3R136YrCYFAAex67AwBwMK6zNgHnUMEH8Yj0c2a5ZtkcgwLILxTrA/j445FNs/Bu8OwUi2YsASReQhoYSxMwAFweXS0ugPgS1IEYqdCHTgHcG7cCACa880rssfx211nxbGSb+lncwAgga5g5X1E1+fxKSdCFsXoqlqOwahlMMJmASbWKQjb+BXjrPhbkd8iy3wOI+gCa+lIwV1oSQP4cL744XIIRYC/o4rPLolq7CTjBBzCNCXhkDCqArwD4mP/5UwD+Synl3WttAPEa9hhAhyePBkkm4LQKoCYIiF0npQ+gLg9gXO4nsbN+6P0j+MEPmBM7oM91FEGSD6AwU1SKtTfMSBBIVnbYUN+oalIAEzJwGwmgJgikmrUjgAXNqhiBD2ACAYxDEjkaQSFoLGmjgIHwPmvxAdxiI/l6kXamueH3bRHdFnlcughNhTimIYA5VPR9SLg3Xf45oHYFMO2ztjUBU0Sf4fe+y+7D1geQo4h2axOwjrjnlmsGu3p8ADWZjNtRRDZr8MWMmaXFydXeBCwcbxl3Jt6jzTKHcT6ASeD33lkJO5qtAlhVFEBTfzcpgAAwaaHZn8ikAAJAW6asvZaK2UOMAKsKoOkxB9YySwIolUkh7qI/s+puokNLTMBDY08BPA/AcYSQpQA+DUDMorMrYEiENobQXk1nAlZ9AJMIoGkt2UYEgcQdJw0k/kl47jPj0m3i5D5KBLAzK1dkQxTAhDX40iiA1YydD2CBRhuErQIYh0j71BBA0u4rgDWYgNtIAgGMYQgq6Y0QQE3n4gExIpqtAOZRTiRyJgUwlQ8g8SRzZZpAjnoIYHeRETFbBZBjGB3WJmAdASz0pVAAbUzAGgLYhhIIMTyHmMInEkCdAlgnAdTVkQodAdQ9Ux2CYIlyawigOlZPesecUsKUBgYAOrLxabCGMswhsbO0EkDUBzANAcyhgnI5vu9RKqu1XRisWQFMSwDTmIBHhsaYAkgp/RuAnQCcBWBXSun1ws+LAfyqwWVrOFQCaBpDykNlDL+zIp0JuFrFytf0MnmsCbhSAVawxMOFgeXIomIXBUyIVgHkK5VzAmhUAMUeKVSElgAKv3ulGpgMNOUE0OETwKlYCgJP6wMYnwZGo1AlKICTq8uCaEbpesIXPiBUswUrH8A4AkhMQSBLlyayBBsFMCCASBcFLJa7JgKo3HPkRUMzik4pLw58Io3ltCCAaXwAc6hYE0CTAsirYdkypUpEBZBWQUjYX7XuIOuvr70+abOLAta9DM1awSZmWx9AjhLarBVAnbrV1pfCB1AwAfeAjXHREzaHANZiAo4lqsuWIRN41oUV2JaxI4DiM8jAiyeAy5cD1Sp6e0UCGHa0aiUc/9KYgE1zCqsWimnojSiAPe/UqAD6L5mmYXlh24bB5ywquPdeOctGGgLYka9Kv6mY5q++IY6VKgHUKYCqIYS3j6aagMeaDyAhZCcAT1NKf04pvU/5+VwAqTxzRgNtFTsF8LUp2+PHv56CDSGH98emgdl3X3zy6GnYCFFfjlgFcIcdgClTgP/+F3/951Tcir2t08DwOV2aILfcErjttkQCSEtCjxRO3kwFUB1UOkgJO+ARLMV0XInDUyuAKqEEEK8A/u9/uP6+aYHzvHQ9oQ448VdNwKY5R0cAuQlYqwA++ywwfTrwiU/oT2i6FR0B7GDXSTIBDw431gRc8OROYGMC/tYrx+JW7C1tszEBN1UBJMQqDcwTTwDTpgEHHyzsINwjf6ng/XWttTQJgacoqYmCQtauAK613LDSguZmVRNwrAJY1qsVHO2r4hVAnQl4dvkNLMdU3INdoscaCOCkSekJoFjehpqAX3gBmDYN/8K+kf42sT35xVi3FJyRAM6fD0ydire3+ChmzAB+8Qu2uasYelrNWTu8T1OUdAW5YP7hBNDU3ysV4FT8BL2Ygc9Cdn7siVEATT6AANCeiVcAK8Iypny+ffPNyG1EoCOAPKhQRwCPwy/Qixk4qvKbiAIoEsIsqpG6VL+LCiDRzUECbPIA6ppyeXiMKYAA7gawueG39/i/j2kUqnZ5ADctMWv2Pvi3tD1WAbz9dgDAQbg+8lNsGhgeBfCtbwEA9sB/UucBjBCh730vSEZtQwBJkgIozEjVUm0Nk62sIpeznZTwFbDw18NwtdYHMA5aH5o4BfDSSwEA+4Ol4pAIoDBCBQQwZ+cDmPeiDYIWYgjglVey///8p/6E0SIxKPdWQhtyXXZRwLp2kKd1mIBpehMwAHwUd+KUU8LvkWtqOhef0HM59tJTKtnnaLv68gQCmMlYpYG55BL2+cYbhR2kIJBqUEYOHq+l218qQpsdAdS1986RPv2pExTAYXTU5wNY1gQ9JASB7NzP+t2HoVYMtOrJZhuU8M1vGghgPT6AKYJAJFx1FQBgL9weUdwntCePi/PnpyCAfkOb/RKbVn0jESYMh8rrzdeGfcWcBiaLom9m3W7TIXzzm/Em4DP8Nc0/g78BABb7sZ35otmZXFQAq5kcLsUReAvrAghdU0wEMEfDdrL7VtGXCtNj5i9tEgH088rq5udf4HgAwPmVb0oEsBNDiQqgWnaRAEp9Q9OhbEzAqwsBjHNWaANSeLSOEgoj9nkAAaDHXxOWh9En+QAC+rd0qyhg4aS2BJBvixDABQsSfQClaF7h5JE8gEr4Xa0EcHg4Ws42UpJUQV0ewLjougy8qEhl6q2azmkigNz3s5oNl02w8QH8Ev4Ubpvkm4CrGgIYWeJDDxsfwMJEuyAQvmC9iLoIoJfeBMzxk58A//634ZoxCmA2G6awsDUD775T7QpgYsJkJQ8gIC9jFnnMvAB//rNcBN8EnJQGRqey8Gdo4wNYaxCINskv1Tg6JqSBaaMxWXo15T1g7xK6ugzR2PX4AGraGCHmcUgHtb9N6EgeF+fNq90HkKNrKCRJW25cCppSnAl46gZsMvjX3/vxta/Z+QAG23yFLlM1359IAP+39/fweVwaWEAKCSZgvlQmAPzgW1GSaXrMfLqUAjoKZgWQ50PMoRoxAScFgZimlEwmmQDy8udyZhOwrh+Wi62hU/oEcj4IIXMBbCBs2p4QMkHZrQPAFwFoVtYbWyiU7YNAAGCSrwT1YjpmYZFVImjVzAlYBoGkJYCEBA0zogwsW5ZoApYIYJwCqLROOlKbD+DQkIYAekWpvnQ+gOqbtgjusCuti6qONPm870xYjZg0pYFeqGBOAL2cnQ9gvsrKOIQwc3Pb5A6gN1QApecXSfCnR5I6JhJANQ2MWg2NJoCq6mmrAAbH5/XljCOAmQxLYjs4yP4mTowvIy9HEgFMSgNTrRpSmEhRwB5AKbLZcMcIAeR1wjPx8iJYBoFo11s1EUDNScT0FxSkLhNwsI9ouk1QAGMJoK69+O29HhOwrQ+gCCMBFMaPiAm4Lf6cxSLw2mtAgVQC1+V6CSBKJXPbFgggnSBPBnEEsIJssGoI4GcagJxaR4VoAuYvM/y4dhJvAs4LCmB7KapWpPIBjCGARbSjy18JTDUBi/OzLghE/V6LApjPpzMB1+NqlQaxBBDA58GSPFP/70LISiD1v1cAHNOMAjYS+bJ9GhgRi7EWZmGRWQHU+EppHZ3jrim+PWerAPfbqEUBBNAzoQwgbzYBF4Wb0PgABveoFLhWBXBwMFrOAi1J23Q+gHEKYBZVlMsJBLBQYKOvhgBKk7pGAfRsTcBVVlmDCCf29h4eBFJVT187AdQogG3dXAGMDwLREsB6fADjTMCauo5c23TNmDQwmYwmiW3SW1w5WQFsxEogAABKUa2GjSpi1TQQQFsTsI4A5j17BXA6WRaQjwJG6jIBA4glgDofwLQKIJdmW2IC1qwEEgeVAHa1xbfDF19k1TBzWhlYGi2nLboGheCbYtGOAHb7/kC+TB8XBLICPZjOC4j0CmCmnU0gJX+VFL7dpADmBQWwoDEzN4MAiqJCJ4aCewTSm4ClZxhDAOMUQK0JuEUKYJIJ+BKwFC+7gxG9Y/3v/G83AP8HYCal9I/NK2ZjkCtZKICap7EYawGIMQELUSGT0Icn8T78GscG29iDp7gDe+ALd35WX7jloXNvRzVcViGOAPKGqSOA65VfBWBpAhYm7AgBVBq1N1I7AVTV0Vy1hBwxE8AkBTADL3kliZiFYJN8AG0JYM6LEsDOKYxNaE3AEtMwEyUbAtg+ySeAtAYF0KtBAfTJS6wCmETKSiXzmtMWCiDQWAIomYCffRaYMwfYZx9svt8GuBO745JX/i8g8hLUa1er0tJh2oh/AJggG1FUAnj++YFLMHDZZZiP9bExXtYrgP4z7O8Htt4aoX+l5tnNyC0LPhcwoq+P884DNtkEWLQo2JQ3EUD1BgW2xX3JxLK0SgGsOQ/gYYcBe+2FbCZ5Wbe0BPB5P4Zi9oz6TMCdgzUogBPtFMBKhRFAEZwcxSmAYhqYrN+WuQIYrKtu4QNYNwHMs511QZrcJA2kTwNTqwlYzbSmpqwxHAZgjCiAlNI3AbwJAISQXQE8SSnVLKG8ekAlgNoxRNN6ejEdADC5vQQUWeOjVFCQhNnvIFyPTfGStBRZHmWsjXewB/4DFuikSS8vKIDtI/1gyytrVgLhiDMBA5jmv8VZRQEDrBVms8HcFKzsYDABf/7zbK3Ms88Gvvxl5dw0ajLTKYAolZDLUfAXI7UjeFWKTgsFUIJOAQSSTcAJCmCcD2BeQwA33LIDuJUH2FCUy0KFCA2vC4MYhOpVwZDoA5jpQH6iPgpYXZlD95JQkwm4sxMYHESuGuMDmETKVq1CPt+mv2YCAeRm1YBo1UsA1SCQm24CFiwAFixAG4Dd8TowBKyz7H8AtoucW4LnScNH5N5MJmAlDQwA/OpXwC9/CeBzn8P6AM7H8fgX9o0Un798XHMNG7qefRY480z9zU7PhC+ZRgXwxBM1Gw1Qb1CbHiEsy2iYgCNLFAJaNpKBB1x9NQBg4harAHRHjxPGD/XFtDOBAPIVAJllJrymkQBKCmwZFeQxHUtQKAk3ZEkAVX+gOBOwiQCmVQBtCaBoAs4N2puAdUEgcQogT8sFRNPAiGOjjQLIhYOICVh5CLx/ZTLsL40CWKvQkhZp8gDeuzqTPwDIFi0UQM0gtgxTAQDHHVMOFDlpnhJYlpo7EDDnSDKhrRh2hFoVwAkdVbVoEiJLuvkXmOEv6BesaqK0Tlpm+335y2yf7ZQ5EdBb/3Q+gCiVkM/G5LLSkIEn8T70YhoAQ9LOFAqgRFI1PoA0b+kDqCGAha58cGyknMIIpSYbj7uVCAHsmBTkAVQTM6ur0mgJoJeQB1D3IH0brEoApXaWlPW6r69mEzC3OAZV2GgFcJ4p35lmolYLr1zAlgCqCqAOWVT1CmDVYGLTNNZpJFQA21BKlaxaC5soAg5KUUhrAo4jgJYmYO34pyln20g4teWy6RXACQVhcteYkIMk/0K+wFgTsCBdct/NLaC0TUsCSCbLJuA4AtjnCw9BuVP6AJoIoMkEXBAIIFnVH8kGlKQAbrSu4EMYkweQm6SBqAKopoFplA9gXQSwHNM2Gog0eQALhJDTCCEvEkKGCCFV5a81lLUOZEoWaWCGo4rTUp9wkEo5OgEBkvzRpUmHaLNMkIi2Ujhqxa0EwsuvG0gmdLLWZ60A+heYMoURoxUr/AFCadTcB7BQgJSkVYRuYtEqgMUiCrlwm3pcdiT6LMrIB067WhNwnAIYV06NCZjm06WBEYNAxIyrPEO9roy6FwYOSoVie16kwXoTusOl4BQTsLoqDaGatCCKCdiGRAQm4KowaGbZe1NwfBIp6++v2QTMrefWBDApCARKImgTAdRFgTSIAKpBIDpQkAjpAMJnaEoDImIKZAXQ1gfaiDQE0PPQ7sWsl9skE7DWBUbTxjqF/HoFi6TO6rNoy4XH6JoKv2SeWJqANQRQXQsapZJ5vWqRAE6SFcA4H0C1PIECmEAAAxNwh0wAucJnahrSi6swLnAkmoBJ1ARs8gEM9mtQGpgkE7BIAAmxNwFTCiBGcW0kkoJARJwLFujxbwDXA5rRaIwjMxwlZ56n+IIpCqAHEsriIyNoa2N9U2pkAsuaZFAAJf83nY1U3L8YJYBpFcCudjYAGH0AVQLoXyCbZQlve3vZygczC3oFkHdUXdZ8EwGMREhzE7DhOFKMThgjKATJoa1MwJzdeF5E0ZLmEJ0JON+WTAArFWRpFR6INMggl2N/pVJNBDCfZ0Uql/0BRzOCehMnAW3s+EQFkEYnTJUAWpuAEZoeAWZhWrGCmZ2nToUVAcx3G66pGb1FAthwBTCTCRXAfAV46SX9eXT9Vb22Ul9GH8DOTnl7PpkAAnpLQrZqkFY0z24KZB9AGwWwiLZIhHkA8eFRGr/+oOfVrADWkwamVGJ/krKk6UuFSjjWFEjyC7tKAEU/yUolOsQHCqCiAokBCBIEl6BOP3ihVgUwM9neB7BL8fcMFUB9ffMsYSEBVHwAaUwewGpVWk0F/f1SHk1eJh10PoBxCmCcCbieIJA4AsifSSbDfLDFe41TAEdGagsQqgVp8gAeAuA0Sul+lNKTKaU/Uv+aVchGQUcAIw1MUQD70R00ZpTLUQUCiFlvjSGPsjy484ZiiJTMD9mZgLe+4Uc4DadrJ47OdoMCeMEF8I47Hr84W68AAmyRCsAnEeos4feGSc89CBx8MNqWvRO5tm5iMZmAczEm4Gw5OmGICqCWAKob+Gin8QE0EcCAlBUsfAD9hlBCm5TwG/nQBBxHAE0mYF7s4LnrJtduQQFUVuaoRQFMFQQimIAnyRamsNDq6zxHShNwMwngUJHgjTfY5+4lrxpJTKEyhL/hcOyDf0nnlmCrALa1BblFAVgRwH3xbzmwwkfWM5Auzc1O9qIK4HFHj+DF9x8BXHut9jTSS42K2MVoo+VRc0caz8XhO1v/aOnR+Ap+X5MPIBD1h01yUTAqgDFpYHJUPqd0iVWr8MmrD8aD+D988KFfBJttTcC3Ym9siWdDAsgnBVMU8NtvAwcdxLYji+wUswn4/POBE04Iv6vWqiQFkF+XE9tcp6wA8iAPbbdSNy5fjouGjsRnBB/5RAIoWD6+/9hB+DDuR7EI/O53wNFHh49MXFFKHHN1QSBq06qVAIoKoFqvcQRQXTKwmUijAE4A8FCzCtIK6AhgZBxRCOBKTA7fEMrlwAldyi9lktl85FGWO3u1ylqPYSDKDVsogJ6H999yOt4P4GZ8PHKOyRPZ9d5R+dm3v40MgAGsLW8XLsAJYG8vgJlKEIivAK5/xIcBANPy0wD8Xi1aBCYCWMiaTcCZkl4BFE3AkXUby2XZiBETBCIdW6sPoD8SFdEur1usmIClayUogOutB6xcyT4HTUTzWksmdQPtbHZLUgDjCGAhfL+REeMDKBKPSGQuP1F7u37kT2kCbqYPYLlCAoIw8S3zeqe7PHk+3ovrcDj+jiByWxMEolxahpAVtoh2TODuIpYKoA5GBVBzs5OqMgEcGgIGfnspNsXlwKGXa583I4CG8U28wSS/T89DW5wJ2JQG5okn8OmVv8WnATxX/Wr4m/Dc38bauBhH4lScCSBKrPr6mFUjQJxSiRoJoDJhl8vC+8/dd2Orl6+PnM7WBLwh5uMf2D/cd7PNWLRPqYSsHz8mVd+xxwbrqVWRRbbHrACedhoLlDn1VD0B5EQuiQC2kRGAAjnFBFyIMwGrz+Hee3E47sXhuARXgGXLSCaA4TmmDS/A/dgJfy1RfP3rbNsXvwhsv718XzMQDo6dGMLczbvAres6BbBeH8BsVg524dcxHIZSaWwqgDcD2KlZBWkmFmTmAgDIcDQraKSBKSbgXkwPFcCRkSCgSnqrTFAACxiRGwq/qIkADlkQQGHDZKyMnGPaFA8TJjAioFuYfhqUjcIIIgWCGIJAOLIakqYjSqWSKQgk3GarAMaagFMEgZgUwDbfrGDlAxinANbgA3jccWzJ0YhCpiNGUycFjEjNy2ejAGZrUQD9ncXzRfxUeds05Tvs7x8zCqA4AU+IIYBdRU0nqlUBzOUkp3TeRmsZ9JNMwPfhI/gjWJj+hGpI5LjpLC4IqZTtMJsoAfkGE0hVognYpAAK47FOAby95zBshFfxA5yBD+N+ANF6tFmnWkTewp1djQJW876qCiAAWfX1yym5xYg3qGSwXhvvhOZOLrmbTMBvvx2eUmMCFgTEIEqau5uoBHDd9eMVwGCtW98XL9fJ9uftm79kWimAGpiEXt4sVGIFyO/KXM8RTcVrYXHwuQuD+MiOcmBOM3wAx6oCmIYAXgjgcELIDwkh2xNCNlD/mlXIetFPWAfIDKU3AfdiuqQAapdYszABRxRA7cUZsgMWBFBolToCSLwqNt+cfeY5qERMhGIXMSmASqMmlbKkNlXXXjdybpM7T5IJ2EYBTDIBR4JbYhRAEwGUjm0xAZw9m0Wj2hDA/JSJRgK4apX8LpPVqEs8gjQVAfTrU/QpjKQqEkydWjSAAAb3lmR6rFRi3Sg4ASQEaHvFTACJTg2t1Qcwl8OISAANCmBCLm0AQLZiMKv69bISk4M8puIKD3xC9GKmgHK2Q27TkR3SKYC6NbMDmAigEGWmI4BL8rNRRAcAgtewIYBw8pzKkjdEh+ckBVDwATRlClCD/dRcidIlfDXvKbxP2icDTyYGYh0qCQxXYnK478SJ7L+JAAqO2R4RooAVBVBIPYtqlV1eJR5Z36RrSgMTKIA8qbxqAvaSFUAvJhdikgKYRAA54ghgVjDf15UGJoYAZj17Algsjk0C+BCAjQGcDuARAK9o/sYkOGEgNiZgRQFcghkSAZwk9yWGBBNwWgVQPJ8NAeRrFkvwPGyxBfuoC2yMmB6FC0gKoJoHsFLBJng5+E40xELHG4rFMAhkmPsVFYvICQogrcoH6hRA1QScSgFMSQCr2XQ+gJIJmAeBQENUY3wA+eDCn3scAZw4OWskgICgAhqYBCcPqdLAaAhgpI2KJmAd+vrGjAmYE6CJEwHyguZNKYCmLtIogDwIiRAWeGJBAG2CNJIUwCqyWhLHJ8SqokqJGMm2xyuAYt0nqTnVanoTcBwB9K9dpuG9iS+GQDiORYbnFAqgRACFe1RfoGN9AH0170lsK+2TRVWeF2wJIE/WaiKAQp1RIuQBVHwAl4UxQahU2J+qVHnZ+ETQ/Lo8ujnflZ4A8iwbOiQRwFwCAeRDWBwBzNHwIo1cCUQkgGoAV9xawGPVBPxFAEf6f180/I1JeJTdJhkaihAWGwVQZwKWCKCFApiKAPLz3X8/Zt74O305kwhgNVQAAwIoTOgRBZD35Msuw7ZLbgXgE4iIR2xFikbLGiKrVYgKYJAupVSSIgwzVeUtyZAGJlUUsJEAUrlONc+iSNusfQCTFEBTHsBu9GN7PIZv4QIANCCANkEgkyYhYERTyotxHr6DjfFyMD+ccQbCe9cgWx0BBgYw+7KzMRevp1IARRNwZBLyCz1sCiBQFEDpsSQogBsvfwTH4kKUilS6lhGWJuApE8vmCGDoTei976bwARTUP0DOS2YigEm3BgCZSrwPoIeMlgByHzZRAVx23BnSPsuHG6sAFrwaTMCCmlWthA3ltZfDKNfgd4UAckvGd7/LcnvbltXoAyi0zZ/iFOmnLJWPkS7hkzmeTzY4JgUBXIGekEQIBFAbIS0QQC9jTgS9Qpg2uAKoEkCa4eMfDS5y773AN7/J4oYiCqBCALMxJmBurVmJyaCRfGLsWScSQE0QlE4BFH02ZyD0j/kIHkD22f8F3+PyAO6LW3A4/laTCVh9QRCPWy2CQCillzSxHE0FBZuMOlBEO4oYFvK1qZVPh4uSIK0qgFoTsDbdfIgsPPkNgF/UNBBxB8OddsIcANtjO5Qq75f3EY7laxxK8Dy85z3s42uv+duElh0hjZUKS1f/uc9hPwAAZSYClQRUK9gYbwRfTal1VIgEMAjJL5UkczLrzOHEmClHe7JqAo4MEGrvF6OAK/KbXrUqqBuakaZE05mA44JATArgRKzCY9gBAPAyNkE2u69U7DgFcMIEAJMnA/k8usoD+A7Ox1Qswy83ugT/+x/wxz8CP/gBsO5aeikpUx0BTjoJs377WzyIX2H3shIxZGkCjiiA/oeFS9qwse7C/f3IZpm6wnMdBukfdKZunmQ2A3zjig8CAK54fhMAezWMAG7SsYBV9rrrKmyBIZLCCMAzT5Sxu7ihWsXs2aELVr0EsFwWe4MeWQ0BpBQgggKoU/F0CuDUX8pRxkW0a03EHggjBGkJYDWGAAoPZ3CtDdC1eD7rW0IbZISB1chfL67ixwCWLAvLv812OeCJcPJci1m+8eKLwOGHAw884O9Yqwk45rgN10s2AQ+iC8VJM9Dex4IQsqiaTcCKD2CtJmBJAVR8AMXubSKAyGRQRo6ZuCsVoFDA0Uczt6ILLwTefZftVghMwHIaGO5momse1aEScmB9gUycGEa+gflYFtGRTAA1Crg4BfDnF7cYA3n8seBznAJ4ix9seUl5PwATU6WBUQlgkg/gWFQAV2vwVRpU342IG8+grDptsMN0HPvtMExSqwAmDX5QnIb5RU2tW9k+E4sSlwUDAHzta8B+jL6hWg0iloNdhXKKSWH5/qqtZGQEkdaZqZYlCb1uAiiYLlU/Cb6ObjUTvqckmYBJSZlkxDyAws6MAAr7aZ7hMOlMJoC+y0AJbaBid8pmJQIoCZDCsxMHptl4O6IABsXStJV8Hmxwv/NO3DydCfATMICLLgr3WbUKRltitjICPMQC+9fGuzX7AJqCQErUYD70R2ht9LHm9Z3nQRNzTnb1viFdy4iERNCcAM7qWMk2TJ0a3QlRBbBU0kyWnofHH0fgeqGNMs/l4HlKepU6FECiIYCeh0QF0MYHcBiKArjrrqA3/xO3YS92bCk+CGTl3G1Auc3e85C3UAAfwQ548LyHwnMK56VF4WXRn3hLHivfGWcA194gK4DrrRee/sEHw8+01iCQmOO22KSMm24K4zN0JuAhdOK+Xz3NxmmkUwBXYWKgsgUE0JQGRlIAc7LfBKXB2CKiUtH7AAIkbAP+MxJ4WmRJtmxHAY8+Cnzxq74CWDHnAeSrUZVRiCRH5/N0EgHUpUESr6UzAXM8jA9EtpmCQHJCX+dkLo0PYFoT8JjzASSE/CXh78/NLGg9oNSeANIhmQBuvvN07H9wuFSC1gfQIqW+mGsoUQFUtlOQ6CV0PePQQ8PBwfPMvlnQEECevVQthtI6c6hgrUwooZNiVH1MRQAFx3DVn4kTwHJHd1imOBNwpeKvvStANAELk0ke5UQT8CC6rH0AtfnS/AfQnq3IlzAQwEF0BWN3xAdQ08aCcX6nnfDQ1I8H5Vx3XWCrrYTjDQQwUx2RzpvOBzBqAlbbmdF8WIrxPdSt0qAhgNWyp1zUAEsfwBntfofu7o7uhGgQyNKlmkG6WsXMmawb+pcOIRDAalVQAAkJHnajTMCVCqx9AJMIoKQebrIJyMc/hmqGbSsPG8iLj8lf+xRIj59Ev1q1MgFfg0NRnTojbBwCERIJIJ9A+cvgoYcCPdNCAtjWBvBL+0WPLasIGx9AjlKG9XtSrWD//UPSqTMBD6ILdK2ZwMEHB+UU2xBfZ108JiiTT0CouCC2jQKYyYYvo5QClYqWAHIDiU4BVAmg6CUVBGPw4woFvP/9wNpzfQJoWqoQQHXYJ4AkSgB5nzf1AU48dUFQRY3WoiOA1+KQyDaTAij6zPP2YWsCzmZDcYO7xSSZgFulAKbJA7gbop7QUwBMBLDS/xuToDT0O+tUzKU6E7CIcs8MIB/m/dIqgH6LGUIHOqF3dJYIYJIPoNICPWRifQAD8EUHAaBaNZrmAI0JWBMkYSKAM0hIANMogNyMFpClUklSBSL+HP7DKbd3o32QEVZRAYwQQM0yfhIBFHbOo5yoAA7QLskHUMvzBROwhEwmJIC5ClAVcoMJo6EYwU1BzD6AmpFQdJupklBtzGQUchWnAMYRwDoVwLKlAihNDpqZgr+0iZNx4A/WIBPw1ILfofkbngLVd7i3V68AAgZiy8uZzcLzhPaSzUovGdAcEgcdASyXgTZBAYwzAccRwCLa5TL5xMPL5AEPqAyXw1avG4+EZOioVqXlAyPwy1tBjh3S1sbOaUkAMxlIQVc9PaGrHABsLPoiJJiA0xBAj8hvP9o2LRDAtjYANBy/xDZUHvQNp54XCUbkfcDL5pEVFL3EIBDfhw9tbayMpRLyGgZoNgELCqB/EbFoIQH0b5ifuyATwDgFcIS01a4AakzAtgRwFSZGtpkUQJEA1qIA8mjlYXSgA8XVLw0MpXQupXR95W8SgF0ALAJwcLMK2QiICmAPlmNX3AWA4skn5f1UBbA8ebrUq7U+gP4TfBezItetTmOhaHvgzsj+aq8IIgP7+oA77gi2e8hg/nzmohdAN4hls2HnFxTAoIEJ14sQ1YgCSNnuSuvMoywl0iSa1DrWCmCxKK0oEZHzOQFUFEBjIuinnope2JYAakaaQWphAjYRQGGh5DZfAdQFdMxGmLOrC4NmE3CcAggETtRZVEXuKalBKjL1EEBhADOlgWmUAtiOErowgA8NhX2iXG4sAZyW8zu0pQK4ZIlmsvQvwO/r0UeByy4DFi0SyqkqgEKf1fkAJoGUWX1tjaexsR+db6MA5lBFJi4RMTQmYD+qm0eGlofjTcDI58MX0mKR+Q3ycov3+uKLQd+tIsvaLo8gTyCAvHyZDIJ6zKOCnh7ZVCmSwWoxQQEUnqtIAFcsid5jR9Uvn/98pTY9fz7w5JMSASwUII0p4kQ/3O9fdyhqVeGEiObykknXSgEEpGO0JuAyxZxX7sRU1TJEQgXw7TcruP12vQIYECw+3vJxohISQNWgEJiAM4XI8ohGAjgygqEbb8fD1y3EZ3A5sqVoXYkEsFwGQKk1AYy4BvllELM1zHrpHuDdd1MRwA3fZQ6ofO5TTcCVCpvy334buP+ad7Ez7o2UrRmo2weQUnofgF+A5QlMBCFkL0LIXYSQRYSQEiFkISHkakLI5sp+6xJCriWE9BFC+gkh1xNC5tRaTpEAPoodcBd2x0G4HocfroSNqwrgpGlSr9aagP1WqiOA/NhjcVFkf3WED6JjH34Y2HPPYDt/Sz/qKLFgNSiAcTMKdwLxEUjhGgVwGhVMwJrk2qY0MLooYHFN2TzK0iDBk4+WOy1NwB/9aPTCdZiA19rA3gSsJYD+A2iLMQGLBLATQ8GAnuQD+DrmSutm0kx6BTBTLknnTWMC1iWCVtuZmKJDQpwCWNSrRNfgUPzprbBPVA0EMJJTzJIA9mQFE/B222lKINeFjQJ4113A5z4HHHmkcHEdARQIgQgrBbBcwgSswtPYBi/jPeFxCT6AACu/LriFowglDUxAANn5KkMJQSAiAVQC5YJ79Ty2ssV997FzigogIJtC/bZBaTjxSgqgQHx6JnlBGhixeH19QGkgngCKkzongAsXAg/dFz2umO2ULiC16Q03ZG3JX5VjCJ3sd+FlTbxWcVUyAfRyhXQEMBslgOp6uwAw6Z9X4Mt/14yfJFQAt39fBXvtJf8c5uMLTcDi9Uh5JPqC6IOvR19JYwI+5RR0HrgXFmJdXI4jtEFQIkHlIkZG085NBDBJAfy/33wWWGediAl48bt6AjidLsEnHjgRAFtaFogGgZxzDpvy11kHOOfy2fggHomUrRloVBDIfEDJcmnGFABPADgWwJ4Avg9gCwAPE0LWAwBCSCeAuwBsCuDzAI4Ay0F4NyGkS3fSJHDS0YVBbAQWFrsb7mK/if3Nbz0P4wP4Iv7MXh2F2TTOBCwRwEMOAR55RL8eqiEIZAid0X0B7LYbG4V4xBUvSwSZjFYBjCOAwYSpEKQgclWZNQsYwRRvafC9LgWwVEI7CQlgZIF6bhYSFECjCdjz9CqEQQG0CQI56riuZAXQv+YICvjEJ4TtAgFsz5kJ4DQsCz5bKYDvex9u3Ox72BV3ywpgRlYApeNNaWC8xpiATWlgyiYF0J/IuSojraojJicTsA9ulb4HJmA1955q7tQFgQjElhPAiVQggDfcAMycKZ1GpwDywT9Q7v0LqBPs4sWIBIE0igCS8gjmClH5gEz6TQogoMlPqiCiAPqTNPUVwMpwCgKoEPtgAuQLMfuoIisTQIE4cgWwUomagAOS4X+fOrmKL3xB8YUF892MiwgF9EEgr7wSPe5/eC+u3+i7CAoFg6rtZ+IPFMAkAuifq1iYiPvxYQAhAcy05SEuSJ+UBgaqAlgsahXAyXdcE90ISD6AurYSMQErCiBGRoxLTXrDggJoMAFHhq5LLpHPsc++kTJFCKAuLwyAw74eDfiyMQGzC3sRBfCN+XoCuG71jWDbqfgJAGCtqbIP4KWXhsfpyGqzUDcBJITkAHwBwEKb/SmlV1JKT6SUXkspvZdSehmAg8B8CblX5lEANgBwAKX0RkrpTQD2B7AegK9qT5yAIZ83ij6AxO9IUtSQrwD+GV/Cxfgi62C1mIDPPx/YYQeQgsHjVr0wQpVSxSEH0+juutlBmEySfAA5+jAp/E0xkerUoxlYIq0qUQsBFH0ASUkmgFKH93wCqCiAWgLo35uXy6NXTCwqpoFRFMAkAtgxTfYB1BJArnYhj7PPFrYLdtiIAmgYkEQCaHx2M2fiii3OwpuYq5iA0yuAuaQgkJil4MQ3WFNZRxJ8ALVqurqGnQGmIJAIAdQpgMI98zbZXvI79KRJLBXMeefJ51GigEUFMCBzigLIUalAIoDVqtAHYgiglQm4Uoks66gqgJE68Zl3G0o1EUAv5xPAknCs7uUrlwvJiPI7bz/es/Ok7RXkWHvSKIBkpBScSusDiNAkPHVSBe3tTFkRL5/N0MiqHSp0JuBKJUoAj8f5WFWYEu4AAwH0v+gIoHitQJn0n91wvhsn4WcAwnkr21GQyJxWART6bSAGJpiAM0OGVGaCAqhrK5El2RQfQIyMBJvUJkJFBdDSBEyV5PKZc38GfOEL2jIFx+t8N0Hw2WMnR7bbKIAcKgEcHtSngZnmMZepf2NvPIgPAQDaslWcdppfFs/uZa8ZsA4CIYTcpdlcALAJgKkAvlZHOfhrP6+G/QE8TCl9le9AKX2dEPIggE8AOD/tBYZJF0DlKOCRHFOipPbhvz5wlSqTQW0KoD9YkopmFE8yASvgjSxxQqhBAexHN3qwUquQ6cjD2vBzxc2cyZybBu0JIDc3lZFHlWSRpVXpDT+PsnQsjwIWCeAICoEJWPIB9D/QbA7VipKPjxcqjQ9gLicpGDYEUIxSFRXAQrYqX8LghN6FwWQTcC6nppRjt+c7o3MCaOMDSMojERMwX6yCnVRznF9Am7WAk0zA2r60ZEl0fw1MQSBWBFBoB5xItI0oUcCKjCfeL6WyD2AR7ZiE/ogPIIeOADZEASwUgJERzMSi6HEmBTCbZQRwYCBRASyiXT7Wn6SpTwCraRRA5Xd+r/Q5mQDGKYC83YjpSiQfQISEsKdbfhb88pViqE6biKAuCKRajZr8i2hHldePzgSsQGcCFk3wKgH0SDbIpxcEQuUtfADFcY7nNEwigIOrohsBewWQplcAuaLLFMAO6TcTAawWOmTS0t0d6asRBVDzMAaz3Ziosc6ZEkHr1szOZOQXYZUA8uFzqsdeansxPcy7Wa2KWo3Vy14zkEYBzAAgyt8qANcD2J1S+sc0FyaEZAkhBULIxgB+DxZIcqX/8xYAntMcNg/A5prtieAKoEgAq1nWKXSRpIGzZhaJPoDlkkYB9AdLolsmLqUC2Da4HHmMYKSUIA0nKYAGAhjspPORUzT4gADOnQsAIAMD6NBEVovrTPb1AYW+XmzsrxboIYNyRjabAYICWCoB8+YhX2HPwmvvDAbNJAWQZrJyQuaYIJBYH0BukkjyARRMwCYCGOcDKKITQ2gbXgmUy2YTsE8gADUIJIyAtFUAMTISeb7SV50PICcrtIoe32HclAam7NkRwKCLUGqtAA4PeuxNPyUBXLUKGBkKj+GTWltJIYDqLCnUhecBDz1Qxbq+0SOtAmgdBTxieG4cftuehXelzaLZP+ID2NUVLh+Ikdh0E5E0MLxP+O26f1kZr73mV01SEIjyXIPrKutURnwANQQwTgHk36dMYr+rhKw8GPZXE3RER6cASgqpqgCORPtOkgm49x2/s/vtSFRvg3nLhgDq0kwJZuPIohsAMkMmAkiCOjURQAIvXGeaTzq84gXCqQ6x5F02l1Q1JmCTD+AwVdJtdXdDvSFbAqhzhmykAhgQQN9nfglmhO1lZARdIywTx/Ll+gQWrUCaKOBdKKW7Kn/7UEq/Rim9p4ZrPwKgBOBlAFsD2I1Syl//pwC69c2wHECPZjsIIfeY/gCgmAl9ADnK2agJmOvH3EQTZwKmFPjFL4AnH2WNgC+6DiDspCs0t2HwARwmegVw1klH4BVsDK9sHqyDwgoKoGliFhEQwLQK4KxZwWj3LmZhElZimm95PeYYlk/3jjuYS9f2k1/BXS/MxKk4kxUNmaDuRQQ+gB/+MLDllvjsc98H4Dsy+4Q60QScyckTniEIJIcKKA3n9UhyWG6SSGEClghge3tqAjgXb2D/Y9cFPvlJswKYzcYSwBwqICSeAI7wSV1DAKWixSiAHXQYyzEVp+IMowKY2gTc1xdpo9ElohgWLKAstYfSh3oxXd5RIIArV7L54gPbyu0cACZUBRMwEJ0chLo4+fsUJ7/0ueB7YM41+ADWqgAmRavqCSCNKIASievsDI5LrQAGBJCd79K/lLHRRsAvf4lkBfDTn5Z+Cgjgiy9I2wMTsCYKWFQAzT6ArLxrz9CbZMtDYX81QRcEUixGCWAR7agQOV9TkL6pGK3XJBPweWeX8e9/QyDv4bMLCFahENaNyQQsEcCoAii8mwbImgggSVYAg3vI54WlN6IEUBpbbr0VU847GQBQifEBVMnYUFWZNyZOjBLAoZB8GwlgblL0TQ0pfADB3AnEOikNyWMpHzKmVRmtkRTAVavwnTOnYAO8ht/8hvmmjgZGcyWQIwB8EMCnAfQDuIMQMrdZFxvJswYm5r/L5NjtS2OXEtWpKoCFAtvGE2cef3w4GPViOm5a91i2+CTvCDoVxaAAlgt6BRAA1sNbdgQwpQ9gnAKoIw9B3rru7qCTT0I/ztv//iDq7i7fWeD884HHHgM2xYuS3yAFYZ1eQUAAH39c2k5yuWCA2PNjBXROCCdMVSGj2Zy1AigcFp3AeD1amoADBfAXvwA+9Slg551DE3DGjgB+BPcjXxwAnnnGnAhaUADlKGBzEAitygUPCIuGAErV4N/w09g63JaRh4wz8ENjGpgRL4dv4peobrSJdIzRBKxT/3hicwUZeFi4ULhodzeeW3dvnI7T5R2FIBC+wts7b8km4H33Beb2xJuAxXWqn3u6GqyH/frU7dC+jk86LRXAwUETAaQQo411JAIAsP32wDXXBJN68FIGwS0iTgG0JIDGIJAcJyXs2HnzoCeAog+ggoDsKhaSwATMCYGYy2Uk2QTcMYFd79OHyQpgYAJeJVt4tGUTnjXvHkNDdgogv54UIONjCJ3skfmFnTLZw4wpYf3nUWY+i/5Fq4IJONwpH76krFyZSACD4AxxNRBE26iRAGbifQBLJU0KGEBSHLUm4J/8JPhYzrRFfAAP309PAEtEIIATJ0q+1hxi3Zt8AIdy3VoCaFIAdSbgbLkoB/EM6RXAKVU2rs3cagb+fLHcH/bDzZHzthKpCCAhZCs/NUsvIaTi/7+aELJV2gtTSl+glD5CKb0SwO4AJgD4nv/zCuiVPpMyyBVK7R8AeB1sQBH9Zdoy/tugxmGXv3mpPoBApC9JKQn+sNWFkKMBNDD4AJayegWQozqSQAANeQBNCmAJhZAMaNLA6CJIJ/E3oY4O6e38y7u/rnID5P2ANWkZPLBJia8mIO2v+uWJ9+VPCAcdlsdOu4RkRyUdXsaOAHbmyuFhnheJ8gxgGQUcKIDHHQdceaU0MHECmOQDGORmHBoyJ4LOZsWPATxDGphKRQiY8GFNAP06kXJYqg8Z8WlgLsQ3UfrrVfIBJgLo+/+NTAtdKYiBAAa+U/yihx6K8/f4d6wCyCGqLnlSwS23ANnBeBOwuExhZbgcnGP9ey7BnPXlWVidV6pVSASwv18hgIQE0fiiT5hRAbzzTpZlwG/b6wjxd8FLkckHMCUBjKiHwg3yOjBNspICqCBQAJUxKTABc5IjRIXzZR7jTMAdXex7e15+Frx41X42ZpncbYAw/RQQdo/BQYMPIJHf1AKX46JcH2XkUEZBUgDXnlHFlIkyAdxkE5jVW34B/qa9ZImeAApBZoFvXgIBzA0n+wBuvkl0cJYUQB0BFKKOpUe9wQbBx2o2qgBuPldPACXLEe+rSgfnK4wE1/Qf/pBA+tMQwEpFrwDmSoN2BLDCxrVv/3Q6Dj1cJqvSXAUgutZGc2FNAAkh7wcz2+4K4J8AzvX/7waWwkWXPMsKlNKVAF4FsJG/aR6YH6CKzQE8X9M1OlkDE9+W20iYpDJAJYYAVioApUYCWEFO62AbgYEAjiQQQFpO8ApPmQdwCJ1ylnedj5zJf6xDeYN+/nktAWxrU1ZBga9KkGhFRdLAcAgmYHF1AZMJ2EgAhUmKk/9qFYKKp/OOTvABNJmAgdQm4ACDg6l9AMU6EV+Ky2WgUpIHbjENj40CKK0WoZnQTWlgRnwfwCxRKs5fkzTiA+grgP0T1g73TSCAQZ/IZjEyovcBVM1d4qAdEBFeCIMCmBMSlosEUFrtwkYBzGajBBCQAps4pLV2RSiO9iIBDF6KLH0AazIB6whgkglYgYkABomg+XMQnIlJjAk4uIzij6D2I28VIxamgDtAJoD8sQ0OpvMBVMk7J5wiAdSNueutB+nZRdpzoQBM919yenuRIawfSGOTYskBIEUOA3LzJjC/ABMhCrhnYrStGBVAPj8MD+tNwLNnh7eEkQgBzBT1PoAjWWHeMRBAkXyLBHCFoCkNNcAEnB+RCWBpWE8Ae3wFEDNmRMqqpmhq1QogHGkUwLPAAjPmUkqPpJR+n1J6JID1/e1n1VoIQshaYDn/XvM3/QPABwkhGwj7zAXwIf+39NfoYh1e9Jdpy2gIoODUD/jPS3SaKJcjBFAcjKwIIJ8plZZWypnfSgEkm4BFBVAggCYz5yC6QrKkmIBNCmAAJRwf8+ZFxvpCgZ1WSwDjTMAqcqECGNjgoZiATQRQTAMj3D9X5UQCqPULsvQBHEEhau1KaQIOMDiIfE5J/ZPCB1A1AavBBJICqAZRJBFAIDKpm1wNSp5vKiRCGxJmg4gPoK8ALskKwVQJBLDKU5HkckYCGKcA5ih7qQsKYfABFJecqhbL4UAtkhxLH8C+PiUNDPQE0KgA2hBASx/Aznx6EzDJs21WBNAQyhzcp/J7oADyyV1QADPlZB9A1R9BNT9yAhirAFble/E8MwEM6la5nvrshtAZumiLBFC4/6BdVsN705qA29pY/VQqyA2sFA9hEAmgl6wATo5bxVVQACdPiD5LyTdSPKlAALUmYOHLnPJrERMwX2JUbT5Sovd2uQ8F+6gE0L/nlZgcbB/Om4NA1CnP6ANYGpII29CAPg1MT8UngNOnJxJA1VrWbKQhgB8EcBalVNKK/e/nANjR5iSEkBsIIT8ghHyCELIrIeSrAO4FSwHzc3+3PwJ4A8BN/n77A7gJwAKwiOHUIBNYhxcJYCeGcQ92xvpnfincT2cCBqSRhPel6nMv4FVsiM3wIgDBgTkJBgWwnK/TBCwqgBYm4EF0xSqAsRGkqgI4b17wNhqcI0ex6Un74fdKhiAPGVQNCmCQ3kOA6AMoTrhWCqAhDUx7Njp5aQmgzgT8/e8D227LRj/VBCzC7+wSAbRJ+uR5+Omls/EJ3GidBob7ANoQwEB90iiAm2wiKHL+DUeWC9MQwMvwWRzwu72CBecBZvYiRIluFSYikw/gm2VBATQszcYJRHWEXeuZ53O45hrNM7z8cnTef5u0KbKCR0dHSDQMJmBxnWqvJCiAop9bXBoYQcG1VQCrJUM74dfzx6Q2gZi8io0w/frfg1aSfQDbUMKEjhoIYJusAJoc7ZHLRVYACW4hRgE0mYCvuaKEv/+dXcrkA2h6FiMjAH7wA+x4wocAxBPAwx79Dk72A9YA4C8938ERv95BCiAE/IA0gwlYNEPy6wUCWQwBVM33WgUQCFTA3Ipe8XaFm2Xg69bGEcDp6IURggI4qSss69U4FP/AfigVabwPoGACNq34M62yKKoA+gRQJWPatGrKpFu1UACH83oTcEQBvPlm/PCvG2AX3BPZd+KNl+GcwGsNGBr0Qpf/v/8d2+0+CcNox6yRt9i2GTOYmCSMn6oJuA36HLHNQhoCmGSctjVePwzgAAB/BXALgOPBCOA2lNKXAYBSOghmWn4ZwGUArgDwOliksCFjZTzKU1iE7nQhaeoGw89hZ9yHWf/6S7ijYgIOCLvQinlfmnLK17Ah5oeH6kzAF14YKUug5Kkm4Hy8AoiqhQlYowCagkD6MElWAC2igAO0twOnnx76o6xYEcmg30WGMP3hf0YOLbQRrLWO3gfQqxgiTz/6UXatbbaJNwETOxNwgURNwNoVE3QE8Oyz2dql//qXlQk4L/oAJql/PiYNvosbcWC4SkYdaWB0CuBwfqLvICiPsKUS8Pe/85P65iV1mFDeYrNZ4LO4Auu/fDtbzNK/x6A/bLstsOmmLBJUcA6PmID9m11SFtx/ExRAvprAbfew5xz1qQE6Hrhd+h4hgFzK32WXcKJUJpW8sGRhpViRTcDKcgxJQSA6AsgD0qQ1QjUm4PmbCGtxafKYzcIibHL+1+BVQxLxIjbFAqwDmskAe+wRJILeaHo/Nt3IPKaU0Kb1AeTJ7QMSJrxEjYg+Wvl8IgFUJ/SIAiiMP20o4fDDE0zACgGU1Cch8CCOAALAmTg1+Pzl/vOxwdLH0KWku5o0ieBLX5UHWS5klYfk+1qMtfQEUOd2w03ANKNXAIFg3M0uWyLeLoNEAKNpYMTTAMBEGPz/AEkBDAkgxaG4Fvvhn8DAgN4HMEkBFPKeXLjeeVECOMjajfquLC39xtmWMh6JSq045orPvJxrD/xvRXAfwIDI7b8/pq96Xbs6R/dFitHT80Je+69/ITfYj3YIYwu/R6G86pwzlgngIwBOJoRII7K/NNt3wYhdIiil51BKt6OUTqaUdlJK30Mp/Sql9A1lv7copQdTSrsppRMppQeo+6TBqnWj6QM7PKFD+z2IKCbgYGARZlQ+R2DE4L8i4thjWV4UAYN9egWwUohXAONydrEdsqkUwF5MlxVAizyAATo6gNNOY8mg/Qmlk8im3q6sXs4+6isZtHfrTcA6lZPksiyyetEitkqDYJZVyW3VMghE8gEMFKuUPoCUmvMAAqEJmAgKIK9jg2+UiiAwNsEE7ClpYMRnrxLAKrJYNMWcTjNo3yYTsDLg5jPCM1u5MrjHEtpYOQoFthzWFVdISkTEBOzf4xAV1GW+XpyCQAEclKM6JbXyl79k+5bkdqn1s3nwwTB8HYj6AAoKYLVo8AG0TATd1ycQQN5G2sM2zaESwBvxCVz3pX+HG3TLTPqg5VAB7MckrIc3cfctw8A3vhGQh4tO70VXwUwAq8jK9emTiEzBHARStiSAwX1qgkAkH0ABfHKMNQErg54pB12cD6AtVqwANniPbALmxR7uk1/05mELKwVQHHONQSBAoABmlycogDx4SVEAxeYdO68IUcDdnZXI/nTVgN4EnBQE4jOlI3Apnu3ZKUIAsYoNCp4naxCZquYFWhmPRBIljrkimeZrp0eCveABoEbdIw4ZeGH8jXB/u//fsDy2rKYE8GSwwIw3CSGXEkLOIYT8FcxUuyWAU5pQvoYhs9b00HnWR3clNC8EUosuCASQcgHytu158luBMQhE2di/In0aGMCCACoKoOgOQ2n0ekswI1YB9DzoFTkgfMMjJPis+i90ZvQEkGQzWvm9gJHAdCWBj1b8bS3GBFxVFUDDUnCN9gGMVwCr4a68DAZioyJYGENQAHUmYL4SSBbVSB5ANQrYQwZLpm0hbasKQ0FQNJ0JmNIIeW2jwnPu7ZUG3OAx82cXZwL2b2zY00T6KQiCQIbkvJ0S/EklMyK3w4gCCDCTo6gGqGlgBAXAKxl8AP36SvIB1CmAulyAKgEsI49sTihjwNSj4P2I9wWKDPJdsvmQ9C7RrnsbnANE9nvz6ydTkH0Ay2WE/UB00s/njRluTQpgxAQsgE+ONZuABSQpgAALjoj9nSBCOAMC2C/f1zxsET4usb3EmIAryMJDFlRsl4oJOEkBzFqYgOMCD4igAHICKPaf7GBfchCI78+sW3FrCJ3skSk+gKSvL+rDDiBbEQgSrxelw4ltVhxzgz6HMGuCzmdLFwhiA4kA+h9WYSIquXZ5bFkdCSCl9FEwP8C7AOwFZrrdG8DdAD5IKX2sKSVsELq7AWwhT3qTRkJzMJ+FSJIJWFAAqUIAtQqgeKyPVSv81qU6QLfFv5UmRggpPoDK13gFUAkC6fB95FTyEEAMAvE/t1N5sFe/S+XUqBd5lOGNRO+R5BSzXqwJWFEtxAFaGEm4AliTD2BQMGJFACUfQF7HnXYKhLUCSORcXXEmYA8Z9M6Q+0IWXjDhBdVkaQKWnrNAAEtoi/J8DQEMTMB+XQ6JBDAmDyAA0CF27bbJGgXQn4QyRbkdagmgGtQUE81FR9L5AHoewnadhgAqfSHSxmIUQG4CFp9dsDt32+jtjR1TPGQigQ9A1AdQMgHnBAIY4xDNlkHzQJROFTEBC+AvmDWbgAWwALj46S82OIJDSdjJi11cFSWAqRVAyspH88JzVkzAmaUJJmCLIJBYYYGEK4FMaGdllaLoB/r1JuBsll2EUnTmhRcFDl8hG0YHq0LVp7y/P2rBQnoTsFEB5MdYpoKxgY4AltAWnReEiGuimJbHLAEEAErpM5TSQyila1FK8/7/T1JKn21WARuFSZMQIYATdQSwbG8CVgmBrQIYEEBlVPIK5uSkAHA9Dor9XY0CxuAgLqefwT74F6p33g0ceaS0u7Q0zaWXAqeEIm57zn/D5ilEVLVB7LCCArgpXsDVOBSb4KUgb1cElBoVQG2ks4EABlHAN9/Mki8DoVO2sq+0QjhCH8Cuv1yIl/f6BoBkH8DTTweefjr86YorYGUC/vzTx+M9eFEmgG1tKGsCYby8PKnrFEA9AQxJMaAogIpZ3UMGy2bKfQEIJ/SgqixNwJICuGSJXgEMdg7TUZhMwMOe0NYSTMCerwB29mgUQJ/UERsFUJ2AYshLtWTwATz4YODJJ5HPA8fj5/gp2Eo2G+A1ZA47NDivLgpYRwCp4mJSQc6aAC5aKBMkaXduCVmyBMQzz3QURDshZdo0PoD+M+9dpZiADcjA05LPSBoYAaICqBLAQGAxmYBL8mA9hE6tv6iI2OAIDuV6vE2XVlmYgJcvl8iAzgQMhIm3pRviKu7SXhyAG/BXegRbW1dRFbOqCdjv3LYKoOgD2FmIKoDfumt/HM5XcFXbo9//ujLsBUznA1hEO6sOtb8pBPD445k7fdbCBGzyAUw0AfuNqB4FcOFC4LDDgJVLYgigwNZV8j2mCCAhJEMI2Y8QsmXMPlsRQvZrfNEai+5uADvtJG2THDt9GUKNAg7almACrlcBHOjTm4BpoS124tkGTxt/AxBRAHHBBTic/g3/wsdQ2Hu3yO69mI7Zc/37evRR6TeukAUmYJUAahTADgzjDnwUh+JaXI+DQIoGBbBYTEUAiVonggl4aAjA/vsD81kwTlUlcQkEcNqPv4lN5t8KgL2N/qnnRLbDySdHrgXITeja60mQdb6MvDENDABcg0PZSyEngPm8lAz7RbwHKzAZA+/ZTjrFwBLfT1UwIepWAqkqCmCcD+BFOAbbf95MAAOrnUAAl/VsyLbtsou1AjiCQrQ5C0pEVxcbcwcHZV9Mnj4GgJEABgMnn0gII3BvYj22XXBNUBVA7YSXggBmaRl50QTM64NSYLvtkM8DP8cJ+D7OxhQsw2U4Qjpvfz/wOtZnQRnrr8+2W5qApcnEYB4HgKuvCoNAOCIEsLcXxDOrP0/jvZhQiE642RgFUFphI4YAqsugcUQSQQsQfQBFE7DUHIUlyIDQz19dr3wQXdEXGwUzsCT2dwByjliEj6Q0YBEEop5Kyb1aoT4BFF8K+UmmTAEAkL6VuAEH4QhcDvrnv0Rs3c8f6L/U16EAcgLI3QXE5za5uBjfwK8ROSkQ9KkpHaz/ScudDYe+u9ksgJkz5WP7+5HLsvn1nXfYAks/+hGQFXxx8Z3vsP9JJmB/7B9BAY+Dja9Prf2xaJn9eSyHijpdWCEDD0cfDVx9NfD8UzEEUJj31bofa2lgPgvgSkCJf5exCsCVhJDDG1aqJqC7G8Chh2IrPIPvQrNSh2ICtlEAqa0CqDRQUxAIaSvETjyJUBVA3dJaAn528Qwc8Hn9JMKTFwfqkfp2p1MA6TDWwdsAgHWxIJ4AatQLMwE0m4DVW4wogPwBKj2aE1wRvZiOC2adA7z2GvD1r0vX4hNzoFb5oBYmYIDVx9AQQiKXz6MimJw/jAewGV5Aeao8EJKlvWw+SFgJRF2wXWcCfqFjW4y8OB/nvflJbLHn7AiBMBFACoLfHv0csHAhsOGGUR9AT3jOSQqgEI2YyYQW3lWrEPSHUlV4hlOnQofJfkQi5aYkf5H4y2+cCCxezF7ouALYYBMwz2tJObuICYqhIFLyeU4A38RcPPL3N4BLLmHblRcNIKoARl4yNt3UWEZ+niQTcEbJLHD12fNx3V8HMAvvYNMPT8eB++oIoNkHsF4CGPgApggC0ZLiIHye3beawkXKgWpAKgVQMQFzAjiwwdbowXIAJOxXMQRQzL3KTcBSPfLPmsgKb2Vf0PcG0IXDtn8N2152PPtRiQIWp5lYH8BsqADydq3tP4BRAdx0Luujz4tLOBRD393ABLxkCQsi6+gAPA/dWfbM+IJTAwOhAnjPD/4DfPaz7IckE7B/gkF04UN4EOvirTAITqwIf2LPoio2H2tk4OGll/xb94mclgAKpkO17seUAghGAC+mlL5u2sGPzP0zgM83sFwNR3c3AELwHLbCk9g2ukNAAMO8bkCSCTgaBGKjAA72+4O8qjMX6iSAYhCI5+nXIRaw1pbTkZ2sJ4Dtqg+ghQIovr0U0W42AQ8PayeHPMraIBATAczAixDACsnJfmAGBTBPKsgob19LMIM52W+wQSTgJGNyCC8lm4AB5gwsEcBcDlUS3tcyTMVizATtkJ3Tp9ElbDGEJBNwJkwDA8jzA1dxvUwOhfesjzlzwO5PcYngA2dQVaIPYHt7mL1fHXA9iyAQDkWJ4EJPX19YNxIBnDYNOgRJabkzuR85vN56YARn4sTgxURth1YEMKYfdnI1ie+jPPj8SEg2CKgccJDNBj6PbRutG06aOhOwsvJP5CVDeX5SGfha1ylNwL0T1kcp14VFmIV11pFXQAluod0cBSwF4yT4AOqIRzCGJgSBJBJAYY3hfF54Zj5sCKCVAmgwAZeH/NQjPbOx0s8/9+qr/jFJCqDfwbkCaEsAKTKS/+3aH94AJBMNvlJPGWsCTlAAJRhEgk3XY3103jzhN1UBBFi7nDQpqMTJmX5xV5RKIQEcmiO8/CQRwCH27AfRhRG0YSHW1SdhyIVWFGWJaitkEKaB4W01MHEbMKZNwAC2BXB7wj4AcCeA7esvTvMgjieR3EoAI4DVauCUHEkvYGkCtvEBHOo3KIDt8SbgRChLwSVixgyjGSlQAE0E0KAAchTRHkm/EcBAAE1RwBECKKglS5Qx2tYEnCflyKTQi+nR6k8ggFylSVIABzCBvYjyZ57LKQSdDdS0Qw4OmY5edo8JQSCqCVinAFK1gAqBkBRASoPyURD53lQfQFUB9CcZGwIoRQL791isJCuAfHURohBA6fnxNmqjACr5wOL6YaAAct8s1ST++gvB5yyqGIBgxvYVQEDhOIrSDERNwBEfwBgCOAEs/YqoAAZdmJPqZcuQLcsTTrEI2cWgZCaAujyAtgpgBp7RBJzJ+IVVjrdSACOOpXoF0NYHMCkS2GQCLg/6liRqziwQOZXBBAydCVhRHgH/WZsCsAwEMJOxTwPDCaCRMBpMwBuvy8ZeiQAKQSCR6vArkRNAcejO+QQw26EEnAiI+AAKCmDkEE3kfw6VsPmo40IMxL7L26pWARQw1gngRAArLM6zwt93zELkOWI4eIC+vtAEhQL4hKxTALlYoDMB2yiAw6tiTMBWa8kZIJqAbRIZ8TcuDYI8edwka2MCVhTAF56KUQANJmBtHsC8ntTlUBWXCgWgCeSI8QFUJ4UlmBEdjDSmORHcBKxVAIWTrcJENg4JJmCiNiAAXqesAM7AEpx2WpjWw7gSCOFElUZyQAYkntgRwGIREXIq1Ytyo5ICeP/9wH//CyDZBxD33ovDixcDYP49fct8AlgV5Qk9EeOR1fDVPR45LJUzMAEXhXGc4iT8THtOCRYEUJpFxcs+GyZEyMCTFUCBAErvXroXDTVNlPqSwf0HNTgSlwAwKID5PNDTA3geNpp3k3Tc8DDk9qVJXJ7rYPc9BctxIn6GaUNvNdQETAjYxKu8nIpRwEYfwEhuIVYMKxOwUt4ZWJKceYG3k/nzgfvuC1xWK0VOADVig4ERGE3AhRgFULAiiQQw0vd4v+vtBX72M8yqLADAmoFtGpjg5TKlCXjW5GFMmMDeDQM/QCEIJNLV/GfYk2EynEQA/YTsmXbhWqpLikCidnrlz8C/We5MsR8Gh2jSs2RRDZtPCkEmAw/tGMYJOBcb+ava2hLAiejHSTgHG+FV885NQBIBXApwr+pYzPH3HbPg48Iuu8QogJp0IBEFUDQBKxZWioyVD2BxUB8EkmlvgAlYVAATTMDo6EhUAL0UJmBRCSqiPUjSG4GqAPqjprUC6D+UiV1RAmUkgEpC2gKiBFCrAEaUGaVOhaXgIi+LiglYIoC5nJYAqvU8Fctw7bXA8t54BZBStvQaAKBalRXAskEB3F4W7fmbc6AAAvB80ihNsuobd1V5zosWAbBQAHfZBae89kVsjJdx3XXAfXf5BFQ0Aa+1FnTgagT37xv0YhTA4eGgyO/HY3g/HteeU76Ambxw5ZjwfVQfwOfDYK0sqtLEQ7O5wLyURACphgDGEXEdtD6AAHNz0KBYVAjgXv7KI1tvHeyTa2eV/AE8ip/hu7jizQ+B+q4QEQLI3QYUxAWBBDAQQCsTsEIAdSbgq/FJ+eIf/aj0dQqWG8mOt8VW7IPY4HbeGdks8z4I3CmEgKbAZdPw3AoYkU3AnsYEzB+izgcwkzW7X/B+d+utwHe/i58+tgcA5jIRpwASQQHMoYKOjvQmYFIcxiabsE2vveb/pjMBc/iixCQim4CBMK2NRACVeY7X/eaYh2P/92XgmWcAyMm/k0zAQfNJIchk4OEHOAPn4qRgWxIB5KT6pzgZ5+B7ONvPHNAqJI0gD8DOt+8L/r5jErMFf/cbbgB+eq49AYwogAYTMJ98bRTAYIRVfAAbQgAtfADvbtsbeOIJ9sVEALkCyBW5GkzAxogmlQD6kQDWPoD+Q+nuiu5bgcEHUDGJ50kllQLIJ2Zxgs7AC0zAFR0BFJ7vCArMFUUwAas5oAAgo0Rl8sGsXIz3AQQEtUchgB5/hupI9KEPAddfH7SBnXcUFEAeAOITQGlsVwlPVf+cY/MACq/1U8BkXFHVeW/mWeDuu4FZs7Tn5gQwU5KDQKTuI6xGwIs8FULy9zjY+AByZVqp18yy0DFVJYDFKnt+kyYpdapTADVBIJHJ5NVXcfaHbsaz0Cdq0CqAgJ/DKIpKRSGA3/kOC2sUVjLIdsgPdVZlIbwROXiO7ZgFHn9cSwLj0sAEUFaH4EuWWZmABScukwn4O/g5cNVVwAsvANddBxxxhLRPDpVIGZ/G1jgE18C7068PDUHo7g5JUslXs7fZBvjPf/wdDGZFkw8gadPkAUzwATQSQB+z+l/GtdcCe+4ZrwBSRQF8+WXggp+lUwBRLAaPMuj2QhCIyQQcJYA0WPeauyEAiFi7+Jg5TdGkEk3AggIYNJ+UBHBHPCRts1UAd+/4r/V1GokkAngBgN0JIb8ghERYEyEkTwi5AGzd3l80vniNwcyZ4XOcPBnYe38NAezrgy5fUHwUcDiB84HLxgcwmMGVN/xsez6Vz0EE4lJwMT6Aj3TuytZnBSxMwH7nMnVu4bOYD66EttBUpkI1AfujgykKmK88EMDvqCYCqNtXRV5jArbxAZSSoKIaPMNqVtOmVoTeE20oRRTADNWQXWXbhrN9c0Y5PE5nAgaEe69U9CuBqCMRIcCBBwamxP33EXwAlRyAUhNWTcC+Avjy9P+Tttv4AALhCxev2zLyeKVtSybXGxAogKV0CiAnb9fjQIzoEn9zpDEBK20ssyIkmRl4kg/gUImdV1mUyCoIJOIDCAAbboiXNv64MaUJyYbbpWfxnvdo1dUIAczngUMPlXwxiW6QK8nBc2xHwgbfww6L7G6lACoEcBLYrKyagG0UQJ0JuIgO4JOfZNLcQQdFxmldoMoQOnEdDkFupu9HqbaT4WF0dwtqusfGhS9+EVh77cjtSoj4AHrsxqT6josCJhYKoICDD/azGMUpgERWANdZB9j1IwbCqM5dQv/jlx8ZQdDIPJLRp8/yn2E3ZAIYPvMscm1iBJyeAKquXloTsAidApjSBKy2F1sC2D3NvKpPMxF7d5TShwgh3wHwcwCfIYTcDuBN/+f1AHwUwFQA36GUWq0FPCagS6BagwlYJICVWhRAlQAWsslm2zioCqABwTI4gFEB5BOsMQ+gRgFUTcBGAqjmAazRBDxBZwKmWdmzJ8bfRjULLcEMrG8ggLyjtmUq4HN0DpVgwBVz+gUQHBQ7MBzxAdQFlmSUqMwCYeenCUEggKCeCARQ9AGkGYPTu9+2O7KCCZi3H39Qj1MAOQEcyPdI20dQQKdaLUo6Cr4fIESVKumUBsgETKCyCT/nt8/siE8AqzEK4PAwcl0UAAmIwCC6UDCZsoDYFzHeroOJWWljZHlIANtzVQxVQtPTUJHtayKA0mSsLl8B/ftMZyei/mw+qBBpHrklNfIZGgKoQUWTwDxUwjUHGZbbMvkABlBWy+GEQDUB1+oDGIEyTusUwIj7kHpvvb3o7p4T+tNW2DkN79ny5RUfQK0CGBcEQokUgKXtCwqy2eQ0MGqKKV27BAC89Zb8PQjCKooxlIH6Vy10ACUSbR7cBAzZB5ATu8i9GQigamHRmoA1QSD1+ACqZNrWBOzlR4cAJjqRUEovALArgMcAHAjg+/7fgQAeB7ArpfSXTSxj45GCAEYUwNtuC7iQmCsoiJSy8AGEp1cA8wVSPwG08AH0skIhE0zAgSInEECaycj3xAmgoACmMgH7BDCPMjwdAczrTcATO6L7lk0mYA7/fk0+gJEJVvEB5CukAH7n9Z+hblIUFcAODGPCsjeBRx4BAHhZOxMwN3nAr5eVA2YTcDD53n47cqSKTfASlj/wPN592xAEwuE/C576RwwC0SqAyoVzvgl4IBclgMYgkMGw7vnzElUdmQBG48t4Ima+EshAVaMA8iTNnhf4tPJnLk4GsXkaNAhNwHoFEMtCAthRqErPudjHystT8all2AEsIfuHcT+6Vi2SdolEY/vo6jITQM/0zIFo8mvIq5OlIoBcCdeVQ3OiuCjgAIoCyAggrckErL7sSb6KhnLqSGoiAXzrLexauSNsZ2VWVzE5uwNETMC8LuOCQAQHuXffoXjzFXsFEEgmgFAUQABmAvjKK/J34QVMys/tl7mS0wRuAUFlTaSMhb18yyvYEs+mJoBqRK3WBCwiGxLdoPnYZNPghyuKcTWbB0XGKg3MaBFAK3pLKb0PwH2EkAwAnphrGaUaG9bqAB0BNJiAg4fHB6O//AVzTvg6gO0xPBQ1AdsogEHyVSXCjnTZrQ8bCwsFUFpaqEvzJowwyjJQACWTb4f85mQIAokogOuuCyxYAGy1lfwMBAUQWgKoN+tO0BDACs3Jwr/a+2bPBvr7kcdIhAD2ozs6JyqmufZcBZyTZVENlg6sZDRtau7c4GM7irj28bng8QceyWkVwMoc2Tk/71+sb1kFswAcd0IWPEhWbWvB5HvYYdj4S+fiJZwILAU+fvHN+BQAZA1kwH8WnACKCiD3AYwzAecr7Dmv0iiARhOwQI6D1UsEAig2j0fbPoL9h6+WTpMLfAB99VFHAAFGcgYG0JUZRi/ykgIYniyd321SHkCRAHZP8JAbCieF8kp2rEkBvAyfQwYe/oovRLyq4wigyQRc6MjCKHRqCKCoAJomru4pmvryTcBpFEBTHsAAythUQBntKKJc7pDUYrlwdgqgLQFMVADVueQTn8BZy5djlW/2H6wUpGLFQTUBe35QYawJWAhu+92vy3geI7gD9gQwl0swAQuJoLNUTwCfxZbYCs8BG28sH5ykAObZ75F2Nnky+0eZBeXXt7MIkrlg6YgjvsU1EECtAshfhFEMm4/kqpILVwDSQDUBe/k2oBofqxXUfT2+/3UgOYxMAKXUo5Qu8f9WT/IH6DvD4GC8AvjtbwfbZr/N3tLFN/tYBVDZSDgB9E2E92xxDL6O38CbMi21AjgMRdq3UQBFAmgwdfGl0gL/MdEZf0TJVWQwAUcUwPvuA046ia1+kI+SUJMJOGMwAXe0RwlUmSb4APr+bp3egDQpfBpX4AtfIOJyyP7FZQLIlSSAERa+cozWBPyDHwT+T2pS2Womr1UAV33uGOD73w/WbeYKIE8eXkEuGH+NCiCAdf5zSfCZP4dsLkEBzAiJoIVVQICEIJAKO/+qrAUB5GY9wTzOB0HRB1A87pSe3+IJJXk725eiw7+3gYrGBAyE65Fm/TWDESaFDRCzpq4OST6AomowY2pVmmCr/azNRRRAYZb4Ev5svHZaBbBnagYXXghcc43mR+GlbuFme2BLPGtlAt56O7MCWNb5VdZqAta8nHajHyMlGgQOrUAPFi8Wd4gSQDEI5K2uzXA0LsImO04LgzIM5dQRwMj95XLAH/4Qfvfb9UQ/D+PQiMEEfNVVwK9/zfIfnXgiAE0aGJ5XtqAxAWsIYB5lKf+c1Pc69eKCqABejUNxfv4k4Oc/D3cQooCDdiwEt+2Pm7A3bkXfUScAv/+9fHKNAjgyglABzBv6rB+hPmf4JSlZPx9DkxRAXgfq/COq/tqXG39u2BivBM2HCiINKegmd+BdsNWbVBNwNcd4ho0JuFCWXVzwgQ+YD2ogUhHANQa6AX9oKCCA2iCQzTYDzjsPADBt8bzI4WkUwMAE7Gcxvm3jY/E7fD3tPAQAKBGFANrkAcwmv23kuQLom4BpNoclYLIFUVcw8Tt6ZyUcdD1kogrg3LnAOecwx3CDAqgNAjGYgNvz0X1HkgjgRhsBALqq/QEZuBDH4o0dP42LL45kRon6AAoEMItqQAAlszrHpEnABRcAAKYo6TQrBgUQbW3AT3/KInQB5CkbgLhPpjhBqgOLSABzxXBA4QNiNh9PALnZX0oDY2MCLvt+eJkJUgfQEkA+qQsLgwarl5h8AAtTcALOk6+JijDZFTAwxMqpVQABdBJWRq0JOGXuzYgJOGaEL2RlAugNsOtHFEBBadC9GHCk9QEsoIxjjwUOOUTzo6AAPnHYuZiHLa0IoHYiLBsUOcOJrEzAGtLSjX5kh1ahHSUMohNDqi+fxgQsKoD/nnkkfoujccYZwG67KSfXBIEkmoAB4KijgOOOi24HMDhiMAF/8pPAMccAP/xhkGpHNQEHa8vrFEBepzEEUKp2g6Unmw373ztYGz/uPCcYIwEWWcyfSeCf7D/rm7A/bsb+eAezkfvFucA668gnF4JAdASwnDMogH5+0jmr5gWR30AY1dsIE7C2y/rX3QLzWPOhVLLS5dqi7Xg5enAyfsrOqSqAFgQwmFeKytIjn/mM+aAGYnwSQKFDLYIfCTc4KOV045Aap99AprwbJYBpFMDABOyvY7Y8y2aDWgjgCFHUzLQ+gAZwB3la9c0RJIvXsKF+Z7+jTxwJTV9ZVM1BIIDRB1CrAKoE0H8o7TmND6AtAaz0S+ZAowKv+AAGZhD4CmCcCRjQmtkAtmJJRjPRB+KRr1LzwYz7RgaDcSYq3ookIDsUDpz8OWQL8SbgNhJVAG2igDkBLKFdul+tDyCf1JfJbQUI3Q5UE3A2GzVx5lAN3vCLaA+aukkB7MywfbUm4JQEMFEBFJDPKo7h/rJUEQVQNBujHzrUYgLu8WLS3ggKII+0r1SUlUB00NUXD4ay9AGsRwFs62fjZi9UFo3EPIAD1Lc26LprLSZgjgijZ1hVsjAB+/VpMgHH5gEUfABzqEhr0NoogLlcqEIFiqPQyCpeqACqwYt8nuzsNPDLBBNwxUQAN9wQaGvDOt4CrIOFwWaRAEr3pvjp1WwCFghgfz87LxHnUE2778Jg0PdUAmijAAZj37DS5w0m+0ZjfBJA4YksBHtroQODWLQgasaQJtnN2QLSk95mBFBnAtYOmsrGDKpY9k4J6OsDzWbxRh8znbW1IbUJOEIAxcTHyuoXASwmvDypYBJWBopcxcvgdRhWHvAnkokjsqpjDAJRy+DnASxgJJL6AojxASwtiyzVVPZsFcA+OwKomIC7lXvMxCmAgDH6TquUQHCvKfDIWB4EEpIjQN/OxHOKBDAwAScogB2rmCIt+QDCIg+gv/btMDokAqjNA8hnCoHwBGYQojcBZ7NRYpFFJSBioj9XZDLxyzOTvgvAYAJOSQBn4235uJgRPp+RFUAybPABFEzik7FSe65agkAmV2MIoPCseB+zUQC1P6RUACVyJfQRKk5JAqsY8J/XZPShY4C10xV5lUX7xxDCXuh9YiCagJtGACOM3i93ySIIRCCApRIwPBBjAlZ9AMXT1GgC5u0zUN6FTuTRTCIBNHDfRBMwd1/SJt/3s2bvh5uDzdPBiH+tCqDWBBxHANVVcDR13oYRiQCK1/T8rAs2JuB80RHAUcG7YL5tZHgIn/1kGEKvxbrrAhMnoq1/KaahVyKAafIA5lDB1rMZkViRnYbb7xQm2bQEMGPwAbztNuDii7XHSEEgBuz+5p+xEj3Y5IazAQBlmsUz2Fq/M1cASykUQEMeQF3UlckEPPvWP+MiHCP9NFjKafcN4PuXdJb7JXOgDQE8Dafj/uHQRpxHGZlqjA8gABQKoBo/SymSUihjsCsngFQmgJE1qn1QqpiHK6G6wglgrmBQqvz2Oe0HX8f78aiSB5CIu0B38bz/9lpEuzSZpzUB5wQTsNg8ZsyIEpwcDQlg0Z9IxCD4AH55/r54V2yMlxuiAO6Ax/xC+I0mVgGUCWB/dUJwTyaYCCCgn0ziTMAkE5NXVCCAmbYUBDBGAeyHhulo6kcyAZsmO4EALgPLQzg504/OAUYEKj0a5pHJRFRA0QS8yoshgBZ5ALU+joDxgQ5X88jljO+B0nXzKOOll4ATjk/hAyieRiCARbRH+6xYCO7aktUogMLzqlQ1CmAlfFEDYgigKQ+gTwBfXmBQAIFAbDkLJwebjCbgSLCQngCK68RrSdnGG4Pmclgfr6O0cjhKADU3uhw9EgEU1Xvij6HJCiBFfkgxAcc2mMZh3BPAFegJ3kSCTPN+wz72WOXFiZCgo/dghTaKzcYHMItq4NC6cCQcOCKD0sRo+gsVgxllwLVIaZHNKCTz+usjS0NNKK8EALQNMt+1lf0Z/ArfxP3d+wJ/VpzU/Y4+oaRXAJejB28ep+QJb0AeQAD4On4n/dS7MiYNzMSJwDQWxN5R6ZfUoCQCmEUVp+NH0k98gKkgKyXclQtPQDSduSwqJYTgJz8BPvc5lp8XQNAYCpRdgyomYN1jNqmKnCjlEkzAAHA0fpOcBkY1AfsEUFUAYwmgEAW83XvZvXHzuuoD+Ne/AttuH1UAefviCqC26QvlOWb6NQ3xAYwcF6sAyibg49suAhAzaQKYZDABA/p71CmAP8fxuB0fxfXrfTt6AIdoAk6jAGrqi/vCXo+DcAMOwJsnXRT+qDnR1ElVbLN5AgEUBl+RAHYNsrFz6qYzcMghwPnnK8fxBXn9VEOSCdhj57RVAFUz9az1Crj0Us2xO+8M7L57ZPMICpg4MSG/v0AAgdDa4CHDivSZz7ClRPbYA9hxR21Z+fFGBRCQiZL/o2gCDtayF9pzNUYB5NunTDHclx/NixUrZAXQ7/srwX7X9tuvfjWyyUgAv/xlYN992bImCAlgnAVKe81CAZg8mbnmCC5hAPBA50dZUB/HLbcAu+6KvXFrMEZmUVUIYMV8LV4Of57kbmFPYFs8mNsZ2HVX80ENxLgngCsxOZgMenxH/TLy+MIXgAsv1BzgD1ZtKAUNDQjNwbYKIJezRT+WyKAUCVOLol/JvWazPih39g9w4IHAgw/GHtO7NINhdOL3+93C0tqL8CeSCQYFcD/cjBWfP04+JoUPYFZ1vo3pURElRNy3uzsg1Z1lSxNwZC3gEPz+tEt0STtq0m2IvoqZDE45hRGdiALor31JFAVQV16TChQogG2GQgonewUba1cCiTMB54bZi9MwOqQdAyd2ERpT1I9+4A+UVG8C3mAD4KLfymXP0qgJWPsMhZn3Wxesj43Xrl8BjBwXpwAKJmDv71fjiRXsRct/D0kFkwm4s1P2AfwGfoUT8HPshdsx1DHVfEJRASzUSQBHwrWAD8INWP6po8MfNSfaessqfvh9fxwyqR0CYVkOxjImoQ9dw2zsrE6ZjmuukRI0MPA25hNA0QTcX2Xn1HJOCxPw/gcX1BXjGCZNAu68E/jTn6TNZeRN1tcQCgEUcxzm82Bk4KmngDvuCEUBCxNwbN/LhS+SkesJ7blq4QNoNG9zVXTJEpkA+sGPfO7Tdp+ddwa++U1pk9EHsLOTEbIvfxmAWQEUofUBBIJ6qY5UUB1m51mI2Th6w9tllXebbYC77sJj2CHoexMwgJzo7uGTuiQTME94vQTTsT2ewAGT74k3ETQQ454A9mFSMBlw08sICuaHJhBA8e0wWCrMwgdQJIBLoCiAognYIjdQMat431oogDzFi4SEUWrJMnbeLbfU/OhPJGJQQwaepNBEyK3BBJxWAVQRuxRcdze7bns7srQaPIM0PoAiOAGJbS+AdraRTEm6g/36yXETcLV2BZA/h7xJAVwSpqhZhW5p+ThqYQLO+f6Gw7Rd+Y3EqxD8dNwELCiAkfaiXDNLK1IQCGDoLsrqBG3V+n0AI8dZ+gAODGfheUwYqSXgy3Sp9naZ/EvBQHHDgSEIpBYfwKz/EsDdZ6RyavYvZL3Q4dWCAHIFcILXj4k+AaxMMUyS/DhBAVQJoLb+FTKgzVWY1FaU30dQMAXgRo4xEkCL6wBqZLydAiiagHU+gFUargSSmgBymbu3VyaAvfLcZ3JVV2VyPl5ryS0QBrP5dVALASRCMuihFaFLWFsb9ME4CF++VNcNHjWdZALmqqHWfaLJcARQQwC16xNy8KTHCgFMowCKJuCIApiSAIpLPQGwUgDbiaZjJIxSi3vZeX0/WeWE0QFcVACLaI8OuAYTcBofQB1iCSBPEeGPWLPAAgNsfQBVWCuApWh9jygKYASKAohqsg9gEgE0KoAvvxx87Mr5E0jR3gTMJ/8h2hH5LZKNSNPOciTqAxjpRxoCaKUAzp8ffi6V0FZpoAnYwgcwJ5iA+wbYfnHm3ziYFMC2thoJoKAAcpXdZiUQnbMlj5bkpEC6rpYACheyMAFzBXCC14+JRTZ2VqcYKlIhgJICWIkxASvprbSRyknMXfm9jHxqAsjHmrQEMJUJWKMABv1ONAFbKIDGZe54QxcUwFIJEQVQXUAkgKKCGU3AHNxtxkIBNPYLYT3gYn+4MESEAAqfTQSQ+OnebAlgHyzWC2wwxj0BXInJWgJoowDqTMA2PoCH4+84BWcCSDAB2xBAtaA2CqBQbtvjYgmgxsQpEkCtApgmDUzB3gScqAACwYjFCaCNAvhtXBD5yZoAimsG+pCilS0UQO4jEhcFbDIB83LmTQRQyKTLCWBxyJ+EaLIJuLCYpWoYpu2RexGyVDBolOYMja4EEpm8lPO2D6/AnfgoK2ucAijii1/ErGXzAIyOArhyFau3eqw7uqbf1iabgOshgDYrgQAw1hknBUkK4Gfv/hIz2/Eb0EGjAE5EP7qLTAnyploQwKeewo+u3Bib4iUAwMpyjAKoIYARBTCJACr1koYAroe38Dw2C6LMAx9AHTQPJ++vlAIYCKDGBKxNAyMGgXiCD+BllzEztJKRwKgAcj+HZcvQ5qfs0imACxfqDoZRAdT6FgOpCGCSCTiHCob70hHALTFPOpWNCTiLamACdgpgK3HMMSjNWAfX4FCtCdg4+PmD1fqzalcAAWAamL+cyPpjSZIGA+gCzaRTAN/FTDy2wWH6H/fZx3gcVy/WXVfzo4EA8oa9ChPjTcBiEIhGAcyq0atpCKBYH9x/xh+xpvtvlMPoSDXQcogm4NjJUrN2ZqmawwG4AaVcFwvCUeG3s0AB9Go3Ac8BM4Pmpvdof8cllwQfJ+bZBDI0EJMH0HCz87MbR37z096F0MyGfP1jcSWQJBNw9/I3g893YTd2vO72//pXbVkH0YV5x/2Rtb1f/Uq7D044Qb+dI6UPYKwCeNppxnO8jrlYhim4GEdqu/c66wATJ9VnAuZ9zMoEDGjHJhbYRKLXNZ3oppvY/+23R2WDjfGPwsE46SThd6Gt8MmxE0PoGPEjJnmQgQpOdIaGgCOPxIy+V4OflpdifAA335xFYW22GQBgnVn1E8ARFKx9AAFgM7yI4/BLAOw5GrOBEBKp10QfQAsFMJeD9PA+uCPB/Enbhsf985/2JuBcjkWIUIqJZZbmSOcDeM45huOVN6Wp/uovA5hgDuKAGAQSEsDTIfcv4zQpEMDSqpAAtrdDrm+NCViFUQH89a/Dy6ESqNObbtuFzk7g7383lK0JGL8E8Ne/xjP/eBP9mBSYg9IogH+8sKglgDY+gCLElDNpTcCD6ALUxd5jRvyFW+6N2XgbI10GInDLLcB112l/qtCMbsxh0JiAOzCMyehDBVksx5R4ctvZCQ8EWXiBM7mIiA9ggglYigIW3/AUAsgRSwBjrmWtAGowVM7jJhyAM07sD6LXJPgVlvVkBdBkAhZ/U/E+PAUAyG2tk28B7L8/W30EwMQCGzQH+n0fQKpZCk5zs/+HB7GKToj8FiGAmpcF4lWRy4UmMBsTMMdfcCTOx3cAGNrm5z4HfOc7kc2D6MLyg77MVozYbjvtuXHuuXjyooekTcdDWCYrJQFc0R+jAJ5+ejS63se38EtMRy+WYrq2nWWzwB57N8YEbJUI2vCjdglNZd+Kro12diL3yov4+PC1MhkQCAtXebOoIltlbTTXlaAcDg5G3C+W+QRQm589nweefx648UYAwOSuCr7+5ZQ+gHWYgFVUkY0/Vjlu47kxaWAAYxBIXCLoCd0ZPLh8szCl2JIl9iZgIGjsk0r+Mm6CAtiL6TjnHGCXXQzHGnwllpHp+qhqhQB+6gD2MnsU/oAf4XRpV20eQMBIANvaIHcmMVeiQKPeQbhkqpEAHnMMU1MhW8pmbdCBVau0weRNw/glgAhNYql8AH0CmCnLJmDut2GrAHKIg2bkbc+GAKYwAVeybaBxZgVCjG+4VWRRKBjSGWhG07XAzIpLMQ0UmXgCWCgEK2mQksYjWL2nBAVQIoAi+GiqIYDGUzaJAA6X2UOYOCk+NUuORwHXoQDyN2e9/d4HT+WTZxPIqlXsRaRqqQCuQA8qFUQU6YgJOJOJmoGrVeRzNIigszEBczyBkLwZ27WmfQ6hk723JDy4fKdcEMlPh18w5hy5TLg6wPJ+tr/RB5CnL1FQRHuQINnUTom4eoOYENxWAUyTBxDQjmniy6xJAdTmWM3ngUwmWo1COwn8PFFB3ieA2U4LAihN1ARFtKOzM+aRZTLhMdUafADrMAGr8JBJRQALJCEIRHygXhi0GBcEAuL7na69Nvve22uvAAJBY5/gB+6ICuASzIivToOvxLKswYdCWT2p4NeFmCieI60CGJmbhYlQJICiGTcTlwaGB+GICyZ0dKSeR+rF+CaAfgepJQoYxaIc8p3CB1CESAAjCmCiCXhCKhNwJduWfNqYwcjYWTUKIPev4zJ/pAMpyU2rWT96cESTPFqt1DQmYBF8glVeWetVABOjgDUYGknwn+FBIP5kxwcTUxoYNRG0FnEE0H9A3AdwsF/2AUwigP3oRrUaEkaOiAIIRAlgpRL4CLHs+STRBMwxD+E9GZ+hxo7mIWtapU9Crk2+ruSnwyslZt1tawUQMEbilxCW39jOxMjNWhTAhpiAkxVALQE0XUijAOZQQc7zFcAJhuhhMQ2MUAHFTCcAkkzIBAIoLv0IoOkmYBFpFcACSQgCER9KJSQncWlggmOElC7WPoDCcV1DjPR5wyWgvx9VksVKTI5vYwZpkS+dGoGiABa8sC5UWCmAAyPB8XGrdIkEUGzfsVHAQrRxsGBCi5I/i3AEECkVQP6QhEW4gfQ+gBxig8nlkN4EnEIBLPsEMK1pB0gggNls5B4n+H4N3NE3clqDApgpagigek9pooBFGBTAItpr8gHkb261KIDGReI5FBMwockKINGsLczxDmYBPQbTPxAhgEsW+T6AOhOwgQAODwPPvZDgAwhE/QAHBnBJ6XAAwIgfHGNrAq6VAAJ2461KAFdBSM7OC6kED0jHk5AALutLiAI2zPZNI4DCQ+VJwp96KrCA1kUApesKX4wKoA4GAsiTo+cnJCiAQ0PSTfBl4KwJ4FtvYZc/K0n/mhgFrCKRAKb1ARQbj6/iqWlg1ETQAUESInpTmYD947oGmQL4lSdYgueBdmYZihUjDNmzl+cMb1BKGphc1UwAkxTALKp4e36MAihAJIDSS5A/HscRQFUBbDUcAQQiPoBWCqCBAKb1ARQbTGThj1oIYAwTKWcsCGDMYBQ79hlmU64ARvqyqgD6S6lldQpgShOwMek+H02Vim66D+AXvgAAWN45O9jEl6wzDp6cAFZ9H0Av2QdQXHFCxeIJG8UUEEG77siyQfPmf9ingQGYGr14MdC7XC7YMcdorqXOamedhU+UrwUQEtxIW9NccwUmY6kQRW9LAN/EHAB2422+Qz6pVgGMI4BCGphVg6xujDzcggAaV5QQU3fYEkChwnT7NcMErJuMjSxAaAQ1EcDBQS0BTFTk4iqtGXkAtWsYsr4XW1blWolpYDQKYC4nB4EUCoiYgAGEEb1LlwYrZFiZgKey6O32oeVYC4uw+0IWlLVw8la6W4igr2duZNuKnJ0CSEYsCCDPIn7UUey/oABedZmSB3DOHO1lpQj8TB7nTvoJAOA03+9QOzcIRDNQAB0BbC1UBbBbWAouyQdQTe0R6wOYEATy0EPAokV2PoDHtYdLnw0g6nQfqwBmLNJl1KIAAsbGO2Pz6VimW49eUQBDE7DGBzCFCbiKbCQuJgAfiZUR2ZhYFIglgHx5qRLa4gngn/4EvPIKHt3oM8GmgaKdCTjnE0DxLd1ULN3ShBxbfzhhWUFOAP0ckfOeDaOACTErOiFIsD/HK69Av2qCOqsJeSD4/dkogIuxVtIuDELHGupeC1vhWQANUAB5o7FUAEc8di7jpGdhAjaiFgVQKIiu/TcjCCSVAkgIIxy9vfjTxeHEzEmOFQEUKoC/6FsrgDqkNAEPoyP5eprjgPQm4JywPGIaE7AYBNLVBb0JuK2Nva1Wq4EPnxUB5En+y4PYgqdJyeVw/k436m4hgr+d/BzWxVtYiPDleWUhXgEMfPNLFibgL3+ZDVS/+11QNsB/0YASBTxxIvDuuyxwTIA45m37wQJ+P/VkbIyX8WP8EIAzAY9ZqASQwyYKWFUAOZKWo1JRRh5rrQWsxeeyBB/Atye8J/g8iC7QFOZRrgA23AcQMBJAOn2Gfq1IEwEs1W8CNlY39wEURlW2DjSpiwAmpoHJZoGNNgLNhxXIFUDj4MmdhL0yACq9pQPafNmxBDA7IUH2CAigP4EUQwJo64/H9+fYyCQ6xsxqfFKxIYDiKjqAnQK4avqGWOWreFYKYLuFCVj3MHiZBAJYrprVWwBWCqARrSaAaUzAtfoAAkxBmjYNa80OJ+ZgZRsTATT4AFoTwLjypDQB86CTRDSEACYogOJDEUzA4tgSIYDiYMrNwO+8E+wP2BHAvEgAjzwymHOTcndmJnZhIdaVXD36CnYKIF9iJFYBJIQNVHyDgQAGj3XmzMgNi2Nerj2PfIHgVWwM/lLsTMBjFCYCaJMHMJUPYAwiOc8SfADFdXGZCdjePGplAjb8GJuTCjC+vQxPMHRWJalmI03AmRQEMDGJcMy1RAJo5QMo3POqYoL/TCYjrRAgvqUDetEpzgScOOsJCc6BUNGmuuXcYm7WlBPLtixpTMBiEnXAjgBWC2E7tXnhVgmgNJlw4mdpAi57+gCeABYE0OCHXrcJuBEEUHKANyiAqUzAmsIUMIKCH5lbmGAgY6IPoJBWimcHaKUJ2FoB1FR2oglYOSbnyWlgYn0A4xRAcT/xMw8E8QkgJ/yG4HUG/wby5aGQAG6xRZAa1TarzkKsExa9YKgUgwLIx3gRSb60KgEUVsuMQBrz8vlIvVubgJ0C2FrUpQCmMQHHQHq7UKEphGiSSusDOEJq9wGsVQEcnmix7EEmEyiAy99pQBSwSQLkI7EuvUSdCqAVASyEdds/bPH27Ff4t/DLiAlYxzniFMDEWcgffOa88h98BpcHLzSezlE7wQSfCAsC2FAFUBhYK/mwndo8M9UHULo/PovZKoBebQqgbgKLoAkKYNqVQGpWAFMQQD5ZllBAod3wAEUTsL8cHBD2j1aagItotyOAGmafVgHM0pQ+gJRiyuO342CwRPQV5NjQmKQAvv46AMOqLyq4AlgarIsAii97xmOUNDBWJmAVfjs7Bhfhw3gAAGuzr75q2B/KmFCIrlKivZZANJ0COEpQg0A4rKKAFQLIJ8zYQVODiAJ4yCHsv2FVjmxbDiN+x7sPO6XyAeQEMLbTxSiAtQSBzHnfVP3+ymujl2Mnf3c+G+CpOPCo92SUQdggdl/nXuzL5pvLP3KbpGQCrp0A8jRA9gQwrMBVQ+yCkcAfzf7n4iSs5a8d3WwFEAAuxxGYizcApDcB34k9AABvF+aarzVzpvGnNCbgWhTASi7dINvWKV9XGux5kmHxYcyeLe0v+QBWExTAjg7tfVoFgdRCAAWn9kb4ANoogPUSQL5qQglt5nsTTcCtJoDK78PosDMBa14iUpuAvQQCuNNO8nfPw6bf2it6PZ0PIACsv750uEj4jfBvIFcaxOZ4nm2rgQDeESz7GOOv7f+QRwUdbV4sAUyKAt4fN+NzuMy/ZrsxWbW6DCPy+cg9JZmAXRDIKIE/KDVR5DBiEjLGmIBzMeIT/vc/4K678KedLpU2RwjgL34BXHkl+wOARx8FttwyLHN7FhvhVVy4y3W4EQek8o8rZi38LhqsAO7wkRhH7fvuAx5/HABQ6GIn553BywiFVCtVye4vooIc/jLlROCqq4B772Ubn32WrWE5d254bR/1mICD4iQFgfggggJYonm0tyfMJ5ofa1YAk2Yhxb7PF15PawL+DY7GsdOvQv7xh83X+sEP2HJIG2wQ+YkPppFLaK558Fem4amnwu82BLCcTWdmKXTEEEBuXhQn70cfZW3Pj/zOkqgJODbp+AMPAD//ObyZ4YoCTTMBz54N3Hkn8MwzY9cHUNlHJIBGGBRA/hzGpAKoIYBpE0FnqJwIOlKtn/40cM014XdlicrAB1CXBgYATj1V2v+UH+bw7LMx5QPCIJCFr2EKVmBlpgeYOdMu1yTC6r4Lu+MA3IAtMC92IYOS3756ukbqUgBFTJw7TV6iUMCrrwJn/rR2Arj1FlXsu5uvADoTcGuRzbL2rZpYYleGMJiAOQE04r3vBXbdFc9udKC0OWIC7uwEPvWp0Dns/e+X3txy7TkswBzcO/UgACSVAjicsSCADY4CFklPBB/5SLAMV0c3248TwEiCaxFFTaSwjwpyoLk88MlPhqkLttwS2GOPcKcGmYA5bBVAIlRgBbn4/FmGQpkUQErrNAErBJBPJB40KzQohJwK91VFDjO/+UnM2GotGDF9OssP86lPRX7iKy/09ys/aNr1Fh+ZIuW2tiKA+ZRv2cpJpbd9TgDFh7H22qztcWfyNAogAHzwg8DxxwNbbx2W2UZpMSiAidxq992BrbZqOAFslg8gJ4DcmqGF6AMoJKLkz6GpPoBCXyihAJpE4jgMCmAaH8CsoABWMm1RMSKTYRYmXiATATQpgFOnAt/6VvD1vdvnRW1CD/8GCq++AAB4Obc5QEhqBRAAbs4cgPnYMLZd8heMSR0jdkEgKjQn33zn6UZuts46wK67CycrFFL5AHZ3VDCl3SmAo4Z8PqoAFtGeWgHMwLMax7Lt8k5VEmNuDg4SBvT2nHz5FArgMGGdsZV5AK3e7gF09rCTc38Imo05LoEAJl4yjQLYQAKYaQvrtoJcvP8foM2i3DQfQIUA8pyYHjLqPBGRoUhHhzTZWE14gHai5f47K1cm74ueHum5JfZZhKmQrJGNUQB5xWjt8T7Z0/gA2nQJOam3OYuArpzWCqCARgeBNCQRtKYwnACWbQjgwIDUh1rtA8jnFav+oGlDaU3AmWo5GD+9fEz98AerrNMYEE6TDyAgZzG3eW7KDbyYYW9stRDAyZOTj5EIYB0mYBGVKQl+7JnaFUBUq+FzcApg66EjgE1RAH2IJABIUMg4hMJwkxS/PMmmVwBr8QGsVQG0jYrJd7KT74T7AQBlWhsBrCKbigDyZx9rlktAYhoYfqq0BFDJN8WPA/RxB43yAQTSEUB0dkp1Xg8B5ApGhADqnsOUKdL8ZDSPCvc2ktIHMJYA6nwAleNEE/BIUhoYASRmeTktajEBC9D1GSGA1uqAhucB1Fyvg+e5iyPyXDZ74w2pUVgTQELMvjwpCCB/ubSa1zXPO60JuG3xAkwCk86r+ZiL8uchmMcBgwlY7XfiOoY1EECezsWWAIrDEreY2CiAG2fnB/enC6JKYwKuTjFksuDIyAqgVVymSACL4yQIhBByCCHkOkLIm4SQYULIS4SQswghE5X9egghfyKELCWEDBJC7iSEbNWMMhUK0QZipQAqkzMBteoPJJtBRRigxdxwRojpGhQFcMWkufK+MYRliNTuA1izAmgbFq2cnOfJ08K4lpYlEW+wD6C1CbgtvMcy8vr8iCI0kwKf3COkDAkEMKUP4JTMSgDMBzCWCADABz5QGwHUVDpXANddV/lB9xz4AvU+jJxJuLeOnpRv2UoZJQLIneI1voy8QeRINSAepWpOd8pUML40CPUjLodoSwAbsRKIjQ+g1gScwgcwuFYmRuEyVNL/sA0ACxMwYK64JAIoHMfro1ZhJ9EEHDO2WimAihVLGwRSrwKo3MBzHgvMS+sDCNgRwLJPAH/7xt7Ctmg50yiA1anpFEB1bI4zAY83BfAEAFUAJwPYG8BvAXwdwB2EsPUbCCEEwM3+798AcDCAPIC7CSHr6E5aD2pWAJVABFsF0PPkBsnz38VCowDyvvv41l8ETj6ZOY8r+6qwIoCjpACq+8WmEzn4YOaQvN56kZ8y8JKfwyj5AKoK4OmnJx+jgvugNSsNDMdHt18ZXC9WAfzOd4A//lFa3sxqggWMJuB99wW+9z3lB3EiyueBX/4y8vyNBFC4ty2378App4TxQYloa5Ne2L52dBZnHvIkBo45Cfjud9nGb3+bfX7ssfA4IcrPOghEhCJn7r03cN55wMYbG/YXTurVoACq+/1/e2cebkdR5v/Pe5eEm5AVQTACCSJgoixDxhEYlmQUkAASQRGCAQF/iAgqghrD+PBDGBaBER03FoERXBEEZBDEENzQmSiLRkRRggKjJLKIBHKz1PxR3bl1+vZS3ae7z/Z+nuc+59w+XV3V1dXV337fqrfOP5/08V0ZLuAG3eDcXLFxIlMDjMYXcF2aABw/Hi68sGHTUws/xEl8cePPefPbSI44X1M3H+CSS2JeZjzJ6wJ2Cdd2Tk0XYwEc5QJOswD6PPAiJ/CHtbYyqnIBv3wbm2D8mmfshgsvJG4IRR4LYJrBARglAKMvzGlhYFi3rqUWwCbeRQtxiDFmpfP/PSLyNHAtsB+wBDgU2AuYa4y5G0BE7gUeBT4MnFZmgQYHc04CSVDpvhZAY2xHGboy1oqHBdApTBiXLBSAMjgA5503sm+aBTAId1N0JZDUfrpZARh54K1La5p9ffCJT8DKlfDFLzb+5CMA22AM4Gt3GWDPPbPTjMZ2ZlEXsDHluoCnT34WsNd9lAXQvVYXXwzY50IQH7bJMYBrueyyjPA4Rx4Jp43uBnwsgH3jhzj3Y57lAxDhpYEJbLruWQA+89k+YLfgL2BoCC64oDFdjAt4zTr/MYDR++GII+CEE1L2dxtgfz9hU/AVgK5gGxiIEeBRMiyADTgn3Di2McBHAEYtgP0ZaT7sCPS+PtZfcDErgwAMTQnALAugw/iJ/Zx+uvfuo8h0AafEn0yJlJVtAUyaBQxNjwH8i9mc9eubE4Bp98/YCZF2ccop8JHR++WxAPZNylhGM+ICjvaXmS7gsDK63QUcEX8h4WtzGEDrUODJUPwF6Z7DWgXfUnaZCk8CieAlPBhtAVwnOS2A4xoF4Kg8U3r8F5qwAGa6gJM6cV9/VxBcNCRVAIbE3DBellin1wktEnUIwP6hkQocO8HfkhBH6RbAaAUEg/AMkvac2Yj7XGhGAEITLrOkcrpts8DB1wz6npBD0CDKsgBmti/noO4M+rxxSb3ygsw4gEn7hgHzGyggANdlCUAYaZQbNmwMCAD1CcBCle+Q6QKOTOJwiRk+PELWGEBfC6DXrMfGOniWyQwPFxOAPi7gUdcnQVRlrQTScMixGZOwMiyAmS7g0ALYAy7gOPYNPh8KPmcBv4rZbzmwjYikLTyTm8Iu4Ah5LIDNCMAwMG04uW1UOVN67xeMhwBMOPFMF3DSoGlfC+Dvftfwr9eKEjE3jK8Qd/eHeuIA9jkzwMdNaM74HveG31QcwOj1CwRgrMsuJnP3ueDtAk6odB89EIeXACzwlj08pkCXE+MCbsYCmEcAut+LaBCvNAUtgLFWap8HXxEBGMb9xBY3tCBVOgbQpZnBntg+MPVapAjAlFCpI9cuNNkHZK4FDI3jK1OWQIwtUxAWZ3i4ujGADQmGhhJvnDwu4Mz+qMgYwLAAzz8/ota73QIYRUSmAecAdxljlgWbpwLPxOz+dPA5JeY3RGRp0l9aGQYHRw9M9goEDfZmCHxVq3iZ1/2+fn1zAjC6NFUuC6DxCAMjErtDpgBMwlcARu6yohbAtYxeizGNTAGY6kux+FoABxwBOJRDAP4PszP3mTTJtsFEvM1yATkFYJkWwKIC0McFXOQte92YAhbAGBdwnjAwrRSAXhbAmJ18BGBZFsD1Ax7XcdddG/4NX1LqGgPYrAUwc13tmDBRXoR1+d73NmzeaHFMcwG7/6eqzNGEYcheeqm6MYANCVIudB4XcOZzL+ICjlZLqgBctao3LYCBJe9mYB3wrlaVwzYm4UVnHGDq2ptuZzVzJtx9Nz8a2Jd53ObVN2zY0GjdSg14HBJjAQwZ1V5TLYAeYwATdhi1Yokvvh3mt77V8K+XAHSW3Vo9djI3cDg/ZO9cAjB8OCemyZwC6x8GxnUBj5voUcgbb2TVznOYx21czXH8G4sSd73oIrjw9Tfy19fuC5dfPnqHMgVgDK4FsO0EYII48mXtJgUsgMF9OHH8aAugVxEiJ5NptXLu+1pcwDEW/2FsENxF0WZahQt4wCPN+efDnDnwjW8AdtjowQc3xNhOJlJxwwzy3//0vnxWvSYF4JFHZaRPEIBnclF6uoRzWMeAfadOXM4q4OKL4a1vtUHLczDcbxvxihXFBOCBB8LcubBwoWeClJvGVwAezg35BGBeF7BL0Y6vCeqeBAKAiAxhx/RtB+xrjHnc+fkZ4q18U53fR2GM2S8pv9mzZyeaccIGuIaxGydmvMQmydZt9yLNmgW77878yUtZtQr+0aM2jWkcCJ11rwGxYwBjfkrYMMLwuozxbiEJ43sKCUDfDnOvvayKCdbc8XIBO8tALH3DIt52z4dzZQkeFkBPAehlARxyXMCTPITx/Pn8fNx8Vh4Ix3N16q5bbglX/ux1wFJ4+OHRO3j7ZQOC8zZxQYjLsgAmVHpmO0uwynqFzvNSN5HjDhW3AG6x2YgAfGltDgtghMxVY+q2AMawlkGuuQYWLIj84AayjxumUEAAbvARgJttBkuWbPz3lFPsnxeRivsIF7L5oR/k9Z7J446Rl3csyEgf4wL+7NYXcPGfzkxPlzLOe9S1j7vXPvQh+5eT9UPj4XlYvrxYHMCtt4bvfz8jE08LoI8L+FO8nxs5nAuqEIBxBfASA+VSuwVQRAaBG4DZwEHGmF9GdlkOzBqVEGYCfzTG/D3mt8KEDdC1dJi40Bchrpk2ECDhtfS1AObGaSybjM+wAKZ0Or7jLuJOZA1jiwnAPJ2gU7deAnDmTCefkeuXJ8tQjNchAPvH5bQAppUrjThXQsHxJUUsgM2EgYHi/WA7CsBxm2xgIBCAq4eLTwLJDBruHFQGWiMAN9AX316dCxrGeWygiAs4Lc5dGUTyG8Nw/nuxSQGYmT7GArh+wuTs4yY8qGK9Lh5DYHyRTe19tHz5yLMojwXQy5lUogs4HNKQ1wUc1Q6pYWBaTN2BoPuA64G5wGHGmLgV428BponIvk66icAhwW+lktSovC2AjFxL31nArlWldAtgSu/te9OVZgEcHMz3NHdEipcL2HkqTnn+jxu/l+oC9hjn4isABx0L4KaT/QpZqJ+IE3sFVZXvGMBwfA7kGCdfcifoJQCL1MO44rOA3Y7EZM04d8krAKNhYEZ/9aaoC3iQtZnnFq713EARC2DVAjBScWNZk78um5wEknkhYiyAZkrsEPlGUlzAoyhksYhncNKIAAxFUlYVub971b/blpq0ABYSgIODfmMAm20bJVF3KT4LvA04D3hBRNxBBI8HruBbgHuB60TkTKzLdxE2AFrG4Ib8JImhRAtgigD0nQWc2wXstKCh8Y2tqS4LYCEBmNeU4FiuvASgw+TnR0YRtMIFnBZ3dWO5HAE4frLf2MhC/USJs8l8XcB5hxgCpXeCVVkAmVB8FnAYH9ANJu1VhEgdt50LOEEAZlp0iloA+/rYgNAX9J0b0pY6K4NIxXWKBbBvanEBGOt1KdECuMnLRgvArPbitdSjS4ljAMOwRpWMAexFCyDw5uBzMVbkuX8nAhhjNgAHA98DPgfchA1rOscY86eyC5TbAjgwAHvuCXvssXEpqjwWwI9+tDlX/9C4xsSj2lHKwcM3k0osgCefzLpNJ/HJfifqZt6HrSNcvsY7+PvgZDjppPQ0X/gCTJjAj/cdGXnu1VFfeilrxk5gMTaIduL9OH++HUuUwjBj/JYzdVzAvhbA6LlcdZXtkL7ylZREURfw4Yd75cUZZ4wyNW3oG+Taa7OT7ryz9cjPn++XFdBQ6Q9uPpfVDHEiV+Q4QCOp8QqPPdZOGpozJ/dxt53VhAAMCB+u/f2e9/9ll/FS3xDv4fNAPhdwLWFgYki1AM6dy9+m7cTJfJ4XiDyYPZWVO7nFjKnPAjjMIJ/n5Pz1kidB3E2Wlf7WW63IuflmOOoo2G47Drv4n5kyhfRVhhKOe9wJFbmAP/1pmDSJsZ+5BBF4/PHAECJ+VbTffnZVmoxu2LKpc6+mvJUmGkpLcAF/+9vpyykDo0/8+OMzMqmGWi2Axpjpnvs9DRwf/FVKbgugCPzwhw0LhuexAG6/PZhtBVaMHC4T5yaMPttT+84bb2T4059nzNLvATlWnEmwAKa+qG+1FQPPPc2H6IP+YBmmJgTgKl7Ge474K9d9IeMYJ50E7343T10wsp/X8+SDH+TKgffz0GkZbrnJk+Gpp2Dq1MToqmsY62UBGxw3Uq8TphRzAR9wgPX8pFate/2WLoV9903ctYFPftIunTQwsLHNHXT4EBKddRfzUBgchF/+MufLjXNyD03Zi11Xfg9DH1fmOIRLqgXwmmvsDgUsgGOnNOECDggFoLcVafZs5r/x73z3TnucPLOAmx0DWIkAvOsubv+a4aGj+5jA82yQgdziYr0M0B9MItlQowCcwPMMM7ZaC+DChdaosMMOI9uy2upBB9k4cn19cMghYAxb9/WxalVG0oRhLRdeXJEF8NRT4ZRTGOjrY7PNbOQT8A8QsWSJLYbXrRszG01k9GkkLqkYIwDzxgE86CDrOPKOt3viifGRG2qgHQJBt5TcAhDsBXeedHksgNC4MmFea2BUvKXmOThI37oRe3Q4ZCRTABYdA9jX13iTNuECXk8/g2M90/f1NdxPvtdh4mRP0Ri53lGGGVOZAIyWa3AwZ7XmHcPT19fQQGQoxtWW8FDIqKbRuFYWGbNxjFwmRWcBF53dsGnzFsBwSEMeTbD6JUfUZdWruxJI/0ijKeJlL+oCTnWTirBugz2woa+QsNjQ5xy86pAZTn2GQqByF3D07d4nfXixRDZ+z7x+kRVANhJ3gmWNAQwK5eoz7+el5Lh1Y2ajxVVjovhssPyOSd83JGIBjOYZ6010d5g0qSUzgEEFYDEBGCG8/nlihIbkve65+oj+fvrWjrzteQvAsmYBN2EBzFx6LkIRAeiOq8pMU4IAHLPpyAlNmOrXWKLXN3cb81nHLYrbQKqMTu++bZvmlsaDUserN1JkgGOCCziPiEhZ6CE9vxaFgRnDcGr7jO1Tc3SADQKwagugQ/hiUqkLGEbf3FWNE0sKIB2XX4ljACH/UsJNZRDct9H2nNrkYiyAeV6+YmPoxrV7t1BFXjBLQgVg3jGAMeS1ALo3VaUWwP5+ZO2IBTB88csMOF7WLOAmLYBVC0B3XFUz8xGGGeMV+sS1AE6a6te5x1kAc1FEALoNJK6xlPVQiLGyNEORU/WiiABMcAHneabnEoAluoCrmgWcaQnJwNRpAYx5m8jdR+RNEL25iyrxLJIaVlx5SxaAeZcSbiqD4L6NNrGddkpJHzMJJJOICzhKpjFJBWDrSGqEeQaz5xkDGCXvGMCoAMyyAMr73gfA1Ry3UQAWHQOY+/za3AJYpgD00QhjJ4yc0NhN/JR/9Pp6lzM8Oa9lDyLUZQGMcbcUIZwn9IEPNFmeJPbe236+/OX+adrEAliZC9hh+Yx5AHyZd7L11sn77bOP/WzYJ0dmxj2ZqpfNihE+3lr1LW+xnyeckC/PaIdXlQUwyQUcl1/JZvVWWACjp5U6QSbGAphJjAvYJVMAFgqhUA7tEYymhcQ1wkcegVe9yv8YuS2Aec1+RSeB9PfDccfxD6fuxQMvvGpj1pnCKuaghSw0bW4BLOoC3omH+A2v2fi/rwDsG+hj5a/+Qt9gPz4T2uLK5d1pPvEEPPMMbLWVZwIHt5HFCcCyrAJFOtsYPvc5+OAHG8fPl8o228Bjj9mJQL5EnjphOJ3KBKCb9cBIWy3BeBmPcz/s8KubWHbzCj7zT6/mla9MTrLDDnYZsM03B8Jy5RA5fWNGKs9U+WICsW3c+9p985v2RBNnGiTQahdw3IWv0AJYSSi8jDGADz3kbwEsJACLWADzrtJUIioAY65xHvEHBSyAdbmAg1H5j4/bgQ2O+zczz5iDbqA/v4utSQtgHi9P5RZAp9J+S6PS8BWAAJvP2iJ7Jwe3XL5hEwDrVijqWnAbWZWWlpJcwH19sOOOZRQohW22ybd/5EKFAZArcwEnZF2ZAHQYHDfI7KP8xM622xbPbHCTkZtBqrYAxli+vK/d4GB+8Remc6nbBRxHp40BdGPFBG3ErcZU8QfqAu41ymiEuS2ADnldwAMDid6exIJlGXRGkdDx5PYGNKFu63YB53kwG2xQ2hDfMYBFyBhfXA1ZLuAKxgCuMcVdwG1J5B4KAyDn6SPCsE15qUUAljVrMceNNzA0UnmrTRtbAIvS35+4okup5OnIO20MoFtngdDNVY095gJWAViiAPQ+ltN5FulH3WeyT6wh15Lm9eKcUKjcArBFLmDfG96tl8xJP5E6cQek+8YBLIJ7fWtbPagFk0CGS5gF3FbErCQRszmVXBZA55q4eRR5Mal1kYIcfYQ4N8Bjf2njMYDN4D5E2mG1iE6zALoEYx1rFYAxJ5X5bGmhC1gFYHC9buAI++Wgg3IfI7z+RWYBH3povv2hUQCmNu5p04BGoeNlAUwQgHld482EQRBMLgHYrFCaMCHf/usGRio1jws4L24VVj3xcSNZFsBwUkSeMXFxOBfqtf9gL/brXtfcIduGBBdwnrb59rfbz6OPLp51ZRbANwSreFa93q2Lc2LbzarfAliVR7YBV0BUleGBB/rvu/32pWa95ZYj3yt/oQ0mwBUVgGW5gHfZJSP9jBl++VSAjgEMrtcH+XdO/M996TtkXu5jNDML+MIL86dxjTKxN9EDD8Cf/7xxul0ZAvA737HL8eQibwfm5DvI2spdwAD33Wcj07tvplllA/j7lq9m7B/vA+ybYlUvce65vOxl1eQxiqwxAyecYGfQhEKwKM5FO/wdg1z/FnjTmzzSlWyVqIRI2w/XsM3zMLriCvuCGE4q9aVZAehVxiOPtOe4xx75M8idWYBzM7z16PrHANaC2+lVZQH86lfhttvgmGPs/+997+ilyB56yM6G3HXXUrPebruR73lCreXiD3+An/98o9DN9Rgq0QX86KOwbBkcfHBCuvvvt6tMpU2dr5ieF4Dh9VrNeOSYBY3LdHjSzCxgL0GW1wK4884N4T/KcAHPy6+LmxonVJcA9O7fogJw2o5sFgjADfTXYgHMFKllkTUJpL/fCoBmcU5ucNwgR+dZR7jdSXh452mbEyfCggWeOzt9hPs8KjJZ1nsMYGiibIaCAnBwYsUWwBhqWayhDhfw5Mm2YYUCcO+9YffdG/fZaSePGRP5cfv03/++9MNbZsxosKrlqsYiE9MSLIDTp9u/RDJNg9WjLuDgevX3F7/Bm5kFXGT/TAtghLJcwLlpwoUxhuFaBGBRVr+i0TVSxxjAlgjAmlYCyR9lvM0pQQAWZXgk9nutK4EUIk9mbuW1IAxMLdThAo5SWQT1eMKJukVnueelchew+7ysbaB2OagADO63Zq5bM7OAi+A9CSSgrEkguekmARipk9XTGsM81CEAt8gXQaY4WZNAyqIlU5xrIqHtVzau3xEsa9ak7OdBRwjAFoSBqYU6XMBRKvPFxlNZvM4EKncBJ6TvBFQAligAvZ9hoenXd2WBYDJHiDvezKePyB0GJioAi3ZETTxJ/spmlccBzEXgK35qyMaDW7NTo/m+KoNEy13ANa0EkksAdsIYwLotgCUIwLBss2aVUB5fOsgCWIsL2O306hKAtXUslje+sdbs6hWAHebJ6Cy5WgEtsQBecYWdUnvyyX77H3kkLF++cYS8O66gFhdwUSFXoMd84kt3cOXxP+ZO9ucD7WQBvOYauOgintzrFM78Gex+/C589cpP8u1fbD0q/zJxq762SSDqAm6ehAZRxzO9aPzA+++HL30Jzjqr1OKkU7RCqra0tOolY/p0OwEDqjfF3nEH/OhH8OY3V5tPhMWL7WIkhx9eT35FXcALTxjD3JM80119tb3xqn4xKRkVgCUIwPA+9TZibLEFXHqpfwb9/XDeeRv/dd/QfRp30y7gGi2Aa+fsz9nsD+TTBJULwC23hEsvZVdg16Dj+sHrz+Abv6ggLwf3UrhB7itFXcDNk9D26/AQFRWAs2bBJZeUW5ZM8vQtrquyanNcqyyAs2bB7bfb71W/Ley/v/2rmbFj4eKL68uvqAD8yFmDMN0z3XHH5cikfVAXcCtcwE3iCsBaLIBFO6IC6VzR11YCMIa6A7g3G3bPm3Z3AXcCdVsASxwDWCt5XhIzl1QokVaNAcz7dq9kUlQAdp1XIgYVgB04CaR2C2BRV0SBdK4OUAHYSG0CsBUWwG7rbFs4C7ioBbAl5Okj6pys0EoLYEits3G6l8ICsNteSmPo+RZWhgAM09bVXl75ypHvbsiHJFo2CaRAj9lJArC2WbkBXT0GMM/Nk3fZllZQtwvYuck7SgDmadR1WgBjBGAt7yivec3Id7UAlkKuoTM9JgB1DGAJAvDoo+GJJ2Du3HLKlIWIHRK4bJnfjD13EnGtk0AKpCvDBVxXv3n88XDLLdUPZl60yLavV786e99ScCu+yk4wrwXwppvgssvgE5+orkxlUbcL+LDDbLT2Aw7gpdMqyqNMliyBs8+Gq67yT9MiF/CFF8JPf9r8wjdebLopnH46PPts/S6GLuXyy+HYYz0nN/WYC1gFYAkCcN68gitlNMHHPua/78yZI9/bfRJIJ1kAh4bsRLqq+bd/qz6PRKr0e+UdA3jYYfavE0i4ZyqrzsFBu14jQCAA2zok2Zw59i8PLbIAfvjD9WULtGAmTnczfTrcc4/nzt08LjkGdQE7K4F0K66VsNCQrhoFYFELfCsEoNIk3exuSWj7dUYXqTpWcu202AWs9ADufdsDDxIVgCVYANsd1wX8/PMeCVroAnazzmMtUQHYgfTgJJA6J5d2nQBs8SQQpQdwr3sts35aiwrAHhCAbjt+4omcCaAlK4HEFSMNFYAdSDe7W9pAAOZZSacj6IUwMEpr6THh3/MCcMcd7WzOWgb4tpCLLoKJE+GUUzx2bqEFEGC//exCKZEV8FJxRZ8KwCY54AA7O3PhwmrzGRiAnXeG3XbrvrftSNs/k4uAenTFl79s9ee111afV62oBVCpmle8ArbfHvbZp9UlqYWef1ROnQpPPtndYwABzjzTTi7zOs8WWwCXLLH9b57kagEskQkT4M9/rv6mEIH77us+8QeNdffb33LxDnYKdx264phj4KijurBP0zGAStX098PDD3dnnxSDPirpwo4yAe/zbLEFUCT//acCsGTquim6NditW39O7KW6PItd2aepBVCpg27tk2LonTNV/GlhIOiiqABU2gr3IeJMcNGhZU2gFkBFKRUVgMpo2mQSSB5UACptRcIMZ9UVTbB+fX156YVSegAVgMpo3vnOxv9PPTVf+vnz7eeJJ5ZTHg9UACptRYIAVAtgEyxebD8//vHq8/roR+3nGWdUn5eitAh9VCqjOeQQOxB2m21gxQo7VToP3/gG/P73+dM1gQpApa1QAVg+55wDCxbU068sXmzXeKyxD1OUutFHpRLPDjvYz512yp92YKD2jrMVawErSiKuC9FpkCoAm6CvD17zmnryEqkvL0VpEeoCVroCtQAqbYU7Xs0ZU6sCUFGUdkEFoNIVqABU2oqECQs6t0BRlHZBBaDSFagAVNqKKVNiN6sFUFGUdkEflUpXoAJQaSs23xzuvNMuNeSgAlBRlHZBH5VKV6ACUGk73vSmUZtUACqK0i6oC1jpClQAKp2ACkBFUdoFFYBKV6ACUOkEVAAqitIu1C4AReSVIvIZEblXRFaLiBGR6TH7bSIinxSR/xWRF4P996m7vEpn4K46p3EAlXZj3Dj7qaHlFEVpF1phK9keeDvwc+CHwP4J+10FzAPOBP4AnALcISJ7GGPur6GcSgchApdfbqNvqABU2o1ly+CLX4Szzmp1SRRFUSxiag5MJSJ9xpgNwfcTgSuAGcaYFc4+uwD3A8cbY64Otg0Ay4GHjTGH5slz9uzZZtmyZeWcgKIoiqIoSoWIyM+NMbOrzKN2F3Ao/jI4FFgLfN1Jtw74GnCAiIytqHiKoiiKoihdT7tOApkFPGqMWR3ZvhwYg3UjK4qiKIqiKAVo1/mSU4FnYrY/7fzegIgsTTrY7rvvXk6pFEVRFEVRuoB2tQAqiqIoiqIoFdGuFsBngG1jtoeWv6ejPxhj9ks62OzZs3UJdkVRFEVRlIB2tQAuB2aIyLjI9pnAMPBI/UVSFEVRFEXpDtpVAN4KDAJvCzcEYWCOBO40xqxpVcEURVEURVE6nZa4gEXkiOBrODvjzSKyElhpjLnHGHOfiHwd+JSIDAKPAicDM4AF9ZdYURRFURSle2jVGMBvRv7/XPB5D7Bf8P1dwHnAucBk4AHgQGPML2oon6IoiqIoStfSEgFojBGPfV4ETg/+FEVRFEVRlJJo1zGAiqIoiqIoSkWoAFQURVEURekxVAAqiqIoiqL0GCoAFUVRFEVRegwVgIqiKIqiKD2GCkBFURRFUZQeQwWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMFYCKoiiKoig9hgpARVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQYKgAVRVEURVF6DBWAiqIoiqIoPYYKQEVRFEVRlB5DBaCiKIqiKEqPMdDqAlSNiCwF1orIg60uS5uxY/D5cEtL0X5ovYxG6yQerZd4tF7i0XoZjdZJPDsCO1edSdcLwICfGGP2a3Uh2olAGKP10ojWy2i0TuLReolH6yUerZfRaJ3EE9ZL1agLWFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMMca0ugyKoiiKoihKjagFUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMTpWAIrI1iJyg4g8JyJ/E5EbRWQbz7SbiMgnReR/ReRFEblXRPapusxVIyJHiMi3ROSx4LweFpHzRWSCR1qT8LdrDUWvFBHZL+HcnvVI25VtBWy0+ZTr/t2MtF3RXkTklSLymeC6rg7OYXrMfk21AxF5t4j8RkTWBPfle0o9kZLxqRcRmS0ilwfntVpE/igi14vIDM88ktrfB6o4pzLI0V6auj86qb14tpWzU+rkJY88Oqqt+D6LRWSKiFwpIqtE5AURuUtEXueZR5+ILBKRFSLykog8ICKH5ylnRy4FJyLjgCXAGuBYwADnAneLyM7GmBcyDnEVMA84E/gDcApwh4jsYYy5v7KCV88ZwB+BjwGPA7sBZwNzRGRPY8yGjPTXAF+MbPttyWVsJacB/+P8v84jTbe2FYD3AhMj2/YALgVu8Uh/DZ3fXrYH3g78HPghsH/CfoXbgYi8G1tP5wN3Af8CfE5ExBjz+TJOogJ86uUdwCzg08ByYBrwr8AyEdnVGPMnj3weBE6KbFtRsMx14NteoOD90YHtxadOrgSiL5Xjg20+fQ10VlvJfBaLiAC3AtOBU4FngEVYHbOrMebxjDw+EeSzGFv37wC+KSIHG2P+y6uUxpiO+wPeD6wHtne2zcA+0E/PSLsLVjC+y9k2gF2M+pZWn1uT9bJ5zLaFwfnOzUhrgHNbfQ4V1ct+wfm9MWe6rm0rKed8FfbFamovtBegz/l+YnBe08tqB8F+TwHXRrZ/CVgFDLa6Dpqol7j+ZltgA3CORx5LgR+1+lzLrpfgt0L3Rye2F986iUn3zmDfed3WVnyexcBbgv/nOPtMAp4GPp1x/C2Cfvr/R7Z/H3jQt5yd6gI+FPipMeaRcIMx5lHgx9hKzUq7Fvi6k3Yd8DXgABEZW35x68EYszJmc2jxmlZnWbqErm0rcQSW9bcBtxpjnm51eerAZFvFobl2sAewOXBdZPuXgc2Af85V4JrwqZe4/sYY8xiwki7tbzzbSzN0XHtpok6OBf4C3FFicdoCz2fxocCTxpi7nXTPYa2CWTrmAGAMo9vJdcDrfIdhdKoAnAX8Kmb7cmCmR9pHjTGrY9KOwZqzu4l9g8+HPPY9ORhzslpElojI3lUWrAVcLyLrReSvIvIVyR4z2mttZT4wAbjWc/9uby8hzbSDWcFntL9aHnxm9VcdhYi8Bmud8OlvAHYTO457rYg8KCInVFi8uilyf/REexGRrYE5wPXBy5QPnd5Wos/iNB2zjYhsmnKsWVgL4COR7bnaSUeOAQSmYv3lUZ4GpjSRNvy9KxCRacA5wF3GmGUZu18HfAd4EuvGORNYIiJvMsYsrbSg1fMccAlwD/A37HiMjwH3ishuxpinEtL1TFsJWIh1P93usW83t5cozbSD8Ldo+q5rQyIyAHwBawG8yiPJD4DrsePiJmPb35UispUx5tyqylkTRe+PXmkvx2ANUL4vmx3dVhKexVOJH8MYXuspwN8TDjkVeNYEft+YtF7tpFMFoJJB8PZwM3Zc5Luy9jfGvNP594cicjP27eRc2tDtkAdjzH3Afc6me0TkB8B/YyeGnNWSgrURIvIK4I3AZT5v5N3cXpTC/AewJ3ZMV5xgbsAY8/HIpptF5CZgsYh8yhiT9PBre/T+yGQhcJ8x5kGfnTu5reR9FtdJp7qAnyHe0pf0pu6bFkYUdMciIkPYcQTbAQeY7NlEozDGPA/cBvxjycVrC4wxv8C+TaadX9e3FYe8b+QNdHl7aaYdhP1RNH1XtSERuQD4f8Dxxpg7mzjUV4FNAK9QGJ1Cjvuj69uLiLwe2ImCfY1D27eVjGdxVr+SpmWeASYHM4nj0nq1k04VgMsZGSvhMhP4tUfaGcGA92jaYUb71DsKERkEbgBmAwcZY37Z5CG7fbHotPPr6rYS4VjgAWPMA00epxvbSzPtIByTE+2vwjE6Wf1V2yMii4GPAKcZY75c0mG7sR1B9nl1fXvB9jVrga+UdLy2bCsez+I0HfPHDKvmcmAs8KqYtODZTjpVAN4CvEFEtgs3iA08uRfZMYVuBQaxsx3DtAPAkcCdxpg1pZe2JkSkDztOYi5wmDHmp00cayJwMNZN2nWIyGxgR9LPr2vbiktQFzNp4o28y9tLM+3gXmz4jgWR7cdg39J/XG5R60VETsO6NRcbY/6jhEMuAF4Emn1xbSty3B/d3l7GYOPV3Z4wUzYPbdtWPJ/FtwDTRGRfJ91E4BCydcx3sSI6rp38KoiKkkmnjgG8AngfdhzAWdg3gE8Af8IJvCki2wK/x8akOgfseDAR+TrwqUChPwqcjI0jGK3MTuOz2IfUecALIvIG57fHjTGPx9WJiJyBFUN3MzJo+QxgSzq/ThCR67HX+RfAs9hJIIuAJ7BBbHuxrbgsxI5PuT76Qy+0FxE5Ivi6e/D5ZhFZCaw0xtyTpx2IyCPAY8aYfwEwxqwVkX/FBvJ9AhvYdy5wPHCqMWa46vMrSla9iMg7gE9hH0ZLIv3N34wxv3aO1VAvwYzYjwI3YgfCT8Jahg4FPmqyg/m3DI968b4/uqW9ZNWJs+vBWDdl4stml7SVzGcxVuTdC1wnImcyEghagIvcg4nIOmxsyBMAjDFPicilwCIReR77bDsS21YO9S6lb8DAdvsDtgG+hZ3V+TzwbUYHKp2OFYdnR7YPYVc7+DPwEvAzYL9Wn1MJdbIiON+4v7OT6gT7xvFj7JvnWuCvQeN8favPqaR6WYSNIv9ccH5/Ai4HturVtuKc3yB21uatCb93fXtJuWeW5m0HwT24NGb7Sdgxp2uA3wHvbfV5N1sv2JUuMusurl6woXNux76ErcHOdvwJcFSrz7uEevG+P7qlveRoBzcH9TEm5Vgd31bweBYH+03FBvl+GliNDeS8S0L9XhPZ1o+dwPhYUC8PAkfkKacEB1IURVEURVF6hE4dA6goiqIoiqIURAWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVF6UhExHj8rRCR6cH341pd5hARmSYiLwSrsPim+YCI/DJYZUBRFKUpNA6goigdSSS6PsBNwAPA2c62Ndh1MXcDfm+aX36qFETkS8AWxpiDc6QZwq5CssgYc3VlhVMUpSdQAagoSlcgIiuAHxljjml1WdIQkZdjV6OZb4y5LWfai4B5xpi4ReQVRVG8UVeCoihdTZwLWESuEZHHRWS2iPxERF4UkYdFZF7w++mB+/hvInKziGweOeaAiCwSkd+IyBoReVJELhGRTTyKdBx2+co7Isc8ICjLcyLy96A8H4+k/RowU0T2LFAViqIoG1EBqChKrzIR+E/gSmA+8BTwLRG5BJgDnAJ8IPj+2Uja67DrcH4FmAecD5wAXO+R74HAvcaYdeEGEdkOu17so9hF3Q/Frj08PpL2fqx4PNDvFBVFUeIZaHUBFEVRWsQE4D3GmB8AiMiT2DGEBwMzjTHrg+2vBU4VkX5jzHoR2Rsr0o41xvxncKy7RORp4DoR2dUYc39chiIiwD8B/x756R+AMcDJxpi/BduWRNMbYzaIyANAdPyjoihKLtQCqChKr/JCKP4CfhN83hWKP2f7ALBV8P+BwDBwQ+AKHhCRAeDO4Pd9UvKcDAwB0cko9wNrga+JyBEiskXKMVYCr0j5XVEUJRMVgIqi9CrPuv8YY4aDr89E9gu3h+P7tsBa617Airbw76ng981S8gyPsSaS9yPAAdg++cvAn0XkpyKyb8wxXsSKSEVRlMKoC1hRFCUffwVeAvZO+P3JjLQAU6I/GGPuBu4WkbHAXsA5wG0iMt0Ys8rZdSqwKppeURQlDyoAFUVR8vFd4CPAJGPM9/MkNMYMi8ijwHYp+6wBlojIpsDNwAwaBd8M4L9zl1pRFMVBBaCiKEoOjDFLReSr2DGAl2LF2AZgOnAQ8BFjzG9TDvED4PXuBhF5D3bs4H9hYwS+DFiEtSb+ytlvMrADcHFJp6MoSo+iAlBRFCU/xwCnAscDi7Fj+lZgY/v9JSPt14GFgWt3RbDtAeDN2HAyWwBPAz8CFhhjXnTSzsOOSbyplLNQFKVn0ZVAFEVRaiRYy/d3wNXGmHNzpr0dWGWMeWclhVMUpWdQAagoilIzIrIAG+h5hjFmtWeaXYGfAbOCWcOKoiiFURewoihK/XwFmIYdN/hrzzRbAsep+FMUpQzUAqgoiqIoitJjaCBoRVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQY/wdKnEeDz+k3vgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000 # counts/s\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900 # counts/s\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt) # counts\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt) # counts\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both light curves to the `AveragedCrossspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 12346.54it/s]\n" + ] + } + ], + "source": [ + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that also the `AveragedCrossspectrum` object could have been initialized using different input types:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " events1, events2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " (note, again, the necessity of the bin time)\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " times1, times2, dt=bin_time, segment_size=segment_size, \n", + " gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from iterables of light curves\n", + " ```\n", + " ps = AveragedCrossspectrum.from_lc_iter(\n", + " lc_iterable1, lc_iterable2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again we can print the first five Fourier frequencies and first five cross spectral values, as well as the number of segments." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[291.76338464-640.48290689j 182.72485752 -35.81942269j\n", + " 293.42490539+276.16187738j 771.98935476-595.89062793j\n", + " 361.32859119-101.50371039j]\n", + "\n", + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(avg_cs.freq[0:5])\n", + "print(avg_cs.power[0:5])\n", + "print(\"\\nNumber of segments: %d\" % avg_cs.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If `m` is less than 50 and you try to compute the coherence, a warning will pop up letting you know that your number of segments is significantly low, so the error on `coherence` might not follow the expected (Gaussian) statistical distributions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:00, 7645.47it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "40\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "test_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 40.)\n", + "print(test_cs.m)\n", + "coh, err = test_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "An `AveragedCrossspectrum` object has the following properties, same as `Crossspectrum` :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the averaged cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution (in Hz).\n", + "4. `m` : The number of cross spectra averaged together, equal to the number of whole segments in a light curve.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the amplitude of the averaged cross spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmCElEQVR4nO2debgcVbW+35WTmYR5DmEIILNGQERABJyRy6A4oYgigwMi6nVGRVFwxFlExKtXuKIoCCoqyhAEwR+oTEEmGUIYkpBAQkLIdPbvj9Xbqq5T3ae6T/Xp6Xuf5zzVXV2ne1d31a6vvrX22hZCQAghhBCiXxjT7gYIIYQQQowmEj9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8xtt0N6ATM7J/ARsB97W6LEEIIIUbMdsCCEMLz816U+HE2WmeddabNnDlzWrsbIoQQQoiRccstt7B48eKar0v8OPfNnDlz2jXXXNPudgghhBBihBxwwAHMmjWrZjRHOT9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF/R9eLHzMab2TfM7F4zu93MLmt3m4QQQgjRufTCaK8zgPHADiGEQTPbtN0NEkIIIUTnMurOj5ltYWbfNrMbzOwZMwtmtnWNbaeb2S/NbLGZLTGzi81sy9Trk4ETgI+FEAYBQgiPj8qOCCGEEKIraUfYazvgDcCTwF9qbVQRNlcBOwLHAEcD2wNXm9laqfd6EviYmd1kZteb2SGtbLwQQgghupt2hL2uDSFsAmBmxwGvqLHd8cAMPJx1X2X724B7gROBs/D2bwncF0L4hJntCFxrZnuHEO5v8X4IIYQQogsZdecnhqcKcChwYxQ+lf99ALgeOKyyag4QgPMrr98F3ArsXlqDhRBCCNFTdPJor12AO3LWzwZ2BgghPAH8EXgVgJltBuwG3D5KbRRCCCFEl9HJo73Wx/N5siwC1ks9fzdwnpl9AXeBPhRCuDvvDc3smhqfNbP5ZvYnIYBZu1shhBBCNE4ni59ChBAeBF7a7nb0EytXwvOeBy98Ifz4x+1ujRBCCNEYnSx+nqTa4YnUcoSGJYRwQN76iiP0kmbesx+ZOxfuuguWLm13S4QQQojG6WTxMxvP+8myM3DnSN88EwKbOdL36ydWr/blmjXtbYcQQgjRDJ2c8HwZsLeZzYgrKsUQ9628JtpEFD9xKYQQQnQTbXF+zOzIysM9KstXm9kCYEEIYVZl3bnAScClZnYqnsx8OvAwcM5I25AOgSns1RgSP0IIIbqZdoW9Lso8/15lOQs4ACCEsMzMDgK+DvwUMOBK4JQQwoizTRT2ah6FvYQQQnQzbRE/IYRCg6RDCHOA17W4OaJB5PwIIYToZjo54bmlKOzVPHJ+hBBCdDOdnPAsOhQ5P0IIIbqZvnV+lPPTPGnnR5WehRBCdBtyfkTDpB2fwaLT1AohhBAdQt86P8r5aZ60+Fm9GgYG2tcWIYQQolHk/IiGSYsfJT0LIYToNiR+RMNknR8hhBCim+jbsJcSnptH4kcIIUQ3I+dHNIzCXkIIIbqZvnV+lPDcPHJ+hBBCdDNyfkTDSPwIIYToZiR+RMMo7CWEEKKb6duwlxKem0fOjxBCiG5Gzo9oGDk/Qgghupm+dX6U8Nw8cn6EEEJ0M3J+RMOsWpU8lvgRQgjRbUj8iIZR2EsIIUQ3I/EjGkZhLyGEEN2MxI9oGDk/Qgghupm+TXjWUPfmkfMjhBCim5HzIxpG4kcIIUQ307fOj4a6N4/CXkIIIboZOT+iYeT8CCGE6GYkfkTDSPwIIYToZiR+RMMo7CWEEKKbkfgRDSPnRwghRDcj8SMaRs6PEEKIbqZvR3upzk/zyPkRQgjRzcj5EQ0j8SOEEKKb6VvnR3V+mkdhLyGEEN2MnB/RMHJ+hBBCdDMSP6JhJH6EEEJ0MxI/omEU9hJCCNHNSPyIhpHzI4QQopuR+BENI+dHCCFENyPxIxpGzo8QQohuRuJHNIzEjxBCiG5G4kc0jMJeQgghuhmJH9Ewcn6EEEJ0M31b4VlzezWPnB8hhBDdjJwf0TByfoQQQnQzfev8aG6v5lm1Knks8SOEEKLbkPMjGkZhLyGEEN2MxI9oGIW9hBBCdDOFxY+ZPd/MLjazJ8xstZntXll/hpm9qnVNFJ2GxI8QQohuppD4MbP9gBuAHYH/y/zfIPCu8psmOhWFvYQQQnQzRZ2fLwJ/BHYBPph57R/A7mU2SnQ2cn6EEEJ0M0VHe+0OvDaEEMwsZF57Atio3GaJTkbOjxBCiG6mqPPzLDC5xmubAYvLaY7oBuT8CCGE6GaKip/rgFPMbCC1LjpA7wSuKrVVomMJodrtkfgRQgjRbRQNe30KuB64FfglLnyOMbOzgD2AF7SmeaLTyIa5FPYSQgjRbRRyfkIItwL7A/OATwIGnFR5+SUhhLtb0zzRaWSdHjk/Qgghuo3C01uEEP4BvNTMJgLrA0+FEJ5pWctER5IVO3J+hBBCdBsNz+0VQngWeLQFbRFdgJwfIYQQ3U5N8WNmn27gfUII4fQS2tMwlUlJtyIZcXZxCOFz7WhLPyDxI4QQotup5/yclnke8FyfLHHUV1vET4UPhBB+3cbP7xsU9hJCCNHt1Ex4DiGMiX/ArsADwMeArYFJleXHK+t3KfqBZraFmX3bzG4ws2fMLJjZ1jW2nW5mvzSzxWa2pDK32JZFP0uUj5wfIYQQ3U7ROj/fAX4YQvhyCGFOCGFFZfkl4Dzguw185nbAG4Angb/U2sjMJuP1g3YEjgGOBrYHrjaztTKbf9HMbq8IpR0aaItoEIkfIYQQ3U5R8fNC4OYar90E7N3AZ14bQtgkhHAwcFGd7Y4HZgCHhxB+HUK4FDgUz+85MbXd20IIOwLPBS4HrsgUYxQlorCXEEKIbqeo+FkMvLzGa6+ggektQgiDBTc9FLgxhHBf6n8fwIstHpZaN6eyDCGEHwFTcIEkWoCcHyGEEN1O0aHuPwI+bmZTcLdmHrAJHr46ATijBW3bBbg0Z/1s4PUAlZpDU0IIT1SeHwysAR7Oe8PKyLA8Zo6wrX2DnB8hhBDdTlHx82l8VNcpwLsq6wxYhguf08puGF5I8cmc9YuA9SqP1wZ+b2bjgcHK9oeEEFa1oD2CRPyMHeuP5fwIIYToNgqJn0qo6lNm9jVgN3wm98eA20IIbZvRPYQwH59brOj2B+StrzhCLymnVb1NFDsTJkj8CCGE6E4aqvAcQniKOiO0SuZJEocnTS1HqCEyIbCZI32/fiGKnYkTYdkyhb2EEEJ0H4XEj5ntP9w2IYRrR96cKmaTXz9oZ+DOkj9LFCQtftLPhRBCiG6hqPNzDUkl51qUPbz8MuCrZjYjhHA/QKUY4r54scURkQ6BKexVnHTYC+T8CCGE6D6Kip8Dc9ZtAByCi4aTGvlQMzuy8jDm67zazBYAC0IIsyrrzq2876Vmdiouvk7HR3Kd08jn1WjDNamnM0f6fv2CnB8hhBDdTtGE51k1XrrYzL4O/Bfw+wY+N1vc8HuV5SzggMpnLjOzg4CvAz/FR5ddCZwSQljawGeJEsk6PxI/Qgghuo2GEp5r8DvgQuA9Rf8hhJA3QWrednOA1zXZruHe+4D4WGGv4qyqFBGIzo/CXkIIIbqNohWe67EDXmNH9AEKewkhhOh2io72elvO6vH4bO/vBC4us1GjgXJ+mkPiRwghRLdTNOz14xrrVwA/B95fSmtEx5MVPwp7CSGE6DaKip9tctY9G0KYV2ZjRhPl/DSHnB8hhBDdTlHxE4DH8ubMMrOxwOZxdnXR20SxM368LwcHIQSwQinsQgghRPspmvD8APD8Gq89r/K66AOi+Bk3DgYqZS0V+hJCCNFNFHV+6t3Xj6MLR3sp4bk50rO6Dwy48Fm92p8LIYQQ3UDNS5aZrYtPIhqZZmYzMptNAo4BHi+/aaITSYufsWNh5Uo5P0IIIbqLevfr7wc+g+f7BOCXNbazynZdhRKemyMrftLrhBBCiG6gnvj5NfAgLm5+BHwe+HdmmxXAnSGE21rRONF5ZMNe6XVCCCFEN1BT/IQQbgVuBTCzAPwuhPDEaDVMdCZ5zo/CXkIIIbqJohOb/qTVDRltlPDcHHJ+hBBCdDv1Ep6vAt4TQrir8rgeIYTw0nKbJjoROT9CCCG6nXrOT3p4+xg86bnItl2BEp6bQwnPQgghup16OT8Hph4fMCqtER2Pwl5CCCG6naIVnoUAFPYSQgjR/dTL+dm/kTcKIVw78uaITkdhLyGEEN1OvZyfa6if5xOxynYDZTRIdDZ5YS85P0IIIbqJeuLnwDqvdT0a6t4ccn6EEEJ0O/USnmeNZkNEd6CEZyGEEN1OQ3Nxm9nawK7ANOAR4PYQwtOtaFir0VD35lDCsxBCiG6nsPgxs08DHwKmkNT1edrMvhJC+HwrGic6D4W9hBBCdDuFxI+ZfRb4FPBD4EJgHrAJ8Gbgs2Y2NoRwWqsaKToHhb2EEEJ0O0Wdn+OBr4UQPpxaNxu4yswWAycAp5XcNtGBKOwlhBCi2yla5HAd4I81XvtD5XXRByjsJYQQotspKn7+BrygxmsvqLwu+oAodMaNU50fIYQQ3UnRsNfJwCVmthq4iCTn5w3AscBhZvYfIRVCGCy7oWWjOj/NsWqVL+X8CCGE6FaKip/bKssvVv7SGHB76nlo4H1Fl6GEZyGEEN1OUZHyOYpNddE1qM5PcyjhWQghRLdTSPxoGLuIKOFZCCFEt1M04VkIQBObCiGE6H4aqfC8E3AkMB2YmHk5hBCOKbNhojOR8yOEEKLbKVrh+W3Aj/C8n/nAyswmPZUPJGqjhGchhBDdTlHn51PApcA7QwhPta45otNRwrMQQohup6j42RR4l4SPUNhLCCFEt1M04fl6YKdWNkR0Bwp7CSGE6HaKOj8nAReb2ULgCuDJ7AbdUNVZjByFvYQQQnQ7RcXPXOCfwPk1XldV5z5BYS8hhBDdTlHBci7wRuDXwF0MHe3VdWhur+ZQnR8hhBDdTlHxcxjw4RDCN1vZGNH5yPkRQgjR7RQVP8uAO1vZkNFGc3s1hxKehRBCdDtFR3v9D3BUKxsiugMlPAshhOh2ijo/DwFvNrM/AX8gf7TXj8psmOhMFPYSQgjR7RQVP2dXllsBL815PeDTX4geRwnPQgghup2i4meblrZCdAWDgxACmMGYMXJ+hBBCdCeFxE8I4aFWN0R0PmnXB5TwLIQQojspmvAsxBDxo4RnIYQQ3Ujhqsxm9grg3cAOwMTs6yGEGSW2S3QgtcSPnB8hhBDdRCHnx8wOBn4PTAZ2xKs8zwGmA4PArFY1UHQOCnsJIYToBYqGvT4FfBc4uPL81EqRwF2AAVwYiR4nipxx43ypsJcQQohupKj42RH4De7y/GcS0xDCPcBpuDgSPY7CXkIIIXqBouJnEFgdQgjAAmDL1GuPAtuW3TDRedQKe8n5EUII0U0UFT93A1tXHt8MnGJmm5nZRsCHgAfLb5roNFat8qWcHyGEEN1MUfFzAbBT5fFn8FyfucDjwEHAp8tvWmOY2TvMLJjZ4e1uS6+ihGchhBC9QNEih99NPf67me0GvAof/fXnEEJbZ3w3s62B44Eb29mOXkd1foQQQvQCTRU5DCHMDSH8MITwrUaFj5ltYWbfNrMbzOyZiluzdY1tp5vZL81ssZktMbOLzWzLzDZjgB8C7wNWNLM/ohhKeBZCCNELtKPC83bAG/CZ4f9SayMzmwxchY80OwY4GtgeuNrM1kpt+kHg+hDC31vWYgEo7CWEEKI3KFzhuUSuDSFsAmBmxwGvqLHd8cAMYIcQwn2V7W8D7gVOBM4ys12B1wH7t7zVQmEvIYQQPcGoOz8hhMGCmx4K3BiFT+V/HwCuBw6rrHoxPgrtXjN7ENgb+IGZnVRag8V/UNhLCCFEL9AO56couwCX5qyfDbweIIRwNnB2fMHMrgG+EUL4dd4bVl7PY2bzzewfVOdHCCFEL9DJs7qvj+cFZVkErDfKbRHI+RFCCNEbdLLz0zCV+cYafr3iCL2k/Bb1Fkp4FkII0QvUFD9m9gA+j1cRQgih7CkuniTf4anlCDVEJgQ2c6Tv1w8o4VkIIUQvUM/5mUVx8dMKZuN5P1l2BtpaVLFfUdhLCCFEL1BT/IQQ3j6K7cjjMuCrZjYjhHA//KeS877Ax0b65ukQmMJexVDCsxBCiF6gLTk/ZnZk5eEeleWrzWwBsCCEMKuy7lzgJOBSMzsVd6FOBx4GzhnN9gpHzo8QQoheoCHxY2bPA3YAJmZfCyH8bwNvdVHm+fcqy1nAAZX3W2ZmBwFfB34KGHAlcEoIYWkj7c5DOT+No4RnIYQQvUAh8WNm6wK/w4sIggsRqM4JKix+Qgg2/FYQQpiDV3AWHYASnoUQQvQCRev8nAFsgE8jYcARwEHABcD9wF4taV0LCSEcEP+AW9rcnK5AYS8hhBC9QNGw1yuBzwI3Vp7PrUwkeo2ZnQ28H3hbC9rXMhT2ahyFvYQQQvQCRZ2fzYD7QwhrgGeBqanXLgZeU3bDROehsJcQQoheoKj4eRxYt/L4IeBFqde2K7NBo4XCXo2jsJcQQoheoGjY6zo82fm3+Mirz1Rq7qwGjsFr8ogeR3V+hBBC9AJFxc9ngc0rj7+CJz+/EZiMC5/3ld800WnI+RFCCNELFBI/IYR/A/+uPF4FfKjy17Uo4blxosgZN86XSngWQgjRjQyb82Nm481skZkdOhoNEp1L1vkZUzl6QoDBwfa0SQghhGiUYZ2fEMJKM1uNj/LqGTS3V+NkxY+ZP1692vN+xhRNnxdCCCHaSNHL1a+BI4fbSPQ2WfEDSnoWQgjRfRRNeP498C0z+yUuhB6jemoLQghXlds00WnkiZ+xY2HFCuX9CCGE6B6Kip9fVZavrfxFAj7dRQAGSmxXy1HCc+OsWuXLrPgBiR8hhBDdQ1HxcxAZp0f0Hwp7CSGE6AWKDnW/psXtGHWU8Nw4tcJe6deEEEKITqdQwrOZ3W9mz6vx2q5mdn+5zRKdSD3nR+JHCCFEt1B0tNfWwIQar00EtiqlNaKjqef8KOwlhBCiW2ikMkutnJ89gadG3hTR6SjsJYQQoheomfNjZh8APlB5GoDfmNnKzGaTgPWBC1vTPNFJKOFZCCFEL1Av4fl+4MrK42OAm4EFmW1WAHcCPyy/aa1FQ90bR86PEEKIXqCm+AkhXApcCmBmAJ8LITwwSu0SHYgSnoUQQvQCRev8nAiMy3vBzNYCVlZme+8aNNS9cZTwLIQQohcoKn7OxcXPUTmvnQOsBI4tq1GiM1HYSwghRC9QdLTXgVRCYDlcBry0nOaITkYJz0IIIXqBouJnY2B+jdcWAJuU0xzRycj5EUII0QsUFT/zgd1qvLYbsLCc5ohORuJHCCFEL1BU/PwW+JSZPTe90sx2Az4J/KbshonOQ2EvIYQQvUDRhOdPAy8H/m5mNwFzgWnAXsADwKmtaZ7oJOT8CCGE6AUKOT8hhCeAFwBnAoYXBTTgC8ALKq93FWZ2TfxDRQ4LoTo/QggheoGizg8hhKdwB+jTLWuN6GhU50cIIUQvUFj8AJjZhsDewAbAb0IIi8xsIl7kcLAVDWwVKnLYOAp7CSGE6AUKhb3M+Qqe63MZ8CNg68rLl+JJz6LHiQJnXKrWtxKehRBCdBtFR3t9HDgJ+BzwQjzfJ/Ib4JCS2yU6EDk/QggheoGiYa/j8IlNzzSzgcxr9wHbltss0YlI/AghhOgFijo/04Aba7y2ElirnOaITkZ1foQQQvQCRcXPI8CuNV57Hl7rR/Q4cn6EEEL0AkXFz0XAp81s39S6YGbPAT4EXFh6y0THoTo/QggheoGi4uc04C7gWuDeyrqLgNsrz79YestEx6E6P0IIIXqBQgnPIYTlZnYAcBTwSjzJeSFwOnBBCEH3/X3AqlW+VNhLCCFEN9NIhec1wE8rf6IPUcKzEEKIXqDRCs/b4ZOZTsMLHv6/EMK/W9GwVlOp6hyZ2aZmdA2Dg/4HMCYVLJXzI4QQotsoJH4qU1h8DzgaSNf5WWNmPwHeG0JY0YL2iQ4hOjtjx4KlSlwq4VkIIUS3UdT5+SrwFuAz+MiuecAmwJvxiU6fAU5uRQNbheb2aoy8kFf6ucJeQgghuoWi4udNwGdDCGek1t0PfMHcBvgAXSZ+RGMMJ37k/AghhOgWig51nwD8vxqv/Q0YX05zRKdSS/wo4VkIIUS3UVT8/Bl4RY3XXgFcVU5zRKci50cIIUSvUDTsdRbwUzNbCy9uGHN+3gAcDLzVzGbEjUMI95fdUNFeJH6EEEL0CkXFz6zK8t3Au1LrLfN6JDvzu+hyFPYSQgjRKxQVP+9oaStExyPnRwghRK9QdHqLn7S6IaKzGc75kfgRQgjRLRRNeB6Cme1sZq8zs83LbJDoTFTnRwghRK9QSPyY2XfM7Pup568FbsWTn+80sxe0qH2iQ1DYSwghRK9Q1Pl5NfDX1PPPAr8FnofX//lMye0SHYYSnoUQQvQKRcXPZsCDAGa2BbALcGYI4XbgW4Ccnx5Hzo8QQoheoaj4eQaYUnn8EmAJcHPl+VJgasntKoyZ/dzMbjOzf5rZ/zOzl7arLb2MxI8QQoheoehQ938A7zWzOcB7gT+FEAYrr20DPNaKxhXkxBDCUwBm9nzgSjPbMNU+UQJR3IwbV71eYS8hhBDdRlHn55PA3niS8w7A6anXDqf2vF9DMLMtzOzbZnaDmT1jZsHMtq6x7XQz+6WZLTazJWZ2sZltmd4mCp8K6xRth2gMOT9CiE5m/nw4/3wY1G2vKEDROj83VUTHjsC9IYQlqZd/ANzbwGduh0+L8XfgL9SYM8zMJuNzhq0AjgEC8HngajN7bghhWWrbrwOH4eLndXJ9ykcJz0KITubUU+Hcc138vO1t7W6N6HQK1/kJISwLIfw9I3wIIfwuhHBPA595bQhhkxDCwfhQ+VocD8wADg8h/DqEcClwKLAVcGKmDR8IIcwA3gJ82cw0y3zJyPkRQnQy//ynL6+9tr3tEN1B00UOm6UBV+ZQ4MYQwn2p/30AuB53efLe+w/AesBuI22nqKabxc/gICxe3O5WCCFaRQhw113++G9/a29bRHcw6uKnAXYB7shZPxvYGcDMJpnZNvEFM3sRsAGQO6u8mV2T9wfMLLvxjRICLFjQ7lbUppvDXmecARtsoDtCIXqVRx6BpUv98ezZ8PTT7W2P6Hw6WfysDzyZs34R7u4ATAL+z8zuMLNbgK/iOT95/9fRfOlLsPHG8Oc/t7sl+XSz8/PrX7s4++53290SIUQriK4P+I3kTTeN7P2WL89f/+yzcOyx8Pvfj+z9G2HlSvj850e+T1keeQQ++1l44on815cu9e+yV+lk8TMsIYRFIYQXhRB2DSHMDCHsG0K4qs72B+T9AbeMWqNr8Je/+PKvf62/Xbvo1olNV66E22/3x5ddpvCXSFi8GH7xi852LUUx0uIHRhb6uvBCmDIFLr546GtXXAH/8z/wxS82//6NcvbZ8KlPwSGHwKJF5b3vd74Dp50G55039LW773a3/MMfLu/zOo1OFj9Pkjg8aWo5Qg3RaWGv+yqZTQ880N521KJbJzadPdsFEPhd269+1d72iM7h9NPhjW+Ec85pd0vESIni5/nP9+VIxM/VV3ueYJ4LH/vp+fObf/9GWLkSvva15DM/+MHy3vvxx32Zd8258Ub/7KtqWgndT9GJTQ8zs3eknm9VqdPzdKUOz5R6/98ks/G8nyw7A3e24PPaxpo1yQHYreKnU52fv//dl1MqR+j557evLaKz+H+V6mRXXNHedoiRE8XP29/uy7/9rfmQzYMP+vK++4a+FtfVChWVzc9+Bg8/DFtvDRMmwE9+Ut7xGl2kOXOGvhbX3Xdf74a+ijo/pwIbpZ6fBWyB1/jZHzit3GYBcBmwt5nNiCsqxRD3rbw2Ijop7PXww7BqlT/uVPET29dtCc9R/Jxyince11zj37fob0KAOyrDKa69dvQK4y1aBN//PqxYMTqf1y/861++POQQWH99dzWaPc/riZ9//9uXixa1vs8bHPRcUPDw1Gmn+eMTT0ySu0dCEfHz9NOjJ/RGm6LiZ1vgNvARVsDBwAdDCB8CPgEc0ciHmtmRZnYksEdl1asr616S2uxcfDLVSyvO06HApcDDQE8Z1fGEApg7NxEanUS3Oz8HHQSHHuoXvZ/9rJz3DqFzRV8/ce21cOutjf3P44/Dk5Xg+ZNPJnlhrebkk+Hd7/a8ElEOS5bAo4/CxImw1Vaw116+/sYbG3+vwUF46CF//NBDScg8EvvqwcHk+GkVv/mNi7rp0+HNb4YPfcjDeg8+6AUdR0oUP3kiMS2I8kRgL1BU/EwEYv77Pnhl6Gi+3Q1s3uDnXlT5e1fl+fcqzz8bN6hUcD4IuAf4KXAB8ABwUAhhxLq3k3J+0gfX4GBnOhPdKH5WrYLbbvPHu+8ORx/tj3/603Ks3COOgJ12GtpBtoIVK7zTu/76zjw+2sVTT8HLXw4HH9zYb3pHpojGNdeU2ap8li/3kYeg37BM7r7bl895jjvRL3yhP28m72fevMSVGxxMXCDw/iT9vIgj8sADzd0ghQBnnumPP/QhGD/e51U87zzfx299a+gx3ChR/CxZMnQgSBSAIPHzILBf5fFhwN9DCPHr2hhoaAxNCMFq/B2Q2W5OCOF1IYS1QwhTQwiHhxAebOSzuoG08wOdGfrqxjo/s2d7R7bddrDOOvDKV/oIhjvuSERRsyxd6qPH7r3X7zrLJgTvvI87DjbZxO9qt9kG9tsPZswoz73qdu67z8Xno482Zs/HC8e66/py1qzSmzaE3/8ellUm5Wm1azDaDA76cOzrrx/Z+6xZ4y7Hl79c/H9ivs+OO/py77192Yz4SYsb8PM7MmdOdT83XF22M8/0c/WMMxpvx7XXevs32MD7gMjzn+83XSHAP/7R+PtGQoCFC5PnaacnhOrn2etTr1BU/JwDnGZmNwPvAdKD415EFyYgd1LOTzy41lrLl90kfjrZ+Ykhr9139+X48T66B0ae+PzPfyZOQxnx98jKlT609XnP8078vPN8lMfAAGyxBey2m3/Xb3mLb9fvpM+V6AAUIYqfY4/15axZrc/7+fnPk8dlDlkukxCaKwfxpz/5cOz//u+Rff6//uUhwW98o/j/RPGz006+jGGvv/+9dgrB00/n3wBlxU/a9ciKgHpi+5JL4BOf8MfNODRR/J18cnJdiGy4oS+XLaNpli2r/m7STuTChdV1jvra+QkhfBN4O3ADcGwI4dzUy1OB/ym/ad3PtdfCJz/pHUM94sH1kkrGUzeJn06u8xPFzx57JOti6OuCC0bmVt18c/K4jGqyIXiMf9dd4T3v8RyUDTd0y/uOO9zBevhh77C/+EXf/j3vgS98oXdHYxRhpOLn0ENdVC5a5E5hq1i2DH772+R5pzo/J50EG21U7XgUIZ5r9+fW1i9OFB9LltTdrIqY7Bydn/XXh+2399IWtRzeY4/1G4zsbx4/f9IkX6Yv/FkRUEv83Hpr0s9A47/1qlXJMPv3vGfo61EMjeSmKyu+005PfGzmy353fgghXBBCeF8I4X8z608MIfy0/Ka1ltHI+bnuOrc861VtDiE5uF72Ml9m7z46gW6s85Mnfl74Qg+DPfbY8KK0HmnxM1Ln5/774RWv8AvxvffCDjv43e8jj8BXvwq77JKITICPftRr05h54mMjd8m9RjPiZ3Awuejtumty09HKvJ/LL4dnnvHwJXSu8/OXv/jFt9Fk4Vtu8eX8+b6fzRL7vmXLivcp2bAXDJ/3E4+bG27I//wXv9iXec7PuHG+zAt7zZ/v5/GyZYnj3Kj4ueced4BnzEhcnjSxbEdev7N8OXz72+4YX3997eOsiPiJNZP62vkxs+eY2V6p55PM7Ewz+42ZndS65nU3m2ziy3nzam8zb56fKOutl5ws3eT8dGrYa9WqZARQ/F7BBUOsBfI/I/AryxQ/xx3nAnnddV3I3H67h+fGj6/9PyecAD/4gT++4IKRfX43k3Ya7rmn2P889JCfc5tu6jkVBxzg61uZ9/OLX/gyhl070fkJIel7Gr3bj+IHqpNlGyV941fkvFq1Krk4P+c5yfrh8n5iyCgbkoqfH29E88RPFAV5zs+b3+zi4YUvTPqXRn/r2G8973n5r0fxkxf2uugiD5Udd5znB26wAey889BQZlb8pMNeUfy88IXugD3xRG9Wxi/q/HwHODL1/AvAh/BRXl83s/eW3bBWMxo5P5tu6stYSTOPeEJtt50ntEJ3iZ+8hOcvf9k7gXa6QXfe6aGiGTNcWKZ529tcBP3618Pfgf/rX0PF6+LF1RfakYifwcGk2N5tt8H735/cWQ7H617nyzvv7EznbTRoxvmJF7xdd/VldH5mzWpNCHHpUvjd7/zxCSf4shPFz6JFybHciPh5+ulqkTAS5zotnIqEvh54wAXQVlvB5MnJ+uGcn1riJx5PBx3kfUR8f0j2Mb531vl56imviDxxouf8bLaZr2/U5Yuhuuc+N//1emGveK3Zfnt3vMeP9z4suuCRmOwcE/7Tzk/8DbbaCrbd1h/3YuirqPh5HnA9gJmNAd4GfDSEsAfweeCE1jSvu4nip57zE0+obbeFadP8wvf447Un1msXjTg/X/uah23Sd4OjTV7IKzJ9ug+PXrmy/qipefP8Lu+Vr6y+KGZHWYwk5ye6EJtt5u1qhPXW82Nm+fLOFMwj4X3vgze9qb4YSddkAe+giziQWfGz3Xaw+eZ+h3tnC4Zu/O53/hvts09yQevEsFdatDRysbvtturfaSTiJ/2/RcRPXsgLku/57rvzbwzyxE/6eNphBz8f16zxdSEkLmN0lbLOzyOP+HKrrfx8jjddTz3VWDL9SJyfKIje8hZ3pw87zJ9nr0Hx+IufkRf22nJLPzegN0NfRcXPOkAcGPd8fM6tX1aeXwPMyPmfjmY0cn5i2KuI87Pttu6ibLmlP++0vJ+i4mf16uSOaKR1KOpx881+B/byl/vd9JlnVuds1BM/kIS+fvzj2p9x113uHt16a/W+pENeMDLnJ3shbpT4f638rkeb+fN90sWf/9xzs2rx6KMuYDfe2C9Uq1YVE4HZ79ys2v0pmzjK641v9Lv2ceNcDD37bHmf8fjjIxduzYqf7E1OWeKnyE1FdqRXZPz4xCHJy0GK5+y8eUl/9fjjfjxtuKELjPSF/7HH/DfbcMPEDaklfqZN8+XYsTB1qgunRhK4o/hpxvmJ66JAqpV6EcVP/IxHHklEosRPNfOAytfAK4B/hxBilHAK0GEZH53Bxhv7csGC2mGJdNgLfA4XKN6BrF4Nhx/u4ZK8u+SvfMUv9CMdxls07PXEE0k7WnlBvuACDxf9+c9w7rk+rPTAA+Goo9zSHU78HH641/65+eba7YydGVRPiBrFTxSqIxE/sbLwaIifp57qjpFhaRFbbwLJKHS22cbv1KFY6CtPcMa8n7KTnhct8mRnMw9TmiWOQJmhr8MOc5cyb6qCoqT7nPnzix/XUfy84AW+bDbnZ9myakFRRDBkR3qlqSUSVq+uLkwak9/j/sc+OH3hTzv0MQk5G/aK/cXmqZK/9X7r//1f+Otfq9ctWOBCa8qUJA0iSxHnp6j4mTbNr1OrViXbpMWPwl4+l9aZZvZVPNfnotRruwEjHOA4+oxGzs/48T7scs2a6oJSadInFTSe93PbbXDppV7xMyZVRq64Aj7yEZ8Mb6R3hUWdn/RJVuSCfNll8Ic/NN6emKD34Q+7S3DyyR7z/9nPfHRU7JDTyc5pJk3yvCSonfg8d27y+Je/TB5H8XPggb5sp/Oz226+HG56ht//3jvir361uc+pxZVXusVeZud49dXJ47LFz6pViVuw887J+rTzU1a9nxUr4MgjfXnggYkjsP76vixL/DzxhN8IrFw5Mucqe8NVdNj6P//pyyOOyH+fomRF00jCXlBbJGSfx3OwnvhJO/QbVWa5HM75gUT8ZMOc998Pxxzjgjh9vMV8n912gzE1rs71nJ/olk2d6svhxM/66yfh9jlz/Fh9/HG/qd1sMzk/AB8Dfgu8EhdC6ZqVh5JMdSEyDJf3k3V+8sTPqlV+gc+7o0oLjPe9Lzkhn34ajj8+eW2kVYiLOj9FxU8IXqPmsMPgv/6rfmgwjyhMDj0U3vte+OY3vePYf/+kRP022yQXmjxi6Ov88/OLoaWdn9mz/cK6aJF3XBMnJsXUioifP/wh31UYrbDXuZXKXF/6Urn5ZF/9Kvzf/3kIcqTVfSNXXZU8rpcv14z4iRWht946uUCAjxTacksXW1de2VSzqwgB3vlOF3Kbbgo/+lHyWq0LYrOk3YOsk9AI8eIfE+6LCNpVq6prJqXfp9nPjwwX9gqhvvipJRKy4mc45+fee6v76alT/Ttatqz6XIp9bFr81BK6sf96/PFEPEIifmrl+0D9oe6NOj8bbJA42A8/nLRr2jTv6/te/IQQloUQjg8h7BZCOLYy71Z8bZ8Qwsdb18Tupl7ez1NPuSM0eXIikvLEzznnuLD52MeGvkfseAYG3DI95RR//tGPVlvg9XInihDFT3Yk0pgxbuWH4Hcw6ZNs7lzfxywh+L7EyflWr66fe5NHdH7SScLbbusXm298w0/+N7yh/nvstZfnCsyf785IltgRxIvVr36VhNOe//xkpMRwnfRjj/ls0wcfXN1Z1nIhGmGnnfz7v+ee2jOFP/NM4q4tXOhipSyiIF+40EfIjHTajUcfrR5JV7bzU0tsmiU3C9/7Xv5n/fjHxV2hT37SQ7NrreUJz1ttlbxWtvNz3XXJ42zdmkaIF/84mikrfu64w3/jdM7b3Xcnoyp33NH7h3nzmhPYWfEznPMzf773L+uum6QYpGmV82OWhL7S7k895yf7W6f/7/LLk8fDJTtDOWGvGIlYf/1E/MyZk1wz4vE6fbr/po8+OrL6TZ1I4SKHAGa2vpm9xsyOrizr3FcLqD/cPZ5QM2Yk1TTzxE+8oMQh0WliuOPMMz2Uc8EFLizOPtsP2le9yl/PEz/XX++2a5EZsWs5P+l1q1cPPcmyFVQHB71q6Ze/7P934om+/oc/LJ6PsmqV749ZdXwdXIy9//3eKX7xi/Xfx8yHvYOH37LEziwOT/7Vr5KOf88969+BpbnkEnfGli+vvjO/917flxkzkvdqlMmTvUNevbp2nZsrrvDPnjDBn3/jG+Xk/oSQiJ+3v90dlaOOGv57j6xePTQXLh3ygvriJ4ZlZsxIxM9wtX7SxQ2zHHecnzOXXVZ947BqFbzmNfCOd/ikuMNx3nl+Pg4MeLg0G3ot2/lJO263397c6MMQkov/S1/qy6z4Ofts/33SU1jE8PLMmdUDNprJ+8k6T8OJn3jjsMMOSf+Zptb5GUVDDF/dcUf1/kfxE1MRHnggEdVxXV7oqxHxk84XSt94DZfsDOUmPGfDXvF3i7/jwEByTRpp9e5Oo7D4MbPPA48AvwF+Ulk+Ymant6htLWW0ZnWvV+gwWonxDgOGJjw//HBywbz//qEnUbxrOfxwOL3yS3zpS7489VSvHAz54uc734GLL/ZiWLEOSS3qiZ906Cu7n9lwzJlnwve/7xfiSy6B737XO4t//7t4suljj3lntemmtWvipCsi1yNemPIs/tiZveMd3pn84x9J7s+eeyZhk+HEz8UXJ4/TIZ2Rhrwiw4W+4kziH/uYf2d33DFUZDTDokV+N7j22h7W+frX/SL08Y8nBRhrsXChnxsx7yoS2xXFTFHnZ/p0D0U+/nj9i2a973zTTZMcjHPOSdafc06SWPvd79Z+70g8/7773eTmI02Zzs/y5XDTTf69P+c53vabbmr8fWKNn7XX9mMbhp4T8X1nzUou0jFkEwv/RcegmdBXvPDGENZwIi6vuGGa4cJe223nv8VTT7mzkRU/kyd735QumBr76ryk50YSntOi6cYb/fmqVUluZszly6Oe81Mr52f+/OobnrT4SYe90snOkZGGvmIh306jaIXnU4BPAOcDBwI7VZbnA58ws5Nb1cBup4jzE+8mwA/WSZP84FyyZGgSc3pY6VNPeWhm0iS/+z3llCQP5bnP9YtdLLSVl/MTQ0dLl3q8/tvfrr0fjTo/MYyTvSBHF+v88z0UNDCQTC75wx/W/vy8djdaFyePWgnma9YkgnGbbTwvCZIaP0Wdn4ULq0VdK8VPXtLz6tU+Zxj4UOs4V1AZU2KkO0ozP/6i6HnPe/JDiZEbb/Rj/KKLqt2w+P286U2+rCV+Vqzwi82YMX4cjBnjhd2gfuhruO/8vZVyreee65+xaBF85jO+btw4FwD1xEW6Vkx6fqc0ZTo/N9/sF83ddvN6VNBc6Cte+LfZJumP0nf6K1ZU9z3f+pYv084PJMJhJM5PvPAP5/zk3TymGS7stdZayXFw223Vxf0i8b0HB337GF7LOj9xtJRZ0udDInSzv3VaNIXg7uzddyfTWqTz0bLEYo7Llg0Nw2adn0mT/L1WrkxSEELIFz/psFda/DQ74mv1ap/sdrPNkv6zkyjq/LwL+GYl72dWCOHuyvJ44Fv4TO9dxWjN6l4v4Tmb7Ax+8sQO5IEHvFggJBf6dIG92JHvvLOLiIEBFxfHHecXlfHjE/GT5/zEnJZjj/WT6OSTPVchjyLOT1r8ROs8fUF+5BEPO6y1VpIcCZ4YauZhpSIXhDLFT7xwP/xwddLzvHkugDbe2L/HWE0ZvP077JB0MPXuUC+7zN/nRS/y7+mmm5LtyxI/8WKR5/xce61/pzvs4PlBJ57o+/Pb3448iTHvYnHccV52YM0aeP3rq5M500QnBRLH8qGH/Jhfd93EsawlfubM8U485iRA7byfwUF/n5tu8lDjwECybZZ99/UbhwUL/Hj83Of8+zvoIM+7g/ycoEi6Vky64nCaMp2fmO+z775+jMHIxM/WW7sAMvPfI573t93m50e86F9wgX9HtcRPM85P/J8Y8hmp+BnO+UmLnz//ubrGTyT93jHfB4Y6P/Pm+fG4ySbVbvRwzk/M7fn974slO4ML/XhsZfNwsuIHhkYfli93MTtxor9POuxVlvMzZ46PcPz85/17ufrqzqtFVlT8bA3UCoz8rvK6yKFewnN2mHskuhFXXul3dlOm+JBuyBc/6YvnjBl+1xqt4FriZ3AwsWm/+113Ysw8XyOv+FoR5ycd9oriJ8bTIZlI9MADq+et2morv9itWFEspyKKtjLEz4QJbm0PDlbnecTP2GILX7761UmHs/vufgEt4vzEkNfb3+51UNas8ckjYXTCXpdc4ss4DHnjjT0vJ4T6Tl8R8jpK8A7vqKP8IvOa11TPGxSJ+Rrgydg33ZSEvPbfPzlua432Soe8Inni51Of8rvfTTZxV3Rw0B2iOMFoFrPE/fnc5/zcGDPGQ3rvfrevv/DC2qUrsgmjeZTp/MR8n/32qxY/jeZ0xe9z6639u5k2zc/5uD8x3/DVr/bE/RUr4NOf9n3YYIMkz6VZ8fPMMy5Qx41LfsfRdH5++1tfZmvrZMVPJJvwnJfvA8Pn/MScwz/8IblRqJfvE4nCLr1vIRQTP+lkZ0jSBxYsSM6dPPFT1Pn5859dDF93nYcAY0mQn/yk2P+PFkXFz0KgVhe9C0n1Z5GhiPNTS/ycdZYvDz3U7+wgX/zUiw+nxU+6Q5w3zzu3DTf0zu4tb/EDNd4lZ2k07LXHHl5EcOHCZN0VlYII8a4+zXHH+TImPi9d6i7WuecO7cjjxTQKk5Eyo1KfPB36ynZmkyd7xw9J4cThcn6WLPF9NvMh/Qcd5Ouvuso7+/vu8++ulgtRlO23987rgQeq2xJCku8TxQ94Qjh4ns5ILsC1xI+Zv/dLXuLH3Ve+MvR/o/iJI4tOPz0RPwcdlIQXsrkKkSLi569/dSG2cqV39M99rl+4v/a1+vt11FGe+3L33X5MH3ec/+9223lo6dlna9eGyiaM5lFWkcPBwWrxE6dVWLSo+CSvkWy+SzwnYh8VQ30veEFy/MS8qOc/P3FEmhU/6e+tyCjKEMp1fuL3FdsfSb93+nE27JWX7wPDOz8vfrEfw0884TegMLzzA/k3XitW+M3VhAnV7lNW/KRDXuDiPval9cJeRZyf1au9ftGTT/q5dsstfg6C718nTYBdVPxcApxeGeU1FsDMxprZm4HPAb+q+999TC3nZ/lyP2HGjh3aUcYOPZ5Qb3yjF+4bN8475HjAF6kOPHWqnyjLl1fPzJt1Nuq1FYqFvVatSu5oNt64OhwzOJg4Py9/+dD3OPRQ71DuuMNPmuhQnHBC4pREygx7QX7eT973c9pp3s6TTvLn6c417wJ9+eV+4d1vP/9u4x3Q1Vd72CcEd+jqzd5ehHHjkiTRdDHLm2/2/Zg2LUliBb8re+lLvd1xX5ohL+wVmTAhCaFmJ1WERPycc447M7/5TeJSHXigf7drreUdet5FcDjxMziYlH049VQX4bfe6on9Bx9cf7+mTElqQE2dmoTlIHGFzj47f9h7EeenrLDXnXd6Hsf06Un4ttnQV62RTlnxs9defv7uuGNyzMeQV/r/mxU/W23lwhPqOz+xAvV669Wu5VXE+dlll+rX6omfPOcn9ne1nJ/hcn422ii5qYr9bhHnJ2/f4nmSHTk6nPiB6r50nXWS3wD8Oxkzxn+jdGXsPH73O88vfc5z/JzeaCM/Jrff3vcvXgM6gaLi5+N4XsxPgOVmNg9YDlwA3IonQ3cVozXaa6ONvFN64olq1RuTCbfeeqigSJ+A66zjd5sTJrjICcE78RCKh03yQl95AqKeSxVryNRzfmKezHrr+QU9HY659Vb/DqZPz3c6xo/3OwZwC3j5ct93GDoUv8ywF+SLn7zObNddvZp27ATHjfPfZc2a/FBhnBIj5gvts4/v5z//6bk48T3LIC/0FV2fww4bWi32+99PKmLHvLJGqeX8ROId7G23VQuFBQtcjKy9tnf0sdzB0097CCXuS9r9yRJ/q+hQQHJc3Xuv32XedJMf+x/9aOP79uEPu2j9/vera8gcfLBfoO+/H/74x6H/V08QRsoKe6XzfSKtED9PP+1ifdw4/03NPD8wkhY/m2/u/cHjjzc2d1n686OjWk/8DOf6wPBD3ddaywVA2q3Jip+04Ek/ruX8FA17xf/bcMNqMV5vWos0ea5WXsgLiomf9DmcPZ8nTPB12YmE84hu4AknJH2OWdK3d1Loq2iRw6eB/fFqzmfhVZ7PAg4BXhJCGGawb/8ydqwf4CFUZ/hHaz6OUEmTPvgPPzypzxKHZf/jH965LFrkJ1fWas2SJ37qOT954idegPKKiUXxEzuA+D7pC3I65JVXkwP8InXssT5U+MEH3WmBoVNzlB32yqtjkff95FGrg12+PCleFkNOkyf7xSmEJGm2XsiyEbIjvtasSfKN0iGvyHbbeR4LeC5Lupr1okUetx+uoN9wIZ6NN/Zjb+nS6u82XZXXzIVGPMYPOCDpNOuJn/h+6XNlnXX82Fu+PAnNnHFGczWUttjCHcejjqpePzAA73qXP85LfB5OEEJzzk8IHkqMghaqQ16RZsRPvRo399/vzl0ILnzi73T00cnNSXr+vIGB6gTaoqQ/P7oO9cJeeYNFsuTlxaSfx9fTNyBZ8TN1avJbpqtIZ52fvOrOkC9+YmXoiRO9DQcemHyvz31u7Wkt0uQ5P42Knw02SLapJ34gOR7qhVMfeshvXNM3spGjj/Zz/de/zi982w6G/ZrNbLyZ/QN4eQjhtyGEj1ZGfX00hHB5CN0wVeJQRmu0F+Q7KnG0S3Y2Yqju0N/4xuRxWvykQ161xESkUfGTF/aKJ3d8rzQx7FVU/NRiww29QNxHPuJ3znG4fFr8rFzp3+OYMfltaYaizk8etfJ+rrjC83r23LO6M4mhr3jnWpbzkw0xvutdLjI23jiZtyrL8cd7QvJTT3kto8cf9/IIW23loY10uCfLs8/67zAwUF98R1cgPUw6OyXB5psnQ/APOyzZLoqfPDGeF/aCxP156ik/X2JCaZnE0gx/+tPQIo2NOj9Fe88zzvBRkUcc4TlIy5cnzk9a/Oyxhzs0d9xRfCbxhQv9IrrOOkm+Tdr5icnOceJS8Avs737nAxSyU0tkQ18huLt3wgm19zdP/IyG8wP1xQ94RfQLL6zuK4smPEeBuHhxcqxEwbThht53T56cTKxbJOSVbnszzk824RmqXfS8Yze2q16Zh/PO89/3da9Lvp/Illt637dixdDyLe1iWPETQlgJbINmbm+aPFERLwB54me99fwObrfd4GUvS9anxU8jI4XixSld66eRsNczz3hHNGFC0nGnic5PfP+4vzGefvvt3lGbJaPAihDFz+zZSaf56KP+ONrrZZCX8DxS5yeOHnnta6vXx6TnSNlhr9tv91yXH/7Qc2l+8YvahSDNfLsNNvAL+RZbuOsW9+UrX6k91Dz9/dQrKBnFTzp0mTcT91e+4jlKb31rsq6W8/P0096BT5xYXVMFqkOqX/96sbvoRtl4Y7/IrVgxNLelSMLz+PF+8Vqzpti8cBdc4HlLZn4Onneei5wHH3ShkD6GJk70BOQQ4G9/K7Y/WdcHqhOeo/iJNcQi++5b/XtFsuLn2mu9/tO551aL4DRp0Thxop/bK1bUzjGpNVI2Ta2E5/g8vp7O+8m78O+7b/VNKCQX94ULq0fOZm8EBgYSARQdjyiYYugMPPdu3XWHfk4t8vqdbIHDyEjDXpAI7PRUKmlWr/bjEpKK+FnyQl/pmkOjTdGu4U9AnXt2UY96zk/ehHzglvY//1l94YqW6OzZyTQLRcImIw17xf/bbLN8l6mW87Phhr7vzzzjndiee1ZbrcMxbZp37gsXJndLZYe8wPdrwgT/jJi8XNT5qVXrJ/5/9vfZay8XJeDLIvH9Imy1lXfm8+b5EPbx491iruX6RDbdNJn0dM0aT+j+29/cEVq2zB2HPIpc5KG+85MW/gMDfkFPH1/p6rRp0sOys8djrDT8utf5kPlWEduerle0eLH/TZo09M43S9G8n1mzEqfpG9/w32a77ZLPjfWj0jQa+soTP+uv7xftpUs9BArVzk89suLnm99MXquVX5Zug1lyAa8V+mrE+Ska9tpww2TdcIwf733TmjUuaur1F9kwZ9r5iRxyiL8eHaDhyAvptSrnB5K8shtvzJ8EOp3oXKvPee1rvd1//SsceaRfD9Zbz0XgcInUraCo+Pk28GYz+6qZ7Wdm25rZjPRfKxvZ7WSrPKdnI85zfsA7gGynNnmyb79mTTIXVRHnYKRhr3ohL6id85NtX72QVx5mQ0NfZY/0AheU6bL8Tz7pYYW1165faRVqOz95HQy4yIp3UbE4ZRmMGZPcwY4d69NwFP2+jzjC785vv90Tuvfay0WPmY9qyktyLDKqCZKk53phr1rUcn5qhbzAhcKFF7Y+sTKet+mQbPo7GS4UXSTv5667POdv5UrPYTr5ZP8+b745SaI/5JCh/7fPPr688cZhdwPIFz9miauyeLEf58P9XpG0+HnwQT+mIhdeODSXbPly73PGjk2ck+FCX0XET5Gh7uCi+53vTHIMixKdm/vv98+YNCkJG6bJ5v3kOT+NktfvFBE/2erOkXR/mid+NtnEhc2yZflzQcbK7iecUPvYT082HSeJXrzYf4e8GQhaTVHxMwuYDnyw8vge4N7Mn6hBVlTMnesH0YYbNuaEQBL6iidwM+InbdOmxU+tsFf8v1q5HbXCXlDtfDQqfmCo+Cl7pFcknfdT1PWB2jk/saPLCxPG0F+Reh6NcNhhLpAvuKDxcvIvfnH1sfTc5/q8WytX5l8UiiT2gl+cJk/2323hQr/QPfigHzP1QhbQnPiZMMFDB0Xv4Jslz/kp+p1AMefnE59wV+Hww6trE62zjldwnzMnGXqfJg6iSCex1yM9tUWa9O+zxx7FhXpa/HznO97fvOUt3tfMmTNUlMXvbfr0pC+pJ34WLfLza8qU/AEYkaLOz8CAh3/zvst6ROcmVmaeNi3/wp8VP3nOT6M04vxMmeLn4LPPupOWl/CczveqdUMTb9qypUceesgrVOclOmf50pc8xP2Tn7gDNH++C6C8XKtWUzRr4h0tbUWPkxUVw7k+9dh996QK8rRp+RfXLNn5vebPd+tygw2SEAzUDnsN5/xkw17pPIx4QV1rLdh77+HbmqWW81Nm2AuqR3zFDrjIZzTq/IBPk7ByZfnJuJ/4hI+cqpXj0yif+5znDP3v//r7xt8Cioe9BgZcSN14o98xbrCB331uu+3w7ayV8Jw3zH20id9FWvwUSXaOFHF+4jH/uc8NFR5mtW8AYp9QdFRNnvMD1eInm+9Tj7j/99yT7MMpp3j/8dWvuvsT3SnI/97qDXdPuz71HLbhEp6bGQWYJoqX6ITUulkaLeenVs4PeN/+wAN+LtXqm773Pe9fa/V7++3nIw6vuw4+8IFk/Y9/7Of0a187vKDbaCP47/+uv81oUUj8hBA6aHR+95F1fuqN9BqO6PxA8WTZ6NhEB6eWe7Leen5BWrzY7xLiFABFnZ/Y2aadnwMO8Pd505uaK+Y3GmEvqE56jndVRZyfvJyfEOo7P5Mn+7QLraAs4QN+8Tv+eA99nXpq9ez0RcNe4A7XjTd66Ct+p0VCKLWcnzjMuax8qWZIh71CSObCgnKcn8HB2o7McMQ7+DLFT9F8H/DfeGAgGVW0zz6e32Hm4ucXv/Bk9Cjo8j6/3nD3IiEvKD7UvVmieIkh3Vr9Y7bQYRnOTyND3aFa/OSN9gJ3euuRTnqOx3wIfnMESW5at1Az7GVmY8zsv8ys5iXWzHYzsw6cr3V4RqvIIQx1foZLdq5HuqBYUfGzzjouQJYu9b9a7olZvvtTNOcnkhY/M2a46Dv77GJtzdKOsFfRkV5Q+w5szRrvXEdavbndxLmxLrmkOvenkQt9esRX0XwfqC1+Zs/2ZTM3D2Wx0UZ+8Xj66eT8aEQQDuf8PP64j3bKTrRZhLXX9nN5yZKhQ/GzhJA4adl2p521RsTP2LHV52esubT77i5Y5s3zRO5IPfEznPNTj1qzn5clftrp/DQy1B2q+/V6rnQ9ttvOz8n585Pf4Prr3S2fNm3oSNZOp17Oz1uBnwHL6mzzNPCzyjQXogZZ52ckYa+1105i+kUL5JlV5/3Uu7jniZ/0aK88spZ8Ng6/zjrNOxLTpyejmBYubH3Yq4ycn9i5FAlJdjqbbZaU3//d73w5OJj8Do2In1tuaezYj3VQFi5MqqMvXeoXy/Hjh7/4tZJ0Mn68mSnT+amX1zQcY8Yk4iE9pU0eTzzhozHXXXdosu6OO/p7TZtWTNCliUJm2rSkyKaZO8CQjPoKIfn+0uKnaNirHgMDSVg/Pft52c5P/I6Lip/01BbN0kjCMyT9+oMPuqs/fnwiDoti5rmBkAx5j67PW99a3uCN0WI48fM/IYQHam0QQngQOA8YJs2p8xjNIocbbOAHxqJFnusxEucH3F7cZpvGEojTeT/13JO8EV9Fw16QuExlMWZMcqG85Ra/6xg7dmh9l5FSpvMTO7lG76w6lTiiKIqfBQvclVh//WKuxG67ecd5553JXXKRY39gYGgxuegA7rBDuSG+ZsgmPTfi/Aw3uWmtUFRRiub91PuczTf3elWXXTb86LUs8bs56aTq3ymKn1/9yqchOeSQpGp1usBfGWEvyA8Ple38RBp1flqV8Fwr5weSY3WDDRr/TaE66Xn58qRgYSuKibaaeuJnd+CKAu/xZ2DPcprTmwwMJCr/nnvcxZg0qdgdYh4f+5hbjY1UOE7n/dRzT/JGfBVNeIbqkFdZxDvsOCne5puXf5ex3nre4S5dOryNnSYv56eXnB9InJ84G30jDgd4R7399u7exM636Ez22aTnGPIqqzjkSEjn/axc6edJdEqGY7iw10icH0hcnOGm0IjT7NQSbK9+dXWeYVE+8xkf0ZNNbt1lF//tFi3y7+/yy/2G6Yc/TGo0QTlhLxgaHorz8JlVD/ZohqxzU+t3r5Xz06qE53rOTzz/mr0xS+f9XHaZu1577lk9GKJbqCd+pgJFZp95srKtqEMUFddc48sddmhN9dlaNBr2is7P8uV+9zhuXO1h+Wnnp5XiJ04kWXbIC7wzjDkO0elqRPz0svOz6abewT37rM9I34jDEUnnqm26aX49lDyyeT+xsnl2Nu52kA57zZ2bVB4v4ki1MuwFxZOeL7rIl8MVw2yUTTZxNyCvCnt0f9as8bov//qX19lJU0v8LFni4mHixGI3f1nnJ4a/Jk9uzvlIk3Vuajnjaedn9Wr/zc1G1j80MtQdyhM/M2f6Z997b1J+oRtdH6gvfp4AinRvW1a2FXXIip/RTtbMEz/1wl7xTnu46s4weuInjqooO9k5kr7QjB9fzJbOEz+95vxAEvr67W8bq2cTSYufRsK9WfHTic7Pv/7VuCAczvlpdqRXpEjYa8ECd14GBoYf6VMm73+/u9eXXw4//3m+iKlV4TmO9Nt228YmAI3nZ1khL2hO/KSTjUfiXjeb8zPSG7OxY5OSJTfd5M+jmO026h0+11Esl+ftlW1FHeLBF0c5tEv8PPJIIn7ynI1s2Gu4ZGcYvbBXZDTEz+abF+tc8xKee835AZ/uAjzvp9GwF1SLn0aO/ewUF53k/MRk/PnzfSoaKP6dFHV+ms35KeL8XHihOxGvfGX5OXT1mDIFzjwzCafmUcv5aSTkBUMdkjLFTzpstdFGtUd2psVPGcPcof5Q93o5P5GR9E0x6Rm8XxhJ+K6d1OvevwG81My+bmZDflYzG2dm3wAOAr7emub1DrFzicluzSY7N0sUL7fe6gUO118/P9s/G/aK+T71Zu5utfOz9dbVSdStCHtBtfgp+hn9kPMDnvexySaeL3b55b6ukbBXupp1s85PnEOpzDnRRoJZsi9/+IMvy3B+Vq9uLrSYpkjOTxyp04lhi7LETyudn3XWSfq+eiHytNAtY5g75A91L5LzE2l0ZoE0Me8HOvPYKUpN8RNCuAH4EHAyMNfMzjezL1T+zgfmAicBHwohFJxFpn/JHnyj7fxE8RJHy9RyT+qFvWrRaudnYKD6gjkazk+RfB/oj5wfcBfs4IP9cbwANeL8bLZZ0uE3I37mzauu79Mpw2qjKxkd3aJiZZ11XDwtXjy0Fs/cub5u882bHzk5nPPzr3/5HGFrr+2T2XYatYa6N+v8tEL8mCUOTr3+Yu21/fxZujTpT0fq/KQdrRD8cb2w19pr+9QvkZH0TS98oQu6adMSR7gbqWvshxC+ARwI3AQcAXy88ncEcDNwYAjhmy1uY0+QtpXHjElq9YwWUbzEE6WWs5ENe3WC8wPVoa9WiZ90UbdGnZ9ez/mBoZNoNiJ+zHxizv32S2aILkLa+emkfJ9IvIlZscKXRb+TMWNqC5SRDnOH4XN+4hQ5r3/9yEc9tYJaQ92bdX5aEfaCRMTU6x/Tv/W9lVkwR+r8DAy4MA7BB6WEUF/8pAvYwsjEz5Qp8I9/wN/+Vi2ouo1hsxpCCNeGEF6Dj+jatPK3dgjhNSGEv9T/bxHJVj0e7YNmgw2qR6HUurivu67Hrpcs8ZOqiPMz2uKnVWGv9MWmqPPTLzk/AC9/eXIMjR/f+G996qleH6SRC09a/HRSvk8k6+A2Eqaqlfcz0pFeUN/5GRxMxE+nhi1qhb3SCc9FyDo/cVm2+Bmuv4i/dRQ/I3V+oPrG69ln/XedODF/hB2UJ37A+8qifWSnUniwdQhhMIQwv/I3TNF0kSXt/Ix2vg+48k+3oZZ7YlYdauiEsBck4mfcuNZ9xqRJyXdUVGClO9foqjVbPr7TmToV9t/fH0+fPjqlGtIJz9H56STxk03Gb8QNq5X3U6b4ycv5ueYaD61tvXV1/kYnkRf2StdSatSZbZXzE4/P4doTxc899/iyjCThdOirXr5PpEzx0wsUndW956jM6RWZ2erPSx947ZqTaPPNi00Psemm3jnOm9c5Ya+YMDtjRmsvurvs4snez3lOse3HjvW7rWefdads8uT6k5p2O4ccAlde2XyBzkZJOz/Ll/vjTgp7zZjhLtjKlf575420qUUt52ekw9zT753n/KSnJBjNWmONkB7qHifRfOQRfzxtWvHq3rUSnkc6o3vk5JO9LYcfXn+7KDbKFD/pfYs3XkXFz0gSnnuFvhU/o02cMX3VqvaJn7R7U0/8pEd8NRL2mjKl8fliijJjhtcEafUon/POg9tuqx6dNBxTprj4WbrU979XnR+At78dbrjBl6PBWmu5I7d8uf9NmTJ6wqsIY8d6/t7s2Y2PzBrO+RlJzk+tsFcIPkktwNFHN//+rWb8+KE3Fc2UWGjlUHfwGev32Wf47bJTXJQZ9konPcv5KU7fip/KnF7Af1ygkmucVjNmjB98c+e2J+wF1QKmXtJwPEnmzPEL+dix9U/WGPZqlesTecMbWvv+4BewRi9iU6f6ENalS72Te/ppv1ONeQu9xLrruggdLWIYNl74dtll5JV5y2annVz8NCrKRiPnJyusFi/2UNJaaxV3N9vF1KkufpYscfHTzPD/Vg51b4SsC1xm2Gvp0mTW+nrOo8RPNR1qevYm73sf/Nd/wR57tOfz0+KnXrJazHuJFZU33bS+PR6dn1aLn04lXesn3mmvt17nhhS6jRj6gs7K94nENjXq1ORNbrpihYeaBwZGNqqxVtgrjuIczaKGzZId8dVMZfFWOz9FyYqfshOe6430isT+edy40d//TqRvnZ928JGP+F+7iOJnvfXqH/zxJIlVa+vl+8DoOT+dSroT6uV8n3aRFj+dlO8TOe44DxG/972N/V92wkvwC3wILnxqjdopwuTJ/v/Ll7ugiqNLo/jphnM1O+Irun/d6PxknZayE55jragi4mf99TvPPW0HEj99RBQxw91RxpMkDi0ebgLB2El3w91kK0h3sFEIylYuj/SFuhOdny22gO9/v/H/y3N+ysj3Ab+4rbuuh2MXL64ewQndKX6acX46Rfykb4YmTSonNzK9b6tXV6/LI9YxG+mx1StI/PQR++zjcyy99a31t4siZtUqXw4nfmLHOtqFGzuFdK2fGHuX81Mene78NEtewnMZ+T6RKH6efLI7xU92uHszzk8nhr3KmgsrvW9R/NTL+dlyS/jTnyR+IhI/fcS66yahrHpkO8bhwl7HH+9Fxw48sOmmdTXpnJ9nn/XHcn7KI1641113eCHeTeQlPJcxzD37/um8n24SP+mcnxB6x/kpI98Hqvct3qgON4T/ZS8r57N7AYkfMYRsxzjcBWfixGTep34kb4oLOT/lEcXPrrv2Vq5CPeenjLvzvOHu3Sh+lixxB2v5ct+nRkZR9rLzkx7qvnJl9ToxPBI/Yghxiot4Qg3n/PQ7afETvzM5P+Xx0pf6fGDveU+7W1Iuec5P2WEvqBZX3SR+0mGvZlwf6BznJ90flB32Wro0Kfoo8VMciR8xhDgJXqwG3UuhhlaQzvmJnaucn/LYdFO47rp2t6J8Wp3z00thr2byfWDo7Oed4Py0IuwVxU8jFcb7HVUiEbmkO0eJn/qkO6Feru4symXyZD92li/3astz5sCCBe66lnHO9VLYq1nnJzv7ebvEz5QpyUjQViQ8F6nzI6qR+BG5xBFfAwPlnay9SjrhWXV+RFHM4Dvf8Yvz+ecnw/i32qqcAplZ8ROC1yOC7hA/6bBXs84PVN+ctEv8mCV9QiucnyITm4pqJH5ELrFz3GST6lnbxVDk/IhmOeYYuP12OOCA5O69rPnrsjk/cTTipEndcZFMh72adX4g3yFpR4Xj2CfI+ekMul78mNl6ZvZbM7vHzG41syvMbLt2t6vbieJHyc7Dk875kfMjGmW77eDKK+EHP/BCdG96Uznvm835SU9t0Q2j5vLCXiNxfpYs8dAXtG4C5npEN72sPjVvegvl/BSnFxKeA/CNEMKfAczsZOCHwAHtbFS3E09U5fsMj5wfMVLGjPF6WccfX957ZsNe3ZTvA9Xip5kZ3SPRIVmwwJeTJ7dn3r2zzoLrr4e99irn/dLOTxSzcn6K0xbnx8y2MLNvm9kNZvaMmQUz27rGttPN7JdmttjMlpjZxWb2n1MghPBUFD4V/grkvpcozr77uj2uoljDk875ieJHzo9oN90ufqKLMW+eC5dx45qbQieen/Pn+7Jdk3rusQecfHJ5rlujE5uKatrl/GwHvAH4O/AX4BV5G5nZZOAqYAVwDO7yfB642syeG0JYlvNvpwCXtqDNfcXuu/ucQHEIpahNunNdudInkZw0qb1tEiI7d1i3iZ/o/MSQ1/TpzTk2UezE/e+VGc3ziqtK/BSnXeLn2hDCJgBmdhw1xA9wPDAD2CGEcF9l+9uAe4ETgbPSG5vZZyrbn9CidvcVEj7FiB3Oo4/6cr31uiOnQvQ23e78ZCs5N5PvA8n52WviJ1vDKL1ODE9bwl4hhMGCmx4K3BiFT+V/HwCuBw5Lb2hmpwIHA68OITxTVluFGI5oz8cOSPk+ohNIi58Quk/8ZF2MZvJ90u/T7rBX2Ywd6y7z4KD/vpMm+TpRjE7/qnYhP4Q1G3h9fFJxfA4GXhFCWFzrzczsmhovzWy+iaLfyXamyvcRnUAMvy5fDs88033iZ8wYFy4xrNOs89OrYS/wfVmxwh8r5NUYnT7UfX3gyZz1i4D1AMxsF+A0YANglpndYmY3j1oLRd8zMFCd4yPnR3QKafen28QPVIe+5PwMJS14JH4ao9Odn2EJIcwGCmVYhBAOyFtfcYReUl6rRL8RpykAOT+ic1h3XXjsMRc/3VTdOZKuWyPnZyjpfZH4aYxOFz9PUnF4MtRyhAqTCYHNHMl7CTF1alJHRM6P6BTk/PRuwjNUCx4VOGyMTg97zcbzfrLsDNw5ym0RoibpTkjOj+gU4rE4d67n/UyYMHQUVSeTbuv06c29RxQ7K1dWP+8FFPZqnk4XP5cBe5vZjLiiUgxx38prTRNCOCD+AbeM5L2ESHc8cn5EpxCdn7vu8mW3TG0RiW7Gxhs3XzsrKwp6Sfwo7NU8bQt7mdmRlYd7VJavNrMFwIIQwqzKunOBk4BLK0PZA3A68DBwzmi2V4h6yPkRnUgUP3ff7ctuCnlB4vw0G/KC3hY/cn6ap505Pxdlnn+vspxFZV6uEMIyMzsI+DrwUzyx+UrglBDCUkaAcn5EmaTj7XJ+RKcQhXi3i59mk51hqNjpJfGT3hfl/DRG28RPCKHoCK05wOta3BwhRoScH9GJyPkZ6oj0kkMi56d5On20V8tID3vXUHcxUpTzIzqRKH6WVWZB7Dbxc8QRcPXV8OY3N/8e/eL8SPw0Rt+KHyHKRM6P6ESi+Il0m/jZc0/4619H9h7K+RF59K34Uc6PKJN0vF3iR3QK2WOx28RPGfSy86M6P83T6UPdhegKYic0daomFxSdQ7c7P2XQy+JHYa/m6dtuWjk/okxix6N8H9FJSPzAuHFe3DFOANpL4kdhr+aR8yNECcSORyEv0Uko7OWkBU8viR85P83Tt86Pcn5EmcQ77A03bGszhKgiPT3E+PFDnaB+YcoUWLTIH/eS+FHOT/P0rfgRokwOOABOPhlep4pUooMYO9Yvik8/7VNEdNPUFmUi50dk6Vvxo5wfUSYTJsA3v9nuVggxlHXXdfGz6abtbkn7SAuDyZPb146yUc5P8yjnRwghepiY99Ov+T6QOCQTJ8LAQHvbUiZyfppH4kcIIXqYmOfTz+InCoNeCnlBteDptX1rNX0b9hJCiH5A4qd3xc/aa3su19SpveVojQZ9K3402ksI0Q8o7JWInl4TPwMDcNttKqzaDPrKhBCihzn6aHjoITj00Ha3pH1E56cX82L6WdSOhL4VPxrtJYToB176Uv/rZ3rV+RHNo4RnIYQQPU2v5vyI5pH4EUII0dPI+RFZJH6EEEL0NLHAo/JjRKRvc3402ksIIfqDww6DH/8YXvWqdrdEdAp9K36EEEL0BxMmwDHHtLsVopPoW/Gj0V5CCCFEf6KcHyGEEEL0FRI/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL6ib4e6q8ihEEII0Z/I+RFCCCFEX9G3zo+KHAohhBD9iZwfIYQQQvQVFkJodxvajpnNXWeddabNnDmz3U0RQgghxAi55ZZbWLx48SMhhC3yXpf4Aczsn8BGwH0lvN3MyvKWEt6rk5lZWd7SxjaMBjMry1va2IbRYGZleUsb2zAazKwsb2ljG0aDmZXlLW1sw2gws7K8pY1tGA1mVpa3tLENo8HMyvKWEt5rO2BBCOH5eS9K/JRMHEWWzinqRbSfvYX2s7fQfvYW2s/yUc6PEEIIIfoKiR8hhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq/QaC8hhBBC9BVyfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8h8VMSZjbdzH5pZovNbImZXWxmW7a7XWViZkea2a/M7CEzW25md5vZmWY2td1tazVm9gczC2b2+Xa3pWzM7GAzu9bMllaO3ZvN7KB2t6tMzGxfM7vCzOab2dNm9g8zO7bd7WoWM9vCzL5tZjeY2TOVY3PrnO0mmtlXzOyxyjl7g5nt34YmN0WR/TSzPc3sB2Z2V2WbOWZ2gZlt06ZmN0zR3zPzPx+rbHfdKDVzxDSyn2a2k5ldZGZPpK437y+rLRI/JWBmk4GrgB2BY4Cjge2Bq81srXa2rWT+G1gDfAJ4FXA28G7gT2bWs8eSmb0ZeF6729EKzOxE4FLg78ARwOuBi4DJ7WxXmZjZc4E/A+OA44HXAjcB55nZu9vZthGwHfAG4EngL3W2Ow/f508DhwCPAX80s5mtbmBJFNnPNwG7AN8CXg18DNgduNnMpo9GI0ug6O8JgJnNAE4F5re4XWVTaD/NbE/gb8AE4DjgYOBrwEBpLQkh6G+Ef8D7cVGwXWrdNsBq4IPtbl+J+7lRzrq3AQE4qN3ta9E+rwc8Dry5sp+fb3ebSty3rYHlwCntbkuL9/MMYCUwJbP+BuCGdrevyX0ak3p8XOXY3DqzzfMq69+RWjcWuBu4rN37UOJ+5vVLWwGDwOfavQ9l7Wdm+z8C5wDXANe1u/0l/55jgDuBS1rZlp69Wx9lDgVuDCH8Z1b4EMIDwPXAYW1rVcmEEBbkrL6pspw2mm0ZRb4E3BFC+Fm7G9ICjsUvEN9vd0NazHhgFS700iymS93vEMJggc0Oxff756n/Ww1cCLzSzCa0qHmlUWQ/8/qlEMJDwAK6pF8q+HsCYGZH4c7Wx1vXotZQcD8PAHYCzmplW7ryxO9AdgHuyFk/G9h5lNsy2ryksvxXW1vRAsxsP9zZem+729Ii9gPuAt5kZv82s9Vmdp+Z9dr+/riy/JaZbW5m65rZ8cBLga+3r1ktZxfggRDCM5n1s3FBuN3oN2l0MLOdgI3psX7JzNbDj9mPhBAWtbs9LWK/ynKimd1oZqsquXrfMrNJZX2IxE85rI/HMLMswsMmPYmZTQM+B/w5hHBzu9tTJmY2HreVvxpCuLvd7WkRm+O5aV8Bvgi8AvgT8J0yEwvbTQjhDvxu8jDgEfxc/S7wrhDChW1sWqup1y/F13sOMxuLu5kL8JynXuIrwD0kgr4X2byy/DlwBfBy4Mt4mOz/yvqQsWW9kegvzGwKnii7GnhHm5vTCj4CTAK+0O6GtJAxwFTg7SGEiyvrrqqMvvi4mX0rVILw3YyZbQ/8Cnc83oWHvw4Dvm9mz4YQLmhn+0TpfAfYB3hNCCFP/HUlZvZi3InevRfOyzpEU+b8EMKnK4+vMbMB4ItmtlMIYcSOnpyfcniSfIen1p1XV1OxHn8DzABeGUKY2+YmlUqlRMEngU8BEyphknUrL8fn5Y06aB8LK8s/ZdZfAWwCbDa6zWkZZ+C5L4eEEH4bQrgyhHAy8Avgmz08UrFevwSJA9QzmNkXgROAY0MIV7S7PSVzDu5kzU31SWOBgcrzjs/hKki9fgng+WV8SK+e9KPNbDy+nmVnPGu9ZzCzccAvgT2Bg0MIt7e5Sa1gBjAROB+/gMQ/8OH+TwK7tadppTJ7mNcLJ2F2OLsBt4YQVmXW/z9gAzw3pBeZDWxTKcWRZmd89Nt9Q/+lezGzTwIfBU4OIfy03e1pATvhzmW6T9oX2LvyuFvLNmQZlX5J4qccLgP2rtReAKASOti38lpPULlDvgA4CDg8hHBjm5vUKm4BDsz5AxdEB9IbF45LKstXZta/CpgbQnh8lNvTKh4HZlbyuNK8EHiWHnRAKvwGr230+riikg/zRuCKEMKKdjWsbMzsZODzwCdDCN9pd3taRF6fdCs+2OZA/Ka0F/g9sIL8fgmglPxS5fyUw7nAScClZnYqXrvgdOBh3KrsFb6Ld6RfAJaZ2d6p1+b2SvgrhPAUXj+jCjMDeCiEMOS1LuVy4GrgHDPbELgf/31fQW/lcX0HL9z4GzP7Hp7zcyheu+nrIYSV7Wxcs5jZkZWHe1SWrzazBcCCEMKsEMI/zeznwDcqju0DuDuwDfCW0W9xcwy3n2b2JuAbwB/wnLV0v7QkhNAV7nuB3/OanP95ChjbTX1Sgf1caGZnAp8ysyV4AeE98UKdP0mXlBkR7S561Ct/wJZ4UuUS4Gng19QpUtWNf8CDuLDL+zut3e0bhf3vqSKHlX1aGxe18/BQyG3AUe1uVwv289W4oF1QOT9vAd4DDLS7bSPYp1rn4jWpbSbh9VIex12uvwEHtLvtZe4nPvJp2O+i0/+a2Qe6rMhh0f0EDPgg7rCvBB7CRxaPK6sdVvkgIYQQQoi+QDk/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL5C4kcIIYQQfYXEjxB9jpm93cxCjb+Xtbt9vYKZ7WFmz5jZtNS6a8zsuhrbH1f5DbZu4DMON7N5lYmHhRA1kPgRQkReD7wo8/f/2tqi3uIrwI9CCI+08DMuBR4DPtzCzxCi69H0FkKIyC2hYOl4M5sQemhuqFZjZnvg8y+9r5WfE0IIZvYD4HQzOzOE8GwrP0+IbkXOjxCiLqmw2P5mdlFlPqG/VV4ba2YfN7O7zGyFmT1qZl8zs4mZ95hhZr+rhH0WmNk3zezEbFin8vy0zP9uXVn/9sz6l5jZlWb2tJktM7M/mtmumW2uMbPrzOxlZvaPyuffYWZH5Ozn88zsEjNbaGbLzexuM/t45bVvV8JJ4zL/M7Xy+V8c5ms8DrgthDDcjNU1MbPT6oQn357a9BfAusBrm/0sIXodiR8hRGSgImbi30Dm9QvwyTGPBD5WWXc+cCrwf8BrgDOBd1a2BaAym/qfgOcD7wXejk+ueWqzDTWz1wBXAkuBtwJHAVOBv5jZ9Mzm2wLfxOe4ei0eFrrIzLZLvd9ewA2VbT9Q2ZezgC0qm5wNbAxkRdNRwFoMP4Hxq4C/1Nmfsdk/hvbPP2RoWPJXwBrgnrhRCOEJ4F8ks2ALITIo7CWEiNyVeX49sF/q+S9DCB+JT8zsxcAbgWNCCP9bWf1nM1sEnG9mM0MItwDHADOAF4UQbqz87++B20fQ1m8Cs0IIh6XaczU+M/2HgFNS224I7B9CuLey3T9wAfQG4IzKNl8FFgJ7hxCeqay7Kr5BCOFOM5sFnIg7K5ETgStCCA/UaqiZbQJsDdxaY5N9gVV19jW2YS4wN/W+r8fF3CkhhL9mNv8nsDdCiFwkfoQQkSNIXVzx2c/TXJJ5/ip8xuVfVpyKyBWV5f747OkvAh6OwgcghDBoZr8ATmu0kWa2Pe7QnJH53Gdw92b/zL/cG4VP5bPnm9l8YMvK+03GBchXUsInj+8BF5rZ9iGEe83sBbibNVx4afPKckGN12/Fw2JZDqOGO2ZmewI/Ab4XQvhWziYLUp8rhMgg8SOEiNwxTMLzY5nnGwPjgWU1tt+gstwMmJfzet66ImxcWZ5X+csyJ/N8Uc42K4CYl7QeHmKam7NdmkuAx3G357+BdwGPAr8Z5v/i59RKEF8aQrg5u9LMZuZtbGZbAJcB1wDvr/Gey1OfK4TIIPEjhChKyDxfCDwLvLjG9o9Wlo8Bu+S8vknOuhW4oEqzQeb5wsry48Cfc95jZY321OJJYBCYVm+jEMIqM/sh8B4z+zLwJuBrIYTVw7x/bO96DbZrCGa2Fi62ngDeGEJYU2PT9VOfK4TIoIRnIUSz/AF3F9YJIdyc8xfFzw3AdDP7Tw6KmY3Bc26yPATsmln3mszzu4EHgV1qfO5tjexEJdR1HfBWM5s0zObn4COpLgImAOcW+IgHcZE4o5F2ZTEzwxPMNwMOCSFkw5JptsG/JyFEDnJ+hBBNEUK4xsx+huf8nIUXRBzEk3sPBj4aQrgHz035GHCxmX0CmI+HjNbOedsLgVPN7JPAjbir9ObM5wYzey9waWUk2S9wJ2QTYB9gTgjhrAZ357+BWcANZvY1PAQ2A5gZQvhPbZ4QwiNmdhmeH/WbEMLDw71xCGGlmf0N2KvBNmX5KHA4Hura3MzSOT3/DiEsgP+IpL3wHCUhRA5yfoQQI+GteNLykXh14V8CJwH3UsnpCSGsBF6OJz9/DxdDDwCfz3m/M4HvVN7j18BOwNHZjUIIl+OJzWvhQ8D/CHwZ2BR3mhoihHATnvT8MPBt4HK8SnJeHtBFleVww9vT/Bw4qBK2apYdK8tv4vuY/ku7Y/vgIbYLR/BZQvQ0FkI2jC+EEK2nUpjvf4BtQggPtrc1xTGzC3ChNCOEMFjwf9bGhdR7Qgjnt7h9ZwO7hhBq5WIJ0fco7CWEEAWo5CzNxGsbfbCo8AEIISwxsy8BHzGzC0KL7jrNbFO8rpIKHApRB4kfIYQoxg14Remf0Fw+zVnAAJ6w/Ogw2zbL1sCHQgjXtuj9hegJFPYSQgghRF+hhGchhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq+Q+BFCCCFEXyHxI4QQQoi+4v8DNs9Nqa0jVhYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "avg_cs_amplitude = np.abs(avg_cs.power)\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_cs.freq, avg_cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Crossspectrum` or `AveragedCrossspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the cross spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / \\sqrt(meanrate_1\\times meanrate_2)$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*. This is the default.\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times \\sqrt(meanrate_1\\times meanrate_2)$. See *insert citation*.\n", + "* `none`: No normalization applied. \n", + "\n", + "Note that these normalizations and the Poisson noise levels apply to the \"cross power\", not the cross-spectral amplitude." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 15141.07it/s]\n", + "200it [00:00, 12807.43it/s]\n", + "200it [00:00, 13023.36it/s]\n" + ] + } + ], + "source": [ + "avg_cs_leahy = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='leahy')\n", + "avg_cs_frac = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='frac')\n", + "avg_cs_abs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='abs')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot the three normalized averaged cross spectra." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAANYCAYAAACRv3nwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC6JUlEQVR4nOzdd5xcVf3/8dc7nXSSQBqEhF6CLBBESiCU8EVARBRBRIkKgvjlK4qFACKoNEUUQZT6Cx0EaWpApASpAoGQhJJQUiC9kd42+/n9ce4sk8nM7szu3Jl7dz/Px2Mes3Pvufd+pux85px77jkyM5xzzrmkaVPtAJxzzrl8PEE555xLJE9QzjnnEskTlHPOuUTyBOWccy6RPEE555xLJE9QzkUkjZJkkrav0PEGR8c7rRLHcy5tPEE555xLJE9QzrlmkdSx2jG4lskTlHMlkvRdSW9KWiNpoaRbJPXKKfO/kl6StFjSJ5JelnR0gV22lfRLSXOisn+XtFXWvv4u6Y08cQyRVCfpzAZiHRE1Ix4r6boo3oWS7pTUM6ds96jMbElrJU2R9ENJyrO/4yXdJGkBMC9aN07S85KOlDRB0mpJb0jaV1I7SZdFz3GxpDGSuhT1grtWyxOUcyWQdAXwJ+BJ4FjgJ8CRwGOS2mYVHQzcDJwAnAi8BvxD0pF5djsa2B74NvADYD/gzqz1fwZqJH02Z7vvAiuBu4oI/RrAgJOBS4AvR8syz6sN8E/gW8DvgC8AjwNXA5fm2d+1gIBvAKOylm8P/Ba4gvDcOwKPRs+hf1T2l8DXgV8UEbdrzczMb37zmxmEL08Dti+wfjCwAbgoZ/kB0XbHFdiuDdAOeAJ4JGd/BozLKf/jaPmArO0/AG7JKtMemAv8pZHnNCLa1205y68D1gCKHh8TlRuVU+5mYC3QJ2d/D+U51jhgPbBt1rJjo/JP5pR9EJhW7ffcb8m+eQ3KueKNJCSLu6Imq3aS2gH/BZYDB2UKStpb0j8kzQNqCV/cI4Gd8ux3bM7jSdH9IAAzqwNuAE6S1CNadxzQN1pejH/mOUbHaB9EsdcBd+eUuxPoQKjVZXuowHGmmtmHWY/fje7/lVPuXWCr7OZD53J5gnKueFtG9+8TEk72rRvQG0DS1sBTQC/gbGB/YB9Ck1mnPPtdnPN4bXSfXfYWoC2hSQ3gTOAVM9vk3FQBjR2jF7DYzNbllJubtT7bnALHWZLzeF0Dy9sRnpNzebWrdgDOpcii6P4INv3CzV5/JNAD+KqZfZxZKalzUw9sZosk/RU4Q9K/gEOAcl4/tRjoJalDTpLql7V+o5DKeGzn8vIalHPF+zehGWyQmb2W5zYtKpdJROszG0rakXCuqjmuB4YSzgstBe5t5v6yPUv4PjghZ/nXCbWdl8p4LOeK4jUo5zZ1pKS5OcuWmtm/JV0JXCdpJ8KX+hpga8L5pZvN7BlCD79a4HZJvyP0XrsEmEkzfhSa2ctRd/ODgGvNbFVT95XHY8DzwF8kbQG8BRxFqKVdbmYLy3isvCS9D8wws8PiPpZLB09Qzm3q2jzL3gKGmtn5kt4Bvh/dDPiIcM7pPQAze0vS1wndqR8l9MA7j9D0N6KZsd0P7EnxnSOKYmZ10XValwE/I5xPmw78CPhDOY/VAD8n5TaS6WLqnEsBSS8AdWY2vNqxOBc3r0E5l3DRUEJ7AYcTegR+sboROVcZnqCcS77+wIvAJ8BlZvZodcNxrjK8ic8551wieQ0qj6in1BaECzKdc87FZ3tggZntmbvCE1RE0rish7v26NGjQ01NzcBqxeOcc63BhAkTWLp0ad51nqDyW11TU9Nh3Lhx1Y7DOedatBEjRvDss8/mba3yBBUxsxGZv6Pa1MFVC8Y555wPdeSccy6ZPEE555xLJE9QzjnnEskTlHPOuUTyThKRnG7mNVUKwznnXMRrUM455xLJE1TEzEZkbsCEKodTdsuXL+czn/kMV1xxRbVDcc65oniCaiUmTpzIpEmTePjhh6sdinPOFcUTVCuxfv36xgs551yCeIJqJWpra6sdgnPOlcQTVCvhNSjnXNp4gmolPEE559KmRSYoSVtLGifpbUkTJZ1Q7ZiqzZv4nHNp01Iv1K0FzjGzCZL6AeMljTWzldUOrFq8BuWcS5sWmaDMbA4wJ/p7rqSFQC/AE5RzzqVEIpv4JB0k6VFJsySZpFF5ypwlaZqkNZLGSxpeYF97A23N7KO4404yb+JzzqVNIhMU0BWYDPwAWJ27UtKJwDXAZcCewIvAY5IG5ZTrBdwOfDfugJPOa1DOubRJZBOfmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkfbdQQeBq4wsxfzHSdngNhsNU0MPbE8QTnn0iapNaiCJHUA9gaeyFn1BLB/VEbAGOBpM7ujogEmlDfxOefSJnUJCugDtAXm5SyfB/SL/j4AOBE4TtKE6LZ77o5yBoht0bwG5ZxLm0Q28TWXmT1POpNvbDxBOefSJo1f4guBDUDfnOV9gbmVDycdvInPOZc2qUtQZrYOGA+MzFk1ktCbz+XhNSjnXNoksolPUldg++hhG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJNBa9BOefSJpEJChgGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFPCa1DOubRJZIIys3GAGilzPXB9GY85IvN3dH3UweXadxJ4gnLOpU0iE1Q15Fy0W1OlMGLjTXzOubRJXScJ1zReg3LOpY3XoCLexOecc8lSdIKS1ANYY2ZrY4ynaryJzznnkqWoJj5J7YBFwBHxhuPi4jUo51zaFFWDMrNaSfMIIzi0SN7E55xzyVJKJ4k7gdPiCsTFy5v4nHNpU0onienAyZJeBR4hTKlu2QXM7NbyhVZZLf0clNegnHNpU0qC+lN0P5AwH1MuA1KboFo6T1DOubQpJUENiS2KBGjp56C8ic85lzZFJygf5y7dvAblnEubki/UlfQZ4CCgN3CDmc2VtD0wz8yWlztAVx6eoJxzaVPKhbodCT35jicM5GrA3wmTBP4GmAqcF0OMrgy8ic85lzaldDO/FDgc+AZh9trs0cYfA/6njHFVnKRxmRvei88556qulCa+rwEXmtndktrmrJsGDC5bVK7sPEE559KmlATVG3inwLo2QMfmh1M93ovPOeeSpZQmvmnAfgXWfRaY0vxwXFy8BuWcS5tSEtTtwHmSvg60j5aZpEOAH+IX6SaaJyjnXNqUkqB+A/wTuANYEi17HngSeNzMri1zbK6MvInPOZc2pVyouwE4SdKfCD32tiRMwfG4mT0bU3yuTLwG5ZxLm5Iv1DWz54DnYoilqlr6YLFeg3LOpU3RTXyS7pP0XUk7xhmQi4fXoJxzaVNKDWor4FqgnaQ5wDOZm5lNiyO4Smrp3cw9QTnn0qaUc1AHSOoCDAcOBUYAJwFtJM0Enjaz78QSpWs2b+JzzqVNKb34MLOVZva4mf3UzD5LqGU8DWwDjIohPlcGGzZswMwaL+iccwlSUieJaNTyQ/i0BrUl8DZwHSFRuQTy5j3nXBqVMpr5TMJsuu8Tzj2dQ2jWWxBPaK5cvHnPOZdGpTTxDQDWEMbjext425NTOngNyjmXRqUkqF6EEc2nAd8BJkiaF3U/PzNp3c8lPSRpiaQHqh1LtXmCcs6lUdEJysyWmdmjZvZDM9uDcP7p+4TE9SdCrSpJrgG+We0gksCb+JxzadSUKd+3JnSSOCS6bQ1sAMaXN7TmMbNxkkZUO44k8BqUcy6NShlJ4kZJ7wPTgVuA3YH7gWOAXmb2uXIFJekgSY9KmiXJJI3KU+YsSdMkrZE0XtLwch2/pfEE5ZxLo1JqUJ8jjGb+DDDOzD6JJaKgKzCZMMXH7bkrJZ1IaMI7izCi+lnAY5J2NbOZMcaVSt7E55xLo1JGkvhMnIHkHGssMBZA0pg8RX4EjDGzm6LHZ0s6EvgeMLrY4+QMEJutpth9pIHXoJxzadSUc1BDCSNI9AIWE2pTb5U7sAaO3wHYG7gqZ9UTwP6ViiNNPEE559KolAt12wFjCF3NlbXKJN0NjIrmjIpbH6AtMC9n+Tzg8MwDSU8CewBdJH0MnGBmL2VvkGeA2BbJm/icc2lUSg3qF8BXgYuAO4G5QD/glGjdh9F9IpjZ4Y2Xah28BuWcS6NSEtQpwK/N7NKsZTOASyW1Bb5FZRLUQkK39r45y/sSkqbL4QnKOZdGpQ519GKBdS9G62NnZusI11yNzFk1ksLxtWrexOecS6NSalCzgQOAJ/Os2z9aXxaSugLbRw/bAIMk1QCLo27kVwN3SHoFeAE4k5Ag/1KuGFoSr0E559KolAR1F3CBpLro7zmEc1AnARcAV5YxrmGE660yLolutxE6Y9wnqTdwIdCfcM3UUWY2o4wxtBieoJxzaVRKgroY2JaQKC7OWi7gHuCX5QrKzMaxcU/BfGWuB64v4zFHZP5uaVO+exOfcy6NSrlQtxY4WdKlhC/vzQnXQf2nktdBxSWnm3lNlcKIhdegnHNpVPKFulEySn1Cak08QTnn0qjUKd/bEqaw2I8wu+4sQs+5Oyp0kW5svInPOeeSpZTRzLch1JxuAY4kzAd1JHArMDla7xLIa1DOuTQqpQZ1HdAdONDM6q83knQAYdqNa4Fjyxte5bTkc1Beg3LOpVEpF+oeCozOTk4AZvYCcH603iWQ16Ccc2lUSg1qBTC/wLr5wKrmh1M9LfkcVHaCMrMqRuKcc8UrpQZ1J2HEhnzOIM/Egi4ZvInPOZdGpdSg3gdOkDQJ+Btheou+wFeAboQZbb+dKWxmt5Yz0Li15HNQ3sTnnEujUhLUn6L7rYDd8qzPHtXBCL37XAJ4gnLOpVEpCWpIbFEkQEs+B+VNfM65NCplqCMfiDWlvAblnEujUjpJ1FNwq6RB5Q7IlZ8nKOdcGpU8Fl+kDXAq4eLdmeULp3pacicJb+JzzqVRk2pQkQanw3DJ4TUo51waNbUG1eK05E4SnqCcc2nU1BpUHWF224VljMXFxJv4nHNp1KQalIXxcr5V5lhcTLwG5ZxLo1Km29hf0jFZj3tJukfSJElXRXNFuQTyBOWcS6NSmviuAPbOenwVcBQwFfgeYURzl0DexOecS6NSEtQuwGsAktoTxuD7oZl9GbgAOLn84VWOpHGZGy2sm7nXoJxzaVRKguoKLIv+/izQBfhH9Ph1wC/aTShPUM65NColQc0C9oj+/jww2cwy80NtTguYDypzAyZUOZyy8iY+51waldKL7x7gMkkjCOeefpG1bi/gvfKF5crJa1DOuTQqJUFdDKwBPkfoMHF11ro9gPvLF5YrJ09Qzrk0KmU08w3ApQXWHVeugFz5eROfcy6NSrkOqk/u6OWSzpB0bfb1US55vAblnEujUjpJ3Aqcl3kg6efAnwndyx+RdGKZY3Nl4jUo51walZKghgFPZT0+E7jMzHoTpoP/UTkDc+XjNSjnXBqVkqB6AfMAJA0F+hEGjAV4GNiprJE1g6RjJE2R9J6k06odT7V5gnLOpVEpvfgWAVtFfx8KzDazTNfy9jRvbqmykdSO0MPwEGApMF7SQ2a2qLqRVY838Tnn0qiUBPUkcLGkPsC5hFpTxs7AjDLG1RyfBd4ys1kAkh4DjiBcx9UqeQ3KOZdGpdR6fgp8BFwOfABckrXu68Dz5QhI0kGSHpU0S5JJGpWnzFmSpklaI2m8pOFZqwcQRr3ImAUMLEdsaeUJyjmXRqVcBzUPGFlg9eGEi3jLoSswGbg9um0k6i14DXAWISmeBTwmaVczm1nKgaKBYfOpKWU/SedNfM65NCr5vJGC3SQNj+5lZsvMbF05AjKzsWZ2vpk9QJi5N9ePgDFmdpOZvWNmZwNzCFN+AMxm4xrTwGhZq+U1KOdcGpWUoKIecXOAicC46H62pO+UP7S8x+9AmJPqiZxVTwD7R3+/AgyVNFBSV8LAtv/Kt7+cAWJbLE9Qzrk0KrqJT9LXgRsJ10LdCcwldDX/OnCjpFVmFndHhD5AW6Lu7lnmEZoZMbNaSecCzxAS8G9acw8+8CY+51w6ldKL76fAXWb2jZzlt0m6A/gZCekpZ2aPAo9WO44k2LBhA2ZW7TCcc65kpTTx7USoOeVzJ5W5UHchsAHom7O8L6FG53J4855zLq1KSVDL+fRC3VxbRetjFXXEGM+mvQlHAi82c98tcsJCb95zzqVVKU18jxEmLJxqZs9lFkraD/h1tL7Zoo4N20cP2wCDJNUAi6Nu5FcDd0h6BXiBMCbgAOAvzTzuuKyHNc3ZV5J4Dco5l1alnoP6HDBO0ixCb75+hNrT+9H6chhG6OCQcUl0uw0YZWb3SeoNXAj0J1wzdZSZJWUki0TxBOWcS6tSLtSdG9Vkvg0MJwweOx14lnBd0qpyBGRm4wA1UuZ64PpyHK+l8yY+51xaFZWgouuP7gN+b2bXAdfFGpUrG69BOefSqqhOElHnhMOLLZ9GLbWThCco51xalZJwXiCcg3Ip4k18zrm0KqWTxLnAw5JWEKbamANsdAWomeUbOy8VvBefc84lSyk1qEnAdoSRxGcA64D1WbeyDBbryssTlHMurUqpQf2SnBpTS5I9YGxUmzq4asGUkTfxOefSqpRu5hfHGIeLSaYG1bZtWzZs2FDlaJxzrniljGbeHuhgZivzrOsCrDOz1LYntdRzUJkaVPv27T1BOedSpZQmvlui8ifnWXcD4RzUt8sRlCufTA2qXbtS3mrnnKu+UjpJjAAeKbDuUeCwZkdTRS39Oqj27dtXORLnnCtNKQlqS2B+gXUL2HQKDJcA2U18zjmXJqUkqPnA7gXW7Q606llrk8qb+JxzaVXKt9Y/gJ9LGmdmEzMLJe0OXAA8VO7gKqmldpLwJj7nXFqVkqAuIkwMOF7Sq8DHwEDgs8A0wvQXLmG8ic85l1ZFN/GZ2UJgH+BywnQYNdH9pcA+0frUaumdJLyJzzmXNiWNTm5mn5jZRWa2n5ntaGb7m9nFZrY0rgBd83gTn3Mtw3//+19+/etft6rrGVvs9Bku8CY+5+K3cuVKZsyId1Lv888/n5///Oe8+uqrsR4nSTxBtXDexOdc/E466SS22247Zs+eHdsxFi4MZ1HWrl0b2zGSxhNUC+dNfM7F76WXXmLDhg3MmTMntmMsX748tn0nlSeoCqutrWX06NG89NJLFTsetO4a1IYNG3jnnXcwa7GD8bsqWrRoEYsWxX8Z6LJly2I/RtJ4gopIGpe5EeN1UGPHjuWKK67gJz/5SVyH2IjXoODyyy9n11135aijjuLjjz+udjhNNmvWLM4777xYm5Fc6d57772KHMcTVAMkfTcatdw1w9SpUwGYOHEidXXxT0DsCQpmzpwJwOOPP87QoUN59NFHqxxR09x2221ceeWVXHPNNdUOxWXJ/E/Hae3ata1y8tFSalB/BmZL+pOkz8QVULVU6jqo999/HwjtyXH3+gFv4svWv39/li5dyplnnlntUJokc3L8jTfeqHIkLlslElRrrD1BaQlqO+B64HjgDUkvSTpVUqd4QmuZspsDJk6c2EDJ8mioBrVmzRo+//nP85e//CX2OJLgF7/4BZ06dWLOnDmsWLGi2uE02YQJE/x8WoJ4gopPKSNJTDez0cDWwEnAKuBWYJak30vaJaYYW5RMDQqqn6AmTZrE448/zh/+8IeyHKuuro7TTz+dO++8syz7KzdJbLPNNgAVqb3GZcGCBcydO7faYbhIJRJUa+zBB03oJGFmtWZ2v5kdBuwETAL+D5gs6VlJR5c7yJZizZo1fPTRR/WPK5GgGmriy/wKnzlzZll+kY8dO5abb76Zb3zjG3nXP/bYYxxxxBE89NBDVasBDB48GIDp06fHdoyf/vSnXHHFFbHtH0ItylWfmVWkk4TXoEogqZuks4C/AQcRztlcQBh89lFJvyxbhC3ItGnTMLP6ZFHtGlTG6tWr6y8CbI7GfuXdfvvt/Pvf/+b444/n4IMPZvLkyc0+ZqniTlBLlizht7/9LT//+c9j7QTz5ptvNnnb2tpa1q1bV8ZoWoaVK1du9AOyGLNnz2bVqlUxRfQpT1BFkDRM0k3AbOB3hMS0n5ntbWZXmNkBwMXA98sdaEuQad4bPnw47dq147333ov9w11sL75KNHllvrAl8dxzz3HqqafGfsxccSeozPUwtbW1LF68OJZjQPNqUEOGDGHzzTdvVWO6FePLX/4y2223XUk/1irRvAfexNcoSa8D/wUOAX4JDDSzU83svzlF/w1sXr4Qm07SQ5KWSHqg2rHApwlq1113Zeedd8bMeOutt5g9ezYHHHAAN998c9mPWWwvvkqekxk9ejRAVToqZM5BxZWgspNSnKMKNKcG9fHHH7Nq1apW+6u8kHfeeYf169czb968orepVIJqre9VKTWoj4FjgB3M7LdmVujn4evAkGZHVh7XAN+sdhAZmbbq7bffns98JvTUnzhxIpdeeikvvvgit956a97tbrzxRnbffXfOOOMM/v73v5d0PUSSalAZHTt2rNixcsVdg8pOUHF2ZJgyZQorV66Mbf+t0dKlpU/K4AkqXqX04jvWzB6zRs5um9k6M0tEFykzGwckpm6cqUHtsMMO9Qnq8ccf55ZbbgEK/+K+8847mTx5MjfeeCPHHnssZ5xxRtHHTGKCitMTTzzBQQcdVHDEiJaSoMysKufwWqq6uromJQFPUPEquZOEpH6SPivpoNxbCfs4SNKjkmZJMkmj8pQ5S9I0SWskjZc0vNRYkyaToLJrUA888ED9BZhz585tsHfbIYccAsAHH3xQ9DFzm/gK7T9fgnr33Xf54Q9/yDe/+U2OP/74VIzA8NOf/pTnnnuOxx9/PO/6vn370rFjRxYuXBhLE2OlEhQ0r5kvbaZPn87f//53Pv7441h6gK5YsaJJ+820isTdKtBaz0EVPbyApIHAHcDB+VYDBrQtcnddgcnA7dEt91gnEprnzgKej+4fk7Srmc2MykwoEP8RZlbUYGXRuHv51BSzfSnWrVvHjBkzaNOmDYMHD6Zr164brW/bti1r1qxh6dKl9OzZM+8+DjnkEJ555pmSjtucGtQvfvEL/vrXv9Y/njlzJscee2xJx6+kiRMn1n9pF/qyadOmDdtssw1Tp05lxowZ7LbbbhutNzMkNTmGSiSo7t27s2zZslbV1fzYY49l0qRJAAwYMICbb76Zz3/+82Xbf1NqKLW1tfU/FrfddlveeeedssWTy2tQjfszsDvwU+DzwKFZt0Oi+6KY2VgzO9/MHgDy9cX9ETDGzG4ys3fM7GxgDvC9rH3UmNnQPLdEjqQ5ffp06urqGDRoEB07dmTAgAH06tULgGOOOYZtt90WKP+XWnM6SWR6GH7pS1/aaF9JdccddxRVLtPMl/2cZ8yYwVe/+lW6d+/Oiy++2OQYlixZUv93XAkqU/tuLTWotWvXMnnyZCTRs2dPZs+evdEPp3Joyvmn6dOnU1tby6BBg9hss83KGk8uT1CNGw78yMx+Z2ZPmNmzubdyBCSpA7A38ETOqieA/ctxjIyc8fdild28B6Gr9WGHHUb79u256KKL6N+/P1D+nl+Zrt1t2zZcuV2yZEnBZoQ999yzrDHFoba2tugRLHLPQ1111VXsvPPO3H///axYsYLXX3+9yXFUoga1xx57AKGreWvoKJG5fnDw4MH8/ve/BwrXkJuqKQlqypQpQDinHLfW2sRXSoJaDcyPK5AsfQhNhbl9PecB/UrZkaQngfuBoyR9LGm/8oRYukxbdfaHecyYMXzwwQfss88+9OsXnlo1h7DJjPqdRk899VTRr112gpo0aRI/+clPWLNmDb179252HJVIUFtssQX77rsvq1at4sYbb4zlGEmS++MuDk1JUJkL7YcOHVrucDaRtBrU6tWrNxq2LS6lJKibgPxj2CSUmR1uZluYWWcz28rMKjNLIGxyEWS+f7LOnTuz9dZbA8RWgypFWnry3XLLLZuci8s07xVz/ij7Wqi7774bgNNPP52TTjqp5Fiee+65jc4FVaqTxAUXXADAb3/7W9asWRPbcZIgc55nu+22i+0YTUlQmSbWTI22nFatWrXREEpJS1CjR49mxx13ZNy4cbEep8EEJenbmRvhOqj9JT0l6cfZ67LKlMNCYAPQN2d5XyDxI2SaGV/72tfYYostNvqyyr4GKp8k1KDSkKDeeecdTjvtNA499NNTnqtWreLBBx8E2Gh5IZka1LRp07jnnnsAOOWUU0qOZc2aNRxxxBEbnazPfs8XL15c30Oz3I455hhqamqYM2dOwevnWoqk1qDiTFDf/va32Wmnneq/Nxpr4lu4cCFDhgzh17/+ddljySczov6YMWNiPU5jNaibs243AIMJHSJ+k7PuZkINq9nMbB0wHhiZs2ok0PSz140ftyzzQUli/vz5LFmyhH/9619AOD/y8ssvA7D77rvn3S6ToLwG1bD58zdtZV64cCGrV69m4MCBDBnS+DXimQQ1fvx4ZsyYwVZbbcWBBx5Ycixr165lzZo1zJ07t/4LJJOgMr0m88VbDpK48MILAbjiiitaxNh6hZ5DEhPU6tWrmTp1Km3btmXXXXctezyZ7vSZa90aq0GNHz+e6dOn13/nxC0zHNQjjzwS62evsQQ1pITbtsUeVFJXSTWSaqIYBkWPB0VFrgZGSTpN0i6SrgEGALFNXFTOKd+PPjoM6D527FgAXnrpJZYuXcpOO+1U8As008TnNaima9OmuBbrfv360aFDh/oT7SeddFLR2xYyZ84czKw+QWXONcb5fn7pS19i11135aOPPuK+++6L7TiV8PTTT9OxY0euvPLKTdYlMUFNnjyZuro6dt55Zzp1im9KvMznqrEaVHbv0UrIJKhPPvmEp556KrbjNPhfaWYzSrmVcNxhwBvRbTPgkujvX0bHvQ84B7iQUJs5EDgqKSNUNOaoo44CwvQSGzZsqE9UmeX5eA2qcjLXQmWcfPLJzd7nrFmzWLFiBbW1tXTu3Lm+lhZngmrTpg1f+cpXACoy5UOcfvaznwFw3nnnbbS8tra2vrdl5lKMOJR6jifO5r1sc+bMYdWqVY2OjF/JBGVmGw2oe//998d2rOb9bGwiMxtnZspzG5VV5nozG2xmHaPR0v8Tc0xlm/J9p512Ytttt2XRokW88sorRSWoatagttxyS6D1JCj4tJlv5513pqamptn7mz17dn3tqVevXhU7p9jY5QNpN3PmTGpraxk4cGCs1xqVWoOqZIIqJnlWMkEtXbqUDRs21Lc6PPzwwyWND1qKUqfbOCIaIfxtSR/m3mKJsELK2cQnqb6Z74YbbmDixIl06dKF4cMLj9bUp08f2rZty6JFiyp+PmHgwIG0adOGOXPmtIhzGcXYcccdgVB7as7IERnVSlAtXSWa9yD9CeqTTz6JNY5smdrTNttsw6677sqSJUtia+YrZbqNo4DHgM7AzsC7wEzCFPB1QFku1G0pMgnqtttuA+Cwww5rcLyuNm3a0Ldv6LhYynD/5dC+fXsGDhyImZU8YVtanX/++fz+97/nJz/5SVn2N2vWLE9QMUhigjKz+mugiklQdXV13HXXXU0aoHj27NlFXaRbyRpUJkH16dOHE044AQhjisahlBrUz4E/AZl2qguj5rDdCBfWPlbe0CqrnE18AAcffDCdO3euf9xQ815GNc9DZc7JFNvMV1tby8knn5zaLs4DBgzgnHPOKdsJbq9BxaOpCWrVqlVcdtllRY82XkqCmjFjBkuXLmXLLbesf58bcscdd3DKKacU1cM0VxKb+PIlqIcffjiWCTBLSVA7A38n1JaMaKBWM5tKmEX35+UOrpLK2cQH0KlTJw477LD6x8UMbFnN81A9evQAKHqG30cffZR77rmH73znO3GGlRqeoOLR1AT1y1/+kgsuuIBddtmlqPKlJKhSm/deffXVoveda/78+UXNzFytBLXbbrtx00038frrr8dyPrSUBFUH1EbzQS0ABmWtmw3Ed5l3SmWa+YYOHcqgQYMaKZ2MnnzFag1jwJXCm/jikRlFotQElUkijfV+y4gzQTWHmRU1vU41zkH16dMHgNNOO62o77emKHq6DWAK4UJdgNeAcyS9ANQC5wLTyxpZhWUPGBvVovJNK1KSU045hddee62+GtyYJFwL5Zpm9uzZLFq0CNg0QTV3Co/Wqq6uriLDHJlZYhMUfDoobUOqVYOKWykJ6i4gU1/+BfAkYfgjCEMTNf9ikhamS5cu3HRT8QNspKkG5Ta2bt26+uaoXr160bVrVzp37syqVatYsWIF3bp1q3KE6TNr1izWrl3LlltuGevrt3r16pLOn7z77rtAZQaJzT5eQyqZoDI/xBKVoMzsT1l/j5e0O2FeqM2AJ83s7Rjiq5icyQtrqhGDNwulW2ZYml69eiGJfv368eGHHzJ37lxPUE2QxB58EGrLAFtttVUc4WyisY4edXV1TRpLsKkqWYNq8oW6ZvZxNKHgH9OenJIiCSOau6b78MNwKWBmIspif3DU1dXx7rvvxjKVeRwqFWdm+pfMRdVxKeXLffXq1XzyySe0b9++LNOzFCNTYylk2bJlFf3sJDZBKThW0lWS/p+kbaLlB0saEE+IlVHubuZN4TWodMt8SZSaoM477zx22WUXfvWrX8UbYBl88YtfZM899yy680FzZGZwjnOsOygtQWV+PPbv3z8x5xWb2rw3fvx4Lr744pJHgUjkOShJmwNjgX2B5UBX4FpgBnA6sBj4vxhibDX8xHrLkJugGqsR//a3vwXgyiuv5KKLLoo3uGZ69NFHAfjoo482Gs8wzUpJUJnmvQEDkvN7vKkJatiwYQBsvvnm/OAHP9hkfaHvoEyCqkQNspQa1G8Jo0YcAPQGsiN/Ejgs30aueJ07d6Z79+6sW7eu4qMTu/LJJKguXboAtPgJBdOuqTWopGjud0WmaTrb8uXL2XHHHesnxszYsGHDRpdTxK2UBPVF4IJoVtrcBs/MkEepVe4LdZvKz0OlW4cOHTYaQcQlX1pqUIUGy43jGqi7776b999/n8suu2yTY9XV1dGzZ8/6Oc/iVEqC6grMKrCuExvXqFwTZarNxVw97pIn04PPpUdTalDVSFDdu3fPu7ylXgMFpSWoKcARBdYdDExqfjjVk4ROElD8pHsumSrR7OHKqyk1qGo08RW6VKElJ6hSLtS9HrhO0lLg7mhZT0nfAv4X+G65g3MuDTbbbDPWrFmDmXmCSqFSJiv0GlRCE5SZ3ShpW8Lst7+MFv+bMEbfb8zsrhjicy7x2rdvT/fu3Zk3b54nqBRKcg2qY8eOrF27Fkn1nW5yVXMcvriVUoPCzM6T9GdgJLAlsAj4t5mlerJC55prwIABnqBSKsmdJPr378/06dPp2rVrweb/ljrMETRhJAkzm2FmN5vZZWZ2g5l9KOlwSRPjCNC5NBg4cCDg56DSqNgEVY1RJDI1tULNe9Cym/jKdUa+B2HiQpciaRlaJw0yv6g333zzKkfiSlVsgqrGKBKZz1VDCcqb+FqBJAwW69LrpJNO4rXXXuMLX/hCtUNxJcokqHbt2tUPr5RPNS7SzRyrocGGvQblXBFK/VXZkmpwhxxyCOPHj6/YHEGufDIJKjOrdCHVuEj3M5/5DAA77bRTwTLVSFCVauL0GlQkjgkLXX5+IatLkuwE1dDI4dWoQe2yyy588MEHDBw4kP/5n//ZZL2ZtegaVIMJKupWXox+ZYjFOecqau3ataxbt4527do1Omp6tYY52nbbwl/Dq1atarBZstwSlaCA99l03L18VGQ555xLjOzaU2M1+2qOIlFIJWtPtbW1LFmyBEkV6wzUWIL6VkWicM65Kij2/BNUdxSJQiqZoLJHMW/btm1FjtlggjKz2yoShXPOVUF2glq3bl2DZVvSXFBNUekOEuC9+JxzVVDJa3ca0pQaVJKa+DKvYzHxN9fatWsBKjqdTItNUJK2juZ3elvSREknVDsm5xw89NBDbL755px33nnVDqXoBLV69WqWLFlS0VEkipGpQbXUC8RbbIICaoFzzGxXwjQhf5CUf7RF51zF/PKXYazpK6+8ssqRhKnrofFmu7lz5wLQr1+/RE2Jk0lQPXv2rG4gMUnOK11mZjbHzCZEf88FFgI+UJpzrt77778PwPbbb99guSSefwKvQcVC0kGSHpU0S5JJGpWnzFmSpklaI2m8pOHNON7eQFsz+6g5cTvnWpZMgtpuu+0aLLdgwQIAttxyy9hjKkXmHJQnqPLqCkwGfgCszl0p6UTgGuAyYE/gReAxSYOyykyQNDnPbUDOvnoBt+MTKjrncnzwwQdA4zWozLBccXSvvueee/jqV79a3wmhFC29BlWVoY7MbCwwFkDSmDxFfgSMMbObosdnSzoS+B4wOtpHTWPHkdQReBi4wsxezLN+XIFNG923cy7damtrmTZtGtDwaA1xO/nkkwE47LDDOOOMM0ra1s9BVZikDsDewBM5q54A9i9hPwLGAE+b2R1lC9A51yLMnDmT2tpaBg4cyGabbVbtcFi+fHnJ26xYsQKArl27ljucREhcggL6AG2BeTnL51HamH8HACcCx0XNgRMk7Z5dwMxGZG7NCdg5lz7FNu+lQZJ6FpZTix3N3MyeJ5kJ2DmXAMX24HPVk8Qv8IXABqBvzvK+wNzKh+Oca4mK7cHnqidxCcrM1gHjgZE5q0YSevM551yztaQmvpaqKk18kroCmU9FG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJ1zrVAXoNKvmqdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSJ1zLU5dXV19DcoTVHJV6zqocYRJDhsqcz1wfUUCwqd8d641mTNnDmvWrGGLLbaoyEjgrmlabC++UuVctFtTpTCccxXgzXvpkLhOEs45FzfvYp4OXoOKeBOfc62H9+BLB09QEW/ic6718Ca+dPAmPudcq+M9+NLBa1ARb+JzrvVYtWoV0HJHAW8pvAblnHMukbwGFfFzUM45lyxeg3LOOZdIXoOK+Dko55xLFq9BOeecSyRPUM455xLJE5RzzrlE8nNQEe/F55xzySIzq3YMiZCToPYeOHBg12qM0/XGG2+wbNkyampq6qcBmDBhAkuXLmXw4MFMnz6dHj16UFNTU9T+Jk6cyJIlS+q37dq1K3vvvTcAy5Yt44033qBbt260b9+exYsXM3ToUHr37g3ApEmTWLx4cf22Xbp0YdiwYQDMmzePd999F4CDDw79SebPn88777yz0bJsb7/9NgsWLKjfX6dOndh3331Len0++eQT3nzzzY2OsXbtWl5++WU6duzI5ptvzty5c9lxxx3p378/AFOnTmXOnDkbLcvnvffeY/bs2Wy//fYMHDiw0Vhqa2t54YUXaNu2LQceeOAm6z/88EM++ugjhgwZwqBBgwru59lnnwWgTZs2DB8+vGC56dOnM2PGDLbZZhsGDx4MwIwZM5g+fTqDBg1iyJAhjcacfbwDDjiAdu1K+42a2XbfffelU6dOJW2b8dprr7Fy5Urg0/dw/PjxrFixYqNlc+bMYerUqfTr14+ddtoJgLlz5zJlyhT69u3LzjvvXPAYmc999v6yvfLKK6xevZp99tmHzp07A/Dqq6+yatUqhg0bRpcuXTYqv3DhQt566y169+7N0KFDN9lfJv699tqLbt26bbQu87kqFEvmNd12223ZeuutgYa/B/bYY4/6C4xzvxu6d+/OnnvuWfB1yXfcgQMHbjIm4ezZs3nvvfc2innFihWMHz9+o++Bcnj//feZNWvWBDPbJHBPUHlI+gNNq0VltplQplCqpSa6n1DFGMqhJrqfUMUYyqEmup9QxRjKoSa6n1DFGMqhJrqfUMUYyqEmup9QxRgyJpjZObkLPUGVUaYWlt1lPY38eSSLP49k8edROd5JwjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5Lz7nnHOJ5DUo55xzieQJyjnnXCJ5gnLOOZdInqCcc84lkieoEkk6S9I0SWskjZdUeHTPUP7gqNwaSR9KOrNSsRaIZ7SkVyUtk7RA0t8lbTr65cbbDJZkeW5HViruPDFdnCeeuY1ss7ukZyWtljRL0kWSVKmYC8Q0vcBr+88GtslXvqKfK0kHSXo0eh1N0qic9Yreo9nR6z1O0m5F7PfLkt6WtDa6/1JsT4KGn4ek9pKulDRR0kpJcyTdLanwyL9huxEF3qPCo9vG+Dyi9WPyxPNyEfut6veXJ6gSSDoRuAa4DNgTeBF4rNAHVtIQYGxUbk/gcuBaSV+uTMR5jQCuB/YHDgVqgScl9Spi2yOB/lm3p2OKsVhT2Die3QsVlNQd+DcwD9gH+AHwE+BH8YfZoH3Y+DnsBRjw10a2Oz1nu9tijDGfrsBkwuu4Os/6nwLnAmcTnuN84N+SuuUpC4Ck/YD7gLsIA5neBdwvqbQh70vT0PPoTHg/Lo3uvwhsDTwuqZhh4Hdj4/fovTLFnE9j7wfAkznxHNXQDhPx/WVmfivyBvwXuCln2XvA5QXKXwm8l7PsZuClaj+XrHi6AhuALzRQZjDhS3NYtePNiuliYHIJ5b8HLAM2y1p2ITCL6HKLJNyAC4BPsuPMU8aAr1Q71qx4VgCjsh4LmANckLVsM2A5cEYD+7kP+HfOsieBe6rxPAqU2TV6/XdvoMyIqEyfJLwf0bIxwD9K3E/Vv7+8BlUkSR2AvYEnclY9QaiN5LNfnvL/AoZJal/eCJusG6EmvaSIsg9Kmi/pBUlfiTmuYmwbNSFNk3SvpG0bKLsf8JyZZf+6/BcwgJCAqy5qbvwOcGdOnPlcI2lh1Fx7pqQk/S8PAfqR9dmPns9/KPy/AoX/XxraptK6R/fF/L+8FjULPiXpkDiDKtKB0f/vVEk3SdqykfJV//5K0oc66foAbQlNRNnmEf4Z8+lXoHy7aH9JcA1hPpiXGiizAvgx8FVCs8BTwH2STok9usL+C4wiNDueTnitX5TUu0D5Qu9FZl0SjCR8ud/USLmLgBOBw4F7gd8B58cbWkkyr2cp/yuZ7UrdpmKiH6m/A/5uZh83UHQOocb+ZeB4QlP0U2rkfHXMHge+CRxGaHr9LPC0pI4NbFP17y+f8r0Vk3Q1cCBwoJltKFTOzBYS/jEzXpPUh3Ce4c54oywY02PZj6MTvh8CpwJXVyOmMjgdeNXM3myokJn9KuvhBEltCU2Dv44zuNYsOud0J9ATOLahsmY2hZCUMl6SNJhwzvO5mEJskJndm/VwkqTxwAzgaODBasRUDK9BFW8h4VxN35zlfYFCvcfmFihfG+2vaiT9HvgacKiZfdiEXfwX2KG8UTWdma0A3qJwTIXei8y6qoqaW75I47WnfP4LdJeU+/yqJfN6lvK/ktmu1G1iFyWne4DPAIeZ2aIm7CZp/y+zgY9pOKaqf395giqSma0DxhOaYbKNJPRyyeelAuVfM7P15Y2weJKu4dPk9G4Td1NDaMpIBEmdgJ0pHNNLwPCoXMZIYDYwPd7oijIKWEv4IixVDbCG0LkiCaYRvtzqP/vR6z6cwv8rUPj/paFtYhWda7mPkJwOMbOmJssakvX/0gcYSMMxVf/7qxq9TNJ6I7T7rwNOA3YhnL9ZAWwTrb8duD2r/BBgJfCHqPxp0fZfruJz+BOhN9uhhDbmzK1rVpnLgaeyHp8KnBw9h50I56PWAT+s4vO4Cjg4eo33Bf4RPa/Me5H7HHoQvjTvBYYSzg0sA85NwOdKwFRyeohG6/4XeDfr8RcITYFDge2iz9RS4JoKx9yV8KVbA6winBerAQZF638WxXV8FOu9hB8D3bL28RRZPWAJnSFqgfMIPzZGA+uBfavxPAinQB4m9PTcK+f/Jbs3aO7//TnAcYTayW7RZ9GA46v0PLpG/y/7EToEjSAkn49z3o/EfX9V7APdUm7AWYRf3GsJNaqDstaNA8bllD8YeD0qPw04s8rxW4HbxVllxgDTsx6fCrwdfViXAa8Bp1T5eWS+8NZFXyB/A3Yt9ByiZbsTepKtIfxy/AUJ6GIOHBK9B5/Ns+5iwLIeHwm8QeiyvRKYRLj2pV2FYx5R4HM0JlqvKPY50ev9LDA0Zx/TM+Wzln0FeDd6X98hxi/1xp4Hn15eke82KmsfG/3fE87Nvke4Hmkx4bzTUVV8HpsRet/Nj17XGdHyrXP2sdHziJZV9fvLp9twzjmXSH4OyjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5gnLOOZdInqBciyZpVIHJ40zS4dWOr6WQtLekVZIGZi0bJ+n5AuVPi96DwSUc4zhJ8yR1LUPILgU8QbnW4gTClfTZt1eqGlHL8lvgVjObFeMxHiFc+PuTGI/hEsRHM3etxQQze7+YgpI6mtnauANqKSTtTRgN4+w4j2NmJulG4FeSLjezNXEez1Wf16Bcq5bVBHiQpPslfUIYeRpJ7SSNlvSupLXR5Ii/yxlwFknbSvpn1MS1QNI1ks7IbcKKHl+cs+3gaPmonOUHRxPdLZe0UtK/JA3NKTNO0vOSDpf0enT8yZK+lOd57iHpIUmLJK2WNEXS6GjdtVHTWfucbbpFx7+ikZfxNGCimb3VSLmCJF3cQFPsqKyifyVMeXF8U4/l0sMTlGst2kYJJ3Nrm7P+LsJYY18hDFYKYf6fC4G7CfPmXE6Y8fauzEbRJHb/BvYEvk8YlXxItF2TSDqaMJDqCuAUwkC93YDnJG2dU3w7wqDFVxO+tOcA90vaPmt/nyUMDrod8MPouVwNbBUV+TOwJZCb2E4GugA3NBLykTQwz1HO694umr4i97vnZjZtgv0bYYqbqZlCFuYmeyc6pmvpKjnwn9/8VukbIWHkG0Tz+Zz1v8/Zbni0/Js5y78eLa+JHp8ePf5cVpk2hLmpDBictXyjQXmjZYPZdPDR98kaiT1a1p0wB88fspaNI4z2vUPWsi0JX+rnZy37D/AR0LmB12lcnmO+DjzeyOvbN4r/9AL7LDTYauY2uMB+TwDqgP/Ls+4OYGq1P1t+i//m56Bca/ElwvQCGctz1j+U8/hIwsjPD0S/+DOeiO4PAiYQful/ZGYvZwqYWZ2kvxJG8y6JpB0INZ3Lco67ilALOihnk/fM7L2sY8+XNJ8wzQKSOgMHAL81s1UNHPp64F5JO5jZe5L2IdQKG2tKGxDdLyiw/k1CE2CuL1KglilpGHAbcL2Z/TFPkQVZx3UtmCco11pMtoY7SeRO3LYl0IEwpUU+vaP7/sC8POvzLSvGltH9LdEt18ycx4vzlFkLZM6TbU6o0X2cp1y2hwjzZZ1BmO/rTMJ0Jn9vZLvMcQp1KllhZq/lLpRUk6+wpK2ARwm1rx8U2OfqrOO6FswTlHNB7rwziwjzGA0vUH52dD+HMCldrnzTr68lJL1svXMeZ6YTHw08mWcf6wrEU8gSQlPZwIYKmdl6STcDZ0n6DXAS8Dszq21k/5l4Ny8xrk1I6kJIiAuBE81sQ4GivbKO61ow7yThXH6PE36l9zCz1/LcMgnqJWBrSZ/LbCipDfDVPPucQZhdNtvROY+nECby263AcSeW8iSiZr3ngVMkbdZI8RsIPeTuBzoCNxVxiOmERL5tKXHlkiRCp5T+wDFmltsEm20I4XVyLZzXoJzLw8zGSbqHcA7qasJFvXWETg1HAT8zs6mEcyXnAQ9KOp8wa+mZhE4Nue4FLpR0AfAyoXb2tZzjmqTvA49EPQT/SqhR9CVMiT7TzK4u8en8mDCj7UuSfkdo7tuW0NGj/tolM5sl6VHC+bq/m9lHje3YzNZJ+i/w2RJjyvUzwjTpPwAGSMo+x/SBmS2A+kT2WcI5M9fCeQ3KucJOIXR0+AphFIMHgP8lTOc9D8IXNDCS0GHiekLCmgb8Os/+Lgeui/bxMLAL8I3cQmY2ltAZoguh+/W/gN8A/Qg1tpKY2auEjhIfAdcCYwmjMeQ7L3V/dN9Y1/Js9wGHRk10TbVzdH8N4Tlm37JrmfsTmhPvbcaxXEr4lO/OxSC6uPT/AUPMbHp1oymepLsIyWxbM6srcpvuhGR3lpndGXN8fwaGmlmhc4OuBfEmPucc0Tm0GuBE4EfFJicAM1sm6Urgp5Lusph+9UrqB5yKX6TbaniCcs5BaEpbQXT9URO2vxpoS+jkMLuRsk01GDjXzP4T0/5dwngTn3POuUTyThLOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE1UpJGiXJCtwOr1AMPSVdLGmvPOvGSRpXiTgakvU6Da52LK5h0ft0cbXjcOXjg8W6E9h0XqC3K3TsnsAvouO/nrPurArF4JxLKE9QboKZvV9MQUkdzWxt3AEBmFmlkmRsKvl6pZmktoSBq2urHUs5+PtePt7E5/LKato6SNL9kj4B/hut20fSA5I+lrRa0hRJl0naLM9+viTpBUkrJC2T9IqkY6Mms2lRsZuymhdHRdtt0sQnaSdJD0n6JDruy5KOzClzcbSfHST9MzruDEkXSWqTVa6TpN9LmhyVmSvp75J2pgmieJ+X9AVJb0haC5wlaUQUz3GSbpC0OIr/D5LaRq/l85JWSnpL0v/k7HcfSf+WtCh6zh9KanQ6jGK2k3SYpNclrZH0gaQzJI2RND2rTCb+ETnbbtL0KekkSU9LWhC9pm9IOjVPbCbpUknnSZoGrAN2j9YdLOkpScuj1+RfkobmbN9W0q8lzZG0Knrtd2vsNcmJ+3OS7oo+k7Ml/VFSp5yy/SXdLmmhpLWSJko6pcD+8v2fTJd0p6RvRP8jqyU9F302u0Sfh0WS5kn6nSSvMOTwF8S1zfnHMDPbkPX4LuAewrTnmXKDCFOcjwGWA7sBFwHbAidlNpR0NvBHwvTmpxLmG9qLMK/Pv4DjgQcJU6E/Gm32Qb4gJQ0Ano+O97/AUuD7wD8lHWNmj+Vs8hBhRtvfA18ALiFMef7/ovUdgW6EqdnnAL0IzYovSdrFzObmi6MRO0bP91fAh8DiaL8Af4ie64mE6dwvJMyfdDjwW2BWtOxBSduY2UJJXQmv0yvAqOi5DyZMe15QMdtJ2oUw9ftrhPesI2F6+65A9vtfim2BB4ArgLroed4saTMz+0tO2VGE1+jHwEpgtqSjgUeAfwKZRPAz4DlJnzGzj6JlFwPnE+agegIYxqefn2LdQfhcHw/sF+1zCaHJGYXp658lTC9/PuGzcwpwh6TOZnZjzv7y/Z8QvQbbRc+jA+Fz8Lfoub9PeO0zn4cPaNpcXC2XmfmtFd4IXxCW5/Z8zvrfN7IfEf4hTyF8KfWOlncnfDE+2MC2g6NjnJZn3ThgXNbjq4BaYPusZW2BKcDrWcsujvb5rZz9TQKeaCCWtkDnKOYf5nmdBjfyOoyLnn9NzvIR0fa35ix/PVp+YNayz0TLTo0eD4sef6bE97bR7QhfqAuBLlnLtibUZqbniX9Egc9P3teF0DrTDrgJeDNnnREmNdwsZ/n7wFM5y7pHcf4herw54YfOX3LK/Sza78VFfu4vyVn+D2Bq1uP/LfC8nwTmA20b+z8BphN+pPTIWvZ/Ufmb83weninlfW4NN2/ic18C9sm6fSdn/UO5G0jqLulKSR8Aa4H1hF+kAnaIiu1P+DWe+0uzqQ4CXras82UWanr3ADWSuueU/2fO48mEml/28/iqpP9GzTK1hF/yXYGdmhjjdDObUGBdbg3vXWClmT2fswxCogB4D/gEuEHSKZK2Joekdtm3Yrcj1BrGmtnKzAILNZQXCj67RkRNV/dImkX4TKwHTiP/6/m4ma3O3pZQ07gr5/msIsz2e1BUdHegC/DXnP3dW2K4uZ+PSWz8+TgImGVm43LK3QlsAeyas3yT/5PIS2a2NOtx5j3+V065d/n0fXcRT1Buspm9lnWbkrN+Tp5t/h9wJqE5ayQhsX0/Wpdpx+8d3ef2EGyqXgVimUtIjJvnLF+c83htVmxI+gJwH/AOcDKwL+F5LMguV6J88WUsyXm8jpBE6pnZuujPTtHjpcAhhNrG9cBMhXNmX46ew2A+TQTrgfWSBje2XaQ/MC9PnPmWNSpqVvw3sAdwHjCc8HreSmg+zJX7Wm0Z3d+S+5yAY/j089S/QJylxp3v85EdZ0Oft8z6bIXe+3zve6HlTf3ctVh+Dso1xrIfRCeSv0hoSrkma/nuOdstjO4HEmovzbUY6Jdneb8oxtx/+MacBLxvZqMyCyS1Z9MvnlJY40VK3GGokX05qk0MA0YDf5W0BzCVkASyzW5sOzObTPhC7ZvnkLnL1kT3HXKW9855vB+wDTA8u1bYwIn/3NdqUXQ/mtCMlivzxZ5JBH2Bt7LW53suzbGY/DW/flnrs5X9vXdeg3Kl60g4X7M+Z/monMcvEs4VfLeBfWW64m7S+y+PZ4HP5fQaa0vodPCGmS0rYh/ZOhOa9bJ9g/DcEsfMas3sZeDnhP/bXcxsXU7t97WsWljB7aJVLwFHRZ0BAIiaAg/IOfSM6H5ozvKjcx53ju7rPxeSNif8mCnGFMI5m93yPKfXzGxiVG4ioSn2qznbn0R5PQtsJSn39TiZcA4q9ZdBpIHXoFxJzGyppJeBcyXNIdSUvk2oKWWXWy5pNHCtpL8RTsovB2qANWZ2LaFZZhFwkqTMF880M1vEpn5PSIL/lvQLYBmh192ObPplWYzHgeMk/Z5wgnwYcDY5zW7VJOkYQoJ/mNAlvwvhJPtyQoJpzna/Jlyk/YSk3xJqSBeT01RmZnMkPQuMlrSQ8OV8CqHHXrYXCe/Jn6L3pwuhZ9pCoEdjz9XMTNL3gUckdSCcY1pIqBntD8w0s6vN7JPoPbtA0nJCL758506bawzwA0KvygsITdVfJzRpn2Eb93SNhaRa4DYzK/dzSw2vQbmm+BowHvgT4R95LuGfeSNmdh3hS3ArQoL6G6Eb7rRofR3hJPrmhGadVwldwjdhZrOBAwnNOn8mdGfuBRxtZo834TncBFxKqIH9HTgqOvbShjaqsPeA1YTaz2OEc3+1wEgza+jcXqPbmdk7hOfcmXAu7grgGuCpPPs7BXiZcM5xDDCTkODqmdkCQoebtoT35nLgZkKngqKY2VhC54Qu0bb/An5DaFbLTsgXA5cRaryPAkdQ4HPTVFHnkYMJCfAKQvf3PYBv2KZdzOPSloTW6CtFZt506pwLJI0hdK0eXOVQnPMalHPOuWTyBOWccy6RvInPOedcInkvvjwkvUG4WryoUb6dc8412fbAAjPbM3eFJ6iINh45e9cePXp0qKmpGViovHPOueabMGECS5fm7zzrCSq/1TU1NR3GjRtX7Ticc65FGzFiBM8++2ze1ipPUBEzG5H5O6pNHVy1YJxzznkvPuecc8nkCco551wieYJyzjmXSJ6gnHPOJZJ3kojkdDOvqVIYzjnnIl6DaiXMjOuuu47XX3+92qE451xRvAYVaendzCdOnMjZZ5/NIYccwtNPP13tcJxzrlFeg2olMldqr1q1qsqROOdccTxBtRK1tbmzmzvnXLJ5gmol1q9fX+0QnHOuJJ6gWglPUM65tPEE1Up4E59zLm08QbUSXoNyzqVNi05Qkh6StETSA9WOpdo8QTnn0qZFJyjgGuCb1Q4iCbyJzzmXNi06QZnZOGB5teNIAq9BOefSpioJStJBkh6VNEuSSRqVp8xZkqZJWiNpvKThVQi1xfAE5ZxLm2oNddQVmAzcHt02IulEQvPcWcDz0f1jknY1s5lRmQnkj/8IM5tdTBA5A8Rmqylm+zTxJj7nXNpUJUGZ2VhgLICkMXmK/AgYY2Y3RY/PlnQk8D1gdLSPmvgjbTm8BuWcS5vEDRYrqQOwN3BVzqongP3Leaw8A8S2WJ6gnHNpk8ROEn2AtsC8nOXzgH6l7EjSk8D9wFGSPpa0X3lCTB9v4nPOpU3ialDlZGaHVzuGpPAalHMubZJYg1oIbAD65izvC8ytfDgtgyco51zaJC5Bmdk6YDwwMmfVSODFGI87InMDJsR1nGrxJj7nXNpUpYlPUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZwIDgL/EGNO4rIc1cR2nWrwG5ZxLm2qdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFsIT1DOubSp1nVQ4wA1UuZ64PqKBNQKeBOfcy5tEncOysXDa1DOubRp0d3MS5Hnot2DqxZMDDxBOefSxmtQrYQ38Tnn0sZrUBHvxeecc8niNahWwhOUcy5tvAYVaennoLyJzzmXNl6DaiW8BuWcSxuvQUVa+jkor0E559LGa1CthNegnHNp4zWoSEs/B+UJyjmXNl6DaiW8ic85lzaNJihJ7SV9UdKQSgTk4uE1KOdc2jTaxGdm6yX9FTgSmBZ/SNXR0jtJeIJyzqVNsU18HwJbxhmIi5c38Tnn0qbYBPUb4AJJW8QZTDW19Bl1vQblnEubYnvxHQr0AqZJehmYA1jWejOzU8sdnCsfT1DOubQpNkEdCKwHFgDbRbdstskWLlG8ic85lzZFJSgz8x58Kec1KOdc2vh1UK2EJyjnXNoUnaAkdZH0f5IekPSMpB2i5SdJ2jm+EF05eBOfcy5timrik7Q1MA7YCngXGAp0i1YfAhwOnBZDfBXj10E551yyFFuD+h2wFtgR2BtQ1rpngeFljsuVmSco51zaFNuLbyTwXTObIaltzrpZwMDyhlV5LXmw2Lq6Ourq6qodhnPOlaTYGlQHYHmBdT0AP8GRYH7+yTmXRsUmqInAlwus+zwwvjzhuDh4855zLo2KbeL7LfCAJIC7o2W7Svoi8B3g2Bhic2XiNSjnXBoVe6Hug5LOAq4Avh0tvp3Q7Pe/ZvZ4TPG5MvAalHMujYqeUdfM/iLpDmA/wsjmi4AXzazQuSmXEJ6gnHNpVNKU72a2EngypljKKrp26w5CMq0FfmVm91c3qurwJj7nXBoVe6HuXOCZzM3M3os1qvKoBc4xswmS+gHjJY2Nkmyr4jUo51waFVuDuoUwYsR1QFtJs/k0YT1tZjNiiq/JzGwOYVoQzGyupIWEKUNaXYLyGpRzLo2K6mZuZheY2f7A5sAXgHuAXYEbgQ8lfVDKQSUdJOlRSbMkmaRRecqcJWmapDWSxktq8mgVkvYG2prZR03dR5p5Dco5l0ZNOQc1VtKHwAzgeELNapsSj9sVmEzoCXh77kpJJwLXAGcBz0f3j0na1cxmRmUmFIj/CDObnbWvXtExTs9znHEF4qsp/qkknyco51waFXsOalvCrLqHRLe+wDuEJr4/RfdFM7OxwNho32PyFPkRMMbMbooeny3pSOB7wOhoHzVFxN0ReBi4wsxeLCXGlsSb+JxzaVRsDep9YBWhae9HhI4S8+IISFIHwoC0V+WsegLYv4T9CBhDOEd2R74yecbfa5G8BuWcS6Nihzp6A+hEaNL7KvBVSbvGFFMfoC2QmwDnAf1K2M8BwInAcZImRLfdyxRjqniCcs6lUbEjSewtqSdhhO9DCedz/iBpAWGeqKeymuMSwcyex2cMBryJzzmXTkV/gZvZJ2b2iJn9wMw+AxwITCLUqP5SxpgWAhsI57my9QXmlvE4rYbXoJxzaVR0Lz5JWxE6SGQ6S2wN1AGvUmIniYaY2TpJ4wlzUGWP/DAS+Fu5jpPnuCMyf7e0+aA8QTnn0qjYXnzvAdtGD98kJIpngGebMhafpK7A9tHDNsAgSTXA4qgb+dXAHZJeAV4AzgQGUN6aWm5M47Ie1sR1nGrwJj7nXBoVW4N6jJCQxpnZkjIcdxgb17ouiW63AaPM7D5JvYELgf6Ea6aOSuKIFWngNSjnXBoV20ni/8p5UDMbB6iRMtcD15fzuI0cb0Tmb2/ic8656ivlHFRnwlxQBxPGtFtMqAX9PzNbHU94leNNfM45lyxF9eKLRgN/HfgjoXmuc3R/HfC6pNwedy5BvAblnEujYruZ/4YwUOxwMxtiZvuZ2RBCV/OewJUxxVcxZjYicwMmVDmcsvIE5ZxLo2Kb+D4P/MzMXsheaGYvSrqQMBV8qnkTn3POJUuxNaiuwOwC6z6O1ruEyq5BmVkVI3HOueIVm6CmAN8osO4U4N3yhFM93sTnnHPJUmwT31XA7VFniLsJM9X2A04CDqdw8nIJ4E18zrk0KvY6qDujbua/BG7OWjUPONPM7o4juEpqyeegvAblnEujoq+DMrMbJd0M7MSn10FNMbO6uIJz5eEJyjmXRqVO+V5HmEm3xWnJI0l4E59zLo2Knm5D0g6SbpM0VdLK6H6MpO0b39pVk9egnHNpVOxo5iOAscBq4J+Ec099gS8AJ0o60syejSlG10xeg3LOpVGxTXy/I0z7/j9mtiKzUFI34Ilo/bDyh1c53knCOeeSpdgmvl2BK7OTE0A0F9SVwG7lDsyVjyco51waFVuD+hjoUGBdB2BWecKpHu8k4ZxzyVJsDepK4BJJA7IXShoI/AK4rNyBufLxGpRzLo2KrUEdDHQHPpT0Mp92kvhc9PeIqCMFgJnZqWWO0zWDJyjnXBoVm6AOBGoJQxxtE92IHgMMzyrro5EmjDfxOefSqNihjobEHYiLj9egnHNpVPSFui69PEE559KopKGOACS1Ad4HvmBmb5U/pOpoyddBeROfcy6NmlKDEjAY6FjeUFxcvAblnEujkmtQLVVLvg7KE5RzLo38HFQr4E18zrk0KjlBmdkG4FvAtPKH4+LgNSjnXBo1qQZlZreZ2RJJvcsdkCs/T1DOuTQqKkFJOl3ST7Ie7y7pY2C+pNck9YstQtds3sTnnEujYmtQZxPmgsq4GvgEOAfoAfyyrFG5svIalHMujYrtxbcN8C6ApB6EHm7HmdlYSYuAy2OKr0kk9QSeJDy/dsA1ZnZTVYOqIk9Qzrk0KjZBtQHqor8PJIy3Ny56/BGwZXnDarblwEFmtkpSF2CypAfNbFG1A6sGb+JzzqVRsU187wFHR3+fBLxoZquixwOAxeUOrDnMbENWfB0JFxeriiFVldegnHNpVGyCugo4R9JC4GTg2qx1hwATiz2gpIMkPSppliSTNCpPmbMkTZO0RtJ4ScPz7Kqx4/SU9CZhssXfmtnCUvfRUniCcs6lUbGjmd8taSawL/Cqmf0na/U84NESjtkVmAzcHt02IulE4BrgLOD56P4xSbua2cyozIQCsR9hZrOjmD8B9pDUF3hQ0gNmNi/nWOMKxFhTwvNJPG/ic86lUdFDHZnZ84SEkbv8F6Uc0MzGAmMBJI3JU+RHwJisTg1nSzoS+B4wOtpHTQnHmxfVpIYDD5QSa0vhNSjnXBoVex3U/pKOyXrcW9I9kiZJukpS23IEI6kDsDfwRM6qJ4D9S9hPX0ndor97AAcBU3LLmdmIzK3JQaeA16Ccc2lU7DmoKwiJI+O3wFHAVELN5vwyxdMHaEtoNsw2DyjlYuBtgOeimtNzwLVmNqk8IaaLmbFhw4Zqh+GccyUrtolvF+BKAEntga8A55jZrZLOAc4AfhVLhE1gZq9Q4nmkljqauTfvOefSqtgE1RVYFv39WaAL8I/o8evAoDLFsxDYAPTNWd4XmFumY+TVUics9OY951xaFdvENwvYI/r788BkM5sfPd4cWJV3qxKZ2TpgPDAyZ9VI4MVyHKO18RqUcy6tiq1B3QNcJmkE4dxTds+9vQgX8hZFUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZxIuBv5Lscdwn/IE5ZxLq2IT1MXAGuBzhA4Tv89atwdwfwnHHAY8k/X4kuh2GzDKzO6LpvG4EOhPuGbqKDObUcIxXMSb+JxzaVXshbobgEsLrDuulAOa2TgaGXbIzK4Hri9lv83lnSSccy5Zir5QF0DSUMIXdy/C+HvjzOytOAKrtJbaScITlHMurYpKUJLaAWOAr7Fx7cck3U1omvOLbRLIm/icc2lVbC++XwBfBS4ChgCbRfcXASdG96mWM6rEhCqHUzZeg3LOpVWxTXynAL82s+zzUDOAS6Nhjr7Fxj37Useb+JxzLlmKrUENoPB1SC9G610CeROfcy6tik1Qs4EDCqzbP1qfai29iU9qtfM1OudSqtgmvruACyTVRX/PIQzeehJwAdE4fS55Mgmqffv2rFu3rsrROOdc8Uq5UHdbwgW1F2ctF2GUiV+WNaoqaKnnoDJNfO3atfME5ZxLlWIv1K0FTpZ0KWFupcx1UP9pKddBtVTZNSjnnEuTRhNUNIngXMK1To8CLTIhtfSRJDxBOefSptFOEtEI47WEsfhcymQ38TnnXJoU24vvYcIkhS5lvAblnEurYn9WPwb8UdIDhGQ1B7DsAmb2dHlDc+XgCco5l1bFJqi/RffHR7cMI/TkM6BtGeOquNbQi88559Kk2G+tQ2KNwsXGa1DOtQzr169n4cKF9O/fv9qhVEyx3cyfjTuQamupvfgyNShPUM6l2+mnn84dd9zB+++/z5AhQ6odTkUU1UlC0o6S8n5hSzpI0g7lDcuVS6YG5U18zsXnz3/+M8cccwxr166N7RhvvfUWdXV1zJw5M7ZjJE2xvfj+AHyhwLpj2HgKeJcg3sTnXPyuuuoq/vnPf/LWW/FdJrps2bLY9p1UxSaoYcB/Cqz7D7BPecJpHd5//31WrlxZkWN5E59z8Vq7di3Tp08HwMwaLtwMnqAK60bhC3XXAz3KE07LN3HiRHbaaSfOPvvsihzPm/jgqaee4qCDDuKhhx6qdijNYmZMmzYt1i9BV7oPP/yQurq62I+zfPny2I+RNMUmqA+BwwqsOxSYXpZoqkjSuMyNGLuZv/zyy9TV1fHUU0/FdYiNeBMf/PWvf+W5557j+OOP55RTTmHx4sXVDqlJxowZw7bbbsstt9xS7VBclqlTp8Z+jA0bNlSs1SVJik1QtwM/lPR9SR0BJHWU9H3gHOC2mOJrcd5//30AZs6cySeffBL78byJb+Nml7vuuovjjz++gdLJlWlGqtSPG1ecSiSo1lh7guIT1FXAo8C1wEpJ84GV0eNHaQHzQVVqwsJMggKYNGlSXIep11gT30MPPcR7770XexxJ8OMf/xiA559/PtUzDb/55pvVDsFlqcT/jyeoBpjZBjP7CnA48FvCcEe/AQ41sxPMLP4G2BYiO0FNnDgx9uM11MQ3ZcoUjj/+eL7zne+U7XivvPIKs2cnc4LlHXbYgQEDBrBhwwZmzZpV7XCabMqUKaxataraYbhIJWpQrbGDBBRfgwLCeHtmNtrMvmtm55vZuJjiapHq6uoqnqAaauJbunQpAO+++25ZjvX222+z7777MnDgwLzrFy5cyAMPPMDq1avLcrymGDx4MAAzZsyI7RhvvvkmU6ZMiW3/dXV1TJ48Obb9u9J4gopPSQnKNc+cOXM2+nKuZA2qoV58CxYsKMsv8saani644AJOOOEEdtppJ+68886K9HzKlUlQmfM55bZmzRoOOOAADj300Fj2n+HNfMmwfPly5syZU5HjtEaeoCooU3vaYYcw8MakSZNi/5IuthdfJa5Oz3QK+eijj/jGN77Bt771rdiPmSvuBLVgwQJWrlzJ7NmzWbFiRSzHAJgwYUKTt73uuuu44ooryhdMC/HHP/6R4447rqTzk5U6f+s1KBe7TIL63Oc+x4ABA1i5ciXTpk2jrq6O22+/PZYPe7G9+OJs8sp15JFHAqHLfaXFnaCWLFlS//e8efNiOQY0rwZ19tlnM3r06Fb7q7yQ6667jkceeaSkJrtKNO+BJ6gWSVJnSTMkXVXtWODTBLX99tvzmc98BgjNfLfeeiunnnoqP/rRj/JuN2XKFK677jreeOONki/SLPZC3UomqP32269ix8q1zTbbAPElqOxrrObOnRvLMSAkqObWvtPckzEOmRp+Kf9jlUpQrfXHRItOUMAFQOV/pheQL0G9/vrrXH755UC4Ij2fH//4x5x99tnstddebLXVVtx7771FH7PYJr5KJqg4ffLJJ9x55531zztX3DWoSiWoFStWFPy8uKbJdBoqhTfxxavY0cz7SBqUs+wMSddKOiae0JonGmF9Z8JswImQ+TBnJ6hrr722/oum0Bda5h+na9euzJ49mxtuuKHoY+Y28RX6dZjvHJSZ8c477/D888/z+OOPb9R8lVRnnnkm3/jGN3jkkUfyrh80KHyMP/roo1hqEJVKUOAdJcppzZo1rFu3ruTtvIkvXsXWoG4Fzss8kPRz4M/AycAjkk4s9oDR9ByPSpolySSNylPmLEnTJK2RNF7S8GL3n+UqYHQTtouFmW3USSKToLJ/tS1evLjB4fp/+tOfApTUtNOcJr7Ro0ez6667Mnz4cD7/+c/z9a9/vejjVsOSJUt4+OGH6//Op1OnTvTv35/a2tpYrteqRIJq0yb82zano0TanH322QwYMICjjjqKSy65hPnz55d1/01JAGZWn6C22mqrssaTy5v4GjYMyB5f5UzgMjPrDfwJyH/yJL+uwGTgB8AmF8REye4a4DJgT+BF4LHsGpykCZIm57kNiNZ/EZhqZpX5eVOEefPmsXLlSnr16sXmm2/OTjvtVF+rGTRoEP369asvV07NaeLLTB2w9dZbAyT2AtyM+++/v6j5eAo18z355JOce+65LFiwoMkxVCJB7bTTTkDrqUGZGbfeeitz5szhscce4+KLL+ZXv/pVWY/RlOa9hQsX8sknn9C9e3e22GKLssaTy2tQDesFzAOQNBTox6fj7z0M7FTsAc1sbHSR7wNAvqrAj4AxZnaTmb1jZmcDc4DvZe2jxsyG5rllvkE/B5wkaTqhJnW6pItyD5Q9QGzcg8Vmn38C6NChA7vtthsA5513Xv0vsHJfU7FhwwYA2rZt22C5WbNmFWzyOv3008saU1xuv/32osrlJqgPPviA4447jpEjR3L11Vc3a9TzSiSompoaAN54441Y9p80c+fOZdWqVfTs2ZNzzjkHKH+NoikJKlN72nHHHZFU1nhyeYJq2CIgU4c9FJhtZpmzg+1L2E+DJHUA9gaeyFn1BLB/sfuJRrvY2swGAz8GbjKzX5YjxqbKTVAQrrv41a9+xWmnnVZfg4rrS62xf6C0D//zwQcf8MILLxRVNjtBLVmyhH333Xejc1ZNOReRUYkEtf3229O7d28+/vhjnn322ViOkSSZ/50dd9yRPfbYI5ZjNCVBZVoYdt5553KHswlv4mvYk8DFkv4XOJdQa8rYGShXF7A+QFui2lqWeYRaW1nlDBAbq3wJavjw4Vx44YW0b9+e/v37A+WvQZUiLT35li5dukkvvTvvvLPo7bOHO3rwwQdZtGgRe+21F1/+8pdLjiW300klElTbtm35v//7P4CyN3UlUb7/nXJrSoLKNLHGlTSzJa0G9eCDDzJy5MjYOwIVm6B+CnwEXA58AFySte7rwPNljqtszGyMmf24gsfjiSee4Cc/+Ul98xpsOopErrhrUMVIQ4L65JNP6Nmz50ZfVmbGHXfcAXx6nVNDsmtQd999NwDf//7369+DYtXV1bHPPvvwhS98oX5ZdoKaN29ebCOFnH322XTr1o2nnnqKl156KZZjJEVrTFA333wzhx12WP1oJI0lqLq6Oi6//HL++9//lj2WfG688UaefPJJbrzxxliPU+xo5vPMbKSZdTOzQ81sYdbqwwkdHsphIbAB6JuzvC9QvW/uEkji+9//PlddddVGIyVkPsyFEpTXoIqTeR2zu8XPnj2bDz74gJ49exY1Bl4miU2YMIFnnnmGDh06NGmOqOXLlzN+/Hj++c9/1p+/y05Q69evj61r/uabb14/K/Ovf/3rWI6RFElMUHV1dfVjacaRoG677Taefvrp+mbrxhLUSy+9xPnnn8+FF15Y9ljyWbgwpID7778/1uM0+9yRmS0zs6Y32m+8r3XAeGBkzqqRhN58qXD00UcD8M9//hOAadOm8e6779K9e3f22muvvNt4DarpMjXVbt26NdoZBD69Fmrx4sWYGUcffTQ9e/Zs8vHNrP59yySoAQMGAPG+n+eccw6dO3dm7NixjB8/PrbjVMKCBQs488wz8/ZM/OCDDwDYbrvtYjt+qQlq+vTpLF++nH79+rHllluWPZ5M03HmB2tj56Ay3e7XrFlT9ljyySSoyZMnl202hHyKTlCSjpR0i6QnJP0n51b0mVpJXSXVSKqJjj8oepzpRn41MErSaZJ2kXQNMAD4SwnPq6qOOuooAMaOHQvAY4+Fa4VHjhxZsLu316AqZ7PNNtuoOe9rX/tas/c5e/Zs1q5dy8qVK2nbtm19TTnOBLXFFltw6qmnAp/+GEqrs88+mxtuuKG+h2JG9vWDSapBVer805w5c1i7dm2jl09U+iL6TIICeOCBB2I7TrEjSfwUGAscA3QhNMNl30ppaB8GvBHdNiOcz3oD+CWAmd1HmEb+QsLMtgcCR5lZar49Dz74YLp06cKbb77Jxx9/XJ+oMokrn2rWoDbbbDOgMiOaJ0XmPFTXrl055pjmD4Yye/bs+i+JXr161f/giPv9zHxu0j6uXqaWlGvRokUsXbqUbt26xXqtUamdECqZoIrpwVfJBLV69WpWrlxZ/zjOZr5ia1D/C9wADDCzA8zskNxbsQc0s3Fmpjy3UVllrjezwWbW0cz2NrP/lPa0SlfOKd87duzI4YcfDoTeLk8//TTw6Sje+WQnqFIHhG2uzDmZmTNnVvzY1ZJJUMcff3x9gm6OWbNm1Tfv9erVKxFNti1Bdu0pzmuNklyDSlqCWrRoEQB9+vShR48eTJw4MbYhn4pNUN2B+81sQ6MlU6rcF+pmzkNdeumlrF69mj333LP+vEQ+nTp1omfPnqxfv36jE+2V0L17d3r27Mnq1aubNYpCmpx88snssssunHvuuWXZ3+zZs/MmqGo22bYElWjeg/gTVFNruLNnzy6qdpcZib0SMs17/fv359hjjwXia+YrNkH9izA6gyvS5z//eeDTk5cNNe9lVPNLLVOLKuU81DPPPJPa81Zf+MIXePvtt+vHRGyuQgnKa1DNk2n6a0qCWrBgQdEtAqUkqGXLljFt2jQ6duxYP+xUQ6ZOnUr79u2b9GNozpw5RSWoStagMgmqT58+nHDCCUB8zXylNPEdJWm0pL0lbZt7iyW6CipnEx+EwSOzf11lElZDKnXeoqFjFzsW4IQJEzj00EPrm8paO2/ii0emBlVqD77HH3+cLbfcktNOO62o8qUkqEz38t12263RQZghjBgDcPXVVxd9jIykJ6gjjjiCYcOGcfTRR2903We5NP7qBgYsBy4FCl100Xj/3gSLmvYyasqxz6OPPpo333yTzTffnH333bfR8tWsQRXTPTvbpEmTYooknbwGFY+mNvFdc801ANx6663ccsstjZYvJUFVcgSJNWvW8NFHHzVarloJqmPHjrz66quxHavYBDWGMBbe74F3gbJc99TSfe1rX+N3v/sd3/zmN4v6pVXNGpRrHk9Q8UjiOahKJigIM2o3phrnoPr06RP7sYpNUIcA3zezMTHGUlXZ4/FFtamDm7vPoUOHsmjRIjp16lRUeT+xnl5LliypH2y3V69e9OnThzZt2rBo0SLWrVtHhw4dqhxh+ixdupSFCxey2Wab1f94i8P69etZvXqTmX8KyrQeJClBVasGFbdiz0EtYNMBXF0RunTpUnTzmdeg0m3y5MlASFBt27atH2Gg3JPrtRbZI0hkJmmMQ6nXQGWuF9x228qcem8sQZlZ1bqZx63Yd/2PwFmS4vuUOK9BpVxm+oVevXoByRi+Ks2a2kGiVKU0723YsKG+I1Gpgws3Ve7EmrlWr17drCliSpXEJr7NgaHA25L+DeSmazOzX5Q1sgqLo5NEqbwGlW6ZZqJSE9Srr77Kueeey7XXXluxZqOm+tvf/saiRYv47ne/G/uxMheoZl7PuJSSoBYsWMCGDRvo06dPxZptGxsRv6nnn2pra5k3bx4DBw4sabskJqgLsv7eMc96A1KdoJLAa1AtQ6kJ6qCDDmLNmjUcffTRfPzxx7HH1xxf+cpXAPjSl74U+zTnGXHPVltKgsr8bzZ00X2lNbV574gjjuCZZ57hhRdeYP/9i54Ptj5B9e7du0nHLUWx0220aeSW6i7mUP7roJqiV69etG/fnqVLl5Z00tYlSyZBZf6BGxsZJDMCdaUH/GyOVatWVTuEsiklQc2ePRsg1k4bpWrq5+aZZ54B4L777ttknZlx1VVXbTJLtZklq5OEpA6SHpJ0UOzRtHKS/LxFykmiR48eALGe2Hfl05QEVY0aVKHOVnH8sHnsscf4yU9+woEHHrjR8lWrVrFmzRo6depE586dy37cXI3+B0VzNB1eTFnXfH37hrkaix3RwSVLz549S77o2VVXU5r4qlGD6t69e97lcVwDVeji4OzaU9xNr1D8OagXCGPxjYsvlOpKQicJoP6aqfXr11crBNcMcZ/Qd+WXlhpU9+7d89aWWuo1UFB8gjoXeFjSCuBhYA6hY0Q9MytlTijnWoy2bdvWj0PmCSp9SrkOKok1KE9QkBl47ZrolstK2FcixTGShGsdunTpQl1dHStWrPAElUJJrkFJqh+RvVu3bnnLeIIKs922jpnsnGuCgQMHMmXKFE9QKZTkc1BbbLEF8+fPp1OnTrRv3z5vmZY6Dh8UmaDM7OKY43Au1QYMGOAJKqWKTVAbNmyo711bqVEk+vfvz/z58ws270H1ZtOtBO+Z14q1lundKyFzNb4nqPQpNkEtXLiwfhSJjh07xhxVkGlKLNS8By27ic8TlHNlsPvuuwOw4475BlpxSVZsgqrGRbqZYyWlBpXIJr7WICndzNOs1OsiWlIN7oc//CGHHnooe+21V7VDcSXKJKhu3brVj/+XTzW6mG+99dZAqJnX1tbmLdPqz0E5V06VuMCv0tq3b8+wYcOqHYZrgkyC6tGjR4MJqhpdzEeMGMHatWs5+uijufDCC/OWqUYNqhLj8IEnqHrezdy51mfDhg2sWLECaPg8D1SnBtWuXTsuv/zyguvXr1/PypUrKxaPn4NyzrkKydSYunXr1ujYidW8SLeQStaesgeKrVQNyhOUc67Vym7ea0w1hzkqpJLnn5YvX8769evp0qULm222WUWO6QnKOddqlZKgWnsNqtLNe+AJyjnXiqW9BpVJUJlBpuNUymtVLp6gnHMVNXv2bE466SReeeWVaodS9JduNUaRKEYmQW2++eYVO2Yl5znzBOWcq6gzzjiD++67j3333bfaoTB//nyg8ZP+mVEkevfuXbFRJIqROQdVyQRVSS02QUmaLmmipAmSnql2PM654OOPP652CPU++OADALbddtsGyyVxqnf4tAbVs2fP6gYSk5Z+HdT+Zrai2kE455Ipk6C23377BsslsYMEVKeJr5JabA3KOeca8/777wONJ6i1a9cCYe6vcps1axZPPvlkk7b1Jr4yk3SQpEclzZJkkkblKXOWpGmS1kgaL2l4Ew5lwLOSXpX09WYH7pxrUcysPkFtt912VYtjq622YuTIkTz77LMlb+tNfOXXFZgM3B7dNiLpRMKsvWcBz0f3j0na1cxmRmUmkD/2I8xsdvT3gWY2S1J/4ElJk8xsYs6xxhWIsabUJ+WcS5fFixezdOlSunXrxhZbbFHtcHj11Vc5+ODSRljL1KA8QZWJmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkf7qCniOLOi+zmSxgJ7ARMb3so511pkN++ldQDjDRs2ABScbTftEnUOSlIHYG/giZxVTwD7l7CfLpK6RX93BQ4F3sotZ2YjMrcmB+2cS6UkNO+5hiWtF18foC0wL2f5PODwEvbTF3go+lXUFrjJzF4tS4TOuRah2B58rnqSlqDKwsw+BPaodhzOueQqtgefq55ENfEBC4ENhBpQtr7A3MqH45xrqbyJL/kSlaDMbB0wHhiZs2ok8GLMx84+HzUhzmM556rPm/iSr+JNfFGnhcwnog0wSFINsDjqRn41cIekV4AXgDOBAcBfYo5rXNbDmjiP5ZyrrmXLljF//nw6deqUqNHJ3caqcQ5qGJA9Nt4l0e02YJSZ3SepN3Ah0J9wzdRRZjaj4pE651qk7DH4Kjk6tytNNa6DGgc0eNGBmV0PXF+RgJxzrY4376WD/3RwzrU63oMvHVpkN/OmyL5YNzofVdqYI8651PAefOngNSjnXKvjNah08BpUxHvxOdd6zJsXBqsZOHBglSNxDfEalHOu1fIefMnmNaiIn4Nyzrlk8Z8PzjnnEslrUBE/B+Wcc8niNSjnnHOJ5DWoiJ+Dcs65ZPEalHPOuUTyBOWccy6RZGbVjiFxJH3co0ePgTU1NRU/9htvvMGyZcuoqamhR48eAEyYMIGlS5cyePBgpk+fTo8ePSg2tokTJ7JkyZL6bbt27cree+8NhCkH3njjDbp160b79u1ZvHgxQ4cOpXfv3gBMmjSJxYsX12/bpUsXhg0bBoQLHd99910ADj44tIbOnz+fd955Z6Nl2d5++20WLFhQv79OnTqx7777lvT6fPLJJ7z55psbHWPt2rW8/PLLdOzYkc0335y5c+ey44470r9/fwCmTp3KnDlzNlqWz3vvvcfs2bPZfvvti7qAs7a2lhdeeIG2bdty4IEHbrL+ww8/5KOPPmLIkCEMGjSo4H6effZZIFyTM3z48ILlpk+fzowZM9hmm20YPHgwADNmzGD69OkMGjSIIUOGNBpz9vEOOOAA2rUrrZU/s+2+++5Lp06dSto247XXXmPlypXAp+/h+PHjWbFixUbL5syZw9SpU+nXrx877bQTAHPnzmXKlCn07duXnXfeueAxMp/77P1le+WVV1i9ejX77LMPnTt3BuDVV19l1apVDBs2jC5dumxUfuHChbz11lv07t2boUOHbrK/TPx77bUX3bp122hd5nNVKJbMa7rtttuy9dZbAw1/D+yxxx707Nlzo2WZ/6nu3buz5557Fnxd8h134MCBm4yoMXv2bN57772NYl6xYgXjx4/f6HugHKLnMMvMtspd5wkqD0lvAFsA75e4aU10P6Gc8VRBTXQ/oYoxlENNdD+hijGUQ010P6GKMZRDTXQ/oYoxlENNdD+hijGUQ010P6GKMUCYH3CBmW2SWT1BlVGmq3p2h4s08ueRLP48ksWfR+X4OSjnnHOJ5AnKOedcInmCcs45l0ieoJxzziWSJyjnnHOJ5L34nHPOJZLXoJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0ieoEok6SxJ0yStkTReUuHRPUP5g6NyayR9KOnMSsVaIJ7Rkl6VtEzSAkl/l7Tp6JcbbzNYkuW5HVmpuPPEdHGeeOY2ss3ukp6VtFrSLEkXSVKlYi4Q0/QCr+0/G9gmX/mKfq4kHSTp0eh1NEmjctYreo9mR6/3OEm7FbHfL0t6W9La6P5LsT0JGn4ektpLulLSREkrJc2RdLekwiP/hu1GFHiPCo9uG+PziNaPyRPPy0Xst6rfX56gSiDpROAa4DJgT+BF4LFCH1hJQ4CxUbk9gcuBayV9uTIR5zUCuB7YHzgUqAWelNSriG2PBPpn3Z6OKcZiTWHjeHYvVFBSd+DfwDxgH+AHwE+AH8UfZoP2YePnsBdgwF8b2e70nO1uizHGfLoCkwmv4+o8638KnAucTXiO84F/S+qWpywAkvYD7gPuIgxkehdwv6TShrwvTUPPozPh/bg0uv8isDXwuKRihoHfjY3fo/fKFHM+jb0fAE/mxHNUQztMxPeXmfmtyBvwX+CmnGXvAZcXKH8l8F7OspuBl6r9XLLi6QpsAL7QQJnBhC/NYdWONyumi4HJJZT/HrAM2Cxr2YXALKLLLZJwAy4APsmOM08ZA75S7Viz4lkBjMp6LGAOcEHWss2A5cAZDeznPuDfOcueBO6pxvMoUGbX6PXfvYEyI6IyfZLwfkTLxgD/KHE/Vf/+8hpUkSR1APYGnshZ9QShNpLPfnnK/wsYJql9eSNssm6EmvSSIso+KGm+pBckfSXmuIqxbdSENE3SvZK2baDsfsBzZpb96/JfwABCAq66qLnxO8CdOXHmc42khVFz7ZmSkvS/PAToR9ZnP3o+/6Hw/woU/n9paJtK6x7dF/P/8lrULPiUpEPiDKpIB0b/v1Ml3SRpy0bKV/37K0kf6qTrA7QlNBFlm0f4Z8ynX4Hy7aL9JcE1hPlgXmqgzArgx8BXCc0CTwH3STol9ugK+y8witDseDrhtX5RUu8C5Qu9F5l1STCS8OV+UyPlLgJOBA4H7gV+B5wfb2glybyepfyvZLYrdZuKiX6k/g74u5l93EDROYQa+5eB4wlN0U+pkfPVMXsc+CZwGKHp9bPA05I6NrBN1b+/SptO07Uokq4GDgQONLMNhcqZ2ULCP2bGa5L6EM4z3BlvlAVjeiz7cXTC90PgVODqasRUBqcDr5rZmw0VMrNfZT2cIKktoWnw13EG15pF55zuBHoCxzZU1symEJJSxkuSBhPOeT4XU4gNMrN7sx5OkjQemAEcDTxYjZiK4TWo4i0knKvpm7O8L1Co99jcAuVro/1VjaTfA18DDjWzD5uwi/8CO5Q3qqYzsxXAWxSOqdB7kVlXVVFzyxdpvPaUz3+B7pJyn1+1ZF7PUv5XMtuVuk3souR0D/AZ4DAzW9SE3STt/2U28DENx1T17y9PUEUys3XAeEIzTLaRhF4u+bxUoPxrZra+vBEWT9I1fJqc3m3ibmoITRmJIKkTsDOFY3oJGB6VyxgJzAamxxtdUUYBawlfhKWqAdYQOlckwTTCl1v9Zz963YdT+H8FCv+/NLRNrKJzLfcRktMhZtbUZFlDsv5f+gADaTim6n9/VaOXSVpvhHb/dcBpwC6E8zcrgG2i9bcDt2eVHwKsBP4QlT8t2v7LVXwOfyL0ZjuU0MacuXXNKnM58FTW41OBk6PnsBPhfNQ64IdVfB5XAQdHr/G+wD+i55V5L3KfQw/Cl+a9wFDCuYFlwLkJ+FwJmEpOD9Fo3f8C72Y9/gKhKXAosF30mVoKXFPhmLsSvnRrgFWE82I1wKBo/c+iuI6PYr2X8GOgW9Y+niKrByyhM0QtcB7hx8ZoYD2wbzWeB+EUyMOEnp575fy/ZPcGzf2/Pwc4jlA72S36LBpwfJWeR9fo/2U/QoegEYTk83HO+5G476+KfaBbyg04i/CLey2hRnVQ1rpxwLic8gcDr0flpwFnVjl+K3C7OKvMGGB61uNTgbejD+sy4DXglCo/j8wX3rroC+RvwK6FnkO0bHdCT7I1hF+OvyABXcyBQ6L34LN51l0MWNbjI4E3CF22VwKTCNe+tKtwzCMKfI7GROsVxT4ner2fBYbm7GN6pnzWsq8A70bv6zvE+KXe2PPg08sr8t1GZe1jo/97wrnZ9wjXIy0mnHc6qorPYzNC77v50es6I1q+dc4+Nnoe0bKqfn/5dBvOOecSyc9BOeecSyRPUM455xLJE5RzzrlE8gTlnHMukTxBOeecSyRPUM455xLJE5Rr0SSNKjB5nEk6vNrxtRSS9pa0StLArGXjJD1foPxp0XswuIRjHCdpnqSuZQjZpYAnKNdanEC4kj779kpVI2pZfgvcamazYjzGI4QLf38S4zFcgvho5q61mGBm7xdTUFJHM1sbd0AthaS9CaNhnB3ncczMJN0I/ErS5Wa2Js7juerzGpRr1bKaAA+SdL+kTwgjTyOpnaTRkt6VtDaaHPF3OQPOImlbSf+MmrgWSLpG0hm5TVjR44tzth0cLR+Vs/zgaKK75ZJWSvqXpKE5ZcZJel7S4ZJej44/WdKX8jzPPSQ9JGmRpNWSpkgaHa27Nmo6a5+zTbfo+Fc08jKeBkw0s7caKVeQpIsbaIodlVX0r4QpL45v6rFceniCcq1F2yjhZG5tc9bfRRhr7CuEwUohzP9zIXA3Yd6cywkz3t6V2SiaxO7fwJ7A9wmjkg+JtmsSSUcTBlJdAZxCGKi3G/CcpK1zim9HGLT4asKX9hzgfknbZ+3vs4TBQbcDfhg9l6uBraIifwa2BHIT28lAF+CGRkI+kgbmOcp53dtF01fkfvfczKZNsH8jTHEzNVPIwtxk70THdC1dJQf+85vfKn0jJIx8g2g+n7P+9znbDY+WfzNn+dej5TXR49Ojx5/LKtOGMDeVAYOzlm80KG+0bDCbDj76PlkjsUfLuhPm4PlD1rJxhNG+d8hatiXhS/38rGX/AT4COjfwOo3Lc8zXgccbeX37RvGfXmCfhQZbzdwGF9jvCUAd8H951t0BTK32Z8tv8d/8HJRrLb5EmF4gY3nO+odyHh9JGPn5gegXf8YT0f1BwATCL/2PzOzlTAEzq5P0V8Jo3iWRtAOhpnNZznFXEWpBB+Vs8p6ZvZd17PmS5hOmWUBSZ+AA4LdmtqqBQ18P3CtpBzN7T9I+hFphY01pA6L7BQXWv0loAsz1RQrUMiUNA24DrjezP+YpsiDruK4F8wTlWovJ1nAnidyJ27YEOhCmtMind3TfH5iXZ32+ZcXYMrq/JbrlmpnzeHGeMmuBzHmyzQk1uo/zlMv2EGG+rDMI832dSZjO5O+NbJc5TqFOJSvM7LXchZJq8hWWtBXwKKH29YMC+1yddVzXgnmCci7InXdmEWEeo+EFys+O7ucQJqXLlW/69bWEpJetd87jzHTio4En8+xjXYF4CllCaCob2FAhM1sv6WbgLEm/AU4CfmdmtY3sPxPv5iXGtQlJXQgJcSFwopltKFC0V9ZxXQvmnSScy+9xwq/0Hmb2Wp5bJkG9BGwt6XOZDSW1Ab6aZ58zCLPLZjs65/EUwkR+uxU47sRSnkTUrPc8cIqkzRopfgOhh9z9QEfgpiIOMZ2QyLctJa5ckkTolNIfOMbMcptgsw0hvE6uhfMalHN5mNk4SfcQzkFdTbiot47QqeEo4GdmNpVwruQ84EFJ5xNmLT2T0Kkh173AhZIuAF4m1M6+lnNck/R94JGoh+BfCTWKvoQp0Wea2dUlPp0fE2a0fUnS7wjNfdsSOnrUX7tkZrMkPUo4X/d3M/uosR2b2TpJ/wU+W2JMuX5GmCb9B8AASdnnmD4wswVQn8g+Szhn5lo4r0E5V9gphI4OXyGMYvAA8L+E6bznQfiCBkYSOkxcT0hY04Bf59nf5cB10T4eBnYBvpFbyMzGEjpDdCF0v/4X8BugH6HGVhIze5XQUeIj4FpgLGE0hnznpe6P7hvrWp7tPuDQqImuqXaO7q8hPMfsW3Ytc39Cc+K9zTiWSwmf8t25GEQXl/4/YIiZTa9uNMWTdBchmW1rZnVFbtOdkOzOMrM7Y47vz8BQMyt0btC1IN7E55wjOodWA5wI/KjY5ARgZsskXQn8VNJdFtOvXkn9gFPxi3RbDU9QzjkITWkriK4/asL2VwNtCZ0cZjdStqkGA+ea2X9i2r9LGG/ic845l0jeScI551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gXF6SbpJkkn5fYP3F0fqKjOcoaUR0vBFN2PY4ST8qf1SumjKfwWrH4eLjCcptIpp5NTMj7MmVSkIxOg7wBOVcyniCcvkcR5gRdiywJT69QVEkdax2DGnRkl4rBR2qHUdL5AnK5XMqsAQYBayOHheyi6RnJK2SNEfSLyXVf64kdZV0raSZktZKmi/pSUk7Z5XpLuk6SbOjMlMk/TCa3rsgSdMljcmz3CRdHP09Jop/YLTcJE3PKruFpL9ImhUd+11J323sBcpqcjw+ag5dQDTLrqRxkp6XdKSkCZJWS3pD0r6S2km6LHqtFksakz0TbbT+V5I+kLRG0sJoXwc2Ek+j20nqLOl6SYskrZD0qKQDo+cxKqvcOEnjGnu9o9fuBklTo/f/I0l3SxqYs12mOXiopH9JWkGYyj4T05WSpklaF91fkP0ZisrtKem56LnNkvRzoMHPR07cd0o6SdI7klZKei3fayrpFElvZr2Gd0jqX2B/35b0LrAOOFrSqOh57i/pr5KWS5onaXS03ZHR52ClpFcl7V1M/K1Z2ptuXJlJGgAcDtxkZgskPQwcL2lzM1uSZ5OHgVsJ05n/D/BzoI4wVTrA74FjgfMJU6X3JszY2jM6Xhvgn8BewEXAJMIU31cDW0TbNcevov3sE8UBsDY6dnfgeWCzKN5p0XP4s6SOZnZtEfu/FniMMHV7p6zl2wO/BS4lzLP0G+DR6NaOkPx3icrMB34abfcz4IfABYRp5LsDw4BejcRRzHY3ECYkvAR4lTBV/d1FPMdCegFrgNHAAmAAcC7wgqSdzWxNTvlHgFuAK4E6habjfwG7Et6nScDnCJ+hXtG+kNQHeBqYS/ixsZYwZf2gEmIdDuwU7XtNdLx/SBpsZp9Ex/ku4TW6L3pOA4DLgH0l7WVmK7L2dwhhgsdLCO/f9OgYEObUuh24ETgBuExST+AoNv48PCxpOzNbV8LzaF3MzG9+q78RvigN2C96/D/R4zNzyl0cLT8vZ/lNwHKgZ/R4MnB1A8c7JtrPqJzlNxO+iPpEj0dE5UZklZkOjMmzTwMuzno8Bvg4T7nMl9UOeZ7DQqBdA3Fn4nkoz7pxwHrCtOmZZcdG5Z/MKfsgMC3r8T+AB5vwvjW4HeHLeUOe9+vPua9/FP+4PPvI+3pnrW8LbB3t70t5Pis/yCn/jWj5QTnLLyDUSraMHl8aPd46q0yX6D2yIl6b6YQWgc2zlg2Ljn1yVuzzgGdytj0wKvd/OftbBfTLKTsqKntR1rJ2hAS2HhiS5/NwcKnvdWu6eROfy3Uq8J6ZvRQ9fpIwQ2qhZr6/5jy+F+gKDI0evwqMknS+pGGS2uaUP4hQ48r9JX8n0AHYr/SnULQjgf8C06ImsnZZv+p7E37ZN+ahAsunmtmHWY/fje7/lVPuXWArqb4581XgKEmXRs1vG53bkNQmO9asprAGtwP2JTTp53u/mkzS96ImsRVALTAzWrVTnuK5r9WRwAzgxZzX/wmgPaE2BeEz8LKZfZTZ0MxWAn8vIdSXbOMWgEnRfaYWthPhfOtd2RuZ2fNRjAfn7O9lM5tb4FiPZW1fC7xP+DxMyyqT+TxsXfQzaIU8Qbl6koYRvpQflNQzapboRviV/zlJO+bZbF6Bx5nzEGcTmk2+TfgSnS/p95I6R+t7AYtt02aOuVnr47IlIUGuz7ndH63vXcQ+5hRYntscuq6B5e0Iv+AhNCn9gvAL+zlgkaT/FzVzQWhOzY711iK3y5xHKfR+lUzS2YTp4Z8Ejgc+y6dJpVOeTXJfqy2Bbdj09X8lWp95/fsXiLOU2BdnPzCztTlxZj5n+d7PuWz6OSz0vkP+97jQ5yHf6+Qifg7KZcvUkn4W3XJ9E7gwZ1lf4MOcxwCzACy0248GRkvaBvgKcAXhH/RnhC+OXpI65CSpftH9Rl8sOdYQaln1JBWTVDIWEZpfflBg/ZQi9lHW63DMbD3hHM2VkvoRmkCvBjoTzh9dDFyXtcnCIrfLfKEWer+yrSGcw8qV+yV9EvCUmZ2bWSBpSENPL+fxIsJ5v6/mKQuhKQ1C7PnizLesqTKfs3551vUDxucs8+uvKsBrUA6AqEnoa4Qmr0Py3CYA38hqisrI/XI5iXASeFLOcsxshpn9LlqXaQJ8lvA5PCGn+NcJSewlCpuRtZ+Mo/OUW0voCJHrcWBnYKaZvZbntryBY8fOzOaa2c2EGsrQaNn0nBinF7Md4X2tI//7lWsGsGN2M6Gkgwi16WydCTWebN8q6skFjxOauFYUeP0XRuVeItTg65vDFHo+fqGEYzVmCqFGttHrIWl/Qi1vXBmP5YrkNSiXcTShSeVcMxuXu1LSDYQT6iOAZ7JWnR6dB3mV0KHiNEIHhaXRdi8Req5NIiSug4E9CD2dILTXPw/8RdIWwFuE3k6nAZdnfUnlcy9wq8JoF/+I9jsqT7m3CbW07wGvAWvMbBKhh+GJwHPRPqYQTr7vDAw3sy82cOxYSHoEeBN4ndAstCfhXM0NzdnOzKZIuhv4Zdb7dQThtc51L/Bdwms7BhhCuNB5aU65x4GfSTqf0Cx3KKGGXKy7CAntKUm/i+LvAGxHaKo8zsxWEd6ns4AnFC4fyPTiW13CsRpkZhskXQTcIOlOwjnQgYQOGu/xaVNqbKLjXwRsZ2Yz4j5eGniCchmnEnrf3V9g/T2EJqNT2ThBfZHQ1frnhC+wXxO68Gb8h/Cr/TzC5+1D4Idm9kcAM6uTdDThHMrPCElyOuEL8Q+NxHwb4Rf4d4AzCOdevkQ4KZ3tZsK5kcsI3dtnAIPNbGn0C/mi6NgDgU8IiepvjRw7Lv8h1Ca/T6ihzCR0Sb60DNudQfiR8GNCIngaOJnwA6GemT0j6cyo3JeBN4BT2PQ1+SXh9fwh4VzKs4QfKR9SBDNbL+l/CJ+N7xIS4UrgA8KlB+uicgslHQZcQ3jPFwF/IXyeLirmWEXGc6OkVYTk9wjhtRoL/DTqlBG3NoRzkUVd39UayMybUp1rrSQNJpwH+paZjaluNM5tzM9BOeecSyRPUM455xLJm/icc84lkneSyEPSG4Tx23JPtjvnnCuv7YEFZrZn7gpPUPlt0aNHj4E1NTUDGy/qnHOuqSZMmMDSpblXMASeoPJ7v6amZuC4ceOqHYdzzrVoI0aM4Nlnn83bWuWdJJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0jeSSIiaVzWw5oqheGccy7iNSjnnHOJ5DWoiJmNyPwd1aZyp3hOvaVLl9KtWzfatPHfJc655PNvqlZizpw59OvXj+985zvVDsU554riCaqV+OCDD1izZg3vvPNOtUNxzrmieIJqJdavz52Z2znnks0TVCtRW1tb7RCcc64knqBaCa9BOefSpsX24pM0HVgG1AFLzOyQ6kZUXZ6gnHNp02ITVGR/M1tR7SCSwJv4nHNp4018rYTXoJxzaZPIBCXpIEmPSpolySSNylPmLEnTJK2RNF7S8JwiBjwr6VVJX69I4AnmCco5lzZJbeLrCkwGbo9uG5F0InANcBbwfHT/mKRdzWxmVOxAM5slqT/wpKRJZjYxZz/jChy/pizPIkG8ic85lzaJrEGZ2VgzO9/MHiB0csj1I2CMmd1kZu+Y2dnAHOB7WfuYFd3PAcYCe1Ug9MTyGpRzLm0SmaAaIqkDsDfwRM6qJ4D9ozJdJHWL/u4KHAq8lbsvMxuRucUadAJ4Dco5lzZlaeKT1ANYY2Zry7G/RvQB2gLzcpbPAw6P/u4LPCSJqOxNZvZqBWJLLK9BOefSptkJSlI7YBHwJeDvzY6oDMzsQ2CPErcZkfm7JY5m7gnKOZc2zU5QZlYraR6woQzxFGNhdKy+Ocv7AnObutOWPmGhN/E559KmXOeg7gROK9O+GmRm64DxwMicVSOBFysRQxp5Dco5lzbl6mY+HThZ0qvAI4QedZZdwMxuLXZnUceG7aOHbYBBkmqAxVE38quBOyS9ArwAnAkMAP7SvKfRcnmCcs6lTbkS1J+i+4GEHna5DCg6QQHDgGeyHl8S3W4DRpnZfZJ6AxcC/QnXTB1lZjNKDby18CY+51zalCtBDSnTfgAws3GAGilzPXB9GY85IvO3d5JwzrnqK0uCagk1l5beScITlHMubco61JGkzwAHAb2BG8xsrqTtgXlmtrycx3Kl8SY+51zalOtC3Y6EnnzHE5rmjHBN1FzgN8BU4LxyHCsu3sTnnHPJUq5u5pcSRnH4BuF6pOzzR48B/1Om48RG0rjMDW/ic865qitXE9/XgAvN7G5JbXPWTQMGl+k4rom8ic85lzblSlC9gXcKrGsDdCzTcWLjTXzOOZcs5WrimwbsV2DdZ4EpZTqOayJPUM65tClXDep24HxJ04G/RctM0iHAD4GLy3Sc2LT0bubexOecS5ty1aB+A/wTuANYEi17HngSeNzMri3TcVwTeQ3KOZc25bpQdwNwkqQ/EXrsbUmYguNxM3u2HMeIm5+Dcs65ZCnrhbpm9hzwXDn36crDm/icc2lTliY+SfdJ+q6kHcuxP1d+XoNyzqVNuWpQWwHXAu0kzSGMRP4M8IyZTSvTMVwzeIJyzqVNuc5BHSCpCzAcOBQYAZwEtJE0E3jazL5TjmPFxXvxOedcspSrFx9mttLMHjezn5rZZwmdDJ4GtgFGles4rmm8BuWcS5uydZKIRi0/hE9rUFsCbwPXERJVonkvPuecS5ZyjWY+kzCb7vuEc0/nEJr1FpRj/675vInPOZc25WriGwCsIYzH9zbwtienZPEalHMubcqVoHoRRjSfBnwHmCBpXtT9/Ezvfl59XoNyzqVNuXrxLQMejW5I6k04H3UG8CfCBIZlvSjYlcZrUM65tCn3lO9bEzpJHBLdtgY2AOPLeZw4tPRu5p6gnHNpU65OEjcSEtMQQm3pTeB+Qu+958xseTmO45rOm/icc2lTrhrU5wijmT8DjDOzT8q034rxbubOOZcs5ToH9Zly7MfFxxOUcy5tyn0Oaiih5tELWEyoTb1VzmO40pmZN/E551KnXOeg2gFjCF3NlbXKJN0NjIrmjHJVsGGDv/TOufQp13VQvwC+ClxE6CixWXR/EXBidO+qxJv3nHNpVK4mvlOAX5vZpVnLZgCXSmoLfIuQxFwVePOecy6NyjnU0YsF1r0Yra8oSZ0lzZB0VaWPnTReg3LOpVG5EtRs4IAC6/aP1lfaBcDLVThu4niCcs6lUbma+O4CLpBUF/09B+hHmLTwAuDKMh2nKJJ2AHYG/g4MreSxk8ib+JxzaVSuGtTFwAPAJcB7wArC1BuXRst/WeyOJB0k6VFJsySZpFF5ypwlaZqkNZLGSxqeU+QqYHTTnkrL4zUo51walSVBmVmtmZ0M7A6cTei197/A7mb2dTMr5Sd8V2Ay8ANgde5KSScC1wCXAXsSznE9JmlQtP6LwFQzm9qMp9SieIJyzqVRWS/UjS7KbdaFuWY2FhgLIGlMniI/AsaY2U3R47MlHQl8j1Br+hxwkqQTCMmuvaRlZrZJLS5ngNhsNc15DknjTXzOuTQq55TvbYFvAvsRZtedRajd3FGui3QldQD2JjThZXuC0BkDMxtN1LwXNQ8OzZecWhOvQTnn0qgsTXyStiHUnG4BjgS2jO5vBSZH68uhD9AWmJezfB6hU0ZJzGxE5laG2BLLE5RzLo3KVYO6DugOHGhm9ddDSTqAMO3GtcCxZTpW0cxsTKWPmUTexOecS6Ny9eI7FBidnZwAzOwF4PxofTksJEyA2DdneV9gbpmO0eJ4Dco5l0blSlArgPkF1s0HVpXjIGa2jjA778icVSMpPJJFq+cJyjmXRuVq4rsTOBN4LM+6M4Dbi92RpK7A9tHDNsAgSTXAYjObCVwN3CHpFeCF6LgDgL80OfoWzpv4nHNpVK4E9T5wgqRJwN8InRb6Al8BuhGuU/p2prCZ3drAvoYRZubNuCS63UaYtuM+Sb2BC4H+hGumjjKzGWV6Li2O16Ccc2lUrgT1p+h+K2C3POuvz/rbCL378jKzcWw8p1S+Mtfn7LPZWvKU716Dcs6lUbkS1JAy7adqci7aralSGLHwGpRzLo3KkqC8eS3ZPEE559KoXL346im4NTM2XlrkXLQ7ocrhlJU38Tnn0qisY/FF2gCnEi7enRnD/mPhTXzOOZcsZa9BRRrs5OAqyxOUcy6N4qhBpZL34nPOuWSJowZVR7hmaWEM+3ZN4DUo51walb0GZWYGfKvc+3VNl52gwtvjnHPJV5YEJWl/oJeZ/SN63Itw8e5Q4F/Az8o1J1RcWnInCW/ic86lUbma+K4gTCSYcRVwFDCVMNPt+WU6jmsCb+Jz/7+9M4+Pqr4W+PckshpAFmVfRbEKGgG1dQGty6P6bGuxpUp94qu+Wqy1tbVatX1Qq7aPp5bqE7u7YAW1iktdUdPiUioUUFEhAglbCDsJgQBJzvvjd2+cDDPJzOTe2XK+n8/9zMz9/e49585yz5zzO7/zM4xcJCgD9RlgEYCItMPV4Pu+qk4EbgEuDUhOaOTzPCgzUIZh5CJBGagioMp7fjJwKPC89/pfQE5N2s03LMRnGEYuEpSB2gCc4D3/AvCBqvrrQ3UnoPWgjNQwD8owjFwkqCy+x4A7RORM3NjTf0e0jQZKA5ITGvmcJGEGyjCMXCQoAzUNqAU+i0uYuDui7QTgiYDkGClgIT7DMHKRoKqZ1wO3x2n7chAywiafK0mYB2UYRi4SyBiUiPSKrl4uIt8SkXtF5N+DkGGkjhkowzBykaCSJP4I3OS/EJGfALNw6eXPiMikgOQYKWAhPsMwcpGgDNRY4LWI11cDd6hqT1xFiesDkmOkgHlQhmHkIkEZqB5AJYCIjAT64ArGAswDRgQkx0gBM1CGYeQiQWXxbQMGeM8/D2xUVT+1vB3hrTsVGPmcZm4hPsMwcpGgDNR8YJqI9AJ+gPOafI4BygOSY6SAeVCGYeQiQXk2PwLWAXcCq4DpEW2TgTcDkhMa+VyLzzwowzBykaDmQVUC58ZpPgc3idfIEOZBGYaRiwS6YKGICHAsLmliO/ChqlY1f5QRNmagDMPIRQJLXhCRK4EK4D2gxHvcKCLfDEqGkRoW4jMMIxcJakXdycBvcXOhZgObcKnmk4HfisgeVX0sCFlG8pgHZRhGLhJUiO9HwKOqelnU/odE5BHgRlzFcyMDmIEyDCMXCSrENwLnOcViNjZRN6NYiM8wjFwkKANVzacTdaMZ4LWnDRE5TEQWichSEflARK5Kp/xswzwowzBykaBCfC/iFixcqaoL/J0i8jng5157OqkGxqnqHhE5FPhARJ5S1W1p1iMrMANlGEYuEuQY1GeBEhHZgMvm64Pznj7x2tOGtz6Vv8x8B0C8rU1iIT7DMHKRQEJ8qroJV7/uOuAdoAr4B3AtcKI3kTdhRGSciDwrIhtEREVkSow+U0VkjYjUishiETkjqv0wEVkGrAdmqOrWlC4uDzAPyjCMXKTVHpSItAfmAveo6n3Afa3WCoqAD4CHvS1a5iRgJjAVV0ZpKvCiiByrqmsBVHUncIKI9AaeEpEnow1lVIHYSIoDuIaswQyUYRi5SKs9KFXdjytnFNikX1V9QVVvVtUngYYYXa4HHlTV36nqR6p6LS6s+O0Y56oElgFnRLe1FSzEZxhGLhKUUXkLNwYVOp7HNgZ4JarpFeBUr09vEeniPe8GjANWRJ8rqkBs3mIelGEYuUhQSRI/AOaJyG7cUhsVgEZ2UNVYnlAq9AIK8RZIjKAS58kBDMZVsPCTI+5V1fcDkp9zmIEyDCMXCcpA+Tf/md4WjQYoq0VU9Z/k2ThSqqiqhfgMw8hJgjIaPyPKYwqRrUA90Dtqf29cDUAjgvr6+kyrYBiGkRJBrQc1LYjzJChrv4gsxq0/9URE07nAX9KlR65g4T3DMHKVoKqZtwPaq2pNjLZDgf2qmvCdUkSKgOHeywJgkIgUA9u9NPK7gUdE5J+4BI2rgX7AA626kDzEwnuGYeQqQYX4/uCd69IYbb8B9gP/mcT5xgJvRLye7m0PAVNUda6I9ARuBfri5kydr6rlKegOuIw+/7k3P2p8qufKJsyDMgwjVwnKQJ0J3BCn7VlgRjInU9USWihNpKr3A/cnc97miJq0WxzUeTONGSjDMHKVoOZBHQFsjtO2hYMTGow0YSE+wzBylaAM1GZgVJy2UUDWVxGPmrS7NMPqBIZ5UIZh5CpBGajngZ+IyPGRO0VkFHAL8FxAcowkMQNlGEauEtQY1E9xad6LReRdXAXx/sDJwBpcMkNWk69jUBbiMwwjVwlquY2twEnAnbjkhmLv8XbgpLa81EWmMQ/KMIxcJbDyQ97yFj/1tpwjX9PMzYMyDCNXCWyJDCM7MQ/KMIxcJW0FXLOdfB2D8g3UIYccYt6UYRg5hXlQeY5vlNq1a5dhTQzDMJLDPCiPfB2DivSgDMMwcgnzoPIc30CZB2UYRq4RqIESkQIRGSki470q5kaG8UN85kEZhpFrBGagROQa3IKBy4DXgRHe/nki8t2g5ISFiJT4G3mYJGEelGEYuUYgBkpErsIt9T4PmETTSuQLgIlByDGSxwyUYRi5SlBxn+uBu1T1RhEpjGr7mPhLcWQN+ZokYSE+wzBylaBCfEOBl+O01QCHBSTHSBLzoAzDyFWCMlBbgSFx2kYAGwKSYySJGSjDyA/mzJnDRRddxJ49ezKtStoIcrmNn4rIsIh9KiK9gO/jxqaMDGAhPsMIn08++YRnn302VBn33nsv8+bNY9GiRaHKySaCMlC3AvuAD4D5gAK/Bj4C6oGfBSTHSBLzoAwjfC6//HK+9KUv8cknn4Qmo6qqCgBVDU1GthHI32pV3SoiY4HvAf8GrPLOfR9wj6pWBSEnTPK9Fp8ZKMMIB1Vl2bJlAOzatSs0Ob6BaksENg9KVatV9TZVPV1Vj1bVz6nq9FwwTulk165dnHfeeTz66KNpkWchPti2bRuzZ8+muro606oYeUhFRQU1NTWhyzEDlSIislpETojTNlJEVgchJ0xU9Ux/A5aGJeell17i1Vdf5a677gpLRBPMg4Jf/OIXXHbZZRx//PGUlJRkWp2UWbZsGeeeey5Lly7NtCpGBCtXrgxdhqq2yT9YQXlQQ4AOcdo6AoMDkpPzlJaWArB8+fK0LH9hBurTsEtZWRlnnXUWM2bMyLBGqTFv3jzmz5/P73//+0yrYkSQDgO1d+9e6uvrQ5eTbQRZiy/eyN1YYGeAcnIafxB1//79aflitxTia2hoCF2HbOGUU04B4LbbbsvJgWb/s/LHO4zswP/TGSZtMbwHrTBQIvJ9EVkrImtxxuk5/3XEtgX4P+CloBTOdSKzfN57773Q5TXnQe3YsYN+/fpx3XXXha5HNnDFFVfQpUsXqqur2bFjR6bVSZlly5a1qT8W2U46/mi2xfAetM6DWg285m0CLIp47W9/wc2Duqp1auYP2WSgSktLqays5LnnngtEVm1tLaNHj+bWW28N5HxBIyIMGTIEcOG+XKW6upo1a9ZkWg3DIx0GyjyoJFHVZ1T1ClW9AngIuNZ/HbFdraq/VtW2M/W5Gaqrq6msrGx8nQ4DlUgW37p16wKJbz/zzDMsWbKE22+/PWb7rFmz6NGjB7fcckvG/hGGbaAaGho455xz+PrXvx7K+X0szJcd1NXVsWrVqtDlmIFqBZ4xsr90LeB/kYuKioDMe1A+dXV1VFRUtFpWS2GnkpISduzYwR133MHw4cN5+umnWy0zWcI2UNu2beO1117j8ccfDzUJpjWZfOvWrUvLTTXXWLFiBS+88EJSx5SXlzf+xsKkrRqoQCbHiMhPW+iiqnpbELISQUQGAo8ARwB1wG2q+kS65MfDH0wdP348b7zxBuvWrWPHjh10796d/fv30759+8Bl+jfJlrL41q5dy4ABAwKXH4vDDz+czZs385Of/ISLLrooLTJ9fANVXl4eyvm3b98OuLTgLVu20Ldv31DktMaDGjRoEAD79u0L5TuXq1x++eUsXLiQtWvXMnDgwISOSUd4D2wMqrVMa2b7b+8xndQB31PVY4HzgF9lwwq//vjTiBEjGDlyJADvv/8+7733Hocffjg/+tGP4h67b9++lGT6/+5amqgb1g07Ft/5zncA0vLPM5qwPSjfQAFs2rQpFBnQOg/KJx2TS3OJ9evXA8l5K+nI4IO260EFFeIriN6AXsAUXH2+4UHISUKfClVd6j3fhKu23iOdOsTCN1BHHXUUxx9/PODCfNOmTaOqqoo33ngj5nE33HADHTt2ZOzYsUybNi2pcFyi86DSaaDCprkU8nwxUGvXrm0iy2g9qZQpSpcHZQYqYFR1u6o+DDyISzVPGBEZJyLPisgGEVERmRKjz1QRWSMitSKyWETOiHOuMUChqq5L4TICxTdQw4cPbzRQjz32WONYTDzDs3DhQgAWL17M9OnTufrqqxOWGR3ii3fzzhcD9cADD9ClS5e4HkakgQpjLlS6DBSkZwyzrVBfX8/u3buTPs5CfOESmoGKYBkwLsljinCe13XA3uhGEZmEW2L+DuBE4G3gRREZFNWvB/Aw8F+xhIhISayNkIrFxjJQb7/9dmN7ZWVls4kGkydPBmDnzp0Jy2xNiG/+/PmMGzeO4447jsGDB6etPFOqNDQ0cOedd1JTU8O7774bs0/37t0pKiqiqqoqqfcxUdJpoNpSyaOSkhKmTZvGvHnz2LhxY+DnT9VD8Q2Un/gUFuZBhce/A1uSOUBVX1DVm1X1SSDWHft64EFV/Z2qfqSq1wIVwLf9DiLSAbcO1S9U9e0Y50grNTU1bNy4kXbt2jFw4EBGjRrV2NauXTs6depEXV0d27Zti3uOESNGJC23NSG+++67jwULFvDhhx+ydu1aHnnkkaTlp5O///3vrF27ttk+zc2FOnDgQKv/EafDQB1xxBFA20o1v+yyy5g+fToXXXQR/fv3Z9asWYGePxUDsHfvXtauXUthYSFDhw4NVJ9ozEC1AhH5Y4xttogsxXlBfwhCjierPTAGeCWq6RXgVK+P4EKLr6tq3LtqVIHYUFm92tXLHTZsGIWFhfTo0YP+/fsDLnvI/4IHfVNLtJp5eXn5QSEvf27UNddcE6hOYfHwww8n1C+WgXrxxRcZNWoUI0aM4JlnnklZh0gDFUTqfiyKi4uBtuNB7d69m/Xr19OuXbvGa/fD3kGRyvjTqlWrUFWGDRsWeq1LC/G1js8DZ0VtY4BNwDeB2DM3U6MXUAhURu2vBPp4z08DJgFfFpGl3jaKDOJn+xx11FGN+yZPnszAgQO55ZZbGtORg76p+UanoKD5j7qmpibuoHvv3r0D1SkM9uzZwxNPJDaTINJANTQ0cMkll3D++eezYsUKwM0TSpV0eFCjRo1CRFi+fHmTid/5ij9n68gjjwytLFcqBsr/vhx99NFBq3MQ5kG1AlUdoqpDo7bPqOoEVX1Q01yZU1Xf9LIJiyO299OpQzSR408+v/zlLykvL2fIkCH06eNsa9jjFs2Ry4kSzzzzTMKD3JEGasGCBcyZM4eioiKOOeaYVuuRDgPVpUsXvvjFL3LgwIGsHxcMgli/naBJxUD5IdbIcH1YZJuB2rBhA0888UToRZfTMQYVNFtxy8hH/63vjfPYMo6qHrT0c7wfmYtG0migwgoLJUJL4zfZgKoydepUHnjggSb7/fBehw7xVn35lEgD9ec//xmAa6+9lrPPPjtpfWbNmsXcuXMbX6crScKvd3j//fc3O26ZD/geVLYaqBNOiLkUXqtYtWoVjz/+eKMBSCTEV1lZmZYlfABuuukmvva1rzFnzpxQ5bSmmvm4ZLagFFbV/cBi4NyopnNx2XypnjeQBQtVlRNOOIGjjjqqyQ3fDwfE+5H5IT7zoJpn0aJFzJo1i29/uzEfhl27dvHKK6/Qrl07vvCFL7R4Dt9AlZaWNoYFL7300qR1qamp4ZprruHKK69svJFEGqjq6urQJsOOHTuWCRMmUFNTw69+9atQZGQL/p+7I488MjQZ2Wagvvvd7zJp0iT+9a9/AS17UGVlZfTv358rr7wycF1i4RcrzloDBZQAbySw+f0SRkSKRKRYRIo9HQd5r/008ruBKSJypYh8RkRmAv2AB+KcMhGZgaSZi0ijEfLretXU1LBw4UJEhNGjR8c8Lhs8qFwwUHv2HFx3eNeuXTQ0NNCnTx969erV4jl8A/XRRx+xY8cORo0a1VjZIxnq6upQVXbv3t2Ysu4bqEMPdYVLwhwj8r2oX//616GkzKcTVWXJkiXs37//oLZsDPHt3LmT8vJyOnbs2GRcOWh9fO+xJQO1fPly6uvr01ZjcevWrQC8/PLLoYYfW2OgzsIlR7S0+f2SYSywxNs6AdO95z8DUNW5wPeAW3HezunA+aqaFXfYCy64APjUQL3xxhvs27ePk046icMPPzzmMeZBpY8ePXo0mbeSivcUzYYNG2hoaGhcZ8ofzwrz8zzttNM466yzqKqqyvopAC0xa9YsRo8ezaRJkw5qy0YD5U+SHjlyZIsZsq2hoqKChoaGFsdX0/0HxTdQ+/bt4/nnnw9NTmuW2/hbMluS5y5RVYmxTYnoc7+XnNFBVceo6t9TvRbvfIGE+IDGMNNrr71GbW1to6E6//zz4x6TSQ/Kz/BrKwZKRBg8eHDj6yCWxti4cSO7du1CVenatWtj4d2w/3CMHz8egC1bkppqmHX86U9/Atyy9pHU1tayfv16CgsLm3xmQZOsFxBmeC+SioqKhJJ/0rkAZ319fZNQdqLZs6kQaJKEiPQQkQtE5DLvMeP17xIlyEoS/fr148QTT2TPnj2UlJQkZKAy6UH169cPaDsGCj4N85166qmNz1vDxo0bG3+0PXr0SFtWpp9kk6+sWbMGVWXIkCGhzjVK1oNKp4FKxHim00Dt2LEDVW1MSHrxxRdDm6cVmIESkZ8DG4BncQsYPgdsEJG0LbORTfhhvhkzZlBeXs7hhx/OmDFj4vY/7LDD6NChA1VVVTHHWcKkT58+tG/fnq1bt7aZCtf+WOAVV1wRyPk2bNiQEQOV76QjQQKy10Bt3Lgx6wyUH94bNGgQp512WqhhvqAqSXwPuBmYjRtv+gxu7Gk2cLOIfDcIOWESZIgPPvWWXn/9dQAmTJjQ7GRZEcnYTa2goKBx/ZtkUs3TPL0tUG666SYWLFjAN7/5zUDOlykPKt9Jx/gTJGeg6urq+OCDDwAaa2o2R21tLddffz1vvfVW0npVVFQk5J2kcwzKN1C9evXiq1/9KgBPPvlkKLKC8qCuBmaq6lXemNMK7/Eq4NfA1IDkhEbQxWJPPvnkJhllzYX3fDI5DuUvYpdoFYWamhpGjBjBD3/4wzDVCo3OnTtz+umnBxYiMwMVDqkaqM2bNzNx4kRKSkoS6p+MgSotLaW2tpbBgwdz2GGHtdh/5syZ3HPPPZx++ukJy/DJxhBfpIGaOHEiAEuWLGksjRYkQRmoIcBf47T91WtvUxQWFjJhwgTAeSjnnXdei8dkchyqc+fOADHTfGPx1FNPUVpa2iYqGSSCGahwSNVA3XDDDTz11FOcddZZCfVPxkAlG95rbemsRBJgMmWgBgwYwKJFiygtLaWwsDBwWUEZqG1AvIkkx3ntWU3QIT6ACy+8EHAD8T16tJwvkg1zoYzUsDGocEi1isTmzZuT6h+mgWotiazamykDBTBmzJhQjBNAUAn8TwO3icg24DFVrRORQ4Cv4uYuPRSQnJzi4osvZtasWQn/i7ObWu6yadOmxn+6PXr0aCywu2nTJlQ177PtwuDAgQOUlZUhIqEuZ9HQ0JBUmnm6DdTHH3/cYp9MjUGFTVAG6sfACThD9EcR2Y5bYr0QeBOXQJHVeGNPPsVBnLOgoCCp1W/DqmhuhE99fX1jOasePXrQqVMnunXrxq5du9ixY0dCHrTRlPLycurr6xk4cCAdO3YMTU5NTU1SCT9+2PHYY48NS6UmJLJGWTo9KL/2Y84YKFWt9urtXQCcgTNO24G/AS+mu5p5rmIeVG7z/vuuYL5vjPr06cOuXbvYtGmTGagUyMYMPlVtXNHXnz8YNi0ZqLq6urSuF5VODyqweVDqeF5Vb/Sy+W70VsbNCeMUxhhUspgHldv4n1ukgYKW/3Ds2rWL2bNnJ7xcSCaprq5OW/V03xD4UyDCIhkD5RcA7ty5M127dg1Rq0/J1jJHOWOgRORoETk54nVHEblTRJ4Tke8EIaMtYB5UfpCsgZo8eTKXXXZZUuHgTNG1a1d69erF3r17Q5fl/7cNs9YdJGeg/D8hffv2zZpxxVQN1FNPPcWFF16YdJkn30D17NkzJbnJEJQHdR9wccTrO4Af4CqM3yMiubFmeIbxB9YrKytDmVNgpAffQEV+ns3x17+6GRpPP/10uIoFSLJZctlMMgYq3eG9REh1/GnixIk8//zzzJgxI2b75s2bOXDgwEH7c86DwiVIvAUgIgXAfwA3quoY4OfAfwUkJzSCnqibCu3bt6dnz540NDQ0fgmM3KN79+7Ap4snxvqRG9lDKh5UPhgon1ge1OrVq+ndu/dBywMdOHCAnTt3UlBQkNAk5dYSlIHqxqdznU4EugN+7YsSYFhAcvIeG4fKbTp37hxqxpkRPKl4UP7vNJ1ELhETSRgZfK+++ipAY0knn8i5fmHNfYokKANVCfipNucBq1TVnz5dBKRnHeJWkA1JEgDdunUDElvi2cg+LFsv98gVD6pLly4x9+frHCgIzkA9C9wpIv+LG3uKXCBkFLA6IDl5T7YMvBqpYQYq90gmSSCTHlS8rMFMVpEIm6DSY24COgL/hjNWt0e0fRF4JSA5hpF1FBUVsXfvXurr681A5SC5kiRhBipFVLUGuCpO26lByDCMbKWgoIC+ffuyfv16M1A5SKpp5umgqKiI3bt3U1BQQKdOnWL2yWcDFfSKul1F5FQR+ar3GDtoahh5Rv/+/QEL8eUi2exB+Yawa9euccP/6RyDSmeZIwh2Rd2fAuuABcBc73G9iNwalAwjWHKkyEdO4N+wzEDlHokaKL+KRKdOndJWRcL/XjUnL589qEBCfCIyHfgJ8HtgDi6rrzdwCTBdRA5R1WlByAqLMIrFGm2HAQMGAOn74RrBkaiBivSe0pXM5HtQ8TL4wAxUIlwF3KWqN0TsWw68LiK7cBN1pwUky8hSkv3R5pMHN3XqVGpra7nkkksyrYqRJL6B6tChA/v27YvbL93jT5Gy2qoHFeRE3ZfjtL3ktWc12TIPqi2Qj6n0xxxzDL/97W8bPSkjd/ANlD8HMR6ZyOD77Gc/S69evTjnnHPi9snEPKh01OGD4DyohcBJwPwYbSd57YZhGFmFqjYaqK5duzZbYzATc6D69etHZWUlBQUFnHnmmQe1NzQ05PVE3ZQNlFdzz+e7wNMiUoebpOuPQX0N+E/gS61R0jAMIwz8+WsdOnRorJ0Yj0xVkSgoiB/oqq6upqGhIW265IyBwpUvihxEEOAX3kbU/vdaKcswDCNwEg3vQX5VMk+Fffv2UV1dTWFhYULvVxC0xmj8jKYGyjAMI6dIxkBlIkmiJTI1Bypd48gpG6hsTxs3DMNoiUgD1dIijNnsQRUUFIQe6vMNVLoSJCDgShKxEJHxIvLHsOXEkPu0iOwQkSdb7m0YRrqor6/n9ddfp6amJtOq5LwH5RuodKzNVFfnFqVo37596LJ8QjFQIjJcRH4mImuAN3DJEulmJm7hRMMwsogZM2Zw9tln8+UvfznTqjTe4FsyUNXV1ezevZtOnTqlbfwlEXz9/UUy840gSx11E5H/EpG3gBXALcAO4Nu4pd/TiqqWALaokmFkGXPnzgVg/vxYs1LSS1lZGQCDBg1qtl+k95RN8/j8MSgzUDEQkQIROV9E5gIVwAPAYOD/vC7fU9XfqGriC664844TkWdFZIOIqIhMidFnqoisEZFaEVksIme05loMw2h7rFq1CoDhw4c32y8bx58gvSG+TNCaeVB3AZcCRwC1wNPAQ7jJul2B77RCryLgA+Bhb4uWPQkXwpsKvOk9vigix6rq2iSuoSROU3GS+hqGkYN88sknQMsGyjcEYRUDVtWUPDML8cXn+zjj9AIwSFUnq+orqtpAK9PPVfUFVb1ZVZ8EYqWmXA88qKq/U9WPVPVanAf37dbINQyjbeEbqCOPPDKh/s1Nmk2VadOmMWzYsJTmNJmBis8fcGM8FwArROQ+ETk5GLXiIyLtgTEcvErvK0BSiyNG1d8zDKMNUVtby/r16yksLGTw4MEZ02P69OmUlZXxhz/8IeljbQwqDqp6FdAHmAwsAr4FvCMiHwE3Et4k3l5AIa6cUiSVnj4AiMh8XNml80VkvYh8LiR9DMPIQdasWYOqMnjwYNq1a5dpdVLCn7sVb7XdXKdV5YdUtRZ4DHhMRPoCl+FSu2/yuvxCRO4HnvT6pg1VjV/+N3b/M/3n3tjU+IBVMgwji0h0/CkXyKbMwiAJLKCqqhWq+j+qOhI4GZfJdxQuyaEiKDnAVqAeV4w2kt7AplRPKiIl/oYlSRhG3pNoBp+ROUKZqKuqi7zEhX7ARKAkwHPvBxYD50Y1nQu8HZQcwzDym2QTJIz0E2qFcVU9gEs/fzqZ40SkCPD/1hQAg0SkGNjupZHfDTwiIv8E3gKuxhnDBwJS3TCMPCefQnz5SrYugTEWVyLJZ7q3PQRMUdW5ItITuBXoi5szdb6qlqddU8MwchIL8WU/WWmgvDJFzY76qer9wP0ByjzTf25JEoaR3xw4cKCxzNHQoUMzq4wRl6w0UJkgqqpEcYbUMAwjDaxdu5a6ujoGDBiQtyna+UDoy20YhmFkGxbeyw3Mg/KwEJ9htB0sgy83MAPlYSE+w2g7WAZfbmAhPsMw2hwW4ssNzIPysBCfYbQd1qxZA1gGX7ZjHpRhGG2OAwcOANC5c+cMa2I0h3lQHjYGZRiGkV2YB2UYhmFkJeZBedgYlGEYRnZhHpRhGIaRlZiBMgzDMLISC/F5WJKEYRhGdmEelGEYhpGViKpmWoesQ0TWd+vWrX9xcXHaZS9ZsoSqqiqKi4vp1q0bAEuXLmXXrl0MGTKEsrIyunXrRqK6vffee+zYsaPx2KKiIsaMGQNAVVUVS5YsoUuXLrRr147t27czcuRIevbsCcD777/P9u3bG4899NBDGTt2LACVlZV8/PHHAIwf7/JJNm/ezEcffdRkXyQffvghW7ZsaTxfx44dOeWUU5J6f3bu3MmyZcuayNi3bx//+Mc/6NChA927d2fTpk0cffTR9O3bF4CVK1dSUVHRZF8sSktL2bhxI8OHD6d///4t6lJXV8dbb71FYWEhp59++kHtq1evZt26dQwdOpRBgwbFPc/f/vY3AAoKCjjjjDPi9isrK6O8vJzBgwczZMgQAMrLyykrK2PQoEEJTzr15Z122mkcckhyQRT/2FNOOYWOHTsmdazPokWLqKmpAT79DBcvXszu3bub7KuoqGDlypX06dOHESNGALBp0yZWrFhB7969OeaYY+LK8L/3keeL5J///Cd79+7lpJNOapwL9e6777Jnzx7Gjh3LoYce2qT/1q1bWb58OT179mTkyJEHnc/Xf/To0XTp0qVJm/+9iqeL/54OGzaMgQMHAs3fB0444QQOO+ywJvv831TXrl058cQT474vseT279//oIoaGzdupLS0tInOu3fvZvHixU3uA0HgXcMGVR0Q3WYGKgYisgQ4HPgkyUOLvcelQeqTAYq9x6UZ1CEIir3HpRnUIQiKvcelGdQhCIq9x6UZ1CEIir3HpRnUIQiKvcelGdQB3OrpW1T1IMtqBipA/HGsyJT1XMSuI7uw68gu7DrSh41BGYZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGVWBafYRiGkZWYB2UYhmFkJWagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGKklEZKqIrBGRWhFZLCLxy0+7/uO9frUislpErk6XrnH0+bGIvCsiVSKyRUSeE5GDyzM3PWaIiGiMbUK69I6h07QY+mxq4ZhRIvI3EdkrIhtE5KciIunSOY5OZXHe2782c0ys/mn9XonIOBF51nsfVUSmRLWL9xlt9N7vEhE5LoHzThSRD0Vkn/d4UWgXQfPXISLtROSXIvKeiNSISIWI/FlE4pemd8edGeczil9+PcTr8NofjKHPPxI4b0bvX2agkkBEJgEzgTuAE4G3gRfjfWFFZCjwgtfvROBO4F4RmZgejWNyJnA/cCrweaAOmC8iPRI4dgLQN2J7PSQdE2UFTfUZFa+jiHQFXgUqgZOA64AbgOvDV7NZTqLpNYwGFHi8heOuijruoRB1jEUR8AHufdwbo/1HwA+Aa3HXuBl4VUS6xOgLgIh8DpgLPIqrtP0o8ISIJLcmS3I0dx2dcZ/H7d7jl4CBwEsiksg6JcfR9DMqDUjnWLT0eQDMj9Ln/OZOmBX3L1W1LcENWAj8LmpfKXBnnP6/BEqj9v0eeCfT1xKhTxFQD1zYTJ8huJvm2EzrG6HTNOCDJPp/G6gCOkXsuxXYgDcfMBs24BZgZ6SeMfoocHGmdY3QZzcwJeK1ABXALRH7OgHVwLeaOc9c4NWoffOBxzJxHXH6HOu9/6Oa6XOm16dXNnwe3r4HgeeTPE/G71/mQSWIiLQHxgCvRDW9gvNGYvG5GP1fBsaKSLtgNUyZLjhPekcCfZ8Skc0i8paIXByyXokwzAshrRGROSIyrJm+nwMWqGrkv8uXgX44A5xxvHDjN4HZUXrGYqaIbPXCtVeLSDb9locCfYj47nvX83fi/1Yg/u+luWPSTVfvMZHfyyIvLPiaiJwVplIJcrr3+10pIr8TkSNa6J/x+1c2famznV5AIS5EFEkl7scYiz5x+h/inS8bmIlbsOydZvrsBn4IfA0XFngNmCsi3whdu/gsBKbgwo5X4d7rt0WkZ5z+8T4Lvy0bOBd3c/9dC/1+CkwCzgHmAHcBN4erWlL472cyvxX/uGSPSRven9S7gOdUdX0zXStwHvtE4Cu4UPRr0sJ4dci8BPwHcDYu9Hoy8LqIdGjmmIzfv5Jb79nIK0TkbuB04HRVrY/XT1W34n6YPotEpBdunGF2uFrG1enFyNfegO9q4HLg7kzoFABXAe+q6rLmOqnqbREvl4pIIS40+PMwlWvLeGNOs4HDgC8211dVV+CMks87IjIEN+a5ICQVm0VV50S8fF9EFgPlwAXAU5nQKRHMg0qcrbixmt5R+3sD8bLHNsXpX+edL2OIyD3AJcDnVXV1CqdYCBwVrFapo6q7geXE1yneZ+G3ZRQv3PIlWvaeYrEQ6Coi0deXKfz3M5nfin9csseEjmecHgOOB85W1W0pnCbbfi8bgfU0r1PG719moBJEVfcDi3FhmEjOxWW5xOKdOP0XqeqBYDVMHBGZyafG6eMUT1OMC2VkBSLSETiG+Dq9A5zh9fM5F9gIlIWrXUJMAfbhboTJUgzU4pIrsoE1uJtb43ffe9/PIP5vBeL/Xpo7JlS8sZa5OON0lqqmaiyLya7fSy+gP83rlPn7VyayTHJ1w8X99wNXAp/Bjd/sBgZ77Q8DD0f0HwrUAL/y+l/pHT8xg9fwf7hsts/jYsz+VhTR507gtYjXlwOXetcwAjcetR/4fgav43+B8d57fArwvHdd/mcRfQ3dcDfNOcBI3NhAFfCDLPheCbCSqAxRr+07wMcRry/EhQJHAkd636ldwMw061yEu+kWA3tw42LFwCCv/UZPr694us7B/RnoEnGO14jIgMUlQ9QBN+H+bPwYOACckonrwA2BzMNleo6O+r1EZoNG/+6/B3wZ550c530XFfhKhq6jyPu9fA6XEHQmzvisj/o8su7+lbYvdL5swFTcP+59OI9qXERbCVAS1X888C+v/xrg6gzrr3G2aRF9HgTKIl5fDnzofVmrgEXANzJ8Hf4Nb793A/kLcGy8a/D2jcJlktXi/jn+N1mQYg6c5X0GJ8domwZoxOsJwBJcynYN8D5u7sshadb5zDjfowe9dvF0r/De778BI6POUeb3j9h3MfCx97l+RIg39Zaug0+nV8TapkSco8nvHjc2W4qbj7QdN+50fgavoxMu+26z976We/sHRp2jyXV4+zJ6/7L1oAzDMIysxMagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGyjAMw8hKzEAZhmEYWYkZKCOvEZEpcRaPUxE5J9P65QsiMkZE9ohI/4h9JSLyZpz+V3qfwZAkZHxZRCpFpCgAlY0cwAyU0Vb4Km4mfeT2z4xqlF/MAP6oqhtClPEMbuLvDSHKMLIIq2ZutBWWquoniXQUkQ6qui9shfIFERmDq4ZxbZhyVFVF5LfAbSJyp6rWhinPyDzmQRltmogQ4DgReUJEduIqTyMih4jIj0XkYxHZ5y2OeFdUwVlEZJiI/NULcW0RkZki8q3oEJb3elrUsUO8/VOi9o/3FrqrFpEaEXlZREZG9SkRkTdF5BwR+Zcn/wMRuSjGdZ4gIk+LyDYR2SsiK0Tkx17bvV7orF3UMV08+b9o4W28EnhPVZe30C8uIjKtmVDslIiuj+OWvPhKqrKM3MEMlNFWKPQMjr8VRrU/iqs1djGuWCm49X9uBf6MWzfnTtyKt4/6B3mL2L0KnAhcg6tKPtQ7LiVE5AJcIdXdwDdwhXq7AAtEZGBU9yNxRYvvxt20K4AnRGR4xPlOxhUHPRL4vnctdwMDvC6zgCOAaMN2KXAo8JsWVJ5AM+scRb3vh3jLV0Tfe37PwSHYv+CWuFnpd1K3NtlHnkwj30ln4T/bbEv3hjMYsYpovhnVfk/UcWd4+/8jav9kb3+x9/oq7/VnI/oU4NamUmBIxP4mRXm9fUM4uPjoJ0RUYvf2dcWtwfOriH0luGrfR0XsOwJ3U785Yt/fgXVA52bep5IYMv8FvNTC+9vb0/+qOOeMV2zV34bEOe9XgQbguzHaHgFWZvq7ZVv4m41BGW2Fi3DLC/hUR7U/HfV6Aq7y85PeP36fV7zHccBS3D/9dar6D7+DqjaIyOO4at5JISJH4TydO6Lk7sF5QeOiDilV1dII2ZtFZDNumQVEpDNwGjBDVfc0I/p+YI6IHKWqpSJyEs4rbCmU1s973BKnfRkuBBjNl4jjZYrIWOAh4H5V/XWMLlsi5Bp5jBkoo63wgTafJBG9cNsRQHvckhax6Ok99gUqY7TH2pcIR3iPf/C2aNZGvd4eo88+wB8n647z6NbH6BfJ07j1sr6FW+/ratxyJs+1cJwvJ15SyW5VXRS9U0SKY3UWkQHAszjv67o459wbIdfIY8xAGYYjet2Zbbh1jM6I03+j91iBW5QumljLr+/DGb1Ieka99pcT/zEwP8Y59sfRJx47cKGy/s11UtUDIvJ7YKqI/A/wdeAuVa1r4fy+vt2T1OsgRORQnEHcCkxS1fo4XXtEyDXyGEuSMIzYvIT7l95NVRfF2HwD9Q4wUEQ+6x8oIgXA12Kcsxy3umwkF0S9XoFbyO+4OHLfS+YivLDem8A3RKRTC91/g8uQewLoAPwuARFlOEM+LBm9ohERwSWl9AX+XVWjQ7CRDMW9T0aeYx6UYcRAVUtE5DHcGNTduEm9DbikhvOBG1V1JW6s5CbgKRG5Gbdq6dW4pIZo5gC3isgtwD9w3tklUXJVRK4BnvEyBB/HeRS9cUuir1XVu5O8nB/iVrR9R0TuwoX7huESPRrnLqnqBhF5Fjde95yqrmvpxKq6X0QWAicnqVM0N+KWSb8O6CcikWNMq1R1CzQaspNxY2ZGnmMelGHE5xu4RIeLcVUMngS+g1vOuxLcDRo4F5cwcT/OYK0Bfh7jfHcC93nnmAd8BrgsupOqvoBLhjgUl379MvA/QB+cx5YUqvouLlFiHXAv8AKuGkOscaknvMeWUssjmQt83gvRpcox3uNM3DVGbpFe5qm4cOKcVsgycgRb8t0wQsCbXPonYKiqlmVWm8QRkUdxxmyYqjYkeExXnLGbqqqzQ9ZvFjBSVeONDRp5hIX4DMPAG0MrBiYB1ydqnABUtUpEfgn8SEQe1ZD+9YpIH+BybJJum8EMlGEY4EJpu/HmH6Vw/N1AIS7JYWMLfVNlCPADVf17SOc3sgwL8RmGYRhZiSVJGIZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGV/D/npk71V02pGgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_cs_leahy.freq, avg_cs_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Leahy cross-power\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_cs_frac.freq, avg_cs_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"rms cross-power\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_cs_abs.freq, avg_cs_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Absolute cross-power\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a cross spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized cross spectrum.\n", + "## 1. We can linearly re-bin a cross spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_cs.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_cs = Crossspectrum.rebin(avg_cs, 0.25, method='mean')\n", + "lin_rb_cs = avg_cs.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_cs.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a cross spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`.\n", + "\n", + "Logarithmic rebinning only keeps the real part of the cross spectum." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_cs, log_rb_freq, binning = Crossspectrum.rebin_log(avg_cs, f=0.02)\n", + "log_rb_cs = avg_cs.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that like `rebin`, `rebin_log` returns a `Crossspectrum` or `AveragedCrossspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_cs))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Time lags / phase lags\n", + "## 1. Frequency-dependent lags\n", + "The lag-frequency spectrum shows the time lag between two light curves (usually non-overlapping broad energy bands) as a function of Fourier frequency.\n", + "See [*Uttley et al. 2014, A&ARev, 22, 72* section 2.2.1.](http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014A%26ARv..22...72U&link_type=EJOURNAL)\n", + "\n", + "In `AveragedCrossspectrum`, the second light curve is what is considered the reference in Uttley et al. and in most other spectral timing literature." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "30it [00:00, 264.86it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAF9CAYAAACZN6k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADXRUlEQVR4nOy9d5glR3U2/tbkmZ3ZnKRd7a5Wq1UOoAVERgIswAbjjxxtsI0BG/wDY5tgbD6CZYwJBgMGPptgkkgGhG1kgUAI0EpaSSiHlVarzTlMzvX74/SZrntvh6ru6q7q3X6fZ547c+fevmdqqk+99Z5QQkqJGjVq1KhRo0aNGjXaXBtQo0aNGjVq1KhRww/UxLBGjRo1atSoUaMGgJoY1qhRo0aNGjVq1AhQE8MaNWrUqFGjRo0aAGpiWKNGjRo1atSoUSNATQxr1KhRo0aNGjVqAAA6XBvgI5YuXSrXrVvn2owaNWrUqFGjRo1U3HrrrYeklMtsXKsmhhFYt24dtmzZ4tqMGjVq1KhRo0aNVAghHrV1rTqUXKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRoCaGNaoUaNGjRo1atQAUBPDGjVq1KhRo0aNGgFqYlijRo0aNWrUqFEDQE0Ma9SoUaNGjRo1agSoiWGNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJoYnKW69FXjwQddWnDwYHQVe+1rgG99wbcnJhZkZQErXVmTD9LRrC04+zMy4tiAbBgerOc9nZ11bkB1TU64tKA41McyBT30KWLsWuPtu15aY4SMfATZtAs46C9i507U1+rjnHkAI+vrFL1xbY4bPfx74j/8AXvlK15aYYWYGOP98GvOvf921NWa47jqgowNoawMmJlxbY4a//EugsxN4z3tcW2KGt76V5sp551WL2B49SnZ3dADPfKZra8xw9dXAggU0z++917U1+njwQaC9vZr+/HOfA7q7gd/6LWB83LU19lETw4z4/OfJCe7YAVxwAbB/v2uL9PFXfxV+/8IXOjPDGOefH37/9Ke7syMLVMf3hS+4s8MU3/seEXIAeNWrqrNLlhJ49avDn9/wBne2mGL/fuCf/om+//u/B/bscWuPLnbsoM0yQATlox91a48J1E3PddfR31IVfPaz4fcf/rA7O0zxz/8cfv/0p1dnngM0X6QErr0W+IM/cG2NfdTEMCOaF/fXvtaNHabYtq3x59tuc2OHDdxxh2sL9PDLXwLf/37487e/7cwUY3z3u40/V2Xh+fnPgb17w5+/8pXqqOOveEXjz9/7nhs7TPGDHzT+/MlPVie8+ZOfNP7c/Lf4iuFh4IYbwp+/8hV3tpjiM59p/PmTn3RjhykOHmwc86uuolShEwk1McyAffuALVvo+2XL6PH++93ZYwImJW3Kf74KuYYjI63PvfnN5duRBf/1X7RAXnQR/XzddcCBA25t0sHEBNkOAJdfTo/f+pY7e0zwZ3/W+tyuXeXbYYo9e4Cf/Yy+5zHn/4Hv+Nu/pcczzgBOPZX+ljvvdGuTDoaHw43bE55Aj81E0Vd897tk/5o14XMHD7qzRxdHjoTf85r005+6scUUH/84+fPLLgPmz6fnfvxjtzbZRk0MM+Dmm+nxkkvC/MLjx93ZYwImtB/9aEhqb7/dnT262Lo1/J7D37/+tRNTjPHoo/T4trcBT3oS5e195ztubdLBr35Fi87KlRTSBIC77qpGOHloiB4/9rEwZ6wKiuFvfhN+//nP0+PPflYNReLYMXocHQWe8xz6/n/+x5k52lBt5JDyr35VjcIIDmO+/e3AwoX0vTqHfAUT7zPPpLnS1kbRq8lJt3bp4Lrr6PEv/gJ4/evp+4cfdmdPEaiJYQb8/Of0uHIlsHQpJSwfP16NBHd2GpdfDhw+TN+//OXOzNEGO5JXvQr44hfD5x96yI09upicDG0/7zzg2c+m76+6yp1NurjvPnp83vOAxz8+fN535U1KUvUB4I1vDFWgKqRNsGryjneQ8rZpE/mVqmyCACpue+5z6ftrrnFriw44h/ZP/gQ4/XRSOw8f9j8KpCqDz3wm8LrX0fdVUDtf9jJ63LoV6O8HTjuNiDhvon3F7GwoBj3hCcC559L3mze7s6kIOCeGQogfCyGkEOKDTc8vEkL8PyHEISHEiBDiJ0KICzSv2SaEeJcQYrsQYlwIcYcQ4kW2bObE5CuuoJ0Oy/i+h0127iQi1dcHnHMO8M53hr/zvU0DF28873nhzhhozZn0DXfdRQ58wwZSmLu66PkqVOHxwnjOOVQ5yKFN323fs4dUzUWLgN7ekBiy0u8zHnmEHjdtosdzzqFH39VONd/3JS8JNxIPPODGHhPcdBM9PvnJNM+f9CT6+ZZb3NmkA54rp55KhXlPeQr9fNdd7mzSRU8PPTJBXL+eHn3357ffTmlNp51GotBjHkPP+263KZwSQyHEKwBcFPG8AHA1gOcAeAuAFwHoBPAzIcRqjUt/AMD7APwLgOcC2Azg20KI59mwmycBO7+nPpUefXcknMT+3OdSK4wPfQgYGKDnfM95Y2XwrLPokSV83xd7zt+88EJadNgRAhSm9RmsGDI54fCg7/OcE8P5/uTHW27xfwPEism6dfS4ciU97t7txBxtfPOb4fddXURW2tupAMj3SMqvfkWPvPHZuJEet293Yo42WBVncnLhhfTou0ABhPP7b/6GHpkY+q7Sci7hb/82Pa5YQY9V6kqiA2fEUAixCMDHAbw94tcvAPBkAK+RUn5DSvnj4Lk2AH8V8Xr1ussBvAPAP0gp/0lK+TMp5Z8A+BmAf8hrt5RhPgFP5sc9jh45adxXsNz9PIUe8w3q88Q+cIBISmdn6LSZpPgeYmPFhAntGWcAZ59N3/u8y5yaAm68kb6/+GJ6PPNMemSlwldwusSll9LjypWk6g8Ph2TXR4yPh2GqtWvpkUm574s9p0ZwPmdHB7BqFX3vc+rB8eOUjzpvHpFZIPSJvoc1edPJEav16ykatHt3mCbkK3ijw3OEVX3fi9tYuefWaStWUD/DvXuBQ4fc2WUbLhXDDwO4W0oZdRbECwDskVLOUS0p5XGQivi7Kde9AkAXgK82Pf9VABcIIU7PbjI1Qh0cJEeydCk9x8TQ54UeCHNSViuaKzsVn0M+fDOee26ocPLu2PcdZjMxBIgcAn4nLO/cSUUEq1eHzpt3x//9334XoDAR4QUeCFXDW28t3Rxt3HUX5aSuXh2ONecw+TxXgDBF4g//MHyOya3PPQHZttNOI0UfCOeNWvDmI669lh6f+ER6bGujnrqA3+Hkhx8OyTinBfFG3+eNGxAKKHx/dnVRCgIAXH+9G5uKgBNiKIR4CoDXAvjTmJecByDqPJF7AKwRQvQnXP48ABMAmssSghRjnGtgaguYiGzYEDoSDveofdN8BBNDJrRAqAZxAraP4ManvKMHyHkLQbt6nyvZeFfPSidQDWLIqiCr4kDj3+BzaJM3EqedFj7HaqfPJIVbeJx9ditJ8T2sOTZGj2qREm86fVbe2DZ1rjz2sTT+mzf7fXoL+w91zHnD7HOPV1b0n/70cJ6vWkUq89Gjfp8kwvNFFVc4lF+Ftm+6KJ0YCiG6AHwOwD9JKeN0qsUAjkY8z92PFiV8xGIAx6Rsaa16RPl9lF1vEEJsEUJsOZjQCIoVB54MABGW/n4ihj6TQ14wWQECwgnus91s2ymnhM91d/tfySZl6Cyqphiy+n26oq8vWQIsX07f+5x6EOW8qxDW5JyxJUvC55Yvp0T9I0fCFjy+YXY2vEfVzVsVFEMmUOcqcsGSJbTZn5721y+qlfeqX+ReqT6nHvB8UDedbW3h3+HrmE9Nhf58w4bw+aqkHpjAhWL4VwB6AXzIwWfHQkr5eSnlJinlpmXc4C8CLNGrxLCjI5Twfd01HDtGu7G+vnBxB8IF02cFiM//VB0g4D/B2rOH8tqWLgUWK9sR3+0GohVDIKyW9ZUY7thBDrq/vzGUzCTRZ2LIRRCcVwiQosJqp69h8EOHGqvAGawY+twmiPu68rxmsILoazX4tm1UHbt0aZheA4Rzx+c2XkwM1abcQOjffT0a76GHaMxPP70x6lYVVd8EpRJDIcQaAO8B8F4A3UKIhUKIhcGv+ed2kFoYpQry8hqlJkL53cKgsjnqvUeQAzypT2/KVOSffZ0cvNCffnoo3wPhDt/XmxEI20lwMQGDd22+OsGoMDIQki2fiWGUYgj4X4XHc+Hii0lVZjAx9HkDxIpDM0nhxHxf82nZd6iRCCAMcfpcIMb+WlX0gWoQQ4AECdWfM2E5kmuVKxZxxND3zRsHElVVHKiJoQ2sB9ADKgQ5qnwBVEl8FMAFoHzA8yLefy6AHVLKpEYf9wDoBnBGxHsB4N5MlgeIm9Q8OXyt2GRH0qwAsQN85BF/zzXl0IKqpAD+S/hMUpqJIZPzRx/1t4gjTjH0PZTMC3nVFh0gJK2rmxpy+R5iY7ubF8wLL6SWNQcP+tuyJiocC/hPDJuLIBgcmfC5QjZuDeXUA1/9OVd6q2oh0Gi3r2uoKcomhr8BcFnEF0Bk8TJQ0cgPAawSQjyd3yiEmA/g+cHvkvBjAFMAXtX0/KtBVdCZqZuU0YntgP8kRVUMVSxfTkfjDQ76uWhKGS6IXOTD8H3M2Tk3O++eHlJXZmb8zb+Kmy++5+qxetVMrpYto3ZHhw+HhRK+gcc0jhgyifENcYphe7vfpHZmJuzfqqbXAOH/wFdiyHOlmdAuW0b+Zd8+P0UKKcMNMxMqhu/EkO+/5rkyMECEfHzc/37AuiiVGEopj0kpf978Ffz60eDnYRD5uxHAV4UQLxdCXBE8JwD8o3pNIcS0EOLflM84AOBjAN4lhHi7EOIZQojPArgcwLvy2H/8OOWM9fVRPo0K33eYcYohEN6QPobZjh6lquOBAWpvoMJ3Cf9ooIWrJ7UwfM4zHBoilaenp5WM+z7PoyrYAUpu9zltYniY/Et3d2M+KuB/14O4MVef83HMDx2iwpklS8J2Owzf5zmnFXBPVEZ3N/C0p9H3PlYm79pF+e7LlrWSWl6HfG37xmS8eQME+L8WmcL5kXhRkFLOAvgdANcC+AyA/wQwA+AyKWXzrdoefKl4D4APAvhzANeAmmW/VEr5ozx2qWGq5gxG3x1J84kKKnwuQOFdb9TNyLt6HxcdIJkYshLn4+6YTzY57zwiVCp4nvuuGEaRFJ/DyWoYudm3sN2+LpjNzYpV8HM+3qOsADVvfoDqzPPmyBUQbv59tJ03N1FrKJNcX3Npk+b5iUYMO1wbAABSyuZCEUgpjwB4ffBl+t4ZEDH8YOs7siMujKw+t3MnyeUtpS+OEdVOgsHP+UgMederVoEzuHj8wAE/x5zDxFFj7nOSOC86zbmRgP8bICZPSRsJHxdMXlCifAufsnDffRT+bG/eBjsGN4KOGnOffYsOMfR1nifZzn4xoeuaM7Ddzek1QJhzuGePn/48LpcWOPGIoZeKoa9Qu+Q3Y/58+hob83Oxj+oFyPBZMeScjahFp7eX2pJMTVGOpG/gMHEUweJUBFYVfQLb1BzSBIjQdnbSa3zL1ZudDdtJceN2FT7P87jQIEDzfPFi+vt89C3cjoarp1X4HEpOIlennEIEfP9+Pwtn4opPgDAHzkdiyHZHjXlfH/nzyUn//LmUwM030/fNRZBATQxPasRVPDJ83WUmJVkDfod72LnFtZbkv8e3pN/Z2eT5wk2MfXTeTAyb82iBxlw93wjW8DDN9YEBWmSa4bNiyCSlufCEoarjPmF8nBbxzs5k3+LbXAGSiWF7O4VkpfQvtDk9TX5DiGi/6OtcAZLXIfV532wfHAyPwm0uyAP8T2syRU0MDZAUSlaf940YHjxIRGXp0tYka8Bv563rSHwjWAcP0s538eJoksLOxcfiE97Vx5FxX+fLsWP0uGBB9O99JoZRx1Wq8DU8yPYsXx4d+vNZMUxSrwB/j1E8dIgI65IlRMib4etcAapLDONa1TD4eZ/bBJmgJoYG0CWGvi08STtjwN+FHkhXDH3dHSelHQB+V4InpR0A/rasYaUzjhhWeZ77ugFichW30Ps85ml+kVV938L3aXb7OleA6hJDJnzqcZUqfCbjWVATQwPE9Rlj8OTg3YUv0F3ofdzVVzWUHNfbjeGr3UByZS/g7yk/fH/G2V0FxTBtA+TbwpO20PusGKYRLM6x9Y0Ypimdvs4VIH0j4atfTJsrPOa1YngSgm+0qIRfIHQkvhHDtEk9fz6FO4eH/Uv6rfqCGTdXFi6kM7YHB/1Lbk/bSHDOpG8EK+4YP8Ypp1C4c98+ytPyCSfqPF+wwF/foksMffXncWO+ZAnN88OH/ZvnafPFV2KY5hMXLaL866NH/T3NygQ1MdTE1BQ1oG1ri+5LB/i7w0yb1EL4GfKRsrqKYVLVINCYOO7TYq+eNBM3X3y0G4g/xo/R2Un/j9lZv470U0/AqVrxSZoCJIS/qmFVQ8lpvqWjg2yX0j8FSzeU7NP9CaT7xLa2cL74tpHIgpoYaoKdA+8MouCrI0lzgICfeSkjI1T12NvbeuoJw0e7gXQHqP7Op8X+8GHaBC1YQOMeBV9JCs/zuPA94OeY799PhUrLllG7jihUeZ77uOmcmCB1p6Mjui0T4O+5w2mqm/o7nwjWzEw4lnFFHD7aDaQTQ+DEKkCpiaEmeBcQl3wKVFcxBPzMkWAHuGxZfLNTX0mKjvP2laQA1dtEAKToA/HFJ4CfYx53prYKX1VaHWLoo2Koqm5xG33uP8p9Gn2B6hfjwPevT+drHz4cVlN3xBytwWuUbydC6cxzX+/RLKiJoSbSytUBf3eYaaEHIPy7fJrUaWFkwM+FHkgPsam/88l2nrtJY+6rA6w6MUzadPoaYtPZAPlIDNPy9ICQGPpEroDGFkFx8FF50/GJ3Jj+jjuIRPoCnbWIc68feqh4e4pGTQw1oeO8fbwZgVDBTCK1PiqGOjejryTFRDH0yfa0UA8QJrcfOeJXcnvViWHSmPOis327nwtmku0+dj3QUYD6+0lNHBnxa55XVTHU8YlcrDQ5SQVLvkBnw3zWWfToY29aU9TEUBO6oeTOTlqgfDoujG2Py6UBqqsYqsRwdrZ4m3Sho9L6GAbXmeft7TSXpPQr0bqqeZ06xHDBAvry7chNnXuU/y6f5oqO6iYEdWwAwk2HD6iqYqhzfwJ+FnHobIDYbh+POTVFTQw1oRNKFiLcqXFen2tIGS4kScTQR+VNx5F0dVGV+MxMePKFa0xP03xRK9WiUFWSAvg3X9KOCWNUecx9WzDVqtck2/loxaoRWiD8u3yZL1JWXzFMI4a+5epPTxPZEyJ5DeXf1cTwJIJOKBkIk2d9IYajoyTL9/bGV5kCflZU6RTNAP4pb+pcaW+Pf52PJEVnAwT4FwY/cIAWzWXL4hPbgWqPuW/EcHSUugb09EQf+8jwbaEH9MgVEPbE5B6ZrjE8TBXVfX3xnRoAPxVDnRxDwL95fuQI+ZZFi5J9i48boKyoiaEmdEJsQEhifNmp6aiFgH8KEBCOYRox9G2xNyVXvtgNhNWAcaeHMHybLzotmQA/x1x30+nbgqmqhXFdAwA/lRRdxZAJli8bZl1Cy3b7sg4B5qFkXwiWTn4h4Oc8z4qaGGpClxj6FkrWJYY+K4a6i70vJEV3zH2zGwiPuTvjjOTX+abSVnUTAVQ3lKxrt4+KoS4x5EImX3IMdckV+0yfFEOd4hPAvxNndPILgVoxPCmhK4P7dkOaEsODB/2petRVgXwjKaYqLYdBfQA747QF0zfF0HQT4dOYV50Yps0VdcH0pUCsqsTQJDdSCPof+XJEW1WLT7gxe1oUpVYMT0LoNP4F/JscuiRl3jzKFRofp9whH6C78PimAqmn5CRh3jzK+xwbo5YYPkCngh3wjxjqVIEDNOZ9fTTPfWmHUXVimGZ3Zye1fpmdBYaGirdLBzqVvYB/xFCXXHV0+BcFqmrxCZ8Jf9ppya9bsIDI+PHjVAxZZdTEUANS6jVEBfyb1LrEUAi/WtbMzobkOo1g+UZSTMbcJ1I7NUULd3t7ci9AwL8wuO6YA/41iz7RiSHg34ZZN1fPN2KoqxgC/o15VYtPdAWKtjbqkAH40yEjK2piqIGhIVIY+vrizzJlVJUYAn4RrGPHiJAvWJBcCQb4Ra4AfcUQ8ItgqXYnFRMA/oXvdTcRgF9jPjZGCj2raknwdcHUIYb8f/HB9pERGvfu7vQxPxGIoQ9r0cgIzfPubmBgIPm1vs1zE9/CtvviF7OiJoYaUMNUaQumTzcjYEYMfboh2e60Yh/Ar4Ue0FeXAb8IVlU3EUA2YujDmKsV7Gm+xaf7E9BPyldf44NfVMlV2pj7RgxN/KJPiqFaeFK1NdTEt6xbR4+PPFKYOaWgJoYa0C2CAPyb1Lo5Y4BfJxSY2O0TuQLCo7/4KLAk+ERSTgRiqGM7E3YfxtxEdfO1jYcJMfQh381EdeN72Jc+hib3qE9Vsrr5hYB/GyCTMV+9mh596UqSFTUx1IBuYjvgHzHMohj64LyzKIY+LPSAfmK7+hofbOe8GJOQyeHDfiRaV1UxzEIMfVkwTwZiePbZ9Lhtmx9V7Cb+3Ke1KAsx9MFuwMy38Gt8UGnzoCaGGjAhKWryqQ+tGUxs92nhMVEMq0xSfHKCTAx5Diehs5NeJ6UfidYmY+6Twqzb3Fp9jQ/3J1BdYmjiE7u6qJJ9dtaPKvaqEkPdwhOgkVz5sIaa+Bb2nTUxPAnA+SU6C2ZHB+WlSOlHXkpVcwx1G4oDNOZLltCY+2C7SVjTpyo2E2II+LU7NnHePi2YJurVvHlEVMbG6Ms1qk4Mde5PwK971MS3+HR/6p4GBYRr6OysX2NeK4Y1GsCTM62FB8OnhcfECfqUY2jqvH0JD6rOTIdg+bjoVI0YcpsdIYD589Nfz3b7MOYmxFAIf06FkDKb2ulDTmpViaGUZh0PfLk/AbM0FcCfNXR6GhgcpHtPZ/33aczzoHRiKIS4QghxnRBinxBiQgixSwjxLSHEucprfi6EkDFfP9b4jLj3XpzFZhPFEPAr6TdLsrJrBwiYKYaAP47k+HFy4PPnUz/ANPiy6ADVVQxVu9s0PJovdgNmuVeAP6o+N/EdGKAWJGnwacyrSgxHR4HJSTqIoLc3/fW++ETA3Lf4Ms+z+hbXcyUvUjrEFYLFAG4F8BkABwGsAfBOAJuFEBdIKR8F8GYAzXv/JwL4GIAfan7OlwB8rum5B7MYXFXFkENOXV3UgzENvjhAwNx5+9KawSTsAPg15qa7el/yaUzCa4A/dgNmiiHgz4JpEkYG/Lk/geoSQ1O7fSLjJwIx1IFPY54HpRNDKeU3AHxDfU4IcTOA+wG8GMBHpZT3Nr9PCPHHACYBfFPzo3ZLKTfnNBeA+eTwhRiqC2Za7yjArwXTVDH05YY8EYhh1Zyg6Zj7Yjdw8hBDn8a8JoblwzRNxZc1tKo+MS98yTFkNzcd9UshRB+AlwC4WkpZ+lThUHLVFMOqOkAguxN0PeZZiaEPjiSrE3Q9X7ISQ9d2A+Zqpy/EMOvGzfX9CWRXmF3Pl6xRFB/GvKqKYdY0Mh/8eR44I4ZCiHYhRJcQ4kxQyHcfmpREBb8HYADAlw0+4k1BDuNokNP41Ky2VlUxNGn5AjQumK57dlVVMcxDxl2PeVWLT0yJYV8fVT6OjQETE8XZpQPT8L0vC2bWDdDx4+5bkFR1w2xKaNX707VvqSoxNE0j82nM88ClYngTgAlQ3t+FAC6XUsbVlL4WwAEA/6N57a+C8hSfBeANAJYAuE4I8Yy4Nwgh3iCE2CKE2HKwqXTOdNfgCzE0dYA9PZRIPjlJZ0O7hKkT9GXMTRdMzv+cmaHzRF3ClKRUlRgK4Y/tVV0wTTcRHR1UkOVDGy+Tyl7AH2Jo6s9V3+K6B2NVxRXTtb+7mwqDpqfd+/M8cEkMXwPgUgCvBDAI4FohxLrmFwkhTgURvK9JKSNDzc2QUr5GSnmVlPIGKeVXATwFwB4AH0x4z+ellJuklJuWNSX8VLX4xNSRAH6ENqWkFgGAXvsRwJ/woClJAfxZeKqaT2O60KuvdTnm09O0YAsB9PfrvceXhuhZ5rkPflFKc9t9aRGUxZ/7co9WdQNkuvYD/ox5HjgjhlLK+6SUNwXFKM8E0A+qTm7Gq0F2moSRmz9rCMB/AXic6XtnZsx6pAF+OED183XDsYAfC+bICIWbOOSnA1/IVR4y7tJ29QSTLGETlzBVlwE/bFdzl3VaYQD+LJhZiKEPYz4yQj69r48UNR2sXEmPrs+/zbIB8mEtGh+nlI2uLr02O4AfdgPmiiHgxzzPCy+KT6SUxwA8BGBDxK9/H8AdUso7bHyU6RtYuRoY0HfevrRmqCpJ4ZtRl4gDIZlxTQyrqhgODREZnzePjrvTgS8OMM+Y+0AMTRYdX4ihadqB+lqXY24aAgdCYsjHurlCVRVDVS3U6Y4B+DfPTRRDX0htHnhBDIUQKwCcDeDhpuc3ATgXOdTC4DrzAfwOgJtN32sqgQP+TIyqhpKZjJvcjGpyu0tUlYxnmec+LDrq51eNpGQZc18WzKqGkvMQWtebzhOBGOrCl3lu2pEECG334fjHrCi9j6EQ4j8B3AbgTlBu4UYAbwO1qvlo08tfGzz/tZhrrQWRyfdLKd8fPPcOAGcB+Bkor3AtgHcAWAngVab2ZtnV++AA1c+vGknJohj6YDeQT72q2oLpCxmviWH5qOqYZ1EMffMtJv7ch7WoyuJKFtt9Olo2K1ycfLIZwEsB/AWALgA7AfwcwJVSyu38IiFEJ4BXAPhxQrWyANCORuXzAVB7m98DsABEPn8F4A+llJkVwyzJp0eOUO6WrnxuG3l2mC6dYB7F0LXzzjLmp5xCjy5zmLI4QCbufAygq3mexXYfSG2eMNXRoxT6101vsY2qEsMsGyCe54ODbsc8T5GVD2Nucn9y3u3gIJ2FrpveYht5FMOaGBpASvlhAB/WeN0UgMTzAAIiKZqeuxrA1TlMbEAWxbCnh77Gx6lXms5xdEXgZFIM+/vJkYyMuHUkWRbMU0+lxz177NujiyzOu6srnOejo5Sf6AJZ7lEfclKz2N3RQbYfP062m9zbNlH1ULLJmLe3U4750BB9mZAEm6hqukcWu9vaaL4cOkTzZcWKIixLRx5Vv8qhZC9yDH1Gll094EeunmmDa8APu02PCQNIrfJBBcpCxvm1LklKlhAbEN4XPihvVVUMTcfch/YpVVUMs85zHzbMWSIpVSXjgB+2n6yKYU0MU5BlV6++3qUjqWooed8+euRqQF24HvOpKepL19ZGCoMuqkqugNB2XrTKxuxsdXNSs46564VnaoqUeVbSdOEDMcwSSgbc36NqY3CTee7TmFdtngPZ1n9+rSufaAM1MUxBXsXQ1cIzMUHOu6PDzHm7thsIHQEn8erCte2qAzTJQ3Jtt/rZpgummmfoAkNDtGgODOj3vATcL/RAdRfMLO1HAD8UoKxj7voeHR2l/os9Pfr9F4FqE0PX80Ul4ybrv5qTWlXUxDAFWSe16xtSrWAzcd4+hJJNTz1huHbeVVUjgPyKoSvbq7pxUz/b1HafiKEJXPtEoLrEMAtBAfzoqZs3TcUVwVKboZvkrNfE8CRAVUPJWcLIgHu7AVKBAHNi6LqgoMr5S1UlhlkXTNdzBcjvW1wtPFkJrU/EMOt8cTXPs+QXAo0dMlyhqmkqWedKTQxPAuR1JFUjhj7kGKqnzZjAdUFBlRXDqhafZB1z13MFyL5g8n3hauHJq175UExQtc1blvxCwC8ynjVNxfU8N50rru22gZoYpiDr5GCnyepX2TgZFUPXYXAb5EoaH9poB3lJrSsneDKqtEwMXfmWrMSQjxUdHqYCFhfIqzBXTRlX5/nsrE2L9JF1nrvOX64VwxqxqOrkyEoMVaXTlSM52RTDjg7qATg7S4umC1TdeZuOeU8P5Q1NTFAfRhfI61tcE0PTudLW5j4iUdWc1KyhZPYtUlLOnAvk9S1VUwznzaO8fi4YqiJqYpiCvHKyqwUzKzHs7KRm0S5JStWLT7I0wPXF9qqGkk3t9qHvZVbf4jqUbGOeu1L1T7ZQsvoe1/OlasQw6zwXwv3mLS9qYpiCqiuGpkoK4N4J8s2UVTGs2q5efU/VCFZV7Vbf42K+ZO2/CFQ3lAy4XTCzth9RX+96E5FnzF2sRVJWlxhWdcxtoCaGCVAnddWIYdadsfoeFwsmN89tazM/Ys11onVWQgu4HfOZmewkxfWCmYcYurQ9a/9F4MQghi784ugoMD0N9Paa9QIE6k1nVoyPA5OTQHc3pW+YwPUamse3uLY9L2pimICxMXIkfPaxCVxPjKzhWMBtuEftv2h6WL0vzjvLmLt03uqi095u9t4qE0OX86XKi06eTadL2/MQWtddJqoaSj4R5nnVNkA2UBPDBOTJpXE9MfKQFJcJ4lnOd2ZUmRjWJCUbbCiGLsc8i2+pco6hS9ttbCLqULIZTlbf4tr2vKiJYQKqujNWP7dqJIUVw5MpNxJwq7xVNRwLVHexz+NbXLcIqipJydraSH2P601n1ULJVSZXeea5681bXtTEMAF5dsZVdt4uQ8lZ248A/jjvqpHxk50YVnXMq+hbXBaf7N9PjytWmL/Xda/RkzGUXGXf4prU5kVNDBNwsiqGLkPJeXb1/f2Ulzgy4qaBblVzDPOotFV23j6EkrPYzX3SRkYoB7psVNUvMjFcvtz8vT09VEAxOemm72VVVdo887ynhwqzJiZo3MtGVcfcBmpimABbk3piwqZVeqi6epWFpLjuTVf1Mc8yz3t73c5zGwpz1UJsbW1ulbeq5hjy/znLXAHcbiROxlCy2g+waqS2JoYnMPI4QNeT+mQkKer7XNh+MuYYupzneXoBAm7nSh41AnDXQD9PL0DAbaudPPcn4DaEb0O9culbspLxqlax18TwBEaekAngbnJMTVGrnfZ2oK/P/P0+5BhWjRjOzoYLT3+/+furTMZdkdrhYSIq/f3mbXYAf1oEZYErkqL2AuzuNn+/D5vlvMTQZbFSVdNUqraGArViWCMGeRRDwN3kUNVCIczf77JRdF5H4opg8fGBVSQpeee5K9vzEHHAD8Uwy0Kvvq/sMc+7ifBBMazamKsbfdOm/4DbnPE8kSvA3QZoaoo2QW1t2fxLTQxPYFRVMazqzah+ZlaS4mqx58/LO+YuSUoVFUMguwLkkhhW9R6tMjGsqmKYd6PvMgKUd567WkPVMHKWMa+J4QkMW0pK1YihD7v6rM7ble2HDtHjsmXZ3u+ymCCvelVVxdCHYoKqqVd5iaHLBdNWjmHZY573/nSpGOYdc1fz3FYOcE0MT0CcrIqhD3lAVbP94EF6XLo02/tdVmvmVWldjXmViwlqxdCGNWbIG0p2vdHPG0WpFUN9VDWNzBZqYpiAqu6O8+52XJIUWztMV2OetfqO/14uqCgTVVUM84aSVZJS9pjbIoa1kqKPvKHkqqpXalum2VkrJmmj6v68amu/LdTEMAFV3TXkXXS4B+PkZPm96aoaBs/rALmCXEpqXFwm8i48VQ0luxzzqqq0ee3m/5WLDdDJGkru6KBxVzsnlAVbeZ1VE1dqYngCw9auwWWychaovemqRrCqGtZU3+vKeVeVGOYZc9cEq2qKoVp9nwUdHdTqxgUZtxVKduXPs96fgHt/XtVQct6UicFBN0co5kXpxFAIcYUQ4johxD4hxIQQYpcQ4ltCiHOV1zxDCCEjvo5pfkaPEOIjQoi9QogxIcSNQoinmdp6siqGgBuSImX+HWZVFUP1va52x1VbMPMqhoCbMbcxz11tOm2MuQu/KGX1FUMbxLBqG+aqhu87OtxFI2ygw8FnLgZwK4DPADgIYA2AdwLYLIS4QEr5qPLatwK4RflZ92TQfwPw2wD+EsA2AH8K4BohxBOllL/RucD0NP1Ds/YxAtwTw6o5kvFxGvfu7mzNc4HqOkDAza6ezyHt7KQUgixwnQeUNa8TcDPmo6PAzAwpZ52d2a7hKsSWVzEE6B7Zv7/8MZ+dDY9wzALX8zzPRt/FPJ+epv6LbW3ZDloAqqsYAmT76CjZnud+cYHSiaGU8hsAvqE+J4S4GcD9AF4M4KPKr+6TUm42ub4Q4iIArwTweinlF4PnrgdwD4D3A3iBznXUm7Eto67qOj/ChmJYpu1VDsdW1fa8/br4veq1yoIt5w2UO89tKPquFkxbxBAod57buD+rHEp27c+z+hbXZDyvuLJvH9l+6ql27CoLvuQYHg4edRXBJLwAwBSAq/gJKeU0gG8CuEIIoaVFVVm+t7nwlOm8q7xgVp0Y5hnzKhNDF2NuY567zjGsWl5n3tA9UIeSTWFzzKuqGALVLEBxRgyFEO1CiC4hxJkAPgdgH5qURABfE0LMCCEOCyG+LoRYo3Hp8wA8IqUcbXr+HgBdADbo2Jf38G/gxCCGtWKoBxtO0KXzzrPoVJkY1oqhGaquGFaRjNsMJbvw51WzG6guGbcFFzmGjJsAXBJ8/xCAy6WUB4Kfj4NCytcDGATwGADvBnCjEOIxyuuisBhAVCvPI8rvWyCEeAOANwDAmjVrKj0xbIYeqqak1IqhGWzO8yoSQxchtiqTcZsFP1ULJdf+3Ax5izeBavuWKhNDl6Hk1wC4FJQPOAjgWiHEOgCQUt4upXyHlPJqKeX1UspPAHgOgBWgghTrkFJ+Xkq5SUq5admyZZWeGFXfYVbReVe1KvlkDyXXKRNmsKEYVjWsyQUUY2NUPFQWqipS5D0mFHC/hlZtzG3BGTGUUt4npbwpKEZ5JoB+UHVy3OtvA/AggMelXPoogKgAMCuFRyJ+14IqT4yqtquxYXdvLxULjY8DU1N27NJBVauSbakRQlAVf9UWzKqS8e5uqmienKS5Xhaq6ltshDXVDhVltiCp6kafieGSJdmv0dtLjejHx2mul4UqC0M24EXxiZTyGCicrJP/l9Yu8h4ApwshmgvkzwUwGXxOKmxMjL4+mtRjY+WSlKoqEjbIlavm3FVVO22Qq7Y2tyHZqs1zG3YL4SYxv+rEMM/9CTSe3FIWbIoULkLJefL01Xle1RSbmhhmhBBiBYCzATyc8JpNAM4CcHPK5a4G0AngJcp7OwC8DMD/Sim1DnmzMTFUklI1513VcI/6/qpV97okhnnsBsoPJ9toWAxUN5Ssvr9qG4kq+xYmhlVU9dVrlQFbY172fJHSbn5kFYlh6cUnQoj/BHAbgDtBuYUbAbwN1Krmo8FrvgbgkeB1x0DFJ+8CsBvAJ5VrrQWRyfdLKd8PUH6iEOIqAJ8QQnQG13kTgNMBvErXThsOEKDJcfQoTY48kroupqZIoeRzYLPCZSjZxpgD5ZGUkRFqZNrdXT3FsKpjbqNhMVBdpRMon4xPT9O4CwHMm5f9OlUNJQOh7WUphuopOVXbdNoacxe+ZWaGGv5nPWgBqImhKTYDeCmAvwC1j9kJ4OcArpRSbg9eczeAVwB4C4A+UCub7wH4OynlIeVaAkA7WpXP1wH4EIAPAlgI4A4AzwnyFLVQ1d2O6kSyNhXl96vXKwO2yHjZC+bBg/S4fHm+MXcRGqyqYlhl1a2qvkVd6G34FhebzqqFkoeHaQPU15dvA1TPc33YFIWAmhhqQUr5YQAfTnnNlQCu1LjWdhA5bH5+DMDbg69MsJWT4pIY5kFVw7FAmBdaFkk5GjRHypNLA1RbMSyb1NpWgMqc5zaaRAPlKym2FkzXp3DkQdnE0LaiX0WV1tUGqGprv014kWPoI3JPjslJ4N3vxjMmrgFQMWI4M4NlB+9FP4aqR1K2bsVjp24CEOaJFA1bjmTx8A4MYLDUti9W5ouUWDh/FkD5imGuMT90CKd/7YMYwGD1CiFuuAHPOvptALI0263Mlde/Hs94/XrMw3D1SMqb34xP3vR4LMOB0my3QsanpnDadz+BjXigeorhxAQWD0w1XK9oWLk/Z2bwlPc9C/+Av66J4YmE3I7kAx8ArrwSH9zyHPw+vlQdYjg0BHR04OwXnYchzMcVe/7dmm1pyK0Y3n03sHEjPnDtpfgU/qw0kpLbkUxPAwsXYsMz12IQCzB7rDxPknue//VfA21t+PpV7fgGXl6dUPLsLLBsGZZ/6r0YxAKIY1E98YtB7vny7/8OPO1peOsvX4r34gPVISnHjgFf/CJ69j6CYQyg6+h+W6alIjdJeeITgc9+FhuO3IJ/xp+Xphjm9olHjgBdXVj292/DAzjbyTzPbPvOncD69fiPq7rwazwRQ0dtnJibjtz3565dQEcHFt32U/w1/hFTR0ssYbeEmhjGINfkGB8HPvjBuR+/hNdhfN8xK3alIbfq9k//1PDjRw7/IWVAl4BcC8/MDHDBBXM//hk+jeW//r4Vu9KQ25H8+Z83SG13H8jREdYQuQjW1BTwkY/M/fhyXIWOh+63Y1gKco/5e9/b8OMHDr8pn0EGyGX7/v3AH/7h3I/vx99h6c3/bcewFOQm43//9w0/Xr7/6/kMMkCuMb/rLmDz5rkfX4Fvon17bAMNq8jtz5sqHv/u6P+Xyx4T5CLjDz8MrFkD7NkDAHgiNmP19V+zZ1wCcvuW005r+PHGuwfKC19ZQk0MY5Brcnz/+y1PXfL1zOmORsi9w/zUp1qeknffk90gA+Rygh/6UMtTL/n67+UzSBO5HclnPtPwYzcmMX13OQQrl/P+whdaNg2r7vpxfqM0kGvMpQS+9KWGp148fRVmjxzLa5YWctn+uc+1PLVxSzkEK7di+D//0/Dj/xn8cmkd0XOpV9/6VstTK3/zPxEvtA9beZ2M3539Hqanytno5xpzZZPPWLLtlnwGacJWalAD7r3X4sWKR00MY5Brcnz84/T4x3+MOy96DQDglG2/smNYCnLt6m+/Payk2L8fX2t7NQBg+pqf2jEuBblI7Z13zn17/6W/Hz4/odW2MhdyzZVvfzv8XrG17Ypn5zNKE7nmy1e+Qo+f/zx+8bukNP/2T95WSjf3XGN+882kRCxY0KDUTv/FX9kxLgW5bL8/2DCsXIlrX0FpHhff87VSVP1cc2XHDkr1ADD56F4AwAWzd0D+6Z9Zsi4ZuTZAd91Fj1ddhf9+0b8BAJ77X28pZcxz+cQtW8Lvr7sOh8RSDGAYk5/4TPx7LCLXmI+N0eM//zN+8Xu0nl5666dL2Ujkuj8VZXniuHIk0R135DOqZBgRQyFElxDiUiHE/xFCvEoIcQWfb3yiIfOknp6mhQcA/uzP8MtXfgazEFh8bFspC2Yu5/1f/0WPz342sHw5bux7Fv381f+wYlsaMu+ODx8Gvvtd+v6aa3Drn3wh/N2DD1qxLQm5HMmNN9LjaacBXV24q/OxAIC2PbvsGJcAtUease2jo6Gze/7zcfy8J4e/27bNin1JyLXofPaz9PiylwHz5+PbPbR5k/eUs6u3svBccw0OPuF3wud37sxtVxpyqVe//CU9/vZvo2vNyrmnxef+Nb9hGsisXo2PA1dfTd+vWYP9j31u+LtbilewckVRfvADevyDPwAuuww39PwWAKDrY6kNP3IjVwP66WlqUAoAv//72P+0l4S/+9GPrNiXhFz35w9/SI8vfjG653djDD3085vfbMW2spBKDIUQ7UKIFwshfgzgOIBfAfgOgP8A8D8AHhZC7BBCfFgIoXOknfeQksSbtrZwfmqDydXppwMXXojeZf3YhvVon50Gflx8mC0XMfzJT+jxTZRvdcPi3wUAdNxzR+E7tYkJKuTu6KDGokZQHfRTnoJ5CzvxfZDtc7v9ApHLkezYQY9Brt7XVigpBwUfyDoxQT64uztDI9dvfIMWzTPOAFaswPjFl+JhrKff3XSTdVubkXnMp6aAL3+Zvn/ZywAAn19B+YZtu4onV1KGrU649Yk2Dh4EHnmEukufdx66Vi3DfyMgKopSURRy+RbeAD3pSQCAPxj4rh2jNJCLpFx/PRUqrVoFPOYx6FxzSvi727Tb4mZGLjLOvu+KKwAAP1j+xwCA9v17LFiWjPFx8i1dXRl8y1VXkWK4cSOwYAE61q4Kf7d3r1U7o5DLn996Kz3+n/8DAPjQvL9PeLG/SCSGQogXA7gfwFcBTAD4GwDPBnAR6MSSSwG8EkQUfw/AfUKILwRH3FUWzIEGBjI0cmX5/rd/GwA50f8AKRK46io7BiYgs/OWkpwgADzucQAAsWghDmIpxPR0SGAKguoAjcecE3uf9CSgrw8DA8BNeAI9x7v9AmGFGK5ZAwC4cbWyOy5Yecu10G/fTo8vfSkgBAYGgE/hLfTcd4tf9DOPuTqPA5IyuHgdptGOjn07SQktECMjdKv19tLpREZgNWLTJqC9vXGel0DGc5GUX/+aHp/4RPpx6QswxW10Cx5zlaR0dRm+mQnt7/0e0N2NBQuA9yAoLOR7oEDkCiXfE+SGn3ceAOCRZY/HDNog29qBAwfsGBiDXPmFr6YUJqxfP3eNv8P76LkbbshtWxoy+xYpw2jh058OALhq+VtxHMEglCBS2EKaYvhJAJ8GsFJK+btSyo9KKa+TUt4lpXxISnmzlPIqKeXbpZQbATwFwBIAbyja8CIxSy3Zsk3qX/yCHp/97LlrbMal9NzXvhZevCBkXuz/7d/C71etmrvGrxCECK+7Lr9xCci16Py//0ePQcJyfz/wA1YMOYRVIDI7kqEh4L776PuAGPYt7MJVeCk9d801dgyMQa5w7EMP0eMGChLMnw9ciyAvsoRE69zE8MlPnpOme+d34h6cByEl8LOf2TMyArk2EddeS48veAGAJt/is2I4PExpB+3tc5vOvvkduAtBgUHB8zwXSWEi8ixKq1mwANiOdfRcCQt95lDy2BhV9nZ0AGedBQDoWtiH/8Fz0TYzXfiG2UoPwzcQjZg/H/gW+8T//d98hmkg8z16220kUixcCJxCynL/gnZ8Fy+i3/+0nFx9G0gjhuullJ+QUh7TuZiU8iYp5f8B8JHUF3sMVTE0xq4gN+zsswHQpL4Vl7T+viBkdt7f+U74fSDZDQwoxPA3v8ltWxJyqVecR3jxxQCIGN6Ps3G8bSGNd8H5V5kdyX//Ny2aj388cOqpAOjv/wmC3M6CE5ZzjTnPh4suAkB/+8M4A7MQFO4sOJ8285jzmJ5zztxT8+cDV+P59EPBG6BcagQvioEaMTAA3IzH03O33kq5GAUi83y5+mpyqo95zFz8fGAA+E8EXQMK3rzlIuMPPECP558PgNb860HjjxtuKHyjn3nDfP31NGfOPXdOJh0YUNYin6MR/Mc+4xlz17gfZ2Nc9ACHDhXe6TrzfGFF/+Uvn1tD588H7gD5yLm5VAEkEkMp5XjS722/zxfwvZ4pf4lJyOrVAGhiHMZS/KYnCPkUfENmntQrg4Tw971v7qn584EHQLvNOYWoIGR2gIOD4Zj/MeXQDAwAEm24tYvCVnPhoIKQecyZXD3jGQ2OZCvOpOd9dd4jI+TkOjrmFsyBAWACPdjdvoZIQMFFP5nHfOtWegzs5mtswSb64Z5iWzNltvvYMeoY0NcHXHLJ3DWOYREe6jiLEkaVyvwikPkeZTIepNcANOd2I8gdK/j+zKxeDQ8Du3cTsVq3DgD97buxCgfaVtI/s+DQZuZQMue6v/CFc08NDCj+vGD1KvM8n5mhf5gQcxONHgR2tK2j1zz6qCUro5HZ9kOH6PHcc+eeavDn7HsqAO2qZCHERiHE45Wfe4UQVwohrhZClNNzoCRkVgwfeIDI4fr15MAROtGdCJpe3n67HSNjkHlS80L+tKfNPTUwADyEoJ6oYGKYmaQwuXrMY+aStjip/2b5+MbXFITMoSpWpx772LmnFiwAtnERR0mbCGO7776b1IhzzpnLLOdr3NwWhDYLXjAzz3Me0yB/ia9xDygPq2himPlcbc5dUuyeG3NRTjg58z36cNAMeuPGuado8xYkE994Y6GtX3Lfnxs2zPkWJinXtlFBx1wqSEHIHEpmux4/t2RjYAD4LwTk/PbbKfGyIGSeK7t20VxYvpyqP5VrPCJPp298FVeOHKFHpan4CU8MAfwLgBcrP38IwF8AOBXAx4UQf2rTMJfITAybkn2BcFIfmQq+4Z1cQci8O2ZiGOSjAGT7NqyHFIISrQsMD2Z2JFwFFuQuASExfGiS8vawe3c+41KQ2ZHwgqmQcVZSptu7gH37Cq1MzjzmvOg0qW4AcN10EGb7+c9z2ZaGzIt9BDHkeT7V0UMLU4GnFGQmhqwGXnbZ3FM85r+aDqIRBRPDzOoV914844y5pwYGgF8gnPdF3qO5KpIBYFl4EtH8+SRm3TMdkFy+hwtC5nuUw5ZN/nwQCzA4fxWlHRSYYpN5zHmuKKkeXKh192zwXMEpNtw1wNj24JSW5vmyHesw29ZO4z1ejWCqCTG8CNSqBkKINgCvBfDXUspLAHwQFS84UWGTGM6bR47kRzPPoSd8zI84fJi++vvnkmb5GhPowfGB1bS7LFDtzNzCgx2JQlK4+nCnDEJVPhLDoSEa856eMIwPciSzaMfR/oDUFhg2ybyJ4DEP8mgBoLOTxMOb5abG1xSETLbPzISVpKefPvf0wACN+cElwcJTYPEMc86FCw3fyIu4Qmi5tdONMiCGvEkqCJnI+NGjpDD39gIXXjj3NJHxM3B0SRCRKFB5yzzP2W+8ONRD2trCfFoAfqpXw8O0wensnAuBq9c4PD+Y+488YsXGKGQmtBG+RQi6zi0INv8FV+BnGnMpw2KkJmFoGp04vmgdvaaEHq82YEIMFwA4HHz/GACLQG1qAODnANZHvKeSyJxjyAuKMjF4Uv8ST6EnfHQkvLvcuLGhVwzf1A+sDoohmo60soncoUFFjQCIYM7lMPlIDNkpr1vXMOZ8jf3zynPeNoghX+cQltIPLI0VhExjfvPNpJSccspcqod6jd0Liw8nZw4N8gYhqF5nzJ8PPIhAvdq+vdCQbKb5wnavX9/QFJav8fCaQAEtMDE/s7rMZLzpeLaGdA8fFUOO/px5Ju0eAvCYH+gr3rfkVgybfEt/v1IIecMNpaQeGNm+Zw/5vMWLG8QV/r8dXFCtcLIJMdwPcMIZfgvAw1JK1qL7ARSXsFAyWDHMHGJTkk/5OvuwErM9vaQSFaQaZm7kGhF2AMK//64lz6BvCiwosJkzxtfZgTWQbW10Mx4+HPHm/JidDaO98+YZvJHtVpQrIBzzvV3r6JsCe6VlXjCZOEXMl6MIYqQ7dhQaks00Xzgcq4Tu1WtsnxcQw+DotiKQye6ZmTBnM2Kej6Af04uWUphq/347hjZhepou39bWwKnT0VSMx5ib533FK2+ZfQt3kDjttIanFy5sUgwLIikzMxl9S4w/579/T3e1FEOAbN+F0zC9YDH9Qwua51JmTJlgtfCCCyLFlT39Jy4x/CGAK4UQ/wTKLVQOecUFAKqhkWogk2I4OxvuHs88s+FXNDkEplYEDqagljWjo2RGdzdFEbTBhSVNdvPfv3c26FdeYFPUTM57aooUCSEaQiYA7TCHMB9jZz+GPGxBioQaAm8zuZvYKccQw50dnu7qjx2j+dLT07IBGhgABqF404JCmxMT9K/v6DA8VYHHMvL+BLZ2B+kIBSqGmcZ83z5SIxYsmGsPxODrTJyyjr4paCOh2m3UgJ6JYRO5Yrt3dgUEq0DlLXPaAUcaVq1q+BVvgKb7F9DAcDWqZWT2LSnEcM63+EjGmRg22c4pRuOnFOsXR0bIv/T2Gm6AVGKoYG7Mu09cYvhOAD8CcAWIJH5I+d0LAFxr0S6nyJRjuGsXzaiVK1veyAvP2NJg11zQDZn5ZuSbrEmNmNvtzAY5cAWefpLJ9p076Z+1alXLOXrsSMZWBI6koFy9zOHYFGI4F6ryjaTwQn/66S27D24TdORxdCbrXDK2ZWQmKdwvT0n14OsAwP3txYeSc435hg0tfzDPl9Gla+mbEoihETi9pinVg6/zaHvxIdlMyvi+feRbli9v2X2QbxEYWRn8TQXlR2ZW9CMKCYFwzLeJ4lXaTIrhsWM07j09LSkTbPvIsmJJLQeWli41fCM3xt+0qeHpuYrqjoAYFtzdwxa0iaGUckRK+cdSyguklK+XUo4qv3uSlPKdxZhYPjIRQ3ZsTQ4QCPOJDq8PWgfw8VCWkbtSs4mk8N9/98w5VM3x4IOFVclmqgSLCSOr1xlaVGwRR24yHjPmvxZBPs3mzYWFqjLZzipK0JBbBc+7o6cGylsJxNAITLCUCnb1OtumAlVr//7CGhfnIoZNqpt6ncHF6+gb34ghN+V+6lMbnua58pAsPiSbafPGClCTugyEm87jy4PczoJOy8ndekxpDwSEY/7gTPEqbe6UpiaJdG7MlxSrGGYuDuPNQXDkI2MuGiGDLLwTTTEUQmwTQlwU87vzhRAnTCg5EzGMUd2AcHLsPyUYvoIqNm2TlLmFfqQrDKcUvNgbVSUnkPE5R7IwUFIqQgznHMnoKvojjh0rLD8yFzFsCq+p1zk+79TG11pG5qrBvXvpeyU5XL3OseEO+gdIWVgesG1iONcOa/46+qYgYphJAZIytEfp1QmEf/++sQWUsD82VljeWKYNMy/gTaFBQEmxWRv0j/RtzGOIIdv9yPgpFCs9dChMqLOMTLYzMWzKLwRC248sLFZhzpwDHJOPOufPp9ZR7svOnTTXPYdJKHkdgLiMnh4Aa3Nb4wky5RiqVaZN4MlxoDf4XUH9ozLtjEdGKHews7NFBWK7BwcR/s6nxV5DMTwyEEzLgsLgmR0Jbw5iiOHQsAgde0G7zEy2swNMIIYHFgZ2/+pX2Y1LQKZF5/BhSkxcuLAleahhnnODwX378poZCdvEkKMR+9m3+KQYHjtGYz4w0FCRrF5naAjhPVCQCpTJdt5ERMxz3nQemhf4Fp82bvv30xsXLWpotKxeZ3BIhD7TJ4IVkxsJhGO+d1GxBWKZ7D5wgKqzli1rmedz4spQRzjPK9CyxoQYAkCc1r8JwLF8pviDXIph00IPKIphe0CuClbdjBZMldAG3f0Zc45kEKGD9IkY8s54w4aWX7EjOdDroWL4q1/RJFu5sqXTMds9OAjIM4tNWM5kOzvkiDHn6zy0LAin+JRLy/dck1qoXmdoCGH+YUGk1jYx5Omzp+Aq9swLJgCsWNHyq7kNUAnEMNOGmTeSCcTwcFvQyLigTUQmu9lXNLUeU68zNISQGPqkdsa0HgPCMd/TF/idgv25UeSKN8tNlfdA06az4HluE4nEUAjxNiHEDiHEDhApvJp/Vr4OAvg0gB+XYXAZYMUwE8FKCCXvQ1DEsW9fIccRZXLenAybsNAPDQFyVTDpC1I7cxHDiB3mXGuGDiXHsIAcplw9DIND4lVw02Ipgel1xSYsZ7Kdz1hVjtpizCnjM0soJ/XYMSqVt4xMGyCet01J7UDTPH9CEB70iYwnEEPOhXoUygbIl3nOoeHly1t+1bDp5AWzYFJrm6Ts6g5+t3VroWNuZDeTlIh5znYPDwNyRbAWFRy+N5ov/P+PiLrN9XeVy0nAOHiQij0tw3YU5YQkhqAWND8NvgSALcrP/PVdAG8D8MfFmVkuMimGCWHNhly95cuJeRbQ+iXTpOZQQgQx7OwkkjI7C0yuCX5fUC9D4+KT2dnYNjuAEmKbXEShw+HhQvLGcuXpRSz06rXmqtg5rGUZxraPjVHblM7Olspe9TpDwyJMPShAHc+lAEUsmHxSzswMMLW22LPBM9mukWN4cHyAQofj44XMl0xKCi+Aysk+jAb1iv8unzad7BcT0lT2yRX0Q0F5wJnmCt9vEcVhHR0U6ZQSmFoaKOc+bToTom4874ZG28P5VMA8z1QEmaAY8slno6PAzNpiN0A2kUgMpZQ/kFK+Tkr5OgBfBvAW/ln5eqOU8pNqlXLVYUwMR0dJBezqSqzWbMjVK3DBzKSkrI1OEeVrjZwWJAQX1A/Q2JEcO0anWMyfH7laMTE8PijCG7YAUmu7gAMI/5zRgeIcIJDBdt7MLF8e2ScmMvWggHmeacyZGMaQ8bnQ5vKACPiS7zY5Sb6lrS3St/B1hocRni9bQP5VpjGPOMecwb1Wp6aAqZXFEkNjgjU6SnM9xp/PKW8jItxQF5Crl0kxjCmwYvC1hi8I0j1uvjmbcSng5hXaG4mDB0m97O9PzF8eHkahaU25FMMIYsgnnwFK67QTQDFU8ScAImUuIcQ8IYRJS2WvwaFk7UnN/+i1a1vy9IAmYujbpOZQQkQeEBDafmxp4AALyBtTT1Voyt2NBzeVVQ4sV8HEcHAQYW+pAtoEFUkMB+cFzr2AHKbJSfoyahKdkDMGNOWNFVislGnBTFAMAUXB6gnCngU0LZ6eJtFVCIOTLPbsIYnnlFMajjdjqOHBOZJSQKFVrnkeoQAJoSz2i8tpKaU9X9TjByM6S8+pV0MIyUAB8zyXYhhDDOcq8BcHG6AC7Gbf0t5u4Ft4zDdsSB9z/tsKVMZtEUNA8YtLT8ziky8EX1H4XPCVCiHEFUKI64QQ+4QQE0KIXUKIbwkhzlVe82IhxHeFEI8KIcaEEA8IIa4UQmj9u4QQMubrYp33A0RQIvxwNBLyC4EmklKgYpgrQTwiD0i91tH2oOPn4cPW82nUMJV2w+KDB+kxhhjyzXj8OMJQcwHhniKJ4fHe4hTDTE2iUzYRDeHBCoWS1Wsd7wgqOQsghupJFtpjnhBG5msBwZivVHKYLSNXwU/MPJ8jKcs3Eou47z7rfVInJjJsgDjUFxNFaSDjvm30b7mFHlk9bsLcmM9TFH3L/lw9xk97nqdsOht8CxPDAtdQo5QJ/t+nEMMjS5Q0lQLPerYBE2J4GYAfxPzuhwCeqXmdxQBuBfBnoDOX3wXgPACbhRB8J74DwAyAdwN4DoDPAngTgGuFELo2fwnAE5u+tGOJtvILgfLavhRBDOdsnwrOCJqaCj/IEjLZnUIM50LJxxG2bfCFGGoumEe7AidZQMNl28UE6rWGhlBKKLkIxfD47AAxiNFRP+Z5Sgi8IcS2QpkvlpFrnkeEYwHFt8z20983M2Od1GbaALF6FVEEwdcCyiOG2vNcynC+ROQAA8o8n55HTnJiwrpfNA4jA6G4kqJ0NnQOuOmmTPYloUjF8BgWUc/OkZHCin5swYQYLkdMKBnAQQDRVL8JUspvSCn/Ukr5HSnl9VLK/wDwfwAMAHhx8LLnSylfKqX8WvCaTwB4K4AnAHiGpr27pZSbm7608yCNJgY7kpQ8vcFBhM6mADk5U46hpmLYYLvlHKZMCb8mxJCdTQE5TMbOe3qaFj8hYp3gnAo02U2OZGbGuvO23X5EvZZ3GyD13NsU511kjzfbFclAk3pVAjHUXuwnJogYChFLDBvmy1IlImERmTYRKf68LMXQWBlX865jDvqN3LxZtl1VxrVxxx302NQIndFgN6uhPhSfSJlYlQw0rf8bFNXQY5gQwwMALoj53QUA8tzR/N5pAJBSHox4TaCRI3r0LSOTGpGS2H78OMKu7gWcfmK88OzaRYv9wECqYjg0BODCC+kHy6Q204LJ4xezq28ghtzOxofiE1b/li9vOWuY0RAe5Dll2fYiFMOGuVKgYmi8Adq7N+wbGRNPbFh4CnLeudrs6BBDn0LJDzxAm6Azz2w5x5zRMF9Y1bccws/VOD/GtzTcnz4phnyvRVSBMyLvUcu2q6FkbfCcTdu4qU3ojx7NZF8SjOfL4cO0CVq4MJYJRwpDBeXT2oIJMfwRgPcKIS5UnxRCXADgPQCuNvlgIUS7EKJLCHEmKD9xH4BvJLzl6cGj7onlbwpyGEeDnManmthnc1ffMDGYpDzwgPvwIMv3558fm1DZsKtnde5gFG/Pjlz9F2NyaRqIISsWPoTYEs4aZjQs9ryDvvPOTPbFoUjFsCHHkHfTFmFsOyt/Mfeneq2G5r+WnXcRoeSyFUNtksI2xKgoQNOYF6QYZspHvfdeekzJ0yuaGBrbnpKiol6ryELITIqhZhHk4CAoigIUkgecSVwBYgkt0GR7gcVKNmFCDP8WdLrJrUKIXwcFI78CcBuA4wD+xvCzbwIwAcr7uxDA5VLKuKrnVQDeD+AnUsotGtf+KoA3A3gWgDcAWALgOiHEM+LeIIR4gxBiixBiC2A/3CME3TAz8xeR4jI6an3RNJ7UvEvT2GE2hHsK2tXbTPhVHeDsgkWU3H7smPWmqJmJoYbzHh5GGM6y7EiKqGBvWHTWrqV2H9u3hyfTW4Kx7ZyQf8klsS9pUFJ4A+SDenXPPfQYcX4s0KheyeXB/2XfvsIKxLRtT+kaoF5rcBCFK4ZGKi0TrLQK9mZiWNCYa9tu4FvKUAxtEsOWTWd7O9lt+dzhwolhQRsg29AmhlLKQwAeB+BKULPri4PHDwF4XPB7E7wGwKUAXglgEFRYsq75RUKIflDRyzSA12na+hop5VVSyhuklF8F8BQAewB8MOE9n5dSbpJSbgIM85d4UsfkjLW1hbL66CgKW+yNQ2wGxLBhwfRBMUxxgp2dlGYjJTA82haGPy03Fi+CGDaoQLzZcL2JkDLMA4o4DQKgiGFHB9UnTaCbQrJqQrwlGM9zDjklqLSRJMV1XufsbLjpjBlztTn3xLzFpKYMDrpXO5lcxSz0QJNvKXjTqW339DRw5Ajt5JvOGmb09dGvx8aA6XkL6ImREesN9I0VQ41oRBnE0HijL2UqMWTfMjEBTKKLiJiU1lNVjG3PSgwLUDttwuisZCnlMSnl30opnyil3CilfJKU8n1SyuOmHyylvE9KeZOU8hugiuZ+AO9UXyOE6AWFqNcDuEJKmWl1lFIOAfgvELHVglGOwcwMOeSEfggNiz3HOV1XPfLNmEAMywglGyf8Tk2R7UJokdqGMFuFiGFDnzTLhTPGdg8N0Vzv64vsSwc09qYbGoI/ZFzjDZHtMFyTq6NHiagsWBCbpwc0NVw+/3z6wXLhjDEZ55YvMXMFKIeMG5Mr/vzFiyN70gI0z3nMR0ZF4QSriGhEkcTweMAGeJlLxdAQNbLt64tlZC2+hcPJlvMMjdeilMIT4CQghkVBSnkMwEMA5s5lCxpmfwfAJgDPk1LeZeOjdF9oMxwLNBHDhpliD8aOhMlGjNIJNO3qeaG3nMOUKQQuJZG9mAIOoGnMfbHdVDHk3b/lCrxcaQcJfT8aFvuCiKExSTElhhy2dV3wk9IxgNGQelDA8XJSZrA94dxbRmSOoetQskYIHCieYM3OZsjVM8gxLJIYcuYIn+OdihS1kFF0AUqmeZ6S0gScgMRQCPFDIcRjdC8mhOgRQrxdCPFGEyOEECsAnA3g4eDnNgBfA3A5gBdKKTebXC/i+vMB/A4A7fN/iiKGQ0NoKlO2A7WRa4K40Ahe+DZujH1JZAsS1ySFPz8hZAIUn5ifqXmuaY6hL6qbhroMNDVzL0ClzXRKjoZs1LAB4o2SL2OesmA2zHMmNBaVt7ExIip8jJ0WmJjG5OkBTWPOr7tPt7ZQD8aKYUobLEbRBItJ4bx5scJlK1KOwwPKOYXLWDHkNTRlnjesReyHLB4vNz5OwT+jeZ5VMbTsW2wj7WyP7aDG078BEbVfArhTSjnNLxBCnArg8QCeD+pHuAcJuYBCiP8EFazcCcot3AjgbaAcwo8GL/s0gJeA8hdHhBCXKpfYxSHloCH2wwDeL6V8f/DcOwCcBeBngS1rQQ2zVwJ4VcrfOwebeXpAjApk8TDtTI1cU5KsgaZJrR5FJKXBByUjc/5SggMEYoihxRsy05ibKoZLltDFDx8mVqR9HE8yMiuGKc6bVYJjx1AIqc005hq2Nyw6AwNhk+uREcO+G/EoSjFs2HRyiO3IEWP74pCpPyorOWxPBBrG/KKL6IcHHyQWGnEsWhYYK4ZMDHkBj0HRxDBT0UxK1wAgItWjo4N8y9iYwU4rGUwMjdvsJPhE9XpDQwAuvhj4+tfDCnILKCLXXb1ewwZoxw5iodqsv1wk3n1SyrcCOBektL0P1EtwXAhxRAixVwgxBmAngO+BTi/5/wBcKKVMUuY2A3ghgC+D8v7eDuB6ABdLKTl289zg8T0Abmz6+iPlWgJAe9Pf8UBg8ycBXAvgYwAeAfAUKeUNSX+vikJDydyyxmKftEzFBCl96YCmm3HePPqAiQmrlabGCb+GiuHICAoJJRflSBoW+vb2QsIPRVSwAyExPH4chYy5MUmRMswVTNhINDhvIQontVrQWOjV6w0NIQyxWVQMM81zZgcJ8cQGu3t76bVc/GEJRVRTq9crihgaK52a/rzB7ra2Qo6uLCoC1LCR4HvCYr57pu4YKaf7AE1jPm8eza3JSa9Vw1T5QUr5MIC3CCH+AnSs3BMAnAqgB9SY+n4Av5BSamVqSyk/DODDKa9Zp3mt7SByqD53NQx7KkbBeFKnqFcN4UFeXF2SlMFBInjz5iUqIg03I0A3wAMP0A3Bi1BOFNELECg+lJypCGJ4OFwEY9BgN0CO/uBBciQpxEwXRYU1G/pH+kCudu+mr0WLYit71evN1YMtW0bh0IMHEwsoTGC82Gss9Or1hoYQngt+l42UbOW6MLB7dlaLwTdsOgHyoceOkU9NUex0YTzmPFdTPr9h81ZAio3xmI+MkOrX05PIbFrm+apVpF7t3p14f5ggcwQoxZ8X3SHDuPBkfJwcXWenljLe4FsOHqSvFN7gCibtaiaD4+n+UUr5/0kp3yilfI+U8j90SWGVUKhiWCBJMW5Aq5nw2+C8AbdOMOXcW4Z3xFAltBoFHA3EEHBLsAzneYNKa9HuzORq7drEsE3LPPdhzDkHOGWeNyw8nC9ssb2RsUp7992kYK1alTjmLZtOnlsF+BZt21MaijMa7lGuqHYZvlfVZQ3f0kAMgULC4LaJYdEdMjJvlpcvT0x9aNhE8OuBQo70swUvqpJ9hLFiaJIgXkC+W+adsaYaMee8CySGxo1cEyrBgFAILaqIo4iKZCBGMQTc2q65kWgY8wLzOo0XTNN5zq93ufAwMeQWNDFoWOwLaPuSuemvid1AeF9YrKjO3KnBhIwX0DolF0lJQMuY+xBKNlQMGzoeuLw/NTfLLWN+7rn0aPk0K5uoiWEMtCcH9wvjY7Ri0LDYL13aWFBgAZnzOjRD4ENDwQl+/HqXjoRvyCzFJxbPkc3sADWJYcsO06XamUUZ94HQGhLDhnCP+n4LyJzvZmL7wACFtkZGKNRlAcZ2a5altqi03CbogQeM7EuC8YZZ07dEEkOXJCXrPC8wV892MWGD7apiaOnEmdKIIavRlvsB20RNDGOgpUjMzoYqEJ9mEoOGxb6jg3b2UlqbHMZKiuakbm8PVaCREfiRT5OlRRDL/QcPUoNsCyhadRsZCci4DzmpWULJ/f2U8zQ6qsif+ZA5xJayYPb20vSYmAimh2tFQkrtQoiGea6e2GFJNTT2LRqFJ0CESssbpgqk2DQs9qecQj593z5rR7QV5Vt6esinT07SlxebN81WWA2KYW8vOcrJSWv9gI2LTzR9YsuYF9TH2CZqYhgDrUk9OEgOfGAgtY1IS3jQcs5bUYqhes0GCd9VhezEBOXytLfHHlnFaMgD6uiwrhoaj7lmj7T29vA4v9FRhI7HldqpcWQVo2GeF1DdW5SSIkRMcrurMDgrfj09NBkS0KJIWK5iN1bdONcuhRj29tJcnyPjBZyXbDRfpqfpHhXCrCq5oyMUBiy1ICtynre0rFHfbwHG/vzYMRrDlGLGWFXf0ubNuPhEk9C2jHlDs1c/URPDGGhNDoMW7y0FBZbzrzKHTDSqXBsWTNfOW02yTul1VnQ+TWZimOK81WsODcE6MVQ7/Gvtjo8epZV7/vzUXmdF50cWtWCq1yzi1BbjUxX4/uK0kwS0+BYmhpYVQ9u5tC0LZgH5kUZ+8dAh+kctWZLa4bgl3YNTibZty2RnM4rKMVSvWQQxNJ7n/LnLlpn7c8vEsKgoinrNhpZSHp9+kpsYCiGSZZuKQuv0EHZgGsTQO8VQM5dGvWbDgmmp6pHlde3TQzQbLQPlEUPj5rkpagRQLDE0PslCUy0EmopP1PdY3gDZDiUDMQumpUVnYoIEqa4u+kqFSgxT0DLPLW/ejOc5+4aU4jCgybdYJobqKTkpoishg2+Zm+eWT8sx9uec656S0qReswhiyKeHaM9zA9/SMs8t36OZ11BT27kt0NatRvbFYWoK+PWvrVxqDtrEUAjxx0KIv1R+vkAIsQvAASHEFiGEnQZrHqC9XfNUBT6+iRtWJ6AsYqjtvDmUbKAYDg6CKg3b2qjjvIVcPfVm1BpzTfmer6l+hu38yMzqlQYxbBhzy8SwyJ3xiaAYFhFKzlx4YrqJAKwrhsbRCANiGBmNKEDp1PItGTbLRZNx7TFnpTLheFNGLDG0UMRRVG6kes2WwhlXESBubZSijKvXHBpCWHyyZ4+VMT94EHjyk3NfpgEmiuFbAKiZtR8DcAx02skCAO+3ZpVjaJ9Sw5M6pecVcGIohkNDICl10SKa0BZOPylNvgesV1QXlWOoXnOOpAhB75+ZMbazGUXujBuKTwDrFdVFKoaxDXRdLJiaR7Op12wJsbnyLRkUw7kQmxDkVyx0ayiqIlm9ZlFkPPMGyNQvzptH6SFjY1YKxDKnHaS0qlGv2VLFfs892vYlwbj4hNtJaQhDDbb39dGHTE6GhVo5MDceFmFCDNeCTjmBEGIBgKcD+Csp5acA/B2AK+yb5wbaxNAgxzC2BYmLHMOZGfpctTggAS1FVJwjYaGha6nEsEI5hg1j3tlJC8/srBVFoqiqQcAzxVBKI5W2Iaw5bx458IkJK54380KfhRha7jVqFI3go77a241UoMFBhMc/WurWUGQUpeiCH6P5MjlJecDt7YkncDBaqtgtihRF5aOq12xp++IikjI5SW/QHPPYMLgFv+iaGLYBmA2+fwoACeDnwc87AaSvdhVBSoFxiDzE0KViePAgkYylS7WSzFryaSw2dHVCDC11+TeyfXycBrCzU2ularHdYji5DMXQC2I4OEgOnEleCspw3qWoV5aJodGmUy2C0Nhht/QydElS8uQvFxgGT4UaiUgp4FCv6cWY5yGGLotP1LVfI08hdsxPAGK4FcBvB9+/HMCvpZSjwc+nArB3HpBjaCuGvDvU2DGwA/Qix9BgZwxELPb891ZNMbRcCJHZeWs4khaV1iUxzKMYuiw+MQgjq9csIrndeMwztJMqWjE0WjA1fKJ6zSJIinHaQYZ57oViaDjPvdp0VpUYsiiiIQqp16yKYqirjQHAPwH4DyHE7wNYBOAlyu8uA+Dv+S6G0EiNIWge5QM0hUwAt4qhAbkCPCWGWXb1Lh2JQUhTvaYXzttgzFuqkl0qhgahe/WaLfOlQoqhlIBwmUubccFs2QC5UK8yFCp50SLIoFWNes0iFUPtPD0DYjhvHu2px8YoBbXDpT83KA5Tr3nCEUMp5deFEI8CuBTALVLKXyi/3g/gB7aNcwWttimAEcHiZq7j41TM28kTintnaZXNxcMo3GOgRgBNJ58AITH0PN+N27FMTVGqWHdzQUHOMS+SpMQqhhZUoCJVWj5BZHw8cN4FFZ8UqaQUcV5ykWPe1dU4z3tUcjUzYxACiYaR8sbEMKVZMSM2lOxSGdfYAPX10TyfIykuq5LV3q4a8CqUbLABEoII59AQEfKFKhm3MM9LVWktEsMi+mSbtKt5GoA7pJQfbSKFAPARACMRbzuxYbBraGnm2tNDT0xNWa1M0nLeeRVDi4pEkeqVet25ajA+RqnsggKDimT1ml44b4MFs2WeqyE2ixXVRYSSi1QMjStk86id3d2U8zYzU/7mzZAYehVKNiBYTFKAwC8uXUoM/eBBq75FS3mzNc9dbIA0j09kNNje2Um2z86W7xfzRoA8VwxNcgx/BuDcmN+dFfz+5MH0NDlBIbLvji3dkDMzdHSaEKG6lwjDRaeFGHKs3UIRR+YCDj5WKAVFOUHj00MMiaE3OYZqhWiWXL3OzvBc8JxhNuN5XtUcw9nZcKw0qpLV67Zs3nIqzHxcnXYDes4xNCSGRaTYGI359DSNuXrWdAoafEtHR9i4OOfpJ5OTNObt7ZoHLRhs3ICIueKKGPLpBtp/aEJlcs4DF6Q0PBLPI8XQNTFMirt1A8gvB1QJR4/SbFq0SLuMucUJWroheUL392tGR3nR0XSALcSQ80EsnH5i5EjUxVIzDBybq5dT7RwZoX9/b6/mv7+qiiH3lBsYMHbeLSHZnE5QtVvr3++h89Ye85kZ2vxoHU1TXGsmVXXTGvO8oWSLOYZGKi2nlyxdauzPWzadObs1lD7PXRFDlYll9ee8huUc89FR2o/19Bj6cw98SxGh5MQhEEKsA7BeeWqTEKJZH+kF8HoAO+ya5jkMjqxixCqGOSeHcZiKCZZm5WBL02ImhmUrhjzmmoRWve7cmK9ZA2zeHHatz4giE9uBCMXQVe6VIaEFImxfvpxOCbJIDLWQN8fQVfGJYWK7et0W35JTpc1cTZ03383iPDdKO9C0G4ioTLbU39V4zPNuOl0p48YLV4TtHDnKmY5VZON8oJyNvk2kcePfBzWvlsHXp9CoHMrg52kAf2rfPI+RgRgWraRoT+q8imEBPZiMFswMY95yQ+Z0gqU7bw4N7t6du3CmyCRr9botC09OJ1gWMXS+YBqcesJosZ03fWUTQ4NODUDMJgIof8wNK3vV69ru1mA85oZ+sQzFUGst4oiT5lwBImxvmUDZYJgB4WU0wibSiOGXQE2sBYDrQOTv3qbXTAB4UEp5wvQx1IINxdASwTJ2JBmJ4dy9t3AhhbiGhqgsr7dX19QWZAol51EMLTWiLZoYtvi7JUvowwYHae4ZqEnNcKIYAtaU8aJ29UUp+uo1tWy3sQGyTFK0x9yg/QgQYbdarDQ7q9WwOQ6ZKtgNFMPYMbcYStZCXmKo+kRLY641X3bupMc1a7Sv32K7JZXW4KwKQl5iuHgxjfORI0GbEr2UkSiUTgyllI8CeBQAhBCXAbhNSlmAGRWEh4phUcSwZcHko/R27ybiYHBjN6N0xZD/5qqFe4SgROt776Uwm8fEMFalrWoo2UJ7o9JDyZaIoXG0z1AxbBnzri4KDx4/Tqu1ZrpLFIxIrWEBB1A8GS+NGHZ2EsE6epRsN/CvzTAihjxOeTb6ljpkMDHUrGnMTwz5+McDB+j/p9k6LgpO29VIKa+vSaECG4qhZSVFy5HMzBjr5pFqvQtSa1ipqV7XeYgtb44h4GbhyRBK9kIxVFu1ZF0we3row6anw3smI0oPJbtQxtUxN1TGG1QPS6HNskLJTokhn+Xd3p69UwNgbcz5HtUyxVimSyiyypnvbrSJsOFbAOtrqE2Y9DHsEkL8nRDifiHEqBBipulr2r55HsNDxVC7Aa2UdDNqVt+pSdazfFq22qA7B0ovPnGxYLLzNmizo465lMGTLkJVNhRDFzmGhw/TwC1ZYjzPR0Yi5nmZGyBe5PLkXrkIJR87RgPHqSYaKIOklJZL66L4JEenhsFBxbdYHvMimqEDEWuopUJIHnOt1mNHjtDALV6cqYJ9bswtHaPoIsdQxUdAOYb/A+B7oNzCkxc5FEPbPbuKztNrb6cbZniYvubPR8xW3xxGtnOysmZjbvW6LcTQ0s2o5QBVBUjTeXd0UD/u0VEiKv39cKNIGLZlAIpTDItWOtvaIub58uXAww/TOJx1lrHNDCPbDcOxQHHHVhqRqww+kY85Gx0NThDpgHXF0Civ02C+tFQlu9i4ZRjzri7qSTkxQSnifX2w3iGjaGI4N+ZMDHOGkovsYQjQPqllzC2JFKW3q2nCiwH8nZTyQ/bNqCBs5Lu5UlIAI2II0I0+PEyTcP58RKxE2WBk+8MP0+OGDdrXbxlzbohaZruaDKobX3t0lD7LGTE07PCvXreolAkjMm7gvAGyvWGeu1AM2fYM+W5zt6MLZTyDT+STcgYHg2POFsJNKDmHP28ZcxdRFMO8wPnzaXgHB5uIYZmKoXEpcEKxUpnzPAMx5Gtz8MgWMVQPWrAJk/KjfgA32jehorChGC5ZQp7xyJFcx4UZ3Yw5iKH6WTaIoTqpjRbMPIrh8uW0dTtyRGnMaA4ju7knWwZiqH6WDWI4Oxv+2UYntuRRDF0Un+Rw3upn2WifMjvb2IQ+FRl8S6x6VaYynpGkxLZPyTFfZmbCea51So6Njb6lQogyiGERLWsmJuggE1bHUpFBMWwJVM2fTzLz8DAZkBFG96ct32KBGE5MkNLe1ZX5EpEwIYZXA3ha3g8UQlwhhLhOCLFPCDEhhNglhPiWEOLcptedJoT4jhDiuBBiUAjxPSGEVvmrEKJHCPERIcReIcSYEOLG4Kxne7DhSDo66KaQMlf4IVOStSFJ4Rtyro9oy0pkjrExg27z6pFqeXIM1SOvchAsozG/8056PDfuRMloFBEeVBdLra4UNnIMBwZopRgZyUXGjTZAGZROoBi103jMbahXixbRBw4N5fItRYeS1WvbzBtTQ4NFj3nDXGlvp3tmclL7Os0oSzFUP8sGMTQ+JSfDhjmyQ4YFglV0FEW9tk1iaNzCSxMmxPBTAF4hhPhbIcQmIcT65i/N6ywGcCuAPwPwWwDeBeA8AJuFEGsBQAjRB+qbeDaoyfZrAJwJ4GdCCJ39378B+GMAfwvgdwDsBXCNEOJiTRvTYUMxVN+fY2dvNKn5HM/1uv8uQqwjyXEWq5Hdo6O0PerpCXR4PUQmt1sgWJkUw7VrjT6jCMXQyG71nOQ8fQy5vRGQi2BVdcE0sls9J9mgVUvLPk2IsI1UDoLlZMwtHLlpZPfUFO14DSp71Ws3tCDhaEZZfjFDQZ56bZvHsxqTFFZWNXteAhF2A1YIViZF3wPF0Lg7hiZMcgw5jPw+0GkoUWhPu4iU8hsAvqE+J4S4GcD9oDzGj4JI3XoAZ0kpHwpecyeArQD+BMDH4q4vhLgIwCsBvF5K+cXguesB3APg/QBekGZjKiYnaWbmdSQAOdEHH8xFDI0SZ1kxNEhsV689ZzuTnBy5emXkRkaOedk3ZIZcGqAYxdDY7ulp8vRasaHGa7e0N9q5k4jh6adrX0tFmfPFZuGM8ZgbVvaq127I7LBQIOYklMzvzzHPM6fXGDR3jvQtq1YREd+zx3gjyCi6UEm9dlGKYSpGRoiMd3cbbYAixZWy/XlOMn6iEcPXg47AKwI8Mtzy5gUANjMpBAAp5SNCiF8B+F0kEMPgvVMArlLeOy2E+CaAdwohuqWU+SqqMzqSohVDrd1OhrwOIMGRlDWpbRLDsgkWj7lBvy712jbbYZRRNBPJRyzkGZaRS1tEvlsZ4djIzI7IyW+GTLbnJeNlp3pk6BsJxPhzC228MnVqMFDdgAjby1bG1RNyDBrHx4orgJW1qKgcYPXaVQglaxNDKeWXbH6wEKIdpDCuBfAPAPYhVBLPA/CDiLfdA+AlKZc+D8AjUsrRiPd2AdgQfJ8dGRotAymTuizFMKN61WI7k5wcjX9PGmKYUzF0FkrOmGRdVEN0I9sznKoAJDShL2vBzKm6NSiGFoihk1CyhSb0ZdrtNDUoQwW7em2biqFRODZDr04gRTEsaw21dY96rBhmPxQxP25CcM4ygAsBXC6l5FVjMYCojOkjANJW16T38u9bIIR4gxBiixBiy8G0m8NWyES9hueKYcsNWbZ6dSKEkjMqhs5CyTna7KifBcAKMTRSr2zNl4rkRracZw6EN62FwjajUHLeMVfnucwWpCqjtVFLQR5QPjHMkI8KJOTSHjqUecwzEUNDpVOdK3NmWvTnWrbbEoY8JobaiqEQ4t9TXiKllH9o8NmvATAflEv4DgDXCiGeIqXcbnANa5BSfh7A5wFg06ZNyXdGRufd20uR5/FxpZlr2YqhrbDmihX0B+zbR4UhBgUhjDKIoZqnN3fcbdk3ZEYy3qIYzp9PE2hoKPPB62UQw95eSr8dH1fMtNCz04ik8OfkrZBV78/ZWaPUEUbZqtvcPOcCs4cein1fGozIeI7ekepnoasr7DQ+NJQpTla2Mj435q6IYd7wfXc3PTk0RBtZQ18FGLbB4jE3VDo7Osi/jI0pjf8tpB6UqRg2pAYJQevDHCEwgw9VyZcDuKzp60UA/gDAC4OftSGlvE9KeVNQjPJMUJ/Edwa/PopoZTBODVSR9F4gVA6zI+PE4GauQESitYVQVak5hl1dwLp15BEffdToWowyEn7ZkczOEn8F4M55ZxzzOefd1hZeI2MIv4xFJ3Kel6m8TUyQItHeDqxebfQZLXZ3dtKYz85mXnjKKODo7qavqSmlnRtXJZdVIWszJzVnODnTcXiGdnd2OvYtfIa3EPn9OZA7bYLJlVbfyIy+BYiIXpUZSZHSnjLe3h7+3zKq+s5DyVLKdVLK05u+FgB4Big/8EVZjZBSHgPwECj/D6AcwPMiXnougHtTLncPgNODljfN750MPicfMjpvIIEYlqEYDg3R3WRwZi8j0pHkTLQug6So12+R8Mtw3sPDtLXt6THe1vG/qCE8mNMJljXmto/FM2oSvX8/OfAVK4xV1UiSktP2MhRDICK0mdO3TE+T6tvWphEQmJgIOzXkjUYA1ua5Uc9LQ8VQvb6tMTdq+q9Gf9rbjT4nsXAmIzE0Ugwz5gADCTmpFohhqu0jIzTX+/qMo2RFpDU5J4ZxkFL+AsDHQX0OM0EIsQLUs/Dh4KkfArhU7Y0ohFgH4MnB75JwNYBOKEUqQogOAC8D8L+5K5IBr4ghKwTt7RodRR54gB7POcc4JFaEI3FGDHNWsU1PUyhDa8HkkObKlUbVd0BKcnsZJMXmmPPOuCEhSx8qKUydujbtBsqd5xaIYWQYPANUu1OnrqoW2vAtOcODZYSSgZjTrIDMY85N/7u7NfY0OchVEfO8LMWwJZKSkxhOTtI62tGhsYZmVAuBYoih86rkFGwD8BidFwoh/hPAbQDuBDAIYCOAt4Fa1Xw0eNkXQA2wfyCE+BtQm5wPANgJ4HPKtdaCyOT7pZTvBwAp5e1CiKsAfEII0QngEQBvAnA6gFfl+zMDeEQM1QUz1Xnzh2bIHzmhFENLC6bWmOeYK6wYNnApbqDLTbMN4UwxzFnFXvZcsVlRXUbKBGCfGGbKLzQMx6rXjyzKyzjmZeRGAglj7vlmOVIZL1MxtGl7zrSDsvy5802nAXITw0CN+wMAum3qNwN4KYC/ALWP2Qng5wCu5MITKeWIEOJykBL5HwAEgJ8C+P+klGpDBgFqedO8RX0dgA8B+CCAhQDuAPAcKeVtRn9cHHJMjpaCgpzO2+hmNCoba0Si8/bcCdoOJTsjV0B4HqvnxLBlzJnlZiSGZfQwBDxw3hY2ErYVwyIre4GYMT/tNHrM2EC/rFBySxP6im2WbUaAMimGhtXUgH3F0KjwJGNFsnr9hnnOxTcZi/KcE0MhxHURT3eBFL8lAN6ocx0p5YcBfFjjdTuQkrcYEMkWji+lHAPw9uDLPmzuGjg/ZHCQNG3D07CNbkajU+Ub4XzBtB3WFCI82cOwGqwsBeiEUgyXLKF5fvgwJa719Bhdr4wehsCJkWM4N+YLFuTyLWUUngAxGyBuY8InexiirHs0sqVUWxvl/2XoHJCJpOQgV5H+POM8LzvHMJIYzpWH68OoeNO2YpjTt/hQldwGImHq1xCA7wF4ppTyC3ZN8xg2J4cQuXLejG5GC8TQZjNXZ8SwvT3XLtOpYpjzLFZnikRHB6lAUmZSgZwqhmUSwxyKREshRE7fUkZlr3r9yNyrjNWa2rZLmbnPKBChGLa15VINMxHaHGQ8csxzKm9lVSXP2d7bS1+Tk0p5uD7K2ridkIqhlPIZdj+6wrA9OZYupYlx6FAYKtREppvRsCIZiHEkZRHD6Wla7YTI5LxjF57Dh8l2wxCSUZgqhwOMVAzLCiWr7VkyKBKxytv27ZlISpVDbEbz/OjRTO1HgIRipYy+xWkouayq5KEhmuv9/Zn6gkYeRbhsGY35gQOZx7wsktIwVyL/EfrQFinGx4nAdXbmSmtq6dawezfNF0PhwyjDqijF0DNi6PLkk2qCO2tyE1ZDJObqZSBYRorhw0HR9xlnGH9Oc6NoAOXl0/DisGiRcVsG9fqRY14BksJrF4DyFMNjx+hD58/PtGBGOu8cFXiZxjxniG1unpelGB49Sh+6eHGmeR5JDHMk5jsNJZfVlimHWqhev+EowhzzJdOY5yQpc/M8cjenD22RQr0/DcO+QErfy6IjQEUVn5RRIGYAI2IohLhACPEdIcRBIcR08PgtIcQFds3yGGqoJ8OkjnQkOYihkWLIjspwFwvQOtXXR06EyWhpimGOfBTA/pmmZRHDjg76v0oZkdxedN+rHAs9YN95lxVK7uyk9MfZWdoDAihPMcyx6AAxCnOOxd5o0bFQkDc8rGyALDW4Tp0vGRv+M1pCyUCuPOCyQsnd3aRtcK/Khg8tWjHMcX8CCYohkIsYGimGGWyPnOdlFogZQJsYCiEeBzrf+DIAPwLwkeDxcgCbhRCX2DXNU+R03k4VwxyhQSDihiybGGa02/bB62URQ8B+l3/tBTMnMfRCMcy58Mzdo2UphkX4lsh/hB7KGvO2tnBjO0ewyupjmFMxjCSGvPHOUDhTlnqlfkZDISSQOa9TW6QoYqNvgRgWeTIRQOJKyzwvM0/fACaK4ZUA7gawTkr5Oinlu6SUrwP1B7w7+P2JjyKJYQZFwkgxtESw5mwfGCCJZWREkVf0oT2pbS/0QCVCyUCECtTfT1Iid+A3RFnEsCjFsExi2FBRLQTZPT1tfL2yiGHkghn5pB7KyqVVPyOSpMzJK3owOiUn49nxjEjfwsQwQ7pHmcSwZcxz2A0Y+BbbcwXIpTBnikbYGnN1szwX09fD5GR4uIVhk4dUmBDDS0G9Bht05uDnDwN4ok3DvIVniqERMcwZNkmsqDa0fXqauI0QGs67CMUwBxkvq8oUiLBdiHAcDHf2ExNh15JUR2JpnttWDMsgKZFV7EuWkOM2tF09mUh7zG1ugPhaGea5CzI+Z3tHB+2KpDQ+LWdkhN42b55GqmZOnxjZnvPUU+mxaMUwR46h+hlz9+j8+VTdOzxsHE6WMgMxtBW5Uq/lsWKofsac7T09tABOTRmPuWp3hqy2RJgQwzQ6a0Z3qwrPiCFfR6vQ2FIo2UYvQ6NJbSn0ELlgVk0xBDI7QaOdsWeKofaYz8yEq3TGxd5mL0PV7tR5bsnuyH6Au3cbX097zFXC7EHemNH9mTOUHOlGcuQBZ6pgtxUBEiIzqR0dpVuvt1ejVs1TxVBrnufcvNnMdy8qjAyYEcObALxbCNFghhBiHoC/Bp1ocuLDM2LIhCF1sR8fp3BvZ2emPoaAXRUok3xvc4dZRih5bIy+uroyj7nNfBrtuQJ4l2NoVEwgJS30ho3LGUVsgMogKZF2WyCGqWM+OEhEZd48jcNmo5G42Be5YOZUDCOndI4ijky5kRkq2NXPiDxZyTCcbORbcm70I+1mQpuhR6pRa6OpKVL4MsZubfYDLqoiGTA7Eu/doKPrHhVC/AjAXgArATwPQB+AZ9g2zkt4RgwzVd9l1J1tKm9GxJB3rxmqqdXPsFWVnCmXJuOYO1MMc1Q8qp9ha1dfVgW7+hk2ehmWSQxtK4baC09OBUj9jNI3nWorrAzgf1XD/ZmDGGrbnjP6A9jNvWa7tSJXOTf6kb5lwwZ6fOQR4+tpz/Ocaz9QjGJouyIZMGtwfbMQ4lIAfwvgCgCLARwB8DMAH5BS3mXfPA+Rc3LENkRVr20A546kDOfNixovcoZwRsYtLJiJFdVFEkNLztuG3ep1yiApNjdARq0wilAMWUnJ0EDXuDjMwoJpg6SU1X8RiPHnFSGGNue5kWJou1MDEP7/iswxzBlGVj/DxlpUZCjZKNYipbwTwIvtm1EheKoYpu7UWDH0bIdp5Ehyqle229WU4Uj4/2qjabHRrr6IcI8FxbAMMm5zA+RcMVSLrAzPkS1zzBNJSpELZk5lPLIvbUWIYREqrZFimHG+NPcDbGtDOTmGnimGRYaSE3MMhRBtQojnCyHOT3jNBUKI59s3zVMUQQz7+ihnYWzM+KxHbUfCOSMZjqxiJDqSjJPaKNxjoWhmriMAh9SPHTNuQeJCvYoMJZcRYss45j09lOLHLRUA0KrR3k4efXLS6HpltTZSP6NqxHDePJrSXAgAgHL+5s+nOd5QOpsOF2NuIw84U5FVRn/e10fEZGxMcSORx0TpQZuMn8SKYVtbRP/IhQtDfz43+fVgHAHyhBgWGUpOKz55NYBvABhJeM0QgG8IIV5hzSqfkZMYdnfTgsltLADkavuiPak5Kfe004yur8JZjmFOJ9jVReM+Pa20W2xvLz5Xz8KCGakYluG8c465EDHtjSow5jaVFCNiuGsXPWbcvEWOOZC5vZGLDZCNTWeZiqHabmuOpHR0UHnu7GxxG31PU4NSFUMpwxNhMo45EHGPtreHG6qMGyDtCJBnxNBFVfKrAXxRShmb0Sml3A7g3wD8vkW7/ISFcvVY551xcmgv9rwz5uOaMsBmKFnb7ulperEQmnGKaNjM7SirSbT6GQ2KYdE5hrOzuas11c/Ju/CoRwJqH7fliZJiVMG+Ywd1Dchwljkj8h7l/6EBMZydLe+IM8BujmGm9iM5FnubeYbatnsWStb250eOEHHr788VvbLZDqvMUHJVqpLTiOFjAfyvxnV+AmBTfnM8B5820ddHXxlh87xkF0qKjTwgbbvV3m5tJt2VGhFZ3ZthzI1OVbBADIvIMUx1JIOD9IfyyTYZYWvh4YbFfX0anTmqGkpWw1QZ248AMYpEBmKozvHU265olbaoENvgYO72I0CMP+cb14CkTEzQV0eHhjkWqu+dRID4uitX5urKbKuN18yMwQbIomJos/jERSh5AICONzkavPbEhoWJAdjbNRg5Es9CbGXujIEY5S3DmLPzHxjQWDC5GbKFnXGkYpiRpGgrnTnmivo5eXf1mQqViiKGRTVbtrDQAzFjzsQww5iX0cQdSAmxFUXGc+YXMiLny9q19Lh9u/Z1MjX990wxTA3qGN3M8bDVEN1oA1SHkudwCMBajeusCV57YsMSMYxMhchwRFvZjqSIcE+qI7FEDCOVtww3pNGCyf/LHMTQZo6htk/m1iYZ+0YybC08ZZ40o36ODZVW3UgkwkIIXP2cvIphmUcQAsVEI7RDgzkUffVzGmznXG6DRtFl5l2rn1OqYmiJGNrqk5rpOLwq5tIaIo0Y/hJ6uYN/ELz2xIYlYhjJR3KQlDJaBAAxDpArTYeGjCpNXRHDvIqhkV9jxbCoHMOinLcFpVP9nLwLjyv1qkV1y1D1aKwYWlLGbRFDowKOohbMw4eNqnuNlfEiFMOifUtRxSeq6jY7q30tbcXQqAIuHrY2b5l8i23FUJ3nBmNuiWNHIo0YfgLAM4UQHxdCdDX/UgjRKYT4BIDLAXzcvnmewRIxjFwby3IktomhWmlqcEMaJSsDuYog1M+xpRiWcawcEKMY9vVRmfX4uFHVo/Zib6HwRP2cvE2ujXb1Rc1zrnqUshiCZYHQqp9jK3zvlIz39VF17+RkUwJfMrTH3JJi2FKVDGTyLUZkvKhQcmcn/TNmZ5t2o8kos4IdSIleZYy6pcJi8UmD3Z2d5OhnZ40qqp0phlLKGwH8BYC3AtglhPiqEOJDwddXAewC8GcA/kJKeeKflWyJGNpSr7TJlXrIvW1HAuRSgbR39TnVK1tjru1IZmet7DDnzaPcl9FRypMHQGS8yDG3RAxtKYauQsktBaVF2l6kYpjD7rJDyS2+JUOqSplVpurn5A2DexFKBnKNeRktX9TPiTz9pIgxt9CRRP2c2Hle1EbCEKllnlLKTwC4DMAtAH4PwLuCr98DsAXAZVLKf7Zvmoco0pEUqV6NjlKVSk+PlWrqhkbRQC5Hkhp6sBzWtBVK1jrkfmaGPrirRWzXhhAOCJYlldZWjqH2PB8bo6+uLmLUGWFzA1Q2MbRVUa1t98QElXV2dOSKacUumDkIVqpvsaDoA/aac5fdTqqIeV5Gk2jA3nnm2vP8+HEr/twmMSwylKx1JJ6U8hcAfiGEaAPA/9HDUkr9ZJsTAUUSwyJ3O5YqHru76Z7g0yzmKqGLXOwtEUPbxSfaO+Ociw5/1rFj5JvmeEOFFMO8Y54pHJujFYZ6asvkpLIOFEmwLIfYbJFxo6KZHGPOPH5khNbfuY49FVKvStvoc/7fggU0UTOiu5uimHzYQnd38IsMZNw4fF9EKDkDMSx7rrBv4Y4ic2NeNcVQhZRyVkp5IPg6uUghUF1HYqniEbAXNtFOVrZQwAE4yDG0SAxtVSa7yjG0Nc/LIlexTegzjLlxLq1nimEZ/VEBSpeI7AdYpG+xpBiWvuncupUeczRCB+zOc2NiWDXF0BKhjY0AVZkYnvQoKydFswJPO2RiyXkDdsImalPR1IifZcWwtKpki2NuozLZqDG3p4phmWNuo4jD6GANy30MS9tEFDDP8/qW4eHGo+piYXmjH3l/FuFb2Ceeeqr2teNgw59L6U4Zj+zXaVDAUXbUTf2sPMRwepoyxITIlTUTi5oYmqDI3U53N/1iejoiASEaZZ6rybCR72bUVNRyjmHD0GZoteNiwbRx+omLMU8kVwatGYzH3KIynodgjY5S4bhWaq/lPoaxzbkNN51lznMb0Qh1rqTOc0vtamJbBHF7o+lpresYnUykfnAOJPpzzTGfmKA/sbNTCY3Gocjik8jdfzLKzgFWPyvPhlntj5ojgyMWpRJDIcSLhRDfFUI8KoQYE0I8IIS4UggxoLzmS0IIGfN1v8ZnbI957wtz/wFFKobqdTUnh3aYymPnnYoiFUMhjHfHLsl4HsXQaC3hBtcrVmhdOw6Rzruzk9q+qAn0KTAO3xe1qzccc1V4LaMBPRAz5l1dtCMw2HS6UGltKIZGbfIspXtE+pb2dvpfGrQ30h5zizHExHSPInxLkcUn8+bRuI+NaW/0XUaA8hDDIsPIQPmK4TsAzAB4N4DnAPgsgDcBuDYobAGADwB4YtPXK4Lf/VDzc66JuMb1uSy3VK4OaLQJ0JwcLmRwG45Ee1KPjZHswgtbDtiqBnNBDG3kGBq1ZbBcrdkyzw1zgbTny65d9Lh6tdZ1k2Aj90o71UNKa/do7JjzxmrnTq3rZDrjOSdsqFfaYz45SUyO+1PmQOm+xeIhuTZO4tCeK9PTRJKFKKYVlhDhaU07dmhdp+yjWQE7HTKKrEgGNKuSLeL5Ukp1NbheCHEEwJcBPAPAdVLKhwE8rL5JCPHs4Nsva37OIet9FS2VqwMaiqHmgumy+CQPScl0fmxOvTw2ypBx4amaYqg95kND5MD7+zUO4E5G7IK5bBkl0B84AJx9dup1tJ03kx4+jiwHbBJDo3ZSvb1GdjYjdswf+1hg2zbg9tuB889PvY6LlAkbviVTFCU15pwMW612jLsGaB15lQwb89yoqE1K8olzZefZEDvmZ51FG8SHHgI2bEi9jnGeflHpWEWJKxlRqmLYRAoZtwSPqxLe+loAt0op77FvlSYshZEBe6FkFzK4DfVK+/zYAsiVrV298xxDJj8PPaR1jbLbMqifFateGSqGqbazSrBmjdZ1k2CjiMO4IrkoRR8I0wI0E/ONG9BbnC82Uia0K5It2B276SzKn1vseGCj+MSFupzahN72PLd4j9oohDyhiGEMnh483hf1SyHEkwFsgL5aCADPF0KMCiEmhBCbfcovBOznGGqfN1zUpC4q9FBAwu/QUFPNQ8Yb0rlieM459Lhtm1ZBQdntJNTPilQMgTB/NAXatu/bR48cTsqBUkPJZWyAOFyquWBqj7mltAMgZdOpWQmu7RMt9xkF8p/aUvaJLYCd8H3ZLV8ASicUgsT2htoew3nuMgKUJ8ew6FCyU2IohFgF4P0AfiKl3BLzstcCmALwDc3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMErJsHgz9vZS9GJ8XDnmTL12UYqhhUkded/xdY8epXB7ClwQw/Z2io5Kme9MU29yDDnsyH0LUuBCMWxuoDsHQ2KobTv/Yy14y0hSa9iuxsX92ddHvmVsLN+CWfZ5w0DKptN2+N6iYtjbS/5lfLyp5qFof16USKGOucGms0y7Y3swFkUMC4gANcxzrlA7elSriv2EVQyFEP0AfgBgGsDrYl7TA+ClAH4kpdS6u6SUb5FSfkVKeYOU8jsAngk6uu/KlPd9Xkq5SUq5aVmUk7O4YNpqcumNYtjRQTeklFo3pAtiCNiR8L3JMQSMnKALxVB13qWEqrQbNaYjclc/bx7lF/PReylwEUoufcEsOpQ8MED+ZWSkaXcRDReKoRB2mly7TPdosLu3l3YYk5NNu+houFAMgZg1lOe5ZssaF5u3yDE3rGI/IYmhEKIXpOytB3CFlHJXzEtfAGAhzMLIDQhOaPk2gNVCiOwxJos3I2DnWDwX7Wpi1xeD8IMrYliahD87C+zZQ9+vXGlkYxQiFx3AaLF30fJF/bysxFC7ea6UBl3T0xHb3shAwXIRSgZixpznisaio6rqqRy7gFByy5gb9Ox0QWjVz8ta3as2oC+TYKWmNRmMeZmbTiCll2FRimFRZFy9tsZ8OeFCyUKITgDfAbAJwPOklHclvPz3ARwC8N+WPl6vu2sUypjUBhNjYoI2dJ2dKcWjU1M0qVUHmwOpidYajsRFw2Igv2LIY97RkdLIdf9+euGyZRqdjdNhQzF0oUYA+ftejo7Sotnbm3Is7ORk2GU3Z9cAIIGMZyCGZaoR6ue1NFwGtIih9piPjREZ7+y0skLZGHMXiiGQv1hpZIQIObfii8XMTDnRiCI2+hbJlfp5WZVxPq84dQ2dnKR/bHu7lUpwG8VKJ5RiGPQq/BqAywG8MKmljBBiBShP8OtSyqm412l8ZgeAlwHYIaXcl/U6pSyYBhNDdYCJnVx27iQvv2oV3QE5kaoYGhDDVDXCM8VQzaVJHHMeHMuENo9i6CKUDORXDI0XnZz90RixztsgP9KYpBQ55gYhNmMFaNkyK8cvpLaU8lgxzLvp1Lb72DHy5wsXWvXnpWz0y4hG8P2vkQes7c/ViJuFeW5DMSyaGJbdx/DTAF4C4EMARoQQlyq/29UUUn4VgHYkhJGFENMAviyl/MPg51cA+F2QwrgTwAoAfwrgsQibZGeDZ4qhtiPhUywsnKsJ2HHeVc0xNG5Aa+muTVUMNVQgF60wgPyKoTZJsViRDCTMc76Pdu9OvYbxPZrzpBlGYu6VwSbCVTg2j2+pqmLoKhwbKyQb3KOuxjyvuOIijAzYUQxPtAbXzw0e3xN8qfi/AN6n/Pz7AO6WUt6WcL324IvxCIDlAD4CYDGAEVDhyXOklNdkNxvlKIZcmXTkCIUMEmIKLgpPgIT1pYjdjmeKoStiqCqGUiqbVgP1yrj9iGeKYeqYWzo6kRFLUph47ksPPmjnABdke6RiaJB2UGZFMqCh0hqQlLJTJvJWVLsiKan+XMN27TTTMsQVg1OVjOdKkUoncPIqhlLKdQavvUjjNaLp582gMLV9lDGpOzqIHB45Qlu4hM9yUR0LnICKYX8/5aSNjtJXQk6g9oKpHSvXQ3c3mTg5SS0x5g7HWBX0hN+1K/a9DFc5hpHzfP58muvDw5Tkk5CwaXSqAlDePNcIVWkXn1hWDCMrwdWk/NnZxNM+jJtEWyKGqWFNg81b2ban5nWmbPRdFYfZKCbUdhllEkObG/0y7AaKiaRkhNM+hpWC5Rsyb5NrY8XQouomBE3MhpaFRRBDVmWKdN5CaO+OXZx6wojMM2QiobE71ra9jMXeoLrX9QaoxXkb9DI0DiUXqRh2dNA/Xy3zjoFXeXrq9W2pQOq590Vv9LmNV0q6hyuSohLDhpaFBoqh9p6sjKhbXx9VknBhVAJcjbmNULL2+p8RNTHUgdqfz1Jye6qcnOIEjXukWVow29ry541pEcOxMVowOzqs5UfGhgc1b0htzmQ5NAjE2K42Fk+B1vS1XPEI5FckXKnL/f3EX4eHmzZABsRQ6x6dnQ0nVpHEENAOJ7vKGevrI1FtbKypUXQGFSjR9sFB6tZg4TxwRl6FWTtlwjJJ6ekhwX5ysqk1p+0cw+lp8lNtbeE8zInYjb5mONlFc2uAxryjI6yKnkMRynhG1MRQB0NDtDr091upBAMSjgvTnByueqQBMeuLwQ5Ty5Hw379iRe4D1xmxKpCm7Xv30mNqfUMBxDDSdoMKPP5fJfrkI0fCQ+4T+5ToI7Y+xlAx1A4lW9q4qRugrKefaN2jhw8TOVy82JpvSSWGttQry+qy2ig6skDMlmJomVypnxerMNtSxguwPfEoQlv+XG3JZMmf5426uRpz9YCLrPnutWLoA3gRsLToADGVg4BxKDl1UlvOvQLyJ1prrSdaTMYMeRVDngap/sEzxXB2VnM4C1h08hYruTibmpE4z1OI4cyMZpNoy+QKSCApmsVK2ouO5VCy+pmRxDDFt2j3di1zzDXni6uqZCAfSeF5LkTKPLesLgMa89y2Yli0X8xADE+YBteVhGU1AjgBFUNNYsg1Hl1dKY6kAGKYqhimjLn2wRq88Fp0gnkUw+FhIof9/SlCYAHOO2/fS1ehZCCGpGgqhqrdCXUeheSjxi6YnJPKOY0xcNXaCEgh4wZ514nt5gpU3Vo2nRVQDPO02lHtTpznZaq0msRQe4mxXF8AxLgRzXVIewOUAzUx1EEBxDBvAqqr4hP1MyOJ4aFDiQevqwKmVpNojxTD0VF6TD3MxHLOGBBju1r1mDDm2kNZgAKUtx2G9oJZ4D2aJZRsvHErgBi2RCNsE0PPFEOXdudVDHn6pt6jZW0kbK9DBRDDvKFk9kkubI/k3QsWUJh9cLApybYR2hugHKiJoQ4KWHRio4CaidbGMrhF2yMrTXt6SEqbnk6setR2JJaLfdTPzNomQFsxLCBUFWk7j/nUVMQfFcJ4Z1ymYuhp8QkQQ1L6+kjuHhtrytZvhKtqaiAhGqFJDI1DyQXMl4Yxb25vFANXRTNA/qPltJeYspS3vj6qShkfD3fEEXBJDPMqhmy7CzIeub9sa9NSaosOIwM1MdTDI4/QI/eNs4DYKKDtnVqBrVOyhAeNiaFHiqEWMZSyUEWixfaVK+kxoeHyiaAYln2uNhAz5uqZ4wm5ncb3ZwF2FxpKLqCCHYgh45rtjbQXzAKVzqxpKtr74LKKT9Q2Xgm2e6kYFhVK9kTtLLoiGaiJoR6YGG7caO2SsWuLzYqqmRma/UIUrxgCdh2JdmxFH3mdt1YxAbfCmDdP6USdH7G22ySGHiqGWrbPzrrJG0sIDxorhmXkGGrmjWkRLK5gX7TIWjU1kG/Tqb1gelgIoeXuuOWLZX+e5yhCLxVDQzKeOOYcjWlrs8rE8hDDoiuSgZoY6oFvDIuORFUMIxuL2lAMOfds4UJrLQLUz8zivF2qV2qftKkp5ReaY64V7ikgvAZoqJ0JY64dpipozDs6KCI1Pq78QlMx1LKdT5ZYtIjCvJZQCjEsUzE0rJBNtL2geR475rGH+obwQTE8frzJn2umBmkphuzPFy2y1k4KyBdJcVnBXkrxiXp/JlbXmMEGMaxDya5RQMikq4tEJbWtBQC77WoKCCMDCYqhzR1mAQUceftHaTmSghfMLCqQy5CJEDHzxWbuVQFV4EA+YuiyOEzNMWwgKYaKYaLtBbRkUj8zlhgmNOd2qRjysZVTUzFNizUVw8R5XsD9CZTkzwsY854e2uhzle4cDHMMtfrpWh7zWjE8EVAQwYrMM9SsTNJygjy5LC466mcWmmNY0GIfuTtWb8a81b0FOEAgX7jHWKW1bHuehuhaSkrBJCXLsXguQ8mdnZTFMDvbVDeg2TpF6x4tWzHk8UlY7F0qhurnmp7dq/YZTRxz7rBv6UxtRp5eoy5DyepGv4Fg2dzoF9DDEMhHDAuohW1BTQx1UEC4B0hItE6ZHFJqJuU//DA9rluXx8wWlJJjWIBiqH5uSwVeby9tPWPO15yaol+1tZXfsBiormKofm7DwrNwIQ3m8eNNcf0Q2gtmQcQwloxrECxtklKQb4kkKWpi8+xs5PtmZ92GkmNJyumn0+NDD8W+17iAowxSq96fMWM+NEQ+PfVgrZ076fG003LbqiJPr1GXxBCIIVgc9j16NNa3TE7Spqm9PaWYsIAehkA+YlhAkKEFNTHUQQG7eiB7L0N2JPPmpaSa7NhBj+vX57KzGTYUw1SSUqZiCKSOuWp3Yu+ogtWILO0wXBafqJ/bMF/a2lKVNw6FDgykzPOyw5r8v02o7nXZxxCIOf2uo4MMUs9+b8LwsKZvKYgYxkaMV6+mx4QiK60DqiYn6R/a3m61sA2IIeOdnfQ5s7Ox+ZHaClDBxDBLIaRrYhg55hptX7T9uSvF0EbOeA7UxDANk5P032tvt57tmZUYau+Mtc9wM0OenBQtBaigKlP1c00r2VyHYwtXDPlImu5ujUaNZshamaw9z8smhmecQY8J6pXLPoZAQq2G5oLpoochkEBSNML3WgummhZksZgA0KiSjQmDazdg2LWLHi22TVM/tzDFcGyMwi2px12ZI+uYGze3trxxy1NRXRNDH6D+Fyy3Gc9LDLUbc5YRpgLs7TCPHCFyaLkVBpBdMXRNDPPkGBolti9bZn2eZ114tBfMgohhbK9RDfVKK5R89CgtmH191hfMwolhwWPeMlc0qpJdFnAACf48Jc/QeKNfVvjeIBqROF9U1c2yb8nay9A4clVGeo36OTUx9BwFFZ4A2Ymh8fFJZRFDWzvMgsgVkJAeliLhG7d8KYgYDg01pSpphB6MqqkLWDCzOkHtMS+IpMQOrcaYa4WSWXE888zyyDj3vWT1qQlVVgy1xNcCfUvs5o0/i+dpE7TneUHlqLFkXGOeG/nzAnxL7FrEviBFMUxdQ7dvp0fLefp5+hjXOYY+gFUBy4sOkBCStbXDLMgJxvYDtJVjWNBCr16yxUfbUgwLytPjJGkpm9ob2QolF2Q3kLDweK4YquZFtn3RUFISFUO2+5RTspoYi1iB7cwz6TEmDK6dG1lCVXLDBkjjtBnXimEsGef/L1cVN0HbtxREDNWccdP2Ri5bvgDZFUPtUPKePfRoOa8zz8lntWLoA7iAY80a65cuPJRckPNO7QeYN8ewwF194cSwwN1xZJ6h6mFiqh69VwxtqbSWiWF3N/VKm55uOhaZK6qPHaNfRoBtTww0FDjPY4khK4YpRVauiGFHBy32aucFAPZyDF2M+amn0uPu3ZHv057nWtU15ujqos1+lp66Whv9AolhqmIYo9Jqh5ILKg7r7aVxn5ho8i39/fSLkZHYs9hrYugDeGKxQ7WI2Opez9UrIOaGnDePVlMuZIiAy+a56udWrfgEiAlVdXXRSqr2GVGg3X6kwLlS1eITIGbM29sTtvyNTyeGewpcMFNzDFOIYeJcKbA4DIiZL7295FvGxyMXzMlJWkvb21NaeLkc85SqZJe+JXLMuR3AyEjTsUUhjHIMC0jHiuxjCNhTDAtKx1JPNWyYFmq7uogNs5Q1MfQD2quTOQrNMZyYoLuFW1RYRiQxFCJcnCNaebjukaZ+rmn/KC1iyNV3nZ2FnFeUpeEyt3yZPz/lVMSq5hhOTtILVbJmEVk2EuoR5a6U8ViSkqLSGhWHLVxo9QhCRuyCmVCAol0j6GLMY3OGCFpLzNQUvVBt82QRTKYbFMMUkjI9Te5OiJTaqYIqe4HGU34aYEMxnJ4Ob2TLrY2AbJu34WEyq6+P9klFoSaGadDezpmj0HY16s7YcmI7kJBozV35I4gh90jr73fTlw7IXlFtfBxemWOekAtk3PS3TGKYsqs3rqa23H4EyHZGtTpXEsm4x4qhK0ILJMyXhA2QtopSwpi3mBf7BxGM5nkBbXaAsENVAzHkzwMi57m6yU80qaBegPzZqi1z0KxKTpznqvNMvJGzIXXzFnGPlqEWAjUxTEeB/4msjUVdntnLyEIMteX7EhTDQolhAQ4Q0OhlmOBIvAtTqZ+VhxgWuIkANI5oixhz7arBqiqGBfuW2GIlztXbtq3lPcb5qGWScZ4IeSpkCx5zJoYtBz/xOEUob9p5egUqhjy0jz7a9IsUxdAoBF5Q+W9qNXhNDD2GdnKZOWJTTypAUmKdYAIxdH1OMlAwMSwwTw9IIONcGBWxYLo+Dk/97BYHmNJSQovUlkQMTeaLNjF0oRimNP71gRjGbpjPO48eH3ig5T3GY14mGee+lzEtglwXzQBhKLiFGJ51Fj3+5jct79He6PNaUIDtl1xCj/fc0/QLG30MC8yNVD+7JoZVRIH/idieen19VA7JOWtN8IGkxHaPYGKYsMPU7jZfgO2x7Q345j94MLLSVIukFOy8Y0kKn8TRsm32o1ApVTFM2dW7VAyzhJKNFcMyieGiRWFFdcQ5sj6Q8VglhX1LxJj7oBjG+sRTTqEx37+fcmKb4AMxZL/YMuZMDPk4PgXa/vyRR+iRz7u2CHbbkeeZt7XRzRgxz7VsL1gxzBIxLKOHIVATw3RwH6OCc1IaOo2oSb9Zw4MlhXtaJnVC8YnrczWBxmTlhp5d3d20s5+ZSSRYWiSlbMUwYXesTQz5/1XAmPf2Uj3O+HhTcePAQFjF3pLc5MeYZwnf+6BexS466jmyEbZrpYOVpBi25OpppEwkzhUp3ai0HR0UBpcyXE8UGEWACiLj3Kavhf8lhGS11iEpw/6NrJxaRH8/TemRkab9fHt74hrqupoaqEPJcxBCvFgI8V0hxKNCiDEhxANCiCuFEAPKa9YJIWTM10KNz2gTQrxLCLFdCDEuhLhDCPGiTAYPDZH839MDrF+f6RJJ4KMjZ2fNqmS1FsySQsktzjtBMdR2JAXmpHR301dLbzogbEmUUlAQCyaUBfS8BBJISl5iODhI/8ienkIWHrWor4HUChGqCA8/3PI+H9SrLGRcixiqVaYFePmBAVobR0cjRKoE27XWwoKJYZZTIfi1iWM+OEjjPm8e7VYsQ+1N19Kti5tcR2yYjXJpCxpz5mwtrRYT0j20WvyNjtKA9PRQJMwy2toS7lENkSLRt7BPWrs2j4mxqEPJId4BYAbAuwE8B8BnAbwJwLVCiGZbrgTwxKavZvoUhQ8AeB+AfwHwXACbAXxbCPE8Y2v5Zli5spCqJCC8qUw6oPsQSs6iGGotOsePk2rHalIBiLU9NgNbc8w5h8hyl3xGHsUw0ZHw6T6rVhVSTQ0kOEF2uk35V1L6EUqOLT5JyKXVIobqzVBAlalKxk2KfrT2ZK6iERrhe+0K9gIghDmpHRsj3tTVlcJVXZHxBMVQixgW1CBaRZZ7VCt6xcfhbdiQx7xY+EwMk5qGFIHnSylVb3S9EOIIgC8DeAaA65TfbZNSbja5uBBiOYh8/oOU8p+Cp38mhNgA4B8A/LeRtQUqV4zFi0loOny4KQUjZnLMzNDGVz19JBIlORITxVArTFXSmO/bRzfZqlXKL5gYNm33JyfJgbe3p2x6C+x5CWRTDLVUN+1z0LLDlKSMjdG48+kjsXClGGosmK6aWzMWLaJ77siRpuGJGXO1/6JWNKKgMY/1LTxWWVW3gqMoQOhbjhxp8i0x/lzdcLrqvwgkjHlCHrBWCl7BeXoAjd2jj+oTQykNcwzLLuA82XIMm0gh45bgcVXE70xxBYAuAF9tev6rAC4QQphlv5bkSICEG7JpcqgnEyQKDQXbHrt5z6sYFng2NSM2DM6sr0kx1G6eWzDBKizHkPMYEo+MyAdTYmh86klBC2bs0OYlhgUv9Ornx6pATX/U0aO0aC5cqNlntGzFcP162p09/HDLSRzGPS8LQqw/j8mPNC6aKXvM1XWo6chNrXnuoWI4MkKboL4+yn2ORcEszGfF0Ifik6cHj/c1PX+lEGJaCHFcCPFDIcQFGtc6D8AEgOYT4rmY/Vwjy5ikFHDIPSM1lJx3weSbwzJiu15waCyiGkyLGHIFWwE5nQzTULL2zVjQIfeMWMVwwQLycMPDLQumdo4h4BUxNO6/WNBGgm99zp+fg0oMG6qY/FEMUzedTWOuLda7Cmv29NBnzs62/FFGZLyEMdcNg2v7c1dj3tVFN+HMTMsvtThfCYph7NGyMcTQuAjSZbuaJt9yUhBDIcQqAO8H8BMp5Zbg6QkAnwPwJwAuA4WGLwDwayHEOSmXXAzgmJRNowkcUX4fZ8sbhBBbhBBbDvJNyMSwgHOSGbEta2IkfO0Fs+AQW2xDfLUarGnhMUpsL3DMY4khF43cfXfD01o34+xsmCdXkO2xiqFaxR6zkdDq11Wgt4mtks2rGBZMsPj2adm89/TQP4SLSBRURjFs8i1akbOCz0kGUo6hjjy7rQKKYYwK5EMDeiBlzFPmi9YGqMAxT1UM866hBYkrsetQXx8lnE5MZBcpcsIZMRRC9AP4AYBpAK/j56WUe6WUb5RSfk9KeYOU8gsAngZAAnhPUfZIKT8vpdwkpdy0jCdxicSw5Ybkz2za7WhNjKkpumBB52oCjWcOt9DwlBsy0aSC8/TUz2+5Ic8/nx537Ig0KdGR7N1LiXHLlhXSDB1IUAyBVIKlVU1dUPWd+vmxTa6b5rmW3ePjRBAKOpta/fzI08xiFsyqKoZaG7djx0g9mj+/lOKwpuhl2Ik5DzF0MeZ5QsnT04WHZNUxb/HnMSKFlkkFpx0ACUdRxyiGWsv6+Dgtbp2dhUWAEn1LzEZCq8jKApwQQyFEL4CrAawHcIWUMrolfAAp5U4AvwTwuJRLHwWwUIiWTDB20VH7oXi4JIY8qdmGAMZJ1gVVU3d20sZmdjaiiJcXzCy2a7fTz47Y3XGM6mbUTqLAuRKrGAL5iCHHSRuy5e0iVjHkY86a+rtpjbkqcRVUTa2OeQtJiVl4fFMMrYaSCw7dA+RbYtt4pRBDb8c8pfgk1bdISRdPTP7Mju5u8ufT0xEtRfNsgAqOXAHmoWR2NYkZYgWfew+k+JaYowi15rkFlE4MhRCdAL4DYBOA50kp7zJ4e/Nephn3AOgGcEbT85xbeK/BZ5VCDGNDsjGTWmvB5DL7Ahd6IEHCZ+WJ7QigZXsJW6LUROumhDIfTiYAKAWyq4uEyZY+aSm5ei5bvqifH0sMmzYRPhz7CNA6PDBA63ILSYlYMNX0N1/Uq9gCsZjQoGsFCEhQ9XlCKARrbIwEntSWLy4Vw5gcQ62wJh9HxxGNgpDagixLKLlEYqjbx5CJIbueSJRgt+pbWqJAvHYrbbxmZws9obcBZTe4bgPwNQCXA3ihbjsaIcQaAE8BcHPKS38MYArAq5qefzWAu6WUjxgZ7ItiqGj7WhNj61Z6PCctJTMfYm/IdevoUQnJak9qJmUucgw3bKDw+8MPN3QF9uGQe4A2rjEZBpFV7Lz7b2sLhZZIlOAEYxd69QZQ5rnWgllC/pJqQ2wYXFkwh4Zorg8MpFQ88r3horAtZhOhFRosYZ4DCao+5wErvkW7a4BLxTBPKJntLqhxPsOkin1sjL66usKavUgUeE4yIzaUrNqtSHJaimFJG6DY008ijqJh39Lfn+JbLKBsxfDTAF4C4KMARoQQlypfqwFACPFRIcTHhRAvFUJcJoR4I4AbAMwC+JB6saBq+d/4ZynlAQAfA/AuIcTbhRDPEEJ8FkRE32VsrUti2N9Pd9zERMN2wijEVvCkZim8ZbcTkbHPR9DNn58S3WZiWOCCGesAe3vpl9zQDY2vc53YDsRmGEQu9mr1XWJrI5eKYU8PjfvUVENOglaIrQQFSLVBJ1Sl3eHioaBxwsaNec2LRaxiqN4AMzNzT/uijKs2xBaIxRDDRPA8d5ljePhwA0nRmucl5F2rl2+xPWIDpM7zRDLO/6eCmv4DCaHkri76o2ZmGm4Cfp3rlAkgYdMZQQzLyi8EyieGzw0e3wPgxqavPwp+dw9IHfwcgP8FnWLyKwBPkFI+0HS99uBLxXsAfBDAnwO4BsCTAbxUSvkjI0uHh+mLqw8LQmwoGQgJqcICjMKxBScixCqGEbl62s6biWGizp8PiRV4EXeq0dFsBS+YEVOi8XOVMdcOO7gkhkDkasomaTnvgolhbH5kyoIZi5mZUqrvYxXD9nb6o9ROv/DjzF5G7OaNiaFynrlW3pV6TnGBviWWGHZ10ToyM9Mw5lq+paT4YeyYRxSfaM3z2dmQ2BRY2MbzPKKNa2QhpFZ3rpI3QC3rP59RqISSy8ovBMpvcL1OSilivt4XvObfpZSPk1IuklJ2SilXSilfGUEKEbzvD5qem5FSflBKuVZK2S2lvFBK+R1jY1kFWLmysORTIMGRAJGKhBbBKmkGpRJDRTHUcoBjY+QEu7oKtT2RpET8UVob9hJC4EDCKU8RZFy7srfg6jsghYxHrEi8hiemybLqxqkLBcEklKx9HJ6UtKIVVEwApGw6I+REHxXDlvnCpE7JA9ZSUo4epbk+MFBov85Efx7hF40Uw4KJYRbFMHHjNjwcxj67uqzZ2YyE49YjHSbnCifqPSVsloGEPqkRZ2uX1aoG8KPBtZ8oIYwMNN6MLZVJEfIQ+xStbvMFz6DYBu0R+W5ak1olVwWS8URiGFGAYmR7gSFwQONYPMV5G+dGlrAB0lUM1X1ZLLi46YzmWjO7iCWGWUPJJS06saFkIFQktm2be0prvvDfWlBvN0bsfIlIstW6P7V2GvmRSAwjpC2jTg2uFMOIHEOtwhN2UgVG3IDwX7p/f0LrNGW+aJlV0gYopilD5NqvVRxmCTUxjENJxLCrizaws7MRi33EpNZqOffNb9JjwYph7KlgWUPJJZGrxJ5dTDKU7aeW2llCCBwIxY6WCtmIrafW/qCEIwiBRiFWSWsjRCyYRhWyrvKAsiqGJdrd1kZjPj3d9MuzzqJHVl2hqV452DA3ICGKkjjmu3fTY8H3J+dQDw21HPwUnub0QBj80vIt2h2Z8yFrjmEsCj4JitHdTen409N6a6hWKJmZWsEboJiTbxNFoZoYukRJDhDQaHKtTA6er7zhb4FSTVv0pI4lhpyRfOTIHAvwiRiqPbtaejDymCkyixbBKsn2WGKobj0DtstzJXEK84JZsJLS3p6QJM6TOchHktIvYshTQkn3afyF6YJZkhrR1qbRJihCGU/kHyX5xVj1ihtrj4zMNdzTuj9LUgyFSBjzM8+kRyU/0qjIquCNfmLnAPbnAdvVCiXfcQc9FlxNrdoR25rJNJTMR7NynLogxNrNPSuPHZs75lTrZCJLqIlhHHwghk27ndFRSsPjHVIk1K3HYx5j1c5mxDTEpwm9aBGt8IGX8YkYqna0jHmTPCSlRlhzepoWeyEKJymxleD9/fTLiYm5P0pLxGS2E7vTsAfdStPhYVp/+vqo9isWJREsLhzmLlBzWLiQ5vrx43PO2yfFULWjZeHheyzwc9r9F0tWDFvmihAtflHLt5S0AQL0T7OamaH7WIgUksIFHAUTrNgxV485DdYXrVAyE+CLLrJmYxxM+gGnKoazs2GaSsH5y7F2t7W12F4rhj6gpGICQF8x1DrogRfL888vNGcMSFAMgXCxDmw3ct4Fh3tUO2Ib6Aa/OH6cuBZ3D4oEJ7csX15oMQEQ27OVwIteoI5o7TBLJIaxigTnRQTEUEst5KKZjo7CQ2w85i33p7oRCO4734hh7MLTlHqgddLd2BjdEJ2dhecvJ+ZHZiGGJVQkM3RPs1IPeYptJzUzUxqp1TovuWmeJ96jJUpcqcQwuOdmZsIoUWxv1/37KfK2dGlKA9j8iM3TB1o2ErVi6ANKVAx1dztaO4YSF52InOQQTDQCp6alRvDOuMCeV4xYksLON8i90sq1L1HpjE1WVn8ZjLnWgumhYqhFDNW2KQVvgLQ6BwT3XeWIYTCRtNpwltSpAUhZMGOIoVaOoQ+KYRMxTD2VaGaGBqSgs6kZifO8SQUwOg+8BIkr5mCZlrmidriKJeN8fxacigWkdA7gezSYu3XxiQ9gYljCYp9FMYxFSeE1IEUxbGrQybUciUUzJRLDmNPvgHOD0xMDg30jhrHtDYBw0Wsi44nO2wExTDvNwqej2YCUBZPv0WAcfSOGsbY3qctaChD7xBIWzETf0qSkaG06fSKGTYQ2UfAu0e6Yo+IJTf8QrVByiUwm5mCZFmJofE5ywYi1G2jx5yX18wdQE8N4+JZjKKXZIfclLZhtbQ05ySGaGnQy5+PCvEiUSFI4D7wlb4z/GceOAVLqbR5LJIYrVpBYc+BAxJjHLDy+KIaxYfDly6k8/9AhYHRUbz3hExVKIFcqoW2pYucExKDSVIsYllTxCKQk5be10USanNRb6EtqVQM0kpSWNl4nQihZSj3FsKSiGaBR/G6Z57xZf/BBABUKJbNP3LsXmJ7Wy7su6RQroLEJfcs8b1pDa8XQB5ToBGMndW8vJaBMTQGHD+vdZyWqEW1tCSGfpkPAtRyJVvM6O2DH0EJSuroor2RmBhgamvt94nCWSAw7OmgM1crdOTSFNVMXTClLVSQimvkT2trChWfHDj0HuGULPW7aZNPESPT2UhHM5CQVgDWA1c6mcE8swZISuP9++p5bxhSIWN/S0dGwaBopnSX4RD7NTC2KmQPP1WBzkBpKnp6mG109bLxAsB0tPrG/nyqqxsaA4WG9E/q4nVAJlb19fWRi0ymshPPPp8dgJ601X9i3lEiwWuZ5Tw85nulp4NFH9Vx1ieJKZyfl9c7ORhwU0ZSOVSuGrjE9TV+LFhWe1wGkhKoUOdk3xRBICPkooSqtiseREVp1u7sLPZmAkZjDxKxx2zbvQslAQj5N0z8jlRgeOUJFHAsWlDLmTZGRRvCY79unRwz5H1dC2gGQsNgr1b1abXaOH6dVt7/frZICNNyjvoXA1Y9p8S2K3C+lhm/Zv59W3uXLaSUuGLHpHmpF9b59emIg9zxkYlYwYk9W4sEdHGyY57HzZXiYiHtXV0qYyA4S5zn7iD179PY2Ja+hseFkZSc9OUm1dmrbryJRE8MocIyuhN0lkEIMlcmhtWNwRAxb8lIUFnD8OPnl+fMT/HJJJ3AwEokhO+H77/culAzo9ew6eDDkH7GOpMQwMpBCDJV8Wi1iWGZcBZEtCwmK6jY0RPvJefMS9pOqQlviPI/M1VNYgBYx1JLP7SGWGPKYHzyI4WEa895ezTEvAYl5wMo818p3439MSf48lhgqHeqHhmg/OW9eSqcGgP64gjs1AAmbZaDhHjVKUynJL8barkTdVLtLcBs1MYyEI2KYeHTV7t16HXR82dUrFbJaqlvJhJY/JjLRmm/IvXv11sIS85eABFLLA7xz55xvO+OMhOq7kokhj6EV581jXtI8j+g1T1AUQy27SyYpTdGoRihsl+9frVQP175FSczS2pOVmKcHpHQOUCpNtdxGScebMlKJ4bFjejVIjlS3SH+uMHWte7SkHoYMHcXw8CHZ8NqiURPDKPD5USURQ61wz65devUwJVZrqh/T4ry5p9/hwzi0c2zuqVio7UdKQKJiqDgSH0PJsfPl7LMpUWjrVozspAXFl8ITIOFoOaCBYGmNeZAEX0aeHpBADPn+3LlTz3mXPOaxeZ1AA/O67z76lmtpIlFi1wAgQaVl2eTwYezbTo3FE2+9EvujqrZEKoZMNpR8t0R/zn6xZGW8hRjyH7Vrl14q+J130mNJ5CqxdZrp5k3r3Fl7aOocFWJggMJs4+M49gjlBZWRXwjUxDAaJSuGiW0CFM+eyj9mZ0t33rG7eqWgYOhesilxoeeVq+Q8vUOHIirwlC1/aih5drbUohkggdR2d885s6nttBgmnqjgEzFUCgpSFQk1abWkDVBTwXeIgQH6h4yPY3gr3aA+KYYrV9KtuG9fRBW7knrAi1LsOj45Cdx9N31fQs4YkOBburpoEzQzg9FbidEmcr6Sx1wt+G4Zc4UYsr9PnOdcfMJnuBeMxM4BfX3A0aM4tI2qJBLdHfcnK/j0LYYaAWrx5yaK4fR0aSfNMJo6uzUi8M1jW8lX14qhS5RMDJcsoaTSY8cajzoGMDcxpBJKjuVO+/dTSdnSpQnJH3aR2G8sICmTWx9teG0kOPZZ0s3Y00P5d1NTERV4yhYuNXp26BA5k8WLSylUAhJ29cDc4jezk1Z6n4hhfz/lmI6MRJxRzQufUvATe/sNDZH3HxgoJX8JaDm0ohGB7RP30mKYyFVLJimdnRpV7Hv3pkf+du2icT/ttNJTDyJ9S3CG7fhWWk19CiV3dIS2t8wXVqG2b08P7hw4QBXMixeXU3GABN8ixBypHb+XzhHWUjpL2rj19ob+vKW61yRNZfdu6khxyiml+XO2JWnDPP4Q+eqSKElNDCPB7Kwk9aqtLSEkG0yM2R27MDZGfC+2gLRkCRxIkfADkicf1SCGDmyPVWqDhW925y4MD5NAEeuXSw4jA42tuVoQSCejD9FimLiGl5xkLUTI/1gImUMwfnLfPhw61NgKqQVanYHtIjaUDMwpaFNbtwPw52xqBs/doaGmXwQL/ewj23HsGI15bOoBO6ayViakEEPeAO0goq2lGJYUSlY/quUeDcZcbt+e3sKL788SfWLipjMg47MPaxDDEnt1MmLXIvYte/fOqXKxU4HtLvH+5M17i0Ch2DHzKPmNspaZmhhGgYlhSeFYIOGGbNKZE29GTpot0ZHEElrFjo7dRPoSbXdIaltsb0jMknNNpSPByVklhXqAhpSZVgQeb3YXObjAl0ej5CRrILS9JQwe/DPkgYMAJJYtIxU9EkyuSiQpicQw+KNmdhML8CmsCSQsPDxng7DfkiUJhUolF56oHxXpW4J7tH2fxoJZsmIIJOSNzW2Wd0BKGvNY0bvkKAqgRww7dj7S8NpIcK/Os8+2Z1wKYgsK54jhPoyN0X4ydqNf4olnDB1iKPZobIAsoiaGUWBiWOINyQsP86M5LFoE9PWhfWQI83E8eb7ym0tc6HVCyX0HycElOhIHxDDWCc6fD8yfj7bxMSzC0eS1kHNpSnSAiSQl8Bx9x2lFinWAMzNOFAkW+VrOS543D+jtRdv4GOZhJHmuPEILU1m5bkDKghmMecd+GvNE/sGktkSSwhGGloVn2TJg3jy0HT+GhTiaHPUrufIe0FMMew75qRjyWLaE7xcsADo70TY6gh6MJY+5p8Swb3+KYihl6JxKVN5i274FSZ9thw6iA1PJa2iJJ54x2EcntavrPkR+oyaGLsE5hiU670suocfbb2/6hRBzjmENdiRPageKYaLzDuxeeJxIX+xiPzFBC6Z6AkYJiK16BOZuyNOwM5mk8KJTogPUCSUPDNFCHpt2EBwRhRUrKEGnJMQSQyHmVtNlOKhHDBPlULtIXDCDm7L7aIpiODFBUqmahFYC2PaWymQh5sj1GXg4ueLRITFMGvN5Q/vUH1sxMkJJZ93dKU0a7YIX+xYy3jTPK0UMg8biaw7dBiCBO42O0lzv6aGClZIQSwzb2+fGfAX2J3M+rVJxu2DhnhstNCDgIAPH61CyH3jsY0tLPgXCf3jkrkGXGDpQ3ebPpxy84WHKk25AYMey0RRiuG0bVeCtW1fqmCcuPAHRW41detXUJW4iFi6kYRoaiijiCBbuhaMpxNBBGFn9uJYNEDD3DzkNO5P9sgNiuHAhzfOhoYh5HtyUA8MpxFDtaBwbJ7cP7ugTufAEq9J6bEsmKVqHzNrFwoXEoQcHqaFyA4IJcsrYNnqM84tqGLmMzsABODzYUggBzP1DNmGLVwV5APmLnh7idsPDTb98whPInFEKE8feoxzLLau3SgCeA+weGhD4503YkuzPHSiGa9YQf963L6IAJViHFo/VoWQ/kNjQyz4SW3kEq+npeEQvx7DExV6IhKTfQP1bObMLbZiJn9TsAEsmKYmKYaCkXIC7kp23g5wx9cjXFlIbDPLScSKssVXJDtRlALj4Ynrkf3kDAtn88bjZO8VQnedxPd6WTOxVf2yFg02E+nGRCnMwzzfgIe8Uw0Tfct55kL292CC3YnnXsfiiGa5yKtm3sD18mzUgaOFyJrZ6pxgKkdCHMfijBuRxcO51JLYRWS/bt1x0ET3ec0/ELy+7DADwONySvIY6IIZtbWFWTEsqWUAMT5nZpQqfxdtUzsdUEGX9BwIwMYxUDINZsx7b4hcdKZ0ohkBCAUpvL2aWLkcnpnHuwr3xUQVeMEsMIwMpYZPHPx4AcD7u1tvVl2x7rPNetQqyowMrpvegF6PxZjlSDBObuQdEbyX2eacYAgkFBcEvVmMnlswbj5/nDtIOgJSGyxdeCICUlET+oXV+m33Epqp0d2NqGZHU85YdiBcD+azhkhqhMwJxDb/5TcQvA/+8DtuTfUvJ/fQYsU3ROzshe3vRgRmcumA0PrjDedcbNhRlYiTY7sh5HrDGM/Bwcm7kHXfQ9yVv3nj9b1GYFy/GbHcPFuI4zlg+FF8cZhk1MYxDyeSKJ3XLjgFo2NXH+uXDh0n/nz+/1DYeQENT/BaMLadxvGRp1B8WoOSm3IzYXmPA3P8/McdwaIhyxnp6St1hAgkFKB0dmF1H4cGL+h6KV1IcEcPEM02DgT4Fe+PHfGqKJpqSe1sW2CW03KMLFmBi/dnowQSevvCO+Atw/LxkYpiYkxoUTa3BjniXNzMT/tElKoZAcg7z2AD98uxFUTu7ABw/LzkCxP/iyDZewUCvxaPx/nxsjP7ozs7SfUvSaTnT8yh5cuPSKAUjABPDEjs1AClHEQZry2rsir/9jh6ljX5fH6WSlQiO7LREDIXAxDIy+LGLomLkxaAmhnEoecFk8WP79ojO7RdcAAC4BLfGO5KtW+mxxEpNBtseldtxbD45wfMHEoghLzolE0O2OzL3KrDlNOyM39XzH7xuXUKfj2KQVJk8dCotgk9a+mC8kuKggh1IOBcUmFu8z8M98Wvhjh2Uj7p6NSX9lQjmoVGbt+GVlJi/sT9qVQpw6630+JSnWLYsGYntjYJfnoK98b7lgQdoxVq9unSSkkQMh3pp93B6f1QuSABmwyWT8cSTOAIffSa2smDbCrXfZcm+JYkYjqwkFfCSeffHX8ARMVSV8ZYxDxTAVdgdLwbyH7xuXWmN8xlcrNRSlAfg0NpNAIAnd95Umj01MYxDyTvj+fOpY8fYWEQl28aNmEAXVmEPVs4fjb4Ah0xKbJvCSCKG+3uJGG7s2h5/Aba95F392rWUbH3gQHwvw9XYhWVLZqMvwLk0JYc0geTw4IGFNI4X90Ux3gCOFMNFi0jsO3aMhKgGBKGnxIIfR2FkIFQMo/Ijjw4Qa7yw7a74C3AoueR5rqZMtIx58MsV2I8Vy2LmOdu9YUOpBRxAw+EsLTjSQaxxbXeCYph6pmUxSDyJY+NGzKANZ+BhrDml+cy8AI5SVNSPjDqi7dBSWl/O7dwafwFHxHBggMZ8bCxizAM2eCr2YPWpMfPcQfN5Bg8VL4Uq9vWSr1vTlTDPLaMmhnEoOZdGiHgpfGKqDTtAC8/SkRjlzVEuDdBw/GcLtrfTYr9uOsGROLJdiJBHb202r7cXh8VSdGEKK9tiFAlHuTRAsmL4aBcRj42IIYazs+E/q+RwbHt7eERbS27nkiWYhcBSHMbKpdPRF3BIxmNDyQAeWkJJZWdO3Rd/AQeFSgAJq0uW0L+9JbTZ3Y0jYjE6MIOVHVEyLkIy7oCksG+J2nTubacFfM3s9vgLOAqBA/Fq5wS6cRDL0AaJFW1RsWY4KTxhJCmGO7tI7Txdbot+s5Sln++sIm7DLHv7cBiL0Y1JnNoeQ7CYCTsghrxXjCpW2jVJE2l1R1QuSICWY43yoVRiKIR4sRDiu0KIR4UQY0KIB4QQVwohBpTXPFMI8VUhxMPBax4WQnxWCKHV+EsIsV0IISO+XmhkbMkhEyB+Uu/bBzwKWpXadvpHDJNCVfdMkz2nDEZshQDSzo8cIbnUwZizkNAc2hwfB7ZLcspLDsaETdgBOiSGUUrKfTPkZVaPx5DxvXtJyggaHJeNoB1ay+54cqYdu0BOecn2W6Pf7FAxTAolbx+m5MmlIip5EuS4h4YoHzU28bM4xN2j4+PATkljvuj49ug3c0J+bNyzOPCt1XKEIoD72s4DAKw+HlWGCgq97N5NY16yMg6E92jzRv/BB4F9oF927o9gX0B4c5Sc6w4kE8MtR4K+l+Lh6DcfOkTzfP78hLP+ikNcgdiRI8BDoMnUtydiMgHhmDvw57GFbQBunzofALBuf0woeWzMerFs2YrhOwDMAHg3gOcA+CyANwG4VgjBtrwRwBIAHwxecyWAFwDYLITo1/ycawA8senrem0rOzrImZQMFhKab0iVGEb3P0CoXvGqWyKS1KstQ0QMF+6PIYbqKRYlh6mAsBiimRjefTdwI54IAOjccmP0mx0SQ04lvT+Cs94+QsRw6ZEYxZAdoIMdPQCccw493tckru3fD/wCTwMAtN0Xs9h7EEp+9NHWHKatR2gRXDAVowCpaqGDec4Lz//+b+PzmzcDD4Du0batMfcol9YGbVbKRNOpfQ24bZIWzCX77o5+M8/zM88stW8kg7los8veuxe4C5Q3Ppd32owf/5gen/70IkxLRBIxvGeaQizL9t4Z/WY1jOxwnjdvmPfuBR5EIMu1hIcC3HsvPZ57bjHGJYDn+V13tfqW649RRfX8gzFk/JZbqKG4RZSbYQk8X0qpes7rhRBHAHwZwDMAXAfgzRGveRBE7F4K4N81PueQlHJzZisd7NKAcHI074737gW2Yx39EEcMHRxvxlBzmKRs9Ae37zsFgxjA/MEjFMdq3tk4DA0C8cTwgQfCHebcot4Mh6Hks86ite6RR8gnqK0jbtt7CoYxD/2Dh2ir3Hziw52BU3egAAEhqW3O1XvwQeARBPMgsjwfIRN2MF8WLaIcpuFhypFUhb/NRzZiGu1YuONO6g7Q3LOGw1Qlh5EZXKfTTLAefRR4FEE+RdQuQ23hwY3iSsTatVR7sWNH6zy/9dgZGEc3eg/sIHWwuWmnwygKEJ97fegQcC8C8rEtIiQ7MxM24yu5UAmgEHhHB7nr8fFGjeT2yfMwgj7M27Mt2p87yi9kJBHDrQhEk8hqQ4Rjft55xRiXgHXraPoeOUJBNHbZUgK37VhKYz50jJInm885/fWvrdtTqmLYRPgYtwSPq3RfUzhKbvfC4DyD5nnbMKmjnPfgIK1Uvb2ld5sHKBrZ30+OWy23n54G9uwVuD9p4XGoAAHxxPDBB4HdPN2i9P3JSVpV29qchKk6OynlS21fCRBpuedeEc6XqN3xXUGBRFDtXjbiGovfe6+yAYpKKjt4kEhKV5cT24WIzjOUErhzx0Jsw3qI2dlo23/xC3p0RMZf/3p6bJ7Ke/ci+f48fpyO1xkYcOJburpozKVs3RPv2tuO+xDIz1FdjR0W5AHxxHD//pR5vmcPOc+VK0s9rpLR3h7uX5r3xPsOdeBukFIbWSnhKTHcvRvJPnFwkCTSnh4na1FcY/FDh4DhEYGdbQkRwzixKAd8KD5hrTwha1vrNSqeL4QYFUJMCCE2G+cXOsKZMRuaRx4B7kSwoNwZIeHzzXjaaU7keyA6tLl3LyW8b++JiR0Czokhb3ibG9E++CCwB0HCepRi+NBD9MetXVt62xRG1MKzcycJDnv6g10Gqz0qPCGGzaGqe+9FuND//Oetb2SHfuGFzjZvUXmGhw8TIX+0PVgMo1QgXkQvvbRYA2PA4cHmqZxKDL//fXq0nNxuAhbk1fV8dJTW8nvbApKSRAw9UwwfekhRxqMWdUeFYSqiwsmHD9Nmbnd7QFKiSK3DPD0gJFfN3O/BB5VQcpRiyGvT2Wc7STsAolOyeIh3DgQq5s03t74x8uiufHBKDIUQqwC8H8BPpJRbYl4zAOATIFL4fY3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMLIrafHYqKRAqHkGt99Ok3qms5tmSnM/G5aSg9M6XIDTj9QzcDl6dmBJsNhzDoeK2+hAdle7+ic/mR6jiOE2rA9/2Tzm/IfyGW8OELXwsFO5byUdAYVrr21808wMJVACzoghp/A0r+X33ANsxqWY6eqhydM85g5zOhlRiuFNQU74kYXBfIlKiGMyXnKrGkacArRnT5hjiK1bW3OVoshiyWDXoLoPXvh3zA+IIY8vQ8pwE+2IGMblGG7dmqIYMklxEIlgRBFDngp7V15M32yOyNb6+tfp0ZEyzifO/PSnJLoyfvazJmKo/hIIJ5Sj+xOIJoa8xzywKlhgo6qwotbVnHBGDINCkh8AmAbwupjXdAD4BiiE/HIpZUwPixBSyrdIKb8ipbxBSvkdAM8EsAVUxJL0vs9LKTdJKTctK/k4PMbixVTINTwcTg4piZfMoAPTZwdO8Fe/anwjzx4HuREM5keqQMX8Y+i0gAk0K4YjI8CWLbRDe9KTCrcxCmeeSYLfoUOkQgA05lQ5eAqmH/t4Chtvadq3MKF1kJDPYJVWXVuYsBzeEChTzexr2zaqYlu1qjX3sCSsW0f/8j17KIcJoDG/5x5Aog2zpwfEr3mx5zF36LyjehneEiS6dJ4V/EOanffRo7Sqdnc7ydMDSKXt6CBxgec5ANxwAzCKeRjfcD5VqvMfw5icpMcPfrA8Y5twfuD27lZqTH7yE3psvyjY3DTPlZ07Sb2aN8+ZXzztNMo02b075NvMV/djBWZ7+4Jy2ab58j//Q4/B+b4uwMRQ7WXIxHBsQ0D6mv25Gs3if1rJ2LiR7tGxscb92c6dwDAGMH3a6TSnm21n9u4ocgWEHZXUjQT79rY1Ef8QgCbWAw9YVzmdEEMhRC9I2VsP4AopZUv9U1Cl/GUAzwLwQillTBlUMqSUMwC+DWC1EKLc5oQZwJtbdoKPPEKkZdEioOu5z6Inm3dqjsOxQOh71fuNzVz61JhQ8gMPkIK1cSPlMDlAW1vYno0X+337iJwvWQJ0nBf8Q5p39lxN6JAYRimGHMlZcGHAYJrjtbyAOtrRA+TDWAxhpfbAAVojFywAOs4Nciq++MXGN/LC88QnlmFmJJgYqtFi3sR1XhRsgJpLf1lSvOQSZ2kHHR1h2heLI0NDlO/W0wN0Xx5I580bIE54ctDDkMG+Rd3j8B5h9XMDYnjnnY1hFmYFF1/cWghUEtQ8YPYtBw/SmC9cKCCeHfjzX/6y8Y18EzvaLAPhvztKMezaFPiOX/6SGBhDVQUcjTkQ3qPMoYaGaBq3tQFtlwT++gc/aHyTB2soiytqoTr7md6NwT+Ec5UZ/He0dK7Ph9KJoRCiE8B3AGwC8DwpZdxRAf8K4GUgpfCnlj6++aAc78CTg9dvTil46lMBcV6w8DTnSPCO02HogcODd98d+mdeMFc+aT2tPjt3Nurk3JLBQXsAFexIeC1hB7hxo/JLldROTISLvaOcMSBUDNVIAk+NNRcuJJY1NNQY92Ry5SiMzHjqU+mRzeH5ft55gOD4vrp1np2leBDgrLIXiA6D8zo+t9Bv3dr4T2G7+e9yBA7Jsr3qWihOX0c//Ou/Nr6J57mDNlgMddPJ6x9zkI2Xr6Z808OHG33LT4Mlw+FCD4T3KPsWzlJauRIQl1xCPzSHApmMl3zIggq+xT796dCfs5mrn7SGdhlTU407JP7+ne8sz9AINJ/c8pvfkPt4zGOAtudeQU+qJHZ8HPj3oNmJw3n+uMfRo5pGyPfowovX0Te7d9MOmhHXvSEnym5w3QbgawAuB6mAkS1lhBAfBfBHAF4npfx+zs/sABHMHVLKqNNCvQJzO96psSM59VSEITQ17+fGG2lV7elxutifeioVLR49Gs5VPtlixantIYFSd2q86Pzu75ZnaATYzpe8hB6ZpJx/PsI+YupO7Y47yJmce66TSk3GxReT0HrPPaFPZtvPOluEoSiOuwHA9UE7T0chTUZzDlNDR5TnPpd+UMMmqkruMCmf2wQ99BCJJRMTdAsKATzp6Z0kEwHAP/xD+CYupHnWs0q3VwVHI770JXrk/eTppyMkUCq5uv32cGVyGL5fuJCIytgYmTMzE9p+1tki9HtqKPMrX6FHR2lBDCbjLMTy8C5bhpDxqsRwxw5yogMDThpEM5jQAhQ9AZra/LH8zGFvwHnrMQYTQ7aX3cj69QiVl+98J3yDmmDuUKU96yz6t+/eHe4NeKO/8onKmKq7Um4z8I//aNWWshXDTwN4CYCPAhgRQlyqfK0GACHEXwN4O4AvAtja9JqGGnghxLQQ4t+Un18hhPimEOK1QojLhBAvB/AzAI8F8Ncl/Y25wP73xqCn8lvfSo/794McSUcHrf58GCRP8FWrnMr3QlCkDCAp/NixMNyzciWA3/kd+kElKayZc8awIzD346hIQ5u/xz2OFvtbbw29+r8FU85RHg2jpyfk2w88QP5t61Z6fuNGhMVIrHZKGZKU3/qtkq1tBA/dDTfQI/u6Cy9EWLa8Z08oV3zqU/R49tmtfbxKRE8PiQqzs7Q/27WLyOGaNUHKJveF4dVIynAj5zDtAAh9C89vJisXXgjgRS+iH44fJ/UNAL797fDNDkkKEM6Xe+6hoZ2YIEFtYAAhMVTzDLnK5hWvKNXOZjzzmfTIAuYXvkCPF1+MUH7++c/DZFuOUFxwAcU+HeGxjw2/37aNyOH27eQKzzgD4T3IxSbj46Ey7jgawbcZ+xZeS88+G42Fa3wD8A3x8pc7OdiC0dYGbNpE399yC+0Rdu6koT7zTABvehP98pvfpEcpgauvpu8t59GWPfMCKQDvAXBj09cfNb3m9RGveW/T9dqDL8YjAJYD+AiA/wWFoycAPEdK+U2bf0hR4PSp5mjxmjUgL/iEJ9CWmRd4Zl+qQuEIPKm3bAGuuip8fvlyhMTwuutoQl93Xei8HVaZAsDHPhZ+v2dP0wlgCxZQCHB2ljyMlMDnP08vUJs2OgJXsu3fH9YkveQlwYLJu/rvfY/s/sQnwjc6VDoB4PLL6fHmm6lAkNMJTzsNxLBOPZVWI15R2Rn+8z+XbmszeN27++4wG2KON735zfTIscPbb6fq6tWrnY/5y19Oj/v2URSwIRuiQznr4F3voscrg3q9D32oNBvjwOve3XcrYWQWMfkf8pd/STfwP/8z3a9A6JQcgTduW7bQNPjhD+nn17wGJBGddhoV4X3xi405kg4LTxg8p6+6CvjqV+n7c84JRPFXvpKeOHCA7L7mGmIxGzaEMVFHYJ3hppsoP5+1iKc9DY0Fdz/7GakBf/In9LNjQguEQ3fLLWFE/vGPD2pL3vhGeuIzn6Ex37uX/Ex/P/DsZ9s1REpZfzV9XXLJJdIVZmak7OqSEpDy1lvpEZBybCx4wXvfGz45ORl+v2uXM5sZ//mfZMpjHyvl294WmiallHJ2Nnzii18Mv+/rc2hxiGc9i8z5938PTTtyJPjllVfSE898ppR33x2+4Ne/dmqzlFL+zd+QKW98o5Rvfzt9/4EPBL88elTK9nZ68r3vlfKKK+j7nh6XJs+hrY3MeetbwyH95S+DX/7t39ITL3yhlA8+GL7gwAGnNktJ4wtI+frXh2bNzfOZGSm7u+mJm2+Wct06+v5FL3JqM2PtWjLn3ntDu/fuDX65cmX45O7d4ffXX+/SZClleF+ec46Ul19O3//RHwW/vOmm0Fa+CRr+KW5xySVkyqc/TY8rVyq/fOUr6cnHPEbKr389tHtqypm9jD/6o9Ccl7+cHl/zmuCX4+NSLllCT955p5Qvexl9/+d/7tJkKWXjsviud4Xf79sXvOBf/zV88k//NPz+0CGndksp5Xe+Q6asXx+a9c53Br9U19DPfEbK5zyHvhdCSiklgC3SEgdyTsJ8/HJJDKWU8nnPa/Rt7e3KL2+7rfGX/DU768xextGjrWZde63yAma86tc//qMrcxug8u2WNeXoUSkHBhp/+cpXujK1AXfe2Wr3//6v8oIXv7j1BT/9qTN7VfC6on7NrYe7dnk7z1VSxV8f+5jyggsvbH3B17/uzF4VTKr467TTlF/+5jfRY+4B1E1yy5DOzkrZ39/6grvucmozgzkTfz3vecov1Y0mfy1f7sxWFZs3t5rWsEd4xStaX/DlLzuzV4W62WyZxvv2eTvPd+xoNWvHDuUFHR2tL7jiCimlrIlh0V+uiSErb/z17Gc3vaB5Yjz96Q6sjEbiOr5lS+sLJiac2ariv/6r0az3vKfpBe94R+MLrrnGiZ1RWLUqYcyPHGkd84MHndmq4vrrG83q7W16wbOf3fiCxzzGiZ1RSFxTVNkZkPKMM5zYGIXvfrfRtKVLm17Q/IfNyRVuoYolACmfMzPKC/7yLxtf8PjHuzK1BRdd1GjaX/2V8suxsdYx94RcSdlq2siI8su77mp9weSkM1tV/PKXjWY1bNykbLXbk42+lFKuWBGa1RJo2Lmz1fbjx6WUsiaGRX+5JoYzM1I+7Wn039m4MSKq8P3vN04MDyRwxic+EZrVsDNmcCwLIDXLEwwONg5pwy5NShpjz3aXjHe/OzRr/fqIF6h2f/azpduXBFXBevDBpl8ePNho+/33O7ExCv/3/yZMh5kZIib8yy9+0YWJsVDtvvHGpl/ed1/4y5e/3AuFlqFmFLz97U2/PH688Q/7l39xYmMUmoXY225resG3vtX4ggbG6xbf/nZo1h/+YcQLVLvnzSvdvjg0bySOHm16wTe/2fgCTzbLUjZGulsIrZRSrl4dvuBtb5t7uiaGBX+5JoZS0sRO3Hxt2UL5ES0z3i2mpkhc+/CHY9aU6Wkpf/jDpninH7jvPil/9CMpjx2LecHmzVJ+5SteLZZSUrrPa15Dm97IOXPddXSrf/KTpduWG7t3U6LQvfe6tqQF3/ymlIsWSbl9e8QvZ2eJsf/7v5duVxpmZ6X8u7+T8uMfj3nB+99PiZSezXMpaQqff76SL6bi4EHaaXzqU6XblYZbb5XyiU+U8qGHYl7wsY+RIu5Brngz1q8nFWsuz13FwYOk7J93npRbt5ZuWxJ+9CMpzzxTyhtuiHnBe98r5WWXSXn4cKl2pWFmhvKXn/tcEixasHevlG95C93EyibCJjEUdL0aKjZt2iS3NJ8AUKNGlTE4SKXKQri2pEaNGjVqWIYQ4lYppZUy/I70l9SoUaPymD/ftQU1atSoUaMCcNdBs0aNGjVq1KhRo4ZXqIlhjRo1atSoUaNGDQA1MaxRo0aNGjVq1KgRoCaGNWrUqFGjRo0aNQDUxLBGjRo1atSoUaNGgJoY1qhRo0aNGjVq1ABQE8MaNWrUqFGjRo0aAWpiWKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRgAhpXRtg3cQQgwBeMC1HZ5hKYBDro3wEPW4RKMel2jU49KKekyiUY9LNOpxicZZUsoBGxfqsHGRExAPSCk3uTbCJwghttRj0op6XKJRj0s06nFpRT0m0ajHJRr1uERDCLHF1rXqUHKNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJobR+LxrAzxEPSbRqMclGvW4RKMel1bUYxKNelyiUY9LNKyNS118UqNGjRo1atSoUQNArRjWqFGjRo0aNWrUCHDSEEMhxGlCiO8IIY4LIQaFEN8TQqzRfG+PEOIjQoi9QogxIcSNQoinFW1zGcg5LjLm6+KCzS4UQojVQohPBf/n0eBvWqf53jYhxLuEENuFEONCiDuEEC8q2ORSkHNctsfMlRcWa3WxEEK8WAjxXSHEo4FveEAIcaUQIrVtxAnuV/KMywnpVwBACHGFEOI6IcQ+IcSEEGKXEOJbQohzNd67SAjx/4QQh4QQI0KInwghLijD7qKRdVyEEOsS5svCkswvDUKIHwd/2wc1XpvZv5wUxFAI0QfgOgBnA/h9AK8BcCaAnwkh5mlc4t8A/DGAvwXwOwD2Arim6o7KwrgAwJcAPLHp60HrxpaLDQBeCuAogBsM3/sBAO8D8C8AngtgM4BvCyGeZ9NAR8gzLgBwDVrnyvXWrHODdwCYAfBuAM8B8FkAbwJwrRAizb+ekH4lQJ5xAU5MvwIAiwHcCuDPAPwWgHcBOA/AZiHE2rg3CSEEgKtBY/kWAC8C0Any1auLNroEZBoXBVeidb4MFWOqGwghXgHgIoO3ZPcvUsoT/gvAn4Oc1AbludMBTAN4e8p7LwIgAbxOea4D1AD7h67/NlfjErxWAvig67+jgHFpU77/o+DvXKfxvuUAJgD836bnfwrgTtd/l6txCV6/HcBXXf8NBYzJsojnXhuMzeUJ7zth/UqecQled0L6lYS/96zgb/6LhNf8bvCay5TnFgA4AuCTrv8Gh+OyLnjNH7m2t+CxWARgH4BX6Nwfef3LSaEYAngBgM1Syof4CSnlIwB+Bbrh0t47BeAq5b3TAL4J4AohRLd9c0tDnnE5YSGlnM341isAdAH4atPzXwVwgRDi9FyGOUaOcTlhIaU8GPH0LcHjqoS3nsh+Jc+4nIw4HDxOJ7zmBQD2SCl/xk9IKY+DVMQT1VfrjMvJgg8DuFtK+Q3N1+fyLycLMTwPwN0Rz98DIC234zwAj0gpRyPe2wUKr1UVecaF8aYgJ2Q0yBF5qj3zKofzQIrhQ03P3xM86o7piYrnB/NkQgixuer5hQl4evB4X8JrTmS/EgedcWGc0H5FCNEuhOgSQpwJ4HMgNShp0U/y1WuEEP0FmFk6MowL40ohxLSgXPkfnii5lwAghHgKSG3/U4O35fIvJwsxXAzKi2rGEZBEm/W9/PuqIs+4AKSEvRnAswC8AcASANcJIZ5hyb6qYTGAYzLQ7RWcCHMlL64G5UZdAeBVAMYB/KcQ4tVOrbIMIcQqAO8H8BMpZdIRVSeyX2mBwbgAJ4dfuQm0iXwQwIWg8PqBhNenzRcdf10FmI7LBIhA/gmAy0C5rRcA+LUQ4pyCbS0cQogu0N/3T1LKBwzemsu/1Gcl18gMKeVrlB9vEEL8ALSr/SCAp7ix6v9v735jpLrKOI5/f7JKN0XEqtRKrbAmNaEm1gYrsSJFX4AFq00wbYRWrCbSGJKmL0RCbYipqTFCX5nGqG1TW8RIg2BQrEhJxdr2FYhF/FNZ2wZpS7srFuhi4fHFOdNOL7Ozszu7e3dmfp/khp0799w55+HOyTP3nnuuTUQRsar6taQtpBtz7uDsS+8tKZ+12Uq69PWlkqszYQw3Lh3Sr1wPTAV6SMnMbyV9PCJ6S61V+YYVl4j4N7CyatXvJe0gnRlbC7T6D8+vA93At8fzQzvljGEftX9RDZZVN1oWXs/AW1EzcTlLRPwX2A58pMl6tao+YFq+g7BaOxwroyoiTgM/By6UdEHZ9WmWpG7SWdEeYGFEPDtEkXbuV14zgricpR37lYj4S0Q8nseMfQqYAnyjTpGhjpdh99cT0QjiUmsfzwB7aPHjRWnauLXAN4HJkqZVTcFTeT1pkOJN9S+dkhg+SbrmXjQbONBA2Vl5apdi2VOcPZ6slTQTl3o69XE6TwKTgfcX1lfGFjYT03bW0seLpDcDm4E5wFURsb+BYu3crwAjjks9LX2cDCYi+kn/3/XGfdXrq5+OiJfHoGqlajAudXcxerUpRQ9wDumKSl/VAulsah/psnktTfUvnZIYbgPmSuqprFCamPeK/F49vyTNF/X5qrJdwLXAQxExMOq1HT/NxOUskqaS5kt6YrQq2GJ2kO4EW1ZYv5x0R9mh8a/SxFT1HXo6Io6UXZ+RynPyPQB8EvhcRDzWYNF27leaiUutfbV1vyLpfNJcsk/V2WwbMENS5QaeSlw+wwj66lbQYFxqlbuINOSg1Y+XvaRxk8UFUrK4gMETvOb6l7Ln5xmPBTg3B3A/6db+q4F9wD+BKVXbvY80Dua2QvlNpOz8K6TT25tJg+cvK7ttZcWF9Ivlh8AXgCtJE2TvJ/0amVd220YhNkvzchfpl+dN+fX8qm1eBX5cKPedfGzckuNyF3AGWFJ2m8qKC2nurU2kO+sWANeRJsgO4Lqy29RkPCpxuB2YW1guzNt0VL/STFw6oF/ZQro0+Nn8XfgqcBDoBy7O28zPcbmhqtybgEeBZ/L3ZyGwm3RJ8L1lt6vEuKwH7iRNvL+ANN7wX7ncB8pu1xjF6g3zGI5F/1J6I8cxmBcBDwLHSDOi/4LC5Ly8PlnmusL6bmAD6db5V0h3Tl1ZdpvKjAvpl+ofgKOks2Qvkn65Xl52m0YpLjHIsruwzb2FcpOAW3PnNAD8CVhadnvKjAspGdgFPJePlX5gJ2nMWeltajIevXVisi5v04n9yoji0gH9ymrSEz76gROkCYd/UN3nkhLiAFYUyp4H3E1KBk+QJs7/UNltKjMuwI2k+TH78vFyBNhImyaFuc3FxHDU+xflHZiZmZlZh+uUMYZmZmZmNgQnhmZmZmYGODE0MzMzs8yJoZmZmZkBTgzNzMzMLHNiaGZmZmaAE0MzMzMzy5wYmllHkBQNLL2SZua/V5Rd5wpJMyQdlzRnGGVulrQ/P57OzKwhnuDazDqCpLmFVVtIj4BcV7VuADgAfBh4KiJeGJ/a1SfpbmB6RCwZRplu4BCwJiLuGbPKmVlbcWJoZh1JUi+wJyKWl12XeiSdT3pG7jURsX2YZb8LLI6IS8akcmbWdnyJwcysSq1LyZLulfSspDmSHpV0UtJfJS3O79+SL0Mfk7RV0rsK++yStEbSQUkDkg5LWi/pnAaqtIL0HPPfFPa5MNflP5JezvW5rVB2EzBb0sdGEAoz60BODM3MGjMVuA/4EXAN8DzwoKT1wALga8DN+e/vF8reD9wKbAQWA3cAXwYeaOBzFwF/jIhXKysk9QDbSJeKrwWuBjYA5xbK7iUllYsaa6KZdbqusitgZtYi3gqsjIhHACQdJo1RXALMjojTef0HgVWSJkXEaUnzSMnbFyPivryvnZJeAu6XdGlE7K31gZIEfBS4s/DWZcBbgJsi4lhet6tYPiLOSNoHFMdXmpnV5DOGZmaNOV5JCrOD+d+dlaSwan0XcEF+vQg4BWzOl5S7JHUBD+X3P1HnM6cB3UDxJpi9wP+ATZKWSppeZx8vAO+p876Z2WucGJqZNaa/+kVEnMp/9hW2q6yvjB+cTjq7d5yUzFWW5/P776jzmZV9DBQ++x/AQlIf/hPgiKTHJM2vsY+TpOTSzGxIvpRsZja2XgReAeYN8v7hIcoCvL34RkQ8DDwsaTJwBfAtYLukmRFxtGrT84CjxfJmZrU4MTQzG1s7gNXA2yLid8MpGBGnJB0CeupsMwDskjQF2ArM4o2J4CzgiWHX2sw6khNDM7MxFBG7Jf2UNMZwAylJOwPMBK4CVkfE3+rs4hHg8uoVklaSxib+ijTH4TuBNaSzj3+u2m4acDHwvVFqjpm1OSeGZmZjbzmwCrgRWEsaM9hLmpvwuSHK/gy4IV8i7s3r9gGfJk17Mx14CdgDLIuIk1VlF5PGPG4ZlVaYWdvzk0/MzCaw/KzjvwP3RMTtwyz7a+BoRFw/JpUzs7bjxNDMbIKTtIw0gfWsiDjRYJlLgceBS/JdzGZmQ/KlZDOziW8jMIM0LvFAg2XeDaxwUmhmw+EzhmZmZmYGeIJrMzMzM8ucGJqZmZkZ4MTQzMzMzDInhmZmZmYGODE0MzMzs+z/pRDBkgvuIPwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFlCAYAAAA+gTZIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgQElEQVR4nO3de5RU5Znv8d8zEExiMpqox5lwEYzEiDrxgkjiOYl6YmxMJiTGcUATo2EguMJEnYwGTdaEzJilmdHjeEdUxJgIMoqE0Y5tFpFgRlTaWwQJixZRGoiNoxEFBJp+zh9v1dSu6trVVV39VvXl+1lrr6797ttTb+/a9eu9d1WbuwsAAADx/Fm9CwAAAOjvCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQ2eB6F1DKgQce6CNHjqx3GQAAAF165pln3nD3g4pN69WBa+TIkWpubq53GQAAAF0ys1fTpnFJEQAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwJ7tIdd0gvvFDvSgAAQH/Sq/95da01NUlTp4bH7vWtBQAA9B+c4UpYt67eFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACR1SxwmdkYM1toZrea2Vm12i4AAEC9VRW4zGyumbWZ2aqC9gYzW2tmLWY2M9M8QdKN7n6hpPOq2W4s7vWuAAAA9EfVnuGaJ6kh2WBmgyTdrBCwxkiabGZjJN0jaZKZ/ZukA6rcLgAAQJ9RVeBy9+WS3ixoHiepxd3Xu/tuSQskTXT3Nnf/jqSZkt6oZrsAAAB9yeAI6xwqaWNivFXSiWY2UtIVkvaV9G9pC5vZNEnTJGnEiBERygMAAKitGIGrKHffoEyQ6mK+OZLmSNLYsWNrelcV/9oHAADEEONTipskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS+KZ5AAAQA4ELAAAgMgIXAABAZAQuAACAyAhcCe71rgAAAPRHBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMCVwDfNAwCAGAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcCXwr30AAEAMBK4E93pXAAAA+iMCFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAEQ2uFYbMrP/I+nczDbHuPtnarVtAACAeqrqDJeZzTWzNjNbVdDeYGZrzazFzGZKkrs/7u7TJT0k6e5qtgsAANCXVHtJcZ6khmSDmQ2SdLOkCZLGSJpsZmMSs5wj6d4qtwsAANBnVBW43H25pDcLmsdJanH39e6+W9ICSRMlycxGSHrb3d+pZrux8E3zAAAghhg3zQ+VtDEx3pppk6Qpku4qtbCZTTOzZjNr3rp1a4TyAAAAaqumn1J09x+5+xNdzDPH3ce6+9iDDjqoVqUBAABEEyNwbZI0PDE+LNMGAAAwIMUIXCsljTazUWY2RNIkSUsibAcAAKBPqPZrIeZLWiHpcDNrNbMp7t4uaYakJklrJC1099XVlwoAANA3VfXFp+4+OaW9UVJjNesGAADoL/jXPgAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgJXglm9KwAAAP0RgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS3OtdAQAA6I8IXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwJXAN80DAIAYCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkdUscJnZyWb2uJnNNrOTa7XdSvBN8wAAIIaqApeZzTWzNjNbVdDeYGZrzazFzGZmml3Su5LeL6m1mu0CAAD0JdWe4ZonqSHZYGaDJN0saYKkMZImm9kYSY+7+wRJ35f04yq3CwAA0GdUFbjcfbmkNwuax0lqcff17r5b0gJJE929IzP9LUn7pK3TzKaZWbOZNW/durWa8irmXtPNAQCAASLGPVxDJW1MjLdKGmpmZ5rZbZLukXRT2sLuPsfdx7r72IMOOihCeQAAALU1uFYbcvdFkhbVansAAAC9RYwzXJskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgSuBf+0DAABiIHABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgSvBrN4VAACA/ojABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4Epwr3cFAACgPyJwJRC4AABADASuBAIXAACIgcCVQOACAAAx1CxwmdkRZjbbzO43swtrtd1KELgAAEAMVQUuM5trZm1mtqqgvcHM1ppZi5nNlCR3X+Pu0yWdLemkarYbC4ELAADEUO0ZrnmSGpINZjZI0s2SJkgaI2mymY3JTPuypIclNVa53Sg6OupdAQAA6I+qClzuvlzSmwXN4yS1uPt6d98taYGkiZn5l7j7BEnnpq3TzKaZWbOZNW/durWa8irGGS4AABDD4AjrHCppY2K8VdKJZnaypDMl7aMSZ7jcfY6kOZI0duzYmkYgznABAIAYYgSuotx9maRltdped3CGCwAAxBDjU4qbJA1PjA/LtPV6BC4AABBDjMC1UtJoMxtlZkMkTZK0JMJ2ehyXFAEAQAzVfi3EfEkrJB1uZq1mNsXd2yXNkNQkaY2khe6+uvpSAQAA+qaq7uFy98kp7Y3qpV/9AAAAUGv8ax8AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuBK4Hu4AABADAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAkPPJB7vH17/eoAAAD9C4Er4cknc49ffbV+dQAAgP6FwJViz556VwAAAPoLAleK9vZ6VwAAAPoLAlcKznABAICeQuBK+N73co85wwUAAHoKgSvBPfd41qy6lVG2zZulXbvqXQUAAOgKgSth797c46VLpU2b6ldLV1papKFDpaOOqncl6CuWLpVWr653FUB8L7/cdz9p7i7deKP01FP1rqTnNDVJU6dygoDAlXD99fnjW7bUp45yLF0afra01LeOemtqkhYvLj2Pu/T66zUpp9d67TXp85/vOqA/9ZT0k5/k//GB8mzYIL39dtxtrFolvftu3G1UatGizsfOnrJ3r3TiidL555e/zJ490mGHSSNHxqkptkcflb77XWn8+PKXeestyUyaNCleXdVoaJDuuEO65Zbi09va4oSxF18M4bu3qFngMrNDzexOM7u/Vtus1ksvlZ7+85+n70C15p5/SbQcO3ZIHR3h8fbtYfkdO3q+ts2bpUsvDW/6pezZU/mHFRoapK9+Vdq5M32eyy+X/uIvpKuuqmzdHR09GzzcpWefld55p/vreP758t9wN2wIB2JJam0tb5nx46Uf/lCaPbs71dVGJfv5jh3SH/4Qr5asLVukUaOkj3ykZ9Z30UXS5Mn5z/W3v5WOPlo67rie2cYll0hDhkhPP118erl/pHzta9LFF0v/9V/p8+zaFd5Ub7qp69s13nsvvE7cpTVrQn13311eLdnlu2PPnhB20r70uqmpe/vSe+9Vdk9wsTNzu3eXfl7jxoWf992XPk8t/+h8+WVp4cLwO0we07du7Tzv5s3SwQdLo0f3zLaXL5fuuSccJ//qr0L47jXcvduDpLmS2iStKmhvkLRWUoukmQXT7i93/ccff7zXUi625IZy5v/Tnyrbzj/8g/tPftL9Ot3dZ8/Obb+jw338ePczzgjTtm93X706f/7XXnP/5Cfd58wJ41u3hmVPOsl93br85/y3f+ve2Bjm+4//cJ861X3nTvcLLnBfuLDyWk86Kaz3yCPT5+nocP/wh9332y99enOz+zvvuL/5Zq49W/Nbb6Wvu9zfZ6HRo90PPTRsO83Che6HHOL++9+XXldHh/t//meo4fDD3V94wf2NNyqr59e/Dst/4hOdpzU25teQ/f1K7k1N7nfdld8Hf/d37qecEn6vScm++s1vKquvFpYtc//Qh8J+WY4xY8Jz+e1vc22/+pX7hg3V1bFrl/tll7k/8oj7tde6z5vXvX0sTXZdmzfn2i67rOe2sWNH8dfFa6+5//u/u++zT2i/4YbOy+7a5b5lS+daJfc77wxtHR3ub7+dm2f48Pz5Xn/d/dln3a+/vvPr6+STwzzXXOP+N39T+XPetq3rZVpb3ceOdb/vvlzbFVeEZb74Rff33suff82a7vX9rl1hmY99rPj0wtefu/ttt+W2tWdPaNtvP3cz9/b24uvp6hh35ZXpv89KdXSE5+Xu3tLivmlTej2NjeF3nB3/+7/vPO/993eu/dxz3c8+u/yatmzJ7UfZdS1d2rOvyXJJava0zJQ2oZxB0mclHZcMXJIGSXpZ0qGShkh6QdKYxPReGbiyO2ThcPbZ4RfnHl4cjz8edvqFC/MPHklPP+3+rW8Vf0Nta8stlzxolXLNNe4zZuS3JQNX4UEp+yazbFkYnzat8wvyvvty47NmpYfNYu3FDhKlfOADXb+J793b+cWxfbv7N77hfsIJ7gcemF/DRRe5v/tubvzhh0NQ/N3vOq87udzzz3cdjgqXK3aQ27zZ/cwzc/OccEL6enbuLN6P73uf+yuvuC9eHA5gLS2l67n44uIHkJaWXPuzz7qPGOF++eXFtym5P/VU7vH06bn1JA+MkvuECfnb2brV/d57Q63ZN4KkBQvcjzoqPKfvf9/95ptz0zZuDK+l5ubSz3H79vDa2rat+PQDDsjvg02bwrY2biw+f3beyy4L49nQW+lB+Jln3FesyI1fd116//aE7LpefTXXdumlnbfR3Oz+s591Xj7tjTlr+/b8mp980v3RRzs/l3337bzskUeGaQsWhDe55PyHHRbm+eY3w/hdd+VCR3LYuDH3OBueC98wC4cVK8Jx4oYbwmvhRz9yP//88EdYUjmB67zz8udZtqzz9rKBcfFi96uv7rzOe+5xv+qq8PjBB93/8R9zz6Gtzf1zn3P/+tfzl/vFL9wfeCA8XrAgtM+enV/bv/5reh9s2xaGo48O71lZhfvfrl3hWFDYp8V+n7/7XQhCO3ak91fSOeeEdf3hD+n9nKxnypTSr49igSs7ng12Sc8+G34nWQ88EOb99rfdH3sst+z8+T37mixXtMAV1q2RBYHr05KaEuOXS7o8MV4ycEmaJqlZUvOIESMid02QDC9pw7x57qeeGh5feWXY4bPTHn00vBFlZdvPOqvztjZvruzgfPvtuXnXraus5uwBoNgbQvaAKOUfyAvnK9Y+d244wHzpS+GNZ8eO3EHvrrvCG/ppp4WDYltbfuAqfM7t7SEE3XRTbnpzc3hRfeELpZ/fJZek1+1e+gB+663hTNGsWeGs32uv5ZZ75ZVw5iI776c/HZ5TR0d4o8r+BZ4cSv1tcPzxXf+uksPatfn989BDIbwnn2/Wzp35B/XuDC++WLyfTj89/y/Ho47Kn37hhWH64sWhzmz7pz6Vezx1aniTOe20XNshh7gvWtS5nzo6wh8qkvuXv5xr37PH/YMfdJ80KX/7n/987vEHP5i/rm3b8s8UnHNO5+C7eLH7D37gvnx5CJOXXOI+c2YI0k88EcLc7t354WDSpLDuZPgtHP74R/clS0qHnvb28Dpav7749Oy6hg7NtRULXNnxa67JrTfbdsQR7g0N+W+kO3aEEDdiRHn7xr775p+pKtxPCkO6FP4o7Wq9yT79538Ob7rDhnX+HZc7JGss52zU6NG5ed54I329RxzRua2wH9avzz3+1a/yn1tySJ5VfOKJ/Gn/9E9hna+/Xvp5vvNO/rHSPRyvkvM0NeVC8a235tdaLHBlpxX+Ue8eXt/btxeff/r09H4u9RymTg0/P/GJcKa/0sCVnXb77SH0feYzubYzzsg9njMnf727dxfdFXpcrQPXWZLuSIx/Q9JNkg6QNDtz9uvyctZdqzNclb64ky/W5DB9ev6lBSn8ktvbw5voscd2Xuaznw1nxNzDG86pp7p/7Wvhr449e/LnnT07XE5bvry8Og85pHi7u/vgwV0vn9Y3J5xQvP2HPyyvruwZuXXrioeXcoe05/fEEyFsVrKu/fcPB5eDD06fJ3sQKzYcd1zor0ceCWeu9t3X/bnnQpCr9Hkde2w4a7V7t/stt4S2ww7LD1zZEPSDH3S//5LDhg3p08aPzz8D2VND0rJl6cE87exz4bB2bXjdnHtu/oG3p4eZM0sHrrTn6B7ejAtDxe2356Z3dIQzOMnp//Iv4Y+b7JkFKZwdefDBztv6+c8713DddSE8J9+YKh2uvz6cnT799J7pw3JCWSXDjBnFw4q7+6pV4TL+L3/Z/WN+cli3Lpzdyo4Xnh0rfA/IDl3txzt35oePYsO777rfeGP+8ys1//jx+Wf8kn+Y7NoV3n+K7a979uTvSyedFI4RW7YU307WFVfkB8Jyhgsu6Lye7PjXvx76c+/e0F5Yr+Q+alT526r2VoJy9IrA1Z11xw5czz+f+4s61pA8U1JquOQS9+9+N78tec9GTw6FlxPShsIDen8fGhqqWz55Ojs7HHpo99d3yinuX/lK+vQTTwwH1Fr0zbhxPb/O5CX3j3608/RFi8K9K9n7iboarr22vvtPsWHt2lw4+9jH0ucr1Q/lDu6lL0f1puH976/Ndr74xfzbEc47L9w/25PbuPXW/PHPfa5769m+vevAtXJluISeHe/OMWvWLPePf9z9r/+6+D6UvO2l3ME93BdXbV9mrzQUth92WM+8H82aFTVSZGrvRZcUKxliB66efNH1paHYXwkM1Q8zZ/b8OgvP+hQOgwbV/3lXMzQ1DezXYnb43veq74e2tnB5rt7PZaANPRX0N2/uOnCdf37c5+Le+Z7fcoZHHgm3JvREDd29rFzOUO/ANbjyzzV2aaWk0WY2StImSZMknRNhO+im5cvrXUH/dPXVPb/OUl93IfX978s6/XTpz/+83lXU37XXhq8uqcaJJ0r7798j5aACyX8JV43bbgtf+1HKvHk9s600P/2pNGdO5cs1NPRcDQsW9Ny6CrnHW3c5qvoeLjObL2mFpMPNrNXMprh7u6QZkpokrZG00N35fmsARW3bVu8KeodLL61u+VdekZ57rmdqQe39+Mflf19eLDNn1nf7se3eXd/tV3WGy90np7Q3SmqsZt0AAAwkF19c7wr6t3pfEeBf+wAAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAOj3+vTXQgAAAKBrBC4AANDvcYYLAACgnyNwAQCAfs+svtsncAEAgH7v5Zfru30CFwAA6PcWLarv9glcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgspoFLjM71MzuNLP7a7VNAACA3qCswGVmc82szcxWFbQ3mNlaM2sxs5ml1uHu6919SjXFAgAA9EWDy5xvnqSbJP0s22BmgyTdLOk0Sa2SVprZEkmDJF1VsPy33L2t6moBAAD6oLICl7svN7ORBc3jJLW4+3pJMrMFkia6+1WSvtSjVQIAAPRh1dzDNVTSxsR4a6atKDM7wMxmSzrWzC4vMd80M2s2s+atW7dWUR4AAEDvUO4lxaq5+39Lml7GfHMkzZGksWPHeuy6AAAAYqvmDNcmScMT48MybQAAAEioJnCtlDTazEaZ2RBJkyQt6ZmyAAAA+o9yvxZivqQVkg43s1Yzm+Lu7ZJmSGqStEbSQndfHa9UAACAvqncTylOTmlvlNTYoxUBAAD0M/xrHwAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDIaha4zOwIM5ttZveb2YW12i4AAEC9lRW4zGyumbWZ2aqC9gYzW2tmLWY2s9Q63H2Nu0+XdLakk7pfMgAAQN9S7hmueZIakg1mNkjSzZImSBojabKZjTGzo83soYLhf2WW+bKkhyU19tgzAAAA6OUGlzOTuy83s5EFzeMktbj7ekkyswWSJrr7VZK+lLKeJZKWmNnDku7tdtUAAAB9SFmBK8VQSRsT462STkyb2cxOlnSmpH1U4gyXmU2TNE2SRowYUUV5AAAAvUM1gasi7r5M0rIy5psjaY4kjR071uNWBQAAEF81n1LcJGl4YnxYpg0AAAAJ1QSulZJGm9koMxsiaZKkJT1TFgAAQP9R7tdCzJe0QtLhZtZqZlPcvV3SDElNktZIWujuq+OVCgAA0DeV+ynFySntjeIrHgAAAEriX/sAAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIzNy93jWkMrOtkl6NvJkDJb0ReRv9DX3WPfRb5eizytFn3UO/VY4+6+wQdz+o2IReHbhqwcya3X1svevoS+iz7qHfKkefVY4+6x76rXL0WWW4pAgAABAZgQsAACAyApc0p94F9EH0WffQb5WjzypHn3UP/VY5+qwCA/4eLgAAgNg4wwUAABDZgA5cZtZgZmvNrMXMZta7nt7KzDaY2Ytm9ryZNWfaPmpmvzazdZmfH6l3nfVkZnPNrM3MViXaivaRBTdk9rvfm9lx9au8vlL6bZaZbcrsb8+b2RmJaZdn+m2tmZ1en6rry8yGm9ljZvaSma02s4sy7exvKUr0GftaCjN7v5k9bWYvZPrsx5n2UWb2VKZv7jOzIZn2fTLjLZnpI+v6BHqhARu4zGyQpJslTZA0RtJkMxtT36p6tVPc/ZjER4BnSlrq7qMlLc2MD2TzJDUUtKX10QRJozPDNEm31qjG3mieOvebJF2X2d+OcfdGScq8PidJOjKzzC2Z1/FA0y7pe+4+RtJ4Sd/J9A37W7q0PpPY19LsknSqu39K0jGSGsxsvKSfKvTZYZLekjQlM/8USW9l2q/LzIeEARu4JI2T1OLu6919t6QFkibWuaa+ZKKkuzOP75b0lfqVUn/uvlzSmwXNaX00UdLPPHhS0v5m9pc1KbSXSem3NBMlLXD3Xe7+iqQWhdfxgOLuW9z92czjdyStkTRU7G+pSvRZmgG/r2X2l3czo+/LDC7pVEn3Z9oL97Ps/ne/pP9rZlabavuGgRy4hkramBhvVekX4EDmkh41s2fMbFqm7WB335J5/EdJB9entF4trY/Y97o2I3P5a27icjX9ViBz2eZYSU+J/a0sBX0msa+lMrNBZva8pDZJv5b0sqQ/uXt7ZpZkv/xPn2Wmvy3pgJoW3MsN5MCF8v1vdz9O4dLEd8zss8mJHj7qysddS6CPKnKrpI8rXMbYIunaulbTS5nZhyQ9IOlid9+WnMb+VlyRPmNfK8Hd97r7MZKGKZzh+2R9K+rbBnLg2iRpeGJ8WKYNBdx9U+Znm6QHFV54r2cvS2R+ttWvwl4rrY/Y90pw99czB/oOSbcrdymHfssws/cpBIdfuPuiTDP7WwnF+ox9rTzu/idJj0n6tMIl6cGZScl++Z8+y0zfT9J/17bS3m0gB66VkkZnPnExROEGySV1rqnXMbN9zezD2ceSviBplUJffTMz2zcl/bI+FfZqaX20RNJ5mU+PjZf0duJS0IBXcH/RVxX2Nyn026TMp6FGKdwE/nSt66u3zH0xd0pa4+7/LzGJ/S1FWp+xr6Uzs4PMbP/M4w9IOk3h3rfHJJ2Vma1wP8vuf2dJ+o3zRZ95Bnc9S//k7u1mNkNSk6RBkua6++o6l9UbHSzpwcy9j4Ml3evuj5jZSkkLzWyKpFclnV3HGuvOzOZLOlnSgWbWKulHkq5W8T5qlHSGwo24OyRdUPOCe4mUfjvZzI5RuCS2QdK3JcndV5vZQkkvKXzq7DvuvrcOZdfbSZK+IenFzP01knSF2N9KSeuzyexrqf5S0t2ZT2f+maSF7v6Qmb0kaYGZXSnpOYUgq8zPe8ysReGDMJPqUXRvxjfNAwAARDaQLykCAADUBIELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiOz/AwFTp6Fc5kCRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.0015231682473469295763529 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "frequency = 3.\n", + "phase_lag = np.pi / 3\n", + "\n", + "# long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 100 * np.sin(2.*np.pi*long_times*5 + np.pi/6) + 1000\n", + "# long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 80 * np.sin(2.*np.pi*long_times*5) + 900\n", + "\n", + "long_signal_1 = (300 * np.sin(2.*np.pi*long_times*frequency) + 1000) * dt\n", + "long_signal_2 = (200 * np.sin(2.*np.pi*long_times*frequency - phase_lag) + 900) * dt\n", + "\n", + "long_lc1 = Lightcurve(long_times, np.random.normal(long_signal_1, 0.03))\n", + "long_lc2 = Lightcurve(long_times, np.random.normal(long_signal_2, 0.03))\n", + "\n", + "# Note: the second light curve is what we use as a reference.\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc2, long_lc1, 53.)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,4)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "plt.show()\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(avg_cs.freq, avg_cs.power, lw=2, color='blue')\n", + "plt.semilogy()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `time_lag` method returns an `np.ndarray` with the time lag in seconds per positive Fourier frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "freq_lags, freq_lags_err = avg_cs.time_lag()\n", + "freq_plags, freq_plags_err = avg_cs.phase_lag()\n", + "\n", + "# Expected time lag, given the input time lag\n", + "time_lag = phase_lag / (2. * np.pi * avg_cs.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And this is a plot of the lag-frequency spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFPCAYAAADtO6y7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTqklEQVR4nO3de5wbdbn48c+z993udksvtJTKtghyLV1ELkWhRa0HUY8iKuJygKMCinJTj+IP1KKgeEPrUYSiHoRW6AG8C0e80IJQwFYqQrnTFkovtNt2u9u97z6/PybpZrMzyUwySSbJ83698koymXznO5NJ5sn3KqqKMcYYY0y+VBQ6A8YYY4wpLxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5FVRBB8icpGIrBORXhFZLSInpVj3/SJyn4hsE5FOEXlURP7dZb0zRGStiPTF7k/P7V4YY4wxBoog+BCRM4FFwNeBo4GHgXtF5ACPt8wD/gq8K7b+PcCvEgMWEZkLLAOWAq2x+ztF5Pgc7YYxxhhjYiTqI5yKyKPAE6p6fsKy54G7VPWLPtN4DHhQVT8be74MmKiqCxLW+TOwTVXPCnUHjDHGGDNKVaEzkIqI1ADHAN9Jeuk+4MQASTUBOxOezwX+O2mdPwKfdsnDco80D8IJgC4LkA9jjDGmaInI9wGyvfZFOvgAJgOVwNak5VuBt/tJQEQ+BcwAbktYPM0jzWkB8jYFOE9EWgO8xxhjjClmrUAXcFk2iUQ9+MiKiJwBfBs4U1U3ZJKGqs73SHtjc3Pz/q2trfOyyGLoVqyAeVnmKIw0THBrN+0G4PDp4wuck/yw8yy9UjpG2e5LKR2LfMjV8VqzZg0dHR1d2aYT9eBjOzAETE1aPhXYkuqNIvIB4FbgHFX9XdLLWzJJM8kLra2t+y9fvjzAW3JPBLLNUhhpmODOvGklAMsunFvgnOSHnWfpldIxynZfSulY5EOujtf8+fNZsWLFC9mmE+neLqraD6wGFiS9tACn14srEfkQTjXLeap6l8sqK4OmaYwxxphwRL3kA+B64LZYj5WHgE8A04EbAUTkVgBVPSf2/MM4gcfngAdEJN6Oo19Vd8QeL4q9dgXwa+B04BTgLfnYIWOMMaacRT74UNVlIjIJuArYD3gSOC2hDUfyeB+fwNmv78ducSuA+bE0H44FKdcAXwVexGkX8mhu9sIYY4wxcZEPPgBU9QbgBo/X5qd6niLNuwC3KhljjDE5NjAwwMaNG+nt7fW1/r33wtNP5zhTJSSM41VXV8eMGTOorq4OJ1MJiiL4MMYYU1o2btxIU1MTM2fORETSrr9nDxx2WB4yViKyPV6qSnt7Oxs3bmTWrFnhZSwm0g1OjTHGFK+FC71f6+3tZdKkSb4CD5N/IsKkSZN8l0wFZcGHMcaYnLj66tSvW+ARbbn8fCz4KIBU/waMMcbkR2NjY+hprl+/nl/84he+Xlu1ahWXXHJJ6HlYuHAht92WPCtJtFjwUQDp/g0YY4wpTkGCjze96U384Ac/yFfWIsWCjxJgJSnGGJO55cuXM3/+fD7wgQ9w6KGH0tbWRnzG95kzZ/L5z3+e2bNnc9xxx/HCC87gnueddx533TXSYTJeinLFFVfw4IMP0trayve+971R20l+bfny5bz73e8GnNKKc889l5NOOomWlhZ++ctf7t3uqaeeysDAAACrV69m3rx5HHPMMfzbv/0bmzdvTrlvN998M8ceeyxz5szhjDPOoLu7G4AXX3yRE044gdmzZ3PVVVflpBQoFevtUgKuvtoCEGNM8Zp5xR/8rRhwcIT1173L97qPP/44Tz31FNOnT+fNb34zDz30EG95izPuZHNzM//617+49dZbueyyy/j973/vmc51113Hd77zHdd1kl9Lnp7jxRdf5P7772ft2rXMnTuXu+++m29961ucfvrp/OEPf+Bd73oXF198Mb/5zW+YMmUKy5Yt48orr+RnP/uZZ37e//73c/755wNw1VVX8dOf/pSLL76YSy+9lEsvvZSzzjqLG2+80fdxCouVfBQBCyyMMSa3jjvuOGbMmEFFRQWtra2sX79+72tnnXXW3vuVK1fmLA/vfOc7qa6uZvbs2QwNDXHqqacCMHv2bNavX8+zzz7Lk08+yYIFC2htbeWaa65h48aNKdN88sknOemkk5g9ezZLly7lqaeeAmDlypV88IMfBOAjH/lIzvbJi5V8FIFiLtlYuLB4826MyQ8/JRSrVsGb3pS7PNTW1u59XFlZyeDg4N7nib0+4o+rqqoYHh4GYHh4mP7+/tDyUFFRQXV19d5tVVRUMDg4iKpyxBFHBAqAzjvvPH79618zZ84cbrnlljGlLYViJR8mp6xxrTGm2C1btmzv/dy5zqzTM2fOZPXq1QD89re/3dsmo6mpic7OTtd0Ur3mxyGHHMK2bdv2Bh8DAwN7SzK8dHZ2st9++zEwMMDSpUv3Lj/hhBO4++67AbjjjjsyzlOmLPgoIlaCYIzJJfuNcbdz506OOuooFi1atLcR6fnnn8+KFSuYM2cOK1euZNy4cQAcddRRVFZWMmfOnDENTlO95kdNTQ133XUXX/jCF5gzZw6tra08/HDqydi/9rWvcfzxx/PmN7+ZQw89dO/y73//+1x//fUcddRRvPDCCzQ3NwfOTzYk3qLXBCMiy+fNmzcvkyIsEQhy2OPre70vcXnQtMPIX77SKnVn3uT8m1l24dwC5yQ/7NxIL9/HKOztpfptevrppzkswPjfua528TJz5kxWrVrF5MmT87/xLKQ7Xt3d3dTX1yMi3HHHHdx+++385je/GbNe8uc0f/58VqxYscLvPGperM2HMcYYU2ZWr17Npz/9aVSVCRMmpOwxkwsWfOSRNb40xpjiktjrpZScdNJJ/POf/yzY9q3NRx5Z40tjjDHGgg9jjDEFYm0Ooy2Xn48FH8YYY/Kurq6O9vZ2C0AiSlVpb2+nrq4uJ+lbmw+TFWvHYozJxIwZM9i4cSPbtm3ztf727fD00znOVAkJ43jV1dUxY8aMcDKUxIIPk5ViHn3VGFM41dXVzJo1y/f6hx9uXbODiPrxsmoXY4wxxuSVBR/GGGOMySsLPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMUXGepiZYmfBhzHGFBmbqsEUOws+jDHGGJNXFnwYY4wxJq8s+DDGGGNMXlnwYYwxxpi8suDDFBVr5W+MMcXPgg9TVKyVvzHGFD8LPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5JUFH8YYY4zJKws+SsTSpTBzpvN45kznuTHGGBNFVYXOgAnHBRdAd7fzeMMG5zlAW1vh8mSMMca4sZKPEhEPPBKfX3llYfJijDHGpGLBRwl7+eVC58AYY4wZqyiCDxG5SETWiUiviKwWkZNSrLufiPxCRJ4RkSERucVlnfNERF1udTndkTw74IBC58AYY4wZK/LBh4icCSwCvg4cDTwM3CsiXpfWWmA7cB3waIqku4H9Em+q2htWvvOtoWHs82uvLUxejDHGmFQiH3wAnwFuUdWbVfVpVb0Y2Ax80m1lVV2vqpeo6i3AjhTpqqpuSbyFn/X8WbwYWlqcxy0tznNrbGqMMSaKIt3bRURqgGOA7yS9dB9wYpbJ14vIBqASWAN8SVUfd8nDco/3t2a5/VC1tTk3EVi/vtC5McYYY7xFveRjMk5wsDVp+VZgWhbpPgt8FHgvcBbQCzwkIgdnkaYxxhhjfIh0yUeuqOpKYGX8uYg8jFP6cTFwSdK6893SiJWIzMtVHo0xxphSFfWSj+3AEDA1aflUILQ2Gqo6BKwCrOTDGGOMybFIBx+q2g+sBhYkvbQAp9dLKEREgKNwGrIaY4wxJoeKodrleuA2EXkMeAj4BDAduBFARG4FUNVz4m8QkdbYw/HAcOx5v6qujb3+FeAR4PnYOpfgBB+uPWiMMcYYE57IBx+qukxEJgFX4YzH8SRwmqpuiK3iNt5Hcq+V9wAbgJmx5xOAxTiNVjti65+sqo+FmvkcW7p0ZAj1mTNtXA9jjDHFIfLBB4Cq3gDc4PHafJdlkia9y4HLQ8lcgSxd6j2ZnDHGGBNlkW7zYbxdeaX7ZHLGGGNM1FnwUaRs0jhjjDHFyoKPImWTxhljjClWFnwUqWuvdZ9MzhhjjIk6Cz6KxMyZI/dLlzrzuLhNJmeMMcZEXVH0dilnS5c69xs2jNzHe7W4TSZ39tl5z6IxxhgTiJV8RFx8HI9E3d3uy6Nk4cJC58AYY0xUWfARcV69WqLe2+XqqwudA2OMMVFlwUfEefVqyUVvl6VLx7YtMaZUWGmcMdFhwUeeBb24uw2Z3tAQ/lDq8RFTk9uWWABiSoWVxhkTHRZ85MHSpTB5svM46MW9rc25T+7VEl8eFq8RU7NpW2KlKMYYY9xYb5ccS56DJVH84u4nkFi/fnSvlrCF2bYkXQ8dY4wx5c1KPnLMrUQhUVQajobZtqRYe+gYY4zJDws+cixdcBGVYdK9RkzNpG1JLnroWGNYY4wpHRZ85Fiq4CIXDUcz5TViaibVJGH30LHGsMYYU1os+MgxtxIFgEmTctNwNIjkrodtbSNtStavzzxvYffQyUVjWGOMMYVjwUeOuZUoAGzfXvjGl7nqeujVQ+f55zNLr1gHWjPGGOPOgo88SC5RKBfJpSiZBjv5HGjNGGNM7lnwYSIvzMawxkSdjcRqyoEFHybywmwMa0zU2UisphxY8GGKQliNYY0pNVZSYoqRBR/GGFPE0pWUWHBiosiCD2OMKWFWjWOiyIIPY4wxxuSVBR8GsKJZY8Lg53tk3zVjLPgwMVY0a0z2/HyP7LtmjAUfxhhjjMkzCz5MRmyWWWOMMZmqKnQGTPGJzzIbn+wtPsss2Pgbxhhj0vNV8iEitSIyX0SuEJEfiMjNIvINETlPRA7MdSbLVXLpQlTYLLPGGGOykbLkQ0QOAi4D2oBmYBjoAHqAiUAdoCKyGrgBuFVVh3OZ4XLhVroQX17o0gWbZdYYY0w2PEs+RORHwFrgWOCrsfs6VZ2kqjNUtQHYD3g/sAa4HnhKRI7Pea7LgFvpQnx5oYU9y6x1PTTGmPKSqtplOnCcqh6vqt9T1dWqOpi4gqpuVdXfqOoFOIHIj4E5Ocxv2Yhy6ULYs8xa10NjjCkvntUuqnp6kIRUtQ/4QdY5MoBTihCvakleXmjxap8rr3Ty2NLiBB6Frg4yxhhTHKyrbUS5lS7El0eBzTJrjDEmU357u7xXRP4z4XmLiKwUkU4RuUtEGnOXxfLU1gaLFzulCjBybxd5Y/yLSnuiqOTDmKjwW/JxFTAl4fn1wAxgMXAysDDcbBkYW7pgjAkmKu2JwsqHDe7nnwV8mcnXcfMbfLweeAJAROqB04DPqOpngf8HBGofYtKzL44xJlG8+328LVji4H5mrKgEnsUg8XqTr+PmN/iowxnbA+BEnIaq98WeP4vTM8aEKNMT4CtfCTcfxcwCOFNKvAb3MyZbhQjU/AYf64G3xB6/F1itqh2x5/viDDxmIsAuuCPsn48pJVHoZm9MWPwGHzcBC0VkFXAR8NOE1+biDEZmMmDBgjHGjyh0szcmLL6CD1VdBJwHrAQ+qqo3J7zcBPxP+FkrD+Xw79wayRmTPa/B/Uqd/X6UJt+z2qrqUmDMx66qF4aaI1NybAZcY7KXPLjfpEnO8+5u56JcigP92QzapSvV3C51mSSY6fvSpHmRiKwTkV4RWS0iJ6VYdz8R+YWIPCMiQyJyi8d6Z4jIWhHpi91bj50csRlwTSGV0j/nxO73PT3Q3u48jl+Ui3nf3NgM2qUrVbXLehG5XEQm+ElIRE4Ukd8C/xVKzkbSPRNYBHwdOBp4GLhXRLxqQGuB7cB1wKMeac4FluGU5LTG7u+0SfGyl/xD78Uaz5l8ceueWgoX6WK9KAdp5xblOa5MdlIFHxcBFwKbReRXIvIZEXmbiBwlIoeIyAki8hER+b6IvAAsBzbjDDwWps8At6jqzar6tKpeHNvOJ91WVtX1qnqJqt4C7PBI8zLgflW9NpbmtbH8XxZy3suK2zgEXrwaz1kDXBO2Yr1IZ6IYLspB2rmFPYO2iQ7P4ENVfwkcAZyNU5pwDfAn4HGc3i0PAUtwut7eBRyqqheq6tawMiciNcAxjIwpEncfzngjmZrrkuYf3dIUkeVuN5wSE5PArYgUQGT081Qz4JZDA1xTeMVwkc5EqV2Uw55B20RHyganqjoE3A3cHQsEWnEGFKsD2oFnVPWVHOZvMlAJJAc0W4G3Z5HuNI80p2WRZtnz+kFXdeamsRlwTVSUwkW6oWF0sF+KF2WbQbt0Bent0g88lsO8RJKqzndbHiv9mJfXzETcAQe4V7W0tDiN5ERsjhqTf6V6kV68uDwuym1tzs1+P0qL30HGCmU7MARMTVo+FdiSRbpbcpBm2XMrIo0vN6ZQkmeHXry4NC7SyRNP+tkna1NlvOS7V1ikg49YactqYEHSSwtwer1kamUO0ix7bW1jf+jjy43xK+wLZCYX6VJlbaqMl3z3Cot08BFzPXCeiHxcRA4TkUU47U5uBBCRW0Xk1sQ3iEiriLQC44GJseeHJ6yyCHiriFwhIoeKyBeBU4Dv52F/QhelyeSSf+iNCapULpBWymCKSb57hflu81EoqrpMRCYBVwH7AU8Cp6lqvHWBW9Oxx5OevwfYAMyMpfmwiHwYpwfPV4EXgTNV1XVckKizHzljoufqq+27aYpbLnuFRT74AFDVG4AbPF6b77JMXFZNXucunC7CxhhjjEmSy15hxVDtYowxxhS1qJeC5Xs8FV/Bh4j8LMXtJyLy3dhop6HP6xJlxdqmoZTmujDGmGIQ9bZM+e4V5rfa5RSgGZgADOJ0gZ0ce/+u2DqXAy+KyCmqujHcbEZTquHDoyrVLJHGGGPKU77HU/Fb7fIRoAM4A6hT1fgopx8EduM06DwutuwbOcinCYnXLJFRllhcGaWePcaEyUokTTnxG3x8D/imqv5KVYcBVHVYVe8Gvgl8T1VX4QQeyeNnmAgpxjktEosro15vWi7scxgt28DBbVJGK5E0pcxv8DEHpzuqmxeBI2OP1wL7ZJsp4y6Mf/2lMKeFG7sY5lfU66/zKYzAoRhLJE35WboUHnkEYF7WU4v4DT62AB/weO2DjEzSNh7YmW2mjLswLrBes0QWO7sYmkIJI3AoxhLJqLLqq9yIB9l9feGk5zf4WAScLyK/E5FzReSdsfvfAx/DqZYBOImxA3yZCHEbAn3x4sLmyZhiFkbgUKolkvnmVQplAUj23ILsbPgKPlT1+8AFONUv/wP8IXZ/FHC+qv4gtuqPgPPCy57JBZvrwpSKKFS3pQoc/P7zLtUSyXzzKoXKdpjwKJxnhRZ26ZzvQcZU9SdAS+x2Qvyxqv40YZ31qrrVIwljjAmVV3VbPovevWZzBv/tP6xEMhxeF8hsL5xWrRt+6VygEU7V8YqqPha713CzU1wmv++9/O+qV9jeFVIlmDERFsa/v3z8g8x3z5HkwCGZ36JqK5HMntcF0qq1spcqyM6EBIkfRGQOcAjOeB6jqOqtY99RukRkecsXfj/PeQxzZkzgbYfuy9sOm8ph+zUhMnZ6GRFQHblPXOa1bqp1st8H920E2V66/Iexr37yk+n7ouTMm1YCsOzCuQXOibswzsmg50OQ9OJmzvQeADDX54PL137MttPtX9i/D5muGwa3bYdx7nhJHkQRnAtmtqN1hnFc8v17lOn3KNX7li6Fj31sPn19oLo87RxqqfgdXn2CiDwE/AO4HbgldvufhFvZaf/jn5h/yBSqKytY88ouvvun5zjtBw/y5uv+ylW//hf3P/MavQNDhc6mYfQ/bqu/LaxcV4lYz5Hy5VV9ZaVI4WhrgxNOAFixItu0fJV8iMgNwFtxerY8CJyOM+LpR4G5wIdVdXW2mSkmIrIc5s1TXU53/yB/e347f33mNf7yzGts6xyphqmtquC4WROZ94YpXHT6FPq2NVJRIVby4SMf6baRbp0w9i+fyqXko6Eh9T/TYi/5cNu/7m4r+chHyUc26+c6rVIo+QCYP38+K1asWOE2o3wQftt8/BvwdeCR2PONqrpcVc8B/gxcmk0mil1DTRXvOGIa151xFI9+8W389tNv5pK3HcyR+4+nb3CYB5/fzjV/eJrpH3+AE6/7KxNPfYI/PLGZju6BQmfdmLzLRW+ERIXuOWINR00xy9cUFn4nltsPeElVh0SkF2hKeO2XwB2h56xIVVQIR82YwFEzJvCZBW9gW2cff3thGw88t50Hn9/G5o5emua8wqd+8QoVAtPOnsD3/jSFeYdMYc6MCVRWZFWNZkxRCnOSxngJypVXOum2tDgBydlnh7eNdNtPnqArl9u2+Y5MmPJVLe03+NiCM6MtwAacqpblsecHhZul0jKlqZbTj57B6UfPYHhYWbt5N28+Yxvv/Og2Vm/YSe3+u1j0l10s+svzNNVVccKBkzjx9ZOonjwZ1UbXhqvGFJOFC/PfzibfAUAhWRsmU4z8Vrv8DWdsD4DbgK+IyE0i8iPg28Afc5G5UlNRIRy5fzO7Hz2IOy6Yy+Nffgev3fUmzpnbwsxJDXT2DvKntVu5+ndrmf6xBzj22j9z8e2P0zjnZTa076HMezabCMiksWjyGAk2mFb+2ZDjJmr8lnxcDUyPPf42MAk4E2gAfgtcHH7WSl9jbRU9L07lq++dCsDGnd08/GI7K19s584HtrOdPn73z01MOnUT874N+0+o58TXT+LEgyYx98DJTGse0+M50qx4uPgldmNMHD8jSG+CxYsLVyXiVyFKa3IpjM8tlVI7Xib3Ao3zYUYk9nYJ/l4/rdmVF17bw8MvbOcz32pn/6Pb2ZXUQPWAiQ0cO3Mix83ah+NmTWLmpIZA1TT57u0SNB/ptgHOP7jkC5lbrwnr7ZI9r1OrpWWkasPrfek+h7DPv3TbzjbdoNsLu3dK0H1x4/a5hdUTxe17efbZ1tulGHq7pBNWbxe/JR8m74TXT2nk9VMaOefXM9l6t/L0lt08/EI7D724nVXrd/Lyjm5e3tHN3f/YCMDkxlonEJk5kWNnTeTQaeML3oA1l6UdyQMK5eIfnUmv1MfVCOtfffyCDE7VR2KgXAi5+txSfS+NifMs+RCRLwdIR1X1a+FkqTjkvuQj9TqDQ8M8s6WTx9bt4LF1O/j7+h207+kftU5TXRVvatmHY2dN5LiZE5k9o5naqsq02wiz5CNoGkFKPrzGc4j/o7OSj3CVa8lHGO/zM75JkG1HueQj3TgrVvKRH8Vc8rEwQDoKlFXwkY0wSgOqKis4cv9mjty/mY++ZRaqykvb9ziByLodPLZ+Bxt39nD/s9u4/9ltgDPgWevrJvDGln04+nUTqGjYB6jNPjMhyORfYa4mkTLe3C6g115buPwUE6/xTfJR+pHPz82+f8YPz94uqloR4FbplY4ZKxcNs0ScapqzjjuA689s5W9feCsPX/FWFn24lbbjD+DgfRvpGxzm0XU7+PHyF7ngttW87uI/c9K3/sqldzxO0xvX8cTGXQwMDYefOR/cJgJL1yLfJpHKj8SeEvX1MGmS8zjsoavLsUdGvi7U+RxyPOzvX64asloD2cKyBqcZyqbaZXQ6+Rtefceefv6xYSf/eHknj7+8i4ee2UVFzei5Z2qrKuhY18ylbftw9AETeOMB+7DveO9eNfkoFvZKK90kUlbtkj2vY5w4XHg6fqta/FZLeKUdZNuZ5jno+5YsGWl46SZd1Uc+qjUzTdfrfenOmUyrT8Kudkl8PV27Hqt2GRFWtYsFHxkqxuBjzDYqhnlqYxf/eHknl31tJ0edsouXtu8Zs97+E+ppPWACc2Y0M3v/CRy5/3ia6qp95z9tPjyCDxEYHrbeLoUUxjwpfoMPN0HakwTZdqZ5Dvq+5IAqUT7bfOQz+IBwe7vkI/jI1XEJO41cba8QwYffQcZMKdIKDp8+nrNPaKH9nlb++rn5PP6lBWy981gufutBvOWgyTTWVvHqrh7+8MRmvn7PM5x18yMcdfV9vO27y7l82RqajlnHqvU76OkPf/ZeP8W3bW0jF6f16+H558uz+N6P+D+7IMXNha6/L/T2s9Hc7B14lPpsq8nfy1LdTz/s98idlXxkqCRKPnz8Ix0aVl54rYvHX97Jv17t4F+vdvD05t0MDI3OUIXAG6Y2MXv/Zo6a0czHz5jA7pebRvWuSZUPtyL3c8+Fe+5xL9Xw2he3tOKvJf8DC1u2XTJzXfKRyT9IK/nI/H0VFd7vyzbP+Sj5CHI+B/kdK6eSj3RVw7kU9ZIPCz4yVC7Bh5u+wSGe3dLJExs7uPTqDo47tYPntnYyNDz6TdWVwhumNnHE9PEcvt94jti/mUOnNe2tsknMR2LdeEsLnHYa/Pzn/r+0iT9QqQRtrxBEtp9TFIMPa/OR+fsyDdyiEnyEcfGKQvDhFUTlI/hINxxALlnwUaLKOfhwS6Onf4i1m3fzr427eOLVDu64r4PaKV2u6cyc1MDh08dzxPRmDt9vPAuOHc/A7lpEZG96Qb+0foOPOAs+/L8vVf19Mrcfer/BR3IA6qe7dZSDj0wDNws+3NMI+335CD68Sr9EnPZsuVRSwYeIHAWcjDO3y02qukVEDgK2qmpnNhkpNhZ8pF5XBDp7B1m7aTdrN3Xw1KbdrN28m+e2do6psgGY3FjDYfuN5/e3NfPzReP5wNvGM7CjAbRiTLpuX9p8Bx+JF9lUjV6DiGrwkfz+5Mde66R7Xy7PP7fXM61GyCY/QQK3INu24CP791nJR2br5jX4EJFaYAnwfkAABY5V1X+IyC+B51T1imwyUmws+Ei9rtfy/sFhXniti7Wbd/PUpg7WbtrNyqd3U1E3OGZdHaygf3sjA9uaGNjeRP+2JqbWjmfdWqeUxG17Iql7GOxNO8X++blIxbcXZp1uqQUfiRfe+Ngg7e3uF2GvtLPtApnLfQ2yvbADAAs+sn9fPoIPa/PhzW9vl2uBtwP/AUzFCUDi7gX+LZtMmPJRU+X0sHnydzM4aPcRPPqNubyy6B3wu1P4yAHHsOuhg3n7YfsyoboeqRqmdtpuGme/yj6nPMPUD/0d3vsXWr/6Jz5040q+9OsnWfLIBlat34HUjEy6lzigUnJJiJ/p25OngE/lyiu9R66MguQLd75a3cd/dOP/+trbnRsEm+sjyGdhjB/57H3S1pbfAd6Kid+Sj1eBr6vqj0SkEhgA3hQr+Xg7cKeq7pPjvEaKlXykXtfPPwm3BoaJ9eE/vXWAr/2gk/bBTiYd2MnMozvZOdxJR8+Aa5rTm+t44R9NXP7RJg6d1sSZpzax+DuNLPxSZcbF3unWCbNONxclH4klNMnT1gf9BxbkH3mqxpaJsq2CsZKPYHkq95KPMNrhZCpXv+NhbK8QJR9+Z7WdBDzt8VoFUZkgxBQVtxKDRB87p5qPnTMRkYl0rnGWqSqvdfbxzJZOnt2ym2e2dPLc1k6eWN/Fpo5eGl7fy00rnLlspv8nXL0WXndRPd2PNXHBRxupntJIzfRGOnoaaa4f3esmHbcqgAMOcL/Ijh8fKOmccyuJyeXcIsU8PkcqYc1wawrDq6SyXBVypmW/wcc6YC7wV5fXjgOeDS1HpiSEMXmeGxFh6vg6po6vY94bpowsr1Be2LqHo97SyTU/7OTZLZ387oFO6qZ088qOHhoO6mHxA68BsN9/wJyrobGqltkHNHLQvqNvTiwtY7Z99dVjLzzXXuv+T6qjY+R5oS9YS5d6l0JkGiSk+3y9grJi53YOmMIK8v0q1aA4iPjxSi4FSqwOzUcA4rfa5YvA/wM+AdwNdAPHABOAu4CFqvrfuctm9Fi1S3Z5S26LkSg5vSDVIMn70TcwzIb2PbSe3EXDtC5o7qJ6UhdVE7uoqHavFxnureKNB48EI7Mmj+PAyeN4w/4N6GDlmDwFaViZSq6qXVI1wA3S6j7I5+BWvJ0ouag7KtUu8R/msPNj1S7pq0/SjccR9Fi4fZZhjL2SqahUu6SrGk33mxBWtYvf4KMSWAp8COjD+WvYA9QBd6hq2TWfKeXgI4yRDf28L12bjyDb8Ao+Eh+PplQ197D/YV1c+c0uXnitixe2OfdebUp0GCbW1rPz5UZ2vzqO8TKO884Yx8c+NI7pE+qpqpS0o6u2tY0EKy+/7JQQxJeHGXwkBkRe/Lb5cPsR95JpUBaV4MPPeWTBh//8BAk+0i3P9FhYmw/35Zm2V8tr8DGSKTkJp2fLvkA78H+quiKbDBSrUg4+0kkMTrIJPtwGlXIrJchN8DGyPP5Fcy6Wyivb+nndEV285+xOJs/aw7rtzm39tm7Eo39YTWUFPdsa6Ns+joEd4xjcOY6BHY0M7BjHcHcNIHuHjE8euRWci/NB//4cLce3Zx18nHEG/N//pa/LXrLEX/FqkAZ/buv4uZAHvdj7HVslm+DD7/npZ3sWfEQj+IDsx17JVNSCj6Io+TBjlXPwEUbeglxschl8xL9ofvrjS+UwVRO6qZ64h+qJXVTts4fqiXuom7IH6vs88zbcV8XgrgYGdjUwuKuBwZ0NDO4a5zzeXcfIQGoay5MEbvi1cCEcfHD60o7k/U5OI5Nib7d1vZZl+jh5UDe/YydkE3z4LZnzsz0LPqITfKTKW9A0goha8BF0DJL4d7BQJR8C7IdT3TKKqr6UTUaKjQUf2eUtyMXGzzb81NWnmjvEz7+AVKUnu3sGOfL4PWzrcwKSeGBSPbHLdQC1OB0SBnfX7w1KBmJByVAsWDlgetWY6poNG6CyEoaGRldnBPks3Eo9Mv3xT5dGGMFH4rIg/9iyCT68WPDhPz8WfISbRhjbS1weZHTm+PvyGnyIyCTgR8DpePSQUdX005eWEAs+sstbkIuNn22kK0oVST13SKr6z9tuS12ikKr0BJSKugGq9ummasIep+RkQjdVE7qdZU29KfdrsKt2byCyt9Skw7kNdbn3ykmlpcXZjzB//NOlEXbwEaSu2oIPCz4s+Ei/PMh3O6zgw29X258CpwA/BJ4B+rPZqDFhStVlLFFbm3MTGfsP2atr6MSJqXttVFc7QUw8fRgJVJwvqzDcW0P/5hr6N08Y836pGqKqORaM7A1K9jgBSnMPVY19VDX2UTtj55j36mAFg7vrGNzdwGBHPYMd9Qx1xB+PDk7ipT7r16e+sMYVuntwKl6f1QEH5D8vxpjM+A0+TgEuVdVbcpgXTyJyEfBfOFU+TwGXqeqDKdafB1wPHAFsAr6lqjcmvL4Q+ErS27aq6rSQs27yIIyBg7zG60iVVrwUIbGYMh7g+G2DoYOVDLQ3MdDeNPZFUSobe53Skn32jAQnzT1Uje+hsrGP6ondVE90z6AOCYMd9VT3N/Cmw+r582/q+dXj9dTu38Dmjnr2baqjssI9EnEbzyJXY7cE5fVZxYPARNnk2avNhzEme36Djx3A1lxmxIuInAksAi4C/ha7v1dEDlfVMUPGiMgs4B7gZ8DZwFuAG0Rkm6renbDqs8D8hOdDudmD0haFC1I2AwfF/+Enl1rEq2X+4z+835uqFCF+4W5rc+99Eu/5cs89iaUkSYmoMNRZz1BnPX2vTBqzDakaonJ8j1Ny0twTu40NTqCbVTthwslw+TKYdjbM/QZUVwr7NdczfUId05vrmXBSHUseqWf/CfVUT67jJ7fWc82XqwDZO/ph2NxGWHRbnsjrs/JqJBdUfHv19c4tuXtwKlH4PpjyFeUSy2R+23x8BpgHvE/z3D1GRB4FnlDV8xOWPQ/cpapfdFn/m8D7VfXghGU/AY5Q1bmx5wuBD6jqkVnka7mfNh+ZzsqZrj4yjJMs7PrdMLadSZsPPwMH+Wlf4Ja3dGn7PRZeY3skvn7BJb1073Bm7M30+Mbz09ICX/naEBdc1sOfHu5m484eLr6ih7YLnMcbd/awvcu7h07ccF8Vg511DO2uh5463n1KPaeeXMf0CfXs1+zc11VXpmy4lurYe5UuuJUyBGkkmwmv+W+8BkMLIox2F5l2cbc2H+XT5iPT9kKFaPPhu7eLiHwHeBfwZyC5AlpVNfSYX0RqcEZTPUtV70xY/iPgSFWd5/KeB4B/qeqnEpZ9EPgF0KCqA7Hg4/PALpxB0x4F/l+QHjt+g49cfTFyGQAEeV/Y284k+PAzcFC67Xn9sKdKO17tkq6VuF/xQcb+vXFuUruRkXXiz916uwQZvAugp3+ITR09bN7Vy6ZdPVxweQ8XXtbLpo4e/vpID5VNvVTUpC8QbKisoWNzHQMd9QzudgKVyr46PntRPWefUcvMqXWuI8P6aXuSKIzeLKkEDWKDCCMACOP7GuTPkAUf/rfhhwUfo/mqdhGR04BP4YxseojLKsrYNhRhmAxUMrbKZyvwdo/3TMMJkJLXr4qltxkn2DgPp/HsvsBVwMMicoSqtie+0QkyXLX62YEoK5UiYq9i+HRF5Im85uxwS/u00+DHPx65UIU9J0K83QikLjFJvJAkPn7+eX/bqa+p5PVTGnnkvkauvBI6NsCyjc42lvwEQKmoHXSqdsY7wUhVcw/nfqKHTR29bO7oYUtHL91D/VTv20/1vrtHpX/zS3Dzt6Hlc9D61Wqmja9j3w/W8fm7apk2vo7GOXUMdTm3wc66vYOxecn1vBzlMO9HsRTJm9Lnt9rlGeA1nADkGVV1H386ZCIyHXgVmKeqDyQs/zLQpqpjAiEReQ5YoqpfTVh2MrACmK6qm13e0wi8BFynqtcnvbbcI3utMK+5mEs+Mk0vaiUfftL1KtlItz2392U6MmA6uZrbJdVxTFWy4yZ5H4eHlZrmPicwGd9DZVMPVeN7nYClsZcDj+hjY3svUpn+A9QhcQKRrlonKOmM3WLLpo2vY+3qOhpqRv4zWclHsG2HmU8/24hyyUeQaiwr+ShQyQdwAHCJqv4rm41lYDtOQ9CpScunAls83rPFY/3BWHpjqGqXiDwFHOzy2ny398SCkjHVPiaaMv3H51Yi4vUPOYr/nBNLt9xKulL1FEr+QXLrUVJRIcyYVMeGDXVjuhK3tMBDt4GI8trufrbu7uW4eb3cvLSXrbv7uPb6Xmon9EJ9L5WNvVQ2DOxtOOvl8C9DU20VU8bXMqWxlsn/XstXf1fHlKZapjTVsm/C/T4NNVR49OZx41ZaVogeLmGVSBZyuvQgCpVPKwUqLL/Bx+PA9FxmxI2q9ovIamABcGfCSwtwZtd1sxJnMLREC4BVXiU2IlIHHArcn12OTTkopnEmEn9g3X5sU3YDTvi3mapdS/qur7I3OOh5sZm2452ln31H0sBvs4b47Jf6+K8v93LpFb0s+20vuwd6GT+1l96KPt4wp5ctu3vp7Bukc9sgL23bw7jD4GcPuee/skKY3FjDvk11owKT0UGK81pddSVtbU7wkdyWJ0j1XRjCuCgWerp0v6Kez2LqPVJs/Fa7HAP8HLhQVT2+6rkR62p7G04X24eATwAfw+m9skFEbgVQ1XNi688CngRuBm4C3gzcgNNo9e7YOt8Bfge8jNPm40vAycBsVU3xczwqX8uLvcFppukVY7VLunWCFHUHnRPBr1xUu6Tjt9FnuuOfqrdLuiovP4/j96pKVcMAz6zvY1tnH+94bx/f+3Ef27r6eG13b+zeeb6r23/tcLw0Ze3qWj7w7lp+8bNavnZlLZMba/jPs2p5+P5aJo2roWVqLcMDwQdzDvt8TpdGplWD+a528TutQS6qXYLk36pdwq928Rt8vAKMBxqBPTi9RBKpqrZkk5E0278Ip3fKfjiBxeXxNiDxNhmJByI2yNj3GBlk7JtJg4zdgRNsTAa2AY8AX1LVtQHytNyCj3C2F7Xgw8/FMsicCH4VKvjwU7UQ1rmRbfCRat1kfYNDbO/qZ1vn2MBkW2cfr3X2sb3Tedw/lGIO8STjaiqZ1FjLpMYaJo2rZUqTcz+psYZJjU7AMrnRCVYmNNRQWSF5Dz4ynS49aD7TfQ/SfZZ+8mnBR3rp5rZKl48oBx+3AClXVNX/zCYjxabcgo9Mxxjws72oBR9B0gvzcyhU8JFY9eGlGIMPv1SVjp4BtnX2cdTxfdz+qz7O/UQvVyzsZ3tnP0vu7OO4k/tp7+rj1fZ+pMp/oFIhMHFcLZtequGUE50gZclPavnaVTVMbqxh4rhaJo6rZp8G57WmuqpR7VSiXPLhayZoK/kIlI9s0y654MOMVW7BR9g/+MUYfLjV/5ZC8JF4LDKZRt4rPT/bi0Lw4ZY/7+0pHT2DtHc5wcj2rj62d/U7z/f00d7Vz7auPtq7+mjf0x+o6gecdir7NDjByD7jarj//2o4/5waJjbU8NWrarh1sbP8ziU1XHF5NZPG1VJfM7YaKNOqwbADnHSfZZAAxoKP9GkXU/Dht8GpMWmVUuMstxb4pbJvqSxenN14KWGI9vgzwvi6asbXVTNr8ri0aw8MDbNjTz+vO7iPPz/oBCjnXtjPF692ApWde/pp39PPzu5+duzpp7N3kO1d/WzvcubuHHcI/OJRJ62Jb4PLlo2k/ftvOvd11RVMjAUrE2O3fZpq+PDXavjLPTVs21jDlPE1XHJhDQveU03fYDW1VdlPQh5Gr68gQ+UXk2L5LSxkPj1LPkTkHOAPqtoee5ySqt4aduairJhKPvycYGGUfIRRQlGIko/k3g3g/19jmF/efJZ8uNXV+x0ZNZUwSj7c1o9OyUdm2/ObRv/gMLu6+9kRC0YWvLufG3/Wz449A1x9XT9tH3MClh2xgKV9Tz/9g/6rgeIaaiqZUF/NhIYaJjRUx241/Pj71Xzza87j886qZvl9NezTUE1zQzUT6muoqarYm0YYJR9ex8htefLrfttdFaLkIx+l1W5ph13y6/a+nFe7iMgwcIKqPhZ7nIqqavahdBHJNvgI0lAr2+L+bL58bq/nO/gIcoEPkk+vuTzik4kly3YQsXTyFXwEHY4+3fHPdLAmCz6yf5+q0t0/NCoYSQxOduzp56e39TP/3wZo39NHR88Au7oHGBzO7KCNq6ncG7D0dlTz1JoaBrqqGe6pZqi3hqqhai76eA3ve6cT0Bwyq4be3dVUV1aEGnwEqVay4MM7H1ENPlqATbG5UFrSJeS3i2qpyCb4CNpQy2+62awbpeAjmzlTguQz1YiWXmmn6imQrXwFH2GP5BnkwuqnJ5Fb2hZ8hLNtcAKWrr5BdnU7gciunv7Y434u/uwAn/1/A+zs7mfJ/w5w0tucxx3dA+zqGWAow6ClsbaKXa9Vc+QhVax5rJr3nFpNc71zG19XTXN9FZ++sJrf3FnN+PrRrzXUVqA6usdQkAa1UQk+clnFUWrBx0vA6ar6z2w2UKqyCT6CFlf6TTebdaMQfCxdCv/5nzCQ0EYv6PgZQfLp1c3PS6mUfKTa73xeIMMOPsKc6Tl5G6MGQ8tRUBzm+7zSyGZ7qkpn3yAd3U5AsisWkOzq7ueSzw3wmSucx/Flu7oHeP7lAarH9ZNhzOJsd7CCKROq2LyhmmNbnaDknl9XM9xbxXBvNcN91aPu//5QPKCpprGuiqrK9LNE5yP4yKVSCz72Vrtks4FSlU3wEaRve5B0s1k3CsFHGHOmhFHyMWkS9PSEP4hYOuVQ8hH0fUGCjzB+8L2259YLKPF8CHu22HRtcjLZp6DrhvEbIwJDQ07QMnm/AR5/aoBjTxzgV38YoKNngN09g8597wA//skA73r/ALt7Yq/1Oq9l0qZl1PZ7qnjdtFhJSn0VTXXVNNVVMT5231hbxecureYXP6+iqc55fXzsfvqUKob6KqmoGAlgwmhDF7ZcBh/J52J9/XyeecaCj4Kxko/MtpPqRzXTgZES+Wl/kFjS4tbmY/Fi53G+W+AXus3HqafC3bFJCyz4GJ2um0y/r+nW9dMmJ4hCBx9+L3TJy/f+VmwcouWgATZtH2DlaicwuffPg/xs6QBDMkBFnXOrHjfAoUcNUD/eCVradw/QOzzobwdSqBAY6KnigGlOsLLm79W8a8FIoNJUV0XjqKClitPeXs2aVQmv11QFmmcoqFwFH27nYkXFfIaHn39a9dXDs8pzmuDjeFX9ezYbKFXW5iN4Gul+VMOeLdbvly9VG5N8/oMpdG+XxP0Ou5Fvpu874wxYvTr8Xjnp8uQn+Mi0pDLdun5KpoIoxuDD7bcCnOqv+Hma6hze+/4epaJmkIq6ARomDPDZLw5w3JudUpWu3kE6ewfp7B3gez8a5MyzB+jsHWR3bFln7yBbdwxQUR1OQ6/G2njAMhKUNNVV01hbRWNtJY211YyrrXSe11UxrrYq9trIbVxt1ageR8nHLuzgw/1cnA/096k+XJf50UgffPwfHjPBJlFVPTebjBSbfPZ2CZJupuvmI/hI96Ma9pwpufg3lkuFHmQsjDTCvNAF7ZWTq+BjwgTo6Bi7bq5KPvy0yQmiGIOPbBuUBv0jkypP/YPD1DUOsm7jILt7B3jT3EF+e+/A3sCls3fQmeww/rh3kD/eP8Dso0eCmz39Q2MTz1BNZUUsOHEClsbaSh74SxUfPL2K22+r4rJPOYHKV66s4qYfxoOYkeCm9fBqtmysZFxtFfU1YxvzJnI/F+cDoLo8q6KcdMHHFqDPRzqqqgdmk5Fik89xPjJJN+i6+Qg+/PyohjlnigUf6UU5+AjaNiVXwUfYJZXZBOnZNnYNsm4hg48gVbBu6QWtwk2Xp6DHJXmdoWGlq9cJXjp7B+nqGx247OlzSmK64o/7Rj/e0ze0d1mmPY7c6JCwT1MV2zdXceQho0tbxtVW8r9Lq9jVXoX2VzHcXxm7v5qe55/KuuQj3Qin77M2HyYsXlPRJ2prc24iuetZ8pWvjB3B1ERPqpEy46PO5kO+R+G89lr3KgeI3pTzueL1W3HAAfl5f9gqK4Tm2GBt2VBV+gaH6ewd5PY7B/nS1YP06SAVNYNIjXPfdt4gbzhiiGuuG+T8Tw7S1e8ENus3DrLh1UEGZZCq+kEq6wYZqlR2dQ9Q1TzAM1tcNngITBiz8H1s+OY9L2W1I/GdcbsBw8BxXq+X+w1YDvM0HadQKPjrXsuXLFFtaXFeb2lxnmeTB7/pJaYRNM+J22pocNaL3+LPg6blR6pjmJwPcN/3MPLh14dufFg/dOPD+dughn+cv/IV98fp3ueWj/h56XVLPnfC3Jeg53iQ77mffCZ+L91uLS3p0wiyvUzzmW5dt/T8rJvtd9Trt8bP75vb8qDHJR+/G17nR/zcSHc8GxpUqRzU9q4+rWreo0+92qGPrWvXvz69VX+75lW9/dENevMDL+pHv/uctvz7Wp34jie05cx/6KxzvqfAcs32Gur5ggUfqQ9cAYKPoF+odNsIkl4YwUd8m8nBTr6Dj3Rf2rDz4VexBR/pAtdsL8heF6Dkm9/t+RGV4CNxXbebSLA0Mlm3kMGH6tjzK+ix9/PHymudVNuOSvAhkvrcSMxDqkDWb37j68ybN8+Cj0LeChF8BLlo+tlGphfhbIIPv+nlMvhI96VNlO7fe5gKEXxkun9+AtcwLsjpSgDKNfgo9ZIPt+VhHPtEXufwJz+ZutQlKsFHkJIPr9+8QgYfY/vsjFTHVKi194iUMGaRzCa9pUtH2kfMnOk8L0Ze9b5uy4thZspsZLp/V145tk1Cd/dIO5qwtLXldlTZYtDQMPZ5vtq75FO+ZzP2OocXL3ZvbxP2uZ2ta68de27ElycrVFuXVDyDDxM9QS6auUjvggtGGnHFG74VYwAS5Etr3IUdCPvhdhEuB4sXO41cwbn30/W8GIPmfOfZ61wd8ugVm8tzOxNtbaPPjcrY1K5XXjn2d9ntN6/Q3x8LPoqI1wmU6UUzaHr5+KebD8lf2pYWeP/7S7v3QNjCDoT9cLsIl4PE0p/16/2dp1dfncsclQavc7XSY372KJYetLWN/F7Hg6bEHlGJ60Xu+5NtvU253ijD3i7p2kkUS5uPsLcTlkK0+chUvtp8pFu3WNp8JLatyXcbjGJp85EubWvz4S5dY9JUeYtkmw8TTZn8C8plelH8NxCX7zrkcuL1T8pKj9wVYzVIqfM6h2+4Yezy+PpR5Kc6KIrnnwUfxrdia/gWxS9cKQk7EDbGr7C+217ncPLyKPPzBzCK1XAWfBjf7J+uiZpCl26VSg+wYhPFi2mhuP0BLHRjUj8s+DC+2T9dEzW5Kt3yE9TE53wJ2gOs0AGTKS3x3+FINSb1wYIPU7SsWsXkip9zK9OxTuy8LV2FLAkrtj+GFnyYomVFryYsmVw0CjHWiYmuTEvCypUFH8aYgitkVUSmF41CjHVioitfo/6WCgs+TNas0Z3JViGrIjK9aIQ96F+xseqj0awkLBgLPkxWrKjRFLtMLxrlPtaJVXuOZiVhwVjwYbJiRY2m2GVz0bAeYCYuHyVhXqVNidWWxVISbcGHyUquihqtO2LxKPbPqtyrT4pd2OdfptVJ+SgJ8yptSsyzW0l0FFnwYbKSq6JGq08uHsX+WZV79UmxC/v8y6Y6KQolYW4l0VFkwUeWolqklS/2r9GUgihcNEy0FUt1RrGw4CNL5d62wf41GlP87MKanjWsD5cFH1myblT2r9HkV7G3MYkarx5rZrRiaVjvVhIdhrC/dxZ8ZCnK3ajs34wphFyfd8XexiRqvHqsRVHUftMy/fOZeA6HfT67lUSHIex8WvCRpai2bbDxN0wh2HmXO34nuwtrmPgoitq5lemfz8RGrWGPl1IsJdEWfGQpqh+sjb9hCiFX551VtaT/55lp9UmUS2+TFfI3zRrWh8uCjxyIQrGwDfVrCiFX510UvlOQuyAojP3LtPrEq8daEIUMDnP5m5a4X6XcsL4Qn58FHzkQhWGHbahff+wfdbhK/bzLVRAUxm9Gphfh5B5rkyZBfb3z2G/VTSGDw1yeW4n7VSzVGZkoxOdnwUeJKqbxNwoZAETlH3WpKKbzrtRkcxFOvLD29EB7u/M4Cu0qEpX6uVVOv0cWfBSpdBfsYhp/o5y+cKWumM67UhNG9QlEu61YqZ9bUSg1zxcLPiLGb2t1PxfsKBcTWnVH6YryeZcrUTifvQK/MESlrVg5nlulyoKPCCmnbopW2mFKSVTO51xdnEulzY6JDgs+IsS6xxpjCq3U21WYaCiK4ENELhKRdSLSKyKrReSkNOvPi63XKyIvicgnsk0zH6x7rDGm0Eq9XYWJhsgHHyJyJrAI+DpwNPAwcK+IuBYEisgs4J7YekcD3wD+W0TOyDTNfCn1borGmOjwqioqtXYVUWiPY8aKfPABfAa4RVVvVtWnVfViYDPwSY/1PwFsUtWLY+vfDPwc+FwWaeaFdVM0prwUcq6SQvSsKMS+RqU9jkmiqpG9ATXAIPDBpOU/AlZ4vOcB4EdJyz4IDADVQdMElnvcdsE8Pf/88zVu1apVCiho7H7041WrVu1d9/zzz3dZF4WztLr6VQXVlhbVJUuSXx99u+mmm/amedNNN3ms56SR6I1vfKPrOkDG+zR2X0Zub3zjG0dtP/t9cvKRep9Gbu775H5z/5xyv09Tz/qGTj3rGyW0TyPvd9+nselnt0/u+Q2yT4lZTX3upfs++dmnsxS6Yvl2bnV1g7pkSRj7NPr76r5P7u8bSdP7WMXzlv5zcl53fseSb12xY5Bun1T971Omn5Pu/ZzieU51PNN/n9TnPo08dvYj3T6l+y0fna77Pn3FdX2/vxGNjY0KLNcsr+9RL/mYDFQCW5OWbwWmebxnmsf6VbH0Mkkzj25n9uz3AKVR5JkbZwHrgGjMbGkKa+lSuP32b8SercM5P4rB14Fxo5b09laWXAPze+/dh3PPdXtlHM4xMOFZ6GOdaAwmIk4wFk0iMh14FZinqg8kLP8y0Kaqh7i85zlgiap+NWHZycAKYDogQdP0yNtymDdPdbnLa7F4Mumxezrur6d7XxB+0gqSz3zk2Uu8O3Jir6CGhtJoFHfmTSsBWHbh3ALnJByZnvtBeJ0Pp54Kd98dPL18nMNxFRXe36Ph4ezyk+n3NYzfruR1Ghq855hJ3Nd02wmSt6DSpR1025n+nob5ncnVb/b8+fNZsWLFClWdH+ydo0W95GM7MARMTVo+Fdji8Z4tHusPxtLLJE0TEdYd2STyOh9++cvC5CeIcmlgnmpyuyjtayHb35SjSAcfqtoPrAYWJL20AKeHipuVHuuvUtWBDNM0EWHdkU2iYv7cy72Bud99zVdvlUwGePRqzGo9bNKLdPARcz1wnoh8XEQOE5FFONUnNwKIyK0icmvC+jcC+4vI92Prfxw4D/iO3zRNdJXLv0XjTzF/7lGZB6cQvUEqK/3va77yl0mJqlePIethk17kgw9VXQZcBlwFrAHeApymqrEYlQNit/j664DTgJNj618JXKKqdwdI06RQyKi+3P8tmtHCmkytUKIwpkauu9y6fR4//3lxtNEq5pK1qIt88AGgqjeo6kxVrVXVYxIbiqrq/OSGL6q6QlXfGFt/lqqOKdFIlaZJrZBRfVT+LZpoyOVkaiYcyZ8PZP99zdcfoGIuWYu6ogg+jEkUhX+LJjrsfIiW5D8nyZ9PLrYRBitRDWL6vtmmYMGHMcaY0BRi5NQwWIlqEC0HZptCVRjZMAashbcxpni1tTk3kfBKaEpXTW22KVjJhwmNtfA2xphy0N+XbQoWfBhjTAnIV/Bvg3EVv+w/ww0vZZsHCz6MMaYEJLa1yFUVaHw4+6CDcZnoCOcz3PRatvmw4MMYYwos7GAhV6UgNr1BdqJQahSVz9CCD2NMTlgDZP+Kpb1U1Kc3yPQ45uNc9SpxyLeofIYWfBhjcqJYLqjGv6hPb5BpN98g52qmgYpXiUO+ReUztODDGGOMLza9QeZBdVRKh6LyGVrwYYwxZSS53UEQNr1B5qJSOhSVz9CCD2OMKRNu7Q7iy/0qp+Hsw2wgGqVJEKPwGVrwYYwxZcKt3UF8uRkt7G7FNgniaBZ8GGNMmYhKT4dikIsuqV4lDlHogptvFnwYY0yZiEpPh2KQz0CtHAdus+DDGFMyyvEfZBBu7Q7iy4tZLj73MAI1vz1jojDoV75Z8JEl+4EzJjqy/QdZ6gOjubU7iC8vVrka8j2MLqmpxh1JDJjclHpVmAUfWfI60aP0D6zUf1CNicv2H2Q5DIyW3O6g2OVquPBcd0lNDJjcJJawROl6EhYLPkLgdqJHqQ6vHH5QjfFS6v8gy10u22bksktqqtFNE0tYSnUyPws+QpJ8omcSiVuQYEz4rDFlaSu1RrTJJSxRmQgubBZ8hMTPiZ4uEs90XgJjjCMKw0ab/IrKcOFhSS5hKdXu0RZ8hMDviV6skbgxxSIKw0ab/IrKcOFB+R3ttNRKduIs+MiS14leSpG4McUiCsNGm/wL83P300A/jAagfkc7LbWSnTgLPrLkdaIXYyRujDHlLl3bu7AagPoNmIq1ZCcdCz5yxP6B5Z51ITbG5FshGoAW6nqSy04QFnyYomW9g4wx+VaqDUDd5LIThAUfBWb/3o0xpniUagPQfLPgo8Ds37sx5cu+/8WnVBuA5psFH8YYUyD5GNunnEpX87GvfhqAluJw6GGrKnQGjDHG5E45la7ka1/b2pybyNj5ceK9YeKNUuO9YeLvMw4r+TDGGGNCUqrDoYfNgg9jjDEmJOXUGyYbFnyYlKzu0hhj/LPeMP5Y8GE8lepUzsaUUzsIk1/WG8YfCz6MJ6u7NKXKZpA2uVKqw6GHzXq7GE9Wd2mMMcGl6g1jHFbyYTxZ3aUxpaucxv8w0WPBh/FkdZfGlC5r92IKyYIP48nqLo0xJnxW6mTBh0mjUFM5G2PKV6mXypT6/vlhwYcxxpiU8n2xtN5Ipc+CD2NMSbCi7NyxYMCEzYIPY0xJSPx3boFINNjnYLxEOvgQkVoR+W8R2S4ie0TktyIyw8f7LhKRdSLSKyKrReSkpNeXi4gm3e7I3Z4YY/LJ6tRzz09gYZ+D8RLp4AP4PnAGcBZwEjAe+L2IVHq9QUTOBBYBXweOBh4G7hWR5NEp/gfYL+F2YdiZN8aYUmWBhclGZIMPEWkGPgb8l6r+SVX/AfwHcBTw9hRv/Qxwi6rerKpPq+rFwGbgk0nrdavqloRbRy72wxhjyoFNQhmecgjsojy8+jFANXBffIGqviIiTwMnAn9MfoOI1MTe952kl+6LvSfRh0Xkw8BW4F7galXtdElzuUf+5sIa5s+f7/pi4mKPVUJ9XxjSbS/f+Sk3azftBmD+7eMLnJP8KeQ5FZXzOdvv3datsG6d87iuDmbNgqlTM8+Dn8dueXjuORgedp5v2ADnnAPXXDM6L/E0/Bx7t3WieL6E8buZfJxXrIDlyzNPzyvdTNJLfn3NmjUAB/nPhTtR1WzTyAkR+QhwK1CtCZkUkb8Cz6vqmGoSEZkOvArMU9UHEpZ/GWhT1UNizy8ANgCbgCOAb8TSfIdLmss9svgWYAhYmdEOlpfW2P2aAuahGLTG7tcUMA/FojV2v6aAeYiA6fvC6w+BioRS7OFhePFZ2PQaeTtOc0+Amtqxy/v7YOUjud12KFpj92sKmIccmL4vtBzofDb9fbDhpdh5kY25QL+qNmWTSN5LPkTkGiDdvKin5DIPqro44em/ROQl4FEReWOseidx3fluacSDEq/XzQg7Vv7YcfLPjpU/dpz8sePkX4o/5IEUotrl+8CSNOu8DJwAVAKTgW0Jr00FHvR433ac0ojkQsepwJYU21sVe9/BwD9SrGeMMcaYLOU9+FDV7ThBQkoishoYABYAv4gtmwEchtODxS3t/tj7FgB3Jry0ALg7xeZm4wQ6m33sgjHGGGOyENkGp6raISI/Bb4lIq8B7cD1wBPAn+PricgzwA9V9YexRdcDt4nIY8BDwCeA6cCNsfVfD7QB9+AEQYcD3wUej61vjDHGmByKbPARcxkwCCwD6oG/AOeo6lDCOofgVM0AoKrLRGQScBXO+B1PAqep6obYKv3A24BLgUbgFeAPOL1dEtM1xhhjTA5EOvhQ1T7g4tjNax1xWXYDcIPH+q8A88LKozHGGGOCiWxXW2OMMcaUpsiOcGqMMcaY0mTBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPlyIyBdF5O8isltEtonI70TkSB/vmy0iK0SkR0ReFZEvi8iY3jilJJNjJSIzRURdbqfmK9/5JiKfEpEnYsdpt4isFJF3pXlPOZ5PgY5TOZ5LbmLfQxWRH6ZZr+zOqWR+jlW5nlcistBln1ONDp7xORXprrYFNB+nq+7fAQG+CvxZRA5X1R1ubxCR8cCfgAeAY4FDgf8B9uAMYlaq5hPwWCU4FfhnwvN06xezjcAXgOdxgv5zgV+LyDGq+kTyymV8PgU6TgnK6VwaRUROAC7AGYAx1Xrlek7t5fdYJSjH8+pZnN/1OM/xr7I6p1TVbmluOIORDQHvSbHOJ4HdQH3CsqtwZtmVQu9DxI7VTECBNxU6vwU+VjuACz1es/PJ33Eq63MJaAZexJmMcznOaM9e65b1ORXwWJXleQUsBJ4MsH7G55RVu/jThPMvbGeKdeYCD6pqT8KyP+IM7T4zd1mLHD/HKu6XIvKaiDwkIh/Icb4iQ0QqReTDOIGa6zxF2Pnk9zjFleW5BCwG7lLV+32sW+7nVJBjFVeO59WBIrJJRNaJyB0icmCKdTM+pyz48GcRsAZYmWKdacDWpGVbE14rF36OVRfwOeBDwGk4w+YvE5Gzc567AorVjXYBfThzDZ2uqv/yWL1sz6eAx6kszyUAETkfOAjnn6Yf5XxOBT1W5XpePQqch1PddD7OefFwbMoSNxmfU9bmIw0RuR54C/AWtblfUvJ7rNSZ2TixPnCViEwGPg8syW0uC+pZoBWn+PcDwM9FZL6qPlnQXEWP7+NUrueSiBwCfB3nuzZQ6PxEWSbHqlzPK1W9N/G5iDwCvITT9ur6MLdlJR8piMj3gLOAt6rqS2lW3wJMTVo2NeG1khbwWLl5FDg43FxFi6r2q+oLqrpaVb+IU0J0ucfqZXs+BTxObkr+XMIp7p4MPCUigyIyiDNn1UWx57Uu7ynXcyqTY+WmHM6rUVS1C3gK7/3O+Jyy4MODiCxi5GL6jI+3rAROEpG6hGULgE3A+vBzGB0ZHCs3rcDm0DJVHCoArx++sj2fXKQ6Tm5aKf1z6dfAbJx9jd9WAXfEHve7vKdcz6lfE/xYuWml9M+rUWLnyqF473fm51ShW9dG8Qb8CKcF71tx6q3it8aEdb4B/CXheTNOpHcHcCTw/lgany30/kTwWJ0LfAQ4DDgEp261H7i80PuTw+N0HXASTiOs2bFjMgy8086nrI5T2Z1LKY7dchJ6cNg5ldWxKsvzCvgOTqnQLOB44Pexc6Ql7HPK2ny4uyh2/5ek5VfjdEUC2A94ffwFVe0QkQU4F+NVOL09vkvI9WQRFPhYxVwFtOB0y30O+KiqlmxdKk5AtiR234EzzsA7VfWPsdftfHIEOk4x5XYu+WXnlH92XjlmALfjVFNtAx4BTlDVDbHXQzunJBa9GGOMMcbkhbX5MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPowpESJynoiox+3thc5fqRCRY0SkW0T2T1i2XET+5rH+x2OfwcwA23ifiGwVkcYQsmxM5FjwYUzp+SDOfBaJt8cKmqPS8m3gZ6r6ag638RucIa3/K4fbMKZgbIRTY0rPGlV9wc+KIlKrqn25zlCpEJFjgFOAi3O5HVVVEVkMfE1EvqGqvbncnjH5ZiUfxpSJhGqZk0XkThHZhTNTJyJSJSJfFJFnRKRPRDaJyHeTJoxCRA4UkT/Eqh22icgiEbkwuVoh9nxh0ntnxpafl7R8noj8RUQ6RWSPiPxRRI5MWme5iPxNRN4uIv+Ibf9JETndZT/niMivRKRdRHpE5FkR+WLstf+OVWdUJ72nKbb969Icxo8DT6jqU2nW8yQiC1NUj52XsOr/AhNw5sswpqRY8GFM6amMBRPxW2XS60uBdcAHgCtiy5bgzGXxC+BdOBNIfSy2LgAiUgP8CTga+BRwHs4EVFdlmlEReRfOvEBdwNk4k3k1AQ+KyOuSVn89sAhn3oj341RL3CkiByWkdxzOTJuvBy6P7cv1OHNWAPwY2BdIDlo+AowDbkqT5VOBB1PsT1XyjbG/sz9hbLXY3YzMIQKAqm4Hno5t05iSYtUuxpSeZ5KePwS8JeH5Xar6+fgTETkJOBM4V1VvjS3+s4jsAJaISKuqrsGZ6fNAYK6qPhJ7773Av7LI6yJghaq+NyE/9wMvAZ8FLktYdzJwsqo+H1vvHzgByIeAr8fW+Q7QjjMZVnds2V/jCajqWhFZAVyIU7IQdyFwn6qu88qoiEzFmW33nx6rvBkYSLGv8TxsBDYmpPtBnGDqMlV9OGn1x4ET0qVpTLGx4MOY0nM6CRc3oDPp9V8lPT8VZ7rwu2L/1OPui92fDKzB+Yf+SjzwAFDVYRH5X0ZmMPZNRA7GKaH4etJ2u3FKL05Oesvz8cAjtu3XROQ14IBYeg04AcC3EwIPNzcAd4jIwar6vIgci1Oak656Y3rsfpvH6//EqZZJ9l48SodE5E3Az4EbVPUHLqtsS9iuMSXDgg9jSs+TaRqcbk56vi9QA+zxWH9S7H4/YKvL627L/Ng3dv/T2C3Zy0nPd7is0wfE26Xsg1PFsdFlvUS/ArbglHZ8DvgEsAn4XZr3xbfj1UC3S1VXJS8UkVa3lUVkBvBbYDlwqUeaPQnbNaZkWPBhTPnRpOftQC9wksf6m2L3m4EjXF6f6rKsDyegSTQp6Xl77P6LwJ9d0uj3yI+XncAwsH+qlVR1QER+AlwkIt8CPgx8V1UH06Qfz+8+AfM1hoiMwwl2tgNnquqQx6oTE7ZrTMmwBqfGmP/D+XfdrKqrXG7x4GMl8DoR2dsGQUQqcNpcJNsAHJm07F1Jz58F1gNHeGz3iSA7Eatq+RtwtojUp1n9JpyeJHcCtcDNPjaxHidIOzBIvpKJiOA08N0PeLeqJleLJZqFc5yMKSlW8mFMmVPV5SJyO06bj+txBiQbxmlceRrwBVV9DqdtwhXAL0Xk/wGv4VRZjHdJ9g7gKhG5EngEp1TlrKTtqoh8CvhNrCfN/+KUBEwFTgReVtXrA+7O54AVwEoR+S5OFcyBQKuq7h2bQ1VfFZHf4rSP+Z2qvpIuYVXtF5FHgeMC5inZF4D34VS1TBeRxDYdL6rqNtgbpByH00bFmJJiJR/GGHC6uS7E6X77G+Au4NPA88TadKhqP7AAp/HpDTjByDrgGpf0vgH8MJbGr4HDgP9IXklV78FpWDoOpwvqH4FvAdNwSloCUdW/4zQ6fQX4b+AenFFC3dqB3Bm7T9e9NtEy4K2xapNMHRq7X4Szj4m3xNKhE3GqeO7IYlvGRJKoJlf/GmOMf7GBsf4HmKWq6wubG/9EZClOoHKgqg77fM94nEDmIlVdkuP8/Rg4UlW92uIYU7Ss2sUYU1ZibVZaccY2+YzfwANAVXeLyDeBz4vIUs3RvzcRmYYzrooNMGZKkgUfxphysxJnRNWfk1l7iuuBSpwGo5vSrJupmcBnVfWBHKVvTEFZtYsxxhhj8soanBpjjDEmryz4MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuTV/wcRU2RR5ajQbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_lags, yerr=freq_lags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Time lag (s)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([-0.05, 0.2])\n", + "plt.plot(avg_cs.freq, time_lag, label=\"Input time lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFJCAYAAAAVJ240AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA990lEQVR4nO3deZwcdZ3/8dcn4YgxgRXQkMBOBlQwQmAggmBCZlZFEVjFFWRxcM3P1YAIC4uugkFJwCAKIsEVIXggEgRFdMWFJXhM8AggAeRQ5DAJd4DIFQOEkM/vj6rOdDpVPdU91V1Hv5+PRz+6u85v1dR0fep7mrsjIiIiEmdE1gkQERGRfFOwICIiInUpWBAREZG6FCyIiIhIXQoWREREpK5Nsk5Au5jZbcBrgfuzTouIiEgbvAF40t33GO6GOiZYAF675ZZbbtfT07NdkoUXLYLe3o0/R7nxRnjppeh5UetVtjfUdpOs1+w2AFasgKVLg7RvvjnssAPcc0/9bTe670bS1+ixZO1Pjz4HwJsnbJFxSqItWgQjRsC6dYPTRoyAnXaCcePqrxf1N476PJzrr5F9N7LdNK65Ro5vqH2n8X/e7L6TrDfUtoY6R42mp5FroNFtJ91HEu34PUrjPNfb9pZb3s6zzz6bSlqtU/pZMLOB3t7e3oGBgYTLQ+XUVH+OMmJE/Pyo6ZXtDbXdJOs1u40FC2DmTFi9enDe6NHB93rbbnTfjaSv0WPJ2uEXLgbgiqP2zTgl0cyip0+cCMuW1V8v6m8c9bnZ66/RfTey3TSuuUaOb6h9p/F/3uy+k6w31LaGOkeNpqeRa6DRbSfdRxLt+D1K4zzX23Zvbx+LFi1a5O59w02r6iykoKsr6xQ0btasDQMF2Pi7lNODD2adAhEpGgULKZg7N3gqr1b7PW90w+hcRQxuRSRbChZS0N8P8+cH2bsQvM+fn22ahqIbRmeICmLnzs0mLSJSXKqzELt868pOVWdh+MvmQRHqLFx6aVDktHx5EMTOnRsEt0OtpzoLnVdnYautXmbJkod58cUX118vwAafq0VNb3a9JPOTbDvpPpJIYxuN7KPZ81wxatQott9+ezbddFMg/ToLndQaQqpUbhi1N5Ijj8w2XZKu/v7gZVa/UmMzursH35MEIZJvs2c/zNixY+nu7ubvfzcmTQqm//3vrP9cLWp69bRG1ksyP8m2k+4jiTS20cg+mj3PAO7OypUrefjhh9lhhx1aklYVQ3Sw/v7BG8iyZfqxl2QWLAjely8ffJ85c3C6FNMb3vAiW2+9NRbXjEZyy8zYeuutefHFF1u2DwULGTr11KxTINK4WbM2nrZ6dfR0KY4RI1CgUGCt/tspWMjQ7NlZp0CkcXEtadTCRoZrzJgxqW9z2bJlXHbZZQ2vN316+mmJ093dzTPPPNW2/TVDwYKINCSuJY1a2EgeNRssyIYULIhIQ6KaXqpJpqRpYGCAvr4+Dj30UN70pjfR399PpeVed3c35533GSZPnszee+/N/fcHw/3MmDGDK6+8cv02KrkUJ510Er/5zW/o6enha1/72kb7mT59OgcddBA777wzRx99NOuq+kefNWsWu+++O/vssw8rVqwA4Oqrr+atb30re+yxB+985zvXT1+0aBE9PT309PSwxx578PzzzwNw1llnsddee7HbbrtxaoKy50MOOYQpU6awyy67ML+qDf63v/1tdtppJ/bee2+++MWPc+yxxzZ8XodDrSFEpCH9/UGrmYkTG2uS2SjV6cnOoVf+L1xZNeHKmAWjptdZb9mZByVOw2233cbdd9/NhAkTmDp1Kn/84+/Ya69pAIwZsyV33nknl1xyCSeccAI///nPY7dz5plncvbZZ8cuc/PNN/OnP/2JiRMncsABB3DVVVdx6KGH8sILf2efffZh7ty5fOYzn+Giiy7ilFNOYdq0adx4442YGd/61rf4yle+wle/+lXOPvtsvvGNbzB16lRWrVrFqFGjWLhwIffddx8333wz7s573/tebrjhBqZPnx6b3u985ztstdVWvPDCC+y1116ce+4HePTRlzj99NO59dZbGTt2LHvv/Xa23373xOcyDcpZkJaK+sFXXY1yaHVLGl0nnW3vvfdm++23Z8SIEfT09PDoo8vWz3vXu44A4IgjjmDx4sXD3s+OO+7IyJEjOeKII/jtb38LwKabbsbBBx8MwJQpU1gWXvAPP/ww7373u5k8eTJnnXUWd999NwBTp07lxBNP5LzzzuOZZ55hk002YeHChSxcuJA99tiDPffck3vuuYf77ruvbnrOO++89bkZDz30EA89FAQbvb29bLXVVmy66aa84x2HDeuYm6GcBUnd7NmDP/RRP/hz5uhGIJJnVx56EG95S/D5lltY/7la1PTqaXHrJbX55puv/zxy5EheeWXt+u/VNf8rnzfZZJP1RQjr1q1jzZo1ifZT24pgcHubrv88cuRI1q4N9n/cccdx4okn8t73vpeBgQFmhz9mJ510EgcddBDXXHMNU6dO5brrrsPdOfnkkznqqKMSpWVgYIBf/OIXLF68mNGjR9PX18eaNa1rDtkI5SxI6ubMyToFIlJm119/BQBXXHEF++4b9KDa3d3NkiVLALjhhp/x8ssvAzB27Nj19Qei3HzzzSxdupR169ZxxRVXMG3atLr7fvbZZ9luu+0A+N73vrd++gMPPMDkyZP57Gc/y1577cU999zDu9/9br7zne+watUqAB555BGeeOKJutt+zWtew+jRo7nnnnu48cYbAdhrr71YtGgRTz/9NGvXruVXv/px3TS2goKFFOgpWUSkfZ5//ml222035s2bt77S4sc//nEWLVrE7rvvzp13LubVr341ALvtthsjR45k991336iCIwQ34mOPPZZJkyaxww478P73v7/uvmfPns1hhx3GlClT2GabbdZPP/fcc9l1113Zbbfd2HTTTXnPe97Du971Lj70oQ+x7777MnnyZA499NC6gcsBBxzA2rVrmTRpEieddBL77LMPANtttx2f+9zn2HvvvZk6dSoTJnSz5ZZbNnzehsXdO+IFDPT29npSEP25kWXj1htqe0Ptp5G0Jdl3I+lP4/jSPi9Z+eAFv/cPXvD7rJMRq9nrJMn1EHUtNrrtZuYnWa/ZY42anmRbjfzPNJKmNPadZL2Ka6/90/rPf/iDR36uFjW92fWSzK9Mnzhxol9//ZNNbaPWr3/9az/ooIOGtY3haOR8Pf/88+7u/vLLL/u0aQf7VVddtdGyf/rT4N8Q3Ht7ex0Y8BTuocpZEBERybnZs2fT09PDrrvuynbb7cAhhxzS1v2rgqOIiBTGsmXLuOWWdLbV19dHX19fOhtrsbPPPnv951tuCQaHayflLIhIaak+kUg6FCyISGmpZU5y69axvpdEKZ5W/+0ULIiUzIIF0N0dfO7u1tDRksz9949i5cqVChgKyN1ZuXIlo0aNatk+VGdBpEQWLICZM4MhoyHojnnmzGzTJMUwe/b2/PM/P8yTTz7JU0/Bn/8cTK/+XC1qerPrJZmfZNtJ95FEGttoZB/NnueKUaNGsf3227cmoShYECmVWbMGA4WK2u8iUZ5+elN22GEHAN78ZqhkMFR/rhY1vdn1ksxPsu2k+0gijW00so9mz3O7tL0Ywsymm9nPzOwRM3Mzm9HAum80s+fNbFULkyhSWA8+mHUKRKSMsqizMAa4CzgeeCHpSma2GXA5cEOL0pWIale3l853Y7q6sk6BiJRR24MFd7/G3T/n7lcC64ZcYdCXgTuAH7UmZcmodnV7VIIEne/GzJ0Lo0dvOK32u4hIowrRGsLMDgIOBo5LsOxA1AvoaXEyJUUKEprT3w/z58PEicH3iROD7+2gXCCR8sp9sGBmE4CLgCPdXXUVRIbQ3w/LlgWfly0LvreDAjxppVNPzToF6ShqUJ37YAH4PvBNd78pycLu3hf1Am5vZSJFRKR1inqTrVXUoLoIwcLbgVPNbK2ZrQW+Dbw6/K4W5CJNKsuPr4i0XhGChckE9Q0qry8QtKLoIePKjiLt0KqbelGfcCoU7Ii0Txb9LIwxsx4z6wn33xV+7wrnf8nMfllZ3t3vqn4BjwDrwu9Ptzv9Iu1QfSMs+k29VXReRNoni5yFtwC3ha9XAXPCz6eF88cDr88gXSK5oRuhiORJ27t7dvcBIHYkbnefMcT6FwMXp5kmERERiVeEOgsiIiKSIQULIiJSeKrw2loKFjJQls5FRETyQvV8WkvBQgYUAUseLVgA3d3B5222CV4QTFuwIKtUiUgetL2Co4jkz4IFMHMmrF4dfF+5cnDe8uXBPBHpXMpZKIDqJ77Ku0iaZs0aDBSi1JsnIuWnYCHnKk98y5cH3yvvyhaWND34YNYpEJE8U7CQc3FPfLNmtT8tUl5dXVmnQETqybqum4KFnIt74tOToKRp7lwYPTp+fr15ItJ6Wbf2ULCQc3FPfHoSlDT198P8+TBxYvB9662DFwTT5s/PLm1J1dbtKXpRnZpYS54oWMi5uCe+uXPbnxYpt/5+WLYs+PzUU8ELgmn9/VmlKrnauj1Fb8GRdbazSDUFCzlX+8RXeS/Cj7dIO9XW7VELDpH0KFgogOonvsq7iIhIuyhYEBERkboULIhIKdTW7cm6BYfqHEiZKFgQyQndXIantm5P1i04sm7qJpImBQsiOaGby/DU1u1RJWBJQkF6MgoWRDqA2uyLRFOQnoyCBZEO0O6nJz2tiZSLggXpWLqhtU5RntaU49K4svWUKckoWJCOVZQbWhnk9QajgLExUaPgzpyZn7+ntI6CBWmbvN4w8qos50s3mPKIGgV39WqNgtsJFCy0kLI4B+mG0biynC/dYMpDo+B2LgULLaQszkG6YTSuLOdLN5jy0Ci4navtwYKZTTezn5nZI2bmZjZjiOX7zOx/zOwxM1ttZneY2UfblFxJiW4Y6RjqfOUxQNUNpjyiRsEdPVqj4HaCLHIWxgB3AccDLyRY/m3AncChwK7AN4H5ZvahlqVQgHSLUXTDSMdQ5yuPlTZ1gymPqFFw589XB1idoO3Bgrtf4+6fc/crgXUJlj/D3U9x99+5+1/d/ZvAVcAHWp7YDpfmU6puGI0ry/nSDaZc1FNmZ9ok6wQ0aQvg4agZZjYQs05PqxIjQ6v8oMyaFVTWmzgxuPHphybe/PnlOV/9/cHLrP4w66oULJJPhQsWzOxg4B3A1KzTIo1JesOQQCeerzzWuRCRggULZjYVuAz4D3e/OWoZd++LWXcA6G1Z4kSkIyk3pJz0d91QYZpOmtk04FrgC2G9BZFEivS0WpaOmDpJka4vSU5/1w0VIlgws+kEgcJsdz834+SUWruj6Xb8Q+axhUCcqI6YJJ6CK5H2yKKfhTFm1mNmPeH+u8LvXeH8L5nZL6uW7yMIFC4ALjOzbcPXa9ud9k7Q7mg6ixt5nm8wUR0xxdGTj4IrkXbJImfhLcBt4etVwJzw82nh/PHA66uWnwGMBj4NPFb1+kN7kitlUqZup4uUY9IqjQRXeZfnIFYki34WBtzdIl4zwvkz3L27avkZMct3x+wiVqfUKC+adv5IqttpyaMyBbFSToWos5CWyj+iDE/aN/d2ZiXnsdvp6uKEqI6YpPzaFcQq90Ka1VHBgqQj7SegdmYl57Hb6erihKieDiVeWYKrdgSxyr2Q4VCwIA1rVzZ+5QloKI1U9Mt7t9PqSrcxZQmu2hHEqghOhkPBgqSiFdn4lSegoZ58GqnoFzdOwX33NZdGyVZZgqt2BLF5LIKT9FUXNd14I8CE16WxXQULkorhPAENlXWc9pNP1A2m3S0L1OxRqrVjsK08FsFJumqLml56CeD1O6exbQUL0rC0n4CqfySjlPHJpzY4UaUzaXUuSd6L4GT4ooqaYEQq9/lEGzGz7cxshpldYGY/M7PrzewHZjbbzP7JzBR0dJC0n4CqfySjtPvJp51P/ZXAYDitQbLOpVAN+2LQUOHl18oHK3P3+JlmvcB/Ae8GRhIMC/0k8AKwFdBF0GHSY8BFwDnu/lzrktu8YCCp3l73gYTLQ+XUxH0eatm0VbY9nP0Nlf5G1o9bb6jt1Tu3o0dvHBlfemn9H7RG9pc0HUnOx+EXLgbgiqP2HXrhmH13d8c36U16nps9juGcl+p91/7NKt+buTYa0Ug6m932cP6/0thGM/trdh+NnsNmfwubvS6b3ffs2fUD6lb+Zg+1v0bOV5JlN/496QPAfcCGm+7YHAEz+1+Cbpb/DnwQeJ27d7n7FHef5u5vBrYAeoDzgcOAB8zs3cNNlHSu2icfKM+TT9QPViufBNo1zkeZelGU8umknk6jippg3bo0tl2v+OBeYEd3P9zdf+LuT9Uu4O7r3P0Od5/r7rsA/w5smUbCpDPVlts2K+us+ShRP1qtLGJpxTmoLXIQkfyoLWrafHOAB/6SxrZjgwV3/093f7yRjbn7z9z9h8NPlhRRnsqu8/I0MdQNO6pyWZ47Fqrt1EdE8qX6gWuffQAefSKN7apioqRCvcNFGypoqRSxFKVjoagiBqspDc1zsCPZydPDhDRuk7gZZvZvjWzI3S8ZfnKkqOr1DleGOgdDVZJqxoIFG/chUXkiOPLIdPfVSu5BkLN8efA+d26x0i+tV3mYqPxGVLf6KcPvQyeIDRaAi2u+V+peWsQ0AAULHayovcNV37C7u+PbnM+Zk36wUPvjWUlP0X48J04MghyzYgY7rdauiqZ5VvaHiU5Qrxhih6rXfgTNJi8kaIsxKXyfDzwETGtlIiX/ito7XL0RL2uDg0o2qlnYROmmrRveX3VWbFSWft776Y8qYlCnPvXlsbJtuxX1YUIG1avguLzyIuhr4XJ3P8bdb3D3v4TvnwB+CHymXQmWfCpq73Bxzf66u4PchOqb+4c/vGFgccuC1zccMFQHJ1Hy/uNZ5qat0jpFfZiQQUkrOL4DuD5m3sJwvnSwsvUOV7mhf/Sjg59rO0F5Zc1IbvruGyMra1UHGdtsE7xg6D4I8v7jmVbTVuksRX2YkEFJg4WXgLfEzNsLWJNOcqTIijYC4JYJegRZM+SVbRu1/KhtGbJyZfBKIurHM+0yb9VKl3Yr28NEJ6rb3fP6hczOBz4KfB74EbACGEfQs+NpwLfd/ZMtTOewmdnAxM/+vDfrdIiIiLTL8i8fvMjd+4a7nXqtIap9ChgLfAk4s2q6A5eF80VERKSEEgUL7v4C8GEzOx14KzCeYPCom9z93hamL1XLv3wWSQeSqqaBpKKXbcVAUs0MwhN3TJdeGrQuqG7/H5ftGTeIVSPHtuWW8MwzG3dSFKe6T4Jm/q7V5yhu+7X1CkaMiP+bVXqQb/bv08qBnaIUZSCpZvfdyv110kBSaewvTa0cSKp2vd7ePtLqaLWhHhzd/V53/767fyV8L0ygIJ2n0R4l58+HrSMaN1RuxhMnwve/HwQhtZW1zODZZ2GTTTZcJ0pl3VbX64hqWaFa6SLSjIa7ezaz15lZV+2rFYkTGY64TmDi9PfDmDEbT69E8JWbe6Wy1uitXgR8gyj/lVcG16kEDFtvPRiEtLM756gAQLXSRaQZiYIFMxthZmeY2UqC4oelEa9EzGy6mf3MzB4xMzezGQnWmWxmi8zshXC9L5glzewVGTRUPwZJ+zno74eDz7iN0Vu9FJsdWJn+1FPBC1qXm5A0AFCtdBFpRtKchROATwJfJeju+QzgiwRBwgPAxxvY5xjgLuB44IWhFjazLQj6eFhB0EzzeIJOok5sYJ8yTFn0QteK5n1DZbfHzY9rZrn6b5sPL0EpaSQAKFoTVxHJXtJg4f8RNJH8cvj9J+5+KkG3z48AiYsh3P0ad/+cu18JrEuwSj8wGviIu98Vrvdl4ETlLrRPO4d8rgQGwx3Bspns9rgho7/xjZh9bPVSY4lqEQUAItJKSYOFHYFb3P0VYC3wKgB3fxk4l6APhlbZF/hN2CKj4jpgAtBdu7CZDUS9gJ4WplFSFFWvYKj6BlGayW6PGzI6br3J73swdkhmDdUsImWRNFh4FhgVfn4U2Llq3ibAVmkmqsa2BEUQ1VZUzZM2aVevf2kNOhP1tJ20OCXpU/rEt67cICgZOTKc3saKjCJlUPaeRYt+fEmDhduAN4efrwPmmNkRZnYYQUdNt7Yicc1w976oF3B7xkkrrLhigVZJ2ryvmX++VhSnVIISd1i7NphWCTI0PLHI0Gq7SG+26DGv4o6vSJIGC+cClYZopwKPAwuAK4BNgWNTT9mgxwm6lq42rmqetFhcsUCrxNUbqJ5elB+XuJyM6iAibwFF3tIj5TdrVuNNnYsk7viKJFGw4O7Xu/uF4efHgb2BnQjqAezk7ne0LIWwGNjPzEZVTdufoDhkWQv3K6F2D5ucpN5A2j8uad6849avnl4dRDTa0qQ2RyVtWbR8kc6WVtFjXpXhOIYMFsxsMzP7iZlNr0zzwP3ufkdYyTExMxtjZj1m1hPuvyv83hXO/5KZ/bJqlcsIcjUuNrNdzexfgJOAczzJKFgybFn17lev3kDaPy5RN+9mg4a4m20aN+GoHJXKdJGiKnvPomU4jiGDBXdfA7wzybIJvYWgDsRtBK0q5oSfTwvnjwdeX7X/ZwlyEiYAtwDfIOjv4ZyU0iNDiCsWyFI7flzy+IQdlaNSmS5SVGXvWTTu+OppdQ5io5IGAL8D9kljh+4+4O4W8ZoRzp/h7t0169zp7tPdfZS7j3f3OcpVaJ+4YoEslf3HJS5Xo+zZtdKZyt6zaNzxxcljDmLSYOFTwL+b2bFmtr2ZjQy7gF7/amUis1b2Cl9Jjy9Pnf6U/cclLlej7Nm10rnK3rFYI8eXxxzEpDf5OwmKBuYBy4E1wMtVrzUtSV1O5DE7Ok3tPr60gq+of76it2UeypQp0dmXq1aV71ilOMr+f9duecxB3CThcqcByvaXVLQqOKlk3VUi8qK1ZU4SRF11VTBE9vHHw8qVg9NXrizWsUp5FP3/Lo+6ugaLHmqnZyVRsODus1ucDpFhK3pb5qRBVH9/cKzVwQIU61ilPIr+f5dHc+duGIBVT89KqesaSGfppEp+nXSskm+6FtMXVSerMj0rscGCmZ1Y0xHSkMxsTzM7YPjJEmlcJ1Xy66RjlXzTtdgatXWyslYvZ+HDwFIzO9PMdo9byMxeY2YfNrOFwG+BLdJOpORfHiqBNtOWuajy0vdF2VsKydA66f+uk9ULFvYEPgu8B7jNzJ4xs9+Y2VVm9gMz+z8zuxd4CrgQeAR4s7v/sPXJlrxpdICmVtSebrQtc5Hlpe+LPASJkq1O+r/rZJakbyMzeytwAPBWgp4URwErgXuAG4D/cfdnWpfM4TOzAejtdR8Y5naC0QXjpkXNT0tl28PZX7PpG2rfjaSptvY0BE8iq1dvvI3qbc2eHX1zauRvkubf5/ALFwNwxVH7prPBBKKOpdnjS7JsI+cxjWujEa3cX9S5HU6amtl3K/eXxv9Ms7+FQ6Wz0euy2fQ3sr80NXueG/1bm0Fvbx+LFi1aFI68PCxJW0PcBNw03J2JQPO1p+fM0ZOsDF9c0Cki8dQaQtpOtaclS40WmYmIgoWOkLenqCxqT6uHORGR5ilYKLgktdHz9iSVRu3pRgOg2kFZZs5UwCDpUTAqZadgoeDylmuQRBq1pxsNgKLqSGhYZ0lD1AiB6u5YykbBgmQiDyPMqe6EpEHdHUsnULAgpdJITot6npM0KOiUTpAoWDCzrjqv7c1sbKsTKpJEXPFEVB2JLAdl6XRFLD6Lo6BTOkHSnIVlwNKY13LgGTO7z8w+3opEigzHqadG15HIclCWomhVd86trnTbzgqH6u5YOkGiTpmAo4HPAc8APwZWANsCHwC2BM4HpgMXmNnL7n5x6ikVaVLlKba/P+jVLA+DshRFUXMAqnsIra5w2IoAsbLNWbOCfU2cGAQQRx6Z/r5EspI0Z2En4BZ373H30919vruf5u67A0uAbd39YOAy4PhWJVY6hwYoak6S81bUAKAR7W79kocKu51ATVSzkzRYOBL4Vsy8bwGVf40fATsPN1EinXBDa4Uk5y1v/W60iyoiFltcE1UFDO2RNFgYC2wTM++1wJjw83PAK8NNlIhI2lQRsdjimqgef7xyG9ohabCwCDjDzKZUTzSztwBzgV+Hk94IKH4XkUyp9Uv5xOUMrVypDrHaIWmw8EngZeBmM1tqZjeZ2VKCkShfAo4LlxsDfCP9ZIqIJKPWL+WUNGeoCB1iFbHuRaJgwd2XAm8CPgH8ClgZvh8NTArn4+5fc/fzh9qemR0TBh0vmtkSM9tviOU/ZGa3m9lqM3vczC41s22TpF1EOsvs2apw2A7troQc1US1qIrYPXjSppO4+8vA/PDVNDM7HJgHHAP8Nny/1sze7O4bZTSZ2VTg+8CngZ8C4wiaai4A3jGctIiISHPaXQk5qonqqlVBMUTRFLF78Cy6ez4RuNjdL3L3P7v7ccBjBLkWUfYFHg5zLZa6+43A14G3tim9paImiSJSVLU5RvPmlbNDrDy2BkscLJjZu8zsJ2b2JzP7a83rgYTb2AyYAiysmbUQeFvMar8DxpvZP1tgG+BfgWti9jEQ9QJ6kqSx7PJ4EQ5XJwRARSjj7IS/g+RLGiPY5lEemzcnHRviQOBaYDRB3YV7CFo9/COwDrgh4f62AUYS9ABZrdIj5EbcfTFBcLAAWAM8CRjwkYT7lJIrYwBUrShDIJf975BUEQK7Mili/ZQi5oYkzVn4PEErhwPD76e4ex+wC8HN/9r0kxYwszcTFDucTpArcQBBYHFh1PLu3hf1Am5vVRpFWklDIBeLOg6SoRQxNyRpsPAm4GqCXAQnrBjp7vcCswmCiSSeIui0aVzN9HHA4zHrnAzc7O5nufsd7n4dQaXID5vZ9gn3K1JY6nmwWNrd1bQUTxFzQ5IGC+uAte7uBMUA1S1eHwVen2Qj7r6GYCyJ/Wtm7Q/8Pma10WzcK2TlexYVNEXaSj0PFp8CPim6pDfbvwDd4edbgBPMbLyZvRb4FMEQ1kmdA8wws4+Z2SQzmwdMAC4AMLNLzOySquWvBt5nZp8wsx3DppTnAbdGNbUUgXJVttMQyMWngE+KLmmwsACYFH4+laCuwsMERQdvB76QdIfufgVwAnAKQT2CacCB7h6W8tFFVc5FONz1icCxwF3AlcC9wPuS7lM6T5kq25W1xndZqatpKaOkPTh+w90/E35eAkwGjgL+E+hx9ysb2am7n+/u3e6+ubtPcfcbquZVKiRWL/91d9/F3Ue7+3h373f3hxvZp0iRFaWMUy0B1NW0lFPiHhyrhTfquCGrRaQN8lbUUmniWangl9cmnq3W3x+8zAYDPJGiUwVB6Sh5u8EOR6WoJS/HpCaeIuUVm7NgZpVmkkm4uzeVSyHSTmWqy1CRl2NSjX+R8qp3gz+N5MGCiHS4rq7BzoikMbNn5yfoE4kSGyy4++w2pkMSyEt2s0iUuXM3rLMAQUsAFUUMbc4cBQuSb6qz0CZp/BDoxySeauFnT008RcpLwUKb5HEUsbKIG2hJAUP7FaWJp4g0RsGCFF5cLXz1xy8ikg4FC1IoUcUNcbXwVTtfRCQdChakUKKKG7baKnpZ9ccvkg+qb1V8ChakUOI6/VF//CL5pTpbxZc4WDCzPczsKjN7yszWmtme4fQzzOyA1iVRpL6//U398Q9XK5781EJFpDwSBQtmNg1YDLwJuKxmvXXA0eknTSSZri7Vwm9Gdb8drXjyiyoyEpFiSpqzcCZwHcHQ1CfWzLsV2DPNRInEUXFDelpdjqxxIkTKI2mwsCfwTXd3Nu4C+ingtammSoYtywpFrexpUsUNIiLtlzRYeBEYHTNvPPBsOsnJVplq7GZZoaiV51HFDSIi7Zc0WPgtcIKZjayaVslh+HfgV6mmKiOqsSuSnqgiIxEppqTBwucJiiL+GH524CNm9mtgH0C32YIpUy6K5JPGiRApj0TBgrv/EZgOrABmAQYcG87udfe/tCZ50irKRZFWU5GRSHnEDlFdy91vBd5hZqOArYBn3F31m0WkdDQcvMiGGu7B0d1fdPdHgVFmNsXMNm9BukREMqNiOpENJe2U6RQz+1LV9+nAMuBm4D4ze2Nrkid5pqcvEZHOkDRn4Ujgr1Xfv0xQ2fEQgnoMp6ebLCkCPX2JiHSGpMHCdsB9AGb2WmBv4PPufjVB7477tSZ5UnbKnWjMcM6XxmoQkWYlDRZeATYLP08n6KTpd+H3JwkqPCZmZseY2VIze9HMlphZ3WDDzDYzs9PCdV4yswfN7D8a2ae0xnBvQMqdaEyz52vBguixGhQwiEgSSYOFu4EjzWwM8FFgkbu/HM77R+CJpDs0s8OBecAZwB7A74FrzayrzmqXAwcAM4GdgcOAO5Lus2iKcgPVDag4Zs2KHqth1qxs0iMixZI0WDgN+CBBt87vIKizUHEgwWBSSZ0IXOzuF7n7n939OOAx4BNRC5vZu8J9Huju17v7Mne/yd0HYpYfiHoBPQ2kMVNF6QNBN6DiePDBxqaLlJ2K5RqTtFOm64BJBAHDLu6+qGr2DWwYPMQys82AKcDCmlkLgbfFrHYI8AfgRDN72MzuM7PzwlwOyZBuQMXRFZNvFzddpMyUK9q4xP0suPtSd/+xuz9QM/1Cd78x4Wa2AUYStKCotgLYNmadHYFpwO7ABwh6jjwAuDgmnX1RL+D2hGmUhHQDKo65czW8t0iFckUbl7gHRwAzew3wRmBU7Tx3vyGtRNUYQTAWxYfc/dkwHccC15nZOHevDTykTebODaLx6n+6tG9Aai2RjkpXy7NmBU9REycGfyd1wSydSLmijUsULIRdPH+HoBjCYhYbGTO92lMELSvG1UwfBzwes85jwCOVQCH05/C9i41zKaRN2nEDKkplzyLo7w9eZoNjNoh0oq6uwSKI2ukSrZFRJ/uAjzA4iNTHCIaufgA4OMlG3H0NsATYv2bW/gStIqL8DphQU0dhp/A94s8taaqtBFRLgwWJSNGoWK5xSYOFDxC0iLg8/H6Tu3/X3XsJenI8oIF9ngPMMLOPmdkkM5sHTAAuADCzS8zskqrlLwNWAt81s13MbCpB08sr3T1xk01pXFQloMp0kU6gYrBy6u+PHkJdDzvxkgYLXcDd7v4K8DLw6qp53wEOT7pDd78COAE4haDS4TSCZpGVXIKu8FVZfhXwTmBLglYRPwQWEfT3IC0UVQmoMl2kE6gYrLyyyhUtagCatILjSqBSDPAQQcuE34TftwFe1chO3f184PyYeX0R0/4CvKuRfWSlqBdCFFUCEhFJV1ED0KQ5CzcS9LYI8GPgdDM72cz+CziLoO6CUNwLIUpemkaq85TyaFUwXaYgXSSPkgYLXwbuCT9/EfgVQR2GLxOMRhnZ+6IUW1QloMr0donrPCWObhr51qpgukxBupRHma7LpD043uLuV4Wfn3f3DxAUS/yDu7/N3ZUxXUJRlYAq09slrvOUOGX655R0KYdK2q0oXfcnkbgHx1ru/pK7P5dmYiR/aisBtZvqR0ga1L2vyPAk7sHRzLYgGDSqi417cHR3Pz3NhIlAfOcpIo2o171vpzSXmz1bOW/SvKQ9OE4Frgb+IWYRBxQsSOriupSuVxQhUkste4IscQUL0qykxRDnAsuAvYBR7j6i5pWkq+dCU3lnNuI6TxFpRF5a9ogUVdJgYRJwirsvCbts7igq78yWupSW4VL3viLDkzRYeBDYvJUJyTMNZypSbOreV2R4kgYLc4CTwkqOHUflnSLFpxyq8lEdjPaJreBYM5gTBMNILzWzxcDfaua5u38k7cTlhYYzFRHJH1XabJ96rSGmE7RyqHDgOWCXiGU9YlppxNXIV3lndtRTo4hI+8QGC+7e3cZ05Folu3LWrCCHYeLEIFBQNmZ29DQhImWwYMFg/bfu7vw+hCbtZ2EbYJW7v9ji9ORWf3/wMsumJ0MRESmf6lzroca+yVJsBUczG2lms83saWAF8JyZ/djM/qFtqRMRkVJREeKGGhn7Jkv1chaOBr4ADAB/AHYE3k9Qb+H/tTxlIiJSOipCLKZ6TSc/Dlzk7m9398+6+2HAJ4EjzWyz9iRPqqkXSRERyUK9YGFH4Ec1064ARgITW5YiiaReJEUCCpqlTKJ6Fs2jesHCGIIih2rPh+9jW5MciaNeJEUUNEv5FGXsm6F6cNzOzHasvAhyGzaaHs6TFuqEXiRV8ak4svpbKWiWsilKz6JDNZ28Mmb6TyOmlX7kySx1Qi+SqvhUHFn9rTohaBbJo3rBglo85Ih6kRTpjKBZJI9iiyHc/XuNvNqZ6CJJqzJWM6PmqSKYlI2GmhbJRtJRJ1NlZseY2VIze9HMlpjZfgnXm2Zma83srlanMQ1pV8ZqtGxLFcGkbDTUtEgyadcranuwYGaHA/OAM4A9gN8D15pZ3YxEM3sNcAnwy5YnMiVZV8ZSRTApo6JUCBPJUtr1irLIWTgRuNjdL3L3P7v7ccBjwCeGWO/bwPeAxa1OYFryWBlLFcFERKRRiQaSSkvY8+MU4OyaWQuBt9VZ7xhgHPBF4PND7GMgZlZP0nSmJY+VsVQRTEREGtXunIVtCJpYrqiZvgLYNmoFM5sMnAoc6e6vtDZ56cq6MpYqgomISBoyqeCYlJltTtDF9KfdfWmSddy9L+oF3N7CpEbKujKWKoKJiEga2loMATwFvEJQpFBtHPB4xPLjgUnAd83su+G0EYCZ2VrgQHdf2KrEpqG/P3iZDVbK6oR9i4hIebQ1Z8Hd1wBLgP1rZu1P0Cqi1iPAZIL6BpXXBcD94eeodUREpMOpn5l0ZVEMcQ4ww8w+ZmaTzGweMIEgCMDMLjGzSwDc/WV3v6v6BTwBvBR+X5VB+kVEJOfS7GdGXdFnECy4+xXACcApBPUIphEUJ1TaDXSFLykR/bOJSDul2c/MnDnDT0/RZVLB0d3Pd/dud9/c3ae4+w1V8yoVEuPWne3uu7YloZIa/bOJSNaG289MJz/05Lo1hIikT0OBS6cabj8znfzQo2BBpMN08tORdA71M5MuBQsiIlI66mcmXe3uZ0FERKTl1M9MupSzICIiInUpWBAREZG6FCyIiBSMeieUdlOdBRGRAlmwIOiNsNLpUKV3QpFWUs6CiEiBzJoV3TuhSCspWBARKZDh9kIo0gwFCyLSUuoxMl3D7YVQii+L/ykFCyLSUuoxMl1z50b3TphHqojZGln8TylYEBEpkP7+6N4J8yjNYaKHohys1lKw0GFaFenrH1VkQ638n+jvH+yVcNmy/HZjnOYw0UNRDlZrqelkB6nX5Gq4Pzb6RxXZkP4noqmCZjEpZ6GDxDW5alWkLyJSSxU0i0nBQgeJi+gV6YtIK2iY6PJQsNBB4iJ6RfoinaVddYw0THR5KFjoIHFNrhTpi3SWdtWnKEpFTBmagoUOEtfkSv/AIiJSj4KFDqNIX2T40noyV6dFxdVprV0ULIiINGjOnOFvo9KUubbTIimGNK6BIlGwICKpy0snXXlJRxSNHilFomBBpIO1Khs8L1m0eUlHFDVZliLJJFgws2PMbKmZvWhmS8xsvzrL/ouZLTSzJ83seTO7ycze2870ipRRXDa4ys3bQ02WpUjaHiyY2eHAPOAMYA/g98C1Zhb3r9ML/Ao4KFz+GuAn9QIMERmaevTMVpFGjxTJImfhROBid7/I3f/s7scBjwGfiFrY3Y939zPd/WZ3v9/d5wBLgEPal2SR8lGPntkq0uiRIm0dSMrMNgOmAGfXzFoIvK2BTY0Fno7Zx0DMOj0NbF+k9Lq6BosgaqdLe/T3By+zwSbNRx6ZaZJEIrU7Z2EbYCSwomb6CmDbJBsws08C2wPfTzdpIp1FPXqKSFKFag1hZh8AzgI+5O4Rz0Tg7n1RL+D2NiZVJPfUo2c5qGMnaYe2FkMATwGvAONqpo8DHq+3opkdClwC/Ju7X92a5Il0lqhscCmWmTMHK6pWd+ykoE/S1NacBXdfQ1A5cf+aWfsTtIqIZGYfJCh2mOHuV7YuhSIixaIWLdIO7c5ZADgH+L6Z3Qz8DjgamABcAGBmlwC4+7+F3/+VIFD4NHCDmVXqNqxx97+1Oe0iIrmnFi2StrbXWXD3K4ATgFMI6hFMAw6sqoPQFb4qjiYIas4laGJZeV3VlgS3kcoeRSQNatEiacsiZwF3Px84P2ZeX73vZVXpTU9lj/Hy3M+/SFZGj96wKEItWqQVCtUaoszUm97Q8tzPv0hW1KJF2iGTnAXZmHrTE5FmqEWLtINyFnIiroxRZY8i6VJxlkjjFCzkhHrTE2kPFWeJNE7BQk6oNz0REckrBQvk50mjv3+wzHHZsnwGCsrCFRHpPAoWgDlzsk5BceQlsBIRkfZRsCAiIiJ1KVgQERGRuhQsiIiISF0KFiQRVWwUEelcChbapOg3W1VsFBHpXAoW2kQ3WxERKSoFCyIikhtFz4UtKwULIiI510k5k510rEWiYEFEJOfUcZxkTcHCMCxYAN3dwefu7uC7iIhI2WySdQKKasECmDkTVq8Ovi9fHnyHfI7pICIi0izlLDRp1qzBQKFi9epguoiISJkoWGjSgw82Nl1ERKSoFCw0qaursekiIiJFpWChSXPnwujRG04bPTqYLiIiUiYKFprU3w/z58PEicH3iROD76rcKCIiZZNJsGBmx5jZUjN70cyWmNl+QyzfGy73opn91cyOblda6+nvh2XLgs/LlilQEBGRcmp7sGBmhwPzgDOAPYDfA9eaWWRpv5ntAFwTLrcH8CXg62b2gfakWEREJBt56f46i5yFE4GL3f0id/+zux8HPAZ8Imb5o4FH3f24cPmLgO8Bn25TekVERDKRl+6v29opk5ltBkwBzq6ZtRB4W8xq+4bzq10HfMTMNnX3l2v2MRC/ndvp6+sD4LHHHuPee+8NZ/VitqjqHXp7e9evuGTJElatWlWzbGD8+PHATvT1wfPPP8+tt94as3vYc889GTt2LAD33nsvjz32WMySvYTJBGDRokUbza+kYaeddgrTEHdMg5+rjwnY4DiqjR8/np122glo5zENij+miK3G/p021IpjGjX+DYwdM5a+H2xRgmMKrpExY8YwZcqU9VM3PKYNr/3hHBNMibz+Gjmm6muq3t+p/jFtKPkxbXg9D/6dejc6rmTHFKy35557AmPp66s9pg23W31MfX2VY9p437XHtPPOyY9p7Nhmjmnj3534Y9pQI3+n6rRGH9OG6agsG/3/FCxb/++04T0i6TE18lteu+zGf8sk96cNbbbZZgBviElcQ8zd09hOsp2ZTQAeAXrd/Yaq6V8A+t1954h17gUudffTqqZNBxYBE9z9sZrlB2J2Pw14BVg83OMouZ7w/fYM01AUPeH77RmmoQh6wvfbM0xDUfSE77dnmIYi6Anfb88wDUWwL7DG3ccOd0Ol6+7Z3fuipleCiLj5EtB5Sk7nKhmdp+R0rpLReUqmzsNzw9pdZ+Epgqf7cTXTxwGPx6zzeMzya8PtiYiISAu1NVhw9zXAEmD/mln7E7R2iLI4ZvlbausriIiISPqyaA1xDjDDzD5mZpPMbB4wAbgAwMwuMbNLqpa/ANjOzM4Nl/8YMIONK0mKiIhIC7S9zoK7X2FmWwOnAOOBu4AD3X15uEhXzfJLzexA4GsEzSsfBf7D3X/cxmSLiIh0rEwqOLr7+cD5MfP6IqYtAvZscbJEREQkQlubToqIiEjxaCApERERqUvBgoiIiNSlYEFERETqUrAgIiIidZUiWDCzk83sD2b2nJk9aWZXm9muCdabbGaLzOwFM3vEzL5gZtaONGehmfNkZt1m5hGvA9qV7iyY2SfN7I7wXD1nZovN7KAh1umo6wkaP0+dej3VCv8X3cz+e4jlOu6aqpbkPHXqNWVmsyOOOa4n5Mo6TV9PZRkboo+gKeYfAANOA35hZm92979FrWBmWwDXAzcAewFvAr4L/B34ahvSnIU+GjxPVQ4A/lj1fajli+5h4LPAfQRB9UeAn5rZFHe/o3bhDr2eoMHzVKXTrqf1zGwfYCZQ7/x08jUFJD9PVTrxmvoLwe96xStxCw77enL30r2AMeFJ++c6y3wCeA54VdW0UwhGxbSsjyFH56kbcOAtWac36xfBj89RMfM6/npKeJ46+noCtgQeAP4JGAD+u86yHXtNNXieOvKaAmYDdzWw/LCup1IUQ0QYS/CU83SdZfYFfuPuL1RNu46g6+nu1iUtV5Kcp4qrzOwJM/udmR3a4nTlipmNNLN/JQiu4sYw6fjrKeF5qujU62k+cKW7/zrBsp18TTVynio68Zra0cweNbOlZna5me1YZ9lhXU9lDRbmEYxzvrjOMtsCK2qmraia1wmSnKdVwKeBDwIHAr8ErjCzI1ueuoyF5XurgJcIxih5v7vfGbN4x15PDZ6nTr6ePg68geBpLomOvKaaOE+dek3dRDBO0gHAxwmuid+HwylEGdb1VJY6C+uZ2TnANGCau8eW33S6pOfJ3Z9iw/KsW8xsG+AzwKWtTWXm/gL0EGSJHgp8z8z63P2uTFOVP4nPU6deT2a2M3AGwf+bRsuN0cx56tRryt2vrf5uZjcCfyWoN3RO2vsrVc6CmX0NOAJ4u7v/dYjFHwfG1UwbVzWvtBo8T1FuAt6Ybqryx93XuPv97r7E3U8myIX5z5jFO/Z6avA8RemE62lfYBvgbjNba2ZrgV7gmPD75hHrdOI11cx5itIJ19QG3H0VcDfxxz2s66k0wYIFQ11XboD3JFhlMbCfmY2qmrY/waiWy9JPYT40cZ6i9ACPpZao4hgBxP1YdeT1FKPeeYrSQ/mvp58CkwmOtfK6Bbg8/LwmYp1OvKZ+SuPnKUoP5b+mNhBeJ28i/riHdz1lXaMzpVqh3yCo5fl2grKXymtM1TJfAn5Z9X1LgmjqcmBX4F/CbXwq6+PJ2Xn6CPAhYBKwM0HZ4BrgP7M+nhafqzOB/Qgq/kwOz8s64D26noZ1njryeoo5dwNU1fLXNdX0eerIawo4myDXZQfgrcDPw+tjYiuup7LUWTgmfP9lzfQ5BM1LAMYDr6/McPdnzWx/ghvoLQQtAr5KC8p6cqTh8xQ6BZhI0MzyXuCj7l7assDQtgTlndsCzxK09X6Pu18Xztf1FGjoPIU68XpKQtdUMrqmAtsDPyAotnkSuBHYx92Xh/NTvZ40RLWIiIjUVZo6CyIiItIaChZERESkLgULIiIiUpeCBREREalLwYKIiIjUpWBBRERE6lKwIJIBM5thZh7zemfW6SsLM5tiZqvNbLuqaQNm9tuY5T8W/g26G9jHIWa2wszGpJBkkVxSsCCSrcMI+sOvft2caYrK5SzgO+7+SAv38T8EXez+Vwv3IZKpsvTgKFJUt7v7/UkWNLPN3f2lVieoLMxsCvBPwHGt3I+7u5nNB043sy+5+4ut3J9IFpSzIJJDVcUU083sR2b2DMFIepjZJmZ2spndY2YvmdmjZvbVmgFiMLMdzex/w2z4J81snpkdVZvNHn6fXbNudzh9Rs30XjP7pZk9b2Z/N7PrzGzXmmUGzOy3ZvZOM7s13P9dZvb+iOPc3cx+YmYrzewFM/uLmZ0czvt6mL2/ac06Y8P9nznEafwYcIe73z3EcrHMbHad4qIZVYv+EPgHgv72RUpHwYJItkaGN//Ka2TN/AXAUuBQ4KRw2qUEfeFfBhxEMGDMv4fLAmBmmwHXA3sAnwRmEAw4c0qzCTWzgwjGFVkFHEkweM9Y4Ddm9o81i78emEfQ7/y/EGTT/8jM3lC1vb0JRsJ7PcGQ1geFy28fLvJN4HVAbZDxIeDVwIVDJPkA4Dd1jmeT2hcb/yZ+i42LiX7M4BgEALj7U8Cfw32KlI6KIUSyVTtM+O+AaVXfr3T3z1S+mNl+wOHAR9z9knDyL8zsb8ClZtbj7rcTjMS3I7Cvu98YrnstcOcw0joPWOTu76tKz6+BvwKfAk6oWnYbYLq73xcudytBwPBB4IxwmbOBlQSD36wOp/2qsgF3/5OZLQKOInhyrzgKWOjuS+MSambjCEbC/GPMIlOBl+scayUNDwMPV233MILg5wR3/33N4rcB+wy1TZEiUrAgkq33U3UzAp6vmf+Tmu8HEAy/e2X4JFyxMHyfDtxO8AT8UCVQAHD3dWb2QwZHGE3MzN5IkANwRs1+VxPkDkyvWeW+SqAQ7vsJM3sC6Aq3N5rghn1WVaAQ5XzgcjN7o7vfZ2Z7EeSWDJXdPyF8fzJm/h8JiilqvY+Y3BczewvwPeB8dz8vYpEnq/YrUioKFkSyddcQFRwfq/n+OmAz4O8xy28dvo8HVkTMj5qWxOvC92+Hr1oP1nz/W8QyLwGVehWvIcjyfzhiuWo/AR4nyE34NHA08Chw9RDrVfYTVyF0lbvfUjvRzHqiFjaz7YGfAQPA8THbfKFqvyKlomBBJN9qx5BfCbwI7Bez/KPh+2PALhHzx0VMe4kgAKm2dc33leH7ycAvIraxJiY9cZ4G1gHb1VvI3V82s28Bx5jZV4B/Bb7q7muH2H4lva9pMF0bMbNXEwQnTwGHu/srMYtuVbVfkVJRBUeRYvk/gqfXLd39lohXJVhYDPyjma0vQzezEQR1BmotB3atmXZQzfe/AMuAXWL2e0cjBxEWPfwWONLMXjXE4hcStDT4EbA5cFGCXSwjCKp2bCRdtczMCCqUjgcOdvfaYqJqOxCcJ5HSUc6CSIG4+4CZ/YCgzsI5BB04rSOozHcg8Fl3v5egbP0k4Coz+xzwBEEW/hYRm70cOMXMZgE3EuRaHFGzXzezTwL/E7a0+CHBk/Y44G3Ag+5+ToOH82lgEbDYzL5KUCSxI9Dj7uv7RnD3R8zsZwT1O65294eG2rC7rzGzm4C9G0xTrc8ChxAUPUwws+o6CQ+4+5OwPqjYm6COhUjpKGdBpHiOJKikeChB74FXAscC9xHWSXD3NcD+BJUdzycIHpYCX4zY3peA/w638VNgEvDh2oXc/RqCioyvJmhSeB3wFWBbgpyMhrj7HwgqOT4EfB24hqAXxKh6DD8K34dqLlntCuDtYTFCs94Uvs8jOMbqV3Xuy9sIijwuH8a+RHLL3GuLREWkrMKOhL4L7ODuy7JNTXJmtoAgsNjR3dclXGcLgsDjGHe/tMXp+yawq7vH1SURKTQVQ4hIboV1LnoI+pY4MWmgAODuz5nZl4HPmNkCb9GTkZltS9CvhTpkktJSsCAiebaYoMfI79FcfYBzgJEEFRQfHWLZZnUDn3L3G1q0fZHMqRhCRERE6lIFRxEREalLwYKIiIjUpWBBRERE6lKwICIiInUpWBAREZG6FCyIiIhIXf8ff2PCRPKbFt0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_plags, yerr=freq_plags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Phase lag (rad)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([0, np.pi/ 2])\n", + "plt.axhline(phase_lag, label=\"Input phase lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Energy-dependent lags\n", + "\n", + "The lag vs energy spectrum can be calculated using the `LagEnergySpectrum` from `stingray.varenergy`. Refer to the Spectral Timing documentation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Coherence\n", + "Coherence is a Fourier-frequency-dependent measure of the linear correlation between time series measured simultaneously in two energy channels. \n", + "See *Vaughan and Nowak 1997, ApJ, 474, L43* and *Uttley et al. 2014, A&ARev, 22, 72* section 2.1.3. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 14681.05it/s]\n" + ] + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900\n", + "\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt)\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt)\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `coherence` method returns two `np.ndarray`s, of the coherence and uncertainty." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "coh, err_coh = avg_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The coherence and uncertainty have the same length as the positive Fourier frequencies." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "print(len(coh) == len(avg_cs.freq))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "And we can plot the coherence vs the frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAFJCAYAAADtx5XDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtJ0lEQVR4nO3deZgcZbn+8e+dDWSLmEggQNgEZdNBEUGBRCDqARcUPAgqcPlT2QQVOEfA5SBwWA4QiEBAUdkEQTiHTUEQMWHfCZuskrCGkLCTPTPP74+3mu7pdE9Pz3RPz0zdn+vqq6ur3qp6qten36cWRQRmZmaWL0NaHYCZmZn1PScAZmZmOeQEwMzMLIecAJiZmeWQEwAzM7McGtbqAPqKpAeBDwLPtDoWMzOzPvAhYE5EbFFpYm4SAOCDI0eOXLOtrW3NVgdiZmbWbNOnT+ett96qOj1PCcAzbW1ta06dOrXVcZiZmTXdhAkTmDZtWtVeb+8DYGZmlkNOAMzMzHKozxMASdtLukbSS5JC0r7dmGdzSdMkLcjm+4Uk9UG4ZmZmg1IregBWAh4FfggsqNVY0irA34DZwCez+f4DOLSJMZqZmQ1qfb4TYERcB1wHIOn8bszyTWAFYJ+IWAA8KukjwKGSJoWvZmRmZla3gXAUwDbArdmPf8ENwLHAusCM0saSplZZTlsTYjMzMxuQBsJOgKuTuv9LzS6ZZmZmZnUaCD0AdYmICZXGZz0D4/s0GDMzs35qIPQAvAKMKRs3pmSamZmZ1WkgJAB3AttJWr5k3ETgZWBmSyIaBB55BL7zHZg1q9WRmJlZK7TiPAArSWqT1Jatf1z2eFw2/QRJfy+Z5RJgPnC+pM0kfQ04AvARAL3w0Y/CeefBlVe2OhIzM2uFVvQAbAk8mN3eB/wyGz4mm74GsEGhcUS8RfrHPxa4DzgLOBWY1HchDz777ZfuFy1qbRxmZtYarTgPwFSg6ln8ImLfCuMeAbZvXlT5097e+d7MzPJlIOwDYE2wdGnnezMzyxcnADnlHgAzs3xzApBTTgDMzPLNCUBOuQRgZpZvTgByyj0AZmb55gQgp5wAmJnlmxOAnHIJwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUewDMzPLNCUBOOQEwM8s3JwA55RKAmVm+OQHIKfcAmJnlmxOAnHICYGaWb04AcsolADOzfHMCkFPuATAzyzcnADnlBMDMLN+cAOSUSwBmZvnmBCCn3ANgZpZvTgByygmAmVm+OQHIKZcAzMzyzQlATrkHwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUEwAzs3xzApBTLgGYmeWbE4Cccg+AmVm+OQHIKScAZmb55gQgp1wCMDPLNycAORQBHR1p2D0AZmb55AQghwo//uAEwMwsr5wA5FBpt79LAGZm+eQEIIdK//W7B8DMLJ+cAOSQEwAzM3MCkEMuAZiZmROAHHIPgJmZOQHIIfcAmJmZE4Accg+AmZk5AcghJwBmZtaSBEDSgZJmSFoo6X5J29Vov5ek6ZLmS3pF0h8krd5X8Q42LgGYmVmfJwCS9gAmA8cDWwB3ANdLGlel/WeAi4ALgE2BXYFNgIv7It7ByD0AZmbWih6AQ4HzI+LciHg8Ig4GZgEHVGm/DfBiRJwWETMi4i7gDOBTfRTvoFP6o196XQAzM8uPYX25MkkjgE8Ap5RNuhH4dJXZbgeOl/Ql4M/AKOAbwHVV1jG1ynLa6gx30Crv9m9vhyHeG8TMLFf6+mt/NDAUmF02fjZQsaYfEXeSfvAvBhYDcwAB+zQvzMGtvNvfZQAzs/zp0x6AnpC0CanL/1jgBmAN4GTg18De5e0jYkKV5UwFxjcrzoHECYCZmfV1AjAXaAfGlI0fA7xSZZ4jgXsi4uTs8cOS5gG3SjoqIl5sTqiDV3kJwEcCmJnlT5+WACJiMXA/MLFs0kTS0QCVrEBKGkoVHrty3QPuATAzs1aUACYBF0m6h7SD3/7AWOAcAEkXAkREoXv/WuBcSQdQLAGcDjwQEc/3beiDg3sAzMyszxOAiLhM0ijgZ6Qf80eBnSPiuazJuLL250taGfgBcCrwFnAz8JO+i3pwcQ+AmZm1ZCfAiJgCTKkybUKFcWeQdgS0BnACYGZmrqHnkEsAZmbmBCCH3ANgZmZOAHLICYCZmTkByCGXAMzMzAlADrkHwMzMnADkkBMAMzNzApBDLgGYmZkTgBxyD4CZmTkByCEnAGZm5gQgh1wCMDMzJwA55B4AMzNzApBD7gEwMzMnADnkHgAzM3MCkENOAMzMzAlADrkEYGZmTgByyD0AZmbmBCCHnACYmZkTgBxyCcDMzJwA5JB7AMzMzAlADjkBMDMzJwA55BKAmZk5Acgh9wCYmZkTgBxyAmBmZk4AcsglADMzcwKQQ4V//MOHd35sZmb54QQghwr/+JdbrvNjMzPLDycAOVT4x19IANwDYGaWP04Acqjwgz9iROfHZmaWH04AcsglADMzcwKQQy4BmJlZ3QmApCGSNpM0XtKKzQjKmssJgJmZ1ZUASDoIeAV4CLgZ+HA2/ipJhzQ+PGsGlwDMzKzbCYCk7wGTgauAPQCVTL4V2K2hkVnTeCdAMzOrpwfgUODUiPg+cGXZtCfIegOs/3MJwMzM6kkA1gNuqDJtHvD+XkdjfcIlADMzqycBmAusW2Xah4GXeh2N9QmXAMzMrJ4E4M/ALyStXzIuJI0GfkzaN8AGAJcAzMysngTgZ8Ai4FHgJiCAXwGPA+3AMQ2PzprCJQAzM+t2AhARc4EtgROA4cC/gGHAmcA2EfFWUyK0hnMJwMzM6joPQES8ExHHRsS2EbFRRGwTEb+MiLfrWY6kAyXNkLRQ0v2StqvRfoSkY7J5Fkl63ucd6Dn3AJiZ2bDuNpS0EbBGREyrMG17YFZEPN2N5exBOp/AgcBt2f31kjaJiOerzHYpsBbwfeBpYAzwvu7Gbp15HwAzM+t2AgCcDvwTWCYBAL4IbJLd13IocH5EnJs9PljSF4ADgCPLG0v6HLAjsEFWhgCYWUfcVsYlADMzqycB2BI4p8q0W4B9ai1A0gjgE8ApZZNuBD5dZbZdgXuBQyXtDSwArgeOioh3K6xjapXltNWKLy9cAjAzs3oSgJWBhVWmLQFGdmMZo4GhwOyy8bOBnarMsz6wLekIhN1IJxw6AxgL7N6NdVoZlwDMzKyeBOBZUlf8jRWm7UDzuuWHkA453KtwpIGkHwA3SBoTEZ2SiYiYUGkhWc/A+CbFOKA4ATAzs3qOArgQ+LGkgyQtByBpuewKgT8CLujGMuaSzhkwpmz8GNJVBiuZBbxUdpjh49n9uG7GbiVcAjAzs3oSgFOAa0jd7/MkvUq6BsAZ2fiTai0gIhYD9wMTyyZNBO6oMtvtwFhJK5WM2yi7f67b0dt7vBOgmZl1uwQQEe3A7pJ2IP1gjyL9o78xIqbWsc5JwEWS7iH9uO9PquefAyDpwmx9e2ftLwF+Dpwn6WjSPgCTgSsi4tU61msZlwDMzKyefQAAiIibgZt7usKIuEzSKNKphdcgnVp454go/JsfV9b+XUk7kXoa7gXeIF134IiexpB3LgGYmVndCQCApNWA5cvHd3Ein/J2U4ApVaZNqDDuSeBz9UVp1bgEYGZm9ZwJcBVS1/sewHJVmg1tRFDWXOU9AE4AzMzyp54egLNIx+H/DniEdFy+DUDl+wC4BGBmlj/1JABfAP4jIs5qVjDWN1wCMDOzuq4GCDzZlCisT3knQDMzqycBuBT4UrMCsb7jwwDNzKyeEsCNwOmSVgauA14vb5AdImj9WIRLAGZmVl8CcHV2vx6wb8n4AJTd+yiAfq6jI91LMHx4GnYJwMwsf+pJAD7btCiszxT+7Q8dmm6l48zMLD/qORXwtGYGYn2j8GM/bFi6lY4zM7P8qPtMgJJGA1uTrgVwbUS8Lml5YHFEdDQ6QGusQnd/aQ+ASwBmZvnT7aMAlJwMvEi6+t/vgXWzyVcDP214dNZwLgGYmRnUdxjgkcAPgGOAT5F2/Cu4FvhiA+OyJnEJwMzMoL4SwHeBYyLiBEnle/s/A2zQuLCsWVwCMDMzqK8HYE3grirTFgMr9j4cazaXAMzMDOpLAF4CNqsy7WPAjN6HY81W+LdfWgJwD4CZWf7UkwBcDvxC0mdKxoWkjYDDSKcKtn7OPQBmZgb1JQBHA08AtwBPZ+MuJ10a+GngxIZGZk3hBMDMzKC+EwEtkDQB2Av4PGnHv9eAY4GLI8IdyQNAaQmgkAB0dKRrBEjV5zMzs8GlWwmApBHAZcBpEXERcFFTo7KmKe0BkGDIkJQAtLcX9wkwM7PBr1slgIhYDOzU3fbWf5WeBwBcBjAzy6t6ftBvJ50C2Aaw0vMAgI8EMDPLq3o6fQ8DrpL0LnAVMIt0CeD3+FoA/V9pCaD03j0AZmb5Uk8PwCOks/1NBp4jnfxnScltccOjs4YrLwH4dMBmZvlUTw/AMZT947eBp7wE4NMBm5nlUz2HAR7dxDisj7gEYGZm0MO9+iWtJGkdScMbHZA1l0sAZmYGdSYAkr4o6QHgLeBZYPNs/G8l7dWE+KzBXAIwMzOoIwGQtCtwNTAX+AlQet64GcA+DY3MmsIlADMzg/p6AP4LOC8iPgecXjbtUapfKdD6kdJTAZfeuwfAzCxf6kkANiadDhiWPRrgDWBUQyKypnIPgJmZQX0JwNvA6CrT1gXm9DoaazqfCtjMzKC+BOBvwJGS3l8yLiQtB/wAuL6RgVlz+FTAZmYG9Z0I6KfAPcCTwHWkMsARwEeBkcCujQ7OGs8lADMzgzp6ACJiJvBx4M/ARKAd2B64C/hURLzcjACtsVwCMDMzqK8HgIh4Efh/TYrF+oBLAGZmBj08E6ANXC4BmJkZ1NkDIGk8sCcwDli+bHJExI6NCsyawyUAMzODOhIASfsBZwOvA08Bi8qbNDAuaxKXAMzMDOrrATgMuAT4TkQsblI81mQuAZiZGdS3D8CapFMB9/rHX9KBkmZIWijpfknbdXO+bSUtlfRob2PIK18N0MzMoL4E4H5g/d6uUNIewGTgeGAL4A7geknjasy3KnAh8PfexpBnvhqgmZlBfQnAIcCPJG3fy3UeCpwfEedGxOMRcTAwCzigxny/Ay4A7uzl+nPNJQAzM4Ma+wBIeoHOF/4ZCfxD0nzSBYBKRUSsU2N5I4BPAKeUTboR+HQX8x0IjAGOA35eYx1Tq0xq62q+vPDVAM3MDGrvBPh3lr3yX2+MBoYCs8vGzwZ2qjSDpM1JlyLeOiLaJR9s0BvuATAzM6iRAETEvn0UR0XZhYYuAw6PiBndmSciJlRZ1lRgfMOCG6B8HgAzM4M6TwTUAHNJ1xAYUzZ+DPBKhfZrABsD50k6Lxs3BJCkpcDOEXFjs4IdjHweADMzgzpPBSxpc0lXSJqTHY43R9Kfsm76mrJDCO8nXUyo1ETS0QDlXgI2J9XvC7dzgGey4UrzWBdcAjAzM6jvTICfBKYBC4BrSP/YVwe+BOwiafuIuL8bi5oEXCTpHuB2YH9gLOmHHUkXAkTE3hGxBOh0zL+kV4FFEeFzAfSASwBmZgb1lQBOIP0Y7xgR7xRGSloZuCmb/rlaC4mIyySNAn5G6uJ/lNSV/1zWpMvzAVjvuARgZmZQXwKwNfDt0h9/gIh4R9JJpGP0uyUipgBTqkybUGPeo4Gju7su68wlADMzg/r2Aah1OGAjDxe0JnEJwMzMoL4E4G7gqKzL/z2SVgR+AtzVyMCsOVwCMDMzqK8EcBQwFXhO0p9Jp+9dHdgZWBEfYz8guARgZmZQRwIQEfdI2hr4BfB54APA68A/gGMj4pHmhGiNVO1UwE4AzMzypda1AIYAuwAzIuLRiHgY2L2szebAuoATgAGgWg+ASwBmZvlSax+AbwF/BOZ10eYd4I+S9mxYVNY0LgGYmRl0LwE4r6vz8EfETNKlevdpYFzWJL4aoJmZQe0E4OOkS/XWchOwZe/DsWZzD4CZmUHtBGBl4I1uLOeNrK31cz4PgJmZQe0EYC6wTjeWMy5ra/2czwNgZmZQOwG4je7V9vfN2lo/5xKAmZlB7QTgdGBHSadJGlE+UdJwSacDOwCnNT48azSXAMzMDGqcByAi7pR0GHAq8E1JNwKFq/atA0wERgGHRYRPBTwAuARgZmbQjTMBRsTpkh4gne//q8D7skkLSKcGPjEibm1ahNZQLgGYmRl081TAEXELcEt2ZsDR2ejXIsI/GwOMSwBmZgb1XQyIiOgAXm1SLNYHXAIwMzOo73LANgi4BGBmZuAEIHd8NUAzMwMnALnjqwGamRk4AcgdlwDMzAycAOSOrwZoZmbgBCB33ANgZmbgBCB3fB4AMzMDJwC54/MAmJkZOAHIHZcAzMwMnADkjksAZmYGTgByxyUAMzMDJwC54xKAmZmBE4DccQnAzMzACUDuuARgZmbgBCB3XAIwMzNwApA7PhWwmZmBE4Bc6egoDg/JXnn3AJiZ5ZMTgBwp3wEQnACYmeWVE4AcKd8BEFwCMDPLKycAOVK+A2DpsHsAzMzyxQlAjrgEYGZmBU4AcsQlADMzK3ACkCMuAZiZWUFLEgBJB0qaIWmhpPslbddF269JulHSHEnvSLpb0pf7Mt7BwiUAMzMr6PMEQNIewGTgeGAL4A7geknjqswyHrgZ2CVrfx1wZVdJg1XmEoCZmRUMq92k4Q4Fzo+Ic7PHB0v6AnAAcGR544j4YdmoX0raBdgVuLWZgQ42LgGYmVlBnyYAkkYAnwBOKZt0I/DpOha1MvBGlXVMrTJPWx3LH5RcAjAzs4K+LgGMBoYCs8vGzwZW784CJB0ErAVc1NjQBr9KJYDSBCCi72MyM7PWaEUJoMck7QacDOwREc9VahMRE6rMO5W0P0FuVSoBDBkCUvrx7+joPM3MzAavvu4BmAu0A2PKxo8BXulqRkm7k/717x0R1zYnvMGt/EqABd4R0Mwsf/o0AYiIxcD9wMSySRNJRwNUJOnfST/++0bEFc2LcHCr1ANQ+tj7AZiZ5UcrSgCTgIsk3QPcDuwPjAXOAZB0IUBE7J09/gbpx/9w4BZJhX0FFkfE630c+4BWaSdAcAJgZpZHfZ4ARMRlkkYBPwPWAB4Fdi6p6ZefD2B/UpynZ7eCacCEZsY62FTaCRBcAjAzy6OW7AQYEVOAKVWmTejqsfWcSwBmZlbgawHkiEsAZmZW4AQgR1wCMDOzAicAOeISgJmZFTgByBGXAMzMrMAJQI64BGBmZgVOAHLEJQAzMytwApAj1U4F7ATAzCx/nADkSLUeAJcAzMzyxwlAjrgEYGZmBU4AcqRWCcA9AGZm+eEEIEdqlQDcA2Bmlh9OAHLE5wEwM7MCJwA54vMAmJlZgROAHPFOgGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAHPHVAM3MrMAJQI74aoBmZlbgBCBHvBOgmZkVOAHIkWo7AfpqgGZm+eMEIEd8NUAzMytwApAjLgGYmVmBE4Ac8XkAzMyswAlAjvg8AGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAAUpKt3rUuhqgewDMzPLDCUCO+FTAZvXrSbJtNhA4AcgR7wRoZmYFTgAGuDvv7H5bXw3Q+spg/Nf88sutjsCssZwA9AP1flk+8EBxeO+9Yf787s3nEkDPdOf1GYw/eJX0t+1sdjz/+ldx+DvfgYjmrcv63/trsHMC0I889VTtNh0dcOCBxcfPPANHHdW95beiBOAPdGP15+ezENuECcVxTz/dvPU1+8d4yRL45jeLj2+4AX772/qX059fs/5k1qxWR9A9g+n1bEkCIOlASTMkLZR0v6TtarQfn7VbKOlZSfv3VazN9PbbcMABxcfbbAO33db1PL//Pdx9d/HxsGEweTJMm1Z7fT05D0Bv3uxvvFEcLu21qEdh/T0tT/Qm/rlzYbfdio9//vPKy3v44eLwf/83LF7cs/XVcsstxeE77mjOOroyfXpx+E9/Kg5HwCWXFB+Xvhe33hpuvbV7y6/ntXrzTdhzz+LjuXO7N189jj2282cN4NBDYebM7i+jNKmu9dnuz3rzOZo3r/r8hfGf+hSMHVscf/bZKQFrdCy91dFRHD7kEDjuuGI8PUlII1qcUEREn96APYAlwPeAjYEzgHeBcVXarwfMy9ptnM23BNitzvVOHT9+fDTSwoURt98ekV7GiLPPjrjvvohFi6rP09ER8fjjxXnKb8stF3HZZant229HPPVUxIsvRrS3R8ydGzFqVOf2//Vf6X699SIuvTRi8uTitOuvj5gxI2LWrBRXYfwdd3SO6bzz0vi9906PFy2KuO22iJ//vDjPfvtFXHxxxD//GfHQQ2kZ110XccYZEQcfXGx3ySURzz+fnovSWIcMiTjooIjXX++87qVLI2bOLLa7/faI6dNTTDvsUBy/5poRxxyTlv3QQxEXXlic9ve/p+W++mrEX/9aHP+xjxWHJ0xI8S9YkJ7Ha64pTrvuuohXXukc11/+EjFmTPXX6Xe/i3j33Yjf/CZi+eU7T9t887Qd8+en17vwur/9dsQLL0Q8/HDELbcU2591VnH4wAOLw8cdF3HrrRGzZ0d8//vLxrDnnun9sWRJ59iXLImYM6fr92G5RYsiXnstPY9vvhnxzjvpPVd4jU48MWL48M7r/+53I555JuLLX+48/swzKz9nDz+8bKxvvJHeM3vsUWw3ZUra5vnzI+66qzj+pptSjLfeGjFuXOdlr712alvu2WeLbW64Ib1mhefooYeK0+bMKc4zf37Etdem96xUbLP77ul+hx2Kz03htZ07N+KxxyLuvTfigQfSe3jKlIj11+8c5667RjzxRJqvvT29J0qf61JLl6bnZ+bM9Ll7++3itHffTZ/3wnInTYp48MHKyynV0RExb17Ev/4V8Y9/dH5un3kmre+JJyJuvrk47XOf6/z5nj+/+vLb29Nn9KabOn+nlT6H06en76Xy93T556hwO/zw4vC//Vvn9/+ZZ0bceWf6vP3tb8Vphff+okWdt+XXv06v0bx5xc9m4bmeNSvi/vsjrrgi4qSTivOcf36K+fLLIzbbrPp3wtprF4d/9KPi8OTJKbann4548smIRx9NMf34xxHrrlts9+Uvp++9uXO7fg3rMX78+ACmRlT5Xaw2oVk34G7g3LJxTwMnVGl/EvB02bjfAndWaT+1yu3NRiUAixdXfxOU3lZdtTi86aYRW20Vsdpqndt88pPF4dIv//Lb+95X/EHaYYfim3fRos4/dN25Pfhg5+0p/TEdMqS+ZXX3NnRocfhDH0q39dePGDGiOeurdlthha6njxzZ+fF22xWHv/OdztMqfWFtsEH17e7trfQHuPRLVYoYPTqtu/Q9BxHvf3/Ehz+ckpKNNy6OX2edrrejdP7y92z5+iFilVWKwxHF4YMOWna+jTaKWGut3j8fW2657POz887pi/QrX4nYcMPKz+Fmm6XPU/m0NddMt9JxRxxR/Jy8+mrEBz9YnLbyyo1973Wn3dixEZ/5TNdtSj9TK6zQ+T1dmtD09LbKKuk7aKedIiZOTMl1V99BldZZ/rm46qqU1BQel3+O6r0NGxaxySYRK61Uvc3QoZ3ft/XeJk2KOPLI3j+flW5vvNGQn6r+lQAAI4ClwNfLxp8FTKsyzy3AWWXjvp71Agyv0L7pCUBE8YXadNPi8Le+lb5sa724q69eHC79R9TREXHyycVplb6kIPUglCrtUShNIiZMKA6XfkDL/yU88kjl9ZT+sz/xxOLwZptFfOpTxcennFIc/vzni8OXX15MVB5+uPrzscYaxeFttikOn3tucfimmyK++tXi4912Kw5vtVVxeNtti8Ol/x7PPjvi4x8vPt5++8rDpbeTTkr/DCq97qVxXnRRcfq8ecXx5T+SpV/an/lMcXj//YvDv/pV59ey9P312GPF9cyYURxf/gXbmy/5kSOr/7Bdd11x/aX/nnfeOfVsVNLRUWy33nqVlzthQsRppxUf77JLcbh0+7feujh8xBGd/+Udckj17SkMlycMpT8yK65YHB42rDhc3otS2nNUbT1tbcXhyy4rDr/0UsT3vlff67HKKp3/WZbeSp+Pffap/7Uu/ayUfgY22KBz4nvllcXh0j8s1W6rrdb5/T17dnH4hz8sDn/728XhcosWFaeVfvdcfXVx+OyzOz8XO+5Y+TNQ+h7aa6/qcY8eXTnOr3+9ODxlyrIxFx6X9rKeempxuLSnozQpPeyw1NPa1bJ7q1YCoIjoYfGgfpLGAi8B4yPilpLxvwC+GREfrjDPU8AfIuKYknHbA9OAsRHRrV1HJE0dP378+KlTp/ZyK5LHHks1q1VXXXbawoWwaFGqWy9ZAgsWwLvvptvo0fChD3Vd83nrrXS/yirFdm+9lXb4W3VVWH/9hmxCJ4V4l1su7SPQm5pUROX5I+D551ONvPC2GzsWVlqp98tub0/jh9TYq+Xll2HUqLSdpTo6Uq2yvT09DyuskG5deeopWHFFWHPN6m2WLEnLXXFFGD686+VVs3gxjBhRffrSpakG/vbb8IEPpPfI0KFpm15/HV59NbUZNizdhg5NtyFD0uORI9O2lj+vS5em992bb8Jaay37nC1cCE8+CR/9aH21+5dfTq/5yiunW/lOqVCsG5e/BkuXpvfqiisuO8/06fDCC2m7OzpgjTVgyy07L//NN1PMG26YnquC9nZ49tn0vIwbVzmmgo6O9JosWpTuV14Zll++e9sP6XugoyM9B4X3a0dHOppn6dL0Phk+PMVQ+n5ub4fnnktHJmy4Iay77rLLXrSoOBxR/A5aujTFuMIKy+4DVK+nnkpxFH6uhg0rvu9GjUrPR1fefDPFM3p07+Loyrx58MQTsNpqsPbaldssXpye84ULU/xdfcb6Unt771+jggkTJjBt2rRpETGh0nQnAGZmZoNQrQSgr48CmAu0A2PKxo8BXqkyzytV2i/NlmdmZmZ16tMEICIWA/cDE8smTQSqHdh0Z5X290VElQNFzMzMrCutOA/AJGBfSd+VtLGkycBY4BwASRdKurCk/TnAmpJOz9p/F9gXOKWvAzczMxssutjVpTki4jJJo4CfAWsAjwI7R8RzWZNxZe1nSNoZOA04AHgZOCQi/rcPwzYzMxtU+jwBAIiIKcCUKtMmVBg3Dfh4k8MyMzPLDV8LwMzMLIecAJiZmeWQEwAzM7MccgJgZmaWQ316JsBWkvTiyJEj12xra2t1KGZmZk03ffp03nrrrZciYq1K0/OUADwIfBB4pheLacvup/c2nn6gLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqUtu5/ei2V8CJgTEVtUmpibBKARJE2FyocqDjSDaVtgcG3PYNoW8Pb0Z4NpW2BwbU9fbIv3ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5ZATADMzsxzyUQBmZmY55B4AMzOzHHICYGZmlkNOAMzMzHLICYCZmVkOOQHoJkkHSpohaaGk+yVt1+qYekLSkZLulfS2pDmSrpW0WavjaoRs20LSma2OpackrSHpguy1WSjpn5LGtzqunpA0VNKxJZ+bGZKOkzSs1bHVIml7SddIeil7T+1bNl2Sjpb0sqQFkqZK2rRF4dbU1fZIGi7pJEkPS5onaZakSySNa2HIVdV6bcra/jprc3gfhliX7myPpI0k/Z+kNyXNl/SApI17u24nAN0gaQ9gMnA8sAVwB3B9f/2A1DABmAJ8GtgBWArcJOkDrQyqtyRtDXwfeLjVsfSUpPcDtwMCdgE2Bg4GXm1hWL3xE+Ag4BDgI8APs8dHtjKobloJeJQU84IK0/8TOIz0+nyS9Br9TdLKfRZhfbranhWAjwP/nd1/BVgb+Gs/TdZqvTYASNod2Ap4uY/i6qkut0fSeqTvhRmk7+zNgJ8B7/Z6zRHhW40bcDdwbtm4p4ETWh1bA7ZtJaAd+FKrY+nFNowE/gV8FpgKnNnqmHq4HccDt7c6jgZuz5+BC8rGXQD8udWx1bkd7wL7ljwWMAv4acm49wHvAPu1Ot56t6dKm02AADZvdbw92RZgHeAlUhI9Ezi81bH2dHuAS4CLm7E+9wDUIGkE8AngxrJJN5L+RQ90K5N6gt5odSC98Bvgioj4R6sD6aVdgbslXSbpVUnTJf1AklodWA/dBnxW0kcAJG1C+gdzXUuj6r31gNUp+U6IiAXALQyO7wSAVbL7Afe9kPVa/BE4LiIeb3U8vSFpCPAl4J+S/pqVBu/NeqV7zQlAbaOBocDssvGzSV8CA91k0vWm72xxHD0i6Xuka17/rNWxNMD6wIHAs8DnSa/NiaRu84HoJOAi0pfXEuAxUo/AlNaG1WuFz/2g/E7I/vScClwbES+2Op4e+CUwNyLObnUgDbAaqZf2KFLCOZGU3FwsaZfeLrw/1nesj0iaBGwLbBsR7a2Op16SPkzqNt82Ipa0Op4GGALcFxGFGvmDkjYkJQADccfGPYC9gb1IP/5twGRJMyLid60MzCrL/j3/AXg/8OXWRlM/SROAfUnvtcGg8Cf96oiYlA1Pl7Ql8APgL41YuFU3l1QjH1M2fgzwSt+H0xiSTgP2BHaIiGdbHU8PbUPqoXlM0lJJS4HxwIHZ4+VaG17dZgH/LBv3ODAQdzYFOBk4JSIujYhHIuIiYBIDYyfArhQ+94PtO6HQdf5RYMeIeK3FIfXEBGANYFbJd8I6wEmSBmJvxlzSjtpN+V5wAlBDRCwG7id1vZSaSDoaYMCRNJnij/8TrY6nF64CNidl+4XbfcCl2fDilkTVc7cDHy4btxHwXAtiaYQVSMlzqXYG/vfODNIP/XvfCZKWB7Zj4H4nDAcuI/34fzYiBmoiM4W0DW0lt5eB04AdWxVUT2W/P/fSpO8FlwC6ZxJwkaR7SF/S+wNjgXNaGlUPSDoL+DZph7M3JBVqlu9GRO8PK+lDEfEm8GbpOEnzgNcj4tFWxNRLpwF3SPop6ct4C9IhdEe1NKqeuxY4QtIMUglgC+BQ4MKWRtUNklYi7VsCKWEZJ6mN9N56XtLpwFGSngCeonhY1iUtCLemrraH9AN5Oelwxi8BUfK98Fa2g2O/Ueu1oeyw2Wz/k1ci4sk+DbSburE9/wP8SdKtwM2ko52+QfoO751WH/YwUG6knbNmAotIPQLbtzqmHm5HVLkd3erYGrR9UxmghwFm8e8CPAQsJP2wHEJ21c6BdiMdYXI66Z/KAtLOjccDy7c6tm7EPqHK5+T8bLqAo0llm4XANGCzVsfdk+0B1u3ie2HfVsde72tTof1M+vFhgN3ZHtJ+DU9ln6OHgT0bsW5fDtjMzCyHBnotzszMzHrACYCZmVkOOQEwMzPLIScAZmZmOeQEwMzMLIecAJiZmeWQEwCzFpC0r6Soctup1fENFpI+IWm+pDVLxk2VdFuV9t/NXoN161jHrpJmZyd0MRswnACYtdbXSdc0KL3d09KIBpeTgd9HxEtNXMfVpBMC/UcT12HWcD4VsFlrTY+IZ7rTUNJyEbGo2QENFpI+QTpt6sHNXE9EhKTfAMdKOiEiFjZzfWaN4h4As36opESwvaTLJb0J3J1NGybpSElPSFok6WVJp2YXpCldxvqS/pJ1gc+RNFnSfuVd3Nnjo8vmXTcbv2/Z+PGS/i7pHUnzJN0gabOyNlMl3SZpJ0kPZOt/VNJXK2znxyRdKek1SQskPSnpyGzaGVnX+vCyeVbO1n9ijafxu8DDEfFYjXZVSTq6i1LNviVN/0S6hO7Xerous77mBMCstYZmP+iF29Cy6ReTrj63O3BENu4PpIvPXEK6dsAJwP/L2gIgaQTwN9IFeA4inUt8vWy+HpG0C/B30kVvvgXsRTrf/62S1i5rvgEwmXQhra+Rusgvl/ShkuVtBdyZtf1xti2TgLWyJmcDqwHlicNewIrAr2uE/AXg1i62Z1j5jWW/E3/LsiWa/yVd1fCpQqOImEu6ROsXasRk1m+4BGDWWuWXY74d2Lbk8RUR8Z+FB5K2A/YA9omIwlX1bpL0OvAHSW0RMR3YB1gf2CYi7srmvR54pBexTgamRcRXSuL5B+kiP4cBPyppO5p0wayns3YPkJKAfyddEAjgFOA1YOuImJ+Nu7mwgIj4p6RpwH6kf9gF+wE3RsSMaoFKGkO6yM1DVZp8BljSxbYWYngReO868pK+TkpofhQR5Zf+fRDYutYyzfoLJwBmrfVVSn5ggHfKpl9Z9vgLwGLgiuwfa8GN2f32wHTSP9UXCj/+ABHRIelPpKvY1UXShqR/6seXrXc+6V/89mWzPF348c/W/aqkV4Fx2fJWIP0In1zy41/JFOBSSRtGxNOSPknq1ajV1T42u59TZfpDpBJBua9QpZdE0pbABcCUiPhVhSZzStZr1u85ATBrrUdr7AQ4q+zxasAIYF6V9qOy+zWA2RWmVxrXHatl97/LbuWeL3v8eoU2i4DCfgqrkrrbX6zQrtSVwCukf/2HA/uTrl9/bY35CuupttPkuxFxX/nI7Drsy5C0FnAN6XLTP6yyzAUl6zXr95wAmPVv5dfrfo10/fntqrR/ObufBWxaYfqYCuMWkZKKUqPKHr+W3R8J3FRhGYurxFPNG0AHsGZXjSJiiaTfAgdK+h/gG8CpEbG0xvIL8a5aZ1zLkLQiKeGYC+wREe1Vmn6gZL1m/Z53AjQbWP5K+pc5MiLuq3ArJAB3AmtLeq8mLWkIqQZf7jlgs7Jxu5Q9fhKYCWxaZb0P17MRWbf/bcC3JL2vRvNfk/awvxxYDji3G6uYSUqU1q8nrnKSRNrpcg3gixFRXqIptR7peTIbENwDYDaARMRUSX8k7QMwiXTSoA7SDm87Az+JiKdIteojgP+TdBTwKqn7fJUKi70U+JmknwJ3kXoX9ixbb0g6CLg6O8LgT6R/xGOATwPPR8SkOjfncGAacKekU0nlgPWBtoh479j9iHhJ0jWk/SWujYgXai04IhZLuhvYqs6Yyv0E2JXU7T9WUmmN/18RMQfeSxS2Iu2zYDYguAfAbOD5FmlHvt1JZ6G7AvgB8DRZjT8iFgMTSTsETiElBDOA4yos7wTgzGwZVwEbA98ubxQR15F29luRdHjcDcD/AKuTehzqEhH3knYEfAE4A7iOdDa9SvsFXJ7d1zr0r9RlwA5ZF35PfSS7n0zaxtJbaS/Jp0nlhkt7sS6zPqWI8hKjmQ1W2clrzgPWi4iZrY2m+yRdTEoW1o+Ijm7OswopmTgwIv7Q5PjOBjaLiGr7Zpj1Oy4BmFm/le3D0EY698Gh3f3xB4iItyWdBPynpIujSf92JK1OOu+CTwJkA4oTADPrz+4knXnwAnpWX58EDCXtxPdyjbY9tS5wWETc0qTlmzWFSwBmZmY55J0AzczMcsgJgJmZWQ45ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5dD/B87GMaNM5oqsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "# ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, coh, yerr=err_coh, lw=2, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Coherence\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb.txt b/_sources/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb.txt new file mode 100644 index 000000000..8b75c0359 --- /dev/null +++ b/_sources/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb.txt @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we will analyze a NuSTAR data of the black hole X-ray binary H1743-322 with Stingray. Here we assume that the user has already reduced the data with the official pipeline and ran `barycorr` or other tools to refer the event times to the solar system barycenter." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from stingray.powerspectrum import AveragedPowerspectrum, DynamicalPowerspectrum\n", + "from stingray.crossspectrum import AveragedCrossspectrum\n", + "from stingray.events import EventList\n", + "from stingray.lightcurve import Lightcurve\n", + "from stingray.gti import create_gti_from_condition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quicklook NuSTAR data with Stingray" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us load the data from two event lists corresponding to the two detectors onboard NuSTAR. `fmt='hea'` indicates event data produced by HEAsoft tools or compatible (e.g. XMM-Newton)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "evA = EventList.read('nustar_A_src.evt', 'hea')\n", + "evB = EventList.read('nustar_B_src.evt', 'hea')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the sake of a quicklook, let us join the two event lists" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "all_ev = evA.join(evB)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us calculate the light curve and plot it. \n", + "\n", + "In red, we show the bad time intervals, when the satellite was not acquiring valid data due to Earth occultation, SAA passages, or other issues." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "lc = all_ev.to_lc(100)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5000.0, 6500.0)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAGoCAYAAABSXLPLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACkC0lEQVR4nO39efxkRXX/j79O9/s9C+sMq+wDiiCibCPihiB+EJcETTTiEtF88iUaNSafREVjXGN+xiVR4xajuMQFN1AUREbFBQRk37cBBhi2GRgYmIWZeb+7fn/0vd13qapbe9/u93k+HjPv7tv31qlbt5ZzT506RUIIMAzDMAzDMAwjpzPqDDAMwzAMwzBMm2GFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyGqVFnQMdOO+0klixZMups4G/uuQdP2LwZAHD/vHn47z32UJ77zjvvxKNTU4Pzm3j2I4/gRYcdJpWlk/erK6/E7xYtMpKhy3PTvVXzo2OnzZvx9gMO0J6jkmcj5+iHH8ajU1N4xdOfbnR+nj4APGvtWtyxcKHRNS9aswbPPuIIYxlVeab3c/Bjj+FVFveS84Nrr8U+mzfj7B12MDp/6dq1+JNDD7WWA9jdj2u52choaoeh5By7Zg2OcawDP7j2Wly3zTZG5+63YQNOfupTneT8/vLL8UvDOgC4ld2vrrwSm4hwyfbbG52/x6ZNuGf+fCd5Ns+HhMB98+cb9ZlFzr/iCpy+665Gcu6fNw9HPPooTnnKU2r5a5J18eWX4+eGz8ak/1XJ+80VV+D8xYuN5OjqWtO9nXvVVbjIsA6Y1GmVvEsuvxznGJbb0Q8/jOMOP9zoXJ38Jo5fswbPSTAeuPYFtv3n8x9+GK89+OCoco5dswbzAOdxdBRcfvnlDwohdpb9Rm0OK7d06VJx2WWXjTobwBvfCOSK+4oVwNe/rj53yRLgmGOG5zfxoQ8BxWdQlKWTRwR84ANmMnR5brq3an50fOlLwP33689RybOR86EP9e+/1zM7P08fAH74Q+Cf/slcjmv7sLmff/s3wLADKjFvHrBli3k9+MhHgNlZezmA/fNxKTcbGU3tMJQcnzowbx7w3veanfvJTwLr1rnJsekLALeyIwK6XeB97zM7/1vfAl7/ejd5Ns/nxz8GDj3UrM8sQgScfLKZnBUrgNNPBx5/vJ6/Jlm+/XSM8UBX15ruLZScJnk2clL106nkuPYFtv3nt74FzMzElfOhD/X/tljPrEJElwshlsp+Y5cMhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDUYKMxEtIqIfEtFNRHQjET2r8Ns/EpEgop2y70REnyWi5UR0DREdXjj3ZCK6Nft3cvjbYRiGYRiGYZiwTBme9xkA5wohXklE8wBsBQBEtBeA4wHcVTj3xQD2z/49E8AXATyTiHYA8AEASwEIAJcT0VlCiIeD3AnDMAzDMAzDRKDRwkxE2wM4GsBXAUAIsVkI8Uj2838CeBf6CnDOiQC+KfpcDGAREe0G4EUAlgkh1mRK8jIAJwS7E4ZhGIZhGIaJgIlLxr4AVgP4GhFdSURfIaKtiehEAPcIIa6unL8HgLsL31dmx1THSxDRKUR0GRFdtnr1apt7YRiGYRiGYZjgmCjMUwAOB/BFIcRhANYD+CCA9wJ4f+gMCSG+LIRYKoRYuvPOO4dOnmEYhmEYhmGsMFGYVwJYKYS4JPv+Q/QV6H0BXE1EKwDsCeAKInoCgHsA7FW4fs/smOo4wzAMwzAMw7SWRoVZCHE/gLuJ6IDs0HEArhBC7CKEWCKEWIK+Un14du5ZAN6QRcs4CsBaIcR9AH4B4HgiWkxEi9FfLPiLCPfEMAzDMAzDMMEwjZLxdgDfziJk3A7gTZpzzwHwEgDLAWzIzxVCrCGijwC4NDvvw0KINU65ZhiGYRiGYZhEGCnMQoir0A8Hp/p9SeGzAPBWxXmnATjNKocMwzAMwzAMM0J4pz+GYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0WCkMBPRIiL6IRHdREQ3EtGziOgT2fdriOhMIlpUOP89RLSciG4mohcVjp+QHVtORKdGuB+GYRiGYRiGCYqphfkzAM4VQhwI4BAANwJYBuBgIcTTAdwC4D0AQEQHATgJwFMBnADgC0TUJaIugM8DeDGAgwC8JjuXYRiGYRiGYVpLo8JMRNsDOBrAVwFACLFZCPGIEOI8IcRMdtrFAPbMPp8I4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3MZhmEYhmEYprWYWJj3BbAawNeI6Eoi+goRbV05568A/Dz7vAeAuwu/rcyOqY6XIKJTiOgyIrps9erVhrfBMAzDMAzDMHEwUZinABwO4ItCiMMArAcw8D8mon8GMAPg2yEyJIT4shBiqRBi6c477xwiSYZhGIZhGIZxxkRhXglgpRDikuz7D9FXoEFEbwTwMgCvE0KI7Pd7AOxVuH7P7JjqOMMwDMMwDMO0lkaFWQhxP4C7ieiA7NBxAG4gohMAvAvAnwohNhQuOQvASUQ0n4j2BbA/gD8CuBTA/kS0LxHNQ39h4FkB74VhGIZhGIZhgjNleN7bAXw7U3RvB/Am9BXg+QCWEREAXCyEeLMQ4noi+j6AG9B31XirEGIWAIjobQB+AaAL4DQhxPVB74ZhGIZhGIZhAmOkMAshrgKwtHL4SZrzPwrgo5Lj5wA4xyJ/DMMwDMMwDDNSeKc/hmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAyThEc2bMbqxzaNOhvWTI06AwzDMAzDMMzc4NAPLwMArPjYS0ecEzvYwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwTHJmZnv48E9vwKpHHx91VhphhZlhGGaO8vqvXIJ/+fF1o84GwzBzlAtvewinXXgH3nPGtaPOSiOsMDMMw8xRLlj+IP734jtHnQ2GYeYoPSEAADM9MeKcNGOkMBPRIiL6IRHdREQ3EtGziGgHIlpGRLdmfxdn5xIRfZaIlhPRNUR0eCGdk7PzbyWik2Pd1KSxeaaHLbO9UWeDYRiGYRgmOO1Xl80tzJ8BcK4Q4kAAhwC4EcCpAH4lhNgfwK+y7wDwYgD7Z/9OAfBFACCiHQB8AMAzARwJ4AO5ks3oefL7fo4X/efvRp0NhmEYhmGYYNCoM2BBo8JMRNsDOBrAVwFACLFZCPEIgBMBfCM77RsAXp59PhHAN0WfiwEsIqLdALwIwDIhxBohxMMAlgE4IeC9TDS3P7h+1FlgGIZhGIYJxjhYlnNMLMz7AlgN4GtEdCURfYWItgawqxDivuyc+wHsmn3eA8DdhetXZsdUx0sQ0SlEdBkRXbZ69Wq7u2EYhmEYhmGYwJgozFMADgfwRSHEYQDWY+h+AQAQQggEelEQQnxZCLFUCLF05513DpEkwzAMwzAM0zImyiUDfUvwSiHEJdn3H6KvQD+QuVog+7sq+/0eAHsVrt8zO6Y6zjAMwzAMw8xRhGi/c0ajwiyEuB/A3UR0QHboOAA3ADgLQB7p4mQAP8k+nwXgDVm0jKMArM1cN34B4HgiWpwt9js+O8YwDOPFlXc9jCWnno3L73w4mczP/upWfOm3tyWTxzAMM2kQjY+NecrwvLcD+DYRzQNwO4A3oa9sf5+I/i+AOwH8RXbuOQBeAmA5gA3ZuRBCrCGijwC4NDvvw0KINUHugmGYOc1vb1k9+HvEPmmC7/zHslsAAG9+/hOTyGMYhpk0xsGynGOkMAshrgKwVPLTcZJzBYC3KtI5DcBpFvljmLHgOR/7NfbeYSt895SjRp2VOckY9bnBuPKuhzHbE9KOmWEYhgmLqYWZYRgN9zyyEfc8snHU2ZjzjM/knj+v+MIfAAArRpsNhmEYZ8bJJYO3xmYYZuyZgwZmZ4QQeN+Pr8X1964ddVaYFnDnQxzjn2FMYIWZYZiJYRTGinsf2Yjf3Lyq+cSW8PiWHr518V1449cubT6ZMebc6+7Dw+s3jzobVvzultV4/id+g59cxQGrGKYJVpgZhhl/NE7MKx/egD/c9mA00S/+zO9Z+ZzjrH5sE978rSvwN/97+aizYsXN9z8GALh2Jc82MEwTrDAzDDMxkMSL+QWf+i1e+z+XSM4Ow9qNW6KlzYwHW2Z7AIC7H94w4py4wS5NzCj4f9+7atRZsIIVZoZhJprNM70kcn5+7X2YmU0jizEjj899b6IFueMWrWWM1lsxE8gZV94zVgu1WWFmGA8eXr8Z+77n7FFnY87TBj3lLd++Al/+/e2jzgZT4NuX3AUAuGB5PJccYPwVz3FT9BlmFLDCzDAeXLXyER5sWsSoFZdVj24abQaYkdAb8z5AtOKV049bHnhsZDtv/vTqe3H+TeOz8JdxgxVmhmHGnra8tHRGrbFbYJLTWx94DHevGU+/3JTMzvYrYCrF87t/vAtX3f2IdzqmMXCX3fAAnvHRX7ZarT7xcxfiYz+/Cb0RvL28/btX4k1f54W/kw5vXMIwHoyPejQ3GPXzmOqOOgfmmKgV/+c/fwdgAjZHiaxDzSZ+Y3vPGdcCAFZ87KVJ5H3wrOux+rF2z55s3DILoB3uWYw9bTF66GALM8N4ME67FE0ybZlSHicL81wg1dOY7fFiz7bQG6Hm9fUL78AdD/JGMDaMU5fJCjPDMFG5ZuUj2Lh5NomsUXe+U53x6f3HJ6ftZ9yDo4yDdc+U//rVrSML9fjBn96AV33pDyORzcSHFWaG8YCVDj2PbNiMP/3chfiHyPE22zLgd8ZIYW5JkU0EM2NqYR6f2mrOZ3+9HB/4yXUjk//o4zMjkx2Ch9Ztwu2r1406G62EFWaGYaKR+xWGWKDki0igVcfUl5/38V9j6b/+0judtrivpCT2Pc9mC83a8uIWmhRtJySj3Exo3F9Cjv74+XjBp3476my0ElaYGcaDUbsAjAttUNJSLJ6P6ZJx95qNeHCd/8KrvBjmWtX91sV3Bik/GbNjGlduUvuvmRE+j3Ev0/WJ3OeqtGGMaIIVZoZhopFvVd0GA1WKxUBj4ZLRgmeRmjse3ID3/fg6vPXbV0RJf2BhjpJ6PPLaOm4W5CZS7e4pgxf+2nHmFfeMOgvGsMLMMB7QnLPT2ZF67NBFLQmpMKsUjC4Plq0kV6Ae3rA5SvrjamE2ZdzubqQW5pFJHk/OuJIVZoaZE7B+ZEbs4csk/ZBGNNV43B0DC3NeDuOmBPmQT/fGesEdR4V5y2wPH/zpDUbnjpsBembcw5YwrYQVZoZhojGc8h1pNgCEVWpUURHGYzo2X6DWgocSmfxx5Lca6/GM0qLpytWFhbjjl3s9W2ZH6cM8Dn0A4wIrzAzjAXeNDQwKKO4AZqL7hXTJUEURS7HT3xPfew4++Yubna/PS2EO6MsDYr8cpN7pj9EzyjB/PCa48/UL78CSU89u7QwBK8wMw0QjtY+3zrgT0gioUpBSWJhnewKfO3+5dzqj3BEtNYPIIJGez+xsurByoZR/m1TGIYJBkVFamFljdkMI4JPn3QIA2LBlNJE6mmCFeYx4fMss1m4YXXxJRgJ3jloE0ikSTYS0MqrcO8bChzn7O4ZeBM4MXDIipZ/SwhxKVDGdpjTb0H5t2DJCC2X7e4D209b6xgrzGPEX/30RDvnweaPOBlOAo2Q0kGiBmYkFLKSC2FMpzOPgv5g/k7aOSgHJ22duTY/1eEL4x69+7HF89YI7Gs+LMTMwbhbkJkaqMI9DH5AQAeCDZ12PVY893nhuXnRtXUTLCvMYcc3KtaPOAsNYkbrb073AhFQ0VBbFcRorbYoj9HNcu3FLa/0UXQix6O+3t6zGR37WHLWipbpEq5jJXDL+eMcafPOiFcHSfWTDZuz7nrNxwa0PKs9J1Qf0emJsZpy//ocVeN+ZzduV50XX1r6BFWaG0bBm/WY8+Z9/jktXrJH+nlpB+srvb8cLPvWbtEI9EKmsmckX/cnTGgddZuiSUc7tuk0z+NBPr8e6TTNR5fd6Aod86Dy854xro8opMvRhjpO+qj5EkTWCmYFxqNdFNmcK11/890V4/0+uD5bu9fc+CiGAz2vWEKQaEj617GYc8uHz8PD6OLHFQ/fZJvU2t85vaelbISvMLeDxLbMjnUJi1Fx+58PYPNvDf//2tlFnBQDwr2ffiNtXrx91NowZ+DAnkqdTiEL2/0qLYjv7+QryZ/KTq+7B1y5cgU8vuyWq9Nw6n3LDgqEPcxx1Zlgf4leAcD7MovA5jcxUzERa9Jcv6tX5rKdyyTjn2vsBpNuMJ7aeIkTBJWOUizY1sMLcAg78l3Px4s/8ftTZCMIltz+Ex1u6wtWFfA2XSj8aoxn4kZBqoDUR42KZEwCe9/Ff17baVfnYjUPkiaHVv3x8120XAAC++8e7sOLBeC9loygiEdmHedItzONGrLBy+aJe3fNONSakDpXoq6c0ZXfTzOygX90ywrCAOlhhbgnLV60bdRa8men18OovX4z3/bjZV2lcyC0KPEi5kTrmr26wctVp7l6zEavXbaqkNXkuGd0shvT6zbM45pO/ibbwJpcbc8A/6csX4YwrVg6+5/cSS5nJLcwp6jn3Rc3ECivXzTQmvYU5iugasUMlynTWmHrKFXc9gsce77uDxZoh8IUVZiYYeR9yywOPjTYjAaEmC/MYrfISQiS1hOUyi39Hic+9V/OvUiZbcJvNKCzMpvcYOBtRuPj2Nfh/37968H2g4MSKw5zQIhbjsTQnOQ4VOz4DA4rOwpx4TIglLfSLmU1qbXVRZYWZYTTkHaRK4RsjfRk9Abz2KxcnlTmY/o8uxySsnI/CbJbWOIXnqua1qvPFsmTGtpDK6kIvsoV5YMEOIODqux/BCZ/+HdYrFl/GePkcixe9FmDkw5wqM5EZ5e6Vbd1qfmrUGWAmj0nqfJtcMlLd6+9uWY15U/7vtxffLo/2MSkk2+lPYQBpaT9fYuiSUT5ereOx6nYuN1b6xXTz+jATUKGVEdIl41/PvgE33f8Yrrr7ETxH8nuoOmaTzCT16T7kbURnAE3mkhF30iT4bKTNi17KGRsbWGFmGA2DRX+K9pvK1eANp/2xJnccLBlFJWzLbA+3PrAOB+2+XXA5Jo8hpIVZ6a4QqT7ECB1VLY8mBToUsduMzMo/2LgkksyQZdXkfxvnuejTZH25T172+kV/aXrm2LNZo9w8ZKRbm2tglwwPTvnmZVhy6tmjzkbrGKdp6SZyfzTVPY3qTsfBkgkU9EcB/P/OuQkv+ezvo0Zg0A1WPopazX1BkdbXLlwRxU/8mE/+JniaTT7M8VwyoiSrTX/oMhFWmZnt9fDVC+4YRFEJcWtNCxR50d/oyC3LqRf9Hfep3+D4//zt4PuqRx/Hg4/1X6JjVYeRumSwwjx5nHfDA6POAhOZpkV/o+pTxmXQLObyirseBgA8FMFaalIaPopatbhVPna3P7geP74qfHzhtRvD7eilenGoW5iDiaxkoH7oX358XTDjgyzbuaITWpe56f7H8JGf3YDvXXY3gDDtssl/c0ya/kSSv8ykDit32+r1uOWBYYSKI//tV9iYhW+N9mLbAzZunsVdD23A1y+8wzs9q0V/LXXJYIWZCc59jzyO/++bl2HD5rg7hhW5cPmDuOn+R4Onm3d+KiXj7jUbgsvMWf3YJvxEoXyNjcKcR8koHFv58IZaXONQ6H2YfSzMZTZodsO7e81GZzkpUJVC1aIUy3VC9hz+9+I7g6UvCsrMYCOEbAAObf3bktXjfIviEJaxpm2Bi+XnE/Peamv0MelvYpOXve6lJnWUjFgvtrNC4G3fuQJHf+J8fPCnzVu2N2FThdjCzMwZHlq/GctueADLElrgX/eVS3DCp+Nt/iLrlDZsnsG7fnRNNJl//Y1L8Y7Tr8JDlRjAwPhYmQYeGWLo1PCO068Kvi2ykQ+zh45eVfIe3qC2+K567HF3QSOk7pIRR06ol72H1m2SRpKQWpjzBVKh7X+VGajNAcJh3ZrHulVktfhc/rEQOs+Hxp3+gkgZX/L+K1eU22SwiPZi2xO4YPmDUdJuoq2L/lhhZqLRGaeYawrywUnWQa7TWBlDcM8jfcVLtviiTR22DlVYud/fujqKvAuXP4g7H5L7SPst+itf+8hGtVvJ6sfqLzjjQH0RYKRFf4XP9699HP/0Azel738vvlP6rGXZHkyhR+qS8ja6eaYX3RpbdAf4zc2rospi+ly6ou9OdtN9/VlMfRzmePmQhkyMZWHuCWw9P1xcCCuXDLYwMy6M81TYBOjLg/KXdUqppo3Wb65Pu47Lor9SN1moy7Gyf/7Nq/H8T/xG+puPAlg1HD6isTDH8NEOiaoYRhGH+QNnXYcfXj7ckS9Ef9eT1K54O/3V4/JuiuRulBPjsYzxMJOEex/pu1ndlbngFZ93tc7GHPfkY0GYh3fcp36D95wxnDHtCYGt5nWDpG1LrK3NfeGwcgGY7YnBHvPMkFThdWIyjBlb75Ri+eFWOVYSIWHsLMxRBnmB1Y9twi7bLTCKzOLzklG18uvCvI0yHJMZqkV/VR/mSNIL6VaLarYnvAclUWiWuaxBWLlIXZKoKMwLpuMpGqHafrHNjHtkoxM/f2HU9AfxvDMjyaykjg3OjTjuPbpxC7apWH1PPeNabNg0g2Wead+2ej1uWz2csekJga3njUZFZAvzBBNzG0dZtfG1wqx69HF88KzrGxeX+BLbwnzRbQ9h1aNyf9ETP3cB3numv5/sIO6mpMxHuX2naOcLeI2BD3NlSF792CZv14Wv/P4OHPlvv8Jtq9c1nww/RaN67SOaqBXt7OqHqIrBdDfDkPJr23EHkFlSBDUuVSEpKv6hXqRVilfxXlItMGv7+/nVdz+i/T3UTK3Mh7macsxH8ujj9X7n6rsfGfq9OyIrn9kesNX80ViY22p0YIU5AFGn4CT1xrftv/fMa/H1P6zA7yM79Mfuyl/zPxfjTz53gfS3q1euxXcuuctbxjBQff23+G/B6vRjKQBfu/AOPPPffhksPV02P3jW9V5p5/XXNFKJz6BZLW9dBJhxdaNq2sgkhhyZhdmXkkKO3CKYu2SE7ZXy1Ir53jTjHrmiicvvfBiv/8olNfmxGdc6neOb/eFz7mV/i3U4XdlsmYkjS+bqMdsLa2G2qUOxjXmusMIcgNSWRt8Gunk2lj9fmRTWjwcejbvASmehCrEi3pVYnfSHfnpDkDJ97PEt+PBPbxiEvZJl10c5um/tRvzulv7CQdNUQrpk6PzX265bqLJXLZ8UYeWqMppiEJtQtDDnyQ2iZCTQMGMaUO54cB3uXTueUViAvvX9Iz+7YRCGLxXe/WVWcbZI4jBX04652D3WmCNzMRulD/NYu2QQ0QoiupaIriKiy7JjhxLRxfkxIjoyO05E9FkiWk5E1xDR4YV0TiaiW7N/J8e5pfQkd8nwTDNv7LGjWEzCor+8M5T1t7F9mHV9fPTd0jwFfO7Xy3HahXfg9Ev7Vn4Bia+fR/24sDg7IkzDyoWzMOsUu3H1B63HYY4jR+vDHGCg7Ml8mAc7/Xkn38imLW79QtX6HT2vJdeYyLIyfnbNvfjqBXfgkA+fh/sTKv6+/eXAwpz7MJde+srn3vHgevzhtjizt6Esr5tne+j1xGAMk22MFDpKhg1tXfRnY2E+VghxqBBiafb94wA+JIQ4FMD7s+8A8GIA+2f/TgHwRQAgoh0AfADAMwEcCeADRLTY+w5agM80SfOV9TN835bz62MvVIyZetEytVEynRQKXVi50ArznQ+txxd/c5vRubGnSH19SXOFcmBta4EO6WdhLn/XKcwt7esbSbU1dtllokwYC3Pxsyilm2IhsqtLRpsNDKFqQnGm5vyEIfF863L+aHJFrvioZGl/5pe3AujvbhrSmh6ifQDA9fesRU8I/PjK/sZYD2+oW5hvfuAxTAXUEYQAvnPJXbhm5SON57bVwuzz+iAAbJd93h7AvdnnEwF8U/R734uJaBER7QbgGADLhBBrAICIlgE4AcB3PfLQCjbPxlPYZPiOY7OJrC2pFqQ85f3nRkt7YGGW/BbaV/Hk0/6IFQ9twCuP2BM7bztfe26IxVHa9HsCPgv98362aNWNZXk1TTekD/PMbA/TXZJ27O3s6oeow8ql92GuLfoL4sNct/4ltTA7vki3OqpQoLpQHBNS3q13d5lHyZDUT1naU13Cltke/uwLf8DSfRbjhw4iN83MYv5UuRMO5ZJRvQ/ZrMi7fngN/uywPYLIywmxEH+UmFqYBYDziOhyIjolO/b3AD5BRHcD+CSA92TH9wBwd+Haldkx1fESRHRK5uJx2erVcTY3CM3mQI7437vUbJGab+PPr+9GHj0mIdLeMA5zfAvzhsxSbmINie2S4WvJyN19cn0yppuCaXvwuaWqMjnTE5jujusSEHlBVMsnxcYlVXe2EFOxxfTze4j9glnEWWGu9Jcm3edjm2aCuASmKp1RDQm+/U/+MpOvXSgq/rJ2cvP96/Cp824BAFx371preWddfS8OeN+5WL7qsdLxULH/83FteqoeR7zIGZkFOjW+LoGxMO3xnyuEOBx9d4u3EtHRAN4C4B+EEHsB+AcAXw2RISHEl4UQS4UQS3feeecQSUYnlA/zu39Uf/uS1WPfxp9q8GjzFKMpwzjM9d9CL8DIlUwjhTlyh+LrS5oPKHk+hcTPOHX98Nq4RGJhnjcl7z7bHlFAlbt6HOY491GUc/Hta0q/xbcwB46SIUlu0xbHmSfHrP37z29yuq7kutJQ7KFqQrG8UrZ/bx/mLK/5WF92yaif/+C6TfjSb/vudVMd+xfrX1x/PwDghvuqCnMvSN+fv5fmeUuhoNroLS3Vl80UZiHEPdnfVQDORN8H+WQAZ2Sn/CA7BgD3ANircPme2THV8bEnfZQM3+vTWF1aPcVoSD6Ay5Qt18U9KgZuDAOrrJrnffz8qJ2cr6Uvv5eiAhQrwH9fGVeXRT7Y+dR3WfgzlYW55fqyknoc5lhy1AmH8NEsJpF/HPowx8f1Rdp1vuLmBx5rPmmEfOq8m/Ef590MoKIwJxwfQs2WDPqzQtabXiynug73mSVZnaVdvW4T9nvvOfbpVcjLI/dRTqGg2jyCti6cbmyjRLQ1EW2bfwZwPIDr0PdZfn522gsA3Jp9PgvAG7JoGUcBWCuEuA/ALwAcT0SLs8V+x2fHxp6Y0RJk1cbX8jNYyBZZz3/vmddiyalnxxUSGV2UjE2BX5SqVtkmYnYqvpa+oUuG2gc8FE1p52OOlw9zpTy2zArMUynMLe3sc5Q+zCNY9FcleBzm3DhQ8GFecurZUZ+Q6z24Wr9dox2ZPN6H1m3C3Ws2eLWd//r1cnz218udrw+B70ZPAwuzoQ9zERcLc96HvO07V5YMcqEii+QpTmV9WEqXJRPaamE2WfS3K4Azs8Y8BeA7QohziWgdgM8Q0RSAx9GPiAEA5wB4CYDlADYAeBMACCHWENFHAFyanffhfAHguELUbyyp4/H6Vqa88wsduqXa5u4b43ihOdo4zIFflPJ+NRc1yql92cBgQ3XRX8x7EcJMRfWp7lUlqG9hlisqLRt7jImxiYiJnCIhfDRlO/3d88hGAGkszKm3rXddK2KyNfaR//arbAOLMPF4S1blgA9jh63nYY9FC3HtPXJ/YX8f5j6zhlEyiqj6CRX9cG/DNO8qbMwUqknm/XKet7b5DLfVra1RYRZC3A7gEMnxCwAcITkuALxVkdZpAE6zz2Y7mer0V8mntjD7mkd02z0zZbQW5sBRMvLBpA1v+6F8mFPcS6OFOXuz/dz5y3Hf2o34SwcZ1fvY0lP7MLe9XRlbmAN3a9fdsxYv+68L8JGXH6w8J7SFuXpPKSL3/MP3rsaTd90WT919e6vrXLMW08KcP48oPsyV33o9gbd/5wr87TFPxFMt0+0JoQ2T6h+HWb7ob92mmZJCK8MmfOvaDVswtWUWv7zxgcGxYtjUjZodRm3In33uVpZiK2orl4yWdqHjusx75HziFzcNQkqdduEd8d7QJMn6Dsi5QTzUittJRhWHecWD6/Hxc28OKmvo9zv6QL7+PsyZwlwYcGu1LaDuomsSuZir7n4E//ITt+24c4vHN/6wAktOPRvrHp9R+zA7SRg91T4s9MvO72/tb+aw7IYHlOcEiZKh2VQiFfm92lBtDqZZd30JaNuL3dqNW3D2NffhnT+4xvraXq9JYfbWmAEUfOGz76/60kV4xRf+oL3UJpbxeolCvKGgMG8ItOdAD3HbugwTK/+TdtkGQPvqZg4rzI58/vzhBhMX374GZ119r+bssPhWpapfH6NGZY3/l59cJz3fZyppqGQ6J+HE3333ShzxkWWlY751I9cldRZ6ArBh8wyWnHo2Tv+jWUhFGU1FHsKomD+TfOX7qsc2KS3M7deY6xk85hPn41PLbikdC90/5AOmro2EkFlMotpuQ88KqXC5j6ria6o0uLtkqL5Izg1UFUpxmCv3uzGLLtIUg16GEHpLbrCNSyqd8433Pdp47ZRF+ElZPtdvGirRoRRmUVnMnsIlw+RdeNk/HA0A+MJvbsN1CveaUcIKcyAe2xRmqqROvSKH2ukv1dR/W/2RTBjGYS4fVy748rhVGlgx+j1LqlI76+p78dD68k5PvtEKqGJhBuT14Ob7+yv8v3XJnR7S5Hnt9QTuXrMhyGr8WYniP64WZln+VjxUn1YexaK/MDv9DdOoJrduUxw3qipBXjYMk3B1yShtje2WgjWk+AwMw/Ht4qAw94TQW3ID3aBLtBUbC7Os2pQtzGH0jGq41BS6gImM4kvUravaF/2FFeaWI43D7Fm38848lYV5nA3Zw46lfBPKGLwesqpuDKMkWJSMhnTuzBS1fXbc2lmWEPLpvq9ccDue9/HzgyzKHSxeLMhRvTS1dTrRllguW7qp2dA+zNUWuT60YUOhCzlZmCvfTVNwCMKQpW+ex1CRX3S6/eNZmM6dnBTmJguzdZIlBqEpHeJ524SVk1l6i24awVwyKjOnVbk7bj0viJwitm3C+UUwIqwwjyG+FtvBW2UixexdP7wGj0j2qo9FSIu2yqUg1IKvjZtnsXmmh1/e8EDBwhz3uXzxN7dJjxfLzd/C3P/bVMfynaT22WErZ1kqCZeteNg5zSqyejCuUTJM8xdL8S9OzT7/yTuXFJ3gcZgryQVXmBW4uWSUv5uWv7MP8wiWShQt8tVs52E6t5lvEryrTNOivz//ot7PuIk83/m6JZsxxiasXCqXjKqFuVpdbRYqmsu0axMpFujawgpzy5FVMd8hJZ8aCa2YqawQP7piJf6j4h8Zk5DjvGrRXyiXjNXrNgEAvnrBHfWFcpEUr38/V74zWHGQ9114OFjAqFFeiAgX3dZfHLW1wyBZRFZWSh9jB2TRAtSzDC3XmA0JpTBvnpnF+Tetkqbb7VBpyjqIL2Uh/eo9rEulMDuVXVlBME3COUpGSVaaOqvb6c/HgCOE3vUhDyvoTGVBtk1ebcLKydrcY48XFeZQLhnlGbPq/ajczQD3umLbn0TQ2b1hhTkUCc1KwXyYWzD1H4OQ/lhKH+ZAylKuIEx1afBGnTJ6yVcvuGPwufgC5ZuHfBDX7sAHN4tNFdWlIRVmuYVZMcsw+iAnWkxLOlT/cMHyB/Gmr186sJQVy7BDVCrHIBbmwudqam22MFeRpSDzmXZe9GfR5oIt+tP85uMq2GRh9mW46G/YD1x+p9k2Ejb5ktX/xx7fMvi8MdSiv4ErRv97VafQ5dm1LlQ94/bbSe+Gxy4ZE8yWhEqOb+eVN5KUCnPKqh9yKjlXaGsWZpXCbCk6T3e625FuJx2bj/zshlpegHCL/q5ZqV7pXJTgI05IXlPWbtiCaVfnTgmzPeCnV9+LB7MZAUA9y9B+zAo7VDt6eP2W0veyhbns4xkipGIx29VbSNW0YrlkyPqdEBbmkOcWqc4Y6LbGzp+9S73rL/qL3x5nCuPBn3/xIqNrdNbaKrL498VZkXtD7fRXmTmt1ledtd613lTbdtOLRBstzH7zoMyAxyOFK5JVzlADWVKFWdGpr3x4A9Zu3GIdqF5HSAtf1dcrJ5zC3P871aHBwBd6B0YV37/s7tL3Yn3wVZhNrFdbChv++FRpIerXH/Lh8zTnC+sXuJ4QePt3rywdU0bJaL0Ts9lpoWY6htO+dfFTnU5J0QnjwzxMI/aTUNWjEIv+ZJmXTe87B8mwKSfHgtxS68vUmR0qo/ZyegLoxLQwV/pmmzz6W5jDz4rkz14A+I9lt+Czv7q19Ls+z26VoaaUN7xIsA/zBJOv8PVBWkclddM7BrvGkimEwG9uXuXmS+hwydEfPx8v/ewF9hdqCGphztJat2kGh39kGR7NpsfmB4qQoLMwx1a83vXD8gYBxbHN19InK4fbH1xX+l6MXuHzzEThfxNcLVhVpqfkHXrbPZ1Msxd60d/QrWWYbqfiwxwmSoaQfk6Jy0uviYVZdjchdvprKibXSDO6mddqtmcc3bPys23Ct9kycMnI3UasFv3ZKMz1cg610E+GEKKmLANxIo7ctnp96XtTubBLxgSTx5D0wbSC+I4BupBfP77qHrzxa5fiu5e6byRhg2pRnQ8hfZiL+VqzfvMgmLrq7ddWcv5i0u3QYASJESXDZBAqdta+1kXZ+FodPLcUTvKRJoSwahMuY7+srczrdqXntj2snGn23vytK4LKnZVYELtUHpxDWLV1G5ekwk2/bF70JzvmqlY0lUyIl43Pn7+89F2nIw2UUcf+L6YPc05eJCZl86z9dgQAzJ+W9xMyZPU/ykLVbKxZr4hLrguFF6pFjaNLBivMgXg8pcLsWWWHEQzq6dy9pr+a+P5AvlI5Tbe2KYCFPkdEcMnIyf3uVAOx7QCdP4OpLtUtzFYp+VOsD76WPpNy2FxyyfCwMAu7cne5N9k1Kgvzqsc24cq7HraWMenkz+iqux8ZHOt0qBRHOIQ7UrEujGoBZhBfbMPzQliYZYR4b6+GsNRNs+e76LnKrVosL7n9IbeEJNSt/83X/N1x+2PvHbbCtKdLRqjIGEXyHP3jD66W/t7V1alAL6FN0UPYwjzBbAygMMvqh0w59u3Icl8vmRKQd1qhF1CodsTK3zJDlF9OLAtzSYbiIbj6ME93OiXL/91rNgT1XTPJVtWHuZf9c8HkupKF2eOR9SwtzC5WR9klKrccAHjFF/zivsZkVPZvWZ2Y6lBpcN4c2MI8qhB/Lhbmag8pdcmQHHPtqpt8vWNb56vKc64sur48V32YX/3li90yZoBJ2XQ7hG6HrMZr2biSW4E/c9Kh5gl5ostyqAnQJgtzC/VlVphDEcKH2XRKyXeqLB+gZNM/+YClsp5p86X5TVX5d8h2FAphoQf6ZRNyMWM9dnD/72xPYL5k4Z/tsymGlStamJ/38fOt86rFIFs/vfrewefZnsB+7z0HJ/2P26Bj8ghC+TDP9oT3oNR4jcyHOXKUjA2bZ/D585cPXmJDYRoOKzSyMuwWFrsC5VkHU6ptrvh9VP7ks72efT9d6SOlLhmyyyJFyQi9KLzvOjVMs5prX5eMJp9Yn3GzWsYmSXU7/fHCpm+TnZmHQtxqXjtiNISqFU1GuTZamNvxBMaYw/dehIfWbw7SucgqiPzN30/OQOmTNOTc6ucSkiuEH7cvPRF2oU8tLBKATTOz+O/f3S6NlOETVo5i+jAbnPNv5ww3NMnz8Mc73JQra5cMJynZtSK+JVHWvptWefvy7z+/Cd+46E4s8dg2vE3I9P4OUckyuMkh2pBAWfkq1b0RKcw/vupe/Piqe3EHfEJqyizM9bNixWEObWDuiar1X54f1+6vyeA00xNWm4gUcbmKqP8yaFWOknNzhTnkokavlALVi6Ytw9uoMLOF2ZOpTgfzup0g01fS+iFJ9j+W3ewlJ8+qzM9u4JLh0LHoVlKrUgu9in22J/DAo5uaTzRE1nl//cIVAOTWMNcoGQ+u24Q16/vbh4fwf/TF16ppUg7FRYA+7cfWJcNF0ibJs5bNMIRitifwjYvujC4nJTKXjG7VJcPBwlx9oCkX/cUc0k0VxxCKhawfDl12ff/0ghtIoHUgOU0K5RaPPs2liLvUnzW0szBLXDKyKBmdDmGPRQvtMyLDo8r0AmnMWj9p8KK/iUSgv8NQCAuzaf0459r7veQMg5XXf9sycBEI7MOsuLnQxtSeEPiTz4ULU1ft7IhI629tezv5M/jZNfdh+ap+2DWZhfnlh+5umXI1X3Y587Vy21qYbbJXHWhnK1O9BilYnNtno2ThzfzpeN1n0bI/PSkKs8Ilo9g3OCnMFUSh7hYlRhmAA6ZZLR55lAyBvzxqn9KmOa4Kc1MbDaEwP33P7QefZ3vlF1vV/YbyYa6yZSb+dMNfHrXP4HMnszCHevGY6hB+8rbn4Ogn7+ydVlON0WU51KL6pmrLcZgnECEQrFGkmj3M5egszPMcp65U/M/v78CKB9fXjof2k4vhd1fk7jUbtG/GrhbmItKIDL4vMJUkm6wt/hbm5nO2OPowV0/tCbu249JU10tioc6fMg8XZUtoJbINSH2YK1PWTj7MladfmvYvJB7bhSY0spdcgf5LxjYLht6U7huXlNOtEqIrLT7PmcpaA+WC6kgWZtdY0oB60XqVQ/ZaNPjc6fSVPhuxulvvEGGnbebjGfssBgC89pl7mycckHDub2xhnnPkHVisXfOizChmacqsiPk0eYxtRq+QhNoabmYQRsY5194XJqGMahH94w+u1g8klvchs6bIFmP6DvbVFG99YJ30vByfwQUwi5Kx2TFKRnVKUAi7RX8udW2DJBaqarfHEGwsKOgufr1tROWSURyAfesdUK4fRZE24b1Gg1rxL55RXUgWL6ycf6dcVJhnZ8ub2NcszPD1Yda3xxQuGcXTOplLRii3w9xHO7ek+yTbZL3VKcWhVJ2mMo25c6MrrDB70hMCnQ4hxC6ysurh08hV5FmVDWC5vBhB4KVh8xzKTUCtl76zsnudL7JB44wrV2rOt0tfVm9ksWhD72J1w32Pan/3tWraumT4KLzv/8n1pQgfMVgnCfBfnBa/7H0vDCpvfcEFJGSM8lEie8adTgALc3XGoeiSMc4WZkWYjOpCMpee4VsX31mOwSt1/3BIuELR93+2stZA1Ue4KpgxfZhNKersw7ByNj7MagYKs2rTrMj++qHlNNXbFurLrDDb8uC6TVhy6tmD70L0d6tyiVdrUvF+ddMD1umaypVZmHPrZozFMrKGHssyHwpZ9u58aIPyfNvpKlm9ke2+5LIIs0j1cTYFwy8NdA7PyNYlw6bcfOumy9Wy8ir6MO+0zfy6HMd89noC7/zB8MUvyk5fI0DlklEkhPtJse4VZbpGSEiFSXUR6CsS++y4VemYLZ/+ZX075CpBLMyz5X6kFPtZkXysnf7SWJiHJ/Y3b7WLw6x7mvn9Dd/7RjN2hlINqmV6aMGdpf97+9orK8yW3L2mrCz5uGTctWbDSKr8wMIsEZ53KrM9gfNvXhUsPrKKtm8jfN4NdgssbauB7P7XSxSk0DF/m+prUXFZ57CBikl7KEbJWPf4jPF0/CiqjNyHOewzWbN+M/7x+1fjd7euLi0s/cBZ1weVMyrULhlDZNFImqimWorDXEguRhzbkEN69T6kfaMQ6BDha298hv68BqrrV86+9r7ay0oIS+LmmR4WZltDVw00ZfcMuRuNDU0Ks0vdyjF9zkUdL3fJ8FmfUWSqYmGuu7SYY7Lo72dvf670t1BjdtUv/MdvfU7pO4eVmwBqjTLrwFwWKlTfeFO8US1fta5gIS3n+fp71+JXN60C0LcMvOlrl+J3t6yOmp8268sCwO2r6wsVtddYL/qrH5MpZ74uGVULrsxPukhxcHGKjWtZDj+4fCXOuuoew7Sts1O53j4BWYzx0ArzZSvW4EdXrAzuVtQWZC9R3Q6VnoePUpOjWli2zfzx2nZA4ZEBIsKOhRkNl/Ygm1385Y3l2cxQi/62mtdXmGdnqy4Z8mvihZXzuSF12vvtvDX+5JB6FKM8SkaoMS5XIJUvBiE1Zqit6qGG7EYf5vbpy6ww21KtrD3RP+biklF9w0rhg/TC//htQV75txsLfq1bsoHLdDrYJO+yN8a2W5htCXE7MgtzaB/mJmtuUXHZ4lC3Q25PXmUULhmy6dx53bBRMvL72ih5YZoEVGHlirgs+tNZZotKejGyRCup+mIr/Iqrk00u7UH2wlztYkK5ZCycl1uYe6U0VVtzu4ptsjCvfFjtSueDEMPxr2j06u9i6b/TX07ulqeyMNtgMprE9pVuVpjbpzGzwmxJVXEZxGF2qEQtrA8D8oErZKWVJRVTsRoFtrcjK12ZwtzpkNcbdzVfzRbmodLmEmLORse2XWA6ihojU+RCR8nIy6yo5LXRyuKKrE70euW5j80uEUGqU9MKH+Zto1iYwz0gnWvJ8Bwx6JOftMs2AFxdMurXVGc4ffdPEkJgticGLhkrHlqvjMNcemaRfJjf9p0rserRx53S1tETwzpczAENfJgt7kdzav7cn/OkHQEALztkt8qlYU3MqrE/XJQMfR7aqB+xwmyJLHRNhxwtzCOuELp2PJi+CphHWSzLCdOXrV8AZHVAZtXvEAWNXNK0AKYaP9UWGyvEPEv/bF8Lh8v1ssVovgsxqzyyYQuAch2SxXo+8AnbBpWbCpkitKHi6uK26K+cbk+IwctMsV/e2kNhFkLg0hVu28Q7y1QczxWNM//22QDcFBhZJJ6qghQq3m6e7l99/bKKJVmevqtl26R/3OA8e6POU0+Iwc/FIhxamENIGRrrnrTLtljxsZfi2U/cyTxhB5SeH8miZLRPY2aF2ZJqoxSZS4aThTnqxqrN6DrEXKEKWUH09X8yNOcQ21o/lG2RXaRDYTuQJoW56JLRZI2WYWMlso1e4GvhcOnvZYqcStF/1wkHWKc/2xN475nXAigPSDIr9gFjqjDLFKGNm2dLTd/JJUPiyjA/ezbFuuLjkrFlVuBVX7pIoiyE7LfKaVVl5d/zIWjbBdPYZdv5TgqMrA2FcPWQkbtkVNMsbTCjic9sionbmusd6a7r9Yb5L0fJIAdjmvrcqu7hYz8xWfSnsgCnsjCzwjwB1P28+g/WJWLNqOuD3sLcv6E2hnZpM34LS/rIfO0o63xdqT5rXT6JKj7MkV0y5lnumJcq3mgRmcKsilzi8pyKFr/8ZeMzJx0qXVgYOmJKKlQRYcouGWF8mPPtxIsvbj4uGXmdq74IxlOX1VEQivWrr5CFka9yyfCd2Xr5of0FcS98yi6lmyy14wAuGSbtzvklQHOZKMSXrkfJsIzDrDm1+hyqz8vq1gweqdrCbCHHIwttdEcbz563RQgh0O24xWGuVvjUyqkux7lCFTJHo2wAQginZ2TKS5/e9ydzscZWeVyyUUUeBD8UsinZnIXT3VI4QReXDNNBgsh+QaNvCbtcL41corCMuzylcmSH/t8OkdTCHCuecDUOamhMXDJCDMZCDK3/xXro6pLx6MYtg8+1thBRY1Yp0J2SUhbOEqxyyXjHcfs7pZfnaqrbwaF7LcKmmV7Jkly2MKNw3O1+TFykXMcArYVZDPNczEGH+mtPQg07sv4/5piqXPQXzFVH/3sbjXWsMFsia8u2u/moSO2baGZhDilRnVhsm+HyVetwxpUrnZ7Ty56+W+M5xx+0KwBgi6W5xzQ7/SD4VkmX5VRKWGdh3mpeWWF2cTMxHZimO51WWhJMUFl6nZ6Tol+RyQg5VXniocNwWM964o44ar8dgqVdRaYwb9w8O7A0ur4QyizMAx/mAGHlirHYq7MtMS3M1b5q4JJRKCf7jTHUVOXl6W41zy8aTLfTf/HbPNNTKskyubbI2sXSfRaXvsdYZN5TWJhzH2abGTHdmXKFeXgssIF55Iv+2jgusMJsieyt3zUOc7EhHfiEbbFgOmyYqkb5Bj7MbXzLc+GubMMZl/7S5Lnkik2snQtTLvpbOK9bCm3m4mZiWgxTXUo/sxLoEal8mEMptKl9+LpEePcJB2L7hdNR0pfVo+I9VjcxMaZqmRViYIUvVvMQYeVCzCCZYuKSsfqxTfjRFSuDKO6zlXsTWSNe6Kgw52XVJcK8bgdbZnuVyBhyv2VXlyupQlkNA+vovtJkYR7+Xn6Z6QR8oanuigm4R+opJiXboERA/eKfyiWOfZgngqoPmxjEYb7xvkft3iYLp86b6qRf9qazMM9kU0yGddYk7y2s/0aYbFCRK8w+26/q6BBJO0xT6mHl1PncanqqtNOc06I/w3Yw1aHk9SLUlGLoKBlVuh35suCQ5VV8TN0O4bC9F+N37zw2nIAC1ZfJk56xF/7tzw4ePA2f+l2kJ4btsdgfbxdAYbadQfLBxCXDZZGkiqq7SZ7yQkdDzmDheG5hntXFYR5+drUCt82H2SkOs86HWdLfFMcm117t4D22lx5XFWc4C7P+d1aYJwDZiuwuER54dBNe/Jnf4+ENW+QXytIqVPHqjlcp0PswZxbmkHFGRxhDzkeyyVt8btGKZYHqUFhrv85qvKDikuGiJJg+66luZ2xfpFS+16E6etXavsVbzQuSPlAezHMLHUUaFa69Z23p+zteuD922XbBoE+dcuwDqy9AAsOXmaLytfO28+FLtX0HdclQuGAMZWUuGZEaTPWFJq8bLi4Zxbx3qD8bs3mmZ7RBibtLRvOxGBtlicL/5QWZLi4z6pNlL5SlsJNWcprrUPSNSwp5+NifPa3+ewvHBVaYLam/9Qt0OjSwyNkE3i82JEK4qWIZM7M9LDn17NIxXcXfHMGHOeKau6jIYuFWyafndYvpfOh0SKlAmVAtep0lvEvlaAXVqVoTWctueACLtmqe2p/q+EX/cCHYKm9FvkPdTodIOq5tv3AabznmiUFkFItioDAHSbmZ6nOXWdBMkPXJuYX5kYIBY+dtFjilX6T2QhyxT6u5ZAysmHGeULXvyr8unGdvma/Wq+mpTv8lXRVWLoBLhkm5uLrM6WalekJg7x22BgAsLvR5/SgZcX2Y5087umRUvv/6H5+Pr73xGaVj6kV/YSiW6UlH7l37vepO0wZYYfZEoPrmZ/6Qi+2IiIJNFcvYJAnXZGJhDllndW/3IZSYp+y2Xen7vjttXRDgnq7KJaO4GDAPYxUirJyMDhG2chi4BlRdMjQDBxGVfnd5CdgyK7Db9gsbz+vQqKORhyfU/eh81l0XsNUoVIM8zVQvtvnd5f2e8/bvEsVyWrLBlKtyUaQ62xKyz66mVF/01//r2yerFLhayLzsvAUOfrK9koWZBhbmcjQYeT5crcAyBS/vXfK6FcPC3OsJvPvFB+C0Ny7F0iXDRbMuYeV01UnWHxTXUVi9aFSS2m/nbfDkStABZVg5hw7iiTtvXTvWlN0W6susMNtSfchdIuc3oWIFj21hliWtj5KR+TCbDv8GeY+1IC6nusK/tKjEI12VS8a/vvzgwefcohXPJYO8FmPVo2ToleDifbi+BJg0i/sffXxsLcwqQllGuoqXiQ6F8/su1otXHL4HADOf/RDkFsH8eTgv+qsghMD0lD6igCtRF/0pLMrDn/sHQi7+LSLzYZ7u0sAYYEPVN37eFPXDyikaX/Gw6zih8/fvDhRmp6S1CNGfhXzBgbuWjnc79ov+tBZmmUtGgJfAnOILqxBCvXGJQ9rn/v3RtWNNz5l9mCeBSoP/8huWOk+VF1MiijuQy95ydeLyKflYC4xiULVQhRKnUiCKilHuw3zXmg2O2/vq6RCMXBxM0SnMhPJiopgbCQwEJiVuRQx1OyrFu0N+awuK1+Zt8vOvPRzbLejXrwXTXXzp9Uc4p29K9fZcF/3V1pVAHvIviIW5GlYuYFWquZZUvwdwydg805PONgISH+aewFSnY711PVC1MGMYJaOSvvxaa3EA9IsF87Ehv8efX3sflpx6dmmthg7dc1ZZkPNQoKHi/8v6g6K7oI0UWQ0y3UnQxWVG1h6bLO8t1JdZYbal+Ijf+aIDsO9OWzt39L2ShTmuS4bMD9XIhzlkHiJbmKcqjbJ8e+6ylQpz4bnng8q/n3sT3vnDq51lqZjudrDIy8JcRmU13mb+FPbfddvKuW4vAKYbniS3MMcW4HI/kktUlsQDd9su2HSlapo/xAK5JmoW5i45Ppy6K8GUxCVj4XQX137weCzZcSsXIQCa6/S5f/8877jFOar+2efZX3vPWmU/LLu3DrlFgyl6ruQb8NRdMoafy1tjm1eC4hgqu6+8b+lWXDK+/ocVAMqb0riiqhKUhQK1ipJhKTvkbFDV4BQ7DnOzS0b7NGZWmC0pPuPBIpkQlpHIFmbbUD0x4jDH8B8rUrWEhHoBUS36K/YvxTfoX9+4KojcUh6mO1jkEx2h6sNcUYLzsnv/yw6qdZwuO/0BwCZD602IGnbaG5canxvdJSPgor9i+3vWfjviwlNfgKP229Fvm/TSbmuZ61XV2pvAgbAqQqbkmlB8nLmyJdsNcbrbwbYLpr3iMevCMQLAgU/YDk/dfTvtOaaoFv35PHvdY52V3BuRfPOcJqrRV6YHcZiLbnJmvtQ6iufKXuxfcOAuOOkZe+Gjr+hHYcgVedsuQHf+Cw/aVfmbdRxmy84ppMJctzCromSEkZc/O1V1ZoV5jPjSb2/DU99/rvacvH4571BVqHiEuJYv2bSQTp7tTn8meY+tqFR9jcsrr93TVU3lFht0yc8vQjufP9X19GEus7lgYT5ot+1KO75V63OTkqDCtF1Yd4ySZ2mTRmwLc6hljNXyExDYY1F/IWU4H+accoLFl6ZU41YIJT3v5qqzTUV8nk91Zqb47c3P94tcUnfJqMrqf/cpJl07qb4Y599kCyibKPa3eRzmmZ6oxGGWn2+jYBYVZpmiPX+6g4/9+dOx+6J+hJSB4Wjg3mIoSJGnf//zp+FTrzpEeRmRZRxm4zP7FMc837WF1RdWVXjJUGHlekLgm391JH77T8dKf2/jor9AS60nj4/9/Cbp8XJ8yfJ0jy3VtGK6LEithBpxw41LwtXaGNuSFqlZmCXiXO5G5cNXLJqiRSvGm/GC6Q62DbDxQk5RCa5mt/rd1cJsunNliOKyK/Ow9XC37cvhykJ19NVFf8Vpbt92edBu2+GFT9kFN9z3WJZe+ffSDnyRNOa8WuX94FSHsMmhrslCkskszCGoR4wZCj/1xQf6JV7psKpF0RsoeR4WZk3lrI8/AgRIF1A20RMCeevvFKzUm7YMy0+9ANDNwixbkJnX4/xvrrzazj6qzt990UJtnP4OkZ2xxrL6m4Q8NaWoLwuhcckIJK8ngKOfvLPy9zbuMswWZg+qjdGWYsWzfRO1RaaMG22N7SDrnS86QHo8ukuGpuPykWxiYS4q1THa+fyprt/W6VWXjEJ9qMXDrXx3jQywwHCRVYiO0aoNBqyGF7/nOJz3D+UV4MHiMFeKr7qQyocXPmUX/L/jD0BeGNXkpiK/AAL1/iCEnLxa6xaq+YgxicPs082d/Kx91Olk331eYHT1pvZiLACQfMFWEyWXDKKB60BxwWHpRad0rbmcohFG9mLfrSrM2TnDy/zqXNOzsN7pz1J+WB/mclohF/25pNNGC7NRaRPRCiK6loiuIqLLCsffTkQ3EdH1RPTxwvH3ENFyIrqZiF5UOH5Cdmw5EZ0a9lbSIPNhdg4fWlz057rexRBplAyNwM0ecZjf+Owlijyorwlx79WOPVTDVr3FFzvLouwY7XzBdMdLYa6+HBUjedSsi5WH7rodsLGF2Sn1MjazxiHb2RO2X4BtF5RdZUK6ZBSfTXmRsCeVBXdVZbX4PZahJ4/7nN/VVNd/t9O8jGJtW16LkhEwbYHyy6PKJcPneegUPJlRheDmklFMqtMZ9gWPPb6lcM7wpOJzd/VhnpX0U6qwcqLyuytNL/vWcZgrvPRpu2l/LxpzfNfsVMf62D7Mf37Eng35aZ/GbNMSjhVCHCqEWAoARHQsgBMBHCKEeCqAT2bHDwJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bqup+v5WfbMA9ygCeVpn/91z+1EyNDXRdzpe9vatVZhn3Bf9qS6pl2XYV4SaD3OkdHPKLhlFC3N4f9q+hTmcNaE4tVzNbbWjcrUwm04XOq71KqdhU+ZxJzqCKZhV5aYn6Xt8US36K26MEmPgWvGxl9ZeqJxd2wqf8/txsYqaYOKe5Fq9agZlRUI+j0NXb6prFXIF3sUlQ1QszE/ZrR9555rC9uiqcrJRMItjiizyz3Bhfv/77MDCbOmSoTi9qc7abo1dPPWNz16Cz7/ucO35IV0yquNWTH11uwVTeEnDy8C4K8xV3gLgY0KITQAghMhDA5wI4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3NbTa3xFget7Hmq4lo2kTfa3bZf2GhhLu4q58J1hY5qID+SS0bRwvbBPxm+E6l2rspz44tu0V+Mnf6KHUxpkZS7KCULpjtY4NE5Vm+/NLjUrIvlc119mF/ZYEEYiA9QYjbKVmR92c3FRJKpqnJT3ejIh/x6laWtGFbORzc3UUzyU5x3+iuFJOv/1SnMPmUX08IMUX4O1bILIUtVxFMdkrZzIrfoJdWXu6fuvj26HcI1K9cWzik8t8K1rovX9lxc31lUFVYuFE1V1nZr7OINmezmWZxJCekrLSBGrrC2UF82VpgFgPOI6HIiOiU79mQAzyOiS4jot0SUb0S+B4C7C9euzI6pjpcgolOI6DIiumz16tU29xIFmVtXTm4BKi5ksEq7ko6+wvvVnnecflXtmE5eblV0CilbuOaNz9l38Lm29Wpg1WVeZRq2FNvTJ10DP7HiPafyYba6p8rJxYG/aSrOJUrGCU99Ak44+AmN5735+U8M4qtml0ZclTnU49dZmF0rWU0Jy75WX1qKLyChrNnKPA2iP7jt9FeOsJC5ZMTaDc/Ah9mHYtuTrMED4LlpjaLeTHXVi85dFlBWt8ZeMN3FooXTAxndDikNGi6Lw085ej8c/9R6fzNwyagt+rOjNO5btA37xfx9RfVdJxyAt73gSY1nh16Qu7iwOZbSJSOoRDWjVthlmCrMzxVCHI6+O8Vbieho9CNs7ADgKADvBPB9CrB6RwjxZSHEUiHE0p13Vq+gTEXNKopyRwCUd0WzWnuU+w92+h1ZfUquKMs8XWP5mt82ecRhVl2SOqxcqKAjJtNe5XIK/7D6PszuE0J1C7PGJSNAHGZTH9K/ft6+Qd4wZJ3r5157GJ63/06147b18K+fu2/zScW8ZI/Jt/p1O1RSjkIu+suLa5CiJr1UA5ermLJLRv+v1iXD436qUTJkz9jV1Uyg/BiiuGSoFOZORxpWjuA2BlTjMAMohcXsUtkFUeZWY0J+6mF7LZL+Xt0rYba26M9Y0uDTVgXDRVPb6G9cYi/lb495ktEaENe2qcrSf//lMJ59zFZvUqfGdtGfEOKe7O8qAGei716xEsAZos8f0TeY7gTgHgB7FS7fMzumOt5qtC4Z2RPdNGO2QUOVvMPoD4yoteLStFahgoXbSUr9m30c5uJ0sfyialmGjqI3r1uxwAZy+bBdiRyjoc+f6gb1VytayqqdV80lw8GH2dSHdKpDgSzM9URe+JRd8fcvfHLtuO3d2PrWhlr0V31xKbaXUDLyPkiW2k7b9DfK8XLJMMoDsjxYhuCSCFGFlfvjPx/nkHAd1Q6ZQchcMl6VuTLVF/35o7JIdjtyS2iITblymdsXrJc1RbL0DO3lqbJZdcmopm16d8XrFhbGXxMLr8sLQJF3n3AgXnFYbTIeQLlthjBIxZ4ptWEsLcxEtDURbZt/BnA8gOsA/BjAsdnxJwOYB+BBAGcBOImI5hPRvgD2B/BHAJcC2J+I9iWieegvDDwr+B0FRuuSkZWeq0tGnlaH+kqDqYXZdhpGbfFQtzDVVK0JquxVp9pCDz31qcMwLhm2C4jiuGRILMw2lotK2ZfDypXPrYWVs4iSkS8WNd60pBNG9ZPJ6xDhiH0W44dvfpZX2qYuCQunu1i01XS0RX8hZ5yqpS4bnPLoH14Dl0UdDVFuKgvzLtsukJxtT909KZySCQgQET6RbYQRIyy/yh2578NcuTfhbmUsRXTJEilZmCtbRst2nzRheJ08p3k7yf8OLMzGEuoU+5qmRx2iTr/lmCfiP199qPS3ct/kX2FK86Tsw1zDRBPYFcAFRHQ1+orv2UKIcwGcBmA/IroO/QV8J2fW5usBfB/ADQDOBfBWIcSsEGIGwNsA/ALAjQC+n53baup+t0PygcR30V++BW7d/aMgq9AwbBcuqE43Sca20u6+/QLzcDSer8Snn3JU6XvIRX9F5SSWP6QNnQ75xWHWUFSeBEQ9rJyFVe2n19wLwPylrksUxJIgSyK/jaVLdij/YFkXZPci8+u85oPH49J/fmGwgabvqjX8LlNCbKneuipKBjCMzONzPyZF/ZTd+ltJu8aUlU3nx1r0VzOgSG4wlEtGDB821bOUWZgF3OtZMSmZSwaR/PaI7MLKDfy6GyzM+d/hTn+WY2jxs+TeQmH7xENbYfP6oS8et3r5p4fsjjc9ZwkAswXho1bYZTQuwxRC3A7gEMnxzQBer7jmowA+Kjl+DoBz7LM5Omqdn8RNYrOjwpz3C7lLRlVUOe5qUamxQ7WIwiQd2yHsdUftoxyQdCH6XNrgUfvtWPpei8Nsn+SAnhjee9dy0YudzXSYy+/89TPxjYtW4BfXPyA9U7WBip0UCZXs+iz6u++RjQDMQy12O/YKs+xeZGmEWrRSHBP/5vn7YfFW83DsAbvUzsvrX6huXrfoz3cwGfgwa2aScoU5dPjHKp977WG4/t5H8b1L74bAOq+0hgpznMFWVRIXvPvYIOnTQMFTy4qhSHQ7pHC9cpMl82FeVFCYhQBueeCx0negb5xwcslQHK+7ZJQtzC5lKVvHNCpKLhkB0ot5O599zWEA+hub+UR8GiW8018DusgOQwuzqw9zno78jbsU89nDV6mqqA7TCWhiLg3m8lOqirurZV5FdaGZalGJCcXnbusC49rpPG3P7bH7onJopM+cdCiu/1B/759YFmagnOeq0cTG4jPYAtfw2XY7FETDlFl61ItPze5nMANUSPs9L34K3vz8J+KAJ2yrvC7UIFq9p2rkAScUfYwsuTys1frNM26yMOwvVbt/An3Xj6P229G6GuTnl9p5rnhF2ulPFuptt+0XYM/FW5WOOaWNYd5kM47hndiGNEUoyS2DpghJXd1mMGMBrNs0gz/c9hA2bu6PnUUF1uYFrUnxHW4ullmYww45CB3u2/bltNg3udvMh6RQ/7eaNxU98k4sWGFuQDcFlzeWvztuf6e0BwtuiADIomQMPz/vyTtj63ld7LLtfOtwbD6+cLb1mqjeed344ROk+bhrzYbB5xBDQc3n0yOtoj+f/aIvNzpEWFhRiqe7HWydKS5ecZgbphF3276vqC/eal5NGdvioDA/vsXsJbJLoRb91Y+pBlHTuxm+0KZ4Yarnqh6HuSDDRUSBgbKZyZWll/swP+64RqPKLoXYziqs9IV8+rhwKFcyQ24Z3JiNUAmJYVqyGcfhbICfDBlEMlc/MajLrz1ybysxRXfovBrL4jlXX8Z1lnUX8vznogdh5WyFFM4XAtg236UyxjuMxQMu9U0B8tJGN4g2wQpzA7o3vryyHveUXZ3SLg5DfQtzWVbeuN9x3P54/pN3xvUfPgGvOGwPewuzh0tGCB+thfO66FDd0u0S31eHTsGwpdiR2/owu3Y6RYU5nw7fd6etB79Pd8k5Qsrpl941+Fx7pgJ42wuehC+87nD8n4N2rYeVs3hOthbmTiV0misxpkZ7WQuxbQMuTUZWVbvZ2oacf/g/w4gfRd3DpppXz83LTVZnfXcXrQr83bsa3BZsX85l4jJ5ISPKyNIfHqiXncxdx5SBgqex+MbQaTokcYUQ7sq5zCUjd5ORv7wLdT4MaHLJyP8O4zC722MFgHPe8Ty87pl7Y0mhfza6ODChDbV5etosx/XQajWsMDdQj+wQzn+paeeu/NddthtaZmTxmptQKsyVwzLFJdgCJskUY+gITdXn4eN7mUeRePmhu2und2W4FlmnM/RTfvXSvXDJe48bLIjqp0u4IbPW26J7ARAQmO528JKn7QaSWHxtFv3l2+hW3ZSOO1CtRKTfGtvwfhwtzKFsjt0OYa9s97Lz/+kY/Okhuw9+q/rv25Lf0idedQhOftY+OHLfHWrnvOqIfhTQw/Ze5CUrl2fiUmTTZGWlbGJh9nk6slBv1erxtmOfhN83vRwo0h7UNanFt85bj32itRwZHYm8souIXXqykKi6hZi56C6RlTKrcykqys5nH6txmC16jZLMvXbYCh99xdMaIyjZGgNsh6zgi/4q+f3OXz8Trz/KbnZhkmGFuQHVbkuAv/VVVDqV+hRcZuEqNAqZJboJYwtzxNmYjiSAu882pXlWv/6mZwyO6VwybMss71hlu0c15s1VYSbCvKwD3jLbw67bhQmFVaVab6tFU/191iKsXD7tWrUw76K5l9RbY5vSGyjMdteFGsM6RPjkXxyCL7zu8NJMA9B3ofn7F7q5ghXZY9FCfOjEg6Xld9Du22HFx16K/Xbaxjn9gY9p9owP33sRXug4I6eUUai/+TPzWSBrKiun+rw7HSptLW5D0SVD6T5RaC/HH2TfP8noGzR0smwVv7qFWWd4GPoiu80Mqtrc0CUjtzDn+bNLv3h+01jypdcfgY+8/GA7AXnalucXFWarmSaNa06RZz9pp4G7HmMQJWOuU4vsUPjsOzCWfBJlb/gSC5fMt60J1Yx6teGHGOdVyo/MgjHbE8qA+aYcU5j+rFkqPSzY+YpxF19IVwWwQ4TpTN7m0KtTCtQtzGWqswo2O/3lg6OpD3NfnvGp2jSestt2uPG+RxvPNfZhdnbJCGdh3m7BNF7ytN2kv8fYIll+rrOYWhpn/O1z1Oc4+2QMn+jQwqy2ZocNkyeCbSIDYFBQshm5mDPh0vEH7s9ebmFuTqzTsZtBHfrg69POm3A+nvuUZdO1Jxzs8xIjrGpTuW+KU0PYrXkIW5gb0HVa3hbmQmpE9eo+UJgrgdJDuWSkpEtUe/noCTGwqMbIok+SswYDrwqbDqYaCSUvj80z8Z5Zt/JmUX1xKlrqd9l2vnGIuH7aucJsfk0It59uh/DzdzwPXz15aeO5xh4Zg+leSx92q7PVxFhIbuu7CYR6kQ7PwPtVYv2rxmQPhSzKaIjnVN1xUWdpLVbHkLMZMstpMT82lCK6ZI/C2CXDpetTWZizv92BhTl3ybDzyfCZrbTB3iXD/VoZsucc9IVwzGGFuQFtlAzP3qq61W1t0d/AwlU+b7ZnN+ypw8oZXByob5BN+fV6IujUafF+XvK0J/iFlcstzA75c60VRDQY6GNamKuWnmrZ5J3wy56+G560yzZWW2Nvn0VW+OLrDze+JuTW2CF9+oaDuN11obLQpKinsvz4hWGLJ0dWPnkfE2uzoZoPs5Dnw8ctK/8b28zx1N2H6yM6RNB5XtneTmnRX3ZPsmeSl+fAUkwEm97aVO+tbVwCs+ukMh2uiUXoqBZ5OYXcVXSSYIW5gbq7QNEq7OvDXNKY1Rbmig+zLaoZ9Wrn73M3TZ2IbMpvVsQJ/7THooXYffuF5TxZ9nJ5WDknlwyPejHwYQ4co7pIk1JZjJzQ7ZCVS0ZeiZ66+/a2l1jzmiP3GqZR8VXUYb7mTxinWSSE0n5QYbGnCicpLv6hASxMpkXiYr0rW/+a5Xn1c1I/X3+q+SaoZwap9Nld+vf/ZrhlvDSsXOFlwLZPk0XC0Fr9B2Odqw+zWZ+mMh41UprFcL40OMVZbhc5CyoGIVkxpt6c5S+WNu8COCpYYW6gFqhe0hEUsalatbiqNWt2NmCXFGb7ymsaJSOEyUqVRLdT98nr9UTQ8E/FQac6pWltYe6VXTL+6jn7Gl/rU4r5tGVMC3Oe9hOyhXjVMaSoIE53O6WY1I049NquHfJR++04sFrlViyzWR+zTLrGYQ6hQf37nz/dPxENNrfkZWE29DHtn2OH7PzBQulCHf7GXx1pmXKAjFiS18hBUhLFMcSUe9FIksd3B+QzgKH8fPP+RBaHuYqrZV35CLIfhi4ZWf48lF6blzrbtmN7764uzAJ9XeKiU48rHZdHyqpfG5OPv/IQrPjYSyNLcYMV5gZ0nYjvVEXZh9ks7qaLSNWiunpYuXjIw8qJoBbmref3ldul+yyWygPMG/vMQGHu50+3U1kNj4IcuGREtDA/uG4TAGD3RVnkiko5Fev1lHLLXDkqZ6G/ft6+QcKTVRlYlvOpbEV1+uCfHIS/ef5+ACwW/eUuGSOwMJsk4SPGxjIZctFfDGQvxsVn8MxKyLygeRHy5u5q+a3WZ905PnzmpENL3zsduSJYtHi7kt9LdSdWYPi88r/djutOf0156P8dhJUbuIDYSoqrMNoq8r6z3Iu3nldJL7yMSYIV5gZqymbhq+/2jlULs0lH4eaSoVCYDZq+yyIhGURUi9bR64mgi3N23GY+zvm75+Fjf/50qYuLDb2KpcrKIuchN1f6F2o2KDncU/HMq8O+WbiwmoW5cLN9C7N/Hdht+wU4UxMhwQWi4cYeeVtUKRpvfM6+eM+Ln2IVtipfQ2AdVs7u9D6JHCPdxKQbMK3yJ8mWzKc1rF97ZcaxGDvZJ92SD2+/zqmjB/m56AHAztuUw96pDAwDhdnjFvNZn3mFxTgfz2dQKhZf60Xtg+ctz2B+vN9XDJ/f8FbNbszHvc8Ou8SLM2ohsiXbuITV5SGsMDegjZIRsCOWbQk6nKYrdJAO1Vel8NRdMqyTNqYrsWD0IvgwH7T7dlgw3e2XU4AexGXA8HkjP3zvxXjvSw7Ex/7sacpzzvjb5+DAJ2zrLCPnkL36fsbVOl60KnU7ZLXTn3Jlf6TKlaead/RN1mC7DU7srwHclAsX7yifepbMJcOiDdp7vuQXyBS9YWIhFy2ZxGF2S7ic1pTkRTWU8UIGEUk3khoonB7tN5/1KVmYFcnZ7vRnYynuEA0W/VmXpId7n6MYI0o7fgaJ3lHXmNnAPITjMCvILVH1Ojg84L3TX0me/A0/z4vssykqhSeGvqxKo0P1eMuzvV60LWz7lopw02g2z9qnHIkIpxzdvHuXj7L0pucswdoNW7DVvH7z10WCmeqS1U5/KmJ1ujWXjMbFPzYuGbmFmXDJe4/D+k0zRtcN8uBRbG0K5RSkXzCsAC4Kdsm/VDIrUH2J8ilbmVHDxO/TNN08rXndjtItK0Zb6pBM4QqjGg6jZAy1u+otFJ+bi+JnUiTdwixnNYxfE8UcbTM/otpkeevF/u78m1fhlQcbug6qDBuSAkm96K/NsMLcQG1r7JJLRjg5hPpgIZ9etE9bOaWeaBoYUISVE8OwbbZKTBO18vR8+7Yp9hT9i4/V7KRn7I0DnrAtzrxyJQD5NDPQv4/pjt2iP5dS9nkyVWWlycJMFnO+RR9mm10XXR/NKUfvh/vWPo6fXn0vtl0Qt2tOXZ9NkgjxkiCPLBTSJaN6IGx7z9Oa7lI9/nnE/lq1UUoIl4z8WcybUidS3HMg5G0W863y07bh/S87CC84cJfmEx2xtjAnGGxYXx7CLhkK8jqic8koVtZPvuqQ2u+NVByFzALVO7hkGFoIY7eL6pSiy6I/2Z284Vn74NVL9yods/aFa8CmY2p7J1a1yurCV011bXdibJ4lCcmrn9F/7nl0kaYXiQ7V66GK/CzrtQqO9zrdJXz8z5+O751yFPbaYatmMS6uHw6NwssiW3E1iI2RPB8XE8iUyvA3N2+qo9wwKEZR9jeWqhwUYWTJomTkZVatj7YblwzONXXJcNzpLz//r567L5ZUtqlvvDbiRieuY41NjnjR3xC2MCugzCejFrdR4dvzyiP2xDnX3mclo6wv1yvlsHP2q7Bqlwz1y4AtTX2CrM31F/1ZumRI5Hz4xIPr8iobwfh2WW3rM0Io5dVQSzkll4yOnUuGiw+zz4Dy/pcdhHedcMBg8ahJjGnjOMwDlwy7PLk+mw4RFs7r4pn77eh0vQ2pfJgHaRieF8pPN9ZLq2kcZl/p0121wlySE+g2iVRbY1MwOUUfZp3rnptLRnMGu8VZTleN2ZLYw0asTUUqtjwmgxVmBUMLc/l4yS+28pt9Jz1MoLiCt/qzrw/zFp+d/izR5k+imE1btvi+z6BZPsJO7ZWl3vSREwAAP3rLs3HDvWu158aA4H5/ee6mBgqzOqWpbsdu0Z9KZqQi6XRo4IsNBF70l6dpu+jP6uyyr7SdnDRDWaoBM0QdsQ8XZpt+nRiyprsdbJ6tK7B9eeEFytaYAB7PXtKnzJNujS1Kp7v226oiKbkzdgizmRldyE7QksZ/0Xpr7MAas/Tlr3IwoSdn62CXjAZ0LhlVpP2BhupbnFLZKH12ccno4eA96juHqeQdstci/M8bltZ2AfJB1hEKCIcdpNx8mEM38gXTfcv4Efssxl8+a0lNdmxCDJrDbVDV50x1SfnCZYPFe5QXzT7M5lbMvO3blrXrIJZycY1dHGYPlwzYlaHLS3ypnUt8mKt4lbLGzzck/UV/s9LffMeDWiLo+/dKX5wHPsxucr70+iMGn6e6RZeM8nl5PenHYTZPv2kOtpjvqU4hSoblor9U2M6wpOgzeNHfELYwK8jrSNUlQ9eYbUPiVN071D7MVDrPlpmewNbz6o+6vtirz/xuB//noF2DWrCqLhKD45YijIvX97XYQ4tL0b+EkNFtsDATUebb6DCCSdIq8r1TjsK2C6bN0zWkSVclwGnRnw22j6Y3UPLsrnPyYR6Rfcgkr2EszOHSMhMoj8Ps+0I7b6qDjVvkCnMMVHGYc1zvprhpzFSnPo5VJfZ3+rPvb1TlfcQ+iwefu4VNmBIOB1EFxXLJKMLq8hBWmBVQZvO10RVsLUvFpGUdhUy0a5SMrSQbYdTSj9gr1PTXmn+omXDTF5I8WSHsrdildCTX7rl4YcM15un7ulU4XZtdnNdX3Ra8oV5oqsnsv+u22KGyy1QIGn2YLVbhi0SK7CCkVorRLyP5Irw04gYVMNZOefVZsrD3lqc13SU8+ni6sHIkiWIUatFfTnGTqqoxptjWQsVhfueLDii97BY3YbKeyUikMduKYQtzWtglo4FaWLnC52o98tnIpL/oQvFb6bOTWUlqJVN2Gh7tQ7u4S3IsVmMcWDAidHQXvPsFWpkpCOGSkVt8qr6LTdOcelTW6sr34hUBn5GJD7OxwuyoyFo/GwMlTyrHToozQeq1qUuGp5joPsyJnJinJXGYo22aAnn846LLXAg5CwwWeLuGlTPxve12qLY1tik+9TKmrh2vng9zzfryEFaYVeQuGTrzWwWbkFVAtSHV3TlkIZLcpmH7/H/P21cjX3FtoNau8ikeKBem0+SGJ+aKe352CgNB/miShJULcHX+gqf0C3epa5WkfvLW5+Bvnr9fTYn0KyJdG2xSmLWXl6XkLhmRFdmULhkupNtExV+O6+6MxulXZwEVVlhf6dNTHWxWhZWLcGuyOPnA8D5C1IHtFg4ntKvdfv63Y7nqT+eCU81zP+KP+QLmEMRuo+6GE7UbXjgZkwe7ZCgoTukX0bVl6ynV2tS3mXXODcI/v/QgzJ/q4nPnL8/k6+8tZDuhimXPdbrb2CVjYGHOJk0Tum6m6F5CPJuBS4Z/UgOqaR2y1yIcstei2nkhBmBZCs3+xi4uGXEtzMUFT7FxisMcIFumSVjt9Ce73kBeiLjSpfQiPLb5icPKdUi+liFPP0gd0CVSdMlw0ZgNnmkxprxtO0g1fNjmK8lYk0DGuMAWZgV5265ttlSo0LsvKvuy2nfEhWkP1BvLYHqxkG7QXauCpdTcyVVzPdwK1VK5sPVhtkrdDwo5ujTJ8ujG8vBOTYv+ohKpiJrqk51/ee6SYZsHu/OHM0m2lmwfFzDza30elc4CWJPjbm8YHnMM0ecjM4ak6W4HW2YUBpQIEqU+zBFkvfRpu5XXgIj8T+5K4xglwyCb3U5nEFO+rT7MtoJcq7mNlJqMEQwXbYEtzAryjkKmTByxz2L86C3P9pZR9YdW1sNChXU1QskalmybV1+0RgSJT0Z+P7Z+pU3UF7Sla+VJ3sgdhbzs6bth7x37u8h1Bz7M5XO8dqaynAGofvYl5Hb1zhZmy4fjOtuSCq/nk78MJLZTRVv0VzNqyGcGfOv09FTdfSBEhBNV05b7MA8J9fQ+/7rDAQBnXX2vVFbXYo1BERMf5qlCHGZ70owftlJitatiPnjR3xBWmBuQdSLBBraiS4Yk7JpshbmbaLkDf70DrnpVu3PaG5eWLfCVF4KaD7Mhtrpc/sIzvMwsAZ/uMUlYOcfr/uzwPQafm3yYXTpj03IrprzN/HDdkM/C2yp53bEOK2dtKXWzivrcqs2lYeIwm1/hw6DPjDR3WuszhQiitFSboGzR34Diy6aj7Op10rByovDcAlj/y/LlF3Q6ti/sQ8t0lec+aafS96kuFaJk2NWzlC4Zdm0zrHyTF4+5DCvMDdTcyAJ1kIC5hbkch9m1g5TIj9gLvODAXevyJfJiR8nwTsfhXBfRC6fttgh3vb+igaWr8GH2qRbGizILN7Boq3DxmPN7CvFSW1qIZIHrs0kbZcXi3BDyIsjR+TBHs4pJLMxh13r0/87TLfoLJ26AbNFf2cLsOO4oLqseLz63EMPSio+9tHZsyiMOsw8xx9nAa/4UMlhjzmGFWUFeR2Q7/cVapWwSrMBXdvFyxU7cUag2OudFf6by8igZAx85f/7rNYfhgCds23iei4J1Y7bVtimuCkExTGKeRrWO75nNDBzwhG2wduMWu7Kz9DEHgO0XhlOY83oWYgGdcxxmR5eMFMOS0+CdcLz0VS5MdnDzcsmQHIuycYlk0V/MBYdEqkV/cR9+VaK1D7NF25nqdNwX/TnWy9jll8LV6ZgDdi59n8MuzLzoT0VeDWWdiEpZ8V20YrL4yrV5WEZvi0LR+uga49Z4a+zB/YbTmP/kkN3x5F2bFeYkLhnOFuZhQUx1qXYMAJ79pJ1wxt8+G3/93P3slT/D84r5X7Qw3AYmuaIcYqASji4Zzn7UkaNxlK61OtfHJSNLwyCJEIv+cjpEeP/LDsKrl+5ll6glQsRp79PdDnqi3jaBOEqYymAzmDULPvVfNaBkbS3i7EzfJaPqF94urH2YHcvLRs52C6bxxmcvcRM0YbCFWQEprG9BO8iiDzOhVottBhutGEXrqB7OXwS2znYFDNkxUyUf1RjTpg3Y1kc2ZQCIQZCMBG/9rjKK42/+vGVldPjei53SN6WY/+1DumSQiUuGoR/7wMJsqcg6+5W2k7Yv+pPHdwf+6rn7Ss/3CytnbkDxYegulaYDawwrF1jesMjKMgd9kqHMwfM2OLvbKfgwW5ZrsmHEcsAKXffyerf1vLJq+KbnLMGvb1qFu9ZsCCpv3GALcwOyRbXhKmlhMZ4sPqxksHFtuHkaZZeMcmr5VsWfeNUhjlI08kneF0QLK1dRxFMNPH3hCUQ4yii6ZMQIK+diYQ6pnOfW3UMlsZ8Bu0fj6g/r6mZk+0x9qlnqsHKmidjURKkPs+NLjimy0J+pXTxJ8dmFA7IZM+miPxQU5sA3WU1t0NYcG4+RhbnTGfowt820nJHKwqxiz8UL8d6XHIivnLy0dHyfHbfG7951LHbaZn5YgWMGW5gV5PWwvjV2uA6ytuhPIiv/bXAsckM/fO9FTo2iKV/1Kbj8eByGPszpesa+TNFaSyFQLo/cGqvakt1RgNFpxTr9pF22wfP23wnbB3DNmD/VxZl/+2w8cZdtvNMaxPS1NCtY9w8JrLBDUfYPO0R/Z5JEmGgT9T4zJDKjRgwXiVRK+Nl/91wIAKf+6NqacShFzzlYY5L9tY1yY5PHqdLW2HakHEdsCG/5J5xy9BM1vwcWOGawwqwit1AmWhkn8cioZkWeH9P0JRVdvoikothay1G3KKkPs7WF2daHOSEJOxPXQXq2oB3niuBILMyVwlpgESWkKbuHBbJYu1qYbSuCyF6yrC3MHvXNLkpGuoodSjGJEYd563ld6UJplVHURU5e1jJ3KdlMhK8CM5VtYiSLw1yMCBXPJaOMq/+/STl0u4Qt2VtBSv3X5iXVeqe/wo3vOMetvylgl4wGZKF2tAOoRYUvNg6Zy8Lge9HCbJ68/JpC3m135/NB7ZJhl469ZcDyggBYDWKO+XN9NsVFi1PZ6BS0jCxdZnxIZe2wFeO8uZDbZdEJ4sNskEiI5zl8yfFPK2fhdBedDmUhz6qzgHGeW56mrDkF2Va+koQsrFzxvPBtTe6UYW8IyK4zKJPpgoU5lSnFcbLJPP22dhoTCivMCgYuGdJVyvprXJB1xsN0C0quq4JlYGGO1fkX06/KjrVxySBdz37RpUNKsTOSrYjdtl8AADh4j+0Hx0ZrYfa5ut3kdc/0bkbiw+xxrQ0Dt7JU8hz7FSOUL/2JXDIiNo9ORxFCNZ7IgQzA3fe8unhcR9fDh7mtPdNo9OW2lkZ8WGFWoIySgXAdZNnyq/YlTeuP13iWE6r4mvbxcg1dMgZnp/Rhzv4m6MVcSq16TVdRx1NQVWiSdvyRb9f6Xhx9mF2UQpdHHeLZmGbV99HEbO9SHVbaZ6rPN5dl6lISpuWQwsKcCwvtlkPDDrr4xzus3FuOeSL2V6xfmOrUw8q1Tvez3Oov9aYic92gzT7MDdQGGLv6bAyBlI235MPsk34Fmb9g6TwnHzyz466L/qyjZIzCJSNFWLkAHeUwSoZ3UgP8LMzxSTG+WFvJ8g8pC8XKiTm8C4D0HG8pyPrnOAXZf+mXzTjGszCXZuUiandSH2YUnomzm5H8QlVyrm0nl/PuEw7Eu084UHruVJekM8ZWgiJj7ZLhczFjDVuYJVx3z1qs3bhF+ptAuA6y2EER1TtEWf13WhSjuKR+OHaLkyz660hGBqMU9Oh8AGMRz99PIitAGqbWfas613DuS572BACT7Xvnem+2l6X24fZeP2FyvmeDFUBjQbr23yS1aYhA27CXU9a5lFHpPH/ZgDysXHWNTUhUO7/6PJsmpjqELY5bY7dVF3Wd7W5r1I+2wxZmCW/+1uWDz/WKFSfuJkFuzQYCKehU+lNKv/Q10iBcXfTn6rdp68M8qR1DiCphojBbP5+G3z/96sPwwT/ZnHwqMSXjcGs2WQyy6M9AYpjdGeMZ6pUuGSorqsP9UK2fTtN/NS36S4X1InCLmcqpbnFr7HaqzGOx6G8yh1Qj2MIsYc/FCwefZXUjZBih4rV1fVnU0nXxN1VdIXVZM73Ykur9OS/yMMyQpeE6KGmUQX8ZKRYnVpk31cEu2y1ILjcl1s/f8cU41dNLtTV2CGKvWZCGlYswimpdymIYbEix018kkdVZi/y52a9pMafow5xy5iPgBN3IGQdjQEyMmjoRrSCia4noKiK6rPLbPxKRIKKdsu9ERJ8louVEdA0RHV4492QiujX7d3LYWwnHnou3GnyWhXoL5SNXTJog94/r/1aW74LcOqJPzOUu1Qtg5D9EU2xHsKBtGEPV/Bpnn/REFmZb2t7hp8DaLz9xJAkguQuzMSFmhJr6Z9fbIVkko0g+07KXWWnc/IDydHH5g+/0V1vUUpbnnZ6EbofS7/QXue3suI3/Zk+MOTbvxscKIQ4VQgz2TCSivQAcD+CuwnkvBrB/9u8UAF/Mzt0BwAcAPBPAkQA+QESL/bIfB52FOahFoeIjpvDISBclI6IsoDwYDnZRiyRwkOoI1niMh33ZflctxgzXOm19mUuUDOsrwtS1uLMuxX4lXh8mc5vrr2lRn+8sS2NICBKHufK9I7Ewi8J5sXuKXLJ9XP7hsr8mprodzPQEhBAtdtWzy9du2y/E+f90DJ657w6R8lOnrSWXAl/V7z8BvAvlMjwRwDdFn4sBLCKi3QC8CMAyIcQaIcTDAJYBOMFTfhS0O+bEsjDL3vAH3/092kwHrHgrzFUKejx5gH/jtimPlPpnCFmdGBbm4CmGJ3YeXf2+k8RhtvApHsjxqiZ2pe37bEz0IOdFmYo+LEoc5oZ8DD+HkS1b9FeVFZJquoOtsR37JNNFf0B/b4V2ejC7Wb733WlrTHfTeNem3PWzjZiWsgBwHhFdTkSnAAARnQjgHiHE1ZVz9wBwd+H7yuyY6ngJIjqFiC4jostWr15tmL2wLJgaFkv1TTTswjhRe4MvWWHz3wryfF+MdWn5JN2Ur6p1ZujD7CFUK4+M8hVWZp+QYdrUshy1MglbzTPflrpRTGstN31syi2k+5NeUH5dusHIziXDw4fZYlFWCOVMxIr7CQCoGzVEpEXgeaLJPAdki/4qM6BB5Q3657JQ65cPm/pVvsRJDjO3MY2S8VwhxD1EtAuAZUR0E4D3ou+OERQhxJcBfBkAli5dOpJqumBar0CoGrXtgGcatqfkw+zYcqU+zDJ/PE/rhfKKahihpvM9GVqY01ehFBJDDWD/+epDcOheo/eMcrmfVAqmvauE3enOFmaH2x9FewASz77ESpcAWWgh5XjgkZGORruLcX/yOMxi0Masx7amE6oWZskCdxs5NluvCwHrTjqZhXnC5EwaRhZmIcQ92d9VAM4E8HwA+wK4mohWANgTwBVE9AQA9wDYq3D5ntkx1fHWMb9kYa7+KqJ0WIM3btlvhc7Azeolv0i+yMMlfZdcZD7MnWIvFo6hxT5oslo+/7r++taF0/Gnx0I9p1cctif23WnrMIkxY0Mq/XX4Ymwo0aG9Fi8xCSvneu+2Psw+SDeaUuQpBLKwcsXZVOd7tLzO2f/f5JyB1d7ltdF9IEmnBLMaHJvGkZ2ItiaibfPP6FuVLxVC7CKEWCKEWIK+e8XhQoj7AZwF4A1ZtIyjAKwVQtwH4BcAjieixdliv+OzY61jvsbCLBDHjWDQT5TqfLgGIOuHTJTJUDnoDzblxTmA+xRco7xAPsw2HHPALnjyrtsksXy2NY4xd9ku5NY1u2c6Tv6EJrcW4n76LhIR12FILb4RfJg1M2Qx7k+26A+IaK3P/uYSXX2Yhxue2F1j6zrmvHbIYdbZpcytq4Sru9n4dDlRMHHJ2BXAmVkjnQLwHSHEuZrzzwHwEgDLAWwA8CYAEEKsIaKPALg0O+/DQog1rhmPScmHuWoXFeE6rNKiP9nvEv8sFx9R0ytEYQoOCNs4aos8sr+dwVt/WFQ+crGxHzzDudjEwiaHLXdhbiWu28T70NaBL82iP1crZj2snBDqnf58FGnplRFnBPNF50KUZ1DjLfqTJ+xuYTZ3yQAc6lmifo2txO2mUWEWQtwO4JCGc5YUPgsAb1WcdxqA0+yymJ6ihTmq24LEh1nuklG4xHMhUrFjkSmTMUMyFYm96C8XOAoFLkWnl8rCbC+FO3xX0vgwpyX9or94KC3MEZqizJDg6udbRFU+Tetywi/6KzM0oNilY1MmxYXgtuNCsnaTTDFnXOCd/iQsmC5amOvo3madp24kPhky/7+QK3xjNBqdIpfSZ9o7WY8pqxRKeksNhGxhhvsCKdvrfOpAaneOZBZtEV6WboFy30UvihNzWbjkJ6/kK3mWLSVJ2pRdXfQsKLq5tNuS29bevU+bSy42rDBLmD+ltjBrp+A83HGl10r8s5wtzBIB6rjP4anukpVbt+P5Gw6tCX7p2F+TokNp65R622lzuSXJW+LRzmZjCcDfhUoYLMr2KeZal6lz0bP0q3W5NNSLT774urqEJr+10C9YdRe9yiJwUyx8mAfvIC3W+FqcNQBtV+XjwwqzhAUNUQ7CDWzD5iGLGyxrPL7re8t+XPoFJSEbR3/RX/147J3+UlsSpBvQxJATXwSTCFcfZq+mk9DiC9gpNF7iYr/0R54lq25FnWpWbpimkB6PFYe5KtVVjE1YuYfWbcbjW3pW6XvVq7ZrwYwxrDBLKFmYJcHQ4uz0pz4vRGcle7sOunFJw9XqRX8eQg3kpbYmxFnCKJFjWSlSFUObrTdtJ4WF2eXxhOx/mvBe9IfmtuHnA1zPYYw+rCNRYJvWt/jJkxlsinGY41DtL2wNKDb1Jb+Xr1xwu5UMe0kFmbYGc+4/Ww0rzBJKPswSt4VOqFIrLvqrHxp8Ky/U8xO507bzZOJr+dCdo0PXQch3+oujYo4irFxRbnQ5acRY4/XSNUcHC1u3hZzgURhGjGvbKdWbqBbmevr9qBKqBXOesuriAqQsp6OQ59yfNTyHmkXbcxG4yWVD9xJ70nVN7e4E2xrONBWmO/3NKYoW5iq5ChsCFwuzs49flsZrnrE3tp43hYtvfwi/vHGVVlbIxlENyRRixbeOocUkfQdkI9I5e63ttxwtMRY31O4hxQELt4VxY/AqkOjmom1VjWxBr+R4lLj8svYQseJLDRdFg45ruDdL927XdUCT0nYmrm+bMNjCLKEYPF2mcIVa9Fe6Vrazk6T1+DaoTofw8sP2yBZXJGyelNaHOae6e1VsVINqcDkt1ZhTFne6QdLS8hvRSuZ3QeHSxBqGsUuGZwUy2/jBcWEZqDYemLiAuGAaZjQ2A5/q4Anr5RlTeDaNIiv+4a2EfaVbDSvMCi5497HS4/0OMry8+HGYqfK9jlAcD0HN1aPikhFcniRMXwpkg2oUOW3t88eg0x6DLBrhVAUcbt7n5cxmJ7YQikzIGcAqspdhIdT35mVAkQwIQeptUyIKebH6m1p0EGt92Xymsq1dZhHnCceUA8KkdKAOsMKsYNftFgCQ+TCLYEqeVK+SdFjlOMzhaqt8BbbfvemulrkaRlv0l8txXNjoWs7pLMzpsHIxiZeNILRx0EzttgCkLwfTW/Pt30xe+n1mAGLPklHlr+4cwONeqPo9vB+2Vr7S79vR9cPknLReLgUZ7esV25ej8YAVZgUq+2RYK+wwdV2nG2SVeq2DbG40ITvL2oKZgeUpnjWoIMY9HYfzk4SVS6XxtNaUPXlY1zWHZ9PGwTvH/v4lB818Mpzox5KviIPGRc9nUaZ2xjGCC0hDPkLLDBU1aVA+LbUw28psb+tkAFaYlejjYAayMJfSzI4VBMris7ooY9ItsGWuA/HGGuWiv3gWZvXzi4pkUI0ippW20rkb6cIHG7eFUKSSNZgyT1RfI+rL8nSFiKTAqpzmYiNKn9o6EzHAwoc53xSl1TYAjw7U6kruqJ1ghVnB0MJcWeSh8VlzXUzSdGVR3pN22cZOhiJ9lYU5SGgng3SHSkJsC3NqH+ZEclrb6XNH7IrtM/WpAjaygtQ1U5cMzwgzJmtMfG5HvujPI0EFsjjMOWWXjDDCVXHrSxtZBbzP2gyuyA0oji4ZLbUw2zIOQZPmcg/PCrMCbZi3KGHlqHZMFp/1FYftgemuv3yZ64C0Idi2Dk3Byf3/7OSYZkflw5yCubzoby53pjn2RjI3K6xLHUj9fKx2MQxQp2Ms+itO+0uNDCp/XI9syBTYqLsYWh73lhd4ltasfrW00xwj5noRssLcgFbJC4hpHGYiwtP22N47/f42r/Lu3yRPLvLli/4iW5gTawhtDXWWDNaY3UnpkpG4/pgqSDbVR+XD3CTJK+yfxMgQx62sbkAZ/ELVsyJRtTYHTFrtw2w7S5tHyWi+jgZ/W9p3Mq2HFWYFMosv0OSS4SFPdtDGOuNASJeMJqo+02LQ0eV5Ca1p5c/PMUyGh9SJWvRniXtYpKDZGCusrLAFnMqsxS80IRQZ0U8oCv1Ff/X+JMZLf+qomDKFM4S7ie3lrov+TC4bLmC0k+ELuwtPDqwwNyHZGztKWDmFgh6KWhxmkgmrSw+Vn2AWBUt56S3MkkE1hpzoEiaTNm9akDSsnI0Pcwh5AdIwIfaiv7obm3pnQZd85GnJ+sWhcuh+h019k95jOhwql7mOo7nezIc5fdtva3fDhg03WGHWIA1UDwTsQ4apy3x5Bx0kVZVduwyo/O70Dhn1byborhCSL9EU5iipmslNoaTH3iHRFbamuGNtYXao5cl9mLO/xtXVJQqQ5eXOsX4pbtSkUprZ30aXDB/3EkWaQ+JuMy49HkdcSaaTjJb3ay7PqZ0jSLthhVmDqkKplBVr96uSLPXFQSw8NR9mRbi5iK1ISF4GooWV04QFtEvIVq6nvJbJsaflI4sF7pvXuL3QtveZemAR9ivE/QsRUcmrhsbM3cpiyJL6Z0cQlMuzPB5NomvbMalfbiIYZgArzA3UpuAiTfnJfHmDxWeVWUUkh6Ouwq7FJzZfrOEkbyAlvQKXxIcZaVRT26eTsrRTjXvRB1gLpbLIOA38pnlN4s7kapVVWJjVBhT3B2R6aWw3g/h1TBT+dzCgWDgxj1N7YdoJK8waVP6oMXyYdSmG6BTlFuY4sqTyK99z2fEszGU5qahaoZpw9yVrZ+/PLhn2DMLKJXykqeqPTVsIkSOBuEpkyf0jYh82nCErGFDCiykKrMmIa0BBTR7g5y7TeE6Wdlv7zpQ4jztz3JGDFWYNtos8vGRJOhDVQBrC6qd6GfD1j9NeI+n8XRd5NNGRDABJULyIMC2ipc8nlQprS4j+Lu69lWfl4vndlhMO6UpT2zCkIqOcD395tTSVxxOtMXF8+bCJkpGfNLdVPsYHVpg1yBb9AZFcMiDRmANLUH+LLBr1soxtYc5vsJdYe03mKpFKEBMdYTXqD/Ga8ne+0g7be/NtriabBvkonOV1GHq3MhcxQz9bs6uDK8+VdSapjbH28sxd+0alKLfRdY7HDjdYYdZQfbsexg4O00GW6qxGg43VaclXfMeRJbPW9+XFsQQPLDTJw8ohSWfU1qkxn1ufvD7c7o5SPNNRzX6kWvTXlxWHWk8VMdJPbBe9WpoGa/BsXtCaqplyDLVd9Dfw/29mFK4Ybe2n/Zi8ntoUVpgbiKpUFhLXWXxDNPRaEkrrec3b2Ch92w4yf/mIF4dZN6kZD1sfZmc5be2HHTWy1t6PA663YlsGPkXWVsuhb8sRBsJChZWLGd1k4FJWKpB4/Yq0TIS/wtdkXFK5otjLMThHKmTuKn8uTFI/7QIrzDqoErUi+xts0V/hs7yDHGQjOCTTmAN0XroOVlaWkT0ynC1q7ovxHC+0lZNGjDU8/LjT1meaykrWdmuctVuZx+0M+xF91KToL2fR/MHL313HVquwcgMf5nbXM6a9sMKsgYDyDJzF9I+1LEkH2XyuRfqSNKqWUCE7MRAql4zoO/35puNQILw1NmPDKF7OUikNcV+M0zYCAlWiVojB8fCyNL9FuG1ZmqNoyz4h/2KlPS5w3xsfVpg1qBb9hYrsUExbHiWj/FtIlD7F1QOBWmFtOjOyf3Y+iI3ChznNor+W9v7ca9szaAt2z3QcdvqzvTeTRXveeChlqaJWDNaAN/q6hRVbNaLEmwGUu/5ZW5gtqsswrJyViLEg5Xgwl7t4Vpg1qBb9Kc+3rbOF5FQ+ZMrfLJHGYba8RktjK6qUZaWDDD1ODuMwj8CHOYHM1H2+6T2NQ2fatjyOJg5zGjk29+YaISEVVSPD0CVD76drJSNLS6c4prRoR9tYSpFsCguziwivxcwTFGd0At81rGCFuQFZZY/hw2wTh9lHzkCeQrHz7SB1l8vWr3Qsa6Bp3zPwYbZL3ptUFmbbnsu1z26jNcZn/Gnj/eTYZs3PJSONHFt5To/W8iLn26HybqUxZ8lk/VfMfkV+DyK6ghRKl2yrX3Jb+5vJUeHTwgqzhpSromtCivkIkGy1Q5ErdvE6yH5ZxltAWReYyRlBz5BmVrmdPXFKa0pbF1ja5itJv5LLGlVYORMLoH2qDjlxp29hjmdAKcnSWZhLi/7Cyq4q6MlmIhqs9Zorjc9srRvbuDGHtW1WmDUQ5KuigzW7Ylg5SWMe/Fp1pwhgXlT6MFeSDtU2ah5rTSvMveVlrh6pp20Tdcrc908QqobegE8VSOeSMTnU+0b9DKDXxjKJ27d04ywR0Yc5kEuGjZU/P6V47qR4S6TyZprrLx2sMGsgoqiRHUouGZoTYvgwy3qY6q3ayG1STGMMKkbyRmFhTiCjrd3WhIw/SUlpYU6O5ctAmggzgfpvx8WaJuSGBOlC6cJ5rrMZNQz6Z8vleNpfVWOL69hqchWHlWN8YYVZQ80qGnFxzmDxmywfMX3kKj4nvqJ018u2lY0WVm4gxxHXN3AgyajfWuXKudzaekPpSOnDnOqVy+plwPGGUr2kqWblQsyS1Q0O6h4sTNtvTiREudpKsS3LYf1qvpD7GMYXVpgbKG220WBRsG2QskV/0g7SKlU5Bgbm7HgsBZakZRnNJSNQ9A3b4rBe9DdhCiZbmF3IX8StVWYHSaN5Qslqq8HtueaFSN6HqdqiU7x8Kv9N+TJgc9xbXuX+bBRfaXpWMtO2gXb2ie65auf9pIEVZh2k8PMNlX4h7aHFV/pzKDEFeXWLduxV2KPZuGS0oaeiyWmnvoy53Z32sX5xDr02woDkPrJGFsBAsgKlI0tXPksWXpa+X3R1k3AgmkEjjDgXH+Zewi4qaTNLsth8bsMKs4bYC9XkFua6wNpg42S5oMp3xXkG57hQWzBT7egCN3aZD2AKqlaomHLaSNsX0bS02AC4zWZYk/z5tLxCWKCKmhQlSkYuQ6Kgx0A1I5d6JsvZh9nkhSw7pdf2TsqBYL7sjBZWmDX0F/0VQ6G5Tp0aSctkDBGlXyKhcp1zxDQOc2wf5vxGUneOySzM2V/u+MafYTtPp5ykkuRiPY8dmtA57J/CrUy5YM46Z4VrNReXwsoF6j/l9hoR7QVTtRNr3M1rwrjpxWKSNjiZVFhh1qBqvOGm4Iph5WqHGvPhg2mS4cLKVV8+suORp/xSd0HJYgNHHVjc4S7fAYtp5SKplN4QSpnRlHmLrf8AlC56cSzMoyqM8g3G9mE2Pa7CSl0ezDpyL8W4wQpzAyWraIOW5xpDElC84Q9+8+u2dJE3dKHkgnaW1cVwA/eWumU9kLiSnJRM0sYlbV1cOEmMYvhO5dIzCut5E86L/lAdD4Q2vRBxmKOuoZHIS4XK3dG6zCwaTz7WzPbsRDAF2tOMRwIrzBpU0+txOixJqoopPxf5NTdohUnbteNs6rdqHaSnvCYGPnnpbcxp4jC3tOOaKONNcv932/PtK8GoHo/ZoqyWVuoMqmrMGZ0Io6h8TYvkPNuEFRUglMXXF+tFfw5pp3bTSyVukrretsIKs4ZaGKHsb4yNSwaL1KT5CChId1qAlq0d9CTm+uhxmEeg9NiUo2v22qpaeL2gWF+ayMoe3Vcit1TaXejlI+txrRUJ2l+qNq4OjRmuNGnwt27Q8A29VpKjSKK6hibWS4xqhjPempYRGRmSCW3riDBZsMKsoWphHkzBxfApNjcwu6VfSSVUWB9j+SS3vMb2kfOOwxz5fFfaamGeuDeABNiExhoFPtlyqQ6x9V/nWL+Vy2xn1VxkNfWZoeqMVDEW1QWG5uk197thZzhNmOQoGaloaReVDCOFmYhWENG1RHQVEV2WHfsEEd1ERNcQ0ZlEtKhw/nuIaDkR3UxELyocPyE7tpyITg1+N4GJveiv7MOcr+CtN+YY/oYmq5RDyu2/fKTrqGRxpmXfg8tVLAwKL2eud11utHnaP0lYuQDXxpLX2iot6lbl7BuAOFbRmJZWUwT8n4m5q4dbWdq5ZPTTZoWZ3TdcsbEwHyuEOFQIsTT7vgzAwUKIpwO4BcB7AICIDgJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bquRLfpT7uzkk7r04nDVuu7DHCzpPg1ZVVlnVL7UajFm541qRXSbFbIUcEfcbtLrCg7uJim9eiwgUowHEWccpWtoYsqr/xJemC4fthc4ODGzvsy44uySIYQ4Twgxk329GMCe2ecTAZwuhNgkhLgDwHIAR2b/lgshbhdCbAZwenZuiyFpoPpQHVax3crURlUM01jGhyA+a4YuzAanB2EUfWOajUuii2AS4RpJYuIszPGz4SVHGRpTZUDxeT6SY/IF6OPZEQxynd2Ta5QMm752uOjPSsRYYF3XfMog4ZqotmGqMAsA5xHR5UR0iuT3vwLw8+zzHgDuLvy2MjumOl6CiE4hosuI6LLVq1cbZi8O/UpY15iDTYcXDcyaNEOIM02iJitQna/6g8cmlA+zi9xbHliH2V7c2EXW2y9HygcTjpRKrE398cnXJI2ZVQtz8bgvKtc4uZEhYkXRuOiFRDXexfVhrrs9TlD1TMJcdwU0VZifK4Q4HH13ircS0dH5D0T0zwBmAHw7RIaEEF8WQiwVQizdeeedQyTpTF13zP2s4svqy8t/8xNo3ClE7D1UW0bH2mBEtso8BdesXAsAuDb7G4s53m+1Gtd47PYLTF2cwEajIrSqvrb5BSArKGNXtVCL/lQKbJjklSSNkpH9ZR9mxhUjhVkIcU/2dxWAM9F3rwARvRHAywC8Tgxf2+4BsFfh8j2zY6rjrSaVS4auowhiYTZIw2eRh+uK8ehhixL3jQ+t3wQAWLdppuHMHLcMptY/eIiJj3Xb8wrD4HGtBTYv/a1SqiWoIv1ornCXlX8ojT/+UZpU+VcZbKJZmBXHbY1RNv37KMaElldpxpJGhZmItiaibfPPAI4HcB0RnQDgXQD+VAixoXDJWQBOIqL5RLQvgP0B/BHApQD2J6J9iWge+gsDzwp7O2GpRTxoWPRXOMVJFlCZLgrVsKW+b8qcNF2qRddBjMQlw/F61+tyT4zYU1eplIu2KzFutEv9FwW1clKxCkkWLxte9D300uRuuPFSpPRNThIiuUEjqkvGIEpGPBmjxfzGfGaaRjVL1QamDM7ZFcCZWQOeAvAdIcS5RLQcwHwAy7LfLhZCvFkIcT0RfR/ADei7arxVCDELAET0NgC/ANAFcJoQ4vrgdxSQWqD6/LiiUVsvWGgKkqGQ59KJuShwQTuv6stHZFRh86zTsSyEmUxjjuG2U2RcF/uMmja/AKT1YU6DjbtJKv9I17aj8mGOgfOaE1d5CgNDPAuz3DBjv+jPQqbEKDUptH3B7KTQqDALIW4HcIjk+JM013wUwEclx88BcI5lHkdGPaZuPiUWqtrUNWapPO9qarGSOHEHGYvhzolpO8fcejEpFuaUmD6pVM80Wc1x9GF2EuVwUyHyNQn11Xbhss895y56ycLKmbjMJKih1hJsnof9JYwH/ahbkwXv9Kehtugva2nBNi4pyYrswxz4PGv5aifmPoF7seGuTmHTNaUNGw+MEy6llcwtJfL5rtY1H9q92j1uo3W99bTPR3LQyrXOnxAKj23IPfuNS+w1Zl70x7jCCnMDEhfmKG/asn4iVLvWJRM8OoWmw1NNhcUZh3ILTSgrvaX02C4ZrVZ4GBdSrvlLRQr/7JTqT+zZjZqRRnZOjJ1fA7kZxspHkLRlPsyJKs+kuIHM9WGHFWYNRCRVWoP5p0p8mOVxNwNQ9YOWKeiV4yEbB6Fyb5H7j1E37NgW5phTl0xaYu4YpyJ18xh1ewyBtUuGjyxF/xyftDGKcxnD2dt4FWUUPsyTUO+dmcAxhxXmBkqL/gIPbCWXDEmiqqnaFG/hwdNVLPqLF4c5S3dkLhlm57lmL/aiQlcmxJAyEtq6kDOEldFs0Z+3GJi0KHeXmXT1e6g41gUW8x/KAiztL0XENS0jqOqjHhNiMqcV84SwwqyBKmbRmNOLOgUoyKIbk1R8epKGS7U+2u5S1WkOwjKNpndkl4z20rbxMkR8XVu4+thB2f/RZgCraUoXgcdD6ZIRzYAifyFw3fTHRib7MDOusMKsodZ4Yy76k3SQI5mqLbpkuISv0/yWUnmtWROszUp+eY3ukpFa4ZmQMWaS9ESXl6YJeYxeuC/6s5vO92mjsr5XFtbUVYRp3Um9cUnMWZbhQnBuBa60dRYsFawwNxC1aZUarmYKLsSUqGESsZqDbjoz5iIW7zjMzvJb5sPccjmThPWzH4kPc/uerG2ekvthp5SlcVWL8+zyGbnEeG5cYhWHOb9mjuvLqXy4J7GYWWHWQKColUtqYVaeUT/XRc4gDY0FIwaqoP+xDL80qgEgI3rD4jn1iSFpWDmXOMyJq5ppG0/dtlP6MJuGlYspL2Yc3fp453pz9hb/Sd3pb66/CKSAFWYNtjs7+U3B1QlZ/02zVh+0zXLR7G6RdtStrohOHxVgMizMTDpGYcFsE+niarsJqu78GkNOXgaDaxs2LgleZrpFfxaymkeDMBm3UxIzI0rKKBmJWnXKGaO5rJezwqyBkNKiELHCO96DS5Z015T8s4vX2IsxZlSNO/6iv7jpp4YXMaZ5pskXwSYRl+aeRmFhLuuv8YTLq57wbpfq+M5VSfGJFZEpFG3NV5G53k2zwqwh6c5O2d9qWJ9g6ZsEyQgnTiFf7Z8dPKyc2iU8CcYLQ11fZtjG7E7LRibX7PjUgEmYcXFfX5D2OidZhr/F7AdiumQUZaS6Pr8Xl0V/7O7AAKwwNxKrnVSnhdQ+ZLHC+sgyFXdVtHrRXwR5Iw8r164oGRPV33vcTCst2fmiv5RqrIUoXmA6JJWL3iDKTiJNTdkuUkXJSHCbw7By8WW1Ge/bn8Plxwqzhr6Sl6Z22IQhcwv3ZhhGqHJeqLtPraeMekV063b6m0CSKXKWgqwXsiaMwzwOlrK2ZjH2IvCSLKlLxiAjHigWkvsk6YJEoNMLo00c5vyScWgElrTTDjB55cwKsw5VZAeto65Z0qrTan6+ARqCa8V1EW1eNHEbU3XAsVdiwsiPRRs7yD6T10mmIumivxa+cjnXacXaiOByKuNBSL2rmpQuyk/x2Tm7l1jmIzbxY2QUF4I7CvOgVb1iqzIzXrDCrEHhdqs5330ZsdJFwjxFLcZxmKNNwcmtM4Q4nXJu4fWOw+yYtdhbV7dR4WHccLUctvelaTJRjQchvRkG7VoxHsRC6RIYcTwYCGnIhx77qCUpNy7hNjpZsMKsIaa/o/pNvhiZMn7Druej4QRHbEP0ecvL/o5qV6foCi13xJPDCHyY5/ZAbnfzxTjZqXoT3Qt3nDUfkoMBDTYqeUnHhEzmXN/pL9lCywksZlaYG0jlhxO7AzHp+GrKs0XPbBuFudZnBQ+TESfZttBW/13GndaWtUfG7KIYtLUA+tiuafExuAwWLY9YuUu9NXZMJn7jkgQyWrloOiGsMGvQRXbwpaqI20zrRauzAaJk6AY9WVlS3ycjOMMpP1cv5jQ4hxSb4x2XD7EHFtcIJml9mNMSU14q/SflLJmuvGKUparfbmvkFrfk2/ESEgMeDtLACrOGqIHqq75bg8Zcy0UYeUYtyj9QvVq8foV5aEt+24PU+zJp/WMyi3kiOVbku1EmGPXa3B6S7fTnsVBulFtjyxegh5Vb7KNrRp2AcgZ1PZOXxjra/zupFmYmPqwwa7DeCtWjR5F2kCNo2DXXiYBpq9KKYzHJZLbbwOwMWxQmB9cq6mP94xkKe/o+zNGmHEsMFi0r8hEc1QxnQpeM2DVyqKOzxsy4wQqzhpjbd1bT6qgsoqEMzAYZaVwAqKOhcJLHYR6RD+BJz9griRzWdyaPJM/UoTmkrmrRXWYSX2clQydEGmXIcgGjonBVqcS+Z1H7EI9hlIz4smq0SEf3eemb68MOK8wNSP1uo0iSRcnwl6VSGGPt7KTv8GXi0pRmqob+1mOflERO2xdIMeYM6yhHyWglRaPCCBWfkH2Z6vnXDTaxXPSiJGskM6URJaTRiRk9rDA3EM2F2TAOcyiM4zBHU2DVIZlihknyjsPcUsWUFZ74JBtXE77VjcXuW6ZZHMHKRZs6Ec2dIUp/mbYwqxuzDHa7jPhQ6yYpG9rdbnz2gIhFu0vMDVaYNfQXqiWSlX8ouUhMTpXrL6AsW8+jyqt0yJMG+6CmKwPbQdx10LfegttnzYT7pdGwfp6Ojdt90V/7Si1UE0h+ZyO0MPcSjkOtxuEZzPVhhxVmDbYql01dqoeVU0gL1iE2J1Tb2SngS6vSRy5WA5zwBR5t7bcms7Tj0vZ1qSHaaLKBNmIFbIuy0EbFfVTYde+ZD3MvSlaYOQArzBpSdpCxFl3Yjh8xb1kdJSO81LYMbrFIfX8Towi3sl6kCyuXM0nto77hkv788P2NPL3gId+MJduTflG25FgimXN9pz/GHVaYG0gdd7MoT7mi2aF3q14iTSGydUZXlqHLuRZWbsJIZWVK6/oxoQ+rgbyOtjRIRjKs73+ilH75k5H2X1GiyoVNtKnflbkgxmaCqoucNjfuCYEVZg0pd3bqKBQT70ZueQPFbITsYHQxTGMuYpkkP/Aik2QhBCbvflxIG1auzQU+mW3WhPypxF4ErkKn6LrUT2UwphE0+FxmSgtzsttMtOZvrvfTrDBrIOh3p4tBLGmm9Tx2mLdU1CzMc7yhM5OHT5W2GfjSzWYkEZNOTqy+tGjUCHQzo1KEygaNuJnIU+ed/tIwibO7rDBrUFmYY4ZBKxKivtmkEcIaq+vAQzQg0yR0O2WFlMMwVVyDPaRQTLlejz8haom6rsXbDluXbgrlinf6Y3xhhVmDbWfhtzW2LEqkCKadq5OpRuvQ/uyRgcqdidJPwQm2wIMt00wi2rDIODQuzS+2PuNz76NUtqIu+guUjrE8mUCK2wYGoUYnVF9OHTZ+LsIKcwMjjcMs5B1ZEAuDyresdE643ouqGnNDPkKRckGVC3O582H6TOoAXsTEet7WNpqT0oCiTzfKqr+JZ5KjZNg8Pp/bn+shDVlh1kHq3ekiiAIQ0Yc5uvlKn3Od+Bh5m+uLExg5ba4W1nU2yIwWMz7EH43SGYjqLnPJZj0SyRm1TCY8rDBrIKSbgpO9uYXxYfYIk+GA7uqUESuG02/cVU0ak/dE428LXJVlQ7rFeJMYKtGOPGu6ulCeBQwkN/GrZDXfKdq0j4XZNX82dW1s+rU5PKaywqwhqU9hZAuzKXUX5jA56r98qH8Pfd+yuNbMZJEsYlMqt6EJ9GFOTcrm3tQ3hi7jmH1Zi98hgjEIK8c7/TkzF+qJDlaYNdj7rFm8TVY6P1XczdhxmPN8yCyxYeMwqxatxLFtVJdQzvF2HoAE08HRJbSbJPblMSjkMchiiVHuktdma7kJKevjMNTouNWw8WQS90BghbkBk533QjBQG2v7vErOdegjjXb6c0wbMNnZKfWU32SviLYtzbaXw3gP+34MXurm+NbYbczTpKHqBuph3mQGFPsHpLomWjQmXV5aMosbAzvXj0ksgTSwwqxBtTtdzDjMo67KvoqtrmzKnXD1Tg3v3PC0oYXZsURH/SCYOYf9mr9EPr9JpHiQsK3aiAr9AhQyXrcqazV7TaxIHyOoVbnMSYySwaSBFWYNTX63oWXFTV8vIfYGLdpNYGK+gPiGYR5tcBEmBi0r89H4MI92kZf0HNs0nXLiXs4xn4+dIh5e/qhdO3LDRsxcDBf9RRSipGWdjiOtf3mODCvMGohcFC63hkGhNLwKxqlFHrQbXz4C9ycDl4y4YpgxY9SKgY4UeZuk+j+JGzXkLzKj9ItOKi9hXLmhD3NcOczkwgqzBlsrjE97l/UfITHtEKP1WZoMRO0nR2G+Y+Y09lUt/Qg+l5vDpLmyjOOzjD3e6YTO9UV/c/z2vWCFuYFUDvI2nV6I/jGWNct0MErRaFVuIAzTJtxjvKYRlkwhcxQ0V9p43EXn8WWU5EmedSq3xEn0YU75zmRaehNYzGYKMxGtIKJriegqIrosO7YDES0joluzv4uz40REnyWi5UR0DREdXkjn5Oz8W4no5Di3FBAnlwxXUXIXgnDpu1wTrhmqQvpE9VlD+7fGZpg5o/EZYlocc7VNx1x0Psm0ZWH9WDMXKooGGwvzsUKIQ4UQS7PvpwL4lRBifwC/yr4DwIsB7J/9OwXAF4G+gg3gAwCeCeBIAB/Iley2QkjXuCiSrb8tb3mpt8bO063NELSkPBgmJ+1mG+2l5YZsB0ETJSYowzyn3P21T280q/6YCcBHTTsRwDeyz98A8PLC8W+KPhcDWEREuwF4EYBlQog1QoiHASwDcIKH/OiQg8bsPL3qm0BT+oZhhGx/N5bfYEGPcdudhDMEVbhLdiBRoXEc0pYbilr8eJL3JxJ5abZ6issorL0dSWz+yfJnnqR7aSdkUmGI6A4AD6P/RP5bCPFlInpECLEo+50APCyEWEREPwPwMSHEBdlvvwLwbgDHAFgghPjX7Pi/ANgohPhkRdYp6FumAeAAADd73+V4sROAB0ediQmHyzg+XMbx4TKOD5dxfLiM48NlbM4+QoidZT9MGSbwXCHEPUS0C4BlRHRT8UchhCCiIK83QogvA/hyiLTGESK6rOD2wkSAyzg+XMbx4TKOD5dxfLiM48NlHAYjlwwhxD3Z31UAzkTfB/mBzNUC2d9V2en3ANircPme2THVcYZhGIZhGIZpLY0KMxFtTUTb5p8BHA/gOgBnAcgjXZwM4CfZ57MAvCGLlnEUgLVCiPsA/ALA8US0OFvsd3x2jGEYhmEYhmFai4lLxq4AzswiGUwB+I4Q4lwiuhTA94no/wK4E8BfZOefA+AlAJYD2ADgTQAghFhDRB8BcGl23oeFEGuC3cnkMGfdURLCZRwfLuP4cBnHh8s4PlzG8eEyDoDRoj+GYRiGYRiGmavwTn8MwzAMwzAMo4EVZoZhGIZhGIbRwApzYIjoNCJaRUTXNZz3DCKaIaJXFo79OxFdl/17deH4t4no5uz4aUQ0nR1XbkM+ySQu49dlZXstEf2BiA6Jd2ftIWUZ69KaZFKXMREdQ0RXEdH1RPTbOHfVLhL3FdsT0U+J6OqsjN8U787aQ6Qy/mpWjtcQ0Q+JaJvs+Hwi+l425l1CREui3ViLSFzG/4+IbsiO/4qI9ol3Z2OGEIL/BfwH4GgAhwO4TnNOF8Cv0V8g+crs2EvR3/1wCsDW6C+O3C777SXob8VEAL4L4C2F4z/Pjh8F4JJR3/8ElvGzASzOPr+Yyzh8GavSmvR/ievxIgA3ANg7+77LqO9/Asv4vQD+Pfu8M4A1AOaNugzGtIy3K1z7HwBOzT7/LYAvZZ9PAvC9Ud//BJbxsQC2yj6/Za6Usck/tjAHRgjxO/Q7Sh1vB/AjDGNXA8BBAH4nhJgRQqwHcA2yrcOFEOeIDAB/RD+GNaDehnyiSVnGQog/iP5W7gBwMYZlP9EkrseqtCaaxGX8WgBnCCHuys6bE+WcuIwFgG2JiABsk8mdCXYzLSVSGT8KDHYRXojhvs8nAvhG9vmHAI7LzploUpaxEOJ8IcSG7Po5M+aZwApzYohoDwCvAPDFyk9XAziBiLYiop3Qf8vbq3LtNIC/BHBudmgPAHcXTlmZHZvTBC7jIv8XfYv+nCdkGWvSmtMErsdPBrCYiH5DRJcT0Rvi5n48CFzGnwPwFAD3ArgWwDuEEL2I2R8LXMuYiL4G4H4ABwL4r+zwYMwTQswAWAtgx6g3MAYELuMiPOYVMN0amwnHpwG8WwjRK74YCyHOI6JnAPgDgNUALgIwW7n2C+i/Lf4+UV7HlU8jcBkT0bHodx7PjZjvceLTCFfG0rSYoGU8BeAIAMehb026iIguFkLcEvcWWs+nEa6MXwTgKgAvAPBEAMuI6Pe5JW8O82k4lLEQ4k1E1EVfkXs1gK+lzPSY8WkELmMiej2ApQCen+IGxoJR+oNM6j8AS6DwNQJwB4AV2b916E+fvFxy3ncAvKTw/QMAfgygUzj23wBeU/h+M4DdRn3/k1TG2fGnA7gNwJNHfd+TWMamaU3iv4RlfCqADxW+fxXAq0Z9/xNWxmcDeF7h+68BHDnq+x/XMi4cPxrAz7LPvwDwrOzzFIAHke0nMen/UpVx9v2FAG7EHFnrYPqPLcyJEULsm38moq+jX0l/nL3lLRJCPERET0dfSTsvO++v0bdeHCfKU3xnAXgbEZ0O4JkYbkM+pwlZxkS0N4AzAPylYGvcgJBlrEorxX20mcB9xU8AfI6IpgDMQ7+/+M80d9JeApfxXehb8H9PRLsCOADA7WnupL3YlnHmU/tEIcTy7POfArgpS+IsACejbyl9JYBfi0zDm8uELGMiOgx9Y9wJYo6sdTCFFebAENF3ARwDYCciWom+JWIaAIQQX9JcOo1+RwsAjwJ4vej7aAHAl9Dffvyi7PczhBAfhmIb8kkncRm/H30fuS9kx2eEEEtD31PbSFzGc5KUZSyEuJGIzkV/0U8PwFeEENoQVZNA4nr8EQBfJ6Jr0Y+g8W4hxIPBb6plhC5jIuoA+AYRbYd+OV6NfrQGoD8z8r9EtBz9RXAnhb+j9pG4jD+B/qLVH2TX3SWE+NPgNzWG8NbYDMMwDMMwDKOBo2QwDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDDO2ENFpRLSKiBqj/xDR3kR0PhFdSUTXENFLTGSwwswwDMMwDMOMM18HcILhue8D8H0hxGHohyb8gslFrDAzDMMwDMMwY4sQ4nfox+YeQERPJKJziehyIvo9ER2Ynw5gu+zz9gDuNZHBG5cwDMMwDMMwk8aXAbxZCHErET0TfUvyCwB8EP0dD98OYGv0twJvhBVmhmEYhmEYZmIgom0APBvDHQsBYH729zUAvi6E+BQRPQv93SMPrmx1X4MVZoZhGIZhGGaS6AB4RAhxqOS3/4vM31kIcRERLQCwE4BVTQkyDMMwDMMwzEQghHgUwB1E9CoAoD6HZD/fBeC47PhTACwAsLopTRJCRMouwzAMwzAMw8SFiL4L4Bj0LcUPAPgAgF8D+CKA3QBMAzhdCPFhIjoIwP8A2Ab9BYDvEkKc1yiDFWaGYRiGYRiGUcMuGQzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyG/z+p7ZdY2+FbMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 7))\n", + "plt.plot(lc.time, lc.counts)\n", + "bad_time_intervals = list(zip(lc.gti[:-1, 1], lc.gti[1:, 0]))\n", + "for b in bad_time_intervals:\n", + " plt.axvspan(b[0], b[1], color='r', alpha=0.5, zorder=10)\n", + "\n", + "plt.ylim([5000, 6500])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The light curve shows some long-term variability. Let us look at the colors. First of all, let us check that the events contain the energy of each photon. This should be the case, because NuSTAR data, together with XMM and NICER, are very well understood by Stingray and the calibration is done straight away." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 6.24 , 3.4 , 14.4800005, ..., 9.64 , 8.76 ,\n", + " 4.2 ], dtype=float32)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other missions might have all_ev.energy set to None. In which case, one needs to use all_ev.pi and express the energy through the PI channels (See the HENDRICS documentation for more advanced calibration using the rmf files)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, we notice that some GTIs do not catch all bad intervals (see how the light curve drops close to GTI borders). We make a more aggressive GTI filtering now:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "new_gti = create_gti_from_condition(lc.time, lc.counts > 5200)\n", + "all_ev.gti = new_gti\n", + "evA.gti = new_gti\n", + "evB.gti = new_gti\n", + "lc.gti = new_gti" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3qklEQVR4nO2dfbgdVXnof+852YSTaHNCPfLIgUi0SBQxCZwCiqWCLaBeIIUKWPsU0F6ut+AVrje3oVoJqIV7U4vYWltKsVpRwmcaiyXgBbWlBkg8iSFASuQr2WgJTYKVHMhJ8t4/9uyTOfvMx5rZM3tm9n5/z5Mn+8yej7VmZq93rfdTVBXDMAzDSENf0Q0wDMMwqosJEcMwDCM1JkQMwzCM1JgQMQzDMFJjQsQwDMNIzbSiG5AHr3vd6/Twww8vuhmGYRiVYu3atS+q6lCSY7pSiBx++OGsWbOm6GYYhmFUChF5Nukxps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBS05XeWYaRlBWjdZat2sTzO8c4ZHCAxacdyaKFw0U3yzBKT64rEREZFJHbReQJEXlcRN4pIp8VkR+LyDoRuVdEDvH2FRH5kohs9r4/xneeC0TkSe/fBXm22eg9VozWueLODdR3jqFAfecYV9y5gRWj9aKbZhilJ2911vXAPao6D5gPPA4sU9V3qOoC4B+Bz3j7vg84wvt3MfAVABE5CLgSOB44DrhSRGbn3G6jh1i2ahNj43snbRsb38uyVZsKapFhVIfchIiIzAJOAv4WQFV3q+pOVf25b7eZQLOgyVnA17XBamBQRN4AnAbcp6rbVXUHcB9wel7tNnqP53eOJdpuGMZ+8lyJzAW2AV8VkVERuVFEZgKIyOdFZAvwYfavRIaBLb7jt3rbwrZPQkQuFpE1IrJm27Zt2ffG6FoOGRxItN0wjP3kKUSmAccAX1HVhcDLwBIAVf2Uqh4G3AxcmsXFVPUGVR1R1ZGhoUSpX4weZ/FpRzJQ65+0baDWz+LTjiyoRYZRHfIUIluBrar6kPf37TSEip+bgXO8z3XgMN93h3rbwrYbRiYsWjjMNWcfzfDgAAIMDw5wzdlHm3eWYTiQm4uvqv5MRLaIyJGqugl4L/CYiByhqk96u50FPOF9XglcKiK30DCiv6SqPxWRVcCf+IzppwJX5NVuozdZtHDYhIZhpCDvOJGPAzeLyAHAU8BFwI0iciSwD3gW+Ji373eA9wObgV3evqjqdhH5LPCIt9/Vqro953YbhmEYDoiqxu9VMUZGRtRSwRuGYSRDRNaq6kiSYyztiWEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqrJ6I0TVYTRDD6DwmRIyuoFkTpJnSvVkTBDBBYhg5YuosoyuwmiCGUQwmRIyuwGqCGEYxmBAxugKrCWIYxWBCxOgKrCaIYRSDGdaNrqBpPDfvLMPoLCZEjK7BaoIYRucxIWIYXYTFyhidxoSIYXQJFitjFIEJEcMoCe2uIqJiZUyIGHlhQqRHMbVHuchiFWGxMkYRmItvD9IcsOo7x1D2D1grRutFN61nySLi3mJljCIwIdKDWIqQ8pHFKsJiZYwiMCHSg5jao3xksYpYtHCYa84+muHBAQQYHhzgmrOPNjWlkSu52kREZBC4EXg7oMBHgLOBM4DdwE+Ai1R1p7f/FcBHgb3A/1DVVd7204HrgX7gRlW9Ns92dzuHDA5QDxAYpvYojsWnHTnJJgLpVhEWK2N0mrxXItcD96jqPGA+8DhwH/B2VX0H8G/AFQAi8jbgfOAo4HTgL0WkX0T6gS8D7wPeBnzI29dISZnVHitG65x47f3MXXI3J157f8/YaWwVYVSV3FYiIjILOAm4EEBVd9NYfdzr22018Nve57OAW1T1VeBpEdkMHOd9t1lVn/LOe4u372N5tb3bKWuKkLLFOXTag81WEUYVyVOdNRfYBnxVROYDa4FPqOrLvn0+Aiz3Pg/TECpNtnrbALa0bD++9WIicjFwMcCcOXOyaH9XU8YBq0xxDmUTaIZRVvJUZ00DjgG+oqoLgZeBJc0vReRTwB7g5iwupqo3qOqIqo4MDQ1lcUqjw5TJ4G8ebIbhRp5CZCuwVVUf8v6+nYZQQUQuBP4L8GFVVe/7OnCY7/hDvW1h240uo0xxDmUSaIZRZnITIqr6M2CLiDStte8FHvM8rf43cKaq7vIdshI4X0Smi8hc4AjgYeAR4AgRmSsiB9Awvq/Mq91GcZTJ4F8mgWYYZSbvtCcfB272Bv+ngItoCIXpwH0iArBaVT+mqhtF5FYaBvM9wCWquhdARC4FVtFw8b1JVTfm3G6jAMpk8M/K5dYwuh3Zr03qHkZGRnTNmjVFN8NwoMw5vMrcNsPIAxFZq6ojSY6xBIxGYZTdAypPDzYTUEa3YGlPjMLoVQ8oS4BpdBO2EjEyJ2qW7f8uTJHa7R5QZYqHMYx2MSFiZEqUigqYYqwOIsgDqpvUP93kPtxNz8VIhwkRI1PiVFRxAiTIAyoP20mRg1+3JMAsu03L6AxmEzEyJWqWHTXTjko6mLXtpGibRJniYdqhrDatXk3iWRS2EjEyJW6WHfTd8OAADy45JfScWat/irZJlCkeph3KqJaz1VHnMSFiZEpckF6aAD5X9Y+riqoMg18ZE2AmpYxquaInCL2ICREjU1xm2Uln4C7R40lmoGUc/MBdCGZlz3H1ogu7Rhmj+sswQeg1LGLdSE0njdNx1zrx2vudVWWtAgcag1+RRaBc2/TpFRu4efVzk9yjB2r9nHPsMA88sc35WURdD4JXjEH3p2zeWUneA2MqaSLWTYgYqSjbQDx3yd2BcScCPH3tB6Zsr+Lgt2K0zuXL14X2s1WwRD2LqOtBOttVGSjbe1k1LO2J0Taug2vZdM9JVVRls0m4qGGWrdoUGqDZuj3uWaRR+1RBJdQtTgtVwoSIMUESu0KaQSjP2X/W+vlO2ydchGDSQTxq/zRedEXbjFwp2wSh27E4EWOCJH7/Sett5B2bsWjhMNecfTTDgwORMScuuLY1yz65xI4kHcSj9o+6XrfEsRidwVYixgRhM9f6zjFOvPb+SbPtpDP/Tqi/spqBurY1yz65qGFOnjfEN1Y/N+XYI14/k607Xkm0CsvDi87oTUyIGBOEqTiE/eqN5mz7mrOP5pqzj3YeaKrkeuna1qz7FCcEH3hiW+D2Xbv3JXoWLtczlZDhigkRY4Kg1UWr1w/sn20/uOQU54GmrLEZQbi2Ne8+tdpbgq4FDaGV1aBfNq81o/yYTcSYIMiukFW69irp2V3bmmefVozWWXz7+kn2ljCyFFqtNp7Ll6/j0ys2xB5r9C62EjEm0TqjDYsnSDpwVcn10rWtrfvNGqghApcvX8eyVZva6t9V397I+N74GK4sBXGQjUeBm1c/x8gbDyrlszKKx4INjUgseMuNrO/T4UvuDv1ueHAgF0EcFrDZvGbZAw2N9rFgQyNzkq4g8tSpl1lf38ngy7wG8zi7i2EEYULEiMXVaJtnGu6yp/jO2lNrcKDGzrHxwO15sfi0I0PTqpTRAcIoB7ka1kVkUERuF5EnRORxEXmniHxQRDaKyD4RGWnZ/woR2Swim0TkNN/2071tm0VkSZ5tNtKTZ5GishZAapI0+BKiiyctPfMoan0yaf9an7D0zKOyaXAAixYO8+ET5iAt28vqAGGUg7y9s64H7lHVecB84HHgUeBs4Af+HUXkbcD5wFHA6cBfiki/iPQDXwbeB7wN+JC3r1EyXGbjaavOlT3OJKmnVly0+6KFwyz74PxJnnLLPjg/91XX5xYdzXXnLcgk8t/oDXJTZ4nILOAk4EIAVd0N7AZ2et+3HnIWcIuqvgo8LSKbgeO87zar6lPecbd4+z6WV9uNdMTFTbSjksoqJiNLu0rruZKkY3exoRQV8GeBhkYS8rSJzAW2AV8VkfnAWuATqvpyyP7DwGrf31u9bQBbWrYf33qwiFwMXAwwZ86c9lpupCIuFUo7xucsEixmaVcJOtcda+vOs/ayr6yadNqZIU8hXyZHjG4iT3XWNOAY4CuquhB4GcjNnqGqN6jqiKqODA0N5XUZI4K4JIjteP5kkWAxTIgtXbkxsYqtXRtNGhtKp8k7aWae1+t023uZPFciW4GtqvqQ9/ftRAuROnCY7+9DvW1EbDdKRpgqZMVoPTCFCrgPnO2qWcKE1c6x8QlPqOZgs+bZ7ZGqqXZXEifPGwqsUFgmA3ana8Zkeb2y1bvpZnITIqr6MxHZIiJHquom4L1E2zFWAt8UkT8DDgGOAB6mkb7pCBGZS0N4nA/8Tl7tNvIhqqDSrt17mLvk7txVDlFxEH7GxvdOGuCD1F7t2GhWjNa5Y2190v0Q4Jxj27dFZKnCicvqnPWzylLF1w3qwqqo4/L2zvo4cLOI/BhYAPyJiPyWiGwF3gncLSKrAFR1I3ArDUFzD3CJqu5V1T3ApcAqGt5dt3r7Gm2Q1ksqLVE/3h27xjuicgjyoAojLOlk1LlcVxJh6UW+sfq5tp5F1iqcKIGYx7PKUsWXtct1HkQ9ryqp43IVIqq6zrNTvENVF6nqDlW9S1UPVdXpqnqwqp7m2//zqvpmVT1SVf/Jt/07qvoW77vP59nmXqCIF9R1IMgz9iPIrjJ7hnvwnl8QtmOjiRKo7TyLrGNp4oRu1s/KRTC7DvRZu1znQdTzKntclB+LWO9BitAXB3lXhZGHyqFVNXDdeQtYtHCYFaP10CjtVloFYVobTZxaLe2zyKO+CTTel06kQ4lLsZPEuy5pup4ifhPdUufehEiXE6RXLUJfHPSjfvnVPYGpPbLwUPL3e3BGjV+8sofxfQ1R0Tr4XLZ8Xez5sjR6uwjUNM/CxU6TVM/eFJRZZXOOI0owJx3okwj5In4T3VLn3uqJdDFhS/TBEBVO3i/oooXDPLjkFJ6+9gM8uOQUlp55VC71OFr7vWPX+IQAaeJXDQyH9LtfJJeobb8qLIw0zyJOhfPpFRu4fPm6VCqbMtSDyXOgL8Llulvq3JsQ6WLCZm6qlOIFzSL2I4igfgfRHHzCfrBfOHf+hMDLWqXRFKi/e0JwYOzJ89LFOk2ftv8nPXtGbeJ+rhitT3EpBnc9e17PKgl5DvRFDNpR97QM99sVU2d1MWEztJfGxrnuvAWlcB/0qxyaqpbLl69rq02uM9Pm4FNkwaywuulh28MIqmfyyvi+ic9RLtau96vodChZZC0Io6h3oOh7mgUmRLqYKJ1rHi9vO37tWaYkcYkHaR18WgeR5uw877iNrFQ0YavOT966PtZxQGR/EayBWh8H1vrZuWs8k4E0y1iHvAf6Mg3oZS994MeESBeT58ytlXZf+iy9Y06eN8Q3Vj83ZftArY9XxvcFDj5p2x8XLBZ3zqwSS4YJnb0OlUv95qKx8X2MeSuYdgeuPAbCMg30eVKliHuziXQxSfWq7QRbtevXnqXRNEwVdNDM6aE2jjTtj4stcDlnVrr4vAzA7cQmVCnWoWxUJeIebCXSFUTNhtupSnj58nWseXY7n1t0dOzx7b70Wc3I07YlzTFxs0WXc2alokkShyO4p4BpbW8SXO9pVdJ7dJIsfw95YyuRipNVpG1YKo6bVz/ndK52PWey9I5J05Y0x8QNkq7nbHpqXXfeAgAuX74u8UqwddXZP7VeD9BYjTZXY1EuxlHtdcWl/ytG6yy+bf2k93fxbetLmd4jL4I0AObia3SMrFQGYQOieteIo92XPkr1FqZmC9uepi1pjokbJJOcM4vJgD8O5wvnzg+9dvO+uaxEotobp/oM6r+wP4HjitE6S1dunBLDM75PWboy+/R4nc6N5dqmoOcOmIuv0RmyUhlEqTdc631Ae2qZINVbmHF2zbPbuWNtPdJomzQyO+kxcY4LSc6ZtSE17NpApNrLxTvL1WAelDbFnxk5KlNAUCaDdiirt1PUc88jPikPRB28N6rGyMiIrlmzpuhmdISwGeXw4AAPLjkFCI4hGKj1T5rZROWQ8p8rC5LowF1nzE2ybmscWenz5y65O/DeC/D0tR9ou51NXN6XPM6x8Op72bErmWB4xrHfLs8gi37nQaeeuysislZVR5IcYyuRiuPixutaz3vNs9tzL5SUdEaY1Kjbae+VrFxOO2VIzcLrJ805kgoQ1+zKru9TVG2UIqmSAT0Ms4lUHBc3Xtcf/ecWHc115y3IVQ+b1IaT9MeU1Y+v0/rzThlSs0gdkneeqf4+4cozjnLa1/V9CmubQKG2kSoZ0MOwlUgXEDcbTjLbSTOzTqLSSTqLTeK6mtWPrwj9eZbR2FHPI4sA1DTnGByoOds5ksxsXd+nxacdGaiubTqOFGV7KDLlTlYkFiIiMhs4TFV/nEN7jBzIM3I96YCbdPne+iPrEwmMwu4XyWzVlFe0cNDg3rxeVgNI3PPIygEi6TmWnnkUi29bP8UTK4jxfep8r13fp0ULw1P+Fx3AV/UofCchIiLfA8709l8LvCAiD6rq/8yxbUZG5DnbSTLgrhits2v3ninniBNorUka45wE2iWPaOGgwX3xbetBYHxvcJ2TNMQ9j6wcAZImzgyzuYXheq+TTJCGu8D+UEZcVyKzVPXnIvL7wNdV9UqvbrpREfKa7SRxMQ5SSw0O1Fh65lHObevE8j9sdjtroMaJ196f6rpBg3vQrLzdFU+UAfnTKzbEukUnJclK9IEntjkJEHAf2JO8D53MJddLuAqRaSLyBuBc4FM5tseoGK7qhLAaHzOnT0s8gGUlEMNm5WF2mP/0VWJMOgBn4f3kQlS8T1Q9kaxXPp+8dT2XLV9Hv6d+DFsFBJF0YHd9H7rB/hBFUeljXIXIVcAq4F9U9REReRPwZH7NMrIkz5fLdXZXZEK5MFtE1Aw6SPWyN6Q6YtC9bL3mrASG5aYAbp6jvnNs0mAc9fyiHBHarSeS5Nim3ar5f33nGBLShsGBGjOnT+vI4Fd1+0MYRQZTugqRn6rqO5p/qOpTIvJncQeJyCBwI/B2Gu/PR4BNwHLgcOAZ4FxV3SEiAlwPvB/YBVyoqj/yznMB8GnvtJ9T1a85trvnyfvlcp3d5eEP7yIcw/p/YK0v0nbgqnrxD6L+Qd8/YNZ3jlHrF2p9MkmFVeuTSTYRmJyaxN9u/2Ac9fya21zqxjdpFVoug3lz3yShykH7DtT6E6kzu4ksJ3dFpo53ilgXkR+p6jFx2wKO+xrwz6p6o4gcAMwA/gjYrqrXisgSYLaq/qGIvB/4OA0hcjxwvaoeLyIHAWuAERrv4VrgWFXdEXbdXopYj6MskbphBvFzjm0M2El/SK4G9qQR781I4bBI4lZmz6gx44BpkTPt1n1dvLPi2h30/PyDUpgXW2sbm/cMpqZDCXNYCLNvuTI4UOOlsWyKXlWVrB1Esop8zzxiXUTeCbwLGBIRvyfWLwH9wUdNHDsLOAm4EEBVdwO7ReQs4D3ebl8Dvgf8IXAWDaO9AqtFZNCzw7wHuE9Vt3vnvQ84HfiWayd7lRWj9bbyYWVJ84dx1bc3TkQvC8ryh7dMzM6TrJLCZl5LV26cNCgnjUhuzspdjq31C794Zc9Ef+KEzs5d44x+5tSJv6NmonHPJ85xIUiARAnthVff6zyTjaph3x8ivPzMnD6NdVeeGrlPt5P1yqHIyPc4ddYBwGu8/V7r2/5z4Ldjjp0LbAO+KiLzaawgPgEcrKo/9fb5GXCw93kY2OI7fqu3LWx7TxO3FG4OKmEU5dbor/u9y/e5iesPKWyQ3Tk2Psn4Hbc68OO35YRVR5x5QD+7du/lkMEBXvYZ2l1oTYHeqma7bPk6rvr2Rq4846hYIebquNAvwj7VyFn/itF6aFqSoPscJeB+aWAav3hlT2Q8SF4TmCrVJcnaRlik51mkEFHV7wPfF5G/U9VnU5z7GODjqvqQiFwPLGk5v4pIJhkgReRi4GKAOXPmZHHK0uJi54iaLRbl1hjVJj8uPyTXVYYyVYUTRKvB+h/X/zRwv1p/H09fezrQUCG4UuuX2Hxm0MgxdcWdGzjn2OFJ7ritnDxvCJhshwlin2qsOiMq1X+QW3PUvd+xa5xav0RGqOcxgSlrlt4wsl45FOl55pphYLqI3CAi94rI/c1/McdsBbaq6kPe37fTECr/7qmp8P5/wfu+DhzmO/5Qb1vY9kmo6g2qOqKqI0NDQ47dqiYu+YKiBuKi6hIkqXIYR1DOoTCagiSMpn3Bf0/CBkD/9iQ/+JkHTHZljroXY+N7eeCJbVxz9tGhxaUeeGLbpFoUYbi0MaotL+/eM6XWxcnzhiLv/fheZeb0aXzxvAUdywtVtVK8eeTMWrRwfz2ZTqaRdxUitwGjNDykFvv+haKqPwO2iEjzrrwXeAxYCVzgbbsA+Afv80rg96TBCcBLntprFXCqiMz2Uq6c6m3rWVyWwmGDx/DgQGEzM5cBzfWHFJR4Mizza79I6EqknR9uEkH20tj4pKSOfSHCocnzO8dYtHCYfSH2hed3jsWu7FwLSs0aCL5v0uI5Bo2B+Rurn2NsfG+ogIOGwFm2ahPnHDvckcJKVapJDm6JU6uCq4vvHlX9Sorzfxy42fPMegq4iIbgulVEPgo8SyOAEeA7NDyzNtNw8b0IQFW3i8hngUe8/a5uGtl7FZelcBmjc+OSKSbNf9W6hJ81UKPWL1NcZqMG2rDrzZ5RC7QT+AVVkAph1+49gccNzqjFGr79xBn4myuDMPpFOOdYtyJfQe7Hcfet2YcoVWF95xh3rK07PdN27RlVTKneLTErriuRb4vIH4jIG0TkoOa/uINUdZ2nYnqHqi5S1R2q+h+q+l5VPUJVf6MpELTBJar6ZlU9WlXX+M5zk6r+ivfvqyn72jW4LIXLONNptimMfaqJ2tdaWnTn2DhoY6Bv9vmcY4dDVVn9IqH1zK884yhq/ZOPrPVPTVHeqkK48oyjAp+NKs4usf5nmWS142evKnesrU/q14rROp+8df3U9Ct7ldccOG3Ku+JSgz3O1uSiUsqiNHARKdXLWG63CFxXIk31k1+FpcCbsm2O4YKrEa2MM51FC4dDDcFJZ41h+ahmHDCN0c+cOjFohg10UQF8aQ2VYcddniD4zy/s/edL6q7cmnjxijs3hK6AWt2Pm7QTD9IkTqWUNIln0DPptGG5aob8PHESIqo6N++GGMkoo4BwJStVW5QePG7QbCVo0Ep7j4OOcxUC/rVP64CZhrp3L+LsJ4cMDgQO0NecfTSfvHW9830MO3cUcc+x2abBGbVJ7sNBae479ZsoMkK8bDips0Tk94L+5d04ozokWdpnpWqLqrDn6k7sJ08jrKtaqlkkKUjFE6aWGx4ciFQ9xXlwDdT6OXneUKBKCeBDxx8WemwcLpODsOfYtCM127Rj1/iU+JOiPLCqZsjPE1d11q/6Ph9Iw9PqR8DXM2+RUTmyXNq3zoZPnjcUGGG9YrTOy6+G1yaJyh0VZgzO0wgbpG6JyiYQJATDck8FJZT00/SkiirmlYeLrGua/7CVqasdqYiBu4qG/Lxwyp015aBGYsVbVPX0zFuUAZY7q7Mkzc8VlUcrKsAubr/ZM2pceUZj0HrzFd8JVcEM1PrYs0+neHGlWQ2141UUdd+e92bfUbQO0itG65HCs9Xjyt/nqNxL4B71Dw3B9IVz5yd2kgiyI7lct9N54KAzxdGKIPPcWRG8TCOtiVEiOpn2wX+tKBfPIMJmvd96aEus7j1qvxm+gL6o84yN76PWJ8yeUWPnrvSJAFeM1ieVfJ2oVojbCizKNuRiQ2mtxRLltNB0TW5eq1UARc2sw9yWITyhYxY1YlzuQVFu691emyQJruVxv83+d6UfeCtwa16NMpLTSW8R1yyuYcFocTUo4gjbz3/euCJIfi+utCxduXGKjn58n7J05cZMiiTF3eOgJIxB5YebiSL9bX11z+S8ZWEC7eR5Qyx/eAut1PqFZb89P7L97RLUplq/MPOAaaXIAlxl55YscV2J/Knv8x7gWVXdmkN7jJRk6S0StqKJy9PUSthgHzbrdckAG7VfXLBlK+3q0l1So8QRNhC5uPZGJXRsMlDr45U9+2i9Xa3vRphAW7ZqU2AyRX8al7wGUpvtVwNXF9/vi8jB7DewP5lfk4w0ZOUtEraiWfPs9lh7RSvDLYOc31UzKELa1SZyzJxZ/OtPtk9Ro7QGW0L8IBwnMKO2501TwITp310SOr4yvs+5omGQQAuLb3kpgaBsh7jZfpUy93YrrkWpzgWW0aj9IcCvAYtV9fZcW5eSXjSsZ1V8Kuw8rquEJn7deNAgGKaWiPPOOnne0BRBI8CHT5jD5xYFR8MnMeQn3R7E7Bm1RGoy1wqNfiGsyqR752qE9uOSJj6qOFZQqd5O2+W60bhdJGkM665CZD3wm6r6gvf3EPBdVZ2fqqU504tCJKsflGtFvzAEpgweWVZXjDpXU/0SNIAFDW5hq5Qod9g4Qdq0Fbje86TPLWz/A2t9ocZvF9JWMYybLOQ5qJelamfWFLm6ytM7q68pQDz+A/e8W0YHyEp/3I69IuzHm2VgVtisuKl2C3MsSKKqCeunS/+T3vOktqyw/adP65uiIkxC2DXj1IL+4zodxd2NAX9VTKfiKkTuEZFV7C9Jex6NrLtGicjCWyTMSydOlRPlaplVYNaK0Xpk1tikA1i7Bn4/aWe/SQfCsO0vjY0zGJJ5OE1bksRtNI/r9KDejQF/VUynErmaEJFfEZETVXUx8NfAO7x/PwRu6ED7jA4TlpLkc4uOnrR9cKA2KVtulMoiqwyry1ZtSqxqixrAwtp1wptmT0kxEl39I/1AGZW6Jen2nY4CJKwvzXOHZdUNqzvSJ8KK0XriNrdLEZl786aKq6u4lcgXgSsAVPVO4E4AETna++6MHNtmFESU22nahISQXNXWOhtOmsUWprrBtrbhnGOHJ4IX+0U4Zs4sfvTcS5OElUt53SQDpb8dYTVQwgbCdgMUBXjXmw/iR8+9FOrtFTYbPrDWF1hnZK9qaEnfPAf1bnQBruLqKtKwLiKPqOqvhny3QVXDi0MUSC8a1ruNICNt3GAeFT0d5iGGMsmOEHaNKBVXEuNxYDv6hNccOM05ej7K/dglCLSpngzKSQbhzhUCXHfegtCsvnHODUY8RXuc5WFYH4z4rryi0ag8YQkIwwb5uIExsPbI3qlniqo9EjQLn3lAP5//LfcfeFwNlDiiPHdca480a7iH2XCiZsOLFg6HOiQ0S/qa0EhPFVdXcUJkjYj8V1X9G/9GEfl9YG1+zTJ6nTAdsLI/pUlzddAvMjEwhv3g2tUpD3sxKjevfm6SoHFxhnLJM+bSPhfPneYgHhXfEXS9JCq2KqpcqkTVBHGcm+5lwEUi8j0R+YL37/vAR4FP5N46o2cJG5CaXlDPXPsBvnDufAZq/VMqFAbVMkkywLUanpsD6ANPbJsiBOLSpbcaqcNwaV+SdO1x9UuCUqb4ywyP79VJ92H6tP1DRVYGbSsv2x1EChFV/XdVfRdwFfCM9+8qVX2nqv4s/+YZVSHrAcFloMpyUPVzYK0v0PMsjeeMS3Es1wE4yfWbXnbN7L1R1wtro1/o7RwbnxDQWRQVy6KuelJMaOWDa+6sB4AHcm6LUVHyCJBy0Q0nHVT954taFYyN7wOE685bMOl6adQ4UQImKLo/yuaR9Pr+3Ftp7mMr/niFdnNadToeIugdXXz7epau3FiKjMBVJm09EcOYIK8BIW6gSjuoQnROKAhuf5BNJG4VEdbGoODEOGGctjZ92vsYRLu2G4g2/OcVDxHmWNHMuFyFyPCykmvqEhF5RkQ2iMg6EVnjbZsvIj/0tn9bRH7Jt/8VIrJZRDaJyGm+7ad72zaLyJI822wkx2VFkIcqoR3dvIt6q7X9d6yth9pEwvqTpI1hwviy5es48dr7AZzUSC732r/Prt17qPXFhVM2aMd2s3Tlxth673kZ512EU1H12qtOJ1YiJ6vqi76/bwT+l5de/iPAYuCPReRtwPnAUcAhwHdF5C3eMV8GfhPYCjwiIitV9bEOtN1wIGpFsGK0ztKVGyfV2Gh31tfqSXRgrS9xhcKk9TqibBtR/WlVo80aqCHSyNu1bNWmSe2NGujqO8e4bPm62LrlLmqb1kzIO3aNU+sXBmp9niovmHZtN3F1VvIMTHRdbZU5MrysFJFE8S3AD7zP9wHneJ/PolG3/VVVfRrYDBzn/dusqk+p6m7gFm9foySEzbZPnjfEFXduCBw80s76gjyJXhnfx3XnLeDBJackEkqLFg7z4JJT+OJ5C2JXC3GDS1R/mte57rwFvPxqo9Rs05i8+Lb1EysFl1m438AdRJTapnnNm1c/F7jPQTOn88XzFkysdGbPqDE44Jbaxk+a1UQa43wSXB0rzE05OXmvRBS4V0QU+GtVvQHYSEMIrAA+CBzm7TsMrPYdu9XbBrClZfvxrRcSkYuBiwHmzJmTXQ96iLQpqFtn9c24jbia6WlmfXnYX1yM+C4z2bj+xJXTdanGCNH9dbmnUbEqeSXxjKITqdtbn/HgjNqUksFVz7tVFHkLkXeral1EXg/cJyJPAB8BviQifwysBHZncSFPQN0AjbQnWZyzl2jXw6q5j/8ccZlw08z6XD2ykgrEuMHTZWCM609UOd0Tr71/YnCbPq0vVvUTdh/S5hiD/YkU2xUirpHz0NmBu/UZZ1W3o9erK+YqRFS17v3/gojcBRynqn8KnArg2Tw+4O1eZ/+qBOBQbxsR242MyGKG7xIT0STt4OHikZWny/FlISk/gMj+xDkSNPu0Y9c4A7V+fveEOZGp98MElusqICh9TDORIrTvoeQSOZ+m/kqWZLHqqmL9j6zJzSYiIjNF5LXNzzQEx6PeqgQR6QM+DfyVd8hK4HwRmS4ic4EjgIeBR4AjRGSuiBxAw/i+Mq929ypZpKBOsm9a/XfWQYhJWLRweFLdeD+zZ9Rijd2ujI3v5e4f/9Q5WLC1jX4PrtlePXs/tb6GET3s2ll6KIU9ry/6bFhVDgLM612rEnmuRA4G7hKR5nW+qar3iMgnROQSb587ga8CqOpGEbkVeAzYA1yiqnsBRORSYBXQD9ykqhtzbHdPEjbDD6shkeQcrQx7ifyiCFMRZB2EGHWtIMJiNa4846jQ8+3avcd5hdakWVxq9DOntq2aa/Vme3n3HnZFeGFl6aEU97yqPpOvYv2PrHGqsV41LBV8claM1ll82/opht8kNcNdUpG7pLVuNx12ktrbaa4VNai7pmN3IQ+Dc1yQZV7XTdqeqtRJr3r7W0mTCt7qpBtAY9b3mgOnLkzH96rz0jwop9LvnjAncY6ldlUEWQT4ffLW9aFqlabL7tPXfmCKW3ESu1Acecxm487ZaQ+lqs/ky1RdsSi1oKU9MSYIK69a3znm7LWThbGy3YElSU2GsHOmNTJnOfjlEbMQpXLsF+GcYzubhrzqaeXLUv+jSLWgCRFjgqgBppN66iwGFldhFtXnKO+0MJVW2PkGB2rMnD5two1XldAIcshvNhvlvbVXlTvW1hl540EdGwTT5gMrE2Wo/9HphJZ+TIgYE0QNMJ16IcPaUcSgCsEri6hZX1jbo1KVAIy88aCOzGbjYjg6+Zxb29OrcRZZUKRa0ISIMcGihcOseXY731j9XOD3ndJTd3JgaZ4zrG540OonatbXNKYmbXsnZ7PNa4XVUnfN1JvV8ynDTL7qFKkWNCHSBST9QUft/8AT20KPmzVQmxRZ7VfJZD3Id3pQBSJXP0lK3FZlUAwbePpEmLvk7tDnmkb/3utR3XlTpFrQhEjFSfqDjts/ahb68u49E+k4dviM8FXz7Q8iavXj6rZbFmOw64AdpsprLTcMk59rUv171WNBqkCRakFz8a04Sd1h4/YPGwj7pOHuG0bVo3SjBt4sS9zmTdKysweGRK438T/Xpgtp0oJSFtXdGaJcz/PEhEjFSWpQi9se5ve+zyEmtSq+/a3EDbxxJW7zTmOeBNcBu9nnHSFu3X6e91y80xaUqnosiBGNqbMqTlKDWtz+Yctil4ysrdesih48Tj2TpMRt0bgO2EmCIg8ZHIjdP2olVnQsSFXew6piK5GKkzRi1mX/oGVxXFGf1nMkVasUSdrVWRnUV61ETR78uK4ChEb/o/aPW4kVef+q9B5WFRMiFSco1UjUD3rRwmHOOXaY/kZiTOco5aDssFFV76qkB48beJPe4yJxHbBdVgECfPiEOROrsSCaq7G4hJBF3b8qvYdVxdRZXUASl9IVo3XuWFuf8MBJEqWc5DpV0oO7uEdWxW3X1UsnqM+1fmHmAdMC3bbbdSEt6v5V6T2sKiZEeoxOpUcoWg+ehDJETXc6eC9pn8twj9JQpfewqpgQ6TE6NTOrWk6kIlcaRcVRJO1zVVZjfqr2HlYREyI+esGLo1Mzs6rOXIsgyeqwF97RLLH3MH9MiHj0SlRt1jOzqEGtijPXInBdHfbKO5o19h7miwkRjyJTKXeSLGdmWQ9qvTrLdl0d9so7GkevvidlxYSIRy95cWQ1M8tyUCvrLLsTA5br6rCX3tEwyvqe9DIWJ+LhGqRl7CfLQa2M/vydClRzjaOwd7Sc70mvY0LEo0pRyWUhy0GtHYGUV23psg1YZX9HO1Hj21Zj5cPUWR55e3F0ox43SyN9Wq+xPNUbnRqwXPtQZk+jTqmZLO6jfOQqRETkGeA/gb3AHlUdEZEFwF8BBwJ7gD9Q1YdFRIDrgfcDu4ALVfVH3nkuAD7tnfZzqvq1PNqblxdHt+px2x3U/IJ11kCNWr9MSjfvIpDyNDZ3asBK0oe072jek5hOGf0t7qN8dGIlcrKqvuj7+/8CV6nqP4nI+72/3wO8DzjC+3c88BXgeBE5CLgSGAEUWCsiK1V1Rwfangnd7FXTzqDmHwx2jo1T6xNmz6ixc5d7tcQ8VwsnzxsKLBV88ryhts/tJ+8VTycmMZ1atZV5NdarFKHOUuCXvM+zgOe9z2cBX1dVBVaLyKCIvIGGgLlPVbcDiMh9wOnAtzra6jYwPe5UggTr+D5lxgHTGP3Mqc7nyXO1EFYqOKqEcBryXvF0YhLTSTWTxX2Ui7wN6wrcKyJrReRib9tlwDIR2QL8KXCFt30Y2OI7dqu3LWz7JETkYhFZIyJrtm3L9kfeLuZVM5WsBGuexuZOpojJ02DeiX4E9UHIftVmlI+8hci7VfUYGqqqS0TkJOC/A5er6mHA5cDfZnEhVb1BVUdUdWRoqFwvbtm9aoogK8GaZ5rxTgn/vFOld6IfzRID4tumwB1r61a7o8vJVZ2lqnXv/xdE5C7gOOAC4BPeLrcBN3qf68BhvsMP9bbVaai0/Nu/l1ujc8D0uFPJ0kCal3qjk0bcPFU0nerHA09so7WKcrfY/oxwchMiIjIT6FPV//Q+nwpcTcMG8us0BMEpwJPeISuBS0XkFhqG9ZdU9acisgr4ExGZ7e13KvtVYJXB9LiTqYJgrUIbXehUP8z215vkuRI5GLir4bnLNOCbqnqPiPwCuF5EpgGvAE1byXdouPdupuHiexGAqm4Xkc8Cj3j7Xd00shvVpgqCtQptdKET/bAYjt4kNyGiqk8B8wO2/wtwbMB2BS4JOddNwE1Zt9GoJt0YuNkNWAxHb2IR60al6NbAzW6gW9R/RjJMiBiVopsDN4sg61Vdt6j/DHdMiOSEqVzyoV3jrT2X/diqzsgCy+KbA51KId6LhBlpFWIzx5bxuXQi820YZctSbFQTEyI5YD/O/AgK3GwSJxTK9lyKFmrmklsMRU4c8sCESA7Yj7NBHj8Wf3R3EFFCoWzPpWihZul4Ok/RE4c8MCGSA/bjzPfHsmjhMA8uOWVSig0/YUKhbM+laKFm6Xg6T9EThzwwIZID9uPszI8lqVAo23MpWqjlnbPLmErRE4c8MO+sHDB/+c5ljk0S3Fa251KG4Dxzye0s3RjVb0IkJ3r9x9mJH0saoVCm51I2oWbkTxkmDlkjjWwj3cXIyIiuWbOm6Gb0NK0xCND4sZi6xOh1yhyrJCJrVXUkyTG2EjFywWbZhhFMmVbDWWBCxIgl7cyp234shmFMxYSIEYmlxjAMIwpz8TUi6Ua/dsMwssNWIl1MFga8bvRrNwwjO2wl0qVkFTFedECcYRjlxoRIl5KVGqpsUd6GYZQLU2d1KVmpocxV1zCMKEyIdClZRoybq65hGGGYOqtLMTWUYRidIFchIiLPiMgGEVknImu8bcu9v9d536/z7X+FiGwWkU0icppv++nets0isiTPNncLlqHVMIxO0Al11smq+mLzD1U9r/lZRL4AvOR9fhtwPnAUcAjwXRF5i7frl4HfBLYCj4jISlV9rANtrzSmhjIMI28Ks4mIiADnAqd4m84CblHVV4GnRWQzcJz33WZVfco77hZvXxMihmEYBZO3TUSBe0VkrYhc3PLdrwH/rqpPen8PA1t832/1toVtn4SIXCwia0RkzbZt2zLrgGEYhhFO3kLk3ap6DPA+4BIROcn33YeAb2V1IVW9QVVHVHVkaGgoq9MahmEYEeQqRFS17v3/AnAXnnpKRKYBZwPLfbvXgcN8fx/qbQvbbhiGYRRMbkJERGaKyGubn4FTgUe9r38DeEJVt/oOWQmcLyLTRWQucATwMPAIcISIzBWRA2gY31fm1W7DMAzDnTwN6wcDdzXs50wDvqmq93jfnU+LKktVN4rIrTQM5nuAS1R1L4CIXAqsAvqBm1R1Y47tNgzDMByx8riGYRgGkK48rkWsG4ZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqTIgYhmEYqbF6IoZRAlaM1q3wl1FJTIgYRsGsGK1zxZ0bJsoZ13eOccWdGwBMkBilx9RZhlEwy1ZtmhAgTcbG97Js1aaCWmQY7pgQMYyCCat7H7bdMMqECRHDKJiwuvdh2w2jTJgQMYyCWXzakQzU+idtG6j1s/i0IwtqkWG4Y4Z1wyiYpvHcvLOMKmJCxDBKwKKFwyY0jEpi6izDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAzDSI0JEcMwDCM1XVkeV0S2Ac926HKvA17s0LXKgvW5++m1/oL1GeCNqjqU5ARdKUQ6iYisSVqTuOpYn7ufXusvWJ/TYuoswzAMIzUmRAzDMIzUmBBpnxuKbkABWJ+7n17rL1ifU2E2EcMwDCM1thIxDMMwUmNCxDAMw0iNCZEQROQmEXlBRB6N2Oc9IrJORDaKyPd9208XkU0isllElnSmxe3TZp+fEZEN3ndrOtPi9onrs4gs9vq0TkQeFZG9InKQ913lnnOb/e3WZzxLRL4tIuu99/oi33cXiMiT3r8LOtfq9mizz3t978DK2Iupqv0L+AecBBwDPBry/SDwGDDH+/v13v/9wE+ANwEHAOuBtxXdnzz77H1+Bnhd0X3Ius8t+54B3F/l55y2v938jIE/Av6P93kI2O4904OAp7z/Z3ufZxfdnzz77P39iyTXspVICKr6Axo3NozfAe5U1ee8/V/wth8HbFbVp1R1N3ALcFaujc2INvpcWRz67OdDwLe8z5V8zm30t7I49FmB14qIAK/x9t0DnAbcp6rbVXUHcB9wet7tzYI2+pwYEyLpeQswW0S+JyJrReT3vO3DwBbfflu9bd1AWJ+h8VLe622/uKD25YaIzKAxgNzhberm5xzUX+jeZ/wXwFuB54ENwCdUdR/d/YzD+gxwoIisEZHVIrIo7kRW2TA904BjgfcCA8APRWR1sU3KncA+q+q/Ae9W1bqIvB64T0Se8GZD3cIZwIOq6jqLrzpB/e3WZ3wasA44BXgzjb79c6Etyp/APqvqz2nkz6qLyJuA+0Vkg6r+JOxEthJJz1Zglaq+rKovAj8A5gN14DDffod627qBsD6jqnXv/xeAu2ioe7qJ85ms2unm5wxT+9vNz/giGmpaVdXNwNPAPLr7GYf12f+cnwK+ByyMOpEJkfT8A/BuEZnmLf2PBx4HHgGOEJG5InIAjR9jvIdDNQjss4jMFJHXAojITOBUINTDq2qIyCzg12n0v0nXPueg/nb5M36OxuoaETkYOJKGEX0VcKqIzBaR2TT6vKqwVmZLYJ+9vk73tr8OOJGGM00ops4KQUS+BbwHeJ2IbAWuBGoAqvpXqvq4iNwD/BjYB9yoqo96x15K42XrB25S1Y0FdCExafvsLXvvatjomAZ8U1XvKaIPSYnrs7fbbwH3qurLzeNUdU8Vn3Pa/gIH073P+LPA34nIBkCAP/RW2ojIZ2lMGACuroo6M22fReRdwF+LyD4ai4xrVTVSiFjaE8MwDCM1ps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAIQkV+0/H2hiPxFm+d8xvO9N4yuwYSIYeSAiFgMltETmBAxjISIyBki8pCIjIrId72IX0RkqYj8vYg8CPy9iPyyiNzr1Wu4kUZQFyJyuIg8LiJ/4313r4gMeN+9WUTu8ZIc/rOIzPO2f1Aa9T3Wi8gPvG1HicjDXt2HH4vIEcXcEaOXsWBDwwhARPbSyG7a5CBgpape6qXA2KmqKiK/D7xVVT8pIktpJC58t6qOiciXgBdV9WoR+QDwjzRqN7wG2AyMqOo6EbnVO/c3ROT/AR9T1SdF5HjgGlU9xYssPt1LjDeoqjtF5M+B1ap6s5d6pV9VxzpzhwyjgS25DSOYMVVd0PxDRC4ERrw/DwWWi8gbaBQvetp33ErfQH4ScDaAqt4tIjt8+z2tquu8z2uBw0XkNcC7gNu89CIA073/H6SRpuJW4E5v2w+BT4nIoTSS6T2ZvruGkQ5TZxlGcv4c+AtVPRr4b8CBvu9eDj5kCq/6Pu+lMaHro7HCWeD791YAVf0Y8GkaWWXXisgvq+o3gTOBMeA7InJKW70yjBSYEDGM5Mxif0rwqLrbP6BRDRIReR+NEquheLUcnhaRD3rHiIjM9z6/WVUfUtXPANuAw7zEl0+p6pdoZNx9Rxt9MoxUmBAxjOQspaFyWgu8GLHfVcBJIrKRhlrrOYdzfxj4qIisBzayv+TuMhHZICKPAv9Ko6b7ucCjIrIOeDvw9RR9MYy2MMO6YRiGkRpbiRiGYRipMSFiGIZhpMaEiGEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkZr/D6KEpiMUE7OOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "hard = (all_ev.energy > 10) & (all_ev.energy < 79)\n", + "soft = (all_ev.energy > 3) & (all_ev.energy < 5)\n", + "\n", + "hard_ev = all_ev.apply_mask(hard)\n", + "soft_ev = all_ev.apply_mask(soft)\n", + "\n", + "hard_lc = hard_ev.to_lc(200)\n", + "soft_lc = soft_ev.to_lc(200)\n", + "\n", + "hard_lc.apply_gtis()\n", + "soft_lc.apply_gtis()\n", + "\n", + "hardness_ratio = hard_lc.counts / soft_lc.counts\n", + "intensity = hard_lc.counts + soft_lc.counts\n", + "\n", + "plt.figure()\n", + "plt.scatter(hardness_ratio, intensity)\n", + "plt.xlabel(\"Hardness\")\n", + "plt.ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Despite some light curve variability, the hardness ratio seems pretty stable during the observation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now look at the power density spectrum. Notice that we are using a sampling time of 0.001 s, meaning that we will investigate the power spectrum up to 500 Hz" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:01, 177.96it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(all_ev, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power (Leahy)')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAGtCAYAAAC4HmhdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABUSElEQVR4nO3dd3hUVf4G8PdMS++FFkLoRQTpTVBUUETsDcu6lnVdt1nWXfytbVdX2V3L2nZd1FVXXV0XVFQQRJEmIE06hJpASAgJIT2Zycyc3x9TMpNMTWZyb27ez/PwOLlz5+bgkOTN95z7PUJKCSIiIiJSjk7pARARERF1dQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUZlB6AO2RmZkp8/LylB4GERERUVBbt24tl1Jm+XquUweyvLw8bNmyRelhEBEREQUlhCj09xynLImIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECuuUgUwIMUcIsaCqqkrpoRARERG1W6cMZFLKz6WUd6ekpCg9FCIiIqJ265SBjIiIiEhLGMiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgYyIiIhIYQxkRERERApjICPqAk5WNSJv3hJsKahQeihEROQDAxlRF/D1vlIAwP+2FCk8EiIi8oWBjKgLOFVjBgBkJ8coPBIiIvKFgYyoCyiraQQApMWbFB4JERH5wkBG1AWcqnZUyKx2u8IjISIiXxjIiLoA15SluYmBjIhIjRjIiLqAijoLAMBsZSAjIlIjBjKiLqCmsQkAYLbaFB4JERH5wkBGpHF2u0SN2QqAFTIiIrViICPSuDqLFVI6HlsYyIiIVImBjEjjqhut7seskBERqRMDGZHGVTc0uR9zDRkRkToxkBFpnFcgY9sLIiJVYiAj0rCTVY0or3W0vDDqBacsiYhUyqD0AIgoeiY+8437cWZiDKcsiYhUihUyoi4iKymGFTIiIpViICPqIjITY9j2gohIpRjIiDRKupqPAeiflYDEGAMrZEREKsVARqRRdmcee2DGIHz9wHmIMehgbuIaMiIiNWIgI9Ioq91RDdPrBIQQiDHqWCEjIlIpBjIijbI5S2QGnQAAxBj0DGRERCrFQEakUVZnINM7A5nJoGPbCyIilWIgI9Ioq80RyIx6x5e5Sa9Dk03CbpeBXkZERApgICPSKM81ZICjUz8A2CQDGRGR2jCQEWlUyzVkep3O6zgREakHAxmRRrmmLF0VMlcwszKQERGpDgMZkUa5K2R6V4XMOWVpYyAjIlIbBjIijWq+y9LxZe4KZq61ZUREpB4MZEQa1XoNmfA6TkRE6sFARqRRrkqYO5AJriEjIlIrBjIijXIt6m+1hoyBjIhIdRjIiDTK3xoyBjIiIvVhICPSKH99yDhlSUSkPgxkRBrVslO/gVOWRESqxUBGpFH+7rJk2wsiIvVhICPSqOY1ZKyQERGpHQMZkUa5OvIb9Y4vcz23TiIiUi0GMiKNalkhY9sLIiL16pSBTAgxRwixoKqqSumhEKlWq8awrgoZ97IkIlKdThnIpJSfSynvTklJUXooRKpla7WGzPHlbpcMZEREatMpAxkRBefu1K/jGjIiIrVjICPSKHeFTN/yLku2vSAiUhsGMiKNsvrrQ8Y1ZEREqsNARqRRthaL+rmXJRGRejGQEWlUc4XMubk415AREakWAxmRRrVcQ6YTrJAREakVAxmRRjXZvNeQuSplrJAREakPAxmRRrnWkLk79TsrZXYGMiIi1WEgI9Io99ZJwrvtBStkRETqw0BGpFE2u4ROALpWe1myDxkRkdowkBFplNUuYdA3f4mzQkZEpF4MZEQaZbNLdwgDPCtkDGRERGrDQEakUVabdIcwgHdZEhGpGQMZkUbZ7HavCpkzj7FCRkSkQgxkRBrVZJfQ6zzXkDkrZNzLkohIdRjIiDTKZvNeQ+Z6aJMMZEREasNARqRRVrv3GjIhBAw6wbYXREQqxEBGpFE2ux1GvfA6ptcJLuonIlIhBjIijWpZIQMAs9WOf64+gh3HK5UZFBER+cRARqRRTTY7jHrfX+KLthV18GiIiCgQBjIijaq32BBv0vt8Li3e1MGjISKiQBjIiDSqzmxFQozB53Np8cYOHg0REQXCQEakUXVmGxJMvgNZUiwDGRGRmjCQEWlUncWK+BjfU5Z29iIjIlIVBjIijaozW/1WyBjIiIjUhYGMSKPqLDa/a8hs7A1LRKQqDGREGtRks8NitSOhxV2WM4Z1A8Dtk4iI1IaBjEiD6s02AEB8iwrZ/KvPBgDY2a2fiEhVGMiINKjOYgUAJLZY1G/QOb7kbQxkRESqwkBGpEF1Zkcgi2+xqN+ZxxjIiIhUhoGMSIPqLI4py4QWFTLX3pZcQ0ZEpC4MZEQa5KqQtWx7oRPOQMYKGRGRqjCQEWmQO5C1WNTvqpBxUT8RkbowkBFpUL1zyrLl5uJ6wSlLIiI1YiAj0iDXXZYtK2Q6VsiIiFSJgYxIg8xNjlb8MYbWX+IGnWCFjIhIZRjIiDTI4twbyeQjkOl0AlZWyIiIVIWBjEiDLFZnINO3/hLXC8EpSyIilWEgI9Igi9UOnQAMvgKZTnBzcSIilWEgI9Igi83uc7oSAHQCsHMNGRGRqjCQEWmQxWr3OV0JuCpkDGRERGrCQEakQWarHSaD3udzet5lSUSkOgxkRBpksdp9trwAHNsncVE/EZG6MJARaVCTzQ6jXvh8zsC2F0REqsNARqRBFmuARf06VsiIiNSGgYxIgwLdZck1ZERE6sNARqRBAe+yFLzLkohIbRjIiDQo6JQlK2RERKrCQEakQWZbgLYXrJAREakOAxmRBgWastRx6yQiItVhICPSIIvV5rcPmUEnYLMzkRERqQkDGZEGBdzLUidg44wlEZGqMJARaVDguyzBPmRERCrDQEakQU02GbgPGQMZEZGqMJARaVDAtheCjWGJiNSGgYxIgwIFMj23TiIiUh0GMiKNkVLCYrPD6G8NGbdOIiJSHQYyIo2xOJuM+Wt7wTVkRETqw0BGpDEWqyOQcS9LIqLOg4GMSGPcgSxQHzIGMiIiVWEgI9IY15Sl30X9gpuLExGpDQMZkcYEnbJkhYyISHUYyIg0prHJEchijXqfz+t0AsxjRETqwkBGpDGna80AgPQEk8/n9QKskBERqQwDGZHGlNdZAABZSX4CmU7HQEZEpDIMZEQaU17jqJBlJMT4fF6vY4WMiEhtGMiINKa81gyDTiAlzujzeXbqJyJSHwYyIo0przUjI9EEnU74fF4nuJclEZHaMJARaczpWovf6UqAFTIiIjViICPSmPJaMzKT/AcyHbdOIiJSHQYyIo0pr7UgM9H3HZYAYNQLNNnskKySERGpBgMZkcZUNTQhNc5/IOuZGofGJjvKay0dOCoiIgqEgYxIQ6SUqLNYkRDju0s/AAzMTgIAHDxV01HDIiKiIBjIiDSksckOKYF4k8HvOQOyEwEAh0/VdtSwiIgoCNUEMiFEPyHEm0KIhUqPhaizqrdYASBghaxbcgwSTHocKa/rqGEREVEQUQ1kQoh/CSFOCSF2tzh+iRAiXwhxSAgxDwCklEeklHdGczxEWldvsQEIXCETQiAhxoDGJltHDYuIiIKIdoXsbQCXeB4QQugBvApgFoBhAOYKIYZFeRxEXUKdq0Jm8l8hAwCjXocmG++yJCJSi6gGMinlGgAVLQ6PB3DIWRGzAPgQwBXRHAdRV1FndlbIYvxXyIDm1hdERKQOSqwh6wXguMfHRQB6CSEyhBCvARglhHjY34uFEHcLIbYIIbaUlZVFe6xEnUp9iBUyg14HKytkRESqEfjX6A4kpTwN4J4QzlsAYAEAjB07lj9RiDy4K2QB1pABgEEnYGGFjIhINZSokJ0A0Nvj4xznMSJqJ1eFLD5Ihcxk0MHKQEZEpBpKBLLNAAYKIfoKIUwAbgTwmQLjINKcOtddlgHaXgCOCpmV+1kSEalGtNtefABgA4DBQogiIcSdUkorgF8AWA5gH4CPpJR7ojkOoq6i3uxaQxZsUb8OFisrZEREahHVNWRSyrl+ji8FsDSan5uoK3JVyOKMwdteNLAPGRGRaqimUz8RtV+DxYp4kx46nQh4noFtL4iIVIWBjEhD6iy2oHdYAmwMS0SkNgxkRBpSb7YG3MfShY1hiYjUhYGMSEPCqZCx7QURkXowkBFpSL3FGrRLPwAYdJyyJCJSEwYyIg2pM9sQF0IgMxk4ZUlEpCadMpAJIeYIIRZUVVUpPRQiVXFUyIJPWRp0OjaGJSJSkU4ZyKSUn0sp705JSVF6KESqUme2Be3SDzjbXrAxLBGRanTKQEZEvoVaITPpdWiyM5AREakFAxmRhtRbwqiQcVE/EZFqMJARaYTVZofZag+pQmbU62CzS9i5joyISBUYyIg0ot65N2V8CHdZGvWOL31OWxIRqQMDGZFG1JsdgSwhJpS7LB17XVo5bUlEpAoMZEQaUWexAgizQsZeZEREqsBARqQR7gpZSGvIHBUyLuwnIlIHBjIijWhLhczKNWRERKrAQEakEfWuQBbKGjLXlKWVFTIiIjUI+J1bCDEJwC0ApgLoAaABwG4ASwC8J6Xk3kVEKlHnnrIMpULmnLJkhYyISBX8VsiEEF8CuAvAcgCXwBHIhgF4BEAsgMVCiMs7YpBEFFw4FTIu6iciUpdA37lvlVKWtzhWC2Cb889zQojMqI2MiMJSbwm9QuZqe8EpSyIidfBbIXOFMSHEL4UQaYHO6WhCiDlCiAVVVZwxJXJxBbL4EO6yTIx1nFNjborqmIiIKDShLOrvBmCzEOIjIcQlQggR7UEFI6X8XEp5d0pKitJDIVKNOrMVRr2AyRD8yzo1zgQAqKpnICMiUoOg37mllI8AGAjgTQA/BnBQCPG0EKJ/lMdGRGGot9hCqo4BQFqCEQBQ2cBARkSkBiG1vZBSSgAnnX+sANIALBRC/CWKYyOiMNSZrSGtHwOaK2SVrJAREalC0F+nhRC/BvAjAOUA3gDwkJSySQihA3AQwG+jO0QiCkW9xYa4EANZrFEHk0GHynpLlEdFREShCGV+Ix3A1VLKQs+DUkq7EOKy6AyLiMJVZ7GGtLE4AAghkBpnZIWMiEglgn73llI+LoTQCyF6ep4vpTwmpdwX1dERUcjqzbaQtk1ySYs3obKBFTIiIjUIZcryFwCeAFAKwNVFUgIYEb1hEVG46ixWdE+ODfn8lHhWyIiI1CKU+Y37AAyWUp6O8liIqB3qLbaQuvS7ZCXF4IfCMzheUY+UeCOSY41RHB0REQUSyl2WxwGwAyuRytVbQr/LEgCm9M9EcVUjpv7lW8x+aW0UR0ZERMH4/XVaCPGA8+ERAKuEEEsAmF3PSymfj/LYiCgMjjVkoVfIpg5s3vnseEVDNIZEREQhCvTdO8n532POPybnHyJSGSml8y7L0Ctk2ckxURwRERGFw28gk1L+oSMHQkRtZ7baYZeh7WPpEmMIPbwREVF0hXKXZRYczV/PAuC+hUtKeUEUx0VEYagzWwEgrApZSza7hF6n+Fa1RERdUiiL+t8HsB9AXwB/AFAAYHMUx0REYaq32AAAcca2B7KKOvYkIyJSSiiBLENK+SaAJinlainlHQAUrY4JIeYIIRZUVfHmTyLA0YMMQMid+n05XWcOfhIREUVFKIHM1TmyRAgxWwgxCo7tlBQjpfxcSnl3SkqKksMgUoTFasep6kavY3VmR4UsnE79LZmb7MFPIiKiqAglkD0lhEgB8CCA38Cxwfj9UR0VEfn1+092YfzT38BstbmP1UegQtZkYyAjIlJKKHtZfuF8WAVgenSHQ9Q5ldWYYbXb0SMlLuqf66u9pQCAqvomZCc7KmKbC85ACKBXanifXycAu3Q8tlgZyIiIlBK0QiaEGCSE+EYIsdv58QghxCPRHxpR5zFv0U786oMfOuRzxRgcX7ZnnPtQWqx2/Of7Y5g+OBs9wwxkQjTfVWlmhYyISDGhTFm+DuBhONeSSSl3ArgxmoMi6mz2n6zBiTMd0+0+1nknZeHpOpTVmLH9eCXKa824fmzvsK/l+ZomVsiIiBQTSiCLl1JuanHMGo3BEKlNY5MNS3eVQEoZ8JziqgacrrMEPC9SYo2OL9u7392KcX/6GhuPnIYQwKR+GWFf68krzsLCeyYBACyskBERKSaUQFYuhOgPQAKAEOJaACVRHRWRSizaVoR739+GVQfKAABWmx0fbyvyWgB/vKIeUjq65ddZmhfaV9RZUNPY1Oqa7RXbotfYxiOnMaxHMlLijWFfy6DXISPRsYUSF/UTESknlED2cwD/BDBECHECwH0A7onmoIjUYvPRCgDAoq1Fjv9uK8IDH+3Al7tPus85Wl7nflxR29xc9Uf/+h6Pfrq7zZ/7aHkd7vvwBzQ22byOx7bY8mjH8UqM7ZPW5s9jcq5J46J+IiLlBA1kUsojUsqLAGQBGCKlPBfAVVEfGZEKbC44A8BxZ2NVQxPeXl8IANh09LT7nMLT9e7H5c7mqrVmK/YUV+NAaa37OYvVjiNlzR97OnSqBrVm75UAq/JP4dPtxcg/WRNwjHUWG7KS2r5RuEnvDGS26E+3EhGRb6FUyAAAUso6KaXrJ8MDURoPkWqcqGzAicoGXD2qFyxWO/7w2R7sK6lGjEGHzUfPuM87erp1hWxfSTWkBIrONIe1RduKcPHf1rTaoshqs+PyV77DgtWHvY6XVjvC3XGPawBAo9W7YgYAKXHhT1e6uAMZK2RERIoJOZC1wB2ISfO2FDimK+84ty8GZCfi4x9OICXOiLum9kV+aQ0q6x3BqqC8zl2hcm0/tKvIsa1XdaMVVQ2OdWTHK+rRZJPYf7LacW6tGZ/vKEZJVSPqLTavahoAdzf+ohZ3bzZYWgey5PYEMueUJdeQEREpp62BjHMbFDG7T1R5VZLUYnNBBRJjDBjSPQnXjM4BANwwrjemDcwCAGxxTmcWlNe513Cddla/dp9o3mfV9XdzVcYOOKcg/72hEL/84AdsO+a4TmFFPaw2uztwnapxVsgqvP/fNDRFNpAZ9Y7fr1ghIyJSjt9AJoSoEUJU+/hTA6BnB46RNO6e97bimaX7lR5GK1sKzmBUbioMeh1uGNcbV43qhbvO7YuRvVNh0uuwuaDC2fKiEUO6JyPOqMdp55TlrhNV6JbsqJodr3BUuFxh7cApRyVsb4mjUrYq33EHZ+HpOjy6eDcuen41KuosKHVWyI63qJC1XOQPAMmxbQ9kBr0OOsFARkSkJL+BTEqZJKVM9vEnSUrZ9g3ziDw02ewormxAfmnghesdraq+CfmlNRiflw4ASE8w4YUbzkF2cixijXqMyEnBpoIK94L+vMx4ZCSaUFFnQb3FisNltbjkrO4AWlfIDjr/rq6pyzXOlhr1FhuW7jqJE5UNePCj7e4KWVHLCpmPKcuUuPZ9SZoMOk5ZEhEpKFCFLDHYi0M5hyiQ0upG2KVj2k9NgWDrsQpICYx1BrKWxvVNx66iKizd5WjJl5eRgIwEE8przdhXUg27BKYMyERijMG9BswVyPJP1qCmsalV5QwAqhqa0D05Ft/ml6GqoQkGnUDRmQbYnRtOSinR0GTDhUOycfe0fu7XtWfKEgCMeh3MrJARESkm0BqyxUKI54QQ04QQCa6DQoh+Qog7hRDLAVwS/SGSlpVUOablrHbp1T4iWlbln8Kq/FNBz9tScAYGncA5vVN9Pj99cDZsUuLFbw5CJ4C8zARkJMagos7iXtB/dk4KctLi3BWy07VmmAw6VDdasfZgOQDH5t4AkJnY3LbiznP7uh+f1SsFFpsdJ53TlxabHXYJjO6Thtsm57nPa8+UJeDYH1NNgZiIqKsJNGV5IYBvAPwUwB4hRJUQ4jSA9wB0B3CblHJhxwyTtKq4snl91KFTvnt0RYqUEv/38S78eVl+0HP3FFdjYLckxJn0Pp8f3zcdm39/Ed65YzzeuWM8UuKMSE9wTFnuLq5GZqIJ3ZNjkZMWj6IzDWiy2VHdaMXo3FQAwOLtJwAAE53bHU3slw6dAPQ6gRvG90a88/O6pj2/2FkMAGi0OEJTnFGPpFjHNGWMQdeqe3+4jHod15ARESko4F2WUsqlUsqbpZR5UsoUKWWGlHKylPJPUsqTgV4bTUKIOUKIBVVVVcFPJlU74RHIDvtpmhop+aU1KK5qxLHTdUH3nNxbUo1hPZIDnpOZGIPzBmVhqvOuy4xEE07XWrD7RBWG90qBEAI5aXE4XlGPM85pycn9M2HQCazYW4rkWIP7tf0yE9ArLQ6DuyUhOdaIMc67Ns8fnIWJ/dLx1ncFaLLZ3XdYxpn0SDA5All7pysBriEjIlJaW9teKEpK+bmU8u6UlBSlh0LtVFLZiNR4I3qkxEa9QrZyv2Oqss5iQ3mtxe95ZTVmlNWYMbRHUljXz0gwwWKzI7+0Bmf3cvzb7J0ejzqLDYecYbN/ViIW/GgMuiXHYmK/DAzIdizDzEmLxwMzBuH+GYMAAJP6Z0CvE+iREou543NRUtWI/SU1zYHMqIdeJ5AYY0BybPvvsTHpdVHbXHzx9hP4/Se7onJtIiKt4N2SpKjiygb0SIlDZqIp6oHs2/2noNcJ2OwSxyrq/G43tM/ZjmJYz8AVspYyEhzXkxI4q6cjkOWmxwMAthU6eo2lJ5gwqX8G1v0uG3YpUWe2YurATEzqn4HeznMB4I4pfTG5fyZS403omRoHAKiot0DvXHTmmqJMjDG0q0u/SzSnLH/94XYAwJ+uOjsq1yci0oJOWSEj7SiuakSv1Fj0z0rE4bJa992EkVZV34SthWfca7IKyv3fQOAOZEGmLFtKTzS5H5+d4whkrlC3xrmIP8N5jl4nYNTrkBpvwrt3TvAKY4AjcLluKEiLdwSuynqL15QlACTHRSaQmQyOuyyDTeWGo7LewsoYEVGIAgYyIYReCKG+jp2kGcWVDeiZGoeB3RJRb7GhxHk3YaStPlgGuwRundQHOuFowurP3pJq9EyJRWq8ye85vmQkOM5PTzChZ0osAKBnSizSE0xeFbJwucZRWd/kbgob56yQPXzpUPzigoFhX7Mlk0GHtQfLMeyx5e2+lstb3xXg/e+PRex6RERaFmxRvw1AvhAit4PGQ11Indmxz2OPlDgMyHKspYrWtOW3+08hPcGEcXnp6JESh8IK/xWyvcXVYU9XAkCGs3WFa0E/AAghcHavFFjtEkIAaWGGPABIdVbAztRb3E1hY42OL93pg7PdNwC0R+80R4WuockGW4SqlAkx7bvzk4ioKwllyjINjrYX3wghPnP9ifbASPtKqhx3WPZMjXUvbj8YhY79NrvEqvxTOG9QFvQ6gbzMeBT46XnW2GTDkfI6DA1zuhJwVMiM+ta9y1wL/FPjjO41YOEw6HVIijWgsr7Ja1F/JA3u3tzj2fW+tFd7e6MREXUloSzqfzTqo6Au6USlY3qyZ2ocMhJjkBZvjErri+3HK3GmvgnTh2QDAHLTE7Bsd4nPcw+U1sBml2GvHwMc674W3jMZ/bO9N7BwrSdry3SlS2q8ESVVDfj3hir354qkHilx7sevrT6Me88f4L6ZoK1attGw2yV0bQikRERdQdAKmZRyNYACAEbn480AtkV5XNQFuJrCun7wD8hODHnKsrHJhkc/3R1wLZjLt/tPQSeAaQMzAQB5GfE4U9+EqoYmAI7tm574bA9KqxvdC/rbUiEDgJG9U5EY4/17zghnIHPdhdkWafEmLN9Tis0FZxBr1LlvDoiUWcO7Y+54x8qE9zYew4/+tand12xs8g5k1ijdsEFEpAVBA5kQ4icAFgL4p/NQLwCfRnFM1EWUVDZAJ4BuzvYT4QSyL3aW4N2NhXjru4KA5y3bfRIL1h7BlAGZ7sXxfTIcO4Edc05bfrT5ON5eX4Cr/74ey3afRIJJ725XEQndk2ORlRTjt81GKDxvMNjx+EzEmyLbscag1+GJy4e5P66o89+nLVSuGxBcXlt9uN3XJCLSqlDWkP0cwBQA1QAgpTwIIDuag6Ku4URlI7olx8Kgd/wz7J+ViDP1TThdaw762nc3FgIAlu4q8bsI/cNNx3Dv+1sxrEcyXrxxlPt4nwxH2CpwVtfWHz6NnLQ4WGx2fJtfhqE9kiM6tSaEwGu3jMYDMwe1+Rqu1heDuiUixhCdxfKe141Es9nnVhzw+vj5Fh8TEVGzUAKZWUrp/nVZCGEAwLkHajdXywsX18L+YFWynUWV2HG8EhP6puNUjRmbCypanfPa6sOY9/EuTB2Yhf/8ZILX+i1XIDtWUY/GJhu2HjuDWcO74+OfTcao3FRcMrx7JP56Xsb0SUf/rMTgJ/rhutOyb2ZCpIYUUHu3Y9p9gtuaERGFI5RAtloI8X8A4oQQMwD8D8Dn0R0WdQUlVX4CWZCF/e9tLES8SY+X5o5CrFGHJTu9F+gXnanHX5btx6zh3fHGbWNbTe/FmwzISopBQXkdthWegcVqx+T+meidHo9P7p2Cu6b2i9DfMHJcASmSU6mBtLfZ7GUvr4vQSIiIuoZQAtk8AGUAdgH4KYClAB6J5qBI++x2ieKqRncDVQDomRKHOKM+YIWsqr4Ji7cX48pRvdAtORYXDumGL3eXwOpxR9+/NxRCCIFHLhsGo973P/G8jHgUVtRj/eHT0OsExvVNj9xfLgpqzVYAQHo7bgwIB1tWEBF1rFAC2XQA70kpr5NSXiulfF1Gcn8V6nQi8fafrrPAYrV7Vch0OoH+2QkBA9n/th6H2WrHLRP6AABmj+iB8loLvj/qmLasM1vx4aZjuGR4d/QK0LYhNz0BhafrsP5wOUbmpLS6M1JtXMGyZ2pskDPb56Kh3ZyfLzJr6O46t29ErkNEpHWhBLIfAdghhNgohPirEGKOEKL9rcGpU9paeAaTnlnpt49XqFzNR3ukeAeMgdlJOOwnkNntEu9/fwxj+qS5O+lPH5yNeJMeXzinLT/eVoTqRivumJIX8PPnZcSjtNqMHUVVmNw/s11/l47wywsGYN6sIbhsRM+ofp5Xbx6F1HgjmtrRosIzsI/vm46HLh4ciaEREWlaKH3IbpNSDgJwNYDjAF6FYwqTupgjZbW4653NOFndiEcX70FNY1Obr9WyB5nLgOxEFFc1os45Redp/eHTOFpeh1sn9nEfizPpcdHQbli2uwQWqx1vrS/AyJwUjM4N/DtDH+fieJtdYnL/jDb/PTpKUqwR95zXv02d/sMRY9Cje3Ismqx2LNpahLx5S9zTpaGqbmg+32qX7psoiIjIv1D6kN0ihPgnHL3ILgLwCoCp0R6YGny+oxiPfrobR6LQPb6zKasx47a3NkEnBF6aOwrltWa8sOJgm69X7OzS33Ja0XUnoq+O/e9uLEB6ggmzzva+C3L2iB44U9+E+V/ux5GyOtxxbl/3XpL+9HEujjcZdBgdgb0gtcRk0OGrvaV48H87ADga54bD86aMcwdmwsDu/EREQYWycOZvAA4DeA3At1LKgmgOSE0KT9fhv5uP473vC3HhkG6489y+mNgvPegPe62pM1txx9ubUV5jwYd3T8TI3qnYeOQ03tlQgOvG5rSpq31xZQNijTqkxnsvHvdsfTEiJ9V9vOhMPVbsLcVPz+vfqg/XeYOykBhjwL++O4puyTGYNbxH0M+f52wOOyY3LeLbEHV2LQNUuEsGb3N2+f/q/mlIjjWiurG5Yial7HJfP0REoQhlyjITwB0AYgH8SQixSQjxbtRHpgK/uGAg1s2bjl9eMBDbjp3B3Nc34rKX1+HjbUWwWO3BL6ABVpsdv/jPNuwprsIrN43CSOfG2b+9eDCSYw14bPHuNi3yL3a2vGj5w7lPRjwMOtFqYf9zXx2AQa/DLR7TlS6xRj1mDHMsRv/RpDyYDMGXRqbEGzF1YCauGZMT9ti1ruW0aMuO+8GYrY7z+zmnhc94dP3n7klERL6FMmWZDCAXQB8AeQBSAHSNNAIgOykWD8wYhPXzLsAzV58Ns9WOBz7agXP/vBKvfnsIlfXt32JGraSUeOTT3fg2vwxPXXk2LnTegQc4tvKZN2sINhecwcfbToR97eLKRvRMaX0XpFGvQ16m952W249X4pMfTuCuc/v6vXPy1kl9MCo31b0fYyjevXMCrmUga6VlaKq3hBfI+mclYuawbu4dGFwhHoDfXRWIiLq6UO6yXAdgDoCdAG6QUg6WUt4W3WEF5rzTc0FVVcd1A4816jF3fC6+um8a3r59HAZ3T8Jfl+dj0jMr8cinuzS5zuylbw7hw83H8csLBuCmCa2DznVjemNUbiqe+XKfe6PuUDm69Ptu4TAgq3lPSyklnvxiLzITY3Dv9AF+rzc6Nw2f3DvFqyM/tU3LTcDrLeEt6rfY7DB6VCkn9svAry4cCICBjIjIn1CmLEdIKe8F8BmAyqiPKARSys+llHenpKR0+OfW6QTOH5yNd++cgGX3TcWckT3w0eYiXPDcatz1zmasP1wekT5dSvtoy3G88PUBXDM6Bw/M8L0Ho04n8OQVw1FRZ8HzX+WHfG2L1Y6yWnOrOyxdBmQnorCiHharHV/sLMHWwjN46OJBqu8VphU2u3cBPNwpyyabHTEtGvImxjjW6dk08LVBRBQNoUxZDhdC/ABgD4C9QoitQojh0R+a+g3pnoy/XDsS3827AL+6cCC2HavETa9/j9kvKb/OzGy1Yf2hchworUGTLbxxrMo/hYc/3oWpAzMx/5qzAy7CHt4rBbdO7IN3NxaGvH9haXUjpITPKUvAEchsdon8kzWY/+V+DOuRjGvH9A7r70BtZ7V5h6alu05izsvrvHZDCKTJKlvtkKBz/htihYyIyLdQSg4LADwgpfwWAIQQ5zuPTY7esDqXrKQYPDBjEO49vz8+/eEE3lx3FA98tAPzv9yP2ybn4abxuUjroKm0w2W1+HDTMSzcWoQz9Y5pRKNeoH9WIgZ3T8Lg7kkY0j0Jg7sno2dKbKuwtftEFe59fxsGd0vCP24Z43frIU8PzByMJbtK8Oji3Vh0z2TogrQ5OOGnB5mL607LRxbvxonKBvz1uhFR779FzVqGps92FAMAKuotyE4KvlOAY8rS+/1y3blpZyAjIvIplECW4ApjACClXCWESIjimDqtWKMeN47PxQ3jemPNwXK8sfYI/ro8Hy+vPIhrRufgjnP7uvtsRVJjkw1f7i7BB5uOY9PRChh0AjOGdcNVo3qhzmLF/pM1yD9Zg81HK7B4e7H7dUmxBgzu1hzSeqXF4bcLdyEt3oS3bx8X8hRhSpwRD88aigf/twMLtxbh+nGBq1nNTWF9/3Dvl+X457XjeCVmDuvWKTrpa4m/Kla92QYkBX99k9UOk967lYgrULdcn0ZERA6h/MQ9IoR4FICr1cUtAI5Eb0idnxAC5w3KwnmDspB/sgb/WncU/9tahPe/P4YLh2Tjzql9MalfRrv7MR0orcEHm47h420nUNXQhD4Z8fjdJUNw7ZgcZCX53oS6qqEJB0prnCGtGvkna/DZjmK8/71j4XZKnBEf3j0B2cnh7Zl49ehe+HDzMcxfth8zz+qG1Hj/FcGSKkej0R5+pizjTQbkpMWhtLoR/3fp0LDGQe3nWuf15BVn4dHFe9zHy2rNyMsM/ruYrwqZq2paVmP2+2+TiKgrCyWQ3QHgDwA+BiABrHUeoxAM7p6EP187Ar+5eDDe21iI9zYW4qbXv8fQHsm469y+mDOyZ0h9s1waLDZ8sbMYH24+jq2FZ2DUC1x8VnfcND4XE/tlBJ0uTIkzYlxeOsblpbuPSSlRUtWI/NIaDMxORE5a+FvdCCHwxyuG47KX1+Gvy/Pxp6vO9nvuicoGpCeYEGfy35D17mn9oBMipABAkeVaQzYqNw1GvUCT8+PrXtuART+bhIq6Jnfft5aklLDY7DC1mOrWO3/5uOrv3yH/qVlRHD0RUefkN5AJIWIB3ANgAIBdAB6UUrZ988IuLispBvfPGISfnd8fi7efwBtrj+LB/+3A/GX7cdukPrh5Qp+A68z2Flfjw83H8MkPJ1DTaEW/zAT8/tKhuHp0L2Qktq/iIIRAz9Q4v2u6QjW0RzJum5SHt9YfxY8m5WFwd9/zW8WVDa02FW/pR5Py2jUWajur8y7LOJMesUY9mmzNbS+u+ccGAMCah6ZjzcGyVo16bXYJKdEqkLkmKs1dpKEyEVG4AlXI3gHQBEdFbBaAoQDu64AxaVqsUY8bxuXi+rG9sfZgOd5YdxTPfnUAr3x7CFePzsEdU/q6F7XXma34Ymcx/rPpOHYcr4TJoMOlw7tj7vhcjO+rzi2cfnXhALz/fSHe3ViAp670XSUrqWxELjecVi3XzZSxRj2SY42oaWzdh+y6f65HabUZ147J8dp6au7rGwHAqw8ZAK87fQ+W1mBgtxAWoxERdSGBAtkwKeXZACCEeBPApo4ZUtcghMC0QVmYNigLB0od68wWbi3Cf74/hguGZKNbciw+31GMWrMVA7MT8dhlw3D16F4B12apQWq8CZeN6IlPtp3AvFlDfd4YUFzZgEn9MxQYHYXC1Ycs1qBDWoLRfVesp1M1Zue53ov0NxecAdB6P0zPFjDXvrYBOx6fGdExExF1doECmXt6UkppVWM1RisGdUvC/Gua15m9u6EQtWYrLhvRE3PH98aYPmmqrIb5c/PEXCzaVoTF20/g5gneU1rVjU2oMVuDTlmSctISTDhT3wSTQYfUON+/ALj6u/q7a7K6RVXNc6qyzhxe538ioq4gUCAbKYSodj4WAOKcHwsAUkqZHPXRdTGZiTG476JBuPf8AbBL6TUV1JmM6p2KYT2S8d7GY7hpfK5XmCypdNxh2d71ahQ9/75jPNYeLEdSrDHouf6axZa0qKp5VsjYrZ+IqDW/t/dJKfVSymTnnyQppcHjMcNYFJkMuk4bxgDHdOzNE3Oxr6Qa249Xej1XHKQpLCkvJy3evUl7g3PbpOmDs3ye61kh++3CHe7HQ3t4f4uweAQ35jEiotZC77dAFIYrzumFBJMe72085nW8uCpwU1hSlwaLI5D1Tvd9E4bnYv2PthQBAOaOz8WPJ+d5nafkNmJERJ0BAxlFRWKMAVeO6oUvdhajst7iPl5c2QC9ToS0BQ8pz1Xp6uWnotly30sA6J+V0Kof3kw/fcuIiMiBgYyi5uYJfWC22rFo2wn3seLKRnRPjuXelJ3EU1cOx8J7JqGPnzYlrp5lnnw1Op7QLwOZ7eyXR0SkZQxkFDXDeiZjdG4q3v++ENK5cKi4soHTlZ1InEmPsXnpfjeZ93WXZWe6I5iISC0YyCiqbp7QB0fK6rDhyGkAjjVkXNDf+Rj8BLIFq1tva2vzc+elUc+gRkTkDwMZRdXsET2QEmfE+98fg90ucbKq0e+m4qRe/sLUxz+caHXMX28yTlkSEfnHQEZRFWvU47oxOVi++yT2naxGk02iF6csOx1/U5YAUFrd6NXepGX3fpehPbhdEhGRPwxkFHVzJ+TCapf429cHAbAHWWcUKJDd9c4WXPnqd+6P/VXInrj8LABA73S+/0RELTGQUdT1z0rE5P4ZWLG3FAA4ZdkJtdyb0lP+yRqvjy8cmu3zvHiTAdeNyYHNR6sMIqKujoGMOoTnnpb+elqRevlqZeHi2YV/fF46hnT3v5GHQa+DhYGMiKgVBjLqEDPP6oaspBjEm/RIjgu0hSqpkWeFrF9Wgt/zdEG+o5j0wmfvMiKiro6BjDqEUa/DQzMH48ZxuexT1Ql5riGbNby73/OCNfw16HU+u/sTEXV1LFVQh7l+XG+lh0Bt5BnIHpgxGH0zE/Gb/+1odZ4uSNg26AXMVhuklAzmREQeOmWFTAgxRwixoKqqSumhEHUJnn3I9DqBcXlpPs8LFsjqzFY02SR++u5WWP00kCUi6oo6ZSCTUn4upbw7JSVF6aEQdQktO/X769wfbMqyos6x0fxXe0vxzobCyAyOiEgDOmUgI6KOFWt0fKv41YUDAfhvgxGsQuapprGp/QMjItIIriEjoqBiDHocefpSuPKWK3ZlJprQJyMBWwvPAACCFMjQ2NQ8TckGwUREzVghI6KQ6HTCvRDfNTU5qFsSFv1ssvuc0urGgNdobLK5H+u5qJ+IyI0VMiIKW0ZiDN66fRxG53ov7tcFKZF5BjL2IyMiasYKGRG1yfTB2UiJM3od87ONpdtvZg52P/7dol1YlX8qGkMjIup0GMiIqN1evPEcAIA9SCKbPCATWx+5yP3xgjVHojksIqJOg4GMiNotxrnXpS1YiQyAwWN/JW40T0TkwDVkRNRurk7+dhk8kOk9msyuPViGvHlLMHd8LirqzPjnrWOjNkYiIjVjICOidjOEEcg8e5idqjEDAD7YdCw6AyMi6iQ4ZUlE7ebaWimEGcug3fyJiLoiBjIiajf3lGUIiSxQ/zEZQoWNiEiLGMiIqN1cgcwWQqAK1KvMbGVvMiLqmhjIiKjdXOvCQrnLMpB6iy34SUREGsRARkTtZnK2vWjvjGOd2RqB0RARdT4MZETUbpGqkHHKkoi6KgYyImq3cNaQBfLV3pMAgIG/X4q8eUuwq6iq3WMjIuoMGMiIqN1cgay9d0n+ZVk+7HaJJpvjOnNeWcdQRkRdAgMZEbWbQR+ZKUsAmPHCaq+Pj56ua/c1iYjUjoGMiNrNqHN16g/t/JfnjsLin0/x+dzhMu8AZtLz2xQRaR+3TiKidnPtFx5KY1gAmDOyZ8jXNhnY2Z+ItI+/ehJRu8Ua9QCAmybmRvzaRlbIiKgLYIWMiNrNqNfh4J9meW0cHslre9p0tAKjc1PdG5oTEWkBv6MRUUQY9TqIAPtUttW6g+UoKHesK9t27Ayu/+cG/O3rgxH/PERESmIgIyJVe+XbQzj/2VUAgFPVZgDA0t0lCo6IiCjyGMiIqFPYUlCB4xX1AIAjZWyFQUTawkBGRIr567UjQj732tc24E9L90VxNEREymEgIyLFXDmqV5tfW2e24qzHlmHl/tIIjoiISBkMZESkGH07bgK44tXvUGex4dnlByI4IiIiZTCQEZFidDqBJ68c3qbXHjpVCwCIwo2dREQdjoGMiBSVGONoKmsytO3bEQMZEWkBAxkRqUJb96wUYCIjos6vUwYyIcQcIcSCqqoqpYdCRBHCChkRdWWdMpBJKT+XUt6dkpKi9FCIqJ2kcz9yzwrZQxcPDvn1zGNEpAWdMpARkfbEGJu/HYVV9WKJjIg0gIGMiFTBs0IWzrowAeCRT3fhjbVHojAqIqKOwUBGRIoa0ycNAHDDuN7uY+EUvYQA3tt4DE8tYRd/Iuq8GMiISFF9MhJQMH82pg/Jdh/ThRPIojAmIqKOxkBGRKpg8EhhqfGmkF+37Vilz+PFlQ2oqm9q77CIiDoEAxkRqYLeI5BdOzoHf7j8rLCvsf9kNfLmLcGhUzWYPH8lpv5lZSSHSEQUNQxkRKQKBp3j21Gv1DjodALTBmWFfY3F24sBAMv3ODYcr260Rm6ARERRxEBGRKrQLTkGPz2vH96+fRwAIC3eCAC4/6JBIV/jH6sOR2VsRETRZlB6AEREACCEwMOzhro/To03Ye8fL0acUY8Xvj4Q5rV8Hz9TZ0FaQujr04iIOgorZESkWvEmA4QQWHjPpLAqZTofiWzZ7hKMenIFNhdURHKIREQRwUBGRKo3Ni8dv75oYMjn+yqQfX/UEcQ+2HQsQqMios5u5f5S5M1bghOVDUoPhYGMiDqPCzx6lQXyzJf7Wx1zdf//eNuJiI6JiDqv/24+DgDYVVSp7EDAQEZEncjrPxrb5teu2HcygiMhIoosBjIi6jT04bTwb+F4hfJTEkSkjKqGJtz2r004Vd3odVxKhQbkAwMZEXVal43oEdJ5Uk3fdYmowy3cWoTVB8rwj9X+WuMovwkbAxkRdSomg+Pb1kc/nYS/XjsypNc8+YX3xuMfbTmOvHlLUF5rjvj4iCh8ZqsNteboN3Ju+buZmn5VYyAjok5l6a+m4s/XnI3xfdMRZ9IHPf8X/9mGf3131OvYh847LQtP10VljETkLW/eErz67SG/z1/56noMf3y5++Onl+7Dst2OdZ/PLs9H3rwlAa9vt0sUnq7Dy98cxKr8U62e91f/cgU0f70LOxIbwxJRpzIgOxEDshNDPv+LnSV+n+NMJlHH+evyfPx8+gAcLqvFqWozJvXPcD+3r6QagGOtV1lNIxasOQIAKJg/G684g9ye4ir0yUjA8MeX44UbRuKqUTk4dKoWFz2/GrdMzMV7G71b2jwyeyjumtovpLGpII8xkBFR1yOcvw5LAFPmr8Tc8b3xiwtC73NGRG134XOrvT5+/64J7sczX1iN0urmpQQ/HDvjfjz7pXXol5kAALj/vzuQkxaP617bAACtwhgAvLDigDuQuSpgb68vwIMzB8FuBx5auANf7yuNzF8qAhjIiKjL8fxt+ERlA5796gADGZFCvthZ7H7sGcYA4Kq/r/f6+Eh58zIDVxjzp85i83n87Ce+anVMqGDOkmvIiKjLcX3v9ZyytNrsvBuTKArO1FkCPp9/sibqYwgWt37y7y1RH0MwDGRE1OW4uvbbPQLYgN9/idve2qzUkIg0yWK1Y9STK9wf3/VO6+Cz7Vhl1D7/vpJqrNhbipdW+r+hQC04ZUlEXY+PChkArDlQhkOnajAgO6njx0SkMQvWHEb3lDivYx29ZmvWi2tDPldKqejUJStkRKQ5X90/LeDzm5wbjc99fWOr505UNrY6RkTeKuosWH+oPOA5Ty/dj1998EMHjajzY4WMiDRnULe2V7js9sDryJpsdtilRIzBfw+0WrMVCSa9KhYKE0XaG2uP4KkljmbLh5++1GtLs5KqBry88hCM7djmTCl2CegVHDYrZESkKRsfvrBdr7d5BDK7XXrddg8A059dhcGPLPP7+uMV9Rj++HK8u7GwXeMgUitXGAOAl745iI1HTiNv3hK8ue4oJj2zEv/5/hje2dD5/v1/teekop+fgYyINKNfZgK6p8S26xo2j4Vlb6w7gqv+vh7rDzdPzRSdCbxJeYGz+/9Xe9TT34i6ptO1ZkyZvxIHSsO/i/FkVSMe/GgHzFbfrSNcXvzmIG5c4Jj6f/KLvW0ap1p0xNZNgTCQEVGntv2xGVj1m/MBAFMGZLb7ep5TlvtLHD/IioOsK5NSYmvhmYDnEHW0lftP4URlA/65+khI55+ps+Dlbw7Cbpd4/LPdWLStCP9YdRjFlQ3YXFCBr/eWBt3CqDNTeokB15ARUaeWGm9CarwJ3827ANlJMe7j6+ddgMnzV4Z9PauPNWTBvk1/tOU4frdoF/5x82gkxvLbKqnLom1FWH3gFCb3z8RLc0f5Pe//PtmFL3efRK3FiuXOCu/fvj6Iv319sKOG2qWxQkZEmtArNQ5GffO3tJ6pcQHO9s/upzlsk82OF1YcaHX83D+vxO8W7QIAHKuodx+XYJNZUpZnxae81oLPdhSjzmzFoVO+pzBdU3ahVtS0RunG0AxkREQePt9Rgp1FlY7O/R7HF24twovfNFcKzFYbKuosXmvKbFLCYrUDAMprAncnJ1LC7W9txkXPrwEANDbZ8M76Avc0fVffqMLs/NpVCmvrREQevt5Xiq/3lWLu+Fz3MSGAhhb74t3+1masP3za69hfluW7H+e3YSE1UST5mmrfVFDhfvzC1wfwz9VHkBpvxBXn9PJbHe4q/re1CLdM7KPY52eFjIg06+xeKW1+7QebjgWcwmgZxkKx8chpHPeY1gzVst0lId0BVllvCXnaZW9xddA9BgHgSFktPttRHPQ8iqxPfihC3rwlyJu3BLtPVPk9rz13BlbVNwEAfv3hduTNW9Kmf9NawilLIqIoMbSzy2NNo+OH3QMf7cCJysDtLkJx44KNmPqXb8N6zYHSGtzz3jb8btHOgOcdOlWLc/64Au99f8zreGW9BRe/sAaHy2q9jl/60lpc/uq6oJ9/xgtr2G1dAf9aV+B+vHBrkc+wsGhrEYY/vhwr95fiw03HWj0f7KZB9i1WFwYyItKstHhTu17/zf5T7sdvrjsa9uvz5i1B//9bisr60NeTfbOvFIXOXmYAUOesgATrf3a03PGaVR5jdlzvFPJLa/DEZ3taveZ4hfc11x4sw2/+t8PrmC3IzgUUfW+vL8CHm4+3Or4y3/Fe3/H2Fsz7eBcam7yn1V2/UFDnwEBGRJr17HUj8dtLBis6Bptd4pw/rsDra5rvXLs0wIbHd76zBef9dRVeWRm41cC/NxTgoMc6NddONeW1ZnzjsYGzzvldfu3BwPsOAsCtb27Cwq1FQc/r6hasOeyeRtxTXIWxT63A6Vqz1zlLd5XgH6sOex07XFaLvHlL8G2L0OxLy+rVxiPBpxNbFtEe9xHCyb9ahQMsAxkRaVZ6ggn3nj9A6WEAAP60tHm7mb0l1bDbJfYWV2P94XL31jOeYejZrxwtNvzVpx5bvAczXliDk1WNyJu3BP90Br4dRVW4850tqLc4frjofMxLXffa+gj9rTqelBLPfZXfagq2Iz29dD8ue9kx3Tv7pXUor7VgXYuNtu99fxv+vGw/th+vBAC8+PVBXPjcagDAkl0lAa//xtoj2Fnkf92YP5UNFuw/WY1PfzgRtIHrnW9vxgebWlfdurIj5XXBT4oi3mVJRJo3OjcV245VKj0ML+99X4jHFntXMFpOF3ryjFXvbihwP574zDcAgE1HK7zOt9oljp2ux+c7Wv/w31zQvKvAuoPluOXN73H/RYPcxx78aAcWbStCwfzZofxVAjp2uh4GvWhzX7iWymrMeHnlISzaWoT17dy3tCNc+ep3KJg/Gy983dzDrqqhCe9uLMStPu7oa7DYvPaK9OVEZQO6J7feIuyi51ajzhJ4qyOXb0Ko0lHHYiAjIs1beM9k1FqsGPHEV0oPxa2sxhz8JABX/711NevRxcGnoqQELnt5LaqDTMO49h/0DAyLtrWetqy3WFHbaEW2jyDgz4HSGsx8wdHzKhLhDgBcS9osNuXXtvmberz8lcA3S6zYW4oVe0sxOjcVZ/VMwanqRmwuOIN4kx63v7054GvXHizDrW9uwo8n57VqaxFqGCN1YiAjIs3T6QSSY41KD8NLtG9we/Hrgz7DmKVF88tA/dI8F/Rf+ep3OFBaG1awWrE38husu3plldeGFmgjQUqJV789hMtH9kJuRrz7uGd48uyKH+p04wsrDuCR2cNw/rOrAAD9shL8nrv7RBUq6iy49c1NABwL/UlbGMiIiBSwOoRF9i1bHUgp0RRiZehf37W+K/Sd9QVhrb36bMcJ9+MDpd6vW7S1CBab3auBbns9vXQf8k/W4J07xvs9JxJ3fS7efgJp8SZMG5QV0vml1WY8+9UBx5/rRvo8x/VeFZ0Jvc/c1/tO4et9zVW2I2X+1zAdLqvD6CdXhHxt6nwYyIiIFLDDudg7kL4PL3U/3n680uvjtnj8sz1IMOlDPv/+//pf0/agc73b3PG5mLdoJw6eqsUFQ7Lx8+m+b6KoamjCh5uO4e5p/VDV0IQ1B8tx+cieXucsWBN8D8WthWeCntPSFzuL8e3+Mjw4cxB6psbh1x9uBwAcfvpSmK02HDpVixE5qQAc78s7Gwrw7LUjodMJSCnd6/QA/+v8fv3hdrz1XQEuG9Gj1XMHuGsDhYCBjIi6tEvO6o4pAzLw6fbiNv2w72zau85oX0k1hvZI9jrm6pG1tfCM30D22OLdWLy92DHteboOWwvPYFTvVPROj/d5/s6iSvxpyT7cPa0fLhzaDQBgtdlx2mN3gdO1jspVvEmPRy8b5vX67w6VY+X+U5g9ogd+8R9HY9uWNyr87esDOFBag+V7SrH9sRlIjTfh9rc3o6LOgsn9MzEiJyWsqcHtxyvdd1V68rUOkKglBjIi6tJeu3UMAODWSXlBWwWQY0cAz0D2ZYsWDj/59xaszi/DgT/Nwn88dg1YvN2x/ZLnDQMHSmv8BrLLX/kOAPD90QoUzJ+N2S+txZ7iatw0oXmKdMxTX7sfT+yXgV9+sA3bHp2BeJMBN7/xPYDWDX09p2xfXnkISbGOH4PPfpWPSf0y3VOPrkrYOb1TA/3vCEl7tjeiroN9yIiInPpk+A4H5N/P3t/m9fGKvaWw2OwwW21Bt5u6850t2HasdVWyprGp1bE9xdUA4BXyPP3k31vQ2GTHZS+vCxiAluz0DpCubvbvbTyGn/9nG87Ue39uXxUvomjolIFMCDFHCLGgqir8xnlERCNyfG86vvqh6R08ks7n0cW7Q+o0P/iRZSFd7+q/r8ey3SfxnUdjVVcrjrY4UlaH4Y8v9/v88ysO+H2OSEmdMpBJKT+XUt6dkuL7myoRkS/JzumpxT+fovBIOq/K+qagvbLCdc97W91TjEDrhfvLdgfubE+kBVxDRkRdxpJfTUX+yRqvnlGkPodbtH+4571tfs4kipwYg7I1KgYyIuoyeqfH+11ETkSkpE45ZUlEFC0r7p/m97lchjkizdIpXDlnICMi8jCwW5Lf5wJ1kCciag8GMiKiEPXNTEBKnLr2xCSiyLh+bI6in5+BjIgogIvPcnSJn9gvHQAwLi9NyeEQUZTEhrGtWDQwkBERBXDVqBy8dstovHnbOADAc9edo+yAiCgqBLiGjIiow/VOjwvxTIlLhvdAQozjpvSUeCPeuWM8Vj54XvQGR0RdDtteEFGXtPLB82F37lvY0gs3jMQjn+xGncUGX6ecNygryqMjoq6GFTIi6pKMeh1iDL7XjFw1KgdTBzpCl+/IRkQUWQxkREQ+uFoS+SmiERFFFAMZEZEP7kDGGhkRdQAGMiIiH1x3XEWyQtYrNdQbCYiooym9xS0DGRGRL+4KmX/PXz/S73MF82e3OhancJ8jIvJP4TzGQEZE5ItBF/zb89Wjc7DriZkhXW/bozMU/4ZPRP7FGtkYlohIdR6ZPQxzx+e6O/X7kxRrbFUN2/bojFbnpSeY8Lcbz4nkEIkogvplJSj6+RnIiIh8yEqKwTNXn+23NUZLY/s0b6mUnmDyes4V2M7qmdLm8UwdmIlHZg9t8+uJKDB26ici0oAP7p7YrtfHGAJ/O373zgm4a2o/9Mts/i1+9oge7fqcRKQe7NRPRBQBRr0Oi342CdlJsW16ff5Ts7C1sALX/GNDwPNc61wenDEIN0/sgyU7S9r0+YhIXVghIyKKkDF90tE7PT4i15o1vLvP467tni4c2q3V1GhLvVLjcO2YnIiMh4iii4GMiEg1HGtYRuWmYmxeuvvobZP6uB+7Apnex12gN03I9fr4k59Pxj3n9Y/GQImibu1vp3fo5zPquYaMiIhaMDl/ONwxpS+euPws9/EeKY7msnE+btH3XF8GANlJsex9Rqq264mZ+PjeyT6fC1RtzkqKQWJMZFddnZObGtHrhYuBjIhIQZ7dwVPijACAQdlJuG5sb9wxpS/unzEQwuOkF288By/NHYXcjNY/rHztKtArNQ53nds34uMmioSkWCNG56Z5HUuMMWB4r2SvYz+f3lzpHdMnDe/cPh67/3BxZAej8C5pXNRPRKSA8X3TseloBZbfNw2bjlYAAAZkJ+I/P5mA0blpiDXq8dicYa1elxpvwuUje/q8pq9pTACYNigLb6w7GrnBE4Xhtkl98M6GwpDOzX/qEq9WM+/fNQEZiSYM6Z6MV789DABY9LPmitqOx2ZizivrcKyi3uf17pjSFzqBkP79ZyXFhDTGaGGFjIgoSvpkxCPPRyXrgiHZeOvH4/D1A9MwqFsSbpnYvEZscv/MsDqGr3loOh6YMQg/Pa8fbpqQi0N/mtXqnIQYx/Um9kvHF788F1eP6tX6HE5tUgR5Nke+f8Ygn+e89eNxrY617Ps3ZUAmhnRPbnWeS0q8EanxRr/P//S8fpg3a0iw4QKAVyVaCayQERFFyeqHWi9K3v/kJTDoBAx6HQZkJ7X7c+RmxONXFw4MeM7o3DT85doRuPTsHkiMMeD5G87B9CHZ+OUHP2DrIxeh1mzFpS+ubfdYiADgiTnDHDtT3HAOlu0+idR4E/54xVl4bPEeZCaaUF5rAQBMH5Lt9Tpfv7x4evWm0ahubAp5HOvnXYBuyW1rQ6MEBjIiog7UEfvl/XhyHnafqHJ/LITA9WN7e50zZ2RPzHFOfWYkBp6quWZ0DhZtK4r8QEmTRvZOBQBcOaoXrnRWY3unOcLW8F4pWJVf1uo1+5+8BLogFapQGyF/8JOJGN83vdUU/uBuSbhral88tHBnSNfpaAxkREQa43lXZqgCTdc8d/1Ir0DWKzUOJyob2jS2PhnxKDzte70PaUMoU3+Zid499CLxi8pVo3rhL9eOgFHfejXWhocvQHKsEesPnwYAdEuOgVGvw9zxuRjaIwnVDdZ2f/72YiAjIqKwfPPgeRjy6LKwX7fziZlIMBnQ//+WRmFUpBa+4tiUAZm4ZnQO7p8xEGU1ZvRKi4vY55vUPwM7i6rw4MxBPsMY0NwuZrSztcWLN47CxH4ZERtDJHBRPxERhcWzmvHQxYNbPS+E4+62hfdM8rpZIDnW2OqH9U+msiWH1vgqkJkMOjx3/UjkpMVjVG5am7cY8+W3Fw/BmoemIyct+C4ZGYkxKJg/W3VhDGAgIyIi+K5qhOLn0we4H6/6zfkYn5eOlQ+ej8fmDMPYvHT84YrhXue3bPUUb+JEjZr96oIBwU9qIS0+8JZekabXCZ99+TobBjIiIsKLc8/BKI9O5RnOfTL/dsM5Xud9+5vzW7120c8mYe743uiTEY+P7pmEvh47Blw7JgcXetxN51pn/csLBuDuaf3ci74psg481br9SVvExxgCto24ZWIuDB6L5//147ER28+1q+GvJkREhAuGdMMFQ7ohb94SAMBWjz5Snvq22J4JcGyqPqZPuo+zHRb8aCyabHYAjgXfBfNnu5/zdXPA1kcuwoYjpzGpXwbGPPV10LH3z0rA4bK6oOd1FQeemgWTITL1lhnDumHF3lL3x+Pz0lHZYMGB0lr3sdun5OH1tY7GqyNyUiPyebsiVsiIiCgk14/NadPr9Drh9y66nimxXjsPPH/9SGQkxuCyET2DtuMAgH1/vAQv3jgK2T66rKfGG/H4nGFBm96O7J2K/KcuCfq5lHCrR9NgT3++5myfx0fkpAQMY3PH9/b7XEsF82ejf1aiezr77mn98NE9k/D89ee4zxncPRkPzxqKrY9chA9+MhGZIbxn5BsDGRERBXX46Uvx52tGRPy6Qgg8fbXvcBGKOJMew3ulYNPvL2q14fqn907B7VP6Ys8f/YetOKMer986plWH+GAeDrH7e3vMGdkTyXG+J7JuGJeLT+6djGX3TcXWRy5yH7f72tAUwEtzR+HAU7Pw6wsdXfPH5/muaH768ykAAKPe/6pCz0X7t0zIhU4nkJEYg0n91bdQvjNhICMioqD0OhG1rWUSY4Kvnnnm6rMxOcwf+Hk+plcBRyd5l31PXoLsELu5Xz26eb3bT8/rH+BMb8vumxryuZ7+cs0IjPWYCnZV+lxVrlG5aRjSPRkZiTHugJjlp0I1Pi8dJoMO3VNisey+qXj3rvHY/PuL8MjsoTj6zKVY/dD52PHYTIzMScF1Y3Lw/l0T3a8d08ex+XfLwDW0R7Li2w1pCQMZERG1iWvhfyS4bh6Y4KcdwdzxuXjlptEBryFb3cPpW7oztMwc1s3vOd88eJ7XWjcAXlN14RjSPRnzrz4b/717Ip69bqT7+D3OUNcvM8G9a4KnOJPea3uhlb85H+cOyMS8S4a2Oven5/XHc9eNxAstbsIAgD9cfha6pzSHziHdkxFj0CMrKQZ3Te0HIQT6ZCQgJd4IIQT+et1IjO/bHATH5qVj7x8vxvTBjrH0yXAE3XvPDz2UUnBc1E9ERG5JMQbMPKt70PPW/W46kmL8b+ocLs9tdjwt+tlk7D9ZDQBI9wiAk/tnuLuuu8y7ZAie+HwvAMf2OZ4K5s+GlBJSAt8dLgfg2DXA09rfTsfJ6kaMyEnxO4W54v5pKK5qDPNvB9w4PhcAMAHA4u0ncO6ATOQ670Yc1C0Jj84eCqPOMX3rr+lut+RYvHfXBL+f45oxvtf43TY5L+zxtuTZniQxxtAqrFL7MZAREZHbrj9cHNJ5oTThjIQxfdLcU2YA3JtT/+2Gc5DWokL34yl93YHM13omIQSEAM4dkIm/3zwaFw713ty6d3p8q5YN3zx4Hi5+YQ2udYadgd2SMLCb703hf3fJEPx52X4AwPL7puHppfswvFdyq/PevdMRqvYUO/YbHZuXhuzkWDzvo7oFAG/dPg5bCip8PkfawUBGRESdjhDC7zY5obz20rND26i6f1YiDj19acBz5o7vjQ82Hcc1Y3rh0x9O4OrRvTC4exLeuWN8wNed1TMFa387HTktthG6YEg2Vu4/5f54+uBs93RhOPplJqDeYgv7daQMBjIiIuo0fn3RIDz66W6/dx8CgdeGRZKr/9kfLh+OO8/th+ykWCy/f1pY1/DVRPXN28bCHtpyuIBW+mjiS+olpJ9bZDuDsWPHyi1btig9DCIiUolasxWxBh0MbayehaO81owDpTWY3D8z6p+LtEEIsVVKOdbXc6yQERGRZoTSQiNSMhNj2AiVIoZtL4iIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECmMgIyIiIlIYAxkRERGRwhjIiIiIiBTGQEZERESkMAYyIiIiIoUxkBEREREpjIGMiIiISGEMZEREREQKYyAjIiIiUpiQUio9hjYTQpQBKGzDS1MAVEXh/GDn+Xs+nOO+jmUCKA9hfJEW7v/HSF0jlNe09b3w91yo7xHfi/DPCfe98HdcS+9FW67D71O+daWvDb4XbX9NR32fGiilTPF5FSlll/sDYEE0zg92nr/nwznu59iWzvD/MVLXCOU1bX0vwvn/7us434vovxehvked+b1oy3X4fSp670dn+drge6Ge9yKc98P1p6tOWX4epfODnefv+XCOhzv2aIrEWNpyjVBe09b3wt9z4b53Ha0rvRf+jmvpvWjLdfh9yreu9LXB96Ltr1H8+1SnnrIkByHEFinlWKXHQXwv1ITvhbrw/VAPvhfq1FUrZFqzQOkBkBvfC/Xge6EufD/Ug++FCrFCRkRERKQwVsiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgUzjhBBXCiFeF0L8VwgxU+nxdGVCiH5CiDeFEAuVHktXJIRIEEK84/x6uFnp8XRl/FpQF/6cUAcGMhUTQvxLCHFKCLG7xfFLhBD5QohDQoh5ga4hpfxUSvkTAPcAuCGa49WyCL0XR6SUd0Z3pF1LmO/L1QAWOr8eLu/wwWpcOO8FvxaiL8z3gz8nVICBTN3eBnCJ5wEhhB7AqwBmARgGYK4QYpgQ4mwhxBct/mR7vPQR5+uobd5G5N4Lipy3EeL7AiAHwHHnabYOHGNX8TZCfy8o+t5G+O8Hf04oyKD0AMg/KeUaIURei8PjARySUh4BACHEhwCukFI+A+CyltcQQggA8wF8KaXcFuUha1Yk3guKvHDeFwBFcISy7eAvoxEX5nuxt4OH1+WE834IIfaBPycUx29KnU8vNP+WDzh+yPQKcP4vAVwE4FohxD3RHFgXFNZ7IYTIEEK8BmCUEOLhaA+uC/P3vnwM4BohxD+grv39tMzne8GvBcX4+9rgzwkVYIVM46SULwF4SelxECClPA3HGg1SgJSyDsDtSo+D+LWgNvw5oQ6skHU+JwD09vg4x3mMOh7fC3Xi+6IefC/Uhe+HijGQdT6bAQwUQvQVQpgA3AjgM4XH1FXxvVAnvi/qwfdCXfh+qBgDmYoJIT4AsAHAYCFEkRDiTimlFcAvACwHsA/AR1LKPUqOsyvge6FOfF/Ug++FuvD96HyElFLpMRARERF1aayQERERESmMgYyIiIhIYQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxq2TiKhTEULYAOzyOHSllLJAoeEQEUUE+5ARUacihKiVUib6eU7A8X3N3sHDIiJqF05ZElGnJoTIE0LkCyH+DWA3gN5CiIeEEJuFEDuFEH/wOPf3QogDQoh1QogPhBC/cR5fJYQY63ycKYQocD7WCyH+6nGtnzqPn+98zUIhxH4hxPvOMAghxDghxHohxA4hxCYhRJIQYo0Q4hyPcawTQozsqP9HRKR+nLIkos4mTgix3fn4KID7AQwEcJuUcqMQYqbz4/EABIDPhBDTANTBsXffOXB879sGYGuQz3UngCop5TghRAyA74QQXzmfGwXgLADFAL4DMEUIsQnAfwHcIKXcLIRIBtAA4E0APwZwnxBiEIBYKeWO9v1vICItYSAjos6mQUp5jusDIUQegEIp5UbnoZnOPz84P06EI6AlAfhESlnvfF0omyrPBDBCCHGt8+MU57UsADZJKYuc19oOIA9AFYASKeVmAJBSVjuf/x+AR4UQDwG4A8DbYf6diUjjGMiISAvqPB4LAM9IKf/peYIQ4r4Ar7eieQlHbItr/VJKubzFtc4HYPY4ZEOA76dSynohxAoAVwC4HsCYAGMhoi6Ia8iISGuWA7hDCJEIAEKIXkKIbABrAFwphIgTQiQBmOPxmgI0h6RrW1zrZ0IIo/Nag4QQCQE+dz6AHkKIcc7zk4QQrqD2BoCXAGyWUp5p19+QiDSHFTIi0hQp5VdCiKEANjjX2dcCuEVKuU0I8V8AOwCcArDZ42XPAvhICHE3gCUex9+AYypym3PRfhmAKwN8bosQ4gYALwsh4uBYP3YRgFop5VYhRDWAtyLzNyUiLWHbCyLqkoQQT8ARlJ7toM/XE8AqAEPYloOIWuKUJRFRlAkhfgTgewC/ZxgjIl9YISMiIiJSGCtkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxkBGREREpLD/B60i90GDljRkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Power (Leahy)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nice Quasi-periodic oscillations there! Note that at high frequencies the white noise level increases. This is not real variability, but an effect of **dead time**. The easiest way to get a flat periodogram at high frequencies is using the **cospectrum** instead of the power density spectrum. For this, we use separately the events from the two detectors. The cospectrum calculation is slightly slower than the power spectrum.\n", + "\n", + "For an accurate way to correct the power density spectrum from dead time, see the documentation of `stingray.deadtime` and the Frequency Amplitude Difference (FAD) correction." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:03, 78.00it/s]\n" + ] + } + ], + "source": [ + "cs = AveragedCrossspectrum.from_events(evA, evB, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGfCAYAAACQtOy5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABA/0lEQVR4nO3deXicVd3/8c+Z7GvbtGm6Ny3daUtLFwqlRaBAWWRHlkdEQQEVt0dRQNTHB0UE9VGRn4iCKCCLIKDsW9lLS0pL931P0yZNmq3ZZjm/PyYzzTZJJpl0Tpv367q4krln5p6T3Mzk0+/53uc21loBAACg8zzxHgAAAMCRhgAFAAAQJQIUAABAlAhQAAAAUSJAAQAARCnxcL7YgAEDbH5+/uF8SQAAgC5ZtmzZfmttblv3HdYAlZ+fr4KCgsP5kgAAAF1ijNkR6T6m8AAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKBCjAQQ2+gEbf+qL+WbAr3kMBALSBAAU46EBNgwJWuufVDfEeCgCgDQQowEH13oAkKSWJtygAuIhPZ8BB9T6/JCklMSHOIwEAtIUABTio3hesQCUn8BYFABfx6Qw4qKahsQLFFB4AOIlPZ8BBtd5ggEplCg8AnESAAhxU2+CTJCUn8hYFABfx6Qw4KDyFR4ACACfx6Qw4KDSFl5LEFB4AuIgABTiotrECxVl4AOAmPp0BB4Wm8OiBAgA38ekMOCg0hecxcR4IAKBNBCjAQaEpvIC1cR4JAKAtBCjAQTWNyxj4AwQoAHARAQpwUG3jxYT9gTgPBADQJgIU4KDQQppM4QGAmwhQgINCFxNmCg8A3ESAAhzU0BigqEABgJsIUICDvH4CFAC4jAAFOMjrDwYnpvAAwE0dBihjzEPGmGJjzOom2+4xxqw3xqw0xjxrjOnbo6MEeplQBYqz8ADATZ2pQD0saWGLba9LmmytnSppo6RbYzwuoFdrYAoPAJzWYYCy1r4rqazFttestb7Gmx9JGtYDYwN6rUMVKAIUALgoFj1Q10p6OdKdxpjrjTEFxpiCkpKSGLwccPTz+oLBiQoUALipWwHKGPNDST5Jj0V6jLX2AWvtTGvtzNzc3O68HNBrcBYeALgtsatPNMZ8UdJ5kk63lk95IJYamMIDAKd1KUAZYxZK+r6kU6y1NbEdEoBwBYqz8ADASZ1ZxuBxSYsljTfG7DbGXCfpD5KyJL1ujFlhjLm/h8cJ9CrhdaAo7gKAkzqsQFlrr2xj84M9MBYACk7bhabumMIDADexEjngGG+T1TNpIgcANxGgAMc0DVBUoADATQQowDGh/idJIj8BgJsIUIBjmk3hkaAAwEkEKMAxDb4mU3j0QAGAkwhQgGN8TapOVKAAwE0EKMAxoSm85AQPFSgAcFSXL+UCIPa++ugylR5skCSlJHo4Cw8AHEWAAhzy8uq94e9TkhJEAQoA3MQUHuAoKlAA4C4CFOCo1CR6oADAVQQowFGpSQmchQcAjiJAAY5KTUqgAgUAjiJAAY5KTaIHCgBcRYACHJWayBQeALiKAAU4KjUpgYsJA4CjCFCAQ9KTE8LfpyXTAwUArmIhTcAh2alJOiY3U9eenK9N+6qZwgMAR1GBAhxiZXXskGxdNH2YEjyGChQAOIoABTgkYCVjjCTJY4yslSwhCgCcQ4ACHGKtlSeYn5TQ+A1LGQCAewhQgEOCFajg9+EARQUKAJxDgAIcErBWnsYEFQpS5CcAcA8BCnCItQoHqATDFB4AuIoABTgkYC1TeABwBCBAAQ5pWoEKfWUtKABwDwEKcEjAWjUWoDgLDwAcRoACHGKt5GkMTh6m8ADAWQQowCHNeqAavyE/AYB7CFCAQ5r3QAW3MYUHAO4hQAEOadoD5aEHCgCcRYACHGLVeh2oAHN4AOAcAhTgkECTa+F5Gt+d5CcAcA8BCnCEtVbWSqblOlAkKABwDgEKcEQoJ4XOwguhBQoA3EOAAhwRykktVyI/dA8AwBUEKMARoam6cA9UeAovXiMCAERCgAIcEQpQpsU6UPRAAYB7CFCAI1r2QIW+BgLxGQ8AIDICFOCIUIAKTd2FKlGWHigAcA4BCnBEpB4oZvAAwD0EKMARhwIUPVAA4DoCFOCIlmfbhXugyE8A4JwOA5Qx5iFjTLExZnWTbTnGmNeNMZsav/br2WECRz/bogIV7oGiAgUAzulMBephSQtbbLtF0pvW2rGS3my8DaAbDjWRh76yDhQAuKrDAGWtfVdSWYvNF0j6W+P3f5N0YWyHBfQ+4R4oT/MeKCpQAOCervZA5Vlrixq/3yspL9IDjTHXG2MKjDEFJSUlXXw54OgXCK8D1fJiwvEaEQAgkm43kdvgP48jfsRbax+w1s601s7Mzc3t7ssBR61QpSl0BbzQV87CAwD3dDVA7TPGDJakxq/FsRsS0Du1vJiwYR0oAHBWVwPUvyVd0/j9NZKej81wgN6r9UKawa/0QAGAezqzjMHjkhZLGm+M2W2MuU7SXZLOMMZskrSg8TaAbgi0uJRLqJmcHigAcE9iRw+w1l4Z4a7TYzwWoFcLhLvIm32hBwoAHMRK5IBjWl9MGADgGgIU4IhIPVBUoADAPQQowBGteqC4lAsAOIsABTgiVGkKXUQ4fDHhQJwGBACIiAAFOMJGWImc+hMAuIcABTjCtuiBMvRAAYCzCFCAI+iBAoAjBwEKcESg5bXwwhWo+IwHABAZAQpwRKQeKKbwAMA9BCjAEZGvhRenAQEAIiJAAY6wLXqgDBUoAHAWAQpwRMt1oA41kcdrRACASAhQgCMOTeE1VqBabAcAuIMABTgiFJOoQAGA+whQgCNsywoUC2kCgLMIUIAjWi2k6aECBQCuIkABjggEWlxMOLSdBAUAziFAAY6I2AMVn+EAANpBgAIc0fIsPA89UADgLAIU4IjIC2nGa0QAgEgIUIAjWi6kacKXciFBAYBrCFCAIw5VoEJfOQsPAFxFgAIccagCRQ8UALiOAAU4gh4oADhyEKAAR4QrUI23PfRAAYCzCFCAIyJXoAhQAOAaAhTgiJZn4R2qQMVpQACAiAhQgCNaXQuPHigAcBYBCnCEjbAOFFN4AOAeAhTgiJYVKKPQOlAEKABwDQEKcIRV6Fp4avaV/AQA7iFAAY4IVaAMPVAA4DwCFOCI0FSdhx4oAHAeAQpwRMtLuRhDDxQAuIoABTii5cWEQ98TnwDAPQQowBEtz8ILfc8UHgC4hwAFOKLlSuRSKEDFaUAAgIgIUIAjbIseqOANmsgBwEUEKMARkXqgaIICAPcQoABH0AMFAEcOAhTgCHqgAODIQYACHBHugdKhBGXogQIAJxGgAEeEYpKneQ8518IDAAd1K0AZY75jjFljjFltjHncGJMaq4EBvU0gELqUS5MeKI9hJXIAcFCXA5QxZqikb0qaaa2dLClB0hWxGhjQ20RuIo/TgAAAEXV3Ci9RUpoxJlFSuqQ93R8S0DuFe51aLGNADxQAuKfLAcpaWyjpV5J2SiqSVGGtfa3l44wx1xtjCowxBSUlJV0fKdBLNO2BkqhAAYCLujOF10/SBZJGSRoiKcMY8/mWj7PWPmCtnWmtnZmbm9v1kQJHuVClqfkUnsRKmgDgnu5M4S2QtM1aW2Kt9Ur6l6STYjMsoPeJ2AMViNOAAAARdSdA7ZQ0xxiTboIX7zpd0rrYDAvofdpeSJMeKABwUXd6oJZIelrSJ5JWNe7rgRiNC+h1wj3kTdeB4iw8AHBSYneebK39iaSfxGgsQK9m2+iBMkay9EABgHNYiRxwRKQeKGbwAMA9BCjAEYfOwju0jR4oAHATAQpwRCDcA9V0Co8eKABwEQEKcIW1zRrIpWAPFBUoAHAPAQpwRMA273+SGm+TnwDAOQQowBEBa1tcxoUeKABwFQEKcETASkatK1AEKABwDwEKcIRV6x4oSXp1zT4VV9Yd/gEBACIiQAGOsG30QBWW10qSvvbYJ/EYEgAgAgIU4Ah/oHUPVE2DX5JUXe+Lw4gAAJEQoABHNPgCSk5s/pb0Ny4ClZKUEI8hAQAiIEABjmgrQIWkRtgOAIgPPpUBR9T7/BEDVFoyFSgAcAkBCnBEgz+glMS2g1IaU3gA4BQCFOCIBl9AyQkRKlAEKABwCgEKcER9Oz1QNJEDgFsIUIAj2msipwIFAG4hQAGOCPZARTgLL4m3KgC4hE9lwBHt9UC1dYkXAED8EKAAR7TXA+UPHObBAADaRYACHNHgizyFZ609zKMBALSHAAU4or0m8gABCgCcQoACHNHgbx2gzpyUJ0kKkJ8AwCkEKMARwSby5ssVPPCFmcpKTaQCBQCOIUABjog0hecxRuQnAHALAQpwgLW2zSk8SfIYeqAAwDUEKMAB9b7gOgVtnYXnMYYABQCOIUABDmjwRw5QxhiayAHAMQQowAENjRWoiFN4JCgAcAoBCnBAOEC1cSkXpvAAwD0EKMAB7VWgEjxM4QGAawhQgANCPVBtBSjDWXgA4BwCFOCAjqbwyE8A4BYCFOCA+o6ayElQAOAUAhTggHqfX5KUkpjQ6j4PyxgAgHMIUIADDjWRm1b30QMFAO4hQAEO8PqDASkpYg8UAQoAXEKAAhzgazwLL1KA8jOHBwBOIUABDvAGQhWo1lN4HtaBAgDnEKAAB4QqUImets/CYwoPANxCgAIc4GvsgUpsqwLFWXgA4BwCFOAAb6C9HijOwgMA1xCgAAeEK1CetpYxoAIFAK7pVoAyxvQ1xjxtjFlvjFlnjDkxVgMDehNvqAcqQgWKHigAcEtiN5//O0mvWGsvNcYkS0qPwZiAXsfX3ll4xjCFBwCO6XKAMsb0kTRf0hclyVrbIKkhNsMCepf2z8IzamyRAgA4ojtTeKMklUj6qzFmuTHmL8aYjJYPMsZcb4wpMMYUlJSUdOPlgKPXoZXI276Ui58KFAA4pTsBKlHS8ZL+aK2dLumgpFtaPsha+4C1dqa1dmZubm43Xg44enn9ASV4jIxpHaASPFzKBQBc050AtVvSbmvtksbbTysYqABEyRewbVafJNaBAgAXdTlAWWv3StpljBnfuOl0SWtjMiqgl/H6A0pqo/9JCk7h0UQOAG7p7ll435D0WOMZeFslfan7QwJ6H5/ftrkKuUQFCgBc1K0AZa1dIWlmbIYC9F6+QKDNNaAk1oECABexEjngAK/fKqmNVcgl1oECABcRoAAH+PyRK1CGdaAAwDkEKMAB3kB7PVA0kQOAawhQgAN87ZyFxxQeALiHAAU4oL2z8BI8nIUHAK4hQAEOaGi3B4opPABwDQEKcIDPb5XczjpQ5CcAcAsBCnCALxBQYsQeKCpQAOAaAhTgAG+HK5EToADAJQQowAG+QEBJrAMFAEcMAhTgAJ/fKjHiSuRcygUAXEOAAhzg9UeuQHmMkZ8ABQBOIUABDvC1txK5R6wDBQCOIUABDghO4UWuQDGFBwBuIUABDghO4bV3Ft5hHhAAoF0EKMABXn+AiwkDwBGEAAU4oL0pvOAyBgQoAHAJAQpwgDcQUHJiez1Qh3lAAIB2EaAAB3S0DhRTeADgFgIUEGfW2sZlDCJUoDw0kQOAawhQQJz5GtNRUoQKlDFiIU0AcAwBCogzrz94obukdnugCFAA4BICFBBn1fU+SVJGSmKb9yewDhQAOIcABcRZdV0wQGVFCFA0kQOAewhQQJyFKlCZEQKUaVzGgGk8AHAHAQqIs1AFKjM1UgUq2FxOfgIAdxCggDirDE3hRQxQwa9M4wGAOwhQQJyFpvCyUpLavN/TmKBoJAcAdxCggDirrvNKijyFZ6hAAYBzCFBAnB1axiChzftDPVAEKABwBwEKiLOqep+SEz1KSYwUoIJfmcIDAHcQoIA4q67zRVwDSqICBQAuIkABcVZd74vY/yQ1WcYgcLhGBADoCAEKiLPqOl/ERTSlQ1N4vgAJCgBcQYAC4qyqvv0AlZOZIknaX91wuIYEAOgAAQqIs44qUEP7pkmSCstrDteQAAAdIEABcVbn9Sstue0z8CRpWL/GAHWg9nANCQDQAQIUEGe1Xr/SkiIHqNzMFCUneLS7nAAFAK4gQAFxVtPgV3o7FSiPx2hw31TtpgIFAM4gQAFxVuv1K7WdACVJfdOTVdV40WEAQPwRoIA48gesGnyBdqfwJCnJY+Tzs4wBALiCAAXEUZ3XL0kdB6gEj7wEKABwBgEKiKOahmCAaq8HSpISE4y8fi7lAgCu6HaAMsYkGGOWG2NeiMWAgN4kVIFK7UQFipXIAcAdsahAfUvSuhjsB+h1akNTeB1UoJISjLw+KlAA4IpuBShjzDBJ50r6S2yGA/QunZ/C88hLBQoAnNHdCtRvJX1fUsRPdmPM9caYAmNMQUlJSTdfDji61DZ0cgrPY+SjBwoAnNHlAGWMOU9SsbV2WXuPs9Y+YK2daa2dmZub29WXA45KnIUHAEem7lSg5ko63xizXdITkk4zxjwak1EBvcShKbzIFxOWGqfwqEABgDO6HKCstbdaa4dZa/MlXSHpLWvt52M2MqAXqO1kBSo5wVCBAgCHsA4UEEehAJWa3P5bMTHBw0rkAOCQ9ucNOsla+7akt2OxL6A3qWvoXAUqMcHIG2AKDwBcQQUKiKOaTgaoZJrIAcApBCggjmq9fiUneJSY0MEUnscja4MXHwYAxB8BCoij2gafUpM6fhsmJhhJogoFAI4gQAFxdLDBr4yUjlsRkxsrVAQoAHADAQqIo4P1vk4FqFAFitXIAcANBCggjqo7HaAaK1BcDw8AnECAAuKopsGvzJT2z8CTggtpSmI1cgBwBAEKiKOD9T5ldHAZFyl4Fp4kFtMEAEcQoIA46uwUXlIiTeQA4BICFBBHwSbyjqfwkjxM4QGASwhQQBwdrO/cMgahJnLOwgMANxCggDhp8AXU4A8osxM9UEmNTeQNTOEBgBMIUECc1DT4JEnpnemBSqCJHABcQoAC4qS6PhigOrOMQWJjD5SPa+EBgBMIUECcHKz3S1JUZ+ExhQcAbiBAAXESqkB1KkB5aCIHAJcQoIA4CfVAZXaqAtXYRO6jAgUALiBAAXFysLEClZ7ccQ9UVmqSJKm63tujYwIAdA4BCoiT6sYeqM5UoLJTg4+prPX16JgAAJ1DgALipLI2WE3KbqwutScjOVEeI1XWUYECABcQoIA4CYWhrNSOK1Aej1FWalI4dAEA4osABcRJRa1XmSmJ4cu0dKRPWpIq63xaXVih9Xsre3h0AID2dPxPXwA9orLWF+5t6ozstERV1Hp13r3vS5K233VuTw0NANABKlBAnFTWeZWd1nH/U0g2U3gA4AwCFBAnlbVdCFA0kQOAEwhQQJxU1HrVJ4oA1SctSeU1BCgAcAEBCoiTqjpfp5YwCJkwOEvFVfXh216uiwcAcUOAAuIkOIXX+Sbya07Mb7ZqOf1QABA/BCggDvwBq6p6X1RTeB6PaRagyglQABA3BCggDqrqOr8KeVMpiYcCVAUBCgDihgAF9LDaBr/+8+meZttC17SL5iw8SUpJOvSWraChHADihgCFo4rXH9CjH+1QbYM/3kMJe3l1kb7x+HJtKakOb9teelCSNCg7Nap9Na1A1Xrd+RkBoLchQOGo8tqafbr9udV68uOdXXjuXj29bHfMx1R2sEGStL/JGXQfby9Tgsdo2oi+Ue0rtUkFqt5HgAKAeCFA4ajy2tq9kqR/t5gy64x7Xt2g3725MdZDCp8td6CmIbxtybYyTR6SrcyU6K6m1LRnqs7LMgYAEC8EKBw1vP6A3lpfrLSkBH2ys1y7ymoiPvaNtfv0q1c3hG8XV9ZpU3G19pTXhddXstZqZ2nkfXRWqNn79bXFeuDdLdpTXqsVO8s1e1RO1Pu6+9Kpumj6UElSPVN4ABA3BCgcNZZsLVNVnU/fXzheUuQqlLVWd768Tn98Z4safMGwtHhrqaTg8gJF5XWSpA+3lGr+PYu0Zk9Fq31s2lelfZV1nRpXZV2wYfyZT3br7lc26Bcvr5fHI33hxPyofj5JystO1c8vmixJqvdRgQKAeCFAIWp1Xr9TTdohr63dq9Qkj66YNUIzR/bTv1e0HaAKdhzQ1pKD8gesdjQ2c3+4uTR8/46y4LZQ0/f7m/ZLCp5N948lOxUIWH3p4Y91xwtrm+3X5w/oyY93tlohvOlyA76A1Zvr9umcyYM1PCe9Sz9nckLwbcsUHgDEDwEKUfvm48v1lb8XxHsYzVhr9frafZo/NldpyQk6f9oQbdhXpSseWKxZP39D33h8uVYXBitJTyzdJWOCz9tUHAxJH27drylD+0iSdjZO/RVVBCtMS7eVSZKeW1Go255dpbc3Fmv3gVqtLaqUJH20tVQX3veBXl69Vz94ZpVeXbO32dhartdU0+DXoD7RnX3XVGKCR4keQxM5AMQRAQpRsdbqo62l+mDLfpVW13f8hMNkdWGliirqdMakPEnSuVMGa1B2qsprvDphVI4WrS/Wefe+rysf+EgvrtqjC6cNlTHS5uJq7Sqr0a6yWl00faiSEzzhALU3FKC2l8kfsPp0V7kkhStb2/cfVJ3Xr0c/2qEVu8rDZ/At2VrWbGxtXXJlYFZKt37e1KQEpvAAII6iOwUIvd7OsppwT89b64t12czhcR5R0LubSiRJp00YKEnqn5mij247PXx/ZZ1XTy7dpYc+2KZ6X0DXzh2lgh1l2lRcrcVbgtN3J48doGFL0sKN40UVtZKCF/1dv7dSn+4OVrBeW7tPkhSw0rqiSi1aXyxJeq9xDEu2HZoOlNpeMTw3q+sVKElKSfSojiZyAIgbAhSisqpxGiwpwejNde4EqOU7yzU6N0P9M9uu7GSnJukr80fri3PzVXigVvkDMjQmN1Obi6vlMdKAzBSNHZipETnpzSpQM0f2U8GOA3p7Q4k27quSFJyCC3nog+062Hg7YIPbNu6rVml1fXgsbQWogdndq0ClJHqoQAFAHDGFh6isKqxQUoLRhdOG6r1NJU704VhrtWLXAU0f3q/DxyYleJQ/IEOSNGZgpraWVOvDLaU66Zj+MsYEA1Rpjay1Kqqo0/Ej++nYIdm6b9Fm+QNWo3ODzx09IEOJHqMXVu5Rv/QkzRs7QJJ04uj+kqS3NwSrUXVef5tBhyk8ADiyEaAQldWFFRo/KEtnTxmkgw1+fdSi3yfWdpXVaPnOA+0+ZveBWu2vboh6Ve+xA7NU7wuopKpeJx0TDD4jctJVVe/T9tIa1fsCystO1a1nTwxXna6YFay4TRySrVEDMmSt9O0F4zR9ePC1PzdrmPL7p+upgl2SglOHTSUlBLvXB3ZzCi+5B6fw/vPpHs27+y35QyU1AEArXQ5QxpjhxphFxpi1xpg1xphvxXJgcI+1VqsLKzVlaB+ddMwApSZ59Oa6fT32el5/QNc+/LGueWipfP7I1ZYVjc3doRDTWccMzAx/f9IxwQrSiMalBZY29jEN7pOqk8cO0IKJeRqRkx7usRqTm6mZ+TmaNDhbV50wQieM7h+8NMvwfrps5nAt2VambfsPhhvI77jgWP31i7M0ZmCWslISlZacoO5I6cEK1A+eWaldZbWqafD1yP4B4GjQnQqUT9J3rbWTJM2R9HVjzKTYDAsu2lVWq4paryYP7aPUpATNG5urN9cVy9qeqVQ89P42bSquVmWdL9x71ZblO8uVkujR+EFZUe1/TGOAGto3TcNz0iQdClWvrQkGw9ByA3+4arqe+/pcHZObqZvPGq9LZwzTzy+crOdvmqukBI/mjhmgZbcv0KgBGTrr2EGN4zoQ7n8anpOuUycMVG5WinK72f8kSamJHm3cW9Wla/5F4g9Y/eGtTeFqGxUoAIisywHKWltkrf2k8fsqSeskDY3VwOCe1Y0rcofWS1owcaAKy2u1rqgq5q9VVFGr3725SSeMypExhxazbMuKXQc0dVgfJSVE979zn7QkjR6QodMmDJRpXBhq9IAMjRmYqTcbz6wb3BigUpMSlJORLGOMvn7qGA3PSZfHY5q9Zt/0ZEnSsH7BMLb7QK32VQaXeuifEQxN3zp9rH58Xvf/nZGSlKC9lXX6wTOrVFhe2+39SVLB9jL96rVD1wL0+glQABBJTHqgjDH5kqZLWtLGfdcbYwqMMQUlJSWxeDnEyarCCiV6jMblBSs9pzZOZ/XENN4dL6xVwFr96rLjdOyQbL23+VCAqvcF116qqPWqwRfQ6j2Vmhbl9F3Iv752kn547sTwbWOMLjhuiCTJY6TcCGf1tSc1KUEDs1K0+0CNlmwtVXpyQrg6NmNkP31m/MAujbWplMRDb90H39umkqrur8m1rEWvWcsV1QEAh3Q7QBljMiU9I+nb1trKlvdbax+w1s601s7Mzc3t7sshjlYXVmhcXpZSk4L9OwOzUnXc8L56o7FaEytvrd+nl1bt1U2NlZ65YwZo+c4DOlgf7Ml5etlu3f7can310WVaVViuBl9A0zpxBl5b+qYnh3+ekPOnBQNUblaKEqOsaoUM65em3Qdq9cGWUs3Kz1FyYmzP12g6vfbQB9t0zu/f6/Y+735lQ7Pba/e0ejsDABp161PdGJOkYHh6zFr7r9gMCS6y1mpVYUV4+i5kwYSB+nRXuYqrOr6w7q6ymg6XPXh+RaFufPQTjR2Yqa/MHy1JmjcmV16/1dJtZbLW6h9LdqpvepI+3FKqbz6+QpI0Pcoz8Nozsn+GZozsp/z+GV3ex7B+6fpk5wFtLq4On+EXS7Pyc9Q/I1mexkvSxKIC1dKX/17QbvM+APRm3TkLz0h6UNI6a+1vYjckuGj3gVqV13g1eVjzAHX6xOClUxa1U4XaUlKtrz/2iebdvUhX/XmJKmpaLyxprdVv39iobz2xQtOG9dWTN5yolMRgZWhmfj8lJ3r03qb9Wrm7Qmv2VOq7Z4zTVz9zjArLazUwKyXcqxQrf7p6hu69cnqXnz88Jy18sd95Y2Nfef3qZ47Rsh+dEW6E764Zd7ze5vYGAhQAtKk7K5HPlXS1pFXGmBWN226z1r7U7VHBOaEL8basQE0cnKUhfVL1xrpiXT5rRLP79lbU6XdvbtRTBbuVkujRFbOG61+fFOryBxbr79fNDq+FVFRRq//59xq9umafLjl+mO68eHI4PEnBnqLZ+Tl6f3OJDtb7lJaUoAumD1VmcqJKq+uVl50abgKPlQFd6H1qali/4HIIqUkeTRwc3dmB0QhN5aV3Y1mEqjqvSg82SAo21jddOb3BF1BjbzwAoIkuByhr7fuSYvtXq5s27avSkm1lWjh5ULf/AKK5UAP5hBZLBRhjdPrEPP1z2S7Vef2NK2T79ed3t+oPjat3Xz1npG46bYwGZKbo3KmDdcMjy3TZ/Yv10Bdn6bU1+3TvW5vkD1jdds4EfWXe6DbD0MljB+iul9drR2mNLpw2VNmpSZKkuy897rD8/NHKyQimjtmj+sc83DX1k88eqy88tFTDGwNbV2zfXxP+fs7oHL265tBJAQ2sdg4AbTqqroX32tp9uufVDfrx86t14jH9de6UITrr2LyI10c72h042KA31xfrw837NXfMAF18/NAu/zFfVVihsU0ayJs6feJAPfLRDn24Zb88xuh//r1G20trdM6UQbr17IkannPoj/u8sbl69Msn6Et//Vin//odSdKCiXn6yWcnNXtcSyePCS50We8L6KoTRkR8nCvmjhmgi6cP1c0Lx/fo68wfl6szJ+VpZ1nw8jPriqo0aUh2VPtYuj24mvy4vEz99PzJzQMUU3gA0KajKkB97TPH6PSJA/XiyiK9sLJItz27Sj96frVOOqa/zpkyWGcdOyhcGTha7Sqr0etr9+m1tXu1dFuZAlbKTEnUv5YX6t+f7tGdF0/R0L5pUe0zuAJ5hc6YlNfm/XNG91d6coK+//RK7a9u0OgBGfr7tbM1f1zbvT/Hj+inp244Uf/3+kZdPmt4eDmE9kwanK2cjGQNyk7V1BZ9WC7KTEnUby6fdlheKy05QbVevx5fuku3PbtKj335BM1tDJydsWJXuYbnpOm175wiSfrnjSfqsvsXS6ICBQCRHFUByhijCYOyNWFQtv77jHFaV1SlF1ft0Ysri3Trv1bp9ueCYeq8qYN15qRB6udImGrwBfTy6iI980mhrLXqn5Gs/pkpGpCZov6ZyRqQmdz4fYr6ZzQ/7d5aq/V7q/Tqmr16bc0+rS0Knno+Pi9LXz91jM6cNEiThmTr0Y926JevrNeZv3lHt54zUVfNHiGPp3PVqMLyWh2o8bbqfwpJTUrQmZPy9Mqavbr5rPH68rxRzXqY2jJ+UJbuv3pGJ39Dksdj9MDVM9QnLalHp8SORGlJCdpXWacPtwTXytpRWqO5Yzr//Jp6n/qkJTXbXwgVKABo21EVoJoyxmjSkGxNGpKt7505Xmv2VOqlVUV6cVWRfvDMKv3w2dWaO2aAzp0yWGcemxdeRfpw2ldZp8eW7NQ/luzU/up6jchJV05GsraXHtT+qgbVRrhYbFZKovpnBkNWcVWddpXVyhhpxoh+uu2cCTpz0iDlD2h+Cv41J+XrtAkDdcu/Vur251brhZV79MtLpmpkJ07VDzWQT44QoCTprkum6qcXTG72hzjWZubn9Ni+j2SpSQmq8wb0wsoiSVK0+bLW628WmpquMUUFCgDadtQGqKaMMZo8tI8mD+2jm88KhqkXVhbpxVV79P1nVuq2Z41OHtsYpiYNUp/0ngsB1loV7Dighz/crldX75XfWp06fqC+cOJIzR+b26wqVNPgU2l1g/ZX12t/dYNKq+tVerBBJVXBr6XV9cFK02fG6PSJecrNar/Xa3hOuh697gQ9VbBLP3thnc767bv63pnj9aW5o5TQTjVqVWGFEjxGEwdH7q1JTUposz8KPa/lhYk/2XFAjy3Zob9fe0KnpqxrvX5lphz6KKhrEtxZjRwA2tYrAlRTTcPUDxaO16rCCr24qkgvrizSzU+v1G0JqzRvbK7OnTJYCyblxayiUtvg1/MrCvW3xTu0rqhS2amJ+tLcfH1+zsiIVaD05ESl5yS221wdLWOMLp81QvPH5er2Z1frZy+u04urivTH/5oRvnBuS6sLKzV2YCYByVFJLcLvP5ftliS9uKpIV88Z2eHzaxv8GtgkfM8Y2U8TBmVp/d4q1VOBAoA29boA1ZQxRlOH9dXUYX11y8IJWrn7UJh6a32xkhKM5o/N1blTg2EqdOp8NHaW1uiRj7brqYLdqqj1asKgLP3i4im6cNrQVpWDw2lwnzT95ZqZen7FHv3w2VW64dFlevL6Oa1CUqiB/LRONHojPqrr257qXba9rMMA9eD727R+b1Wz5SkSEzy68+Ipuvj/fUiAAoAIenWAasoYo+OG99Vxw/vq1rMnaMWu8mDP1Moivbm+WMkJHs0fl6vzpg7W6RMHKqudMBUIWL23eb/+/uF2vbWhWB5jtHDyIF1zYr5m5fdzpgnaGKMLpw9ValKCbnx0mX7y/BrddcmUZuMrqqhT6cEGTTkCznzrrarrgwtffuv0sXp62W4VltdKkp5bsUc/PHdSu1O7d7ywVlLracDkxmsA3vDIMm382dk9MWwAOKIRoNpgjNH0Ef00fUQ/3Xr2RK3YXa4XVxbppVVFemPdPiUnenRKOEzlhftHKuu8embZbj2yeIe27j+oAZnJ+sapY3TVCSMjTo+5YOHkQbrp1DH6w6LNmjq8j/7rhENVi1WdaCBHfFU3XmR5zMBMnTEpTw9/uD1839sbinWgpkFnTx6s376xSb+4eEqbFzZuedZkqBLZ4Avoy38r0F+umdlzPwAAHIEIUB3weIyOH9FPx4/opx+eM1HLdx3Qiyv36qVVRXp9bTBMnTo+VzkZKXp+RaFqGvw6fkRf/e6KaVo4eVCHp/O74jtnjNOqwgr9z7/XaMKgbM0Y2U9S8Aw8j5EmDopucUYcPt86fZx2ltXolPG5yslIbhagbn56pSTp7Q0l+nBLqS6aPlQnj229RtT20oPNbo8ZmCmPkQJWemPdvlaPB4DerssXE+6NPB6jGSNz9OPPTtKHt5ymp288UVfNHqHlO8v1zCe7dc6UwfrPTSfrX1+bqwumDT1iwpMkJXiMfn/FdA3uk6avPrpMxZV1khpXIB+YFdd+LbRv/KAsvfCNecpOTdLcMQP0+Ffm6O5LpjZ7zL7G4/n5B5fIWttqHye3sfDmyT1wEWQAOFpQgeoij8doZn6OZubn6MfnTVKDP3DEn6XWJz1JD3xhhi6670N97bFP9I+vzNHqwgqdMo4G8iPJicf0V1Zq87d2UUVd+PuKWq/6pifrnY0lkqSvzBul604e1Wo/TYOWtdaZ3j0AcAEVqBjweMwRH55CJgzK1i8vnaqCHQf0rSeWa391g6YMZfruSJOR0jxA1TQcOlNvX2W99lbU6ZqHlkoK9vy1FY4CTQKU19+6agUAvRkVKLRy/nFDtLqwQg+8u1WSOAPvCJSREjnQry2q0Hee/DR8OzRd21LTVcjrff42m88BoLfiExFt+v5Z4zV3TH8lJ3raXYEcbspIjvxvo/c27W92+9ghbQfk0yYcung0l3QBgOYIUGhTYoJHf/nCLL3wjZOV3s4fY7gprZ0p5X99Utjsdlv9T5J0w/zRuu2cCZKk+xZtid3gAOAoQIBCRGnJCRqXl9XxA+GcptdUvP/zx+umU8e0+bhRAzKaPbblPkILxj70wbbYDxIAjmAEKOAodd3Jo3TvldO1cPJgfeP0tgNUSgd9TdV1vvD3720qObS93qfNxdWxGSgAHIGYmwGOUj86b1L4+9ClWVoqO9jQ7j6q6rzh769+cKmuO3mUzpkySL96daMWby3VljvPUUKEChYAHM2oQAG9QKQ1nIqr6tt93injmy+m+eD723TJHxdr8dZSScE1pQCgNyJAAb3EQ1+cqXdvPlXHDeujU8d3bpXxGSNztP2ucyPeX1rdfgADgKMVAQroJU6bkKcR/dP1/E0n66fnT47JPks7mAIEgKMVAQrohfqkJcVkP6XVwQC1t6JO+be8qA827+/gGQBwdCBAAb1QZmpszh954uOd+s3rGzXnF29Kkm5/bnVM9gsAriNAAb1QtGfO/fi8ScpIbr0453ub9uv3b24K3962/6BW7a7o9vgAwHUEKKCXun7+aN3/+Rmdeuy1J4/SZTOHd+qxL64q0uV/Wqx/FuzqzvAAwGnG2sN3lfWZM2fagoKCw/Z6AGJnV1mNbnp8uT7dVd7p51xz4kgN6pOmr37mGEnS0m1lGp2boQGZKT00SgCIHWPMMmvtzLbuYyFNAJ0yPCddz399rvJvebHTz/nb4h2SpD3ltTpjUp6+8NBSjRmYqTf++5SeGiYAHBYEKAA97pGPduiRj4JhanNxtarrfUr0GKW2c9FjAHAZPVAAovJ/lx/X7X1M/smruuAPH8haq2eW7VZ1va/jJwGAQwhQAKIyc2ROq23trVYeyYZ9VVq244C++89P9dN/r5G1VoezJxMAuoMABSAqKYnBj438/und3lfoWnr7q+v1mV+9HV5PKmR1YYXe3VjS7dcBgFgjQAGIysDsVP3i4il6/Po5zbbPH9e56+s15fUHK06LNpRoR2mN9lXWa9mOMn26q1ybi6t03r3v6wsPLVVtg1+/fGW96rz+mPwMANBdNJEDiNqVs0e02vb3a2dLkv7z6R594/HlndrPsh1lrbZd8sfFkqQ//tfx4W1/fm+r/vj2FvVNS9INpxzTlSEDQEyxDhSALntl9V6NzcvUMbmZzbYHAlbltV4t/O27Kq6q19Ifnq7nlhdq+c5yvbx6b9Sv883Txuj3b22WJD1x/Rx5jFH+gHTlZqbImOhWVQcQX6sLK/S9f36qZ756kjJS3K7jtLcOFFN4ALps4eRBrcKTJHk8RjkZyXrl2/P15y/M1MCsVF0//xjdevbELr1OKDxJ0hUPfKTP/WmxZv/8zfC193aW1qiqzquqOq+ufnCJCstro9r/c8sLo34O0BU+f0CrC4/cyx35/IFWZ80u3lIa3mat1TUPLdVb6/dF3MfPX1yn9Xur9PaGQ/2Nr67Zq11lNZKCFydvOV2/Yld5+PdmrXViOp8ABaDH5GQk64xJeeHbI2LQeN7UY0t26puPL9f8exbpsvsX66VVRXpv037Nveut8GMqarz6cMt++QNWb63fJ2utAgGr0up6SVKDL6BvP7mi2XN62iuri6Ja0R1Hj9+8vlHn3fu+1u+t7NHX2VNeGw4kbVm2o0xvrtundUWHxlHn9au2IRhM/uffa7R0W+sp9u/981NN/smrqqj1qs7r10dbS3Xlnz/St59YIUkKWOmdjSW69uEC1fsOhZxAwKq8pkGl1fVavLVUkvT1f3yiB9/fpvxbXtQNjyzTvLsX6fRfB08muf6RZc1e98L7PtB5976v6nqf/vjOFk340SvaE+d/9DCFB+CwentDsb741497ZN8TBmVp/d4qSdKi731GowZk6Lx739Pqwkr1z0hW6cEG/eSzk7RmT6WeXrZbkrT+joWa8KNXJAWXYwgErK5/ZJmuPTlf97+zVVV1Xv3swsk6dkgfVdZ5tWRrWbNQWFheqyF9UsNTiYGAVcBaJSZE/vdpaDX3754xTmdPGawxA5tX8d5ct0/V9T5dMG1o1L+DsoMNentDsS4+fljUzz3aFFfW6aVVRfri3FEx3/fH28s0c2S/8HEvLK/Vl/9WoL9fO1u5WZEvVXT1g0v03qb9+tu1s3VKGydebNpXpRH907V8Z7lOGJUT3n+d16+7X9mg75wxVpV1Pvn8AVXV+TR5aJ9mz1+/t1KD+6TpuJ++Ft6WmZKol745T/PvWaR/3niiBvdJ1cm/XBS+Py87Rf/4yhyd/ut3JEnvff9Uzbs7eP9TN5wof8DqxGP6q8EX0LjbX474syV6jK4+caT++sH28LYzJ+XptbX7lJORrLKDDRGfG8kVs4Zra8lBLd3eOsz94arpOm/qkKj3GY32pvAIUAAOuz++vUW/fGW9huekKcEY3XL2RN346LKOnxilT350ho6/4/Vm2z573BD959M94dtN+6te/tY8DcpO1fQWz5GkOy44Vk98vEtr9gTDWHZaku676nid8/v3NHtUjn5+4WSNzcvSNQ8t1TsbS8JrY+0oPajtpTWaPqKvkhM82l9d3+yPV1KC0XfOGKfr540Oh65QwLr7kqn6xcvr9MT1J2rxlv2qrPPpm6ePbTW22ga//vupFfrxZyfpO0+u0Edbg39s7r1yuj57XPf/wHj9Af31g2364kmjlJwY/cTFY0t2aF9FnYqr6nXXJVMlSaXV9Zrxszf0wjdObhUCWnqqYJeyUhJ19pTBHb5WbYNfxkiVdV5d+/DHWl1Yqbe+e4oGZKXou099ql9cPEXJiR5lpybpvkWbdc+rG/T+D05V2cEGfbC5VFtKqjUuL1NXzB6hLcXVmj6iX7P91zT4NOnHr0oK/j+RnZaksycPbhYsLpw2RN9eME6VdV71S0/WS6uKdP380Xrw/W16aVWRPtlZLkn68xdmalZ+P82+8001+AL63Mxheqpgd3g/91w6VZfNHK7t+w/q5dV79ctX1mvO6Jzw8ZWkP109Qzc8Evv3zpFgaN80fXDLaT36GgQoAM7bX12vW55ZqTfWFcdsn135V++CiXl6Y13k/o2mEj1GvsChz9AxAzO1ubg6/NqXzRimP727tdOvvf2uc8N/1COZMrSPbjtnor795HL97wWT9b//WRvu37po+lA9u7ww/NjjhvfVc187SdYG+9JW7i7X+X/4QJL08Q8XqE9akhb+9l3defEUVdZ6tXJ3hb531njtKqtRwFrtKK3RnNH99ffF2/WzF9dJkgZkJuvjHy4IV0Y+3VWu8YOylJqUoL8v3q5B2alaMDFPL6wq0jcfX67fXTFN32qc3gn9jPsq63TCnc3X/JoytI/+94JjWwUW6VCgvP/zx0syuvHRZXru63M1bXhfScGm5PPufT/8+LzsFO2rrA/f/tzMYXpnY0mzbfdeOb3ds0UzUxJVXe/TuzefqvsWbdab64u1v7o+4uNx+KUmebT+jrN79DUIUACOCL99Y6N++8ameA/jqJKRnKCDDX5dP3+0HogizDU1d0x/fbC5NHz7nkun6n//s1ZVjY3D/TOS9bdrZzcLMZF878xx+tVrGyPef/clU/X9Z1ZKkhZMHKiR/TP04PvbIj5+SJ9U7amo6+yPgqNIcqJHG39GgAIAHaz3acFv3lFRJ/8g3nPpVN389MoeHhUAFyV6jDbfeU6PvkaPLWNgjFlojNlgjNlsjLmlO/sCgIyURD15/YmSpN9dMU0njGp93b1/3niihuek6WcXTtZlM4fr15d1/+LGAI48TafP46HLAcoYkyDpPklnS5ok6UpjzKRYDQxA7zSif7o2//xsXTBtaKv1Zpb/6AzNys/Re98/TZ+fM1KSdMkMzjYDcPh1ZwnQ2ZI2W2u3SpIx5glJF0haG4uBAei9Qmej/d/l03T/O1t006ljlJmaqH4ZyW0+fvVPz5Lfb/Xn97bqD4uCZ9RNHpqtm8+aoAmDslo1LANAd3VnCm+opF1Nbu9u3AYAMTEuL0u/+dw0jc7N1MCs1IiPy0xJVJ/0JN102pjwtme/NlenjMtVXnaqnvv6XP30/GMPx5AB9BI9vhK5MeZ6Y0yBMaagpKSk4ycAQBelJiVo/R0Ltep/zlRSk4Uspw3vq2tOytfS205vc/HCrgqeVg+gN+pOgCqUNLzJ7WGN25qx1j5grZ1prZ2Zmxu7Dy4AaEtqUoKyUpPavG9gdqp+/bnjdOMpx+iBq2dICjalv3vzqZKkfulJ+vCW03T7uZGv2ZffeDmaF75xshZOHqx3bv6MciJMLbb09VOPieZHAdCOi6bHd9KrOz1QH0saa4wZpWBwukLSVTEZFQD0kAGZKbrl7AmSFF4tXJIe/tIsjcvL0pC+afryvNE6b+oQ+QLBC79mpSZp7pgBkqRHPtqhHz23WsP6pUmSRvbP0JWzh+u+RVskSZ+fM0I/u3CKdpQe1LB+6frHkh360fNrdNOpY/S9s8brilkjtKe8VqMGZGh2i96sK2eP0ONLd+q3l0/ThdOHaum2Mn3uT4tb/QxnTMrT62s7t9gncLRK9Ji4vn631oEyxpwj6beSEiQ9ZK39eXuPZx0oAEcjnz+gZTsOyEqaMbJfs+lDKXhh17zsVCW0+MAvr2nQ5x9cotWFlXr2aye1uQr3xn1VOvP/3tUNp4xWXlaqMlMTdenxwzT6tpeaPa5vepLKa7ySpKyUxPAil5H848sn6Kq/LGm27bXvzNeZ//duZ39sIK4unj5Uv7l8Wo++RnvrQHWnAiVr7UuSXurwgQBwFEtM8OiE0f0j3j+kb1qb2/umJ+uui6fqjhfWauLg7DYfMy4vS5/+5ExlpSTK0ySAHTesjz7dXRG+vfS2Baqs8+rJj3fp/OOGaEdpjf62eLv6ZyTriY+D5/s0vazKSWMGqOD2BXry412659UN+vlFkzUuL0t3XzJVFbVeXXvyKC3ZVqqr/rxEV84eoao6r15YWaRrThypvy3e0eZYp4/oq6tmjwgvbvqDhRP0y1fWR/7FAd2wqrCi4wf1IFYiB4Aj0IPvb9MdLxxaNabpdGRLm4urtHFftc6ZMlgNvoAC1io1KaFTr+PzB8LLSizZWqrpI/rphZV79N9Pfaq+6Un67eXT9MW/fqxlty9Q/8wUSdJ9izYrJdGjL88b3WoaclZ+P/3uiunqn5msLcUHdc7v35MknX/cEP33GeO0srBCp08YqLKDDZp39yJ9f+F43f1K82sDPnLdbL29oURLt5V16Y/ov2+aG74mYEtMjx45uJQLACBq1lp5/VY/fHaVEjxGd10yNd5Datcrq/eqpLpeVzcugNpZgYDV6Nte0g3zR2vXgRq9tGpvOCzuKqvRvLsXhR/7ly/M1Jf/XqD3vn+q8rJTNe72l7Xw2EE6Y1KePtl5QD+/aEr4sXe+tE4rdpXroS/O0uSfvKqhfdP0wS2nSZKq6ry67uECzRs7QL9+PXjdvgGZKeGLCa/734V6eXWRHnh3q7z+gPL7Z2hGfj+9unqvPt1dER7fGb95R5saLy7dGbeePUGfPW6ITrrrrah+R73VFbOG9/j/9wQoAMARr8EXUFWdN1zpOnCwQdPveF2XzhimX7VxSZ+KWq/SkxNa9aR1lT9gW/WxtXy93QdqdOyQPpKk/dX1mnPnm3ryhjmaMTJHa/dU6tqHP9bL35qnfhnJKiyv1Ya9lVq/t0r/b9EWfXjracpOTVJVnVeVdT7d+Mgy/fyiybrs/sW686Ip6puepPnjcrV9/0Gd0Uav2uJbT9PgPmnKv+XFZtu/e8Y4zcjvp5TEBF3yxw9j8rtwwdY7z2k2rd0TCFAAgKPSlpJqDeuXppTEzk1JHi3eXLdPS7aV6cJpQzVpSPP+uVdWF6lferImDcmWlZTdZFkPf8DKY6RRtwbbl5fdvkAzfvZG+P4nrp+j44b11Q+fW6V/fXJoZaL/OmGEHluyU8cN66OUxARt3X9Q1508Sl/9zDHNAtvNZ43XPa82n3Jt6g9XTddN/1jebFvTEyj2V9drZpPxtDQgM0VPXD9HHiONzs1s5zcUGwQoAAAQ9qd3tmhk/3QtnDxYL6zco+o6n66YPaLZY55YulO/fn2jFkwcqF9cHHmqbE95rTJTE5WelKAEj9GZ//euNhVX66fnH6tZ+TlKTjRa8JtgxWz7XeeqYHuZLr1/sQb3SdWjXz5Bx7QIQo8t2aG7X9mgitrgWaVPXj9Hs0flaHNxtfpnpnR63bVYIEABAIDD4hcvrdOf3t2qR66brXljgwtof7qrXCVV9VowKa/T+3lxZZHGD8rSmIE9X2mKpMeWMQAAAGjqu2eO1/QR/cLhSZKOG9436v2cO3VwDEcVez1+LTwAANB7JCd6tHDyoHgPo8cRoAAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKxlp7+F7MmBJJO7rw1D6SKnrg8R09LtL90Wxva9sASfs7Mb5Yi/b3GKt9dOY5XT0W7d3XmeNxJB+LruwnFu+NnjoWUnyOx5F8LNq7/0g8FpHGcjj2wedUa0fyeyNWx2KstbZPm3ux1jr/n6QHeuLxHT0u0v3RbI+wreBI+D3Gah+deU5Xj0V3j8eRfCy6sp9YvDd66ljE63gcycci2t+568ciVseDzyl3jkVX9uP651TovyNlCu8/PfT4jh4X6f5otkc79p4Ui7F0ZR+deU5Xj0V797l8PGI1jni8NzgWsdkPn1Nt43PKneNxJL83evxYHNYpPAQZYwqstTPjPQ5wLFzD8XAHx8IdHAs3HSkVqKPNA/EeAMI4Fm7heLiDY+EOjoWDqEABAABEiQoUAABAlAhQAAAAUSJAAQAARIkABQAAECUClGOMMRcaY/5sjHnSGHNmvMfTmxljRhtjHjTGPB3vsfRGxpgMY8zfGt8P/xXv8fR2vB/cwd8JNxCgYsgY85AxptgYs7rF9oXGmA3GmM3GmFva24e19jlr7Vck3Sjp8p4c79EsRsdiq7X2up4dae8S5XG5WNLTje+H8w/7YHuBaI4H74eeFeWx4O+EAwhQsfWwpIVNNxhjEiTdJ+lsSZMkXWmMmWSMmWKMeaHFfwObPPX2xuehax5W7I4FYudhdfK4SBomaVfjw/yHcYy9ycPq/PFAz3pY0R8L/k7EUWK8B3A0sda+a4zJb7F5tqTN1tqtkmSMeULSBdbaX0g6r+U+jDFG0l2SXrbWftLDQz5qxeJYIPaiOS6SdisYolaIf+z1iCiPx9rDPLxeJZpjYYxZJ/5OxB0fSj1vqA79K1oK/lEY2s7jvyFpgaRLjTE39uTAeqGojoUxpr8x5n5J040xt/b04HqxSMflX5IuMcb8Ue5cG6w3aPN48H6Ii0jvDf5OOIAKlGOstb+X9Pt4jwOStbZUwR4DxIG19qCkL8V7HAji/eAO/k64gQpUzyuUNLzJ7WGN23D4cSzcxHFxC8fDHRwLhxGget7HksYaY0YZY5IlXSHp33EeU2/FsXATx8UtHA93cCwcRoCKIWPM45IWSxpvjNltjLnOWuuTdJOkVyWtk/SUtXZNPMfZG3As3MRxcQvHwx0ciyOPsdbGewwAAABHFCpQAAAAUSJAAQAARIkABQAAECUCFAAAQJQIUAAAAFEiQAEAAESJAAUAABAlAhQAAECU/j/WgDsQLF04kQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.semilogx(cs.freq, cs.power.real)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To improve the plot, we can rebin the data logarithmically" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "cs_reb = cs.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Cospectrum Power')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGtCAYAAACm11juAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABeoUlEQVR4nO3deXxcZb0/8M93tkz2rU26pGnapnQvtLRlF1CWgmwqgoJeFwS9iutPr+B+vSiiXi4XZVdAvQgiCoIUCghlKaW0pZTupXuTNkmzL5Nktuf3x5kzW2bPTObM5PN+vfpq5syZc57J0OTD99lEKQUiIiIiMh5TthtARERERJExqBEREREZFIMaERERkUExqBEREREZFIMaERERkUFZst2ATJgwYYJqaGjIdjOIiIiI4tq0aVO7UmpipOfyMqg1NDRg48aN2W4GERERUVwicijac+z6JCIiIjIoBjUiIiIig8qroCYil4rI/T09PdluChEREdGo5VVQU0o9o5S6oby8PNtNISIiIhq1vApqRERERPmEQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY1oHDvWM4j7Xt2Htr6hbDeFiIgisGS7AUSUHU9vOYr/9/i7cHkUAOCLZ8/KcouIiCgcK2pE49TjG45gSkUhbBYTOgec2W4OERFFwKBGNA4ppfBeUzdOn1WN6mIbOhjUiIgMyfBBTURmisjvReSJbLeFKF8c6nCgd8iNxXUVqCq2oYtBjYjIkLIS1ETkQRFpE5FtYcdXishuEdkrIjcBgFJqv1Lqumy0kyhfvdfcAwBYNLUcVayoEREZVrYqag8DWBl8QETMAO4CcBGA+QA+KSLzx75pRPnvvSPdsFlMmDOpVKuoORjUiIiMKCtBTSn1GoDOsMMrAOz1VdCcAB4DcHmi1xSRG0Rko4hsPH78eBpbS5R/3mvuwfzJZbCaTagssqGzn0GNiMiIjDRGbSqAI0GPmwBMFZFqEbkXwBIRuTnai5VS9yullimllk2cODHTbSXKWR6vwrbmHpxYVw4AqC62oW/YDafbm+WWERFROMOvo6aU6gDwpWy3gyhfHOl0wOH0YMEULahVFtsAAF0OJ2rL7NlsGhERhTFSRa0ZwLSgx3W+Y0SURh0DwwCAmrICAFpFDQDXUiMiMiAjBbUNAGaLyAwRsQH4BICnk7mAiFwqIvf39PRkpIFE+aDDNx6tulgLapUMakREhpWt5TkeBbAOwBwRaRKR65RSbgA3AlgNYCeAx5VS25O5rlLqGaXUDeXl5elvNFGe0ANZVYkW0FhRIyIyrqyMUVNKfTLK8VUAVo1xc4jGFX3NtKoiLaCxokZEZFxG6vokojHQNeBEodWMQpsZAFBRaIUIgxoRkRExqBGNM50DTlT5qmgAYDGbUF5oZVAjIjKgvApqnExAFF/HgBPVJbaQY1XFNnRydwIiIsPJq6DGyQRE8XUOOFFZFBbUuDsBEZEh5VVQI6L4Ogec/pmeOu73SURkTAxqRONM+Bg1QAtqHRyjRkRkOAxqROPIoNODQZfHv4aarqLIhh6HC0qpLLWMiIgiyaugxskERLHpEwaqwsaolRVa4PR4MeTixuxEREaSV0GNkwmIYtMnDIR3fZYXWgEAvUOuMW8TERFFl1dBjYhi0zdkD1+eQw9qPYMMakRERsKgRjSO+Pf59G3IriuzM6gRERkRgxrRONI5EHmMmr/rk0GNiMhQGNSIxpHOAScsJkFZoSXkeBm7PomIDCmvghpnfRLF1jngRGWxDSIScpxj1IiIjCmvghpnfRLF1hFhVwIAKLNrFbbeQfdYN4mIiGLIq6BGRLG19g5hYmnBiOMWswnFNjMrakREBsOgRjSONHcNoq6yMOJz5YVWBjUiIoNhUCMaJwadHnQMODG1InJQKyu0csFbIiKDYVAjGieauwcBAFOjVNTKWFEjIjIcBjWiccIf1CqKIj5fXmjlOmpERAaTV0GNy3MQRdfcFbuixqBGRGQ8eRXUuDwHUXRHuwdhNglqI8z6BLRtpNj1SURkLHkV1IgouubuQUwqs8NijvzPvrzQigGnBy6Pd4xbRkRE0TCoEY0TzV2DUbs9AaDct61U3xAXvSUiMgoGNaJxorl7EHVRluYAuN8nEZERMagRjQNujxctvUNxKmoMakRERsOgRjQOtPQOweNVURe7BQJBjTM/iYiMg0GNaBzQl+aYwq5PIqKckldBjeuoEUUWb1cCAKjwBbVuBjUiIsPIq6DGddSIIvMvdhujolZVbINJgOO9Q2PVLCIiiiOvghoRRdbcPYgJJTbYreao51jMJkwoKUALgxoRkWEwqBGNA83dgzGrabpJ5Xa09A6PQYuIiCgRDGpE40Bzd+zFbnU1pXa0saJGRGQYDGpEeU4phaMJV9TY9UlEZCQMakR5rmPAiSGXN7GgVmZHt8OFIZdnDFpGRETxMKgR5Tn/jM/Korjn1pbZAQCtrKoRERkCgxpRnvOvoZbgZAIAaOWEAiIiQ2BQI8pzgYpaYl2fADhOjYjIIBjUiPJcc/cgSgss/r08Y6nRuz57GNSIiIwgr4Iat5AiGqmpazDmHp/ByuwWFFrNrKgRERlEXgU1biFFNFKia6gBgIhgUrmdkwmIiAwir4IaEYXyeBWaOh2oSzCoAUBtWQGDGhGRQTCoEeWxrc096Bt24+TplQm/ZsaEYrx7pBv//cJueLwqg60jIqJ4LNluABFlzqu7j0MEOGv2xIRf8+0L5qB/2IPfvLwXC6aUY+XCSRlsIRERxcKKGlEKlMqNStOre9pwYl0FqoptCb+muqQAv/zYYogAu1p6M9g6IiKKh0GNKAXf+Mu7uO7hDXB5vNluSlTdDifePdKNs09IvJqmK7SZMa2yCHvb+jPQMiIiShSDGlGSmroceHrLUfxrVxt+vmpntpsT1evvt8OrgLPnJB/UAGB2TQmDGhFRljGoESXpb5uaoRRw6YlT8NDag/j7O03ZbpKfw+n2f/3k5mZUFllxYl1FStdqrC3B/uMDcBu4akhElO84mYAoCV6vwl83HcHps6px+1Unoq13CDf/fSsGht0osJohAE6cVoHZNSUQkajXcXu8sJgD/5806PRgb1s/FtWlvgagw+nGmbe9gjMbJ+BjJ9fh5V1tuPmiuTCborcjlsaJJXB6vDjc6cDMiSUpt4uIiFLHoEaUhLcOdKCpaxDfvmAOrGYT7rp2Ka64ay1++I/tIedNry7CB+fW4MS6CsybXIZuhxPrD3Ri8+EuvN/Wj+buQfzk0gX4zOkNAIA7/rUH9726H+fNq8VPLpuPusoiANqkhbV7O3CgYwB9Qy4snFKOZQ2VKLKN/Ke76VAXOgeceHrLUaze3oLp1UX47BkNKb/X2bWlAID32/oZ1IiIsoRBjSgJT2xsQmmBBRcu0JasmFBSgJe+dTaO9w0DAFweL9bt78AL21vxyPrDeGjtQf9rRYATakqxtL4SZpPg8Y1H8JnTG6CUwvPbWlBXWYi1e9txwf+8hj9dtwInT6/C7984gFueDR0HZ7OYcNHCSfjM6Q1YWh9YH+2t/R0wmwTXrKjHn946hO9fPA8FFnPK77WxRgtne9v6ceGClC9DRESjwKBGlKC+IRdWbTuGjy6tQ6EtEIDsVjOmVRX5H8+cWIJrT5kOl8eL/ccHsPNYL0oKLFjeUIXyIm1j9Ade24+frdqJQx0DGHZ7cajDgVuuWIhz5kzEtb9bj+v/uAk/uWwBfvHcLlwwvxa3fGQhCq1mbD7cjZd2tuLJzc3453vH8NK3zsaMCcUAgPX7O7Foajl+evkCfPncWZhcnvhuBJGUFFgwpdyOPa19o7oOERGljpMJiBL07HvHMOTy4uMn1yV0vtVswpxJpbhiyVScN7/WH9IA4KJFWkVu1dYWvLijFQBw/vxa1FUW4aHPLodXKXzt0c2oLbPjV1eeiJpSO0rtVnzghIn46eUL8cI3PwClFB7feASANj5tS1M3Tp1ZDREZdUjTnTKzGi/uaEVH/3BarkdERMlhUKOckMkFZtv7h+Ne/7U9x/Gbl/eisaYEJ02rGPU96yqLcOK0Cqzaegwv7GjFiXXlqC2zA9Aqcg/82zLMn1yG316zJCTg6SaXF+LcOTV4YlMT3B4v3jnUDZdH4ZSZVaNuW7CvnNuIIZcH9722P63XJSKixDCokeHtbunDybe8hPtf25f2wPb4xiNY/rOXogaRPa19+MyDb+PfHnwbZpPg5x9ZFHM2ZzIuXjgJW5t7sOVIN86fXxvy3PKGKqz6+llYUh99j86rl0/D8b5hvLL7uH982rIk9vRMRGNNCa5YMhV/ePMguh3OtF6biIjiy6ugJiKXisj9PT092W4KpdGTm5vROeDEz1ftwjf+8i4GnZ60XPfv7zThu397DzazCXf+63209g6FPL+ntQ+X/OYNbD7chR98eB5e/NYHsGJG+ipWFy+a7P/6/PnJ76d57twaTCwtwA+f2obfv3EAi6aWo9Q+svo2WtesqMew24u39nek7ZptvUMYcqXncyQiymd5FdSUUs8opW4oL099LSoyFm1G5DGcNXsCvnPhHDy95SiuvPdNNHU5Rpzr9SpsOtSFvW3xB78/veUovv3XLThtZjWevvFMuD0Ktz2/y/+8x6vwH0+8h2KbGS9+62x84ayZo5pBGcm0Kq37s6G6CCfUJr/8hdVswvVnzYBJgMtPmoL/vurEtLZPt7iuAnarCW/t7xz1tZRSePCNAzjztldw/R835syeqURE2cJZn2Rou1v7cLDDges/MBPXnjId8yeX4WuPbcZlv12Lu65ZitNmVWNXSy+e2nwUz2w5iubuQZgE+MzpDfh/F8xBScHI/8Sffe8YvvmXd7GsoQq/+8wyFNksuO6sGbhnzT58+tTpWFJfiYfWHsC7R7rxv584yT92LBPuumYJnG5vyt2pN3xgFm74wKw0tyqUzWLC0vpKrD8w+qD2+MYj+Ok/d+CE2hK8/n47/rqpCVctm5aGVhIR5ae8qqiNlfb+YfQNubLdjHHh+W0tEAEu8HUNnju3Bv/4yhmoLLLiU79fj/NvfxUr73gdD7y+H7NrS/A/V5+Ia0+ZjoffPIjzb38VL2xvAQAMuTx4YlMTrrhrLb7y53dw0rQKPPjZ5f6FY79ybiMmlhbgP5/ZgYPtA/j1C7vxobk1uOzEKRl9f3WVRTmxmOwpM7RA3ONI/b/7Qx0D+NE/tuPMxglY9bWzsLS+Ar95+X1W1YiIYmBFLQV3v7IP//fWIZzeWI0LF0zCefNqMbG0INvNyrrDHQ68ua8dk8rtOPuEiWkZdP/8thYsn14V8v2dObEET33lDPz4H9txpMuB/7xsAT68eDImlGjnfGRJHa5YMhXf+/tW3PCnTVgxowq7W/rQM+jCrInF+NEl8/GJFdNCVvcvKbDguyvn4tt/3YKr718Hq8mEn6Vx4kCuO2VmFdRLwNsHO0dMfEjU2wc6Mez24ieXzYfFbMKVJ0/D957cit2tfZg7qSzNLSYiyg8Maim4/KQpMAmwekcLbv77VnxPtmLZ9EpcMH8SLlwwCfXVRfEvkgc6+ofx5r4OrN3bjjf2tqOpa9D/3Gkzq/GDS+ZhwZTUxwseaB/ArpY+/PCS+SOeK7VbcfvVJ0V97cnTK/HPr52JB17fjz+8eRBnzp6AT50yHafOrIoavj66ZCr+tO4gtjT14NaPLsKk8sx1eeaak6Zp49Re3tWaclA70umASYDp1doCvefNq8H3ngRe3N7KoEZEFIXkY7fDsmXL1MaNGzN+H6UUdh7rwws7WrB6eyt2HusFAMydVIoLF0zCBQtqMX9ymWGqMkopvHukG39efxh72vpRWWRFZZHN98eKymLf18Xa8apiGyqKrP5B9A6nG28f6MSb+zrwxvvt2OF7v6V2C06bWY0zZ0/AaTOr8db+Dtz+4h50D7rw8ZPr8P8umJPSOK97X92HXzy3C2tv+iCmVqRnAdd4DrYP4JXdbfjs6Q2G+dyM4jt/3YJVW49h/ffPizj2L56vP7YZmw514Y3vftB/7Iq71sKrFJ6+8cx0NpWIKKeIyCal1LKIzzGopc/hDgde2NGCF7a3YsOhTigFTKsq9FfaTp6u7fE41vqH3XhqczMeWX8YO4/1oshmxpL6CvQNudE54ES3w4X+YXfU1xfbzKgosqGtbwguj4LNbMLJ0ytx5uwJOKNxAhZOKYPFHDrcsWfQhbtf2YuH1h6ExSz40tmzcP1ZM0O2Xorn8rvWQvGXuGFsPtyFj9z9Jr72odmYXVOCixdNTuq/54/cvRaFVjP+fP2p/mO/Xr0bd63Zi93/dRFsFg6ZJaLxKVZQY9dnGtVXF+ELZ83EF86aifb+Yby0oxWrt7fgT+sO4fdvHEB1sQ3nzavFhQtrcfqsCbBb07vcQ7htzT14ZP1hPP1uMwacHsybXIZbrliIy0+aMmK9rWG3Bz0OFzodTnQNuNDlcKLLoYW4zgHt64mlBTizcQKWTa+KG7jKC624+eJ5uOaUetz2/C7c/uIe/Hn9YfzHyjm44qSpMMX5BX+0exBbjnTjOxfOGfX3gdLjpGkVmD+5DHf+630A2hImVyyZmvDrj3Q6cN680G7T+uoiKAW09AyNmyEDRETJYFDLkAklBfjEinp8YkU9+ofdWLO7Dau3t+LZrcfwl41HUGwz45w5NbhgQS3OnVuDsjQtVOpwuvHPLcfwyPpD2NLUA7vVhEsWT8G1p9TjpGkVUbvzCixm1JSZUZPmpSimVxfj7mtPxoaDnbjlnzvwrce34JH1h/HHz69AcYzuM3225kULk18IljJDRPCLjy3ChoNd+MObB/Ho24cTDmoDw2609ztDNq8HgLpKrUu7qcvBoEZEFAGD2hgoKbDgksVTcMniKRh2e7BuXwdWb2/Fizu04GY1C06fNQEXLKjF+fNrUVOafFja3dKHP68/hL9vbkbfkBuza0rw40vn46NL6iLuFTnWljdU4ckvn4En3mnCTX97D9/923v4zSeXRA2Oz21rwQm1JTmxdMV4sriuAovrKjDs9uCXz+/G/uP9CX1GR3wLFNeHB7UK7XHwRBQiIgpgUBtjBRatknbOnBrccsVCbD7chRd8XaTff3IbfvDUNiytr8SFC2pxwfxJaJhQHPVaQy4Pntt2DH9efxgbDnbBZjbhokWTcO0p07G8odJwg+FNJsFVy6ahvX8Yv3x+N5bWV+LzZ84YcV57/zA2HOzEjec2ZqGVlIgrT67D7S/swf+9dRg/unTkrNxwhzsiB7VJ5XaYBBF3miAiIga1rDKbBMsaqrCsoQo3XzQXu1v7sHpbK17Y0YKfr9qFn6/ahTm1pVpoWzAJC6ZoM0j3H+/Hn9cfxhPvNKHb4UJDdRG+d/FcXHnyNFQV27L9tuL697Nn4d3D3fj5qp1YOLV8xP6ZL+1ohVcBKxdOjnIFyraaUjsuPXEKHn37MG78YGPc/+4Od0YOajaLCZPK7KyoERFFwaBmECKCuZPKMHdSGb5+3mwc6XT4K22/fWUv7nx5L6ZWFGJKhR0bDnbBYhJcsKAW154yHafNrI47ON9IRAS/vupEXPFbbZeAZ796ZsjYuOe2taC+qgjzJpdmsZUUz5fPmYUnNzfj4bUH8K0LYk/6ONLpQGmBBRURuuHrKosY1IiIouB8eIOaVlWE686cgce/eBo2fP88/PJjizF3Uil6B934zoVz8ObNH8Td156MMxon5FRI05XZrbj30yejf8iNLz/yDlweLwBtWY8397Vj5cJJhuu6pVCza0uxcsEkPPzmwbhbqh3udGBaVVHEz7SuspBdn0REUTCo5YDqkgJctXwafv/Z5Vj9zQ/gK+c2pjThwGhOqC3FbVcuxsZDXfj5qp0AgFd2tcHlUbhwAWd75oKvnNuI3iE3/vTWoZjnHe50jOj21NVVFqKldwhOtzcTTSQiymkMapRVl504BZ8/YwYeWnsQ/3i3Gc9tO4basgIsmVaR7aZRAhbVleMDJ0zE718/gEGnJ+I5Xq/Cka7BqMtv1FcXw6u0LcOIiCgUgxpl3c0Xz8Xyhkrc9LetWLP7OC5cMCknu3PHqxvPbUTHgBOPbTgMAFi/vwP3vboP+q4nbX3DcLq9I9ZQ0506U5tM8vr7x8emwUREOYRBjbLOajbhrmuWosRuwbDbi5Xs9swpK2ZUYUVDFe5/bT9++/L7uOZ363Hrc7tw0LckR7QZn7q6yiI01pRgzW4GNSKicAxqZAg1ZXY88G/L8KlT60cs10HG95UPNuJYzxB+/cIeLG+oBABsOtQFIH5QA4BzTpiItw90wuGMvucsEdF4xKBGhnHStArccsWiERu8k/F9YPYE3HzRXDz0ueX48xdORandgk2HujAw7MbB9gGIAFMrCqO+/uw5E+H0ePH2gc4xbDURkfFxHTUiGjURwRfPnuV/vLS+Eq/tOY4ztx1D96ALU8oLYbNED+An+iaPbD/ai3Pm1GS6uUREOYOlCyJKu2XTK9HcPYgBpweNE0tw6szqmOeX2a2oryrC9qM9Y9RCIqLcYPiKmogUA7gbgBPAGqXUI1luEhHFoY8zvPHcRnztQ7MTes2CKWXYfrQ3k80iIso5WamoiciDItImItvCjq8Ukd0isldEbvId/iiAJ5RS1wO4bMwbS0RJWzGjCo9efyq+cm5jwq9ZMKUMhzoc6I2zywER0XiSra7PhwGsDD4gImYAdwG4CMB8AJ8UkfkA6gAc8Z0WeUVNIjIUEcFps6phTmI9vAVTygEAO1lVIyLyy0pQU0q9BiB8etcKAHuVUvuVUk4AjwG4HEATtLAGxGiviNwgIhtFZOPx41yPiSjXLJxaDpMAd7z0PnocrKoREQHGmkwwFYHKGaAFtKkA/g7gYyJyD4Bnor1YKXW/UmqZUmrZxIkTM9tSIkq7iaUFuO1ji7HxUCd+8sz2bDeHiMgQDD+ZQCk1AOBz2W4HEWXex5dNw45jvfi/tw7h5ovmoqbMnu0mERFllZEqas0ApgU9rvMdI6Jx5DOnNcDtVfi/tw5luylERFlnpKC2AcBsEZkhIjYAnwDwdDIXEJFLReT+nh6uxUSUqxomFOPk+kqs3deBtr4hrN/fke0mERFlTbaW53gUwDoAc0SkSUSuU0q5AdwIYDWAnQAeV0olNVBFKfWMUuqG8vLy9DeaiMbMzInFONThwF0v78VnHnobXq/KdpOIiLIiK2PUlFKfjHJ8FYBVY9wcIjKY6dXFaO9vwuYj3RhyedEx4MTE0oJsN4uIaMwZqeuTiAgAML26CADwXpM2jKG1dyibzSEiypq8Cmoco0aUH6ZXFYc8PtajBTWn25uN5hARZU1eBTWOUSPKD/W+ipqupWcQa/e2Y8lPX8Aru9qy1CoiorGXV0GNiPJDeaEVlUVW/+NDHQ784KltGHB68LNVO+H2sLJGROMDgxoRGVJ9dTFsFhMmldnx2IYjONA+gGtPqcfetn6s3t6a7eYREY0JBjUiMqRTZlThtJnVmFJhR/+wG1XFNvzksgUotpnxFtdWI6JxwvBbSBHR+PS9i+cBAL78yCYAwOmzqmE1m7CkvhKbDnVls2lERGMmrypqnPVJlH8mlRUCAM5onAAAWDq9ErtaetE/7M5ms4iIxkReBTXO+iTKP9OqtKB2pi+onTy9El4FbDnSja1NPVxjjYjyGrs+icjQrl4+DYvryjGtSluyY0l9BWxmE361eje2H+3BjAnFePZrZ8Fqzqv/7yQiApBnFTUiyj9FNgtOnl7lf1xmt+JHl87Hu0e6UWg1Y09rPx54fX8WW0hElDmsqBFRzvnUqdNRardg4dRy/Hr1bvzPi3twVuNELKrjsAciyi95VVHjZAKi8ePyk6Zi1sQS3PrRRZhYUoAbH30HfUOubDeLiCit8iqocTIB0fhTUWTD/35yCY50OvDDp7ahtXcImw9z+Q4iyg/s+iSinLe8oQrfPO8E/PeLe/DUu0cBAAduvRgikuWWERGNTl5V1Iho/PryuY04o7Ha/7itbziLrSEiSg8GNSLKC2aT4OHPrcA91y4FABxoH8hyi4iIRo9BjYjyhtVswsKp2hjVgwxqRJQHGNSIKK9MqSiEzWxiRY2I8kJeBTUuz0FEZpOgvroI9722Hx+/9014vSrbTSIiSlnMoCaaaWPVmNHi8hxEBACldm1C+4aDXeh0OLPcGiKi1MUMakopBWDVGLWFiCgt5k0u83/d1svZn0SUuxLp+nxHRJZnvCVERGny/Yvn4dcfPxEA0No3lOXWEBGlLpEFb08BcK2IHAIwAECgFdsWZ7RlREQpKi6w4JQZ2kbux1lRI6IclkhQuzDjrSAiSrOasgIAQGtvoKK26VAnfvvyXvzmmqUoKeDGLERkfHG7PpVShwBMA/BB39eORF5HRJRNBRYzKoqs/h0KNh7sxMfuWYdXdh/HpkPcC5SIckPcwCUiPwbwXQA3+w5ZAfxfJhtFRJQOtaV2tPYO4ZXdbbjy3nUotJoBADuP9Wa5ZUREiUmkMvYRAJdBG58GpdRRAKWZbBQRUTrUlBWgrW8YL+5oRWmBBZt+eB6mlNsZ1IgoZyQySMOplFIiogBARIoz3KaUicilAC5tbGzMdlOIyABqSu3Y19aOQacHS6ZXoshmwbzJZdhxlEGNiHJDIhW1x0XkPgAVInI9gJcAPJDZZqWGC94SUbDasgIc7RnC7tY+LJteCQCYP6UM+9sHMOTyZLl1RETxJTKZ4NcAngDwNwBzAPxIKfWbTDeMiGi0FtdV+L/Wg9qiqeXweBVe3NGapVYRESUukckE1wE4qJT6jlLq20qpF8egXUREo7Zy4ST89PIFOGVGFZbUa0HtQ/NqsWBKGX727E4MOllVIyJjS6Trsx7AfSKyX0T+KiJfFZGTMtwuIqK0+LfTGvCXL56GQps249NsEnzjvBPQ0juELU3d2W0cEVEciXR9/lgp9UEACwC8DuA7ADZlumFERJkyp1abuH6405HllhARxRZ31qeI/ADAGQBKAGwG8G1ogY2IKCdNrrDDbBIc7mBQIyJjS2R5jo8CcAN4FsCrANYppbh5HhHlLKvZhKkVhTjEihoRGVwiXZ9LAZwH4G0A5wPYKiJvZLphRESZVF9VxK5PIjK8RGZ9LgRwLYDPALgaQDOAlzPcLiKijKqvLsLB9gFsOdINr1dluzlERBElMuvzFwDKANwJYJ5S6lyl1I8y2ywiosyqrypCz6ALl9+1Fjf8aSNcHm+2m0RENEIiXZ+XAPgfAL0A5oiINeOtSpGIXCoi9/f09GS7KURkcA3V2m54MycU46WdbVi/vzPk+Y7+Ydz/2j54WG0joixKpOvzbADvA7gLwN0A9ojIBzLdsFRwCykiStR582rw5+tPwWM3nAoAeL+tL+T5zz28AT9ftQsPvL4fF/zPq+gfdmejmUQ0ziUy6/N2ABcopXYDgIicAOBRACdnsmFERJlkMZtw+qwJUEqhosiK99v6/c81dTnwXpNWmf/d6wfQ3j+Mncd6sbyhKlvNJaJxKpExalY9pAGAUmoPAMN2fxIRJUNEMLumBKu2HsNH716Ljv5hrNp6zP98e7+2GtHeoCBHRDRWEglqG0XkdyJyju/PAwA2ZrphRERjpbGmFN0OF9453I3X32/Hun0dmDmxGPMml/nPYVAjomxIJKj9O4AdAL7m+7PDd4yIKC9MLC3wf727tQ9vH+jE6bOqMbumxH+cQY2IsiHqGDURqQHwPQCNALYC+KxSqnesGkZENFYuWjgJD75xAP3Dbjz29mEMOD04beYEHGjXwlltWQGDGhFlRayK2h8BDAD4DbR9Pv93TFpERDTG5k0uw7b/vBCXnTgFXQ4X7FYTzmycgPPnT8I5cybiI0vq0Nw9iAHO/CSiMRYrqE1WSn1fKbVaKfVVACeOVaOIiLJhcrkdAHDevFqUF1kxZ1IpHv7cCpwyQ5vtuaWpO4utI6LxKOYYNRGpFJEqEakCYA57TESUVy5eNBkA8OVzGkOOL51eCRHg7QOdkV5GRJQxsdZRKwewCYAEHXvH97cCMDNTjSIiyoYTp1XgwK0XQ0RCjpcXWjFvUllCQe2HT23D3MmluPaU6ZlqJhGNI1GDmlKqYQzbQURkCOEhTbdiRhUe23AYLo8XVnP0zogXdrSgc8DJoEZEaZHI8hxEROPewqnlGHJ50dw1GPO8gWEPBl2eMWoVEeU7BjUiogQ0VBcBAA50DEQ9RymFAacbg04GNSJKDwY1IqIETK8uBgAcao8e1IZcXigFVtSIKG0S2ZQdIlIJYFrw+Uqpd6K/IjtE5FIAlzY2NsY9l4goGRNKbCiymXGwwzHiudtf3IPntx3DZ05vAAAMMagRUZrEDWoi8l8APgtgH7TZnvD9/cHMNSs1SqlnADyzbNmy67PdFiLKLyKC6dXFOBSh63PN7jbsae3HHS+9D4AVNSJKn0QqalcBmKWUcma6MURERtZQXYTdLX1wON3o6HdiWpU2bs3hG5PW3j8MAByjRkRpk8gYtW0AKjLcDiIiw5teXYwjXQ5cdd86nPXLV/zHux0uAIDy9TmwokZE6ZJIRe1WAJtFZBuAYf2gUuqyjLWKiMiA5k0uhcujsK25FwBwuMOBAacbPYOhHQ4co0ZE6ZJIUPsDgNsAbAXgzWxziIiMa2l9ZcjjHz29DVubeuDyKJTZLegd0jZtd3lU3IVxiYgSkUhQcyil7sx4S4iIDK6ushATSwtwvE/rXHi/tR8dA1o1bXp1MbY29/jPHXJ5GNSIaNQS+SnyuojcKiKnichS/U/GW0ZEZDAigiXTKvyPm7sDuxTU+xbE1XGcGhGlQyIVtSW+v08NOmbI5TmIiDLt8pOm4s19HegfdoccbwgLakNOjhQhotGLG9SUUueORUOIiHLBhxdPxsKpZTj7V2tCjk+vKg55zIoaEaVDIgve/ijScaXUT9PfHCIi4ysvtI44Fq3rc9XWYzijcULE1xARxZPIGLWBoD8eABcBaMhgm4iIDK3UboVI6LHp4UHN6cH+4/348iPv4LtPvBf3mn9efxhvvN+ezmYSUR5IpOvzv4Mfi8ivAazOWIuIiAzObBKU2a3oGdQWui2wmFBTag85Z8jlQZdvIdxjvUMxr+f2ePG9J7cCAA7+4sMZaDER5apU5o4XAahLd0OIiHKJ3pVpNQsqiqwwmwSlBRbYrdqP1UGXBwO+CQd2S+wftXta+zPbWCLKWYmMUduKwGbsZgATAXB8GhGNaxVFVhzuBE6ZUQ2vb++oskKtS7SpaxCDTg9cHm3mp91qjnqde1/dh9ue3zUmbSai3JPI8hyXBH3tBtCqlHJHO5mIaDzQK2r/c/VJqCzSvm6YUASr2aQFNZcHzkE9qGkVtTf3tuNrj23Gv751Duw2ExzDHvziuUBI088jItLFDGoiYgawWik1d4zaQ0SUE8p91bOqYhvMJm1mwX2fXoZBpwfLf/YShlwe/2btFt8OBTc/uRXt/U7saevDw28exLPvHUORzQyHU5shOuTyYmDYjeKCRP4fmojGg5j/+6aU8gDYLSL1Y9QeIqKcMLWyEFMrCv0hDQBKCiyo8FXXBp0e//ZSQ74gdqjDoT12efD8thYAgMPpwX+snIPbPrYIANDePzxm74GIjC+R/22rBLBdRN6GtkQHAEApdVnGWkVEZHBf++BsfO70GSOOW80mWM2CQZcHXb6gNuB0o6UnMPOzZ9CFhuoi7Duu/UhtnFgCm2/CQXv/MKZXF4+4LhGNT4kEtR9mvBVERDmmuMAStYvSbjVjYNiNTl9Qczg92Hy4y/9876AbdZWBoDa9utg/8eB4nzPDLSeiXJJIULtYKfXd4AMichuAVzPTJCKi3LZoajmeevcoCnxVMofTg/3t/g4J//pruvqqIvQOacfY9UlEwRKZYnR+hGMXpbshRET54r+uWIghlwdtfVrocgy7sf/4AGpKC2A1C3oGXf4tpqZWFKLQZkZVsQ1A5KD21OZmXPPAW1BKjXiOiPJb1KAmIv/uW0Ntroi8F/TnAICtY9dEIqLcMmtiCb59wRz/4wGnBwfa+zFzYjHKC63oHXJh0OnB4rpy/OHzKwBoY9smlhagqWtwxPVWbT2GN/d1+Hc60DV1OdBw07PYdKgzs2+IiLImVtfnnwE8B+BWADcFHe9TSo3ZTwURmQng+wDKlVJXjtV9iYhG4/NnzkD/sBs7jvVize427G8fwMWLJqOtb9hfUZtTW4rGmhL/a+bUlmJPa9+Ia21r7gEAHOwY8FfeAGDN7uMAgL9ubMLJ06sy/I6IKBuiVtSUUj1KqYMA/hdAp1LqkFLqEAC3iJySyMVF5EERaRORbWHHV4rIbhHZKyI3RXu9rx37lVLXJXI/IiKjMJsE3zz/BCyeWg6XR6Hb4cLMCcUos1vRO6hV1MJ3LJgzqRS7W/rwfmsfTvj+c9h+tAcd/cM46psxeqhjIOR8fYsqrrtGlL8SGaN2D4Dgjej6fccS8TCAlcEHfIvo3gVtnNt8AJ8UkfkiskhE/hn2pybB+xARGVJRUIjyd336KmpFttCgNndSKYbdXnzniffg9HixZvdxbPVV0wDgQLsj5HwGNaL8l8i/blFBI1iVUl4RSeinglLqNRFpCDu8AsBepdR+ABCRxwBcrpS6FaHbVRER5bzioDA2Y0IJygqtONQxgEGnB4VhQW3e5DIAwLtHuv2v3XKkR9sBocg2oqLWP6xNSLAGLbpLRPklkYrafhH5mohYfX++DmD/KO45FcCRoMdNvmMRiUi1iNwLYImI3BzjvBtEZKOIbDx+/PgomkdElD56Rc1iEkyrLER5oQXdvopaeNdnY00JSoKqY31Dbmw81Ik5taWYN7kM/3j3KP668Qg2HuxEU5cD3YO+ddp8M0jDfeEPG/D8tmMZemdENBYSqYx9CcCdAH4AQAH4F4AbMtmoYEqpDl8b4p13P4D7AWDZsmWcw05EhlDkC2P11UWwmE0oL7T69wAN7/q0W814+dtnQyngnF+tQafDiXcOdeEjS6dielUx3tjbjntf3edfKPes2RMAaNtVhfN4FV7a2YaXdrbh4C8+nMm3SEQZFDeoKaXaAHwijfdsBjAt6HGd7xgRUd4pKtDC2MwJ2uzOMrvV/1xhWEUNAGpK7dp5hRZsONiJAacHyxuqcPlJU7G3rR+v7G7zn3tcX6fNqY1Ve3lXK9bt68D3PzwfQ1GqbESUW+J2fYrICSLyL33mpogsFpEfjOKeGwDMFpEZImKDFgKfHsX1iIgMq9im/f/wzIna/p2VQctrRApqulK7FduaewEAi+sqAAAVRVYcD1oQd1eLtpTHgK+i9vmHN+KB1w9gyOXxL6hLRLktkTFqDwC4GYALAJRS7yHBCpuIPApgHYA5ItIkItcppdwAbgSwGsBOAI8rpban0vgI97tURO7v6emJfzIR0RgoK9QqaI0TtYpaTWmB/7nwyQQhr7MHOjwml2tVtvIiKyJtThDe9fnOoS609XIrKqJ8kMgYtSKl1NsiIbOK3IlcXCn1ySjHVwFYlcg1kqGUegbAM8uWLbs+3dcmIkrFjAnFuOfapTh3rrbaUG2Z3f9crIqaHvBK7Rb/pIOKQlvEc/WuT5MAXgVc87v1Ic+f86tX8NDnVmDGhGLcvWYvth/txV3XLE39TRHRmEmkotYuIrOgTSSAiFwJgNOIiIgSdNGiyf6wlWhFrdQ3li34/IqiwPi2x794Grb+5AKcfcJEf0Ut2npqBzscePrdowCAXz6/G8++xx/hRLkikaD2FQD3QdvzsxnAN5DALEwiIhqpsihojFoCXZ/65AIAqCgMBLXKIitK7VYU2cxwOD1we7zoH47e2VFqDw1xSin86B/bsHZv+4hz97b1Y9/x/hHHiWjsxQ1qvi2czgMwEcBcpdSZvq2kDIdj1IjI6ExBi9Mm0vVZUxaoqJUHVdQqfIGv0BfUOgacEcev6bodzpDHL+5oxR/XHcLPnt0JABhyebDhoLaN83m3v4oP/ferCb4jIsqkRGZ9VovInQBeB7BGRP5XRKoz37TkKaWeUUrdUF5enu2mEBHFFXvWpyXkbyAQzgCg3BfktIqa279Ux/9+4iR8eNFk/3lL6ysAAC29Q9joC2IA8MDr2rrlUysLAQBPbW7GVfetQ0c/JyEQGUkiXZ+PATgO4GMArvR9/ZdMNoqIaDwIX/A2mECrvNktgXP0rs9imxk2i8l3DQscTo8/qNVVFoVMWPjFxxZj5sRiPL6xCVfeu85/vKVX2+i9x7f4bqdDq8h1D7rS8daIKE0SCWqTlVL/pZQ64PtzC4DaTDeMiCjf2WMENX3B2uBtpopsZtjMppDKWqHVjGG31x+8akoLQgKg3WJGVdHI2aIut9ZP2jGgBTx9QkL/UGCc25rdbWjrG0r6fRFR+iQS1F4QkU+IiMn35ypoa6AREVEKPrpE2944VtfnhBItXNVXFfmPiQjKi6whsz+LfTsf7GntgwgwsbQgZJKC3WYKWWRXN+TWglnHgDZ2bcC3wXtbX6Dr8wt/2Ig/rTPkkGSicSORddSuhzbT808ABFq4GxCRLwJQSqmyzDUvOSJyKYBLGxsbs90UIqKobrtyMW66eC6s5uj/r3zNKdNRWWzDxQsnhxyvKAwNaoW+nQ+e2XIMy6ZXwm41ozg4qFkjV9Qcvgpat8OFhpuexSzfzgnNXQ7/OW6v8u9LSkTZkcisz1KllEkpZVVKWXxfl/r+GCakAZxMQES5wWo2hSy7EYnZJLhk8ZSQWaIAcOMHG3HdmTP8j/VN39v7h3HhgknaMVvg/8HtFjMqirVgd968Gpw0rQIA4HR7Qyp6+kbvTV2DIffrHWJQI8qmuBU1ETkDwLtKqQER+RSApQDuUEodznjriIgoxOUnTQ15HDyGTQ9qeten2SSwmgVm384yC6eWo8xuxbtHugFoW1Ptbx8IuV5zd2hQ6xtKaCMaIsqQRMao3QPAISInAvh/APZB6wYlIqIsm1SurbP29Q/NxjTfeDZ93JrdYoKIYMC3EG5JgQVWiynotSOreuFBrZezQImyKpGg5lZKKQCXA/itUuouAKWZbRYRESViaX0l3rr5Q/jm+Sf4jxVatc4Svdp22ixt6cvlDVWwBnWlRgpq4V2frKgRZVcikwn6RORmAJ8GcJaImABY47yGiIjGgIiMCFz+ipovqK1cOBlbfnQByouseL8tsDXUlPLCEdfrHAjdwYBj1IiyK5GK2tUAhgF8XinVAqAOwK8y2qoUcQspIqLAQrp2a+BHvL79lNUcqKhVl9iw9qYPYuaE4qjXYkWNKLsSmfXZAuARAOUicgmAIaXUHzPeshRw1icRUWDJDnuEddqClwSxmk2YWlEYsodouP5hNzzeGJuIElFGJbLX51UA3gbwcQBXAVgvIldmumFERJSaYlto12cwS9AYNZsvtJXZQ4NacNUNCOxWoJSC1xfa3m/tGzHxgIjSL5Guz+8DWK6U+oxS6t8ArADww8w2i4iIUqUvzxFp54PgWZ9WixbIygpDg9qy6VUhj/Vxanev2YdLf/sGlFK48t51OOu2l/HlRzah2xE6ro2I0ieRoGZSSrUFPe5I8HVERJQFNrMJZpOEjFHTWU2hXZ8AUGoPnVe2YkbkoLa3rR/vt/Wj2+FCz6ALsyaWYNXWFqw/0Jnut0BEPokErudFZLWIfFZEPgvgWQDPZbZZRESUKhFBkc2Mgkhdn0HdmhZT5K7P5Q1hQW3Qjd4hF/qG3HC6vTjYoS2Se8niKQAAl8eb1vYTUUDc5TmUUt8RkY8CONN36H6l1JOZbRYREY1GRZF1RAADQsef2Xxdn+EVtcXTymEzm2CzmNA/7Mbz247hMw++jbpKbTmP91u1JT6mV2sL7DKoEWVO1KAmIo0AapVSa5VSfwfwd9/xM0VkllJq31g1MlHclJ2ISHPfp5ahqnjkZuzhsz6BwBi1H14yH6V2C8rsVhQVmFFbasfu1j5sOtwFp8fr325qT2sfAPh3QnC5OSuUKFNidX3eAaA3wvEe33OGw+U5iIg086eURdx5wBJhjFqZr6K2aGo5rlo2DQBQVWTD7NoSANrYtGB72vphNgmmVGjXd7KiRpQxsbo+a5VSW8MPKqW2ikhD5ppERESZEtz1qQe1eZPLUFtWgAZfVyYA3Pvpk1FRaMXLu9rgcHpCrrGnpQ81pQWwW7QxcG4GNaKMiVVRq4jx3Mh9R4iIyPCCuz71ddROqC3F+u+dh5qyQAXuhNpS1JTZUVNaMOIaLb1DmFRu9y/14fIoDDo9aO0dynDricafWEFto4hcH35QRL4AYFPmmkRERJkSPOtTX0ctluDwFmxKeaG/Ouf0eHHPmr34yF1r09NIIvKL1fX5DQBPisi1CASzZQBsAD6S4XYREVEGBFfUgserRROpogYAdZWF/jXZXB4vmruHcKx3CF6vgskUPwASUWKiBjWlVCuA00XkXAALfYefVUq9PCYtIyKitIvU9RlLTWnkilpdVRFMJoHZJHB5vOgbckEpoG/YjfLC6HuHElFyEllH7RUAr4xBW4iIKMOS7fqsLYtcUZvmW1PNaha4Pcq/e0HvoItBjSiNuBUUEdE4EmkLqVhqogU13xpqVrMJTo8Xfb6N2/W/j/cNY+Udr2Fbc89om0w0ruVVUBORS0Xk/p4e/mAgIook0vIcsdT6JhMU20K3o5paoVXUbGaTr+tTC2h6Ze21Pcexq6UP33sysMrTip+9hKvvWze6N0A0zuRVUOOCt0REsZmDBvonMkbtlBnVuPWji/z7eursvn1ELWaByx3a9QkA7/sWyd3b1g+nW1tnra1vmBu4EyUpr4IaERHFJiL+qlrweLVozCbBJ1fUY0Kpth3VxYsm4dw5E/3PW8Mqavrf249qPRsOpwfbjrKXgyhVDGpEROOM3uVpSWIZjRPrKjB3Uinu/MQSPPS5Ff7jNrMJPYMueLzafp+9Qy4opbCtuQcnT68EABzpdIRcy+F0R7yH2+PFj/+xbcT5ROMZgxoR0ThjMQlsZhNEEg9qFyyYhOe/8QFYwrpLrWYTOgac/se9g268/n47uhwuXLFkKgAtqLmCtplq7hqMeI9dLX34w7pD+Oqjm5N5O0R5jUGNiGicsZpNIZMKRsNiFnQGBbW+IRduf3EP6ioLcfWyaagpLcDhTgcGhgNVtKYoQU3viuVWVEQBDGpEROOMxSz+fTpHy2o2hQS1nkEXtjX34JLFU2CzmDCtqghHOgfRHxLUIndtDru0qltHvzPi80TjEYMaEdE4o1XU0vPj32Y2hYSwoz2DcHsVJpRokw/qq4p8FTWP/5wD7ZGD2pBLO8cZ1E1KNN4xqBERjTNWsymhpTkSulbQ7gblhVYc6tBCWEWRFtSmVRXhWM8guh2BKtnmI10RrzXsZkAjCsegRkQ0zlhMktDSHIkIrsxNrSj0jz+rKta2kZpcbodXwR/gljdUYltzDwadWvXs7jV7ceU9bwIIVNQAoMfh4lg1IuRZUOPOBERE8aWz69MStCXVzInF/q/1itqEEm0LqkOdAwCAc+bUwOVR2NLUDQD45fO7sfGQVmELrqj9fNVOrLzjNSil0tJOolyVV0GNOxMQEcVnNUv6xqj5uj5NAsyaWOI/XuULatW+sWoHfRW102dVA0DEPUCDK2rbjvagy+HieDUa9/IqqBERUXwWswm2NHd9Ftss/v0/AaDSF9Qm6hW1Dq2iVl9VBLvVhJae0G5Nr1dhKKii1uPbisoRNAmBaDxiUCMiGmfsVhMKLOb4JybAH9QKLJgSFNRK7RYAQV2fvpmexQUWTCqzoyVs/Nmw24vh4DFqelBzMajR+GbJdgOIiGhs/ceFc+FN09gvfeHc4gIzJlfY/cdNvu2pCm1mFNvM6Bt2w2ISFFhMqC2zj5goMOTyhIxR0/cMHYyy3RTReMGgRkQ0zpw4rSJt19IraiV2K6aUF0Y8p7qkAAOdDhQXWCAimFxu908g0A26PCEVNZ3DyYoajW/s+iQiopT5g1qBGYW2yN2p+uK3JQVabaC23I623uGQGZ1DLk/IGDUdgxqNdwxqRESUsuDJBAAgAsybXBZyTlWxNk6tuEALcpPK7HB6vCGbuQ+5tDFq4QvxDkYIajf//T0s/PHq9L0JIgNj1ycREaVMH6OmV8t2/ddKmCR0RmmBb1/Ry0+aCkBbBBcADrQP+M8ZdHkw5PKirNCC9qC9PiNV1B59+0ga3wGRsTGoERFRyvSKmt3X7RlpNuk3zz8BH5pXg48s0YLa9GptYdz7Xt3nP2fY5cGw24MimwUWkwtur9Yt6uBkAhrnGNSIiChlelDTq2aRNNaUoLEmsBju3Eml+NwZDXho7UH/sQfXHsBb+zsxpcIOu9Xs3+g9vKLm4gK4NM5wjBoREaVMQat82WIEtXAigo8trQs59tLONvQPu2G3mmG3Bq4VHtT0vUSDbWvugZsBjvIUgxoREaXM6ZupWZDkllT11UURjxdYQhfjDV9H7UB7f9jjAVzymzfws1U7k7o/Ua5gUCMiopTpi9QWWJPb6aDMbo143G41oyBGRe2wb89Q3YCvi3T9/k50O5zYcqQbAHDLP3fg5V2tSbWJyIgY1IiIKGXDLl9QS6LrMxab2QR7UEUtfAupAV9w02eb2n0BccDpxsfueROX37UWAPC7Nw7g8w9vTEubiLKJkwmIiChlTo8WnJIZoxaLw+kJqaiFr6Omd7WafVtU6YvmDgy7/ct6qDRtj0VkBHlVURORS0Xk/p6enmw3hYhoXNCDU/hCtYlYWl8x4ljvkCu0ohY2Rs3pmzSgZzGP7wt9ligAeLwMapQ/8iqoKaWeUUrdUF5enu2mEBGNCzd8YCamVxfh/Pm1Sb/2oc+twCNfOCXkWO+QK+YYNT0Y6lFMD2VDrsCsTzeDGuURdn0SEVHKGmtK8ep3zk3pteWFVpzROCHkWO+gO6yiFjmo6UnNG2FVDq61RvkkrypqRESU2zxeFXMdNT2oeX1dnu4ISc3tYUWN8geDGhERGcLXPzQbj15/qn8dNbNJMBw269M/Rs332Bth4oArUpmNKEex65OIiAzhm+efAAD+iprdYkJ4DPOPUfMFtEi9nKyoUT5hRY2IiAxFXxvNHmER3WF/16f2ONIMTwY1yicMakRElFXFttBApi+eG2kR3fCJAuz6pHzHrk8iIsqqDT84D8GFsYKgilq0rk9A6/6MV1HrG3Lh8Y1N+PwZDRCRtLabaCywokZERFlVZLOgpCBQN9AraZF2O3AGVdS8KnLXZ3DV7SdP78B//XMHXn+/PZ1Njuq821/F5x56e0zuReMDK2pERGQo+ti0AqvZPyZNl1BFLehYt8M54nWZtLetH3vb+sfkXjQ+sKJGRESGcurManx48WRMKbePeC4kqCGwhdSN5zZiakUhAMAdUnXTnjfxtx3lKP6nS0REhtJYU4K7rlkKa4T9Q51hIczrq559ePFk/OrjiwEArqAxanpxTcDxaZSbGNSIiMjwdrX0YsjlCev6DFTUzCbxB7vg3Qr0yMZ5BJSrOEaNiIgMrXfIhZV3vI6LFk4aMWZNH6NmNgksJi2NBU8m0BfGNTGpUY5iRY2IiAxtyLeN1IaDXXC6A1tKeYMmE5glUFEL7fpkUKPcxqBGREQ5w+kJ6/r0Ruj6DApq+vOmNOe03S19ONLpSO9FiSJgUCMiopzhdHv966wpBM/qFFjMWhoLHqPmr65FCWptfUPY1tyTdDsuvOM1nPXLV5J+HVGyGNSIiCgneLxeeFVgnTWt61N7ziwCq2lk1+ewr6s0Wtfnub9ag0t+88ao2+b1qjFbq43GF04mICKinKAHIX9FLWzWp7+iFtQ9qr8mWlAbcHoiHk+U2+OFxWzCf/ztPTyxqWlU1yKKhBU1IiLKCXqlrMDq+9WlAI8vlAUHNZc3uKKmB7XMtOlYzxAAMKRRxjCoERFRTtAnEhRYgro+fZksuOszuKI27NK+Dt6QfW9bf9q6KQ91cEIBZRaDGhER5ZSQyQTewBZRga7PkWPU9JzWP+zGebe/ii8/8k7c+9z1yl789JkdMc852DGQbPOJkmL4oCYiV4jIAyLyFxG5INvtISKi7AqMUVMRdyZwBc36HA4bo3bYVwF7aWerP+RF86vVu/Hg2gMRn9O7Upu7B1N8F0SJyWhQE5EHRaRNRLaFHV8pIrtFZK+I3BTrGkqpp5RS1wP4EoCrM9leIiIyvsCsz8g7EwRX1JxhY9QOdwYqYJsOd6V0f49X+fcQ9cQJe0SjlelZnw8D+C2AP+oHRMQM4C4A5wNoArBBRJ4GYAZwa9jrP6+UavN9/QPf64iIaBwLdH2G7kxgNo2c9en2hu5MEDymbHsK66cBoVtUEWVaRoOaUuo1EWkIO7wCwF6l1H4AEJHHAFyulLoVwCXh1xBtBOgvADynlIo6qEBEbgBwAwDU19en5w0QEZHh6JMJEFZRExFYzRIy61Onj1E71OlAeaEVLo8Xh1LcWSB8v1GiTMrGGLWpAI4EPW7yHYvmqwDOA3CliHwp2klKqfuVUsuUUssmTpyYnpYSEZHh2H3Lc3iVNvNTJDCr02IyhVTUdOLbmuBIpwMN1UWoryryj1dLllEXtm383irc+tzOmOfsaunFw1HG3ZExGX4ygVLqTqXUyUqpLyml7s12e4iIKLv0ipre9WkOWnrDYpaQnQl0vpU7cLjTgWlVWlBLtaJm1K5Pt1fhvlf3xzxn5R2v4ydxZrKSsWQjqDUDmBb0uM53jIiIKK6CoIqaRymYglaztZpNIXt96vQxakMuD0oKLJheXYS9bf0jzusfduNXq3f5l/WIxKgVNcpP2dhCagOA2SIyA1pA+wSAa9JxYRG5FMCljY2N6bgcEREZkB66lFLweJR/ticAWEwSMusz8JrQx/XVxRGvffsLe/Dg2gOYOaEk6v2dBq2oUX7K9PIcjwJYB2COiDSJyHVKKTeAGwGsBrATwONKqe3puJ9S6hml1A3l5eXpuBwRERmQ3tOp7/UZ3PVpNZsidn0CoUmtrrIw4rUP+7pD9SVAIsmHilq8NeTIODI96/OTUY6vArAqk/cmIqL8pE8MUEoLHMFdnxazROz6DFdTWhDxeHv/MADA6YnR9ZkHFTWvUjAhQxugUloZfjIBERFRMH9FDdrOBOYEuj7D1ZTaIx7vGNCCWt+QO+prjVhRUyq5CpknyfMpexjUiIgop5iCuz69gTFrgN71GT9IVRXbIh5v73MCGH1Qu2fNPrT0DMU9L10i7ZCwq6UX6/Z1RDyfOS135FVQE5FLReT+np7UVpsmIiLj09dM8yoFrzdsMoFZEgpq5vDZBQC6BpwYdGldnrGCWiLXv+35XfjS/22Ke166RKqQrbzjdXzygbcinu9lUssZeRXUOJmAiCj/6RFLQVs7zDxieY7UQog+Pg0A+oZcUc9LtOuzN8Y10i3Z3MU9SnNHXgU1IiLKfyJBkwmU8i9mCwBWk9b1GaFgFteAMzCBIGbXZ4KTCcZyZmWywYs5LXcwqBERUU4JLM8ReWcCt0eFjFuLdx2dYzgQzvqHowe1RPf6zFQY+sZjm/HMlqMhx5KdHJDs5INg/cNuvLijNeXXU3IY1IiIKKcEd32G70xgMZvgCluyI5qSgtAVqvSKWmmBJWbXZ6JbSI22e/E/ntiCF7a3jDj+1LtH8dVHN4ccS7Z6N5q2ffXP7+D6P27EsZ7BlK9BicuroMbJBERE+c8koeuoBU8msJoE7ghdn99/citO/fm/Qo7d9+mTAQAVRVYAgMOpVdFqygrSsjzHaAbsDzo9eHxjE274U2ITEvTgFWmSROS2pdw0bDrUBSCwnh1lVl4FNU4mICLKf3qXpVcpuL2h3ZzRuj7XH+hES2/ochmnz5qAT51a7+86HRjWKmqTyu1pCWqjqVod7BgAMHLrq2j0W5kT6PLVzk+9bb2+7w3XYhsbeRXUiIgo//m7Pn0VteAqktkkWndogoElmF5Rqy2zo9vhjHqeHtSs5tj3GE0YOtCuBbUJJZF3UIh2r1hvOzg4pmN5Dk8CCwvT6DGoERFRTvHP+oywM4HeHZdCTvNX1GrL7CEzQMPpY9TidTOOpnsx2aCWSNfnkCvwntIx0SGRrbpo9BjUiIgop4Rsyu5NrXoWicPlhs1iQkWhNeZ5wx4vbBZT3DFao+n63H9cC2qJXsEf1GJ8L4Jnq6Zj6RCuxTY2GNSIiCinhGzKHlZRGw3HsAfFNjOKwmaDhnO6vSgwx//1OZowdLhTC2r9w4ktmqt3Zcaa7RpaUUutbcEzXjlGbWzkVVDjrE8iovzn3+sTvnXU0hTUBpxuFNksMUPYa3uO46G1B2G1xP/1OZogo4+DO9I5iMt/+waOdDpinu+fTJDhrs/OgcDYPTfHqI2JvApqnPVJRJT/ArM+MWLB29FwDHtQXGCGLUYI+84TWwCEBpZo0rWf5pamHrx7pDvmOXo3ZKzMGtz1mWq3ZVtvYJstdn2OjbwKakRElP8CW0hlpqIWK6gtm16V8PXSOdb+SJcDu1p6o99L7/qMEVqDK2qp7kzQ3B2o7KW6pyolh0GNiIhyin8yAQCPij0uKxkOp6+iFqPrs66yMOHrpXMM1y+f342Vd7weNWAFz/o82D4wYucCIKyilmLbdrX0jbgnZRaDGhER5ZTAZAKlraOWpgXyB4bjV9R0t350UdxzMhFkol0z0PUpuPnvW0fsBQqEjVFLsdq3OyiocXmOscGgRkREOSV8eQ6zKT2/ygZd2qzPeEHNbjXhkyvq03LPZEXrblQJTSYIWp4jxYra7pY+VBfbtGtkMae19Q5hMMZad/mEQY2IiHKKKbjr06uQwEoZCRkY9qCoILGK2liI1I5oQc2jEplMMLrlOQadHhzsGMCCqeW+tmQvqa34+b9w9f3rsnb/sWSM/xrThMtzEBHlP73r0+sduTPBaDicbq2ilq7kl6RNh7qw7JaX0DOorZ1WGmE9t2jbNvm7PmN8L4L3KE2lV7a9fxheBUyvKvLfs6nLkdAM2Ex4ryn13/Vr97bjua3H0tiazMmroMblOYiI8l/wZAJvmnYmUErB4fSg0Bq/6zNT7nhpD9r7h/1LcZTYRwa1aFUsvUIWa6mS4GyWSkVNf4n+/XF7Fc687RUs/9lLSV8r2373+n7c+fLebDcjIXkV1IiIKP8FludA2ipqepei1WzKWkUtXEEyXZ9x9vpctfUYegcDuxyksmuC8kU9i2/2hn5Po87+dLq9Uat9To83ZJcFI4u9TwYREZHB6FEkneuo6avsW8wmw4xRm1JRiM+ePgNHuhy4Z80+ANGDWqx11PYf78eXH3kn7Pzk26NX1Cy+77fR11H78iOb8NLONhz8xYdHPOdyK7hzJKgZ479GIiKiBEn4ZII0dH3qXYpWsxgmqAHANafU44xZE/yPo4ULvUc00gTYgeGRsyNTqYLpr7D4bpKOjd0z6aWdbVGf0ypqxm6/zjj/NRIRESXAFNz1meaKmtlkrKAGAGfOnoBfXrkYQPxZn5FCa6TFbVPZmUB/TfAYNd3AsHvE+Z0DTsz63iq8faAz6XulU6T36nR74WRFjYiIKP0Ce30qeJVKy84EeuiwGGiMWrBimzZSKdpG6N4Ysz4jTRxIpRjmDev69ARNbDjeNzzi/E2HuuDxKtz/2r7kb5ZGkcKty+Nl1ycREVEm+MeoIf1dnxaTGDKo6QP4o8369E8miPC9iNRFmdoWUoEwq7UlcI22CEHNKCKFWxe7PrOD66gREeW/TGzK7p9MYJK07R2aToEqVpzJBBHaHuk1o1mew2oe2ZZIFbVss8YIt+z6zBKuo0ZElP+Ct5DyqtjbJiUq0PVpvJAGBN5jtCqQN8bOBGkboxbWFrdHoaLICgD4yp/fwbZmYxVJgtsZzunhrE8iIqKM8G/KDgW315umipre9WnMX4tWX3dj9E3Ztb8jfS8i9ZamklH0MKi3xasUKgqt/ueDN2w3AqtpZBetzuXxwquMuwZcMGP+F0lERBSFKbii5o28dliy/BW1Mez2bO8fxuEOR0LnBqpDUcaoxVhHLVJFLR1dn27frhCLfHt/6re+9Ddv4LRb/5X09dPNHKfrE0BOLHrLBW+JiCinBGZ96jsTjP6awQvehlNK+cfFpdOKn70Er0LEBVnDBYejSPQJA2aTjOjqizSZINk10K7/40Z/qNGrjv79RcO+NVsN0gWqtzPaZAL9b7vVPKbtShaDGhER5RR/16evxCNIR0XNF0IijFFTKhAO0ymZrGT2d+Mlv9dn5MkEid8bAF7c0er/2h8aDT5rMtoOCl6v8h/LhZmf7PokIqKcErwzQbrE6vo0wq9yS4yB8UAgjEWq/KWr61Ond696ooRGowjsSRrazuDZnrnQ9cmgRkREOSV4eY50CSzPEbnrM5OO9w1jyDVym6dglnhdn3pFLcJv9Yhdn6MMahaTpLgW29ixRJkp68qxoMauTyIiyimBTdnTd82YXZ/pu01Ey3/2EpbWV6C4IPqv5Hgbocea9ZnuipqIbyycwWdMWiLMlO1xuPDXTUf8j9n1SURElGZ60SutXZ+eGF2fY/C7/J3D3TGfDwzgT2HWZ8TJBEk2MIiI9n3yGDzkBCpqgTf7zHtHccuzO/2Pc6GixqBGREQ5RZ88MJqqULjAGLWRvxbTeZ9UxVvwVvm7PhPb63M03ZYCyZGK2sgdFMI3j2dQG2PcQoqIKP8F70yQLv4Fbw26M0H8BW9jVdRGnj+acXciWrei0ReL1WfKBofbwbCxgOz6HGPcQoqIKP/pkwkyUVGzRlmeI9viLngbI6hFrKiNqutTYBLjV9SsEfZHHRnUWFEjIiJKq0zUvPTJBOZIsz4NsEBH3AVvE5j1GZzhRjWZANr4r2QXzc2kXS29eHNve8gxf3dx0IC8IWfuBTXO+iQiopxi8i/Pkb5rZnsyQTyxNhgHEpv1aRaB2/f1aLs+jTZGbeUdrwMI3eXB313Mrk8iIqKxE9hCKgOTCXyVqwklNv9zRphMoIeOeBW1iF2ferdoUIgbzfgygcBiFsMveOsPt0HtHHSFttnlNvZ7ABjUiIgox2RmHbXQWZ+rvn4WPrxosnaf9N0mZfHGqHljTiYYub3UaIphJgNW1CKJ1F08GNb1GW1LLiNhUCMiopzi35kgjdf0z/r0BaKaUjuW1Fdo9zFAHom74G2M5Tn03r3g50ZVJdTXUTN4UIvUXRy+A4STXZ9ERETplZGuT09o16d2nwxsKpoiEW3tsmjhKNKEgfDnTElOJugdckVuC3Jj1qclQnfxiDFq7PokIiJKL3/eyGDXJxAINkaY9QloFSJXnJ0JYj0XWlGLfa/X9hzH4p+8gLVhMykBfR01Y836jMQSobuYXZ9EREQZ5p/1mcYAFWnBW/0ro+QRa4xtm2K10T9GLYnJBOsPdAAA3jnUNeI5kwjMJpPxK2qmkRU1dn0SERFlWKDrM33XDFTURnZ9jmYpi3SKNYA/VnUr0kSDeO9Jv5wpwpg3yZExahErauz6JCIiyqyMbCHl9cJsksC4tOD7pO82o2I1m6J21cUKTal0fcaaRSrQQ6MxQ47D6YZSyl8djTVGzajvIRiDGhER5RTJRNenV41Y7DYTy4CMhtkk0Re8jdHISKErXjUs1k4HRq6otfcPY/6PVuPuNfsizpQNH6PGBW+JiIjSLBNjx9yeCEEtA4FwNLSKWvJdn5Eqagl3fUaaRgox7Dpqrb1DAIB/vnfMP+tTD5Rer8JwWFenk12fRERE6SUZ6Pv0eJX/F3vgPmm/zahoFbUoC97GaKP+XDJdn3q4kQhBTV/wNldmfer7eQ65Q6tpRu6+DcagRkREOcWUgbFjLo83Qtdn+vcUHQ1LjCpWIl2fwZkr1vlAoOJmjlBQE5GYbUnFkp++gO8/uTVt1wMCIVMPneHdnjazKWrX57DbY5ggmldBTUQuFZH7e3p6st0UIiLKED1ApfMXqdujQpbmAIInExjjF7a2v2YKXZ8Rt5AaxaxPIOLiu8d6hnDPmn0xrxtNl8OFR9YfTum18ehhLHwigcUsEbs+vV6FOT94Hv/5zPaMtCdZeRXUlFLPKKVuKC8vz3ZTiIgoQzIxG1ObTBD6K9GUhq7PdIZJsyl6BSjpWZ9x2qW/JlLXpzaZYOR4uV+t3o3bnt8V87rZoG8er6+hdvtVJ2LLjy+ALcosWv19ZSo4JiuvghoREeW/TC3PMaKiplfuRnGjdG5zZTWLP3SES3bWZ7z8GOj6jFRRi72dldH4K2pO7XtXZreivNAKq9kElzvwHpRSUEr5P7NI1cRsYFAjIqKcko4AFS7S8hxIQyCMNxYsGbFmWsa6TeR11OJU1CLsD6oTyZ2B+EDQGDVfRa3QZgagdX26giZnfP2xdzHj5lURFz/OJgY1IiLKKRFXjBglt8c7ouszHbdJZ5axmkzR11GLOUZN+ztkU/a466jpr4nc9anN+ozdXqPQA6V/mzDfN8JmNsEZFNSe3nIUQOQxfdnEoEZERDnFv9dnGnvetOU5oqyjZqiKWupdnyHH4u1M4LvewY4B/OPd5pDnBPqsz9xIatHG9YlEHueof7/Mkaa8ZoEl2w0gIiJKRmCvz/SFIFeEBW8Dy4Ckfp+dx3qxvKFqNE3zs5gFQ+7IbUlkwduQ8+PN+vRd7+4Iszj1ilqujFFLtp1uVtSIiIhS59/aKY3X1CYTRF7wdjR55OP3rsP+4/2jaFlArG2bYoWRyBW1xLo+IzFlYB21THJFWSQ4Gk4mICIiGoV0dEmGc3tUyGB7IHjB29HdqG/IParX62ItzxErM0WsqMXJLrGCnIgWYjxjuE/mzmO9WHnHa+gbciX92mQrah5OJiAiIkpdJro+3V4Fa9QFb0enuMA8yitoYi3PEet7ESmoxBs7FzOoIRBix8p/v7Abu1r6sG5fR9KvTXbjdU+E5UyyiUGNiIhySiZ+fUZa8FY32jxoM6cnqGl7fabQ9Rn2BkQSGaMW/blU80tH/zCO9w2n9Fq9ippKb2u0cBv9/JHLmWQTJxMQEVFOCcz6TOcWUiP3+gxUVEZ3n3QVZkwiUVuSTEXNJBI3fMYOcqm9oZNveQkAcPAXH076tYGPJvnPItmxdHq1kV2fREREKUjHIP9wkZfnSP99dOkMmUC8ilroY5PEH7cVK6hlI7+YRlFRi1aFjMbf9cmgRkRElLzAIP/0XdMVccHb9N9Hl+6lLWIFq/BZnyaRUc36jLT/Z6YFgloqFbUUuz4NMkaNXZ9ERJRTAoP80xd2YlXU0nkfXbqrdLGySPjEgUS6PmMFyWzEl9FUN91ehbN++TLmTipL6HyOUSMiIhqFTHRJetXIWX7+EWoZqKilc8YqEHsW58gxaqPr+sxGoUlGMS7R7VE40jmII52DCZ1vtKDGrk8iIspNmUhQQTKxXpsu7UEtiVmfJlP8rs9YT2dj2Qr/LhEpVtSSoYdejlEjIiJKkSnKPo3plIn12nRjOUYt0qzPeO/JaNtDjWaMWrwN6KOdz1mfREREKZIEwsao75HBa6c7B8X6VoSPXzObJOFN2SPJTten9vdY5Efu9UlERDRKgvjdYKMtiGS063MMK1YjJxPEr0zFejrXZn0my+tfniPjt0qIQZpBRESUuFiLvwafMxqB5W4z0PU5BoHDf6+wUCgiWLP7OH73+v7or4mzhVSmRJssIHGeT6fAgrfGiEjGaAUREVEyEqgKjTao6b+n42WDVMLDWFSGot1L79K75dmdCb8mWCYnE0Qb+G/KYHUzWhs4mYCIiChFAsSdTTDaPKEveDuabsJoklyDdVQiLc8RT+wFb0fZoBii7SKgh+ax6DH2+seoZf5eiTB8UBOReSJyr4g8ISL/nu32EBFR9iXS9TnqdbD8C97Glkp2GMuKWnhQSyTsxBpDl8n84oqSYGUMx6gF1lEzRkTKaCtE5EERaRORbWHHV4rIbhHZKyI3xbqGUmqnUupLAK4CcEYm20tERLlBJP6A/LSNURvVBuaRjeXyF+Ht6xtyJf2aENmoqPnXURvLoJbxWyUk0814GMDK4AMiYgZwF4CLAMwH8EkRmS8ii0Tkn2F/anyvuQzAswBWZbi9RERkINF+MceqqOmvSTSnRbtOIOgpbG3qQcNNz2LHsd4I90vsPqN9TarCM+GA05P0a4JJBpOa2xO5ojaaTdmTpU8mMMrOBJLpdCoiDQD+qZRa6Ht8GoCfKKUu9D2+GQCUUrcmcK1nlVIfjvLcDQBu8D2cA2B3Cs0tB9CTgfPjnRft+WSORzo2AUB7Au1Lt2S/j+m4RqY/i2jP8bNI/TXp/iyiHQ8/lsufRSrX4c+pkfL1s4j2nJE/i2htGYtrGOnn1GylVHnEqyilMvoHQAOAbUGPrwTwu6DHnwbw2xivPwfAnQDuA/CVDLf1/kycH++8aM8nczzKsY2Z/nzT8X3Mhc8iye/7uP4sEn1Nuj+LRD+PXP4sUrkOf06Nn88iye+7IT6LdH0e+fZzKviP4TdlV0qtAbBmjG73TIbOj3detOeTOZ5s2zMpHW0x2mcR7Tl+Fqm/Jt2fRbTjRvk80tUOo/3b4GeR/vP5c2psrpETP6dyquuTkiMiG5VSy7LdDuJnYST8LIyFn4dx8LMwpmzMadgAYLaIzBARG4BPAHg6C+0YD+7PdgPIj5+FcfCzMBZ+HsbBz8KAMlpRE5FHoY0xmwCgFcCPlVK/F5GLAdwBwAzgQaXUzzLWCCIiIqIclfGuTyIiIiJKjUGWcyMiIiKicAxqRERERAbFoEZERERkUAxq45SIXCEiD4jIX0Tkgmy3ZzwTkZki8nsReSLbbRmPRKRYRP7g+/dwbbbbM57x34Kx8PeEMTCo5aA0bXb/lFLqegBfAnB1Jtubz9L0WexXSl2X2ZaOL0l+Lh8F8ITv38NlY97YPJfMZ8F/C5mX5OfB3xMGwKCWmx5GGja79/mB73WUmoeRvs+C0udhJPi5AKgDcMR3WvzdqilZDyPxz4Iy72Ek/3nw90QWGX4LKRpJKfWab8eHYCsA7FVK7QcAEXkMwOW+HR8uCb+GiAiAXwB4Tin1ToabnLfS8VlQ+iXzuQBoghbW3gX/5zXtkvwsdoxx88adZD4PEdkJ/p7IOv5Qyh9TEagKANovn6kxzv8qgPMAXCkiX8pkw8ahpD4LEakWkXsBLNG3VKOMiPa5/B3Ax0TkHhhr/8N8FvGz4L+FrIn2b4O/JwyAFbVxSil1J4A7s90OApRSHdDGgFAWKKUGAHwu2+0g/lswGv6eMAZW1PJHM4BpQY/rfMdo7PGzMCZ+LsbBz8JY+HkYGINa/uBm98bBz8KY+LkYBz8LY+HnYWAMajnIt9n9OgBzRKRJRK5TSrkB3AhgNYCdAB5XSm3PZjvHA34WxsTPxTj4WRgLP4/cw03ZiYiIiAyKFTUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIobiFFRHlBRDwAtgYdukIpdTBLzSEiSguuo0ZEeUFE+pVSJVGeE2g/77xj3CwiolFh1ycR5SURaRCR3SLyRwDbAEwTke+IyAYReU9E/jPo3O+LyB4ReUNEHhWRb/uOrxGRZb6vJ4jIQd/XZhH5VdC1vug7fo7vNU+IyC4RecQXEiEiy0XkTRHZIiJvi0ipiLwmIicFteMNETlxrL5HRGR87PokonxRKCLv+r4+AOCbAGYD+IxS6i0RucD3eAUAAfC0iHwAwAC0vQ1PgvYz8R0Am+Lc6zoAPUqp5SJSAGCtiLzge24JgAUAjgJYC+AMEXkbwF8AXK2U2iAiZQAGAfwewGcBfENETgBgV0ptGd23gYjyCYMaEeWLQaXUSfoDEWkAcEgp9Zbv0AW+P5t9j0ugBbdSAE8qpRy+1yWyGfUFABaLyJW+x+W+azkBvK2UavJd610ADQB6ABxTSm0AAKVUr+/5vwL4oYh8B8DnATyc5HsmojzHoEZE+Wwg6GsBcKtS6r7gE0TkGzFe70ZgiIg97FpfVUqtDrvWOQCGgw55EOPnrFLKISIvArgcwFUATo7RFiIahzhGjYjGi9UAPi8iJQAgIlNFpAbAawCuEJFCESkFcGnQaw4iEJ6uDLvWv4uI1XetE0SkOMa9dwOYLCLLfeeXioge4H4H4E4AG5RSXaN6h0SUd1hRI6JxQSn1gojMA7DON76/H8CnlFLviMhfAGwB0AZgQ9DLfg3gcRG5AcCzQcd/B61L8x3fZIHjAK6IcW+niFwN4DciUghtfNp5APqVUptEpBfAQ+l5p0SUT7g8BxFREBH5CbQA9esxut8UAGsAzOXyIUQUjl2fRERZIiL/BmA9gO8zpBFRJKyoERERERkUK2pEREREBsWgRkRERGRQDGpEREREBsWgRkRERGRQDGpEREREBvX/AdehXHQ656kXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(cs_reb.freq, cs_reb.power.real)\n", + "plt.ylim([1e-3, None])\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Cospectrum Power\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For deeper analysis (e.g. time lags and other products), please refer to the relevant notebooks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Deadtime/Check FAD correction in Stingray.ipynb.txt b/_sources/notebooks/Deadtime/Check FAD correction in Stingray.ipynb.txt new file mode 100644 index 000000000..c8d9c597c --- /dev/null +++ b/_sources/notebooks/Deadtime/Check FAD correction in Stingray.ipynb.txt @@ -0,0 +1,360 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fourier Amplitude Difference correction in Stingray" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from stingray import EventList, AveragedCrossspectrum, AveragedPowerspectrum\n", + "from stingray.deadtime.fad import calculate_FAD_correction, FAD\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dead time affects most counting experiments. While the instrument is busy processing one event, it is \"dead\" to other photons/particles hitting the detector. This is usually not an issue if the count rate is low enough, or the processing time (_dead_ time) is small enough. However, at high count rate dead time affects greatly the statistical properties of the data, to a point where a standard periodicity search based on the periodogram/power density spectrum (PDS) cannot be carried out.\n", + "\n", + "The Fourier Amplitude Difference (FAD) correction is described in [Bachetti & Huppenkothen, 2018, ApJ, 853L, 21](https://ui.adsabs.harvard.edu/abs/2018ApJ...853L..21B), and is able to correct precisely deadtime affected PDSs if we have at least two identical and independent detectors. This is common in new generation X-ray timing instruments, often based on multiple-detector configurations (e.g. NuSTAR, NICER, AstroSAT, etc.).\n", + "\n", + "In the code below, we calculate the PDS of light curves without dead time, after applying a dead time filter, and after applying the FAD to the dead-time affected dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_events(length, ncounts):\n", + " ev = np.random.uniform(0, length, ncounts)\n", + " ev.sort()\n", + " return ev\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:01, 98.20it/s]\n", + "100it [00:00, 134.62it/s]\n", + "100it [00:01, 80.61it/s]\n", + "100it [00:01, 52.97it/s]\n" + ] + } + ], + "source": [ + "ctrate = 500\n", + "dt = 0.001\n", + "deadtime = 2.5e-3\n", + "tstart = 0\n", + "length = 25600\n", + "segment_size = 256.\n", + "ncounts = np.int(ctrate * length)\n", + "ev1 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "ev2 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "\n", + "pds1 = AveragedPowerspectrum.from_events(ev1, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2 = AveragedPowerspectrum.from_events(ev2, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot = AveragedPowerspectrum.from_events(ev1.join(ev2), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs = AveragedCrossspectrum.from_events(ev1, ev2, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let us apply a deadtime filter to the events generated above, and calculate the corresponding periodograms" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:00, 154.30it/s]\n", + "100it [00:00, 167.20it/s]\n", + "100it [00:00, 133.60it/s]\n", + "100it [00:01, 67.74it/s]\n" + ] + } + ], + "source": [ + "ev1_dt = ev1.apply_deadtime(deadtime)\n", + "ev2_dt = ev2.apply_deadtime(deadtime)\n", + "\n", + "pds1_dt = AveragedPowerspectrum.from_events(ev1_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2_dt = AveragedPowerspectrum.from_events(ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot_dt = AveragedPowerspectrum.from_events(ev1_dt.join(ev2_dt), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs_dt = AveragedCrossspectrum.from_events(ev1_dt, ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:33, 2.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "results = \\\n", + " FAD(ev1_dt, ev2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen above, all power density and co- spectra have been corrected accurately in their basic property (the white noise level). See Bachetti & Huppenkothen 2019 for more information.\n", + "\n", + "Note that this can also be done starting from light curves:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:34, 2.93it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Calculate light curves\n", + "lc1_dt = ev1_dt.to_lc(dt=dt)\n", + "lc2_dt = ev2_dt.to_lc(dt=dt)\n", + "\n", + "results = \\\n", + " FAD(lc1_dt, lc2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n", + "\n", + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Deadtime/Check dead time model in Stingray.ipynb.txt b/_sources/notebooks/Deadtime/Check dead time model in Stingray.ipynb.txt new file mode 100644 index 000000000..c90e48b17 --- /dev/null +++ b/_sources/notebooks/Deadtime/Check dead time model in Stingray.ipynb.txt @@ -0,0 +1,951 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check Stingray's dead time model\n", + "\n", + "Here we verify that the algorithm used for dead time filtering is behaving as expected.\n", + "\n", + "We also compare the results with the algorithm for paralyzable dead time, for reference." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from matplotlib.gridspec import GridSpec\n", + "import matplotlib as mpl\n", + "from stingray import EventList, AveragedPowerspectrum\n", + "import tqdm\n", + "import stingray.deadtime.model as dz\n", + "from stingray.deadtime.model import A, check_A, check_B\n", + "\n", + "sns.set_context('talk')\n", + "sns.set_style(\"whitegrid\")\n", + "sns.set_palette(\"colorblind\")\n", + "\n", + "mpl.rcParams['figure.dpi'] = 150\n", + "mpl.rcParams['figure.figsize'] = (10, 8)\n", + "mpl.rcParams['font.size'] = 18.0\n", + "mpl.rcParams['xtick.labelsize'] = 18.0\n", + "mpl.rcParams['ytick.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import numpy as np\n", + "np.random.seed(1209432)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Non-paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate_events(rate, length, deadtime=2.5e-3, **filter_kwargs):\n", + " events = np.random.uniform(0, length, np.int(rate * length))\n", + " events = np.sort(events)\n", + " events_dt = filter_for_deadtime(events, deadtime, **filter_kwargs)\n", + " return events, events_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAAQ5CAYAAABF6gYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDWPsxr4XY0uKshPtfkKkokXSotJCG5UUbUokbeqrtIiiFBJZokiIssbIbjCWsQ9zlvv+/XGc2zlmO7OcOWdmXs/HQ3Pf59znuq9zzj0j7/mcz2UzTdMUAAAAAAAAACDgwoI9AQAAAAAAAAAoLAhkAQAAAAAAACCPEMgCAAAAAAAAQB4hkAUAAAAAAACAPEIgCwAAAAAAAAB5hEAWAAAAAAAAAPIIgSwAAAAAAAAA5BECWQAAAAAAAADIIwSyAAAAAAAAAJBHCGQBAAAAAAAAII8QyAIAAAAAAABAHiGQBQAAAAAAAIA8QiALAAAAAAAAAHmEQBYAAAAAAAAA8khEsCcAAABy1969e3X11Vdb+w0aNNC0adMUGRmZpXG+//57DR061NrfuHGjIiIKz/863HXXXVq5cqVfx0ZERKhIkSIqU6aMatasqebNm+vaa69V3bp1AzzL0HPh9bdw4UJVq1YtiDMKHu/voapVq2rRokU5HnPIkCGaMWOGJOnmm2/WG2+8keMxg6mgPZ+siIuLs7a/+OILtWjRIsdjbt26VX/99Zd69+6d5v3eP9cGDhyoRx99NMfnBAAAWUeFLAAABdy///6rCRMmBHsaBZrT6dTp06e1d+9eLVu2TOPGjdNNN92kJ598UqdOnQr29AAUcGfOnNFbb72lm2++WWvXrg32dAAAQCYKT5kLAACF2EcffaRrrrlG9evXD/ZU8qVSpUrpkksuSfd+l8uls2fPav/+/Tpw4IAkyTRNzZ49W9u2bdNXX32lmJiYvJougELmtdde07fffhvsaQAAAD8RyAIAUAg4HA4NGTIkW60L4P5o8cSJE/06dvXq1Ro5cqT+/fdfSe4K5bffflvDhw8P5BQBFGIOhyPYUwAAAFlAywIAAAoJWhfkjWbNmumzzz5TzZo1rdumTp2qxMTEIM4KAKQvv/xSW7Zs0ZYtW+gfCwBAEBHIAgBQwHkvxPXRRx9p8+bNQZxN4VCmTBk9/PDD1r5hGPr555+DOCMAAAAAoYJAFgCAAu7ee++VzWaT5P5Y69ChQ+V0OoM8q4Lvuuuu89nfsmVLkGYCAAAAIJTQQxYAgAKuVatWOnHihKZOnSpJ2rRpkz766CMNHDgw18/133//6bvvvtPKlSuVkJCgU6dOqUSJEqpcubJatWqlrl27Ki4uLsMxxo8fr/fee0+SNGzYMN15552y2+368ccfNXfuXG3btk2HDx9WiRIlVLt2bXXq1Em33XabSpQokevPJyeio6NVtmxZJSUlSZIOHjyY4fHr1q3TwoUL9ddff2nfvn06duyYnE6nSpYsqYoVK+ryyy/XjTfeqGbNmqU7xvfff6+hQ4dKcgfxzz77rBYvXmxVRkdFRalq1apq2bKlBg0apKioKJ/H79u3Tz///LNWrlypbdu26fjx4zpz5oyKFy+uMmXK6NJLL1WHDh10/fXXKzw8PMuvycSJE/Xmm29KksLDw7VkyRLFxsZm+rgFCxbokUcekSTFxMRo6dKlKlasWKbXUkaqVq2qRYsWpXv/8uXL9dtvv2n16tU6cOCAjh8/LkkqWbKkqlSpoubNm+umm27K8kJ5drtd06ZN008//aRt27bpzJkzio2NVdOmTXXjjTfq6quvtn6BkhuSkpL0/fff6/fff9eOHTt09OhRRUdHq0KFCmrRooW6du2qJk2a5Nr5vK1bt07Tpk3TypUrtX//fkVGRqpatWq69tpr1adPH5UtWzbLY54+fVo//PCDlixZoq1bt+rIkSOKiopSbGysmjdvrhtvvFGtW7fO0pi5/V47HA7Nnj1bc+bM0aZNm3T8+HGVLl1acXFx6tmzp2688cZce4/T+h6YMWOGZsyYYe17/zLorrvu0sqVKyVJAwcOTNW2wPvn70svvaTevXsrOTlZs2bN0qxZs7Rz506dOHFC5cuXV/369XXbbbepQ4cOPmPs2LFDU6dO1dKlS7Vv3z5JUrVq1dS+fXvdc889fn3PS8G9dgEACDQCWQAACoFnnnlGv//+uxISEiS5Wxdcc801WQ6T0nPixAm9/PLL+umnn2Saps99SUlJSkpK0saNGzVx4kR17dpVL774omJiYvwae/PmzXryySf133//pTnu6tWrNXHiRI0ePVpt2rTJleeTW7wrkaOjo9M8Zs+ePRo2bJiWL1+e5v2HDx/W4cOHtXHjRn355Zfq2LGjRo8e7dfr98MPP2jIkCHWe3LmzBkdP35cTqdTzz77rHXcmTNn9Prrr+v7779Pc3GgY8eO6dixY9qxY4d++OEH1alTR++9954uuuiiTOfgrWvXrhozZoycTqdcLpd++ukn3XPPPZk+bubMmdZ2586dVaxYsSydNys2bNig4cOHa8OGDWnef/bsWR08eFD//POPJk6cqJ49e2r48OGpwu207N69Ww8//LC2bt3qc/vevXu1d+9ezZ49W5dddplGjRrl04M4uyZNmqR3331Xp0+f9rndbrfr2LFjio+P15dffqkbbrhBI0eOVMmSJXN8TklKTk7WiBEjfEJBSUpJSdHmzZu1efNmTZ48WaNGjcrSuDNnztQbb7yhI0eOpBr35MmT2r59u7799lu1bNlSo0aNUqVKlTIcLxDv9caNGzV48GDt3LnT5/ZDhw7p0KFDWrp0qaZOnap33nnHr+ccbOvWrdNTTz2lXbt2+dyekJCghIQELVy4ULfeeqteeuklhYeH6/PPP9dbb72V6udIfHy84uPj9f3332vChAmZBqnBunYBAMgrBLIAABQCxYsX16uvvmqFX57WBdOmTfPpMZsdhw8fVp8+fXz+wW6z2VS3bl2VKVNGSUlJ+u+//2SapkzT1I8//qhNmzbp008/VYUKFTIce+fOnXrvvfd09OhRSVK5cuVUp04dnT17Vtu2bVNycrIkdzj70EMPacaMGVkOCQNl//79OnHihLVfrVq1VMds27ZNd911l0/AVKJECdWpU0fFixdXcnKytm/f7jPOr7/+qsGDB+vjjz/O8Pzbtm3T5MmTUwXkkjsY9Thz5oz69u2rtWvXWrdFRUWpTp06KlOmjBwOh/bs2eOzKNn27dvVt29f/fzzz1mqTI6NjVXbtm21ePFiSe6ALbNA9sSJE/r111+t/R49eljbbdu29fvce/fu9QnJmjZtmuqYVatW6YEHHrCuK8ndD7hWrVoqVqyYTpw4oe3bt1v3m6ap6dOnKyoqSsOHD8/w/KdOnVLfvn2tisGYmBjVq1dPhmFo8+bNOnv2rCTp77//1p133qmvvvoq26GsaZp6/vnn9d133/ncXrNmTVWqVEnJycmKj49XSkqKJGnu3LnaunWrPv/8c7+rF9OTkpKi+++/X3/99Zd1W1hYmOLi4lSiRAnt3r1bBw4cUFJSkh555BG/n+N7772n8ePH+9xWpUoVVatWTSkpKdq2bZtOnTolSfrzzz/Vq1cvTZo0Kd2fB4F4r9euXat77rnHZ8ySJUvq4osvlsvlUnx8vM6cOaMVK1bovvvu8+t5Z8bzPRAfH29V4VeoUEH16tXL8dhbtmzR6NGjrde1cuXKql69uo4fP674+HjrZ8u3336runXryuFwWBXwRYoUUf369RUeHq74+HhrjKSkJD366KP6+eef0/wlVTCvXQAA8hKBLAAAhUSrVq1022236ZtvvpGUO60LHA6HHnjgAZ8w9pZbbtFjjz2mihUrWrcdOHBAY8eO1Q8//CBJ2rp1q5544gl9/vnnioyMTHf8L7/8UpJUo0YNvfDCC2rfvr31Ud9Tp05p/PjxmjRpkiR3EDR+/PiQqTz79ttvffYvrN71BA+eMLZkyZIaMWKErr32Wp+Q3DAMLV68WCNHjrTCvCVLlmj9+vW65JJL0j3/kiVLJEmNGjXS0KFD1bhxYx08eFA//vijTyD7wQcfWGGszWbTwIED1a9fPxUvXtxnvM2bN+uVV17RqlWrJLkr/r799lv1798/S69Ljx49rEB248aN2r59u+rUqZPu8XPmzJHdbpck1a5dW5dddpl138SJE/065/79+9WrVy9rPy4uTq+88orPMSkpKRo6dKgVplWuXFmvvvqqWrdu7fPxcofDoZ9++kmvv/66jh07JkmaOnWqBg4cqHLlyqU7h+PHj+v48eOKiorSk08+qT59+liVlqdOndJHH32kTz75RJK7vcXTTz+tqVOnKiws60s+fPLJJz6B1tVXX62nnnrK53U+c+aMVanp+QXH4MGDNWnSpGy1o/B4++23fcLY66+/Xs8//7zPz4OlS5fqxRdfVEJCQqpq4bT89NNPPmFss2bNNHToUJ/r3263a/bs2Ro1apSOHTumgwcPauDAgZo+fXqqazkQ7/WpU6f0+OOPW2MWLVpUzz77rG655RbrfU5OTtann36qDz74QBs3bsz0efvD8z0wZMgQqyK5TZs2euONN3I89pQpUyRJtWrV0ogRI9SiRQvrvs2bN+u+++7ToUOHJEljx47VmTNnZLPZNGDAAD3wwANW4JqcnKxRo0ZZbXMOHDigWbNm6bbbbkt1zmBeuwAA5CUW9QIAoBB55plnVLVqVWvf01s0u7799lufYOHJJ5/Uq6++6hO+SFKlSpU0atQon36Fq1evtsLhjFSrVk3ffvutOnTo4BOWxMTEaOjQofq///s/67YlS5ZY4V0wLVmyxArXJOniiy9O1ddy5cqV+vvvv6390aNH68Ybb0xVsRwWFqZOnTrpww8/9Ll96dKlmc6jcuXKmjRpkq644goVK1ZMNWvW9AnLz5w5Y4XektS/f38NHDgwVYAlSfXr19f//ve/VMFaVnXs2FGlS5e29r3bEaTlxx9/tLa9q2P9lZycrAEDBljBUZkyZfTBBx+kqs776aeftGfPHknu/rYTJkxQmzZtUvX6jIyMVPfu3fX6669btxmGoWXLlmU6l7CwML3//vu65557fD72HhMTo6eeesrq/yu5qy1nz56d5ee7Z88ejRs3ztq/88479cEHH6QKvYsVK6Z+/frpf//7n/VLkZUrV+r777/P8jm9zz158mRrv2vXrho3blyqnwdt27bVlClTMm0pILmDzpdeesnav/rqq/XFF1+k+mVEVFSUevTooa+//lqlSpWS5K7k9v4+9AjEe/35559r//79kty/2Hj//fd9QnfJ3bZk4MCBeu211zJ93qGicuXKmjp1qk8YK7l/HjzzzDPWfnJyskzT1LPPPqsnnnjC5/srOjpaL730kk+LnD/++CPVuYJ57QIAkNcIZAEAKERiYmJ8KgM9rQu8e51mhXfY0aJFCz3wwAMZHv/II4+oefPm1v7EiRNlGEaGj3nsscdUpkyZdO/v3bu3tZ2cnGwFLXnpzJkzSkhI0IIFCzR48GA9+OCDVg/F8PBwvfDCC6kqHb17xjZq1CjVwjgXql+/vmrVqmXtHzhwINN53XnnnRn2Vly9erUVYEdGRur+++/PcLyiRYv6zNOfOVwoKipKXbp0sfYzCh337NmjNWvWSHK/jt26dcvSuQzD0JNPPmn90iEyMlLjx49Ps33En3/+aW1fc801mS4Y1qFDBxUtWtTa9/f9aN++fbr333PPPT4VwJ4Kxaz4/PPPre/n6tWra8iQIRkef8UVV+juu++29j/77LMsn9Nj9uzZ1rlLlSqlF198Md3FqypWrKhhw4ZlOub06dOtlh0lSpTQa6+9lmGblYsuukiPP/64tT9lyhSrHYRHIN5r718s3HzzzRm20+jevbuuueaaDM8ZKjL6+XvhAnRVq1ZV37590zzWZrPpqquusvZ3796d6phgXrsAAOQ1AlkAAAqZ1q1b+3xU1NO6IKvi4+OtijBJ6tevX6aPsdlsPh9x37dvX4YVumFhYbr66qszHPPiiy/22T958mSm88iqlStXKi4uLt0/TZs2VadOnfTII4/4LGwWERGh4cOHq1WrVqnGfOKJJ/TPP/9o1qxZeuutt/yaR/ny5a1tTw/FjFx55ZUZ3t+2bVutW7dOv/zyiyZPnuxTuZpbc0jLzTffbG17h64X8q6Obdu2bapKy8y89dZbWrRokbX/wgsv6Iorrkjz2DfffFOrV6/WjBkz9PTTT2c6dnh4uE9QldlrYbPZ0g2rvN1+++3W9t9//219VN5f8+fPt7a7dOmSYUsQj+7du1vb27Zty/YvNTxtMiTphhtuyLS/cKdOnVS5cuUMj5k3b561fWF1dXpuuukm66Prx44d0z///ONzf26/1zt27PDpT3zrrbdmOuYdd9yR6THBZrPZdN1116V7f/HixVW2bFlrv3379hm22PD+/k3r53Qwr10AAPIagSwAAIXQM888oypVqlj72Wld4N0nMjw8XC1btvTrca1atfLp87d69ep0j61WrZpiYmIyHO/CCtALV/cOBpvNprZt22ry5Mlp9kn0KFasmOrVq5fpQmQ7duzQtGnTfMIGl8uV6Ry8PyKcnoiICNWsWVOXXnpphscdOnRIv/zyi091YWZzSE/jxo19Fh2aNWtWmsddWHWYFdOmTdOnn35q7ffp08cn7ExLTEyMGjZsqOrVq6d7jGEYio+P11dffeWz2Fpmr0XNmjXTrMy9ULNmzaxt0zRThYkZSUhI8Kne9HeBu7p16/pUgKYXkGfEbrf7LAx3+eWXZ/qYsLCwDH9pYLfbtWHDBmvf3+dTsmRJ1ahRw9pP6/nk5nvt/bMwKioqw97OHs2bN8/xgoqBVqVKlUx//npfN7Vr187w2CJFiljbF34yIpjXLgAAwRDa/xcAAAACwtO64N5775V0vnXBtGnT/A4JPCt6S+6PqhYrVsyvxxUrVkzVqlWzFgLzHudC/lTDXbiIS2YtELKjVKlS6YYsNptNxYoVU0xMjMqXL68GDRrosssuy7Ty70J2u12bN2/Wjh07tGfPHu3Zs0e7du3S1q1brRXKvXmqcNMTExPj07/SH4ZhaMeOHdq6das1h927d+u///6zerBmZQ4Z6dGjh7Xw0M8//6znnnvOpyLu77//tq6R0qVLZ1op7W3lypV6+eWXrf0WLVro+eefz9L8kpOT9e+//2rnzp3Wa7Fjxw5t375dZ86cSXV8Zq9FRguXeatevboiIyOtXyx4V6Fn5sKPgT/11FN66qmn/H68R2JiYpYfc/jwYZ/vPe/2Ghm5sMLd24EDB3x6Qo8dO1Zjx47N8twyez45fa+9x69atapfP0OjoqJUvXp17dixw89nkfcyWqQuLZmFt+m1r5CCe+0CABAMBLIAABRSbdq00a233qpvv/1Wkrt1wYQJE/TII4/49Xjvj1Jn1Kc0Ld7HZ/SRbO/Kp+zq1KmTEhISMj3uiy++SLVwjUdcXJy1mnlui4+P14QJE7Rw4cI0wx9vERERfvf7zSwc8ZaUlKRPPvlEM2fO1OHDh3NtDhnp2rWrRo8eLafTqaNHj2rp0qXq2LGjdb93u4IuXbr4HS7v2rVLjz76qBVoVq9eXePGjfP7Fw1r1qzRxx9/rKVLl2ZYbW2z2WSz2fz+BUBWvkdiYmJ09OhRSdLx48f9flxWjs3tcY4cOeKz7+/1l9HrEujnk1vvdVJSkrWdle87z+Jjocq7otUfGQWumQnmtQsAQDAQyAIAUIg9++yzWrp0qfbt2ydJ+vDDD/1a5EbKWXWk90d+M+o5WNBNnjxZr776apofd4+MjFSNGjXUoEEDXX755Wrbtq1eeOEFrVy50q+x/X1dV69erYcffjjNYNxms6lKlSqqV6+emjZtqlatWmnJkiV6//33/Ro7I+XKlVP79u2tHq+zZs2yAlm73a6ff/7ZOrZHjx5+jXnixAk9+OCD1nOJjo7WBx98kOGicN5Gjx7ts1CdtyJFiqh27dpq2LChLr/8crVv3169e/f2K+zPKu/vraz8UuLCoPyKK67IcqgmKcOP8acnu61CMgraL3w+l1xySbZCzLSqcHPzvQ7Ecw8FOQlYsyqY1y4AAMFAIAsAQCGWXusCT9VsRryDEe/+iv7wrmIqXrx4lh5bUPz6668aMWKEtV+8eHF169ZNV155peLi4lSjRo1UVZ25UZnqbf/+/XrooYes9yMsLEzXXnut2rVrp4YNG6pOnTqpWlF4L5KVUz169LDG81QIFytWTL///rsVqsbFxalRo0aZjuV0OvXYY49ZHwG32Wx66623fHrVZuSrr77yCejKlSunbt26qVmzZoqLi1PVqlVThdxZeT9Onz7t13Gmafq0qMhKZe2Fxw4bNsyvX67khgvP7e/PhLTacaQ35sMPP6xOnTplfXIXyO332nvxsqwsKpjRcy9sgnntAgAQDASyAAAUche2Lti4caMmTJiQaQ/USpUqWdsJCQlWmJaZU6dOWRW5krvnYiDlZoCYm95++21ru2rVqvr66699XtO05PbHcT/++GNrzMjISH3yySdq1apVns3hqquuUpkyZXT06FGdPXtWy5Yt0zXXXKMFCxZYx/hbHTtixAgtX77c2n/sscd0zTXX+PVYu92u8ePHW/uNGjXS559/7hO0pSUrv4jYu3evX8ft2LHDJ/zzXpwqM96r2EvuwD2vQq1q1aopLCzM+lj/tm3b/FrY68Leod4qVqwom81mVQxnpZ9uegLxXtesWdPa3rt3r1JSUjKt7jRN02eRvsIumNcuAADBUHg/IwgAACzPPvusTwD74YcfKj4+PsPHeIctLpfLJwzLyPLly30+ku1P9WNBs3fvXm3dutXaf+CBBzINY5OTk33Cq5y0jPBYsmSJtX3ddddlGsZK0ubNm63tnC6gFhkZqS5dulj7CxYskGEY1rwiIyPVtWvXTMeZNGmSvvnmG2v/xhtv1MMPP+z3PP7++2+flg2DBg3KNKDbsWOHT8/fzN6P9BZnu5D391FkZGS6i8mlpW7duj7z/vPPP/16XFJSkoYMGaJ3331X06dPz1YbhqJFi6pBgwbWvr8/D1avXp3ufTExMapbt6617+/zcTgceu655zR27Fh98803+u+//6z7AvFeX3bZZda20+n0q63Ili1bslRNW9AF89oFACAYCGQBAIDVusDD4XDoiy++yPAx9erV86lunTRpUqbnMU3T57iyZcuqcePGWZ5vfnfo0CGf/djY2Ewf8/XXX/v0qsyN9gUHDx7M0hzWrl2rf/75x9pPq/dtVvXs2dPa/vXXX7VmzRprgairrrpKZcuWzfDxS5Ys0ZtvvmntN2zYUK+//nqW5pCd9+PC74/M3g+n06kZM2ZkeIzD4dDkyZOt/Xbt2mWpj2ZYWJjat29v7c+YMcOvKt4vv/xSM2bM0Pvvv6/nn3/eWlAsq2644QZre/78+T6V8GlZt26dNm3alOExV111lbW9aNEiv6pKf/zxR3333Xf66KOP9OKLL2rbtm3WfYF4r+vVq6c6deqke3xapk6dmukxWZGX/V4DIdjXLgAAeY1AFgAASJLatm2rXr16WfuZhW1hYWG6++67rf0VK1bo448/zvAxH374of766y9r/4477kjVJ7UwKF26tM/+0qVLMzx+xYoVGjdunM9t2V1IKL15LF++PMP3fP/+/Xr66ad9qgNzYw4NGjRQ/fr1JUnHjh3T6NGjrftuvvnmDB8bHx+vQYMGWfOuWLGiPvzwQ79aZ3jL6vsxa9YsTZkyxec2f16LsWPH+oSDF3r77bd97u/Xr1+mY17I0w9acr+ezzzzjOx2e7rHr1+/XhMnTrT2mzRpku1fkvTq1ctaQM1ut+uZZ55RSkpKmseeOnVKzz//fKZj3nnnnYqMjJTkDkKfeOKJDCuN9+7d63MNVa5c2VosTgrce/3ggw9a27/99ptPsH6hP/74w6eiOzd4B/fpveahLpjXLgAAeY1AFgAAWIYMGZJp71hvffr08fkH8Ntvv63nn39eiYmJPsclJibqueee8wkVL7roIt133305n3Q+VLt2bZ/q4ilTpmjixImpwoe9e/fqrbfeUr9+/VLdl5ycnON5tGvXztresmWLnn32Was61ePkyZP6+uuv1b17d+3atSvX5yD5Bq9///23JKl8+fLq0KFDuo85cuSIBgwYYC2WFR0drQkTJmTa+iEtl19+uaKjo639cePGacaMGakC6q1bt+qFF17QU089lepj6/68FqdPn9Ydd9yhefPm+bR7OHz4sJ599ll99tln1m09evTQlVdemeXn0rhxY/Xp08fa//XXX3XXXXdp7dq1PsfZ7XZNnjxZ/fr1swK88PBwDR06NMvn9ChTpoyee+45a3/VqlW6++67tWXLFp/j1q1bpz59+mTaFkVyh+xPPPGEtb9hwwbdeuutWrp0qc974HK5NHPmTPXp08enSvKZZ55RVFSUtR+o97p79+5q06aNtT9y5EiNHj3aJzz2vOYPPfRQjtt9XMg7aP7nn39yvd90XgjmtQsAQF4rfCUpAAAgXTExMRo5cqTfQWlUVJTGjx+ve+65xwrrpk+fru+++05169ZV2bJllZSUpK1bt/qEGtWrV9eECRNUtGjRgDyP/GDw4MF68sknJblbObz55pv68MMPVaNGDRUrVkyJiYnau3evz+tWpUoV62PgF370OjsGDBiguXPnWgHTrFmzNG/ePNWoUUNly5bVkSNHtGfPHp8w2HsOLpdLSUlJmbYVyEzXrl01evRon8rDrl27Zlg9/fLLL/v0i6xdu7Y+//xzJScny263y+l0ZtrXtWvXrurWrZuio6P10EMPWQut2e12DRkyRG+88YZq1Kih8PBwHThwINWiUpUrV7Zuy+z9aN68uXbs2KEjR47oscceU2xsrGrWrKkzZ85oy5YtPh+Db968uYYNG5bheBkZOnSo9uzZo99//12SO6C79dZbValSJdWoUUOnTp3Szp07fYJFm82mF154wa+FuDLStWtXbdiwQZ9//rl17q5du6pOnTqKjY3VgQMHrJ8V4eHh6tixo88ibmm57777tGPHDk2fPl2Se8Gw/v37q1y5cqpdu7bsdrt27dqVKoR84IEH1LlzZ5/bAvlev/766+rfv7/18+6TTz7RF198ofr16ysiIkJbt261PoZ/0UUXyWaz+fS3zYl69epZ2/v27VPnzp1Vt25dnTx5Up9++qlKlSqVK+cJtGBeuwAA5CUCWQAA4KNdu3a65ZZbrPAjM1WqVNG3336rF198UfPmzZPkDhjTqn6z2Wz6v//7Pz3//PM5DvHyuy5duujgwYN6++23rTDu5MmT2rhxY6pjS5UqpWeeeUaxsbF64IEHJEnbt2/PcRhas2ZNffDBB3riiSeshY7sdnuaIVFERITuuusuPfjgg2rdurVV4ffXX3/puuuuy/YcJHcv4Q4dOvgEcz169MjwMRf2ity4cWOar11GmjZtam3ff//9OnLkiE+P42PHjvksAOVRqVIlvfTSS9q/f79efvllSe7gyOVyKTw8PM1zVa5cWUOHDtWjjz6qffv26dChQ6mCPZvNpp49e+rFF1/MUu/YC0VFRWnChAl699139dlnn1lVhAcOHNCBAwdSHR8bG6vhw4fr2muvzfY5vT333HOqWrWq3nrrLStk3759u7Zv324dU7RoUQ0fPlwpKSmZBrKS9OqrryouLk7jx4+3Qs0jR46kquiW3L9Yevrpp3X77benOVag3uuKFSvq66+/1qBBg6xWCCkpKakqPOvWrasPP/zQ+oVMbrj22mvVsGFDqyfv4cOHdfjwYUnuhfhatGiRa+cKpGBfuwAA5BUCWQAAkMrQoUO1bNmyVFVi6SldurTeffddbdq0SbNmzdKKFSu0b98+nTx5UkWLFlWtWrXUokUL9ejRQxdffHGAZ59/3HvvvWrfvr2mTJmilStXKiEhQWfPnlV0dLTKlSunuLg4tWjRQt26dVNMTIzOnDmj4sWL6/Tp0zIMQ99//32O2z60atVKP//8s6ZOnarffvtNO3bs0KlTpxQVFaXSpUurTp06uuyyy9StWzdVr15dktSiRQstX75ckrsiOqeBrOQOlDzB3CWXXKK6devmeMyssNlsGjp0qDp37qxvvvlGa9asUWJioux2u6Kjo1WxYkXFxcWpbdu26ty5s4oUKaJ9+/Zp5MiRMgxDx48f1y+//KIbb7wx3XM0btxYM2fO1OTJkzVv3jzt3r1bLpdLFStWVKtWrXTLLbfkWg/M8PBwDRo0SHfccYd++OEH/fHHH9q+fbsVOpYtW1YNGjRQx44d9X//938qXrx4rpzXo2/fvrr66qs1ZcoU/f7779q9e7ckd2jZtm1b3XHHHapTp06q/qwZufvuu9W9e3f98MMPWrZsmeLj45WUlCTDMFSqVCnFxcWpXbt26tatm9XLNi2BfK9LliypiRMn6rffftOMGTP0999/6/DhwypevLhq1aqlzp076/bbb89R4J6WyMhIffnll3r//fe1aNEiJSYmyul0KjY2Nt+1Lwj2tQsAQF6wmZl9lgsAAAAIsOHDh1srz48YMUK33XZbkGcEAAAABAaLegEAACCo7Ha75s6dK0kqXry4unTpEuQZAQAAAIFDIAsAAICgmjVrlvVx5O7du/MRZAAAABRoBLIAAAAImn/++UejRo2S5F44rF+/fkGeEQAAABBYLOoFAACAPPPPP/9oyJAhqlixopKSkhQfH2/d98ADD1gLhwEAAAAFFYt6AQAAIM8cOXJErVu3TnV7x44dNX78eEVGRgZhVgAAAEDeoUIWAAAAeaZcuXJq3bq11q9fL6fTqRo1aqhnz5668847FR4eHuzpAQAAAAFHhSwAAAAAAAAA5BEW9QIAAAAAAACAPEIgCwAAAAAAAAB5hB6yyJHVq1f77IeFkfEDAAAAAAAURoZh+Ow3a9YsSDMJbQSyyFUXfuMBAAAAAAAAOI9yRgAAAAAAAADII1TIIlfRsgBZlpwseVdWh4VJ0dHBmw/yLe8KfX4WITu4hpBTXEPIKa4h5AauI+QU1xBygk9O+4dAFjkSFhbm8812ySWXKCKCywr+M+vXl23LlvP7cXGybd4cxBkhP3I6nVq7dq21z88iZBXXEHKKawg5xTWE3MB1hJziGkJO/f3331ZORKCfPl4ZAAAAAAAAAMgjBLIAAAAAAAAAkEcIZAEAAAAAAAAgjxDIAgAAAAAAAEAeIZAFAAAAAAAAgDxCIAsAAAAAAAAAeYRAFgAAAAAAAADyCIEsAAAAAAAAAOQRAlkAAAAAAAAAyCMRwZ4AgMLNNW+e/l23ztpv0KQJP5gAAAAAAECBRe4BILiqVpX98GGffQAAAAAAgIKKlgUAAAAAAAAAkEeokAUAAAAA5AumacowjGBPI2S5XK5U+zabLUizQX7ENVS4hIWF8f4GCYEsAAAAACAkmaap5ORknThxQqdOnZLT6Qz2lEKaaZo++9u2bSNsQZZwDRU+ERERiomJUcmSJRUdHc37nUcIZAEAAAAAIcdut2v37t1yOBzBnkq+EhHBP/ORM1xDhYvT6dSxY8d07NgxRUZGqkaNGoqKigr2tAo8esgCAAAAAEIKYWz22Gw2RUREWH+odENWcQ0Vbg6HQ7t375bdbg/2VAo8fu0BIKhsP/ygchs2nN/fsUO65ZYgzggAAADBZJpmqjC2ePHi1sdpw8PDgzi70OZp8eDBx4+RVVxDhYvL5bLawpw+fVrS+VD2oosu4r0PIAJZAEEV9sILqrVli7VvxsURyAIAABRiycnJPmFsxYoVVbZs2SDOKP8wTdMnsA4PDydQQZZwDRUu4eHhioqKUunSpZWUlKTExERJ7lA2OTlZxYsXD/IMCy5aFgAAAAAAQsaJEyes7eLFixPGAkAeKFu2rE8Ae/LkySDOpuAjkAUAAAAAhIxTp05Z2yVLlgziTACgcPH+mUsgG1gEsgAAAACAkGCappxOp7UfHR0dxNkAQOHi/TPX6XTKNM0gzqZgI5AFAAAAAIQEwzB89lnACwDyzoU/cy/8mYzcQyALAAAAAAAAAHmEQBYAAAAAAAAA8giBLAAAAAAAAADkEQJZAAAAAAAAAMgjBLIAAAAAAAAAkEcigj0BAAAAAACQOyIjI4M9BQBAJghkAQAAAAAFwrEzDh074wj2NILGlCmX02Xth0c4VKZYlEoXI6RF/uBwOPilAgoFAlkAAAAAQIFw7IxDO5OSgz2NoHIZXoFsWLhsZW15Hsh+//33Gjp0qLU/YcIEXXXVVX4//sCBA+rQoYO1v2XLltycXp7o1KmTEhISJEkLFy5UtWrVgjyj3Dd+/Hi99957kqSBAwfq0UcfzfZYhw8f1ltvvaVWrVqpe/fuqe4fMmSIZsyYIUl6/fXX1aNHj2yfCwgFBLIAAAAAgALlz11H5TTMYE8jCEw5HO4K4Ygwm9pdXDHI83F74YUXNGvWLJUpUybYU0EImjNnjl588UWdPHlSLVq0CPZ0gDxBIAsAAAAAKFCchlloA9lQfN6HDh3SSy+9pHHjxgV7KghBv/32m06ePBnsaQB5KizYEwAAAAAAAAXb3LlzNXPmzGBPA/nUG2+8oS1btmjLli20K0CBQCALILgiI2VERVl/RAN3AAAAoEAaOXKkEhMTgz0NAAg6AlkAQeX6+2/9/ccf1h/X338He0oAAAAAckm9evVUunRpSdKJEyf03HPPBXdCABAC6CELAAAAAAAColy5cnrooYc0aNAgSdLSpUs1efJk3XHHHbl2jm3btunbb7/VypUrlZCQoOTkZJUuXVq1a9dW+/btdeutt6pUqVK5dr4jR45o8uTJWrx4sXbs2CHDMFS5cmV16tRJffv2VcWKWVtMbd26dfrhhx+0YsUKJSYmKiUlRWXLllXDhg11zTXXqGvXror045OEDodDc+fO1bJly7Ru3TodOXJEp06dUrFixVS6dGldcskl6tSpkzp37qzw8PAMxzIMQ/PmzdMvv/yiDRs26MSJEypTpoyaNm2qPn36qFWrVll6jmnp1KmTEhISfG4bOnSohg4dKkl6/fXXrfYEQ4YM0YwZM1Ld7hEXFydJuvrqq/XBBx/oxIkTmjp1qubNm6c9e/bI4XCoQoUKateunfr27avq1atbj/333381efJk/fnnn0pMTFTRokVVv359de/eXT169JDNZsvweZimqfnz52vevHn6559/dOTIEdlsNsXGxqpZs2bq0qWL2rRpk7MXCwUOgSwAAAAAAAiYzp07a+HChZo9e7YkafTo0Wrbtq1q1qyZo3GTk5P1xhtv6Ntvv5Vp+i5mdujQIR06dEgrV67UhAkTNHToUPXs2TNH55OkJUuWaNCgQTp9+rTP7Tt27NDEiRM1bdo0vf32237Pf9iwYdbr4u3AgQM6cOCAFi1apI8++khjx45V48aN0x1rxYoVGjJkiPbt25fqvpMnT+rkyZPas2eP5syZo48//lgTJkxQlSpV0hzr6NGjGjRokNatW+dz+8GDB/XLL7/ol19+Ue/evVW2bFm/nmdeW7NmjZ544olU7TF27typnTt36scff9SHH36o5s2b6+OPP9a4cePkdDqt4+x2u1auXKmVK1dq8eLFGjdunMLC0v6A+a5duzRo0CBt3Lgxzft27dql77//Xm3atNHo0aND9jVD3iOQBQAAAAAAAfXiiy9q5cqVOnjwoJKTk/Xss89q8uTJmVZqpiclJUUPPvigVq5cad3WoEEDtWrVSqVKldK+ffv066+/6uDBgzp58qSee+45HThwQI888ki2n8O8efM0ePBgK7yLjY3VtddeqwoVKmj//v1asGCBjhw5okcffTTTqsrk5GTdeeedVpAXFham1q1b65JLLlGRIkW0d+9eLV68WIcPH9bu3bt1xx13aOLEiWrevHmqsVavXq3+/fvL4XBIkipVqqT27durSpUqstlsSkxM1B9//KGdO3dKkuLj4zV48GBNnTo11VhHjx5V3759tXfvXklSZGSkrrrqKtWvX192u11//PGH1q9frylTplitKLJrwIABOnnypObMmaMNGzZIcof3nuD5kksuyfKYe/bs0YMPPqgTJ06ofPnyuvbaa1W+fHnt2rVLc+fOld1u14kTJzRkyBD16tVLY8aMUVhYmK666ipdcsklcjgcWrRokeLj4yVJv/zyi7755hv17t071bni4+N111136dixY5Kk6OhoderUSXXq1JFhGNq6dauWLFmis2fPatmyZerVq5emTZtGKAtJBLLIZZ6/dEzTzPQvIAAAAABA4VCqVCm9+uqruv/++yVJf//9t/73v//pwQcfzNZ4r7/+uhXGFitWTK+99po6d+7sc0xKSopGjx6tL774QpI0fvx4NWzYUB07dszy+U6cOKGXXnrJCmNvuukmjRw5UsWKFbOOeeaZZ/T8889r7ty5mY43fPhwK4ytW7eu3nnnHV188cU+x5w9e1ZvvfWWvvrqK509e1ZPPPGEfvrpp1TtF1566SUrjO3atateffVVRUVF+RxjmqY+/vhjjRkzRpL79d+4caMaNWrkc9yYMWOsMLZSpUqaMGGC6tevb90/ePBg/fDDD3rhhResIDK7br31VknS1q1brUC2Xbt2qdoRZIUnSO3Zs6deeukln9fhrrvuUu/eveV0OrVnzx6NGTNGZcuW1YQJE9SkSRPruMcff1zPPPOMZs2aJUmaNm1aqkD2zJkzevTRR63X4LrrrtPIkSNThdSJiYl68skntWrVKu3du1dPP/20Jk6cmO3nh4KDRb0QEA6XmflBAAAAAIBCo3379rr99tut/fHjx2vz5s1ZHmfXrl2aNm2atT969OhUYawkFSlSRM8//7xuu+02Se5QcvTo0TIMI8vn/PTTT5WUlCRJuuyyy/Tmm2/6hLGSFBMTozFjxqhp06YZjvXvv/9q5syZkqTSpUtr0qRJqcJYSSpatKiGDRtmBciHDh3Sl19+6XPMunXrrBCyfPnyGjlyZKowVnIXTz344IO66KKLrNvWr1/vc8zOnTs1ffp0SVJERITeeecdqzert+7du1t9XkNRo0aN9Morr6R6HZo0aaKrr77a57aRI0f6hLGSu1r56aeftvY3b94su93uc8y3335rVRxfccUVeuedd9KsGK5YsaI++ugjVahQQZK7h/KqVauy+9RQgBDIIiCc2fgLDgAAAABQsD377LOqUaOGJPciVE8//XSqsCszs2fPtipVW7ZsqWuuuSbD45966ilFR0dLkv777z+tXr06y/OeP3++tf3QQw+l21M0PDzcWsAsPd6tAm677TaVL18+w+O92yz8+OOPPveVLl1aw4YN07333qsnnnhCRYsWzXAs72rXkydP+ty3YMECqxdvx44dVa9evXTH6dOnj6pWrZrhuYKlb9++6b4/DRs2tLZjY2NTBbQeFStWVMmSJSVJLpdLx48f97nf+z0cMGBAhq03YmJidM8991j7P/zwQ2ZPAYUAgSwCggpZ+Ms2dqyqjh9v/bGNHStJMk1CfQAAAKCgiY6O1htvvGEFZvHx8Xr33XezNMaff/5pbd94442ZHl+yZEm1a9fO2l+xYkWWzrd//379999/kqSoqCi1bt06w+NbtGiRYX9V7763F7YMSEvDhg2tQHn37t06ePCgdV+NGjV055136tlnn1WvXr0yHOfgwYM6evSote+9kJUk/f7779a29+uVFpvNpmuvvTbTuQfDhRWv3rzD70aNGmXYarF48eLWdkpKirV9+PBhbd++3WeczDRr1sza/uuvvzI9HgUfPWQREA6DQBb+CZs4UZW2bLH2zbg46emnJcMhhRcJ4swAAAAABEKzZs3Uv39/ffLJJ5KkiRMnqlOnTrr88sv9evzu3but7QYNGvj1mIYNG2revHmpHu+PhIQEa7tWrVqKjIzM8HibzaZ69er5BK8eLpdLO3bssPYfe+yxLM1Fkvbt22d9BD69+3ft2qW9e/dqz5492rZtmzZv3mz1hvXwVMN6eD/POnXqZDoP72rbUFKxYsV07/OunPVUwPpzrLetW7f67Lds2TILs3O/PwCBLALC6aK6ETljuhyyEcgCAAAABdJjjz2mJUuWKD4+XoZh6Nlnn9WPP/5oVYJmxHsxqTJlyvh1Pu/jsroY1eHDh63tzEK8zOZ1/PjxVEFoVqU1/507d+rTTz/V/PnzrV63aQkPD5fL5UrzviNHjljb/jxPf1/7vHZhb9/0ZNRmICM5XczMbrcrOTnZr2sdBReBLAKCClnklGlkrY8UAAAAgPwjKipKb731lm655RY5HA7t3r1bb7zxhkaMGJHpY7MTaHqHkOlVPuamtBbWklK3CXjggQcybG+Qltq1a/vsT58+XS+99JIcDkeqOdSsWVP16tVTkyZN1LJlS02aNEkzZszI0vnSk95zDLaM2hDkBu9rqUSJEnrooYeyPEZEBHFcYccVgIBwUCGLnHI5Mj8GAAAAQL5Vv359PfrooxozZowk6ZtvvtE111yT4WJSklSqVCmrj+rRo0etRcIy4t07tUSJElmaZ2xsrLXtb3XkhQtmeZQqVcpn/4YbbvCrB2l61qxZoxdffNEKCZs1a6Zbb71VTZs2VY0aNVKFz2fOnEl3rNjYWO3atUuSu5K3WrVqGZ77xIkT2Z53fuZdPWwYhvr37x/E2SC/YlEvBISTClnkkGkQyAIAAAAF3X333afLLrvM2n/++edTrWh/oVq1alnb//77r1/n2bRpk7Vds2bNLM3RO5jcuXOnzp49m+ljtm3blubtRYoU8elxemE/0vSk14ZgwoQJVhh71VVXafLkyerevbtq1aqVZiWw9zgXVhp7P8/4+PhM55TecyzovK+f06dP+9UT1m63pxvSo3AikEVAOFwEssgZWhYAAAAABV94eLjeeOMNq+/nwYMHNXLkyAwfc8UVV1jbc+bMyfQcJ06c0LJly6x97xXv/VGxYkWritXpdGrhwoUZHr9t2zbt2bMn3fuvvPJKa3vu3LmZnn/z5s1q1aqVLr30UnXu3NknVF2zZo21feutt2b4cf3k5GStXbvW2r8wkO3UqZO1vWDBgkzntWTJkkyP8UegWwzktpo1a/qE6p7F4jIydepUNW/eXFdccYUGDBgQyOkhnyCQRUDQsgA5ZdKyAAAAACgUatWqpaefftraX7VqVYbH33zzzdaCTCtWrMg0PBwzZoz1Uf1KlSr5BLr+uummm6ztd999N8OP/o8bNy7DsXr27GltL1682CcsvpBpmnrrrbckSWfPnlXJkiVVtmxZ637vvrEZLeYlSW+99ZZSUlLSfKwkXX/99YqMjJQk/fnnn1q+fHm6Y/36668+4W5OeFfyprfgWKjxfg8/+eQTq4VGWo4ePaqPP/5YkvuXA5m15EDhQCCLgKBlAXKMlgUAAABAodGnTx+1adPGr2OrV6+uW265xdp/6qmn0qyUtdvtGjVqlKZMmWLdNmzYsGwtqHTHHXeoTp06ktxtCx544AEdOXIk1flee+21TCsmW7VqZT1X0zT12GOPpRkqJycna/jw4Vq6dKl12+OPP+5zTP369a3tCRMm6NChQ6nGOXnypF544QV9/fXXPrdf2HohNjZWDz74oDWvZ5991ufcHsuWLfMJ0HMqJibG2k5ISMi1cQPp7rvvtnoLHzlyRH379k2z/cT+/fv10EMPWe9L6dKl1a9fvzydK0ITi3ohIKiQRU6ZhlOmachm4/dGAAAAyJqIsPz1EejcZJ577vntNbDZbHrttdd00003+bVY1PPPP68tW7bon3/+0ZkzZzRo0CB98sknatWqlUqWLKn9+/fr119/VWJiovWY+++/X9dcc0225hcVFaVRo0apX79+OnXqlFauXKnrrrtO1113nWrWrKmkpCQtWLBACQkJioiIUOXKlTNsWzB69Gjddttt2r17t06dOqVHHnlEjRo1UsuWLRUTE6OEhAQtWrTIp+p1wIABatWqlc84/fr1099//y1J2rNnjzWn6tWry263a+fOnVqyZIkVvkZGRlqVsWktUPbggw/qjz/+0Jo1a3Tq1Cndd999atmypZo1ayabzabVq1dblbO1a9fWjh07svV6evPuXfvpp5/KbrerRIkSuuKKK9S8efMcjx8IZcqU0bhx49S/f3+dOXNG27dvV7du3dSmTRs1btxYNptN27Zt08KFC63XOzIyUm+++abKlCkT5NkjFBDIIiAcVMgix0zJcErhUcGeCAAAAPKZljULb+DhMvLHR77TUqlSJb3wwgt65plnMj22SJEi+vzzz/Xyyy9rxowZMk1TmzZt8lm8y6N48eIaPny4unXrlqP5NWnSRFOnTtWDDz6ohIQEnTp1St9//73PMVFRURo5cqQWLVqUYSBbtmxZffvttxoyZIgWL14sSdq4caM2btyY5nN94okndO+996a67/rrr9ejjz6q9957T6ZpKjk5WT/88EOa57zxxhvVrVs3q4fphg0bUh0TGRmpDz74QCNGjLCqjv/880/9+eefPsd16tRJPXr00MCBA9N9jv668cYb9d577+nYsWNKSUnRxIkTJUl33nlnyAaykrsX8ZQpUzR48GBt375dLpdLv/32m3777bdUx1aoUEFvvPGG31XgKPgIZBEQhmnKZZgKz2e/lUVoMQ2HbASyAAAA8FPpYpGqVTY62NMIGlOmXM7zgWx4RLhKF4sM4oyyrlu3blq4cKFfCyUVLVpUr7/+uvr27avvvvtOK1as0IEDB3Tq1CmVKFFC9erVU/v27dWzZ0+fvqs5UbduXc2ZM0fTpk3Tzz//rPj4eJ09e1YVKlRQy5Ytdc8996hevXpatGhRpmOVKVNGEyZM0OrVqzVr1iz99ddfSkxMVHJysmJiYlS7dm21atVKvXr1UpUqVdIdZ+DAgWrXrp2+/vprrVmzRomJiTIMQ8WLF1eNGjXUuHFjde/eXZdeeqnsdrvKlCmjo0eP6r///tP69et1ySWX+IwXFRWlV155RV27dtXMmTO1Zs0aHTlyRDExMapXr55uueUWde3aVb/++muOX09JKl++vKZOnapx48Zp1apVOnbsmIoWLZphn95Q0aBBA82ePVvz5s3TggULtHbtWiUlJcnhcKh06dKKi4tTp06d1K1bN5/WDIDNvHBZPSAL/v77bxnG+fYETZs2VXh4uBZvO6yWNcqoaGR4EGeH/MCsX1+2LVvO78fFybZ5s1IS1yiidB2FFykdvMkh33A6nT6LClx66aXZ6g2GwotrCDnFNYSc4hpyc7lcio+Pt/br1atnLd6EzJmm6bNQU2RkZL5bwR7B5amy9YiOjuYaKkRy42ewd04UFhamyy67LFfnWFAUvr/hkWdY2As5xsJeAAAAQJZcGMgCAEIPq+UgYBwuAlnkhCnT5Qz2JAAAAAAAAHIVgSwCxunVygDIMtOkQhYAAAAAABQ4BLIIGCpkkVMmgSwAAAAAAChg6CGLgHFQIQs/mHFxOuO1tmDRuDi5W8abBLIAAAAAAKDAIZBFwDipkIUfjO++078XrChsle4TyAIAAAAAgAKGQBYBQ4UscsKUKRks6gUAAAAAAAoWesgiYOghixwx6SELAAAAAAAKHipkETBOg0AWOWFKLipkAQAAAABAwUKFLALG4aJlAXLClGk6ZZoE+wAAAAAAoOAgkEXA0LIAOWaKPrIAAAAAAKBAIZBFwNCyADlyrjKWPrIAAAAAAKAgoYcsAsY0TTldhiLCyf2RvrBHH9VF//57fr9BA+nDD88fQCALAAAAAAAKEAJZBJTDMBURHuxZIJTZfv1VpbdssfbNAwc8W+7/EsgCAAAAAIAChNJFBJSTPrLIIQJZAAAAAABQkBDIIqAchhHsKSC/OtdDlkW9AAAAAABAQUIgi4ByUCGLbDvXssBFhSwAAAAAACg4CGQRUE4qZJFDtCwAAAAAAAAFCYEsAooKWWSfp2UBgSwAAAAAACg4CGQRUA4XFbLIHk8LWZMesgAAAAAAoAAhkEVAOQ0qZJFdVMgCAAAAAICCJyLYE0DBRssC5BQ9ZAEAAAD/RUZGBnsKAIBMEMgioBws6oVsc4f5puGUaZqy2WxBng8AAABCnevsMRkpx4I9jaByOc+3/LJFRCisSGmFFy0dvAmFOIfDQYhdyPCeIxQQyCKgnFTIIrs8l45pSqZTsvEXJgAAADJmpByT88SuYE8jqFyG6/xOWLgiSirPAtlJkybp9ddflyRVrlxZixcv9utxXbt21ZYtW6z94cOHq0+fPpk+7qefftLgwYMlSWXLltUff/whm82mFStW6O6775YkXXnllfryyy/TfPzy5cv1yiuv6Keffkrz/ri4OGvbe36hItTnlxuGDBmiGTNmSJJef/119ejRI9tj7d69W6+++qruvfdetWjRItX9d911l1auXClJ+uKLL9I8BsgtBLIIKCpkkR3m+RW9JFuYTMMpWxiBLAAAAPyTsv/PQrk4rCnJ4XA/b1tYhErUaJun52/durW1vX//fu3bt09VqlTJ8DGJiYmpwsTffvvNr0B2xYoV1nabNm2y9Km6QYMGac6cOX4fj/xt0qRJevvtt2W323XvvfcGezoAi3ohsJyGeT5cA/zmaVdwrn+siz6yAAAA8J9pOCXTVUj/OCXTGZRAul69eqpQoYK1/9dff2X6mCVLlqS67c8//5Tdbs/0sd6BbLt27fycpRthbOGycOFCv64pIK8QyCKwTHcoC2SHJ5BlYS8AAAAgf2jTpo21nZVA1maz6aqrrpIknTlzxidsTcvBgwe1c+dO67HegWyLFi20ZcsWbdmyJd12BcCFvvzyS+u6oV0BAo1AFgHjiWEdLtoWIIs8VdUu928wCWQBAACA/MG7bcHq1aszPNZut2v58uWS3NW1nTt3tu5Lq3LWm6fXpyQ1bNhQZcuWzc50ASAoCGQRMJ4g1kGFLLLJCmILYf8vAAAAID/y7uW6bds2HT16NN1jV69erdOnT0tyB7nt2rVTWJg7pvjtt98yPI93IJvVdgUAEGws6oWAcRqmosIlp4tAFukzb7hBR2vUsPZLN2wom6eHrIuWBQAAAEB+Uq5cOdWvX1///vuvTNPUmjVrdPXVV6d5rHfo2q5dO5UtW1aNGjXS+vXrtWvXLu3cuVO1atVK87EZ9Y9dsWKF7r77bknSlVdeabUt8L7dW1xcnLV94QJj3lJSUjR16lT98ssv2rZtm06fPq3Y2Fg1aNBAN998s6655pp0H5tVe/bs0eTJk7V06VLt2bNHYWFhql69uq6//nrdfffdKlGiRJbG++OPPzR79mytXr1aBw8elGEYKleunC699FLdcMMNuu666/xaFO3MmTOaNWuWli9frk2bNuno0aM6ffq0ihcvrrJly6pp06a6/vrr1bFjx0zHstvt+u677/Tzzz9ry5YtOn36tMqXL68rr7xSd999txo3bpyl55gW7/fWw/sa+OKLL6z2BHfddZcV9HvfLkl79+61ruO7775bzz//vBITEzVlyhQtXLhQCQkJstlsqlKlijp16qS77rpL5cuXtx6/atUqTZkyRX///bcOHTqkmJgYNWrUSL179/brunE6nZo1a5YWLFigjRs3KikpSZGRkapYsaKuvPJK9ejRQ02aNMnei4SgIJBFwDhchhQZTssCZMgYPVo71q619ps2bWoFsu4FCQyJQBYAAADIN1q3bq1///1XkruPbHqBrKctQXR0tK644gpJ7nB1/fr11v1pBbLe/WNLlCihpk2b5u4TSMOmTZs0cOBAJSQk+NyekJCghIQELViwQFdffbXefvttFStWLEfnmj59ul566SU5HL7/DvL0N/3mm2/0wQcf+DXWkSNH9NRTT+mPP/5IdZ9n7nPmzFGjRo00btw4VatWLd2x5syZoxEjRqRZ9Xz8+HEdP35cO3bs0IwZM3TllVfqvffeU6lSpdIca/fu3XrggQe0Y8cOn9v379+vH3/8UbNnz9ajjz7q13MMhgULFmjo0KE6ceKEz+3x8fGKj4/XDz/8oE8//VS1a9fWa6+9lqqX8dGjR7V06VItXbpUffv21XPPPZfuudatW6ennnpKu3bt8rk9JSVFp06d0rZt2zRlyhR16dJFI0eOVHR0dO49UQQMgSwCxnGuMpaWBcgy8/w1YxoOKmQBAACAfKRt27aaOHGipPT7yO7du1fbtm2T5F6EKyoqSpLUvn17K2xcsmSJ+vbtm+qx3tWxrVu3VkSEf9FGjRo19Mwzz0iS3nzzTet2z20ZufPOO3X69GkVK1ZMV199tWrXrq2UlBT9/vvvVvi8cOFCjR49WsOGDfNrPmmZNGmSXn/9dZ85d+zYUWXKlNGuXbs0f/58JSYmqn///pmOdfDgQd1+++1WiBwZGakOHTqofv36CgsL086dO7V48WKdOHFCGzdu1C233KIpU6aoYsWKqcaaM2eOBg8eLPPcv9Vq1aqlNm3aqGLFinK5XNq3b59+++03JSYmSnK3lHj55Zc1ZsyYVGPt3LlTvXv3VlJSkiRZr+lFF12kkydPasmSJdq2bZveeecdlSlTJusvohfPeztlyhTt2bNHknT77berxrlPadbw+rSmv/755x9NmTJFDodD1apVU8eOHVWqVClt3bpV8+fPl2EYOnDggF544QU1atRIX375pSIjI3XNNdeoXr16OnXqlObNm6e9e/dKkj7//HO1bdtW7du3T3Wu5cuXa8CAATp79qwkqUyZMurYsaOqV68uh8OhjRs3atmyZXI6nZo9e7Z27dqlyZMnq0iRItl6vZB3CGQRMM5zQSwtC5B1ngpZ0x3IuughCwAAAOQXzZs3V9GiRXX27Flt2rRJZ86cSVU16r1ol3cQ1aRJE5UuXVrHjh3TqlWrlJycnKriL7v9YytXrmwFmd6BrD/h5unTp9WhQweNGjXKJyR88skn9fbbb+vjjz+WJE2dOlWPPPJIthYZ27Nnj0+A2b9/fw0ePNgncH7qqac0aNAgn9cgLaZpatCgQVYY27x5c40ePVqVK1f2Oe748eMaNmyY5s2bp2PHjumxxx7T5MmTfc6ZnJysV1991QpjH3jgAQ0aNMjq9+vhcDj02muv6euvv5YkzZ07Vy+88EKq12LEiBFWGFu/fn19+OGHqlKlinX/008/rYkTJ2r06NEZ9iD2h+e9Xbx4sRXIdu7c2acdQVatW7dOkvTwww/r0Ucf9XkdFixYoEceeUSStGbNGq1Zs0Y1a9bUxx9/7FPt/dhjj+mBBx6wfrkwbdq0VIHswYMHNXjwYCuM7dOnj5555plU30vbtm3T448/rq1bt2r9+vV69dVXNWLEiGw/P+QNFvVCwLgMU4YpOQxaFiAHDCctCwAAAIB8JCoqSs2bN5fkDun++eefVMf8/vvv1rZ3EBUeHq7WrVtLcvcYXb58earHBmNBr7i4OL3//vtpVmwOGjTI+qi/0+nUmjVrsnWOd999VykpKZKkG2+8Uc8880yq6t/y5cvro48+yrC1gOSu1v3rr78kuatZP/nkk1RhrCSVKlVKY8eOVYMGDSRJW7du1dy5c32OWbx4sQ4fPizJHaAOHjw4VRgruStwhw4dqpIlS0qSXC6XNm7c6HPM8uXLtWzZMklSyZIl9cknn/iEsZIUFham+++/36+gPFiuueYaPf7446leh2uuuSZV79tx48alar1RtGhRPf7449a+J+T19r///c8Krrt06aLhw4en2Q7joosu0scff2zdN336dCt8RugikEXAmJKchmG1LgD8d25RL5m0LAAAAADyoTZt2ljbF7YtsNvt+vPPPyVJderUSRUuege03pW0kpSYmGj1j61bt64qVaqUm9NOV79+/RQZGZnmfWFhYWrZsqW1f2GfWX84HA79+uuv1n5G/VOLFy+uhx9+OMPxpk6dam3fe++9GfYVDQ8P14ABA6z92bNn+9xfp04dDR06VHfffbcGDhyY4eJfUVFRqlOnjrV/8uRJn/t/+eUXa/vWW29VhQoV0h3rkUceCdl+qP369Uv3voYNG1rbTZs2tcLuC9WrV8/a9gSvHk6nU9OnT7f2Bw4cmOF8qlSpoh49ekhyB+GzZs3K8HgEH4EsAsrhMuWkQhZZ5cnwTVNyEcgCAAAA+U1GgeyKFSt05swZSVKHDh1SPbZt27ZW6Ld06VKf+4JRHStJzZo1y/D+8uXLW9unT5/O8vhr1661wsvq1avroosuyvD4a6+9Nt1g1OVy+bzmjRo1yvT83s9v3bp1cjrPt42rX7++7rnnHj3//PO69tprMxxnz549Sk5Otva9x5F8K6M7duyY4VjFixf3uY5Chc1m0yWXXJLu/d7XQkavffHixa1tu93uc9/GjRut6yg6Olq1a9fOdF7e72F6vZsROughi4ByuKiQRXb4Lurl7iXrlC2MH1kAAABAfhAXF6fY2FgdOnRI//zzj5xOp/Xx+/T6x3rExsaqQYMG2rRpkxISErRnzx5Vr15dUvAC2cx6wnq3FnC5XFke37PAkyRdfPHFmR5fsmRJValSJc1q3H379vmEoj179szSXM6ePatjx475BIveTNPUnj17tHv3bu3evVt79uzR9u3btWnTJh08eDDVsd7b+/fvt/YzC50ldxg8f/78LM0/0EqXLp3holnebQw87RsyO+5CW7dutbaTk5MVFxeXpTlmp0obeYt0AwHlNEx6yCJDYV26qNHmzef369eXOfuHc3vuIFYSgSwAAACQz7Ru3Vo//vijkpOTtWnTJjVp0kSS9Ntvv0lyV/55es1eqF27dtq0aZMkd9/RCwPZjB4bCDExMQEd/8iRI9Z2RiGetzJlyqQZvOV0ISzJvdjXhYHshg0bNGnSJC1evDhVKwJv4eHhaYbSR48e9amY9ed5ptWzN9jS6uOanvDw8Gyd49ixY9l6XG49HoFHuoGAcrhMOamQRQZsO3eq6K5d1r5ZtKi8K2StBb0Mh6SieTo3AAAAANnXpk0b/fjjj5LcH6Fu0qSJdu7cqV3n/v+/RYsWioqKSvOx7du314QJEyS5A9lbb73Vp3/slVdeme5jC4v0nv+FYehTTz2VYTWmN9M05XA4UlUEv//++xo/frxPxavkDsZr1aqlevXqqUmTJmrdurVefPFFn0rmnAjF9zijHrq5xfs9rFq1qu64444sPT6jCl6EBgJZBJTTMOQyTBmGqbCwwP/QQgFh/SVvWv1j6SMLAAAA5C+tW7eWzWaTaZr6559/JPn2hE2rf6xH06ZNVaJECZ08eVIrVqyQJK1atcq6Py/bFeSF2NhYa9vf6sb0qlQvrDzt1auXSpcu7deYpmn6tDuQpDlz5ujdd9+19jt27Kju3bvrkksuUZUqVVIFlJ7+wBcqU6aMIiMj5XC4/213/PjxTFtBnDhxwq95FzTe72Hx4sXVv3//IM4GgcCiXggoT/9Yh0GVLLLB9ApiXQSyAAAAQH4SGxtrrSS/fv16SdKff/5p3Z9W/1iPiIgItW7dWpL74/wHDhwo0IFstWrVrO3NXi3d0uNwOKxK4wtVrVpVkZGR1r53P9L0GIaRbquDDz74wNru3bu3PvroI91www2qWrVqmtWiSUlJ1rZ3Ra3NZlPVqlWtfX+e57Zt2zI9piCqWbOmtb1r165Ui36l5ezZs6nCdIQuAlkElKd/rNNFH1lkxfkKWVkVss70DwcAAAAQktq0aSPJvcjQoUOHrFD1oosu8gnn0uIduv77779as2aNJKlGjRo+gVVBcOmll6pcuXKSpMTERKuiOD3Lly9PN6QrWrSoLrnkEmt/3rx5mZ7/119/VcuWLdWsWTPdddddVq/XkydP+gS6t99+e4bj7N6926ev7YUtDjp16mRtz507N8OxnE6nT0V1YXLZZZdZoXpKSooWL16c6WPGjh2ryy67TC1bttTw4cMDPEPkFIEsAspJhSxyxJTpomUBAAAAkF95AllJmj59uvVx/IyqYz28j1m1apX+++8/SblTHeu92FJaC1DltfDwcHXu3NnaHz16tIx0Fsh2uVx67733MhyvZ8+e1va0adMUHx+f7rF2u13vvPOOJOn06dOqXr26IiLcHS497QU8Mlsw7NVXX/XZ917ES5K6dOlibc+YMSPDeU2dOlWJiYkZns9f3u93eq9rKClWrJjP9TB27NgMq1937dqlqVOnSnK/Rw0bNgz4HJEzBLIIKMe5ylgHFbLICs9vUU1JpkvelbIAAAAA8o8rrrjCWmDoq6++sm7PqH+sR8WKFa2WBzNmzLCCtNwIZGNiYqxt74rOYHr44YetnqqrVq3S4MGDderUKZ9jTp8+rSeffFJr167NcKxu3bqpbt26ktwfZb/33nv1119/pTru6NGjeuKJJ6xgNDIyUvfff791f5kyZVShQgVrf+zYsanmJEmHDh3SgAEDUlVyXthPtlGjRurRo4ckdxB83333aePGjanG+/HHH/XGG29k+Byzwvv93rt3b66NG0gPP/ywoqOjJUnbt29X//79tX///lTHbd26VQ888IDOnj0ryd3u4Oabb87TuSLrWNQLAeWpjHVSIYtscV83puGgQhYAAAB+s4VFyCysNSE29/9D28JC45/7RYoUUfPmzbVs2TIdPnxYkhQdHa1mzZr59fh27dopPj7e6ksaFRWlFi1a5Hhe1apV0/HjxyVJjzzyiP7v//5PZ86c0SOPPKKoqKgcj58dZcuW1auvvqrHHntMDodDP//8s1auXKlrr71WlStX1oEDBzR//nwdPnxYMTExKlasmA4dOpTmWJGRkRo/frz69OmjpKQkHTp0SHfccYeuuOIKNWvWTJGRkdq1a5cWLFjgU3k5bNgw1a5d29q32Wzq16+fRo0aJUlau3atrr76al177bWqUqWKTp06pf/++0/Lli2zqmG9F+5Ka4GyoUOHau3atdq2bZsSExPVq1cvdejQQY0aNZLD4dAff/yhdevWSZJq166tHTt25Pi19e7RO3r0aCUkJCgyMlLXXXedFVyHmlq1aun111/Xk08+KafTqTVr1uj6669Xhw4dFBcXJ7vdrvj4eC1ZssT6ZUXx4sX1zjvvBO0ahv9C4yc0CiyrZYGLQBZZccH14iKQBQAAgP+KVG4Z7CkETZQR/I/fX6h169ZatmyZtd+yZUu/A6P27dtr4sSJ1n6zZs2sqsGc6N27t1544QVJUnx8vFUheu2116px48Y5Hj+7OnXqpM8++0wDBw7UsWPHdOTIEeuj6B4xMTEaN26cxowZk24gK7nDzGnTpunJJ5+0etKuWrXKZ3E0j5IlS2rYsGG66aabUn00vl+/ftq+fbumTZsmyR2yera9hYWFqXfv3mrQoIH12m7YsCHNc02dOlVPPPGEli1bJpfLpUWLFmnRokU+x/Xu3VsXX3yxRo4cme5z9FfPnj01efJk2e12HTt2TB9++KEkd2uAUA1kJemGG25QqVKl9OyzzyoxMVEpKSn65Zdf9Msvv6Q6tlatWhozZgztCvIJAlkElGdRL0c+6NGCUGL6fDUNh8SiXgAAAMhEWJHSiigZ7FkEmVfPzoiICIUVKR28uZzTtm1bvfXWW9a+P/1jPZo1a6bixYvr9OnTknKnXYEk9erVS0WKFNGXX36p7du36+zZsypTpoxVxRtMV1xxhX755Rd9/fXXWrhwobZt2yaXy6VKlSqpffv26tevn6pWraoxY8ZkOla1atX0zTffaMmSJZo7d67WrFmjQ4cOKSUlRSVLltTFF1+s9u3bq2fPnipbtmyqRbgkd5XsK6+8ouuvv17Tp0/X2rVrdeTIEZmmqZIlS6pWrVq69NJL1bNnT1188cU6cuSIVSX7xx9/KDExURUrVvQZs2TJkpo4caLmz5+vGTNmaN26dTp27JhKly6tSy65RL1791aHDh182lzkRN26dfXVV1/p/fff17p163Ty5EnFxMSk2X4h1LRq1UoLFizQjz/+qF9//VWbNm3S0aNHZRiGypUrpwYNGuj6669X586dqYzNR2xmWt9tgJ/+/vtvn4bYTZs2VXh4uBZvO6y9x87qv8On1a5OWVUrVUxxFWIyGAmFlVm/vmxbtpzfj4uTuXalUg7+LXvSvzKSDyqyXCNFlKiqooW40gEZczqdPn20Lr30UmshAsAfXEPIKa4h5BTXkJvL5fJZ5KdevXo+i/EgY6Zp+izCFBkZKZvNFsQZIb8xTdOnQjY6OpprqBDJjZ/B3jlRWFiYLrvsslydY0FR+P6GR55zukwqZJFFnkW9zn01HCzqBQAAAPjhwkAWABB6woI9ARR8DpdBD1lkk/eiXobMEOyHBQAAAAAAkBUEsgg4h2Fai3sB/jAvWNTLdJ37LT9VsgAAAAAAIJ8jkEXA0bIAWWat6eVpWeBemMBkYS8AAAAAAJDPEcgi4BwGLQuQVRdUyJ6rjDWpkAUAAAAAAPkcgSwCzuEyZZqmXAahLLLqfA9ZSbQsAAAAAAAA+V5EsCeAgs95rl2Bw2UoPCw8yLNBqDEeekiJGzda+5UaN9aFFbKiQhYAAAAAABQQBLIIOE+7AodhqmiQ54LQYz7yiPavXWvtV2zaVLIf89zr/q8VyNJDFgAAAAAA5G+0LEDAOVzuClmni4W9kEU+i3qZkosKWQAAAAAAkL8RyCLgnMb5ClnAP6mvFdNw0rIAAAAAAADkewSyCDirZYGLQBZZ5XXNGA4W9QIAAAAAAPkegSwCzmHQsgBZZfp8kdx9ZOkhCwAAAAAA8jsCWQSc00XLAmSRlceev2ZMl4OWBQAAAAAAIN8jkEXAmXL3kXVQIQu/pRHeG05aFgAAABRwYWG+/0R1uVxBmgkAFD4X/sy98Gcyck9EsCeAwsHhMqzFvQBv4Y0bq9mWLda+GRcnY80Sz9752w2HTMMl0zRks/GXAgAAQEFks9kUEREhp9Pdqio5OVlRUVFBnhUAFA7JycnWdkREhGw2WxBnU7CRaiBPuCtkCWThpzQuFatdAVWyAAAABVpMTIy1feLEiSDOBAAKF++fuSVKlAjiTAo+AlnkCYfLtBb3AjJj9Y41vZLZcwt6mS4CWQAAgIKsZMmS1vbp06eVlJQUxNkAQOGQlJSk06dPW/sEsoFFywLkCYdhWIt7Af7zbVng/uoM1mQAAACQB6KjoxUZGSmHw/3/f4mJiTp16pRKliyp6OhohYeHB3mGocs0TZ8ekC6Xi48cI0u4hgoXl8ul5ORknThxwieMjYyMVHR0dBBnVvARyCJPOF2mnIYp0zT5YQ4/pBHeu2hZAAAAUBjYbDbVqFFDu3fvtkLZ06dP+4QFSJ/h9clEFuRBdnANFW6RkZGqUaMG2U2A8Z2FPOFwGTJNk4W9kDVmWhWyBLIAAAAFXVRUlGrUqKHIyMhgTyVfMU1TTqfT+mOa/PsLWcM1VLh5wlgWUww8KmSRJxznglinYSqSTxghMxku6kXLAgAAgMIgKipKF110kZKTk3Xy5EmdPHlSTif/L5gZ79eIQBvZwTVUuERERKhEiRIqUaKEoqOjqYzNIwSyyBOe/rEOl6FiJLLIlHnBV51f1IsKWQAAgELDZrOpePHiKl68uCpVqiTTNH0+Tg1fTqdTGzZssPYvuugiRUTwz374j2uocAkLCyOADRK+q5AnHOf+p8nBwl7wS1rXiSnTcBLIAgAAFGI2m41FvTJw4cfLw8PDeb2QJVxDQN6ghyzyhCeIpYcs/GIVyF5wvRgOFvUCAAAAAAD5GoEs8oTTqpDl40XwRxotC+RuV2DSQxYAAAAAAORjBLLIE54KWQcVssiCVFeL4ZDpokIWAAAAAADkXwSyyBNOw5QpyUmFLPySfoUsLQsAAAAAAEB+RiCLPON0mVTIImsuuFxMwynTdKZqNA8AAAAAAJBfEMgizzgMgx6y8I+ZdoWsXA73TVTJAgAAAACAfIpAFnnG4TLlpEIWfjBTd491334uiDUJZAEAAAAAQD5FIIs84zQMa3EvwD8X9pB1nvtKIAsAAAAAAPKniGBPAIWHw2XSsgCpGG++qV0bNkiSbDabajZufL5lwYW9Yj1B7LlgFgAAAAAAIL8hkEWecbgMuQxTpmnKZrMFezoIEWbnzjpataqkc4Fs06bSyd1pH0vLAgAAAAAAkM/RsgB5xtM/lrYFyFzai3qZrnNBrItAFgAAAAAA5E8EssgzniDWYdC2AGnLtHLaqpClZQEAAAAAAMifCGSRZzz9Y51UyCJT6fSQlSmZLpmGPc9nBAAAAAAAkBsIZJFnHAYVsvBTqiDW6y6X/fziXgAAAAAAAPkMgSzyjKdC1k6FLPyW+loxDcf5XrIAAAAAAAD5TESwJ4DCwxPIOpxUyMLL9u0qsnOnJCk8LEwqUUIqn/7hpssukwpZAAAAAACQTxHIIs84XKZMSXYXgSzOC+/aVY23bLH2zbg4aflspVUdK8ndroAesgAAAAAAIJ+iZQHyjCn3gl6eXrJA+jLoIWs4ZBqGTMOVh/MBAAAAAADIHQSyyFN2l2G1LgAylM7CXp7+sbQtAAAAAAAA+RGBLPKUw2WwqBf8kME14gliaVsAAAAAAADyIQJZ5CkqZOEP0zSVXihrngtiPZWyAAAAAAAA+QmBLPKUw2W6F/dK5+PoQGZoWQAAAAAAAPIzAlnkKYfLkGmacrKwFzJkpt9D1tOqgEAWAAAAAADkQwSyyFOe/rG0LUBmzPT6yHoqZF30kAUAAAAAAPkPgSzylCeIZWEvZCyj68OUDCctCwAAAAAAQL4UEewJBNumTZs0bdo0/fXXXzpw4IDOnDmjUqVKqU6dOmrXrp1uu+02lSpVyu/x1q1bp2nTpmnVqlVKTEyUaZqqWLGiGjVqpG7duql9+/ay2Wx+j2eaphYsWKCZM2dq/fr1OnLkiIoVK6aKFSuqZcuW6tmzp+rXr5+dpx4U9nOBLBWyyJBp/Sftuw0HLQsAAAAAAEC+VGgD2bNnz2rEiBH67rvvUt13+PBhHT58WCtXrtRHH32kESNGqEuXLhmO53A4NHLkSH3zzTep7tu5c6d27typn376SW3bttXrr7+uChUqZDrHxMREDRo0SKtXr/a53W636/jx44qPj9eXX36pe+65R4MHD1ZUVFSmYwab41xlLBWyyJiZYZGsaditxb0AAAAAAADyk0LZssBut2vAgAE+YWx4eLgaNGigFi1aqFq1atbtp0+f1pNPPqkpU6akO55pmnriiSd8wtgiRYqoSZMmuuyyyxQTE2PdvnTpUvXt21cnTpzIcI5JSUm68847fcLY0qVLq3nz5mrUqJEiIiKsc3/22WcaMmSI/y9AEDmokIXfMqiQdTnOL+4FAAAAAACQjxTKCtlPPvlEy5cvt/Y7duyo4cOHq3LlytZtq1at0rPPPquEhARJ0iuvvKLmzZurbt26qcb79NNPtWDBAmu/T58+Gjx4sEqUKCHJXY07adIkjR8/Xk6nU9u3b9dzzz2n9957L905Dh06VLt375bkDneHDh2qXr16WUHsoUOH9Nprr2nOnDmSpJ9++klNmzbV3Xffnd2XJU84DPdSTXYCWWTEzKSCmpYFAAAAAAAgnyp0FbJ2u12ffvqptd+qVSu9//77PmGsJF1xxRX64osvrFDV6XTqww8/TDVeUlKS3n//fWu/d+/eGj58uPU4SSpatKgGDBigESNGWLfNnz9fa9asSXOOv//+uxYvXmztv/HGG+rdu7cVxkpSbGysxo4dq+7du1u3ffDBBzp16lQmr0DwOVyG1boASJupzCtkDZmGK++mBAAAAAAAkAsKXSD7zz//+ISWjz/+uMLDw9M8tlq1aurTp4+1v3jxYpkXVO5Nnz5dp0+fluRuKfDMM8+ke+6ePXvqqquusvY/++yzNI/7/PPPre22bduqc+fO6Y45fPhwlStXTpJ09OhRzZgxI91jQ4XdZdKyAJnLpIes91cAAAAAAID8otAFsgcOHPDZb9SoUYbHX3rppdb26dOndfToUZ/7f/75Z2v7xhtvVHR0dIbj3Xbbbdb2b7/9puTkZJ/7jx8/rj/++MPa79mzZ4bjRUdHq2vXrtb+3LlzMzw+FDhcBi0LkImMK2StdgUs7AUAAAAAAPKZQhfIercSkGRVt6bH6XT67BcpUsTaPnbsmP79919rv23btpmev2XLllZF7tmzZ33CV0lauXKlXC73x7BtNpvatGmT6Zjex6xZs0bHjx/P9DHBZKdlAfySccsCSTLpIwsAAAAAAPKZQhfIXnzxxT77v//+e4bHL1u2zNquXLmyihcvbu1v2bLFp4VBZtW2kruitUaNGtb++vXrfe7fvHmztV2tWjWVKlUq0zHr169vbRuGoY0bN2b6mGByuAw5DCNV+wcUTq5p07Rp8mRtmjxZ/02bJvO77zJd1IuWBQAAAAAAIL8qdIFs9erVffq4vvPOOzp8+HCax/7111/6/vvvrX3vfrKStHPnTms7Kioq1cJg6alWrZq1vXv37nTHrFmzpl/jxcbGqmjRotb+rl27/HpcsDhcpmSKKlm4NWigM3FxOhMXp7P160sNGrhrYzMIZT0VsrQsAAAAAAAA+U1EsCcQDM8995w2bNigw4cPKyEhQbfccosee+wxtW/fXqVLl9b+/fv1008/6cMPP5TD4Q58GjZsqDvvvNNnnEOHDlnbsbGxfp/f+1jvMSTp4MGD2RqzXLlySkhISHPMvORyuWSz2WSapkzDkGGk7hV71uGSaZo663Aq3BZOpWwh52nR4WEYhvvaMc00rx/3QSkyTVMuZ4rC0rnOULhceB1duA9khmsIOcU1hJziGkJu4DpCTnENAXmjUAayNWvW1HfffadXXnlFCxYs0P79+zV06NA0j7XZbOratauGDRuWasGuY8eOWdsX9qbNSExMjLV9Yb9X7/2sjOl97IkTJ/x+XG7btWuXihcvrtOn7Dp67LgSE5NSH3Q2WtWKS/sTU1QszAhqgIzQc/DgQYWfPi7j1AkdTUxM97hypY5K9ii5zhbX4cOHrV+eAJK0YcOGYE8B+RzXEHKKawg5xTWE3MB1hJziGgICo9C1LPAoW7as2rdvn2lbgDZt2uj+++9PMxy128/3r/RuGZCZqKioNMeQpJSUlByP6T1GKLI73L9hcxhSWFihvQSRBpvN5t4wTWW0qJckGU67ZLoX3eM6AgAAAAAA+UWhrJDdvHmzHnvsMZ9eq0WKFFG9evUUHR2txMREq5fr0qVL1a1bN/Xt21dPPvmkIiLOv2TeFXlZCYS8x3A6nT73ee9nZczw8PB0xww1KU53IOs0TIWFhWdyNAqrzFpZmK4U2QhkAQAAAABAPlPoAtk9e/aob9++VruBokWLatCgQbr99tt9KlL37NmjMWPGaM6cOXK5XPr000918OBBvf3229Yx3iFoVnpYegemkZGRPvdld0zvvi4XjpmXatasqYiICBVPPqIyjjBVdEalOiY8zKaY4jEqUbqYKpWNVoUKFYIwU4QKl8vl8zGYChUqyBl+QM6wEypSsWK6j4uKiVZE8WIqUqkS1xBSXUeNGzf2+XkKZIZrCDnFNYSc4hpCbuA6Qk5xDSGn1q9fzzovfih0geyIESOsMLZIkSL67LPPdPnll6c6rnr16ho7dqxq1Kihjz76SJI0e/ZsdezYUV26dJHk21IgK20CvI8tUqSIz32BGDMvhYeHKywsTDabTbawsDQrF90fRrfJea5lAdWNhZtt4UKVOvcXflRkpMISEmRrGiubzZbhtWEznZLp5BpCmsLDw30+jQBkFdcQcoprCDnFNYTcwHWEnOIaAgKjUH1X7dmzR7/99pu1P2DAgDTDWG+DBg3S8uXLtXbtWknS//73PyuQLV26tHXcqVOn/J7H6dOnrW3vMSSpVKlS2RrT+9gLxwxFDpchh4vfmEAKe/xxXbxli7VvxsVJS75WZj1kTZddMg2ZhlO2sEL1owwAAAAAAORjhaqs7K+//vLZv+WWW/x63O23325t//vvvzpy5IgkqaLXx6k9t/nj0KFD1nb58uV97svumN7HxsbG+v24YLG7DDmMjAM3FHKZXB6m4fD5CgAAAAAAkB8UqkD24MGD1napUqX87jtZv359n/2EhARJ7n6pHsnJyTp8+LBf4+3Zs8farl27ts99tWrVsrZ3797t13gHDx7U2bNn0xwjVDlcpuxUyCJdpjKtkPUEsS574KcDAAAAAACQSwpVIBsVdX6BKYfD/6q6C/tT2mw2SVLDhg2tbcldPZuZ06dP+wStF4a9jRo1srZ37dqlM2fOZDqm93ltNpvi4uIyfUyw2WlZgIyYflRPnwtiqZAFAAAAAAD5SaEKZCtVqmRtJycna8eOHX49btu2bWmOExMTo4YNG1q3//HHH5mO9eeff1qrzYWHh+vKK6/0ub9Zs2ZWw2yXy6UVK1ZkOqb3eRs2bOjThzZUOVyGnC5Thj/BGwop/ypkCWQBAAAAAEB+UqgC2RYtWvhUu37zzTd+Pe67776ztuvWrevTo/X666+3tmfOnJlpReuUKVOs7datW6tkyZI+95csWVItW7a09qdOnZrheKdPn9bMmTOt/RtuuCHD40OF3eUO26iSRdrMTKtkTU+rAheBLAAAAAAAyD8KVSBbtmxZnwD1iy++0PLlyzN8zJdffqlly5ZZ+7fddpvP/T179lSxYsUkSYcPH9aIESPSHWvatGn6/fffrf277747zePuuOMOa/vXX3/V999/n+6YL730kpKSkiRJ0dHRfi9UFmyeINYTzAJZZjglSaZBD1kAAAAAAJB/FKpAVpKeeuopqyrV5XLp/vvv1/vvv2+Fmh6HDh3Syy+/rFdeecW6rVGjRurdu7fPceXLl9d9991n7X///fd68skndeTIEeu2s2fP6qOPPtLw4cOt29q3b6/27dunOcdOnTqpRYsW1v6wYcM0YcIEpaSkWLcdPnxYgwYN8qmOffjhh1W2bFm/Xodg8wSyVMgiLaYfi3pJpkzDQcsCAAAAAACQr0QEewJ5rVq1anrvvfc0YMAAJScny+Fw6N1339WHH36o2rVrq0yZMjp69Kj+++8/q9erJNWsWVMfffSR1d/V24ABA7R+/XotXrxYkjR79mzNmzdPcXFxioqK0tatW3Xy5EmfOYwaNSrDeb711lu64447tGfPHjmdTo0ZM0affPKJ6tatK7vdri1btvgsTNaxY0f1798/h69O3jnfsoAKWaTBzDyOlSQZDpm0LAAAAAAAAPlIoauQldy9ZKdNm6ZGjRpZtzkcDsXHx2vFihWKj4+3wlibzaYbb7xR06dPV4UKFdIcLyIiQuPHj9ctt9wim81mjbdhwwatWbPGJ4y97LLL9PXXX2dayVqxYkV9+eWXuvzyy63bTp48qTVr1mjDhg0+Yewtt9yid99916c/bqg737KAClmkJfMestK5PrJUyAIAAAAAgHyk0FXIelx88cX6/vvvtWTJEs2fP19r1qzRoUOHlJycrBIlSqhq1aq68sor1b17d8XFxWU6XlRUlF599VXddtttmjFjhv78808lJibKbrerbNmyatKkibp06aLrrrvO7+C0cuXK+vrrrzV//nzNmTNH69at0+HDhxUWFqaKFSuqWbNmuvXWW9W0adMcvhp5j5YFyJh/ldOm4Ti/uBcAAAAAAEA+UGgDWY8OHTqoQ4cOuTZekyZN1KRJk1wbz2az6brrrtN1112Xa2OGApcpuQyTRb2QAT+uDRc9ZAEAAAAAQP6Sfz7jjgLHYZhUyCJtpp8tCwyHZJoyDWceTAoAAAAAACDnCGQRNHaXQQ9Z5IhpuNsV0LYAAAAAAADkFwSyCBqHy5CDlgVIkyl/WhaYrnPtCmhbAAAAAAAA8gkCWQSN3UnLAuTQuSCWPrIAAAAAACC/IJBF0DhchlyGKZdBlSwuYPpbIetpWUAgCwAAAAAA8oeIYE8AhZenf6zDZSg8LDzIs0GwuFav1rq1ayVJMTExurhuXSlptT95rFUZ6+klCwAAAAAAEOqokEXQePrHsrBXIVekiMxzf1S0qFSkyLk7/EhkDYf7OFoWAAAAAACAfIJAFkHjMDwVsrQswIX8vyZMw0nLAgAAAAAAkG8QyCJo7M7zLQsAb+4Wsn6Gsi47LQsAAAAAAEC+QSCLoDnfsoAKWVzI9LtG1jQcEhWyAAAAAAAgnyCQRdCcb1lAhSzS4l8kaxoOa3EvAAAAAACAUEcgi6AxTMlpmCzqBYvNZju3lYUesi53IGv62+IAAAAAAAAgiCKCPQEUbnaXwaJehZztk09UcdMmSVLRIkWkiy+W/q+B/A5lDbu736zplGyRgZsoAAAAAABALiCQRVA5XFTIFnZh48ap2pYt1r4ZFyf93wS/81jzXP9Y0+WQLYxAFgAAAAAAhDZaFiCoHC7D6iUL+PK/h6wkiT6yAAAAAAAgHyCQRVDRsgDpy0LLAknmua8AAAAAAAChjEAWQeVwmTIMU06qZGExfb5kerRXywIAAAAAAIBQRyCLoPL0j6VKFqllrWWBScsCAAAAAACQDxDIIqgc5wJZFvZCthkOSaZEhSwAAAAAAMgHCGQRVPZzlbEOAlmk4n/VtGk46CELAAAAAADyBQJZBNX5CllaFuCc7FwKLgctCwAAAAAAQL5AIIugclg9ZKmQxQXMrFXI0rIAAAAAAADkBwSyCCqHy5QpFvVCzpguOxWyAAAAAAAgXyCQRVCZkpwuk0W9kIqZ5R6yDplZqKoFAAAAAAAIBgJZBJ3dZdCyAKllJVw1HO7jDWfg5gMAAAAAAJALCGQRdA6XwaJeyBHzXP9Y07AHeSYAAAAAAAAZI5BF0DlcJhWySENWWhbYz32ljywAAAAAAAhtBLIIOnfLApP+nzgnG9fBuQpZ6ysAAAAAAECIIpBF0DlchkzTlNMgkIU3KmQBAAAAAEDBExHsCQCe/rEOl6HIcH5HUNiYVarIfuKEJCksLEzhVaqcuyMLY5wLYk0XPWQBAAAAAEBoI5BF0Hn6x9pdpqKDPBfkPeOXX7Rh7VpJUtmyZVW9Snnp4BplKZE1nO7jqZAFAAAAAAAhjnJEBJ39XCDLwl7wlbUWFqbLQcsCAAAAAAAQ8ghkEXSOcy0LPK0LUNiZPl/8fpRhl8miXgAAAAAAIMQRyCLoHFTI4hybzeYVxGYxkTUckkEPWQAAAAAAENoIZBF0DsOUKQJZeGSvUpqWBQAAAAAAID8gkEVIcLgMWhbgHPOCr34+ynAHsqbJdQQAAAAAAEIXgSxCgt1lUiELH1mOVV1294OokgUAAAAAACEsItgTACRPhSyBbGEU9vzzqrlpkySpaJEiCqtdXXqsu5TFSldPuwLTcMgWHpXb0wQAAAAAAMgVBLIICXaXIQctCwol248/qvyWLda+Wa+uO5DNRssCyd1LVpG5OEEAAAAAAIBcRMsChASHy5TDMOj/iWwzXXb3hmEP7kQAAAAAAAAyQCCLkOBwGZIpqmQhqzI2q+G8V8sCAAAAAACAUEUgi5Dg6R/Lwl7ILp+WBQAAAAAAACGKQBYhwVMZa6dCFpasVsg63Y+hQhYAAAAAAIQwAlmEBCpkkRtMl10mPWQBAAAAAEAII5BFSPAEsXYCWViyXi1tGg5aFgAAAAAAgJBGIIuQYHe6wzcW9YKVw2Z1US9JcjloWQAAAAAAAEIagSxCgss0ZZgmFbLIEdNIkemiZQEAAAAAAAhdBLIIGSlOg0AWXrLRssBll2k4ZRquAMwHAAAAAAAg5whkETLsLipk4SUbHQtMV4rPVwAAAAAAgFBDIIuQYXcZSnESyMLNzGaFrPsrgSwAAAAAAAhNBLIIGXanIYfLlJmdxZxQgGT//beCWPrIAgAAAACAEEUgi5BhdxkyTVMOF4EspOz1kD3XssAgkAUAAAAAAKGJQBYhw9OugD6yyDaXXZIp00nLAgAAAAAAEJoIZBEyPEEsgSwkSdlsXWG67DINAlkAAAAAABCaIoI9AcDDfq5CloW9ChezdWudKFtWklQkKkpRNat47sneeC67tbgXAAAAAABAqCGQRcigQrZwMj7+WP+tXStJqlSpkiqUtEnHtmZ7PNOVcn5xLwAAAAAAgBBDywKEDIfLlKnzlbIorM5VxuakZYHLLjObjwcAAAAAAAgkAlmEDE8Ya3cRpBVqOQ1SXSnuMQxH7swHAAAAAAAgFxHIIqTYXQYtCwo5M42tLD3+XLsC2hYAAAAAAIBQRCCLkGJ3GSzqVYjZbDZlN4j18CzoxcJeAAAAAAAgFBHIIqS4WxYQyEI56CFLhSwAAAAAAAhdBLIIKXaXKcMw5TQIZZHTQJYKWQAAAAAAEHoigj0BwJunXYHdaSgiit8XFAZhffoo7t9/JUlRkZEKr1VVrnFPZb9xgemSTBcVsgAAAAAAICQRyCKkeNoV2F2mooM8F+QN27p1itmyxdo3T53wbGV7TNNllwhkAQAAAABACKIEESHFE8iysFdhZvp8ydYIrhRaFgAAAAAAgJBEIIuQYve0LGBhL+SoQjaFlgUAAAAAACAkEcgipJxvWUAgi+wzXXaZhlOmyXUEAAAAAABCC4EsQophSg7DtCplUZjlrELW+ysAAAAAAECoIJBFyLE7DSpkIZk5XNRLBLIAAAAAACD0EMgi5NhdBot6IUesIJaFvQAAAAAAQIghkEXIcVfIZr86EgVFDq4BWhYAAAAAAIAQRSCLkGN3GXK6DBkGoSyy53zLAipkAQAAAABAaCGQRcjxtCugj2whl4MespIp07BTIQsAAAAAAEIOgSxCjieIJZBFTpguOxWyAAAAAAAg5BDIIuR4+seysFfhZFqVsTlrWWG6UqiQBQAAAAAAIYdAFiHHbrUsoIcscoAKWQAAAAAAEIIIZBFyaFmAnFbHSu4KWZmGTJcjF+YDAAAAAACQOwhkEXKchimXaVqVskB2eNoV0LYAAAAAAACEEgJZhCS706BCtjAzc6NC1n7uK4EsAAAAAAAIHRHBngCQFrvLZFGvQsK4804d3rRJYTabihUrpqKVSuTKuFaFrEEfWQAAAAAAEDoIZBGSqJAtPMwhQ7R37VpFREQoNjZWkUVOSKf35XxcTyDrpEIWAAAAAACEDloWICTZXYYcLlNmLnx0HflNLr3nhlMyDYkKWQAAAAAAEEIIZBGSUpyGTNOUw0UgWyjlUhBvulLoIQsAAAAAAEIKgSxCkqddAW0LCiHTlJlLVbKmy24t7gUAAAAAABAKCGQRkjxBLAt7FR42my3Xx6RCFgAAAAAAhBoCWYQku5MK2cItFytkDYdMk+sIAAAAAACEBgJZhCSrZQEVsoWQmWvrepmuFPdwtC0AAAAAAAAhIiLYEwDS4nC5u4hSIVvwhbdsqUu3bJHNZnO3LahTXa4ZY3JlbKtdgStFiiiaK2MCAAAAAADkBIEsQpIpd3Ws3ZVLpZIIXadOKeLUKWvXOHU698Y+VxlLH1kAAAAAABAqaFmAkGV3GSzqVWjlUg9Zwx3E0rIAAAAAAACECgJZhCy7y6BlQWFl5t6iXt5fAQAAAAAAgo1AFiHL3bKAQBY5YBoyDQctCwAAAAAAQMggkEXIsrtMGYYpJ6FsIZR7vYNNVwoVsgAAAAAAIGQQyCJkefrHUiWLHHHZqZAFAAAAAAAhg0AWIcsTxKY4c69aEvlELvWQldwVsjIIZAEAAAAAQGggkEXIslMhi1xguuwyDUOm4Qz2VAAAAAAAAAhkEbo8QSyBbOFj5nIPWe+vAAAAAAAAwUQgi5BlBbJOAllkH4EsAAAAAAAIJQSyCFmGKTkMkwrZQsfM5R6y9nNfCWQBAAAAAEDwEcgipNmdhlKokC2EAtGywJ5rYwIAAAAAAGQXgSxCmt1lUCFb2OReFutmOCTTkAhkAQAAAABACCCQRUizOwlkC6fcTWVNw07LAgAAAAAAEBIIZBHS7C5DTpcpw8jtskmEtFx+u02XnZYFAAAAAAAgJBDIIqR5+sdSJVvY5HKFrCuFClkAAAAAABASIoI9ASAjniA2xWWoaGR4kGeDQDCGDdPeDRsUFRWlYsWKKbqUK9fPYbrs7rYFpimbzZbr4wMAAAAAAPiLQBYhze6pkHVSIVtQmbfdpsP166tYsWIyS5dWEdte6dS+3D2HK8VddOuySxFFcnVsAAAAAACArKBlAUKa3WWe+0ogW9D5Vq7mchPZc+0KaFsAAAAAAACCjUAWIc0TxNqdLOpVeOT+e+1Z0Ms0CGQBAAAAAEBwEcgipDkNUy7TpEK2MDGt/+TekFaFrD1XxwUAAAAAAMgqAlmEPLvTUAqBbKGS2zWyJi0LAAAAAABAiCCQRcizuwwW9SoEzveQNSUzlyNZ05BpOKmQBQAAAAAAQRcR7AkAmbE7aVlQoB06pIjDhxWenKyws2el8CSpSADO40qhQhYAAAAAAAQdgSxCnt1lyOEyZZqmVxUlCorwjh116ZYt1r5xUQ0lz3k7189juuwSFbIAAAAAACDIaFmAkJfiNGSaphyu3O4sipCV2y0L5O4fS4UsAAAAAAAINgJZhDxPuwIW9kJOmC67TMMl03AGeyoAAAAAAKAQI5BFyPMEsizsVZgEoELWcFfHsrAXAAAAAAAIJgJZhDxPEMvCXsgJ0+kJZGlbAAAAAAAAgodAFiGPCtnCKBAVsucqY6mQBQAAAAAAQUQgi5Bnd5kyRYVsoRKA9ds8lbFWMAsAAAAAABAEBLLIF+xOg0W9CpUAJLIuhyTTal0AAAAAAAAQDASyyBfsLkN2ZwBCOhQipkyXw1rcCwAAAAAAIBgIZJEvpDgNpbhcwZ4G8ooZmPDddKXIpIcsAAAAAAAIooAEshMmTFBiYmIghkYhleJ0V8iaAQrqEErMQDQscI9s2AlkAQAAAABAUAUkkB07dqw6deqk++67Tz///LPsdgIQ5EyK05BpmizsVWgEKJJ1EcgCAAAAAIDgigjUwIZhaNmyZVq2bJlKliypLl266Oabb1bjxo0DdUoUYClOw/paJCI8yLNBfmW6UiTTkOlyyBYeGezpAAAAAACAQiggFbL169eXaZrWn+PHj+vrr79Wr169dNNNN2nSpElKSkoKxKlRQKU4Xee+UiFbOASuh6z3VwAAAAAAgLwWkED2hx9+0KxZs9S/f39VrFhRkqxw9r///tOoUaPUvn17Pfzww1qwYIFcLNaETJw9F8SeJZAtHALUscDTrsA0aFsAAAAAAACCIyCBrCTVrVtXTz/9tBYvXqzPPvtM3bt3V3R0tBXMOp1O/frrr3r00UfVrl07jRo1SvHx8YGaDvI5T+9YKmQLCypkAQAAAABAwRSwQNbDZrOpVatWeuONN/THH39o1KhRatOmjcLDw61w9ujRo5o0aZK6deumHj16aPLkyTp+/Higp4Z8xDDdoSyBbGERqEDW7vMVAAAAAAAgrwVsUa+0FC1aVN26dVO3bt106NAhzZw5Uz/99JM2bdpkHbNp0yb9+++/GjVqlK6++mrdfPPNateunWw2W15OFSEoxWlYvWRRcLg+/VTb1q9XTEyMikRFKabI4YC1LJDhkExDokIWAAAAAAAESZ4Gst5iY2PVv39/9e/fX/v379eiRYu0aNEirVy5Ug6HQ3a7XXPnztXcuXNVqVIl9erVS7169VJsbGywpowgcweyVMgWOFdeqVNFiii8VCnZihWV4fpPOrk7YKczDTsVsgAAAAAAIGgC3rLAH5UrV1bHjh3VoUMHxcXFSZJVEWuapg4cOKDx48erU6dOGjZsmJKSkoI5XQRJitOQ3eVuc4GCKvDvrekikAUAAAAAAMETtApZSdq5c6dmz56thQsXavPmzdbtNpvNCt2qV6+uhIQEGYYhh8Oh6dOna+HChRozZoxatmwZrKkjCM46DZmmqRSnoaKR4cGeDnKZ+5cwnkA2cMGs6UphUS8AAAAAABA0eR7IHjlyRLNnz9asWbO0ceNG63bvqseyZcvqpptu0s0336z69evr4MGDmjlzpr799lvt3r1bSUlJevjhh/Xtt9/q4osvzuungCDx9I9NcRHIIvtMl12m4ZBpmvSmBgAAAAAAeS5PAtnk5GTNnz9fM2fO1IoVK+RyuYM17xA2IiJCHTp00M0336yrrrpKERHnp1ahQgXdd9996tevn1544QXNmDFDZ86c0Ycffqi33347L54CQoCnfyx9ZAuBQLalcNnd4xt2KbxI4M4DAAAAAACQhoAFsoZh6Pfff9fMmTO1aNEinT17VpJS9f+Mi4vTzTffrK5du6ps2bIZjhkeHq6XX35ZixYt0vHjx7Vq1apATR8hiEC2MDDP/TewLQvcX+2yEcgCAAAAAIA8FpBAduTIkfr555919OhRSbI+GuwJY0uXLq0uXbqoZ8+eatCgQZbGjoqKUr169bRq1SodO3Yst6eOEJbiNGSKQLbAWblSMevXq2hMjKKiwhVW5KhUp2jATnc+kE2RVCJg5wEAAAAAAEhLQALZyZMn+wSwkru6tW3bturZs6euuuoqRUZGZnt8p9MpSapcuXKO54r8w5TkcBkEsgVM+L33Km7LFmvfuKi67DNeCtj5TJfd5ysAAAAAAEBeCljLAk8YW7duXfXo0UNdu3ZVuXLlcmXsChUqqHfv3mrZsmWujIf846zTsBb3ArLDt0IWAAAAAAAgbwUkkC1VqpS6dOmim2++WY0bN8718ceNG5frYyJ/SHEaOkuFbCEQwEW9TJdkuqiQBQAAAAAAQRGQQHbp0qU5akkApCfFacjuMqy+xEB2mC67RIUsAAAAAAAIgoAEshMmTJAk1axZUzfddFO2x1i2bJnCw8P12Wef5eb0kI+lOF2S6Q5mi0aGB3s6CJgAVsjK3a6AClkAAAAAABAMAQlk33vvPdlsNrVt2zbbgeyyZcu0cuVKlSxZMpdnh/zMs6AXgWwBF9g8VqbLLtMgkAUAAAAAAHkvLNgTSM/Zs2clScnJyUGeCUKJdyCLgizQFbJ2mS6HTJPrCAAAAAAA5K1sV8gePnxYdnvGFWZnz57Vvn37sjRuSkqKlixZovXr10tyLxAGeHgW9EpxEaQVbIFvWeD+apctomhAzwUAAAAAAOAt24Hsjz/+qNGjR6d7v2ma+uuvv3T11Vdna3zPok3169fP7hRRANmdhkxJZx2uYE8FgRTwlgXnFvRypUgEsgAAAAAAIA9lO5C955579MMPP2jr1q3pHmOa2UtVbDab9bVfv37ZGsNfLpdLv/zyi+bPn68NGzbo0KFDcrlcKl++vBo3bqybbrpJV199tcLC/OvusG7dOk2bNk2rVq1SYmKiTNNUxYoV1ahRI3Xr1k3t27e3np8/TNPUggULNHPmTK1fv15HjhxRsWLFVLFiRbVs2VI9e/YsVKG1KXcoS4VsQRfgRPbcgl4s7AUAAAAAAPJatgPZ8PBwvfTSS7rzzjuzHbymx2azqU6dOnr00UfVtm3bXB3b27p16zRs2DBt3rw51X0JCQlKSEjQvHnz1LRpU40ZM0ZVq1ZNdyyHw6GRI0fqm2++SXXfzp07tXPnTv30009q27atXn/9dVWoUCHT+SUmJmrQoEFavXq1z+12u13Hjx9XfHy8vvzyS91zzz0aPHiwoqKi/HjW+V+K06CHLHLENM63LAAAAAAAAMhL2Q5kJalZs2ZavHixnE6ndZtpmrrmmmtks9nUvHlzvfHGG36PFxYWpiJFiqhkyZKKiMjR1DK1fPlyPfzwwz6LhsXGxqpGjRpyOBz6999/5XA4JEn//POP7rrrLk2dOjXNINU0TT3xxBNasGCBdVuRIkUUFxen8PBwbd26VadOnZIkLV26VH379tU333yjkiVLpju/pKQk3Xnnndq9e7d1W+nSpXXxxRfrzJkz2rJli5xOp0zT1GeffaaDBw9qzJgxOX5d8gMC2cIg8It6ub+mBPQ8AAAAAAAAF8px6lmxYsU0bzdNU0WLFs2wqjRYdu3a5RPGVqlSRS+++KKuuuoqq53AiRMnNH78eH3xxReS3BWzI0eO1Pjx41ON9+mnn/qEsX369NHgwYNVokQJSe7FzSZNmqTx48fL6XRq+/bteu655/Tee++lO8ehQ4daYWyRIkU0dOhQ9erVywqqDx06pNdee01z5syRJP30009q2rSp7r777py+PCEvxeWS3WXIME2FZaH9A/KPADcskExDpuG0KmUBAAAAAADySkDKUAcOHChJqlGjRiCGz7ERI0ZYYWytWrU0adIkVa5c2eeYkiVL6vnnn5dhGPrqq68kSfPnz9fOnTtVq1Yt67ikpCS9//771n7v3r01fPhwn7GKFi2qAQMGKDY2Vs8995w11po1a3T55Zenmt/vv/+uxYsXW/tvvPGGOnfu7HNMbGysxo4dq6ioKP3www+SpA8++EA9evRQTExM1l6QfObs/7N35/Fx1fX+x98nmaxNmu4FSlu20lIQ4eIC0ouAWEWx0IIgmwgoKItaUAEFcWG9/BARvMJFREQEEUFWQdl3ZIdCW0qB7k2aZp39nPP9/v6YZkjatEkmc3JmJq/n49E758yc+c4n4bT33nc++XxdI9nMLNnqivKwy0EQ8jwGpVd+ipEFAAAAAABgyPVvp6oBOuOMM3TGGWdozpw5QSw/KG+99ZaeeeYZSZkRCVdcccUmYWx33/ve97KzWa21PYJSSbrzzjsVi8UkZUYK/OhHP9rsWocffrj233//7PlNN93U63U333xz9njWrFmbhLHdXXjhhRo7dqwkqbW1VXffffdmry0VXeMKkowtKGHBB7LWT2c39wIAAAAAABgqgQSyheyuu+7KHh922GHafffdt3j9yJEjdfbZZ+uUU07RD3/4Q33sYx/r8fo///nP7PHBBx+s2traLa531FFHZY+feuqpHjNsJam9vV3PPfdc9vzwww/f4nq1tbU9gu+HHnpoi9eXgpSfCWKZI4vBsCbFDFkAAAAAADDkch5Z0PVr8l0OO+ywzb42WN3XHqzuHa5HHnlkv97zjW98o9fn29ratHDhwuz5rFmz+lxr7733Vnl5uXzfVzKZ1HPPPaeDDjoo+/p//vMf+b4vSXIcR/vuu2+fa+67777ZbttXX31V7e3tamho6PN9xaoriCWQLWFDMLLA+mlZ48saX04Zoy8AAAAAAMDQyDmQPffcc7MbYEk9Q9ONXxusfAWya9eu1erVqyVJNTU1fXbH9mXx4sWy3YKjXXfdtc/31NbWasqUKfrggw8kZUYodA9kFy1alD3edttt+xWszpgxI3tsjNHbb7+tz3zmM/36GopR2jOyklKeH3YpyAP/8cf19ptvauzYsapQUvXlzZJWBf65Xd2x1k/JKdtyZzsAAAAAAEC+DHpTL2vtZsNXm4cut3wGu4sXL84e77DDDiovz3TFrVy5Uv/4xz/0+OOPa9WqVUokEpowYYI+9alP6YgjjtCee+7Z63offvhh9riysnKLs2i723bbbbOB7PLlyze75tSpU/u13vjx41VdXa1kMilJWrZsWUkHslaZUJYO2RIxfry8ceNkxo+XUVySJ61fGfjHdm3oZf20VEEgCwAAAAAAhkbOgew222yT02th6h5+TpgwQcYY3XjjjbrmmmuUSqU2uXb58uW68847NXfuXP385z9XVVVVj2vWrVuXPR4/fny/6+h+bfc1JKmpqSmnNceOHatVq1b1umYpSnkmO0sWyEV2fqxhjiwAAAAAABg6OQeyjz32WE6vham5uTl7XFtbq1/+8pf6y1/+kn1up5120tixY9Xc3KylS5dmn7/77ru1fPly/fGPf1RlZWX2+ba2tuxxfX19v+uoq6vLHre3t/d4rfv5QNbsfm1HR0e/35dvvu/LcRxZa2WNkTHBhKYJ11Mi7csE+BkYGl0zk7tY2SH57+q4SVlr5btJOdxHRW/j+2jjc6Av3EMYLO4hDBb3EPKB+wiDxT0EDI1BjywoJt2Dyqeffjp7ftBBB+ncc8/V5MmTs6+vWLFCv/zlL/Xkk09Kkl555RVddNFF+sUvfpG9Jp1OZ4+rq6v7XUf3ULf7GpJ6dOrmuubG3b5DadmyZRoxYoRi0bRa29rV2NgSyOeMLU9rhNOgNWtSSiTimwTbKFLWKh6PqW3dOrnx5r6vHxRH4xs+JuM2yo9VqKmpif9jo4QsWLAg7BJQ5LiHMFjcQxgs7iHkA/cRBot7CAhGWdgFDKXu4WdXGHvUUUfp2muv7RHGStLkyZN13XXX6Ytf/GL2uTvuuEPvvvtu9tx13exxWVn/v5WRyEc5uOd5PV7rfj6QNbvm4fa2ZilKup6srNLG9vjaUbx6zose/PzpvlkZLy3ZzN/jgfx9AwAAAAAAyFXBJBDRaDS7KVVQNt4gbPLkyTr//PM3u3FYWVmZLrroouyIAWut/vznP2df7x4EDuTXnbsHphUVFT1ey3XN7p19G69ZihLpzPfQNZYgraTYjR6DZbykZDKBLME+AAAAAAAYCkMysmDZsmVyHEdTpkzZ5LU//OEPuvnmm9XU1CTHcTR16lSdeOKJ+upXv7rZoDRXtbU9d1L/2te+1uNX/XtTX1+vL33pS7rjjjskSc8991z2te4jBQYyJqD7tRtvFBbEmkNp6tSpikQiGhFfr9FumSZ6W/7+5qquOqK6EXWqH1WnCXWVmjRpUiCfg+DZ227T6nfe0Yj6epXblKoajCJ7j5NJBf+DhcoRVYrUVatqq600YcKEwD8PwfF9v8evU+22226E7BgQ7iEMFvcQBot7CPnAfYTB4h7CYL311lvs0dIPgQayL7zwgi677DItXrxYp5xyiubPn9/j9XPPPVf33HOPrM10w1lr9cEHH+jCCy/UM888oyuvvDKv3Z4jRozocf5f//Vf/XrfHnvskQ1kV6xYoXQ6rcrKSo0aNSp7TTQa7XcdsVgse9x9DUlqaGjIac3u12685lAqLy9XWVmZHMeRU1YWWPeq62c6nl1GFhQ9e/HFmrp4cfbc7DhZyb+eNSSdz45xJeOqLMB7FeEoLy/vMR4GGCjuIQwW9xAGi3sI+cB9hMHiHgKCEVgC8fjjj+ub3/ymFm8IWlauXNnj9SeeeEL/+Mc/JG06SsBaq3//+9+66qqr8lrT6NGje5yPGTOmX+8bO3Zsj/O2tjZJ0sSJE7PPrV+/vt91rFu3Lns8bty4Hq/lumb3a8ePH9/v9xWrtG9kJaU8fuqC3Fk/LVkja9y+LwYAAAAAAMiDQALZdDqtCy+8MDsr1VqrlpaWHtfcdNNN2dcikYjmz5+v3/72tzrkkEOyz99yyy1asWJF3uqaNm1aj/Oujb36svEmWV0/HZo6dWr2uXg8rubm/u0K3/1r2n777Xu8tt1222WPly9f3q/1mpqaeszf7b5GqeoKY5MEsiVqaGbIWj+14THdx5UAAAAAAAD5EUgge99992VnwlZXV+tXv/qVfv/732dfX79+vV566aXMr7U7jn784x/r1FNP1ec+9zn9v//3/3TcccdJygShDz74YN7qmj59eo/zDz/8sF/vW7t2bfa4uro6OxJg5syZPbp7Fy5c2OdasVisR9A6Y8aMHq/vuuuu2eNly5YpkUj0uWb3z3UcZ5Ovs1SlPEOHbKmyQx3I9n9eMwAAAAAAwGAEEsg+++yz2eMLL7xQX/rSl3rM+XzyySdljJG1VtXV1Zo7d26P95955pnZLtSnn346b3WNGTOmR1j5yCOP9Ot9L730UvZ45syZ2VmTdXV1mjlzZva17ht+bc4LL7yQHW5cXl6uT33qUz1e32uvvbJfu+/7evHFF/tcs/vnzpw5s8cc2lKW8nwCWQxKV2csHbIAAAAAAGCoBBLIvv3225IyG1TNmTNnk9e7QlbHcfSpT31K1dXVPV5vaGjQTjvtJGutVq1aldfaDj300OzxY489pvfee2+L169Zs0aPPvpo9nz27Nk9Xv/CF76QPb733nv77Gi97bbbssef+cxnNHLkyB6vjxw5UnvvvXf2/Pbbb9/ierFYTPfee2/2/Itf/OIWry8lKc/I9Y2MGZpuSgwlOmQBAAAAAEBpCiSQbW1tleM4mjx5cq87l7/wwgvZ43322afXNbo24BrIxlb9MXfu3GwHqeu6Ovfcc9XZ2dnrtel0Wuecc45cN7PhT11dnebNm9fjmsMPP1w1NTWSpObmZv3iF7/Y7Gf/7W9/69Hx+/Wvf73X64499tjs8eOPP6677rprs2v+7Gc/y87nra2t1RFHHLHZa0tNV3dsyqdLFjkyriQr0SELAAAAAACGSCCBbDwelyTV19dv8trChQvV2tqaPf/0pz/d6xrpdCYg6T7qIB/GjBmj8847L3v+1ltv6ZhjjukREkvS+++/r5NOOqnHyIDvf//7m4wDGDdunL75zW9mz++66y6dffbZPYLkZDKp6667ThdeeGH2uf3220/77bdfrzUeeOCBPb4vF1xwga6//nqlUh918TU3N2v+/Pk9umNPO+00jRkzps/vQano2tCLsQUlaIhmyEqZcQV0yAIAAAAAgKESCWLR+vp6tbW19QheuzzzzDPZ49GjR2uXXXbpdY0PPvhAkjb5lf58mDt3rj788ENdd911kqR3331XJ5xwgrbaaitNnjxZ7e3tevfdd3u859BDD9Xxxx/f63rf/va39dZbb+mJJ56QJN1///16+OGHNX36dFVWVmrJkiU9unC33XZbXX755Vus8YorrtCxxx6rFStWyPM8/epXv9INN9ygadOmKZ1Oa/HixdnOXUk64IADdPLJJ+fy7ShaXUFs0vMlVYRbDIqW9VPMkAUAAAAAAEMmkA7ZrvmvS5cuVTQa7fHa448/LikzP3bWrFm9vv/5559XS0uLHMfRTjvtFESJmj9/vi655JLsaARJWrt2rV566aUeYWwkEtFpp52myy67bLNrRSIRXXPNNTriiCPkOI6kzDiEBQsW6NVXX+0Rxu655576y1/+0mcn68SJE3XLLbfov/7rv7LPdXZ26tVXX9WCBQt6hLFHHHGEfvOb3/Q6HqKUpTx/wyMdsqVniDtkDYEsAAAAAAAYGoF0yO6999566aWX5LqurrjiCv385z+XlAljX3311ex1G2+QJUkrVqzQT3/60+z55kYa5MPhhx+ugw46SPfee68effRRvf/++2ppaVFFRYW222477bPPPjr66KM1efLkPteqrKzUxRdfrKOOOkp33323XnjhBTU2NiqdTmvMmDHafffddcghh2j27Nn9Dk633npr/eUvf9G///1vPfjgg3rzzTfV3NyssrIyTZw4UXvttZeOPPJI7bHHHoP8ThSntG9lRSCLwcmMLEjLWpv9gQoAAAAAAEBQAglk582bp+uvv16u6+qOO+7QG2+8oW222UZPPfWUHMeRtVYTJkzQ/vvvn33Pe++9p/vvv1+33XabOjo6JElVVVU69NBDgygxq6GhQccff/xmxxEM1O67767dd989L2tJmU7i2bNn9xpeIxPGEsiWoCGcISs/lfk840rllUP3uQAAAAAAYFgK5Hfct956a33/+9+X3RCqLF68WI8//rh83892of3kJz9RJPJRHvzXv/5V119/fTaMdRxH3/3udzVx4sQgSkSJSHk+gWxJGsqRBakejwAAAAAAAEEKpENWkk466SQ5jqOrrrpK6fRH8xlramp03nnnbdLxuf3222cD3PLycp122mk66aSTgioPJSJJh2xJGsL+2OyGXmzsBQAAAAAAhkJggawknXjiiZo7d66eeOIJNTU1aautttJnP/tZNTQ0bHLt9ttvr9GjR2v//ffXCSecoBkzZgRZGkpEyjNyfSPfWJWXMf+zdNAhCwAAAAAASlOggawkjRo1Socddlif133605/W888/H3Q5KDFd3bEpz6i2sjzkapA3Q9giaw0dsgAAAAAAYOgEHsj2V1lZIONsUeIIZEtAXZ28urrMvwHWyI6o1ZAmssbLfC4dsgAAAAAAYAgUTCAL5CLl+d0eK8ItBjnxX3hBb775prbaaiuVpdZqZHmHtGZou+Wtn5IMHbIAAAAAACB4QxbIptNpdXZ2ynVdGTOwTZi22WabgKpCseveIYsSYLs6Y4dyW6/MuAJGFgAAAAAAgKEQaCDb1tamG2+8Uf/617+0fPnynNZwHEfvvPNOnitDqUj7VsZKKZ9AtqTYoQ5kU4wsAAAAAAAAQyKwQHbRokU66aST1NraKjvE4QqGl5Tn0yGLQbEmLWtcWWvkOMyzBgAAAAAAwQkkeUin0zr99NPV0tJCGIvApTyjJIFsiQhpZIGXynwkYwsAAAAAAEDAAumQ/fvf/65Vq1bJcRxZa7XHHnvoa1/7mqZNm6aRI0dmdlMH8iTlGzpki5zjOKF+vt2woZf103Ii1aHWAgAAAAAASlsggey///3v7PEhhxyi//f//l8QHwNIklKukecb+caqvCzcYA+DtaEzdqg76zfMj7WGObIAAAAAACBYgQSy7777riSpoqJCP/7xj4P4CCCra1xB0vM1ojLQfeoQAOeyyzTpnXdUW1srx48pMn6EUnOnDmkNdsOoAusxsgAAAAAAAAQrkPSqvb1djuNop5120pgxY4L4CCAr6fmZR9doRGXIxWDAyv78Z01YvDh7bnacLM395pDWYL1k5tFPDunnAgAAAACA4SeQYa6jRo2SJNXX1wexPNBD0v2oQxbIjZX10wSyAAAAAAAgcIEEstttt52stVqxYkUQywM9dO+QBXJl/aSsxwxZAAAAAAAQrEAC2c9//vOSpDVr1uiNN94I4iOALGOltG+ys2SBXFgvSYcsAAAAAAAIXCCB7Lx58zRx4kRJ0kUXXaR0mo1yEKykaxhZUCpsSB/rp2R9V9ZwHwEAAAAAgOAEEsjW1dXpsssuU2VlpRYsWKCvf/3reu2114L4KEBSZmwBIwswGF3dsdZnbAEAAAAAAAhOJIhFn3zySUnSN77xDV1//fV64403dMwxx2jMmDGaPn26Ro0apaqqqn6t5TiOLrnkkiDKRAlJuEaub+QZo0hZID9nQInrmh9r/aRUURtyNQAAAAAAoFQFEsieeuqpchxHkrKP1lqtX79ezz///IDXI5BFX7pv7FVXRSCLgaNDFgAAAAAADIVAAlkpE8AO5PnN6Qp0gS3pGleQ9Izq+td8DfRgvWSPRwAAAAAAgCAEEsjOnTs3iGWBzfqoQ5YNmYpfaLt6ScajQxYAAAAAAAQqkED20ksvDWJZYLNSnpFVpkMWyJX1U3TIAgAAAACAQDFsEyXBWCntGTpkMSjGT9IhCwAAAAAAAkUgi5KR9Hw6ZDEo1ktlumQHOOsaAAAAAACgvwLb1GtzGhsb1djYqPb2do0cOVIf//jHJUmJREKVlZUqLy8f6pJQIpKuyc6SBXJh/aRkreSnpEh12OUAAAAAAIASNCSB7PLly/XHP/5RTzzxhNasWZN9ftasWbrhhhskSY8++qguuugiHXnkkfrWt76l+vr6oSgNJSTpGXm+lecbRcpp/sbAdc2PtX5KDoEsAAAAAAAIQKCplbVWV199tQ4++GDddtttWr16tay12T/drV69Wm1tbbrhhhs0Z84cvfXWW0GWhhLUNT+WsQXIVdf8WOuzsRcAAAAAAAhGoB2y3//+9/Wvf/2r13mMjuP0OF+5cmX2eM2aNTr55JN12223accddwyyRJSQxIYgNuH6qqsa8mkcyJHdfXclKisViUQkk1LZpLHh1dLVIeuxsRcAAAAAAAhGYKnVtddeq4cffjgbvH7sYx/TYYcdpl133VVf+9rXNrn+K1/5ipYuXapXXnlFjuOoo6ND5557rv72t78FVSJKDB2yxcn85S9aunChxo4dq/LYUtWVR6XGl0IqJi1ZQ4csAAAAAAAITCAjC9auXZudDStJZ599tv72t7/p2GOP1R577NHrez75yU/q1ltv1fnnn599bsGCBXryySeDKBElKOUZWX0UzKJYbdpRP6Sf7qeynbIAAAAAAAD5Fkgge+eddyqVSslxHH31q1/Vt771rX6/97jjjtMJJ5yQPX/wwQeDKBElyCoTytIhW3w+GmFiw85jZf1kdpYsAAAAAABAvgUSyD7zzDOSMiHLd7/73QG//5RTTsnMk5TY3AsDknR9AtmiZmXD7pD1UgSyAAAAAAAgMIEEsitXrpTjONppp500bty4Ab9/zJgxmjJliqy1amxsDKBClKqkZxhZgEGxflLW+LK+G3YpAAAAAACgBAUSyLa3t0vKBKu5Gj9+vCQpnU7npSYMD0nXl2+sXJ8u2eIVfoesJDb2AgAAAAAAgQgkkK2vr5f0UTCbi/Xr10uSGhoa8lIThoeucQVJl0C2mGRnyNqQB8jqoyCWsQUAAAAAACAIkSAW3XrrrdXS0qIlS5aovb19wKHqmjVrtHTpUjmOo2222SaIElGiusYVJD1f9cHc3sizslNO0ZR331VFRYUcL6ayrUfJnT8rtHqygaxHhywAAAAAAMi/QDpk9913X0mS7/v6wx/+MOD3/+Y3v5Hd0Cn36U9/Oq+1obRlO2TZ2KtoOM89p/pnn1X1E0+o6pmXVP7KO6HW89HIAjpkAQAAAABA/gUSyM6ZM0dlZZmlf//73+vhhx/u93uvv/563X333dnzL3/5y3mvD6Ur5RlZSQk29kLOrKyfpkMWAAAAAAAEIpBAdqeddtLcuXNlrZXv+5o/f77OPfdcvfjii1q3bt0m18fjcT3xxBM68cQT9etf/1pSZqbk7NmzNWPGjCBKRImyyowtoEO2iIU/RlbWT9IhCwAAAAAAAhHYkM0LLrhAixYt0ttvvy1rre655x7dc889Pa556aWXtPfee6uzs1PGZAK0rlEFkydP1i9+8YugykMJS3omO0sWyIX1ktlZsgAAAAAAAPkUSIesJFVXV+vGG2/Uf//3f8ta2+NP147qqVRKbW1t8n0/G8RK0syZM3XTTTcNeDMwQJKSrqFDFoNi/ZSs78oagn0AAAAAAJBfgQWykjRq1CjdcMMNuvzyyzV9+vTs893D2e4mTJigc845R7fffrsmTZoUZGkoYUnPlzFWaUJZ5KirO5axBQAAAAAAIN8CG1nQ3aGHHqpDDz1Uy5cv16uvvqply5apo6NDruuqoaFBEydO1J577qlddtkluxkYkKukmwlik56vygj3U7EpgBGysl4miLV+UqqoDbkaAAAAAABQSoYkkO0yZcoUTZkyZSg/EsNQ0sv8mnnSNRpZHXIxyEH4kWy2Q9ajQxYAAAAAAOQX7YMoOd07ZIFcWK9rZAEbewEAAAAAgPwikEXJSflGxoqNvZA760vGI5AFAAAAAAB5l/PIgpdeeimfdWzRJz/5ySH7LJSGlOdnO2WBXBg/qTJGFgAAAAAAgDzLOZA9/vjj5ThOPmvpleM4eueddwL/HJSWhGsYWYBBsX5K1ieQBQAAAAAA+RXYpl7Whr8xD4avpOcr6RlZa4fkBwcoPdbLBLLcQwAAAAAAIJ8GFcj2J3TtCjK6ro1EIpo8ebIaGhpUUVGhWCymFStWqLOzs8f1O+20k2prawdTHoaxpGtkjFXat6qKEKZh4KyflKyV/JQUqQ67HAAAAAAAUCJyDmQXLVq0xddbW1v1zW9+U2+//bYk6aCDDtKxxx6rvfbaS5WVlZtcv3jxYt1222264447ZK2VtVZXXnmltt1221xLxDDWNa4g6fmqirB3HQbOepkNvayfkkMgCwAAAAAA8iSwpGr+/Pl65513FIlEdNlll+naa6/VPvvs02sYK0nTp0/Xz372M/3+979XVVWVli5dqtNOO03pdDqoElHCkl5mQy829kKurL8hkN0QzAIAAAAAAORDIIHsgw8+qBdeeEGSdNppp+mwww7r93s/85nP6Ic//KGstVqyZInuuOOOIEpEiUu6H3XIorDZQw9V+2GHKf7Vrypx2EHyDvpk2CVJysyQlcTGXgAAAAAAIK8C2dTrrrvukiRVV1frpJNOGvD7jzzySF199dXq7OzU/fffr+OOOy7fJaLEpX0rYy0dskXAXHyx1i5dqvr6ekU63lSNbZfaFoddlmTSkjXZTlkAAAAAAIB8CKRDdvHixXIcR9OnT1d19cBnL1ZUVGjatGmy1mrZsmUBVIjhIOkZOmSLjt3wpzBYP8XIAgAAAAAAkFeBBLKtra2SpPLy8pzX8DxPkhSNRvNSE4afpGvokC1ChRPHZubIMrIAAAAAAADkUyCB7KhRo2St1XvvvZcNVgciFotp0aJFchxH48ePD6BCDAdJz1fSM7K2kCI+9MZxnMyBLbAOWS/FyAIAAAAAAJBXgQSyM2fOlCR1dHTo73//+4Dff9111ymVynSl7bnnnnmtDcNHws2EsWmfLtmiUkABuvWTssbI+m7YpQAAAAAAgBIRSCB78MEHS5Kstbrsssv0/PPP9/u9f/nLX/T73/8+ez537ty814fhIelm5scmGFuAHFkv84MhumQBAAAAAEC+BBLIfuUrX9HUqVPlOI4SiYROPvlknX/++XrjjTdkzKbhWDqd1rPPPqtTTz1Vv/zlL2WtleM4mjVrlmbNmhVEiRgGkp7Z8MjGXsWjwEYWbAhiCWQBAAAAAEC+RAJZNBLRr371Kx1//PFKJBIyxujvf/+7/v73v6uyslKTJk1SXV2dpMxYg5UrV8r3M6FZ17zPnXbaSVdddVUQ5WGY6Api2dirsJXNnq3t331XjuPIMWnZyePUedVRYZclqVsg67GxFwAAAAAAyI9AAllJ2nXXXXXTTTfpe9/7ntauXZsNWlOplD744IMe12686dK+++6rSy65JBvaArlwfSvf2mynLAqTs3q1Klatyp77VeUhVtMTIwsAAAAAAEC+BTKyoMvHP/5xPfDAAzrzzDM1derU7PPW2h5/uuywww667LLLdOONN2rixIlBloZhIuma7CxZYOCsrJ+iQxYAAAAAAORNYB2yXUaMGKHTTz9dp59+uj788EO99NJLampqUktLi1zXVX19vaZOnao999xT06ZNC7ocDDNJz6dDFoNi/ZSsTyALAAAAAADyI/BAtrvttttO22233VB+JIa5pGuU8kx2ozhgoKyXZGQBAAAAAADIm0BHFgBhS3q+rLVK0SVbPGzflwylTIesK2sYfQEAAAAAAAaPQBYlLelmgljGFhSTwkpku7pjGVsAAAAAAADygUAWJS2xYUOvBBt7IUfW6wpkGVsAAAAAAAAGj0AWJa2rM5ZAFrnq6oy1Hh2yAAAAAABg8AhkUdI8Y5X2jRIuIwuQGzpkAQAAAABAPhHIouQlXEOHLHJnfVnjEcgCAAAAAIC8IJBFyUu4PoEsBsV6iWynLAAAAAAAwGAQyKLkJVxfvrFKe4wtQG6sl5B142GXAQAAAAAASgCBLEpeV3dswqNLFrmxXiIztsC4YZcCAAAAAACKHIEsSl7Xhl6MLUCurJfo8QgAAAAAAJCrQALZ1157LYhlgZxkO2RdRhYgN6YrkHUJZAEAAAAAwOAEEsgeffTROvjgg3XDDTeoqakpiI8A+s0zVq6xdMgiZ9bLzI81dMgCAAAAAIBBigS18Icffqhf/epX+vWvf619991Xhx9+uA488EBVVFQE9ZHAZiVcn0C2QJnvfU9tH3yginKpLNWoshEF2MlsvMwMWQJZAAAAAAAwSIEEspFIRJ7nSZJ839fTTz+tp59+WiNHjtRXvvIVzZ07V7vuumsQHw30KhPIFmDQB9lvfUsdK1aoukKKdL6tyvQaKb4m7LI2Yb04gSwAAAAAABi0QEYWPP300zr//PO1++67S5KstbLWqr29XbfeequOOOIIzZkzRzfffLNaWlqCKAHoIeH68nwj1yeULVx2w/+0IdfRO+slCGQBAAAAAMCgBRLIjh49Wscdd5zuuOMO/fOf/9Spp56qbbbZRtJH4eySJUt02WWXab/99tMZZ5yhxx57TMYQliEYXd2xjC0oYF05rC3UQDaZGVvgu2GXAgAAAAAAilgggWx322+/vebPn6/HHntMf/7zn3X44Yervr4+G8x6nqdHH31Up59+uvbbbz9dfvnlWrJkSdBlYZjpCmIZW1DICjOI7dK1sVfXIwAAAAAAQC4CD2S7+8QnPqGLL75Yzz77rK666irtv//+ikQi2XC2ublZf/zjHzVnzhwdccQRuu2229TR0TGUJaJEfRTI0iFb+AozmDUbxhUYxhYAAAAAAIBBCGRTr75UVlbq4IMP1sEHH6y2tjY98cQTeuyxx/Tss88qFotJkhYsWKC3335bl112mWbPnq2jjjpKn/jEJ8IoFyXA9a08YwlkC5TjOGGX0Keu+bHMkQUAAAAAAIMxpB2yvRk1apQOO+ww/eY3v9FNN92kPffcU1ImoLHWKpVK6f7779fxxx+vOXPm6L777gu5YhSrhOszsqAQpVJyUikpmZRS6cyfQmQ8WeMSyAIAAAAAgEEJpUO2u5deekmPPPKIHn30Ua1atUrSR2Fsl67jJUuW6Ec/+pHuvPNO/c///I8mTpwYSs0oTplAlg7ZQlO+116aunhx9tzfbqI6/nJaiBVtnvUSsl4y7DIAAAAAAEARCyWQXbRoke6991498MADampqkqQeAawk7bLLLpo7d65mz56tV199Vffcc4+efvppGWP04osv6oQTTtDtt9+uUaNGhfAVoBglXCPXN/KMUaQs9OZwFKFMIMumXgAAAAAAIHdDFsiuWbNG9913n+677z699957kjYNYUePHq2vfOUrmjdvnmbMmJF9/ktf+pK+9KUvadmyZZo/f77eeecdLVu2TP/3f/+nH/3oR0P1JaDIJbMbexnVVxHIFqzC3NNL0oZA1viyflpOeWXY5QAAAAAAgCIUaCDb0dGhhx56SPfee69effXVbADbPYiNRCLab7/9NG/ePO2///6KRDZf0tSpU3Xdddfpc5/7nDzP0yOPPEIgi35LZANZX/VVoU/rQBEy3Tb2IpAFAAAAAAC5CCSVevjhh3Xffffpqaeekuu6kjbtht155501b948zZkzR2PGjOn32hMmTNDMmTP1xhtvaO3atXmtG6Wta0Mv5sgWusJtkbVuZlyB8RIqq2oIuRoAAAAAAFCMAglkv/e972U35uq+QdeoUaN0yCGHaN68eZo5c2bO61dVVUmSGhoIRNB/Kd/ItzYbzAIDZbt1yAIAAAAAAOQi8N/bLi8v16xZszRv3jwdcMABqqioGPSaa9as0Y477qiDDjooDxViOEm6hg5Z5M76ssYlkAUAAAAAADkLLJDdaaedNHfuXB166KEaO3ZsXtf+17/+Jcdx8romhoeE6xPIYlCsFyeQBQAAAAAAOQskkL3zzju12267BbG0JBHGImcJ11faN/KNVXkZ9xEGznoJAlkAAAAAAJCzQALZRCKhl156SQ0NDdp5551zWuPZZ5/Va6+9Jtd1NX/+/DxXiOEq4fqSzTzWVQU+sQMlyLoJWePL+mk55ZVhlwMAAAAAAIpMIInU8ccfL8dxNGvWLN1www05rfHb3/5Wr732msaOHUsgi7zp2tCLQBa5Mhu6Y40XVzmBLAAAAAAAGKCysAvYnPLycllr1dbWFnYpKCFd82O7gllgoLrGFTC2AAAAAAAA5KIgA9m3335bCxYskCTV1taGXA1KScozMlZs7IWcEcgCAAAAAIDByPl3tq+99lrdfffdW7zmpZde0uc+97kBrZtKpdTS0iJjjBzH0ZQpU3ItEdiElZT0fAJZ5M5m5scSyAIAAAAAgFzkHMged9xxuvXWWzc7UsBaq2QyqdWrVw9oXWutJMlxHEnS3Llzcy0R6FXC9ZXwCGSRO+slZF0CWQAAAAAAMHA5jywYNWqUfvCDH8hau8mf7np7fUt/ujvmmGN07LHH5loi0KuE62dGFxjb98UIQeH/d7FeXNZPbPJvFgAAAAAAQF8Gtc384YcfrqqqKrmum33OWqsf//jHchxH06ZN04knntjv9RzHUVVVlUaNGqWdd95ZY8eOHUx5QK8SrpGslPB8jagc1F8BDFPWS8oaI/lpKVIVdjkAAAAAAKCIDDqNOuSQQzZ57sc//rEkaeLEiYwcQMHpmh+bcI1GVIZcDGSuvlqtK1ao3MRUlmqSU9Ycdkl9MhvmxxovoXICWQAAAAAAMACBtAd+8pOflCRNnz49iOWBQfkokGWObCGwn/uckmvXKuK1qTzxoco7F8nx42GXtUXWi294TEgaFWotAAAAAACguAQSyN5yyy1BLAvkRdI1siKQLTzFM4/VbuiQ7XoEAAAAAADor5w39QKKlZWUdH0C2QLiOE63syIIZq2R9VMEsgAAAAAAYMBy7pBdvXp1j/Ntttlms68NVve1gXxIuCazuRcKSBEEsd1YL0EgCwAAAAAABiznQPbAAw/MdrU5jqN33nmn19cGa+O1gXxIuL5SnpGxVmV5uleRJ7Y4glnrJWT9hKy1efv3DgAAAAAAlL5Bz5C1WwhPtvQaEKaE68taq6RrVFtZHnY5kFRsHbLGS8gaI/kpKVIddjkAAAAAAKBIDCqQJYxFseqaH5twfQLZsC1cqIo1a1Tmtaos2aiydKPs1Iawq+pT17gC4yVUTiALAAAAAAD6KedA9tFHH83pNaAQdM2PZWOv8JV/9auasHhx9tyfMl4dt58RYkX90xXIZh5Hh1sMAAAAAAAoGjkHspMmTcrpNaAQJD1fVgSyyF3PQBYAAAAAAKB/ysIuAAiDsVLKM0p4JuxSsIkiGXdijayfIpAFAAAAAAADQiCLYSvh+nTIYlCslyCQBQAAAAAAA0Igi2Er4fpKuoYN6JAz6yVkvCT3EAAAAAAA6LecZ8h+/etfz2cdm+U4jm6++eYh+SwMLwnXl7VWSc+opqI87HJQhIyXUPmG0QVOpDrscgAAAAAAQBHIOZD9z3/+I8dx8lnLJqy1gX8Ghq+EazY8+gSyyIl145lHLyERyAIAAAAAgH7IOZCVxK/poqh1zY/tCmaBgeqaH5t5HB1uMQAAAAAAoCjkHMieccYZ+awDGHIfBbJs7IXcZIJYy8ZeAAAAAACg3whkMWwZKyU9QyCLQbCyfkrWi4ddCAAAAAAAKBJlYRcAhCme9hVPE8gid9ZNyHrJsMsAAAAAAABFgkAWw1rc9ZX0jIxhHjJyY7yEjJeQtcwiBgAAAAAAfSOQxbAWT/uy1irO2ALkyLoxyTJHFgAAAAAA9E/OM2TPO++87LHjOLrkkkt6fW2wNl4byKd42ss8ur7qqnL+64C8Kq5uZevGPnqsGBFyNQAAAAAAoNDlnEDdfffdchwne949NN34tcEikEVQujpjmSOLXBkvE8gaN6bykGsBAAAAAACFb1AtgdZmOtl6C1+7XhusfAa7wMbSvpVnGFmAQTCerJ/KdsoCAAAAAABsSc6B7Ny5c3N6DSg08bRPhywGxboxGTcedhkAAAAAAKAI5BzIXnrppTm9BhSaWNpX3M1s7kVH9tDz771XLWvXqiy5Rk66RWXxRWGXNGDGi6vMT8gaX04ZgwsAAAAAAMDmsYsRhr2468sYq5RnVF1BmDbkdthBXl2dyhNVclI1UmujysKuaYCsG5OsZL24nMr6sMsBAAAAAAAFrNhyDyDv4mkv88gc2ZBZKT+jp4eccWM9HgEAAAAAADZnyDtkly5dqjVr1qi9vV1VVVVqaGjQlClTNHHixKEuBZD0URAbT/saUxtyMcNecSaydsP8WMscWQAAAAAA0IchCWRfe+013XbbbXryySfV0dHR6zVbb721Pv/5z+u4447T5MmTh6IsQJKUdI2MzcySRZiKM4yVJFlf1kvKenTIAgAAAACALQt0ZEFbW5u+//3v65hjjtF9992n9vZ2WWtl7UfBS9f56tWr9ac//UkHH3ywfve73wVZFtCDlZRwfUYWhM1K1pqwq8iZ8WKMLAAAAAAAAH0KLJBtaWnR8ccfr4cffniTEFZSr89Jkud5+s1vfqOzzjorqNKATcTTvuJ0yIasiDtkldnYy3opWeOFXQoAAAAAAChggY0sOO+887RkyRI5jiNJmjRpkubNm6dPfOIT2n777VVfXy9rrTo6OvTee+/pueee0913363W1lZZa/XPf/5TU6ZM0fe///2gSgSy4q4v1zdyfaOKcva6G0rOgw+qetUqlaXWSek2lTlr5c+aEXZZA2Y3dMdaNyanqiHkagAAAAAAQKEKJJB98cUX9eSTT2bD2OOPP14//OEPVVlZucm1tbW12mqrrTRr1ix95zvf0fnnn5/tqr3xxhs1d+5cTZ06NYgygaxYOtPVGE/7aqghkB1KZT/6kcYsXpw996eMVUcRBrJmw4Zexo2rjEAWAAAAAABsRiDJ0/333589njt3rn7yk5/0GsZurL6+XldddZX++7//W1JmfMEdd9wRRIlAD13jCpgji1xZLy7JZjtlAQAAAAAAehNIIPuf//xHklReXq4f/vCHAyuorEw//elPs921Tz31VN7rAzaW2BDEMkcWObNG1kvIeASyAAAAAABg8wIJZJuamuQ4jmbMmKHRo0cP+P2TJ0/WzjvvLGut1qxZE0CFQE++lZKeoUMWg2LcmOyG0QUAAAAAAAC9CSSQraiokCTV1NTkvMbIkSMlSdYW987rKB7xtK8YHbIYBOvGZf20rO+GXQoAAAAAAChQgQSyU6ZMkbVWS5cuzTlQXbVqlRzH0TbbbJPn6oDexV1PSc+XMfwQALkxG+bHGubIAgAAAACAzQgkkJ09e7YkqbW1tccGX/31wgsvaPXq1ZKkAw88MK+1AZsTT/uSZWMv5K5rQy/LHFkAAAAAALAZgQSyxx57rLbeemtZa3XRRRdp8eLF/X5vS0uLfvKTn0iSGhoadPzxxwdRIrCJrg29CGSRK+slMpt70SELAAAAAAA2I5BAdsSIEfrNb36jkSNHqr29XUcffbRuueUWJRKJLb7viSee0Lx587Rq1SrV1NToyiuv1Lhx44IoEdhEbEMQG2eOLHJmZb2EDBt7AQAAAACAzYjk+savf/3rfV5TV1enjo4OxeNxXXLJJfr1r3+tPfbYQzvuuGN2065YLKaVK1fq9ddfV3Nzs6y1chxHn/rUp/Tyyy/r5Zdf1ve+971cywT6zfWtXGMJZDEoxo2pjA5ZAAAAAACwGTkHsv/5z3/kOE6f13VdY61VLBbTc889p+eee26T67o2/+q6/qmnntJTTz0lSaEEsuedd57uuusuSdKll16qefPm9et9S5cu1e23364XX3xRK1eulOd5mjBhgnbeeWd95Stf0ec//3lFIgP7tj///PP6+9//rtdff11NTU2KRCLaaquttOeee2ru3Ln6xCc+MeCvD72Lp31GFmBQrBuTNZ6sn5JTXhV2OQAAAAAAoMDkHMhKH4Wo+XzPxq/3J/TNtyeffDIbxg7ENddco+uuu06e5/V4fsWKFVqxYoUeffRR7bbbbrriiiu0ww479LleNBrVOeeco0ceeaTH86lUSkuXLtXSpUt15513as6cOfrpT3+q+vr6AdeMnroC2a5ObWCgzIbuWOPGVE4gCwAAAAAANpJzIHvGGWfks46C0dnZqQsuuGDA77vooot0yy23ZM8jkYimT5+umpoaLV26VK2trZKkBQsW6Pjjj9cdd9yhSZMmbXa9VCqlk046SW+88Ub2uREjRmjnnXeW7/t69913lUwmJUn33nuv1qxZoz/84Q+qrKwccO34SNz1ZIxVyjOqrigPuxwUIetlAlnrxqXqMSFXAwAAAAAACg2B7EYuueQSNTY2Dug9Dz30UI8w9gtf+IJ++tOfZjckc11Xd911ly699FIlEgk1NzfrzDPP1N///vfNdmFefvnl2TDWcRydeeaZOvnkk1VdXS1J6ujo0DXXXKM//elPkqSXXnpJV155pc4777wBf834SNf82FjaJ5BFTqyXlKyf7ZQFAAAAAADorizsAgpJLqMKXNfV5Zdfnj0/4IAD9Otf/zobxkpSRUWFjjrqKF177bXZ+bFvv/227r///l7XfO+993T77bdnz88++2ydfvrp2TBWkkaOHKmf/OQnOv3007PP3XrrrVq5cuWA6kdPXfNjmSOLwTBuXJZAFgAAAAAA9IJAdoOOjg6df/75kjIBak1NTb/e9+9//1urV6+WlBlT8NOf/lRlZb1/W2fNmqWjjjoqe37TTTf1et0tt9wi388EgjvssINOPvnkzX7+GWecoZ133llSJhz+85//3K+60buka2TsR52yQC6sF5P14jnN2QYAAAAAAKWt4APZBQsWDMnnXHLJJWpqapIknXLKKRozpn+zHx988MHs8Wc+8xlts802W7y+eyD79ttva8WKFT1eN8bo4Ycfzp7PmzdvswGvJJWVlenII4/Mnnd/LwbOSkq4Ph2yGBTjxmWNL+snwy4FAAAAAAAUmJxnyPaX7/t68803tXbtWqVSKfm+32vXmLVWnufJdV3F43GtW7dOL7/8spYsWaJ33nkn0BqfeOIJ3X333ZKknXfeWd/+9rf1j3/8o8/3WWv14osvZs/33XffPt8zffp0jR8/XuvWrZMkPfbYYzrhhBOyry9atCi7AZiU6artS/fPXb16tRYtWqQZM2b0+T70Lpb26JAdQv6CBWpqalIkukhe50pVJd8v/J8U9aFrXIF141Kkf932AAAAAABgeAg0kP3DH/6g66+/Xh0dHTm931q72U2v8qWjo0MXXHCBpMzIgUsvvVSVlZX9eu+qVat6fG277bZbv943ffr0bCD71ltv9Xht0aJF2eOKigpNmzatz/W23357VVdXK5lMZtckkM1d3PXl+kaub1RRXuzRYDGxKpVf8DfZQDYm1YwNuRoAAAAAAFBIAkubfv3rX+uKK65Qe3t7j45Ya232z8a6vzZUsxcvuuii7KiCk08+ud+hqiR9+OGHPc6nTJnSr/dtu+222ePly5dvds1JkyZlNwHbEsdxeoxKWLZsWb/qQO+6umPpkh1iVlKpzFz1U5LxZDw29gIAAAAAAD0F0iG7cuVK/f73v5eUCQs3Dli7ul57C127Xhs/frzmzJmjAw44IIgSJWXGBdxzzz2SpB133FFnnHHGgN7f1eUqZWa5jhs3rl/vGz9+fK9rbHw+YcKEftcybtw4vf/++72uiYHJBrKur4aaipCrGW5KJJCVZLyYytx42GUAAAAAAIACE0gge/fdd8vzPDmOo6qqKv3gBz/Q7NmzNX78eP3+97/XlVdeqUgkomeffVZ1dXVqb2/XwoUL9ac//UlPPvmkJKmlpUUHHXSQ9thjjyBKVHt7u376059KyoSpAxlV0H2NLiNGjNji5lvd1dXV9bqGJLW1tWWP6+vr+11L92s3XnMo+b7/UQhvjIwxodWSq2jKyFqraMqVMZVF+TUUk4++v1ayVsZaqQS+534qKqcyJt/PBPxD1fU/XHV9nzd3DvSFewiDxT2EweIeQj5wH2GwuIeAoRFIIPuf//wne3z22WfruOOOy57vs88+kjJ/qZ955hl9+ctf1pgxY7Tvvvtq33331fXXX6+rrrpKvu/rggsu0L333hvIHNmLLroo20n6jW98Qx//+McHvEYqlcoeV1dX9/t93YPfdDrd47Xu5/lacygtW7ZMI0aMUCyaVmtbuxobW0KrZTDWjYmo3K3UCLdTLS0tPf5bI79qa2vV0NCQPV+3YYRIsatJ16jOGan2NcuUdB21tBTn34VitWDBgrBLQJHjHsJgcQ9hsLiHkA/cRxgs7iEgGIHMkF2xYoWkTEh45JFH9nhtxowZqqjI/Br4yy+/vMl7Tz31VB100EGy1uq9997TI488kvf6Hn30Ud17772SpO22207f+973clrHdd3scX+7YyX1mAvreV5e1iwvL9/smhi4aNJV0s90NPZnji/yo3S29ZK8VDRz4Cez/+YBAAAAAAAEEsi2t7fLcRztuOOOqqqq6vFaJBLRDjvsIGut3n777V7ff8opp2SPH3/88bzW1tbWpgsvvFBSZl7txRdfPKBO1O66h6AD+bX27oHpxkFNrmt2/zUCwp/Bi6ZcpX3JWALZoI2+9VbVX3mlRlxzs0b+3z0a/WBp/ATWS3VKkhw/obKysgH9gAUAAAAAAJSuQJKmrsBx1KhRvb6+/fbba/HixVq6dGmvr+++++4aN26c1q9fr0WLFuW1tu6jCo477jh94hOfyHmtmpqa7PFAfqW9+0iBjQPr7uHwQNbsfu3Gaw6lqVOnKhKJaER8vUa7ZZroDWwub6GoqK3WiBEjNHJMg7auLGf+Z4DKjzlGzrvvZs9rp4xV5YmfC7Gi/KmuqVKkrloVY7Ya0CZ9GDjf93v8OtVuu+3W4wdcQF+4hzBY3EMYLO4h5AP3EQaLewiD9dZbb7EXTz8EEsiOGjVKzc3NPX79vrvJkydLkuLxuBobGzVx4sRNrpk0aZKam5u1evXqvNX1yCOP6L777svWcNZZZw1qve5zL2OxmKy1/Zp3G41Gs8cbh9bdz7tfN5g1h1J5ebnKysrkOI6cIu4KTHpGjuMo6VmNrOF/+QTJbvR3xtHAxnUUNC8ueXE6ZENQXl5OdzsGhXsIg8U9hMHiHkI+cB9hsLiHgGAEkhCMHz9e1lotX76819enTJmSPX63W2dcj8I2hBexWCwvNbW1telnP/uZpMyogosuuki1tbWDWrN7kOz7vlpbW/v1vq4OXUkaN25cj9e6d9GtX7++37U0Nzdnj8ePH9/v96F3cdfv8QjkwrgxGS8ha/npIAAAAAAAyAjkxxx77rmn3nnnHTU1NWnBggXabbfderzePZB9/fXX9d///d+brNG1MVi+fhLz17/+NRuE1tTU6IYbbtANN9yw2eu7B5w33XSTHnjggez55ZdfrnHjxmnq1Kmb1DxmzJg+a1m5cmX2ePvtt+/x2nbbbdfjuv503VprtWrVql7XQG5c38o1VvE0gSxyZ92YZK2sG5dTWRd2OQAAAAAAoAAEEsjuu+++uvXWWyVJ559/vm688UaNHTs2+/rMmTNVVlYma63uueceffvb3+6xEdXjjz+u5uZmOY6zSQdprrrPbY3H43rmmWf6/d533323RydvMpmUlBmrMGrUKLW1tUmSFi5cqI9//ON9rtd9Lu6MGTN6vLbrrrtmjxOJhD744APtsMMOW1zv/fff7zFDdpdddumzBvQtnvbokMWgGDfT4W+9mEQgCwAAAAAAFNDIggMOOCDbpbl48WIdfPDBuuKKK7Jdp/X19frkJz+Z7ew888wztWzZMsViMT388MP68Y9/nF2rPwFnmD796U9nj5977rk+r1+0aFGP7tu99967x+vTpk3r0WX7/PPP97nms88+mz0ePXq0pk+f3ud70LdY2lfc9dnQCzmzXlySZNx4yJUAAAAAAIBCEUiHrOM4Ov/88/Xtb39bvu+ro6NDf/jDH3TwwQdnO16/8Y1v6MUXX5QkPfnkk3ryySez7+8egM2bNy8vNZ155pk688wz+339gQcemB0DcOmll262jtmzZ+vhhx+WlOns3dwmZV1uu+227PGOO+64SXjqOI4+//nP669//ask6Y477tDRRx+92Q2BjDG64447sudf+MIX+rWxGPoWS/syG8YWjKhiiDlyYDxZP5UZXQAAAAAAAKCAOmQladasWfqf//kf1dfXZ5/rPjv2gAMO0Jw5c7Lhq7U2+6crUPzSl76kz3zmM0GVmBezZ8/ObsSVTqd17rnnyvO8Xq99+umn9be//S17fvzxx/d63THHHJP9HixatEi//e1vN/v5V199tZYsWSIpsxHa5tbEwEVTmf+OUebIYhCsG8uOLgAAAAAAAAgskJUygeo///lPnX766dprr700cuTIHq9fcsklOvHEE1VeXr7Je4866ihddtllQZaXF5WVlTrrrLOy588995y+9a1vZTclkyTP83THHXfozDPPlO9nwr2dd95ZX/3qV3tdc8aMGZo7d272/Nprr9Ull1yizs7O7HOdnZ26+OKLdd1112WfO+qoo7TTTjvl7Wsb7mIbgthYuveAHegP48Zk/aSsIdgHAAAAAAABjSzobuzYsZsdFxCJRHTOOefopJNO0jPPPKN169Zp1KhR2meffTR58uSgS8ubuXPn6rXXXsuOGXjuuec0e/ZsTZ8+XXV1dVq6dKlaWlqy148aNUpXX321IpHNf/t/8pOf6N1339WCBQskSTfffLPuuOOO7IiDxYsXK5FIZK//2Mc+pnPPPTeIL2/Y8oxV0jN0yGJQrBuTbGZjL6dyZN9vAAAAAAAAJa0gBmOOHz++R0doMfr5z3+u0aNH68Ybb5TrujLGaOHChZtct+OOO+rqq6/WDjvssMX16urq9Mc//lE/+tGP9Nhjj0mSEomEXn/99U2uPeCAA3TFFVeouro6L18LPhJLe4ql6JBF7rrGFRg3pjICWQAAAAAAhr2CCGRLgeM4mj9/vubMmaM777xTzzzzjNauXatEIqGGhgbtsssu+uIXv6g5c+aosrKyX2vW19frd7/7nZ5//nnde++9evnll9Xc3Czf9zVu3Djtueeemjt3rmbNmhXwVzd8RVO+Up6R6xtVlAc64QMlynpxSVbWjYddCgAAAAAAKABDGsguWrRIr776qtauXau2tjZVV1dr5MiRmjp1qvbcc09tu+22Q1nOFnV1pQ7UjjvuqHPOOUfnnHNO3mrZZ599tM8+++RtPfRf18ZesbSvUTUEssiBNbJeko29AAAAAACApCEIZJPJpG6++Wb99a9/1Zo1a7Z47fTp03XiiSfq0EMPDbosoF+6NvaKpjyNqqkIuRoUK+PGVEYgCwAAAAAAJAXa8vfmm2/qkEMO0a9//WutXr1a1lpJkrW2x5+u5xYtWqRzzz1XJ598stavXx9kaUC/JFxfxtpsMAvkwroxWT8ta9ywSwEAAAAAACELLJB96623dNJJJ2nVqlU9ni8vL9fUqVO12267adddd9XkyZNVVvZRGdZaPffcc/rGN76hzs7OoMoD+sUq0yUbTbOxF3LXfWMvAAAAAAAwvAUyssD3fZ133nmKRqNyHEfWWn35y1/W0UcfrY9//OOqqOj5q9/JZFIvvPCCbr75Zj3//POSpPfee0/nnXeerr322iBKBPotmvIVS/uy1spxnLDLKT3bbSfX8+SYpKzvym49MuyK8s5uCGKtG5eqRoVbDAAAAAAACFUggeyDDz6o9957T47jKBKJ6KqrrtJBBx202eurq6u1//77a//999ef/vQnXXrppbLW6tFHH9WLL76oT3/600GUCfRLLO3JGKuEa1RbWR52OSXHPPCA1jWuVUX7a4qvX6o6pzXYWSohsF4is7kXHbIAAAAAAAx7geQeDz30UPb47LPP3mIYu7Gvf/3rOvHEE7Pn//jHP/JZGjBg0a6NvRhbECDb46H0WFkvwcgCAAAAAAAQTCC7cOFCSVJdXZ2OPfbYAb//tNNOU1VVlSTp5ZdfzmttwEDFUt6GRzb2Cozd5KDkGDdGhywAAAAAAAgmkG1ubpbjONp55503mRfbH3V1dZoxY4astVq3bl0AFQL95xqrlGfokB0CpRvHZubIWuPJ+qmwSwEAAAAAACEKJJAdOTKzKY/v595RWF6emdVZXV2dl5qAwYilMxt7IShdIwtKN5LtGlfA2AIAAAAAAIa3QALZ6dOny1qrxYsXKx6PD/j9nudp6dKlchxH22+/fQAVAgMTTXtKer48Y8IupUTZjR5Lj/UyQax1B/5vIgAAAAAAKB2BBLJz5syRJCWTSd1www0Dfv/dd9+t9vZ2SdIhhxyS19qAXMRSvmSZI4vcWS8pWZ8OWQAAAAAAhrlIEIseeuih+utf/6pXX31V119/vSZNmqQjjjiiX+996aWXdMkll0iSdt55Zx155JFBlAgMSNf82GjaV0PNwOciY/Ocs8/W6A/el+O2qTbZqbIJ1Up+7+CwywqEceMqI5AFAAAAAGBYC6RDVpJ++9vfapdddpExRhdccIHOOOMMvfzyyzKb+ZXvDz74QJdffrlOPPFEJRIJ7bDDDvrtb3+b06ZgQL7F076MlWJs7JV3zkMPqebe+1T9z6c14vHXVfn8krBLCox1Y7JeXLaEZ+UCAAAAAIAty7lDdpdddunXdY7jyFqrRx99VI8++qiqq6s1depU1dfXS5JisZhWrVqljo4OSZK1Vo7jKBKJ6JxzzpHjOPrzn/+ca5lAXlhJcddXlJEFGATjxmSNL+sn5URqwi4HAAAAAACEIOdAtis43VKnl+M4PR6ttUokElq8ePEma3Vd13XtkiVLsp8BFIJYylMs7XFfImcfbewVkwhkAQAAAAAYlgY1Q7avX7vd3OsDfR4oBNG0L99YJT2jmorysMtBEera0Mu6cYk8FgAAAACAYSnnQPZPf/pTPusACl40lZkfG0t7BLLIjZ+WNZ6MGw27EgAAAAAAEJKcA9lPfepT+awDKHhdG3pFU77GjQi5GBQt68YyHbIAAAAAAGBYKgu7AKBYpH2rtG8US7OxF3Jn3ZiMF5e1JuxSAAAAAABACAhkgQGIpX1FN3TKArkwXkyyVtZLhF0KAAAAAAAIwaA29RqI5cuX6/HHH9crr7yipqYmtbW1qby8XCNGjNCkSZM0c+ZMffazn9XOO+88VCUBAxZNeUq4mc29ysucsMtBEbLZjb1iUgWzLwAAAAAAGG4CD2QbGxt1ySWX6JFHHpExvf+K7ltvvaWHHnpIv/rVr/TpT39aP/3pT7XDDjsEXRowYLG0L9nMPNmR1RVhl4MiZDYEssaNia3hAAAAAAAYfgIdWfDKK69o7ty5+te//iXfz8zdtNb2+qfrtRdeeEFHHHGEnnnmmSBLA3ISTW3Y2Is5ssiV8WT9dLZTFgAAAAAADC+Bdch+8MEH+s53vqOOjg45TuZXuyORiHbddVdNmzZNI0eOlO/7am9v15IlS7Ro0SJ5nifHcRSPx3XmmWfqjjvu0LRp04IqERiwuOvLSoqlmCOL3Fk3JuPGwy4DAAAAAACEILBA9rzzzsuGseXl5frWt76lr3/96xo9enSv17e0tOjmm2/WjTfeKN/3lUgkdMEFF+j2228PqkRgwIyV4mmfDlkMivFiKvMTssaXU8bgAgAAAAAAhpNARhY8/fTTev311+U4jioqKnTDDTfoe9/73mbDWEkaM2aM5s+fr9///veqrKyUJL3xxht6/vnngygRyFks7WVmyQI5sm5MspL16JIFAAAAAGC4CSSQ/de//pU9PvPMM7XPPvv0+7177723zjzzzOz5Aw88kNfagMGKpnx5vlHSJZRFbrpv7AUAAAAAAIaXQALZV155RZJUVVWl4447bsDvP/bYY1VVVSVJeu211/JaGzBYsbS34ZFAFrmxG+bHsrEXAAAAAADDTyAzZJubm+U4jqZNm6aampoBv7+mpkbTp0/Xm2++qdWrVwdQIZC7rvmx0bSnsSMqQ66m+NkDD1Rq6rZyvKjcRJsiW9WHXVLwrC/rJQlkAQAAAAAYhgIJZBOJhCTlFMZ2qa6uliT5Pl2IKCwpz8gzVrEU92Y+2GuuUeuqpYrE3lX7ylc0utYG07pfYIwXk2GGLAAAAAAAw04guUdDQ4OstVq1alXOa3S9d0sbgQFhiaY8RTeMLkAeWRt2BUPGpmOyXkrWcB8BAAAAADCcBBLITps2TZK0evVqLVy4cMDvf/vtt7Vq1So5jqOpU6fmuzxg0GJpXwnXyJjhEyAGa/h9H42XGVfA2AIAAAAAAIaXQALZz3zmM9njiy++eEBjBzzP0yWXXJI9nzVrVl5rA/IhmvJkrWVjr7yxGz2Wvq4g1hDIAgAAAAAwrAQSyB5++OGqqqqSJL3yyiv67ne/q46Ojj7f19HRoe9+97t65ZVXJGXmyM6dOzeIEoFB6Uxlfs28k7EF+TWcRha4cckaWTcadikAAAAAAGAIBbKp15gxY/Sd73xHv/71r+U4jh577DF94Qtf0Ny5czVr1iztuOOOamhokCS1t7frvffe0zPPPKN//OMfamtrkyQ5jqOTTjpJ48ePD6JEYFBiaV/GZjplkT92GHXISlbGjcmkCWQBAAAAABhOAglkJemUU07RggUL9Mgjj8hxHLW2tuqmm27STTfdtNn3WGvlOI4k6bOf/azOPPPMoMoDBsVKiqW9bKcsBqmrM3Y45bGSbLpTxo3KWiPHCeQXFgAAAAAAQIEJLJAtKyvTb37zG1188cW67bbbZDcELnYzv5LcFcRaa3Xcccfp3HPPDao0IC86U96GTlmrsg33LwaubN48jVuyWI5Ja6QbkzNptGKXHxN2WUPCuJ0qt1bWjcmprA+7HAAAAAAAMAQCC2SlTCh7wQUX6Gtf+5r+7//+T88++6xaWlp6vXbkyJH67Gc/q5NOOkkzZswIsiwgL6IpT8ZYxdO+6qoC/atU2hYvVsXixZIy/yD53vDZKK1rXIFJd6qMQBYAAAAAgGFhSFKkadOm6YorrpAkLV26VE1NTWpra5O1Vg0NDdpqq6204447DkUpQN50pvwNjx6BLHJi3ZhkjUy6M+xSAAAAAADAEAkkRbrtttv0/vvva86cOfrYxz7W47Udd9yR8BUlIZb2ZJUJZLcOuxgUKSvjRlXmsrEXAAAAAADDRSC7yDz44IP685//rCOPPFJXXXVVEB8BhM5YKZbyFGVjLwyCSUdl3JisNWGXAgAAAAAAhkAggewHH3yQ3bzr85//fBAfARSEzpSvaNrf7GZ1QF9sulOyVpYuWQAAAAAAhoVAAtmOjo7s8U477RTERwAFoXPDxl6x9PDZiAr5ZdzM/NiuDb4AAAAAAEBpCySQ3XbbbbPHa9asCeIjgILQNa6AsQXIlXXjbOwFAAAAAMAwEkgge+SRR2aPr7322iA+AigI0W4bewG5yWzsxcgCAAAAAACGh0AC2RNOOEHz5s2TtVYPPvigzjjjDC1YsCCIjwJCZawUS/vqTDGyALkz6U429gIAAAAAYJiIBLHoU089pS984QuKRqP617/+pUcffVSPPvqoRowYoZ133lljxoxRXV2dHMfpcy3HcXTJJZcEUSaQF9GUl+mUtbZf9zSwsezGXumonKqRYZcDAAAAAAACFEgge+qpp2aDqa5Ha62i0ahee+21Aa9HIItC1rWxVzzta0RVIH+lUOLMhnEFxu1UGYEsAAAAAAAlLbD0yFo7oOc3h45DFLquDb060x6BLHJi3ZhkfTb2AgAAAABgGAgkPZo7d24QywIFKZrKbOwVTflSfdjVoFgZN6qyNBt7AQAAAABQ6gIJZC+99NIglgUKkm+leNpX54ZOWSAXJh2VqYrLGl9OWXnY5QAAAAAAgICUhV0AUAqiKS/TKTvAkRxAl+zGXi5dsgAAAAAAlDICWSAPOlOefGOVcP2wS0GR6pofaxhbAAAAAABAScvryILW1lYtXbpUTU1Nqq2t1bbbbquddtopnx8BFKSucQWdKV+1lWzsNRD2m99U7L23VeZ3KtGyTNVbjw67pFBYL57Z2MtlYy8AAAAAAEpZXpKjN998U9dcc42ef/55+X7PDsEJEybo+OOP1/HHH6+qqqp8fBxQcKIpX1aZYHZiPff5gJx1lqLL3lB5cpXWL3lE48eOGrat+yYdVVmaQBYAAAAAgFI26Nzjd7/7nY4++mg988wz8rzMDM3ufxobG3XllVfqiCOO0IoVK/JRM1BwfJsZVxBlY68cZWbvDvcRvMbtlPEyG3sBAAAAAIDSNKhA9o477tDVV1+9SVdsd47jyFqrJUuW6Jvf/KaiUeYjojR1pjx1srHXIA3v751NRyUrNvYCAAAAAKCE5TyyIBqN6sorr5TjOJIka6323ntvzZ49W5MmTZLneVq8eLHuvvvubGfs8uXL9dvf/lbnnHNOfqoHCkg0u7GXUW1ledjlFJeuEHuYh9kfbezVqbKqhpCrAQAAAAAAQcg5kH3ooYfU3t4ux3FUVVWlK6+8Up/73Od6XPO5z31Op5xyii644ALdfffdstbqrrvu0ve//33myaLkdCYz4wqiKY9ANmfDO5BlYy8AAAAAAEpfziMLXnzxxezxD3/4w03C2C6RSES//OUvNW3aNElSR0eHXn/99Vw/FihY0XRmdEdnmjmyyJ1Jd2ZGFwAAAAAAgJKUcyC7aNEiSdKIESN05JFHbvHaSCSio48+Onv+9ttv5/qxQMHyTGZjr65OWQxE16Zew7tDVpJMOsrGXgAAAAAAlLCcRxasW7dOjuNoypQpqqio6PP6vfbaK3u8fPnyXD8WKGidKU/1aYK0gXD22EMTFy+WZDXWGpkpY9V5y+lhlxUa63ZKVjJup8qrRoVdDgAAAAAAyLOcO2Tj8bgkqb6+vl/XT5o0KXvc2cl8RJSmzpQvzzdKuISy/ZZOy0mn5aRdlbm+nGH+veva2IuxBQAAAAAAlKacA1nXdSWpX92xUma0QZdYLJbrxwIFLZrKjCvoTDG2ALmxXkIyXjaYBQAAAAAApSXnQLZr1qPjOP26vvt1vj+8O+BQurqC2CiBLAbBuFEZl0AWAAAAAIBSlHMgC2BT2Y29CGQxCCbdKeslZA33EQAAAAAApYZAFsizaMpXNEUXOHJn3GhmYy/myAIAAAAAUHIIZIE860x5cn2j5DDfnAq5s10bezG2AAAAAACAkkMgC+RZJxt7YZDY2AsAAAAAgNJFIAvkWVcQ20Egi0Ew6Q6ZdEfYZQAAAAAAgDyLDHaBxsZG/eMf/wj0PYcddtiA1gfC5BmrWNpXe4JAFrkzqXaVVY+R8ZIqi1SHXQ4AAAAAAMiTQQeyS5Ys0Xnnndfv6621A34PgSyKTXvSVV1VRMZYlZU5YZeDImRS7Rse21QW2SrkagAAAAAAQL4M6cgCx3HkOP0Pp6y1AVYDBKcj6clayxxZ5MykOyRrssEsAAAAAAAoDYPqkCUwBXrXnnSzjw01FSFXg+JkZdKdctIEsgAAAAAAlJKcA9lHH300n3UAJSXhGqV9o/YkHbLInUm1q6yqQdZPyymvDLscAAAAAACQBzkHspMmTcpnHUDJaU94qq3MjC4YyKgOoItJt0maIpNqU3nthLDLAQAAAAAAeTCkM2SB4aQ96crzjeKuH3YpKFIm1SHJMkcWAAAAAIASQiALBKRrXAFjC5Az68ukowSyAAAAAACUkEFt6gVg86IpT7616ki62mZkddjlFCx78cXqeO8VKd2uaOM7GrkNv5rfnUm1y1TVyxpXThkbxAEAAAAAUOwIZIGAWEmdSU/tlXTIbtHcuUounSibWKP294yqJ06kdb8bk2qT7LYyqXaV14wLuxwAAAAAADBI5B5AgNqTnhKur7Rnwi6lwFnJ2rCLKEgmnRlXkJknCwAAAAAAih2BLBCg9qTb4xEYMOPJurFsMAsAAAAAAIobgSwQoI6kJys29uoPS4fsZvmpdpl0p6zxwy4FAAAAAAAMEoEsECDPWMXSPh2yfbIb/qA3mTmyVibN2AIAAAAAAIodgSwQsPaEq2jKl28IHDeP782WfDRHlrEFAAAAAAAUOwJZIGAdSU/WWnWmGFvQq1WrVLZyjcpXN6miqUNl6+gC3YSflvUSBLIAAAAAAJSASNgFAKUuu7FXwtWomoqQqyk8zuc/r/GLF0uSJkjyp4xVx+3fDbeoAmRS7XIqRshaI8fhZ2kAAAAAABQr/r96IGBJzyjlGTb2wqCYVLtkjWy6M+xSAAAAAADAIBDIAkOgPemqI+XKWmalIjcm3ZZ5ZGwBAAAAAABFjUAWGALtSU+ebxVL+2GXgiJlvaSsn5JJtYVdCgAAAAAAGAQCWWAItCc2zJFlbAEGwaTaZdIddFoDAAAAAFDECGSBIRBL+/KNVceGDb6AXJhUu6zxZd1o2KUAAAAAAIAcEcgCQ8BK6kh5dMhiULrGFTBHFgAAAACA4kUgCwyR9oSrpOsr5TFHFrmxXlzWuASyAAAAAAAUMQJZYIh0dce2J+iSRe4yc2QJZAEAAAAAKFYEssAQ6Uh6spLamSOLQTCpdlnflXFjYZcCAAAAAAByQCALDBHfWkWZI4tBYo4sAAAAAADFjUAWGELtSU+xtC/f2LBLQZGyblSyPoEsAAAAAABFikAWGEIdSVfWWnUwtgCDwBxZAAAAAACKF4EsMIS6NvRibAEGw6TaZb2UjBsPuxQAAAAAADBABLLAEEr5RknPqC1Bhyxy5ydbJEkm1RpyJQAAAAAAYKAIZIEh1hpPqyPlMUcWObNuVNa4MkkCWQAAAAAAig2BLDDEWhOujLFqZ44sBsEkW2VSbbKWYB8AAAAAgGISCbsAYLhpjbuyGx7H1FaGXU7o7F/+otZ3n5Iba1R83WKN3mpC2CUVBZNqla2dIJvukFPVEHY5AAAAAACgnwhkgSHmGqtoylNLwtWOYRdTCPbYQ17tOqXbapVY3aaREyfSut8PfrJVFRseywhkAQAAAAAoGuQeQAha465iaU9pz4RdSoHg1+4HzE/JenE29gIAAAAAoMgQyAIhaE24kt3wiA0IZQfKT7bKpDtljRd2KQAAAAAAoJ8IZIEQtCddGWvVmkiHXUqBsCKQHTiTbJWspUsWAAAAAIAiQiALhMBYqS3hqSVOh2wWeeyAmVSbJCuTbAu5EgAAAAAA0F8EskBIWhNppT2jWJpfN5e1siSyA2d9mVSH/CQdsgAAAAAAFItI2AUAw1Vr3JXGZh5HVA7jv4pPP63KxS9L0UbZ1uWKbJ2U2XP7sKsqGibVqrKqBhkvobJITdjlAAAAAACAPgzjFAgIVzTtK+0btSZcbTtq+AZpzqmnatTixdlzf8pYddz+3RArKi5+skWRkdvJJNtUVjd87yMAAAAAAIoFIwuAELUmXLUlMht8Abmw6U5Z48mkWsIuBQAAAAAA9AOBLBCi1rgr31h1JJkji9yZVKtMsk2WYB8AAAAAgIJHIAuEqDXu9ngEcmGSrbLGk3U7wy4FAAAAAAD0gUAWCFHKN4qlfbUm0mGXgiJmUq2SJD/ZGnIlAAAAAACgLwSyQMhaE646U74834RdCoqU9ZKyXkKGQBYAAAAAgIJHIAuErDWelrVWrQnGFiB3Jtkqk+6QNX7YpQAAAAAAgC0gkAVC1pbwZCUCWQyKn2qVrJVJtYVdCgAAAAAA2AICWSBkvrVqT7jDeGMvG3YBJSETxFrGFgAAAAAAUOAIZIEC0JpwlXB9JVx+3Rw5Mp5MujO7wRcAAAAAAChMBLJAAejqjmVsAQbDJFtl3Lislwq7FAAAAAAAsBkEskAB6Ex58owdxmMLkA9d4wr8VEvIlQAAAAAAgM0hkAUKQNemXq0JV9YOs5mqw+zLDZJJd0jWZ44sAAAAAAAFjEAWKBCtcVeeb9SZ8sIuBUXLyk+1yaTahl+wDwAAAABAkSCQBQpEayK94ZGxBcidSbbK+q6sGw27FAAAAAAA0AsCWaBAJFyjpGeYI4tBMcmWDY+MLQAAAAAAoBARyAIFpCWeVnvSk2dM2KWgSFkvIesn5acIZAEAAAAAKESRsAsA8JH1sbS2GVmt1rir8XVVYZczJMyzT6p16ROKrVusROsyTZg4UU7YRRU5k2yVE6mVNb6csvKwywEAAAAAAN3QIQsUkLaEK2Ot1sfTYZcydEbWy46skxlRIzOiSnbE8Aiig+QnWyVrZFJtYZcCAAAAAAA2QiALFBDfZjb1Wh9zZa0Nu5whYXs5wuCYVKsku+ERAAAAAAAUEgJZoMCsj7lyfaPOlBd2KUNjQ/BsCWTzx3gy6U429gIAAAAAoAARyAIFpmtcwfqYG3IlQ2yYdAQPFZNslXHjsl4q7FIAAAAAAEA3BLJAgUl5RtG0P4zmyBLEBqGrO9ZPtYRcCQAAAAAA6I5AFihA62NpRVOekq4fdilDiGA2n0y6Q7I+YwsAAAAAACgwkbALALCp9fG0po6u0fq4q0kN5WGXEyjnlltVs/QVOe2rVZtsU9U24+V++b/CLqsEWPnJVjmRallr5ThO2AUBAAAAAAARyAIFqTPpyfWt1sfTmtRQHXY5gSq74leqe3eJ6jac+1PGEsjmiUm1ytaMk3Wjcirrwy4HAAAAAACIkQVAQbLKdMm2JVz5hl/lR266xhUwtgAAAAAAgMJBIAsUqPWxtIyxak24YZeCImW9hKyXlJ8ikAUAAAAAoFAQyAIFqiXuZjplY+mwS0ERM6lWmVS7rBlOG8QBAAAAAFC4CGSBAuVbq7aEq/VxAlnkzk+2StbKpNrCLgUAAAAAAIhAFiho62NppT2jzpQXdikoUibVKslueAQAAAAAAGEjkAUKWFd3LGMLkDPjyaQ72dgLAAAAAIACQSALFLCEaxR3/RIfW2DDLqDkmWSrjBuX9VJhlwIAAAAAwLBHIAsUuPWxtDpTntKeCbsUFKmu7lg/1RJyJQAAAAAAgEAWKHDrY2nJqsS7ZBEkk+6QrM/YAgAAAAAACgCBLFDg2pOePGOZI4tBsPKTrTKpNlnLiAgAAAAAAMIUCbuAsL344ot64IEH9Nprr6mpqUnRaFR1dXXaeuut9YlPfELz5s3TzJkz+73em2++qb/97W966aWX1NjYKGutJk6cqF133VWHHnqo9ttvPzmO0+/1rLV65JFHdO+99+qtt97S+vXrVVNTo4kTJ2rvvffW4YcfrhkzZuTypaNIWGW6Y6siZTLGqqys//cP0MWkWmVrxsm6UTmV9WGXAwAAAADAsDVsA9mVK1fqnHPO0csvv7zJa21tbWpra9PChQt1yy236Mtf/rJ+8YtfqK6ubrPrua6rX/7yl/rrX/+6yWsffvihPvzwQz3wwAOaNWuWLr30Uk2YMKHPGhsbGzV//ny98sorPZ5Pp9Nqb2/Xu+++q1tuuUXf+MY3dNZZZ6mysrIfXzmK0fpYWhPrqtSWdDWmtsT+O9OwOSS6xhWYZKvKCGQBAAAAAAjNsBxZ8OGHH+qrX/1qjzC2oqJCu+66q/bee29NmzatRxfrAw88oGOPPVbRaLTX9ay1+v73v98jjK2qqtLuu++uPffcs0eQ+8wzz+iEE05QR0fHFmtsaWnRcccd1yOMHTVqlD7xiU9o1113VSQSyX72TTfdpHPPPXdg3wQUlZa4m+mUZWwBcmS9hKyXlM8cWQAAAAAAQjXsAlnf93XmmWeqpSWz23h5ebnOOOMMvfDCC7rrrrt088036/7779eTTz6pww47LPu+RYsW6Sc/+Umva/7hD3/QI488kj0/5phj9Oyzz+pvf/ubbr/9dj377LOaP39+NkR9//339eMf/3iLdZ533nlavny5pEy4+7Of/UzPPvusbr31Vt1111164okn9KUvfSl7/QMPPKA//elPOX1PUPg8Y9WecLU+7oZdCoqYSbXKpNtljR92KQAAAAAADFvDLpC966679O6772bPL7vsMp155pmbjCOYOHGiLr/8cp144onZ5x566CG9/vrrPa5raWnRb3/72+z50UcfrQsvvFD19R/9SnB1dbW+/e1v6xe/+EX2uX//+9969dVXe63x6aef1hNPPNGjxqOPPjob6ErS+PHjddVVV/UIjf/3f/93s128KH7r466Srq9oygu7FBQpP9kiWSuTagu7FAAAAAAAhq1hF8jec8892eNZs2Zpzpw5W7z+rLPO6jHv9YEHHujx+p133qlYLCYpM1LgRz/60WbXOvzww7X//vtnz2+66aZer7v55pt71Ni9E3ZjF154ocaOHStJam1t1d133735LwZFrTmWkiStK7GxBXbsGJmxo+SNHiFvVI1MQ23YJZWsTBBrZZItYZcCAAAAAMCwNawC2XQ63aMr9ZBDDunzPZWVlZo1a1b2/K233urx+j//+c/s8cEHH6za2i2HSUcddVT2+KmnnlI8Hu/xent7u5577rns+eGHH77F9Wpra3uEyg899NAWr0fxSrhGnSlP66KpsEvJK//f92j907fo/Vu/q3dvPEEdvzsp7JJKl/FkUm3yk+tlLbupAQAAAAAQhmEVyK5atUpVVVXZ8x133LFf7xs1alT2uLX1ow1x2tratHDhwux59+B2c/bee2+Vl5dLkpLJZI/wVZL+85//yPcz8x0dx9G+++7b55rdr3n11VfV3t7e53tQnNZF04qnS3VsAQHhUPAT62W9lGy6M+xSAAAAAAAYloZVILv99tvrtdde08svv6wHHnhAO++8c7/et2rVquxxQ0ND9njx4sU9usx23XXXPteqra3VlClTsucbd9wuWrQoe7ztttv2+LzNmTFjRvbYGKO33367z/egOK3rGlsQLaWxBRv+DtGxOST8RHOPRwAAAAAAMLSGVSDbpb6+XjvttJOqq6v7vDYajerZZ5/Nnnfvqv3www+zx5WVldp666379fnbbrtt9nj58uU9Xuu+5tSpU/u13vjx43t8LcuWLevX+1B8smMLYqU1tiCDQHZI+CmZdIf8JIEsAAAAAABhGJaB7EDceOONikaj2fMDDjgge7xu3brs8fjx4/u9Zvdru68hSU1NTTmt2bWxV29rorQ0ldrYgg2dsTTIDh0/0SzrJmTS0b4vBgAAAAAAeRUJu4BC9uabb+qGG27Inm+33XY68MADs+dtbW3Z4/r6+n6vW1dXlz3eeN5r9/OBrNn92o6Ojn6/L99835fjOLLWyhojY0xotZSqxo6EdhhTo8bOpGoraov6e9x1r2RkHo21UhF/TcXAxpoUGbm9vPg6RSLFfQ916Zq9vblzoC/cQxgs7iEMFvcQ8oH7CIPFPQQMDQLZzVi5cqVOO+00ua6bfe7cc89VJPLRtyyd/miOZ3/GH3SprKzsdQ1JSqU++lX0XNfsvsZQW7ZsmUaMGKFYNK3WtnY1NraEVkspm1xr5SWrVZOuVGdnZ48u7mKy1VZbqdxdr/Juz63r1iWO4IyumqLypC8vXqWOjg7FYrGwS8qrBQsWhF0Cihz3EAaLewiDxT2EfOA+wmBxDwHBIJDtxZo1a3TCCSf0+NX/b3zjGz3GFUjqEdaWlfV/+kP3UNfzev7aeffzgaxZXv5RpLXxmig9q9tiGjWiSnHPqqampmgDWUmqu+p/Vb52mSo61sgYV35DjdZ97ZNhl1XyUh1rNaKqXo5Jqbq6uuQCWQAAAAAAChWB7EaWLl2qk08+WWvWrMk+N2vWLP3gBz/Y5NruIehAfuW3e2BaUVGRlzW7/xrBxmui9Kxpj2vmpDFqTRpNqosoEokUbRBfff/Dirz/oWo2nKe2GUUgOwRSnWs1Yvw0OW6bKqsmqqysrCRGFwAAAAAAUOgIZLt59dVXddppp6m1tTX73N57761rr72215Cz+0iBgYwJ6H5tVVVV4GsOpalTpyoSiWhEfL1Gu2Wa6FX2/SbkxC+vlldZpa22GqWJEyd2m8VaPBzHkVNe3uO58ki5Jk6cGFJFw0t1VUTltVaV47fShAkTwi5nUHzf7/HrVLvttluPH3ABfeEewmBxD2GwuIeQD9xHGCzuIQzWW2+9RbNPPxDIbnDffffpxz/+cY+Zrp/97Gf1m9/8ZrOzXEeNGpU9HsivjHf/1eDua0hSQ0NDTmt2v3bjNYdSeXm5ysrKMkFbWdmAxi5gYJpjaY2qqVAsbVRfXbx/lTeOkR0NbFwHcmeS61VWWSPHuopEwvtBThDKy8t7jIcBBop7CIPFPYTB4h5CPnAfYbC4h4BgkHpIuuaaa/SDH/ygRxg7Z84c/e///u8WN9bq3sW3fv36fn9e99m048aNy8ua3a8dP358v9+H4rUulrlfm2LhbeKG4uYn1klW8hP9/7cGAAAAAAAMzrAOZF3X1Y9+9CNde+21PZ4/9dRT9T//8z99/hRo6tSp2eN4PK7m5uZ+fe6KFSuyx9tvv32P17bbbrvs8fLly/u1XlNTk5LJZK9roHSlPKP2pKd10XTfFwO9sOkOWT8tP9G/f7sAAAAAAMDgDdtANp1O64wzztA999yTfS4Sieiiiy7SWWedJcdx+lxj5syZPa5buHBhn++JxWI9gtYZM2b0eH3XXXfNHi9btkyJRKLPNbt/ruM4mj59ep/vQWlYF00p6frqSLphlzIIxTf7tpSYRLNMqk3WFPM9BAAAAABA8RiWgaznefrud7+rJ554IvvciBEjdP311+urX/1qv9epq6vTzJkzs+fPPfdcn+954YUXssONy8vL9alPfarH63vttVe2M9f3fb344ot9rtn9c2fOnNljDi1KW1d3LF2yyJWfaJasZWwBAAAAAABDZFgGsldccYUef/zx7PmYMWN0yy23aNasWQNe6wtf+EL2+N577+2zo/W2227LHn/mM5/RyJEje7w+cuRI7b333tnz22+/fYvrxWIx3XvvvdnzL37xi/2qG6Uh5Ru1J13myCJnme5YT4axBQAAAAAADIlhF8g++eSTuvnmm7PnDQ0N+tOf/tRjVMBAHH744aqpqZEkNTc36xe/+MVmr/3b3/6mp59+Onv+9a9/vdfrjj322Ozx448/rrvuumuza/7sZz9TS0uLJKm2tlZHHHHEgOpH8WuKppVyTZGPLUB4rEyyWSbVKmv8sIsBAAAAAKDkDatA1vd9XXzxxbI2M7PScRxdeeWVmjZtWs5rjhs3Tt/85jez53fddZfOPvtsrV//0a//JpNJXXfddbrwwguzz+23337ab7/9el3zwAMP1Kc//ens+QUXXKDrr79eqdRHXZDNzc2aP39+j+7Y0047TWPGjMn5a0Fxao6mZZUJZoFc+In1ssbIJFvCLgUAAAAAgJIXCbuAofTQQw9p2bJl2fOamhr98Y9/1B//+Md+rzFu3DhdfvnlPZ779re/rbfeeis7k/b+++/Xww8/rOnTp6uyslJLlixRZ2dn9vptt912kzU2dsUVV+jYY4/VihUr5HmefvWrX+mGG27QtGnTlE6ntXjxYrnuRx2RBxxwgE4++eR+fx0oHSnfqD3hqrqiTDuOre3XhnRAdybZIllffqJZ5bXjwy4HAAAAAICSNuwC2e7i8bieeeaZAa0xadKkTZ6LRCK65ppr9POf/1x///vfZa2V67pasGDBJtfuueeeuvrqq/vsZJ04caJuueUWnXXWWXr11VclSZ2dndnj7o444ghdeOGFKisbVg3P6GZdLK1RNRXqSHlqqK4IuxwUG2vkJ1vklFfJWiPH4d8SAAAAAACCMqwC2ffffz+wtSsrK3XxxRfrqKOO0t13360XXnhBjY2NSqfTGjNmjHbffXcdcsghmj17dr+D06233lp/+ctf9O9//1sPPvig3nzzTTU3N6usrEwTJ07UXnvtpSOPPFJ77LFHYF8XisO6aEo7jRuhxs4UgSxyYhLNsjXjZVJtKq9m9AkAAAAAAEEZVoHsAw88EPhn7L777tp9993ztp7jOJo9e7Zmz56dtzVRetK+VUs8rUiZox3HjlB5GWMLMDB+Yr0qZGUSzQSyAAAAAAAEiN9LBUrE6vakfGPVFE31fTGwMevLJFvkx9fJGi/sagAAAAAAKFkEskCJaIm7SnpGqzuSYZeCIuV1rpA1nrzoqrBLAQAAAACgZA2rkQVAKbOS1nQkVR0pU2fKU31Vcfz1Nnt+TP6oWrnx9ZKkyLbjQ65o+DKpdplUm/zOlYrUTZJTVhz3EAAAAAAAxYT/bxsoIWs6ktpuTK1Wtyc1fUJd2OX0i/e7K9TRuFjrFmZmPE+cOJHW/RB5HctUVjVKfnS1IiOnhF0OAAAAAAAlh9wDKCFp32p9LK2maEqeMWGX009W1oZdA7qYVJtMukNedKWs8cMuBwAAAACAkkMgC5SY1R0bNvfqTIddygCQyBYSr2OZrO/Kj60OuxQAAAAAAEoOgSxQYopucy9rRSBbWEyyRSbdKa+TLlkAAAAAAPKNQBYoQavbk4qmPHUk3bBL6QdLHluAMl2yafmxNWGXAgAAAABASSGQBUrQ2s6krKTVHamwS+knEtlCY5LrZdyovM4VsrZY5hEDAAAAAFD4CGSBEpT2rZqjGzb38gs9TCOMLVR0yQIAAAAAkH+RsAsAEIzVHUmNr6tUYzSlSQ01YZezWZHTztWo95dqRKIlc77teMUvPDzkqiBJJtEs68bkda5Q+Yit5Tj8DA8AAAAAgMEikAVKVGvCVcL1tbqjsANZ59W3VPneB6rccO53pkOtBz25HctUWTFCfqxRkbqtwy4HAAAAAICiR7sTUMJWd6QUS3lqL4rNvVCITGKdrBeX17lc1jJeAgAAAACAwSKQBUrY2s6kjJVWtyfDLgVFzOtYJusl5cfXhl0KAAAAAABFj0AWKGGub9UcS2ldLC234Df3QqHy402yXkJexwq6ZAEAAAAAGCQCWaDErW5Pyhirxs5U2KVsBgFfMfA6V8h6CZlUa9ilAAAAAABQ1AhkgRLXlvQUd32t7kjS3Yic+fEmyRr58cawSwEAAAAAoKgRyALDwMq2pOJpXy1xNvdCjqwvP9Esk2iWNX7Y1QAAAAAAULQIZIFhYG1nUq6xWtGWCLsUFDE/3ihrjPzEurBLAQAAAACgaBHIAsOAsZlZsm0JV50pL+xyUKRMslXWpBlbAAAAAADAIBDIAsPEqvaEjBVdshgEKz++TibVJusV6iZxAAAAAAAUNgJZYJhI+1aNnSmti6aVdJkBitz4sbWSlfxEU9ilAAAAAABQlAhkgWFkZXtC1lqtak+GXQqKlHWjsl5cfoyxBQAAAAAA5IJAFhhGYmlfLXFXazqT8owJuxwUKT/WKOPGZNLRsEsBAAAAAKDoEMgCw8yKtoQ832pNBzNAkRtvw6ZebO4FAAAAAMDAEcgCw0xrwlU07WtVe1LW2rDLQTHyUzKpNvnxJu4hAAAAAAAGiEAWGIZWtiWUdH2ti6XDLkUSgV4x8mONsn5aJtUadikAAAAAABSVSNgFABh6TdGUdhhbqxVtCU2oqwq1FjNnthLLlirVuVaSVD1pXKj1oH/8xDpV2GnyY40qrx4TdjkAAAAAABQNAllgGDJWWtmWVGV5mdoTrhpqKkKrxfvhqWpfvVBtHz4rSZo4cSKt+8XA+vITzXLKI7LGl1NWHnZFAAAAAAAUBXIPYJha3ZGUb61WtCVCrsRKzCEtSn68UdYY+Yl1YZcCAAAAAEDRIJAFhinPWK3tSKk5nlbC9UOuhkC2GJlkq6xJy483hl0KAAAAAABFg0AWGMZWtidkrULukrXEsUXLyo83yaTaZL1U2MUAAAAAAFAUCGSBYSzhGjXH0lrbmZLrm3CKsGJkQRHzY42SFV2yAAAAAAD0E4EsMMytaEvIGKtV7clQPj/TH0sgW6ysG5V1Y/LjTWGXAgAAAABAUSCQBYa5jqSn9qSnVe1JGRNSMEqHbFHz400ybkwm3Rl2KQAAAAAAFLxI2AUACN+KtoQaqiNa25nSNg3VQ/rZlYd+S1st/VATjStJspPHKXr9N4e0BgyOF1+ryMip8to/UOX43cMuBwAAAACAgkYgC0DNsbTirq8VbQltPbJKjuMM2Wc7Le0qa+nInvsj40P22cgTPy2vc4XklMlPrFN5zfiwKwIAAAAAoGAxsgCApEyXbML11RxLD/EnM66gFHidy2W9pNy292WNH3Y5AAAAAAAULAJZAJKkxs6U0r7RirZE2KWgGFkjt+09WS+Z6ZYFAAAAAAC9IpAFIEkyVlrVnsxs8pVwwy4HRcgk18skW+R1rpDxCPYBAAAAAOgNgSyArFXtSfnWajldssiR2/aeZDx5be+FXQoAAAAAAAWJTb0AZHnGak1HSuVljuJpT7WV/BOBgbFeQl7nyg0bfK1Xec3YsEsCAAAAAKCg0CELoIeVbQlZK61oS4ZdCoqU17lM1k/JbVsqa03Y5QAAAAAAUFAIZAH0kPSM1kVTaoymlPYI05ADazJhrJdggy8AAAAAADZCIAtgE8tbEzLGamU7s2SRG5NYJ5Nsld+5XMaj2xoAAAAAgC4EsgA2EU37ak24Wt2RlG9s2OWgSLlt78kaX17b0rBLAQAAAACgYBDIAujViraEPN9qTQfdjciN9eLyOlfKTzTLT7aEXQ4AAAAAAAWBQBZAr1rirqJpXyvaE7KWLlnkxutYJuun5XUsC7sUAAAAAAAKAoEsgM1a0ZZQyjVqjKbCLgXFyvryY2tkUh0y6WjY1QAAAAAAEDoCWQCb1dSZUsL1tayVLlnkzoutlmTlx1aHXQoAAAAAAKEjkAWwWVbSstaEEmk/wC5Zgt6S56czc2TjTbLGC7saAAAAAABCRSALYIsa6ZJFHvjRNbLGlx9vDLsUAAAAAABCFQm7AACFzUpa3ppQTUW5mqJpTayvyuv67mnHKL5siVKdayVJdduMz+v6KAwm1SrrJeRH1yhSNynscgAAAAAACA2BLIA+re1MaeqYWi1rjWtCXaUcx8nLutZa+Ud8UR0rJinW+I4kqWLiRFr3S5QXXS0nUiM/1abyqlFhlwMAAAAAQCjIPQD0yUpa1hJXPO2rKZoO4AMYhTAc+PG1kjXyo2zuBQAAAAAYvghkAfTL2s6Ukp7RstZ4HmfJ2o0eUdKMJz/RJD/RLOsHEOwDAAAAAFAECGQB9EugXbLkscOGF10tWSs/tjbsUgAAAAAACAWBLIB+y3uXrKVDdrix6U6ZdKe82Jo8dloDAAAAAFA8CGQB9FtQXbLEcsOLH1sj6yVlki1hlwIAAAAAwJAjkAUwIPntkrVSZ0xlHXGVxVIqi6XkxFJ5qROFy483ZubJxtjcCwAAAAAw/ETCLgBAcbGSlrXGVR2pU1M0rYn1VYNarfrQ72jK0hXZZ/wpY9Vx+3cHXScKmDXy4o1SeUTGS6osUh12RQAAAAAADBk6ZAEM2NqOPHXJMqtg2PKjqyUrumQBAAAAAMMOgSyAAevqkh38LFkS2eHKenGZVJv82FpZa8IuBwAAAACAIUMgCyAnaztSSri+3l8fk+cTqGHgvOhqWd+VSawLuxQAAAAAAIYMgSyAnFhJ766LKeUZLV0fH8QqGK5MolnWT2eCWbpkAQAAAADDBIEsgJy1Jlyt6UhpTWdSrXF34AuQxw5zVl7ncplUh9Lr3pD1UmEXBAAAAABA4AhkAQzK0vUxpVyjd9dF5ZuBJayWRHbY86Or5La+K5NsU6rpFfnJtrBLAgAAAAAgUASyAAbFM1ZLmmNKuL4+aBno6AICWUh+bI1S616XSXcq3fymvM4VYZcEAAAAAEBgImEXAKD4NcfSaoqm5DiOJtRVamR1RdglocjYdKdSja+qcswucq2VSXeoYvR0OWX8rykAAAAAQGmhQxZAXrzXHFPaN1rcFJOx/ex87e91GB6Mu6FDdrn8eLPSTa/JuLGwqwIAAAAAIK8IZAHkRdq3eq85plja0/LWRNjloIh57R8ovf7tzGZfhLIAAAAAgBJDIAsgbxo7U2qJu1rWmlAs5fXjHXTIoncm0axU02uyviuv/cOwywEAAAAAIG8IZAHk1eJ1UXm+0aJ1UVlGEmAQrBeXF1sjP9ksk+4MuxwAAAAAAPKCQBZAXqU8o6Xr4+pMelrZntzyxQS26IPXsVwyRl7HsrBLAQAAAAAgLwhkAeTd6o6k2hKuPmjJBLObRyCLPpi0vOhq+Yn1dMkCAAAAAEoCgSyAQCxsiirlGr3d2CnXN2GXgyLmdS6XrC+v48OwSwEAAAAAYNAIZAEEIuUZvdPYqYTr653Gzs3Mk6VDFv1g3A1dsi0yqY6wqwEAAAAAYFAiYRcAoHS1Jlx9sD4uR7X6oCWuHcaO6HmBldKX/UAtS16WG18vSRq19YQQKkWh8zpXKFK3jbyOD1U5fvewywEAMhD+AwAAaANJREFUAAAAIGcEsgACtbwtofrqiORII6sjGjeiqturVuZTuyvR0KZUZyasrZs4kdZ9bMq48qKrJKdcJtWusqqGsCsCAAAAACAn5B4AAreoMap42tfCxqji6U03+bKMLkA/eJ0rJOvLZZYsAAAAAKCIEcgCCJxvrRas6VTaM1qwtlO+yQSwBLEYEOPJ61wpk2yTn2oLuxoAAAAAAHJCIAtgSMRdX4uaMp2yi5qimSe7NvrqdcMvYFNedGUmmG1fFnYpAAAAAADkhBmyAIbMulhay9sSkqTWeJVG8iMhDJTx5EVXKlIWkZ9sVXn16LArAgAAAABgQIhDAAypD9bH1Zpw1RxLK+n5kiOVlfFPEfrP61wpazx5HXTJAgAAAACKDykIgCFlJb3T2Km0b9QSS0tvvae6pY2qXdKkmncbVb5kbdglotBZX350pUyqXX5ifdjVAAAAAAAwIIwsADDkXN9qTUdKI+qNKs/4hSZ8sCL7mj9lrDpu/26I1aEYeJ0rVT5iK7kt70hjd1VZ5SjV19ers7Mz7NIAAAAAANgiOmQBhML1jVri6bDLQLGyvtJNb8ikY0o3L5AfX6e6ujo1NDSEXRkAAAAAAFtEIAsgNCnPyMiGXQaKlPWTSjW9JpPulNu6UGXpZtXW1mr0aDb6AgAAAAAULgJZAKFwHEeSlSWPxWAYV+l1b8gk21WeWK6y1FpVV1dvuL8AAAAAACg8zJAFEIrNxWWGgBYDZTyl1r2hVMW2qpIk68txtgq7KgAAAAAAekWHLIDQOL2MK/CtVdo3IVSDomaNOla8rGT7apWnGuW2Lpal/RoAAAAAUIAIZAGEYsPEgk1YKzVFU/JplcWAWXWufk2J1mXyY41yWxYSygIAAAAACg6BLIAQ9dIha6w832pdLM12X8hJdO0CeR3L5cfXyWt/P+xyAAD/v737jpOivv84/t52HTh6B+nFgthQRJSoaIwasRE7KqJGSWIJYoqiYjSKMQom1gTFgqD4UxPFrhERUFBA5GgCUqQexx3Xts3vj+WGmbvbcnfb7ng9Hw9lZnf2O9/Z+ez3Zj/7ne8XAAAANowhCyAlHGFGkTVkaHeZT61zpMIyr1rnZCS5ZmgKfHt/kNOTJUlyuLPlzuuU4hoBAAAAABBCQhZAaoQZskCSSir9ynSFErYZLqeaZdJUoe58havkcGXJV7RWDneWXFmtUl0lAAAAAAAYsgBAaoTSreEHJdhd5lOlP6jCMp8q/Ezyhfow5N29QoavTL7d3yvoK011hQAAAAAAICELIHUcERKyhkKTe/mDQe3cVyk/k3yhPoI+eXctV9BfKe+u72QEvKmuEQAAAADgIEdCFkBKOGofQtYmYEg79nnlDxraua9SBjlZ1IPhL5dv9woZ/vJQUjYYSHWVAAAAAAAHMRKyAFIihnysJIWGLSj17h++gN6NqJ9gZZF8hasU9JbIt6dABtl9AAAAAECKMFMOgBSJMKtXNSXegDLcfkmSx+1Ucyb5Qj0EyrbL4c6WJDlc6+XJ75niGgEAAAAADkZkNQCkhMMRey9ZSSos8ynD5dSe/f9muengj7rzF2+wJGUz5W7WOcU1AgAAAAAcbMhoAEih2G8bNyf5CgS1Y1+lKvzBxFULTZqvsEDByj3y7V2rQOn2VFcHAAAAAHCQoYcsgJSo6h3741N/UcE378vnq5AkZTVrFvY1AUPaVlKpDs0ytb2kUm3zMpTjcSWhtmhaDHl3rVBG20Hy7lmlDKdbruzWqa4UAAAAAOAgQQ9ZAKljGPK3b6PSNs1V2rqZSls3U0WrvIgv8QUN/VRSKW8gqJ37vNrnDSSpsmhSjIC8u5bL8JXKV/i9gpV7U10jAAAAAMBBgoQsgKSrMXZsHWe89wcNbSuuUKU/oF2llSqu9MetbjiIBH3y7lymoK9c3l3fKejdl+oaAQAAAAAOAiRkASSdY39G1rF/DNm6pWNDqoYvqPAFVVjqVVG5L34VxEHDCFSGkrL+cnl3LVfQX57qKgEAAAAAmjgSsgBSr449ZKsEDWl7SaXKfQEVlftUWOarV3IXBzfDXxYavsBfLu/O5TIC3lRXCQAAAADQhJGQBZB0B4YsMKr9W3eGpB37vCr1BlRc4dPuUi9JWdSZ4S2Rd/cKGb7SUHI2yDAYAAAAAIDEICELIAXso8ga9ewha75e0s5Sr0oq/dpX6df2kkoFGlgmDj7Bij3yFhYo6C1R5Y4lCvpKU10lAAAAAEAT5E51BQAcfByWfGyzj+erx9JVCgYDkiRXy+b66dje9Sp3d5lPvoChVjnStuJKtc3LUIaL350Qu2D5Tnl3BZXRqr+8O76Rp1V/ubLbpLpaAAAAAIAmhIQsgJRxyFDbx6ery4bN5mMlHfPrnZCVpOJKv3zBoNrmZmpbcaXa5GUox+OKR3VxkAhW7FbljiXKaHOYvLtXyN2su9zNu8vhcER/MQAAAAAAUdB1DEDS1RxDNr7KfUH9VFwhbyCoHfsqtbeC8UBRN4a/XJXblyhQtkv+4o3y7V7BuLIAAAAAgLggIQsg6ZLR0dAXNLS1uEIVvqD2lHm1i8m+UFdGQL7dK+Qv3qBA+W55d3yjoK8s1bUCAAAAADRyJGQBpE6CJ94KGtL2kkr7ZF9B0rKoG3/xRnl3fadgZbG8O5YoUL471VUCAAAAADRiJGQBJJ1j/6AFyRiR01Bosq/dZT5V+AL6qSQ0lAFQF1Xjyga9JfLu/l6Bij2prhIAAAAAoJEiIQsg+VIwN1JJpV/bSirl9Rv6qbhSpd5A8iuBRs3wl6tyx1IZvlL5dn+nYOXeVFcJAAAAANAIkZAFkHSJntQrnAp/UFuLK+T1B7WztFJF5T7GlUXdBL3y7lymoK88NIyBtyTVNQIAAAAANDIkZAEcVPxBQz8VV6jMG1BRuU8791WKYWVRF0agQt6dSxX0l8m7a7mCvtJUVwkAAAAA0IiQkAWQdA6zi2xqMqFBSTv2eVVU4VOZN6BtJRXykZVFHRj+8gM9ZXcuU9BfnuoqAQAAAAAaCRKyAJIumZN6RVJU7tfOfV5V+oPaVlyhMh/jyiJ2hq9U3l3LzOSs4a9MdZUAAAAAAI0ACVkAKWQoVb1kq5T6AvqpuEKV/qB2lFRqW0mlKvzBlNYJjYfhLZF313cyfGWh5GzAm+oqAQAAAADSHAlZAEnnSHXX2Gq8AUNb91aoqHz/EAbFFdq+r1KVARKziC5YWSTv7hUK+kpVufNb+Yt/VNC7L9XVAgAAAACkKXeqKwDgYJY+47YGJRVV+FVc6VeLLI8MSeW+gHI9brXIdivDxe9XCC9YUSjvru/kye8tn69c2rteDnemnJkt5cpuJWdmSzmc/MkFAAAAAJCQBZACtg6y6ZOTlSQFDWlPuU/FFT61yPbIMKRSn195GW61yvHImW7de5E2ghWFqty2SA53jpxZreTKaiXDV65A6TbJ4ZAzo4XczTrJld021VUFAAAAAKQQCVkAKeNIs2SsVcCQCst8Kq7wKz/LIxlSpT+oNnkZyqS3LCIw/GUK7CtTYN9myeEM9ZLNaiUju1LByiI5M1vIk99Lzoxmqa4qAAAAACAFSMgCSLoDnUyNdOsgW4M/aGhXmVdlPqfa5GZqW3GlWuV41CyT5hMxMIIKVuxWsGK3tHed3Hld5G7eTZU79sqV006e5j3kcGelupYAAAAAgCQiowAgBaoysoYMj1sBt8t8JmhZTidlvqC2FleobW6GdpcaqvAH1TonQ05GMECsjKD8JT/KX/qTPC16SIahYPkuufK6yN2sK2PMAgAAAMBBgm9/AJLOOgzr2pl/17eL3jLXc/PylK45Tn/Q0LaSSrXM9kiSvP6g2uZlMOEX6ibok2/PavlLNsuT30tGMKhA6Ta5m3eXK7eDHA7iCQAAAACaMhKyAJLuQMLVkGGk+6AFdoakwnKfKvxBtcnN0E8MYYB6Mvxl8u5aLmdmS7nze8oIeOUv2SRP80PkzGknBxPIAQAAAECTRAYBQMo05nRTmS8QGsIgLzSEQUmFX82y3MrNcDOMAeokWLlH3u2L5cppJ3fzQ+T1V8hZsknuFofIld0m1dUDAAAAAMQZCVkASWfNVza2HrJW/qChbcWVapbpVvMst7yBoPaU+5SX4VazLLc8ZGZRB4GyHQqU7ZQrt4Pczbsr6CuVM7O53M0PkSurZaqrBwAAAACIExKyAJLPcWBSr9B/jZchqbjSr5JKv7I9TjXL9CgYNFRc6VOOx6VmmW5leVyNujcwkslQoPQnBcq2y5XXWe5mXRWsLJYru5U8LfvJ4cpIdQUBAAAAAA1EQhZA0tmTk407IVvFkFTmC6rMVymP06FmWW4Fg1KZNyC3y6m8DJdyM+k1ixgZQQVKNimwb6vczbpJMhT0LpanVX96ywIAAABAI0dCFkAKGWrEIxaE5QsaKizzqajMp7xMt/IyXfIHgioq9ynT7VJepks5GS65mLQJ0RgB+YvXK1CxWxmtB8i7a5nczbrK3bwHk34BAAAAQCNFQhZA0lXlkRyS2rz0lgYXfGs+F2zdXOvOOjol9Yq3oELDGRRX+uVxOkLJ2QxDlf6ACsscyvGEkrPZHleqq4o0Z3iLVbl9sTwt+0qGFKzcK0+rAXK6s1JdNQAAAABAHZGQBZB0Zr8+w1DrNz9S541bzedKOuY3mYSslS9oaE+5T3vKfcpyO5WX6VYwaKjU61em26WWOR5luZ2pribSWdAv3+7vFcztJE9+L3n3J2hdOW1TXTMAAAAAQB2QkAWAJKvwB1Xh96pQUrMst1pkSZXFAWV7XMrP9iiTxCwiCJRuVdC7VxmtB8q7+3u5KjrIld1aDlemHO4sOZyeVFcRAAAAABABCVkASXdg7MsmOIBsHQQl7a3wq6TSr+ZZbhmGVO4LKCcjlJjNcJGYRe0MX2loCIP83pKkQOk28zmH0yWHK0sOd6Ycriw5s1rJmdWKMWcBAAAAIE2QkAWQMg7pYM/JSpKChlRU7ldJhV8tsjwyJJX5AsrNcCs3w6Vst0vk0lCDEZRvz2r5ijfI6c7Zn4TNOtBTdv+/2rdVTk+OXM26yJXTXg4HiX4AAAAASCUSsgCSjtxi7QKGVFjuU3GlXy3295gtrfTL6XAo2+NSdoZT2R6XXGRnYRXwKhjw1v6cwylXbge587oq6CuTv3ij3Hmd5crtKIeTSwAAAAAASAW+jQFIIUN0ka3JHzS0uyw0AVi2x6Ucj0v+oKFSb2i4h0x3KDGb7XEyrAEiM4IK7NuqwL6tcma3lbtZVxn+SvmLf5Qrt6PczTrL4cpMdS0BAAAA4KBCQhZA0h3o4EkyNpKgIZV6Ayr1BuSQlOV2KifDpWyPSxW+gPZIcjlDvWerkrRuJ71nUbtg+U55y3fKmZkfSswG/fLv2yxXVku5ctrLmd2G4QwAAAAAIAlIyAJIOgeDFtSZIancH1S5PyjJpwxXKBGb5XbKHzC0b/9b6nE5leV2Kmt/D1onwxugmmBlkbyVRXJ4cuXK7SQj4FOgvFAOp1uunHZy5XaQM6NZqqsJAAAAAE0WCVkAyeeo+ocesvXlDRjyBvzaq9Dbmek+kIj1BpwqqfQzvAEiMnyl8hetkb9orZzZbeTO7SAj6JN/31Y5Pbly5bSTw5NzYJIwpyfVVQYAAACAJoGELICko89mfBmSKvxBVfiDUoVfTklZnqpE7IHhDdwuh7LdLmXt71nrYngDSJIMczgDuTLkymkvd24HBX2ltq0cTpccriw53JlyuLLkzGolZ1YrOeiFDQAAAAB1QkIWQErRRzb+gpLKfEGV+ULDG3icDnPsWX/AUEmlX5LkdjmV6XIqw+1Upju0TG7tIBfwKlCySYGSTfuTr1mWfzNt/2rfVjlcGXLltpcrp4OcnpxU1x4AAAAAGgUSsgCS7sCcXqRjk8EXNLS3wq+9lt6zGW6nMl0ued1OOb2h7RwOhzJcjv3jz4YmCiM/e/AyAhUyAhW1P+lwyZXdVq7cDjICXvmLN8mZ2SKUnM1uJ4fTldzKAgAAAEAjQkK2kVi3bp1mzpyphQsXavPmzfL7/WrXrp369u2rc845R6effrrcbk4nGgmyfClj7z0b6inrcYbGmg3951KlP6i95T45nQ5z2INsj1Muus+iihFQoGybAmXb5HBny5XbQa5AewUr98rvXCeHJ08Op1tyuuRwuCWnO7TucMvhypAzM5+kLQAAAICDFhm8RmDq1Kl68skn5ff7bY9v2rRJmzZt0kcffaTDDjtMDz/8sHr27JmiWgKxc5j/0kM2HfiChnzegPZ5A5J8cjscys4IjUEbCBgq3T9BWIbLqWyP00zeOknQQpLhL5d/73r5966XM6uVXDntQ5OBOVwHErHVf4VxOOTMaC5nVku5slrK4WnGWLQAAAAADhokZNPc5MmTNWPGDHPd7XarX79+ys7O1rp167Rnzx5J0nfffacrrrhCs2bNUufOnVNVXSAmJF7Sm98wVFIZUEllQA5JWW6nsvePQVvp33/uHFKG02nrWetxcV4PdsGKQgUrCms+4XCZvWUdnhy5MlvKyCoL9ajdu0EOp1vOrJZyZraUM7MF49ECAAAAaNJIyKaxuXPn2pKxZ5xxhu666y61adNGkuTz+TRnzhw98MADKi8v165duzR+/Hi9/vrrJLzQSBhiWq/0Zkgq9wdV7g9NEOZySJlul7L2J2IrA045KkPbOh0OuZ0OuZwH/q1adjudcrscjFZxsDICUiAgQ14Z/jIFy3dJkhzuLDkzW4V6yvorFCjbGXrc5ZEzo0UoOZvZnB60AAAAAJoUErJpyufz6a9//au5PmLECP3973+X0+k0H/N4PBo9erQ6d+6s66+/Xn6/XytWrNB//vMfnXPOOamoNhATa1qloltHlQe9B9bbtUh+hRCzgCGV+QIq8wUkhc5lhtupLLdTHpdzf/I1lIitnj5zOEKPe5wOeVwHkrQekrUHLcNfoYB/qwKlW+WT5MhoZknElslRlbh1uuTIaCaHK2P/Kx22fx0Oh+T0hF6X0Xz/MAkAAAAAkJ74xpKmPvjgA23dulVSaJiCu+66y5aMtRo2bJhGjx6tl156SZL073//m4QsGgWHDK35y2+06rv/mY/l5uWRmGtEDEmV/qAq/cEaz7kcqtFDNpSMDSVubRySy3FgO7ez+n9ORewg6XDI4/HIMAwFgzXrgsbB8JYo4C1RYN9mSZLDnWP2knVmtJDMRKslge9wSHJIDqe57vTk7k/sNpczs4Ucrsyo+3Y6nWrbtq28Xq+8Xm/U7QEAAACgvkjIpql33nnHXB46dKg6deoUcXtrQnbFihXatGmTunbtmtA6AvVlTawZBkMWNFUBQwoEDHkDhiR7ktQhhRKtlh6y1uRr9XxtxIStyxkaSiHzQNKN29ubBsNfpoC/TIHSn6JvXNVDNrNFKBmbUSLt29+D1pURanjM9mb/v4YhORxyeHLl8DSXRz65c3KUk5MT9kdQAAAAAGgoErJpyDAMLVy40Fw/8cQTo76mX79+atu2rXbuDI2/9/HHH+uqq65KWB2BhrFlZFNXDaSMIckXNOQLGipXzR6tTsmSeHWayduwCVtJAV8gNG6tQ/K7fPK4nHI6HXI6HHI6ZP7rcDA8QpMU9ClYvsscn1YOl5wZ+3vIVk0SVj0hK0OSU86M5pJrj9yl+2TIIcOVK//ecrmyW8rhzpHDlSGHgwQtAAAAgPggIZuGtmzZouLiYnP9sMMOi+l1/fr1MxOyy5cvT0jdgHg4kAwzmNILtQpK8obpXStJTofsyVqn5PeFkrAel1OBCn/4wvcnZ137x7Q1/3Va10NxWtXT1uEI3SQf+heNghFQsHKPgpV7Ytvc4VHxvoA8Oa3kyWklf4nMoRMkyeF0h3raujLkcGaEkrROT2ioBIdLDmfoXzmccuz/NzSUgmW826p4UmjMW4fTFeeDBgAAANAYkJBNQxs2bLCtd+vWLabXdenSxVz+8ccf41klIEEMiZQs6iFoVCVsQ5OLGYah0n2l5vPNm+WFesg6LD1k9/eWdVRLyLqdjlp73IbjsLzO5Qj13LWWJYdsYW2N8FCSV7Z6kOBND0agUpXF21VZvEWSlFHeVe7sfDlcWaHkqyURq6pkbAOFkryZ+8vMDC27M0MJXVVl/60REhor11G1LQldAAAAoFEiIZuGqnq5SqFJRtq0aRPT69q2bVtrGckUCATkcDhkGIaMYJDJdRCGERo7tuo/21P0mkU9VIujQNBQwIi9/XFIth6yTqe9R2zVMAdVPWXdTktSti7Z3DD7dlQbVsHptK4fGGqh+tALTofk3F/PREjLz2KChjkJGobZI9owDAUDlfKX7ojwiv29XB1OyekK/etwhXrL7n/M3E4KjVVrXXZmHEjA7k+wqo7DIjic7lByeH9SN1RGVS9dp9l711xX1QRo1Y4jVJj9dapajxxc1nHAGzp2cyLGFE/mOOWBQMAce9gwDAX2/2AExKp6zBBDqA/iCA1FDAHJQUI2De3du9dczs3NjXlikby8vFrLSKaNGzeqXbt26pznUZssp/q3iT6zNQ5WQWU6DWW17qTMQ49PdWWAenMqlMx1Op1yOR0HOsjuTwTV7CEbW9LKkBTY/1/MLLk2h+XBqo67Vc+b/8VQFUe1Mh1VD9p3W2MlXNGRdpnq3sJtcnvY1hv0k2L1PGD19UBQ8pVLKjcfcrg8crqz9idRJXv/6f1DHjiccrqqeud6JZU1pJbRVSVnnR7J6ZYcbsnp3j9cQ2hZkmQEJVX9yBbc/6/lLgjzH0sCd3+PX9t/sieS7cuWISHSVO/evc1lr9ebwpqgserbt6+5TAw1XRUVFUm7o/G7775Lyn7QdBFDQGKQkE1DlZWV5nJWVlbMr8vIyDCXU3UB17x5czmdTjkUUJbbpSx3+n5pQupl+TKUf8+j6rR9t/lYoH1rFd31mxTWCkB11afCSpZYk7qREsu1PWXd3lFtq3BlRUsWR3pvatQ3wgbWcsKVGYyhPvVRa5nG/v8FvKH/4rCTqv3UP54cNZetY/WG3VY1hhSxP1d9vF+Hfdnh3L9clTx22Hsf2+pQffxgZ/hyFQwltI2gZAQOLFf9JGBNTst5oBe22aPaIcNWnvW4w7/LNeMwlvfV+gZWH5vF+rhRy2PW96/6e+qwvCZyvWtX9WOAUW3Z2iu8+vseQ5m21TrUqfo+Yt6nat0u/r3Pa1k3anvcUifrexh+TzVfV/2RBhxL7T3eY9tnQ16bCFlZWWrTpo127dqVkPIBAOmPhGwa8vl85nKsvWMlye0+cDr9/ggT2iRQ1X475JKIRQxyj1H2VwVyrVljPhTo00dGpyEprBQAAI1LqnuXx02TOZD0UjOpWMsbHZf3PrEnsPbkaGz7bMhrE4XbwAHg4EZCNg25XAeSmXUZg9WahPV4Gj7ZSH20adNGbrc7Yb8mo+mpHitOh0M5OTkpqg0aq2AwqJ9++slc79ixY51+0AKCwaC2bdsmKdQudejQgb9lqLM9e/aYyy1btqx1m9riqrbee+F69RGXTZdhGCotLTXPcW5ubtzPdzzGVY41hsNtGy8N2Wcq6msVDAbVrVu3mCdvrotAIGC7xfywww6zfb8EoiGG0FDLly9nPqEYkJBNQ9nZ2eaydfiCaKzDFGRmpmbsVpfLRWONOjGqX/g6HMQQ6swwDNtkhp06dSKOUCeGYWjHjgOTeHXo0IEYQp34/X5t3LjRXM/Pz7fdvQRE4/f7tcZy19CgQYPiHkOJSjim4oeChuwz1T9sJPPvi8vloi1CgxBDQGLQfSgNtWjRwlwuLS2N+Zfsffv2mcv5+fnxrhYAAAAAAACABiIhm4bat29vLgcCAdvtb5FYe4e1adMm7vUCAAAAAAAA0DAkZNNQ9+7dbeubNm2K6XWbN282l3v06BHXOgEAAAAAAABoOBKyaahz5862IQdWrlwZ0+sKCgrM5f79+8e7WgAAAAAAAAAaiIRsmhoyZIi5PH/+/KjbFxQUaNeuXeb68ccfn5B6AQAAAAAAAKg/ErJpauTIkebyJ598ou3bt0fc/pVXXjGXe/XqpX79+iWsbgAAAAAAAADqh4Rsmho5cqTatWsnSfJ6vZo4caL8fn+t237++eeaPXu2uX7FFVckpY4AAAAAAAAA6oaEbJrKyMjQrbfeaq7Pnz9f1113nW2CL7/fr1mzZmn8+PEKBAKSpL59++qiiy5Ken0BAAAAAAAAROdOdQUQ3qhRo/TNN9/o1VdflRRKyo4cOVL9+vVTXl6e1q1bp8LCQnP7/Px8PfbYY3K7Oa0AAAAAAABAOiJzl+buuecetWzZUs8995x8Pp+CwaBWrlxZY7tevXrpscceU8+ePVNQSwAAAAAAAACxICGb5hwOh2655Rade+65eu211zRv3jxt27ZN5eXlatGihQYMGKAzzzxT5557rjIyMlJdXQAAAAAAAAARkJBtJHr16qU77rhDd9xxR6qrAgAAAAAAAKCemNQLAAAAAAAAAJKEHrIAUso480zt6dbNXM8fOFCOFNYHAAAAAAAgkUjIAkip4JQpWr90qbk+aNAguu4DAAAAAIAmi7wHAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJHGnugIADm7Os8/WoQUFB9b795fmzk1hjQAAAAAAABKHhCyAlHJs2KCsjRvNdSMrK4W1AQAAAAAASCyGLAAAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSh2EYRqorgcZr8eLFtnWnkxw/6qisTAoGD6w7nVJOTurqg0YraIkj2iLUBzGEhiKG0FDEEOKBOEJDEUNoCGv8SNLRRx+dopqkN3eqK4CmpfoHD4gqK6vmY8QRGoi2CA1FDKGhiCE0FDGEeCCO0FDEEJAY/NQBAAAAAAAAAElCD1nEFbczAAAAAAAAHJzoVR0bxpAFAAAAAAAAgCShOyMAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCQhIQsAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJLEneoKHMzWrVunmTNnauHChdq8ebP8fr/atWunvn376pxzztHpp58utzv+p+inn37SzJkzNW/ePG3cuFEVFRVq27atevbsqbPOOktnnXWWsrOz61TmsmXLNHv2bH311Vfavn27DMNQ+/btdeihh+qXv/ylhg8fLofDEXN5hmHoww8/1FtvvaXly5dr9+7dys7OVvv27XX88cfrggsuUP/+/etUx9LSUr3xxhv68MMPtWrVKpWUlCg/P1+dOnXSqaeeqlGjRqldu3Z1KjMdEEfhlZWV6c0339S8efO0cuVK7dmzR36/X/n5+erbt69OPPFEXXjhhWrevHlM5Z199tlas2ZNnY7pwgsv1P3331+n1yQbMVS766+/Xp9++mmd9n/CCSdo+vTpEbfxer3673//q3fffVfff/+9ioqKlJeXp44dO2r48OG64IIL1K1btzrtN9WIoQMmTpyoN954o0HHddxxx2nGjBm1PtdU2yGpacVRbSZMmKA333wz4vkNh+ui2BBD4XFNFBtiqHZcE8WOGDqAa6L6aypxFAwG9cknn+iDDz7Q0qVLtXPnTlVUVKhZs2bq2rWrjjvuOF100UXq3r17ner55Zdf6vXXX9e3336rHTt2yO12q0OHDho8eLBGjRqlY445pk7lpaotchiGYcS9VEQ1depUPfnkk/L7/WG3Oeyww/Twww+rZ8+ecdvvzJkz9eCDD6q8vDzsNocccogeeughDRo0KGp5Pp9P9913n1599dWI2w0bNkwPPPBATBf227dv1y233KLFixeH3cbhcGjMmDG69dZblZGREbXMxYsX67bbbtNPP/0Udpvc3Fz96U9/0vnnnx+1vHRBHIX3zjvv6J577lFRUVHE7fLy8nTnnXfqwgsvjLhdZWWlBg8erEAgEHXfVun+R58YCu+kk07Sjh07om5nFe3Lx7p16/Tb3/424sWjx+PRb37zG1133XV1+gEiVYghu0R++Wiq7ZDUdOIonA8//FA33XSTpMhfLmvDdVFsiKHwuCaKDTEUHtdEsSGG7Lgmqp+mEkcrV67UhAkTtHr16ojbuVwuXXrppbrjjjvk8Xgibrtv3z7dcccd+vDDDyNud+655+quu+5Ss2bNotYzlW0RCdkUmDx5sq1Rcbvd6tevn7Kzs7Vu3Trt2bPHfK5NmzaaNWuWOnfu3OD9Tp8+XQ888IC57nA41KdPH+Xn52vDhg22P7LZ2dl66aWXdOihh4YtzzAM3XzzzbYPQ2Zmpvr16yeXy6U1a9Zo37595nM9e/bUq6++GvGX98LCQo0ePVo//vij+Vh+fr569+6t8vJyrVq1ytYw/eIXv9Df/va3iMe9ePFiXXPNNaqoqDAf69y5szp37qydO3dq/fr1tu0nTZqkSy65JGKZ6YA4Ch9H1esoSa1atdIhhxwil8ulDRs2aOfOnbbnx48fr5tvvjlsmcuWLdNFF10kScrKyor5V7eTTjpJY8aMiWnbZCOGIrdFJ5xwgrk+bNiwmI5t4MCBuu2222p9bv369brkkkts72vbtm3Vo0cPFRUVac2aNbL+Sb7uuut0++23x7TfVCGGasbQv/71L33xxRd1Op61a9dq27Zt5vott9yiG264ocZ2TbEdkppOHIWzbNkyXXXVVSorK5NUt0QI10WxIYZir6PENVFtiKHwuCaKDTFUE9dEdddU4uibb77RmDFjbNcaWVlZ6tu3r7Kzs7V9+3Zt2LDB9pphw4bpqaeeCtvzt7KyUldccYWWLl1qPpabm6u+ffsqEAho9erVtv0de+yx+te//hXxh+qUt0UGkurdd981+vbta/43fvx4Y+fOnebzXq/XmDlzpjFo0CBzm1GjRhnBYLBB+/3mm2+MAQMGmGVedtllxsaNG83ng8Gg8d577xlDhgwxtxk+fLhRVlYWtsxnn33WdiyTJk0yiouLzefLy8uNf/7zn8bAgQPNbW666aaI9Rw3bpy57eGHH268/PLLhs/nM5/fsWOH8bvf/c623+effz5seSUlJcawYcPMbU8++WRj/vz5tm2+//5745e//KW5zcCBA43vvvsuYj1TjTgKH0dLliwx+vXrZ247YsQI49NPP61x7PPnzzdGjhxp2/enn34attxXX33V3O7yyy+P5e1Ka8RQ5LZo3rx5thhqKL/fb5x77rlmmccee6zx7rvv2t7PH3/80bjyyittx/Lhhx82eN+JQgxFjqFYrV271hg8eLBZ7q233hp226bWDhlG04qj2ixcuNA4+uijbcdYl3PHdVF0xFB4XBPFhhiKjGui6Iih+OCaqGnEUUlJiXHCCSeY2x5xxBHGCy+8YFRUVNi2++GHH4yxY8fajvmvf/1r2Hrec8895nb9+vUzpk2bZpSXl5vP792715g8ebKtvL/85S9hy0uHtoiEbBJ5vV7jlFNOMU/k9ddfbwQCgVq3/fzzz21f/N56660G7fviiy+2fWitgWu1cuVKWyP4z3/+s9btdu/ebdvu7rvvDrvv1157zRbAixcvrnW7//3vf7bt/vvf/4Ytc8KECeZ2Q4YMMUpKSmrdbsqUKeZ2Rx99tLF+/fpatyspKTHOPvtsc9urr7467L5TjTiKHEeXXHKJ7Q+F9Y9YdXv27DFOP/10c/szzzwz7LaTJk0yt5s8eXLY7RoDYihyDBmGYTzzzDPmdjfeeGOdjrE2r7zyilnewIEDw+7b6/UaV111lbntz3/+c8Pv9zd4//FGDEWPoViUl5cbP//5z21tUGlpadjtm1I7ZBhNK45q8+yzz9rqXNcvjlwXRUcMRcY1UXTEUHRcE0VGDMUH10RNJ44effRR22d84cKFYfcdDAaN8ePHm9sfeuihxpYtW2pst2bNGlvS+Omnnw5b5mOPPWYrb9OmTbVulw5tkTN+fW0RzQcffKCtW7dKCnU9v+uuu+R01n4Khg0bptGjR5vr//73v+u936VLl+rbb7811//85z8rKyur1m379+9vjgsjSc8//3yt47K89tprKi0tlRS6dW7ChAlh93/BBRfolFNOMdfDHcvzzz9vLg8bNkxnnXVW2DLvvvtutW7dWpK0Z8+eWsemqaystI0FeN111+mQQw6ptby8vDzbWDJffPGFVq1aFXb/qUQchdR2LJs2bbKNsTdhwgS1adMmbJn5+fmaOHGiuf7DDz9o5cqVtW5rfbyuE6ekG2IoJNKxxPt8v/DCC7Z6HHXUUbVu5/F49Ne//tUcP2ndunX67LPPGrz/eCOGQhpyLJL08MMPa926dZJC5/7RRx9VTk5O2O2bUjskNa04stqwYYPGjRunhx56KOL4b9FwXRQdMRQe10SxIYai45ooMmIoPrgmajpx9NZbb5nLF1xwgY477riw+3c4HJo0aZIyMzMlheZ0eP/992tsN2PGDHNfPXv21LXXXhu2zJtvvll9+/Y1y3vxxRdr3S4d2iISskn0zjvvmMtDhw5Vp06dIm5v/ZCtWLFCmzZtavB+e/XqpcGDB0fc/sILLzTH7SgsLNSiRYtqbPPuu++ayz//+c8jNpaS/Vj+97//mWPPVNm7d6/mz59vrl9wwQURy8vJydG5555rrs+dO7fGNvPmzdPevXslSU6nM+qkFEcccYRtHJTaykwHxFFIbXG0YMECczkzM1Onn356xPKk0DhC1sHDly9fXmMbwzBsX0Qb+x99YiikthiqUlBQYC439HwXFBSYF5iSok6W0r59e40YMcJcT8e2iBgKiRRD0Xz99dd66aWXzPXrr78+Yqw1tXZIalpxJEl+v1+TJ0/W2WefbbtQHzx4cJ3HYOW6KDbEUHhcE8WGGIqOa6LIiKGG45qo6cTRjz/+qC1btpjrZ599dtQ6tGrVSkceeaS5Xv1vTzAY1HvvvWeun3/++WGT1VLoGufiiy82162vrZIubREJ2SQxDEMLFy4010888cSor+nXr5/atm1rrn/88cf12veXX35Zp/22aNFChx12mLn+ySef2J4vKiqy/SIVy8Duxx9/vFwulySpoqLC9iVDkhYtWmT+4uFwOGKqp3WbJUuWmF8yqliPu2/fvrb3MpYyqx93OiCOIsfR9u3bzT8QXbt2jWmmaY/Ho7y8PHPdOqB3lY0bN5pJF7fbrT59+kQtN10RQ5FjSAr1IrNOatPQizzrl+IWLVro8MMPj/oa6/vz6aef2gaTTzViKHoMReP3+3XPPfeY57VXr166/vrrI76mKbVDUtOKoyplZWWaMWOGfD6fpNB5uv766/XCCy+YvVdjxXVRdMRQZFwTRUcMRcc1UWTEUMNxTdS04mjLli1mb1dJ6t27d0z1yM/PN5eLiopszxUUFNj+HsVyvW49lq1bt9p+WJLSpy0iIZskW7ZsUXFxsbluDeJI+vXrZy7X9it1ND6fTz/88IO5HuuMipH2u2rVKlvwxVJmTk6OunXrFrZM6wekS5cuatGiRdQyrRcEwWBQK1asqFHPutSxeplr1qxRZWVlTK9LFuIochzdfPPNWr58uT7//HNNnTo1pjqWlJTYvrTWNmu6NWHTo0ePmL7UpCtiKHIMVZVblQjJyclR165dY6prONb2bcCAAXI4HFFfY22L9u7da5thPdWIoegxFM2rr76q1atXm+t33nln1HalKbVDUtOKo9oMHTpUr7/+um699dZ6nSuui6IjhiLjmig6Yig6rokiI4YajmuiphVHJ5xwgpYtW6YFCxbozTfftCVaI9m8ebO5XP1vj7Xd8Hg8MSXge/ToYRt6IVL+KZVtkbvBJSAmGzZssK1bv8xF0qVLF3O5Pid88+bN5q9bktS9e/cG79d6LBkZGerYsWPMZVb9whqpzFjr2LZtW2VlZamiokJS6JeyoUOHms9bf82tz3H7/X5t3rxZvXr1ium1yUAcRY4jKXSLQrt27dSuXbuYyvvggw8UDAbN9drOt7XB7tevn/bu3as333xTn3zyiQoKClRSUqLmzZurR48eOvnkkzV69OiYvjynAjEUPYaqn++Kigr997//1QcffKAVK1aoqKhIubm56tq1q0466ST96le/Uvv27cPurz7tm/W4pVD7FutrE40Yih5DkZSWluqJJ54w10855RSddNJJUV/XlNohqWnFURWn06kRI0bo6quv1pAhQ+pcNyuui6IjhqLjmigyYig6rokiI4YahmuikKYYRy1btlTLli1jKm/Tpk36/vvvzfXqf3us70/nzp3Nuz8icTgc6tSpk5lw3rhxY9gyU9kWkZBNkp07d5rLTqcz4qD6VtZu6NYy6rPf6uXFut/du3crGAya43RYy4y1vOrbVq/Xjh076lVm69atzTFKrGUGg0EVFhbWuczq52Xnzp1p88VDIo6qb1ufY7GqrKzUU089Za7n5+fXOpi39VfY9evX67TTTrP9iimFjm/37t36+uuv9cwzz+gPf/iDRo0a1aD6JQIxFP1YrOe7uLhYI0eOtLVRUuhWmqKiIi1fvlz/+te/dNNNN2ncuHG17q8+7VurVq3kcrnMXikNjfV4IoYadiwzZszQ7t27JYUuFm+55ZaYXteU2iGpacVRlby8PD355JN1rlNtuC6KjhiKL66JiKHacE0UGTHUMFwThTTFOKqLqVOn2u5Ys47VWr2esf7AKIWuYaoSsvHIPyWiLWLIgiSx3v6Tm5sbc8Bax3GqPhZYXfcr1X7rUW2aNWtmLhuGYWvgrGN6WLeLJtKxWNfrUqZ1W2sdS0pKbDP+1ee4q5eZDoijhh+L1ZQpU2y/jl155ZW1/uJm/aO/YsUK8zi6d++u4447TocddphtrJzi4mJNnDhR06ZNa1D9EoEYin4s1vO9bt068w92p06ddOyxx+rII49Ubm6uuU1FRYUeeeQR3XnnnbXurz7tm9PptE0ulU5tETFU/2MpLy/X888/b66PHDky5vH4mlI7JDWtOEoErouiI4bii2siYqg2XBNFRgzVH9dEBxzMcfTBBx/ozTffNNePP/74GkMn1Pd63bptPPJPiWiL6CGbJNYxt6xjWURjHQ/F6/U2aL912bd1htXq5VjrEa9jicf7Yy2j+nFbG+RYy6utnFQjjhp+LFVeffVVvfDCC+Z6586ddfXVV9fYrrCwsEZPgHPPPVe//vWv1aNHD/OxyspKzZkzR1OmTNG+ffskhX7t69mzp84666x61zPeiKHIx1J91lYpNOv0LbfcYrs48Pl8ev/99/XAAw+Yv47OmTNHPXv21HXXXRe2zvFo31KNGKr/scyZM8fWS/HGG2+M6XVNrR2SmlYcJQLXRdERQ/HDNRExVBuuiaIjhuqPa6IDDtY4WrFihSZMmGAr94477qixXWPIP9UXPWSTxDo2R126c1t/mfb7/XXeb/XXxLrv6r+IW3tVJOJYrOt1KbNqpuvqZVQv37pdrOVJ9uNOB8RRw49Fkv7v//5PkyZNMtc9Ho/+/ve/237xqrJu3Tpb/e688049/PDDtj/4UujL7SWXXKKXX37Z9mvlAw88kFYXjsRQ5GPZsmWL7XxdeeWVeuaZZ2r8UuvxePSLX/xCr7/+ujp06GA+/sQTT9S4fcW6j1jbourb1jfWE4EYqv+xvPzyy+bykCFDNGDAgJhe19TaIalpxVEicF0UHTEUH1wThRBDNXFNFB0xVH9cEx1wMMZRQUGBrrnmGpWVlZmPTZgwQQMHDqyxbX3fn0jtRrq0RSRkk8R64qyD5UdjPcnVf4mIRfWAjXXf1YPLuu9EHEt9y7R++MPVsfp2sZZXWz1TjThq+LG8+OKLmjhxorlPh8OhyZMn64gjjqh1+2OPPVZLly7V3Llz9dJLL2nMmDERy+/Xr5/tl74dO3bo3XffrXM9E4UYinwsXbp00bJly/Thhx/qhRde0J133hlx1s327dvr/vvvN9fLy8s1a9Ys2zbWetblgsW6bTrNHksM1e9Yvv76a61du9Zcv/LKK2PeX1Nrh6SmFUeJwHVRdMRQw3FNRAxFwjVRdMRQ/XBNZHewxdHixYt15ZVX2oYiuPDCC8PGQbyviaqXmcq2iIRskmRnZ5vLdflFxtq1Otbby8Ltty77rt6l27pva5fuuhyLddvqxxLvMqt3O4+1zPre0pcsxFHkOIrEMAw9+uijuu+++8xBwx0Oh+666y6dd955EV+bkZGhHj166JhjjolpX6NGjbKNp/XFF1/EXM9EI4aix5Db7VbXrl01ZMiQmH6FHTZsmO1X+ernOx71TKcvH8RQ/dqht956y1xu06aNTjnllJj3JzWtdkhqWnGUCFwXRUcM1R/XRCHEUHRcE0VGDNUP10R2B1Mcffjhh7rmmmtsY7iec845uvfee8O+Jl3zTyRkG5EWLVqYy6WlpbZZ5CKpGu9ECs122pD9Vi8v1v263W7bQMfWesRanhQ67trKqF7PupQZ7v1p1qyZ7aKhPsddWz1TjTiKHEfhVFZW6pZbbrHNGOpyuTR58mRdeumlMe87VhkZGTr88MPN9Y0bN8Z9H/VFDNUvhqKxzkRd/XzXp30LBoO2W3jSqS0ihuoeQ36/X++99565fu6559Y6WU48pXM7JDWtOEoErouiI4bqh2uiA4ihxOCaKLqDOYa4JqrpYImjZ599VuPHj1dFRYX52IUXXqiHHnoo4rAB9b1ej/T+pEtbREI2Sdq3b28uBwIB7dmzJ6bXWcfdadOmTYP2K0m7du2q835btWpluz3FWubu3btjrkukY6lvmdZt27Ztay47nU7beqxlVn9/6vOeJxJxVPdj2bVrl6644grbrSmZmZl6/PHHdeGFF8a837qy1q0+s14mCjHU8GOpTaTzXZ96FhYW2m7JsbZnqUYM1f1YFi9ebLst6+c//3nM+2qIdG2HpKYVR4nAdVF0xFDdcU1kRwwlBtdE0R3MMcQ1UU1NPY58Pp/+9Kc/6eGHH7Z9lseNG6f7778/au/7du3amct1uSayHk/1diNd2iISsknSvXt32/qmTZtiet3mzZvN5eoDVceiU6dOtvEy6rPfQw45xPac9VjKyspi/uBa9139WKz7+PHHH2Mqb8eOHbZfVyLVM9YyrXX0eDzq3LlzTK9LFuIochxV98MPP+jiiy/W0qVLzcfy8/M1ffp0nXbaaTHtr76stzNYb5FJNWKobjEUq0jnuz7tW/X3p/qxpxIxVPcY+t///mcud+jQwdZLI5HStR2SmlYcJQLXRdERQ3XDNVFNxFBicE0U3cEcQ1wT1dSU46i0tFTjxo3T7NmzzcdcLpfuvvtu3XbbbTHtz7qPzZs3x9SD2DAMbdmyJWw906UtIiGbJJ07d7Z1aV65cmVMrysoKDCX+/fvX+f9ejwe9e3bt877tW5XfcbDgQMH2n4FiaXM0tJSW6BXPxbrbJ0bN25UeXl5nerocDjUr18/2/OHHXaYuWx9H2Mts3fv3mkx4YIVcRQ5jqwKCgp06aWX1miIX331VdutVNH8+9//1t13363x48fr2Wefjfl11ga7Y8eOMb8u0YihyDH0+uuv695779Vvf/tb/fWvf42pjlLk821t3+rTFrVo0SKtkiDEUOztUJUvv/zSXB4+fHide6Q0tXZIalpxlAhcF0VHDMWOa6LaEUORcU0UHTFUd1wT1dRU46i4uFhXXXWV5s+fbz6Wk5OjJ554ok5D5FjbjfLycq1fvz7qa3744QdbEr56PdOlLSIhm0RDhgwxl61BGU5BQYGtt87xxx+flP0WFRXp+++/D7vfvLw8DRw4sE5lLliwwOze7XK5dNxxx9meP/roo82xYwKBgBYuXBi1TOt+Bw4cWGMMFOs+VqxYoeLi4jqVWd/3O9GIo/BxVGXdunW66qqrbLd7DB48WDNnzqzzL1kff/yxZs6cqffff19vvPFGTK/Zvn27Vq9eba7HOuB8shBD4WPoq6++0ksvvaS5c+fqtddeqzFofW0qKir01VdfmevVz7d1Hzt37tSaNWuilmk9Fuv7li6IoejtUJWysjKtWrXKXA83e3kkTbEdkppOHCUC10WxIYai45ooMmIoPK6JYkMMxY5rovCaWhyVlpbqmmuu0fLly83H2rZtqxdffFEjRoyoUx379OmjVq1amevWpH441onbWrZsWeNH6nRpi0jIJtHIkSPN5U8++UTbt2+PuP0rr7xiLvfq1atGENVnv999952+++67iNvPmjVLfr9fUijzP3To0BrbnHHGGebyW2+9FbXnhvVYhg4dqubNm9ueb968ue3DPHPmzIjllZaW2mZnPPPMM2tsc8IJJ5gDTPt8Pr322msRy1y6dKmtcUnWeDZ1RRyF1BZHklRSUqJx48bZxiYaMWKEpk+frpYtW0YsvzbWxnrt2rVasmRJ1Nc888wzZsLG4/GkXSwRQyG1xZD1fBcXF9smHYhUpjWxcc4559ie79u3r+02omjt208//aRPP/3UXE+3+JGIoSrh2iGrFStWmHWQVK9b85piOyQ1rTiKN66LYkMMRcY1UXTEUHhcE8WGGIod10ThNbU4mjhxoi0Z2717d73yyiu2nqmxcjgcOv300211sI7lWl0wGNSsWbPM9TPOOKNGT+x0aYtIyCbRyJEjzQGJvV6vJk6caGuQrD7//HPbOBtXXHFFvfc7ePBgW+DfeeedYWeSW7lypf75z3+a6xdffLGysrJqbHfBBRcoOztbUmiw5HvvvTfs/mfPnq3PP//cXL/yyitr3e6yyy4zlz/55BPNmTMnbJmTJk1SYWGhpFC399omIsjKyrI9Pm3aNNsvclYlJSX64x//aK4feeSRGjRoUNj9pxJxFBIuju666y7buDannHKKpk6dWuv+Y3HeeefZZv6cNGmSbYb16t599129+OKLttd36NChXvtOFGIopLYYOuOMM2wJtocfflg7duwIW+bixYv16KOPmutDhw6tte2wtm8zZ84M+wu0z+fTHXfcIZ/PJyk0tlOix/arD2IoJFw7ZGW9DSorK0u9e/eO+prqmmI7JDWtOEoErouiI4Yi45ooOmIoPK6JYkMMxY5rovCaUhy98sorev/99831zp07a8aMGeratWu963nppZeaSdWCggI98cQTYbd97LHHzB6vTqcz7PuTDm0RCdkkysjI0K233mquz58/X9ddd51tPBO/369Zs2Zp/PjxCgQCkkLZ+4suuqjWMn/2s5+pX79+6tevn372s5+F3fcdd9xhBvDq1at1xRVX2BpEwzD0/vvva8yYMSorK5MU6lJ+/fXX11pemzZtNHbsWHN9zpw5uu2222wz1FVUVOjJJ5/U3XffbT42fPhwDR8+POyxWLt+//nPf9ZTTz1lG/tj165duuWWW2y9QH7961/burBbjRs3znyutLRUY8aM0QcffGAbCLqgoEBXXHGF+aF1uVyaOHFireWlA+IofBx99dVXeuedd8z1Qw45RH/7298aNOZd165dNWbMGHN91apVuuyyy7Rs2TLbdsXFxXr00Ud12223mfHVqVMn3XHHHfXed6IQQ+FjKDc3V7fccou5vn37dv3qV7/SvHnzbNtVVFRo+vTpuuaaa8w2Ki8vT/fdd1+t9Rw9erT5K6zf79dNN92k2bNn2y60Nm3apLFjx9puTf7973+vjIyMWstMJWIo8t8zq7Vr15rLHTt2tH2JiFVTbIekphVHicB1UXTEUHhcE8WGGAqPa6LYEEOx45oovKYSR/v27dPf/vY323H985//VPv27WN5G8Lq37+/Ro0aZa5PmzZNf/nLX1RSUmI+VlJSovvvv19PPvmk+djo0aPDJv7ToS1yGLFMUYa4uuuuu/Tqq6+a606nU/369VNeXp7WrVtn9nCQQrOfvvLKK+rZs2etZf3sZz8zB+jv3LmzPv7447D7feqpp2wfDik0QUOrVq20ceNGW7f4rKwsPffccxHHV6kKWmvXbY/Ho379+ikjI0Nr1qyxfUC6dOmi2bNnh/2SIIX+0F922WW2hqdZs2bq06ePvF6vVq1aZf4yIYVuu/rHP/4hpzP8bwtffvmlbrjhBtvMwx06dFC3bt20e/durVu3zrb9hAkTdO2114YtL10QRzXj6Nprr7VdJPbo0aPOg22fe+65+uUvf2l7zOfz6eabb7bVsaouXbp0UUlJiVavXm2LzXbt2mnGjBlpNRNsdcRQ+Lao+nsjhc7pIYccosrKSq1evdp2a3teXp6effZZDR48OGyZVRc41ltHW7VqpV69epkxZL395rLLLtNdd90Vtrx0QAyFj6EqY8eONXvVDho0yHYLVV001XZIajpxFMnUqVM1bdo0SaHbLWfMmBHT67guig0xVBPXRHVDDIXHNVFsiKHouCaKrrHH0dNPP61HHnnEXG/VqpVtvoZY9OvXTxMmTKjx+L59+3TVVVfZhlXIzs42h2tYtWqVrS06/PDD9eKLL0bsDZ7qtqjuP0mgwe655x61bNlSzz33nHw+n4LBYK0z2vXq1UuPPfZY2A9YXV1//fXKzc3VI488Yv6yYf2VqkqHDh00ZcqUqA212+3W1KlTdc899+j111+XYRjy+Xy1jjsyePBgPfbYY1G/vLZv314zZszQrbfeao4HU1JSUuvYMBdeeKHuvvvuiF86pNCYac8884zuuOMObd26VZK0bds2bdu2zbZdVlaWJkyYYOu6ns6II7vi4uIaA3yvX78+plkYrY488sgaj3k8Hk2bNk2PP/64/vWvf5m/mm3evNl2K2CVk08+WXfffXdazQJbG2IovHvuuUc9e/bUo48+aiYtduzYUeutekceeaTuvffeqGM39e3bVy+88IJuu+02s+dZYWGh7cJKCvVGu+666/S73/0uYnnpgBiKzjrhQtX4nfXRVNshqenEUSJwXRQbYsiOa6K6I4bC45ooNsRQdFwTRdfY42ju3Lm29cLCwhq96qMJN4FgXl6epk+frgkTJpjJ5fLycn377bc1th0xYoQefvjhqENzpLotoodsCq1bt06vvfaa5s2bp23btqm8vFwtWrTQgAEDdOaZZ+rcc8+N2hW6Lr96VNm2bZtmzZqlzz77TJs3b9a+ffuUl5envn376rTTTtMFF1ygvLy8Oh3LsmXL9MYbb2jBggXavn27vF6vWrVqpSOOOEJnn322Ro4cGfULgpVhGPrggw/0zjvvaNmyZdq1a5ecTqfat2+vo48+WhdffHGtF4mRlJeXa86cOfrggw+0du1aFRUVKTMzU927d9eJJ56oX/3qV42ika6OODrw2nC3a9TFzTffrPHjx4d9fuvWrZo9e7YWLFigDRs2qKSkRLm5uWrXrp2OOeYYnXnmmWk5A2wkxFB4hYWFeu211/TFF19o3bp1KioqUlZWltq2batBgwbpjDPO0CmnnFJjoPhI/H6/3n77bb333ntauXKldu/eLY/Hoy5dumjIkCH61a9+Va8xtVKJGApv5MiR2rhxoyTprLPOso2vV19NsR2SmlYcVdfQXkVcF8WGGArhmqj+iKHwuCaKDTEUHtdEsWuscXTkkUdGnSA3mlhi68svv9Rbb72lr7/+Wrt27VIgEFCbNm00ePBgjRo1SsOGDavTPlPVFpGQBQAAAAAAAIAkYVIvAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCQhIQsAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJIk71RUAgIPV5s2bdeqpp8a93I8++khdunTR1KlTNW3aNEnScccdpxkzZsR9X41VY3tvDMPQnDlzNGDAAA0cODDV1UEj19jiH+kp3dulxhTn6f5epruTTz5Z27ZtS0jZL730ko455piElI2G4bwDaOzoIQsAQBpbs2aNLr/8cv3hD39QSUlJqqsDALRLccR72TDbt29PWFLO5XLp0EMPTUjZaBjOO4CmgB6yAJAiWVlZGjZsWMRt9u7dq+XLl5vrhx9+uFq0aBG1XDQdo0aNks/nS3U1AMBEuxQ/vJcN88MPP6hbt25Rt9uxY4cqKirM9Vhe061bN2VnZzeofkgMzjuApoCELACkSJs2bfTcc89F3GbhwoW68sorzfXf//73GjJkSKKrhjTCF3UA6YZ2KX54LxvmhBNO0AcffBB1uzPPPFPr16+XJHXu3Dmm1yB9cd4BNAUkZAGgiRo/frzGjx+f6moAAACkTGlpqTZu3GiuM07vwYHzDiDdMYYsAAAAAKBJWrlypYLBoLlOYu7gwHkHkO5IyAIAAAAAmqSVK1fa1pmw6eDAeQeQ7hiyAACaqKlTp2ratGmSpOOOO04zZsyIuM2kSZN0ySWXqKysTG+//bbefvttbdiwQcXFxWrTpo369++v0aNH6+STT7aVsX79es2cOVPz5s3T1q1bJUldunTR8OHDNWbMGLVt2zam+q5Zs0ZvvfWWvvjiC/30008qKSlRixYt1LVrVw0bNkwXXHCBOnbs2JC3JKJ9+/bp5Zdf1nvvvacff/xRfr9f7dq107HHHquzzz5bxx9/fJ3Ka8jxzJkzR3feeWeNx63jCY8aNUpbt27VwoULJUlnn322HnnkkbD1mTdvnq699lpz/YEHHtD5558fdvvJkyebMROp7ESct3iUaY3tP//5z7r88svl9Xr15ptvau7cuVq3bp127dqlZs2aqUePHvrZz36m0aNHq1mzZnWqayT79u3Tf/7zH3366adauXKlCgsL5Xa7lZ+fr549e+r444/XL3/5S7Vr1y5sGRMnTtQbb7whKXTOH3zwwYj73Lx5s0499VRz/aOPPlKXLl1iqms84j8ex1xdvGPM5/PpP//5j9555x19//332rt3r1q2bKm+fftq1KhROuuss+R0OvWb3/xG7733niTphRdesI3fnYzzkm6fg1jbpWjvRbR63nbbbRo3bpyKi4s1c+ZMzZ07V5s3b1Z5ebnatm2rI488UqNGjdJJJ51U5/34/X699dZbmjt3rgoKClRYWKj8/Hx16tRJp512mkaNGhXz36xvv/1Wb731lr7++mtt27ZNZWVlys/PV5cuXXTiiSfqvPPOU9euXWt9bTzey4bsv0qi2slEtAMN8f3339vWBwwYkJT9IrU47wDSHQlZAIBp2bJluv32221jbknSli1btGXLFn300Ue6+OKLNWnSJLlcLj3//PN6+OGHa0xKsnr1aq1evVpz5szRU089pSOOOCLsPsvLyzV58mTNmTPHdmuZJO3atUu7du3SN998o6efflrXXXedbr75ZjkcjvgdtELH/dvf/tZMKFfZsGGDNmzYoNmzZ+vkk0/Wgw8+qFatWkUsK5nHM2LECDMh++WXX8owjLBlzZ8/37a+aNGiiAnZ//3vf+ayNZFUJRHHmcj3rqCgQLfddpvWrl1re7ywsFCFhYVavHixnnvuOU2ZMkUnnnhiTGVGMn/+fP3+97/Xrl27bI97vV6VlZVp69atmjdvnqZNm6brr79ev/71rxu8z/qKV/zH+5gTEQ/Lly/X7bffrg0bNtge37Fjh3bs2KF58+bp9ddfj/jjRqI1pc9Bfa1cuVI33XSTtmzZYnu86m/Rf//7Xw0bNkwPPfSQWrduHVOZq1at0q233lrj2Hfu3KmdO3dq6dKlevbZZ/WXv/xFp512Wthytm/frj/84Q+aN29ejeeqyvrmm2/01FNP6bLLLtPtt98uj8cTUx1jkcj9xyM+0rHtW7Fihbnctm3bpCWCkVqcdwDpjoQsAEBS6MvqlClTtG/fPklSx44d1bVrV+3du1erV6+WYRiSpFmzZqlPnz7y+Xx66KGHJEmZmZnq37+/XC6XVq9ebZZRWFio8ePH691331VOTk6Nfe7Zs0djx47Vd999Zz7mcrnUp08ftWjRQnv27NGaNWtkGIYqKys1bdo0rVmzRo8++qhcLldcjnvLli269tprVVxcLElq2bKlevXqpfLycq1atUp+v1+S9Nlnn+mKK67QjBkzwial4nU87du317BhwyTJ9qX78MMPV4sWLSRJffv21SmnnGL2oNq9e7dWrVql/v3711q3BQsW2NYXLVoU9j3ZsGGDmZT3eDwaPnx4Qo4z0WVaj2fatGnas2ePJKl169bq2bOnKioqtG7dOpWVlUkKxeuNN96oN954Q7169YpYZiRLly7VuHHjbD9UHHLIIWrXrp0CgYC2bNmibdu2SZIqKir02GOPKRgM6uabb673PusrXvEf72NORDwsXrxYY8eONc+3JDVr1kx9+vSR3+9XQUGBvF6v5s+fr5tuusn8rCVTOn8OYm2XGqoqJnfv3i1Jys/PV+/evWvE5Lx583TppZfqlVdeifpD2Y8//qjLL7/cjPPmzZurR48ecrvdWrNmjfn43r179dvf/lYzZ87U4YcfXqOcH374QZdddpkKCwvNx9xut/r06aPmzZtr+/btZrLf5/Np+vTpWrFihZ5++mnb38D6vpfx2n9t4tFOpmPb5/V6tW7dOnOdcUQPDpx3AI0BCVkAgCTplVdekRT68nTvvffabs8tKCjQ2LFjtXPnTknSo48+qvLycjkcDt1www0aN26c+WWvrKxMf/3rXzVz5kxJ0rZt2/T2229r9OjRtv0ZhqEJEyaYiQen06lrr71W1157rVq2bGlut2PHDk2dOlWzZs2SJL333nt6/PHHdcstt8TluKt6YDVv3lx//OMfdc4555iJjcLCQj388MOaM2eOJGnt2rWaNGmSHn/88RrlxPN4TjzxRLP3Ub9+/czHf//739vOixQ6X1VfwOfPn19rQnbPnj01xlLbsmWLNm3aVOstrZ999pm5fOyxxyovLy8hx5nIMq2qhl7o1q2b/vSnP2n48OFmj8J9+/Zp6tSpmj59uiSpsrJSU6dO1d///veIZUZy7733mgmJI488Ug8//LC6detm22bRokX685//bJ67p59+WhdddJHat29f7/3WR7ziP57HnIh4KC4u1u9+9zszqZSRkaHbb79dl1xyiTIyMsxtnnjiCU2fPl1LliyR05ncqRbS/XNQl3apIar+dmRnZ+v3v/+9Lr74YrOH565du/Tggw/q7bfflhRKIv7pT3/SP/7xj4hlViUBW7ZsqYkTJ+qss84yz7vP59OMGTM0ZcoUBQIB+f1+3X///WY9qhQVFWns2LFmMrTq/IwdO1b5+fnmdj/88IMeeOAB8y6Dr776Sn/84x/16KOPmtvU572M5/5rE492Mh3bPmsSX+K29YMF5x1AY8CkXgAAU8eOHTVz5swaXwj79++vCRMmmOtlZWUyDEN33HGHfve739l63uTk5GjSpEm2xGD12+Ul6a233jK/MDocDj3yyCO6/fbbbYkHSWrXrp3uu+8+3XbbbeZjTz/9dI1bjhsiJydHL7zwgs477zxbL7NWrVrpgQce0BVXXGE+9t5772nx4sVpczwjRowwl7/44otat1m4cKF563NWVpbt8dpYhyv42c9+ZnsuEceZjPeuS5cumjVrlk4++WTb7d15eXm688479Ytf/MJ87LPPPpPX641aZm22bt1qJtRcLpf+8Y9/1EhISKFxnZ977jllZmZKCiU4Pv3003rts6EaGv/xPuZExMNzzz2nHTt2mOuPPfaYrrrqKjMpJ4WS0nfeeacmTpwoSTWGC0i0pvQ5aCiPx6Onn35al112me12+zZt2mjKlCm65JJLzMc++ugjff3111HLbN26tV5//XWdd955tvPu8Xh0zTXXaMyYMeZj33zzja0XqhR6j61DKEyZMkW33367LRkqST179tRTTz2lCy64wHzsnXfe0SeffBK1jpEkY/8NiY90bfuqjyPKxE4HB847gMaAhCwAwPSb3/ymxpf/KqeeeqrtC1rnzp111VVX1bqtw+HQKaecYq7/+OOPNbZ57rnnzOVzzjlHZ511VsS6jRs3zryFNBgMmj114uG3v/1txN4TEyZMUOfOnc31qt7EVqk6Huv7vHjx4loTKNaE+IUXXmgu1zZsQXl5ub766itzvXpCNhHHmYz3LlJsS7IleMrKyrRp06aoZdbGmvTLycmJuM8uXbro4osv1qmnnqqrrrqq1uRFMjQ0/uN9zPGOB7/fr9mzZ5vr5557bo24trr66qvN28mTqSl9Dhrquuuu03HHHRf2+TvvvNMWk1UTrEVy22232V5TnfXYJdnGUS0tLdVLL71krp9//vm25GR1TqdTd999t7p3724+9swzz0StYzjJ2n9D4iNd2z7rOKISt64fLDjvABoDhiwAAEgKJVFHjhwZ9vnc3Fy1atXKHNdv+PDhEW/ptd5+WFJSYntu48aNWrVqlbkeaXIpq/POO0/Lly+XZL+tviFycnJ00UUXRdwmIyND559/vqZOnSop1IPUOoFWKo/nmGOOUbNmzVRSUqLy8nItWbJExx9/vG2bL7/8UlJovMxLL71UL774oqTaE7ILFixQZWWlpNCttNYERiKOMxnvndPprHViMqvevXvb1qvHbKw6dOhgK+Pvf/+7fve734X9rPzpT3+q137iJR7xH89jTkQ8LF++3Gy3JNUYPqU21157ba2TJiVKU/scNITH49GVV14ZcZvMzExdcMEF5vAZn376qYLBYNiYczqdOv300yOW2bVrV+Xl5ZljoFsnpVq0aJEqKirM9auvvjrqcWRmZuqKK67Q5MmTJUlLlixRUVFRjR6tsUjG/hsaH+na9lmH62nRooW6dOlSr3I+++wzjRs3TlLo72SkhHOyGIahH374QcuWLdOyZcu0fPlyFRQUmMNGWNuUhrKOxxpvrVu3rtfnIpKmfN4BNB0kZAEAkqROnTrZxgqtjfV29x49ekTctup2RKnmrb9Lliyxrffs2TOmOh522GHm8tatW7Vt2zbbl8D6GDx4sHJzc6Nud8wxx5jLe/fu1dq1a9WnTx9JqT0et9utYcOG6d1335UU6g1rTchu2bLF7KF8zDHHqFevXsrPz1dRUZF++ukn/fjjj7beSdakTvVehIk4zmS8d126dIka282bN7etWyelqYsOHTpo0KBBWrp0qSTpqaee0ty5c3X66adr2LBhOvroo223S6daPOI/nseciHioSlhKoWTfoEGDopY3ZMgQZWVl2ZJgidTUPgcNMWjQoJiSHtahdXbt2qX169eHnYyvc+fONY6tNs2aNTMTsta7DaxDIrRt2zbmycuqxomVQsmzJUuWROydHU4y9t/Q+EjHti8QCGj16tXmekPGEa1K8HXq1CltknJbtmyJ2pM+XhK5n9tuu81MesZDUz/vAJoOErIAAEmhHgp1Ee2Lm3V4g+o2btxoWx8+fHid9l1l+/btDU7Ixpr4qJ6A/umnn8yEVKqP55RTTrElZG+99VbzOetwBVWJ2qOOOkoff/yxpNA4staEbKTxYxNxnMl472LpeVN9hvqGjB9699136/LLLzcnkNq4caOeffZZPfvss8rKytLRRx+tE088UaecckrYBFKyxCP+pfgdcyLiwTruZufOnW1jkobjcrnUu3dvc0zMRGuKn4P6qm1iwtpUj90dO3aEja0WLVrEVKa1N6f12K2341fvJRpJjx495PF4zMSltZy6SMb+4xEf6db2rV271vajSkNuW68akzRdJ4dq3769jjjiCBUVFdmGHToYHUznHUDjxhiyAABJ9h6tsYiUcI2muLi43q+1KioqanAZsfSakkI9p6z27t1rLqf6eE4++WTzi/KKFStsdVuwYIG5XJWQtfagtU7stW7dOjN51a5dO3N8yiqJOM5kvHfWnt3JcOihh+rll1/WEUccUeO5iooKffHFF3rooYd01lln6Re/+IVmzJiRkp6IUnziX4rfMSciHqp6PEo1jyOSeN9CG0lT/BzUV6zJ0+o/ClqHGKjOOvFkfVjf11g/M1Lo76Q15urbxidj//GIj3Rr+6y3rVfVr74ef/xxrVq1Sv/4xz/qXcbmzZvVr18/9evXr95lWOXn5+uJJ57Q559/rv/973+aNm2ahg4dGpeyG7N0O+8AEA49ZAEAkhqWYK0rv99vLmdmZurYY4+tVzl1+WLaUIZh2NatX15TfTwtW7bUoEGDtGTJEgWDQS1YsEBnnHGGDMMwE7L5+fnml0BrQtY6jqx1uIIRI0bUiIlEHGeq37tEGTBggGbPnq0lS5bo3Xff1WeffVajF6QU6skzefJkvfbaa5o+fXra3hIZKf6rxOOYExEP1h+bqh9HJHX9kaohmurnoD7c7ti+nlTvnVmXc1tXDSk7EAiYy5HGXU/n/ddFOrV91Sd2amq9HPPy8nTaaaclZV/xHI820Zr6eQfQdJCQBQAknTVpkJ2dbZtdPNlKS0tj2q56DzbrMaTD8YwYMcIch/KLL77QGWecodWrV5u9xoYMGWImWPv27avWrVtr9+7d2r59uzZs2KBDDjkk4nAFUmKOMx3eu0Q66qijdNRRR+mPf/yjNm3apAULFmjBggX64osvtGfPHnO7goIC3XHHHXr66afDlhVLUqZqQrZYxSP+q2vIMSc6xuoySZW1Z20k8TgvTf1zUBexvu/VYzKRPZqtvXbr0ps5EAjYjieW8ZrTcf/1Ec+2r76qbjeXQr2ko419H86bb76pCRMmyOPxaMmSJWk1Djhq4rwDaCwYsgAAkHTt27c3l4uLi2P+Ap4Imzdvjmm7tWvX2ta7d+9uLqfD8ZxyyinmctW4sdber9YJcBwOh4477jhzfeHChSotLTUnjsnJydEJJ5xQYx+JOM50eO+SpWvXrrrooov0yCOPaP78+Xr66afVsWNH8/nPPvtM69evt73G2kvZ2osyHGuiIxbxiP9I6nrMiYiHQw45xFzevHlzzBN1VU2GV5t4n5eD6XMQTW29KWtTfdb3+iZdYmEdl7f6ZyGSH374wdZDtb4zvad6/w1Vn7avoQzDsN263r9//3r3EC4oKJAk9erVi6RcmuO8A2hMSMgCAJJu8ODB5nIwGLQlDiNZtGiR7rrrLj311FN6++23Y+7dF8nSpUtj6uFmnRyrY8eOti/I6XA8ffv2VefOnSVJmzZt0qZNm2wzc1uHKai+vnDhQn355ZfmWH5Dhw6t9XbtRBxnOrx38bRixQrNmTNHU6ZM0dy5c8Nu53Q6dfLJJ+tvf/ub7fHqSSbrBFSxJOnWrFlTp/rGI/7jecyJiIejjz7aXA4EAjGVuWXLFv30009hn4/3eWlqn4OG+Pbbb21JxHCs42O3a9dOXbt2TVidjjrqKHN5586dMd++/cUXX9jW63vrdKr3H4t4t30NtXHjRtvnoSHjiFYl+Lj1Pf1x3gE0JgxZAABIugEDBqh9+/bavn27JOn555+v9Rb56h577DEzyZifn68zzzyzwXXZuXOnPvnkk4j7Ly4u1htvvGGuVx+zLZHH43A4Yh4/cMSIEXrxxRclhb6IV5Xdtm3bGjNaW3vALlq0yDZBTri6J+I40ykW4uHJJ5/U+++/LymUZItWrz59+tjWrYk+SbZxFWNJWPz3v/+NtaqS4hP/8TzmRMRD165ddeihh5rjCr7wwgsaPnx4xPJeeeWViM/H+7w0ts9BXdqlutq1a5c+/PBDnXHGGWG3KS0t1Zw5c8z1RB/3cccdp5ycHJWVlUmSpk+frgceeCDiayorK/Xyyy+b6wMHDlS7du1qbBfLe5nI/cdLvNu+hrLeti41LKlW1VOyf//+DaoTEo/zDqAxoYcsACDpXC6XxowZY64vWLBATz75ZMTXvPjii7YenxdeeGHcvsBNmjQp7AzdgUBAf/7zn81bjl0ul6688krbNok8HmtP1WjjUFqHLXj55Zdt48dW1717d3Xq1ElSKCn39ttvSwr1XhoxYkSt5SfiONMtFhrK+t59++23EXuKSbI973Q6a8y+bf0iuGnTJn366adhy3r11Vf11Vdf1bHGDY//eB5zouJh7Nix5vLnn3+ul156KWx5ixcv1vTp0yPuM97npbF9DurSLtXH/fffrx07dtT6nGEYuvfee83nPR6PLr/88rjXwapZs2a68MILzfU5c+ZETLIbhqHJkyfbhl+o/rmpEst7mcj9x0u8276Gqj6xU317Sm7bts1s/+gpmf447wAaExKyAICUuPzyy20Xyo8++qgmTpyorVu32rbbvXu3HnzwQU2ePNl8rH379ho3blzc6rJ9+3ZdfPHF+vLLL22Pb9q0STfccIPti+Ovf/1rdevWrUYZiToe60Q11km3ajNkyBDl5ORIss+IXH24Auv2Vap6Xg0aNEitWrUKu49EHGc6xUJD/eIXvzBv5zcMQxMnTtSrr74qr9dr287r9WrWrFm67777zMfOPPNM21AAknTSSSeZ51SSfv/73+vjjz+2bbNz5049+OCDuvvuuyXFPkt9lYbGf7yPORHxcNZZZ+nUU0811++77z499NBDtkm+/H6/Zs+erbFjx5rDd4STiPPSmD4HdWmX6mP79u265JJLbENlSNLWrVt188036//+7//Mx6655pqYxzRuiJtuuskcFkaSbr/9dj3yyCMqKiqybbdhwwbdeOONmjVrlvnYkCFDdN5559VabqzvZaL2Hy/xbgcayjqOaEZGhnr37t3gcmJJzAUCAZWWltb6n3X86nDblJaWJqz3+cEgVecdAOqDIQsAACmRkZGhxx9/XGPGjNGmTZskSW+88Yb+7//+T7169VLr1q21c+dObdq0yZYcadasmaZOnWqbdbohhg8frq+++kpbtmzRmDFj1KlTJ3Xp0kV79+7V6tWrbV+MzjzzTP36179O6vH07dtX27ZtkyTNmDFDX331lfLz89WrVy/dddddNeowdOhQffjhh7bHa+shK4UStdZb0aXwwxUk8jjTJRbiITMzUw888IDGjRsnn8+n8vJy3XXXXXrwwQfVu3dv5eXlqbS0VGvXrrWNc9e9e3f94Q9/qFFeXl6err/+ej366KOSQsMH3HjjjerQoYO6du2qoqIibdiwwXxfLr74Yq1atUpLly6Nqb7xiP94H3Oi4uHBBx/Utddeq2XLlskwDD333HOaMWOG+vfvr8zMTK1Zs8ZMbnXu3FlbtmwJ+74l4rw0ps9BXdqlumrVqpVKSkq0efNmXX311WZMFhcXa/Xq1QoGg+a2p556qn7zm980aH+xys/P1xNPPKFrr71Wu3fvVjAY1NNPP61//etf6tu3r5o1a6YdO3bUmJzq0EMP1eOPP26bCM4q1vcyUfuPl3i3Aw1lvXW9T58+df6hqkpVYq5z585q3rx51O2//vrrmHojW8cFru6jjz5K2QRsjV2qzjsA1Ac9ZAEAKdOlSxfNnj3bNlagYRhau3atFi5cqB9++MGWeDj00EP18ssva9CgQXGrw8CBAzV16lSzl9LWrVu1aNEirVq1ykxGeTweM/kSabbeRBzPjTfeaLsNuaCgQAsWLAh7i7R12AJJ6tSpU609eqXae85aexGGk4jjTIdYiJehQ4fqn//8p228xrKyMi1btkzz58/X0qVLbQmJESNG6IUXXlDbtm1rLe+GG27Q9ddfL5fLZT62bds2ffXVV1qzZo18Pp+cTqfGjh2rSZMm1amu8Yr/eB9zIuKhefPmev7553XOOeeYj3m9Xi1btkxfffWVmYzt27ev/v3vf4ctp0oizktj+RzUtV2qi969e+uxxx4zkyBVMVlQUGAmYz0ej2644QY9/vjj9U641MeAAQP02muv2dpOv9+v77//XgsXLrQlQ91ut6644gq99NJLtl6w1dXlvUzE/uMp3u1AfW3dutW83Vxq2MROjCPaeHDeATQ29JAFAKRUy5Yt9fjjj2vlypX6z3/+o4ULF2rr1q0qLi6Wx+NR+/btdfjhh+uss87SySefHDEhWl8nnXSS3n77bb344ov6+OOPtWXLFjkcDnXq1EknnXSSLr74YvXo0SMlx3PUUUfppZde0tNPP61vv/1WRUVFyszMVG5uriorK23jD0qhhKx1kphwvWMlqUOHDjrkkEO0YcMGSaGeStUn/0rWcSaqzFQ56aSTNHfuXL3zzjv67LPPtGrVKu3atUter1ctWrRQu3btNGTIEI0cOVJHH3101PJuvfVWnX322Zo9e7bmz59v3sbeoUMHnXDCCbrooovqfVtlvOI/3seciHjIycnRlClTdPnll+v111/XwoULtX37dmVmZqp3794655xzdMEFFygjIyOm9y4R56UxfA7q2i7V1amnnqr//Oc/mjFjhj7++GNt3bpVDodD3bp100knnaTRo0era9eucTqauunUqZOef/55LVq0SO+++66+/vpr7dixQyUlJcrLy1OvXr00dOhQnX/++bYhBsKp63sZ7/3HW7zbgfqoPrHTwIED611WVU/JWD/HQ4YMsQ0ZZLV582bzR89w26D+UnneAaA+HAaD1AAAAAA21kmGXnjhhYg/bqBhpk6dqmnTpkmSjjvuOM2YMSPFNQKkffv26ZhjjpFhGHriiSd02mmnNai8ZCRk//GPf+ixxx5L6D6aunifdwAIJ327lgAAAAAAkAIFBQXm3Sbcun7w4LwDSBYSsgAAAAAAWFSNI9q8eXMm2TqIcN4BJAtjyAIAAAAAYFE1jmg695Jcu3at9u3bZ65v27bNXP72229t2/bu3Vt5eXnJqlqj1RjOO4CmgYQsAAAAAAAWjSExd88992jRokW1Pjd69GjbOmNhx6YxnHcATQNDFgAAAAAAsJ/f79fatWslSQMGDEhxbZAsnHcAyUQPWQAAAAAA9nO73Vq2bFlcy+zSpYtWrVoV1zJnzJgR1/IOdok47wAQjsOomkIQAAAAAAAAAJBQDFkAAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCQhIQsAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJL8P62H1VkvVvUgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time')\n", + "\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exactly as expected, the output distribution of the distance between the events follows an exponential distribution cut at 2.5 ms.\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = \\frac{r_{in}}{1 + r_{in}\\tau_d}$$ \n", + "(Zhang+95, eq. 29). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSYAAAQ1CAYAAACoZxHKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xT9f7H8Xe6oANaZoGykZYlDhBEUARBAQFZbrgXHIiIAweIC/e4olwBFVRARARBcQMqqCiooMgqo2WWtmxKd6Ervz96e345TUfapj0dr+fjwYPkm5OTT5qT9c532Ox2u10AAAAAAAAAUI48rC4AAAAAAAAAQPVDMAkAAAAAAACg3BFMAgAAAAAAACh3BJMAAAAAAAAAyh3BJAAAAAAAAIByRzAJAAAAAAAAoNwRTAIAAAAAAAAodwSTAAAAAAAAAModwSQAAAAAAACAckcwCQAAAAAAAKDcEUwCAAAAAAAAKHcEkwAAAAAAAADKHcEkAAAAAAAAgHJHMAkAAAAAAACg3HlZXQAAVAQxMTG65pprjPPt27fXihUr5O3tXaz9rFy5UtOmTTPO79q1S15e1eeldsyYMdq8ebNL23p5ealGjRqqU6eOWrRooa5du6p///5q27ZtGVdZ8eQ9/tatW6emTZtaWJF1HJ9DISEh+umnn0q9z8cff1xffPGFJGn48OF69dVXS71PK1W1+1McYWFhxumPPvpI3bt3L/U+9+3bp7///lu33nprvpc7vq5NmjRJ999/f6lvE4XjNdE1W7Zs0fHjx3X99ddbXYpbVfb7NWXKFH311Vfq1q2bFi9eXKzr2u12rV27Vl9//bV27typM2fOyNfXV8HBwbr88ss1cuRItWvXrlj7TElJ0RdffKG1a9cqIiJCSUlJCgoKUpMmTXTNNddo+PDhatiwYbH2eezYMS1btkwbNmxQVFSUzp07pwYNGqh169YaNGiQBg0aJF9f32LtszzZ7XatXLlS7du3V4cOHVy6Tnp6urp166a0tDRdf/31evPNN8u4SqD6oMckAORjz549mjdvntVlVGmZmZlKSUlRTEyMNm7cqLfeektDhgzRI488ouTkZKvLA1DFpaWl6fXXX9fw4cO1fft2q8sBXHb27Fk9+eSTuv3223Xw4EGry3GbqnC/1q5dq6+++qpE1z1x4oRuv/12TZo0ST/88IOOHTum9PR0JSQkKDIyUh999JGGDRumV199Venp6S7tc8uWLbr++uv1wgsv6I8//lBcXJwyMjJ06tQpbd++XW+++aYGDBiglStXulznsmXLNHDgQM2dO1fh4eFKSkpSRkaGjh49qg0bNuiJJ57QsGHDKuzr6r59+zR69Gg98cQTSkpKcvl6mzZtUlpamiTpqquuKqvygGqp+nTjAYBimjt3rvr161fsX6aRIzAwUBdeeGGBl2dlZencuXM6duyYjh8/LinnF+xvv/1WBw4c0Mcff6yAgIDyKhdANfPyyy9r+fLlVpcBFNsjjzyijRs3Wl2G21X2+7Vjxw499thjJbpuXFycRo8erSNHjhhtQUFBuuCCC5SWlqaIiAhlZmbKbrdr4cKFOnnyZJE99rZs2aI77rhD586dM9pCQkIUEhKiU6dO6dChQ5JyelROmzZN58+fL7DneK4PP/xQr7zyinHeZrOpbdu2CgoK0uHDh3Xy5ElJ0uHDh/Xvf/9bS5YsUceOHYv99yhLw4cPV0ZGRrGvt379ekk595lgEnAvgkkAKEBGRoYef/zxEg3pRs6Qy/nz57u07ZYtW/TCCy9oz549knJ6rL7xxhuaPn16WZYIoBoryRdToCKoqsduZb5fmzdv1sSJE5Wamlqi60+bNs0IJWvUqKFp06bpxhtvNKYDOnXqlF5++WWtWrVKkvTdd9/p4osv1r/+9a9895ecnKyHHnrICCUbN26sV155RT169DC22bNnj6ZNm2Z89nrxxRfVuXPnAoPEbdu26T//+Y9x/rLLLtPLL7+s5s2bS8r5cfnHH3/UM888o7NnzyotLU0TJ07UmjVrKtSw7pIeZ7/++qskqVOnTqpbt647SwKqPYZyA0AhGNJdPrp06aKFCxeqRYsWRtuyZct04sQJC6sCAGnx4sWKiIhQREQE80uWk6ZNmxp/84iICOaXRIU2f/58jRs3rljDgh399ttv+uWXX4zzr776qm699VbTHOUNGjTQzJkzNWzYMKPtnXfeKXDqm3nz5hm9F2vVqqUPP/zQFEpKOfOpf/zxxwoNDZWUM8XOG2+8UWCdr7zyirKysiRJHTt21AcffGCEklJOT8Jrr71WH374ofz9/SVJx48f16JFi1z4K1RsUVFRioqKkiT17t3b4mqAqodgEgDy4fhhcO7cudq7d6+F1VQPderU0cSJE43z2dnZWr16tYUVAQAA5O/w4cMaP368/vOf/ygzM7PE+3EM7nr16qVBgwYVuO306dNVr149STlzcuYuhObo/Pnz+vTTT43zd999t1q2bJnv/gICAvTSSy8Z5zdu3KiIiAin7bZv365t27YZ559++mnVrFkz3322a9dO9913n3F+0aJFRqBZWeUO45YIJoGyQDAJAPm44447ZLPZJOUM+Zg2bVqpPnTCNddee63pfH4fjgEAAKySmZmpF198UYMHDzYFVpdcckmRczTmlZCQoN9//904P3LkyEK39/Pz09ChQ43za9ascdpmw4YNSkhIkCR5eHhoxIgRhe4z7/Dt/PaZO4Rcktq0aaNLLrmk0H2OGjXK+JE/Li5OmzdvLnT7ii73ca5bt646depkcTVA1cMckwCQjx49eigxMVHLli2TJO3evVtz587VpEmT3H5b+/fv1+eff67NmzcrNjZWycnJqlWrlho3bqwePXpo6NChCgsLK3Qfs2fP1pw5cyTl/Io9evRopaen66uvvtKaNWt04MABnT59WrVq1VKrVq3Ut29f3XzzzapVq5bb709p+Pn5qW7duoqLi5MkYxhSQXbs2KF169bp77//1tGjRxUfH6/MzEzVrl1bwcHBuvTSSzVw4EB16dKlwH2sXLlS06ZNk5QTSE+dOlW//PKL0VPWx8dHISEhuvzyyzV58mT5+PiYrn/06FGtXr1amzdv1oEDB5SQkKC0tDT5+/urTp06uuiii9S7d29dd9118vT0LPbfZP78+cacTp6enlq/fr0aNGhQ5PXWrl1r9FgICAjQhg0b5OvrW+SxVJiQkBD99NNPBV7+xx9/6Ndff9WWLVt0/Phx44tR7dq11aRJE3Xt2lVDhgwp9oJS6enpWrFihb777jsdOHBAaWlpatCggS6++GINHDhQ11xzjfFDgjvExcVp5cqV+u2333To0CGdPXtWfn5+atiwobp3766hQ4eqc+fObrs9Rzt27NCKFSu0efNmHTt2TN7e3mratKn69++v2267rUTzWqWkpOjLL7/U+vXrtW/fPp05c0Y+Pj5q0KCBunbtqoEDB+qKK64o1j7d/VhnZGTo22+/1apVq7R7924lJCQoKChIYWFhGjlypAYOHOi2xzi/58AXX3xh6nnk+KPImDFjjC/VkyZNchrO7fj6++yzz+rWW29VamqqvvnmG33zzTc6fPiwEhMTVb9+fbVr104333yzU4+bQ4cOadmyZdqwYYOOHj0qKWc481VXXaWxY8e69JyXrD123SkmJkbXXHONcX7dunVOw7n79u2r2NhYSdI///wjf39/RUdH67PPPtOvv/6qo0ePKi0tTfXr19dFF12kwYMHm/aZn9xjw8fHRzt37pSUsxLv0qVLtWPHDp08eVI1a9ZUmzZt1Lt3b91yyy2FPic3bdpkmgPQlR/bCjre8v5Ncs2ZM8c4/op6jS7I448/bhz/c+fOVe/evfXRRx/p008/VUxMjGrXrq3WrVtrwIABuv32252uX5r34tLer+zsbP34449au3attm/frtOnTysrK0v16tVTx44ddc011+j6669361zhqampWrx4sXHey8tLd955pyZNmlTs6X82b95s9Ca02Wzq2bNnkdfp2bOnFi5cKCnn2E9ISFBgYKBx+R9//GGcDg0Nden1o2fPntq1a5ck6eeff9aDDz5outxxn67UGBgYqE6dOhm9LH/++WenoeQldeLECa1cuVIbNmzQ/v37lZycLF9fX4WEhOiyyy7TqFGjnN57HD/rOXJ8fg4fPlyvvvqq0zZpaWn666+/JOX0aPXwyL9v19GjR7Vy5Ur9+eefprrq1Kmjjh07qmfPnhoyZIhq1KhRmrsPVEkEkwBQgClTpui3334zvvi4e5XuxMREPffcc/ruu+9kt9tNl8XFxSkuLk67du3S/PnzNXToUD3zzDMur1K9d+9ePfLII9q/f3+++92yZYvmz5+vGTNmuPQBszw59kz18/PLd5vo6Gg9/fTTpg/Kjk6fPq3Tp09r165dWrx4sfr06aMZM2a49Pf78ssv9fjjjxuPSVpamhISEpSZmampU6ca26WlpemVV17RypUr851IPT4+XvHx8Tp06JC+/PJLtW7dWnPmzFGbNm2KrMHR0KFD9eabbyozM1NZWVn67rvvNHbs2CKv9/XXXxunBw0aVKYTz4eHh2v69OkKDw/P9/Jz587p5MmT2rZtm+bPn6+RI0dq+vTpTiFvfo4cOaKJEydq3759pvaYmBjFxMTo22+/1SWXXKLXXnvNNEdpSX344YeaNWuWUlJSTO3p6emKj49XZGSkFi9erAEDBuiFF15Q7dq1S32bUs4X3eeff95pWN758+e1d+9e7d27V0uWLNFrr71WrP1+/fXXevXVV3XmzBmn/SYlJengwYNavny5Lr/8cr322mtq1KhRofsri8d6165devjhh3X48GFT+6lTp3Tq1Clt2LBBy5Yt03//+1+X7rPVduzYoUcffdSYjyxXbGysYmNjtW7dOt1000169tln5enpqUWLFun11193eh2JjIxUZGSkVq5cqXnz5hUZKFp17FYUH330kWbMmKHz58+b2nP/7qtWrVK3bt00Z84cU4hTELvdrldffVUffvihqT0jI0Pbtm0zjvGnnnpKw4cPd+ddsdxTTz2lzz//3Dif+56aN9Qvy/diV4SHh+uJJ57IN/DNfdx/+OEHvfPOO3rppZd02WWXueV2HV1xxRWaOnVqiT8bOk4V1LRpU5eOTcfbys7O1q5du0w/Ljn+PVxdEdtxn/v27dP58+eNAC0jI0MHDx4s9j7DwsKMYDI36C+NjIwMzZkzR/Pnz3d6vUxKSjLeKz/++GPdcsstevLJJ90SSG/atMl4XSloGPeCBQs0c+ZMpaenO9WcmJioqKgorVq1Sm+99Zaee+459e3bt9R1AVUJwSQAFMDf318vvfSSEQLlDulesWKFaQ7Kkjh9+rRuu+020xdXm82mtm3bqk6dOoqLi9P+/ftlt9tlt9v11Vdfaffu3VqwYIEaNmxY6L4PHz6sOXPm6OzZs5KkevXqqXXr1jp37pwOHDhgrBgZFxene++9V1988UWxw7KycuzYMSUmJhrn81vw4MCBAxozZowpaKlVq5Zat24tf39/paam6uDBg6b9/Pzzz3r44Yf13nvvFXr7Bw4c0JIlS5yCYkmmoVNpaWn697//re3btxttPj4+at26terUqaOMjAxFR0ebFu85ePCg/v3vf2v16tXF6qnaoEED9erVy5gY/+uvvy4ymExMTNTPP/9snHccxtWrVy+XbzsmJsYUFl188cVO2/z1118aP368aSXSOnXqqGXLlvL19VViYqIOHjxoXG632/XZZ5/Jx8enyFXXk5OT9e9//9voQRYQEKDQ0FBlZ2dr7969xmqjW7du1ejRo/Xxxx+XOJy02+168sknTV/GJalFixZq1KiRUlNTFRkZaXw5WbNmjfbt26dFixa53JutIOfPn9fdd9+tv//+22jz8PBQWFiYatWqpSNHjuj48eOKi4vTfffd5/J9nDNnjmbPnm1qa9KkiZo2barz58/rwIEDxsIJf/75p2688UZ9+OGHBb4elMVjvX37do0dO9a0z9q1a+uCCy5QVlaWIiMjlZaWpk2bNumuu+5y6X4XJfc5EBkZafTKbtiwobEARGlERERoxowZxt+1cePGatasmRISEhQZGWm8tixfvlxt27ZVRkaG0SO6Ro0aateunTw9PRUZGWnsIy4uTvfff79Wr16d7481Vh67FcXChQuNY91ms6l169aqX7++Tp06ZQpUNm/erEmTJpl6uxXkjTfeMELJ3PfnoKAgHT582DhukpOT9fjjjyspKanA1ZHdpWbNmsaxu3PnTqOXcvPmzY0FSOrXr1/q2/niiy/0/fff53uZ4/ugu96LS3q/1q9frwcffFBpaWlGW2BgoFq3bi0vLy9FRUUZj1NUVJTGjRun119/XQMHDiz23yQvDw8P9enTR+PGjVP37t1LtS/H91hXX9sbNGigmjVrGu+BUVFRpmDy0KFDxd6n4+etzMxMxcTEGO8FMTExpiCwJPvMXXG8pDIyMjRx4kRjZexczZo1U+PGjXX69GkdOXJEmZmZstvtWrp0qU6ePKm3335bNptNwcHBxnG2YcMG4/oXXnihEQYX9B6QO4zbw8Mj3x/zFy5caPrR0NvbW23atFGdOnWUlJSkmJgYxcfHS8oZCXT//ffrgw8+cFsPUqAqIJgEgEL06NFDN998szGJuDuGdGdkZGj8+PGmUHLUqFF64IEHFBwcbLQdP35cM2fO1Jdffikp5xfshx56SIsWLSr0F+DcL1zNmzfXU089pauuusoYApmcnKzZs2cbX7bOnz+v2bNnV5ieSMuXLzedz/sBMPcLeO4Xodq1a+v5559X//79TWFxdna2fvnlF73wwgtGqLV+/Xrt3LlTF154YYG3n/vhs2PHjpo2bZo6deqkkydP6quvvjJ9IXvnnXeMUNJms2nSpEkaN26csQplrr179+rFF180hgCdOnVKy5cv15133lmsv8uIESOMYHLXrl06ePCgWrduXeD2q1atMn61b9WqlWkuqPnz57t0m8eOHdONN95onA8LC9OLL75o2ub8+fOaNm2aESo1btxYL730kq644grTsNuMjAx99913euWVV4wP58uWLdOkSZOMSfzzk5CQoISEBPn4+OiRRx7RbbfdZvS8S05O1ty5c/X+++9Lyvmw/9hjj2nZsmUFDrMqzPvvv28Kdq655ho9+uijpr9zWlqa0XMvN+h/+OGH9eGHH5ZomH6uN954wxRKXnfddXryySdNrwcbNmzQM888o9jYWKfeo/n57rvvTKFkly5dNG3aNNPxn56erm+//Vavvfaa4uPjdfLkSU2aNEmfffaZ07FcFo91cnKyHnzwQWOfNWvW1NSpUzVq1CjjcU5NTdWCBQv0zjvvGMMMSyv3OeA4fLVnz575DuErrqVLl0qSWrZsqeeff94UWuzdu1d33XWXTp06JUmaOXOm0tLSZLPZNGHCBI0fP94IHlNTU/Xaa68Z04kcP35c33zzjW6++Wan27Ty2K0oco/1wYMHa/LkyaZAJDIyUo899pjRM23z5s1av359oQtYpKenG68t3bp10/PPP69WrVpJynkfWrdunZ555hnjvei1117TJZdcUuj7S2nVr1/fOHYdh3sPHTrUravF54aSgwYN0qRJk9S4cWPt379fa9euNXrtuvO9uCT36/Dhw5o8ebIRSjZq1EhPPvmk+vXrZ3r937Rpk1588UVFRkYqIyNDjz/+uFq3bl2qKU2knB/J5s6dW6p95HKcsqY4PxTUq1fPGNGT+5oi5fzNc6fDKc4+84a/p06dMoJJx/0XZ5+O2505c0bZ2dklen+Wcl4vHUPJbt266cknnzT19IyJidELL7xgfF5at26dli5dqttuu009e/Y0PlM6Pv6PPfZYkeFy7u1edNFFqlOnjumys2fP6s033zTO33TTTZoyZYrpB+jMzEx98803eu6555SWlqbMzEy98sorppEtQHXH4jcAUIQpU6YoJCTEOF/aVbqXL19u+oL9yCOP6KWXXjKFEFLOB+3XXnvN9MF8y5YtppUWC9K0aVMtX75cvXv3NoUGAQEBmjZtmq6//nqjbf369U5DT6ywfv1644ugJF1wwQVO895t3rxZW7duNc7PmDFDAwcOdOrB6uHhob59++rdd981tTv+Sl6Qxo0b68MPP9Rll10mX19ftWjRwhQap6WlmXrb5M4rlTfIkXKGRn3wwQdOAVNx9enTR0FBQcb5oj7MfvXVV8bpoia9z09qaqomTJhgfBmpU6eO3nnnHafeWt99952io6Ml5cx/OW/ePPXs2dNpLkBvb28NGzZMr7zyitGWnZ2tjRs3FlmLh4eH3n77bY0dO9Y0HDggIECPPvqoac6o7du369tvvy32/Y2OjtZbb71lnB89erTeeecdp/DX19dX48aN0wcffGD8OLB582atXLmy2LfpeNtLliwxzg8dOlRvvfWW0+tBr169tHTp0iKHWks5gd+zzz5rnL/mmmv00UcfOYUmPj4+GjFihD755BOjx8jBgwdNz8NcZfFYL1q0SMeOHZOUE/C//fbbpvBZypnOYdKkSXr55ZeLvN8VRePGjbVs2TKnL7vt2rXTlClTjPOpqamy2+2aOnWqHnroIdPzy8/PT88++6zpS7fjAhm5rDx2K5oxY8bojTfecOppHxoaqgULFpiCgh9//NGlfV599dVasGCBEUpKOcdqv3799PHHHxvD4TMzMzVjxgw33IuKoW/fvnrzzTfVpk0b+fn5qXPnznr44YeNy8vjvbgwzz77rDFlQbNmzfT555/r2muvdQq9unfvrqVLlxqB6rlz5/Tcc8+V6rbdLbeHqKRijaZw3NaxV2pSUpJpBWxXp2zIe9uO+3SssaT7tNvtpn0WR3R0tD766CPjfN++fbVw4UKn4fNNmzbVnDlz1LVrV6PtvffeU3Z2doluV8rpGRwTEyNJuvLKK50ud/wMHRYWpueff97pb+nl5aXhw4ebVj+PiIgw9WwFqjuCSQAoQkBAgKmnWGlX6Xb80t+9e3eNHz++0O3vu+8+04es+fPnF/kh64EHHnD6VdeR46qRqampRuBQntLS0hQbG6u1a9fq4Ycf1j333GMMFfL09NRTTz3l9CXDcR6rjh07FtrjRcoJAlq2bGmcP378eJF1jR49utAP3Vu2bDE+hHp7e+vuu+8udH81a9Y01elKDXn5+Pho8ODBxvnCwrfo6Gj9888/knL+jjfccEOxbis7O1uPPPKIEb57e3tr9uzZ+Q6r//PPP43T/fr1K7IXSu/evVWzZk3jvKuPx1VXXVXg5WPHjjX1CM3tsVYcixYtMp7PzZo10+OPP17o9pdddplp2GbuIgQl8e233xq3HRgYqGeeeabARV6Cg4P19NNPF7nPzz77zPgCWKtWLb388suFTj/Rpk0b00IHS5cuNYYI5iqLx9oxYB8+fHih0wwMGzZM/fr1K/Q2K4rCXn/zLtQUEhKif//73/lua7PZdPXVVxvn8xsKaeWxW5HUqlXLFJzlVa9ePfXv3984HxkZWeQ+g4KC9MorrxQ4QqF169aaPHmycf7PP/80gvbK7t577y10sanyeC8uyO7du023/8ILLxQ6hD0gIEAvvfSScX+2bNmiHTt2lPj23c1xTlTH18yiOP6A47iPvHOsurrQSt55gAvbp6t15n3u5N2Pq1asWGF8PvTz89NLL71U4Huat7e36bXg2LFjpZrf0nHV9fyOc8cer02aNCn0eXPdddfp8ssv16BBg3TPPfe4ddE+oLIjmAQAF1xxxRWmIXS5Q7qLKzIy0vTFZdy4cUVex2azmYb+Hj16tNAemx4eHkWuPHrBBReYziclJRVZR3Ft3rxZYWFhBf67+OKL1bdvX913332mBYC8vLw0ffr0fOfeeeihh7Rt2zZ98803ev31112qw/ELiysfirt161bo5b169dKOHTv0ww8/aMmSJaaejO6qIT+Oiys4ho95OfaW7NWrl1PPu6K8/vrrptVPn3rqqQIXDPjPf/6jLVu26IsvvtBjjz1W5L49PT1NgU1RfwubzVZgaOPolltuMU5v3brVGELsKsfeU4MHD3Zpsvxhw4YZpw8cOFDicN/xS8+AAQOK7DHTt29fNW7cuNBtHOeHy9vbtiBDhgwxhvTGx8cbCxbkcvdjfejQIdPcajfddFOR+8xvNeCKxmaz6dprry3wcn9/f9MqzldddVWhQxsdn7/5vU5beexWJD179ixwsbRcbdu2NU670nNr+PDhha64nbuNY2/5kqyIXdH4+/urU6dOhW5THu/FBXF8fWvUqJFL8/SFhoaqQ4cOxvncob4VgeOP3MUZ5uw4BYPjPvL+aO7qVA15t3PsdZl3n67WmTc8dNxncTjOmT1gwIAin5ddunTRI488otdee00rVqwo1fzBucO469evn++iP46v0b/99luhrwFeXl5atGiRZs6cqYcfftgU1gPVHcEkALhoypQpatKkiXG+JEO6HeeR8/T01OWXX+7S9Xr06GH60Lhly5YCt23atGmRK17m7RGY36rS5c1ms6lXr15asmRJvvOo5fL19VVoaGiRC/YcOnRIK1asMH3pLupDsc1mc2llTS8vL7Vo0UIXXXRRodudOnVKP/zwg6m3WUk/mHfq1Mn04fqbb77Jd7u8vdCKY8WKFVqwYIFx/rbbbjOFfvkJCAhQhw4d1KxZswK3yc7OVmRkpD7++GNTIFDU36JFixb59tTMq0uXLsZpu93uFKoVJjY21tR7x9WFoNq2bWvqNVJQUFyY9PR00wJKl156aZHX8fDwKDQ8T09PN62Y7er9qV27trHQhJT//XHnY+34Wujj4+PS3Hxdu3Yt9cJjZa1JkyZFvv46HjeOQ4Tz49jbKW9PeSuP3YrGlTkDHUN/V97ziuoFKOW8Hzkeu7nzCVdmoaGhLgVPZfleXBjH47U4C/c5hq0V6Zh3/GxXnCHHjn9Dxx8kCgsYXd1f3n3mPR5crTNvoFmSFbLT0tJM8yq7urL6+PHjNWzYMHXu3Fm+vr7Fvl1JSklJMd6rrrzyynx7OPbu3dvYf2Zmpu69917deuuteu+997R79+58F1ME4Kxif7oDgAokd0j3HXfcIalkq3Q7DvkICQlx+cOSr6+vmjZtaiyY47ifvFzpHZX3g2tp5t8pSGBgYIFhg81mk6+vrwICAlS/fn21b99el1xySZE9wfJKT0/X3r17dejQIUVHRys6OlpRUVHat2+fsaKto6I+IAYEBDgNZypKdna2Dh06pH379hk1HDlyRPv373eaMN6VGgozYsQIY4GO1atX64knnjB90N+6datxjAQFBRXZc9bR5s2bTXNvde/eXU8++WSx6ktNTdWePXt0+PBh429x6NAhHTx40LRyaq6i/haFLfDjqFmzZvL29jbChuIMp8w7PPbRRx/Vo48+6vL1czmuwO6q06dPm557rvaeyNvj2dHx48dNc8bOnDlTM2fOLHZtRd2f0j7WjvsPCQlx6TXUx8dHzZo1q9DzchW2mFN+igoxCxvqZ+WxW9EU933PlddhV36kknJep3J/fCrsvbmyKKo3Wn7c/V5cGMfjfuPGjSVayKYiHfOOPxIUpyep47aOP2DkHWbt6j4LGwKe97Pq+fPnXfqslHf+cleHlTuKiYkxHS9F/ZjjTn/88YfxuaKgKWWCgoI0bdo0PfPMM0bbP//8o3/++UdvvPGG6tSpo8svv1xXXnmlevfuXei0A0B1RjAJAMXQs2dP3XTTTcbq0bt379a8efN03333uXR9xyGmrk4ent/2hQ1VLc4cRQXp27evsdpjYT766KMCVzMMCwtzeQXo4oqMjNS8efO0bt26fEMQR15eXi7PB1pUSOAoLi5O77//vr7++mudPn3abTUUZujQoZoxY4YyMzN19uxZbdiwQX369DEudxzGPXjwYJdD1qioKN1///3GB/BmzZrprbfecjlw/+eff/Tee+9pw4YNhfZEstlsstlsLgfhxXmOBAQE6OzZs5KcJ+ovTHG2dfd+cle0zeXq8VfY36Ws74+7HmvHVWOL87zLXaSnoiruF+/SzDFm5bG7adMm01yVBQkJCSmX4c3ueN9zZLPZXD7WHHti5n1OV0bFeT6W1XtxYUq6gIojdz133MHxOMsvxC2I47aOwXytWrXk4eFhvPa6us+82znuM+9zITk52aWFehz36eXlVazFfXLlncKiJPsoqdypVjw9PQudA/nmm29WYGCgXnrpJacfJ86ePavVq1dr9erV8vDw0GWXXaZx48aZPrsBIJgEgGKbOnWqNmzYoKNHj0qS3n33XZcWg5BK10vAcZhNceYhqmqWLFmil156Kd/hSd7e3mrevLnat2+vSy+9VL169dJTTz2lzZs3u7RvV/+uW7Zs0cSJE/MNiG02m5o0aaLQ0FBdfPHF6tGjh9avX6+3337bpX0Xpl69errqqquML/rffPON8eE2PT1dq1evNrZ1dTXuxMRE3XPPPcZ98fPz0zvvvFPo4kmOZsyYke8qzlJOSNOqVSt16NBBl156qa666irdeuutLoXexeX43CpOSJH3i/Jll11Wol4dhQ1vLkhJp1AoLHDOe38uvPDCEoV5+fXKdOdjXRb3vSIoz8UMrDx2qzoPDw+X3w8c34uqwrBNV+93Wb4XF8bxtaN58+amKShc5TgvqNUc5ygsTrDtuG2DBg2M0x4eHmrQoIHRK9TVfeb9gdWxZ1/euapPnz7t0ggXx1EjdevWLdHro5ULxOTOL3nxxRcX+UPpgAED1LdvX61fv17ff/+9NmzYYPxYmis7O1ubNm3Spk2bdMMNN+jVV1+t1p/nAUcEkwBQTAUN6c7tRVkYx4CguL/6O/7CX5E+VJenn3/+Wc8//7xx3t/fXzfccIO6deumsLAwNW/e3KmXnzt6aDg6duyY7r33XuPx8PDwUP/+/XXllVeqQ4cOat26tdOwJ3f2GBoxYoSxv9xeKr6+vvrtt9+McDEsLCzfSdrzyszM1AMPPGAMjbXZbHr99dddnij+448/NgVV9erV0w033KAuXbooLCxMISEhTh+6i/N4pKSkuLSd3W439cwoTk/LvNs+/fTTJRoaWBJ5b9vV14TCesDk3efEiRPVt2/f4heXh7sfa8deL8VZfKs4PYqqOiuP3aouKyvLeG0tiuPxW9SQcrvdXmTQUpqFYcqLle/FgYGBRoh2zTXXFLkSfUXnOIVH3ukZCnLy5EmdO3cu331IOfMz5waTru7TcQ5Qb29vhYSEGOebNGlimi4lOjrapXmBY2JiCqzRVXlf58piscb8REREGHP4ujLfrJTzw1n//v3Vv39/ZWdna8+ePdq0aZP++OMPbd682fSYffXVVwoNDdVdd91VJvUDlQ3BJACUQN4h3bt27dK8efOK/AW5UaNGxunY2FiXv/gkJycbPTQlmT4wloWKurLoG2+8YZwOCQnRJ598Yvqb5sfdQ7bee+89Y5/e3t56//33i1wV1J01XH311apTp47Onj2rc+fOaePGjerXr5/Wrl1rbONqb8nnn39ef/zxh3H+gQceUL9+/Vy6bnp6umbPnm2c79ixoxYtWlTkMKviBPKOX2oKc+jQIdOX3uL0oMnbE+TYsWPlFu40bdrUNOTuwIEDLi2AU9gXzeDgYNlsNqPnVnHm2yxIWTzWLVq0ME7HxMTo/PnzRfb2s9vtVWIFaXex8tjt3r27IiIiyuW2rBIVFeXSPJP79+83TucNX/KGkBkZGUX2+s3by6oisvK9ODg42AgmHT8XVVaOPyJGRUW59Llwz549xmmbzeb0vO/UqZPRO9XVRRod93nBBReY5q/29vZWaGiodu3aZWw7aNCgYu2zffv2LtWRV8OGDU3vaVFRUbrkkkuKvN4ff/yhhIQENW3aVC1atCj2EPDcYdxSwfNLFsbDw0MdO3ZUx44ddccddyg1NVVffPGFXnnlFSPgXbRoEcEk8D/0HQaAEpo6daopiHz33XcVGRlZ6HUcQ4esrCxTKFSYP/74wzREzJXecFVNTEyMaWXG8ePHF/lFKDU11RTiuGOYneOH1WuvvbbIUFIyfzEo7UJD3t7eGjx4sHF+7dq1ys7ONury9vbW0KFDi9zPhx9+qE8//dQ4P3DgQE2cONHlOrZu3Woayj558uQiP/gfOnTINA9ZUY9HQQsn5OX4PPL29napJ0eutm3bmup2XEG9MHFxcXr88cc1a9YsffbZZyUanl6zZk3TlzVXXw+2bNlS4GUBAQFq27atcd7V+5ORkaEnnnhCM2fO1KeffmoKW8risXb8YpmZmenSEM+IiIhy6y1TGVh57FYHjivHFyQ5OdkIa6ScleMd5Q0hi3o9S01NrfCPh9XvxY6vHVu2bHG5J+Y777yjV199VYsXL3b5uVIeunTpYvQuzcrK0qZNm4q8zu+//26c7tChg9N0Hd26dTNO79q1y6UfBB33efnllztd7jifuOO2BYmPj9fu3bsL3acratWqZVp9vbD3P0dz5szRgw8+qJEjR2rOnDnFvt3cYdwNGzYsMFTN/Ry/ZMkSvfjii4V+B/Dz89Ptt9+uSZMmGW0nT550y5ypQFVAMAkAJZQ7pDtXRkaGPvroo0KvExoaaurt+OGHHxZ5O3a73bRd3bp11alTp2LXW9nlXeHacU6lgnzyySem+ajcMZTMcWJzV2rYvn27tm3bZpzPbz6u4ho5cqRx+ueff9Y///xjzCN19dVXF7mq6vr16/Wf//zHON+hQwe98sorxaqhJI9H3udHUY9HZmamvvjii0K3ycjI0JIlS4zzV155ZbHm2fPw8DD1hvjiiy9c+qKwePFiffHFF3r77bf15JNPlriX04ABA4zTP/74Y5E9gHbs2GH6spefq6++2jj9008/udTL8KuvvtLnn3+uuXPn6plnntGBAweMy8risQ4NDTWtul7Ua6ckLVu2rMhtisPKucvcwepjt6pbvnx5kT8krVixwhie6e3trWuuucZ0ed6h3Y7Pq/ysXr3apfcIK4/dsnwvduV+Ob6+nT59Wt9++22R1zl06JDmzJmjhQsX6sUXX9SPP/5Y5HXKS+3atU2hXVGvcykpKfr666+N847vIbl69Ohh/GiRkZGhzz77rNB9bt++3fS+MnDgQKdtrr32WuN0eHi4wsPDC93n8uXLjcc5MDBQV1xxRaHbF8bxdW7NmjVF/kB17Ngx/fPPP8b5vKFoUcdZUlKStm7d6nTbeXl4eGjy5Ml6/vnntXjxYn333XeF7lcyz99ss9lcXmQQqOoIJgGgFHr16qUbb7zROF/UFwoPDw/TSqabNm3Se++9V+h13n33XVPPjdtvv71afpDJ+wVvw4YNhW6/adMmvfXWW6a2ki64UVAdf/zxR6GP+bFjx/TYY4+Zeoe4o4b27dsbQwzj4+M1Y8YM47Lhw4cXet3IyEhNnjzZqDs4OFjvvvuuS1MKOCru4/HNN99o6dKlpjZX/hYzZ84s9Mv8G2+8Ybp83LhxRe4zr9z5YqWcv+eUKVOUnp5e4PY7d+40rTjfuXPnEv9YcOONNxoLDaWnp2vKlCkFzjGXnJysJ598ssh9jh492hiGl5mZqYceeqjQnloxMTGmY6hx48amFUPL6rG+5557jNO//vqrKWDO6/fffzf18HUHxwC7Mszrlx8rj92qLiIiQu+++26Bl+/du1ezZs0yzg8ZMkT16tUzbdO0aVPTKteLFy8ucH/Hjh3Tm2++6VJtVh67Zfle7Mr9uvLKK03zIL/00kumHt55paen64knnjDe8zw8PHTzzTcXWnN5u/32243TP//8s1auXFngts8++6zi4uIk5fTCGzVqlNM2NWvWNLXPmTOnwKkXkpKSTO8rF198sS666CKn7S655BLTaJ1p06YV+L6yZ88e03PnpptuKtaidHnddtttxhzGiYmJeu655wrsdWu32/Xyyy8bPyo0atTIKVws6jjbuHGjEaoWFkzabDZTUL506VJFRUUVel/WrFljnG7RooX8/PwK3R6oLggmAaCUHn/8cZdWJ8x12223mb4IvvHGG3ryySeNicpznThxQk888YTpA32bNm2q7Xw0rVq1MvU2Xbp0qebPn+/0JTwmJkavv/66xo0b53RZampqqeu48sorjdMRERGaOnWq06qXSUlJ+uSTTzRs2DCnD6nuqEEyB5C5v+zXr1+/0Enaz5w5owkTJhiLyvj5+WnevHlFDsPLz6WXXmr6QP3WW2/piy++cApq9+3bp6eeekqPPvqo0xcJV/4WKSkpuv322/X999+bei+dPn1aU6dO1cKFC422ESNGmIawuapTp0667bbbjPM///yzxowZo+3bt5u2S09P15IlSzRu3Djjy4ynp6emTZtW7NvMVadOHT3xxBPG+b/++kv/+te/nL5E7tixQ7fddluR00VIOWHzQw89ZJwPDw/XTTfdpA0bNpgeg6ysLH399de67bbbTL3mpkyZYhqCWlaP9bBhw9SzZ0/j/AsvvKAZM2aYvuzm/s3vvffeUk+DkJdjwLJt2za3z0dbHqw8dquDWbNm6cUXXzQdG7nPm3/961/GcR0UFGR6zuXy8vIyLT71/fff66WXXjId45mZmVq1apVGjRql06dPu/TDY94fyAoLo92tLN+LXb1fzz33nPHjS2Jiom655RYtW7bMafstW7ZozJgxpt5zN998s8sLvJWXvn37moZKP/3005o3b54pNDt9+rQmT55s6i05ceLEAkdIjB8/3rgsJSVFY8eO1Y8//mh6bd67d6/GjBljDM339PQsdDGhqVOnGr0NIyMjNWbMGNNUNXa7XT/88IPGjh1rPMYNGjQw/QhVEs2aNTN99v3mm2903333OY0GOHHihCZPnqwffvjBaJsyZYo8PT1N2zkeZ7lDth05To3j+B6Vn7Fjxxr7T0hI0J133qnff//d6T0wPj5eL774or755hvTdQHkqH5dbgDAzQICAvTCCy+4HBj6+Pho9uzZGjt2rBFaffbZZ/r888/Vtm1b1a1bV3Fxcdq3b5/pg02zZs00b968Uv3qXNk9/PDDeuSRRyTlfAD+z3/+o3fffVfNmzeXr6+vTpw4oZiYGNPfrUmTJsbw2LxD0EpiwoQJWrNmjfGh+5tvvtH333+v5s2bq27dujpz5oyio6NNX5Aca8jKylJcXFyRw62LMnToUM2YMcPU82To0KGFfql97rnnTPOXtWrVSosWLVJqaqrS09OVmZlZ5NxfQ4cO1Q033CA/Pz/de++9xiII6enpevzxx/Xqq6+qefPm8vT01PHjx50WX2ncuLHRVtTj0bVrVx06dEhnzpzRAw88oAYNGqhFixZKS0tTRESEaThg165d9fTTTxe6v8JMmzZN0dHR+u233yTlBFU33XSTGjVqpObNmys5OVmHDx82faG22Wx66qmnXFqwpjBDhw5VeHi4Fi1aZNz20KFD1bp1azVo0EDHjx83Xis8PT3Vp08f02JH+bnrrrt06NAhYwjfgQMHdOedd6pevXpq1aqV0tPTFRUV5RTGjR8/3mlRg7J8rF955RXdeeedxuvd+++/r48++kjt2rWTl5eX9u3bZwxPbtOmjWw2W6G9o4rDMZw4evSoBg0apLZt2yopKUkLFixwmretorLy2K3KgoODdeLECS1evFjLli1T+/btVaNGDR04cMDosSZJvr6+mjVrltNiRLnuu+8+rV271vj7f/TRR/rss8/Upk0beXp66tChQ8bzsEmTJho2bJjeeeedQmtzPHbDw8M1YMAANW/eXOfPn3fqrVwWyuq92NX7demll+rZZ5/V9OnTlZmZqaSkJE2fPl2vvfaa2rZtK29vb0VHRzv94NutWzfTD0EVyeuvv67bb79d0dHRyszM1Jtvvqn3339fbdu2VXp6uiIiIkzv93369NGdd95Z4P7q1q2rN998UxMmTNC5c+cUFxenSZMmGa8LZ86ccRqN8MgjjxS6sEz37t01efJko2fv7t27dcMNN+iCCy5Q3bp1FRUVZfqb16xZU//973+LvfBMfh588EHt27dPP//8syRp3bp1WrdunS644ALVr19f8fHx2rdvn+kHszFjxuj666932ldoaKix4vbixYv1119/KSgoSG3atNHTTz9tvJZecsklph7P+WnXrp0mTpxoLBAXHR2tcePGqW7dumrVqpV8fHx09uxZHThwwPT49evXTzfddFPp/ihAFUIwCQBucOWVV2rUqFFFzuOTq0mTJlq+fLmeeeYZff/995JyPtzn1xvKZrPp+uuv15NPPlnqMKuyGzx4sE6ePKk33njDCKWSkpJMiw/kCgwM1JQpU9SgQQONHz9eknTw4MFSh4ItWrTQO++8o4ceeshYECQ9PT3fsMTLy0tjxozRPffcoyuuuMLo8fX333+b5msqibp166p3797FWo0771xyu3btyvdvV5iLL77YOH333XfrzJkzpjlQ4+PjTQul5GrUqJGeffZZHTt2TM8995yknAAlKyvLqTdDrsaNG2vatGm6//77dfToUZ06dcrpC63NZtPIkSP1zDPPFGtuybx8fHw0b948zZo1SwsXLjR6qhw/ftz4AuOoQYMGmj59uvr371/i23T0xBNPKCQkRK+//rrx5eXgwYM6ePCgsU3NmjU1ffp0nT9/vshgUsoZ4hgWFqbZs2cb4d6ZM2ecevhKOT+wPPbYY7rlllvy3VdZPdbBwcH65JNPNHnyZGNI6Pnz5516/LVt21bvvvuuEYa4Q//+/dWhQwdjbrXTp08bq/3u3bvX1IOpIrP62K2qnn/+eS1btkw///yzMjIytGPHDqdtQkND9dprr6lDhw4F7qdly5Z677339PDDDxtzFKempmrnzp2m7S6++GLNmDGjyKHRUs7Q2CVLlhjBf2xsrPGjU0xMjJo2bery/SyJsnovLs79GjVqlEJCQjR9+nTjh5vU1FSn1w4pZ/j2bbfdpqlTpxa5KrpVgoODtXjxYj388MNGD8+kpCRTb89co0aN0vTp043hzQXp0aOH3n//fU2dOtUIhfN7XahZs6amTJliGlJekHvuuUf+/v564403jLA9v88/jRo10owZM5wWhCopLy8vvf322/rvf/+rhQsXGu+T+/fvd7p9b29vPfTQQwUGt/fee6/++OMPYx+5vT6jo6M1cuRI43OGq6txT5o0STVr1tSsWbOM19+4uDjTDxiOtY0ePVoPP/xwgZ99gOqIYBIA3GTatGnauHGjU6+hggQFBWnWrFnavXu3vvnmG23atElHjx5VUlKSatasqZYtW6p79+4aMWKEabLs6u6OO+7QVVddpaVLl2rz5s2KjY3VuXPn5Ofnp3r16iksLEzdu3fXDTfcoICAAKWlpcnf318pKSnKzs7WypUrSz0cvkePHlq9erWWLVumX3/9VYcOHVJycrJ8fHwUFBSk1q1b65JLLtENN9ygZs2aScrpaZC76vJnn31W6mBSyglWcgOqCy+80LQac3mw2WyaNm2aBg0apE8//VT//POPTpw4ofT0dPn5+Sk4OFhhYWHq1auXBg0apBo1aujo0aN64YUXlJ2drYSEBP3www/5TrSfq1OnTvr666+1ZMkSff/99zpy5IiysrIUHBysHj16aNSoUW6bI8/T01OTJ0/W7bffri+//FK///67Dh48aIRvdevWVfv27dWnTx9df/318vf3d8vt5vr3v/+ta665RkuXLtVvv/1mrGIbHBysXr166fbbb1fr1q2L1SPqX//6l4YNG6Yvv/xSGzduVGRkpOLi4pSdna3AwECFhYXpyiuv1A033GDMdZmfsnysa9eurfnz5+vXX3/VF198oa1bt+r06dPy9/dXy5YtNWjQIN1yyy2lCp7z4+3trcWLF+vtt9/WTz/9pBMnTigzM1MNGjSodMO6rT52qyJfX1/NnTtXP/zwg1asWKHdu3crISFBQUFBuvDCCzVkyBBdd911LoULl112mdasWaMVK1Zo3bp1OnDggBITE1W/fn2FhYVpyJAhGjhwoMtBRWBgoJYvX645c+Zow4YNRqDesGFDnT59usyDSals3ouLe7969OihVatW6fvvv9cvv/yiHTt26PTp0zp37pwCAgLUqlUrXXbZZRoxYoRatWpV5n+T0mrcuLE++eQT/fjjj1q1apVxfzw8PBQcHKwuXbropptuMv1AWJRu3bpp1apVWrlypX788Uft379f8fHxqlGjhlq0aKGePXvqlltuMQ3PL8ro0aPVr18/LV++XOvXr1dMTIySk5MVEBCg0NBQ9evXTyNHjiyyt2FxeXp66pFHHtEtt9yizz//XL///ruOHDmihIQE+fn5qWXLlrriiit06623FjpFzaWXXqolS5bovffe07Zt24y/h7+/v2lod2FT4+R11113afDgwfrqq6/0559/av/+/UpMTFRWVpbq1aunkJAQXXnllbr++uvVvHnzUv0dgKrIZi9qzBYAAKiQpk+fbqzg+fzzz1e4Cf0BoDIJCwszTn/00UeVptcsAACVGYvfAABQCaWnpxurO/r7+2vw4MEWVwQAAAAAxUMwCQBAJfTNN98YwzSHDRvG0EwAAAAAlQ7BJAAAlcy2bdv02muvScqZEH7cuHEWVwQAAAAAxcfiNwAAVHDbtm3T448/ruDgYMXFxZlWbx8/fryxwA4AAAAAVCYEkwAAVHDNmjXToUOHdOjQIVN7nz59NHHiRIuqAgAAAIDSIZgEAKCCq1evnq644grt3LlTmZmZat68uUaOHKnRo0fL09PT6vIAAAAAoERsdrvdbnURAAAAAAAAAKoXFr8BAAAAAAAAUO4IJgEAAAAAAACUO+aYhMu2bNliOu/hQa4NAAAAAABQXWVnZ5vOd+nSpVjXJ5hEieU9+AAAAAAAAABX0eUNAAAAAAAAQLmjxyRKjKHccAfHnrccUygtjie4G8cU3I1jCu7E8QR345iCO3E8VQ+lHU1LMAmXeXh4mA64Cy+8UF5eHEIouczMTG3fvt04zzGF0uB4grtxTMHdOKbgThxPcDeOKbgTx1P1sXXrViMrKkkATWQNAAAAAAAAoNwRTAIAAAAAAAAodwSTAAAAAAAAAModwSQAAAAAAACAckcwCQAAAAAAAKDcEUwCAAAAAAAAKHcEkwAAAAAAAADKHcEkAAAAAAAAgHJHMAkAAAAAAACg3BFMAgAAAAAAACh3BJMAAAAAAAAAyh3BJAAAAAAAAIBy52V1AQAAAAAAAAWx2+3Kzs62ugwUQ1ZWltN5m81mUTXI5eHhUeEeB4LJCiwtLU0fffSRVq1apcOHD8vLy0utWrXS4MGDdeutt6pGjRpWlwgAAAAAgFvZ7XalpqYqMTFRycnJyszMtLokFJPdbjedP3DgQIULxKqrGjVqKDAwUIGBgfLysj4WtL4C5OvUqVMaO3as9u/fL0ny9vZWdna2du7cqZ07d2r58uVauHChgoODLa4UAAAAAAD3SE9P15EjR5SRkWF1KSilihB6wdn58+d18uRJnTp1So0bN1ZgYKCl9TDHZAX18MMPa//+/apTp45mzZqlrVu3atu2bfrggw/UqFEjHThwQA8++KDVZQIAAAAA4BaEklWHzWaTl5eX8Y/ekhWP3W7XsWPHlJKSYmkdxNcV0KZNm7R582ZJ0quvvqqrr77auOzKK6/U66+/rjFjxmjr1q36+++/1bVrV4sqBQAAAACg9Ox2u1Mo6e/vr9q1a8vPz0+enp4WVofiyh2On8vPz49w0mJ2u12ZmZlKTExUfHy8srKyZLfbFRMTozZt2ljWw5VgsgL6/fffJUkhISGmUDJXt27dFBAQoOTkZIWHhxNMAgAAAAAqtdTUVFMoGRwcrLp161pYEUrDbrebwmRPT0+CyQrAy8tLNWvWVK1atRQVFWUsLJWSkmLZkG6CyQpo8uTJGj16tOLj4/O9PDs725hI1tvbuxwrAwAAAADA/RITE43T/v7+hJJAGfL19VXt2rWVkJAgSUpOTiaYhFmDBg3UoEGDfC/7+uuvlZKSIpvNpssvv7ycKwMAAAAAwL2Sk5ON07Vr17awEqB6CAgIMIJJK+eZJJisJM6dO6eoqCh99tln+uSTTyRJ48aNU5s2bSyuDAAAAACAksud+y6Xn5+fhdUA1UPNmjWN07nzTVox3J5gshKIiorStddea5y32WyaMmWK7rjjDgurAgAAAACg9LKzs03nWegGKHt5n2fZ2dmWPPc8yv0WUWzHjh2Tt7e38auR3W7XO++8o7ffftviygAAAAAAAICSIZisBC666CJt27ZNW7du1c8//6wbb7xRycnJmj17tt566y2rywMAAAAAAACKjWCyEvD19ZWXV86o+yZNmujFF1/UmDFjJEkLFixQXFycleUBAAAAAAAAxUYwWUmNHTtWUs6iOBEREdYWAwAAAAAAABQTi99UQIcPH1ZUVJSCg4PVrl27fLdp2LChcfrs2bPlVRoAAAAAAADgFvSYrIAef/xxjR8/XrNnzy5wmwMHDhinQ0JCyqMsk8xMac0am1JTy/2mAQAAAAAAUAUQTFZAvXv3liT98ssvioyMdLrcbrdr1qxZknJCyQsvvLBc65Ok9HQPDRniqZAQ6eGHpXzKBAAAAAAAAApEMFkBjR49WsHBwcrMzNTdd9+ttWvXKiMjQ5J08OBBTZo0ST/99JNsNpueeuopeXhY9zDGx0szZ0phYdLIkVJCgmWlAAAAAAAAoBIhmKyAatWqpffff1+NGjXS8ePHdd999+niiy9Wly5dNHDgQK1du1Y+Pj566aWX1LdvX6vLNaxcKfXqJcXGWl0JAAAAAACo7u677z6FhYVp3rx5SklJ0Zw5c3T99derc+fO6tChg86fP291idUei99UUGFhYfr666+1ePFi/fjjj4qKilJGRoZatmypK664QmPHjlWLFi2sLtNJeLg0YIC0YYMUGGh1NQAAAAAAoLrau3evJMnHx0dDhgxRbGysatasKQ8PD7Vo0UI1atSwuEIQTObjrbfe0jvvvKOQkBD99NNPxbrugQMHtGzZMm3atEkxMTHKzMxUw4YNFRoaqiFDhqh///7y8nLtzx4YGKhJkyZp0qRJJbkblgkPl+64Q/r8c6srAQAAAAAA1VFycrJi/zekc9asWQoJCdGiRYvUvXt32Ww24zJYi2Ayjx07duj9998v0XVnz56tuXPnKjMz09QeHR2t6OhorVu3Tp06ddLrr7+u1q1bu6PcCmvlSmnfPqltW6srAQAAAAAA1c3evXtlt9slSQ0aNNDSpUtVq1Yt4/KQkBClp6fr0ksv1Z133qnJkydbVWq1xhyTDqKjozVx4kRjoZniePHFFzVnzhwjlPTy8lLHjh3VtWtX1alTx9guPDxcY8aMqRbJ/Ny5VlcAAAAAAACqo4iICEmSzWbTyy+/bAolcx08eFAZGRlq3759eZeH/yGY/J/IyEjdfvvtOnXqVLGvu2bNGi1evNg4f91112n9+vVauXKllixZot9++03PP/+8fH19JUmnT5/W/fffbyT3VdXChVJqqtVVAAAAAACA6iZ3fsmLLrpIXbt2zXeb0NBQ7dixQ9ddd115lgYHDOWW9NVXX2n69OlKS0sr9nUzMjL02muvGef79Omj//73v/Lw+P/M19vbWzfffLNCQkJ0zz33KDMzU7t27dK3336rIUOGuOU+lDvvLMk7U8oo+BA6e1b66acsDRhQtQNYlFxWVlah54Hi4HiCu3FMwd04puBOHE9wNyuPqaysLKPjjs1mk91ur/Ideaq6vI+fFY9nbjDZt2/fAm/fZrPJx8dHkjU1Win3/ub+n5mZacnfoFoHkydOnNCbb76pL7/8ssT7+PHHH3X06FFJOcO3n3nmGVMo6ahXr166+eabtWTJEknSwoULK28wKbvUOUra0qbQrf7+O1qNG58pp5pQ2YWHh1tdAqoQjie4G8cU3I1jCu7E8QR3s+KY8vLykpeXl1JTU+Xp6Vnut4+yU5KOYKWRnZ2tyMhISdKFF16o1AKGcz7yyCM6cuSIVqxYYbRNmjRJcXFxxpR9f//9t7y9vXXDDTfogQceKJf6y0NWVpays7OVmZmpzMxMy95Hqu1Q7nfffVcDBgwwhZKtW7fWhAkTirWfVatWGaevuOIKNWnSpNDtb775ZuP0rl27FB0dXazbq1BaFD3sPSWl2h5iAAAAAADAAtHR0Tp37pw8PDwUGhpa4HaRkZFqm2fV3n379ik9PV0TJkxQ8+bN9cADD+iCCy7Qhx9+qPXr15d16dVOtU2N5s+fb0rMb7zxRq1YsUItWrRweR92u12bNm0yzvfs2bPI64SFhalBgwbG+Z9++snl26twmsZJHtmFbuLvX/jlAAAAAAAA7pTbW7JZs2bGeh95paSk6OjRo6bgMiEhQadOndLJkyf1wQcf6KGHHtKoUaM0Y8YM2Ww27d69u1zqr06q9VBuSerUqZOmTp2qbt26Ffu6sbGxSkxMNO3LFWFhYcYiOzt37iz27VYUNu8s2RuflWLrFbhN167NdNFFTcuxKlQmWVlZpu7inTp1YsgGSozjCe7GMQV345iCO3E8wd2sPKaysrJ04MABSTlz/vn5+XE8V3J2u900fNvX11c2m63cbv/QoUOSpA4dOsjPzy/fbfbu3Su73a5OnToZ2+RmNOPHj1e7du2MbT08PGS32+Xn51fg/iqbrKwseXh4yNvbW97e3mrTpk2Jnnc7d+5UdnbJO6VV22CyW7duGjFihK655poSPzkOHz5sOt+8eXOXrte06f8HdUeOHCnRbVcYLU4XGEzWqSP17espr2p7lKG4PD095cUBAzfheIK7cUzB3Tim4E4cT3C38jymbDab6Xt53vOo/Mr7MY2IiJCUE0wWdLu527Rr187YZt++fZKkfv36ma6Xm/+0atWqyhybufcj938vLy9LfhCotu9c77zzTqn3kdvrUcpJz+vXr+/S9RyHcjvuo1Jqfkr6PSzfi8aNk6rIDwkAAAAAAKCSyF2R27HXY14REREKCgpScHCwqS0gIECtW7c2bbtnz54i94eSqbZzTLpDQkKCcdrf37/A1bjzCggIyHcflVKjeMk7M9+LirmOEAAAAAAAQKkkJCTo2LFjkqT27dsXuF1ERITCwsLybcvbK3Lv3r3y9fUt1rokcA3BZCmcP3/eOF2zZk2Xr+fj42OcTk9Pd2tN5c3maZeannFqHzFCyrOwFQAAAAAAQJkKDAxURESEIiIiTCNWHdntdkVGRpp6QNrtdu3fvz/fMHPv3r0KDQ11uUMaXMdftBQyMjKM08U5OB3n6cjMzL+3YaXS/LTpbKdO0oIFFtUCAAAAAABQiOjoaKWkpJh6TB45ckSpqan5DteOiIhgGHcZIZgsBcdJQYuzApFjGOnt7e3WmizhEExeeKG0Zo0UGGhhPQAAAAAAAAXIXfjGMZiMjIyU5Dz8+/jx44qPj3ca9g33qLaL37iDr6+vcdpxWHdRHIdv16hRw601WcHWMFF23/MaMbCGFiwglAQAAAAAABVX//79jXCysDZJatSoUb7tcA96TJZCoEMCl5KSIrvd7tL1kpOTjdNBQUHuLssS/115Rp9/TigJAAAAAAAA19BjshQcl5TPysrS2bNnVbdu3SKvd+rUKeN0/fr1y6S28rY7+ZSkJlaXAQAAAACoJjKysvX8j5FateeEUtOzrC6nQvHz8dSg9sF6pn+ovD3pk4aKi2CyFPIuEx8dHe1SMBkTE2OcbtWqldvrssJP+04XvREAAAAAAG7y3A+RenndPqvLqLC2xiZKkl4YwKItqLiIzUshJCTENBR7z549Ll1v7969xunKuqqTp81mOn/gTKqi4lItqgYAAAAAUN1sPnLW6hIqvE1R/I1QsRFMllL37t2N07///nuR2+/du1enT/9/78LLL7+8TOoqax75HDnr9tNrEgAAAABQPro1r2N1CRVe9xb8jVCxMZS7lK699lp9//33kqSff/5ZJ06cMM09mdfSpUuN023atKm0y8172pzbftp3Wnd0a17+xQAAAAAAqp3p14bKZhNzTObDcY5JoCIjmCyla6+9Vg0bNtTJkyeVnp6uxx9/XO+//768vJz/tL/99ptWrFhhnB8zZkx5lupWNklBNb0Ufy7TaFu3/7TsdrtstnxSSwAAAAAA3Mjb00MvDGjHHIoVQGXtdFXVREREWF1CsTGUu5R8fHz08MMPG+d///133X333YqOjjbaMjMztXz5ct1///3Kysr5FSc0NFQ33nhjudfrLjabTb3b1DO1nUg6r13HkyyqCAAAAAAAAJUJPSbdYPjw4dq6das+/fRTSTnh5LXXXquwsDAFBATowIEDiouLM7YPCgrSW2+9lW+vysqk7wX19NWuE6a2dftPq1Pj2hZVBAAAAAAAylvennp2u12pqf+/QK6fnx+jK5Eveky6yXPPPacJEybI29tbkpSdna09e/bor7/+MoWSbdq00ccff6zWrVtbVarb9MnTY1LKmWcSAAAAAAAAKErl7rJXgdhsNk2ePFlDhw7VZ599pg0bNuj48eNKS0tTYGCg2rdvrwEDBmjo0KHy8fGxuly3CGvgrya1a+po4jmjbf3BM8rMypaXJ5k3AAAAAADVSXJysjZt2qSdO3dq+/bt2r17t+Lj4yVJq1atUps2bawtEBUOwWQeI0aM0IgRI0p8/TZt2mjq1KmaOnWqG6uqmGw2m65pW1+Lt8QYbYnnMvV3TIIub1HHwsoAAAAAAEB5+/PPP3XfffdZXQYqEbq1oVT6XlDfqW3dvlMWVAIAAAAAAKxWr1499e7dW+PHj9dTTz1VJrcRFhbGSuBVBD0mUSrXtHUOJn/ad1pP9gu1oBoAAAAAAGCVPn366PfffzcWvzl69KjVJaGCI5hEqTQN8lVoA39Fnkox2n6POqu0jCz5entaWBkAAAAAAChPnp6VLwe47777tHbtWj388MMaPXq0Fi5cqNWrVys6OlqZmZnaunWratSoUarbmDx5slatWuXy9lOnTtUdd9xRqtusLAgmUWp9L6hvCibPZ2Zr46E49QttYGFVAAAAAAAAhdu7d68kycfHR0OGDFFsbKxq1qwpDw8PtWjRotShpCTFxMSofn3ziNPTp09LkurUqeMU6Hbp0qXUt1lZEEyi1PqFNtDcP6JMbev2nyaYBAAAAAAAFVZycrJiY2MlSbNmzVJISIgWLVqk7t27y2azGZeV1ooVK0znjxw5ov79+0uSfvjhB9WuXdstt1MZEUyi1K5uU082m2S3/3/bushT0qD21hUFAAAAAABQiL1798r+vzCjQYMGWrp0qWrVqmVcHhISUia3GxERIUlq1KhRtQ4lJVblhhvU9fPRpSGBprYtsQk6lXzeoooAAAAAAAAKlxsQ2mw2vfzyy6ZQ0lF6ero6deqkmTNnuvV2Q0NLt3DwkCFDdO+997qjJMvQYxJucW1YA22JSTDO2+3S9xGnNLpLUwurAgAAAAAAldH8+fO1YMGCQrfp2bNnvu133HGH7rzzziJvI3d+yYsuukhdu3YtcLuDBw8qIyND7du7Z2RoZGSkpNIFk5mZmTp06JCuueYat9RkFYJJuMWgdsF6Zd1+U9vqvScJJgEAAAAAQLGlpqYaC8QUpKDLU1NTXbqN3GCyqHAvNDRUO3bskI+Pj0v7LUpuj8mwsLAS7+Pw4cPKyMgoda9LqxFMwi26Nw9SkK+34tMyjLbvI04qK9suTw+bhZUBAAAAAIDK5v7779f999+f72W5gV5uwFcS2dnZ2rdvnyQV2ltSkjw8PNyyOrcknTt3TkeOHJFUuh6TubWXJtysCJhjEm7h5emh68LMq3DHpWbor+h4awoCAAAAAAAoQFRUlNLS0uTh4aF27doVuu19992nwYMHm9ruuusuDR8+XPv379fEiRPVpUsX9ejRQzNmzCh0X/v27VN2dra8vLzUunVrl2pdt26dRo0apc6dO2vQoEH69ddftW/fPtWoUUMtW7Z0aR8VFcEk3GZAWEOntlV7TlhQCQAAAAAAQMFyh3E3b95cfn5+RW6bt2diRESE0tPTNXbsWLVs2VKPPfaYQkND9f7772vdunUF7isqKkqS1KxZM5eGhn/66aeaOHGi6tatqyeeeEJ9+vTRQw89pF9++UUXXHCBPD09i9xHRcZQbrjNgHbOweSavSf1/IDCf3kAAAAAAAAoT7nBZFEL2iQnJys2NlY333yz0RYfH6+TJ08qLS1Nn3/+uVq0aCFJuv7663XZZZcpPDy8wHkr4+PjJUl169YtssYDBw7ohRde0JgxY/TUU08Z7X5+fpo1a5aGDx9e5D4qOnpMwm2Ca9VQl6aBpra/YxJ0Ium8RRUBAAAAAIDyFBcXp7Nnz+rs2bNKTEw02pOSkhQXF2f8y87OtrDK/5+fskOHDkVuZ7fbTT0mc687fvx4I5SUJG9vb9ntdnl7exe4P39/f0k5i9fExsYWettz585VjRo19OCDD5rau3fvLql0c1RWFPSYhFsNaNdQW2ISTG3fR5zUv7o2s6giAAAAAABQXnr06JFvu2OPQyln3sSmTZuWR0n5yu0xWdT8krkhpON2kZGRkpxX8z506JAkqVWrVgXur3v37vL29taZM2fUt29fBQUFaerUqRoxYoRpu8zMTK1bt05DhgxRrVq1TJflhrqVfeEbiR6TcLNB+QznXr33pAWVAAAAAAAAOEtISNCxY8ckFT2UOyIiQkFBQQoODja1BQQEOC1es2fPHkmFh51NmjTR7Nmz1b59e3l7eys+Pj7fgDYmJkYpKSnq1KmT02Xh4eGS6DEJOOnWvI7q+nkrLjXDaPsh4pQys7Ll5UkODgAAAABAVZY79Dk1NdVo8/Pzk81mc+ttlEZgYKDL+4iIiMh34ZuwsDCn+7R37175+vqahnfnp0+fPurTp0+h25w7dy7f9qysLC1btkx169ZVgwYNXLgHFRtJEdzK08Om6/Kszn02LUObjsRbUxAAAAAAAEAJ2O12RUZGmnpA2u127d+/P9+elnv37lVoaKg8PEoftzVu3FiS9Oeff5raFy9erKioqCrRW1KixyTKwIB2DbR0q3kC19V7T6pnq6JXnAIAAAAAAKgIoqOjlZKSYuoxeeTIEaWmpuY7XDsiIkLXXXedW247MDBQffr00bfffquaNWvqoosu0ubNm7VhwwbZbLYqMb+kRI9JlIHrQp3nmVzDPJMAAAAAAKASyR3u7RgC5i58k7fH5PHjxxUfH+/WwPDll1/Wtddeq++//16vv/66UlJS9PLLL8tut9NjEihIw1o1dFmzIP0VHW+0/ROboOOJ59Sodk3rCgMAAAAAAHBR//79neaizK9Nkho1alTquS/zqlu3rmbPnu3U7u7bsRI9JlEmBuSzOveaiFMWVAIAAAAAAICKiGASZWJQPsHk6j0nLKgEAAAAAAAAFRHBJMpE12ZBqufnbWr7IfKUMrOyLaoIAAAAAAAAFQnBJMqEp4fNaTh3wrlM/RF11qKKAAAAAAAAUJEQTKLM5DfP5GpW5wYAAAAAAIAIJlGGrgtrIJvN3EYwCQAAAAAAAIlgEmWovn8NdWsWZGrbfjRRRxPOWVMQAAAAAAAAKgyCSZSp/IZzr4mg1yQAAAAAAEB1RzCJMjWoXbBT2+o9BJMAAAAAAADVHcEkylSXpoFq4O9javtx3yllZGVbVBEAAAAAoCLx8DBHE1lZWRZVAlQfeZ9neZ+H5YVgEmXKw8PmNJw78VymNh6Ks6giAAAAAEBFYrPZ5OXlZZxPTU21sBqgejh37v/X//D09JQt7+rF5YRgEmUuv3kmv9p13IJKAAAAAAAVUUBAgHE6MTHRwkqA6iE5Odk47e/vb1kdBJMocwPbNZSXhzl5/yr8uOx2u0UVAQAAAAAqktq1axunU1JSFBfHKDugrKSlpZl+AHD8YaC8eRW9CVA6Qb7eurpNPa3dd9poO3w2TTuOJeqiJoEWVgYAAAAAqAj8/Pzk7e2tjIwMSdKJEyeUnJys2rVry8/PT56enhZXiOKw2+2mOQyzsrIsGyqMHHa7XZmZmUpMTFR8fLzRWczDw8PSHpMEkygXN3RqZAomJemr8BMEkwAAAAAA2Ww2NW/eXEeOHDHCyZSUFKWkpFhcGUoqO/v/F721amEVFM5ms6lp06amOV7LG0cGysXQjo2c2r7adcyCSgAAAAAAFZGPj4+aN28ub29vq0tBKeX2zsv9x1RuFY/NZlPjxo0t7S0p0WMS5aRZkK+6Ng3U3zEJRtvW2ERFxaWqRV0/CysDAAAAAFQUPj4+atOmjVJTU5WUlKSkpCRlZmZaXRZKwPFxI2yuOGrUqKHAwEAFBgZa2lMyl/UVoNoY2qmRKZiUclbnfuDK1hZVBAAAAACoaGw2m/z9/eXv769GjRrJbrebhgWj4svMzFR4eLhxvk2bNhUiBKvuPDw8KtxcnxwVKDfDOjbSM2siTG1fhRNMAgAAAAAKZrPZWPymksk7dNvT05PHEPlijkmUm46NaqlNPfOw7V8PxSkuNd2iigAAAAAAAGAVgkmUG5vNphs6mRfBycq267s9JyyqCAAAAAAAAFYhmES5GtYpn9W5w49bUAkAAAAAAACsRDCJctWjRV018Pcxta3Ze0ppGVkWVQQAAAAAAAArEEyiXHl62DS4Y7CpLTUjS2sjT1lUEQAAAAAAAKxAMIlyN6xjPsO5dzHPJAAAAAAAQHVCMIly1y+0gfy8PU1t3+w6rqxsu0UVAQAAAAAAoLwRTKLc+Xp7akC7Bqa2Uynp+iMqzqKKAAAAAAAAUN4IJmGJofkM5/6S1bkBAAAAAACqDYJJWOL69sHy9LCZ2r4KPy67neHcAAAAAAAA1QHBJCxRz99HV7Wqa2o7cCZVu44nWVQRAAAAAAAAyhPBJCxzQ6f8VudmODcAAAAAAEB1QDAJy9yQzzyTXzHPJAAAAAAAQLVAMAnLtKjrp4ub1Da1/R2ToOj4NIsqAgAAAAAAQHkhmISl8hvO/TXDuQEAAAAAAKo8gklYalg+weTKHccsqAQAAAAAAADliWASlurcuLZa1vE1ta0/eEYnks5bVBEAAAAAAADKA8EkLGWz2TTqoiamtmy7tHInvSYBAAAAAACqMoJJWO6mPMGkJK3YftSCSgAAAAAAAFBeCCZhuS5NA9W6np+pbf3BMzqeeM6iigAAAAAAAFDWCCZhOZvNphvz9Jq026XPWAQHAAAAAACgyiKYRIXAcG4AAAAAAIDqhWASFcLFTWrrgvr+prYNh+MUm5BmUUUAAAAAAAAoSwSTqBByhnM3NrXZ7dLnDOcGAAAAAACokggmUWHcfFGIUxvDuQEAAAAAAKomgklUGBc2rqWwBubh3BsPn1V0PMO5AQAAAAAAqhqCSVQY+a3OLUmf7aDXJAAAAAAAQFVDMIkKJf/VuZlnEgAAAAAAoKohmESF0qlxbXUIDjC1/Rl1VlFxqRZVBAAAAAAAgLJAMIkKJ//h3PSaBAAAAAAAqEoIJlHh3NjZOZhczurcAAAAAAAAVQrBJCqcDo1qqVOjWqa2v6LjdegMw7kBAAAAAACqCoJJVEj5DedewercAAAAAAAAVQbBJCqk/FfnJpgEAAAAAACoKggmUSGFNQzQRU1qm9q2xCRo/+kUiyoCAAAAAACAOxFMosLKdzg3vSYBAAAAAACqBIJJVFgM5wYAAAAAAKi6CCZRYV1Q31+XhgSa2rYdTdTek0kWVQQAAAAAAAB3IZhEhZbfcO6Pt8RaUAkAAAAAAADciWASFdqtlzgHk5/8E6PsbLsF1QAAAAAAAMBdCCZRoTWv46fereuZ2g6fTdPGw3EWVQQAAAAAAAB3IJhEhTe6S1Onto//ibGgEgAAAAAAALgLwSQqvJGdG6uGl/lQXbH9mM5lZFlUEQAAAAAAAEqLYBIVXpCvt4Z2CDa1xadl6Ls9JyyqCAAAAAAAAKVFMIlK4fZ8hnMv+YfVuQEAAAAAACorgklUCgPCGqqen7ep7bs9J3QmJd2iigAAAAAAAFAaBJOoFHy8PHTzxSGmtowsu1ZsP2pRRQAAAAAAACgNL6sLAFw1uktTvfP7YVPb7HUxqhHRUsnJUkCA1KiR1Lu35OdnTY0AAAAAAABwDcEkKo3uzYN0QX1/7T+dYrTtSTirO95IkRL8jbagIGncOGnCBCk01IJCAQAAAAAAUCSGcqPSSEy0yWtfiPMF7c2L4MTHSzNnSmFh0siRUkJC+dQHAAAAAAAA1xFMolKIjZV69ZL2fO68Orc6xEiy53u9lStzrhfLAt4AAAAAAAAVCsEkKrz4eOm666TwcEkJ/rIfrWO63FYnRWoUX+D1w8OlAQPoOQkAAAAAAFCREEyiwrvzTmnXLoeG3QX1mixYeLh0xx3urQsAAAAAAAAlRzCJCi0yMmc4tklEE9mzbOa2drGSR3ah+1q5Utq3z731AQAAAAAAoGQIJlGhzZ2bT+M5H+lQQ1OTzTdDanmyZPsDAAAAAABAuSOYRIWVmiotXFjAhfkO5y56hZuFC3P2CwAAAAAAAGsRTKLCWr8+Z+GbfB0Mlv2cl7mtzXHJJ6PQfZ49m7NfAAAAAAAAWItgEhXW8eOFXJjlKUU2MTXZvLKl0GNF7vfEiVIWBgAAAAAAgFIjmESFlZxcxAb5DefudKTI/SYllaweAAAAAAAAuA/BJCqsgIAiNoitK3u8n6nJFnJWqlt48lirVikLAwAAAAAAQKkRTKLCatSoqC1s0q5mzs2dogu9VnBwiUsCAAAAAACAmxBMosLq3VsKCipio13NZLfnaesQLXlk57t5nTo5+wUAAAAAAIC1CCZRYfn5SePGFbFRkq90uIGpyeafLrXOf4WbceNy9gsAAAAAAABrEUyiQpswwYWNdjZ3bitgERyX9gcAAAAAAIAyRzCJCi00VBoxooiNDjSSPdXH3NbqpBSQZmoaMUJq29a99QEAAAAAAKBkCCZR4S1YIHXqVMgG2R7S7qamJpuHpA4xxvlOnXL2AwAAAAAAgIqBYBIVXmCgtGZNEeFkeEHDue268MKc6wcGllWFAAAAAAAAKC6CSVQKISHShg2FDOs+U0v2o0GmJludVF152xn99lvO9QEAAAAAAFBxEEyi0ggMlD7/XIqIkCZPloKC8myQT6/JltcfoackAAAAAABABUQwiUonNFR6800pNlZatUpauFCaNUt658EmquHhadr2sx3HFJ+WYVGlAAAAAAAAKIiX1QUAJeXnJw0c6Njirb+WNdGHf0cbLecys7V0a6zuvaJleZcHAAAAAACAQtBjElXKHd2bObUt2HzEgkoAAAAAAABQGIJJVCk9W9ZVWAN/U9uWmARtP5pgUUUAAAAAAADID8EkqhSbzaZx3ZwXwZm/OTqfrQEAAAAAAGAVgklUOf/q0lSeHjZT25ItMTqXkWVRRQAAAAAAAMiLYBJVTqPaNTW4fUNT29m0DH0ZftyiigAAAAAAAJAXwSSqpDvyGc7NIjgAAAAAAAAVB8EkqqSB7Rqqce0apra1+05r/+kUiyoCAAAAAACAI4JJVElenh76d9dmTu3z/oiyoBoAAAAAAADkRTCJKuvu7i1kM6+Bo4V/HVEai+AAAAAAAABYjmASVVaren4aGGZeBCcuNUMrth+1qCIAAAAAAADkIphElTbhipZObXMZzg0AAAAAAGA5gklUaQPbNVSLOr6mtj+jzmprbIJFFQEAAAAAAEAimEQV5+lh0/jLWzi1v/v74fIvBgAAAAAAAAaCSVR5d3ZrLm9P8yo4n/wTq4S0DIsqAgAAAAAAAMEkqryGtWpoVOcmprbUjCx9tCXGoooAAAAAAABAMIlqYUIP5+Hcc38/LLvdbkE1AAAAAAAAIJhEtdCrVV11alTL1LbnZLJ+PXjGoooAAAAAAACqN4JJVAs2m00TerR0an/396jyLwYAAAAAAAAEk6g+RncJkb+Pp6lt5c5jOp54zqKKAAAAAAAAqi+CSVQbtWt6a3SXpqa2zGy75m8+YlFFAAAAAAAA1RfBJKqVe/MZzv3en1HKymYRHAAAAAAAgPJEMIlqpXOT2rqiZR1TW3T8OX2354RFFQEAAAAAAFRPBJOodu69oqVT27u/Hy73OgAAAAAAAKozgklUO6M6N1Z9fx9T2/cRp3TgdIpFFQEAAAAAAFQ/BJOodmp4eeqObs2d2t+m1yQAAAAAAEC5IZhEtXTP5S1ks5nb5m86osRzGdYUBAAAAAAAUM0QTKJaalXPT0M7BJvaks5n6sO/oi2qCAAAAAAAoHohmES19cCVrZ3aZm84pOxsuwXVAAAAAAAAVC8Ek6i2rm5TT50b1za1HTiTqu/2nLCoIgAAAAAAgOqDYBLVls1m04NXtnJqf+u3QxZUAwAAAAAAUL0QTKJau/WSEDXw9zG1/bT/tHYcTbSoIgAAAAAAgOqBYBLVWk1vT024oqVT+6wN9JoEAAAAAAAoSwSTqPbu7dFC3p42U9uSf2J0Kvm8RRUBAAAAAABUfQSTqPYa1a6pWy4OMbWdz8zWvD+jLKoIAAAAAACg6iOYBCQ9kM8iOO9sPKz0zGwLqgEAAAAAAKj6CCYBSV2aBunKVnVNbceTzmvFjqMWVQQAAAAAAFC1EUwC//PgVa2d2t769aDsdrsF1QAAAAAAAFRtBJPA/9zQsZFa1vE1tf0dk6DfD5+1qCIAAAAAAICqi2AS+B9PD5sm9XKea/Kt3w5aUA0AAAAAAEDVRjAJOLijW3P5+3ia2lbuPKaouFSLKgIAAAAAAKiaCCYBB0G+3hp7WTNTW7ZdmrPxsDUFAQAAAAAAVFEEk0AeD+QznPv9TVFKPJdhQTUAAAAAAABVE8EkkEfbBgEa3D7Y1JZ4LlPv/XnEoooAAAAAAACqHoJJIB+PXN3aqe2/vx7U+cwsC6oBAAAAAACoeggmgXxc1bqeujULMrUdTTynT/6JtaYgAAAAAACAKoZgEsiHzWbTlL4XOLXP+OWAsrPtFlQEAAAAAABQtRBMAgW4oWMjta3vb2rbczJZ3+05YVFFAAAAAAAAVQfBJFAATw+bHrm6jVP7678csKAaAAAAAACAqoVgEijEv7o0VcMAH1PbhkNx+v1wnEUVAQAAAAAAVA0Ek0Ahanp76oErnVfonkGvSQAAAAAAgFIhmASKcG+PFvL38TS1fbXruPaeTLKoIgAAAAAAgMqPYBIoQh0/H919eQtTm90uzfjloEUVAQAAAAAAVH4Ek4ALJl/VWl4eNlPbx1tidDThnEUVAQAAAAAAVG4Ek4ALmgX56rZLQkxt6VnZmrXhkEUVAQAAAAAAVG4Ek4CLHrm6jVPb3D8OK/FchgXVAAAAAAAAVG4Ek4CLLmxcW4PaNTS1JZ7L1Ht/HrGoIgAAAAAAgMqLYBIohsf6OPea/O+vB3U+M8uCagAAAAAAACovgkmgGK5qXU/dmgWZ2o4mntNHf8dYUxAAAAAAAEAlRTAJFIPNZtOUvhc4tb/6035lZmVbUBEAAAAAAEDlRDAJFNMNHRupXcMAU9uhuFR9sjXWoooAAAAAAAAqH4JJoJg8PWx64pq2Tu2vrNunrGy7BRUBAAAAAABUPgSTQAnccnETtannZ2qLOJWiz3YctagiAAAAAACAysXL6gKAysjL00OP922ru1dsN7W/8MM+BRxtopMnbEpOlgICpEaNpN69JT+/AnYGAAAAAABQDRFMAiU0pktTvfBjpI7Epxltu08mafCDx6X9jU3bBgVJ48ZJEyZIoaHlXCgAAAAAAEAFxFBuoIR8vDx0fw/nFbp1+T5J5rkm4+OlmTOlsDBp5EgpIaFcSgQAAAAAAKiwCCaBEoqNlRY83Ez25BqmdltwgtTyZIHXW7lS6tUr5/oAAAAAAADVFcEkUALx8dJ110m7d3hKf7Vx3qCHc69JR+Hh0oAB9JwEAAAAAADVF8EkUAJ33int2vW/MztayJ7qY7rc1uSs1OxMofsID5fuuKOMCgQAAAAAAKjgCCaBYoqMzBmObcj0kra0dt7w8sgi97VypbRvn/tqAwAAAAAAqCwIJoFimjs3n8atrWRP8zY12ZqfkUIK7zVZ4P4AAAAAAACqOIJJoBhSU6WFC/O5IMNL+iefXpPdi+4OuXBhzn4BAAAAAACqE4JJoBjWr89Z+CZfW1vKft7L1GRrdUoKLugKOc6ezdkvAAAAAABAdUIwCRTD8eOFXHjeR9ra0rm9R0SR+z1xosQlAQAAAAAAVEoEk0AxJCcXscE/rWXP8DQ12dqclBqfLfRqSUmlLAwAAAAAAKCSIZgEiiEgoIgN0mpI21o6t1+xt9Cr1apV4pIAAAAAAAAqJYJJoBgaNXJho7/ayJ6ep9dky9OFrtAdHFzKwgAAAAAAACoZgkmgGHr3loKCitgorYb0Tyvn9ivyn2uyTp2c/QIAAAAAAFQnBJNAMfj5SePGubDhljbOK3Q3PyM1O+206bhxOfsFAAAAAACoTggmgWKaMMGFjc75SFtaO7f33CvJXvz9AQAAAAAAVDEEk0AxhYZKI0a4sOGW1rKneZuabCFnpZanjPMjRkht27q5QAAAAAAAgEqAYBIogQULpE6ditgo3Vv6u41z+/96TXbqlLMfAAAAAACA6ohgEiiBwEBpzRoXwsmtrWRP9TE12RolqEXfE1qzJmc/AAAAAAAA1RHBJFBCISHShg1FDOvO8JI2X+DUXHtAhBo3tudzBQAAAAAAgOqBYBIohcBA6fPPpYgIafJkKSgon422t5AttYapKfxEolbuPFYuNQIAAAAAAFREXlYXAFQFoaHSm29KL74orV8vnTghJSVJtWpJwcFe2l2jrR5bFW66zrM/RGj4hY3l6WGzqGoAAAAAAADrEEwCbuTnJw0c6NzeJ6O53tq4XzEJ54y23SeS9em2WN12adNyrBAAAAAAAKBiYCg3UA5qenvqiWvaOrU/90OkMrOyLagIAAAAAADAWgSTQDm5o1tztazja2rbdzpFC/6KtqgiAAAAAAAA6xBMAuXEx8tDT/UPdWp/7ocIpaZnWlARAAAAAACAdQgmgXL0ry5N1a5hgKntWOJ5zdpwyKKKAAAAAAAArEEwCZQjL08PvTSwnVP7az/tV1xqugUVAQAAAAAAWINgEihnwzo10uUt6pjaEs5l6pV1+y2qCAAAAAAAoPwRTALlzGaz6ZVBzr0m52w8pOj4NAsqAgAAAAAAKH8Ek4AFerepr0HtGprazmdma/r3ERZVBAAAAAAAUL4IJgGLvDyovWw2c9tHf0dr9/EkawoCAAAAAAAoRwSTgEU6N6mt0Zc2NbVl26UnV++xqCIAAAAAAIDyQzAJWOi568Lk42l+Gn6164Q2HoqzqCIAAAAAAIDyQTAJWKhlXT/de0ULp/Zpq/bIbrdbUBEAAAAAAED5IJgELPZkv7aqVcPL1LbhUJy+23PSoooAAAAAAADKHsEkYLH6/jX06NVtnNqnfbdHWdn0mgQAAAAAAFUTwSRQAUy+qrWCa9Uwte06kaTFW2IsqggAAAAAAKBsEUwCFUBADS893S/Uqf2p1XuVcj7TgooAAAAAAADKFsEkUEHcfXlzXVDf39R2NPGcZqw/YFFFAAAAAAAAZYdgEqggvD099Or17Z3aX//5gI4mnLOgIgAAAAAAgLJDMAlUIMM7NdKVreqa2lIzsvTUmr0WVQQAAAAAAFA2CCaBCsRms+mNoR2d2hf9Ha1tsQkWVAQAAAAAAFA2CCaBCqZrsyCNvjTE1Ga3S49+s1t2u92iqgAAAAAAANyLYBKogF4a1F41vcxPz5/2n9a3u09YVBEAAAAAAIB7EUwCFVCzIF89cnUbp/bHvt2tjKxsCyoCAAAAAABwL4JJoIKa2ucCNapVw9QWeSpF8/6IsqgiAAAAAAAA9yGYBCqogBpeen5AmFP7cz9E6GxqugUVAQAAAAAAuA/BJFCBjbusuS5sXMvUdiY1Qy+t22dRRQAAAAAAAO5BMAlUYJ4eNr0xpKNT+5wNh3XgdIoFFQEAAAAAALgHwSRQwfULbaDr2zc0taVnZevx7/ZYVBEAAAAAAEDpEUwClcB/BneQp4fN1Pb5zmP6ef9piyoCAAAAAAAoHYJJoBJoH1xL4y9v4dT+4JfhyszKtqAiAAAAAACA0iGYBCqJ564LVZCvt6kt/HiS3v0jyqKKAAAAAAAASo5gEqgk6vvX0PPXhTm1T/8+QqeSz1tQEQAAAAAAQMkRTAKVyIQeLdSpUS1TW3xahp5as9eiigAAAAAAAEqGYBKoRLw8PfTWsE5O7R9sOqJ/YuLLvyAAAAAAAIASIpgEKpk+F9TXjZ0bm9rsdumBL8Nlt9stqgoAAAAAAKB4CCaBSuj1IR3k621++v5++KyW/BNrUUUAAAAAAADFQzAJVELN6/jp8b5tndqnfrdbSecyLagIAAAAAACgeAgmgUrq0avbqGUdX1PbscTzemndPosqAgAAAAAAcB3BJFBJ+Xp76o2hHZ3aZ/56QPtOJVtQEQAAAAAAgOsIJoFKbFinRurXtr6pLSPLroe/3mVRRQAAAAAAAK4hmAQqMZvNpv/e0EmeHjZT+3d7TuqbXcctqgoAAAAAAKBoBJNAJdehUS1N6tnSqf3BL8OVms5COAAAAAAAoGIimASqgOnXhqmBv4+p7fDZNBbCAQAAAAAAFZaX1QUAKL0gX2+9PqSDxi7bZmqf8csBjb60qVrUqqX166Xjx6XkZCkgQGrUSOrdW/Lzs6ZmAAAAAABQvRFMAlXEmC5NtWDzEf16MM5oy8iy67r/7FTigh5KiLc5XScoSBo3TpowQQoNLcdiAQAAAABAtcdQbqCKsNlsentEZ3nlWQgnxnZGCY1i871OfLw0c6YUFiaNHCklJJRDoQAAAAAAACKYBKqUjo1qafylbZwvuHq3VCOj0OuuXCn16iXF5p9hAgAAAAAAuBXBJFCFxMdLP73SVvZEX1O7zf+81HNvkdcPD5cGDKDnJAAAAAAAKHsEk0AVcued0p4dXtJPnZwvvPiwFBxf5D7Cw6U77nB7aQAAAAAAACYEk0AVERmZMxxbknQgWPYDwabLbTZJ/XZINnuR+1q5Utq3z/01AgAAAAAA5CKYBKqIuXMdz9mknzrJnmF+itsaJUido0qwPwAAAAAAAPcimASqgNRUaeHCPI2JftKfoc4b99oj+Z0vcp8LF+bsFwAAAAAAoCwQTAJVwPr1OQvfOPm7jexnAkxNtpqZUu9dRe7z7Nmc/QIAAAAAAJQFgkmgCjh+vIALsj2kdRc6Nds6xEotTha53xMnSlkYAAAAAABAAQgmgSogObmQC6Pry747xLm9/w7JK7PQ/SYlla4uAAAAAACAghBMAlVAQEARG6zvKHuat6nJFpgm9Ywo9Gq1apWyMAAAAAAAgAIQTAJVQKNGRWyQWkNa38G5/dKDUsP4Aq8WHFyqsgAAAAAAAApEMAlUAb17S0FBRWy0q5nsUfVNTTYPSddul2zZTpvXqZOzXwAAAAAAgLJAMAlUAX5+0rhxRW1lk9Z2lj3D/LS3BSdKXQ46bT1uXM5+AQAAAAAAygLBJFBFTJjgwkbx/tKfoc7tV0RIgSnF3x8AAAAAAEAJEUwCVURoqDRihAsb/t1G9pO1TU0272yp3w5Jdkk5+2nb1v01AgAAAAAA5CKYBKqQBQukTp2K2CjbQ/rhItnt5mZby9NS+xh16pSzHwAAAAAAgLJEMAlUIYGB0po1LoSTJ4Kkf1o5NXv126UlK88rMLBMygMAAAAAADAQTAJVTEiItGGDC8O6N7aTPdHX1JTlk6EZf+0qu+IAAAAAAAD+h2ASqIICA6XPP5ciIqTJk6WgoHw2yvBSwJ8XOjV//E+sVu85UeY1AgAAAACA6o1gEqjCQkOlN9+UYmOlVaukhQulWbNy/l+1SjrxZ7BuubiJ0/XGf7ZDCWkZFlQMAAAAAACqCy+rCwBQ9vz8pIED87/svzd00g+RpxSX+v9BZGzCOT367W69f+NF5VQhAAAAAACobugxCVRzDWvV0FvDnFfLmb/piH6IOGlBRQAAAAAAoDogmASg2y4J0ZAOwU7t41fsUNK5TAsqAgAAAAAAVR3BJADZbDa9O7Kzgny9Te1H4tM05bvdFlUFAAAAAACqMoJJAJKkJoE1NXNoR6f2eX9E6ad9py2oCAAAAAAAVGUEkwAM/+raVAPbNXRqv2v5NiWfZ0g3AAAAAABwH4JJAAabzaZ5ozqrdk0vU/vhs2matmqPRVUBAAAAAICqiGASgEnTIF+9McR5SPfbGw9r/QGGdAMAAAAAAPcgmATg5I5uzXRtaAOn9ruWb1dqOkO6AQAAAABA6RFMAnBis9n03o2dFVDD09R+4Eyqpq3aa1FVAAAAAACgKiGYBJCv5nX89PrgDk7tszccYpVuAAAAAABQagSTAAo0/vIW6ntBfaf2cZ9uVUJahgUVAQAAAACAqoJgEkCBbDab5t90kWrVMK/SHR1/Tg99FW5RVQAAAAAAoCogmARQqBZ1/fTfG5xX6V70d4y+DD9mQUUAAAAAAKAqIJgEUKSxlzXT0I7BTu33rNihk0nnLagIAAAAAABUdgSTAIpks9k0b9RFqu/vY2o/lZKuCZ/vkN1ut6gyAAAAAABQWRFMAnBJcK0aenfkhU7tX4Yf1+ItMRZUBAAAAAAAKjOCSQAuG9m5icZ0aerU/sCX4TpyNtWCigAAAAAAQGVFMAmgWN4a1klNA2ua2hLPZeqOT7crO5sh3QAAAAAAwDUEkwCKJcjXW/Nvvtip/af9p/X274fLvR4AAAAAAFA5EUwCKLb+oQ10X8+WTu1Tv92t3ceTyr8gAAAAAABQ6RBMAiiR165vr7b1/U1t5zKzdfsn/+h8ZpZFVQEAAAAAgMqCYBJAifj5eGnRrZfI08Nmat9+NFFPrt5rUVUAAAAAAKCyIJgEUGKXt6ijp/q1dWp/c/1BrY08ZUFFAAAAAACgsiCYBFAqT17TVj1a1HFq//eyrTqTkm5BRQAAAAAAoDIgmARQKl6eHlp82yWqVcPL1H4s8bzGr9guu91uUWUAAAAAAKAiI5gEUGqt6/lrzohOTu1fhB/X/M1HLKgIAAAAAABUdASTANxi9KVNdcvFTZzaH/pylyJPJVtQEQAAAAAAqMgIJgG4hc1m0zsjO6t5kK+pPTUjS7cv+UfpmdkWVQYAAAAAACoigkkAbhPk663Ft10iD5u5fUtMgp79IcKaogAAAAAAQIVEMAnAra5sXU+P923r1P7az/v1y/7TFlQEAAAAAAAqIoJJAG43/dpQXdYsyNRmt0ujP9mqU8nnJUmpqdKaNTZ9/XU9LVvWQF9/XU9r1tiUmmpBwQAAAAAAoNx5WV0AgKrH29NDH992iS6d+atS0rOM9qOJ53TT/G266HA3LfrQpvh4T0ktTdcNCpLGjZMmTJBCQ8u1bAAAAAAAUI7oMQmgTLRtEKDZwy90al8ffVJv/XZQ8fH5Xy8+Xpo5UwoLk0aOlBISyrRMAAAAAABgEYJJAGXm312b6vZLQ5wvuHKPFBxf5PVXrpR69ZJiY91fGwAAAAAAsBbBJIAyY7PZ9PI1neWT4m9u97RLg7dIPhlF7iM8XBowgJ6TAAAAAABUNeU2x2R6erq2bdumf/75RydOnFBCQoIuuOACTZw4UZJ04MABHTx4UFdffbW8vb3LqywAZeyhiV46v+FS6daNsnllG+22oFTZ+++QvrtUkq3QfYSHS3fcIX3+eRkXCwAAAAAAyk2ZB5NpaWl6//339cknnyghT5enXr16Gae3bNmi6dOnq3HjxpoyZYoGDBhQ1qUBKGORkTnDsaUg6df2Ut9dpstt7Y7KfqS+tLNFkftauVLat09q27ZMSgUAAAAAAOWsTIdyHzx4UKNGjdK7776r+Ph42e12419esbGxstvtOnr0qCZPnqyZM2eWZWkAysHcuQ5ntraSfX+w80Z9wqV6ScXfHwAAAAAAqNTKLJg8ceKExo4dq4MHDxptnp6eatWqVb7bnz59WlLOnHR2u13vvfeeVqxYUVblAShjqanSwoWOLTbp+4tlT6pp2s7mnZ0z36RXZpH7XLgwZ78AAAAAAKDyK7NgcurUqTp58qQkqXbt2nrmmWf0559/avXq1flu/9xzz+nFF19UUFCQEU7+5z//cRr+DaByWL9eio/P03jOR/ruUtmzzc22+klSn10qytmzOfsFAAAAAACVX5kEk3/88Yf+/PNP2Ww2BQYG6pNPPtFtt92mWrVqFXgdLy8vjRo1SitWrFDDhg0lScnJyfryyy/LokQAZez48QIuiK0n/RHm1GzrfERqH13kfk+cKGVhAAAAAACgQiiTYNKxV+Tjjz+uNm3auHzdpk2b6pFHHjHO//bbb26tDUD5SE4u5MJNbWU/Us+5vf/OIuebTHJtOkoAAAAAAFDBlUkw+ffff0uSAgICNHjw4GJff/DgwQoMDJTdbldkZKS7ywNQDgICCrnQbpNWXSp7io+p2eadJQ35W/IueL7JQjpeAwAAAACASqRMgslTp07JZrOpTZs28vLyKvb1PTw81KJFC0lijkmgkmrUqIgNUmrmhJN2c7OtXrLUf4cke75XC85nYW8AAAAAAFD5lEkwmZ6eLkny8fEpYsuC5V7Xw6PM1ucBUIZ695aCgorY6EgD6fd85ptsHyt1jnJqr1MnZ78AAAAAAKDyK5PUr169erLb7YqJiSnxPg4dOiRJqlOnjrvKAlCO/PykceNc2PDPtrIfauDc3meX1DDe1DRuXM5+AQAAAABA5VcmwWTbtm0lSceOHdPu3buLff2NGzfqzJkzstlsCg0NdXd5AMrJhAmubGWTVl8ie1JNc6tXtjRki1Qjo5j7AwAAAAAAlUGZBJO9HcZavvLKK8rOznb5usnJyXr55ZeN87169XJrbQDKT2ioNGKECxum1ZC+7SJ7ls3UbAtKla7bJsmuESOk//3mAQAAAAAAqoAyCSaHDRumevXqScpZofvBBx9UYmJikdeLiYnRuHHjdODAAUlS7dq1NWzYsLIoEUA5WbBA6tTJhQ2P1pV+a+/UbGt7XI2uP6gFC9xfGwAAAAAAsE7xl8x2gZ+fn6ZOnaopU6bIZrNp7dq12rRpk/r06aM2bdoY2yUkJOiXX37R0aNH9eeff+qnn35SVlaWJMlms+n+++9XQEBAWZQIoJwEBkpr1kgDBkjh4UVsvKW17CFxsrU9bmo+3X6PdpwJ0pWB9cquUAAAAAAAUK7KJJiUpKFDh+rIkSOaM2eObDabEhMT9fXXXxuX2+127dy5U/fee6+pzWbLGco5atQojR49uqzKA1COQkKkDRukO+6QVq4sbEub9P3Fsjf4NWcY9/9k2e26afEWbXnoKjUJrFnI9QEAAAAAQGVRJkO5c02aNElvvPGGatWqJSkneJRyekPmBpC5bbn/e3l56bHHHtMLL7xQlqUBKGeBgdLnn0sREdLkyVJQUP7b1fHz1ujArvLxNL88nUg6r5sW/630TNfnrAUAAAAAABVXmfWYzHX99dfr6quv1ooVK/TDDz8oPDxc6enpTtu1bdtWffr00ejRo9WwYcOyLguARUJDpTfflF58Ufrppyz9/Xe0UlI85O+fra5dm6lvX0/5+QXq6k0X6u4V203X/f3wWT3yzS7NHn6hRdUDAAAAAAB3KfNgUpL8/f01duxYjR07Vunp6Tpx4oQSEhKUmZmp2rVrq2HDhswlCVQzfn7SgAF2NW58xmi76KKm8vrfq9Kd3Ztr05Gz+mDTEdP13t54WN2aB2lMl2blWS4AAAAAAHCzcgkmHfn4+KhZs2Zq1sy1UCE9PV0+Pj5lXBWAimj28E7afjRRf0XHm9rvWbFDFzaqrYtDAq0pDAAAAAAAlFqZzDE5bdo0TZs2TR9++GGJ9/HCCy/ommuu0Y033ui+wgBUKjW8PPXZv7uqvr/5x4lzmdkauehvxaU6TwsBAAAAAAAqhzIJJr/44gt9+eWX2rhxY4n3ceDAAcXGxio2NtaNlQGobJoF+WrZ6C7ysJnbD8WlavSSf5SVbbemMAAAAAAAUCpluip3acTHx0uSzp07Z20hACzXt219vTKovVP7mohTeu6HCAsqAgAAAAAApVXiOSb37t2rpKSkQrdJSEjQX3/9Vaz9nj9/XuvXr9fevXslSUFBQSUtEUAV8ujVbfRXdLw+23HM1P7i2n3q2ixIQzs2sqgyAAAAAABQEiUOJnfv3q0nn3yywMvtdrt27typf/3rXyW9CdlsNl1yySUlvj6AqsNms2n+TRdr1/Ek7TmZbLpszCdb9ecDvdQ+uJZF1QEAAAAAgOIq8VDuESNG6NJLL5Xd7t753Rz35+3trbvvvtut+wdQedWq6aXPx3ZVrRrm31SSzmdq2MK/FJ+WYVFlAAAAAACguEo1x+Szzz4rLy8v2e12079ceduL+idJNWvWVHBwsK666iotWrRInTt3Lt09BFCltGtYSx/ecrFT+77TKbrt4y0shgMAAAAAQCVR4qHcktS2bVuFh4c7tbdr1042m029evXS+++/X5qbAAAnwy9srKf7h+qFHyNN7WsiTunJ1Xv16vXOC+UAAAAAAICKpcxW5Xb3EG8AcDS9f6hu6Bjs1P6fn/dr6dZYCyoCAAAAAADFUaoekwV55ZVXJEnBwc6hAQC4g4eHTYtuvURXzN6g3SfMi+HctXybwhr469KmQdYUBwAAAAAAilQmPSaHDx+u4cOH64orriiL3QOAJKl2TW99Oa6bgny9Te1pGdka/uFfOpl03qLKAAAAAABAUcpsKLe75DeHJQDkuqC+v5aNvlQeNnN7dPw53fjR30rPzLamMAAAAAAAUKgyGcrtKCsrSzt27NDx48d1/vx5ZWVl5Tv/pN1uV2ZmpjIyMpSamqpTp07p77//1r59+7R79+6yLhNAJXZtWEO9dn0HPfat+bXit0NxevCrcL07srNFlQEAAAAAgIKUaTC5YMECzZs3T4mJiSW6vt1ul81mK3pDANXew71ba/vRBH38j3nhm3l/RKlTo1q6r2criyoDAAAAAAD5KbOh3P/973/1+uuvKyEhwdRD0m63G//ycryMVb0BFIfNZtO8Gy9Sl6aBTpc99NUu/Rh5yoKqAAAAAABAQcokmIyJidEHH3wgSUaPR8ew0WazyWaz5RtE5l7WsGFD3XXXXfr444/LokQAVZCvt6e+GHuZgmvVMLVnZdt100d/a+/JJIsqAwAAAAAAeZVJMPnFF18oMzNTklSjRg099dRT+vXXX7Vnzx498sgjstvt8vT01KZNm7Rr1y79/vvvmj9/vnr37m2ElHFxcerXr5+6dOlSFiUCqKL+j737Ds+6vvc//vxmMEJCEkAChD0CKEMUBwjGLVhn0Gpt1UK10lbbQn+tbU/PaU/ltHaB2laorYC21lol1dYqdaARHAxFJSCEPQKElUAgjJB8f3/clYIZJCE3CfB8XFeu3vl+xv2+z8kl4cVndExpTvYdg2kad+R/3nbuO8i1U+ezo+RAA1UmSZIkSZIOF5Vgct68eYdef+tb3+ILX/gCbdu2JQgChgwZAkQuxZkzZw6xsbG0atWKCy64gN/97neMGzfuUPt///d/u6VbUq0N6dqKP3x2YIXnK7bt4abHF1Ba5k3dkiRJkiQ1tKgEk+vXrwegSZMmfPaznz2irU+fPsTHxwOwYMGCCmPvvvtuLrvsMsIwZMWKFbz66qvRKFHSSe7zZ3Xk+5f2qvD89ZXbuedvi/xHD0mSJEmSGlhUgsmdO3cSBAE9evSgadMjz3qLi4uje/fuhGHI4sWLKx3/5S9/+dDr119/PRolSjoF/PjK3mT1b1fh+e/fXcfDc1Y3QEWSJEmSJOkTUQkmPzlfMiUlpdL2bt26AbBy5cpK2wcMGECbNm0AWLp0af0XKOmUEBMT8PgtgxiU3rJC27f+vpiXPi5ogKokSZIkSRJEKZj8JJAsLS2ttL1Tp04AlJSUUFBQeTCQnp5OGIZs3LgxGiVKOkW0aBrH86PPpd2nbuouD+GWP73P4s3/uam7pAReegmmTYNf/zryvy+9FHkuSZIkSZLqV1w0Jj3ttNPYunUr69atq7S9c+fOh17n5eWRlpZWoU9MTCQz3bNnTzRKlHQK6ZjSnOdGn8NFj7zNvoP/ufimeP9Brn5sLk9+ZjjPPN6U6dOhqKji+JQUGD0axo6FjIzjVbUkSZIkSSe3qKyYHDRoEABbtmwhNze3QvvhweQHH3xQ6RyfXKATFxeV7FTSKebczqlMu+XMCs/XFu7lgl/M48HfHKw0lIRIWDlpEvTuDaNGwc6d0axUkiRJkqRTQ1SCyQsuuODQ6x/84Ads3779iPbTTz/90IrI559/vsKW79dff51t27YRBMGhsyYl6VjdfGY6/3N5xSWPQfsiuGohcPSburOzYdgwyM+v//okSZIkSTqVRCWYvPjii+natSsAy5YtY+TIkfziF79g27ZtACQlJXHOOecQhiH5+fnce++9rF27lj179vCvf/2L73//+4fmGjhwYDRKlHSK+uEVGdzUL73C86DXZrjw4xrNkZsLI0a4clKSJEmSpGMRlWAyCAJ+8IMfEBsbC8CuXbuYOnUqmzdvPtTni1/84qHXOTk5jBgxgsGDB/PNb36TwsLCQ21ZWVnRKFHSKSoIAvb/YyDhhlYV285ZCQPW1Gie3FwYM6aei5MkSZIk6RQSlWASYNiwYfz85z8nKSnp0LPDz5a8+OKLufbaawnDyNbJMAwPfQVBAMBVV13F0KFDo1WipFNQXh48nx0Lz59DuKNFxQ6XLoKuBTWaKzsbli+v5wIlSZIkSTpFRC2YhEiw+NJLL/G1r32Ns88+m5YtWx7R/pOf/ITRo0cfWll5uJtvvpkHHnggmuVJOgVNmfLvF/uawN/OI9wbf0R7EANc8x6cVrN92ofmkyRJkiRJtRL1K69bt27Nvffey7333lvxzePiuO+++xgzZgxz5sxh69atpKSkMGTIEDp16hTt0iSdYkpKYNq0wx4UtYDnziW86R2CuPJDj4MmZYQ3zIMnh8OeZtXOOW0a3H8/JCREqWhJkiRJkk5SUQkm33nnHfbs2UNmZibx8fFH7X/aaadxww03RKMUSTokJweKij71cGMrmHkmXP3+EY+DpH2EWXPhLxdAadX/qSwsjMw7cmS9lytJkiRJ0kktKlu5//SnP3HvvfcybNgwnnrqqWi8hSTV2mH3bx1pWTrh7D4VHgdtd8G1CyCmvJJB/1FQsyMpJUmSJEnSYaISTC5ZsoQwDNm1axfp6enReAtJqrXdu6tpnNeTcFHFIySCrlvh8g+BsMqhxcXHXpskSZIkSaeaqAST27dvP/T6rLPOisZbSFKtJSZW1xrAqwMI17ap2NJvAwxdVuXIpKRjr02SJEmSpFNNVILJlJSUQ6/37dsXjbeQpFpr1+4oHcpj4O+DCbe0rNAUDFkOA9ZUOiwt7dhrkyRJkiTpVBOVYPKKK6449PrZZ5+NxltIUq1lZsJh/25SuQPxkH0e4a7mFdsuXQTdjzyoMjU1Mq8kSZIkSaqdqAST3/jGN+jduzdhGPKb3/yGxx9/nNLS0mi8lSTVWEICjB5dg457msGM8wj3xR/xOIgBrn4P2hUeejZ6dGReSZIkSZJUO3FRmTQujscee4wf//jHvPzyyzzwwAM88sgjDBo0iD59+tCqVSsSExOJialZLnr99ddHo0xJp6CxY2HSpBp03JEEz51DeOO7BHH/uZU7iC8nvGEePHUBFCUydmz0apUkSZIk6WQWlWDy8AtvgiAgDEN27txJTk4OOTk5tZ7PYFJSfcnIgKwsyM6uQef81vDSIMKr3yMI/vM4SDhAmDWXz+waRq9eTaNWqyRJkiRJJ7OobOUOw/DQF0TCyeDff6s/vK0mX5JU36ZOhX79atg5rwO8cUaFx0FqCfnnzWXXPo+pkCRJkiSpLqKyYrJDhw7RmFaS6kVyMsycCSNGQG5uDQa8350waS/B4FVHPP5w806ypi/gn3eeS9O42OgUK0mSJEnSSSoqweSsWbOiMa0k1Zv0dJgzB8aMqeG27pzTCRP3EfTZeMTjWSu2cfufF/LnL5xNbExQxWBJkiRJkvRpUdnKLUknguRkmDEDli2DceMgJaXyfqmpMH58QO4vz+TSXm0qtD/z0Sa+/lyux09IkiRJklQLUVkxKUknkowMmDgRJkyAnBwoKIDiYkhKgrQ0yMyEhASAWLK7nsPFk9/m/fydR8wx+e01pCU25X+uyGiQzyBJkiRJ0onGYFKS/i0hAUaOrL5PUrM4XrzzPIb99i1WbNtzRNuPXl5G28QmjB3aNXpFSpIkSZJ0knArtyTVUtukpvzrrvNpl9S0QtvX/raIZz/cWMkoSZIkSZJ0OINJSaqDbq0TmHnX+SQ3O3LheRjCF/68kFnLtzVQZZIkSZIknRgMJiWpjgZ0aMnzo8+ladyR/yk9UFbO9dPnMW9dYQNVJkmSJElS42cwKUnH4MIerfnLF84mJjjy+e79ZVz1h7ks3lzcMIVJkiRJktTIGUxK0jG6rl87fnfjwArPd5SUcsWj77Bq+55KRkmSJEmSdGozmJSkevCl8zrzwGf6Vni+add+Lv/du2zcua8BqpIkSZIkqfEymJSkevKdi3vy3Ut6Vni+ekcJVz76Ltv3HGiAqiRJkiRJapwMJiWpHv3fyD6MHdKlwvPFBcVc9Ye5FO872ABVSZIkSZLU+DT6YPLAAVcYSTpxBEHAb27oz62D0iu0zV9fxPXT5rGvtKwBKpMkSZIkqXGJSjD5ve99j+9973tMnz69znPcf//9XHrppdx00031V5gkHQcxMQHTbjmTq/umVWh7feV2bv7je5SWlTdAZZIkSZIkNR5RCSb/9re/8dxzz/HWW2/VeY6VK1eSn59Pfn5+PVYmScdHfGwMT99+Nhf1aF2h7R9LCrj9qYWUlYcNUJkkSZIkSY1Do93KXVRUBMC+fd5kK+nE1Dw+ludHn8vgjskV2p7+YCN3/fVDyg0nJUmSJEmnqLi6Dly6dCnFxcXV9tm5cyfz58+v1bz79+8nJyeHpUuXApCSklLXEiWpwSU1i+PFu87jokfeZknB7iPapi9YT7P4GH6b1Z8gCBqoQkmSJEmSGkadg8klS5bwX//1X1W2h2HIokWLuP322+v6FgRBwKBBg+o8XpIagzYtmvLyl4eQ+chbrNxeckTblHfWktAkll9cfbrhpCRJkiTplFLnrdxZWVmcddZZhGH9bkM8fL74+Hjuuuuuep1fkhpCh+RmvHr3EDqnNK/QNjFnFT96Oa8BqpIkSZIkqeEc0xmTP/rRj4iLiyMMwyO+PvHp50f7AmjWrBlpaWlceOGFPP744wwYMODYPqEkNRJdWiXw6tghtG/ZtELb/a/k8cCs5Q1QlSRJkiRJDaPOW7kBevXqRW5uboXnffr0IQgChg0bxu9///tjeQtJOqn0bNOCV+8ewkWPvM3WPQeOaPv+i0tJiI/l68O7H3pWUgI5ObB5M+zeDYmJ0K4dZGZCQsLxrl6SJEmSpPpzTMFkdep7i7cknSz6piXx8t3nc/HkdyjaW3pE2zefX0yz+FguatWFyZNh+nQoKqo4R0oKjB4NY8dCRsbxqFqSJEmSpPoVlWDypz/9KQBpaWnRmF6STngDOyQz867zuPx371K8/+ARbWOf/YjwXwHkdq5yfFERTJoU+crKgqlTITk5ykVLkiRJklSPohJM3nDDDdGYVpJOKud2TuWFL53LiN+/y97S8iMbr/gQygNY0umo82RnQ14ezJwJ6elRKlaSJEmSpHp2TJffSJKOzfDurXl+9Lk0jT3yP8dBAIz4APpuqNE8ubkwYgTs3Fn/NUqSJEmSFA1RWTE5f/78ep3vnHPOqdf5JKkxuSzjNM7OP4e32swniPvPyskggHDEQggDWHr0pZC5uTBmDMyYEc1qJUmSJEmqH1EJJm+77TaCIKiXuYIgYMmSJfUylyQ1Rnl58NaTbaHbYMLr5hPE/ufysCAGwpHvR7Z153U46lzZ2bB8OfTqFc2KJUmSJEk6do1iK3cYhtV+SdLJbMqUf79YnQb/GExYduQ/7AQxwGfeh14bazefJEmSJEmNWFRWTAJ1DhSDICA2NpZLL72U2NjYeq5KkhqXkhKYNu2wByvbwQtnE1793qdWToaEn3kfXghgRftq55w2De6/HxISolS0JEmSJEn1ICrB5NKlS2vc98CBAxQWFpKXl8cLL7zA3//+d8rKyti3bx8PPfQQzZo1i0aJktQo5ORAUdGnHq5oD/88i/Dq9wliDgsnY0PCq9+DF86uNpwsLIzMO3JkdGqWJEmSJKk+NPhW7iZNmpCWlsbw4cP52c9+xqOPPkpsbCxvvvkm999/f0OXJ0lRtXlzFQ3LO8CLgwjLj3wcxIZw9XtH3dZdUFA/9UmSJEmSFC0NHkx+2vDhw7n33nsJw5Ds7Gzee++9hi5JkqJm9+5qGpelw0tVhZPvQ0bV4WRxcf3UJ0mSJElStDS6YBLg1ltvpWnTpgDMmDGjgauRpOhJTDxKh6UdKw8nY8LIhTi98ysdlpRUP/VJkiRJkhQtjTKYTEpKonv37oRh6IpJSSe1du1q0GlpR3jprMrDyavehz4bKgxJS6uf+iRJkiRJipZGGUwCJPz7OtktW7Y0cCWSFD2ZmZCSUoOOS9PhxbMIy4MjHgcxwMiF0Pc/4WRqamReSZIkSZIas0YZTJaXl7NmzRoA4uPjG7YYSYqihAQYPbqGnZelR27rriqcPH09EJnv3/+2I0mSJElSo9Uog8nnnnuO7du3EwQBHTt2bOhyJCmqxo6tRee8DvDCWYRlnwonA2DEB9BvXe3mkyRJkiSpgTSqYPLAgQP8+c9/5kc/+tGhZ8OHD2+4giTpOMjIgKysWgxY3gFeOLvScDK48kNe3rK6fguUJEmSJCkK4qIx6e23317jvmEYcvDgQXbv3s2GDRvYt28fYRgC0LRpU2655ZZolChJjcrUqZCXB7m5NRywoj38YzDhNQsIYsMjmu79Wy77Ssv51kU96r9QSZIkSZLqSVSCyXnz5hEEwdE7fkoYhkeM+/a3v0379u3rszRJapSSk2HmTBgxohbh5Mp28PdzIuFk3JFXdn/7hSXsPVjGDy7LqP9iJUmSJEmqB1Hbyh2GYa2/PhnXoUMHfvnLX/L5z38+WuVJUqOTng5z5tRyW/eqNC7Ydg7N4ir+5/x/Zi7jBy8tPfTfV0mSJEmSGpOorJi85557aj2mSZMmpKam0qdPH/r37x+FqiSp8UtOhhkzItu6p0yBadOgqKhiv9TUyO3bY8dCr15teWPFeVwzdR57DpQd0e8nry1nb2kZv7zm9DqtZJckSZIkKVoaTTApSfqPjAyYOBEmTICcHCgogOJiSEqCtDTIzISEhP/0v6hnG/715fO56g9z2bXv4BFzTXpzFfsOlvPr6/sRE2M4KUmSJElqHKISTEqS6kdCAowcWbO+Q7u24tW7h3Dlo+9SuLf0iLbJb69hb2kZv79pILGGk5IkSZKkRiBqZ0xKko6/wZ1SeP0rQzmtRZMKbdPnr+fWP73HgYPllYyUJEmSJOn4Oq4rJleuXMn8+fPZsmUL27ZtAyAlJYWuXbsyePBgOnfufDzLkaST0oAOLXnjq0O57HfvsGnX/iPanvloE7sPzOeZ288moYmL5iVJkiRJDSfqfyvds2cPTzzxBM899xzr1q2rtm+fPn344he/yHXXXRftsiTppNY3LYmcr17AZVPeYV3R3iPaXlq6hav+MJe/jzmXls3iG6hCSZIkSdKpLqpbuT/88EOuueYaHn74YdauXUsYhgCEYXjE1yfPPv74Y7773e/yhS98ga1bt0azNEk66fVs04I3vzaUXm1aVGh7c9UOLpvyDtv3HGiAyiRJkiRJimIwmZubyxe/+EU2bdp0xPP4+Hh69uzJmWeeyYABA+jatSuxsbGH2sMwZMGCBdx2220UFhZGqzxJOiV0Tk3gza9dwID2LSu0Ldiwk8xH3mLjzn0NUJkkSZIk6VQXla3cpaWlfOtb32Lv3r0EQUAYhowcOZLPf/7zDBo06IggEuDAgQO89957PP7447zxxhsEQcDatWv54Q9/yMMPPxyNEiXplJGW1JTXvzKEq/4wl7nrio5oW1KwmwsfeYtXvjyEbq0TGqZASZIkSdIpKSorJp9//nnWrl1LEATExsYyceJEJk2axODBgyuEkgBNmjRhyJAhTJkyhfvvv/9QmPnKK6+wcOHCaJQoSaeU1IQmvPzlIVzSs02FtlXbSxj+27dYsrm4ASqTJEmSJJ2qohJMvvTSS4def/Ob3+Sqq66q8dibbrqJu++++9D3zz77bL3WJkmnqqRmcbzwpXO55vS0Cm0bd+3jwkfeYu5aj9CQJEmSJB0fUQkmly5dCkBiYiK33357rcffddddNGvWDID58+fXa22SdCprFh/Ls3cM5nOD0iu07Sgp5bLfvcPLy7Y0QGWSJEmSpFNNVILJnTt3EgQBGRkZNGnSpNbjExIS6NOnD2EYsnnz5ihUKEmnrvjYGJ743CC+fH6XCm17DpRxzdR5/PWDjQ1QmSRJkiTpVBKVYDIlJQWAgwcP1nmOuLjIvTzNmzevj5IkSYeJjQmYPKo/37u0Z4W20rKQzz35HlPeXnP8C5MkSZIknTKicit3z5492bZtG0uXLqW4uJikpKRajT948CDLly8nCAK6desWjRIl6ZQXBAH/N7IvrROa8P/+seSItjCEr2YvYnvJAb5/aS+CIDjUVlICOTmweTPs3g2JidCuHWRmQoIXe0uSJEmSaigqKyavv/56AA4cOMBDDz1U6/EzZsxg586dAHzmM5+pz9IkSZ8yPrMH0285k9iYoELbf89cxvi/L6a8PCQvD8aNg/R0uOoqGDMGvv71yP9edVXk+fjxkJfXAB9CkiRJknTCiUowed1113H++ecThiFPPvkkjz76aI3Hzps3jwceeACAbt26cfPNN0ejREnSYW4f3InsOwbTLK7iHwsPzV5Nt68upHffch58EIqKKp+jqAgmTYLevWHUKPj3vy9JkiRJklSpqASTQRDw0EMPcc455xCGIZMmTeL2228nJyeH0tLSSsesWLGCCRMmMGbMGPbu3Uu7du2YPHlynS7PkSTV3jVntGPmXefTslnFUz7WJ+ZD1lxoUvl/wz8tOxuGDYP8/PquUpIkSZJ0sojKGZN33XUXALGxsQCEYcj8+fOZP38+cXFxdOvWjeTkZOLj49m9ezdr165l165dh/oGQUBBQQEjRoyo9n2CIGDJkiXV9pEk1dyFPVrzxleGMuL377Jl94Ej2oIu2whvfhuyz4M9zY46V24ujBgBc+ZAcnK0KpYkSZIknaiiEkzOnj370EUJh1+YEIYhpaWlLF++/Ij+YRge6vvp/pKk4+vM9GTm3DOMM+9/l5L4kiPagra7CD83JxJO7jj6xWa5uZEzKGfMiFa1kiRJkqQTVVS2ckMkVPz0V1VtR3suSTq+yne0YM8fLiAsqLjUMUjeC7e8BR121Giu7Gz41L9HSZIkSZIUnRWTTzzxRDSmlSQdJ1OmACXN4OmhhNcuIOi69Yj2oHkp4Y3vwItnwYr2NZrvV7+KUrGSJEmSpBNSVILJc889NxrTSpKOg5ISmDbt39+UxsHfziW84kOCMzYc0S+ILye8ZgHM6g8fdq12zmnT4P77ISEhOjVLkiRJkk48UdvKLUk6MeXkQFHRYQ/KY2DmmYTv9qzQN4iB4LJFMOxjoOojOAoLI/NKkiRJkvSJqKyY/M1vfgNAly5duOaaa+o0x+9+9zveeustYmNjmXZo6Y4kKdo2b67saQBv9SXc3RwuXcRh95RFWs9bQZi4D14eGAkyK1FQUO+lSpIkSZJOYFELJoMgYNiwYXUOJt966y3mzZtHy5Yt67k6SVJ1du+upvHDrrCnKeFV7xPElx/RFJyxgbDFfvj74MgW8E8pLq7fOiVJkiRJJ7ZGu5V73759AJSUlDRwJZJ0aklMPEqHFe3h2SGEe+MrNAVdt8LNb0PCvgptSUn1VKAkSZIk6aRQ5xWT27Zt48CBA9X22bdvHxs3bqzVvPv37ycnJ4dFixYBkJycXNcSJUl10K5dDTptbAV/uYBw1FyClnuPaArSdhLeOgdmnA+F/0k509LquVBJkiRJ0gmtzsHk888/zy9/+csq28MwZMGCBVx66aV1mj8MQ4IgoE+fPnUtUZJUB5mZkJLyqQtwKrMjCf48jDBrLkHbXUc0Bcl7CT83B/52HmxKJTU1Mq8kSZIkSZ+o81buL37xi/Ts2ZMwDCt8faKytpp8fSIIAkaPHn1sn1CSVCsJCVDj//TuaQZPDyVc26ZCU9C8FG56G3puYvToyLySJEmSJH2izsFkbGwsP/rRjwg+fTVrPQiCgB49ejBx4kSGDRtW7/NLkqo3dmwtOh+Ih+zzCJekV2gK4svh2gU0GbLyiH94kiRJkiTpmG7lPvvss3njjTc4ePDgoWdhGHLZZZcRBAGDBw/mgQceqPF8MTExNG3alJYtWxIXF5ULwyVJNZCRAVlZkJ1dwwHlMfDSIMLdzQjOXXlEUxDAz95dQiF7+PUN/YiPbbT3rkmSJEmSjqNjTv/SqrjNIAxDmjVrRnp6xRU0kqTGb+pUyMuD3Nyajghg9umEu5vBxYv59IL6R99dy+ode3j6tsGkNK94o7ckSZIk6dQSlWWJ99xzDwCdO3eOxvSSpOMgORlmzoQRI2oTTgILu0Nxc4KrFxLGlh3R9EreNob9Zg7/GHMe3Vp76KQkSZIkncqisp/unnvu4Z577uHaa6+NxvSSpOMkPR3mzIls666NrAHtmXX3UNq3bFqhbUnBbs5/eDbvrNlRT1VKkiRJkk5EHvQlSapWcjLMmAHLlsG4cZCSUnm/1FQYPz6y/XvGDMjsk8Lcrw9nYIeWFfpu3XOAS6a8w9Mf5Ee3eEmSJElSoxWVrdwbN26s1/k6dOhQr/NJkmovIwMmToQJEyAnBwoKoLgYkpIgLQ0yMyHhU7uzO6Y0582vXsCtT77HPz/eckTb/oPlfO5P77Ni2x6+f2kvgk8fSilJkiRJOqlFJZi85JJL6u0vmEEQsGTJknqZS5J07BISYOTImvdPahbHc6PPZfzfF/PrOasrtP/3zGWs2LaHKTcOoGlcbD1WKkmSJElqzKK6lTsMw3r5kiSd2GJjAh66vh8PX9+PmEr+3erxBRu48tF32b7nwPEvTpIkSZLUIKIWTNY1UAyCgLi4OAYOHMjAgQMZMGBAPVcmSWoo9wzrxj/GnEti04orI99ctYOhv57D8q27G6AySZIkSdLxFpWt3K+99lqN++7fv5/CwkKWL1/OP//5T+bPn09ZWRm9e/fmf//3fz1zTJJOMiP7pjHna8O4Zupc1hftO6Jt+bY9DPn1HLLvOIcLe7RuoAolSZIkScdDVILJ9PT0Wo85++yzueWWW3j66af50Y9+xDPPPENKSgrjx4+PQoWSpIY0oENL3v36cK6bOo8FG3Ye0bajpJTLH32H3980kNsHd2qgCiVJkiRJ0RbVMybr4uabb+aOO+4gDEMee+wxli5d2tAlSZKioH3LZrzx1aFk9W9Xoa20LOSLf/mA7/7zY8rKPWtYkiRJkk5GjS6YBLjzzjuJi4ujvLycZ599tqHLkSRFSUKTOP5622C+c3HPStt//voKrp82j517S49zZZIkSZKkaGuUwWSbNm3o1q0bYRjyzjvvNHQ5kqQoiokJeOAzfXn0pgHEVXJl9z8/3sIQL8WRJEmSpJNOVM6YrA8pKSkAbN68uWELkSQdF3ee14VurRK46Yn3KPrUCsmlW3Zz3sNz+MsXzuKK3m0rjC0pgVmzAubPb01JSQwJCeVs2hRwySWQkHC8PoEkSZIkqTYabTC5fv36hi5BknScXdrrNOZ+fRjXT5vPx1uOXCFZtLeUq/4wl19cczrfHN6dIAjIy4PJk2H6dCgqigW6HjEmJQVGj4axYyEj43h9CkmSJElSTTTKrdyvv/46mzdvJggCOnTo0NDlSJKOo16nJfLO14fxmb4VV0aWh/Ctvy/htj99yPWjyujdGx58EIqKKp+rqAgmTYLevWHUKNi5s/J+kiRJkqTjr9EFkzk5OXz3u9899P3QoUMbsBpJUkNo2Sye50afy32XVH4pzp8/XM/zTd+BFvtqPGd2NgwbBvn59VWlJEmSJOlYRGUr9/e+971a9S8tLWX37t2sWrWK9evXE4YhALGxsdx0003RKFGS1MjFxgT89Kq+DGjfki89/QH7DpYf0R50KCT8/Gx4/hwoSKnRnLm5MGIEzJkDyclRKFqSJEmSVGNRCSb/9re/EQQVb1Y9mk8CySAICMOQL33pS/TsWflqGUnSqeFzg9Lp1aYFN0yfT/7OI1dIBkn7CG9+C14eCEs71mi+3FwYMwZmzIhGtZIkSZKkmoraVu4wDGv99YlmzZoxbtw4xo0bF63yJEknkMGdUvjLNcMJN6ZWaAviywk+sxCGL4EgrGR0RdnZsHx5fVcpSZIkSaqNqKyYvOGGG2o9pkmTJqSkpNC3b1+GDRtGYmJiFCqTJJ2oZjzRDP46hPCyRQT91ldoD85dSdimGP55FhyIP+p8U6bAr34VjUolSZIkSTURlWDypz/9aTSmlSSdokpKYNo0oCwW/jWQcEtLuGgxwafW/QfdtxDeOidy7mRh9f/ANW0a3H8/JCREr25JkiRJUtUa3a3ckiR9Wk4OFBV98l0AC7tD9vmEeyuujAxa74Zb50C3gmrnLCyMzCtJkiRJahgGk5KkRm/z5koerj0N/jyccHvFlZFBs1KCrHkwZBlQ9bmTBdVnl5IkSZKkKIrKVu7D7dixg1WrVlFUVMTevXtp3rw5ycnJdO/endatW0f77SVJJ4Hdu6toKGoBfx5GeNVCgh4VU8ZgaB5hWhG8NAj2N6nQXlxcv3VKkiRJkmouKsHkRx99RHZ2Nm+++SabNm2qsl/btm256KKLuP766xk0aFA0SpEknQSqvQ/tQDw8fw7hBUsJzltRoTnosYXwC7Mj505ua3lEW1JSPRcqSZIkSaqxet3K/fHHH/P5z3+em2++maeffpqNGzcShmGVXwUFBfz1r3/l1ltv5dZbb2XJkiX1WY4k6STRrt1ROoQBzOlL+PezCQ/EVmgOUkrg1tnQZ8MRz9PS6rFISZIkSVKt1Fsw+Yc//IEbb7yR999/nzCs+jyvyoRhyPvvv89NN93E5MmT66skSdJJIjMTUlJq0HF5B3hyOOGOFhWagvhygs8shItzIaac1NTIvJIkSZKkhlEvW7kfeOABHn/8ccIwJAgCAIIgYODAgQwePJju3bvTqlUrmjZtyp49e9i5cycrV65k4cKFLFq0iIMHDxIEAWVlZTz88MNs2bKFH/7wh/VRmiTpJJCQAKNHw6RJNei8IykSTo74gKBXxVtzgrNWE6YVcVOHwSQkNKv/YiVJkiRJNXLMweSTTz7J9OnTDwWSTZo04Qtf+AK33XYb7Y669w62bNnCk08+yRNPPMG+ffsIw5C//OUvdOnShS9+8YvHWp4k6SQxdmwNg0mInDv598GE56yEYR8TfGp/QJBeyHMJb3L76sFc0K1VvdcqSZIkSTq6Y9rKvX79en75y18eCiV79uzJ3/72N7797W/XKJSEyAU448aN45lnnqFHjx4EQUAYhjz44IOsW7fuWMqTJJ1EMjIgK6s2IwKY3xNmnE+4N75C69aS/Vw8+W1+PWd1rY8gkSRJkiQdu2MKJh9++GH27t0LQPfu3fnjH/9I9+7d6zRXz549eeKJJ+jcuTNBELB//34efvjhYylPknSSmToV+vWr5aB1p8EfLyTcnFyh6WB5yDeey+X2pxZScuBg/RQpSZIkSaqROgeTBQUFvPjiiwDExcXx4IMPkpqaekzFtGrVit/+9rfExsYShiEzZ85ky5YtxzSnJOnkkZwMM2fWIZwsToC/XEDqhs6VNj/5fj5Df/0WK7ftOfYiJUmSJEk1Uudg8uWXX6asrIwgCBg1ahS9evWql4J69uzJjTfeCEBZWRmvvPJKvcwrSTo5pKfDnDm13dYNWdfFsup3A/ndjQNoElvxj7+PNu3inIdm888lBfVUqSRJkiSpOnUOJufNm3fo9S233FIvxXzipptuOvR67ty59Tq3JOnEl5wMM2bAsmUwbhykpFTeLzUVxo+HvLxI/+RkuOv8Lrz5taF0TK54I3fR3lKumTqP77/4MQfLyqP7ISRJkiTpFFfnW7mXLVsGQHJyMn369Km3ggDOOOMMUlNTKSoqOvQ+kiR9WkYGTJwIEybArFllLFiwnj17YmjRopzBgztxySWxJCRUHHdu51TeG3chn/vT+8xasa1C+wOzVvD2mh38+fNn06GSAFOSJEmSdOzqvGJyx44dBEFA165d67Gc/2jfvj1hGLJtW8W/MEqSdLiEBBgxIuSaa7Zzyy1bueaa7YwYEVYaSn7itMSmzLzrPP7fRT0qbX9z1Q4GTczh1bytUapakiRJkk5tdQ4m9+3bB0Dz5s3rrZjDtWzZEoD9+/dHZX5JkuJiY/j51afz19vOJqlpxU0EW/cc4Mrfv8uP/rWMsvKwASqUJEmSpJNXnYPJlH8f6FVYWFhftRyhqKgIgITqlrtIklQPbhzYgQXfHM7ADi0rtIUh/PiVPEb8/l0Kiv3HMkmSJEmqL3UOJlu1akUYhmzYsIHy8vq9IKC8vJz8/HyCIKBNmzb1OrckSZXpdVoib987jLvO71xp+2vLtzFoYg45Kz1iRJIkSZLqQ52DyZ49ewKwZ88e3n///XorCOD999+nuLgYgL59+9br3JIkVaV5fCy/u3EgT3xuEAnxsRXaNxfv59Ip7/CT15ZT7tZuSZIkSTomdQ4mhw8ffuj1k08+WS/FfOLPf/7zodfnn39+vc4tSdLRfOHsjsz/5nDOSEuq0FYewg9eWsrVj81l2x63dkuSJElSXdU5mLzwwguJi4sjDEP+9a9/8eGHH9ZLQQsWLODFF18EID4+nssvv7xe5pUkqTb6piXx7teHccfgjpW2z1y2lbMmvsnba3ZU2l5SAi+9BNOmwa9/Hfnfl16KPJckSZIkHUMw2bp1az772c8CkTMhx40bd8wX4axfv55vfOMbAARBwKhRow5dsiNJ0vHWomkc024ZxGOfHUizuIp/ZG7YuY+LHnmbX76xkjCMbO3Oy4Nx4yA9Ha66CsaMga9/PfK/V10VeT5+fKSfJEmSJJ3K6hxMAnz1q1+lRYsWBEHAxo0bueWWW1i+fHmd5lqwYAFf+MIX2L59OwDJycl87WtfO5byJEmqF6PP7czcbwyn92ktKrQdLA/5zgtLuPr387nmpgP07g0PPghFRZXPVVQEkyZB794wahTs3BnNyiVJkiSp8TqmYLJNmzb84he/IAgCgiBg7dq13HTTTfz4xz9m1apVNZpj5cqV/OAHP+CLX/wiW7ZsiRQVE8OECRO8kVuS1Gj0b9+Sed+4kM8NSq+0/aW8Al5IfRM6VL61uzLZ2TBsGOTn11eVkiRJknTiiDvWCS655BLuu+8+HnjgAYIgYN++fTz11FM89dRTtG/fngEDBtCtWzeSkpJISkri4MGD7Ny5kw0bNrBgwQLWrl0LcGgLHMB//dd/cdlllx1raZIk1aukZnH86dZBXNi9Fd94bjEHysqPaA9a7iW8+W14OwPm9YIwOOqcubkwYgTMmQPJydGqXJIkSZIan2MOJgHuuOMO0tPT+d73vkdxcTEQCRo3btzIpk2bqhz3SRgZBJG/uCUkJPDTn/6UK6+8sj7KkiSp3gVBwN1DunJOpxQ++8f3WLX9yNtsgpgQhi0j7LwNXhoEu5sfdc7c3MgZlDNmRKtqSZIkSWp8jmkr9+Euu+wynnvuObKysoiLq13eGRsby3XXXcfMmTMNJSVJJ4SzOqbw9DUXEua1r7Q96Lwdbs+B7ptrNF92NtTxmGZJkiRJOiHVWzAJkJ6ezk9+8hNeffVV/t//+39ceOGFtGjRgjAMK3zFxcVx5pln8s1vfpPXXnuNn/3sZ7Rt27Y+y5EkKaqenBoP/zib8JX+hKUV/0gNmpcS3DAfLs6F2LKjzjdlSjSqlCRJkqTGqV62cn9aWload955J3feeSdhGFJUVERRURE7d+4kJiaG5ORkOnbsSGxsbDTeXpKkqCspgWnTAAL4qCvktyK8+n2CNsUV+gZnrSbsuB3+eRbsSKpyzmnT4P77ISEhamVLkiRJUqMRlWDycEEQkJqaSmpqarTfSpKk4yYnB4qKDnuwvSU8OYzwoiUEA9dW6B+03UX4hdkwqx/kdgIqXoxTWBiZd+TIqJUtSZIkSY1GvW7lliTpVLG5sqMjD8bBqwMI/3424b74Cs1BfBnBlR/CZ96HJqWVzltQUM+FSpIkSVIjZTApSVId7N5dTePyDvDEhYT5le8WCPpshNvehHaFFdqKK+4ElyRJkqSTksGkJEl1kJh4lA7FCfD0UMJ3MgjLKzYHKSVwy1tw7nIgPPQ8qeojKCVJkiTppGIwKUlSHbRrV4NOYQy83RueGUJY3KxCcxAbEgxfCje+Cy32AZCWVs+FSpIkSVIjZTApSVIdZGZCSkoNO29oA09kEq6oPHUMumyDO96gxZmbyMystxIlSZIkqVEzmJQkqQ4SEmD06FoM2NcEnj+H8LV+hAcr/vEbNC+l5NIFfP2FD9m9/2D9FSpJkiRJjZTBpCRJdTR2bG1HBPBBN/jzMMLtlR9SOXXeOgZNzOHdtRUvxpEkSZKkk4nBpCRJdZSRAVlZdRi4NRn+NJzwo86VNq/cXsLw377Fj/61jINlldycI0mSJEknAYNJSZKOwdSp0K9fHQYejINXBhI+P5jYA/EVmsvKQ378Sh7Df/sWK7btOfZCJUmSJKmRMZiUJOkYJCfDzJl1DCeB/s3bM/drFzGi92mVts9dV8SgiTn8Ye5awjA8hkolSZIkqXExmJQk6Rilp8OcObXf1p2VBbNnw1m9m/HPO8/j1zf0o1lcxT+a9xwo48vPfETW9Pls3b2/nqqWJEmSpIZlMClJUj1IToYZM2DZMhg3DlJSKu+Xmgrjx0NeXqR/cnLkeRAEfO2Cbrw37kIGpbesdOzziwsY8KscXvq4IDofQpIkSZKOo7iGLkCSpJNJRgZMnAgTJkBODhQUQHExJCVBWhpkZkJCQtXj+6Yl8c69w/nhy8v4+esr+PTu7YLi/XzmsXl8dWhXfn51XxKa+Ee5JEmSpBOTf5uRJCkKEhJg5Mi6jW0SF8NPr+rLyN5tuf2phawr2luhzyNvr2HWim386dZBnNUx5diKlSRJkqQG4FZuSZIaqQt7tObDb2XyhbPSK21fumU35z88h/97NY+DZeXHuTpJkiRJOjaumJQkqRFLbh7PE7eexVV90/hq9iKK9pYe0X6wPOS/Zy7jH4sLmP65M+nTNqna+UpKIlvMN2+G3bshMRHatTv6FnNJkiRJqm8Gk5IknQBuGZTOBd1a8cWnFvL6yu0V2uetL+KsiW/yf1f14RvDuhMTExzRnpcHkyfD9OlQVFRx/pQUGD0axo6NnJMpSZIkSdHmVm5Jkk4QnVKa88rdQ/jF1afTJLbiH+H7Dpbzrb8v4ZIpb7Nq+x4Adu6EUaOgd2948MHKQ0mIPJ80KdJv1KjIOEmSJEmKJoNJSZJOIDExAd+6qAfzvjGcMzu0rLTPm6t2MPBXOfzspTVcMCwkO7t275GdDcOGQX5+PRQsSZIkSVUwmJQk6QQ0oENL3v36cH5wWS9iP7VtG2DPgTK+99oiFveeC4kVb/U+mtxcGDHClZOSJEmSosdgUpKkE1STuBh+PKIPb98zjD5tEyvtE3TdCne8AaevB8JazZ+bC2PGHHudkiRJklQZg0lJkk5w53RO4b1xFzI+sztBxcWTBM0OEoz8AK6bDwn7azV3djYsX14/dUqSJEnS4QwmJUk6CTSPj+WX15zBG18ZSnKYUGmfoGcBfPF16LWxVnNPmVIfFUqSJEnSkQwmJUk6iZzdrjXhE5mEH3SptD1oXkpw7Xtw1fvQ7ECN5pw2DUpK6rNKSZIkSTKYlCTppJKTAzu3xcFrAwifPY+wuFml/YK++ZGzJ3tsPuqchYWReSVJkiSpPhlMSpJ0Etl8eM64ti08fhFhbsdK+waJ+wmunx9ZPdm8+rMnCwrqr0ZJkiRJAoNJSZJOKrt3f+rB/nj41yDC584h3NOk0jFB33z44huQUfXZk8XF9VejJEmSJIHBpCRJJ5XExCoaVraLrJ5c1r7S5iDhAME178E1CyBhX4X2pKT6q1GSJEmSwGBSkqSTSrt21TTubQovDCZ84SzCkipWT2Zsiqye7LsBCA89T0ur1zIlSZIkyWBSkqSTSWYmpKQcpdOydJh+EeHSDpU2B81LCa5aCNfPg8S9pKZG5pUkSZKk+mQwKUnSSSQhAUaPrkHHvU3hn2cTPj+YcHfTSrsEPbbAF99g8Oi1NG8eVtpHkiRJkurKYFKSpJPM2LG16LyifWT1ZG6nSpuDpgd5NfiIKx99lzU7SuqnQEmSJEnCYFKSpJNORgZkZdViwP4m8K8zCWecR1jcrNIury7fRv9fvsFv5qymvNzVk5IkSZKOncGkJEknoalToV+/Wg5a0zayevLDLpU27zlQxtefy+XiyW+zfOvuYy9SkiRJ0inNYFKSpJNQcjLMnFmHcPJAPLw6gK4LhtC5ZUKlXWav3sHAX+Xws1krKC0rP/ZiJUmSJJ2SDCYlSTpJpafDnDm13NZNpP/C59uw+L5M7h3WjSCo2GffwXK+9+LHnPvQbOavK6qXeiVJkiSdWgwmJUk6iSUnw4wZsGwZjBsHKSmV90tNhfHjIS8v0j85GVo0jeOh6/uR89WhZJzWotJxH27cxZBfz2bc87ns3n8weh9EkiRJ0kknrqELkCRJ0ZeRARMnwoQJkJMDBQVQXAxJSZCWBpmZkFD5zm2GdWvNwvGZ/Ohfy/hVzko+ffdNeQgPzV7Nc7mbeSSrPyP7pkX/A0mSJEk64RlMSpJ0CklIgJEjaz+ueXwsP7v6dG4a2IEvP/MhH2zcVaHP2sK9fOaxedxyZgcevK4fbZOa1kPFkiRJkk5WBpOSJKnGBndKYe43hvPgm6v40cvL2Fta8fKbv3ywkX8t28ovrzmdL57TiaCyQyoPU1ISWcW5eTPs3g2JidCuXfWrOCVJkiSd+AwmJUlSrcTHxvDti3uS1b89X5nxEa8u31ahT+HeUr701w958v18ptw4gJ5tKp5RmZcHkyfD9OlQVFTxfVJSYPRoGDs2shVdkiRJ0snFy28kSVKd9GjTgn99+Xym33ImrRPiK+0za8U2BvzyDR6YtZzSssjqyp07YdQo6N0bHnyw8lASIs8nTYr0GzUqMk6SJEnSycNgUpIk1VkQBNw+uBNLvnMxXzgrvdI++w6W8/0Xl3LOg7N54b1Chg2D7OzavU92NgwbBvn59VC0JEmSpEbBYFKSJB2z0xKb8sStZ/HSXefRNbV5pX0+2rSLa/88h9w2uRB/sNbvkZsLI0a4clKSJEk6WRhMSpKkenNl77Ys+n8XMT6zOzGV3XkTQHD2ahj9OvTaCIS1mj83F8aMqZdSJUmSJDUwg0lJklSvWjSN45fXnMHcbwxnUHrLSvsESfsIrn0PbpgHLUtqNX92NixfXh+VSpIkSWpIBpOSJCkqzu6YwtyvD+fnV59OXFj5rxxB9y3wxdfh3OUQU17juadMqa8qJUmSJDUUg0lJkhQ1cbExfPXcHjT/68WEq0+rtE8QX04wfCncngMdt9Vo3mnToKR2Cy0lSZIkNTIGk5IkKapycmDXhgTIPo/wH2cT7m5aab+g9W6Cm9+BKxdC8/3VzllYGJlXkiRJ0okrrqELkCRJJ7fNmz95FUBeB1hzGuEFy+DM1QSV/BNp0G8DYY8CmN0XFnWOjKtEQUG0KpYkSZJ0PLhiUpIkRdXu3Z96cCAeXu8HTw4n3Jxc6ZigeSnBFR/BLW9Bm12V9ikurudCJUmSJB1XBpOSJCmqEhOraNiSAn8eTvhqf8L9lW/iCNIL4bY34cIlEHfwiLakpPqtU5IkSdLxZTApSZKiql27ahrDAD7sCtMuJvw4vdIuQUxIcM5KGP0G9NgMhACkpdV3pZIkSZKOJ4NJSZIUVZmZkJJylE57msGLZxE+ez5hYYtKuwQt9xJcPx9umEfLznvIzKz3UiVJkiQdRwaTkiQpqhISYPToGnZeexo8nkn4dgbhwcp/TQm6b6Hkxjf4Sc5SSg4crLSPJEmSpMbPYFKSJEXd2LG16FwWC+/0hicyCde2qbxLUM5PXlvO6T9/g+xFmwjDsH4KlSRJknTcGExKkqSoy8iArKxaDipMhGfPJ/znIMI9TSvtsq5oLzc+voCRv59L3tZPX/8tSZIkqTEzmJQkScfF1KnQr19tRwWwtCNMvZhwQXcoDyrt9XLeVvr/8g2+/+LH7Nnv9m5JkiTpRGAwKUmSjovkZJg5sy7hJHAgnv47zuCVOy7kwu6tKu1SWhbywKwVnP6L13n2w41u75YkSZIaOYNJSZJ03KSnw5w5td/WnZUFs2fDpQNb8vpXhvKnWwfRvmXl27vXF+3js398jysffZelW4rroWpJkiRJ0WAwKUmSjqvkZJgxA5Ytg3HjICWl8n6pqTB+POTlRfonJ0eeB0HArWd15OPvXMz4zO7ExVS+vfvV5dsY+Ksc7nthCbvd3i1JkiQ1OnENXYAkSTo1ZWTAxIkwYQLk5EBBARQXQ1ISpKVBZiYkJFQ9vmWzeH55zRmMOacz9/5tEa+v3F6hT2lZyC/eWMmfF+bzi6tP5+YzOxAElQeZhyspgVmzAubPb01JSQwJCeVs2hRwySXV1yRJkiSp5gwmJUlSg0pIgJEj6z7+9HZJvDp2CH/9cCPf+vsSNu7aV6FP/s593Prk+zzy9hoeur4fg9KTK50rLw8mT4bp06GoKBboekR7SgqMHg1jx0aCVUmSJEl151ZuSZJ0wguCgJvPTOfj71zM/7uoR5Xbu+es3sHgB9/ky898yNbd+w8937kTRo2C3r3hwQehqKjy9ykqgkmTIv1GjYqMkyRJklQ3BpOSJOmkkdQsjp9ffToffiuTS3u1qbRPGMIf5q4j44FZPPjmKtasK2fYMMjOrt17ZWfDsGGQn18PhUuSJEmnIINJSZJ00umblsTLXz6fp287m04pzSrts3PfQcb/fTF9fpJDbvGWOr1Pbi6MGOHKSUmSJKkuDCYlSdJJKQgCbhrYgY+/czH/c3kGzeIq/7XnQOJughvnwvXzIGV3rd8nNxfGjDnWaiVJkqRTj8GkJEk6qSU0ieNHV/Zm6X0X89mBHarsF/QogC++AcOXQPzBWr1HdjYsX36MhUqSJEmnGINJSZJ0SuicmsBfbjub178yhIEdWlbaJ4gNCc5dCWNmwenrgbDG80+ZUk+FSpIkSacIg0lJknRKyezRhje/fCHN5vQn3BtfaZ8gcT/ByA/g1jnQrrBG806bBiUl9VioJEmSdJIzmJQkSaecObMD9s7tCo9dQvheN8LyoNJ+Qfsigs/PgZHvQ9LeaucsLIScnCgUK0mSJJ2kDCYlSdIpZ/Pmf7/Y3wTe6AePZxKuaVNl/+D0fBg9C4Yurfb8yYKCei5UkiRJOokZTEqSpFPO7k9fvr0jCWacT/jcOYSFCZWOCeLLCYYsj5w/ecY6CCqeP1lcHIViJUmSpJOUwaQkSTrlJCZW9jSAle3g8YsI3+xLeCC20rFB4n6CER/CF96ETtuOaEtKqvdSJUmSpJOWwaQkSTrltGtXTWNZLMzvCVMvIcztRFjFxdxB210En30HrpsHKZElmGlp9V+rJEmSdLKKa+gCJEmSjrfMTEhJgaKiajrtaQb/OhMWdiPMXEzQeXul3YKeBYTdttDs464MODcDaFL/BUuSJEknIVdMSpKkU05CAoweXcPOW5LhmSGEzw8mLGxRaZcgNmR/v9UMfGgWD89eRWlZef0VK0mSJJ2kDCYlSdIpaezY2vQOYEV7mH4R4etnEO6Lr7TXjpJSvvn8Yvr/8g3+sXgzYVX7wCVJkiQZTEqSpFNTRgZkZdVyUHkMvN8dHruE8P1uhOVBpd3ytu7humnzufx377Iwf+exFytJkiSdhAwmJUnSKWvqVOjXrw4D9zWB1/vB45kkban6xptZK7Yx+ME3ueOphawrLKl7oZIkSdJJyGBSkiSdspKTYebMOoaTQP/0JJb89Fxe/vL5DGjfstI+YQh/fG8DvX/2Ove9sISivaXHULEkSZJ08jCYlCRJp7T0dJgzp/bburOyYPbsyPjLMk7jvXEX8uhNA0hLalpp//0Hy/nFGyvp+dPXePDNVRw46AU5kiRJOrUZTEqSpFNecjLMmAHLlsG4cZCSUnm/1FQYPx7y8iL9k5P/0xYbE3DneV3Iu+8SvntJT5rFVf5r1o6SUsb/fTGn/+J1nv4gv8YX5JSUwEsvwbRp8OtfR/73pZcizyVJkqQTUVxDFyBJktRYZGTAxIkwYQLMmlXGggXr2bMnhhYtyhk8uBOXXBJLQkL1cyQ1i+MnV/Xlq0O78j8zl/H4e+upLHtctb2Ez/3pfSbmrOIXV5/OhT1aVzpfXh5MngzTp0NRUcX2lBQYPTpyy3hGRm0/sSRJktRwXDEpSZL0KQkJMGJEyDXXbOeWW7ZyzTXbGTEiPGooebiOKc2ZesuZLByXyZW9T6uy3/z1RVw0+W2unzaPjwuKDz3fuRNGjYLeveHBBysPJSHyfNKkSL9RoyLjJEmSpBOBwaQkSVIUDejQkpfuOp9/ffl8zuxQ+QU5AH9fXMCAX+Uw9tmPWJi3j2HDIDu7du+VnQ3DhkF+/jEWLUmSJB0HBpOSJEnHweUZp7Hgmxfy+OfOpFNKs0r7lJWHPPruWgY/MovcpGUQf7DW75ObCyNGuHJSkiRJjZ/BpCRJ0nESExNw29mdWHrfJTzwmb4kN6v8uO8wroxgaB586TU4czXE1O4G79xcGDOmPiqWJEmSosdgUpIk6ThrHh/Ldy7uyYrvXco3hncjPjaotF/Q4gDBpbkw+nXoswGo2Q3eENnWvXx5PRUsSZIkRYHBpCRJUgNp3aIJk67rx5JvX8zNZ3aosl+QUkLwmYVw25vQtYCaBpRTptRToZIkSVIUGExKkiQ1sB5tWvBY1tm0eH4Y4fpWVfYL2u4iGDUPPvs2tC886rzTpkFJSX1WKkmSJNUfg0lJkqRGICcHdq9Ihb8OJcw+l3BL1Td4B512ENw6B66dD62Kq+xXWBiZV5IkSWqMKj9xXZIkScfV5s2fvApgdRqsbkvYNx8uWEqQvLfSMUGvzYQ9NsOSTvB2byhuXqFPQUH0apYkSZKOhcGkJElSI7B796efBPBxR8hrTzhgHZyfR5BwoMK4IAbot56wTz580BXm9oJ9TQ61F1e9oFKSJElqUAaTkiRJjUBiYhUNZbGwsBvkdiIcvBIGryRoUlahWxBXDoNXEfZfB/N6RsaUxpGUFN26JUmSpLoymJQkSWoE2rU7SofSOHinN3zQlfC85XDmGoLYirdzB00PwvClhGetgrm9SG3TBYiNSs2SJEnSsfDyG0mSpEYgMxNSUmrQcW9TeKMfTL2EcHFHworZJABBiwMElyzmnvdn8ft311JaVl6f5UqSJEnHzGBSkiSpEUhIgNGjazFgVwLMHARPZBKuTKuyW/6ufdz97Eec8Ys3+PP7GygvryLJlCRJko4zg0lJkqRGYuzYOgza1hKeO5fwL0MJ81Or7LZi2x6+8OeFnDkxh+dyNxFWtdRSkiRJOk4MJiVJkhqJjAzIyqrj4PzW8JcLCLPPJdzSsspuuZuLyZq+gPMfnsPLy7YYUEqSJKnBGExKkiQ1IlOnQr9+dR0dwOo0zlh4IdNGnU2ftlVd9Q3z1xcx4vdzuWTyO7y1ekdd31CSJEmqM2/lliRJakSSk2HmTBgxAnJzaz++f3946aWA9PQOfP7cdjz5fj7/+/Iy1hTurbR/zqrtDP/tW4zs05b7R/TmrI4pNX6vkhLIyYHNm2H3bkhMjNwunpkZOTNTkiRJqo7BpCRJUiOTng5z5sCYMZCdXfNxWVmRFZfJyZHv42JjuOOcTnxuUDp/mLuO/3stj0279lc69qWlW3hp6RZG9W/PD6/IoF/7qreD5+XB5MkwfToUFVVsT0mJXOQzdmxke7okSZJUGbdyS5IkNULJyTBjBixbBuPGRcK+yqSmwvjxkbBwxoz/hJKHaxIXw1cv6Mry717Cz68+nVYJ8VW+74xFmxg4MYdb//QeHxcUH9G2cyeMGgW9e8ODD1YeSkLk+aRJkX6jRkXGSZIkSZ/miklJkqRGLCMDJk6ECRMi26YLCqC4GJKSIC2tdtumE5rE8f8u6sGXz+/MpDdXMTFnFcX7D1boF4bwlw828vSHG7l1UDr/fXkGLQ4k1ml7eXZ2JDSdOTOyElSSJEn6hMGkJEnSCSAhAUaOrJ+5WjaL54dX9OaeC7rx89dX8Ju3VrO3tLxCvzCEJ9/P56mF+SRt6EjR+gygRa3fLzc3cmbmnDmVr+iUJEnSqcmt3JIkSaeo1i2a8LOrT2fF9y7laxd0pUls5b8aloewM30DjHkdrvgQWpbU+r1ycyNnZkqSJEmfMJiUJEk6xbVv2Yxf39Cf5d+7hLFDuhAfG1TaL4gJCfqvgzGz4LKPIKl2AWV2NixfXh8VS5Ik6WRgMClJkiQAOqU055FRA8i77xLuPK8zcTFVBJSxIcHAtZEVlJcugsS9NX6PKVPqq1pJkiSd6AwmJUmSdIQurRJ49KaBLPz6xcTndSIsryKgjCsnOHMNfGkWXJwLLfYdde5p06Ck9jvBJUmSdBIymJQkSVKl1i1qwYF/nAnTLiJc3JGw4v04wL8DyrNWw5deiwSU1aygLCyM3C4uSZIkeSu3JEmSKrV5879fFCXCzEEwtxfhkDzok09QySLKIL4czlpNOGAtLOoM83tCcfMK/QoKolu3JEmSTgwGk5IkSarU7t2felCYCC+eBe/2IhyaR9B7Y6XjgrhyGLSGsP86yO0E83pCccKh9uLiKBYtSZKkE4bBpCRJkiqVmFhFw44keOFswnd7wZBlBBmbK+0WxJXDmWsjAeXiTjC3F+xKICkpejVLkiTpxGEwKUmSpEq1a3eUDttawj/OITxtJ5yfV3VAGRvCgHWEZ6yHJZ0ob9kTaFHv9UqSJOnE4uU3kiRJqlRmJqSk1KDj1uRIQPl4JuGy9oRh5d2C2JCg/zrufvd1xvzlA5Zv/fRecUmSJJ1KDCYlSZJUqYQEGD26FgO2tYQXBsPjFxEu7VBlQFlWHjJ9wXr6/vx17nhqIcu2GFBKkiSdigwmJUmSVKWxY+swaHsS/PNsmH4R4ZJ0wvLKu5WH8Mf3NnDGL17n80++T+6mXcdUqyRJkk4sBpOSJEmqUkYGZGXVcfCOJHjpLJh+MeHijlDFCsryEJ5amM+AX+WQNX0+C9YX1bVcSZIknUC8/EaSJEnVmjoV8vIgN7eOExQm0m/DIJ54JINfz1vOH9/bQFl55Snlc7mbeS53M1f2Po3/uqwXw7q1rtVblZRATg5s3gy7d0duFm/XLnJeZkJCHeuXJElSVBhMSpIkqVrJyTBzJowYUbdwsn9/eOklSE9vwdRuZ/KDy3rxk9dW8MSC9RysIqD817Kt/GvZVjK7t+b7l/Xisl5tCIKgyvfIy4PJk2H6dCgqqtiekhI5L3Ps2MgqUEmSJDU8t3JLkiTpqNLTYc6c2m/rzsqC2bMj4z/RvXUL/vDZgeR99xK+fH4XmsRW/StpzqrtXPnouwx5eA7/WLyZ8FM36uzcCaNGQe/e8OCDlYeSEHk+aVKk36hRkXGSJElqWAaTkiRJqpHkZJgxA5Ytg3HjIqsQK5OaCuPHR1YxzpgRGVeZrq0SmHLjAFZ+/xK+MbwbzeOr/tV03voirps2n0ET3+SvH2ykrDwkPx+GDYPs7Np9juzsyLj8/NqNkyRJUv1yK7ckSZJqJSMDJk6ECRMi5zkWFEBxMSQlQVpa7c9zTE9uzqTr+vG9S3rx4OxV/PatNRTvP1hp34827eKWP71Hr9Yt2PN6L/KXpFOXf2vPzY1sTZ8zp+rgVJIkSdFlMClJkqQ6SUiAkSPrb762SU35yVV9+fZFPfjNW2t4aPYqdpSUVtp3+fY9MOAD6LIM5veExZ3gYGyt3i83F8aMiazqlCRJ0vHnVm5JkiQ1KqkJTfjvyzNY/f3L+Nln+pKW1LTKvkHyXoLLFsGdr8K5y6Fp5UFmVbKzYfnyY61YkiRJdWEwKUmSpEYpqVkc3764J6u+fykPX9+PjsnNquwbtDhAMHwp3PUqDF8CLfbV+H2mTKmPaiVJklRbBpOSJElq1JrHx3LPsG6s+N6l/Pa6gcTsqvoAy6DpQYJzV8Kdr8FlH0LKnqPOP20alJTUZ8WSJEmqCYNJSZIknRCaxMXQdXdnyv5wMeE/BxFuS6qybxBXTjBwHYyeBVe/B22LquxbWBi5xEeSJEnHl5ffSJIk6YSxeTMQxsDSjrA0nbD7Fjh3OUF6YaX9gxig90bovZFwzWkwryesbw0ER/QrKIh66ZIkSfoUg0lJkiSdMHbvPvy7AFalwao0wvTtcM4Kgh5bqhwbdN0KXbcSbkqJBJQr2vFJQFlcHM2qJUmSVBmDSUmSJJ0wEhOraMhvDfmtCdvsgnNWQJ+NBDFhpV2D9kVw3QLCHS1gfk9Y0pGkJE84kiRJOt78DUySJEknjHbtjtJhW0t46Sx47BLChV0JS6v+dTdotYfgyg/hztd4e/9Kdu8/WL/FSpIkqVoGk5IkSTphZGZCSkoNOu5KgFn94feXEb7bi3BffJVdg6R9/GH5ErpMeJUf/msZ2/bsr7d6JUmSVDWDSUmSJJ0wEhJg9OhaDNjbFN7qA7+/lDDndMLdTavsWri3lPtfyaPLhFf5+nO5rN1RcuwFS5IkqUoGk5IkSTqhjB1bh0EH4mFBD/jDpYQvD4icL1mFvaXl/GbOano+MItb//Qe720oqnOtkiRJqpqX30iSJOmEkpEBWVmQnV2HwWWxsKgL5HYm7LmJ1CtXUNR0Z+Vdy0P+8sFG/vLBRi7q0ZpvZfZgZJ+2xMQEtX7bkhKYNStg/vzWlJTEkJBQzqZNAZdcElkFKkmSdCoymJQkSdIJZ+pUyMuD3Nw6ThAG9Gvagdn3t2fBlm387PUVvLZ8W5Xd31i5nTdWbqdv20TGZ/bg82el0yw+9qhvk5cHkyfD9OlQVBQLdD2iPSUlsjV97NhI4CpJknQqcSu3JEmSTjjJyTBzJvTrV7fx/ftHxqekBFyWcRqv3D2EuV8fzqj+7QmqWRD58Zbd3PXMh3T7yWv836t5bN9zoNJ+O3fCqFHQuzc8+CAUFVU+X1ERTJoU6TdqVGScJEnSqcJgUpIkSSek9HSYMyeyrbs2srJg9uzI+MOd0zmFZ+4YzMffuZi7h3ShWVzVvyoXFO/nv2cuo8uEV7n3b4tYuW3Pobb8fBg2rPZbzbOzI+Py82s3TpIk6URlMClJkqQTVnIyzJgBy5bBuHGRrdGVSU2F8eMjW6tnzIiMq0rGaYlMHjWAtT+4jB9ekUGbFk2q7FtSWsZv31pD75/N4rNPLODVxYVceWXdt5jn5sKIEa6clCRJpwbPmJQkSdIJLyMDJk6ECRMgJwcKCqC4GJKSIC0NMjNrf8nMaYlN+eEVvfnOxT15YsF6JuasYvlhKyMPVx7Csx9t4tmPNhH2T4X9PWBlOwhrf1FObi6MGRMJUCVJkk5mBpOSJEk6aSQkwMiR9Ttn8/hY7h7SlbvO68ILHxfwqzdWMnv1jir7B+mFkL6AcEcLeK87LOkEB49+Uc7hsrNh+XLo1etYq5ckSWq83MotSZIk1UBMTMC1Z7Qj52sX8M69w7hpQHtiqlkQGbTaQ3D5IrjrVRiyDJrvr9X7TZlyjAVLkiQ1cgaTkiRJUi2d1yWVp28fTN53L+GeYd1IiK96RWSQcIBgaF4koLzsI0jdXaP3mDYNSkrqq2JJkqTGx2BSkiRJqqPurVvw8PX9mDrkMsLZfQj3NK2ybxBfTjBwLcGY1+H6udB5KxBW2b+wMHJepiRJ0snKMyYlSZKkY7RnexOY1wve607YNx/OXknQpuqVkUGPLdBjC+G2JHi/G3zcsdJzKAsKolm1JElSwzKYlCRJko7R7k8yyLJYyO0MuZ0Iu26BwasIumyrclzQphiu+Ihw+MfwYVf4oCvsaXaovbg4qmVLkiQ1KINJSZIk6RglJn76SQBr0mBNGmHbIhi8CnpvJIipfOt20LwUzl9OeM4KWNYhcpv3lhSSkqJduSRJUsMxmJQkSZKOUbt21TRuSYEXz4LZfQjPXAMD1hE0K620axAbwun5cHo+4YZWrAi6cbCsHXGxHg0vSZJOPv6GI0mSJB2jzExISTlKp+IEmH06/O4ywlf7E+5oUW33oOMOfrLoPXo9MItfvbGSor2Vh5mSJEknKoNJSZIk6RglJMDo0TXsfDAucp7ktIsJs88lXNOm2u5rC/fy7ReW0On+V7j3b4tYvrXqS3UkSZJOJG7lliRJkurB2LEwaVJtRgSwOg1WpxG23gVnrYa+GwjiyyvtvedAGb99aw2PvL2Gz/RJ45sXdufinq0JgqBO9ZaUQE4ObN4cubwnMTGyJT0zMxK0SpIkRZvBZCO3e/dunnzySV555RVWr17N/v37ad26NWeffTZ33HEHAwcObOgSJUmSBGRkQFYWZGfXYfD2lvDKQJjTh7D/OpoPWc2+uP2Vdg1DeOHjAl74uID+7ZP4xvDu3DoonWbxsTV6q7w8mDwZpk+HoqKK7SkpkdWfY8dGPpMkSVK0uJW7EVu7di3XXXcdEydOZNGiRRw4cID4+Hg2b97MP//5T2655RamTp3a0GVKkiTp36ZOhX79jmGCvU3pV9KLtf9zGX+8dRBnd0yutvuiTcXc+dcP6TLhVf5n5lI27txXZd+dO2HUKOjdGx58sPJQEiLPJ02K9Bs1KjJOkiQpGgwmG6mDBw/y1a9+lQ0bNpCWlsajjz7KBx98wPvvv8/MmTO5+OKLKS8v52c/+xlvvPFGQ5crSZIkIDkZZs6sezjZv39k/GmtYvj8WR2Z943hzP7aBdw4oD0x1ezY3rrnABNeXU7X/3uVz/3pPeas3k4Yhofa8/Nh2LDar+bMzo6My8+v2+eRJEmqjsFkI/Xyyy+zYsUKgiDgoYceIjMzk9jYWIIgoFu3bvz2t79l0KBBAPzmN79p4GolSZL0ifR0mDMnsq27NrKyYPbsyPhPBEHABd1a8dfbB7Pye5fyrcweJDer+jSmg+UhT3+wkQt/+zZnT3qTqfPWsWlrGVdeCbm5dfs8ubkwYoQrJyVJUv0zmGykcnJyADjrrLMOBZCHi42N5cYbbwQgNzeXvXv3Htf6JEmSVLXkZJgxA5Ytg3HjIuc2ViY1FcaPj5z7OGNGZFxVurRK4BfXnM66H1zOw9f3o2ebFtXW8MHGXdz51w/p+pNXWNxqCbQsqfPnyc2FMWPqPFySJKlSXn7TSJ1++uns3buXftXsAzrttNMACMOQ3bt307x58+NVniRJkmogIwMmToQJE2DWrDIWLFjPnj0xtGhRzuDBnbjkktha34Cd1CyOe4Z146tDu/Li0i08+OYqZq3YVmX/0thSgnNXEg5eCavSYGE3WNcGqN1t3tnZsHw59OpVu3olSZKqYjDZSN1xxx3ccccd1fZ57733AGjatCmpqanHoyxJkiTVQUICjBgR0r799kPPBg7sSNwx/DYeExNw9elpXH16Gos3F/Obt1bzxwUbKCktq7R/EAP0LICeBYTbE+GDrrC4E5TWvIgpU+BXv6p7zZIkSYdzK/cJaseOHTz99NMADB8+nLhj+a1WkiRJJ7Qz2iUxedQANvzP5Uy89oyjbvMOWu8muDQX7n4FLs6F1N01ep9p06Ck7jvCJUmSjmAweQI6ePAg3/72tykqKiImJoavfOUrDV2SJEmSGoGU5vF888LuLP3OxfzvwHMJV7Wttn/Q9CDBWasJxrwOWe9C9wIIwir7FxbCv49ClyRJOmYuszvBlJWVcd999zFnzhwAvva1r1V7DqUkSZJOPTExAR0PpsHf0ghT9sCZq6HfeoKmB6scE3TbCt22EhYlRLZ553aC/U0q9CsoiGLhkiTplGIweQLZv38/48eP59VXXwXg2muv5Wtf+1oDVyVJkqTGaPcnu7OLWsAb/eCtPoR9N8CgNQRtiqscF6SUwEVLCC9YCh93jFyWs63lofbiqodKkiTVisHkCWLHjh189atfZeHChQBcd911/PSnPyUIaneboiRJkk4NiYmfelAaBx91hY+6EHbaDoNWQ4/NkUtxKhHEl8OAdTBgHeGGVvBhV1jejqSk2ChXLkmSThUGkyeANWvWcNddd7Fu3ToAbr/9dr7//e8bSkqSJKlK7dpV1RLA+jaRr6QSwoFrYcBagualVc4VdNwBHXcQljRhZnFnLtrRha6tEqJStyRJOnV4+U0jl5ubyy233MK6desIgoDvfOc7/Nd//ZehpCRJkqqVmQkpKUfpVJwAc/rC7y4nnHkmYUFytd2DhAP8de0Kevz0Na55bC7/XFJAWXnVl+VIkiRVxxWTjdjy5cv50pe+RFFREfHx8TzwwANcffXVDV2WJEmSTgAJCTB6NEyaVIPOZbGwuBMs7kjYvhAGrYGMjQSxlYeOYQj//HgL//x4C11Tm/PlIV0Yc05n2iY1PaaaS0oit35v3hw5IzMxMbLyMzMz8nkkSdLJxWCykSopKeGee+6hqKiIJk2a8Nvf/pYLL7ywocuSJEnSCWTs2BoGk4cEsKlV5CvndML+6yLbvJP2VTliTeFevv/iUn74r2XcOKADY4d0YVi3VrXa4ZOXB5Mnw/TpUFRUsT0lJRKyjh0LGRm1+TySJKkxcyt3IzVlyhTWrFkDwPe//31DSUmSJNVaRgZkZdVx8J5m8G4G/P5SwucH03Zvm2q7l5aFPLUwn8xH3mbgr3L47Vur2bWv6nMrAXbuhFGjoHdvePDBykNJiDyfNCnSb9SoyDhJknTic8VkI3TgwAH+/Oc/H/r+N7/5Db/5zW+qHfPss8/Svn37aJcmSZKkE8zUqZEVibm5dZwgjKFfs/bM+Ul7thzYze/eXcv0+evZUVJ16Ji7uZh7/5bLd//5MZ8/qyNfGdqFgR2OPL8yPx9GjKh9XdnZkc8zcyakp9flA0mSpMbCYLIRysvLo7i4+ND327ZtO+qYsrKyaJYkSZKkE1RyciTEq0sICNC/P7z0UmSeZBL55TVncP+IPjzz4UYmv72GueuKqhy750AZj767lkffXcuQLqmMHdqFmwZ0YN+eWK68EhYvrttnys2NfJ45cyJ1SZKkE5PBZBUeeughHnnkEdLT05k1a1atxq5cuZK//OUvzJ07lw0bNnDw4EHatm1LRkYG11xzDZdffjlxcVX/n75fv34sW7bsWD+CJEmSBERWFs6ZA2PGRFYc1lRWVmTF5afDv+bxsdw+uBO3D+7EwvydTH57DX9+P5+S0qr/sfydtYW8s7aQ8c8vptXGzuRt6AK0qNsHIhJOjhkDM2bUeQpJktTADCYr8dFHH/H73/++TmN//etfM2XKFA4ePHjE8/Xr17N+/Xpee+01+vXrxy9+8Qu6d+9eH+VKkiRJR5WcHAnx8vJgyhSYNq3yMx1TU/9z0UyvXkefd1B6Mo/eNJBfXH06f3xvA5PfXsPHW3ZX2X97SSnbU1YS3LmScPVp8FEXWJUG5bU//j47G5Yvr1mdkiSp8TGY/JT169fz1a9+ldLS6g/qrsyECRP44x//eOj7uLg4evfuTfPmzVm5ciWFhYUA5Obmctttt/HXv/6VdA/GkSRJ0nGUkQETJ8KECZCTAwUFUFwMSUmQlgaZmZCQUPt5k5vHc8+wbnztgq68uWo7U95ZS/aiTZSWhVWOCbpthW5bCfc0hdxOsKgz7KzdKsopU+BXv6p9vZIkqeEZTB4mLy+PO++8k61bt9Z67MyZM48IJa+88kr+53/+hzZtIrcXlpaWkp2dzU9/+lP27t3Ltm3buPfee5kxYwZBENTbZ5AkSZJqIiEBRo6s/3mDICCzRxsye7ShoHg/j81bx6PvrGVd0d6qx7TYD+etgPNWEK5pE1lFubJdjVZRTpsG999ftzBVkiQ1LIPJf3v++ef54Q9/yN69Vf/CVJXS0lJ+9rOfHfr+4osv5sEHHyQm5j+/SMXHx3PzzTeTnp7O3XffzcGDB1m8eDEvvPAC11xzTb18huPNC3d0rD79M+TPlI6FP0+qb/5Mqb6dij9TrZvH8p3MbnxreFdeWrqF/3thPQu2b6W6f5cPum6DrttqvIqysBBmzSpjxIiqV2aejE7FnydFlz9Tqk/+PKmmgjAMT60/wT+loKCAiRMn8txzz1XaXpPLb1588UXGjRsHRLZvv/LKK3To0KHK/j/+8Y958sknATjjjDPIrs0J5A1o4cKFlJeXN3QZkiRJOkH9/e+t+fFDp8GAdXDGOoIWB2o0Llz771WUKypfRfnDH67hmmu213e5kiSpFmJiYhg0aFDtxkSplhPC5MmTGTFixBGhZPfu3Rk7dmyt5nnxxRcPvR46dGi1oSTAzTfffOj14sWLWb9+fa3eT5IkSToRlZTERFY/zu4Lj15O+PezI1u3jyLoso3gmvfg7ldg+BJI2XNE+549p/RfayRJOmGd0n+CP/bYY5SUlBz6/qabbuKZZ56hS5cuNZ4jDEPmzp176PsLLrjgqGN69+7Naaedduj7o63IlCRJkk4GCQmH7b4pj4HlHWDGEMI/XEI4t2dk+3Y1goQDBOeuJPjSLLjxHeidD7FltGjhrh5Jkk5EnjEJ9OvXj/vuu49zzz231mPz8/PZtWvXEXPVRO/evQ9dsrNo0aJav29j0K9fP2JjYxu6DJ3AysrKyM3NPfS9P1M6Fv48qb75M6X65s8UbNpUxeGSO1vAnL7wdm/C7gUwcC1B1+ovpAy6bIMu2whLmrAoNZ3PduhJxmm1u9H7RObPk+qbP1OqT/48nToWLVp0TMf+ndLB5LnnnktWVhaXXnppnW/GXrNmzRHfd+7cuUbjOnbseOj1unXr6vTeDS02Npa4uFP6R0j1zJ8p1Sd/nlTf/JlSfTsVf6YuuQRSUqCoqIoO5TGwoj2saE/YsgT6r4V+6wkS91c5Z5BwgL+tX83ffrWai3u05q7zu3BD/3Y0jTu1/gJ8Kv48Kbr8mVJ98udJVTmlfyoeeeSRY57jk1WPEDnks02bo5+RAxyxlfvwOSRJkqSTVUICjB4NkybVoPOuBHirL7zz71WUA9ZC1+pv9H595XZeX7md1gnxfOHsjnzp3M70a9/ymGouKYGcHNi8GXbvhsREaNcOMjMjn0eSJNXdKR1M1oedO3ceet2iRQtiYmp2bGdiYmKlc0iSJEkns7FjaxhMfuKwVZS0LCHstw76r6t2FeX2klIemr2ah2av5txOKYw5rzO3nNmBls3ia/y2eXkweTJMn175Cs+UlEjIOnYsZGTU4vNIkqRDTunLb+rD/v3/+YWoWbNmNR7XpEmTQ68PHDhQrzVJkiRJjVVGBmRl1XHwrgR4uw88ehnhc+eQVtK22hWUAPPWFzH22Y/o8L+vMPovC5m9ajthGFbZf+dOGDUKeveGBx+sett5UVEkYO3dO9LftQaSJNWeKyaPUWlp6aHXNV0tCRxxtsLBgwfrtSZJkiSpMZs6NbIi8bB7EWonjKFf83bM+Wk7ispKeGzeOqbOW8/GXfuqHFJSWsbjCzbw+IINZJzWgjHndub2szvSruV/Fhfk58OIEbWvKzs78nlmzoT09Dp+JkmSTkGumDxGh98qVZtbiA4PI+Pja76lRJIkSTrRJSdHQrx+/eo2vn//yPjkZOjSKoEfj+jDmv+6lOdGn8M1p6cRG1P9Msq8rXv47j8/ptOEV7lh2jz+sXgz23aUc+WVdQ9Lc3MjoaYrJyVJqjlXTB6j5s2bH3p9+Lbuozl8+3bTpk3rtSZJkiSpsUtPhzlzYMyYyIrDmsrKiqy4TE4+8nlcbAzXntGOa89ox8ad+3jivfVMnbeeFdv2VDlXWXnI84sLeH5xAc0ONmVvaidI6QRFiVWOqU5ubuTzzJhRp+GSJJ1yXDF5jJIP+41oz5491Z5Xc7jdu3cfep2SklLfZUmSJEmNXnJyJMRbtgzGjYtcKFOZ1FQYPz6yXXrGjIqh5Kd1SG7Gdy/pxbL7Lub1rwzhtrM70jy++r/67IvbT3DeCoIvvQ6ffRv6roe42h+5lJ0Ny5fXepgkSackV0weo7S0tEOvy8rKKCwspFWrVkcdt3Xr1kOv27RpE5XaJEmSpBNBRgZMnAgTJkBODhQUQHExJCVBWhpkZkJCQu3nDYKAzB5tyOzRhoev78dTC/OZOm8dCzZUv9866LQdOm0n3J8LH6dDbmcoSAaOctPOv02ZAr/6Ve3rlSTpVGMweYy6dOlyxPfr16+vUTC5YcOGQ6+7detW73VJkiRJJ5qEBBg5MjpzJzePZ+zQrowd2pUPN+7ksXnrefK9DRTuLa1yTND0IJy5Fs5cS7ilZSSg/Dgd9jWp9r2mTYP7769bmCpJ0qnErdzHKD09/Yit2B9//HGNxi1duvTQ6z59+tR3WZIkSZKqMLBDMg9f34/8/7mc75xxFuHao+9gCtruIrgkF+5+Ba5eAN0KIKj88svCwsjKT0mSVD2DyXpw3nnnHXr99ttvH7X/0qVL2bZt26Hvzz///KjUJUmSJKlqzeJj6U06PDuE8PeXEr6TQbirWbVjgrhygt6bCLLmwZdfhQuXQKviCv0KCqJVtSRJJw+DyXpwxRVXHHr9+uuvU3CU30KeeuqpQ6979OhB7969o1abJEmSpKodupNyVwK83Rv+cBnhjPMIl7UnLKv+TMkgcT/BOSsJRr8Bt86GgWug6QEgckamJEmqnsFkPbjiiito27YtAAcOHOC73/0uBw9WfoPf7NmzeeaZZw59f9tttx2XGiVJkiRVlJj4qQdhAGvawguD4XeXE75+OuG2pKPOE7QvIrhsEYx9Ba5+jzVsoaw8jE7RkiSdJAwm60GTJk0YP378oe/ffvtt7rrrLtavX3/o2cGDB/nrX//KvffeS1lZGQAZGRncdNNNx71eSZIkSRHt2lXTuLcpvN8DHs8kfHIY4QddCPfFVztfZKv3RiatnUuXCa/y3X9+zNItLp+UJKky3spdT2644QYWLlzI008/DUTCySuuuILevXuTmJjIypUr2bFjx6H+KSkpPPTQQ8TF+f8CSZIkqaFkZkJKChQVVdcrgM2pka83ziDsuRnOWA9dthJUs9Rj4659/Pz1Ffz89RWc3yWVOwZ35OYz00lpXn24eTQlJTBrVsD8+a0pKYkhIaGcTZsCLrnEm8AlSScWU7F69L//+7+kpqby2GOPUVpaSnl5eaW3dPfo0YOHHnqI7t27N0CVkiRJkj6RkACjR8OkSTUcUBYLy9IjX4l7CU/fAGesJ2i1p9ph764t5N21hYx7fjE39G/PHYM7cmmv04iNqf4cy8Pl5cHkyTB9OhQVxQJdj2hPSYl8lrFjISOjxtNKktRgDCbrURAEjBs3jmuvvZZnn32WOXPmsHnzZvbu3UtycjJ9+/ZlxIgRXHvttTRp0qShy5UkSZJEJMircTB5uN3NYV4vmNeTsH1hZBVln40ETSs/bx5g38FynlqYz1ML8+mY3IzbBnfkjsGdyDjt04dd/sfOnTBmDGRnV19OUVHkc0yaBFlZMHUqJCfX4XNJknScGExWIisri6ysrDqP79GjB/fddx/33XdfPVYlSZIkKRoyMiJB3tGCv6oFsKkVbGrFdcn9uPm/NjN9/jpeXb6NsJr7bzbs3MdPX1vBT19bwZAuqdx2dkc+e2YHWiX8ZxFDfj6MGAG5ubWrKDs7ssJy5kxIT6/jx5IkKcoMJiVJkiSd8qZOjQR5tQ0AD9evHzz+WCzJyel8blA664v28sf3NjB9/npWbKt+q/c7awt5Z20h33x+MVef3pbbzu7EkPZtufLKGBYvrls9ubmRUHPOHFdOSpIaJ2/lliRJknTKS06OrC7s169u4/v3j4w/PADslNKc71/ai2X3Xczsr13AmHM7k9S0+rUhB8rKyV60mRumz6fzhJdZnLYI2hUC1Sy9rEZubmQbuCRJjZHBpCRJkiQR2fI8Z05kW3dtZGXB7NlVb5kOgoALurXiD58dyMb/uZwnPjeIS3u1Oeq8B2JLCQatIfj8HBj9OpyXB0kltSuOyLbu5ctrPUySpKgzmJQkSZKkf0tOhhkzYNkyGDcuctN1ZVJTYfz4yPbvGTNqvlW6RdM4vnB2R165ewirv38p/3tlb3q2aXHUcUGrPQTDlhF8+TW46W3otw6alNb4c02ZUuOukiQdN54xKUmSJEmfkpEBEyfChAmQkwMFBVBcDElJkJYGmZmQkHBs79GlVQL/fXkGP7isF3PXFfHEgvU8/cFGCvdWHzgGnbdD5+2ElyyCFe1hSTqsPQ3CqtedTJsG999/7DVLklSfDCYlSZIkqQoJCTByZHTfIwgCzu+SyvldUpl03RlMeHILE7I3QPcCgtiqz5YM4suhbz70zSfc0xQ+ToclHWFrSyA4om9hYSRgjfZnkSSpNgwmJUmSJKmRaBoXS/fy9vD39tDsAGHvjXD6eoIORdWOC1rsh8GrYPAqwq1JkYDy446wp9mhPgUFUS5ekqRaMpiUJEmSpEZk9+5/v9jXBD7sCh92JUzdDX03wOkbCJL3Vjs+OK0YMj8mHP4xrGsTCSiXt6e42L/+SZIaF/9kkiRJkqRGJDGxkoeFifB2H3i7N2HH7XD6BsjYRND0YJXzBDFA123QdRvhZR/xZFE7ui5O58rebWkS5z2okqSGZzApSZIkSY1Iu3bVtQawoU3ka1Y/wh4FkZCy61aCmOrPo5y3cyPXTdtIq4R4bhrYgS+c1ZGhXVMJgqDKcTVVUhI5w3Lz5siKz8TEyOeoj0uCJEknL4NJSZIkSWpEMjMhJQWKio7S8WAcLEuPfCXsI+yTD2dsIGi7q9phO0pK+d07a/ndO2vpmtqcz52VzucHdeT0dkm1rjUvDyZPhunTK683JQVGj4axYyM3nUuSdDjX70uSJElSI5KQEAnzaqWkGbzfA/6YSfh4JuH8HoTFzY46bE3hXn762gr6/fINzpqYwy/fWEn+zurPsATYuRNGjYLeveHBB6sOUYuKYNKkSL9RoyLjJEn6hMGkJEmSJDUyY8cew+BtLeHN0+H3lxH+dQjhok4kNjn6ZrkPNu7iOy8sofOEV7lsyjtMnbeOnXtLK/TLz4dhwyA7u3ZlZWdHxuXn126cJOnkZTApSZIkSY1MRgZkZR3jJGEA69uQlXgmW/73Cp65/Wxu6NeOJrHV/zUwDGHWim3c+dcPafe/L3PT4wt4LncT+w+WUVQEV14Jubl1Kyk3F0aMcOWkJCnCMyYlSZIkqRGaOjVyhmNdQ0CAfv0i8zSLj2XUgA6MGtCBwpIDzFi0iT+/n88bK7dXO37/wXJmLNrEjEWbSGkeT0pBe1bvTAdaA3W7NCc3F8aMgRkz6jRcknQSMZiUJEmSpEYoORlmzoysMKxLONm/P7z0UmSew6UmNOHO87pw53ldWF+0l6cW5vPn9/P5aFP1l+YU7S2lqOU6gpvXEe5qFrl0Z2kH2JJMbUPK7GxYvhx69arlh5IknVTcyi1JkiRJjVR6OsyZU/tt3VlZMHt2ZHx1OqU05zsX9+SDb2Xy0bcyue+SnnROaX7U+YOW+wjOWUlw22wY/ToMWQapu2tV45QpteouSToJGUxKkiRJUiOWnBzZ9rxsGYwbBykplfdLTYXx4yPbv2fMqLhS8mj6tW/JT6/qy6rvX8obXxnKXed3JrV5/FHHBa32EAzNIxjzOnwhBwavgKSSo46bNg1Kjt5NknQScyu3JEmSJJ0AMjJg4kSYMAFmzSpjwYL17NkTQ4sW5Qwe3IlLLoklIeHY3ycmJuDCHq25sEdrHr6+HzOXbuVXL25gdn4BQXx5tWODtF2QtgsyPybMT4Wl6bCsA+xtWqFvYSHk5MDIkcdesyTpxGQwKUmSJEknkIQEGDEipH37/1xcM3BgR+Ki8Le7pnGxXNevHTvmt2P2f5cS9toMfTdAp20ER9l/F6QXQnoh4cWLYV2bSEi5vB0c+M8qzIKC+q9ZknTiMJiUJEmSJFVr924igeLiTpGvhH2EGZugT34kgKxGEBNC163QdSvhZTGwum0kpFzVluJi/0oqSacy/xSQJEmSJFUrMfFTD0qawQfd4INuhC1LoPfGSEjZtvqbvYO4cui1GXptJjwQy1NF7ei+JJ3LM06jSZxXIEjSqcZgUpIkSZJUrXbtqmnclQDze8L8noStiqFPPvTZSJC6p9o5gyZlvLszn2um5tMqIZ6s/u353KB0LuzemtiY4JhrLimJnGG5eXNkxWdiYuRzZGZSL2dxSpKOncGkJEmSJKlamZmR28CLio7ScUcSvN0H3u5N2HYn9M2H3hsJkvZVP6yklD/MXccf5q6jfcumjBrQgc8ObM/QLq2IqWVImZcHkyfD9OmV15uSAqNHw9ixkQuFJEkNx7XykiRJkqRqJSREwryaC2BLCuScAY9eRviXoYQfdCHcG3/UkZt27ec3c1Zz4W/fpsv/vcq453N5d20hYRhWO27nThg1Cnr3hgcfrDpELSqCSZMi/UaNioyTJDUMg0lJkiRJ0lGNHVvXkQHkt4bXBsCUKwhnnEe4uCMt4o++gS9/5z4emr2aob+eQ7f/e41v/2MJ89cVVQgp8/Nh2DDIzq5dZdnZkXH5+bUbJ0mqHwaTkiRJkqSjysiArKxjnKQ8Bta0JSthEFt+fAXP3H42o/q3p2kNLr5ZV7SXX+Ws5LyHZ9PrgVl878WPWZi/k8LCkCuvhNzcupWUmwsjRrhyUpIagmdMSpIkSZJqZOrUyBmOdQ0BAfr1i8zTPD6WUQM6MGpAB3btK+X5xZv56wcbeTlvK6Vl1W/bXrW9hJ/NWsHPZq2gRWkLdqd0gDYdYFsSUPuLc3JzYcwYmDGjjh9KklQnBpOSJEmSpBpJToaZMyMrDOsSTvbvDy+9FJnncC2bxXPb2Z247exOFJYc4LnczTzz4UZeXb6Ng+XVh5R74vcQnL8czl9OuD0RlnWIfO1IqlVt2dmwfDn06lXbTyVJqiu3ckuSJEmSaiw9HebMqf227qwsmD07Mr46qQlNGH1uZ16863w2/fAKHr1pAJf1akNNLucOWu8mGJpHMPoNuP0NOC8PUnfXuMYpU2rcVZJUDwwmJUmSJEm1kpwc2fa8bBmMGwcpKZX3S02F8eMj279nzKi4UvJoWrdowp3ndeHlu4ew8X+u4JGs/lzUozVBTULK04oJhi0jGPM63JYD5y6HlOpDymnToKSkdjVKkurOrdySJEmSpDrJyICJE2HCBMjJgYICKC6GpCRIS4PMTEhIqJ/3apvUlLFDuzJ2aFc279rHj/+yicmzNkL6jqMGlUHbXdB2FwxfSrilJeS1h+XtK2z3LiyMfI6RI+unZklS9QwmJUmSJEnHJCHh+IZ57Vo245z4bkx+uhsk7iXstQn6bCToUHjUsYdCymHLCLcmRQLKw86kLCiIdvWSpE8YTEqSJEmSTji7P9mVvbs5LOwOC7sTJpVAxibovZGgfdFR5whOK4bTimFoXuTinLwOLNvenjBMIqjJfnFJ0jExmJQkSZIknXASEyt5WJwA7/WA93oQtiyB3huhdz5B2q6jzhe03g1D8vjZpjz+9vMW3DigAzcOaM/ADi3rNaQsKYlsF9+8ORKuJiZCu3b1u+1dkk4UBpOSJEmSpBNOu3ZH6bArAeb3hPk9CZP3RFZSZmwkaLfzqHPnbd3DT15bzk9eW07PNi0YNaA9Nw5oz1npyXUOKfPyYPJkmD4diooqtqekwOjRMHZs5OxOSToVGExKkiRJkk44mZmRMK+ykK+CnS3+E1K2/Pd2714bCTocffCKbXv42awV/GzWCrq1SmDUgPbcNKADgzvVLKTcuRPGjIHs7Or7FRXBpEmRr6wsmDq19reYS9KJxmBSkiRJknTCSUiIrDCcNKmWA3clwIIesKBH5EzKXpug96YaXZyzekcJv3xjJb98YyWdU5ofWkl5XudUYmIqhpT5+TBiBOTm1q7E7OzICsuZMyE9vXZjJelEEtPQBUiSJEmSVBdjxx7jBMUJ8H4PeGoY4e8u4/tDz2BYt1bUZLf2uqK9THpzFRf85i06T3iVe7IXMWv5Ng6WlQORFZBXXln7UPITubmRUHPn0XeeS9IJyxWTkiRJkqQTUkZGZNvz0bZJ10TWFc2ZkNUd6M7GnfvIXrSJGR9t4s3V2wnD6sdu3LWPR95ewyNvr6F1QjzXnNGOpf9oz+KlbYDYOteUmxvZBj5jRp2nkKRGzWBSkiRJknTCmjo1su25risTAfr1i8zziQ7JzbhnWDfuGdaNzbv28bfczTz74UZyVm2n/Cgh5faSUqbPXw/t1sNX4mB1W1jePvK/pbX/K3h2NixfDr161XqoJDV6BpOSJEmSpBNWcnLkLMa6nOUI0L8/vPRS1RfNtGvZjK8M7cpXhnZlS/F+/pYbWUn5+srtlB0lpQyaHoQ+G6HPRsKDMbDmtEhIuSoN9jWpcY1TpsCvflWbTyVJJwbPmJQkSZIkndDS02HOnMi27trIyoLZs2t+wUzbpKbcPaQrL989hE0/vJxHbxrAVX3aEh979EMpg7hygp4FBCM/gK+8DDe+AwPXQIt9Rx07bRqUlNSsRkk6kbhiUpIkSZJ0wktOjpzFmJcXWWE4bVrkAppPS02N3OY9duyxbY9u06Ipd57XhTvP68LOvaW8uHQLf1u0iX/kbmF/eVm1Y4OYELpsgy7bCC9dBBtTIyspl7eP3Br+KYWFkJMDI0fWvV5JaowMJiVJkiRJJ42MDJg4ESZMiIR5BQVQXAxJSZCWBpmZkFAx+zsmyc3j+dygdD43KJ3fPVbG2J9uhV6boEcBQbPSascGAZBeGPm6aAnhlpaQ9++QckciEFmNWVBQvzVLUmNgMClJkiRJOukkJDTMCsMDJbGwsl3kK6acsNP2SEjZczNBi/1HHR+03QVtd8GwZYQ7WhxaSblrVzKfhJSSdLIwmJQkSZIkqZ4kJh72TXkMrD0t8vVaf8IOO6DnZui1iSB571HnClrtgfNWwHkr+PGmZqx6vj1Z/dpzQbdWxMbUX0hZUgKzZgXMn9+akpIYEhLK2bQp4JJL6n91qSQdzmBSkiRJkqR60q5dFQ1hAPmtI185pxO23Qm9/h1Stt591Hl3lO7j4dmreXj2ak5r0YRr+7Xj+jPacWmvNjSLj61TrXl5MHkyTJ8ORUWxQNcj2lNS/nMeZ0ZGnd5CkqplMKn/396dx1dR3f8ff9+sZCMJCUkgYYeEVcQFLVJRXECqVhFrXWvFhVqsS1uq7U9coF+sLdCKFqRKcKugEisKuCCCIAqKG2BIwhYCkj0hG2Sd3x8j471J7hbCBW5ez8djHo+Ze2fOnLn5cDn55CwAAAAAgHYyZoyZ0Gtt4Z0f2aTCGHP7ZKCMLpU/9qRMOuT2HkXVdXp+0z49v2mfIkICNT4tQVcOTdTPBiWqS3iI2+sPHZJuu03KyHB9Xnm5NHeuuU2cKC1aZC4yBADthcQkAAAAAADtJDzc7GU4d64XF5VGSZujpM0DZHSusZKUSi41F8dxobquUcu2HtSyrQcVGGDT+X266OdDk/TzIUnq1aXlOOwDB6Tx46Vt27x7rowMs4flu+9KycneXQsAzgSc6AoAAAAAAOBPpkw5hosrwqUv+0pLz5MWXCLjg2EandJVQR7MKdnYZOijXSW6763t6vN/H+qMOev02PtZ+vrAIRmGofJyadw475OSR23bZiY1D7nv1AkAHqHHJAAAAAAA7Sg11Rz67G6otFs1nTSxf28tu6+3ymrq9E5mgTK+Paj3s4t0uL7J7eVff1+hr7+v0GPvZ6tXbJiC9iZpZ0WSZOsiGW3rp7RtmzkMfNmyNl0OAA5ITAIAAAAA0M4WLTKHPre1d6IkDR1qliNJseEhuvnMHrr5zB6qqWvQB9nFemt7vt7enq+Smnq3ZeWWHZai98j2iz0yDgdLuxOlXYnS3gSp3rvUQEaGlJMjDRjQlqcCgB+RmAQAAAAAoJ1FR5vzMbZlPkdJGjZMWrWq9cVmwkOCzHkkhyapobFJG/eW6a3t+Xpre752l9S4LdsWVi8N2S8N2S+jIUDKjZd2JZlbTahH9VuwQJo929unAgBHzDEJAAAAAMBxkJwsbdhgDuv2xsSJ0vr1ni0yExQYoPP7xWn2lUOU8+BYffv7MZoxPk1npXi2fLYtqEm2foWyXfqtNOV96ZcbpLN3SrFVLq9LT5dq3OdAAcAlekwCAAAAAHCcREeb8zFmZ5u9DNPTpfLylufFxpqreU+Z0vYh0jabTUO7ddbQbp31l4tTtb/8sJZvL9Dz6w7qy6IS2QINN9dLSi4zt/MzZZRESjt/6El5MEbSjwvwlJVJ69ZJl13WtroCgERiEgAAAACA4y41VZozR5o500zoFRRIlZVSVJSUmCiNGSOFh7fvPVNiwnT3eb0Vlt1btz1eL6NPodQvX+pTKFtog9vrbXFVUtxO6ZydMqpCzTkpdyVJefFSQ6AKCtq3vgA6HhKTAAAAAAD4SHi473sZVlVJqg2WdiSbW2CjjJQSqX++1K9AtqgjbsuwRdZKw/dJw/fJqA+UcuP1/vdJGl+RoKTOndq9zjU1ZgI3P9+sf2SklJR0fBK4AE4cEpMAAAAAAPixyMhmLzQGSrkJ5vahISOp3OxJ2T9ftnjXc0tKki24UepfoCWlBVryuDSyR4wuH5KoKwYn6rRunWWz2dyW4Ux2tjR/vrR4cetD3mNifhzynpra5tsAOEmQmAQAAAAAwI8lJbl61yblx5rbJ4NkxFRJ/QvMRGVyqTzJMW7OK9fmvHJNfzdLPWPC9LPBibpySKIu6Ben0KBAj+p46JB0221SRobr88rLpblzzW3iRGnRotZXLgdwaiAxCQAAAACAHxszxuxp2FoPxBbKI6UvIqUv+klhtTL6FZhDvnsWyRbc5PbyfeWHNX/jXs3fuFeRoYG6NLWrLh+cpJ8NSlDXyNBWrzlwQBo/Xtq2zavHUkaG2cPy3Xc9W8EcwMmHxCQAAAAAAH4sPNwc/jx3rpcXHg6VtvU0t6AGGb2KpX4FUt8C2SJq3V5eVduojK35ytiaL5tNOrdnrC4fbA75HpIUJZvNpvJyadw4afv2Nj2atm0zk5obNtBzEjgVkZgEAAAAAMDPTZnShsSkvYYgc0XuXUmSDL2+oVxfVxbone8K9M33FW4vNwzp09wyfZpbpr+s2qE+XcJ1+eBEffl6orZnxkkKaHPVtm0zh4EvW9bmIgCcICQmAQAAAADwc6mp5pyM7uZw9MTEHd4BngAARg9JREFUiTZdc16srlGsZowfqNzSGr2TaSYpP9pZorpG90O+95TWaN6GPVK3PdLdQdLertKuRGlPonQkxOs6ZWRIOTnSgAFteSIAJwqJSQAAAAAAOoBFi8w5Gb2dy9He0KFmOfZ6dQnXb8/ro9+e10eVRxr0QU6R3tleoBWZBSqqrnNbpi20QUo7KKUdlNEk6fsu0u5EM1FZGinJs1W+FyyQZs/2/pkAnDgkJgEAAAAA6ACio82FYtqy0IwkDRsmrVrlei7HqE5BmjismyYO66bGJkOb95Vp+XcFemd7gbYXVLq9hy1AUkqpuZ2fKaMs4oeelAnS/jipyfmQ7/R0acYMc05NAKcGEpMAAAAAAHQQycnmQjG33ebdsO6JE82ekt4sMBMYYNNPenfRT3p30awJg7S7pFrvfGcO+V67s0QNhuG2DFtstXTWbums3TJqg6TceHO49+4EqaaTw7llZdK6ddJll3leRwAnFolJAAAAAAA6kOhoc6GY7Gxz+HN6ulRe3vK82FhzNe8pU9pn7sa+cRH63U/76nc/7atnnqvX1L8XSf3ypT6FsoXVu73eFtogpeabmyQjP/rHJGV+jCSbCgqOvZ7O1NSYic/8fKmqSoqMlJKSpDFj6KUJtBWJSQAAAAAAOqDUVGnOHGnmTGnNmkZ98UWeqqsDFBHRpLPO6qGxYwOPW8Kt6XCwlN3d3GxNMrqXSf0KpL4FssVVeVSGLemQlHRI+km2jJoQaU+CPs5P1FWHuyomLLjd6pqdLc2fLy1e3HoCNybmxwRuamq73RboEEhMAgAAAADQgYWHS+PHG+rWrcR6bfjwFAUdx4xBZKTdgREgHYgzt48Hy4iplvrmm4nKlFLZAjwY8h1eJw3Zr8XF+/XSIzaN7t1FEwYl6GeDEjUoMVI2m2cL6Ng7dMizIe/l5dLcuebWliHvQEdGYhIAAAAAAPhUUpKLN8sjpC/7mVtovYxeRVLfAnPId7j7Vb4bmwyt212idbtL9KcVmeodG6YJgxI1YVCCLuwfr7DgQLdlHDjQtkWCMjLMHpbvvmvO5wnANRKTAAAAAADAp8aMMYdAtzY02kGt3ZBvGTKSyn9MUiYd8uhee8sO698b9+rfG/cqLDhAY/vHa8KgRP1sUIJ6xrYcq15eLo0bJ23f7t0zHbVtm5nU3LCBnpOAOyQmAQAAAACAT4WHm/Myzp3rzVU2KT/W3DYOlBFxROpTKPUpkHoXyRbS6LaEw/VNWpFZqBWZhfqtpKFJUVaS8ie9YhUUGKDJk9uelDxq2zZzGPiyZcdWDuDvSEwCAAAAAACfmzLF28RkM9WdpG09zS2gSYtXl+jrykKtzCxQdlG1R0Vsy6/UtvxKPfnRTsWGBesn3btqRWaCFJYgHQ49hsqZw7pzctpnRXPAX5GYBAAAAAAAPpeaai4W425xGU9MvCpAt1zYVbeoq+ZcOUQ7i6u1MrNAKzMLtXZXieoam9yWUXa4Xit3fS/bhO9lGJIOxkp7EqS9XaX8GEneL6CzYIE0e7bXlwEdBolJAAAAAABwQixaZC4W4+0iM/aGDjXLsdc/PkK/+2lf/e6nfVVV26APc4q1IrNAq3YU6sChI27LtNkkdS8zt/OyZNSEmAnKPQlSblePe1Omp0szZphD1wG0RGISAAAAAACcENHR5grWbVkBW5KGDZNWrXK9yExkaJB+PjRJPx+aJMMw9M33FVaS8rPcMjUZ7u9jC6+TBh+QBh8we1Pmx0h7E8xEZX6MZLTem7KsTFq3TrrsMu+fDegISEwCAAAAAIATJjnZXMH6ttu8G9Y9caLZU9Kbla9tNptOT47W6cnR+svFqSqurtV7WUVamVmot74tVE1jvQdlSOpWbm4/yZZxONjsRbknwUxW1jj2piwo8Lx+QEdDYhIAAAAAAJxQ0dHmCtbZ2ea8jOnpUnl5y/NiY83VvKdMaZ9FZeIjQnXjGSm68YwU/bOkSfc/WfbDSt+FsiVUeFSGLaxeGvi9uUkyCqLNJOWeBOlgjCorA469ok7U1Jg9MvPzpaoqKTJSSkqSxoxh+DhODSQmAQAAAADASSE1VZozR5o500y4FRRIlZVSVJSUmHh8E27RUQHSgThz2zBIRsQRM0nZu1DqVSRbpwaPyrElHpISD0nn5sg4EqyXyuIVuTlB4wcmqFvnTu1S1+xsaf58afHi1hO4MTE/JnBTU9vllsBxQWISAAAAAACcVMLDfT8vY1JSsxeqO0nbepqbrUlG9zIzSdmnULZED3tTdqrXFxUHNfm1g5Kk07t31riBCbosLUE/6R2r4EDvelMeOuTZkPfycmnuXHNry5B3wFdITAIAAAAAgA5vzBizp2FrPRBl2PWm/GSQjPAjUu8is0dlryJzOLcHvv6+Ql9/X6G/rdmpzp2CdMmArho3sKvGpyUoJSbM5bUHDrRtkaCMDLOH5bvvmvN5AicTEpMAAAAAAKDDCw83hz/PnevByTWdpO96mJutSUZS+Y9zUyYd8uh+FUcatGzrQS3bavamHNYtSuPSEjQ+LUHn9YlVaFCgdW55uTRunLR9u/fPJZnJzPHjzUWG6DmJkwmJSQAAAAAAAJlzMnqUmLRnBEgHu5jbxoEywmqt3pSxIwpVfsSz3pRbD1Zq68FK/WPtLkWEBOqCfnG6NC1Bl6Z21UO/idD27TbvH8jOtm3mMPBly46pGKBdkZgEAAAAAACQuVDMxInu53B06XColJmiiYNS9NrjhrbsL9eqHYV6d0ehNueVyzDcF1Fd16gVmYVakVkoSTK6hEkXd5X2Jkh58VJtcJuqlpEh5eS0z4rmQHsgMQkAAAAAAPCDRYvMORm9ncvR3tChZjmBATaN7BmrkT1j9cilaSqurtUH2cV694dEZVF1nUfl2aIPS8P3ScP3yWiySQdjzCRlblcpP0YyPO9NuWCBNHt2254LaG8kJgEAAAAAAH4QHW0uFNOWhWYkadgwadWq1udyjI8I1fUjknX9iGQ1NRn68sAhvZtlJik/yy1Tkwe9KW0BhpRcZm7nZck4HCzti/8xUVnpehGd9HRpxgxzTk3gRCMxCQAAAAAAYCc52Vwo5rbbvBvWPXGi2VPSkwVmAgJsOqtHjM7qEaP/d3GqSmvq9GFOsd7LKtL7WYXaf+iIR/e0hdVLaQfNTZJREint/WHY9/4uUoNj6qesTFq3TrrsMs+fCzheSEwCAAAAAAA0Ex1tLhSTnW0Of05PN1fHbi421lzNe8qUY5u7sUt4iK4d3l3XDu8uwzC0o7BKM14q0qufFkopJbIFN3lUji2uSoqrks7cI6MhQDrQxUxS7u0qFUdJsqmgoO31dKemRlqzxqbPP49TTU2AwsObdPCgTWPH0ksTLZGYBAAAAAAAcCI1VZozR5o50+xpWFAgVVZKUVFSYqI0Zkz7J9xsNpsGJUbpJ6FRejWjrxTYKCO51Fztu3ehbF0rPSsnqEnqVWxuYySjKlTa21Vr8xP0s6p4dY0Mbbc6Z2dL8+dLixdL5eWBkno7vB8T82MCNzW13W6LUxyJSQAAAAAAADfCw30//Dky8oedxkBpX1dz+3iwjIgjUq8iM1HZq0i2cA8X0YmslYbu14vF+/XSY9IZydG6NK2rxqUm6NxesQoJCvC6jocOeTbkvbxcmjvX3LwZ8g7/RmISAAAAAADgJJSU5OSN6k7Sdz3MTYaMhENWb0p1L5Mt0P0qOoYhbdl/SFv2H9KsD3cqIiRQF/SL08WpXXXxgK4anBgpm831at8HDrRtkaCMDLOH5bvvmvN5ouMiMQkAAAAAAHASGjPGHALd2tyWP7JJhTHmtnmAFFIvo0fJD70pC2WLrfHoXtV1jVqRWagVmYWSpO6dO+niAfE/JCrjldS5k8P55eXSuHHS9u3eP5dkJjPHjzcXGaLnZMdFYhIAAAAAAOAkFB5uzss4d64XF9UFS7uSzE2SEV39Y2/KHiWyhTZ4VMz3FUf04pb9enHLfknSsG5RunhAV12S2lU/7dNFkycHtTkpedS2beYw8GXLjq0cnLpITAIAAAAAAJykpkzxMjHZ3KEI6ZsI6ZveUkCTXl5Tpu9qivR+VqG2HDgkw/2ob0nS1oOV2nqwUnM/3q3ggADVBcZKI7tKuV2lwmjJcD3s25mMDCkn59hWNMepi8QkAAAAAADASSo11Vwsxt3iMp6YeFWAbhgTJylOMy8bqOLqWn2QXazVOUVanV2kvPIjHpVT39QkW88SqWeJ9NMdMg4HS/vizSRlblepwrtlyhcskGbPbsMD4ZRHYhIAAAAAAOAktmiRuViMt4vM2Bs61CzHXnxEqK4fkazrRyTLMAxlF1Xrg+wirc4p0kc7S1RZ69mwb1tYvZR20NwkGeXhPyQp482EZW2Iy+vT06UZM8yh6+hYSEwCAAAAAACcxKKjzRWs27ICtiQNGyatWuV6kRmbzaa0hEilJURq6ug+qm9s0uZ95fogu0gf5hTps33lamzybNy3LaZGismVhufKaJJUEPNjovL7LlJTgMP5ZWXSunXSZZd5/2w4tZGYBAAAAAAAOMklJ5srWN92m3fDuidONHtKervydXBggM7r00Xn9emiR8elqeJIvdbuKtFTbxXpw51FsnWp9qgcW4CkbuXmdm6OjPpAKS/OTFLmdpVKoiTZVFDgXf28VVNjJj/z86WqKikyUkpKMlc+p6fmiUNiEgAAAAAA4BQQHW2uYJ2dbc7LmJ4ulZe3PC821lzNe8qU9ltUpnOnYF05JEm5a5L0YbpkRNVIvYqlXkVSz2LZwus8KscW3Cj1LTQ3SUZ1qLQvXu9/H68LSuPVu0v7Zgmzs6X586XFi1v/rGJifvysUlPb9dbwAIlJAAAAAACAU0hqqjRnjjRzptkLsKBAqqyUoqKkxMTj2wswMvKHncpwaVtPc5Mho2uFmaTsVSQll8oW3ORRebaIWmnQAS0pPaAl/yf1jQvX2P7xumhAvMb2j1fXyNA21fPQIc96l5aXm6uez53b9t6laDsSkwAAAAAAAKeg8HDfz8uYlNTaqzapKNrcvugvBTXK6F5qJSptiRUel7+7pEa7S/bpuU37JEmndeussQPidVH/eJ3fN05Rndynsg4caNt8nBkZZg/Ld981h87j+CMxCQAAAAAAAI+MGWMOf25tWLSlIVDa19Xc1ktGWK3Us9ga+m3rfNjj+317sELfHqzQPz/eraAAm87pGaOxA7rqov7xOrdXrEKCHBfSKS+Xxo2Ttm9vy9OZyczx4835POk5efyRmAQAAAAAAIBHwsPNORnnzvXiosOhUlayucmQEVttJip7Fkk9S2TrVO9RMQ1Nhj7ZW6ZP9pZpxgfZCg8O1E/7drGGfp/ePVqTJ9vanJQ8ats2cxj4smXHVg7cIzEJAAAAAAAAj02Z4mVi0oFNKos0t296SzZDb2w4pJwjxVqzs0gb9pTqcL1n81PW1DfqvawivZdVJEmKDg1WeX28NDxe2hcvlUWY92uDjAwpJ6f9Fg9C60hMAgAAAAAAwGOpqeZCMe4WlvHExKttmjgqRlKM/jS2v2obGvXp3jJ9uLNYa3KKtTmvXI1NhkdlHaqtly31oJR6UJJkVHaScn9IUu7rKlV38qpuCxZIs2d7+UDwColJAAAAAAAAeGXRInOhGG8XmLE3dKhZjr3QoEBd0D9eF/SP14zxUsWRen28u1Qf5hRpzc5ibT1Y6XH5tqgj0tD95ibJKIn8IUkZL+2Pk46EuLw+PV2aMeP4rXAOEpMAAAAAAADwUnS0uXp1W1a/lqRhw6RVq9wvMNO5U7AuH5yoywcnSpIKK2u1Zmex1aNyT2mNx/e0xVVJcVXSiL0yDEmFnaW8eHPb30WqC3Y4v6xMWrfO9yufdyQkJgEAAAAAAOC15GRz9erbbvNuWPfEiWZPybasep0QFapfjkjWL0ckS5L2lNTow51Feu69Ym06WCxbRJ1H5dhskhIrzO2s3TKabFJBtJmk3BcnHegiNQSpoMD7OsJzJCYBAAAAAADQJtHR5urV2dnmnIzp6VJ5ecvzYmPN1bynTGnfBWX6xIXr9rheOry5lzY9YsiIr/xhxe9iKaVEttAGj8qxBRhSt3JzG7lTRqNNyo/R0rx49doZr5/0ilWn4MD2qzgkkZgEAAAAAADAMUpNlebMkWbOlNasadQXX+SpujpAERFNOuusHho7NvC4ztUYGSlJNqm4s7l92VcKaJKRWP5jorJ7mWxBnq34bQs0pOQyvXeoTO8tyFFoUIBG9YrVBf3jdWH/OI3sEauQoIDj90AdBIlJAAAAAAAAtIvwcGn8eEPdupVYrw0fnqKg45yBSkpq5cWmAOlgF3PblCoFNcjoXib1KJZ6lkhJ5WZPSQ/UNjTpo10l+mhXiR55TwoPDtToPl10Qf84je0frzOSoxUUSKLSWyQmAQAAAAAAcEobM0aKiWl9GLmlIUja19XcPpEU3CAjucRMUvYolhIPmXNPeqCmvlHvZxfp/ewiSVJUaJDO79tFF/SL19gB8RrerbMCAjwsrAMjMQkAAAAAAIBTWni4OYfl3LleXFQfJO1NNDdJCq2TkVJqJil7lMiWUOFxUZW1DVqRWagVmYWSpNiwYI3pF6cL+8frwn5xGpIUJZunWc8OhMQkAAAAAAAATnlTpniZmGyuNkTalWRukj79plZ5RonW7CzW2l0l2lFY5XFRZYfr9b9t+frftnxJUmJUqB6+OFVTftKLnpR2SEwCAAAAAADglJeaKk2cKGVkHHtZEydK55wWqnPUXZOGd5ckHaw4oo92FuujXSVau7NYu0pqPC6voLJWU9/cqr5x4Ro/MOHYK+gnSEwCAAAAAADALyxaJGVnS9u2tb2MoUPNcprr1rmTbjgjRTeckSJJ2ldWo492lmjtrmKt2VmsvPIjbsvesKeUxKQdEpMAAAAAAADwC9HR0rvvSuPHty05OWyYtGqVWY47PWPD9auzw/Wrs3vIMAztLqnRR7uK9dHOEn20s1j5lbUtrrloQLz3lfJjJCYBAAAAAADgN5KTpQ0bpNtu825Y98SJZk9JT5KSzdlsNvWLj1C/+Ajdfk4vGYahrKIqrckp0YY9JWoypF+O6K4L+5OYtEdiEgAAAAAAAH4lOlpatswc1r1ggZSeLpWXtzwvNtZczXvKFGnAgPa7v81m08CEKA1MiNLd5/Vuv4L9DIlJAAAAAAAA+KXUVGnOHGnmTGndOqmgQKqslKKipMREacwYKTz8RNey4yIxCQAAAAAAAL8WHi5ddtmJrgWaCzjRFQAAAAAAAADQ8ZCYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HM2wzCME10JnBq2bNnicBwQQF4bx66pqcnaJ6ZwrIgntDdiCu2NmEJ7Ip7Q3ogptCfiqWOw/zlL0plnnunV9UHtWRl0LM2DDzhWxBTaE/GE9kZMob0RU2hPxBPaGzGF9kQ8wRlS1gAAAAAAAAB8jh6TaDO6YgMAAAAAAHRcx9obljkmAQAAAAAAAPgcXd4AAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzQSe6Amhp165dWrJkiTZt2qT9+/eroaFBCQkJSk1N1RVXXKFLLrlEQUHt/6M7ePCglixZog0bNig3N1dHjhxR165d1bdvX02YMEETJkxQWFiYV2V+++23ev311/X555+roKBAhmEoMTFRQ4YM0c9//nOdf/75stlsHpdnGIZWr16t5cuXa+vWrSopKVFYWJgSExN17rnn6pprrtHAgQO9fXS/Rjw5V1NTo7feeksbNmxQZmamysrK1NDQoJiYGKWmpuq8887TpEmT1LlzZ28f368RU94rLS3V5ZdfrpKSEklSVlbWMZfpT4gp1woLC7V8+XKtXbtW+/btU2lpqTp16qSUlBSNHDlS1113nfr16+dVmf6MeHKuoaFBK1as0OrVq7Vt2zaVlpbKZrMpLi5Ow4cP14QJE3TRRRe1y/eeP/GnmGrNtGnT9NZbb2nkyJF66aWXvLqWtnnbEFPO0T73HvHkPdrmJxebYRjGia4EfjRv3jwtWLBADQ0NTs8ZOnSo/v73v6tv377tdt8lS5boiSee0OHDh52e07t3bz355JMaPny42/Lq6+s1Y8YMLV261OV5o0eP1qxZs5SQkOC2zIKCAt1///3asmWL03NsNptuvfVWPfDAAwoJCXFbpr8jnpxbuXKlHnvsMZWXl7s8LzIyUg899JAmTZrktsyOgJhqm/vuu0+rVq2yjmn8/IiYci09PV1PPfWUampqnJ4TEBCg22+/Xffff78CAjr2YBjiybkdO3bovvvu0549e1yeN2zYMM2dO1c9evRwW2ZH4C8x5czq1av129/+VpK8/qWftnnbEFPO0T73HvHUNrTNTy4kJk8iM2fOdPiHFhQUpLS0NIWFhWnXrl0qKyuz3ouPj9drr72m5OTkY77v4sWLNWvWLOvYZrNpwIABiomJ0d69e1VYWGi9FxYWpldeeUVDhgxxWp5hGJo6dapWr15tvRYaGqq0tDQFBgYqJydHVVVV1nt9+/bV0qVLXf7Vq7S0VNddd5327dtnvRYTE6P+/fvr8OHDysrKcvgy/tnPfqY5c+Z4/iH4IeLJeTw1r6MkdenSRb1791ZgYKD27t2roqIih/fvueceTZ061f0H4MeIqbb9Zf7dd9/Vvffe6/AajR8TMeU8pgzD0OOPP67//ve/1muBgYHq2bOnunbtqoKCAuXm5jpcc9111+nxxx/37EPwQ8ST83jKzMzUTTfd5HBdVFSU0tLSZBiGduzYoerqauu9rl27asmSJUpJSfH8g/BD/hJTznz77bf61a9+Zf3hw5tf+mmbtw0x5XkdJdrn7hBPbUPb/CRk4KSwatUqIzU11druueceo6ioyHq/rq7OWLJkiTF8+HDrnKuvvtpoamo6pvt+9dVXxqBBg6wyb7zxRiM3N9d6v6mpyXjvvfeMc845xzrn/PPPN2pqapyW+dxzzzk8y6OPPmpUVFRY7x8+fNiYP3++MXjwYOuc3/72ty7reeedd1rnDhs2zPjvf/9r1NfXW+8XFhYa9913n8N9X3jhhWP4ZE5txJPzePryyy+NtLQ069wLL7zQWLt2bYtn37hxo3HppZc63Hvt2rXH8Omc2ogp199RzpSUlBjnnnuuw/1SU1PbVJa/IaZcx9Szzz7b4vPZt2+fwznbt283rrrqKofzPvzwwzZ+Mqc24sl5PNXV1Rnjxo2zzh0yZIiRnp5u1NXVWefU1tYa8+fPd3iW66677pg+m1OdP8VUazZt2mSceeaZDs940003eXw9bXPvEVPO0T73HvHUNrTNT04kJk8CdXV1xgUXXGD9o7jrrruMxsbGVs9dv369Q0N0+fLlx3TvX/ziFw5fVIcPH271vMzMTGPEiBHWufPnz2/1vJKSEofzHnnkEaf3fuONNxy+DLZs2dLqeR9//LHDeStWrHBa5rRp06zzzjnnHKOystL5w/sp4sl1PF1//fUO/0na/wfeXFlZmXHJJZdY548fP975w/sxYsp1TLnyu9/9rkXDh8YPMeUupvLy8oyhQ4c6JKac/SJx6NAh4/zzz7fO/eUvf+n6A/BDxJPreFqxYoXDecuWLXNaZnp6usO5H3/8sfOH92P+FFOtee655xzq7O0v/bTNvUdMuUb73DvEU9vRNj85deyJiE4SH3zwgb7//ntJZvfr6dOnO50javTo0bruuuus4/T09Dbf95tvvtHXX39tHT/88MPq1KlTq+cOHDjQmttBkl544QU1Nja2OO+NN96whgLFxMRo2rRpTu9/zTXX6IILLrCOnT3LCy+8YO2PHj1aEyZMcFrmI488ori4OElSWVmZ3nzzTafn+iviydTas+Tl5TnMgzRt2jTFx8c7LTMmJkYPPvigdbx7925lZmY6Pd9fEVMmb59l1apVevfddyWJCdqbIaZMzp5l0aJFqqurs+rx//7f/3O6GEnnzp01ZcoU6/irr77SoUOHnNbBHxFPJmfPsn79emu/T58+mjhxotMyb775ZiUlJVnHa9eudXquP/OnmLK3d+9e3XnnnXryySddzkfnDm1z7xFTztE+9x7x1Da0zU9eJCZPAitXrrT2R40ape7du7s83/6LZfv27crLyzvm+/br108jRoxwef6kSZOs1bxKS0u1efPmFufYTyB72WWXKTw83GWZ9s/y8ccft5jc/9ChQ9q4caN1fM0117gsLzw8XFdeeaV1fPSLpyMhnkytxdNnn31m7YeGhuqSSy5xWZ4k/fSnP1VwcLB1vHXrVrfX+BtiytRaTDlTWlpqzfUXEhKi+++/36PrOgpiytRaTNXX1+vtt9+2jv/yl78oMDDQZZnjx4/XTTfdpKlTp+rPf/6z24a/vyGeTM6+o/Lz8639wYMHuywvMDBQw4YNs47379/v8nx/5U8xJZmrsc+cOVOXX3651q1bZ70+YsQIXX/99V7VkbZ52xBTztE+9x7x5D3a5ic3EpMnmGEY2rRpk3V83nnnub0mLS1NXbt2tY7XrFnTpnt/+umnXt03OjpaQ4cOtY4/+ugjh/fLy8sd/lo1evRot2Wee+651i9cR44ccWjoSNLmzZutX7BsNptH9bQ/58svv+xQPUeIJ9fxVFBQYP3n2KNHD49WhwwODlZkZKR1bD+JdEdATLmOKWceffRRlZaWSjInZu/Xr59H13UExJTrmNqyZYsqKiokmatZjhw50m2ZsbGxevjhh3XPPffolltuUZcuXdxe4y+IJ/ffUVFRUda+J39cse+lEhoa6vZ8f+NPMXVUTU2NXnrpJdXX10sye1jdddddevHFF63ejJ6ibe49Yso12ufeIZ7ahrb5yY3E5Al24MAB6xcQSQ7/cF1JS0uz9tvyF6L6+nrt3r3bOvZ0lSxX983KypJht8i7J2WGh4erZ8+eTsvcsWOHtZ+SkqLo6Gi3ZQ4cONDab2pq0vbt291e4y+IJ9fxNHXqVG3dulXr16/XvHnzPKpjZWWlQwO6o3X7J6Zcx1RrVq5cqffee0+S+XlNnjzZ7TUdCTHlOqa+/PJLa/+cc87xqI4dGfHk/juqf//+1v6WLVtcJicPHz7sEIMd8Rc3f4qp1owaNUrLli3TAw884FECqDna5t4jplyjfe4d4sl7tM1PfiQmT7C9e/c6HNs3Ll1JSUmx9vft2+f1fffv32/9RUKSevXqdcz3tX+WkJAQdevWrV3L9LSOXbt2dZjrIjc316Pr/AHx5P5ZAgIClJCQoL59+3pU3gcffKCmpibruKP9kkZMefcsJSUl1jCR4OBgzZo1y+0w3I6GmHJdZlZWlrU/YMAAa3/jxo168MEHNW7cOJ1++uk655xzNGnSJD3zzDNWD4COiHhy/yzXXXed9ctdRUWF/va3vzkt64knnrB+2Q8ODta1117rUR38iT/F1FEBAQG68MIL9eKLLyo9Pd0hUegt2ubeI6bco33uOeLJO7TNTw1BJ7oCHV1RUZG1HxAQ4HKiX3v2XbHty2jLfZuX5+l9S0pK1NTUZE20a1+mp+U1P7d5vQoLC9tUZlxcnA4cONBqmf6MeDr2Z7FXW1urZ5991jqOiYnRGWeccUxlnmqIKe+e5dFHH7WGE/3mN79Ramqqx/fpKIgp189iP+9TYmKiCgoK9PDDDzvMuSSZPdvKy8u1detWLV68WI888oguv/xyj+vgL4gn98+SmJioadOmaebMmZKkJUuWKD8/X3fccYeGDBkim82m7777TgsXLnQYZnfPPfe4nbfMH/lTTB0VGRmpBQsWeF2n1tA29x4x1b46evucePIObfNTA4nJE8y+C3pERITT1bSas59Toy3ztDS/xtPu7/bzFBmGoYqKCsXExEgy50Zq7Tx3XD2L/bE3Zdqfa9/V3d8RT8f+LPb+8Y9/OPxV8pZbbrHmwOkoiCnPn2XFihV6//33JUmDBg3SnXfe6fE9OhJiyvWzFBcXW/s1NTW64YYbrAVIwsLClJqaqpCQEO3evVslJSWSzP/n/vCHP6i8vFw33XSTx/XwB8STZ89y8803Kzk5WbNmzdK+ffu0du1apytux8TE6I9//KMmTZrkcR38iT/F1PFA29x7xFT76ujtc+LJc7TNTx0M5T7BamtrrX37IQ7u2M+3UFdXd0z39ebe9qufNS/Hvh7t9Szt8fk0f1Z/Rjwd+7MctXTpUr344ovWcXJysn7961+3ubxTFTHl2bMUFxdbw0SCgoI0a9asFnWBiZhy/Sz2v7D/9a9/1f79+xUaGqqHHnpImzZt0muvvaaXX35ZGzZs0DPPPGP1RDAMQ7NmzdIXX3zhcT38AfHk+bOkpqbqoosucvndFBQUpFtvvVWXXXaZx/f3N/4UU8cDbXPvEVPth/Y58eQp2uanFhKTJ5j9PA2e/rVDksNfhexXT/RU82s8vXfzv0YdXZVPOj7PYn/sTZn280a05fM5VRFPx/4skvS///1Pjz76qHUcHBysf/7znwoPD29TeacyYsqzZ3n00Uet3k533HGHBg0a5HH5HQ0x5fpZ7H9ZqKioUHBwsP7zn//o1ltvdVghOSAgQBdffLGWLFli9TxoaGjQE0884XE9/AHx5NmzLF68WOPHj1d6erp1n4SEBJ199tkaMWKEQwz985//1Lhx47RhwwaP6+BP/Cmmjgfa5t4jptoH7XMT8eQZ2uanFhKTJ5j9f9L2E/i6Y//F0JbMf/MvEk/v3fwLyf7ex+NZ2lqm/RdeR/rLCPF07M/y8ssv68EHH7TuabPZNHPmTJ122mlel+UPiCn3z/LOO+/ogw8+kGQuVnL33Xd7XHZHREy5fhabzeZwfPvtt7tcnTslJUXTpk2zjrdu3aqvv/7a47qc6ogn98/ywgsvaNasWdYvswMHDtTLL7+s9evX6+WXX9aSJUv06aefasGCBdYiCkVFRbrzzjtbzG3aEfhTTB0PtM29R0wdO9rnPyKe3KNtfuohMXmChYWFWfvedGu271Fh34OiLff15t7Nu33b39u+O7c3z2J/bvNnOR5l+jPiqe0/e8MwNHfuXM2YMUOGYUgyGz3Tp0/XVVdd5XE5/oaYch1TxcXFmjFjhiSzofh///d/DkNl0BIx5Tqm7Ht+2Gw2j+aMvOKKKxyu++STTzyuy6mOeHIdTwcOHNDs2bOt4xEjRmjJkiU6++yzHc47uiLqG2+8YS0M0NjYqIceekiVlZUe18Uf+FNMHQ+0zb1HTLUd7fOWiCfXaJufmkhMnmDR0dHWfnV1tfWF605VVZW135bJY+3v27w8T+8bFBTkMJmtfT08LU8yn7u1MprX05syj/XzOVURT67jyZna2lrdf//9DqvBBQYGaubMmbrhhhs8vrc/IqZcx9QjjzxiDRO57bbbOuRf7r1FTLmOqYiICGu/V69eHq22GRISoiFDhljHu3fv9rgupzriyXU8LVu2zPrlMTg4WH//+99b/HJpLzo6WrNnz7Z65JSUlCgjI8PjuvgDf4qp44G2ufeIqbahfd464sk12uanJhKTJ1hiYqK139jYaC1l705RUZG178kvLa7uKzmuAurpfbt06eIw5My+zKMrhXpbZvNnaWuZ9uceXRigIyCevH+W4uJi3XzzzVq1apX1WmhoqJ566qkOuyKpPWLK+bO8/fbbWr16tSSpb9++uueeezwusyMjplw/S2xsbKv77nTp0sXat1/d2d8RT66f5fPPP7f2zznnHPXo0cNteampqTrzzDOt444216Q/xdTxQNvce8SU92ifO0c8OUfb/NQV5P4UHE+9evVyOM7Ly3P45cKZ/fv3W/t9+vTx+r7du3dXcHCwNd9QXl6ehg0b5tV9e/fu7fCe/bPU1NSouLjYoy+9vLw8a7/5s9jfY9++fW7LkqTCwkIdOXLEaT39GfHkOp6a2717t26//XYdOHDAei0mJkbz58/XGWec4fZeHQEx5Tymnn76aWvfMAyX89ccOnTI4Xjy5MnWflpamsMcgf6OmHL9PdW/f3999913kuTVEFr7OZzs55/yd8ST63gqLCy09vv37++2rKPS0tK0efNmSXL4P7Ij8KeYOh5om3uPmPIO7XPXiCfnaJufuugxeYIlJyc7dKXOzMz06LodO3ZY+wMHDvT6vsHBwdYcQt7c1/685itbDR482OEvIJ6UWV1d7dCoaf4s9kPTcnNzdfjwYa/qaLPZlJaW5vYaf0E8uY4nezt27NANN9zg0Ojp3bu3li5dSqPHDjHlPKbsV0Xcs2ePNmzY4HTbunWrQ7mu3vN3xJTr7yn7/7MOHDjQYm4mZ/Lz8639pKQkj67xB8ST63iyn1fL01iSHJPb3qz66g/8KaaOB9rm3iOmPEf73D3iyTna5qeujtXSOEnZr7a5ceNGt+fv2LHDoev0ueee65P7lpeXW704WrtvZGSkBg8e7FWZn332mbWiV2BgoEaOHOnw/plnnqmgILNjb2NjozZt2uS2TPv7Dh48uMV8GP6OeHIeT0ft2rVLv/rVrxyGPhxdEKCj/RXfE8SU+5iCd4gp5zE1atQoa//w4cMeLWRTWVmp7Oxs69iTHgz+hHhyHk/dunWz9j39JVKSdu7cae03H77XEfhLTB0PtM3bhphyj/a554gn+BsSkyeBSy+91Nr/6KOPVFBQ4PL8V1991drv169fm//qaH/fbdu2adu2bS7Pf+2116yhYtHR0Q6/PB01btw4a3/58uVu/4pq/yyjRo1S586dHd7v3LmzwxfYkiVLXJZXXV2t5cuXW8fjx493eb4/Ip5MrcWTZP4Cf+eddzrMwXbhhRdq8eLFXs3n1pEQU6bmMbVmzRplZWV5tL344osO5dq/99JLL7msgz8ipkytfU8NHjxYAwYMsI7/85//uJ3YfsmSJVYvgeDgYF1wwQUuz/c3xJOptXiyv8dXX33l0GPGmby8PIdkU2v19Hf+FFPtjbZ52xBTrtE+9w7x1Dra5qcuEpMngUsvvVQJCQmSzGE2Dz74oMNcUfbWr1+v119/3Tq++eab23zfESNGOAzHeOihh5yurpWZman58+dbx7/4xS/UqVOnFuddc8011mqPxcXFevzxx53e//XXX9f69eut41tuuaXV82688UZr/6OPPnK5OuSjjz6q0tJSSVJ4eHiHnByZeDI5i6fp06c7zHVywQUXaN68ea3eHyZiyuQspuA9YsrkLKZ+9atfWftbtmzRwoULnZa5Y8cOPfPMM9bxhAkTOtzCEsSTqbV4uuKKKxxWep82bZrLlVSPHDmiP/3pT1aiOzw8XFdccYXT8/2VP8XU8UDb3HvElGu0z71DPMHfkJg8CYSEhOiBBx6wjjdu3Kg77rjDYTLzhoYGvfbaa7rnnnvU2NgoyVw18dprr221zLFjxyotLU1paWkaO3as03v/6U9/suYzys7O1s033+zw13TDMPT+++/r1ltvVU1NjSRzJb277rqr1fLi4+N1++23W8cZGRn6/e9/77AS35EjR7RgwQI98sgj1mvnn3++zj//fKfPYt9t/OGHH9azzz6r2tpa67Xi4mLdf//9Dn+Rvfvuuz2aCNjfEE/O4+nzzz/XypUrrePevXtrzpw5Cg4OdvpMIKYk199R8B4x5TqmJk2a5NAjac6cOZo+fbpDj4impiatXLlSt9xyi9WrLioqSvfff7/TZ/dXxJPzeIqLi9Pvfvc76zgrK0tXX321PvroI+tzOOqLL77QL3/5S23ZssV67d5777V++e1I/Cmmjgfa5t4jppyjfe494gn+xma4Gx8En5k+fbqWLl1qHQcEBCgtLU2RkZHatWuX9ddGyVyZ7NVXX1Xfvn1bLWvs2LHWpMHJyclas2aN0/s+++yzmjNnjsNr/fv3V5cuXZSbm+vwi1CnTp30/PPP66yzznJaXkNDg377299q7dq11mvBwcFKS0tTSEiIcnJyHFYaTUlJ0euvv+6yoVJQUKAbb7zR4cs2KipKAwYMUF1dnbKyshwmu73wwgv173//u8NN2G6PeGoZT5MnT9aGDRus4z59+ig5OdnpvVtz5ZVX6uc//7lX1/gLYqrtv0xt2rTJoTdTVlZWm8vyJ8SU85gqLS3V5MmTHeZmCgoKUp8+fRQbG6vdu3c7zBcVHBysZ555RmPGjHFapr8jnpzH0+OPP65XXnnF4bWYmBj17t1bwcHB2rt3r4qKihzev/HGGzV9+nSnZXYE/hJTrsybN89ayXbkyJEeD2Gkbd42xFRLtM/bjnhqO9rmJ5egE10B/Oixxx5TbGysnn/+edXX16upqanVicr79eunf/3rX06/VLx11113KSIiQrNnz7b+qmE/6flRSUlJ+sc//uH2SyUoKEjz5s3TY489pmXLlskwDNXX17c6B8WIESP0r3/9y+0v/ImJiXrppZf0wAMP6Msvv5RkzkVydN/epEmT9Mgjj3T4hg/x5KiiokKffvqpw2t79uzRnj17vHk8nX766V6d70+IKbQ3Ysq5Ll266MUXX9Rf//pX/e9//5NhGGpoaFBOTk6Lc7t3764nn3xSZ599tssy/R3x5Nz06dOVmpqqf/zjH1ZSs7y8XF9//XWLc6OiovT73/9e119/vcsyOwJ/ianjgbZ52xBTjmifHxviCf6CHpMnoV27dumNN97Qhg0blJ+fr8OHDys6OlqDBg3S+PHjdeWVVyokJMRlGd78xeOo/Px8vfbaa1q3bp3279+vqqoqRUZGKjU1VRdffLGuueYaRUZGevUs3377rd5880199tlnKigoUF1dnbp06aLTTjtNl19+uS699FKvGimGYeiDDz7QypUr9e2336q4uFgBAQFKTEzUmWeeqV/84hcd9j8mZ4inH691NnTBG1OnTtU999xzzOWcyogp7/FXWdeIKdcyMzO1fPlybdy4Ufn5+aqqqlLnzp01ePBgXXrppbrqqqsUGhrqVZn+jHhyrqqqShkZGfrkk0+UlZVlrX4bExOjtLQ0jR49WhMnTvS6nv7On2KquWPtjUTbvG2IKRPt8/ZBPHmPtvnJhcQkAAAAAAAAAJ+jPz0AAAAAAAAAnyMxCQAAAAAAAMDnSEwCAAAAAAAA8DkSkwAAAAAAAAB8jsQkAAAAAAAAAJ8jMQkAAAAAAADA50hMAgAAAAAAAPA5EpMAAAAAAAAAfI7EJAAAAAAAAACfIzEJAAAAAAAAwOdITAIAAAAAAADwORKTAAAAAAAAAHyOxCQAAAAAAAAAnyMxCQAAAAAAAMDngk50BQAAAOA7+/fv10UXXeT2PJvNpqCgIEVERCg+Pl69e/fWmDFjNH78eHXu3NkHNT15ZWRk6KGHHpIkJScna82aNcdcpmEYysjI0KBBgzR48OAW7zf/uX344YdKSUk55vsCAACcSPSYBAAAQAuGYai+vl7l5eXauXOnVq9erYcfflijRo3S7NmzVVdXd6Kr6DdycnJ000036c9//rMqKytPdHUAAAB8hh6TAAAAHVhqaqoSEhJavN7U1KQjR46otLRUBw4cUH19vSSpvr5eCxcu1Jo1a/Tcc8+pW7duvq6y37n66qutzxcAAKAjITEJAADQgf3617/WxIkTXZ5TV1enTz/9VM8884y++eYbSdLOnTt1yy236PXXX1dMTIwPauq/SEoCAICOiqHcAAAAcCkkJERjxozRq6++qhtvvNF6fd++fdZcizi+UlJSlJWVZW3MLwkAAPwBiUkAAAB4JDAwUA8//LAuvvhi67U1a9Zo3bp1J7BWAAAAOFWRmAQAAIDHbDabHn/8cUVERFivLVy48ATWCAAAAKcq5pgEAACAV+Li4vSLX/xC6enpkqQvvvhCeXl56tGjh8vrcnJytHz5cn3yySc6ePCgKisrFR0drR49emj06NG65pprvFpMp7q6WqtWrdJnn32m7du3q6ysTJWVlQoLC1Pnzp2VlpamUaNG6eqrr1ZkZKRHZR48eFBLlizR+vXrtXfvXjU0NCgpKUmjRo3SDTfcoNTUVI/r50pGRkarw+BvueUWa//qq6/WE088IUnav3+/LrroIuu9Dz/8sMVw7rFjx+rAgQOSpG+//VahoaHas2ePXnvtNa1fv14HDx6UzWZTUlKSRo8erRtvvLHFz2z16tVatmyZduzYoaKiIkVERGjw4MH6+c9/riuuuEKBgYEePd/XX3+tFStWaNOmTSooKFB1dbViY2PVp08fnX/++brmmmsUGxvr2YcFAAD8FolJAAAAeO2yyy6zEpOStG7dOt10002tnnv48GHNnDlTGRkZampqcnivuLhYxcXF+uqrr7Rw4ULdcccdmjp1qmw2m8v7L168WPPnz1d5eXmL9yorK1VZWakDBw5ozZo1mjdvnmbOnKlLL73UZZnp6emaO3euamtrHV7Pzc1Vbm6u3njjDf3ud79TfHy8y3JOFgsXLtRTTz3VYnGdyspK5eTkaOnSpZo7d64uuOAClZWV6cEHH9TatWsdzi0vL9fGjRu1ceNGvf3225o/f75CQkKc3rO0tFQPP/ywVq9e3eK9wsJCFRYWatOmTVqwYIEeeOAB3XDDDe3yrAAA4NREYhIAAABeGzZsmMLDw1VTUyNJ+uqrr1pNTJaVlen222/Xtm3brNcCAwM1YMAARUdHq6ysTDk5OTIMQ7W1tXr66aeVk5OjuXPnOu2dN3PmTL300kvWsc1mU69evZSQkCCbzabCwkLl5uZaSdBDhw7p3nvv1auvvqrTTz+91TL/9re/adGiRQ6v9erVS4mJiSopKdGuXbtUX1+v2bNna8iQIV59Vq1JTEzU6NGjJUkbNmywXh82bJiio6Ml6Zh6Zz711FN67rnnJEnBwcHq06ePYmJitHfvXhUWFkqSampqdP/99+utt97SAw88oK1bt0qSEhIS1Lt3b1VUVCgrK0uGYVj1nD17ttMFj/Ly8vTrX/9aeXl51mshISFKTU1VRESECgoKtHfvXklmcvSxxx7T3r179ec//7nNzwkAAE5tJCYBAADgtYCAAPXo0UNZWVmSpD179rQ4xzAMTZs2zUpKBgQEaPLkyZo8ebLDMN7CwkLNmzdPr732miTpvffe01NPPaX777+/RZnr1693SEqOGzdODz30UIsh4AUFBfr3v/+tJUuWSJKampo0f/58Pfvssy3KXL16tUNSMi0tTTNnztRpp51mvbZ792498sgj2rx5s7Zv3+7+A3LjvPPO03nnnWfd76g//vGPOuecc465/KNJyYkTJ+q+++5TYmKiJPNnkp6err/97W+SzOTk1VdfraqqKiUmJmrmzJk6//zzrXJ27typqVOnWj/fJUuWaOrUqYqKinK4X21tre655x4rKRkaGqp7771X119/vcLDw63zcnNz9eSTT1o9Kl944QUNGDBA11577TE/MwAAOPWw+A0AAADaxD4ZePDgwRbvL1++XB9//LEks1fj7Nmz9Yc//KHF3IIJCQmaMWOGfv/731uvLVy40OpdZ89+oZ0RI0bon//8Z6vzUiYmJuqxxx7TJZdcYr22ceNGNTY2OpzX1NSkv//979Zx//799corrzgkJSWpb9++WrRokdXL8VRwww03aNasWVZSUjJ/DrfddptGjRplvVZVVaWoqCi98sorDklJyfw8Zs+ebR0fOXJEX375ZYt7Pf/888rMzJRkJiUXLVqkyZMnOyQlJbMX6tNPP63rr7/eem3WrFmqqKg4tocFAACnJBKTAAAAaJOwsDBrv7q6usX7zz//vLV/xRVXaMKECS7Lu/POOzVs2DBJZsJw8eLFDu9XVVU5DAm/6667FBDgujk7btw4a7+urk5lZWUO73/11VcOCdBHH320RW/Ao4KDgzVr1iyH5z5ZRUVF6YEHHnD6/sUXX+xwfNNNNzldvGjIkCEOyc3c3FyH9+vq6vTyyy9bx7fddpvOOussp/e22Wz685//bJVZXV2tpUuXOn8YAADgt0hMAgAAoE2Cgn6cFah5T8Tc3FxrmLdkDin2xFVXXWXtr1u3zuG9yMhIffnll/r444/18ssvW0OhXWm+UM2RI0ccju3v0bt3b5199tkuy0tISGiR1DsZjRo1ymmCVVKrK3q7Yp+YrKysdHjviy++UElJiXXsyc86JCREP/vZz6zj5j9rAADQMZCYBAAAQJtUVVVZ+5GRkQ7vNR/u27dvX4/KHDp0qLX//fffKz8/3+F9m82mxMREnX322S5Xh66qqtKnn36q5cuXO7zefFXwzz//3No/88wzParjueee69F5J9KAAQNcvt+pUyeH4z59+rg8PzQ01Npv/hna/6yDg4PVs2dPj+po/7P+9ttv1dDQ4NF1AADAf7D4DQAAANrEvudc8955zYf7Np+70FMFBQVKSkpy+n5+fr527Nihffv2KS8vT3l5edq1a5f279/fIoEmyVph+qijK1RLZo9JT/Tv39+zyp9AcXFxXp3fPLHcnM1mc/qe/c+6vr7eYTEfT9XW1qq8vLxFD1cAAODfSEwCAACgTeyTegkJCQ7vtddiJuXl5S1eq6ur09KlS7V06VLl5OS4vD4oKMhlT7zS0lJrPyIiwqM6de7c2aPzTiT7Ho6ecJV4dKe9ftaHDh0iMQkAQAdDYhIAAABeKy8v1759+6zjo4vWHGWfDAwNDXU7d6MzzZOAhYWFuuuuu/Tdd9+1en5sbKxSU1M1bNgwjRw5UgEBAbr99tudll9fX+91nVwNIT9ZHEui0Vv2P+vo6OgWseCpU+FzBQAA7YvEJAAAALz2zTffOBwPHz7c4dg+oRgWFuawQndbNTQ06J577nFISo4YMULjxo3TsGHD1K9fP8XGxjpcs3HjRpdlRkVFWb0mmy/q4oz93Jpw/FmnpKS0y88aAAB0DCQmAQAA4LW33nrL2u/UqZN++tOfOrxvv4pzRUWFqqqq3M5j6M4HH3ygr7/+2jq+9957dffdd7u8prWh4PZ69eplJSZ37tzpUT3se4rC8Wf9/fffn8CaAACAUw2rcgMAAMArBQUFev/9963jiy++uMXiNyNGjLD2m5qatHnzZo/K3rx5s6ZPn65nn31Wb7/9tqqrq6331q1bZ+0nJiZqypQpbsvbsWOHw3HzBXHs67l582Y1Nja6LXPLli1uz+lI7D/DsrIyZWVleXTdu+++q8cee0zPPfecVq5c6dFnDwAA/AuJSQAAAHjMMAz95S9/seZmDAgI0B133NHivEGDBjn0pHvhhRc8Kv9f//qXli5dqjlz5mjmzJkO8w4WFRVZ+3FxcQoIcN2Uraio0JtvvunwWvPk17hx46z9goICvffeey7LrK6u1vLly90+hzd8OR/k8XDuuecqLCzMOl68eLHba+rq6jR79mz997//1d///nfNnz9fgYGBx7GWAADgZERiEgAAAB5pbGzUrFmztH79euu16667TgMHDmxxbmBgoG699Vbr+LPPPtOCBQtclv/yyy/riy++sI4nTZqk4OBg6zgmJsbaz8nJUUFBgdOyamtr9eCDDzqsHC61XOzm9NNP1znnnGMd//Wvf1VeXl6rZRqGoRkzZjis5N0e7FfQrq2tbdeyfSE6OlrXXHONdZyRkaG3337b5TVz5851GBJ//fXXH7f6AQCAkxeJSQAAALhUU1OjlStX6tprr3Xo+XjaaafpoYcecnrdTTfdpCFDhljHc+fO1YMPPthiHsKSkhI98cQTmjlzpvVaYmKi7rzzTofzRo8ebe3X19frN7/5TYuh2vX19Vq9erUmTZqkDz/8sEWd7IeGHzVjxgx16tRJklRcXKwbbrhBH374oQzDsM4pKCjQvffe26IHZnuwT7h+/PHH7V6+L0ydOlXdu3e3jv/4xz/qb3/7W4skbl5enqZNm6ZFixZZr6Wlpenaa6/1WV0BAMDJg8VvAAAAOrD09HStWLGixeuGYejIkSMqLi7W/v37WwyBPvPMM/X000879PZrLiQkRE899ZRuvfVWqxfim2++qf/973/q16+f4uLiVFRUpLy8PIeejFFRUZo3b56io6Mdyrv88su1aNEiZWdnS5K2b9+uq666SikpKerWrZsqKyuVl5fnsGp2XFycqqqqrJ6I9sPBj+rVq5dmzZqladOmqb6+XoWFhbr77ruVkJCg3r17q6qqSjt27LDmpxw3bpzbId/eSE1NVX5+viTppZde0ueff66YmBj169dP06dPb7f7HE+xsbGaN2+e7rjjDpWWlsowDC1atEgvvPCC+vfvr+joaBUUFLSIpcTERD399NMOPWMBAEDHQY9JAACADiw7O1sbNmxosX3yySfasmWLcnNzHRJJnTt31u9//3stXrxYXbp0cVt+SkqKXn/9dYe5HA3D0M6dO7Vp0ybt3r3bISk5ZMgQ/fe//9Xw4cNblBUcHKyFCxcqLS3Noay8vDxt3rxZmZmZDknJMWPG6M0333Q439nCNRMmTNCiRYsUFxdnvVZYWKjNmzfru+++s5KSN9xwg+699163z+2N3/zmNw6JuR07duizzz7T2rVr2/U+x9vQoUP1+uuvOwyNb2xsVFZWljZv3twilkaNGqWlS5eqZ8+eJ6K6AADgJECPSQAAALRgs9kUFhamiIgIpaSkKDU1Veedd57GjBljDXv2VGxsrJ566illZmbqnXfe0aZNm/T999+roqJCwcHBSkxM1LBhwzRhwgSNGTPG5aI23bp10xtvvKHly5frvffeU2ZmpsrLy2Wz2dS5c2f16tVLQ4YM0YQJE6zVoi+88EJ9++23kqR33nlHf/jDH1p9hpEjR+r999/XG2+8oQ8++EDZ2dk6fPiw4uPjNXz4cP3yl7/UT37yE+3atcur53fnjDPO0CuvvKKFCxfq66+/Vnl5uUJDQxUREaHa2lqXvVJPNikpKXrxxRf1+eef67333tPnn3+ugoICVVZWqlOnTurevbtOP/10XXHFFRo5cuSJri4AADjBbIb95DkAAAAAAAAA4AMM5QYAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz/1/1SXbE9Wuqc0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.015, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.015, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate / (1 + rate * deadtimes_plot), \n", + " label=r'$\\frac{r_{in}}{1 + r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length, paralyzable=True)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAAQ5CAYAAABF6gYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyNdf/H8feZDYOxm+xkGYw1JSGi3a+sqWhRaVFpoY02haISFRV106qIKKRkl30ruyEMQ8wYY5iFOdv1+2Oaq3PMdsbMmTPmvJ6PR4/7+p7rOt/zPedcue/77XM+X4thGIYAAAAAAAAAAF4X4OsFAAAAAAAAAIC/IJAFAAAAAAAAgEJCIAsAAAAAAAAAhYRAFgAAAAAAAAAKCYEsAAAAAAAAABQSAlkAAAAAAAAAKCQEsgAAAAAAAABQSAhkAQAAAAAAAKCQEMgCAAAAAAAAQCEhkAUAAAAAAACAQkIgCwAAAAAAAACFhEAWAAAAAAAAAAoJgSwAAAAAAAAAFBICWQAAAAAAAAAoJEG+XgAAAPA/R48e1fXXX+/RtRaLRcHBwQoNDVWVKlXUuHFjXX311br11ltVpkwZL6+06Jk4caImTZokSWrbtq2++eYbH6/Id+677z5t3LhRkjR48GA99dRT+Z4zIiLCPP7666919dVX53tOXypu78dTc+bM0fDhwyVJNWrU0LJly/I9p2EYmjNnjpo0aaKmTZtmOn/hn2tLly5VzZo18/26AACg+KFCFgAAFGmGYchqtSoxMVH79+/X/Pnz9eqrr+r666/XzJkzfb08AH5g//79uvfee/Xyyy8rKSnJ18sBAACXOCpkAQCAzzVq1EhVq1bN9rzValVycrIOHz6slJQUSVJiYqJef/11xcfH68knnyyspQLwQ7169ZLNZvP1MgAAQDFBIAsAAHzuwQcfVO/evXO9zmq16ocfftC7776rtLQ0SdKkSZPUoUMHtWrVysurBOCvCGMBAEBBomUBAAC4ZISEhOjee+/V+PHjzcecTqcmTpzow1UBgFSzZk1FRUWZ/9A/FgAAZIdAFgAAXHJuuOEGtWvXzhyvW7dOCQkJPlwRAAAAAHiGQBYAAFySbrrpJvPY4XDo77//9uFqAAAAAMAz9JAFAACXpAt/Dnzy5Mlsr7Varfr999+1bt06bd++XQkJCTpz5oxCQkJUrlw5XX755br66qvVu3dvVa5cOdt57rvvPm3cuFGSNH/+fNWpU0eTJ0/WvHnzFBcXp/Lly6tRo0bq06ePunXrlun569at06pVq7RlyxadOHFCZ86ckSSFhYWpevXquvLKK3X77bercePGF/OR6Pbbb9e+ffskSZ07d9Znn33m0fOefPJJLVmyRJLUt29fjR49WnPmzNHw4cMvah2SNHjwYD311FNZnktJSdGvv/6q9evXa9euXTp9+rSSkpJUqlQphYWFKSIiQu3bt1evXr1UpkyZPL1uTEyMvvnmG61atUonTpxQSEiIqlWrpk6dOqlXr166/PLLL/o9ZeWvv/7SL7/8og0bNig2NlYpKSmqUKGC6tWrp06dOqlPnz6qUKFCgb6mlN7TdMGCBVq4cKF2796tM2fOqHz58oqIiFCfPn106623ymKx5Hne/fv3a968eVqzZo2OHz+upKQklStXTrVq1VLHjh3Vp08fVatWzeP5vPFdHz9+XDNmzNAff/yh6Oho2e12XXbZZWrfvr369++vRo0a5fl9ZyW7fwfuv/9+87hXr14aO3asJOno0aO6/vrrzXNLly7N9OdU165ddezYMUnS9u3bVaJECR06dEg//PCD/vjjDx0/flwWi0WXXXaZOnbsqHvuuUe1atVym2PJkiX68ccftXfvXp08eVKlS5dW06ZN1aNHD91+++0KDAz06P356t4FAAAEsgAA4BJ14SY7pUqVyvK6efPmady4cYqNjc1yjpSUFP3zzz9avXq1Pv74Y7344ou65557cn19p9OpJ554QqtXrzYfi4uLU1xcnDp27Oh27c6dOzVixAjt3Lkzy7nOnz+vuLg4/fXXX5o6dar69OmjESNGKCQkJNd1uOrZs6feffddSdKaNWuUkJCgihUr5vicxMRErVy50hx7srlafnz55Zf69NNPlZiYmOlcUlKSkpKSdOzYMS1btkwTJ07U6NGj3aqhc/Ljjz9q1KhROnfunPnYuXPndObMGe3du1fTpk3T/fffr+eff97j0Co7CQkJeu2118wg21XGfbBhwwZNnjxZQ4cOVf/+/fP1eq527dqloUOHKjo62u3xkydP6uTJk1q9erVmzJihDz74wOM5z507ZwbxTqfT7Vx8fLzi4+P1559/6rPPPtMjjzyiwYMH5xr4euO7/uKLLzRhwgRzU78Mhw8f1uHDhzV79mw9/fTTOf7FSlHy2Wef6aOPPsr051lSUpL279+vmTNnasKECbruuut0+vRpDRs2TCtWrHC7NjExUWvXrtXatWs1f/58ffrppzn+2eHLexcAAKQjkAUAAJekqKgot3FWG+hMmzZN77zzjttjNWrUUI0aNRQQEKCEhAQdPHhQdrtdUnowOnLkSFWsWFG33nprjq//ySefuIWxGQIDA/V///d/5njTpk169NFHlZqaaj5WoUIF1a1bV6VKldLZs2d18OBB87xhGJo9e7ZCQkI0YsSIXD4Fd927d9f48eNlt9tlt9u1cOFC3XvvvTk+Z+HChWYYVLduXV1xxRWSpPDw8EzBck62bNliBqEWi0UtWrTIdM3o0aP1zTffmGOLxaI6deqoatWqslgsiouL0+HDh81A8MyZM3rmmWf0/fffq1WrVjm+/uLFi7Vv3z4ZhiEp/X6oXr264uPjdfDgQUmS3W7XtGnTdPz4cU2YMOGiKkil9CrcBx98UDExMeZjISEhatSokUqXLq3Y2FgzLE1KStKbb76p6Ohovfzyyxf1eq62bdumBx54wO1+CgsLU4MGDeRwOLRv3z6dO3dOGzZs0MMPP+zRnKdPn9bDDz/s9hcGgYGBatiwocqVK6fTp09r//79MgxDaWlpmjRpkvbv368JEyZkG2x747t+5513NG3aNLfH6tSpo/DwcJ06dUoHDhyQzWbT+++/r8jISI/ee05c/x1w/Xe9efPmKleunCTlqxr3o48+0v/+9z9JUnBwsOrVq6fy5csrOjpacXFxkqTU1FQNGTJEP//8s4YOHaodO3ZIkqpWraq6devq7NmzioqKMu/71atX6/3338+2ut2X9y4AAPgPgSwAALjk2Gw2zZ071xxXrVo1UzCyf/9+vf/+++a4bdu2euONN1S/fn23686cOaOvvvpKn376qRkOffzxx7kGsosWLZKU3sbggQceUPny5bVnzx5t3bpVVatWlSSlpaVp+PDhZnhWrVo1vfXWW2rfvr1bGGiz2fTLL79ozJgxZjXhjBkzNHjwYFWqVMnjz6VKlSq69tprtXz5cknpbRVyC2R//vln87hPnz7mcYcOHdShQwePXnfWrFlugdXTTz+tzp07u13zxx9/uAV0N998s4YPH57p5++xsbH65JNPNGPGDEnplciffvqppkyZkuMaMgL6Bg0aaOTIkWrTpo15bt++fXr11Ve1bds2SdKvv/6qq666yqNK6AulpaXpqaeeMgOtEiVK6JlnnlG/fv0UGhpqXnf48GG9++67ZhXiV199pYYNG6pv3755fs0MycnJeuaZZ8z7qWTJknrppZd0xx13mBWRqampmjZtmj755BPt2rUr1zkNw9CLL75ohrEBAQEaOHCgBg4c6PZz9bi4OE2cOFE//PCDpPT7/6OPPtKQIUMyzemN73rJkiVuYWxERIRGjx7tFvwfPHhQI0aM0MaNGz1677lx/XcgIiLCfPyFF17Q1Vdfne/5M8LY3r1769lnn1V4eLik9O/kiy++MP8yKTU1Vb169VJycrLCw8M1evRoderUyZzn77//1uDBg3Xo0CFJ//3ZUbZsWbfX8+W9CwAA3LGpFwAAuKTYbDa9/vrrbhVe9913X6brpk6dala+1qxZU1OmTMkUxkpSuXLl9PTTT2vAgAHmY/v378+yxcGF7rvvPr366quqWbOmypQpo6uuukqPPfaYef6XX34x1xkYGKgpU6aoQ4cOmSozg4OD1bNnT40ZM8Z8zOl0as2aNbmu4UK9evUyj//66y8dOXIk22sPHz6sv/76y1xfjx498vx669ev15tvvmmOb7nlFj3xxBOZrnPtZ9u6dWt98MEHWfYiDQ8P15tvvqkbb7zRfGzt2rVyOBy5rqVhw4b67rvv3MJYKb2K8auvvnKrvJwwYYJbawNPTZ06VXv27JGUHmhNmzZNAwcOdAu0pPTKzUmTJqlfv37mY2PGjNHZs2fz/JoZvvrqKx0/flxSesXpxx9/rP79+7v9PD00NFSDBw/W22+/7dGc8+bN06pVq8w533//fT3//POZeodWrVpVo0aN0nPPPWc+9tlnn2Vqm5DxeIaC+K6dTqfee+89c9ygQQNNnz49UxX25ZdfrmnTpuWpstvX+vfvrzFjxphhrJT+PTz00ENq3769+VhycrLKli2r6dOnu4WxUvrn4fqXT+fPn9fWrVszvZYv710AAOCOQBYAABRpTqdTSUlJ2rt3r6ZPn67evXtrzpw55vkGDRpkCmQNwzA335KkBx98MFPocKELe1eeOHEix+stFosGDRqU4zXr1683j2+44Qa3KrusdO7cWSVLlvR4DVnp0qWLypcvb47nzZuX7bWu1bEdOnRwC4U8ER0drWeeecZsedC0aVNzgyNXycnJbj+Hf+yxxxQQkPP/DL355pvNY6vVqtOnT+e6nnfffdf8KfmFSpUqpbffftsMw5OSkrRgwYJc53RltVr17bffmuOHHnpIV155ZbbXWywWvfzyy+bnmpKSopkzZ+bpNV25fpe9evXKMXjs2bOnbrjhhlznnDp1qnl8++23Z7kZnatHH31UzZs3l5T+7+aXX37pdt4b3/Wff/7pFvy+8cYbmao/MwQHB2vMmDHZ9pQuSsqWLauhQ4dme/7C7+/ee+/NtMFXhsjISLd/fw8fPux23tf3LgAAcEcgCwAAfG748OGKiIjI8p8mTZroyiuvVI8ePTRy5Ejt27fPfF7t2rX18ccfZwpfLBaLli1bpjVr1mjGjBnq3r17rmuoUqWK2/j8+fM5Xl+/fv1cNw569913tWXLFs2dO1cvvPBCrmsIDAx0q0y8cOMiT4SEhOi2224zx/Pnz8/2WteAL6+beZ05c0aPPfaY2WKhUqVK+uSTT7IMwsqUKaOtW7dq1apV+vbbbz1qhXDhZ5vb99G2bVs1bdo0x2vq16+vtm3bmuOM1g6e2rx5s06dOmWOPfnMQkJC3HoKu26glheHDh1yCyXvvPPOXJ+TW0uGw4cPu/Vi9vQe6Nmzp3l84fvxxnft+hp169bVVVddleN8VatW9SiM9rX27dtnGyxLmftid+3aNcf5XAPZpKQkt3O+vHcBAEBmBLIAAOCSExYWpgEDBmjOnDmqW7duttdVrlxZrVu3VlhYWLbXpKWlacuWLfruu+/cHr9wp/kLNW7c2KO1lilTRk2bNs22si3jtfbt26dvv/3W7WfBnvxMPyuuYUt0dLS2b9+e6ZrNmzeb7RTKly+v66+/3uP5bTabnn76aTMgDA4O1sSJE7P8WXoGi8Wi8PBwXXXVVTnuAJ+cnKx169ZlquzN7fvwtN+ta1VgVj/rzonr9cHBwapdu7ZHz2vWrJl5vH37drOVRl5s3rzZPA4JCTGrVHNy5ZVXKigo+y0jLnz/l19+uUdrcX0///zzT6ZK7oL+rjdt2mQeX9iOIjvt2rXz6DpfatiwYY7nXavlJalevXo5Xl+iRAnz+MLP0Jf3LgAAyIxNvQAAgM81atTI3AjrQkFBQSpdurTKlCmj2rVrKzIyUq1atcrzT5ITEhK0e/duHTlyRDExMYqJidGBAwd05MiRLEOGjF3Ls1OxYsU8vb6UvjnPnj17FB0dba7h0KFDOnjwYJb9THNbQ3YiIyPVqFEjs5p43rx5mfptuoZg//d//5djcHahkSNHurVjGDFihMdBWYYTJ05o7969mb6Po0ePZhm+5vZZZNUfOCuuodbp06eVlpbmFmTlxPVn4DabLdcWFFlJS0tTYmJirtXVF3LtaVyjRo0cg9YMISEhqlWrlrnZ04Uu/Fn7hb1J87K2yy67LNvz+f2u4+LizOOc/gLGVYMGDTxbvA/lZcM+Kf0vd3JyYW9qV768dwEAQGYEsgAAwOcefPDBPP9k3hOGYWjevHn69ttvs6wSdRUUFJSn6q/cwhFXW7du1WeffabVq1eb/VazYrFYZLFYcq0G9UTv3r3Nfq6//vqrhg8frsDAQEnp/SR//fVXt2s99cUXX+iHH34wx/fdd5/Hu69brVbNnDlTM2fO1P79+3O8Nq/fR04//c7pusTERI975xbUpkZnzpzJc6iVkJBgHufl3suup65UcO8no22Fq4L8rl3fe+nSpT1aU05V8UWFp38RkCGnwDU3vrx3AQBAZgSyAACgWEpOTtbTTz+tNWvWZHm+bNmyatiwoSIjI9W2bVvVqVPHo16zGXLbqCjDuHHj9Pnnn2d5rkSJEqpXr56aNm2qK664Qp06dVK/fv107Ngxj9eRne7du2vcuHGy2+2Kj4/X2rVrde2110qSli1bZgY0jRo1cvtZck6WL1+ud9991xy3b99ew4cP9+i5cXFxeuyxx7R79+4sz1eoUEGNGjVS8+bN1bZtWwUEBOjhhx/2aO68uLD68sKfhefENTQsV66cR20DspKXauQMOQX5F/taru+nRIkSufZmzc6F4WdBf9cX894v5jMubPkJWPPKl/cuAADIjEAWAAAUSy+//LJbGNuoUSP93//9n1q2bKkGDRpk2sTrwp9vF4Rvv/3WLYytVKmSevTooTZt2igiIkI1atTIFOwWVI/GSpUqqVOnTlq2bJkk6ZdffjED2QULFpjX9enTx6P5oqKi9Nxzz5nVu7Vr19aECRPMqtuc2O12PfXUU24BXevWrXXzzTerefPmql+/vttmZpK0du1aj9aVISUlxaPrzpw5Yx5bLBaPK2sl9+CxZs2amjp1qucLzCfXdV64YVNOkpOTsz3n+n5KlSpVIO/HG9912bJlzSpZT997Tu/bH/ny3gUAAJkRyAIAgGJn+/btWrRokTm+88479eabb+ZY1eoa1BUEq9WqiRMnmuPIyEh99dVXuQaABfXTYim9FUFGILt8+XI5HA7Z7XatXr1aUvrmPp5UBcfHx2vQoEFm6Fm6dGl9+umnKl++vEfrWLx4sf766y9z/Mwzz+iJJ57I8TlZ/Qw+J0ePHvXougMHDpjHtWrV8rjSWXLfxf6ff/7xfHEFoE6dOubx0aNHPep9axiGuXFbVlzfz9mzZ5WcnJyndghZ8cZ3XadOHTOQ/fvvvz1ax5EjRzy6zl/48t4FAACZef6/QAEAAC4RK1euNI+Dg4P10ksv5Rq87dmzx22c3z6uf/75p1vQNGTIkFzD2EOHDrlt7nWxm3pluO6668xqxMTERG3evFlr1641X6Nz5865bk6WlpamJ5980gxxAgIC9P777+dp0yTX7yM8PFyDBg3K9Tl79+51G+f2fbiGgDlxrcZs3bq1R8/J6vrTp08rKirKo+f99ttvevPNN/W///1PCxculMPhyNPrXvjadrtdGzduzPU5UVFROVaUus7pdDo9mlOSNm7cqNdff11TpkzR/Pnz3aqTvfFdu65z48aNHn1+W7ZsyfUaf+LLexcAAGRGIAsAAIqdkydPmsehoaG5Vv3ZbDZ9//33bo/lN3hwXYOkTC0SsvL111+7jfPbviA4OFi33367OV66dKlZMSt5tpnXyy+/7BZ2DhkyRF26dMnTOlw/i0qVKuUajp89e1Zz5851eyy372PZsmWKj4/P8ZotW7Zo586d5vjGG2/M8foLtWvXTqVKlTLHX375Za7PsVqtev/99/Xdd9/pvffe06effupRm4cLNWrUSJdffrk5vvBeycqMGTNyPN+kSRO3ysmvvvrKo7V8+OGHmjlzpsaPH6/Ro0e79RX1xnd98803m8exsbFu1e9ZSUlJ0bx583J9H3lRmP1evcGX9y4AAMiMQBYAABQ7rj+lP3PmjLZv357ttQ6HQ2+99VamCtmL3UQpqzVIMtsEZGf+/PmZQuH8rkFyD12XLFmi5cuXS0oPyzp37pzjcydNmuTWb7ZXr1569NFH87wG189i//79io2NzfbatLQ0DRs2THFxcW6P5/ZZnD9/Xi+99FK2wW1CQoJefvllc1y7dm1df/31Hqz+P+XKlXPruTtnzhzNnz8/x+dMmDDB7efz/fr1y9NrunrsscfM41WrVmn69OnZXrt27VrNnDkzx/kCAwP1wAMPmOP169dr8uTJOT7n22+/1ebNm83xHXfcoeDgYHPsje+6VatWuvrqq83xW2+9lW0rBsMwNGrUKLPFQUFxbQ+RlpZWoHMXBl/fuwAAwB2BLAAAKHY6duzoNh46dKhbiCSlBzfr1q3TgAEDMgWhkuebRGXniiuuUGhoqDn+8MMPNXfu3EyB4f79+/Xqq6/q+eefz9SiIDU1NV9rkNKrIBs3bixJOnbsmFnB2L17dwUFZb+dwMKFCzVp0iRz3K5dO40aNeqi1uD6fdhsNj3++OOZfqZus9m0ZMkS3XHHHVq6dGmmOTz5PlavXq2BAwcqOjra7fFNmzapX79+5uMBAQEaNWpUnvrHZhg8eLCqV69ujl944QW98847mQLAmJgYvfjii5o2bZr5WEREhPr27Zvn18zQs2dPdejQwRyPGjVK48aNc9vAymq1avr06Xr88cc9artx7733KjIy0hxPmDBBw4YNy9Rn9NSpUxo7dqxGjx5tPhYeHp4poPfWdz1q1CiVLFlSUnpP4/79+2vp0qVu/87ExsbqmWeeyVRxWxBcg+ZVq1YV+PyFwZf3LgAAcMemXgAAoNhp27atOnbsaFalxsTE6J577lH16tVVvXp1nTt3TseOHXPr8RoaGqqQkBDzsQtbDuRVaGioHn/8cb3//vuS0oOyYcOGaezYsapdu7YCAwN14sQJHT9+3O151apVMx/L7xoy9O7dW2+//Xamx7KTkJCgYcOGuYVdlSpV0rBhw3T+/HnZ7XY5HI5ce9y+8847qly5sm677TZNmzZN+/btkyTt2rVLPXv2VM2aNVWtWjUlJSUpJibGLVisVKmSkpOTzWrE3D6Lm2++WYsWLdK6det0yy23qEGDBqpQoYKOHTumY8eOmddZLBYNHz5c7dq1y3G+7FSoUEETJ07UI488ooSEBBmGoWnTpumrr75SgwYNVK5cOcXGxuro0aNu4Xt4eLgmTZrkVk16McaMGaOBAwdq//79MgxDn3/+ub7++ms1btxYQUFB2r9/v7kxXP369WWxWHLcCCskJEQfffSRHnjgAbPqdO7cufrpp59Uv359VapUSSdPnlRMTIxb5WrZsmU1ceJElStXzm0+b33XderU0ZgxY/Tiiy/KZrMpLi5OTzzxhKpWraq6desqOTlZe/fuNUPojPuhoDRq1EgnTpyQJH3zzTfatGmTypcvr/r16+v1118vsNfxJl/fuwAA4D9UyAIAgGLpgw8+UNu2bd0e++eff7R582bt2rXLLYxt1aqVZs+erWuuucZ87MKK2ovxyCOPuP0kXErfXGv79u36888/3cLYyy67TJMnT3arOPzrr78KZBOd22+/3S1MadasmRo1apTt9ampqZl+lv3LL79owYIFWrJkiVasWKE//vhDq1evzvGf8+fPS0rvZfvZZ58pIiLCnM8wDMXExGjjxo3as2ePW0DXuXNnzZ071+363DZpuvvuu/Xcc88pMDBQhmFo//792rhxo1sYW6FCBY0fP173339/Lp9Yzpo1a6ZZs2a5/Yze4XAoKipKGzdu1OHDh92+t/bt22vmzJmqXbt2vl5XSg/HvvvuO7dK1LS0NG3btk1btmwxw9iGDRtqypQpKl26dK5z1qxZU7NmzXLr1WoYhv7++29t2LBBBw8edAtjIyMj9d1336lly5aZ5vLmd92tWzdNmzZNlSpVMh+Li4vTxo0btXv3bjOM7d+/v5555plc33dePP74427/Du3du1fr16/XihUrCvR1vM2X9y4AAPgPFbIAAKBYKlu2rL766istWrRICxYs0K5du3Tq1CkZhqGyZcuqZs2aatKkiW688UZde+21kqQuXbro119/lZT+8/fY2Fi3TY/yKqMas1u3bpo5c6a2bt2q2NhYWa1WhYaGKjw8XBEREerYsaO6deumEiVK6J9//tGoUaPkdDp15swZ/f7777r11lvz9VlUrFhRbdq00fr16yV5tplXQatWrZpmz56tefPmadGiRdqzZ48SExNlsVgUFhamOnXqKDIyUt26dTN3hO/SpYvZ/3fBggV6/vnnzZ+tZ+XRRx9Vhw4d9O2332rjxo2Ki4tTaGio6tWrp65du+quu+7KVNF5sWrWrKmvv/5amzZt0qJFi7Rp0ybFxsYqKSlJJUuWVPXq1dWqVSvdfvvtmf5iIL/CwsI0depUrVq1SnPnztWff/6p+Ph4lS5dWnXr1lW3bt109913u/U9zU2FChX00Ucfac+ePVqwYIE2bNigf/75R2fPnlVwcLDCw8PVvHlzdevWTZ07d86x3YM3v+u2bdvq999/1+zZs7V48WLt27dP586dU+XKldWyZUvdfffduuaaa3TgwIE8fqo5u+KKKzR9+nR99tln+uuvv5SYmKgSJUqodOnSSktLy9Nn7Wu+vHcBAEA6i5Hbb80AAABwSbNarerQoYPOnj2rkiVL6o8//lBYWJivlwUAAAD4JVoWAAAAFHNLly41f8rerVs3wlgAAADAhwhkAQAAirnp06ebx/379/fhSgAAAADQQxYAAKCYcjqd+uijj7Rp0yZJUrt27dS8eXMfrwoAAADwb/SQBQAAKEbefvtt/fnnnypZsqQOHjyo+Ph4SVJISIjmzp2rBg0a+HiFAAAAgH+jQhYAAKAYqVKlirlbfYagoCCNGjWKMBYAAAAoAghkAQAAipHWrVurfv36iomJUZkyZdSiRQs9+uijatOmja+XBgAAAEC0LAAAAAAAAACAQhPg6wUAAAAAAAAAgL8gkAUAAAAAAACAQkIPWeTLli1b3MYBAWT8AAAAAAAA/sjpdLqN2ccgawSyKFAX/osHAAAAAAAA4D+UMwIAAAAAAABAIaFCFgWKlgXIs9RUybWyOiBACg313XpwyXKt0OfPIlwM7iHkF/cQ8ot7CAWB+wj5xT2E/OCX054hkEW+BAQEuP3L1rx5cwUFcVvBc0bjxrJERf03joiQZe9eH64IlyK73a5t27aZY/4sQl5xDyG/uIeQX9xDKAjcR8gv7iHk159//mnmRAT62eOTAQAAAAAAAIBCQiALAAAAAAAAAIWEQBYAAAAAAAAACgmBLAAAAAAAAAAUEgJZAAAAAAAAACgkBLIAAAAAAAAAUEgIZAEAAAAAAACgkBDIAgAAAAAAAEAhIZAFAAAAAAAAgEIS5OsFAPBvjkWLtGf7dnPcpEUL/mACAAAAAADFFrkHAN+qUUPW+Hi3MQAAAAAAQHFFywIAAAAAAAAAKCRUyAIAAAAALgmGYcjpdPp6GUWWw+HINLZYLD5aDS5F3EP+JSAggO/XRwhkAQAAAABFkmEYSk1N1dmzZ5WcnCy73e7rJRVphmG4jQ8cOEDYgjzhHvI/QUFBKlOmjMLCwhQaGsr3XUgIZAEAAAAARY7VatWRI0dks9l8vZRLSlAQ/zcf+cM95F/sdrsSExOVmJio4OBg1a5dWyEhIb5eVrFHD1kAAAAAQJFCGHtxLBaLgoKCzH+odENecQ/5N5vNpiNHjshqtfp6KcUef+0BwKcsP/2kSjt3/jc+dEi64w4frggAAAC+ZBhGpjC2dOnS5s9pAwMDfbi6oi2jxUMGfn6MvOIe8i8Oh8NsC5OSkiLpv1C2fv36fPdeRCALwKcCXn1VdaOizLEREUEgCwAA4MdSU1Pdwtjw8HBVrFjRhyu6dBiG4RZYBwYGEqggT7iH/EtgYKBCQkJUvnx5JSQkKDY2VlJ6KJuamqrSpUv7eIXFFy0LAAAAAABFxtmzZ83j0qVLE8YCQCGoWLGiWwCblJTkw9UUfwSyAAAAAIAiIzk52TwOCwvz4UoAwL+4/plLIOtdBLIAAAAAgCLBMAzZ7XZzHBoa6sPVAIB/cf0z1263yzAMH66meCOQBQAAAAAUCU6n023MBl4AUHgu/DP3wj+TUXAIZAEAAAAAAACgkBDIAgAAAAAAAEAhIZAFAAAAAAAAgEJCIAsAAAAAAAAAhYRAFgAAAAAAAAAKSZCvFwAAAAAAAApGcHCwr5cAAMgFgSwAAAAAoFhIPGdT4jmbr5fhM4YMOewOcxwYZFOFUiEqX4qQFpcGm83GXyrALxDIAgAAAACKhcRzNkUnpPp6GT7lcLoEsgGBslS0FHogO2fOHA0fPtwcT5kyRdddd53Hzz9x4oQ6d+5sjqOiogpyeYWia9euOnbsmCRp6dKlqlmzpo9XVPAmTpyoSZMmSZIGDx6sp5566qLnio+P13vvvadrrrlGPXv2zHR+2LBhmjt3riRpzJgx6t2790W/FlAUEMgCAAAAAIqV9YdPy+40fL0MHzBks6VXCAcFWHRtg3Afryfdq6++qvnz56tChQq+XgqKoIULF+r1119XUlKSrr76al8vBygUBLIAAAAAgGLF7jT8NpAtiu/75MmTeuONN/Thhx/6eikoglatWqWkpCRfLwMoVAG+XgAAAAAAACjefvvtN82bN8/Xy8AlauzYsYqKilJUVBTtClAsEMgC8K3gYDlDQsx/RAN3AAAAoFgaNWqUYmNjfb0MAPA5AlkAPuX480/9uXat+Y/jzz99vSQAAAAABaRRo0YqX768JOns2bN6+eWXfbsgACgC6CELAAAAAAC8olKlSnr88cc1ZMgQSdLq1as1ffp03XPPPQX2GgcOHNAPP/ygjRs36tixY0pNTVX58uVVr149derUSXfeeafKlStXYK936tQpTZ8+XStWrNChQ4fkdDpVrVo1de3aVQMGDFB4eN42U9u+fbt++uknbdiwQbGxsUpLS1PFihXVtGlT3XDDDerevbuCPfgloc1m02+//aY1a9Zo+/btOnXqlJKTk1WqVCmVL19ezZs3V9euXdWtWzcFBgbmOJfT6dSiRYv0+++/a+fOnTp79qwqVKigVq1aqX///rrmmmvy9B6z0rVrVx07dsztseHDh2v48OGSpDFjxpjtCYYNG6a5c+dmejxDRESEJOn666/XJ598orNnz2rGjBlatGiRYmJiZLPZVLVqVV177bUaMGCAatWqZT53z549mj59utavX6/Y2FiVLFlSjRs3Vs+ePdW7d29ZLJYc34dhGFq8eLEWLVqkv/76S6dOnZLFYlGVKlXUpk0b3XbbberQoUP+PiwUOwSyAAAAAADAa7p166alS5dqwYIFkqRx48apY8eOqlOnTr7mTU1N1dixY/XDDz/IMNw3Mzt58qROnjypjRs3asqUKRo+fLj69OmTr9eTpJUrV2rIkCFKSUlxe/zQoUOaOnWqZs2apffff9/j9b/22mvm5+LqxIkTOnHihJYtW6bJkydrwoQJatasWbZzbdiwQcOGDdM///yT6VxSUpKSkpIUExOjhQsX6rPPPtOUKVNUvXr1LOc6ffq0hgwZou3bt7s9HhcXp99//12///67+vXrp4oVK3r0Pgvb1q1b9eyzz2ZqjxEdHa3o6Gj9/PPP+vTTT3XllVfqs88+04cffii73W5eZ7VatXHjRm3cuFErVqzQhx9+qICArH9gfvjwYQ0ZMkS7du3K8tzhw4c1Z84cdejQQePGjSuynxkKH4EsClRuf3MEAAAAAPA/r7/+ujZu3Ki4uDilpqbqpZde0vTp03Ot1MxOWlqaHnvsMW3cuNF8rEmTJrrmmmtUrlw5/fPPP1q+fLni4uKUlJSkl19+WSdOnNCTTz550e9h0aJFGjp0qBneValSRTfeeKOqVq2q48ePa8mSJTp16pSeeuqpXP+/cWpqqu69914zyAsICFD79u3VvHlzlShRQkePHtWKFSsUHx+vI0eO6J577tHUqVN15ZVXZppry5YtGjhwoGw2myTpsssuU6dOnVS9enVZLBbFxsZq7dq1io6OliTt27dPQ4cO1YwZMzLNdfr0aQ0YMEBHjx6VJAUHB+u6665T48aNZbVatXbtWu3YsUPff/+92YriYg0aNEhJSUlauHChdu7cKSk9vM8Inps3b57nOWNiYvTYY4/p7Nmzqly5sm688UZVrlxZhw8f1m+//Sar1aqzZ89q2LBh6tu3r8aPH6+AgABdd911at68uWw2m5YtW6Z9+/ZJkn7//XfNnDlT/fr1y/Ra+/bt03333afExERJUmhoqLp27arLL79cTqdT+/fv18qVK3X+/HmtWbNGffv21axZswhlIYlAFgXMYrHI4TQUGEAwCwAAAABIV65cOb311lt65JFHJEl//vmn/ve//+mxxx67qPnGjBljhrGlSpXS22+/rW7durldk5aWpnHjxunrr7+WJE2cOFFNmzZVly5d8vx6Z8+e1RtvvGGGsbfffrtGjRqlUqVKmde8+OKLeuWVV/Tbb7/lOt+IESPMMLZhw4b64IMP1KBBA7drzp8/r/fee0/ffvutzp8/r2effVa//PJLpvYLb7zxhhnGdu/eXW+99ZZCQkLcrjEMQ5999pnGjx8vKf3z37VrlyIjI92uGz9+vBnGXnbZZZoyZYoaN25snh86dKh++uknvfrqq2YQebHuvPNOSdL+/fvNQPbaa6/N1I4gLzKC1D59+uiNN95w+xzuu+8+9evXT3a7XTExMRo/frwqVqyoKVOmqEWLFuZ1zzzzjF588UXNnz9fkjRr1qxMgey5c+f01FNPmZ/BTTfdpFGjRmUKqWNjY/Xcc89p06ZNOnr0qF544QVNnTr1ot8fig829UKBszmcvl4CAAAAAKCI6dSpk+6++25zPHHiRO3duzfP8xw+fFizZs0yx+PGjcsUxkpSiRIl9Morr+iuu+6SlB5Kjhs3Tk5n3v8/67Rp05SQkCBJat26td599123MFaSypQpo/Hjx6tVq1Y5zrVnzx7NmzdPklS+fHl9+eWXmcJYSSpZsqRee+01M0A+efKkvvnmG7drtm/fboaQlStX1qhRozKFsVJ68dRjjz2m+vXrm4/t2LHD7Zro6GjNnj1bkhQUFKQPPvjA7M3qqmfPnmaf16IoMjJSo0ePzvQ5tGjRQtdff73bY6NGjXILY6X0auUXXnjBHO/du1dWq9Xtmh9++MGsOL7qqqv0wQcfZFkxHB4ersmTJ6tq1aqS0nsob9q06WLfGooRAlkUOJvTyP0iAAAAAIDfeemll1S7dm1J6ZtQvfDCC5nCrtwsWLDArFRt166dbrjhhhyvf/755xUaGipJ+vvvv7Vly5Y8r3vx4sXm8eOPP55tT9HAwEBzA7PsuLYKuOuuu1S5cuUcr3dts/Dzzz+7nStfvrxee+01PfTQQ3r22WdVsmTJHOdyrXZNSkpyO7dkyRKzF2+XLl3UqFGjbOfp37+/atSokeNr+cqAAQOy/X6aNm1qHlepUiVTQJshPDxcYWFhkiSHw6EzZ864nXf9DgcNGpRj640yZcrogQceMMc//fRTbm8BfoBAFgWOClnkhWXCBNWYONH8xzJhgq+XBAAAAMBLQkNDNXbsWDMw27dvnz766KM8zbF+/Xrz+NZbb831+rCwMF177bXmeMOGDXl6vePHj+vvv/+WJIWEhKh9+/Y5Xn/11Vfn2F/Vte/thS0DstK0aVMzUD5y5Iji4uLMc7Vr19a9996rl156SX379s1xnri4OJ0+fdocu25kJUl//PGHeez6eWXFYrHoxhtvzHXtvnBhxasr1/A7MjIyx16/pUuXNo/T0tLM4/j4eB08eNBtnty0adPGPN68eXOu16P4o4csCpzdQYUsPBcwdaoui4oyx0ZEhOTy8xAAAAAAxUubNm00cOBAff7555KkqVOnqmvXrrriiis8ev6RI0fM4yZNmnj0nKZNm2rRokWZnu+JY8eOmcd169ZVcHBwjtdbLBY1atTILXjN4HA4dOjQIXP89NNP52ktkvTPP/+YP4HP7vzhw4d19OhRxcTE6MCBA9q7d6/ZGzZDRjVsBtf3efnll+e6Dtdq26IkPDw823OulbMZFbCeXOtq//79buN27drlYXXp3w9AIIsCZ7uIfjwAAAAAAP/x9NNPa+XKldq3b5+cTqdeeukl/fzzz2YlaE5cN5OqUKGCR6/nel1eN6OKj483j3ML8XJb15kzZzIFoXmV1fqjo6M1bdo0LV682Ox1m5XAwEA5HI4sz506dco89uR9evrZF7YLe/tmJ6c2AznJ72ZmVqtVqampHt3rKL4IZFHg7A5DhmHkWPoPAAAAAPBfISEheu+993THHXfIZrPpyJEjGjt2rEaOHJnrcy8m0HQNIbOrfCxIWW2sJWVuE/Doo4/m2N4gK/Xq1XMbz549W2+88YZsNlumNdSpU0eNGjVSixYt1K5dO3355ZeaO3dunl4vO9m9R1/zdhbhei+VLVtWjz/+eJ7nCAoijvN33AEocIYku9NQcCCBLAAAAAAga40bN9ZTTz2l8ePHS5JmzpypG264IcfNpCSpXLlyZh/V06dPm5uE5cS1d2rZsmXztM4qVaqYx55WR164YVaGcuXKuY1vueUWj3qQZmfr1q16/fXXzZCwTZs2uvPOO9WqVSvVrl07U/h87ty5bOeqUqWKDh8+LCm9krdmzZo5vvbZs2cvet2XMtfqYafTqYEDB/pwNbhUsakXvIKNvQAAAAAAuXn44YfVunVrc/zKK69k2tH+QnXr1jWP9+zZ49Hr7N692zyuU6dOntboGkxGR0fr/PnzuT7nwIEDWT5eokQJtx6nF/YjzU52bQimTJlihrHXXXedpk+frp49e6pu3bpZVgK7znNhpbHr+9y3b1+ua8ruPRZ3rvdPSkqKRz1hrVZrtiE9/BOBLLzC5mRjLwAAAABAzgIDAzV27Fiz72dcXJxGjRqV43Ouuuoq83jhwoW5vsbZs2e1Zs0ac+y6470nwsPDzSpWu92upUuX5nj9gQMHFBMTk+35tm3bmse//fZbrq+/d+9eXXPNNWrZsqW6devmFqpu3brVPL7zzjtz/Ll+amqqtm3bZo4vDGS7du1qHi9ZsiTXda1cuTLXazxxqbU7rFOnjluonrFZXE5mzJihK6+8UldddZUGDRrkzeXhEkEgC6+wOQhkAQAAAAC5q1u3rl544QVzvGnTphyv79Wrl7kh04YNG3IND8ePH2/+VP+yyy5zC3Q9dfvtt5vHH330UY4//f/www9znKtPnz7m8YoVK9zC4gsZhqH33ntPknT+/HmFhYWpYsWK5nnXvrE5beYlSe+9957S0tKyfK4k3XzzzQoODpYkrV+/XuvWrct2ruXLl7uFu/nhWsmb3YZjRY3rd/j555+bLTSycvr0aX322WeS0v9yILeWHPAPBLLwCjstCwAAAAAAHurfv786dOjg0bW1atXSHXfcYY6ff/75LCtlrVar3nnnHX3//ffmY6+99tpFbah0zz336PLLL5eU3rbg0Ucf1alTpzK93ttvv51rxeQ111xjvlfDMPT0009nGSqnpqZqxIgRWr16tfnYM88843ZN48aNzeMpU6bo5MmTmeZJSkrSq6++qu+++87t8QtbL1SpUkWPPfaYua6XXnrJ7bUzrFmzxi1Az68yZcqYx8eOHSuweb3p/vvvN3sLnzp1SgMGDMiy/cTx48f1+OOPm99L+fLl9eCDDxbqWlE0sakXvIKWBQAAAAB8JSjg0voJdEEy/n3vl9pnYLFY9Pbbb+v222/3aLOoV155RVFRUfrrr7907tw5DRkyRJ9//rmuueYahYWF6fjx41q+fLliY2PN5zzyyCO64YYbLmp9ISEheuedd/Tggw8qOTlZGzdu1E033aSbbrpJderUUUJCgpYsWaJjx44pKChI1apVy7Ftwbhx43TXXXfpyJEjSk5O1pNPPqnIyEi1a9dOZcqU0bFjx7Rs2TK3qtdBgwbpmmuucZvnwQcf1J9//ilJiomJMddUq1YtWa1WRUdHa+XKlWb4GhwcbFbGZrVB2WOPPaa1a9dq69atSk5O1sMPP6x27dqpTZs2slgs2rJli1k5W69ePR06dOiiPk9Xrr1rp02bJqvVqrJly+qqq67SlVdeme/5vaFChQr68MMPNXDgQJ07d04HDx5Ujx491KFDBzVr1kwWi0UHDhzQ0qVLzc87ODhY7777ripUqODj1aMoIJCFV7CpFwAAAABfaVfHfwMPh/PS+Ml3Vi677DK9+uqrevHFF3O9tkSJEvrqq6/05ptvau7cuTIMQ7t373bbvCtD6dKlNWLECPXo0SNf62vRooVmzJihxx57TMeOHVNycrLmzJnjdk1ISIhGjRqlZcuW5RjIVqxYUT/88IOGDRumFStWSJJ27dqlXbt2Zflen332WT300EOZzt1888166qmnNGnSJBmGodTUVP30009Zvuatt96qHj16mD1Md+7cmema4OBgffLJJxo5cqRZdbx+/XqtX7/e7bquXbuqd+/eGjx4cLbv0VO33nqrJk2apMTERKWlpWnq1KmSpHvvvbfIBrJSei/i77//XkOHDtXBgwflcDi0atUqrVq1KtO1VatW1dixYz2uAkfxRyALr6CHLAAAAIDCVr5UsOpWDPX1MnzGkCGH/b9ANjAoUOVLBftwRXnXo0cPLV261KONkkqWLKkxY8ZowIAB+vHHH7VhwwadOHFCycnJKlu2rBo1aqROnTqpT58+bn1X86Nhw4ZauHChZs2apV9//VX79u3T+fPnVbVqVbVr104PPPCAGjVqpGXLluU6V4UKFTRlyhRt2bJF8+fP1+bNmxUbG6vU1FSVKVNG9erV0zXXXKO+ffuqevXq2c4zePBgXXvttfruu++0detWxcbGyul0qnTp0qpdu7aaNWumnj17qmXLlrJarapQoYJOnz6tv//+Wzt27FDz5s3d5gsJCdHo0aPVvXt3zZs3T1u3btWpU6dUpkwZNWrUSHfccYe6d++u5cuX5/vzlKTKlStrxowZ+vDDD7Vp0yYlJiaqZMmSOfbpLSqaNGmiBQsWaNGiRVqyZIm2bdumhIQE2Ww2lS9fXhEREeratat69Ojh1poBsBgXbqsH5MGff/4pp/O/atjWrVvrSOJ5pVgdirysrA9XhkuF0bixLFFR/40jImTZu9eHK8KlyG63u20q0LJly4vqDQb/xT2E/OIeQn5xD6VzOBzat2+fOW7UqJG5eRNyZxiG20ZNwcHBl9wO9vCtjCrbDKGhodxDfqQg/gx2zYkCAgLUunXrAl1jceF//w2PQkHLAgAAAAAofBcGsgCAoifA1wtA8cSmXgAAAAAAAEBmBLLwCipkAQAAAAAAgMwIZOEVdipkAQAAAAAAgEzoIQuvcDoNOZyGAgNo/o2cGREROueyt2DJiAhx1wAAAAAAgOKKQBZeY3M4FRjAjqjImfPHH7Xngh2FKd0HAAAAAADFFbkHvIaNvQAAAAAAAAB3BLLwGjb2AgAAAAAAANwRyMJr7A4qZAEAAAAAAABXBLLwGpuTClkAAAAAAADAFYEsvMZGhSwAAAAAAADghkAWXkMPWQAAAAAAAMBdkK8XgOLL7qRCFrkLeOop1d+z579xkybSp5/6cEUAAAAAAADeQyALr6FlATxhWb5c5aOizLFx4oQPVwMAAAAAAOBdtCyA17CpFwAAAAAAAOCOQBZeQ4UsAAAAAAAA4I5AFl5jp0IWAAAAAAAAcEMgC6+xOwwZBlWyAAAAAAAAQAYCWXgVbQsAAAAAAACA/xDIwqvY2AsAAAAAAAD4D4EsvMpOhSwAAAAAAABgCvL1AlC8USELAAAAAIUnODjY10sAAOSCQBZeRQ9ZAAAAAIXFcT5RzrREXy/Dpxx2u3lsCQpSQInyCixZ3ncLKuJsNhshtp/hO0dRQCALryKQBQAAAFBYnGmJsp897Otl+JTD6fhvEBCooDAVWiD75ZdfasyYMZKkatWqacWKFR49r3v37oqKijLHI0aMUP/+/XN93i+//KKhQ4dKkipWrKi1a9fKYrFow4YNuv/++yVJbdu21TfffJPl89etW6fRo0frl19+yfJ8RESEeey6vqKiqK+vIAwbNkxz586VJI0ZM0a9e/e+6LmOHDmit956Sw899JCuvvrqTOfvu+8+bdy4UZL09ddfZ3kNUFAIZOFVtCwAAAAAUNjSjq+X4bTnfmExY0iy2dLftyUgSGVrdyzU12/fvr15fPz4cf3zzz+qXr16js+JjY3NFCauWrXKo0B2w4YN5nGHDh1ksVg8XuuQIUO0cOFCj6/Hpe3LL7/U+++/L6vVqoceesjXywHY1AvexaZeAAAAAAqb4bRLhsNP/7FLht0ngXSjRo1UtWpVc7x58+Zcn7Ny5cpMj61fv15WqzXX57oGstdee62Hq0xHGOtfli5d6tE9BRQWAll4jcNpyOagQhYAAAAA/EWHDh3M47wEshaLRdddd50k6dy5c25ha1bi4uIUHR1tPtc1kL366qsVFRWlqKiobNsVABf65ptvzPuGdgXwNgJZeI3NacjmpEIWAAAAAPyFa9uCLVu25Hit1WrVunXrJKVX13br1s08l1XlrKuMXp+S1LRpU1WsWPFilgsAPkEgC6+xOZxUyAIAAACAH3Ht5XrgwAGdPn0622u3bNmilJQUSelB7rXXXquAgPSYYtWqVTm+jmsgm9d2BQDga2zqBa+xOw3ZqZBFLoxbbtHp2rXNcfmmTeV5K34AAAAARUmlSpXUuHFj7dmzR4ZhaOvWrbr++uuzvNY1dL322mtVsWJFRUZGaseOHTp8+LCio6NVt27dLJ+bU//YDRs26P7775cktW3b1mxb4Pq4q4iICPP4wg3GXKWlpWnGjBn6/fffdeDAAaWkpKhKlSpq0qSJevXqpRtuuCHb5+ZVTEyMpk+frtWrVysmJkYBAQGqVauWbr75Zt1///0qW7ZsnuZbu3atFixYoC1btiguLk5Op1OVKlVSy5Ytdcstt+imm27yaFO0c+fOaf78+Vq3bp12796t06dPKyUlRaVLl1bFihXVqlUr3XzzzerSpUuuc1mtVv3444/69ddfFRUVpZSUFFWuXFlt27bV/fffr2bNmuXpPWbF9bvN4HoPfP3112Z7gvvuu88M+l0fl6SjR4+a9/H999+vV155RbGxsfr++++1dOlSHTt2TBaLRdWrV1fXrl113333qXLlyubzN23apO+//15//vmnTp48qTJlyigyMlL9+vXz6L6x2+2aP3++lixZol27dikhIUHBwcEKDw9X27Zt1bt3b7Vo0eLiPiT4BIEsvCa9QpZAFjlzjhunQ9u2meOWLVtSug8AAABcwtq3b689e/ZISu8jm10gm9GWIDQ0VFdddZWk9HB1x44d5vmsAlnX/rFly5ZVq1atCvYNZGH37t0aPHiwjh075vb4sWPHdOzYMS1ZskTXX3+93n//fZUqVSpfrzV79my98cYbstlsbo9n9DedOXOmPvnkE4/mOnXqlJ5//nmtXbs207mMtS9cuFCRkZH68MMPVbNmzWznWrhwoUaOHJll1fOZM2d05swZHTp0SHPnzlXbtm01adIklStXLsu5jhw5okcffVSHDh1ye/z48eP6+eeftWDBAj311FMevUdfWLJkiYYPH66zZ8+6Pb5v3z7t27dPP/30k6ZNm6Z69erp7bffztTL+PTp01q9erVWr16tAQMG6OWXX872tbZv367nn39ehw8fdns8LS1NycnJOnDggL7//nvddtttGjVqlEJDQwvujcJrCGThNTaHIcMwZHc6FRRAxAYAAAAA/qBjx46aOnWqpOz7yB49elQHDhyQlL4JV0hIiCSpU6dOZti4cuVKDRgwINNzXatj27dvr6Agz6KN2rVr68UXX5Qkvfvuu+bjGY/l5N5771VKSopKlSql66+/XvXq1VNaWpr++OMPM3xeunSpxo0bp9dee82j9WTlyy+/1JgxY9zW3KVLF1WoUEGHDx/W4sWLFRsbq4EDB+Y6V1xcnO6++24zRA4ODlbnzp3VuHFjBQQEKDo6WitWrNDZs2e1a9cu3XHHHfr+++8VHh6eaa6FCxdq6NChMoz0oqu6deuqQ4cOCg8Pl8Ph0D///KNVq1YpNjZWUnpLiTfffFPjx4/PNFd0dLT69eunhIQESTI/0/r16yspKUkrV67UgQMH9MEHH6hChQp5/xBdZHy333//vWJiYiRJd999t2r/+yvN2i6/1vTUX3/9pe+//142m001a9ZUly5dVK5cOe3fv1+LFy+W0+nUiRMn9OqrryoyMlLffPONgoODdcMNN6hRo0ZKTk7WokWLdPToUUnSV199pY4dO6pTp06ZXmvdunUaNGiQzp8/L0mqUKGCunTpolq1aslms2nXrl1as2aN7Ha7FixYoMOHD2v69OkqUaLERX1eKDwEsvAamzO9f6zNYSiIPBYAAAAA/MKVV16pkiVL6vz589q9e7fOnTuXqWrUddMu1yCqRYsWKl++vBITE7Vp0yalpqZmqvi72P6x1apVM4NM10DWk3AzJSVFnTt31jvvvOMWEj733HN6//339dlnn0mSZsyYoSeffPKiNhmLiYlxCzAHDhyooUOHugXOzz//vIYMGeL2GWTFMAwNGTLEDGOvvPJKjRs3TtWqVXO77syZM3rttde0aNEiJSYm6umnn9b06dPdXjM1NVVvvfWWGcY++uijGjJkiNnvN4PNZtPbb7+t7777TpL022+/6dVXX830WYwcOdIMYxs3bqxPP/1U1atXN8+/8MILmjp1qsaNG5djD2JPZHy3K1asMAPZbt26ubUjyKvt27dLkp544gk99dRTbp/DkiVL9OSTT0qStm7dqq1bt6pOnTr67LPP3Kq9n376aT366KPmXy7MmjUrUyAbFxenoUOHmmFs//799eKLL2b6d+nAgQN65plntH//fu3YsUNvvfWWRo4cedHvD4WDmAxeY/+3XYGdtgUAAAAA4DdCQkJ05ZVXSkoP6f76669M1/zxxx/msWsQFRgYqPbt20tK7zG6bt26TM/1xYZeERER+vjjj7Os2BwyZIj5U3+73a6tW7de1Gt89NFHSktLkyTdeuutevHFFzNV/1auXFmTJ0/OsbWAlF6tu3nzZknp1ayff/55pjBWksqVK6cJEyaoSZMmkqT9+/frt99+c7tmxYoVio+Pl5QeoA4dOjRTGCulV+AOHz5cYWFhkiSHw6Fdu3a5XbNu3TqtWbNGkhQWFqbPP//cLYyVpICAAD3yyCMeBeW+csMNN+iZZ57J9DnccMMNmXrffvjhh5lab5QsWVLPPPOMOc4IeV3973//M4Pr2267TSNGjMiyHUb9+vX12Wefmedmz55ths8oughk4TUZ/WMzKmUBAAAAAP6hQ4cO5vGFbQusVqvWr18vSbr88sszhYuuAa1rJa0kxcbGmv1jGzZsqMsuu6wgl52tBx98UMHBwVmeCwgIULt27czxhX1mPWGz2bR8+XJznFP/1NKlS+uJJ57Icb4ZM2aYxw899FCOfUUDAwM1aNAgc7xgwQK385dffrmGDx+u+++/X4MHD85x86+QkBBdfvnl5jgpKcnt/O+//24e33nnnapatWq2cz355JNFth/qgw8+mO25pk2bmsetWrUyw+4LNWrUyDzOCF4z2O12zZ492xwPHjw4x/VUr15dvXv3lpQehM+fPz/H6+F7BLLwGteWBQAAAAAA/5FTILthwwadO3dOktS5c+dMz+3YsaMZ+q1evdrtnC+qYyWpTZs2OZ6vXLmyeZySkpLn+bdt22aGl7Vq1VL9+vVzvP7GG2/MNhh1OBxun3lkZGSur+/6/rZv3y673W6OGzdurAceeECvvPKKbrzxxhzniYmJUWpqqjl2nUdyr4zu0qVLjnOVLl3a7T4qKiwWi5o3b57tedd7IafPvnTp0uax1Wp1O7dr1y7zPgoNDVW9evVyXZfrd5hd72YUHfSQhdeYFbIOKmQBAAAAwJ9ERESoSpUqOnnypP766y/Z7Xbz5/fZ9Y/NUKVKFTVp0kS7d+/WsWPHFBMTo1q1aknyXSCbW09Y19YCDocjz/NnbPAkSQ0aNMj1+rCwMFWvXj3Latx//vnHLRTt06dPntZy/vx5JSYmugWLrgzDUExMjI4cOaIjR44oJiZGBw8e1O7duxUXF5fpWtfj48ePm+PcQmcpPQxevHhxntbvbeXLl89x0yzXNgYZ7Rtyu+5C+/fvN49TU1MVERGRpzVeTJU2CheBLLzGnlEh66RCFtkLuO02Re7d+9+4cWPpgp5FAAAAAC497du3188//6zU1FTt3r1bLVq0kCStWrVKUnrlX0av2Qtde+212r17t6T0vqMXBrI5PdcbypQp49X5T506ZR7nFOK5qlChQpbBW343wpLSN/u6MJDduXOnvvzyS61YsSJTKwJXgYGBWYbSp0+fdquY9eR9ZtWz19ey6uOancDAwIt6jcTExIt6XkE9H95HIAuvsTsMGZLsVMgiB5boaJU8fNgcGyVL+nA1AAAAAApKhw4d9PPPP0tK/wl1ixYtFB0drcP//u//q6++WiEhIVk+t1OnTpoyZYqk9ED2zjvvdOsf27Zt22yf6y+ye/8XhqHPP/98jtWYrgzDkM1my1QR/PHHH2vixIluFa9SejBet25dNWrUSC1atFD79u31+uuvu1Uy50dR/I5z6qFbUFy/wxo1auiee+7J0/NzquBF0UAgC68xlN6ugB6yAAAAAOB/2rdvL4vFIsMw9Ndff0ly7wmbVf/YDK1atVLZsmWVlJSkDRs2SJI2bdpkni/MdgWFoUqVKuaxp9WN2VWpXlh52rdvX5UvX96jOQ3DcGt3IEkLFy7URx99ZI67dOminj17qnnz5qpevXqmgDKjP/CFKlSooODgYNlsNknpVbi5tYI4e/asR+subly/w9KlS2vgwIE+XA28gU294FV2p2Fu7gUAAAAA8B9VqlQxd5LfsWOHJGn9+vXm+az6x2YICgpS+/btJaX/nP/EiRPFOpCtWbOmebzXpaVbdmw2m1lpfKEaNWooODjYHLv2I82O0+nMttXBJ598Yh7369dPkydP1i233KIaNWpkWS2akJBgHrtW1FosFtWoUcMce/I+Dxw4kOs1xVGdOnXM48OHD2fa9Csr58+fzxSmo+gikIVXUSELAAAAAP6rQ4cOktI3GTp58qQZqtavX98tnMuKa+i6Z88ebd26VZJUu3Ztt8CqOGjZsqUqVaokSYqNjTUrirOzbt26bEO6kiVLqnnz5uZ40aJFub7+8uXL1a5dO7Vp00b33Xef2es1KSnJLdC9++67c5znyJEjbn1tL2xx0LVrV/P4t1z2DrHb7W4V1f6kdevWZqielpamFStW5PqcCRMmqHXr1mrXrp1GjBjh5RUivwhk4VU2hyE7m3oBAAAAgF/KCGQlafbs2ebP8XOqjs3ges2mTZv0999/SyqY6ljXzZay2oCqsAUGBqpbt27meNy4cXJm82tTh8OhSZMm5Thfnz59zONZs2Zp37592V5rtVr1wQcfSJJSUlJUq1YtBQWld7jMaC+QIbcNw9566y23sesmXpJ02223mcdz587NcV0zZsxQbGxsjq/nKdfvO7vPtSgpVaqU2/0wYcKEHKtfDx8+rBkzZkhK/46aNm3q9TUifwhk4VU2hyEbm3oBAAAAgF+66qqrzA2Gvv32W/PxnPrHZggPDzdbHsydO9cM0goikC1Tpox57FrR6UtPPPGE2VN106ZNGjp0qJKTk92uSUlJ0XPPPadt27blOFePHj3UsGFDSek/ZX/ooYe0efPmTNedPn1azz77rBmMBgcH65FHHjHPV6hQQVWrVjXHEyZMyLQmSTp58qQGDRqUqZLzwn6ykZGR6t27t6T0IPjhhx/Wrl27Ms33888/a+zYsTm+x7xw/b6PHj1aYPN60xNPPKHQ0FBJ0sGDBzVw4EAdP34803X79+/Xo48+qvPnz0tKb3fQq1evQl0r8o5NveBVdqdTDqchp2EooBB2IgQAAAAAS0CQDH+tC7Gk/0LRElA0/u9+iRIldOWVV2rNmjWKj4+XJIWGhqpNmzYePf/aa6/Vvn37zL6kISEhuvrqq/O9rpo1a+rMmTOSpCeffFL/93//p3PnzunJJ59USEhIvue/GBUrVtRbb72lp59+WjabTb/++qs2btyoG2+8UdWqVdOJEye0ePFixcfHq0yZMipVqpROnjyZ5VzBwcGaOHGi+vfvr4SEBJ08eVL33HOPrrrqKrVp00bBwcE6fPiwlixZ4lZ5+dprr6levXrm2GKx6MEHH9Q777wjSdq2bZuuv/563XjjjapevbqSk5P1999/a82aNWY1rOvGXVltUDZ8+HBt27ZNBw4cUGxsrPr27avOnTsrMjJSNptNa9eu1fbt2yVJ9erV06FDh/L92br26B03bpyOHTum4OBg3XTTTWZwXdTUrVtXY8aM0XPPPSe73a6tW7fq5ptvVufOnRURESGr1ap9+/Zp5cqV5l9WlC5dWh988IHP7mF4rmj8CY1iK6N/rM1hqEQQgSwAAAAA7ytRrZ2vl+AzIU7f//z+Qu3bt9eaNWvMcbt27TwOjDp16qSpU6ea4zZt2phVg/nRr18/vfrqq5Kkffv2mRWiN954o5o1a5bv+S9W165d9cUXX2jw4MFKTEzUqVOnzJ+iZyhTpow+/PBDjR8/PttAVkoPM2fNmqXnnnvO7Em7adMmt83RMoSFhem1117T7bffnumn8Q8++KAOHjyoWbNmSUoPWTOOXQUEBKhfv35q0qSJ+dnu3Lkzy9eaMWOGnn32Wa1Zs0YOh0PLli3TsmXL3K7r16+fGjRooFGjRmX7Hj3Vp08fTZ8+XVarVYmJifr0008lpbcGKKqBrCTdcsstKleunF566SXFxsYqLS1Nv//+u37//fdM19atW1fjx4+nXcElgkAWXmX7929p7A6nSgTRIQMAAACA9wSUKK+gMF+vwsdcenYGBQUpoER5363lXx07dtR7771njj3pH5uhTZs2Kl26tFJSUiQVTLsCSerbt69KlCihb775RgcPHtT58+dVoUIFs4rXl6666ir9/vvv+u6777R06VIdOHBADodDl112mTp16qQHH3xQNWrU0Pjx43Odq2bNmpo5c6ZWrlyp3377TVu3btXJkyeVlpamsLAwNWjQQJ06dVKfPn1UsWLFTJtwSelVsqNHj9bNN9+s2bNna9u2bTp16pQMw1BYWJjq1q2rli1bqk+fPmrQoIFOnTplVsmuXbtWsbGxCg8Pd5szLCxMU6dO1eLFizV37lxt375diYmJKl++vJo3b65+/fqpc+fObm0u8qNhw4b69ttv9fHHH2v79u1KSkpSmTJlsmy/UNRcc801WrJkiX7++WctX75cu3fv1unTp+V0OlWpUiU1adJEN998s7p160Zl7CXEYmT1bxvgoT///NOtIXbr1q11JPG8ohNStfpQgsqXClazy8qqVY1yKl8q2IcrRVFlNG4sS1TUf+OICFn27vXhinApstvtbn20WrZsaW5EAHiCewj5xT2E/OIeSudwONw2+WnUqJHbZjzImWEYbpswBQcHy0LrOOSBYRhuFbKhoaHcQ36kIP4Mds2JAgIC1Lp16wJdY3Hhf/8Nj0Jl/3dDLzb2AgAAAADvuzCQBQAUPfyGHF5lcxpu/wkAAAAAAAD4MwJZeFVGZaydClkAAAAAAACAQBbeZXMYbv8JAAAAAAAA+DMCWXiVIcnhNGRzUiELAAAAAAAAEMjC62xOgwpZAAAAAAAAQFKQrxeA4s/mcBLIIlvOxx9X7K5d5jg8MlKBPlwPAAAAAACANxHIwutsDkN2WhYgG8aTT+r4tm3muGrLlj5cDQAAAAAAgHfRsgBeZ3NSIQsAAAAAAABIBLIoBHaHIbvTkGEQygIAAAAAAMC/EcjC62wOpwwjPZQFAAAAAAAA/BmBLLzO9m8QSyALAAAAAAAAf0cgC6+zOZxu/wkAAAAAAAD4KwJZeF1GZSwbewEAAADISUCA+/9FdTgcPloJAPifC//MvfDPZBScIF8vAMWfWSHrpEIWmQU2a6Y2UVHm2IiIkPbu9eGKAAAA4CsWi0VBQUGy2+2SpNTUVIWEhPh4VQDgH1JTU83joKAgWSwWH66meCPqhtdlVMbaqZAFAAAAkIsyZcqYx2fPnvXhSgDAv7j+mVu2bFkfrqT4I5CF12UEsrQsAAAAAJCbsLAw8zglJUUJCQk+XA0A+IeEhASlpKSYYwJZ76JlAbzOYRgyRMsCAAAAALkLDQ1VcHCwbDabJCk2NlbJyckKCwtTaGioAgMDfbzCosswDLcekA6Hg58cI0+4h/yLw+FQamqqzp496xbGBgcHKzQ01IcrK/4IZFEobA4nFbIAAAAAcmWxWFS7dm0dOXLEDGVTUlLcwgJkz+lSCMOGPLgY3EP+LTg4WLVr1yaI9zL+zUKhsDkM2amQBQAAAOCBkJAQ1a5dW8HBwb5eyiXFMAzZ7XbzH8OgKAZ5wz3k3zLCWDZT9D4qZFEoqJAFAAAAkBchISGqX7++UlNTlZSUpKSkJNntdl8vq8hz/YwItHExuIf8S1BQkMqWLauyZcsqNDSUythCQiCLQmF3GrI5qJAFAAAA4DmLxaLSpUurdOnSuuyyy2QYhtvPqeHObrdr586d5rh+/foKCuL/9sNz3EP+JSAggADWR/i3CoXC5nDK5qRCFgAAAMDFs1gsbOqVgwt/Xh4YGMjnhTzhHgIKBz1kUShsTkNOpyEHoSwAAAAAAAD8GIEsCkVG/1g29gIAAAAAAIA/I5BFobD/2z+Wjb0AAAAAAADgzwhkUSgy+scSyAIAAAAAAMCfEciiUNgyKmRpWQAAAAAAAAA/RiCLQmH2kKVCFgAAAAAAAH6MQBaFIqMyNqNSFgAAAAAAAPBHBLIoFBmVsRm9ZAEAAAAAAAB/FOTrBcA/GJLsToMKWWTifPddHd650xzXadZMgT5cDwAAAAAAgDcRyKLQ2BxO2amQxQWMbt10ukYNc1y7ZUsfrgYAAAAAAMC7aFmAQmOjQhYAAAAAAAB+jkAWhcbmcMrqoEIWAAAAAAAA/otAFoXGaqdCFgAAAAAAAP6NQBaFxuZwyuE05KCPLAAAAAAAAPwUgSwKjfXf6liqZAEAAAAAAOCvgny9APgP27+VsVaHUyWDA328GhQZBw+qRHT0f+OyZaVGjXy2HAAAAAAAAG8ikEWhsZkVsrQswH8Cu3dXs6goc2xEREh79/pwRQAAAAAAAN5DywIUGqs9PZC10rIAAAAAAAAAfopAFoUmozKWHrIAAAAAAADwVwSyKDRWWhYAAAAAAADAzxHIotAYkuxOg5YFAAAAAAAA8FsEsihUVoeTClkAAAAAAAD4LQJZFCqbw0mFLAAAAAAAAPwWgSwKldVhsKkXAAAAAAAA/FaQrxfga7t379asWbO0efNmnThxQufOnVO5cuV0+eWX69prr9Vdd92lcuXKeTzf9u3bNWvWLG3atEmxsbEyDEPh4eGKjIxUjx491KlTJ1ksFo/nMwxDS5Ys0bx587Rjxw6dOnVKpUqVUnh4uNq1a6c+ffqocePGF/PWfSK9QpaWBQAAAAAAAPBPfhvInj9/XiNHjtSPP/6Y6Vx8fLzi4+O1ceNGTZ48WSNHjtRtt92W43w2m02jRo3SzJkzM52Ljo5WdHS0fvnlF3Xs2FFjxoxR1apVc11jbGyshgwZoi1btrg9brVadebMGe3bt0/ffPONHnjgAQ0dOlQhISG5zulrVodThmHI7nAqKJACbQAAAAAAAPgXv0zErFarBg0a5BbGBgYGqkmTJrr66qtVs2ZN8/GUlBQ999xz+v7777OdzzAMPfvss25hbIkSJdSiRQu1bt1aZcqUMR9fvXq1BgwYoLNnz+a4xoSEBN17771uYWz58uV15ZVXKjIyUkFBQeZrf/HFFxo2bJjnH4APZWzoRZUsAAAAAAAA/JFfVsh+/vnnWrdunTnu0qWLRowYoWrVqpmPbdq0SS+99JKOHTsmSRo9erSuvPJKNWzYMNN806ZN05IlS8xx//79NXToUJUtW1ZSejXul19+qYkTJ8put+vgwYN6+eWXNWnSpGzXOHz4cB05ckRSerg7fPhw9e3b1wxiT548qbffflsLFy6UJP3yyy9q1aqV7r///ov9WApFRv/Y9P8M9O1iAAAAAAAAgELmdxWyVqtV06ZNM8fXXHONPv74Y7cwVpKuuuoqff3112aoarfb9emnn2aaLyEhQR9//LE57tevn0aMGGE+T5JKliypQYMGaeTIkeZjixcv1tatW7Nc4x9//KEVK1aY47Fjx6pfv35mGCtJVapU0YQJE9SzZ0/zsU8++UTJycm5fAK+ZTUrZNnYCwAAAAAAAP7H7wLZv/76yy20fOaZZxQYmHWlZs2aNdW/f39zvGLFChmG+0/tZ8+erZSUFEnpLQVefPHFbF+7T58+uu6668zxF198keV1X331lXncsWNHdevWLds5R4wYoUqVKkmSTp8+rblz52Z7bVHwX4UsLQsAAAAAAADgf/wukD1x4oTbODIyMsfrW7ZsaR6npKTo9OnTbud//fVX8/jWW29VaGhojvPddddd5vGqVauUmprqdv7MmTNau3atOe7Tp0+O84WGhqp79+7m+Lfffsvxel+zurUsAAAAAAAAAPyL3wWyrq0EJJnVrdmx2+1u4xIlSpjHiYmJ2rNnjznu2LFjrq/frl07syL3/PnzbuGrJG3cuFEOh0OSZLFY1KFDh1zndL1m69atOnPmTK7P8RW7w5AhWhYAAAAAAADAP/ldINugQQO38R9//JHj9WvWrDGPq1WrptKlS5vjqKgotxYGuVXbSukVrbVr1zbHO3bscDu/d+9e87hmzZoqV65crnM2btzYPHY6ndq1a1euz/EVQ+nVsbQsAAAAAAAAgD/yu0C2Vq1abn1cP/jgA8XHx2d57ebNmzVnzhxz7NpPVpKio6PN45CQkEwbg2WnZs2a5vGRI0eynbNOnToezVelShWVLFnSHB8+fNij5/mKzWFQIQuTY9Ys7Z4+3fzHMWuWr5cEAAAAAADgNX4XyErSyy+/rMqVK0uSjh07pjvuuENz5sxRfHy87Ha7YmJiNHnyZA0cOFA2m02S1LRpU917771u85w8edI8rlKlisev73qt6xySFBcXd1FzZmzsldWcRY2VClm4atJE5yIizH/UpImvVwQAAAAAAOA1Qb5egC/UqVNHP/74o0aPHq0lS5bo+PHjGj58eJbXWiwWde/eXa+99lqmDbsSExPN4wt70+akTJky5vGF/V5dx3mZ0/Xas2fPevy8guZ0OmUYThmGIafTKaczc/CaZncoze749zyVsv4uo2dydmPAE9xHyC/uIeQX9xDyi3sIBYH7CPnFPQQUDr8MZCWpYsWK6tSpk/bv3+/WJuBCHTp00COPPJJlOGq1Ws1j15YBuQkJCclyDklKS0vL95yucxS2uLg4JaQ4lJxiV1xcrGxZtCaoHGRVGUs5nTiRppSUFJ8GyCh6du7c6esloBjgPkJ+cQ8hv7iHkF/cQygI3EfIL+4hwDv8MpDdu3evnn76abdeqyVKlFCjRo0UGhqq2NhYM6RdvXq1evTooQEDBui5555TUNB/H1lGOwNJCgjwvPuD6xx2u93tnOs4L3MGBgZmO2dRY7U7ZMiQ3Wnk6T0CAAAAAAAAlzq/C2RjYmI0YMAAs91AyZIlNWTIEN19991uFakxMTEaP368Fi5cKIfDoWnTpikuLk7vv/++eY1rCJqXn967BqbBwcFu5y52TtefEVw4Z1Fjtae/L5szb6EzAAAAAAAAcKnzu0B25MiRZhhbokQJffHFF7riiisyXVerVi1NmDBBtWvX1uTJkyVJCxYsUJcuXXTbbbdJcm8pkJc2Aa7XlihRwu2cN+YsTFWrVlXamfM6q3OqWjVc9ix6yJYpHaIypcuofKUwlS8ZpFq1avlgpSgqHA6H289gmjVr5vYXE4AnuI+QX9xDyC/uIeQX9xAKAvcR8ot7CPm1Y8cO9gvygF8FsjExMVq1apU5HjRoUJZhrKshQ4Zo3bp12rZtmyTpf//7nxnIli9f3rwuOTnZ43WkpKSYx65zSFK5cuUuak7Xay+cszAFBATIYgmQxWJRQECAApQ5kHUY6ZulOZziD3bIsnSpyrn8F35QfLwCb77ZhytCcRAYGOjWHgbIK+4h5Bf3EPKLewgFgfsI+cU9BHiHX/1btXnzZrfxHXfc4dHz7r77bjOQ3bNnj06dOqVKlSopPDzcvObUqVMer+PkyZPmceXKld3OXeycrtdWqVLF4+f5gtWR0bKAvzGBFPDMM2oQFWWOjYgIae9eH64IAAAAAADAe/yqgWdcXJx5XK5cOVWtWtWj5zVu3NhtfOzYMUlSnTp1zMdSU1MVHx/v0XwxMTHmcb169dzO1a1b1zw+cuSIR/PFxcXp/PnzWc5RFNkc6VWzVkfm6lkAAAAAAACgOPOrQDYkJMQ8ttlsHj/vwo2nLBaLJKlp06bmsZRePZublJQUt6D1wrA3MjLSPD58+LDOnTuX65yur2uxWBQREZHrc3zJ7jTkNCSbgwpZAAAAAAAA+Be/CmQvu+wy8zg1NVWHDh3y6HkHDhzIcp4yZcqoadOm5uNr167Nda7169ebzY0DAwPVtm1bt/Nt2rQx+7M4HA5t2LAh1zldX7dp06ZufWiLKpvDabYuAAAAAAAAAPyFXwWyV199tVu168yZMz163o8//mgeN2zY0K1H680umw/Nmzcv14rW77//3jxu3769wsLC3M6HhYWpXbt25njGjBk5zpeSkqJ58+aZ41tuuSXH64sKq8Npti4AAAAAAAAA/IVfBbIVK1Z0C1C//vprrVu3LsfnfPPNN1qzZo05vuuuu9zO9+nTR6VKlZIkxcfHa+TIkdnONWvWLP3xxx/m+P7778/yunvuucc8Xr58uebMmZPtnG+88YYSEhIkSaGhoR5vVOZrNodBhSwAAAAAAAD8jl8FspL0/PPPm1WpDodDjzzyiD7++GMz1Mxw8uRJvfnmmxo9erT5WGRkpPr16+d2XeXKlfXwww+b4zlz5ui5557TqVOnzMfOnz+vyZMna8SIEeZjnTp1UqdOnbJcY9euXXX11Veb49dee01TpkxRWlqa+Vh8fLyGDBniVh37xBNPqGLFih59Dr6WXiFLIAsAAAAAAAD/EuTrBRS2mjVratKkSRo0aJBSU1Nls9n00Ucf6dNPP1W9evVUoUIFnT59Wn///bfZ61WS6tSpo8mTJ5v9XV0NGjRIO3bs0IoVKyRJCxYs0KJFixQREaGQkBDt379fSUlJbmt45513clzne++9p3vuuUcxMTGy2+0aP368Pv/8czVs2FBWq1VRUVFuG5N16dJFAwcOzOenU3hsDqfsDkNOw1CAy8ZoAAAAAAAAQHHmdxWyUnov2VmzZikyMtJ8zGazad++fdqwYYP27dtnhrEWi0W33nqrZs+erapVq2Y5X1BQkCZOnKg77rhDln/DRZvNpp07d2rr1q1uYWzr1q313Xff5VrJGh4erm+++UZXXHGF+VhSUpK2bt2qnTt3uoWxd9xxhz766CO3/rhFnfXf/rFUyQIAAAAAAMCf+F2FbIYGDRpozpw5WrlypRYvXqytW7fq5MmTSk1NVdmyZVWjRg21bdtWPXv2VERERK7zhYSE6K233tJdd92luXPnav369YqNjZXValXFihXVokUL3Xbbbbrppps8Dk6rVaum7777TosXL9bChQu1fft2xcfHKyAgQOHh4WrTpo3uvPNOtWrVKp+fRuHLCGKtDkMl/PYuBAAAAAAAgL/x+yisc+fO6ty5c4HN16JFC7Vo0aLA5rNYLLrpppt00003FdicRUFGIEuFLAAAAAAAAPzJpfMbdxQrGS0LrASyAAAAAAAA8CMEsvCJ/ypkDR+vBAAAAAAAACg8BLLwCSstCwAAAAAAAOCHCGThE05DcjgNs3UBAAAAAAAA4A8IZOEzVoeTClkAAAAAAAD4FQJZ+IzNYbCpFwAAAAAAAPxKkK8XAP+VXiFLywJ/59iyRdu3bTPHLVq25A8mAAAAAABQbJF7wGdsDicVspBKlJBRooTbGAAAAAAAoLiiZQF8xuow5HQacjipkgUAAAAAAIB/IJCFz2Rs6EWVLAAAAAAAAPwFgSx8JqN/rI1AFgAAAAAAAH6CQBY+YzUrZGlZAAAAAAAAAP9AIAufyaiMpUIWAAAAAAAA/iLI1wuA/7ISyEKS5fPPFb5793/jpk2lxx/34YoAAAAAAAC8h0AWPpPRQ5aWBf4t4MMPVTMqyhwbEREEsgAAAAAAoNiiZQF8xpBkcxpUyAIAAAAAAMBvEMjCp2wOp9m6AAAAAAAAACjuCGThU1a702xdAAAAAAAAABR3BLLwKZvDoEIWAAAAAAAAfoNAFj5ldVAhCwAAAAAAAP9BIAufsjmcMgw29gIAAAAAAIB/IJCFT9mc6dWxBLIAAAAAAADwBwSy8CmrPT2ItdK2AAAAAAAAAH6AQBY+lVEZS4UsAAAAAAAA/AGBLHwqozKWjb0AAAAAAADgDwhk4VMZlbFWKmQBAAAAAADgBwhk4VM2pyFDtCwAAAAAAACAfyCQhc/ZHE429QIAAAAAAIBfIJCFz1kdBhWyAAAAAAAA8AsEsvC59ApZAlkAAAAAAAAUf0G+XgBgdThlo2WB3zKqV5f17FlzHFy9uiw+XA8AAAAAAIA3EcjC52wOp2xOpwzDkMVCFOdvnL//rp3btpnjli1bUroPAAAAAACKLXIP+JzVbkiGqJIFAAAAAABAsUcgC5+zOdP7x9JHFgAAAAAAAMUdgSx8LqMylgpZAAAAAAAAFHcEsvC5jMpYGxWyAAAAAAAAKOYIZOFzGUEsLQsAAAAAAABQ3BHIwuesdloWAAAAAAAAwD8E+XoBgMMw5DQMKmT9VMArr6jO7t3/jZs2ld55x4crAgAAAAAA8B4CWRQJVodBD1k/Zfn5Z1WOijLHxv79BLIAAAAAAKDYomUBigSbwykrLQsAAAAAAABQzBHIokiwOpxUyAIAAAAAAKDYI5BFkWBz0EMWAAAAAAAAxR+BLIoEq8Mph9OQ00nbAgAAAAAAABRfBLIoEjLaFVAlCwAAAAAAgOKMQBZFQpqdQBYAAAAAAADFH4EsigSrw/j3PwlkAQAAAAAAUHwRyKJIsP5bIZtmp4csAAAAAAAAii8CWRQJVnrIAgAAAAAAwA8QyKJIsDsNOQ3DrJQFAAAAAAAAiiMCWRQZaXYnFbIAAAAAAAAo1ghkUWRYHQaBLAAAAAAAAIo1AlkUGVaHU2m0LAAAAAAAAEAxRiCLIsNqd8rmMGQYhq+XAgAAAAAAAHgFgSyKDKvDKcMwZHMQyAIAAAAAAKB4CvL1AoAMGe0KrA6nQoL4uwJ/YbRvr7MVK5rjso0by+LD9QAAAAAAAHgTgSyKjIwNvdjYy784P/tMf2/bZo5btmxJ6T4AAAAAACi2yD1QZFj/rZBlYy8AAAAAAAAUVwSyKDKokAUAAAAAAEBxRyCLIsPmMGTov0pZAAAAAAAAoLghkEWRYUiyOZyyOgxfLwUAAAAAAADwCgJZFClpdictCwAAAAAAAFBsEciiSLE6nGzqBQAAAAAAgGIryNcLAFxZqZD1OwH9+ytiz57/xk2aSD/84MMVAQAAAAAAeA+BLIoUq8OQ02nI7nQqKIACbn9g2b5dZaKizLFhs/lwNQAAAAAAAN5F4oUiJaM61krbAgAAAAAAABRDBLIoUjL6x1odho9XAgAAAAAAABQ8AlkUKVTIAgAAAAAAoDgjkEWRkhHEprGxFwAAAAAAAIohAlkUKWaFLIEsAAAAAAAAiiECWRQpTkOyOw1aFgAAAAAAAKBYIpBFkZNmd1IhCwAAAAAAgGKJQBZFjtXhlNVu+HoZAAAAAAAAQIEjkEWRY3U42dQLAAAAAAAAxRKBLIocq90pu8Mpp0GVLAAAAAAAAIoXAlkUORn9Y9nYCwAAAAAAAMUNgSyKnIz+sWzsBQAAAAAAgOKGQBZFTkb/WAJZAAAAAAAAFDcEsihyMloVpNnpIQsAAAAAAIDihUAWRY6VClkAAAAAAAAUU0G+XgBwIbvTkNMw2NTLTzjvvVfxu3eb48pNmyrQh+sBAAAAAADwJgJZFElWh0GFrJ8whg3T0W3bzHGlli19uBoAAAAAAADvomUBiqQ0u5NAFgAAAAAAAMUOgSyKJKvDqTRaFgAAAAAAAKCYIZBFkWS1O2VzGDIMw9dLAQAAAAAAAAoMgSyKJKvDKcMwZHMQyAIAAAAAAKD4IJBFkWT9t10BfWQBAAAAAABQnBDIokhKcxDIAgAAAAAAoPgJ8vUCgKyYFbJs7FXsBbZrp5ZRUf+NIyKkzZt9uCIAAAAAAADvIZBFkZRRGZtGhWzxl5ysoORkc2i4HAMAAAAAABQ3tCxAkWRzGDJEhSwAAAAAAACKFwJZFEmGJJvDKavD8PVSAAAAAAAAgAJDIIsiK83uZFMvAAAAAAAAFCsEsiiyrA4nLQsAAAAAAABQrBDIosiy2g029QIAAAAAAECxQiCLIsvqcMrpNGR3EsoCAAAAAACgeCCQRZGV0T/WamdjLwAAAAAAABQPBLIosjL6x7KxFwAAAAAAAIoLAlkUWWlmhSyBLAAAAAAAAIoHAlkUWRlBLBt7AQAAAAAAoLggkEWRZfaQJZAFAAAAAABAMUEgiyLLaUh2p0HLAgAAAAAAABQbBLIo0qwOJxWyAAAAAAAAKDYIZFGkpdmdstoNXy8DAAAAAAAAKBAEsijSrA4nm3oBAAAAAACg2Ajy9QKAnFjtTtkdTjkNQwEWi6+XAy9wvvaaju7caY5rNmumQB+uBwAAAAAAwJsIZFGkZfSPtdqdKhlMTFccGXfdpfjGjc1xjZYtfbgaAAAAAAAA76JlAYq0jP6xbOwFAAAAAACA4oBAFkVaRv9YAlkAAAAAAAAUBwSyKNKs9oyWBYaPVwIAAAAAAADkH4EsirSMytg0KmQBAAAAAABQDBDIokizOw05DcOslAUAAAAAAAAuZUG+XgCQG6vDoIdscXbypILi493GqlbNd+sBAAAAAADwIgJZFHlWu5NAthgL7NJFLaOizLERESHt3evDFQEAAAAAAHgPLQtQ5KU5nLQsAAAAAAAAQLFAIIsiL71C1pBhGL5eCgAAAAAAAJAvBLIo8qwOpwzDkM1BIAsAAAAAAIBLG4EsiryMdgX0kQUAAAAAAMCljkAWRV5GEEsgCwAAAAAAgEsdgSyKvLR/K2TT2NgLAAAAAAAAlzgCWRR5BLIAAAAAAAAoLghkUeTZnIachkEgCwAAAAAAgEsegSwuCWl2p9LoIQsAAAAAAIBLnFcC2SlTpig2NtYbU8NPpdmdVMgCAAAAAADgkueVQHbChAnq2rWrHn74Yf3666+yWq3eeBn4kTQHgSwAAAAAAAAufUHemtjpdGrNmjVas2aNwsLCdNttt6lXr15q1qyZt14SxVia3Sm7wymH01BggMXXywEAAAAAAAAuilcqZBs3bizDMMx/zpw5o++++059+/bV7bffri+//FIJCQneeGkUUxnVsVTJAgAAAAAA4FLmlUD2p59+0vz58zVw4ECFh4dLkhnO/v3333rnnXfUqVMnPfHEE1qyZIkcDoc3loFihEAWAAAAAAAAxYFXAllJatiwoV544QWtWLFCX3zxhXr27KnQ0FAzmLXb7Vq+fLmeeuopXXvttXrnnXe0b98+by0HlzgzkCW8BwAAAAAAwCXMa4FsBovFomuuuUZjx47V2rVr9c4776hDhw4KDAw0w9nTp0/ryy+/VI8ePdS7d29Nnz5dZ86c8fbScAlJszv+/U8qZAEAAAAAAHDp8tqmXlkpWbKkevTooR49eujkyZOaN2+efvnlF+3evdu8Zvfu3dqzZ4/eeecdXX/99erVq5euvfZaWSxs5OTPbA5DhghkiyPHtGk6sGOHOa7fvHnh/sEEAAAAAABQiHyWe1SpUkUDBw7UwIEDdfz4cS1btkzLli3Txo0bZbPZZLVa9dtvv+m3337TZZddpr59+6pv376qUqWKr5YMH8oIYwlki6G2bZVcosR/45YtfbcWAAAAAAAAL/N6ywJPVKtWTV26dFHnzp0VEREhSWZFrGEYOnHihCZOnKiuXbvqtddeU0JCgi+XCx8hkAUAAAAAAMClzqe/DI6OjtaCBQu0dOlS7d2713zcYrHIMAxJUq1atXTs2DE5nU7ZbDbNnj1bS5cu1fjx49WuXTtfLR0+kGZ3EMgCAAAAAADgklbogeypU6e0YMECzZ8/X7t27TIfzwhgJalixYq6/fbb1atXLzVu3FhxcXGaN2+efvjhBx05ckQJCQl64okn9MMPP6hBgwaF/RbgI2l2p2xOp5yGoQB6CgMAAAAAAOASVCiBbGpqqhYvXqx58+Zpw4YNcjgcktxD2KCgIHXu3Fm9evXSddddp6Cg/5ZWtWpVPfzww3rwwQf16quvau7cuTp37pw+/fRTvf/++4XxFlAEpNmdkiFZ7U6VDA709XIAAAAAAACAPPNaIOt0OvXHH39o3rx5WrZsmc6fPy/JPYSVpIiICPXq1Uvdu3dXxYoVc5wzMDBQb775ppYtW6YzZ85o06ZN3lo+iqCMdgVpBLIAAAAAAAC4RHklkB01apR+/fVXnT59WlJ6COvaF7Z8+fK67bbb1KdPHzVp0iRPc4eEhKhRo0batGmTEhMTC3rpKMLSHP8FsihGNm5UmR07/hunpUnt2/tuPQAAAAAAAF7klUB2+vTpbgGslF7d2rFjR/Xp00fXXXedgoODL3p+u90uSapWrVq+14pLhzWjQtZBIFucBD70kCKiosyxEREhuWzyBwAAAAAAUJx4rWVBRhjbsGFD9e7dW927d1elSpUKZO6qVauqX79+ateuXYHMh0tDmt0pQ1TIAgAAAAAA4NLllUC2XLlyuu2229SrVy81a9aswOf/8MMPC3xOFH2GJJvDSSALAAAAAACAS5ZXAtnVq1fnqyUBkJ00u1NpdoevlwEAAAAAAABcFK8EslOmTJEk1alTR7fffvtFz7FmzRoFBgbqiy++KMjl4RKWHshSIQsAAAAAAIBLk1cC2UmTJslisahjx44XHciuWbNGGzduVFhYWAGvDpeyNLtTVochwzBksVh8vRwAAAAAAAAgTwJ8vYDsnD9/XpKUmprq45WgKEmzO2UYhqwOqmQBAAAAAABw6bnoCtn4+HhZrdYcrzl//rz++eefPM2blpamlStXaseOHZLSNwgDMmS0K0izO1UiKNDHqwEAAAAAAADy5qID2Z9//lnjxo3L9rxhGNq8ebOuv/76i5o/4yfpjRs3vtglohjK2NCLPrIAAAAAAAC4FF10IPvAAw/op59+0v79+7O9xjCMi5o7ozeoxWLRgw8+eFFzeMrhcOj333/X4sWLtXPnTp08eVIOh0OVK1dWs2bNdPvtt+v6669XQIBn3R22b9+uWbNmadOmTYqNjZVhGAoPD1dkZKR69OihTp065an3qWEYWrJkiebNm6cdO3bo1KlTKlWqlMLDw9WuXTv16dPHr0LrNMd/FbIAAAAAAADApeaiA9nAwEC98cYbuvfeey86eM2OxWLR5ZdfrqeeekodO3Ys0Lldbd++Xa+99pr27t2b6dyxY8d07NgxLVq0SK1atdL48eNVo0aNbOey2WwaNWqUZs6cmelcdHS0oqOj9csvv6hjx44aM2aMqlatmuv6YmNjNWTIEG3ZssXtcavVqjNnzmjfvn365ptv9MADD2jo0KEKCQnx4F1f2syWBfSQBQAAAAAAwCXoogNZSWrTpo1WrFghu91uPmYYhm644QZZLBZdeeWVGjt2rMfzBQQEqESJEgoLC1NQUL6Wlqt169bpiSeecNs0rEqVKqpdu7ZsNpv27Nkjm80mSfrrr7903333acaMGVkGqYZh6Nlnn9WSJUvMx0qUKKGIiAgFBgZq//79Sk5OliStXr1aAwYM0MyZMxUWFpbt+hISEnTvvffqyJEj5mPly5dXgwYNdO7cOUVFRclut8swDH3xxReKi4vT+PHj8/25FHVOQ7I5DCpkAQAAAAAAcEnKd+oZHh6e5eOGYahkyZI5VpX6yuHDh93C2OrVq+v111/XddddZ7YTOHv2rCZOnKivv/5aUnrF7KhRozRx4sRM802bNs0tjO3fv7+GDh2qsmXLSkrf3OzLL7/UxIkTZbfbdfDgQb388suaNGlStmscPny4GcaWKFFCw4cPV9++fc2g+uTJk3r77be1cOFCSdIvv/yiVq1a6f7778/vx1PkpdkdBLIAAAAAAAC4JHmlDHXw4MGSpNq1a3tj+nwbOXKkGcbWrVtXX375papVq+Z2TVhYmF555RU5nU59++23kqTFixcrOjpadevWNa9LSEjQxx9/bI779eunESNGuM1VsmRJDRo0SFWqVNHLL79szrV161ZdccUVmdb3xx9/aMWKFeZ47Nix6tatm9s1VapU0YQJExQSEqKffvpJkvTJJ5+od+/eKlOmTN4+kEtMmsNJIAsAAAAAAIBLkmc7VeXR4MGDNXjwYHXv3t0b0+fLjh07tHr1aknpLRLee++9TGGsq2eeecbszWoYhltQKkmzZ89WSkqKpPSWAi+++GK2c/Xp00fXXXedOf7iiy+yvO6rr74yjzt27JgpjHU1YsQIVapUSZJ0+vRpzZ07N9tri4s0u1NWh7PAexcDAAAAAAAA3uaVQLYomzNnjnncs2dPtWjRIsfrw8LC9Nxzz+nRRx/VCy+8oObNm7ud//XXX83jW2+9VaGhoTnOd9ddd5nHq1atcuthK0lnzpzR2rVrzXGfPn1ynC80NNQt+P7tt99yvL44SLM75XQasjkIZAEAAAAAAHBpueiWBRk/k8/Qs2fPbM/ll+vc+eVa4XrnnXd69JwHHnggy8cTExO1Z88ec9yxY8dc52rXrp0CAwPlcDh0/vx5rV27VjfccIN5fuPGjXI4HJIki8WiDh065Dpnhw4dzGrbrVu36syZMypXrlyuz7tUZbQrSHM4FRLkd3+nAAAAAAAAgEvYRQeyw4YNMzfAktxD0wvP5VdBBbInTpzQP//8I0kqVapUrtWxuYmKinL72XxkZGSuzwkNDVXt2rV16NAhSektFFwD2b1795rHNWvW9ChYbdy4sXnsdDq1a9cutW/f3qP3cCkyA1m7U2VL+HgxyDfH8uXatX27OY5s0cI7za0BAAAAAACKgHznHoZhZBu+FkSPz4IMdqOioszjyy+/XIGBgZKko0eP6qefftLy5ct17NgxnTt3TlWrVlXbtm11xx13qHXr1lnOFx0dbR6HhITk2IvWVc2aNc1A9siRI9nOWadOHY/mq1KlikqWLKnz589Lkg4fPuw3gSyKgSpVZK9c2W0MAAAAAABQXF10IFu9evWLOudLruFn1apV5XQ6NXXqVE2cOFFpaWmZrj1y5Ihmz56tXr166c0331SJEu7lmCdPnjSPq+QhRHK91nUOSYqLi7uoOStVqqRjx45lOWdx818g6/DxSgAAAAAAAIC8uehAdtmyZRd1zpfi4+PN49DQUI0aNUrfffed+ViDBg1UqVIlxcfH68CBA+bjc+fO1ZEjR/Tll18qJCTEfDwxMdE8Llu2rMfrKFOmjHl85swZt3Ou47zM6Xrt2bNnPX5eQXM6nTIMpwzDkNOZvvlWgb+GJJvDqfM2x7+vQaXspSyjZ3J2Y8AT3EfIL+4h5Bf3EPKLewgFgfsI+cU9BBQOv2rV6BpU/vHHH+b4hhtu0LBhw1SrVi3zfExMjEaNGqWVK1dKkrZs2aLRo0dr5MiR5jVWq9U8LlmypMfrcA11XeeQ5Fape7FzXljtW5ji4uKUkOJQcopdcXGxsjm8E5bGVwhUsL2EyjuTlZCQ4NP3jIK1c+dOXy8BxQD3EfKLewj5xT2E/OIeQkHgPkJ+cQ8B3uFXW9S7hp8ZYexdd92lSZMmuYWxklSrVi1NnjxZt9xyi/nYDz/8oH379pljm81mHgcEeP5RBgX9l4Pb7Xa3c67jvMyZ0Q83qzmLo3NWu2z/Zr2u7x0AAAAAAAAoyopMIJucnGxuSuUtF24QVqtWLb366qvZbhwWEBCg0aNHmy0GDMPQt99+a553DQLz8rN518A0ODjY7dzFzun6M4IL5yyOztscsv3bDoFAFgAAAAAAAJeKQmlZcPjwYVksFtWuXTvTuWnTpumrr75SXFycLBaL6tSpowcffFB9+/bNNii9WKGhoW7ju+++2+2n/lkpW7asunXrph9++EGStHbtWvOca0uBvPxk3vXaCzcK88achalq1apKO3NeZ3VOVauGy+6FHrKSVKpMqEqFhqpylQoKDw+XYXjndeB9xvff65/du81x9aZNZenXz4crwqXI4XC4/ZyqWbNm/GUN8oR7CPnFPYT84h5CQeA+Qn5xDyG/duzYwV4/HvBqILt+/XqNHTtWUVFRevTRRzVkyBC388OGDdPPP/9shmmGYejQoUMaMWKEVq9erffff79Aqz1Lly7tNr7iiis8el6rVq3MQDYmJkZWq1UhISEqX768eU1ycrLH60hJSTGPXeeQpHLlyl3UnK7XXjhnYQoICJDFEiCLxaKAgAAFyDtBqdVpyGKxyOaUQoL5L4dLmfHWW6oTFfXfOCJClvvu8+GKUBwEBga6tYcB8op7CPnFPYT84h5CQeA+Qn5xDwHe4bWWBcuXL9fDDz+sqH+DlqNHj7qdX7FihX766SdJmVsJGIahxYsXa8KECQW6pgoVKriNK1as6NHzKlWq5DZOTEyUJIWHh5uPnTp1yuN1nDx50jyuXLmy27mLndP12ipVqnj8vEtVmj39b1vSvLRpGAAAAAAAAOANXglkrVarRowYYfZKNQxDCQkJbtd88cUX5rmgoCANGTJEH3/8sW677Tbz8W+++UYxMTEFtq6GDRu6jTM29srNhZtkZfztUJ06dczHUlNTFR8f79F8ru+pXr16bufq1q1rHh85csSj+eLi4tz677rOUVyZgaydQBYAAAAAAACXDq8EsvPnzzd7wpYsWVLjx4/X//73P/P8qVOntGnTJlksFlksFr388st67LHHdP3112vcuHG69957JaUHoQsXLiywdUVERLiNo6OjPXreiRMnzOOSJUuaLQGaNm3qVt27Z8+eXOdKSUlxC1obN27sdj4yMtI8Pnz4sM6dO5frnK6va7FYMr3P4shKIAsAAAAAAIBLkFcC2TVr1pjHI0aMULdu3dyaQK9cuVJOp1OGYahkyZLq1auX2/Ofeuopswr1jz/+KLB1VaxY0S2sXLJkiUfP27Rpk3nctGlTBQSkf2xlypRR06ZNzXOuG35lZ/369WZz48DAQLVt29btfJs2bcz37nA4tGHDhlzndH3dpk2buvWhLa5sTkNOwyCQBQAAAAAAwCXFK4Hsrl27JKVvUNW9e/dM5zNCVovForZt26pkyZJu58uVK6cGDRrIMAwdO3asQNfWo0cP83jZsmX6+++/c7z++PHjWrp0qTm+6aab3M7ffPPN5vG8efNyrWj9/vvvzeP27dsrLCzM7XxYWJjatWtnjmfMmJHjfCkpKZo3b545vuWWW3K8vjhJszsJZAEAAAAAAHBJ8Uoge/r0aVksFtWqVcusJnW1fv168/iaa67Jco6MDbjysrGVJ3r16mVWkNpsNg0bNkxJSUlZXmu1WvXSSy/JZrNJSq+I7d27t9s1ffr0UalSpSRJ8fHxGjlyZLavPWvWLLeK3/vvvz/L6+655x7zePny5ZozZ062c77xxhtmf97Q0FDdcccd2V5b3BDIAgAAAAAA4FLjlUA2NTVVklS2bNlM5/bs2aPTp0+b46uvvjrLOaxWqyS5tTooCBUrVtTw4cPN8Y4dO9S/f3+3kFiSDh48qIceesitZcCzzz6bqR1A5cqV9fDDD5vjOXPm6LnnnnMLks+fP6/JkydrxIgR5mOdOnVSp06dslxj165d3T6X1157TVOmTFFaWpr5WHx8vIYMGeJWHfvEE0+oYsWKuX4GxUWa3ak0h8PXywAAAAAAAAA8FuSNScuWLavExES34DXD6tWrzeMKFSqoSZMmWc5x6NAhScr0k/6C0KtXL0VHR2vy5MmSpH379mnAgAG67LLLVKtWLZ05c0b79u1ze06PHj103333ZTnfoEGDtGPHDq1YsUKStGDBAi1atEgREREKCQnR/v373apwa9asqXfeeSfHNb733nu65557FBMTI7vdrvHjx+vzzz9Xw4YNZbVaFRUVZVbuSlKXLl00cODAi/k4LllpdqfsDkMOp6HAAEvuTwAAAAAAAAB8zCsVshn9Xw8cOKDk5GS3c8uXL5eU3j+2Y8eOWT5/3bp1SkhIkMViUYMGDbyxRA0ZMkRvv/222RpBkk6cOKFNmza5hbFBQUF64oknNHbs2GznCgoK0sSJE3XHHXfIYkkPBm02m3bu3KmtW7e6hbGtW7fWd999l2sla3h4uL755htdccUV5mNJSUnaunWr/p+9O4+Psy73//++Z8vepDttoaVAF8pSOOIRpEfBpR4Uiy0IBwHZjsthUcEFUFCPh1W+yCL+jhxEBFQQBWQVFJR9kbW0pS1tga5p02wzmfXePr8/JpkmbdpmuzOT5PV8PPLIfc/c92euhGmAd69cn6VLl3YJY0844QTddNNN3Y6HGM5yXn5cQc6lSxYAAAAAAABDQyAdsocffrheffVVOY6ja6+9Vv/93/8tKR/GvvHGG4Xrtt8gS5LWr1+vH/7wh4XznY00GAjHH3+8PvWpT+mhhx7SU089pffee0/Nzc2KRqPae++9dcQRR+jkk0/WXnvttdu1YrGYrrjiCp100kl64IEH9PLLL2vLli2ybVtjxozRwQcfrGOPPVbz58/vcXA6adIk/f73v9ff/vY3PfbYY3r77bfV2NioUCikiRMn6kMf+pBOPPFEHXLIIf38TgxNHfNjc65RZazIxQAAAAAAAAA9EEggu2jRIt1yyy1yHEf33nuvFi9erMmTJ+vZZ5+VZVkyxmjChAk66qijCvesXr1ajzzyiO6++24lEglJUllZmY477rggSiyora3VaaedttNxBL118MEH6+CDDx6QtaR8J/H8+fO7Da9Huo7O2Pwc2WhxiwEAAAAAAAB6IJDfcZ80aZK+9a1vyRgjSVq5cqX+8Y9/yPM8GWNkWZZ+8IMfKBLZlgf/4Q9/0C233FIIYy3L0je+8Q1NnDgxiBIxDGzrkPWLXAkAAAAAAADQM4F0yErSWWedJcuydP3118u27cLjFRUVuuSSS3bo+Jw+fXohwA2HwzrnnHN01llnBVUehgHbMzIikAUAAAAAAMDQEVggK0lnnnmmFi5cqKeffloNDQ3aY4899PGPf1y1tbU7XDt9+nSNHj1aRx11lE4//XTNnj07yNIwTORcn0AWAAAAAAAAQ0aggawk1dXV6Qtf+MJur/vIRz6il156KehyMMzkXI9AFgAAAAAAAENG4IFsT4VCgYyzxTBHh+wwUF0tt7q6cBrudAwAAAAAADDclEwgC/RFzvXl+L58YxSyrGKXgz7wXn5ZixcvLpzPnTuXH0wAAAAAAGDYGrTcw7ZttbW1yXEc+X7vOhonT54cUFUY6nKuL5n854pouNjlAAAAAAAAALsUaCDb2tqq2267TX/961+1bt26Pq1hWZbeeeedAa4Mw0XHuAICWQAAAAAAAAwFgQWyK1as0FlnnaWWlhYZY4J6GYxwOW9bIAsAAAAAAACUukACWdu2de6556q5uTmI5YGCzh2yAAAAAAAAQKkLJJC97777tHHjRlmWJWOMDjnkEP3Hf/yHZsyYoVGjRikUCgXxshiBbNeXkZRzvWKXAgAAAAAAAOxWIIHs3/72t8Lxscceq//3//5fEC8DyCgfytIhCwAAAAAAgKEgkED23XfflSRFo1F9//vfD+IlgIKs6xdmyWLosa6+Wnt22rjPmjNHuvTSIlYEAAAAAAAQnEAC2Xg8LsuytN9++2nMmDFBvARQkHM9ZR0C2aEq9NvfauLKlYVzM2sWgSwAAAAAABi2AhnmWldXJ0mqqakJYnmgi6zry/F8+b4pdikAAAAAAADALgUSyO69994yxmj9+vVBLA900TE/NsscWQAAAAAAAJS4QALZT3/605Kk+vp6LV68OIiXAAqyjicpP7oAAAAAAAAAKGWBBLKLFi3SxIkTJUmXX365bNsO4mUASXTIAgAAAAAAYOgIJJCtrq7W1VdfrVgspqVLl+rLX/6y3nzzzSBeCigEsjkCWQAAAAAAAJS4SBCLPvPMM5KkM844Q7fccosWL16sL33pSxozZoxmzZqluro6lZWV9Wgty7J05ZVXBlEmhgnHN/KMoUMWAAAAAAAAJS+QQPZrX/uaLMuSpMJnY4yampr00ksv9Xo9AlnsTs71mSELAAAAAACAkhdIICvlA9jePL4zHYEusCtZx6dDFgAAAAAAACUvkEB24cKFQSwL7FTO9ZghCwAAAAAAgJIXSCB71VVXBbEssFNZ15fvG9mur1gkkL3qAAAAAAAAgH4jucKw0NEdS5csAAAAAAAAShmBLIaFjvmxWTb2AgAAAAAAQAkLbFOvndmyZYu2bNmieDyuUaNGae7cuZKkTCajWCymcDg82CVhGMi1B7F0yAIAAAAAAKCUDUogu27dOv3mN7/R008/rfr6+sLj8+bN06233ipJeuqpp3T55ZfrxBNP1Fe+8hXV1NQMRmkYJnKFDlkCWQAAAAAAAJSuQEcWGGN044036phjjtHdd9+tTZs2yRhT+Ohs06ZNam1t1a233qoFCxZoyZIlQZaGYcY3ku35dMgCAAAAAACgpAXaIfutb31Lf/3rX3cIXyXJsqwu5xs2bCgc19fX6+yzz9bdd9+tfffdN8gSMYxkXb8wugBDhzn4YKWi0cJ55f77y9rF9QAAAAAAAENZYIHszTffrCeeeKIQvB500EH6whe+oAMOOED/8R//scP1n//857VmzRq9/vrrsixLiURCF198sf74xz8GVSKGmZzjM7JgCPJ//3utXLy4cD537lx2GwQAAAAAAMNWILnH5s2bC7NhJenb3/62/vjHP+qUU07RIYcc0u09H/7wh/W73/1Ol156aeGxpUuX6plnngmiRAxDWdeT7fnyu+nIBgAAAAAAAEpBIIHsn/70J+VyOVmWpS9+8Yv6yle+0uN7Tz31VJ1++umF88ceeyyIEjEM5VxfMmKOLAAAAAAAAEpWIIHs888/Lyk/J/Yb3/hGr+//6le/qkgkP02Bzb3QUx1BLIEsAAAAAAAASlUggeyGDRtkWZb2228/jRs3rtf3jxkzRlOnTpUxRlu2bAmgQgxHHfNjs2zsBQAAAAAAgBIVSCAbj8cl5YPVvho/frwkybbtAakJw1+uPYjNOXTIAgAAAAAAoDQFEsjW1NRI2hbM9kVTU5Mkqba2dkBqwvBne0a+MYVOWQAAAAAAAKDURIJYdNKkSWpubtaqVasUj8d7HarW19drzZo1sixLkydPDqJEDFM512eG7BAT+upXtd+KFdvOZ8+Wfv3rIlYEAAAAAAAQnEA6ZI888khJkud5+nUfgpWbbrpJxhhJ0kc+8pEBrQ3DW9b1mSE7xFgvvqjal14qfFgvvljskgAAAAAAAAITSCC7YMEChUL5pX/1q1/piSee6PG9t9xyix544IHC+ec+97kBrw/DFx2yAAAAAAAAKGWBBLL77befFi5cKGOMPM/TBRdcoIsvvlivvPKKtm7dusP16XRaTz/9tM4880zdcMMNkiTLsjR//nzNnj07iBIxTGVdT55v5HiEsgAAAAAAACg9gcyQlaTLLrtMK1as0LJly2SM0YMPPqgHH3ywyzWvvvqqDj/8cLW1tcn38wFax6iCvfbaSz/5yU+CKg/DVM7Jv49yrq9oOJC/bwAAAAAAAAD6LLDEqry8XLfddpv+7d/+TcaYLh+WZUmScrmcWltb5XleIYiVpDlz5uj222/v9WZgQLZ9XEGWsQUAAAAAAAAoQYG2ENbV1enWW2/VNddco1mzZhUe7xzOdjZhwgRddNFFuueeezRlypQgS8Mw1TE/NsfGXgAAAAAAAChBgY0s6Oy4447Tcccdp3Xr1umNN97Q2rVrlUgk5DiOamtrNXHiRB166KHaf//9C5uBAX3REcTSIQsAAAAAAIBSNCiBbIepU6dq6tSpg/mSGGE8IzmeKXTKAgAAAAAAAKWEdlQMO1nXI5AFAAAAAABASSKQxbCTc31lmSELAAAAAACAEtTnkQWvvvrqQNaxSx/+8IcH7bUw9OVcX7ab3zTOsqxilwMAAAAAAAAU9DmQPe200wYl7LIsS++8807gr4PhI+v6MiY/R7Y8Gi52OQAAAAAAAEBBYJt6GWOCWhrYpVz7uAICWQAAAAAAAJSafgWyPQldO7poO66NRCLaa6+9VFtbq2g0qlQqpfXr16utra3L9fvtt58qKyv7Ux5GqGz7hl5Z11dtkWsBAAAAAAAAOutzILtixYpdPt/S0qL//M//1LJlyyRJn/rUp3TKKafoQx/6kGKx2A7Xr1y5UnfffbfuvfdeGZOf/3nddddpzz337GuJGKFyTj6QzbGxFwAAAAAAAEpMKKiFL7jgAr3zzjuKRCK6+uqrdfPNN+uII47oNoyVpFmzZunHP/6xfvWrX6msrExr1qzROeecI9u2gyoRw5Tt+TLa1ikLAAAAAAAAlIpAAtnHHntML7/8siTpnHPO0Re+8IUe3/vRj35U3/3ud2WM0apVq3TvvfcGUSKGMaP8/NgcgeyQYI47To3HHlv4MMcdV+ySAAAAAAAAAhPIpl7333+/JKm8vFxnnXVWr+8/8cQTdeONN6qtrU2PPPKITj311IEuEcNc1vHokB0i/Cuu0NrFiwvndXPnBte6DwAAAAAAUGSB5B4rV66UZVmaNWuWysvLe31/NBrVjBkzZIzR2rVrA6gQw12+Q5YZsgAAAAAAACgtgQSyLS0tkqRwONznNVzXlSQlk8kBqQkjS9b15XpGrk+XLAAAAAAAAEpHIIFsXV2djDFavXp1IVjtjVQqpRUrVsiyLI0fPz6ACjHcdXTH5hwCWQAAAAAAAJSOQALZOXPmSJISiYTuu+++Xt//y1/+UrlcTpJ06KGHDmhtGBk65scyRxYAAAAAAAClJJBA9phjjpEkGWN09dVX66WXXurxvb///e/1q1/9qnC+cOHCAa8Pw1+uPYjNEcgCAAAAAACghAQSyH7+85/XtGnTZFmWMpmMzj77bF166aVavHix/G5metq2rRdeeEFf+9rX9D//8z8yxsiyLM2bN0/z5s0LokQMc1mHQBYAAAAAAAClJxLIopGIfvazn+m0005TJpOR7/u67777dN999ykWi2nKlCmqrq6WlB9rsGHDBnlefuanMUaStN9+++n6668PojyMAJ4xcn2jbPssWZSu0Pz5OnDFim3ns2dLf/97ESsCAAAAAAAITiCBrCQdcMABuv322/XNb35TmzdvLgStuVxO77//fpdrO57rcOSRR+rKK68shLZAX+Rcnw7ZIcDatEll9fWFczNqVBGrAQAAAAAACFYgIws6zJ07V48++qjOP/98TZs2rfC4MabLR4d99tlHV199tW677TZNnDgxyNIwAmRdj029AAAAAAAAUFIC65DtUFVVpXPPPVfnnnuuPvjgA7366qtqaGhQc3OzHMdRTU2Npk2bpkMPPVQzZswIuhyMIB0dsh0ziQEAAAAAAIBiCzyQ7WzvvffW3nvvPZgviREs6+TDWNszKosQyAIAAAAAAKD4Ah1ZABRTx/zYHBt7AQAAAAAAoEQQyGLYyrYHscyRBQAAAAAAQKkgkMWwta1DlkAWAAAAAAAApYFAFsNWzvVlJGUdRhYAAAAAAACgNBDIYtgykmzXp0MWAAAAAAAAJYNAFsNa1vWZIQsAAAAAAICSQSCLYS3reIXNvQAAAAAAAIBiI5DFsJZ2PLmekU2XLAAAAAAAAEoAgSyGtUz7hl5pNvYCAAAAAABACSCQxbCWtvNBbIZAFgAAAAAAACUgkED2zTffDGJZoNfokAUAAAAAAEApCSSQPfnkk3XMMcfo1ltvVUNDQxAvAfSIZ6Sc6ytjE8gCAAAAAACg+CJBLfzBBx/oZz/7mW644QYdeeSROv744/WJT3xC0Wg0qJcEupVxPDpkS5j/zW+q/p13CueT5sxRuIj1AAAAAAAABCmQQDYSich1XUmS53l67rnn9Nxzz2nUqFH6/Oc/r4ULF+qAAw4I4qWBHaQdTxnHlzFGlmUVuxxsx3zlK9qyeHHhfI+5c4tYDQAAAAAAQLACGVnw3HPP6dJLL9XBBx8sSTLGyBijeDyu3/3udzrhhBO0YMEC3XHHHWpubg6iBKAgbXsyxijr+sUuBQAAAAAAACNcIIHs6NGjdeqpp+ree+/VX/7yF33ta1/T5MmTJW0LZ1etWqWrr75aH/vYx3Teeefp73//u3yfwAwDr7CxF3NkAQAAAAAAUGSBBLKdTZ8+XRdccIH+/ve/67e//a2OP/541dTUFIJZ13X11FNP6dxzz9XHPvYxXXPNNVq1alXQZWEE6Zgfm2GOLAAAAAAAAIos8EC2s8MOO0xXXHGFXnjhBV1//fU66qijFIlECuFsY2OjfvOb32jBggU64YQTdPfddyuRSAxmiRiGso4vI7GxFwAAAAAAAIoukE29dicWi+mYY47RMccco9bWVj399NP6+9//rhdeeEGpVEqStHTpUi1btkxXX3215s+fr5NOOkmHHXZYMcrFEGeU746lQxYAAAAAAADFNqgdst2pq6vTF77wBd100026/fbbdeihh0qSLMuSMUa5XE6PPPKITjvtNC1YsEAPP/xwkSvGUJRxPDpkS1UuJ6vTh3K5YlcEAAAAAAAQmKJ0yHb26quv6sknn9RTTz2ljRs3StoWxnboOF61apW+973v6U9/+pN++tOfauLEiUWpGUNP2vaUc315vlE4ZBW7HHQS/tCH9C8rVxbOzaxZ0ooVRawIAAAAAAAgOEUJZFesWKGHHnpIjz76qBoaGiSpSwArSfvvv78WLlyo+fPn64033tCDDz6o5557Tr7v65VXXtHpp5+ue+65R3V1dUX4CjDUZBxPMvnP1WVF/3sIAAAAAAAAjFCDlkzV19fr4Ycf1sMPP6zVq1dL2jGEHT16tD7/+c9r0aJFmj17duHxz372s/rsZz+rtWvX6oILLtA777yjtWvX6v/+7//0ve99b7C+BAxhaceXRCALAAAAAACA4go0mUokEnr88cf10EMP6Y033igEsJ2D2Egkoo997GNatGiRjjrqKEUiOy9p2rRp+uUvf6lPfvKTcl1XTz75JIEseiRtu/nPzJEFAAAAAABAEQUSyD7xxBN6+OGH9eyzz8pxHEk7dsPOnDlTixYt0oIFCzRmzJgerz1hwgTNmTNHixcv1ubNmwe0bgxftmfk+SY/ugAAAAAAAAAokkAC2W9+85uFjbk6b9BVV1enY489VosWLdKcOXP6vH5ZWZkkqba2dkDqxciQdjylbb/YZQAAAAAAAGAEC3yYZjgc1rx587Ro0SIdffTRikaj/V6zvr5e++67rz71qU8NQIUYKTKOx8gCAAAAAAAAFFVggex+++2nhQsX6rjjjtPYsWMHdO2//vWvsixrQNfE8Jd2PLmeL8fzFQ2Hil0OAAAAAAAARqBAAtk//elPOvDAA4NYWpIIY9EnmfZxBWnHUy2BLAAAAAAAAIogkEA2k8no1VdfVW1trWbOnNmnNV544QW9+eabchxHF1xwwQBXiJGoY1xBxvZUW97/0RkAAAAAAABAbwUSyJ522mmyLEvz5s3Trbfe2qc1fvGLX+jNN9/U2LFjCWQxIDLtgSxzZAEAAAAAAFAsJft72+FwWMYYtba2FrsUDBOub2R7vjKOX+xSAAAAAAAAMEKVZCC7bNkyLV26VJJUWVlZ5GownGQcjw5ZAAAAAAAAFE2fRxbcfPPNeuCBB3Z5zauvvqpPfvKTvVo3l8upublZvu/LsixNnTq1ryUCO0jbvjKOJ2MMm8MBAAAAAABg0PU5kD311FP1u9/9bqcjBYwxymaz2rRpU6/WNcZIUiEsW7hwYV9LBHaQdjz5vlHO9VUeDRe7HAAAAAAAAIwwfR5ZUFdXp+985zsyxuzw0Vl3z+/qo7MvfelLOuWUU/paIrCDjo29MowtAAAAAAAAQBH0uUNWko4//niVlZXJcZzCY8YYff/735dlWZoxY4bOPPPMHq9nWZbKyspUV1enmTNnauzYsf0pD9hB2s4HsWnH1+gi1wIAAAAAAICRp1+BrCQde+yxOzz2/e9/X5I0ceJERg6gpGRdT0Z0yJYS/8Yb9X77Jn6SNP3AA8UwCQAAAAAAMFz1O5Dtzoc//GFJ0qxZs4JYHugz30hZxyt0yqL4zCc/qfi4cdvO584tYjUAAAAAAADBCiSQveuuu4JYFhgQGcdXmg5ZAAAAAAAAFEGfN/UChqq04ynn+vK320QOAAAAAAAACFqfO2Q3bdrU5Xzy5Mk7fa6/Oq8N9FfG8WSMUcbxVBULpEkcAAAAAAAA6Faf06hPfOITsixLkmRZlt55551un+uv7dcG+qtjfiyBLAAAAAAAAAZbv9Mos4tf+97Vc0CxZNrnx6ZtX6oqcjEAAAAAAAAYUfoVyBLGYijKts+PzbCxV2lYvlwVK1duO4/FpIMOKl49AAAAAAAAAepzIPvUU0/16TmgFKQdX2kC2ZIQ/uIXNadTIGtmzZJWrChiRQAAAAAAAMHpcyA7ZcqUPj0HlIKM7dEhCwAAAAAAgEEXKnYBQDGkHU+268v1/WKXAgAAAAAAgBGEQBYjUkd3bMYmkAUAAAAAAMDgIZDFiNQxP5Y5sgAAAAAAABhMfZ4h++Uvf3kg69gpy7J0xx13DMprYeTI2ASyAAAAAAAAGHx9DmT/+c9/yrKsgaxlB8aYwF8DI5PjGzm+KQSzAAAAAAAAwGDocyAr5QNTYKjK2B4dsgAAAAAAABhUfQ5kzzvvvIGsAxh0accrbO4FAAAAAAAADAYCWYxYGceT5xvlXF9lEfa3AwAAAAAAQPBIoTBipTs29mKOLAAAAAAAAAYJgSxGrI75sYwtAAAAAAAAwGAhkMWIlXE8GYmNvQAAAAAAADBo+jxD9pJLLikcW5alK6+8stvn+mv7tYGB4hsp63iMLAAAAAAAAMCg6XMg+8ADD8iyrMJ559B0++f6i0AWQUk7Hh2yAAAAAAAAGDR9DmQlyRgjSd2Grx3P9ddABrvA9tK2p6zryfeNQiHeawAAAAAAAAhWnwPZhQsX9uk5oJRkHE8y+U7Z6rJ+/f0EAAAAAAAAsFt9TqCuuuqqPj0HlJKO+bEEssXjPfSQVixZUjiffdBB/WvdBwAAAAAAKGHkHhjROubHZtjYq3j22Ue5trYu5wAAAAAAAMNVqNgFAMVke0aub9jYCwAAAAAAAINi0Dtk16xZo/r6esXjcZWVlam2tlZTp07VxIkTB7sUQFK+S5ZAFgAAAAAAAINhUALZN998U3fffbeeeeYZJRKJbq+ZNGmSPv3pT+vUU0/VXnvtNRhlAZLyc2TTjCwAAAAAAADAIAh0ZEFra6u+9a1v6Utf+pIefvhhxeNxGWNkjClc03G+adMm3XnnnTrmmGP0v//7v0GWBXSRtj15vlHO9YtdCgAAAAAAAIa5wALZ5uZmnXbaaXriiSd2CGEldfuYJLmuq5tuukkXXnhhUKUBXWTaxxXQJQsAAAAAAICgBTay4JJLLtGqVatkWZYkacqUKVq0aJEOO+wwTZ8+XTU1NTLGKJFIaPXq1XrxxRf1wAMPqKWlRcYY/eUvf9HUqVP1rW99K6gSAUkqzI9NO55GK1rkakYe67HHNHrp0m3nGzdKCxYUsSIAAAAAAIDgBBLIvvLKK3rmmWcKYexpp52m7373u4rFYjtcW1lZqT322EPz5s3Tf/3Xf+nSSy8tdNXedtttWrhwoaZNmxZEmYCkfIes0bZOWQyu0Pe+p31Wriycm1mzCGQBAAAAAMCwFcjIgkceeaRwvHDhQv3gBz/oNozdXk1Nja6//nr927/9m6T8+IJ77703iBKBAt9IWYeNvQAAAAAAABC8QALZf/7zn5KkcDis7373u70rKBTSD3/4w0J37bPPPjvg9QHbSzteYXQBAAAAAAAAEJRAAtmGhgZZlqXZs2dr9OjRvb5/r7320syZM2WMUX19fQAVAl2lbU9Z15Pn77jRHAAAAAAAADBQAglko9H8xkgVFRV9XmPUqFGSJGMIyBC8tONJhjmyAAAAAAAACFYggezUqVNljNGaNWv6HKhu3LhRlmVp8uTJA1wdsKNM+/xYxhYAAAAAAAAgSIEEsvPnz5cktbS0dNngq6defvllbdq0SZL0iU98YkBrA7rTEcSysRcAAAAAAACCFEgge8opp2jSpEkyxujyyy/XypUre3xvc3OzfvCDH0iSamtrddpppwVRItCF7Rm5vmFkAQAAAAAAAAIVSCBbVVWlm266SaNGjVI8HtfJJ5+su+66S5lMZpf3Pf3001q0aJE2btyoiooKXXfddRo3blwQJQI7SNseIwsAAAAAAAAQqEhfb/zyl7+822uqq6uVSCSUTqd15ZVX6oYbbtAhhxyifffdt7BpVyqV0oYNG/TWW2+psbFRxhhZlqV//dd/1WuvvabXXntN3/zmN/taJtBjacdjZAEAAAAAAAAC1edA9p///Kcsy9rtdR3XGGOUSqX04osv6sUXX9zhuo7Nvzquf/bZZ/Xss89KUlEC2UsuuUT333+/JOmqq67SokWLenTfmjVrdM899+iVV17Rhg0b5LquJkyYoJkzZ+rzn/+8Pv3pTysS6d23/aWXXtJ9992nt956Sw0NDYpEItpjjz106KGHauHChTrssMN6/fVhR2nbk+cb5VxPZZFwscsBAAAAAADAMNTnQFbaFqIO5D3bP9+T0HegPfPMM4Uwtjd+/vOf65e//KVc1+3y+Pr167V+/Xo99dRTOvDAA3Xttddqn3322e16yWRSF110kZ588skuj+dyOa1Zs0Zr1qzRn/70Jy1YsEA//OEPVVNT0+uasc22jb18AlkAAAAAAAAEos+B7HnnnTeQdZSMtrY2XXbZZb2+7/LLL9ddd91VOI9EIpo1a5YqKiq0Zs0atbS0SJKWLl2q0047Tffee6+mTJmy0/VyuZzOOussLV68uPBYVVWVZs6cKc/z9O677yqbzUqSHnroIdXX1+vXv/61YrFYr2tHXseGXmnH02hFi1wNAAAAAAAAhiMC2e1ceeWV2rJlS6/uefzxx7uEsZ/5zGf0wx/+sLAhmeM4uv/++3XVVVcpk8mosbFR559/vu67776ddgBfc801hTDWsiydf/75Ovvss1VeXi5JSiQS+vnPf64777xTkvTqq6/quuuu0yWXXNLrrxl5GceTkZS23d1eCwAAAAAAAPRFqNgFlJK+jCpwHEfXXHNN4fzoo4/WDTfcUAhjJSkajeqkk07SzTffXJgfu2zZMj3yyCPdrrl69Wrdc889hfNvf/vbOvfccwthrCSNGjVKP/jBD3TuuecWHvvd736nDRs29Kp+bOMbKet4hdEFAAAAAAAAwEAjkG2XSCR06aWXSsoHqBUVFT26729/+5s2bdokKT+m4Ic//KFCoe6/rfPmzdNJJ51UOL/99tu7ve6uu+6S5+VDwX322Udnn332Tl//vPPO08yZMyXlw+Hf/va3Paob3Us7njKOX+wyAAAAAAAAMEyVfCC7dOnSQXmdK6+8Ug0NDZKkr371qxozZkyP7nvssccKxx/96Ec1efLkXV7fOZBdtmyZ1q9f3+V53/f1xBNPFM4XLVq004BXkkKhkE488cTCeed70Xtp21PW9eT5vd+wDgAAAAAAANidPs+Q7SnP8/T2229r8+bNyuVy8jxPxuwYdhlj5LquHMdROp3W1q1b9dprr2nVqlV65513Aq3x6aef1gMPPCBJmjlzpr7+9a/rz3/+827vM8bolVdeKZwfeeSRu71n1qxZGj9+vLZu3SpJ+vvf/67TTz+98PyKFSsKG4BJ+a7a3en8ups2bdKKFSs0e/bs3d6HHaUdTzL5ebLVZYH/8YAkb+nSLpvXzZ07N/gfTAAAAAAAAEUSaO7x61//WrfccosSiUSf7jfG7HTTq4GSSCR02WWXScqPHLjqqqsUi8V6dO/GjRu7fG0HHnhgj+6bNWtWIZBdsmRJl+dWrFhROI5Go5oxY8Zu15s+fbrKy8uVzWYLaxLI9k3azo+KSBPIAgAAAAAAIACBjSy44YYbdO211yoej3fpiDXGFD621/m57p4PwuWXX14YVXD22Wf3OFSVpA8++KDL+dSpU3t035577lk4Xrdu3U7XnDJlSmETsF2xLKvLqIS1a9f2qA7sqGNDr45gFgAAAAAAABhIgbQAbtiwQb/61a8k5cPC7QPWjq7X7kLXjufGjx+vBQsW6Oijjw6iREn5cQEPPvigJGnffffVeeed16v7O7pcpfws13HjxvXovvHjx3e7xvbnEyZM6HEt48aN03vvvdftmug5xzNyfVMIZgEAAAAAAICBFEgg+8ADD8h1XVmWpbKyMn3nO9/R/PnzNX78eP3qV7/Sddddp0gkohdeeEHV1dWKx+Navny57rzzTj3zzDOSpObmZn3qU5/SIYccEkSJisfj+uEPfygpH6b2ZlRB5zU6VFVV7XLzrc6qq6u7XUOSWltbC8c1NTU9rqXztduvOZh835cxvowx8n1f/hDcHCuZc5XKue31+8UuZ9jzPG+X50BP8D5Cf/EeQn/xHkJ/8R7CQOB9hP7iPQQMjkAC2X/+85+F429/+9s69dRTC+dHHHGEpPwf6ueff16f+9znNGbMGB155JE68sgjdcstt+j666+X53m67LLL9NBDDwUyR/byyy8vdJKeccYZmjt3bq/XyOVyhePy8vIe39c5+LVtu8tznc8Has3B1NDQoOaUp2TKVUPDFjne0As0N5W5ivk12hzJKJlMqq2trdgljShLly4tdgkYBngfob94D6G/eA+hv3gPYSDwPkJ/8R4CghHIDNn169dLyoeEJ554YpfnZs+erWg0Kkl67bXXdrj3a1/7mj71qU/JGKPVq1frySefHPD6nnrqKT300EOSpL333lvf/OY3+7SO4ziF4552x0rqMhfWdd0BWTMcDu90TfROKuvIM0a2b3o0wxcAAAAAAADoqUDSpng8LsuytO+++6qsrKzrC0Yi2meffbRy5UotW7as2/u/+tWvFoLYf/zjH/r0pz89YLW1trbqRz/6kaT8vNorrriiV52onXUOQXvzq+2dA9OOcLq/a3b+NYLt10TvJHP5UDzrGlUSyAZu/B/+oEinUR1uXZ22nnRS8QoCAAAAAAAIUCBpU0fgWFdX1+3z06dP18qVK7VmzZpunz/44IM1btw4NTU1acWKFQNaW+dRBaeeeqoOO+ywPq9VUVFROO48vmB3Oo8U2D6w7hwO92bNztduv+ZgmjBhgnLxrBLKaMKEiXKH4AzZilhY1VXVqqqt0uRRZZo8eXKxSxrWQl/6kkLvvls492fO1OQrryxiRRiKPM/r8utUBx54YJe/4AJ2h/cQ+ov3EPqL9xAGAu8j9BfvIfTXkiVL2I+nBwIJZOvq6tTY2Njl1+8722uvvSRJ6XRaW7Zs0cSJE3e4ZsqUKWpsbNSmTZsGrK4nn3xSDz/8cKGGCy+8sF/r1dbWFo5TqZSMMT2ad5tMJgvH24fWnc87X9efNQdTKBSSZYVkWZZCoZBCGnqBrO0ZybKUdX3+xTMIzHZ/ZizLYlQE+i0cDvM+Qr/wHkJ/8R5Cf/EewkDgfYT+4j0EBCOQGbLjx4+XMUbr1q3r9vmpU6cWjt/t1BnXpbD2+ampVGpAamptbdWPf/xjSfnA5/LLL1dlZWW/1uwcJHuep5aWlh7d19GhK0njxo3r8tyECRMKx01NTT2upbGxsXA8fvz4Ht+HHflGyjqe0g67SQIAAAAAAGBgBfLXHIceeqjeeecdNTQ0aOnSpTrwwAO7PN85kH3rrbf0b//2bzus0bEx2ED9Tcwf/vCHQhBaUVGhW2+9VbfeeutOr+8ccN5+++169NFHC+fXXHONxo0bp2nTpu1Q85gxY3Zby4YNGwrH06dP7/Lc3nvv3eW6nnTdGmO0cePGbtdA36QJZAEAAAAAABCAQALZI488Ur/73e8kSZdeeqluu+02jR07tvD8nDlzFAqFZIzRgw8+qK9//etdNqL6xz/+ocbGRlmWtUMHaV91ntuaTqf1/PPP9/jed999t0snbzablZQfq1BXV6fW9g2Jli9frrlz5+52vc5zcWfPnt3luQMOOKBwnMlk9P7772ufffbZ5Xrvvfdelxmy+++//25rwK6lbU8515fnG4VDux9DAQAAAAAAAPREICMLjj766EKX5sqVK3XMMcfo2muvLXSd1tTU6MMf/nChs/P888/X2rVrlUql9MQTT+j73/9+Ya2eBJzF9JGPfKRw/OKLL+72+hUrVnTpvj388MO7PD9jxowuXbYvvfTSbtd84YUXCsejR4/WrFmzdnsPdi3teJKRMnTJAgAAAAAAYAAF0iFrWZYuvfRSff3rX5fneUokEvr1r3+tY445ptDxesYZZ+iVV16RJD3zzDN65plnCvcbs20jqEWLFg1ITeeff77OP//8Hl//iU98ojAG4KqrrtppHfPnz9cTTzwhKd/Zu7NNyjrcfffdheN99913h/DUsix9+tOf1h/+8AdJ0r333quTTz65MFN3e77v69577y2cf+Yzn+nRxmLYtbTtFT5XlzHAHAAAAAAAAAMjkA5ZSZo3b55++tOfqqampvBY59mxRx99tBYsWFAIX40xhY+OQPGzn/2sPvrRjwZV4oCYP39+YSMu27Z18cUXy3Xdbq997rnn9Mc//rFwftppp3V73Ze+9KXC92DFihX6xS9+sdPXv/HGG7Vq1SpJ+Y3QdrYmeifVHsgm7e7/WQIAAAAAAAB9EVggK+UD1b/85S8699xz9aEPfUijRo3q8vyVV16pM888U+FweId7TzrpJF199dVBljcgYrGYLrzwwsL5iy++qK985SuFTckkyXVd3XvvvTr//PPlefmgb+bMmfriF7/Y7ZqzZ8/WwoULC+c333yzrrzySrW1tRUea2tr0xVXXKFf/vKXhcdOOukk7bfffgP2tY1krm+UdX0lbUYWAAAAAAAAYOAE/rvYY8eO3em4gEgkoosuukhnnXWWnn/+eW3dulV1dXU64ogjtNdeewVd2oBZuHCh3nzzzcKYgRdffFHz58/XrFmzVF1drTVr1qi5ublwfV1dnW688UZFIjv/9v/gBz/Qu+++q6VLl0qS7rjjDt17772FEQcrV65UJpMpXH/QQQfp4osvDuLLG7GSOVepHB2yAAAAAAAAGDglMRxz/PjxXTpCh6L//u//1ujRo3XbbbfJcRz5vq/ly5fvcN2+++6rG2+8Ufvss88u16uurtZvfvMbfe9739Pf//53SVImk9Fbb721w7VHH320rr32WpWXlw/I14K8lO0p5/pyPF/RcKDN5AAAAAAAABghSiKQHQ4sy9IFF1ygBQsW6E9/+pOef/55bd68WZlMRrW1tdp///317//+71qwYIFisViP1qypqdH//u//6qWXXtJDDz2k1157TY2NjfI8T+PGjdOhhx6qhQsXat68eQF/dSNTsr07NplzNbqyZ//MAAAAAAAAgF0Z1EB2xYoVeuONN7R582a1traqvLxco0aN0rRp03TooYdqzz33HMxydqmjK7W39t13X1100UW66KKLBqyWI444QkccccSArYee6djQK2l7Gl1Z5GIAAAAAAAAwLAQeyGazWd1xxx36wx/+oPr6+l1eO2vWLJ155pk67rjjgi4L2K2M48vzTaFTFgAAAAAAAOivQAdjvv322zr22GN1ww03aNOmTTLGSJKMMV0+Oh5bsWKFLr74Yp199tlqamoKsjSgR5K2p6TtFbsMAAAAAAAADBOBBbJLlizRWWedpY0bN3Z5PBwOa9q0aTrwwAN1wAEHaK+99lIotK0MY4xefPFFnXHGGWprawuqPKBHkjlXaduT3/4XBwAAAAAAAEB/BDKywPM8XXLJJUomk7IsS8YYfe5zn9PJJ5+suXPnKhqNdrk+m83q5Zdf1h133KGXXnpJkrR69Wpdcskluvnmm4MoEeiRpO3KGKO07am6jD3wgmD23lu5bLZwHtt7b1lFrAcAAAAAACBIgSRMjz32mFavXi3LshSJRHT99dfrU5/61E6vLy8v11FHHaWjjjpKd955p6666ioZY/TUU0/plVde0Uc+8pEgygR2K5XLjytI5lwC2YD4jzyiZYsXF87nzp0b7CwVAAAAAACAIgok93j88ccLx9/+9rd3GcZu78tf/rLOPPPMwvmf//zngSwN6JWk7cpIzJEFAAAAAADAgAgkkF2+fLkkqbq6Wqecckqv7z/nnHNUVlYmSXrttdcGtDagN3wjZRxPyZxb7FIAAAAAAAAwDAQSyDY2NsqyLM2cOXOHebE9UV1drdmzZ8sYo61btwZQIdBzyZxLhywAAAAAAAAGRCCB7KhRoyTlN/fqq3A4LCk/XxYopmTOk+v5yjqEsgAAAAAAAOifQALZWbNmyRijlStXKp1O9/p+13W1Zs0aWZal6dOnB1Ah0HNJ223/TCALAAAAAACA/gkkkF2wYIEkKZvN6tZbb+31/Q888IDi8bgk6dhjjx3Q2oDe6pgfm2KOLAAAAAAAAPopEsSixx13nP7whz/ojTfe0C233KIpU6bohBNO6NG9r776qq688kpJ0syZM3XiiScGUSLQY7Zn5HiGDtmAhL7zHU1/551t53PmSDfcULyCAAAAAAAAAhRIICtJv/jFL3TWWWdp+fLluuyyy/T000/rjDPO0L/8y78oFNqxMff999/Xvffeq7vuukuu62qfffbRL37xiz5tCgYMtKTtFjplMbCsxx/XmJUrC+dm3boiVgMAAAAAABCsPgey+++/f4+usyxLxhg99dRTeuqpp1ReXq5p06appqZGkpRKpbRx40YlEglJkjFGlmUpEonooosukmVZ+u1vf9vXMoEBkcy5yriePN8oHLKKXQ4AAAAAAACGqD4Hsh3BqTFmp9dYltXlszFGmUxGKzt1w3U83nFdx7WrVq0qvAZQbMmcJ5l8p2xtOV3bAAAAAAAA6Jt+beq1qzC24/nOH319HCi2pJ0fV5DMMUcWAAAAAAAAfdfnDtk777xzIOsASlra9uQbMUcWAAAAAAAA/dLnQPZf//VfB7IOoKQZSSnbVcomkAUAAAAAAEDf9WtkATCSpGxPSdtjnAYAAAAAAAD6jEAW6KFkzpXvG2Uc5sgCAAAAAACgb/o8sqC31q1bp3/84x96/fXX1dDQoNbWVoXDYVVVVWnKlCmaM2eOPv7xj2vmzJmDVRLQKx3zY5O2p8rYoP3RAQAAAAAAwDASeKq0ZcsWXXnllXryySfl+3631yxZskSPP/64fvazn+kjH/mIfvjDH2qfffYJujSgV5J2vjM2mXM1obqsyNUAAAAAAABgKAp0ZMHrr7+uhQsX6q9//as8Lx9mGWO6/eh47uWXX9YJJ5yg559/PsjSgF5zfaOs6xeCWQAAAAAAAKC3AuuQff/99/Vf//VfSiQSsiwr/2KRiA444ADNmDFDo0aNkud5isfjWrVqlVasWCHXdWVZltLptM4//3zde++9mjFjRlAlAr2WzLmF0QUAAAAAAABAbwUWyF5yySWFMDYcDusrX/mKvvzlL2v06NHdXt/c3Kw77rhDt912mzzPUyaT0WWXXaZ77rknqBKBXkvarmzXl+P5iobZEw8AAAAAAAC9E0ii9Nxzz+mtt96SZVmKRqO69dZb9c1vfnOnYawkjRkzRhdccIF+9atfKRaLSZIWL16sl156KYgSgT5J5bbNkQUAAAAAAAB6K5BA9q9//Wvh+Pzzz9cRRxzR43sPP/xwnX/++YXzRx99dEBrA/ojabvtn5kjCwAAAAAAgN4LJJB9/fXXJUllZWU69dRTe33/KaecorKy/C72b7755oDWBvRHxvHl+YYOWQAAAAAAAPRJIDNkGxsbZVmWZsyYoYqKil7fX1FRoVmzZuntt9/Wpk2bAqgQ6Luk7dEhO4DM0UcrvscehfNR++8vq4j1AAAAAAAABCmQQDaTyUhSn8LYDuXl5ZIkzyP4QmlJ5lylbU++MQpZRIf95f/851qzeHHhfO7cucG07gMAAAAAAJSAQHKP2tpaGWO0cePGPq/Rce+uNgIDiiFpuzLGKEWXLAAAAAAAAHopkEB2xowZkqRNmzZp+fLlvb5/2bJl2rhxoyzL0rRp0wa6PKBfkrl8EJtijiwAAAAAAAB6KZBA9qMf/Wjh+IorrujV2AHXdXXllVcWzufNmzegtQH9lbJdGYk5sgAAAAAAAOi1QALZ448/XmVlZZKk119/Xd/4xjeUSCR2e18ikdA3vvENvf7665Lyc2QXLlwYRIlAn/lGStue2uiQBQAAAAAAQC8FsqnXmDFj9F//9V+64YYbZFmW/v73v+szn/mMFi5cqHnz5mnfffdVbW2tJCkej2v16tV6/vnn9ec//1mtra2SJMuydNZZZ2n8+PFBlAj0S1vOVVsuP0vWYmMvAAAAAAAA9FAggawkffWrX9XSpUv15JNPyrIstbS06Pbbb9ftt9++03s6h1sf//jHdf755wdVHtAviayjPWrKlLI9VZcF9scIAAAAAAAAw0xgSVIoFNJNN92kK664QnfffbeMMZJU+Ly9jiDWGKNTTz1VF198cVClAf2WyLqFzwSy/RM6/njtv2LFtvPZs6UHHyxiRQAAAAAAAMEJNEkKhUK67LLL9B//8R/6v//7P73wwgtqbm7u9tpRo0bp4x//uM466yzNnj07yLKAfkvZnnxjlMi5mlzsYoY4a+VKVb77buHcMAICAAAAAAAMY4PS2jdjxgxde+21kqQ1a9aooaFBra2tMsaotrZWe+yxh/bdd9/BKAUYEEZSW85TW5aNvQAAAAAAANBzgQSyd999t9577z0tWLBABx10UJfn9t13X8JXDAuJrKPaiohc31ckFCp2OQAAAAAAABgCAkmRHnvsMf32t7/ViSeeqOuvvz6IlwCKri3nSkZqy3rFLgUAAAAAAABDRCCB7Pvvv1/YvOvTn/50EC8BFF3Hxl5tOafIlQAAAAAAAGCoCCSQTSQSheP99tsviJcAii7r+nK8/MZeAAAAAAAAQE8EEsjuueeeheP6+vogXgIoCYmcw8ZeAAAAAAAA6LFAAtkTTzyxcHzzzTcH8RJASUhkXeVcXzmXObIAAAAAAADYvUAC2dNPP12LFi2SMUaPPfaYzjvvPC1dujSIlwKKqq19XEGCLlkAAAAAAAD0QCSIRZ999ll95jOfUTKZ1F//+lc99dRTeuqpp1RVVaWZM2dqzJgxqq6ulmVZu13LsixdeeWVQZQJ9Nu2jb1cja8uK3I1AAAAAAAAKHWBBLJf+9rXCmFrx2djjJLJpN58881er0cgi1Ll+kYZx6NDFgAAAAAAAD0SSCAr5QPY3jy+Mz3pogWKKZF1VV3myhjD+xUAAAAAAAC7FEggu3DhwiCWBUpSIudqom+Utj1VlQX2dxwAAAAAAAAYBgJJj6666qoglgVKUlv7uIJEziWQBQAAAAAAwC6Fil0AMNQlbVe+yW/sBQAAAAAAAOwKgSzQT77Jh7Js7AUAAAAAAIDdGdDfr25padGaNWvU0NCgyspK7bnnntpvv/0G8iWAktSWdZUq9+T5RuEQG3v1hn/22dq6bFnhfPwBByhcxHoAAAAAAACCNCCB7Ntvv62f//zneumll+R5XpfnJkyYoNNOO02nnXaaysrKBuLlgJKTyLkyxiiZc1VbES12OUOKueACbVy8uHA+bu7cIlYDAAAAAAAQrH6PLPjf//1fnXzyyXr++efluvlQqvPHli1bdN111+mEE07Q+vXrB6JmoOR03tgLAAAAAAAA2Jl+BbL33nuvbrzxxh26YjuzLEvGGK1atUr/+Z//qWQy2Z+XBEpS2vHk+oY5sgAAAAAAANilPo8sSCaTuu6662RZ+XmZxhgdfvjhmj9/vqZMmSLXdbVy5Uo98MADhc7YdevW6Re/+IUuuuiigakeKCGJrKvqMgJZAAAAAAAA7FyfA9nHH39c8XhclmWprKxM1113nT75yU92ueaTn/ykvvrVr+qyyy7TAw88IGOM7r//fn3rW99iniyGnbacq6zjyXZ9xSL9ngYCAAAAAACAYajPqdErr7xSOP7ud7+7QxjbIRKJ6H/+5380Y8YMSVIikdBbb73V15cFSlYi60jKB7MAAAAAAABAd/ocyK5YsUKSVFVVpRNPPHGX10YiEZ188smF82XLlvX1ZYGS1RHEsrEXAAAAAAAAdqbPIwu2bt0qy7I0depURaPR3V7/oQ99qHC8bt26vr4sULJszyjr+oVOWfRM+NBDdei77xbOrZkzpSVLilgRAAAAAABAcPocyKbTaUlSTU1Nj66fMmVK4bitra2vLwuUtETWUXVZRMaYwoZ32A3HUci2C6fGIdAGAAAAAADDV59HFjjtoUlPumOl/GiDDqlUqq8vC5S0tpwr1/OVcfxilwIAAAAAAIAS1OdA1hgjST3uAux8ned5fX1ZoKQlsvn5sWzsBQAAAAAAgO70OZAFsKNkzpWRmCMLAAAAAACAbhHIAgPIM1Iq5ypBhywAAAAAAAC6QSALDLBEzlUy58n3TbFLAQAAAAAAQIkhkAUGWDzryhjDHFkAAAAAAADsgEAWGGAd82PjzJEFAAAAAADAdiL9XWDLli3685//HOg9X/jCF3q1PlBMGceX7fmKZ+mQBQAAAAAAQFf9DmRXrVqlSy65pMfXG2N6fQ+BLIaaRNZVVYxAFgAAAAAAAF0N6sgCy7JkWVaPrzeGTZEwNMWzjhzPV9r2il0KAAAAAAAASki/OmQJTIHudYwriGcdVcbCRa4GAAAAAAAApaLPgexTTz01kHUAw0oy58o3Romsq0mjil0NAAAAAAAASkWfA9kpU6YMZB3AsOIbqS3nKp51il0KAAAAAAAASsigzpAFRpJ41lXa8eR4frFLAQAAAAAAQIkgkAUCksi6kmn/DAAAAAAAAKifm3oB2LmOcQXxrKOxVbEiV1O6/Msv1/qlSwvnex14oNgGDQAAAAAADFcEskBAHM8o7Xh0yO6G+cIX1DR9euF8z7lzi1gNAAAAAABAsBhZAAQokXWVyLkyxhS7FAAAAAAAAJQAAlkgQPGsI983asvRJQsAAAAAAAACWSBQHeMKGFsAAAAAAAAAiUAWCFTK9uT6RnECWQAAAAAAAIhNvYDAxbOOqmLhYpcBAAAAAACAEkAgCwQskXU1ttJX1vFUHiWY3cHGjYpt2rTtfNw4adq04tUDAAAAAAAQIAJZIGDxjJP/nHUJZLsR/sxndNDKlYVzM2uWtGJFESsCAAAAAAAIDjNkgYC15VwZSYmsU+xSAAAAAAAAUGQEskDAPCMlcy4bewEAAAAAAIBAFhgM8ayrlO3J9f1ilwIAAAAAAIAiIpAFBkE848gYoza6ZAEAAAAAAEY0AllgECTag1jGFgAAAAAAAIxsBLLAIMh5vrKurzgbewEAAAAAAIxokWIXAIwUiayjqlhYxhhZllXscgAAAAAAAFAEdMgCgySedeX5RinbK3YpAAAAAAAAKBICWWCQxDP5cQXMkQUAAAAAABi5CGSBQZKyPXm+UYI5sgAAAAAAACMWM2SBQWIkJXKuquiQBQAAAAAAGLHokAUGUTzrKOt4yrl+sUsBAAAAAABAERDIAoMonsl3x7ZmGFsAAAAAAAAwEhHIAoMonnXkGaPmtF3sUgAAAAAAAFAEzJAFBpFv8t2xFdGwjDGyLKvYJQEAAAAAAGAQ0SELDLKWtCPb9ZWyvWKXAgAAAAAAgEFGhywwyJrTTuFzdRl/BL3f/larly4tnO934IH8YAIAAAAAAMMWuQcwyNKOp5zrqyVja+roimKXU3yHHKJU59ENc+cWrxYAAAAAAICAEcgCRdCcdlQRC8vzjcIh5sgCAAAAAACMFMyQBYqgOW3L943iWafYpQAAAAAAAGAQEcgCRdCacWS0bZ4sAAAAAAAARgYCWaAIHN+oLeeqOW0XuxQAAAAAAAAMIgJZoEha0o7Stqec6xW7FAAAAAAAAAwSNvUCiqQ5bWva6Ao1px1NGhUudjnF8/zzGrVkybbztjbpqKOKVg4AAAAAAECQCGSBIklkXbm+UUva0aRR5cUup2jCX/+6ZqxcWTg3s2ZJK1YUsSIAAAAAAIDgEMgCRWKU39yrIhqWMUaWZRW7JAAAAAAAAASMGbJAETWnHTmer7acW+xSAAAAAAAAMAgIZIEiasnY+c9pp8iVAAAAAAAAYDAQyAJFlHF8ZRxPzRkCWQAAAAAAgJGAQBYosua0077Bl1/sUgAAAAAAABAwAlmgyFoyjowxaqVLFgAAAAAAYNgjkAWKrCXtyCjfKQsAAAAAAIDhLVLsAoCRzjNGiayjymi42KUAAAAAAAAgYHTIAiWgOe0o43jKOF6xSwEAAAAAAECACGSBEtAxroCxBQAAAAAAAMMbgSxQApI5V45v1JK2i10KAAAAAAAAAsQMWaAEGEktaVvlkZCMMbIsq9glAQAAAAAAIAB0yAIloiXtyPONElm32KUAAAAAAAAgIASyQIlozjBHFgAAAAAAYLgjkAVKRM71lbI9NWeYIwsAAAAAADBcEcgCJaQ5bast58p2/WKXAgAAAAAAgACwqRdQQprTjvaqq1BzxtYeNeXFLmdQeC++qKVvv104P/Dgg/nBBAAAAAAAhi1yD6CExLP5jb2a086ICWQ1apS8mpou5wAAAAAAAMMVgSxQQnwjtWQclUfDMsbIsqxilwQAAAAAAIABxAxZoMQ0p205nq+2nFvsUgAAAAAAADDACGSBEtOcdiRJTe2fAQAAAAAAMHwQyAIlJuv6SjuemtN2sUsBAAAAAADAACOQBUpQU8pWW86V4/nFLgUAAAAAAAADiE29gBLUnHa0V12FmtOOJtaUFbucQFl33qkJy5ZtO1+8WDrrrCJWBAAAAAAAEBwCWaAExbOOPGPUnLaHfSAb+ulPtdfKlYVzM2sWgSwAAAAAABi2CGSBEuQbqTXjqDwSljFGlmUVuyQAAAAAAAAMAGbIAiWqKeXI8Xy15dxilwIAAAAAAIABQiALlKjmtN3+2SlyJQAAAAAAABgoBLJAicq6vtKOVwhmAQAAAAAAMPQRyAIlrDltK5Fz5Xh+sUsBAAAAAADAACCQBUpYc9qRDGMLAAAAAAAAhgsCWaCEtWYcecYwtgAAAAAAAGCYiBS7AAA755t8KFseCcsYI8uyil0SAAAAAAAA+oEOWaDENacdOZ6vZM4rdikAAAAAAADoJwJZoMR1jCtgbAEAAAAAAMDQN+JHFrzyyit69NFH9eabb6qhoUHJZFLV1dWaNGmSDjvsMC1atEhz5szp8Xpvv/22/vjHP+rVV1/Vli1bZIzRxIkTdcABB+i4447Txz72sV792rkxRk8++aQeeughLVmyRE1NTaqoqNDEiRN1+OGH6/jjj9fs2bP78qVjiMg4vjKOp6a0o2ljil0NAAAAAAAA+mPEBrIbNmzQRRddpNdee22H51pbW9Xa2qrly5frrrvu0uc+9zn95Cc/UXV19U7XcxxH//M//6M//OEPOzz3wQcf6IMPPtCjjz6qefPm6aqrrtKECRN2W+OWLVt0wQUX6PXXX+/yuG3bisfjevfdd3XXXXfpjDPO0IUXXqhYLNaDrxxDUVPaUWUsIsfzFQ3T2A4AAAAAADBUjchk54MPPtAXv/jFLmFsNBrVAQccoMMPP1wzZszo0sX66KOP6pRTTlEymex2PWOMvvWtb3UJY8vKynTwwQfr0EMP7RLkPv/88zr99NOVSCR2WWNzc7NOPfXULmFsXV2dDjvsMB1wwAGKRCKF17799tt18cUX9+6bgCGlOW3LGKOWtFPsUgAAAAAAANAPIy6Q9TxP559/vpqbmyVJ4XBY5513nl5++WXdf//9uuOOO/TII4/omWee0Re+8IXCfStWrNAPfvCDbtf89a9/rSeffLJw/qUvfUkvvPCC/vjHP+qee+7RCy+8oAsuuKAQor733nv6/ve/v8s6L7nkEq1bt05SPtz98Y9/rBdeeEG/+93vdP/99+vpp5/WZz/72cL1jz76qO68884+fU9Q+lozjnxj1JxhjiwAAAAAAMBQNuIC2fvvv1/vvvtu4fzqq6/W+eefv8M4gokTJ+qaa67RmWeeWXjs8ccf11tvvdXluubmZv3iF78onJ988sn60Y9+pJqamsJj5eXl+vrXv66f/OQnhcf+9re/6Y033ui2xueee05PP/10lxpPPvnkQqArSePHj9f111/fJTT+//6//2+nXbwY2nwjtWQcNaUcGWOKXQ4AAAAAAAD6aMQFsg8++GDheN68eVqwYMEur7/wwgu7zHt99NFHuzz/pz/9SalUSlJ+pMD3vve9na51/PHH66ijjiqc33777d1ed8cdd3SpsXMn7PZ+9KMfaezYsZKklpYWPfDAAzv/YjCkNaVsOZ6vRNYtdikDa+xYOZ0+1P5+BgAAAAAAGI5GVCBr23aXrtRjjz12t/fEYjHNmzevcL5kyZIuz//lL38pHB9zzDGqrKzc5XonnXRS4fjZZ59VOp3u8nw8HteLL75YOD/++ON3uV5lZWWXUPnxxx/f5fUYuhpTdpfPw4X3zDN6+4knCh/eM88UuyQAAAAAAIDAjKhAduPGjSorKyuc77vvvj26r66urnDc0tJSOG5tbdXy5csL552D2505/PDDFQ6HJUnZbLZL+CpJ//znP+V5niTJsiwdeeSRu12z8zVvvPGG4vH4bu/B0GN7Romcq8b08ApkAQAAAAAARpIRFchOnz5db775pl577TU9+uijmjlzZo/u27hxY+G4tra2cLxy5cou8zwPOOCA3a5VWVmpqVOnFs6377hdsWJF4XjPPffs8no7M3v27MKx7/tatmzZbu/B0NSYtJWxPaXsYTa2AAAAAAAAYIQYUYFsh5qaGu23334qLy/f7bXJZFIvvPBC4bxzV+0HH3xQOI7FYpo0aVKPXn/PPfcsHK9bt67Lc53XnDZtWo/WGz9+fJevZe3atT26D0NPU3t3bNMwG1sAAAAAAAAwUozIQLY3brvtNiWTycL50UcfXTjeunVr4Xj8+PE9XrPztZ3XkKSGhoY+rTm200ZI26+J4SNle8o43rCbIwsAAAAAADBSRIpdQCl7++23deuttxbO9957b33iE58onLe2thaOa2pqerxudXV14Xj7ea+dz3uzZudrE4lEj+8baL7vyxhfxhj5vi/fN7u/Cb2yNZlTeTSkrO0qGra6jM0YijpmJu/sHOgJ3kfoL95D6C/eQ+gv3kMYCLyP0F+8h4DBQSC7Exs2bNA555wjx3EKj1188cWKRLZ9y2x7W5diT8YfdIjFYt2uIUm5XK7fa3ZeY7A1NDSoOeUpmXLV0LBFjucXrZbhykmWaXR0kt5dn9XY8pC2bNky5EPZzpYuXVrsEjAM8D5Cf/EeQn/xHkJ/8R7CQOB9hP7iPQQEg0C2G/X19Tr99NO7/Or/GWec0WVcgaQuYW0o1PPpD51DXdftujlT5/PerBkOh3e6JoaXllROtuurNedrXEVYZWVlymazxS6rzybdcouiTU2Fc2fsWNV/7WtFrAgAAAAAACA4BLLbWbNmjc4++2zV19cXHps3b56+853v7HBt5xDU93veCdo5MI1GowOyZudfI9h+TQwvRtKWRFrlkRr5Jt9JPZQD2TF//avKO21El502jUAWAAAAAAAMWwSynbzxxhs655xz1NLSUnjs8MMP180339xtyNl5pEBvxgR0vrasrCzwNQfThAkTlItnlVBGEyZMlMsM2UC4kZgqq6oUHVWjSXtEh/TIgtB279dYWZnmzp1bpGowVHme1+XXqQ488MAuf8EF7A7vIfQX7yH0F+8hDATeR+gv3kPoryVLlvSqwXCkIpBt9/DDD+v73/9+l5muH//4x3XTTTftdJZrXV1d4TiZTPb4tVKpVLdrSFJtbW2f1ux87fZrDqZQKCTLCsmyLIVCIYU0dIPCUhbPujKSmtOOJtb0fNZwKTKW1eXcsqwuYz2AvgiHw7yP0C+8h9BfvIfQX7yHMBB4H6G/eA8BweBPlaSf//znuvnmm7s8tmDBAl111VW7/MEzceLEwnFTpxmYu9N5Nu24ceMGZM3O144fP77H92Fo8kw+jC2LhGWMkbVdqAkAAAAAAIDS1PNdo4Yhx3H0ve99b4cw9mtf+5p++tOf7vZvgaZNm1Y4TqfTamxs7NHrrl+/vnA8ffr0Ls/tvffeheN169b1aL2GhoYuM0Q7r4Hhqylly/F8xbNs4gYAAAAAADBUjNhA1rZtnXfeeXrwwQcLj0UiEV1++eW68MILe9RxOGfOnC7XLV++fLf3pFKpLkHr7Nmzuzx/wAEHFI7Xrl2rTCaz2zU7v65lWZo1a9Zu78HQ15S2ZSQ1puzdXgsAAAAAAIDSMCIDWdd19Y1vfENPP/104bGqqirdcsst+uIXv9jjdaqrqzVnzpzC+Ysvvrjbe15++eXCcONwOKx//dd/7fL8hz70oUJnrud5euWVV3a7ZufXnTNnTpc5tBi+bM8okXUJZAEAAAAAAIaQERnIXnvttfrHP/5ROB8zZozuuusuzZs3r9drfeYznykcP/TQQ7vtaL377rsLxx/96Ec1atSoLs+PGjVKhx9+eOH8nnvu2eV6qVRKDz30UOH83//933tUN4aHxpStrOMplWNsAQAAAAAAwFAw4gLZZ555RnfccUfhvLa2VnfeeWeXUQG9cfzxx6uiokKS1NjYqJ/85Cc7vfaPf/yjnnvuucL5l7/85W6vO+WUUwrH//jHP3T//ffvdM0f//jHam5uliRVVlbqhBNO6FX9GNqa2rtj6ZIFAAAAAAAYGkZUIOt5nq644goZYyTl561ed911mjFjRp/XHDdunP7zP/+zcH7//ffr29/+tpqamgqPZbNZ/fKXv9SPfvSjwmMf+9jH9LGPfazbNT/xiU/oIx/5SOH8sssu0y233KJcLld4rLGxURdccEGX7thzzjlHY8aM6fPXgqEn7XhKO54a0wSyAAAAAAAAQ0Gk2AUMpscff1xr164tnFdUVOg3v/mNfvOb3/R4jXHjxumaa67p8tjXv/51LVmypDCT9pFHHtETTzyhWbNmKRaLadWqVWpraytcv+eee+6wxvauvfZanXLKKVq/fr1c19XPfvYz3XrrrZoxY4Zs29bKlSvlOE7h+qOPPlpnn312j78ODB+NKVuVsbByrq+yyIj6OxYAAAAAAIAhZ8QFsp2l02k9//zzvVpjypQpOzwWiUT085//XP/93/+t++67T8YYOY6jpUuX7nDtoYceqhtvvHG3nawTJ07UXXfdpQsvvFBvvPGGJKmtra1w3NkJJ5ygH/3oRwqFCONGosaUral1FWpK2ZpcW17scgAAAAAAALALIyqQfe+99wJbOxaL6YorrtBJJ52kBx54QC+//LK2bNki27Y1ZswYHXzwwTr22GM1f/78HgenkyZN0u9//3v97W9/02OPPaa3335bjY2NCoVCmjhxoj70oQ/pxBNP1CGHHBLY14XS15Z1ZXu+GglkAQAAAAAASt6ICmQfffTRwF/j4IMP1sEHHzxg61mWpfnz52v+/PkDtiaGF6P85l5lkbAcz1c0TKc0AAAAAABAqSK5AYaBzW05GWNUn8jt/mIAAAAAAAAUDYEsMAzEs66Stqf6RFbGmGKXAwAAAAAAgJ0YUSMLgOFsUzyr6lhYLRlHYypjxS6nx8xhhylZVVU4r9p/f1lFrAcAAAAAACBIBLLAMLGlLad9x1ZqUzw7pAJZ/ze/0buLFxfO586dS+s+AAAAAAAYtghkgWHCM0ZbkjlFwiHlXE9lkXCxSwIAAAAAAMB2aEQDhpFN8fwM2U1s7gUAAAAAAFCSCGSBYSRpe4pnXTb3AgAAAAAAKFEEssAwsymRle36akzZxS4FAAAAAAAA2yGQBYaZrcmcHN9oUyJb7FIAAAAAAACwHTb1AoYZ30ibE1lFw5bStqfKGJt7AQAAAAAAlAoCWWAY2pTIaq+6Cm1KZLXfuKpil7NLoTPO0Mzly7ed77+/9NvfFrEiAAAAAACA4BDIAsNQxvHVnHYUCYe0z5hKhUJWsUvaKeu111SzcmXh3KRSRawGAAAAAAAgWMyQBYapTYmsXM9XQzJX7FIAAAAAAADQjkAWGKaaUrZyrs/mXgAAAAAAACWEQBYYpoyk+kRWiayrZM4tdjkAAAAAAAAQgSwwrNUncjKSNsbpkgUAAAAAACgFBLLAMJbzfDWmbDUkc3J9v9jlAAAAAAAAjHgEssAwtymelecbbU6wuRcAAAAAAECxEcgCw1xLxlHK9rQhnpUxptjlAAAAAAAAjGgEssAIsL41o6zjaWvSLnYpAAAAAAAAIxqBLDACbGnLKef6Wh/PFLsUAAAAAACAEY1AFhgBjKSN8azasq5aM06xywEAAAAAABixCGSBEWJTIr+51/pWumQBAAAAAACKJVLsAgAMDtc3qm/LKhy2lLZdVcb44w8AAAAAADDY6JAFRpANrVkZI61vzRa7FAAAAAAAgBGJQBYYQbKur63JnLYkc7Jdv9jlAAAAAAAAjDgEssAIs741K9832pigSxYAAAAAAGCwMUQSGGHacq5aM46i8aym1lUoHLKKWo/54hfV+M47hfOxc+aouBUBAAAAAAAEh0AWGIHWt2ZUVxHV5racptSWF7UW/0c/0rrFiwvno+fOpXUfAAAAAAAMW+QewAjUlHaUdjxtaM3IGFPscgAAAAAAAEYMAllghFrfmlHG8dSYsotdCgAAAAAAwIhBIAuMUFvacrI9X+tb2dwLAAAAAABgsBDIAiOUb6SN8awSWUfxrFPscgAAAAAAAEYEAllgBNsUz8ozRmtbMsUuBQAAAAAAYESIFLsAAMXj+EYb41mFLUvxjKPaimixSwIAAAAAABjWCGSBEW59S0aTR5Xrvea0Dp1SO+ivH/74x3XwypXbzmfNkl54YdDrAAAAAAAAGAwEssAI5/hG61szioQsNaVsja2KDW4BTU2KNjUVTk2nYwAAAAAAgOGGGbIAtKE1I9vz9X5zWsaYYpcDAAAAAAAwbBHIApBnpLUtGSVzrram7GKXAwAAAAAAMGwRyAKQJNUnssq6dMkCAAAAAAAEiUAWgCTJN9IHzWllbE+b23LFLgcAAAAAAGBYIpAFULClLae04+mDlrR8ny5ZAAAAAACAgUYgC6DASHq/Ka2c42tjIlvscgAAAAAAAIYdAlkAXWxN2WrLuVrXkpHr+8UuBwAAAAAAYFghkAWwg/ea0nI8Xxta6ZIFAAAAAAAYSASyAHbQknHUmnG0vjUjx6NLFgAAAAAAYKAQyALo1nvNaXm+0bqWTLFLAQAAAAAAGDYIZAF0K5F11ZiytTGRVc6lSxYAAAAAAGAgEMgC2KkPmtPyfaO1LelilwIAAAAAADAsEMgC2Kmk7akhmVN9Iqes4xW7HAAAAAAAgCGPQBbALn3QnJFvjNYySxYAAAAAAKDfCGQB7FLa8bSlLafNbTll6JIFAAAAAADol0ixCwBQ+ta2pDWxpkwfNKe1/8SaAV3b/973tGnZssL55AMOUHhAXwEAAAAAAKB0EMgC2K2M46s+kZVlSVNHV6gqNnA/OsyXv6yGxYsL55Pmzh2wtQEAAAAAAEoNIwsA9Mjalox8Pz9TFgAAAAAAAH1DhyyAHsm5+S7ZUEhK5ipUXcaPDwAAAAAAgN6iQxZAj61tScv3jd5vThe7FAAAAAAAgCGJFjcAPWZ7RhvjWYUsS4mso1Hl0WKXBAAAAAAAMKTQIQugV9a1ZuTRJQsAAAAAANAndMgC6BXHM9oQzyocstSacVRX0c8u2URC4ba2LucaM6Z/awIAAAAAAJQoAlkAvba+NaMpteV6vzmtQ6fU9mut8Ec/qkNWriycm1mzpBUr+lsiAAAAAABASWJkAYBec32j9a0ZxTOOmlJ2scsBAAAAAAAYMghkAfTJhtaMbM/Xe01pGWOKXQ4AAAAAAMCQQCALoE88I73fnFbKdrW5LVfscgAAAAAAAIYEAlkAfbY5kVPK9vR+c1qeT5csAAAAAADA7hDIAugzI+m9ppRs19f61kyxywEAAAAAACh5BLIA+qUp7agl42h9a0a26xe7HAAAAAAAgJJGIAug395rSsnzjT5oSRe7FAAAAAAAgJJGIAug39pynrYkc6pP5JS23WKXAwAAAAAAULIIZAEMiPeb8ht7rWmiSxYAAAAAAGBnIsUuAMDwkHV9bYxnFLKk1oyjuoposUsCAAAAAAAoOXTIAhgwa1sycnyjNU0pGWOKXQ4AAAAAAEDJIZAFMGBc32htc1ptWVdbk3axywEAAAAAACg5BLIABtSmRFYZx9N7zWn5dMkCAAAAAAB0QSALYED5Rnq/Oa2s4+l9NvgCAAAAAADogk29AAy4hqStcVU5SVIsEtJedRVFrggAAAAAAKA0EMgCCMSKhqSi4ZDWNKUUC4c0saas2CUBAAAAAAAUHYEsgED4Rlpa36ZDpoxqD2ctjamM7XCd98tf6v0lSwrn0w86iB9MAAAAAABg2CL3ABAYzxgtqU/o0Cm1Wra5TXMnj9Ko8mjXi+bNU6KmZtv53LmDWyQAAAAAAMAgYlMvAIGyPaO36xPKOJ6W1LcpbXvFLgkAAAAAAKBoCGQBBC7j+Hp7U0JZx9Pb9QnlXL/YJQ0aN1Uv47vFLgMAAAAAAJQIAlkAgyJpe1q6Od8hu6Q+Idcb/qGsk1grp/ld2VvflvGdYpcDAAAAAABKAIEsgEHTknG0fEub2nKulm1pkzFGlmUVu6xAOPEP5MY/kG+3ybcThLIAAAAAAEASgSyAQbY1Zeu9ppRa0o7WNKVlWZZqOm/qtRtepkl203I5ravlJtbJTW2Wl22WbydlPFvGmACr7xkn/oHcxFp5mUbZDW/Kbl4h327Lh7IeoWxnxs3JTW0udhkAAAAAAAyaSLELADDyrG/NqqYs/+OndsUSjW7Zqkhbm2zbloyRDjtsh3uM78ppXS0vtUUyvmR1//dJofI6xcYdXLTO285hrNP0jiQjP90g2xjFxu4ve+tixcYfLCscK0p9pcIYIy+1WW58jYzvyc/FFR09c9h2TAMAAAAA0IFAFkBRrGxIqjIWUdXpp6nyvdUa3/64mTVLWrGiy7VepklOy7syni03uUlufE0+uA1HZYVissL5j1BslCTJjb+naN2+g/wVdR/GdvAzW2U3GcXGzmkPZeeO2FDWdzNyWt6Vn22Vb7fJuClJkvGyio09QFaIfzUBAAAAAIYv/q8XQFF4Rlpan9DRu5gw0Lkr1rhZOS0r5edaOy1i58cUtE8B8FKbJSssSQrFqhWunNjzerLNMm5W4coJfQoEnfj7chPr5GW2ymlars5hbAc/0yi7cVmnUPZgWeGyXr/WUGWMkZfcKDfxgYznyEl8IK9tvSTJt1OK1u0ju+FNRccdpFCkvFdrW5alSCQi13WDKB0AAAAAgAFDIAugaLKur5zrq6qb53bsin1PMt5u13RaVsqKVsppeVdWpEqhWPVu7/FSW2S3rJSMkdO6RuHyMQpXTVSofIysnYxGkPKBsW8n5We2yk1u2mUY28HPNsluWqbY2AOU27pY0br9FC4fs9sau6zhpORlGhWunNjr4LJYfCfdHqgn5NtxOc0rZdxM4XkvuSHfITtmtuyGNxQbe6BCZaO6Xct4jrxMo7zMVlnhmMKVe0jRGo0fP16O4yidTg/WlwUAAAAAQK8RyAIoKq+bTbh8u01249Luu2J3x/hyGpfJmvgvspuWqWzCv8gKR3d6uZvcKKd1tfxcm9zEWoUrxkl+PvCzQhGFKyfku2ajVflfr3eS8u229k3EMoXs1UtvltP8rnYVxha+vmyz7Kalio6ZI3vrEoWiVQrXTFG4cuIuA2Av2yovuV5etlkyytdbOVGRUVMVilT0/Hs0CPJhdSL/PcvF5eXiku/Iib8vL7mx23v8TKNyDW8pNu4g5bYuVmzMLIUrJxTW8zKN8tMN8nKtkjEyvi3LiuTnCofLFMpGFYuNUbS2tk+zaI0x8nOt8jNNCpXVKlQxjpm2AAAAAIABRyALoKT4xkheVpJ6H8a2M15WTtNyxcYfJLv5nZ1u8tUx89XPtcpuXCoZT362SU7rKoUqxilSOUHGd+QmN3Vd33dlnHwo69ttMnabTHvNPf46sy3K1b+scNUkRaqnyHdScuMfKFw9WZGqyYUQ2RiT78Bt2yDfbpOMJzdVLz/TqHDVJMn48tJbFK6coEjNVIWilTt+P4zJB8m5eP77aYUUrhiX7wAeoHmtxs3JyzXL2G35Llg3VcimjZeTn2uRm1gr4+76+2ScpHINbyg27kDZzcsVySVkvGx7CG1kfEd+equ8zNb819IemocqJirsWDK5zTKRavlpKVQ5rkdzen07IS/dIC+9Vcaz8w8mN+a7b6smKVI1SVZk16MlfDcrP9ci+Z7CleNH1CgKAAAAAEDvEMgCKCm+b+TZ+dDOeLm+r5NrkRN/X1FZO2zyZYyR27pGbnJjfgOu5uWS8bfdbHz56QbZ6QYpFM0HbKGYfCcl47TtNlTsMePJS26Ql9yQD4Br9syPaEisU6RqoqxIpdzkRhk3K+PZ+fmrqU2S77Z/jXG5ibWK1ExtD2YbFK4Yr0jNXvmvIdcq347Lz8VlfK/9S7NlWWF56a2SZSlcPlqh8nEKV4zt9SZjxvjyM43yUpvl5VryAazx5TvJ9tEE+Q/19p+jl5Pd8JaiY2ZLRvkQNtMoL701H3p25rvykpvkJDaouTWt8to9VV47RU6Lkdu6SlYoLCtS0f5Rnv8crpAVCsvLNMlLN7SPTjDyc/F8MJtpUrh8tMLVk/L/PNrW5cdYVE9WqGy0LMvKh8zZVnm5Vvm51i7vCSe+RqGy0fnu6orxskLh3n39vWR8V8Z3JM+R8R0Z35Z8txAuh6smdRvUAwAAAACKg0AWQEkxklqSKdUas61bsY+8tvUKRfMzZEOxGoUrJ8gYI6d5RXtH5GY5zSt3vYjvyNuuQzYIfqZRdqZRVqxGkeo92+flWjJuWm7b+vyv5XczDsG4GTktK+W2dQ1mC897uUJnrJ+Ly7hpSZZC5aMVrhgn4+VkZZrltEqhWK1C5aMVilTIilTmw8tuwkTfSclL1efDzPYQMP/9bJCx27qts9eMJ6dpmZxQTPKdHq3p5dqUaliuVMMKxabNVqS8dlsIG6mQFdoxcPbttvYQtkHq9H7z0lvkpbfIilYpUjU5H/xmmvLrWJZ8p31OrfHzoXd7OCsZhSsnKuw58rMtckOrFaoYm5/32x7m9vpb4XvynTbJzcl4ORkvm//sth/7u56t7CY35juoR00rudEWAAAAADASEcgCKCmeb+R5ObVlc4r4rkL9nOG5bZOvlbLC5XLb1srLNMtNbpDbumaAqh44xm6T07xcTusaWeGYjJPs2X1uVk7Lu3ITaxWqGNveIRvvsnFWp6vlZ5vlZ5ullvYgtnKcwuVZ+bn4tsssyQrnA81QpFJWOJaf49oeuvrZFrmpzfIzjRqQELY7fl9C+fzX59qtXR+2OnXLhiLtna3dfX86reSk5LSukhN/Lx+0Vo6XZLWH3C35DuDO3dWSXLtNbusahcrH5LtkPUdeqiE/AqFinEIV4xQqq9tlOJufZ9siL71Ffqapa+hq/PZgtj2QdW0Z3+7UJbvt2AqXKTKqUwc1wSwAAAAAFB2BLICS4hspmU6rysupOWlrQnWZQv3JZI0vp2mZrAn/otzWN/ObYcXfl9u2bsBqDoSfD9l6y3i5Xnf0+nZcvh2XqzVSKKpQtLK9Q7ZSVjQfxvqRcklWfp5rarO81OZ+jZQoCuPJOMkeh9zb3+ulNslL9fR7a+Rnm/Izia2wwpXjFa6YkP+eJTfJCkc7hbPbOmd9O9nenduQ7xA3vrxMo7xsk4ybkXFzvQqpjdce1LetU6RmWqdgtjQ3gwMAAACAkYBAFkDJcZycEpmkbMfT1lROE6rL1K9M1s3K3rpYkarJ8nIt7R2d6Jbv5LtkO3fKSpIsKRTtY8fqCGe8QoitUEThinEKV4zPB67JelmhiEIVY2TslHwnJUnyc63twezW9vEV/SzBzW4bbTGqI5jdokj1FEVGTRuwzd0AAAAAALvH/4EBKDlh46gtk1Eq40iSGpO2xlXH+hfKtv/qOfrKEMYOBN/tGs6Wj1WocrxCbkby7PZZvFsC6z42blZO88r8xnG10yVj5KUbFKndW+HKPfo04xYAAAAA0DsEsgBKjiVXjpNTPLtthmwoJY2t2nFTJmDI8t3C5mGDzbgZOU3vyCurU7RuPzmeLS9Zr2jdfgqVjdr5fb6bn73ruwpXTiTABQAAAIA+IJAFUFKs9s2hXDcrSWrJOIUZsqGQpdEV0WKVBgw7fq5VuS2vK1w9WZFRe8vf+qbClRMVrd0nv6mc58i3W9s3MYvLd5KF/du8tvWK1E5XuGLcgNTiZbbKS21WqKxOobLRCsWq+72mb7fJS22WFS5TuHoyoxkAAAAAlAT+zwRAiWkPZJ1tv7LdnHa2dcpalmrL+dEFDBwjL7lRXrpB0fYxBn6mUVa4XL6bav8jaeTbyfZgtlVWKKpI7d7ynbRCZXWK1k1XKLbzztrdcRPr5CTel3xfXqZZkmSFYwqV58PZcPloWeGynn01HZ3Hqc3y7W0buLlt6xWunqRI9Z6ywnTbAwAAACgeUg0AJcXqJpA1khpTtkJWmZS2ZUkaRSgLDCzfkdPyrtzkJkVq9pIVjsm32+Tn8h2y228u5mUaFKneU5GavZSzWxWuGK9I7XSFIhU9fkljfDnNK+WlG+Rnm2Q3LZcVLlOoPB/CGjcjL9UgR5IVqVAoUi4rUi4rUiErXJY/DldIoUh+I7TUZnmZRsn47fdulpveolCkQpGaqTK+K7dtoyJVExWu2atLrZZlqaqqSq7ryvP6v5EaAAAAAOwMiQaAEtN1ZEHnR7cmc5pQU6bmtC3fGNUxvgAYcMZJymle3oMLfblt6+Sm6hUZtXd+g7BMoyJVkxWunqRQtGrXt3u27KZl8nMJuW0b5MbX5B930/KSaXnJjZIshcpGtY8wqJHfHsTKCnVdzLIkYyTjF0Yf+LnWwtO+l5Oda5UVrVZk1FTJeHJTmxWuGJefhRupkEIxjRq1rcs3FOr6Gsb35NuJfJewHZdxUoqO2V/h8tG7/14BAAAAQCcEsgBKzI4dsh18SVvachpfHStcyUxZoMh8R27rKnnJDYq0jzxwkxsVitUoXLWHwpXjZYW6/jn17TbZTctknIyc1lXyUpt3srgpzK/tIlymULijW7ZcVigm30nJyzRIvrvTUo2TlNP0jtxIhSI1e0m+Jy+9tf2VpEg6JxMqk0JlcttchSIxGScpP5don5+b//lk3KxkWXKalkpjD1C4fExfv3sAAAAARiACWQBF9Zsrf62WLfUaVR7TYftM0MTyVlmuI2P8bq/Pd8raGleVD2V9YzSmMib2egeKy7iZ9rCzXOHKPRSumijfbpPTukbhirEKV05UqHyM/EyjnJYV8t2cnMZl8u347hffnpeT7+WkvtzbUWvLu3Li7ysUq2nvkC2TnbYVjlYpHKuUG8/KsixJRr6T2raxmR2XPFsKl6ls/FzZjcsUG0coCwAAAKDnCGQBFFXbuIlq8oyitZXKTJ4gP2LJpOt3eU/HTFlj8l13xkhjqwhlgVJg3KzcxAdyEx8oVFancNVEyXfkpbfKCkdlfEfGTsluXCrjZXe/YJB8R342v4mY7/tKbNnS/oSlyOSpCkXLZJz0DvNzJUleTrmtiwllAQAAAPQagSyAklAeDUuSQsZWztl9SGMkNaYddfTRGiONqyaUBUpJfkOwVjnWaoUrxitUMVbGy8mNv999yFkyjIyXlTH2ri8jlAUAAADQBwSyAEpCeTT/4yhsnG7nx+5Mc9rpGOsov81ofHWZQqSyQGkxnrz0Znnpnc2KHcK8nHJb31LZ+EP6Fcoa35OX3iI/26Rw1WSFK8YGUCwAAACAUkAgC6AklEXDChlPlvHluj0PZCWpJePIb09lG5I5TSCUBTCYPLtrKDt2To8DVd/NyEtulJfaIuO7koy8TLNCZXWK1k5XqGxUsLUDAAAAGHQEsgBKQnkkrLDyu6O7PRhZsL141pUx0phKaWt7KGsRygIYLIVQdq7spncULquVFamUFamQFSnf9tkKyRgjP9ucD2JzLZKR/Gyz3ORG+bm4ItVTFKnZS7lcq8IV4xSpna5QtDKQso0x8nOtssJl+Rr5wQkAAAAEjkAWQEkoj4YVbp/X2JuRBZ0lcm4hhN2ayml8dRkzZQEMHs9WrmGxorXTZZyUrEi51PmnkGXJCpdJMjJuTsZ35aU2y0ttknEzhcvctnVyU/WKjJoqGV9etkmRqj0UGTWt/f7+M74jL1kvN7VJpv23EqxQRKGyUbJioxSKjVIoViMrFOx/KhrPlnEz8t2MTOEjq2jdvgqV1fZ+Pd8NvGYAAACgv/gvVgBFtf+LT2qf+g2a+f5YVVpp1dR6cqb1PUaNZ93C8dYkoSyAQebbclpWtp9Ynbpj8x+h9pDWyzTKS2+RjL+TdRy5rWvktW1UpHZvyfhyU1sULq9TqGyMQuWj+9Q16zupfGdueouM78t3kvKSmyQrrFDZKIWclKxwc0f5CkWqZMWqFYpWyYpW5T/3MRQ2viM/Fy98GDct43s7XGPJkt20TLEJhyoUqej515aLy258W1akSuHKCQpXjh+wABsAAAAYSASyAIrqU7+5XuM3vF84z+29p9yrv9SvNeNZtxDCNiZtjauOEcoCKAJT6Prs8wpeVk7zCrlt6xWp3lPGy8rK5ANTK1KucHl7OFs2WlYovO0+35OMJ2M8yfdkvGx+JEK2Vfk5tY3y2jbKt+OFe7xk+0G4LN8hW9beKWtXybO2rW2Fo7IiVQpF8yMZFArLsiL5z6GIZEUKXaq+HZefjec/O0nJ5L8vvpOSsZNdu2O9rOS7sqLVKptwiJzGpYpNOLRHHa++nZTduFS+k5XslHy7TU58jUJldflwtmI8nbMAAAAoGfyXKYCS09tNvbrTmnW3zUJMSeOqCGUBDF3GSeU7b1skK1pdCGKNm5GSm9rHIcQk35UxvtS+0WGXNXxXXqpeXnKjjLeLn7NeTn5mq/zM1sJD+U7fqi6dsn60UurRT1Yj3062d8a25kNg39351U5SdtNyxcYdkO+UHXeQLCu00+t9NyO7cUn+89bFMm5aVqxG4cqJCru2/GyrHGuVwuVjFandW6FoVQ9qBgAAAIJDIAugpBhjug0S+qIl4xSiAkvSWEJZAMOAcZJynaTUti4/aqB8tMJlo6VwNN8Na/LdsZ2PjefIz7XsfETC7l7Tzcq4WfnZpk6PtofAoUj3HbKWJd9uk5+L5+vpBT/bJKf1PUXr9pXTskqxMbN2UldO9ta3ZdpDWeOm84/bbXLtNrmtqwtdsvK9/Dze6smKjNqbjlkAAAAUDf8lCqC0DFAY26E543Rp4CKUBTCsGE9+plF+prEYL57vtPVyGtif3HleckNhhqwbqchvctb51T1HduPbMk5aduNSGbut23X8XKv8XKvcxFpFaveRjJGXblCkdrrClXts+22KARIKhVRVVTXg6wIAAGD4IJAFUFJMAP9b35x2CseO52t8dZkiIf5HGQBKndO6WlakXI4lWZEKhSvHS8rPyLUbl8h3UrKb3pGfa93tWsbLyWleLi9Vr2jdfnK8d+Ul6xWt21ehstoBqbeurk7l5eWyLEvGjstO1cv4rqxwRFYoJoWi+Rm8oWj+OBRt7zKOEuACAACMIASyAEqK6eOv0+5Oc9qR4/oaUxVTfSKrcVUxVUTDu78RAFBERnbTOyqbcKiclhWyImWyotWym5bmN+5qXrndGIXd83Otym15TeH20QX+1rb8vNnKCQpFKmVFyvtUaSgUUkVFuUJ2i0J2g2w3JEu+fDcjKxSTFY5qpzN3LeXHPoSj+WtDkW1BbfuHwh3HsfzxLubqAgAAoLQRyAIoLQM8sqCzNtuT7WU1vrpMW5I51ZVHVVsRZYQBAJQyk++GjU34F9mNyxSKVec36mpdLS+9pc/LeslN8tINio6anh9jkMqvZYXCsiKVsqKV+U3MIpWyIhX5QNWKdNvJanxHbttGRRIrZRlHnpOVk43Lz2zpuoFZKLJDd2zhvHPnbHswq52Fru0dw6FotULR6vxGa7FqWeGybTUZI+NlZZyUfCcl0/6hUEyRmj0VKh9DVy4AAECREMgCKClBjCzoLOcZbUpkNb4qJhnJ9nyNq4opxP+UAkDJMl5OdtNSxcYdJOPZchMfyEtu7P/CviundZWctrUKRWvyAWy0UlakUqFopTxru9+ksKwdOlYlS362Ub7nyU03KtP8nnKJek2cOEGhUGiH1zO+KynTs3/bWaFtHbGF143JCscUilbJj1a319B+eTgmK1qV38jNScn42zZTM74j46RkRavk51oVilYpXDNF4cqJ/eq2NZ4tL71VCoUVrhjHZmkAAAA9wH8xASgtAXbIdvCNtCVpq648/yNwk5fThOqYYmF+/RMASpWx25Srf0UKRSQvN7CLe7Z8r2mH8QdWuExWtEpWpLy9e3XbOIFCKKuQvFyrnMQ6ta57d2DrMr6Ml5W87M4D3HBZvlM21t4pG62S8T0ZNyXfThU+y7fbv6iQwlWTFKneU76Tkhv/QJHqKQpXT+5xmGqMLz/bLC+1WV62ufDvbsdapXD5aIUrxytUPk5WiNFAAAAA3SGQBVBSzCAEsh1as65ynq/xVWWqT+Q0qjyi2vII3bIAUKqMJ3ne7q8bsJfLyfQw/PX9YGag75aXk+/lej5L1/jykhvlJTcqVDFekZq98l3HbesUqhgnK1yeD6LDsfbPZe3zbyXfTspLb5aXbpDxHMl35WW25sc9hEIKV0zId8xmmmSFQgqVj1G4YkJ+PEIvwlnjOfJS9fLSDYqM3k/hsro+fGMAAABKF4EsgKLaPvoMalOvnck4vjYlshpbGZMxRsmcq7qKqKrLIsyWBQAMa35mq+zMVoXKahWu2Uthz+l+bq0VkhWKyHi2JCM/25oPZjONUqd/b/vZFqnl3XwQWzleYc+Rl27Mh7NldQqVj1O4Ymx+w7Lu6rHb5CY35kcgGF8yvpzGJdKYOQpXjO3x12U8W162SeGK8QM6QsHPxWWMp3D5mAFbEwAAjEwEsgCKqhSaUV3faEsyp4pISKMrY/J8W4msq9GVUVVG+XVLAMDw5ufi8nNxOVJ+47EdOmTLpFBExk7KTW/ZzcgIIz+bH//gWB1dsmMVcnOyMs1yWpWf11sxVuHysbKilfLTW+WmNsnPJSQZeemtcpMbJS+n2PiDZTctU2z0LIWrJu72a/GyzXKaV8h4jtzQaoUqxitctUe/u2zd5CY5raslGUWqJitSuw8jGQAAQJ8RyAIoKmvHHtmi1CFJGddXNpFVVSys0RVRNbT5Ko+GNaYyynxZAMDI0L7xmHFS/V/L+PIzjfIzjZKkUKw2H8RWjM13w8Y/yHfkGl/Gy8lL1ctN1m+bdysp1/CWYuMOkt2yQlHfVaRmSvcvZXy58fflJjfIOFm5ibUKlY9W2HPlpbbIilYoUrmHwlUT8wFzT78E48tpWSUvtVm+nZBx05KRvGyLomNm9jjoNcbIKoW/hQYAACWBQBZAUZXa/5sYSUnbU9r28jNljbTJ9VQdi6iuIqpIqMQKBgBgiPDtuHw7Ljf+nqxIRfvM2rJ8h26mUd3+pazvyN66WLFxB8oxq2V8R9Havbe7JC2neYV8u01eukFOy7uS8eSlN8sJRRSunKhw1R4yTkZO4gOFy8coXLWHQuVjdxmSGjcnu/kd+bmEvE4dsl66UdHRM2VvXaxI9Z6K1E6X1c2oB+M78toDaT8Xz9dRs5dCkfL+fSMBAMCQRyALoKhKNd70ld/0q619pqyMlLI91ZSFVVseVZhgFgCAPjNuRl7b+h5e7Mne+raiY+fkz31Hkbr9ZFmW3NRmua2rZTxbTstqeenNXe/13cImZla0WpGqSZLn5Dcei5QpXLmHIlV7yNouJPVyrXKalsu4WTmtq+Wl6rctmW1SbsuritbNkIzkZ5sVHTNLodiowqZmXmar/FyrZIyM78g4SRnflZuqV7hygiL/f3v3HR9Fmf8B/DOzJZ2ElgAJvQSwIBZQRAQLelhOBOEsKCqCjbOggHceouLZ8DgEG+odggVB8afeCXY9ESmCAiKhhGISJCEJ6bvZnZ35/THJMJNs7wmf9+ulzOw++8wzO9+dzH73medJ6wbRktxsV81mMwRBYG9aIiKiVo4JWSKKqXj/wuFSgLI6pzqmbJKlYeIvtfdsm0QLmJclIiKKBgXOsp1A21x1TZYAAK66EsjOGjjLfoUi2bzX4KyBs2IvnJX5MCVlwpTaGYpUD6n6UEOv2c4QE9vDVXsYzop8KJIdjrKdUBzVzSuTJTjLd8FlK4WlbV/IJT9DtKZBdlQ3JGEdkOtKjydmAQjmZJjTugKKDFddMUxJHdXErDUVACCKIjp27KhtQhSNvW4VRQFkJxRXfcN/DkAQYErK5Hi2RERELQwTskQUU4rFApfVCgEKFEWBbI7PLxROWUFJrQMJdhFtky2QFQXV9RLSEy1ISzTHbU9fIiKi1sR5bLeWjAUAqaYQUsV+BDQGvSLDVXcErrojECwpMKV0huKS4LKVQxDNUGQJcn0lHGU7AdnptSrZdhT19RWwZPSG4qiBq74Csu0o5PrK5puV6uA8thtS1UGY0roBsgxX3VGYEttCMCdBll0w1R1r2BcZjrIyiFCgKK7jCVil+X5KpgMwpXSBObULBJPV//chAIrshCLZ1P9cEgRLEkRLasS2R0RE1NoxIUtEMfX16i+RLFWgk7QXBQd/gsNeHtfJzXqXjCPV9Ugyq4lZl6ygqmFYgxSrKa7bTkRE1BpIlfnqEAKKDMVlD6kuxVkLqWIfpMr9MCV1hJjUHoqjBlJ1AfxO8spOOMvz/N+mqx5SxV5IVYdgTsuBIjsbEsEuwF6l9rBVZLjEasgCoMi6hKzWO1ZdF8xJah0uJ6TqAphTsmBKzXE7HILPdikKFKkOirMWsrPueAJWshmS4HqCyQrRmgrBkgrRkgLBktJwXBxQZAfgcmrLisuh9kROy3E75i4REdGJhAlZIoqpBJMIk1PtfSI5QvtSFU02SYatqh4pVhPaJllQ6pJRZRaRkWRBsiU+e/kSERG1FopUF+YK1WEEXHXF4a3XG9kBqXI/pMr96qoso6z4+PYtWVnNhi1oSpHq4LCXQbCmNQyH4FLHqU1sD1NqNgTR4vm1rno1+SrVQnHUQpbqDD1wFVlSE7SSDYpkhyLZIEs2QHZCsKSoPWQtKWpC1uRtojIFissJKDLk+kpIdUdgSe8NU1J7/96nCJAdNZDt5VBkCea0HPb0JSKiqGNClohiKsEsQoTa68LptMPUwnKZtQ4X6hwupCaYkZFkhkOSkWgxISPJgkQze38QERFR5CmOajjLfoVkToQpNQeQXXDZyvx7sSzpkrLH/4WHXrGAOimbbCs9/oBobkjQJgOyS+sRq7gchmEfxORMWNJ7weH8BaakdjCn9/bYm1dRFCiOKrhsZZDrj6kPCiIgiBAEk2FZMCVAMCdCMCep/4nGr7mK7IJcXwHZXgaXvRyKVK8956o9DFNqF5jTunpNYEeaIkuQ7eXqimiBIFrURLFoifs5F4iIKHBMyBJRzJhFAaIgwKSoF+pqQrbl9VBQAFTXS6itl9TJvhTA7nQh2aomZq0mJmaJiIgo8hTJrg7BUHUQYkJbNXHpqazsgOKsheKq91jGb7KkTl7WMIGZx2J1Jai3lcKc1l3tlWw/BnNqDsxtukMQTVAUWU2c2krhspWpCV2gYbI0FyCY1OEOBBFoSMqqE5oZE5aCyaIlZyE74bJXAIoMQIFcX6kmee3lgCDCkt4DiuyCq+YwTKk5ao9ZMTpfkxVFgWwvh6uuGLK9DIosNy8kAIJghmCywpzeK6Y9i4mIKHyYkCWimElo6EFqglMdK01yAGh5CdlGMoAKu6RN9qUAqHO6kGQxoU2CGYkWjjFLREREUSBLkG1HY90K9xQZUtUBuOp+hzm9N6AocNUVQ0xIh2w/1jBerQLZXgGXvRQuWynQkJj1SLRCbOwda07SesuK5iQoiguy/Rhc9nI1Cau4DC91lP4CwdpGl5gtgjmtK0yp2WpzdeP2wuVQl2UHBFMSxIR0iAnpASdwZUcVXLUlcNlKGoZzcMFlK4WrrgSKLGm9YwXRApjU3rKiNR2yVAdLem+Y03IC2h4REcUfJmSJKGYae46a4ITT2XLGj/XFpQDlNieqGnrMyjJgc7hgMYlISzAjNcEEkbeeERER0QlMkexwlu2EK7EtzOm9oEg2uOzH1N6x9jKvQyY0IzsgOxyAozK4tjiq4Di6HWJCBszpPaDIEpxVBw1j6upKN0zEZgWqCwBBgGhJ1ZKzYkI6IJgB2QFFqofisqtJ3IZlWaqD4rRBSzrXFatJZ12i2O10cqIZ1vYD4VTyITtrYWnbl5OjERG1YEzIElHMaD1kFalFTejlL0lWUF7nREWdE6kJZqQlmuF0yaiwCUhNMCEtwQKLiYlZIiIiOnHJ9mNw2LfEuhkAALm+Ao6SnyEmtoWY2A6QZUMPWXVM3IbeuqIZYkJGQxI2A6KjCqgubBg9QXCTzFXUcXUlO1z2MnUCOV89fw2Nk+A4ugOWjD5qbZIN1vYnQTA1H/dWFEVYLBZYrVaOP0tEFKeYkCWimLGaRHR9/UWk/v4LHPYqpFX8Drl9G+SPOSPWTQsrGUBVvYSqeglJZlHtNasoqKqXkGzhOLNERERE8US2H4NsP+ajkATZVnp8cjPRDNHaMISBYGpI4Np1vWQd8ND3NQAKnBV7IUu1sGT0QX3JVlg78fI6lQAAXVtJREFUnAzRkqKVEAQBWVlZx1/iqofLYWt4UgQEAQLUf7WJ0URL1MbN9YeiyOrwENrkcE4oskNNYIsmmJI7eZwMjoiopYifsy4RnXASzCI6r3wTKQf2aY9Vd85odQlZPZskw1bjgEUU0CbRDEVRx5lNtpiQnmRBAhOzRERERC2PLEG2l0G2l0V8U66aw1CcNljaD4Sj5CdY2g2AKak9FNkJub4Sov13CK46CK5a1EuJfvWSFUQTBFMCYLJCMCU0/Gc1/AsxtB63iqJArj+mtl+yA1DU5CsUddI1RQEgq4+5zV0rAARIVQXq8BKpnSAmdeTQDUTUIjEhS0QxYzWLEELuKdAyOWUFZXVOVNoktElqSMw6XEi2MjFLRERERN7J9cfgaOgh6yj7BYIpEYpkh6IoMNXXwOW0w2mvhNMpAFId1GTm8Z6xAvQ9ZK0QzFYIYgIEc4I6Pq67HrOC0DDZWEOi1pKsDdvgLSmqyC51rNyaIsjOOjV57awBFNlNQlaBIrvUSdQae8jKzobhIpwQzIkwpXSGSXZArq+AYMqHKTkTppTOWk9hRXZBkWxQXDb1PZFskCWb2hPYnAzRkgzBkqJOABfBZK7sqIYi2dT3vPG9h6gmtQURginR7ZATRHRiYEKWiGJGTTqemAnZRpKijjNbaXMiPckCBccTs20SLUgwi+DIX0RERETUlCLZUF/yEyzpvSCYEiA7aiDVV6KsMB+ypM7PkJSVBVEMIukomHQ9ZPU9Z/U9aBMA/AZBFNXhGhLbqQlaayoAQJbscNUUwVV7BIosQZFskBrW9ZOYBbbPdkiVByBVHoSY1B7mlM5QXE5I1UUQLSnHk7eGF8lQXHZAtEAQdQlQQYBoToJgToZgTYVoTYNoTTOWCbR9igxXXQlcNYchO6q9FxYA0ZIGMbEtTIntIFjbBN0DWZGdkO3lcNnLIYhWmJIzIVrTgqpLEAS0adMGNpsNTqczqDqIyDcmZIkoZqxmJmQbuRQcT8wmHk/Mmk0iUq0mpCSYYRGZmiUiIiIiHVmC89ie46uyrCVjQ6I09DKVbJ7LiFaYEtuqk6Al2CE0jLsrmKwQzMmQHZWAokC2l0OqKYJsLw+9XccbCNlWCoetVO01m9wZYkIbNSHb0Cu2sWcsXPW6NlvUHrLmFLWHb2NvWZtVKyKYk7TkrGhNg2BJhSCavLdGskOqPawmn11OKK56uGoOw1Vf0ZBk1Y3bCwGCIEKwpMKU2BayoxpS1W8QRDPExAw1sW1Nh2CyqolxD0la2VGjJWFlR5Xaw1iRAUGEVF0I0ZIMMakjTClZEM1JzdssuyA7KiHXq/8pUh3ExPYQEzsgJSUFKSkpcLlcnBiOKEKYkCWimGHvz+ZcClBuc6LS7kSK1YzUBBMkl4wKmxMJZhNSE0xItppg4oUREREREcWS7FCHIqgrBgB1OIDEdjAlZkAwJUKur4RUUwRFqotoMxTJDqnqgH+FG8bZRX2l8XGTFaK1jZaEVRxpcOmGbRBEs9ZDGPoxdkWz2iPWXq4mn+sr1ORz42Rv8Nb9pBhSJQBTAkyJ7dSespIdrrrjr4UgqBOuiWYIgllblh1VUKT6hv23qUlZexlkewVgUnvImpIzITrrIFUdgmhNgyk5E4I5SU3AOirVHryK0lBHXUMiux5Sze8w19VDsbSFYG3b4hKyjRPpiQnpsW4KkVdMyBJRTFhMQkMylj1k3XEpQFW9hKp6CRZRQGqCGalWBfWSC+V1ApIsIhItJiSZRVg43iwRERERxZgi1cFVUwdXTWGsmxI4lwOyrdSQSBXMyQ09ZFOaT3Am6HrMKi64aouDTz676uGq/R2u2t/hhADR2gaCNVUdOkFUk7BqItai/iuYoUi1cNnUJGyzXsyueriqC+CqLoBgTtaSs/ohFBRnLVz1lZDrKyDXVwByw9AEohlCQns4pURYkp0wO0pQf6Qc5pSOAERAlqAoTvVfWYIiq8uAoLbXpA4LobbdoiWtIZjU3r5iw7+CCRBNuh7DoSV9FdkJV10pXHUlkB0VgAKIiRmwpPeEaG0TUt0+ty3ZITtrochOmBLbNgzlQeQbE7JEFBONk1adqJN6BcIpKzhmc+KYzYlEs4jUBDNcsgl1DnXsLbMoINFiQqJFRKLZBDOHNiAiIiIiCoki1cHlKcEqmNTEm2iG4qwNekxcN1tVh3pwVPou6k9tUh2kqoOQqg6qQy+YLJAdNccTsE3JEly1v6OyuBiiOREJbTojyTIAcDUOg6FAkaWGhOzxxCwACCZLw4RwlobJygL4TiI0/k9Q5z5rXG6YPE4wJ0E0J0OwNIz5K5rVIRfsZYYeyoqrHq66o4Digllxod5eAVNSe5jTe2qTvnl9vxomkfP4vOyE4qyD4qyB7KyD4qzV9h8AnI3jAie1hymxvTaestu6GtqrJvEFCOZEdaK3FtYjmYLHhCwRxYQ6fiy022TIP3ZJhl1yQABgNTUkYs0mOGUFNQ3DY1lMIlI47iwRERERUWQorogPxRBuirMGSgBzdMmSHbbyA6i31EE0Wxsf9L8C0Xy8p6wgGnrIGpfV5CvQcAdl47ogqAlKS3KzidYEk1U9BrILiixBth1Ve8fWV2hlpJoimNO6AYoMl70MpuQsmNv0gGhOVN8PRVETq/VVkB1VDcNA+Dv+sgLFWQfZWaP9C0VWh+xIaq+OC1x5UB3fOLE9xMS2DeMb29ThIZwN4xsrsrFaoSEJ3ZicNSeqYwFb0iA0tJtaDyZkiSgmErTb7JmQDYYCoN6loN4loRISBKhj8iZZTEiyiHA2jDubaDGpyVmrCSJ/bSUiIiIiokAFkojVvUbtPWoL/RufaD7eS7ahpyxkF1y20obJ4txsQXZCqsyHVFMIS5vugKLAVVcCU1JHtWeqsxqKLGttlR3ValJWPwlcE4osqb1iJZvbbcr1FZAq96ttTWwPU1J7tWxNka4OBxSnmpiVJRsUZ93x5LM5EaKWjE1qGNJBJZis6hAa2oRzbdThIOISv+P7I16PHhG1co09ZDlkQXgoaOw9K+OYTe09m2I1wyUrsDvVcWeTLSakJJiQZDFxMjUiIiIiImoZZAmKoxou3Ti4fnPVw3lsD6TqApjb9IDicjRM7qbrGeusDWtzFckGV02hOp6yaIZobaP1kA2sl7EVoiVFl4htA8FUpj4noGG8WlE3zIFg7GFsToRoSVXHQ7akBN3LVnE51Ing6qsgO2vUHs+iGYJwfJzjxn9ddUehKDICGrLiBMWELBHFRIJZBCD7LEfBcbgUOGxOtZesWURKghmyrKDWIUEUBCRaGnvTcsxZIiIiIiJq3RTJBmf5ruhvWJYaevEG81oH5HoH5Ppjxx8zJRzvIWtOakjGNiZhoVsWIZqT4NL1ohVEMwRLipqcNSUAogmCYFYnWBPNDctmQJEbErBqEvb4xHFKw7JwPBHbLPGqAEqKm8epKSZkiSgmEswiTIEMYkRBUQDYJBk2yYFyAElWE5ItJkiNk4IJ6vARjclZq1nkn04iIiIiIqJ45KqHbKuHbCv1q7g6MVqK2lPWkgzRkgrZkgy/EqaKrPYirq/Uesg2m8BOMDWMFawmaGVnLWC6wDDcArnHhGwLkZ+fjxUrVmDjxo0oLCyEJEnIzMxEv379cMUVV+Diiy+G2czDSS2H1SRCVPwdNJ3CQQZQ63Ch1uEyjDmbbDGhXlLHnBUFASZRgNkkwCw2/ifCJAqwiOpzREREREREFP8UVz0UV32TXrqCcagBoUkPWSjqUA6OGvgcD1ZxQXG5AJeupCkiu9LqMIPXAixatAgvv/wyJMk41khBQQEKCgrw5Zdf4uSTT8azzz6LXr16xaiVRIFRe8g6Yt2ME5ZxzFknzKI6xqzVLOoSsc2TrxaTiESziASLiEQzhzsgIiIiIiJqWRRAdkKRnY1rFANMyMa5efPmYfny5dq62WxGbm4ukpKSkJ+fj2PH1LFEfvnlF0yaNAkrV65EdnZ2rJpL5BcBamJPlDhkQbyQZAVV9RKgm1RUAGAS1N6yJlGAxSQg0WyCwyVCaChnbkzQNiRyRUGAKACiIEBoWCYiIiIiIiKi45iQjWNr1641JGMvueQSzJkzBx06dAAAOJ1OrF69Gk8++SRsNhtKS0sxffp0vP/++7pZ9ojij9WkjlMqyuwhG88UAJKiQJL0v5lK2nAHiWYRiRYTnC4RNfXu6xAEAYIAmEUBVpOo/mcWYTWpyVsiIiIiIiKiEw0TsnHK6XTi6aef1tZHjRqFf/7znxDF4wMjWywWTJw4EdnZ2Zg2bRokScLOnTvxn//8B1dccUUsmk3kF6tZjWOT4kR992zUSnXac/bM9Fg1i/ykH+4AdjVBazWJMInGnrH63rJmUTBOGCYAZlFEgkmEpaEHrkkUYBKOLzNdS0RERERERK0RE7Jx6vPPP8fhw4cBqMMUzJkzx5CM1Rs+fDgmTpyIt956CwDw73//mwlZimsJDQlZUXFi/9MzsGPrGu25lNRUJuJaGAVAvUsGXN7LCYCWmLWa1GEOHCbR/bAGArTkbON4tiZRTd42rut72AqCgJSUFMiyDFmWw7l7RERERERERGHFhGyc+uSTT7TlYcOGoUuXLl7L6xOyO3fuREFBAbp27RrRNhIFy2pq7CHrgF2yx7g1FC0KAKeswOlwoVaXvTUJaNY7Vr/saYIxURRgEQVYTOr4tU4ZMAsmmC0mDttCREREREREcYsJ2TikKAo2btyorZ977rk+X5Obm4uOHTvi6NGjAICvvvoKN910U8TaSBQKfQ9Zyelh8FE6YbgUwOVS4G1+z8betdp/DUlYi0mARRQhCIDDcbxnbJXLDnND71sB6ji2otAwpi2gDaug/YvG4RaOD7XQWJaIiIiIiIgonJiQjUNFRUWoqqrS1k8++WS/Xpebm6slZHfs2BGRthGFgzqplwwBLjid7CFLvmm9a+XGpK1xfASTADjtNljNIixmE1yCCeaGRK3QkJR1OzSCN1pyVoBJtyyK6nAKYkNPXlEQYNI9xiQuERERERERecOEbBw6ePCgYb1bt25+vS4nJ0db/u2338LZJKKwSjCLEGUHAEBiQpbCQJIV1Dkk1KlhhTrZ/bAFau/Yht6wgLGXrCBARMO/DROUmQwTlB1PxnrkI4nrbsIzURQMPXkb20lEREREREStExOycaixlysAiKKIDh06+PW6jh07uq0jmmRZhgAFVpOADslmSLLnW5DpxNUu2QyLbIcIwCyKSEpK0Z5LtCYB3hJeRO4oCuSk4+ebQOJIQZP+ts0eaE5sGPe28V+TllhteEwQDElXeJ1nTGnyr0rQ/qcfauF4MlloGGJBP9yC/nHD66B7rqFeoUm9+n9bgrD/dRGAlLS2x9dNiVDi8c3gn9W4pYgKLAmpuvUEKPx7RgFgDFE4MI4oVIwhouhgQjYOVVZWasspKSkQRdGv16WmHj9p6uuIJpvNBosio32SiFG92/p+AZ2wzA4XElwienY/CT27nxTr5hC1at5H6G1Of83t7vJbn9T19pibV3msN5DrfF+vDeYrgwAgvYPxxe7qafo+8usJNTIByMyMdSuoJWMMUTgwjihUjCEKWYUp1i1oEZiQjUP19ccnOUpMTPT7dVarVVt2OBxhbVMgEkwCBMG/JDKduAQxBYKpO9L++hjEIyXa43KnTFQ/MSeGLSOiUPib+G2NHT2bpZzdJKibJXD9yOj6KhLNpLC+57bXMk34Ot7eqgzoxwRPjzNz7pantyXSn89gDoc/beJhJiIiigOVNa3zYj/MmJCNQ06nU1v2t3csAJjNxw+nJElhbZO/HA4HLBYLrCYmZMkHSyqQlIqE9T/CtHev9rCrb1+42mTHsGFEREQntnhMbMZjm4iIiMidvWBG1jcmZOOQyXS8e7csex140ECfhLVYLGFtk79SU1MN7SfypenES4IgICkpKUatoZbK5XLhl19+0dZPPvlknosoIIwhChVjiELFGKJwYBxRqBhDFCpBEKAoTMj6woRsHNIno/TDF/iiH6YgISEhrG3yl8lkMvTUJfKl6QDxgiAwhihkPBdRqBhDFCrGEIWKMUThwDiiUDGGiCKD95XHofT0dG25trbW718WampqtOWMjIxwN4uIiIiIiIiIiIhCxIRsHMrKytKWXS4Xjh075tfrjh49qi136NAh7O0iIiIiIiIiIiKi0DAhG4e6d+9uWC8oKPDrdYWFhdpyz549w9omIiIiIiIiIiIiCh0TsnEoOzvbMOTArl27/HpdXl6etty/f/9wN4uIiIiIiIiIiIhCxIRsnBo6dKi2vH79ep/l8/LyUFpaqq2fffbZEWkXERERERERERERBY8J2Tg1evRobfnrr79GcXGx1/LvvPOOtty7d2/k5uZGrG1EREREREREREQUHCZk49To0aORmZkJAHA4HJg9ezYkSXJb9rvvvsOqVau09UmTJkWljURERERERERERBQYJmTjlNVqxf3336+tr1+/Hrfddpthgi9JkrBy5UpMnz4dLpcLANCvXz9cc801UW8vERERERERERER+WaOdQPIs7Fjx+Knn37Cu+++C0BNyo4ePRq5ublITU1Ffn4+ysvLtfIZGRlYuHAhzGYeViIiIiIiIiIionjEzF2ce/TRR9G2bVu8/vrrcDqdkGUZu3btalaud+/eWLhwIXr16hWDVhIREREREREREZE/mJCNc4Ig4L777sOVV16J9957D+vWrcORI0dgs9mQnp6OAQMG4NJLL8WVV14Jq9Ua6+YSERERERERERGRF0zIthC9e/fGrFmzMGvWrFg3hYiIiIiIiIiIiILESb2IiIiIiIiIiIiIooQ9ZIkoppRLL8Wxbt209YyBAyHEsD1ERERERERERJHEhCwRxZQ8fz4ObNumrQ8aNIhd94mIiIiIiIio1WLeg4iIiIiIiIiIiChKmJAlIiIiIiIiIiIiihImZImIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSpiQJSIiIiIiIiIiIooSc6wbQEQnNvHyy3FSXt7x9f79gbVrY9giIiIiIiIiIqLIYUKWiGJKOHgQiYcOaetKYmIMW0NEREREREREFFkcsoCIiIiIiIiIiIgoSpiQJSIiIiIiIiIiIooSJmSJiIiIiIiIiIiIooQJWSIiIiIiIiIiIqIoYUKWiIiIiIiIiIiIKEqYkCUiIiIiIiIiIiKKEiZkiYiIiIiIiIiIiKKECVkiIiIiIiIiIiKiKGFCloiIiIiIiIiIiChKmJAlIiIiIiIiIiIiihImZImIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSgRFUZRYN4Jari1bthjWRZE5fgpQXR0gy8fXRRFITo5de6jFknVxxHMRBYMxRKFiDFGoGEMUDowjChVjiEKhjx8AOOOMM2LUkvhmjnUDqHVp+sEj8ikxsfljjCMKEc9FFCrGEIWKMUShYgxRODCOKFSMIaLI4E8dRERERERERERERFHCHrIUVrydgYiIiIiIiIjoxMRe1f7hGLJEREREREREREREUcLujERERERERERERERRwoQsERERERERERERUZQwIUtEREREREREREQUJUzIEhEREREREREREUUJE7JEREREREREREREUcKELBEREREREREREVGUMCFLREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlDAhS0RERERERERERBQlTMgSERERERERERERRQkTskRERERERERERERRwoQsERERERERERERUZQwIUtEREREREREREQUJUzIEhEREREREREREUUJE7JEREREREREREREUcKELBEREREREREREVGUMCFLREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlDAhS0RERERERERERBQlTMgSERERERERERERRYk51g04keXn52PFihXYuHEjCgsLIUkSMjMz0a9fP1xxxRW4+OKLYTaH/xD9/vvvWLFiBdatW4dDhw7BbrejY8eO6NWrF8aMGYMxY8YgKSkpoDq3b9+OVatWYfPmzSguLoaiKMjKysJJJ52EP/7xjxgxYgQEQfC7PkVR8MUXX+Cjjz7Cjh07UFZWhqSkJGRlZeHss8/GuHHj0L9//4DaWFtbiw8++ABffPEFdu/ejerqamRkZKBLly648MILMXbsWGRmZgZUZzxgHHlWV1eHDz/8EOvWrcOuXbtw7NgxSJKEjIwM9OvXD+eeey7Gjx+PNm3a+FXf5Zdfjr179wa0T+PHj8cTTzwR0GuijTHk3rRp0/DNN98EtP1zzjkHS5cu9VrG4XDgv//9L9asWYNff/0VFRUVSE1NRefOnTFixAiMGzcO3bp1C2i7scYYOm727Nn44IMPQtqvIUOGYPny5W6fa63nIaB1xZE7M2fOxIcffuj1+HrC6yL/MIY84zWRfxhD7vGayH+MoeN4TRS81hJHsizj66+/xueff45t27bh6NGjsNvtSEtLQ9euXTFkyBBcc8016N69e0Dt/OGHH/D+++/j559/RklJCcxmMzp16oTBgwdj7NixOPPMMwOqL1bnIkFRFCXstZJPixYtwssvvwxJkjyWOfnkk/Hss8+iV69eYdvuihUr8NRTT8Fms3ks06NHDzzzzDMYNGiQz/qcTicef/xxvPvuu17LDR8+HE8++aRfF/bFxcW47777sGXLFo9lBEHA5MmTcf/998Nqtfqsc8uWLZgxYwZ+//13j2VSUlLw8MMP4+qrr/ZZX7xgHHn2ySef4NFHH0VFRYXXcqmpqXjooYcwfvx4r+Xq6+sxePBguFwun9vWi/c/+owhz8477zyUlJT4LKfn68tHfn4+7rnnHq8XjxaLBX/+859x2223BfQDRKwwhowi+eWjtZ6HgNYTR5588cUXuOuuuwB4/3LpDq+L/MMY8ozXRP5hDHnGayL/MIaMeE0UnNYSR7t27cLMmTOxZ88er+VMJhOuu+46zJo1CxaLxWvZmpoazJo1C1988YXXcldeeSXmzJmDtLQ0n+2M5bmICdkYmDdvnuGkYjabkZubi6SkJOTn5+PYsWPacx06dMDKlSuRnZ0d8naXLl2KJ598UlsXBAF9+/ZFRkYGDh48aPgjm5SUhLfeegsnnXSSx/oURcHdd99t+DAkJCQgNzcXJpMJe/fuRU1NjfZcr1698O6773r95b28vBwTJ07Eb7/9pj2WkZGBPn36wGazYffu3YYT02WXXYZ//OMfXvd7y5YtuOWWW2C327XHsrOzkZ2djaNHj+LAgQOG8nPnzsW1117rtc54wDjyHEdN2wgA7dq1Q48ePWAymXDw4EEcPXrU8Pz06dNx9913e6xz+/btuOaaawAAiYmJfv/qdt5552Hy5Ml+lY02xpD3c9E555yjrQ8fPtyvfRs4cCBmzJjh9rkDBw7g2muvNbyvHTt2RM+ePVFRUYG9e/dC/yf5tttuwwMPPODXdmOFMdQ8hv71r3/h+++/D2h/9u3bhyNHjmjr9913H26//fZm5VrjeQhoPXHkyfbt23HTTTehrq4OQGCJEF4X+Ycx5H8bAV4TucMY8ozXRP5hDDXHa6LAtZY4+umnnzB58mTDtUZiYiL69euHpKQkFBcX4+DBg4bXDB8+HK+88orHnr/19fWYNGkStm3bpj2WkpKCfv36weVyYc+ePYbtnXXWWfjXv/7l9YfqmJ+LFIqqNWvWKP369dP+mz59unL06FHteYfDoaxYsUIZNGiQVmbs2LGKLMshbfenn35SBgwYoNV5/fXXK4cOHdKel2VZ+fTTT5WhQ4dqZUaMGKHU1dV5rPO1114z7MvcuXOVqqoq7Xmbzaa89NJLysCBA7Uyd911l9d2Tp06VSt7yimnKG+//bbidDq150tKSpR7773XsN033njDY33V1dXK8OHDtbLnn3++sn79ekOZX3/9VfnjH/+olRk4cKDyyy+/eG1nrDGOPMfR1q1bldzcXK3sqFGjlG+++abZvq9fv14ZPXq0YdvffPONx3rfffddrdwNN9zgz9sV1xhD3s9F69atM8RQqCRJUq688kqtzrPOOktZs2aN4f387bfflBtvvNGwL1988UXI244UxpD3GPLXvn37lMGDB2v13n///R7LtrbzkKK0rjhyZ+PGjcoZZ5xh2MdAjh2vi3xjDHnGayL/MIa84zWRb4yh8OA1UeuIo+rqauWcc87Ryp566qnKsmXLFLvdbii3f/9+ZcqUKYZ9fvrppz2289FHH9XK5ebmKosXL1ZsNpv2fGVlpTJv3jxDfX//+9891hcP5yImZKPI4XAoI0eO1A7ktGnTFJfL5bbsd999Z/ji99FHH4W07QkTJhg+tPrA1du1a5fhJPjSSy+5LVdWVmYo98gjj3jc9nvvvWcI4C1btrgt97///c9Q7r///a/HOmfOnKmVGzp0qFJdXe223Pz587VyZ5xxhnLgwAG35aqrq5XLL79cK3vzzTd73HasMY68x9G1115r+EOh/yPW1LFjx5SLL75YK3/ppZd6LDt37lyt3Lx58zyWawkYQ95jSFEU5dVXX9XK3XHHHQHtozvvvPOOVt/AgQM9btvhcCg33XSTVvYPf/iDIklSyNsPN8aQ7xjyh81mU/7whz8YzkG1tbUey7em85CitK44cue1114ztDnQL468LvKNMeQdr4l8Ywz5xmsi7xhD4cFrotYTRwsWLDB8xjdu3Ohx27IsK9OnT9fKn3TSSUpRUVGzcnv37jUkjZcsWeKxzoULFxrqKygocFsuHs5FYvj62pIvn3/+OQ4fPgxA7Xo+Z84ciKL7QzB8+HBMnDhRW//3v/8d9Ha3bduGn3/+WVv/29/+hsTERLdl+/fvr40LAwBvvPGG23FZ3nvvPdTW1gJQb52bOXOmx+2PGzcOI0eO1NY97csbb7yhLQ8fPhxjxozxWOcjjzyC9u3bAwCOHTvmdmya+vp6w1iAt912G3r06OG2vtTUVMNYMt9//z12797tcfuxxDhSuduXgoICwxh7M2fORIcOHTzWmZGRgdmzZ2vr+/fvx65du9yW1T8e6MQp8YYxpPK2L+E+3suWLTO04/TTT3dbzmKx4Omnn9bGT8rPz8e3334b8vbDjTGkCmVfAODZZ59Ffn4+APXYL1iwAMnJyR7Lt6bzENC64kjv4MGDmDp1Kp555hmv47/5wusi3xhDnvGayD+MId94TeQdYyg8eE3UeuLoo48+0pbHjRuHIUOGeNy+IAiYO3cuEhISAKhzOnz22WfNyi1fvlzbVq9evXDrrbd6rPPuu+9Gv379tPrefPNNt+Xi4VzEhGwUffLJJ9rysGHD0KVLF6/l9R+ynTt3oqCgIOTt9u7dG4MHD/Zafvz48dq4HeXl5di0aVOzMmvWrNGW//CHP3g9WQLGffnf//6njT3TqLKyEuvXr9fWx40b57W+5ORkXHnlldr62rVrm5VZt24dKisrAQCiKPqclOLUU081jIPirs54wDhSuYujDRs2aMsJCQm4+OKLvdYHqOMI6QcP37FjR7MyiqIYvoi29D/6jCGVuxhqlJeXpy2Herzz8vK0C0wAPidLycrKwqhRo7T1eDwXMYZU3mLIlx9//BFvvfWWtj5t2jSvsdbazkNA64ojAJAkCfPmzcPll19uuFAfPHhwwGOw8rrIP4whz3hN5B/GkG+8JvKOMRQ6XhO1njj67bffUFRUpK1ffvnlPtvQrl07nHbaadp60789sizj008/1davvvpqj8lqQL3GmTBhgrauf22jeDkXMSEbJYqiYOPGjdr6ueee6/M1ubm56Nixo7b+1VdfBbXtH374IaDtpqen4+STT9bWv/76a8PzFRUVhl+k/BnY/eyzz4bJZAIA2O12w5cMANi0aZP2i4cgCH61U19m69at2peMRvr97tevn+G99KfOpvsdDxhH3uOouLhY+wPRtWtXv2aatlgsSE1N1db1A3o3OnTokJZ0MZvN6Nu3r8964xVjyHsMAWovMv2kNqFe5Om/FKenp+OUU07x+Rr9+/PNN98YBpOPNcaQ7xjyRZIkPProo9px7d27N6ZNm+b1Na3pPAS0rjhqVFdXh+XLl8PpdAJQj9O0adOwbNkyrfeqv3hd5BtjyDteE/nGGPKN10TeMYZCx2ui1hVHRUVFWm9XAOjTp49f7cjIyNCWKyoqDM/l5eUZ/h75c72u35fDhw8bflgC4udcxIRslBQVFaGqqkpb1wexN7m5udqyu1+pfXE6ndi/f7+27u+Mit62u3v3bkPw+VNncnIyunXr5rFO/QckJycH6enpPuvUXxDIsoydO3c2a2cgbWxa5969e1FfX+/X66KFceQ9ju6++27s2LED3333HRYtWuRXG6urqw1fWt3Nmq5P2PTs2dOvLzXxijHkPYYa621MhCQnJ6Nr165+tdUT/fltwIABEATB52v056LKykrDDOuxxhjyHUO+vPvuu9izZ4+2/tBDD/k8r7Sm8xDQuuLInWHDhuH999/H/fffH9Sx4nWRb4wh73hN5BtjyDdeE3nHGAodr4laVxydc8452L59OzZs2IAPP/zQkGj1prCwUFtu+rdHf96wWCx+JeB79uxpGHrBW/4plucic8g1kF8OHjxoWNd/mfMmJydHWw7mgBcWFmq/bgFA9+7dQ96ufl+sVis6d+7sd52Nv7B6q9PfNnbs2BGJiYmw2+0A1F/Khg0bpj2v/zU3mP2WJAmFhYXo3bu3X6+NBsaR9zgC1FsUMjMzkZmZ6Vd9n3/+OWRZ1tbdHW/9CTs3NxeVlZX48MMP8fXXXyMvLw/V1dVo06YNevbsifPPPx8TJ07068tzLDCGfMdQ0+Ntt9vx3//+F59//jl27tyJiooKpKSkoGvXrjjvvPPwpz/9CVlZWR63F8z5Tb/fgHp+8/e1kcYY8h1D3tTW1uKFF17Q1keOHInzzjvP5+ta03kIaF1x1EgURYwaNQo333wzhg4dGnDb9Hhd5BtjyDdeE3nHGPKN10TeMYZCw2siVWuMo7Zt26Jt27Z+1VdQUIBff/1VW2/6t0f//mRnZ2t3f3gjCAK6dOmiJZwPHTrksc5YnouYkI2So0ePasuiKHodVF9P3w1dX0cw221an7/bLSsrgyzL2jgd+jr9ra9p2abtKikpCarO9u3ba2OU6OuUZRnl5eUB19n0uBw9ejRuvngAjKOmZYPZF736+nq88sor2npGRobbwbz1v8IeOHAAF110keFXTEDdv7KyMvz444949dVX8Ze//AVjx44NqX2RwBjyvS/6411VVYXRo0cbzlGAeitNRUUFduzYgX/961+46667MHXqVLfbC+b81q5dO5hMJq1XSqixHk6ModD2Zfny5SgrKwOgXized999fr2uNZ2HgNYVR41SU1Px8ssvB9wmd3hd5BtjKLx4TcQYcofXRN4xhkLDayJVa4yjQCxatMhwx5p+rNam7fT3B0ZAvYZpTMiGI/8UiXMRhyyIEv3tPykpKX4HrH4cp6ZjgQW6XcD9rUfupKWlacuKohhOcPoxPfTlfPG2L/r1QOrUl9W3sbq62jDjXzD73bTOeMA4Cn1f9ObPn2/4dezGG290+4ub/o/+zp07tf3o3r07hgwZgpNPPtkwVk5VVRVmz56NxYsXh9S+SGAM+d4X/fHOz8/X/mB36dIFZ511Fk477TSkpKRoZex2O5577jk89NBDbrcXzPlNFEXD5FLxdC5iDAW/LzabDW+88Ya2Pnr0aL/H42tN5yGgdcVRJPC6yDfGUHjxmogx5A6vibxjDAWP10THnchx9Pnnn+PDDz/U1s8+++xmQycEe72uLxuO/FMkzkXsIRsl+jG39GNZ+KIfD8XhcIS03UC2rZ9htWk9+naEa1/C8f7o62i63/oTsr/1uasn1hhHoe9Lo3fffRfLli3T1rOzs3HzzTc3K1deXt6sJ8CVV16JO++8Ez179tQeq6+vx+rVqzF//nzU1NQAUH/t69WrF8aMGRN0O8ONMeR9X5rO2gqos07fd999hosDp9OJzz77DE8++aT26+jq1avRq1cv3HbbbR7bHI7zW6wxhoLfl9WrVxt6Kd5xxx1+va61nYeA1hVHkcDrIt8YQ+HDayLGkDu8JvKNMRQ8XhMdd6LG0c6dOzFz5kxDvbNmzWpWriXkn4LFHrJRoh+bI5Du3PpfpiVJCni7TV/j77ab/iKu71URiX3RrwdSZ+NM103raFq/vpy/9QHG/Y4HjKPQ9wUA/u///g9z587V1i0WC/75z38afvFqlJ+fb2jfQw89hGeffdbwBx9Qv9xee+21ePvttw2/Vj755JNxdeHIGPK+L0VFRYbjdeONN+LVV19t9kutxWLBZZddhvfffx+dOnXSHn/hhRea3b6i34a/56KmZYON9UhgDAW/L2+//ba2PHToUAwYMMCv17W28xDQuuIoEnhd5BtjKDx4TaRiDDXHayLfGEPB4zXRcSdiHOXl5eGWW25BXV2d9tjMmTMxcODAZmWDfX+8nTfi5VzEhGyU6A+cfrB8X/QHuekvEf5oGrD+brtpcOm3HYl9CbZO/YffUxublvO3PnftjDXGUej78uabb2L27NnaNgVBwLx583Dqqae6LX/WWWdh27ZtWLt2Ld566y1MnjzZa/25ubmGX/pKSkqwZs2agNsZKYwh7/uSk5OD7du344svvsCyZcvw0EMPeZ11MysrC0888YS2brPZsHLlSkMZfTsDuWDRl42n2WMZQ8Hty48//oh9+/Zp6zfeeKPf22tt5yGgdcVRJPC6yDfGUOh4TcQY8obXRL4xhoLDayKjEy2OtmzZghtvvNEwFMH48eM9xkG4r4ma1hnLcxETslGSlJSkLQfyi4y+a7W/t5d52m4g227apVu/bX2X7kD2RV+26b6Eu86m3c79rTPYW/qihXHkPY68URQFCxYswOOPP64NGi4IAubMmYOrrrrK62utVit69uyJM888069tjR071jCe1vfff+93OyONMeQ7hsxmM7p27YqhQ4f69Svs8OHDDb/KNz3e4WhnPH35YAwFdx766KOPtOUOHTpg5MiRfm8PaF3nIaB1xVEk8LrIN8ZQ8HhNpGIM+cZrIu8YQ8HhNZHRiRRHX3zxBW655RbDGK5XXHEFHnvsMY+vidf8ExOyLUh6erq2XFtba5hFzpvG8U4AdbbTULbbtD5/t2s2mw0DHevb4W99gLrf7upo2s5A6vT0/qSlpRkuGoLZb3ftjDXGkfc48qS+vh733XefYcZQk8mEefPm4brrrvN72/6yWq045ZRTtPVDhw6FfRvBYgwFF0O+6Geibnq8gzm/ybJsuIUnns5FjKHAY0iSJHz66afa+pVXXul2spxwiufzENC64igSeF3kG2MoOLwmOo4xFBm8JvLtRI4hXhM1d6LE0WuvvYbp06fDbrdrj40fPx7PPPOM12EDgr1e9/b+xMu5iAnZKMnKytKWXS4Xjh075tfr9OPudOjQIaTtAkBpaWnA223Xrp3h9hR9nWVlZX63xdu+BFunvmzHjh21ZVEUDev+1tn0/QnmPY8kxlHg+1JaWopJkyYZbk1JSEjA888/j/Hjx/u93UDp2xbMrJeRwhgKfV/c8Xa8g2lneXm54ZYc/fks1hhDge/Lli1bDLdl/eEPf/B7W6GI1/MQ0LriKBJ4XeQbYyhwvCYyYgxFBq+JfDuRY4jXRM219jhyOp14+OGH8eyzzxo+y1OnTsUTTzzhs/d9ZmamthzINZF+f5qeN+LlXMSEbJR0797dsF5QUODX6woLC7XlpgNV+6NLly6G8TKC2W6PHj0Mz+n3pa6uzu8Prn7bTfdFv43ffvvNr/pKSkoMv654a6e/derbaLFYkJ2d7dfrooVx5D2Omtq/fz8mTJiAbdu2aY9lZGRg6dKluOiii/zaXrD0tzPob5GJNcZQYDHkL2/HO5jzW9P3p+m+xxJjKPAY+t///qctd+rUydBLI5Li9TwEtK44igReF/nGGAoMr4maYwxFBq+JfDuRY4jXRM215jiqra3F1KlTsWrVKu0xk8mERx55BDNmzPBre/ptFBYW+tWDWFEUFBUVeWxnvJyLmJCNkuzsbEOX5l27dvn1ury8PG25f//+AW/XYrGgX79+AW9XX67pjIcDBw40/AriT521tbWGQG+6L/rZOg8dOgSbzRZQGwVBQG5uruH5k08+WVvWv4/+1tmnT5+4mHBBj3HkPY708vLycN111zU7Eb/77ruGW6l8+fe//41HHnkE06dPx2uvveb36/Qn7M6dO/v9ukhjDHmPoffffx+PPfYY7rnnHjz99NN+tRHwfrz157dgzkXp6elxlQRhDPl/Hmr0ww8/aMsjRowIuEdKazsPAa0rjiKB10W+MYb8x2si9xhD3vGayDfGUOB4TdRca42jqqoq3HTTTVi/fr32WHJyMl544YWAhsjRnzdsNhsOHDjg8zX79+83JOGbtjNezkVMyEbR0KFDtWV9UHqSl5dn6K1z9tlnR2W7FRUV+PXXXz1uNzU1FQMHDgyozg0bNmjdu00mE4YMGWJ4/owzztDGjnG5XNi4caPPOvXbHThwYLMxUPTb2LlzJ6qqqgKqM9j3O9IYR57jqFF+fj5uuukmw+0egwcPxooVKwL+Jeurr77CihUr8Nlnn+GDDz7w6zXFxcXYs2ePtu7vgPPRwhjyHEObN2/GW2+9hbVr1+K9995rNmi9O3a7HZs3b9bWmx5v/TaOHj2KvXv3+qxTvy/69y1eMIZ8n4ca1dXVYffu3dq6p9nLvWmN5yGg9cRRJPC6yD+MId94TeQdY8gzXhP5hzHkP14Tedba4qi2tha33HILduzYoT3WsWNHvPnmmxg1alRAbezbty/atWunreuT+p7oJ25r27Ztsx+p4+VcxIRsFI0ePVpb/vrrr1FcXOy1/DvvvKMt9+7du1kQBbPdX375Bb/88ovX8itXroQkSQDUzP+wYcOalbnkkku05Y8++shnzw39vgwbNgxt2rQxPN+mTRvDh3nFihVe66utrTXMznjppZc2K3POOedoA0w7nU689957Xuvctm2b4eQSrfFsAsU4UrmLIwCorq7G1KlTDWMTjRo1CkuXLkXbtm291u+O/mS9b98+bN261edrXn31VS1hY7FY4i6WGEMqdzGkP95VVVWGSQe81alPbFxxxRWG5/v162e4jcjX+e3333/HN998o63HW/wAjKFGns5Dejt37tTaACCoW/Na43kIaF1xFG68LvIPY8g7XhP5xhjyjNdE/mEM+Y/XRJ61tjiaPXu2IRnbvXt3vPPOO4aeqf4SBAEXX3yxoQ36sVybkmUZK1eu1NYvueSSZj2x4+VcxIRsFI0ePVobkNjhcGD27NmGE5Led999ZxhnY9KkSUFvd/DgwYbAf+ihhzzOJLdr1y689NJL2vqECROQmJjYrNy4ceOQlJQEQB0s+bHHHvO4/VWrVuG7777T1m+88Ua35a6//npt+euvv8bq1as91jl37lyUl5cDULu9u5uIIDEx0fD44sWLDb/I6VVXV+Ovf/2rtn7aaadh0KBBHrcfS4wjlac4mjNnjmFcm5EjR2LRokVut++Pq666yjDz59y5cw0zrDe1Zs0avPnmm4bXd+rUKahtRwpjSOUuhi655BJDgu3ZZ59FSUmJxzq3bNmCBQsWaOvDhg1ze+7Qn99WrFjh8Rdop9OJWbNmwel0AlDHdor02H7BYAypPJ2H9PS3QSUmJqJPnz4+X9NUazwPAa0rjiKB10W+MYa84zWRb4whz3hN5B/GkP94TeRZa4qjd955B5999pm2np2djeXLl6Nr165Bt/O6667Tkqp5eXl44YUXPJZduHCh1uNVFEWP7088nIuYkI0iq9WK+++/X1tfv349brvtNsN4JpIkYeXKlZg+fTpcLhcANXt/zTXXuK3zggsuQG5uLnJzc3HBBRd43PasWbO0AN6zZw8mTZpkOCEqioLPPvsMkydPRl1dHQC1S/m0adPc1tehQwdMmTJFW1+9ejVmzJhhmKHObrfj5ZdfxiOPPKI9NmLECIwYMcLjvui7fv/tb3/DK6+8Yhj7o7S0FPfdd5+hF8idd95p6MKuN3XqVO252tpaTJ48GZ9//rlhIOi8vDxMmjRJ+9CaTCbMnj3bbX3xgHHkOY42b96MTz75RFvv0aMH/vGPf4Q05l3Xrl0xefJkbX337t24/vrrsX37dkO5qqoqLFiwADNmzNDiq0uXLpg1a1bQ244UxpDnGEpJScF9992nrRcXF+NPf/oT1q1bZyhnt9uxdOlS3HLLLdo5KjU1FY8//rjbdk6cOFH7FVaSJNx1111YtWqV4UKroKAAU6ZMMdya/OCDD8JqtbqtM5YYQ97/nunt27dPW+7cubPhS4S/WuN5CGhdcRQJvC7yjTHkGa+J/MMY8ozXRP5hDPmP10SetZY4qqmpwT/+8Q/Dfr300kvIysry523wqH///hg7dqy2vnjxYvz9739HdXW19lh1dTWeeOIJvPzyy9pjEydO9Jj4j4dzkaD4M0UZhdWcOXPw7rvvauuiKCI3NxepqanIz8/XejgA6uyn77zzDnr16uW2rgsuuEAboD87OxtfffWVx+2+8sorhg8HoE7Q0K5dOxw6dMjQLT4xMRGvv/661/FVGoNW33XbYrEgNzcXVqsVe/fuNXxAcnJysGrVKo9fEgD1D/31119vOPGkpaWhb9++cDgc2L17t/bLBKDedvXiiy9CFD3/tvDDDz/g9ttvN8w83KlTJ3Tr1g1lZWXIz883lJ85cyZuvfVWj/XFC8ZR8zi69dZbDReJPXv2DHiw7SuvvBJ//OMfDY85nU7cfffdhjY2tiUnJwfV1dXYs2ePITYzMzOxfPnyuJoJtinGkOdzUdP3BlCPaY8ePVBfX489e/YYbm1PTU3Fa6+9hsGDB3uss/ECR3/raLt27dC7d28thvS331x//fWYM2eOx/riAWPIcww1mjJlitardtCgQYZbqALRWs9DQOuJI28WLVqExYsXA1Bvt1y+fLlfr+N1kX8YQ83xmigwjCHPeE3kH8aQb7wm8q2lx9GSJUvw3HPPaevt2rUzzNfgj9zcXMycObPZ4zU1NbjpppsMwyokJSVpwzXs3r3bcC465ZRT8Oabb3rtDR7rc1HgP0lQyB599FG0bdsWr7/+OpxOJ2RZdjujXe/evbFw4UKPH7BATZs2DSkpKXjuuee0Xzb0v1I16tSpE+bPn+/zRG02m7Fo0SI8+uijeP/996EoCpxOp9txRwYPHoyFCxf6/PKalZWF5cuX4/7779fGg6murnY7Nsz48ePxyCOPeP3SAahjpr366quYNWsWDh8+DAA4cuQIjhw5YiiXmJiImTNnGrquxzPGkVFVVVWzAb4PHDjg1yyMeqeddlqzxywWCxYvXoznn38e//rXv7RfzQoLCw23AjY6//zz8cgjj8TVLLDuMIY8e/TRR9GrVy8sWLBAS1qUlJS4vVXvtNNOw2OPPeZz7KZ+/fph2bJlmDFjhtbzrLy83HBhBai90W677Tbce++9XuuLB4wh3/QTLjSO3xmM1noeAlpPHEUCr4v8wxgy4jVR4BhDnvGayD+MId94TeRbS4+jtWvXGtbLy8ub9ar3xdMEgqmpqVi6dClmzpypJZdtNht+/vnnZmVHjRqFZ5991ufQHLE+F7GHbAzl5+fjvffew7p163DkyBHYbDakp6djwIABuPTSS3HllVf67AodyK8ejY4cOYKVK1fi22+/RWFhIWpqapCamop+/frhoosuwrhx45CamhrQvmzfvh0ffPABNmzYgOLiYjgcDrRr1w6nnnoqLr/8cowePdrnFwQ9RVHw+eef45NPPsH27dtRWloKURSRlZWFM844AxMmTHB7keiNzWbD6tWr8fnnn2Pfvn2oqKhAQkICunfvjnPPPRd/+tOfWsRJuinG0fHXerpdIxB33303pk+f7vH5w4cPY9WqVdiwYQMOHjyI6upqpKSkIDMzE2eeeSYuvfTSuJwB1hvGkGfl5eV477338P333yM/Px8VFRVITExEx44dMWjQIFxyySUYOXJks4HivZEkCR9//DE+/fRT7Nq1C2VlZbBYLMjJycHQoUPxpz/9KagxtWKJMeTZ6NGjcejQIQDAmDFjDOPrBas1noeA1hVHTYXaq4jXRf5hDKl4TRQ8xpBnvCbyD2PIM14T+a+lxtFpp53mc4JcX/yJrR9++AEfffQRfvzxR5SWlsLlcqFDhw4YPHgwxo4di+HDhwe0zVidi5iQJSIiIiIiIiIiIooSTupFREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlDAhS0RERERERERERBQlTMgSERERERERERERRQkTskRERERERERERERRwoQsERERERERERERUZQwIUtEREREREREREQUJUzIEhEREREREREREUUJE7JEREREREREREREUcKELBEREREREREREVGUMCFLREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlJhj3QAiohNVYWEhLrzwwrDX++WXXyInJweLFi3C4sWLAQBDhgzB8uXLw76tlqqlvTeKomD16tUYMGAABg4cGOvmUAvX0uKf4lO8n5daUpzH+3sZ784//3wcOXIkInW/9dZbOPPMMyNSN4WGx52IWjr2kCUiIopje/fuxQ033IC//OUvqK6ujnVziIh4XgojvpehKS4ujlhSzmQy4aSTTopI3RQaHnciag3YQ5aIKEYSExMxfPhwr2UqKyuxY8cObf2UU05Benq6z3qp9Rg7diycTmesm0FEpOF5KXz4XoZm//796Natm89yJSUlsNvt2ro/r+nWrRuSkpJCah9FBo87EbUGTMgSEcVIhw4d8Prrr3sts3HjRtx4443a+oMPPoihQ4dGumkUR/hFnYjiDc9L4cP3MjTnnHMOPv/8c5/lLr30Uhw4cAAAkJ2d7ddrKH7xuBNRa8CELBFRKzV9+nRMnz491s0gIiIiipna2locOnRIW+c4vScGHnciinccQ5aIiIiIiIhapV27dkGWZW2dibkTA487EcU7JmSJiIiIiIioVdq1a5dhnRM2nRh43Iko3nHIAiKiVmrRokVYvHgxAGDIkCFYvny51zJz587Ftddei7q6Onz88cf4+OOPcfDgQVRVVaFDhw7o378/Jk6ciPPPP99Qx4EDB7BixQqsW7cOhw8fBgDk5ORgxIgRmDx5Mjp27OhXe/fu3YuPPvoI33//PX7//XdUV1cjPT0dXbt2xfDhwzFu3Dh07tw5lLfEq5qaGrz99tv49NNP8dtvv0GSJGRmZuKss87C5ZdfjrPPPjug+kLZn9WrV+Ohhx5q9rh+POGxY8fi8OHD2LhxIwDg8ssvx3PPPeexPevWrcOtt96qrT/55JO4+uqrPZafN2+eFjPe6o7EcQtHnfrY/tvf/oYbbrgBDocDH374IdauXYv8/HyUlpYiLS0NPXv2xAUXXICJEyciLS0toLZ6U1NTg//85z/45ptvsGvXLpSXl8NsNiMjIwO9evXC2WefjT/+8Y/IzMz0WMfs2bPxwQcfAFCP+VNPPeV1m4WFhbjwwgu19S+//BI5OTl+tTUc8R+OfW4q3DHmdDrxn//8B5988gl+/fVXVFZWom3btujXrx/Gjh2LMWPGQBRF/PnPf8ann34KAFi2bJlh/O5oHJd4+xz4e17y9V74aueMGTMwdepUVFVVYcWKFVi7di0KCwths9nQsWNHnHbaaRg7dizOO++8gLcjSRI++ugjrF27Fnl5eSgvL0dGRga6dOmCiy66CGPHjvX7b9bPP/+Mjz76CD/++COOHDmCuro6ZGRkICcnB+eeey6uuuoqdO3a1e1rw/FehrL9RpE6T0biPBCKX3/91bA+YMCAqGyXYovHnYjiHROyRESk2b59Ox544AHDmFsAUFRUhKKiInz55ZeYMGEC5s6dC5PJhDfeeAPPPvtss0lJ9uzZgz179mD16tV45ZVXcOqpp3rcps1mw7x587B69WrDrWUAUFpaitLSUvz0009YsmQJbrvtNtx9990QBCF8Ow11v++55x4todzo4MGDOHjwIFatWoXzzz8fTz31FNq1a+e1rmjuz6hRo7SE7A8//ABFUTzWtX79esP6pk2bvCZk//e//2nL+kRSo0jsZyTfu7y8PMyYMQP79u0zPF5eXo7y8nJs2bIFr7/+OubPn49zzz3Xrzq9Wb9+PR588EGUlpYaHnc4HKirq8Phw4exbt06LF68GNOmTcOdd94Z8jaDFa74D/c+RyIeduzYgQceeAAHDx40PF5SUoKSkhKsW7cO77//vtcfNyKtNX0OgrVr1y7cddddKCoqMjze+Lfov//9L4YPH45nnnkG7du396vO3bt34/7772+270ePHsXRo0exbds2vPbaa/j73/+Oiy66yGM9xcXF+Mtf/oJ169Y1e66xrp9++gmvvPIKrr/+ejzwwAOwWCx+tdEfkdx+OOIjHs99O3fu1JY7duwYtUQwxRaPOxHFOyZkiYgIgPpldf78+aipqQEAdO7cGV27dkVlZSX27NkDRVEAACtXrkTfvn3hdDrxzDPPAAASEhLQv39/mEwm7NmzR6ujvLwc06dPx5o1a5CcnNxsm8eOHcOUKVPwyy+/aI+ZTCb07dsX6enpOHbsGPbu3QtFUVBfX4/Fixdj7969WLBgAUwmU1j2u6ioCLfeeiuqqqoAAG3btkXv3r1hs9mwe/duSJIEAPj2228xadIkLF++3GNSKlz7k5WVheHDhwOA4Uv3KaecgvT0dABAv379MHLkSK0HVVlZGXbv3o3+/fu7bduGDRsM65s2bfL4nhw8eFBLylssFowYMSIi+xnpOvX7s3jxYhw7dgwA0L59e/Tq1Qt2ux35+fmoq6sDoMbrHXfcgQ8++AC9e/f2Wqc327Ztw9SpUw0/VPTo0QOZmZlwuVwoKirCkSNHAAB2ux0LFy6ELMu4++67g95msMIV/+He50jEw5YtWzBlyhTteANAWloa+vbtC0mSkJeXB4fDgfXr1+Ouu+7SPmvRFM+fA3/PS6FqjMmysjIAQEZGBvr06dMsJtetW4frrrsO77zzjs8fyn777TfccMMNWpy3adMGPXv2hNlsxt69e7XHKysrcc8992DFihU45ZRTmtWzf/9+XH/99SgvL9ceM5vN6Nu3L9q0aYPi4mIt2e90OrF06VLs3LkTS5YsMfwNDPa9DNf23QnHeTIez30OhwP5+fnaOscRPTHwuBNRS8CELBERAQDeeecdAOqXp8cee8xwe25eXh6mTJmCo0ePAgAWLFgAm80GQRBw++23Y+rUqdqXvbq6Ojz99NNYsWIFAODIkSP4+OOPMXHiRMP2FEXBzJkztcSDKIq49dZbceutt6Jt27ZauZKSEixatAgrV64EAHz66ad4/vnncd9994Vlvxt7YLVp0wZ//etfccUVV2iJjfLycjz77LNYvXo1AGDfvn2YO3cunn/++Wb1hHN/zj33XK33UW5urvb4gw8+aDgugHq8Gr+Ar1+/3m1C9tixY83GUisqKkJBQYHbW1q//fZbbfmss85CampqRPYzknXqNQ690K1bNzz88MMYMWKE1qOwpqYGixYtwtKlSwEA9fX1WLRoEf75z396rdObxx57TEtInHbaaXj22WfRrVs3Q5lNmzbhb3/7m3bslixZgmuuuQZZWVlBbzcY4Yr/cO5zJOKhqqoK9957r5ZUslqteOCBB3DttdfCarVqZV544QUsXboUW7duhShGd6qFeP8cBHJeCkXj346kpCQ8+OCDmDBhgtbDs7S0FE899RQ+/vhjAGoS8eGHH8aLL77otc7GJGDbtm0xe/ZsjBkzRjvuTqcTy5cvx/z58+FyuSBJEp544gmtHY0qKiowZcoULRnaeHymTJmCjIwMrdz+/fvx5JNPancZbN68GX/961+xYMECrUww72U4t+9OOM6T8Xju0yfxAd62fqLgcSeiloCTehERkaZz585YsWJFsy+E/fv3x8yZM7X1uro6KIqCWbNm4d577zX0vElOTsbcuXMNicGmt8sDwEcffaR9YRQEAc899xweeOABQ+IBADIzM/H4449jxowZ2mNLlixpdstxKJKTk7Fs2TJcddVVhl5m7dq1w5NPPolJkyZpj3366afYsmVL3OzPqFGjtOXvv//ebZmNGzdqtz4nJiYaHndHP1zBBRdcYHguEvsZjfcuJycHK1euxPnnn2+4vTs1NRUPPfQQLrvsMu2xb7/9Fg6Hw2ed7hw+fFhLqJlMJrz44ovNEhKAOq7z66+/joSEBABqguObb74JapuhCjX+w73PkYiH119/HSUlJdr6woULcdNNN2lJOUBNSj/00EOYPXs2ADQbLiDSWtPnIFQWiwVLlizB9ddfb7jdvkOHDpg/fz6uvfZa7bEvv/wSP/74o88627dvj/fffx9XXXWV4bhbLBbccsstmDx5svbYTz/9ZOiFCqjvsX4Ihfnz5+OBBx4wJEMBoFevXnjllVcwbtw47bFPPvkEX3/9tc82ehON7YcSH/F67ms6jigndjox8LgTUUvAhCwREWn+/Oc/N/vy3+jCCy80fEHLzs7GTTfd5LasIAgYOXKktv7bb781K/P6669ry1dccQXGjBnjtW1Tp07VbiGVZVnrqRMO99xzj9feEzNnzkR2dra23tibWC9W+6N/n7ds2eI2gaJPiI8fP15bdjdsgc1mw+bNm7X1pgnZSOxnNN47b7ENwJDgqaurQ0FBgc863dEn/ZKTk71uMycnBxMmTMCFF16Im266yW3yIhpCjf9w73O440GSJKxatUpbv/LKK5vFtd7NN9+s3U4eTa3pcxCq2267DUOGDPH4/EMPPWSIycYJ1ryZMWOG4TVN6fcdgGEc1draWrz11lva+tVXX21ITjYliiIeeeQRdO/eXXvs1Vdf9dlGT6K1/VDiI17PffpxRAHeun6i4HEnopaAQxYQEREANYk6evRoj8+npKSgXbt22rh+I0aM8HpLr/72w+rqasNzhw4dwu7du7V1b5NL6V111VXYsWMHAONt9aFITk7GNddc47WM1WrF1VdfjUWLFgFQe5DqJ9CK5f6ceeaZSEtLQ3V1NWw2G7Zu3Yqzzz7bUOaHH34AoI6Xed111+HNN98E4D4hu2HDBtTX1wNQb6XVJzAisZ/ReO9EUXQ7MZlenz59DOtNY9ZfnTp1MtTxz3/+E/fee6/Hz8rDDz8c1HbCJRzxH859jkQ87NixQztvAWg2fIo7t956q9tJkyKltX0OQmGxWHDjjTd6LZOQkIBx48Zpw2d88803kGXZY8yJooiLL77Ya51du3ZFamqqNga6flKqTZs2wW63a+s333yzz/1ISEjApEmTMG/ePADA1q1bUVFR0axHqz+isf1Q4yNez3364XrS09ORk5MTVD3ffvstpk6dCkD9O+kt4RwtiqJg//792L59O7Zv344dO3YgLy9PGzZCf04JlX481nBr3759UJ8Lb1rzcSei1oMJWSIiAgB06dLFMFaoO/rb3Xv27Om1bOPtiEDzW3+3bt1qWO/Vq5dfbTz55JO15cOHD+PIkSOGL4HBGDx4MFJSUnyWO/PMM7XlyspK7Nu3D3379gUQ2/0xm80YPnw41qxZA0DtDatPyBYVFWk9lM8880z07t0bGRkZqKiowO+//47ffvvN0DtJn9Rp2oswEvsZjfcuJyfHZ2y3adPGsK6flCYQnTp1wqBBg7Bt2zYAwCuvvIK1a9fi4osvxvDhw3HGGWcYbpeOtXDEfzj3ORLx0JiwBNRk36BBg3zWN3ToUCQmJhqSYJHU2j4HoRg0aJBfSQ/90DqlpaU4cOCAx8n4srOzm+2bO2lpaVpCVn+3gX5IhI4dO/o9eVnjOLGAmjzbunWr197ZnkRj+6HGRzye+1wuF/bs2aOthzKOaGOCr0uXLnGTlCsqKvLZkz5cIrmdGTNmaEnPcGjtx52IWg8mZImICIDaQyEQvr646Yc3aOrQoUOG9REjRgS07UbFxcUhJ2T9TXw0TUD//vvvWkIq1vszcuRIQ0L2/vvv157TD1fQmKg9/fTT8dVXXwFQx5HVJ2S9jR8bif2MxnvnT8+bpjPUhzJ+6COPPIIbbrhBm0Dq0KFDeO211/Daa68hMTERZ5xxBs4991yMHDnSYwIpWsIR/0D49jkS8aAfdzM7O9swJqknJpMJffr00cbEjLTW+DkIlruJCd1pGrslJSUeYys9Pd2vOvW9OfX7rr8dv2kvUW969uwJi8WiJS719QQiGtsPR3zE27lv3759hh9VQrltvXFM0nidHCorKwunnnoqKioqDMMOnYhOpONORC0bx5AlIiIAxh6t/vCWcPWlqqoq6NfqVVRUhFyHP72mALXnlF5lZaW2HOv9Of/887Uvyjt37jS0bcOGDdpyY0JW34NWP7FXfn6+lrzKzMzUxqdsFIn9jMZ7p+/ZHQ0nnXQS3n77bZx66qnNnrPb7fj+++/xzDPPYMyYMbjsssuwfPnymPREBMIT/0D49jkS8dDY4xFovh/ehPsWWm9a4+cgWP4mT5v+KKgfYqAp/cSTwdC/r/5+ZgD176Q+5oI9x0dj++GIj3g79+lvW29sX7Cef/557N69Gy+++GLQdRQWFiI3Nxe5ublB16GXkZGBF154Ad999x3+97//YfHixRg2bFhY6m7J4u24ExF5wh6yREQEILQEa6AkSdKWExIScNZZZwVVTyBfTEOlKIphXf/lNdb707ZtWwwaNAhbt26FLMvYsGEDLrnkEiiKoiVkMzIytC+B+oSsfhxZ/XAFo0aNahYTkdjPWL93kTJgwACsWrUKW7duxZo1a/Dtt9826wUJqD155s2bh/feew9Lly6N21sivcV/o3DscyTiQf9jU9P98CbQH6lC0Vo/B8Ewm/37etK0d2YgxzZQodTtcrm0ZW/jrsfz9gMRT+e+phM7tbZejqmpqbjooouisq1wjkcbaa39uBNR68GELBERRZ0+aZCUlGSYXTzaamtr/SrXtAebfh/iYX9GjRqljUP5/fff45JLLsGePXu0XmNDhw7VEqz9+vVD+/btUVZWhuLiYhw8eBA9evTwOlwBEJn9jIf3LpJOP/10nH766fjrX/+KgoICbNiwARs2bMD333+PY8eOaeXy8vIwa9YsLFmyxGNd/iRlGidk81c44r+pUPY50jEWyCRV+p613oTjuLT2z0Eg/H3fm8ZkJHs063vtBtKb2eVyGfbHn/Ga43H7wQjnuS9YjbebA2ovaV9j33vy4YcfYubMmbBYLNi6dWtcjQNOzfG4E1FLwSELiIgo6rKysrTlqqoqv7+AR0JhYaFf5fbt22dY7969u7YcD/szcuRIbblx3Fh971f9BDiCIGDIkCHa+saNG1FbW6tNHJOcnIxzzjmn2TYisZ/x8N5FS9euXXHNNdfgueeew/r167FkyRJ07txZe/7bb7/FgQMHDK/R91LW96L0RJ/o8Ec44t+bQPc5EvHQo0cPbbmwsNDviboaJ8NzJ9zH5UT6HPjirjelO01nfQ826eIP/bi8TT8L3uzfv9/QQzXYmd5jvf1QBXPuC5WiKIZb1/v37x90D+G8vDwAQO/evZmUi3M87kTUkjAhS0REUTd48GBtWZZlQ+LQm02bNmHOnDl45ZVX8PHHH/vdu8+bbdu2+dXDTT85VufOnQ1fkONhf/r164fs7GwAQEFBAQoKCgwzc+uHKWi6vnHjRvzwww/aWH7Dhg1ze7t2JPYzHt67cNq5cydWr16N+fPnY+3atR7LiaKI888/H//4xz8MjzdNMuknoPInSbd3796A2huO+A/nPkciHs444wxt2eVy+VVnUVERfv/9d4/Ph/u4tLbPQSh+/vlnQxLRE/342JmZmejatWvE2nT66adry0ePHvX79u3vv//esB7srdOx3r4/wn3uC9WhQ4cMn4dQxhFtTPDx1vf4x+NORC0JhywgIqKoGzBgALKyslBcXAwAeOONN9zeIt/UwoULtSRjRkYGLr300pDbcvToUXz99ddet19VVYUPPvhAW286Zlsk90cQBL/HDxw1ahTefPNNAOoX8ca6O3bs2GxGa30P2E2bNhkmyPHU9kjsZzzFQji8/PLL+OyzzwCoSTZf7erbt69hXZ/oA2AYV9GfhMV///tff5sKIDzxH859jkQ8dO3aFSeddJI2ruCyZcswYsQIr/W98847Xp8P93FpaZ+DQM5LgSotLcUXX3yBSy65xGOZ2tparF69WluP9H4PGTIEycnJqKurAwAsXboUTz75pNfX1NfX4+2339bWBw4ciMzMzGbl/HkvI7n9cAn3uS9U+tvWgdCSao09Jfv37x9SmyjyeNyJqCVhD1kiIoo6k8mEyZMna+sbNmzAyy+/7PU1b775pqHH5/jx48P2BW7u3LkeZ+h2uVz429/+pt1ybDKZcOONNxrKRHJ/9D1VfY1DqR+24O233zaMH9tU9+7d0aVLFwBqUu7jjz8GoPZeGjVqlNv6I7Gf8RYLodK/dz///LPXnmIADM+Loths9m39F8GCggJ88803Hut69913sXnz5gBbHHr8h3OfIxUPU6ZM0Za/++47vPXWWx7r27JlC5YuXep1m+E+Li3tcxDIeSkYTzzxBEpKStw+pygKHnvsMe15i8WCG264Iext0EtLS8P48eO19dWrV3tNsiuKgnnz5hmGX2j6uWnkz3sZye2HS7jPfaFqOrFTsD0ljxw5op3/2FMy/vG4E1FLwoQsERHFxA033GC4UF6wYAFmz56Nw4cPG8qVlZXhqaeewrx587THsrKyMHXq1LC1pbi4GBMmTMAPP/xgeLygoAC333674YvjnXfeiW7dujWrI1L7o5+oRj/pljtDhw5FcnIyAOOMyE2HK9CXb9TY82rQoEFo166dx21EYj/jKRZCddlll2m38yuKgtmzZ+Pdd9+Fw+EwlHM4HFi5ciUef/xx7bFLL73UMBQAAJx33nnaMQWABx98EF999ZWhzNGjR/HUU0/hkUceAeD/LPWNQo3/cO9zJOJhzJgxuPDCC7X1xx9/HM8884xhki9JkrBq1SpMmTJFG77Dk0gcl5b0OQjkvBSM4uJiXHvttYahMgDg8OHDuPvuu/F///d/2mO33HKL32Mah+Kuu+7ShoUBgAceeADPPfccKioqDOUOHjyIO+64AytXrtQeGzp0KK666iq39fr7XkZq++ES7vNAqPTjiFqtVvTp0yfkevxJzLlcLtTW1rr9Tz9+tacytbW1Eet9fiKI1XEnIgoGhywgIqKYsFqteP755zF58mQUFBQAAD744AP83//9H3r37o327dvj6NGjKCgoMCRH0tLSsGjRIsOs06EYMWIENm/ejKKiIkyePBldunRBTk4OKisrsWfPHsMXo0svvRR33nlnVPenX79+OHLkCABg+fLl2Lx5MzIyMtC7d2/MmTOnWRuGDRuGL774wvC4ux6ygJqo1d+KDngeriCS+xkvsRAOCQkJePLJJzF16lQ4nU7YbDbMmTMHTz31FPr06YPU1FTU1tZi3759hnHuunfvjr/85S/N6ktNTcW0adOwYMECAOrwAXfccQc6deqErl27oqKiAgcPHtTelwkTJmD37t3Ytm2bX+0NR/yHe58jFQ9PPfUUbr31Vmzfvh2KouD111/H8uXL0b9/fyQkJGDv3r1acis7OxtFRUUe37dIHJeW9DkI5LwUqHbt2qG6uhqFhYW4+eabtZisqqrCnj17IMuyVvbCCy/En//855C256+MjAy88MILuPXWW1FWVgZZlrFkyRL861//Qr9+/ZCWloaSkpJmk1OddNJJeP755w0Twen5+15GavvhEu7zQKj0t6737ds34B+qGjUm5rKzs9GmTRuf5X/88Ue/eiPrxwVu6ssvv4zZBGwtXayOOxFRMNhDloiIYiYnJwerVq0yjBWoKAr27duHjRs3Yv/+/YbEw0knnYS3334bgwYNClsbBg4ciEWLFmm9lA4fPoxNmzZh9+7dWjLKYrFoyRdvs/VGYn/uuOMOw23IeXl52LBhg8dbpPXDFgBAly5d3PboBdz3nNX3IvQkEvsZD7EQLsOGDcNLL71kGK+xrq4O27dvx/r167Ft2zZDQmLUqFFYtmwZOnbs6La+22+/HdOmTYPJZNIeO3LkCDZv3oy9e/fC6XRCFEVMmTIFc+fODait4Yr/cO9zJOKhTZs2eOONN3DFFVdojzkcDmzfvh2bN2/WkrH9+vXDv//9b4/1NIrEcWkpn4NAz0uB6NOnDxYuXKglQRpjMi8vT0vGWiwW3H777Xj++eeDTrgEY8CAAXjvvfcM505JkvDrr79i48aNhmSo2WzGpEmT8NZbbxl6wTYVyHsZie2HU7jPA8E6fPiwdrs5ENrEThxHtOXgcSeiloY9ZImIKKbatm2L559/Hrt27cJ//vMfbNy4EYcPH0ZVVRUsFguysrJwyimnYMyYMTj//PO9JkSDdd555+Hjjz/Gm2++ia+++gpFRUUQBAFdunTBeeedhwkTJqBnz54x2Z/TTz8db731FpYsWYKff/4ZFRUVSEhIQEpKCurr6w3jDwJqQlY/SYyn3rEA0KlTJ/To0QMHDx4EoPZUajr5V7T2M1J1xsp5552HtWvX4pNPPsG3336L3bt3o7S0FA6HA+np6cjMzMTQoUMxevRonHHGGT7ru//++3H55Zdj1apVWL9+vXYbe6dOnXDOOefgmmuuCfq2ynDFf7j3ORLxkJycjPnz5+OGG27A+++/j40bN6K4uBgJCQno06cPrrjiCowbNw5Wq9Wv9y4Sx6UlfA4CPS8F6sILL8R//vMfLF++HF999RUOHz4MQRDQrVs3nHfeeZg4cSK6du0apr0JTJcuXfDGG29g06ZNWLNmDX788UeUlJSguroaqamp6N27N4YNG4arr77aMMSAJ4G+l+HefriF+zwQjKYTOw0cODDouhp7Svr7OR46dKhhyCC9wsJC7UdPT2UoeLE87kREwRAUDlJDRERERGSgn2Ro2bJlXn/coNAsWrQIixcvBgAMGTIEy5cvj3GLiICamhqceeaZUBQFL7zwAi666KKQ6otGQvbFF1/EwoULI7qN1i7cx52IyJP47VpCREREREREFAN5eXna3Sa8df3EweNORNHChCwRERERERGRTuM4om3atOEkWycQHnciihaOIUtERERERESk0ziOaDz3kty3bx9qamq09SNHjmjLP//8s6Fsnz59kJqaGq2mtVgt4bgTUevAhCwRERERERGRTktIzD366KPYtGmT2+cmTpxoWOdY2P5pCcediFoHDllARERERERE1ECSJOzbtw8AMGDAgBi3hqKFx52Iook9ZImIiIiIiIgamM1mbN++Pax15uTkYPfu3WGtc/ny5WGt70QXieNOROSJoDROIUhEREREREREREREEcUhC4iIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSpiQJSIiIiIiIiIiIooSJmSJiIiIiIiIiIiIooQJWSIiIiIiIiIiIqIoYUKWiIiIiIiIiIiIKEqYkCUiIiIiIiIiIiKKEiZkiYiIiIiIiIiIiKKECVkiIiIiIiIiIiKiKGFCloiIiIiIiIiIiChKmJAlIiIiIiIiIiIiihImZImIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSv4fVIxJzmGG5ggAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff_dt), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Paralyzable dead time')\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Non-paralyzable dead time has a distribution for the time between consecutive counts that plateaus between $\\tau_d$ and $2\\tau_d$, then decreases. The exact form is complicated (e.g. )\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = r_{in}e^{-r_{in}\\tau_d}$$\n", + "(Zhang+95, eq. 16). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSwAAAQ1CAYAAAC/RYEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3hTZf/H8U866YC2bCi70DJFhuwhDkAUFFBxoaKiqKBSF44HFw4cbAEXQ0AFFX0QEBVQhmwoMgRadilQVlu66Mzvj/56nqRJ25SutH2/rouLc859zp1vkjtJ8809TGaz2SwAAAAAAAAAcAIupR0AAAAAAAAAAGQjYQkAAAAAAADAaZCwBAAAAAAAAOA0SFgCAAAAAAAAcBokLAEAAAAAAAA4DRKWAAAAAAAAAJwGCUsAAAAAAAAAToOEJQAAAAAAAACnQcISAAAAAAAAgNMgYQkAAAAAAADAaZCwBAAAAAAAAOA0SFgCAAAAAAAAcBokLAEAAAAAAAA4DRKWAAAAAAAAAJyGW2kHAADI36lTp3TjjTc6dK7JZJK7u7u8vb1Vo0YNNW/eXJ07d9Ytt9wiX1/fYo7U+UyfPl0zZsyQJHXq1EkLFiwo5YhKz/Dhw7Vt2zZJ0ujRozVmzJhC1xkSEmJsf/311+rcuXOh6yxN5e3+OGrp0qV65ZVXJEmBgYFau3Ztoes0m81aunSpWrRooZYtW9qU53xfW7NmjerVq1fo20XeeE/MX3p6uubNm6dBgwapZs2apR1OkSnr9ysmJkb9+vVTXFyc3n//fQ0ZMqRA11+6dEnff/+9/vrrLx09elSJiYmqWrWqGjRooH79+mnQoEHy8/MrUJ1HjhzRd999p61bt+rUqVNKT09XzZo1FRwcrIEDB+rmm2+Wm1vBvnJv3rxZP/74o3bv3q1z587Jzc1NtWvXVrt27TR48GB17NixQPWVtJiYGC1cuLBAf2P8/PPPevnllyVJX375pXr27Flc4QEoQ0hYAkA5YzablZqaqtTUVMXGxioiIkK//PKLPv74Y4WGhmrYsGGlHSKAci4iIkJvvvmmduzYoa+//rq0wwEctnPnTr355psKDw9X//79SzucIlPW75fZbNbrr7+uuLi4q7p+9erVeu211xQbG2t1PDo6WtHR0dq+fbs+++wzvfvuu+rdu7dDdU6fPl2zZ89Wenq61fHIyEhFRkZqzZo1at26tT766CM1adIk3/oSEhL08ssva/Xq1VbHU1JSdOTIER05ckQ//PCDBg0apPHjx6ty5coOxVlSsn+k+uijj+Tt7V2ghOX69eslSV5eXhXmh0IA+SNhCQBlUHBwcJ69I1JTU5WQkKATJ04oMTFRkhQbG6vx48frwoULevrpp0sqVAAV0ODBg5WWllbaYQAFcvbsWd1///0ym82lHUqRKg/366OPPrJJ5Dlq1apVCg0NVUZGhnGscePGqlGjhqKiohQVFSVJOn/+vJ588knNnDlT119/fZ51Tpgwwap3spubm0JCQuTl5aUjR44oJiZGkrRv3z4NHz5cS5YsUWBgYK71paSk6JFHHtE///xjHPPx8VFwcLAyMjIUHh6uK1euSJKWLVumM2fOaM6cOfLw8Cjw41Fcli9frldffVWS5O3t7fB1GRkZ+vvvvyVJXbp0car7BKB0kbAEgDJoxIgRDg2FSk1N1ZIlS/Thhx8qJSVFkjRjxgx1795d1157bTFHCaCiIlmJsig9Pb1MJ/VyU5bvV2ZmpiZOnKh58+Zd1fWRkZF65ZVXjGRlcHCwJk6caDVNxZYtW/Tqq68qKipKGRkZCg0N1a+//qpatWrZrXPVqlVWycp+/fpp/Pjxql69uqSs97+lS5fq/fffV3Jysi5cuKAxY8boxx9/lMlkslvnxIkTjWSlyWTSmDFj9Oijj6pSpUqSpMuXL2v69OlGj/Xt27frk08+MabycAZX+76/e/duo+crQ8EBWGLRHQAoxzw8PPTAAw9o0qRJxrHMzExNnz69FKMCAKlevXo6dOiQ8Y/5K0vGmDFjjMec+SvhzC5duqRHHnnkqpOVkjR58mQlJSVJypqfd/78+TZz6nbp0kXffPONMXIlMTHRmOc1p7S0NE2cONHY79Onj6ZMmWIkKyXJ3d1dw4YN04wZM4z5K/fv36/ly5fbrfPw4cP67rvvjP3nn39eTz/9tJGslKQqVarotddesxohs2jRIp06dcqhx8GZZQ8Hl+TwcHwAFQMJSwCoAG666SZ16dLF2N+8ebMuXbpUihEBAADYt3LlSt1xxx3avHnzVdcRHR2t3377zdgPDQ1V1apV7Z5bu3Ztvfbaa8b+0qVLbea7lKQ//vhDp0+flpQ1DHz8+PFycbH/lbpHjx5W84bPnTvX7nkLFiwweoA2adJEjz76aK73afTo0QoODpaUlTxduHBhrueWFdkJy6CgIH64AmCFhCUAVBB9+/Y1tjMyMnT48OFSjAYAAMDakSNHdM8992js2LGKjo6WlDVE+plnnslzDkh7fvvtN2NBnMqVK6tfv355nn/zzTcbCc309HS7c2auXLnS2O7WrZvq1q2bZ52WCcv9+/crMjLSqjwzM9MqqTpkyJBcE6CS5OLiorvvvtvYt7y2LDp37pwOHDggSerVq1cpRwPA2TCHJQBUEDl/tT5//nyu56ampur333/X5s2btWfPHl26dElxcXHy8PCQn5+fmjRpos6dO2vIkCFWw6ByGj58uLZt2yZJ+uWXX9SwYUPNnj1by5Yt07lz5+Tv76/g4GANHTpUAwYMsLl+8+bNWr9+vXbu3KmzZ88aq4NWqVJFdevWVceOHTVw4EA1b978ah4SDRw4UOHh4ZKyhiF9/vnnDl339NNPG19k7rrrLk2YMEFLly4t1FxSo0ePznVFzcTERP3666/asmWL9u/fr5iYGMXHx8vLy0tVqlRRSEiIunXrpsGDB8vX17dAtxsZGakFCxZo/fr1Onv2rDw8PFSnTh316tVLgwcPdmhl04LYvXu3VqxYoa1btyo6OlqJiYkKCAhQ48aN1atXLw0dOlQBAQFFeptSVk+U5cuXa+XKlfr3338VFxcnf39/hYSEaOjQobrllltynVssLxEREVq2bJn+/vtvnTlzRvHx8fLz81P9+vXVo0cPDR06VHXq1HG4vuJ4rs+cOaPvvvtOGzZs0PHjx5Wenq7atWurW7duuu+++4zeOoWV22vgwQcfNLYHDx6sDz74QJJ06tQp3XjjjUbZmjVrbN6nbrjhBmNBjD179sjT01PHjh3TkiVLtGHDBp05c0Ymk0m1a9dWjx49dP/996t+/fpWdaxevVo//vijDh48qPPnz8vHx0ctW7bU7bffroEDB8rV1dWh+1dabbeoTZ8+3Rju2qlTJ5th4Vu3bjWes379+mnatGmSpHXr1mnZsmXas2ePzp8/Lzc3N9WtW9foRdawYcNcb9OybQwbNkxvv/22UlJS9MMPP+iXX37RiRMnFB8fr6pVq6p169YaOHCg+vXrl2fiZty4cfrpp58kWber3OTV3iwfE0uW5+f1Hp2XkJAQSZK/v7+2bt2qs2fPasqUKVq3bp2SkpJUvXp1tW3bViNGjFCbNm2sri3sZ3Fh79elS5e0dOlSbdiwQceOHVNMTIy8vb1Vs2ZNde7cWYMGDdI111xT4MckLxs2bFBYWJixX7duXb3zzjvq0aOHfvzxxwLVZdk7s1OnTnJ3d8/zfFdXV3Xt2lUrVqyQJP3555+68847jXKz2aytW7ca+927d883hpCQENWoUcP4m2vt2rV66KGHjPKDBw8aC/RIWb0y82N5u6dPn9bBgwev+u+gnLZt26bly5dr165dioqKUlpamvz8/BQcHKzevXtryJAhqlKlitU1ln/rZYuKijLaviR9/fXXdlf/Xr9+vTG/al7DwTdv3qwVK1Zo9+7dOnPmjFJSUuTn56datWqpY8eO6tu3rzp27FiYuw7ACZGwBIAKIudk6F5eXnbPW7ZsmT7++GOjZ0POOhITE3X69Glt3LhRn376qV566SXdf//9+d5+ZmamnnrqKW3cuNE4du7cOZ07d87mD/R9+/bpjTfe0L59++zWdeXKFZ07d067d+/WV199paFDh+qNN94o8MqSd9xxhz788ENJ0t9//61Lly7lOlwsW2xsrNatW2fsO7L4UWHMmzdPs2bNsjs0LT4+XvHx8YqKitLatWs1ffp0TZgwwao3bV5+/PFHvfPOO0pOTjaOJScnKy4uTgcPHtScOXP04IMP6oUXXnA4qZObS5cu6T//+Y/dHivZ7WDr1q2aPXu2QkNDdd999xXq9izt379foaGhOn78uNXx8+fP6/z589q4caO+++47TZkyxeE6k5OTjUR1ZmamVdmFCxd04cIFhYWF6fPPP9fIkSM1evTofBOixfFcz507V5MnTzYW3cp24sQJnThxQj/88IOeeeaZPH94cCaff/65pk2bZvN+Fh8fr4iICC1evFiTJ0/W9ddfr5iYGI0bN05//fWX1bmxsbHatGmTNm3apF9++UWzZs3K872jNNuuM4iJidErr7yiP//806Ysey7Mr7/+Ws8++6xGjhzpUJ1RUVF6+umnjZ5V2aKjoxUdHa01a9aoVatWmjx5cp6J0LImOjpa99xzj86cOWMcO3XqlE6dOmUzDLi4PosdNW/ePE2bNk2JiYlWx1NTUxUbG6vw8HAtWLBA/fv31zvvvGOTxCqsSpUqafjw4Ro1alSBf4jLdujQIWO7VatWDl3TvHlzI2G5d+9eq7KoqChdvnzZ2G/durVDdYaEhBgJy5x1Hjx40Nh2d3dXs2bN8q2vcePGqlSpkrFq+N69ewudsDx58qRee+01m8Sj9L/PtE2bNmn27NmaMGGCbrrppkLdXrbs4eDe3t7q0KGDTXlsbKxCQ0ONVcTtxbV//37Nnz9fXbt21SeffKJq1aoVSWwASh8JSwCoICz/cJdse1xK0pw5c6wmk5eyJqkPDAyUi4uLLl26pKNHjxpDrK5cuaK3335bVatW1S233JLn7c+cOdMqWZnN1dVVt956q7G/fft2Pf7448Yk+ZIUEBCgRo0aycvLS5cvX9bRo0eNcrPZrB9++EEeHh5644038nkUrA0aNEiTJk1Senq60tPTtXLlSj3wwAN5XrNy5UojWdKoUSO1b99eklSrVi2HekZk27lzp5EoNJlMdnupTJgwwar3k8lkUsOGDVWzZk2ZTCadO3dOJ06cMBJmcXFxevbZZ/Xtt9/muwr8H3/8ofDwcKNnQ7169VS3bl1duHBBR48elZQ1JG7OnDk6c+aMJk+efFU9EKWsXpwjRoywGgrn4eGh4OBg+fj4KDo62kgmxsfH66233tLx48f16quvXtXtWfrnn3/08MMPW7WnKlWqqGnTpsrIyFB4eLiSk5O1detWPfbYYw7VGRMTo8cee8wqoe7q6qpmzZrJz89PMTExioiIkNlsVkpKimbMmKGIiAhNnjw518RvcTzXEydO1Jw5c6yONWzYULVq1dLFixd15MgRpaWl6ZNPPnH4y3xeLF8Dlq/1Nm3ayM/PT5IK1Ztz2rRp+vLLLyVlfbFv3Lix/P39dfz4cZ07d06SlJSUpLFjx+q///2vQkNDjeRAzZo11ahRI12+fFmHDh0y2v3GjRvzXGm3NNuuM7hy5YpGjRql3bt3S8r6oSskJESurq46duyYMRdyWlqaPv74Y1WrVi3fH3Hi4+P16KOP6tixY5KyEhUhISHKzMzUwYMHjeT6/v37de+99+rbb78t9qRlgwYN1KNHD6WkpGj79u3G8euuu06enp7GOYX1wgsvWCUrswUFBVm9Bovqs/hq7pfZbNZrr71m05uxYcOGql27tpKSkhQeHm48T6tWrVJERITmz5+vGjVqXM3DYsXf31+PPfaYHnzwwVxX6XZEamqqMddkdvyOsPzbKDo6WleuXDEWv8n5o5ejbcKyzpMnT1qVWdYZGBhoLNKTF5PJpLp16xqf1SdOnHAojtwcPHhQDz30kNWPZe7u7goODpa3t7eOHz9uJFxjYmL0zDPPaNKkSerfv7+krPd4Dw8PnTt3zhi14unpqeuuu86oL/szwFJ6ero2bdokSeratavND0dpaWl65JFHtH//fuOYv7+/GjduLE9PT507d06RkZHG32SbN2/W8OHD9dNPPxntG0DZRsISACqAtLQ0Y+iclPXlPWfiICIiQp988omx36lTJ7355psKCgqyOi8uLk7z58/XrFmzjOTJp59+mm/CMnuepeHDh+vhhx+Wv7+/Dhw4oF27dhkrc6akpOiVV14xkkt16tTRu+++q27dulkly9LS0rRixQq9//77xh/Y3333nUaPHl2gX9Zr1Kihnj17Gj2Hfvnll3wTlv/973+N7aFDhxrb3bt3d2h4mCR9//33VgmdZ555xmYo1IYNG6wSWP369dMrr7xiM7w4OjpaM2fONFYYzczM1KxZs/TZZ5/lGUN2Artp06Z6++23rXo2hIeH6/XXX9c///wjSfr111913XXXXVXvnZSUFI0ZM8ZI+Hh6eurZZ5/VvffeK29vb+O8EydO6MMPPzR6sc2fP1/NmjXTXXfdVeDbzJaQkKBnn33WaE+VKlXSyy+/rDvvvNP4YpSUlKQ5c+Zo5syZVl+KcmM2m/XSSy8ZyUoXFxc9+uijevTRR62GA587d07Tp0/XkiVLJGW1/2nTpmns2LE2dRbHc7169WqrZGVISIgmTJhglRg/evSo3njjDW3bts2h+54fy9eA5VDAF1980e5QwILKTlYOGTJEzz33nJHMMJvNmjt3rpHgSUpK0uDBg5WQkKBatWppwoQJVnOjHT58WKNHjzYSZtnvHZUrV7a6vdJsu84iuze5t7e3nn/+ed19993Gayc9PV0///yzMbxbkiZNmqTbb789zx7Z2XMAurq66qmnntKjjz5q9PhPSEjQjBkzjMVJLl68qLFjx+r7778vdC/vvNx+++26/fbbbYaNf/DBB0W2CEhsbKy2bdsmLy8vvfjiixowYIDMZrO2bNli1Uu7KD+Lr+Z+ffHFF1bJyhtvvFEvvPCC1fQgycnJRq/0K1eu6MiRIwoNDdW8efMK/Tzdcccdhbo+2/nz540fJiQ5nEzN2dv8/PnzxjQTllPpuLi4ONwz3fK2c07HY7mf/beQo3FmJyzzmuInP0lJSXr66aeNv6VcXV01atQojRgxwuo9cfXq1Xrrrbd07tw5ZWRk6LXXXlOHDh1Uo0YNvfTSS5Ksp36oXr26vvrqqzxve9euXYqPj5dkfzj4kiVLjM8mLy8vffjhh7rpppuspoo4f/68Jk2apKVLl0rKmgP122+/1cMPP3x1DwgAp8KiOwBQzqWlpWn8+PFWPYSGDx9uc95XX31l9NaoV6+ePvvsM5svSFLWr+TPPPOM1RxMERERdoet5TR8+HC9/vrrqlevnnx9fXXdddfpiSeeMMpXrFhhxOnq6qrPPvtM3bt3t+nZ5+7urjvuuEPvv/++cSwzM9PukKH8DB482NjevXu3Te8HSydOnDB6Grm6uur2228v8O1t2bJFb731lrHfv39/PfXUUzbnWc6n2a5dO02ZMsXuXIi1atXSW2+9pZtvvtk4tmnTJmPF0bw0a9ZM33zzjc0wrODgYM2fP9+q597kyZOtho476quvvjKGfXp6emrOnDl69NFHrRI+UlbvlxkzZujee+81jr3//vtWw+8Kav78+UZvJpPJpE8//VT33XefVS8Ob29vjR49Wu+9955DdS5btswYwmYymfTJJ5/ohRdesJm7sGbNmnrnnXf0/PPPG8c+//xzmx462cezFcVznZmZqY8++sjYb9q0qRYtWmTTi7dJkyaaM2dOgXoGl7b77rtP77//vlXPK5PJpEceeUTdunUzjiUkJKhy5cpatGiRzUIOTZs2tUoIXblyRbt27bK5rdJsu87E3d1dc+fO1QMPPGD12nFzc9Odd95p1Zv0/PnzxntkfiZOnKjRo0dbTU/i6+urcePGWb1u9u/fr19++aXwd8RJfPjhh7r//vsVEBCgqlWrasCAAbrtttuM8pL4LM5NZGSkpk6dauw/8MADmjlzps1cxl5eXhoxYoS+/PJLY17Ibdu2GUkjZ5A953U2R4es5/zhwvJ1bFmnj49PnnOsWrIc0p4zLstejTlv29E4c9ZZEPPmzdOpU6eM/Y8//ljPPPOMTSw33XSTZs+ebfQ2TUhIKPQK5ZbT69hbcMdyQaFnn31Wffv2tXnMa9Sooffee089e/Y0jq1atapQcQFwHiQsAaCcyczMVHx8vA4ePKhFixZpyJAhVl8imjZtapOwNJvNVvMWjRgxwuZLeU455847e/ZsnuebTCaNGjUqz3O2bNlibN90001WvbTs6d27t/HHsyMx2NOnTx/5+/sb+8uWLcv1XMveld27dy/wcLXjx4/r2WefNYYvtWzZ0u5CEQkJCVbDjZ944ol8vxhZrn6amppqNYl/bj788EO7w7SkrC+k7733npEsjo+P1/Lly/Ot01JqaqrVF5pHHnkkz0nxTSaTXn31VeNxTUxM1OLFiwt0m5Ysn8vBgwfnmZi74447HJqTy7LHyMCBA+0uFmXp8ccfNxbSyMzM1Lx586zKi+O5DgsLs0qMvvnmm7l+EXZ3d9f777+f65y2zqRy5coKDQ3NtTzn8/fAAw/YLMCTrVWrVlav35xDKku77TqT22+/Pc8pJoYMGWI1/DJ7SGh+dQ4cODDX8pEjR1rd5s8//+xIqE6vadOmec47WxKfxXmZP3++kSytX7++xo0bl+f51113ndWiWtk9Y51Bznl7HR0inHNYsmU9ltuWf3sUpM7U1FSrMsv9oqrTUZmZmVbvU7feemuen2mtWrWyet3+/vvvV3W72bJ//AsODrb7I132VB+S8lwh3mQy6aGHHlKXLl101113Fdn8mgBKH0PCAaAMeuWVV65qReoGDRro008/tUlOmEwmrV27VhcuXFBkZKTd3hw55RxelT35e26CgoLyHT714Ycfavz48Tp58qRDPQ1cXV0VEBBg9KLL+QXFER4eHrrtttuM5MQvv/yi0aNH2z3XMgFW0MV24uLi9MQTTxi9KapVq6aZM2faTRT5+vpq165dOnfunE6ePKm2bdvmW3/Oxza/56NTp05q2bJlnucEBQWpU6dOxqqof/75Z4GGue7YsUMXL1409h15zDw8PHTrrbcaw5nXrVvn8EIelo4dO2aVtLv77rvzveb++++3u7BKthMnTljNBetoG7jjjjuMuRQte5RIxfNcW95Go0aNrOYRs6dmzZq66aabnL4XW7du3fJ8X7C3wnheatWqZfRGyx6WmK00266zyW9hJw8PDzVs2NBIVOZ8LO3JucBMTiaTSffee6/RW3PHjh26fPlykS/sUtI6deqUZ3lJfBbn5Y8//jC2b7vttnxX1Zay3t+yf8g5cuSIIiMjc/2hoCRlJ16zOTpUPed5lj3YLRf7crR3pSSreSlzxnW1dVrGmbNOR/37779WCW7LXuK5efDBB9WoUSM1btxYjRs3vqrblbIS69nvGfZ6V0pS7dq1jak7Pv30U7Vr1y7Xof09e/a06mUJoHwgYQkAFUCVKlU0ePBgjRkzJs8v/NWrV883qZiSkqJ9+/bZJHZyrpSck6MrWPr6+uabSMvMzNThw4e1bds2q+FajgyDtmfIkCFGwvL48ePas2ePzfDZHTt2GMPV/f39reYDy09aWpqeeeYZI4Hm7u6u6dOn2+1RkM1kMqlWrVr59uJMSEjQ3r17bXqG5vd8ODrfZseOHY2Epb1hs3mxPN/d3d3hBQosV17ds2eP0tPTHVqIwNKOHTuMbQ8PD6OXY146duwoNze3XL/85bz/OYdJ5sby/pw+fVpnz55V7dq1jWNF/VxbLq5hb9VVe7p06eL0Ccv8Vs/N2Tspvy/Tlj2ucj6Gpdl2nU1+Pd0l6+Gp+fX2qlOnjkN1Ws57mpaWprCwMLvz3JUlLVq0cOi84vwszk1UVJRV8sqRZKmU9bq0XLF6165dTpGwzJn8c/Tvg5znWSZtLZOEBXmcLT9TciaBr7ZOyzgdSSzbs2fPHqs6HPnBLDg4uFCLp2XLbzi4lDWaYPPmzZKyFgbq27evbrjhBvXq1UvdunUrkkWeADi3sv0XFABUUMHBwblOzu7m5iYfHx/5+vqqQYMGatWqla699toCD/m8dOmS/v33X508eVKRkZGKjIzUkSNHdPLkSbsJHcvJ7e2pWrVqgW5fypoM/sCBAzp+/LgRw7Fjx3T06FG78ynmF0NuWrVqpeDgYOPX/mXLltkkLC2TRLfeeqvNsLG8vP3221bD3d944w2HE0nZzp49q4MHD9o8H6dOnbL7JSe/x8LRL6OWSZ+YmBilpKQ4PLTOcphtWlqaQ0mKnFJSUhQbG+vw4gbZLOdxc3TlVQ8PD9WvX9/o0ZFTzmHDuX3JciQ2y4RlToV9ri2H0TVq1MihmJo2bepY8KWoIAtqSdbzxtmT16r3pdl2nY3llBm5sUy65Pfe4+iPV3Xq1JGXl5fxXm/Zrsuqq/kcLOrP4tzknL/5hRde0AsvvFDgegozh2ZRyvk3j6PDpvMaSm5ZZ0FGdFjeds7PT8sfWgpSp+W5V7situXc5oGBgQX6u6awshOWvr6+uf49NHToUK1cudKYJiEpKUnLly83pqdp1qyZunXrpl69eqlz585XnbgF4LxIWAJAGTRixIgCD0l2hNls1rJly7Rw4UKrX97tyasnmj35JQ8s7dq1S59//rk2btxoNVwqJ5PJJJPJdNU9SiwNGTLEmE/y119/1SuvvGJ8CU9NTdWvv/5qda6j5s6da6wULWUtPOTosOrU1FQtXrxYixcvVkRERJ7nFvT5cHRy/5znxcbGOjx3Z1EtOhIXF1fgpM+lS5eM7YK0vdzm9JSK7v5YLrKQrSifa8v77uPj41BMZWGobUG/lOeVkMxPabbdcePG6aeffsr3vNGjR2vMmDFXG5rDCjKvniPyeo3l5OvrayQsLYfol1WOvh6L87M4N4VZuKU46imsnO0sISHBoetynmeZsLesMzExUWaz2aH3Gcs6c/4AYLnvaIz51Xk1dRRkwZ/CSk1NNXpOdu/ePdcfFD08PDR79mxNnjxZ3377rU07j4iIUEREhObPn6/KlSvrlltu0ZNPPqm6desW+30AUDJIWAIAJGX94frMM8/kutJ25cqV1axZM7Vq1UqdOnVSw4YNNWjQIIfrd3Rupo8//lhffPGF3TJPT081btxYLVu2VPv27dWrVy/de++9ioqKcjiO3AwaNEgff/yx0tPTdeHCBW3atMmYD2nt2rVGAiM4ONhq2Gde/vzzT3344YfGfrdu3Ryee/TcuXN64okn9O+//9otDwgIUHBwsNq0aaNOnTrJxcVFjz32mEN1F0TO3joFSV5Yfrnw8/NzaFi2PVfT6yOvRPfV3pbl/fH09Mx3bsjc5EwOFvVzfTX3vSR71lytwiQgC6o02255V5Ah8pY/Rl1tz0Fn4sjnYHF/FucmZzLouuuuu6qee84wHFzKmtvTxcXFaEMXLlxw6DrL80wmk1XPbssf6zIyMhQTE+NQr9nz588b2zl/wLAcLVOQpLxlnFc7NLok31Mt7dy5U0lJSZKU77yTPj4+ev311zVy5Ej9+uuvWrNmjXbt2mXTXuPj47VkyRItW7ZMkyZNKtC0PQCcFwlLAIAk6dVXX7X6ghQcHKxbb71Vbdu2VdOmTW3+IM45PLYoLFy40CpZWa1aNd1+++3q0KGDQkJCFBgYaPOFryh6lmTfVq9evbR27VpJ0ooVK4w/pC1Xxx46dKhD9R06dEjPP/+88WWpQYMGmjx5skMT/6enp2vMmDFWCax27dqpX79+atOmjYKCghQQEGB1zaZNmxyKK1tiYqJD51n2ljGZTAXqhWGZmKtXr57VCtvFzTJORxYByZZXDxfL++Pl5VUk96c4nuvKlSsbvSwdve8F6dlTEZRm2y3vHG1rZrPZqv3m1YvMkWTm1SzKVhpK67M45w8p//nPf65qKgRn4eHhoTp16hg/aOYc8p4by2HSdevWtfrRoWHDhjbnOpKwPHXqlLGdc25dy2k7Tp065VCvTbPZbPVDraNTf+Rk+ZwX5HOysByZvzKnWrVq6eGHH9bDDz+shIQE7dy5U1u2bNHff/9ttRjelStXNHbsWK1atYqelkA5QMISAKA9e/bot99+M/bvvvtuvfXWW3n2BinqYV+pqamaPn26sd+qVStjmE9eimroppQ11Ds7Yfnnn38qIyND6enp2rhxo6SsSekd6cly4cIFjRo1ykgK+vj4aNasWQ4P2/rjjz+M1XEl6dlnn9VTTz2V5zX2hhnnxfILVF6OHDlibNevX79Aq5ha9kY5ffq048EVAcsvlqdOnXJo7k2z2Wz1ZTUny/tz+fJlJSQkFGi4uT3F8Vw3bNjQSFgePnzYoTgc/TJfUZRm2/3ggw+M6SnKI0cTbJGRkVZz/+VMylgmdRz54SomJsaxAEtRaX4W55zq48yZM2U6YSllLYKVndg7ePCgQ9ccOHDA2M65SFJgYKD8/f2N9+ADBw44tFCN5W3nnMO1VatWxnZycrKOHTuW74JuR48etUrAO7qYU06Wz3lUVJTS0tIcmgdy8eLFqlOnjurXr6969eoVeO7I7IRl8+bNHZ5ixpKvr6969+5tLMJ18uRJffzxx8ZrJyUlRYsXL9bYsWMLXDcA5+L4tw4AQLll+Wu3u7u7Xn755XwTU5Z/1EtXvzJptrCwMKtEzNixY/NNVh47dsxq8Z3CDhm8/vrrjd5ssbGx2rFjhzZt2mTcRu/evfPtTZGSkqKnn37aSHK4uLjok08+KdCiJpbPR61atTRq1Kh8r8n5ZSy/58MySZYXy9587dq1c+gae+fHxMRY9YLIy6pVq/TWW2/pyy+/1MqVK69q9XfL205PTzcm7c/LoUOH8uxlYllnZmamQ3VK0rZt2zR+/Hh99tln+uWXX6x6txbHc20Z57Zt2xx6/Hbu3JnvORVJabbd8u7w4cMOJdm2bt1qbNtbwdgySeJIr8385oZ1BqX5WdysWTOrz1zLheLycunSJY0bN07Tpk3TDz/8UCRTtBSVTp06Gdtbt27N97HJyMiwanddunSxOcdy9XpHRjYcPHjQavh2zjqbNWtm9XdF9tyOebHsgRsQEHDViWXL11RaWpr27t2b7zWRkZEaP368Ro4cqf79+1v9qOmIyMhIHT16VJKMhKM9Fy5c0B9//KHPPvtMEydOzLPO7BEslonesvB6B5A/EpYAAKv5lby9vfPtNZaWlqZvv/3W6lhhv5hbxiA5NifT119/bbVf2OHh7u7uGjhwoLG/Zs0ao8el5NhiO6+++qpVMnDs2LHq06dPgeKwfCyqVauW7xfWy5cv2yzSkd/zsXbt2nzn9Nq5c6f27dtn7N988815np9Tly5drFZVnTdvXr7XpKam6pNPPtE333yjjz76SLNmzXJoGH1OwcHBVl9ecrYVe7777rs8y1u0aGHVG2T+/PkOxTJ16lQtXrxYkyZN0oQJE6yGGBbHc92vXz9jOzo62qrHlj2JiYlatmxZvvejIEprbrSiUpptt7xLS0vTjz/+mOc5GRkZ+uabb4z9Xr16ydvb2+ocy6kSHEmarFixIt9zCtKDvDgU12exI/fLxcXFanjuTz/95NAIhgULFuinn37Sp59+qtdee82perLedNNNxmswOwGWl99++83one7m5qa+ffvanGN57M8//8x3VXTL5ycoKMgmuWgymaw+W5csWZJnYjUzM9NqIb9+/fpd9ftty5YtrebU/P777/O9xvJ1VLVqVQUHBxv7jrSz9evXG9t5DQffs2ePRo8erUmTJmnOnDn59sx2dXW1+sxnxXCgfCBhCQCwGqocFxeX56qkGRkZevfdd216dVztIif2YpBkDMPOzS+//GLzRa2wMUjWScnVq1frzz//lJSVTMqrN4AkzZgxw2q+y8GDB+vxxx8vcAyWj0VERESeX4hSUlI0btw4nTt3zup4fo/FlStX9PLLL+ea2Lx06ZJeffVVY79BgwYFnsTez8/Pas7PpUuX6pdffsnzmsmTJ1sNT7733nsLdJuWnnjiCWN7/fr1WrRoUa7nbtq0SYsXL86zPldXVz388MPG/pYtWzR79uw8r1m4cKF27Nhh7N95551WX6SK47m+9tprrXoBvfvuu7kOdTebzXrnnXesVhYvCpbD78vK3IGWSrvtlnfTp0/Pc7qC6dOnW83ravm6y2Y5tDYyMlJ//fVXrvUtXrxY27dvzzeunNNGlHTbLa7PYkfv1yOPPGJsx8bG6qWXXrIalp/T3r17reZ3veaaaxxelK4k1K5d2+pz69133831PfbMmTN67733jP2+ffvaHa7ct29fY6Gc1NRUjRs3LtcfSzds2GCVBBw+fLjd8+677z4j6Xjw4EF9+umnud6nqVOnGr0HXVxccq3TEW5ublbvUz/99JNVQjGnqKgoq+f7zjvvtEpSWv4Yl1sby66/SpUqeY7a6NSpk9WPFB988EGeo2guXbpkNeqhZcuWuZ4LoOwgYQkAUI8ePaz2Q0NDrZIsUlZiY/PmzXrooYdsEoWS44u45KZ9+/ZWf5xOnTpVP/30k01CLSIiQq+//rpeeOEFmz9es1edLIwWLVoYX4SjoqKMHi+DBg3Kc3XblStXasaMGcZ+ly5d9M4771xVDJbPR1pamp588kmbYcBpaWlavXq17rzzTq1Zs8amDkeej40bN+rRRx/V8ePHrY5v375d9957r3HcxcVF77zzzlX1Pho9erTVxPcvvviiJk6caJMgi4yM1EsvvaQ5c+YYx0JCQnTXXXcV+Daz3XHHHerevbux/8477+jjjz+2Gj6ampqqRYsW6cknn3RoKOUDDzxgNefY5MmTNW7cOJt5Di9evKgPPvhAEyZMMI7VqlXLJoFdXM/1O++8Y6zofuHCBd13331as2aN1WsmOjpazz77rE2PzaJgmXjJ6wuwMyvNtlveJSUl6YEHHtCvv/5q9bq7dOmSxo8fr1mzZhnHbrvtNquhvdl69uxp9Znx4osvWvWIl7J6LH7wwQd64403JOW/QnmVKlWs3udKuu0W12exo/erdevWuu+++4z9P//8U8OHD9c///xjdV72++aIESOMxJSrq6teeeWVfO5hyRs7dqyRsI2OjtZ9991nM53H1q1bdf/99xuf997e3goNDbVbn4eHh1XZpk2bNHLkSKsfhdLT07VkyRKNGTPG+BsmODg41/eE5s2ba/Dgwcb+jBkz9N5771lNURIfH693333X6keyYcOGFWi6GXsefvhhY35Ys9ms0aNHa968ebpy5YrVeZs2bdLw4cONXrc1atTQY489ZnWOZa/nixcv2gwxT0lJMYbcd+/ePc8e6L6+vrrnnnuM/bVr1+qFF17QmTNnbM7dt2+fRowYYcTm7e3N+y9QTrDoDgBAnTp1Uo8ePYxejZGRkbr//vtVt25d1a1bV8nJyYqKirKaY9Lb21seHh7GsZxDugvK29tbTz75pD755BNJ/+u58MEHH6hBgwZydXXV2bNnbf5YrVOnjnGssDFkGzJkiFVPi+xjucmew8syGVStWjWNGzdOV65cUXp6ujIyMvKdY3PixImqXr26brvtNs2ZM0fh4eGSpP379+uOO+5QvXr1VKdOHcXHxysyMtIq8VatWjUlJCQYXx7zeyz69eun3377TZs3b1b//v3VtGlTBQQEKCoqymoOMpPJpFdeecXuXF6OCAgI0PTp0zVy5EhdunRJZrNZc+bM0fz589W0aVP5+fkpOjpap06dskpO16pVSzNmzCj0sK73339fjz76qCIiImQ2m/XFF1/o66+/VvPmzeXm5qaIiAjjS05QUJBMJlOePb88PDw0bdo0Pfzww8YX1J9++kk///yzgoKCVK1aNZ0/f16RkZFWPZ0qV66s6dOny8/Pz6q+4nquGzZsqPfff18vvfSS0tLSdO7cOT311FOqWbOmGjVqpISEBB08eNBIFmW3h6ISHByss2fPSsoaMrp9+3b5+/srKChI48ePL7LbKU6l3XbLK29vb7m4uCgmJkbPPfecqlevriZNmigpKUmHDh2yet1ce+21euutt+zW4+vrqyeeeEKTJ0+WlDVdwpNPPqnatWurfv36io2N1fHjx4367r77bh06dMgm+WbJ3d1djRs3NoaYT5w4UStXrlSlSpXUrVs3Pfnkk0X1MNhVXJ/FBblfr7zyiiIjI7VhwwZJWfMd33333apdu7YaNGighIQEHT9+3OoHQpPJpNdff13t27cv6oek0Jo0aaIJEybo5ZdfVmZmpk6dOqXhw4erQYMGql27ts6cOWOVbHRxcdG7776r+vXr51rn4MGDFRYWZvTK37Rpk/r27auQkBD5+vrqyJEjVj9s+Pv7a+rUqXkmzF977TWFh4cb07DMnz9fS5YsMYaQHzp0yGrO7jZt2mjcuHFX96BY8PX11bRp0zRixAhdvHhRKSkpev/99zV16lQFBwfL09NTJ06cMN7PJcnLy0tTpkyx+Txr1qyZTCaTzGazzGazhg8frjZt2ig9PV1PPfWUzGaz1Zzg+RkzZow2btxofD4uX75cK1euVKNGjVSzZk3j+bT8wTD7+XNk9XYAzo8elgAASdKUKVNserGcPn1aO3bs0P79+62+IF177bX64Ycf1LVrV+NYzl4gV2PkyJE2Q/9iY2O1Z88ehYWFWSUra9eurdmzZ1v1WNu9e3eRLHIxcOBAq2RD69atreZpyikpKclm+NOKFSu0fPlyrV69Wn/99Zc2bNigjRs35vkvu0eDu7u7Pv/8c6u5rrJXsN62bZsOHDhglcDq3bu3fvrpJ6vz81tE5Z577tHzzz8vV1dXmc1mRUREaNu2bVbJyoCAAE2aNEkPPvhgPo9Y3lq3bq3vv//eaphyRkaGDh06pG3btunEiRNWz1u3bt20ePFiNWjQoFC3K2Ulj7755hurnkspKSn6559/tHPnTiNZ2axZM3322Wfy8fHJt8569erp+++/t5or0mw26/Dhw9q6dauOHj1qlXRp1aqVvvnmG7uryRbncz1gwADNmTNH1apVM46dO3dO27Zt07///mskK++77z49++yz+d7vgnjyySetXkMHDx7Uli1b8hy264xKs+2WVwEBAfryyy+NYbUXLlzQtm3btG/fPuN1YzKZdNddd2nu3Ll5zuM4atQoPfHEE1Y9tc6ePavt27crIiJCaWlpcnFx0WOPPaY333zTofjGjBljDM81m83as2ePtm3b5tACK0WhuD6LHb1fHh4e+uyzzzRq1CiroeRnz5413jssk5U1atTQ9OnTrXpmOptBgwZp8uTJVj2/T548qW3btlklK/38/DRlyhQNGDAg3zrfeustjRo1ynify8zM1IEDB7R9+3arZGVQUJAWLlyY78rfvr6+mjdvnm644QbjWHJysnbv3q3du3dbJSv79OmjuXPnGr3oCyskJERLlixRhw4djGNJSUnavXu3tm7dapWsbNSokRYsWKCOHTva1FO9enWrdpCcnKxt27Zp165d2r17t9Gz12QyqWfPnvnG5e3trfnz51t9fmdmZuro0aPasmWLtm3bZpWsrFu3rmbMmOHQ8wegbKCHJQBAUlYPsPnz5+u3337T8uXLtX//fl28eFFms1mVK1dWvXr11KJFC918883GH5p9+vTRr7/+KilreHF0dLTdOZ8cld2bb8CAAVq8eLF27dql6OhopaamytvbW7Vq1VJISIh69OihAQMGyNPTU6dPn9Y777yjzMxMxcXF6ffff9ctt9xSqMeiatWq6tChg7FKqiOL7RS1OnXq6IcfftCyZcv022+/6cCBA4qNjZXJZFKVKlXUsGFDtWrVSgMGDDDmgerTp48x59ny5cv1wgsv5PmF5vHHH1f37t21cOFCbdu2TefOnZO3t7caN26sG264QcOGDbPpQXG16tWrp6+//lrbt2/Xb7/9pu3btys6Olrx8fGqVKmS6tatq2uvvVYDBw60O/yzMKpUqaKvvvpK69ev108//aSwsDBduHBBPj4+atSokQYMGKB77rnHZp63vAQEBGjatGk6cOCAli9frq1bt+r06dO6fPmy3N3dVatWLbVp00YDBgxQ79698xxOX5zPdadOnfT777/rhx9+0B9//KHw8HAlJyerevXqatu2re655x517dq1wCu95qd9+/ZatGiRPv/8c+3evVuxsbHy9PSUj4+PUlJSCvRYl7bSbLvlVbt27bRixQotXLhQv//+u06ePKn09HTVq1dPXbp00bBhwxxe+Tg0NFS33Xabvv/+e23atMlIYNSuXVtdu3bVXXfdpRYtWjgc2y233CIfHx/NmzdPBw4c0OXLl+Xl5VViC0kV12dxQe6Xq6urxo4dq/vvv18///yzNm3apKNHjxrJ0qpVq6pFixbq06ePbr31Vod+6Clt/fv3V5cuXfT9999r7dq1OnHihOLi4uTt7a2goCD17t1bw4YNc7hnnslk0tixYzVo0CD98MMP2rhxo86ePavk5GT5+fmpRYsW6t+/vwYNGmQ1t2NeKleurFmzZmnz5s1atmyZduzYoQsXLigjI0PVq1dXu3btNHjwYJupA4pCvXr19M0332jDhg1atWqVdu7cqfPnzyslJUUBAQFq1aqV+vXrp1tvvTXP+/Of//xHjRs31k8//aSTJ08aj0dqaqqRsMy52E9eqlatqq+++krbt2/XihUrtGfPHkVFRSkhIUGenp6qXr26mjdvrhtuuEH9+/cvsiQuAOdgMuc3Pg0AgAomNTVV3bt31+XLl1WpUiVt2LBBVapUKe2wAKBMWrp0qTG/YWBgoM1ckwAAADkxJBwAgBzWrFljDBUeMGAAyUoAAAAAKEEkLAEAyGHRokXGtjPPywUAAAAA5RFzWAIA8P8yMzM1bdo0bd++XZLUpUsXtWnTppSjAgAAAICKhYQlAKBCe++99xQWFqZKlSrp6NGjunDhgqSslVL/85//lHJ0AAAAAFDxkLAEAFRoNWrUMFZbzubm5qZ33nlHTZs2LaWoAAAAAKDiImEJAKjQ2rVrp6CgIEVGRsrX11fXXHONHn/8cXXo0KG0QwMAAACACslkNpvNpR0EAAAAAAAAAEisEg4AAAAAAADAiZCwBAAAAAAAAOA0mMMSDtu5c6fVvosL+W4AAAAAAICKKjMz02q/qNYCIGGJq5azUQIAAAAAAACFRRc5AAAAAAAAAE6DHpa4agwJR34se+HSXpAf2gsKijaDgqC9oCBoLygI2gsKgvaCgigL7aW4Rt+SsITDXFxcrBpimzZt5OZGE4J96enp+ueff4x92gvyQntBQdFmUBC0FxQE7QUFQXtBQdBeUBBlpb2EhYUZuaKiTKo6Z3oWAAAAAAAAQIVEwhIAAAAAAACA0yBhCQAAAAAAAMBpkLAEAAAAAAAA4DRIWAIAAAAAAABwGiQsAQAAAAAAADgNEpYAAAAAAAAAnAYJSwAAAAAAAABOg4QlAAAAAAAAAKdBwhIAAAAAAACA0yBhCQAAAAAAAMBpkLAEAAAAAAAA4DTcSjsAAAAAAADgXMxmszIzM0s7jHIlIyPDZt9kMpVSNHB2xdFeXFxcykybI2HpxJKTk/X1119r5cqVOn78uNzc3NS4cWPddtttuvfee+Xp6VnaIQIAAAAAyon09HTFxcUpLi5OKSkppR1OuWM2m632jxw5UmaSRyh5xdVePD095efnJz8/P7m5OW9a0Hkjq+DOnz+vhx9+WIcPH5Ykubu7KzMzU3v37tXevXu1ZMkSzZ07V7Vq1SrlSAEAAAAAZV1sbKzOnj1rkyRB0XLmBBGcT3G0l5SUFJ07d07nz59XnTp15OfnV+S3URSYw9JJhYaG6vDhwwoICNC0adMUFham3bt368svv1Tt2rV15MgRPfvss6UdJgAAAACgjEtMTNSZM2dIVhYzk8kkNzc34x+9K5GX4m4vZrNZZ86cUWJiYpHWW1RI7TuhrVu3atu2bZKkDz74QNdff71R1rNnT3300UcaPny4wsLCtGPHDnXs2LGUIgUAAAAAlGXp6ek6deqUse/q6ip/f39VqVKFpFoRM5vNSkpKMva9vb15fJGrom4vZrNZ6enpunz5smJjY5WRkSGz2axTp04pKCjI6Xr/Olc0kCRt2rRJkhQYGGiVrMzWqVMn+fr6KiEhQfv27SNhCQAAAAC4KomJicbiOiaTSfXr15eXl1cpR1U+mc1mubq6Gvuurq4kLJGr4mgvbm5uqlSpkipXrqwTJ04Yi2slJiY63dBwEpZOaOzYsXrggQcUGxtrtzwzM9Poqu/u7l6CkQEAAAAAypOEhARj28/Pj2QlUAF4eXmpSpUqiouLk5T1PkDCEg6pUaOGatSoYbds2bJlSkxMlMlkUpcuXUo4MgAAAABAeWE5f52Pj08pRgKgJPn6+hoJS2ecx5KEZRlx5coVnThxQj/88IO++eYbSdKIESMUFBRUypEBAAAAAMois9msjIwMY79SpUqlGA2AkmT5es+ez9KZpiggYVkGnDhxQn379jX2TSaTXnrpJT3yyCOlGBUAAAAAoCzLnrsym+V8eQDKt5yv98zMTKd6D3Ap7QCQvzNnzsjd3V3e3t6Ssn4Fmzlzpj799NNSjgwAAAAAAAAoWiQsy4C2bdtq9+7dCgsL059//qm77rpLCQkJmj59uqZOnVra4QEAAAAAAABFhoRlGeDl5SU3t6zR+3Xr1tWECRM0fPhwSdKcOXN06dKl0gwPAAAAAAAAKDIkLMuohx9+WFLWYjyHDh0q3WAAAAAAAACAIsKiO07o+PHjOnHihGrVqqXmzZvbPadmzZrGdkxMTEmFBgAAAAAAABQrelg6oXHjxunxxx/X9OnTcz3nyJEjxnZgYGBJhGUlPV1atcqkpKQSv2kAAAAAAACUYyQsnVDv3r0lSX/99ZfCw8Ntys1ms6ZNmyYpK1nZpk2bEo1PklJTXTRwoKsCA6XQUMlOmAAAAAAAAECBkbB0Qg888IBq1aql9PR0jRw5UqtXr1ZaWpok6ejRoxo9erTWrl0rk8mk119/XS4upfc0xsZKkydLISHS0KFSXFyphQIAAAAAAFBgTz/9tEJCQvTZZ58pMTFRM2bM0K233qprrrlGLVu2VEpKSqFvY+zYsQoJCXH435w5c4rgnpVdzGHphCpXrqwvvvhCjz/+uM6ePaunn35abm5uqlSpkhISEiRJHh4eevPNN3XDDTeUcrT/s3RpVk/LVaukUhilDgAAAAAAUGAHDx6UlJVrGThwoKKiolSpUiW5uLioYcOG8vT0LPRtnDp1StWrV7c6duHCBUlSQECAXF1drco6dOhQ6Nssy0hYOqmQkBAtW7ZMCxYs0B9//KETJ04oLS1NjRo1Urdu3fTwww+rYcOGpR2mjX37pP79pY0bJT+/0o4GAAAAAAAgdwkJCYqKipIkTZs2TYGBgZo/f746d+4sk8lklBXW999/b7V/8uRJ3XzzzZKk33//XVWqVLEqN5vNSqrAC4eQsLRj6tSpmjlzpgIDA7V27doCXXvkyBF999132rp1q06dOqX09HTVrFlTwcHBGjhwoG6++Wa5uTn2sPv5+Wn06NEaPXr01dyNUrNvn/TII9KPP5Z2JAAAAAAAALk7ePCgzGazJKlGjRr69ttvVblyZaO8uBY6PnTokCSpdu3aNslKMIeljT179uiLL764qmunT5+uQYMG6euvv9ahQ4eUmJiolJQURUZGas2aNXruuec0bNgwHT16tIijdj5Ll0oREaUdBQAAAAAAQO6yE4cmk0nvvfeeVbLSUmpqqlq3bq3JkycX6e0GBwcXqp6BAwfqySefLIqQnAo9LC1ERkbqqaeeMha4KYgJEyZowYIFxr6bm5tCQkLk5eWlI0eOKCYmRpK0b98+DR8+XEuWLCm2LL2zmD1b+uST0o4CAAAAAACUFzNmzNDMmTOv6tqRI0dq7NixVsey569s27atOnbsmOu1R48eVVpamlq0aHFVt51TeHi4pMIlLNPT03Xs2DHdeOONRRKTM6GH5f8LDw/X/fffr/Pnzxf42lWrVlklK/v166d169Zp6dKlWrRokTZs2KC3335bXl5ekrImVR0zZozR5bi8mjtXqsDTLQAAAAAAgCJmNpuVkZFx1f9yyk5Y5pf0Cw4O1p49e9SvX78iuR/ZPSxDQkKuuo7jx48rLS2t0L00nRE9LCX997//1RtvvKHk5OQCX5uWlqaJEyca+3369NGUKVPk4vK/XLC7u7uGDRumwMBAPfHEE0pPT9f+/fu1fPlyDRw4sEjuQ4lzT5dCoqRDufcSjYmR1q7NUP/+5TsxC/tyfhDY+2AAstFeUFC0GRQE7QUFQXtBQZT19pKRkWF0pDGZTDKbzeW+Y01pyvnY8lhfncKu9WH5uGdmZiri/+ez69ChQ57PiclkkoeHh00dV+PKlSs6efKkpKxEqL36HGkv2bGHhIQUOKbs87P/T09Pd6o2WaETltHR0Zo0aZJ+/vnnq67jjz/+0OnTpyVlDQMfP368VbLSUo8ePTRs2DAtWrRIkjR37tyym7CUZLptl8z1L0h/tZbSXe2es2NHpOrUuVjCkcEZ7du3r7RDQBlCe0FB0WZQELQXFATtBQVRVtuLm5ub3NzclJSUJFdX+9/tUPSuptMUitaJEyeUnJwsFxcXNWzYMM9VuZ9//nmdPHnSarXv0aNH69KlS5owYYJmzJihHTt2yN3dXbfffrueeeaZXOv6999/lZmZKTc3N9WuXduh1cBXrVqlL7/8UocPH1bdunUVGhqq/fv3y9PTUzVq1CjwiuIZGRnKzMxUenq60tPTne79q8ImLGfNmqXPP//c6glt0qSJ+vbtq9mzZztcz8qVK43tbt26qW7dunmeb5mw3L9/vyIjI1W/fv0CRu88TG1Pylw3RlreQbpkOzFtYiKzDgAAAAAAUBL279+v4cOHS5Lq1KmjFStWSJL++ecfrVixQjt37lR0dLSSkpIUHBys7777rsRjPHDggFavXq0dO3bozJkzio2NlZeXl+rVq6cuXbronnvuUY0aNUoklux5JOvXr29M45fXuW3atLE6FhERocqVK2vUqFEaMGCAunXrpj/++EPz5s1T27Zt1bt3b7t1ZfeurFevntzd3fON88cff9S7776rHj166Pnnn1dUVJTGjRunBg0aqHHjxuXyh4YKm7D86quvrJKVd911l8aNG6fff//d4TrMZrO2bt1q7Hfv3j3fa0JCQlSjRg1jrsy1a9fqoYceKkDkzsdUI17mBzZIq9tI/1onX318MkspKgAAAAAAKpYDBw4Y28HBwYqJidHEiRPt5joKM3fi1Th58qQ++OADbdmyxaYsPj5eBw4c0IEDB/Ttt9/qtdde06233lrsMTm68E1iYqJOnz6toUOHGsfi4uJ0/vx5JScna+HChWrQoIGkrHVNrr/+ev3777+5JixjY2MlSf7+/vnGePToUX344Ye699579eKLLxrHvb29NWvWrDI9cjcvFTZhma1169Z6+eWX1alTpwJfGxUVpcuXL1vV5YiQkBAjYbl3794C364zMrlnSLfslrn+RWlNayk9q2l17FhfbdvWK+XoUBoyMjKsupS3bt26XP7qg6JBe0FB0WZQELQXFATtBQVR1ttLRkaGjhw5Iilrfj5vb+8yFX9ZYzabrYaBe3l5yWQyFeltHD582NiuWbOmHnvsMR07dkwmk0nXXHONmjRpovT0dEVERKhNmzby9vYu0tvPzbp16xQaGqrExERJkqurq1q1aqXGjRvLw8NDp0+f1o4dO5SSkqIrV65o/Pjxqlq1arGvfp3d/vN7LA4ePCiz2azWrVsb52Xncx5//HE1b97cONfFxUVms1ne3t651hkQECBJioyMVExMjAIDbdcHyW4vc+bMkaenp8aOHWtVX48ePTRr1iy1aNHiqp7HjIwMubi4yN3dXe7u7goKCrqq1//evXuVmVn0ndUqbMKyU6dOGjJkiG688carfoM4fvy41X52Nj0/9er9L4GX3Q24zDHbf8xMrSNlrhMj/dJBAZlVdMMNrnKrsK0MllxdXeVGY4CDaC8oKNoMCoL2goKgvaAgylp7MZlMVt+Hc+6jeBXH423Zw3Lp0qXKyMhQ9+7d9Z///EeNGze2OjcjI6NEnu89e/boueeeM5K1d955p8aMGaPatWtbnXfx4kW9+uqr+uuvv2Q2m/X222+rZ8+e8vT0LLbYslfqbtGiRZ6PRfZ5zZs3N87LXvDmpptusro2O1fUuHHjXOvs0qWL3N3ddfHiRd14443y9/fXyy+/rCFDhlidl56ernXr1umWW25RlSpVrOrLThJaxlQQ2ddk/+/m5uZUP1hU2AkGZ86cadOoCiq7l6SUlUGvXr26Q9dZzsVgWUeZku4q8+Zg2VtAylQtQbp/gzqOOCEvL+dZYQoAAAAAgPIqPT3dGOIsZSUkhwwZoi+++MImWSmpRJJT0dHRGjVqlLGwzcSJE/Xuu+/aJCslqVq1apo+fboRa3R0tDZu3FhsscXFxenMmTOSshKWeTl06JD8/f1Vq1Ytq2O+vr5q0qSJ1bnZSWPLXpc51a1bV9OnT1eLFi3k7u6u2NhYq85t2U6fPq3ExES78WX37s5vOHtZVXZ++nFCcXFxxraPj0+uq4Pn5Ovra7eOMmdTiHSqqswDwmTySbEqMrlnarX2aPg3FzVr6DWqXImmBgAAAABlXVpGpt7+I1wrD0QrKTWjtMNxKt4erhrQopbG3xwsd9eS7x92+PBhpaT877t527Zt9fbbb5dqr7kpU6bo4sWLkqQxY8bojjvuyPN8Dw8P3X777ZoyZYqkrN6ZxTUs3M/Pz+g5mZ9Dhw7ZzPmZfSxnR7iDBw/Ky8tLDRs2zLPOPn36qE+fPnmec+XKFbvHMzIy9N1336lq1aoltkBRSSOLVAiWbwSVKlVy+DoPDw9jOzU1tUhjKnEna0hf95Z5wC6ZGl6wKf4mLErbI2O1eHgHXRvoVwoBAgAAAACKylu/h+u9NRGlHYbTCovKWufinf65964rLpbDwSVp/PjxDq1ALUmjRo3Sn3/+qZdeekmPPvpokcXz888/S5IaNWqkxx9/3KHrLHsxxsTEFEkshWE2mxUeHq4777zT6tjhw4dthnBLWQnL4OBghzu15SW7J+r27dt1//33G8cXLFigEydOqEuXLoW+DWdFwrIQ0tLSjO2CNETLOU3S09OLNKZSkeQp/dhF5k4RUrdDMuV4KCIuJKrr9I36ZGArPdmtIXOiAAAAAEAZte1k6SeQnN3WE6XzGO3fv9/Yvu666xxeGFjKSrJJRbty+Ndff23Ms+jj46P33nvPoessez0W5/yVjoqMjFRiYqLVY3Py5EklJSXZHfZ96NAh9evXr0huu0qVKurVq5dWrVql119/XW3bttW2bdu0ceNGmUymEl/pvSSRsCwEy27VBVkRyTJJ6eivHU7PbJK2BquJZzUlXb9L0YnW3ZZT0jM1+qe9+uvIBX1xV1v5eZWT+w0AAAAAFUinBgFaHWE7ug7/07lhQKnc7r///mtsFyRhlpSUJC8vLzVu3DjPeRcLIjMzU2vWrDH29+/fb5VQdZQzDHfOTqBaJgez5wrNObfk2bNnFRsbW6SJxDfeeEPvvvuufvvtN/3+++/q2LGj3nvvPT355JPldv5KiYRloXh5eRnblsPD82M5DNwZfi0oKkOGSHPmVFOqay89/N1u/XrwnM05P+w5o52n4vTdAx10XQP/kg8SAAAAAHDV3ugbLJNJzGFph+UcliXNbDYbvSSlrB6WjvL29tavv/5apPEcPny4SNbsaNq0aRFEUzg333yzzVyX9o5JWUO4HZ0X01EBAQH6+OOP5e3tbTVitahvx9mQsCwEP7//zcmYmJgos9ns0HDnhIQEY9vf3784QisxAQHSiBHSqFFSs2bZRz31yyOd9Mm6I3rt14NKz7ReKfzYpST1+HSjJt7aUs/2bMwQcQAAAAAoI9xdXfRO/+alMkcjcnf8+HElJiZKylpjo9n/vqCXimPHjhnbbdu21ZIlS0oxGpRFJb9sVTliORFsRkaGw5PBnj9/3tiuXr16kcdVEjw8MvXLLxk6dUr65BPLZGUWFxeTXuzTVOue6qYG/l4216dlmBW6bL8Gz9uuS0llfOEhAAAAAABKkeVw8ObNmxdoZfCnn35aISEh+vzzz62Ojxo1SiEhIfryyy+VmpqqBQsW6K677lL79u3VvXt3jR49WpGRkXbrjI2NNbarVq1asDsDiIRloeRcoj63F2pOp06dMrYbN25cpDGVFDc3qX9/s7y98z6va6Oq2hXaS7e3qmW3fNn+aLWftF6bj18qhigBAAAAACj/LBOWLVu2LNC1uS24k33cz89PQ4cO1YQJExQREaGMjAxduHBBf/zxhx544AGjZ6cly4WJL1++XKB4AImEZaEEBgZaDek+cOCAQ9dZzitRVBPaOrOq3h5a+vB1mnx7K7m72g7/PhmbrF4zN+nDPw8rM8fwcQAAAAAAkDfLhGWrVq0cvi4hIUFRUVGSrPMTcXFxOnPmjCTp448/lo+Pj7777juFhYVp9+7dmjp1qtzc3HT27FmtXLnSpt6aNWsa2/v377eb1ATyQsKykDp37mxsb9q0Kd/zDx48qAsX/reiWpcuXYolLmdjMpn0bM8m+nt0DzWpZtstMyPTrHErDmjgnG06n+D4AkYAAAAAAFR0lgnL1q1bO3zdwYMHZTabFRAQYDXtneWCLg0bNtTXX3+tdu3ayWQyyWQyqX///rr++uslZc2fmVO7du3k5pa1bMqVK1c0Y8YMh2NKSUmxGlKOiomEZSH17dvX2P7zzz8VHR2d5/nffvutsR0UFFSkS92XBR3r+2vnc7105zV17Jb/evCc2k1ar/VHLpZwZAAAAAAAlD2nT582EnweHh4FWlk7OzGZc/Rn9shQNzc3ffLJJ/Lw8LC5tkqVKpJkdyHdKlWqaODAgcb+nDlz9N577+W5cvjBgwc1bdo03Xjjjbp4kZxARccq4YXUt29f1axZU+fOnVNqaqrGjRunL774wvglwdKGDRv0/fffG/vDhw8vyVCdhp+XuxYP76DZm08odNl+paRnWpWfvnxFN8zepDf7heiVG5rJ1YVVxAEAAAAAsMeyd2VISIjdfERushOTOROW2YnMzp07q379+navzV6fIzAw0G75Cy+8oO3btxvnzZ8/X999953atm2revXqyd3dXYmJiTp37pzCw8ONpKu3t3eZXe8DRYceloXk4eGh0NBQY3/Tpk0aOXKk1QI86enpWrJkicaMGaOMjAxJUnBwsO66664Sj9dZmEwmPdmtkTaP6aFm1X1syjPN0vhVh3TLF1t09vKVUogQAAAAAADnt3//fmO7IPNXSvkvuNOnT59crw0PD5ckNWvWzG559erVtXDhQnXq1Mk4lpKSom3btmnp0qVavHixli9frm3bthnJShcXF/Xt29dq0R5UTPSwLAKDBw9WWFiYFi9eLCkradm3b1+FhITI19dXR44c0aVL/1sF29/f35igtqK7NtBPO57rpaeW7tGiXVE25asjLqjd5PVaeF873disRilECAAAAACA87JcALggCcvMzExFRERIsu5hmZGRocOHD+dZX/YwdJPJlOdiwnXq1NGCBQu0ZcsWrVy5Uv/884/OnDmjhIQEubm5qXLlygoMDFRQUJA6dOignj17Ws2liYqLjFkReeuttxQQEKCvvvpKaWlpyszMtLtqeFBQkKZOnaomTZqUQpTOqXIlN319bzv1aVpdY37aq+Q06yHi0fEp6vv5Fr12YzONvzlYbq780gIAAAAAgCTNnj37qq47ceKEkpOT5e7urqCgIOP48ePHdeXKFbm4uOSajMzOd9SrV0++vr753laXLl0qzKLDKBokLIuIyWTS2LFjNWjQIP3www/auHGjzp49q+TkZPn5+alFixbq37+/Bg0aZHey2orOZDLpkU4N1LlBgIYt2KF/oxOsys1macLqCK0/elGL7m+vQD+vUooUAAAAAICyL3vYd+PGja3yFNnzVzZo0EDe3t55XtuiRYtijhIVFQnLHIYMGaIhQ4Zc9fVBQUF6+eWX9fLLLxdhVBVHq9qVtfWZnhrz8z7N2x5pU77+6CW1m7ReX9/bTv2b1yyFCAEAAAAAKPvyW3Anr2RkbnNfAkWFsbVwOj6ebpoz7FrNv/da+Xi42pRfSEzVgC+3atyKA0rLyLRTAwAAAAAAyEt2YjJnwjI7GdmyZctcr80eEk4PSxQXEpZwWsM71NeO53rpmjpV7JZ/+OdhXT9zk07GJJVwZAAAAAAAlG359bDMbf7KhIQEnTp1Ks9zgMIiYQmnFlLTV5uf6aEnuja0W775RIzaTVqvZfvPlnBkAAAAAACUTXFxcTpz5owk62Hdlsdz6z158OBBmc1mValSRYGBgcUfLCok5rCE0/Nyd9WsodeoT1B1jfz+H8WnpFuVxySn6Y652/Vsz8aaeGtLebiRhwcAAAAAIDd+fn5GT0pHjlvq2LFjvucAhUVmB2XG3dfW1a6xvdShnp/d8qkbjqnHjI06ejGxhCMDAAAAAABAUSFhiTIlqLqPNo7urjE9Gtst33EqTu0nr9cP/5wu4cgAAAAAAABQFEhYoszxdHPV1Dtaa+nDHeXv5W5TfvlKuu5esFNP/bhHV9IySiFCAAAAAAAAXC0Sliiz7mhdR2Fje6lLwwC75bM3n1DX6RsVfj6hhCMDAAAAAADA1SJhiTKtYVVvrXuqm164Pshu+T+nL6vjlPX6ZtepEo4MAAAAAAAAV4OEJco8d1cXfXhbS/3ySCdV87YdIp6QkqEHvgnTY0v+UVJqup0aAAAAAAAA4CxIWKLcuLVlLYWF9lbPxlXtls/ZdlKdp27Uv2fjSzgyAAAAAAAAOIqEJcqVev5eWjOqq167qZlMJtvy/dHx6jR1g+Ztjyz54AAAAAAAAJAvEpYod9xcXfRO/+ZaNbKLavp62JQnpWXokcW79dC3YUpIYYg4AAAAAACAMyFhiXLr5uAaCgvtrRuaVrdbvmDnKV03Zb32nL5cwpEBAAAAQOlzcbFOCWRkZJRSJABKWs7Xe873g9LmXNEARaxOlUr67fEuerNviFzsDBE/dD5Rnadt0Gebj8tsNpd8gAAAAABQSkwmk1xdXY39K1eulGI0AEqS5evd1dVVJnvz6pUiEpYo91xdTBrfN1irn+iqOlU8bcpT0jP15I97dd+iXbp8Ja0UIgQAAACA0uHj42NsJyYmlmIkAEpSQkKCsW35PuAsSFiiwri+aXWFje2tfiE17JYv3n1aHSav165TsSUbGAAAAACUEl9fX2M7Li5OycnJpRgNgJKQnJysy5f/Nz2e5fuAs3Ar7QCAklSzsqdWPNpZH/51WP9ZdUgZmdbDwI9cTFK36X/ro4EtNbp7I6frEg0AAAAARcnHx0cuLi7KzMyU2WxWZGSk/P39VaVKFbm5ufGdqAiZzWareQMzMjJ4fJGrom4vZrNZ6enpunz5smJjY41p8VxcXJyyhyUJS1Q4Li4mjbuhmXo2rqZ7F+7UqTjreVpSMzL17M/79NfhC/ry7rYK8LZdaRwAAAAAygM3NzfVq1dPJ0+elJSVFLl48aIuXrxYypGVT5mZmca2sy1yAudT3O3FZDKpXr16cnNzvvSg80UElJDujasqLLS3Rny3W8sPRNuU/7TvrMKi4vTtAx3UuWGA3TqSkqR166SzZ6WEBMnXV6pdW+rdW/L2Lu57AAAAAACF5+Pjozp16ujs2bMsRlqMsnu4ZXN3d6eHJXJV3O3FZDKpTp06Ttm7UiJhiQqumo+H/vvIdZq8/qjGrTig9BxDxI/HJKvnp3/r/QEtNLZXE7n8/1Lj4eHSrFnSvHlSbKxtvf7+0ogR0qhRUnBwsd8NAAAAACgUf39/+fr6Ki4uTnFxcUpJSSntkMqlnAkoIC/F0V48PT3l5+cnPz8/p+xZmc15IwNKiMlkUmjvIPVoXFX3LNip4zHWk0ynZ5r14vJ/9deRC5o2oJ1eGO2hpUvzrjM2Vpo8OevfkCHSnDmSn1/x3QcAAAAAKCw3NzdVq1ZN1apVk9lsthqOisJLT0/Xvn37jP2goCCnThihdBVHe3FxcSkzvXp5ZQD/r1ODAO0K7a3HluzW0r1nbcpXHDin33atU9rW9pKqOVzv0qVZPTJXrZICA4swYAAAAAAoJiaTSa6urqUdRrmSc7i9q6srjzFyVdHbCzO8Ahb8vdz1/YMdNX1wa3m42r480r2uSHdvljpFSHJ8bpd9+6T+/aW4uCIMFgAAAAAAoBwiYQnkYDKZ9HT3xtr8TA81rW47+azJxSxTz4PS0K2Sl+PzuuzbJz3ySFFGCgAAAAAAUP6QsARy0S7QTzue66kBQXXtlpsanZceXCfVv+BwnUuXShERRRUhAAAAAABA+UPCEshDlUruahbRXubfr5E5zfblYvJNke7cLHU9JJkcGyI+e3ZRRwkAAAAAAFB+kLAE8pCUJM2ba5L2NpS+6SnzRV+bc0wukqlbeFbi0udKvnXOnZtVLwAAAAAAAGyRsATysG6dFBv7/zsXqkiLesq8v57dc00NLmYNEW94Ls86Y2Ky6gUAAAAAAIAtEpZAHs6ezXEgzU1a1U7mX6+VOc3V5nyTd6pMd26VehyQTJm51hsdXcSBAgAAAAAAlBMkLIE8JCTkUvBvfWlhT5nPV7ZbbOp8WBq2SaqcbLc8Pr6IAgQAAAAAAChnSFgCefC1nbLyfy5VzprXck8Du8WmwBhp+DqpsW13ysr285wAAAAAAAAVHglLIA+1a+dzQrqr9EdbmVe0lznVzhBxrzSZhmyTeu+XXP43RLxWrSIOFAAAAAAAoJwgYQnkoXdvyd/fgRMPBkoLesl8rordYlPHo9Kwv6UqSQoIyKoXAAAAAAAAtkhYAnnw9pZGjHDw5Fhf6ZseMoc1sltsqhsrDV+nHiPOyNu7qCIEAAAAAAAoX0hYAvkYNaoAJ2e4SmvbyLysg8xX3GyKTZXStdy0Q2N+2quU9IyiCxIAAAAAAKCcIGEJ5CM4WBoypIAXRdSVFvaS+Yy/3eJP/z6u7tP/1uELiYWODwAAAAAAoDwhYQk4YM4cqXXrAl4U5yN9113mHU3sFu+KilOHyeu1eHdU4QMEAAAAAAAoJ0hYAg7w85NWrbqKpGWmi7SulRqEXSc/T3eb4viUdN27cJee+OEfJacxRBwAAAAAAICEJeCgwEBp48aCDw8fMkT6Z2lt/fNCL3VtGGD3nC+2nFSXaRt08Fx8EUQKAAAAAABQdpGwBArAz0/68Ufp0CFp7FjJ39/+eQEBUmioFB6edb6fn9QgwFt/PdVNL/VpaveavWfidd2UDVqwM7L47gAAAAAAAICTs13GGEC+goOlSZOkCROkdeuk6GgpPl6qXFmqVUvq3Vvy9ra9zt3VRR/c2kLXB1XTg9+G6UJiqlV5YmqGHvp2t/6MuKjpg1vLx5OXKAAAAAAAqFjIhgCF4O0t3XJLwa/r37ymwkJ76f5Fu7T+6CWb8nk7IrUtMkaLh3dUq9qViyBSAAAAAACAsoEh4UApCfTz0uonuur1m5rJZLIt/zc6QZ2mrtdXW0/KbDaXfIAAAAAAAAClgIQlUIrcXF30dv/m+v3xLqpV2dOmPDktUyO//0fDvwlT/JX0UogQAAAAAACgZJGwBJzAjc1qaHdob93UrLrd8m/CotRxynrtjoor4cgAAAAAAABKFglLwEnUquypX0d20Tv9Q+RiZ4h4xIVEdZ2+UTP/Ps4QcQAAAAAAUG6RsASciKuLSa/dFKy1o7qpbpVKNuUp6Zka/dNeDVuwU3HJaaUQIQAAAAAAQPEiYQk4oV5B1RQW2ku3NK9pt/yHPWfUfvJ6bT8ZW7KBAQAAAAAAFDMSloCTquHrqV8e6aSJt7aQq50x4scuJanHpxs1Zf1RhogDAAAAAIByg4Ql4MRcXEx6sU9TrX+qmxr4e9mUp2WYFbpsvwbP265LSamlECEAAAAAAEDRImEJlAFdG1XVrtBeur1VLbvly/ZHq/2k9dp8/FIJRwYAAAAAAFC0SFgCZURVbw8tffg6Tb69ldxdbYeIn4xNVq+Zm/Thn4eVmckQcQAAAAAAUDaRsATKEJPJpGd7NtHfo3uoSTVvm/KMTLPGrTiggXO26XxCSilECAAAAAAAUDgkLIEyqGN9f+18rpfuvKaO3fJfD55Tu0nrtf7IxRKODAAAAAAAoHBIWAJllJ+XuxYP76BPh7SRp5vtS/n05Su6YfYmTVgdrgyGiAMAAAAAgDKChCVQhplMJj3ZrZE2j+mhZtV9bMozzdL4VYfU/4stOnv5SilECAAAAAAAUDAkLIFy4NpAP+14rpfuaxdot3xNxAW1m7xeq8PPl3BkAAAAAAAABUPCEignKldy04L72umLu9rKy932pR0dn6J+X2zRf1YdVHpGZilECAAAAAAAkD8SlkA5YjKZ9GjnBtr6TE+1qOlrU242S++ujtBNn21WVFxyKUQIAAAAAACQNxKWQDnUuk4VbXu2px6+rr7d8vVHL6ndpPX69UB0CUcGAAAAAACQNxKWQDnl4+mmOcOu1fx7r5WPh6tN+YXEVN361Ta9vPxfpTFEHAAAAAAAOAkSlkA5N7xDfW1/rqfa1Klst/yjv47o+pmbdDImqYQjAwAAAAAAsEXCEqgAmtesrC3P9NTjXRraLd98IkbtJq3Xsv1nSzgyAAAAAAAAayQsgQrCy91Vs++8Rt8+0F6VPd1symOS03TH3O0a+999Sk1niDgAAAAAACgdJCyBCmbYtYHaObaX2gf62S2fuuGYeszYqKMXE0s4MgAAAAAAABKWQIXUtLqP/h7TXaN7NLZbvuNUnNpPXq8f/jldwpEBAAAAAICKjoQlUEF5urlq2h2t9eNDHeXv5W5TfvlKuu5esFNP/bhHV9IySiFCAAAAAABQEZGwBCq4wW3qaNfYXurcwN9u+ezNJ9R1+kaFn08o2cAAAAAAAECFRMISgBpV9db6p7vr+d5Bdsv/OX1ZHaes1ze7TpVwZAAAAAAAoKIhYQlAkuTu6qKPBrbUL490UjVv2yHiCSkZeuCbMD225B8lpaaXQoQAAAAAAKAicCvtAAA4l1tb1lJYaG/dt2iXNh67ZFM+Z9tJbT0Ro8XDO6hl7cp260hKktauNWn79mpKSnKRt3emzpwx6YYbJG/v4r4HAAAAAACgLCNhCcBGPX8vrR3VVW/+Hq7310bIbLYu3x8dr05TN2jGkDZ6+Lr6xvHwcGnWLGnePCk21lVSI6vr/P2lESOkUaOk4ODivhcAAAAAAKAsYkg4ALvcXF004ZbmWjWyi2r6etiUJ6Vl6JHFu/Xwt2GKOp+uoUOlkBBpyhQpNtZ+nbGx0uTJWecNHSrFxRXnPQAAAAAAAGURCUsAebo5uIbCQnurT1A1u+Vf7zyloP+s19L1lwtU79KlUo8eUlRUUUQJAAAAAADKCxKWAPJVp0ol/f5EV73ZN0QuJtvyVN9E6f4N0jXHJZltT8jFvn1S//70tAQAAAAAAP9DwhKAQ1xdTBrfN1irn+iqOlU8bcpNbpky3bxXunWX5JHmcL379kmPPFKUkQIAAAAAgLKMhCWAArm+aXWFje2t7vVq2C03NT8tPbBeqhnrcJ1Ll0oREUUUIAAAAAAAKNNIWAIosJqVPdXxZGeZNzSXOdN2jLgpIEm692+p3TE5OkR89uwiDhIAAAAAAJRJJCwBFFhSkjRvrkna1kxa0lXm+Eo255jcMmW6YZ80aIfkmZpvnXPnZtULAAAAAAAqNhKWAAps3TopNvb/d6KqSV/3lvlILbvnmpqdlYavl2rH5FlnTExWvQAAAAAAoGIjYQmgwM6ezXHgiof083Uy/9VS5gw7Q8T9kqV7/pY6HFFeQ8Sjo4s2TgAAAAAAUPaQsARQYAkJ9o6apJ1B0nfdZY7zsi11Nct0/b/SHdulSvaHiMfHF2mYAAAAAACgDCJhCaDAfH3zKDwbIC3oJXNEbbvFpqBo6cF1UuBFm7LKlYsoQAAAAAAAUGaRsARQYLXt5yL/J8VDWtZR5jWtZU63fZsxVb4i3b1Z6hQhyyHitexPgwkAAAAAACoQEpYACqx3b8nfP7+zTNLuxtK33WWO8bYtdTHL1POgNHSr5JWigICsegEAAAAAQMVGwhJAgXl7SyNGOHjyOX9pYS+ZD9a1W2xqdF56cJ1uGnFB3rZ5TQAAAAAAUMGQsARwVUaNKsDJqe7SivYy/36NzGl2hoj7pmipy2a99fshZWTmvoo4AAAAAAAo/0hYArgqwcHSkCEFucIk7W0ofdNT5ks+NqWZZumt38PV97PNOnP5SpHFCQAAAAAAyhYSlgCu2pw5UuvWBbzoQpWsIeL769kt/vPIRV37yTr9fuhc4QMEAAAAAABlDglLAFfNz09ateoqkpZpbtKqdgrcd6283Fxtis8npuqWL7fqtV8PKD0js2iCBQAAAAAAZQIJSwCFEhgobdxY0OHhWefvW1xf25/rqVa1KtuUm83S+2sO64bZm3UqNrmIogUAAAAAAM6OhCWAQvPzk378UTp0SBo7VvL3t39eQIAUGiqFh2ed7+cntaxdWVuf7aFHOzewe83GY5fUbtI6rfg3uvjuAAAAAAAAcBpupR0AgPIjOFiaNEmaMEFauzZDO3ZEKjHRRT4+merYsb5uuMFV3t6213l7uOmLu9qqT1A1jfpxjxJSMqzKLyalaeCcbXq+d5DeG9Bc7q781gIAAAAAQHlFwhJAkfP2lvr3N6tOnYvGsbZt68ktn3ec+9rXU8f6/rpnwU7tPn3ZpvyTdUe08dhFfftABzWqaifzCQAAAAAAyjy6KQFwKsE1fLVpTA892a2R3fKtJ2PVfvJ6/bT3TMkGBgAAAAAASgQJSwBOp5K7qz4d0kZLhndQlUq23TJjk9M0dP4OPfPzPqWkZ9ipAQAAAAAAlFUkLAE4rTvb1tWusb3UsZ6f3fIZG4+p+/S/dfhCYglHBgAAAAAAigsJSwBOrUk1H20c3UPP9Wpit3xXVJw6TF6vJbtPl3BkAAAAAACgOJCwBOD0PNxcNGlQK/084joFeLnblMenpOuehTs16oc9Sk5jiDgAAAAAAGUZCUsAZcagVrUVFtpLXRsG2C3/fMsJdZ22UYfOJZRwZAAAAAAAoKiQsARQpjQI8NZfT3XTS32a2i3fc+ayOk5ZrwU7I0s4MgAAAAAAUBRIWAIoc9xdXfTBrS208rHOqu7jYVOemJqhh77drUe+263ElPRSiBAAAAAAAFwtEpYAyqz+zWsqLLSXejWpard83o5IdZ62QfvPxpdwZAAAAAAA4GqRsARQpgX6eWn1E131+k3NZDLZlv8bnaBOU9frq60nZTabSz5AAAAAAABQICQsAZR5bq4uert/c/02sotqVfa0KU9Oy9TI7//Rg9+GKf4KQ8QBAAAAAHBmJCwBlBs3BddQ2NheurFZdbvli3ZF6bqp67U7Kq6EIwMAAAAAAI4iYQmgXKldpZJWjeyid/qHyMXOEPHw84nqOn2jZm06zhBxAAAAAACcEAlLAOWOq4tJr90UrLWjuqlulUo25SnpmXp66V7ds2Cn4pLTSiFCAAAAAACQGxKWAMqtXkHVFBbaS7c0r2m3/Ps9Z9R+8nptPxlbsoEBAAAAAIBckbAEUK7V8PXUL4900sRbW8jVzhjxY5eS1OPTjZqy/ihDxAEAAAAAcAIkLAGUey4uJr3Yp6nWP9VNDfy9bMrTMswKXbZfg+dt16Wk1FKIEAAAAAAAZCNhCaDC6NqoqnaF9tKgVrXsli/bH632k9Zr8/FLJRwZAAAAAADIRsISQIVS1dtDPz18nSbf3krurrZDxE/GJqvXzE368M/DysxkiDgAAAAAACWNhCWACsdkMunZnk208ekealzV26Y8I9OscSsOaOCcbTqfkFIKEQIAAAAAUHGRsARQYV3XwF87x/bSndfUsVv+68FzajdpvdYfuVjCkQEAAAAAUHGRsARQofl7uWvx8A76dEgbebrZviWevnxFN8zepAmrw5XBEHEAAAAAAIodCUsAFZ7JZNKT3Rpp85gealbdx6Y80yyNX3VIt3yxRdHxDBEHAAAAAKA4kbAEgP93baCfdjzXS/e1C7Rbvjrigq6dtE5rIs6XcGQAAAAAAFQcJCwBwELlSm5acF87fXFXW3m5275FRsenqO/nW/TGb4cYIg4AAAAAQDEgYQkAOZhMJj3auYG2PtNTLWr62pSbzdI7f4TrptmbdTruSilECAAAAABA+UXCEgBy0bpOFW17tqcevq6+3fJ1Ry/q2knrtOrguRKODAAAAACA8ouEJQDkwcfTTXOGXav5914rHw9Xm/ILiaka8OVWjVtxQGkZmaUQIQAAAAAA5YtbaQcAAGXB8A71dV19fw1bsFN7z8TblH/452FtPHZR39zfXg0CvO3WkZQkrVsnnT0rJSRIvr5S7dpS796St/1LAAAAAACocEhYAoCDmtesrC3P9NTY/+7X51tO2JRvOh6jdpPWa+4912pQq9rG8fBwadYsad48KTbWtl5/f2nECGnUKCk4uNjCBwAAAACgTGBIOAAUgJe7q2bfeY2+faC9Knva/uYTk5ymO+ZuV+iy/Tp/KVNDh0ohIdKUKfaTlVLW8cmTs84bOlSKiyvOewAAAAAAgHMjYQkAV2HYtYHaObaX2gf62S2fsv6oGr38t5auTipQvUuXSj16SFFRRRElAAAAAABlDwlLALhKTav76O8x3TW6R2O75cl+sdLwdVKz0wWqd98+qX9/eloCAAAAAComEpYAUAiebq6adkdr/fhQR/l7uduUmyqlyzRop3TDXsk1w+F69+2THnmkKCMFAAAAAKBsIGEJAEVgcJs62jW2l66p4W+33NTuuHTfRsk/weE6ly6VIiKKJj4AAAAAAMoKEpYAUEQaVfVW7+juMu9oYrfcVPOyNHy91NzxCSpnzy6q6AAAAAAAKBtIWAJAEUlKkr6e6yKtayXzT51kTrYzRNwjQ6Zbd0k3/yO5pedb59y5WfUCAAAAAFBRkLAEgCKybp0UG/v/O0drSQt6y3yqqt1zTdeczBoiXjU+zzpjYrLqBQAAAACgoiBhCQBF5OzZHAfivaQlXWXe0lRms+35phrx0gMbpJaRedYbHV10MQIAAAAA4OxIWAJAEUmwt56O2UX6u4X0Y2eZkzxsik3uGTLdslvqHya52x8iHp93J0wAAAAAAMoVEpYAUER8ffMoPFFT+rq3zCer2S02tTol3b9Bqn7Zpqxy5SIKEAAAAACAMoCEJQAUkdq18zkhsZL0Q1eZNwXbHyJeLUG6b4PU5oSk/51Qq1aRhgkAAAAAgFMjYQkARaR3b8nfP5+TzCZpc4j0fVeZEzxtik3umTL13SPdukvySFNAQFa9AAAAAABUFCQsAaCIeHtLI0Y4eHJk9awh4sdr2C02NT8tPbBBA0bEytu76GIEAAAAAMDZkbAEgCI0alQBTk72zFqMZ0NzmTNNNsWmgER97/q3Zmw8JrO9MeQAAAAAAJRDJCwBoAgFB0tDhhTkCpO0rZm0pKvM8ZVsStMyM/XMz/t019c7FJucVmRxAgAAAADgrEhYAkARmzNHat26gBdFVcsaIn7E/go7S/eeVftJ67TtZEzhAwQAAAAAwImRsASAIubnJ61adRVJyyse0s/XqfahlnJzsR0ifjwmWT1m/K1J644wRBwAAAAAUG6RsASAYhAYKG3cWNDh4dKQISYdWBikDU93V8MAL5vy9EyzXvjlX90+Z7suJqYWUbQAAAAAADgPEpYAUEz8/KQff5QOHZLGjpX8/e2fFxAghYZK4eFZ5/v5SZ0bBmjX2F4a3Lq23WuWH4hWu0nr9PexS8V3BwAAAAAAKAVupR0AAJR3wcHSpEnShAnSunVSdLQUHy9VrizVqiX17i15e9teF+DtoR8e6qhP/z6uF375V6kZmVblp+Ku6PpZm/R2vxC93KepXOwMIwcAAAAAoKwhYQkAJcTbW7rlloJdYzKZNLpHY3VrFKBhC3bqyMUkq/KMTLNe+/Wg1h25qK/vbaealT2LMGIAAAAAAEoeQ8IBoAxoX89fO8f20rBr69ot/z38vNpNXqe/Dl8o4cgAAAAAAChaJCwBoIyoUsld39zfXrPvvEaV3Gzfvs9cTtFNn23WW78fUkYmq4gDAAAAAMomEpYAUIaYTCY93qWhtjzTUyE1fGzKM83SW7+Hq9/nW3Tm8pVSiBAAAAAAgMIhYQkAZdA1dato+3O9NLxDPbvlaw9fULtJ6/RH+PkSjgwAAAAAgMIhYQkAZZSvp5vm39tOc4ZdK293V5vycwmp6v/FFr3+60Gl51hhHAAAAAAAZ0XCEgDKuIevq69tz/ZUq1qVbcrMZum9NRG6cfZmnYpNLoXoAAAAAAAoGBKWAFAOtKxdWVuf7aFHOzewW77h2CW1m7ROKw9El3BkAAAAAAAUDAlLACgnvD3c9MVdbbXwvnby9bQdIn4xKU23fbVNLy3/V2kMEQcAAAAAOCkSlgBQztzXvp52PNdLbetWsVv+8V9H1HvmJp24lFTCkQEAAAAAkD8SlgBQDgXX8NXmMT00qmtDu+VbTsSo3eT1+nnfmRKODAAAAACAvJGwBIByqpK7q2YOvUaLh3dQlUpuNuWxyWkaMm+Hnv15n1LSM0ohQgAAAAAAbJGwBIBy7q62dbVrbC91rOdnt3z6xmPqMeNvHbmQWMKRAQAAAABgi4QlAFQATar5aMPo7nq2Z2O75TtPxan95PVasvt0CUcGAAAAAIA1EpYAUEF4urlq8u2t9dPD1ynAy92mPD4lXfcs3Kknf9yj5DSGiAMAAAAASgcJSwCoYG5vXVu7xvZS14YBdss/23xCXadt1KFzCSUcGQAAAAAAJCwBoEJqWNVbfz3VTS9eH2S3fM+Zy+o4Zb0W7jxVwpEBAAAAACo6EpYAUEG5u7po4m0tteLRTqru42FTnpiaoQe/DdMji3crMSW9FCIEAAAAAFREJCwBoIK7pUUthYX2Us/GVe2Wz9seqc7TNmj/2fgSjgwAAAAAUBGRsAQAKNDPS2tGddVrNzWTyWRb/m90gjpNXa85207KbDaXfIAAAAAAgAqDhCUAQJLk5uqid/o3128ju6hWZU+b8uS0TD225B89+G2Y4q8wRBwAAAAAUDxIWAIArNwUXENhY3vpxmbV7ZYv2hWl66au1z+n40o4MgAAAABARUDCEgBgo3aVSlo1sove7h8iFztDxMPPJ6rLtI2avek4Q8QBAAAAAEWKhCUAwC5XF5NevylYa0Z1Vd0qlWzKU9Iz9dTSvbpnwU7FJaeVQoQAAAAAgPKIhCUAIE+9g6orLLSX+ofUsFv+/Z4z6jBlvXZExpZsYAAAAACAcomEJQAgXzV8PbX80c764NYWcrUzRvzoxSR1n7FRUzccZYg4AAAAAKBQSFgCABzi4mLSS32aat1T3VTf33aIeFqGWWP/u19D5m3XpaTUUogQAAAAAFAekLAEABRIt0ZVFRbaW4Na1bJb/t/90Wo/ab22nIgp4cgAAAAAAOUBCUsAQIFV9fbQTw9fp8m3t5K7q+0Q8ZOxyer16d/66M/DysxkiDgAAAAAwHFupR0AAKBsMplMerZnE3VrWFX3LNypY5eSrMrTM816ecUBrTtyUfPuvVbVfTzt1pOUJK1da9L27dWUlOQib+9MnTlj0g03SN7eJXFPAAAAAADOhIQlAKBQrmvgr11je2nk9//ohz1nbMpXHjyndpPWa9F97dUrqJpxPDxcmjVLmjdPio11ldTI6jp/f2nECGnUKCk4uFjvAgAAAADAiTAkHABQaH5e7lo8vINmDG4jTzfbj5aouCu6YfYmTVgdrksxZg0dKoWESFOmSLGx9uuMjZUmT846b+hQKS6uOO8BAAAAAMBZkLAEABQJk8mkp7o30uYxPdSsuo9NeaZZGr/qkBqO3aKlq1IKVPfSpVKPHlJUVFFFCwAAAABwViQsAQBF6tpAP+14rpfuaxdotzyx+gXpwXVSg/MFqnffPql/f3paAgAAAEB5R8ISAFDkKldy04L72umLu9qqkp0h4iafFOnOLVK3Q5LJ8VXE9+2THnmkKCMFAAAAADgbEpYAgGJhMpn0aOcG2vZsTwX5+9opl0xdw6W7Nks+Vxyud+lSKSKiKCMFAAAAADgTEpYAgGLVuk4V9b/UU+Z99e2Wm+pfzBoi3uicw3XOnl1U0QEAAAAAnA0JSwBAsUpKkhbOdZN+u1bmX6+VOc3V5hyTd6pMQ7dKPQ9ILpn51jl3bla9AAAAAIDyh4QlAKBYrVsnxcb+/86/9aWFPWU+X9nuuaZOh6W7N0mV885GxsRk1QsAAAAAKH9IWAIAitXZszkOXKosfdNT5n8a2j3fFBgjDV8vBeW80Fp0dBEFCAAAAABwKiQsAQDFKiHBzsF0V2n1NTIvby9ziptNsckrTaY7tku99+c6RDw+vogDBQAAAAA4BRKWAIBi5Wu7QPj/HAqUFvaSOdrPbrGp41Hpnr+lKrZDxCvbH1UOAAAAACjjSFgCAIpV7dr5nBDrI33bXeawRnaLTXVipeHrpGanrY7XqlUk4QEAAAAAnAwJSwBAserdW/L3z+ekDFdpbRuZ/9tR5it2hohXSpdp0E7phr2Sa4YCArLqBQAAAACUPyQsAQDFyttbGjHCwZMP15EW9Jb5jL/dYlO749K9G3XHiAR5exdVhAAAAAAAZ0LCEgBQ7EaNKsDJl72l77rLvKOJ3WJTrcta4rFe34ZFFU1wAAAAAACnQsISAFDsgoOlIUMKcEGmi7Sulcw/XSdzsrtNcVJahu5ftEuPf/+PktMyii5QAAAAAECpI2Hp5BISEvTZZ5/pzjvvVIcOHdS6dWv17t1boaGh+ueff0o7PABw2Jw5UuvWBbzoaO2sIeJRAXaLv9x6Up2nbtCB6PjCBwgAAAAAcAokLJ3YiRMndPvtt2vSpEnau3evUlNT5e7urrNnz2rFihW65557NGfOnNIOEwAc4ucnrVp1FUnLeC9pSTdVP9rUbvG+s/G6bsoGzd8eWfggAQAAAACljoSlk0pPT9dTTz2lU6dOqVatWvr888+1e/du7dq1S6tWrVKfPn2UmZmpiRMn6q+//irtcAHAIYGB0saNBRweLmnIHS6KmNtCv47srBo+HjblSWkZGrF4t0Z8F6bElPQiihYAAAAAUBpIWDqp33//XYcPH5bJZNLUqVPVu3dvubq6ymQyqXHjxvr000/Vrl07SdKMGTNKOVoAcJyfn/Tjj9KhQ9LYsZK/v/3zAgKk0FApPDzrfD8/qV9ITYWF9tb1QdXsXjN/xyldN3WD9p65XHx3AAAAAABQrNxKOwDYt27dOklS+/btjcSkJVdXV915550KCwvTvn37lJycLC8vr5IOEwCuWnCwNGmSNGGCtHZthnbsiFRioot8fDLVsWN93XCDq7y9ba+r61dJfzzRVe/8Ea53VofLbLYuP3guQZ2nbtDUO1rrsc4NZDKZSuYOAQAAAACKBAlLJ9WyZUslJyerdR6TvdWoUUOSZDablZCQQMISQJnk7S31729WnToXjWNt29aTWx6fUK4uJr3ZL0S9mlTTA9/s0tn4FKvyK+mZeuKHPfrz8AXNvvMaValku9I4AAAAAMA5kbB0Ug899JAeeuihPM/ZuXOnJMnT01MBAfZX0AWA8uyGZtUVFtpbD367S3+EX7Ap/273ae04FafFwzuoXaBfKUQIAAAAACgo5rAsoy5duqTFixdLknr27Cm3vLoiAUA5Vquyp359rIvevaW5XF1sh38fvpCortM26tO/j8mcc/w4AAAAAMDpkLAsg9LT0/Xiiy8qNjZWLi4uevLJJ0s7JAAoVS4uJr1yYzP9+WRXBfpVsilPzcjUmJ/26e6vdyo2Oa0UIgQAAAAAOIqEZRmTkZGhl19+WRs3bpQkPf3003nOcwkAFUmPxtUUFtpLt7aoabf8x71n1H7SOm07GVPCkQEAAAAAHEXCsgxJSUnRM888o+XLl0uSBg0apKeffrqUowIA51Ldx1P/HdFJH93WUm52hogfj0lWz0//1uT1RxgiDgAAAABOiIRlGXHp0iU99NBDWr16tSTp9ttv1wcffCCTyfbLOABUdC4uJj1/fZDWP91dDQO8bMrTMsx6ftm/un3Odl1MTC2FCAEAAAAAuSFhWQYcP35cw4YNU1hYmCTpwQcf1MSJE+Xq6lrKkQGAc+vSMEC7xvbSHa1r2y1ffiBa7Sev09/HLpVwZAAAAACA3JCwdHL79u3TPffco5MnT8pkMumll17Sa6+9Rs9KAHBQgLeHfnyoo6be0VoerrYfe5GxV3T9rE36YG2EMjMZIg4AAAAApY2EpROLiIjQo48+qpiYGLm7u+vjjz/Wo48+WtphAUCZYzKZNKZHY/09pruCqnnblGdkmvXqyoO69autOhefUgoRAgAAAACykbB0UklJSRo9erRiY2Pl4eGhmTNn6rbbbivtsACgTOtQz187x/bSsGvr2i3/7dB5tZu8TuuOXCjhyAAAAAAA2UhYOqnZs2fr+PHjkqRXX31VvXr1Kt2AAKCcqFLJXd/c316zhraRp5vtx+CZyym6cfZmvf17uDIYIg4AAAAAJc6ttAOArdTUVH3zzTfG/owZMzRjxow8r/nhhx9Up06d4g4NAMoFk8mkJ7o2UteGVTVswQ4dOp9oVZ5plt78/ZDWH72oBfe1U50qlUopUgAAAACoeEhYOqHw8HDFx8cb+xcu5D80MSMjozhDAoBy6Zq6VbT9uV56euleLdh5yqZ87eELajdpnRbc1143B9cohQgBAAAAoOIhYZmLqVOnaubMmQoMDNTatWsLdO2RI0f03XffaevWrTp16pTS09NVs2ZNBQcHa+DAgbr55pvl5pb7Q9+6dWsdOnSosHcBAOAAX083zbvnWl0fVE2jf9qr5LRMq/JzCanq/8UWvXJDM73ZN1hudlYaBwAAAAAUHRKWduzZs0dffPHFVV07ffp0zZ49W+np6VbHIyMjFRkZqTVr1qh169b66KOP1KRJk6IIFwBQSCaTSSM6NVDnBgEatmCn9kfHW5WbzdJ7ayK04ehFLbq/ver5e5VSpAAAAABQ/tFNJIfIyEg99dRTSktLK/C1EyZM0IwZM4xkpZubm1q1aqWOHTsqICDAOG/fvn0aPny4oqKiiixuAEDhtaxdWVuf7aFHOjWwW77h2CW1m7ROKw9El3BkAAAAAFBxkLC0EB4ervvvv1/nz58v8LWrVq3SggULjP1+/fpp3bp1Wrp0qRYtWqQNGzbo7bfflpdXVq+cCxcuaMyYMTKbWYEWAJyJt4ebvry7rRbc104+Hq425ReT0nTbV9v04i//Ki0j004NAAAAAIDCYEj4//vvf/+rN954Q8nJyQW+Ni0tTRMnTjT2+/TpoylTpsjF5X/5YHd3dw0bNkyBgYF64oknlJ6erv3792v58uUaOHBgkdyHksZCP8hLzvZBe0FenLG9DLumttrVqaz7vgnTnjPxNuWfrDuijccuauG916phAEPES5ozthk4L9oLCoL2goKgvaAgaC8oiIreXkzmCt7FLzo6WpMmTdLPP/9st9yRRXdWrlypsWPHSsoaBv7HH3+obt26uZ7/9ttva9GiRZKkVq1aaenSpVcXfAkLCwtTZia9iQBULCkZZk3eFacfDyfZLa/sbtL4Lv66vh5JSwAAAAAVl4uLi9q1a1c0dRVJLWXUrFmz1L9/f6tkZZMmTTRq1KgC1bNy5Upju1u3bnkmKyVp2LBhxvb+/fsVGRlZoNsDAJQcT1eTxl3nr/e6B8jH3WRTHp9m1osbYvTJzjilZlTo3wABAAAAoEhU6ITlV199paSk//WYueuuu/T999+rYcOGDtdhNpu1detWY7979+75XhMSEqIaNWoY+/n14AQAlL6bG3hpYb8aalHV3W75d+GJemz1BZ2KTy/hyAAAAACgfGEOS0mtW7fWyy+/rE6dOhX42qioKF2+fNmqLkeEhIQYi/vs3bu3wLfrDFq3bi1XV9sFKQApa36Nffv2Gfu0F+SlrLSXtpJu6pKhV389pOl/n7ApP3ApTQ/9cUmzhrbWXdfUKfkAK5Cy0mbgHGgvKAjaCwqC9oKCoL2gIMpKe9m7d2+xTB9YoROWnTp10pAhQ3TjjTfKZLId5ueI48ePW+03aNDAoevq1atnbJ88efKqbru0ubq6ys2tQjchFADtBQXhzO3Fzc1NUwdfoz7NauiRxf8oNjnNqvxySrru/2a31h+L0aRBreTl7nx/VJRHztxm4HxoLygI2gsKgvaCgqC9oCAqWnupOPfUjpkzZxa6juxeklLW5KLVq1d36DrLIeGWdQAAyoY7WtdRu7p+unfRLm05EWNT/tnmE9p8PEaLh3dQSE3fUogQAAAAAMqmCj2HZVGIi4sztn18fOTi4thD6uv7vy+vlnUAAMqOhlW9te6pbnrx+iC75XvOXFbHKeu1cOepEo4MAAAAAMouEpaFlJKSYmxXqlTJ4es8PDyM7dTU1CKNCQBQctxdXTTxtpZa/mgnVfO2XZAnMTVDD34bpkeX7FZSKgvyAAAAAEB+SFgWUlra/+Yuc7R3pSSreQfS0/kCCwBl3YAWtRQW2ls9G1e1Wz53W6Q6Td2g/WfjSzgyAAAAAChbSFgWkuUKTQVZFckySenubtsjBwBQ9tTz99KaUV312k3NZG8tt3+jE9Rp6nrN2XZSZrO55AMEAAAAgDKgQi+6UxS8vLyMbcvh4fmxHAbu6elZpDEBAEqPm6uL3unfXL2aVNPwb3bpXIL1tB/JaZl6bMk/+uvwBc0ceo18Pe1/FCclSevWSWfPSgkJkq+vVLu21Lu35O1dEvcEAAAAAEoHCctC8vPzM7YTExNlNptlstetJoeEhARj29/fvzhCAwCUopuDa2h3aG898E2Y1h6+YFO+cFeUtkXGavHwDmpb93+fJeHh0qxZ0rx5Umysbb3+/tKIEdKoUVJwcLGFDwAAAAClhiHhhVSrVi1jOyMjQzExMQ5dd/78eWO7evXqRR4XAKD01a5SSb893kVv9QuRi53fssLPJ6rLtI36bPNxxcaaNXSoFBIiTZliP1kpZR2fPDnrvKFDpbi4YrwDAAAAAFAKSFgWUsOGDa32IyMjHbru1KlTxnbjxo2LNCYAgPNwdTHpPzcHa82orqpbpZJNeUp6pp78ca8aPb1LS5en2akhd0uXSj16SFFRRRUtAAAAAJQ+EpaFFBgYaDWk+8CBAw5dd/DgQWO7efPmRR0WAMDJ9A6qrrDQXuofUsNu+eU6p6UH1ks1YwtU7759Uv/+9LQEAAAAUH6QsCwCnTt3NrY3bdqU7/kHDx7UhQv/m8+sS5cuxRIXAMC51PD11PJHO+v9AS3kameMuCkgSbpvo9TuqCTHVxHft0965JEiDBQAAAAAShEJyyLQt29fY/vPP/9UdHR0nud/++23xnZQUJBCQkKKLTYAgHNxcTHp5Ruaat1T3VTHx3aIuMnVLNMN+6VBOyTPVDs12Ld0qRQRUZSRAgAAAEDpIGFZBPr27auaNWtKklJTUzVu3Dilp6fbPXfDhg36/vvvjf3hw4eXSIwAAOfSrVFVDYrvLfORWnbLTc3OSsPXS3UcW8xNkmbPLqroAAAAAKD0kLAsAh4eHgoNDTX2N23apJEjR1otwJOenq4lS5ZozJgxysjIkPR/7N13eFR12sbx+2QmPSEJHUIvAZQWegmJICp2BREUUGAtWFgEd1d9t1jXsu7SLGADFRAUiei6iA1NCJ0QhNCCobcAIQnp9bx/ZM0aZ4AkTEn5fq4rl5N5fueXe3bn0smT85wjhYWFafTo0S7PCwBwv5wcadlCL2llX5k/XCmz2M6IeFCuNGad1CdZFRkRX7iwdF8AAAAAqMms7g5QW9x+++1KSEjQxx9/LKm0aXnttdeqU6dOCggIUHJyss6dO1e2Pjg4WHPmzJHVyv8FAFAXxcRI6emSZEjb2knH68u8KV5GcPmOo2ExpajdMluelVb3lHK9L7hnWlrpvtdf78zkAAAAAOBcnGHpQM8++6ymTJkiT09PSVJJSYn27NmjLVu2lGtWtm/fXosXL1a7du3cFRUA4GanTv3miZRgaXGkzKRmdtcb7U6XjoiHpl5030tcRhkAAAAAqj1O73MgwzA0ffp03XLLLfr0008VFxenU6dOKTc3V0FBQerSpYtGjBihW265RV5eXu6OCwBwo6wsO0/me0r/7i2zx2Hpql0yrCXlykZgnsw710vrO0mbOkqyHSPPzHROXgAAAABwFRqWdowcOVIjR46s8vHt27fXE088oSeeeMKBqQAAtUlAwIUqhvRTG+lkSOmIeEh2+aqHpIh9MlukSl/1knLKj4gHBjojLQAAAAC4DiPhAAC4QdOml1hwOkhaFClzT6jdstHmrDQhRmp5ttzzTezfdBwAAAAAagwalgAAuEFUlBQcfIlFhVZpVbjMb7rLLLT9T7YRkC+N3iAN2icZpkJCSvcFAAAAgJqMhiUAAG7g5ydNmlSRlYa0s7W0ZIjMVNs5csOQjIFJ0h0bNHpSnvz8HB4VAAAAAFyKhiUAAG4yZUolFqfWkxYPkZnY0m7ZaJWqFb4x+nrfaceEAwAAAAA3oWEJAICbhIVJlbrHW5FV+rqnzK96yiy02JTP5RXo+nc26alVe1RYXGJnAwAAAACo/mhYAgDgRgsWSF27VvKg3S1Lz7Y8Y/+W4K+s+VlD563X0fTcyw8IAAAAAC5GwxIAADcKCpJWr65C0/JcoPTREIUcbWW3vP5QmsJnxujfu05dfkgAAAAAcCEalgAAuFloqBQXV8nxcEkjb7HowNs99NG4XgrwtjMinlOoWxdu0eNf7FJBESPiAAAAAGoGGpYAAFQDQUHSihXSvn3S9OlScLD9dSEh0owZUlJS6fqgIGlseKjiH4tUeGg9u8fMij2gyDfW6WBqjvNeAAAAAAA4iNXdAQAAwP+EhUkzZ0ovvCDFxEgpKVJmphQYKDVpIkVFSX5+tsd1bBSg9VMj9Mcv9+j1uIM29c1H09VrVozeG9NTI7s1c8ErAQAAAICqoWEJAEA15OcnXX995Y7xtlo097auuqp9A/3u4+3KyCsqV8/IK9IdH2zVI4Pb6NWbrpCPp+0YOQAAAAC4GyPhAADUMiO7NdO26VHq1zLYbv2NdYc0+PU47T+T5dpgAAAAAFABNCwBAKiF2jbwU+wjgzUjqp3desLx8+o9O1ZLE467OBkAAAAAXBwNSwAAaikvq4f+efOV+nxSX9X387SpZ+UXa9ySbXpg+U/KLSx2Q0IAAAAAsEXDEgCAWu7mK5sqYUaUBrcJsVt/d9MR9Z+zVntSMl2cDAAAAABs0bAEAKAOaBnsqzUPDdKTwzrYrSeeylTf2Wv1wZajLk4GAAAAAOXRsAQAoI7wtHjoxRu66Kv7+6uRv5dNPaewWJM+3q5JyxKUnV9kZwcAAAAAcD4algAA1DHXdWqshBlRuqp9A7v1D7YeU985a7Xz5HkXJwMAAAAAGpYAANRJzYN89O2DA/XXa8JkGLb1vaez1H/OWr276bBM03R9QAAAAAB1Fg1LAADqKIuHoWev66RvHxiopoHeNvW8ohI9sHyHxn+UoPN5hW5ICAAAAKAuomEJAEAdN6xjQyXMiNLwjg3t1pcmHFef2WuVcDzDxckAAAAA1EU0LAEAgJoEemv1/QP0wvWd5WFnRPzns9kaODdOb6w7yIg4AAAAAKeiYQkAACRJHh6G/u/qjvrhoUEKDfKxqRcUl2jqZ4m688N4pecyIg4AAADAOWhYAgCAcoa0a6CEGZG6oXNju/UVO0+q18wYbT6S5uJkAAAAAOoCGpYAAMBGQ39vfTG5n/5x0xWy2pkRP5SWqyFvrNOs2GRGxAEAAAA4FA1LAABgl4eHoT9c1V6xjwxW6xBfm3phsanHv9it2xZu0bmcAjckBAAAAFAb0bAEAAAXNaB1iLZNj9RtXZvarf97d4rCZ8Zo/aFzLk4GAAAAoDaiYQkAAC4pxM9LK+7to9m3XilPi+2I+NH0PEW9uV6vrPlZJSWMiAMAAACoOhqWAACgQgzD0O+HtNO6RyPUroGfTb24xNRTq/bopvc26UxWvhsSAgAAAKgNaFgCAIBK6dMyWPGPRerOHs3t1lfvO6PwmbGKST7r4mQAAAAAagMalgAAoNKCfD21dHwvzRvVTd5W248TJ87n6er5G/T8t0kqZkQcAAAAQCXQsAQAAFViGIYeHNhGG38fobBG/jb1ElN6+ut9GvHORp06n+eGhAAAAABqIhqWAADgsvRoHqStj0VqfK9Qu/Xv959Vz5kx+i7pjIuTAQAAAKiJaFgCAIDLFuBt1Qd3heu9O3vI19P248XprAJd985G/eWrvSoqLnFDQgAAAAA1BQ1LAADgEIZhaFK/Vto8LVJXNAmwqZum9OL3+3X1/A06lp7rhoQAAAAAagIalgAAwKGubBqozdOGaHK/Vnbraw+eU/jMGK3ak+LiZAAAAABqAhqWAADA4fy8rHr3zh5adHe4/L0sNvXUnELd9N5m/enL3SpkRBwAAADAr9CwBAAATjOuVwvFT49Uj+b17Nb/+WOyot5cr8PnclycDAAAAEB1RcMSAAA4VVijAG2YGqEpA1vbrW88nKZes2K1MvGki5MBAAAAqI5oWAIAAKfz8bTozVHdtWx8b9XzsdrU03ILNfL9rXrs80TlFxW7ISEAAACA6sL2NwYAAAAnubNnc/VuEaSxi+MVfyzDpj537UGtO3hOy8b3VvuG/nb3yMmR1qwxtGVLA+XkeMjPr0QnTxoaNkzy83P2KwAAAADgbDQsAQCAS7Vv6K+4Rwfrif/s0dy1B23q8ccy1Ht2rN4Z3UOjezQvez4pSZo3T3r/fSk93SKpTbnjgoOlSZOkKVOksDCnvgQAAAAATsRIOAAAcDlvq0Wzb+2qzyb2VbCvp039fF6RxiyK18MrdigltVijRkmdOkmzZ0vp6fb3TE+XZs0qXTdqlJRhewInAAAAgBqAhiUAAHCbW7s2VcL0SA1oHWK3Pn/DYbV9Kk7RP2RVat/oaCkiQjp+3BEpAQAAALgSDUsAAOBWrev7KebhQfrjVe3t1vPqnZfGx0qdj1Vq38REacQIzrQEAAAAahoalgAAwO08LR565aYr9OXv+qmBn+2IuOFVLOPGBOnanyRrUYX3TUyUJk92ZFIAAAAAzkbDEgAAVBs3dGmihBlR6tO0vt260e2ING6t1CCzwntGR0v79zsqIQAAAABno2EJAACqlRbBvhp0YqDMDR1lmrZ1o2GWNC5WuvKIJDsL7Jg/37EZAQAAADgPDUsAAFCt5ORIHyz0kNZ3llYMkJntZbPG8CyRMeIn6foEyfPSI+ILF5buCwAAAKD6o2EJAACqlZgYKT39v98cbiQtipJ5uKHdtcYVx0tvyNPo4nfWSUsr3RcAAABA9UfDEgAAVCunTv3miWyf0jMt13WSWWK73qifLd0dJ3U/pIuNiKekODIlAAAAAGehYQkAAKqVrCw7T5qGtDFMWj5QZpa3Tdmwlsi4Zqd00zbJq9DuvpkVv08PAAAAADeiYQkAAKqVgICLFI81lD6Mknmwkd2y0elE6Yh443SbWmCgY/IBAAAAcC4algAAoFpp2vQSC3K9pej+Mtd2llli2JSNkBzprnVS+EH9ekS8SRPH5gQAAADgHDQsAQBAtRIVJQUHX2qVIW3uKH08SGamj23VWiJjWKJ0y1bJu0AhIaX7AgAAAKj+aFgCAIBqxc9PmjSpgotP1C8dEU+2f/qk0fGUNCFWIyalyc/PcRkBAAAAOA8NSwAAUO1MmVKJxXle0sq+Mn+4QmaxnRHxoFx9almnf/2YrJKSC99FHAAAAED1QMMSAABUO2Fh0siRlTnCkLa1l5YNlpnha1MtKjH1xy9369aFm5WaXeCwnAAAAAAcj4YlAAColhYskLp2reRBp0KkRVEyk+zfuec/e04rfGaM4g6mXn5AAAAAAE5hddUPKigo0Pbt27Vt2zalpKQoIyNDHTp00MMPPyxJSk5O1oEDB3TVVVfJ09PTVbEAAEA1FRQkrV4tjRghJSZW4sB8T+nffdTshkNK7bpbBcUl5crHMvI0dN4GPXtdJz05tIM8PGzHyAEAAAC4j9Mblrm5uXrnnXf00UcfKSMjo1wtIiKi7HF8fLyefvppNWvWTH/60580YsQIZ0cDAADVXGioFBcnTZ4sRUdX/LiRIw0tWNBWB7Lqa8yieP18NrtcvbjE1F++2quY5LP68K5eahLo7eDkAAAAAKrKqSPhBw4c0B133KF58+YpPT1dpmmWff3W8ePHZZqmTpw4oenTp2vWrFnOjAYAAGqIoCBpxQpp3z5p+nQpONj+upAQacYMKSmpdH1QkBQeGqStjw3R2J7N7R7zbdJZhc+M0Zr9Z533AgAAAABUitPOsExJSdHEiRN15syZsucsFotatWqlgwcP2qw/e7b0FwXDMGSapt5++221aNFCo0ePdlZEAABQg4SFSTNnSi+8IK1ZU6ytW48qO9tD/v4l6tOnpYYNs8jPz/a4ej6eWjKul4Z1bKjff5aovKLyI+KnMvN1zdsb9NfhYfrrNWGyMCIOAAAAuJXTzrB84okndPr0aUlSvXr19Le//U0bN27UV199ZXf9s88+qxdeeEHBwcFlTct//OMfNmPkAACgbvPzk0aMMHXzzakaO/aMbr45VSNGmHablb8wDEP39W+tTdOGqHPjAJu6aUrPfZuka97aoBMZeU5MDwAAAOBSnNKw3LBhgzZu3CjDMBQUFKSPPvpId999twIDAy94jNVq1R133KHly5ercePGkqSsrCytXLnSGREBAEAd1K1ZPW2ZNkT39mlht/5jcqrCZ8bom32nXZwMAAAAwC+c0rD89VmUTz75pNq3b1/hY1u0aKHHH3+87Pu1a9c6NBsAAKjb/L2tWjg2XAvH9JSfp8Wmfia7QCPe2aT/W7VHRb+5wzgAAAAA53NKw3Lr1q2SpICAAN10002VPv6mm25SUFCQTNNUUlKSo+MBAADo3r4tteWxIera1P4EyMtrftbQeet1ND3XxckAAACAus0pDcszZ87IMAy1b99eVmvl7+vj4eGh1q1bSxLXsAQAAE7TpUmgNk0bovv6t7JbX3coTeEzY/Tl7hQXJwMAAADqLqc0LAsKCiRJXl5eVd7jl2M9PJx2XyAAAAD5elr09ugeWjKulwK8bUfEz+UU6pYFm/X4F7tUUMSIOAAAAOBsTukGNmjQQKZp6tixY1Xe4+DBg5KkkJAQR8UCAAC4oLvCQxX/WKTCQ+vZrc+KPaDIN9bpYGqOi5MBAAAAdYtTGpYdO3aUJJ08eVK7d++u9PHr1q1TamqqDMNQWFiYo+MBAADY1bFRgNY9GqFHBrexW998NF29ZsUoeudJ1wYDAAAA6hCnNCyjoqLKHr/00ksqKan4+FRWVpZefPHFsu8jIiIcmg0AAOBifDwteu32blp+T28F+dheizsjr0h3fLBVUz/bqfyiYjckBAAAAGo3pzQsb7vtNjVo0EBS6R3Dp02bpvPnz1/yuGPHjmnSpElKTk6WJNWrV0+33XabMyICAABc1KjuzbVtepT6tgy2W39j3SENfm2dfj6b7dpgAAAAQC1X+Vt4V4Cfn5+eeOIJ/elPf5JhGPruu++0adMmDR06VO3bty9bl5GRoR9//FEnTpzQxo0btWbNGhUXl56pYBiGpk6dqoCAAGdEBAAAuKS2Dfy09pHBemrVHs2KPWBT33Y8Q71nxeqtO7prbHioGxICAAAAtY9TGpaSdMstt+jIkSN6/fXXZRiGzp8/ry+++KKsbpqmdu7cqYceeqjcc4ZhSJLuuOMOjR8/3lnxAAAAKsTL6qF/3XKlrmrfQBOXbVdabmG5emZ+ke5esk0/JJ/V7Fu7ytfT9k7jAAAAACrOKSPhv3j00Uf1r3/9S4GBgZJKG5JS6dmTvzQmf3nul39arVb98Y9/1PPPP+/MaAAAAJVy85VNlTAjUoPahNitv7PxiAbMXau9pzNdnAwAAACoXZzasJSkG2+8UT/88IOefPJJ9erVS56enjJNs+zrFx07dtQDDzyg77//Xr/73e+cHQsAAKDSWoX46YeHBumJYR3s1neezFSfWWv14dajLk4GAAAA1B5OGwn/NX9/f02cOFETJ05UQUGBUlJSlJGRoaKiItWrV0+NGzfmWpUAAKBG8LR46KUbuiiqXQPdszRBZ7MLytVzCos1cdl2/fhzql67vav8vV3ycQsAAACoNZx+huVveXl5qWXLluratat69uypdu3aXbRZWVBQcMEaAACAu4zo3FjbZ0Qpql0Du/X3tx5VvzlrlXjyvIuTAQAAADWbUxqWTz31lJ566im9//77Vd7j+eef19VXX63Ro0c7LhgAAIADNQ/y0bcPDtBfrwnTfy/PXc6e01nqN2et3t10uNylcAAAAABcmFMalp999plWrlypdevWVXmP5ORkHT9+XMePH3dgMgAAAMeyWjz07HWd9M0DA9Qk0NumnldUogeW79D4jxKUmVfkhoQAAABAzeLykfCKSk9PlyTl5eW5NwgAAEAFXN2xkbbPiNLwjg3t1pcmHFfv2bFKOJ7h4mQAAABAzVLlq8Dv3btXmZmZF12TkZGhLVu2VGrf/Px8xcTEaO/evZKk4ODgqkYEAABwqSaB3vrq/gF6ec1+Pf31PpX8Zgr857PZGjg3TjNvuVIPDWotw94cOQAAAFDHVblhuXv3bv35z3++YN00Te3cuVP33HNPVX+EDMNQeHh4lY8HAABwNYuHoT8PD9OQtg007qNtOp5RflqkoLhEj362Uz8mn9Xbo3so2NfTTUkBAACA6qnKI+EjR45Ur169HH4B+V/v5+npqfvvv9+h+wMAALhCZPsGSpgRqes7N7Zb/3THSfWeFastR9JdGwwAAACo5i7rGpbPPPOMrFarTNMs9/WL3z5/qS9J8vHxUZMmTRQZGakPPvhA3bt3v7xXCAAA4CYN/b3178n99MqNXWT1sB3/PnguRxFvxGl27AHuIg4AAAD8V5VHwiWpY8eOSkxMtHm+c+fOMgxDEREReueddy7nRwAAANRoHh6G/ji0gyLa1tddi7fpSHpuuXphsakZX+zSj8lntWBMT9X383JTUgAAAKB6cNpdwjlLAAAA4H8GtqmvbTMideuVTezWv9iVovCZMVp/6JyLkwEAAADVy2WdYXkhL730kiSpSRP7H8gBAADqovp+Xoqe2Fdz4w7qT1/uVmFx+T/wHk3PU9Sb6/X36zvrD1Ht5WFnjBwAAACo7ZzSsLz99tudsS0AAECNZxiGpg1pp8Ft6mvs4ngdSM0pVy8uMfXkf/YoJjlV74/tqUYB3m5KCgAAALiH00bCHcXeNTIBAABquj4tgxX/WKRGd29mt/7V3tMKnxmr2ORUFycDAAAA3MspZ1j+WnFxsXbs2KFTp04pPz9fxcXFdq9vaZqmioqKVFhYqJycHJ05c0Zbt27V/v37tXv3bmfHBAAAcLkgX08tm9BbQzcc1vQvdim/qKRc/cT5PA2bv17PXNdJTw3rKAsj4gAAAKgDnNqwXLBggd566y2dP3++SsebpinD4IM5AACovQzD0JRBbTSwTYjGLIpX0pnscvUSU/rb6n2KSU7VorvC1bSej919cnKkmBjp1CkpK0sKCJCaNpWioiQ/P1e8EgAAAMAxnNawnD17tt56662ysyl/aTz++uzK3zYjubM4AACoq3o0D9KWaZF6OHqHlmw7blP/fv9Zhc+K1aK7wjU8rFHZ80lJ0rx50vvvS+nptvsGB0uTJklTpkhhYU6LDwAAADiMU65heezYMb377ruSyjcqf928NAyj7Dl7tcaNG+u+++7T4sWLnRERAACg2gn0serDu8L17p095Otp+zEtJTNf172zUX9dvVepaSUaNUrq1EmaPdt+s1IqfX7WrNJ1o0ZJGRnOfAUAAADA5XNKw/Kzzz5TUVGRJMnb21t/+ctfFBsbqz179ujxxx+XaZqyWCzatGmTdu3apfXr1+u9995TVFRUWfPy3LlzGj58uHr37u2MiAAAANWSYRia3K+VNk+L1BVNAmzqpin9/bv9av34BkV/k1upvaOjpYgI6bjtCZwAAABAteGUhuXmzZvLHj/++OMaP368GjduLMMwNHDgQEmlN+OJi4uTxWJR/fr1NXjwYL311luaPn16Wf2vf/0rY+IAAKBOurJpoDb9fogm9m1pt55T/5w0IVZqk1KpfRMTpREjONMSAAAA1ZdTGpZHjx6VJHl5eenOO+8sV+vcubM8PT0lSVu3brU59sEHH9Tw4cNlmqZ+/vlnfffdd86ICAAAUO35e1u1YExPfXhXuPy9LDZ1w69AxqjN0pDdkkeJnR3sS0yUJk92ZFIAAADAcZzSsMzIyJBhGGrfvr28vb3L1axWq9q1ayfTNLVr1y67xz/wwANlj3/44QdnRAQAAKgxxvduoa2PRapT/Xp260a/ZGnMeikwp8J7RkdL+/c7KiEAAADgOE5pWP5y/crg4GC79bZt20qSkpOT7da7d++uhg0bSpL27t3r+IAAAAA1TKfGAbrmbITM7a3t1o3maaUj4u1PVXjP+fMdlQ4AAABwHKc0LH9pVBYWFtqtt2xZei2mnJwcpaTYv+5SaGioTNPUiRMnnBERAACgRsnJkRYttEjfd5f5794y8602awzfQhm3bZGuSqzQiPjChaX7AgAAANWJUxqWjRo1kmmaOnLkiN16q1atyh4nJSXZD+ZRGi07O9vxAQEAAGqYmBgpPf2/3yQ1lxZFyjwVZHet0fugdFecFHTxz1FpaaX7AgAAANWJUxqW4eHhkqTTp08rMTHRpv7rhuX27dvt7vHLjXusVtuzBwAAAOqaU7+d9M7wl5YNlrmtrd31RtOM0hHxjhefVrnAsAsAAADgNk5pWA4ePLjs8V/+8helpqaWq19xxRVlZ1B+/vnnNqPjP/zwg86ePSvDMMquZQkAAFCXZWXZebLYIv3QVebnfWTmedqUDe8iGbfES1fvkCzFdvfNzHRwUAAAAOAyOaVhOXToULVp00aStG/fPl1//fV69dVXdfbsWUlSYGCg+vbtK9M0dfz4cU2dOlWHDx9Wdna2vv76a/3f//1f2V49evRwRkQAAIAaJSDgIsWfm0kfRso8EWK3bPQ8LN0dJ4XYdj0DAx0UEAAAAHAQpzQsDcPQX/7yF1ksFknS+fPntWDBAp361SzTxIkTyx7HxMRoxIgR6tOnjx577DGlpaWV1UaOHOmMiAAAADVK06aXWJDpJ308SOaW9nbLRuPz0vhYqfOxcs83aeKggAAAAICDOKVhKUkRERH6xz/+ocBf/dn+19euHDp0qG655RaZpilJMk2z7MswDEnSDTfcoEGDBjkrIgAAQI0RFSUFB19iUYmHFHuFzOh+MnPtjIh7Fcu4MUG69ifJWqSQkNJ9AQAAgOrEaQ1LqbTh+NVXX+mRRx5R7969Va9evXL1F198UZMmTSo7E/PXxowZo5dfftmZ8QAAAGoMPz9p0qQKLj7YRPowSuax+nbLRrcj0rg43TIpU35+jssIAAAAOILTb8HdoEEDTZ06VVOnTrX94VarnnjiCU2ePFlxcXE6c+aMgoODNXDgQLVs2dLZ0QAAAGqUKVOkWbMquDjLV/pkoMxBSVL//frvAEsZo2GmPrHGKmpzN03s27JswgUAAABwN6c0LDds2KDs7GxFRUXJ09N2HOm3GjVqpNtvv90ZUQAAAGqNsDBp5EgpOrqCB5ge0rrO0rEGMq/fJsO/oFw5r6hEv/vkJ/2YnKo3RnZTgLfT/5YNAAAAXJJTRsIXL16sqVOnKiIiQkuXLnXGjwAAAKiTFiyQunat5EGHG0mLomQebmi3vCj+mPrOjtWOE+cvPyAAAABwmZzSsNy9e7dM09T58+cVGhrqjB8BAABQJwUFSatXV6Fpme0jrRigxj93koed6e99Z7LVf+5avbXhUNlNEQEAAAB3cErDMjU1texxr169nPEjAAAA6qzQUCkurnQ8vDJG3m5o3wdh+u7BgWpWz9umnl9UoodW7NTdS7bpfF6hg9ICAAAAleOUhmVwcHDZ47y8PGf8CAAAgDotKEhasULat0+aPl361cevckJCpBkzpKSk0vVBQdJVHRoqYXqUruvUyO4xH28/od6zYhV/LN1p+QEAAIALcUrD8tprry17/OmnnzrjRwAAAEClN+KZOVM6flxatUpauFCaO7f0n6tWSceOSf/6l9SxY/njGgd66z+/668Xb+gsi50Z8eTUHA1+bZ1eizvIiDgAAABcyim3gpw2bZq2bNmiffv26fXXX5evr6/uvvvuCt0xHAAAAJXn5yddf33ljvHwMPTksI4a0raB7locr2MZ5SdjCopLNG1lon78+azevbOHQvy8HJgYAAAAsM8pDUur1ar33ntPzz33nL755hu9/PLLevPNNxUeHq7OnTurfv36CggIkIdHxU7wvO2225wREwAAAJIGt62vhBlRmrRsu77ck2JT/yzxlLYdz9Cy8b3Vv3WIGxICAACgLnFKw/LXN9oxDEOmaSojI0MxMTGKiYmp9H40LAEAAJyrgb+XPp/cV7NiD+jJ/+xRUUn5MfDDabka8sY6vXRDF02PbCcPe7caBwAAABzAKdewNE2z7EsqbVoahmFTq8gXAAAAXMMwDM2Iaq+4RwerTYivTb2oxNQfv9ytWxduVmp2gRsSAgAAoC5wyhmWzZs3d8a2AAAAcIF+rUK0bUaU7vtku6J3nrKp/2fPaYXPjNFH43spom0DNyQEAABAbeaUhuWaNWucsS0AAABcJNjXU8vv6aM31h3SH/69WwXFJeXqxzLyNHTeBj13XSc9MbQDI+IAAABwGKeMhAMAAKDmMwxDj0a01fqpg9W+gZ9NvbjE1J+/2qvr392olMx8NyQEAABAbUTDEgAAABfVq0Ww4qdHamxP+5f9+TbprMJnxmjN/rMuTgYAAIDaiIYlAAAALqmej6eWjOult+7oLh+r7UfIU5n5uubtDXrm630qLuHGiQAAAKg6GpYAAACoEMMwdP+A1to0bYg6Nw6wqZum9Ny3SbrmrQ06kZHnhoQAAACoDWhYAgAAoFK6NaunzdOG6J7eLezWf0xOVfjMGH2z77SLkwEAAKA2oGEJAACASgvwtur9u8K1cExP+XlabOpnsgs04p1N+r9Ve1T0mzuMAwAAABdDwxIAAABVdm/flto8bYi6Ng20W395zc8aOm+9jqbnujgZAAAAaioalgAAALgsVzQN1MbfR+h3/VvZra87lKbwmTH6z+4UFycDAABATUTDEgAAAJfNz8uqd0b30OK7wxXgbTsifi6nUDcv2Kw//HuXCooYEQcAAMCF0bAEAACAw9zdq4W2Phapns3r2a3PjDmgqDfX6dC5HBcnAwAAQE1BwxIAAAAOFdYoQOunRujhQW3s1jcdSVevWbH6bOdJ1wYDAABAjVDtG5YFBQXujgAAAIBK8vG06PWR3bT8nt4K8rHa1NNzCzXqg636/cpE5RcVuyEhAAAAqivbT48O8NRTT0mSOnXqpIkTJ1Zpj+eff14//vijAgIC9PnnnzswHQAAAFxlVPfmCg8N0l2Lt2nL0XSb+utxB7X+4Dktm9BbHRr6uz4gAAAAqh2nnGH52WefaeXKlVq3bl2V90hOTtbx48d1/PhxByYDAACAq7Vr4K+1jwzWY5Ht7Na3Hc9Q71mx+ng7n/sAAABQjUfC09PTJUl5eXnuDQIAAIDL5mX10MxbrtTKSX0V4utpU8/ML9Jdi7fpwU9/Um4hI+IAAAB1WZVHwvfu3avMzMyLrsnIyNCWLVsqtW9+fr5iYmK0d+9eSVJwcHBVIwIAAKCaueXKpkqYEam7Fm/ThsNpNvV3Nh7RxsNp+nhCb3VuHOiGhAAAAHC3Kjcsd+/erT//+c8XrJumqZ07d+qee+6p6o+QYRgKDw+v8vEAAACoflqF+OnHhwfpb1/v0ytrfrap7zyZqb6z1+rNUd00oXdLNyQEAACAO1V5JHzkyJHq1auXTNN0ZJ5y+3l6eur+++936P4AAABwP0+Lh166oYtW3ddfDf29bOrZBcW6d+l2TV62Xdn5RW5ICAAAAHe5rGtYPvPMM7JarTJNs9zXL377/KW+JMnHx0dNmjRRZGSkPvjgA3Xv3v3yXiEAAACqrRGdG2v7jChFtWtgt/7+1qPqP3etdp26+KWIAAAAUHtUeSRckjp27KjExESb5zt37izDMBQREaF33nnncn4EAAAAarnmQT769sEBev67/XrhuyT9doBnd0qW+s2J1dzbumlyv5YyDMM9QQEAAOASTrtLuKNHxQEAAFB7WS0eeva6TvrmgQFqEuhtU88tLNH9y3/ShI8SlJnHiDgAAEBtdllnWF7ISy+9JElq0qSJM7YHAABALXV1x0baPiNKEz7apu/2n7Wpf5RwXFuOpuvjCb3VMzTIDQkBAADgbE45w/L222/X7bffrkGDBjljewAAANRiTQK99dX9A/T8iE7ysDP9vf9stga+Fqc31x1iqgcAAKAWctpIOAAAAFBVFg9Dfx4epjVTBik0yMemnl9Uokc/26kxi+KVkVvohoQAAABwFqeMhG/ZssWh+/Xt29eh+wEAAKBmiGzfQAkzInXv0u36au9pm/qnO04q/liGlo3vrb6tgm3qOTnSmjWGtmxpoJwcD/n5lejkSUPDhkl+fi54AQAAAKg0pzQsJ0yY4LC7NxqGod27dztkLwAAANQ8Df299e/J/fSvmGT9+au9KiopPwZ+8FyOIt6I0ys3XqFpQ9rKMAwlJUnz5knvvy+lp1sktSl3THCwNGmSNGWKFBbmqlcCAACAiqgWI+GmaV70CwAAAHWbh4ehPw7toJiHB6lVsK9NvbDY1Iwvdummd7bo5tEF6tRJmj1bSk+3v196ujRrltSpkzRqlJSR4cz0AAAAqAynnGEpqcqNRsMwZLFYdPXVV8tisTg4FQAAAGqygW3qa9uMSP3u4+36fFeKTf2rpBSZIbFSs17SyfoV2jM6WkpKklavlkJDHZ0YAAAAleWUhuXevXsrvLagoEBpaWlKSkrSl19+qS+++ELFxcXKy8vTnDlz5ONje5F1AAAA1F31/bwUPbGv5sYd1J++3K3C4vJ/KDfq5cocu16K6yxtaS/p0pcqSkyURoyQ4uKkoCAnBQcAAECFuH0k3MvLS02aNNGQIUP0yiuv6O2335bFYlFsbKyef/55d8cDAABANWQYhqYNaad1j0aoXQPbu+cYHqaMyD3S7Zsl3/wK7ZmYKE2e7OikAAAAqCy3Nyx/a8iQIZo6dapM01R0dLTi4+PdHQkAAADVVJ+Wwfr45kiZ+5rZrRvtTksTYqXQ1ArtFx0t7d/vyIQAAACorGrXsJSku+++W97e3pKkFStWuDkNAAAAqrMlCzylL3vL/K6bzCLbj7dGYJ5053qpf5JkXPo66/PnOyMlAAAAKqpaNiwDAwPVrl07mabJGZYAAAC4oJwcaeFCSTKkn9pIH0XIPOdvs87wkIyIfdKojZJf3kX3XLiwdF8AAAC4R7VsWEqSn1/ptYhOnz7t5iQAAACormJipPT0Xz1xJkhaHClzt/3bfRutz0r3xEqtzlxwz7S00n0BAADgHtWyYVlSUqJDhw5Jkjw9Pd0bBgAAANXWqVN2niy0Sl+Fy/y6h8xCOyPi/vnSHRulQXslo8TuvikpDg4KAACACquWDcuVK1cqNTVVhmGoRYsW7o4DAACAaior60IVQ0psJS2JlHk2wLZqSMbA/dLoDVJArk09M9OxOQEAAFBx1aphWVBQoI8++kjPPPNM2XNDhgxxXyAAAABUawG2vcjyUgOlJUNkJra0WzZaniu9i3ib8pchCgx0UEAAAABUmtUZm95zzz0VXmuapoqKipSVlaVjx44pLy9Ppll690Zvb2+NHTvWGREBAABQCzRtWoFFRVbp654yjzSQhu+U4VVcrmz4FUijNsnc3EFa10kq8VCTJs7JCwAAgEtzSsNy8+bNMgyj0seZplnuuD/+8Y9q1qyZI6MBAACgFomKkoKDf3PjnQvZ01JKCZZ54zYZjc/blI1+P8sMTVVQXC9FRfk5OioAAAAqyGkj4aZpVvrrl+OaN2+uf/7znxo3bpyz4gEAAKAW8POTJk2qxAHnAqWlETJ/am23bISmKf/OWH130N7dfAAAAOAKTjnD8tFHH630MV5eXgoJCVHnzp3VrVs3J6QCAABAbTRlijRrViUOKLJI33WXebSBdM0OGd5F5cr5RqFuW7hF04a01Ss3XiEva7W67DsAAECtV20algAAAEBVhIVJI0dK0dGVPHBfaOmI+E3xMppk2JTnrD2odQfPadmE3mrXwN8xYQEAAHBJ/LkYAAAANd6CBVLXrlU4MN1fWjpY5ra2dstbj2Wo16xYffrTicsLCAAAgAqjYQkAAIAaLyhIWr26ik3LYou6ne2qt2/uo2BfT5vy+bwi3bkoXo9E71ReYbGdDQAAAOBIThkJv5Dk5GRt2bJFp0+f1tmzZyVJwcHBatOmjfr06aNWrVq5Mg4AAABqkdBQKS5Omjy5cuPhI0eWnqEZFNRMw7sF6a7F8dp0JN1m3bz1h7Th0Dl9PKG3OjYKcFxwAAAAlOP0hmV2drY+/PBDrVy5UkeOHLno2s6dO2vixIm69dZbnR0LAAAAtVBQkLRihZSUJM2fLy1cKKWn264LCSm9u/iUKVLHjv97vk19P8U+Mlj/t2qv/hWTbHPc9hPn1Xt2rN66o4fuCg913gsBAACow5zasPzpp580ffp0nTx5UqZpSpIMwyh7/ItfntuzZ4+efPJJLV++XLNmzVKjRo2cGQ8AAAC1VFiYNHOm9MIL0po1xdq69aiysz3k71+iPn1aatgwi/z87B/rafHQqzdfoavaN9DEZQlKzSksV8/KL9a4Jdu05uezmnPrlfLzcunQEgAAQK3ntE9XiYmJmjhxovLy8so97+npqVatWikgIEAlJSU6f/68jh07pqKiIkmSaZraunWrJkyYoKVLlyokJMRZEQEAAFDL+flJI0aYatYstey5Hj1ayFqBT8E3XtFECTOidPeSbYo7eM6m/t6mI9p0OE3LxvfWFU0DHRkbAACgTnNKw7KwsFCPP/64cnNzy86evP766zVu3DiFh4fLYrGUW19QUKD4+Hh98MEH+vHHH2UYhg4fPqynn35ac+fOdUZEAAAA4JJaBPtqzZSBevqbfXp5zc/6zaCQEk9lqt+ctXp9ZDdN7NvSPSEBAABqGafcJfzzzz/X4cOHZRiGLBaLZs6cqVmzZqlPnz42zUpJ8vLy0sCBAzV//nw9//zzZU3Ob7/9VgkJCc6ICAAAAFSI1eKhv1/fRV/d11+N/L1s6jmFxZr88XZNXJqgrPwiNyQEAACoXZzSsPzqq6/KHj/22GO64YYbKnzs6NGj9eCDD5Z9/+mnnzo0GwAAAFAV13ZqrO2PR2lo+wZ26x/GH1O/OWu148R5FycDAACoXZzSsNy7d68kKSAgQPfcc0+lj7///vvl4+MjSdqyZYtDswEAAABV1ayej755cKCevjZMhmFb33s6SwPmrtXbGw/b3GgSAAAAFeOUhmVGRoYMw1BYWJi8vGzHZi7Fz89PnTt3lmmaOnXqlBMSAgAAAFVj8TD09LWd9N2DA9U00NumnldUoimf7tC4Jdt0Pq/Qzg4AAAC4GKc0LIODgyWp7M7fVWH9760bfX19HREJAAAAcKihHRpq+4woXRvWyG592fYT6j0rVtuOpbs2GAAAQA3nlIZlhw4dZJqm9u7dq8zMzEofX1RUpP3798swDLVt29YJCQEAAIDL1zjQW6vu668Xb+gsi4ftjHhyao4GvbZOr8UdZEQcAACggpzSsLztttskSQUFBZozZ06lj1+xYoUyMjIkSTfeeKMjowEAAAAO5eFh6MlhHfXDQwPVIsjHpl5QXKJpKxN1xwdblZZT4IaEAAAANYtTGpa33nqrBgwYINM0tWTJEr399tsVPnbz5s16+eWXJUlt27bVmDFjnBERAAAAcKiItg2UMCNKN3VpYrf+WeIp9Z4Vq02H01ycDAAAoGZxSsPSMAzNmTNHffv2lWmamjVrlu655x7FxMSosND+hcd//vlnvfDCC5o8ebJyc3PVtGlTzZs3r0o37QEAAADcoYG/lz6f3Ff/vPkKWe2MiB9Ky9WQN9bpXz8mMyIOAABwAVZnbHr//fdLkiwWiyTJNE1t2bJFW7ZskdVqVdu2bRUUFCRPT09lZWXp8OHDOn/+fNlawzCUkpKiESNGXPTnGIah3bt3O+MlAAAAAFViGIZmRLVXRNv6GrsoXofScsvVi0pM/fHL3YpJTtXCsT3VwJ8/0AMAAPyaUxqWa9eulWGU/kX5l39Kpc3IwsJC7d+/v9z6X/66bBiGzXoAAACgJurXKkTbZkTpvk+2K3rnKZv6l3tSFD4zRkvH99bgtvXdkBAAAKB6cspIuFTabPzt14Vql3oeAAAAqImCfT21/J4+mntbV3lZbD96H8vI01Xz1uul7/erpITPvwAAAJKTzrD88MMPnbEtAAAAUOMYhqFHI9pqUJsQjVkUr+TUnHL14hJTf/5qr2KSU/XhXeFqHOjtpqQAAADVg1Malv369XPGtgAAAECN1atFsOKnR+rBT3fo4+0nbOrfJJ1Rz5kxWjKul4Z2aOiGhAAAANWD00bCAQAAAJRXz8dTH43rpfl3dJeP1faj+KnMfF3z1gY9+80+FTMiDgAA6iinnGH5+uuvS5Jat26tm2++uUp7vPXWW1q3bp0sFosWLlzoyHgAAACA2xiGoQcGtNaAViEauzhee09nlauXmNKz3yQpNjlVi8f1UrN6Pm5KCgAA4B5OOcPy9ddf1xtvvKEvvviiynusW7dOmzdv1q5duxyYDAAAAKgeujevp83Thuie3i3s1n9ITlXPf8Xom32nXZwMAADAvartSHheXp4kKScn5xIrAQAAgJopwNuq9+8K18IxPeXnabGpn8ku0PXvbtKfv9qjouISNyQEAABwvSqPhJ89e1YFBQUXXZOXl6cTJ2wvKH4x+fn5iomJ0c6dOyVJQUFBVY0IAAAA1Aj39m2pvi2DNXZxvBJPZZarmab00vc/a+2Bc/poXC+1CPZ1U0oAAADXqHLD8vPPP9c///nPC9ZN09TWrVt19dVXV2l/0zRlGIY6d+5c1YgAAABAjXFF00Bt/H2Epn2+S+9tOmJTjzt4TuEzY/T+2HDdeEUTNyQEAABwjSqPhE+cOFEdOnSQaZo2X7+wV6vI1y8Mw9CkSZMu7xUCAAAANYSfl1XvjO6hxXeHK8DbdkQ8NadQNy/YrD/+e7cKGREHAAC1VJUblhaLRc8884wMw3BkHkmljcr27dtr5syZioiIcPj+AAAAQHV2d68W2vpYpHo2r2e3/q+YZEW+sU6HznG9dwAAUPtUeSRcknr37q0ff/xRRUVFZc+Zpqnhw4fLMAz16dNHL7/8coX38/DwkLe3t+rVqyer9bKiAQAAADVaWKMArZ8aocf/vVvz1h+yqW86kq5es2K1YEwP3da1mesDAgAAOMlldwWbNLF//RzTNOXj46PQ0NDL/RG4gLS0NN14443y8fHRmjVr3B0HAAAADubjadEbI7tpaPsGum/5TzqfV1Sunp5bqJHvb9XUiLb6x01d5G21HSMHAACoaZxyGuOjjz4qSWrVqpUztoekwsJC/elPf1JqaipNYQAAgFrujh7N1atFkMYuitfWYxk29dfiDmrdwXP6eEJvtW/o74aEAAAAjuPUhiWcIzc3V3/4wx8UGxvr7igAAABwkXYN/BX3aISe+M9uzVl70Ka+7XiGes2K1Tuje+jOns0vuldOjhQTI506JWVlSQEBUtOmUlSU5OfnrFcAAABQMVwosobZt2+fHn/8ce3fv9/dUQAAAOBiXlYPzbq1q4Z2aKhJy7YrLbewXD0zv0hjF8drzc9nNevWK+XrWX5EPClJmjdPev99KT3ddv/gYGnSJGnKFCkszGkvAwAA4KKc0rA8ceKEQ/dr3vzifyGuC/Ly8vTiiy/q008/VXFxsRo2bKhu3brphx9+cHc0AAAAuNgtVzbVtumRunvJNm04nGZTf3vjYW08nKaPJ/RWp8YBysiQJk+WoqMvvm96ujRrVunXyJHSggVSUJBzXgMAAMCFOKVhOWzYMBmG4ZC9DMPQ7t27HbJXTXb27Fl9/PHHkqTrrrtOTz/9tD766CMalgAAAHVU6/p++vHhQfrLV3v16o/JNvUdJ8+rz+xYvTisu96e3kKJiZXbPzq69IzM1aslLpkOAABcycOZm5um6ZAvlDZuBw0apMWLF2vu3Llq0KCBuyMBAADAzTwtHnrlpiv0n9/1U0N/L5t6dkGxpq1OUGLodslaZLvBJSQmSiNGSBm29/kBAABwGqddw7KqjUbDMGSxWHTllVc6OFHNFhoaqoULF7o7BgAAAKqh67s0UcKMSI1bsk2xB87Z1I2uR2U2TZO+7COlBlZq78TE0nHyFSsclRYAAODinNKw/P777yu8Nj8/X2lpadq/f7/+85//aMuWLSouLlanTp307LPPOmy0HAAAAKjNQoN89d2DA/Xct0n6+/f79dvzB4yGWTLHxUprukmJLSVV/HN2dLS0f7/UsaNjMwMAANjjlIZlaBUuctO7d2+NHTtWH3/8sZ555hktX75cwcHBmjFjhhMSAgAAALWP1eKh50Z0VmS7BrrtrQTlGPnl6oZniXTdTzJbnpW+6y4VVvzXgfnzpX/9y9GJAQAAbDn1GpZVMWbMGN17770yTVPvvfee9u7d6+5IAAAAQI0yqEUjWZZGyjzc0G7duOK4ND5WalTxi1MuXCjl5DgqIQAAwIVVu4alJN13332yWq0qKSnRp59+6u44AAAAQI0SEyOdP+kjrRggM66TzBLbNUb9bOnuOKnHIUmXvv58WlrpvgAAAM5WLRuWDRs2VNu2bWWapjZs2ODuOAAAAECNcurUfx+YhrQpTFo+UGamj806w1oiY/hO6aZ4yavwkvumpDg4KAAAgB3VsmEpScHBwZKkU2WftgAAAABURFbWb5441lBaFCnzQGO7641OJ6UJsVKT9Ivum5npmHwAAAAXU20blkePHnV3BAAAAKBGCgiw82Sut/RZP5kxXWSW2N4h3AjOke6Kk8IP6EIj4oGBjs0JAABgT7VsWP7www86deqUDMNQ8+bN3R0HAAAAqFGaNr1QxZC2dpCWDZJ53te2ajFlDNsl3bpF8imwqTdp4ticAAAA9lS7hmVMTIyefPLJsu8HDRrkxjQAAABAzRMVJf33Ckv2naxfOiL+s/0OpNEhpXREvNm5sudCQkr3BQAAcDarMzZ96qmnKrW+sLBQWVlZOnDggI4ePSrTLB1BsVgsGj16tDMiAgAAALWWn580aZI0a9ZFFuV5SZ/3lRl+UIraLcNSfgzcqJcrc+x6Ka6ztKW9Jk0y5Ofn3NwAAACSkxqWn332mQzD9ro4l/JLo9IwDJmmqd/97nfq0KGDo+MBAAAAtd6UKZdoWEqSDCmhnXSivsyb4kuvY/nrqocpRe6R2SJVd97bU5K3k9ICAAD8j9NGwk3TrPTXL3x8fDR9+nRNnz7dWfEqZc6cOerUqZOGDRtW6WOTk5P197//Xbfccot69eql7t27a/jw4Xr44Yf11VdfqaioqMq5pk6dqn379mnNmjVV3gMAAAC1U1iYNHJkBRenBJeOiO9rZrdstDutUStjFZuc6rB8AAAAF+KUMyxvv/32Sh/j5eWl4OBgdenSRREREQqwe2tD19uxY4feeeedKh372muvaf78+TZNyaNHj+ro0aP6/vvv1bVrV7366qtq166dI+ICAAAAZRYskJKSpMTECiwu8JS+7C3z6GHpql0yrCXlyifO52nY/PV65rpOempYR1k8Kj9RBQAAUBFOaVi+9NJLztjW5Y4ePaqHH35YhYWFlT72hRde0KJFi8q+t1qt6tSpk3x9fZWcnKy0tDRJUmJioiZMmKBPPvlEoaGhDssOAAAABAVJq1dLI0ZUsGkpQ/qpjXQipHREvH52uWqJKf1t9T7FJqdq0d291CSQEXEAAOB41e4u4dVFUlKSxo0bpzNnzlT62NWrV5drVl533XWKiYlRdHS0lixZorVr1+q5556Tr6+vJOns2bOaOnVqubF4AAAAwBFCQ6W4uEqMh0vSmSDdfD5Sd3S1/wf17/afVc+ZMfp+f+U/KwMAAFyKU86wrOk+//xzPf3008rNza30sYWFhXrllVfKvh86dKhmz54tD4//9YY9PT01ZswYhYaG6sEHH1RRUZF27dqlL7/8UjfffLNDXoMrFBcXuzsCqrHfvj94v+BieL+gsnjPoDJ4v0j+/tLHH5eOh7/9toc++MBQerrtSHdIiKl77zX1wAMl6thRMs1uumZriB77YrdyC8uPiKdk5uvatzfqqaHt9ZerO8hqqR3nQvB+QWXwfkFl8H5BZdT194thOvm0vnPnzunAgQNKT09Xbm6ufH19FRQUpHbt2qlBgwbO/NGVlpKSopkzZ2rlypV266GhoZe8wc2qVavKbhZktVr17bffqnnz5hdc/9xzz2nJkiWSpCuvvFLR0dFVC+8CCQkJKikpufRCAAAAVGt5eYbi4wN17pynsrM95O9fovr1C9W7d6Z8fGx/Pfg5vVD/ty5NB8/bv2FkeCMvvTAoRI39LM6ODgAAqikPDw+Fh4c7ZC+nnGG5Y8cORUdHKzY2VidPnrzgusaNG+uqq67Sbbfd5rAXVFXz5s3T22+/rZycnLLn2rVrp2uvvVbz58+v8D6rVq0qezxo0KCLNislacyYMWUNy127duno0aNq2bJlJdMDAAAAFefjY2rw4PMVXt8h2FMfXNdQr27N0L8P2k4hJZwp0LjVZ/TsgGANau7jyKgAAKAOcujcxp49ezRu3DiNGTNGH3/8sU6cOCHTNC/4lZKSok8++UR333237r77bu3evduRcSrlvffeK9esHD16tJYvX67WrVtXeA/TNLVp06ay7wcPHnzJYzp16qRGjRqVfX+pMzgBAAAAd/C1euhvA0L07IBg+Vptx8nT80s0LeacXtt+XkUlXJsdAABUncPOsHz33Xc1a9YslZSUyDRNGYbth5gLMU1T27Zt0+jRo/Xoo4/qoYceclSsSuvataueeOIJ9evXr9LHHj9+XOfP/+8v1V27dq3QcZ06dSq7uc/OnTsr/XPdpWvXrrJYGPuBfcXFxUr81e1Ieb/gYni/oLJ4z6AyeL84Vo8e0u2DsjTuo+3aeSrTpv7hniztz7Fq0V091SrY1w0JLw/vF1QG7xdUBu8XVEZNeb/s3LnTKZcPdEjD8uWXX9YHH3xQrlFpGIZ69OihPn36qF27dqpfv768vb2VnZ2tjIwMJScnKyEhQTt37lRRUZEMw1BxcbHmzp2r06dP6+mnn3ZEtArr16+fRo4cqauvvrpSzdZfO3ToULnvW7VqVaHjWrRoUfb4yJEjVfrZ7mCxWGS1ct8mVAzvF1QG7xdUFu8ZVAbvl8vXtXmwNk4boumf79LbGw/b1DccTlffOeu0cGxP3XJlUzckdBzeL6gM3i+oDN4vqIy69n657Fe6ZMkSvf/++2VNPi8vL40fP14TJkxQ06aX/nBy+vRpLVmyRB9++KHy8vJkmqaWLVum1q1ba+LEiZcbr8LefPPNy97jl7MkpdILjTZs2LBCx/16JPzXewAAAADVla+nRfPv6K6hHRrogeU7lJlf/oY8abmFum3hFj0W2U4v39BFXtbacRdxAADgfJf1qeHo0aP65z//Wdas7NChgz777DP98Y9/rFCzUiq98c706dO1fPlytW/fXoZhyDRNzZ49u0adbShJGRkZZY/9/f3l4VGx/3kDAgLs7gEAAABUd2N6hip+eqR6hQbZrc+OPaCI1+N0IDXbxckAAEBNdVkNy7lz5yo3t/Quge3atdOiRYvUrl27Ku3VoUMHffjhh2rVqpUMw1B+fr7mzp17OfFcLj8/v+yxj0/F747o5eVV9rigoMChmQAAAABn69DQX+umDtajEW3t1rcey1CvWbH69KcTLk4GAABqoio3LFNSUrRq1SpJktVq1ezZsxUSEnJZYerXr6833nhDFotFpmlq9erVOn369GXt6UqFhYVljyt6dqWkctcgKCoqushKAAAAoHrytlo097auWnFvHwX7etrUz+cV6c5F8XokeqfyCovdkBAAANQUVW5YfvPNNyouLpZhGBo1apQ6duzokEAdOnTQHXfcIan0jkjffvutQ/Z1hV/frakyd0j6dZPS09P2wx0AAABQU9zerZm2TY9Uv5bBduvz1h/S4NfjtP9MlmuDAQCAGqPKDcvNmzeXPR47dqxDwvxi9OjRZY83bdrk0L2dydfXt+zxr8fDL+XXY+De3t4OzQQAAAC4Wpv6fop9ZLBmRNm/XFTC8fPqPTtWSxOOuzgZAACoCarcsNy3b58kKSgoSJ07d3ZYIEm68sory8bLf/k5NUFQ0P8uNJ6dnS3TNCt0XFbW//66HBwc7OhYAAAAgMt5WT30z5uv1BeT+6m+n+0UUVZ+scYt2aYHlv+kXEbEAQDAr1S5YXnu3DkZhqE2bdo4MM7/NGvWTKZp6uzZs07Z3xmaNGlS9ri4uFhpaWkVOu7MmTNljxs2bOjwXAAAAIC73HRFEyXMiNLgNvavd//upiPqP2et9qRkujgZAACorqrcsMzLy5NUfgzakerVqyepcqPV7ta6dety3x89erRCxx07dqzscdu29u+sCAAAANRULYN99cNDg/TksA5264mnMtV39lp9sKVin58BAEDtVuWG5S+jyxU9i7Cy0tPTJUl+fn5O2d8ZQkNDy41079mzp0LH7d27t+yxo8frAQAAgOrAavHQizd00Vf391cjfy+bek5hsSZ9vF2TliUoK7/Izg4AAKCuqHLDsn79+jJNU8eOHavUHbEroqSkRMePH5dhGDVuRLp///5lj9evX3/J9Xv37i039j5gwACn5AIAAACqg+s6NVbCjCgNbd/Abv2DrcfUb85a7Tx53sXJAABAdVHlhmWHDqXjHNnZ2dq2bZvDAknStm3blJlZeg2bLl26OHRvZ7v22mvLHv/www9KSUm56PqlS5eWPW7fvr06derktGwAAABAddA8yEffPDhQT18bJsOwre89naX+c9bqnY2HK3wjSwAAUHtUuWE5ZMiQssdLlixxSJhffPTRR2WPa9oZh9dee60aN24sSSooKNCTTz6poiL7Iy1r167V8uXLy76fMGGCSzICAAAA7mbxMPT0tZ303YMD1TTQ26aeV1SiBz/doXFLtul8XqEbEgIAAHepcsMyMjJSVqtVpmnq66+/1k8//eSQQFu3btWqVaskSZ6enrrmmmscsq+reHl5acaMGWXfr1+/Xvfff3+5G/AUFRXpk08+0dSpU1VcXCxJCgsL0+jRo12eFwAAAHCnoR0aavuMKF0b1shufdn2E+oze60Sjme4OBkAAHCXKjcsGzRooDvvvFNS6TUnp0+fftk34Dl69KimTZsmSTIMQ6NGjSp3E5ua4vbbb9eYMWPKvl+/fr2uvfZa3XbbbRo/fryGDBmiv/71r8rNzZVUegOjOXPmyGq1uisyAAAA4DaNA7216r7++vv1nWXxsJ0R//lstgbOjdMb6w4yIg4AQB1Q5YalJD388MPy9/eXYRg6ceKExo4dq/3791dpr61bt2r8+PFKTU2VJAUFBemRRx65nHhu9eyzz2rKlCny9PSUVNrU3bNnj7Zs2aJz586VrWvfvr0WL16sdu3auSsqAAAA4HYeHoaeurqjfnhooEKDfGzqBcUlmvpZokZ/uFXpuYyIAwBQm11Ww7Jhw4Z69dVXZRiGDMPQ4cOHNXr0aD333HM6cOBAhfZITk7WX/7yF02cOFGnT58uDeXhoRdeeKHG3SH81wzD0PTp0/X5559r8uTJCgsLU7169eTp6amGDRtqyJAh+vvf/66VK1eqY8eO7o4LAAAAVAsRbRsoYUakbuzS2G49eucp9ZoZo81HLm+6CwAAVF+XPYM8bNgwPfHEE3r55ZdlGIby8vK0dOlSLV26VM2aNVP37t3Vtm1bBQYGKjAwUEVFRcrIyNCxY8e0detWHT58WJLKjXb8+c9/1vDhwy83mkOMHDlSI0eOrPLx7du31xNPPKEnnnjCgakAAACA2quhv7c+n9RPs2IP6KlVe1RUUn4M/FBariJeX6eXb+yi6ZHtZNi71TgAAKixHHLRxHvvvVehoaF66qmnlJmZKam0AXnixAmdPHnygsf90qT85QOGn5+fXnrpJV133XWOiAUAAACghvLwMPT4Ve01uG193bU4XofTcsvVi0pM/eHfu/Xjz6laOLanGvh7uSkpAABwtMsaCf+14cOHa+XKlRo5cmSlbx5jsVh06623avXq1TQrAQAAAJQZ0DpE26ZH6rauTe3Wv9yTol6zYrTu4Dm7dQAAUPM4rGEpSaGhoXrxxRf13Xff6Q9/+IMiIyPl7+8v0zRtvqxWq3r27KnHHntM33//vV555RU1bmz/OjUAAAAA6q4QPy+tuLeP5tzWVV4W219hjqbn6ap56/Xymv0qKeEu4gAA1HQOGQn/rSZNmui+++7TfffdJ9M0lZ6ervT0dGVkZMjDw0NBQUFq0aKFLBaLM348AAAAgFrGMAxNjWirQW1CNGZRvA6k5pSrF5eY+r9VexWTnKoPxoarcaC3m5ICAIDL5dAzLO0xDEMhISFq27atevbsqe7du6t169Y0KwEAAABUWu8WwYp/LFJ39mhut/71vjMKnxWjH38+6+JkAADAUZzesAQAAAAARwry9dTS8b00b1Q3eVttf6U5eT5fw9/aoGe/2adiRsQBAKhxaFgCAAAAqHEMw9CDA9to0++HqFMjf5t6iSk9+02Srn1rg06ez3NDQgAAUFU0LAEAAADUWN2b19OWxyI1oXcLu/UfklMVPjNG3yadueReOTnS6tWGvviigZYta6Qvvmig1asN5eRc8lAAAOBATrnpDgAAAAC4SoC3VR/cFa6hHRrq0eidyiksLlc/nVWgEe9s1FPDOuqZa8Nk/c2dxpOSpHnzpPffl9LTLZLalKsHB0uTJklTpkhhYU59KQAAQJxhCQAAAKCWmNi3pTZPG6IrmwTa1ExTevH7/Ro2f4OOpedKkjIypFGjpE6dpNmzpfR0+/ump0uzZpWuGzWq9DgAAOA8NCwBAAAA1BpXNA3UpmkR+l3/VnbrcQfPKXxmjD5cm6KICCk6unL7R0dLERHS8eMOCAsAAOyiYQkAAACgVvHzsuqd0T20+O5wBXhbbOqpOYWa+PlmJdbfLXmUVHr/xERpxAjOtAQAwFloWAIAAACole7u1UJbH4tUz+b17NaNvsnSmHVSvcrfVScxUZo8+XITAgAAe2hYAgAAAKi1whoFaP3UCD00qI3dutE8XZoQK3U4Wem9o6Ol/fsvLx8AALBFwxIAAABArebjadEbI7vpkwm95WVabeqGT6GMW7dKQxMlS7GdHS5s/nxHpQQAAL+gYQkAAACgTrihY3N5L4+UeSrIbt3odVAau04Kyq7wngsXSjmVnygHAAAXQcMSAAAAQJ0QEyOdP+ovLY2QGd/W7hqjaUbpiHjYiQrtmZZWui8AAHAcGpYAAAAA6oRTp/77oMRD+rGrzJV9ZeZ62qwzvItk3BwvXb1Dsl56RDwlxcFBAQCo42hYAgAAAKgTsrJ+80RyU2lRpMwTIXbXGz0PS3fFSSG/PbC8zEwHBQQAAJJoWAIAAACoIwIC7DyZ6Sd9PEjm5g52jzEan5fGx0pdjl1w38BABwUEAACSaFgCAAAAqCOaNr1AocRDWttF5or+MnO8bMqGV7GMGxKka7dL1iKbepMmjs0JAEBdR8MSAAAAQJ0QFSUFB19kwaHGpSPiR+vbLRvdjkrj1koN/jcDHhJSui8AAHAcGpYAAAAA6gQ/P2nSpEssyvKVlg+UuaGjTNO2bDTMksbFSl2PSDI1aVLpvgAAwHFoWAIAAACoM6ZMqcAi00Na31n6dIDMbG+bsuFZIuO6n6TrEzR+su2IOAAAuDw0LAEAAADUGWFh0siRFVx8pJH0YaTMww3tlo0rjuuuL2P104kMxwUEAAA0LAEAAADULQsWSF27VnBxjo+0YoDMuE4yS2zLSWeyNWBunOavPyTT3gw5AACoNBqWAAAAAOqUoCBp9epKNC1NQ9oUVnpty0wfm3J+UYkejt6puxZvU0ZuoWPDAgBQB9GwBAAAAFDnhIZKcXGVGA+XpGMNdeO5SF3dvpHd8ic/nVDv2bHaejTdIRkBAKiraFgCAAAAqJOCgqQVK6R9+6Tp06XgYPvrQkKkGTOkpCTpy+Xe+vrB/nr5xi6yeBg2aw+k5mjw63Gau/YAI+IAAFSR1d0BAAAAAMCdwsKkmTOlF16Q1qwp1tatR5Wd7SF//xL16dNSw4ZZ5Of3v/UeHob+NLSDItrW112L43U0Pa/cfoXFph77fJd+TE7Ve3f2UIifl4tfEQAANRsNSwAAAACQ5OcnjRhhqlmz1LLnevRoIesFfmsa1Ka+EmZEafLH2/XFrhSb+srEU0o4nqGl43trQOsQZ8UGAKDWYSQcAAAAAKqovp+XPpvYVzNvuVKeFtsR8cNpuYp8Y51e/eFnlZQwIg4AQEXQsAQAAACAy2AYhh6LbKe4RyLUtr6fTb2oxNQT/9mjWxZs1tnsfDckBACgZqFhCQAAAAAO0LdVsOKnR2pUt2Z266v2nlb4zFitPZBqtw4AAErRsAQAAAAABwn29dQn9/TW67d3k5fF9tet4xl5Gjpvvf7+XRIj4gAAXAANSwAAAABwIMMw9PDgNtr4+wh1bOhvUy8xpb+u3qfr392olExGxAEA+C0algAAAADgBD1Dg7T1sUjdHR5qt/5t0lmFz4zRmv1nXZwMAIDqjYYlAAAAADhJoI9Vi+4O1zuje8jHavvr16nMfF3z9gY9/fU+FTMiDgCAJBqWAAAAAOBUhmHod/1bafO0IerSOMCmbprS898mafj8DTqRkeeGhAAAVC80LAEAAADABbo2q6fN04ZoYp+WdusxB1LVc2aMVu897eJkAABULzQsAQAAAMBF/L2tWjC2p94f21P+Xhab+tnsAt3w7iY9tWqPCotL3JAQAAD3o2EJAAAAAC52T5+W2vLYEHVrFmi3/sqanzV03nodTc91cTIAANyPhiUAAAAAuEHnxoHa+PshemBAa7v19YfSFD4zRv/edcrFyQAAcC8algAAAADgJr6eFs2/o7s+GtdLgd5Wm/q5nELdunCLZnyxSwVFjIgDAOoGGpYAAAAA4GZjw0MVPz1SvUKD7NZnxx7QkDfW6WBqjouTAQDgejQsAQAAAKAa6NDQX+umDtajEW3t1rccTVevWTFaseOEi5MBAOBaNCwBAAAAoJrwtlo097au+vTePgrysR0Rz8gr0ugP4/Vo9E7lFRa7ISEAAM5HwxIAAAAAqpmR3Zpp2/Qo9WsZbLf+5vpDGvx6nPafyXJtMAAAXICGJQAAAABUQ20b+Cn2kcGaEdXObj3h+Hn1nh2rpQnHXZwMAADnomEJAAAAANWUl9VD/7z5Sn0xuZ/q+3na1LPyizVuyTY9sPwn5TIiDgCoJWhYAgAAAEA1d9MVTZQwI0qD24TYrb+76Yj6z1mrPSmZLk4GAIDj0bAEAAAAgBqgZbCvfnhokJ4c1sFuPfFUpvrOXqsPthx1cTIAAByLhiUAAAAA1BBWi4devKGLVt/fX438vWzqOYXFmvTxdk1cmqCs/CI3JAQA4PLRsAQAAACAGubaTo2VMCNKV7VvYLf+Yfwx9ZuzVjtPnndxMgAALh8NSwAAAACogZoH+ejbBwfqb9eEyTBs63tPZ6n/nLV6Z+Nhmabp+oAAAFQRDUsAAAAAqKEsHoaeua6Tvn1goJoGetvU84pK9OCnOzRuyTadzyt0Q0IAACqPhiUAAAAA1HDDOjZUwowoXRPW0G592fYT6jN7rRKOZ7g4GQAAlUfDEgAAAABqgSaB3vrqvgF64frO8rAzIv7z2WwNnBunN9YdZEQcAFCt0bAEAAAAgFrCw8PQ/13dUT88NEihQT429YLiEk39LFGjP9yq9FxGxAEA1ZPV3QEAAAAAAI41pF0DJcyI1KRl2/WfPadt6tE7T2nbsRgtm9Bb/VqFXHSvnBwpJkY6dUrKypICAqSmTaWoKMnPz1mvAABQl9GwBAAAAIBaqKG/tz6f1E+zYg/oqVV7VFRSfgz8UFquIl5fp5dv7KLpke1k/OZW40lJ0rx50vvvS+nptvsHB0uTJklTpkhhYU57GQCAOoiRcAAAAACopTw8DD1+VXvFPjJYrUN8bepFJab+8O/dunXBFqVmF0iSMjKkUaOkTp2k2bPtNyul0udnzSpdN2pU6XEAADgCDUsAAAAAqOUGtA7RtumRuq1rU7v1L/ekqNesGK3cfE4REVJ0dOX2j46WIiKk48cdEBYAUOfRsAQAAACAOiDEz0sr7u2jObd1lZfF9lfBo+l5GrlsvRL99kuq/F3EExOlESM40xIAcPloWAIAAABAHWEYhqZGtNW6qYPVroGdO+Z4mDKG7JVGbpJ88yu9f2KiNHmyA4ICAOo0GpYAAAAAUMf0bhGs+McidWeP5nbrRtsz0j0xUouzld47Olrav/9yEwIA6jIalgAAAABQBwX5emrp+F6aN6qbLKbtr4ZGQL40eoM0cJ9kVG5EfP58R6UEANRFNCwBAAAAoI4yDEMTerSR78oImef8besekjEoSRq1UfLPq/C+CxdKOTmOTAoAqEtoWAIAAABAHRYTI2UeCJIWR8rcHWp3jdH6rDQhRmp9pkJ7pqWV7gsAQFXQsAQAAACAOuzUqf8+KLRKX4XLXN1DZqGdEXH/gtIzLQfvlYySS+6bkuLgoACAOoOGJQAAAADUYVlZv/7OkHa1kpZEyjwbYLPWMCRjwH7pzg1SQO5F983MdGxOAEDdQcMSAAAAAOqwANu+pJQaKC0ZInNnS7vHGC3Old5FvO2FT6MMDHRQQABAnUPDEgAAAADqsKZNL1Aoskrf9JS5KlxmgcWmbPgWyhi5WYrcLXnYjog3aeLgoACAOoOGJQAAAADUYVFRUnDwRRbsaVF6Q57T9eyWjb7J0pj1UuD/bgseElK6LwAAVUHDEgAAAADqMD8/adKkSyxKC5CWRsjc3tpu2WieJt0TK3U4Kal0Pz8/BwcFANQZNCwBAAAAoI6bMqUCi4os0vfdZf67t8x8q03Z8CmUcetW6apETb6/2PEhAQB1Bg1LAAAAAKjjwsKkkSMruDipubQoUuapILtlo/dBTVy9Tslnsx0XEABQp9CwBAAAAABowQKpa9cKLs7wl5YNlhnf1m45/liGes2K1SfbTzguIACgzqBhCQAAAABQUJC0enUlmpbFFunHrjI/7yMzz9OmnJlfpLGL4/XQih3KLWREHABQcTQsAQAAAACSpNBQKS6uEuPhkvRzM404E6m+oSF2y29tOKyBc+O073SWY0ICAGo9GpYAAAAAgDJBQdKKFdK+fdL06VJwsP11ISHSjBlSUpL01cd+ivv9IP3hqvZ21+44eV59Zsdqcfwx5wUHANQatrd2AwAAAADUeWFh0syZ0gsvSDExUkqKlJkpBQZKTZpIUVGSn9//1ntaPPSPm67QVe0b6N6lCUrNKSy3X3ZBse5ZmqAfks/qtdu6ys+LX0cBAPbxXwgAAAAAwAX5+UnXX1/x9Td0aaKEGVEat2Sb1h48Z1NfuPmoNh1O08cT+ujKpoEOTAoAqC0YCQcAAAAAOFSLYF99P2Wg/jy8owzDtr47JUv95sRqweYjMk3T9QEBANUaDUsAAAAAgMNZLR56fkRnrb5/gBoHeNnUcwtLdN8nP+nepQnKyi9yQ0IAQHVFwxIAAAAA4DTXhDVSwowoDevQ0G598bbj6jM7Vj+dyHBxMgBAdUXDEgAAAADgVM3q+ejrBwbomWs7ycPOiHjSmWwNmBuntzYcYkQcAEDDEgAAAADgfBYPQ3+7NkzfPThQzep529Tzi0r00IqdumvxNp3PK7SzAwCgrqBhCQAAAABwmas6NFTC9CiN6NTIbv2Tn06o96xYxR9Ld20wAEC1QcMSAAAAAOBSjQO99eXv+uulG7rIYmdGPDk1R4NfW6fX4g4yIg4AdRANSwAAAACAy3l4GHpiWAfFPDxILYN9bOoFxSWatjJRd3ywVWk5BW5ICABwFxqWAAAAAAC3GdSmvrZNj9LNVzSxW/8s8ZR6zYrVpsNpLk4GAHAXGpYAAAAAALdq4O+llZP66l+3XCFPi+2I+OG0XA15Y53+9WOySkoYEQeA2o6GJQAAAADA7QzD0PTI9lr7yGC1CfG1qReVmPrjl7t168LNOpud74aEAABXoWEJAAAAAKg2+rUK0bYZURrZrand+n/2nFb4zFitPZDq4mQAAFehYQkAAAAAqFaCfT21/J4+eu32rvKy2P7aejwjT8Pmb9CL3+9nRBwAaiEalgAAAACAascwDD0yuK02/D5CHRr629SLS0z95au9uv7djUrJZEQcAGoTGpYAAAAAgGorPDRI8Y9F6q7wULv1b5POKnxmjNbsP+viZAAAZ6FhCQAAAACo1gJ9rFp8d7jeHt1dPlbbX2NPZebrmrc36Jmv96mYEXEAqPFoWAIAAAAAqj3DMHRf/9baNG2IOjcOsKmbpvTct0m65q0NOpGR54aEAABHoWEJAAAAAKgxujWrpy3ThujePi3s1n9MTlX4zBh9ve+0i5MBAByFhiUAAAAAoEbx97Zq4dhwLRzTU36eFpv6mewCXf/OJj21ao+KikvckBAAcDloWAIAAAAAaqR7+7bUlseGqFuzQLv1V9b8rKHz1utoeq6LkwEALgcNSwAAAABAjdWlSaA2/n6I7h/Qym593aE0hc+M0Ze7U1ycDABQVTQsAQAAAAA1mq+nRW/d0UMfjeulQG+rTf1cTqFuWbBZj3+xSwVFjIgDQHVHwxIAAAAAUCuMDQ/V1seGKDy0nt36rNgDinxjnQ6m5rg4GQCgMmhYAgAAAABqjY6NArTu0Qg9MriN3frmo+nqNStG0TtPujYYAKDCaFgCAAAAAGoVH0+LXru9m5bf01tBPrYj4hl5Rbrjg62a+tlO5RUWuyEhAOBiaFgCAAAAAGqlUd2ba9v0KPVtGWy3/sa6Qxr8epx+Ppvt2mAAgIuiYQkAAAAAqLXaNvDT2kcGa3pkO7v1hOPn1XtWrJYlHHdxMgDAhdCwBAAAAADUal5WD/3rliv1+aS+CvH1tKln5hfp7iXb9OCnPymXEXEAcDvbi3kAAAAAAFAL3XxlUyXMiNTdS7Zp/aE0m/o7G49ow6E0fTyht7o0CbzoXjk50po1hrZsaaCcHA/5+ZXo5ElDw4ZJfn7OegUAUDfQsAQAAAAA1BmtQvz0w0OD9Lev9+mVNT/b1BNPZarv7LV6Y2Q33du3pU09KUmaN096/30pPd0iqU25enCwNGmSNGWKFBbmlJcAALUeI+EAAAAAgDrF0+Khl27oolX39VdDfy+bek5hsSZ9vF2TliUoO79IkpSRIY0aJXXqJM2eLaWn2987PV2aNat03ahRpccBACqHhiUAAAAAoE4a0bmxts+IUlS7BnbrH2w9pr5z1uq7n84rIkKKjq7c/tHRUkSEdJz7+QBApdCwBAAAAADUWc2DfPTtgwP012vCZBi29b2ns3Td+2uVaByWZFZ6/8REacQIzrQEgMqgYQkAAAAAqNOsFg89e10nffvAQDUN9Lapm5YSGdfukG5IkDyLKr1/YqI0ebIjkgJA3UDDEgAAAAAAScM6NlTCjCgN79jQbt3oclyaECs1rvzpktHR0v79l5sQAOoGGpYAAAAAAPxXk0Bvrb5/gJ4f0UmGnQlwIyRbuitO6nFIlR0Rnz/fIREBoNajYQkAAAAAwK94eBiaPihMfv8ZJDPTx6ZuWEtkDN8p3RQveRdWeN+FC6WcHEcmBYDaiYYlAAAAAAC/ERMjZe1rIC2KlHmgsd01RqeT0vhYqWlahfZMSyvdFwBwcTQsAQAAAAD4jVOn/vsg11v6rJ/MmCtkFtveRtwIzpHGrpN6JasiI+IpKY7NCQC1EQ1LAAAAAAB+Iyvr198Z0tb20seDZWb42qw1LKaMobul27ZIPgUX3Tcz07E5AaA2omEJAAAAAMBvBATYefJkSOmI+P6mdo8x2qdIE2Kk5ucuuG9goIMCAkAtRsMSAAAAAIDfaGq/Jynle0lf9JG55kr7I+L18qQx66W+P8veiHiTJo7NCQC1EQ1LAAAAAAB+IypKCg6+UNWQEtpJSyNkpvvZVj1MGZF7pJGbJN/8sudDQkr3BQBcHA1LAAAAAAB+w89PmjTpEotSgktHxPc1t1s22p6RJsRKLc5KKt3Pz7a/CQD4DRqWAAAAAADYMWVKBRYVeEpf9pL5bTeZRba/YhuBedLoDdKAJN3/wKXvIg4AoGEJAAAAAIBdYWHSyJEVWWlIO9pIH0XIPOdvW/WQjMH7NPXHjTp1Ps/RMQGg1qFhCQAAAADABSxYIHXtWsHFZ4KkxZEyd4faLX+//6zCZ8Xqu6QzjgsIALUQDUsAAAAAAC4gKEhavboSTctCq/RVuMzVPWQW2v7KnZKZr+ve2ai/rt6rouISx4YFgFqChiUAAAAAABcRGirFxVV0PFySDGlXKw1PiVTnhgE2VdOU/v7dfg1/a4OOZ+Q6NCsA1AY0LAEAAAAAuISgIGnFCmnfPmn6dCk42P66kBBpxgwpKUn6dlmgts4Yokn9WtpdG3vgnMJnxmrVnhTnBQeAGsjq7gAAAAAAANQUYWHSzJnSCy9Ia9YUa+vWo8rO9pC/f4n69GmpYcMs8vP733o/L6veu7OnhrZvqIdW7FB2QXG5/c5mF+im9zbrD1e119+v7yxPC+cVAQANSwAAAAAAKsnPTxoxwlSzZqllz/Xo0ULWC/yWPb53C/VtGawxi+K14+R5m/o/f0xW3MFzWjqul1rX97OzAwDUHfzpBgAAAAAAF+jUOEAbfh+hBwe2tlvfeDhNvWbF6vPEUy5OBgDVCw1LAAAAAABcxNfTonmjumvZ+N6q52N7OmZabqFuf3+LHvs8UflFxXZ2AIDaj4YlAAAAAAAudmfP5op/LFK9WwTZrc9de1ARr69T8tlsFycDAPejYQkAAAAAgBu0b+ivuEcH6/dD2tqtxx/LUO/ZsVr+0wkXJwMA96JhCQAAAACAm3hbLZp9a1dFT+yjYF9Pm/r5vCKNWRSvh1fsUF4hI+IA6gYalgAAAAAAuNltXZspYXqkBrQOsVufv+GwBsyN077TWS5OBgCuR8MSAAAAAIBqoHV9P8U8PEh/uKq93fqOk+fVZ3asFscfc3EyAHAtGpYAAAAAAFQTnhYP/eOmK/Tl7/qpgZ/tiHh2QbHuWZqg332yXTkFRW5ICADOR8MSAAAAAIBq5oYuTZQwI0pD2ta3W1+4+aj6zVmr3acyXZwMAJyPhiUAAAAAANVQi2BffT9loP48vKMMw7a+OyVLfefEauHmIzJN0/UBAcBJaFgCAAAAAFBNWS0een5EZ62+f4AaB3jZ1HMLS/S7T37SxGXblZXPiDiA2oGGJQAAAAAA1dw1YY2UMCNKwzo0tFtfFH9MfWfHaseJ8y5OBgCOR8MSAAAAAIAaoFk9H339wAA9e10nedgZEd93Jlv9567VWxsOMSIOoEajYQkAAAAAQA1h8TD012vC9P2UgWpez8emnl9UoodW7NTdS7bpfF6hGxICwOWjYQkAAAAAQA0T1b6hEmZEakSnRnbrH28/od6zYhV/LN21wQDAAWhYAgAAAABQAzUK8NaXv+uvl27oIoudGfHk1BwNfm2dXos7yIg4gBqFhiUAAAAAADWUh4ehJ4Z1UMzDg9Qy2HZEvKC4RNNWJuqOD7YqLafADQkBoPJoWAIAAAAAUMMNalNf26ZH6eYrmtitf5Z4Sr1mxWrT4TQXJwOAyqNhCQAAAABALdDA30srJ/XVv265Qp4W2xHxw2m5GvLGOv3zx2SVlDAiDqD6omEJAAAAAEAtYRiGpke219pHBqtNiK9NvajE1J++3K1bF27W2ex8NyQEgEujYQkAAAAAQC3Tr1WIts2I0shuTe3W/7PntMJnxmrtgVQXJwOAS6NhCQAAAABALRTs66nl9/TRa7d3lZfF9tf/4xl5GjZ/g/7+XRIj4gCqFRqWAAAAAADUUoZh6JHBbbXh9xHq0NDfpl5cYuqvq/fp+nc3KiWTEXEA1QMNSwAAAAAAarnw0CDFPxapu8JD7da/TTqr8JkxWrP/rIuTAYAtGpYAAAAAANQBgT5WLb47XG+P7i4fq2074FRmvq55e4Oe+XqfihkRB+BGNCwBAAAAAKgjDMPQff1ba9O0IercOMCmbprSc98m6Zq3NuhERp4bEgIADUsAAAAAAOqcbs3qacu0Ibq3Twu79R+TUxU+M0bf7Dvt4mQAIFndHQAAAAAAALiev7dVC8eG66r2DfVI9E7lFBaXq5/JLtCIdzbpyWEd9Nx1nWS1c6fx38rJkWJipFOnpKwsKSBAatpUioqS/Pyc9UoA1DY0LAEAAAAAqMPu7dtS/VoFa8yieCWeyrSpv7zmZ609kKqPxvdWy2Bfu3skJUnz5knvvy+lp9vWg4OlSZOkKVOksDCHxgdQCzESDgAAAABAHdelSaA2TRui+we0sltfdyhN4TNj9J/dKeWez8iQRo2SOnWSZs+236yUSp+fNat03ahRpccBwIXQsAQAAAAAAPL1tOitO3roo3G9FOBtsamfyynUzQs26w//3qWCohIdPy5FREjR0ZX7OdHRpccdP+6g4ABqHRqWAAAAAACgzNjwUMU/Fqnw0Hp26zNjDmjwa+s09LYcJSZW7WckJkojRnCmJQD7aFgCAAAAAIByOjYK0LpHI/TI4DZ26/HH07W/f6zU4WSVf0ZiojR5cpUPB1CL0bAEAAAAAAA2fDwteu32blp+T28F+djes9fwKZRx61ZpaKJkKbazw6VFR0v7919uUgC1DQ1LAAAAAABwQaO6N9e26VHq2zLYbt3odVC6a50UnF2l/efPv4xwAGolGpYAAAAAAOCi2jbw09pHBmvqoHZ260aTDGl8rNSp8nfSWbhQysm53IQAahMalgAAAAAA4JK8rB4a4XulzM/6ysz1tKkb3kUybtomDf9JslZ8RDwtTYqJcWRSADUdDUsAAAAAAFAhp05JOtBUWhQl83iI3TVGjyPS3Wul+pkV3jclxUEBAdQKNCwBAAAAAECFZGX990Gmr/TJIJmbOthdZzTKlMatlbocrdC+mRXvbQKoA2hYAgAAAACACgkI+NU3JR5SXBeZn/aXmeNls9bwKpZxw3bpuu2Steii+wYGOjQmgBqOhiUAAAAAAKiQpk3tPHm4sfRhlMwjDeweY3Q9Wnq2ZYMLn0bZpImDAgKoFWhYAgAAAACAComKkoKD7RSyfaRPB8rcECbTtC0bDbOkcbFS1yOSyi8ICSndFwB+QcMSAAAAAABUiJ+fNGnSBYqmIa3vJC0fKDPL26ZseJbIuO4n6YYEyfN/I+KTJpXuCwC/oGEJAAAAAAAqbMqUSyw42rD0LuKHGtotG12OS+NjpUYZFdsPQJ1DwxIAAAAAAFRYWJg0cuQlFuV4SysGyFzbWWaJbdmony3dHaee9x5Shw52ZsgB1Gk0LAEAAAAAQKUsWCB17XqpVYa0uaP0ySCZmT62VWuJfmq4U2MWxSsjt9ApOQHUTDQsAQAAAABApQQFSatXV6RpKel4A2lRpMwDje2WP91xUr1mxWrLkXSHZgRQc9GwBAAAAAAAlRYaKsXFVWA8XJJyvaXP+smMuUKGadiUD57LUcQbcZode0CmvduMA6hTaFgCAAAAAIAqCQqSVqyQ9u2Tpk+XgoPtrwsJkWbMMJT0UXut+/1gtQ7xtVlTWGxqxhe7dPv7W3Qup8C5wQFUa1Z3BwAAAAAAADVbWJg0c6b0wgtSTIyUkiJlZkqBgVKTJlJUlOTnV7q2o0K0bXqkfvfJT1qZeMpmry92pajXzFgtHd9LA9vUd/ErAVAd0LAEAAAAAAAO4ecnXX/9pdeF+Hlpxb199FrcQf3xy90qLC4/Bn4kPVeRb67X36/vrD9EtZeHh+0YOYDai5FwAAAAAADgcoZh6PdD2mndoxFq18DPpl5cYurJ/+zRzQs260xWvhsSAnAXGpYAAAAAAMBt+rQMVvxjkRrdvZnd+ld7Tyt8Zqxik1NdnAyAu9CwBAAAAAAAbhXk66llE3pr3qhu8rbatipOnM/TsPnr9cJ3SSou4S7iQG1HwxIAAAAAALidYRh6cGAbbfx9hMIa+dvUS0zpb6v3acQ7G3XqfJ4bEgJwFRqWAAAAAACg2ujRPEhbH4vU+F6hduvf7z+r8Fmx+n7/GRcnA+AqNCwBAAAAAEC1EuBt1Qd3heu9O3vI19O2dZGSma9r396ov63eq6LiEjckBOBMNCwBAAAAAEC1YxiGJvVrpc3TInVFkwCbumlKL3y3X8Pf2qDjGbluSAjAWWhYVnPffvut7r33XvXp00fdu3fXddddp1dffVVpaWnujgYAAAAAgNNd2TRQm6cN0aR+Le3WYw+cU/jMWH21J8XFyQA4Cw3LamzWrFl69NFHtXHjRuXl5clqterQoUN69913dcstt+jQoUPujggAAAAAgNP5eVn13p099eFd4fL3stjUz2YX6Mb3NuuJL3erkBFxoMajYVlNrVq1SvPnz5dhGPrDH/6grVu3atu2bVq+fLnatWun06dP69FHH1VxcbG7owIAAAAA4BLje7dQ/PRI9Whez2791R+TddWb63UkLcfFyQA4Eg3LaqikpERz586VJN1zzz26//775ePjI0nq3r27Fi5cKD8/P+3fv18rV650Y1IAAAAAAFwrrFGANkyN0JSBre3WNxxOU/jMWH2x65SLkwFwFBqW1dDGjRt18OBBSdKkSZNs6k2bNtWtt94qSTQsAQAAAAB1jo+nRW+O6q5l43urno/Vpp6WW6jbFm7R9M8TVVDEiDhQ09CwrIY2bdokSWrbtq2aNWtmd82gQYMkSfHx8crJ4VR3AAAAAEDdc2fP5op/LFK9WwTZrc9Ze1ARr8fpQGq2i5MBuBw0LKuh/fv3S5Lat29/wTWtW5ee+l5cXKwDBw64JBcAAAAAANVN+4b+int0sH4/pK3d+tZjGeo1K1af/nTCxckAVBUNy2ooJSVFUuno94U0adKk7PGZM2ecngkAAAAAgOrK22rR7Fu7KnpiHwX7etrUz+cV6c5F8XokeqfyCrl5LVDd0bCshrKysiRJvr6+F1zzy014fr0eAAAAAIC67LauzZQwPVIDWofYrc9bf0gDX4tT0hl+jwaqMxqW1VBRUZEkydPT9q9Cv/Dy8ip7XFzMX4cAAAAAAJCk1vX9FPPwIP3hKvuXWfvpxHn1mR2rj7Ydc3EyABVFw7Ia+uXsycLCwguuKSgoKHt8scYmAAAAAAB1jafFQ/+46Qr9e3I/NfCz/Z05K79Y4z9K0H2f/KScgiI3JARwMTQsqyF/f39JUl5e3gXX5Obmlj0OCAhweiYAAAAAAGqaG69oooQZUYpoW99ufcHmI+o/J067T2W6OBmAi6FhWQ39crOd06dPX3DNLzfmkcrfgAcAAAAAAPxPi2BfrZkyUP93dUcZhm19V0qm+s1Zq/e3HHV9OAB20bCshsLCwiRJBw8evOCaw4cPS5KsVqvatGnjilgAAAAAANRIVouHXri+s1bfP0CNA7xs6jmFxZr88XZNXJqgrHxGxAF3o2FZDfXv31+StH//fp09e9bumvXr10uSevToUe6O4QAAAAAAwL5rwhopYUaUhrZvYLf+Yfwx9Z0dqx0nzrs4GYBfo2FZDfXu3VtNmzaVaZp6++23beonT57UF198IUm66667XB0PAAAAAIAaq1k9H33z4EA9fW2YPOyMiO87k63+c9fqrQ2HZJqm6wMCoGFZHXl4eGjGjBmSpA8++ECvvfaacnJyJEk7duzQpEmTlJOTo7CwMN1www3ujAoAAAAAQI1j8TD09LWd9N2DA9WsnrdNPb+oRA+t2Km7l2zT+bxCNyQE6jYaltXUrbfeqvHjx0uSXn/9dfXt21e9e/fW6NGjdfDgQTVu3FhvvfWWLBaLm5MCAAAAAFAzXdWhoRKmR+nasEZ26x9vP6Hes2K17Vi6a4MBdRwNy2rsr3/9q9544w0NGjRI/v7+ys/PV4sWLTRhwgStXLlSzZs3d3dEAAAAAABqtMaB3lp1X3+9eENnWezMiCen5mjQa+v0WtxBRsQBF7G6O0B1NGfOHL355psKDQ3VmjVrKnVscnKyli1bpk2bNunYsWMqKipS48aNFRYWpptvvlnXXHONrNaK/88+fPhwDR8+vLIvAQAAAAAAVJCHh6Enh3XUkLYNdNfieB3LyCtXLygu0bSVifrx57N6984eCvGzvdP4xeTkSGvWGNqypYFycjzk51eikycNDRsm+fk58pUAtQMNy9/YsWOH3nnnnSod+9prr2n+/PkqKioq9/zRo0d19OhRff/99+ratateffVVtWvXzhFxAQAAAACAgwxuW18JM6I0adl2fbknxab+WeIpJRzP0NLxvdW/dcgl90tKkubNk95/X0pPt0hqU64eHCxNmiRNmSKFhTnkJQC1AiPhv3L06FE9/PDDKiys/AV1X3jhBb3++utlzUqr1aorr7xSffr0UUjI//4llpiYqAkTJuj48eMOyw0AAAAAAByjgb+XPp/cV/+8+QpZ7YyIH0rL1ZA31ulfPyarpMT+iHhGhjRqlNSpkzR7tpSebv9npadLs2aVrhs1qvQ4ADQsyyQlJWncuHE6c+ZMpY9dvXq1Fi1aVPb9ddddp5iYGEVHR2vJkiVau3atnnvuOfn6+kqSzp49q6lTp3LtCwAAAAAAqiHDMDQjqr3iHh2sNiG+NvWiElN//HK3bl24WanZBeVqx49LERFSdHTlfmZ0dOlxnN8EMBIuSfr888/19NNPKzc3t9LHFhYW6pVXXin7fujQoZo9e7Y8PP7XC/b09NSYMWMUGhqqBx98UEVFRdq1a5e+/PJL3XzzzQ55De5QXFzs7gioxn77/uD9govh/YLK4j2DyuD9gsrg/YLK4P1S+/VqHqjNvx+sBz7dqZW7bEfE/7PntMJnxmjRXT00uE19padL111n0a5dtmdmVkRionTddaZiYooVFHSZ4VGj1fV/vxhmHT7NLyUlRTNnztTKlSvt1ity051Vq1Zp+vTpkkrHwL/99tuL3r37ueee05IlSyRJV155paIr+ycXN0pISFBJSYm7YwAAAAAA4FKmaWr5/hzNTshQoZ1fiy2G9GC3QO16v7t+/KH+Zf+8oUPT9OqrBy57H8CVPDw8FB4e7pi9HLJLDTRv3jyNGDGiXLOyXbt2mjJlSqX2WbVqVdnjQYMGXbRZKUljxowpe7xr1y4dPXq0Uj8PAAAAAAC4lmEYujPMXwuuaaiWARaberEpvbkjUz/WT5J88y/75/3wQ4iOHPG+7H2AmqrONizfe+895eTklH3//+3dd3xUVf7/8fekQggktAQEpCdUAZEiRLAColgARVFYURELLIK7CLtLEXBRWUCxoKgUAQ1VRQFRRLp0kCIJTaqSACGkEFLn90e+3N9MpmQmCWEmeT0fDx6Pe+fcOfecyYeZ5DOnPPbYY1q8eLFq167tch1ms1nbtm0zzjt27JjvcyIjI1W1alXjPL8RnAAAAAAAwDM0qhSgL7pVVZebbde1lCRTnfNS//VSrQuFvtfSpVXzvwgooUr9GpbNmjXT66+/rrZt27r93LNnzyopKcmqLldERkYam/vs37/f7ft6imbNmsnX1/abJUDKXV/jwIEDxjnxAmeIF7iLmIE7iBe4g3iBO4iX0uu71mbN2nFGw5b/rqtZ1nPETcHpMvf+VdoakfvPXLD1LFeuDNNHH1VWUFBRtBjexlveX/bv339dlg8stQnLtm3bqmfPnrrnnntkMhXszePEiRNW5zfffLNLz6tZs6ZxfOrUqQLd2xP4+vrKz6/UhhDcRLzAHcQL3EXMwB3EC9xBvMAdxEvpMqhDXXWoW1l95u1STHyKVZnJR1KHwzLXvCitvFVKLeN2/ZcumbR5s5/uv7+IGgyvVtreX0rtlPCPPvpI9957b4GTlZKMUZJS7sKiVapUcel5llPCLesAAAAAAADeo3n1Cto+9A51CKlpt9x088XcKeK14wtUf5ztxuRAqVBqE5ZF4fLly8ZxuXLl5OPj2ssZHBxstw4AAAAAAOBdggP91Ce0lcyrWsqcaTtl1xSUIVPvbVLUIcnk3tTZ5OSiaiXgXUhYFkJ6+v/f+atMGdeHdwcEBBjHGRkZRdomAAAAAABQvIKDJf1eS5p/h8zny9u9xtTuqNRni1Q+zeV6y9uvCijxSFgWQmZmpnHs6uhKSVZrDmRlZRVpmwAAAAAAQPGqVu3/DhLKS1/eIfM++3tcmGpckvqtl+q5Ntc7PLyIGgh4GRKWhWC5O5M7OyJZJin9/f2LtE0AAAAAAKB4de4shYb+30mWr/RTC5lX3Cpzhp0p4mUzZXp0u9T5oOTjOJdQsWJuvUBpRMKyEMqWLWscW04Pz4/lNPDAwMAibRMAAAAAACheQUHSgAF5HoypIc3rJHN8BbvPMd12XOqzWapwxW75gAG59QKlEQnLQggJCTGOU1NTZTabXXpeSkqKcRxqfAUDAAAAAAC81Ysv2nkwMVj6MkrmPXXsPsd0U6LUb4PU4C/X6gNKCRKWhRBusZhEdna2Ll265NLzzp8/bxxXqVKlyNsFAAAAAACKV0SE1LOnnYJsX2ltc5mXt5b5qp9NsalMpkwP75TuOiD5ZkvKradhw+vcYMCDkbAshNq1a1udnz592qXnnTlzxjiuW7dukbYJAAAAAADcGLNmSc2aOSg8cpM0v5PMf4XaLTbd+of05GY1bJuqWbOuWxMBr0DCshBq1KhhNaX70KFDLj0vJibGOG7UqFFRNwsAAAAAANwAISHSDz84SVpeLidFd5R5Zz27xabwyzp3zwb98MfZ69dIwAuQsCykdu3aGcdbtmzJ9/qYmBhduHDBOG/fvv11aRcAAAAAACh+NWpImzY5mB4uSTk+0vqmMn/TRuY0f5vilIwsPTl/twYt+U1pmdnXt7GAhyJhWUhdunQxjn/55RfFxcU5vf6rr74yjuvXr6/IyMjr1jYAAAAAAFD8S903CwAASHJJREFUQkKkpUul2Fhp2DDJ7n67x6opZHknVTdXtFvHp1tPqf30jYqJT76ubQU8EQnLQurSpYvCwsIkSRkZGRo5cqSysrLsXrtx40YtXrzYOO/Xr1+xtBEAAAAAABS/iAhp6lTp7Fnpu++yNXbsCf3jH6c0duwJffddtv6MDdKJdzpoxF0N7D5//1/JavPuRs3b5dqeGUBJQcKykAICAjR8+HDjfMuWLRo4cKDVBjxZWVlatGiRhgwZouzs3OHcEREReuyxx4q9vQAAAAAAoHgFBUndupnVo8dFPfHEefXocVHdupkVFCT5+/rorQcaa+Xz7VSlXIDNc1MzsvW3r/bq2ei9Sk23P0AKKGn8bnQDSoJHH31Ue/bs0cKFCyXlJi27dOmiyMhIBQcH69ixY0pISDCuDw0N1XvvvSc/P15+AAAAAAAgdWsUpr3DO+upBbu1/vhFm/I5O09r26lLWtivtZpVr3ADWggUH0ZYFpE33nhDL774ovz9cxfMzcnJ0aFDh7Rjxw6rZGX9+vU1f/581atnf0cwAAAAAABQOt0UUkY/DWqv0fdFyGSyLT8Un6J20zfq822nZDabi7+BQDFhiF8RMZlMGjZsmB566CEtWbJEmzZt0rlz55SWlqaQkBA1btxY3bp100MPPaSAANsh3gAAAAAAAH6+Pnqja6Q61aukp7/co7jkdKvytMwcDVz8m9Ydu6CPet6i8mVI7aDkIarz6Nmzp3r27Fng59evX1+vv/66Xn/99SJsFQAAAAAAKE3uaVhVe4d3Vr8vd2vNkQs25Qt2n9X2U4la2K+1WtYIuQEtBK4fpoQDAAAAAAB4oPDygVo1sL0mdIuUj50p4kcupOr29zfpo80nmCKOEoWEJQAAAAAAgIfy9THp3/dGaO2LHXRThTI25elZORr89X71mbdLl9Myb0ALgaJHwhIAAAAAAMDDdapfWXuGd9L9jcLsli/Z95dunbZBO04lFm/DgOuAhCUAAAAAAIAXqBocqO+ebau3H2gsXztzxP9IuKKoDzfp3Q3HmSIOr0bCEgAAAAAAwEv4+Jj0z7saaMPLHXRzaFmb8sxss4YvP6hH5+xQwpWMG9BCoPBIWAIAAAAAAHiZ2+tU0u7hnfRQ03C75csPxunWqRv064mEYm4ZUHgkLAEAAAAAALxQpaAAff1MG017uKn8fW2niJ9KTFOnj7bonV+OKieHKeLwHiQsAQAAAAAAvJTJZNLQO+pp8+Ao1ascZFOenWPWyBWH1GPWdp1PSb8BLQTcR8ISAAAAAADAy91WK1S7Xu2k3rdUt1u+KiZeraZu0IZjF4u5ZYD7SFgCAAAAAACUACFl/bWwX2t92LO5Av1sUz5/Jl3V3R9v0cQ1h5XNFHF4MBKWAAAAAAAAJYTJZNJLHero1yFRalilnE15jlka80Osun26VeeSrt6AFgL5I2EJAAAAAABQwrSsEaKdr3ZS31Y17Jb/fOSCWk3boJ+PnC/mlgH5I2EJAAAAAABQApUv46d5fVvp08daqKy/bQooLjldXWZu1ZgfYpSVnXMDWgjYR8ISAAAAAACghDKZTHqu3c3a9vc71Dgs2KbcbJYmrjmiez/5VWcvp92AFgK2SFgCAAAAAACUcM2qV9D2oXfomTa17JZvOJ6gVlM3aNWhuGJuGWCLhCUAAAAAAEApUC7QT7P6tNTcJ1uqXICvTfmF1Aw98Pl2vf7978pkijhuIBKWAAAAAAAApUi/1rW049U7dEv1CnbLJ687pjs/2qJTl64Uc8uAXCQsAQAAAAAASplGYeX169+j9EL72nbLfz15Sa2mbtC3B84Vc8sAEpYAAAAAAAClUll/X33c+xZ99fStKh/oZ1N+KS1Tj87ZoWHfHlBGFlPEUXxIWAIAAAAAAJRifVrW0K5hndS6Zojd8vc2/qGoDzbp+MXUYm4ZSisSlgAAAAAAAKVcgyrltGlwRw2Jqmu3fOeZy7p12gYt+e3PYm4ZSiMSlgAAAAAAAFCgn6/ee6SZlj1zm0LL+tuUJ13N0uPzdumVZft1NTP7BrQQpQUJSwAAAAAAABgeaVZdu4d1UrubQ+2Wz9hyQh3e36Qj51OKt2EoNUhYAgAAAAAAwEqdSkHa8EpHvda5vt3yvX8mqfW7G/TVnrPF3DKUBiQsAQAAAAAAYMPf10eTezTRd8+2VeUg2yniKenZemrBbg1c/JuuZGTdgBaipLLdsx4AAAAAAAD4Pw80Cdee4Z3Vd8Fubfojwab8822ntO3kJS3s11qNw8u7XO+VK9L69dK5c1JKihQcLFWrJnXuLAUFFWUP4G1IWAIAAAAAAMCpmqFltfbF2zX2x1i9tfaozGbr8gPnktXm3Y36sGdz/a1NLad1HT4szZghzZkjJSbaloeGSgMGSC++KEVEFFUP4E2YEg4AAAAAAIB8+fn66M37G2vV8+1UtVyATfmVzGwNWLhXz3y1RynptlPEL1+WevWSIiOld9+1n6yUch+fNi33ul69cp+H0oWEJQAAAAAAAFzWJTJMe1/rrLvqV7Zb/sWuM2r73kbt/yvJeOzsWSkqSlq2zL17LVuW+7yz7O1TqpCwBAAAAAAAgFuqVyijHwfdrnFdIuVjsi2PiU9Ru/c26tOtJ3Xpklldu0oHDhTsXgcOSN26MdKyNCFhCQAAAAAAALf5+pg0pkuE1gy6XdUrBNqUX83K0aAl+9Ri1G4dPJJZqHsdOCA9+2yhqoAXIWEJAAAAAACAAruzQRXtGdZZXSKq2i0/E/yn9PRGKaxwQySXLZOOHClUFfASJCwBAAAAAABQKGHlA7Xy+Xb6b/dG8rUzR9xUMVV6cpPU8g9JZtsKXPTxx4VoJLwGCUsAAAAAAAAUmo+PSSPvbqhfXrpdNUPK2JSb/HJkuueA1GOnFFiwKeKzZ0tXrhS2pfB0JCwBAAAAAABQZKLqVtae4Z3Vtkq43XJTxDmp33qp2iW36750SVq/vrAthKcjYQkAAAAAAIAiVblcgF4IayPzuiYyZ9uZIh6SJj2xWWp9TO5OEY+LK6JGwmORsAQAAAAAAECRS001SbvqS9EdZb5c1qbc5GuW6c7fpUd2SGUyXK43ObkIGwmPRMISAAAAAAAARS44+P8OzlWU5nWS+Ug1u9eZ6sflThG/KcGlesuXL6IGwmORsAQAAAAAAECRq2aZn0wPkJbfJvPPzWTOsk1HmSpclfpskdoeUX5TxMPtL42JEoSEJQAAAAAAAIpc585SaKjlIyZpb13pq44yXwqyud7kY5bpjhip5zapbLrdOitWzK0XJRsJSwAAAAAAABS5oCBpwAA7BfGh0vxOMsfcZPd5prrnpf7rpZoXbMoGDMitFyUbCUsAAAAAAABcFy++6KAgw19acavMP94ic6adKeLB6dJjv0q3x0qm/z9F3GF9KFFIWAIAAAAAAOC6iIiQevZ0VGqS9teWvrxD5oRytqU+kqnDYanXVqncVfXsKTVseF2bCw9BwhIAAAAAAADXzaxZUrNmTi64UCF3ivjBmnaLTbUvyG/AevX7z/nr00B4HBKWAAAAAAAAuG5CQqQffsgnaZnpJ/3QSuZVLWXO9LUpzg7MUK8vt+o/q2KUlZ1z/RoLj0DCEgAAAAAAANdVjRrSpk3Opof/n99rSfPvkPl8eZsis1n6789HdPfHv+pMYtr1aSg8AglLAAAAAAAAXHchIdLSpVJsrDRsmBQaav+6iubyGlIlSo81utlu+aY/EtRq6nqt+D3u+jUWN5TfjW4AAAAAAAAASo+ICGnqVGniRGn9eikuTkpOlsqXl8LDpc6dpaAgP0kt9PDuynpx6T6lpGdb1XHxSqZ6zNqu1zrX13+7N5K/L2PyShISlgAAAAAAACh2QUHS/fc7v6bvrTXVplao+szbpb1/JtmUT1l/TJv+uKivnm6tOpWCrlNLUdxIPwMAAAAAAMBjNawarC1DovRyhzp2y7edStSt0zbomwN/FW/DcN2QsAQAAAAAAIBHK+Pvqw96Ntfi/q0VUsZ2wnBiWqZ6ztmpod8cUHpWtp0a4E1IWAIAAAAAAMAr9LrlJu0a1kltaoXaLX9/0x/q+P5mHb2QWrwNQ5EiYQkAAAAAAACvUa9yOW18paNe7VTPbvnus5fVetoGLdr7ZzG3DEWFhCUAAAAAAAC8SoCfj6Y+1FTfDGijimX9bcqT07P0xPxdenHJPqVlMkXc25CwBAAAAAAAgFd6qGk17RneSbfXrmi3fObWk7p9+ibFxqcUc8tQGCQsAQAAAAAA4LVurhikdS930Ot3N7Bbvu+vJN327gbN33WmmFuGgiJhCQAAAAAAAK/m7+ujSd0ba+Xz7VSlXIBNeWpGtvp/tUfPLtyr1PSsG9BCuIOEJQAAAAAAAEqEbo3CtHd4Z3WuV9lu+Zwdp9Vu+kYdPJdczC2DO0hYAgAAAAAAoMS4KaSMfhrUXqPvi5DJZFv+e1yK2r63QZ9vOyWz2Vz8DUS+SFgCAAAAAACgRPHz9dEbXSP14wvtFV4+0KY8LTNHAxf/pv5f7VHyVaaIexoSlgAAAAAAACiR7mlYVXuGddI9DavYLV+w+6zavLdBe89eLuaWwRkSlgAAAAAAACixqlUoox8Gttf4bpHysTNF/PD5VN3+/ibN2HKCKeIegoQlAAAAAAAASjRfH5P+c2+Efn7xdt1UoYxNeXpWjl5Ztl9PzNuly2mZN6CFsETCEgAAAAAAAKVC5/pVtGd4J3WLrGq3fPG+v9T63Q3aeTqxeBsGKyQsAQAAAAAAUGpUDQ7U98+101sPNJavnTnixy9eUccPNum9jceZIn6DkLAEAAAAAABAqeLjY9KIuxpo/csddHNoWZvyzGyzhn17UD3n7FDClYwb0MLSjYQlAAAAAAAASqUOdSpp9/BOeqhpuN3ybw/G6dapG7T15KViblnpRsISAAAAAAAApValoAB9/UwbTXu4qfx9baeIn0pMU6cPN2vyL0eVk8MU8eJAwhIAAAAAAAClmslk0tA76mnTK1GqWynIpjwrx6zXVxzSQ7O260Jq+g1oYelCwhIAAAAAAACQ1ObmUO0e1km9b6lut3xlTLxaTtmgDccuFnPLShcSlgAAAAAAAMD/CSnrr4X9WuvDns0V6GebOvsz6aru/niLJq45rGymiF8XJCwBAAAAAAAACyaTSS91qKNfh0SpYZVyNuU5ZmnMD7G6/9OtiktminhRI2EJAAAAAAAA2NGyRoh2vtpJfVvVsFu+5sgFtZy6Xj8fOV/MLSvZSFgCAAAAAAAADpQv46d5fVvp08daqKy/bSotLjldXWZu1djVsUwRLyIkLAEAAAAAAAAnTCaTnmt3s7b9/Q41Dgu2KTebpQk/Hda9H/+qPy9fvQEtLFlIWAIAAAAAAAAuaFa9grYPvUPPtKllt3z98YtqOXW9foiJL+aWlSwkLAEAAAAAAAAXlQv006w+LTX3yZYqF+BrU34hNUPdP9umkSsOKTM75wa00PuRsAQAAAAAAADc1K91Le18tZNuqV7Bbvk7vxzVXTO26NSlK8XcMu9HwhIAAAAAAAAogMiwYP369yi90L623fItJy6p1dQNWn7wXDG3zLuRsAQAAAAAAAAKqKy/rz7ufYu+evpWlQ/0sym/lJapR2bv0H9WxdyA1nknEpYAAAAAAABAIfVpWUO7hnXSrTVC7Jb/9+cj+o6Rli4hYQkAAAAAAAAUgQZVymnzkI4aHFXXbvlvfyUVc4u8EwlLAAAAAAAAoIgE+vlq+iPNtPRvtym0rL/xuMkk3VG30g1smfewnVgPAAAAAAAAoFAebV5dt9YI0YdbTujohVQ9dWsNda5f5UY3yyuQsAQAAAAAAACug9qVgvTOg01udDO8DlPCAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9hMpvN5hvdCHiHXbt2WZ37+JDvhnM5OTnGMfGC/BAvcBcxA3cQL3AH8QJ3EC9wB/ECd3hDvFi2UZJat25dJPX6FUktKJXyBiXgDPECdxAvcBcxA3cQL3AH8QJ3EC9wB/ECd5S2ePHM9CwAAAAAAACAUokRligwTx2ODAAAAAAAgOvveo38ZA1LAAAAAAAAAB6DIXIAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMvxvdANg6duyYoqOjtW3bNp05c0ZZWVkKCwtTRESEevToofvuu09+fkX/o/vrr78UHR2tTZs26eTJk7p69aqqVq2qevXqqXv37urevbvKli3rVp379u3T4sWLtWPHDsXFxclsNis8PFxNmzbVww8/rE6dOslkMrlcn9ls1po1a7R8+XLt379fFy9eVNmyZRUeHq727durV69eatSokbtd92rEi3syMjL04IMP6uTJkxo8eLCGDBlSqPq8DfHi2JUrV/Ttt99q06ZNOnTokC5duqSsrCyFhoYqIiJCHTt2VO/evVWhQgV3u++1iBfHkpOTtXTpUq1bt06HDx9WUlKSQkJCVL16dXXq1EkPPfSQ6tSp42bPvRvx4r6EhAQ9+OCDunjxoiQpNja20HV6E2LGvkGDBmndunVu3f/222/XnDlz3HqOtyFenIuPj9fy5cu1bt06nTp1SgkJCSpTpoxq1qyptm3bqk+fPqpfv75bdXoz4uX/GzlypL7++utC9att27aaN29eoerwZMSLY1lZWVqxYoXWrFmjAwcOKCEhQSaTSZUrV1aLFi3UvXt33XPPPUXye1FeJrPZbC7yWlFg77//vj7++GNlZWU5vKZZs2aaPHmy6tWrV2T3jY6O1ltvvaW0tDSH19SpU0fvvPOOWrRokW99mZmZmjBhghYuXOj0uqioKE2aNElhYWH51hkXF6dhw4Zp165dDq8xmUx65plnNHz4cAUEBORbp7cjXtz35ptv6osvvpCkUpewJF4cW7lypd544w0lJiY6vS44OFijRo1S7969863T2xEvjq1evVpjxoxxGi8+Pj4aMGCAhg4dqsDAwHzr9HbES8G8+uqrWrVqlXFemhKWxIxjd9xxh+Lj4/O9zlJJT1gSL87Nnj1b06dP15UrVxxe4+Pjo+eff17Dhg2Tj0/JnmhJvFgjYekc8eJYTEyMXn31Vf3xxx9Or2vevLmmTZumWrVq5VunO0hYepCJEydavQn4+fkpMjJSZcuW1bFjx3Tp0iWjrEqVKlq0aJFq1KhR6PvOmTNHkyZNMs5NJpMaNmyo0NBQnThxwuoXprJly2rBggVq2rSpw/rMZrMGDx6sNWvWGI8FBgYqMjJSvr6+OnLkiFJSUoyyevXqaeHChU5HLSUkJKhPnz46deqU8VhoaKgaNGigtLQ0xcbGWr3BPPDAA5o6darrL4IXIl7cH+W2YMECjR8/3jgvTQlL4sVxvORtoyRVqlRJderUka+vr06cOKHz589blQ8ZMkSDBw/O/wXwUsSL43hZvHixRo8eLctfn2rUqKGaNWvqypUrio2NVUZGhlEWFRWlmTNnytfX1/UXwssQLwUbdf3DDz9o6NChVo+VloQlMeP8d97bb7/dOI+KinKpb02aNNFrr73m0rXehnhxHC9ms1njx4/Xl19+aTzm6+urm2++WVWrVlVcXJxOnjxp9Zw+ffpY/T5c0hAvtvEya9Ysbd682a3+HD16VOfOnTPOhw0bphdffNGtOrwB8eL4/eXQoUN6+umnrZ5Xvnx5RUZGymw2KyYmRqmpqUZZ1apVFR0drZo1a7r+QuTHDI+watUqc0REhPFvyJAh5vPnzxvlGRkZ5ujoaHOLFi2Max599FFzTk5Ooe67Z88ec+PGjY06n3rqKfPJkyeN8pycHPPq1avN7dq1M67p1KmT+cqVKw7r/Oyzz6z6Mm7cOHNSUpJRnpaWZp4xY4a5SZMmxjWvvPKK03a+8MILxrXNmzc3f/nll+bMzEyjPD4+3vzqq69a3Xfu3LmFeGU8G/HiPF7smT17tjkyMtLqXtOnT3e7Hm9EvDiOl927d1vFxV133WVet26dTd+3bNli7tKli9W9161bV4hXx3MRL47jJSYmxty0aVPj2i5duph37Nhhdc3ly5fNEyZMsLrv1KlTC/HKeDbixf3PI7PZbL548aK5ffv2VveLiIgoUF3ehphxHjObNm2y+kwq7YgX5/HyySef2Lw+p06dsrrm4MGD5kceecTqup9//rmAr4xnI14K9pmU19GjR82tWrUy6h0+fHiR1OtpiBfH8ZKRkWHu2rWrcW3Tpk3Ns2fPNmdkZBjXpKenm2fMmGHVlz59+hTqtcmLhKUHyMjIMN95553GD3nQoEHm7Oxsu9du3LjRKsiWL19eqHs//vjjVv/50tLS7F536NAhqzetGTNm2L3u4sWLVteNHTvW4b2XLFli9Z9q165ddq/bsGGD1XUrVqxwWOeIESOM69q1a2dOTk523HkvRbw4j5e8UlNTzcOHD7f5ozAionQkLIkX5/Hy5JNPWv0iYPlLSl6XLl0y33fffcb13bp1c9x5L0W8OI+XF1980bimY8eO5vj4eId1jhs3zri2VatWVr80lhTEi3ufR5b+/ve/2/1cKumImfxj5tNPPzWue+mll9zqY0lDvDiPl9OnT5ubNWtmlaBwlEi5fPmyuVOnTsa1TzzxhPMXwAsRLwX/TLKUlpZmvv/++61+301NTS1UnZ6IeHEeLytWrLC6bunSpQ7rnD17ttW1GzZscNx5N5XsxSu8xE8//aQ///xTUu4Q5DFjxjhcVyQqKkp9+vQxzmfPnl3g+/7222/au3evcT569GiVKVPG7rWNGjXSK6+8YpzPnTtX2dnZNtctWbLEGBYcGhqqESNGOLx/r169dOeddxrnjvoyd+5c4zgqKkrdu3d3WOfYsWNVuXJlSdKlS5cKvVaHJyJecrnSly1btqhXr176/vvv8722pCJectnry+nTp63WxB0xYoSqVKnisM7Q0FCNHDnSOD9+/LgOHTrk8HpvRLzksteXCxcuWG2C8fLLL6tq1aoO6xwyZIjx2qWmpmrLli0Or/VWxEsud/uyatUq/fDDD5JUqjbxkoiZa5z1xfJzpbRtJJkX8ZLLUV9mzZplLEHSqFEj/ec//3G46UWFChWspvPu2bNHly9fdtgGb0S85CpMXyRp8uTJOnbsmCTJ399f06ZNU1BQUKHq9ETESy5Hfdm4caNxXLduXfXs2dNhnf369VO1atWMc3c3jXOGhKUHWLlypXHcoUMH3XTTTU6vt/zPcvDgQZ0+fbrQ961fv75atWrl9PrevXsbO2MlJCRo+/btNtdYLhx///335/vmZtmXDRs22CwUffnyZas/8nr16uW0vqCgID300EPG+bU/CEoS4iWXvXi5Ji4uTi+88IIGDBig48ePG48/8cQTuvXWW53eo6QhXnLZi5etW7cax4GBgbrvvvuc1iflboTg7+9vnO/fvz/f53gT4iWXvXg5cuSIkVwymUxOvzyTctdBvfYFmiSbNcRKAuIll7PPo7wSEhKMteMCAgI0bNgwl55XUhAzuZzFTExMjHFc2hOWxEsue/GSmZmp7777zjj/97//ne9ayd26ddPTTz+twYMH61//+pfdxIc3I15yufOZlNfOnTu1YMEC43zQoEEl9n2IeMnlKF4s1y9t0qSJ0/p8fX3VvHlz4/zMmTNOr3cHCcsbzGw2a9u2bcZ5x44d831OZGSk1aiOtWvXFujev/76q1v3DQkJUbNmzYzzX375xao8MTHR6lthVxYJb9++vfHhevXqVZsRKNu3bzc+TE0mk0vttLxm9+7dJerbQ+LFebxcs3//fq1fv944Dw0N1eTJk/XGG28Yb/ilAfHiPF7i4uKMeKhVq5YCAgLyrdPf31/BwcHGueVC3N6OeHEeL7fffru2bdumTZs2acGCBQoNDXVan9lstlqkvFy5cvm2wZsQL659HuU1btw4JSQkSModhVu/fn2XnlcSEDP5x0x6errVTqwlNVHgCuLFebzs2rVLSUlJknJ3EW7btm2+dVasWFGjR4/WkCFD1L9/f1WqVCnf53gL4qVgn0mWsrKy9MYbbxibCtavX1+DBg1yux5vQLzkHy/ly5c3jl1JgFtugBwYGJjv9a4iYXmDnT171viwkWQVjM5ERkYaxwUZ4ZOZmWk18szZjlOu3jc2NtZq11RX6gwKCtLNN9/ssE7Lb5lr1qypkJCQfOu0/OUuJydHBw8ezPc53oJ4cR4vefn5+alPnz5auXKl1cjb0oJ4cR4vgwcP1v79+7Vx40a9//77LrUxOTnZ6kuQkjSdk3hx7f2latWqat26db71bdq0SWlpaW61wZsQL+59Hkm5oypWr14tKff1eu655/J9TklCzOQfM7GxscYX9UFBQapVq5ZLbS2JiBfn8bJ7927juF27di61sSQjXtz/TMpr4cKFOnz4sHE+atQol77M90bES/7x0qBBA+N4165dTpOWaWlpVu9JRfllLAnLG+zEiRNW55aB44zlVvGnTp1y+75nzpxRZmamcV67du1C39eyLwEBAapevXqR1ulqG6tWrWq1DkRJmoZHvLjWl7Jly+rJJ5/UihUrNH78eKtpmaUJ8ZJ/X3x8fBQWFqZ69eq5VN9PP/2knJwc47wkjY4iXgrfl2uOHz+usWPHGuetWrVSy5YtC1yfJyJe3OvLxYsXjang/v7+mjRpUr7TN0saYib/vlh+UR8ZGamrV69qyZIlGjRokKKiotSsWTO1a9dOvXv31nvvvae4uDiX7uuNiBfndcbGxhrHDRs2NI63bNmikSNHqmvXrmrZsqURLx9++KExurskIl4K15fU1FR9+OGHxvmdd96pO+64w606vAnxkn9f+vTpYySsk5KS9Pbbbzus66233jIGdPj7++uxxx5zqQ2uKD1zIz3U+fPnjWMfHx+nGz5YshyObFlHQe6btz5X73vx4kXl5OQYi9Na1ulqfXmvzduu+Pj4AtVZuXJlnT171m6d3ox4ca0vHTt2dGmIfUlHvBS+L5bS09P1ySefGOehoaElak1U4qXgfcnOztaVK1cUGxurVatWafHixUpPT5ckhYWFafLkyS7X5S2IF/f6Mm7cOGMJiZdeekkREREu36ekIGby74vltL6kpCR16dLF6ndhKXf6X2Jiovbv369Zs2bplVde0QsvvOByG7wF8eK8L5br54WHhysuLk6jR4+2WhJJyh35dC1e5syZo7Fjx+rBBx90uQ3egngpXF/mzZunixcvSspdhq2kr69MvOTfl/DwcI0YMUITJ06UJEVHR+vcuXMaOHCgmjZtKpPJpN9//10zZ860mqY+ZMiQfNcDdQcJyxvMcmphuXLlHO5MlZflGmoFWaMx73NcndZouZaB2WxWUlKSsY5XYmKi3evy46wvlufu1Gl5reVwb29HvBS+L6UJ8VK08fK///3P6lvM/v37l6g1UYmXgvelXbt2Sk5Otnm8c+fOGj16dImc1km8uN6XFStW6Mcff5QkNW7cuEQml1xBzOTfF8uE5bVdeiXppptuUo0aNZSZmakjR44Yu8FevXpVU6ZM0R9//KFJkya53A5vQLw478uFCxeM4ytXrqhv377GRhdly5ZVRESEAgICdPz4cSMRlZSUpH/84x9KTEzU008/7XI7vAHxUvC+pKWlae7cucZ5ly5dSvz6ucSLa33p16+fatSooUmTJunUqVNat26dwx3AQ0ND9c9//lO9e/d2uQ2uKDl/aXmpayMwJDnczt4ey/UkMjIyCnVfd+5tuTtu3nos21FUfSmK1ydvX70Z8VL4vpQmxEvRxcvChQv1xRdfGOc1atTQgAEDClyfJyJeCtaX5ORku8lKPz8/BQUF6ezZsyUyYUm8uNaXCxcuGFPB/fz8NGnSJJu2lBbEjPO+mM1mq2m+knTHHXdo2LBhVmuSZWZm6scff9SkSZOMUTHLli1TvXr1NHDgQJfb4umIF+d9sRyQ8eabbyopKUmBgYEaPny4nnzySWPTi5ycHK1du1bjxo3T+fPnZTabNWnSJDVq1Ei33Xaby23xdMRLwfuybNkyq+UCXnrpJZef662IF9f7EhERoXvuuUfz58+3ms5uyc/PT88884zuv/9+l+/vKtawvMEsf+iuZvYlWY3qsdyRyVV5n+PqvfOOJrq2MLh0ffpiee5OnZbrQhXk9fFUxEvh+1KaEC9FEy/ffPONxo0bZ5z7+/vr3XffVVBQUIHq81TES8H6cvbsWVWsWFGtWrVS27ZtFR4ebjx/1apV+tvf/qZRo0aVuPcr4sW1vowbN84Y/TBw4EA1btzY5fpLGmLGeV/Onj1r9Udo//799emnn9psoODv768HHnhAS5cuVbVq1YzHP/zwwxK1DBLx4rwvlgmGpKQk+fv769NPP9UzzzxjtUOvj4+P7r33XkVHRxsjsrKysvTWW2+53A5vQLwUvC9ffvmlcdyuXbtS8TlFvLjWlzlz5qhbt26aPXu2cZ+wsDC1adNGrVq1snpPeffdd9W1a1dt2rTJ5Ta4goTlDWaZWLPcyCE/lkFVkG/q8wazq/fOG8yW974efSlonZb/iUvSSAbipfB9KU2Il8L3Zf78+Ro5cqRxT5PJpIkTJ+qWW25xuy5PR7wUrC8NGzbU1q1bFR0drXnz5mnDhg1asGCB1Y6Oy5Yt04QJE1xuhzcgXvLvy/fff6+ffvpJUm6cvPzyyy7XXRIRM877UrNmTe3bt09r1qzRF198oVGjRslkMjmsKzw8XG+++aZxnpaWpkWLFrncFk9HvDjvS97YeP75553uFl6zZk2NGDHCON+/f7/27t3rcls8HfFSsL7s3LlTR48eNc779+/v8v28GfGSf1/mzp2rSZMmGYnKRo0aaf78+dq4caPmz5+v6Oho/frrr/r444+NTYvOnz+vF154wWYt3cIgYXmDlS1b1jh2Z+qy5bdqlt+iFeS+7tw773Bhy3tbDkF2py+W1+bty/Wo05sRLyX3Z3s9EC8Fjxez2axp06ZpwoQJMpvNknL/OBgzZoweeeQRl+vxJsRLweLF3k7Pt912m6Kjo9WsWTPjsejoaB04cMDltng64sV5vFy4cMFIUvv6+uq///2v1fSr0oiYyf89xs/PT7Vq1VK7du1cGikTFRWlunXrGuebN292uS2ejnhxHi+WszxMJpNLa1L26NHD6nnES+mJF0eWL19uHFepUkV33nmny/fzZsSL83g5e/aspkyZYpy3atVK0dHRatOmjdV1Pj4+uuuuu7RkyRJjM8Hs7GyNGjXK7nJJBUHC8gYLCQkxjlNTU40/jPOTkpJiHF8bilvQ++atz9X7+vn5WS3satkOV+uTZCwcnreOvO10p87Cvj6einhxHi+wRrwULF7S09M1bNgwffzxx8Zjvr6+mjhxovr27evyvb0N8VK07y9BQUF66623rEbBfPPNN4Wq05MQL87jZezYscZU8GeffbZEjsp2FzFzfX6HufXWW43jkydPFkmdnoB4cR4v5cqVM45r167t0i7HAQEBVksMHD9+3OW2eDrixf33l6ysLK1evdo4f+ihh0rUZpLOEC/O42Xp0qVGQtPf31+TJ0+2SbZaCgkJ0ZQpU4wv8S9evKhly5a53BZnSFjeYNfWupJys9GXLl1y6XmWa9S48gHl7L6S9U5zrt63UqVKVn+IWdZ5bTc6d+vM25eC1ml5bdWqVV1+nqcjXgrfl9KEeHG/LxcuXFC/fv20atUq47HAwEBNnz69yHe98zTES9G/vzRs2FBNmjQxzvfv31/oOj0F8eK4L999953WrFkjSapXr56GDBnicp0lGTFzfX6HsaynILvWeirixXlfKlasaPc4P5UqVTKOLXcX9nbEi/t92bVrl1UMXI8NUzwV8eK8Lzt27DCO27Vr59LmkREREWrdurVxXlRrWZKwvMFq165tdX769GmXnnfmzBnj2HIqiKtuuukmq7UKCnLfOnXqWJVZ9uXKlSsu/we0vHfevlje49SpUy7VFx8fr6tXrzpspzcjXpzHC6wRL+7Fy/Hjx/X444/rt99+Mx4LDQ3VnDlzdO+997p0P29GvFyf9xfLtpSkPw6JF8fx8sEHHxjHZrNZL7/8sp577jm7/yZPnmxVp2XZO++841I7vAUxc33eYyyn9VmOuvN2xIvzeGnQoIFx7M7US8t16+wtaeKtiBf33182bNhgHFerVk3Nmzd36T4lAfHiPF7i4+ONY8v3mvxYrt9+9uxZl5/nDAnLG6xGjRpWQ3APHTrk0vNiYmKM40aNGrl9X39/f2OdAXfua3ld3h3EmjRpYpXtd6XO1NRUq0Rk3r5YTls4efKk0tLS3GqjyWSy+o/j7YgX5/ECa8SL6/ESExOjvn37Wn241qlTRwsXLrSableSES/O42XFihUaM2aMnnvuOb399tsutVGyTiZYTuHxdsSL43ix3LHzjz/+0KZNmxz+yzvq1lmZtyNmnL/HLF26VOPHj9fQoUPdeo+x/KOzevXqLj/P0xEvzuMlb2Ig7xp3jpw7d844ttxl3tsRL+7/jfTrr78ax506dXK6yVdJQ7w4jxfLNbddfW+RrL8EcWfHcmdIWHoAyx3dtmzZku/1MTExVpnz9u3bF8t9ExMT9fvvvzu8b3BwsNXUN1fq3Lp1q7Gbla+vr9q2bWtV3rp1a2MtjezsbG3bti3fOi3v26RJE5u1Irwd8eI4XmCLeMk/Xo4dO6a//e1vVtNBri0uXZJGaLuCeHEcL7t27dLChQu1adMmffvttzY7NjpiudFO3m/0vR3xwueRu4gZxzGzY8cOLViwQD/88IOWLFni0h+JV69etZq6d9ttt+X7HG9CvDiOlw4dOhjHaWlpLm2gk5ycrMOHDxvnJW1EHfHi+mfSlStXFBsba5yXxnWWiRfH8WL55ZerSVVJVjvO553+XlAkLD1Aly5djONffvlFcXFxTq//6quvjOP69esXeASh5X0PHDiQ7+6lixYtMv5ACwkJsfqgvKZr167G8fLly/MdEWnZlw4dOqhChQpW5RUqVLD6TxkdHe20vtTUVKvdzrp16+b0em9EvOSyFy+wRbzkchQvycnJeuGFF6ym6t51112aM2eOW2tClRTESy578WL5WXTx4kWrheodWb16tdVreNddd+X7HG9CvOTKGy9r165VbGysS/+++OILq3oty+bNm+e0Dd6ImMll7z3G8g/GpKQkl95jvvrqKyUlJRnnPXr0yPc53oR4yWUvXpo0aaKGDRsa559++mm+G4dER0cbI8D9/f1L3I7QxEsuV/5GOnjwoNUXryUtee0K4iWXvXixvMeePXusRpY6cvr0aavBZfbaWRAkLD1Aly5dFBYWJil3yO3IkSMdjtzYuHGjFi9ebJz369evwPdt1aqV1ZTrUaNGOdxZ6tChQ5oxY4Zx/vjjj6tMmTI21/Xq1cvYQerChQsaP368w/svXrxYGzduNM779+9v97qnnnrKOP7ll1+c7jg1btw4JSQkSMrdobUkbpJBvORyFC+wRrzkchQvY8aMsVoX5s4779T7779v9/6lAfGSy1683HXXXVbfFr/zzjtO1wk6ceKExo4da5zXrl3b6pfUkoB4ycXnkeuImVz2YqZr165WfzROnjzZah2xvHbt2qVp06YZ5x06dFCLFi0cXu+NiJdcjt5j/va3vxnHu3bt0syZMx3WGRMTow8//NA47969e4namFQiXq5x5TPJMgFVpkwZt9YpLCmIl1z24qVHjx5WayKPGDHC6Q7kV69e1euvv258IRIUFFRkX6CRsPQAAQEBGj58uHG+ZcsWDRw40GpNmqysLC1atEhDhgxRdna2pNydmB577DG7dd59992KjIxUZGSk7r77bof3fv311401Dw4fPqx+/fpZvYGZzWb9+OOPeuaZZ3TlyhVJubtuDxo0yG59VapU0fPPP2+cL1u2TK+99prVjlVXr17Vxx9/bPWHXKdOndSpUyeHfbEcOj169Gh98sknVuuCXbhwQcOGDbMaXfnyyy9b7YRXUhAvzuMF1ogXx/GyY8cOrVy50jivU6eOpk6darUYdmlDvDiOF39/f/3nP/8xzs+dO6e+fftarQEl5f7Su3TpUj3++OPGMgP+/v4aP3681ZpAJQHxwueRu4gZxzFTrlw5DRs2zDiPi4vTE088YbPT6tWrVzVnzhw9++yzxu/CwcHBmjBhgsO+eyvixfl7TO/eva1G/0+dOlVjxoyxGimWk5OjlStXqn///saoq/Lly1vFWklBvLj+mWQ5dbd69erGEmylCfHiOF4qV66sv//978Z5bGysHn30Uf3yyy/G63DNzp079cQTT2jXrl3GY0OHDjWSwYVlMuc3dhzFZsyYMVq4cKFx7uPjo8jISAUHB+vYsWPGyEEpd+far776SvXq1bNb1913321sHlGjRg2tXbvW4X0/+eQTTZ061eqxBg0aqFKlSjp58qTVh16ZMmX0+eefO10jJysrS6+88orWrVtnPObv76/IyEgFBAToyJEjVrvZ1axZU4sXL3aaXIyLi9NTTz1l9QZSvnx5NWzYUBkZGYqNjbVa5P6uu+7SRx99VGSLvXoi4qVgyeh+/fpp+/btkqTBgwdryJAhBarH2xAvtvHy3HPPWf0hWLduXdWoUcPhve156KGH9PDDD7v1HG9AvDh+f/nwww81ffp0q8fCw8NVp04d4/Po2i+X1+43adKkEjdV0xLxUvAvR7dt22Y1usFyTbGSjJhxHDN5XxtJCgsLU506dZSenq7Dhw9bTfcLDg7WZ599platWjms09sRL47jJSEhQc8995zVGnd+fn6qW7euKlasqOPHj1vNBvD399eHH36ozp07O6zT2xEv+X8mPf/888YouxYtWmjRokX5PqekIl4cx8v48eO1YMECq8dCQ0NVp04d+fv768SJEzp//rxV+VNPPaUxY8Y4rNNdJCw9iNls1rvvvqvPP//cKvmWV/369fXee+9ZrVuSlzv/WSRp/vz5mjJlitUfWXlVq1ZN//vf/9SmTZt8epI7wuSNN97Q0qVLna6n0qpVK7333nsuLcr6119/afjw4dq9e7fT63r37q2xY8eWuJEseREvBVNaE5bEi7WkpCS1b9/e5ltCd5XUGCJenFu+fLkmTJhgtXacPfXq1dOkSZPUsmXLfOv0ZsRLwZXWhCUx45jZbNbcuXM1bdo0Xb161em1LVu21Pjx4wu8lpq3IF6cS05O1ptvvqlvvvnGaZ033XST3nnnHZfa6c2Il/w98sgjxmYqUVFR+vzzz116XklEvDgXHR2t//3vf1bJTnvKly+v1157TU8++WS+dbqDhKUHOnbsmJYsWaJNmzbp3LlzSktLU0hIiBo3bqxu3brpoYceyjcZ5+5/Fil3etuiRYu0fv16nTlzRikpKQoODlZERITuvfde9erVS8HBwW71Zd++ffr666+1detWxcXFKSMjQ5UqVdItt9yiBx98UF26dHFrFKTZbNZPP/2klStXat++fbpw4YJ8fHwUHh6u1q1b6/HHHy/xfxjmRby4p7QmLK8hXv7/cx1N53BHSY8h4sWxlJQULV26VBs2bFBsbKwSExMVEBCgKlWqqGXLlrrnnnt03333leiR/nkRL+4rrQnLa4gZxxISErRkyRJt3rxZx44dU2JiosqUKaOqVauqRYsW6tq1q+68805jWmFpQLw4d+jQIS1fvlxbtmzRuXPnlJKSogoVKqhJkybq0qWLHnnkEQUGBrpVpzcjXhzr0qWLTp48KSl3PVPL9XBLK+LFsZSUFC1btkybN29WbGysseRRaGioIiMjFRUVpZ49e7rdTleQsAQAAAAAAADgMUrP1/4AAAAAAAAAPB4JSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DH8bnQDAAAAUHzOnDmje+65J9/rTCaT/Pz8VK5cOVWpUkV16tRR586d1a1bN1WoUKEYWuq5li1bplGjRkmSatSoobVr1xa6TrPZrGXLlqlx48Zq0qSJTXnen9vPP/+smjVrFvq+AAAAnogRlgAAALBhNpuVmZmpxMREHT16VGvWrNHo0aPVoUMHTZkyRRkZGTe6iSXGkSNH9PTTT+tf//qXkpOTb3RzAAAAbjhGWAIAAJRiERERCgsLs3k8JydHV69eVUJCgs6ePavMzExJUmZmpmbOnKm1a9fqs88+U/Xq1Yu7ySXOo48+ary+AAAAIGEJAABQqg0YMEA9e/Z0ek1GRoZ+/fVXffjhh/rtt98kSUePHlX//v21ePFihYaGFkNLSy6SlQAAANaYEg4AAACnAgIC1LlzZ3311Vd66qmnjMdPnTplrOWI66tmzZqKjY01/rF+JQAAKMlIWAIAAMAlvr6+Gj16tO69917jsbVr12r9+vU3sFUAAAAoaUhYAgAAwGUmk0njx49XuXLljMdmzpx5A1sEAACAkoY1LAEAAOCWypUr6/HHH9fs2bMlSTt37tTp06dVq1Ytp887cuSIli9frs2bN+uvv/5ScnKyQkJCVKtWLUVFRalXr15ubeKTmpqqVatWaevWrTp48KAuXbqk5ORklS1bVhUqVFBkZKQ6dOigRx99VMHBwS7V+ddffyk6OlobN27UiRMnlJWVpWrVqqlDhw7q27evIiIiXG6fM8uWLbM7nb5///7G8aOPPqq33npLknTmzBndc889RtnPP/9sMy387rvv1tmzZyVJ+/btU2BgoP744w8tWrRIGzdu1F9//SWTyaRq1aopKipKTz31lM3PbM2aNVq6dKliYmJ0/vx5lStXTk2aNNHDDz+sHj16yNfX16X+7d27VytWrNC2bdsUFxen1NRUVaxYUXXr1lWnTp3Uq1cvVaxY0bUXCwAAlDokLAEAAOC2+++/30hYStL69ev19NNP2702LS1NEydO1LJly5STk2NVduHCBV24cEF79uzRzJkzNXDgQA0ePFgmk8np/efMmaMZM2YoMTHRpiw5OVnJyck6e/as1q5dq/fff18TJ05Uly5dnNY5e/ZsTZs2Tenp6VaPnzx5UidPntSSJUv097//XVWqVHFaj6eYOXOmpk+fbrOpT3Jyso4cOaKFCxdq2rRpuvPOO3Xp0iWNHDlS69ats7o2MTFRW7Zs0ZYtW/Tdd99pxowZCggIcHjPhIQEjR49WmvWrLEpi4+PV3x8vLZt26aPP/5Yw4cPV9++fYukrwAAoGQhYQkAAAC3NW/eXEFBQbpy5Yokac+ePXYTlpcuXdLzzz+vAwcOGI/5+vqqYcOGCgkJ0aVLl3TkyBGZzWalp6frgw8+0JEjRzRt2jSHo/kmTpyoefPmGecmk0m1a9dWWFiYTCaT4uPjdfLkSSM5evnyZQ0dOlRfffWVWrZsabfOt99+W7NmzbJ6rHbt2goPD9fFixd17NgxZWZmasqUKWratKlbr5U94eHhioqKkiRt2rTJeLx58+YKCQmRpEKN5pw+fbo+++wzSZK/v7/q1q2r0NBQnThxQvHx8ZKkK1euaNiwYfr22281fPhw7d+/X5IUFhamOnXqKCkpSbGxsTKbzUY7p0yZ4nCjpdOnT2vAgAE6ffq08VhAQIAiIiJUrlw5xcXF6cSJE5Jyk6ZvvPGGTpw4oX/9618F7icAACiZSFgCAADAbT4+PqpVq5ZiY2MlSX/88YfNNWazWSNGjDCSlT4+Pnruuef03HPPWU0Hjo+P1/vvv69FixZJklavXq3p06dr2LBhNnVu3LjRKlnZtWtXjRo1ymYqeVxcnD766CNFR0dLknJycjRjxgx98sknNnWuWbPGKlkZGRmpiRMn6pZbbjEeO378uMaOHavt27fr4MGD+b9A+ejYsaM6duxo3O+af/7zn2rXrl2h67+WrOzZs6deffVVhYeHS8r9mcyePVtvv/22pNyk5aOPPqqUlBSFh4dr4sSJ6tSpk1HP0aNHNXjwYOPnGx0drcGDB6t8+fJW90tPT9eQIUOMZGVgYKCGDh2qJ598UkFBQcZ1J0+e1DvvvGOMwJw7d64aNmyoxx57rNB9BgAAJQeb7gAAAKBALJOEf/31l0358uXLtWHDBkm5oyCnTJmif/zjHzZrF4aFhWnChAl67bXXjMdmzpxpjMazZLnBT6tWrfTuu+/aXfcyPDxcb7zxhu677z7jsS1btig7O9vqupycHE2ePNk4b9CggRYsWGCVrJSkevXqadasWcaoSG/Qt29fTZo0yUhWSrk/h2effVYdOnQwHktJSVH58uW1YMECq2SllPt6TJkyxTi/evWqdu/ebXOvzz//XIcOHZKUm6ycNWuWnnvuOatkpZQ7avWDDz7Qk08+aTw2adIkJSUlFa6zAACgRCFhCQAAgAIpW7ascZyammpT/vnnnxvHPXr0UPfu3Z3W98ILL6h58+aSchOJc+bMsSpPSUmxmlo+aNAg+fg4/3W2a9euxnFGRoYuXbpkVb5nzx6rxOi4ceNsRg9e4+/vr0mTJln121OVL19ew4cPd1h+7733Wp0//fTTDjdNatq0qVXS8+TJk1blGRkZmj9/vnH+7LPP6rbbbnN4b5PJpH/9619GnampqVq4cKHjzgAAgFKHhCUAAAAKxM/v/68ulHfk4smTJ43p4lLu1GRXPPLII8bx+vXrrcqCg4O1e/dubdiwQfPnzzemVDuTd4Ocq1evWp1b3qNOnTpq06aN0/rCwsJskn2eqEOHDg4Tr5Ls7jDujGXCMjk52aps586dunjxonHuys86ICBADzzwgHGe92cNAABKNxKWAAAAKJCUlBTjODg42Kos77ThevXquVRns2bNjOM///xT586dsyo3mUwKDw9XmzZtnO5WnZKSol9//VXLly+3ejzvLuU7duwwjlu3bu1SG9u3b+/SdTdSw4YNnZaXKVPG6rxu3bpOrw8MDDSO876Glj9rf39/3XzzzS610fJnvW/fPmVlZbn0PAAAUPKx6Q4AAAAKxHKkXd7RfHmnDeddG9FVcXFxqlatmsPyc+fOKSYmRqdOndLp06d1+vRpHTt2TGfOnLFJrEkydry+5tqO2VLuCEtXNGjQwLXG30CVK1d26/q8Cee8TCaTwzLLn3VmZqbVJkKuSk9PV2Jios2IWAAAUDqRsAQAAECBWCb7wsLCrMqKahOVxMREm8cyMjK0cOFCLVy4UEeOHHH6fD8/P6cj9xISEozjcuXKudSmChUquHTdjWQ5ItIVzhKS+Smqn/Xly5dJWAIAAEkkLAEAAFAAiYmJOnXqlHF+bbOcayyThIGBgfmuDelI3uRgfHy8Bg0apN9//93u9RUrVlRERISaN2+utm3bysfHR88//7zD+jMzM91uk7Op6J6iMAlId1n+rENCQmxiwVXe8LoCAIDiQcISAAAAbvvtt9+szlu0aGF1bploLFu2rNWO4QWVlZWlIUOGWCUrW7Vqpa5du6p58+aqX7++KlasaPWcLVu2OK2zfPnyxijLvJvJOGK5diesf9Y1a9Yskp81AAAo3UhYAgAAwG3ffvutcVymTBndcccdVuWWu0onJSUpJSUl33US8/PTTz9p7969xvnQoUP18ssvO32OvSnllmrXrm0kLI8ePepSOyxHlsL6Z/3nn3/ewJYAAICSgl3CAQAA4Ja4uDj9+OOPxvm9995rs+lOq1atjOOcnBxt377dpbq3b9+uMWPG6JNPPtF3332n1NRUo2z9+vXGcXh4uF588cV864uJibE6z7sRj2U7t2/fruzs7Hzr3LVrV77XlCaWr+GlS5cUGxvr0vN++OEHvfHGG/rss8+0cuVKl157AABQOpCwBAAAgMvMZrP+/e9/G2s/+vj4aODAgTbXNW7c2Grk3dy5c12q/7333tPChQs1depUTZw40Wpdw/PnzxvHlStXlo+P819lk5KS9PXXX1s9ljcp1rVrV+M4Li5Oq1evdlpnamqqli9fnm8/3FGc601eD+3bt1fZsmWN8zlz5uT7nIyMDE2ZMkVffvmlJk+erBkzZsjX1/c6thIAAHgTEpYAAABwSXZ2tiZNmqSNGzcaj/Xp00eNGjWyudbX11fPPPOMcb5161Z9/PHHTuufP3++du7caZz37t1b/v7+xnloaKhxfOTIEcXFxTmsKz09XSNHjrTayVyy3WSnZcuWateunXH+5ptv6vTp03brNJvNmjBhgtXO4kXBckfv9PT0Iq27OISEhKhXr17G+bJly/Tdd985fc60adOsptY/+eST1619AADA+5CwBAAAgFNXrlzRypUr9dhjj1mNlLzllls0atQoh897+umn1bRpU+N82rRpGjlypM06hxcvXtRbb72liRMnGo+Fh4frhRdesLouKirKOM7MzNRLL71kM+U7MzNTa9asUe/evfXzzz/btMlyivk1EyZMUJkyZSRJFy5cUN++ffXzzz/LbDYb18TFxWno0KE2IzaLgmUidsOGDUVef3EYPHiwbrrpJuP8n//8p95++22b5O7p06c1YsQIzZo1y3gsMjJSjz32WLG1FQAAeD423QEAACjFZs+erRUrVtg8bjabdfXqVV24cEFnzpyxmUrdunVrffDBB1ajA/MKCAjQ9OnT9cwzzxijFr/++mt98803ql+/vipXrqzz58/r9OnTViMfy5cvr/fff18hISFW9T344IOaNWuWDh8+LEk6ePCgHnnkEdWsWVPVq1dXcnKyTp8+bbWLd+XKlZWSkmKMXLScVn5N7dq1NWnSJI0YMUKZmZmKj4/Xyy+/rLCwMNWpU0cpKSmKiYkx1r/s2rVrvlPH3REREaFz585JkubNm6cdO3YoNDRU9evX15gxY4rsPtdTxYoV9f7772vgwIFKSEiQ2WzWrFmzNHfuXDVo0EAhISGKi4uziaXw8HB98MEHViNpAQAAGGEJAABQih0+fFibNm2y+bd582bt2rVLJ0+etEowVahQQa+99prmzJmjSpUq5Vt/zZo1tXjxYqu1Is1ms44ePapt27bp+PHjVsnKpk2b6ssvv1SLFi1s6vL399fMmTMVGRlpVdfp06e1fft2HTp0yCpZ2blzZ3399ddW1zvaMKd79+6aNWuWKleubDwWHx+v7du36/fffzeSlX379tXQoUPz7bc7XnrpJauEXUxMjLZu3ap169YV6X2ut2bNmmnx4sVWU+yzs7MVGxur7du328RShw4dtHDhQt188803orkAAMCDMcISAAAANkwmk8qWLaty5cqpZs2aioiIUMeOHdW5c2dj+rSrKlasqOnTp+vQoUP6/vvvtW3bNv35559KSkqSv7+/wsPD1bx5c3Xv3l2dO3d2uplO9erVtWTJEi1fvlyrV6/WoUOHlJiYKJPJpAoVKqh27dpq2rSpunfvbuxefdddd2nfvn2SpO+//17/+Mc/7Pahbdu2+vHHH7VkyRL99NNPOnz4sNLS0lSlShW1aNFCTzzxhG6//XYdO3bMrf7n59Zbb9WCBQs0c+ZM7d27V4mJiQoMDFS5cuWUnp7udBSrp6lZs6a++OIL7dixQ6tXr9aOHTsUFxen5ORklSlTRjfddJNatmypHj16qG3btje6uQAAwEOZzJaL8wAAAAAAAADADcSUcAAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBj/D+O5lnqASSojgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.008, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.008, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d, paralyzable=True)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate * np.exp(-rate * deadtimes_plot), \n", + " label=r'$r_{in}e^{-r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Perfect." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Periodogram - non-paralyzable\n", + "\n", + "Let's see how the periodogram behaves at different intensities. Will it follow the Zhang+95 model?" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 0%| | 0/6 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, np.log10(3000), 6)\n", + "bintime = 0.001\n", + "deadtime = 2.5e-3\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, 2, norm='leahy')\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 0%| | 0/5 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, 3, 5)\n", + "deadtime = 2.5e-3\n", + "bintime = 2 * deadtime\n", + "\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 5 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lc(lc_dt, 2, norm='leahy', silent=True)\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It will.\n", + "\n", + "## Reproduce Zhang+95 power spectrum? (extra check)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4000it [00:00, 4140.55it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAAQ1CAYAAABKuwqzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3gUVdsG8HvTIAVIqIFAaELoTZr03qUpICBI8RNFVKQjUgUBQZGiiBTpvSO9hFCTUBJCS0J6771v+/7Im3Enm7JJdrMp9++6vJw5O3Pm2WRnwz57znkkSqVSCSIiIiIiIiIiIiIdMdB3AERERERERERERFS2MQlJREREREREREREOsUkJBEREREREREREekUk5BERERERERERESkU0xCEhERERERERERkU4xCUlEREREREREREQ6xSQkERERERERERER6RSTkERERERERERERKRTTEISERERERERERGRTjEJSURERERERERERDrFJCQRERERERERERHpFJOQREREREREREREpFNMQhIREREREREREZFOMQlJREREREREREREOsUkJBERlQnbt2+HnZ0d7OzsMGXKFK30uWTJEqHPJUuWaKVPXXj37h2OHTuW6+NTpkwRnsf27duLMTLShkWLFmn1dU2a08X7SmnRr18/4bmfPXtWK32GhIRgz549uT5eWt5zKWdbt26FnZ0d+vXrV6jzHz9+jAULFmDAgAFo06YNOnTogGHDhmHZsmV4+vSplqMlIiJ9YBKSiIiolEpNTcWmTZswZswYvHjxQt/hkA7cunULFy5c0HcYREUik8mwZ88eDB8+HA4ODvoOh3TAzc0Nu3fvLtS5SUlJ+PrrrzFt2jRcunQJgYGBSE9PR3JyMry9vXH69GlMnjwZCxcuRGJiopYjJyKi4mSk7wCIiIiocH7++WecPHlS32GQjri5uWHhwoX6DoOoyPbs2YMtW7boOwzSkcDAQMyePRtSqbTA56anp2PGjBmiL9LMzc3RtGlTyOVyeHp6Ii0tDQBw8eJFhIaGYt++fTAxMdFa/EREVHw4EpKIiKiUKswHPiodnJ2dMWPGDKSkpOg7FKIi43tV2eXp6YnJkycjMjKyUOdv3LhRSEBKJBJ8++23ePToEY4fP45Tp07h/v37mDp1qnD8kydP8Ouvv2oldiIiKn4cCUlERJSLDRs2YMOGDfoOo8gOHTqk7xCoAPbu3YvffvsNMplM36EQFauy8p5bXly4cAErV65Eampqoc738vLC8ePHhf358+fj//7v/0THVK5cGcuWLUOlSpXwxx9/AACOHDmCKVOmoG7duoUPnoiI9IIjIYmIiIhKAD8/P3zxxRf45ZdfmIAkohIrPDwcixcvxqJFiwqdgAQyvyCTy+UAgEaNGmHmzJm5Hjtnzhw0bdoUQObI2sOHDxf6ukREpD9MQhIRERHpkUwmw9q1azFixAhR0Y727dtj4sSJeoyMiEhs586dGDJkCM6fPy+0NWrUCF9++WWB+lEoFLh+/bqwP3bsWBgY5P7R1MDAAOPHjxf2Vc8lIqLSg9OxiYiozEpKSsLRo0dx/fp1BAQEQCaToWbNmujUqRNGjBiBrl275nn+kiVLcO7cOQDAmDFj1KYJnj17FkuXLgUAzJgxA4sXL4ZCocC1a9dw+fJlvH37FlFRUTA1NUXdunXRp08ffPLJJ6hRo0aRnpednZ1a27lz54RYAcDDw0PYnjJlCpydnQFkjib55ptvROdu374dO3bsAACsWrUKEydOREpKCi5duoRLly7Bz88PCQkJqF69Opo1a4YJEyagd+/eoj58fX1x/PhxPHjwACEhIQCAunXrolevXpg2bZrGzzkmJgZnz57F/fv34evri9jYWJiZmaFmzZro0qULRo4ciTZt2mjUV2mRkpIimjJvZGSEmTNnYs6cOdi1a5fOrpvf6zu7oKAg9O/fX9i/fft2rtMhY2JicOHCBdy/fx+enp6Ii4uDiYkJrKysYGdnh27dumHkyJGoXLlyntfs168fgoODAQA2Nja4c+dOQZ5inry9vXHixAk8fvwYQUFBAIDatWujT58+mDRpUqGmemZkZODy5cuwt7fH69evER0dDYlEgurVq6Nt27YYNGgQBg4cCIlEonGfbm5uuH37Np4+fYqQkBDExcVBJpOhcuXKqFWrFjp06IChQ4fi/fff16g/pVKJmzdv4tKlS3jx4gViYmJQqVIlNG7cGCNHjsSYMWNgbGxc4OeeE9XfXxZnZ2fRe5jq66gg77n/93//hwULFkAqleLatWs4f/48vLy8EBMTg2rVqqFRo0b46KOPMGTIEBgaGgp9hIeH48SJE7h9+zaCg4MhlUphbW2Nbt26YcaMGahXr55Gzy05ORnnz5+Hg4MD3r17h+joaJiYmKBGjRro2LEjhg4dim7duhX8h1bC7d27V7RW7bhx47BkyRLcuHGjQP24u7sjNjZW2O/Ro0e+53Tv3l3YDgkJgbu7O5o1a1ag62bJ7+9idk5OTqK1KVX/xmYXEhKCs2fPwtHREV5eXkhKSoKpqSmsrKzQsmVLdO/eHR9++CEqVKhQqNiJiEozJiGJiKhMcnNzw3fffSckxLL4+fnBz88Pp06dQu/evbFhwwZUrVpVK9cMCgrCggUL4OLiImpPT09HXFwcXr16hX379mHlypUYPXq0Vq6pC25ubliwYAH8/f1F7cHBwQgODsbt27cxfvx4rFq1CoaGhjhw4AA2bdqkVnzC09MTnp6eOHv2LHbt2pVv8nD//v3Ytm0bkpOTRe0ZGRmIi4uDp6cnDh06hCFDhuCnn37KN4GVH9WERlGsX78eY8eOLXI/ANCtWzcsXry40B+sS4KLFy9i9erVSEpKErVLpVIkJycjKCgIt2/fxtatW7Fo0SKMGzeuWOOTyWT47bffsH//fmEqaBZvb294e3vj2LFjWLFiRYH6ffDgAVauXCkkNFUFBAQgICAAly5dQsuWLbFx40Y0adIkz/4CAwOxfPlyPH78OMfHo6KiEBUVhdevX+PQoUPo27cvNm/eDAsLizz7nDdvHtzc3ETtMTExiImJwZMnT3DkyBFs375dg2esf35+fpg3bx5ev34tag8NDUVoaCgePnyIS5cu4bfffoOZmRmuXLmC5cuXq702s/4unDt3Dr///jv69OmT53UvXryIDRs2IDo6WtSenp6OxMRE+Pj44OTJk+jatSs2btwIa2vrIj3P7AmwwtIk2aapVq1aYfHixejcuXOhznd3dxe2jY2N870fAKBhw4aoWLGiUC375cuXJe69ct++fdiyZQsyMjJE7VKpFAkJCfD398eVK1ewdetWrF69Gv369dNTpERE+sEkJBERlTnBwcGYOXMmEhISAABWVlZo3LgxUlNT4eHhIay35+DggClTpuDQoUNFTkTGxMRg+vTpCAgIAJC5mP57770HpVIJb29vIZaUlBQsXboUtWrVwgcffFCoa2WNGPH09ERERAQAoGbNmsJ6WUXh4eGBzZs3Cx/Sa9eujXr16iE+Ph6enp5QKpUAgJMnT6JJkyaQSqX45ZdfAAAVKlRAs2bNYGhoCE9PT6GPmJgYfPPNN7h69SrMzMzUrqlUKrFs2TKcOXNG1F6/fn1YW1sjJSUFnp6eSE9PBwBcu3YN7969w4EDB4o8qrQkMDAwQN++fTF9+nR06dJF3+EUyfXr17Fo0SLhdWJgYIBGjRqhWrVqSE9PR1BQEKKiogAACQkJ+PHHH2FkZIQxY8YUS3xKpRILFizA1atXRe3vvfceqlatitDQUAQGBgr3afPmzTXq9/Tp01ixYoUoqVm9enU0aNAAcrkcvr6+iIuLAwC8fv0an3zyCXbt2oWOHTvm2J+3tzemTJkiSnJVqlQJjRo1grm5OVJSUuDj4yO8rwCAvb095s2bh7///jvHPgMCAjBp0iRRFWMzMzM0bdoUBgYGePfuHRITE+Hu7o5p06apfRlQGJ06dULDhg2FJCwAVKlSBa1btxaOqVixYqH6DgsLw9SpUxEeHg7gv593Wloa3N3dhfd5e3t7bN26Fe3atcO8efOgVCphbGyMpk2bwszMDF5eXsKIvNTUVMybNw9XrlzJNXG4Y8cOtSRtnTp1ULduXaSnp8Pb21t473N0dMS4ceOwf/9+NG7cuFDPs6Tp3Lkzxo4di/79+xdoRG92fn5+wraNjQ2MjPL/WCqRSFCnTh34+PgAgNoXZfr2zz//YOPGjcK+sbExGjduDCsrKyQmJiIoKEh4H4iIiMA333yDPXv2FPrfAkREpRGTkEREVOZkTf/Lqqr54YcfCtPxYmJisGnTJpw9exZAZnXOVatWYdu2bUW6Ztb6WNWqVcPSpUsxbNgw4Zrp6ek4cOAAtmzZAoVCAYVCgd9++w2nTp0q1LX27t0LQDx1sXv37lqpKnvs2DEAQIMGDbBmzRpRUszd3R2ff/65kMTYsmULUlNTIZFI8OWXX+KLL74QkowpKSnYuHGjUPk0LCwMly5dwoQJE9SuuXv3blECsn///liwYAEaNWoktKWmpuL48eP4/fffkZaWBm9vb8ybNw/79+8XTbUsiFq1amk0BVCTforCwsICf/31V5Hj0DeZTIaffvpJSED27dsXP/30kyhRrFQqcefOHaxYsUJIRm7evBlDhw4tdDKqIA4ePChKQHbu3Blr1qxBw4YNhTY3NzcsX74c7u7uePPmTb59Pn36FCtXrhQSkE2aNMGyZctEiQW5XA57e3usW7cOISEhSEpKwrfffotz586pvX6ykvJZCcjKlStjzZo1GDhwoChRo1AocPfuXfz000/CiG8HBwe8fPlSlOTLuv7cuXOFe9fAwABff/01Zs6cCVNTUwCZI45PnTqFTZs2qU2hLqyshIzqkg92dnbCe1hRXLp0CUBm8jFrRFnWmoLBwcH44osv4OXlBSCzmvKxY8egVCoxYcIEfP/997CysgKQ+bx3794t/A1ITk7G0aNHMW/ePLVrXr58WZSAfP/997F06VLRzzsjIwP//vsvNm7ciLi4OERERGDOnDk4ffo0zM3NC/Vcq1SpopX3Kltb2yL38eeffxa5DwCiZHjNmjU1Pq969epCElK1D32LjY3Fb7/9JuyPHz8eixYtQqVKlYQ2mUyGS5cuYfXq1UhNTYVMJsP69etx8eJFfYRMRKQXTEISEVGZZGZmhoMHD6qNZKpatSrWr18Pc3NzYR2+69ev49mzZxqvqZabKlWq4Pjx42of9CpUqIAvvvgCiYmJwiglNzc3hIeHFzmBpQu1a9fG8ePHhQ/pWZo1a4ZFixZh4cKFACCsC7ZkyRJMnz5ddKyZmRlWrVoFV1dXYdrdo0eP1JKQgYGB2Lp1q7D/6aefYvny5WoxmZqaYvr06WjVqhWmT58OqVQKZ2dnnD17ttDTebt37y5aY4yKxsXFRUgKWFlZYdu2bTAxMREdI5FI0L9/f1SrVk14LURFReHp06c5Jlm0uQZkUlIS/vjjD2G/S5cu2LNnj1qMbdq0wZEjR/Dpp5/i7du3efapUCiwbNkyYdRdmzZtcODAAbURv4aGhhgwYADatGmDiRMnIigoCNHR0di8eTM2bdokOtbZ2Vm0pMPmzZvV1mAFMhOJ/fr1Q506dTBq1Cih/cGDB2pJyEuXLommLK9Zs0btvjExMcHkyZPRuHFjzJgxQ22qeklkZmaG48ePq63jaGNjgzVr1mDSpEkAICwVMWXKFPz444+iY01MTPD111/j5cuXsLe3B5D5XpU9CZmUlIRVq1YJ+/3798e2bdvURvCZmJhg7NixaNu2LSZOnIj4+Hj4+Phg9+7dmDt3bqGeZ7NmzbSSuC1JskYEAhAl6vKjemx8fLw2QyoSBwcHYQq2nZ0d1qxZozZSNGvUt4mJifD68vDwgK+vr+iLECKisozVsYmIqEz67rvv8pxKuWjRItjY2Aj7WSMAi2LatGl5jjTJXuk4r4Xt9enbb79VS0BmyT4Fz8bGBp999lmOx0okEtHaalnTMVUdOHBASODUq1cPS5YsyTO2Tp06idZG++eff/I8nopP1tIAAFCjRg215J6qdu3aYciQIRg8eDBmzpyJKlWq6Dy+O3fuCEkLQ0NDrFu3LtcYLSwssH79+nz7vH37tjCt1NDQEBs3bsxxyYEsNWvWFK01eeXKFWE6cRbVNSBbtmyZYwJSVbNmzdCgQQNhPywsTO2YCxcuCNtdunTJM3HftWtXfPrpp3les6TIq5DM+++/L1pmw8zMDN99912ufakWXcrpver06dPC9PdKlSrh559/znMKcePGjUXXO3bsmLCWIUG0ZmJBRkGr3rPZ113UJ9X3vzp16uQ5VX3w4MHo2rUrhg0bhlmzZhVpWjsRUWnDJCQREZU5ZmZm+Y6OyxqtkuXevXvCNNLCGjRoUJ6P16lTR5SgSExMLNL1dEEikeT5PMzNzUUf7Hv16iVMgcyJ6kjPnJ7vzZs3he0RI0ZoVJVXtaiPt7c3AgMD8z2HdE/1d+3p6ZlvYn/r1q3Ytm0bFi1apDZyTxccHByE7Q8++CDfKsjNmzdHhw4d8jzm+vXrwna7du1ESwjkpmfPnkKSXyaT4cGDB6LH586dC1dXV1y6dEltlGRuqlevLmxnrZ2aJTk5GU+ePBH2x48fn29/kydP1ui6+jZkyJA8H1etcN6xY8c8R9ypTgnO6b1K9Xfdt29fWFpa5huf6lIgcXFxcHV1zfec8kK1kFlef0OyU11+I+sLrJJA9f3v/v37eY7iNjIyEpZomTdvnuhLBCKiso5JSCIiKnPat2+v0dpbqkUh4uPjhfXDCsPY2FijBIRqRefs1aRLgjp16uRZXRcQj1rJbwpZhQoVhG2FQiF6LDg4WDRqS9PCDU2aNBHF8Pz5c43OI91q166dqJjHqlWrMGrUKGzfvh0uLi56TxioJuLySy5m6dq1a56Pq772NH39GhgYoGXLljn2kcXU1BRNmzbNt09fX1+cOnVKlIjPPo36xYsXovcaTZadqF+/PmrXrp3vcfpkaGiY7/uPtt6rMjIy8OrVK2Ff09915cqVRaPj+V71H9VkYvafd15UX9+afGlVXHr37i2sryqTyfDVV19h4sSJ+Pvvv/HmzZsif8lJRFRWcE1IIiIqczRJBgLqH0pDQ0PRpEmTQl2zcuXKGo3mKOwHr+JSrVq1Ah2fX8Iyr2lm2ac8LliwAAsWLCjQ9QGoTWcl/TAyMsKaNWvw1VdfCYkCd3d3uLu7Y8eOHbCwsECnTp3Qs2dP9OnTR7Qcgq4plUqhEA4AjUcevffee7k+JpfLhYIwQGbF+JMnTxY4tvxevxkZGXB3d4evry8CAwMRGBgIf39/vHv3TqjCrCp7skN1mqiJiYnGycXGjRsjNDRUo2P1wdLSUqOKylmK8l4VFhYmmvq7ZcsWbNmyReNrZ+F71X9UE8TZR+/mRfVY1cSxvllaWmLp0qWi5RaeP3+O58+f49dff4WVlRW6du2Knj17onfv3qLRy0RE5QmTkEREVOaojjbMS/apeUVZ5L44KvsWh4J+qCvKWlbaKipQ2H4ePnyIffv2Ffn6M2bMYIGb/+nduzf27duHVatWwdfXV/RYUlIS7O3tYW9vjzVr1qB169b49NNPMWrUKJ2viRYbGysaQZVfQipLXu8l8fHxWhndlNvr19PTE7t27cLt27eRmpqaZx9GRka5jjTNqrINaP68ARTLOp1FUZ7eq9zd3TWemp+XkSNHiooY6ZPqdPackum5UT1WkynxxWnChAmoUqUK1q1bJ0r+A5nvQVevXsXVq1dhYGCATp06Yfr06ejbt6+eoiUi0g8mIYmIqNzKnkAoK4nEoijOBfKzJ006depUqJEt+a3tl5vw8HC19fgKY/jw4UXuoyzp2rUrrly5gkePHuH69etwcHDIcQTYy5cvsXjxYly4cAE7d+7U6f1X2KUP8iquk/3127RpU9G6gprKqZjVkSNHsG7duhwrVBsbG8PW1lZYs7JHjx748ccf4ezsnGP/unjuJYE+36tat25dqCRtXiNr8xIfH6+V96p27doVuQ9tUb1XVBPl+VEd0VyjRg2txqQNQ4YMQb9+/eDg4IDr16/jwYMHiI2NFR2jUCjg5OQEJycnjBo1Chs2bCjQuphERKUZk5BERFTmJCcna3RcVqXTLJqOoCTtyP7zXr58Oezs7PQUTfmmyYi+gkyZNDAwQI8ePdCjRw8AgJeXF5ycnODo6IhHjx6JRjM9evQIGzduxMqVKwseuIayj3rOfu/nJq8RWtmTUOPHj8eUKVMKHlw2WSNFs5ibm2PUqFHo3Lkz7OzsYGtrqzYNOa/1NlWfe2JiIpRKpUYJvIKMTivrsr9XzZ49G/369dNTNGWD6pIIQUFBGr0ulUolgoODc+yjKLT9/mdiYoKBAwdi4MCBUCgUePv2LZycnPD48WM4OzuLqqRfuHABTZs2xeeff16o2ImIShsmIYmIqMwJCgrS6LjshWjq16+vi3AoF6rVRIHMNTmLMwk5duxYUYX08kb1A78mRWOyj+YpiPfeew/vvfceJk+ejIyMDNy8eRMrV64UqhCfPn0aCxYs0KigVGGYmZmhRo0aiIyMBKB+7+cm+7qlqipUqABLS0vExcUBgGh9yKL49ddfhW0bGxscPXpUVPAnJ3lN81V9X5NKpQgICNDovc7f31+DaMuHWrVqQSKRCMmq4l4rs0uXLvDw8CjWa+qaanGm1NRU+Pr65rues4+PjygZ2Lx5c63Eosv3v6xCVC1btsSMGTOQkpKCc+fOYf369cIo5QMHDjAJSUTlBsd9ExFRmfPixQuNRjY8evRI2K5du3a+H/RJu5o0aSIapeXo6KjReTExMViyZAm2bduG06dPi0bGkOZUK8tqMurt3bt3eT7+9OlTnDx5Ehs3boSTk1Oux5mYmGD48OGikY8ZGRl5Jvy0QbUitqavtWfPnuX5ePv27YXtvJ5zdj///DM2bdqEI0eOwM3NTWgPCgoS/Zy/+OKLfN+XUlJSRD+77O99bdu2FRXEevz4cb7xxcXFwcfHJ9/jygsLCwtR0TJNXz9SqRQ//PADtmzZghMnTmic/C4PmjRpgqpVqwr7mrwuHz58KGxbWVkV6Usr1eUGivr+J5fL8fjxYxw5cgRr166Fp6dnrseamZlh8uTJmDNnjtAWERGh8ehsIqLSjklIIiIqcyIjI2Fvb5/nMQkJCTh37pywP2DAAF2HpXXFuSaaLhgYGKBXr17C/rlz5zT6IHbo0CGcO3cOf/zxB5YtW1akEXrlmZWVlbDt7e2d7/GXL1/O8/Gff/4Zy5cvx759+zSqEp29Er1qUlQXBg8eLGy7urrixYsXeR4fFhaGu3fv5nlMnz59hO3Xr1/jyZMn+cbx+PFjHDhwAHv27MGaNWvw9OlT4bGskZpZNFnz7ujRo6J1H7OP6qpUqRI++OADYf/IkSP5jvw6deqURqPDNFXa36sA8e/6zp07CAwMzPecCxcu4MyZM/jrr7+wYsUKje6z8kIikWDgwIHC/smTJ6FQKHI9XqFQiN5XBg8eXKTXlWpRm/ySw1KpFDdu3Mj1cQMDA3z//fdYs2YNDh06lO97JSBeH1QikRSo0jsRUWnGJCQREZVJq1atEi1gr0oul2P58uVC8srQ0BBTp04tzvC0QrWIS0HWqypJZsyYIWzHxcVh0aJFyMjIyPX4ly9fYu/evcJ+mzZt0KpVK53GWFY1a9ZM2A4MDMwz4XbixIl8E2yqVV6vX78OFxeXPI+/evWqsG1mZpZjgRZtGjhwIBo2bCjsL126NNcEdkZGBpYuXZpvUZfRo0eLRnMtXrw4xyI8WeLj40UjQM3MzETVirNX+82vGImTkxO2bt0qassp5lmzZgnbnp6e2LJlS659enh44M8//8zzugVVFt6rPv30UyFRLpPJMHfu3DxH0AUFBWHz5s3Cfu3atVkJOZtJkyYJiUR3d3f88ccfuR67detWYTSigYFBkddfVZ3K7ezsnOd09+3bt+e5PIFEIhElqY8dO5bvcgbXrl0TtuvXrw8zMzMNoiYiKv2YhCQiojIpPDwc48ePV5viFRgYiC+//FL0AWD27Nk6T4DogmrCwtXVNc914UqqVq1aYdKkScK+vb09pkyZojZKLSMjA0eOHMH06dOFJIahoSGWLl1arPGWJT179hR98F24cCHu3LkjOiYyMhIbNmwQEmd5jdb55JNPhP6kUilmz56Na9euqVV4TklJwV9//YW///5baJs8eXKO1Zj79esHOzs72NnZFbkQiImJCdauXSskPby9vTFp0iTRSEQgc925mTNnipZryE3FihWxfPlyYT84OBjjxo3DlStX1EYS3r17F5988okoOTF79mxUq1ZN2G/YsCFsbGyE/WPHjmHv3r1qifmgoCBs2rQJ06dPV3ssJSVFLc7OnTtj3Lhxwv6ePXuwdOlSUVVihUKBK1euYOrUqTn2URTZR51pum5vSVKrVi3MnTtX2H/16hXGjx+PBw8eiKbAy+VyXLx4EZMmTRIluRctWlTiK44Xt2bNmmHMmDHC/o4dO/Dzzz8La8UCmcWU1q1bh7/++ktomzBhQqErjWcZMGCAUJFaqVRi1qxZau8FgYGBWLRoEXbt2gUAomUNsps2bZrweHx8vPAekn15hLi4OKxduxaXLl0SnUtEVF5w3DcREZU5vXr1wpMnTxAcHIxp06ahTp06qFu3LuLj4+Hp6Sn6UDBkyBDMnj1bj9EWXtOmTYXtkJAQDBs2DE2aNEFiYiL27dunVr23pFq6dCkCAwNx//59AJkJ1fHjx8Pa2hq2trZISkqCn5+fKDEikUjw448/itb5o4KxsLDArFmzhFFxCQkJ+Oqrr2BtbY169eohLi4Ofn5+wsi68ePHw8PDI9dpzDVq1MCKFSuwZMkSAJlrd3733XeoXLkyGjduDFNTU8THx8Pb21tUHbZdu3bFdg927NgRS5YswYYNG6BUKuHj44PJkyejbt26sLGxQUxMjGjtt8GDB+P69et59jls2DD4+Phg+/btADK/APn++++F5w1kFnmJiYkRnTdixIgci1HMmzcP8+fPB5CZHPnll1+wc+dO2NrawtTUFOHh4UI14Sx16tQRCuNkn9KdZcmSJfDz8xNGtJ49exYXL16EnZ0dzM3N4ePjI4wer169OmxtbfH8+fM8n7umVNfuS05OxpgxY9CiRQukpqZi7dq1oveykuzzzz+Hr68vTp8+DSAzkT1z5kxUq1YNDRs2REZGBvz9/dW+EPriiy8wbNgwfYRc4i1btgyenp549eoVgMwiLSdPnhReMx4eHkhNTRWOb926tfAeUxQNGjTAxx9/LEzxDg0NxeTJk1GvXj3Url0bkZGR8Pf3F6aIz507F4cPH851hkWzZs0we/Zs4X0gMDAQ06dPR9WqVdGwYUOYmJggNjYW3t7eotHKAwYMwPjx44v8fIiISgsmIYmIqMxp0aIFpk6digULFiAuLg4hISFqlWuNjY0xY8YMzJ07VxgNUdoMHDgQLVq0wJs3bwAAUVFRwgckd3d3dOnSRZ/haczExAS7du3Ctm3b8M8//wgjHcPCwhAWFqZ2fI0aNbBy5UrRemJUOF9++SVSUlKwZ88eYcRi9p+7gYEBZsyYgXnz5mHixIl59jdmzBhIJBKsW7dOWN8zISEhx6nZEokEo0ePxg8//FCsUxGnTZuGWrVqYdmyZUhOTgaQObJQdXSeoaEhvv32W7Ro0SLfJCQAzJkzB40aNcLPP/8sJAFze94mJiaYNWsWZs+eneOadiNGjEBERAR+/fVXYTRlYmIiXr9+rXZslSpVsGjRItSoUQNffPEFgMyRnDExMaJp4kBm0nnfvn1Yvnw5zp8/DyBzWnH2fmvXro3t27dj3759+T5vTbVp0wZ9+/YV1upNSEgQiru8evWq1CQhAWDdunWws7PD9u3bhdd4dHS0aFRpFgsLCyxcuBCffPJJcYdZalhYWGD//v1YtGiRMBI7NTUVrq6uasf27dsXmzZtQsWKFbVy7RUrVkAmk+Hs2bNCW2BgoGi9TxMTE8ybNw/Tp0/H4cOH8+xvzpw5qFixIrZt2yb8HYuJiVH7AgLI/DfIp59+innz5uU5wpKIqKxhEpKIiMqknj174tKlSzh8+DDu3LmD4OBgSCQS1KlTBz179sT48eNF68OVRsbGxjh06BD++OMP3LlzB+Hh4ZDJZKhRo0apm5ptaGiI77//HpMnT8b58+fx6NEj+Pj4IC4uDgBQtWpVNG/eHH379sXw4cNhbm6u34DLkHnz5mHEiBE4deoUHj16JCTsra2t8cEHH2DcuHGi9dPyM3r0aPTu3RuXLl3Cw4cP4enpibi4OEilUlhaWqJ27dro1q0bhg4dKlqXsjgNHToUXbp0wdGjR3H37l34+PhAKpWiZs2a6Ny5MyZNmoTWrVvj3r17Gvc5bNgw9OvXD5cuXcL9+/fx+vVrxMTEQCqVCqMiP/jgA4wdOzbfitczZsxAr169cOzYMTg7OyM4OBhpaWkwMzNDtWrVYGdnhy5dumDUqFGwsLBAamoqzM3NkZycDIVCgbNnz+Y4ytLExAQbN27EJ598gpMnT+LJkycICwtDxYoVUa9ePQwaNAiTJk3SySjqbdu2Yffu3bh69SqCg4MhlUphZWWl9anfxWHq1KkYPXo0zp8/L7zGY2JioFAoUKVKFdjZ2aFnz54YNWqUqAAU5axSpUrYuXMnHj9+jIsXL+Lp06eIioqCXC5H9erV0b59e4wZMwY9evTQ6nWNjY2xfv16jB8/HmfPnoWTkxMiIiJgZGSE2rVro3fv3hg3bhzq16+vcZ+ff/45RowYgQsXLsDR0RFeXl5ISEiAXC5HtWrVYGNjg549e2L48OGlchkYIqKikiizL1RBRERERFRCREVFoXv37mjWrBkuXLig73CIiIiIqJBK5/wzIiIiIioXskZm1qxZU8+REBEREVFRMAlJRERERCVWVhVZbU/FJCIiIqLixTUhiYiIiKjEUSgU+Oeff3Do0CHUqlULo0aN0ndIRERERFQEHAlJRERERCWOgYEBHj16hDp16mDnzp2wtLTUd0hEREREVAQsTENEREREJVJ0dDRMTU1hZmam71CIiIiIqIiYhCQiIiIiIiIiIiKd4nRsIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinTLSdwBUMj179ky0b2DAfDURERERERERUXmkUChE+++//36B+2ASkjSS/cVGRERERERERESkKQ5vIyIiIiIiIiIiIp3iSEjSSFmYjq06mrMsPB8ifeL9RKQdvJeItIf3E5F28F4i0o6ydi9pY4Ysk5CUIwMDA+EFZmBggPbt2+s5oqKRyWR48eKFsN+6dWsYGfHlT1QYvJ+ItIP3EpH28H4i0g7eS0TaURbvJRcXF1GeqDBKfyqWiIiIiIiIiIiISjQmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinWISkoiIiIiIiIiIiHSKSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0ykjfARAREREREZUWSqUSCoVC32EQ6YRcLlfbl0gkeoqGqPTS971kYGBQIu9dJiGJiIiIiIjyIJPJEB8fj/j4eKSnp+s7HCKdUSqVon1vb+8SmcggKulKwr1kZGQECwsLVK5cGWZmZiXiXmYSkoiIiIiIKBdxcXEICwtT+0BJVFYZGTFNQKQN+r6XZDIZ4uLiEBcXB2NjY9ja2sLExESvMXFNSCIiIiIiohwkJycjNDSUCUgqNyQSCYyMjIT/SsLIKaLSqKTdS1KpFAEBAcjIyNBrHPyKg4iIiIiIKBuZTIagoCBh39DQEJaWlqhcuXKJ+EBJpAtKpRIpKSnCfkmZwklU2uj7XpLL5UhJSUFCQgKSk5MB/JeIbNy4sd7uayYhiYiIiIiIsklOThYK0EgkEtSrVw+mpqZ6jopIt5RKJQwNDYV9Q0NDJiGJCkHf95KhoSFMTExgaWmJmJgYhIeHA8hMRKakpMDc3LzYYlHF6dhERERERETZJCUlCdtVqlRhApKIiEqlqlWripKOiYmJeouFSUgiIiIiIqJssqavAdDbiBEiIiJtqFy5srDNJCQREREREVEJoVQqIZfLhf2KFSvqMRoiIqKiMTMzE7ZlMpneCq4xCUlERERERKQiay3ILKrrehEREZU22f+OZf87V1yYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIir1pFKpvkMgojwY6TsAIiIiIiIiIl3y8fHBqVOn8OTJEwQGBiIpKQnm5uaoXbs2OnXqhPHjx6Np06Ya9ZWamopTp07h5s2b8PT0RHJyMqysrNC4cWMMGzYMo0ePhomJSanv6/z587h79y7evXtXpL6Kg0KhwIkTJ/Do0SNs375do3O2bt2KP//8EzVr1sT9+/d1HCERAUxCEhERERERURkllUqxadMmHDx4EEqlUvRYfHw84uPj4e7ujsOHD2PSpElYsmRJnsk1Dw8PfP311wgMDBS1R0REICIiAo8fP8aBAwfw22+/wc7OLs/YSmpf7969w/z58xEUFFTkvopDeHg4vvrqK7x+/RqdO3fW+Dx7e3sAQJ8+fXQUGRFlxyQkERERERERlUmLFi3ClStXhH07Ozt069YNVlZWiImJwaNHj+Dp6QmlUokjR44gKioKv//+OwwM1FcuCwwMxNSpUxEXFwcAqF69OgYNGoSaNWsiMDAQN2/eREJCAry8vDBz5kycOHECNjY2OcZVUvsKCgrCrFmztNJXcfHz88Pr168LdE54eDjevn0LgElIouLEJCQRERERERGVORcuXBASkMbGxli7di1Gjx6tdtypU6ewcuVKyOVyXL9+HWfOnMG4cePUjlu6dKmQnOvZsyd+//13WFhYCI/Pnz8f33zzDZ49e4bIyEisXLkSe/bsyTG2ktrXkiVLhL66deuGbdu2oVKlSoXqqyTLGgVZoUIFdOvWTc/REJUfLExDREREREREZY5qcmzhwoU5JiABYNy4cZg7d26O52V58OABnjx5AgCoVq0atm7dKkr0ZbXv2rULNWrUAADcv38fT58+LVV9ZbVXrVoVv/zyS6H7Kunu3r0LAOjSpQtMTU31GwxROcIkJBEREREREZUp/v7+8PT0BABYWFhg4sSJeR4/efJkGBsbA8ic3hsSEiJ6/PTp08L2Z599BnNz8xz7qVSpEmbOnCnsnzt3Tu2Y0tDXpEmTYGZmVui+SrL09HQ4OjoC4FRsouLGJCQRUQ6eB8Vh7S1PHHkehAyZQt/hEBEREVEBuLu7C9vNmzfPt5Kzubk5qlevLuxHREQI2wqFAg8fPhT280tcqT5+69YtUUGc0tJXz549C91XYT158gQ//vgjhgwZgrZt26JVq1bo1asXvvrqK1y5cgUKhfjf5Nu3b4ednR2mTp0qtDk7O8POzg52dnaYMmVKjtd5/PgxUlNT1Z6Hqrt372LhwoUYOHAg2rZti7Zt26J37974/PPP8c8//yA+Pr7Iz5eoPOKakERE2dx+F4mhu50gU2T+Y+rCqzCcnNpRz1ERERERkaYGDBgABwcHREREQCKR5Ht8RkYGYmJihH3VEYX+/v5ISEgQ2vOrCN2wYUNYWloiLi4OcXFx8PHxQePGjUtVX02aNCl0XwUVGRmJJUuW4MGDB2qPhYeHIzw8HHfu3ME///yDHTt2oFatWoW6TpY7d+4AAJo2bapWVCchIQHfffcdHj16pHZeWFgYwsLCcP/+fezYsQM//fQThg0bVqRYiMobJiGJiLLZ9dhfSEACwGm3UEQmpaOGRYVC9RcSn4YaFiYwNuTgcyIiIqLiYGhoCGtra1hbW2t0/N27d5Geng4AMDU1Rb169YTHfH19he26detq1F+dOnWEAi9+fn5Cgq409FWnTp0i9VUQsbGxmDRpEgICAoS2Tp06oUOHDjA2Noanpydu374NuVwONzc3TJ06FWfOnIGFhQW6d+8OMzMzBAQE4Pjx4wCAevXqCVPva9euneM1HRwcAOQ8CnL+/PlCArJKlSro27cvbG1tAQDBwcG4desW4uPjkZSUhPnz58PGxgZt27Yt8PMmKq+YhCQiyua0W6haW2RSRoGTkGEJaRix1xnPg+NRuaIR/pnQDmNa5/yPISIiIirdpHIF1tz0xJW34UjJkOs7nBLFzMQQw5rXwoqBTUvkl7IZGRnYunWrsN+7d29UrFhR2I+MjBS2c0tsZVerVi28efNG7fzS0JemIw1z66sgVq1aJSQgq1atim3btqFTp06iYzw8PDB9+nRER0fDz88Pf/zxBxYvXowOHTqgQ4cOcHJyEpKQtWvXFq1Xmd3bt28RFhYGQD0J6erqinv37gHIHOl59OhRVK1aVXTMDz/8gC+//BJPnjyBQqHAzp078ddffxXquROVR0xCEhHpyE+33uF5cOZ6MQlpMsw44YqRLa1haJD/lCAiIiIqXVbf8MTPt9/pO4wSyyU4c6rvT0Oa6TkSdWvXroWXlxeAzBGUc+bMET2emJgobGtaSVk1ial6fnnoS1N+fn64du0agMyf+86dO9GuXTu14+zs7PDLL78IycWTJ09i3rx5QiGhgrC3twcAWFpaon379qLHXF1dhe1PPvlELQEJZBY5Wr9+PQYMGAAAePPmDeRyOQwNDQscC1F5xCQkEZGO7HzkJ9qPT5MhIDYVDavlXGmQiIiISi/ngFh9h1DiOfmXvJ/R1q1bceLECWH/q6++UlsPMSMjQ9hWTbzlRfU41fPLQ1+aunnzprDdr1+/HBOQWXr06IHOnTvD0NAQtra2iI+PFxUS0tTdu3cBAL169YKBgXhUrmoi8fnz55g2bVqOfdSrVw8XLlyAtbU1LC0tCxwDUXnGJCQRUTFSouiVA4mIiKjk6WxrhVvvovQdRonWpb6VvkMQKJVKbNq0CXv37hXa+vXrpzYKEoBasqqgVAvjlIe+NHX//n1hu1+/fvkef+jQoQJfQ1V0dDRevnwJIOf1IDt37ixsX79+HVOnTsW4cePQvXt3tVGRzZqVvBG9RKUBk5BERERERERFtHJQU0gk4JqQOVBdE7IkyMjIwLJly3Dx4kWhrWfPnvj9999zTKaZmf03iyWreE1+0tLShO0KFf5bV7w89KWp0ND/1mFv2lT3r427d+9CoVDAyMgIPXv2VHvczs4OH3/8MU6fPg0AcHJygpOTEyQSCZo1a4YPPvgAPXv2RMeOHWFiYqLzeInKIiYhiYiIiIiIisjY0AA/DWlWItc8pP9ER0fj66+/houLi9A2ZMgQbNq0KdfEkmqCLjU1VaPrqCboKleuXKr6Uj2mMH1pKirqv5HDVapUKfD5BZU1FbtDhw65xrtq1SpUr14d+/btE6aYK5VKvH37Fm/fvsW+fftgbm6O/v37Y8aMGWjevLnO4yYqS0peaTIiIiIiIiIiLXvz5g0+/vhjUQJy6tSp2LJlS54j21SrRUdERGh0rfDwcGG7Ro0a5aovTclksgKfU1gZGRl4+PAhgJynYmcxNjbG999/DwcHB6xcuRK9evVSK9STnJyMixcvYuzYsdizZ48uwyYqczgSkoiohLnmHoF5F18jNCENn7S3wfbRrWBkyO+MiIiIiArr9u3bmD9/vjBi0NDQEMuWLcPkyZPzPVd1qnBwcLBG11M9rmHDhqWqL9Vp0oXpS1NVqlRBZGQkACA+Ph716tUrcB+aevLkCZKTkwHknYTMUrVqVUyaNAmTJk1CRkYG3Nzc4OTkhPv378PV1RVKpRIKhQKbNm1C+/bt8f777+ssdqKyhJ9qiYhKkJQMGT468ATuEUmIT5Nh12N/7Hzsr++wiIiIiEqtM2fOYM6cOUIC0sLCAn/99ZdGCUggc5RgVhXkuLg4+Pn55Xm8j48P4uPjAWQm2mxtbUtVX/Hx8QgICCh0X5pSTTp6eXnle/z58+exbNky/PXXX3B3dy/Qtezt7QEAtra2aNy4cYHONTExQceOHfH111/j+PHj+Pfff1G7dm3h8QsXLhSoP6LyjElIIqIiUii0V/H6eXA8UqUKUdufD3211j8RERFReZKVuFIoMv99VadOHRw7dgy9evUqUD+q1Zvv3LmT57FZCS8A6NGjh1qxm9LQl4ODQ5H60oTq6MF79+7le/y5c+dw+vRpbNmyBf7+/31Jr8m1s9aD7N27d46PK5VKLFu2DOPGjUPHjh3zHA363nvv4bPPPhP2NR05SkRMQhIRFZpHRBI6/34PZkuvYMBfjxGeqFklwbxkyNQTmh6RyUXul4iIiKi8ef36NZYvXw6lMvPfV40bN8bx48cLVYl55MiRwva+ffuQkJCQ43EJCQn4559/hP2PP/64VPZ16NAhJCYmFrovTYwaNUpIIN64cQOenp65Huvu7g5nZ2cAmUV0unfvLjxmYPBfWkMuV69M7+XlhcDAQABA3759c+xfIpHAx8cHbm5uSExMzHd0Y3R0tLBtbW2d57FE9B8mIYmICumzYy54GhSPDLkCd7yi8N35V/oOiYiIiIiQWfRk3rx5QoXjWrVq4Z9//hEVYCmIDz74AB988AEAIDIyErNmzRIlooDMxNSXX34prHPYqVMndOvWrVT2FRUVhe+++67QfWmiSZMmGDp0KABAKpXiyy+/zHGatb+/P7777jthNOunn34KCwsL4XHV7bCwMLVEZNaoTXNzc3Tq1CnXeCZMmCBs79ixA9evX8/xuOfPn+Pw4cPCftZzIKL8sTANEVEhyBVKOAfGidpOvgjB8SlclJqIiIhI3y5cuCBaI7Ft27b4999/NT5/2LBhonX/AGDNmjUYN24c4uLi8Pz5cwwZMgSDBw+GjY0NQkJCcO3aNWEkoqWlJdavX59r/yW1r9WrV2PcuHGIj4+Hq6srhg4dWui+NLFmzRq4u7vDx8cHwcHBGDt2LHr27IlWrVrB0NAQHh4euHPnjpBMbtOmDebMmSPqw8bGBhKJBEqlEsHBwZg9ezbef/99mJqaYsqUKcJU7O7du+dZBX3kyJE4ffo0njx5AqlUim+//RYtW7ZE27ZtYW1tjdTUVLx+/RoPHz4UEp1Dhw4tdBKWqDxiEpKISANShSL/gzRwzT0Ss7uba6UvIiIiIsrZqVOnRPs3btzAjRs3ND6/VatWaklIW1tbHDhwAHPmzEFgYCASEhLUrgMAdevWxR9//JFnteeS3NeuXbuwYMECBAUFFakvTVSqVAnHjh3DwoULce/ePcjlcty9e1dIHKrq27cvfvnlF1SoUEGtjxEjRuDSpUsAIJxvYWGBkSNHwsXFBUD+VbENDAywc+dOzJ07Fw8ePACQOaX/9evXasdKJBJ8/PHHWLFiRSGeNVH5xSQkEZEG2v92D+9VN8e+CW3Ro2E1XHOPKFQ/+5wDMLt7A+0GR0REREQiHh4eOum3WbNmuHz5Mk6dOoUbN27Ay8sL8fHxMDc3R5MmTTBo0CCMHz8epqampbavpk2b4tSpUzh37hwcHByK1JcmLC0tsXv3bjx+/BiXLl3Cs2fPEBERAZlMhurVq6N9+/b46KOPROtAZvfzzz+jQYMG+PfffxEaGgqlUglLS0vcuXMHcrkcEokk16I0qipVqoS9e/fi/v37uHz5Ml6+fInQ0FCkpaWhcuXKsLa2xgcffICRI0eiefPmWnn+ROWJRJm1Si+RChcXF2HNDQMDA7Rv317PERWNTCbDixcvhP22bdvCyIg5eMqZwYJLuT5mXakCglcMxMcHnuLcqzC1xxWbP8y3H9VjsrvzLgoDdj0u0DnFjfcTkXbwXiLSHm3fT3K5XFQko2nTpjA0NCxSjESlgVKpREpKirBvZmZWqMrXROVdSbuXtPF3TRt5IhamISIqgLDEdATFp+WYgCQiIiIiIiKinDEJSURUQHIFB5ATERERERERFQSTkERERERERERERKRTTEISERERERERERGRTjEJSURERERERERERDrFJCQRUQGdcA0p0vmhCWlaioSIiIiIiIiodGASkoiogJZeeVuk823W3MScsy+hVLLADREREREREZUPTEISUbmn0EO16z8f+eFZUHyxX5eIiIiIiIhIH5iEJKJyyyU4Hu1/c4D5D1fw4V4nxKZkFLnPI8+DEJGYrtGxy6+5F/l6RERERERERKUBk5BEVG59cugZXoQkIF2mwOW3EVh6pehJwSlHXdDm17t4F5mU77E2VUyLfD0iIiIiIiKi0oBJSCIql2JTMvAuKlnU9rejv1b6jkjKwKobnlrpi4iIiIiIiKgsYBKSiMoluY6LwhxzCdZp/0RERERERESlCZOQREREREREREREpFNG+g5An5ycnHD58mW4uLggIiICSUlJsLCwQO3atdGxY0eMHTsWLVq00Pp1fX19cebMGTx9+hQBAQFISEhAhQoVUL16dbRr1w6DBg1Cv379IJFItH5tIiIiIiIiIiKi4lYuk5BBQUFYvHgxnj59qvZYXFwc4uLi8PbtWxw6dAjDhw/HmjVrYGFhUeTrpqSkYP369Th16hSU2aaCSqVSJCUlwc/PD+fPn0eLFi2wZcsWNGjQoMjXJSIiIiIiIiIi0qdyl4T08/PDxIkTERMTI7QZGxujadOmqFSpEqKjo+Hl5SUkCS9fvgxvb28cOXKkSInItLQ0zJgxAy4uLqL2Ro0aoUaNGkhJSYGHhwcyMjIAAG/evMHHH3+MI0eOwM7OrtDXJSIiIiIiIiIi0rdylYSUy+X45ptvhASkoaEhvvrqK0yfPl2UYAwPD8dvv/2G8+fPAwDc3d2xbNkybN26tdDXXr9+vSgBOWTIECxcuBB169YV2lJTU3Ho0CFs27YNUqkUiYmJ+Oqrr3DlyhVUrFix0NcmopLrnnc09jkHoIKxAeZ0b6jROUqlEonpMlSuaKzj6IiIiIiIiIi0o1wVpjl79iw8PT2F/Q0bNuCbb75RG+FYq1YtbNy4EdOnTxfarl27BldX10Jd19fXF6dOnRL2x48fj61bt4oSkABgamqKL774QpTsDA4OxsGDBwt1XSIq2V6FJmDQ3444+CwIux0D0HfnI0QlZ+R5jqN/LBquuw3LH6+h8+/3EBSXWkzREhERERERERVeuUpCXrhwQdju0aMHRo4cmefx8+bNQ82aNYX9y5cvF+q6ly5dglwuBwBYWlpi6dKleR7fv39/DBo0qMjXJaKSzTkwDhlyhbAfkyLF5bfheZ4z7bgLAv6XeHwaFI/Fl9/qNEYiIiIiIiIibSg3SciMjAw8f/5c2B8xYkS+55iYmKBHjx7C/suXLwt1bUdHR2G7X79+MDMzy/ec/v37C9vu7u7CWpFEVLa9DE3I9bHkdBk8I5NFbcdcgnUdEhEREREREVGRlZskZHBwMCpUqCDsN27cWKPzLC0the3Y2NhCXTs6OrpI1wUyq3YTUdnnGpJ7ElJZjHEQERERERERaVO5KUzTsGFDuLi4IDExEeHh4WrrMeYmOPi/UUZVqlQp1LWvX7+O9PR0hIeHw9zcXKNzgoKCRPuFvTYREREREREREZG+lZskZJZKlSqhUqVKGh2blJSEhw8fCvuajmLMSYUKFWBra6vx8devXxe2bWxsRKM4iUh3Jh95nv9BREREREREVOpIpVIYGxvrO4xyq9wlIQti7969SEpKEvb79u1bLNd9/PgxnJ2dhf1+/foVy3XzIpPJ9B1CkWQVBsptn8ofmSzn10BJXWNRJpPleh8W9/3J+4lIO3gvEWmPtu8nuVwOpTJzIRSJRAKlUinsU+nRrFmzIvcxevRobNiwQdifMmUKnjx5AgA4cOAAunTpUuRrlCTZX+cl+XWfkZGBCxcu4ObNm3j79i3i4uJQsWJFNGrUCL169cL48eNRo0aNfPvx9vbG8OHDC3TtU6dOoXXr1oUNvVw5e/YsfvjhBwDq9xMALFmyBOfPnwcA/Pzzzxg7dqzOYrl27RoOHTqEI0eOqD0WFBSEAQMGAADq1KmDO3fuFOlaJe1eyrp+1v9lMpleYmISMhdubm7YvXu3sN+gQYNiSQbGxcXhxx9/FPaNjY3x2Wef6fy6eVEoFHjx4oVeY9C2V69e6TsE0rO49NL1Yf/FixdIkSpyfUyfeD8RaQfvJSLt0db9ZGRkBCMjI6SkpMDQ0FArfVLpIpfLkZKSIuwrFP/9eyw9PV30WFmUmpqq7xBy9ObNGyxevFi0fBqQOcrtxYsXePHiBXbv3o05c+Zg0qRJefalWsBWU+Xhd68tqkV2s99PWW2qx+ri55qSkoL58+fDyckJtWvXzvEaaWlpwrZSqdR6HPq+l+RyORQKhTC4RV//7mQSMgdBQUGYPXs2pFKp0LZkyRIYGen2x5WRkYFvv/1WtB7klClTUK9ePZ1el6g8KsFf6hIRERGRFsydO7fA5zx69Eg0K83a2lqLEZE2vHjxAl9++SXS09MBZI5W7tKlC1q3bg0DAwO8fPkSjx8/RlpaGjZv3oyQkBAsWLAg1/7evn0rbI8cORKNGjXKN4ZatWoV/YlQsYmLi4OTk5O+wyAwCakmNDQUn332GSIjI4W2adOm6XwqdkZGBubMmSO6Mdq2bYt58+bp9LpE5VGKVIGv7kTnfyARERERlVpTp04t0PHPnj3Dn3/+Key3a9cOn3/+ubbDoiJITk7GwoULhQRkzZo1sWnTJrWp0S9fvsT8+fMRFRWFo0ePokWLFhg2bFiOfaomIWfMmFGgWg5UdKtXr8bq1av1HQbq1KlTqFGxVDBMQqrw9vbGzJkzERoaKrT16NEjz29NtCEpKQlz5szB48ePhbY6depg+/btJWLBVAMDg1K/3oVcLhcNN27VqhWn1JRje5wC4B0fpu8wCqRt27ZISpcBp9Xjbtu2bbHGwvuJSDt4LxFpj7bvJ7lcDm9vbwCZo6zMzMx4f5ZxAQEBWLBggTB1tGbNmti+fTuqVKkiOs7AwEDYrlChAszMzIo1Tl1TKpWiaaOmpqaQSCQ6uVbWmp0FWX/v4MGDiIqKAgCYmZlh//79OY5c7NKlC/766y9MmDABcrkcW7duxYgRI1CxYkXRcQqFAh4eHgCAypUrw87OTmfPt7wyMTERtg0NDfVyz6j+3rPe03WtOO8lTcjlchgYGMDY2BjGxsZo3Lhxgf+uvXz5UrQkRWEwCfk/z58/x+zZsxEbGyu0de3aFTt27NBpIjAiIgJffvklXr9+LbRZW1tj//79JWqIt66nohc3Q0PDMvecSHO7nQP1HUKBGRkZwSiXZSz1/Vrm/USkHbyXiLSnqPeTRCIRfVjMvk9lS3JyMmbPno34+HgAmevyb9++HTVr1lQ7try9LorjORbkGjdu3BC2p0+fjsaNG+d6bOvWrTF48GBcuXIFkZGRuH37NkaMGCE6xs/PT1j7r2XLlqIkM2lHSbhnSkoM+ny/yLp21v+NjIz08uUa/6UL4NKlS/jhhx9EC6b27t0b27ZtU/umRJvc3d0xa9YshIX9N7KpXr16+Oeff7gOJJEOhSak6zsEIiIiIiohli5dCi8vL2F/+fLlaNeuncbn37hxAxcuXICbmxtiY2NhaWmJBg0aYNiwYRgzZgxMTU3z7ePVq1e4evUqnj17huDgYMTHx0MikaBSpUpo2LAhunbtmme15+3bt2PHjh0AgNOnT6N169Z48eIFTp06BWdnZ0RERMDQ0BB169ZFr1698Omnn2o06CUiIgJHjx6Fg4MD/P39IZfLYW1tjZ49e2Lq1KmoX78+VqxYgRMnTgDIHKmoq4rhUqlUNHV66NCh+Z7TvXt3XLlyBQDg4OCgloRUHQzUqlUrLUWaO9Xf05EjR9CxY0c4ODjg2LFjePXqFeLi4lC5cmW0bNkSo0aNwrBhw3JNjJ49exZLly4FAGzduhV9+/bF9u3bceHCBSQkJKBWrVro1KkTvvvuO7WEelhYGE6ePIkHDx4gMDAQiYmJqFy5Mho2bIhevXphwoQJsLS01Og53b17F2fPnoWLiwtiY2NRuXJlNG/eHBMmTMCgQYPyPX/JkiU4d+4cAGD9+vV5Vsd++/Ytzpw5AycnJwQFBUEqlaJKlSpo1qwZBg8ejNGjR4tGXqr+jLIEBwfDzs4OAGBjYyOMwg0KCkL//v3V2nOSlJSEc+fO4e7du/Dw8EBcXBxMTU1hbW2Nzp07Y/To0Xm+nrL/7oYMGQIvLy+cOHECDx8+RFhYGJRKJaytrdG9e3dMmjRJo7VKS4Nyn4RUfRPIMnLkSKxfv16noxHu3LmD+fPniyouNW/eHLt37871DwsRlV8fH3iC+DSZvsMgIiIiKlP27NmD69evC/vjx4/HhAkTNDo3Pj4eU6dOVSt4ERkZicjISDx58gRHjhzBn3/+ifr16+fYR0JCAhYvXpxrwiMtLQ2RkZFwdnbG33//jbVr1+LDDz/MMy6lUon169fjwIEDUGarxuju7g53d3ccOnQIGzZswJAhQ3Ltx8HBAcuWLVOrEuzv7w9/f3+cOnUKy5cvzzMWbYqLixM9n9x+pqpUCwvlVA04pyRkYGAg3NzcEBMTA3NzczRo0ABt27bVyaixVatW4dixY6K26Oho3Lt3D/fu3cPhw4exc+dOWFlZ5dvX/PnzcfPmTWHf398fkZGR+PHHH0XH7dq1C3/88YewrqbqdaOjo/H06VP8/fff+PHHHzFmzJhcr5eamop58+apvXajo6Px4MEDPHjwAP3790evXr3yjT0/ycnJWLVqFS5evKj2WFRUlHC9vXv3YseOHWjSpEmRr5mbK1euYPXq1YiLixO1S6VSJCQkwNPTE4cPH8bw4cOxdOlSjaZ+7927F1u2bBEVRwYAHx8f+Pj44NixY1i8eHGB17kticptElIqlWLZsmW4cOGCqH3WrFn4/vvvdTpM9siRI1i7dq1oLn2PHj2wdetWWFhY6Oy6RFR6nX1ZutawJCIiIirpHB0d8dtvvwn77dq1K1BSbcmSJUhOToZEIkH37t3RqlUrGBsb48WLF7h//z6USiW8vLwwd+5cnDx5Um2ZL6lUis8++wxv3rwBkLl2Xs+ePdG0aVOYmZkhMTERr169gqOjIxQKBdLS0rBkyRI0a9YszyTLb7/9JtQbaN++PTp37owKFSrA29sbt27dQnp6OlJTU7FgwQLY2dmhYcOGan3cuHEDy5Ytg1yeuR5QrVq1MHDgQFSvXh3BwcG4efMm4uLisHz5ctSuXVvjn1lRFGaZNNVEW0hIiNrjqknI6OhojB8/Hi9evFA7zsrKCp9//jk+++wzrS3Xtn37djg6OgIAmjZtit69e6NixYp4+fIl7t27B4VCARcXF0ycOBEnT55E5cqVc+0ra1Redv369RONxFUdtQoALVq0QNeuXWFpaYno6Gg8fPgQXl5eSEpKwpIlSxAbG4sZM2ao9ZuRkYGpU6fCzc0NAIR7oF27dlAoFHj27BmcnJxw+/ZtPHv2rLA/IgCZv8MZM2bA1dVVaGvZsiW6du0Kc3Nz+Pr64saNG0hPT4efnx+mTJmC8+fPw9raGq1bt8aiRYuQkJCAv/76CwBQpUoVzJo1CwBQqVKlAsVy7NgxrFq1Sti3srJC3759YWtri+TkZDx9+hQuLi4AgMuXL8PLywt79uyBubl5rn0eP35cuF+bNWuGbt26oXLlyggICMCNGzeQlJQEmUyGdevWoWnTpujatWuBYi5pymUSMiMjA998843oJjUyMsKqVaswbtw4nV57586d+P3330Vt48aNw6pVq7gOFBERERFRaSWVAmvWAJcvA9lGjpV7ZmbA8OHAihVACSi8CWROR503b56QZKtRowa2bdsmmsqZn+TkZDRo0ABbt24ViqxkuXv3LmbPng25XI43b97g7t27GDhwoOiYgwcPCglIa2trHDhwAA0aNFC7ztu3bzFjxgzExMRAJpPhxIkTaqPbVD1+/BhWVlbYsmULPvjgA9FjPj4+mDZtGsLDwyGVSnHw4EGsXLlSdExsbCzWr18v/Gw++ugjrFixQrRU2cKFC7F48WLY29vnmNzThSpVqsDU1FQo9uHt7Y3mzZvneY7qNPu0tDQkJiYKiSelUin8/AFgzZo1ufYTGxuLTZs2wcHBATt27FArWFQYjo6OkEgkWLhwIWbMmCEaCPX8+XN89dVXiIuLg6+vL7Zs2aL2e1J19+5dGBgY4LvvvsO4ceNgZGQER0dH0TTsU6dOCQnISpUqYcOGDRgwYICoH6VSidOnT2P16tWQSqXYvHkz2rZti/fff1903N69e4UEZJUqVbBjxw507txZdMyDBw/w3XffqY0YLKitW7cKCUgzMzOsX79ebQRvSEgIpk+fDj8/P8TGxuLnn3/Gtm3b0KRJEzRp0gRBQUFCEtLCwgIzZ84scByurq6i18jYsWOxbNkytYFkDg4OWLBgARISEuDh4YHVq1fjl19+ybXfx48fo0KFCtiwYYNaBffvv/8eM2fOhKenJwBg3759TEKWNjKZDN9++60oAWlubo5t27ahR48eOr3233//rZaA/P777/Hll1/q9LpERERERKRjq1cD69bpO4qS63+jg/DTT/qNA5mDUr799ltER0cDyBxht3Xr1gIXBjU1NcWePXtyXM+/T58++PDDD3H+/HkAgLOzs1oS8syZM8L2smXLckxAApnLds2YMQObN28GkFmhNj8bN25US0ACQKNGjfDtt99i2bJlAIBHjx6pHbNnzx6hSE/37t2xbt06tZmCVapUwfbt2/HJJ5/kOM05y7179/Du3bs8Y01KSsLevXtzfKxJkybCdF6JRIJOnTrh3r17AIATJ06IRqVlp1Ao1KbvpqWlCUlIX19fJCcnC48ZGxtj0qRJGD16NOrXrw+lUgl3d3ecOHFC6MfZ2RnffPMN9u3bp5VBRHPmzMkxIdahQwfs2LEDU6ZMgVKpxPHjxzFjxow8a0d89dVXotzC4MGDhe2MjAxs3bpV2N+6dSu6d++u1odEIsG4ceOQmJiIjRs3CpXFDx48KByTlJSEXbt2CfubNm1SS0ACmbM9f/vtN3zxxRd5/ATylpycjMOHDwv7OSUggcwK63/++SdGjBgBhUKBmzdvIiIiIsfiUoX166+/CrNZBw4ciPXr1+d4XO/evbFz505MnToVcrkct27dgpubW57JwyVLlqglIAGgZs2a+OGHHzBt2jQAEEZFl+YCSuUuCblp0ybY29sL+1WrVsWePXvQsmVLnV731q1b+PXXX4V9Q0NDrF27Ns9FV4mIiIiIqJTIti4g5eB/U0/1be3ataIptz/88IPaSC9NDB06NM+kULdu3YQkZPbRgnK5HJ9//jmCg4MRGRkpFMTIjepIy8TExDyPrV+/Pnr37p3r46rJkIiICNFjSqVStK7g/Pnzc12qzNjYGAsXLsRnn32W67WuXLkiFB3JTXx8fK4jxcaMGSNaU/CTTz4RJSE7d+6cY/IGADZv3iwaCQlkDkrKojoV29zcHP/88w/atm0rOr5jx47o2LEjunXrhiVLlgAAnJyccOLECUyePDnP55WfGjVqCNOCc9KpUyf06tULDg4OUCgUuHXrFqZPn57jsRKJBJ9++mmufd26dQuRkZEAMqfo55SAVDV16lTs3LkTCQkJcHJyQlhYmLC+5v3794XRqG3atMnztda7d2906tQJT548yfN6uXFwcBCm1Ldo0SLPNUwbN26MYcOGITw8HPXr10diYqLWkpChoaFwdnYGABgYGAivhdx07NgRw4YNw6VLlwBkFqLJLQlpZmaGjz/+ONe+3n//fRgbG0MqlSI9PR1xcXGoWrVqIZ+J/pWrJKSDgwMOHDgg7FepUgUHDx7U6aKlABAeHi580wRkvkFs3Lgx3wWFiYiIiIiolOjSBbh1S99RlGwlYBrh2bNnRWviffTRR5g0aVKh+urQoUOej6sWHFUdcQdkDkrRdEBKRkYG/Pz8hH3VRFpOsifSsqtWrZqwnZaWJnrs1atXiIqKAgDUrl0bLVq0yLOvrl27omrVqoiJicnzOG3p378/+vbtC3t7eygUCsybNw+Ojo4YP3483nvvPcjlcrx+/Rr79u2Dvb09qlatirS0NKG4jup0+yFDhqBt27YICgqCpaVlns91zJgxePr0KU6fPg0gczpyUZOQQ4cOzXd9yYEDB8LBwQFA5qjS3JKQDRs2zDMxpVo8SZMBWEZGRmjTpg0ePHgAAHj69KlQWfz+/fvCcX369Mm3r0GDBhU6Cal6rX79+uV7vOrAL23KWrMRyEy81q1bN99zhg8fLiQhnz59mutxzZs3z3MZCBMTE1SqVEm4x7IXFCptyk0SUi6XY926dUI1LYlEgl9//bXICcgpU6YIGXEA8PDwUDvm999/F62DMGvWLCYgiYiIiIjKkpUrAYmEa0LmRHVNSD168+aNaPpumzZt8pzOmx/VZF5OVKspZ62vmJekpCT4+PggMDAQgYGB8Pf3h6enJzw8PERVc7NXvM6uevXqeT6uWqhEtVgqkFlROct7772Xb8xA5ijNnKZ1A8CGDRuwYcOGHB+zs7MDANjY2ORaHTwnmzdvxldffQVnZ2colUqcOHFClFjOYmlpiV27dokKq6iua2lsbAxbW1vY2tpqdN0pU6YIScjg4GB4e3ujcePGGsedXVY17ryo5ivyWnszrxG5gHhtzMOHD4umOGtC9drBwcHCtiavkezrpRZEaGiosN20adNC91NUAQEBwramz0d1vdLQ0FDI5fIcp/Dnd78Ced+zpU25SUJeu3ZN9IZqamqK/fv3Y//+/Rr3Ub16dWzcuLFA1w0NDVVbh8LV1bXAC6Fu3LhRoxcnERERERHpgbFx5nqHJWDNQ1IXFxeHOXPmCKOIqlWrhu3btxeoEE12eVW81VRaWhqOHz+Oc+fOwcPDI9cEo6GhoUaJTCBzemdhZU3ZBaBx8RUrK6tCX68wLCwssG/fPuzbtw979+4V1q/MYmJigiFDhmDx4sWoWrUqkpKSAGT+XIryO7OzsxMVxgkICChSElKTz/eqvwPV3012eVXOBlDk4jCxsbHCdtZaqppcFyja66Og19IV1Z+fps9H9TilUon4+Pgcv7go6P2a35cQJV25SkKqSklJEYYWa8rGxqbA171165bacHnHQqyFkn2YPBEREREREeVPoVBg/vz5wgguIyMjbN26VVjjTl8CAwPx+eefi6ZaA5mz9qytrdG4cWO0bNlSWK+yKAU+NKU64lLTpKc+kiLGxsaYNWsWpk+fjufPnyMgIAAymQy1a9dG+/btYWlpCSCzgnZWfEX9fUskElSqVElIQmYlNwtLdaRsblRHveWVMM+vSI5qTmLIkCFo06aNBhH+pyg1NIqS6Fd9PepTYV7j2Ucs5ra2anlTbpKQPj4+5eq6RERERERElFkJWHUAypIlS9CpUyc9RpSZXJk9e7aQgKxatSo+++wzfPDBB2jSpIna6KisdQF1TXXkXX4FcLIkJCToKpx8mZiYoGvXrrkW/XBzcxO2c5tGm56eDkNDQ42qXasmHos6Mk+TJKbqCDzVNUYLSvX32q5du1zXltREjRo1hIrnmoywLMrrQzVufb7OspLagHhUaF5UjzMwMICFhYW2wyqVyk0S8vLlyzrp99ChQ3k+vnLlSqxcuVIn1yYiIiIiIqLc3b59G7t27RL2x4wZgylTpugxoky3b9+Gp6cngMzpmCdPnsxzXT/Vaam6HHmougZh9srSucl6HsVBqVQiLi4O0dHRqFWrFipVqpTn8bdv3xa2O3bsKHrso48+go+PD1JSUvDHH39gwIABefYVGBgoFLgBUOT6El5eXvle093dXdiuX79+oa9la2srVITX9PcVHx8PCwsLtRGbqkVZ3N3dMXTo0Dz78fb2LmC0/6lXrx5cXV0BZP68Bg8enOfx9+/fx+XLl1G3bl107dpV7XdeWA0aNBC2VX8neXnz5o2wbW1tnW8RovLCQN8BEBEREREREWmbv78/Fi9eLCTtWrZsidWrV+s5qkzPnz8Xtrt3755vYRHV6ry6LEzRqlUrYd3EsLCwfBMur169QkREhM7iyW7dunXo2rUrhg8frlZ7IbuwsDBhBKmhoaFawq9SpUpCUlGTwjiq12vUqBHq1KlT0PBF7t69m+8xN2/eFLb79+9f6Gt16dJF2HZwcMi3wnJGRgaGDx+ONm3aoF+/frlWqb5x40a+1y7KKN6spQiAzOrg+bl69SrOnTuH7du3i0bBFnUqtGoy083NDUFBQfmec+XKFWG7Xbt2Rbp+WcIkJBGVKwqFEmGJef/RJSIiIqLSLSUlBXPmzBGmFFetWhU7duxAhQoV9BxZJtW17mJiYvI81sXFRZTQyF5zQJtMTEwwbNgwYX/r1q15Hp/f49qmmpQ6c+ZMnqNCf/75Z2RkZAAAhg4dilq1aokeVx3Bd+nSpTyXUvP398fevXuF/alTpxY49uxcXFzyTKw9evRIqCdhampapCTk4MGDheRydHQ0du7cmefx+/btQ2RkJGQyGWJiYkRrSHbv3l0ouuLj44OTJ0/m2s/bt29FidTCxJ1V0dzV1TXPuh6RkZG4evUqgMyko+rPq6CV6rOrV68eOnfuDCDzS4DcKr5nef78uaguieo9Vd4xCUlE5crPd97pOwQiIiIi0rEff/xRmHZqYmKCP/74o8gj17RJdX3C58+fi5KMWZRKJS5fvoz/+7//EyUedV20dMaMGULCyt7eHqtXrxaSeaoxLF++XKPRabnx8PCAh4eHRqMQs/Tv319YG/H169f49ddf1ZKyqamp+OGHH3D9+nUAmVXMFyxYoNbX6NGjhSnOGRkZmDVrVo5Th1++fInPPvsMycnJAIA2bdpg/PjxGsecl/nz54tGuWZ5/PgxvvvuOyHJOnfu3CKtQVm5cmVRYaO//voLO3bsUCv8olAocOLECWzfvl1omzFjhmhtRhMTEyxevFjYX7NmDc6fP692zTdv3mDWrFlFKi5TtWpV0fIJ8+fPz7HQb1RUFObMmSOMbB02bJho+rrqeowxMTGiafWamjt3rpDMvHnzJpYuXZrjup4PHjzAV199JSQ7+/bti27duhX4emVVuVkTkogIAPY4Bug7BCIiIiLSodu3b4tqArRr1w4uLi5wcXEpVH8TJkzQelGJ4cOHY/v27YiMjIRSqcT333+P48ePC9Ohw8PD8eDBA1FFb7lcDqVSicTERMhkMo0KqRRGrVq1sGTJEqxYsQJKpRJHjx6Fvb29kAAMDw/HrVu3EBERAUNDQxgYGAiJJgMD3Y5zMjExwcqVK/HNN99AqVRi9+7duHnzJnr06IFq1aohJCQEN2/eFAqmGBsbY8uWLahdu7ZaXxUqVMBvv/2GqVOnIjk5GQEBARg5ciT69u2LFi1aQCaT4cWLF3j06JEwBd7W1hbbtm3TqLJ1foyNjZGQkIBp06ahe/fuaN++PYDMpPSjR4+E43r27KmVkZezZs3Cy5cvcevWLSiVSmzfvh1nzpxBnz59UKtWLURGRsLR0VG0Fmjnzp0xe/Zstb7GjBmDBw8e4N9//4VUKsXixYtx5MgRdOvWDSYmJnj16hUcHBwgl8vRsGFD+Pr6Fjru7777Dq6urnjy5Ani4uLw2WefoXPnzujQoQPMzMzg4+ODGzduCIlFW1tb/Pjjj6I+LCwsYGlpibi4OGRkZGDmzJno27cvZDJZjs8vJ++//z4WLVqE9evXAwDOnj0Le3t79OvXD/Xq1UNqaiqePHkiWmqhQYMGWLVqVaGfe1nEJCQRlSsBcak66bdqagLaRfiiWloiEk1M8aZaPQRUrqmTaxERERFR7uLj40X7zs7OcHZ2LnR/gwcP1noS0sLCAjt37sSXX36JqKgoAICTkxOcnJzUjrW1tcX69evxww8/wN/fHwqFAm/evBFNkdW24cOHQyqVYvPmzUhJSUFoaCgOHz4sOsbMzAwbNmzA+vXrERoaCiAzSahrAwcOxPr167F69WqkpqbCz89PqDKuqk6dOvjll1/yrITeqlUrHD58GPPmzYOvry9kMhlu3ryZ4xTiHj164Oeff1ab1l1YU6dOxbt373Dv3j08fPgQDx8+VDtmypQpWLp0qVaSuxKJBNu2bcNvv/2GAwcOQCqVIiQkBEePHs3x+FGjRmHNmjW5Jrs3b96MWrVqCdPU3dzcROswAplfACxatAiTJk0qdNzGxsbYu3cvVq5ciXPnzgHI/Z5u3749fv/9d1StWlXtsU8++QR//fUXgMxEb1aycOLEicL08vxMmzYN1atXx5o1axAfH4/Y2FicOXMmx2NHjRqFhQsXqlW6L++YhCQiKiylEsN9nmLes/PoHfgKBhCvSfO2al381XYo/m4zGOlGuv8HGRERERGVHq1bt8alS5dw9OhR3L17F35+fkhJSUHFihVRo0YN2NnZoU+fPhgxYgRMTEzQq1cvHDp0CABw/vx5nSYhgczpyn369MHx48fh4OCAkJAQZGRkoHbt2ujVqxdmzpwJa2trUbGf4kq4jBkzBp07d8aRI0fw8OFDBAQEICMjA5aWlmjWrBkGDx6MkSNHCusJ5qVFixa4dOkSrly5ghs3buDVq1eIiYmBkZERatasiQ4dOmDYsGHo2bOnVp+Dqakpdu/ejYsXL+L06dPw8PBAcnIyrK2t0blzZ0ycOBGtW7fW6jUNDQ2xcOFCTJw4EadOnYKjoyMCAgKQkJCAChUqwMbGBh06dMBHH32U7+tLIpFg0aJFGDp0KI4dOwYnJyeEh4fDzMwMjRo1wocffogJEybkudampipUqIANGzbg008/xdmzZ+Hk5ISwsDCkp6fDysoKrVu3xsiRIzFo0KBcE7Zz585FtWrVcPr0aQQGBkIqlaJ69eoICwvTOAkJACNGjECfPn1w6tQp3Lt3D+/evUNcXByMjIxQt25ddOzYEWPHjkXr1q0LNe27rJMo81rJlcotFxcXYci5gYGBMDS8tMoaSp+lbdu2Opu+QCWbwYJLWumnVnIs9l7fhmG+z/I91ruKNT4f/A0c6mn3HxFZFJs/1Em/ueH9RKQdvJeItEfb95NcLhfWEwSApk2bamX6JVFJp1QqRYkTMzOzfCsLt27dWlgz0tHRsUAJnfJm+/bt2LFjBwBgzpw5+Oabb/QcEelKYe4lXdLG3zVt5IlYmIaIqIDaRvjgyeF5GiUgAaBxfBhunVqOeU/P6SSeVGnBK7wREREREeXk4MGD+Pfff0WJ/dz4+PgICUgrKysmIIkoT/y6nYioANqFe+PW6eWomqZeCS0vhkoFNjv8g+qpCfih52dajWnuhVfY9XFbrfZJREREROXTlStXhBFTp0+fznNK8P79+4Xtzp076zo0IirlOBKSiEhD9RIiceXs6hwTkOFmVfBLp7H4bMhcLO0xFS9qNMixjyXOZ/Dt84tajWs3K34TERERkZZ06dJF2F67di1iY2PVjpHL5dizZw9OnDgBIHNqpjYqOBNR2caRkEREGjCSy3Dm4npYp8SpPba/ZT981/cLJFb4byHuXzqPxYyXt7DV/m+YyTJEx/9mvxf+lWriQpOuug6biIiIiKhApkyZgosXLyI+Ph6urq7o06cP+vXrB1tbWxgbGyM8PBwPHz5EcHCwcM7//d//oWPHjnqMmohKAyYhiYg0sMzpJDqGe6m1r+06Hiu6TQayLTKslBhgb5tBcKnVCFfPrEKN1AThMQMoceTKZnT8dAvcq9XTeexERERERJqqXr06du3ahUWLFiEgIABpaWm4cuVKjseamJhgyZIlmDx5cjFHSUSlEZOQRET56BDuhR+cTqm172w7NMcEpKrntd7DiDErYH/yB9GISDNZBg5e3YJuE3+BzJBvxURERERUcjRt2hSnTp3C3bt3cfPmTbx9+xbR0dFQKpWoXr06bGxs0K9fP4wYMQI1atTQd7hEVErwky8RlTmvQhOw6oYHguPTML5dHczt2QiSPBKFeTGSy7D/6u8wVogrUD+p9R6+6/t/eSYghWNrN8XkYQtw5uJ6GEAptHcM98KPjiexqvukQsVGRERERKQrxsbGGDVqFEaPHq3vUMqMb775Bt98842+wyDSGxamIaIyRSpXYNDfjjj7MgxOAXGYf/ENDj4NKnR/M1/dRKtoceGXNENjTBs6t0AjGC806Yp1Xcertf/gdBLtw70LHR8RERERERFRacAkJBGVKW6hCQhLTBe1TT/hWqi+zDNSsfLRMbX2H3t8irfVbAvc309dJ+BprfdEbUZKBbbe+RtQKnM5i4iIiIiIiKj0YxKSiMqUlAx5/gdpaO7zi2rVsF9Xq4ffO4wsVH8yQyNMHfo9Uo1MRO09Qt5igsf9woZJREREREREVOIxCUlEZYqhQc5rNPpEJ0NZgNGGVVMTsPDJWbX2pT0/g8LAsNDxuVerhw2dP1Zr/8VhP0yl6TmcQURERERERFT6MQlJROXCe+vvoOcfDzU+frbrFVTOSBW13bdpgX8bdSpyLJs7joF/JXEVwXpJUZj37HyR+yYiIiIiIiIqiZiEJKJy45FfrEbHVZBl4GvXy2rtS3tO1agadn5SjStgUe/pau3znp5H5fTkIvdPREREREREVNIwCUlElM1E93uolRIvanOo2xKPbFpo7RqnmnbHgzrNRW1W6cn49vklrV2DiIiICsfAQPwxSS7X3prTRERExS3737Hsf+eKC5OQRESqlEp8/+yCWvOW90dp9zoSCVZ2n6TW/P2zC6iSlqTdaxEREVGBSCQSGBr+twZ0WlqaHqMhIiIqmpSUFGHbyMgIEi3M8CsMJiGJiFQM8HdF6yh/Uds7y9q41Liz1q9lX68N7mUbXWmVnoxvXP7V+rWIiIioYMzNzYXt5GQul0JERKVXQkKCsF2pUiW9xcEkJBGRipkvb6q1/f7+KCglOni7lEiwqpv6aMg5LpdRUUeVst0jEnH6RQiC41PzP5iIiKgcs7CwELbj4+ORmsq/nUREVPrExMSIvkzTZxLSSG9XJiIqYaxSEzHa21HUFm9ihgMt++nsmnfrtcY9mxboFfxGaKuZGo/Jbx2wt80grV7rz4d+mHPuJQCggpEBLs3ojAFNa+RzFhERUflkbm4OAwMDKBQKKJVKBAYGwtLSEpUrV9brVDYiXVIqlaK14+RyOV/rRIWg73tJLpcjJSUFCQkJogSksbExzMzMii2O7JiEJCL6n0nuDqggl4najjfrhRTjirq7qESCzZ3GipKQQObakPtaD9B4BKZvdArqW5nCwCDnP2wKhRJrbnoI++kyBTbaezEJSURElAsjIyPUrVsXAQEBADI/0EVHRyM6OlrPkRHplkKhELb1VbyCqCwoafeSsbExbG1t9frFgv5/CkREJcT0V7fU2v5p1V/n173cqCM8rGxEbS1iAjHE97nGfTRefxt11tyAvVdUjo+nyeSISMoQtd1+l/OxRERElMnc3By1a9fmSDAqN5RKJWQymfCfUqnUd0hEpVJJu5eyEpAmJiZ6jYNJSCIiAG0jfNAhwkfU9rpaPThbN9X5tZUSA/z+/ki19rk5VOnOS0RSBqYdd9H7HzgiIqKyxNLSEu+99x5q1qyJChUq6DscIp1TTZwQUeHp+14yMjKClZUVbG1t0bhxY70nIAFOxyYiAgBMeWOv1vZPqwFAMY18ONiiH356cBjV0xKFtoEBL/BebAi8rOpo3E9gXBquukege4OqqGJqrItQiYiIyh0jIyNUq1YN1apVg1KpFE2xIypLZDIZXr16Jew3btwYRkZMGxAVlL7vJQMDgxI5ip/vJkRUpjz2iy3wORKlAh97PhS1ySQGONy8j5aiyl+qcQX83XYIfnA6JWr/wu06FvWeXqC+Rux1hpGBBEcnd8DHbTVPYBKVFEqlEnKFEkaGnLBBRCWPRCKBoaGhvsMg0onsM2oMDQ35eicqBN5LOeO/7omoTNnnHFDgczqHesI2Ubw+4m3btogwt9JWWBrZ3XoQFBB/WzXt1S1UkGXkckbuZAol5l96zanZVOocdwmG7dpbsPzxGv7v1AvI5BxtRERERERUFjAJSURlytuIpAKfMy7bKEgAON20uzbCKRD/KrVwteH7orbqaYn46N2jQvUXGJeGVKlcG6ERFYvo5Ax8evQ5guPTkCKVY69TAPaqfLEglSvg5B+LsIQ0PUZJRERERESFwSQkEZVruU3FPtekq17i2dV2iFrbrBfX9BAJUfG77xsNRbbBu3899gcA+MWkoMn6O/hg+wPUWXMTm+966yFCIiIiIiIqLCYhiahcy20qdoxpZb3Ec6Xh+wioVF3U1jP4DRrHhuglHiJdSEiTYucjP6y67oEXIfFCe5pUfer1i5AEAMCvDt4IiEsV2pddfYvkdFbtJCIiIiIqLZiEJKJy7WNP9anO+piKnUVhYJhZlTubKW/uFn8wRDqgUCgxZLcTvj77EmtueuKDbQ/wJCAu3/P+eOgn2pfKlfCNSdFNkEREREREpHVMQhJRufahj7NoX59TsbMcbNFPrW3KmzuQKAteoOPUi1AAgFtoYpHjItKGl2EJcPT/r4p9mkyBfU8KXlCKiIiIiIhKFyYhiajcahITjKbZpjnfq9tSb1Oxs/haWuOeTQtRW8OECPQIflPgvqafcEVEYjqOugRrKzyiIgmMUy8qs+t/6z4SEREREVHZxSQkEZVbI3yeqLVdbtRJD5GoO5TDaMipr+0L1detd5F4+b919YiIiIiIiIj0gUlIIiq3hvk+VWv7t4QkIU/ZdUeqkYmobZznA1SUphe4r8jkDG2FRURERERERFQoTEISUblUOT0ZvYJei9o8rergXVUbPUUkllDBHOcbdxG1Vc5IxWgvxwL39f2F13gbwTUhiYiIiIiISH+YhCSicmmQnwuMFXJRW0mZip3lYMucCtQUbkp2RBJHQ1L5o1AoMf/ia9RYcQ0tfrHHxddh+g6JiIiIiKjcYhKSiMql4TmsB/lvo456iCR3t+q3Q6i5lahtkL8raiXH5nIGEak68DQQW+75IDpFCveIJIw7+BSxKUzIExERERHpA5OQRFQmKBRKpGTINDtYqcRgPxdRU4KJKR5kq0itb3IDQxxp3kfUZqhUYOy7x1q7xtPAOK31RVQUSqVS633OPPlCtC+VK3HPJ0br1yEiIiIiovwxCUlEpd7R50GwXn0DVX68ptHxLaMDYJ0SJ2q7ZdsWUkNjHURXNMea9VJr+9jzodb6P/gsSGt9ERXFhjtexXKdNJk8/4OIiIiIiEjrmIQkolItPlWKacddEZWcAblCs5FUA/1d1dpu1W+n3cC0xKVmI3hZWovaege+0tqU7CcBnNpNJcOux/65PpauxcRhlYol78sGIiIiIqLygElIIirVngXFQ6Zh8jFLf/8Xam0lNQkJiQSnmvYQNRlAiY88H+kpICLdCIhLzfWxa+6RxRgJUfFTKpVYf/sdmm64gy5b7+O6R4S+QyIiIiLSOiYhiahUkykUBTreWC5F76BXojb/SjXgZVlbm2Fp1Um7Hmpt4zwf6CESIv04+rzgywbEp0p1EAmRbpxxC8Wyq+7wikrGk8A4jP7nCaKTWUSJiIiIyhYmIYmoXOka6gELaZqo7Xb9toBEoqeI8veiRkN4WtURtfUMeoPaSdF6ioioeCWka1h06n/ehCWiyYY7OoqGSPv2OgeI9tNlCtx6xxHAREREVLYwCUlE5cqAHKZi3yypU7Gz5DolW3tVsolKM5lcgYe+Mbj9LhJpUjm2PvBBFEeRUSly11v9S6XYFI7mJSIiorLFSN8BEBEVp5zWg7xj20YPkRTMqabdsczppKhtnOcD7OgwQk8REZUMGTIFRv3jjOsemaPG2tapjBchCXqOioiIiIiIsuNISCIqN8wzUtE5zFPU5lqjISLNLPUTUAG41WgADysbUVvP4Deok8gp2VS+PfSLERKQAJiAJCIiIiIqoZiEJKJy44MQdxgpxYVs7tZrradoCkgiwSm77mrNo70c9RAMUclx5a3uqggnpctwxi0Ex1yCEZvC6d1EREREREXBJCQRlRu9gl+rtTnUbaWHSArndBP1JOQoJiGpnJMrlTrpNyVDhn47H2HcwWeYfOQ5umx7gKjkdJ1ci4iIiIioPGASkohKvOR0GQ4+DcSvd73hFZVc6H56Bb5Sa3tg06IooRUrtxoN4FOllqitT9ArWKYl6SkiorLrjlc0ngbFC/teUck4+zJMjxEREREREZVuTEISUYmmUCgxbI8Tph13xcJ/36Dj7/fwKrTga75VkGWgS7b1IF9Vs0W0WWVthap7EgkuvNdV1GSskGOY71M9BURUdl11V5/mfeBJoB4iISIiIiIqG5iEJKISzTUkHvd9Y4T9hDQZ9j8teCKgc5gnKshlorZ7pWgqdpbz73VRa+OUbCLtU+YwzVum0M3UbyJdSkyT5fh6JiIiIipuTEISUYnmFZWi1vabg0+B++mdw1Tse3VbFiomfXpUpzkiTcWjN4f6PkcFGYtmEBHRfwJiU9Dp93uo8uNVNNlwB8+C4vQdEhEREZVzTEISUbnQM0i9KM39uqVnPcgscgND/Nuok6jNQpqG/gEv9BQRERGVRPMvvsGz/61r6hOdgunHXfUbEBEREZV7TEISUZlnJJehW4i7qO2dZW2EWlTTU0RFcyGHKdmjvZz0EAkREZVUZ16GivZfhSUiQ6bQUzRERERETEISUTnQJsoP5rJ0Udv9UjgVO8vN+u2RYmQiavvQ2wkGCrmeIiIiotJACa4NSURERPrDJCQRlXkfZBsFCQCP6jTTQyTakWpcAdcbdBC11UqJR9dQDz1FRERERERERJQ3JiGJqFSLTZXme0zOScjmugin2OQ0JXukt7MeIiEqmOf/W6OOiEqWM24hmHDwKeZeeIWguFR9h0NERERlkJG+AyAiKopHfrH5HpM9CRlbwRweVW10FVKx+LdRJ8glBjBU/re+1zCfp1jSa5r+giLKhVKpxOHnQbjzLgoHngYV4nwdBEVEgkuvwzDu4DNh/+rbCLxd1BcGBhI9RkVUNqRJ5XgZmohmNS1QqSI/fhNR+cZ3QSIq1WpYmOT5uHVSDBomRIjaHtdpBqWkdA8EjzGtDMfaTdFdJcHaKjoA9ePD4V+llh4jI1L3+30fzL/4ptDn3/CM1GI0RJTdXucA0f67qGS4hSagnU0VPUVEVDY8CYjDkN2OiE2VwsTQACenvo+RLa31HRYRkd6U7k/hRET5+CBUfSq2Y207PUSifZcbdVJrG+7zVA+REOVtt2NA/gcRkd5cfB2u1hanwXInRJS35dfchaWDMuQKzL/4Ws8RERHpF5OQRFSmfRCiXqylONeD/HmY7grgXG7UUa1tmC+TkFTyuEck6aTftxFJ+P2ej076Lg6RSem4HZCK19EZUHLOORFRmZN9JL93dAqkckUuRxMRlX2cjk1EZVrXbOtByiUGcK7dpNiub2VqrLO+X1ZvgECL6qiXFCW09Q18CVNpOlKNK+jsukQlxYRDz/I/qJDeRSXrrG8AeBmagD5/PhJGyHzS1BwH2+n0kkREREREesWRkERUZhnLpegY7iVqe1m9PpJMzPQUkWa62FpqdqBEgivZRkOayjLQL8BN+0ERFYM9TiVn2vbtd1H5H1QEOx76CglIADjhmYyYlAydXpOIiEqO2JQMLLn8Fh/tf4I9Tv4cEU9E5QKTkERUZrWN9ENFuXhNK8c6JX89yE0ftsCOMa01OvbfHNaFHOHzRNshERWLO166TfxlkckVeB4Ul2vSL0Om+6ly2dfJVAIIik/T+XWJiKhk+OjAU/xi74Vzr8LwxSk37Hzkr++QiIh0jtOxiajM6hj2Tq3NyVrzJGQ1M2NEpxRtYf7CLvszu3sDVDM3xsTDz/M87o5tG6QamcBU9l8yZZjPU0CpBCSSwl2cqAybfsIV4Ynpwv7CPo2xYXhzSFTuF0Uuo1F8onU7RZuIiMqHmJQM3PWOFrXtcfLH7O4N9BMQEVEx4UhIIiqzOuWQhHxirfl6kA+/6VHkGEISdDuyKdW4AuzriUdN1kuKQusoP51elyg3aVI5guJS9R1GrlQTkACw6a43Gqy7BW8N1oCMTpHme5xSqcSdd1HY8cAXr8MSixQrERGVTckZcrU215AEPURCRFS8mIQkojLr/WzrQSYZV4R7VRuNz29awwKrBhVt+rYSul/f50pD9SrZw31YJZuK3z7nAFRdfg22a2+h69b7iEpOz/+kEiAwLg0/XnPP/0AAzX+xz3Pdrh+uumPArsf49vwrtP/NAZffhGsrTKJSYZ9zAIbtdsSs0y8QEJui73ConJHKFUhMk+k7DCIiygWTkERUJplJ09AyOlDU9rxmIygMDHV2TV1Wws7L5UY5JSG5LiQVr+R0GWafeYm0/62n6BwYh18dfPQcleZOuIZodJxMocSzoPgcH8uQKbD1no/o2G0PSs/PgKiojjwPwucnX+CaRyR2OwZg4C5HFtugYrPjgS+qr7gOq+VXMfHwM6TL1EcbEhGRfjEJSURlUrsIHxgqxQsyPivAVOzSxL9KLbyqZitq6xrqiaqpnNZDxeddVDIysi2CusneK5ejS7ezL0NzbE9IlwpJ2Cw3PYun2A5RSbD6hqdo/11UMjwik/QUDZUnwfGp+Pb8KySmy6BQZn6xtP9JYP4nEhFRsWISkojKpBzXg6z1XoH7saigu5GT2nQl22hIQ6UCQ/zyLmpDpE05jXVSlNEBUNG5VNUmKq+S0mUYtOsxvHJYMzWnte+ItM3eK1qtjdWmiYhKHiYhiahMyr4eJAA8LcRIyGHNa2ojHJ3LaUr2MK4LSURExeCfJ4G49Y6jfkl/0rONQgeAV2GcEUJEVNIwCUlEZVKnMHESMq6CObwsaxe4n2Y1K+HnYc1gZlyyR0Q+qtMcsRXMRW2D/FxgoOAIFCIi0q0dD3z1HQIRERGVAkxCElGZUzk9GXaxwaK2p7XeAySSQvW3pF8TxPw0BA/mdNdGeDohNzDEzfrtRG3V0xLRIUI7RTHkCiU8IpKQkcNIA6KyJvu6jkSUSa5QQiZXvz+8otWnYRNR0bwKTcCUo88xbLcjjrsE538CEVEpYKTvAIiItC3nqdgFXw9SlYmRASxM8n7LrGhsAKQW6TJFcr1BB4z3fChqG+z3PM9p6E4BcTj8LAiTO9hAkkuS9lVoAobsdkJIQhoqVTDCiU/bo4ZWIycqWa65R+g7BKISZ8Odd/jF3hsKpRLf9GiINYPtcv27UVL5RCfjb8cApMnk+KxjPbS3qaLvkIhylJwuQ7+/HiMqOXMN4msekahqZoxBdqVjmSAiotxwJCQRlTkdw3JIQtYq2HqQg+0Knmab072hWlsXW6sC91NYNxq0V2sb7Jt/cZqpx1zwx0O/XB9feuUtQhLSAACJ6TJ8d+FNoWOk8sezFFbGPe7KESdEqpwDYvHDFXfEpUqRkCbDulvvcMerdK0BGZuSgZ5/PMQv9l7Ydt8Xvf54CI+I0vf+RGWbUplZ0e2eT7SQgMyyz5nVvomo9GMSkojKnJxGQj4pYFGaA5+oJ/TyM7mDDepUrijs92pUtViTkMGVquNl9fqitq6hHqiSlv+HrN1OuVeQvPxWPCrsXVQypPIyWvaYtO5YKZxClirlWqpEqk67haq1HXlWuu7tK+4RCE1IF/aTM+Q4Wgrfn6jgIpPSsejfNxh/8CmOPA/Sdzh5+sXeGwAQnpSh9tjJFyHFHQ6R1sSkZOC+TzSS0mX6DoX0jElIIipzOoW9E+1HmFZBYKXqBeqjZqUKBb6urZUZnn/fC/smtMPZaR1x9f+6wsigeKeq3agvTp4aKRXoH+CW73kvQxOx85GfjqKi8uwOK+YSlXrhielqbf6xKXqIpPBcguPV2s7mkFylskWpVGLYHidsvuuN026hmHLUpUQnIvfk8aUwUWl1+kUIaq26gd5/PoLNmpt47Bej75BIj5iEJKIypVpKAhomiEfuPbFuUuiiNAVVs1IFTOtUD6Nb1YapHipqX2vYQa1tiF/+U7IB4OuzL+HgzYQRERERlQ2Bcal4FiROQE856oIV19yRnMeILKlcgeXX3NFjxwPMOv0C0cnqIxN1wTu6dCX3ifKjVCqx8N83kCsyZ1Elpsuw6oaHnqMifWISkojKlPcj1KdiP6tVtKI0pckDmxZIMTIRtQ3yew4oNZs+feBpyR0dQERUUjj5x2LUPmf0+uMh9jkH6CWGUy9C0HzjHdRZfQMrrrkLa8kR0X8S03NeXmPtrXeYeswl1/OWX/PAulvv8MgvFrsdAzDpyDNdhUhUpskUSvjHiit33vTkoIfyjNWxiahMaR/uo9b2rFZjPUSiH+lGJrCv1wbDfZ8KbbaJUWgeE4i31WzzPT+n6WpEubnuEYHjLsGoYVEBPRpW1Xc4RSaVK+AUEIu73tH6DoVKsPhUKQb97YjE/42ieuAbgzqVK2JIs+KrWhsSn4aJh5/hfwNLsPbWO7StUxkftalTbDFkkSuUmn7PlSvX4Hi4hiSgewMrNKlhoZ3AiPJx7lUY0mVyVDBSn7mSfVr0Tc8opEnlqKiHWS4FERKfhqvuEahmbowhdjVLfLxEJd2zoDj8fOsdYlKkmNapHj7rVE/fIZV6TEISUakUHJ+KL0654aq7eOp120hftWNdajYqrrBKhOsNOoiSkAAw2M9FoyQkkabsvaIwfI+TkATZfNdbvwFpwZC/HWHPBCTl47ZXlJCAzLLXKaBYk5DXPSKEey/LHqeAYk1CKpTA9xdeFbli744Hvvj2/CsAgKGBBKendsSoVtbaCJEoX+kyRY5JyJgUqVqbVK5ERePiiKpwvKKS0X37A0T+b+r4gCbVce3/usKgmNcnJyorEtNkGLjLEXGpme8HDj7RqGlhgqHNa+k5stKN07GJqFSadtxVLQEJqCchoytWQlABi9KUdtcbqFf2Huyr2bqQRHmJS5XiwqswOPnHYq9TgFoSpLRjApI0EZFDkZZ/34YXawyxqeoJEueAuGKNwcEnGlvv+6olZAtCqVTi59v/FZOTK5TYdFd9WRUiyt+Bp4FCAhIAbr2LwovQBD1GRFS62XtHCQnILEX94o04EpKISqnbOVTcNZOmwS4mWNTmWrNhsRWlKSneWdWBT5VaaBT/34fiXsGvUVGajjTjglf9JgIA3+gU9PzjIUIS0vQdChEVgVKpxOHnQbB/F41WtSvh+176my0gVygRli2p+8gvVk/REJVuOc1IeBmagPY2VfQQDZVXGTIF7npHITZVigFNaqByxdKbcopIUv/S8fzrMD1EUraU3lcEEVE2raL8YQDx0KwXNRoWy7VHlKRh+RIJbjRojy9fXBOaTGUZ6B30Ctcbvp/v6UqlEp6RyTA1NoCtlZkuI6VSZLeTPxOQRGXA8mseotGHCy690WM0RKQt6TKFvkOgck6hUGLs/ie48r/ZanWrVMTd2d30HBWVNJyOTURlRrsI9fUgiyMJaW5iiMX9tFeB28ig6G/N1xp0UGsb7Jd7FcgsKRlyDPrbEc1/sUeDdbcx44RrkWOh0idVKodrcDzSZf9VFd1wh1MkifTpeVAcdjv642URp1eqJiDzss85AAo9rrmgVCpxzzsafzv6411kkt7ioLLNNyZF3yEUC6VSicPPgjDjuCt+vest+vtOpC2uIfFCAhIAguLTcPBpkB4jopKIIyGJqMxoF6leGdu1pu6TkD4/9EcNC+1Mc65oZIA2tSsVuR/7em0gNTCEseK/f2QO9st/Xch3Ucl4F5Us7O9/wnVPypubnpEY888TpEjlsDI1xtX/64LOtlb6DouoXNv5yA9fn30JIHOFkQ7FML3y8PNgNKhqhjVDmun8WjlZesUdv9hnfvlhYmiAf2d2xoCmNfQSC5Vd351/hbuzu+s7DJ3bet8X8y6+FvZdguNxeLL6F9ZERfE0KF6t7bd7+itceMYtBHe8otHKuhI+72ILY0OOwSsJ+FsgojKjbbaRkOmGRnCvWlfn19VGAtLU2ACNqpnh5NSOMDMp+vdDiRXM8LBOc1Fb85gg2CaoF/MhUjX/4mukSDOT17GpUiy9/FbPERGVLjK5Ao7+sXgZmgClUjsjCbOScQCgVALPcvigpwu7nQKK5TrZpcvk2Hr/vy8WM+QK0T6RttzzidF3CMVit6O/aP+oSzAyNJi+HZeuwNgDz1B1+TX03/kIfuVk5ChpT1K6fkbd/vnQD+MOPhO+xJt12k0vcZA6JiGJqEwwUMjROkr8D6zX1WwhNTTWU0QFk7BuGLyW9seIFtpbW/JGTlWyNRgNSeXbq7BE0X5RK0aXsQLaRHmKS5Xig+0P0G37A7T91QETDz+HXAtTmv1jU7UQXcGF51AJXJtSpTknQWJTpGrr211+yy/RiArrbYT6kgZpGkzJ3vwsHv++jUBcqhT23tGYeiz/pX2o+CWkSbXyt6Ys2eXoJ9rf/yQQUjnXTS0JmIQkojKhcVwYLKTiohmFXQ9SH0VmDA20X8E7p3UhB2mwLiSRNj3wLR+jTIgA4IRrsGiU4skXIXgWFKe/gLQkpwqhRfXQNwbWq69rvV8i0p7r/uIvQB74xuh1rVgSS06XYdQ+Z1gtv4aaK6/j8DP19RdDE9Jw4Ekgrr4N12j0qyYC41Jh7xWF5HRZofvo9Ps9nHoRopV4cvIyNFGtLS2XL76oeHFNSCIqE9pF5lCUphDrQQ5oUh1/fdxGGyHp3YuaDRFuVgW1Uv77QDzA/wWM5DLIDPn2T0Skbbse+6u13fCMLNXrqkYmpeO6R6TW+1165W2uIyGJSquENCnOuIUiLk2KMa1q6zscKqCYlAz4RKegbZ3KpWL9wG0PfHHpTTiAzCV0ZpxwxciWtVC5YuZMMM/IJPTY8RBRyRkAgJEta+HctE6QSAo/+OH3ez7C+qI1zE1w56tuaGld8PXsnwXFY+LhZ2hTuzLsaloUOh4qfUr+nUVEpIF2ETkUpanRqEB9PP++F27M+gB1qlTUVlhFUquIa00qJQa4nm00ZJWMFHQO8yxSv0RElLPYVKlam0xeukcNnXsVppN+OUqayhqpXIGBuxwx8+QLzL/4Bh1/v6fvkKgA9jj5o+bK6+i89T4a/XwbnpHqU9hLmu0PxIMwZAolXoQkCPv7nAOFBCQAXHwdDvccpuZrKl0mx7Kr/60VHpmcgc13vfI4I28KJXDKTXejIalkYhKSiMqEtjmNhKzRoPgD0aIPGlihbhETojmtCznIz7VIfRIRUflx3CVY3yEQ6ZS2Ckg99ovFk8A4YT8mRf1LiZJGqVTiNwdv9NjxAJOPPId3VLK+Q9ILqVyB+RffIGumeXB8GjbcKXxyrbiE5bBur+rakKpFzbLktD6opkLi09VGsB94qj4FvCB8olnsqLxhEpKIyoTsSUjfyjURX7F0D+2vYGQI+6+6od971Qvdx8367dTaBvmzOA1RUex2DIDtTzfRcN0t7Hrsp+9wiHRKS/mZUsE1OB7dtz9ArZXXMfOkK9Kk+qnqSsUrp0ROYbiGFE/Vem3a4xSABZfe4JFfLI65BGPwbketJWVLk5D4NCRmW99w/5NAPUVDVLYxCUlEpV6NlDjYJImndbnWLNhU7JKqcXVzbB/TqtDnR5pZ4nm2n0WnMC9Ypaov1kyUm0gdFKUo7YLi0+Afm4qvzrzEi1L4wZNKvtlnX+JVaEL+B+qYU0CsvkMoFkqlEqP+ccZj/1hEJmfgH+dArL31Tt9hUTGQleNCK7sdxevY+kSnwLOcjoYkouLBJCQRlXptI9SnYruVoqnYxoaFWxy6vU1ljY67WV88JdtQqUD/gBeFuiaVT1zXKm9LLr8tlyNHSPfa/OqA51qsrn3LM6rA56RpqZpqQYRqaWRaQQTGpSIwLk3U9sdD9X9fUMG8CUvEV2fc8NkxF9z1Kvjrj3TraZD6l2gsGEVEusQkJBGVejlVxi5oURp9Wtz3vUKdt2lESzyc0z3f4240aKfWNsjftVDXpPIp+wdzErvuEYlVN1jwiXRjyG6nAp+Tmss04vV3SsfIvve3FP8XHzmNhotPk+GPh754psVEcHkSm5KBPjsfYddjfxx6FoTBux3hEsyR41Q8MmQKfHnaDTZrbqDnjgd87RGVEExCElGp1zLKX63tRc0GxR9IIdhUqYgZnW0LdW6/JtXRtb5Vvsc9rNMCyUbiStuD/J6Xr4W+iHTsp5ueaPnLXX2HQWWQamXT/GTIFPj0yHOYL72S4+OP/MrH1Gpt+ubcK3T6/T72OgXoO5RSJTldhq/PvhS9fqVyJQ49K1oRC12Iz6GqfW7kCiXiCnA86c+GO17429EfoQnpeOgXi5H7nDlroZxb8O9ryOQc6atvTEISUanXOlsSMtHYFP6Va+opGs3c/7o7Tn/WEW7ze6NBVbNC9yOR5D+VO8PIGHfrtRa12SZGwS6GFU+JtCmyAMkiKntSpXK9f7ezxykAR1nNWmORyemYf/E1xu5/gn/yKULxq4N3MUVV+sWnStHjj4c47hqi9tiFV2F6iChvX5x2E7YVCiU8cqkefNw1GDVWXkfV5dcw+O/HSEhjMrIk+/OReKZUcHwafGPKfiVmub7/EJVgux0DsJnv5XpnpO8AiIiKwkAhR4to8QeH19XrQSkp2d+xdG9YtVivd6NBewz3fSpqG+TvAo9qdYs1DiKisihdpkDlZVchL0SBC4VCCamWRmZk/9BNeYtIysCWez4AgPP5JMfcc0lMkbpLb8LxIkT/RZUUSqDHjgf5HufonzlC2DsqGYP+dsw1UTVLJVl50zMK/f96jPeqm6OqmQm+71VylwE6+zJU3yHoRUSS+heDUnnZT9AN3OWIUS1r4eDEDvoOpdgpFEoccw2Ga3Du7z+7HvtjSb8mxRgVZcckJBGVao3jwlBRLv4m+nW1+nqKpuS6ka04DQAM8nPB9g4f6iEaKonCE9OxP5+RQLpWPSUeg/xd0DHMC20jfWGTFI2qqYkwUciQZGyK2Irm8LSywevqtrhn0xL36rZChpGxXmMmylKYBOTOR35Ycc0d2ijOG5sqRSynierUXa8o9Hmvur7DKPGOPtfNlGuFQom/Hf3xyC8GHepa4uvuDWBsmPeXzvFpMo37X33Do0Aj5Z4FxePZ/wq7XHgVhm97NtT4XG3Y5xyAk64hsLGsiB/7N83xmOD4NKy47lGscZH+XXgdjjU3y99a1Qv+fYPf//fFUm78Y1OLKRrKDZOQRFSqtYpWXw/yVfXCrbFYlnlUtYF/pRqonxgptPUJfAkTmZRJnHLMLSQBa295Ijg+DY/99bNWnIlMionu9/DZ69voGfwGhsqcR4RVzkhFneQYtIwOxBgvRwBAslEFXG7UEXtaD8Lt+m1L/AhoIlW+0Sn4+uxLfYdRLOy9onDMJRg1LEzwdbeGqFOlor5DKpR+fz3GwYnt8en7nEWQF6k2suo5WHXDA2tvZRZXOvw8GB6RSdj5URut9X/4eeGXMghJSMMDnxitxZIbl+B4tLepguMuwfj85Auh/a5XdI7HL7vqrvOYqGT6/X7eybjSzD0iEadehKJKRSNM7lAX1cxNoFAosfORn75DIw0wCUlEpVqrKPWF4l9V50hINRIJbjZoj89f3hCazGXp6B7yBva2bfUYGOlLqlSO/n89QnSKfkZOVZSm47vnlzD3+QXUSilcxUpzWTrGez7EeM+H8LSqg3VdxuNo896QGxhqOVoi7bvqHqHvEIrFfZ8YLPz3jTBS9PSLULxe2Ee/QRXBn4/8mITUovOvQnHxdTgaVTPDN90boopp7l+M7s5WHGiPU4BWk5BFFZyg+xFWR58Ho71NFezJ9rMoD2sdUsEUZnR+SSNXKGFoIF7/3j0iEV23PUDC/0Y573EKwJO5PWEgkSBdVvilTV6ExMPBOxqta1dGn8bVNFp3nwqHQwaIqFTLqTK2rpKQtlamyPZ3EF91a5DnOVXNjFHTwkTUNqFdHS1HppnrDXKaku1a/IFQiXDoWZB+EpBKJSa434P7P19h/YODhU5AZtc0NgQHrv2Ol/vnYLDvM630qS0ZRfhHMZV+932iceBJIALjxAmKhPTyMXV6/5NA0Yfhd1HJcAqI019AReSop1Hjpcntd1EaHXfcJRhj9z/F/ieBWHHNA2P3P8nz+PDEdNF+WUiyFNS7qMy1Se94afYzJt1Llcpx510UXILjoSiHr0lduOUZiaYb7qDSD1cw6fAzpErlwmOHnwULCUgAeBWWiPtFHIV89mUo3t9yD3MvvEb/vx5j9Y3yN5W9ODEJSUSlWvbK2JGmlRFuZqmTa1maGmNh3/eE/ZoWJvi2R97r/0gkEmwf0xom/1uzqE7lilgxMOd1e3TtTr02kGebrjrI77leYiH98olOxpcqC+wXlxopcThzcT2OXd4M28S8P0DJJQbwsrTG49p2uFu3FZ7VbIxwsyr5XqNZbDCunl2N45c2olZyyUgW3PSMzP8gKrPsvaMx/YQrWm6yx9PAOH2HU+zcQtULBATHpxW6v5QMGXY+8sPif9/goa/up79SwcgKUGRpt6P433D23tEISyj8a0PfXPIohkFl085HfjBfegUDdj3G+1vuYeoxFyh1VJ363zfhGHfgKf7v1Au4RyTq5Bp5kSuU+Pa87pcQcfKPxaC/HeEVlYw0mQLHXUOwyf6/ita7HvupnZPT35mC+P2ej2ht5t//n737Dmvq/OIA/s0Gwt57b1QEBVFR3HvPap2to9bWVjscHVpbba22VuvPDq2rWvdeuPcABcWFInvvvcn4/YGi4QZIIMlN4P08j4/y3pt7XyEJueee95wb8W3yJoeqkOXYBEFoLJ6gGm4F6RJjT0wdACWmz68e7IlpnWyRmF+Obo7GjS4bem28rzWGeJojLq8c3ha6YDdRRF1ZCrT1cM/SFUEZb+7u+eUkwLysANl8I1rmRMhHJBIjKqMYZdUCBNoZgctu3nNp74Pm171qrj5JUfjv9DqYVzSc+Zigb46DHsE46RyISAsXVHB4lH1MyovRM+0Jhsbfx9iY2zColr4EbULMLfRKeYL3Bi3AGecAhf0/mmPfwzQM9bagdQ4E/UqrhPjtejyG+1ggPq9cLboHa6KxO+/j3IvawP4v1+JwelYXDPQwp3lWxGtZpVVN7/TKlThqHcOiSgEs9RU5I4JQjjPRWZS6vv89SMOSPq5oZ6XYJ/H1uDyM3B6O1/HNk08zEbe0r0LP0ZRd91NwOlq5ZUSS8svR9XdqR/vfb8bj2wG1SRyKjg0eeZyBm/VuaBVXCiSyLwnFIkFIgiA0lkd+Gtj1mlg8NVFuUxoGgwEvCz14WejJ9Tg+j40O1vR/qj7v4C8RhASA/kkPsce7N00zImQlFIkx8d/7OPI4EwDgZ6OPSx90g6EMgfD6toWrsAu2WIxPIk9g7bXtlNfra3et3PFT4Diccg6AqIl6jnk6+jjq1g1H3bphQZ85mBR9HUvCD8GlKJOyr3lFEU4d/R6/dhqJxT1n0FYrsrhSAKFIDCYDpMZQG/ffgzT8R8NNgNYiraiiLgAJ1F6MbrmbRIKQbZyyMs/ocuJpJt7b/1DqttuJBQhPpjfL/5drcZjf3RE63LYdStgWTq1LDwC3EvMVHoTccS8Fbz/Ns0urVb4k/6871BJYinbwUYbU8abKB20PTwGnGUkeeyJTMfW/B3I/7q87iVh7NQ5iMbAoxBnzuze+Mo6QRJZjEwShsaR3xiZNaRpz3rEjZax/0kOVz4OQ372UwroAJFC77OtAVHojj2iYSEUXbEyREJsv/YH1V/+RGoBM0TXFpKGfo9uktTjhGtRkALK+co4W/ukwAF4zN2Nu/w+RqyX95sCiiOM4c3gFjCpUv3wJAE4+y4Lh12fhvPoSjjyW/gGbIIim5Uu5EH37fRGofX97UVBDGnW0Ef6/XoPesrOYfTCq6Z3VSG5ZdYPbRjdSGzO3rBpBG6mZYqq0+HQ03vlXejkfsViMHfdSMPW/SPx0+WWrziar/97zmjI+Yu2Pot68SilUbemCcBWUE7mVIL3Le1OeZpXgk2NP5H5c/ZIQshCKxJh3+DHi88qRkF+Oj48+QRipFSyXtn37giAIjdZOalMa5WZCarowKw8UcXUklrAOSHxQ+4mJZGiptXMvqEtg/rqTiDlB6hl45whrsPPsb3jnxQ2p23d698anvWejSEu3xecSsNjY0mEQjrh2w9rr2zDj6WXKPv2To3Bn7xcYOPY7JBmofml0WbUQZdUVmLQ7AtkrBqr8/ATRFpRWi/Dx1Tw8yasBQq8BAMa2t4KXhS5KqgRNPJrQRA8VVNagftMbZXueXdrgNk1I7DwVnYWC8moY6Ug2X1x/PR6fn3xW9/XDtGLsm9pJ1dMjCJlcb2FDm9f2PEhDFwdS2kpWJBOSIAiN5ZNLXQah7OXYmk7IZOGSfQeJMcvyQnTISaRnQoTMpBXILqyQ7aK6oLwahRWq68TLEdbg0ImfpAYgK1kcTBu8EDMHL1RIAPJteTr6eG/Qpxg/fDEKeHzKdveCdNzYtwReedKXUKlCjVCMO+SOOdHGRWU0XBu2Jc4mVdQGIN9y+HEGfrj4Elvu0ve6J+RTUqn6gLHVd+dVej4OU/Nv/BZL+TltDZN8nR2ISkdkaiE23UzA5Ze5rW7pPJ3OPs+iewoa68tTz/DDRcV1wI7LLVPYsdoCkglJEIRai8lt+E5x/c7YyXqmCg9qtEbnHf0xJvauxNiApAd4ZE7qmbQ2QpEYHxx+hG3hyWAAmBPkgE2j2yv1nCyRELvP/ILh8dTlZGm6xhg18itEWLopdQ6H3bvjvoUrjh1fBd96AXbb0jxc27cUQ8auwH0lz6MhVQLZu8cSyicWi7H9XgrORGfBzUwXi3u7NqvWKiG7Hy/FKuW4B2PIhaAyCUVixOaWwdlEp1n11wA0uUy+3bqrEIrE8DTXxeHpneWuwU3QS1qGZ+ff3tyQXNLHFauHeKlySq2WspvEtGbrrsY1vROhNCQTkiAItfa/W4lSx/WqyuFYLPnLl9SDlI20upADEuUvykyovwsxOfgnLBlicW0Dhz/vJOFafPPq7chELMaW879jfMxtyqaXhlYIfmeN0gOQryUZWCD4nTU44hpE2WZaWYJLB75Gl/TnKplLfexWkAHTmvx5JwmzDkThyONMrLkcizGN1GMj1NOHhx/hm3MxSCjW7CXXTzNLcOBhOlILK+ieCsWj9GLY/3ABXj9fgdnyc7j8svlNMRpb+vw66/95dinmHX7U7HMQ6mnDjXjUCMmNOOKNmJw3gWvy1GgbSBCSIAi11tAHVW8pyylbuhSb28y7+pom0cASMUbWEmM90p5Cu6Z59ZAqa4RkeY2a2iulC+8XJ58prfbVV2EHpNZjfGzqgB7v/KTyWoxlXG1MGL4YW9oPoGzTq6nAmSPfoX1OgkrnBABanLbxXqMptoZJZtVfjctDfvmbphFisRgvc0rxOKOYvNepqT/vJGHNFdVltoiklMdoqd+ux6P9uqt4Z3cE3H+6jCsq7nzblMWnnyGjuPZ3R3GlAB8ffdzsY514Kr2hR32KqtdGKMf7B+RvBlRRI5K6jFsTcVjkhqIi3E4sgEgkxsLjT3AqmiwxbwvIp2CCIDRSOyn1IFuSCWmlz4OHedtZyn3BoaPE1zyhACGp8nWVK60RYeG1PBgtvwDHVRdxXkrjFIJe0rpvRqYVoVIJy4HHv7iJ72/toYy/MLLBgHErkc2np2C3iMnC3P7zsSZgLGWbUVUZzh/6Fu75qTTMTDGqBSLse5CGHy+9xCMFNWhoax6kUb9vpa+amAhFYkz97wE81lyB7y/X0OePOyirbr3dXtXd+Rc5dE8BAKC99DQCfruOF400F3nbiaeZCPztOnx+voLfb1JvfIhEYon6ZJUCET49/gR5jXRQVrSSSgFOPs3EtbhcqZlq5+p976OzS6XWKpbF06ySZj2utRi38z4m/BtB9zRa7HJsLi31O9WFjb4W3VNoFXws9HAgKh0bbqj+pnBjmvv+RjSNBCEJgtBI7fKkdcaWPQjpZKyDZX3d4Gmui4EeZjg7KwgsDV0i6WSsI/djzjv4UcbkXZK9/WkpbqZXQSgSI6WwEu/sjoTg1YVLZnElKmvIhXpbEZjxAjtCf6OMJ+mZof+4lciiKQBZh8HA0p7TsSx4KmWTRXkRLhz8FnbF6hHckNeU/yIxeU8kvjr7HIEbbuBanHplT2mqJ5kl6L35NjhfnsJ/b2UUX4vPw7EnGTTOrG3bFq4ezWVqhGJEpBZhxr6mf2+mFlZg3M77uJ9ahOjsUnxy7AkuxEi+35RWC5BfLtlQ53FGCcxXnMOCY0+UnoGbXVKFzr9dx8jt99D7jzsYvf2eTBfgApEIf9xOxNxDUdj3II1kCsvo5LPWk+3VVI1PTXc7MR9norPqbkwRylG/oZE6sFhxHhvVLDDaWpAgJEEQGsm7XiakCAxEG9vK/HgmA/hhsCeefdkbZ2cHoYO1vqKnqDBmulzK2LgOVnX//rK3i9zHvGLfHjVMlsSYvEHI/15IZoAUVtTgYXoxem++DeuVF2DybSj+upMo99wIzWJZmo9jx1ZBWyCZsVPM1cbw0d8gVd+MpplR/dRlPL4PmkgZtyvNxamjK6FXpVkXU1klVTj06E1ArFoowl93qDdoCPmN2BbeYP3UW4mkuzldomXMPFSVsOTCJoN1J59lQVBvH1mDqWIxsOlmAiJSldNN/LW9D9Pw8q3urmeeZ+NeSmGTj/vwyGPMP/IYW+4mY/KeSKy/Hq/EWRLqqqJGiCuxuXiW2foyXIM33cKwf8Lhv/46Mosrm3WM/PJqZCupDE5z7IlIxbqrcXW1GMViMQrKFZN13dwbEY8y1G8lR7VQhCet8DmtDkgQkiAIjeRVb/lkvKEFKjk8mmajXKZ8Hib4vqnhyGEx8EFXx7qv53Z1RMTCnnIds5Srg9vWnhJj3vkpsJUjG0zait7ADTfqLtwrakT46OgTFFXUUHckWgXmq07YluWFEuNCBhPvDPsST8wcaZlXY5Z3m4zf/EdQxtvnJmH/qTVgiZSfwXtbQUGsnFLqRc2+h+kKOXZbR1ZhEYqSKSX4EJYk33vAyWdZEIrEWHUxBj3/dwtzDkZJff0312YpTQDPyFCbbXt4isTXf98lN0HamtSiCrRbexV9/7yDduuuNv84hRXYeCMeW+4myRQQu5dciK/ORuOP24kqyVKMzS3DvxHylW4RicT46MhjmC0/B8vvzmPy7ogmm/KIxWIcfpSOz048VVp28dEnmfjy1DN0/u06ttxNgtOqSzD59hz8fr2GxBZmtv5w8aWCZtmwAnJdofFIEJIgCI2jX1UG21LJDJVoYzu5jhHsZKzIKSndrkl+2POuP34Y7ImwBT3Qx81UYrufjQF2Tuoo1zHPO1KXZPdPetiCWVIJRWJEkTp1rdbXdw+gTwq1OcHCXrMQ6tSJhhnJgMHAol7v4592/SmbBiU+wKZLf9WmHynR8nMvlHp8giBal7JqAX68/BLfhL7AzYR8bA1Lxtid91t0zIoaIf66k4jFp55JZEG+1pxgQkwO9TiE+koral5m39u23E1q8ZLs1MIKBG64gU+PP8XcQ48Qsvk2yqsbDixej8tD8P9u4sdLsZh/5DGG/xMuc7CupEqAmfsewGX1JYzdcQ8ZcmQ3/nZDvkzfu8kF2Hw7se4jxb6H6TjVxFL8ny7HYvyuCKy/Ho/JeyLxrRI/L5RWCTH30CMkF1YAAKLSi/H5yactOJ5AIc+pxuy8l9L0TjS4lZiPHy7G4OjjDKU0LmttSBCSIAiN4ymliUS0iXxByBkB8u1PNy6biUl+NljW1w0dbQyk7jPF3xY/DvFCByvZlpYroi6kLESkRlSr1Cv5Eb69s48y/k+7/tjkN5SGGcmBwcAH/T/EWUd/yqa5j0LxSeQJGiZFEATRsC31sgxvJuSjuLL5GUGTdkdg3uHHWHtVdV3FCfXis/Zqi49x/GnL61vuf5gukTH8JLMEl142XN94a1gSaoRvPltei89DfJ5kILSh18aiE0+x834qEvLLcfRJJqb+J/vn3qIK+TIujz6mdoHfeb/xINoftxMb/VrZjtSbc+jzbEzf+wCfnWg6OKnsAKRYLMbM/Q+Veo7mKq4U4NvQFxi78z6G/hNGApFNIEFIgiA0jleelCCkDJmQ1vpaCLQzxLaJHRHiYtrk/pqGwWBgcR9XPPwsBAemNp2FFmnhglwtPYmxfslRYKpgOSqh2czKC7HnzC9gQvJD1mNTByzoMwdgqH+TJyGThXeGfYlHUhparb22Hb2SH9EwK4IgCOlSCqkX+JU1jS/tbEhOaRVOKCB4JM3O+/ItWZWVKjuFE6q1Q0p2242E/Ab33x2ZRhnLqff8qN/N/bWb9Y57OTa3WV2QqwRCJBZUNLpPiZRl4lmN1IbMKK5Ear1AXv2GVap0JTYXw/4Jw78RqWpR77W0SjOuT869yIHrj5eQXKBZdcZViQQhCYLQON551ILu0SZNN6W59EFX3P2kh8ZlQTaHuW7T9THFDCYuOHSUGDOpLEGnLJIVQTRCLMb/Lv4JqzLJmmZlbB4mDvsSFRpUm7WEp4Pho79FRr3u3WyxCPtOrZWrRipBEISmkDWw0ZzSEVtlrAspb71o0p249VLGipk7ctRdLa0SoFJaofNGTJMjg/JtYcmFWHM5Vmqm3MoLMc06prLsuJeikvrIT7NKkNvKbjIkFlTg5yvkeqohJAhJEITGkbocW86akK1dkINR0zsBOC9lOeqAJMUvySaUIyG/HAuOPcH+h8opXi7NxBc3MO7lbcr4h/3m4bmcZRHUQYq+GUaM+hqVLI7EuHlFEQ6d/Ak8Qev6YEwQBCGr7y/ENJq5JU1T2WFAbdndIVvDmjstoo0SicT4RQnlA4y/DYXXz1dk3j+9qBIHH2U0+3xLz0Tjx8vUmqt/3VGvxk7yNuIhJG1W8VJ6TUKCkARBaBzvPMllG6m6Jijh6dA0G/XEZTMx3Nuiyf3qZ0ICyqkLSSjPppsJmLQ7Ej9ejlX6uSzKCmobt9Tzr1cv/OvTR+nnV5YISzfM6/chZTww8yU2XNlCw4wIgtBkYrEYv99MQP+/7uB7NctuktfD9CKFH/NFdqlcmWoEAQC/XIvDF6eeKfy4st7DLa8R4t09kbD9/kKLz7k1jLqqiyDaChKEJAhCo2jVVMGpSLKOUbRx00ux26Ive7s2uU+6ngmemNhLjHVNfw69KlLHRNP8qew7rmIx/riwGSaVJRLDabrG+KTPHOWeWwV2tuuLzb5DKONzHp3DhOc3VDKHzhtuYdLuCBSUk+xLZROLxdhyNwnDSDYWoQR/3UnCJ8eeNNpcQ1MoI8k+p0y+7EpCNh5mfLqnIJOVF2Iwbuc9bLwRL1cDj8YCd2efZyM6q0Tpq0L2PqDWo2yOJBkyhulUWaMZ9RcJzUSCkARBaBT3gnRKM4zoekE0olY3R1mXZEt2yWaLReidQppyaJrXxcyFIjEepBUhp1SxF3mTnl/HqDhqwGZO/49QqKWr0HPRZWHv93HL2pMy/teF/8GpkNrlUhn2P0zHh0ceq+Rcbdk/4cmYe+gRzjzPpnsqRCtEspwIOrCZmnFp//vNBBx5nIlPjz/Fd3JkCr/MLWtw2/cXYuCz9iq+CZW/jqmiXY3Lw4C/7uBvGeujqqOFMnTDftvxJ5mYtpespKrveXYp3VNQS5rxTkUQBPFKc5vStEUMGTsU1w9CAsBAsiRbI6UXVaLd2ivotP46LFacx1kFBVgMK0vx69WtlPHtPn1x1rmzQs6hDmpYHEwYvhjZ2gYS4wbV5dh7ei04QtV0qdz/MF0l52nLtt4lQSJCeSLTFL+EmSBao+8vxCBagYGaNVdi5W56pGgHotJxUcOzoLfIGUAdveMe7qUUKmcyGmzw1nAIVNHdR8OQICRBEBrFizSlUbjrNj6Uphz9m2hOk1JKulSqow034vEip+FMgeZadfNfWJRLXlSn6JpiUa/3FX4uumXommD64E8p44GZL7Hq5m7VT6gR1UL5unkSb4STiyWCIAiplp55rrJmd4omFImRXKjeS501AYmbKUZacRVeFtIbFFdHJAhJEIRG8cxPoYw908COvOqkksPDdVsfiTHXwkw4Fzbc+W/WBc2+w9tarVVC18iAjBjMjQqljM/v9wGKWsky7PrOOXXC2s6jKeOf3z+KQQkRNMyIqrxagL5/3qF7GgRBEEQrcyk2DxHZpDYxQShCSbUYQhLVlUCCkARBaJT6nbFztfSQq2PQwN6ErKQtyW6sS3ZJDfll2hYwRUJsvvgHpQ7rMZcuOOUSSNOsVOPr4CkIs3SnjO88ux7mZfR1dS2urMGHhx9Bd9lZFFWSjGSCICQJhCJcj8vD0ccZtC9LbYiGJtmpvadZJU3vJKNzSSSbkCAUYf6VPPQ/kol/o0l9yNfYdE+AIAhCViyREG4Fktl50SQLUiHOO/gB2C4xNiDxAf7sSO0WTNBDl6f6X9kfPjyLTtmS2ZVlbF6r6IbdlBoWB5OGfY4Huz6FQfWbbvFmFcX4+/z/MGrUV4CMdVcVafaBKBx81HCWMkHoVZWjc9ZLeOanwb44B/bF2bAsLwRPUAOuSACOSIBSjhbytfRQoKWLdF1jRBvb4bmxLaJNbFHK1aH7v0A0k1gsxsR/I3D0yZtGWsdnBmC4jyWNs6J6mF5M9xSIJuRVku7IynbpZQ66ORpDm8PCs0zFBZBbals4qZmsaCU1Ymx8WIypPYvRyd6Y7unQjgQhCYLQGC6FGeCKJDN/SBBSMZ6YOiCdbwzrsvy6sT4pj8AWCiBgkV8V6sBaX0ul5zMpL8Z3t/dQxld2fQcp+mYqnQtdEg0sMXvARzhw6meJ8RHx4Zj55CK2t++v8jmRACRRn05NJfonPsSw+HsIyngOr7xUSvayrIQMJh6YO+OGrQ+u2rbDJQdflHNU+96jiTKLK5FZUoX2VvpgMVV/c+K1xxklEgFIABi5/R72TemECR2taZoVQajWvodpdE9BJv3/ugsvc11c/bAbdtynlpuiy6wDUXRPodU6+iSTBCFBgpAEQWiQ+kuxASDamHTGVggGA+cdO2LG08t1Q/rVFQjKeIGb9epFEm3Dijv/wahKssnNExN7rO80kqYZ0eOQRzC2J0Rg5tNLEuO/XdmKK/btkWigXhlGRNvAEdZgZGwYpj67gn7JUdAWKKZ+G0ssQuesWHTOisXCiOMoZ3Nx1qkTDrt1w0mXQJRxtRVyntZkxfkXWHXxJQDAx0IPFz/oKtPjCitqEJlaBF9rfXBYzQtcPssqAYMBmOnyAAD3Uwul7vfbjXgShCTajB8vxaKfmynd05BJdHYp9kSmYZ0Sanq3Ni9zNX85c165epbIUDUShCQIQmN4SWlKQzIhFeeCg59EEBIABiQ9IEHINsg7N1lqM5oFfea0yczYT3vPRu+Ux3Aszq4b06upwPbQDeg7/geImCwaZ0e0JQ5FWfggKhQznl6kdKxXBh1BNca+vIOxL++gmKuNPV698KfvIDw2c1L6uTXF6wAkUFuT74/biU0+JrGgAtbfnUeloGUd7vu8ak71bX93rBjo0eB+d5Poq2NLaCa663ZuD0/Gz8O8m/34iy81p4HiohNPG93+4eFHqKhp2XtFa9D5txt0T4FQENKYhiAIjeGZl0oZe2ZMgpCNmeAre+bDBYeOlLH+iQ8VNxlCM4jF+OXqP2CLJT/wHnENwlX7DjRNil4lPB3MHPQJZTwk9Sk+jTyhlHPml5POpIr2LLMEU/ZEwmblebqnIjeXgnT8E7oBMds+wOJ7h+UOQJazucjR1keqrgmS9MyQr6ULEeTLvtOvrsC8qLOI2vUJru1bgsHx9+mPVKihNVdiZdqvpQHIt628EIOM4kqFHY8g6I55kYyxN/68k0T3FAhCodpeOgNBEBrLK18yCFnC0UaqnmYst6DLPxN8YWuohYdpxeBzWTj5LKvBfXN1DBBh7iLRiCQg8yWMK4qRr62viukSamBwQgQGJkl2Rq9isfFlyEyaZqQertm1x/pOI7Ew4rjE+Kqb/+Kcoz+emjoo9HxDt4bh9sfBYNDQ/EZeVQIhiisFdUtC1dGV2Fz0fZU1pklsSnLxw81/MSX6GljipqMCZWwe7lm6IdzKHfcs3RBraIVkPTMUaOlSGikxxCIYV5TCrTAdnvmpaJebhO5p0eiUFUu5CVFfj7Rn6HF0JR6aOWF1l/E47N4NYgbJbQCAKgUGF1/79Vp8k/tEpCo/M5ZoO4qrSeYdQRDKQYKQBEFoBrEYHvmShaZfGNvQ0p1Wk/B5bKwbXruc+kFaUaNBSAA47+gnEYRkQoy+yY9w0CNYqfNs7dKKKvDVmeeIyS3DEC9zLOvjBiaNzQsawhIJse7aNsr4Bv8RiDe0omFG6mVZ8FQMSIyEz1v1aXlCAXad+RVB765DDYujsHOFJRciIb8cziZ8hR1TGf64nYjPTz5FRY0IA9zNcGh6Z1o6uTdl861EuqcgF62aKnwWcQxLwg6BL6hqdN9MHUMcdw3CcdcuuGLXHlVsrkznEDOYyNPRR56OPu5ae9aN86sr0CPtGUa/vINRsXdhVtFwJ+OOOQk4cOpn3LdwxZIe03HZwVe2/yChcKJWmpWaUlgBthr+vmztovNr8Pn1/KZ3JAiCkJP6fUokCIKQwro0H3o1FRJjz41taJpN63Xe0Q9Lww9JjA1MjCRByBYaue0eItNqs1TuJhWAw2RicR9XmmdFNePJJUrGcZaOAVZ1mUDTjN7wNNfF82x6i5JXsbmYNngR7v73OTgiYd24X04Cvrp7ECu6T1bo+Qor3ixHE4vFSCqoaGRv1csrq8ZHRx/Xrcg9H5ODzbcT8WVv9XtuH36sOV3FByRG4s8LmyVqkNYnQm0zsb87DMIp5wCF1mot42oj1KkTQp064cN+89Ar5TFmPTqPMbF3JJ73b+ucFYuLh75BqKMfFvWaheekXjOhIA4/XAQA+FqTFRmqdi2NLPEnCELxyLoJgiDU2uuOke4FaZRtL41IEFLRblt7opSjJTHWP/Gh0up+VQtESMgrh7iVZnAAQHZJVV0A8rUtYepX30erpgrL7+yljH/b/V2U8HRomJGkG/O70z0FAMADCxes7PoOZXxp+EG0z0lQyjmzSqrQaf11OK++1PTOKnQ/tZDy1rDhRtPLRgnpDCtL8U/oBoQeXtFgAFLAYGKHTx94zdyMIWO/wzG3rkptFiVksnDJoSMmDf8S9nO24Zvu7yJb26DB/QclPsDDXZ9g1Y1d0K5pPIOT0By3EujPiItKbzgjlyAIgtAcJAhJEIRa62JvBADwkBKEfEGCkHJxMdEBq4klTTUsDq7YtZcYsyvNldqZXFY77qWgqIJaYPzYkwyYfBsKlx8vwfvnK0jKL2/2OdRZpYCaORSfR/2/isViXHqZg1+uxuF+SqEKZiZp/sMzsC3Nkxh7bmSDbe36q3wu0pjwZVtiqgo/BY5DmKW7xBhHJMS20I1gCwUKP9/PV2LxUA0vwIUi6s2DjGISeGqO/okP8HjnR5j5tOFA8w6fPvB470+8N+hTvKRhJUAW3wirgibCafZWLOg9B8kN1GTmigRYGn4IT3fMx7C4cBXPkpBFabV871OydPwmCEWbsfcB0orUawUAQRAtR4KQBEFohPr1IIFXNSEJmelrcbBqsGeT+5139KOMDUh8IGVP2eyKSEWfP2+j6q1gnEgkxpyDj1BWXTv2IqcM352PafY5WoPvL7xE/7/u4otTz9Bl4w3sfUB9ziuLQWUploYfpIx/HTwVQiZLZfPQFEImC+8PXICqehlonbLj8Pn9owo914vsUqy/Ll924eFH6QqdA6E8bKEAP13fgXOHl8OmVHq22W0rTwS++wveG/QpEgwtVTxDqgoOD5v8h8H9vb/wWch7yNfSlbqfY3E2Thz7AQdO/ASz8kLVTpJoUFR6EQJ+uyHXY/5T4e8jgnhtV0Qqhv9DbmQQRGtDgpAEQWgE6cuxrWmYiWb7srcrHIy0G93nvINig5AA8CCtGDfi31xgZ5VWIbesWmKfHfebn22p6UQiMdZff9MQSCwGNsgZeGqJL+4fhXGlZL3FexauOOLWVWVz0DTPTO3xfRB1WfbyO3vhmaeY5/L8I4/R43+35H7c+F0RCH2ejYNR6ei8/jo6rLuKrWpYAqCtsy/OxrX9S/HlvSNSt+dr6WL6oE8RPGkN7lu6qXh2Tatmc7C+8yi4vP831nYejZoGbliMe3kbj3d8jNEvb6t4hkR9CXnlCNlMfg6E5niYXoysEpJhTxCtCQlCEgShEeoHIZP1TFFer3YhIRtzXV6j218aWSNR31xiLCT1CXiC6gYeIZtwGpYYa4oakQhFlZLL41T1/bIszccnESco40t7TCfd55vwc8AYRJo7S4zxhAL8c24jmA008JBHWHIhJVgvqyWnozFpdwQi04rwJLMEcw4+wp1EaqadUCRGXjPPoQ7EYjFuJ+Zj570UjSrp0Ds5Cvf/XYiuGS+kbj/iGgSfGf/Dvz591P51WKSli8UhM9Fx2gZKOY/XzCuKcPjET9h15hcYVtLbYKot2x+VhuJKxZeMIAhliskpxb8RbfdGNUG0NiQISRCE2uMKauBUJFmkP4bUg1QeBoOyJFtHUI3uadE0TYhQpq/vHgBfIJllcMHeF5cdfGmakeYQsNh4f+ACSgZY14wX+CTyJE2zqvUooxj1SzbuipDsfH74UTrMlp+D2fJzCPnfLeSXa14wcumZ5wjedAsz9z+E99oruJmQ1/SD6CQWY0HkCZw7tBymlSWUzcVcbbw75DOMG7EUWXwjGibYfNEm9ug7/gdMHbwQWTrSm9dMib6GRzs/Ro/UJyqeHRGVXoSz0Q13XCcIdRWy+Tam731I9zQIglAQEoQkCEJt3E0qwLt7IjF+531cepkDALiZkA+XogywxCKJfUkQUrmkLckemBhJw0wIZXIqzMTsx+co48t6TKNhNpopytwZPwWOo4z/cGs3XAvUqzbjo7ea21QLRJi5/yEKXzWNupGQjx8vxdI1tWapqBHit7fKFlTUiPDVmec0zqhxHGEN/jm3Eb9d2Qp2vd9pQG0JBP+pv2GvV4jaZz82iMHAHu/e8Jr5B3Z695a6i21pHi4f+Brf3NmnkIxhotb5Fzl4kd1wlqnfr9dxQw26XBMEQRBtGwlCEgShFlILK9D/rzvY+yANhx9nYMjWMCw4VpspQZrSqN4l+w4QMiR/RfRPekjPZAilWRZ2EJx6QYAD7t0RoaL6cxZ6jZcG0BSrukzAExN7iTFtQTW2nP8dDCnBJnUQl1eG0irJn/0v1+Ia2Fs95ZRWoVoo+f29kZCPXptvQSBUr++7XlU5Th1Z2WD36w3+wxE8aQ3iDa1UPDPlKNTSxczBCzF6xDKpWZEssQjf3f4PFw59C6tSNc9e1RCbbydi7VXNeg0TBEEQbQ+76V0IgiCU7+iTzLpOyQBQIxRj080EAIC7lGwiEoRUriItXYRZuqNbxpusoo45CbAoK9C4JYKtxdqris1ScyrMxLRnlyXGhAwmvu3+rkLP05hFPZ2x+LTmL/OvZnPw/sAFuL33S4ms7ZDUp/ggKhR/dBxC4+zeuJNUgAm77sPTXBdDvSzono7SXI/Px5orsfiqnzvdUwEAWJfk4fTR7+Cbk0jZVsniYM6Aj7C7gaxBTXfcLQi3bLyw+eIfGCelMU3vlMd4uOsTTB+8EKFOnWiYIUHUIxbDuLIEjsXZsCvOhVFVKYwqS2FYVQbDqjKwRUIwIAbjVbmLahYbxVwdFPFq/+Rr6SFV1wQpembI5BtC1EDDJoIgiLaKBCEJglALjzOKG9zmkZ9KGYshnbGV7ryjn0QQEqjNhlTmxbJIJAaTqaHLEJWosKIGjzOo9eNaQloW5B6vEMQY2yr0PI0Z18G6VQQhAeCelTt+7TQSX9w/KjG+5voOnHHqhCQD9Qj6HXqUAQDYE0nNMG9Nvgl9gXc62sDFlE/rPHxyk3Dm8HewK82lbEvVNcGYkcvUsvO1IuXqGGDC8MV478kFbLz8N3TqNTkzqyjGmSPfYXWX8fi222QStCFUxqKsAH7Z8ej46o9nfioci7OhX12hkOPXMFlI0zXBCyMbPDO1x1MTOzw1scdjM0fSXJEgiDaLBCEJglB79TtjV7I4SNYza3D/4d4WOPksS9nTavXOO/phxZ29EmMDEiOVGoR8mlWC9lb6Sju+porNLVPo8RyLpGdBruoyQaHnacw3/d3B57auYMPybpMxIi4cHm+9Z+nWVOLv85swcNxKtarzl6CCTtJlVQJ8fOwJrsTmop2lHv43pj3sjXSUft7Xem6+hSef94KRDldl53xb17RonD66EoZV1NfvAzMnDB2zHJm6xjTMjAYMBra1H4A71p7Yd2ot2ucmUXZZFnYQnTJj8e7Qz5CvTX4PEAomFsOtIB29Uh8jJOUJQlKfwKZUuTUyOSIhHIuz4VicjYFJD+rGhQwmnpjaI8zKA2GW7rhj7YnnxrZq9TuCIAhCWUgQkiAItVe/JuRLI+sGMyUYDOD4e4Fgfk5vZ9rW4J6lGwp4fBi9dQE9MPEBmCKh0jJViiprlHJcQtKysEOULMj/PHvipYrKHPRwMsbCns6oFqhX3b6WquTw8P7Aj3F931Iw8aY1df/kKLz35AK2tR9A4+xkcyshH92dGg+MlVUJsOdBGrbcpQaS3vbl6WjsuJcCAEgqqEDe7kjc/jhYYXNtSkZxFc4+z8Zkf9Vl977WJykKx4/9QOk8DwChjn6YMHwxSrmqC8iqi2gTe3SZvA6/Xd2KOY+oTbEGJj3A/d2LMHbEUjywcKFhhkRrolVThb7JjzAyLgyDE+4rPegoK5ZYBN+cRPjmJNa9DtL5xrjo4IvL9h1wyd4XaXqmNM+SIAhCOUgQkiAItWZcUQzTSsllqC9IZ2yVEDJZuOjgi/Exb+p4mVUUIyDzJcKsPeU+nlgsbnonQukcirIwvV5zDCGDiVVBys+C/GtcBwzztoCVfu0ytOwSaoBG09228cYmv2FY8EDyRsgvV7ch1LET0vVMaJqZbNZfj2s0CCkWizFqxz1cekldXlzfH7cTJb6+m1SAyhohtDiN38TILavCjfh8OBnrwNdaH4wWZAc9TC/GZP9mP7xZhsTfw6ETP0FLSL2pst2nL+b2nw8Bq+1+BK/k8PBB//m4ZO+LLed/pyx9dSzOxq29X+LDfvOwo10/mmZJaCrtmiqMjL2LcTG3MDDxgdQbAerIuiwf055dwbRnVwAA0ca2OOvUCcddu+C2tReEpEwBQRCtRNv9BPRKWFgYTp8+jQcPHiA7OxulpaXQ1dWFlZUVOnfujDFjxsDb21vh583Pz8fBgwdx9epVxMfHo6ysDMbGxrC3t8fAgQMxYsQIGBhQuwkSRFsjrSlNjAzZWu93scc/Ycl1X3NZTNgZkvo78jrjFCARhASAoQn3mxWE/Cb0Bfq6mSHIgTS2oZO0WpB7PXs0uxaki4kO4vKaXtob9VlIi5faj21vhcOPM6RuG+ljgeNP1aMMw7IeUzEsPhzORW/mY1Bdjj8ubsbIUV+r9ZK7I48zG92ekF8uUwCyIQJR4zcjotKL0PuPOyisqA3gLenjitVDvJp9vvi8MpUGu8fG3MKe07+AKxJQtn0fNBHLu01W65+/Kh30CMZDMyccObEaPnkpEtu0hDXYdm4jumTE4JPes1HN5tA0S+LT40/onkKTGGIReqU8xpRnVzH25e1m13TM09LDSyMrJOpbINHAHIn6FsjR0UcBTxeFPD4KtfioYtU+F8VgQMxgQEtQDYOqchhUl8Ggqhzm5YWwK8mFfXEObEty4VKUKfG7QFZe+anwyk/FoojjyNXSwymXAJx0CcQ5R39ST5IgCI3WZoOQqampWLx4Me7fv0/ZVlhYiMLCQkRHR+Pff//F0KFDsXLlSujq6irk3BcvXsRXX32FwsJCifGsrCxkZWXh3r17+Ouvv7Bq1SqEhIQo5JwEoanqL8UGZGtK83mIC049y0LWq4vPFQPdocNts295zXbWiZpCNCT+Pr7tPqVZx3tv/0M8+7J1doHVBA5FWZghLQuyy8RmH/Pah91h+/2FJvdTRK3P30b5NBiE3De1E7SXnGnxORShnKOFOf0/wsVD30iMD4+/h0nPr2Ovl2b+bi+rEii8Punb4vPK4PfrdYmxdVfjsLSPG/S02Nj/MA0/XY5FtUCEBT2cMNjTvMljHnmc2WRgVVEmRV/DrrPrJTqkv7ao1/v4rdNIlcxDk7w0tkHQ5HXYeu53TIy5Sdk+91EofHPiMW74UrXPIm6tYnKU95pvKfOyAsx6fAGzH52DQ0mOXI/N19LFDRtvRFq44oG5Mx6YOyNN10QpNwl0airhlZcCn7xk+OYkIiAjBp2y46Bdr0lTQ0wrSzDj6WXMeHoZZWweTroEYr9HD4Q6+aOKTU/NW4IgiOZqk1fkiYmJmDRpEvLz39QF4XA4cHd3h56eHvLy8hAbG1u3dPD06dOIi4vDnj17WhyIDA0NxaJFiyAUvslCcXJygpmZGdLS0pCWVhtwycnJwbx587B582b06tWrReckCE3mUUDtjC3LcmwPc13ELe2DsORCuJjoqLQZQmuSzTdCuKUbAjNf1o35Z8fDqjQPGbryXxA+zy5FZY2w6R0JpVgaTq0FudezB16YNL9mniqTuowbaTDCY6vXUrXLDr74u8NASt27jZf/xiX7Dsjma05GsFgsxtehz7HuahxqhC0vq3AoKh3fX4xBaZUQc7s64IteLmAwGJi29wFlX4FIjLTiCjCKGZi8JxKvqzrMO/wYuyf7tXguijL+xU2pAUgRGPiw3zz87TuIppmpvzKuNiYN+wJhkR74+dp2sOt9D4MyYnB/90KMH74Et2wVvzqJ0DBiMYLTnmHewzMY+/KO1KxjacrZXFy074gr9u1xxa4DHps5QMxgKnmyr87N0UKEpRsiLN3qxthCATrkJqJb2nP0SY5Cr9QnUptY1ccXVOGdFzfwzosbKOLq4JhrF+z37ImL9r5tuswDQRCao829UwmFQnz88cd1AUgWi4V58+Zh5syZEgHGrKws/Prrrzh27BgA4Pnz5/jqq6+wYcOGZp87JSUFS5curQtAuru7Y82aNRLLve/evYtly5YhLS0NQqEQixYtwtmzZ2FhYdHs8xKEJnOTshz7hYzLRnW4bPR2JYW9W+qMU2eJICQADImPwD8dmtdkg1SGpId9cTZmPrkoMSYCo0VZkACgx6P/o4S/jXqWL/my5wwMjo+AXemb5csmlSXYePlvvDN8MY0zk8+DtCL8eClWIcdKKazApD2REL5alr3kdDTaWephkIc5bicWNPi4w48zUL+s7L8R1JtUdBj98jb2nF5HCUAKGUzMHPQJdnuT7O8mMRj4rdNIRJq7YP+pNbAoL5LYbFleiMsHv8LCXrOwueMQsqS9DWKKhBjz8g6+uHcEAVmyvR9laxvglEsAjrt0wUWHjqjg8JQ8S9kJWGxEWrgi0sIVm/yHgSUSolNWLPolRaFf0kMEpz2jBOTrM6gux/RnVzD92RXkaulhn2dP7PLpg/sWruQ1QhCE2lLN7R81cuTIEcTExNR9/dNPP+Hjjz+mZDhaWFhgzZo1mDlzZt1YaGgoHj582Oxzr1+/HuXltXWzbGxssHPnTkq9yaCgIPz3338wN69dYlRWVoZNmzY1+5wEoenqL8fO1jZAoZZiSiMQsjnt3JkyNiSBWsqCUG+Lww9LyYLs2aIsSADQVYMgJIupnhdbxTw+Puj/IWV8QswtjKlXa1WdnVBgrc2Tz7LqApCvbQ9PafLmRHIBtcbbuRfyLb9UhuGxYdh3ai0lWFDDZOGdYV+QAKScrtu1Q6cpv+GOlQdlG0ckxKbLf+GfcxvBk3EZK6H5tGqq8MHDM3i+fR4OnPq5yQBkGZuH3V4hGDR2BWw+2IFZAxfgpGsXtQpASiNkshBu5YHVQRPQZ+JqWMz7F1MHL8QB9+4o4Wg3+XjTyhJ89PA0wvd8hic7PsKX4YdhXZKngpkTBEHIp80FIY8fP1737+DgYIwYMaLR/RctWlQXEARql2Y3R1ZWFs6de7Mka9GiRTA2lt590tLSEl999VXd10eOHKHUjySI1iZeSmMLpkgI10LJ+m+y1IMkFCvSwgWZOoYSY/2THoIroHZ+JdSTRVmB1CzIH4JalgXZ24XUaGvKWefO2CklELXp0p8wriimYUbyK6mSbbmjLLJLqU1i7qcWNvqYny7FQqyGOdSD4+/j4Mk1lOC+gMHEpKFf4LB7d5pmptnS9UzQe8Jq/NVB+hL2mU8v4fq+JbArpj8ITSgPv7oCi8MOIXHLLGy+9CdcCxuv7XrL2hMzBn0Cq3k7MW3IZzjv6K/RHaULtPWwx7s33hm+GGYf7sbgMcuxrV0/FPD4TT7WOz8FP93YieS/30PooW8xOfoqtGs0o0s4QRCtX5sKQlZXVyMyMrLu62HDhjX5GC6Xi+Dg4LqvHz9+3Kxznzt3DgJB7Yd4PT09DBw4sNH9+/fvXxekFAgEuHjxYqP7E4SmeZFdip7/uwXjb0Lh8dNlXI6ldlt1KM6BllAy0CVLZ2xCscQMJs46dZIY062pRM9U9e+YSdT6NOIE5bV00L17i7MgtTgtu8Bjs9Qzg7G+8R2sWvT4Rb1mUQL5luWF+PXqPy06bluxKyIVex9Qm5TRqX/iAxw+8SOlHp2QwcSUIZ/hiHs3mmbWOlSzOZjX/0PM7v8RqqTUuQvIisX93QvRK/kRDbMjlEm7pgqf3TuK+K2z8ePNXTCvKGpw31KOFv7qMAgdp25Aj0k/Y5dPX5RyW18N8Go2B+ecOmHWwAWw+mAXRoz6Gns8Q1DaRJdsJsQYkPQQu8/8isw/puGf0A3omfIEjCaWeRMEQSgT/WuoVCgtLQ08Hq9uSbSLi4tMjzM0NKz7d0FBw/WKGnPnzp26fwcGBoLD4TS6P4vFQteuXesyL69cuYJx48Y169wEoY7e2R2BqPTaLKDCCukZde4F1ItOWZrSEIp32jkAM+t1VR6acB8XHdWnMQQhnUFlKeZFUbtGrwkcS8NsJBnrcOFprovn2aWN7hfsJH3lgKoM97HEwUfSu3LLokBbDx/2m4cjJ36UGJ/27AoOeATjjHNAS6fY6pVWqU9Dq65p0Th6fBUlsC8CAzMGfYIDnj1omlnr80+HAXhs5oBDJ36Cbank0lKzimKcP/QtvgiZiQ3+I0gNPA2nVVOFuY9CsTj8MCzLCxvdN1XXBL91GoGt7QegWIbMwNakms3BKZdAnHIJhHZNFYbG38Pk6GsYmnCfkpX9Nr2aCsx8egkzn15Cor45dnv3wr9evfGS3NwnGsESCWFQVQbD138qa//Wq66AlrAaWoJqaAlqXv27BjxhDRiNrFwQMFioZHNRyeagkvXm7yo2BxVsLoq5OijmaqOIx0cRTwfFXB2UcbTI+3sr06aCkE5OTnjw4AFKSkqQlZUFW1vZMkBed6wGAAOD5hW/f/HiRd2/fXx8ZHqMp6dnXRCyuRmYBKGOyqoEdQHIxnhIC0KSD0u0uODQEdVMtkTWz5D4+1jYe7bcx8ouqQKX3aYS8Zvt8stc9HFrWXOlD6POQL9asp7eWUd/PLSQ7Uacsh2a1hlzD0XhVgNNSbgsJpb1dZO6TVWGepk3vVMTjrl1xX73YEyMuSkx/ueFzWg3Y1OrupDu88dtfNFLPZ5fitYuJxGnjq6EjpSahLMGfow9pAakwoVbeSBgyq84cHINeqQ9k9jGFouw/uo/6JwZizkDPlL7un8EFVsowOzH57Es7ABsSvMb3feJiT3WBYzGXs+eqGE1ntDRFlRweDjkEYxDHsEwLS/CO89vYNqzy+jcRN1Mx+JsfH33AL6+ewBhlu7417s39nv0QJ6OvopmTtCNJ6iGY1E27EtyYFWWD8uyQliWFdT9sXr1t0E1tVyWqgkYTBS/CkgW8XRQwNNFnrYe8rX0kKutjzztV39r6SNXWw952vrI1dZHEU8HYga53lBHbSoI+Zqenh709PRk2re0tBS3bt2q+1rW7Mm3VVdXIz39TYdfBwcHmR73dpA0KysLlZWV0NJqPO2eIDSBsH6L0wbUb0oDAC+M3rwu/Gz08SBNM2qqaboSng5u2Hqj71tL39wKM+CWnyb3XXSvn6/g6EyS+QUAp55lYe2VWJRVS89emPjvfVz6oBsCN9xo1vG1a6rwScRJyvhPXdQns97bUg83PgrGz1diseR0NGV73LI+sDFouii/LA5P74yxO+VvqmSkw1XI+Rf0nYO+yVEwrSypG7MtzcPaa9sxd8BHCjmHOrgal4dbiY0HEzSRU2Emzh1eDqOqMsq2Of3nY0e7fjTMqm3I4huh3/jv8cvVbfjoIbU++7vPr8E7LxljRy5FooElDTMk5CYWY3TsHfx4YxfcC9Ib3fWOlQdWBU3AWadOJKjQgFwdA2zyH4ZN/sPgnZuMac8u493oq00GdrtkxqBLZgzWX92K006dsdu7N045B6CaTYK8Gk0shllFEbzyUuFSmAGn4iw4FmXBqSgLTkXZsC7TnN/RbLEIxpWlMK5sfNVMfUIGE/lauq8ClLWByvxXAct8LT0U8vgo0NJFweu/tXRRwNNFEU8HIg2uJ6sJ2mQQUh7//PMPSkvfPOF795b/DndOTg7EbwVdzMzMZHqcqalk9ktOTg7s7OzkPj9BaKr6y7EFDCbiDS1omg1xxqmzRBASqF2S/ZucQchKgQibbiYocmoaKTa3DGN23INA1HBQPq+8Bh1/vdbsc7z35AKlntYta0/csJEtI59uZnyuRACS1cRynIEeZo12TLbU48HBSBtJUjotq0KOjiE+6TMHe878IjE++/F5HPAIxiWHjrTMSxlqhOrXSKYlLEvzcf7Qt7Aqo2bsLuz1PrZ2aLzWN9FyNSwOFvSdi/uWrvjzwmbKcni/nATc2/0ZJg39nJQKUXNB6c/x87XtCE6n3nh6W7ilG5Z3m4xzjv5kOaYcnpnaY0nPGVgWPBX9kqMw7elljI69C+1GuspzREKMigvDqLgw5Gvp4qB7MHZ598Yda0/yvVdjTJEQjsXZ8MpLhWd+KrzyU+CRnwqv/FS5g3atDUssgllFMcya0QSwkMevC04W8vgo5WijjMNDOUcL5Rweyjg8lHG0Xv3hoZLFhYDJevWHCQGDhRoWGwIGE9k6hnhk5kheR28hQchGPHr0CFu2bKn72tHREX369JH7OEVFkheA+vqypbrXz9YsLqYn46u8WgjPNZeb/XgnI22cfK/hrKcvTkXjbCMXjbLo42KCjaMavqges/M+Hqe+uXDgXbgm9xvB+wF2WNjTqcHt/r/dRLWwZYWefxjojlHtpN/BTyuqxMCt4S06PgDsntQRHa2lPwdvJuTjgyMtbzZye35X6GtJv4O6KyIVP12Ok+k47vmSd8YTDCwklt80lFD5zdnoFtVvA4AAWwNsn+jb4PaZ+6NwL7XhYumyGN/BCsv7N7zMtNcfd5Fb3vAHRll82csZ0zpJlp4Qy5iJWt9p58745do2ibEh8ffxW6eR8h8rOlvq+Lt7IqEtpdnJuVmBsDGQngl+7Ekmvj4XI/cc3sZlMRH5aXCD29dfT8A/91KadWxBA+8LBx6mNhqAbCm2UIDP7x2ljP8UOF5hH4TEYjEEAgGGeZnjVAM/09ea+j2SXy69Nuzrpm5Aw930nmeXwHPNZZQ20cV50u4IpBfL3yG0Jb8D69vr2RMTn9/AiHjJ9/O/z29Ch+m/o4yrmKzPlnj7/9vdwQgGWor7uLg9nPo6SiqowLIzz6TsrR4MK0sReng5XIqo3Xl/CJqADc14DySab5dPXzwxdcCR46thXyLZ1M6ksgRnj3yHZcFTsTZgDLnoUzMuBelYfXMXxsfcbnS/SHNnLO/2Lk47dyY/wxYQMVk47+iP847+0Ksqx/iYm5jy7Cp6NdFY0LiyFHMfhWLuo1DEGlrioHswDrp3x0NzZ/LzoJFeVTk65CSiY048OmYnwDcnAT55yY0Gl4nmeV0D06m48c+2sooyc0TPiT9BLBJJfK59W0uuNV7zMOPj8LRODW5fcOwpLsflNbhdFjv6GIDTwoR0EoRsQGpqKj788EPU1Ly5KFqyZAnYbPm/ZVVVkhc8PJ5s9Wq4XMnlX/WPoyoisRgxOdSlR7KqqqxCVFRUg9ufJecjJqey2ccHACuuEFFRDV98vsgoQFLJW9tLGr9QleZpQiqiDBoOBMdkl6C6hc3mnrxMgJMwS+q29FJBi34OdeeIfgFGjvSlhY/TKxVyjkePn0CPK/3d6WlsKWLzmq4volNTCbtSyYuL+vUgKyqkZDOJgeikdMTktKyGiS6jptHnbXRaLmJyWvZLPzopHVFRDc/zeVYR8itb9qR6GpuEKLbkL5vXzbnkFWNkgzgDS4kL8Z6pT6FXVY4SnmK6UaYUSn8vePTkKXJ1pb//Pokvb/HzlstEoz/vpwnFCnltvO1eTKpCj1ffpOfX4VAieYPnkalD7UWdghQXFyMqKgqf+zBxqvGElmZ9/2x0qD+XxZ0NsOa+5A2AkiohSmQ4fnIDz6+mKPRnz2Dgw37z0HPnUxi+tazXqTgb665tx7z+HyruXM309v/XmCWAs4HiPi4WNNCIbO3VeIWdQ5G0a6pw4uj36JCbRNm22XcIvu32Lg2zIiItXNF5ynrsP/UzeqdI1k1niUVYc2Mn/LPiMGvgx2oR2G/rTMqL8c3d/fgg6iylo/zbnpjY49vu7+KYaxAJdilYCU8H29oPwLb2A+BQlIV3o69h6rMrUuuvv821MBNLww9hafghvDS0wmH3bjjoHowHJCCpPGIxbErz0DE7AR1z4uH76m/XQuqNMGUoZ3ORwTdGJt8QOdoGKNDSRRGPj0IeH4VatX+XcLVRweahksWpbTTz6u8qFgeiBp4XDIjBFolqm9kIa8B7q6GNlrAa/JpK6FVXwKCqHAZVZTCoLodeVTkMqmu/1q+ugEFVGYwrS6Fb07LYgar55iRiYcRxPPV5v8HrDUVca4hrGo+7RKe0PO4iEusDaNlrnwQhpcjIyMD06dORk/Pm4m3GjBnNWooNgBLtZrFkqzFQfz+hUH06QxKEsrkWUDMZX5LO2PRiMHDaOQALHrypMcgVCTAoMRIHPRrOIiRUjyEW4ct7hynjawLHKeWigc9h4t4ka1QIROh5UHEfkke7UIPbnS0UU5+RTul6Jvgs5D38c/53ifG5j0Jx3LULQp0avotNqA5HWIODJ3+SumR0r0cPfNx3DrkIp1GujgEGjFuJNdd3YFHEccr2iTE34Z2fgjEjliLOyJqGGRI8QTUWRJ7E0vBDEjdd6kvTNca33d7FTp8+pBabCiQZWGB10ASs7jIeAZkvMe3ZZUx8fkOiXrE0boUZWBJ+GEvCDyPW0BLHXYJw2rkzbtp4Q8AiYYXmYAsF8ChIQ8fsN9mNHbPjm/xZNFc5m4sEAwskGFggUd8CiQbmSNU1RSbfCBl8I2TyjVDC1Vb73208QTVMKkpgUlkM04pimFSU1P5dWVI7/urfr7eZVJY0+h6kCtqCaiQVy58I1RqRd4t64uLi8P777yMj400AJDg4GJ9//nmzj8lkSmaEyRpMrL8fh0MKBBNth2uhlCCkoRUNMyHedsIlUCIICQAjYsNIEFLNDI8Lh0+e5JKOOANLHFDwz8mSL3mxqK2grucMAEOctDHAofVmMG1v1w/jY25iUOIDifGt535Hh+kbka+tHl1KxQDKBK2rvqMsGGIRtoduwJCECMq2s47+mDH4U9IgQw0ImSx83ut9RFi4Ysv53yldy9vnJiF8z2eYPnghTrkE0jTLtochFmFy9DX8cHM3JSP/bSUcbfwcOAbrO41EOYc031Q5BgP3rNxxz8odi3q9j8EJEZjy7CqGx4eDJ2w8WOJamInPIo7hs4hjKOLq4JyjH844d8ZZp07I0TFUzfw1jH5VWe1y6lfBRt+cBLTLTaLUt22pShYHMUbWiDa2wwtjW7wwtkH8q8Bjto6h2gcYZVHF5iJdzwTpeiYyP4YtFMC4sgSmFSUwqiyFUVWp5N+VZTCs+/fr8dqx+r9b5JWnpYfNHYfASvO/9QpBgpBviYyMxIcffoiCgje1A4OCgrBp06YWBQC1tSUvoqqrZXsSN3cZt6IxGQy4m/Gb/XgnI234+jZcW887JRpJFS2rCellZwJf34ZrQno8vI9q4Vs1IXlcud+AfZxs4evbcE1I9yslLa4J2c7NCb4N1IQ0LaqE+92W38Fp5+UB3wZqQpbo58P9WctrQnZo367BmpBRglS4Jsc1uSTbTUqnxNh6QUhtbW2goN4vbgbg5WAN96KW1YT0sjFo9Hnr9TwKpeKW1YT0crCCr2/DNSE9b1e0uCakj6sDfH0la0Lq3LgN5Ddv7tdtfVDA40t0hx2acB9soUAhd8HtDLXqakJW1AhRWiUAm8mEs5s7PMz1pD4mgZUJ9/iW14Rs7OftU5QA99zm14SMz6eWDjA2NgbiW1Y2QCqxGEvCD1GG1wWMhlDBGSbz+7SHr7OxxJjL+ULESXl9y/x7RAysHOiGMe2l33TQyyuHe3jTHa6lLWmxN9RCenGVXLU4zfhcGOlwFL4cHwwGZg1YgMc7P5J4PVmX5WPTpb8wedgXij2fHF7/rPLLq3E/qwqK7DHDZjKUWgtVIcRibLz8NyY/v07ZdMvaE+NHLJGoT9xW2RtqNbvEgaLt9QrBMxM7HDm+mlLDy6iqDCeO/YCNfsPxZc8ZpOuvkvVKfoS117ajU3bD9b8FDCa2dhiAFV0nIZtvpMLZEQ2pYXFwwjUIJ1yDYFhZigkvbmJy9FUEp0WDicbfsw2qyzEh5hYmxNyCCAxEWLjgql17XLHvgJs2XijlKqZkj6ZgiEVwLMp+tZQ6ER1eBRwVVV/wtQo2F49MHfHU1B7RxnaINrHFc2NbJOqbk4xiKQQsNrL5Rs16z2GIRdAW1C4Z16mpAr+mqvbfgtq/uUIBOCIh2K/+cEQCsEUisEVCFGjp4pyjH/K19fFZoHOD8YSWXGu85mHGb/z6NeEpMqpbVhOSqYAgNkPc3A4FrczJkyexbNkyiQBhSEgINm7cCC2tlt2ZS0tLk2hos2fPHnTu3HRNrvDwcEydOrXu66tXr8LKSjWZYA8ePIBIVBtQYzKZ8PPT7C6DAoFAoj6Cr69vs+p7EopRXFkDw69DG91n67mNeO/JRYkxp1lbkGTwpju2n40+HqRJ1ulkMADh2uGKm2wr1GXDDdxLKWz24/89/QvefS7Zsbn/uJUK6ex7fX43BDuZ4EJMDoZsDYPwVbCip7Mxrn7YvcXHp0NyQTkcV12ijL8XaI9t4ckKP1+v5Ee4fPBribEMvhGcZ21BFVsxS5kNtTn4pIcTvu3vDka9DyO5ZVUwX36e8hjROtW+Lpmfn6SM3fqoOybviaR0x5b2XvLaz8O88XkvF6nHU4R3oq/hv3rdsgFg0tDPsd+zp1LO2RTh2mF4mVsGzzVXaDk/3Vbc+g/f3t1HGX9k6oBeE39EoZYuDbNSP5ELe8J/PTVQSyfjimL8d3odBiQ9lLr9gZkTJg37AjHGtlK3E83nmZeCn67vpDTdqu+4SyCW9JiBFybkZ6AJrErzMOblHYyLuYUeqc+aDEjWJ2Awcd/SFdds2yPMyh3hlu5yZa+pO9PyInjlp8ArLxUdcmoDjh1yE6FfLaVufQtk6Rjggbkzosyc8dDcCVFmTnhpZK3wm8uEcoUv6I7O9sZN76jGFBEnIlEYAL///js2bdokMTZixAj8+OOPCglUmZmZgclk1v2wcnNzm3gEKPsxGAyYmLSeN2yCaIpLveXYVSw2UvRMaZoN8bYTrl0oQciRsWEKCUK+tvVuUl0AEgCux+cjIa8cTiZt6256c0jLgvzNf4TCApAAkPPdQLCYZE2JIuzz7ImRsWGYGHNTYvx/l/7EDRsf2i7Wzr1o2QoFTfVx5EmpAch4AwsMGvsdCUC+hcNSv+Xo+dr6GDJmOVbd3I3FUuri+uUk4P7uRfi4z1zs9OnTKpYl0s28rAAr7uzFrEfnwRY3vCIo3NINX4TMxA3bdiqcHdFSGbom+J/fMPzPbxgsygreCkg+bfTn/RpbLEJQRgyCMt6sWEnnGyPc0g33Ld3w2NQBz0zskGBgobbZexxhDRyKc+BSmAGv/FR45aXA89Xfiq7dKAIDMUbWeGjujCgzJzw0d8JDc2dkkYxhohVp00HImpoafPXVVzh+XLKY9dy5c7Fw4UJKdkdzcblcWFlZIS2ttvtYcrJsmS8pKW/Sca2trSndsgmiNXOr15gm3sBSbT+caBofS70WZUKGOvqjmsmW6HA5Ii4MC/q0vElDvz/v4qehXjj4iLqcPr+iGk5oPUFIZWRB+mfFUjKACnh8/Ok7WGHnaGepRwKQisRgYH6/D9Aj7Rmsy/Lrho0rS7H1/EYMGbOClkBJWXXbK57+7rMr2HBlC2U8g2+EAeNWIlNXs7MXFM3OUD1r+ImYLCztOR3hVm7Yeu53iXIHAKBbU4nt5zZgQGIkPur7AQq0pZf6IBqnXVOFhRHHsTj8MPRqGs76StA3x7Ie03DAI5jUUdVwWXwj/NFxCP7oOASGlaUYkPgAQ+PvYXBChFzBOOuyfIyKC8OouLC6sQo2F8+NbPDMxB7xhpZI1jNDsr4ZkvXMkKJvqrSaoSyREGblRbAsK4BVWQEsywpgW5oHp6JMOBVlwakoC7YleXJngMqinM3FIzPHuuzGh2ZOeGzmSOqjEq1emw1CVldX4+OPP8bVq1frxthsNlasWIHx48cr/Hzt2rWrC0I+f/5cpsdER7/pxujl5aXwORGEutKpqZS4GAeAl4aks6WiTOtkix33ml9zpISng8v27SUaatiX5KJjdjweWri0aG7VQhEWnXjaomO0ZUvCqFmQmzsORQlPccHbL3u7KuxYRK18bX3MGvgxzhz5TmJ8UOIDfPjwDDb7DaVpZm3H0Lh72B66gTJewONj0NgViCeN0SgYUO+bEUfduiHCwhW7T/8itcP5pBc3EJL6FHMGzMcZ5wAaZqiZmCIhpkRfxQ83d8O2tOHaYgU8Pn4Imoj/dRxK6nC2QoVaujjg2QMHPHuAKRIiMPMlhsbfx8DESPhlx4MlQ5bk27QF1fDLSYBfToLU7UVcHeRp6yFfSw/5WrrI09JDMY+PKhYH1Sw2qlgcVLHYqGGywRKLXtXle1OfT7emEvpV5dCvLodBVRn0qytgVl4E8/IipQQY60vnG+OhudOroGPtcuoYI2uSYEG0SW0yCCkQCLBgwQKJACSfz8fGjRsRHKycDq+BgYE4d+4cACAsLAwikYjSNfttQqEQYWFv7g4FBQUpZV4EoY5cC6hZcHFG5AJQUXq5mmL9SB/8fjMBWSVVKKsWyn2M465BlK6+I+PCWhyEJJrPPT8VY17ekRgrZ3OxwV9xtRhdTfmY0qnxOl7qHJhwNml+kzVlC3XqhL86DMLcR5L1ctdd24Ybtt54bNZwYzRFa2vVwnukPsGBU2soSwvL2VwMH/2NSr/3hGIl65uj98TVWH5nL5bdPUgJNliX5ePU0e+xrV0/LOw1S6E3bFodsRhDEu7jh5u70bGBQBEAVDPZ2OQ3FKu6TCBZpm2EiMnCXWtP3LX2xDfBU2BQWYrgtGj0TnmEXimP0TE7ocWBPoPqchhUl8O5KEtBs1aOGiYL0ca2eGjuLBFwzNUxoHtqBKE22mQQcu3atbhy5U2xdWNjY2zduhU+Pg13V26pfv36YfXq1RAKhcjNzcWFCxcwcODABvc/d+4c8vNrM8HYbDYGDBigtLkRhLpxK6R2xn5JslAU6pMezvikh3ODTVOacsIlEH9c/ENibERsGL7rNllRUyTk9Pn9Y5QP+f+0H6DQD77tLZu+oDTW4cDWQAupRW+65k5tInCpKqZ89S5r8nnITPRLegiXosy6MS1hDfaeWoeAKb+igsNTyTxe5JSq5DzqoGNWHE4c/QHagmqJ8RomC+NGLMVtG2+aZkYPDqv2JsL87k747Xo8zbNRDCGThW+7T8Fluw749+yvsCnNp+zz3pOL6J/4EAv6zMFxN3Ljv75eyY/ww83d6JbR+Gqu/e7B+KrHVJI53MYVaenitEsATrvUZhgbVJaiU1YcAjNjEJD5EoGZMVJfh5qkmsnGSyMrRBvb4bmJLaKN7fDMxA7RxnYk85cgmtDmgpDXrl3Dzp076742MDDArl274ObmptTzWlpaom/fvjh/vrZj6KpVq9CxY0dYWFhQ9s3IyMDq1avrvh4wYIDU/QiitZKWCfnSiCzHVicZuiYIt3RDYObLujG/nATYF2cjWd+cxpm1TZal+Zj67LLEmIDBxC+dR6l8LgwGA9smdsSk3RHIK69BByt9/DDYU+Xz0ERlXG1MHbII1/ctkcjK885PwW9XtmDugI9UMo/iSgEEotafDumWn4bQwytgUF0uMS4CA9MHfYpQp040zYw++SsHAQD4PHarCUK+dtW+AzpO3YhNl/6kNIICALvSXBw9sRrHXQKxoM9cpOib0TBL9RKY8QI/3NyNfslRje53y9oTX4S8h7vW5L2eoCrS0sVlB19cdvCtG7MuyUP73ER456W8+pMM77wUyvsxnapYbCTqWyDewAKJBhZIMLDAS0NrRJvYIt7AEgJWmwulEIRCtKlXjlAoxKpVqyB+tc6IwWDgl19+aXEAcurUqQgPD6/7+sWLF1L3W7hwIa5du4aqqipkZWVh8uTJ+PHHHxEYGFi3T1hYGJYuXYqcnNqulDo6Oli0aFGL5kcQmkZaJmQsuauudk64dJEIQgK1XbJ/V+DyX0139HEGxu68r/TzfBp5AjyhZCORvZ49FR4QtjaQrVh6P3czZK0YiJyyaljoqSZ7r7W4a+2J5d0nY9XN3RLjsx+fxwWHjjjkoZyyMW+7FJuLb0Olf5ZpLWxKcnH+0LcwryiibPuo71zs8wqhYVb04/Na96VBno4+Jg3/Ekefd8X/Lv0JEynNNEbGhaNfUhS+6zYJG/yHo4bV9rKa/LNi8e3tfRgRH97ofrGGlljSYwaOuHUlncYJuaTrmSBdzwTn3r7ZIxbDorwQ9sU5sC/JgX1xDhyKc2BXkgPTimIYV5bApKIExpWlEs0R5SFgMFHE46OYq40CLV1k8I2RxTdEJt8IGXwjZPKNkKljhAQDC2ToGpFmSgShBK37k0Y9oaGhSEpKqvtaW1sbO3bswI4dO2Q+hqmpKdasWdOs8zs7O+OHH37A4sWLIRKJkJqaiqlTp8Le3h6WlpbIyMiQ6IjNZDKxatUq2NnZNet8BKGpXAolMyGrWGyk6JnSNBuiIcddu+CHW5KBkhFxJAj52u3EfJUEIA0qS/FB1FnK+NqAMQo/1zsdbWTel8lk0BqArL8kHIAaV6uUtCZgLPokP0Lf5EcS439f+B/uWbohyUC5qyO+PitbAz1NZVJejPOHvoVDSQ5l29fdp+DPjkNomJX68TLXRXR261yaf8CzB67ZtcPf5zdhePw9yna+oAo/X9+BOY9CsbTHdBx269b6g2xiMXqmPsXSsIMYmPSg0V2zdAywussE/Ok7qE0GaQklYTCQxTdCFt8I96zcG95PLAa/phJ61RXgCWvAFQrAE9aAJ6wBRySEgMmCgMFEDYsNAYMFAZOJUq42irk6qGBzW/9rmSDUXJsLQr6tvLwcN29Sl2M0xsZG9gswaUaMGAEul4vly5ejsLAQAJCcnIzk5GSJ/QwMDPD99983WjeSIFort3rLseMNLEn3ODX01MQecQaWEvXrQlKewLCyFIVauko5p0gkBpOpGR8ePzn2RCXn+SAqFPrVFRJjp50644mZo0LPs3KQB7o5Gin0mMo0O8gBy8+9yeZ7L9BeY547IiYL0wYvxMNdn8Csorhu3LCqDPtOrUXIxB9Jzalm0q0ux5kjK+CVn0rZtr7TSKzuMp6GWclPX4uN4srmZQLJalaQPT478Uyp56BTFt8II0d9jXeeX8evV/+BZXkhZR/XwkwcPLkGt6088XmvVrrcWCzG0Pj7WBp2sMmajwU8PtYGjMHvfsNQxtVW0QQJoh4GA2VcbfIcJAgN1aaCkPHx6lHbZtCgQQgKCsLBgwdx+fJlJCUloaioCDo6OnBxcUFISAgmTpwIY2NjuqdKECqnU1MJ6zLJYtUvDUk9SLXEYOC4axcsijheN8QWizA8Lhz/+vRR+Olm7nuI+LxyWBtoYeOodhjkqd61JyNSqcs8FY0nqMYnkSco42sCxyr0PLYGWvi6XyNZCWro635usNLn4UZ8Pnyt9fFR9+Z1OPaz0VfwzGSToWuCmYM+wamj30uMd8mMwfqrWzG/3zxa5qXJeIJqHDu2CgFZsZRt23364vOQmW06Q6arg+RNhk97OIPHYuGjo48bfEwPJ2PcSNDgBhMMBvZ5heCsUyesvvkv5kaFSu3i2y3jOW7v/RJnnDphVZcJuGPjRcNkFYtfXYFpz65g/oPT8M5PaXTfUo4Wfus0Ar90GoUiJd1kJAiCINqGNhWEPH36tFKO+++//8r9GENDQ8yePRuzZ89WwowIQnNJa0oTa0TqQaqrY65BEkFIABjz8rZSgpBPMmtrd8XmlmHczvvIXTkQWpy2nSE77dllSvbObStP3FRwR1+WhmQQvo3BYGBWFwfM6uLQouMEO9F3Q/CMcwB+8x+BT+sFmudFnUWYlTt2+fSlaWaahy0UYO+pteiTQg2oHXUNwpwBH7X52l8fBUsG6hkMBj7s7ogPuzvC+JtQFFbUSGznsBhYO9wbQRvlW1Wkjoq0dDG/3zzs8u6N/136E/7Z0hMXhiREYEhCBC7btcfqLhNw2b6DxgWu3fLTMC/qLGY+udhkE5AKNhd/+g7GT4FjkaNjqJoJEgRBEK1a2/60RRCE2iFNaTTLbWtPZNa7MBmY+AB6VcrtblheI6wLSrZVTJEQn987Shn/OXCMwi+KmRp2kd0Yef4vf4xtDx6b3kD3kh7TcVdKbaw/Lv4B3wYCJYQklkiIPWfWYVRcGGXbZbv2mDz0cwjVsORHS152lg3UY70yr6vU8Vsfdcckv4ZLDs3uYi/xdR9XU2hxWAi0N0JHa3qyhZUhzNoTAVN+xYxBnyBV16TB/fqkPMbFQ98g8t9PMftRKHRqKhvcVx3oV5Vh1qNzuLH3S7zYPg+fRp5oNABZyONjdZfxcJy9FZ/1ep8EIAmCIAiFIUFIgiDUirRMyJdGZDm2uhIxWTjqJnlRqyWswVAphf4VTSCiLplrS8a8vAO3ek2cnhnb4aRLoMLPNateAEKTSfu/dLGXXuvSSJur7Ok0qZrNwfjhS5CtbSAxri2oxuETP8KwsnU2DlEUpkiInWfXY3zMbcq2cEs3jBr1FarY9P+cpYld0rxMVzaTge8GekjdZsaXHpzs6th4xu8Pgz2xuI8rAu0MMTPQDvum+tdtm9/MUgfqSsxgYpdPX3i89ye+7j4FJZyG6851zEnAXxc2I/WvmfjjwmZ0T30Ghlikwtk2jF9dgXEvbmLPqbXI+HM6/r7wP3RPb7zmY5aOAZYGT4Pj7K34OngqCT4SBEEQCkeCkARBqBWSCal5Drl3o4yNfUm94Fem4soaiMVtKCgpFuPLe0cow+sCRit8SakZn9tohpSmmeRnAzP+m6BTByt99HIxpXFGTUvTM8WkYZ9DWO9n61yUhd1nfgFTJKRpZuqNIRZh6/nfMfn5dcq2Z8Z2GDp6OUq5OjTMrGndHI3gZCL/3Mx1uUj6uh9G+lgqdD4cFhM/DvHC3U964J8JHWH6VjDzvUA7hZ5LXVRweFgdNAGus/7CmoCxjQYjDavKMPdRKG7sX4K4rXOw9uo2hKQ8Bluo3OZBEsRiOBZl4v1H53H86PfI2TwFB079jEkvbkBbUN3oQ5+a2GFev3lwmrUVa7qMQzGPr6JJq8bnvVzongJBEATxSpuqCUkQhPpzqZfZVcViI0VP9gABj0Xurajaddt2yNY2gHnFm0YsQxIiwK+uUHrnwvzyaozdcR/X4vNgocfD9okd1b5hjSL0SX6EzvWaa6TqmmCPV4hCz7NuuDfGtreCg7F6Bmqaw9FYB+Gf9MDRJ5ngc1kY18FKIxprXLH3xbLgqVhzY6fE+JCECPx8fQc+7/U+TTNTTwyxCH9d2IwZTy9Ttr0wskG/8d8jT0c9lxGzmQx82du1WY8d4mUBK30tZJdUKXhWDWO0onIN0uToGGJpz+n4OWAMPn5wCp9EnoBRVVmD+zsWZ+OziGP4LOIYCnl8XLVth5u23rhp442HZs4K62zPFgrglZ+CTllxCEl5jF4pT+BQkiPz40Vg4IRLIH73H4YrdppX21IePhZ6dE+hQf42BohMU34jO4IgCHVBgpAEQagVt3rLseMMrCBqoFZXO0t9PEgrlhhbFELudquakMnCMbcgzHl0rm5MW1CNIQkROOgRrNRzLz/3Atfi8wAAWSVVmPJfJLJWDNTIRiryWBx+iDK2vtNI1LAUc3H72qc9nMFshd9LB2MdfNrTme5pyG1twBh0yXiBMbF3JcYXRRzHC2MbbOkwiKaZqRmxGL9f+huzHp+nbIozsETf8T8gU5e+hkON8TDj49T7XeBiqpxMNDtDbbCZDIlyFnO7tqx5k6yEa4fhXkqhxjayKdDWw8puk7C+00jMfHoR8x6ehUdBWqOPMawqw6i4sLp6pDVMFl4aWuOJqT1eGtkgVc8EqbqmyOIboozDQylHG1UsNtgiEdhiIbQE1TCpKIFJZQksygrhXJQJp6IsuBekwScvGbxmZFrGGVhil08f7PLujSQDi2Z9LwjFODOrC4x1OBr7miAIgmgOEoQkCEJt8KsrYF0mmZHU2FJsf1sDJOaX12UxmehwML2zrVLnSEh3yK2bRBASAMbG3FJqEDKvrBr/u5UoMZZfXoPkgopmLWNsTGFFDf64nYjkwgqMameJgR70ZVv6Z8Wif3KUxFgBj48tHQbQNCNCZRgMzBz0KTz/+wLe+SkSmzZd+gtxBla47OBL0+TUA0Mswp8XNmO2lABkor45+k74Ael6DTccodu7nWyVFoAEAD0tNr7p747l514AACz0ePi0h2oC8gwGAx2s1DP7VB4lPB1s9B+B3/2GoW9SFOY8Oofh8eEyBQQ5IiG881Mor19lK+Dxccw1CNvb9cNNG+9WnfWoSQZ6mOFeSiHd0yAIglApEoQkCEJtuBRmUsZijRoOQrIYDJyZ1QWnorOQV1aDYd7msDdqPctG1cXnvVwQllSAO0kFDTaDuWrXHnlaejCpfNOxemj8fWjXVKGCI70RQkttv5csdVzUzNqQIpG4way/4f+E4VZiAQDg77tJODYjAMMVXHNNVl+EU2tBbu44VOG17ZyMdVplFqSmK+HpYPjobxC25zOYvvV644iEOHjyJ/R85yc8NVVNZpu6YYmE+OfcRkx7doWyLUXXFH3H/4Bk/dZfrqEp3/R3x7v+NkjIL0eQvRH4PNVdDnBaUckUMYOJi45+uOjoB4PKUox9eRuTo6+hZ+pTsNWgOU063xjHXbvgqGsQrtq1h4BFLvvUib4Wu9WXMiAIgpCG/DYiCEJtSGtK01RnbD6PjYkdW0/TDHU0o7Mdfh7mjYoaIa7E5mLYP+GUfQQsNo67dsF7Ty7WjfEFVRicEIEjUhrXKMKRx9SgdfOOk4EvTj5Dblk1pnSyxYaRPmC/daGclF9eF4AEALEY2BqWLDUImVZUgRfZZQiwM1TI3OpzKUjHuHpNfyrYXGz0H6aQ42uxmagUiMBk1HbDJdRTgqElxoxchosHvwFX9Cb7yqiqDKGHl6P7pJ/bXLCNI6zB7jO/SO2Cnc43Rt8JPyDBkJ4bB3TQ5lDLmHiYvcmwdDbhw9lE9c1HWEwGPujqgD/vJKn83MpUpKWLbe0HYFv7ATCsLMXAxEgMjb+HPsmPKSs8lKWYq40bNj64atceV+3aIdLCReGNygjF8TDTpXsKBEEQtCBBSIIg1IZrvXqQAOmMrU60OSwwG7lrf8i9u0QQEgAmvriutCBkS6UXVeLks0zMO/y4buyP24noaK2P2UFvMskKK2sojz35LKvu3w/SinDoUTqOPs7E8+xSAICRtmJrM772+f1jYNXLsNnu0w85OoYKOX7yN/1wP6UIHaz0YW2gpZBjEspx09YHcwbMx47QDRLjNqX5CD20HD3eWaO2jVcUjSeoxv6TP2NEPPUGSaquCfqN/x6xTdzQam30tNgY6GGGcy/eNCqZ1UU9MmQ3jGoHM10evr8QQ/dUlKJQSxf7PXtiv2dPQCyGU1EWgtOeoUtGDLzzktE+N0li1UBzFHO1EW1sh4fmznho7oQIC1c8MHeGsIEa2gRBEAShLkgQkiAItdGcTEhC+bhs2TIpLtl3QL6WLowrS+vGhsXfh15VOUp46rVM/mZCHgb9HYbyGiFl2593EiWCkI25l1yIkM23UCmQDAwWVFADly1lUVaA6U8vSYwJGUz80nmUws5hyue1ie7ircUun75wKczEN3f3S4x7FqTh9NHv0H/c92r32lM0o4oSHD2+Cj3TnlG2Jeibo9/4tpUB+bZ9Uzrhx8uxeJ5dggHu5pjXTT2CkBwWEzM620kNQurx2Cipkr/ZitpiMJBgaIkEQ0v869Ondkwshnl5IexKcmFbkgfb0lwYVpVBt7oSujUV4AkFqGGyIGCyUM1kI19bF3la+sjT1kOynhniDC2Rr6VH6jq2Evpa5HKcIIi2hbzrEQShNlwLJIOQVSw2UnUbbiAga3CMaD4bAy04G8sWxKhhcXDYrZtEQwhtQTVGxoVht3dvZU2xWdZdjZMagARA6bjemO33kikBSGVZEHkSWkLJ4OYB9+5tNsBC1FrebTIsygspjaECM1/izJEVGDJmRasNRNoV5+Ds4RVSm3zEGFmj37jvkapvRsPMmk9HyjLq5jLQ5uCnoV4KO54qpH7THwZfn6V7GsrFYCCbb4RsvhEiLN3onk2bYMrn0j2FBnmY6aK9lR4eZ7QsO5YgCEJTkCt4giDUhmu9xjRxBlYQNbK0qK+rqbKn1GY5GGmjl4sJTr0fKFdzkr2ePSljk6KvKXJqCnHiaVbTOzWhoLxaZXXN9KrKMS+KemG+NmCMSs5PSJf6TX/6gzwMBj7s+wEOu3WlbOqe/hxnjqyAXlU5DRNTrg7ZCbi9l9olHACemNgjZOKPGheABIBBHm07E1mPZIURCqbDYaGXS8M3tOliolNbtoXBYOD8nK5Y2tcVUzvZ4tjMAJi1IGjqJOONY4IgCLqQICRBEGqBX11BKd7+soHO2CwmA9/0d4eLqeqL6rcVCV/1w+V53eBrbSDX467b+iCdbywx1j/pIUzLixQ5PbWQX674JdcN+SDqLAyryiTGzjn44aGFi8rmQFAxGMCCYCeJhh90EDFZmDLkM1yxa0/Z9joQqV/v+aPJ+ic+wPX9S2BTSm34cdfKHb0nrEYW34iGmcmnq4MRJvhag8EAOCwGvu3vDi8LzWxWoY5BHoIAgIsfdFVpB3hpfh3hQxmbGWhf928LPR5WDfbCzkl+GCGl6Z08No5q16LHEwRBKBsJQhIEoRZcCqmdjuOkNKV5L9Aeud8NxHcDPVQxrVbPUEoDlYEezc8eEjFZ2O/ZQ2KMLRZhXMytZh+Tbgn5DWeR8VRQEkCrpgoLI45TxtcEjlXoeSb4kvqrzaHFYeG/KZ3ongaq2FyMHPUVbth4U7Z1T3+Oq/uXwVJK0E6jiMVYdP8ozhz5DvrVFZTNx10C0Xf8Ko1pyDM9wA77pnZC9oqByF85CCsGeoDRwjp/jTUPU6Z2VprxPSfaHn+b2pup0zvb0jaHj4OdJM4/1MscI3wslHKuYCfjpnciCIKgEQlCEgShFlwLZeuMbWugBQMldR5ui/S1OJjib1P3NYMBfNDVsUXHlLYk+53n11t0THlEZRTj2JMM5JdXt/hYAqEIY3bcb3C7rPUyW+L9JxdgWV4oMRZm6Y6rUrLeZLWsrxuGeb25AOJzWfi0p3Ozj0eoh1KuDoaO+VZqILJjTgJu7/0S7vmpNMys5bRqqrDz7Hqsu7ad0iEeAP7qMAjjRixFBYdHw+yaZ9SrjCcTPldhmVojlRTYIAhNN6uLA+XGobICgfWxmAxsf8cPyV/3Q+zSPjj5fhfw2MrpZE4+IxOtRVcH9V/RQDQPKbxCEIRacJExCEko3j8TO2KAhzlickoxyNMc3Rxbdhf9voUrYg0tJWp89kx7BrviHKSooEbbuJ21QUNjHQ6uzuvWogwdeZrUKANHWIMvw49QxlcFTWhRZ9RFIc4w0uYgIrUIL3PLEOJsAmsDrZZMlVATrwORp4+sRI96HaMdi7Nxc+9ijB75FW7ZUgOV6sojLxX7Tv8M35xEqdu/7j4Fq7uM16huwUdmdIa5nuIDpn3dNL9WcoCdIe6lFNI9DaKV6e5kjLsLgnHyWRbsDLQx3tcKL3LKWlwjmsNioEYoBgAMcDfD+ZicBve1NdRu0bkIgiBaA5IJSRCEWnApkm05NqF4HBYTUzrZYuUgzxYHIAEADAb2eoZQhlWZDQnU1mzceDOhRccorFRd3Udppj67ArvSXImxKDNHnHIOaPGxGQwGOtsZYpKfDQlAtjKlXB0MGbMcoY5+lG2mlSW4fPArzH9wChCLaZidfKY+vYx7exZJDUCWs7mYPOQzrG5hUJ4OnWwNFX7Mz0JcoMPV/PyCWV3sm96JIJrB19oAX/dzx/QAO4W8Vro7GiFyYQjWDffGsZkB+GtcBwXMkiAIOsnRj5NoJhKEJAhCLTjXqwlZw2QhWQM7m7Z2IhmDFtKWZE+JvqryoMfWsGSVnk+RWCIhFocfpoyv7qJ5ARdC9cq42hg56mv869WLso0jEuL3y39jR+hv0K6pUv3kZGBSXozdp9dhZ+hv0K2ppGxP1jNFj3fWYJ8X9YaHupvkZwM7JWREaXNax8f62UEO2POuP971t8EHXR3ong5BNMrHUg+LQlwwwscSLBK9IAiNt+ddf7qn0Oq1jk8rBEFovPrLsZP0zSBkKqdeDtF87Sz1ZNrvuYkdIs0lawy2z02Cf3acMqbVKk14cRNu9V4Xz41scNitK00zIjRNDYuDGYM/xdrOo6Vun/bsCiL+/RQBGTEqnlkjxGKMe3ETT3fMx+QGsqev2fogYMqveKCB3eHPzu6Cne90pHsaam+Snw3+neyPzWNJZhmhvsx11bMG7c/DNKfcBkGom4kdbeBjIdv1DtE8JAhJEATtOMIa2JdILjmNMyBLsdWRvZEO7A1lW7q706cvZWzGk0uKnlKrxBCLsDTsIGX8py7jICLBeYUz5XPpnoLSiBlMLA6Zidn9P0IVi7r80LMgDbf2fomVt3aDI6S3/IBrQTqOHl+FA6d+hnlFEWW7CAysDHoH/cb/gBwdQ9VPUAEGepiDzSIfv+VhoYTamQShCNM629E9Bam8zHXpngJBtMjbzRMbYqxDmjBpKvIpiCAI2jkU51C6ncYbWtI0G6IpL77sJdN+/3mGoJopGfSY9Pw6uALVBjrua2CDgxGx4WiXJ7mUPEHfHP9JqbVJtFyAnSHdU1C6fzoMQMjEH5Gqa0LZxhaL8PXdA3i882MMiwtXedkEg8pSrL26DU92fISRceFS90nnG6Pf+O+xovtkkiVPEAQtrPR5ddVQJvnZYIiXOb0TakBPZxPo8sj7ZGumxWbCtpXW8w6wM8Tvo9vBq4lsxPNzglQ0I0LRSBCSIAjaSeuMHW9AgpCaLk9HH6ecO0uMmVSWYFj8PZXOY+6hqLp/X43Nxcx9D1R6frmJxfgq7ABleG3AGAikZLIRLcdpI5lp4VYe6DzlV1yxay91u3tBOk4c+wHnDn2LTpkvlT4f0/IifH9zN+K3zsZnEcfAFQmk7vefZ0/4TtuIq/aqWZr7WYgL7EkXW7l0sGr8YtHPRl9FMyEI5fnfmPbIXjEQGcsHYM+7/kr73TG1s22zHvdeYG1TJz0tNkJnkwBNa9bD2RhJX/dDwjLqqiNNF/ZJDzgY62Bap8ZfB00FKQn11TY+dRMEodZcCqV1xiZByNZA2pLs6U9VuyT7QVoxgNqMyIFb7mLn/VSVnl9eA5IeoHNWrMRYOt8Y29v1o2lGbQO7jTQUyOYbod/477Gw1/uoYEtfht4/OQr39nyGy/uXYWjcPTDqZaq3iFgM/6xYbLr4JxK3vI+vwg7AqKpM6q7pfGOMGrkMU4Z+jjwd1QaxrPTJEmB5DPe2hJF2w0vj5gSRBjNE62DC5yq9RMC0TnbQYst3mc5hMfBe4Jvl4d0cjRU9LUKNMBkMMBgMmLfichU9XUzw6wgfuqdBKAFJqSAIgnYuRSQI2VqddeqEbG0DifpugxMiYFFWgCy+kUrnsisiFTVC1S4zlZtYjG/u7KMM/9J5FKoaCBgRirG4jytWXZTM/mvfRHaXPJxNdBCfV66w47WEmMHEhk4jEerYCTtCf0OXTOmNaXqlPkGv1CdI1DfHXs+eOOLWFZEWLhAz5Ls4ZohF8M1OwMDEB5j8/Bra5yY1ur+AwcQfHYdgebfJKNRq27XNdHkslFYJ6Z5Gkyz0eLgyrxv+dzsB1QIROtoY4PSzLKQWVWKCrzVmdyFBSIKQVQdrfVz9sBv2RKZBX4tN+d0kzdV53dBVTQKPXewNEZZcSBl3M+UjvbgSZdXq/55GqIdPezpjgLsZ2q27SvdUCAUiQUiCIFTuWlyexNfOZDl2qyVgsfGfVwg+jTxRN8YWi/Bu9FX82kDHXmXIKa3CppsJKjtfcw1IeoDu6c8lxnK19PCX7yCaZtR2zAyww7bwZGQUVwEAxrS3hKcCi/svCHbCp8efKux4ivDCxBbdJ63BjKeX8MPN3bAsL5S6n2NxNpaGH8LS8EPI0dbHTRtvRFq44LmxLZL0zZGrrYcyjhYYYjG0BdUwqyiGbUkuvPNS4JsTj5CUp1IbzUhz2qkzvgiZiecm6tnwQdU+C3HBd+epQWKOGmbudrDWx1/jfOu+/qSHs9LP6W9jgP+m+IMBILe0Et3/d0fp5yQIVQi0N0Kgfe3N2qaCkF7mulIDkHwuq9kBv+vjLbH7eRn+flwi92MNG8iKHuptgZ+GeEFryelmzYl4o6HvMUFoAhKEJAhCZbaFJ2PtlVi8yJFceudclCXxdaaOIcq4pB5Xa7HDp69EEBIA3nt8Eb92GoW6Cu9KNml3ZLMeV1mjwrv1YjFW3P6PMvxr51Eo5yiu+DiHxYAul/z6r8/ZhI9Hn/XCpZe5MNPlooeTMRgtfH6emxOE8OQCdHUwRh83U7ULQgKAiMnCtvYDcNA9GEvDD+KTyJPQFlQ3uL9ZRTFGx97F6Ni7Cp3HeYeO+ClwnMrqPmqKBcFOlCBkR2t9FFUKkFdObzdzus0IsMO2iR3rvi4oq6JvMgShhuZ1c8S6q3HNeqw2mwk3Q8V/VuDKucyckG6ynw3dU2iVgp3UI5u4tSPvAgRBqMTDxtpR2gAAx6pJREFUtCLMOhBFCUBCLIZzvZqQZCm2epM3LPPI3AkPzJwkxrzzU9AjTXUBmcuxuXLtLxCKMOtAFEZuV10TncEJEQjKkAw25GjrY5PfUIWe54OujuQioAEmfC4mdLRGb1dTsBXQcKC/uxm+6ueOPm6mCpidcpXwdLCsx3Q4zP4Hy7tNRra2gdLPWcNk4ZBbNwS++wsGjVupVgHIAHvVlotoiJEOF6WrB6OfmymMdTjo726Kg9M6N/3ANkDemnkE0dasHOhB9xSkmt/dke4paLSx7a0w0EM9O7NrIj1ebbDdSJuDn4d5K+SY4ztYKeQ4rRVJhSAIQiX2PUyXOm5ZVgC+QDJ7Ic6QvHGrMyaTAX9zLiKzG86Wqm9Lh4HYfOlPibG5UaG4YdtO0dNTiL0P07AtPFl1JxSL8Z2ULMi1AWNQytVp8eE/7+UCAy02fCz1MMKbBPnVyW8hxkguESC3QoQbWUIk5FfQOp9cHQN83/UdrO08GpOeX8e70VfRK+UJmFBcPdWHZk7Y0a4v/vMMQa6O8oOdzTGtky3+dysB4mb+t+d3d8T/biUqZC46XDbOz+2qkGMRBNE0RyNtJBbQ+16sCFocFm3nbm+lh8cZ0pdyL+vrhhvx+XiUUQxtDhMVNQpsftYGHJxObkQpUvZ3A/Aiuwye5rp1N+kFopY9J/dP64yDn59UxPRaJXILkSAIlUjIk979VFpnbFIPUv1939UIwdY8mGvL9mtkj1cvlNZbUjwu5jbMGqhBR7fNMgQPpu59gOjsUoWcb3hcOKUjdpaOATZ3HKKQ4wc5GOGrfu4Y1c4KTDWsJdeW6XKYmOShi4876uNdNVpeVcnhYXv7/ug3YRXs5m7DrAEf4YB7d6Tz5V+qlKulh0Nu3TC3/4dwnvU3/KdtwEb/EWobgASAznaG2DelU7Mfv2qwpwJnQxCEKh2dGUD3FFo1K30tPFjUEwnL+iL/e1LzuiXUqT7w1gm+Te+khnhsFjpY60usEqKs3CMUimRCEgRBK5cialMashxb/ZnrsLA+xAQAELBXepbr20p4OvjPKwRzHp2rG+OKBJjx5BLWBo5V2jybS1pXx/ruJhUo5mQN1IL8OWCsQmtBEupvXAdLrL4cC5GaNXHP0DXBtvYDsK39AACAZWk+2ucmwbE4C3YludCvqgC/phIiBgOVbC4KeXyk6pkgWc8Mj00dka5rrLL6r4o03tcaU/6LRI1Q/h8IqbuqeuQGS9vwYTdHbL6dqNRz+Fqr7w2S1oLBYMDBuOUrPdo6NouJGQF22HEvhdZ5BDkY4b1Ae/x+MwFR6cUqOacyA7DjO1jh4CPqNao8xra3wuHHkscw0SENhQAShCQIgmYkE7Lt+LPDIIkgJADMeXQO6wJGQ8xou4n5o2Lvwi9HsnN3Bt8If/oOlvtYPwz2xNdnnze9I6GWvC30cHBaZ/xyLQ63ExUU5FaCTF1jZOqS4u0EvVj1LkC9zXXBZzNQJlCzKD5BEIQS/Tm2A0KfZyOzhL7mXLsn+wEApnayRVT6syb3n+BrDUt9HjbeSGhy34awWUy862+DPZFpzT5GQ/i8lofJZgfZ49jTTAhf3VkOtODCzpA0XgXIcmyCIGhWvykNQDIhW6uHFi4Is3SXGHMpykS/pCiaZkQ/pkgoNQtyTeBYVHB4NMyIoNvo9la4+VEwjswgNZ+I1svWUKuuGcBrs4Ps5TrGSB/JzwpcNhNrexjD2YDkWBCEIjS3Jm5bN8XfBj4Wegi0M1TJ+bhsJj4Kdmp6RyWIX9YXwrXD4GzCB/AquKjX+OfXD7o6YN/UTviyl2uLz79lvPouAR/gYY5Lc7pgqicfX3QywLqe5ObtayQISRAEreovxy7laCFbx5CeyRBK95cvtfbPB1FnaZiJeng3+ho65CZJjKXpGuPv9gNpmhFBEITycVhM/D66HTis2mxGFxMdLO3jJnXfEGcTqeM9pYwHWPKwfwjpGksQjXE15cu0X34laRjTHLsm++PxF73wx7gOdE9F6RyNdcB4q9yKraE2wj7pgfUjffDH2PZwNlHuknstDgtW+up7076boxEW+Blggjsf2mwSenuNfCcIgqBV/eXYcYaWGlk7jJDNfo8eKORJfvgdERcOh6IsmmZEH56gGitv7aGM/xg4HpUkC5IgiEZIu+iisxNuc0zrbIe8lYPw9IteeLG4DxwbqA/3XqAdZSzlm34STQTqs+Zr1veCUD+8VhIw+LSns8TXejw2Dk7rBBuDpmtOkxCk5qifWU4nO0NtfNLDGXO7OsJEh9vgftoc6mtM1gA5odlax7srQRAaSa+qHGYVksWL40g9yFatgsPDLu8+EmMssQgLHpyiaUb0mf/wNBxKciTGYg0tsaXDAJpmRBCEPGZKCY6pyuwuDpSxIZ6alwGoy2PDy0Kv0aYyAzzM8cfY9vC3MUAvFxNcmBsEG4PG62p96qev6KkSbczi3tSlon40Nazp5mjU7Md+1dcNPZxql4Ea63Cwa5IffK0NkPRVP7xc0gfp3/ZX1DQJGmni+7+RDpfy3H4/kFqWQ5dHvakU7ESWNmsyEoQkCII2zkVSmtIYWtEwE0KVfvcbChEkLzjff3we+lVlNM1I9QwrS7Es7CBl/OvuU1HDIp3zCEIZLJqoUyUvQTO6ZivKhI7WGORhVvf1R8FO8LVuvYG3uV0dcX9hT1ye1w193cya3F9HSoYNQchjVhd7OL2VnTsnyIG2bs7Sbjq8TV+r4Sw4Ez4X1+Z3R853A5G1YiBGtqu92c9kMuBiyoeZLg9G2pKfO0b5WLR80m3UZD8bWs7rYsrHbyN9YKjNAY/NxOwge+yc1LFFxzTjN5zFqChHpgdgblcH9HYxwU9DvfBFLxfKPnaG2vC3kbwBMKuLfDWECfWiPnm7BEG0OdI6Y5OmNK1fnJE1jrt2wejYu3Vj+tUVeP/xBazvPIq+ianQ4vDDMK4slRi7b+GKgx7daZoR0RLG2tTA8bgO5IaKurnzcTAMtTnouvEGXuS07KaHGZ+LIV7m+DciVUGzk482h4Uzs4OQmF8OHQ4L5goOsBJEW2drqI0nX/TC7cR8WOjy4GOpR9tcpgfYgctm4viTTByISqdsnx3UeJASqA1GSsNiMvDjUC98cOgRAMBAi40lvV2AvMQWzbmtCLQzRHhKIYDa7+X7NAbHFvRwxvzuTqgRiqDFYaGkUoAAu0TcezU/eZjocPDsy964EpuLCf9GSN1HETe+zPV4+GNs47UzGQwGzszqgp+uxCIxvxwjfSwxrbN8KxHmdXNEWlEFTjxte+Wf1BEJQhIEoRKl1ULKmEthBmWMLMduG9Z3GikRhASABZEnsdF/OITM1l3Ly6YkFwsenKSML+45HWIGyd7RRA7GOujtYoIrcXkAai9EZLkoJFTPUJuDmx8F4/jTTIjEYsw5+KhZxwmdEwSxGrSObaiOIkEQLafNYcmUefsaS0pZgUYqDchlkp8NJvpaSw1Cjm3fsptec4IcMMzLAs+zSxFgZwhtNhCVB+iwG558+Cc9ELjhRovO2xqEzgnCP2HJSC2qwNgOVgh2etMwi89V/edZFpMB1qvP0XpabFyf3w23EwsQ+jwba6/GyXUsEz4X43yt4XvpJaLSiynbP+ja9OccGwMt3EuRHDOQcuO2KeZ6PPw6wkfqNqYMvQTsDbXxvzHtwfyc+vmbUD1ytUMQhEqcfZ5NGXORshw7jizHbhNu2njjvoVkvSWHkhyMeXmHphmpzne3/4O2oFpiLNTRD1fsfRVyfA8zalFvLov8ule2YzMDsWFUOywKccaVeV3R3132C1dCtUz4XLwXaI9ZDSxxzCiubPTxf47rAD8bemrDEYpx6yOSda4ODBsJRrxc0gedbDXrdWapx4ODkWS90gU9nBvYW3GaE9Spz9pAC33cTKH31tLuQIuGM6w72xk2ejxvC2rmqIVuyzO2F4Uo//spjbS6hEDtc/izXi5YP7KdRAASANzUoMkKj81Cb1dTfNvfHea6il1ePUeGm61TO9lSxka3U2zCiSxLs4d4yVczs6+bqUz7kc/XzUO+awRB0Ma53nJsAYOJFD3Z3vQJDcdgYH2nkZThRfePAWqQXaQs7XMSMP3pZYkxERhY0mOGws7xYXcnia+ZjJYVtSdq1a/zZKzDgflbF1R6Wmx8HOyEdcN9KBcidBhJano1Ww9nUvC+tWMzySWQKmwc1U7q+NEZAXj8eS9809+twceaNRIwqV8fTl0wGAwcnt4Z/jYG4HNZGN/BCisHetA9rWYz02Ghj13TXbSlmS5luewoBQSfDLToqZu9sCe1VmFTGAwGfh7mrYTZyI/PY+PKvG4KWy7ey8UEDBkyEId7W2BGgB2YDIDDYuDzXi4IaCKALa93/amBzvrayVlOQdZGP/O7O8p1XKIW+Q1MEARt6i/HTtI3h4BFqkS0FQfduyNVVzJY0yUzBn2Sm7c8Uu2JxdhweQtYYpHE8B6vEDwyd2rgQfKbE2SPd/1twGExYMbnYsc7fjDWUX5x8dbum/7usNavvRhjMxn4bWQ7qUvv1IWhNgcLeijuedWWkNcL0Vx+NprVHMjRqPEu4y3xXqA9BnhIzwgf2c4SPpZ6YKB576Gzg9S3KYW/rSHuL+yJktVDsH9aZ+jyNPtz7RDH5pV8GOhhhpWDPGDxKjt0y3hfeJjrKnh2qjO/m2OzHmdrIFsQl8NS/ucJLws9bBmvmFU3HWSsB8lmMbFtYkfkrhyEvJWD8PMwb5mCl/JwNeXj2/7uje4j7zmNmvgc8GVvVxybGdDkeQnpNPtdkSAIjcUR1sC+JFdijDSlaVsELDZ+9xuGNTd2Sox/c3cfLjso5kOSOhkXcwu9Up9IjFWyOPi2+7sKPQ+PzcK/k/2xZbwvuCwmmGocKNMkHua6SPyqLx5nlsDFRAf6Ss7GsDNseXAgt7S66Z0IgmizNPX3w9yujuBz2Tj0KJ00mlBTDAYDX/dzx9f9SJCmKXOCHLBuuDf0vzpL91SUprHSC4rgquKl7ysHeoDLZqK4skal520tSCYkQRC0cCjOoWSExcsQhDTQJvdOWpM/fQcjX0vyznhI6lOEpDymaUbKoVVThbXXtlPG1wWMRpKBcpbNanFYGnuBqa7YLCb8bAyUHoAEAD9rA4l6aFpsJsIW9ICVvuw1tXgc8jHvbeTVQBCtx5ROttg92Z/uaRCtRLBTw2U4pkmpa6hI5rpc6PLYpHSOCljoSX6G8raQPzvXxkBLJZmrrRn5dEoQBC2kd8ZuuinNMC9S56w1KeHp4Df/EZTxb+/so2E2yvPF/aNwKMmRGEvVNcFPgeNomhGh7phMBs7PCcJvI32wtK8rbn7UHQH2hnIdo68rqbH7GpfFhK0CsksJ4jUjKZk9VnrNq59HEIRsjHUUexNw28SOODS9M0Jnd5G63dWUj98aqG2qaP9M6Ag/G30wGUBXByNSb1AJFvaUbGz0STMaRy0f4K7wJeVtDUkpIgiCFs5F1OUzjS3HNtbhYPkAD7iZaW49GUK63/2GYVHEcRhWldWN9U55jB6pT3DDVjUf/JTJvjgbi8MPUcYX95yBcg65YCUaZqTDbVFn1SqBqOmdWilfa31EpRfXfb1/aie1ruFJqJalHBnFDfllhA/e2/9QYmxMByuceZ7d4mMThDTS4h6y1hxsLXq7KPbm2owAagOdt/33rj8MtTnILqlS6Hml8TDXRcTCENQIReCwmPj5SqzSz9kQPzVt/tRSX/Z2RWdbQ9xPLUR3R2N0byQDVppLH3RFb3KDt8VIJiRBELSQmgnZQBDyz3EdkLViID4OJk0WWqMiLV1s8B9OGW8V2ZBiMTZd+hM6AsnafDetvbDXsydNkyLaCjcz1dZIUifrhntDtG440r7tj+o1QzFSAV1ZidZDETVX+7qZ4schXrAx0IKTsQ62TvCFpwyNN9pb6aGjjE0dCOJtDAYD7wVKNuWZ1cWBptkAU/xtFHIcaQ2deGwmetQLEHma62pcWabcMvlrM3NY9IdoFNVFWx31cTPFl71d5Q5AAoCLSfMaNRGS6H+GEwTRJjkXZlLG4g3eXCT2cjHByfcCkbCsL+YEOZAMllZug/8IFHElf7H3TX6k8bUhx8XcwrD4+xJjIjDwaZ/Z0lMaCEKBLMnSUFjpa4GtBhd0hPr5opdLix7PALC4jytSvumPuGV9KcEhaTaNbo8r87qBx6b/OcllMWGvxBIFnua6sDXQArfe6681BzdUYfOY9lg33BtT/G3w17gO+Ka/G21z2TSmvUKO834gNZDKALDnXX8M97aAvaE2pnWyRfgnPRRyPlUKsDOkewoyWTHAA3aGWjDU5mBRiDPGd7Cme0pEK0b/b0CCINoklyLJIGSmjiHKuG8+DJvxuRjqbQEHY3LHqS0o1NLFRinZkD9f2w6GWDOXlBpUlmLDlS2U8T86DkakhSsNMyIIgiBeU3UgcIC7GT7s7ghjHa5Kz/s2c9035/52gDt0OCyFHHdiR2u8fa+Yy2JibHsr6HDZWDnIQ+L8n4W8KTEhS+ZoY3Q4LJgouEaguuOymVgU4oJdk/0xO8iB1tp0+locTOzY8mBVQ/8FW0NtHH8vEIlf98OOSX7Q5WlWFiQAdLYzxEgf9apnLy0Te143ByR+1Q+53w3EuuE+pLEhqJm+ujwWrPTJzV1FIEFIgiBUTyymZEI2Vg+SaBt+8x+BAp7k8tGArFiMf3GLphm1zI83d8GqrEBiLE3XGMuCp9E0I4LQfEv6yBbAZ5FMY0KNMBnAh2rQZCJ2aV9cmBuEuKV9sayv4jLo/GwMcHBaZ/RxNcUAdzOcfD8QTq+WLX7Z2xUJy/ri0gddEbe0LzzN9eoeF+Ji0qLljUwmA1/1c2/x/ImGaUmJU/u30nqBjTHlcyWC+IBsy9FZTAYOTQ/A3QXBOD8nCJZ6La9H21L1l/B3czSCmS4PDAaDBB/f8mVvV5jy3/zMVw32Uoul8q2B5t1OIAhC46QVVUh8bVlWAL5AssDz20uxibapQFsPP3YZj5+v75AYX31zF465BqGarTnZDt1Tn+GDqFDK+II+c1DCI9m9hGIxGYBILDnma906LxJXD/HCT5ebLtbfzkqvyX2ItmkWDcuB73zcQ+7u9q9tn9gRM+s1wGkuXR4bfd3M6r52MaXWjTXW4SC/vEbuY49ub4XR7a2kbnMw1pG6skWbw8K1D7vD9vsLcp/vtU97OqOfmymeZJZg8p7IZh+HkK6dKRdabCYq32p0NrerYutQcljUwJeDkfJKBTQHk8nAX+N88e6eSJTXCOFiooMVAz2afiBqA5GB9kYAap/zLWHGb3km9bxuDmAygDPR2XA142NZX7I6R5p2VvpI/KovwpML4WbGh42Bej0nNRkJ5RIEoXQ3E/IlvnaRVg+SZEISqO2UnaRnJjHmXJSFTyNP0DQj+elWl2NH6G+U8eMugTjq2lX1EyJavcl+NhJLS/lcFsZ2kB4MaCtMZFzyKu2CjiSCtF4/DfXCptGKqWMnj+YGIBvT3dGoxceY7EfN5JrYUTHNRmRlrYDuzu2s9PGOlP8L0XJ8DhOHpvmjg5U+LPR4WNjTWaL+qbROwUO85Ft+HOJsQhn7SAXNKIPlbEwysp0l8r4fiJdL+iBmSR84m2hm8zcGg4EPujnixPuB+HWED0z59GdntpSyegfocNno5WpKApAKRoKQBEEoXY1QMkXHpUhaZ+y2fcFM1Kpic/FN8BTK+Nd398O2OIeGGcnvl6vbKDVPSzja+LjPXNKMhlAKTws9hM7ugokdrfGuvw0uzu2qkO6/mojLYuLw9M4y10lb+FZ9ute62Lc8uEOopy97u4KrBk1h5NHQU/ns7KAWH7uLgxF+H90OTsY6cDbRwR9j27fJpbZE4wa4m+HhZyHIWD4Av4zwkQj4jPKxlFhibMbnYmwDGbENcTXlY3Ef17rneoizCaZ1slPI3BvTnJt1PDYLLqZ8WmtxElRdHej5vc3nsmGoLblSq58bNTBPSCLLsQmCUDlpmZBx9ZZjB5KLwDZrj1cIPo48iYCsN0sudWsqse7aNrwzfDGNM2va0Lh7mP34PGV8cc/pSNU3k/IIglCMEBdThLiQD755KweCL0fzgjlBDjgYlY4HacUAamtO2rbRAC6hnqQFxX8c4qWwJh3zuzthfvc3WWf/hCUr5LjyYDAAcb2SEmySkqwRzPV4uPVRMHZFpEAkBqZ2spU7u5XBYODHIV74PMQFRZU1cDLWIUE+Qi6Oxjr4opcL1l6NU+l5WUwGlvZxxeLT0QBqb4R+3stFpXPQRCoLQhYUFCAuLg6pqakoLCxEeXk5mEwm+Hw+DAwM4OjoCGdnZ+jqtqxLGkEQ6s+pSEoQ8q3l2Lo8Fsb7kszItkrMYOLjvnNx978vJMYnxNzCtsRInHf0p2lmjTMpL8aW879Txs86+uNP38E0zIggWicWkwFh/SKYr8gTgAQAYx0u7n3SE8+ySmCmy4OFGjQNINqmOUEO+PtuksSYlT4P7mZ8zAy0w/bwFACAhxkfMwKUnyWmSvO6OmLz7cS6rwPtDKHDJbkymsLJRAfLB8hWH7ExJnwuTJpZ81Da64doW9YM80Z/dzMM+PuuSs/7RW9X9HM3w5PMYgQ7mtQ15SIaprR3d4FAgNu3b+PixYsICwtDcnLTd9UYDAbc3NzQtWtX9OvXD507d1bW9AiCoJFTUZbE12VsHrJ1DOu+vvxBN9gbkTfwtizcygNb2w/ArHpZhX+d/x86TP9d7Zq7MMQi7AxdD8vyQonxPC09vD9wAVmGTRAK0PfVEqe5QQ4SAYuWYjIZaGelL/fjjGWsO0kQsprVxR5b38pEnN3FAQwGA1vH+2JRTxfkllUhyMEIPHbLmluomzVDvVBeI8SllzloZ6mP/41Rfd1OQrP9MbY95nVzgN+v1+meCkEjurqP+9kYwI+UspCZwoOQubm52Lt3L/bv34+8vLy6cfGrHPvXqdXit3LuGQwGxGIxxGIxYmJiEBMTg507d8LW1hYTJkzApEmTSIYkQbQizvWCkAkGFhJBms52hiqeEaGOlgZPw5iXt2FcWVo35lCSg5+v78C8/h/SODOqb+7sx5CECMr4vH7zkKkrX+FzgiCojHU4+HGIFwBg7XBvRKUX4VZiAa1zcjTWQS8XE1yNy2t6Z4KQwf/GtIenuS4epBUh2MkYs7vUdiFmMBjwsdQD0Dq7vvN5bGyb2JEyPtjTHBGpRRJj5EKfkIbBYMDX2gBd7A0RllxI93QaZKhNDb+wmZpVp5YgWkphz/iCggKsWbMG/fr1w+bNm5GXl1cXWHw74CgWi8HlcmFqagpzc3Po6elJ1Hx4+zGpqan49ddfERISgl9//RUlJSWKmi5BEDTRqqmCVZnkhWO8AemMTVDl6ehjUa/3KeNzH4WiX+IDGmYk3cCECHx7Zx9lfLdXCA55BNMwI4JoPX4d4YOHi2obIry+QaXNYWHz2A70TuyV4zMD6Z4C0YpwWEwsCnHBv5P9MberI5htvC7iZH8baHPeXK6a8rkY4SNf52WCUCdzuzpSxgZ6kJrhRNuikEzIvXv3Yv369SgpKZEIOJqYmCAoKAheXl5wd3eHh4cHjI2NweFIdhASCATIzMxEcnIynjx5gqioKISFhaG0tDb7paysDFu2bMH+/fvx0UcfYcqUKaRYLUFoKMfibMpYogH5QElIt8u7Dya8uEnJMtx1dj06TtuAbD69DYzsi7Ox+8yvYEKyPl20sS0+7DePplkRROuhxWaig7X8S6VVRU+L1K0jCGXxNNfDlXndsC08BTw2Ex90dYCZLqnbSmiuCb7W+PtOEiLTajN8x3WwIivAiDanRZ+cUlJS8MUXXyAqKqou+GhqaorRo0djwIABaN9etnoebDYbtra2sLW1Rbdu3QDUBiYjIiJw6tQphIaGoqSkBEVFRVi9ejVOnTqF1atXw8WFdB4iCE3jLKUpTbwhCUISDWAwMLf/fDzZ8REMqsvrhi3LC7Hr7HoMHrsCYgY9y1j0q8pw4uj3MKmUzNIv5Whh7IilKOWqvm5lEOkqTxAqZ8rnIresuu7rtzO3CIJomUB7IwQq6XebtJQWPrd11dsk1IuhNgd3FgTjfkoh+Fw22lvpkeQqos1p9qekY8eOYdSoUXUBSB8fH6xfvx5Xr17FZ599JnMAsiFsNhtdunTB999/j5s3b2LFihVwcXGBWCxGVFQUxo0bh8OHD7foHARBqF79pjQAkKBPgpBEw9L0TPFx37mU8QFJD6Uug1YFtlCAAyfXoEMutRPj+wMX4LmJ8juXupjoSBTgDrQzRLATqT9JEKo2J8hB4uvZ9b4mCEI9eZrrQosteTm8sKczTbMhFKG7BnwO4rCY6OpojA7W+iQASbRJzQ5CLlmyBGVlZbCzs8PGjRtx+PBhDB48GGy24pel8Hg8vPPOOzh9+jTWrVsHBwcHVFRU4JtvvlH4uQiCUK76TWmAV41pCKIRu717Y7tPX8r48jv7MOH5DZXOhSEWYev53zEg6SFl2wb/4TiogjqQhtoc7HnXH/c/7YnNY9pj92Q/XJjbFVw2ycAiCFVbOdADf43rgBmd7bBpdHv8MtyH7ikRbdx7gfZ0T0EjaHFY+HeyH0z5XDAYtY1wvujlSve0iBaY2skWrDZeS5Ug1F2zI4Z8Ph/z58/H1KlTKTUelWnYsGEYPHgw/v33X2zatEll5yUIQjEcSRCSaKaP+85FUMYLeOWnSoxvP7cByfpmuGvtqfQ5MMQi/HVhM6Y9u0LZFurohy96zlT6HAAgY3l/8Ni1S8Y+6OaoknMSBB1cTfl0T6FJTCYDs4McJDIgRSJxI48g1Nk3/d3x/YUYuqfRbB5mfKwb7o0X2SUSHeQHydj8orxGKPc59XiaWxt1bAdrjG5nhbJqIanx2gr4WhvgxMwA/HE7CVw2A+8F2mPYP+F0T0uj6Ut5fXNIR2+iBZr97AkNDcV7772n0gDkaywWCzNmzMDZs2dVfm6CIFqmfk3IbG0DlHG1aZoNoUnKOVoYN2IJiurVWtQWVOPMke/glxWn1PMzRUL8cfEPzHp8nrLtoZkTJgxfDAFLNRcwXBb58Ee0DT2c1X9pHaF+zLWp75H1l81L42Ssg+8GeoCtwZlUR2YEwFCbgy0TfNHeSg8A4G9jgE1jZCuVFZdXJvc5B3uay/0YZajfOdvbQlemFQJMJoMEIFuRwV4WOPF+IA5NDyBlahTg/S7UzOrh3iSBhGi+Zl/FmJnR30peHeZAEETTjHVe3awQiyk1IUlTGkIe0Sb2eGfYFxDWa0ZjWFWG84e+hW92vFLOyxNUY/+pnzHn0TnKtkR9cwwb/S0tjWgIojX7e3yHuoxfgpCHoz4bvd4KYGtzmJgl5UJa0aQFL52M6fnd4Gmuh6jPeqH8xyG4v7AnnE2Uk1X8vzHt4UjT/7G+tcO84fYqe9pcl4u/xvnSPCOC0Hxj2luhq8Ob5lCj21mimyNphEg0H7nlQxCE0mWWVAEATCpKoF9dIbGNNKUh5HXOqRMW9pqFjVf+lhg3qSzBtf1LMX74Elxw9FPY+axL8nDg5Bp0y3hO2Zaia4o+E35Aup6Jws5HEEQtKz0tuqdAaCgGg4GjMzrh2NMcpBdXYoSPJXws9ZR+3g5W+tDhsCSWNM/v7qj08zZGi6O8QP74DlaYp0YlQdzMdPF8cW9kllTBQpcHpgZntBLSGWlzwGQAb1e8kLXUANE8ujw2rs/vjsjUImhxmGhnSTp6Ey2jlPVcgwYNwt9//42sLGrtN4Ig2pafLr/ErANRAACnYin1IA0tVT0lohXY5D8MK7pOoozrV1fg9JHv8HHkSUDc8pps/RIfIGL3p1IDkOl8Y/Sd8AMSDchzmCAIQt3wuWxMD7DD0r5uUgOQhtrUklKe5rotOqcWh4UjMzrDy1wX+lpsvN/FHh8HO7XomOrA11ofA9ypgR51DPIxGAxY6Wup5dyIltPhsiXq77KYDMzvrvmvMXXHYjIQYG+I9lakozfRckrJhExMTMT69euxYcMGdOvWDWPHjkXfvn1pqR9JEAR9iitr8E3oi7qvnQszKfvUz4Ts7UIyygjZrOz6DnjCGiwNPyQxzhaLsOHKFgxKiMCcAR8hTc9U7mMbVpb+n737jq+qvv84/j73Zm9CBkkgQAgQluwliAxnURAQ1Cpq3VprXRW02lrrqL+2WjeKs87WgVDFTQEVBATZe49AgEASRubN+f1Buebm3pB1zx3J6/l4+Og93/M953ygOSS8+Q79dd5runb1Vx7Pb2iRofMmPKgdbKoE1NkvclI0e/1+f5cBSJIu6Jqqu/+z1qXtmgFt6nRtVKhdyTFhHs+d0zlFa+5JkWmaTeov603ol4Ig9+y4Hjqvc4o2HDiqszslq3dGvL9LAlAPlk7Hdjgc+u677/Tdd98pLi5OF154oS666CJ1797dyscCCBBb84/LUWW+RPX1ICX3NSHHdmdUWbAZ3DZBC3cU+P7BhqHfD52sY6ERevj7t9xOn799mTa8epOe7HuRnuw7Roci42q9ZXzJUf3mp090x9KZalHqeXH+H9I66cKL/qD8qNrvB/hTaICNBHrg7E6a1CtdV7+33N+lAOqUHKNnxnXXn77cqOJyh64bmKlx3dPqdO39Z3esdb3SphRAAoHEbjOaxd8XPP0JEu9hBDcQbCwJIe+9917NmjVLa9askfm/6XCFhYV6++239fbbbys7O1sTJkzQmDFjlJjIjlVAc1F9Z2xJ2sZIsqB37YA2/gkhJckw9OigSdoen6JXP39aYZUVLqejKsr0+0X/1t0/fqQZ2YM1O6ufFqTnaHdMkspCQhVWUa52RXkauHejRm9dojFbFivCUV7j46b1PE+3D79eZSH8EIjAl9kiUpkJkdpZUFx7Z4uE2W2yGdKdZ3bQgMwEDWzbghASAePXQ9rr5sHt5DBNhdprX6WqR1qs3ruir7qkWr++JIDmbXgH95k8/l5jFvAGS0LIq666SldddZW2bNmijz/+WJ988on27t3rDCQ3b96sxx9/XH/729905plnavz48Ro+fLjsdnZABJqydtVGQlYYNu2KZTHpYDe5T4aue3+VX2t4p8twbUpI19uz/6ZsD9P+wx0VunTDt7p0w7fOtlJ7iMIdFW59PSkIj9ZtI2/QW11HeK1mwGqGYWjWNQN028ertPngcV3YLVXLdhdqya4Cn9Vw6M/nymYYlm6OATSGzWbI5nHMkbux3VoRQALwiT6t4zWueyvNWH3i59ouKTH6Ze8MP1cFNJ6l07E7dOigu+66S3fddZcWLVqkmTNn6osvvtCxYyemuFVUVGjOnDmaM2eOEhMTNWbMGI0bN06dOnWysiwAflJ9Y5qdccly2PiLabAzDEP3n9VRD3+9ya91LEnrpN6Tn9ITc1/R9au+rLV/XQPIj7IH6TejbtTeGNYrRfA5LT1Oc28Z4jw+49nvfPr8qDBLf9QEAMArTkuL08q9RS5t4SGW7ONbJ3aboX9f2U9LdxeoqKRCQ9onKpJ/0EMT4LO3auDAgXr00Ue1YMEC/f3vf9ewYcNkt9tlmqZM09ShQ4f0+uuva+zYsZowYYLeeecdFRUV1X5jAEHBVulQ26IDLm1MxYa3HQuL1I3n3Kq+VzypbzJPa9S95rXuppETH9bFY+8jgAT+Jz4iMELFFh7WxbqgC99TAAANc0OVXbclqVVsuLr6eeSz3WZoQGYLndUpmQASTYbPf5IMDw/X6NGjNXr0aOXn52v27Nn6+uuvtXTpUlVUnBiVsmbNGq1du1aPP/64Ro0apYsvvlinn366r0sF4EWtj+YrtNLh0rYtvukvKg3/+Cm1g86e+LD6792o61Z9qUs2fKu4strXxTscHq33Ow/VP7uO0IL0Ln7fDvT6QZma/sNOv9aApiUtLqJR198xrIP+/PVGl03H/KF1QqRGZidpzuaDkk68qtcPyvT6c8LsNpU7HLV3BAAEtZsGt9WBY6X6YMVeZbaI1GO/6CJ7gG3wBjQFfv3n7JYtW2ry5MmaPHmyjhw5onnz5umtt97S8uXLZZqmSktL9dlnn+mzzz5TmzZt9Mtf/lITJ05UdHS0P8sGcArfbs3XnM0H1S01Vlkto5ztWR7W6dsWn+LL0tAMLUnrpCVpnXTrqBvVJ2+Lhu5Zp44FuUo6XqjYsmIVhkfrcESM1iRlalGrTlqW2kHl9sDYdKZFZKhuHdKeEBJedUXf1vpg5d4GX39ht1RN7Jmmbn+d672iGmjG1f01fdEObT9crLHdUjWqo/fXGP7tGVl69BvXpSZ6tGJNQDQ/CR5GH8eGB8bIaMAbbDZDfzyns/54Tmd/lwI0aQHxnWP9+vX6+uuvNWfOHK1bt05GlZEnJzez2bVrlx5//HG98MILmjp1qsaNG+evcgHU4J1lu3XFOz85j4dlJTo/t6+2KY0kbWUkJHyk3B6qRek5WpSe4+9SarXotjO0/fBxDe/QUskx4f4uBwHm6v5t9Ng3m13a6hOKje6Sql8NaKPXFu9qcA1dUmOVHB2mA8fKGnwPb4iNCNGdZ3aw9BmT+7bWCwu263BxuSRpcNsW6t8mwdJnAoHol70z9K/luS5tk3qm+6kaoPGyWzKwqanxNHLV0z+gwL/8ttLq5s2b9eSTT2rUqFEaN26cnnvuOa1bt06SnOtE5uTk6LbbbtMZZ5whm80m0zRVWFio++67T3/605/8VTqAGjz3/XaX4/lbDzk/Z3kIIVkTsumICmOdGm/pn5mgiT3TnQHk1f3auJw/q2OSyz/WIXj0So9za6vvq3N579aKCf/5og4tozSqY1Kdr7fbDL0yqZf2/+kc3Xx6O/VIi9XFp6XVrwhJNw5uW3unJqBzSoyW3jFMT47tpjcu66UvbhikELv/NioA/OW8nBRNrPJnxeV9MjS8A+slIzhlJkRqRDZfv01Nx6Rot9DxN0Pb+6ka1MSnIyHz8vL06aefatasWdqwYYOkn0c6npSYmKgLLrhA48ePV07OzyNWDhw4oHfffVcvv/yyysrK9N5776l3794aM2aML38JAE5h4Y7DNZ5rx0jIJu0XOam6b/Z6l7bzOifr8w0H3PrGhofoSGnddqaG9NRF3SVJ87flq3d6vJ4d38PPFaGhbhzcVjd/uMp5nBgVqo4J9fsX+q6tYvXdr4fq3eV7FBseoqv7tWnQDtRJ0eF6rsrXUssHPneO9quLP53bWR2To3XVu8vr/WxPfje8g/46d4tLW05KjFfu3VjtEqP02zOy/F0GfCg1Nlx7Ckv8XUZACbXb9K8r++mvh4/LZhhqnRDp75KABpt3y+kN+t6JwBZit+mDK/vplo9WaufhYo3t3kpTRlg7YwL1Z/mbd/ToUX3xxRf6z3/+oyVLlqiyslKSa/gYEhKiYcOGafz48Ro+fLhCQtzLSk5O1m233abu3bvrlltukSS98847hJBAkMgqdF0T8mhohA5Guo8KQnDqkRarqSOz9de5W+SoNHXxaWk6LyfFYwiJ+omNCNGrl/bydxnwgusHttWewhL9e0WuWsdH6uFzOyrk0I563+e09Did5mFUZWMMattCn63fX+f+hmFoct82DQohB7VtoR+q/KNVr/Q4XTcwU/9cult5R0olSZf2SleHpOCdKmcYUqjdULnj5593O1RZJxmB7bdnZOmeT9a6tbdP9M7/h/0zW2jRzgKXtuwg+XrPbMHXMYJfWy+9ywg8Izsmaf2UkXJUmmwsFKAsCSErKio0b948zZo1S3PnzlVZ2Yk1g6qPeuzcubPGjRunMWPGKDEx0dOt3IwcOVJt27bVjh07tHnz5tovABAQqq8JuTU+1ePOw0zrDU6GYejRX3TR1JHZKq2oVHJMuN5autvfZQEBxWYz9NB5OXrovBMzPSoqKrSiASGkFa4dmFmvELIx/vKLLhr9yiIdK3MoMtSmxy/oqo7JMVp195n6ZtNBtYoN15B2dfu5MFAZhqEbB7fTs99tc7bdOLid/wpCvVzdv7VbCBkTbtfoLt5ZRubKvq313PfbdPKvRqF2QxN61H9ZBF+xswQIgCBDABm4LAkhhwwZoqKiIkkngkfDMJwBZEJCgnO6ddeuXRt0/7S0NO3YscMt1AQQmKLKS9TqeIFLW03rQZ5lwe6m8J24CBZ/BoLRuO6+Wx5jWIeWynvwHK3ae0TdW8Uq+n877CZFh+uSXhk+q8NqT47pptPSYvXTniINy0pkE48gkhQdrtLHR+v3n63Xhyv3qk9GvO4e3kEpsd7ZLKxfmwS9c3kfPff9doXZbbp7eAe1D5CRsmd1TNbT325zabu6f5saegMAUD+WhJCFhYUuwaPdbtfQoUM1fvx4jRgxQqGhjftLan5+viSpY8eOja4VgPXaFbqPrtnmYT3If4ztpnZMj2jyxnVvpX8yShIIKL7e7CgqLEQD27bw6TN9zW4zdN3A5rGBT1MUarfp/y7oqv+7oGGDJmpzSa+MgAzdR2a3VK/0OC3PPTGgJDMhskGbVwGBICrUrqhQu46XO5xtw7KCe6Q9EOwsWxPSNE117NhR48eP15gxY9Sypfd2n7rllluUkZGhrCwWCQeCQfX1ICX3kZC/7J2h21j4v1n41YA2hJAAAASgqLAQzb3ldP1nbZ5Kyit1YddUr40ABXwtxG7Tb4e112PfnFjGzWaIv28AfmZJCHn55Zdr3Lhx6t69uxW31/nnn2/JfQFYo/p6kJJ7CBlqZ92OpiYpOsyt7aLurXRmhyQ/VAMAAOoiLiJUl/dp7e8yAK94+LwcDe+QpNX7ijSiQ5J6ZcT7uySgWbMkhHzggQesuC2AIOUphNzqYTo2mpZhWYlKjArVoePlzrZrB2RKkrqmxmht3lF/lQbAB/q25i96AAD/MgxDZ3dK1tmdWHceCASWTccGgJPae5iOvT0+xQ+VwJeiwkL0zU2D9ejXm3TwWJmu7NdGo7t6Z2dRAIHvxsGshwgAAICf+SyENE1Thw8fVllZmSorK+t1bXo6uwkCwaz6SMh9UQk6Hhrhp2rgSz3T4/WvK/v5uwwAPhQXEaLXLumlcT3YzAIAAAA/szSEPHbsmKZPn645c+Zo69atcjgctV9UjWEYWrt2rQXVAfAJ01RWtRCy+nqQAICm4/nxPQggAQAA4MayEHLLli26/vrrtXfvXkknRkICaLqKyz3/I0NScZFiyktc2lgPEgAAAACA5sVmxU1LS0v129/+Vrm5uZIIIIHm4NO17pvPSFKWx/UgGQnZ3GXEMx0fCDT92yT4uwQAAAA0YZaMhJw9e7Y2b94swzBkmqZ69uypSy65RF26dFFMTIxsNkuyTwB+9Pay3R7bPe+MTQjZ3P2qf6a+2njQ32UAqOK6gZlasqvA32UAAACgibIkhPzkk0+cny+66CI99thjMgzDikcB8CPTNPXq4l2au+WgZq6p+0hI1oTE+B5pmtQzXf9ekevvUgD8z3UDM1Vc7tDHq/epXYsovf7jLn+XBAAAgCbEkhBy27ZtkqTQ0FDdd999BJBAE/W3uVs05dN1p+zTvnC/W9vWBNaEbO7CQmx6b3JfQkgggBiGodvOyNJtZ2RJEiEkAAAAvMqSedEHDx6UYRjKyclRXFycFY8AEACmL9pZa5/21UZCltvs2h3T0qqSAJ8a0YGvZQAAAACoC0tCyOjoaElSeHi4FbcHECA2HzxWa5/qa0LuiEtWpc1uVUmAT3VIiq5X/9bxEfpFTop6pMVaVBEAAAAABCZLQsi2bdvKNE3t2sU0HqA5s1c6lFl0wKVtWxzrQaL56pkep0+uG6gVdw33dykAAAAA4FOWhJAjR46UJOXl5enHH3+04hEAgkCbIwcUYla6tG1nUxoAAAAAAJodS0LISy65RPHx8ZKkv/zlLyorK7PiMQACXPWp2JK0NZ5NadB89W2dcMrzvTNYRxkAAABA02RJCBkfH68HH3xQkrRmzRrdcMMN2r17txWPAhDAsgrcQ8htjIREMxVqN3Rp7/RT9rluYFsfVQMAAAAAvhXS0AufffbZWvtkZ2dr06ZNWrRokc4991zl5OSoS5cuio+PV2RkZJ2fdeuttza0TAB+1L7Iw0jIBEZCom6iw+w6VubwdxkNdmXf1tpxuFiGIcWGh+jWoe2Vk3LqDWku7XXqkBIAAAAAglWjQkjDMGrtd7KPw+HQ2rVrtXbt2no/ixASCE7tC/a5tbExDaqaeFqa3l+51+O5Q38+T+FTPvVxRd7z+mW9/V0CAAAAAASMRk3HNk2zzv/Vt3/V6wAEp+ojIYvCIpUfeeqRYGherhmYWeO5UHvdvkW1a1H3kfUAAAAAAP9o8EjI/v37e7MOAE1Q9TUht8WnSnUYQY3m49zOKXrvir669K2l/i4FAAAAAGChBoeQb775pjfrANDERJcVK6W40KWNnbHhyaRe6UEbQqbGhvu7BMCvIkJsKqmo9HcZAAAACAKW7I4NAO0L3Tel2c7O2KinnulxtfaJjwz1QSWeTeiR1uBrz89JcTlOiAxVXIT/fi1AQ9wzItutrVd6vB8qAZqfm09v53IcHmJTu8Qo/xQDAEAdEEICsISnEHIrISTq6bpqa0bGRbgP4L9pcFtfleOmV0a8okLtDbr27uEdFBHy87fh+0Z1lN3GcgUILlf3b6P0uAjn8bjurdQlNcaPFQHNx++Gd3Cui2wY0uOjuyiygd+TAADwhQZPx/aVsrIyhYWF+bsMAPWUVehhZ2xCSNTTLae3U1SoXZ+v369OKTG6c1iWrv33Cn28+sTXV8/0OE3qma6bP1zltxqnXXyarnz3p3pfNyI7SRumjtT32w6pW6tY9UirfdQnEGjaJUZp5d1n6ptNB5UcHaah7RNlsPYv4BPtEqO0cepIrdhbpLYtIpUUzRIhAIDA5pMQ0jRNHT58WCUlJXI4HB77VFZWqqKiQuXl5Tp+/LgOHDigH3/8UbNnz9b333/vizIBeFH7wv1ubYSQqMmIDi313y35zuMBbRIkSYZh6FcDMvWrAT+PiPzgyn76KbdQx0odGtg2QeEh/h31MSAzocHXtkmI1KW9M7xXDOAHiVFhmtgz3d9lAM1SiN2mvq0T/F0GAAB1YmkIuXLlSj3//PNauHChysrKrHwUgADT3sNIyO1xhJDw7B8XddeFryzWzoJipcdF6LkJPWrsa7MZAfEXrrb/mwJn9zDqKzY84CcaALVqFRuufUdKXdo8fb0DAAAAdWHZ35K++uor3X777aqsrJRpmg2+D1N6gOBUfU3IvdEtVBzKNCF41iMtTtt+P0q5RSVKj4vw6p/9j5yfo99/tr7R9+mWGqs1eUecxzcMOrEWZfvEKKXEhGn/0Z//se03Q9s3+nmAv/16SDs98PkG53FcRAjrPQIAAKDBLNmY5ujRo7r//vtrnHptGIbHv2CebDcMQxERETrttNN02223WVEiACuZplsIyaY0qI1hGMqIj/RqAJkRH6HL+3hnuvN/rh2giaelqVd6nH5/VkfnrsA2m6GPru6vHmmxig6z67LeGbpvlPuOwUCwuXt4B13Zt7Wiw+zqkhKjj67qr1A7exoCAACgYSwZCfnxxx+rsLBQhmHINE2dffbZOvfcc5WUlKSZM2dqxowZCgkJ0bRp02S321VQUKD169drxowZ2r//xDpyMTExevbZZ5WSkmJFiQAslHK8QNEVrlP4WA8SvvbChB4a3yNNyTGNH4HbMSla7RKj9K8r+3k8f3q7RK24a7hM02QEP5qM8BC7Xr+st167tBdf1wAAAGg0S/45e8GCBc7Pl112mZ555hldcMEFGjRokMaOHStJcjgcMk1TgwcP1vnnn6877rhDn376qUaOHClJys/P1x/+8AcrygNgseqjICVpW3wrP1SC5qJDyyi3tmsGZHolgJSkm09vV6d+BDVoivi6BgAAgDdYEkJu2HBi/SCbzaZbbrnF5VyPHj1ks5147OLFi13OxcbG6h//+Ic6deok0zQ1b948rVixwooSAVgoy2MIyUhIWOe6gW1dji/vk+HVaaOs8QgAAAAAjWNJCFlUVCTDMNS2bVslJye7nIuOjlbr1q0lSatWrXK7NiwszGUdyNmzZ1tRIgALeRoJuZWRkLDQPSM66OVJPXV5nwz9ZXQXTZ/Y06v3t9sYCQYAAAAAjWHJmpDFxcWSVON6jllZWdq5c6c2btzo8fzw4cMVExOjY8eOac2aNVaUCMBCWYX73NoYCQkrGYahawZk6poBmf4uBQAAAADggSUjIWNjYyVJpml6PJ+ZeeIviYcPH1ZhYaHb+ZCQELVp00amaWr79u1WlAjAQu2qjYQss4VoT0yin6oBAAAAAAD+ZkkI2aJFC5mm6dzpuro2bdo4P2/evNljn5iYGEnSkSNHvF8gAEtVXxNyR1yyKm12P1UDAAAAAAD8zZIQslu3bpKkHTt2KC/PfW24kyMhJc/rQkrSvn0npnPWNJoSQGAKcVSozZGDLm1MxQYAAAAAoHmzJIQcNGiQpBMB4l/+8he38zk5Oc7PX3zxhdv5DRs2aPfu3TIMQ/Hx8VaUCMAimUcOyG5WurRtY1Ma+NlV/Vr7uwQAAAAAaNYsCSHPP/98Z3j4+eef65e//KXmzZuniooKSVJqaqo6duwo0zS1fPlyvfjii85r9+/fr/vuu885ArJr165WlAjAIp52xmYkJPztsV900eC2LfxdBgAAAAA0W5aEkFFRUbr55pudQeKyZct00003afny5c4+kyZNcn7+xz/+oeHDh2v8+PE666yztHbtWue5c88914oSAVjE087YWwkh4Wet4iL0/W+GquiR8/1dCgAAAAA0S5aEkJJ09dVX64orrnBZ07HqWpCXXnqpunTp4jy/b98+rVu3TmVlZc4+nTt31pgxY6wqEYAFGAmJQBYTHuLvEgAAAACgWbIshJSk+++/X9OnT1f//v0VGRmplJQU57nQ0FC99NJL6tmzpzOIrPq/HTt21LRp0xQSwl8YgWDSvsA9hNzKmpAAAAAAADRrlid8Z5xxhs444wwdPXrU7VxycrLeeecdffXVV5o3b57279+vhIQEnXHGGbrgggsIIIEg1L7INYQsDIvS4YiYWq/rnFJ7HwAAAAAAEJx8lvLFxHgOGOx2u8477zydd955vioFgIWqT8feGp8qGYZL24QeaZqxeq8q/7daQ6jd0MWnpfuqRAAAAAAA4GMMNQTgNTFlx5VcXOTSVn09yKToMD1+QRdd1idDz3y7TSF2Q3ed2UHZSdG+LBUAAAAAAPiQz0PIvLw85eXlqbCwUHFxcerZs6ckqbi4WGFhYbLb7b4uCYCXeN6U5sR6kDHhdv3p3M4a1z1N7RKjlNUyWuN7pPm6RAAAAAAA4Ac+CSF37typ119/XXPnztXevXud7UOHDtX06dMlSd98840efvhhTZo0Sddff71iY2N9URoAL8rysCnNyZGQ1wzI1B3DOvi6JAAAAAAAEAAs3R3bNE099dRTOv/88/Xuu+8qNzdXpmk6/6sqNzdXBQUFmj59usaMGaNVq1ZZWRoAC1TflEZyn44NAAAAAACaH0tDyNtvv13Tpk2Tw+FwCx2NahtV7N692/l57969uvbaa7VlyxYrywPgZVkF+9zatv5vOjYAAAAAAGi+LAshn332WX3xxRfO4x49euiBBx7Qe++957H/hRdeqL59+8o0TRmGoaKiIk2dOtWq8gBYoJ2HkZDb41P8UAkAAAAAAAgkloSQ+/btc671KEl33XWX3n//fV1++eXq1auXx2v69++vt99+W/fff7+zbfXq1Zo3b54VJQKwQPU1IffEJKo0JMxP1QAAAAAAgEBhSQj5wQcfqLS0VIZhaOLEibr++uvrfO0VV1yhq666ynk8e/ZsK0oE4G2m6bYm5LY41oMEAAAAAAAWhZDfffedpBPrPt522231vv6GG25QSMiJjbvZoAYIDq2OHVZkRZlL29YE1oMEAAAAAAAWhZC7d++WYRjKzs5WUlJSva9PTExUZmamTNNUXp77GnMAAk/7Qg/rQTISEkGid0Zcjef6ZMT7sBIAAAAAaJosCSELCwslnQgTGyo5OVmSVFZWVktPAIEgq9DDztgJhJAIDn88p7OuG5ip1vERbuduGdLO9wUBAAAAQBMTYsVNY2NjdfjwYWcY2RD5+fmSpPh4RqAAwcDTSMht8YSQCA4RITa9NLGnJMlRaepfy/do1b4jGpmdpLM7Jfu5OgAAAAAIfpaEkGlpaTp06JA2bdqkwsLCegeJe/fu1ZYtW2QYhtLT060oEYCXeQoht8azJiQCT6/0OC3PLXJpiwixOz/bbYZ+2ae1r8sCAAAAgCbNkunYQ4YMkSQ5HA69+uqr9b7+6aeflmmakqSBAwd6tTYA1qgeQpbaQ5Qb0/AlGQCr3Di4rctxdJhd/TMT/FMMAAAAADQTloSQY8aMkc124tYvv/yyvvjiizpf++KLL2rGjBnO49GjR3u9PgDeVz2E3BGXItOw5I8YoFGuH9hW94zIVuv4CA1ok6BPrh2gyFB77RcCAAAAABrMkunY2dnZGjdunD788EM5HA7dcccdGjNmjMaNG6esrCy3/sePH9fixYv1xhtv6IcffpAkGYahc845Rzk5OVaUCMCLQh3lanPkoEvb1mrrQabFum/4AfiDzWboL6O76C+ju/i7FAAAAABoNiwJISXpgQce0Pr167VmzRqZpqmZM2dq5syZLn2WLFmiQYMG6ciRI6qsrJQk5zTsNm3a6KGHHrKqPABelFl0QDaZLm3bq4SQhiGN68H6kAAAAAAANFeWzZWMiIjQK6+8ojPOOEOmabr8ZxiGJKm0tFQFBQVyOBzO8FGSunbtqtdee42dsYEgkeVpZ+y4EyFkp+RovX5pL3VKjvF1WQAAAAAAIEBYNhJSkhISEjR9+nTNnDlTr776qjZs2CBJLoFjVSkpKbr66qt1+eWXKywszMrSADTS4p2HnZ897oydcGLk4/opI31WEwAAAAAACEyWhpAnjR07VmPHjtXOnTu1bNky7dixQ0VFRSovL1d8fLxSU1PVu3dvdenSxbmhDYDA9uIPO5yfswr3uZ3fGs/0awAAAAAAcIJPQsiTMjMzlZmZ6ctHArDIa4t3OT+38zQdu9rGNAAAAAAAoPli2CGARqu+JuTh8GgVRLAGJAAAAAAAOMGnIyHr4/XXX9eGDRtkGIYeffRRf5cD4BSqrwnJKEgAAAAAAFBVwI6E/O677zRjxgzNmDHD36UAOIW40mNqWXLEpY0QEgAAAAAAVBWwISSA4OBpZ+xtbEoDAAAAAACqIIQE0CieQ0hGQgIAAAAAgJ8RQgJolKzCfW5tWwkhAQAAAABAFYSQABqFkZAAAAAAAKA2hJAAGqV6CFkpQzviUiRJ/VrH+6MkAAAAAAAQYAghATRK9RAyNyZRpSFhkqQbB7fzQ0UAAAAAACDQhPi7gED01FNP6fnnn1dGRobmzJljyTN27Nih9957T4sWLdKePXt07NgxxcTEqF27dho8eLAuvfRSpaYypRWBzTAr3ULIqutBXt2/ja9LAgAAAAAAAYgQspqVK1dq+vTplt3f4XDoqaee0vTp01VZWely7vDhwzp8+LB++uknTZ8+XXfffbeuvvpqy2oBGuqpb7dKklodO6wIR7nLuarrQdpthk/rAgAAAAAAgYkQsopdu3bplltuUXl5ee2dG+i+++7Txx9/7Dw2DEMdOnRQUlKS9u/fr61bT4Q75eXleuyxx3Tw4EHdfffdltUD1NeqvUW6Y+YaSZ43pdnOpjQAAAAAAKAaQsj/2bhxo6677jodOHDAsmd8/PHHLgFk79699cgjj6hDhw7OtvXr12vKlClav369JGn69OkaOHCgzjjjDMvqAmpTWWnK9r9RjTNW7XO2Z3kIIbfGt/JZXQAAAAAAIDiwMY2kmTNnatKkScrLcw9UvOnFF190fs7Oztarr77qEkBKUk5Ojv75z38qIyPD2fbss89aWhdQk7KKSl3z3nLF/f4zdfrLHH22Lk8Hj5c5z3saCbmNkZAAAAAAAKCaBo+ErDqizwpWB4Inn/HEE09Y/muRpD179jinWkvSzTffrKioKI994+PjdeONN+oPf/iDJGnFihU6dOiQEhMTLa8TqOqZ77bp9R93SZI2Hzymi//5o37Zp7XzfPvCfW7XMBISAAAAAABU1+AQcurUqTKM4N104oUXXtBLL72k48ePO9uysrJ0zjnnaNq0aV5/3r59rmFN165dT9m/Z8+ezs+maWrPnj2EkPC5577f5nJcXF6plblFzuPqIyFL7KHaG9PCJ7UBAAAAAIDg0WynY7/yyisuAeTEiRP1/vvvq23btpY8LzY21uW46rM9qaiocDmOiIjwek1AbbYfLnZrK3P8vKt7VoFrCLk9LkWm0Wz/WAEAAAAAADVo1MY0pml6qw6/6d69u6ZMmaIBAwZY+pzMzEyFh4ertLRUkvTtt9+qe/fuNfb//vvvnZ9DQ0OVmZlpaX1AXa3430jIsIpyZRzNdznHepAAAAAAAMCTBoeQ33zzjTfr8LkBAwZo/PjxGjVqlE+mlUdEROjiiy/W22+/LUl69dVXdc4557htTCNJW7Zs0csvv+w8Hj9+vMLDwy2vEaiPtkX7ZZPrP0RsYz1IAAAAAADgQYNDyKq7Nwej559/3ufPvPXWW7VgwQJt27ZNRUVFuuyyy3Trrbfq7LPPVnJysvLz8/X111/r6aefVlHRidFm6enp+s1vfuPzWoHatC9iZ2wAAAAAAFA3jZqOjfpJTEzUv/71Lz3++OOaOXOmCgsL9cgjj+iRRx7x2P/MM8/Un//8ZyUnJ/u4UnfV16gMNg6H45THqL/qm9JI7iFksH/dwDPeJ8A7eJcA7+F9AryDdwnwDt4lzwghfSw2NlZDhgzRhg0btHr16hr7de/eXbfccotSU/0/sqyyslIrVqzwdxledarfe9RNVsE+t7at1ULIpvZ1A894nwDv4F0CvIf3CfAO3iXAO3iXTmjwNrZvvvmmKisra+9oEdM09dZbb/nt+Q2xZ88eTZo0SXfeeafzCzAkJERdu3bVoEGD1LFjR9lsJ/4vWb16tS655BL97ne/U3Gx+w7FgL+1Yzo2AAAAAACoowaHkI888ojGjRunRYsWebOeOlmyZIkmTJhQ4zTmQFRQUKCrrrpKq1atkiTZ7XbdfPPNWrhwoWbMmKE33nhDn3zyiebPn68rrrjCed2sWbN0ww03qLy83F+lAx5lFbiGkIciYlQYEeOnagAAAAAAQCBr8HTspKQkbdiwQVdffbWGDx+uO++8Ux07dvRmbW6WL1+uZ555RgsWLJBpmkpKSrL0ed70j3/8Q7t27ZIk2Ww2Pfnkkzr33HPd+iUnJ+uBBx5QTk6O7r//fknS4sWL9eqrr+rGG2/0ac0n2Ww29ejRwy/P9haHw+Ey/Ll79+6y2+1+rChIvJtb46nqG9Nsi3MfBdmzZ0+vlwT/430CvIN3CfAe3ifAO3iXAO9oiu/SqlWrGj0jusEh5KxZszR16lTNnz9fc+fO1bx58zRs2DBdcsklGj58uAzDaFRhJ5WWluqrr77SW2+95VxfzjRN9e/fX0888YRXnmG148ePa8aMGc7j8ePHewwgq5o4caIWLFig2bNnS5Jef/11XXPNNQoNDbW01pqEhDSt5UPtdnuT+zX5UnzJUSWWHHVp25rgHkLye9w88D4B3sG7BHgP7xPgHbxLgHfwLp3Q4N+BxMREvfTSS3rvvff0xBNPqKioSPPmzdO8efOUkpKiUaNG6cwzz9SgQYMUHh5er3sXFhbq+++/19y5c/XNN9/o+PHjkk6Ej5GRkbrjjjs0efJkrwWdVlu9erVKSkqcxxMnTqzTdZdeeqkzhDx06JDWrVun0047zZIagfrwtDP29mojIU9Li/NVOQAAAAAAIMA1Ooa99NJLdfbZZ+vxxx/XJ598osrKSu3fv1/vvvuu3n33XdntdrVt21adOnVSx44d1bJlS8XGxio6Olp2u10lJSUqKChQbm6uduzYoTVr1mjnzp0yTVOSnP9rGIbGjBmjO+64Q2lpaY0t26f279/vcpydnV2n63JyclyOd+/eTQiJgJDlIYTcmtDK5fiu4Vm+KgcAAAAAAAQ4r4wFbdmypf7v//5P119/vZ566inNmTPHOU+8oqJCW7du1datW/X555/X6X4ng0fpxJDVc845RzfeeKNbKBcswsLCXI7LysrqdF319QJO7pwN+JunkZDVd8bu3ybBR9UAAAAAAIBA59UJ6R07dtSzzz6rXbt26Z133tGnn36q/fv3u4SKJ6dQVx3hWPX4pIyMDI0ZM0YTJkxQ69atvVmmz7Vq5TpCbO3atRo6dGit123evPmU9wH8xWMI6WFjGgAAAAAAAMnLIeRJbdq00ZQpUzRlyhStXLlSCxcu1IoVK7Rlyxbl5uaqvLzc2dc0TYWGhiozM1MdOnRQnz59NGjQoKAd9ehJt27dlJCQoIKCAknSv/71rzqFkB9++KHzc1xcnLp3725ViUC9tC/c53JcKUM74lL8VA0AAAAAAAh0lm/Nc9ppp7msY2iapo4eParjx4/LMAxFR0crOjra6jL8ym636+KLL9bLL78sSfryyy81Y8YMjRs3rsZrvv76a33wwQfO4wkTJrCTEgJG9ZGQe2JaqizEPzu3AwAAAACAwOfzRQYNw1BsbKxSU1OVkpLSJALIkSNHqnPnzurcubNGjhzpsc9NN92kjIwM5/G9996rRx55RHv37nXpV1RUpKefflq33Xabc13N9PR03XLLLdb9AoB6MMxKtS9yDSG3JjAVGwAAAAAA1IyhdT4SGxurl156SZMnT9ahQ4dkmqb++c9/6q233lK7du2UnJysI0eOaOPGjaqoqHBel5iYqOnTpysuLs6P1QM/Szt6WOGOCpe26pvSAAAAAAAAVMV2yz6UnZ2tjz/+WIMHD3a2VVZWauvWrVq0aJHWrl3rEkAOGjRIH3/8sbKzs/1RLuBRVrX1ICVpWzybJgEAAAAAgJoxEtLHUlNT9frrr2vp0qWaPXu2fvzxR+3bt09Hjx5VTEyMUlNT1a9fP40ePVp9+/b1d7mAG487YzMSEgAAAAAAnAIhZDXjx4/X+PHj63XNnDlz6v2cvn37EjIiKHkaCbmVEBIAAAAAAJwC07EB1Es7RkICAAAAAIB6IoQEUC9Z1ULIEnuo9kW38FM1AAAAAAAgGBBCAqiX6mtCbotPlWnwRwkAAAAAAKgZyQGAOguvKFP60UMubUzFBgAAAAAAtSGEBFBnbYv2yybTpY0QEgAAAAAA1IYQEkCdVZ+KLRFCAgAAAACA2lkSQn722Wd6/fXXdfDgQStuD8BPqm9KI0lb41v5oRIAAAAAABBMLAkhP/zwQz3++OMaPny4XnrpJSseAcAPGAkJAAAAAAAawpIQcuPGjTJNUw6HQ3369LHiEQD8oH3hPrc2QkgAAAAAAFCbECtuWlBQ4PzctWtXKx4BwCJ5R0q1YPshvfHjLrdz1UdC5kfEqig82lelAQAAAACAIGVJCJmSkqLdu3dLOhFIRkVFWfEYAF5kmqbunLVGT327rcY+1deEZBQkAAAAAACoC0umY1944YXOz6+//roVjwDgZevyjp4ygEwoOaqE0mMubVsJIQEAAAAAQB1YEkLefPPNGjJkiEzT1JtvvqlHH31Uhw4dsuJRALzkm82n3s3e06Y02wkhAQAAAABAHVgyHXvnzp363e9+p+joaH355Zd688039dZbb6lDhw7KyclRYmKiYmJiZBhGne536623WlEmgCrKHZWnPJ/lYVOarfGtrCoHAAAAAAA0IZaEkBdccIEzYDQMQ6ZpyjRNbdq0SZs3b673/QghAf/zNBKSNSEBAAAAAEBdWBJCSic2uahPe03qOloSgLU8j4QkhAQAAAAAALWzJITs37+/FbcF4Eftqo2ErJShnXHJfqoGAAAAAAAEE0tCyDfffNOK2wLwo6xqIeTu2JYqt4f6qRoAAAAAABBMLNkdG0DTYqt0qG3Rfpe22jaliQmzbLUHAAAAAAAQZAghAdQq/eghhTsqXNqqbkoztH2iy7l+rePVOiHSJ7UBAAAAAIDA5/OhSnl5ecrLy1NhYaHi4uLUs2dPSVJxcbHCwsJkt9t9XRKAWrQvOvXO2Ff3b6Nf9W+jWWv2qX3LaE0dke3L8gAAAAAAQIDzSQi5c+dOvf7665o7d6727t3rbB86dKimT58uSfrmm2/08MMPa9KkSbr++usVGxvri9IA1EH7wlOHkJL0qwGZ+tWATF+VBAAAAAAAgoil07FN09RTTz2l888/X++++65yc3Nlmqbzv6pyc3NVUFCg6dOna8yYMVq1apWVpQGoh6wC9xCytjUhAQAAAAAATrI0hLz99ts1bdo0ORwOt9DRMAyX4927dzs/7927V9dee622bNliZXkA6qhdLdOxAQAAAAAATsWyEPLZZ5/VF1984Tzu0aOHHnjgAb333nse+1944YXq27evTNOUYRgqKirS1KlTrSoPQD10KNjrclwcEqZ90S38VA0AAAAAAAg2loSQ+/btc671KEl33XWX3n//fV1++eXq1auXx2v69++vt99+W/fff7+zbfXq1Zo3b54VJQKoh6xqa0JujU+Vqo1mBgAAAAAAqIklIeQHH3yg0tJSGYahiRMn6vrrr6/ztVdccYWuuuoq5/Hs2bOtKBFAHUWVlyjt2GGXti3xaX6qBgAAAAAABCNLQsjvvvtO0ol1H2+77bZ6X3/DDTcoJOTExt1sUAP4l6edsbcmsCkNAAAAAACoO0tCyN27d8swDGVnZyspKane1ycmJiozM1OmaSovzz0AAeA71deDlNgZGwAAAAAA1I8lIWRhYaGkE2FiQyUnJ0uSysrKvFITgIapvh6kJG1hJCQAAAAAAKgHS0LI2NhYST+HkQ2Rn58vSYqPj/dKTQAahpGQAAAAAACgsSwJIdPS0mSapjZt2tSgIHLv3r3asmWLDMNQenq6BRUCqKusgn0ux5UytD0+xU/VAAAAAACAYGRJCDlkyBBJksPh0Kuvvlrv659++mmZpilJGjhwoFdrA1A/1adj74lpqdKQMD9VAwAAAAAAgpElIeSYMWNks5249csvv6wvvviizte++OKLmjFjhvN49OjRXq8PQN3YKh1uu2N7Wg8y1G74qiQAAAAAABCELAkhs7OzNW7cOJmmKYfDoTvuuENTp07VokWLdODAAbf+x48f19y5c/WrX/1K//jHPyRJhmHonHPOUU5OjhUlAqjGbnMPEjOOHlJYZYVL27b4VLd+Z2a1tKwuAAAAAAAQ/EKsuvEDDzyg9evXa82aNTJNUzNnztTMmTNd+ixZskSDBg3SkSNHVFlZKUnOadht2rTRQw89ZFV5AKpJj4twa/O0Kc2WhDSX49+f1VGZLaIsqwsAAAAAAAQ/S0ZCSlJERIReeeUVnXHGGTJN0+U/wzgx4qq0tFQFBQVyOBzO8FGSunbtqtdee42dsQEf8jShOqtwn1vb1mojIe8/q6NFFQEAAAAAgKbCshBSkhISEjR9+nQ9/vjj6ty5s7O9aiBZVUpKiqZMmaL33ntPGRkZVpYGoA46FLiHkNVHQgIAAAAAANTGsunYVY0dO1Zjx47Vzp07tWzZMu3YsUNFRUUqLy9XfHy8UlNT1bt3b3Xp0sW5oQ0A/6u+KY3keWMaAAAAAACAU/FJCHlSZmamMjMzfflIAI1QfU3IwrAoHYqIdWkL4R8OAAAAAABALSxJD/7xj39o5cqVVtwagA9lVRsJuSWhlWT8vHqkYXjeVRsAAAAAAKAqS0ZCTps2TS+++KKSkpI0YsQIjRw5UqeffrrCwsKseBwAC8SXHFXLkiMubVvjXadiPzuuhy9LAgAAAAAAQcrS6dgHDhzQ+++/r/fff18RERE6/fTTNXLkSI0YMUKJiYlWPhpAI3XwtDN2tfUgQxgFCQAAAAAA6sCSEHLEiBH64YcfVFxc7NwBu7i4WHPmzNGcOXNks9nUo0cPjRw5UqNGjVKHDh2sKANAI2R52Bm7+khIAAAAAACAurAkhHzhhRdUXl6uJUuWaN68eZo/f762bdvmDCQdDodWrFihFStW6Mknn1SbNm00cuRIjRw5Uv369WOHbCAAdPAQQrIzNgAAAAAAaAjLpmOHhobq9NNP1+mnn657771Xu3fv1rx58zRv3jwtXrxYJSUlzr67du3SG2+8oTfeeENxcXEaNmyYRo4cqWHDhik6OtqqEgGcQpan6diMhAQAAAAAAA1g6ZqQVbVu3VqXX365Lr/8cpWWlmrRokWaP3++5s+fr507dzr7FRYW6pNPPtEnn3yikJAQDRgwQK+88oqvygSajS837Nff521RWYWpXw9p53a+eghZYdi0My7ZR9UBAAAAAICmxGchZFXh4eEaNmyYhg0bJknavn275s+fr3nz5mnJkiUqKyuTJJWXl2vBggX+KBFo0rYfOq4xry5RmaNSkjR/W75+NzzbpU/1NSF3xKXIYbP7rEYAAAAAANB0+H3xxZKSEuXm5io/P1/Hjh1TZWWlDMOQYbDrLmCVD1fudQaQkmSa0ltLdzuPQx3lyjxy0OUa1oMEAAAAAAAN5fORkGVlZVq6dKkWL16sRYsWadWqVaqoqHDpc3IDG0mKjIz0dYlAk7fp4DG3ttyin9dpzSw6ILtZ6XJ+KyEkAAAAAABoIMtDyLKyMv3000/O0HHlypUqLy93nq8aOEpSWFiYevbsqUGDBmnQoEHq2bOn1SUCqKYDm9IAAAAAAAAvsiSEXLJkiRYtWuQMHU+u8Si5h452u13dunXToEGDNHjwYPXp00fh4eFWlAWgjqqvBykxHRsAAAAAADScJSHk5MmTnWs6Vg8dDcNQp06dnCMd+/fvr5iYGCvKANBAHTyEkIyEBAAAAAAADWXpdOyTAWRkZKQmTJigkSNH6rTTTiN0BAJc+zpOxz5aVuHWBgAAAAAAUJ2lIeTJ0ZAlJSV65513tHjxYpcRkLGxsVY+HkADVV8T8kBknI6ER7n165bKOwwAAAAAAGpnSQj50EMPacGCBVq0aJEOHz4s6cSoyE2bNmnTpk168803ZbPZlJOTo4EDB2rQoEHq16+foqLcQw4APmaabtOxa1oPslVshC8qAgAAAAAAQc6SEHLSpEmaNGmSJGndunVauHChFixYoKVLl6q4uFiS5HA4tHbtWq1du1avvfaa7Ha7unfv7gwl+/btq7CwMCvKA3AKycWFiikvcWljPUgAAAAAANAYlk7HlqQuXbqoS5cuuuaaa1ReXq7ly5drwYIFWrhwoVavXq2KihNrylVUVGjFihVasWKFXnrpJYWGhqpnz54aNGiQfv3rX1tdJoD/8bgpDTtjAwAAAACARrA8hKwqNDRU/fv3V//+/fXb3/5WR48e1ZIlS7R48WL9+OOPWrt2rRwOhySprKxMS5Ys0Y8//kgICfhQVh03pQEAAAAAAKgrn4aQ1cXExGjEiBEaMWKESktLNW/ePD333HPasGGDDMNw7q4NwHc8jYSsaU1IAAAAAACAuvBrCLl27Vp9//33WrBggZYtW6aysjJJP++qDcD32nsYCbklPs0PlQAAAAAAgKbCpyHknj17tGDBAi1YsEA//PCDCgoKnOeqj3rs0qWLhg8frhEjRviyRKDZqz4SssQeqr0xLfxUDQAAAAAAaAosDSGPHDmiH374Qd9//70WLlyonTt3Os9VDx0jIiI0aNAgjRgxQsOHD1dqaqqVpQGoQfU1IbfGt5Jp2PxUDQAAAAAAaAosCSGffPJJLVy4UGvWrFFlZaWzvXrw2KpVK5155pkaMWKEBg8erPDwcCvKAVBHEeWlyjh6yKVtawL/IAAAAAAAABrHkhDyxRdf9LixjGEY6tGjh4YPH66RI0cqJyfHiscDaKD2RXlubVtZDxIAAAAAADSSZdOxTwaQUVFRGjp0qIYPH67hw4crMTHRqkcCaCRPO2MzEhIAAAAAADSWJSFkmzZtnNOsBwwYoNDQUCseA8DLOhTsdWtjZ2wAAAAAANBYloSQX331lRW3BWCxrEIP07EZCQkAAAAAABrJ0t2xqysqKtKyZcu0f/9+FRQUyGazKTo6WhkZGeratauSkpJ8WQ6AarI8TMfeFkcICQAAAAAAGscnIeS8efM0ffp0LVu2zG2zmqq6dOmiq666SmPHjvVFWQCqySp0DSH3xCSqJJRd6wEAAAAAQOPYrLx5SUmJ7rrrLt10001aunSpKisrnSGkaZpun9euXaupU6fqV7/6lYqKiqwsDUA1hlmp9tWmY2+Jb+WnagAAAAAAQFNiWQhZUVGh66+/XrNnz3Yb/Wi325WYmKj4+HjZbD+XYBiGTNPUDz/8oGuvvValpaVWlQegmowj+YpwlLu0bU0ghAQAAAAAAI1n2XTsv/3tb1qyZIkMw5AkZWZmavLkyRoyZIjat2/v7FdZWamtW7fqu+++07vvvqsdO3bINE2tXr1aTzzxhO69916rSgRQRbaHnbE3J6T7oRIAAAAAANDUWDIScvfu3XrrrbecAeSECRP0n//8R1dccYVLAClJNptN2dnZuvrqq/Wf//xHEydOlHRiivbbb7+tvXvdgxEA3texINetbXNCmh8qAQAAAAAATY0lIeTHH3+siooKSdKwYcP0yCOPKCwsrNbrwsLC9Oc//1nDhw+XJDkcDn344YdWlAigmuzDHkZCtiCEBAAAAAAAjWdJCPn99987PzdkOvXUqVOdnxcuXOiVmgCcWgeP07EJIQEAAAAAQONZEkLu2rVLhmGobdu2ateuXb2vb9eundq3by/TNLV582bvFwjATfU1IfdHxqsoPNpP1QAAAAAAgKbEkhCyoKBAktSqVcN31k1JSZEkHTt2zBslATgV03QLIRkFCQAAAAAAvMWSEDI6+sToqaKiogbf48iRI5KkmJgYr9QEoGZpxw4pqqLMpY31IAEAAAAAgLdYEkK2atVKpmlq48aNDQoiCwsLtXHjRhmG4RwRCcA61UdBStIWRkICAAAAAAAvsSSE7Nevn6QTu1u/8sor9b7+lVdece6u3b9/f6/WBsCdx52xCSEBAAAAAICXWBJCjhkzxvn55Zdf1meffVbna2fPnq2XX37ZeXz++ed7tTYA7jyNhKxLCGkYVlQDAAAAAACaGktCyJ49e2rIkCEyTVMOh0N33nmn7r///lPudL1p0ybdd999uuuuu1RZWSnDMDRo0CDnqEoADXPwWKnGvrpYiQ98rrOmLdSOQ8fd+nRoQAgZHmJTdhK7ZwMAAAAAgNqFWHXjRx99VBdddJEKCgpkmqY+/PBDffjhh0pOTlZ2drbi4uIkndi8ZtOmTTp48KAkyTRNSVLLli312GOPWVUe0GzcNmO1/rM2T5I0Z/NBXfXeT8pJiXXpU30k5KGIGB2OdO1T3QsTTlNkqN27xQIAAAAAgCbJshAyNTVVb7/9tq677jrl5uZKOhEw7t+/XwcOHHDpezJ4NP43tzM9PV3PP/+8WrVqZVV5QLPx3vJcl+P5Ww+5hpCm6RZC1jYK8rLeGbq6fxuv1QgAAAAAAJo2S6Zjn5SVlaUZM2bommuuUXh4uLPdNE2X/06KjIzUlVdeqRkzZignJ8fK0gD8T8rxAsWVFbu01RZCXj8w08qSAAAAAABAE2PZSMiT4uPjdc899+jWW2/V4sWL9eOPP2r//v3OadpxcXFKS0tTnz59NGDAAMXExFhdEoAqPG1Ks6WGEDI9LkK3ndFew7OTrC4LAAAAAAA0IZaHkCdFRUVp+PDhGj58uK8eCTR7FY7KWvt4CiE3tUh3a+uYFK0NU0d6pS4AAAAAANC8WDodG4B/Ld5VUGsfTyFkbdOxAQAAAAAA6sOrIyEPHz6sLVu2aP/+/YqKilLr1q2VnZ3tzUcAqIcf6xBCdjhMCAkAAAAAAKzllRBy5cqVeuaZZ7Rw4UI5HA6XcykpKZo8ebImT57ssjkNAP/ZXfDzRjTVR0IWhkXpYGScr0sCAAAAAABNWKOnY7/wwgu67LLL9N1336miosJt5+u8vDz9/e9/18UXX6xdu3Z5o2YAjTR7/f4TH0xTHauFkJsT0iTD8ENVAAAAAACgqWpUCPnvf/9bTz31lNvox6oMw5Bpmtq0aZOuu+46HT16tDGPBOBFiSVHlFB6zKWNqdgAAAAAAMDbGjwd++jRo/r73/8u438jpkzT1KBBg3TOOecoIyNDFRUV2rBhg2bMmOEcAblz504999xzmjJlineqB9Aonjal2dKCEBIAAAAAAHhXg0PIzz//XIWFhTIMQ+Hh4fr73/+uUaNGufQZNWqUbrjhBj3wwAOaMWOGTNPURx99pNtvv531IYEAwM7YAAAAAADAFxo8HXvRokXOz7/73e/cAsiTQkJC9Oc//1kdO3aUJBUVFWn58uUNfSwAL8pmZ2wAAAAAAOADDQ4h169fL0mKjo7WpEmTTtk3JCREl112mfN4zZo1DX0sAC/qwEhIAAAAAADgAw0OIQ8cOCDDMJSZmanQ0NBa+/ft29f5eefOnQ19LAAv6liQ63J8LCRc+6Jb+KkaAAAAAADQVDU4hDx+/LgkKTY2tk79MzIynJ+PHDnS0McC8KLq07E3t0iT/rfZVHUx4XZflAQAAAAAAJqgBoeQ5eXlklSnUZDSiWnbJx07dqyhjwXgJQklR5VU4voPApsS0mvsf+PgdhZXBAAAAAAAmqoGh5CmaUqSjBpGTVVXtZ/D4WjoYwF4iaf1ILfUsB5kj7RYXXwaa0UCAAAAAICGCfF3AQD8I7sOm9LcNLitxvdI05D2iYoMZTo2AAAAAABoGEJIoJnyGEK2cA0hT2+XqLM6JfuqJAAAAAAA0EQ1eDo2gODmaTp29ZGQAAAAAAAA3kAICTRT1XfGLg4JU25Mop+qAQAAAAAATRkhJNBE/XfzQd0+c02N56tPx94S30qm4fpHQmlFpSW1AQAAAACA5qXRa0Lm5eXp448/tvSaiy66qF73B5q7knKHxr62uMbzMWXH1ep4gUubp6nYfVrHe7s0AAAAAADQDDU6hNy0aZPuvffeOvc3TbPe1xBCAvWzIrdIR0sdNZ7vULDPrW2LhxAyOowdsQEAAAAAQOP5dDq2YRgyDKPO/U3TtLAaoOkqrzz1NOqOh3Pd2qrvjA0AAAAAAOAtjRoJSUgIBKdOHkLIjS3S/VAJAAAAAABoDhocQn7zzTferAOAD3U8vMetbVMCISQAAAAAALBGg0PIjIwMb9YBwIc6HnbdGft4SJj2xLb0UzUAAAAAAKCp8+makAACQ6dqIyE3tUiXafDHAQAAAAAAsAapA9DMJBYXKankiEsb60ECAAAAAAArEUICzYzHnbFZDxIAAAAAAFiIEBJoZjoW7HVr29jC8xqvseENXjYWAAAAAADAiRASaGaqrwcpeZ6OPaRdC6XFRfiiJAAAAAAA0MQxzAloZjoecp+OXXUk5JB2LTSsQ0vddWYHX5YFAAAAAACaMEJIoJmpPhLycHi08iNjJUkPn5+j+0Z19EdZAAAAAACgCWM6NtCcmKbbmpAbW2RIhuGnggAAAAAAQHNACAk0I2nHDimmvMSlzdN6kAAAAAAAAN5ECAk0I50Ou68HuYkQEgAAAAAAWIwQEmhGPO+MneGhJwAAAAAAgPcQQgLNSMfDe93aGAkJAAAAAACsRggJNCMdPYyE3NQizfk53M4fCQAAAAAAwPtIHIBmpPqakLnRiToaFuU8Prdzsq9LAgAAAAAAzQAhJNBM2Csd6lCwz6Wt6s7Yk/u2VrdWsb4uCwAAAAAANAOEkEAT9M4y92nXmUUHFFZZ4dK2uUoI+fRF3WUYhuW1AQAAAACA5ocQEmhiCovLNW3hDrd2zztj/xxCxkeGWloXAAAAAABovgghgSbm1SU7PbZXXw9Scg0hAQAAAAAArEIICTQhpmnqrllrPZ7zPBIyw+qSAAAAAAAACCGBpmTfkdIaz2Uf3uty7DBs2hrfyuqSAAAAAAAACCGBpqS0orLGc9VHQu6IS1ZZCOtAAgAAAAAA6xFCAs1AeEWZ2hYdcGljPUgAAAAAAOArhJBAM9ChYJ9sMl3aNrEeJAAAAAAA8BFCSKAZ6MjO2AAAAAAAwI8IIYEmpLjc4bHd087YmwghAQAAAACAjxBCAk3IzR+u9Nje2UMIyUhIAAAAAADgK4SQQBMyf+shj+2dD+12OS4OCdPO2GRflAQAAAAAAEAICTQHOYdcR0JubJGuSpvdT9UAAAAAAIDmhhASaOJaHi9Sy5IjLm0b2BkbAAAAAAD4ECEk0MTlVJuKLUkbElv7oRIAAAAAANBcEUICTZynEHI9ISQAAAAAAPChEH8XAKBxjpVWaP7WfMVFhHo873kkpOt07Ml9CSUBAAAAAIB1CCGBILb/SKmGPf+9Nh44VmOfTof3uLVVXxPyiTHdvF4bAAAAAADASUzHBoLY2z/tPmUAKbmPhNwVk6RjYZEubS2jw7xeGwAAAAAAwEmEkEAQe/a77ac8H1ZRrqzCPJe26lOxAQAAAAAArEYICQSxopLyU57vULhXdrPSpY0QEgAAAAAA+BohJNCEsTM2AAAAAAAIBISQQBPmcWfsFoyEBAAAAAAAvkUICTRhnQ6574zNSEgAAAAAAOBrhJBAE5ZTLYQ8GhqhPbEt/VQNAAAAAABorgghgabKNN2mY29skS7T4LUHAAAAAAC+RRoBNFGpxwsUX3bcpY2p2AAAAAAAwB8IIYEmyuOmNISQAAAAAADAD0L8XUAgeuqpp/T8888rIyNDc+bMsew58+bN0xdffKGffvpJBw4cUGlpqVq0aKGuXbvq3HPP1ejRoxUWFmbZ89G0sTM2AAAAAAAIFISQ1axcuVLTp0+39Bnbt2/XAw88oMWLF7udy8vLU15env773//qpZde0pNPPqmcnBxL60HT5CmEZDo2AAAAAADwB6ZjV7Fr1y7dcsstKi8vt+wZGzZs0C9/+UuXADIhIUG9e/dW7969FRUV5WzfunWrrrzySm3atMmyetB0daq2M3alDG1qke6nagAAAAAAQHPGSMj/2bhxo6677jodOHDAsmccPnxY1113nfLz8yVJ8fHxuv/++zV69GjZ7XZJUklJiV577TU988wzcjgcKiws1JQpU/Thhx/KMAzLakPTU30k5M64ZBWHhvupGgAAAAAA0JwxElLSzJkzNWnSJOXl5Vn6nCeffFL79++XJLVs2VL//Oc/NWbMGGcAKUkRERG6+eabdffddzvb1qxZo4ULF1paG5qWiPJStS1yDdTXJ7IeJAAAAAAA8I9mHULm5eVpypQpuueee1RcXGzps/bv36+PPvrIefzHP/7xlGs9Xn311UpOTnYe//e//7W0PjQtHQtyZZPp0sbO2AAAAAAAwF+a7XTsF154QS+99JKOHz/ubMvKytI555yjadOmef15s2bNcq41OWDAAJ177rmn7G+z2XTXXXdp06ZNSkhIUOfOnb1eE5qunGrrQUo174z9i5wUq8sBAAAAAADNXLMNIV955RWXAHLixImaOnWqvvzyS0ueN3fuXOfnSy65pE7XjBs3zpJa0PTVZ2fs285ob3U5AAAAAACgmWu2IeRJ3bt315QpUzRgwADLnlFeXq6VK1c6j618FiC574wt1RxCntOZkZAAAAAAAMBazTaEHDBggMaPH69Ro0ZZvuv0jh07VFpaKklKSEhQSsqJ0Cc/P18zZ87Ul19+qV27dqmoqEhJSUnq06ePxo4dq2HDhllaF5quLod2uRwXhUVqX3QLt37tE6N8VRIAAAAAAGjGmm0I+fzzz/vsWTt37nR+PhlAfvTRR3rsscdUVFTk0jc3N1e5ubn65JNPNGzYMP3tb39TfHy8z2pF8LNVOtSl2nTstS3bSBaH7QAAAAAAADVptiGkL+Xn5zs/R0VFafr06frb3/7mbMvMzFRaWpoKCwu1ceNGVVZWSpLmz5+vSy+9VO+8845atHAfxeZLFRUVfn1+YzkcjlMeNyVtiw4osqLMpW1dYpsaeptB//8tfK85vU+AlXiXAO/hfQK8g3cJ8A7eJc8IIX2gsLDQ+XnLli1asWKFJKlfv3564IEHlJOT4zx/4MAB/f3vf9eMGTMkSVu3btXdd9+tV155xbdFV1FZWemsualYvXq1v0vwiooK9z/Iuubvcmtb2zLT4/WlpWVN7v9b+F5TeZ8Af+NdAryH9wnwDt4lwDt4l06w+buA5qCs7OdRaUeOHJFpmho+fLhef/11lwBSkpKTk/WXv/xF11xzjbPtu+++c9ldG5CkebtLVFhW6dbeNX+nW9valjWNhAQAAAAAALAeIaQPVN/4JiYmRo8//rhCQ0NrvOauu+5SZubPo9fefPNNy+pD8Jm/p0R3f3vI47nqm9JIhJAAAAAAAMC/mI7tA1FRrjsQjxkzRgkJCae8JiQkRBMmTNCTTz4pSfrxxx9VVlamsLAwq8qskc1mU48ePXz+XG9yOBwuw5+7d+8uu93ux4oa56EVS2s8V3069rGQcO2MS/bYNzw8TD179vRqbWj6mtr7BPgL7xLgPbxPgHfwLgHe0RTfpVWrVjn3MGkoQkgfiI6Odjnu06dPna7r1auX83NJSYlyc3PVrl07L1ZWdyEhTetLxW63B/Wv6T9r93s+YZpuIeS6lm1kGjUNejaC+vcBgSHY3ycgUPAuAd7D+wR4B+8S4B28SycwHdsHqu9snZiYWKfrWrZs6XJ8+PBhr9WEpqnNkYOKKS9xaWMqNgAAAAAA8DdCSB/o2LGjy3FRUVGdrquoqHA5Dvahu7Cep01p1iUSQgIAAAAAAP8ihPSBNm3auKwLuX379jpdt2/fPpfjtLQ0b5aFJqj6VGyJkZAAAAAAAMD/CCF9wDAMDRo0yHn81Vdf1em6JUuWOD+3atVKycmeNxcBTiKEBAAAAAAAgYgQ0kfGjh3r/LxmzRp9//33p+x/7NgxzZgxw3l89tlnW1Ybmo4u1ULIEnuotsWn+qkaAAAAAACAEwghfWTkyJHKzMx0Hv/xj39UXl6ex76maerBBx/UoUOHJJ3Ymfryyy/3SZ0IYqaprodcQ8j1ia1VaWMtUQAAAAAA4F+EkF4wcuRIde7cWZ07d9bIkSM99gkLC9PDDz8swzAkSbt27dIll1yir7/+WqZpOvvl5eXptttu06xZs5xtkydPVvv27a39RSDopR07pITSYy5tTMUGAAAAAACBIMTfBTQnAwcO1J/+9Cc9+OCDqqys1N69e/XrX/9aLVu2VLt27VRSUqL169fL4XA4rxk8eLDuvPNOP1aNYOFpPch1hJAAAAAAACAAEEL62CWXXKKUlBQ99NBDys3NlSTl5+crPz/fpZ9hGJo0aZJ+//vfKywszB+lIsiwKQ0AAAAAAAhUhJB+MGLECA0ePFiffPKJvv76a23YsEH5+fkyDEOtW7fWwIEDNWnSJOXk5Pi7VAQRjyFkYqaHngAAAAAAAL5FCFnN+PHjNX78+HpdM2fOnHo/JyIiQhdffLEuvvjiel8LeNIlf6fLcZktRFsSWp3yGrvNsLIkAAAAAAAASWxMAzQNpqlu1UZCbmyRrgr7qf+d4bqBjJQEAAAAAADWYyQkECQqK019sHKv1uQdcTuXXFyoliWu7bWtB5kaG65Le6V7tUYAAAAAAABPCCGBIPHbmav13PfbPZ6rz87Yr0zqqWNlDl3UvZVaJ0R6s0QAAAAAAACPCCGBIFBWUakXF+6o8bznnbE9T7X+1QCmYAMAAAAAAN9iTUggCBwvd6ii0qzxfNdqm9JItU/HBgAAAAAA8BVCSKAJ6FJtJGSFYdOmBNZ7BAAAAAAAgYEQEmgCulUbCbk5IU1lIaF+qgYAAAAAAMAVISQQ5JKOFyr1eKFLW02b0gAAAAAAAPgDISQQ5Hoc3O7Wtjqpre8LAQAAAAAAqAEhJBDkehx03zV7FSEkAAAAAAAIIISQQJDrftB9Z2xGQgIAAAAAgEBCCAkEue7VpmOX2EO1qQU7YwMAAAAAgMBBCAkEMcOsdBsJuS6xtRw2u58qAgAAAAAAcEcICQSxdoX7FVNe4tK2Krmdf4oBAAAAAACoASEkEMS6e9iU5lTrQY7MTrKyHAAAAAAAAI8IIYEgVt+dsa8dmGllOQAAAAAAAB6F+LsAAA1Xn5GQ713RV5N6sWENAAAAAADwPUZCAkGsR7WdsQ+HR2tPTEuPfQkgAQAAAACAvxBCAkEqrKJcnQ/tcWlbldRWMgw/VQQAAAAAAOAZISQQBEzTdGvrfHi3QsxKl7bVSe18VBEAAAAAAEDdEUICQWDulny3No+b0iTXvCkNAAAAAACAvxBCAkHgraW73dp6HKjfztgAAAAAAAD+QggJBIHN+cfc2jztjL2mZaYvygEAAAAAAKgXQkggSFXfGXtnbJIKI2L8UwwAAAAAAMApEEICQSiu9Jgyjxx0aVvFpjQAAAAAACBAEUICQcjTVOzVrAcJAAAAAAACFCEkEITYGRsAAAAAAAQTQkggCHnaGXt1S0JIAAAAAAAQmEL8XQCAmlVWmvrbvC1atfeIS3u3fNcQssKwaX1ia1+WBgAAAAAAUGeMhAQC2OP/3aypn65zbTRNt+nYGxIzVBYS6sPKAAAAAAAA6o4QEghgLy/a6daWfvSQEkuOurSxMzYAAAAAAAhkhJBAANt26Lhb22kHt7u1sTM2AAAAAAAIZISQQID629wtHtt77d/q1rYiub3V5QAAAAAAADQYISQQgCoclXr4640ez/Xcv82tbXkKISQAAAAAAAhchJBAACooKVdRSYXHcz0PuIaQByNitSempS/KAgAAAAAAaBBCSCCIRJWXqNPhXJe2FSntJcPwU0UAAAAAAAC1I4QEgkiPA9tlk+nSxnqQAAAAAAAg0BFCAkGk1wFP60Fm1XrdZb0zrCgHAAAAAACgTgghgSBSfT1ISVpew0jI+IgQSVKn5Gg9fF6OpXUBAAAAAACcSoi/CwBQd9V3xi61h2h9Ymu3foYhHfjTucotKlGbhEgZrBkJAAAAAAD8iBASCBK2SodOO7DdpW1Ny0xV2D2/xiF2mzJbRPmgMgAAAAAAgFNjOjYQJDoU7FN0RalLG5vSAAAAAACAYEAICQQJT5vSrEghhAQAAAAAAIGPEBIIEr32b3VrW57seWdsVoAEAAAAAACBhBASCBLV14OUpBXJ7Tz2vXGw53YAAAAAAAB/IIQEgkSvA64jIbfFpagwIsatX5jdpqv6ue+YDQAAAAAA4C+EkEAQSD5eoIyjh1zaatqU5r83D9aAzBa+KAsAAAAAAKBOCCGBINBzf903pRncLtHqcgAAAAAAAOqFEBIIAr09bEpT00hIAAAAAACAQEMICQSBPnlb3NqWpmb7oRIAAAAAAID6I4QEgkDf/Ztdjg9GxGpXbJKfqgEAAAAAAKgfQkggwMWXHFV2wT6XtqWp2ZJh+KkiAAAAAACA+iGEBAKcp/Ugl6V28EMlAAAAAAAADUMICQS4vh7WgySEBAAAAAAAwYQQEghwffI2u7UtJYQEAAAAAABBhBASCHB9qk3HPhQRo+1xqX6qBgAAAAAAoP4IIYEA8+bSXer2f3MlSbGlx9X58B6X88tSOrApDQAAAAAACCoh/i4AwM/W5R3R1e8tl2meOGZTGgAAAAAA0BQwEhIIIB+u2usMICWpz373TWmWpmb7sCIAAAAAAIDGI4QEAsiugmKXY0+b0ixLyfJVOQAAAAAAAF5BCAkEsL55riMhC8KjtSUhrcb+kaG80gAAAAAAIPCQWAABKqbsuDofqr4pTdYpN6W5flBbq8sCAAAAAACoN0JIIED13L9dNpkubT+lnHpTmkGZLawsCQAAAAAAoEEIIYEA1Xe/+3qQS2vZGbtP63irygEAAAAAAGgwQkgggMzZdND5ud++TW7nl9USQnZMivZ6TQAAAAAAAI1FCAkEkC35x52fB1QLIQvCo7WpRfoprzdOsV4kAAAAAACAvxBCAgGiuNzh/Nyi+Ig6Hc51Ob8kNVumceKV/fhX/X1aGwAAAAAAQGMQQgIBwjR/3oSmX577epBL0jr5shwAAAAAAACvIYQEAtCAfRvd2ha36uiHSgAAAAAAABqPEBIIQP33um9Ks7gVIyEBAAAAAEBwIoQEAo1puo2E3BWTpH0xiX4qCAAAAAAAoHEIIYEAsXhngSSpzZGDanW8wOXcItaDBAAAAAAAQYwQEggQI6ctlOR5PcglrAcJAAAAAACCGCEkEGAG7PWwKQ0jIQEAAAAAQBAL8XcBQHO28cBRvbV0t+w2w9lWfSRkpQwtTe3g69IAAAAAAAC8hhAS8JNdBcUa8sx3yj9e7myzVzrUb99ml35rW7bR0bAoX5cHAAAAAADgNUzHBvzkg5W5LgGkJHXJ36XoilKXNk/rQYZUGTl5UrsWkd4tEAAAAAAAwEsIIQE/+WRNnlubp01pPK0HOahtC1XPIW8d2t5rtQEAAAAAAHgTISQQQAbs2+TWtriVewiZGBWmaRefpriIEBmGNLZbqm4a3NYXJQIAAAAAANQba0ICAWRQ7nqX4+KQMK1K8hwuXjewra7u10bHyx2Kiwj1RXkAAAAAAAANQggJBIi40mPqfnCnS9uPqdmqsNf8mobYbYqzM6AZAAAAAAAENtILIEAM3LtRNpkubQvTc/xUDQAAAAAAgPcQQgIB4vTcdW5t36d38UMlAAAAAAAA3kUICQSIwdXWg5QYCQkAAAAAAJoGQkggANgqHRq0d4NL28YW6ToYFe+nigAAAAAAALyHjWkAi6zMLdJvP16trYeO6YKurfTkmG4KC/Gc+3fL36m4smKXtgWMggQAAAAAAE0EISRgAdM0NebVxdpZcCJYfGHBdrWKDdfvR3XU1Nnr9Le5W1z6D9njvh4kU7EBAAAAAEBTQQgJWGDH4WJnAHnS8wu268CxMj373Ta3/p7Wg1zApjQAAAAAAKCJYE1IwALljkq3trwjpR4DSEk6vVoIWRgWpbUt21hSGwAAAAAAgK8RQgJ+lnrssDoU7nNpW5jeWabB6wkAAAAAAJoGUg7AzzxNxV7IVGwAAAAAANCEEEICflZ9KrbEztgAAAAAAKBpIYQE/GxwruvO2A7DpkVpnfxUDQAAAAAAgPcRQgJ+FFleqv77Nru0rUpqq6NhUX6qCAAAAAAAwPsIIQE/GrR3vcIqK1zavsvoespr/jKa9SIBAAAAAEBwIYQE/OjMXWvc2ua16X7KaxKjQq0qBwAAAAAAwBKEkIAfDdu92q1tfutufqgEAAAAAADAOoSQgJ+EVZRr0N4NLm1rE9voQFSCfwoCAAAAAACwCCEk4CcD9m1UhKPcpe1bRkECAAAAAIAmiBAS8JMzPUzFnkcICQAAAAAAmiBCSMBPhu3yEELWsimNJLWMCrOiHAAAAAAAAMsQQgJ+EOKo0Om5613aNiWkaW9My1qvHZmdZFVZAAAAAAAAliCEBPygb95mRVeUurTNb137KMjfn9VR8ZGhVpUFAAAAAABgCUJIwA/O3L3GrW1+HdaDPKN9ohXlAAAAAAAAWIoQEvCDYZ42panDepAAAAAAAADBiBAS8DF7pUND96x1adsel6KdcSl+qggAAAAAAMBahJCAj/Xbt0lxZcUubfPqMBUbAAAAAAAgWBFCAj529o7lbm1zMnv6vhAAAAAAAAAfIYQEvMw0TRUUV9R4ftTOFW5t3xBCAgAAAACAJizE3wUAwc40Tb2+ZJf+u/mg8o6WasmuQhUUl3vsG11WrMG5G1za1ia2UW5sS1+UCgAAAAAA4BeEkEAj/W3uFk35dF2d+g7bvUZhla6jJL9u28uCqgAAAAAAAAIH07GBRpq+aGed+57lYSr2122Zig0AAAAAAJo2QkigkTYfPFbnvmdV25SmwrBpbpvubv223DuqsWUBAAAAAAAEDEJIwEdSjx1Wj4M7XNp+SOuso2FRbn1D7IavygIAAAAAALAca0Ki2dlRVKE/vbFU2w8X68JuqXro3BzZbXUP/eZvydf0RTsUarfptqHt63xd9VGQkvQNU7EBAAAAAEAzQAiJZsU0Td0+L1+7jzokSav3HVF8RKjuGZFdp+tX7y3SOS/9oDJHpSRpxqq9dX72KA/rQX7FpjQAAAAAAKAZYDo2mpV9xx3OAPKkl37YUUNvd2//tMcZQEpSYUnFKXpXYZo6a4drCFkUFqnFrTrV+dkAAAAAAADBihASzUqZw71ta/7xOl//9cYDDXpul0O71Ppovkvb3NY9VGFnMDIAAAAAAGj6CCEBHxi99Ue3NtaDBAAAAAAAzQUhJOADv/AQQn7Wvq8fKgEAAAAAAPA9QkjAYvElRzV0z1qXtg0tMrS5RbqfKgIAAAAAAPAtQkjAYufsWK4Qs9KlbXZWPz9VAwAAAAAA4HuEkGg2Kk1TWwrLa+1XUFyuz9blacP+o1557uitS9zaPm1PCAkAAAAAAJoPtuZFs7C7sFjj/rNfucc8bI9dxeq9RRrxwgLlHz8RVj54Tmf94ZxODX6urdKh87ctdWkrCovUt627NvieAAAAAAAAwYaRkGgW/vjFploDSEl6Yv5WZwApSY9+s0nHSisa/Nz++zYpubjIpe3Ltr1Vbg9t8D0BAAAAAACCDSEkmoU3l+2pU7/Xl+xyOS5zVGpPUUmDn3uBh12xWQ8SAAAAAAA0N4SQaBZaxYb75bm/8LAe5Gft+/qhEgAAAAAAAP8hhESz0L9NvM+fmX4kX70PbHNpW9yqo/KiW/i8FgAAAAAAAH8ihAQscoGHUZCz2RUbAAAAAAA0Q4SQgEXGbVro1vYp60ECAAAAAIBmiBASsEBCyVGN3LXSpW1nbJKWpmbXem2Y3aak6DCP61jabYbXagQAAAAAAPAVQkjAAhdsXaLQSodL24yOgyWj9hDxN0PbKzLUrtvOaO/SbjOkPhm+X9sSAAAAAACgsUL8XQAQLIrLHdpbVFqnvp6mYn/Y8fRar/vvzYM1LKulJOnWIe01f0u+Pt9wQDHhdv39wm5qERVWv6IBAAAAAAACACEkUAdPfbtVUz9dp9KKylr7RpWX6Lzty1za8qLitSA9p9Zrz+yQ5PwcEx6i2dcP0qHjZYoND1GonYHLAAAAAAAgOBFCArVYm3dEd8xcU+f+521bpsiKMpe2mdmDVGmzN+j5iYx+BAAAAAAAQY6hVUAtxr/+Y736T9rwrVvbRx0He6scAAAAAACAoEMICXhRTNlxXbh1iUvboYgY/bdNDz9VBAAAAAAA4H+EkICksjqs9VgXYzcvcpuK/VHH01VuD/XK/QEAAAAAAIIRISQg6cEvN3jlPpeud5+K/W7OGV65NwAAAAAAQLAihAQkTVu4o9H3SCwu0jk7fnJp2xvdQvNad2/0vQEAAAAAAIIZISQgqaC4vNH3mLBpgUIrHS5t73ca2uBdsQEAAAAAAJoKQkjgf3ILSxp1/eQ1/3VrYyo2AAAAAAAAISTgdMU7yxp8bfbhXA3NXefStjU+VYvSOje2LAAAAAAAgKBHCAn8z9wt+Q2+9qo1c9za3ug2SjKMxpQEAAAAAADQJBBCAo1kq3ToSg8h5D+7jqjXfdokRHirJAAAAAAAgIBCCAk00sidK9Xm6EGXtjltemhHfGqt19ptP4+UvG9UR6/XBgAAAAAAEAhC/F0AEOx+tfprt7bXu59Vp2vX/m64fth5WL3T49U9Lc7bpQEAAAAAAAQEQkigEVKOHdaETQtd2o6ERuqjjoPrdH3H5Bh1TI6xojQAAAAAAICAwXRsoBGuWf21wiorXNre7TJMx0NZ3xEAAAAAAOAkQkiggWyVDt2w8gu39hd6nu+HagAAAAAAAAIXISTQQOdvW6Z2Rftd2hak5WhFSpafKgIAAAAAAAhMhJBAA92y/FO3tmm9GAUJAAAAAABQHSEk0ADdDu7Q+duXubQdjIjV+52G+KkiAAAAAACAwEUICTTAnT9+7Nb2So9zVBoS5vtiAAAAAAAAAhwhJFBP6Ufydfm6eS5tZbYQPd3nghqvefQXOVaXBQAAAAAAELAIIat56qmn1LlzZ40cOdLnz3722WfVuXNnde7cWc8884zPn4+6+c1PnyisssKl7e0uZ2pvTEs/VQQAAAAAABDYCCGrWLlypaZPn+6XZ69fv17Tpk3zy7NRd4nFRbp5xWy39if6XeT7YgAAAAAAAIIEIeT/7Nq1S7fccovKy8t9/uzy8nJNnTrVL89G/dz148eKKyt2aZvdvq/WJLX1U0UAAAAAAACBjxBS0saNG3X55ZfrwIEDfnn+iy++qHXr1vnl2c1FucNs9D1aHi/Sb376xK39sQETG31vAAAAAACApqzZh5AzZ87UpEmTlJeX55fnMw3bN0orKht9j9/9+JFiyktc2r5o21vft+7aoPvZbUajawIAAAAAAAgGIf4uwF/y8vL0xBNP6OOPP/ZbDeXl5ZoyZYpzGnZsbKyOHDnit3pQszZFB3Srh1GQD55+WYPvmRQd1piSAAAAAAAAgkazHAn5wgsv6LzzznMJILOysnTTTTf5tI5p06Zp/fr1kqSLLrpIXbp08enzUXd/mf+6oirKXNo+bd9Pi9Jz/FQRAAAAAABA8GiWIeQrr7yi48ePO48nTpyo999/X23b+m5zkXXr1unFF1+UJCUnJ+u+++7z2bNRP0N2r9VlG751aauUoQeGXF6n6y/q3sqKsgAAAAAAAIJGs52OLUndu3fXlClTNGDAAJ8+t/pu2A8++KDi4+N9WgPqxl7p0D/+O92t/bXuZ2l5aoc63eOhczvr8w3umx6lxDAdGwAAAAAANA/NMoQcMGCAxo8fr1GjRskwfL85yPPPP++chn3BBRforLPO8nkNqJs7ls5U3/1bXNqKwiL1+6FX1On6x0d3Ufe0OFVUuu/Ofcvp7bxRIgAAAAAAQMBrliHk888/77dnr1mzRi+99JIkqWXLlvr973/vt1pwap3zd+uh7992a3940CXaH92iTve4un8bSdJpaXG6un8bvb5klyRpQJsEXdorw3vFAgAAAAAABLBmGUL6S1lZmaZOnaqKigpJ0h/+8AclJib6uaq6OVlzsDJN95GIpxLiqNCrXzylCEe5S/vKpLZ6qs+FdbrHX0fnqEWE3fl799KE7po6PEtFpRU6rVWsbDYj6H9f0Tw5HI5THgOoG94lwHt4nwDv4F0CvIN3yTNCSB96/vnntXHjRknSueeeq/POO8/PFdVNZWWlVqxY4e8yGuXosaP16v+Xb9/Q4L0bXNoqDJt+dd7tKreH1ukeB/L2asWKIrd2Q9Iq9yUigaC1evVqf5cANAm8S4D38D4B3sG7BHgH79IJzXJ3bH9Ys2aNpk8/scFJQkKC/vjHP/q5ItRk0vpvdefSmW7tfxl4sX6q42Y0AAAAAAAA+BkhpA9Un4Z9//33q2XLln6uCp4M3rNOr3zxtFv7spQsPTzwEj9UBAAAAAAAEPyYju0Dzz33nHMa9siRI3XhhXVbUzBQ2Gw29ejRw99lNErMokWSDp2yT5+8zZr90Z8UXVHq0p4fEasJY+5VWUjdpmGf1DojQz17tq1vqUDAczgcLtMJunfvLrvd7seKgODEuwR4D+8T4B28S4B3NMV3adWqVaqsrGzUPQghLbZ69Wq9/PLLkqT4+Hj96U9/8nNFDRMSEtxfKoZhnPL8yB0r9O9PHld82XGX9koZunz0XdoRn1rvZ9ps9qD/fQPqwm7nax3wBt4lwHt4nwDv4F0CvIN36QR+ByxUVlame++91zkN+95771VKSoqfq0JVtkqHbl82S3+Z/4ZCTPdE/84R1+rLdn0adO9ack8AAAAAAIBmgxDSQl9++aVzGrbdbtcnn3yiTz75pMb+Gzb8vBvzrFmztHz5cufx7373O+Xk5FhWa7Njmhq1c4X+Ou819TqwzWOX+4dcoaf7jGnwI4a0S2zwtQAAAAAAAE0JIaSFysrKnJ8dDoe+++67Ol+7c+dO7dy503l8ww03eLW2Zsc0NWT3Wp2/fakyjhzUGXvWKqswr8bufx50iR4dNKnBj5vUM1090mIbfD0AAAAAAEBTQgiJZmHi1+/qphnP1dqvxB6qG865VW91HdHgZy25/Qz1To+vdR1KAAAAAACA5oIQ0kLjx4/X+PHj69x/8uTJWrx4sSTp1ltv1W9+8xurSmt2Lp7zr1r7rG+RoSt/cad+bNWxUc/q2zqhUdcDAAAAAAA0NYSQaBaKouOVVHjQ47mC8Gj9edAlerb3aJXbQ31cGQAAAAAAQNNHCNlII0eO1J49eyRJGRkZmjNnjp8rgid/u2KqHnzmbqUUF0qSjoZGaEF6jmZ0HKx3cs7UkfAoP1cIAAAAAADQdBFColnY0K6r0m5+Q1kF+1QSEqbcmESZhs3fZQEAAAAAADQLhJBoNkzDpi0t0v1dBgAAAAAAQLPDUDAAAAAAAAAAlmIkZBX13c1aklfXgHzzzTe9di8AAAAAAAAgUDASEgAAAAAAAIClCCEBAAAAAAAAWIoQEgAAAAAAAIClCCEBAAAAAAAAWIoQEvCi7q1i/V0CAAAAAABAwCGEBLzo72O6+bsEAAAAAACAgBPi7wIAXzhWVmH5M7bdN0ptE6Msfw4AAAAAAECwYSQkmoW1eUctf0ZkqN3yZwAAAAAAAAQjQkg0C0fLHP4uAQAAAAAAoNkihAQAAAAAAABgKUJINAsjs1v6uwQAAAAAAIBmixASzUJydJhX7hNqN7xyHwAAAAAAgOaEEBLNwi97p3vlPi9MOE1Lbj/DK/cCAAAAAABoLggh0Syc0ylZYztENfo+Z3dKVt/WCY0vCAAAAAAAoBkhhESzYLcZun9AQp36psS4T91Oig7TixefpjYJkV6uDAAAAAAAoOkL8XcBQKD58obBWpN3RAXF5RrTLVXJ0eEKsRmy2VgPEgAAAAAAoCEIIYFqYsLtuqx3hr/LAAAAAAAAaDKYjg0AAAAAAADAUoSQAAAAAAAAACxFCAkAAAAAAADAUoSQQAOM7pLichwdZldCZKifqgEAAAAAAAhshJBAA9wxrIPCQ35+fe4e3kFhIbxOAAAAAAAAnrA7NtAAIzsmae3vRmj+1nzlpMRoQGaCv0sCAAAAAAAIWISQQAO1bxml9i2j/F0GAAAAAABAwGP+KAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICVcRFhCgzIdLfZQAAAAAAADQphJBo9rqlxkqSIkNtmjbhNIXYeS0AAAAAAAC8KcTfBQD+FBFi08q7z9T2Q8VKiwtXRKjd3yUBAAAAAAA0OQz5QrNyVmaEy/H1g9rKMAy1bxlFAAkAAAAAAGARRkKiWXlgQIJSIo9oT3m4hma11ANndfJ3SQAAAAAAAE0eISSalahQm+7oE6+ePXsqJIQvfwAAAAAAAF9gOjYAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALCUYZqm6e8iEHiWLl3qcmyzBX9eXVlZ6fzcFH49gD/xPgHewbsEeA/vE+AdvEuAdzS1d6nqr0eS+vbtW+97hHirGDRt1b/Ygl1T+/UA/sT7BHgH7xLgPbxPgHfwLgHewbt0QvBHsQAAAAAAAAACGiMhUSdNYegwAAAAAAAA6s8bozlZExIAAAAAAACApRjeBgAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALBXi7wIAK23ZskXvvfeeFi1apN27d6uiokIpKSnq1KmTLrzwQp199tkKCeE1QPPw1FNP6fnnn1dGRobmzJlTr2sXLlyoDz/8UMuXL9f+/fsVEhKiVq1aqXfv3ho3bpz69etXr/uVlZXp008/1Weffaa1a9eqoKBAMTExSktL07BhwzRhwgRlZmbW656AFRYtWqRPP/1UP/30k/bv36+jR486v1b79eun8ePHq2vXrnW+38qVK/X+++9ryZIlysvLk2maSk1NVbdu3TR27FgNGzZMhmHU+X6maerrr7/WrFmztGrVKuXn5ysyMlKpqakaNGiQJkyYoJycnIb80gGvMk1T8+fP16xZs7RixQodPHhQNptNrVq1Urdu3XThhRdq6NChstnqPkbCip/zvP39DvCle++9Vx999JEk6bHHHtP48ePrdB3vEpqjzz//XL/97W/rfd28efPUqlWrGs/zs96pGaZpmv4uArDCM888o2nTpqmioqLGPt27d9df//pXZWVl+bAywPdWrlypX/7ylyovL69XCHn06FFNmTJFX3/99Sn7jRkzRn/4wx8UGxtb6z23bNmi3/72t9q0aVONfUJDQ3Xbbbfp+uuvr9c3acBbdu/erSlTpujHH3+ste/o0aP10EMPKSYmpsY+5eXl+vOf/6x//etfp7zX0KFD9dhjjyklJaXW5+bl5emOO+7Q0qVLa+xjGIauvvpq3XnnnQoLC6v1noAVcnNzdc8992jJkiWn7NerVy89+uij6tChQ6339PbPeVZ8vwN8ad68ebrhhhucx3UNIXmX0Fw9+eSTmjZtWr2vqymE5Ge9uiGERJP08MMP680333Qeh4SEqHPnzoqMjNSWLVt0+PBh57mkpCT9+9//VkZGhj9KBSy3a9cuXXbZZTpw4IAk1TmELC0t1eTJk7VixQpnW3R0tDp16iSHw6GNGzeqpKTEea5///569dVXT/nNb9u2bbrssstc3sHk5GS1b99eBQUF2rRpk6p+W7r++ut199131+vXCzTW9u3bddlll+nQoUPOttDQUHXq1EmxsbHKz8/X5s2bXb5Wc3Jy9Pbbb3sMIk3T1K233uryF7Lw8HB17txZdrtdmzZt0tGjR53nsrKy9K9//UtxcXE11njo0CFdcskl2rlzp7MtISFB2dnZKi4u1oYNG1z+Qjl69Gg98cQT9f/NABppz549uuKKK5Sbm+tsi4qKUufOnRUaGqqtW7fq4MGDznMxMTF677331LFjxxrv6e2f86z4fgf40pEjRzR69Gjl5eU52+oSQvIuoTm74YYbNG/ePElSp06d6hQKStJf//pXJSYmurTxs149mEAT89lnn5mdOnVy/veb3/zGPHDggPN8WVmZ+d5775k9e/Z09hk3bpxZWVnpx6oBa2zYsME844wzXN6JESNG1OnaP/3pT85rOnfubD777LNmcXGx83xhYaH58MMPu9z70UcfrfF+FRUV5pgxY5x9+/fvb3722Wcu797OnTvNK6+80uWeX3/9dcN/A4B6qqioMC+44ALn11+XLl3Mp59+2jxy5IhLv3379pn33HOPy9fqbbfd5vGeL7/8sku/Bx980CwqKnKeLy4uNl944QWza9euzj6//vWvT1nnDTfc4Ozbo0cP85133jHLy8ud5/fv32/efvvtLs994403GvE7A9Sfw+EwL730UufXYLdu3czp06ebJSUlzj6VlZXmZ599Zg4YMMDZb+TIkWZpaanHe1rxc563v98BvjZ16lSXr89OnTqZH3744Smv4V1Cczd06FDn1+GiRYsadS9+1qs7Qkg0KWVlZebw4cOdL+GNN95oOhwOj32//fZblz8EZs2a5eNqAWt9/PHHLj841ieE3LRpk9mlSxfnNS+99FKNfZ966imXv2Du2rXLY793333X2a9r167m0qVLPfYrKyszr7rqKmff888/36yoqKjbLxpopH//+98u78vMmTNP2f+xxx5z6f/TTz+5nM/Pzzd79+7tPP/HP/6xxnt98MEHLveq6R2ZP3++S79PP/20xntWDUoHDhzoFqYCVvryyy9dvlY/+uijGvv+9NNPZk5OjrPv+++/79bHip/zrPh+B/jS3Llz3X7Wqy2E5F1Cc5efn+/yvhQUFDTqXvysV3fsjo0m5auvvnJO9wkJCdEf/vCHGhc4Hzp0qC655BLn8WuvveaTGgGr5eXlacqUKbrnnntUXFzcoHu8+eabcjgckk5MF7j22mtr7HvrrbeqU6dOkk6shfLWW2957PfPf/7T+XnChAnq06ePx36hoaF6/PHHFRoaKunEGpInp0oAVps5c6bz89ChQzVmzJhT9r/zzjtdpu98+umnLuc/+OADHTt2TNKJKTT33HNPjfeaMGGChg8f7jyu6fvSG2+84VLjL37xixrv+cc//lEtW7aUJB0+fFgzZsyo+RcDeNn777/v/Hzaaadp3LhxNfbt1auXzjzzTOexp/XkrPg5z4rvd4CvFBUV6f7775d04uenyMjIOl3Hu4Tmbt26dc7P6enpio+Pb/C9+Fmvfggh0aTMnj3b+fn0009Xenr6KftX/Ya6Zs0a7dq1y7LaAF944YUXdN555+njjz92tmVlZemmm26q8z0qKyv1xRdfOI/Hjx9/yt1KbTabJk2a5Dyueu1J69ev15YtW5zHF1988SlrSE1N1YgRI5zHn3/+eZ1qBxqjrKxMy5Ytcx5fcMEFtV4TFhamoUOHOo9XrVrlcv6zzz5zfj7//PMVFRV1yvtV/b40f/58HT9+3OV8YWGhFixY4DyeMGHCKe8XFRXlEqTyLsFXTNPUvn37nN8/Ro8eXes1VdeB3LFjh9t5b/+cZ8X3O8CXHn30Ue3fv1/SifXtqq9TVxPeJTR3VUPIzp07N+pe/KxXP4SQaDJM09SiRYucx0OGDKn1ms6dOys5Odl5XNcdg4FA9corr7h8I5s4caLef/99tW3bts73WL9+vctC5FUDlppUfd9yc3O1fv16l/M//PCD83N8fLx69OhRr3vOnTvXZRMQwAp79uxReHi487guO/RKJ/7V+6Sq705BQYHLD7l1eZcGDRoku90uSSopKXH5IVSSFi9e7BxpYhhGnb7XVe2zbNkyFRYW1noN0FiGYWjWrFlatmyZPvjgA1144YW1XlNUVOT8HB0d7XLOip/zrPh+B/jK3LlznSOeOnXqVOd/cOZdAlxDyJycnAbfh5/16o8QEk3Gnj17XH547d69e52uq/ovH9VHsADBqnv37nrzzTf18MMPe9yt91Sq/hAYGhp6yh1KT2rfvr0iIiKcx9Xfpar37NKliwzDqPWeVX8gKCwsdNkZDrBC+/bt9dNPP+nHH3/Up59+6pwqVps9e/Y4P1edzrNhwwaX8Lxbt2613isqKkqZmZnO41O9S61bt67T9KGq71JlZaXWrFlT6zWAt0RGRqpHjx7OqWI1KSsr07fffus87tq1q8t5K37Os+L7HeALRUVFeuCBBySdmE792GOP1XmHad4lwPVrtjEhJD/r1R8hJJqM7du3uxxXfbFPpXXr1s7PhBwIdgMGDNBzzz2nDz74QAMGDGjQPaq+SxkZGQoJCan1GsMwXKbyVJ9GV/WedR2VWfXd9HRPwCqxsbHKzs52+ctRTY4eParvv//eeVx19GTVr/uwsDClpaXV6fmn+r7UkHcpOTnZ5dfCu4RAU1ZWpvvvv98Z6NtsNl111VUufaz4Oc+K73eALzz88MPOadjXXnttnYNEiXcJKC0t1bZt25zHnTt31tKlS/XAAw/o/PPPV69evdS7d2+dc845uvfee7Vw4cIa78XPevVX+58OQJA4cOCA87PNZlNSUlKdrqs6taDqPfD/7d17XM7n/wfwV1LooCQMzRAV5jB8x3eMaebUMCHDVsxhZmXJGNmKhmbOK+YwZjkXUmbf8TWGkG3M7KCanKovUmQddLq7f3/06Pp9Ph3u893x9Xw89nh8rs99fa7Pdee+9rnu930dqCbatGmT3mVI24F0ww117O3tcfPmzTJlABAdZUDe5lSxs7ODqampmI7A9knV0fbt25GVlSXS0rVMpZ9ZTT/3pfMaoi0BQNOmTUWAh22JqlpRUREKCwuRnJyMmJgY7Nq1S/YlLDAwsMxyCMbo5xnjeUdkbKdOnRKbqDk6OsLb21ur69mWqK6Lj4+XTXdeunRpuYHGO3fu4M6dOzh8+DD69++Pzz//vMyofvb1tMcgJNUa0nUPLC0tVS6GLCWdqlqd104gqiwZGRni2NraWuPrpHlLtyVpWtMy69WrBwsLC2RmZgKQrxVGVB1cu3YN27ZtE+m2bdvC1dVVpHVtS6qeS7q0pdJ52ZaoqgUHByMsLKzM+WeeeQb+/v4YOnRomdeM0c8zxvOOyJiePHmCgIAAAMX9JG2mYUvLKMG2RHWRdLqzUqkUAUhra2u0adMGlpaWSElJkS23ExMTg/Hjx2P37t2yEbzs62mPQUiqNfLy8sSxJlPoSkgf3Pn5+QatE1FNJG0HhmpLhmif0jKIqlpycjJmz56NgoICcW7hwoWyKWhsS0Tl+9///lfu+SZNmiA1NRW5ubllPt/G6OcZo40SGdOyZcvECKcpU6age/fuWpfBtkR1nXQjGaB4tOGCBQswbNgw2WcyISEBq1atwtmzZwEUr6c6e/ZshIeHi3zs62mPa0JSrSH9IqjpL3oAZF8YCwsLDVonoppI17ZUsssbULYtSdPSfPqUSVRV7t27By8vL9lUlylTpsimYgPGeS5J04Zqn0SVLS0tDS4uLujbty+cnJzEZ/n69etYtmwZRo8ejcTERNk1xmhPxnjeERnLDz/8gOjoaADFI+8/+OADncphW6K6rvSai1FRURg1alSZUcVOTk7YunUrxo4dK85dv34d+/fvF2n29bTHkZBUa0gbXVFRkcbXSRuomZmZQetEVBPp2pZK1lYByrYlU1NT0dak+bQpU9vpRkTGkJiYiGnTpuHevXviXP/+/fHhhx+WyWuM55Ix2idRZdu7d6/ss/zw4UOEhoaKL3a3b9/G1KlTERUVhSZNmgBge6K6LSMjA4GBgQCK17Bbvny5ViOkpNiWqK77+uuvkZ6ejuTkZDRv3rzMOo9SJiYmWLJkCWJjY8X07LCwMHh6egJge9IFR0JSrdGoUSNxrM3wY+nw5wYNGhi0TkQ1kbRTq01bkuYt3ZYMUSaDkFTVrly5gsmTJ8sCkH379kVoaGi5nb3q2pb4rKOqVnpEfLNmzbB06VJZMP/BgwfYuHGjSBujn8f2RDWFdBr2W2+9hd69e+tcFtsSUfEmLt27d9doN2tzc3O8+eabIp2UlCQ2U2NfT3sMQlKtYWNjI46zs7OhVCo1uk66q6mtra2hq0VU40jbgbR9qKOqLUnbp6ZlFhUVIScnp8IyiSrT0aNH4eXlhcePH4tzAwcOxJYtW2Rf6KR0bUvZ2dnllgHo1pZK52VboupqxowZ6Natm0gfOXJEjAIxRj/PGM87IkM7efIkjh49CgB49tln4efnp1d5bEtE2uvZs6csXTKlm3097TEISbVGixYtxLFCoZB9UVRFuqaXvb29wetFVNM0b95cHKenp2t8XVpamjhu1qyZ7DVp+9S0zEePHsmmIJQuk6iyhISE4MMPP5SNAhk1ahQ2bdqkcjqcLp97QPVzSdcypXnZlqg6Gz16tDjOzMwUX/SM0c8zxvOOyJAyMjKwZMkSAMXTQpctWwYLCwu9ymRbItJe6SnbJTtYs6+nPa4JSbXGc889J0snJSXBzs5O7XXJycniuF27dgavF1FN07ZtW3GcnJwMpVIJExMTldcolUqxTkrpMkrSV65cAQAxfUGdpKSkCutFVBkKCgqwePFiREVFyc6/++67mDt3rtp2IX0u5eTkIC0tTaMfu6Sf/dLPJWk70LQtlew2XF4ZRNVNmzZtZOmMjAwAxunnGeN5R2RIBw4cEMGKRo0aYdu2bdi2bVuF+aVBva+//hrHjh0T6ZUrV8Le3p5tiUgHpadFW1paAmBfTxcMQlKt0bp1a9ja2orO6vXr19G9e3e118XFxYljFxcXY1WPqMbo0qWLOH769Clu3bqF9u3bq7zm5s2bsodzp06dypR5+PBhAPI2p8r169fFsY2NDVq3bq3RdUSGkJ+fDx8fH/z444/iXP369bFkyRKMHz9eozI6d+4MExMTMdXt+vXrePnll1Vek52dLetwln4uSdvnnTt38PTp0wqng5eQtiUTExM4OztrVH8ifdy8eRMRERFITk7GvXv3sGvXLrWfVUC+7hwANG7cGIBx+nnGeN4RGZK0PeTk5CAmJkbjaxMSEpCQkCDSJQEKtiWqy+Li4hAVFYX09HSkp6fj888/V7kxTQlpEB4AWrVqBYB9PV1wOjbVKn369BHHFy5cUJs/Li5O9oth3759jVIvopqkY8eOsl/EL168qPaa8+fPi+MmTZqUefC9+OKL4vjhw4f4+++/1ZYpbcPStk1kbIWFhZgzZ44sAGlpaYktW7ZoHIAEACsrK3Tu3FmkNXkuxcbGimUITE1NZW0HAHr16oX69Yt/Q1YoFLh06ZLaMqX37dy5s2ytISJjyc7Oxo4dO3DixAn8/vvvGj1LAOD3338Xx2ZmZrJNAwzdzzPG846oJmBborrqyZMn2LFjB6KiohATE4OffvpJo+vOnj0rjq2treHk5ASAfT1dMAhJtcqQIUPE8enTp/HgwQOV+fft2yeOHR0d+fAjQvGvZ6+99ppIh4eHy9ZmLK2oqAjh4eEiPXTo0DJTcJycnGRTDfbv36+yDvfu3ZMFgIYPH65p9Yn0tmrVKpw+fVqk7ezssGvXLvTv31/rsoYOHSqOo6Oj8fTpU5X5pc+ll156SYwCK9G4cWPZlz91bSk7OxvR0dEiPWzYMI3qTaQvFxcX2cL4e/bsUXtNTk4ODh06JNJ9+vQRU94Aw/fzjPG8IzIkHx8fxMfHa/yfdNZIcHCw7DUHBwfxGtsS1VXPP/+8bF3ViIgItdfcv39f1pdyc3NDvXr/H0pjX087DEJSrTJkyBCxMHJ+fj4WLlyIwsLCcvOeO3dO9j+dt99+u1LqSFQTTJo0SXQG4+LisHHjxgrzbtiwQYxsrFevXoVtafLkyeJ4//79Ff5SWFBQgI8++ggFBQUAiqc7DB48WKf3QaStM2fO4JtvvhFpGxsbhIWFyabGaGPs2LFiCk1aWhqCgoIqzBsREYFz586JtKenZ7n5pG3p9OnTYqmD8ixZsgSPHj0CAFhYWGDcuHFa1Z9IV2ZmZhg7dqxIx8TEiB1+y1NYWIiFCxfKFuufMWOGLI8x+nnGeN4RVXdsS1RXWVpaYsSIESJ9/vx5HDlypML8WVlZ8PX1FYHFBg0aYNq0abI87Otph0FIqlXMzc3h5+cn0hcuXMCMGTNkC78WFhYiPDwcPj4+UCgUAIpHaWkzxY6otnNxccGYMWNEOjQ0FCtWrEBmZqY4l5mZieXLl2Pz5s3i3IQJE9ChQ4dyy5wwYYIYDVlYWIj3338fERERsk5vUlISpk+fLpt2MH/+fJibmxvsvRFVRKFQYPny5WJdHxMTE6xZswYdO3bUuUx7e3tMnz5dpA8fPox58+bJdjDMzc3F5s2bERgYKM4NGDAAAwYMKLdMV1dX2VS6Tz75BFu2bJGtrZWWloa5c+fKfhmfPXu2RpsPEBnK7NmzZbt8Llq0CFu2bCkzSuSPP/6Al5cXjh8/Ls6NHz++zJRPY/TzjPG8I6ru2JaoLvvggw9gbW0t0osXL0ZoaCiys7Nl+X7++WdMnDgRv/76qzjn5+dXZgM19vW0Y6Is6WkT1SIBAQE4cOCASNerVw/Ozs6wsrJCYmKi+KUAAGxtbbFv3z61iycT1WSHDx/GokWLABQvSH7q1Cm112RlZcHLywt//PGHONeoUSMxBSc+Pl72RbJr167YvXs3GjZsWGGZCQkJePvtt8Vi6EDxVFdHR0dkZmYiISFBNn1n8uTJCAgI0Ph9Eunj2LFjsi9lFhYW6Nmzp1Zl2NvbY+XKlbJzJUF36RIDZmZmcHZ2hrm5Of7++2/ZlzQHBwdERESo7EQ+ePAAkydPln1htLa2RseOHZGfn4/4+HgxmhgABg0ahE2bNsmmDxFVhri4OHh6euLJkyfiXMmzxNzcHCkpKbIdcgFg8ODB2LBhg1gTqzRD9/OM8bwjqgqurq6iPQUHB8Pd3V1lfrYlqqtiY2Mxc+ZMWVCvYcOGcHFxgbm5Oe7evYv79+/Lrpk2bRoWLFhQbnns62mOQUiqlZRKJdavX4/t27fLGmZpjo6O2LBhg16jXIhqAl2CkEDxL9YLFixQm3/QoEFYtWqV7FfFisTHx2PevHkqN6cxNTXFjBkz4OvryzWCqNL4+PjgxIkTepVRUfvKz8/H0qVLcejQIajqer3wwgvYsGGDbPRYRe7duwc/Pz9cuXJFZb5x48YhMDCQI4qpyty9exfz58/H1atXVeazsLDArFmzMHPmTJX/7zdGP88YzzuiyqZtEJJtieqyP//8E/Pnz0diYqLKfDY2Npg3bx4mTJigMh/7epphEJJqtcTERBw8eBAxMTG4f/8+nj59ChsbG3Tq1AnDhg3DqFGjakRDJdKXrkHIEhcvXkR0dDR++eUXpKWlQaFQwN7eHi+88ALGjBmj9YYdhYWFOHr0KI4fP47r168jPT0dZmZmcHBwQJ8+ffDmm29yag5VOjc3N9y4cUOvMtS1r2vXriEyMhKxsbF48OAB8vPzYWdnh27duuH111/HkCFDtPoFW6lU4r///S++++47XLt2DWlpaahXrx5atGiBXr16wcPDAz169NDrPREZytmzZ3Hs2DFcvXoVqampKCgogK2tLTp27Ih+/frB3d1dq2lkxujnGfp5R1SZtA1ClmBborpKoVDg5MmTOHHihOhHFRYWwt7eHm3btoWrqyvc3Ny0ejaxr6cag5BERERERERERERkVNV7sjgRERERERERERHVeAxCEhERERERERERkVExCElERERERERERERGxSAkERERERERERERGRWDkERERERERERERGRUDEISERERERERERGRUTEISUREREREREREREbFICQREREREREREREZFYOQREREREREREREZFQMQhIREREREREREZFRMQhJRERERERERERERsUgJBERERERERERERkVg5BERERERERERERkVAxCEhERERERERERkVHVr+oKEBEREVUHrq6uSElJ0bucsLAw9OnTxwA1Iqo8eXl5GDduHBISEuDl5QV/f3/x2qVLl+Dp6SnS8fHxet3L2dlZHHt7e8PHx0frMkJCQhAaGmqwOqkzZ84cHD9+HH379sXXX3+NevU4loOIiEhbfHoSEREREdVxwcHBSEhIgL29PebMmVPV1al2PvroIzRs2BCxsbH46quvqro6RERENRJHQhIRERGV0rx5czg5Oel0rY2NjYFrQ2RcZ8+exb59+wAAvr6+sLKyquIaVT+tW7fG1KlT8eWXX2LDhg0YMGAAXFxcqrpaRERENQqDkERERESl9OvXD5999llVV4PI6HJzcxEUFAQAcHJywtixY6u4RtXXzJkzERERgbS0NAQGBmLfvn2clk1ERKQFPjWJiIiIiOqoLVu2ICkpCQAwd+5cBtVUsLCwwKxZswAAV69excGDB6u4RkRERDULexlERERERHVQeno6du7cCQDo0KEDXF1dq7ZCNYCHhwdsbW0BAKGhocjLy6vaChEREdUgDEISEREREdVBW7duRU5ODoDi4Bqp16BBA7zxxhsAgAcPHoi1NImIiEg9rglJREREZEQLFy5EZGQkAGDz5s0YOHAgwsLCcODAASQnJ6Nx48Zo3749hg0bhsmTJ5e5Pjs7G0eOHMGZM2fw999/Iz09Hebm5mjWrBl69+6N4cOH46WXXtKqThcvXsShQ4dw5coVpKamwtLSEm3atMHw4cPh4eEBKysr7N69G59++ikAwNvbGz4+PrIyDh8+jEWLFgEo3rTj1KlTau/r6uqKlJQUAMW7Mbu7u6vMn5KSgsjISMTExCA5ORkZGRmwsrJCq1at8NJLL2HMmDFwdHRUWUZISAhCQ0MBAJ988gneeust5OfnIyoqCt9//z0SExORlpYGa2trtGvXDq6urpgwYQKsra3Vvp8SP/30E7799ltcuXIFKSkpKCgogI2NDZycnDBw4EC4u7ujcePGsmuCgoKwZ88eAMWbGcXExMDc3Fztvb755husWLECANC2bVscP35c43pKZWVlISIiAoA8sKYPhUKBuXPnyurk5eUFf39/vcvWlvTfXReqPp8eHh5iBGlYWBg8PT05jZ2IiEgDDEISERERVaKPP/4Yhw4dEum0tDSkpaXB2dm5TN7o6Gh89tlnSE9Pl53Py8tDZmYmbt68ifDwcPTt2xcrV67EM888o/Le6enp+Oijj3Du3DnZ+YyMDGRkZODatWvYu3cvvvjiCz3eof4UCgXWr1+PnTt3Ij8/X/ba48eP8fjxY/z555/YsWMHPDw84O/vr1EADwDi4uIwb9483LhxQ3b+0aNHePToES5fvozt27dj9erV6Nevn8qy7t69i8WLF+Onn34q81rJv+uFCxewefNmLFu2DIMHDxavjxkzRgQhnzx5grNnz8per0hUVJSsDF1FRUUhOzsbANCnTx+9d3VXKpVYtGiRLAA5ZcoUEaiuTRwdHdGhQwfcuHEDKSkpOH36NF599dWqrhYREVG1xyAkERERUSWJjIyscOTaqFGjZOnQ0FCEhITIzrVq1QoODg7Iy8tDYmIisrKyAACxsbEYP348du7cWeHIwPT0dEyaNAm3b98W58zMzODs7IyGDRvixo0byMjIQFJSEqZNm2aQkXG6yM/Px+zZs2WBUhMTEzg6OsLe3h7//PMPEhISUFhYCIVCgX379iEhIQFfffUVLCwsVJZ9+/ZthIaG4vHjxwCApk2bon379sjNzUViYqKYmvzo0SO89957iIyMrPDvGRcXBy8vL2RkZIhzZmZmcHJygoWFBW7fvo2HDx8CKA6czpkzB2vXrsWwYcMAAF27doWTkxMSEhIAFAec1QUhExMT8eeffwIA6tWrp9e/UXR0tDh+5ZVXdC6nRGBgoCxAOnXqVCxcuFDvcnXVpk0b9O/fX+P8Fy9ehEKhAFA8MrRz584q8w8YMEAEsqOjoxmEJCIi0gCDkERERESVpCQAOWLECHh7e6Nly5a4ceMGTp48iW7duol8x44dkwUge/XqhUWLFqFr167iXH5+Pr799lusXLkSGRkZSE1Nhbe3Nw4ePAhLS8sy9160aJEsADl+/HjMmzcPTZo0AQAUFBQgMjISwcHBePTokZhuWtmWLVsmC0COHz8e3t7eslGeT548wfbt27Ft2zYUFRXh8uXLCAgIwOrVq1WWvWvXLgDFAaqPP/4YAwYMgImJCYDi6ckhISHifefl5SEkJATr168vU05OTg7ef/99EYA0NTXFrFmzMHXqVNk07pMnT2Lp0qVITU2FQqHA4sWL0atXLzRr1gxA8UjGlStXAgBOnz6NzMxMldPAjxw5Io5feukltSNfK5KamorffvtNVpY+goODceDAAZGu6gAkAIwePRqjR4/WKO+6desQExMj0kFBQXBxcVF5Tb9+/bBjxw4AwLlz55Cfn6/xaFwiIqK6ikFIIiIiokrk6uqKtWvXiuBXt27dZAHIrKwsLFmyRKRfffVVfPHFF6hfX95tMzc3h7u7O7p3746JEyfiyZMnuHnzJrZt2wZfX19Z3gsXLuDMmTMi/c477+Cjjz6S5TEzM4OHhwc6dOgALy+vMtOgK8Mvv/wiC2YtWLAA06ZNK5PPxsYGfn5+cHZ2hp+fHwDg6NGjGDt2LP7973+rvIeDgwPCw8NF8LWElZUVFi1ahIcPH+LYsWMAgDNnzpQbXNq5cyeSk5NFevXq1RgxYkSZew0ePBgtW7bEpEmTkJubi6ysLOzevRtz584FUDz6dc2aNSgsLER+fj6+//57jB8/vtx6K5VKHD16VKTHjh2r8n2qcunSJSiVSgBAo0aN8Nxzz+lcVsm0+RLlfbZUiY6OxtWrV7W+7927d7W+pjxRUVHYvHmzSL/zzjsajTDt1KmTOM7Ozsa1a9fQu3dvg9SJiIiotmIQkoiIiKiUyMhIsZmMpsLCwtCnTx+1+d577z0RgCzPwYMH8c8//wAArK2tsWLFijIBSClHR0d88MEHCAoKAgDs27cPs2bNQsOGDUUe6Q6+zz77rAiCladnz57w9vbG2rVr1b4XQ9u+fbs47tWrV7kBSCk3NzecOHEC33//PQBgx44daoOQc+bMKROAlJo4caIIQubk5CApKUk2JbuoqEgWKHVzcys3AFmiS5cuGDlypNgE5sSJE+Lvb29vj5dffhmnT58GUBxIrSgIeenSJdy7dw9AcRBWk/UjKyIdBdmhQwedN1XZunUrvvzyS5HWNgAJFAcTDRVQ1Nbly5fx8ccfi/SAAQMwf/58ja5t2rQpmjZtKtZr/e233xiEJCIiUoPbuBERERFVEktLSzz//PMq80jXjBw0aBBsbW3Vljty5EiYmpoCKN5kRjqyrKCgQDbV1N3dXe200UmTJqFRo0Zq72tIubm5smnYmm66Ih21dvHiReTl5VWYt169emrX7uvQoYMsnZmZKUv/9ddfuH//vkhPnDhRbR09PT0xf/58bNq0CRs3bpS9Jn2fP//8s6xsKel6i25ubnpN/U1MTBTHHTt21KmMsLAwrFmzRqR1CUBWpeTkZHh7e4sRv+3bt8fatWu1Csg6OTmJ49IbHREREVFZHAlJREREVErz5s1lAQZNaLK7sJOTk8ogR35+Pv744w+RrmhTlNIaN26MNm3a4NatWwCAK1euoG/fvgAg23AFgEajtaytrdGzZ0+cP39eo/sbwrVr11BQUCDSmr53aVC3oKAAv//+e4Xv0cHBAVZWVirLa9y4sSwtrVNJPUuYmZmhe/fuauvo5ORU4eepJNCckZGBoqIifPvtt5g+fbosT25uriw4rc+u2ABkU8mbNm2q9fURERFYsWKFSDs5OekcgPT29oaPj4/W14WEhCA0NFSne2ZlZWHWrFl49OgRgOJ/8y+//FLlepzlkf7tpH9TIiIiKh+DkERERESl9OvXD5999pnBy7Wzs1P5+v3792VrMa5btw7r1q3T+j4PHjwQxykpKbLX2rZtq1EZzs7OlRqEvHPnjiytyQjD8qSmplb4miajSktGlJYoKiqSpZOSksRx69at9d6MxNzcHCNHjhSb5kRHR5cJQp48eRLZ2dkAikcuStcQ1UXJ7uAAtA68AUBAQIBYUxIAEhIScPz4cQwdOlSvelUGhUIBX19f/P333wCK/73XrVuncbuQkga0pbukExERUfk4HZuIiIiokqgbhffkyROD3EdaTlZWluw1TYNOqtZNNIaSdTD1pSoYJF0nU1fSv6cuAbzySEc2xsfHIyEhQfa6dCq2u7u73vd7+vSpOFb3mSxPSWBWOmX/008/Ndjn15iCg4Nl0/4XLFiA/v3761SW9N9fOtqYiIiIyseRkERERESVRN16c4WFhbJ0165dNZrmXZp0XcMGDRrIXpOOYFNF3xF+2ir93nUNDDVv3twQ1amQqk2FdNWlSxc4OzsjPj4eQPEGNfPmzQMApKWliRGp9evXx6hRo/S+n/Q96LopzZtvvolRo0Zh8uTJUCqVePjwIYKDg40ygthQ9u7dK0acAsUB3SlTpuhcnnTUrK5/RyIiorqEQUgiIiKiaqL0eoSzZ8+Gq6urXmWWDmJmZmbCwsJC7XWlR1CqomlgU9WmMaXf+4YNG3QapWds0nqW3rRGH+7u7ggODgYAHDt2TAQhv/vuOygUCgDFuzfb29vrfS9LS0sxYjQ3N1fr6ydPnoxPPvkEJiYm8PDwELuFR0ZGws3NDS+//LLedTS08+fPY/ny5SLdo0cPLF26VK8ypaMfLS0t9SqLiIioLuBPdkRERETVRIsWLWSj1O7du6d3mc8995wsrekuvnfv3lX5urSepTdvKU9RUZHK6botWrSQpQ3x3o1BWs+UlBSN3jsAHDhwAGfPnsWtW7fKvWbkyJGoX7++KPf69esAiteDLDF27Fh9qi5I18bUZS3DgIAA8e//4YcfolmzZuK1wMBAsX5ldZGYmAhfX18x2vaZZ55BaGio3qN9pZ9nXUYsExER1TUMQhIRERFVE1ZWVujYsaNIx8bGanRdQUEB/P39sW7dOhw4cEAWaGzVqhVatWol0hcvXlRbnlKpxOXLl1XmkQZwNAk6VRR8K9GjRw9ZYFPT937jxg34+/tj48aNOHLkiNjx2Fiku2GX7MatTlJSEgICAjBjxgwMGzYMiYmJZfI0bdoUAwYMEOmTJ0/in3/+Ef8OdnZ2GDhwoAHeAdCmTRtx/L///U+vsho3bgx/f3+RTklJwZo1a/Qq05AeP36MWbNmiTVHGzZsiI0bN8oCp7qS/u102diGiIiormEQkoiIiKgaeeWVV8TxqVOnZLsxVyQqKgqHDh3C5s2bERAQUCbINWzYMHF8+PBhtVOtz507h+TkZJV5pKPpcnJy1Aazjh07pvJ1Ozs7WYBvz549Go0y3Lp1Kw4dOoQvvvgC/v7+ZXazNrTOnTvLpkRHRESovUb63u3s7ODk5FRuPulIxx9++AFnzpwRo/dGjRoFMzMzXast4+joKI5L70quixEjRsgCpHv37sUvv/yid7n6KigogI+Pj2xU74oVK/D8888bpHzp3659+/YGKZOIiKg2YxCSiIiIqBp56623RLCpsLAQvr6+KoOGycnJWL16tUi3bNkSgwYNkuXx9PQUZaanpyMgIKDCYF16ejqWLFmitp7Ozs6ykYvSDT9Ki4uLw/bt29WW+c4774jjW7du4dNPP1W53uSpU6cQHR0t0kOGDDHImomq1K9fHxMnThTpyMhInD17tsL8KSkpsvc+bty4CjcxGThwIOzs7AAA169fx549e8Rr0h209dWzZ09xHB8fL9ac1EdgYKBYa1SpVGLx4sUq1wCtDAEBAfj5559F+v3334ebm5tByk5NTUVqaqpI9+7d2yDlEhER1WYMQhIRERFVIy1atICvr69I//HHH/Dw8EBMTIwsIKdQKBAdHY1Jkybh8ePH4vyCBQvKrHXXsmVLfPjhhyJ97NgxzJo1q8woy0uXLmHixIlISUlRW097e3tZMOvrr7/G1q1bkZ+fL87l5uZi3759mDhxInJzc8WahxUZMmSIbCTogQMH8O6775ZZxzIrKwtffvkl5syZI/4mFhYW8PPzU1tvQ5gyZYqYfqtUKuHt7Y2dO3eW2eTlwoULePvtt8VU4GbNmmH69OkVlmtmZobXX39dpH/99VcAxbtnu7i4GKz+L774oggg5+bmIi4uTu8yW7duDR8fH5G+ffs2QkJC9C5XV9u2bcPhw4dFevTo0ZgzZ47Byr927Zo4trW1RadOnQxWNhERUW3F3bGJiIiIqpnp06fj1q1bOHjwIIDijTWmTZuGpk2bol27dsjPz8edO3fKbPQyc+ZMjBgxotwyp0yZgps3b4qdjM+cOYOzZ8+iY8eOaNKkCZKTk0Xw0dzcHDY2Nnj48KHKevr5+cHT0xMKhQJKpRJr1qzBtm3b4OjoiIKCAty6dUusF9m5c2f06NEDe/furbA8ExMTfP7555g6dSr+/PNPUc8zZ86gTZs2eOaZZ5CRkYG7d+/KAn5mZmZYvXq1bK1DY7KyssIXX3yBqVOnIj09HXl5eQgODsaGDRvg5OSEBg0a4M6dO7h//764plGjRli/fr3aDUzGjh2LsLAw2Tl3d3eD1t/W1ha9e/cWowRjYmLQpUsXvcv18vLC0aNH8ddffwEAduzYgeHDhxukbG3Ex8dj7dq1Il2/fn2YmprCz88Pubm5KCws1Gj0p6rRu+fOnRPHrq6uFY5uJSIiov/HICQRERFRNbR8+XI4OzsjJCREjKRLT09Henp6mbxWVlaYP38+3nzzTZVlBgUFwcHBARs3bkRubi6USiUSEhJkeWxtbbFy5Ups375dbRCyd+/eWLt2LT755BNRx3/++UeM4CvxyiuvIDg4GDt27FD7vm1sbLB3716sWLECBw8eFMGiu3fvlrtj93PPPYcVK1ZU+nRYZ2dnhIeHY8GCBWLzmJycHFy9erVM3rZt22L16tXo2rWr2nJdXFzQqVMnsTu2ubm5bHSkoYwePVoEIX/88Ue8++67epdpamqKoKAgeHh4oKioCAqFAv7+/jh06JDaUbCGlJGRIVtuoLCwUDYq0hCkQUhDTpUnIiKqzRiEJCIiIqqmPD098cYbb+DIkSM4f/48EhIS8OjRIxQVFcHGxgbOzs54+eWXMXr0aDRp0kSjMmfOnAk3NzeEh4fjxx9/REpKChQKBRwcHPDaa69h8uTJaNq0qUZrOALFm968+OKLOHDgAE6fPo07d+4gJycHzZo1Q9euXfHGG2+UWaNSnYYNGyIoKAjTpk1DVFQUYmNjcffuXWRkZKB+/fqwt7dHly5d8Nprr2HIkCFlpp9XFgcHB+zduxfnzp3D999/j8uXL+Phw4fIy8tDkyZN0KVLFwwdOhRubm5a1fG1114TQUhXV1fZJkCGMnz4cKxcuRKZmZn49ddfkZKSgtatW+tdbteuXfHWW2+J0ZxxcXHYunUrZs+erXfZ1cXly5fFqOF27drhX//6VxXXiIiIqGYwUapa7ZuIiIiI6qS3334bP/30EwDA29tbtt4fGdf06dPFSLvt27ejf//+RrnPqlWr8NVXXwEAfH198d577xnlPrVNQECAWNZg2bJlGD9+fBXXiIiIqGbg4iVERERERNVEamoqLly4AAB49tln0a9fP6Pda8qUKWjUqBEAYP/+/SgsLDTavWqLjIwMsSN7y5YtMXr06CquERERUc3BICQRERERUTWxf/9+sQ7mxIkTxS7WxtCsWTNMmTIFAHD//n385z//Mdq9aovw8HA8ffoUAPDBBx9U2VIARERENRGDkERERERE1cCpU6ewbds2AMUb9EyYMMHo95w+fTqaN28OANi0aZNGu0bXVVlZWWJzpS5dunAUJBERkZYYhCQiIiIiqgLfffcdRo4cCS8vLwwdOhTvvfce8vPzAQALFiyAlZWV0etgZWWFwMBAAMDNmzdx5MgRo9+zptq5cyceP34MU1NTfPrpp6hXj1+liIiItMEnJxERERFRFXBwcEBCQgJiY2Nx+/ZtcX7ChAkYN25cpdVj8ODBYlTf+vXrkZWVVWn3rinu378vdox/99130aVLlyquERERUc3DICQRERERURVo164dunfvDgsLC1haWqJ79+5YuXIlgoKCKr0uS5YsgaOjI1JTUxESElLp96/uVqxYgZycHLz44ovw9vau6uoQERHVSCZKpVJZ1ZUgIiIiIiIiIiKi2osjIYmIiIiIiIiIiMioGIQkIiIiIiIiIiIio2IQkoiIiIiIiIiIiIyKQUgiIiIiIiIiIiIyKgYhiYiIiIiIiIiIyKgYhCQiIiIiIiIiIiKjYhCSiIiIiIiIiIiIjIpBSCIiIiIiIiIiIjIqBiGJiIiIiIiIiIjIqBiEJCIiIiIiIiIiIqNiEJKIiIiIiIiIiIiMikFIIiIiIiIiIiIiMioGIYmIiIiIiIiIiMio/g8JruYhNNeGOAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "bintime = 1e-6\n", + "deadtime = 1e-5\n", + "length = 40\n", + "fftlen = 0.01\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 us; dead time = 10 us')\n", + "\n", + "r = 20000\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ok." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An additional note on the Zhang model: it is a numerical model, with multiple nested summations that are prone to numerical errors. The assumptions made in the Zhang paper (along the line of \"in practice the number of terms needed is very small…\") are assuming the case of RXTE, where 1/dead time was low with respect to the incident rate. This is true in the simulation in figure 4 of Zhang+95: 20,000 ct/s incident rate, 1/dead time = 100,000. However, this is not true in NuSTAR, depicted in our simulation below where the incident rate (2,000) is much larger than 1/dead time (400). A thorough estimate of the needed level of detail (that implies increasing the number of summed terms) versus increase of numerical errors has to be done. This is a quite long procedure, and I did not go into so much detail. This is the reason of the “wiggles” that can be seen in the model in red in the plot below.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAAQ1CAYAAADAlJPyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDTP27MtUZFeiKImiQhKhiELRIvGV7GTJVygla5SQpbIrSoks2Zeyb5N9H8MYszLb+f0xv7m/555z5sw5sx68no9Hj+77Pvd93dcZ59znPp/zua6PxWq1WgUAAAAAAAAAbvDK6Q4AAAAAAAAAuP0QWAQAAAAAAADgNgKLAAAAAAAAANxGYBEAAAAAAACA2wgsAgAAAAAAAHAbgUUAAAAAAAAAbiOwCAAAAAAAAMBtBBYBAAAAAAAAuI3AIgAAAAAAAAC3EVgEAAAAAAAA4DYCiwAAAAAAAADcRmARAAAAAAAAgNsILAIAAAAAAABwG4FFAAAAAAAAAG7zyekOALhzTZ48WVOmTJEk1alTR/PmzctwmwMHDtTy5cslSa1atdLYsWMz3GZW+Pfff7V79261b9/e4eMdO3bUzp07JUk9evRQz549s7N7cMP+/fu1ePFi7dq1S8HBwbJarSpevLiqVaumli1bqkGDBrJYLFly7hMnTmjBggXasWOHzp8/r/j4eBUrVkwVK1bUiy++qOeee04+Pu59lG/btk1Lly7V3r17deXKFfn4+KhEiRKqWbOmWrVqpUcffdSt9mJjY/Xrr7/qt99+0+HDhxUWFqa8efOqZMmSatCggdq0aaPAwEC32jx16pSWLl2q3bt36+zZswoPD1euXLlUpEgRPfzww2rcuLEaNWqUKX/3KVOmaPLkyZIy772Y2W0uWbJEQ4YMkSQdO3Ysw/2TJKvVqjfffFPbtm2TJM2dO1ePPfaYy8dnxfviypUrWrFihTZs2KCzZ88qNDRUuXPnVpkyZVSnTh21a9dO5cuXd7m9sLAwLVu2TNu2bVNQUJDCwsIkSYUKFVKVKlXUoEEDtWrVSrlz506zLavVqkceeURRUVFuPadevXqpe/fubh1zJ7tbP/vOnz+vZ555xlj/888/VaZMmQy3+/fff+vy5ct64YUXHD7eqFEjXbhwQZI0ZswYtW7dOsPnRNbI7M9md2T29dxqtWrt2rVasWKFDhw4oGvXrilPnjwqXry4Hn/8cbVp00aVK1d2q4/BwcFavHixdu7cqZMnT+rGjRvy8fFR4cKF9eCDD6pRo0Zq1qyZS/dEoaGhqlu3rlvnl6TPPvtMLVu2dPs44G5AYBEAMlFMTIymTJmiOXPmqHnz5qkGFuH54uLi9N///lcLFy60e+z06dM6ffq0fv31Vz355JMaM2aMihUrlqnnnzx5sqZPn674+HjT9nPnzuncuXP6888/Vb16dY0bN07lypVLs73IyEgNGDBAa9euNW2/deuWTpw4oRMnTmjJkiVq0aKFhg0bpnz58qXZ5okTJ9SrVy/9+++/pu3Xr1/X9evXdfjwYc2cOVP/+c9/9Pbbb6f5xSQ6OlpjxozR4sWLZbVaTY/FxcUpMjJSp0+f1k8//aSqVavqyy+/1H333ZdmP1Nz9OhRTZ8+Pd3HZ0eb58+f16effppp7SX78ccfjaCiO7LqfTF79mxNmjRJ0dHRduc7cuSIjhw5onnz5umtt95S79695eWV+qAbq9Wq+fPn64svvlBMTIzd45cuXdKlS5e0bt06TZ48WaNHj9bTTz/ttH9nzpxxO6gIZJXr16/r888/19KlS/X+++/ndHeQAVnx2eyqrLieBwcHq3fv3vr7779N22NjY3Xjxg0FBQVp3rx5euONN/Thhx/Kz8/PaXvx8fGaPHmyZs6cqbi4OLs2o6Ojdf78ef3222+aNGmSxo8fr4ceeshpm0eOHEnzeQBwD4FFAMhEo0eP1qJFi3K6G8ggq9WqDz74wHSjnytXLlWqVEne3t76999/FRkZKUnavHmzOnfurIULFyp//vyZcv5Ro0aZMnx9fHxUqVIl5cmTRydOnND169clSQcPHlTHjh21aNEilS5dOtX2bt26pS5dumjfvn3GtoCAAFWsWFEJCQkKCgrSzZs3JUkrVqzQpUuXNGvWLKc3/KdOndJrr71m9EWSihYtqvvvv19hYWH6999/ZbVaFRcXpy+++ELh4eHq27dvqu3dvHlTXbp00Z49e0zby5Urp6JFiyo6OlrHjh1TbGysJOnw4cN6+eWX9f3336tSpUqptpuauLg4DRw40O6LSkZkdpuhoaF65513FB4enintJTt//rzGjRvn9nFZ8b6wWq0aOXKkfvjhB2Obt7e3AgMDVbRoUQUHB+vMmTOSpMTERH3zzTe6ceOGRo4cmWqbY8aM0Zw5c0zbihcvrsDAQCUkJOjkyZNG9uK1a9fUrVs3jRkzRq1atUq1TdsvogULFlT16tVT3deWu9m6gCv69OmjLVu25HQ3kEFZ8dnsqqy4noeGhur111/X2bNnjW0FCxbUAw88oJiYGB07dkzx8fGyWq2aPXu2rly5ovHjx6faXmJionr37q0//vjDtL1s2bIqWbKkYmNjFRQUZPwgde7cOXXo0EHffPONnnjiiVTbtb2eFy9eXBUqVEh1X1uZ/QMycCchsAgAmSgzgxTIObNmzTLdbHfo0EEffvihkSlw8+ZNfffdd5o8ebLi4+N18uRJDR482Bj6nxG///67KajYpEkTDRs2TEWKFJGU9BpbtmyZxowZo5iYGF29elU9e/bU0qVLU80I/PTTT40vLhaLRT179lTXrl2NIaDh4eGaPHmy5s6dK0natWuXvvjiCw0aNMhhewkJCfrggw+MoGKBAgU0cuRINWnSxOjDuXPn9NFHH2n79u2SpBkzZqhmzZqm4YC2xowZYwoqNm3aVP369TMNF4yJidG8efM0adIkxcXFKSIiQu+9955WrVrl0nBWW19//XWmZy1kZpuXLl3SO++8oxMnTmRKe8msVqsGDx5slxnoiqx4X8yYMcMUVGzSpIn69eunsmXLGtsOHz6sIUOG6PDhw5KkhQsX6umnn1ajRo3s2lu1apUpqFi5cmUNGzZMjzzyiLEtMTFRa9eu1ciRIxUSEiKr1aqhQ4eqSpUqqQ7PO3r0qLHcqFEjjRkzJtXnBGQ17jXuDJn92eyOrLieDxo0yAgq5sqVS4MGDdIrr7xiDE8OCQnR6NGjtWrVKknSr7/+qocfflidOnVy2N63335rCio+9thjGjJkiOnHxLi4OC1fvlxjx45VVFSU4uLi9J///EerVq1KNRBo+zndtm1b9ejRw+nfCkDaKN4C4LYyduxYHTt2TMeOHfPY+RVdMW/ePON53C1zTN0uQkNDNXXqVGO9ffv2Gj58uGn4Ue7cudWtWzdT1tSaNWv0zz//ZOjccXFxpmGvDRs21IQJE4ygoiT5+vqqXbt2mjJlinGzfujQIf3yyy8O2zx+/LgWLFhgrPfp00fvv/++KRCXP39+DRkyxDSk7vvvv9f58+cdtrl48WIj0OLj46Pp06eradOmpsBm2bJl9e2335rmMfriiy+UkJBg196pU6e0ePFiY71t27aaOHGi3RxkefLk0TvvvKOJEyca2y5cuGB86XKVpw+B3rx5s1q1aqWgoKBMac/WDz/8oB07drh9XFa8L86fP2/MRSklfbGdOHGiKagoSVWrVtWcOXNUokQJY9uMGTPs2ktMTNTnn39urFepUkU//vijKagoSV5eXmrcuLF+/PFHFSpUSFLSe8/22JRsv4imJ0MWyAnr1q0z7jWYX9GzZMVns6uy4nq+adMmbdiwwVgfO3as2rdvb5rzsGjRovryyy/10ksvGdu++uorIzPSVnh4uOkztX79+po1a5bd9dfX11dt27bVd999p1y5ckmSIiIiTM8vJdsfityd6xGAYwQWAQCwsWTJEmMutYIFC6p///6p7tumTRvT3GyzZ8/O0LnXrFmjixcvSkoK2A0bNizVueSefPJJtWvXLs1zz5s3zwjmlStXTl27dk31/D169FDFihUlJQVa5s+f73A/20BemzZtVKtWLYf7+fr66tNPP5Wvr6+kpDkZN27caLffypUrjT4WLFgwzWyMZ555Ro0bNzbWf/31V6f724qLi9OAAQOMjJ/MmK8qs9oMDw/X2LFj9fbbb5uGmGeWc+fOGcEzd4ftZ8X7YtasWcbQ9sqVK+ujjz5KNes2f/786tatm7G+Z88e3bhxw7TPzp07jUIVkjRixAj5+/un2s+yZcuavrBv2bIl1b+7bWCRL6IAMiorPptdlRXXc9tM8SeffFLNmjVLtc3hw4frnnvukZQ0X2hyUUZba9asMfro6+ur//73v04Lszz00EPq0KGDsf777787/CHz1q1bOnXqlLHOD0VA5iCwCACAjd9++81Yfv75550GJiSZgnt//fVXuoaYJkseHiRJTzzxhEqVKuXyuQ8dOqRz586ZHk9MTNTq1auN9datWzsteuHl5aW2bdsa67bHJjt69KhpeO7LL7/stI/FixdXw4YNjfXff//dbp/k4dJS0jDTtP7mkkxDqo8ePWoEqNIyffp0I1vhpZdeUpUqVVw6LqvbXLx4sZ577jnNnj1biYmJkpKyO5zNS+kOq9WqIUOGGK/PgQMHunV8Zr8v4uLitHLlSmN9yJAh8vb2dtpm06ZN9frrr6tHjx4aPHiw3ZdG29dR6dKl9fDDDzttTzK/jhITE43h1rZCQ0N15coVY53AIoCMyIrPZndk9vX8xo0b2rp1q7Hepk0bp+35+/urRYsWxnpa9wU1a9ZUyZIlnbYpma/nYWFhdvdEknTs2DHjsyNv3ryZUp0dAHMsAshmkZGR+uGHH7R69WqdPXtW8fHxKlasmGrXrq3mzZvr8ccfd3r8wIEDjV82W7VqZTccetmyZUa2U5cuXTRgwAAlJibq999/16+//qojR47o6tWrypMnj8qUKaOnn35ar776qooWLZqh5+XoF8/ly5ebfoU9duyYsdyxY0ft3LlTUtIv0SmHQ0+ePNmYx2bEiBFq3769oqOjtXLlSq1cuVKnT59WeHi4ihQposqVK6tdu3Z66qmnTG2cOnVKCxYs0ObNm40suDJlyqhBgwZ64403XH7OoaGhWrZsmTZt2qRTp07p+vXr8vf3V7FixfTYY4+pRYsWaVbgu12EhYWZMpOefPLJNI95/PHH5e3trYSEBN28eVNbt27Vs88+6/a5rVaraYhqvXr10jymUqVKKlq0qEJCQiQlDXvr3Lmz8fjRo0dNGViuPB/b8168eFFHjx41BVJsb/YLFCigBx980KU2k+dJ2rBhg6xWqykz7dq1a8Zy+fLl02xPSsqysBUWFpbmxOpHjhzR119/LSkpaDd48OAMz62UWW3Onz/fKCgiSc8++6xGjBihkydPZqh/yWyHQD/55JNq06aNBg8e7NKxWfG++Pvvv42iNPfdd5/q1KmTZpuFChXS0KFDU308JCREXl5eSkxM1AMPPJBme5L968hRxqLtcy9RooTdMdnhxIkTWr58uXbt2qXTp08rMjJSefPmVeHChVWjRg01aNBATZo0cRqcPX/+vOmLt6PP0IzYtm2bli5dqn/++UdXrlxRQECAAgMD1axZM7Vt21YBAQFut5nZnz+JiYlav369tmzZoj179igkJERhYWHy9fVV/vz5FRgYqNq1a6tVq1Z2Q/JTEx0drWXLlumPP/7QsWPHFBUVpSJFiqh69epq27atGjRo4PbzdiTlv1+yKVOmGPcLpUuX1rp164zHGjVqZGTxjhkzxm44tO091YwZM9SgQQOFhYVp2bJl+v3333Xu3DlFR0erePHievDBB9WhQwe7qQUOHjyohQsXaufOnbp8+bJ8fHx033336dlnn9Xrr7/ucgb3hQsXtHz5cm3evFnnz59XWFiY8ubNq1KlSumJJ55Qq1atXP588HRZ8dnsqqy4nu/cudMI1lksFpfuX+rVq2dkP/7zzz+6ceOGChQoYDx+9epVWSwWWa3WDF3P77vvPtM222HQlSpVSjVLPivt379fK1as0N9//63z588rJiZG+fLlU5EiRVSrVi01atTI7p4e8HQEFgFkm/3796tXr15GkCvZ6dOndfr0aS1evFhPPfWUxo4dq8KFC2fKOc+fP6++ffvaVZq9deuWwsLCdPDgQc2aNUvDhw83zfniafbv36++ffsa1VGTXbhwQRcuXNCff/6ptm3basSIEfL29tacOXM0btw4uwneg4KCFBQUpGXLlunrr79O8wvZd999p0mTJhnDUZLFxsYqLCxMQUFBmjdvnpo2bar//ve/Ga6KbBsYzghHX6BccezYMVmtVmO9WrVqaR7j7++vwMBAY2jNgQMH0hVYvHDhgqn6r6tVZytVqmQEFg8cOGB6zPYG2tfX16XKh/fff79y585tVKI8cOCA6cuLbZtVqlRx6abc9vgbN27o7Nmzuvfee41tq1ev1q1btxQcHOxy8CHlHFO2X0gcSVmxecSIEWkek5asaPO+++5T37599dxzz0lSpgQWbYdA582bV6NGjXLr+Kx4X9jO0/XYY4+51Z/UfPLJJ/r4448VEhKi+Ph4l45J+TpydA3LyWHQiYmJGjdunL777jsjkzVZWFiYwsLCdPLkSS1fvlz33XefPv30U5cyNTNTaGioBgwYoL/++sth//bv36/58+drwoQJbrWb2Z8/mzdv1qhRo0zDIJPFxcUpOjpaly9f1s6dO/X111/rrbfe0gcffOD0Grd161b179/fuAYnu3Tpki5duqQ1a9aoadOm+s9//uPGM885Gzdu1ODBg3X16lXT9jNnzujMmTP65Zdf1LNnT/Xo0UMJCQmaOHGiZsyYYffaPHjwoA4ePKilS5dq9uzZToO0CQkJmjBhgr777ju7zPPr16/r+vXrOnTokGbNmqW2bdtq8ODBGa6KbPvjbUbMnTs3XdevrPhsdlVWXM9tn0+ZMmVc+hy07XtiYqIOHTpkquQ8e/ZsxcbG6sqVK06HQNvy9Ov5rVu3NGTIEFO2frLQ0FCFhoYqKChICxYsULVq1TR+/Hi7wCjgqQgsAsgWFy5cUNeuXY3ASaFChVS+fHnFxMTo2LFjxpfAjRs3qmPHjpo3b16Gg4uhoaF68803jQp1+fPn1wMPPCCr1aoTJ04YfYmOjtagQYNUvHhxU6EJdyT/4hsUFGQMmStWrJgxJ05GHDt2TJ9//rkxuXXJkiVVtmxZ3bhxQ0FBQcYN4qJFi1ShQgXFxcXps88+k5RUla9y5cry9vZWUFCQ0UZoaKh69uyp3377zeEQmORhk0uXLjVtv/fee1WiRAlFR0crKChIt27dkpQ0jOXff//VnDlzMpz9mZNOnz5tLPv5+bk09EZKupFOvuFOfr1l5NySFBgY6PK5k6U8t22bpUuXdunm3GKxqFSpUkZAK2Uw27ZN2+Cgq31MbjPlsbly5XL5OUvmoWClS5c2Jm1PzVdffWV8+WnevHm6gr9Z2WbVqlX15ptvqnnz5i5/iXJFyirQ/fv3d/l1nSwr3he2Gdy2X6q3bt2qFStWaM+ePQoODlauXLlUtmxZNWzYUO3bt0/zc8HHx8et55dySGG5cuXs9klZuOXKlStatmyZ/vrrL504cUJRUVEqWLCgKlasqEaNGqlNmzbKkyePy31wZvTo0aYq8blz51b58uWVP39+hYWF6ezZs0bg7fTp03rzzTeNz4LsEBoaqtdee80UAPf19VXlypWVO3dunThxQqGhoTp//rzeeust5c2bN802s+LzZ9WqVerXr58p4FysWDEFBgbK19dXN27c0PHjx43AVnx8vKZPn658+fLprbfectjm2rVr1atXL1Ob99xzj8qVK2f0MS4uzsj8y6jcuXMb9xoHDhww5hgNDAw0rp22hb7ctXXrVs2bN894PoGBgSpRooSuXr1q+vedPHmyqlSpoi1btuj777+XlPSDRcWKFZWYmKijR48awa9z586pV69eWrp0qcMAbWxsrLp3765NmzYZ2ywWi8qXL68iRYooPDxcQUFBio+PV0JCgn788UcFBQXp22+/dWnKDE+VFZ/N6Tl3Zl3P03NfULRoUVOg9MyZM6bAYnL/3BmqbHs9z507t0qXLm23T8rr+dmzZ7V06VJt2bJFp0+f1s2bN3XPPfeoatWqaty4sV588cVM+0z+4IMPTBnFefPmVbly5RQQEKBr167p7Nmzxt/j0KFDev311/Xzzz8b81ECnozAIoBskTwUJ7nC3YsvvmgM2QoNDdW4ceO0bNkySUmV8kaMGKFJkyZl6Jw//fSTpKQb/UGDBqlZs2bGOW/duqU5c+boyy+/VGJiohITEzV+/HhTZVp3zJw5U5J5WFG9evUyZZjZjz/+KCkpk2nkyJGmX8ePHj2qt956y8iW+PLLLxUTEyOLxaJu3brpnXfeMW6+o6Oj9emnnxpVCC9fvqyVK1ea5s5JNmPGDNOXumeeeUZ9+/Y1femOiYnRggULNGHCBN28eVMnTpzQhx9+qO+++y7NudJSU7x4cZeG5bjSTnrYZp24EyC13Tdl5kp6zu3l5eXyF0Rn57ZdT2uYsK0iRYoYX15Stmk715yrf6PChQsbw6gctemubdu2GVMJSEnD/Zw5dOiQvvnmG0lJ14MhQ4Zk6PxZ0eaYMWMy3CdH5s+fb/yt6tat6/D9npaseF/YBlqKFy+u4OBgDR061K64T0xMjMLCwnTgwAF99913Gj58uJo3b+7uU3AoNDTUVAShYsWKDr/E2mbj7Nq1S3PmzDG+/CULCQlRSEiItmzZounTp+uTTz7J8FC25Iy8ZO+//77eeecdU9XYW7du6YcfftC4ceOUkJCg6OhojR8/XtOmTcvQuV01dOhQU9CpQ4cO+uCDD4yMpYSEBK1evVojR47U9evXTcP9U5PZnz9Xr17V8OHDjYBZxYoV9cknn9hl7MfExGjRokX64osvjKDlN998o86dOxsFqJJdvHhRAwYMMNosWLCghg8frqZNmxpz5YWFhWnSpEn6/vvvdejQoTSfd1qKFCli3GvYTqfSokULu+lU0iN5WOrDDz+sYcOGmTLZtm3bpu7du5t+oIiMjJSfn5/69eun9u3bG3+j69ev66OPPtLatWslJV0rt2zZ4vCzfdSoUaag4iuvvKIePXqYKsDfuHFDM2fONDIj//77bw0bNsxpFfe0BAYGZsq9Rnoz1LPiszk9586s63l67gukpM/O5O8HGb0vOHHihH755RdjvW7duqZrpZT0o4Xtj1q//PKLPv74Y7v5ei9fvqzLly9r3bp1mj59usaNG5fhKX82bNhgBBW9vLw0bNgwvfzyy6ZrS0REhL7++mvNmDFDUtLfZNq0afroo48ydG4gOxBYBJBt/P39NXfuXLvCBoULF9aYMWMUEBBgfIlavXq1/v77b7u5fNxVoEABLViwwC4TKleuXHrnnXcUERFhBAf279+v4ODgdAelslLJkiW1YMECFSpUyLS9cuXK6t+/v/r16ydJpsIMb775pmlff39/jRgxQnv37jW+KG/dutUu0HDu3DlNnDjRWH/99dcdzmuWJ08evfnmm6pevbrefPNNxcXFaefOnVq2bJleeeWVdD3PevXquTQ3T1ax/dLrTmVf2yyclJVqXWV7XEBAgNOJ3F09d3qfj+2+Kdu0XXe1TS8vL/n7+ysiIkKSTEO+3RUWFma6yfb19TXNK5lSbGysBg4caAQAhg0bluFs6KxoMyucPXtWX3zxhaSk97+7Q6CTZcX7wnaoZXR0tDp06GAMY8uTJ48qVqwoPz8/nTx50piDMzw8XH379lVYWJhef/319DwVg9Vq1dChQ03PzVFV1pQVRJOHcHt7e+vee+9V0aJFFR4eruPHjxtD4kNCQvTee+9p5MiRaRY3ciZ5XlJJatiwocPhtLly5TKuv8n/1ps2bVJ0dLRdRleZMmVMX6ozavfu3UbwSJK6deum3r17m/bx9vZWs2bNVKFCBbVr185uWHNKWfH58+OPPxrXnHz58mnmzJkOgzl58uRR586d5eXlZbxXbty4of3799vdi0yZMsUYAZA7d27NmTPHblhlwYIFjWvD5MmTnT5vT1GtWjXNmTPHLiBTt25dvfPOO8Zw9uTn/sUXX6hx48amfQsVKqTPP/9czz77rPE+37p1q10gb/fu3Vq4cKGx3r9/f4fvwQIFCujDDz9UpUqV9OGHH0qSVq5cqTZt2qR7lEnLli3VsmXLdB2bGbLiszmrz+3sep6e+4KU+2bkviD5M9l2+h9HmcZnzpwxFZ5JDs77+vrq/vvvV6FChXT9+nUdP37cGN5/+vRpdezYUZMnT87QfKm22ZSvvfaa2rdvb7dPvnz51LdvX4WHhxvvjdWrVxNYxG2BqtAAsk2vXr2cVkvt37+/adhCcqZeRrzxxhtOh1em/GDPzC9dmek///mPXVAx2TPPPGMaYlS6dOlUAy0Wi0VPP/20se5o2O6cOXOMgEnZsmXTrB5bu3ZtderUyVhPznq4HdnO75Tyi5UztvM9uVqdOKXkDJnMPHdWPJ/M6KdtG+6IjY3Vf/7zH9M8Sh07dnQ6f9dXX32loKAgSVKTJk3UtGnTdJ07q9vMbMlDoGNiYiRJffv2TXf1y6x4Hdl+ifzkk090/vx55cqVS4MGDdKOHTu0aNEizZ8/X5s3b9bUqVONLBir1aoxY8Zo9+7d6Xouyb788ktTUOyhhx4yVSlNZltBVEq6hnbu3Fnr1q3Tb7/9prlz5+qnn37S9u3b9cEHHxjZJwkJCRoxYkSG+mmbBZTWv93LL7+sWrVq6cUXX9Tbb7+doer0rkoeFSAlZdQ7y5qrUKGCevXqlWabWfH5Y1tw6pVXXkkzQyxloCw4ONi0Hhsba6qq+/bbbzudq6179+4uzWPnCQYMGJDqezzlVA+PPPKI3d8qWZ48eUxBP0f3GsnZl8ltOQoq2nrhhRdM19pZs2Y53d+T5eS9xp12X5D8Wbd//35jW5MmTfToo4/a7Ws7DFpKCij26tVLmzZt0sqVKzV37lytXLlSmzdv1htvvGHcW9+8eVO9e/e2m7LGHbbXc0dDtG299tprql27tlq3bq127drZZcgDnojAIoBs4e/vn2YWm5+fn6ngxl9//WWaYDo9UrvpTVaqVClTVkdyRpUnsVgsTp9HQECAKVuqQYMGTrPdbDMyHT3fNWvWGMvNmze3GwLmiG3hmxMnTmTKfFI5wfbXblczBiWZ5t9xtWhEdpw7vW3aDiVM2abtujtD3p216YrY2Fj16NHDVDm7Ro0aRgaLI4cOHTKGFCUPVcyorGgzK8ybN0+7du2SlBR86dChQ7rbyorXpu0X0/DwcPn6+mrGjBl64403TPNlenl56dlnn9WCBQuMip/x8fEZmmbiq6++Mip5S0kZUV9++aXD52Y7zNfLy0sTJkzQ4MGDTUM1paRsnvfee08zZswwnndcXJxGjx6d7s8x23MsX75c+/btS3XfwoUL68cff9Tnn3+uXr16ZWiuPVfZDltv3bp1mvOQtWnTJs2gQ1Z8/nz//ffasWOHFi9ebJfJ70jKoZwpv9Tv3LnTCNxaLJY07228vLwcZid5msKFCzstRJLyB5yGDRs6bc/ZvcbNmzdNQ6BbtWrlUh9t/623bduW7mBUTsuKz+asPrez67ntenY+H6vVqmHDhpmKoZQtWzbV7Hzb7PNcuXJp7ty56t69u90P98lTKNlOURIZGZmh4fe21/M5c+Y4LCKVrFKlSpo/f77GjBmjHj16uBWsBXIKgUUA2aJmzZouVXu1/YUxeTL19PL19XU4EX9KtlXjUlZR9gSlSpVKc8J725uO+++/3+m+tl/aU1ZyvHDhgi5fvmysly9f3qU+VqhQwdQH24qvtxPbm9yUfxtnbG+IXfkinF3nTm+bthlaztpMOS+Rq226W9EzMjJS77zzjimQUapUKU2ePDnVv3fK4cofffRRhidAz4o2s8LZs2c1fvx4SUnXhk8++cSl6t2pyYrXZsr+vPXWW06DGmXKlFH//v2N9QMHDmjv3r0u9yXZuHHjTENtfX19NXHixFQzAl966SXt27dPv/zyixYuXJhmdmrdunVNmVeHDh3S33//7XY/paSsm+S/U2RkpNq1a6euXbtq7ty5OnHiRLrazCxnzpwxZeC4Mm1J3rx5nVa7z8rPn4IFC+qhhx5ymq0YFxenAwcOmDLpJPvrXHLAXkp6Xboyfcrjjz+e5j457YEHHnD6eMrgRkbuNfbv32+633L139r29ZP873U7yorP5qw+d3bfa6QlLi5Offv21aJFi4xt+fPn19SpU1OtEN+9e3f9/fff+vnnn7Vo0SLVqlXL6TlatWplmtN3zZo1unjxolv9TNakSRNj+dKlS3rxxRf1/vvva9GiRXbVrIHbEXMsAsgWrgT4JPsb1UuXLqW7umX+/Pld+uU0vTdE2cXdwEVaQUhnAYaUw5X69u2rvn37unV+yX7o2O0iZVEEV9num1Z14tTYVpF159y2mV8pz50Vzyd37tzG/FrpbdOdwOKVK1fUrVs3U/GDEiVK6LvvvnP6hX7q1KnGcOVGjRrpxRdfdPmc2dlmZrNarRo0aJAxBLp3794uV+lMTVa8jvz9/Y3h0BaLxaU5E1988UWNGjXKyBbbsmWLHn74YZf6Ehsbq2HDhhnFtaT/BRXTmqctd+7cbn0Ovf7666aMyM2bNzsclpeW8uXL691339X06dMlJf3bbt68WZs3b5aUlBH2xBNPqH79+qpfv36qX6azgm1QUXK9Emz58uVTHR6eXZ8/4eHhOnz4sM6ePauzZ8/q3LlzOnXqlE6ePOnSj4u2z93V512mTBlTBVxPlJ33GikrGqc3ozPl6/B2kZP3Gll1X5DZbToTGRmpXr16GddCKWl+wm+//VaVKlVyemzevHmdTl2QUseOHU1FYbZs2ZKuecQbNGig5s2bG23FxcVp7dq1xpQcgYGBxvW8Xr16pntC4HZAYBFAtnD1C0/KSZ/TOzm15N48L57M3ZvHjGQmZeTvnRntbNmyJVPmTerSpUu6isAkD7WU/jc5vStsCxLYtuEO2+qSUVFRslqtLv1b2vYz5bnT+3yctVmgQAHjcVfbTExMNM355urf6OjRo3r33XdNWUxly5bV7Nmznc6rePDgQX377bdGfz/++GOXzudMVrSZFebOnWsEbmrWrGmafy69suJ9ERAQYAQW7733XpeG7vr5+alatWpGxpjtMGVnwsLC1LNnT1Ml8Tx58mjixIkZrtzsSLFixVS2bFljSG7KIIo7PvjgAxUrVkwTJkywK24QHBys5cuXa/ny5fL19dWTTz6pt99+O8NFz1yRXFAnWVpBpmTOquhm9efP+vXrNXv2bO3atcvpj4g+Pj5Oh2WGhoYay64+b4vFonz58nl0YDE77zUyUqjDlitVxh35+eeftWLFigyfv1+/fm4FqZJlxWdzVp/b2fXc9n2d1c/nwoUL6tatm/Ejn5RUMGjGjBl68MEHXT63q6pXry5fX1/jR4eMXM/Hjh2r+++/XzNmzLC7FiT/0LFgwQLlyZNHjRo10nvvvZfu5AoguxFYBOBRUs5FdacEBzMiIzfv7kr5Zap27drp+lXcWdDHmeDgYNMv0On1wgsvpOs42wy4lF+cnQkJCTGW0zu3me25ExISdP36dZcqDTs7t+2wP3eej23F3pTzjRUvXlwXLlxwq83Q0FDTF/mUbTqybt069enTxxSQrFKlimbMmOH0+NjYWA0aNMh4LQ8aNCjNYg1pyYo2s8KZM2f05ZdfSkoKEowePdqt+a5SkxXvi0KFCunSpUvGsqts3xOuBBVOnTqlbt26mSbdL1iwoKZNm5bmMLiMKFKkiBFYzEjAzGKx6LXXXlOrVq20Zs0arV27Vlu2bLGrrhwXF6f169dr/fr1DqszZ7b0ThviLFs5qz5/4uLiNGTIEP38888O9/f391f58uVVrVo1PfLII6pfv77ToctZ8dw9QU7ea6SsGO2q9F6Hz549myn3Gu+88066jsuKz2ZXZcX1PL1t2u7ryvPZt2+funfvbvo7lC5dWt9++63LI6Pc5ePjo4IFCxrPPyPXc19fX/Xo0UMdO3bUb7/9pj///FM7duywy/KMiYnRr7/+qt9//11Dhw69LeZoBQgsAsgWKb8EpSblr9jZObQL9n/voUOHpjms5E5iO6wtOjpaV69edSlQaFssIK15p1w5d3KbrgQWbefmSXnu++67z7SfK1mQVqvVCBymbCN5PXkOM0eVPh1JWUwhZZspff/99xo1apQpGPnkk09q4sSJaWYI/fHHH0Ymg7e3t3755RfTMKaUbCvBr1ixwjRvX3I2Sla0mRVmzpxpDIEOCAjQJ5984vKx48aNM2Wd2M4zlxXviwceeECHDx+W5F7RLHeKB/3zzz967733TAHIMmXKaMaMGVn2JTSZ7RdFV+YXTou/v79atmypli1bKj4+Xvv379eOHTu0detW/fPPP6a/y/Tp01W5cmU9//zzGT5valJ+VoSHh7s0dM9ZNlNWff6MHz/eFFQsXbq0WrZsqYcfflgVK1ZUiRIlTNfFtIpI2I6scOe1604m150u5b+1K9f2O0lWfDa7Kiuu57Z9cfW+4MqVK6asvbSez9q1a/Xhhx+arq3VqlXT119/ne4gq6tsp5zJjOt5gQIF9Oqrr+rVV1/VrVu39M8//xjX8wMHDhj3PgkJCfr4449VtWpV1ahRI8PnBbISgUUA2cLViYlTFmvJ6NxgcE/KOesuXbqUrYHF1q1bmyqDZ7eqVavKYrEYmbNHjhxR/fr1nR4TFRVlupFOb9CodOnSKliwoBEEOXLkiEs3kkePHk313NWqVTOWY2JidOrUqTQDKidPnjTduFepUsWuzWXLltmd25kjR44YywUKFFDp0qVT3XfatGmaMGGCadsrr7yiESNGpFl1VjJ/AUhISHArKyV5KFKy5GyUrGgzK9j2MzQ01K1+OiuCkBXvC9vryoULFxQbG+tSRpftsPiUlZltbdmyRd27dzd9cX3ooYc0bdo0l7OKrVarJk6cqGvXrunatWtq3LixqSptahITE00BgJIlS7p0Plf5+PioVq1aqlWrlhE4nT9/vqZMmWL8G82ZMydLA4uBgYGm9RMnTrhUxMTZMMKs+Py5cuWK5s6da6w/9dRTmjJlitPXWloZSbb3Ja4WmAsLC8u0od53Akf/1tk55LNnz57q2bNntp0vpaz4bHZVVlzPbZ/PmTNnFBMTk+YPDbb3BRaLxel7/aefftLgwYNNxV4aNmyoL774wuVAX0REhGbMmGFcz19//XWXMmXDwsJMSQ+ZfT3PlSuX6tatq7p16+qDDz5QcHCwpk+frh9++EFS0ufQ3Llz9cUXX2TqeYHMRlVoANli3759dsOcHdm6dauxXLJkSadfHJH5KlSoYMrG2L59u0vHhYaGauDAgZo0aZKWLFli+lJ9O8mbN6+qVq1qrNu+HlOzfft249dlb29v1alTJ93nt62K68q5jx49ahoSlHL4XoUKFUxZj9u2bUuzzS1bthjLhQoVsrvZt31+ISEh+vfff9Ns0/a5OKv8+80339gFFXv37q1Ro0a5FFRE1siK98UTTzxhLMfExJhed6mJiIgwzauV2nxaO3fu1HvvvWcKKj777LOaN2+eW1MVWCwWrVixQosWLdKff/6pVatWuXTc/v37TUGk9BRuuXnzpv766y/NmTNHI0aMML3PUypYsKB69OhhKijgasArve677z63ry3x8fHat29fqo9nxefP5s2bTRmIAwcOTDOAbRvwkOyLutWsWdNYDg4Odmmuz/RWBr9TPfzww6YMPVf/rY8fP67Bgwdr6tSp+umnn0zzXd5OsuKz2VVZcT1/5JFHjM/ohIQE7dixI802bc9btWrVVOdf/eWXXzRo0CBTULF9+/aaOnWqW9mDuXPn1qxZs7RkyRKtX79ef/75p0vHbdmyxfT9JT3X8/DwcK1fv14zZ87UsGHDnE6nULx4cQ0fPtw0T3hWX8+BzEBgEUC2CAkJ0fr1653uEx4ebqrY+eyzz2Z1tzJdds5RlBW8vLzUoEEDY3358uUuTbI+b948LV++XFOnTtWQIUN0/fr1rOxmlmrSpImxvGLFCmNoaWp+/PFHY/mJJ57I0PD9xo0bG8vr169Ps7qp7bnLly9v90XDYrHoueeeM9YXLVrktGhBYmKiFi1aZKw3adLE7jVdsWJF0zCoBQsWOO3jpUuXtGHDBmM9tSyqtWvXmn6R9/b21pgxY9StWzen7afUunVrHTt2zOX/bL8g9ejRw/RYchA0K9rMCmPHjnWrn7bmzp2b6mNS5r8vqlataspQmjFjRpo/Pi1YsMD4Qubr66unn37abp8LFy7o/fffN2X2tGvXTpMnT07XnL22/5Zbtmxx6UeT5CrOUlLQL61sIEfi4uL07rvvavTo0frxxx+1bt26NI954IEHjGVfX1+3z+mOlNeWZcuWpTnU948//nAaCMqKzx/beeEk1+bkmzdvnmk95dDounXrml7PthmRqUnrOumu2/1eo3DhwqaM/O+//96luSu/+eYbLV26VJMmTdLgwYOdfp55sqz4bHZHZl/P8+fPb/phM63Xe1RUlKl4TtOmTR3ud+DAAQ0cOND0t+nVq5dGjBiR5lQYKfn6+pp+FFi1alWa16z4+HijaJuUdI21Dcq66tKlS+rWrZs+++wzLVy40FRILDXZeT0HMgOBRQDZxlnWRUJCgoYOHWp8IfD29s6UaqbZzXai+ZSTMd8uunTpYiyHhYWpf//+piGWKR04cMA0H9tDDz2k6tWrZ2kfs1KbNm2MITxXr17VyJEjU9138eLF2rRpk7Ge0dds48aNjS++sbGxGjhwYKrzfW3atEmLFy821jt27Ohwvw4dOhhfQI4ePaqpU6emev6JEycaGYheXl6ptvnaa68ZywsWLEg14yEuLk4DBgwwvjCWKlXK4Q8GwcHBGjJkiLFusVj06aef5uiweJhlxfuic+fOxvLff/+tb775JtU2U752mzVrZjevVkJCgvr27WsKRrVr104jR45MdxGbl19+2ViOj4/XsGHDnM7BN2vWLNOPaG+88YZLcw+mlC9fPlNmzNdff+00KGe1WvXHH38Y6+n58uuuN99808j+u3r1qoYNG5ZqcCQ4OFijR49Os83M/vxJWWnW9nXpyNdff236IUSyL9aSO3du02t3wYIFTn84Xbp0qf766y+n53XXnXavcerUKf33v/91+uPCunXrTMGoxo0bp7tYmifIis9mV2XF9dz2vmD9+vXGlCmOjBgxwrie+fv7m66zyaKiotSnTx/T++/DDz9U9+7dU203LbbnCQsLS/OaNHbsWGMuYEl699130xXQrVixomkKmC+//NLp+/bWrVum61B2XM+BjCKwCCDbBAcHq23btnZDPs6dO6du3brp999/N7Z1797dbg6n24Htl5i9e/felnMqVa9eXR06dDDW169fr44dO9oNYYuNjdX333+vN99807hB8vb21qBBg7K1v5mtSJEieuutt4z1ZcuWqU+fPqbqhTdv3tT06dM1fPhwY1uDBg1M2TYpVapUyfgvtS8Ffn5++vDDD431rVu36u233zZNmh4fH69FixapZ8+extCgihUrmoZB2qpcubJatWplrE+ZMkWjR482FR2IiIjQJ598Ysq0ateunekXc1vt2rUzshbj4+P1/vvva/HixaaAy7lz5/TWW2+ZhkT169fP4TDECRMmmApsvPvuu3rxxRcdnhs5IyveFy+//LIpy2X8+PEaNmyYKVM3MTFRq1atUqdOnYysmnz58jmserxy5UqjsJCUVFXYti/p8eijj5qybDdv3qyuXbvqxIkTpv1CQkI0bNgwffrpp8a2atWqmf5m7rINvJw/f15vvfWW9u/fb7dfcHCwevfurd27dxvbbANftm3YXocGDhyY7r5JSQUcbL/k//rrr3rvvffs5lTevHmz2rdvb5c96Ehmf/488cQTpkDAiBEjHGZ/7tu3Tz169ND48ePtHrOtTJ/snXfeMTJurVarevbsqVmzZpmCBTExMZoyZYo++uijNJ+3u2zvNbZt2+Y0+OqpGjdubMo6Xrhwod599127YZ+RkZGaNm2a/vOf/xiBR39/f9Nn5e0oKz6bXX2PZ8X1vFGjRqaM/KFDh+rrr782vSeuXr2q3r17mwLE3bt3d1iobvbs2aY5WZs3b653333X4bld9eKLL+rhhx821pcuXaoPPvhAly5dMu139uxZ9ejRw5S93KhRI7Vo0SJd57VYLOratauxfuDAAb333nt2nyOSdPr0ab399tvGc/fy8rotEy1w92HCIgDZokGDBtq1a5cuXLigN954Q6VKlVKZMmV048YNBQUFmX6lbtq0aYZ+kcxJFStWNJYvXryoZs2aqUKFCoqIiNCsWbNSnUPG0wwaNEjnzp0zfqXeu3ev2rZtqxIlSigwMFCRkZE6ffq06QuXxWLRRx99pFq1auVUtzNNt27ddODAAeMX419++UWrV69WpUqV5Ofnp3///dd081+mTBlTQCEjWrVqpT179mjhwoWSkoKLjRs3VqVKlZQ3b16dOHHClLlUsGBBTZw40ekchEOGDFFQUJAOHjwoKamww6JFi4yh08eOHTMNhXrwwQedBh38/Pw0adIkdezYUWFhYYqOjtZHH32k8ePHq3z58sZceLbZS6+99pqaNWtm19alS5dMXzKkpNeb7U24Kz799NPbOnvldpDZ7wuLxaIvv/xSXbt2NbJCFi5cqKVLl+r+++9XoUKFdPLkSVOmu6+vr7744guHE+h//fXXpvXIyEi3i+V06dLFNLeVJI0aNUrnzp0z3j/bt29Xs2bNVK5cORUrVkxhYWF2r/cKFSpoxowZGRrC1rBhQ7Vu3drI/Dl06JBeeeUVFS9eXPfee6+8vb0VEhKikydPms79+uuvO/2RIzO9/fbbOnLkiFavXi1J2rBhgzZu3KiKFSuqQIECOnfunPGlPU+ePHr00UfTzBrMzM+fsmXLqm3btsb1NCwsTO+9956KFi2qMmXKKDExURcvXjQFPX18fFSoUCFjm6OAqJ+fn/HaDQ4OVlxcnD799FNNnTpVFStWlNVq1dGjR43rap06dRQUFGT6ASUjbO81Dh48qKZNmyowMFC3bt0yDVv1ZBaLRZ999pnefPNNHTp0SJK0ceNGbdy4UYGBgSpRooTCwsJ09uxZ03ypvr6++vzzz2/LH59TyuzPZndkxX3OuHHj9Nprr+ncuXOKj4/X+PHjNWPGDFWoUEGxsbE6duyYKQOxYcOGDj/rY2Ji7KYkuHDhgtv3Bf369TMVmvHy8tKkSZPUoUMH4weQ3377TatXr1aFChWM933KgF+dOnUc/ujgjvbt22vt2rXGCI8tW7aoWbNmKlu2rEqVKiUpqThZygJX/fr1SzWQDHgSAosAskXVqlXVqVMn9e3bV2FhYbp48aIuXrxo2sfX11ddunTRBx98kO5hazntueeeU9WqVY0vyVevXjW+FB89ejRL51fLTH5+fvr66681adIkzZ492/jF+fLly6aqrMmKFi2q4cOHm+YMup35+Pho8uTJ+vjjj7V06VJZrVbFxcUZN/+2atasqYkTJzr8xT29Pv74YxUqVEgzZ85UXFycEhMT7QoKSEnzKk6cODHNapJ58+bVd999p/79+xvZOjExMdq7d6/dvg0bNtS4cePSnI+uYsWKmjt3rvr06WMM0QoNDbUbrunt7a23335bH3zwgcN21q5daze01NWJ/G3ZfvFE1siK90XhwoU1d+5cffLJJ/rpp59ktVoVHx/vsChQqVKl9Nlnn6l27dp2jx07dsyuiIaj90xaXnjhBbttefPm1dy5czVq1CgtX77c+CHs5MmTDgt3tGjRQoMHD1ahQoXcPn9Ko0aNUoECBTR37lwjQzk4ONjh/Kv+/v7q1q1bllYeT8nHx0cTJ07U559/rlmzZikxMVFWq9Vuns4CBQro888/186dO9MMLGb2589HH32kiIgIU/GdkJAQhwHD8uXLa9SoUfrzzz+NudVsM0FtVahQQYsWLVL37t2NwFhkZKQpa1ZKKmwxceLETM3Cbtu2rb7//nsjaHvhwgVj/s/z58+rTJkymXaurFSgQAH98MMPGj16tJYsWWK8xs+ePWuqQpzs3nvv1ejRo9NVQMMTZcVns6uy4npevHhxzZs3Tx9++KHxPoiIiLB7T0hJGevDhw93eL+/bds2uyD8nj173Hh2SRxdC4sXL67Fixdr8ODBxhQGiYmJDucW9vb21uuvv67evXuna0oLW15eXpo2bZqGDh1q+jH13LlzplEpyQoVKqQ+ffqkOhoF8DQEFgFkm/r162vlypWaP3++1q1bpwsXLshisahUqVKqX7++2rZtayoKcTvy9fXVvHnzNHXqVK1bt07BwcGKj49X0aJFb7th0d7e3urdu7dee+01/fTTT9q6datOnjxp3OwVLlxYVapUUcOGDfXCCy+4VZ3vduDn56dPPvlE7dq10/Lly7V9+3YFBwcrNjZWhQsX1kMPPaTmzZurcePGmR4It1gs6t27t1q0aKElS5Zo8+bNunz5smJiYlSgQAFVqVJFTZs2VYsWLdKscJosX758mjZtmrZt26YVK1Zo9+7dunr1qhISElSkSBHVrFlTrVq10pNPPulyPytVqqSffvpJK1eu1OrVq3XkyBFdu3ZNvr6+KlOmjB577DG9+uqrTn9td6WiKjxHVrwv8uXLp7Fjx6pz585asWKFtm7dqsuXLysyMlL58+dX1apV1bhxY7300kumueVsZfXrKCAgQGPGjNFbb72lJUuWaOfOnTp//rzRx+LFi6tu3bp64YUXMnWOWW9vbw0cOFDt2rXTzz//rN27d+vUqVMKDw+XxWJRkSJFFBgYqKefflrNmjVzqThJsswqAGKxWNSvXz+1bNlSCxYs0LZt23ThwgV5e3urdOnSatiwoV5//XUVL17cpaIFUuZ+/iRnF7Zp00bLly/X3r17jWtfQECASpUqpcqVK+vpp5/Ws88+K29vbyUmJhqBxaCgIO3fv18PPfSQXdslSpTQkiVL9Pvvv2vFihU6ePCgwsLClD9/fj3wwANq2bKlXnrpJbcLTaSlQIECWrRokaZMmaLNmzcbP2AWK1ZMV69evW0Ci1LSnJUjR45U165d9fPPP2v79u06e/aswsLC5OPjoyJFiqhatWp67rnn1LhxY5c/824XWfHZ7KqsuJ6XLFlSP/zwg9asWaNVq1Zp//79unr1qry8vFS8eHE98sgjatu2rWlIckpZfT0vXLiwpk+frn379umnn37S33//rUuXLikmJkYFCxZUyZIlVb9+fTVv3jzNH27dkTt3bo0bN05vvPGGVq5cqT179ujMmTOKjIyUj4+P7rnnHj3wwAPG9fx2GeUESJLFmlYJPgAAAAB3hFWrVql3797q1KmTqWgSAABAetyeYw0BAAAAuC15GhJ3shsBAABSQ2ARAAAAuAskJCQYcw3Wr18/h3sDAADuBAQWAQAAgDtcRESE+vfvr0OHDql+/fqmaqkAAADpRWARAAAAuMMlJiZqx44dqlOnjr744ouc7g4AALhDULwFAAAAuAucP39epUuXzrSK0AAAAAQWAQAAAAAAALiNodAAAAAAAAAA3EZgEQAAAAAAAIDbCCwCAAAAAAAAcJtPTncA2efvv/82rXt5EVcGAAAAAAC4GyUmJprWH3nkEbfbILB4F0v5AgIAAAAAAABcRcoaAAAAAAAAALeRsXgXu1OGQttmXt4pzwmAe7gOAOA6AIDrAACuA+7JjJGsBBbvIl5eXsaLxsvLSzVr1szhHmVcfHy89u3bZ6w/+OCD8vHhZQ3cTbgOAOA6AIDrAACuA+7bs2ePKU6UHoRvAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAAAAAAAOA2AosAAAAAAAAA3EZgEQAAAAAAAIDbCCwCAAAAAAAAcBuBRQAAAAAAAABuI7AIAAAAAAAAwG0EFgEAAAAAAAC4jcAiAAAAAAAAALcRWAQAAAAAAADgNgKLAAAAAAAAANzmk9MdAAAAAICcZrValZiYmNPdQDolJCTYrVsslhzqDYCccKdfB7y8vDzy+RBYBAAAAHDXsVqtio6OVnh4uCIjIxUfH5/TXUIGWK1W0/qJEyc88gs4gKxzN1wHfHx8lDdvXuXPn1/+/v4e8fwILAIAAAC4q8TGxurs2bOKi4vL6a4gE/n48PUWuNvd6deB+Ph4hYWFKSwsTL6+vgoMDJSfn1+O9ok5FgEAAADcNQgq3pksFot8fHyM/zwhiwdA9rrbrgNxcXE6e/asYmNjc7Qfd3YoFwAAAAD+n9VqtQsqBgQEGEPKvL29c7B3yIjkoe3JPGWIIIDsc6dfBxISEowpPKKioiT9L7hYvnz5HHuuBBYBAAAA3BWio6NNQcXixYurcOHCOdgjZBar1WoKDHt7e99RAQUAabvTrwPe3t7y8/NTwYIFFRoaquDgYElJwcXo6GgFBATkSL8YCg0AAADgrhAeHm4sBwQEEFQEANyWChcubAokRkRE5FhfCCwCAAAAuCtERkYay/nz58/BngAAkDG2n2MEFgEAAAAgC1mtVsXHxxvr/v7+OdgbAAAyxvZzLD4+XlarNUf6QWARAAAAwB0vMTHRtE6hFgDA7Szl51jKz7nsQmARAAAAAAAAgNsILAIAAAAAAABwG4FFAAAAAAAAAG4jsAgAAAAAAADAbQQWAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAAAAAAmSYuLi6nuwAgm/jkdAcAAAAAAHDXyZMntXjxYu3atUvnzp1TZGSk/P39VaJECT322GNq27atKlas6FJbMTExWrx4sdasWaOgoCBFRUWpUKFCKl++vJo1a6aXXnpJfn5+t3Vb2SExMVELFy7U1q1bNXnyZJeOmThxor766isVK1ZMmzZtyuIeAshsBBYBAAAAALeNuLg4jRs3TnPnzpXVajU9Fh4ervDwcAUFBWn+/Pnq0KGDBg4c6DT4duzYMb3//vs6d+6cafuVK1d05coVbdu2TXPmzNH48eNVqVIlp33z1LayQ3BwsN577z0dOnRIderUcfm49evXS5KefvrpLOoZgKxEYBEAAAAAcNvo37+/Vq1aZaxXqlRJdevWVd68eXX9+nXt2LFDx48fl9Vq1ffff6+rV69qwoQJ8vKynwns3Llz6tSpk8LCwiRJRYoUUePGjVWsWDGdO3dOa9asUXh4uI4fP66uXbtq4cKFKl26tMN+eWpb2eX06dM6dOiQW8cEBwfryJEjkggsArcrAosAAAAAgNvCzz//bAQVfX19NWrUKL300kuyWq2Kjo429vv11181YsQIJSQkaPXq1Vq6dKleeeUVu/YGDRpkBO/q16+vCRMmKG/evMbjffr0Uc+ePfX3338rJCREw4cP17fffuuwb57alidLzlbMlSuXnnjiiRzuDYD0oHgLAAAAAOC2YBs869evn1566SWH+73yyiv64IMPHB6XbPPmzdq1a5ck6Z577tHEiRNNwbvk7V9//bWKFi0qSdq0aZN2795927Tl6TZs2CBJeuyxx5QnT56c7QyAdCGwCAAAAADweGfOnFFQUJAkKW/evGrfvr3T/V977TX5+vpKShqme/HiRdPjS5YsMZY7d+6sgIAAh+3ky5dPXbt2NdaXL19ut4+ntuXJbt26pe3bt0tiGDRwOyOwCAA5zGq16ueDl/XJ2iDtPHs9p7sDAADgkY4ePWosV6lSJc1qyAEBASpSpIixfuXKFWM5MTFRW7ZsMdbTCmzZPr527VpT0RhPbSu9du3apY8++khNmzZVjRo1VL16dTVo0EDvvfeeVq1apcTERNP+kydPVqVKldSpUydj286dO1WpUiVVqlRJHTt2dHiebdu2KSYmxu552NqwYYP69eun5557TjVq1FCNGjX01FNP6a233tLs2bN148aNDD9fABnDHIsAkMM++v2oxvx5XJI0fPUx/fxmHb1QtXgO9woAAMCzPPvss9q4caOuXLkii8WS5v6xsbEKDQ011m0z/86cOaPw8HBje1pVle+//34VLFhQYWFhCgsL08mTJ1W+fHmPbstdISEhGjhwoDZv3mz3WHBwsIKDg7Vu3TrNnj1bU6ZMUfHiGbtfXbdunSSpYsWKdoVnwsPD1atXL23dutXuuMuXL+vy5cvatGmTpkyZov/+979q1qxZhvoCIP0ILAJADkpMtGrK5tP/W7dK07aeJrAIAACQgre3t0qUKKESJUq4tP+GDRt069YtSVKePHlUtmxZ47FTp04Zy2XKlHGpvVKlShkFVU6fPm0E8Dy1LXdcv35dHTp00NmzZ41ttWvXVq1ateTr66ugoCD9+eefSkhI0P79+9WpUyctXbpUefPmVb169eTv76+zZ89qwYIFkqSyZcsaQ9VLlizp8JwbN26U5DhbsU+fPkZQsUCBAmrYsKECAwMlSRcuXNDatWt148YNRUZGqk+fPipdurRq1Kjh9vMGkHEEFgEgByVYrYq4FW/aturolVT2BgAA2S0uIVEj1wRp1ZFgRccm5HR3PIa/n7eaVSmuYc9VlK+3582wFRsbq4kTJxrrTz31lHLnzm2sh4SEGMupBb5SKl68uA4fPmx3vKe25Y4RI0YYQcXChQtr0qRJql27tmmfY8eO6c0339S1a9d0+vRpTZ06VQMGDFCtWrVUq1Yt7dixwwgslixZ0jT/Y0pHjhzR5cuXJdkHFvfu3au//vpLUlJG5g8//KDChQub9hk8eLC6deumXbt2KTExUdOmTdP06dPT9dwBZAyBRQDIQZkwDQ4AAMhCH/8RpNF//pvT3fBIey4kDdn9b9PKOdwTe6NGjdLx40lTzXh7e6tHjx6mxyMiIoxlV6sR2wYmbY/31LZcdfr0af3++++Skv5W06ZN08MPP2y3X6VKlfTZZ58ZAcNFixbpww8/NArkuGP9+vWSpIIFC6pmzZqmx/bu3Wssv/rqq3ZBRSmpeM+YMWP07LPPSpIOHz6shIQEeXt7u90XABlDYBEActDxq1E53QUAAOAEhdWc23HG8/4+06ZN06JFi4z19957TxUqVDDtExsbayzbBuacsd3P9nhPbctVa9asMZYbNWrkMKiY7Mknn1SdOnXk7e2twMBA3bhxw1Qgx1UbNmyQJDVo0EBeXuaMV9vg4D///KM33njDYRtly5bVzz//rBIlSqhgwYJu9wFA5iCwCAA5qO/KQzndBQAA4ESdwEJa++/VnO6Gx3rs3kI53QWD1WrVxIkTNXfuXGNbo0aN7LIVJdkFs9xlWzzGU9ty1aZNm4zlRo0apbn/vHnz3D6HrWvXrunAgQOSHM+vWKdOHWN59erV6tSpk1555RXVq1fPLnuxcmXPy5YF7jYEFgEgB/1+LH3z4AAAgOwxvHFFWSxijsUUbOdY9ASxsbEaOnSoVq1aZWyrX7++JkyY4DDY5u/vbywnF3hJy82bN43lXLlyeXxbrrp06ZKxXLFi1v97btiwQYmJifLx8VH9+vXtHq9UqZJefvllLVmyRJK0Y8cO7dixQxaLRZUrV1bdunVVv359Pfroo/Lz88vy/gJwjsAiAAAAAKTC19tL/21a2SPnEUSSa9eu6f3339eePXuMbU2bNtW4ceNSDTzZBvBiYmJcOo9tAC9//vwe35arrl79X0ZugQIF3D7eXcnDoGvVqpVqf0eMGKEiRYpo1qxZxvBuq9WqI0eO6MiRI5o1a5YCAgL0zDPPqEuXLqpSpUqW9xuAY55XvgsAAAAAABccPnxYL7/8simo2L59e40fP95pNlvx4sWN5StXrrh0ruDgYGO5aNGiHt+Wq+Lj490+Jr1iY2O1ZcsWSY6HQSfz9fVV7969tXHjRg0fPlwNGjSwK2YTFRWlFStWqHXr1vr222+zstsAnCBjEQAAAABw2/nzzz/Vp08fI7PP29tbffv2Vbt27dKcq9B2yO+FCxdcOp/tfvfff7/Ht+WqAgUKKCQkaXqeGzduqGzZsm634apdu3YpKiqpeKGzwGKywoULq0OHDurQoYNiY2O1f/9+7dixQ5s2bdLevXtltVqVmJiocePGqWbNmnrkkUeyrO8AHCNjEQAAAABwW1m6dKl69OhhBBXz5s2rCRMmqF27di4dX7x4caOScFhYmE6fPu10/5MnT+rGjRuSkgJxgYGBHt+Wq2wDicePH09z/59++klDhgzR9OnTdfToUbfOtX79eklSYGCgypcv79axfn5+evTRR/X+++9rwYIF+uWXX1SyZEnj8Z9//tmt9gBkDgKLAAAAAIDbRnJgKzExUZJUqlQp/fDDD6pXr55b7dhWQF63bp3TfZMDYpL05JNP2hWE8dS2XGGb5ffXX3+luf/y5cu1ZMkSffnllzpz5oyx3ZVzJ8+v+NRTTzl83Gq1asiQIXrllVf06KOPmgrLpPTAAw+oc+fOxrqzfQFkHQKLAAAAAIDbwqFDhzR06FBZrVZJUvny5bVgwYJ0VTNu0aKFsTxr1iyFh4c73C88PFyzZ8821l9++eXbpi1XtGzZ0ggK/vHHHwoKCkp136NHj2rnzp2SkgrN2AZzbYefJyTYV1A/fvy4zp07J0lq2LChw/YtFotOnjyp/fv3KyIiIs0sxGvXrhnLJUqUcLovgKxBYBEAAAAA4PHi4+P14YcfGlWCixcvrtmzZ5sKnrijbt26qlu3riQpJCRE7777rilQJSUFrrp162bMQVi7dm098cQTt01brqhQoYKef/55SVJcXJy6devmcIjzmTNn1KtXLyNT9PXXX1fevHmNx22XL1++bBdcTM6uDAgIUO3atVPtj+1w9ilTpmj16tUO9/vnn380f/58Yz35OQDIXhRvAQAAAAB4vJ9//tk052CNGjX0yy+/SEoaQhsXF2c85uvrazc0t1mzZqY5+SRp5MiReuWVVxQWFqZ//vlHTZs2VZMmTVS6dGldvHhRv//+u5ExWLBgQY0ZMybV/nlqW64YOXKkjh49qpMnT+rChQtq3bq16tevr+rVq8vb21vHjh3TunXrjKDuQw89pB49epjaKF26tCwWi6xWqy5cuKDu3bvrkUceUZ48edSxY0djGHS9evWcVuxu0aKFlixZol27dikuLk7/+c9/VK1aNdWoUUMlSpRQTEyMDh06pC1bthjBy+effz7dgVUAGWOxJueQ4463Z88e49clLy8v1axZM4d7lHHx8fHat2+fsV6jRg35+BAvx+3Dq+9Kh9tPDn5G9xX2z+be3J64DgDgOgBXJCQkmIZ4VqxYUd7e3jnYI7jr1Vdf1Z49e9J9/Ny5c/XYY4/ZbT969Kh69OhhDNN1pEyZMpo6daoqV67s9Bye2pYrwsLC1K9fvzTnWWzYsKE+++wz5c+f3+6xvn37auVK8/1t3rx5tW7dOtWtW1cJCQkaPXq02rRp4/QcERER+uCDD7R582an+1ksFr388ssaNmyY02Al7g5Wq1XR0dHGur+/f7rmHb1dZMbnWmbEibjjAoAcciQ4ItXHyo3+Ux8+VU6fv1gtG3sEAADguY4dO5Yl7VauXFm//vqrFi9erD/++EPHjx/XjRs3FBAQoAoVKqhx48Zq27at8uTJc9u25YqCBQtqxowZ2rZtm1auXKm///5bV65cUXx8vIoUKaKaNWuqTZs2TovkjB49Wvfdd59++eUXXbp0SVarVQULFtS6deuUkJAgi8WSauEWW/ny5dPMmTO1adMm/frrrzpw4IAuXbqkmzdvKn/+/CpRooTq1q2rFi1aqEqVKpny/AGkDxmLdxEyFgHPMmjVEX267rjTfc4NfValC2TOzeKdiusAAK4DcAUZi3e2uy1TCYC9u+064CkZixRvAYAc8uvh4DT3WX0sJBt6AgAAAACA+wgsAoAHi08kqRwAAAAA4JkILAJADmEiCgAAAADA7YzAIgDkkFOh0Wnuc+fOCAIAAAAAuN0RWASAHBIdl5DTXQAAAAAAIN0ILAIAAAAAAABwG4FFAPBgFsZCAwAAAAA8FIFFAAAAAAAAAG4jsAgAAAAAAADAbQQWAcCDWagLDQAAAADwUAQWAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAPRlVoAAAAAICnIrAIAAAAAAAAwG0EFgHAg5GwCAAAAADwVAQWAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAPZqF6CwAAAADAQxFYBAAAAAAAAOA2AosAAAAAAAAA3EZgEQA8GAOhAQAAAACeisAiAAAAAAAAALf55HQHPM3EiRP11VdfqXTp0lq3bp1bx27btk1Lly7V3r17deXKFfn4+KhEiRKqWbOmWrVqpUcffTSLeg0AAAAAAHD3iYuLk6+vb053465FYNHG/v37NWPGDLePi4yM1IABA7R27VrT9lu3bunEiRM6ceKElixZohYtWmjYsGHKly9fZnUZwB2OotAAAAD/U6lSpQy30apVK40dO9ZY79ixo3bu3ClJmjt3rh577LEMnwPpExsbq59//ll//PGHjhw5orCwMOXOnVvlypVTgwYN1K5dOxUtWjTNdk6cOKFmzZq5de4lS5bowQcfTG/X7yrLli3ToEGDJNm/nyRp4MCBWr58uSRpzJgxat26dZb15bffftO8efP0ww8/2D12/vx5Pfvss5KUruQxuIbA4v87d+6cunfvrri4OLeOu3Xrlrp06aJ9+/YZ2wICAlSxYkUlJCQoKChIN2/elCStWLFCly5d0qxZs+Tn55ep/QcAAAAA4HZ18OBB9erVS+fPnzdtj4uL0759+7Rv3z59++236t27tzp37pxmW7izRUVFqUePHtq6datKly6d0925qxFYlBQUFKS33npLISEhbh/76aefGkFFi8Winj17qmvXrsqdO7ckKTw8XJMnT9bcuXMlSbt27dIXX3xhRPcBAAAAAK7p37+/w+1Wq9WUJOLr6yvL/w/92LRpk7Zt22Y8VqpUqaztJNy2Z88ede7cWbdu3ZKU9N26Xr16qlGjhry8vLR3715t3rxZMTExGj16tC5cuKDBgwen2t6hQ4eM5datW+uBBx5Isw8lS5bM+BNBtrl+/bq2bt2a092ACCzq559/1vDhwxUTE+P2scePH9eCBQuM9T59+ujtt9827ZM/f34NGTJE+fLl09SpUyVJ33//vTp27KgyZcpkrPMA7ngMhQYAAPifrl27OtxutVoVHR1trPv7+8tisWjnzp2aMGGCsb1WrVp67733srqbcENkZKR69uxpBBWLFy+uyZMnq0aNGqb99u3bp/fff18hISGaM2eOqlevrhYtWjhs0zaw+O677+q+++7Lsv7D3tixY+2GR+eEMmXK6NixYzndjTveXVsVOjg4WAMGDFD//v3TFVSUpHnz5ikhIUGSVK5cuVQ/5CSpR48eqlixoqSkVO758+en65wAAAAAgLSdPXtWPXv2VGxsrCSpWLFimjRpEkUeslClSpVUqVIlNWrUyOVj5s+fb4we9Pf31+zZs+2CipJUo0YNTZ8+Xd7e3pKkzz77zJh2zFZiYqIOHz4sKSnR5957703PUwHgorsysDht2jQ1bdpUP/30k7GtXLly6tatm8ttJCYmavXq1cZ669at5eWV+p/Ty8tLbdu2NdZtjwWA1FhEyiIAAIC7oqKi9N577yksLExS0tDoyZMnu1T4A9nL9rvxm2++qfLly6e6b/Xq1dWkSRNJUkhIiF0BVUk6deqUkb1arVo1Y0g8gKxxVw6FnjlzpilN/pVXXtHAgQP1xx9/uNzG0aNHdf36dWP9ySefTPOYevXqGcsXL17U0aNHVblyZZfPCQAAAABI2+DBg3X8+HFjfejQoXr44YddPv6PP/7Qzz//rP379+v69esqWLCg7rvvPjVr1kytWrVSnjx50mzj4MGD+u233/T333/rwoULunHjhiwWi/Lly6f7779fjz/+uNq2bZtqsHPy5MmaMmWKpP9VLN63b58WL16snTt36sqVK/L29laZMmXUoEEDvf766ypevHia/bpy5Yq+//57bdy4UWfOnFFCQoJKlCih+vXrq1OnTrr33ns1bNgwLVy4UFLWVsqOi4vTkSNHjPXnn38+zWPq1aunVatWSZI2btyo5s2bmx63HQZdvXr1TOpp6mz/nb7//ns9+uij2rhxo3788UcdPHhQYWFhyp8/v6pVq6aWLVuqWbNmqSYl2VZbnjhxoho2bKjJkyfr559/Vnh4uIoXL67atWurV69eKlasmOnYy5cva9GiRdq8ebPOnTuniIgI5c+fX/fff79RUbtgwYIuPacNGzZo2bJl2rNnj65fv678+fOrSpUqateunRo3bpzm8e5UhT5y5IiWLl2qHTt26Pz584qLi1OBAgVUuXJlNWnSRC+99JKp+K3t3yjZhQsXjIrxJUuW1K+//irJvarQkZGRWr58uTZs2KBjx44pLCxMefLkUYkSJVSnTh299NJLTquGp/y3a9q0qY4fP66FCxdqy5Ytunz5sqxWq0qUKKF69eqpQ4cOKleunLM/423jrgwsJqtevboGDBigOnXquH3s0aNHjWVfX19VqFAhzWPuv/9+5c6d20jXPnDgAIFFAAAAAMhEc+bMMWXBtW3bVu3atXPp2Bs3bqhTp07asWOHaXtISIhCQkK0a9cuff/99/rqq69SHWIbHh6uAQMGpBrEuHnzpkJCQrRz50598803GjVqlF588UWn/bJarRozZozmzJkjq9Vqeuzo0aM6evSo5s2bp7Fjx6pp06aptrNu3Tr16dPHlGgjSWfOnNGZM2e0ePFiDR061GlfMlNYWJjp+bgybLlEiRLGsqPqz44Ci+fOndP+/fsVGhqqgIAA3XfffapRo4YxrDozjRgxQj/++KNp27Vr1/TXX3/pr7/+0vz58zVt2jQVKlQozbb69OmjNWvWGOtnzpxRSEiIPvroI9N+X3/9taZOnWrMU2l73mvXrmn37t365ptv9NFHH6lVq1apni8mJkYffvih3Wv32rVr2rx5szZv3qxnnnlGDRo0SLPvaYmKitKIESO0YsUKu8euXr1qnG/mzJmaMmWKSzGX9Fq1apU+/vhjI8M5WVxcnMLDwxUUFKT58+erefPmGjlypAICAtJsc+bMmfryyy9NRaUk6eTJkzp58qR+/PFHDRgwQJ06dcrMp5Ij7srAYp06ddS6dWs988wz6U6LPn36tLFcunRp+fik/ae0WCwqVaqUTp48KSnpogAAzsQnWtPeCQAAAJKkXbt2GdljkvTwww+7FSgbOHCgoqKijKrE1atXl6+vr/bt26dNmzbJarXq+PHj+uCDD7Ro0SK7+Rrj4uLUuXNnY44/Pz8/1a9fXxUrVpS/v78iIiJ08OBBbd++XYmJibp586YGDhyoypUrOw2cjB8/3qhsXbNmTdWpU0e5cuXSiRMntHbtWt26dUsxMTHq27evKlWqpPvvv9+ujVWrVqlv375GnYDixYvrueeeU5EiRXThwgWtWbNGYWFhGjp0aLZVSE7PfJe2wbOLFy/aPW4bWLx27Zratm2rffv22e1XqFAhvfXWW+rcuXOmzbs5efJkbd++XZJUsWJFPfXUU8qdO7cOHDigv/76S4mJidqzZ4/at2+vRYsWKX/+/Km2lZw9l1KjRo1MGbO22aWSVLVqVT3++OMqWLCgrl27pi1btuj48eOKjIzUwIEDdf36dXXp0sWu3djYWHXq1En79++X9L/K3A8//LASExP1999/a8eOHfrzzz/1999/p/dPJCnp37BLly7au3evsa1atWp6/PHHFRAQoFOnTumPP/7QrVu3dPr0aXXs2FE//fSTSpQooQcffFD9+/dXeHi4pk+fLkkqUKCA3n33XVmtVuXKlcutvvz4448aMWKEsV6oUCE1bNhQgYGBioqK0u7du7Vnzx5J0i+//KITJ05o/vz5yps3b6ptLliwwHi/Vq5cWU888YTy58+vs2fP6o8//lBkZKTi4+P1ySefqGLFinr88cfd6rOnuSsDi1999VWG20ieXFaSXQqyM0WKFDECi7ZtALi7pPylOTW34hOyuCcAAMCpuDhp5Ejp11+lFFledzV/f+mFF6RhwyQPKYYSHBysQYMGGYGzokWLatKkSaZhlGmJiorSfffdp4kTJ9qNLtuwYYO6d++uhIQEHT58WBs2bNBzzz1n2mfu3LlGULFEiRKaM2eOw4rER44cUZcuXRQaGqr4+HgtXLjQLgvN1rZt21SoUCF9+eWXqlu3rumxkydP6o033lBwcLDi4uI0d+5cDR8+3LRPaGioPv74Y+Nv06ZNGw0bNky5c+c29unXr58GDBig9evXOwzYZYUCBQooT548RkHVEydOqEqVKk6PsR3ifvPmTUVERChfvnySku6xk//+kjRy5MhU27l+/brGjRunjRs3asqUKSpQoEBGnookafv27bJYLOrXr5+6dOliSmT6559/jHk/T506pS+//NLu38nWhg0b5OXlpV69eumVV16Rj4+Ptm/fboo/LF682Agq5suXT2PHjjWG/iazWq1asmSJPv74Y8XFxenzzz9XjRo19Mgjj5j2mzlzphFULFCggKZMmWI3unPz5s3q1auXXWafuyZOnGgEFf39/TVmzBi7TNuLFy/qzTff1OnTp3X9+nWNHj1akyZNUoUKFVShQgWdP3/eCCzmzZtXXbt2tasOn5a9e/eaXiOtW7fWkCFD7IKGGzduVN++fRUeHq4jR45o8ODBmjRpUqrtbtu2Tbly5dLYsWPVrFkz02O9e/dW165dFRQUJEmaNWsWgcW7le0bKfki5grbfW/cuJGZXXJbfHx8jp4/MyR/MKa2Dniq34+59sNCYmLiHfFezUpcBwBwHYArEhISjB/2LBaLrFaraz/0jRghy+jRWdy729SePUl/w//+N6d7olu3bqlfv34KDQ2VlJQJN3HiRBUrVizNf2fbx/PkyaNvv/1WZcqUsTvuqaeeUvPmzfXzzz9Lknbu3GkXxFm6dKmxPHjwYN17770Oz1+5cmV16dJFn3/+uSRp//79dvulXP/000/1+OOP222///779Z///EdDhgyRJG3ZssVun2nTphnfYevVq6dRo0YZ74Nk+fPn16RJk9S+fXvTEOOU75VNmzYZQZHUREZG6ttvv3X4WMWKFVW/fn1jvXbt2vrrr78kSQsXLnQabEtMTLQbOhsTE2MEgk6ePKmoqCjjMV9fX3Xo0EEtW7Y0/i2OHTumhQsXGu3s3LlTPXv21MyZM10aiZhSyr/1+++/b2QE2j5Ws2ZNTZ48WZ06dZLVatWCBQv05ptvqmzZsqm21a1bN7377rvGevL8hlarVbGxsZo4caLx2IQJE1SvXj2Hr7eXX35Z4eHh+uyzz5SQkKCJEydqzpw5xuORkZH6+uuvjfVx48apdu3adm3Vq1dPX3zxhalPjq6ltuspH4+KitL8+fON9dGjR6tJkyZ2bZQsWVJfffWVmjdvrsTERK1Zs0bBwcFGYNXROZy91x09/vnnnysxMVGS9Nxzz2n0/1/rU+7XoEEDTZs2TZ06dVJCQoJWr16tPXv2mOZtTXnMwIED9fzzz9ttL1q0qAYPHqw33nhDUlIwOiEhwWkxYGfPyfb/8fHxLiewZCYCi+kUGxtrLNv+ypMW21/LbNvIbomJiQ7TwW93jubYADzR53+FurTf+fPntS/39bR3hIHrAACuA3DGx8dHPj4+io6Odml+tdzbtinzZ2G7cyRu3aqbHpDJ+cknn5je+3379lXlypVdyl5KDixI0rPPPqvChQunetyjjz5qBBbPnTtn2i8hIUEdO3bUxYsXdfXqVdWtW9fp+W0zGcPDw+32tZ2brWzZsnr00UdTba9GjRrG8pUrV0z7Wa1Wo9iJlBT4Ss4QdKRnz56mwNGtW7dM7a1YsUIrV65M9XgpKYlm3LhxDh978cUXTdlyrVq1MgUWa9SokWqBkAkTJpgyFiUpIiLCmPMueciqJAUEBOirr74yFdywWCyqUqWKRowYoUceecQIYu7YsUPz5s1zeS5OW7b/TkWKFFHHjh1T/XeqVq2a6tWrp82bNysxMVG//fabXn/9deNx2xiBxWJRmzZtUm1r9erVxijIhx56SDVr1nT6env55Zc1bdo0RUREaMeOHTp16pRR7OfPP/80XhPVq1d3+lqrXbu2atWqpX/++UdS0us+5b62P/DFxsaaHl+zZo0xnL1y5cpq0KBBqucqUaKEGjdurCtXrigwMFAhISFGEDm5doWkVDMVne1z+fJl7dq1S5KMzFBnf78qVaqocePG+u233yRJP/zwgypWrGh6nsn8/f31/PPPp9pelSpV5OPjo/j4eN26dUuXLl1yac7NlBISEoxElPj4+By7/yGwmE62Fw93Isu2Ny9kIQF3r2PX49LeSVJIDFk3AADkpIRHH5X3+vU53Q2PlVC7dk53QStWrDBlCrZs2VKvvPJKutqqWbOm08eLFCliLNtmxklJ3/VatGjh0nliY2N19uxZYz2t74bOqtFKMgUlUhbwOHLkiK5evSopKQssrQKitWvXVqFChXT9evb8uP3UU0+pQYMGxhyEgwYN0s6dO9W6dWuVK1dOiYmJOnLkiObOnatNmzapUKFCunnzphEIs03eefbZZ1W9enVdvHjRqCycmhdffFF79uzRTz/9JClpGHt6Aou2nnvuuTTna2zYsKE2b94sKSm71DawaOvee+91GmyynecwreHjUtKPKtWrVzfm/tuzZ48x/Hjr1q3GfrbZpKl55plnjMCiu2zP5UoRmNFZlDG+c+dOY7latWoqVapUmsc0bdrUCCzu3r071f0qVqzodAoGX19f5cuXz3iPpXzP3m4ILKaTbYDQ9heutNhG7jNrglgAtx9Xy0atO3dT7z6Y+qTOAAAga8UNHixZLPJevVoWD8jM8xRWf38lNGmiuEGDcrQfR48e1ZgxY4z16tWra1AG+pRW1pDt90BXpl2IjIzUmTNndP78eZ0/f15nz57ViRMn9O+//5qSVdIavnjPPfc4fdy2mEfK76e2AcwHHnggzT5LSYGRlJWxk3388cf6+OOPHT5Wq1YtSUkBzF9//dWlc0lJGae9e/fW7t27ZbVatWzZMi1btsxuv4IFC2rSpEl67733jG22Iwh9fX1VtmxZ0/BiZ1599VUjsHjp0iWdOnXKYeEbV1WtWjXNfcqXL28sX7p0KdX9ypQp47SdEydOGMsLFy40FXBxhe25befULFeuXJrH2mbquevy5cvGclZWek7L+fPnjeVKlSq5dIxtoPrSpUtKSEhwmPlu+wNEamxft+7ElDwRgcV0sn0RuBNdtt3X3WpFmcnLyyvNX71uBwkJCaZ03+rVq7s0pAXIaX6/rZei074ZPXkj3jS0Bfa4DgDgOgBXJCQkGF/ELRaL/P39XX+djB2b9B8MFkleknIyVSIsLEz9+vUzvmMVLlxY48aNk5+fn/LkyWMqnOGM7Qi0woULy9/fP9V9bb/DeXl5Odz35s2bWrBggX766ScdO3Ys1aCht7e3EZx01JZtIkr+/Pmd9isl231t5/ZP6/klsw1k5sqVy61zS/97j7nK399fs2fP1qxZszRr1iy7egR+fn5q2rSp+vfvr8KFCxvZov7+/i4FcVJTo0YNU/GYK1euqFq1am61YfvvVKpUqTSfd/LwYymparXt/rZZboUKFXLaVkREhFv9TCkqKspo37aGRNGiRdN8DiVKlDCWvb297fa3vbb6+fmZHrfNhHXlXKmxjckkv96sVqtpmL+jfZLZZhy72g/baulWq1VxcXFGHQ3bf7u8efOm2Z7t9Sl37tzp+jskz83o6+srX19flS9f3u37nwMHDmQ4sElgMZ0KFixoLEdGRrp8nO2+tm3khPRMTOvpvL2978jnhTuRqzmLd+Z7NStxHQDAdQCOWCwW0xe5lOu4vSQmJqpv3766cOGCpKT7pU8//dQI2rjz7+vO6yKtfc+dO6e33npLp0+ftjuuRIkSKl++vKpVq2bMMfjOO+84bNvdfjnrp+0w68TERLdf9+l5r6TnGD8/P3Xr1k1dunTRP//8o7Nnzyo+Pl4lS5ZUzZo1je/PJ06cMIK1JUqUyND72GKxKF++fEYwKioqKl3PNZmPj0+ax9sGmv38/Oz+nV1ty/bftWnTpnrooYfc6ne1atVSbT+t52AbYHf0b+3stZty2H96//3cfX+k3CdlwN+VfqQ8xsvLyzguPf1xZ39nbST/38fHJ0d+WOWOK51sS7xfu3bN5eOS57aQkqLiAAAAAAD3TJw40ZinTpIGDBhgKgiSE+Li4tS9e3cjqFi4cGF17txZdevWVYUKFewykjZu3Jgt/SpQoICxHB4e7tIxru6XFfz8/PT444/r8ccfd/j4/v37jeXU5lC8deuWyz8y2Sb/5M+fsSmIXEk6SpkdmF62/64PP/yw3nzzzXS3VbRoUf377792/UtNRl4f6Xk9ZgXbRC9X5xO13c/Ly8soJHO3c7+eNSSZK3idP3/epZLeVqvV+EUtZRsA7i4kSAAAAKTPn3/+qa+//tpYb9WqlTp27JiDPUry559/KigoSFLSEN1FixapW7duqlGjhsNhjrYJKq58n0wv23kVk4NHaUl+HtnBarXq+vXrOn78uEvDe//8809j+dFHHzU91qZNG9WsWVMPPfSQNmzYkGZbKSt7Z3TOv5QVqx05evSosXzvvfem+1yBgYHGsqv/Xjdu3HA4N6jtfI62/UuN7fyO7rKd/9KVv9emTZs0cOBATZkyxWnBFHfZxmNcec6SdOjQIWO5ZMmS1M34fwQW08l23oWYmBidOnUqzWNOnjxpmmPRlcpNAAAAAIAkZ86c0YABA4xAXLVq1VItJJLdbKvk1qtXL80CIsnVeaWsLd7w4IMPKiAgQFJSkY60gigHDx7UlStXsqw/KX3yySd6/PHH9cILL2jFihVO9718+bKR6ent7a1nn33W9Hi+fPmMQOG6devSPLft+cqVK+dSZWBnXAlmrlmzxlh+5pln0n2uxx57zFjeuHFjmrUfYmNj9cILL+ihhx5So0aNtGnTJuOxRo0aGct//PFHmufOSLatbWbxX3/9leb+v/32m5YvX67JkyebslUzOpWFbVB6//79pmIuzvqSLKczpD0JgcV0qlChggoXLmys234opGbLli3GcqFChVyuPAQAAAAAd7vo6Gj16NHDyGorXLiwpkyZkqNFMW3ZVnkODQ11uu+ePXu0atUqYz3lvHOZyc/PTy1btjTWJ0yY4HT/iRMnZllfHLEN0CxdutRp9ubo0aMVGxsrSXr++edNhVCStyVbuXKlTp48mWpbZ86c0cyZM431Tp06ud33lPbs2eM0WLZ161Zt375dUlIl74wEFps0aWIEjK9du6Zp06Y53X/WrFkKCQlRfHy8QkNDTXMy1qtXz6iIfvLkSS1atCjVdo4cOWIKjqan38lFVfbu3Wua0iClkJAQI5hnsVhMfy93K7SnVLZsWdWpU0dSUmB/bBoFuv755x9TYLFFixZun/NORWAxnSwWi5577jljfdGiRU5/ZUpMTDS9OZs0acJk0cBd7Mz1mLR3AgAAgOGjjz4yhnz6+flp6tSpGc4wy0y28/39888/psBhMqvVql9//VVvv/22KZh48+bNLO3bu+++awSh1q9fr48//tgI0Nn2YejQoS5lkaXm2LFjOnbsmEvZgsmeeeYZY67BQ4cO6YsvvrALtMbExGjw4MFavXq1JCkgIEB9+/a1a+ull14yhhfHxsbq3XffdThs98CBA+rcubNRGfihhx5S27ZtXe6zM3369HGYeLRt2zb16tXLCJx+8MEHGZrTMX/+/KbiP9OnT9eUKVNMAW4pKRaxcOFCTZ482djWpUsX01yHfn5+GjBggLE+cuRI/fTTT3bnPHz4sN599127c7ijcOHCpqkL+vTpYwRbbV29elU9evQwMlCbNWtmGjpuO79haGioaUi7qz744AMjQLlmzRoNGjTI4TyZmzdv1nvvvWcEMJ999lnVr1/f7fPdqSjekgEdOnTQokWLZLVadfToUU2dOlU9e/Z0uO/EiRON+Sy8vLw8Yg4QAAAAALgd/Pnnn/r111+N9Ycfflh79uzRnj17JCUF7GyDHb6+vk4TOdq1a5fphRdeeOEFTZ48WSEhIbJarerdu7cWLFig6tWrKyAgQMHBwdq8ebOpknVCQoKsVqsiIiIUHx+fZRXtS5QooeHDhxvDyH/44QetX7/eCOoFBwdr7dq1unLliry9veXl5WX8Pb28sjYfyc/PT8OHD1fPnj1ltVo1Y8YMrVmzRk8++aTuueceXbx4UWvWrDGKivj6+urLL79UyZIl7drKlSuXxo8fr06dOikqKkpnz55VixYt1LBhQ1WtWlXx8fHat2+ftm7daiQGBQYGatKkSZlSTdfX11fh4eF64403VK9ePdWsWVNSUqB569atxn7169fPlAzJd999VwcOHNDatWtltVo1efJkLV26VE8//bSKFy+ukJAQbd++3TSXYZ06ddS9e3e7tlq1aqXNmzfrl19+UVxcnAYMGKDvv/9eTzzxhPz8/HTw4EFt3LhRCQkJuv/++12aDi41vXr10t69e7Vr1y6FhYWpc+fOqlOnjmrVqiV/f3+dPHlSf/zxhxEsDAwM1EcffWRqI2/evCpYsKDCwsIUGxurrl276umnn9bNmzf11ltvudSPRx55RP3799eYMWMkScuWLdP69evVqFEjlS1bVjExMdq1a5dpmoP777/f2B9JCCxmQOXKldWqVSstW7ZMkjRlyhRFRESoZ8+eypcvnyQpIiJCkyZN0ty5c43j2rVrZ5pAF8DdJSEx6ybnBgAAuBPduHHDtL5z507t3Lkz3e01adIk0wOLefPm1bRp09StWzddvXpVkrRjxw7t2LHDbt/AwECNGTNGgwcP1pkzZ5SYmKjDhw+bhqdmtpYtWyouLk6ffPKJoqOjdenSJc2fP9+0j7+/v8aOHasxY8bo0qVLkpICf1ntueee05gxY/Txxx8rJiZGp0+fNqpr2ypVqpQ+++wz1a5dO9W2qlevrvnz5+vDDz/UqVOnFB8frzVr1jgcvvvkk09q9OjRdkOq06tTp076999/9ddff2nLli2m6dCSdezYUYMGDcqUgK3FYtGkSZM0fvx4zZkzR3Fxcbp48aJ++OEHh/u3bNlSI0eOTDWA/fnnn6t48eLGEPH9+/eb5jWUkoL6/fv3V4cOHdLdb19fX82cOVPDhw/X8uXLJaX+nq5Zs6YmTJhgmoou2auvvqrp06dLSgreJgcAX375ZVPVZ2feeOMNFSlSRCNHjtSNGzd0/fp1LV261OG+LVu21PDhw43sXyQhsJhBQ4YMUVBQkA4ePChJmjNnjhYtWmTMn3js2DHFxPxvyOODDz6ogQMH5khfAQAAAABZ58EHH9TKlSv1ww8/aMOGDTp9+rSio6OVO3duFS1aVJUqVdLTTz+t5s2by8/PTw0aNNC8efMkST/99FOWBhalpIDLE088oR9//FEbN27UxYsXFRsbq5IlS6pBgwbq2rWrSpQoYSqI46iidVZo1aqV6tSpo++//15btmzR2bNnFRsbq4IFC6py5cpq0qSJWrRoYczP50zVqlW1cuVKrVq1Sn/88YcOHjyo0NBQ+fj4qFixYqpVq5aaNWuW6cNZ8+TJoxkzZmjFihVasmSJjh07pqioKJUoUUJ16tRR+/bt9eCDD2bqOb29vdWvXz+1b99eixcv1vbt23X27FmFh4crV65cKl26tGrVqqU2bdqk+fqyWCzq37+/nn/+ef3444/asWOHgoOD5e/vr3LlyunFF19Uu3btnM5d6apcuXJp7Nixev3117Vs2TLt2LFDly9f1q1bt1SoUCE9+OCDatGihRo3bpxqEPaDDz7QPffcoyVLlujcuXOKi4vTPffco+DgYJcDi5LUvHlzPf3001q8eLH++usv/fvvvwoLC5OPj4/KlCmjRx99VK1bt87y9+ftymLNyrr2t5lly5Zp0KBBkqTSpUu7PC9ERESE+vfvn+b+DRs21Lhx44xsxuy2Z88eI93by8vLSMu+nSWnsierUaNGlg0fADJLYqJVPv1/cX3/z1/Mwt7c/rgOAOA6AFckJCQY8/NJUsWKFTNl6CM8g9VqNc2x5u/vz5z2GfDggw8aczBu377dKOwBe5MnT9aUKVMkST169Eh1ejRkvbvtOpAZn2uZESfijisT5MuXT9OmTdO2bdu0YsUK7d69W1evXlVCQoKKFCmimjVrqlWrVnryySdzuqsAAAAAgLvMzJkzdc899ygwMFC1atVyuu/JkyeNoGKhQoUIKgJwisCijdatW6t169bpPr5u3bqqW7duJvYIAAAAAICMWbFihY4ePSpJWrp0qapXr57qvt99952xXKdOnazuGoDbXNaWdwIAAAAAADnqiSeeMJZHjRql69ev2+2TkJCgb7/9VgsXLpSUNCwyMyoXA7izkbEIAAAAAMAdrEuXLlq2bJnCwsK0Z88ePf3002rUqJECAwPl6+ur4OBgbdmyRRcuXDCOefvtt/Xoo4/mYK8B3A4ILAJANjscHJHTXQAAAMBdpGjRopozZ4569eql06dP6+bNm1q1apXDff38/DRw4EC99tpr2dxLALcjAosAkM3W/ns1p7sAAACAu0zlypW1cuVKrVq1SmvWrNGRI0d07do1Wa1WFSlSRKVLl1ajRo3UvHlzFS1aNKe7C+A2QWARALKZxZLTPQAAAMDdyM/PTy+99JJeeumlnO7KHaNnz57q2bNnTncDyDEUbwGAbEZcEQAAAABwJyCwCADZzELKIgAAAADgDkBgEQCyGWFFAAAAAMCdgMAiAGQzEhYBAAAAAHcCAosAkM0s5CwCAAAAAO4ABBYBIJuRsQgAAAAAuBMQWASAbEZcEQCA7OflZf7qk5CQkEM9AQAg41J+jqX8nMsuBBYBIJuRsQgAQPazWCzy8fEx1qOjo3OwNwAAZIzt55iPj48sOfRFk8AiAAAAgLtC3rx5jeXw8PAc7AkAABlj+zmWL1++HOsHgUUAyGbu/pIUHRufRT0BAODukj9/fmM5KipKoaGhOdgbAADSJzQ0VFFRUcZ6TgYWfdLeBQCQmdxNUA8KidLDpQtkSV8AALib+Pv7y9fXV3FxcZKk4OBgRUZGKn/+/PL395e3t3cO9xDpZbVaTfONJSQk5NiwQAA5406/DiQkJCg6Olrh4eGmoKKvr6/8/f1zrF8EFgEgm7n72bbycDCBRQAAMoHFYlFgYKDOnj1rBBejoqJMX9Bw+0pMTDSWc6qIAYCcdbddB3x9fRUYGJijAdQ7/68MAB7G4mbOYsQthkIDAJBZ/Pz8FBgYKF9f35zuCjKR1WpVfHy88Z/Vas3pLgHIZnfbdSA5qOjn55ej/SBjEQCymbs/Jt05yfsAAHgGPz8/lS9fXtHR0YqIiFBERITi4/kh73Zn+29I4Bi4O93p1wEfHx/ly5dP+fLlk7+/v0cM9SawCADZzN1Lv5dXzn9YAABwp7FYLAoICFBAQIBKlCghq9VqGkKH20t8fLwOHjxorJcvX14+PnzdBe4md/p1wMvLyyMCiSndOX9hALhNuPth4HkfHQAA3HksFgvFW25jKYc8ent78+8J3GW4DuQM5lgEgGzmbqDQA3+UAgAAAACAwCIAZLeQqFi39ne32AsAAAAAANmBwCIAZLNx64873N6hZmmH28lYBAAAAAB4IgKLAJDNUstYHNa4osPtXkQWAQAAAAAeiMAiAHiIPL6OJxYmrAgAAAAA8EQEFgHAQ6QWQCRhEQAAAADgiQgsAoCHYyg0AAAAAMATEVgEAA+RWvyQuCIAAAAAwBMRWAQAD1fE3y+nuwAAAAAAgB0CiwDgISyy6I1Hy9ptLxJAYBEAAAAA4HkILAKAB2lUoYjdNmsO9AMAAAAAgLQQWAQAD2GxOJ5P0UpkEQAAAADggQgsAoAHoU4LAAAAAOB2QWARADxEakFFK4OhAQAAAAAeiMAiAHiIvLl8ZHEwFpqh0AAAAAAAT0RgEQA8RN5cPg6zFokrAgAAAAA8EYFFAMhG1lTSDye9VF1SasVbCC0CAAAAADwPgUUAyEY7zoY53O7rnRRRtFC+BQAAAABwmyCwCADZ6I9jIQ63bz19PdVjyFcEAAAAAHgiAosAkI3iEhMdbj8cHCEptaHQWdkjAAAAAADSh8AiAGSjT9b+63C7tyV5KLQ9KzmLAAAAAAAPRGARADyAt9f/BxaZYhEAAAAAcJsgsAgAHiA5sOgIQ6EBAAAAAJ6IwCIAeAAfI2PRPsBIYBEAAAAA4IkILAKABzCGQjt4jLgiAAAAAMATEVgEAA9gFG9xWBWa0CIAAAAAwPMQWAQAD/C/jEWqtwAAAAAAbg8EFgHAA3g7KQdNviIAAAAAwBMRWAQAD+D1/1djR/HFDcevZm9nAAAAAABwAYFFAPAABXL7SpISHcynOP+fC9ndHQAAAAAA0kRgEQA8QI969zt9/HL4zWzqCQAAAAAAriGwCAAeoEiAnyQpsGAeh4/HJiRmZ3cAAAAAAEgTgUUA8AClCuRy+riDEdIAAAAAAOQoAosA4AFy+XjndBcAAAAAAHALgUUAuA2QsAgAAAAA8DQEFgHAg0Tcine4naHQAAAAAABPQ2ARADzIjZupBBbJWQQAAAAAeBgCiwDgQeITHQcQ1x+/ls09AQAAAADAOQKLAOBBElIJLA5adSSbewIAAAAAgHMEFgHAg6SWsXg1KjabewIAAAAAgHMEFgHAg8QnJuZ0FwAAAAAAcAmBRQDwIPEJFGkBAAAAANweCCwCgAcpf09ATncBAAAAAACXEFgEAA9Sv1zhnO4CAAAAAAAuIbAIAB7EYrHkdBcAAAAAAHAJgUUAAAAAAAAAbiOwCADZxGqlMAsAAAAA4M5BYBEAAAAAAACA2wgsAgAAAAAAAHAbgUUAAAAAAAAAbiOwCADZxNUpFh8ulT9rOwIAAAAAQCYgsAgAHsbby5LTXQAAAAAAIE0EFgHAw3hZCCwCAAAAADwfgUUAyCYujYQOC8viXgAAAAAAkDkILAKAJzh8WLr3XqlQIY354n3dEx2e0z0CAAAAAMApAosAkMN8EuKlF1+Uzp6VJDU6d0D9di/L4V4BAAAAAOAcgUUAyCbWVMpCv3HoT+nkSdO2Jqf/yY4uAQAAAACQbgQWASAH+SbEacj2RXbba4SclldiQg70CAAAAAAA1xBYBIAc1OXgWt0bEeLwsftvBGdzbwAAAAAAcB2BRQDIJnYDoa1W9d21PNX9q4Sez9L+AAAAAACQEQQWASCHFI8OU/kbl1N9vOq1c9nYGwAAAAAA3ENgEQBySKnIUKePVw4lsAgAAAAA8FwEFgEgm6QsCl0yynlgkYxFAAAAAIAnI7AIANnkWEikab1k5HWn+1e5dt4+GgkAAAAAgIcgsAgA2eRS+E3Teqk0MhbzxcWoTMTVrOwSAAAAAADpRmARALJJytzDtIZCS+bK0CeuRmVyjwAAAAAASD8CiwCQTRITzaHFkmkUb5GkqtfOGsufbTie6X0CAAAAACC9CCwCQA4pGeV8jkXJnLE4Y/tZJ3sCAAAAAJC9CCwCQDZJORS6VMqMxcqVJV9f06YqVIYGAAAAAHgoAosAkE1sCzxbrIkqkTJjMTBQKl/etKksxVsAAAAAAB6KwCIAZBPbjMWi0TfkY00071CypFSsmGlT4ZsRWd8xAAAAAADSgcAiAGQTq03KosP5FUuWlAoXNm3KHxsj34S4rO4aAAAAAABuI7AIANnENmPRbn5FSSpVSrrnHrvNhW5GZl2nAAAAAABIJwKLAJBNbOdYLBnlILDoIGNRku5hODQAAAAAwAMRWASAHOBOxmLhGDIWAQAAAACeh8AiAGQTq9yfY1GS7rkZnpXdAgAAAAAgXQgsAkA2sR0KXSK1wKKDjMV7YhgKDQAAAADwPAQWASCbOC3eUqiQlDu3w4zFwhRvAQAAAAB4IAKLAJBNrFbbodApAoulSiX931HGIkOhAQAAAAAeiMAiAGST5LiixZpoP8diyZJJ/ydjEQAAAABwmyCwCADZJDlf8Z6YCPkmJpgfTA4sOqwKzRyLAAAAAADPQ2ARALJJcsZiqoVbpKR5Fv39TQ8VvklgEQAAAADgeQgsAkA2sf5/zmLBW1H2D9pmKqYYDn0PgUUAAAAAgAcisAgA2SQ5YzF/bLT9g/nz/285xXDowjHMsQgAAAAA8DwEFgEgmyTPsVjgloPAYoEC/1u2y1ikKjQAAAAAwPMQWASAbGL9/5RFhxmLtoHFFBmL/vGxyh13Kyu7BgAAAACA2wgsAkA2c5ixaDsUOkXGoiQVvslwaAAAAACAZyGwCADZ5H9DoR0Ub3GSsSgxHBoAAAAA4HkILAJANjl0Oam6c5pDoclYBAAAAADcBggsAkA2mbz5lCQpf1pDoR1lLMZEZFW3AAAAAABIFwKLAJBNomITJKUyx2K+fP9bdhBYLHyTwCIAAAAAwLMQWASAbJZyKLQ1Xz7J2/t/GxwMhSZjEQAAAADgaQgsAkA2syveYjsMWiJjEQAAAABwWyCwCADZrEDK4i22hVskxxmLBBYBAAAAAB6GwCIAZLOUxVssLgQWC1EVGgAAAADgYQgsAkB2slrtMxZTDoX29VVUbn/TpntiwrO4YwAAAAAAuIfAIgBko9zxsfJNTDBvTJmxKCk6X0HTOkOhAQAAAACehsAiAGQju2xFyT5jUVJsgYKm9cIMhQYAAAAAeBgCiwCQjewqQksOMxZvpshYZI5FAAAAAICnIbAIANkof2yM/UYHgcVb/gGm9dwJcfJJiM+qbgEAAAAA4DYCiwCQjRxmLDoYCh2XJ8BuW964m1nRJQAAAAAA0oXAIgBkowK3HMyx6CBjMdbfPrCYz1G2IwAAAAAAOYTAIgBko/yOirc4CCwmOAgs5o0jsAgAAAAA8BwEFgEgG7k8FDogr902MhYBAAAAAJ6EwCIAZCNXh0LH5fa320ZgEQAAAADgSXxyugN3msOHD2vx4sXavXu3Ll++rJiYGBUoUEDlypVT/fr11a5dOxVwEEQAcHdwdSh0nKOh0LEUbwEAAAAAeA4Ci5nk5s2bGjlypJYuXWr32NWrV3X16lXt3LlT06dP18iRI9W8efMc6CWAnOYwY9HBUOjYAAfFW5hjEQAAAADgQQgsZoLY2Fh169ZN27ZtM7Z5e3urYsWKyp8/vy5cuKDz589LkqKiotSnTx9FRESoffv2OdVlADkkn4sZi/F5HGUsElgEAAAAAHgOAouZYMaMGaagYsOGDTV8+HCVLFnS2LZr1y4NGDBAFy5ckCSNGjVKjz76qCpUqJDt/QWQc1JmLCb4+sk7d267/WIdDIVmjkUAAAAAgCeheEsGxcbGatasWcZ63bp1NXXqVFNQUZJq166tuXPnKl++fJKk+Ph4TZs2LVv7CiDnFYg1V4V2VP1ZSiVjMY45FgEAAAAAnoPAYgbt3btXkZGRxnqvXr3k7e3tcN8yZcqoQ4cOxvqGDRtktVqzvI8APEf+W+asw7j//7EhJTIWAQAAAACejsBiBl2+fNm0Xq1aNaf716hRw1iOiorS9evXs6RfADxTyozF+Lz2hVskKd5RVWgyFgEAAAAAHoTAYgblS5FtFBUVlcqeSeLj403ruXLlyvQ+AfBcKedYTG0odJyjwCIZiwAAAAAAD0JgMYMeeOAB0/qmTZuc7r9lyxZjuWTJkgoIsA8eALgzeSUm2GUdxudLJWMxV24lWMyX6LxxBBYBAAAAAJ6DwGIGlS1bVk8//bSxPmHCBF29etXhvrt379ayZcuMddv5FgHc+fI7yDhMLbBo8fJSpK+5WjRzLAIAAAAAPAmBxUwwePBgFSlSRJJ04cIFvfzyy1q2bJmuXr2q+Ph4nTt3TtOnT1fXrl0VFxcnSapatapef/31nOw2gGxW4Jb9VAmJeR0Xb5GkSD9zYDFvLHMsAgAAAAA8h09Od+BOcO+992rp0qUaNWqU1q5dq0uXLmnQoEEO97VYLGrRooWGDh0qf3//bO6pWcr5Hm9HCQkJTtcBT5I/NtpuW9FSRRy+F62JiYrwzWPali8u5o5432Y2rgMAuA4A4DoAgOtAziCwmEkKFy6sBg0a6N9//9Xp06dT3a9evXp6++237Yq+ZLfExETt27cvR/uQFQ4ePJjTXQBSlbJwiyRdj72pYAfvxQsXohTpZw4s5o29eUe+bzMb1wEAXAcAcB0AwHUgexBYzARHjx7Vf/7zH505c8bYlitXLlWsWFH+/v4KDg42go2bN29Wy5Yt1blzZ/Xp00c+PvwTAHcLRxmLCU4KOEWkCCzmi43RpUzvFQAAAAAA6UNUK4POnTunzp07KywsTJKUO3du9e7dW6+++qpy585t2m/8+PFatWqVEhISNGvWLF25ckVffPFFDvUcQHYLiLtlty0xlSkRLBbZFW8JiLspJSZKXkyPCwAAAADIeQQWM2jkyJFGUDFXrlyaPXu2atWqZbdf2bJl9eWXXyowMFDTp0+XJP3yyy9q2LChmjdvnp1dliR5eXnpwQcfzPbzZraEhARTenP16tXl7e2dgz0CUhcQN9duW2CVKipbo4bd9u0xZ+wyFr1kVY0KFaS8ebOsj7cjrgMAuA4A4DoAgOuA+w4cOKDExMQMtUFgMQPOnTunv/76y1jv1q2bw6Cird69e2vbtm3GPGnffvttjgQWJd2Rw7C9vb3vyOeFO0Nxi33hFe98+SQHr1kvL29FpchYlCSfmzelggWzont3DK4DALgOAOA6AIDrQPZgPF0G7N6927T+8ssvu3Tcq6++aiwfOXJE165dy9R+AfBM/vH2Q6GVyhyLFtnPsShJiojI3E4BAAAAAJBOBBYz4MqVK8ZygQIFVKxYMZeOq1y5smn9woULmdovAJ7JGhllv9FJ8ZZIXweBxcjITOwRAAAAAADpR2AxA/z8/IzluLg4l4/zSlF4wWKxZFqfAHim41ejkoqvpJRaxqKFjEUAAAAAgGcjsJgBJUqUMJajo6N16tQpl447ceJEqu0AuDP9cSxEAfEOAoupVoW2KNLPfo5FMhYBAAAAAJ6CwGIGPPbYY6bsw4ULF7p03NKlS43lChUqqGjRopneNwCexcsi+ce5Psei5Dhj8fy5Kw72BAAAAAAg+xFYzIDChQurSZMmxvrcuXO1bds2p8fMmzdPW7ZsMdbbtWuXZf0D4DksbgYWLZIiHVSF3nnkfCb3DAAAAACA9CGwmEF9+/ZV/vz5JUkJCQl6++23NXXqVIWGhpr2CwkJ0ccff6xRo0YZ26pVq6b27dtna38B5Awvi8VujsVYLx/J1zfVYxxlLEaEXM/0vgEAAAAAkB4+Od2B212ZMmU0ZcoUdevWTdHR0YqLi9OkSZM0bdo03X///SpUqJCuX7+u48ePKzEx0Tju3nvv1fTp0+Xjwz8BcDewWGQXWIz2zSU/J/s7qgqd52Z0FvQOAAAAAAD3kbGYCR577DEtXrxY1apVM7bFxcUpKChIO3bsUFBQkBFUtFgsev7557VkyRIVK1Ysp7oMIJslZSyah0JH+eZKdX+LLA4zFnPfIrAIAAAAAPAMpMtlkgceeEDLli3Txo0btWbNGv3zzz8KCQlRdHS08uXLp9KlS6tOnTp66aWXVKlSpZzuLoBsZpHkH58ysOig6rMNR3Ms5o4hsAgAAAAA8AwEFjPZU089paeeeiqnuwHAwziaYzHKx0nGosXxHIu5GQoNAAAAAPAQDIUGgGyQNMeimxmLBBYBAAAAAB6MwCIAZANHGYvRTudYlBK8vBXjYy7vwhyLAAAAAABPQWARALKBd2KCcifEmbY5y1i0WCySpIgUlaGZYxEAAAAA4CkILAJANvC5ddNum7Oq0Mki/czBRzIWAQAAAACegsAiAGQDPwdzI0Y7yVj08fr/jMUU8yzmYY5FAAAAAICHILAIANnAJybGblu0k6rQDR+4R5IUmSL4SPEWAAAAAICnILAIANlg88FzdtuczbFYukBSpmLKjEUCiwAAAAAAT0FgEQCywYYDZ+22uTTHYoriLb4J8VJsbKb1CwAAAACA9CKwCADZICDult02ZxmLyVJmLCZtjMiMLgEAAAAAkCEEFgEgGwTE2VeFdjbHYrIYR/tEMxwaAAAAAJDzCCwCQDZwFFgsH1g0zeOiHQ2XJrAIAAAAAPAABBYBIBv4x9sPhfYrkC/N4xxmNRJYBAAAAAB4AAKLAJANHM2xeF/ZImkeR8YiAAAAAMBTEVgEgGzgaCh0fC4HhVlSIGMRAAAAAOCpCCwCQDZwlLGYkMc/zeOiff0cbCSwCAAAAADIeQQWASAbOMxY9HchsEjGIgAAAADAQxFYBIBs4Kh4S3zugDSPY45FAAAAAICnIrAIANnA30HGYmKe3GkeR8YiAAAAAMBTEVgEgGyQ/jkWCSwCAAAAADwTgUUAyAYp51i86e0ri49PmseRsQgAAAAA8FQEFgEgG/inyFiM8s2ta9GxTo/p+EgZhxmL16+GZWbXAAAAAABIFwKLAJANUmYsRvnm0u9Hrzg95o3aZR1mLJ67GJqpfQMAAAAAID0ILAJANghIURU62ieXwm/GOz2m4QNFHGYsWmIYCg0AAAAAyHkEFgEgG9hnLOaWj5clzeMcZSx6xcRkWr8AAAAAAEgvAosAkA3s51jMJR/vtC/BN338lChzANL7JoFFAAAAAEDOI7AIANkgwEHxFlcyFmWx2A2HLmiNy8yuAQAAAACQLgQWAfwfe/cdHlWZt3H8npLeIKH33qSKKIIFULGLYl/rrnVd17Lqir7q7lrXXbvuroquXVwbFkRQQVAE6b33UAMBkpCemTnvHyGTzJyTkDJnZgLfz3Vx7cxzzpzz+L5kyNzze54f7FZWplhf4H6KhTFxiqlNsCjzcujEoP0aAQAAAACIBIJFALBbQYF5KCZeblctg8WgikX2WAQAAAAARAOCRQCwm0WwWBgTJ7ezdm/BwRWLTrpCAwAAAACiAMEiANit0BwEFrhruceiqFgEAAAAAEQngkUAsFs1FYs3ntChVi8vdMcGPPdaXA8AAAAAgHAjWAQAu1Wzx+L5x7Sq1cuDKxbdxVQsAgAAAAAij2ARAOxmESyWxMXX+uXBeyzGeT2Sx1PN2QAAAAAAhAfBIgDYzWKPxQ5tm9X+5UEVi5Ik9lkEAAAAAEQYwSIA2K2BFYtFbotg0SKsBAAAAAAgnAgWAcBuFsFiaVxCrV9uWbFIsAgAAAAAiDCCRQCwmWERLO7yumr9+uA9FssHCRYBAAAAAJFFsAgANtuwY79pbOmBslq/nopFAAAAAEA0IlgEAJtl7TlgGityx9b69VQsAgAAAACiEcEiANgsOzvXNFanYJGKRQAAAABAFCJYBACbbd9lVbFoERZWg4pFAAAAAEA0IlgEAJsleEpNY1QsAgAAAAAaO4JFALBZfEODRSoWAQAAAABRiGARAGyW4CkxjVGxCAAAAABo7AgWAcBmwUuhS51u+ZyuWr+eikUAAAAAQDQiWAQAmwUHi3WpVpSoWAQAAAAARCeCRQCwWYODRSoWAQAAAABRiGARAGwWvMciFYsAAAAAgCMBwSIA2MxcsWgRFNaAikUAAAAAQDQiWAQAmwUHi8XumDq93qrC0SBYBAAAAABEGMEiANisoXsselxulTrdAWP5B/IaPC8AAAAAABqCYBEAbGbeY7FuS6El8z6LBTkHGzQnAAAAAAAaimARAOxkGEpsYMWiZN5n0V1c1KBpAQAAAADQUASLAGCnkhLTUJE7Vt2bJdXpMoUxgWEkwSIAAAAAINIIFgHATkXmALDIHavfHt++TpcJrlh0FRc3aFoAAAAAADQUwSIA2MkiWCx2x2lYx/Q6XSZ4j0V3CRWLAAAAAIDIIlgEADtVU7FYV+yxCAAAAACINgSLAGCnaoJFQ0adLhNcsegqLpKMul0DAAAAAIBQIlgEADtVEyy6nXV7+w2uWHT6fFJpaTVnAwAAAABgP4JFALCTZbAYp9apcRYnVy+4YrF8sLC+swIAAAAAoMEIFgHATtVULDrkqNtl3ASLAAAAAIDoQrAIAHaqLlisW65oWgpdPkiwCAAAAACIHIJFALBTtRWLdbxMjEUn6YKC+s0JAAAAAIAQIFgEADtVs8diXSsWi9wWwaLFtQEAAAAACBeCRQCwk1WwGBMrRx2TRcs9FgkWAQAAAAARRLAIAHYqLjYN1WsptFXFosW1AQAAAAAIF4JFALBTNUuh63wZlkIDAAAAAKIMwSIA2ClEXaFZCg0AAAAAiDYEiwBgp2q7Qtd1j0UqFgEAAAAA0YVgEQBsdGB/nmmsPhWLxa4Y8yDBIgAAAAAggggWAcBGOZbBYlw9mrewFBoAAAAAEF0IFgHARs7qukLXsWSxKIau0AAAAACA6OIO140OHDigjRs3avv27crJyVFhYaGcTqeSkpKUlpamTp06qUuXLkpOTg7XlADAdq6SwKpCnxwqccXUo2KRPRYBAAAAANHFtmDR4/Fo9uzZ+uGHHzR37lxlZmYe9jUOh0Pdu3fXiSeeqNNPP13HHXecXdMDgLBwlZQEPC92x6jOGyyKYBEAAAAAEH1CHixmZ2drwoQJ+t///qd9+/b5xw3DkCT/8r+K5xVjhmHIMAytW7dO69at0zvvvKN27drpsssu05VXXkklI4BGyRW0XLlir8S6ZovssQgAAAAAiDYhCxYPHDig119/XRMmTFDJoQqdquFhBcMwFBcXp5SUFDmdThUVFamgoMB/btXXbN++Xc8995xeffVVXXXVVbrpppuUkpISqikDgO2Cl0JXVB7SFRoAAAAA0NiFJFicMGGCnn/+eR08eDAgGMzIyNDQoUPVu3dv9ejRQz179lR6erpiYgI/IHs8Hu3evVuZmZlasWKFli5dqrlz5yo/P1+SVFBQoPHjx+t///ufbr/9dl199dV1bnwAAJHgKgmuWDwULNZxl0XLikWatwAAAAAAIqhBweK2bdt03333aenSpf5AsVmzZrrooos0evRo9evXr3aTcLvVrl07tWvXTsOGDZNUHjYuXLhQkyZN0pQpU3Tw4EHl5ubqySef1KRJk/Tkk0+qa9euDZk+ANjOVRy4x2J9KxZLXW755JBTVSrBqVgEAAAAAESQs74v/OKLL3ThhRf6Q8VjjjlGzz//vGbMmKF77rmn1qFiddxut0444QQ99thjmjVrlv7617+qa9euMgxDS5cu1SWXXKLPPvusQfcAALuZKxYP7bFYy9cPad+k/IHDYW7gQrAIAAAAAIigegeL48aNU0FBgdq3b6+XXnpJn332mc4++2y53aFvNB0XF6crrrhC33zzjZ555hl17NhRRUVFevjhh0N+LwAIJXd1S6FrWbL42Fk9Ta+tHCBYBAAAAABETr2DxaSkJP35z3/WN998o9GjR4dyTjU677zzNHnyZI0bN06JiYlhuy8A1EdwxWKx26IJSw2Gd0r3Pzbts0iwCAAAAACIoHqXF06ZMkXNmzcP5VxqzeVy6frrr9e5554bkfsDQK14vXJ5ygKG6roUOimu8m26KIaKRQAAAABA9Kh3xWKkQsVomwMAVMsi+Ktv8xZJKnYFVTvSFRoAAAAAEEH1DhYBAIdhESwWVwSLta5ZrHI5lkIDAAAAAKKILcHiWWedpddff11ZWVl2XB4AGocQVyzSvAUAAAAAEE1sCRa3bNmi559/XqNGjdJNN92kKVOmqKys7PAvBIAjiWWwWLc9FgNfS7AIAAAAAIge9W7eUhter1ezZs3SrFmzlJqaqvPPP18XXnih+vbta+dtASA62F2x6PGU/3Hb+lYOAAAAAIAlWyoWH3jgAfXp00eSZBiGDMNQbm6uPvjgA1166aU6//zz9fbbb2v//v123B4AokMNwWK9Lhe8x6JEAxcAAAAAQMTYEixed911+uyzz/TNN9/opptuUuvWrSVVhowbNmzQ008/rVNOOUV/+MMfNG3aNHm9XjumAgCRU0OwGOd21foy95zaVZJU4o4xH2Q5NAAAAAAgQmztCt21a1fdc889+vHHH/XOO+9o7NixSkpK8geMHo9H06dP1+23365TTjlFTz/9tNatW2fnlAAgfGrYY9HlrP1a6P5tUg691qLakWARAAAAABAhtgaLVZ1wwgl68sknNXv2bD377LM65ZRT5HK5/CHj/v379fbbb2vMmDG6+OKL9eGHHyovLy9c0wOA0AvRUmjHoVYvlkuhCRYBAAAAABES9h3/4+LidO655+rcc8/Vvn37NHnyZP3www9auHChPB6PJGnlypVatWqVnn76aZ122mm65JJLNGzYsHBPFQAaJuR7LFKxCAAAAACIHmGrWLSSkZGha665Ru+8847mzJmjZ555RgMHDpRUvh9jSUmJvv32W91www0aPXq03n77bRUUFERyygBQexaNVYrccRrSvkmdLlPRQZpgEQAAAAAQTSIaLFZYs2aN3nnnHf33v//V0qVL5XA4/H8qlkpv27ZNTz/9tEaNGqWJEydGesoAcHjVVCye0aN5nS5TsRujZbBIV2gAAAAAQISEfSl0hQ0bNujrr7/WpEmTtHPnzoBjhmFIknr37q0zzjhDixcv1uzZs+X1epWbm6sHH3xQy5Yt01/+8pdITB0AaqeaYHHi8l16/Oxedb5cMRWLAAAAAIAoEtZgMSsrS998842++uorrV27VlJliFghPT1d5513nsaOHatevSo/eO/du1cTJkzQG2+8odLSUn300UcaNGiQLrjggnD+JwBA7VUTLG7eX1inyyzeked/bW3uAQAAAABAONgeLObn52vq1Kn6+uuvNX/+fPl8PkmBgaLb7dYpp5yisWPHasSIEXK7zdNq3ry57rjjDvXt21e33XabJOnDDz8kWAQQvSxCv2J3rIo9vjpdJiWu/D2RrtAAAAAAgGhiS7Do8Xg0c+ZMffXVV5oxY4ZKS0slmasTe/bsqYsuukgXXHCB0tPTa3XtUaNGqWPHjtq6das2bNgQ8rkDQMhYNm+J1e+O71Cny5zUOd3/WvMFCRYBAAAAAJFhS7A4fPhw5eWVL90zDMPfhEWSmjRp4l/q3KdPn3pdv3Xr1tq6daspqASAqGIRLBa7Y3XXyZ3rdJn4mPI+WzRvAQAAAABEE1uCxdzc3IAw0eVy6aSTTtLYsWM1cuRIxcTENOj6+/btkyR17969wXMFANtYBYuuGPVtnVqny9TYFZqKRQAAAABAhNi2x6JhGOrevbvGjh2rCy64QBkZGSG79m233aa2bduqS5cuIbsmAIScRbDYsllanS/jdJRHi3SFBgAAAABEE1uCxauuukoXXXSR+vbta8fldfbZZ9tyXQAIKYtgsSzGIhw8jIpgkYpFAAAAAEA0sSVYfPjhh+24LAA0LkHBYrErRg6no5qTq3coVyRYBAAAAABEFWekJwAAR6zgYNEdq7rHipLTHyzGmQ8SLAIAAAAAIsS2PRaDGYahAwcOqLS0VD6fr06vbdOmjU2zAgAbWVUsOupTsVjDUmi6QgMAAAAAIsTWYLGgoEDjx4/X9OnTtWnTJnm93jpfw+FwaNWqVTbMDgBsFvKKRZZCAwAAAACih23B4saNG3XTTTdp165dksorFgHgqGJZsVj3yzgOxZFlTre8DqdcRpWqb4JFAAAAAECE2LLHYklJie68807t3LlTEqEigKNUiCoW/RwOFbtiAscIFgEAAAAAEWJLxeLkyZO1YcMGORwOGYahAQMG6PLLL1fv3r2VnJwsp5OeMQCOAqZgsX57LFZV5I5VkqekygDBIgAAAAAgMmwJFidNmuR/fOGFF+qpp55q8IdpAGh0TEuhY+VrYAV3eWfog1UGCBYBAAAAAJFhS+ng5s2bJUkxMTF68MEHCRUBHJ0sKhbX7S1o0CWLYoIauNAVGgAAAAAQIbYEi9nZ2XI4HOrVq5dSU1PtuAUARDefTyotDRgqdll0da6Fqt/NmDpDU7EIAAAAAIgQW4LFpKQkSVJcXJwdlweA6FdSYhoyhYK1FO+ufKsmWAQAAAAARAtbgsWOHTvKMAxt27bNjssDQPSzWKJcXM9gsVuzpMprBFc9EiwCAAAAACLElmBx1KhRkqSsrCwtWLDAjlsAQHSzCBZL3DH1ulTVfWqpWAQAAAAARAtbgsXLL79caWlpkqS///3vKg3aZwwAjnhWFYv13GOxKlOw6PGU/wEAAAAAIMxsCRbT0tL017/+VZK0cuVK3Xzzzdq+fbsdtwKA6GS5FLp+FYtVFbkt9q6lMzQAAAAAIALc9X3hK6+8cthzunXrpvXr12vu3Lk688wz1atXL/Xu3VtpaWlKSEio9b1uv/32+k4TACLDpopFy30ai4qk5OQGXxsAAAAAgLpoULBYdd+v6lSc4/V6tWrVKq1atarO9yJYBNDohLB5S1WWnaXZZxEAAAAAEAH1DhYlyTAMW8+XVKvwEgCijk1LoautWAQAAAAAIMzqHSwOGTIklPMAgCNLNUuhU+Ia9H0OFYsAAAAAgKhR70+47733XijnAQBHlmoqFn9zbNt6Xe4PwzvpX79ssQ4Wad4CAAAAAIgAW7pCA8BRL8TNWy7t30YSFYsAAAAAgOhBsAgAdgjxHotNEspfW+SOMx8kWAQAAAAAREDUB4ulpaWRngIA1F2Iu0I7D/WxYik0AAAAACBaNKyLQC0ZhqEDBw6ouLhYXq/X8hyfzyePx6OysjIVFhZq7969WrBggSZPnqxffvklHNMEgNAJ8VJop6M8WaQrNAAAAAAgWtgaLC5btkz//ve/NWfOnKOm8tDr9eq7777T999/rxUrVmjv3r3yer1q1qyZ+vbtq/PPP1+nnXaanM6oLxYF0BAhXgpd8ZZR7LK4BhWLAAAAAIAIsC1Y/P7773XXXXfJ5/PJMIx6X8dxqEqnMVi2bJkefvhhrVmzxnRsx44d2rFjh6ZOnaqBAwfqueeeU9u29esOC6ARsKlikeYtAAAAAIBoYUuwmJ+fr4ceekher9cyGKwYCw4cq54bFxenHj16aOTIkXZMMeTmzJmj2267TYWFhf6x5s2bq0OHDiorK9Pq1atVVlYmSVqyZImuueYaffTRR2rRokWkpgzATqGuWKxpKTQViwAAAACACLAlWPziiy+Um5srh8MhwzB0xhln6Mwzz1SzZs305ZdfauLEiXK73Xr11VflcrmUk5OjNWvWaOLEidqzZ48kKTk5Wa+88kqjCN62bt0aECq2adNGjzzyiEaMGOEPS/Py8vTyyy/r3XfflVRewfjYY4/p5Zdfjti8AdgoxM1bKr52oXkLAAAAACBa2LLR3+zZs/2Pr7zySr388ss677zzNHToUI0ZM0ZS+V6EhmHoxBNP1Nlnn627775b33zzjUaNGiVJ2rdvnx555BE7phdyjz76qD9U7NSpkz788EONHDkyoAIzNTVV//d//6err77aP/b9999ry5Yt4Z4ugHCwXAptU8UiS6EBAAAAABFgS7C4du3a8os7nbrtttsCjvXr18/fuGTevHkBx1JSUvTCCy+oR48eMgxDM2fO1NKlS+2YYsgsX75cs2bNklT+3/vPf/5TrVu3rvb8O++8U7Gx5cGAYRiaMWNGOKYJINyqqVjMOlhSr8s5D31PQcUiAAAAACBa2LIUOi8vTw6HQx07dlTz5s0DjiUlJaldu3batm2bli9fbnptbGys7rjjDt1+++2SpMmTJ2vAgAF2TDMkPv/8c//jCy+8UP3796/x/NTUVN1zzz3at2+f0tLS1K9fP7unCCASqmne8sWK3fW6XKzb6b+GCRWLAAAAAIAIsCVYLDr0Ibe6/RG7dOmizMxMrVu3zvL4iBEjlJycrIKCAq1cudKOKYZM1YrDyy67rFavuf766+2ZDIDoYREslrrq/5bbKiWu/LJWDWCoWAQAAAAARIAtS6FTUlIkmbs+V+jQoYMk6cCBA8rNzTUdd7vdat++vQzDiOo9CHfv3q2dO3dKkhISEg5brQjgKBIU9hW5Y6Uq+67WVcWerUXuOPNBKhYBAAAAABFgS8Vi06ZNdeDAAX+H52Dt27f3P96wYYMGDx5sOic5OVmSdPDgQTumGBIVe0lK5VWYLpdLkrR9+3Z98cUX+vHHH7Vjxw4VFRWpRYsWOv7443XJJZdo0KBBkZoygHAJChYb0rgl4DpULAIAAAAAooQtFYvHHHOMJGnr1q3KysoyHa+oWJRkuc+iVF4NKFVf9RgNMjMz/Y9btGghn8+n8ePH65xzztHLL7+sFStW6MCBAyouLlZmZqY+/fRTXXHFFRo3bpxKSurXwAFAIxEcLFo1XakHw+FUSfCSaoJFAAAAAEAE2FKxOHToUH399dcyDEN///vf9fzzzwcc79Wrl//x1KlTTXsOrl27Vtu3b5fD4VBaWpodUwyJ7Oxs/+PExEQ99thj+vDDD/1j3bp1U0ZGhrKzs7Vx40b/+MSJE5WZmam3337b3yE6EjweT8TuHSper7fG50CkuIqKVHXhc9WKxYb+7BW7YhXnrbyGUVgo7xHw81xfvA8A4H0AAO8DAHgfiAxbgsWzzz5b//jHP5SXl6cpU6YoKytLt9xyi4YPHy63262WLVuqe/fuWr9+vZYsWaLXXntNt9xyiyRpz549evDBB2UYhhwOh/r06WPHFEMiLy/P//jnn3/2Pz/99NM1bty4gCXf27Zt02OPPaaZM2dKkhYuXKjHH39cjz76aHgnfYjP59PSpUsjcm87rVixItJTACRJx+TmKr7K84qKxSEtYxv8s1fsjlFaaeXzgv37tfYI/HmuL94HAPA+AID3AQC8D4SHLUuhExMT9fvf/96/jHnRokW69dZbtWTJEv85VTsov/DCCxoxYoTGjh2r008/XatWrfIfO/PMM+2YYkiUllZ+sq8IFS+//HK98sorAaGiVL6v5KuvvqqzzjrLP/bxxx9X2xkbQOPmqPL+IFVWLJ7TKbHB1w5u4OJkawUAAAAAQATYEixK0vXXX6+rr746YI/EqnsrXnHFFerdu7f/+O7du7V69eqAsK5nz5664IIL7JpigzmCOry2b99eDz30kGm8gtPp1OOPP+5vTGMYht5//33b5wkg/JzBweKhisX2Ka4GXzu4EQzBIgAAAAAgEmxZCl3hoYce0qmnnqrXX39dK1euVIsWLfzHYmJi9Prrr+v222/3LwusCBkNw1D37t316quvyu22dYoNkpgYWHl0xRVXHHbPxJSUFJ1zzjn6+OOPJUmzZ8+2bX41cTqd6tevX0TuHUperzegvLlv377+7txAJLmC9jysCBa7d++uAR2b1u+iE3ZKkoqCGsHESRowYED9rnkE4H0AAO8DAHgfAMD7QN0tX75cPp+vQdewPbU7+eSTdfLJJys/P990rHnz5vrwww/1/fffa+bMmdqzZ4+aNGmik08+Weedd15Uh4qSlJSUFPD82GOPrdXrBg4c6A8Wt23bptLS0og0cYn2//vWh8vlOiL/u9AIBXeFPlRlGON2N/jvaHCHaUdREX/vq+B9AADvAwB4HwDA+0B4hO3/whXLf4O5XC6dddZZAXsPNhZNmwZWHaWnp9fqdRkZGQHPc3JyAqo5ATRyPp9UzVJo640S6ia4YjE4xAQAAAAAIBxs22PxaNC9e/eA51W7RNfEE7REkgQdOMJY7HlYUbHorGYP1roIrlhUUVGDrwkAAAAAQF2FPdHKyspSVlaWcnNzlZqa6t8XrKioSLGxsY1q/XvPnj0Dnm/ZskX9+/c/7Ot2797tfxwfH68mTZqEemoAIsmigrAiDHSG4Ouc4OYt8njK//AlBQAAAAAgjMJSsZiZmalHH31Uo0aN0ogRI3T55Zfr5ptv1iuvvOI/Z9q0aRo+fLiee+45HTx4MBzTarD09PSAcPGHH36o1evmz5/vf9ynTx85Q5E0AIgeFsFiibs8DAzNUui4Wt0TAAAAAAA72ZpoGYahF198UWeffbYmTJignTt3yjAM/5+qdu7cqZycHI0fP14XXHCBli9fbufUQmbMmDH+x9OnT9eGDRtqPH/Xrl2aNm2a//no0aNtmxuACLGqWHQdqlgMwVLoipDycPcEAAAAAMBOtgaLd911l1599VV5vV5TkOgI+nC9fft2/+Ndu3bphhtu0MaNG+2cXkhcdNFFSktLkySVlZVp3Lhx1VZclpaW6v7771dZWZmk8oY2Y8eODdtcAYSJ5VLoQxWLIShZNDVvqeaeAAAAAADYybZg8ZVXXtHUqVP9z/v166eHH35YH330keX5559/vgYPHizDMORwOJSXl6dx48bZNb2QSU9P1wMPPOB/vnz5cv3mN7/Rr7/+GnDepk2b9Lvf/U5z5871j911113+UBLAEaSGikVXKJq3uCyCRRq4AAAAAADCzJad/nfv3q3x48f7n99zzz266aabanzNkCFD9MEHH+j999/XE088IUlasWKFZs6cqVNPPdWOaYbMRRddpC1btujVV1+VJK1bt07XXXedWrVqpfbt2ys3N1fr1q0LeM2YMWN0zTXXRGK6AOxWQ/OWHs2TG355KhYBAAAAAFHAlorFTz/9VCUlJXI4HLr00ksPGypWdfXVV+u6667zP588ebIdUwy5u+++W08++aSaNm3qH9u9e7fmz58fECq63W7ddttt+vvf/x6JaQIIhxqWQse66/+22zSh/BqWS6GpWAQAAAAAhJktweKsWbMkle+jeMcdd9T59TfffLPc7vJiysbSxEWSLr74Yk2dOlUPPfSQTjzxRLVs2VIxMTFKTExUnz59dMMNN2jKlCm688476QQNHMmqWQod14BQUZLO7Nm8/Fo0bwEAAAAARAFblkJv375dDodD3bp1U7Nmzer8+vT0dHXo0EGbNm1SVlaWDTO0T1pamq655hqWOQNHs2oqFks8vgZd1uUs35+xyB1Xq3sCAAAAAGAnW8rmcnNzJZUHhPXVvHl5ZU5paWlI5gQAYVND85aGcB5q/FLssqhYZCk0AAAAACDMbAkWU1JSJFUGjPWxb98+SaJrMoDGp4Y9FhviUMGi9R6LVCwCAAAAAMLMlmCxdevWMgxD69evr1e4uGvXLm3cuFEOh0Nt2rSxYYYAYKMaukI3hKOiYpHmLQAAAACAKGBLsDh8+HBJktfr1X//+986v/6ll16SYRiSpBNOOCGkcwMA21mEfKFYCl2xx6JlsEjFIgAAAAAgzGwJFi+44AJ/1+M33nhDU6dOrfVrX3vtNU2cONH//Nxzzw35/ADAVjYthW6TGi+pmqXQVCwCAAAAAMLMlmCxW7duuuiii2QYhrxer+6++26NGzdOc+fO1d69e03nFxYWasaMGfrtb3+rF154QVL5kr/Ro0erV69edkwRAOxjU/OW8/u0PHQti5CSikUAAAAAQJi57brwww8/rDVr1mjlypUyDENffvmlvvzyy4Bz5s+fr6FDh+rgwYPy+XyS5F8C3b59ez366KN2TQ8A7GNTxWLThPJrFLnjanVPAAAAAADsZEvFoiTFx8frzTff1MknnyzDMAL+VDQgKCkpUU5Ojrxerz9QlKQ+ffrorbfeoiM0gMbJtuYtFdeyCClZCg0AAAAACDPbgkVJatKkicaPH6+nn35aPXv29I9XDRmratGihe6//3599NFHatu2rZ1TAwD7WC6FbnjFokM0bwEAAAAARA/blkJXNWbMGI0ZM0aZmZlatGiRtm7dqry8PJWVlSktLU0tW7bUoEGD1Lt3b3/TFwBotGyuWKR5CwAAAAAgGoQlWKzQoUMHdejQIZy3BIDws6l5S43XomIRAAAAABBmlAcCQKhZhHylroZ/j3OoYNG6YpFgEQAAAAAQZmGtWKyLt99+W2vXrpXD4dCTTz4Z6ekAQO0FhXxF7tjKdcwNUHEJj9Mlr8Mpl+GrchOWQgMAAAAAwitqKxZnzZqliRMnauLEiZGeCgDUTVCwGIrGLZLkqEgWHQ7zNalYBAAAAACEWdQGiwDQaAUHiyFo3CJVLoWWLJZDU7EIAAAAAAgzgkUACDWbKhYDrhkcLFKxCAAAAAAIM4JFAAg1uyoWq5QsmioWCRYBAAAAAGFGsAgAoWbXHotVFkObwkqWQgMAAAAAwoxgEQBCjYpFAAAAAMBRgGARAEItKOSrCAGT41wNumzV5i2mKkgqFgEAAAAAYUawCAChVk3F4vBO6aG7BRWLAAAAAIAII1gEgFDyeqWysoChiupCw2jYpR1V1kJbLoVu6A0AAAAAAKgDgkUACKWSEtNQRXWhoYYFf4FLoS32bbS4NwAAAAAAdiFYBIBQsliSXBKyisXKx0UxFsEiy6EBAAAAAGFEsAgAoWQR7lVWLDZM1WCxxKpikQYuAAAAAIAwctf3hV988UUIp2GWlZVl6/UBwBY1BYsNTBabJlSGicXuGPMJVCwCAAAAAMKo3sHiuHHjAhoJAABkHSz6l0I3LFl0OWto3iJRsQgAAAAACCuWQgNAKNVQsdgxPbHBl2+eVH4ty+YtVCwCAAAAAMKo3hWLUsOrbwDgiFNDxeIVA9uE7DaWFYsEiwAAAACAMKp3sDht2rRQzgMAjgw1VCx2DkHFYvfmSdpbUOq/ZgCWQgMAAAAAwqjewWLbtm1DOQ8AODJYBosWjVbq6aYTOmr2lgNULAIAAAAAIo49FgEglCyXQluEgPV0Wvdm5dekYhEAAAAAEGEEiwAQSjUshQ6Fis7QFfs2Hu7eAAAAAADYpd7B4nvvvSefzxfKudSJYRh6//33I3Z/ALBUQ/OWUHAc+t8id5z5IBWLAAAAAIAwqnew+MQTT+iiiy7S3LlzQzmfWpk/f74uvvhiPfHEE2G/NwDUyOaKRYfjUMWi1b6NVCwCAAAAAMKo3sFis2bNtHbtWl1//fX6/e9/r/Xr14dyXpaWLFmiG264Qddee61WrVqljIwM2+8JAHVic/OWCjRvAQAAAABEWr2Dxa+++kqnnHKKDMPQjBkzNGbMGN1666368ccfZRhGyCZYUlKiSZMm6YorrtCVV16p2bNnyzAMDRkyRBMnTgzZfQAgJGpo3pIQ42rw5SuWQtO8BQAAAAAQae76vjA9PV2vv/66PvroIz333HPKy8vTzJkzNXPmTLVo0UKnnXaaTj31VA0dOlRxcRZ7gdUgNzdXv/zyi2bMmKFp06apsLBQUvm+igkJCbr77rt1zTXX+JcEAkDUqKFisVlSw5dEV7ztWXaapmIRAAAAABBG9Q4WK1xxxRU644wz9PTTT2vSpEny+Xzas2ePJkyYoAkTJsjlcqljx47q0aOHunfvroyMDKWkpCgpKUkul0vFxcXKycnRzp07tXXrVq1cuVKZmZn+qseK/3U4HLrgggt09913q3Xr1g2dNgDYo4aKRWcIvgypuITlUmgqFgEAAAAAYdTgYFGSMjIy9I9//EM33XSTXnzxRU2fPt3fMdrj8WjTpk3atGmTpkyZUqvrVV1K7XK5NHr0aN1yyy3q1atXKKYLAPapoXmLMwRF1g7RvAUAAAAAEB1CEixW6N69u1555RVt27ZNH374ob755hvt2bMnICisWL5ctRKx6vMKbdu21QUXXKCLL75Y7dq1C+U0AcA+NSyFDm3FosUWEwSLAAAAAIAwCmmwWKF9+/a6//77df/992vZsmWaM2eOli5dqo0bN2rnzp0qKyvzn2sYhmJiYtShQwd17dpVxx57rIYOHUp1IoDGqYal0KHcFrbYZVGxyFJoAAAAAEAY2RIsVtW/f3/179/f/9wwDOXn56uwsFAOh0NJSUlKSkqyexoAEB41VCyGouFUjV2hqVgEAAAAAISR7cFiMIfDoZSUFKWkpIT71gBgv6BwzyeHypyhe6v1h5MOh4pdMYr3VlaAU7EIAAAAAAgnZ6QnAABHlKBgsdgdE9I10FWvZKpapGIRAAAAABBGBIsAEEqmYNFiyXIDVM0oi4KvTcUiAAAAACCMCBYBIJSCg0VXiIPFKjWLpgYuVCwCAAAAAMKIYBEAQslqKbRNitxxNd4bAAAAAAA7ESwCQCjZXLEYH1P5tm0KLVkKDQAAAAAII4JFAAglmysWY1xVgsXg0JKKRQAAAABAGBEsAkAo2VyxWFVRDM1bAAAAAACRQ7AIAKEUxj0WqVgEAAAAAEQSwSIAhJIpWLSxYjH42l6v5PHYdj8AAAAAAKoiWASAUPF6pbKygKFil40Vi1bVkCyHBgAAAACEiS3B4rfffqu3335b2dnZdlweAKJTSYlpyM6KxRKr/RtZDg0AAAAACBNbgsXPPvtMTz/9tEaMGKHXX3/djlsAQPSxCPVKbKxYNC2FlqhYBAAAAACEjS3B4rp162QYhrxer4499lg7bgEA0cciWLSzYtHy2lQsAgAAAADCxJZgMScnx/+4T58+dtwCAKJPmINFKhYBAAAAAJFkS7DYokUL/+OqISMAHNGsgsVwN2+hYhEAAAAAECa2BIvnn3++//Hbb79txy0AIPrUULF47eB2Ib9dkTuuVnMAAAAAAMAOtgSLv//97zV8+HAZhqH33ntPTz75pPbv32/HrQAgetRQsXjpgDahv51VNSRLoQEAAAAAYeK246KZmZm67777lJSUpO+++07vvfee3n//fXXt2lW9evVSenq6kpOT5XA4anW922+/3Y5pAkBo1VCxmBIXurfbC/u20hcrdtO8BQAAAAAQUbYEi+edd54/NHQ4HDIMQ4ZhaP369dqwYUOdr0ewCKBRsAwWy6sKnSGsDzcMQxLNWwAAAAAAkWVLsChVfvCt7Xh1alvVCAARZ7kUujz8S4oN3dutzwi89uHmAAAAAACAHWwJFocMGWLHZQEgutWwFHpgm9SQ3cZXUbEYQ7AIAAAAAIgcW4LF9957z47LAkB0s1iGXNFgJZTV10ZNFYsshQYAAAAAhIktXaEB4KhUTcWi2xnaLR0qKhYr9m883BwAAAAAALADwSIAhEo1zVtCvVVsxU61NG8BAAAAAESSbc1bqpOVlaWsrCzl5uYqNTVVAwYMkCQVFRUpNjZWLpcr3FMCgNCopnmLQ6FNFj2HurfQvAUAAAAAEElhCRYzMzP19ttva8aMGdq1a5d//KSTTtL48eMlSdOmTdPjjz+uyy67TDfddJNSUlLCMTUACJ0wVSyWenySqqlYJFgEAAAAAISJrUuhDcPQiy++qLPPPlsTJkzQzp07ZRiG/09VO3fuVE5OjsaPH68LLrhAy5cvt3NqABB61VYshpa/YpGl0AAAAACACLI1WLzrrrv06quvyuv1moLE4A6p27dv9z/etWuXbrjhBm3cuNHO6QFAaFXTvKX4UIVhqJR5qVgEAAAAAESebcHiK6+8oqlTp/qf9+vXTw8//LA++ugjy/PPP/98DR48WIZhyOFwKC8vT+PGjbNregAQetUshQ61MioWAQAAAABRwJZgcffu3f69EyXpnnvu0SeffKKrrrpKAwcOtHzNkCFD9MEHH+ihhx7yj61YsUIzZ860Y4oAEHrVLIUOteZJ5df0Ol3yOILexqlYBAAAAACEiS3B4qeffqqSkhI5HA5deumluummm2r92quvvlrXXXed//nkyZPtmCIAhF6YKhbvOqWL/3GROy7wIBWLAAAAAIAwsSVYnDVrlqTyfRTvuOOOOr/+5ptvlttd3rCaJi4AGo2gYNEnh8qc7pDfJj2xsgrSFFxSsQgAAAAACBNbgsXt27fL4XCoW7duatasWZ1fn56erg4dOsgwDGVlZdkwQwCwQVCoV+yOkRyh7gkttUmtrFI0NXAhWAQAAAAAhIktwWJubq6k8oCwvpo3by5JKi0tDcmcAMB2pmAx9PsrSlKHponV34Ol0AAAAACAMLElWExJSZFUGTDWx759+yRJaWlpIZkTANguOFi0oXGL6ZYulkIDAAAAACLDlmCxdevWMgxD69evr1e4uGvXLm3cuFEOh0Nt2rSxYYYAYAOrpdA2o3kLAAAAACBSbAkWhw8fLknyer3673//W+fXv/TSSzIMQ5J0wgknhHRuAGCboGDRtP+hHbekeQsAAAAAIEJsCRYvuOACOZ3ll37jjTc0derUWr/2tdde08SJE/3Pzz333JDPDwBsEYGl0DRvAQAAAABEii3BYrdu3XTRRRfJMAx5vV7dfffdGjdunObOnau9e/eazi8sLNSMGTP029/+Vi+88IIkyeFwaPTo0erVq5cdUwSA0IvAUmhTeFlSIvl8tt8XAAAAAAC3XRd++OGHtWbNGq1cuVKGYejLL7/Ul19+GXDO/PnzNXToUB08eFC+Qx+EK5ZAt2/fXo8++qhd0wOA0AtTV+iqLJdbl5RICQm23xsAAAAAcHSzpWJRkuLj4/Xmm2/q5JNPlmEYAX8cDockqaSkRDk5OfJ6vf5AUZL69Omjt956i47QABqXSHSFtgoWaeACAAAAAAgD24JFSWrSpInGjx+vp59+Wj179vSPVw0Zq2rRooXuv/9+ffTRR2rbtq2dUwOA0PJ4yv9UEY6l0CVW92CfRQAAAABAGNi2FLqqMWPGaMyYMcrMzNSiRYu0detW5eXlqaysTGlpaWrZsqUGDRqk3r17+5u+AECjUlJiGgpP85Y4i0EqFtE4fbZsp75ZvUfHtEzRZQPb6I6Jy7UyK19n9myuf5zXRwkxrkhPEQAAAEAVYQkWK3To0EEdOnQI5y0BIDwsqgQtqwlDfVsXFYs4Mry/cLuunbDY//y+Sav8jzdkF6hj00TdO6JrJKYGAAAAoBq2lAe+8MILWrZsmR2XBoDoZBHmhadi0eIeBItohF7/dWuNx/9cJWgEAAAAEB1sqVh89dVX9dprr6lZs2YaOXKkRo0apWHDhik21v4P2QAQEVbB4qGKxbZp8SG/XVq8W7nFHpq34Igxa/P+SE8BAAAAQB3ZuhR67969+uSTT/TJJ58oPj5ew4YN06hRozRy5Eilp6fbeWsACC/LYLE89OuakRjy253aNUNfrcyyroqkYhEAAAAAEAa2BIsjR47Ur7/+qqKiIn/n56KiIk2fPl3Tp0+X0+lUv379NGrUKJ122mnq2pU9kwA0cpZLocsrFq8cFPou945D/2u5FJqKRQAAAABAGNgSLP7nP/9RWVmZ5s+fr5kzZ+qnn37S5s2b/SGj1+vV0qVLtXTpUj3//PNq3769Ro0apVGjRum4446jMzSAxqeGisV4d+g72TocjkP3oHkLAAAAACAybFsKHRMTo2HDhmnYsGF64IEHtH37ds2cOVMzZ87UvHnzVFzlg++2bdv0zjvv6J133lFqaqpOOeUUjRo1SqeccoqSkpLsmiIAhE4NzVscDtOhBjundwt9sWK3itxxtZoLAAAAAAChZusei1W1a9dOV111la666iqVlJRo7ty5+umnn/TTTz8pMzPTf15ubq4mTZqkSZMmye126/jjj9ebb74ZrmkCQP3U0LzFjmDxwr6tdPMny6wrFlkKDQAAAAAIg7AFi1XFxcXplFNO0SmnnCJJ2rJli3766SfNnDlT8+fPV2lpqSSprKxMs2fPjsQUAaBualgKnVvkCfntmiWVVypa7rFIxSIAAAAAIAwivplhcXGxdu7cqX379qmgoEA+n08Oh8O/fxgANAo1NG/ZddCeoK97syTrrtBULKKRqdiDGQAAAEDjEvaKxdLSUi1cuFDz5s3T3LlztXz5cnk8gdU8VT9gJCQkhHuKAFB3NVQs2pWZOByV9zjcXIBo9uj36yI9BQAAAAD1YHuwWFpaqsWLF/uDxGXLlqmsrMx/PLhKITY2VgMGDNDQoUM1dOhQDRgwwO4pAkDD1VCxaFctltPhsF4KTcUiGpFtOUX623cEiwAAAEBjZEuwOH/+fM2dO9cfJFbsmSiZg0SXy6VjjjlGQ4cO1Yknnqhjjz1WcXEWXU4BIJrVULFoF4ekIpq3oBHz+gwNf3lWpKcBAAAAoJ5sCRavueYa/x6JwUGiw+FQjx49/BWJQ4YMUXJysh3TAIDwicBS6PKKRYsvYggW0Ui8NmertufWfun+uW/M1V2ndNEZPZrbOCsAAAAAtWXrUuiKUDEhIUEXX3yxRo0apf79+xMkAjjy1LQU2qZkcWXWQaWyFBqN2O0Tl9fp/G/X7NG09dlaed8IdW2WZNOsAAAAANSWrcFiRdVicXGxPvzwQ82bNy+gUjElJcXO2wNA+ERgKbQkFVKxiKNMqdenDxfv0MNn9Ij0VAAAAICjni3B4qOPPqrZs2dr7ty5OnDggKTyip3169dr/fr1eu+99+R0OtWrVy+dcMIJGjp0qI477jglJibaMR0AsF8EmrdIksfllsfhlNvwVQ4SLOIIN2NDNsEiAAAAEAVsCRYvu+wyXXbZZZKk1atXa86cOZo9e7YWLlyookMfeL1er1atWqVVq1bprbfeksvlUt++ff1B4+DBgxUba3+1DwCERAT2WKxQ5I5TSlmVMJFgEY3A+F+31vu1TqcjhDMBAAAAUF+2LoWWpN69e6t379763e9+p7KyMi1ZskSzZ8/WnDlztGLFCnk8HkmSx+PR0qVLtXTpUr3++uuKiYnRgAEDNHToUP3hD3+we5oA0DCWwWJFxaK9yWKRO5ZgEY2Kx+vTLZ8uq/frp63PlmEY/i1XAAAAAESG7cFiVTExMRoyZIiGDBmiO++8U/n5+Zo/f77mzZunBQsWaNWqVfJ6vZKk0tJSzZ8/XwsWLCBYBBD9LJdCh6tiMai6m2ARUcwwDI15a36Dr/Ph4h266th2IZgRAAAAgPoKa7AYLDk5WSNHjtTIkSNVUlKimTNn6l//+pfWrl0rh8NhWydVAAi5oGDR63DK43RJktLiY2y9NcEiGgufz9C5b87V1LV7G3ytN+dmEiwCAAAAERbRYHHVqlX65ZdfNHv2bC1atEilpaWSxNImAI1PULBY7IqRDr2Xjenb0tZbEyyisfhly/6QhIqSNGPjvpBcBwAAAED9hTVY3LFjh2bPnq3Zs2fr119/VU5Ojv9YcHVi7969NWLECI0cOTKcUwSA+gkOFquEfW1S4229dZE7LmiAYBHR6faJyyM9BQAAAAAhZGuwePDgQf3666/65ZdfNGfOHGVmZvqPBQeJ8fHxGjp0qEaOHKkRI0aoZUt7K3wAIKRMwaK9y5+rKoqhYhGNw9YD/N0EAAAAjiS2BIvPP/+85syZo5UrV8rn8/nHg8PEVq1a6dRTT9XIkSN14oknKi4uLvhSANA4mJZCx1ZzYuhZLoU2DP9SbCBa8DcSAAAAOLLYEiy+9tprls1XHA6H+vXrpxEjRmjUqFHq1auXHbcHgPCLZMVicLDo80llZVJs+MJNoDZyiz0hvd6mfQXqkpEU0msCAAAAqD3blkJXhIqJiYk66aSTNGLECI0YMULp6el23RIAIieiFYsW1d5FRQSLaFQSyko0ctsyZSU20cKW3WpVcfv1qizdeXKXMMwOAAAAgBVbgsX27dv7lzgff/zxiokJX+UOAEREDRWLzZLsDfiKgysWpfJgMS3N1vsCoTJm/a96/ftX1LwoT5K0vklrvTbgLL006Hx5XNX/qlLmNao9BgAAAMB+tgSL33//vR2XBYDoVUNXaIfNex2alkJLNHBB1Cnz+kxjDsOnf017VbcunRIw3j1nl56Z+ZbO3rxQ54z9i8pc1l9Q/rRxn+4d0dWW+QIAAAA4PFu7QgfLy8vTokWLtGfPHuXk5MjpdCopKUlt27ZVnz591KxZs3BOBwBCp5ql0Bf2bWX7rQkW0Rj8vGm/aezBuZ+YQsWqTstcpkd/+VAPnHKd5fFJq7NkGIbt4T0AAAAAa2EJFmfOnKnx48dr0aJFpoYuVfXu3VvXXXedxowZE45pAUBoeDzlf6qoWAo9fUO2bbc9sWNTzdl6oPo9FoEo8t95mQHPWxQc0P3zPjvs6+6b/7m+7zhQ0zsOsDy+M69YbdMSQjJHAAAAAHXjtPPixcXFuueee3Trrbdq4cKF8vl8/mDRMAzT41WrVmncuHH67W9/q7y8PDunBgChU1JiGqqoWMwLcRfcql68sK+kaioWCwttuy9QHzlFZQHPH5z7qZLLiqs5u5JTht6Z8rySS63/TtfwfSUAAAAAm9kWLHo8Ht10002aPHmyqUrR5XIpPT1daWlpcjorp+BwOGQYhn799VfdcMMNKrH4sA4AUafYHI6UuO1vWjW4XXlzFpZCozGo+ptAx9ws3br0W9M5Q3/zT3W74TUdjAmsQGybv183LGf/ZgAAACDa2BYsPvPMM5o/f77/eYcOHfTQQw/p22+/1YoVKzR79mzNnTtXy5cv16RJkzRu3Dh16NBBUnkF44oVK/Tcc8/ZNT0ACB2LYLGiYtFOFfvKESyiMSgq8/ofPzDvU8X6Aqt5P+82VPNa99SmJq31h9NvNb3+j4snyenzmsaLPeamMAAAAADCw5Zgcfv27Xr//ff9H3ovvvhiff3117r66qvVuXPnwAk4nerWrZuuv/56ff3117r00ksllYeLH3zwgXbt2mXHFAEgdKyCxTBULFZgj0U0BnO2HpAkxXjLdOnaWQHHvA6nHj7pav/z93uP0KIWXQLO6ZKbpTEb55qu+6cvV9owWwAAAAC1YUuw+MUXX8hzqJHBKaecoieeeEKxsYev3omNjdVjjz2mESNGSJK8Xq8+++zwG7sDQERZBov2VyxWoGIRjUHJocrCEdtWqGlJQcCxz7qfqNUZHSoHHA69MNjcyO2uhV+ZxiatzlJu0P6NAAAAAMLDlmDxl19+8T9+4IEH6vz6cePG+R/PmTMnJHMCANtYLoUOZ8UiwSKim9dXucPi2PXmf9c/6XmSaex/PU/SzqT0gLGTd6zSsVkbTOeOenW2Ckvta5QEAAAAwJotweK2bdvkcDjUsWNHderUqc6v79Spkzp37izDMLRhg/kDBABElRoqFnu3SLb99iyFRrT7Yf1eSZLT59WYDb8GHCtyx2pKp2NNrylzxejfA88xjV+1eqZpbPGOPM3YuC9EswUAAABQW7YEizk5OZKkVq1a1fsaLVq0kCQVFBQc5kwAiLAamrdcMqCN7benYhHR7saPl0qSTty5Vq0KcwKOTe04SAWxCRavkl7vf6Y8jsBfVS5e94tkGKZzJyzeEZrJAgAAAKg1W4LFpKQkSVJeXl69r3Hw4EFJUnKy/dU+4fDAAw+oZ8+e6tmzpz7//PNITwdAKNXQvOWHdXttvz3BIqLdjtzyn5GxG8zLoCd2P7Ha12Unpml6h/4BYx0OZuv43etM51pkjQAAAABsZkuw2KpVKxmGoXXr1tUrXMzNzdW6devkcDj8lYuN2cyZMwkTgSOZRYhXsRS6ohOurbcnWEQjccGGwK7OZU6XJnUZEjDmcAS+5tMew03XuWTdbNOY02EaAgAAAGAzW4LF4447TlJ5V+c333yzzq9/8803/V2lhwwZcpizo9vBgwf18MMPR3oaAOxUQ/OWU7tk2H579lhEY9A6f5+65u4OGJvZrq8OJKT4n/9ldA/9cEtgBeMX3YbWajm0IziRBAAAAGA7W4LFCy64wP/4jTfe0Lffflvr106ePFlvvPGG//nZZ58d0rmF25NPPqmsrKxITwOAnWpo3hIfY8vbbAAqFtEYDNu5xjQ2o30//+MFd52sv4zuqZHdmumawe3849mJaQHnSVLnvD0aHNQdmopFAAAAIPxs+cQ7YMAADR8+XIZhyOv16k9/+pMeeuihGjs8r1+/Xg8++KDuuece+Xw+ORwODR061F/92BixBBo4StRQsegOQ9pBsIjGYPiO1aax2W16+R8f266J//F/Lu6nP53axf/8sx7DTK+9KKi7tMfHJosAAABAuLntuvCTTz6pCy+8UDk5OTIMQ5999pk+++wzNW/eXN26dVNqaqqk8gYv69evV3Z2tiTJOLS0KSMjQ0899ZRd07NdXl6eHnroIUlSTEyM3G63ivigDxyZaqhYDEewWEywiEZg2M7AYNHjcGpe6x6W5ybGuvXM+cfomfOPkfPerzWx21D964dX5VRleHj61iV66KRr/M8/WLRD4y8doPgYlz3/AQAAAABMbFuj17JlS33wwQdq3bq1f8wwDO3Zs0dz5szR1KlTNXXqVM2ZM0d79+71B4qS1KZNG73xxhtq1aqVXdOz3ZNPPqk9e/ZIkm6++Walp6dHeEYAbFNDsOj1heH+DocKg8NFgkVEifwSjxLKSjRoz6aA8cUtuqgwJr5W19iT1FSLW3QJGDtu9wY1LToYMHbR2/MDfp8AAAAAYC9bN//q0qWLJk6cqN/97neKi6tsLmAYRsCfCgkJCbr22ms1ceJE9erVy+qSjcKMGTM0ceJESVKPHj106623RnhGAGxVw1JoX5hCDlMDF4JFRImlO/N0/O51ivF5A8Znt+1dp+v80HFgwHOnDI3atixgbOravVq7N79e8wQAAABQd7Ytha6QlpamP//5z7r99ts1b948LViwQHv27PEvkU5NTVXr1q117LHH6vjjj1dycrLdU7JVXl6evwu02+3WU089pdhYi2WKAI4cNVQsxrjC01HCtM8iwSKixJ1frNBZlvsr1i1Y/L7jQN0//7OAsTO2LtFnPYYHjM3dmqNeLVIEAAAAwH62B4sVEhMTNWLECI0YMSJct4yIxx9/3L8E+oYbblDfvn0jPCMAtquxeYu9XaH/eFJnvTxrM8EiotLMjdlatCNXf7PoCP1LlWBxWKem1V7j6XN76/5vVuuXtr1V5I5VgqfUf+z0rUtM59v8IwcAAACgCn79DqHp06fryy+/lCR17dpVt99+e4RnBCAsamreYnPF4pD2TSRRsYjoNP7XTDkMn07cFRgsbkltoZ0pGf7nN53Qsdpr3Duiq+46pYtK3LH6qe0xAce65GapS86ugDGHwlMlDAAAACDEFYsHDhzQxo0btWfPHiUmJqpdu3bq1q1bKG8RtXJzc/XII49IkpxOZ6NYAu3xeCI9hQbzer01PgfCwVlYaPqWpthdXrHolL0/a75D+9YF77FoFBXJewT8jNcG7wPR68PFO9Q5d4/SiwP3PZzdpnIf5aEdmug3A1vV+HPy9Nk99MJPm/RDx4E6c+vigGNnbF2i15pUNorz+bxHxL9vqBveBwDwPgCA94HICEmwuGzZMr388suaM2eO6f9xLVq00DXXXKNrrrkmoIHLkebxxx/X3r17JUnXX3+9BgwYEOEZ1czn82np0qWRnkbIrVixItJTwFGoS1aWghdyFrvKv1jIyzlg68/a9sxCSeaKRV9+/hH5M14bvA9El/57t5jGFrfo6n98UQeHli1bZjon2Nujm+nZvQP1z58Cx0dlLtVrA872P9+Wmamlzux6zxdHBt4HAPA+AID3gfBo8FLo//znP7ryyis1a9YseTweU8fnrKwsPfvss7rkkku0bdu2UMw56kybNk1fffWVJKlTp0668847IzwjAOHkKC0NeO51OOVxuiRJbZPt3crW4Shf9hkcLDpKSmy9L1BbA/ZuNo0tbd6pztc5JiNW9181RHsS0gLGh+9YI1Xpvs5CaAAAACB8GhQsfvzxx3rxxRdrLC91OBwyDEPr16/XjTfeqPz8/GrPbYxycnL0l7/8RVL5f+sTTzyh+Pj4CM8KQDg5g4LFYleMdCjwO7dzQljmEBwsOj0eidJ/RIF+2VtMY8uqBItN42r/q0i+19AvbQO7Sbcp2K9OeVn+5xVhOwAAAAD71buUJj8/X88++6z/F3jDMDR06FCNHj1abdu2lcfj0dq1azVx4kR/pWJmZqb+9a9/6f777w/N7KNA1SXQV199tY477rgIz6h2nE6n+vXrF+lpNJjX6w0ob+7bt69cLlcEZ4Sjkcsd+FZaNeQbdcJAxbnt+zu5zrFLmn3AtMeiJA3o0UNKTrbt3tGC94EoNmGnqWIxKzFNe5IqNw+4etRxcrtqFy5mr8/WD21666INvwaMn7RjtbaktZIkdezYUQMGtLZ6OY5gvA8A4H0AAO8Ddbd8+XL5fL4GXaPeweKUKVOUm5srh8OhuLg4PfvsszrttNMCzjnttNN088036+GHH9bEiRNlGIY+//xz3XXXXUfEfos//PCDvv76a0lS+/bt9ac//SnCM6obt9veJZqR4HK5jsj/LkS5oGXHxVWCxaR4e9/r3If+oSwO7gotyV1WJh2FPw+8D0SPpNIidcvZHTC2tHln/+O7Tumi+LjaNzrzyaFZQRWLkjR8x2q932ekpPKfCf7/D94HAPA+AID3gfCo91LouXPn+h/fd999plCxgtvt1mOPPabu3btLkvLy8rRkyZL63jZq5OTk6K9//auk8mVXjz/+uBITEyM7KQCRUVwc+PRQR+hwCl4KXT5YFPZ5AFX1zd5qGlverJP/8V9H96jT9cp8hha17Gr6+z58xyr/Y1ZCAwAAAOFT7+h2zZo1kqSkpCRddtllNd/E7daVV16pRx99VJK0cuVKnXDCCfW9dVT43//+518CnZCQoPHjx2v8+PHVnp+dXdmh8q233tI333zjf/7000+rWbNm9k0WgL2CgsUSV3mw2LdViu23Xp1Vvm+tZbBYWGj7/YGaDLDoCL20RWXFYmp83UP4MleM5rXqrlO3r/SP9d2XqSbF+cqJT6Z5CwAAABBG9Q4W9+7dK4fDoQ4dOigm5vAfDAYPHux/nJmZWd/bRo3SKs0aCgsLNWvWrFq/dt26dVq3bp3/eXFQKAGgkQmqDKzY73DF7oO237pTekLAPWuaFxBu/S2CxWVVKhbr6owezSVJs9v0DggWJWnYztWa3GWInE6iRQAAACBc6r0UuvBQJUxKSu0qctq2bet/fPCg/R+2ASBsggK8Ylf4lkJXLPtkKTSiUf+gxi1lTpfWpLeTJMW56/4rSEJM+Z6is9r2MR0bvmO1JFGxCAAAAIRRvSsWy8rKJKlW1YpS+ZLpCgUFBfW9bdT44x//qD/+8Y+1Pn/UqFHasWOHJOmpp57S2LFj7ZoagHALqjq2DPlsYhiH7hlDsIjo4vF41T97S8DY6vR2Kj20B+llA9rU+9pz2vQyjQ3bWR4svjpniy7qR1doAAAAIBzqXbFoHPo066jlLulVz/N6vfW9LQBEF8Oodil0OPgqgkUqFhFFyrw+Xf3UF0otDfw7uKx5J//jhqxYzolP1oqMDgFjg7M2yunz6vt12dW8CgAAAECo1TtYBABIKikxDYWzYtF36Ese9lhENHl3wXblLlluGl+Z0dH/2NHARcvzW3UPeJ5cVqxe+3c06JoAAAAA6oZgEQAawqL5UrE7fHssVgaLVCwietz0yVL1PGAO+Sr2V5RU780Q7x3RVZK0IChYlKQhu9fX76IAAAAA6oVgEQAawiK8K2YpNKCeFtWDa9MrG7k1SahfAP/0ub0lmSsWpcpg8alpBIwAAABAOBAsAkBDWIR3FSHfce3SbL+9QcUioszW/YWSpJ77tweMexxObWzSyv/86mPbqj4q9mxe1qyTSp2BPeiG7F4nSfq/b9doZ665mhgAAABAaNW7KzTqZvr06ZGeAgA71BAsXjW4nelYqFVWLLLHIqLD+uwCSTIthd7UpJXKXOVVir87voMGtmlY8F7qjtHS5p00JGuDf2zA3i2K9ZSp1B2j+79Zpfd+c2yD7gEAAACgZg0OFrOysvTFF1/Y+poLL7ywTtcHgLCx3GOxPFhslxZv++3ZYxHRKLm0UG3z9weMrW1aXqH46XXHaWy/1g26fq8WyVqzJ18LWnUPCBZjfR71z96iBa2664NFOwgWAQAAAJs1OFhcv369HnjggVqfbxhGnV9DsAggatVQsej12X979lhEtHE4pB4HdprG1x0KFjunJzb4Hjee0EH3fr1K81r10O+XfhtwbMju9f7GLrvzitUq1f6AHwAAADhahXWPRYfD4d8bqTYq9g4DgKhVQ7DoC8N7WGXFIkuhER0Mo+bGLc56doOu6u5TuqhJQoxlA5fjqnSGzivxNPxmAAAAAKrVoGDRMAxb/wBA1LPqCu0qDxaddfgipb5YCo1oVFOw6FDDfy4cDoduObGj1qS3VX5MYEXikCrBov0/gQAAAMDRrd5LoadNmxbKeQBA42Sxx2JRTHnId0qXdNtv3y4tQZJUGGNRsVhYaPv9gWAOh7kjtFS5x2JirCsk97l9eCc9PX2DFrXoolN2rPKP99q/XfFlJSqOiavTKgkAAAAAdVfvYLFt27ahnAcANE41LIUOx95uF/VtFXDPwIlQsYjICO4IfSAuSXsSm0iSujVLCsk92h4K1Ze06BoQLLoNn/ruy9SCVt2pWAQAAABsFtY9FgHgiGMZLMapfZPwNIxwu8rfxg2H0xwuUrGICHD4DPUIChbXprctL2W0weIWXUxjA/dsKp8LySIAAABgK4JFAGgIi6XQxa4YuSKQaBQGN3AhWEQExO3eqURPacBYxTJoOyxp0dk0NuhQsDhn6wHb7gsAAACAYBEAGqaapdCuULS+raU4d/lbeUHwPosFBWGbA1AhcfNG09i6dPuCxVUZ7VXqDNzZZcCezZKkt+Zts+2+AAAAAAgWAaBhqlkKHc5gscTjk0TFIqJDzorVprH1TdpIkm48oUNI73X9ce1V5orRyoz2AeMD9m6W0+fV9A3ZIb0fAAAAgEAEiwDQENVULPqM8E/F1BmaYBFhVlTm1YKZi0zjG5u0liR1D1Hjlgo9WyRLkpYE7bOY5ClRt5xdIb0XAAAAADOCRQBoCKs9Ft2x2pAd/mXIVCwi0v47L1Ndcnebxjc2aWXL/QyVJ/jBwaJUuc8iAAAAAPsQLAJAQ1RTsRgJBTGBnai9+eyxiPCan5mjrjmBwWJ2fIry4sorFUNdyFtRGWzVwGXgoX0WAQAAANiHYBEAGiKKgsXgpdCu0hJ5SssiMhccnVbuzjMFixXLoKXKRkOhYhjlyeLS5lbBIhWLAAAAgN0IFgGgISyCxWJ3rNITY8I2hRFdMyRZLIWWtDZzb9jmAaTmHVBKWeDPxKa0lv7Hsa7Q/tqRkVge4ufFJWljWuBy64ql0N+t3RPSewIAAACoRLAIAA0RtMdimdMlr9Ol07o1C9sUJlw9WJJUFNy8RZJRwD6LCJ9OOeb9FTdVqVg0QrwW+prB7fyPg5dDtyjKVYuCA3pjbmZobwoAAADAj2ARABoiqGKxYhm0y+kI2xRappQHilYVi65ic0UlYJeO+3eaxqo2bunRPLRdoZPi3P5O0yuadTQd75e9VZ8uozs0AAAAYBeCRQBoiGqCRXcYg8UKBRYVi+4iKhYRPt4NG01jFcFiUqxLpx5ath9Kn18/RJK0vFkn07F+2VtDfj8AAAAAlQgWAaAhgoLFYldFsBj+t9fg5i2S5KRiEWHUJcdcHbgxrXwp9OI/naqYEO+xKEnHtErRH0/qrGXNO5mO9du7RZL08RJzJSUAAACAhiNYBICGCNpjMVIdoSXrpdBui+YygB0MwzB1hC5yx2pXclON7tFc3ZqFdhl0VRf2baVNaS1VGPTz1/dQxeJ/Zm+x7d4AAADA0YxgEQAaopql0LO37g/7VKwqFtljEeGydGeeuuRmBYxtTm0pw+FUv9aptt771C4Z8jldWpnRIWD8mH2Zcvq8mrlpn633BwAAAI5WBIsA0BCmYLE83LtiYNuwT6UgJt405mSPRYTJ+a/8qDYFgYF6xf6KVw+29+fBeWhP0+AGLomeUlPYCQAAACB0CBYBoCGClkIXu2MkSclx7rBOo1uzJMul0I5CgkWER5Nd201jmw4FiwPapIVlDsut9lnM3hKWewMAAABHI4JFAGiIaioWY1zh7Qq9K6/YunkLeywiTLpW07glNT58IfvyoIpFSeq3l87QAAAAgF0IFgGgvsrKJK83YKhij0W3M7zBomTdvMXBUmiESWeLJcebmrTUH0/qHLY5WAWLFQ1cAAAAAIQewSIA1JdFNWDFUugyrxHWqfgMw7pikaXQCJNOeXtMY5vTWuqyAW3CNoc9SU21JyFw2XU/gkUAAADANgSLAFBfQfsrSlLxoapBnxHuYFEqsFwKTbCI8OiQt9c0tjW1Rdh/FpY3D6xa7JazS/FlJWGdAwAAAHC0IFgEgPqyqFisWAo9oE1qWKcyukfzapZCs8ci7JdTVKZOQUuh9ySkqTAmXr7w5oqmztAuw6de+82NZQAAAAA0HMEiANRXDcFiUZkvrFO5bkj7apq3ULEI+93wvyWmpdBb0lpICn/17sqMDqaxPvu3hXUOAAAAwNGCYBEA6stqj0VXebC49UB4A71j26ZZVix68gvCOg8cnaYv2KCmJYF/17akHgoWw5SxP3xGD0nSqoz2pmO991GxCAAAANiBYBEA6stij8WKisUYV3jfXp2OyntXlb3nQFjngaNTx2r2V5Qkb5gqFu8f2VWStDrdKljMlC/ca7IBAACAowDBIgDUl9VS6JjycK9LemJYp+JwOORzukzhYt7+vLDOA0enTnlZprGKYLFZkjnwtkNirFuSdCAhRbsTmwQc67Nvmy55d0FY5gEAAAAcTQgWAaC+athj8bTuzcI6Fceh/w1eDh1faq6qBEIteH9FqXKPxa4Z4QvZf7jlREnm5dDdcnZp8pJt2ptPd2gAAAAglAgWAaC+LJZCV+yx6HA4TMfsVHG74GAxrpQgBfbrlGsRLKa21FXHtg3rz0L35kmSpNVBwaLb8Kl7zk5NWWueJ9DYLd+Vp/cWbtPK3QcjPRUAAHAUckd6AgDQaNVQsRhuzkPhTXBn6PhS8xyBUPL5DHW0qFjcmtpco5PNDYXCYZVVZ+h928LerR1oiKIyrz5ctEOSdNWxbbUzr1iZB4p0QsemSohxSZK+WLFLl7+3UGVeQ7Eupz65drDOP6ZVJKcNAACOMgSLAFBflsFiZIKUipqwAlOwSMUi7LVsV5465Qbusbg3IVUFsQnq1DQhInOy6gzdZ1+mwltHDNSf12do+MuztGRn+T65N32y1H+sS0aiJt94gtbsydfYtyv3Di31+vTg5DUEiwAAIKwIFgGgviyCxWJ3TAQmUrn02rwUmj0WYa/Pl+/SXQcDu0JvOdS45eL+rcM6l4rOz1bBYq9925Uf5i0KgPqasmaPP1QMtmlfoXo9/aPlsZVZLIcGAADhxR6LAFBfFnssRm4pdPn/Bi+FjiVYhM1ys7KVXpwfMFbRuKVtWngrFssOBYt7E9KUHZ8ScKzP/m3+nxMg2r05LzPSUwAAAKgVgkUAqK9qlkK3bxIf9qlU17wlwVMq+dhXDvaZM3OJaWxrasvwT0SSp+LvusNhqlrsuX+HXF5vBGYF1J1hGJGeAgAAQK0QLAJAfVXTvGVUt2Zhn4pD1s1bygcLwzwbHE1a799tGqtYCh1uHm9lGLMmKFiM9XmUumNruKcE1Nk3q7L05cqsw58IAAAQBQgWAaC+qtlj0RGBFhGVS6EtqiUJFmGjThYdoSuWQoebx1cZLFrts7hl1gLTGBBNnpu5Uef/d16DrpF1kKZdAAAgfAgWAaC+LPdYjNPPm/eFfSrVNW8pHyRYhD0KSz2WweLWSFUsVg0W083BYvaCpaYxIJrc+/WqBl+j9d++0/hfqc4FAADhQbAIAPVVzVLojfvCH+QlxJS/nRfGWDSPIViETW77bLk65pqXbG5NbR6B2QRXLHYwHe+9b5t25dHQCNHJ5wvdvoq3fLpMX680b1MAAAAQagSLAFBf1QSLkRDndqlPy2TLikUjP9/iFUDDvbtwu6liMTs+RfmxierQJLwdoSWpW7NE/+OdyenKjU0MON57/zbtLywL97SAWlmZdTCk1xvz1vyQXg8AAMAKwSIA1FdQsOiTQ2VOd4QmI71+6QAVWOyxuGaLeakqECrBweKWtPKO0CvvGxH2uTRLqhKsW3SG7r1/u3weT5hnBdTO9+v2RnoKAAAAdUawCAD1FbTHYpE7VnKEv3FLBbfTYdkV+r8z1kRgNjgapJYUKL04sCJ2S2oLnde7pZLiIhOyx7gqfwZXBwWLCZ5SubdlhntKQK18sYKlywAAoPEhWASA+gqqWIzUMugKPsO6eUtZfkEEZoOjQcdqGrf8/dzeEZhNuapd2a06Q/tWrgzndIBa84Zwj0UAAIBwidyaPQBo7IKCxeKIB4uGZcVicwdLP2GPjnnmpZtb0lqodapFd/IwMVQZzqy26Az97rvf6ekbfxPOKQG14qkmWEwrzteYjXM1ZsNcdc7NUnZCqqZ1GKDPu5+o9eltwzxLAACAQASLAFBfVkuhI8hnGJYViy0IFmGTTrnmisUtqS3ljOCWAFWzGauKxd77t8nj9cntYtEGosv8bTmmsfM2ztNbU15URnFgY5fTM5fqiVnv6dnjLtSDJ18rr9Nlec0TX/pZP/1huGL4+w4AAGzCbxkAUF/VLIW+YmCbSMxGPp8sm7e0dnsjMBsc6QzDUKe8LNP4lrQWSkuIicCMyvmMymQxM7W5CoLC9j77tlkGOEAkGYa5WvHaldP0+ZdPmkLFCk4Zum/BRE357C/KKMyzPGduZo5u+3x5SOcKAABQFcEiANSXKVgsDzCSI9S0Ij0xxnIpdGkeeywi9HxGdXssNo/AbCo9flYv/2PD4TQ1cOm9b7vKPL5wTwuw9PXK3bpuwmLd+tmygPHfLv9eb095UW7j8H9XT8tcpu8/fVhJpUWWx9+cm6nlu/L05LT1+mDRdpV5+fsPAABCh2ARAOrJMO2xWF6lFan99/u2TrVcCr12qzn8ARrq46U7TUuh98WnKD82MUIzKnfjCR0Cngcvh04pK5J7145wTgmw9M2qLI15a77eW7hd43+t7Fbe9cBOvTz9tTpda+DezXrn2+flqCaIHPDsTD307Rpd8+Fixd3/jd5fuL1BcwcAAKhAsAgA9WRE2R6LkvR/FwwwjSWVldBtFCF348dL1CmoYnFLaosIzaZS8+TAcN2qgctLr05SURlbBCCy/jsv0zTmMHwa/90rSvSUBoyXOt267bRb5b57oo67+jktbd7J9NqxG37VI3M+qtW9r52wWJv2Uc0OAAAajmARAOrD45GzNPCDX0W14OUR2mNRkjq3a2YaS/SUqMRDiILQcufnm/Z+25IW+WAx2OqMdqaxNjs366uVuyMwG6DSxBXmv4M3L5uqEdtXBIx5HU6NufD/9OrAc+RzurSoZTcNu/Kf+qGD+Yukh+f8T0N3rqnV/ScspnIXAAA0HMEiANRHkXkvq4r9DU/unB7u2fgZieZlqAllJfpoyc4IzAZHKsMwqtlfMTqCxX+P7ed/bFWx2HvfNl35/qJwTgk4rLTifD3187um8ecHj9HUzoMDxopi4nT5eX/W+iatA8adMvTG1JcV6yk77P02ZFOxCAAAGo5gEQDqo7DQNFTRvCU+xhXu2VRKSDANJXpKNHUN+ywidFZn5ZuWQUvSltSWunJQ2wjMKNCtwzqpf+tUSdKmJq1U4gpsqNRzP/vLIfr8YclkNSkJDPvWNW2jR4b9xvL8AwkpGnPhQ8qPiQ8Y77N/m/5v7seHvZ9DjvpPFgAA4BCCRQCoD4tg0aojc7g53W4Vu2ICxhLLSuRw8AESobMuO9/UuEUqXwrtdkbH37XFfzpFkuR1urS+SeD2BL0JFhFlEsuKddfCL03jt532exXX8G/Lmoz2evCka03j4+Z9ql77toV0jgAAAFYIFgGgPqyCRYuOzOHmdDhUEFS9klxWJHJFhNKO3GLLpdBbUlsoNd5t8YrwqxqmB++z2LwoTxmFeeGeElCtm5dNVbOgPUtntemt6R36H/a1/x54tn5p0ytgLMbn1T9nvhXSOQIAAFghWASA+ojSikWfYZiWxSWVlWh1Vn6EZoQj0cdLdqpTXpZpfGtqC908tGMEZmTt+iHl+yuusdpncT/VXIiMojKvLnt3gf95rKdM9yyYaDrvyaGXqTbfCvmcLt00+o8qdQaG+uduXqAztixu+IQBAABqQLAIAPURpRWLLZLjlB8bGCymlBZp2S6qsxA6P2/eb1oKvS8+RQfjEtUkIaaaV4XfTSd0kCStSTd3hiZYRKT8depafbpsl//5mI1z1TZ/f8A5C1t01ZROx9b6mmsy2uvlQeeZxp+d8aZcPm/9JwsAAHAYBIsAUB9RWrHoNQzlxwQ2cEkuK+9gnVt0+C6hQG11DqpY3HKoI3SUbLEoSTqxU7ri3E6ttgoW97HPIiLjnzM2Bjy/Yfl3pnP+fsIltapWrOrxoZcpOz4lYKzvvkxdv2Ka5fl84QQAAEKBYBEA6iNKKxZLPT4djA0KFkuLJUklHl8kpoQjUGpJgdKLA5fXb05rKal8n89ocufJXbQ2vZ18QR1we1GxiCjQKXe3Rm9dEjC2K6mpvux6Qp2vlRufrL9adJB+6Nf/KdZj/mJp0Y7cOt8DAAAgGMEiANRHlFYsOhwy77HoKZHT55XPMCI0KxxprDpCbz1UseiKsmAxIzFGRTFx2praPGCcikVEwsFiT8Dz3634wXTO28ecJo+rfk2QXhtwltY0bRsw1vHgXt1oURUpSXd8saJe9wEAAKhAsAgA9RGlFYu9WiSb9liUyhu4+MgVESJWjVv8FYtR9ptF69Tyn4fVGYENXDoe3CsVFERiSjiKFZZV7nfo8nn1W4tg8c1+Z9T7+l6ny7Jq8f/mfqyEshLT+CuzNmvzPvO/ZwAAALUVZb/+A0AjEbUViw4VBO2xKJXvs0jFIkKlU565YnFLWnnFYoLbFe7p1Ojc3uXzsmrgorVrwzwbHO2q7kF6xtYlpqYt0zr016YmrRt0j096DteyZoHd2VsXHNBtSyZbnn/ZewssxwEAAGqDYBEA6iNKKxYlmfZYlMr3WSRYRKh0zq2+YjEprn5LOO3SNDFWkrQ6vb354OrVYZ4NjnZVdwq4Ys1PpuNv9q1/tWIFw+HUI8OvMo3fP+9TJZea/+1auJ29FgEAQP0RLAJAfURpxaJk3mNRklLKilgKjZDpWM0ei69d0j8Cs6kdq4rFfQuXRmAmOJpNW58tSYovK9FF638NOJYXm6Avug2t0/UePK27/nRqF9P4V11P0PyW3QLGmhUf1J2Lvq7jjAEAAGpGsAgA9RHFFYu9u7QyjVGxiFCZvj5bnYP2WNyTkKbCmHg1T46N0KwOb3WGOVjMnL0oAjPB0ew/s7dIks7ZvFApZUUBx77oNlTFdfyC6pYTO+rPI7opxhXUNMnh0MMnXW06/54FX6hJUEd3AACAhiBYBID6iOKKxfYdWpjGkqlYRIic/upsU1foimXQ/VqlRmJKtbI/IVV7EtICxuLWr4vQbHC0apVSXlFutQz6fz1PrvP12jdJUIuUOM3+40ka2y/wS6XvOg7ST237BIw1KSnQPQu+MF0nuFs1AABAbREsAkB9RHHFojcxyTSWUkrzFoRG0+J8pQXt07YltTzM7trM/HcvmgRXLXbP2SmVlUVoNjhapZQU6tzNgQ1T9sWn6IeOA2p8Xawr8Nf2kzqn+x8PbtdEn143RL5nzlfp0+eWD1ZTtfjHxV+bqhbTHvpWc7bsN50LAABwOASLAFAfFsFikTtW1x1n0Xk2zDyJiaYxlkIjFHw+o5qO0C0jMJu6WxPUwCXG51XhajpDw365RWW69+uV+njpTl2wca4SPKUBxz/rMUxlrhhJ0qYHT9P0W08MON6nZbI+uuZYuQ61lXY7Hbp/ZOAeihXcVQLIn9v11fcdAgPL1NIi3bXwK9PrHvueCl4AAFB3BIsAUB9BwWKp0y2Py62OTc2hXrh5k1JMY8llRfL5IjAZHFFe+3WrOuWZO0JvSTMvv48mvz2+PFC02mfxur9OUJmXHw7Ya9Srs/XczE2SpIvWzzEd/6jKMuhO6Yk6tWuGxl86QIPbpemsns31xW+P14V9W2vt/SP10dWDtW7cKJ3bp/pA/9L+rf2PHz3xStPxOxZ/rbSgqsUpa/fW+b8LAACAYBEA6iMoWKzYXzEaqgKtKhZTSou0M684ArPBkeSteZnqnGsRLKa20PBOTSMwo9p56uzekqTVQRWLktR97zbd8cWKcE8JR4FSj0+vzdmiaz5cpMU78iRJCWUlOmtLYNOgPQlp+qndMZKkd68cJElyOBy64YQOmn/XKZp801B1O7TNQJeMJF02sI06pdf8JdZbVwz0P/6lXR9N6xDYsb1JSYHuWDzJ9DojCv4NAwAAjQvBIgDUR3CweGh/RW8UfCjzJSabxpLLilVKVRYaaMH2XFPjFqm8eculA9pEYEa1E+cu/3VnTbq5YrHX/u16c25muKeEo8DZ43/V7z9brg8W7fCPnbllkRKDlkF/1e0E+ZwuSdKVg9qG5N6JsW6tvG+EzuzZXJL02NArTOfctfBLpZYUBIz937drQnJ/AABw9CBYBID6MFUsxkpSVHRe9iSZG2gklxbLEYG54MhjtRR6a2oLpcbHRGA2teM49Jd/W0oz5cfEBxzrvW+bPNHwg4sjyqLtOfpx4z7TuNUy6M+7l++nOP3WE/17KIZC75Yp+vamoeqSkaif2vfVjHZ9A443LSnQ7Yu/CRj7+/QN+u1Hi7W/MDD8BAAAqA7BIgDURzUVi74oCCi8SeaKxaSyogjMBEei4IrFnUnpKnHHKoR5SMg5KmJ1h8NUtdhr/w4pCiqNcWSZvMZc2RvjLdN5m+YHjOXFJmh6+/JlyiO6NbNlLq5DyfqjJ5qrFu9e+KWSg7q8v7Ngu278eKktcwEAAEcegkUAqAejmj0Wo2Ep9E6vyzSWUkqwiBAwDNMei1tSyxu3OKI5WKwyt9VBwWJKWZHaHcwO84xwpHNa/ECM2LZCTYOWHk/qMkSlbnurfRNjy/9NmNG+n35u2yfgWEbxQf1h8WTTa75YsTsqvigDarKvoFRr9+SrxOOt9pxdecXam18SxlkBwNGHYBEA6sEULFZULEbB57B8n1PFrsAPqsllNG5BwzUrylOSJ/AD2ua08s60jihebF91ZmssOkP33r9du2luhBCyquC9aIN5GfQX3YbaPhf/910Oh2XV4j0LJirJ4ssntghANJu0Kktdn5qm3v/4USe+NEs7cgP/Dnt8hn77v6Vq++j3avnX73T3lytoTgQANiFYBIC6Mgw5qqlYPKdXi0jMKMBlA9roYGxCwFhyKaEJGs6qI/TWtPK/89G8FLoqq87QvfZv17UTFkdgNjhSBQftDsOnMRvmBowVu2L0befBkuTv+myH0YcauEjStA4DNLt1r4DjzYoP6rYl5qrFaKjAB6rzf9+uVl6xR5K0ZGee3ghqwrUwq0QfLN7pf/7iz5u1fNfBsM4RAI4WBIsAUFelpXL4AjssV1QsntwlPRIzCtA5I9HUoCKlrEgfLt5RzSuAw9ubX6JOeeZ947aktlC826kLjmkVgVnVTuBSaHOw2Hv/Nv2wnuXQCJ3goH3ozrVqXXAgYOy7joNUcOhLoPGX9rdtLtcOrlKl63Do0WFWVYtfKDGost3jJVhEdFq1+6ApJPzbd+skyV+VOHFjoel1/B4EAPYgWASAuio0/7JaUbEY5zbvbxgJ+aaKxSJ9sIhfqFF/pV6fOllULG5Oa6mHz+ih5Dh3BGZVO44qyeLGJq1U5gz8Oe21b3u4p4Qj3LzMnIDnYy26QU881A1akk7qnGHbXPq2Tg14/l3HQfq1dY+AsRZFubp16bcBY1QsIlrd+Il1c6Fxk9fo9M936+JJWZq2zbxSo2q386Iyr/YcLJHH6zOdBwCoG4JFAKgri2Cx6FDFYrQ4GBMULLLHIhrI6zPUOc8cLG5JbaEHTusegRnVXtXiMY/LrQ1NWgcc771/W3gnhCPeZ8t3VT4xDNP+ih6HU193HSJJevKcXnKFcy8Bh0OPDTVXLd47f6LiPJXBi8dH4ILok1dcpl+3HrA89txPm5VXaijzoHUzlzfmZupAYanun7RKSQ9MVqu/facTX56lbTk0uAOAhiBYBIC6sqpYdMfptO7NIjAZa/mxgUuhCRbRUDvzStQxN3AptE8OZaY2r+YV0SPWFfjrTnBn6JaFuWpaxN5bsEf/vVvUJajad2b7vtqfkKqWKXG6ZWjHsM/p286DNb9lt4CxVoU5unbVdP9zCrkQjcoauEQ/45Gp+ueMjf7nC7fn6qWfNzd0WgBwVCNYBIC6qmYpdP+g5WaRFLzHYoKnVC6f9Tf4QG0Me3mWqXnLjuQMlQV1II9GTqdDbdMqfybWZFjvswiEQn6JJ+C55TLobidqVLdm2vnIGWqaGBuuqVVyOPTE0MtMw/fOnyjnoX8rqOJCJE1alaV7vlqpdxdsC+jmbEdx77MzN6rT4z9o8PMzNT9oGwMAwOERLAJAXVVTsRjWpWyHEbzHolS+z2LWwZIIzAaNXanHJxmGOh7cGzC+OS3yXdBra+Fdp/gfB1csSlJv9llEiEzfENgIaOz62aZzvug2VP8a2y9g/89w+7rr8VoV1Myoe84uXbThV0nSqiyqeBEZHy7argv+O0/P/7RJ13+0RE9N3+A/ZtfPTGZOkRbvyNNl7y0ICDIBAIdHsAgAdVVNxWJucVkEJmOtwCpYLCuOqjmi8fhxY7ZaFRxQQpX91yRpS1rLCM2o7lqkxGnC1cdKklZXU7Ho8/FhEg338JQ1/sc9921X332ZAcd/bd1DO1My1KN5UrinFsBwOPXMkItM43+e95lkGPrD58sjMCtAui3o795D367RvV+v1G/eX6hz35hr6723HijSz5v223oPADjSECwCQF1VU7G4Jis/ApOxNqyvOThJKS3SwaAlekBt3PvVKnXK22Ma35raeCoWJenygW0lSWubtjUd67l/h5bszA33lHCEMQxDy3dVVvpdbFGt+GmP4ZLsq7yy0q1ZYIgZ5y7/CPBB71O1PTmwI/WQrA0auW2ZCkq9+mjxjrDNEaiQV2z+XeW5mZv00ZKdmlNN45ZQ2lvA6g4AqAuCRQCoq2oqFn/eHD3fcKe3SDeNJZcV68sVuyMwGzR2K7MOqlOuuSP05kZUsVhVQWyCMlMCmy313r+NrQLQYA9VqVaUpIvX/WI65/PuJ4ZrOn43ntAh4PkNx5c/L3PF6IXBF5jO//O8zyVJv/lgkX7/2TKqedHopBXnq8f+7Tpu93o1K6zbl0b8dQeAunFHegIA0OhUU7GYnhg9TSx8ycmmseTSIj3+w3o9elavCMwIjV3nPHOwuKWRVSxK0iX9W+vTZbu0Or29Ohys3AuvU+4eLT2YL6lxhqWIPJ/P0FPTKveC63pgpwbtDew2u6BlN21JaxXuqem+EV2VEufWjA3ZOrZdE/3p1C6as3W/Fu/I0+v9z9RDv36sJiUF/vPP3LpYA/Zs0tIWXfTanK1yORx6ZWy/sM8bqIvk0kJdu/JH3bJsivplbw04tqR5Z33V9QS9MPgC5cSbf0eqykuyCAB1QsUiANRVNRWLY/u1jsBkrBkWwWJKKR0+UXdLdpRXenTKNS+FbowVi2f0aC5JWpMR2MDFKUNTv5oViSnhCFHi9QU8v9iiG/Rn3YeFazoBHA6Hfj+sk/537XG6f1Q3xbiceuj0HpKk/NhE/WfA2abX3Df/c//jV+ds0UGL5alAtLhi9UxtHn+TXpn+milUlKSBezfrkV8/0pr//l7XrJwu1dCgZW7mAX26dCdV7ABQSwSLAFBX1VQsDmnfJPxzqYaRZFGxWFYcgZmgsTv2+Z8kybQU2uNwantKMzVJiJ5K3dqoaJixOt28D2neYppVoP6ClwtbLYP+rEd5sPjTHyITMFbnxWPPV7Er8Gf58rWz1PHQz73PkHbm8W8Iok9iWbHenPKiPpz8rDKKD9/JvEVRrt6Z8oI+mvQPxXqsG9q9+PNmXfbeQvV/ZoZW0x0dAA6LYBEA6sgoKDCNFcbERWAmNUhOMQ+VUbGIutlfWNkFOngp9PaUZvI6XXrvykHhnlaDVGQ/q4MqFiWp9/7tYZ4NjiRVc8WOuVkakrUh4PiS5p21oWkbSdJJnQMbpkRCRmKs//GepKZ655jTAo67DJ9uWzK58rkzfM1mgNpoUpyvaR8/pN+unFbn11627hd9M/FvSi41f1lcYW9BqZ77aVNDpggARwWCRQCoo33Z5k3AC93RFixa7bFItQnq5uuV5WGi2+sxLYXe2KSVbj+ps0b3bB6JqdWb79DyN6uKxV77t4V7OjhCZBeUaPgrlUvprbpBV1QrDu/UNGzzqsnJXQKbfD173IXyKTA8vGHF90ooK18O+s3qLP19+nrNz8wJ1xSBajUrzNX0j/9PJ+xeZ3l8VXp7vTzoPL006HwtbNHV8pzTMpfpu08fUWINKzrenJupT5fuDMmcAeBIRfMWAKijzduz1SxorDAmToPbpUVkPlbatQ2eIXssou6ch75+7Ji3R24jcP84b5eueunCvhGYVcMc166JJCk7MU17E1LVvCjPf+yY7G0qKPEoKY5fj1B7hmGoxV++Cxgbu868v+Kn3YdLkp46t3dY5nU4DkdgiLihaRtN7jJY521a4B9LL87XVatn6I3+Z+ruL1dKklzOtZp0w/E6s2fja96E6LY3v0Q3frz0sOcllxbqu08f0cCg5kiStDuxiW4efbsmdRkiVfk7fu7G+Xp5+mvqlBf4JdnQXev0wTfP6OILHpDP6bK832XvLdREl1Nj+oa/8RIANAZULAJAHTmKrPdYHNgmeoLFmCappjH2WERdOQ99KOuWs8t0LLZXz3BPJyTSEmJ05aC2kqQVzToGHOtxYIcy7v+KjqCok/nbcgKetz2YrWG71gSMrcjooLWHlt9HwzLoCid1DqxafGXQeaZz/rh4UkCjC6/P0D1frbR9bjj6/PW7dfp6VVaN57h8Xn006Z+WoeJPbfto4LUvalLX4wNCRUn6pusQnXDVM1rQspvpdWM2ztPzM96s8b4XvT1fpR6fHpi8WsNfnqU/fL5cBSU0NAIAiWARAOostsQc0BXGxMkZTftPpbDHIhqupmBxQ5PGW7nxwVXHSpJWZQQuh3YbPvU8sF0fLmavRdTeqP8EVieOteoGfWgZdKwrun71vnloYLj+fceBWtO0bcBYv+ytOnX7ioCxVVn5ts8NR5//zN5S8wmGoZemv65zNi80HZracZDOvvhv2pNU/VYDexObaNRlj+untn1Mx/64eJJ+s3pGjbf/x4wNenr6Bs3ZekD/mb1F93+zuub5AsBRIrp+uwGARsBZZA7oit1R1hnXco/F8nnn8w07aumqDxZJsg4W89p1CvNsQivG5TBVLEpS3+xMXTdhSfgnhEbLE1TheolFN+hPe5Qvg76oX3QF8uf2bqFuzZL8zw2H07Jq8ZalU8I5LcDS3Qu/1O+Xfmsa/67jQI258CEV1aKRXn5soi688CGtTjc38PrP9/9RtwPV76f4yJS1Ac//fbggFACOEgSLAFBHu3bvD3he6I6V4Yiyt9OkJNNQRfMWfhFGbezKq6zM7XbAHCzmtDY3P2lMYpxOrcgwB4vH7MuMwGzQmDVPruyu3DE3SyfvWBVwfE3TtlqZ0UFOh/TYWb3CPb0aNU2M1ew/Dterl/T3j717zEgdjEkIOG/s+jlqXpgT5tnhaHKwuOYvPS9cP0f/nPmWaXx5s4667Pz7VVqHQHk/tAAA3C5JREFUL3hz4pN17thHtCchcAublLIiTZj0T8V6ymp9LQAAwSIA1FmipyTgedR1hJYkl0ulcYEfDCv2WBzH0h3Uwv+WVFZtBFcsbktuJl9CYrinFFIxLodWNutgGj8me2sEZoPGKrugRDtyK0P4q1bPNJ3zSc+TJIdDM24bFlAdGC2aJcUFLInOj03UhN6nBJwT6/Po+hXTwj01HOF25Bbpmg8XqffT05X2kLkSscLg3ev1/uRn5VRgdfCupKY676JHlBdX95+rLWmtdPU5fzLfa89GPf3z23W+HgAczQgWAaCOEssCg8WCmHid3t3chTnSnCmBy6HZYxF1UbFlqMvnVefcwM30NzRtrV4tzMvtG5OBbdKUE5+s7cmBjTT6ZlOxiNp7d0GV/TgNQ1ev+tF0znt9RkqKrqYth/Na/7NMYzctnypHUHd4oD5KPF59uWK32j/2gz5YtENr9xZUe267vL366ovHlegpDRgvcMfpggsf0rbU5vWexw+dBunvx19sGr9z0dc6f8Pcel8XAI42BIsAUEfBv9wWxsTp98M6RWYyNXCnBjZwSSklWETtVTRuaX9wr2J9gUvUNjZprcsHtonEtELmmuPK99damRFYtdg1d7cS6aCOWrr368plz8dlbVCvAzsCjv/auoc2NG2jp8/tHe6pNcjill01P6h7brec3RqVuSxCM0JjVljq0c2fLFXPv0/XxW/PV59/zNBFb88/7OuSSov05RePq3XBgYBxnxy66tx7tLBV9zrPpV/rwN+NHhl2lWa3Nm9R8N+pL6ld3t46Xx8AjkYEiwBQR8EVi4XuOMVEWadPSabO0KklBIuovdV7yru+Wu2vePZ5w6Lz73wdnNKlvHrMajl0n33bwj0dNDKGYejuLwM7JV9jUa34fu+R+sd5fXTPqV3DNbWQed2iavG6lSyHRt39edJqvTE3U+uzCzRxxW5t3l942Nc4fV598M2zGrR3s+nYfaf+Vl91G1qnOTxzfh+V/eM8Lb1nhHzPnK/rjyvfJ9jjcus3592rA0HLqTOKD+rdb5+X0+et032ASNidV6yL356vAc/O0F+mrpXHS3U5wqtxfyoAgAgw7bEYE+dfNhpV0gI3JU8rrX6pEVDVR4t36D+HmvxYdYRuO7hvmGcUehV73Vl1hj4mO1OlHn4pR/XmZeboxZ8rA48Yb5kuX/NzwDllTpf+1/Nk3Tuiq5xR+Y9EoOuHBDZk+qjXyZZNXFJKDh8KAVWNn1v3vWuf/ukdXbBpnmn89f5n6vnBY2p1jTi3U75nzpfvmfP1p1O7ylXl5zDGXfk4M7WFbjzzj6bXj9i+QvfP/6zOcwfC7caPl2riit1avuugHvt+nd5ewBekCC+CRQCoI6vmLUVlUfiNdpMmAU9TS4v45h2HlVNUpus+Wux/bhUsqnvdl59FK6tgsW/2VsWP+0a5RXQGhbX/zg/ci3PMhrlqUZQbMPZtp8Fq1rF1OKfVIP8e208PnNZNZ/Qo3zO4IDZBn/YYFnBOoqdUl6z7JRLTQyNW5jUOf1IVdyz6Svcs/MI0/n2HAbp91C2So3ZB/Y3Ht6/2WGxQ1f3E7sP07wHnmM772y8f6oSda6q9zvT12bWaC2CnyWv2BDy/+ZNlem7mRj08ZY027yv/MsjnM+Tz1e1nEagtgkUAqAufTwkWeyxuy4nCPdmCgkWpPFwEavKf2VsCPgR2tQoWuza+ZZ1WWqXEaVWG+YNn30OdoS99d0G4p4RGYkfQe/5Ny6aaznm772n6z8X9wzWlBouPcemJs3tr6s0n+sfePWaU6TyrJd9AqFy3Yppe+PEN0/jq9Ha67Pz75XG5a3WdMV0T9cRZPas9nhpvvs69p/5Wy4O+bHIbPn0w+dlqK3VPf22Ozntjrjo/8YNO/dcvWrc3v1bzA+x279er9MQP6zXo+Zm668sVih/3jZIenKxXZpm3F7CSXVCiS99ZoE6P/6DrJyxWQYnn8C/CUYtgEQDqIO9Anmms0B0XlV2hrYLFJiXlv/DyjSWqk5UfWJHbPWiPxdymzaWkwL2oGqu7Tumiwph4bUxrFTDeP3uLJOkHKlFQDU+V99AuObt0RubSgOO7kppqUpchapkSF+6phcTQjk0lST+1O0ZbUlsEHBuxfYU65e6OxLRwhLt8zU9647uXTePZ8Sk6/6KHlRufHDB+4LGz9NQ5gY2R4lwO/XJZaz10fBMlxrqqvdel/c0NyIpj4vSbc+9VsSsmYLxLbpb+Ne0/1V5r8po92nqgSD9v3q8zXpujA4Wl1Z4LhMqO3CJd8+EiDXt5Vo3n5RV79NLPm+XxGSrx+HTnlyu0K+/wBRE3f7JMny3fpcycIr27cLuGvPgz4SKqRbAIAHUwbWmmaazYHatjWqVYnB1hVsFicfk+i8HhEVDBWWWJmcvnVdfcwGAxoXePcE/JNpcPKP9guax5p4Dx1gUH1OJQF1IvITwseI3Kvxc3LP/edPytvqfL43Krsf71uXZwedd0w+HU+31GmI5fs2qGVmcdDPOscCS7duU0vT/5ObmMwP1tC9xxGnPhQ9rUJHBbgcyHTldaQoxuObGjTjwUhMe4HLpvcKpiXYdfKj2gTaqOb9/ENL6yWUfde+rvTONXr56pa1ZOP+x1t+UUK+ORqZqweMdhzwUkaVdesb5auVvbcuq2qmjs2wv0waId+nXrgcOfXIVhSG0f/V5zD70u62CJ9hw0fy74YkXgF0hr9uSr59M/akM2e7bDrHa15AAASdLc1dt1UdBYfmy8HLXc7yesLCsWy38ZKCxlr0VYq/o3uXNuluK8gd9Ox/YJrA5pzFqllleTLW3eWRdt+DXg2IC9W/R9UlNt2leg7s2TrV6Oo9i8zBxJ5U1bfrviB9PxN/qdIUnyGY0zWazabObdPqP00K8fBxy/ZtV0PTF9vd668thwTw1HGsPQnYu+0vMz3jQdKnW6NXbMg5rTNvDfneX3jlC7JuWNhZokxGjW7cO1eX+h0uNd2rhmZa1u63A4NPMPw/TDumzllXi0ZEeu/jljoyTp3wPP0egti03NY/7zw7+1pEVnLW/e+bDX/9NXK3XZgDYBDWOAYD9uyNa5b8xVsccnl9Ohf4/tpzi3UxmJsRrds7liXNZ1YPsKSjV/W06D7n1iUKXjiR2b6spBbTV9Q7YpVKywM69Yr/yyWS+MafxN/BBaVCwCQB3EFJi/pcsP6poZNYK6QkuVwSJQnaoVi733WXQV7H3kBItxbpduOKGDllp8SBywt3wPohK6Q8PCwUPLwS5d94taFeYEHJvacZC2HFpe3yY1PtxTC4l4d+VHhA1N2+iXNr0CjnfL2a31X32vrIMlOljM0jhYKy7z6sWfN1V73OXz6uXpr1mGih6HU785915932lQwHju42ebVok4HA51yUhSclzdambi3C6d26elrhzUVveOqLJ3sMOhG868QzuT0gPOT/SU6rOvnlJa8eH3Ucw6WKJ5mXWrJMPR56lp61V86PcMr8/QLZ8u0/UfLdH5/52nbk9Nk/Per+W892tdP2GxSqv8PlLX6sbamLP1gO74YkW1oWKFl36u3KPRaKRfniH0qFgEgDqIKbIKFqP0g6NFxWJaNZuPAxWqFt/23r/dfMIRFCxK0qsX91e37+abxgfsKf/F2csvzQjiD9IMQ3cu/Mp0/PUBZ0qSrhjYRhlJseGcWsiM7tE84Pl7fUZpeFBn3GtX/ajWf+ujtHi33r5ikMb0DdyrFDjz9V/18+b9lseSSws1YdIzOnezuUlWqdOty8/7s77sPjRgPCnWpRSLpiuh0Dw5cD/UfYmpuuacu/Xdp38JWJ7dLWe3Ppj8rMZc+JC8zur3cJSkUi9fTKFmNe3lXLUx5LsLtysrv0SlHp9+3LgvHFOr0SNT1ujJaeuVGOvSfy7ur6uObRfpKSHCqFgEgDqILTIHc/mxjSdYrGjesmk/ASOsVa1Y7LX/yK5YlCSX06Eex/VRTlxgQ5qKisWF23MjMS1EqVKPT0Nf+lmSNGznag3J2hBwfHNqC33Z9QRJ0ttXDDK9vrFoFVRp+b+eJ5kaWly2dpbiy0qUW+zR3V+uoHIFAZbsyK02VGx7MFs/ffSAZahY6I7VhRf+nylUlKT3fmPvz9QdJwdWr//YYYAeGn616bxzNi/UMzP/e9jrNdY9VmG/ojKv7vpyRZ1eM3Xt3qgIFSXp8R/Wy2dI+SVe3fTxUuXT1OWoR7AIAHUQU2wRLEbrUuga9ljcTLCIagRULO4LrFgscMdJHTqEeUb2i3O7tTSogUuv/dsV5ynVczM3RmZSiErTN2Rr9Z7yL2juXGSuVnxl0HnyOV1aed8Ixbob96/ZVfeGy41P9gemFZqUFOiCjeV70G05UKT1bOiPQzbvK9SQF3+2PDYwa6N+/fBeDdy72XRsd2ITjbj8KU3pPNjytS6b97O+99SuprGnj79YXwT93ZekOxd9rd8vmVzj9RrrHquw3x8nrghYUtyYFXt8enOeubklji6N+zceAAizov05prGDsY0vWPyIboWohj9LMAz1DqpYXJveVnIeeb869GqZrGVB+yy6DZ+O2ZepVVmH30sLR49z3pgrSeqUu1tj1wc2/DkYk6A3+52hns2T1LtlitXLG5V7gkKW944ZaTrn6tU/+h8XldEUDNLUtXvU9alp8lqU652zab5++t8DaptvrmRckdFBQ696Rgtada/22sdZdHEOpXZNErT94TMCBx0OXX/2XVqZ0d50/svTXtOla2eZxitY/d8AkKT/RlsQZxjKKMxT+7y96pyzW4llxYd/TRXZBaU2TQyNBXssAkAdeA+aQ4bGtBQ67VCwOCNKllIg+qw9VI3VJn+/UksDNwcv7tYjElOy3b7CUu2zaOAycM8mLWrZLQIzQjTac7DE//i++RMD9l2TpLf7nqa8uCTt+tOp4Z6aLR47q6eW7MjVd+v2SpKmdjpWuxObBDSrOXPLYqUX5Wl/Qqou+O88bX3ojGquhqPF2ePnWo7ftvgbvfjjeNPPjSR913GgLjv/fuUFbUlR1TWD26l1GJohtUmL1/pxo9T979P9Y3lxSTr/ooc194N71bwozz/ulKH3Jj+n3LhEfdfJ3CGdXBHBCko8evDbNYc/0WYun1cD9m7WSTtW6aTtq3TSjlWmRmSbU1tobuueeq/PSE3tNEi+GvYUfeKH9brjpM6mvUpx9CBYBIA6GNLE/I9qny5RumF9aqppqEkxS9VQs8+Xl3cD7GXRuKXV8QPDPJvwyDxQpAMtrDpDb5EkTVqVpfP6tAzzrBBtftxYvsl+q/z9+u2KHwKOeR1OvTToPI3u0VwJMTU3dGgsYlxOTbl5qJz3fi1J8jpd+rjnybpj8deV5/i8umTdbL0+4CxtyynWtpwitW8SpVX8iAzD0D9+elv3LphoefiNfqN122m3yuMq/1j62Fk99fCUtabz3rp8oJ2zDNC1WZJ+d3yHgKqyLWmtdNGYB/XDJw8r3lvmH4/1efTZl09p9CWPak7bwD2IWQoNSSrz+jRz4z7d8umyOm9F5PZ6NGDvZnXN2a1mRXlK9JSo0B2ng7EJ2pGcoczU5tqW0kwl7pobhSWUlej43et08vaVOmnHKp24c61SymruLN05b4865+3RFWt/VmZKM/1l2FV655hRgXvmVHHZuwv1423D6vTfhyMHwSIA1EFLR5lp7JwhXSIwk1pwu6XkZCm/ssoyrZS9FVE7wcugJanLScdFYCb2O7lzhp5a3UEeh1PuKtU0A/ZskiRd8N95WnP/SPVonhypKSLCduUV68r3F0mS7l74ZUCwIJU3N9nYtI0WXXvk/YxUDXo+7H1KQLAoSVeumanXB5wlSfp8+S7deXKU/puI8DMMvfDjG6a/MxXGnXyd/jFkrD+o6JqRqDbVVCU6nfburxhs/KX9TctVZ7ftoyvOu0+ffvX3gH8rkjwlmjTxUY24/Ektr1L9Pu6b1YpzO3Va98Au6zh6GIahEf+erTlbD9T6NTHeMl28brauWzldJ+1YpSRPyWFfk5WYpsyU5spMba7cuCSVutxKLCtRs6I8dT+wU11ysyyrhWurw8FsvTX1RV23cppuHn27NjRtYzpn5qZ9MgxDDpv3QkV0OvI2SgIAG7kLzcFcTFpaBGZSS0HLoZsUV4aMuUXmkBSoENy4pXzwyOoIXeGGE9qrxB2rNentAsYH7t0sx6FfxD9YxL6kR7M35pYHDE2LDurWpVNMx58+/mJJUkr8kfedfdOEykqYea16aGNaYJX+qdtXql1e+XLpPfmH/wCMo0QNoWKxK0aXnfdn/eP4iwOqn9aNG2W5lPLYtuH/Pau6cOSrbkN1w5l3mMablhRo6qd/UdcDO/1jK3Yf1Bmv/arjnv+JrulHkUmrsvSb9xfqvq9X6ccN+2odKrq9Ht258Ettff0GfTj5WZ25dXGtQkVJalmYqyFZG3Tx+jn63YofdOvSKbp21Y86Z/NCdc/Z1aBQsaoR21do/vt/0ugtiyyPu+6bxN6iRymCRQCoA3eheSmxkZQYgZnUUnCwWFI5/5Ne+SXMk0Fj0iuoYtHjdEndjsz9BtumlS/dXNQysFlFammReu4vDxSjbqN1hNVfvyuv2Ltn4Rem5WNfdTk+oErpSHN8hyaVTxwOTeh9iumcK9aWdwCesmZPmGaFaFTqqQwvHpz7iWWouDchVaMue0Kf9jwpYNzpKA/zzu7VQi2SA5d1vjK2nz0Trqf3jhmlu0beaBpvVZij7z99xB+0V1i0I5fA5Sgxbf1ejXlrnj5aslPPztyo01+bU6vXDd++Soveu0vPz3jTtNdhOGQlpunzbkP1ysBz9a+B52hKp0HKqWbP07TSQn3z+aPVdkWP+fMkzdlibtCEIxvBIgDUQUyROVj0JUXx8sgagsWVWQfDPBlEuzJv5YfC3kF7LO5r3V6KrXkPn8ZuQUtzN9Ihu9dLknbkFmvSqqxwTwlRwjCkZoW5umOROSj5+wmXRGBG4XNs2zQNqdKN98Ne5uY0V66eKUlavCNPHm9oKmPQuLy/cLsyHimv5r1q1Y96/Jf3TefsTmyiUy9/Sr+26WU6Fusq/1jqcjr0+fVD1L91qjo0SdALY47RCVXD7TC6uF/rao+9dOwFenToFabxTnl79N2nj6hZYa7p2PQN2SGdHyJrwbYc/euXzf4Q7S9T1+qM135VXYpTnT6vHprzkWZ8/KD67gvfF5gbmrTSW8ecphtH366ev/2PWt/6ri4Z86DuOO0W/fG0W3XOxX9Tm1ve1jVn361NaeY9pl2GT/+a9qruXPil5fWHv/KLPl260/IYjkxH3noNALCRsyAwWPTJISOx8VQsppUUymH4ZDj4Xglm/Z+ZIal8uWfrgsClO3vbddGR3r5kfitzReZxWRv03jGjJEmPTFlDE5ejyK68Yt38yVJ9s7q8Cu+++Z8ruaw44JypHQf5Q5IHTzMH00cCp9Oh724eqqYPl4dGazLaa3Hzzhq0d7P/nEF7N6v3vkytzuig2Pu/0aldMvT+VYP81cA4smUeKNS1ExZLkk7csVpvTn3ZdM7uxCYaedmTWpvRznRMkl69pL//8bBO6VpyT+S7q//z/D7ak1+iFbsP6vTuzfTqJf2V8chU//G/DrtSTUvy9cfFkwJe1+vADk357C867dLHlRtf+eXzG79u1Rk92G/xSPDFil269N2FDapCTSvO1/8m/UOjty6p9pwdyema0mmwfm3dUztSMpQfE68ET6nSiw+q/cFsdcjbq/YH96pD3l51OJitjOLAogGfHNqd1FSrMtprZbMO+qVNb81q20e7k9MPO7/imDh90GekPu8+TH+b/aFlA6bnZ7ypMqdb/x50runYZe8t1MZ2TdQ5o/xzksfr04LtuYp1OTSwTVrY902FvQgWAaAOdu7MVtXoIT82Xk5nFId0QcGiU4ZSSouUV83yBhy9covKtHZveXA+oEpgUGFvpyMzNKkwukdzzfSUqszpUozP6x8/7lDFoiQt2ZkXiakhQro9NU1FZeXVdy0LDugPS74xnfOX4b+RJCXHuXTz0A5hnV84pSXEBDyf0PvUgGBRkq5c85MeGX61pPJN/J+ctkH/irIlrAi9nKIydXpimiSpeWGO/jfpH4r1eQLOyYtN0FkX/63aUDE9MabG6sBI6ZSeqJl/GF79CQ6H7hp5o1JKC3X9yukBh47ds0lfT3xMoy95VMUx5ftGfrJsl4b/vEk3ntBBibF8DG/MHvhmdYNCxXZ5ezX5879VW6W4tHknPXriFfqq6wnyOl21vm5CWYkSy0oU6ytTsStWOfFJDS4mKIqJ059P/a0Wt+iiN6e+ZGpe9sr015SdkKqPe51sem3Xp6Zp119GKy3erXPfmKsfN+6TJF3Ut5U+vvY4uQgXjxhR/GkYAKKLYRhKKA5s3pIfk6DiMm81r4gCFo1l0kroDA2zf83e4n886FA35KoKjulvGjuSvHvlIJW4Y7W8WceA8YF7N8vt9VTzKhypVu0+6A8VJen+eZ8p0VMacM6kLsdpXuuekqQV945Qh6ZRXL0eAsM7NfU//qin+QPklat/UtU1gP+p8p6CI9e3h/bVdPq8ev+bZ9Uuf1/A8TKnS5eeP07LWljvQ3rt4Hba+choJcU1jqAtuDLZcDh10+g/6vNuQ03nnrRztd6e8oK/CZgk3fXlSn+HeTReFV/E1kffvVs0e8KfLUPFAnec7hx5k467+nlN7D6sTqGiVB4C7ktM1a7kDB1ISAnpCqUJvU/VmZf8TQVuc4Olt6e8oKE711i+7vL3FqjbU9P9oaIkTVyxW/O35YRsbog8gkUAqKW5mTmmZXD5sfEqKI3iYDGoYlGSmpTkm8/DUW3mxmw99G3lL4RWFYsnnD8ijDMKvxYp5b8oL2gV+KExwVOqvtlbIzElRNCOvMr3+jYH9+nWpd+azvnLsKskSRmJMWp3FCz5ffq8Pv7H21Oba2a7YwKOd83dreN3rwv3tBBBz8zYqKs+KA/J/jz/c52RudR0zp0jb9L3nQZVe42L+7dWrLvxfCT9/bCO6tYscNWH1+nSb869T991HGg6/7J1v+jRXz4MGPt6VZb20kG90dpXUHr4k6oxInOZfv5onCmAl6SVGe11/NXP6uVjz69zoBguP7frq/MveliF7sA9t+O9ZfriiyfUMde8F/VPm/ZrZ16xafyjJTtsmyfCr/G8iwNAhD09fb2SS4OCxZh4tU6Nj9CMasEyWKz/t6w48hwoLNU5b8wNGBsYVLGYF5ug+B5HZkfoqhbefYoWtDT/dw7JWm9xNo5kLkfl8qwH5n1iWvo1sdtQLT7URfz/Tu9xVOwVdXyVBi6SNMGqicuan8I0G0TazI3Z+vOkVZKk/ns266+zJ5jOea/3CL064Owar3NilUrYxqBtWoJW3DvCNF7qjtHYMQ9qdmtzY5r/m/uxrjjU4KjCmj18ydtYvTmvfk1Wrlg9U99+/lellZpXDn3T+TgN/c0zWp0R/VtqzOjQX5eeP07eoGrIFkW5+nriY0qt5eeMomhe8YU6I1gEgFraV1im5LKigLH8mPiIdSusFatgsbjyH/xftx4wHcfR5auVWQFLPuM8paaO0Eubd1ZifEzwS484A9ukan4rq87QGyIwG0RSRU7YPm+vblz+nen4X4ddKUmafuuJ+n/27josqvSLA/h3gu4WASUEURBMVMTujjXWbl171/Wn7lq7du26dve6dnd3gKIiKoKiNEhLx8Tvj1Hgzr0DgzScz/Pss8y59SIwce77nvNzK9vSHFqZEQr4jJqJJxzckS03q2bQu/vgS+jDYlUw5ZQvAEBVlI0Dl/9m1VV8Y2SFSR0nAzzFSfdfWtnCWIu9rLK8UzTDMk1FHb37zEegXjXWtp3XNqFubG5C6twb9swuUjHMvehXuAOkUsz2Oon/Lv0FNY7SKrvqdUKfPvOQqlpxZr5ftm2MGW3Hs+LOcSE4en41BEq8DrwI+4KBB56h+y5PXPKjv4eKjhKLhBCipOD4VI6l0BoQCsrxU2kBMxZfhH8pxcGQ8iggljlrwikuhNG8BABS6jhXiQLbPB4PtzeNR7rcEp+8DVxI1bD6tiyZ/JvXcdYHwWMOLeBrYoPOtU3QppZxWQyvzDS0yK3bG6+hi6tyS1yrpSWibahvaQ+LlLLkDBHefpa9dsz3PAoXuXIRWXwhhnSfhTSV/Fd0rO1ZN9/tFVGcpi569F2IBLkmeVqiTJw4twLaX2ervf2czHU4KWduf4jFqMMvsO1REIYdeo7G6wo3K1sgEWPzzW1YeX8/5/Y/mg/GhI5Tvnvpc0sbQ7S3L/h1yEqf+2/x3Bg3dK79fZ3KtzTojo0NerDinYNfYOOt7Yyau1yehX3BiVeRuPwuGr33PsUrapBXoZXjT8OEEFK+iNIzWAmXZJVyfnexgMRiUTrakcqBB2bCUH4ZNAB0+bFTaQ2nzOnrauKFCXMGmnNsMDS/3lSI4qgTRCoXkViCK/4xsEyKwRjfG4xtEvDw59fZitX1ynEZjBKipcr88Mu1HHpIniWfEnqNqZRO+UYCAGrHhWG21ynW9kXuQ+Brwt2s5RsTLVXw8pnNWN49me6hcJu/kSV+7DEbErnXV8eEcGy6uR1AbtMbUn5NPvkK7bc9xgHvMEw+5Yv/XoTjeSFuyGtmZ+Dk2RWYxFGjV8TjY1ynqVjsPjjfWb358f6lFe5OaYGLY5tiWVdHDGtogXa1jDG+WQ34zmqDpV0dUUNfA40t9XB0eGPOc/Soa4bf2tlDT/37mifNbDMWF23Y5/7J5wpmep9R+jxiiRQHvEO/awykfKgY7bcqEE9PT1y8eBEvXrxAdHQ0UlJSoK2tDXNzczRu3Bj9+vVD3bqV7+4cIVVBViL77nKqajn/YMmRWNTLm1gs4G4iqfzk38/Wj2Y3buE1UFx4vzLyMneAe2RuMxuhVIJmEf64VdMVY46+xKXx7O6fpPJIzJDVU5zz9CRreefR2h45NbDyNHqtMuqa6TAen7NzQ6pQDVqi3EYU/d4/xuQOk5ApVIVw9gXoa6igZ10zbOvvAg2V8tmQgORPKpViw4NPuO4fAzUhH6dfRwFSKTbf3Mr6G3lsXhtrmvQt8JyT3K1LaLSlw62GAS6OdUP33V6c269bN8Af7oOx+BGzccuIt7dxwbYJTtT2wKuIJLhU1y2N4ZJCSs0UYdvj72/c5hQbjCMXVsMpjp0sS1bRwMCes3HVptF3n7+TgwkafJ1Brirk47f27DIuTtV0crqYSyRSCPg8xoSCdl9n3LeyM4LvrDbwi06Bo6k2zHXUoDrnolLjEPMFGNxjFh4cnsOaubz67j580jPDaXt3pc519nUU1vZ0KnhHUi7RjMViEhYWhqFDh2LEiBE4evQoAgICkJiYCJFIhMTERPj5+eHgwYPo27cvZs6ciZQUKthLSEUjX18RAFLK+4xFPT1WKO+MRcorEnnyHaGz+QKgit0Qe2DB/n49wmVNCq74xyCSZi1WajEpWaieHMeqrSgBD8uaDcp9XAWfQPl8Hh5ObZHzOFVVA2drNWXso5eVhm6fnuU8TkzPxkHvMCy/SSUFKqptj4Pxy9k3uPQuWpZUBDDk3V20k1v2ns0XYHynaZAUsKzz2PBGWNTJocTGW1q61jHDx9/bK9y+rNlAXOJIHm29sRXmKXGo//ddJKR9f4dhUvx8I5Ow7VEQzP5g19ZVhlAswsxnp+F16FfOpGKklgFaD1pepKQiAAxuYFGo/fl8HsY1ZTaGGd8s97GlvgY6OpjASl9W4snGUFPpc6eoaqJH34WI0DJkXhNSHLz0N5pEBih1nm+vqNliCQ49D8PSGwHwiaCSTRUFJRaLQVBQEAYMGIBnz3LfRKmoqMDJyQnNmjWDvb09Y6r/xYsXMXToUEouElLByNdXBIBuTcp50f4ClkLbGin/xoFUTnknLPKkEtaMxSgLG0C9nM/MLWYPLOqwYt8Si0DuMkBSOZ30jcTsp6dYtRVPOLjjrXHuB7GqVl/xm+bWhmhsmXvTirM7tB+7Dtn6++wyC6Ri+Nao5Rv9jBT8dWc3a7+/G/Vh/I1wCZ7fAf1dq1foZdB5WRtqYlPfepzbpDw+RneZgc+azJu8RhnJ2H59MyCVYvlNag5WXow/7gPXv+5i8ilfpBWyYzFfIkbv90/w4uAMrL27FxoidsL4raEVmg9Zg5dmdgWeL3xhR/xYvzrnNgs9dQxpWLjEIgBs7OOMbf1dMNXDBhfHumFQfcXnmNCsJuNxQXUcw3RN0KvvfKQKmc2YNEVZOHdmCWp+Kbg5S2iibALH+GM+GP7fCyy84o9mGx7gcVB8gceSskeJxSISi8WYNm0a4uNlv/ACgQBTp07FkydPcOrUKezfvx8XLlzA3bt30adPn5zj3r17h3nz5pXRqAkh30M7iz1jUUVPh2PPcoRjxmLepdDqCjobkqrJLjEKOnIzc3WbNymj0ZSdaC0D+Bsw33A3j3gH4ddE0yU/qo1VmW09+Rjjfa+y4kvzzFY01lJFLyez0hxWubIxTyLlmnV9xKkzXwt7fHwK/QzmDfSUTOoWXVkse3AQZmnMmURBuqZY0nyQgiNkfmllCyv9cr7S4ztMbmGNd3Pacm6L0dTH2M7TWfEeH5+h3/vH+OtuIB5R4qTMnXkdid2eIQXvKKdWQgTmeh7H231TcPrccs5ZigBwvYYrPAavQoiuqVLnNddVx55B9aGhwn6f/uznVlD5jsaRQgEfE5rVxIY+zuhaJ//Xr1lt7LCokwPcrPQxqokVjgxrhCZW+vke89ysFoZ2/5VVW9Qs7QuunViI6slx+R6fLZYiKSMbB7zDcmKZIgl2eRX+50JKH32iLKJTp04hICB3eu/KlSsxbdo0aGtrM/YzMzPDqlWrMHr06JzYlStX8PLly9IaKiGkiLhmLFavXs5nrKiqAprMWYl5ZyzufUqFkkku9wg/VkyvuVsZjKTsPZSbtaglykT9r8vEqeh+5Tbr6WnWbJOT9s3x2sQ65/GdSe4w1FRFVdW0pkHO19kCFZxwaMHYri7OxkD/B6U9LFIKmkQGYKLPFVZ8RtvxCrtAv5jZCu/mtMVfvSpv/TQHE23ELe7Mue2SbRNsd+nCim+4tQO6manw2PSwpIdH8rHtURD67XtW4H4CiRgNPgdiyosLOHRhDT7tGIuAPT9h+YODcEiI4DxGxONjnscwdP3hDySqa3PuI6/L1y7N6ioCzG2XWzuxmo4aAua2g5mOmqJDi42Az8OiTrXxZEZL7BlUH0Zaqvh3SAO0sDaAnroQgxtYIGV5V0jW9mQcd65WM/zaZgzrfPaJkbh5fD6qpeSfRI9LzWbF9nrRZ5WKgBKLRXT27Nmcrz08PNCrV6989585cyZMTXPvVFy8qFxhVEJI2Wtjxn4hV9GrAEW35ZZD62fkJhaPvuR+I0SqjjdRuU2JWoSzE4twV67odmViqaeO+xbsD8Atw96UwWhIaXr45C0mcnTwzDtbMWxBR9StVs5nq5eCvEvjDtRlz9Ya+eZmaQ6HlJC8NWX5EjG23NgKPpj1Rc/aueG8XK3Nb86PcYNrdT04mCiXVKnIDDRV8eG3dpzb5rQaiXBtZg266qnxWPrgXwDAgivvuA4jJexGQAwmyy31z8sxLhS/eR7D9ePzkbBpMLz//QUbb+3AYP/7qJkck++5X5jYoOWPK7Gi6cB86442raGf87WAz8OK7rk3Nhd0dIDPr61xdnQTvJ3dFrWMtZT/5oqZvYk27k/1QMLSrjg0tCE0Vbn7AK9v2Aub63djxWsnhOPe0bmopSAJCwBn3lCpmYqKEotFkJWVhefPn+c87tGjR4HHqKqqwsPDI+exr6/iJzJCSPmilZnGDupUgA+XcolFvaxUxuOPcczHpGr5VogfYM9YTBOqAVWsIzQA7BroivuWihu4kMrpzodYPJo2H5pysxXP2DWFj2luPd3qelWr5qgiizvXzukq/7i6IwIMmPXAmkf6o3ZcGMeRpCLJW/rhJ58raBQdyNieKlTDjHYTWMct6+qIhCVd0L1u1SoZYGukhe512Mtdk9S08HPb8az45JeX0CQyAMtuvEe2uAq2mi8lp3wj0WOXJ0YdfoEPsanwifiCNbc/oNOOJ6x91URZGPfqKnz2T8PbfVOw7MG/aB/yinPlEpdILQNMazcBbsP+hmd1xwL3vzK+GWa1scPIxpa4O9kdrtWZZYzqmeuip1M16GuoKPfNlrJt/V2YAR4PP7cdj6MOHqx9ayVG4eHh2WjOdSMbwK/n6H1WRcWdZiZKCQ8Ph5qaGtLSZMkGO7uCC7ECgH6eD/kJCQklMTRCSAlQz2TXWIR2BbgDL1dnMe+MRQD481oA9g+ueskjwqSfkcKqDRRVux5sVcrnG9mS1NHBBDNGdkDEEUNUT81dtuMR/lbWSp3Hg1gihYBfOZoPEJklJ57i9Cv2Es+leerGdf66RI3Imrh8/qMTTBddA3g8HKjbDksf/svYZ+Tbm/i95cgyGiH5Xi/Dv2DP01DweUBqlqw2pmlqAuvnCwBLmv/IWTduTtta4FfR58itP7igxtIbrPhJe3dcsG2MHh9zl93yIcW265vhNuxvqM2RrWRb1tURtU210auuGYTfUUuPMD34FIcBB55B+nWi7QHvMAj4stfxvHhSCcb43sDSh+waosp4bmqLLfW74d86bZElVO69k6m2KvQ0VLC6B/tmZkUxzq0GUjJFOPYyAl6hiQAAMV+A4d1mQiCVoP/7R4z9TdKTcOfY75jnMRx/Ne4DKa/g3/GILxkw11XD66hkqAr4cDDRqjQNoCoLSiwWgY2NDV68eIHk5GR8/vwZlpaWSh0XHh6e87UeR2MFQkj5FBzCseShIiQW5ZdCZ6aCJ5XkvJDHpbI715Gqp3kEexmWZbf2ZTCSssfj8TCtpS0u29ZDdd+7OXGT9CQ4xwbjtYk1bJffQNC8DvTGtpL446o/Gl4+Dl25Jl0XbRrjuVmtnMerulfcD38lwShPncmDddti8cNDjGWyw9/exoIWwyDOZxkgKV/eRCWj4Tp2V+9V9/YxajQDsi636xqxy0DVNNCosklFALDU10DQvPawXiZXDoDHw7R2E9Eu5BVjZnSDmE+Y/vw81jXuAwCYd1n2euxhY4g7k9yr9L9lcdjjGZqTVPxGPqnoGBeKXVc3wj1S+SXp8eraeFTdEfctnHDKvjkCDbi7OOdn76D6hT6mvOHzeZjZ2g4zW9tBc+5FZIhkM29FAiGGdJ8F0eV1+NH/PuMYFYkYq+/tQ5dP3pjUYTLeG+bf5dpyyXXG42ENLbDvxwb0t1GO0C2QYqCjo4NatWpBXb3gpTEpKSl4+DC3QK+ysxwJIWXrS3o2NCrqjEUT5gwboVQCgzzdOj/FcyzxJlVOC47GLaqtW5bBSMoPw64dWbHOQS8AAKGJGfj5LNVcrAy+pGdj7fW3mPH8HGvbard+OV/3da6GeuYVoPxFKeLxePipeU0AQKiuCW7WYC6Js0iJR7c8s7NEtNSz3Ku39g4r5hH2BiPf3mbFp3T4CdkC9sysXk7VSmJoFYqVvgZMtdkNnoL1zPCH+xBW/M9H/7G65j74FI8b7/Ov40cKtu9Z/s0/+vs/gNehXwtMKvobWGCvU3uM6zQVdUdthsnkf9Gr70KscftBqaTiL61sGY+r66qjc23lukRXFH3rmTMeiwRCDO3+K9Y27su5f7tQX7w6MA1LHxyEbqbypZn+fR6OFxGFn1VKSg7NWCxlu3fvRkpK7gf6tm3Zxa5LQ1qWGI6rbn338TYGGjg/ponC7f+74IfL/kV7IWxnZ4QNfRR3j/vhgDf8o1OQmZl7x0/t+l2gELNHxjaxwi+tbBRub/jPA2QV8U3w0s4O6OPM/QYr/EsGOu/yKtL5AeDfwfVRvzp3E5EHn+Lx06nXRb7GoynNoavOPa3/gHcYVt/5WKTzG2uq4s6kZgq3/3n9PY6/KlpB3yaWetg7yFXh9tFHffA0jPtFKjY1C79nsxOLnQ75IuRq7lLJAS7mWNTRnrXfN222PkFsWtFmCM5uY4sRjbhnSCdlZMN982NG7H9BGRgrt59p2hfEa8h+Z/yiU1jPB9v6OcPDxhBcXkYkYdjhl9819ryujnODhYJaZWdeR2H+1QDlTiSVcj4PqAr4eP4zu77LN+vufcLuInbFrm2ihZMjGincPv3MG9wKjFO4XRlda5tgTY86Crf33PMUnxI4kt5KyBTlPr+5c9S7ETVpAohEcP6LPXulsFZ3d0Q3R+430B/j0tBLiY6MBTk+vCHqmHIn+2++j8WMQtbusZTUgPxits5Bz/FXE9kb5I0PPmF2a5ucDo27PEPwz4Ogwg6bwUJXHVfHK+7EPe+KP86++Vyka7SoaYDt/esp3D7kvxd4FZmscLsyhjW0wNy2im+eNt/0CMmZoiJdY0GHWhjkKvswJxaLGduiktLRYefTAs8hlkgRGJeGoW/vwzKF+bfqVc2e0cTn6LAGjOs8DU3E6GOvivItAABuT2wKE23uLp9HfSKw5MaHIp1fR02Ix1MVN2FaeTsQ/z4PV7i9MPY5d0DHEB9GbOKrKzmNPQwWXFH4vF+Q3k5mWNaltsLtnXd6ITxJuRpoivzsYY1xTWtwbssUidFofdG7967vVZfR+CYvv+gUDDj4nHNbYZwb1Ri2Rpqc2y69i8bsi9wJlMxs9nteoViEzTe3seKHHFvjrhX384ippkqRPmcA3/lZQ8H7AUWU+qwRU/x1qP9p2AvD3t6GS2xwTkw7OwOr7+3FsO6zmGPY9wwW+vn/zdBnje8klWL5gwOY63VS4S7+BhbY4dIZp+2bIUivaAnzhhY6cLPSw4uIJAh4PKjweai7hp2wL0h5/KzxTXqWmBWT8viY3Xo0AvWr4Z/bO6EmZr72q4lF+N3zOCb4XMHS5oOwzaWrUkvJO21/AhOO5H3e54Et7YxY7w++KdRnDQUqy2eNfe30oFLEKYeUWCxFr169ws6dO3MeW1tbo1077s5hJU0ilSKgCC+UmRmZ8PHxUbj9bUg8AmKK9ubOXFUMHx/FHzreRcTjfaLc9uTCfUh58ykMPnpJCrcHRCcjq4g311+//wQbMfeHwIgUUZF+DjnX8PMHL4bjiRWAb0RGsVzjle9r6KhyP+O8+ZBS5GvEqqfn+zvlF5yIgJiizazT5mXnf43wWATEKH4h5ira7JsixWdp7vfuFxwBHx/F43z3+QviM4r2S/XmQzB8hNwvIMlZEtbP4h3YHeTM0hLxzsgq57H8Mb7v3kMnifuN7OvYrOL5nXr9BrHa3C9Drz+mff81vj4PqPKR78/7zaekIn8f0uz8nwv9Qov+XFhTQwwfH8W/l+8iExFcyOc+eUKxCG5RzDdXCVbW+BgaCoSGFsvP+03AR1hkct8cCErKLpZr+L59h6xI7jejr8PSC32NAOjjvb457BNzx90y/A20stKRqqoBADh67wVaW8q+fvMxucjfR3JaRv6vr8EJCIj5vkTyN4YCUb7XeBceh4C47CJd4+2ncPgYpijc7v85CSnZUoXblfHmfRB8wH0T881bP+V/FlIpfvE+ywr/1bhvTlLCUlvA+jfz/ZxZbM+FxhrcS4XfvE8t8jW0VXj5/059+lLka6gLgAwxcMq+OWLVdWCckZuY7vLpOay/RCFIrxpSs8Tffa23wZHw8VH8fPouKhGRqdwfIJX15mMIfNS5659niov23vmb1wEfYJzGncj1Tyiu58K3SNblfi58E1y458JpLy6gXp4EGAB8UdXE/1qP5tx/XStDvI2IKPL3USyfNQp4bfyuzxqF1MNGA1li4FpI7vO2SCDETx2n4NHh2Yx9h7y7hx0uXXDPyjknlppd8N8MfdYoPL5EjK03tmK87zXO7e/1zTG71Wicq+WmVA1AZQQFBUOUmY5ssRTZkCI48ftey8vjZw1lbHftiifmtXHkwhrUTmA/BxpnJOOf27sww/scFngMw2HHVvn+2yekZyMhPf/3KiKJFK9fcye9i/RZ46vK8llDItUFULRl5bQUupSEhYVh8uTJyM7O/eWfO3cuhELK7RJSUWhnsd8ApKiU/+6g0ZrsWq6m31GUmlReDaI/sjrhRjspntFWlVy1bsh4rCYWoU1o3jepVN+nomsW6Y+G0cyZMB/1zHDKvnnO40EO7Bs0JJe5luz9bKZQFXudOzC28SHFRJ+rZTEsUkQ1kqLxx6PDrPiiFkMQpZ27qqFjDXVMdtHB40Hm8LAo/++LSpOhugDLWhjA3Zw5K/lJdUfsdWLXMd5wazsEkqIlyEn++BIx9l/+hzOpKAEPy5sOgMvIjThr36zYkooAUF3BzfSqxMfUFo2Gr8Oaxn0hUvBva5MUjX8v/Q3vg7+gU9BzsApkknKJEoulIDIyEiNHjkRMTO5d9VGjRpXZMmhCyPfRzmLeDZKAhzQV7uVr5Ql3YjGx9AdCyq3OQeyld7zG1CkcAK7YNGTFugR553z9JKpod4lJ2Zv08hIrtqlBD0bDkR9rV4B6umVIU4WHCc6y+pPbXbuwto95fR2qoqLNgiWlTCrFzqsboSNXBsbHxBqb63dnxJa3MMRoJx0IqZGCQrMb60FDyPz3+a3lCHxRZS5Zd4kNxqSXl0tzaFWLVIrNN7dj6Lu7rE0Jalro0W8h5nsMR6aQe3bm97LQFsDJULlO0ZVdmoo65rQejUbD1+FGDcUlqurHfMKVk3/g+okFaBT1vhRHSL4Hpc1LWGBgIMaOHYvIyNxlVB4eHpg1a1Y+R5U8Po8HB5Pvv/tuY6ABV1fFTwR1Q/0QnF60Got1rIzg6qq47omjjzd4Qrkai2qqhaqx6GRjCVdXxTUWHW4nF7nGorO9DVwV1D0x/pIBhydFn9bvXKc2XBXUPUnWjYfD26LXPXGp56yw7omPKAwOYUWvsZjf71Sd6Pdw+FK0Got1LPTyv8Y7H6RIuWfyBcSkQlvuzXWqijrsTZmF/OvUNIerq+K6J46P0otc98SpVk24uique+Jwj1kbTSOL/ftnJpdYtNJTh4Zq7ofoeo72cFVQY1EakQSHl0VbigkALs5OCmttfRJEweHjd9ZY/Po8oCrg5/vzdvryCQ6xRa97ku/v1Kc3iMwqWt2TujVM4OqquMaio/dTqKl/38/j2/KMrp+8Wdtsx44GLGW/Zw43ij7D1cnBFq4KaizqxKXBwavoNRbr1XVUWGMxVjMWDu8KV2MRAEK03ZB5TsioCdTpawMXADjxPg3/jW0NAHDKCIFDRFChr5GXha56/q+vkf54n1K0Got1LA3g6qp4RqrjmxfI4hetxmJdGwu4uiqusVj7fmqRayw62VvDNU+NxbzLnZzq1oHDQ8VLsQEgLjULvNhYDAx4wIinCVWxT24mEdfPJCs0EQ6+Ra+x6OLspLDG4jtEwCG46DUW8/2dig+EA8eytMKoY66DTUMaIPbQC5zyBa7WbIDOwbl/JybpSRjy7i72yc1mBABjLRUYahb8Ib5uTTO4uiqusejo5QWdItZYdLKtAVdXxTUWHW4rLp+jLGeHWnBVUGNRNToFDt5Fb6hWr25dhTUWPwmioOb5BZkFvL8d73uVVS8TAKa0/4nV5Vv+98spNRgOn5nLpwvruz5rKHg/oIhSnzVUivY+/dtnDVcAXg4p2PggCDs8Ze89orUMsKjFEPxzexfjmMWPDuGoowdiNPUZcVUBD9aG7J8rfdbIFZOSiYR0xa8tCx8fwcRXV1jxMG0jdOq/mFEmqDD0NYQw1VZDIws97B3oAj6fh2sBMdj3LAwmWqqY2coWNQ00UCdA8WcNZZXHzxrKyrss2NfEBp36L0bH4JdYeW8fGsR84jymfcgreB6ahXWNemOex/Cc+osqAh6s9NQhFMjmyiVnipAtlkBLRQB8fc8m5PPg7OwMgYBdbqRQnzUUqCyfNfiFyJ8owpNKaW5pSXn+/DkmT56MhITcWi3NmjXDtm3boKGhUerjefHiBSQS2ZsIPp+PBg0q/mwUkYhZJ8rV1ZWWl5MSwZ91Hk8O/Qq3PHfMIrUMYJ4Sn89R5UR4eE6C6JsdLp3xU8cpOY+393fB+GY1S3tkxYKeB74ff9Z5GKUl4fPW4eAjz9sBFxcgn3ouVc2NmvXRQe4DtsOYbfjwtQukZG3PshgWyeN7ngdW3/6A+EVLsfL+fkZ8t3NHjO88Leex/5y2sDehGYvKuBEQg047nqDXhyc4c3Y5Y9tbQyvUG7WRc2kh/Q2Vnqv+0ei60zPffewSIvD84C+s2YobG/TAjHYTGLH29sa4PrE5yoOK8n6AP+t8ztcCiRjPD/7MqmO5x7kDxnWezjrWwUQLZ0Y3gaMpdajnYjD/Mr5kcCcWJ/pcxtYbW1nxQL1q6DBgCYL1zL7rmsMaWuDAEPbqBsKW93c/L55UgsHv7mHJg39hkxSt8PhXxjXxY4/ZjARwHVNt1DDQwNWvzZxUBTxsaWsEVxPZDavy+jxQnhRHnoiWQpeQ8+fPY+TIkYykYuvWrbF9+/YySSoSQopOfil0uloF+Vs2MWGFTFMTGY+nnvYtpcGQ8sI/Wjabq1PwC2ZSEQC6dSuDEZVf7xu1YMUGyM1yIxVPRHwqJvqwlxxuqc/8/aekovI6OJhAR02IC7ZN8F7fnLGtbnwoun8s+sxkUjRnXkflu11NlIVj51exkoqBetXwW8sRrP3ntVc8c4oUTMwXYLpcshYAxry+gebhfqx4QEwqpp8u+uzAykYskeK3S34Kk4r9Ah5h8w12d/MILcMiJRUBoGNt9vtswq2NnRFnXMrj4786bVBn9Fb83HYcYtW5E+cuscF48t8sdM3zWuIXnZKTVASALLEUW14VfXY5KRxKLJaAjRs3YtasWcjKyp2C3KtXL2zZsgXq6lTQmJCKSn4ptKoe95KQckdVFdDXZ4Tkm7dki2nyelUilkhRZ/VtAEDXTxwf9CmxyND9t4ms2ED/3MTix7ji61RJSsfFt5/x4dBJ1syIJ+YOeGGWu4R7eTfH0h5ahRe6oANUVFVkXbXl/O/pKc5jMrKpWUVpkRSwWO2f27s4lySO7TwdaXIN6xZ0dECbWtzLuony7lrVw+HaLVnx7dc3Q0XMrk16431saQyrQnFYeQurbnGXjWgV+hqHLq1l3URNVNNC1x8WFSmpqKcuxCBXi+8+vqqZUMDqqCyhCjY07IVa43ZgabOBSBWyy4ToZqXj/OklmP78nMLzPI8u2lJwUniUWCxG2dnZmD17NjZt2sSIT5w4EatXr6YpuIRUUKKvdYi0s5kzFjPUK8iMRQAwY75pMk1PLJtxkHJhwAFZMpEvEaPLJ2bjlkQ1LaB5+VjWVl7UaOICb1NmvUDXmCDUjgsDANRacQuRRaztRkrPjYAY9NzjxdkgYatrblLdw8YQc9rWKs2hVQq66ipIX9kd+53a4bNc87CW4W/RMow928ppzR1kiii5WBoysxXXVpzy4gJn/bmVbj/gnpUzTo9qgvCFHXFseCP4zW6LPzsrrnlJCmd269FIkUvcOseFYNaz02U0ooojOUOET/HctUmdY4Jw5uwyRp1kAMgQqKB3n3nwNVFca59L2opuWNOjLky0VGFjqIkjwxtBVUgpFWUNdK2O2Uq8riapaWFhi2FwGbkRD6qz64zzIcU/t3dh0aP/qGt0OUF/BcUkKysLU6dOxdmzZ3NiQqEQS5cuxcyZM8ErhoKYhJCysfzmB0AqhU4Wc8Zitsb3N0AqdabMphlmqUVvxkEqpvAv6TlL4ZpEvYdxBrMAd2SzVgDdCGM57ujBig3yv5/z9S7PkNIcDimCIYeewyYxitW0KE5dB8dq5/6c701pQe/fiuD85FbY0JBdO3Hlvf2sD4Kf4tPQftvj0hpalXUvMA4HvMM4t/0Q8BDrb+1kH2NRFwtaDAMAOFfTgbmuOvq7VkdtBY2ySMH2D67PioXrGGO+xzBWfMHjo3CIZ//Mfr/kh+Yb7mPqKV+kFLERVkVz2jcSPXZ5gj/rPDw2Pci5WSrPMikGl079Cf1M5qoCMY+Pwd3/h/uWzoW+trqKAL+2scPnPzsj8Pf26Fybuykd4cbn87Cyex1E/9kJGioFp6I+6VdDm0HLsaTZIM7tix4fwZq7eym5WA5QYrEYiEQiTJ8+HXfu3MmJaWlpYfv27RgwYEDZDYwQUiyW3QyAqlgEFQlzNoW6gZ6CI8ohucSiTnY6NLIzy2gwpCwd84nI+XqQP7tOoONIet3iMnL1r6zYIP/7OW9mF131L+0hke8Um5qFia+usJbF7XHugExhwd2JiXI6OJhgq2s32SzoPJpH+qPPhyes/R8FJSC+iJ1MCVNKpgi+kUn4nJyJmefeoM3WR5z79X3/CP9e+ov1NxGjoYsh3f+X0wVaUadpUji9naqhhbUBK76pfnc8NWPO5lIXZ+PA5XUQys24W3nrAzxDErHlURAmnSx6d/ry7sCzULTa/BAmC6/gh/3PcOmdrIzFo6AEXAuIYe1vkJ6My6f+gGUKu1vu5A4/4ax9M4XXcrPSx4HBFb/JaXlmrKUGrxmtlNpXwhdgUYuhGNhjNtI4XqN/9T6DPx/9p/D4O4FxWH//I16E06SKkkSJxWKwZs0a3L59O+exoaEhDh48CA8P9uwGQkjFky2WsuorAoC2YQVKLJqx68eYpDNfYEMSuJeRkMolMFb2cxZIxPjx3T3GNhGPD1737mUxrHKvTtN6+OTgwozFh8GVoxYZKZ8kEimGHnoONVEWxvheZ24DD9tdu+Q8bmKlX8qjq5wS1bWxqskPrPjy+wcgkLCXPj/8FF8aw6oS9niFQHfeZbj+dRfmf17DP/c+cu7308tLOH5uFWupaLpQFX16z0OEjqzZwouZrWgGbzHRVVfB7UnuuDaBmdyS8AWY2HEKRHKd092i3uN3z+MKz3foeTguvv2M/56HwWD+ZWjMvYjlN99DWklmcfXd64VRR17iwad4xKWxa07KU8/OxJmzy+AUF8ra9mfzH7HTpQvHUbmmtbRBF0cTyP+6c800Jd/PqZoOtNUESu9/orYHOgxYigQ19oqxBU+OYpZcDd81z76gw8lIdNrphV/OvkGjdfdw4e3nIo+bcKPEYhHdvXsX+/fvz3msp6eHAwcOwMnJqQxHRQgpbvL1FQHApBp3Z7NyyZS9VMNMrjO09bKb8ApJYO1HKpdvhfs7Br9EtbRExrar1g05f1eIjJhjFULeemQPPrFnRpDy49K7aBx+EY4BAQ9ZJQCu2DTExzxdjGe0LFzdLcLtn95O2NCwJ8K1DRlxx4RwTH9+nrX/1kdByBIprgFI8nfzfQyGHXoO17/uYNwxn3z31c1MxYFLf2HLzW2smYpiHh8/dv8fHlvk1jZzrV6BbqZWAEIBHx0cTDDJ3ZoRf2lmh1Vu/Vn7z39yFO7hbxWer+ceLwz77wW+ZIiQKZJg/uV38I1MVrh/eReWmI79T0Mx6/wbnH2jfDJIPTsTp84tR0uOf6ud9Trhz+aDFR67snsdPJzaAkMbWsJYSw1/93KCqkCWLulXrxoGulYv/DdC8hW+oBPjsZaqALd+Ulzn+0l1R7QduJxVvxcAVt/bhwk+ue/Jjr1PxZcs5nNbrz1eVa50QGmhxGIRiMViLFu2LOduEI/Hw19//QV7e/syHhkhpLhpZ3E0ZtCuQPWFOJJF8p2hAWDzw6BSGAwpSyKJ7DVr2NvbrG3/1m1TyqOpWFQHD0Y2n3l3fdjbO9D9Wr+p1WbuZYakfNjyUDa7dNLLS6xteZu2AEAvp2qlMqbKbpqHDdJV1PBH8yGsbUse/gu7hAhG7Ip/DMYfzz8hRrg9DUlE152e+O9FeP4JJakUg97dg8/+6Rjmd5e1WczjY3ynqThfq2kJjpZ8s7GPM27+1Bz7B9fH42my1W6Lmw9iNQwTSiU4fn4VqicrfwPr1/NvinWspeVVRBLqrb2D0Udf4u+73DNtuWhmZ+DcmaXoEvSCte2crRsmd5gE1jTErzrXNsHstrXQ3Dr3JsiMlraIX9IZUYs64cTIJlATKj+7jihHR12I93PbYbSbFUa7WcHn19ZwMMn/89UrUxt06r8Y8ers/bbc2IohfnfyPf7cm6iiDJkoQNXZi+DKlSsIDg7OeayhoYF9+/Zh3759Sp/D2NgYq1atKoHREUKKk24WxzLhipRY5FgKbSo3Ww0ADnqHYT/VlanUdnmGQDsrjVXjLElVA+fs6INkfqo72uBkreYYFJBbm1I7OwMj39zCRo4mFaR8ufUhDg0+B6J5JLMe5iddU1y2aZjzuK6ZNrTV6C1yceDxeOjmaIp9kvaY/uI86sXmvm/WFGVh57VNaD9wKaR5ln4e9A7Dut5OMNSkepeFccA7NOfGEReeVIJeH7zwm9dxuEW959wnQ6CCId1n4Yw9c8bQxOY1i3WsJBefz0PbWsY5j0+PaoK++55iRLdf4H3wF6iLc5f+mqcm4OS5FWgzaLlS9WCDFHRKLs+8QhLQbAO7/nNBLJNicPrscjSKDmRte2xeG4N75NYK5XJmdBPOuKaqEJqq9HpQkuyMtbB7YP2cx1FJHJM55Pia2KBbv0W4fnwhdPKUq+JDin2X/0GaUI31PPbNsP9eYFB9Cwj4zCRzSEIajryMQLZYgqktbKCnofJ931AVRX8lRXDlyhXG47S0NDx4ULgnQgsLi+IcEiGkhOjJdZQDAOjrl/o4vhvXUmiOxCKpGgb4P4SmiNkk4aS9OyZ3qFtGI6oYhAI+NjfozkgsAsDkl5ewqUF3RnKElC9pWSJkiSWY5HOZtW27a1dI8nzg/Lb0jRSP/YMbwGRRNMZ1moZHh2dDIM1d6twm7DVme53CqqbMpZ/GC6/iziR3tLKrQCVHyoBUKsXhF+F4F52icMWBqigbQ/3uYNaz06jD0V34myhNfQzoORcPLdmvA2t60GtDaentLJst7WdUAzPajcf261sY25tGBeDEuZX4oddvyBLmn/gIjEvD0hsB+L2dPfhfkyhSqRQ338ciSyxBJwcTCMvJ851ILMH8K/5YfftDoY9tH/wSBy/9zSrvAgAvTWzQq88CpKuoKTx+c796NBuxHNHXUAGfB+RznwQA4GVeG736zselU39CI897WqFUgiMX1qBPn3m4YtOI81iV2Rdwe1JzRCZl4gcXc0SnZMJ62c2c7Quu+CN0QQdY6GlwHu8T8QURXzLQwsYQuuqUgARoKXSRfPyo/NRsQkjFpl8JE4tcS6FJFSCVYsbzc6zwv3XbYJqHdemPp4J5YFEXPibWjFjthHB0+fQcAHCdozslKVsxKZnQ/v0y9DJSWEukMgVC7HHuwIhVjnYH5YeRlirez22Hp+YO+LtRb9b2ZQ8OouvHZ6z4b5f8SmN4Fdof1wIw7L8XWHqDPQNRJzMNvz49jcDd47H72sZ8k4pn7dzgMnIjZ1IRAM3gLWV9viYXd7p0wQ6Xzqzt3T89w4nzK6AmKriL+sIr/ngcnFs/e9BBb3Ta8QQ9dnuhzdZHEInLR03TkUdeFjqpaJaagN1X1uP6iYWcScVnZrXQfsBSxGnq5nse+TqXpGypqwgwoZlys6TvWtXDgJ5zWGVqVCUinDy3Am1DFJfWaLv1MYYceg61ORdhteQGa7vVkhv4ks5uFvTPvY9ouO4euu/2QoO/7yE0kd3gsyqixGIRXLx4Ef7+/kX679atW2X9bRBClFDhE4tcXaEpsVjlBMamol3IK7jkWY4IAIF61dBz8o+oYaBZRiOrOE6NboLN9dmds/949B8glaLzjic47hPBcSQpK512yJb9j3pzkzVT95iDB2LlisDzqfFtsbMz1kLTGvpY5D4EAQbMBgh8SHHo0l9wknteehycgM/JmTjzOhLPQhNLcbQVx5LrAayYqigbs71OInjnWKy5txcWKYo7bQfrmGBYt5no23se6++AlJ28M0Snt52Ah9UdWfv0+PgM94/MRc0vBTc2mXTyFQDgbVQyTryKzIk/CkrAFf/SuRkmEkuw2zMEs86/wa33sTnxOx9iwZ91HodfhCt1Hp5UgmYR77D1+hZ82jkOo9/c5NzvjqUzOvZfjAQNHQDAn51rI2FJF1TXVWfs52FjyHU4KWMb+9ZTet9Ltk0wrNuvEMutGtEQZeHsmWX5Nj0qyDG593MisQQzz73Bt4brn+LTsONJMMeRVQ8lFgkhJB9JGbI7VfoZFTyxqKsLqDLr8ShaCh2TklkKAyJlYe5FP/zifZYVX9+wFwY0oNIcyujjbI7/6rRGrLoOI97k84ecupWDDnrDOyyxDEZH8noUFA+rJdfhE5EEnpR7GfTW+t1YsXFNqZ5cSdBWEyJDRQ2DesxGmlx9OP3MVNw6Ng/1Yj4x4uZ/XkO/fc/gtv4+/rrDrp1WlUk41gm2DfHBqwPTsPL+fu4bol9FaepjdqtRqDN6C/6r0wa/tLZD6opueDenbUkOmSjJzlgL96a4AwCyhCro3Wc+a6Y8ADT+/AHe//6Cn15egkAiVni+11HJsF12A85r77C2LbjyrriGna+pp19j/HEf/H33IzrueIyzr6Pw5zV/tNv2WOExKuJsOMcEYbDfXSy/vx/nTi9G+LZReHR4Nia+usKoP5nXFtdu6NR/Mb58be6hqy7Ego4O0NNQwYmRjaGrLpuBq6UqwNIu7KQtKXsCPg/96infRO14bQ+M7TyNFdfOzsDFU4vRMuz1d41j4olXOO0biQ33P+K/52GY+DVJn9cyjhnjVRHNayeEkHykZ8uWiFT4GYs8nmw5dFjuUiiu5i0AEJqYDhNtxbVoSMX15o4Xun9iLjlMUNPCXuf2WC93F58o5mxbDSub9sfau3sZ8SUP/8U5OzdI+AJ03+WJqD/YS9hI6YhNzULnHU+QmiX7sN0u5BUc5DoQvzCxwRPz2oyYmY4a+jpTR+iS8C0R5mNqi9FdfsbRC6sZ203Sk3Dr2Hz07LsATzhmaM2++BYzWtqUm5pwZe2iX+5MNaFYhMWPDmG21ynw81nMH2BQHWsb98XBum0ZzT+me9hAQ0UAdSH731Z+hhcpHR42RlAR8JAtliJeQxcd+y/BzePzGQ2QAMAwIwVbbm7D9Ofnsa1+V/zn2Jpz9mlQAvdyTXE+hew2P/yEHU+CYaSpiuXd6qBZTQOlxx+TkonpZ17j6MsI1DPXYXQql0qBvvueso6xSYxC29BXaBHuh0afP8AxPhyqEpHS10xQ08LMNuOw37l9TszRVBtPZ7TMedyspgHCF3TEq8gk1DPXpWX+5diSLo7wDElE+JcMGGio4PiIxrDQU4eptiqMFl5l7X/AqT3URdnYdoNZl1QvKw3XTizEyC6/4JhjS9ZxBflhP7tUB2GjvyRCCMlHRrbsQ2mFTywCHIlF7qXQPB6tA6ys5nidYMV2uHRBqqoG/dwLYVpLG4z/2A2/eJ9lLDN0igvFqDc3sadeJ0SnFFz7ipQMqVSK1bcDc5KKADDp5SXWflvrd5PddPmqv4s5VnWvi2qUSCkRYmluAuN4bQ84xwZjwZOjjH2MMpJx+9jvmNx+EvbW68jYJpUCl95Fo5dT1Ur8isQSrLz9Abffx8Klui7+6FQbtwNj0W+f7MOuUVoSTp9dBo8IxTUpPas5YLVbP5y1a8poVAQAIxtboqahrAyGlb4GquuqIyJPV9ZfWtmWwHdFlBE8rwOqL74OAIjV1EP7AUtx6uxyzp+1Y0I4/rm9C3/d2YPnpra4a1UPXtXs8axaLQTpmjGe6/J6HZWMTJEYuz1DkZwpwugmVjDVUcM1/2hMO507y6vbLk9ELOwIdZWCm5xIpVLUWHoDmSLZzfm8SUV5hulJGOd7HQP976Nh9Pf3Lzjm0AI/tx2PKG3m0ua3s9mzcLXUhGhuTUugy7s6ZjoImtcBgXGpsDHUhIoSN5V2uHaBhigT6+7sZsTVxCIcubgGblEBmOcxXKmu6qRwKLFICCH5eBAkSxpU+K7QAKvOokl6EvgSMetDhlRKrQsqowjPFxjmd5cRy+YLsKkBu14gyV+/eub4x8YUS5r9yLozvurefpyza0r1ysqIRCrF/EcJuB6SmxixSI5F70Avxn5fVDXxX53WOY+HNbTA/sENKMFeguQnRi1yHwINURZmPTvNiKuJRdh9bSM8wt9iersJSFXN7crZZ+9TeP/SCg0sqs7f1/r7n7Dwij8A4HZgHNbfz10ubpMYhcun/mDNxv3mqVktzGk1Cnes6nEmlo4Ob4Qf6pnnPObxeDg2ohHGHfNBcEIaBrhUx1Rq6lVmqumqo46pNvyiUwDIkovtBi7D6nv78DNHEzYAEEglaPL5A5p8zm2EEqeug2dmtXDXyhk3a7jiWbVakOapR6cxN/fGy7p7gfCb3RbbHzNnRiamZ+NOYBy6OLKbAYolUmx88AleIQloaWsEc121nKSiItWT4zDP8xhGctS+VZaIx8ex2h5Y06QffEzZCfB5Hey/67yk/BDweXAw0WbFuzqa4vK7aM5j1jfqDQ1RFpY/OMjaNtP7LDoGv8ScVqNwxbqhwoR7DqkUFilxaBz1AfVig2CXGAmt7Ew8sqiDfxr2Kvj4KoQSi4QQko/fv3al1M9MYW5QUQE0NDiOKMfkOkMLpBIYpychWou5tEWUz7IYUnE9HT8TvaXMN/oH67ZFuI4xtFQLnoFAcmmoCPBwqge0g+Pw67PTsE/MLYZvlJGMv+7sxshuM7HHKwRj3GqU4UirHt/YLEZSEQAmv7wEgdzv/n6n9khTUUdjSz2cGe2G6no0S7GksZZc8niY3WoURHw+5nqdZO0/+s1NeIS/xdDus/CsWm6CoNG6e/j8R6cqU7Ljfxe4Gw/UiQvBzWPzObvhJqtoYFab0dhVrxMjgSSvhbUh+HLditytDfF2dluIJVIIqJNRmXs83QMDD3jjWoCsyYpIIMTMtuNwxaYh/rqzG05xoQWewygjGZ2DX6Bz8AsABxGmbYQjjq2w17k9/IyYr1HRKVnotccLD4MSWOeJ/lqDOzQxHT12e8I3MhlmOmr4nJxbm/vIy/ybl6lnZ+J/z05jttdJaIkKX9M7RMcY3ma1cMG2Cc7buXHexKumo4ZhjSwxrz0lFiurSe7WChOLALCy6QDEaehg841tEMq9/teLDcalU3/iuaktTts3xz1LJ0RoGULEF0A/MxW148PRIPojXGM+okH0R5hxrPDq//4RdLLSsaT5j8X+vVVUlFgkhJB8hCbKPqCylkLr6VW8u1SWlqyQzZfPrMTih9hUuNVQvo4OqQBev0ZPX+ZsxSy+EEuaDQIAPJ7mURajqtBUhXzo62piavufcPXkIsa24X53cKhuG4w7BrS2NYKdsVYZjbLqWeyZyHiskZ2JCa/YtZi2unYFAHjOaEmzFEuJhGs2PI+H3z1GIFTHBP/c3gkVuQYU9omReHh4Nha6D8WaJn1zZthbLL6OxKVdoKlauT/KKFpBYB8fjhvHF3AmFb1N7TC4x//wQa77Npf88oaUVCwfdNVVcGVCM5x5HZmz/B0Arlk3RP0Rrhj9+gamvrgAl1jlO9NapsRh1rPTmPXsNC7aNMYqtx/wwNIpZztXUhEARh15iVFHXjJieZOKBWkU9R4HL/0Nx4SCO0CnqKjjpYkNXpvUhK+xNV4ZW+O1cY2chiz5iVjUSekxkYqpR10z7B1UH0tvBCAwLo1zn50uXRCmbYzDF9dAN4tdY7Rh9MciLb/vGPSCEot5VO5XY0IIKSasrtAVbRk0ANjZsUK1EiPhKVckf9h/LzCkITsJSSou0YKFEMoV9N9TrwOC9cwwuIEFnM11y2hkFdvybo6YkJqFQ46tMfQdM3G7++oGuI7YgKM+EfidZk2UitBkEUKSmYmpYX63YZTBrO91xboB/I1kz3GUVCw9LW2N4BmSyN7A42Fr/W54Y1QDx86vgmk6c3aIikSMFQ8OoFPwC4zo+gvCdYwhkkix6GoA1vSsWzqDL0XB8Wn445o/vEISYcoxK7NGUjRuHF8A81R28uekfXMM7zoTGSrKzeak5GHF0cfZHJK1PXEvMA5ttj4CAIj5Auxy6Yxd9Tqh0ecP6B/wCO1CfNDoc2C+TXzy6v7pGbp/eobztk0wt9VI1gzG4iCQiDHX6wQWPj7CunmQl7epHU46uOOqdUO8MrGGmE+rKYhiI5tYYWQTK3xJz8bz8C8w1VZDPbnO55dtG8N1xAYcuLwOLcO5Z39/L+9qtYr1fBUdJRYJIUQJellyd8MqYmKxFvsF0C4xqgwGQkrVixcQnmHWMMsQqGBZ04EAgENDG5bFqCqVmW3HomuQNwwzcksmWKTEY9v1LRioroNfW9tCTUgfkErasQC5G0BSKaY/P8/ab33DXgCAGvoVrJxFBTertR3+ufdRYbmNe1bOcB25AXuurEfXoOes7W1DfeFzYDrGdJ6Oc7Wa4a+7gdBQ4WNhRwdkiSUQSwAd9Yr90UYikcJm+c2cx99q632jl5GCSyf/hFVKLOvYzfW7YUbb8ay6yfnRUKIRBylfWtkZIWNld0w57YvdniGyII8H72r28P5aMkAnMw0Noj+i8ef3aBT1AW5R72H3Jf/3ez0/PkXXT97Y1KAHFrkPQbKaZrGM1zYxEgcurYN75DuF+xx18MBfTfoySh4Qoiw9DRW0rWUMAAhb0BH99nnBKzT3BlWwnhnaDlyGaS8u4DfPE6ybV4WVKlTDv3XbYnEzmq2YV8V+9SWEkBL0KiIp52vWUuhKk1iM5NgReBqSiCY19Et4QKQ0JM/5HTpysR0uXRCuY1wm46lMLPVkiakYTX3MaDseBy+vY2zv//4RRr65hV57THB1QvOyGGKVcdEvGkfkEosdg1+y6o/5GVrimnUDAMDzma1KbXwEMNVRw70pLbD0egBUhXz82bk2Rhx+AZ88r7WftQzQo99CTH9+Hivv74eaWMQ4h2FGCs6cXY75LYZhedMBWHrjPU75RuJDbBrEUil+al4T63s7s+oGVhReoYkKt6mIs3Hi/ErUjWfX1NtUvzumt5tQqBItrW2NoK1GHwUrIlUhHzsHuOL3dvawW3GTtT1ZTRP3rJxxz8o5J2aZFIOOwS8xIOABOgb7sOrOAoBQKsHPz89hkP99zGo9BocdW31/2R+pFON8r+HvO7uhnZ3BucvD6o74ue34nISosmoaaCA4gb20FQA29nXmjJOqobqeOh5McYen9wuoCXhwOyL7nCPhC7C+UW/sdOmMn3wuY+SbW6inRPmAQL1qeGFqi+dmdvA2q4U3RjUQqW2Qb+3aqopeTQghRIFnYYkAADVRFjTkO9ZVxMRitWqApiaQljv7UtGMxaYb7kOytmdpjYyUEM9jl9H0+hVGLF2oipVuP5TRiCqXtrWMcr4+VKcNun98hh/97zP22XBrBxpY1kX4oPqw0KMZciVBKpXi57PsJU6/eR5nxTY26AEpj49H0zxgqKlaGsMjeTSraYAL45rmPH4xszX4s5izSqU8PtY36o3bVi44dGktZ3OKpQ//Re34MIztPB1vP+fO6tv8MAh9nKuhvb1JyX0TJcg3Mol7g1SK7dc3o33IK9amXfU6YUa78QUmgO5NccfzsC84+zoKtUy0sKyrY777k/LPxkgTBwY3wIjDLwrcN0zXBHvrdcTeeh1RPTkO015cwE8+l9krcgCYpybg0KW/MM73Gqa2n1jo5dHVk+Ow5cZW9Proxbk9Q6CC31uOwPqGPZVO0DiaaqOVrRFW96gDXXUVvI5MwouIL3CvaYi0bDHuf4xHXTNttKlFN00JoC6U/V5ta2eEn27F5cTTVNTxd+O++LtxX1gmxaB12GvUSI5BtdRE8KUSJKhrI1pDHz6m1vAxsUGSGtXIVhYlFgkhRAFVgexFSU9+tiJQMROLPJ6szqKvb06oloIZi4DswzrVH6vYJH/8yYptce2GKG3DMhhN5cNY3szjYXKHSWgR7sdYpqiTnY4Dl9bBWtcU2X/3Kf1BVnJSqRSDDnojOJE5e8Uj7A3ahL1mxOLUdXDAqR0AQIdmapV7r0xt0GTo31h7dy8m+1xibR/udwd6mWkY1HM2MoW5SeK9XqEVLrEolUrx7/MwTDzBThwCwIInRzHqzS1W/LxtE0zqMKnA5Myvre3gYWMEDxsjTG9pWyxjJuXDsEaWmH7mNRLTs5U+JkLHCL+1GonVTfphnucxTH1xEaoSEWu/tqG+eHlgBtY37IWlzQYWmGRREWdjwqurWPbgIGezDAB4aWKD4d1m4o1xTaXHCwBvZ7dlPHY212XUh65HtaIJB1cTVeipC/Elg/37HaZrgkN123IcRb4HzeEkhBAFviUWWcuggYqZWARYy6FN079AJ5O7m1qWmL1MhlQgz5+juZ8nI5Sioo5VNFuxxCSqa2Nk158hATMh7x75Dr97HsfaO4FlNLLKa+mN9zjxin2D5HfPY6zY+oY9kaaiDgAw1FQp8bGRostQUcPUDj+hb6/fkazCnvHb66MXzp9eAo3s3M60H+O5X9PKsxln32Dk4Zec24a/uYU/H/3Hinub2mFI91lKNbhY3aNOUYdIyrETIxp/13EJGjqY1WYsnEZtwmVr7nrLKhIxZj07jZAdY7Dq7l7Ui/kEyHUrN01NwOQXF/FuzyRsvLWDM6koAQ+rm/RDsyFrC51UJOR7Cfk8BMxug419nbGiWx0McDEv6yFVWpRYJIQQBb5N1qtUiUWOztCK6ixeeRdT0qMhJWnFClZoc/3uiNXUy3n8U3N6c1/c7tRwwV+N+7DiCx4fwckdp0p/QJXcoqv+rFjjqPfoEsRcGpikqoFNDXoAANrYGcFcV71UxkcKtrlfvQL3OWvfDB6DVyJI15S1rUOID45eWAXh13qMT4ITcNU/GlKpcl1xy0Jalgj7n4birzuBeBaaiE0PPnHu1ybkFXZe28SKh+gYo2ffBUhVLbi8wsuZrWn1QSXXtpYRGlnqFbyjAoEG1dG93yL06/UbgnW4Z/vqZqXjf89Ow+fADITsGIPbR3/DxZN/4NW+qQjfPhqbbm2HTVI057HBOiZoN3AZ5rYahSxh4W/qPJrmUehjCPnGQFMFU1rYYE67WuhWx6zYz79FidewqoASi4QQosCgg94AFCQW9b7/DVyZ4mjgomg59PKb70t6NKSkvHsHnDzJCKULVfF3496M2F+9nEpzVJWSkKNJxIIWw/DCxIa5n1SCg5f/RkpcYimNrIqSSrHi/n5WeHP97khU18b8DvY4PapJGQyMKDLJ3RqHhjbElBbW2PdjfYX7+ZrYwH3warzmqPfW4+Mz7Lm6HryvDSm67vSE4H8XsPZOINKzxSU19EITS6SQSqXotecpRh99if9deAu39fc593WMC8WpcytYS1S/qGqie79F+Za0GNnYEnsG1Yd4TQ+4VKclopUdj8fDvSktUKSeRTweztg3h9PozVjedACy+IrLRVimxKF12Bt0DXoO57gQzkYw3+xw6QzXkRsYjWSUYW+sBVNtVazuURdNqZkgKSaDG1jAQKP4VizsGVQfP7lbF9v5KjJKLBJCSAH0Myr3jEV3cQLnrk/z6U5JyrlVq1hLlXY7d0SMpj4jpqFS8BI6kr/JLaxZsSyhCoZ1/xXpQmZzkFqJUTjaZiBiUzNZx5DCOfAslNX0AwB6fHzKanCRJlTFuka9IVnbE4u7OEKvGD9UkOIxuIEFNvathxGNrfLdL0rbEG0HLsczM/ZNsmF+d/HP7V2M577ZF95C67dL+O95WKHHJBJLICqmkiASiRS/nnsDgwWXIfjfBdz6EJvv/jWSonH1xCLWjc1svgD9e83lXEpqoKGCDvbGCF3QAXt/bIBRTaxopmIVoqEiQPD8Dpw3uwojTUUd8z2Gw2XkBlyrWf+7z/PGyAptBi7HTx2nFLoBxqJODvCf2w5Rf3TGrDZ29HtMio2qkI97U1qgex1TdLA3xu1JzfG/NuzPRsoa1ST/16yqhBKLhBDCITRPI4BKtRSaY8bi1GrlZzYHKQbR0ZD+x6zHlc0XYG2TvmU0oMptRbc6GNu0Bqz0mUtr/YxqYHarUaz9x76+jj2/rS+l0VVOX9KzMerIS1ZcKBZhzd29rPi6Rn0YJQBIxRanqYvOP/zJOXNx2osLWPj4CCs+7L8XyBSJcdwnAmOPvYTVkutotO4u9j0N5VwyPfWUL1TnXITqnIvY+iiowDElpmfnu/R6xa33WHfvI1IyC369rZYSjxvH5zOaQH3zU4fJuKkg2RO3pAuuTWxO3eerMAs9DTycWjzLhgMMLdHlhz/RatAKXLBVvoajn6ElhnT7Fa4jCj9L8Zsf61t813GEKMOpmg7Oj22KaxObo7WdMVb1qIvYxZ1xeFhDrO+j/O/sz62oEVZe1BKPEEI4pGblLj2qVIlFKytARQXIzu0eyA8MBBSsqJJIpOAX8e43KWW7d4OXlcUIHarTGiFytcmmcMy0I4WnoSLAzgGuAIAzryPRb9+znG2b63dHt4/P0DXoOeOYsTuXQjJ7KPiW9OGpsMK/pMNqyQ3ObVNfXkTthHBGLEpTH6vc+pXG0EgxaWtnhNuBcfnuk6Chg879/8SDw3NYdd3+eHwYcRo62Py1puY3Tmvu4GNcbmOX8C8ZGHP0JRxMtOBunfsi+PfdQGzJk0yccsoX/V3MYaKtxhpHUHwaeu/1gm9kMhxMtHBmdBNkZEvQcN29wnzLOay/ROHyyT9RKzGKtW1ps4HYW6/jd52XVB1NauhDtLoH1j/4iF/PvS3ayXg8PLB0wgNLJ9RIikaPwKfo+skbtRPCYJ6SAA1RFiK1DRCsY4r7lk444eAOb7NauUXKlVRNRw1RybKZ/Gt61EVtU+2ijZuQQjLUVMWgrwntGWdeF7h/RwdjLOzoUNLDqlAosUgIIQXQq0yJRYEAsLEBAgJyQryPgYCCkmPX38egc212sXxSTonFwLZtrPCGBj1ZsUWd6A1RcWteUy5Dz+NhTJcZeLV/GkzSk3LCRhnJuNeuD6yf3EENw8ItEavKMrLFCpOKjnGhWPbgICu+sMVQpKhqlvTQSDH6rb19gYlFAIjUNkKn/otx/8hcVEtLZGzbeGsH4tV1cLhO65xY3qRiXr33eGFic2tkiiQY29QKs86zkzFjjr7E+bFNGbGQhDTYLr+Z8zggJhXTTr/Gs+8sI1L/cyAunl4M81R2eZLdzh2x0H2owmMnNKNGXCQXn8/DL63sUMdUB7POv0FMShYmNK8JJzMdzDz3JieJVxghuqbY0qA7tjToLgtIpeBBCilP+QWQo5pYYd/TUFb87ey20FDhg8/jQUVACypJ2fKwMcSDT/GMmKm2KlraGGHnQFeoC/lQp1JCLJRYJIQQDonplXTGIiBbDp03sRgWBvXsTGSosGdjLLkeQInFiuTiRSAkhBF6ZO6Il2bM+jEffmsHYy32z5sUjZkO+9/0s5YBxneaijNnlzPird4/w54V2zBmza+lNbwKzTssEU3+4W5yIRSLsP/yOmiImDN1XxnXxB7nDgCA4yMalfgYSfHo4MDdlZZLoEF1dPnhT9w59jvrtXrflX+QoK6NKzb5/+zj0rJzmpX9dTeQc5+LftEY/t9zfIpPQ3q2GBFJmfjMkZy5+T7/2olc+BIxZnqfxZKH/0JNLGJtP1K7JSZ2nKxwFpilnjqmedhwbiNVWxdHU3RxZL6H+7GBBaRSKf6++xH/u1CEGY08HqQo3MzELf3qcSYWhXwe1ISUqCHlw7Kujui+2xMpmWLoqgtxdXwzNK1pUNbDKvcosUgIIRzOvsldhlSpZiwCnHUWHRIi8MqU/cHkURB3YxdSTm3Zwgptrd+VFbM1ollypelcrWbYWa8TxvteY8Q7blsJ/PEToEU/j/zcCIhBpx1PFG5feX8/mnz+wIiJeHxM6DQVEr7sw2pfZ/MSHSMpXupCPjJEyjVOeWVqg559FuDayYWM5LKKRIwT51agY/8leGxRp8hjOvScucxeLyMFLrFBqBcTDJP0L9DMliUa4zR0Ea2ph0D9anivXx1RWgacSUH17Ez0+/AYs71OwiU2mPOaJ+zdMaLrLzm/x/IWdnTAL61sqSERKRQej4df29jhl1a2EEmk+JySiXNvomCkqYqmNQxgt+JmwSf5DgI+D2Ob1sBuT+YNUE2a/UXKkZa2Rohc2Amvo5JRz1wHmqqUMlMG/SsRQgiHYy8jcr5mzVgUCCp2IsDRkRVqG/qKM7FIKpCQEODqVUYoRkMXxx2Kp5A7KZqZbcai6ydvWKbkLvG0SolF/Pw/YLhuTRmOrHzb/jgIk076Ktz+s/dZzPQ+y4qvaDoAXua1AQCi1T2oVmwFs7FvPYw/7qP0/g8t62JAzzk4c2YZhNLchKSmKAsXTi9Gm0HL4WtS9Nc409QEDHl3D33fP0aLcD/wobhhyzfJKhp4b2COKC0DJKhpQ12cBfOUBDSK/sA5Q/GbzfW7YUbb8ayk4qgmVljZrQ4MNVUgpGWjpAj4fB5U+TxY6WtgSovcvw+u5B8ADGlggX+HNkTElwzUW3sHCem59bqnt7TB+5hU1DLWwsKODui5xwtPgnNvTveoYwYVAR8zPGxwxjcScWmyY//qVZeen0m5o6UmpFmKhUSJRUII4fApPrcWk36GXGJRX7/QhanLlXbtWKFR8X5Yj97c+798Cdy/D3z5Iqvh16IF0KFDyY6RFN6hQ6zQHueOyBIyZ7IYatLMlrKQqqqBWa3H4MhFZhJRa+M/yJw0AWoO9mU0svItv6TiBJ8r+PvOblbc29QOS5oNgoYKH8dHNKYPrRXQ2KY1IJJIcn7+fB6wf3ADDG1oiU7bH+MGx5LjS7ZNMLrLDBy8vI4RN8hMxZ2jv6NH34XfPXPRJjEKs56dxujXN6Auzi74gDx0stPRMPqj0vtn8wX4reUI/N2oD+O9xoY+zujjXA2W+tT1mZSs7T+4YFhDC7Td+pgRX9pVdmO6up467k1pgR1PgiHk8zDJ3Rq1jJk33B9ObYH19z/hkt9n1DHTweLOshs9zua6ePlra9z7GA9rAw00t1bQPZAQUqFQYpEQQgrAmrGop1c2AykuDg5AzZpAcO7Sq3rvX0CtbRYyhaq5+0mlmOt1AviL3RABS5YA8+eXwmCJUqRS4CD757TPqT0r9nMr29IYUZVVx1QbftEpnNuO1fbAhFdX0C40N1mmJhbh7ZRZqHnhJLTU6G3ZN7GpmWiz5RHnNhVxNtbd3o3JPpdY2+I0dZH490ocq+cG5+r6rA+7pOKY2Nwao5pY4UV4EuyNtWCkJXt9ujaxOZxW3+b8OztUty0MM1Kw/vZORtwgMxXXTyzAiK4zccrBXekxuER/wuynJzHI/wEEUuWWZhfFGyMrDO86k1UXFwCcqulQUpGUCj6fh9Z2xng3py3mXHiL1Cwx5rSrBWvD3EZYTtV0sL6Ps8Jz8Hg8/NzKlvM9h4WeBgY3sCiRsRNCygbNnyeEkAKwEosVub4iIJsB0bkzI8RPT4dHeJ4i3lIpVtw/gOUcXVYBAAsWAMePl+AgSaG8eAH4+TFCT81qwd/IkrWrKi2dK1E/uVsr3sjjYXq7iRDLddF0vHEeHuM3Y/C/3hCJSz55Ud5JJFK4b3yIt5/lEkdSKXq/f4LX+6ZyJhVThWo4M3819B1t0KOuGSUVKwE1oQDNahrkJBW/ef2/Nvi9Pfcs340Ne2JJs0GsuKYoCyfOr8S265uhncXdIRoAIJWidagvLpz6Ey8PzsCQd/dKPKn4SdcUU9tNRKNh/3AmFY00VeBhQzO7SOlyMNHG6dFuuDaxOdrbK99UiRBS9dCtcUIIKYB+ptyH24qeWASATp2AHTsYoc5BL3CzZn0AwIr7BzDn6cn8zzFqlGz2o6tryYyRKI9jtuK/ddty7iqSFFwTjHy/Ke7WiE7JxGnfSNQy1sK5N58Z298a18A+p/YY+/p6TowPKZbfP4Duprbo5VStys/keBKSgA+xuTd0qqXEY+SbWxjz+jrsEyM5j8niCzGw5xzMa0/dn6sCHo+HpV0d4WKuix//9WZtX+Q+BDxIMf/JMda2Ca+uon/AQ2yq3wMX7JrgrZEVVMQi1E4IR9sQX4x4ewt14sMKHIOfoSUu2DaBt1ktfDAwR4qKOoQSCYwykmCVHAv7hAjUSoiEfWIErL9EwygjOSdBmS5UxXt9c9yzdMaNmq64aNsE4jy1FKe0kC0t3f80FKbaaljWzREqdFOIEEJIOUWJRUIIyYeqKBuaebpMAqgcicX27WVNaMTinFCvcB/MBjDy9c2Ck4oAkJYGjBkDPHtWsWtOVnQiEXD4MDPE4+OIY0vO3e2MNDnjpHjw+Tws6eKIJV1ktaiuvItGt12ejH3+cB+MIe/uMjrYdg16jtahvlh9W7dKJhajkzPx191ARCZl4N/n4RBIxOjy6TnG+l5Dj49PGQ055H3W1EP/nr/hoWVdLBbQc1FVMrB+dQysXx38WeeZG3g8LGwxDDEaeqxl0QBgmJGChU+OYOGTI4W6npjHxzGHFljbpB9ecMwszA9PKoF2VgYyhCrIFnDXurU10sSlcU3hYKINAJjRkkpXEEIIKf8osUgIIXKk0twZXXpZqewdKkNiUV8faNoUeJRbw8wh8iPmPz6CeZ7sGR7Q0JDNcjwr1331+XPAy0t2LlI27t4FPjNnxV21bogYTX3WrjpqQnRzNCulgREAaG9vzIqF6xhjY4MemP30FCO+8t5+NLd0RlqWCJqqVectmlQqRZedT/AyIgma2RmY8/wCpr68AIuU+AKPfWLugIE95iBM1wSrPaiDY1Wlqy5EUga7w/LGhj3xSc8Me6+sh1FG8nefP1MgxD6nDljbuA8CDap/1zmkPD6S1bhv7DSvaYA9g+rDwUQLPLpRRwghpIKhOfWEECIn70pRVkdooHIkFgFWnUUAWPzoP6iJmR/O4tR1gKdPgTNngEWL2OfZs6eEBkiUcuoUK/RfndasmJmOGq5OaAYd9aqTsCoPVAR8pCzvyoqvdOuPBDVmDcCmUQHo9/4xrvjHlNbwygX/mBS8DP+C8a+u4MOuCVjx4ECBScVILQOM7jwDLQavRpiuCQ4NqY+2VtTYoqpqYqWvcNsFOze4jtiA6zUKX7YjSVUDq5v0g824XZjUcfJ3JxXzk7qiGx5O80BtU21KKhJCCKmQKLFICCFydnnmdkvW4yrwXlkSiwMHypZD5yObL8CAnnMQYfl1ydf06YAqs4g+Dh8GUjkSsKTkSSTA6dOMUKZAiAu2TRixlOVdEbmoE5rVpBldZYFr9mGiujZWuvVnxZc+OIhBez0ZM6cru4SPobh46k9sv74F1dIS893Xs5oDJnScAvux27HfuT2kXxvhDHAxL4WRkvJqRbc6+W6P0DFC5/6L0emHP3HHUnEn229emthgSvufUGPCHsxtNQpR2sXbOGV6Sxss7+aIyEWdoKGS/+swIYQQUt7RtAVCCJEz6aRvztf6GSnsHSpLYtHREVi6FPjtN4W7TG83AXdquMByyXVELuoEM0NDoG9f4OjR3J2Sk4GTJ4ERI0ph0IThyRMgktnM4nrN+qzldupC+uBaHm1s0APTXlyAZUpcTswxIRxjXl9Hpx1muDi2KVQEPLyJSkZUcibcrQ0q1RLpl+FfsPXvI1iydQ5M078o3C9OXQf/1m2D3c4d8drEmrX9+Ahq2FLVNbLUw44BLlh7JxC6akKY66rj/FtmiQjweLhh3QA3rBugVkIEWoT7wS0qAEbpScgQqiJZVQNe1Rxwz9IJwXolUzJCQ4WPf3o7Y3yzmiVyfkIIIaQsVJ53p4QQUgI4azJVlsQiAMydK2vgMn8+I/xFVROzWo/BbpdOubtefIu9PzYAxo5lJhYBYPduSiyWBY5l0Kfs3VkxPp+W15W1JV1qY8EVf0YsQ0UNf7gPxq5rmxjxRY+OwKFOG2x9bIbQxHT8ffcjAMDeWAt3J7ujmq56qY27pEgkUqz830bsPr4UWqJMzn0em9fGhoY9caZWM2QKVTn3cTLTQefapiU5VFIB8Hg8jGtaE+Oa5ibsvMMS8T4mFa1sjTD/yjvsexoKAGhlawgtVVPsf1cd+53bl9oY29UyxulRTagcBSGEkEqHXtkIISQfpmkcs2hMK9mH2HnzAAMDYPZsIDsbB2q1wNyWI1lLv/Y/C5MlFtu3B2rUAEJCcjfeuwdERADVi7/+FFFAKpXNFM1DxOPjnJ0bIza/g31pjoooMNndGs9CE3H2DXMW1X6n9pj57CzqxofmxKqnxmPG83P4RYWZQHwfm4oD3mGY3bZWqYy5pATEpGDuuOU4emE1VCRi1vYP+tUws8042ZJ+BTXnujmaYmQTK3RzNIWWmhAiEbtxB6naGlnqo5GlPgBgz6D6WNjRASKJFHZGmuDxeJBIpJACEPB5cP3rDnwjv7+5CyBLHA5vZInRR19ybp/Z2paSioQQQiolqrFICCF5vI5MYjw246r3VdkSiwAweTLw5QuQmIhRXX9RWE8qPi0L4PO5ZyfeulXCgyQML18CQUGM0B2reojX0GXEFndxLL0xEYUMNFVxerQbhHKzR8V8AX5vOZy1/2yvUzBKS2LFl998X2JjLA3p2WJMnLoBhy+u4Uwq7nVqj4bD/8EFOzeFSUUtVQFOjWqCAa7VoaVGiRqiHGtDTdQyzu26zOfzIPj693hoSEMYa3HPilXWaDcrjGxihVa27NfPZV0d0dWxEr53IIQQQkCJRUIIYVhw5R3jsVlqInsns5KpvVTmBAJAI/+uqjlJja7sLre4ebMEBkUUOneOFTpt37wMBkIKQ8LRlOWcXVM8rM5MAOtlpWGe5zHWvkkZIiSkZUEiKb/NXTKyxXgfk4KEtCxG/GlIIpqP3YwzZ5axus8DwM9tx2FslxlIUdVkbcvrn97OUBXSW1hSfJzNdRE0rz3+HdKAc7uLuS429a2n8HgLPXV0ryN7b3DzJ3f0cpJ9raMmRPKyrvitvT11fCaEEFJp0W1eQgjJQ1XA/LBqyjVj0cSkdAZTRo4Nb4SBB705t/199yPW9nQCmjQBtLWBlDzNbW7ckC3PpQ9PpSLrzDnIz685a9eU8XhKC+tSGw9RjqaqACmZcjP1eDzMaTUKD47MZYQnv7yEDQ17IEivGiNutPAqjDRVcHBIQ3QpZ7OgQhLS0GvPU7yKTIKBhgoOD2uITrVNIRJLMHrTNVw8sxR6WWmMY8Q8PkZ1mYFDddvme+6zo5ugla0R9DRUSvJbIFWUpqoQPeqybxwOa2iBA0MaAgCikjOw9EburGEPG0O0sTPCGLca0P/6eyng83BmtBvrPIQQQkhlRbd7CSEkj+OvmB12WTUWDQ0Blcr9obaVrVG+2x9+ipf9G7RuzdwQFga8r9jLNCuMiAiovnzOCD03tUWEDvNnN6OlbWmOiihhbjvumpePLOrijFxiWFUiwuKHhzj3j0vLRrddnkjJLB+1BbPFEjwNScTSG+/x6mtJiYT0bHTZ6Ylxx3wwaO8TrD+6DDWTY1jHTuowqcCkYuzizujpVI2SiqRE6aqrYKBrbq1gIZ+HMW41ch7/2bk2jg1vhGVdHeH9Syvcm9ICi7s4wtow/1m2hBBCSGVGiUVCCMkHq8ZiZV0GnYeBZv4f3FtufogskUTWxEUeLYcuHRcusEO2zBky5rpqqGWsVVojIkoaXN9CYS23eS2HQ8xjvjUb5ncX9T8HKjyf7rzL8PtctKYTRRWSkAb9+ZfRdMN97PIMYW3f4xWCZtvXon3IK9a2he5DsMulc77nz1jZHYaaRat/R4iy9g+uj60/1MP/2tjh7mR3tKllnLONx+Ohv2t1/NbeHg0s9MpwlIQQQkj5QYlFQgj5KlMktzxRKq2SiUUVAR9uVvr57nPkZTglFsuQ5Px5Vuy8XRPG420/uJTWcEgh2Bhp4umMlvi7lxMODG6An5rXzNnmZ1QDe507sI7ZeGs7eFKJwnM6rbmD6ORMjDr8As033MeKm+8hEivev7itv/8J6dmKrzfA/wH+9+w0K/6fYyssbTYo33P/2tqO6imSUqUmFGBic2us6lEXza25G5kRQgghJBe9UyOEkK9EYmYzBJ2sdGiImM0HqkJiEQAeTfPId/uoIy+R6ViHXW/y9m1AUnoJjSopPR1ZV68zQhFahnhuZseIcdUKI+VDTUNN/NzKFsMaWWJeB+bS6D+aD0aakDk7r0XEO0x4dTXfc1b78xoOeIfBMyQR8y6/w96nocUy1oxsMR58ikNUUobCfdbd+6hwm1NsMHZf3cCK+5hYY0KnqfnWZF3W1REru9cp3IAJIYQQQkiposQiIYR8JZLrssrZuMW0fDVKKCl8fsENWM6+jQHatWMG4+OBV+zljqT4BB8/D/XsTEbsom1jSOWW0FIH0orBQk8Dv7WvlfM4QscIa5r0Y+238t5+mKfEKX3eiSdeod6aO3jwSflj5AXGpsJh5S202vwI1Rdfx+6vy5w/J2di7Z1AuG98gFabHyo8Xi8jBafOLod2NjMpmaCmhR96/YY0FXWFx/Z3Mcdv7e0hUOK5iBBCCCGElB1KLBJCyFfZcjPtWMuggSozY1EZP/7rzU4sAsCTJ6U/mCok/NBxVuyCbROOPUlF8UsrZpOdlW794W9gwYjpZaVhz5UN4EvkSjbk483nZLTa/Ah3PsRCLJEiO8/y6MikDNz+EIvwL+ms41IzRfCNTMJfdwMR9iU3KTj34lvcfB8D8z+vYfaFt3gSnIAHn+I5r82TSnDw8t+wT2Q2xJKAh6HdZ+Gjvnm+Y/+xgUW+2wkhhBBCSPkgLOsBEEJIeXH5XTTjcVVPLDqZ6eBNQU0hmjdnx7y8gJ9+KplBVXFSsRjWD28xYulCVdyoWZ8Rs6EOpRWKsZYaprSwxuaHQQCATKEqJnacgjvHfmfs1zn4BRY9PoJFLYYW6vzttj0GADjEh+GnjE/oK4jHuye+SAMf9zS00KxdE9gM6gW4ueGCfywGHniGDBG7pEFcWjYmnlBuRvLCx0fQ4+MzVnxRiyG4YtOowOM72psUuA8hhBBCCCl7lFgkhJCvRh5+yXhslprI3qkKJRZ3DHBBi02KlzkCAOrWBbS0gNTU3JinZ8kOrApb988JzExlzhC7UcMV6SpqjNjuga6lOSxSDNb1ckJtE21MP/MaAHDPyhm7nTti7GtmPc0FT47ipakNTtu7K3Ve3cxUjHl9A8Pf3EKDmE858Zp5d/K9CaxfiWQdfbyq2xG6DXogQ8uA83wf49IKvOawt7ex6PERVvyMXVMsbzqgwON/rF8dOur0FpUQQgghpCKgpdCEEAJAIldfEQBM076wd6wiNRYBKNcNUyAAGjdmxvz8gKSkkhlUFSaWSJFy4gwrfkGuG/QvrWzR0taolEZFiotQwMdUDxskLOmCzrVls/V+bjsObw2tWPsePb8aw97ezvd8lkkxWHNnD0J2jMHfd3YzkoqK6CQn4nfP4wjaOQ5r7+yGXkZKob+PTkHPOZu1+BtYYGTXX1i1QL9pWkMfY9xqYEMfZxwY3KDQ1yWEEEIIIWWDbgcTQgiAxIxsVqyqL4VWmpsbcPdu7mOpFHj2jLv+Ivlu1/yj0eOjFyv+rb5iB3tjXBrXFEIB3TOsyPQ0VHBxbFNEp2TCPyYFPyT/Bq9Dv0InO7cWolAqwYHL69A84h0WN/8Rn7/OLhRIxGgb8goj3t7CIP8HUClEPca81MXZmOl9FsPf3saCFsOwq15HSPiCAo/r9vEpjp5fzbpusooG+vX+Dclq7CX6f3SqjcENqsPeRPu7xkoIIYQQQsoWJRYJIQRAejb7AzhnV2hKLDKkZoqg1bQpe4OnJyUWi9mD+6+wLPojI/bUrBYitWWzE3cMcKWkYiXB5/NQTVcd1XTVsWh6L4yKD8Hxc6vAB3Nm9SSfy5jkcxlvjKyQxRfC9stn6GUVvFRZWSbpSdh2Ywsmv7yI2a1H41rNBgBXt3GpFD/5XMaGWzsglDJrM2bzBejfay78jGqwDktd0Q0aKgUnLAkhhBBCSPlFiUVCCAFwNzCOFWPVWNTRATQ0SmdA5URHB2NcD4hVuH3d/Y+YryixSIpVnad3WLELdm45X1tTw5ZK6ccGFnDd8TuGikU4cHkd5yxEp7hQpc7lY2KNw46tcdW6Ad4ZWkLEF6BaagLah/hgiN9ddAp+yXmcS2wwrpz8A0/MHbCpQQ9csmmMRHVtCMUiuEe8w5+PDqF12BvOY8d0no7r1uylzZv71aOkIiGEEEJIJUCJRUIIAbD1URArZpouV2OxCtVX/Gb3wPqosfSGwu0Lr/hjQL02qG1uDkRG5m7w9JQtieaa3UQKzXbZDWy6eZUVP/c1sdjHuVppD4mUojpmOjh8YQ2ura8H9/9NhHZ2RqGOP2frhr+a9MF9CyfW32S4jjEOOLXHAaf2cI3+iKUP/kX3T+xuzgDQLDIAzSL/hpjHR6KaFnSy0qEqESm87vS2E3Cobtucx5Z66rg6oRmq66pDT0OlUN8DIYQQQggpn2jNFCGEAHgYlMCKsWYsVsFl0Jb6GhjVmN08Iq86a+4A8rMWo6KAsLCSG1gVERCTAv6s84j5HI92Ia8Y20J0jOFjYgMA+LG+RVkMj5SyTjNGwP/6A/i17lrgvmlCVex27oi6ozajT9/5uG/pXGCi38fUFj37LUTXfovgZ2ipcD+BVAKjjGSFScVMgRA/dv8fNjXskRMb36wGnkxviTpmOpRUJIQQQgipRGjGIiGEcFATZbFrlVXBxCIALOzkgH3PClhq2bQpcOYMM+blBVjln5QkiqVmiuC4Stb5t2PwS6iLmQ2GLto2yUkUdXQwLvXxkbLRqHUj4M4lbFl/DOL9B1E/+iPqxoWCByk+6ZohwKA6Lti54ZydG1JVv690w1WbRnCt4YpJPpex8PERGGUkK31ssI4JRnT7RZbIBGCoqYL3c9vBQFP1u8ZCCCGEEELKN0osEkIIB+oIncvaUBNDG1rg0PNwhfu0fy7CTfmgtzfwww8lOrbKKD1bjMvvotF/f+5y1J6B7G7Q35ZB7xjgQkmbKqjDkG5oHquLhHR2R/viIBIIsbFhT+x1bo9JLy/jF++zqMb1vPhVhkAFa5v0xQq3AUhXUcOP9avD1kgLY91q0O8nIYQQQkglRolFQgjhYJr2hSNY9WosfnNgcIN8E4vPTe3YwWfcddqIYmlZInTY/gRPgnOX5vOkEnSTq3mXoqKOO1b18OznlmhoqV/KoyTlgYOJNp793Aq/X/bD0ZcRJXadFFVNrHH7AX837oMW4X7o8fEp6sUEQSs7A0KpGP4GFrhu3QBXrBsiXkM357j/hjUqsTERQgghhJDygxKLhJAqTyyRsmKs+opAlZ2xCAA8Hg/hCzvCYvF1zu1f1LXxXt8c9ol5Grh4e1MDl0K6+T6WkVQEALfIAJjJJbqvWjdAplCVkopVnI2RJg4Pa4SlXRxx430MHE214WFjhNjULKgIeOi20xNeoYnFci0xX4B7Vs64Z+XMiBtoqEDA5yE+NSsnNtqNSiAQQgghhFQVlFgkhFR5k0+9YsXM0tjNXKpyYhEAzHXVMcndmrODNgB4m9ViJhbj44GgIMDGplTGVxlsexzMivUO9GTFLti6YUgDathCZOyMtWBnrJXz2ExHDQDwZEZLXHz7Gatvf4CVvgbmdbCHjaEmFl31x5o7gazzhMzvgD+uBeCgdyiyxewbLrVNtLCpXz20sjVCtliC4IR0mGqrgc8DJp30xePgeLS0McK6Xk4l980SQgghhJByhRKLhJAqb+eTEFbMOimavaO5eSmMpnyb0dIm38Tij/735YLelFgshMvv5H7vpFIM8H/ICEnAQ0CTlrg9qH7pDYxUWN3rmqF7XeZNkVU96qKVrRGG/vccSRkiuJjr4tK4pqiup45dA12xa6Ar/vUOw4jDLxjHbfnBBW1ryRoFqQj4qGOmk7PtyHBa+kwIIYQQUhVRYpEQUqVlisSc8VoJkRzBWiU8mvLPPs+sKHneZgrqLPbvX4IjqjxCE9NZMbeoANh9iWLE7lk64eESaopDiqZ7XTN8/L094lKzUNNAE6pCPmP7sEaWiEnNxB9XA5AtlmCahw3a2BmV0WgJIYQQQkh5RYlFQkiV9vZzCmfcPkGuGYKuLmBiUgojKt94PB5q6GsghCMJ9pwrsejtXQqjqvguvv2MnnvYnZ8Hv7vHih1xbIU2pTAmUvkZaqrCMJ+Ozb+0ssO0FjYQS6VQEwpKcWSEEEIIIaSi4Be8CyGEVF5vPyezg1IpaifKJRYdHKgJyVcjGltyxpPUtBBgUJ0Z/NbAhSjkG5nEmVTkS8QY6P+AEcvmCzB13azSGhohEAr4lFQkhBBCCCEKUWKREFKl8TmShWZpidDOkpuRZ29fSiMq/wbVV9w0xNtUbtZiQgLw6VMJj6hiW3nrA2e8TehrmKcymwiltWkHZ2eqWUkIIYQQQggpHyixSAip0g4+C2XFWMugAUos5lHXTBstrA04t3lX46hDScuhWbLFEnxOzsQ1/2gcfhHOuc9QvzusmN7oESU8MkIIIYQQQghRHtVYJIRUWVKpFFf8Y1jxcQYZ7J0dHEphRBUDj8fD/akeGHn4BQ56hzG2eZtxJBafPQMGDCil0ZV/V95Fo9suz3z3MUxPYnXYlqirg9+7d0kOjRBCCCGEEEIKhWYsEkKqLPmk2DdNM2PZQZqxyLJ/cANW7Ln8UmgAD09ex993AyGlWouQSqUFJhUBYJzvdWiIshgx3g8/ADo6JTU0QgghhBBCCCk0SiwSQqqsUUdecsarR7OXR1NikduaHnUZj5PVNOFvwKzBWDcsALPOvcGmh0GlOLJSJpUCDx8Cs2YBPXoA7u7A6NHA7duARJKzm5+CLuR5CSRiTH55kRXnTZ9erEMmhBBCCCGEkKKixCIhhMjRDv7IDBgbAwbcNQWrup9b2bJiz+SWQxtkpsL2SxQ2PqikTVzS04FRowAPD+Cvv4CLF4HHj4F9+4B27YC6dYG7dyESSzDxhE+Bp+vz4QlqJMvNmm3WDHBzK5HhE0IIIYQQQsj3osQiIaRKEku4l+XypBLwPsh16aXZigoJ+DxkrurOiD03Yy+HbvQ5EB9iU0trWKUnPFyWUDxwQPE+/v6QtmuHfX0m4vFHjmX2efAlYvzmeZy9gWYrEkIIIYQQQsohSiwSQqqkE684Oj8DsEiOAzLkmrdQ45Z8qQiYLyXPODpDN456X1rDKT2ZmbJlz8+fF7grTyLBuAu7cOrsCmhmczQH+mqSz2U0jJabMVu9OtC/f1FHSwghhBBCCCHFjhKLhJDKLTkZWL0a+O034NgxIEbWBfqnE684d7/fyYQdpBmLBfKb3Tbn6xemtpCAx9jeMDoQAJAlkqBYZGUBW7YAw4eDv3AhdB8+BE8+IVzSFiwAXr4s1CG9Pnrh9tHfYZaawNpmlpqApQ/+ZR80cyagovKdgySEEEIIIYSQkiMs6wEQQkiJCQ8H2rQB8i5t5vOBqVORwWsFCFVZh9SMDWefhxKLBaptqp3zdYqqJgIMqsMxIfffstHnQEAqhfrci9g10BVj3Gp8/8VevwZGjABevAAgu0NmDyDLzAxBCxYArq7ff25l3b4NrF3Ljn9bFm1sDPGevcic9T9oynV3bvL5A7wP/oIh3WfhnpUzAEA7Kw3/XvoLellpzPPVrQtMm1ZS3wUhhBBCCCGEFAnNWCSEVE6RkUDbtsykIiDr0LthA3Zc2yTr5JuHnroQePaMfS5KLCrlyvimOV/LL4fWz0yFXWIkAGDcMR9MPvkKSRnZhb/IxYtAo0Y5ScW8VD9/Rq1ffwUePCj8eQsjIwMYM4b1+wN3d+DWLcDGBnc+Z0Il1AZuQ//GO7ku2QBQPTUet47Nw9HzK7Hi3n683jcV7UM4ZtFu3QqoshPghBBCCCGEEFIeUGKREFL5ZGUBXbsC7xXX9RvudwfzPI8xYu1s9IHz55k7amoCdeqUwCArn44OJujlZAYAeG7GrrPY6HNgztfbHgdDf/4VLL0RoPwFwsOBoUNlP18F+JmZEPTtC/j6Kn/ewtq5EwgKYsa0tYGDBxGaKkK1P66i3bbHAIC3xjXgPmQN7lg6s8cKKQYEPMKcpyfZXaAB2azMVq1K4BsghBBCCCGEkOJBiUVCSOXz77+Aj0+Buy15eAg9Ar1yHruG+QPR0cydOnUC1NWLe4SVEo/Hw5nRbtjSrx6ecSQW3aLYScSFV/wRFJ/GirNIpcDEicCXLwWPIzERGDAg3wTkd0tLA5YvZ4Wjl6zCSzUjtN78ENEpzOsmqmujyw9/Yp9TO+WvU78+sH59EQdLCCGEEEIIISWLEouEkMpFKgU2bmTH+XzOBOGOa5tglJYEABgRztHdt3fv4h5hpfeTuzVqtnWHmMd8iXGP8OPcf9BBb/x5zR9jjr7EJb/P3Cc9eFC2DFrejBmQjBnDjvv7A9u2FXboBduyBYiKYoSibGrDPNQCDdfdQ1BCOudhWUIVjOk8A2M6T0caR21PhnbtgLt3AX39Yho0IYQQQgghhJQMSiwSQiqXx4/ZnXrt7GR18Z4+hVRHh7GpWloiNt2UJaBq3r/OPI7PB7p3L8HBVl5DWzvipYkNI9bocyA0sjNZ+z4NTcSf1wKw72koeu7xwlV/uVmjKSnAr7+yLzJxIvDPP5Bs346IcePY2//4A4iPL8J3ISc1FdJVq1jhn1x+gJSnxMspj4d9zh3QYPh67K/bFlItLeZ2DQ1g1izg0iVAV7eYBk0IIYQQQgghJYcSi4SQymXTJnZsyhRARQVwdsbTP/5mbR4U8ABX/Y6C9+4dc4O7O2BiUkIDrdw6OpjggWVdRkxFIuZcDp2XVAp03ekJ+xU3ce1bgnHnTiBWrgZhjRrA6tU5DyPHj0eafJOdhARg6dLv/h5YDhwAT24cT81q4ZxdUwUHcHtvaIEPf20BLypKVtPz4EFZ06CEBGDNGkBNrfjGTAghhBBCCCEliBKLhJDKIzISOH6cGdPUBEaPznnYLMIM/zmyG2J0vHSIfT5aBv3dBHweJs4ayop7hL9V6vjAuDR02emJsM+JwNq17B02b2bO6hMIEPbzz+z9Nm0CwsKUG7QCUqkU6+8F4v3CFaxtf7gPAXi8Qp3PyUwHU1vYyBq+9OgBDBsm63RNCUVCCCGEEEJIBUOJRUJI5XH0KCASMWPDh+fUqnsSnAAAmN5uAiK1DAo+X69exTzAqkW9DTuB6xGmXGLxmyXD5wEREcxgo0acS9STmzZFoocHM5idXeQmKBNPvMKlDYdgHxvKiL81tMJlm0aFOpeNoSZe/toaZjqURCSEEEIIIYRUfJRYJIRUHpcvs2OTJuV86b7xAQAgXkMXw7vORIZARfG5mjUDHByKe4RVi7m5rL5lHu4R7yCQiJU6XCARY7bXKVZ8V/thyBBJOI8JnzqVHdy+HUhMVOqaYokUUqkUn+LSUO2Pq+DPOo9dniGY/vw8a9+NDXsUerbig6ktIOAX7hhCCCGEEEIIKa8osUgIqRzS0mSddPOysQFcXAAAoYnMbr23arqiW79FSFbRYJ+raVPg2LGSGmnVIjeDUCc7HfVigpQ6tGegF+y+MDsw+xlaYqLIBodfhHMek1GrFiTysxmTkwvsEB2floUxR15C5/dLEPzvAuxW3ER0ShYAwD4+HN0/PWPsn6CmhYN12yr1fQDArZ+aQ7K2J8x12Z3JCSGEEEIIIaSiosQiIaRyuHMHyJTrONylS86MstO+kexDarig3cClSLeqKQvo6wMbNwIPHwJWViU73qqiZUtWaItZklKHTn1xgRVb5SbrwDz2mA+0fruIt1HJOPvmM3xispCUJcHr2Cxk/PwL6zjRun+AjAykZYlw+0MsfCK+IC1LhO2Pg6A25wKMF17FvmehnDMhp768yIrtqtcJaSoFJwmdq+ng/pQWaFPLWKnvmRBCCCGEEEIqEmFZD4AQQorFlSvsWNeuOV8e9OZu4OFdzR4a7/2BwEDA1hZQpxllxUq+5iGAZoEvMKBvNxx/xU72fuMcE4R2ob6MWJSmPo7Uzq3bmJ4tgfPaO6xjR0ul+ODgAtuAVzkxYfRnjO/1P+x26VSo4etmpmLU65uMmJjHx+YG7BqPeR0e1hADXauDV8il0oQQQgghhBBSkdCMRUJI5SCfWFRRAdrmLlX1DvvCeVgLawNZN966dSmpWBIcHAAzM2bs2jVs7W4PF3Nd7mPAPUtwh0sXZAnzqYv5DY+HXx17sMKznp0GT8pdm1GR0a9vQCebuYz+TK2mCNE15dzf3lgL4jU9MKi+BSUVCSGEEEIIIZUeJRYJIRVfYCDw/j0z1rIloK0NAJBKpQoPnd+RGrSUKB4P6NmTGUtLg+Gje3j+SyvsHujKOsQgPRnD3t5mxLL5Amx37az0Zc/VcoO/gQUjVjshHL0/eCp9Dr5EjKkv2AnODQ17cuwNzGhpA7/ZbSmhSAghhBBCCKkyKLFICKn4rl5lx/Isg552+rXCQzs5mJTEiEhevXuzY2fOgM/nYbRbDWSv7oEvS3N/Xj+9ugxNURZj9+MOLRCpbaT0JaU8PtY27suKz356Esgn0ZxX94/PWM1jXpjY4L6FE2vfnQNcsa63M/jU8ZkQQgghhBBShVBikRBS8d27x451ls1uy8gWY8ujIM7D/tfGjmaXlYb27QEtLWbs3DlALAYACPg86KgLcW1CM+hIRZj2nN20ZVMD9tLmghys2xaRWgaMWLPIAHiEvy34YKkUc7xOssIbGvbKaQgEAO1qGWNbfxeMbVqj0OMjhBBCCCGEkIqOEouEkIrv8WPmYyMjwNkZAHD0ZYTCw5Z0cSzJUZFvNDRkHbrzio0FHj1ihDo4mMDXLBTV0hIZ8QfV6+BJ9cL/rLKEKljfsBcrPvspO2EozyP8Ldwj3zFinzX1cMSxJRZ0dIB4TQ9I1vbEjZ+aY0KzmoUeGyGEEEIIIYRUBpRYJIRUbBERQEgIM9asGcDjIVssweijLxUeqiqkp8BS06cPO3bqFPOxRIIauzezdlvbhL2kWVnbXTojSVWDEevx8RmcYoPzPY5rtqLJ/DlI+qsv/uxcm2a6EkIIIYQQQggosUgIqeiePGHHmjcHAMw890bhYXsG1S+hARFO3bsDAgEztmcPEB+f+/jgQSAggLFLsrUdYtt2RgtrAyzr6ghzXbVCXfaLuja2u3RhxX99dlrhMS7Rn9D90zNmUFcX/MmToSKgl01CCCGEEEII+YY+IRFCKjb5ZdCAbMYigM0PgxQe5mKuU0IDIpwMDIBOnZixpCRg9WrZ17GxwK+/sg7TmTcXD2a0wv2pHvitvT3CF3ZC9J+dsKRLbcxsbYvL45vCREs130uvb9gLWXwhIzbU7y6skmJY++qpCbD/6UH2SSZNAvT08v8eCSGEEEIIIaSKERa8CyGElGPyiUU+H3Bzw1X/6HwPczTVLsFBEU6//w5cvsyMbdgA/PwzMHcuEBfH3GZtDQwbxjqNsZYa5nVwyHkcvqA99l73QnyGBNoqPDxL1kBihghDG1qivb0xJFIgMuYqap4+knOMikSMzTe3oVef+QCPh7Z2Rrgwrik0ThwDlsvNVlRTA2bMKOI3TwghhBBCCCGVDyUWCSEVV1YW4O3NjDk7Azo62PrIT+Fhs9vWgqYqPf2VOg8PWROXK1dyY+npgLk59/5btgDq6kqduqFp7hLpiV1cIBQyf75GyxYCeRKLANDj41MEVA+D0aRxMNBUBb58AWbOZJ/8558Vj5EQQgghhBBCqjBaCk0Iqbh8fICMDGbsa33Fc28+KzxsZfc6JTkqkp+lS5Xbb9AgoGvX4rtunTrA+PGscK0lv8Pg1XMgMRHo1g2IimLuYGUFLFhQfOMghBBCCCGEkEqEEouEkIpLQX3Fm+/ZtfO+2fpDvRIcEClQo0ZA//7576OvD/zzT/Ffe+1aoEYNZuzLF1ky2sAAePSIfcz69YCWVvGPhRBCCCGEEEIqAUosEkIqLo6O0N5Wjui4naNT9FcTm1uX4ICIUnbuBNzcuLeZmQEXLgDVqhX/dXV1gd27ld+/Rw+gT5/iHwchhBBCCCGEVBKUWCSEVFzyMxYNDNDpdoLC3SMWdizhARGl6OsDDx8CmzbJZgp+M3Ys4OcHtGhRctfu0AGYM6fg/dzdgYMHAR6v5MZCCCGEEEIIIRUcJRYJIRVTVBQQFMQIiZs2RUKGSOEhxlqqJTwoojShEJgyBQgLA27fBsLDgV27mInGkrJiBbB5s6zbM5eOHYFr12QJUEIIIYQQQgghClFikRBSMXHUV3xYrXa+hwgF9JRX7mhqAm3aANWrl941eTxg8mTA0xNo1QrQ1gZq1pR1rV66FDh/nuoqEkIIIYQQQogShGU9AEII+S4c9RWXpBgBRty70zJowuLqCty9W9ajIIQQQgghhJAKi6bvEEIqJrkZixLw4FXNQeHu1XTVS3pEhBBCCCGEEEJIlUKJRUJIxZOdDTx7xgi9Ma6BZDVNzt3fzWlbGqMihBBCCCGEEEKqFEosEkIqnlevgPR0RuiJOXd9xaY19OFgol0aoyKEEEIIIYQQQqoUSiwSQioejsYtihKLV8Y3K+nREEIIIYQQQgghVRI1byGEVDwcicXH1R1ZMcnanqUxGkIIIYQQQgghpEqiGYuEkIpHriN0gpoW/A0tGLElXbhnMBJCCCGEEEIIIaR4UGKREFKxREcDHz8yQp7mDpDymE9nA1yrl+aoCCGEEEIIIYSQKocSi4SQioWzviJzGbSOmpAathBCCCGEEEIIISWMEouEkArlwp6zrJh8fcWwBR1LaziEEEIIIYQQQkiVRYlFQkiFsfnhJ2g/f8qKe1Wzz/n6+sRm0FGnvlSEEEIIIYQQQkhJo0/fhJAK4V10Mn4+6YPEqPeM+BsjK3xRly17jv6zE4y11MpieIQQQgghhBBCSJVDiUVCSPGSSoGnT4HPnwEXF6BGDYDHK9Ipfz77Ghvuf0KDmCBoiTIZ277VV9z6Qz1KKhJCCCGEEEIIIaWIEouEkOITGAj89BNw40ZuzMoKmDULmDIFEAgKdTqJRArh7As5j5tF+rP2eVy9NgBgYnPr7xoyIYQQQgghhBBCvg/VWCSEFI9//wXq1WMmFQEgNBSYMUOWcJRKC3XK/c9CGY+bRbxj7fPE3BE3f2pe6OESQgghhBBCCCGkaGjGIiGk6B48AEaOBCQSxfvs2gVoawN//13g0uiMbDE0f7vEirvLJRaT1LVwbd1oVDfQ/K5hE0IIIYQQQggh5PvRjEVCSNF8+QIMH55/UvGbf/4Btm8vcDeupGKNpGjYfYlixHRbtaCkIiGEEEIIIYQQUkYosUgIKZpp04CgIHZcX597/99+A6KjOTdFJmWAP+s857Z2Ia84gu2UGyMhhBBCCCGEEEKKHSUWCSHf7/Zt4OBBdnzbNiAhAXj3DjA1ZW5LTAR+/50Rkkql4M86D4vF1xVeqi0lFgkhhBBCCCGEkHKFEouEkO8jlQJ//MGO9+oFTJgg+7p2beDoUfY+u3dD6umJTJEYa25/gOB/F9j7yF2rvXxiUU8PaNjwu4ZOCCGEEEIIIYSQoqPEIiHk+9y5A9y7x4wZGAA7dzKbs7RpA/z4I+vwh/1GQ2PORcy56FfgpWrHh6N6ajwz2KYNIBAUetiEEEIIIYQQQggpHpRYJIQUnqLZijNnspc+A8CaNZBqaTFCHhF+aB/io9Tl/quWwA7SMmhCCCGEEEIIIaRMUWKREFJ49+5xz1acNo1z93AdI6xzH8iKL3p0WJakVGCahw1Eq3ugQYA3e2P79oUaMiGEEEIIIYQQQoqXsKwHQAgpJjExwKVLQHw8YGcHdOgAaGqWzLX+/psd++UXWd3DPDKyxfCJSELzjQ+g7dgZI++fgFFGcs72b7MWb9aszzpdwNx2qGWsBWRny5rE5GVmBtStWxzfCSGEEEIIIYQQQr4TJRYJqejevZMtQb56FZBIcuMaGsDw4cCqVYC+fvFdLzAQOH+eGdPVBaZPz3mYnCFC771euBMYlxNLUdXEX437YPkDZhfpRY8O42YN15y6jF0dTXF6VBOoCr9OqL5+XdZhOq927Zh1HAkhhBBCCCGEEFLqKLFISEV2/76sC3NiIntbejqwYwfw+DFw+TJgYVE819y4kb18edw4pKpr4U1IAppteKDw0E0NuuPXZ2dYsxY7BL/EszpuiF/ShX3Qf/+xY/36fe/oCSGEEEIIIYQQUkyoxiIhFdWFC0CnTtxJxbx8fYHmzYGAgKJfMykJ2LOHEZLy+bBNcoTOvMv5JhWB3FmL8o5/uoD4xZ3ZB6SmAmfOMGM6OkD37oUcOCGEEEIIIYQQQoobJRYJKarPn4Hjx4F//pH9Pz6+5K/55g0wcCCQkaHc/qGhQO/eQEpK0a67bx+QnMwInbF1Q5BeNaVPsalBd8Sp6zBies+fAjdusHc+f16WXMyrXz/ZMm9CCCGEEEIIIYSUKUoskootJgZ69+5B98EDCJKSSvfar14BrVsD1arJkny//CL7v4kJ0KUL4OdXMtdNS5NdJz2dva1/f2DpUqBxY/a2d++AqVOVvoxUKkVQfBpuvY/FzifBEM48gw+LVrD229CwZ2FGj2Gt6yBx8nT2hvnzmTUiAe5l0EOHFup6hBBCCCGEEEIIKRlUY5FUXB8/QtCmDWqFhgIApDwe0KwZsGwZ0LZtyV1XKgW2bAF+/RXIzGRvl0hkjVSaNAF27gQGDy7e60+fDrx9y4zxeMCmTcDkybLHs2cDEybIZhjmtX+/7N9m5EjOU6dlibD/WRimnPJlbevxyRu1EqMYsZcmNrhr6azUsO9OdkdLWyPZg042wL6tzNmdXl6yf9dvyc83b2S1IfMyMyvZny0hhBBCCCGEEEKURonFEhAYGIgjR47A09MTYWFhEIlEMDU1hYODA3r27ImOHTtCKKR/+iI7fBi8r0lFAOBJpbJGJe3by5J+S5cCamrFe02pFJg2Ddi8ueB9U1OBIUNkMxcXLy6e61++DOzezY4vXpybVAQAFRXZfhERwLVrzH2nTUNSi9YI1zGCZ0gixhx9qdSlpz8/z4ptaNizwO7MF8a6oVsdM2ZQRwf43/+A335jxufOldVPtLaWfT8iEXP7wIEA/e0QQgghhBBCCCHlAn1CL2YbN27Etm3bIJJLiISGhiI0NBQ3b96Es7Mz1qxZA1tb2zIaZSWhKGkolQJr1wJPnsgScdraxXfNJUuUSyrKH2NmBkyZUrRrp6YCkyax4+3asRN0ABIzxQhcvhE2Xi1gmBibuyE5Gbe7DELf3vMKTAp+4xQbjA4hPoxYtIYeDju2Yu17bUIzNLbSh76GSv4n/fln2YxKf//cWGqqrBakhQVw7x5zfxWVQi3lJoQQQgghhBBCSMmixGIxWrp0KQ4ePJjzWCgUonbt2tDQ0EBgYCASEhIAAK9fv8bw4cNx7NgxWFhYlNVwK77RoyE9fhw8Ly/u7Q8eyJJUFy8C6upFv97OncCiRey4UAiMHw/Uqwc8fSpLlkmlzH2mTZMly/r0+f7rL14MBAczQpn6BrB1GIHIOZcUHtam48+4dXw+I9Y70As/vH+Ekw4tlLr0zGdnWLHtrl2QKVQFAMxqY4clXWpDTShQ6nwAZD+TPXsADw/mv5evr+w/ef/7H+DgoPz5CSGEEEIIIYQQUqIosVhMrly5wkgqdu7cGQsXLoSxsTEAIDs7G6dOncKKFSuQnp6O2NhYTJs2DSdPngRPyVljRI6REcT37uHTzp3QffQIxqdPQyDfJfnWLdny2dOnAUEhkl7yPD25ZxxWqyY7d7NmsseTJslqKg4aBHxNJAOQJc6GDZMlHuvU4bxEUkY2/D6n4HZgLBLSsiEU8HDgWRjCv2SgXswneB9cy/qDndhsBCK1DPMd+p0aLtju0gUTX11hxDfe3I5bVi5I0NBRcKSMXUIEhr+9zYiJBEIM3bkUP9eyho56EZ5G3N1lNSPXr89/P2trYN68778OIYQQQgghhBBCih0lFotBdnY2Vq1alfO4bdu2+Oeff8Dn5zbdVlFRwaBBg2BhYYGJEydCJBLhzZs3uHDhAnr2LFxXXZKHQICk5s2R1Lw5ogcNgvOSJeB5ezP3OX9etlR49ervu0ZcHDBgAJCdzYzr6cmatLi4IPxLOuLTsnHmdRT8o41gMn4lVvw9DeqirNz9U1PxpmVnNB36F9JUlJ9ByZNKsP36ZgilzI7Jt63q4UDddkqdY06rkegZ6IXqqbnNUqqlJWLNvb0Y15mjQ3Me8zyPsa4tHDYUts61lPwOCrBsGeDtLZthqsjmzYCmZvFcjxBCCCGEEEIIIcWCEovF4Pr164iIiAAgW/68cOFCRlIxLw8PDwwaNAiHDh0CAOzdu5cSi0WQkilCuxORSM6WAuBDt/ks3AhbgMafPzB3XLMGQ99IcLhO60KdnyeV4PzpJeiWp0kMAGTxhejUeQ7uHQgGEMxxpDmCu/2KE+dWgo/cZb5OcaHYcmMrRnX5Wen6hhN9rqBZZAAjlikQYlKHSUqfI0lNC1Pa/4TT55Yz4mNe38B/jq1xq6ZrTuzB1BaoZaQFbTUBNIM/AevuME8mEAALFih1XaVoaQE3b8rOuWYNc1m0gYGsCU+3bsV3PUIIIYQQQgghhBQL7uwXKZRLl3Lr27m7u6N69er57j9o0KCcr9+8eYNQuaQVUU5algiGi65/TSrKJKlpoWu/P/DW0Iq1/65rG9Hgc2ChrjHH6yS6ffJmxWe2GYt7Vs75HnvGvjkWN/+RFR/x9jbG+V7jOILNPCUOK+4fYMWXNx2IAENLpc7xzVn7Zjhh786K3/DeA8n8lpCs7QnJ2p5wtzaEqY4aNFUEwJw5gIQ5WxEjRgB2doW6doFUVYFVq2QNWwYPlnXTPnxY1tU6b7drQgghhBBCCCGElBuUWCwiqVQKT0/PnMctWhTcDKN27dowMTHJeXzr1q0SGVtld+BZGGc8TlMXvfvMQ4KaFiOuIcrCqbPLYZKWqNT5W4f6YsnDQ6z4kdotsaW+cjPoljYbiOs1XFnxDbd2oH4BSU6eVIL9l/+BXlYaI/7OwAKrmvxQ4LXPjXGD76w28JrREtmre0Cytif63z0hW8Kd16dPsvqP8gnEAwdk9SPzEgiA+cxGMMXKwwP47z/g0CHgxx+Lp+kOIYQQQgghhBBCSgQthS6i8PBwJCUl5Tx2ds5/Fts3tWvXRkxMDADAl6sDLilQeFKGwm2BBtXxY4/ZuHTqTwjy1AesmRyDY+dXoVP/xcgWqCg8vkZSNA5fWMM4FgD8DSwwodMUpZcgS/gCDOv+K54f/BkWKbn1DdXF2Th+fhWaD1mDWE09zmNnPT2NDiE+rPjuMb+ju7MVbI20MLhBddSvrgc+X8kGQObmwNq1si7WeV28CPz+O7Bihex7CwyUdbKWN2YMYGur3LUIIYQQQgghhBBSqVFisYiCgoIYj2vUqKHUcZaWuctYQ0JCinNIVca89vZYduO9wu3XrRtgbsuRWHNvLyPeOuwNDl38C4N7/A9iPrtTtEF6Mi6f/APV5GY2pgtVMaDnHKSoFq6JSIymPn7sPhu3j/3OaIJi9yUKfndWQ+XObQSLVWChpw5dNSEEfB54t28D69mzJTFhAtasLeLS4LFjgQsXgLNnmfFVq4A7dwAHB+DMGSA5mbnd0lK2DyGEEEIIIYQQQggosVhk32YdAgCfz4exsbFSx+VdCp33HKVJJBKVyXWLi5AHxP/RHsP2PcKloHTOff5q3AeuMR8xzO8uI97//SNkXv4HY7pMR7ZABepCPoy1VNFGV4I561egTjx7mfXnFWtxasRIWOipQ0WQW0VAKpWCV+AMxq7gNeTJahbmYeTnC2nfXqjz33+AqgUglUBy6Sr4/fuDJ/fzkTo6Qrx6NVAcP7c9eyBwdwfP358Z9/SU/cdBvHs3pDo6xXN9QoqRWCzO9zEhpPKj5wFCCD0PEELoeaBsUGKxiL58+ZLztZaWlsJu0PK0tbU5z1FaJBIJfHzYy2wroj+bG+DP5gYKt/P6LUPq+PHQ8vNjxIe+u4u+kkiETZ+OVFdX6D58CKvlf0M1Opp1juj+/RHX1h0IfY8v39trp1072LZvD4ObN5nje/QIvDp1kNi6NVQSEqDLkdiTqKjg3YIFSP/wgbXte6ktW4Y6I0dCkJpa4L6fhw5FmJERUEl+Z0jl9vr167IeAiGkjNHzACGEngcIIfQ8UDoosVhEmZmZOV+rF6LRhKqqas7XWVlZxTomwiRVV8eHf/5B7fHjoS637FwzIAAOU6fme3xiq1YI/d//ij4QHg+fFi+GIDkZul5ejE2C9HQYXbmi8NDQ2bORXrt20ceQR6a1NQK2boXt3LlQi4hQuF/MDz8gjKveIiGEEEIIIYQQQqo06gpdRNn/b+/Ow2u6FjeOvyGJISERs5hDQlEdXNzSatWsouaaadXUUNLW1JZWDdWapWjRqtY8a/XS+lFDTbdKlSJXjMlFCNEGkfH3Rx77npNIcvY5JwO+n+fp8+x1zt5rrZOk28qbtdeKjzeObZ2tKEmurv/LdB/0R5IfBAlFiyp03jzd9fU1dV3M44/rzKRJKbshO0FyvnwK+/RTxdi4yY8knR81StfatXNK+6ndfuwx/blsmaJatkzzXoKXl8I+/VQXRo+WXPkbBAAAAAAAsEZa4KC8FoFTUlJSBmdaswwT3dzS3504q+TJk0e1atXK9nadLTEx0Wp6c82aNa2+J2ns2qXkLl3k8uuvmdad1LWr8s+bp8c9PJzRVWu7dyvpnXeUZ+HCdE9JdnNTUkiIfF99VebiUDts2qSE8HC5HDok3bmTEiS++KIqFCmiClndNuAg0/cBAA8d7gMAuA8A4D5g3h9//GEqy7ofgkUHFShQwDi2fCw6M5aPP+fLl8+pfbKV60M4Cy1v3rwZf67KlaV9+6RPPpE++ECymHFqKFxYmjJFeQYMUJ5MN2Wxk7e3tGCB1LmzNHq0dOjQ/97Ln1/q3VsuwcHK6++fNe3fT8WKKf8BD7hM7wMAHnrcBwBwHwDAfSB78BV2kJeXl3F869YtG3cIlmJiYoxjb2/vrOga0uPqKo0ZI/XtK333nfTrr9L585Kvr9SqldS8uVSoUPb0pWnTlP/++ks6e1aKjZWqV08JNwEAAAAAAHIxgkUHlSxZ0jhOTEzUjRs35OPjk+l1V69eNY6LFSuWJX1DJkqXlvr3T/kvpxUuLNWundO9AAAAAAAAsBmbtzioQgXrFeguXrxo03Xh4eHGcaVKlZzaJwAAAAAAACCrESw6yNfX1+pR5hMnTth03cmTJ43jatWqObtbAAAAAAAAQJYiWHSCevXqGcd79+7N9PyTJ0/q2rVrRrl+/fpZ0i8AAAAAAAAgqxAsOkGzZs2M4x07dujKlSsZnr98+XLj2M/PTwEBAVnWNwAAAAAAACArECw6QbNmzVSiRAlJUlxcnEaNGqWEhIT7nrt7926tXr3aKPfs2TNb+ggAAAAAAAA4E8GiE7i7uys4ONgo7927V6+//rrVRi4JCQlatWqVhgwZosTEREmSv7+/OnXqlO39BQAAAAAAABzlmtMdeFi0a9dOhw8f1sqVKyWlhIvNmjVTQECAPD09FRYWpuvXrxvne3t7a9asWXJ15VsAAAAAAACABw+plhN9+OGHKlKkiBYtWqT4+HglJSXdd5doPz8/zZo1S5UrV86BXgIAAAAAAACOI1h0IhcXFw0fPlyBgYFas2aN9uzZo8uXL+vOnTvy8vJS9erV1aJFCwUGBsrd3T2nuwsAAAAAAADYjWAxC/j5+WnkyJEaOXJkTncFAAAAAAAAyBJs3gIAAAAAAADANIJFAAAAAAAAAKYRLAIAAAAAAAAwjWARAAAAAAAAgGkEiwAAAAAAAABMI1gEAAAAAAAAYBrBIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgGsEiAAAAAAAAANMIFgEAAAAAAACYRrAIAAAAAAAAwDSCRQAAAAAAAACmESwCAAAAAAAAMI1gEQAAAAAAAIBpBIsAAAAAAAAATCNYBAAAAAAAAGAawSIAAAAAAAAA0wgWAQAAAAAAAJhGsAgAAAAAAADANIJFAAAAAAAAAKa5JCcnJ+d0J5A9Dh06ZFXOk+fhyJWTkpKM44flMwEwh/sAAO4DALgPAOA+YI7l10uSnn76adN1uDqrM3jwpP4Behg8jJ8JgDncBwBwHwDAfQAA94HsQXwLAAAAAAAAwDRmLD7CmBYMAAAAAADwaHLGrE7WWAQAAAAAAABgGlPWAAAAAAAAAJhGsAgAAAAAAADANIJFAAAAAAAAAKYRLAIAAAAAAAAwjWARAAAAAAAAgGkEiwAAAAAAAABMI1gEAAAAAAAAYBrBIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgGsEiAAAAAAAAANMIFgEAAAAAAACYRrAIAAAAAAAAwDSCRQAAAAAAAACmESwCAAAAAAAAMI1gEQAAAAAAAIBpBIsAAAAAAAAATCNYBAAAAAAAAGAawSIAAAAAAAAA01xzugN4NIWFhWnFihU6cOCAwsPDlZCQoBIlSsjf319t2rRR06ZN5erq/B/PS5cuacWKFdqzZ4/Onz+v2NhYFS9eXJUrV1arVq3UqlUrFShQwOntAkgru+8Df/zxhzp27Gj6uqVLl6pOnTpO6weAjM2aNUtz586Vr6+vtm/fniVtMB4AcresvA8wHgBynwMHDmjz5s06fPiwIiMjFRMTI09PT5UuXVp16tRR+/bt9dhjjzm93evXr2v16tX6+eefdebMGd26dUs+Pj4qX768mjdvrsDAQHl5eTm93YeNS3JycnJOdwKPljlz5mj+/PlKSEhI95yaNWvq008/VeXKlZ3W7ooVK/Txxx/rzp076Z5TsWJFffLJJ6pdu7bT2gWQVk7cB1atWqX333/f9HX8IgFkn6NHj6pbt26Kj4/PsmCR8QCQu2X1fYDxAJB7hIeHa+TIkfr1118zPbd169YaP368PD09ndL2tm3b9O677yo6Ojrdc4oXL66JEyeqUaNGTmnzYcWMRWSrCRMm6JtvvjHKrq6uCggIUIECBRQWFqYbN25Iko4dO6aePXtq1apV8vX1dbjdxYsXa/LkyUbZxcVFVatWlbe3t86dO6fIyEhJ0rlz59S7d28tXbpUNWrUcLhdAGnl1H3gxIkTxnGFChVUrlw5m67jr5RA9rh48aIGDx6s+Pj4LGuD8QCQu2XHfYDxAJA7nDt3Tl27dtX169eN19zc3OTv769ChQopKipKp0+f1r25cJs3b1ZYWJiWLl3qcLi4ZcsWBQcHKzEx0XitUqVKKl68uCIiIhQRESFJunr1qgYNGqS5c+fq+eefd6jNhxkzFpFttmzZojfffNMoN2/eXGPHjlWxYsUkSfHx8Vq3bp0mT55szCKoUaOG1q5dKxcXF7vbPXLkiLp162bcNP7xj39o0qRJKl++vCQpOTlZP/30k8aOHWsEGqVKldKWLVt4DApwspy6D0jSK6+8osOHD0uSPv74Y7Vr186h+gA4T2hoqPr166crV64Yrzl7phLjASB3y477gMR4AMgNEhMT9fLLLys0NFSSlDdvXg0aNEh9+/a1Cg2vXLmi6dOna8OGDcZrLVq00KxZs+xu++LFiwoMDNTt27clSf7+/poyZYrVo9b79+/XmDFjjIDRw8ND//rXv1SyZEm7232YsXkLskV8fLymTJlilF944QXNnDnTCBOklL9OdOnSRSEhIca6asePH9f333/vUNuTJ082fomoUaOGFi5caPwSIaXMVmjWrJkWL14sDw8PSdLly5f19ddfO9QuAGs5eR9ITk7WqVOnjHK1atUcqg+A82zcuFGdO3e2ChOyAuMBIPfKrvsA4wEgd1i3bp0RKkopIf+QIUPSzEQsWbKkpkyZor59+xqvbdmyRUeOHLG77RkzZhihoq+vr77++us06zfWr19fy5YtU4kSJSRJt27dUkhIiN1tPuwIFpEtfvrpJ/33v/+VlPLY49ixY5Unz/1//Bo2bKguXboY5a+++srudn///Xerm87777+v/Pnz3/fcatWq6Y033jDKX3/9tdXUaACOyan7gCSdP3/eGEC4ubnJz8/PofoAOO7KlSsaOXKkRowYkeF6h87AeADInbLzPiAxHgByi40bNxrHDRs2VGBgYIbnBwcHGyGflPJYtD2uXLmirVu3WtXr4+Nz33NLlSqld9991yivW7cuw/UYH2UEi8gWP/zwg3H8zDPPqEyZMhmebxkoHD9+XBcvXnS4XT8/Pz355JMZnt+xY0djltT169d18OBBu9oFkFZO3Qck6/WUKlWqJHd3d7vrAuC4efPmqUWLFlaPNlWuXFkDBw7MkvYYDwC5T3bfByTGA0BuEBcXp99++80ov/TSS5le4+7uroYNGxrlP/74w662t27damweWahQITVv3jzD85s2bWoEjwkJCdq2bZtd7T7sCBaR5ZKTk3XgwAGj3KBBg0yvCQgIUPHixY2yvWur7Nu3z1S7Xl5eqlmzplHesWOHXe0CsJaT9wFJOnnypHHMY09Azlu0aJExa0iSOnXqpNWrV6tChQpZ0h7jASD3ye77gMR4AMgNIiIilC9fPqNs68xhb29v4/jeWshmWY4H6tatKzc3twzPz5s3r/75z38aZcYD90ewiCwXERGhv/76yyhbDtQzEhAQYBzb8xeJ+Ph4nTlzxijbuqujo+0CSCun7gP3WM5Q4BcJIPeoWbOmvvnmG02YMMHhHR7Tw3gAyN2y4z5wD+MBIOdVqlRJhw8f1q+//qrNmzfL39/fpuvubaQi2b9Lu+Uaq7aOByzvFYwH7s81pzuAh9+5c+esypYLpWekbNmyxvGFCxdMtxseHq74+HijbOtfPx1tF0BaOXUfuMfyF4mAgACdPHlSa9eu1YEDBxQeHq6EhAQVK1ZMtWvXVsuWLdW0aVOHd6EGkL66deuqffv2evHFF7P8/zXGA0DulJ33gXsYDwC5R6FChVSoUCGbzo2JidEvv/xilO1ZHzUuLs5Y712ybzxw5coVxcbGprtO86OKYBFZ7urVq8Zxnjx5rHaAzYjlI5CWddjTbur6bG03KipKSUlJ6W4wAcA2OXUfkFLWR4uMjDTKCxcutHoM4p6IiAhFRETohx9+UM2aNTVjxgybA1AA5sydOzfb2mI8AORO2XkfkBgPAA+yRYsWKSYmxii/8MILpuu4evWqkpOTjbKt44HUv7dcvXpV5cqVM93+w4zREbLczZs3jWMPDw+bB+WWj0JY1mFPu5JUuHBhm66z/KtJcnKy1eObAOyTU/cByXp2gvS/tVUKFCigatWqqW7duqpYsaLVOceOHVOnTp30559/2tUmgNyD8QAAifEA8KA6evSoFixYYJQrVqyoxo0bm67HGeMBSYwH7oMZi8hyd+/eNY7NTBm23KUtLi7OoXbNtJ16AdfU9QAwL6fuA1LaXyQ8PT0VHBysl19+WR4eHsbr4eHhmj17tjZu3ChJio6O1uDBg7V+/XoVKVLErrYB5DzGAwAkxgPAgyg8PFyDBw+2WtJk1KhRcnU1H2Wl/nfccgOZjKTePZ7xQFrMWESWs7wJmHmEyPJmcW9LeDNSX2Nr26lvUomJiabbBmAtp+4DkvX6jkWKFNGaNWvUvXt3q18ipJT1Uz755BMNGTLEeO3SpUuaP3++Xe0CyB0YDwCQGA8AD5pLly6pd+/eVkua9OnTx67HoKW044G8efPadF3q8xgPpEWwiCxn+T9iUlKSzddZ/o+f2Tbw95P6Fwdb2059w7GnbQDWcuo+IEkTJkzQwYMHtXbtWi1fvlyVKlXK8Pw33nhDTz75pFFeuXKl3bMlAeQ8xgMAJMYDwIMkLCxMXbt2VXh4uPFaw4YN9fbbb9tdZ+rxgK0BYerzGA+kRbCILFegQAHj2My0Yct/uG2dppxeu2baTj1gsKdtANZy6j5wj5eXl2rWrJnpLxGS5OLiop49exrlO3fu6NChQ3a3DSBnMR4AcA/jASD3++2339S9e3ddunTJeK1+/foKCQlxKNRLPR6w9Q8F9j5C/SghWESW8/LyMo5v3bpltRNTRix3ffL29nao3dT12dquq6trmsVaAZiXU/cBez311FNWZcvHpwA8WBgPALAX4wEge3333Xfq3bu3bty4YbzWqFEjff7552mCQbOcMR6Qsvd3kgcFwSKyXMmSJY3jxMREq5tERizXUki9xbvZdiXp2rVrptv18fGRi4uL6bYBWMup+4C9ihYtalW2d0dqADmP8QAAezEeALLPnDlz9Pbbb1vNJAwMDNTcuXNNbf6YnuLFi1s9Dm3reMDyPBcXlzT3BRAsIhtUqFDBqnzx4kWbrrNcT8GWxxVSK1OmjNVUaXvarVixoul2AaSVU/cBe6V+NCL1wu4AHhyMBwDYi/EAkPXi4+M1YsQIhYSEWL0+YMAAffLJJ3btAH0/7u7uKl26tFG+cOGCTddZjhvKlCmTZpdoECwiG/j6+lpNFz5x4oRN1508edI4rlatmul23dzc5O/vb7pdy/OqV69uul0AaeXUfSAiIkKffvqpRo8erf79+1vVl5HUwYPlIATAg4XxAADGA0DuFBcXp6CgIG3cuNF4zdXVVRMmTFBwcLDTnxaoWbOmcWzrfYDxQOYIFpEt6tWrZxzv3bs30/NPnjxpNeW4fv362dJudHS0/vzzT4fbBZBWTtwHkpOTtXDhQq1bt047d+7Unj17bLpu9+7dxrGLi0uaNZYAPFgYDwCPNsYDQO6TkJCgoUOH6ueffzZe8/Dw0Oeff65OnTplSZt169Y1jg8cOKCkpKQMz09MTNSBAweMMuOB+yNYRLZo1qyZcbxjxw5duXIlw/OXL19uHPv5+SkgIMDhdo8dO6Zjx45leP6qVauUkJAgKWVx12eeecaudgGklRP3gbJly8rX19cor1u3TomJiRleExMTo2+//dYoN2zYUD4+PqbbBpB7MB4AHm2MB4Dc59NPP9WOHTuMso+Pj7755hs1bNgwy9ps0qSJ8ubNKyll7cSffvopw/O3bt2q69evS0qZSWk5nsD/ECwiWzRr1kwlSpSQlDLdedSoUcaAPbXdu3dr9erVRrlnz552t/vkk0+qRo0aRnn06NHp7v504sQJzZs3zyh37tzZKYvEAkiRU/eBjh07GsdhYWGaP39+uufGx8dr1KhRRujp4uKigQMH2t02gNyB8QAAxgNA7rFz5059/fXXRtnLy0tLliyx+rc6K5QqVUovvviiUZ44cWK6kx0uXbqkSZMmGeVmzZql2RAOKQgWkS3c3d0VHBxslPfu3avXX3/dat2ShIQErVq1SkOGDDH+gujv75/uNOjGjRsrICBAAQEBaty4cbptjxw50libITQ0VD179rRaTyE5OVk//vij+vTpo9u3b0tK2TFqwIAB9n9gAGnk1H2gb9++VrMUZs+erQkTJqTZmfrEiRPq27ev1V8ue/TooTp16pj/sACyDeMBAIwHgAdHYmKiJk6cqOTkZEkpwf20adNUtWpVh+rt2bOncR/I6Emn4cOHK1++fJKkK1euqFu3bjp48KDVOQcOHFD37t119epVSVLBggWtfo+BNedsrwPYoF27djp8+LBWrlwpKSVUaNasmQICAuTp6amwsDBjmrEkeXt7a9asWQ7vAlWvXj0NHz5c06dPlyT9+eefatu2rapUqSIfHx+dP3/e6q8U+fPn18yZM1WoUCGH2gWQVk7cBwoUKKDPP/9cPXr0UHR0tCTpm2++0YoVK+Tv7y9PT09dunQpzc5wL730kkaPHm13uwByF8YDwKON8QCQO2zZskXnz583ygUKFNDixYu1ePFim+soVqyYpkyZYlf7lStX1oQJEzRy5EglJSUpPDxcPXv2VPny5VWqVCldunTJauJDnjx5NHHiRJUrV86u9h4FBIvIVh9++KGKFCmiRYsWKT4+XklJSffdndHPz0+zZs1S5cqVndLugAED5OHhoWnTphmzEE6fPp3mvFKlSmnq1Kn8RRLIQjlxH6hatarWrFmjd955R4cPH5aU8pjT8ePH05ybP39+DRw4UP379zfWYAHwcGA8ADzaGA8AOW/Lli1W5du3b9u8odI9lrOP7REYGCh3d3eNGzfO+EPDhQsX0vxhwcvLSx999JGaN2/uUHsPO4JFZCsXFxcNHz5cgYGBWrNmjfbs2aPLly/rzp078vLyUvXq1dWiRQvjf3Rn6tGjh5o0aaJVq1Zp586dCg8PV0xMjDw9PeXv768mTZqoQ4cO8vT0dGq7AKzl1H2gXLlyWrFihX755Rd9//33OnLkiCIjI3X37l35+PioXLlyatSokdq0aaPSpUs7rV0AuQvjAeDRxngAyFlnzpzJ6S5Iklq0aKH69etr9erV2r59u86fP6+bN2+qYMGC8vPzU6NGjdSlSxc2bbKBS/K9B9sBAAAAAAAAwEZs3gIAAAAAAADANIJFAAAAAAAAAKYRLAIAAAAAAAAwjWARAAAAAAAAgGkEiwAAAAAAAABMI1gEAAAAAAAAYBrBIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgmmtOdwAAACArNW7cWBEREQ7Xs2TJEtWrV88JPQKyz927d9WxY0eFhoaqd+/eGjNmjPHegQMH1KtXL6N86tQph9oKCAgwjoOCgjRkyBDTdcyZM0chISFO61Nmhg4dqq1bt6p+/fr66quvlCcP8y4AADCDfzkBAACAh9TkyZMVGhqqYsWKaejQoTndnVxn5MiRyp8/v/bv36+FCxfmdHcAAHjgMGMRAAA8MkqUKCF/f3+7rvXy8nJyb4CstWvXLi1fvlySNGzYMHl6euZwj3IfX19f9e3bV/PmzdOsWbP03HPPqVq1ajndLQAAHhgEiwAA4JHRoEEDffzxxzndDSDLxcbGavz48ZIkf39/dejQIYd7lHv1799fq1ev1rVr1zRu3DgtX76cR6IBALAR/2ICAAAAD5nPP/9cFy9elCQNHz6coCwDBQsW1MCBAyVJR44c0Zo1a3K4RwAAPDgYYQAAAAAPkaioKC1evFiSVKVKFTVu3DhnO/QA6Ny5s7y9vSVJISEhunv3bs52CACABwTBIgAAAPAQ+eKLL3T79m1JKYEZMpcvXz69/PLLkqQrV64Ya1MCAICMscYiAACAHUaNGqX169dLkubPn69GjRppyZIlWrlypcLDw1W4cGFVrlxZLVq0UPfu3dNcf+vWLW3YsEE7d+7Uf/7zH0VFRcnd3V3FixdXnTp11LJlSz3zzDOm+rRv3z6tXbtWv/32myIjI+Xh4aHy5curZcuW6ty5szw9PfXtt9/qo48+kiQFBQVpyJAhVnWsW7dOo0ePlpSyscX27dszbbdx48aKiIiQlLILcfv27TM8PyIiQuvXr9eePXsUHh6u6OhoeXp6qkyZMnrmmWfUrl07+fn5ZVjHnDlzFBISIkl6//331aNHD8XFxWnjxo3asmWLwsLCdO3aNRUqVEiVKlVS48aN1aVLFxUqVCjTz3PPwYMH9f333+u3335TRESE4uPj5eXlJX9/fzVq1Ejt27dX4cKFra4ZP368li5dKillw589e/bI3d0907a+/vprTZo0SZJUsWJFbd261eZ+WoqJidHq1aslWYdljkhMTNTw4cOt+tS7d2+NGTPG4brNsvy+2yOjn8/OnTsbMz2XLFmiXr168Qg5AACZIFgEAABwgvfee09r1641yteuXdO1a9cUEBCQ5txNmzbp448/VlRUlNXrd+/e1d9//60zZ85o1apVql+/vqZMmaJSpUpl2HZUVJRGjhyp3bt3W70eHR2t6OhoHT16VMuWLdPs2bMd+ISOS0xM1MyZM7V48WLFxcVZvXfjxg3duHFDx48f15dffqnOnTtrzJgxNoVyknTy5Em99dZbOn36tNXr169f1/Xr13Xo0CEtWrRIU6dOVYMGDTKs68KFC3r33Xd18ODBNO/d+77u3btX8+fP14QJE9SkSRPj/Xbt2hnB4s2bN7Vr1y6r99OzceNGqzrstXHjRt26dUuSVK9ePYd3M09OTtbo0aOtQsU+ffoY4fPDxM/PT1WqVNHp06cVERGhHTt26MUXX8zpbgEAkKsRLAIAADho/fr16c4wCwwMtCqHhIRozpw5Vq+VKVNGZcuW1d27dxUWFqaYmBhJ0v79+9WpUyctXrw43Rl8UVFR6tatm86dO2e85ubmpoCAAOXPn1+nT59WdHS0Ll68qNdee80pM9jsERcXp8GDB1uFny4uLvLz81OxYsX0119/KTQ0VAkJCUpMTNTy5csVGhqqhQsXqmDBghnWfe7cOYWEhOjGjRuSpKJFi6py5cqKjY1VWFiY8Vjw9evXNWjQIK1fvz7dr+fJkyfVu3dvRUdHG6+5ubnJ399fBQsW1Llz53T16lVJKWHo0KFDNX36dLVo0UKSVKtWLfn7+ys0NFRSSoicWbAYFham48ePS5Ly5Mnj0Pdo06ZNxvHzzz9vdz33jBs3zir07Nu3r0aNGuVwvfYqX768GjZsaPP5+/btU2JioqSUGZyPPfZYhuc/99xzRji9adMmgkUAADJBsAgAAOCge6Fiq1atFBQUpNKlS+v06dPatm2bHn/8ceO8zZs3W4WKTz/9tEaPHq1atWoZr8XFxen777/XlClTFB0drcjISAUFBWnNmjXy8PBI0/bo0aOtQsVOnTrprbfeUpEiRSRJ8fHxWr9+vSZPnqzr168bj3pmtwkTJliFip06dVJQUJDVbMybN29q0aJFWrBggZKSknTo0CGNHTtWU6dOzbDub775RlJK6PTee+/pueeek4uLi6SUR4PnzJljfO67d+9qzpw5mjlzZpp6bt++rTfeeMMIFfPmzauBAweqb9++Vo9Qb9u2TR9++KEiIyOVmJiod999V08//bSKFy8uKWXG4ZQpUyRJO3bs0N9//53hI9gbNmwwjp955plMZ6imJzIyUr///rtVXY6YPHmyVq5caZRzOlSUpLZt26pt27Y2nTtjxgzt2bPHKI8fP17VqlXL8JoGDRroyy+/lCTt3r1bcXFxNs+aBQDgUUSwCAAA4ASNGzfW9OnTjUDr8ccftwoVY2Ji9MEHHxjlF198UbNnz5arq/VwzN3dXe3bt1ft2rXVtWtX3bx5U2fOnNGCBQs0bNgwq3P37t2rnTt3GuVXX31VI0eOtDrHzc1NnTt3VpUqVdS7d+80jyBnh19//dUqoBoxYoRee+21NOd5eXkpODhYAQEBCg4OliR999136tChg/75z39m2EbZsmW1atUqI1C9x9PTU6NHj9bVq1e1efNmSdLOnTvvGxgtXrxY4eHhRnnq1Klq1apVmraaNGmi0qVLq1u3boqNjVVMTIy+/fZbDR8+XFLKLNVp06YpISFBcXFx2rJlizp16nTfficnJ+u7774zyh06dMjwc2bkwIEDSk5OliQVKFBAFSpUsLuue4+s33O/n62MbNq0SUeOHDHd7oULF0xfcz8bN27U/PnzjfKrr75q00zQ6tWrG8e3bt3S0aNHVadOHaf0CQCAhxHBIgAAeGSsX7/e2HDFVkuWLFG9evUyPW/QoEFGqHg/a9as0V9//SVJKlSokCZNmpQmVLTk5+enN998U+PHj5ckLV++XAMHDlT+/PmNcyx3ri1XrpwRbN3PU089paCgIE2fPj3Tz+JsixYtMo6ffvrp+4aKllq3bq0ff/xRW7ZskSR9+eWXmQaLQ4cOTRMqWuratasRLN6+fVsXL160ehw6KSnJKvxs3br1fUPFe2rUqKE2bdoYG6X8+OOPxte/WLFievbZZ7Vjxw5JKeFoesHigQMHdOnSJUkpwaot6zGmx3K2YpUqVezeeOSLL77QvHnzjLLZUFFKCQidFRKadejQIb333ntG+bnnntM777xj07VFixZV0aJFjfVPf//9d4JFAAAywDZnAAAADvLw8FDNmjUzPMdyDcYXXnhB3t7emdbbpk0b5c2bV1LKRiyWM8Di4+OtHvNs3759po9sduvWTQUKFMi0XWeKjY21egTa1o1JLGeX7du3T3fv3k333Dx58mS6Fl6VKlWsyn///bdV+c8//9Tly5eNcteuXTPtY69evfTOO+9o7ty5+uyzz6zes/yc//73v63qtmS5fmHr1q0deuw2LCzMOK5atapddSxZskTTpk0zyvaEijkpPDxcQUFBxszcypUra/r06aZCVn9/f+M49WZAAADAGjMWAQDAI6NEiRJWoYEtbNlV19/fP8PgIi4uTseOHTPK6W0cklrhwoVVvnx5nT17VpL022+/qX79+pJktSmJJJtmVRUqVEhPPfWUfvnlF5vad4ajR48qPj7eKNv62S2D2vj4eP3xxx/pfsayZcvK09Mzw/oKFy5sVbbs071+3uPm5qbatWtn2kd/f/90f57uhcfR0dFKSkrS999/r379+lmdExsbaxU4O7IbtCSrx7iLFi1q+vrVq1dr0qRJRtnf39/uUDEoKEhDhgwxfd2cOXMUEhJiV5sxMTEaOHCgrl+/Linlez5v3rwM17e8H8uvneXXFAAApEWwCAAAHhkNGjTQxx9/7PR6fXx8Mnz/8uXLVmsbzpgxQzNmzDDdzpUrV4zjiIgIq/cqVqxoUx0BAQHZGiyeP3/eqmzLTMD7iYyMTPc9W2Z/3pv5eU9SUpJV+eLFi8axr6+vwxt2uLu7q02bNsbGMps2bUoTLG7btk23bt2SlDLD0HJNTnvc2xVbkukwTZLGjh1rrNEoSaGhodq6dauaN2/uUL+yQ2JiooYNG6b//Oc/klK+3zNmzLD5/wtLliG15e7gAAAgLR6FBgAAcFBms+Vu3rzplHYs64mJibF6z9YgKaN1CLPCvXUlHZVRwGO57qS9LL+e9oRy92M5A/HUqVMKDQ21et/yMej27ds73N6dO3eM48x+Ju/nXthq+bj8Rx995LSf36w0efJkq0fuR4wYoYYNG9pVl+X333JWMAAASIsZiwAAAA7KbP22hIQEq3KtWrVsesQ6Nct1AvPly2f1nuVMs4w4OhPPrNSf3d6wp0SJEs7oTroy2njHXjVq1FBAQIBOnTolKWUTl7feekuSdO3aNWPmqKurqwIDAx1uz/Iz2LtxyyuvvKLAwEB1795dycnJunr1qiZPnpwlM32dZdmyZcbMUCklpO3Tp4/d9VnObrX36wgAwKOCYBEAACCLpV7fb/DgwWrcuLFDdaYOJv/++28VLFgw0+tSz3TMiK1hZUYbq6T+7LNmzbJrNl1Ws+xn6o1dHNG+fXtNnjxZkrR582YjWPzhhx+UmJgoKWXX4mLFijncloeHhzGzMzY21vT13bt31/vvvy8XFxd17tzZ2CV7/fr1at26tZ599lmH++hsv/zyiyZOnGiUn3jiCX344YcO1Wk5S9HDw8OhugAAeNjxJzgAAIAsVrJkSavZZJcuXXK4zgoVKliVbd299sKFCxm+b9nP1Buc3E9SUlKGj8qWLFnSquyMz54VLPsZERFh02eXpJUrV2rXrl06e/bsfa9p06aNXF1djXpPnDghKWV9xXs6dOjgSNcNlmtN2rM24NixY43v/9tvv63ixYsb740bN85YDzK3CAsL07Bhw4xZsaVKlVJISIjDs3Itf57tmVkMAMCjhGARAAAgi3l6eqpq1apGef/+/TZdFx8frzFjxmjGjBlauXKlVXhYpkwZlSlTxijv27cv0/qSk5N16NChDM+xDGVsCZLSC9TueeKJJ6zCSls/++nTpzVmzBh99tln2rBhg7HTb1ax3AX63i7Umbl48aLGjh2r119/XS1atFBYWFiac4oWLarnnnvOKG/btk1//fWX8X3w8fFRo0aNnPAJpPLlyxvH//3vfx2qq3DhwhozZoxRjoiI0LRp0xyq05lu3LihgQMHGmt45s+fX5999plVGGovy6+dPZu/AADwKCFYBAAAyAbPP/+8cbx9+3arXYjTs3HjRq1du1bz58/X2LFj0wRXLVq0MI7XrVuX6WPOu3fvVnh4eIbnWM56u337dqYB1ebNmzN838fHxyq0W7p0qU2zAb/44gutXbtWs2fP1pgxY9Ls4uxsjz32mNXjyKtXr870GsvP7uPjI39///ueZzkj8f/+7/+0c+dOY5ZdYGCg3Nzc7O22FT8/P+M49W7c9mjVqpVV6Lls2TL9+uuvDtfrqPj4eA0ZMsRq9u2kSZNUs2ZNp9Rv+bWrXLmyU+oEAOBhRbAIAACQDXr06GEESAkJCRo2bFiGQWB4eLimTp1qlEuXLq0XXnjB6pxevXoZdUZFRWns2LHpBnBRUVH64IMPMu1nQECA1QxDy00xUjt58qQWLVqUaZ2vvvqqcXz27Fl99NFHGa7fuH37dm3atMkoN2vWzClrEGbE1dVVXbt2Ncrr16/Xrl270j0/IiLC6rN37Ngx3Y0+GjVqJB8fH0nSiRMntHTpUuM9y52jHfXUU08Zx6dOnTLWcHTEuHHjjLU7k5OT9e6772a4pmZ2GDt2rP79738b5TfeeEOtW7d2St2RkZGKjIw0ynXq1HFKvQAAPKwIFgEAALJByZIlNWzYMKN87Ngxde7cWXv27LEK2RITE7Vp0yZ169ZNN27cMF4fMWJEmrXjSpcurbffftsob968WQMHDkwzG/LAgQPq2rWrIiIiMu1nsWLFrAKqr776Sl988YXi4uKM12JjY7V8+XJ17dpVsbGxxhqC6WnWrJnVjM2VK1dqwIABadaFjImJ0bx58zR06FDja1KwYEEFBwdn2m9n6NOnj/Hoa3JysoKCgrR48eI0G6Hs3btXPXv2NB7DLV68uPr165duvW5ubnrppZeM8uHDhyWl7BpdrVo1p/W/bt26RigcGxurkydPOlynr6+vhgwZYpTPnTunOXPmOFyvvRYsWKB169YZ5bZt22ro0KFOq//o0aPGsbe3t6pXr+60ugEAeBixKzQAAEA26devn86ePas1a9ZIStl84rXXXlPRokVVqVIlxcXF6fz582k2Q+nfv79atWp13zr79OmjM2fOGDv47ty5U7t27VLVqlVVpEgRhYeHG4Giu7u7vLy8dPXq1Qz7GRwcrF69eikxMVHJycmaNm2aFixYID8/P8XHx+vs2bPG+ouPPfaYnnjiCS1btizd+lxcXPTJJ5+ob9++On78uNHPnTt3qnz58ipVqpSio6N14cIFqxDPzc1NU6dOtVo7MCt5enpq9uzZ6tu3r6KionT37l1NnjxZs2bNkr+/v/Lly6fz58/r8uXLxjUFChTQzJkzM93ko0OHDlqyZInVa+3bt3dq/729vVWnTh1jNt+ePXtUo0YNh+vt3bu3vvvuO/3555+SpC+//FItW7Z0St1mnDp1StOnTzfKrq6uyps3r4KDgxUbG6uEhASbZmlmNMt29+7dxnHjxo3TnYUKAABSECwCAABko4kTJyogIEBz5swxZrxFRUUpKioqzbmenp5655139Morr2RY5/jx41W2bFl99tlnio2NVXJyskJDQ63O8fb21pQpU7Ro0aJMg8U6depo+vTpev/9940+/vXXX8ZMu3uef/55TZ48WV9++WWmn9vLy0vLli3TpEmTtGbNGiMAunDhwn13qq5QoYImTZqU7Y+iBgQEaNWqVRoxYoSxwcrt27d15MiRNOdWrFhRU6dOVa1atTKtt1q1aqpevbqxK7S7u7vVLEZnadu2rREs/vzzzxowYIDDdebNm1fjx49X586dlZSUpMTERI0ZM0Zr167NdLaqM0VHR1s96p+QkGA1e9EZLINFZz6mDgDAw4pgEQAAIJv16tVLL7/8sjZs2KBffvlFoaGhun79upKSkuTl5aWAgAA9++yzatu2rYoUKWJTnf3791fr1q21atUq/fzzz4qIiFBiYqLKli2rpk2bqnv37ipatKhNayJKKRvD1K1bVytXrtSOHTt0/vx53b59W8WLF1etWrX08ssvp1nzMTP58+fX+PHj9dprr2njxo3av3+/Lly4oOjoaLm6uqpYsWKqUaOGmjZtqmbNmqV59Du7lC1bVsuWLdPu3bu1ZcsWHTp0SFevXtXdu3dVpEgR1ahRQ82bN1fr1q1N9bFp06ZGsNi4cWOrjXKcpWXLlpoyZYr+/vtvHT58WBEREfL19XW43lq1aqlHjx7GrMuTJ0/qiy++0ODBgx2uO7c4dOiQMbu3UqVK+sc//pHDPQIAIPdzSc5o5WwAAAA8VHr27KmDBw9KkoKCgqzWz0PW6tevnzEjbtGiRWrYsGGWtPPpp59q4cKFkqRhw4Zp0KBBWdLOw2bs2LHGkgITJkxQp06dcrhHAADkfiwaAgAAAGSxyMhI7d27V5JUrlw5NWjQIMva6tOnjwoUKCBJWrFihRISErKsrYdFdHS0sRN56dKl1bZt2xzuEQAADwaCRQAAACCLrVixwlhXsmvXrsbuzVmhePHi6tOnjyTp8uXL+te//pVlbT0sVq1apTt37kiS3nzzzRx7DB8AgAcNwSIAAACQhbZv364FCxZIStnEpkuXLlneZr9+/VSiRAlJ0ty5c23aLflRFRMTY2xAVKNGDWYrAgBgAsEiAAAA4EQ//PCD2rRpo969e6t58+YaNGiQ4uLiJEkjRoyQp6dnlvfB09NT48aNkySdOXNGGzZsyPI2H1SLFy/WjRs3lDdvXn300UfKk4dfkQAAsBX/agIAAABOVLZsWYWGhmr//v06d+6c8XqXLl3UsWPHbOtHkyZNjNl3M2fOVExMTLa1/aC4fPmysVP6gAEDVKNGjRzuEQAADxaCRQAAAMCJKlWqpNq1a6tgwYLy8PBQ7dq1NWXKFI0fPz7b+/LBBx/Iz89PkZGRmjNnTra3n9tNmjRJt2/fVt26dRUUFJTT3QEA4IHjkpycnJzTnQAAAAAAAADwYGHGIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgGsEiAAAAAAAAANMIFgEAAAAAAACYRrAIAAAAAAAAwDSCRQAAAAAAAACmESwCAAAAAAAAMO3/Abd9TN8Qhh/2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy', silent=True)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy', silent=True)\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The script `check_A` checks visually the number of `k`s to calculate before going to the approximate value `r0**2*tb**2`. The default is 60, but in this case the presence of additional modulation for k=60 tells us that we need to increase the limit of calculated `A_k` to at least 150.\n", + "The script `check_B` does this for another important quantity in the model.\n", + "\n", + "Somewhat counter-intuitively, there might be cases where too _high_ values of k could produce numerical errors. Always run `check_A` and `check_B` to test it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTkAAAQOCAYAAAAQfzzBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAADaQ0lEQVR4nOzde5RW1X0//s/AcB8coHKJqCijMxDGGBIMBmn8SRENjaaKSmskStKIiV9JMK1oWk00GowXgtFWa1UwxICopE1sihqhBGLEXIQwXCRigBkQBLmJ3Ob2+4N6OgMIz8w8MHOY12utrLX3M+fszz7E/c97nX12TnV1dXUAAAAAAKRUi8aeAAAAAABAQwg5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSLbexJ0Dz9Pvf/75Wv0ULeTsAAABAc1RVVVWr/8lPfrLOYwg5aRL2/48ZAAAAADLl9TkAAAAAINW8yUmTcCxsV6/5Nuqx8DzQ2KwpyB7rCbLHeoLssZ4ge9K+nrKxw1fISaNo0aJF8h9wixYton///o08o4apqKiIRYsWJf0zzjgjcnMtL6gvawqyx3qC7LGeIHusJ8ieY2E9vf7667VyovpIX7QLAAAAAFCDkBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQarmNPQFIu507d8bs2bPjt7/9bezcuTPat28fb7/9dgwZMiTat2/f2NMDAAAAOOYJOaGeVqxYEQ8//HBMmTIltm7desDfO3XqFKNHj47rrrsuCgsLj/4EAQAAAJoJ29WhjrZt2xYjRoyIoqKimDRp0kEDzoiIrVu3xg9+8IMoKiqKESNGxLZt247uRAEAAACaCSEn1MHatWtj8ODBMXPmzDrdN3PmzBg8eHCsXbv2CM0MAAAAoPkSckKGtm7dGhdccEGUlJTU6/6SkpK48MILvdEJAAAAkGVCTsjQl7/85ViyZEmDxigpKYkvfelLWZoRAAAAABFCTsjIihUr6rxF/cPMnDkz/vSnP2VlLAAAAACEnJCRRx55pEmPBwAAANCcCTnhMHbu3BmTJ0/O6piTJ0+OnTt3ZnVMAAAAgOZKyAmHMXfu3Ni6dWtWx9yyZUvMnTs3q2MCAAAANFdCTjiM9evXH5FxN2zYcETGBQAAAGhuhJxwGDt27Dgi47733ntHZFwAAACA5ia3sSfQlKxcuTKmT58eCxYsiLKysqioqIhu3bpFYWFhXHTRRXH++edHbm72/8nefvvtmD59esyfPz9Wr14du3fvjq5du0bv3r1j+PDhMXz48GjXrl2dxnzttdfiP/7jP+IPf/hDvPPOO7F3797o3LlzFBUVxXnnnReXXnppncdsrvLy8o7IuB07djwi4wIAAAA0N0LO//Xggw/GI488EhUVFbV+Ly0tjdLS0nj55ZejuLg47r333ujdu3fW6k6fPj3uvvvu2LVrV63f161bF+vWrYv58+fHo48+Gvfcc0+ceeaZhx1vy5YtcfPNN8f//M//HPC3d955J955552YN29ePPzww3HPPffEoEGDsvUox6wePXockXG7d+9+RMYFAAAAaG5sV4+IO++8Mx566KEk4MzNzY1+/frFgAEDonPnzsl1JSUlMWrUqFi7dm1W6k6ZMiW+/e1vJwFnTk5OFBYWxqc+9ano1q1bct2qVavi6quvjiVLlhxyvPfeey+++MUv1go4W7VqFWecccYBY27cuDH+/u///qBhKLWde+650alTp6yO2blz5zj33HOzOiYAAABAc9XsQ85Zs2bF1KlTk/4FF1wQc+fOjZkzZ8ZTTz0V8+bNizvuuCPZ2r1p06a44YYborq6ukF1Fy5cGPfcc0/SP+uss+LFF1+Mn//85zF16tT41a9+FQ8++GASsu7atSu+9rWvHfDGZ00TJkyIFStWJP3LLrss5s2bF88++2xMnTo15s2bFw899FAS2FVWVsY3v/nNePfddxv0LMe69u3bx+jRo7M65ujRo6N9+/ZZHRMAAACguWrWIWd5eXl8//vfT/rnnXdeTJo0KY4//vjkt1atWsXIkSPjoYceSr7HuWTJknj++ecbVHvChAlRWVkZERH9+vWLxx57LE4++eTk7zk5OTFs2LCYMmVKdOjQISL2nfL95JNPHnS8DRs2xE9/+tOkf8kll8Rdd91V603UiIjzzz8/HnvsseRZduzYEVOmTGnQszQH1113XZMeDwAAAKA5a9Yh50svvRTr1q2LiH1b1G+77bZo0eLg/ySDBw+OkSNHJv3JkyfXu+6iRYti4cKFSf/WW2+Ntm3bHvTaPn36xPXXX5/0n3zyySQcremVV16JqqqqiNgXkI4bN+5D659xxhlx4YUXJn1b1g+vsLAwLr300qyMdemll8bpp5+elbEAAAAAaOYh5y9+8YukPWjQoDjhhBMOeX3NkHPJkiVRWlra4LoFBQXRv3//Q15/2WWXJW9ebt68OV577bUDrlm/fn3SPv744w97qE3NQ4zKysoymndz98QTT0RxcXGDxiguLo4nnngiSzMCAAAAIKIZh5zV1dWxYMGCpH/OOecc9p6ioqLo2rVr0p89e3a9av/mN7+pU938/Pxa4dqcOXMOuKZjx45Je+fOnYf9ZmjNU+TbtGlz2Dmw7/+HWbNm1TvoPOOMM2LWrFmRn5+f5ZkBAAAANG/NNuRcu3ZtbN++PelnGlwVFRUl7cWLF9e5bnl5ebz11ltJv1+/flmpe9pppyXt999/P/7whz8ccrxf//rXSbugoCCjORDRs2fPmD9/fp23rl966aUxb9686Nmz5xGaGQAAAEDz1WxDzlWrVtXq1zz051BOPPHEpL1mzZo61y0rK4vy8vKk36tXr6zUHThwYBQWFib9u+66K3bu3HnQsf7rv/4r5s+fn/SvvPLKjObAPvn5+fHcc8/FG2+8EePGjUtOq99f586d48Ybb4wVK1bEc8895w1OAAAAgCMkt7En0Fg2btyYtFu0aFHrRPVDqbldveYY9am7/3iZ1n333Xejqqqq1iFJOTk58d3vfjdGjx4dO3fujCVLlsTll18eY8eOjYEDB0aHDh1izZo18eyzz9Y6of0v//Iv47Of/Wydn4N9hxFNnDgx7rzzzpg9e3b87ne/i/fffz86dOgQAwYMiCFDhkT79u0be5oAAAAAx7xmG3Ju27YtaXfo0OFDT1XfX15e3kHHqE/diIjjjjsuo/tqfnOzuro6tm/ffsAbhB//+MfjmWeeidtvvz1ee+21ePPNN2Ps2LEHHa9Vq1bxhS98Ib75zW9m/OxHUs1vhKZN69at4/zzz4+PfOQjyW/FxcXRsmXLVD8XNKbKyspD9oHMWU+QPdYTZI/1BNljPe3TbEPOPXv2JO22bdtmfF/r1q2T9t69extUty61W7VqdchxPtCjR48477zz4s9//vMh3zS98MIL44tf/GKt52ksVVVVsWjRosaeRlaVlJQ09hTgmGJNQfZYT5A91hNkj/UE2dNc11OzDTlrfhezLm8y5ub+3z9Zfd7S2/+eTGvXrBtx8FT+1VdfjW9+85uxadOm5LcOHTpEYWFhtGrVKtauXRtr166NiIif//zn8eKLL8bYsWPj7//+7+v6GAAAAADQZDTbkLNly5ZJu6qqKuP7aoaU+79dmYn9Q81Ma+8fju5fe9GiRXHttdcmb3h26tQpbrnllvjc5z5XKyBdvnx53H333fGb3/wm9uzZE/fee2+89957MW7cuDo/CwAAAAA0Bc025GzXrl3S/rCt3wdTc4t6mzZtGlT3g9qZbBnff2t8zdrV1dXxrW99K3mOzp07x/Tp0+OUU045YJw+ffrEE088Ebfcckv8x3/8R0RE/Nu//Vuce+658YlPfKKOT5MdLVq0iDPOOKNRamdLZWVlrdfBP/gmJ1A/1hRkj/UE2WM9QfZYT5A9x8J6Wrx4cZ1eQjyYZhty5ufnJ+33338/qqurIycn57D37dixI2nvf/BPXet+MF7NQ4UyqZubm1vrngULFsSbb76Z9G+55ZaDBpwfaNGiRdxxxx3x29/+NtauXRvV1dXx+OOPN1rIGXHgdvy0a9my5TH3TNCYrCnIHusJssd6guyxniB7mut6avxjtRtJ9+7dk3ZlZWVs2bIlo/tqHuZz/PHHN6huRNT6fmamdbt06VIrkP3d736XtDt06BCf/exnDztemzZt4pJLLkn6r7zySoMTcwAAAABoDM025OzVq1etfmlpaUb3lZWVJe1TTz21znVPOOGEWt/TrE/d/d/SfOedd5J2r169Mj4xvU+fPkl7586dGQe9AAAAANCUNNuQs2fPnrW2my9btiyj+5YvX560a4aEmWrVqlUUFhbWuW7N6/r27VvrbzVDzf2/3Xko+x+ClMl2fQAAAABoapptyBkRMXDgwKT9yiuvHPb65cuX19pefvbZZx+Vulu3bo2lS5d+aN0ePXok7TVr1tT6fuehrFy5Mmm3adMmOnfunNF9AAAAANCUNOuQc9iwYUl7zpw5sWHDhkNeP23atKRdUFAQRUVFDa5bUlJS6wSsg5kxY0ZUVFRExL6DiwYNGlTr7zX7e/fujZ/+9KeHnUNlZWWt6z796U97kxMAAACAVGr2IWe3bt0iYl84ePPNNydh4v7mzZsXzzzzTNIfNWpUvev2798/+vXrl/RvueWWD337ctmyZfHwww8n/SuuuCLatm1b65qPfvSjceaZZyb9iRMnxp/+9KdDzuHee++Nt956K+mPHDmyTs8AAAAAAE1Fsw45W7duHTfeeGPSf+WVV+IrX/lKrcOAKioqYsaMGXHDDTdEZWVlREQUFhbG5ZdfftAxhwwZEkVFRVFUVBRDhgz50Nrjx49P3pxcsWJFjBo1qtb3Pqurq+PFF1+Ma665Jnbu3BkREV27do0xY8YcdLx//ud/Tg402rlzZ1xxxRXx4x//+IDwdM2aNfH1r389Jk+eXGvOh5orAAAAADRluY09gcZ2ySWXxOuvvx5PP/10ROwLOocNGxZFRUWRl5cXK1eujM2bNyfXd+rUKR544IHIzW3YP93AgQNj3LhxMXHixIiIWLp0aXz+85+P0047Lbp06RKrV6+utX2+bdu2MWnSpOjYseNBx/vYxz4Wd999d4wfPz4qKipi586d8d3vfjfuvffeOPXUU+O4446Ld955J/785z/Xuu/MM8+M++67r0HPAgAAAACNqdmHnBERt99+e3Tu3Dkef/zxKC8vj6qqqoOeel5QUBAPPPBA9O7dOyt1x4wZEx06dIj7778/eVvzzTffPOC6Hj16xH333RcDBgw45Hif+9zn4iMf+UjccsstsXr16oiI2L1790GfpWXLljFy5Mi45ZZbap3ODgAAAABpI+SMiJycnBg3blxcfPHF8eyzz8b8+fNj/fr1sWvXrsjPz4++ffvGhRdeGBdffHHWA8Grrroqhg4dGjNmzIi5c+dGWVlZ7NixI/Ly8qKwsDCGDh0aI0aMiLy8vIzG++QnPxn//d//HS+88ELMnj07/vjHP8amTZti7969kZ+fHyeffHIMHDgwRowYESeddFJWnwUAAAAAGoOQs4aCgoIYP358jB8/vt5jzJ49u8739OjRI8aOHRtjx46td92aWrZsGcOHD4/hw4dnZTwAAAAAaMqa9cFDAAAAAED6CTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECq5Tb2BJqSlStXxvTp02PBggVRVlYWFRUV0a1btygsLIyLLroozj///MjNzf4/2dtvvx3Tp0+P+fPnx+rVq2P37t3RtWvX6N27dwwfPjyGDx8e7dq1+9D7Z86cGbfcckuD5/HGG280eAwAAAAAONqEnP/rwQcfjEceeSQqKipq/V5aWhqlpaXx8ssvR3Fxcdx7773Ru3fvrNWdPn163H333bFr165av69bty7WrVsX8+fPj0cffTTuueeeOPPMM7NWFwAAAACOFULOiLjzzjtj6tSpST83NzeKioqiXbt2sXLlytiyZUtERJSUlMSoUaNixowZ0bNnzwbXnTJlSkyYMCHp5+TkxOmnnx6dOnWKVatWxTvvvBMREatWrYqrr746nnrqqejXr98B43Tv3j0GDx5cp9obN26s9ebmOeecU8+nAAAAAIDG1exDzlmzZtUKOC+44IK47bbb4vjjj4+IiPLy8pg5c2ZMmDAhdu3aFZs2bYobbrghnnvuucjJyal33YULF8Y999yT9M8666z43ve+FyeffHJERFRXV8dLL70Ut912W2zZsiV27doVX/va12LWrFkHbF0/55xz6hRS7tq1K0aOHJn0CwoK4oEHHqj3swAAAABAY2rWBw+Vl5fH97///aR/3nnnxaRJk5KAMyKiVatWMXLkyHjooYeS73EuWbIknn/++QbVnjBhQlRWVkZERL9+/eKxxx5LAs6IfW91Dhs2LKZMmRIdOnSIiIj169fHk08+2aC6ERG333578hZn27Zt44EHHoiOHTs2eFwAAAAAaAzNOuR86aWXYt26dRGxb4v6bbfdFi1aHPyfZPDgwbXefpw8eXK96y5atCgWLlyY9G+99dZo27btQa/t06dPXH/99Un/ySefTMLR+njhhRfipz/9adK/+eab4/TTT6/3eAAAAADQ2Jp1yPmLX/wiaQ8aNChOOOGEQ15fM+RcsmRJlJaWNrhuQUFB9O/f/5DXX3bZZclbpJs3b47XXnutXnW3bdsWt99+e9L/1Kc+FX/7t39br7EAAAAAoKlotiFndXV1LFiwIOln8k3LoqKi6Nq1a9KfPXt2vWr/5je/qVPd/Pz8KC4uTvpz5sypV937778/3n333YiIaN26ddx5550N+q4oAAAAADQFzTbkXLt2bWzfvj3p1wwRD6WoqChpL168uM51y8vL46233kr6Bzst/UjUfeONN+KZZ55J+tdcc0306tWrzuMAAAAAQFPTbEPOVatW1erXPPTnUE488cSkvWbNmjrXLSsri/Ly8qSfadDY0Lr33XdfVFVVRURE165d47rrrqvzGAAAAADQFDXbkHPjxo1Ju0WLFrVOVD+UmtvVa45Rn7r7j5dp3XfffTcJLDPxhz/8IX71q18l/WuvvTY5sR0AAAAA0i63sSfQWLZt25a0O3To8KGnqu8vLy/voGPUp25ExHHHHZfRfR07dkza1dXVsX379ujUqVNG9z7yyCNJu0ePHk3ysKGKiorGnkKD7H/i/f59oG6sKcge6wmyx3qC7LGeIHusp32abci5Z8+epN22bduM72vdunXS3rt3b4Pq1qV2q1atDjnOh1mxYkXMnTs36Y8ePbrWMzQFVVVVsWjRosaeRlaVlJQ09hTgmGJNQfZYT5A91hNkj/UE2dNc11Oz3a5e87uYmb7FGRGRm/t/uXB93j7c/55Ma9esG5F5Kv+Tn/wkaefl5cVll12W0X0AAAAAkBbNNuRs2bJl0q7L9y1rhpT7v12Zif1DzUxr7x+OZlJ7165d8bOf/SzpjxgxotZ2ewAAAAA4FjTb7ert2rVL2plu/Y6ovUW9TZs2Dar7Qe1Mto/vvzU+k9ovv/xyvP/++0l/xIgRGc7y6GrRokWcccYZjT2NBqmsrKz1OnhxcXGtIB2oG2sKssd6guyxniB7rCfInmNhPS1evLhOLyEeTLMNOfPz85P2+++/H9XV1ZGTk3PY+3bs2JG0Mz3458PqfjBezUOFMqmbm5ub0T3/9V//lbT79esXRUVFdZjp0bX/dvy0a9my5TH3TNCYrCnIHusJssd6guyxniB7mut6arbb1bt37560KysrY8uWLRndt3HjxqR9/PHHN6huRMSmTZvqXLdLly6HDWR3794dr7zyStIfPnx4HWYJAAAAAOnRbEPOXr161eqXlpZmdF9ZWVnSPvXUU+tc94QTTqj1Pc361D3llFMOe/2CBQti9+7dSf/888/PfJIAAAAAkCLNNuTs2bNnre3my5Yty+i+5cuXJ+0+ffrUuW6rVq2isLCwznVrXte3b9/DXv/qq68m7VNOOeWAUBcAAAAAjhXNNuSMiBg4cGDSrrm1+8MsX7681vbys88++6jU3bp1ayxdurROdf/whz8k7Y997GN1nCEAAAAApEezDjmHDRuWtOfMmRMbNmw45PXTpk1L2gUFBfU+yKdm3ZKSklonYB3MjBkzoqKiIiL2HVw0aNCgQ15fXl4eS5YsSfrFxcX1micAAAAApEGzDzm7desWERF79+6Nm2++OQkT9zdv3rx45plnkv6oUaPqXbd///7Rr1+/pH/LLbfUOj29pmXLlsXDDz+c9K+44opo27btIcd/6623ory8POmfccYZ9Z4rAAAAADR1zTrkbN26ddx4441J/5VXXomvfOUrtQ4DqqioiBkzZsQNN9wQlZWVERFRWFgYl19++UHHHDJkSBQVFUVRUVEMGTLkQ2uPHz8+OSF9xYoVMWrUqFrf+6yuro4XX3wxrrnmmti5c2dERHTt2jXGjBlz2OdauXJlrf5JJ5102HsAAAAAIK1yG3sCje2SSy6J119/PZ5++umI2Bd0Dhs2LIqKiiIvLy9WrlwZmzdvTq7v1KlTPPDAA5Gb27B/uoEDB8a4ceNi4sSJERGxdOnS+PznPx+nnXZadOnSJVavXl1r+3zbtm1j0qRJ0bFjx8OOXfMk9oiI4447rkFzBQAAAICmrNmHnBERt99+e3Tu3Dkef/zxKC8vj6qqqoOeel5QUBAPPPBA9O7dOyt1x4wZEx06dIj7778/eVvzzTffPOC6Hj16xH333RcDBgzIaNyahyO1bt062rRpk5X5AgAAAEBTJOSMiJycnBg3blxcfPHF8eyzz8b8+fNj/fr1sWvXrsjPz4++ffvGhRdeGBdffHG0bt06q7WvuuqqGDp0aMyYMSPmzp0bZWVlsWPHjsjLy4vCwsIYOnRojBgxIvLy8jIe84PANMJbnAAAAAAc+3Kqq6urG3sSND+vv/56VFVVRUREixYton///o08o4apqKiIRYsWJf0zzzyzwZ80gObMmoLssZ4ge6wnyB7rCbLnWFhP2ciJmvXBQwAAAABA+gk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAquU29gSakpUrV8b06dNjwYIFUVZWFhUVFdGtW7coLCyMiy66KM4///zIzc3+P9nbb78d06dPj/nz58fq1atj9+7d0bVr1+jdu3cMHz48hg8fHu3atavTmHv27In/+q//il/+8pfxxhtvxKZNmyInJye6desWH//4x+OSSy6JT3/601l/FgAAAAA42oSc/+vBBx+MRx55JCoqKmr9XlpaGqWlpfHyyy9HcXFx3HvvvdG7d++s1Z0+fXrcfffdsWvXrlq/r1u3LtatWxfz58+PRx99NO65554488wzMxpz3rx58Z3vfCfKysoO+Nvq1atj9erV8Z//+Z/x//1//198//vfj06dOmXjUQAAAACgUdiuHhF33nlnPPTQQ0nAmZubG/369YsBAwZE586dk+tKSkpi1KhRsXbt2qzUnTJlSnz7299OAs6cnJwoLCyMT33qU9GtW7fkulWrVsXVV18dS5YsOeyYP/vZz2LMmDG1As4TTjghPvWpT8VHP/rRaNmyZfL7//zP/8To0aNj586dWXkeAAAAAGgMzT7knDVrVkydOjXpX3DBBTF37tyYOXNmPPXUUzFv3ry44447ku3imzZtihtuuCGqq6sbVHfhwoVxzz33JP2zzjorXnzxxfj5z38eU6dOjV/96lfx4IMPJiHrrl274mtf+9oBb3zW9Lvf/S5uvvnmqKysjIiIoqKieOqpp2LOnDkxderU+OlPfxr/8z//E5/73OeSe5YuXRo//OEPG/QsAAAAANCYmnXIWV5eHt///veT/nnnnReTJk2K448/PvmtVatWMXLkyHjooYeS73EuWbIknn/++QbVnjBhQhJG9uvXLx577LE4+eSTk7/n5OTEsGHDYsqUKdGhQ4eIiFi/fn08+eSTBx2vsrIyvv3tbydjfvzjH48f//jHMWDAgFrXdevWLe6///4477zzkt+mT58eO3bsaNDzAAAAAEBjadYh50svvRTr1q2LiH1b1G+77bZo0eLg/ySDBw+OkSNHJv3JkyfXu+6iRYti4cKFSf/WW2+Ntm3bHvTaPn36xPXXX5/0n3zyySTIrOmll16KN998MyIi2rVrFz/4wQ/iuOOO+9A5/OM//mPS3rVrV7z66qt1fQwAAAAAaBKadcj5i1/8ImkPGjQoTjjhhENeXzPkXLJkSZSWlja4bkFBQfTv3/+Q11922WXJW6SbN2+O11577YBrZs6cmbT//u///rDPUlBQEF/96lfjuuuui/Hjx8eJJ55Yl0cAAAAAgCaj2Z6uXl1dHQsWLEj655xzzmHvKSoqiq5du8bGjRsjImL27Nlx9dVX17n2b37zmzrVzc/Pj+Li4uTtzzlz5sSnP/3p5O+7d+9OxszJyYnLL788o3l84xvfyHzSAAAAANBENds3OdeuXRvbt29P+sXFxRndV1RUlLQXL15c57rl5eXx1ltvJf1+/fo1uG5JSUns3bs3IiJ69eoV3bt3r/O8AAAAACCtmu2bnKtWrarVr3noz6HU3Na9Zs2aOtctKyuL8vLypN+rV68G133jjTeSdmFhYdJ+8803Y+bMmTF//vx4++23o6KiInr06BHnnHNOjBw5Mk4//fQ6zx8AAAAAmppmG3J+sOU8IqJFixa1TlQ/lK5dux50jPrU3X+8TOu+++67UVVVlRySVPPboN27d489e/bEpEmTYsqUKVFVVVVrnLfeeiveeuut+MlPfhKjR4+Ob37zmx962BIAAAAApEGzDTm3bduWtDt06JBx0JeXl3fQMepTNyIOeQJ6TR07dkza1dXVsX379ujUqVNERGzatCn5W+vWrePrX/96zJkzJyIiWrZsGaeffnrk5+fH22+/nbwFWllZGY899lisXbs2fvCDH0ROTk6dnyWbKioqGrV+Q+1/4v3+faBurCnIHusJssd6guyxniB7rKd9mm3IuWfPnqTdtm3bjO9r3bp10v7gO5j1rVuX2q1atfrQcWp+W/SZZ55J+ldccUV8/etfr/WW6rJly+I73/lOcojRf//3f8dHP/rRuPbaa+v0HNlUVVUVixYtarT6R0JJSUljTwGOKdYUZI/1BNljPUH2WE+QPc11PTXbfco1v4tZl+3aubn/lwvX5+3D/e/JtHbNuhG1U/maYesHAee4cePiu9/97gHb8Pv27Rs/+tGP4pOf/GTy27/+67/G5s2bM3sAAAAAAGhimm3I2bJly6S9/3crD6VmSLn/25WZ2D/UzLT2/uFozdr7bzUfMGBAXHfddR86Vps2bWLChAnJXHbt2hXPPvtsRvMAAAAAgKam2W5Xb9euXdLefwv5odR8a7JNmzYNqvtB7Zpb4DOpu3/t9u3b1/rbVVddddjxevXqFZ/+9Kfj17/+dURE/PrXv260LestWrSIM844o1FqZ0tlZWWt18GLi4trBelA3VhTkD3WE2SP9QTZYz1B9hwL62nx4sV1egnxYJptyJmfn5+033///aiurs7o8J0dO3Yk7Q8O/qlv3Q/Gq3moUCZ1c3Nza93ToUOHWtd+4hOfyGguH//4x5OQ86233sroniNl/+34adeyZctj7pmgMVlTkD3WE2SP9QTZYz1B9jTX9dRst6t37949aVdWVsaWLVsyum/jxo1Je//vXda1bkTtk9EzrdulS5dagWznzp1rXdulS5eMxvyLv/iLpJ3p8wMAAABAU9NsQ85evXrV6peWlmZ0X1lZWdI+9dRT61z3hBNOqPU9zfrUPeWUU2r97bTTTqvVf++99zIas+bhS80x4QcAAADg2NBsQ86ePXvW2m6+bNmyjO5bvnx50u7Tp0+d67Zq1SoKCwvrXLfmdX379q31t6Kiolr9P//5zxmNuWHDhqTdo0ePjO4BAAAAgKam2YacEREDBw5M2q+88sphr1++fHmt7eVnn332Uam7devWWLp06YfW7du3b63A9pe//GVG8/jtb3+btIuLizO6BwAAAACammYdcg4bNixpz5kzp9abjQczbdq0pF1QUHDAG5T1qVtSUlLrBKyDmTFjRlRUVETEvoOLBg0aVOvvrVq1ir/+679O+s8991y8++67hxxz0aJFsXjx4oPOCQAAAADSpNmHnN26dYuIiL1798bNN9+chIn7mzdvXjzzzDNJf9SoUfWu279//+jXr1/Sv+WWW2qdnl7TsmXL4uGHH076V1xxRbRt2/aA66688srkW5/btm2Lf/qnf4q9e/cedMzt27fHt771raR/4oknxpAhQ+r1LAAAAADQ2Jp1yNm6deu48cYbk/4rr7wSX/nKV2odBlRRUREzZsyIG264ISorKyMiorCwMC6//PKDjjlkyJAoKiqKoqKiQwaH48ePT05IX7FiRYwaNarW9z6rq6vjxRdfjGuuuSZ27twZERFdu3aNMWPGHHS80047La677rqkP2fOnPjSl750wFuif/zjH+MLX/hCvPnmm8lv3/rWtxw8BAAAAEBqNftk65JLLonXX389nn766YjYF3QOGzYsioqKIi8vL1auXBmbN29Oru/UqVM88MADDQ4FBw4cGOPGjYuJEydGRMTSpUvj85//fJx22mnRpUuXWL16da3t823bto1JkyZFx44dP3TMr371q1FWVhY//elPI2LfNzdHjBgRJ510UnzkIx+Jd955J1atWlXrnq997WvxV3/1Vw16FgAAAABoTM0+5IyIuP3226Nz587x+OOPR3l5eVRVVR301POCgoJ44IEHonfv3lmpO2bMmOjQoUPcf//9yduaNd+w/ECPHj3ivvvuiwEDBhxyvJYtW8aECROid+/e8fDDDydjlpaW1no7NSKiXbt28Y//+I/xhS98ISvPAgAAAACNRcgZETk5OTFu3Li4+OKL49lnn4358+fH+vXrY9euXZGfnx99+/aNCy+8MC6++OJo3bp1VmtfddVVMXTo0JgxY0bMnTs3ysrKYseOHZGXlxeFhYUxdOjQGDFiROTl5WX8LNdee218/vOfj//8z/+MOXPmRGlpaWzdujXatGkTBQUF8ZnPfCZGjhwZXbt2zeqzAAAAAEBjEHLWUFBQEOPHj4/x48fXe4zZs2fX+Z4ePXrE2LFjY+zYsfWuu7/u3bvHtddeG9dee23WxgQAAACApqhZHzwEAAAAAKSfkBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKRabmNPoClZuXJlTJ8+PRYsWBBlZWVRUVER3bp1i8LCwrjooovi/PPPj9zc7P+Tvf322zF9+vSYP39+rF69Onbv3h1du3aN3r17x/Dhw2P48OHRrl27jMZ6/PHH45577qlT/ZYtW8bSpUvrM3UAAAAAaHRCzv/14IMPxiOPPBIVFRW1fi8tLY3S0tJ4+eWXo7i4OO69997o3bt31upOnz497r777ti1a1et39etWxfr1q2L+fPnx6OPPhr33HNPnHnmmYcdT1gJAAAAQHMj5IyIO++8M6ZOnZr0c3Nzo6ioKNq1axcrV66MLVu2RERESUlJjBo1KmbMmBE9e/ZscN0pU6bEhAkTkn5OTk6cfvrp0alTp1i1alW88847ERGxatWquPrqq+Opp56Kfv36HXLM5cuXJ+2Pfexjcdxxxx12Hi1btqznEwAAAABA42v2IeesWbNqBZwXXHBB3HbbbXH88cdHRER5eXnMnDkzJkyYELt27YpNmzbFDTfcEM8991zk5OTUu+7ChQtrbSs/66yz4nvf+16cfPLJERFRXV0dL730Utx2222xZcuW2LVrV3zta1+LWbNmfejW9T179sSf//znpD9p0qSshLEAAAAA0JQ164OHysvL4/vf/37SP++882LSpElJwBkR0apVqxg5cmQ89NBDyfc4lyxZEs8//3yDak+YMCEqKysjIqJfv37x2GOPJQFnxL63OocNGxZTpkyJDh06RETE+vXr48knn/zQMd94441kzOOOO07ACQAAAECz0KxDzpdeeinWrVsXEfu2qN92223RosXB/0kGDx4cI0eOTPqTJ0+ud91FixbFwoULk/6tt94abdu2Pei1ffr0ieuvvz7pP/nkk0mQub+aW9WLiorqPT8AAAAASJNmHXL+4he/SNqDBg2KE0444ZDX1ww5lyxZEqWlpQ2uW1BQEP379z/k9ZdddlnyFunmzZvjtddeO+h1y5YtS9p9+vSp19wAAAAAIG2abchZXV0dCxYsSPrnnHPOYe8pKiqKrl27Jv3Zs2fXq/ZvfvObOtXNz8+P4uLipD9nzpyDXlcz5PQmJwAAAADNRbMNOdeuXRvbt29P+jVDxEOpGR4uXry4znXLy8vjrbfeSvqHOy0907rV1dXxxhtvJH1vcgIAAADQXDTb09VXrVpVq1/z0J9DOfHEE5P2mjVr6ly3rKwsysvLk36vXr2yUnf16tWxc+fOiIho2bJlnHbaafGrX/0qfv7zn8frr78e77zzTrRq1Sq6d+8eAwcOjEsuuSQ+9rGP1Xn+AAAAANDUNNuQc+PGjUm7RYsWtU5UP5Sa29VrjlGfuvuPl2ndd999N6qqqmodklRzq3r79u1j1KhRB7zxuWfPntixY0esXLkyfvKTn8RFF10Ud9xxR7Rv377OzwEAAAAATUWzDTm3bduWtDt06PChp6rvLy8v76Bj1KduRMRxxx2X0X0dO3ZM2tXV1bF9+/bo1KlT8lvNk9Xfe++9JODs3LlznHzyydGqVatYs2ZNvPPOO8l1P//5z+PNN9+MqVOn1hq/MVRUVDRq/Yba/8T7/ftA3VhTkD3WE2SP9QTZYz1B9lhP+zTbkHPPnj1Ju23bthnf17p166S9d+/eBtWtS+1WrVodcpyab3JGRJxyyilx8803x2c+85lo2bJl8vsf/vCHuPvuu2PRokXJfTfeeGP8+7//e8bPkG1VVVXJfI4VJSUljT0FOKZYU5A91hNkj/UE2WM9QfY01/XUbA8eqvldzEzf4oyIyM39v1y4Pm8f7n9PprVr1o04MJWv+Y3R/v37x8yZM+O8886rFXBGRHziE5+IH//4xzF48ODkt1/96lfx8ssvZzQPAAAAAGhqmu2bnDXDv6qqqozvqxlS7v92ZSb2DzUzrb1/OLp/7RdeeCHeeeedKCsri1NPPTU6dOjwoWO1bt067r333hg6dGi8//77ERHxox/9KP7qr/4qo7kAAAAAQFPSbEPOdu3aJe39t34fSs0t6m3atGlQ3Q9q19wCn0ndg9XOycmJ7t27R/fu3TOaR5cuXeJzn/tcPP300xER8fvf/z527dp1wPyOhhYtWsQZZ5xx1OtmU2VlZa3XwYuLiw94ixbInDUF2WM9QfZYT5A91hNkz7GwnhYvXlynlxAPptmGnPn5+Un7/fffj+rq6sjJyTnsfTt27EjaNQ/+qU/dD8bL5NCfmnVzc3OzclDQJz7xiSTkLC8vj3Xr1kVBQUGDx62P/bfjp13Lli2PuWeCxmRNQfZYT5A91hNkj/UE2dNc11Oz/SZnzTceKysrY8uWLRndt3HjxqR9/PHHN6huRMSmTZvqXLdLly4ZBbKHs//863NaPAAAAAA0tmYbcvbq1atWv7S0NKP7ysrKkvapp55a57onnHBCre9p1qfuKaecUue6B7P/Nv1DfccTAAAAAJqqZhty9uzZs9Z282XLlmV03/Lly5N2nz596ly3VatWUVhYWOe6Na/r27dvrb+99tpr8b3vfS+++c1vxrXXXpvxNwxqBqw5OTnRo0ePjO4DAAAAgKak2YacEREDBw5M2q+88sphr1++fHmt7eVnn332Uam7devWWLp06YfWLSsriyeffDKef/75mDt3bq2PzR7KvHnzkvbpp59+wPdCAQAAACANmnXIOWzYsKQ9Z86c2LBhwyGvnzZtWtIuKCiIoqKiBtctKSk5bCg5Y8aMqKioiIh9BxcNGjSo1t/POuusWt/ofOaZZw47h5KSkvj1r3+d9C+66KKM5g4AAAAATU2zDzm7desWERF79+6Nm2++OQkT9zdv3rxa4eGoUaPqXbd///7Rr1+/pH/LLbfUOj29pmXLlsXDDz+c9K+44opo27ZtrWtOOumkWm93Pvfcc/Hqq69+aP2NGzfGN7/5zaiuro6IfQcZ/e3f/m29ngUAAAAAGluzDjlbt24dN954Y9J/5ZVX4itf+Uqtb1VWVFTEjBkz4oYbbojKysqIiCgsLIzLL7/8oGMOGTIkioqKoqioKIYMGfKhtcePH5+8fblixYoYNWpUre99VldXx4svvhjXXHNN7Ny5MyIiunbtGmPGjDnoeDfffHPk5uZGxL7T4q+77rp46qmnYu/evck1VVVV8fLLL8fIkSNj1apVye+33357HHfccR86VwAAAABoynIbewKN7ZJLLonXX389nn766YjYF3QOGzYsioqKIi8vL1auXBmbN29Oru/UqVM88MADSaBYXwMHDoxx48bFxIkTIyJi6dKl8fnPfz5OO+206NKlS6xevbrW9vm2bdvGpEmTomPHjgcdr0+fPjFhwoQYP358VFVVxa5du+KOO+6I+++/P4qKiqJFixbx5z//Od59991a99122221ts8DAAAAQNo0+5AzYt+bjJ07d47HH388ysvLo6qq6qCnnhcUFMQDDzwQvXv3zkrdMWPGRIcOHeL+++9P3tZ88803D7iuR48ecd9998WAAQMOOd7FF18cxx9/fNx8881JQPr+++/HH/7whwOu7d69e9x6661x/vnnZ+FJAAAAAKDxCDkjIicnJ8aNGxcXX3xxPPvsszF//vxYv3597Nq1K/Lz86Nv375x4YUXxsUXXxytW7fOau2rrroqhg4dGjNmzIi5c+dGWVlZ7NixI/Ly8qKwsDCGDh0aI0aMiLy8vIzGGzRoUPzyl7+M559/PubMmRMlJSWxefPmyMnJib/4i7+I008/PYYOHRqf/exno0OHDll9FgAAAABoDELOGgoKCmL8+PExfvz4eo8xe/bsOt/To0ePGDt2bIwdO7bedWtq3bp1XHrppXHppZdmZTwAAAAAaMqa9cFDAAAAAED6CTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFKtSYScU6ZMaewpAAAAAAAp1SRCzvvuuy9++9vfNvY0AAAAAIAUahIhZ0VFRYwbNy42bNhQp/tef/31IzQjAAAAACAtmkTIOWLEiNi0aVPccMMNsXfv3ozu+dnPfhbXXHPNkZ0YAAAAANDkNYmQ89vf/nZ89KMfjcWLF8ftt99+2OsfeOCBGD9+fMaBKAAAAABw7GoSIWfr1q3jhz/8YRx33HExc+bMmDZt2kGv27t3b3zjG9+IRx55JKqrq+Ov//qvj/JMAQAAAICmpkmEnBERJ554Ytx3332Rk5MT3/ve92LhwoW1/r5p06b4whe+EC+88EJERHz961+P++67rxFmCgAAAAA0JU0m5IyI+Mu//Mu4/vrro7y8PMaOHRubNm2KiIjly5fH5ZdfHosXL462bdvGpEmT4qtf/WojzxYAAAAAaAqOesi5ffv2Q/79+uuvj3PPPTfeeeedGDt2bMyaNSuuvPLKePvtt6N79+7x4x//OC644IKjNFsAAAAAoKnLPdoFBw4cGCeddFJ89KMfjX79+kVxcXH069cvjjvuuOSa++67Ly655JJ4/fXX4/XXX4/q6uooLi6Of/3Xf41u3bod7SkDAAAAAE3YUQ85q6urY82aNbFmzZrk+5oR+77JWTP0vPPOO+O6666LPXv2xGc/+9m4++67o02bNkd7ugAAAABAE3fUQ85HH300li5dGkuXLo0lS5bE2rVrIyKitLQ0SktLawWfLVu2jLy8vCgsLIxXX301+vTpE927dz/aUwYAAAAAmrCjHnJ+5jOfic985jNJf/v27bVCz6VLl8bq1aujqqoqKioq4r333osf/vCHyfX5+fnRp0+f6Nu3bxQVFcXf/M3fHO1HAAAAAACakKMecu7vuOOOi7PPPjvOPvvs5Lddu3bFsmXLagWfK1eujIqKiti6dWu8+uqr8eqrr0aLFi2yGnKuXLkypk+fHgsWLIiysrKoqKiIbt26RWFhYVx00UVx/vnnR25u9v/J3n777Zg+fXrMnz8/Vq9eHbt3746uXbtG7969Y/jw4TF8+PBo165dg+tUV1fH6NGj4ze/+U1ERPzoRz+KgQMHNnhcAAAAAGhMjR5yHky7du3iE5/4RHziE59Iftu7d2+sWLEiCT6XLFkSf/rTn7JW88EHH4xHHnkkKioqav3+wTb6l19+OYqLi+Pee++N3r17Z63u9OnT4+67745du3bV+n3dunWxbt26mD9/fjz66KNxzz33xJlnntmgWtOmTUsCTgAAAAA4VjTJkPNgWrduHcXFxVFcXJz8VllZmZWx77zzzpg6dWrSz83NjaKiomjXrl2sXLkytmzZEhERJSUlMWrUqJgxY0b07NmzwXWnTJkSEyZMSPo5OTlx+umnR6dOnWLVqlXxzjvvRETEqlWr4uqrr46nnnoq+vXrV69aZWVlce+99zZ4zgAAAADQ1LRo7Ak0RMuWLRs8xqxZs2oFnBdccEHMnTs3Zs6cGU899VTMmzcv7rjjjmS7+KZNm+KGG26I6urqBtVduHBh3HPPPUn/rLPOihdffDF+/vOfx9SpU+NXv/pVPPjgg9G5c+eI2LeF/2tf+9oBb3xmorq6Or71rW/Fzp07GzRnAAAAAGiKUhFyVlVVHZFxy8vL4/vf/37SP++882LSpElx/PHHJ7+1atUqRo4cGQ899FDyPc4lS5bE888/36DaEyZMSN5E7devXzz22GNx8sknJ3/PycmJYcOGxZQpU6JDhw4REbF+/fp48skn61zrJz/5SSxYsKBB8wUAAACApqrJhZy7du2K119/PX7yk5/EbbfdFpdffnl88pOfPCK1XnrppVi3bl1E7Nuiftttt0WLFgf/Jxk8eHCMHDky6U+ePLnedRctWhQLFy5M+rfeemu0bdv2oNf26dMnrr/++qT/5JNP1mmbfmlpadx3330Rse+QJwAAAAA41jTqNzk3btwYy5Yti+XLl8eyZcti2bJlsWbNmlpbwaurqyMnJ+eI1P/FL36RtAcNGhQnnHDCIa8fOXJkPPXUUxGx723O0tLSOOmkkxpUt6CgIPr373/I6y+77LKYOHFiVFRUxObNm+O1116LT3/604etU11dHf/0T/+UbFO/+eab41vf+lad5wsAAAAATdlRCznfeuutJMxcunRpvPHGG/Huu+/Wumb/71weqXDzg1o1t3Cfc845h72nqKgounbtGhs3boyIiNmzZ8fVV19d59o1TzjPpG5+fn4UFxcnb3/OmTMno5Cz5jb1wYMHx4gRI4ScAAAAABxzsh5y7tmzJ954441YunRp8pbmihUrYvfu3bWuy+Tgng/e4jzcG5b1sXbt2ti+fXvSr3lq+6EUFRUlIefixYvrXLe8vDzeeuutpJ/paelFRUVJyJlJ3Zrb1PPy8uLOO++s81wBAAAAIA0aFHK+++67yTbzD97SXL169QEHBdUMNPd/O/ODfsuWLaN3797J/woKCqJ3795x6qmnfuj3Khti1apVtfo1D/05lBNPPDFpr1mzps51y8rKory8POn36tUr63X3P039pptuio985CN1nisAAAAApEGDQs5zzjmnVmh5sDBz/zc2q6ur47jjjovTTz89CgsLY9q0aRER0bNnz/jZz37WkOnUyQdvY0ZEtGjRotaJ6ofStWvXg45Rn7r7j5dp3XfffTeqqqo+9JCkH//4x/Haa69FRMSnP/3pWgcmAQAAAMCxJivb1Q+29by6ujratGkTBQUFUVhYmISahYWF0b179+S6adOmHdFvb36Ybdu2Je0OHTp8aGC4v7y8vIOOUZ+6EZmfeN6xY8ekXV1dHdu3b49OnTodcN2aNWvi/vvvj4iI9u3b26YOAAAAwDEvKyFnTk5OHH/88dG/f/8kyCwsLIxevXo1SoCZiT179iTtumyHb926ddLeu3dvg+rWpXarVq0OOU7E/21T37VrV0RE/MM//EOtbe5NWUVFRWNPoUEqKysP2QfqxpqC7LGeIHusJ8ge6wmyx3raJ2sHD7333nvRu3fv+PKXvxzt2rXL1rBHTM3vYmb6FmdERG7u//2T1SeY2/+eTGvXrBtx8P9gp06dGr/97W8jIuKss86KK6+8ss7zawxVVVWxaNGixp5GVpWUlDT2FOCYYk1B9lhPkD3WE2SP9QTZ01zXU+bp3kF8/etfj7Zt20Z1dXXs2bMn/u3f/i3OP//8eO6557I1vyOmZcuWSXv/g5IOpWZIuf/blZnYP9TMtPb+4ej+tdesWRMTJ06MiH1vh951111N9i1aAAAAAMimBoWcX/3qV2PWrFkxfPjwqK6ujurq6ti0aVP88z//c1xyySWxYMGCbM0z62q+bXqwrd8fpuYW9TZt2jSobl1q7781vmbt6urquOWWW5Jt6uPGjcv41HYAAAAASLsGb1fv3r17TJw4Ma688sq48847Y/ny5RERsWzZsrjmmmvivPPOi5tuuilOOeWUhpbKqvz8/KT9/vvvR3V1dUZvPu7YsSNpH+zgn7rU/WC8mocKZVI3Nze31j0/+tGP4ne/+11ERPTv3z+++MUv1nlejalFixZxxhlnNPY0GqSysrLW6+DFxcW13hYG6saaguyxniB7rCfIHusJsudYWE+LFy+u007rg8naNzkHDBgQP/3pT2PatGnxwx/+MLZu3RrV1dUxZ86c+NWvfhVXXnll/L//9/8yPk38SKt5wntlZWVs2bIlunTpctj7Nm7cmLSPP/74BtWNiNi0aVN85CMfqVPdLl26JIHs6tWr4wc/+EFE7Hu783vf+16dvjHaVOz/zdG0a9my5TH3TNCYrCnIHusJssd6guyxniB7mut6yuoT5+TkxJVXXhl//dd/HZMmTYoZM2ZEZWVlVFRUxNSpU+M///M/4/rrr48vfOELjZ4o77+du7S0NKOQs6ysLGmfeuqpda57wgknRKtWrZKDj0pLSzN6i7Fm3ZpvxT7++OPJNvUOHTrEXXfdlfFc7r333lpvlj7++OMZ3wsAAAAATcURiXXz8/Pj29/+dowcOTLuuuuu5MTvbdu2xYQJE+InP/lJ3HTTTTFkyJAjUT4jPXv2jE6dOsXWrVsjYt/2+jPPPPOw932wHT8iok+fPnWu26pVqygsLIwlS5YkdYcPH37Y+5YtW5a0+/btm7Rrfqtz8+bNMX/+/Iznsnjx4oyvBQAAAICm6ojua+7Tp09MnTo1Jk6cGD169Eh+X7VqVVx//fVx9dVXR8S+g3Maw8CBA5P2K6+8ctjrly9fHps2bUr6Z5999lGpu3Xr1li6dGmD6wIAAADAseiobNAfPnx4DBkyJB555JGYPHly7NmzJ6qrq+O1116LnJycRgs5hw0bFi+88EJERMyZMyc2bNhwwDcza5o2bVrSLigoiKKionrXfeKJJyIioqSkJEpKSqK4uPhDr58xY0ZUVFRExL63ZAcNGpT87e677467774749o15/yjH/2oVuAKAAAAAGl01E6oadu2bXzjG9+IX/ziFzF06NAD/v7OO+/EtGnTorKy8mhNKYYNGxbdunWLiH3bvm+++eYkTNzfvHnz4plnnkn6o0aNqnfd/v37R79+/ZL+LbfcUuv09JqWLVsWDz/8cNK/4oorom3btvWuDQAAAADHmqN+DHfPnj3joYceiieeeCJ69+4d1dXVkZOTE7t374477rgjhg8fnrxdeaS1bt06brzxxqT/yiuvxFe+8pUoLS1NfquoqIgZM2bEDTfckASwhYWFcfnllx90zCFDhkRRUVEUFRUd8puj48ePT05IX7FiRYwaNarW9z6rq6vjxRdfjGuuuSZ27twZERFdu3aNMWPG1P+BAQAAAOAY1GjnyQ8aNCh+9rOfxdSpU+Nf/uVf4r333oucnJxYvXp1fOMb34gzzjgj/vEf/zHOOuusIzqPSy65JF5//fV4+umnI2Jf0Dls2LAoKiqKvLy8WLlyZWzevDm5vlOnTvHAAw9Ebm7D/ukGDhwY48aNi4kTJ0ZExNKlS+Pzn/98nHbaadGlS5dYvXp1bNiwIbm+bdu2MWnSpOjYsWOD6gIAAADAseaov8lZU8uWLeOaa66JF154IUaMGBE5OTnJNzr/+Mc/xhe/+MUYM2ZMrFix4ojO4/bbb4/rrrsuWrVqFRERVVVVsWzZsvjtb39bK+AsKCiIH//4x9G7d++s1B0zZkzceuut0b59++S3N998M1577bVaAWePHj3iscceiwEDBmSlLgAAAAAcSxrtTc6aunTpEnfddVf87d/+bdx1112xcOHCJOycO3du/PrXv46SkpIjVj8nJyfGjRsXF198cTz77LMxf/78WL9+fezatSvy8/Ojb9++ceGFF8bFF18crVu3zmrtq666KoYOHRozZsyIuXPnRllZWezYsSPy8vKisLAwhg4dGiNGjIi8vLys1gUAAACAY0WTCDk/cMYZZ8T06dPjP/7jP+L++++PjRs3RkQctcOICgoKYvz48TF+/Ph6jzF79uw639OjR48YO3ZsjB07tt51M/XGG28c8RoAAAAAcDQ16nb1D/M3f/M3MWvWrPjSl76UbCEHAAAAADiYJhlyRkR06NAhbrrppvjZz34Wn/nMZxp7OgAAAABAE9VkQ84PnHrqqfFv//ZvjT0NAAAAAKCJavIhJwAAAADAoQg5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBquY09gaZk5cqVMX369FiwYEGUlZVFRUVFdOvWLQoLC+Oiiy6K888/P3Jzs/9P9vbbb8f06dNj/vz5sXr16ti9e3d07do1evfuHcOHD4/hw4dHu3btMh6voqIiXnzxxfjv//7vWLx4cWzevDnatGkTPXr0iP79+8fFF18cAwYMyPpzAAAAAEBjEHL+rwcffDAeeeSRqKioqPV7aWlplJaWxssvvxzFxcVx7733Ru/evbNWd/r06XH33XfHrl27av2+bt26WLduXcyfPz8effTRuOeee+LMM8887HhvvPFG/MM//EOsWLGi1u979uyJ7du3x4oVK+Lpp5+Oc889N7773e9G9+7ds/YsAAAAANAYbFePiDvvvDMeeuihJODMzc2Nfv36xYABA6Jz587JdSUlJTFq1KhYu3ZtVupOmTIlvv3tbycBZ05OThQWFsanPvWp6NatW3LdqlWr4uqrr44lS5YccrwlS5bEVVddVSvgzM/PjwEDBsQnP/nJOO6445Lf586dG1dccUW88847WXkWAAAAAGgszf5NzlmzZsXUqVOT/gUXXBC33XZbHH/88RERUV5eHjNnzowJEybErl27YtOmTXHDDTfEc889Fzk5OfWuu3DhwrjnnnuS/llnnRXf+9734uSTT46IiOrq6njppZfitttuiy1btsSuXbvia1/7WsyaNeugW9d37doV3/jGN2L79u0REdGhQ4f4p3/6p/ibv/mbaNmyZUTs28b+zDPPxN133x27d++O9evXx9e//vWYNm1avZ8DAAAAABpbs36Ts7y8PL7//e8n/fPOOy8mTZqUBJwREa1atYqRI0fGQw89lHyPc8mSJfH88883qPaECROisrIyIiL69esXjz32WBJwRux7q3PYsGExZcqU6NChQ0RErF+/Pp588smDjvf000/HmjVrknv/9V//NUaMGJEEnBH73lD9u7/7u7j77ruT3/7whz/Eb37zmwY9CwAAAAA0pmYdcr700kuxbt26iNgXAN52223RosXB/0kGDx4cI0eOTPqTJ0+ud91FixbFwoULk/6tt94abdu2Pei1ffr0ieuvvz7pP/nkk0k4WtMzzzyTtC+88MI4++yzP7T+Zz/72SgsLEz6v/zlL+syfQAAAABoUpp1yPmLX/wiaQ8aNChOOOGEQ15fM+RcsmRJlJaWNrhuQUFB9O/f/5DXX3bZZclbpJs3b47XXnut1t/fe++92LlzZ9L/3Oc+d9g5nH766Ul79erVGc0bAAAAAJqiZhtyVldXx4IFC5L+Oeecc9h7ioqKomvXrkl/9uzZ9apdc3t4JnXz8/OjuLg46c+ZM6fW3zt27Bhz5syJ3//+9zF9+vRDvsX5gQ++3RkRyXZ4AAAAAEijZhtyrl27tlbQVzNEPJSioqKkvXjx4jrXLS8vj7feeivp9+vXL2t18/Lyon///pGXl3fIsbZu3Rq///3v6zwHAAAAAGiKmm3IuWrVqlr9mof+HMqJJ56YtD846KcuysrKory8POn36tXrqNT9wI4dO+LGG29Mtrd36NAhrrjiinqPBwAAAACNLbexJ9BYNm7cmLRbtGhR60T1Q6m5Xb3mGPWpu/94mdZ99913o6qq6kMPSaqpqqoq9u7dG6tXr47/+Z//ialTpyZzyM3NjYkTJ0anTp0yfwAAAAAAaGKabci5bdu2pN2hQ4eMAsOIqLUVvOYY9akbEXHcccdldF/Hjh2TdnV1dWzfvj2jcPL//b//Fy+//PIBv/fu3Tu+853vxMCBAzOqf6RVVFQ09hQaZP8T7/fvA3VjTUH2WE+QPdYTZI/1BNljPe3TbEPOPXv2JO22bdtmfF/r1q2T9t69extUty61W7VqdchxPsy6desO+nuXLl1i3bp1UVFRkZzc3liqqqpi0aJFjTqHbCspKWnsKcAxxZqC7LGeIHusJ8ge6wmyp7mup2b7Tc6a38XM9C3OiKgVCNbn7cP978m09v5BZKap/ObNm6O4uDjOPvvs6N27d/L77373u7j55pvj7/7u7+Kdd97JaCwAAAAAaIqa7ZucLVu2TNpVVVUZ31czpNz/7cpM7B9qZlp7/3A009pz5syp9aylpaVx7733xgsvvBAREX/84x/j7//+7+PZZ5+t9ZYqAAAAAKRFsw0527Vrl7Qz3fodUXuLeps2bRpU94PamYSL+2+Nz7R2zYAzIuKkk06KH/7wh3H77bfHT37yk4iIeOONN+Kpp56K0aNHZzRmtrVo0SLOOOOMRqmdLZWVlbVeBy8uLj7g3x7InDUF2WM9QfZYT5A91hNkz7GwnhYvXlynlxAPptmGnPn5+Un7/fffj+rq6sjJyTnsfTt27Eja9TmVvGbdD8areahQJnVzc3MzuudQbrnllpgzZ068/fbbERExc+bMRgs5Iw7cjp92LVu2POaeCRqTNQXZYz1B9lhPkD3WE2RPc11PzfabnN27d0/alZWVsWXLlozu27hxY9I+/vjjG1Q3ImLTpk11rtulS5eMAtlDad26dXz2s59N+n/6059i9+7dDRoTAAAAABpDsw05e/XqVatfWlqa0X1lZWVJ+9RTT61z3RNOOKHW9zTrU/eUU06pc92DOfnkk5N2dXV1bNu2LSvjAgAAAMDR1GxDzp49e9babr5s2bKM7lu+fHnS7tOnT53rtmrVKgoLC+tct+Z1ffv2rfW3RYsWxV133RVf/epX4+qrr854Lvt/i/S4447L+F4AAAAAaCqabcgZETFw4MCk/corrxz2+uXLl9faXn722Wcflbpbt26NpUuXfmjdt99+O370ox/F7Nmz49VXX4033ngjo3ksXrw4aXft2vWAQ5EAAAAAIA2adcg5bNiwpD1nzpzYsGHDIa+fNm1a0i4oKIiioqIG1y0pKal1AtbBzJgxIyoqKiJi38FFgwYNqvX3s846q9YHZZ966qnDzmH9+vXxy1/+MukPGTIko7kDAAAAQFPT7EPObt26RUTE3r174+abb07CxP3NmzcvnnnmmaQ/atSoetft379/9OvXL+nfcssttU5Pr2nZsmXx8MMPJ/0rrrgi2rZtW+uav/iLv4ihQ4cm/WeffTZ++9vffmj9nTt3xje+8Y3koKFWrVo16snqAAAAANAQzTrkbN26ddx4441J/5VXXomvfOUrtQ4DqqioiBkzZsQNN9wQlZWVERFRWFgYl19++UHHHDJkSBQVFUVRUdEh344cP358ckL6ihUrYtSoUbW+91ldXR0vvvhiXHPNNbFz586I2LelfMyYMQcd76abbor27dtHxL7T4q+99tp4+umno7y8vNZ1r776aowcOTJef/315Lfrr7++XocoAQAAAEBTkHv4S45tl1xySbz++uvx9NNPR8S+oHPYsGFRVFQUeXl5sXLlyti8eXNyfadOneKBBx6otT28PgYOHBjjxo2LiRMnRkTE0qVL4/Of/3ycdtpp0aVLl1i9enWt7fNt27aNSZMmRceOHQ86Xs+ePeNf/uVfYsyYMbF3797YuXNn3HbbbXHvvfdGYWFhtGjRIlatWhUbN26sdd9VV10VX/3qVxv0LAAAAADQmJp9yBkRcfvtt0fnzp3j8ccfj/Ly8qiqqjroqecFBQXxwAMPRO/evbNSd8yYMdGhQ4e4//77k7c133zzzQOu69GjR9x3330xYMCAQ443aNCgmDZtWvzjP/5jvPXWWxER8d5778Xvf//7A67t1KlT/MM//MOHvpEKAAAAAGkh5IyInJycGDduXFx88cXx7LPPxvz582P9+vWxa9euyM/Pj759+8aFF14YF198cbRu3Tqrta+66qoYOnRozJgxI+bOnRtlZWWxY8eOyMvLi8LCwhg6dGiMGDEi8vLyMhqvuLg4nn/++XjhhRfixRdfjD/+8Y/x7rvvRkRE586do0+fPvGXf/mX8Td/8zfRoUOHrD4LAAAAADQGIWcNBQUFMX78+Bg/fny9x5g9e3ad7+nRo0eMHTs2xo4dW++6NbVs2TKGDx8ew4cPz8p4AAAAANCUNeuDhwAAAACA9BNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBquY09AaDx7Ny5M+bOnRvr16+PHTt2RF5eXvTo0SPOPffcaN++fWNPDwAAACAjQk5ohlasWBEPP/xwTJkyJbZu3XrA3zt16hSjR4+O6667LgoLC4/+BAEAAADqwHZ1aEa2bdsWI0aMiKKiopg0adJBA86IiK1bt8YPfvCDKCoqihEjRsS2bduO7kQBAAAA6kDICc3E2rVrY/DgwTFz5sw63Tdz5swYPHhwrF279gjNDAAAAKBhhJzQDGzdujUuuOCCKCkpqdf9JSUlceGFF3qjEwAAAGiShJzQDHz5y1+OJUuWNGiMkpKS+NKXvpSlGQEAAABkj5ATjnErVqyo8xb1DzNz5sz405/+lJWxAAAAALJFyAnHuEceeaRJjwcAAADQUEJOOIbt3LkzJk+enNUxJ0+eHDt37szqmAAAAAANIeSEY9jcuXNj69atWR1zy5YtMXfu3KyOCQAAANAQQk44hq1fv/6IjLthw4YjMi4AAABAfQg54Ri2Y8eOIzLue++9d0TGBQAAAKgPISccw/Ly8o7IuB07djwi4wIAAADUh5ATjmE9evQ4IuN27979iIwLAAAAUB9CTjiGnXvuudGpU6esjtm5c+c499xzszomAAAAQEMIOeEY1r59+xg9enRWxxw9enS0b98+q2MCAAAANISQE45x1113XZMeDwAAAKChhJxwjCssLIxLL700K2Ndeumlcfrpp2dlLAAAAIBsEXJCM/DEE09EcXFxg8YoLi6OJ554IkszAgAAAMgeISc0A/n5+TFr1qx6B51nnHFGzJo1K/Lz87M8MwAAAICGE3JCM9GzZ8+YP39+nbeuX3rppTFv3rzo2bPnEZoZAAAAQMMIOaEZyc/Pj+eeey7eeOONGDduXHTq1Omg13Xu3DluvPHGWLFiRTz33HPe4AQAAACatNzGngBw9BUWFsbEiRPjzjvvjLlz58aGDRvivffei44dO0b37t3j3HPPjfbt2zf2NAEAAAAyIuSEZqx9+/bx2c9+trGnAQAAANAgtqsDAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApFpuY0+gKVm5cmVMnz49FixYEGVlZVFRURHdunWLwsLCuOiii+L888+P3Nzs/5O9/fbbMX369Jg/f36sXr06du/eHV27do3evXvH8OHDY/jw4dGuXbuMx6uqqoo5c+bESy+9FIsWLYqNGzfG7t27o2PHjnHSSSfFpz71qbj88sujV69eWX8WAAAAADjahJz/68EHH4xHHnkkKioqav1eWloapaWl8fLLL0dxcXHce++90bt376zVnT59etx9992xa9euWr+vW7cu1q1bF/Pnz49HH3007rnnnjjzzDMPO96yZcvipptuihUrVhzwt82bN8fmzZtj0aJF8cQTT8SVV14Z48ePj1atWmXteQAAAADgaLNdPSLuvPPOeOihh5KAMzc3N/r16xcDBgyIzp07J9eVlJTEqFGjYu3atVmpO2XKlPj2t7+dBJw5OTlRWFgYn/rUp6Jbt27JdatWrYqrr746lixZcsjxXn/99fjbv/3bWgFn27Zt42Mf+1gMHDgwTjnllOT3ysrKmDp1alx33XUHBLsAAAAAkCbNPuScNWtWTJ06NelfcMEFMXfu3Jg5c2Y89dRTMW/evLjjjjuS7eKbNm2KG264IaqrqxtUd+HChXHPPfck/bPOOitefPHF+PnPfx5Tp06NX/3qV/Hggw8mIeuuXbvia1/72gFvfH5gx44dcf3118fu3bsjYl+4+c///M/x2muvxTPPPBM/+tGP4oUXXohZs2bFZz7zmeS++fPnx8SJExv0LAAAAADQmJp1yFleXh7f//73k/55550XkyZNiuOPPz75rVWrVjFy5Mh46KGHku9xLlmyJJ5//vkG1Z4wYUJUVlZGRES/fv3isccei5NPPjn5e05OTgwbNiymTJkSHTp0iIiI9evXx5NPPnnQ8R577LF49913I2Lfm6j//u//HqNGjYo2bdrUuu7UU0+NRx99NC644ILktx/96Eexbt26Bj0PAAAAADSWZh1yvvTSS0m4l5ubG7fddlu0aHHwf5LBgwfHyJEjk/7kyZPrXXfRokWxcOHCpH/rrbdG27ZtD3ptnz594vrrr0/6Tz75ZBKO1vSzn/0saY8YMSI+9alPfWj9nJyc+M53vpMEoOXl5fHiiy/W9TEAAAAAoElo1iHnL37xi6Q9aNCgOOGEEw55fc2Qc8mSJVFaWtrgugUFBdG/f/9DXn/ZZZclb5Fu3rw5XnvttVp/X7NmTa3vhH7uc5877By6dOkSH//4x5P+4sWLM5k6AAAAADQ5zTbkrK6ujgULFiT9c84557D3FBUVRdeuXZP+7Nmz61X7N7/5TZ3q5ufnR3FxcdKfM2dOrb+vXbu21rb00047LaN5dOrUKWlv3bo1o3sAAAAAoKnJbewJNJa1a9fG9u3bk37NEPFQioqKYuPGjRFRv7cfy8vL46233kr6/fr1y7juB1vc96/76U9/Ov74xz/Gli1bYsOGDbXCy0MpKytL2scdd1xG9wAAAABAU9NsQ85Vq1bV6tc89OdQTjzxxKS9Zs2aOtctKyuL8vLypN+rV6+s1e3cuXNyGvvhlJaWxtKlS5N+QUFBRvcBAAAAQFPTbLerf/A2ZkREixYtap2ofig1t6vXHKM+dfcfL9O67777blRVVdW5dk0PPvhgVFdXJ/3zzjuvQeMBAAAAQGNptm9ybtu2LWl36NDhQ09V319eXt5Bx6hP3YjMt4l37NgxaVdXV8f27dsz3pa+v5deein+8z//M+mfffbZGW+bP1IqKioatX5D7X/i/f59oG6sKcge6wmyx3qC7LGeIHusp32abci5Z8+epN22bduM72vdunXS3rt3b4Pq1qV2q1atDjlOppYsWRI33XRTrXHHjx9fr7GypaqqKhYtWtSoc8i2kpKSxp4CHFOsKcge6wmyx3qC7LGeIHua63pqttvVa34XM9O3OCMicnP/Lxeuz9uH+9+Tae2adSPql8ovX748vvSlL8XOnTuT32666ab46Ec/WuexAAAAAKCpaLYhZ8uWLZN2Xb5vWTOk3P/tykzsH2pmWnv/cLSutX//+9/HF7/4xdi6dWvy22WXXRZf/OIX6zQOAAAAADQ1zXa7ert27ZJ2XbZ+19yi3qZNmwbV/aB2zS3wmdSta+1f/vKX8c1vfjN2796d/HbRRRfFHXfckfEYR1KLFi3ijDPOaOxpNEhlZWWt18GLi4trBelA3VhTkD3WE2SP9QTZYz1B9hwL62nx4sUNPmS72Yac+fn5Sfv999+P6urqyMnJOex9O3bsSNr1OfinZt0Pxqt5qFAmdXNzczO6JyLisccei/vvv7/WfyiXXXZZfPe7363TNv0jbf/t+GnXsmXLY+6ZoDFZU5A91hNkj/UE2WM9QfY01/XUdFKuo6x79+5Ju7KyMrZs2ZLRfRs3bkzaxx9/fIPqRkRs2rSpznW7dOly2EC2vLw8/vmf/znuvffeWgHntddeG3fddVeTCjgBAAAAoCGabdLVq1evWv3S0tKM7isrK0vap556ap3rnnDCCbW+p1mfuqeccsohr33//ffj2muvjWeeeSb5rWXLlvHtb387vvnNb9ZtwgAAAADQxDXbkLNnz561tpsvW7Yso/uWL1+etPv06VPnuq1atYrCwsI61615Xd++fT/0uu3bt8fVV18dr7zySvJb+/bt41/+5V/iyiuvrPN8AQAAAKCpa7YhZ0TEwIEDk3bNUPDDLF++vNb28rPPPvuo1N26dWssXbr0sHXff//9+NKXvhSLFy9OfuvatWv8+Mc/jvPOO69ecwUAAACApq5Zh5zDhg1L2nPmzIkNGzYc8vpp06Yl7YKCgigqKmpw3ZKSklonYB3MjBkzoqKiIiL2HVw0aNCgg15388031wo4e/XqFdOmTYt+/frVa54AAAAAkAbNPuTs1q1bRETs3bs3br755iRM3N+8efNqfeNy1KhR9a7bv3//WsHjLbfcUuv09JqWLVsWDz/8cNK/4oorom3btgdcN23atHjxxReTfs+ePWPq1Klx0kkn1XueAAAAAJAGzTrkbN26ddx4441J/5VXXomvfOUrtQ4DqqioiBkzZsQNN9wQlZWVERFRWFgYl19++UHHHDJkSBQVFUVRUVEMGTLkQ2uPHz8+OSF9xYoVMWrUqFrf+6yuro4XX3wxrrnmmti5c2dE7Nt6PmbMmAPG2rFjR0ycOLHWcz388MMHnOQOAAAAAMei3MaeQGO75JJL4vXXX4+nn346IvYFncOGDYuioqLIy8uLlStXxubNm5PrO3XqFA888EDk5jbsn27gwIExbty4JJxcunRpfP7zn4/TTjstunTpEqtXr661fb5t27YxadKk6Nix4wFj/eQnP4nt27cn/by8vLjnnnvqNJ+ioqK46aab6vk0AAAAANB4mn3IGRFx++23R+fOnePxxx+P8vLyqKqqOuip5wUFBfHAAw9E7969s1J3zJgx0aFDh7j//vuTtzXffPPNA67r0aNH3HfffTFgwICDjjNr1qxa/c2bN8f8+fPrNJe9e/fW6XoAAAAAaCqEnBGRk5MT48aNi4svvjieffbZmD9/fqxfvz527doV+fn50bdv37jwwgvj4osvjtatW2e19lVXXRVDhw6NGTNmxNy5c6OsrCx27NgReXl5UVhYGEOHDo0RI0ZEXl7eh47x1ltvZXVOAAAAAJAmQs4aCgoKYvz48TF+/Ph6jzF79uw639OjR48YO3ZsjB07tl41Fy5cWK/7AAAAAOBY0KwPHgIAAAAA0k/ICQAAAACkmpATAAAAAEg13+QEEjt37oy5c+fG+vXrkwOwevToEeeee260b9++sacHAAAAcFBCTiBWrFgRDz/8cEyZMiW2bt16wN87deoUo0ePjuuuuy4KCwuP/gQBAAAADsF2dWjGtm3bFiNGjIiioqKYNGnSQQPOiIitW7fGD37wgygqKooRI0bEtm3bju5EAQAAAA5ByAnN1Nq1a2Pw4MExc+bMOt03c+bMGDx4cKxdu/YIzQwAAACgboSc0Axt3bo1LrjggigpKanX/SUlJXHhhRd6oxMAAABoEoSc0Ax9+ctfjiVLljRojJKSkvjSl76UpRkBAAAA1J+QE5qZFStW1HmL+oeZOXNm/OlPf8rKWAAAAAD1JeSEZuaRRx5p0uMBAAAA1JWQE5qRnTt3xuTJk7M65uTJk2Pnzp1ZHRMAAACgLoSc0IzMnTs3tm7dmtUxt2zZEnPnzs3qmAAAAAB1IeSEZmT9+vVHZNwNGzYckXEBAAAAMiHkhGZkx44dR2Tc995774iMCwAAAJAJISc0I3l5eUdk3I4dOx6RcQEAAAAyIeSEZqRHjx5HZNzu3bsfkXEBAAAAMiHkhGbk3HPPjU6dOmV1zM6dO8e5556b1TEBAAAA6kLICc1I+/btY/To0Vkdc/To0dG+ffusjgkAAABQF0JOaGauu+66Jj0eAAAAQF0JOaGZKSwsjEsvvTQrY1166aVx+umnZ2UsAAAAgPoSckIz9MQTT0RxcXGDxiguLo4nnngiSzMCAAAAqD8hJzRD+fn5MWvWrHoHnWeccUbMmjUr8vPzszwzAAAAgLoTckIz1bNnz5g/f36dt65feumlMW/evOjZs+cRmhkAAABA3Qg5oRnLz8+P5557Lt54440YN25cdOrU6aDXde7cOW688cZYsWJFPPfcc97gBAAAAJqU3MaeAND4CgsLY+LEiXHnnXfG3LlzY8OGDfHee+9Fx44do3v37nHuuedG+/btG3uaAAAAAAcl5AQS7du3j89+9rONPQ0AAACAOrFdHQAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKmW29gTAMiGnTt3xty5c2P9+vWxY8eOyMvLix49esS5554b7du3b+zpAQAAAEeQkBNItRUrVsTDDz8cU6ZMia1btx7w906dOsXo0aPjuuuui8LCwqM/QQAAAOCIs10dSKVt27bFiBEjoqioKCZNmnTQgDMiYuvWrfGDH/wgioqKYsSIEbFt27ajO1EAAADgiBNyAqmzdu3aGDx4cMycObNO982cOTMGDx4ca9euPUIzAwAAABqDkBNIla1bt8YFF1wQJSUl9bq/pKQkLrzwQm90AgAAwDFEyAmkype//OVYsmRJg8YoKSmJL33pS1maEQAAANDYhJxAaqxYsaLOW9Q/zMyZM+NPf/pTVsYCAAAAGpeQE0iFbdu2xV//9V9ndcxHHnkkq+MBAAAAjUPICTR5a9eujUGDBsWbb76Z1XEnT54cO3fuzOqYAAAAwNEn5ASatA8OGlq6dGnWx96yZUvMnTs36+MCAAAAR5eQE2jSsnHQ0KFs2LDhiI0NAAAAHB1CTqDJyuZBQx/mvffeO6LjAwAAAEeekBNoso7GwUAdO3Y84jUAAACAI0vICTRJO3fujMmTJx/xOt27dz/iNQAAAIAjS8gJNElz586NrVu3HtEanTt3jnPPPfeI1gAAAACOPCEn0CStX7/+iNcYPXp0tG/f/ojXAQAAAI4sISfQJO3YseOI17juuuuOeA3+//buPD6q+t7/+DuBRAgJSdgChoqyZFSCFlHwYmqEKgRUek2kVFuVgEuuFlvifnvrSotL2UQltZpgrbcIJq1biOAWiSiKIhqWDKAgCRAUSUgISELm9we/nDsTssxyzizJ6/l4zOMxZ+ac7/d7JvPNnPnM9/v9AAAAAABgPYKcAIJSdHS0peWnp6dr2LBhltYBAAAAAAD8gyAngKDUv39/y8pOTk5Wbm6uZeUDAAAAAAD/IsgJICilpqYqLi7O9HLPOussFRUVKTY21vSyAQAAAABAYBDkBBCUoqKilJmZaXq5e/bs0bx582S3200vGwAAAAAABAZBTgBBy4rEQNXV1VqwYIFsNpsyMjJUXV1teh0AAAAAAMC/CHICCFpJSUlKT0+3rPyCggKlpKSooqLCsjoAAAAAAID1CHICCGq5ublKTk62rPzS0lKlpaUxohMAAAAAgBBGkBNAUIuNjVVRUZHlgc4ZM2ZYVj4AAAAAALAWQU4AQS8xMVElJSWWT13ftm2bZeUDAAAAAADrEOQEEBJiY2OVn5+vsrIyzZ49W3FxcabXkZOTY3qZAAAAAADAegQ5AYSUpKQkzZ8/X9u2bVN0dLSpZefl5amurs7UMgEAAAAAgPUIcgIISZ9++qlqa2tNLfPgwYMqLi42tUwAAAAAAGA9gpwAQtK+ffssKbeystKScgEAAAAAgHUIcgIISWaP4mxSU1NjSbkAAAAAAMA6BDkBhCSz1+NsEhMTY0m5AAAAAADAOgQ5AYSk/v37W1JuQkKCJeUCAAAAAADrdA10AwDAG6mpqYqLi1NVVZVpZcbHxys1NdW08rxVV1en4uJi7du3T7W1tYqOjlb//v2VmpqqqKioQDcPAAAAAICgQ5ATQEiKiopSZmamFixYYFqZmZmZAQ0i2u12LVmyREuXLm0xeBsXF6fMzExlZWUpKSnJ/w0EAAAAACBIMV0dQMjKysoK6vLcVV1drYyMDNlsNi1cuLDV0alVVVVasGCBbDabMjIyVF1d7d+GAgAAAAAQpAhyAghZSUlJSk9PN6Ws9PR0DRs2zJSyPFFRUaGUlBQVFBR4dFxBQYFSUlJUUVFhUcsAAAAAAAgdTFcH0KZgXx8yNzdXdrtdpaWlXpeRnJys3NxcE1vlnqqqKk2cOFGbNm3y6vjS0lKlpaWppKREsbGxJrcOAAAAAIDQQZATQItCZX3I2NhYFRUVKS0tzatA54gRI7Ry5cqABAmnTZvmdYCzSWlpqWbMmKH8/HyTWgUAAAAAQOhhujoAF6G4PmRiYqJKSko8nrqenp6uNWvWKDEx0aKWtay6uloTJkzQqlWrTCmvoKBA27ZtM6UsAAAAAABCESM5nezYsUPLli3TunXrVF5eroaGBvXr109JSUm68sorddlll6lrV/Nfsr1792rZsmUqKSnRrl27dPToUfXt21eDBw/W5MmTNXnyZHXv3t3neu6++269+uqrGj16tF588UUTWo5Q097U84qKCq9GRBYUFMhut6uoqMjvAcMmsbGxys/Pl91uV05OjvLy8loM0MbHxxsjUAO1Bqe3o07bkpOTo3nz5plaJgAAAAAAoYIg5/+3ePFi5eTkqKGhweXx3bt3a/fu3XrnnXeUnJysJ554QoMHDzat3mXLlunRRx/VkSNHXB7fs2eP9uzZo5KSEj377LN6/PHHde6553pdz9tvv61XX33V1+YiRLkz9fyaa67R22+/7fWIwGBZHzIpKUnz58/XnDlzVFxcrMrKStXU1CgmJkYJCQkBXUvU1zU425KXl6dHHnkkKNZJBQAAAADA3whySpozZ47LyMauXbvKZrOpe/fu2rFjhw4ePCjpRBDnuuuu0/Lly00ZrbZ06VLNnTvX2A4LC9OwYcMUFxennTt3av/+/ZKknTt36oYbbtBLL72k4cOHe1zPl19+qbvuusvn9iL0VFdXa8aMGe1m7q6qqtKSJUt8ri+Y1oeMiorSpEmTAt0MFzNnzrQkwClJBw8eVHFxcdCdMwAAAAAA/tDp1+QsKipyCXBOnDhRxcXFKigo0EsvvaQ1a9bo4YcfNqaLf//995o1a5YcDodP9X7xxRd6/PHHje0LLrhAq1at0uuvv64XX3xRH3zwgRYvXqz4+HhJ0pEjR3TrrbeeNOKzPZ988olmzJihuro6n9qL0FNRUaGUlJR2A5xmY33Iltntdsv/Ft98842l5QMAAAAAEKw6dZCzvr5ejz32mLE9btw4LVy4UH369DEei4iI0LRp0/TUU08Z63Fu2rRJb7zxhk91z507V8ePH5ckDR8+XM8995xOO+004/mwsDBNmDBBS5cuVY8ePSRJ+/bt0wsvvOB2Hc8//7wyMzNVU1PjU1sRepqmRZu97qO7cnJyAlJvMPPHazJnzhxVVFRYXg8AAAAAAMGmUwc5V69erT179kg6MUX9/vvvV3h4yy9JSkqKpk2bZmzn5eV5Xe/GjRv1xRdfGNt//OMf1a1btxb3PfPMM3XbbbcZ2y+88IIRHG3Nzp07dfPNN+vxxx8/aY1RdA5WTot2R15eXtCNHq6rq9PKlSuVl5enxYsXKy8vTytXrvRLO+vq6nz6n+GuvXv3Ki0tLaCZ7gEAAAAACIROHeQsLCw07o8dO1annnpqm/s7Bzk3bdqk3bt3+1zvkCFDNHLkyDb3v/rqq41RpD/88IM++eSTFvdraGjQnDlzdMUVV6i4uNh4fOTIkbrmmmu8aitCjz+mRbenaX3IYGC32zV79mwlJiZq8uTJmjFjhm6//XbNmDFDkydPVmJiorKzs2W32y1rQ3FxcYsJn6zQtC4qAAAAAACdSacNcjocDq1bt87Yvuiii9o9xmazqW/fvsb2u+++61XdH330kUf1xsbGKjk52dh+7733Wtyvrq5OL774ourr6yWdGJ16yy236O9//7t69+7tVVsReoJlqnhlZWVA66+urlZGRoZsNpsWLlzYapCxqqpKCxYskM1mU0ZGhiWjIPft22d6mW1hXVQAAAAAQGfTaYOcFRUVOnTokLHtHERsi81mM+5/9dVXHtdbX1+vr7/+2th2N1u6p/WOHTtW+fn5ys7OVmRkpMftRGjy17RodwRyLVhvky4VFBQoJSXF9HUta2trTS3PHcES7AYAAAAAwB+6BroBgbJz506XbeekP20ZOHCgcf/bb7/1uN7y8nJjpKUkDRo0yLR6w8PDNW7cOGVmZmrMmDEetw2hz5/TotsTExMTkHqbki55uyZpaWmp0tLSVFJSotjYWFPaFB0dbUo5nsjLy9MjjzyiqKgov9ftrK6uTsXFxdq3b59qa2sVHR2t/v37KzU1NeBtAwAAAAB0HJ02yPndd98Z98PDw10yqrfFebq6cxne1Nu8PHfrPXDggBobG09KkhQdHc3orU7O39Oi25KQkBCQes1IutS0rmV+fr4pberfv78p5XiiaV3USZMm+b1u6cRaqEuWLNHSpUtbDLzHxcUpMzNTWVlZSkpK8n8DAQAAAAAdSqcNcjqvu9ejR49Ws6o35zwiy5u1+5of07NnT7eOcx4V53A4dOjQIcXFxXlcf7AK9SzwzTPeN9/2l2DJqh0fH6+LLrrI739XM5MuFRQUaMuWLRo2bJjPZV100UWKi4vz+yjbPXv2+P1vUF1drZtuukn/+te/2tyvaS3UBQsW6KqrrtLf/vY3l5GzwdKngI6A/gSYh/4EmIf+BJiH/nRCpw1y/vjjj8b9bt26uX2c8/qWx44d86leT+qOiIhos5xQ1tjYqI0bNwa6GaYqLS0NSL0HDx4MSL3NTZ48OSCJb+bPn29qeX/60580e/ZsU8qaPHmy/vd//9eUsty1detWv/at/fv367e//a3LusPu+Ne//qUvv/xSixcvVr9+/VrcJ1B9CuiI6E+AeehPgHnoT4B5Omt/6rSJh5zXxXR3FKd0ImN5E29GSDU/xt26neuVOm9UHm3r3bt3oJsgScrIyPB7nUePHtXrr79uapmvv/66jh49akpZgXhNevTo4be6Nm/erGuuucbjAGeTHTt2aNasWQFJ0gQAAAAACH2dNsjZpUsX435jY6PbxzkHKZuPrnRH86Cmu3U3D456Uzc6vlGjRgUs4U+TcePGuZ3Iy0yfffaZ6RndDx06pM8++8yUsgYNGqRx48aZUpa7evXqZXkdtbW1uuuuu3T99df7vFzCjh07dM8995jUMgAAAABAZ9Jpp6t3797duO/J1G/nKeqnnHKKT/U21e08Bd6der2tO1iFh4drxIgRgW6GT44fP+4yHDw5OdklkO5PM2bM0KJFiwJS9/Dhw7VixQrTspJ7YsOGDZaU26NHD5177rmmlLVixQqlpqb6nBjJHfHx8Zo+fbqlGcwrKip0ww03mHo+69at03333ad//OMf2r17t/F4IPsUEOqC6TMKCHX0J8A89CfAPB2hP3311VceDUJsSacNcjoHYQ4fPiyHw6GwsLB2j3OeSulN4p/mwZ/a2lq3Rt4519u1a9eAj9YzW/Pp+KGuS5cuATunW2+9NSBBzhEjRmjlypUBmzJ/5MgRS8qtq6sz7W/Zu3dvvfXWW0pLS7N8jZTevXvL4XBY9j6sqqrS5ZdfbknAdvXq1Ro/fryeeOIJY43OQPYpoKOhPwHmoT8B5qE/AebprP2p005XT0hIMO4fP37c7YQt3333nXG/T58+PtUrSd9//73H9fbq1cutgCw6p6SkJKWnp/u1zvT0dK1Zs0aJiYl+rddZdHS0JeWa/YNCYmKiSkpKLP8bbd++XSkpKaqoqLCk/JkzZ1o6InXTpk2s0QkAAAAAcFunDXIOGjTIZdt5WmRbysvLjftnnHGGx/WeeuqpLutpelPv6aef7nG96Fxyc3OVnJzsUxnDhg3Trbfe2uqI5fj4eGVnZ8tutys/Pz8gU9Sd9e/f35Jym/8w4au6ujqtXbtWV1xxhf7nf/5HEyZMsCxAW1paqrS0NJ/XymzObreroKDA1DJbsmPHDj300EOW1wMAAAAACH2db+zq/5eYmKi4uDhVVVVJkrZs2eLWuntbt2417p955pke1xsREaGkpCRjBNSWLVs0efLkdo/bsmWLcf+ss87yuF50LrGxsSoqKvJ6WnTT1PPExEQ98cQTKi4uVmVlpWpqahQTE6OEhASlpqZaut6jp1JTU136tBni4+OVmppqSll2u11LlizR0qVLW2xjjx49NHr0aJWWlrqM3PZVaWmpZsyYofz8fNPKzMnJMa2s9rz33nv69ttvTVsX1Rd1dXUqLi7Wvn37VFtbq+joaPXv3z/o+gIAAAAAdEadNsgpSWPGjNFbb70lSVq7dq1+9atftbn/1q1bXaaXX3jhhV7X2xTkXLt2re64444296+qqtLmzZt9rhedS9O06BkzZng06i49PV25ubnGyMyoqChNmjTJqmaaJioqSpmZmVqwYIFpZWZmZvocvKqurnbrb3D48GG99957kqSePXvq0KFDPtXrrKCgQNu2bdOwYcN8Lquurk55eXkmtMp9+fn5uvLKK/1ap7P2AtRxcXHKzMxUVlaWkpKS/N9AAAAAAEDnna4uSRMmTDDuv/fee6qsrGxz/3/+85/G/SFDhshms/lcb2lpabsj7ZYvX66GhgZJJ0bojR071qt60fnExsYqPz9fZWVlmj17dshMPfdWVlZWUJVXUVGhlJQUj6d2Hzp0SJGRkT7V3ZxZoy+Li4tNHS3rjtdff111dXV+rVOS9u7dq4suukg2m00LFy5s9byrqqq0YMEC2Ww2XXTRRdq7d69/GwoAAAAAIMjZlLn32LFjuvfee41gYnNr1qzRihUrjO3rrrvO63pHjhyp4cOHG9v33Xdfq8k1tmzZoiVLlhjbv/zlL9WtWzev60bnlJSUpPnz56uiokKFhYXKy8vTk08+qby8PBUWFqq8vFzz5s0zZaRfIJmZdCk9Pd2n16OqqkoTJ070Oov6sWPHvK67JXl5eaYECvft22dCazxz6NAhffDBB36rz26366abbtLAgQO1du1aj45du3atBg4cqJtvvll2u92iFgIAAAAAmuvUQc7IyEhlZ2cb22vXrtVNN93kkgyooaFBy5cv16xZs3T8+HFJJwIpU6dObbHM8ePHy2azyWazafz48a3Wfc899xgZ0u12u6677jqX9T4dDodWrVql6dOnG4GJvn376pZbbvH+hNHpNU09nz59umbNmqXp06dr0qRJHWo9QTOSLiUnJys3N9enMqzOPu6pgwcPqri42OdyApXtvL2R9maorq5WRkaGbDabnnvuOTU2NnpVTmNjo/72t7/JZrMpIyPD9MRPAAAAAICTdeo1OSXpqquu0oYNG/Tyyy9LOhHonDBhgmw2m6Kjo7Vjxw798MMPxv5xcXFatGiRunb17aUbM2aMZs+erfnz50uSNm/erF/84hcaOnSoevXqpV27drl8qe/WrZsWLlyomJgYn+oFOjqzki75MmXfX9nHPWVGoNCqTPDt2b9/v6XlV1RUeP2eaUtBQYHsdruKioqUmJhoatkAAAAAgP/T6YOckvTQQw8pPj5ezz//vOrr69XY2OiSzbzJkCFDtGjRIg0ePNiUem+55Rb16NFD8+bNM0Zrbt++/aT9+vfvr7/85S86//zzTakX6OjMSrrkLX9mH/dETU2NT8dXV1frueeeM6k1nnn66ad1/fXXWxIobFpawKqRt6WlpUpLS1NJSUnQrHdLpngAAAAAHQ1BTklhYWGaPXu2pkyZoldeeUUlJSXat2+fjhw5otjYWJ111llKS0vTlClTTE8G8pvf/EaXXnqpli9fruLiYpWXlxtfOJOSknTppZcqIyMjYKOngFDVlHTJbrcrJydHeXl5LSaOiY+PNzJjh2r2cXf5MhLcqpGOntZvRaDQH0sLlJaWasaMGcrPz7e0npY4BzS//vprrVu3Th999FGLSw90795dY8aM0YQJE/TTn/6UoCcAAACAkBHmcDgcgW4EOp8NGzYY692Fh4dr5MiRAW6RbxoaGrRx40Zj+9xzz/V5SQOYqynQU1lZqZqaGsXExCghIcH0IM7KlSs1efJk08ozU2FhoSZNmuTxcVVVVUpJSQmKNUbT09NNDRTa7XbZbDbTynOnPn8l+LLb7VqyZImWLl3aamb49sTGxmrGjBnKyspSUlKSuQ2E3/AZBZiH/gSYh/4EmKcj9Ccz4kShdcYA4KWmpEtWC0T2cXfEx8crNTXVq2ODKYlSQUGBtm3bZlqgcO7cuaaU466cnBzNmzfP0jqqq6s9XqqhrbIWLFigBQsWmLacg9mYeg8AAABAIsgJIESESiAjUNnH25OZmenV6xSMSZTMCBRWV1fr+uuv12uvvWZSq9yzePFi3XnnnRowYIAl5Vu5rEAwJFHyZOp9XFycsRQFo1ABAACAjo8gJ4Cg1t6UW18CGVYEToN1/dysrCyvjgvGJEp5eXl65JFHvP4bBXJ90fr6ev3Hf/yHPvzwQ9MDhVYnUJICl0TJm6n3VVVVxijUsWPH6pVXXrEsuAwAAAAg8AhyAghK7k65dQ5kuDud1srAaf/+/T3a3x+GDh0qb5ZfDtYkSgcPHlRxcbHX64taHQhsz65duywJFE6bNs0v51VaWqqpU6dq1apVltdl1tT7tWvXauDAgZo5c6buvPPOoBjZ2dKPLHFxcZJOvE+DecQ6AAAAEIwIcgIIOt6OtGtvOq2VgdMmqampiouL8zrRixW2b98um83m8bkUFxcH1Xk4q6ys9Oq4YFlf1Mxs69XV1Zo6dapWr15tQsvcs3r1ak2cOFHLly+3bERnRUWFJkyYoM2bN5tSXmNjo/72t7/pb3/7W0DXF/VmVCpZ7wEAAID2EeQEEFR8HWnX2nRaqwKnzUVFRSkzM1MLFizwuO2t6d27tw4cOOBzOZ6eS7AmUZKkmpoaj48JtvVFzUiiFMip96tWrVJKSoola3SuX79eaWlpprzvW1JQUKCtW7dq1apVfltfdO/evbr66qu1du1aj489cuSI3n//fb3//vuSgi/rPaNSAQAAEAwIcgIIKmaMtGs+Ss6qwGlrsrKyTA1yrlq1Sn/6059MCdB5ci7BmkRJkl544QVdf/31Ho3EC8b1RX1JohQMU+/NXqPTzMzw7dm8ebPOPfdcvfXWWxo1apRl9djtdj3xxBPKzc1VY2OjKWUGOut9U1Dziy++0KpVq/TJJ5+orq7OrWODfVRq84BtRESE9u/fr379+qm+vp5gLQAAQBALc3izUBvgow0bNhhf9sLDwzVy5MgAt8g3DQ0N2rhxo7F97rnnqmtXfkPwlN1ul81mM7W8YcOGKSMjw5SgSXp6utvTi62o02636/LLL9f27dtNLbc1eXl5mjFjhs91WSU5OdntUYR1dXVKTEwMuun38fHxKi8v9ypYYtZ7zAye9I3WBHJUqhWBQn8GbM8+++w2R6Wa9RnVNNU+Ly9P1dXVXrfXWaCDnt4GbHv06KGLLrpIo0eP1uDBg4Mi8NlegLalgG2ojLgNpuAz13yAeehPgHk6Qn8yI05EkBMBQZATLcnOzjZ1BGR2drZuueUWSwKn7amurlZKSopPAZvk5GSXEXJWBYFbs3LlSk2ePNm0+qzQ/DVqTTCfS2FhocdJlMx+L5jB3b7RkqqqKqWkpAR0VKonQfP2mL2eqDt69+7d6qhUXz+jfJlq7ymrp+I3D2quW7dOR44cMaVsfwdsfRlR255AnUvzIKbD4dD777/vVfA5MTHRkkCoc386evSoDh48qO+++67VpRraCzYHSzDanUCyr+fGuXSuc3Hnh5d9+/bp2LFjxnZkZKT69+8f0HNzZwkWM9pBGR2jjGBpV3R0tPr27av4+Hh169ZNUmjGJAhyImQR5ERzVoy0i4+P169//Ws99dRTppWZnZ3t9vRiX0amjRgxQitXrnQJuFgRBG7rXIJ19GNzoT4qddSoUXrnnXc8GkVo9nvBDJ70jeYmTpzol2zt7XE3aN4Wq9cTbc/YsWP1yiuvaMCAAcZj3n5GWTHV3hMtnYsnnL+ofv3111q3bp3Wrl2rw4cPm9zSlpkZKAyWc7nkkksUFhbmUeCwrUBHRUWF1q1bp48++shvS6S0dS7ufKnct2+f9u7dq88++0ybNm3S0aNH/dJuT87Fky/MngaSORfOpb1zaVrzOtBtb0/zcwuW1xzwRUxMjK688kplZGRoypQpIReTIMiJkEWQM3S19OumGb9aWzXSLjo62tQvTp5OL/ZmympLU2etCgK3dy7BGExrSXujCBcvXqzbb7/djy3yTEeYeh8REaFdu3Z5FJAKRGb49lx22WVeBVz9OT29PeHh4Zo5c6buvPNOJSUlefwZ5c+Rm+0JCwvTz372M1188cXtTgu3cmSjGZyDnmeeeaak9kdohMqX7pZGUIZK2wEA6Iiuuuoq5eXl+XXddl+ZEidyAAHw+eefO9avX+9Yv3694/PPPw90c3xWX19vnM/69esd9fX1gW6S6crKyhy///3vHXFxcQ5JJ93i4uIcs2fPdpSVlXlVfm5ubovlBuOtsLDQq9dv9uzZrb5+8fHxjuzsbIfdbm/x+MLCwoCcS1lZWcBfb3du2dnZIf/+Sk5OdlRVVbX7XlqxYkXA29rabdCgQY7y8vJ2z8HhcDjKy8sdycnJAW9zS7cJEya49bdwPpezzz474O1u6Xbeeec5li1b5igpKWn3M6qsrMxx4403OsLDwwPe7rZu3bt3d1xyySWOBx980PHQQw85HnzwQccll1zi6N69e8Dbxo0bN27cuHHjFiy35ORkt6/Ng4EZcSKCnAgIgpyho6qqypGenu7RP9P09HSPAgQOh8Px5JNPBvxDwN1bXl6e16/n4cOHHYWFhY68vDzHk08+6cjLy3MUFhY6Dh8+3OZxVgXp3DkXT//+rd169uxp2d8kPj6+zdcwmAODzrf09PQ2/xbl5eWOxMTEgLezrZs7wdqDBw86hg8fHvC2tnUbNGiQY9u2be32j08//dTRu3fvgLe3vVt0dLTj2muvdeTn57t8Rh0+fNixYsUKx6hRowLeRm7cuHHjxo0bN27m3twdSBEMzIgThQsAWlFRUaGUlBSPp18WFBQoJSVFFRUVbh8THR3tafMCpqamxutjo6KiNGnSJE2fPl2zZs3S9OnTNWnSpHanv1u1Vpk755Kbm6vk5GSf6klOTtbHH3/sczmtOXjwoIqLi1t8rqKiQg888IAl9ZqtoKBA27Zta/G5qqoqTZw40aN+FQilpaXtrn86c+bMgCYZcseuXbtks9l02223yW63n/R8dXW1MjIydMEFFwRs/U1P1NbW6n//93+VkZGhESNG6L777tO4cePUu3dvTZ06VZ999lmgmwgAAACTuXNt3pEQ5ATQoqaAirfZwUtLS5WWlqbq6mq39u/fv79X9QRCTEyM3+u0KgjszrlUVlbqwgsvVHi4dx8ZI0aMUFFRkc466yyVlJTovPPO86qc9lRWVp70WNP72J9Zrn2Vk5PT4uOhEBhs0law1m63B8W6le5obGzUM888I5vNpoyMDOP/2fbt23XuueeGzHk0t3XrVj366KN6//33A5o0BQAAANZr69q8oyHICaBFZgRUPPnVKDU11cjKaBarAoMJCQmWlNsWq4LAbZ1L00g1m82m5557zqvsyunp6VqzZo2RUCc2NlbTp0/3trltamlUaigFBpvk5eWdlKQjlAKDTebOnXvSY9XV1br88ssD0BrfFRQUKCkpSaNHj1ZSUpJ27doV6CYBAAAAbmltIEVHQ5ATwEnMDKi4+6tRVFSUMjMzTamzSWZmpumB0/j4eKWmpppapjusCAK3dS7eLlUgSV26dNHNN98su92u/Pz8kzL6+WtUaigGBqWWp96H4kVJXl6e/vM//9MY/VhRUaGxY8dq+/btAW6Z9/bv369PP/1UDocj0E0BAAAA3NbSQIqOKMzBlToCYMOGDcaosKNHj2rmzJlel3XGGWdo5cqVrT6fnZ2twsJCr8uXpJ///Od6+umnW33+F7/4hTZu3Ghsd+vWzeM6brrpJt1xxx2tPn/OOefo2LFjHpfrbO7cubrqqqtafK6iokI///nPJZ34In/w4EGf6nKWnZ2tefPmac2aNbrpppta3e/YsWP65ptvTKv3jDPOUFVVlennEh0drZdfftmnckaPHq2///3vrT5//fXX65NPPnF5zOy/y6mnntridPXGxkbt2rXLp/dbcnKyCgsLddlll5303OHDh1VeXu512a0ZOHCgevToYWyb/Xo1iYyMlCSf+2NbEhISjKC2w+HQ9u3bvRpJGwwiIyOVmJioiooKS18zAAAAAK1r/n3JE2eeeab+/e9/t/r8bbfdpnfeecfLlp2wdOlSRURESJLCw8M1cuRIj8vo6lMLABM0NjaqrKzMsvL37Nnjc/lnnnlmm8/v3LnT56mL3333XZvP2+12/fjjjz7V0db6mPX19Zb9HfLy8vTII4/o8OHDlv6tmzMzYNokKytL8+bN8/k82pt+/u2331r+Wh07dsyyOkpLS3Xrrbf69e9tReC0Jf4I1FVWVra4xmgoMvvHCwAAAACe8+X7UnsDuSoqKnz+7mfGGEymqwOwXFuZr0NJenq6hg0bFuhmmMaXLPHueOONNywtHwAAAACAJgQ5AfiFv0alDRgwwJJyk5OTlZuba0nZgeLryGAAAAAAAIIF09URcOHh4bLZbF4ff8YZZ7T5/KmnnupT+ZKMzNCtOf30012mgnuzJmffvn3bfD4pKcnnabLNE8A4i4iIkM1m08GDB7V//36f6mlJTU2NhgwZ4vbforGxUXv37lVtba3bdaSnp+vSSy/VokWLTnquoaFBu3fv9uo1HDFihFauXGm8fgkJCT6/p0477bR2n2+tDl/OpSWRkZEaNGiQwsLCTF/7MTw8XEOHDlVYWNhJz1VUVHj093VXdHS0oqKiLHkf9+vXT/Hx8cZ2KK+X2bVrVw0aNEiStGvXLjU0NAS4RQAAAACs4suanKeffnqbzycmJvr8Hbml74wecwAB8PnnnzvWr1/vWL9+vePzzz8PdHN8Vl9fb5zP+vXrHfX19YFuktdyc3Mdkky/5eXledWesrIyx+zZsx1xcXEtlhsfH+/Izs522O32dsuqqqpypKene9TusWPHOvbs2eNV263kzbm0dUtPT3cUFhZa8rcvLCxs9RySk5MtqXPu3Ll+ex/Pnj3bkrqsvq1YscI4hz179jgiIiIC3iZu3Lhx48aNGzdu3LiZf4uPj3ccPnzYqq+npjAjTsR0dQAu2kuI462EhASvjktKStL8+fNVUVGhwsJC5eXl6cknn1ReXp4KCwtVXl6uefPmubVWZmxsrPLz81VWVqbZs2cb2avbsnbtWp199tnKzs6W3W736hysEBsbq7lz55pWXkFBgTZu3Ghaec5aW6ogNjZWRUVFSk5ONr3ODz/80PQypZbfx1lZWZbUZaX4+HhNnjzZ2B4wYIB++9vfBrBFvhk+fLgKCwvVu3fvQDcFAAAACDqZmZmKiooKdDMsR5ATgIvU1FS3gn+eiI+PV2pqqk9lREVFadKkSZo+fbpmzZql6dOna9KkSV79o24KnG7evFljx45td/+qqiotWLBANptNGRkZbWap96ecnBxTy1u1apWp5TVpK8FRYmKiVq1apYiICFPrfPPNN00tT2r9fZyUlKT09HTT67NSSxc5oRislaQJEyboww8/1KRJk7Rx40adffbZgW4SAAAAEFRC9VrfUwQ5AbiIiopSZmamqWUG469GFRUVmjBhgtauXevRcQUFBUpJSVFFRYVb+9fV1WnlypXKy8vT4sWLlZeXp5UrV6qurs6bZruUm5eX51MZza1bt87U8prExMS0+fwXX3yh+vp6U+t0OBymlie1/T7Ozc21ZESqVVq6yAnFYO2ECRP01ltvGevlJiYmau3atbrssssC3DLvjBkzRv/4xz/0wAMPeL1eEgAAAOAsPT3drZmPHQGJhwCcJCsrSwsWLDC1vGBSVVWliRMnatOmTV4dX1paqrS0NJWUlLSazMlut2vJkiVaunSpqqqqTno+Li5OmZmZysrKUlJSksdtKC4ubrFcX/gaeG1Ne0sV7Nu3z5J6zdbW+7hp6v0FF1ygvXv3+rFVnmvrIic3N1d2u12lpaV+bpXnkpOTtXz58pMej42N1apVqzRx4kTLRiebrXfv3lq1apXOO+8847GbbrpJEyZM0ObNmwPYMgAAAISy5ORk5ebmBroZfsNITgAnMXNEVzD+ajRz5kyvA5xNSktLNWPGjJMer66uVkZGhmw2mxYuXNhqINLXKfBWBQbNHnHrzlIFVmRYN5s77+PExET94Q9/8FOLvNPeRY6V66Saafjw4SoqKmr1RwZJWr58edCfh3TiXDZu3OgS4JT+b1RqKI2uDQsL09ixY/Xoo4+qoKBABQUFmjt3ri655BJ179490M0DAADoVEaMGNHuNXNHw0hOAC0yY0RXMP5qZLfbVVBQYEpZBQUF2rZtmxH8qqioUFpamsevWUFBgex2u4qKipSYmOjWMVYFBkePHq3333/ftPLcWaogOjratPqs4Mn7ePDgwRa3xnsDBw506yInMTFRJSUluv766/Xaa6/5qXXuGzp0qD788MN2z6MpYOtNn/SX9PR05ebmtnouTcnS7Ha7/vKXv+j5559XY2Ojn1vpnrFjx+qVV17RgAEDTnru3nvvVV1dnYqLi7Vx40a99tpr+vjjjy1ZVsIs3bt314UXXqhx48bJ4XAoISFB5eXl+uSTT/Thhx/q8OHDgW4iAABAq6666irl5eV1qgCnJIU5gvkKEx3Whg0bjC9q4eHhGjlyZIBb5JuGhgaXzNTnnnuuunYN/d8QvA3aSSd+NVq5cqXbQTt/yc7ONnUqfnZ2tubNm6eqqiqlpKT4NEI0OTm5zSnwzvLy8locSeqruXPn6r777jOtPLvd3u4IyJUrV7pk+g4mw4cP11tvveX2+7iurk6JiYmmLyVghhUrVujqq6/26JjMzEwtXbrUmgZ5yZ33lLPq6mrNmDHDtB83zNDS9HR37N27V1dffbXHawlbpUuXLpo5c6buvPNOj0fsB9u5REVFacyYMZo4caLOOeccpaamtvoDjXPA9q233tK6det05MgRP7e4dU3n4hygPXbsmCIjI1VZWWlsx8TEGJ83ZWVlQXkuzbV0bk3B57Vr14bEzAAAAKzSs2dPXXnllcrIyNCVV14ZcjEJM+JEBDkREAQ5Q4c3AYL2RicFihUBqPj4eJWXl+u6664zJYiSnp6u/Pz8dvezKjBYWFio5557zq/n0tECg2YH0s3Q9D71dDkCu90um81mUas85+57qiV2u12LFi1STk5OQEdDeho4b4ndbldOTo6ef/55HTp0yMTWua+tkZueaDqXvLw8v/0P6NGjh1JSUnTBBRdoyJAhSkhIaDOo2Z5ABj2tPpdPPvnEsvWam4uOjtZFF12kCy64QAMHDjwpINveuTW1vbKyUjU1NUZQV5Lee+89S8/FOUjetM52dXW1SztaCza3t91SMNof59I8SO7cDm/PjXPpnOfS1g8ve/fuVX19vbEdERGhAQMGBMW5mdmvzT4XygieMoKlXTExMerTp4/i4+PVrVs3SaEZkyDIiZBFkDP0tPdFND4+3kikE2xrcDaxKjD47LPP6uabbzatPHdGqlkZsK2vr1dKSorPSxW4OypVCs7AoHRixOz06dM9OibYAoPS/4049kZGRkZQjIL09D3Vmu3bt+vSSy/Vrl27TGqZ+8z+Aaiurk6FhYV69NFH9dlnn5lSZltiY2M1c+ZMS/7POweoduzYYeq08Kap5+6M0jSDlYFCT0acmqG1wKE3IyjbCtL4Gpz19Vw8+VLpHJTp0aOHzj//fI0fP97Stnt6Lt6cm7/+DpxL5zkXd9oeiO9Q7vwvCMRrDviqI8QkCHIiZBHkDF3NLwxC6ULAqineEyZMMDWLs7sBKaum3ksnlirwNrOzN0sVBGNgUJKefPJJzZo1y+PjgiUw2MTTKd7OqqurfQ56+8rs5S/8OYW9S5cuysrK0u9+9ztLfwCyct3OUaNG6d5779XkyZMD8iXb02ChvwOB7Wnpc9ObERrB+lnb2QIGnemaD7Aa/QkwT0foTwQ5EbIIciIQFi9erNtvv930crt3727q1ER3pxabHRicMGGCli9frsrKSi1ZskR5eXkeZ333ZaRasAUGJe9GckrBERhs4ssU7ya+rM/rKyuXv/jss880ceJEHThwwPSyJen000/X6tWrNXToUEvKb4lZa13GxcVpxowZQTU6v7MF0xCcuOYDzEN/AszTEfqTGXGi0DpjAPCBVVm8zV577eDBgyouLtakSZPa3C8pKUnp6emmBQZXrVql0047zeM1/swKhuTm5sputwdFYLBJQkKCV8c1ZfYeM2aMKioqTG6V+zzJDN+Wpozr/kzgM3ToUBUWFloaYBs1apQ2btzo9ajltgRqbeIBAwboww8/9Hity2Ab/diSqKiodv8vAgAAoPMiyAnAJ00ja/bt26fa2lpFR0erf//+QfkFuX///oFugtuakiW0x+zAoDdJTE499VRlZ2f7PJW4KTB40UUXBWS9xObi4+OVmprq9fGJiYlauHChpk6damKr3Hf66aerqKjItCBbbGys8vPzLR/9KElnn3221q5d65cAYWJiotauXWtKADeYRj8mJSVp/vz5mjNnjt59912tX79ehw8fbjGxA6MfAQAA0BEQ5ATgFbvdriVLlmjp0qUtjhKKi4szEhE1ZSQMtNTUVMXFxZmarMfsqepNampq3NqvKTAYqKnEkrR582alpaWZkhQmMTFRd911l37729+a1DrvZWZm+hz0mTx5sunvOXdERERo7dq1Pme+bomVox+l/1t/058jIJsCuB119GNaWprLeyEUpy8BAAAA7eEKF4BH3E3YUVVVpQULFmjBggUBm7bZXFRUlDIzM01N1vOzn/3M1KRDTWJiYtzet2kq8dSpU7V69WrT2+KO0tJSzZgxw+e1HyWZnjTFW1lZWT6XYcV7zh2zZs2yJMDZxMzRj84C/b/CefQjaz8CAAAAoYUgJwC3eZt8pKCgQHa7XUVFRaZlR/ZWVlaWqQGnqVOnWhLk9HQtyNjYWCUnJwcsyCmd+Dtv27bN52m6Vq2d6on09HTTphub/Z5zt06rNR/9mJub63GiKim4png3Ye1HAAAAIPSEB7oBAEJDVVWVJk6c6PWU6NLSUqWlpXkVBDFTU7Ies7z++uumjzrzZi3Iuro65eXlmdoOb+Tk5PhcRqDXTjUrWU8Ts99z7TEzQOuOptGPe/bsUWFhoebOnatLLrmk1RGOUVFRGjdunB599FEVFhaqoqJC8+bNC5oAJwAAAIDQxEhOAG6ZOXOmNm3a5FMZZk5p9oWZyXpee+019e7d24RW/R9v1oIsLi72+7qPLcnLy9Mjjzzi0xReK9ZOddfAgQNNTdbTxF+Z480O0HqiafTjpEmTdO+99xpJyZqmfDPFGwAAAICVCHICaJfdbjdt3T2zpjT7wuxkPWZnmfZmqvG+fftMbYO3Dh48qOLiYp+m+kZFRemGG27QokWLTGyZe2bNmmXJkgr+SBAViIQ9bWHKNwAAAAB/Yro6gHaZMQXZyvK80ZSsx5/TiN3h7VTj2tpaC1rjncrKSp/LuPnmm01oief69etnWdlWvufS09O1Zs2agK95CwAAAACBQpATQJusWOsxLy9PdXV1ppbpjdjYWM2dOzfQzTD4MtU4GJL1NKmpqfG5jKSkJI0bN86E1njG04RPnmpK1lNWVqabbrpJ4eHefwzHxsYqOztbdrtd+fn5QTOCEwAAAAACgSAngDZZsdZj05TmYGD2qFJv1+ccMWKET2tBBjpZj7OYmBhTynnggQc0ZMgQU8pyhzcJn7yVlJSkZ599VuXl5Ro7dqxHx44aNUorVqzQnj17SNgDAAAAAP8fQU4AbbJqrUczpjT7yopRqsePH9cvfvELj44xY6pxU7KeYGDWaMjo6GgtXrzYbwFcbxI++WrAgAH68MMPVVZWptmzZ7f6N4yPjzdGba5fv15XX301yXsAAAAAwAlBTgBtsmqtRzOmNPvKilGqVVVVuuWWWzwKWpkx1TgqKkqZmZk+lWEGs0dD9uvXT0uXLlVERIRpZbbGm4RPZklKStL8+fNVUVGhwsJC5eXl6cknn1ReXp4KCwtVXl7OqE0AAAAAaAPZ1QG0yaq1Hs2a0uwLK0epTpo0SfPnz9ecOXNUXFysyspK1dTUKCYmRgkJCUpNTTV9JF5WVpYWLFhgapmesmI0ZJ8+fXTrrbdamm3d24RPZiMjOQAAAAB4hyAngDZZNVXY6gQv7vDHKFV/Bq2SkpKUnp6ugoICv9TXEqtGQ958882WBTl9SfgEAAAAAAgOTFcH0CYr1nr0Z4KXtnTEUaq5ublKTk4OSN1WjoZsCuCazdeETwAAAACA4ECQE0CbrFjrMRAJXlrSEUepxsbGqqioSIMGDfJrvf4YDWl2ANeMhE8AAAAAgOBAkBNAu8yeghzIBC/OrBilGhERoZ/+9KemlumpxMRE3XXXXX6rz1+jIZsCuL4EOmNjY01N+AQAAAAACA4EOQG0y8ypwpdddllQJHiRrBmlWl9frwkTJqiiosLUcj3V2Njol3oiIiL01ltv+W00ZGJiokpKSjx+P44aNUorVqzQnj17yFIOAAAAAB0QQU4AbjFrqvDq1auVkZGh6upqE1rlOytGlZaWliotLS2g52jVeqPN1dfX64svvvBLXU1iY2OVn5+vsrIyzZ49u9XRuPHx8caozfXr1+vqq68OimUSAAAAAADmI7s6ALc0TRVOS0tTaWmpT2UVFBTIbrerqKgo4OshWpWRvLS0VDNmzFB+fr6p5brLqvVGW1JZWem3upwlJSVp/vz5mjNnjoqLi1VZWamamhrFxMQoISFBqampBDUBAAAAoJMgyAnAbU1ThWfMmOFzULBptGNJSUnA10XMzc2V3W73OXjbXEFBgbZt2xaQqdFN641WVVVZXldNTY3ldbQlKipKkyZNCmgbAAAAAACBxXR1AB5pmio8YcIEn8tqGu0YaGYktGnNb3/7W61cuVJ1dXWml90WK9YbbU1MTIxf6gEAAAAAoDUEOQF4zG63a9WqVaaU1TTaMdASExO1atUqRUREmFruqlWrNHnyZCUmJhrrQ/qLv7LYJyQk+KUeAAAAAABaQ5ATgMdycnKCujxvffHFF6qvr7ek7KqqKi1YsEA2m81viZea1hu1Unx8vFJTUy2tAwAAAACA9hDkBOCRuro65eXlmVpmXl6e36dzt2Tfvn1+qaegoEApKSmqqKiwvK7c3FxLpuE3yczMJLkPAAAAACDgCHIC8EhxcbHpyWwOHjyo4uJiU8v0Rm1trd/qakq8ZPWITivXG5X8NyUeAAAAAIC2EOQE4BGrRjtWVlZaUq4noqOj/VqfvxIvJSYmqqSkxPSp6+np6QHJHA8AAAAAQHMEOQF4xKrRjgsXLvTLOpVt6d+/v9/r9FfipdjYWOXn56usrEy33nqrwsN9+/efnJys3Nxck1oHAAAAAIBvCHIC8IhVox03btzot3UqW5Oamqq4uDi/1+vPxEtJSUl6+umnVVZWpkGDBnlVxogRI1RUVKTY2FiTWwcAAAAAgHcIcgLwiJWjHf21TmVroqKilJmZ6fd6A5F4aejQodq4caPHU9jT09O1Zs0aJSYmWtQyAAAAAAA8R5ATgEesHu3or3UqWxOIRDqBSrzkPIV99uzZrf5d4+PjlZ2dLbvdrvz8fEZwAgAAAACCTtdANwBAaGka7bhgwQLL6mhapzIQSW2SkpKUnp6ugoICv9YbyMRLSUlJmj9/vubMmaPi4mJVVlaqpqZGMTExSkhIUGpqqqKiogLWPgAAAAAA2kOQE4DHsrKyLA1ySifWqZw3b56ldbQmNzdXdrtdpaWlfquzpqbGb3W1JioqSpMmTQp0MwAAAAAA8BhBTgAe88dox0WLFmngwIHq2rWroqOj1b9/f7+NKIyNjVVRUZHS0tL8FuiMiYnxSz0AAAAAAHREBDkBeMXq0Y7Hjx9Xdna2y2NxcXHKzMxUVlaWkpKSLKm3SWJiokpKSjR+/Hh9/vnnltYlSQkJCZbXAQAAAABAR0XiIQBeaRrtmJyc7Lc6q6qqtGDBAtlsNmVkZFiehT02NlZz5syxtA7pRGKf1NRUy+sBAAAAAKCjIsgJwGtNox3PPfdcv9ddUFCglJQUVVRUWFqP1dnkJSkzM5PEPgAAAAAA+IAgJwCfxMbG6ne/+11A6i4tLVVaWpqlIzqbsslbKSsry9LyAQAAAADo6FiT08mOHTu0bNkyrVu3TuXl5WpoaFC/fv2UlJSkK6+8Updddpm6djX/Jdu7d6+WLVumkpIS7dq1S0ePHlXfvn01ePBgTZ48WZMnT1b37t09KvPLL7/UihUr9Omnn6qyslIOh0MJCQkaPny4fvGLX+jiiy9WWFiY6eeCzql///4Bq7u0tFQzZsxQfn6+ZXVYmU0+PT1dw4YNs6RsAAAAAAA6C4Kc/9/ixYuVk5OjhoYGl8d3796t3bt365133lFycrKeeOIJDR482LR6ly1bpkcffVRHjhxxeXzPnj3as2ePSkpK9Oyzz+rxxx93a0pwfX29HnnkEb388ssnPbdz507t3LlTb775plJSUjR37lz169fPtHNB59U0pbuqqiog9RcUFGjbtm2WBQutyiafnJys3NxcU8sEAAAAAKAzIsgpac6cOXrxxReN7a5du8pms6l79+7asWOHDh48KOnEiLHrrrtOy5cvV2Jios/1Ll26VHPnzjW2w8LCNGzYMMXFxWnnzp3av3+/pBPByRtuuEEvvfSShg8f3mp5DodDv//97/X2228bj51yyimy2Wzq0qWLtm3bptraWklSSUmJbrjhBr388svq2bOnz+cCV3V1dfrwww+1b98+1dbWKiIiQvv371e/fv1UX1/f7nZ0dLSxDmRVVZVpZURHR6t///5KTU01dQ3IpindVo12dEdOTo7mzZtnWflmZ5MfMWKEVq5cqdjYWFPKAwAAAACgM+v0Qc6ioiKXAOfEiRN1//33q0+fPpJOjIwsKCjQ3LlzdeTIEX3//feaNWuW8vPzfZru/cUXX+jxxx83ti+44AL9+c9/1mmnnSbpRMBy9erVuv/++3Xw4EEdOXJEt956q4qKilqdup6bm+sS4Lz22muVnZ2tmJgYSdLRo0e1dOlSLV68WA0NDfr666/13//933rqqae8Pg+42rVrl1555RWtXLkyYKMa3REXF6fMzExlZWUpKSnJlDKtnNLtjry8PD3yyCOWJfBpyiaflpbmc6AzPT1dubm5BDgBAAAAADBJp048VF9fr8cee8zYHjdunBYuXGgEOCUpIiJC06ZN01NPPWWsx7lp0ya98cYbPtU9d+5cHT9+XJI0fPhwPffcc0aAUzoxqnPChAlaunSpevToIUnat2+fXnjhhRbL++GHH/T0008b29dcc40eeOABI8ApSd26dVNWVpYefvhh47HVq1fr888/9+lcIFVXV+uuu+5SRkaG/vnPfwZ1gFM6MbJzwYIFstlsysjIMCVxT9OU7kA5ePCgiouLLa2jKZu8N+cZFxen7Oxs2e125efnE+AEAAAAAMBEnTrIuXr1au3Zs0fSiSnq999/v8LDW35JUlJSNG3aNGM7Ly/P63o3btyoL774wtj+4x//qG7durW475lnnqnbbrvN2H7hhReM4KizV155RYcPH5Z0Iphy9913t1p/RkaGLrnkEmPbl3OBVFFRodTUVL333nuBbopXCgoKlJKSooqKCp/Lys3NVXJysgmt8k5lZaXldcTGxio/P19lZWWaPXu2sSRAc1FRURo3bpweffRRFRYWqqKiQvPmzSPJEAAAAAAAFujUQc7CwkLj/tixY3Xqqae2ub9zkHPTpk3avXu3z/UOGTJEI0eObHP/q6++2hhF+sMPP+iTTz45aZ+VK1ca9ydNmtTulF3nc/nggw9UV1fnVtvhqqqqShMnTtSmTZsC3RSflJaWKi0tzecRnU1TugcNGmRSyzxTU1Pjt7qSkpI0f/58VVRUqLCwUHl5eXryySeVl5enwsJCfffdd3r33Xd1zz33uNUnAQAAAACA9zptkNPhcGjdunXG9kUXXdTuMTabTX379jW23333Xa/q/uijjzyqNzY21mV0XPMRg1VVVdqyZYuxnZKS0m6ZF154obp06SLpxFqda9eubfcYnGzmzJkhH+BsUlpaqhkzZvhcTmJioj766CNFRESY0CrPOC/P4C9RUVGaNGmSpk+frlmzZmn69OkENQEAAAAA8LNOG+SsqKjQoUOHjG13p9jabDbj/ldffeVxvfX19fr666+N7baypbtbb1lZmRwOh0dlRkVFuawB6s25dHZ2u10FBQWBboapCgoKtG3bNp/LGTBggH7729+a0CLPJCQk+L1OAAAAAAAQeJ02yLlz506XbeeAX1sGDhxo3P/22289rre8vFz19fXGtrvTetuq1/lcIiMjNWDAAJ/LRPtycnIC3QRLmHVeWVlZppTjrvj4eKWmpvq1TgAAAAAAEBw6bZDzu+++M+6Hh4e7ZFRvi/N0decyvKm3eXnu1nvgwAE1Nja2WKa75TXf15tz6czq6uo6bMKmvLw8U9Zo9Xe29czMTKaIAwAAAADQSXUNdAMCxTnBSo8ePVrNqt5cdHR0i2V4U68k9ezZ063jnNcadDgcOnTokJHVuaqqqsX92uPruZipoaEhoPV76t1333V53TuSgwcP6t1331VaWprPZT377LMqKyvzy7qlN954Y8i9j9C648ePt7kNwH30J8A89CfAPPQnwDz0pxM6bZDzxx9/NO5369bN7eMiIyON+8eOHfOpXk/qbp7Exbkc53b481zM0tjYqI0bNwasfm98+umngW6CpdavX+/2sgfteeKJJzRr1izt2LHDlPJaMm7cONXV1YXc+wjuKy0tDXQTgA6D/gSYh/4EmIf+BJins/anTjtd3XldTHdHcUpS167/Fxf2ZtRY82Pcrdu5Xsk1Kh+oc+nMzJjOHcwOHz5sWln9+vXT888/rzFjxphWprMhQ4bogQcesKRsAAAAAAAQGjptkLNLly7Gfef1LdvjHAxsPrrSHc2DkO7W3TwI6Vx3oM6lM+voaz/26NHD1PKio6P19NNPmx7oHDp0qBYvXuyy9AIAAAAAAOh8Ou109e7duxv3m08hb4vztO5TTjnFp3qb6naeNu5Ovc3rdp6i7sm5OO/rzbmYJTw8XCNGjAhY/d7Yu3dvoJtgqfPPP1/nnnuu6eW++eabSk1NNWWNzquuukp/+9vfFBsba0LLEGyOHz/uMsUiOTnZ5QcdAO6jPwHmoT8B5qE/AebpCP3pq6++8mjgXks6bZDTOTBy+PBhORwOhYWFtXtcbW2tcb8p8Y+39TaV506yIOd6u3bt6nKMczuc92uP85Rkb87FTM2n4we78ePHKy4urkMmH4qPj9f48eMt+Zv07t1bb731ltLS0rxaI6RLly6aOXOm7rzzTg0bNsz09iF4denSJeT+TwDBiv4EmIf+BJiH/gSYp7P2p047XT0hIcG4f/z4cR08eNCt47777jvjfp8+fXyqV5K+//57j+vt1auXS0DWucwDBw643RZfz6Uzi4qKUmZmZqCbYYnMzExLp+MnJiaqpKRE6enpHh03duxY7d69W3/9618JcAIAAAAAABedNsg5aNAgl+3du3e7dVx5eblx/4wzzvC43lNPPdVl/Utv6j399NNdnnM+l7q6OrcDp851e3MunV1WVlagm2AJf5xXbGys8vPzVVZWptmzZ7c6kjg+Pl7Z2dmy2+368MMPTcv4DgAAAAAAOpbON3b1/0tMTHSZbrxlyxa31iDcunWrcf/MM8/0uN6IiAglJSUZaxJu2bJFkydPbve4LVu2GPfPOussl+fOPvtshYWFyeFwGPv+7Gc/a7O8w4cP69tvvzW2vTmXzi4pKUnp6ekqKCgIdFNMk56e7tdRkklJSZo/f77mzJmj4uJiVVZWqqamRjExMUpISFBqamqHT/IEAAAAAAB812lHckpyyfS8du3advffunWryyjJCy+80C/1VlVVafPmza3WGx0drbPPPtujMj/++GNjQdcuXbpo9OjR7R6Dk+Xm5io5OTnQzTBFcnKycnNzA1J3VFSUJk2apOnTp2vWrFmaPn26Jk2aRIATAAAAAAC4pVMHOSdMmGDcf++991RZWdnm/v/85z+N+0OGDJHNZvO53tLS0nYTsCxfvlwNDQ2STkzzHTt27En7TJw40bj/2muv6ciRI22W6XwuY8eOVc+ePd1qO1zFxsaqqKhIw4cPD3RTfDJixAgVFRWRqRwAAAAAAISkTh/k7NevnyTp2LFjuvfee41gYnNr1qzRihUrjO3rrrvO63pHjhzpEhS77777Ws2KvmXLFi1ZssTY/uUvf6lu3bqdtF9GRoa6d+8u6UQyo4cffrjV+lesWKE1a9YY29dff73H54D/k5iYqOLiYo0bNy7QTfFKenq61qxZo8TExEA3BQAAAAAAwCudOsgZGRmp7OxsY3vt2rW66aabXBLyNDQ0aPny5Zo1a5aOHz8u6cQ6glOnTm2xzPHjx8tms8lms2n8+PGt1n3PPfcYGdLtdruuu+46l/U+HQ6HVq1apenTp6uurk6S1LdvX91yyy0tltenTx/deOONxnZBQYHuuOMOl2zrR48eVU5Ojh544AHjsYsvvlgXX3xxq+2Ee2JjY/XEE08oPz9f1157bauJdIKFc0Kf/Px8RnACAAAAAICQ1mkTDzW56qqrtGHDBr388suSTgQ6J0yYIJvNpujoaO3YsUM//PCDsX9cXJwWLVqkrl19e+nGjBmj2bNna/78+ZKkzZs36xe/+IWGDh2qXr16adeuXS7T57t166aFCxcqJiam1TKzsrL01Vdf6f3335ckvfHGG3rrrbdks9kUGRmpbdu2qaamxth/4MCBeuyxx3w6D7gaNGiQsrOztWTJEn344YdGIp3IyEhVVlYqISFBx44da3c7JibGCDxWV1ebVgYJfQAAAAAAQEfU6YOckvTQQw8pPj5ezz//vOrr69XY2OiSzbzJkCFDtGjRIg0ePNiUem+55Rb16NFD8+bNM0Zrbt++/aT9+vfvr7/85S86//zz2yyva9euWrx4sR566CHl5+fL4XCovr6+xTU/R44cqUWLFqlXr16mnAtcNSXSAQAAAAAAgPUIckoKCwvT7NmzNWXKFL3yyisqKSnRvn37dOTIEcXGxuqss85SWlqapkyZosjISFPr/s1vfqNLL71Uy5cvV3FxscrLy1VbW6vo6GglJSXp0ksvVUZGhqKjo90qLzIyUn/60580bdo0/etf/9LHH3+syspKHTt2TL169dI555yjK664QhMmTFB4eKderQAAAAAAAAAdBEFOJ0OGDNE999yje+65x+sy3n33XY+P6d+/v26//XbdfvvtXtfb3DnnnKNzzjnHtPIAAAAAAACAYMVQPgAAAAAAAAAhjSAnAAAAAAAAgJBGkBMAAAAAAABASCPICQAAAAAAACCkEeQEAAAAAAAAENIIcgIAAAAAAAAIaQQ5AQAAAAAAAIQ0gpwAAAAAAAAAQhpBTgAAAAAAAAAhjSAnAAAAAAAAgJBGkBMAAAAAAABASCPICQAAAAAAACCkEeQEAAAAAAAAENIIcgIAAAAAAAAIaQQ5AQAAAAAAAIQ0gpwAAAAAAAAAQhpBTgAAAAAAAAAhjSAnAAAAAAAAgJBGkBMAAAAAAABASCPICQAAAAAAACCkEeQEAAAAAAAAENIIcgIAAAAAAAAIaQQ5AQAAAAAAAIQ0gpwAAAAAAAAAQhpBTgAAAAAAAAAhLczhcDgC3Qh0Pp999pnLdnh46MfbGxsbjfsd4XyAQKNPAeahPwHmoT8B5qE/AeYJ9f7k3H5JGjVqlMdldDWrMYAvmr+ZQ11HOx8g0OhTgHnoT4B56E+AeehPgHk6a38KvdAuAAAAAAAAADhhJCeCQigOpQYAAAAAAIDvzBh9ypqcAAAAAAAAAEIaw+cAAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0roGugFAqNuxY4eWLVumdevWqby8XA0NDerXr5+SkpJ05ZVX6rLLLlPXrnQ1dD5FRUX63e9+5/FxxcXF6t+/f6vPf/nll1qxYoU+/fRTVVZWyuFwKCEhQcOHD9cvfvELXXzxxQoLC/Ol6UBQWLRokZ555hklJibq3Xff9ejYjz76SPn5+friiy+0f/9+de3aVf3799fIkSN11VVX6fzzz/eovGPHjunNN9/UypUrtXnzZlVVVSk6OloDBgzQxRdfrIyMDJ122mkelQn4kzf96eGHH9ZLL73kUT2nnXaaVq9e3eY+DodDb7/9tl577TV99dVXOnDggLp3766EhARdeOGFysjI0JlnnulRvYBV1q1bpzfffFMbNmzQ/v37VVtba/z/P//885Wenq6zzz7b7fLMvo6jPyGUmNWfnn/+eT3++OMe1d2lSxdt3ry53f3Mvob0tzCHw+EIdCOAULV48WLl5OSooaGh1X2Sk5P1xBNPaPDgwX5sGRB4CxYsUE5OjsfHtRbkrK+v1yOPPKKXX365zeNTUlI0d+5c9evXz+O6gWDx5Zdf6tprr1V9fb1HQZna2lrdc889evvtt9vcb8qUKbr//vsVExPTbpk7duzQ7373O23btq3VfSIiInT77bfrpptu4kcGBB1v+9OvfvUrbdiwwaO62gtyVlZWavbs2frss89a3ScsLEzTp09Xdna2IiMjPaofMEt5ebnuuecerV+/vt19L7/8cj388MOKjo5udR8rruPoTwgVZvenO+64Q2+88YZHbWgvyGnFNWQgMLwM8NKcOXP04osvGttdu3aVzWZT9+7dtWPHDh08eFCSVFpaquuuu07Lly9XYmJioJoL+N2WLVuM+0lJSW4HHVu6AHU4HPr973/v8qF7yimnyGazqUuXLtq2bZtqa2slSSUlJbrhhhv08ssvq2fPnj6eBeB/u3fv1q233qr6+nqPjvvxxx81Y8YMbdy40XisR48eSkpK0vHjx2W323X06FFJ0muvvaa9e/cqNze3zS9933zzjX79618bn2mS1LdvX51xxhmqqqrStm3b5HA4VF9fr3nz5unQoUO68847PTxjwDre9ieHw6GysjJje/To0W4FSNr6rPvhhx/0m9/8Rt9++63xWFxcnIYOHaojR46orKxMDQ0NcjgcysvL0/79+zV//nyP2g2YYefOnbrmmmv0ww8/GI9FREQoKSlJMTExOnDggLZv366m8VJvvvmmduzYoZdeeqnFwIwV13H0J4QKs/uTJG3dutW4f84557j1nadLly6tPmfFNWSgMJIT8ELzabgTJ07U/fffrz59+kg68UtlQUGB5s6dqyNHjkiShg8frvz8fEa4oNP42c9+pv3790uSXnzxRY0ePdrrsppPybj22muVnZ1t/IJ49OhRLV26VIsXLzZGVl922WV66qmnfDgDwP/sdrtuvPFGVVZWGo+5O/LMeWptWFiYZs2apZkzZ6pbt26SpEOHDmnx4sX6+9//bhwzffp03XfffS2Wd/z4caWnpxsX0rGxsXr44Yc1ceJE47Ns9+7d+p//+R99/PHHxnHPPPOMfv7zn3t45oD5fOlPO3fu1MSJEyWd+DK6YcMGRURE+NSeW265Re+//76kEwGe++67T1OnTjWWNfruu+/05z//WYWFhcYxf/jDH3T99df7VC/giePHj+s///M/ZbfbJZ0IjPzXf/2XMjMzXQIulZWVmj9/vv79738bj6WlpWnRokUnlWnFdRz9CaHAiv70448/auTIkTp+/Lgk6d133/V5MJXZ15CBROIhwEP19fV67LHHjO1x48Zp4cKFRoBTOnExPG3aND311FPGB+2mTZs8HlIOhKoffvjBCHBKks1m86msp59+2ti+5ppr9MADD7hMkejWrZuysrL08MMPG4+tXr1an3/+udf1Av726quv6pe//KVLQMZd27dv17Jly4ztO+64Q7fddptxcSpJPXv21B/+8AfddtttxmMvvfSSysvLWyxzxYoVRoCza9euysnJUVpamsuPdT/5yU/03HPP6T/+4z+Mx+bNm2dceAOB4kt/klxnIwwZMsTnAOeaNWuMgIwkPfroo7rmmmtc1m3v27evFixYoP/8z/80HnvmmWeMEW6APxQUFBgBGenEe3XWrFknjShLSEjQY489pszMTOOxoqIiffHFFy77WXEdR39CqDC7P0lSWVmZcZ3Vs2dPnwOcVlxDBhJBTsBDq1ev1p49eySd+NJ3//33Kzy85a6UkpKiadOmGdt5eXl+aSMQaM5fDk899VTFxsZ6XdYrr7yiw4cPSzoxDenuu+9udd+MjAxdcsklxjZ9DqGgsrJS99xzj+6++25j9L+nXnzxReOCd/DgwZo5c2ar+/72t79VUlKSpBM/3P3jH/9ocT/nX+szMjJ03nnntbhfRESEHnvsMSMItGPHDhUXF3t1HoCvzOhPkutUQDOSlrzwwgvG/ZSUFE2ePLnVfR944AH17t1bknTw4EH961//8rl+wF2vvvqqcT8lJUVTpkxpc//s7GyXZRrefPNNl+etuI6jPyFUmN2fJNfPJ18GkjSx4hoykAhyAh5ynvIwduxYnXrqqW3u7xzk3LRpk3bv3m1Z24Bg4Rzk9PXDd+XKlcb9SZMmKSoqqs39nfvcBx98oLq6Op/qB6y0ZMkSpaWluUxPGjx4sLKystwuo7GxUW+99ZaxnZ6e3uqPb5IUHh6uX/7yl8a287FNtm7dqh07dhjbV199dZttSEhI0Lhx44ztoqIit9oOmMmM/tTE+XPM1yBndXW11q5da2xnZGS0uX9UVJTLF2H6E/zl2LFjLqMnr7jiinaPiYyMVEpKirH91VdfuTxv9nUc/Qmhwor+JJn7+WTFNWSgEeQEPOBwOLRu3Tpj+6KLLmr3GJvNpr59+xrb7mb0BEKZWR++VVVVLmU5f+i35sILLzQW1j569KjLhTAQbJ5//nmXL3BTp07VihUrNGjQILfL2Lp1q0tiIHf6ifPn1549e1xGBUhyWWMzNjZWI0aM8KjM999/Xyz7Dn8zoz81MfNL5CeffGKMkgkLC3Pr+tF5n88//1zV1dU+tQFwR0VFhU455RRje8iQIW4dFxcXZ9x3/jyy4jqO/oRQYXZ/amLmYBIrriEDjSAn4IGKigodOnTI2E5OTnbrOOd/Pi39GgN0NGZN8ysrK3MJlAwfPrzdY6KionTaaacZ2/Q5hILk5GS9+OKLmjNnTquZNFvj3N8iIiI0bNiwdo8544wzXNZaat5PnMs866yz3Eqa59zXq6urXTLeAv7kS3+SzF1XWnLtTwMHDnRrCRfn/tTY2KhNmzb51AbAHWeccYY2bNig9evX68033zSmpbanoqLCuO/8/rbiOo7+hFBhdn+STgy6KisrM7Z9/RHOimvIQOva/i4AmuzcudNl2/kDuC0DBw407vOlDx3djz/+qG+++cbYttls+uyzz/Tvf/9b69ev1969exUWFqa+fftq1KhRmjJlikvSEmfOfS4yMlIDBgxwqw0DBw402kCfQzAbPXq00tPT9fOf/9ytQGJLnPtJYmKiS+KF1oSFhenUU0/V119/LUnatWtXq2W6OwrO+bOuqUxvRtAB3jKjP0muo2T69u2rmJgYrVy5UitXrtSXX36p77//XlFRURowYIDGjh2rqVOnavDgwa2W501/6tu3r7p166ajR49KOtGfxo4d690JAR6KiYlxSQzUltraWn344YfGtvNoNSuu4+hPCDVm9SfpxHu3acZCly5dNHToUH3wwQd6/fXXtWHDBu3fv18RERFKSEjQmDFjdNVVV+mcc85ptT4rriEDjSAn4IHvvvvOuB8eHu6SUb0tztPVncsAOiLnjH9hYWF66KGH9NFHH520365du7Rr1y4VFBQoJSVFjz/+uLEwfBPn/uLcj9pDn0OoeOaZZ3wuw/k97rxYfXv69OljXKA27yfOo9jc7Xu9evVSly5djP5P34O/mdGfJNcgZ9euXXXFFVec9EN3dXW1qqurtXXrVr3wwgu67rrrdNddd7X4BdGb/iRJvXv3Nkb00J8QrJ5//nmXjOXO6zNbcR1Hf0JH1lZ/klw/n6KionTdddedNJLyxx9/VG1trXbs2KH//d//1ZVXXqmHH364xfVwrbiGDDSmqwMecF6/pUePHm0uyuvMeaoUa8Cgo3Oe9uBwOIwAZ0xMjIYPH67Ro0crMTHR5ZiSkhJNnTpVe/bscXm8qqrKuO/uL6ASfQ6di7f9xHnf5v3EedvdMsPDw10uoJ2XdwFCifOXyL179xoBzr59++q8887TyJEjXdZMO378uJYuXapbbrlF9fX1J5XnTX9qvi/9CcHoyy+/1N/+9jdj+/TTT9f48eONbSuu4+hP6Kja60+S6/esmpoaI8AZHx+vc889V+eff/5JwcrXX39d1157rWpqak6q04pryEBjJCfggR9//NG477wORXsiIyON+8eOHTO1TUCwcf5yKJ34Unj33XcrLS3NpS/Y7XY98cQT+uCDDySdWH/m1ltv1fLly439nPsLfQ5omRX9xIzPO+cygFDSPInCiBEjdM899+iCCy4wHmtsbFRJSYn+/Oc/G9NqS0pK9Kc//UkPPvigy/H0J3RE5eXluvXWW10C+/fee6/LaGY+nwD3uNOfpJO/Z51++um69957dfHFFxsJu6QTCbYeffRRbdy40TguOzvbJYgqdczvWozkBDzg/E/H3VGcklz+OTU0NJjaJiDYNF8r6dVXX9WUKVNcPgwlKSkpSc8++6wyMjKMx7Zs2aJly5YZ2/Q5oH3e9hPni+Hm/cR523k/X8oEQsGxY8dUXl5ubE+cOFH//Oc/XQKc0om+dvHFF2vFihU666yzjMeXLVt2UpDUuS+Y1UeBQNq7d69uuOEGl2mq06dPP2lqrRXXcfQndDTu9ifJ9XvWyJEjVVBQoHHjxp10rXbeeefpH//4h0u29A8++EDvvPOOy35WXEMGGiM5AQ84d+bGxka3j3Pu+BEREaa2CQg2eXl5OnDggMrLy9WvX7+T1tl0FhYWpgcffFAff/yxsU7S3//+d11//fWS6HOAO7ztJ01rZ0on95MuXboY/ch5P0/KbP7DBhAKIiMjtWHDBu3bt0/l5eUaMWJEm58jMTExmjdvnq644go1NjbK4XDo73//u/785z8b+1jRR4FA2bFjh2bOnKm9e/caj6WkpOjOO+88aV8rruPoT+hIPOlPkvTWW29p//79Ki8v1xlnnKEePXq0WnZkZKSeeOIJXXrppTp8+LCkE9+zfv7znxv7dMT+xEhOwAPdu3c37nsyzcF5CPcpp5xiapuAYNS7d2+de+65bmXRjIyM1K9+9Stje/fu3UYmTedpE570Oed96XPo6KzoJ2aUSZAToSo8PFynnnqqRo8e7XLt15ohQ4a4ZGp2zowr8VmGjuPzzz/Xr3/9a5eAzIUXXqinnnqqxUBHsH4+0Z8QDDztT9KJASIJCQkaNWqUevXq1W4dvXr10hVXXGFsf/bZZzpy5Iix3RH7E0FOwAOxsbHG/cOHD8vhcLh1nHOGNOeF6gGccN5557lsN03FcO4vzv2oPU2/VjYvA+iIvO0nbX02OX/euVtmY2Oj6urqWi0T6MicP8f27dvn8gXQm/7UfF/6EwLt9ddf1w033KCDBw8aj6Wmpuqvf/1rqz8GWHEdR39CR+BNf/KW8+dTfX29S6JXK64hA40gJ+CBhIQE4/7x48dd/im1xXl9jT59+pjeLiDUNZ/S3pSlz7nPHThwwO3y6HPoTJyzaHrST77//nvjft++fV2e86bv/fDDDy5TnZqXCXRkzT9rnDPWevtZ5rwv/QmBtHjxYt15550us9OmTJmiZ555ps1kJVZcx9GfEOq87U/eat6HnLOhW3ENGWgEOQEPDBo0yGV79+7dbh3nvID9GWecYWqbgI6g+fSIpvVlnPtcXV2dywdqW5z7Jn0OHd3pp59u3C8vL3drloHD4TDWwW1eRvPtpuUj2tP8M7F5mUBH1trnmORdf9q/f7+OHj3aYhmAv9TX1+vuu+/WU0895fL4Lbfcoscff/ykzM/NWXEdR39CqPK1P3nL3c8ns64hA43EQ4AHEhMTFRcXZ/w6v2XLFp177rntHuecZfPMM8+0qnlAwG3dulWvvvqqDhw4oAMHDujxxx9vM/FQE+cfAiTp1FNPlSSdffbZCgsLMz5wt2zZop/97GdtlnX48GGXi176HDq64cOHG/ePHDmib775RoMHD27zmK+//trlotc5O3RTmQUFBZJ0Uqbo1mzZssW4Hxsbq8TERLeOA4LJ22+/rY8//lg//PCDunbtqscff9yt45yDMj179lR0dLSx7dxHd+3apSNHjrQ7HdG5P4WFhclms7l7CoApjh07plmzZun99983HuvatasefPBBTZ061a0yrLiOoz8hFJnRnz755BO9/fbbOnDggGpqapSTk+NWRnTnz6ewsDD179/f2LbiGjLQGMkJeGjMmDHG/bVr17a7/9atW11+tbzwwgstaRcQDKqrq5Wbm6tXX31VJSUl+uSTT9w67oMPPjDux8TEKCkpSZIUHR2ts88+23jOnT738ccfG1Nmu3TpotGjR3tyCkDIGTZsmMvi8x999FG7xzgnRomPjz/pC59zv/nuu++0bdu2dst07p/On5VAKNmyZYtefPFFvfnmm3rttdfcHnlWUlJi3B81apTLc6NGjTJG6Bw/flzr1q1rtzzn/nT22We7rEMIWK2hoUG33367S0CmR48e+utf/+p2QEay5jqO/oRQY1Z/Ki8v1wsvvKA33nhDxcXFKi0tdeu4NWvWGPeHDRvm8v634hoy0AhyAh6aMGGCcf+9995TZWVlm/v/85//NO4PGTIk6P4JAGZKTk5WVFSUsb1ixYp2j9m3b59ee+01Y/vyyy93+VVy4sSJxv3XXnvNJSNgS5z73NixY9WzZ0+32g6EqrCwMF122WXG9vLly13WxmyusbFRy5cvN7YnTpyosLAwl32SkpJcpgguW7aszTbs3bvX5eJ90qRJ7jYfCCrOARWHw6FXXnml3WNWrVqlr7/+2tieMmWKy/M9e/Z0+ZG7vf50+PBhl8/FtLS0dtsAmOmJJ57Qe++9Z2z36tVLL774olJSUjwuy+zrOPoTQo1Z/emCCy5wuV5z53tWaWmpS1DyyiuvdHneimvIQCPICXhowoQJxgK9x44d07333quGhoYW912zZo3LP5/rrrvOL20EAqVHjx6aPHmysf3hhx/q3//+d6v719bW6ve//71xwXvKKado5syZLvtkZGQY05C+//57Pfzww62Wt2LFCpdfK6+//npvTgMIOddee61xkbl161Y9/fTTre67aNEiY2RmeHh4q59Nv/71r437y5Yta3UETn19ve655x7V19dLOrHcxKWXXurVeQCBNnr0aJf1xZ599llt37691f2//vpr3X///cb24MGDXX4Qb+Lcn9577z1jOYiWPPjgg/rhhx8kSVFRUbr66qs9OQXAJ8XFxXrhhReM7djYWP397393mdbqCSuu4+hPCBVm9qef/OQnLgH+/Px8ffzxx63u/9133+mOO+4wlovo1auXfvWrX520nxXXkIFEkBPwUGRkpLKzs43ttWvX6qabbnJZ66KhoUHLly/XrFmzdPz4cUknRsV4MhwdCFW/+93vFBMTY2z/4Q9/0FNPPaXDhw+77Pfpp5/qmmuu0YYNG4zHsrOzddppp7ns16dPH914443GdkFBge644w6XDIBHjx5VTk6OHnjgAeOxiy++WBdffLFp5wUEszPPPFNXXXWVsf3UU0/pz3/+s2pqaozHampq9Kc//Uk5OTnGY9OmTdPQoUNbLHPatGnGaM6GhgbddtttWrFihcsPe7t379aNN97oMl3wrrvuUmRkpGnnBvhTWFiY/vu//9vYPnz4sH7zm9/ozTffdBndUl9fr3/961+65pprdPDgQUlSRESEHnvssRaTR4wfP95lGYc//vGP+utf/+qyrtn333+v2bNnu4w6u/XWW12mEgJWOn78uP70pz8ZQZGwsDDNmzdPw4YN87pMK67j6E8IBVb0p3vvvddluYasrCy99NJLLpnaGxsb9c4772jatGnauXOn8fhDDz3U4gw3K64hAynM4U76JAAnuf/++/Xyyy8b2+Hh4bLZbIqOjtaOHTuMXwwlKS4uTv/85z/bXcQX6Cg+/vhj3XzzzS4Xm926ddOZZ56pyMhIffvtt9q3b5/LMTNnztTdd9/dYnlNARbn6bARERGy2WyKjIzUtm3bXD6IBw4cqBUrVnAhi5BVUFCg++67T9KJpHfvvvtuu8fU1tbqhhtucFmjqXv37sYyKWVlZS7TBEeMGKF//OMf6tatW6tl2u12XXfddUbCPenESIAhQ4aopqZGdrvdJfDz61//2mVUGxAMvOlPzz77rObNm+fyWFxcnIYNG6aGhgbt2LFDhw4dMp6LiIjQwoUL2xzFXFlZqV//+tcuP4zHxMRo2LBhOnbsmMrKyowR0ZI0btw4PfPMM24llgDM8Oabb7oM5oiKitJ5553nURl9+vTRY4895vKYFddx9CcEO6v602uvvaZ77rnH5fqrR48estlsCg8P1zfffOPyI4J0InbhPAK6OSuuIQOFICfgJYfDoYULF+r55593+QBtbsiQIVq0aJFPv9gAoWjTpk266667tGPHjjb3i42N1R133KFp06a1ud+xY8f00EMPKT8/X219dI0cOVKLFi1SQkKCV+0GgoE3QRnpxC/td999d7v7jxs3Tk888YTLqOvWlJWV6Y477mgz+VCXLl1000036fe//33Qrc0EeNuf3njjDT388MOqrq5uc78hQ4booYce0gUXXNBumXv37lV2drY+//zzNve7+uqr9cADDzAqGn41a9YsrVq1yqcyWutjVlzH0Z8QzKzsT2vXrtW9997bbn6QhIQE/fGPf3RZd7M1VlxDBgJBTsBHO3bs0CuvvKKSkhLt27dPR44cUWxsrM466yylpaVpypQpfKCi0zp+/LjefvttrVq1Sl9++aW+//57NTQ0qE+fPjr99NM1fvx4XX755R6NuPzyyy/1r3/9Sx9//LEqKyt17Ngx9erVS+ecc46uuOIKTZgwgV/pEfK8Dco0+eijj/Taa69p/fr1+v7773X8+HH16dNHI0eO1FVXXeXxYvcNDQ16/fXX9dZbb2nLli06cOCAIiIiNHDgQI0ZM0a/+tWvgnLKEiD51p9qa2v173//Wx988IG2bt2qqqoqdenSRX379tXZZ5+tCRMm6NJLL/XoWs/hcGj16tUqLCw0PhvDw8OVkJCgUaNG6Ze//KV++tOfenqagM8uv/zyNtegdUd7fczs6zj6E4KV1f3p2LFjeuONN/Tee++ptLRUP/zwg8LCwtS7d28NGzZMl156qSZNmqQePXp4VKfZ15D+RpATAAAAAAAAQEhjqAsAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAP9mwYYNsNptx2717d6CbBAAA0CEQ5AQAAAD8ZNOmTcb9uLg4/eQnPwlgawAAADoOgpwAAACAnzgHOZOTkwPYEgAAgI6FICcAAADgJ6WlpcZ9gpwAAADmIcgJAAAA+MHRo0e1Y8cOY5sgJwAAgHkIcgIAAAB+sHXrVh0/ftzYJsgJAABgHoKcAAAAgB84r8fZp08fDRgwIICtAQAA6FgIcgIAAAB+4BzkHD58eLv7f/nllxo/frxsNptsNptGjhypwsJCK5sIAAAQsroGugEAAABAZ+BJZvV//OMfevTRR1VfXy9JOuOMM/TUU09p6NChlrYRAAAgVBHkBAAAACz2448/avv27cZ2a0HOw4cP63/+539cRmxOnDhRf/7znxUdHW15OwEAAEIVQU4AAADAYmVlZWpoaDC2Wwpy2u123X777frmm28kSV26dFF2drZuvPFGv7UTAAAgVBHkBAAAACxWWlpq3O/Xr5/69evn8vy///1vPfjggzpy5IgkqXfv3lqwYIHGjBnj13YCAACEKoKcAAAAgMVaW4/zxx9/1Jw5c7R8+XLjsZEjR2rRokVKSEjwaxsBAABCGUFOAAAAwGItBTl3796t22+/XZs3bzae+81vfqN7771XERERfm8jAABAKCPICQAAAFjo2LFjJyUdevvtt3Xffffp0KFDkqTu3bvr4Ycf1pQpUwLVTAAAgJBGkBMAAACwUFlZmerr643toqIiFRQUGNunn366nnzySdlstkA0DwAAoEMID3QDAAAAgI7Meaq6JJcA589//nO98sorBDgBAAB8RJATAAAAsJBzkPOUU05xeW7MmDGKiYnxd5MAAAA6HIKcAAAAgIWcg5w333yzUlJSjO1HH31U77zzTiCaBQAA0KEQ5AQAAAAscuzYMdntdmM7OTlZixYtUlJSkiSpsbFRd95550lT2gEAAOAZgpwAAACARex2u0vSobPOOkvR0dHKyclRnz59JEl1dXW65ZZbtHfv3kA1EwAAIOQR5AQAAAAssnnzZuN+7969lZCQIElKTEzUkiVL1K1bN0nSd999p1tuuUW1tbUBaScAAECoI8gJAAAAWKS0tNS4f9ZZZ7k8d8455+ixxx5TWFiYJKmsrEy///3vdfz4cb+2EQAAoCMgyAkAAABYxHmtzTPPPPOk59PS0pSdnW1sr1mzRg899JBf2gYAANCREOQEAAAALFBfX++SdKj5SM4mN998szIyMoztl19+Wc8995zl7QMAAOhICHICAAAAFti2bZuOHTtmbLcW5JSkhx56SBdeeKGx/Ze//EWrVq2ytH0AAAAdCUFOAAAAwALOU9W7d++uM844o9V9IyIitHjxYg0ePFiS5HA4dNddd+nLL7+0vJ0AAAAdAUFOAAAAwALOSYeSkpIUHt72pXfPnj317LPPKj4+XpJ09OhR/dd//ZfKy8stbScAAEBHEOZwOByBbgQAAAAAAAAAeIuRnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKT9P4Hw6X/lIkbwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def safe_A(k, r0, td, tb, tau, limit=60):\n", + " if k > limit:\n", + " return r0 ** 2 * tb**2\n", + " return A(k, r0, td, tb, tau)\n", + "\n", + "\n", + "check_A(r, deadtime, bintime, max_k=250)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, we had better repeat the procedure by using `limit_k=150` this time." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSQAAAQOCAYAAADCLzaZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAACubklEQVR4nOzdf3yedX0v/ndbQBpSkiCQYEDkRxMo6TgIKpYcozjpD8fOTMDte4THTOuOUQ7M9mxHfZxN5+zUOWkrbDZTSbqjTkQSpnhKKGdgRgFBGHBIW3ojU2gDCSBNaAlIf+T7B8u9tqRtct/Xfd1J83w+HvfjcV93ruv9+VzJfbV3Xvl8rs+04eHh4QAAAAAASMH0YncAAAAAAJg6BJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAao4odgeY+B566KF9tqdPl2MDAAAATEV79uzZZ/v8888fdw2BJOO2/xsPAAAAAMbKUDcAAAAAIDVGSDJuh8uU7b1Heh4u5wTF4nqC5LieIDmuJ0iO6wmSNZmvqSRmzgokOaTp06dn32zTp0+P8847r8g9yt+uXbvi0UcfzW7PnTs3jjjC5QC5cD1BclxPkBzXEyTH9QTJmuzX1MMPP7xPTpSLyRXBAgAAAACTmkASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASM0Rxe4ApG1oaCjuvPPO+PnPfx5DQ0NRUlISzz77bFx88cVRUlJS7O4BAAAAHNYEkkwZmUwmVq9eHWvWrImBgYE3fL28vDyam5ujpaUlampq0u8gAAAAwBRgyjaHvcHBwWhqaora2tpYtWrVqGFkRMTAwECsXLkyamtro6mpKQYHB9PtKAAAAMAUIJDksNbb2xv19fXR2dk5ruM6Ozujvr4+ent7C9QzAAAAgKlJIMlha2BgIObPnx89PT05Hd/T0xMLFiwwUhIAAAAgQQJJDltLliyJDRs25FWjp6cnFi9enFCPAAAAABBIcljKZDLjnqZ9IJ2dnfHEE08kUgsAAABgqhNIclhqbW2d0PUAAAAApiqBJIedoaGhaG9vT7Rme3t7DA0NJVoTAAAAYCoSSHLY6e7ujoGBgURrbtu2Lbq7uxOtCQAAADAVCSQ57PT19RWkbn9/f0HqAgAAAEwlAkkOOzt27ChI3e3btxekLgAAAMBUIpDksFNaWlqQurNmzSpIXQAAAICpRCDJYaeqqqogdSsrKwtSFwAAAGAqEUhy2GloaIjy8vJEa1ZUVERDQ0OiNQEAAACmIoEkh52SkpJobm5OtGZzc3OUlJQkWhMAAABgKhJIclhqaWmZ0PUAAAAApiqBJIelmpqaaGxsTKRWY2NjzJ49O5FaAAAAAFOdQJLDVltbW9TV1eVVo66uLtra2hLqEQAAAAACSQ5bZWVl0dXVlXMoOXfu3Ojq6oqysrKEewYAAAAwdQkkOaxVV1fH+vXrxz19u7GxMe6+++6orq4uUM8AAAAApiaBJIe9srKy6OjoiM2bN8fSpUujvLx81P0qKipi2bJlkclkoqOjw8hIAAAAgAI4otgdgLTU1NTEihUrYvny5XHnnXfGgw8+GC+//HIcc8wxccEFF8TFF18cJSUlxe4mAAAAwGFNIMmUU1JSEgsWLIiTTjop+9q5554bRxzhcgAAAAAoNFO2AQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1BxR7A5MdF//+tfjG9/4RlRXV8edd96ZaO3HHnssLrvssnEf973vfS8uuOCCRPsCAAAAAGkwQvIg/t//+3/xrW99q2D1N23aVLDaAAAAADARGSF5AFu2bIlPfvKTsXPnzoK1sXcgeeqpp8Ypp5wypuPKysoK1SUAAAAAKCiB5CgymUx87GMfi+eff76g7ewdSH7iE5+ID33oQwVtDwAAAACKzZTt/fzoRz+KD3/4w9Hf31/QdoaHh2Pz5s3Z7bPOOqug7QEAAADARGCE5L/r7++PFStWxD/90z+l0t5TTz0VQ0NDERFx5JFHxhlnnJFKuwAAAABQTEZIRsTq1atjwYIF+4SRp59+erS0tBSszb2na5922mlx1FFHFawtAAAAAJgoBJIRccMNN2RHK0ZEXH755fHDH/4wTj311IK1+fjjj2efm64NAAAAwFRhyvZe6urq4tOf/nS8853vLHhbe4+QFEgCAAAAMFUIJCPine98ZzQ2Nsb73//+mDZtWipt7h1I1tbWxuOPPx4dHR1x//33x9atW2PXrl1x/PHHx7nnnhsLFy6MD3zgA6n1DQAAAAAKRSAZEd/4xjdSbe/FF1+M5557Lrv97W9/O+6777437Nfb2xu9vb2xdu3aqKuri5UrV8Zb3/rWNLsKAAAAAIkSSBbB3qMjIyIbRs6cOTNOPfXUOPbYY+O5556LX/3qV9l9enp64vLLL4/29vaYM2dOmt19g127dhW1/STs3r37oNvA2LmeIDmuJ0iO6wmS43qCZLmmBJJFsX8gWVpaGsuWLYvf+73fi2OOOSb7+tatW+O6666LH/3oRxERMTAwEJ/85CfjlltuiYqKilT7PGLPnj3x6KOPFqXtQurp6Sl2F+Cw4XqC5LieIDmuJ0iO6wmSNRWvKatsF8HeIx8rKiri5ptvjo985CP7hJERESeffHJ89atfjauvvjr72rPPPhutra1pdRUAAAAAEiWQLILly5fHAw88EB0dHfH9738/TjvttIPuf9VVV8V5552X3f7BD34Qr732WqG7CQAAAACJM2W7SMrKyqKsrGxM+06bNi2uvPLKePjhhyMi4pVXXomHHnoo3v3udxeyi6OaPn16zJ07N/V2k7Z79+59hkTX1dXFjBkzitgjmLxcT5Ac1xMkx/UEyXE9QbIm+zX12GOPxZ49e/KqIZCcJN7+9rfvs/2rX/2qKIFkRMQRRxx+b5sZM2YclucFxeB6guS4niA5ridIjusJkjUVrylTtieJN7/5zftsDw4OFqknAAAAAJA7geQksf89I/dfAAcAAAAAJoOpNR50Aujt7Y1//Md/jBdffDF+/etfx7Jly+Kss8465HFbtmzZZ/ukk04qVBcBAAAAoGAEkikbHh6Ob3/729ntd77znWMKJO++++7s82nTpr3hnpIAAAAAMBmYsp2yk08+Oaqrq7PbnZ2dsXv37oMes2PHjvjud7+b3a6vr4/jjjuuYH0EAAAAgEIRSBbBZZddln3+5JNPRmtr6wH33blzZ3zmM5+J/v7+iHh9dGRLS0vB+wgAAAAAhSCQTNjFF18ctbW1UVtbGxdffPGo+zQ3N+8zSvK6666L5cuXx7Zt2/bZb9OmTdHc3Bx33HFH9rUrrrgiLrjggsJ0HgAAAAAKzD0ki2DmzJnx93//93HFFVfEwMBARER85zvfiRtvvDFqamqitLQ0nn322Xj66af3Oe53fud34rOf/WwRegwAAAAAyTBCskhmz54dN998c5x33nnZ13bu3BkbNmyI+++/f58w8uijj45PfepT8dWvfjVmzJhRjO4CAAAAQCKMkCyiU045JW688ca455574ic/+Uk88sgj8dxzz8VvfvObOO644+KUU06JhoaGuPTSS+Okk04qdncBAAAAIG8CyYNobGyMxsbGcR1z5513jrudiy66KC666KJxHwcAAAAAk40p2wAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAao4odgcmuq9//evxjW98I6qrq+POO+8sSBvPPvts3HjjjbF+/fp46qmn4tVXX40TTjghTj/99Fi0aFEsWrQoZs6cWZC2AQAAACBNAsmD+H//7//Ft771rYK2ceONN8ZXvvKVeOWVV/Z5/Zlnnolnnnkm1q9fH9/85jfjq1/9apx77rkF7QsAAAAAFJop2wewZcuW+OQnPxk7d+4sWBtr1qyJz3/+89kwctq0aVFTUxPvfOc748QTT8zu96tf/Sr+8A//MDZs2FCwvgAAAABAGgSSo8hkMvGRj3wknn/++YK18cgjj8RXv/rV7PY73vGOWLduXdx6663xne98J/7lX/4lrr/++qioqIiIiFdeeSU++clPvmEkJQAAAABMJgLJ/fzoRz+KD3/4w9Hf31/Qdr785S/H7t27IyLinHPOiW9/+9vx1re+Nfv1adOmxSWXXBJr1qyJY445JiIi+vr64h/+4R8K2i8AAAAAKCT3kPx3/f39sWLFivinf/qngrf16KOPxiOPPJLd/vM///M4+uijR933rLPOiquuuio7mvIf/uEf4o/+6I9ixowZBe8nE8vQ0FB0d3dHX19f7NixI0pLS6OqqioaGhqipKSk2N0DAAAAGBOBZESsXr06vvnNb8bQ0FD2tdNPPz0uueSSaG1tTby9tWvXZp+fccYZcd555x10/8suuyxWrFgRu3btihdffDEeeOCBePe73514v5iYMplMrF69OtasWRMDAwNv+Hp5eXk0NzdHS0tL1NTUpN9BAAAAgHEwZTsibrjhhn3CyMsvvzx++MMfxqmnnlqQ9u67777s84suuuiQ+5eVlUVdXV12+6677ipIv5hYBgcHo6mpKWpra2PVqlWjhpEREQMDA7Fy5cqora2NpqamGBwcTLejAAAAAOMgkNxLXV1dfOc734nly5dHaWlpQdrYuXNn/Nu//Vt2+5xzzhnTcbW1tdnnjz32WOL9YmLp7e2N+vr66OzsHNdxnZ2dUV9fH729vQXqGQAAAEB+TNmOiHe+853R2NgY73//+2PatGkFbWvr1q2xc+fO7PZYR2GefPLJ2edPP/104v1i4hgYGIj58+fHhg0bcjq+p6cnFixYEOvXr4+ysrKEewcAAACQHyMkI+Ib3/hG/PZv/3bBw8iIiOeff36f7RNOOGFMx+29369//evYs2dPov1i4liyZEnOYeSInp6eWLx4cUI9AgAAAEiOEZIp2//+fscee+yYjps1a1b2+fDwcLz00ktRXl6eZNfGbNeuXUVpN0m7d+8+6HaxZDKZcU/TPpDOzs7YtGlTzJ49O5F6cCAT9XqCycj1BMlxPUFyXE+QLNeUQDJ1v/nNb/bZPvroo8d03JFHHnnQOmnZs2dPPProo0Vpu5B6enqK3YWIiFixYkWi9f7qr/4qli5dmmhNOJSJcj3B4cD1BMlxPUFyXE+QrKl4TZmynbL9RxdOnz62H8ERR+ybHU/F9Pxw9+qrr8att96aaM1bb701Xn311URrAgAAAORDIJmy/QPIsd4Lcv8gc/8Rk0x+Dz30UGzfvj3Rmi+99FI89NBDidYEAAAAyIcp2ymbOXPmPtu/+c1v4qijjjrkca+99to+229605sS7ddYTZ8+PebOnVuUtpO0e/fufYZE19XVxYwZM4rYo4iHH364IHWPOeaYOPfccwtSGyIm5vUEk5XrCZLjeoLkuJ4gWZP9mnrsscfyXmxZIJmysrKyfbZ37Nixz4I1B7Jjx47s8yOOOGJMxxTK/tPHDwczZswo+nm98sorBak7NDRU9HNjapkI1xMcLlxPkBzXEyTH9QTJmorXlCnbKausrNxn+4UXXhjTcc8//3z2+XHHHRfTpk1LtF8UX2lpaUHqFjO8BgAAANifQDJlb3nLW/a5/+OWLVvGdNzWrVuzz9/2trcl3S0mgKqqqoLU3T8EBwAAACgmgWTKjjzyyKipqclub9q0aUzH7b3f2WefnXi/KL6GhoYoLy9PtGZFRUU0NDQkWhMAAAAgHwLJInjXu96VfX7vvfcecv+BgYHYuHFjdvvCCy8sSL8orpKSkmhubk60ZnNzc5SUlCRaEwAAACAfAskiuOSSS7LPe3p69llZaTQ33XRT7Nq1KyJeXxRn3rx5Be0fxdPS0jKh6wEAAADkSyBZBOedd16cc8452e3Pfvaz+6yivbdNmzbF6tWrs9sf/vCH4+ijjy54HymOmpqaaGxsTKRWY2NjzJ49O5FaAAAAAEkRSCbs4osvjtra2qitrY2LL774gPt9+tOfzq6Unclk4sorr4zHH388+/Xh4eFYt25dfPSjH42hoaGIiDjhhBPi4x//eGFPgKJra2uLurq6vGrU1dVFW1tbQj0CAAAASM4Rxe7AVPWud70rli5dGitWrIiIiI0bN8Z/+S//Jc4888w47rjj4qmnnor+/v7s/kcffXSsWrUqZs2aVawuk5KysrLo6uqKBQsWHHI6/2jmzp0bt912W5SVlRWgdwAAAAD5MUKyiD7+8Y/Hn//5n++z6MgvfvGLeOCBB/YJI6uqquLb3/52XHDBBcXoJkVQXV0d69evH/f07cbGxrj77rujurq6QD0DAAAAyI8RkkV2xRVXxG//9m/HTTfdFN3d3bF169bYsWNHlJaWRk1NTfz2b/92NDU1RWlpabG7SsrKysqio6MjMplMtLa2Rnt7ewwMDLxhv4qKimhubo6Wlhb3jAQAAAAmPIHkQTQ2No57hNqdd9457naqqqrimmuuiWuuuWbcx3L4q6mpiRUrVsTy5cuju7s7+vv7Y/v27TFr1qyorKyMhoaGfUbZAgAAAExkAkmYJEpKSmLhwoXF7gYAAABAXtxDEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIzYQIJNesWVPsLgAAAAAAKZgQgeTXvva1+PnPf17sbgAAAAAABTYhAsldu3bF0qVLo7+/f1zHPfzwwwXqEQAAAABQCBMikGxqaooXXnghrr766njttdfGdMyPf/zj+OhHP1rYjgEAAAAAiZoQgeTnP//5mDNnTjz22GPxhS984ZD7f/3rX49Pf/rTYw4vAQAAAICJYUIEkkcddVRcd911ceyxx0ZnZ2d8//vfH3W/1157LT71qU9Fa2trDA8Pxwc/+MGUewoAAAAA5GNCBJIRESeffHJ87Wtfi2nTpsWXvvSleOSRR/b5+gsvvBAf+chH4vbbb4+IiD/+4z+Or33ta0XoKQAAAACQqwkTSEZE/Of//J/jqquuip07d8Y111wTL7zwQkREPP7443H55ZfHY489FkcffXSsWrUqPvGJTxS5twAAAADAeKUeSL700ksH/fpVV10VDQ0N8dxzz8U111wTXV1d8V//63+NZ599NiorK+O73/1uzJ8/P6XeAgAAAABJOiLtBt/1rnfFKaecEnPmzIlzzjkn6urq4pxzzoljjz02u8/Xvva1+NCHPhQPP/xwPPzwwzE8PBx1dXXxjW98I0488cS0uwwAAAAAJCT1QHJ4eDiefvrpePrpp7P3g4x4/R6SeweUy5cvj5aWlvjNb34TCxcujK985Svxpje9Ke3uAgAAAAAJSj2Q/OY3vxkbN26MjRs3xoYNG6K3tzciIrZs2RJbtmzZJ6ScMWNGlJaWRk1NTfzsZz+Ls846KyorK9PuMgAAAACQkNQDyfe85z3xnve8J7v90ksv7RNQbty4MZ566qnYs2dP7Nq1K7Zv3x7XXXdddv+ysrI466yz4uyzz47a2tr4vd/7vbRPAQAAAADIUeqB5P6OPfbYuPDCC+PCCy/MvvbKK6/Epk2b9gkpn3zyydi1a1cMDAzEz372s/jZz34W06dPF0gCAAAAwCRS9EByNDNnzoy3v/3t8fa3vz372muvvRaZTCYbUm7YsCGeeOKJIvYSAAAAABivCRlIjuaoo46Kurq6qKury762e/fuIvYIAAAAABiv6cXuQD5mzJhR7C4AAAAAAOOQ2AjJF198MR588MF48cUXY9asWTF37tx461vfmlR5AAAAAOAwkHcgOTw8HF/5ylfie9/73humUF9wwQXxZ3/2Z1FbW3vQ4yMipk2blm9XAAAAAIAJLu9A8otf/GJ8//vfzwaLe/v5z38eH/7wh+O6666LhoaG7OvPPPNM/P3f/33cfffd0dfXF9OmTYvjjjsu6urqYtGiRfHBD34wpk+f1LPJAQAAAIBR5JX6PfHEE/H9738/Il4f4bj/KMdp06bFb37zm/jUpz4VW7ZsiYiIBx98MC699NK46aab4plnnok9e/bE7t274/nnn4+f/vSn8T//5/+Myy67zAraAAAAAHAYyiuQvPXWW7MjI4eHh+PMM8+Mq666Kv7n//yfcfnll8exxx4bERGvvvpqrFq1Kl5++eX41Kc+FS+//HJE/EeIuXeYOTw8HBs3bowrr7wyNm/enE/3AAAAAIAJJq8p2w8//HD2+bx58+Jb3/rWPitfL126ND75yU/GI488EuvWrYva2tp44YUXYtq0aTE8PBxHHXVUnHrqqTF9+vTo7++PgYGBiHg9qBwYGIirrroqfvKTn8TRRx+dTzcBAAAAgAkirxGSv/zlL7PPP/WpT+0TRkZEHHfccfGNb3wjysrKYteuXXHDDTe83uj06bF06dL4+c9/Hrfeemv86Ec/ip/97Gdx0003xXve854YHh6OadOmRW9vb/zd3/1dPl0EAAAAACaQvALJHTt2RETEUUcdFXPnzh11n+OOOy7+4A/+IIaHh2NwcDCmTZsWV155ZXz84x+PN73pTfvs+1u/9VvxzW9+M6644ooYHh6O4eHh+MEPfhCvvfZaPt0EAAAAACaIvALJV199NbtC9v4L2uxt7xW2IyL+v//v/zto3c9+9rNRW1sbERHbt2+P//t//28+3QQAAAAAJoi8AskRRx111EG/fsYZZ2Sfl5SUxKmnnnrQ/WfMmBF/+Id/mN1+6KGH8usgAAAAADAhJBJIHsqsWbMi4vXFasrLy8d0zH/+z/85+3zDhg2F6BYAAAAAkLJUAsnp0/+jmSOOGNvC3ieccELMmjUrhoeHo6+vr1BdAwAAAABSlEogmauRkZXbt28vck8AAAAAgCRM6EByZDTl0NBQkXsCAAAAACQhkUByx44dce+998bAwEAS5QAAAACAw9TYbuh4CC+++GIsWbIkIiJOOumkOOecc+Kcc86JOXPmRF1dXRx33HFJNAMAAAAATHKJBJIREcPDwxER8cwzz8Szzz4b//f//t/s10488cTsPq+99lo899xz2dcAAAAAgKkjr0DyggsuiE2bNsXLL7886tdHQsr+/v6YNm1aRET09fVFQ0NDVFRUxFlnnRVnnXVWnH322TFnzpw4/fTTs/sBAAAAAIefvALJ7373uxER8ctf/jI2btwYPT09sXHjxti0aVO89NJLBzxueHg4Xnzxxbjvvvvivvvuy77+pje9KWbPnh1nn312nH322RazAQAAAIDDTCJTtk877bQ47bTT4oMf/GD2tS1btmQDyg0bNsSGDRticHBw1ONHRlK++uqr0dPTEz09PUl0CwAAAACYYBK7h+T+TjnllDjllFNi4cKF2dd6e3v3GUm5cePG+PWvf12oLgAAAAAAE0zBAsnRVFdXR3V1dXzgAx/Ivtbf3/+GkZTPP/98mt0CAAAAAFKSaiA5msrKyqisrIz3v//92deef/75fUZSbtiwoYg9BAAAAACSUvRAcjQnnHBCNDQ0RENDQ7G7AgAAAAAkaHqxOwAAAAAATB0CSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1RxS7A0BuhoaGoru7O/r6+mLHjh1RWloaVVVV0dDQECUlJcXuHgAAAMCoBJIwyWQymVi9enWsWbMmBgYG3vD18vLyaG5ujpaWlqipqUm/gwAAAAAHYco2TBKDg4PR1NQUtbW1sWrVqlHDyIiIgYGBWLlyZdTW1kZTU1MMDg6m21EAAACAgxBIwiTQ29sb9fX10dnZOa7jOjs7o76+Pnp7ewvUMwAAAIDxEUjCBDcwMBDz58+Pnp6enI7v6emJBQsWGCkJAAAATAjuIbmXJ598Mm688ca4//77Y+vWrbFr16448cQTo6amJi699NL4wAc+EEcckdy37LHHHovLLrts3Md973vfiwsuuCCxfjCxLVmyJDZs2JBXjZ6enli8eHF0dHQk1CsAAACA3Agk/931118fra2tsWvXrn1e37JlS2zZsiX++Z//Oerq6uJv/uZv4vTTT0+kzU2bNiVSh8NXJpMZ9zTtA+ns7IwnnngiZs+enUg9AAAAgFwIJCNi+fLl8Z3vfCe7fcQRR0RtbW3MnDkznnzyydi2bVtEvD7K7Morr4ybbropqqur825370Dy1FNPjVNOOWVMx5WVleXdNpNDa2tr4vWuvfbaRGsCAAAAjMeUDyS7urr2CSPnz58fn/vc5+L444+PiIidO3dGZ2dnfPnLX45XXnklXnjhhbj66qujo6Mjpk2bllfbeweSn/jEJ+JDH/pQXvU4vAwNDUV7e3uiNdvb2+OLX/xilJSUJFoXAAAAYKym9KI2O3fujL/+67/Obr/vfe+LVatWZcPIiIgjjzwyfv/3fz/+9m//Nnv/yA0bNsRPfvKTvNoeHh6OzZs3Z7fPOuusvOpx+Onu7o6BgYFEa27bti26u7sTrQkAAAAwHlM6kLzjjjvimWeeiYjXp2l/7nOfi+nTR/+W1NfXx+///u9nt/MdufbUU0/F0NBQRLweep5xxhl51ePw09fXV5C6/f39BakLAAAAMBZTOpBcu3Zt9vm8efPiLW95y0H33zuQ3LBhQ2zZsiXntveern3aaafFUUcdlXMtDk87duwoSN3t27cXpC4AAADAWEzZQHJ4eDjuv//+7PZFF110yGNqa2vjhBNOyG7feeedObf/+OOPZ5+brs1oSktLC1J31qxZBakLAAAAMBZTNpDs7e2Nl156KbtdV1c3puNqa2uzzx977LGc2997hKRAktFUVVUVpG5lZWVB6gIAAACMxZRdZftXv/rVPttvfetbx3TcySefnH3+9NNP59z+3oFkbW1tPP7449HR0RH3339/bN26NXbt2hXHH398nHvuubFw4cL4wAc+kPeq3kwuDQ0NUV5enujCNhUVFdHQ0JBYPQAAAIDxmrKB5PPPP599Pn369H1W1j6Yvads711jPF588cV47rnnstvf/va347777nvDfr29vdHb2xtr166Nurq6WLly5ZiDUya/kpKSaG5ujpUrVyZWs7m5OUpKShKrBwAAADBeUzaQHBwczD4/5phjDri69v72vq/f3jXGY+/RkRGRDSNnzpwZp556ahx77LHx3HPP7TOKs6enJy6//PJob2+POXPm5NRuUnbt2lXU9pOwe/fug25PFB/72McSDSQ/9rGPHRY/PyaWyXI9wWTgeoLkuJ4gOa4nSJZragoHkr/5zW+yz48++ugxH7f3ativvfZaTm3vH0iWlpbGsmXL4vd+7/fimGOOyb6+devWuO666+JHP/pRREQMDAzEJz/5ybjllluioqIip7bztWfPnnj00UeL0nYh9fT0FLsLB/S+970v7rrrrkTqDA0NHZY/PyaWiXw9wWTjeoLkuJ4gOa4nSNZUvKam7KI2O3fuzD4f6+jIiIgjjviPDDfXkWZ7j3ysqKiIm2++OT7ykY/sE0ZGvH6/yq9+9atx9dVXZ1979tlno7W1Nad2mZw+//nPxxlnnJFXjTPOOCM+//nPJ9QjAAAAgNxN2UByxowZ2ed79uwZ83F7h5BHHnlkTm0vX748Hnjggejo6Ijvf//7cdpppx10/6uuuirOO++87PYPfvCDnEdnMvmUlpbG9ddfn3MoeeaZZ8b111+/z+0GAAAAAIplyk7ZnjlzZvb53tO3D2XvIPBNb3pTzu2XlZVFWVnZmPadNm1aXHnllfHwww9HRMQrr7wSDz30ULz73e/Ouf1cTZ8+PebOnZt6u0nbvXv3PkOi6+rq9gmpJ6L7778//uiP/ihuueWWMR/zoQ99KL71rW+N+b0GuZiM1xNMVK4nSI7rCZLjeoJkTfZr6rHHHhvX4L7RTNlAcu+A5uWXX47h4eGYNm3aIY/bsWNH9nl5eXkhujaqt7/97fts/+pXvypKIBmx77T1w8WMGTMm/Hm9+c1vjs7OzshkMtHa2hrt7e0xMDDwhv0qKiqiubk5WlpaYvbs2el3lClvMlxPMFm4niA5ridIjusJkjUVr6mpdbZ7qayszD7fvXt3bNu2LY477rhDHvf8889nnx9//PEF6dto3vzmN++znesK30x+NTU1sWLFili+fHl0d3dHf39/bN++PWbNmhWVlZXR0NAQJSUlxe4mAAAAwKimbCB56qmn7rO9ZcuWMQWSW7duzT4/1L0fk7T/PSP3XwCHqaekpCQWLlxY7G4AAAAAjMuUDSSrq6ujvLw8O+V106ZNce655x7yuMcffzz7/Kyzzhp3u729vfGP//iP8eKLL8avf/3rWLZs2ZjqbNmyZZ/tk046adxtAwAAAECxTdlVtiMi3vWud2Wf33vvvYfc//HHH48XXnghu33hhReOu83h4eH49re/HZ2dndHd3R3r168f03F333139vm0adPecE9JAAAAAJgMpnQgeckll2Sf33XXXdHf33/Q/b///e9nn59xxhlRW1s77jZPPvnkqK6uzm53dnbG7t27D3rMjh074rvf/W52u76+fkzTywEAAABgopnygeSJJ54YEa/fo/Ezn/lM7Nq1a9R977777vjhD3+Y3b7yyitzbveyyy7LPn/yySejtbX1gPvu3LkzPvOZz2TD0mnTpkVLS0vObQMAAABAMU3pQPKoo46KZcuWZbfvvffe+KM/+qN97te4a9euuOmmm+Lqq6/OjmSsqamJyy+/fNSaF198cdTW1kZtbW1cfPHFo+7T3Ny8zyjJ6667LpYvXx7btm3bZ79NmzZFc3Nz3HHHHdnXrrjiirjgggvGf7IAAAAAMAFM2UVtRnzoQx+Khx9+OH7wgx9ExOuh5CWXXBK1tbVRWloaTz75ZLz44ovZ/cvLy+PrX/96HHFE7t+6mTNnxt///d/HFVdckV1U5zvf+U7ceOONUVNTE6WlpfHss8/G008/vc9xv/M7vxOf/exnc24XAAAAAIptygeSERFf+MIXoqKiIm644YbYuXNn7NmzJzZt2vSG/c4444z4+te/Hqeffnrebc6ePTtuvvnm+NM//dN4+OGHI+L16dkbNmx4w75HH310tLS0xH/7b/8tZsyYkXfbAAAAAFAsAsl4/b6MS5cujd/93d+Nm2++OdavXx99fX3xyiuvRFlZWZx99tmxYMGC+N3f/d046qijEmv3lFNOiRtvvDHuueee+MlPfhKPPPJIPPfcc/Gb3/wmjjvuuDjllFOioaEhLr300jjppJMSaxcAAAAAikUguZczzjgjPv3pT8enP/3pnGvceeed4z7moosuiosuuijnNgEAAABgspjSi9oAAAAAAOkSSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqTmi2B0App6hoaHo7u6Ovr6+2LFjR5SWlkZVVVU0NDRESUlJsbsHAAAAFJBAEkhNJpOJ1atXx5o1a2JgYOANXy8vL4/m5uZoaWmJmpqa9DsIAAAAFJwp20DBDQ4ORlNTU9TW1saqVatGDSMjIgYGBmLlypVRW1sbTU1NMTg4mG5HAQAAgIITSAIF1dvbG/X19dHZ2Tmu4zo7O6O+vj56e3sL1DMAAACgGASSQMEMDAzE/Pnzo6enJ6fje3p6YsGCBUZKAgAAwGFEIAkUzJIlS2LDhg151ejp6YnFixcn1CMAAACg2ASSQEFkMplxT9M+kM7OznjiiScSqQUAAAAUl0ASKIjW1tYJXQ8AAAAoDoEkkLihoaFob29PtGZ7e3sMDQ0lWhMAAABIn0ASSFx3d3cMDAwkWnPbtm3R3d2daE0AAAAgfQJJIHF9fX0Fqdvf31+QugAAAEB6BJJA4p5//vmC1N2+fXtB6gIAAADpEUgCiert7Y3rrruuILVnzZpVkLoAAABAegSSQGIGBgZi/vz50dvbW5D6lZWVBakLAAAApEcgCSRmyZIlsWHDhoLUrqioiIaGhoLUBgAAANIjkAQSkclkorOzs2D1m5ubo6SkpGD1AQAAgHQIJIFEtLa2FrR+S0tLQesDAAAA6RBIAnkbGhqK9vb2gtVvbGyM2bNnF6w+AAAAkB6BJJC37u7uGBgYKEjturq6aGtrK0htAAAAIH0CSSBvfX19Bal78sknR1dXV5SVlRWkPgAAAJA+gSSQtx07dhSk7tVXXx3V1dUFqQ0AAAAUh0ASyFtpaWlB6p544okFqQsAAAAUj0ASyFtVVVVB6lZWVhakLgAAAFA8Akkgbw0NDVFeXp5ozYqKimhoaEi0JgAAAFB8AkkgbyUlJdHc3Jxozebm5igpKUm0JgAAAFB8AkkgES0tLRO6HgAAADAxCCSBRNTU1ERjY2MitRobG2P27NmJ1AIAAAAmFoEkkJi2traoq6vLq0ZdXV20tbUl1CMAAABgohFIAokpKyuLrq6unEPJuXPnRldXV5SVlSXcMwAAAGCiEEgCiaquro7169ePe/p2Y2Nj3H333VFdXV2gngEAAAATgUASSFxZWVl0dHTE5s2bY+nSpVFeXj7qfhUVFbFs2bLIZDLR0dFhZCQAAABMAUcUuwPA4aumpiZWrFgRy5cvj+7u7ujv74/t27fHrFmzorKyMhoaGqKkpKTY3QQAAABSJJAECq6kpCQWLlxY7G4AAAAAE4Ap2wAAAABAagSSAAAAAEBqBJIAAAAAQGrcQxIouqGhoeju7o6+vr7YsWNHlJaWRlVVlUVvAAAA4DAkkASKJpPJxOrVq2PNmjUxMDDwhq+Xl5dHc3NztLS0RE1NTfodBAAAABJnyjaQusHBwWhqaora2tpYtWrVqGFkRMTAwECsXLkyamtro6mpKQYHB9PtKAAAAJA4gSSQqt7e3qivr4/Ozs5xHdfZ2Rn19fXR29tboJ4BAAAAaRBIAqkZGBiI+fPnR09PT07H9/T0xIIFC4yUBAAAgElMIAmkZsmSJbFhw4a8avT09MTixYsT6hEAAACQNoEkkIpMJjPuadoH0tnZGU888UQitQAAAIB0CSSBVLS2tk7oegAAAEA6BJJAwQ0NDUV7e3uiNdvb22NoaCjRmgAAAEDhCSSBguvu7o6BgYFEa27bti26u7sTrQkAAAAUnkASKLi+vr6C1O3v7y9IXQAAAKBwBJJAwe3YsaMgdbdv316QugAAAEDhCCSBgistLS1I3VmzZhWkLgAAAFA4Akmg4KqqqgpSt7KysiB1AQAAgMIRSAIF19DQEOXl5YnWrKioiIaGhkRrAgAAAIUnkAQKrqSkJJqbmxOt2dzcHCUlJYnWBAAAAApPIAmkoqWlZULXAwAAANIhkARSUVNTE42NjYnUamxsjNmzZydSCwAAAEiXQBJITVtbW9TV1eVVo66uLtra2hLqEQAAAJA2gSSQmrKysujq6so5lJw7d250dXVFWVlZwj0DAAAA0iKQBFJVXV0d69evH/f07cbGxrj77rujurq6QD0DAAAA0iCQBFJXVlYWHR0dsXnz5li6dGmUl5ePul9FRUUsW7YsMplMdHR0GBkJAAAAh4Ejit0BYOqqqamJFStWxPLly6O7uzv6+/tj+/btMWvWrKisrIyGhoYoKSkpdjcBAACABAkkgaIrKSmJhQsXFrsbAAAAQApM2QYAAAAAUiOQBAAAAABSY8o2QB6Ghoaiu7s7+vr6YseOHVFaWhpVVVXufwkAAAAHIJAEyEEmk4nVq1fHmjVrYmBg4A1fLy8vj+bm5mhpaYmampr0OwgAAAATlCnbAOMwODgYTU1NUVtbG6tWrRo1jIyIGBgYiJUrV0ZtbW00NTXF4OBguh0FAACACUogCTBGvb29UV9fH52dneM6rrOzM+rr66O3t7dAPQMAAIDJQyAJMAYDAwMxf/786Onpyen4np6eWLBggZGSAAAATHkCSYAxWLJkSWzYsCGvGj09PbF48eKEegQAAACTk0Vt4DBixefCyGQy456mfSCdnZ3xxBNPxOzZsxOpBwAAAJONQBIOA1Z8LqzW1tbE61177bWJ1gQAAIDJwpRtmMSs+Fx4Q0ND0d7enmjN9vb2GBoaSrQmAAAATBYCSZikrPicjrVr1x4w6M3Vtm3boru7O9GaAAAAMFkIJGESsuJzOnp7e+NTn/pUQWr39/cXpC4AAABMdAJJmISs+Fx4I6FvoUaSbt++vSB1AQAAYKITSMIkU4gVn3mjJELfg5k1a1bBagMAAMBEZpVtmKCGhoaiu7s7+vr6YseOHVFaWhpVVVWxdu3aRNux4vMbJRn6HkhlZWVB6wMAAMBEJZCECSaTycTq1atjzZo1oy6mMm3atETba29vjy9+8YtRUlKSaN3JrLW1taD1KyoqoqGhoaBtAAAAwERlyjZMEIODg9HU1BS1tbWxatWqA67sPDw8nGi7Vnze19DQULS3txe0jebmZgEwAAAAU5YRkjAB9Pb2xoIFC3JeNTtfVnz+D93d3QcMg5PS09MTg4ODUVZWVtB2AAAAYCIyQhKKbGQ152KFkRFWfN5bX19fwdtYt25d1NfXF2wFbwAAAJjIBJJQZIVezXksrPj8H3bs2JFKOz09PbFgwYIYHBxMpT0AAACYKASSUERprOY8FlZ8/g+lpaWptdXT0xOLFy9OrT0AAACYCASSUESFXs15LKz4vK+qqqpU2+vs7Iwnnngi1TYBAACgmASSUCRprOY8FlZ83ldDQ0OUl5en2uZECKYBAAAgLVbZhiJJYzXnsWhpaSl2F0Y1NDQU3d3d0dfXFzt27IjS0tKoqqqKhoaGggaoJSUl0dzcHCtXrixYG/trb2+PL37xi4JhAAAApgSBJBRJGqs5H0pjY2PMnj272N3YRyaTidWrV8eaNWtGDWzLy8ujubk5WlpaoqampiB9aGlpSTWQ3LZtW3R3d8fChQtTaxMAAACKxZRtKJK0VnM+kLq6umhraytqH/Y2ODgYTU1NUVtbG6tWrTrg6NGBgYFYuXJl1NbWRlNTU0FWqa6pqYnGxsbE6x5Mf39/qu0BAABAsQgkoUjSXM15f3Pnzo2urq4oKysrWh/21tvbG/X19eNecbyzszPq6+ujt7c38T61tbVFXV1d4nUPZPv27am1BQAAAMUkkIQiSXs15xGNjY1x9913R3V1dVHa39/AwEDMnz8/enp6cjq+p6cnFixYkPhIybKysujq6kotlJw1a1Yq7QAAAECxCSShSAqxmvO0adNGfb2ioiKWLVsWmUwmOjo6JszIyIiIJUuWxIYNG/Kq0dPTE4sXL06oR/+huro61q9fn8r07crKyoK3AQAAABOBRW2gSAqxmvN//+//PRYuXBj9/f2xffv2mDVrVlRWVhZ8ZepcZTKZcU/TPpDOzs544oknEl+kp6ysLDo6OiKTyURra2u0tbUlPhqzoqIiGhoaEq0JAAAAE5VAEooo6dWcr7766gm3avbBtLa2Jl7v2muvTbTmiJqamlixYkUsX748PvKRj8Q//dM/JVa7ubl5QgbGAAAAUAimbEMRJbmac2Nj46QKI4eGhqK9vT3Rmu3t7TE0NJRozf2VlJTEX//1Xydas6WlJdF6uRoaGorbbrst2tvb4/rrr4/29va47bbbCv49BQAAYGoxQhKKrK2tLTKZTM6LukRE1NXVRVtbW4K9Krzu7u4YGBhItOa2bduiu7s7Fi5cmGjd/Y0EyUlMN58IQXImk4nVq1fHmjVrRv2ZlJeXR3Nzc7S0tERNTU36HQQAAOCwYoQkFFm+qznPnTs3urq6JtRCNWPR19dXkLr9/f0Fqbu/tra2vFfgLnaQPDg4GE1NTVFbWxurVq06YEA8MDAQK1eujNra2mhqakr8HpoAAABMLQJJmAByXc25sbEx7r777qiuri5Qzwpnx44dBam7ffv2gtTd32QPknt7e6O+vn7cozw7Ozujvr4+ent7C9QzAAAADncCSZggRlZz3rx5cyxdujTKy8tH3a+ioiKWLVsWmUwmOjo6Jt3IyBGlpaUFqTtr1qyC1B3NZA2SBwYGYv78+TnfJqCnpycWLFhgpCQAAAA5cQ9JmGD2Xs25u7s7+vv7Y/v27TFr1qyorKyMhoaGw2JF5qqqqoLUraysLEjdAxkJkjOZTLS2tkZ7e/uoU58rKiqy92Es9j0jlyxZEhs2bMirRk9PTyxevDg6OjoS6hUAAABThUASJqiSkpKCL85STA0NDVFeXp7owjYVFRXR0NCQWL3xmCxBciaTSWQxnojXp28/8cQTcdpppyVSDwAAgKlBIAkURUlJSTQ3N8fKlSsTq9nc3Fz00G8iB8mDg4PxwQ9+MNGara2t8dd//deJ1gQAAODw5h6SQNG0tLRM6HqHk97e3pg3b1784he/SLRue3t7DA0NJVoTAACAw5sRkkDR1NTURGNjYyJTiBsbG4t+b8YDGRoaiu7u7ujr64sdO3ZEaWlpVFVVpTaNe2QRm40bNyZee9u2bXHbbbfFmWeemXhtAAAADk8CSaCo2traIpPJ5Lzic0REXV1dtLW1JdirZGQymVi9enWsWbNm1HtllpeXZxe6qampKVg/kljE5mD+x//4H/Gtb30rTjzxxIK1AQAAwOHDlG2gqMrKyqKrqyvq6upyOn7u3LnR1dUVZWVlCfcsd4ODg9HU1BS1tbWxatWqAy7cMzAwECtXroza2tpoamqKwcHBxPuS5CI2B9Lb2xtXX3117Nixo6DtAAAAcHgQSAJFV11dHevXr4/GxsZxHdfY2Bh33313VFdXF6hn49fb2xv19fXjDgE7Ozujvr4+ent7E+1Pa2trovUO5Mknn4wvfOELqbQFAADA5CaQBCaEsrKy6OjoiM2bN8fSpUujvLx81P0qKipi2bJlkclkoqOjY0KNjBy5V2Ou0897enpiwYIFiY2UHBoaivb29kRqjcVdd90VTz/9dGrtAQAAMDm5hyQwodTU1MSKFSti+fLl0d3dHf39/bF9+/aYNWtWVFZWprYQTC6SuFdjT09PLF68ODo6OvLuT3d39wGnixdKR0dHXHrppam2CQAAwOQikAQmpJKSkli4cGGxuzHmFbKTvFdjZ2dnPPHEE3mvGt7X15dIf8bj1ltvjaGhoTj22GNTbxsAAIDJQSAJMIrxrpCd9L0aW1tb49prr82rRjEWmXnppZfiX/7lX+J3fud3Um8bAACAyUEgCbCXwcHBWLx48SFHO46skL1y5cr43d/93eju7k60H+3t7fHFL34xr+nppaWlCfZo7Pr7+4vS7t7GOrIVAACA9AkkAf5db29vLFiwYNyL0vz4xz9OvC/btm2L7u7uvKatV1VVJdijsdu+fXtR2o0Y/8hWAAAA0meVbYDIf4XsQsh3pGFDQ8MBVysvpFmzZqXe5uDgYDQ1NUVtbW2sWrXqgIv5jIxsra2tjaampsRWNAcAAGDsBJIAkcwK2UnLd6RhSUlJNDc3J9SbsausrEy1vd7e3qivrx/3okKdnZ1RX18fvb29BeoZAAAAoxFIAlNekitkJymJkYYtLS0J9GTsjj322HjPe96TWnv5jmzt6emJBQsWGCkJAACQIoEkMOUlvUJ2UpIYaVhTUxONjY0J9GZsLr300lQXjfn93//9vEe29vT0xOWXX55QjwAAADgUgSQwpQ0NDUV7e3uxu/EGFRUV0dDQkEittra2qKurS6TWoTQ1NaXSzuDgYFxyySWxbt26ROrdcccdMX/+fCMlAQAAUiCQBKa07u7uAy6AUkzNzc2JjTQsKyuLrq6uVELJ66+/vuCh3sg9I++4445E665bt849JQEAAFIgkASmtL6+vmJ3YVRJ3/uxuro61q1bF/PmzUu07v7uuuuuaGhoKFioV+jV0N1TEgAAoPAEksCUtmPHjmJ34Q0aGxtj9uzZidXLZDKxdOnSmDNnTtx7772J1T2QDRs2FCzUS2M19J6enli8eHFB2wAAAJjKBJLAlFZaWlrsLuyjrq4u2traEqk1ODgYTU1NUVtbG6tWrRrT1PTjjjsukbYLEeqluRp6Z2dnPPHEE6m0BQAAMNUcUewOABRTVVVVsbuQNXfu3LjtttuirKws71q9vb2xYMGCcU9tfvHFF/Nue8RIqJfUaM+0V0NvbW2Na6+9NtU2RzM0NBTd3d3R19cXO3bsiNLS0qiqqoqGhoZUVzQHAABIihGSwJTW0NAQ5eXlidYsLy+P//Jf/su4jmlsbIy77747qqur826/0PdZHI+kQsRirIbe3t4eQ0NDqba5t5Gp9tXV1bFo0aJYvHhxXHPNNbF48eJYtGhRVFdXx7JlyyKTyRStjwAAALkQSAJTWklJSTQ3Nydac/HixfFP//RPsXnz5li6dOkBA8+KiopsoNTR0ZHIyMiIdO6zOFZJhXrFWA1927Zt0d3dnWqbERHPPvtsXHTRRYecaj8wMBArV66M2traaGpqshAPAAAwaZiyDUx5LS0tsXLlykTrRUTU1NTEihUrYvny5dHd3R39/f2xffv2mDVrVlRWVhZkym2a91kci5FQb+HChXnVKdZq6P39/am1lclk4m/+5m+ira0t9uzZM65jOzs74/HHH49169YlMsoWAACgkASSwJRXU1MTjY2NiQR5o62QXVJSkncgN1Zp32dxLJII9Yq1Gvr27dsL3sbg4GAsXrw47/ffxo0b49xzz43bb789zj///IR6BwAAkDxTtgEioq2tLerq6vKqkeQK2bkoxn0WxyKJUK9Yq6HPmDGjoPV7e3ujvr4+sVGtv/71r+OCCy4whRsAAJjQBJIAEVFWVhZdXV05h5Jz586Nrq6uxO4DmYti3GdxLGbNmpV3jWKthv7Vr341ent7C1K7kIsPdXZ2Rn19fcH6DgAAkA9TtgH+XXV1daxfv37c02cbGxujra2tqGFkRPHus3golZWVeR0/ODhYtKnoTz31VCxYsCDWr1+f+M+30IsP9fT0FKzvuRoaGoru7u7o6+uLHTt2RGlpaVRVVRXkfqoAAMDEJZAEEjeZQ4eysrLo6OiITCYTra2t0d7ePuqow4qKimhubo6WlpY33DOyWIp1n8WDqaioiIaGhpyP7+3tjQULFhRkFOFY9fT0xOLFi6OjoyOxmmktPlSIvo/HyL8FjzzySKxbty4eeOCBUVddLy8vz15PNTU1RegpAACQJoEkkJhMJhOrV6+ONWvWjBri5RM6pB1yFmOF7HwV6z6LB9Pc3Jzz92lkSnMhRxGOVWdnZzzxxBOJhc9pjvhMuu9jMfJvQXt7+5juZTkwMBArV66MlStXxrx58+Lmm2+Ok046KYWeAgAAxSCQBPI21lWC9w4dxjrNuZAh51gUYoXsQoWrxbrP4sG0tLTkfGyhpzSPV2tra1x77bV51ynG4kNJ9f1Qklgx/N57742TTz45lixZEn/yJ39ixCQAAByGLGoD5CXXVYIPtejG4OBgNDU1RW1tbaxateqAi7WMhJy1tbUTfmXhTCYTS5cujerq6li0aFEsXrw4rrnmmli8eHEsWrQoqqurY9myZZHJZHKq39DQEOXl5cl2Og+NjY05j8pLa0rzeLS3t4863Xi8irH4UFJ9P5gkVwzfs2dPfOtb35oU1zUAADB+RkgCOct3Su2BFt3I9b6BnZ2dkclkoqurK6qrq3PqUyEUcgTp3kpKSqK5uTlWrlyZb5fzVldXF21tbTkfX6xFbA5m27Zt0d3dndeI2cHBwfizP/uzBHs1Ntu2bYu1a9fGZZddVpD6hZxePxGu69FGNY+E/wMDA5PuXrkAAFBsAkkgZ0lMqd1/0Y1ChZzFkna42tLSUvRAsq6uLrq6unL+/hdjSvNY9ff353xssRfo+dSnPhXvfve7CxLqHa4rhh/qlhGjsUAPAAAcminbQE6SnFI7suhGRLIhZ7GNhKu5BlAjIcx4pqvW1NREY2NjTu3t79JLLx13rbPOOiv+7M/+LCoqKnJutxhTmsdq+/btOR2X73shCSOBaNLTn2+//fZUVwxPw1hvGTGavW8jcdFFF8Wzzz5buI4CAMAkZYQkkJOkp9S2trbGxz/+8cRDzjRXFt5fIUaQjkVbW1tkMpm8wq+6urr4zne+E2VlZZHJZKK1tTXa29sPGcw8/vjj8Qd/8Ad5jRLr6+vLud+FNmvWrJyOmygL9OTyfjqQJBawGa80ruve3t645JJLYuPGjXnXmogL9Jh+DgDARGCEJDBuhZhS297eHtdff32iNYt5H8JCjSAdi7Kysujq6oq6urqc2ps7d+4+U65rampixYoV0dvbGz/84Q/j/PPPP2SNfBYb2rFjR079TkNlZeW4j5loC/SM9/00miQXsBmvQl7XDz74YJx77rmJhJEjJsoCPQdbVKuxsTEaGxsTX2gLAAAORCAJjFshptRu27Yt1qxZk2jNNFYWPpBCjCAdj+rq6li/fv24p1w3NjbG3XffPep9Brdt2xZf+MIX4qGHHhpXzUOtqL6/0tLScdVPS0VFRTQ0NIz7uIm4QE8+fSr29PPrr78+8WnQI1O03/GOd8Svf/3rRGvvbbzXQhKeffbZuOiiiw7L6edDQ0Nx2223Zf+g1d7eHrfcckvccsst+7x22223Fe3/AgAARmfKNjBuhZpSm/TIuCRWRc5FoUaQfvGLXxzX9MmysrLo6Og45JTrioqK7PTqA02FTXOxoaqqqpzaKLTm5uZxT1+dqAv05PJ+GlHs6ec7d+6Md7/73XHPPfckskBP2osNpbVATyaTib/5m7+Jtra22LNnT971JsL085Hp5o888kisW7cuHnjggTEHjRYbAgCYWASSe3nyySfjxhtvjPvvvz+2bt0au3btihNPPDFqamri0ksvjQ984ANxxBHJf8ueffbZuPHGG2P9+vXx1FNPxauvvhonnHBCnH766bFo0aJYtGhRzJw5M/F2IVcTeUrt/vJZFTlXhRpBmmu4OjLlevny5dHd3R39/f2xffv2mDVrVlRWVo7pPnFp3g+zoaEhysvLJ9zCNvPnzx/3MRN1gZ5c308TZfr5U089lUiol2/Qnquenp64/PLLY926dYnXLuS9PUemn3/rW9+KxsbGaGtrS2XV85HVztvb23Oe8j4y2nPlypUxb968uPnmm+Okk05KuKdjt/+9PI888sh47rnn4sQTT4ydO3e6tycAcNgTSP6766+/PlpbW2PXrl37vL5ly5bYsmVL/PM//3PU1dXF3/zN38Tpp5+eWLs33nhjfOUrX4lXXnlln9efeeaZeOaZZ2L9+vXxzW9+M7761a/Gueeem1i7kI+JOqV2NLmuipyPQo0gzTdcLSkpySnQLMT9MA+2KElJSUk0NzfHypUrE2kzKfPnzx93CDORF+jJ5f00kaafJ7FATzFHe95xxx0xf/78uOmmmxIL9ZJckOdQOjs74/HHH49169YlMlJ1NM8++2xcdtllce+99yZa9957743q6uq48MIL49JLL43/9J/+U2oh30i4umbNmpz/WDFz5sx417veFZdcckmqfT+QQ4WrkylszeVcJkK/AWAyEkhGxPLly+M73/lOdvuII46I2tramDlzZjz55JOxbdu2iHj9l58rr7wybrrppkQ+fK9Zsya+/OUvZ7enTZsWs2fPjvLy8vjVr34Vzz33XERE/OpXv4o//MM/jO9973txzjnn5N0u5GuiTqkdTa6rIuejUCNIixGuRhTmfpjXXnvtQfdpaWmZcIFkxOshTCaTia6urjH9PzCRRxOP9/00Eaef57Pq9kQY7blu3bqor68f8/vpYB588MFYsGBBQe+Bub+NGzfGueeeG7fffvuYFrsaq6Snm49meHg47rvvvrjvvvsi4vVbXCxevLhgU7qTDFdfeeWV+OlPfxo//elPIyL9gDKfqfOHMlnP5ZhjjomLLroo3vnOd0Z1dXXBQ8v9g9PRQt5DhaljCYrTCGALcS7FCo5zGfk8mc6lr68vXnvttdi5c2eUlJTEL3/5y5gxY8akPJfJ8nMZ7x9Jkjg355LOuVRVVcVFF12UWJ8mq2nDw8PDxe5EMXV1dcUf//EfZ7fnz58fn/vc5+L444+PiNfvVdXZ2Rlf/vKXs6MYzznnnOjo6Ihp06bl3O4jjzwS//W//tfYvXt3RES84x3viC996Uvx1re+NSJe/6B8xx13xOc+97lsIFpVVRVdXV2pT99++OGHs78QTJ8+Pc4777xU2y+EXbt2xaOPPprdPvfccwsyHf9wNTQ0FNXV1YlORS0tLS1IeLN27drU7yHZ3t4eixcvLkjdj370o4nXPZhC/KwrKipi69ath/xg0NTUlEhgtHDhwtiyZUui9wisq6sb03ThQr0XkjDe99Ntt90WixYtKlyHcrRs2bJDBtz7GxwcjAsuuCB+8YtfFKhX47P3+2m8/z8Vcor2eCQxhftwOpe9g65bb701fvazn0VaH7mTDPX2/qXr3/7t3+L++++Pe++9N15++eWEez26fM5laGgo7rzzzvj5z38eQ0NDceSRR8ZRRx0VVVVV0dvbW7Rzee973xvTpk3L6Zfs4eHh+OlPf5poCDyVzuVgwXE+YYhzcS5JnMve2yP/Rt13331F++P23v/+nnXWWRGRW2DrXA6svLw8Fi1aFE1NTXHqqadOukwikZxoeAp77bXXht/73vcO19TUDNfU1Ax//OMfH969e/eo+959993Dc+bMye774x//OK+2P/zhD2drfehDHxp+5ZVXRt1v06ZNw+edd15239WrV+fVbi7+9V//dfjBBx8cfvDBB4f/9V//NfX2C2Hnzp3Zc3rwwQeHd+7cWewuTTpLly4djojEHldfffVweXl5ojUrKiqGX3755dS/N2vXrk30PEYea9eunVLnMjAwMFxXV5dXO3V1dcMDAwPDAwMDw42NjYmeQ2NjY9G+f0k85s2bNzwwMDDm98Lf/u3fFr3Poz2OPfbYcV3nW7duHZ4zZ07R+32g99N4/n/aunVr3tdIko85c+YMb926dcw/i4n8c8n1XDZv3jz8qU99arisrKzo5zDymDlz5vB73/ve4S996UvDa9euPej18vLLLw+vXbt2+Etf+tLwe9/73uGSkpKi9/9A59LZ2Tnc2dk53NbWNnzdddcNr169evgLX/jC8F/8xV9MyL57eHh4eHgc6PG+971v+IUXXsjpM1SxJJETTekRkmvXro2lS5dGxOvTtO+44454y1vecsD9//Iv/zK+973vRcTroyRz/Qv+o48+Gh/+8Iez2zfeeONB0+QbbrghvvrVr0ZExHHHHRfr16+PGTNm5NR2LoyQnLxGmwaT1LD1TCYTtbW1CfX0P+6rleQ03VxGTiWhmKMKk1bs0Z753BNv7ty5cdttt+0zFfb222+PBQsWjLvWgWQymYNOF3722Wfj1FNPjZ07dybWZpLq6urGNF24t7c33vGOd8Szzz6bUs/GZ968ebF27dpDjmgbGBiI+vr6oq4SfjCZTCZOO+20Mf3/NFHP5c1vfvO4p3AXY7r5WBxzzDHxiU98IubMmXPQ/zuHhoZi7dq18ZWvfCUeeuihIvR0fEpKSqK+vn6fETzD/z6S6P7773/Dfc0BgMI755xz4vbbby/YvbmTZoRknq666qrsyMOPfexjh9z/8ccfz+5fU1Mz/PTTT+fU7pe+9KVsjYULFx5y/4GBgX1GZ9577705tZsrIyQnn5ERGgcacVheXj68dOnS4c2bN+fVTlIjzkZGBm3evDnRvzRlMpkkvp05SXoE6bJly4pyHtddd11B/gp43XXXHbLtfEYaNTY2jjr6L82fy0QbvXagx8go0gPZtm3b8DnnnFP0fo7lPA41oi3pUbJJP84888zhF154YUz/P11yySVF7+/BHm9/+9uHf/jDHx5wNN7LL788/MMf/nD4/PPPL3pfx/oYGZ33F3/xF/uMxDv66KOL3jcPDw8PDw+Pyf841OfyiSSJnGjKBpJ79uwZvuCCC7IhX3t7+5iOu+iii7LHrFmzJqe2L7300myN5cuXj+mYvad4/9Vf/VVO7eZKIDl55DIt9UDBzVjbS2pK7YikQ85iOVzC1ba2toL8Z3uwf3NznV5dXl4+vGzZsgN+r15++eXUbgswWUK8sVwvEz3E2/txsA9xSV+ThXrMmTNneO3atQf8/2lgYGD4Ax/4QNH7OdZHWVnZPn8AG/lDw7HHHlv0vnl4eHh4eHh4TLRHsX+PHaskcqLpMUX19vbGSy+9lN2uq6sb03F7T1F97LHHxt3uzp0749/+7d+y22NdNTvfdjn89fb2Rn19/bhvJdDZ2Rn19fXR29s77jbLysqiq6trzNfP/ubOnRtdXV37TLNsa2vLud6Iurq6aGtry6tGvmpqaqKxsTGRWo2NjTmtIpyEQq2oXllZOerrub6PIyLe8pa3xLJlyw74veru7k50Gn1ExLZt26K7u/sNry9ZsmTCTaU9mJHVqvc3EVaiHo+enp4D3mIg6dXiC2Xjxo1x1VVXjXqz9F/84hdx7rnnxh133FGEnuVmcHAwVq5cGbW1tXHsscdGbW1trFq1ap/PYAAAvO5An8sPR1M2kPzVr361z/bI6taHcvLJJ2efP/300+Nud+vWrfvcS+zUU09NpV0ObwMDAzF//vycVxHu6emJBQsWxODg4LiPra6ujvXr1487fGtsbIy77777DffIKETIWSyHQ7ja0NCQXb0wKRUVFdHQ0PCG1/N9H2/cuPGg7+O+vr6c6h5Kf3//PtuFCvHOPvvsmDNnTuJ1R4wW2E2WEG9vo32Ie/bZZ+Nv//Zvi9Sj8fvlL38ZV1xxRTz11FMR8fp76hOf+ETU1tZmX5uMtm/fXuwuAABMeJPxM3gupmwg+fzzz2efT58+PY4//vgxHXfCCSeMWiOXdvevN9Z2f/3rX2dvHgoRyYzGOtjIokMpKyuLjo6O2Lx5cyxduvSAAVZFRUUsW7YsMplMdHR0HDA0TDrkLJbDIVwtKSmJ5ubmRGs2NzePujBEod/Ho404S8L+IUshPkDMnTs37rjjjli3bl3eIfeBtLe3x9DQUHZ7aGgo2tvbC9JWoe39M+jt7Y13v/vdE3ZhoQPZunVrNDU1RUVFRdTW1kZra6v/+wEApoD9P5cfrg6/ZYXHaO8RNMccc0xMnz62bLa0tHTUGrm0GxFx7LHHjum4WbNmZZ8PDw/HSy+9lPiopbEYGhqKs846K+fj3/a2t8VPfvKTA379T/7kT6Krqyvn+hER73vf++L6668/4Nebmpri8ccfj9/85jfZ1970pjfFtGnTxtzGkiVLsiu0j+a8887L+5ff5cuXx+/93u+N+rXe3t6YP39+RES89tpr8ctf/jKvtkZ0dnbGpk2bYvbs2bF+/fpoaWnJqc4JJ5wQxxxzTOzevTv++I//OE444YSorKyM97znPdkgateuXfG///f/zq4gfyCnnXZaDAwMxODg4Ki/jM+YMSOuvvrq+G//7b9lp+ru2rUr+/UvfOEL8cMf/jCn8xhxwQUXxJo1aw749Y9+9KPx4IMPHvDru3fvjtLS0nEFYh/60IfiW9/6VpSVlcWuXbuioaFhXCvQ7tmzJ4aGhmL37t2xZ8+emD59evzBH/xBfOELXxg1DHzppZdi3rx5o9Z67bXXxtzuWNxyyy3xf/7P/3lDG0m+j08//fQ46qij9nk9l3+zx+JLX/pS/N3f/V1EvP59f/LJJxNvY2hoKN7//vdHxOvvp6OPPjpeffXVRNvYtm1b1NTUZP+f27FjR+JT3NOyatWquPXWW2N4eDiefvrpxN/DaSpUkA4AwMS0/+fy8aqtrY2Ojo4Dfv3qq6+Ou+66K9fuRUTEmjVr4sgjj8yrxpQNJPcOo44++ugxH7f3L7i5/IKzd7vjaXv/H/T+ddKyZ8+e2Lx5c87Hv/rqq/Hoo48e8OsbN27Mq37E6/e8O1gbjz/+eGQymbza2LBhw0HbyGQyef8C3NPTE6eddtqoX3vmmWfy/j4dyF/91V/F0qVL47HHHkukjQsvvDAbqO8/jXLDhg15t1FWVhZXXHFFDA0NjfozSeI9dcwxxxz0571p06ZEvlfHHntsXHrppdHU1BRvfetb97m1xObNm8cVSI5m1apVccMNN2Tb2PuWEdu3by/Ye2p/SQWPxW5jRF9fX8Gmg48oRMg5mlzuJTsR7dmzZ8rcewcAgMNPPp/Lh4eHC/77axIzd6bslO29R6+NdXRkRMQRR/xHhrv3KKyx2v+Ysba9d7sRr4+QgUK49dZbEx95VUjjGdk6kc2bNy/Wrl0bS5cuHfM9bXOxffv2+Md//MdoamqKP/3TP0119NVEmUoPAABAcU3ZQHLGjBnZ5+NJdvcOFHMZnrp/ADnWtvcPMvMdGgsH8tJLL8VDDz1U7G5MOVVVVeMarZ2Eu+66K5YsWRLPPfdcwds688wz43/8j/9R8HYAAACY+KbslO2ZM2dmn49n+vPe03Df9KY35dXuSNv73+fsUO3m2nYSpk+fHrW1tTkf/7a3vS3OPffcA359zpw5ea8ifvbZZx+0jZF7YOZzD8lzzjnnoG3U1NTkfQ/Jurq6A7Zx/PHHR21tbQwODhZkqugxxxwTZ5xxRl4/6xG/9Vu/dcB7pT766KN5t/HmN7/5kO+pfBdKOdR76uyzz46XX345rzbmzJlz0DZqa2tHnbK9e/fuvO6R9+STT8af/umfxk9+8pMx/Sx2794dfX19Od0P85e//OWobRTqfVxVVfWGBYGSvFdlxOv3ON373/C0zmXHjh0FmV59xBFHxJve9Ka8388HU11dHaWlpbFz587YunXrpL6/47Rp02J4eLjY3QAA4DAz8pk5F7W1tYf8/TXf31nGM9P4gIanqM7OzuGamprhmpqa4bPPPnt4z549Yzru+uuvzx73/ve/f9zt3n///dnja2pqhp955plx93fOnDlj7m8S/vVf/3X4wQcfHH7wwQeH//Vf/zW1dgtp586d2XN68MEHh3fu3FnsLuXkuuuuG46IxB/XXXddsU+NMWpsbEzkZ97Y2Diudjdv3jy8dOnS4fLy8lHrlZSUDL/vfe8b/vKXvzy8du3a4ZdffvmAtdJ+Hyf1PfvABz7whtpr164tyLmsXbt2n3ZefvnlA37vJ/KjoqJin/fCwMDA8Lx584rer1weZ5555vDAwMDwJZdcUvS+eHh4eHh4eHh4HD6P/T8zT0RJ5ERTdsp2ZWVl9vnu3btj27ZtYzru+eefzz4//vjj82o3IuKFF14Yd7vHHXfcYXPfPPKT619MDmXvVd2ZuDKZTHR2diZSq7Ozc1yLgNTU1MSKFSuit7c3br311vjv//2/x/nnn5+ddj40NBR33XVXfPazn41FixZFdXV1LFu2bNQFpdJ+H7e1tUVdXV3e9e+4445oamraZ/XuhoaGKC8vz7v23ioqKqKhoWGf10pKSqK5uTnRdtLQ3Ny8zyrvZWVlcccddxxwFPVEtnbt2igrK4ubbropkfcTAABEvPEz8+FqygaSe68uGxGxZcuWMR23devW7PMDrYB8MG95y1v2uf9jLu2+7W1vG3e7HJ6qqqoKUnf/4JyJqbW1tej1du7cGW1tbfG3f/u38dBDDx1wQaSBgYFYuXJl1NbWviHES/t9XFZWFl1dXYmESJ2dnVFfX5+dPr1z586c/lh1MAf6QNLS0pJoO2kYrc8lJSWxZMmSIvQmd42NjTF79uyI+I/305w5c4rcq9ydf/758Y53vKPY3QAAICbn5/xcTNlAsrq6ep9RLJs2bRrTcY8//nj2+ci9CMfjyCOPjJqamnG3u/d+Z5999rjb5fCU1mgsCmtoaChuu+22aG9vj+uvvz7a29vjtttui6GhoYMe097enmg/2tvbD9rm/np7e6O+vj5uueWWcbWzf4hXjPdxdXV1rF+/PhobG/Nuq6enJxYsWBCbNm2K+vr6+MUvfpF3zb0d6ANJTU1NIv1Py94h3v4m04euurq6aGtr2+e16urquPfee+PMM88sUq9y8+Y3vzkeeuihePDBB+OBBx6IBx98MN785jcXu1sAAFPWwT4zH26mbCAZEfGud70r+/zee+895P6PP/74PlOsL7zwwlTaHRgYiI0bN+bdLoefQkzbnCrDwyeCTCYTS5cujerq6li0aFEsXrw4rrnmmli8ePEhpzl3d3fHwMBAov3Ztm1bdHd3j2nfgYGBmD9/fvT09OTU1kiINzg4WLT3cVlZWXR0dMQll1ySd3s9PT1x4YUX5vz9OJBDfSBJavp5oY0W4u1tsoSrb3vb26Krq+sNiyVFvP5++j//5/8UoVe5Oeecc+LRRx+Nt7/97dnXzj///Hj00Ucn3WjPadOmxbx58+IrX/lKfOc73/E5CQCYlA71mflwM6UDyb1/Cb3rrruiv7//oPt///vfzz7PZwXivdvt6ek55C+wN910U+zatSsiXv+FZ968eTm1y+Ep6ZFFk2mk0mQ1ODgYTU1NUVtbG6tWrTpgsHiwac6FWMk5Ig757+CIJUuW5L16eU9PTyxevDgiivc+zmQysW7dukTafOmllxKpM2IsH0hGpgvvfxuSieQtb3nLAUO8vU30cPXII4+Me++9N6qrqw+4z2QJVi+55JK45557Rj2XkdGek+E8IiLmzZsXvb29cc8998SnP/3puOKKK+K+++6LzZs3x9KlSw/5vgMAmAjq6urG9Jn5cDLlA8kTTzwxIiJee+21+MxnPpMN/vZ39913xw9/+MPs9pVXXplzu+edd16cc8452e3PfvazsWPHjlH33bRpU6xevTq7/eEPfzi7aAREJPsL8FQaHl4sI9Ocx7sYzf7TnA/0b0a+tm/ffsh9CrGYTrHex0nfhzMpc+fOHfMHkurq6vjTP/3TFHqVm//1v/7XQUO8ESPh6lj2LYarr746TjrppEPuN9GD1UsuuSRuv/32g763RkYPT+Qp3CPTze+5555Rfy4jC28988wzsXbt2vj85z8fxxxzTBF6OnZnn312rFy5Mq677rpob2+Pzs7O6OzsjC9/+cvx3ve+N2bOnFnsLgIABfC+970vfvrTn07Yz8GFMm14eHi42J0opltuuSU+85nPZLfnzZsXf/mXfxmnnHJKRETs2rUrOjs740tf+lK88sorEfH6h9xbbrkljjjiiDfUu/jii7OBQXV1ddx5552jtnv//ffHH/7hH8bIt3/OnDnx5S9/OXtfyuHh4bjjjjviz//8z7Ojp0444YS47bbbUl8B+eGHH449e/ZERMT06dPjvPPOS7X9Qti1a1c8+uij2e1zzz131J/nZDE4OBj19fV5TRetq6uL9evXT6m/yKRtYGAg6uvr8xpZOPJz6uzszI4uTFJ7e3t89KMfPeg+y5Yti5UrVybW5rJly+Laa69N/X08NDQU1dXViU99z9eZZ54ZDz744Liuxeuvvz6uueaaAvYqd2vXro2FCxeOef+bb745Lr/88gL2KDeZTGbMQXdvb28sWLAg8Sn8+crl3/ne3t645JJL9rl1TLGdc845cfvtt4/7Q/tEPJfy8vJYvHhxtLS0HPL9NTQ0FN3d3fHoo4/G7bffHvfff3/2s+lEUFJSEu9617vife97XwwPD0dlZWW89tprcdRRR0V/f392e9asWdn34ObNmyftuWzdujUeeOCBuPfeewv2R0IADl8VFRWxaNGiaGpqire+9a2TLpNIIiea8oFkRMTnPve5+MEPfpDdnj59etTW1kZpaWk8+eST8eKLL2a/Vl5eHt///vfj9NNPH7XWWAPJiIi///u/jxUrVuzz2plnnhnHHXdcPPXUU/tMnTz66KPjhhtuiAsuuCCnc8yHQHJyyOcX4Llz58Ztt9025f4ik7ampqZERhY2NjbGxz72sVi0aFECvdrXocKjQoR4FRUVsXXr1igpKUn1fXzbbbcV5HuYr72/H2PV3t5ekIA6X7mcy0QMihsbG6Ojo2NcxwwODsbixYsTG02cr3z+nZ9I59LY2BhtbW05//Gs2Ocyc+bMuPDCC2P+/PnxW7/1W9HQ0JDzfZuLGVAec8wxUV9fH+94xzvijDPOiMrKykl7LqWlpXHRRRflfC4jfe/v74/t27dnQ8uI128J9cADD4xrwbjxGAlO58+fn100c3BwcJ9+HCgYPlhQvH+NyXYuxQ6ODxRoH+x7PBnOZffu3bFz58547bXX4phjjom6urqYMWPGpDyXyfRz2fvfqJNPPjmx63r/YyIKf507l/84l8rKyrjoooviiSeeyNacbJmEQDIhw8PDsWrVqrjhhhti586dB9zvjDPOiK9//esH/Qv2eALJiIjvfve7ce211x70Qqmqqoqvfe1r8Y53vOMQZ1IYAsnJI5dftPL95Y6xyWQyOd93djSPPvpoNDQ0FCwYPJBChXh7B6FpvY8naogXMf5RhRM1XB0Z/ZrLcUmOws1HvqPHM5lMfPCDH0x89fXxSOrf+UwmE62trXHDDTckfs/UgykrK4slS5aMaRThWI2cS3t7eyrh9/nnnx+f+cxnYtGiRQVbOG7/UC/JX8SSDFLHIslzOfroo6Ouri7OP//8qKqqipNOOmmfXwjTOpf9A8t8wpC0+n44ncuh+p5EGHK4n0shfn/ycyn+tXGo88g3sHUuBzbZMwmBZMKefPLJuPnmm2P9+vXR19cXr7zySpSVlcXZZ58dCxYsiN/93d+No4466qA1xhtIRry+OMVNN90U3d3dsXXr1tixY0eUlpZGTU1N/PZv/3Y0NTVFaWlpIueYC4Hk5HOoX7QqKiqiubk50V/uOLhCTHMeHh4uyNTpgylUiLf3VPGRDw+PPPJIrFu37oC/iOb7Pp7I05zHMnV+bxNxVGHE+KY5739ckgF+rpIaPT44OBjz5s1LdarwjBkzoqWlJf74j/848X/nh4aGYu3atfGVr3wlHnrooURr7y3NEK+/vz+efPLJeOCBB+Kee+6Jl19+Oe/a45mOXQijndtYR/DsPVotjQDyUHL5pXLWrFlx/PHHR0VFRfb+64fb5z1I0+H++xOkbbJfUwJJUiGQnLxG+wBfjL9OFcLIufX19WVD/Kqqqgl5boWa5nzXXXfFf/pP/ymxmmMJjwoV4l133XUxf/78WL16daxZs2bU79XMmTOzvyCfe+65ef+sJ/IIyeuuuy6uvvrqcR0zkUYVRuQ2zXlvSd3iIFdJjx5P876Sb3vb2+KOO+6IM888s+BtZTKZ+NrXvhY33HBD9rNCPmbMmBFLliyJP/mTPynaH8xyHZ030UK80YxlhNvh8jkhYup83oM0uJ4gWZP9mkoiJ5o8ZwuMW0lJybimfU4GmUzmoKFVeXl5dtTcyD2Iiq27uzvxkWvbtm2LZ555JhobGxO7L+VYfvkv1Gjtf/iHfzhk0PnKK6/ET3/60/jpT38ajY2NMW/evLzarKqqyuv4Qspl8bKWlpYJE0jW1dVFW1tbXjXa2toik8kUZWGYdevWxQc+8IFEa1ZXV8f69esLfv/CtG/DUVNTE9/85jfjC1/4Qlx22WVx77335lxr3rx5cfPNN49pNfNCGvm/c+HChfGZz3zmsArxDsfPBQDA5CSQBCaFsd5XcGBgIFauXBkrV66cMPfH7OvrK0jd/v7+REKb8YRHhQrxxjvts7OzMzKZTHR1deU8nbahoSHKy8sn3DTniIjKyspxH1NTU5NYQJ2Pt7zlLdHV1ZX3dVdWVhZdXV2pr1bd2NiYeBg5oqysLDo6Og7LUYUnnXRS3HPPPeO+N+NkuIWIEA8AIHkCSWDCy3WqYxKhVRIKtXrg9u3b8w5tRu6RN9bwaCKFeD09PbFgwYKcFxwpKSmJ5ubmCTOqcERFRUU0NDTkdGwxRxWO+F//638ldr2NjCq8/PLL44477kik5sEkMbJzLA7HUYUjampqYsWKFbF8+fLDZlQhAADJE0gCE9rAwEDMnz8/NmzYkNPx+YZWSSjUNOeRab25TgXNZQTpRAvxenp6YvHixTnfq3AiTXMe0dzcnHNAMxJQv+td78ousJa20047LdF6ZWVlsW7dupg/f36sW7cu0dp7G284nwSjCgEAmKoEksCEtmTJkpzDyBH5hlb5KtQ0572n9e49FbTQK6xPtBCvs7MznnjiiZzOZ6JMc95bS0tLXsdXV1fHqlWr4vLLL0+oR2OXz+jOQ7npppuivr6+IKM/i317h71HFd55553x4IMPxssvvxxHHXVUHHnkkXHSSScZVQgAwGFFIAlMWJlMJrGgKJ/QKl+FmOZ8oODnQNMlkwwyJmKI19raGtdee21Ox06Eac4jxrq40KEsWrSoKFPr8xndeShJ31NyItx3cX8lJSWxYMGCfaZfT7YVFwEAYCx8wgUmrNbW1sTrHSy0GllJta+vL3bs2BGlpaVRVVWVd4hXiGnOhwp+Cj1dciKFeBER7e3t8cUvfjGnn1OxFk/ZX5L3LyzW1Pp8R3ceSlIrVU+0+y4CAMBUM73YHQAYzdDQULS3tydas729PYaGht7weiaTiaVLl0Z1dXUsWrQoFi9eHNdcc00sXrw4Fi1aFNXV1bFs2bLIZDI5t510UFPo4OdQRkK8urq6ovZjxLZt26K7uzvn46urq2PdunVx5JFHJtirsTvnnHMSWZl6b2m/R5Ia3XkoI7cn2Lx5cyxdujTKy8vHdFxFRUX2Or7nnnuEkQAAUERGSAITUnd3d+LTTUdCq5GRg4ODg2MaaTUwMBArV66MlStX5nyvuSSnOacV/BzKyGi15ubmuOWWW4rdnejv78/r+EceeSR27tyZUG/G5y/+4i8SXwk+zan1aa1OvTerOQMAwOQlkAQmpL6+voLUHQmtent7c5qi29nZGZlMJrq6usYdICUxzbkYwc/BlJWVxU033RQ//vGPo6OjI3784x/Hjh07itKX7du353V8od5zY1Go71kaU+uLsTr13qzmDAAAk48p28CEVKiAZvv2/7+9e4+Oqjr0OP4LEMQhwyTymGisymuikNiLWPR6U3N9kaCWWyf1rZWAj1SLSnzftipcakUvAoViamvi86pgRkWBiLZ2JCq2Ki0dhEyMj5KUBIEkJgQkQO4fNGfNAHlNzjmTTL6ftbrWnMk5e+/YbM6Z3+xHg+rq6pSVlRVxSBMIBJSdna36+vouXdfdac7p6emmT+s1y4knnqhrrrlGI0aMiFobnE5nt66PVpAqdT9MbYvVU+u9Xq/Wrl1r+uhOAAAAALGNQBJAj5SQkGBJuU6nUzNmzNDGjRu7VU4gEND06dO7fF3rNGev19ul63p68NPQ0KCf/vSn+vzzz6PWBrfb3a3rrfqb64zuhqntifRvri39+/fXLbfcomAwqOLi4h4ZkAMAAADo2QgkAfRIycnJlpTb3Nxs2pp6Pp9P5eXlXb6us5tyhG7C0dODnzlz5kQ1jExKSlJmZma3yrDqb64zuhumdiT0b+6GG25Qv36R3f5POukkbd68WUuWLOkR65gCAAAA6J0IJAH0SJmZmZ3ePbezkpKStGHDBlPLLCgoiPja1k05qqqqtGrVKhUVFenXv/61ioqKtGrVKlVWVmr+/Pk9PvgJBoN65513otqG3Nzcbm9YYsXfXGeYEaZ2lsfj0RNPPKHKykqdddZZXbrW6/Xqr3/9q8aMGWNR6wAAAAD0FQSSAHokh8Oh3NxcU8u85ppr9Nxzz5laZlFRkZqamrpVRuumHNOmTdPMmTM1bdo0TZkypdfsCPzEE09EuwnKy8vrdhlW/M11hhlhalcde+yxeu+992JqlC4AAACA3oNdtgH0WHl5eVqwYIFp5Z166qmqq6szrTxJqq2tld/vN3WX36amJvn9flVXV6uxsVEJCQlKTk5WZmZmjwspm5qa9PTTT0e1DV6v17RRpGb/zXW2zmhpHaU7d+5c+f1+1dTUqKGhQU6nU263u0f+zQEAAADo/QgkAfRYHo9HXq/XlDUfvV6v+vfvb0KrDldTU2NKOcFgUI8//rieeuqpIwaniYmJys3NVV5enjwejyl1dpff7zc95O2KtLQ0FRYWmlaemX9znWFmmNodraN0AQAAAMAOTNkG0KMVFhYqLS2tW2W0hlaNjY0mtSpcQ0NDt66vr69XTk6OUlNTtXDhwjYDvrq6Oi1YsECpqanKyclRfX19t+o1Q3V1ddTqTk9PV0lJienTiM34m+sMs8NUAAAAAOgtCCQB9Ggul0slJSURB0ShoVVCQoLJrTvI6XRGfG1VVZUyMjK6PCLP5/MpIyNDVVVVEddtBqtC3o54vV6tXbtWKSkpppfd3b+5zrAqTAUAAACA3oBAEkCPl5KSotLSUnm93i5dd2holZycbEXz5Ha7I7qurq5OWVlZCgQCEV0fCASUnZ2t+vp6NTU1afXq1SoqKtLixYtVVFSk1atXd3vDnY5YFfK2Z/LkyZZvsNL6N3fBBReYXraVYSoAAAAA9AasIQmgV3C5XCouLlYwGFRBQYGKioqOOLU5KSnJWGfx0LX5MjMzlZiYaOqah0lJScrMzIzo2hkzZmjjxo3dqj8QCOj000/X9u3bo7LupFUhb3vWrFmj8vJyy9dedLlcWrNmjbKysrRmzZpulzdmzBitWrWqR6wZCQAAAADRxAhJAL1K667AVVVVWrVqlYqKivTrX/9aRUVFWrVqlSorKzV//vwjhj4Oh0O5ubmmtic3NzeiXYiDwaBpG6d89tlnUVt3sjXktVtBQYFtdS1btqzb07fHjRunjz76iDASAAAAAEQgCaCXat0VeNq0aZo5c6amTZumKVOmdBgO5uXlmdqOSMuzM1BrZcW6kw6HQ9ddd51p5XVWUVGR5dPRW5mxjumaNWtYLxIAAAAA/oVAEkCf4vF4urwWZVu8Xm9EI96amppUVFRkShu6KnTdSbPceOONppXVWbW1tfL7/bbVZ9Y6pgAAAAAAAkmgT4nWxic9TWFhYben4KalpamwsDCia/1+v6nrWHZVIBDQ9OnTTSvP4/HonHPOMa28zqqpqbG1vtZ1TMvKyjRr1qw2p6onJSUpPz9fwWDQ8s13AAAAAKA3YlMboA8IBoN6/PHH9dRTT0Vl45OepnUKbnZ2dkQ7XKenp2v16tURB03V1dURXWcmn89n6sYwDzzwgP7xj3+ooqLClPI6o6Ghwba6QrWuYzp37lz5/X7V1NSooaFBTqdTbrdbmZmZEa0rCgAAAAB9BSMkgRhWX1+vnJwcpaamauHChVHb+KQniuYU3MbGxoivNZOZ61gmJCRo8eLFGjlypGlldsTpdNpW15FEuo4pAAAAAPR1BJJAjKqqqlJGRkaXd3K2YuOTnipaU3ATEhK6db1ZzN4YZsSIEaZvGtQet9ttW10AAAAAAPMwZRuIQXV1dcrKytLGjRsjur5145PS0tJes/5dU1OT/H6/qqur1djYqISEBCUnJ3dq+qzdU3CTk5NNK6s7WjeGmTJlimll7tq1y7Sy2pOUlKTMzExb6gIAAAAAmItAEohBM2bMiDiMbNW68UlxcbFJrbKGmetjtk7BtVpmZqYSExOjurFNK7M3hrFrg6Tc3FymRgMAAABAL8WUbSDGBIPBLk/Tbkvrxic9UW9eH9PhcCg3NzfazZBk/sYwdoWEdk4NBwAAAACYi0ASiDFmblRiRXlmiIX1MXtKoGb2xjBDhw41tbwj8Xq9pu0ODgAAAACwH4EkEEOamppUVFRkaplmb3zSXa3rYwYCgYiub10fM9ojJT0eT5d3+LaC2RvDTJw4sc3NgcyQlpamwsJCy8oHAAAAAFiPQBKIIX6/3/R1CVs3PukpzFwfM9oKCwuVlpYWtfqt2Bhm0KBBuu6660wts1V6erpKSkp6zUZLAAAAAIAjI5AEYkh1dbUl5Zq98UmkYm19TJfLpZKSkqiFklZtDHPjjTeaXqbX69XatWuVkpJietkAAAAAAHsRSAIxpLGx0ZJyzd74JFKxuD5mSkqKSktLozJ926p1LM2cjj5mzBgFg0EVFxczMhIAAAAAYgSBJBBDEhISLCnX7I1PIhHL62O6XC4VFxerrKxMs2bNsnQNxlZWbwxjxnT0cePG6aOPPmIDGwAAAACIMQSSQAxJTk62pFyzNz6JRF9YH9Pj8eixxx5TVVWVli9frokTJ1pSjx0bw3R3Onp6errWrFnDqEgAAAAAiEEEkkAMyczMNH10nRUbn0Qi1tfHDFVbW6vZs2fr448/Nr1sOzeGiXQ6OutFAgAAAEBsI5AEYojD4VBubq6pZVq18UlXxfr6mK3q6uqUlZWlQCBgetnRCPo6Ox09KSlJ+fn5rBcJAAAAAH3AgGg3AIC58vLytGDBAlPL6wlieX3MUDNmzNDGjRtNKy8pKUm5ubnKy8uL6lqMrdPR586dK7/fr5qaGjU0NMjpdMrtdiszM7NHBN8AAAAAAOsRSAIxpnWHY5/P1+2yrN74pCtieX3MVsFg0JT/31r97ne/01VXXdWjgj6Hw6EpU6ZEuxkAAAAAgChiyjYQg8zY4diOjU+6IpbXx2xVUFBgannz5s1Tc3OzqWUCAAAAANBdBJJADDJjh2O7Nj7prFheH1OSmpqaVFRUZGqZn332mc466yxVVVWZWi4AAAAAAN1BIAnEqFjc4djs9Sx7yvqYkuT3+1VXV2d6uZ9++qmys7NVX19vetkAAAAAAESCQBKIYbG2w3Hr+phm6EnrY0pSdXW1ZWUHAgFNnz7dsvIBAAAAAOgKNrUB+oBY2uG4sLBQwWBQgUAg4jJ62vqYktTY2Ghp+T6fT+Xl5T0qhAUAAAAA9E0EkkAfEgs7HLeuj5mdnR1RKJmenq7Vq1f3uFGgCQkJltdRUFCg+fPnW14PAAAAAADtYco2gF4nFtfHTE5OtryOoqIiNTU1WV4PAAAAAADtIZAE0CvF2vqYmZmZbf4OZqmtrZXf77e0DgAAAAAAOsKUbQC9WnvrY7aGj3V1dSopKVFpaamSk5N75JqZDodDubm5WrBggaX11NTUWFo+AAAAAAAdIZAEEBNC18cMBoN6/PHH9dRTT6muru6wcxMTE5Wbm6u8vDx5PB6bW9q2vLw8ywPJhoYGS8sHAAAAAKAjTNkGEDPq6+uVk5Oj1NRULVy48IhhpHRwxOSCBQuUmpqqnJwc1dfX29vQNng8ni6vi9lVTqfT0vIBAAAAAOgIIySBPqypqUl+v1/V1dVqbGxUQkJCj53S3JGqqqqIdt72+XwKBoMqKSnpEZvdFBYWKhgMRrSDeGe43W5LygUAAAAAoLMIJIE+qLdOaW5LXV2dsrKytHHjxoiuDwQCys7OVmlpadQ3vXG5XCopKdHkyZP16aefmlp2UlKSMjMzTS0TAAAAAICuYso20If09inNbZkxY0bEYWSrQCCg6dOnm9Si7klJSdH777+vMWPGmFpubm5urxv5CgAAAACIPQSSQB9RVVWljIwM+Xy+Ll3n8/mUkZGhqqoqi1rWPcFgsMu/U1t8Pp/Ky8tNKau7XC6XVq5caWqZeXl5ppYHAAAAAEAkCCSBPqB1SnOk6xK2TmnuiSMlCwoKenR53WHmJjder1djx441pSwAAAAAALqDQBLoA2JtSnOrpqYmFRUVmVpmUVGRmpqaTC2zOwoLC5WWltatMtLS0lRYWGhSiwAAAAAA6B4CSSDGxeqUZkny+/1troMZqdraWvn9flPL7I7WTW4iDSXT09NVUlIS9c16AAAAAABoRSAJxLhYntJcXV1tSbk1NTWWlBuplJQUlZaWdnn6ttfr1dq1a5WSkmJRywAAAAAA6DoCSSCGxfqU5sbGRkvKbWhosKTc7nC5XCouLlZZWZlmzZqlxMTEI56XlJSk/Px8BYNBFRcXMzISAAAAANDjDIh2AwBYx8opzVOmTDG13EgkJCRYUu7AgQMtKdcMHo9Hjz32mObOnSu/36+amho1NDTI6XTK7XYrMzNTDocj2s0EAAAAAKBNBJJADIv1Kc3JycmWlHvnnXeqrKxMeXl58ng8ltTRXQ6Ho0eEwgAAAAAAdBVTtoEYFutTmjMzM9ucutwdjY2NWrBggVJTU5WTk6P6+nrT6wAAAAAAoK8ikARimFVTmp1OpyXldpXD4VBubq6ldfh8PmVkZKiqqsrSegAAAAAA6CsIJIEYZtWUZrfbbUm5kcjLy7O8jkAgoOzsbEZKAgAAAABgAgJJIIZZMaU5KSlJmZmZppbZHR6PR16v1/J6AoGApk+fbnk9AAAAAADEOgJJIIZZMaU5Nze3x+3iXFhYqLS0NMvr8fl8Ki8vt7weAAAAAABiGYEkEOPMntJsxxTprnK5XCopKbEllCwoKLC8DgAAAAAAYhmBJBDjzJzS7PV6NXbsWFPKMltKSopKS0stn75dVFSkpqYmS+sAAAAAACCWEUgCfYAZU5r79eun5ORkBYNBk1plPpfLpV/96leW1lFbWyu/329pHQAAAAAAxDICSaAPMGNK84EDB7R06VKlpqYqJyenx+44bceU6pqaGsvrAAAAAAAgVhFIAn2EmVOafT6fMjIyVFVVZULLzNPU1KSioiLL62loaLC8DgAAAAAAYhWBJNCHuFwuFRcXq6ysTD/5yU/Ur1/k/wQEAgFlZ2f3qJGSfr9fdXV1ltfjdDotrwMAAAAAgFhFIAn0QR6PRzU1NTpw4EC3ygkEApo+fbpJreq+6upqW+pxu9221AMAAAAAQCwikAT6oGAwKJ/PZ0pZPp9P5eXlppTVXY2NjZbXkZSUpMzMTMvrAQAAAAAgVhFIAn2Q2Ru/2LGRTGckJCRYXkdubq4cDofl9QAAAAAAEKsIJIE+xoqNX4qKitTU1GRqmZFITk62vI68vDzL6wAAAAAAIJYRSAJ9jBUbv9TW1srv95taZiQyMzOVmJhoWfler1djx461rHwAAAAAAPoCAkmgj7Fq45eamhpLyu0Kh8Oh3NxcS8pOS0tTYWGhJWUDAAAAANCXEEgCfYxVG780NDRYUm5XWTGlOj09XSUlJXK5XKaXDQAAAABAX0MgCfQxVm384nQ6LSm3qzwej7xer2nleb1erV27VikpKaaVCQAAAABAX0YgCfQxVm38YscO151VWFiotLS0bpUxdOhQffzxxyouLmZkJAAAAAAAJhoQ7QYAsFfrxi9mb2xz2223adOmTTr++OOVnJyszMxMORwOU+voLJfLpZKSEmVnZysQCHT5+vHjx+vNN99kVCQAAAAAABZghCTQx1i18cs///lP3X///Zo+fbouvPBCpaSkKD8/X8Fg0PS6OiMlJUWlpaVdnr7t9Xr13nvvEUYCAAAAAGARAkmgD7Ji45dD1dXVacGCBUpNTVVOTo7q6+str/NQLpdLxcXFKisr06xZs5SYmHjE85KSkozwlCnaAAAAAABYiynbQB/UuvGLz+ezpT6fz6dgMKiSkpKojDz0eDx67LHHNHfuXPn9ftXU1KihoUFOp1Nutzuq08sBAAAAAOhrCCSBPqqwsFDBYDCiNRYjEQgElJ2drdLS0qiNQHQ4HJoyZUpU6gYAAAAAAAcxZRvoo1o3fhk3bpxtdQYCAU2fPt22+gAAAAAAQM9DIAn0YSkpKZo9e7atdfp8PpWXl9taJwAAAAAA6DkIJIE+rqGhwfY6CwoKbK8TAAAAAAD0DASSQB/X2Nhoe51FRUVqamqyvV4AAAAAABB9BJJAH5eQkGB7nbW1tfL7/bbXCwAAAAAAoo9AEujjkpOTo1JvTU1NVOoFAAAAAADRRSAJ9HGZmZlKTEy0vd5orF0JAAAAAACij0AS6OMcDodyc3Ntr9fpdNpeJwAAAAAAiD4CSQDKy8uzvU632217nQAAAAAAIPoGRLsBQLTt2bNHJSUl+vrrr9XY2Kj4+Hht27ZNI0aMUHNzc4fHCQkJxpTnuro608pISEhQcnKyMjMz5XA4LP1v4PF45PV65fP5LK2nVVJSkjIzM22pCwAAAAAA9CwEkuizvvrqK7388st64403evR6homJicrNzVVeXp48Ho9l9RQWFioYDCoQCFhWR6vc3FzLQ1YAAAAAANAzMWUbfU59fb0uu+wy5eTk6IUXXujRYaR0cMTkggULlJqaqpycHNXX11tSj8vlUklJiVJSUiwpP1Q0pogDAAAAAICegUASfUpVVZUyMjL0yiuvRLspEfH5fMrIyFBVVZUl5aekpGjhwoWWlN3K6/Vq7NixltYBAAAAAAB6LgJJ9Bl1dXXKysqyZUqylQKBgLKzsy0bKXnhhRca61maLS0tTYWFhZaUDQAAAAAAegcCSfQZM2bM0MaNG6PdDFMEAgFNnz7dkrIdDodyc3NNLzc9PV0lJSVyuVymlw0AAAAAAHoPAkn0CcFg0LYdpO3i8/lUXl5uSdlmr/E4efJkrV271pb1KQEAAAAAQM9GIIk+oaCgINpNsIRVv5fH45HX6zWlrMmTJ+vNN99kZCQAAAAAAJBEIIk+oKmpSUVFRdFuhiWKiorU1NRkSdmFhYVKS0vrVhlpaWlatmyZSS0CAAAAAACxgEASMc/v96uuri7azbBEbW2t/H6/JWW7XC6VlJREHEqyZiQAAAAAADgSAknEvOrq6mg3wVI1NTWWlZ2SkqLS0tIuT9/2er2sGQkAAAAAAI6IQBIxr7GxMdpNsFRDQ4Ol5btcLhUXF6usrEyzZs1SYmLiEc9LSkpSfn6+gsGgiouLGRkJAAAAAACOaEC0GwBYLSEhIdpNsJTT6bSlHo/Ho8cee0xz586V3+9XTU2NGhoa5HQ65Xa7lZmZKYfDYUtbAAAAAABA70UgiZiXnJwc7SZYyu1221qfw+HQlClTbK0TAAAAAADEDqZsI+ZlZma2Oc24t0tKSlJmZma0mwEAAAAAANBpBJKIeQ6HQ7m5udFuhiVyc3OZJg0AAAAAAHoVAkn0CXl5edFugiVi9fcCAAAAAACxi0ASfYLH45HX6412M0zl9Xo1duzYaDcDAAAAAACgSwgk0WcUFhYqLS0t2s0wRVpamgoLC6PdDAAAAAAAgC4jkESf4XK5VFJS0utDyfT0dJWUlMjlckW7KQAAAAAAAF1GIIk+JSUlRaWlpbrkkkui3ZSIeL1erV27VikpKdFuCgAAAAAAQEQIJNHnuFwuLVu2TMXFxbrqqqvkdDqj3aR2JSUlKT8/X8FgUMXFxYyMBAAAAAAAvdqAaDcAiJYTTzxR+fn5uvnmm1VbW6vt27eroaFBAwcOVE1Njdxut/bu3dvhsdPpNELC+vp608pwOp1yu93KzMyUw+GI5n8qAAAAAAAA0xBIos8bNGiQsrOzNWAA3QEAAAAAAMBqTNkGAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYJu4lpaWlmg3Aj3bxx9/HHbcr19s5NgHDhwwXsfK7wREC/0JMA/9CTAP/QkwD/0JMFdv7lOhbZekiRMndrmMAWY1Bn3HoX94sSAWfycgWuhPgHnoT4B56E+AeehPgLn6Yp/qXREsAAAAAAAAgF6NEZLost42lBgAAAAAAADmMGNEJ2tIAgAAAAAAALANQ90AAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2GZAtBsA2KmiokIvvviiPvzwQ1VWVmrfvn0aMWKEPB6PfvCDH+iCCy7QgAF0C/Q9JSUluu2227p8nd/vV3Jycps/37Bhg5YvX66//OUvqqmpUUtLi9xut8aPH6//+q//0tlnn624uLjuNB3oERYtWqSlS5cqJSVFf/zjH7t07QcffKDi4mL99a9/1bZt2zRgwAAlJydrwoQJuuSSS3T66ad3qby9e/dq5cqVWr16tT799FPV1dUpISFBxx57rM4++2zl5OTohBNO6FKZgJ0i6U9z5szR888/36V6TjjhBL311lvtntPS0qK3335bK1as0N///nft2LFDRx99tNxut84880zl5OTo5JNP7lK9gFU+/PBDrVy5UuvXr9e2bdvU2Nho/Pt/+umny+v1aty4cZ0uz+znOPoTehOz+tOTTz6pRx55pEt19+/fX59++mmH55n9DGm3uJaWlpZoNwKww+LFi1VQUKB9+/a1eU5aWpoeffRRjRo1ysaWAdG3YMECFRQUdPm6tgLJ5uZm/c///I9eeumldq/PyMjQr371K40YMaLLdQM9xYYNG3TVVVepubm5SwFKY2Oj7rnnHr399tvtnjd16lTdf//9cjqdHZZZUVGh2267TeXl5W2eEx8fr1tvvVU33HADXwigx4m0P11xxRVav359l+rqKJCsqanRrFmz9PHHH7d5TlxcnKZNm6b8/HwNHDiwS/UDZqmsrNQ999yjjz76qMNzL7roIs2ZM0cJCQltnmPFcxz9Cb2F2f3pjjvu0BtvvNGlNnQUSFrxDBkNDAVDnzB37lw9++yzxvGAAQOUmpqqo48+WhUVFaqtrZUkBQIBXXvttVq2bJlSUlKi1VzAdps2bTJeezyeTgeER3pYbGlp0e233x52gzzqqKOUmpqq/v37q7y8XI2NjZKk0tJSXXfddXrppZc0ZMiQbv4WgP22bNmim2++Wc3NzV267ttvv9X06dP1t7/9zXhv8ODB8ng82r9/v4LBoPbs2SNJWrFihbZu3arCwsJ2P6B98cUXuvrqq417miQNHz5cI0eOVF1dncrLy9XS0qLm5mbNnz9f33zzje68884u/saAdSLtTy0tLSorKzOOJ02a1Kkwo7173c6dO3XNNdfoH//4h/FeYmKixowZo927d6usrEz79u1TS0uLioqKtG3bNj322GNdajdghi+//FJXXnmldu7cabwXHx8vj8cjp9OpHTt26LPPPlPrOKSVK1eqoqJCzz///BFDFCue4+hP6C3M7k+StHnzZuP1qaee2qnPPP3792/zZ1Y8Q0YLIyQR8w6dipqVlaX7779fw4YNk3TwG0Cfz6df/epX2r17tyRp/PjxKi4uZuQI+ozvf//72rZtmyTp2Wef1aRJkyIu69BpCVdddZXy8/ONb+b27Nmjp556SosXLzZGLF9wwQVasmRJN34DwH7BYFDXX3+9ampqjPc6O6IrdHppXFycZs6cqRkzZmjQoEGSpG+++UaLFy/WM888Y1wzbdo03XfffUcsb//+/fJ6vcZDr8vl0pw5c5SVlWXcy7Zs2aKf//znWrdunXHd0qVLdd5553XxNwfM153+9OWXXyorK0vSwQ+O69evV3x8fLfac9NNN+lPf/qTpINhzH333adLL73UWNrn66+/1kMPPaRVq1YZ1/zsZz/Tj3/8427VC3TF/v379cMf/lDBYFDSwRDjJz/5iXJzc8PCkZqaGj322GN69dVXjfeys7O1aNGiw8q04jmO/oTewIr+9O2332rChAnav3+/JOmPf/xjtwc+mf0MGU1saoOY1tzcrHnz5hnH55xzjhYuXGiEkdLBB9fLL79cS5YsMW6KGzdu7PKwaqC32rlzpxFGSlJqamq3yvrNb35jHF955ZV64IEHwqYJDBo0SHl5eZozZ47x3ltvvaVPPvkk4noBu7322mu67LLLwsKTzvrss8/04osvGsd33HGHbrnlFuNBUpKGDBmin/3sZ7rllluM955//nlVVlYesczly5cbYeSAAQNUUFCg7OzssC/WvvOd7+j3v/+9/v3f/914b/78+cZDMhAt3elPUvgo/9GjR3c7jFy7dq0RnkjSww8/rCuvvDJsnfHhw4drwYIF+uEPf2i8t3TpUmPkGGAHn89nhCfSwb/VmTNnHjZSy+12a968ecrNzTXeKykp0V//+tew86x4jqM/obcwuz9JUllZmfGcNWTIkG6HkVY8Q0YTgSRi2ltvvaV//vOfkg5+QLv//vvVr9+R/+wzMjJ0+eWXG8dFRUW2tBGIttAPcscdd5xcLlfEZb388svatWuXpINTce6+++42z83JydF//ud/Gsf0OfQGNTU1uueee3T33Xcbo+q76tlnnzUeTkeNGqUZM2a0ee5Pf/pTeTweSQe/ZHvuueeOeF7ot+A5OTk67bTTjnhefHy85s2bZwQ2FRUV8vv9Ef0eQHeZ0Z+k8OlwZmyI8fTTTxuvMzIydOGFF7Z57gMPPKChQ4dKkmpra/XKK690u36gs1577TXjdUZGhqZOndru+fn5+WFLFaxcuTLs51Y8x9Gf0FuY3Z+k8PtTdwZ9tLLiGTKaCCQR00KH/Z911lk67rjj2j0/NJDcuHGjtmzZYlnbgJ4iNJDs7o1y9erVxuspU6bI4XC0e35on3v33XfV1NTUrfoBKz3++OPKzs4Om6IzatQo5eXldbqMAwcO6M033zSOvV5vm1+USVK/fv102WWXGceh17bavHmzKioqjOMf/ehH7bbB7XbrnHPOMY5LSko61XbATGb0p1ah97HuBpL19fV6//33jeOcnJx2z3c4HGEfWulPsMvevXvDRiVefPHFHV4zcOBAZWRkGMd///vfw35u9nMc/Qm9hRX9STL3/mTFM2S0EUgiZrW0tOjDDz80jv/jP/6jw2tSU1M1fPhw47izOzsCvZlZN8q6urqwskJv0G0588wzjUWb9+zZE/bQCvQ0Tz75ZNiHrUsvvVTLly/XiSee2OkyNm/eHLbpTGf6Sej965///GfYt+2SwtaEdLlcSk9P71KZf/rTn8SS4rCbGf2plZkf+P785z8bo0/i4uI69fwYes4nn3yi+vr6brUB6IyqqiodddRRxvHo0aM7dV1iYqLxOvR+ZMVzHP0JvYXZ/amVmQM/rHiGjDYCScSsqqoqffPNN8ZxWlpap64L/YfiSN9yALHGrKluZWVlYaHG+PHjO7zG4XDohBNOMI7pc+gN0tLS9Oyzz2ru3Llt7qjYltD+Fh8fr7Fjx3Z4zciRI8PWBjq0n4SWecopp3RqQ7bQvl5fXx+28ylgp+70J8ncdZCl8P50/PHHd2oZk9D+dODAAW3cuLFbbQA6Y+TIkVq/fr0++ugjrVy50pia2ZGqqirjdejftxXPcfQn9BZm9yfp4ACpsrIy47i7X5hZ8QwZbQM6PgXonb788suw49CbZXuOP/544zUf0BDrvv32W33xxRfGcWpqqj7++GO9+uqr+uijj7R161bFxcVp+PDhmjhxoqZOnRq2IUao0D43cOBAHXvssZ1qw/HHH2+0gT6HnmzSpEnyer0677zzOhX6HUloP0lJSQlb1L8tcXFxOu644/T5559Lkr766qs2y+zs6LLQe11rmZGMTAMiZUZ/ksJHnwwfPlxOp1OrV6/W6tWrtWHDBm3fvl0Oh0PHHnuszjrrLF166aUaNWpUm+VF0p+GDx+uQYMGac+ePZIO9qezzjorsl8I6CKn0xm26Ux7Ghsb9d577xnHoaPArHiOoz+htzGrP0kH/3ZbZwL0799fY8aM0bvvvqvXX39d69ev17Zt2xQfHy+3260zzjhDl1xyiU499dQ267PiGTLaCCQRs77++mvjdb9+/cJ21m5P6JTt0DKAWBS681tcXJxmz56tDz744LDzvvrqK3311Vfy+XzKyMjQI488Yiw63iq0v4T2o47Q59BbLF26tNtlhP6Nhy6E3pFhw4YZD5OH9pPQ0WGd7XvHHHOM+vfvb/R/+h7sZkZ/ksIDyQEDBujiiy8+7Evp+vp61dfXa/PmzXr66ad17bXX6q677jrih7lI+pMkDR061BgpQ39CT/Xkk0+G7Vwdup6wFc9x9CfEsvb6kxR+f3I4HLr22msPG6H47bffqrGxURUVFfq///s//eAHP9CcOXOOuH6rFc+Q0caUbcSs0PVGBg8e3O6Cr6FCpwuxZgliXejQ/5aWFiOMdDqdGj9+vCZNmqSUlJSwa0pLS3XppZcaO9i3qqurM1539ptFiT6HviXSfhJ67qH9JPS4s2X269cv7GE3dIkToDcJ/cC3detWI4wcPny4TjvtNE2YMCFsja/9+/frqaee0k033aTm5ubDyoukPx16Lv0JPdGGDRv0u9/9zjg+6aSTdO655xrHVjzH0Z8QqzrqT1L456yGhgYjjExKStJ3v/tdnX766YcFi6+//rquuuoqNTQ0HFanFc+Q0cYIScSsb7/91ngdum5CRwYOHGi83rt3r6ltAnqa0A9y0sEPcHfffbeys7PD+kIwGNSjjz6qd999V9LB9VJuvvlmLVu2zDgvtL/Q54Ajs6KfmHG/Cy0D6E0OXaA/PT1d99xzj773ve8Z7x04cEClpaV66KGHjKmlpaWl+uUvf6kHH3ww7Hr6E2JRZWWlbr755rAQ/t577w0bJcz9CeiczvQn6fDPWSeddJLuvfdenX322cZmUNLBzZsefvhh/e1vfzOuy8/PDws8pdj8rMUIScSs0H8gOjs6UlLYPyT79u0ztU1AT3Po2j6vvfaapk6dGnbjkiSPx6MnnnhCOTk5xnubNm3Siy++aBzT54CORdpPQh9cD+0noceh53WnTKA32Lt3ryorK43jrKwsvfDCC2FhpHSwr5199tlavny5TjnlFOP9F1988bBAM7QvmNVHgWjaunWrrrvuurCpmtOmTTtseqkVz3H0J8SazvYnKfxz1oQJE+Tz+XTOOecc9qx22mmn6bnnngvbNfvdd9/VH/7wh7DzrHiGjDZGSCJmhXa8AwcOdPq60E4aHx9vapuAnqaoqEg7duxQZWWlRowYcdi6kKHi4uL04IMPat26dca6Ps8884x+/OMfS6LPAZ0RaT9pXetROryf9O/f3+hHoed1pcxDv4QAeoOBAwdq/fr1qq6uVmVlpdLT09u9jzidTs2fP18XX3yxDhw4oJaWFj3zzDN66KGHjHOs6KNAtFRUVGjGjBnaunWr8V5GRobuvPPOw8614jmO/oRY0pX+JElvvvmmtm3bpsrKSo0cOVKDBw9us+yBAwfq0Ucf1fnnn69du3ZJOvg567zzzjPOicX+xAhJxKyjjz7aeN2Vof6hw5iPOuooU9sE9ERDhw7Vd7/73U7tpjhw4EBdccUVxvGWLVuMHRVDpw50pc+FnkufQ6yzop+YUSaBJHqrfv366bjjjtOkSZPCnv3aMnr06LAde0N3SJW4lyF2fPLJJ7r66qvDwpMzzzxTS5YsOWIo0VPvT/Qn9ARd7U/SwcEcbrdbEydO1DHHHNNhHcccc4wuvvhi4/jjjz/W7t27jeNY7E8EkohZLpfLeL1r1y61tLR06rrQnbJCF0EHcNBpp50Wdtw6HSG0v4T2o460fgt4aBlALIq0n7R3bwq933W2zAMHDqipqanNMoFYFnofq66uDvuwFkl/OvRc+hOi7fXXX9d1112n2tpa473MzEz99re/bTO4t+I5jv6EWBBJf4pU6P2pubk5bBNRK54ho41AEjHL7XYbr/fv3x/2D0h7QteDGDZsmOntAnq7Q6d1t+7WFtrnduzY0eny6HPoS0J3U+xKP9m+fbvxevjw4WE/i6Tv7dy5M2y6z6FlArHs0HtN6M6lkd7LQs+lPyGaFi9erDvvvDNs1tfUqVO1dOnSdjfCsOI5jv6E3i7S/hSpQ/tQ6K7YVjxDRhuBJGLWiSeeGHa8ZcuWTl0Xujj6yJEjTW0TEAsOnSLQuh5KaJ9ramoKu/m1J7Rv0ucQ60466STjdWVlZadG77e0tBjrth5axqHHrUsodOTQe+KhZQKxrK37mBRZf9q2bZv27NlzxDIAuzQ3N+vuu+/WkiVLwt6/6aab9Mgjjxy2A/ChrHiOoz+ht+puf4pUZ+9PZj1DRhub2iBmpaSkKDEx0fjWe9OmTfrud7/b4XWhuy2efPLJVjUPiLrNmzfrtdde044dO7Rjxw498sgj7W5q0yo0tJek4447TpI0btw4xcXFGTfHTZs26fvf/367Ze3atSvsAZU+h1g3fvx44/Xu3bv1xRdfaNSoUe1e8/nnn4c9oIbuEtxaps/nk6TDdgxuy6ZNm4zXLpdLKSkpnboO6EnefvttrVu3Tjt37tSAAQP0yCOPdOq60ABlyJAhSkhIMI5D++hXX32l3bt3dzglL7Q/xcXFKTU1tbO/AmCKvXv3aubMmfrTn/5kvDdgwAA9+OCDuvTSSztVhhXPcfQn9EZm9Kc///nPevvtt7Vjxw41NDSooKCgUztjh96f4uLilJycbBxb8QwZbYyQREw744wzjNfvv/9+h+dv3rw57NvAM88805J2AT1BfX29CgsL9dprr6m0tFR//vOfO3Xdu+++a7x2Op3yeDySpISEBI0bN874WWf63Lp164xpo/3799ekSZO68isAvc7YsWPDFjb/4IMPOrwmdNONpKSkwz6chfabr7/+WuXl5R2WGdo/Q++VQG+yadMmPfvss1q5cqVWrFjR6RFdpaWlxuuJEyeG/WzixInGyJf9+/frww8/7LC80P40bty4sHXzAKvt27dPt956a1h4MnjwYP32t7/tdHgiWfMcR39Cb2NWf6qsrNTTTz+tN954Q36/X4FAoFPXrV271ng9duzYsL9/K54ho41AEjFt8uTJxut33nlHNTU17Z7/wgsvGK9Hjx7d4zosYKa0tDQ5HA7jePny5R1eU11drRUrVhjHF110Udi3fVlZWcbrFStWhO0MdyShfe6ss87SkCFDOtV2oLeKi4vTBRdcYBwvW7YsbC3HQx04cEDLli0zjrOyshQXFxd2jsfjCZsm9+KLL7bbhq1bt4Y9aE+ZMqWzzQd6lNDwo6WlRS+//HKH16xZs0aff/65cTx16tSwnw8ZMiTsC+mO+tOuXbvC7ovZ2dkdtgEw06OPPqp33nnHOD7mmGP07LPPKiMjo8tlmf0cR39Cb2NWf/re974X9rzWmc9ZgUAgLED8wQ9+EPZzK54ho41AEjFt8uTJxuKve/fu1b333qt9+/Yd8dy1a9eG/UNx7bXX2tJGIFoGDx6sCy+80Dh+77339Oqrr7Z5fmNjo26//Xbj4fSoo47SjBkzws7JyckxpuJs375dc+bMabO85cuXh30L+OMf/ziSXwPoda666irjgXDz5s36zW9+0+a5ixYtMkY89uvXr81709VXX228fvHFF9sc2dLc3Kx77rlHzc3Nkg4uuXD++edH9HsA0TZp0qSw9bCeeOIJffbZZ22e//nnn+v+++83jkeNGhX25XWr0P70zjvvGEsiHMmDDz6onTt3SpIcDod+9KMfdeVXALrF7/fr6aefNo5dLpeeeeaZsKmdXWHFcxz9Cb2Fmf3pO9/5TlgYX1xcrHXr1rV5/tdff6077rjDWDLhmGOO0RVXXHHYeVY8Q0YTgSRi2sCBA5Wfn28cv//++7rhhhvC1mbYt2+fli1bppkzZ2r//v2SDo426cqQbKC3uu222+R0Oo3jn/3sZ1qyZIl27doVdt5f/vIXXXnllVq/fr3xXn5+vk444YSw84YNG6brr7/eOPb5fLrjjjvCdoLbs2ePCgoK9MADDxjvnX322Tr77LNN+72Anuzkk0/WJZdcYhwvWbJEDz30kBoaGoz3Ghoa9Mtf/lIFBQXGe5dffrnGjBlzxDIvv/xyY5Tkvn37dMstt2j58uVhX8Jt2bJF119/fdiUubvuuksDBw407XcD7BQXF6f//u//No537dqla665RitXrgwbNdLc3KxXXnlFV155pWprayVJ8fHxmjdv3hE3Jjj33HPDljL4xS9+od/+9rdh63Bt375ds2bNChvNdfPNN4dNpwOstH//fv3yl780Aoy4uDjNnz9fY8eOjbhMK57j6E/oDazoT/fee2/YkgV5eXl6/vnnw3bsPnDggP7whz/o8ssv15dffmm8P3v27CPOHLPiGTKa4lo6szUP0Mvdf//9eumll4zjfv36KTU1VQkJCaqoqDC+iZOkxMREvfDCCx0uEAvEinXr1unGG28MezAcNGiQTj75ZA0cOFD/+Mc/VF1dHXbNjBkzdPfddx+xvNYwJHRKaHx8vFJTUzVw4ECVl5eH3TSPP/54LV++nIdO9Fo+n0/33XefpIMbqv3xj3/s8JrGxkZdd911YWsKHX300cZSIWVlZWFT5dLT0/Xcc89p0KBBbZYZDAZ17bXXGpu5SQe/YR89erQaGhoUDAbDQpqrr746bLQY0BNE0p+eeOIJzZ8/P+y9xMREjR07Vvv27VNFRYW++eYb42fx8fFauHBhu6ODa2pqdPXVV4d9ie10OjV27Fjt3btXZWVlxkhjSTrnnHO0dOnSTm1aAJhh5cqVYQMvHA6HTjvttC6VMWzYMM2bNy/sPSue4+hP6Oms6k8rVqzQPffcE/b8NXjwYKWmpqpfv3764osvwgJ/6WB2ETqy+FBWPENGC4Ek+oSWlhYtXLhQTz75ZNjN7lCjR4/WokWLuvVNCNAbbdy4UXfddZcqKiraPc/lcumOO+7Q5Zdf3u55e/fu1ezZs1VcXKz2bjMTJkzQokWL5Ha7I2o30BNEEqBIB7/Bvvvuuzs8/5xzztGjjz4aNpq5LWVlZbrjjjva3dimf//+uuGGG3T77bf3uLWEgEj70xtvvKE5c+aovr6+3fNGjx6t2bNn63vf+16HZW7dulX5+fn65JNP2j3vRz/6kR544AFGG8NWM2fO1Jo1a7pVRlt9zIrnOPoTejIr+9P777+ve++9t8P9LNxut37xi1+ErRPZFiueIaOBQBJ9SkVFhV5++WWVlpaqurpau3fvlsvl0imnnKLs7GxNnTqVmx/6rP379+vtt9/WmjVrtGHDBm3fvl379u3TsGHDdNJJJ+ncc8/VRRdd1KWRjBs2bNArr7yidevWqaamRnv37tUxxxyjU089VRdffLEmT57Mt9/o9SINUFp98MEHWrFihT766CNt375d+/fv17BhwzRhwgRdcsklXV5Ifd++fXr99df15ptvatOmTdqxY4fi4+N1/PHH64wzztAVV1zRI6ftAFL3+lNjY6NeffVVvfvuu9q8ebPq6urUv39/DR8+XOPGjdPkyZN1/vnnd+lZr6WlRW+99ZZWrVpl3Bv79esnt9utiRMn6rLLLtO//du/dfXXBLrtoosuanfN1M7oqI+Z/RxHf0JPZXV/2rt3r9544w298847CgQC2rlzp+Li4jR06FCNHTtW559/vqZMmaLBgwd3qU6znyHtRiAJAAAAAAAAwDYMSwEAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAA4AjWr1+v1NRU439btmyJdpMAAABiAoEkAAAAcAQbN240XicmJuo73/lOFFsDAAAQOwgkAQAAgCMIDSTT0tKi2BIAAIDYQiAJAAAAHEEgEDBeE0gCAACYh0ASAAAAOMSePXtUUVFhHBNIAgAAmIdAEgAAADjE5s2btX//fuOYQBIAAMA8BJIAAADAIULXjxw2bJiOPfbYKLYGAAAgthBIAgAAAIcIDSTHjx/f4fkbNmzQueeeq9TUVKWmpmrChAlatWqVlU0EAADotQZEuwEAAABAT9OVHbafe+45Pfzww2pubpYkjRw5UkuWLNGYMWMsbSMAAEBvRSAJAAAAhPj222/12WefGcdtBZK7du3Sz3/+87CRkFlZWXrooYeUkJBgeTsBAAB6KwJJAAAAIERZWZn27dtnHB8pkAwGg7r11lv1xRdfSJL69++v/Px8XX/99ba1EwAAoLcikAQAAABCBAIB4/WIESM0YsSIsJ+/+uqrevDBB7V7925J0tChQ7VgwQKdccYZtrYTAACgtyKQBAAAAEK0tX7kt99+q7lz52rZsmXGexMmTNCiRYvkdrttbSMAAEBvRiAJAAAAhDhSILllyxbdeuut+vTTT42fXXPNNbr33nsVHx9vexsBAAB6MwJJAAAA4F/27t172IY2b7/9tu677z598803kqSjjz5ac+bM0dSpU6PVTAAAgF6NQBIAAAD4l7KyMjU3NxvHJSUl8vl8xvFJJ52kX//610pNTY1G8wAAAGJCv2g3AAAAAOgpQqdrSwoLI8877zy9/PLLhJEAAADdRCAJAAAA/EtoIHnUUUeF/eyMM86Q0+m0u0kAAAAxh0ASAAAA+JfQQPLGG29URkaGcfzwww/rD3/4QzSaBQAAEFMIJAEAAAAd3NAmGAwax2lpaVq0aJE8Ho8k6cCBA7rzzjsPm9YNAACAriGQBAAAACQFg8GwDW1OOeUUJSQkqKCgQMOGDZMkNTU16aabbtLWrVuj1UwAAIBej0ASAAAAkPTpp58ar4cOHSq32y1JSklJ0eOPP65BgwZJkr7++mvddNNNamxsjEo7AQAAejsCSQAAAEBSIBAwXp9yyilhPzv11FM1b948xcXFSZLKysp0++23a//+/ba2EQAAIBYQSAIAAAAK39Dm5JNPPuzn2dnZys/PN47Xrl2r2bNn29I2AACAWEIgCQAAgD6vubk5bEObQ0dItrrxxhuVk5NjHL/00kv6/e9/b3n7AAAAYgmBJAAAAPq88vJy7d271zhuK5CUpNmzZ+vMM880jv/3f/9Xa9assbR9AAAAsYRAEgAAAH1e6HTto48+WiNHjmzz3Pj4eC1evFijRo2SJLW0tOiuu+7Shg0bLG8nAABALCCQBAAAQJ8XuqGNx+NRv37tPyYPGTJETzzxhJKSkiRJe/bs0U9+8hNVVlZa2k4AAIBYENfS0tIS7UYAAAAAAAAA6BsYIQkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANv8P5Dh9B1Fuv5QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "check_B(r, deadtime, bintime, max_k=250)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 3214.76it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAAQ1CAYAAADAlJPyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT1/8H8HeAALJEquLEusBttY46q9aqtdZdrdZRq9ZRrXvPWqtWq1XRqrVq3RNna+teoHVvBSqIICKCGNmQ9fuDL/eXSwYJkIG+X8/Tp7nJzbknmNwk75xzPhK1Wq0GERERERERERERkQnsrN0BIiIiIiIiIiIiKnwYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJHKzdASJ6c/n7+2PVqlUAgEaNGmHr1q35bnPq1Kk4cOAAAKBbt25YtGhRvts0h//++w/Xrl1Dnz59dN7ev39/XLlyBQAwatQojB492pLdIxPcuXMHe/fuxdWrVxEbGwu1Wg1vb2/UrFkTXbp0QcuWLSGRSMxy7LCwMOzatQuXL1/G06dPoVAoULJkSfj6+uKzzz7Dxx9/DAcH097KL126hICAANy6dQsvXryAg4MDSpUqhXr16qFbt25o0KCBSe1lZmbir7/+wt9//40HDx5AJpPBzc0NpUuXRsuWLdGjRw/4+PiY1Objx48REBCAa9euITIyEomJiXByckLx4sXx3nvvoV27dmjTpk2B/N1XrVoFf39/AAX3WizoNvft24cZM2YAAEJCQvLdPwBQq9UYNGgQLl26BADYsmULGjdubPT9zfG6ePHiBQ4fPoyzZ88iMjISCQkJcHZ2Rrly5dCoUSP07t0blStXNro9mUyG/fv349KlSwgNDYVMJgMAFCtWDNWrV0fLli3RrVs3ODs759qWWq3G+++/j5SUFJMe05gxYzBy5EiT7vMme1vf+54+fYqPPvpI2D516hTKlSuX73avX7+O58+f49NPP9V5e5s2bRAdHQ0AWLhwIbp3757vY5J5FPR7sykK+nyuVqtx8uRJHD58GHfv3sXLly9RpEgReHt744MPPkCPHj1QrVo1k/oYGxuLvXv34sqVKwgPD8fr16/h4OAALy8v1K5dG23atEHHjh2N+kyUkJCAJk2amHR8AFi8eDG6dOli8v2I3gYMFomIClBaWhpWrVqFzZs3o1OnTnqDRbJ9crkcP/zwA3bv3q11W0REBCIiIvDXX3+hefPmWLhwIUqWLFmgx/f398fatWuhUChE10dFRSEqKgqnTp1CrVq1sGTJElSqVCnX9pKTkzFlyhScPHlSdH1GRgbCwsIQFhaGffv2oXPnzpg9ezbc3d1zbTMsLAxjxozBf//9J7r+1atXePXqFR48eIANGzbgu+++w9ChQ3P9YpKamoqFCxdi7969UKvVotvkcjmSk5MRERGBgwcPokaNGvjll1/w7rvv5tpPfYKDg7F27do8398SbT59+hQ//fRTgbWXbefOnUKoaApzvS42bdqElStXIjU1Vet4Dx8+xMOHD7F161YMGTIE48aNg52d/kk3arUa27Ztw9KlS5GWlqZ1e0xMDGJiYnD69Gn4+/tjwYIFaNWqlcH+PXnyxORQkchcXr16hZ9//hkBAQH49ttvrd0dygdzvDcbyxzn89jYWIwbNw7Xr18XXZ+ZmYnXr18jNDQUW7duxVdffYXx48fD0dHRYHsKhQL+/v7YsGED5HK5Vpupqal4+vQp/v77b6xcuRLLli1DnTp1DLb58OHDXB8HEZmGwSIRUQFasGAB9uzZY+1uUD6p1WqMHTtW9EHfyckJfn5+sLe3x3///Yfk5GQAQGBgIAYOHIjdu3fDw8OjQI4/f/580QhfBwcH+Pn5oUiRIggLC8OrV68AAPfu3UP//v2xZ88elC1bVm97GRkZ+Prrr3H79m3hOldXV/j6+kKpVCI0NBTp6ekAgMOHDyMmJgYbN240+IH/8ePH+PLLL4W+AECJEiVQsWJFyGQy/Pfff1Cr1ZDL5Vi6dCkSExMxceJEve2lp6fj66+/xs2bN0XXV6pUCSVKlEBqaipCQkKQmZkJAHjw4AF69uyJ7du3w8/PT2+7+sjlckydOlXri0p+FHSbCQkJ+Oabb5CYmFgg7WV7+vQplixZYvL9zPG6UKvVmDdvHnbs2CFcZ29vDx8fH5QoUQKxsbF48uQJAEClUuG3337D69evMW/ePL1tLly4EJs3bxZd5+3tDR8fHyiVSoSHhwujF1++fInhw4dj4cKF6Natm942Nb+Ienp6olatWnr31WTqaF0iY0yYMAFBQUHW7gblkznem41ljvN5QkIC+vXrh8jISOE6T09PVKlSBWlpaQgJCYFCoYBarcamTZvw4sULLFu2TG97KpUK48aNw/Hjx0XXly9fHqVLl0ZmZiZCQ0OFH6SioqLQt29f/Pbbb2jatKnedjXP597e3qhatarefTUV9A/IRG8SBotERAWoIEMKsp6NGzeKPmz37dsX48ePF0YKpKen448//oC/vz8UCgXCw8Mxffp0Yep/fvzzzz+iULF9+/aYPXs2ihcvDiDrObZ//34sXLgQaWlpiI+Px+jRoxEQEKB3ROBPP/0kfHGRSCQYPXo0Bg8eLEwBTUxMhL+/P7Zs2QIAuHr1KpYuXYpp06bpbE+pVGLs2LFCqFi0aFHMmzcP7du3F/oQFRWFmTNn4t9//wUArF+/HvXq1RNNB9S0cOFCUajYoUMHTJo0STRdMC0tDVu3bsXKlSshl8uRlJSEESNG4OjRo0ZNZ9W0bt26Ah+1UJBtxsTE4JtvvkFYWFiBtJdNrVZj+vTpWiMDjWGO18X69etFoWL79u0xadIklC9fXrjuwYMHmDFjBh48eAAA2L17N1q1aoU2bdpotXf06FFRqFitWjXMnj0b77//vnCdSqXCyZMnMW/ePMTFxUGtVmPWrFmoXr263ul5wcHBwuU2bdpg4cKFeh8Tkbnxs8aboaDfm01hjvP5tGnThFDRyckJ06ZNw+effy5MT46Li8OCBQtw9OhRAMBff/2F9957DwMGDNDZ3u+//y4KFRs3bowZM2aIfkyUy+U4cOAAFi1ahJSUFMjlcnz33Xc4evSo3iBQ8326V69eGDVqlMG/FRHljsVbiKhQWbRoEUJCQhASEmKz6ysaY+vWrcLjeFvWmCosEhISsHr1amG7T58+mDNnjmj6kbOzM4YPHy4aNXXixAncuHEjX8eWy+Wiaa+tW7fG8uXLhVARAKRSKXr37o1Vq1YJH9bv37+PP//8U2ebjx49wq5du4TtCRMm4NtvvxUFcR4eHpgxY4ZoSt327dvx9OlTnW3u3btXCFocHBywdu1adOjQQRRsli9fHr///rtoHaOlS5dCqVRqtff48WPs3btX2O7VqxdWrFihtQZZkSJF8M0332DFihXCddHR0cKXLmPZ+hTowMBAdOvWDaGhoQXSnqYdO3bg8uXLJt/PHK+Lp0+fCmtRAllfbFesWCEKFQGgRo0a2Lx5M0qVKiVct379eq32VCoVfv75Z2G7evXq2LlzpyhUBAA7Ozu0a9cOO3fuRLFixQBkvfY075uT5hfRvIyQJbKG06dPC581uL6ibTHHe7OxzHE+v3DhAs6ePStsL1q0CH369BGteViiRAn88ssv6Nq1q3Ddr7/+KoyM1JSYmCh6T23RogU2btyodf6VSqXo1asX/vjjDzg5OQEAkpKSRI8vJ80fikxd65GIdGOwSEREpGHfvn3CWmqenp6YPHmy3n179OghWptt06ZN+Tr2iRMn8OzZMwBZgd3s2bP1riXXvHlz9O7dO9djb926VQjzKlWqhMGDB+s9/qhRo+Dr6wsgK2jZtm2bzv00g7wePXqgfv36OveTSqX46aefIJVKAWStyXju3Dmt/Y4cOSL00dPTM9fRGB999BHatWsnbP/1118G99ckl8sxZcoUYcRPQaxXVVBtJiYmYtGiRRg6dKhoinlBiYqKEsIzU6ftm+N1sXHjRmFqe7Vq1TBz5ky9o249PDwwfPhwYfvmzZt4/fq1aJ8rV64IhSoAYO7cuXBxcdHbz/Lly4u+sAcFBen9u2sGi/wiSkT5ZY73ZmOZ43yuOVK8efPm6Nixo94258yZg3feeQdA1nqh2UUZNZ04cULoo1QqxQ8//GCwMEudOnXQt29fYfuff/7R+UNmRkYGHj9+LGzzhyKigsFgkYiISMPff/8tXP7kk08MBhMAROHe+fPn8zTFNFv29CAAaNq0KcqUKWP0se/fv4+oqCjR7SqVCseOHRO2u3fvbrDohZ2dHXr16iVsa943W3BwsGh6bs+ePQ320dvbG61btxa2//nnH619sqdLA1nTTHP7mwMQTakODg4WAqrcrF27Vhit0LVrV1SvXt2o+5m7zb179+Ljjz/Gpk2boFKpAGSN7jC0LqUp1Go1ZsyYITw/p06datL9C/p1IZfLceTIEWF7xowZsLe3N9hmhw4d0K9fP4waNQrTp0/X+tKo+TwqW7Ys3nvvPYPtAeLnkUqlEqZba0pISMCLFy+EbQaLRJQf5nhvNkVBn89fv36NixcvCts9evQw2J6Liws6d+4sbOf2uaBevXooXbq0wTYB8flcJpNpfSYCgJCQEOG9w83NrUCqsxMR11gkIgtLTk7Gjh07cOzYMURGRkKhUKBkyZJo2LAhOnXqhA8++MDg/adOnSr8stmtWzet6dD79+8XRjt9/fXXmDJlClQqFf755x/89ddfePjwIeLj41GkSBGUK1cOrVq1whdffIESJUrk63Hp+sXzwIEDol9hQ0JChMv9+/fHlStXAGT9Ep1zOrS/v7+wjs3cuXPRp08fpKam4siRIzhy5AgiIiKQmJiI4sWLo1q1aujduzc+/PBDURuPHz/Grl27EBgYKIyCK1euHFq2bImvvvrK6MeckJCA/fv348KFC3j8+DFevXoFFxcXlCxZEo0bN0bnzp1zrcBXWMhkMtHIpObNm+d6nw8++AD29vZQKpVIT0/HxYsX0bZtW5OPrVarRVNUmzVrlut9/Pz8UKJECcTFxQHImvY2cOBA4fbg4GDRCCxjHo/mcZ89e4bg4GBRkKL5Yb9o0aKoXbu2UW1mr5N09uxZqNVq0ci0ly9fCpcrV66ca3tA1igLTTKZLNeF1R8+fIh169YByArtpk+fnu+1lQqqzW3btgkFRQCgbdu2mDt3LsLDw/PVv2yaU6CbN2+OHj16YPr06Ubd1xyvi+vXrwtFad599100atQo1zaLFSuGWbNm6b09Li4OdnZ2UKlUqFKlSq7tAdrPI10jFjUfe6lSpbTuYwlhYWE4cOAArl69ioiICCQnJ8PNzQ1eXl6oW7cuWrZsifbt2xsMZ58+fSr64q3rPTQ/Ll26hICAANy4cQMvXryAq6srfHx80LFjR/Tq1Quurq4mt1nQ7z8qlQpnzpxBUFAQbt68ibi4OMhkMkilUnh4eMDHxwcNGzZEt27dtKbk65Oamor9+/fj+PHjCAkJQUpKCooXL45atWqhV69eaNmypcmPW5ec/37ZVq1aJXxeKFu2LE6fPi3c1qZNG2EU78KFC7WmQ2t+plq/fj1atmwJmUyG/fv3459//kFUVBRSU1Ph7e2N2rVro2/fvlpLC9y7dw+7d+/GlStX8Pz5czg4OODdd99F27Zt0a9fP6NHcEdHR+PAgQMIDAzE06dPIZPJ4ObmhjJlyqBp06bo1q2b0e8Pts4c783GMsf5/MqVK0JYJ5FIjPr80qxZM2H0440bN/D69WsULVpUuD0+Ph4SiQRqtTpf5/N3331XdJ3mNGg/Pz+9o+TN6c6dOzh8+DCuX7+Op0+fIi0tDe7u7ihevDjq16+PNm3aaH2mJ7J1DBaJyGLu3LmDMWPGCCFXtoiICERERGDv3r348MMPsWjRInh5eRXIMZ8+fYqJEydqVZrNyMiATCbDvXv3sHHjRsyZM0e05outuXPnDiZOnChUR80WHR2N6OhonDp1Cr169cLcuXNhb2+PzZs3Y8mSJVoLvIeGhiI0NBT79+/HunXrcv1C9scff2DlypXCdJRsmZmZkMlkCA0NxdatW9GhQwf88MMP+a6KrBkM54euL1DGCAkJgVqtFrZr1qyZ631cXFzg4+MjTK25e/dunoLF6OhoUfVfY6vO+vn5CcHi3bt3RbdpfoCWSqVGVT6sWLEinJ2dhUqUd+/eFX150WyzevXqRn0o17z/69evERkZiQoVKgjXHTt2DBkZGYiNjTU6fMi5xpTmFxJdclZsnjt3bq73yY052nz33XcxceJEfPzxxwBQIMGi5hRoNzc3zJ8/36T7m+N1oblOV+PGjU3qjz4//vgjvv/+e8TFxUGhUBh1n5zPI13nMGtOg1apVFiyZAn++OMPYSRrNplMBplMhvDwcBw4cADvvvsufvrpJ6NGahakhIQETJkyBefPn9fZvzt37mDbtm1Yvny5Se0W9PtPYGAg5s+fL5oGmU0ulyM1NRXPnz/HlStXsG7dOgwZMgRjx441eI67ePEiJk+eLJyDs8XExCAmJgYnTpxAhw4d8N1335nwyK3n3LlzmD59OuLj40XXP3nyBE+ePMGff/6J0aNHY9SoUVAqlVixYgXWr1+v9dy8d+8e7t27h4CAAGzatMlgSKtUKrF8+XL88ccfWiPPX716hVevXuH+/fvYuHEjevXqhenTp+e7KrLmj7f5sWXLljydv8zx3mwsc5zPNR9PuXLljHof1Oy7SqXC/fv3RZWcN23ahMzMTLx48cLgFGhNtn4+z8jIwIwZM0Sj9bMlJCQgISEBoaGh2LVrF2rWrIlly5ZpBaNEtorBIhFZRHR0NAYPHiwEJ8WKFUPlypWRlpaGkJAQ4UvguXPn0L9/f2zdujXf4WJCQgIGDRokVKjz8PBAlSpVoFarERYWJvQlNTUV06ZNg7e3t6jQhCmyf/ENDQ0VpsyVLFlSWBMnP0JCQvDzzz8Li1uXLl0a5cuXx+vXrxEaGip8QNyzZw+qVq0KuVyOxYsXA8iqyletWjXY29sjNDRUaCMhIQGjR4/G33//rXMKTPa0yYCAANH1FSpUQKlSpZCamorQ0FBkZGQAyJrG8t9//2Hz5s35Hv1pTREREcJlR0dHo6beAFkfpLM/cGc/3/JzbADw8fEx+tjZch5bs82yZcsa9eFcIpGgTJkyQqCVM8zWbFMzHDS2j9lt5ryvk5OT0Y8ZEE8FK1u2rLBouz6//vqr8OWnU6dOeQp/zdlmjRo1MGjQIHTq1MnoL1HGyFkFevLkyUY/r7OZ43WhOYJb80v1xYsXcfjwYdy8eROxsbFwcnJC+fLl0bp1a/Tp0yfX9wUHBweTHl/OKYWVKlXS2idn4ZYXL15g//79OH/+PMLCwpCSkgJPT0/4+vqiTZs26NGjB4oUKWJ0HwxZsGCBqEq8s7MzKleuDA8PD8hkMkRGRgrBW0REBAYNGiS8F1hCQkICvvzyS1EALpVKUa1aNTg7OyMsLAwJCQl4+vQphgwZAjc3t1zbNMf7z9GjRzFp0iRR4FyyZEn4+PhAKpXi9evXePTokRBsKRQKrF27Fu7u7hgyZIjONk+ePIkxY8aI2nznnXdQqVIloY9yuVwY+Zdfzs7OwmeNu3fvCmuM+vj4COdOzUJfprp48SK2bt0qPB4fHx+UKlUK8fHxon9ff39/VK9eHUFBQdi+fTuArB8sfH19oVKpEBwcLIRfUVFRGDNmDAICAnQGtJmZmRg5ciQuXLggXCeRSFC5cmUUL14ciYmJCA0NhUKhgFKpxM6dOxEaGorff//dqCUzbJU53pvzcuyCOp/n5XNBiRIlREHpkydPRMFidv9MmaqseT53dnZG2bJltfbJeT6PjIxEQEAAgoKCEBERgfT0dLzzzjuoUaMG2rVrh88++6zA3pPHjh0rGlHs5uaGSpUqwdXVFS9fvkRkZKTw97h//z769euHQ4cOCetREtkyBotEZBHZU3GyK9x99tlnwpSthIQELFmyBPv37weQVSlv7ty5WLlyZb6OefDgQQBZH/SnTZuGjh07CsfMyMjA5s2b8csvv0ClUkGlUmHZsmWiyrSm2LBhAwDxtKJmzZoVyDSznTt3AsgayTRv3jzRr+PBwcEYMmSIMFril19+QVpaGiQSCYYPH45vvvlG+PCdmpqKn376SahC+Pz5cxw5ckS0dk629evXi77UffTRR5g4caLoS3daWhp27dqF5cuXIz09HWFhYRg/fjz++OOPXNdK08fb29uoaTnGtJMXmqNOTAlINffNOXIlL8e2s7Mz+guioWNrbuc2TVhT8eLFhS8vOdvUXGvO2L+Rl5eXMI1KV5umunTpkrCUAJA13c+Q+/fv47fffgOQdT6YMWNGvo5vjjYXLlyY7z7psm3bNuFv1aRJE52v99yY43WhGbR4e3sjNjYWs2bN0iruk5aWBplMhrt37+KPP/7AnDlz0KlTJ1Mfgk4JCQmiIgi+vr46v8Rqjsa5evUqNm/eLHz5yxYXF4e4uDgEBQVh7dq1+PHHH/M9lS17RF62b7/9Ft98842oamxGRgZ27NiBJUuWQKlUIjU1FcuWLcOaNWvydWxjzZo1SxQ69e3bF2PHjhVGLCmVShw7dgzz5s3Dq1evRNP99Sno95/4+HjMmTNHCMx8fX3x448/ao3YT0tLw549e7B06VIhtPztt98wcOBAoQBVtmfPnmHKlClCm56enpgzZw46dOggrJUnk8mwcuVKbN++Hffv38/1ceemePHiwmcNzeVUOnfurLWcSl5kT0t97733MHv2bNFItkuXLmHkyJGiHyiSk5Ph6OiISZMmoU+fPsLf6NWrV5g5cyZOnjwJIOtcGRQUpPO9ff78+aJQ8fPPP8eoUaNEFeBfv36NDRs2CCMjr1+/jtmzZxus4p4bHx+fAvmskdcR6uZ4b87LsQvqfJ6XzwVA1ntn9veD/H4uCAsLw59//ilsN2nSRHSuBLJ+tND8UevPP//E999/r7Ve7/Pnz/H8+XOcPn0aa9euxZIlS/K95M/Zs2eFUNHOzg6zZ89Gz549ReeWpKQkrFu3DuvXrweQ9TdZs2YNZs6cma9jE1kCg0UishgXFxds2bJFq7CBl5cXFi5cCFdXV+FL1LFjx3D9+nWttXxMVbRoUezatUtrJJSTkxO++eYbJCUlCeHAnTt3EBsbm+dQypxKly6NXbt2oVixYqLrq1WrhsmTJ2PSpEkAICrMMGjQING+Li4umDt3Lm7duiV8Ub548aJW0BAVFYUVK1YI2/369dO5rlmRIkUwaNAg1KpVC4MGDYJcLseVK1ewf/9+fP7553l6nM2aNTNqbR5z0fzSa0plX81RODkr1RpL836urq4GF3I39th5fTya++ZsU3Pb2Dbt7Ozg4uKCpKQkABBN+TaVTCYTfciWSqWidSVzyszMxNSpU4UAYPbs2fkeDW2ONs0hMjISS5cuBZD1+jd1CnQ2c7wuNKdapqamom/fvsI0tiJFisDX1xeOjo4IDw8X1uBMTEzExIkTIZPJ0K9fv7w8FIFarcasWbNEj01XVdacFUSzp3Db29ujQoUKKFGiBBITE/Ho0SNhSnxcXBxGjBiBefPm5VrcyJDsdUkBoHXr1jqn0zo5OQnn3+x/6wsXLiA1NVVrRFe5cuVEX6rz69q1a0J4BADDhw/HuHHjRPvY29ujY8eOqFq1Knr37q01rTknc7z/7Ny5UzjnuLu7Y8OGDTrDnCJFimDgwIGws7MTXiuvX7/GnTt3tD6LrFq1SpgB4OzsjM2bN2tNq/T09BTODf7+/gYft62oWbMmNm/erBXINGnSBN98840wnT37sS9duhTt2rUT7VusWDH8/PPPaNu2rfA6v3jxolaQd+3aNezevVvYnjx5ss7XYNGiRTF+/Hj4+flh/PjxAIAjR46gR48eeZ5l0qVLF3Tp0iVP9y0I5nhvNvexDZ3P8/K5IOe++flckP2erLn8j66Rxk+ePBEVnskO56VSKSpWrIhixYrh1atXePTokTC9PyIiAv3794e/v3++1kvVHE355Zdfok+fPlr7uLu7Y+LEiUhMTBReG8eOHWOwSIUCq0ITkcWMGTPGYLXUyZMni6YtZI/Uy4+vvvrK4PTKnG/sBfmlqyB99913WqFito8++kg0xahs2bJ6gxaJRIJWrVoJ27qm7W7evFkITMqXL59r9diGDRtiwIABwnb2qIfCSHN9p5xfrAzRXO/J2OrEOWWPkCnIY5vj8RREPzXbMEVmZia+++470TpK/fv3N7h+16+//orQ0FAAQPv27dGhQ4c8HdvcbRa07CnQaWlpAICJEyfmufqlOZ5Hml8if/zxRzx9+hROTk6YNm0aLl++jD179mDbtm0IDAzE6tWrhVEwarUaCxcuxLVr1/L0WLL98ssvolCsTp06oiql2TQriAJZ59CBAwfi9OnT+Pvvv7FlyxYcPHgQ//77L8aOHSuMPlEqlZg7d26++qk5Cii3f7uePXuifv36+OyzzzB06NB8Vac3VvasACBrRL2hUXNVq1bFmDFjcm3THO8/mgWnPv/881xHiOUMymJjY0XbmZmZoqq6Q4cONbhW28iRI41ax84WTJkyRe9rPOdSD++//77W3ypbkSJFRKGfrs8a2aMvs9vSFSpq+vTTT0Xn2o0bNxrc35ZZ87PGm/a5IPu97s6dO8J17du3R4MGDbT21ZwGDWQFimPGjMGFCxdw5MgRbNmyBUeOHEFgYCC++uor4bN1eno6xo0bp7VkjSk0z+e6pmhr+vLLL9GwYUN0794dvXv31hohT2SLGCwSkUW4uLjkOorN0dFRVHDj/PnzogWm80Lfh95sZcqUEY3qyB5RZUskEonBx+Hq6ioaLdWyZUuDo900R2TqerwnTpwQLnfq1ElrCpgumoVvwsLCCmQ9KWvQ/LXb2BGDAETr7xhbNMISx85rm5pTCXO2qbltypR3Q20aIzMzE6NGjRJVzq5bt64wgkWX+/fvC1OKsqcq5pc52jSHrVu34urVqwCywpe+ffvmuS1zPDc1v5gmJiZCKpVi/fr1+Oqrr0TrZdrZ2aFt27bYtWuXUPFToVDka5mJX3/9VajkDWSNiPrll190PjbNab52dnZYvnw5pk+fLpqqCWSN5hkxYgTWr18vPG65XI4FCxbk+X1M8xgHDhzA7du39e7r5eWFnTt34ueff8aYMWPytdaesTSnrXfv3j3Xdch69OiRa+hgjvef7du34/Lly9i7d6/WSH5dck7lzPml/sqVK0JwK5FIcv1sY2dnp3N0kq3x8vIyWIgk5w84rVu3Ntieoc8a6enpoinQ3bp1M6qPmv/Wly5dynMYZW3meG8297ENnc81ty35eNRqNWbPni0qhlK+fHm9o/M1R587OTlhy5YtGDlypNYP99lLKGkuUZKcnJyv6fea5/PNmzfrLCKVzc/PD9u2bcPChQsxatQok8JaImthsEhEFlGvXj2jqr1q/sKYvZh6XkmlUp0L8eekWTUuZxVlW1CmTJlcF7zX/NBRsWJFg/tqfmnPWckxOjoaz58/F7YrV65sVB+rVq0q6oNmxdfCRPNDbs6/jSGaH4iN+SJsqWPntU3NEVqG2sy5LpGxbZpa0TM5ORnffPONKMgoU6YM/P399f69c05XnjlzZr4XQDdHm+YQGRmJZcuWAcg6N/z4449GVe/WxxzPzZz9GTJkiMFQo1y5cpg8ebKwfffuXdy6dcvovmRbsmSJaKqtVCrFihUr9I4I7Nq1K27fvo0///wTu3fvznV0apMmTUQjr+7fv4/r16+b3E8ga9RN9t8pOTkZvXv3xuDBg7FlyxaEhYXlqc2C8uTJE9EIHGOWLXFzczNY7d6c7z+enp6oU6eOwdGKcrkcd+/eFY2kA7TPc9mBPZD1vDRm+ZQPPvgg132srUqVKgZvzxlu5Oezxp07d0Sft4z9t9Z8/mT/exVG5nhvNvexLf1ZIzdyuRwTJ07Enj17hOs8PDywevVqvRXiR44cievXr+PQoUPYs2cP6tevb/AY3bp1E63pe+LECTx79sykfmZr3769cDkmJgafffYZvv32W+zZs0ermjVRYcQ1FonIIowJ+ADtD6oxMTF5rm7p4eFh1C+nef1AZCmmBhe5hZCGAoac05UmTpyIiRMnmnR8QHvqWGGRsyiCsTT3za06sT6aVWRNObbmyK+cxzbH43F2dhbW18prm6YEiy9evMDw4cNFxQ9KlSqFP/74w+AX+tWrVwvTldu0aYPPPvvM6GNass2CplarMW3aNGEK9Lhx44yu0qmPOZ5HLi4uwnRoiURi1JqJn332GebPny+MFgsKCsJ7771nVF8yMzMxe/ZsobgW8P+hYm7rtDk7O5v0PtSvXz/RiMjAwECd0/JyU7lyZQwbNgxr164FkPVvGxgYiMDAQABZI8KaNm2KFi1aoEWLFnq/TJuDZqgIGF8JtnLlynqnh1vq/ScxMREPHjxAZGQkIiMjERUVhcePHyM8PNyoHxc1H7uxj7tcuXKiCri2yJKfNXJWNM7riM6cz8PCwpqfNcz1uaCg2zQkOTkZY8aMEc6FQNb6hL///jv8/PwM3tfNzc3g0gU59e/fX1QUJigoKE/riLds2RKdOnUS2pLL5Th58qSwJIePj49wPm/WrJnoMyFRYcBgkYgswtgvPDkXfc7r4tSAaeu82DJTPzzmZ2RSfv7eBdFOUFBQgayb9PXXX+epCEz2VEvg/xenN4ZmQQLNNkyhWV0yJSUFarXaqH9LzX7mPHZeH4+hNosWLSrcbmybKpVKtOabsX+j4OBgDBs2TDSKqXz58ti0aZPBdRXv3buH33//Xejv999/b9TxDDFHm+awZcsWIbipV6+eaP25vDLH68LV1VUIFitUqGDU1F1HR0fUrFlTGDGmOU3ZEJlMhtGjR4sqiRcpUgQrVqzId+VmXUqWLIny5csLU3JzhiimGDt2LEqWLInly5drFTeIjY3FgQMHcODAAUilUjRv3hxDhw7Nd9EzY2QX1MmWW8iUzVAVXXO//5w5cwabNm3C1atXDf6I6ODgYHBaZkJCgnDZ2MctkUjg7u5u08GiJT9r5KdQhyZjqozrcujQIRw+fDjfx580aZJJIVU2c7w3m/vYhs7nmq9rcz+e6OhoDB8+XPiRD8gqGLR+/XrUrl3b6GMbq1atWpBKpcKPDvk5ny9atAgVK1bE+vXrtc4F2T907Nq1C0WKFEGbNm0wYsSIPA+uILI0BotEZFNyrkX1poSD+ZGfD++myvllqmHDhnn6VdxQ6GNIbGys6BfovPr000/zdD/NEXA5vzgbEhcXJ1zO69pmmsdWKpV49eqVUZWGDR1bc9qfKY9Hs2JvzvXGvL29ER0dbVKbCQkJoi/yOdvU5fTp05gwYYIokKxevTrWr19v8P6ZmZmYNm2a8FyeNm1arsUacmOONs3hyZMn+OWXXwBkhQQLFiwwab0rfczxuihWrBhiYmKEy8bSfE0YEyo8fvwYw4cPFy267+npiTVr1uQ6DS4/ihcvLgSL+QnMJBIJvvzyS3Tr1g0nTpzAyZMnERQUpFVdWS6X48yZMzhz5ozO6swFLa/LhhgarWyu9x+5XI4ZM2bg0KFDOvd3cXFB5cqVUbNmTbz//vto0aKFwanL5njstsCanzVyVow2Vl7Pw5GRkQXyWeObb77J0/3M8d5sLHOcz/Papua+xjye27dvY+TIkaK/Q9myZfH7778bPTPKVA4ODvD09BQef37O51KpFKNGjUL//v3x999/49SpU7h8+bLWKM+0tDT89ddf+OeffzBr1qxCsUYrEYNFIrKInF+C9Mn5K7Ylp3aR9t971qxZuU4reZNoTmtLTU1FfHy8UUGhZrGA3NadMubY2W0aEyxqrs2T89jvvvuuaD9jRkGq1WohOMzZRvZ29hpmuip96pKzmELONnPavn075s+fLwojmzdvjhUrVuQ6Quj48ePCSAZ7e3v8+eefomlMOWlWgj98+LBo3b7s0SjmaNMcNmzYIEyBdnV1xY8//mj0fZcsWSIadaK5zpw5XhdVqlTBgwcPAJhWNMuU4kE3btzAiBEjRAFkuXLlsH79erN9Cc2m+UXRmPWFc+Pi4oIuXbqgS5cuUCgUuHPnDi5fvoyLFy/ixo0bor/L2rVrUa1aNXzyySf5Pq4+Od8rEhMTjZq6Z2g0k7nef5YtWyYKFcuWLYsuXbrgvffeg6+vL0qVKiU6L+ZWREJzZoUpz11TRnK96XL+Wxtzbn+TmOO92VjmOJ9r9sXYzwUvXrwQjdrL7fGcPHkS48ePF51ba9asiXXr1uU5ZDWW5pIzBXE+L1q0KL744gt88cUXyMjIwI0bN4Tz+d27d4XPPkqlEt9//z1q1KiBunXr5vu4RObEYJGILMLYhYlzFmvJ79pgZJqca9bFxMRYNFjs3r27qDK4pdWoUQMSiUQYOfvw4UO0aNHC4H1SUlJEH6TzGhqVLVsWnp6eQgjy8OFDoz5IBgcH6z12zZo1hctpaWl4/PhxroFKeHi46IN79erVtdrcv3+/1rENefjwoXC5aNGiKFu2rN5916xZg+XLl4uu+/zzzzF37txcq84C4i8ASqXSpFEp2VORsmWPRjFHm+ag2c+EhAST+mmoCII5Xhea55Xo6GhkZmYaNaJLc1p8zsrMmoKCgjBy5EjRF9c6depgzZo1Ro8qVqvVWLFiBV6+fImXL1+iXbt2oqq0+qhUKlEAULp0aaOOZywHBwfUr18f9evXF4LTbdu2YdWqVcK/0ebNm80aLPr4+Ii2w8LCjCpiYmgaoTnef168eIEtW7YI2x9++CFWrVpl8LmW24gkzc8lxhaYk8lkBTbV+02g69/aklM+R48ejdGjR1vseDmZ473ZWOY4n2s+nidPniAtLS3XHxo0PxdIJBKDr/WDBw9i+vTpomIvrVu3xtKlS40O+pKSkrB+/XrhfN6vXz+jRsrKZDLRoIeCPp87OTmhSZMmaNKkCcaOHYvY2FisXbsWO3bsAJD1PrRlyxYsXbq0QI9LVNBYFZqILOL27dta05x1uXjxonC5dOnSBr84UsGrWrWqaDTGv//+a9T9EhISMHXqVKxcuRL79u0TfakuTNzc3FCjRg1hW/P5qM+///4r/Lpsb2+PRo0a5fn4mlVxjTl2cHCwaEpQzul7VatWFY16vHTpUq5tBgUFCZeLFSum9WFf8/HFxcXhv//+y7VNzcdiqPLvb7/9phUqjhs3DvPnzzcqVCTzMMfromnTpsLltLQ00fNOn6SkJNG6WvrW07py5QpGjBghChXbtm2LrVu3mrRUgUQiweHDh7Fnzx6cOnUKR48eNep+d+7cEYVIeSnckp6ejvPnz2Pz5s2YO3eu6HWek6enJ0aNGiUqKGBs4JVX7777rsnnFoVCgdu3b+u93RzvP4GBgaIRiFOnTs01wNYMPADtom716tUTLsfGxhq11mdeK4O/qd577z3RCD1j/60fPXqE6dOnY/Xq1Th48KBovcvCxBzvzcYyx/n8/fffF96jlUolLl++nGubmsetUaOG3vVX//zzT0ybNk0UKvbp0werV682afSgs7MzNm7ciH379uHMmTM4deqUUfcLCgoSfX/Jy/k8MTERZ86cwYYNGzB79myDyyl4e3tjzpw5onXCzX0+JyoIDBaJyCLi4uJw5swZg/skJiaKKna2bdvW3N0qcJZco8gc7Ozs0LJlS2H7wIEDRi2yvnXrVhw4cACrV6/GjBkz8OrVK3N206zat28vXD58+LAwtVSfnTt3CpebNm2ar+n77dq1Ey6fOXMm1+qmmseuXLmy1hcNiUSCjz/+WNjes2ePwaIFKpUKe/bsEbbbt2+v9Zz29fUVTYPatWuXwT7GxMTg7Nmzwra+UVQnT54U/SJvb2+PhQsXYvjw4Qbbz6l79+4ICQkx+j/NL0ijRo0S3ZYdgpqjTXNYtGiRSf3UtGXLFr23AQX/uqhRo4ZohNL69etz/fFp165dwhcyqVSKVq1aae0THR2Nb7/9VjSyp3fv3vD398/Tmr2a/5ZBQUFG/WiSXcUZyAr9chsNpItcLsewYcOwYMEC7Ny5E6dPn871PlWqVBEuS6VSk49pipznlv379+c61ff48eMGgyBzvP9orgsHGLcm39atW0XbOadGN2nSRPR81hwRqU9u50lTFfbPGl5eXqIR+du3bzdq7crffvsNAQEBWLlyJaZPn27w/cyWmeO92RQFfT738PAQ/bCZ2/M9JSVFVDynQ4cOOve7e/cupk6dKvrbjBkzBnPnzs11KYycpFKp6EeBo0eP5nrOUigUQtE2IOscqxnKGismJgbDhw/H4sWLsXv3blEhMX0seT4nKggMFonIYgyNulAqlZg1a5bwhcDe3r5AqplamuZC8zkXYy4svv76a+GyTCbD5MmTRVMsc7p7965oPbY6deqgVq1aZu2jOfXo0UOYwhMfH4958+bp3Xfv3r24cOGCsJ3f52y7du2EL76ZmZmYOnWq3vW+Lly4gL179wrb/fv317lf3759hS8gwcHBWL16td7jr1ixQhiBaGdnp7fNL7/8Uri8a9cuvSMe5HI5pkyZInxhLFOmjM4fDGJjYzFjxgxhWyKR4KeffrLqtHgSM8frYuDAgcLl69ev47ffftPbZs7nbseOHbXW1VIqlZg4caIojOrduzfmzZuX5yI2PXv2FC4rFArMnj3b4Bp8GzduFP2I9tVXXxm19mBO7u7uopEx69atMxjKqdVqHD9+XNjOy5dfUw0aNEgY/RcfH4/Zs2frDUdiY2OxYMGCXNss6PefnJVmNZ+Xuqxbt070QwigXazF2dlZ9NzdtWuXwR9OAwICcP78eYPHNdWb9lnj8ePH+OGHHwz+uHD69GlRGNWuXbs8F0uzBeZ4bzaWOc7nmp8Lzpw5IyyZosvcuXOF85mLi4voPJstJSUFEyZMEL3+xo8fj5EjR+ptNzeax5HJZLmekxYtWiSsBQwAw4YNy1Og6+vrK1oC5pdffjH4us3IyBCdhyxxPifKLwaLRGQxsbGx6NWrl9aUj6ioKAwfPhz//POPcN3IkSO11nAqDDS/xNy6datQrqlUq1Yt9O3bV9g+c+YM+vfvrzWFLTMzE9u3b8egQYOED0j29vaYNm2aRftb0IoXL44hQ4YI2/v378eECRNE1QvT09Oxdu1azJkzR7iuZcuWotE2Ofn5+Qn/6ftS4OjoiPHjxwvbFy9exNChQ0WLpisUCuzZswejR48Wpgb5+vqKpkFqqlatGrp16yZsr1q1CgsWLBAVHUhKSsKPP/4oGmnVu3dv0S/mmnr37i2MWlQoFPj222+xd+9eUeASFRWFIUOGiKZETZo0Sec0xOXLl4sKbAwbNgyfffaZzmOTdZjjddGzZ0/RKJdly5Zh9uzZopG6KpUKR48exYABA4RRNe7u7jqrHh85ckQoLARkVRXW7EteNGjQQDTKNjAwEIMHD0ZYWJhov7i4OMyePRs//fSTcF3NmjVFfzNTaQYvT58+xZAhQ3Dnzh2t/WJjYzFu3Dhcu3ZNuE4z+NJsQ/M8NHXq1Dz3Dcgq4KD5Jf+vv/7CiBEjtNZUDgwMRJ8+fbRGD+pS0O8/TZs2FQUBc+fO1Tn68/bt2xg1ahSWLVumdZtmZfps33zzjTDiVq1WY/To0di4caMoLEhLS8OqVaswc+bMXB+3qTQ/a1y6dMlg+Gqr2rVrJxp1vHv3bgwbNkxr2mdycjLWrFmD7777TggeXVxcRO+VhZE53puNfY2b43zepk0b0Yj8WbNmYd26daLXRHx8PMaNGycKiEeOHKmzUN2mTZtEa7J26tQJw4YN03lsY3322Wd47733hO2AgACMHTsWMTExov0iIyMxatQo0ejlNm3aoHPnznk6rkQiweDBg4Xtu3fvYsSIEVrvIwAQERGBoUOHCo/dzs6uUA60oLcPFywiIoto2bIlrl69iujoaHz11VcoU6YMypUrh9evXyM0NFT0K3WHDh3y9YukNfn6+gqXnz17ho4dO6Jq1apISkrCxo0b9a4hY2umTZuGqKgo4VfqW7duoVevXihVqhR8fHyQnJyMiIgI0RcuiUSCmTNnon79+tbqdoEZPnw47t69K/xi/Oeff+LYsWPw8/ODo6Mj/vvvP9GH/3LlyokChfzo1q0bbt68id27dwPIChfbtWsHPz8/uLm5ISwsTDRyydPTEytWrDC4BuGMGTMQGhqKe/fuAcgq7LBnzx5h6nRISIhoKlTt2rUNhg6Ojo5YuXIl+vfvD5lMhtTUVMycORPLli1D5cqVhbXwNEcvffnll+jYsaNWWzExMaIvGUDW803zQ7gxfvrpp0I9eqUwKOjXhUQiwS+//ILBgwcLo0J2796NgIAAVKxYEcWKFUN4eLhopLtUKsXSpUt1LqC/bt060XZycrLJxXK+/vpr0dpWADB//nxERUUJr59///0XHTt2RKVKlVCyZEnIZDKt53vVqlWxfv36fE1ha926Nbp37y6M/Ll//z4+//xzeHt7o0KFCrC3t0dcXBzCw8NFx+7Xr5/BHzkK0tChQ/Hw4UMcO3YMAHD27FmcO3cOvr6+KFq0KKKiooQv7UWKFEGDBg1yHTVYkO8/5cuXR69evYTzqUwmw4gRI1CiRAmUK1cOKpUKz549E4WeDg4OKFasmHCdrkDU0dFReO7GxsZCLpfjp59+wurVq+Hr6wu1Wo3g4GDhvNqoUSOEhoaKfkDJD83PGvfu3UOHDh3g4+ODjIwM0bRVWyaRSLB48WIMGjQI9+/fBwCcO3cO586dg4+PD0qVKgWZTIbIyEjReqlSqRQ///xzofzxOaeCfm82hTk+5yxZsgRffvkloqKioFAosGzZMqxfvx5Vq1ZFZmYmQkJCRCMQW7durfO9Pi0tTWtJgujoaJM/F0yaNElUaMbOzg4rV65E3759hR9A/v77bxw7dgxVq1YVXvc5A79GjRrp/NHBFH369MHJkyeFGR5BQUHo2LEjypcvjzJlygDIKk6Ws8DVpEmT9AbJRLaEwSIRWUSNGjUwYMAATJw4ETKZDM+ePcOzZ89E+0ilUnz99dcYO3ZsnqetWdvHH3+MGjVqCF+S4+PjhS/FwcHBZl1frSA5Ojpi3bp1WLlyJTZt2iT84vz8+XNRVdZsJUqUwJw5c0RrBhVmDg4O8Pf3x/fff4+AgACo1WrI5XLhw7+mevXqYcWKFTp/cc+r77//HsWKFcOGDRsgl8uhUqm0CgoAWesqrlixItdqkm5ubvjjjz8wefJkYbROWloabt26pbVv69atsWTJklzXo/P19cWWLVswYcIEYYpWQkKC1nRNe3t7DB06FGPHjtXZzsmTJ7Wmlhq7kL8mzS+eZB7meF14eXlhy5Yt+PHHH3Hw4EGo1WooFAqdRYHKlCmDxYsXo2HDhlq3hYSEaBXR0PWayc2nn36qdZ2bmxu2bNmC+fPn48CBA8IPYeHh4ToLd3Tu3BnTp09HsWLFTD5+TvPnz0fRokWxZcsWYYRybGyszvVXXVxcMHz4cLNWHs/JwcEBK1aswM8//4yNGzdCpVJBrVZrrdNZtGhR/Pzzz7hy5UquwWJBv//MnDkTSUlJouI7cXFxOgPDypUrY/78+Th16pSwtprmSFBNVatWxZ49ezBy5EghGEtOThaNmgWyClusWLGiQEdh9+rVC9u3bxdC2+joaGH9z6dPn6JcuXIFdixzKlq0KHbs2IEFCxZg3759wnM8MjJSVIU4W4UKFbBgwYI8FdCwReZ4bzaWOc7n3t7e2Lp1K8aPHy+8DpKSkrReE0DWiPU5c+bo/Lx/6dIlrRD+5s2bJjy6LLrOhd7e3ti7dy+mT58uLGGgUql0ri1sb2+Pfv36Ydy4cXla0kKTnZ0d1qxZg1mzZol+TI2KihLNSslWrFgxTJgwQe9sFCJbw2CRiCymRYsWOHLkCLZt24bTp08jOjoaEokEZcqUQYsWLdCrVy9RUYjCSCqVYuvWrVi9ejVOnz6N2NhYKBQKlChRotBNi7a3t8e4cePw5Zdf4uDBg7h48SLCw8OFD3teXl6oXr06WrdujU8//dSk6nyFgaOjI3788Uf07t0bBw4cwL///ovY2FhkZmbCy8sLderUQadOndCuXbsCD8IlEgnGjRuHzp07Y9++fQgMDMTz58+RlpaGokWLonr16ujQoQM6d+6ca4XTbO7u7lizZg0uXbqEw4cP49q1a4iPj4dSqUTx4sVRr149dOvWDc2bNze6n35+fjh48CCOHDmCY8eO4eHDh3j58iWkUinKlSuHxo0b44svvjD4a7sxFVXJdpjjdeHu7o5FixZh4MCBOHz4MC5evIjnz58jOTkZHh4eqFGjBtq1a4euXbuK1pbTZO7nkaurKxYuXIghQ4Zg3759uHLlCp4+fSr00dvbG02aNMGnn35aoGvM2tvbY+rUqejduzcOHTqEa9eu4fHjx0hMTIREIkHx4sXh4+ODVq1aoWPHjkYVJ8lWUAVAJBIJJk2ahC5dumDXrl24dOkSoqOjYW9vj7Jly6J169bo168fvL29jSpaABTs+0/26MIePXrgwIEDuHXrlnDuc3V1RZkyZVCtWjW0atUKbdu2hb29PVQqlRAshoaG4s6dO6hTp45W26VKlcK+ffvwzz//4PDhw7h37x5kMhk8PDxQpUoVdOnSBV27djW50ERuihYtij179mDVqlUIDAwUfsAsWbIk4uPjC02wCGStWTlv3jwMHjwYhw4dwr///ovIyEjIZDI4ODigePHiqFmzJj7++GO0a9fO6Pe8wsIc783GMsf5vHTp0tixYwdOnDiBo0eP4s6dO4iPj4ednR28vb3x/vvvo1evXqIpyTmZ+3zu5eWFtWvX4vbt2zh48CCuX7+OmJgYpKWlwdPTE6VLl0aLFi3QqVOnXH+4NYWzszOWLFmCr776CkeOHMHNmzfx5MkTJCcnw8HBAe+88w6qVKkinM8LyywnIgCQqHMrwUdERERERG+Eo0ePYty4cRgwYICoaBIRERFRXhTOuYZERERERGSy7GVITBndSERERKQPg0UiIiIioreAUqkU1hps0aKFlXtDREREbwIGi0REREREb7ikpCRMnjwZ9+/fR4sWLUTVUomIiIjyisEiEREREdEbTqVS4fLly2jUqBGWLl1q7e4QERHRG4LFW4iIiIiI3gJPnz5F2bJlC6wiNBERERGDRSIiIiIiIiIiIjIZp0ITERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJHKzdAbKc69evi7bt7JgrExERERERERG9jVQqlWj7/fffN7kNBotvsZxPICIiIiIiIiIiImNxyBoRERERERERERGZjCMW32JvylRozZGXb8pjIiLT8DxARDwPEBHPA0TE84BpCmImK4PFt4idnZ3wpLGzs0O9evWs3KP8UygUuH37trBdu3ZtODjwaU30NuF5gIh4HiAingeIiOcB0928eVOUE+UF41siIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjIZg0UiIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjIZg0UiIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjIZg0UiIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjKZg7U7QEREREREZG1qtRoqlcra3aA8UiqVWtsSicRKvSEia3jTzwN2dnY2+XgYLBIRERER0VtHrVYjNTUViYmJSE5OhkKhsHaXKB/UarVoOywszCa/gBOR+bwN5wEHBwe4ubnBw8MDLi4uNvH4GCwSEREREdFbJTMzE5GRkZDL5dbuChUgBwd+vSV6273p5wGFQgGZTAaZTAapVAofHx84OjpatU9cY5GIiIiIiN4aDBXfTBKJBA4ODsJ/tjCKh4gs6207D8jlckRGRiIzM9Oq/Xizo1wiIiIiIqL/UavVWqGiq6urMKXM3t7eir2j/Mie2p7NVqYIEpHlvOnnAaVSKSzhkZKSAuD/w8XKlStb7bEyWCQiIiIiordCamqqKFT09vaGl5eXFXtEBUWtVouCYXt7+zcqUCCi3L3p5wF7e3s4OjrC09MTCQkJiI2NBZAVLqampsLV1dUq/eJUaCIiIiIieiskJiYKl11dXRkqEhFRoeTl5SUKEpOSkqzWFwaLRERERET0VkhOThYue3h4WLEnRERE+aP5PsZgkYiIiIiIyIzUajUUCoWw7eLiYsXeEBER5Y/m+5hCoYBarbZKPxgsEhERERHRG0+lUom2WaiFiIgKs5zvYznf5yyFwSIRERERERERERGZjMEiERERERERERERmYzBIhEREREREREREZmMwSIRERERERERERGZjMEiERERERERERERmYzBIhEREREREREREZmMwSIRERERERERFRi5XG7tLhCRhThYuwNEREREREREpgoPD8fevXtx9epVREVFITk5GS4uLihVqhQaN26MXr16wdfX16i20tLSsHfvXpw4cQKhoaFISUlBsWLFULlyZXTs2BFdu3aFo6NjoW7LElQqFXbv3o2LFy/C39/fqPusWLECv/76K0qWLIkLFy6YuYdEVNAYLBIREREREVGhIZfLsWTJEmzZsgVqtVp0W2JiIhITExEaGopt27ahb9++mDp1qsHwLSQkBN9++y2ioqJE17948QIvXrzApUuXsHnzZixbtgx+fn4G+2arbVlCbGwsRowYgfv376NRo0ZG3+/MmTMAgFatWpmpZ0RkTgwWiYiIiIiIqNCYPHkyjh49Kmz7+fmhSZMmcHNzw6tXr3D58mU8evQIarUa27dvR3x8PJYvXw47O+2VwKKiojBgwADIZDIAQPHixdGuXTuULFkSUVFROHHiBBITE/Ho0SMMHjwYu3fvRtmyZXX2y1bbspSIiAjcv3/fpPvExsbi4cOHABgsEhVWDBaJiIiIiIioUDh06JAQKkqlUsyfPx9du3aFWq1GamqqsN9ff/2FuXPnQqlU4tixYwgICMDnn3+u1d60adOE8K5FixZYvnw53NzchNsnTJiA0aNH4/r164iLi8OcOXPw+++/6+ybrbZly7JHKzo5OaFp06ZW7g0R5QWLtxAREREREVGhoBmeTZo0CV27dtW53+eff46xY8fqvF+2wMBAXL16FQDwzjvvYMWKFaLwLvv6devWoUSJEgCACxcu4Nq1a4WmLVt39uxZAEDjxo1RpEgR63aGiPKEwSIRERERERHZvCdPniA0NBQA4Obmhj59+hjc/8svv4RUKgWQNU332bNnotv37dsnXB44cCBcXV11tuPu7o7BgwcL2wcOHNDax1bbsmUZGRn4999/AXAaNFFhxmCRiMgGnH0UD//Ax7gV/draXSEiIiKyScHBwcLl6tWr51oN2dXVFcWLFxe2X7x4IVxWqVQICgoStnMLtjRvP3nypKhojK22lVdXr17FzJkz0aFDB9StWxe1atVCy5YtMWLECBw9ehQqlUq0v7+/P/z8/DBgwADhuitXrsDPzw9+fn7o37+/zuNcunQJaWlpWo9D09mzZzFp0iR8/PHHqFu3LurWrYsPP/wQQ4YMwaZNm/D6NT87E1kb11gkIrKydZciMCLgLgBAai/BoUGN0KFaSSv3ioiIiMi2tG3bFufOncOLFy8gkUhy3T8zMxMJCQnCtubIvydPniAxMVG4PreqyhUrVoSnpydkMhlkMhnCw8NRuXJlm27LVHFxcZg6dSoCAwO1bouNjUVsbCxOnz6NTZs2YdWqVfD29s7TcbKdPn0aAODr66tVeCYxMRFjxozBxYsXte73/PlzPH/+HBcuXMCqVavwww8/oGPHjvnqCxHlHYNFIiIrG3/4/6vnyZVqTP7zAYNFIiIiohzs7e1RqlQplCpVyqj9z549i4yMDABAkSJFUL58eeG2x48fC5fLlStnVHtlypQRCqpEREQIAZ6ttmWKV69eoW/fvoiMjBSua9iwIerXrw+pVIrQ0FCcOnUKSqUSd+7cwYABAxAQEAA3Nzc0a9YMLi4uiIyMxK5duwAA5cuXF6aqly5dWucxz507B0D3aMUJEyYIoWLRokXRunVr+Pj4AACio6Nx8uRJvH79GsnJyZgwYQLKli2LunXrmvy4iSj/GCwSEVlZmlw8neTe8yQr9YSIiIhykitVmHciFEcfxiI1U2nt7tgMF0d7dKzujdkf+0Jqb3srbGVmZmLFihXC9ocffghnZ2dhOy4uTrisL/jKydvbGw8ePNC6v622ZYq5c+cKoaKXlxdWrlyJhg0bivYJCQnBoEGD8PLlS0RERGD16tWYMmUK6tevj/r16+Py5ctCsFi6dGnR+o85PXz4EM+fPwegHSzeunUL58+fB5A1InPHjh3w8vIS7TN9+nQMHz4cV69ehUqlwpo1a7B27do8PXYiyh8Gi0RERERERHp8fzwUC079Z+1u2KSb0VlTdn/oUM3KPdE2f/58PHr0CEDWSMdRo0aJbk9K+v8fco2tRqwZTGre31bbMlZERAT++ecfAFl/qzVr1uC9997T2s/Pzw+LFy8WAsM9e/Zg/PjxQoEcU5w5cwYA4OnpiXr16oluu3XrlnD5iy++0AoVgaziPQsXLkTbtm0BAA8ePIBSqYS9vb3JfSGi/GGwSEREREREpMeVyFfW7oJNu/zE9v4+a9aswZ49e4TtESNGoGrVqqJ9MjMzhcuawZwhmvtp3t9W2zLWiRMnhMtt2rTRGSpma968ORo1agR7e3v4+Pjg9evXogI5xjp79iwAoGXLlrCzE4941QwHb9y4ga+++kpnG+XLl8ehQ4dQqlQpeHp6mtwHIioYDBaJiIiIiIj0aORTDCf/i7d2N2xW4wrFrN0FgVqtxooVK7BlyxbhujZt2miNVgSgFWaZSrN4jK22ZawLFy4Il9u0aZPr/lu3bjX5GJpevnyJu3ezChfqWl+xUaNGwuVjx45hwIAB+Pzzz9GsWTOt0YvVqtneaFmitw2DRSIiIiIiIj3mtPOFRAKusZiD5hqLtiAzMxOzZs3C0aNHhetatGiB5cuX6wzbXFxchMvZBV5yk56eLlx2cnKy+baMFRMTI1z29TX/v+fZs2ehUqng4OCAFi1aaN3u5+eHnj17Yt++fQCAy5cv4/Lly5BIJKhWrRqaNGmCFi1aoEGDBnB0dDR7f4nIMAaLREREREREekjt7fBDh2o2uY4gZXn58iW+/fZb3Lx5U7iuQ4cOWLJkid7gSTPAS0tLM+o4mgGeh4eHzbdlrPj4/x+RW7RoUZPvb6rsadD169fX29+5c+eiePHi2LhxozC9W61W4+HDh3j48CE2btwIV1dXfPTRR/j6669RvXp1s/ebiHSzvfJdREREREREREZ48OABevbsKQoV+/Tpg2XLlhkczebt7S1cfvHihVHHio2NFS6XKFHC5tsylkKhMPk+eZWZmYmgoCAAuqdBZ5NKpRg3bhzOnTuHOXPmoGXLllrFbFJSUnD48GF0794dv//+uzm7TUQGcMQiERERERERFTqnTp3ChAkThJF99vb2mDhxInr37p3rWoWaU36jo6ONOp7mfhUrVrT5toxVtGhRxMXFAQBev36N8uXLm9yGsa5evYqUlBQAhoPFbF5eXujbty/69u2LzMxM3LlzB5cvX8aFCxdw69YtqNVqqFQqLFmyBPXq1cP7779vtr4TkW4csUhEZINkaXJrd4GIiIjIZgUEBGDUqFFCqOjm5obly5ejd+/eRt3f29tbqCQsk8kQERFhcP/w8HC8fv0aQFYQ5+PjY/NtGUszSHz06FGu+x88eBAzZszA2rVrERwcbNKxzpw5AwDw8fFB5cqVTbqvo6MjGjRogG+//Ra7du3Cn3/+idKlSwu3Hzp0yKT2iKhgMFgkIrJBy86FWbsLRERERDYpO9hSqVQAgDJlymDHjh1o1qyZSe1oVkA+ffq0wX2zAzEAaN68uVZBGFttyxiao/zOnz+f6/4HDhzAvn378Msvv+DJkyfC9cYcO3t9xQ8//FDn7Wq1GjNmzMDnn3+OBg0aiArL5FSlShUMHDhQ2Da0LxGZD4NFIiIruhuTqPP6+Sf/s3BPiIiIiGzf/fv3MWvWLKjVagBA5cqVsWvXrjxVM+7cubNweePGjUhM1P25LDExEZs2bRK2e/bsWWjaMkaXLl2EUPD48eMIDQ3Vu29wcDCuXLkCIKvQjGaYqzn9XKnUrqD+6NEjREVFAQBat26ts32JRILw8HDcuXMHSUlJuY5CfPnypXC5VKlSBvclIvNgsEhEZEX+gY/13qZSqS3YEyIiIiLbplAoMH78eKFKsLe3NzZt2iQqeGKKJk2aoEmTJgCAuLg4DBs2TBRUAVnB1fDhw4U1CBs2bIimTZsWmraMUbVqVXzyyScAALlcjuHDh+uc4vzkyROMGTNGGCnar18/uLm5CbdrXn7+/LlWuJg9utLV1RUNGzbU2x/N6eyrVq3CsWPHdO5348YNbNu2TdjOfgxEZFks3kJEZEW/X47Ue5tSrYYdTJ/OQkRERPQmOnTokGjNwbp16+LPP/8EkDWFVi7//zWqpVKp1tTcjh07itbkA4B58+bh888/h0wmw40bN9ChQwe0b98eZcuWxbNnz/DPP/8IIwY9PT2xcOFCvf2z1baMMW/ePAQHByM8PBzR0dHo3r07WrRogVq1asHe3h4hISE4ffq0EOrWqVMHo0aNErVRtmxZSCQSqNVqREdHY+TIkXj//fdRpEgR9O/fX5gG3axZM4MVuzt37ox9+/bh6tWrkMvl+O6771CzZk3UrVsXpUqVQlpaGu7fv4+goCAhvPzkk0/yHKwSUf5I1NljyOmNd/PmTeHXJTs7O9SrV8/KPco/hUKB27dvC9t169aFgwPzcio87CYe0Xtb+qJP4ejAgeW54XmAiHgeIGMolUrRFE9fX1/Y29tbsUdkqi+++AI3b97M8/23bNmCxo0ba10fHByMUaNGCdN0dSlXrhxWr16NatWqGTyGrbZlDJlMhkmTJuW6zmLr1q2xePFieHh4aN02ceJEHDki/nzr5uaG06dPo0mTJlAqlViwYAF69Ohh8BhJSUkYO3YsAgMDDe4nkUjQs2dPzJ4922BYSW8HtVqN1NRUYdvFxSVP644WFgXxvlYQORE/cREREREREZHNCwkJMUu71apVw19//YW9e/fi+PHjePToEV6/fg1XV1dUrVoV7dq1Q69evVCkSJFC25YxPD09sX79ely6dAlHjhzB9evX8eLFCygUChQvXhz16tVDjx49DBbJWbBgAd599138+eefiImJgVqthqenJ06fPg2lUgmJRKK3cIsmd3d3bNiwARcuXMBff/2Fu3fvIiYmBunp6fDw8ECpUqXQpEkTdO7cGdWrVy+Qx09EecMRi28Rjlgksj2GRiymLeoIJweOpMgNzwNExPMAGYMjFt9sb9tIJSLS9radB2xlxCLn2BER2Sj+7ENERERERES2jMEiEZGNYq5IREREREREtozBIhGRjeJKFURERERERGTLGCwSEdko5opERERERERkyxgsEhHZKOaKREREREREZMsYLBIR2ahMpcraXSAiIiIiIiLSi8EiEZGN+u3fJ9buAhEREREREZFeDBaJiGzUyguPrd0FIiIiIiIiIr0YLBIR2ajnSRnW7gIRERERERGRXgwWiYiIiIiIiIiIyGQMFomIiIiIiIiIiMhkDBaJiIiIiIiIiIjIZAwWiYiIiIiIiIiIyGQMFomIiIiIiIiIiMhkDBaJiIiIiIiIiIjIZAwWiYiIiIiIiIiIyGQMFomIrOSpLM3aXSAiIiIiIiLKMwaLRERW4h/42NpdICIiIiIiIsozBotERFay5GyYtbtARERERERElGcO1u6ArVmxYgV+/fVXlC1bFqdPnzbpvpcuXUJAQABu3bqFFy9ewMHBAaVKlUK9evXQrVs3NGjQwEy9JiIiIiIiIiIisiwGixru3LmD9evXm3y/5ORkTJkyBSdPnhRdn5GRgbCwMISFhWHfvn3o3LkzZs+eDXd394LqMhERERERERERkVUwWPyfqKgojBw5EnK53KT7ZWRk4Ouvv8bt27eF61xdXeHr6wulUonQ0FCkp6cDAA4fPoyYmBhs3LgRjo6OBdp/IiIiIiIiIiIiS+IaiwBCQ0Px5ZdfIi4uzuT7/vTTT0KoKJFI8N133+HixYvYtWsX9u7diwsXLmDAgAHC/levXsXSpUsLrO9ERERERERERG8rUweIUcF660csHjp0CHPmzEFaWprJ93306BF27dolbE+YMAFDhw4V7ePh4YEZM2bA3d0dq1evBgBs374d/fv3R7ly5fLXeSIiIiIioreIn59fvtvo1q0bFi1aJGz3798fV65cAQBs2bIFjRs3zvcxKG8yMzNx6NAhHD9+HA8fPoRMJoOzszMqVaqEli1bonfv3ihRokSu7YSFhaFjx44mHXvfvn2oXbt2Xrv+Vtm/fz+mTZsGQPv1BABTp07FgQMHAAALFy5E9+7dzdaXv//+G1u3bsWOHTu0bnv69Cnatm0LAHmqo0HGeWtHLMbGxmLKlCmYPHlynkJFANi6dSuUSiUAoFKlShg8eLDefUeNGgVfX18AWWn6tm3b8nRMIiIiIiIiojfNvXv38Mknn2DmzJk4f/484uLiIJfLkZSUhNu3b8Pf3x8ff/wxNm/ebFRb9GZLSUnBoEGDMHbsWDx//tza3XmrvZUjFtesWYPffvsNqampwnWVKlVCu3btsHbtWqPaUKlUOHbsmLDdvXt32Nnpz2nt7OzQq1cvzJ8/HwBw7NgxTJ06NY+PgIgKu5jEdGt3gYiIiKjQmTx5ss7r1Wq1aDqkVCqFRCIBAFy4cAGXLl0SbitTpox5O0kmu3nzJgYOHIiMjAwAWcuMNWvWDHXr1oWdnR1u3bqFwMBApKWlYcGCBYiOjsb06dP1tnf//n3hcvfu3VGlSpVc+1C6dOn8PxCymFevXuHixYvW7gbhLQ0WN2zYIAoVP//8c0ydOhXHjx83uo3g4GC8evVK2G7evHmu92nWrJlw+dmzZwgODka1atWMPiYRvTkC7sRYuwtEREREhY6+WWJqtVr0Hc/FxQUSiQRXrlzB8uXLhevr16+PESNGmLubZILk5GSMHj1aCBW9vb3h7++PunXriva7ffs2vv32W8TFxWHz5s2oVasWOnfurLNNzWBx2LBhePfdd83Wf9K2aNEirenR1lCuXDmEhIRYuxtvvLd2KjQA1KpVC1u3bsX8+fPh5uZm0n2Dg4OFy1KpFFWrVs31PhUrVoSzs7OwfffuXZOOSURvjuUXwq3dBSIiIqI3WmRkJEaPHo3MzEwAQMmSJbFy5UpIpVIr9+zN5efnBz8/P7Rp08bo+2zbtk0opOri4oJNmzZphYoAULduXaxduxb29vYAgMWLFyM9XXsWkEqlwoMHDwBk1TyoUKFCXh4KERnprQwWGzVqhNWrV2Pfvn1o1KhRntqIiIgQLpctWxYODrkP/pRIJKJh90+ePMnTsYmo8At/mZr7TkRERESUJykpKRgxYgRkMhmArMEg/v7+RhX+IMvSXGJs0KBBqFy5st59a9Wqhfbt2wMA4uLicPLkSa19Hj9+LIxerVmzpjAlnojM462cCv3rr7/mu43sX1SArF++jFW8eHGEh4drtWENCoXCqscvCNnFc/RtExV2b8Lr1Nx4HiAingfIGEqlEmq1GkDWD/5qtVrYpsIv57/l9OnT8ejRI2F75syZqFu3rs5/c83rsp8Xx48fx+HDh3Hnzh28evUKnp6eqFChAj799FN07doVRYoUybVP9+7dwz///INr167h2bNneP36NSQSCdzd3VGxYkV88MEH+Pzzz/WGnf7+/li9ejUAYO/evahduzZu376Nffv24cqVK3jx4gXs7e1Rrlw5tGjRAv369YO3t3eu/Xrx4gW2b9+O8+fP48mTJ1AqlShVqhSaN2+OAQMGoEKFCpgzZw52794NANi8ebPJlbKNfX3J5XI8fPhQ2O7QoUOu92vWrBmOHj0KADh37hw+/fRT0e2a06Br1apl9te55r/T9u3b8f777+P8+fPYsWMH7t+/D5lMBg8PD9SsWROdO3dGx44d9dZn2L9/v7B25PLly9G6dWusWrUKhw4dQmJiIry9vdGwYUN89913WjnE8+fPsWfPHgQFBSEqKgpJSUnw8PBAxYoV0aJFC/Tu3Ruenp5GPaazZ89i//79uHXrFl69egUPDw9Ur14dvXr1Qrt27XS+ZjRNnToVBw8eBAAsWLDAYFXohw8fYv/+/bh8+TKePn0KuVyOokWLws/PD+3bt0fXrl3h6Oio82+ULTo6WqgYX7p0afz1118AxFWhy5QpY7AqdHJyMg4cOIBz584hJCQEMpkMRYoUgbe3Nxo1aoSuXbsarBqe89+uQ4cOePTokfBv8vz5c6jVapQqVQrNmjVDnz59UKlSJb3tGSP77579f4VCYZX3tbcyWCwI2b98AYC7u7vR99Pc9/Xr1wXZJZOoVCrcvn3basc3F1b/ojfNm/g6NTeeB4iI5wEyxMHBAQ4ODkhNTRWmVNKbZfPmzaJRcN26dcNnn30mWoNRk0qlEi6/ePEC/fr1w7Vr10T7xMXFIS4uDteuXcPWrVuxbNky+Pj46GwvKSkJs2fPxrlz53Tenp6ejri4OFy5cgW//fYbZs2ahU8++URrP81iNOnp6fjhhx+wY8cOreAgODgYwcHB2Lp1K+bNmycEKbqcO3cO06dPR1pamuj6J0+e4MmTJ9i3bx8mT54s+nE7IyND799On5xrXuoTHx8vejwlS5bM9X6a4didO3e09r9165ZwuWrVqkhNTcXTp09x//59vHr1Ci4uLqhQoQJq1apVIOcAzX+ntLQ0zJo1C3v37hXt8/LlS5w/fx7nz5/H1q1b8csvv+gM+bKn7WdfHjt2LM6cOSNc9+TJE7x48QLjxo0TPe6NGzdi/fr1wjqVmsd9+fIlrl27hvXr12PSpEn47LPP9D6WtLQ0TJ8+Xeu5+/LlSwQGBiIwMBCtWrVC06ZNhduUSqXWv4HmD3yZmZk6/01TU1OxYMECISTWFB8fj/j4eAQFBWHDhg34+eefhZGsmn+j3GhOlTf0nDx+/DgWLVokynmArH/bxMRE/Pfff9i+fTs6dOiAmTNnwsXFRauNnP92a9euxerVq0XPDwAIDw9HeHg4du7ciXHjxqFPnz5GP56clEolVCoVFAoFFAqF1T7/MFjMI80njea6ibnRTNpNeUEQERERERGRYVevXsWqVauE7dq1a2Pq1KlG33/u3LlISUmBRCLBBx98gBo1asDBwQH37t3DxYsXoVarER4ejqlTp2Lz5s1a6zXK5XIMGzZMWJPf0dERTZs2RZUqVeDi4oKkpCQ8ePAAV69ehUqlQnp6OubMmQNfX1+DU4D9/f1x5coVAFlrDdavXx/Ozs4IDw/H2bNnkZGRgfT0dEyfPh1Vq1bVua7g8ePHMWPGDCH0KVmyJFq3bo133nkHMTExOHPmDGQyGebPn2/UyMeCkJf1LjW/Rz9//lzrds0RkAkJCRgwYIDOwMXT0xMDBw5E3759C2zdzXXr1uHq1asAgCpVqqB58+ZwcnLC/fv3cfHiRWGAz9dff43NmzcbHKR0+PBhBAYGal3/4YcfikbMzp8/H/v37xe2q1WrhoYNG6Jo0aJISEjAv//+i/DwcCQnJ2POnDmQyWTo37+/VrvZz93sv5VEIkHjxo1Rp04dqNVq3Lx5E9euXcPZs2dF4W1eZGRkYMSIEaK6E9WrV0fDhg3h6uqKiIgInD59GhkZGXjy5AmGDh2KnTt3wtvbGzVr1sTYsWORmJiIjRs3AshaS/Prr78GAJPrZ+zbtw8LFiwQtj09PdGyZUuUK1cOqampuHHjBu7cuQMA+Oeff/D48WP8/vvvcHV1Ndhm9uvV19cXjRs3hru7O54+fYrTp08jOTkZCoUCS5YsQZUqVdCwYUOT+mxrGCzmkWbqrG8Ysy6av4hwiiMRERERkY2TyyFduBD2x45BYuKorTeZ2sUFyvbtIZ82DbCRYiixsbGYNm2aEJwVL14cP//8s0mhUUpKCnx8fLB48WL4+vqKbrtw4QLGjx8PpVKJ4OBgXLhwQatIyc6dO4VQ0dvbG+vWrdM5sjEkJAQjR47Eq1evoFAoEBAQgMmTJ+vt15UrV+Dp6YmFCxdqTUuOiIjA8OHD8eLFCygUCuzYsQPTpk0T7fPq1SssXLhQ+Nt06dIFU6ZMEQ2SGTNmDGbPno3z58/rDOzMwcPDA87OzsLIsvDwcGFKqz5hYWHC5fT0dCQlJQkBnVqtFlUBNlSZWCaTYcWKFQgMDMTSpUvh4eGRn4cCICvYlkgkGDNmDPr37y9a3/H27dsYN24cZDIZIiIisGrVKq1/J02BgYGws7PDiBEj0K1bNzg4OODq1asoXry4sM/BgweFUNHNzQ3z5s1Dq1atRO2o1WocOnQICxcuhFwux8qVK1G7dm289957ov02b94shIoeHh5YunQp3n//fdE+ly5dwpQpU7RG9plqzZo1QqhYpEgRfP/991ojbWNiYjBy5Eg8efIEMpkMS5cuxeLFi1G5cmVUrlwZz549E4JFV1dXDBgwwOR+3LlzR/Qc+eyzzzB58mSt0DAoKAjTp09HUlISQkJC8P3332Px4sV6271y5QqcnJwwd+5cYU3QbN9++y2+/fZbYamGrVu3Mlh8W2kGhJpD53OjOSTYmtXI7OzsDK4PUFgolUrRr08FNZydyOx2PjNqN10V8UiM5wEi4nmAjKFUKoVAQiKRwMXFxbjnycyZkBj4Avk2s799O+s7zQ8/WLsryMjIwKRJk5CQkAAg67vWypUrjaoIrDlQpEiRIti4cSPKlSuntV/79u3RqVMnHDp0CEBWKNGpUyfRPkeOHBEuz5gxA9WqVdN5zHr16mHw4MH4+eefAWSNsss5vTLn98XFixejZcuWWm3VqFEDY8aMwYwZMwBkhRo521q+fLmwFFezZs2waNEiraImLi4uWL16Nfr06SM6pzo5OYnau3DhAkJDQ3U+rmypqanYuXOnztt8fX3RokULYbtRo0Y4f/48gKxRenPmzNHbrkqlwj///CO6zs7OTuhfeHg4UlJShNukUin69u2LLl26oEKFCkLwuHv3bhw+fBgAcP36dUyZMgUbNmwwqihrTjn/nb799lsMHz5ca78mTZrA398fAwYMgFqtRkBAAL755huUL19e2EdzhiMADB8+HKNHjxa2NacxZ2ZmYs2aNcL2ihUr0KxZM5197Nu3L9LT07F48WIolUqsW7cOmzdvFm5PTk7Gpk2bhO2ff/5Z9G+U7aOPPsLSpUsxbNgw4Tp7e3ut55vmudXR0VF0e0pKirB+JwAsXLgQHTp00DpW5cqVsWbNGnTq1AkqlUoY6Ze9tqRmKJ59Tler1aJp/rr20bR69Wohz/n444+xZMkSrX5k3+bl5YUBAwZAqVTi5MmTCA0NFYWzOf/tpk6dim7dumm1VaFCBcycORNfffUVgKww2tnZ2aQBa9mUSiXs7OwglUohlUpRuXJlkz//3L1716RMSxcGi3mk+QTNuY6BIZr7Ojk5FWifTJWXk6ats7e3fyMfF729+Hw2Hc8DRMTzAOkikUhEQUrObb3+N52NdJNcvgzYQNXdBQsWiMKw6dOna4220kfzefDJJ5+Igp6cmjVrJgSLz549E91XqVRiyJAhiI6ORlxcHNq2bWvwOaYZOiYnJ2vtq7ldoUIFfPjhh3rb+uCDD4TLcXFxovuq1Wr8/fffwvbEiRP1hhiOjo6YNGkSBg4cKOqHZntHjx7FgQMH9PYFyKonoC+k6datmygg/eKLL4Rgcffu3WjUqBE6duyo875Lly4VFeUBsv7u2f178OCBcL2rqys2bdqk9UN9gwYN0KBBAzRt2lSYJn/58mXs2bMHX375pcHHpYvm36ZEiRIYPny43n/3Ro0aoWXLljh37hxUKhVOnTqFQYMG6WxLIpFojXrUdOrUKaEgbL169dC8eXOD/Rw4cCDWrl2LxMREXL58GbGxsShVqhSArNGR2YFcnTp1DD7XWrVqhYYNGwpTvnWdSw2da8+fPy/kIjVq1NC5vmi2ypUro2PHjoiNjUWFChWQnJwsTNM39Xyec5+YmBjhMdjZ2WHq1KkG22jQoAE6duwo/HiwZ88e1KtXT+djdnFxQc+ePfW29/7770MqlUIulyMjIwOvX7+Gl5eXwf7re0ya/3dwcLDKD6umR6IEQLxgbHJystH309zX2IpMRERERERkJSZWw33raARa1rJ//37RCKguXbrkuSBC/fr1Dd6uWcFZc2QckPWjRvfu3TF69GjMmzfP4Bf8zMxMRERECNu5LZOV2yyWd955R7isWbACyCpolR1AlS1bFjVq1DDY1gcffJCnkCOvPvroI7Ru3RpA1ojE8ePHY/bs2bh37x7S09ORkpKCK1euYPjw4diwYQO8vLxEI880R4p16NABJ06cwKZNm7Bt2zaDf7du3bqhZ8+ewvaGDRvy/Vg++eSTXGcmfvzxx8Ll7EBVl4oVKxr8d7h8+bJwuWbNmrn2zcHBAXXq1BG2NQsUXbhwQbiccyq1Lu3atct1H300j5VzKQFdli5dim3btuHHH380uA6pqS5duiRcrlOnjs5RyjlpjlDW/PvnVL16da0RjJocHR1F62uaMljNFvGn3DzSLO3+8uVLo+8XHx8vXNZ8UyIiIiIiIhs0Z07WiLy//gK4xuL/c3EBPv0UmD3bqt148OAB5s6dK2zXqlXL4Lp1udEM6HTRDAs1l7nSJzk5GeHh4YiKikJUVBSePHmC0NBQhISEiNbtz1npOSfNdfV00SzmkXNa45MnT4TLOdeN1KdatWq4ePGiztsWLVqkd+3C7PURy5Yti9OnTxt1LCBr6u2IESNw5coVqNVq7N69WxQWZ/P09MS6deuEQh2AeDahVCqFj4+P3ordOfXv3x/79u0DAERHRyMsLCxf4VWtWrVy3adq1arC5WfP9C+PZGjkLADRyM1t27Zh27ZtRvTw/2keOzo6WrhcpUqVXO+rb4q/MWJiYoTLxj4fzSEyMlK4bOzjqV69unD52bNnUCqVOn9AyO31Chh+zRY2DBbz6N133xUuP336FGq1Oteht2q1WvSC1WyDiIiIiIhsUPYagjawjiCJyWQyjBo1Shjt4+XlhSVLlhgcKZQbQ5VejZWeno5du3bhwIEDCAkJ0Rsa2tvbGxVOAtBaG84U2aMVAaBo0aJG3adYsWJ5Pl5euLm5YePGjdi4cSM2bNggrAeZzdHRER06dMCUKVPg5eUlzAR0cXHJ17+Zn58fihQpIkwDjoyMzFewaEygpPlvoPlvk1NuxWTyW0Dl1atXwmXNwVLGFLHJz/PD1GOZi+bfz9jHo7mfWq3WO4XZ1Ndrbj8s2DoGi3mkOdQ4LS0Njx8/RqVKlQzeJzw8XDTEVTPtJiIiIiIiIuOoVCpMmDBBGLjh4OCAn376SVh/zVqioqIwZMgQ0TRnIGsNtFKlSqFy5cqoWbOmsP7jN998Y/Y+aY6MNDbItEbQIZVKMWzYMAwaNAg3btxAZGQkFAoFSpcujXr16glLiYWFhQn9y14jMK8kEgnc3d2FYNGUZc50MWZ9O83RaYZC8NzWCtacPt+hQwfRNGdjGDN9Wp/8hPeaz0drystzPOfIQqPW6X0LMFjMo6pVq8LLy0uoOnbp0qVcg8WgoCDhcrFixYRh4kRERERERGS8FStWIDAwUNieMmWK0cVazEUul2PkyJFCqOjl5YWBAweiSZMmqFq1qtYopnPnzlmkX5oj5BITE426j7H7mYOjoyM++OADUUEaTXfu3BEu65vCmpGRYXQhL80wMb8j6IwJJjVHyuVneTTNf9f33ntPVATGVCVKlMB///2n1T998vP8yMvz0Rw0a15ojt40RHM/Ozs7uLm5FXS3CiUWb8kjiUQiWnR1z549BufFq1Qq7NmzR9hu3749020iIiIiIiITnTp1CuvWrRO2u3Xrhv79+1uxR1lOnTqF0NBQAFlTIffs2YPhw4ejbt26OqdGak4JNecIQc0187LDo9xkPw5LUKvVePXqFR49eoSkpKRc9z916pRwuUGDBqLbevTogXr16qFOnTo4e/Zsrm1FRUUhVWPtVM31D/MiZ8VqXYKDg4XLFSpUyPOxNNeRNPbf6/Xr1zpHrWoWLtHsnz5hYWFGHU8XzbUjjfl7XbhwAVOnTsWqVatEBWfyS3NpOmMeMwDcv39fuFy6dOlcC/W8LRgs5kPfvn2FcDA4OBirV6/Wu++KFSuEk7idnZ1NvPEREREREREVJk+ePMGUKVOEIK5mzZr4/vvvrdyrLDdu3BAuN2vWLNfiG5pVac1ZvKF27drCOoTPnj3LNUS5d+8eXrx4Ybb+5PTjjz/igw8+wKefforDhw8b3Pf58+fCSE97e3u0bdtWdLu7u7sQFBpTPEbzeJUqVUKZMmVM7b6IMWHmiRMnhMsfffRRno/VWKNi/blz53KtLJyZmYlPP/0UderUQZs2bfRWZz5+/Hiux87PaFvNkcWGqmJn+/vvv3HgwAH4+/uLRqvmd6CWZih9584dPH361Ki+ZLP2CGlbwmAxH6pVq4Zu3boJ26tWrcKCBQtEv7IkJSXhxx9/xNq1a4XrevfubVSlJSIiIiIiIsqSmpqKUaNGCd+3vLy8sGrVKjg5OVm5Z1k0147LXjJLn5s3b+Lo0aPCtuZ6eQXN0dERXbp0EbaXL19ucP8VK1aYrS+6aAY0AQEBBkdvLliwAJmZmQCATz75RGtNzU8++US4fOTIEYSHh+tt68mTJ9iwYYOwPWDAAJP7ntPNmzcNhmUXL17Ev//+CyCrKnB+gsX27dsLgfHLly+xZs0ag/tv3LgRcXFxUCgUSEhIEK3J2KxZM6EwSXh4uGi2ZU4PHz4UhaN56Xd2Je9bt26JljTIKS4uTgjzJBKJ6O9laoX2nMqXL49GjRoByAr29VU6z3bjxg1RsNi5c2eTj/mmYrCYTzNmzBCVlN+8eTNatGiB3r17o3fv3mjRogW2bNki3F67dm1MnTrVGl0lIiIiIiIqtGbOnClM+XR0dMTq1avzPcKsIGmu93fjxg1RcJhNrVbjr7/+wtChQ0VhYnp6uln7NmzYMCGEOnPmDL7//nshoNPsw6xZs4waRaZPSEgIQkJCjBotmO2jjz4S1hq8f/8+li5dqhW0pqWlYfr06Th27BiArOrdEydO1Gqra9euwvTizMxMDBs2TOe03bt372LgwIFISUkBANSpUwe9evUyus+GTJgwQTQaNdulS5cwZswYITgdO3ZsvtZ09PDwEBX/Wbt2LVatWqVVHEWlUmH37t3w9/cXrvv6669Fax06OjpiypQpwva8efNw8OBBrWM+ePAAw4YNy1cBFi8vL9EMzgkTJghhq6b4+HiMGjVKGIHasWNH0dRxzfUNExISRFPajTV27FghoDxx4gSmTZumc53MwMBAjBgxQggw27ZtixYtWph8vDcVi7fkk5ubG/744w9MnjxZOHmmpaXh1q1bWvu2bt0aS5YsEdJ5IqJs775+jilX9qN2XASOVmqAhY17Qi3hbz9EREREQNa6en/99Zew/d577+HmzZu4efMmgKzATjPskEqlBqdK9u7du8ALL3z66afw9/dHXFwc1Go1xo0bh127dqFWrVpwdXVFbGwsAgMDRZWslUol1Go1kpKSoFAojCo2khelSpXCnDlzhGnkO3bswJkzZ4RQLzY2FidPnsSLFy9gb28POzs74e9pZ2fez6SOjo6YM2cORo8eDbVajfXr1+PEiRNo3rw53nnnHTx79gwnTpwQiopIpVL88ssvKF26tFZbTk5OWLZsGQYMGICUlBRERkaic+fOaN26NWrUqAGFQoHbt2/j4sWLwvRzHx8frFy50qiKzrmRSqVITEzEV199hWbNmqFevXoAsoLmixcvCvu1aNGiQEZIDhs2DHfv3sXJkyehVqvh7++PgIAAtGrVCt7e3oiLi8O///4rWsuwUaNGGDlypFZb3bp1Q2BgIP7880/I5XJMmTIF27dvR9OmTeHo6Ih79+7h3LlzUCqVqFixIh4/fpznfo8ZMwa3bt3C1atXIZPJMHDgQDRq1Aj169eHi4sLwsPDcfz4cSEs9PHxwcyZM0VtuLm5wdPTEzKZDJmZmRg8eDBatWqF9PR0DBkyxKh+vP/++5g8eTIWLlwIANi/fz/OnDmDNm3aoHz58khLS8PVq1dFyxxUrFhR2J+yMFgsAO7u7lizZg0uXbqEw4cP49q1a4iPj4dSqUTx4sVRr149dOvWDc2bN7d2V4nIxtiplJh8dT9m/rsbLoqsX42bxgQjybEI/Ot/ZuXeEREREdmG169fi7avXLmCK1eu5Lm99u3bF3iw6ObmhjVr1mD48OGIj48HAFy+fBmXL1/W2tfHxwcLFy7E9OnT8eTJE6hUKjx48EA0PbWgdenSBXK5HD/++CNSU1MRExODbdu2ifZxcXHBokWLsHDhQsTExADICv7M7eOPP8bChQvx/fffIy0tDREREUJ1bU1lypTB4sWL0bBhQ71t1apVC9u2bcP48ePx+PFjKBQKnDhxQuf03ebNm2PBggVaU6rzasCAAfjvv/9w/vx5BAUFISgoSGuf/v37Y9q0aQUS2EokEqxcuRLLli3D5s2bIZfL8ezZM+zYsUPn/l26dMG8efP0Btg///wzvL29hSnid+7cEa1rCGSF+pMnT0bfvn3z3G+pVIoNGzZgzpw5OHDgAAD9r+l69eph+fLl8PLy0rrtiy++EJadu3HjhhAA9uzZU1T12ZCvvvoKxYsXx7x58/D69Wu8evUKAQEBOvft0qUL5syZI4z+pSwMFjV0794d3bt3z/P9mzRpgiZNmhRgj4joTbfy9HqMvK09TaZj+DUGi0RERESFTO3atXHkyBHs2LEDZ8+eRUREBFJTU+Hs7IwSJUrAz88PrVq1QqdOneDo6IiWLVti69atAICDBw+aNVgEsgKXpk2bYufOnTh37hyePXuGzMxMlC5dGi1btsTgwYNRqlQpUUEcXRWtzaFbt25o1KgRtm/fjqCgIERGRiIzMxOenp6oVq0a2rdvj86dOxs1A7BGjRo4cuQIjh49iuPHj+PevXtISEiAg4MDSpYsifr166Njx44FPp21SJEiWL9+PQ4fPox9+/YhJCQEKSkpKFWqFBo1aoQ+ffqgdu3aBXpMe3t7TJo0CX369MHevXvx77//IjIyEomJiXByckLZsmVRv3599OjRI9fnl0QiweTJk/HJJ59g586duHz5MmJjY+Hi4oJKlSrhs88+Q+/evQ2uXWksJycnLFq0CP369cP+/ftx+fJlPH/+HBkZGShWrBhq166Nzp07o127dnpD2LFjx+Kdd97Bvn37EBUVBblcjnfeeQexsbFGB4sA0KlTJ7Rq1Qp79+7F+fPn8d9//0Emk8HBwQHlypVDgwYN0L17d7O/Pgsridqcde3Jpty8eVMY7m1nZycMyy7MsoeyZ6tbt67Zpg8QFZRMhQrOU/+CkyITr1b1gbNSe42Sq95V0LjfMqQu7Ahnaf6nZbzJeB4gIp4HyBhKpVJYnw8AfH19C2TqI9kGtVotWmPNxcUl31Vj32a1a9cW1mD8999/hcIepM3f3x+rVq0CAIwaNQqjR4+2co/eXm/beaAg3tcKIifiJy4iIguLScxanNsrPUlnqAgA7plpAICwl6moWcrdYn0jIiIiojfPhg0b8M4778DHxwf169c3uG94eLgQKhYrVoyhIhEZxGCRiMhK3DL1V/9zl2cFiydC4xgsEhEREVG+HD58GMHBwQCAgIAA1KpVS+++f/zxh3C5UaNG5u4aERVyLDlKRGQlbnIDweL/RiyquFoFEREREeVT06ZNhcvz58/Hq1evtPZRKpX4/fffsXv3bgBZ0yILonIxEb3ZOGKRiMhK3P43KlHnbZnpkKhViEnMsGCPiIiIiOhN9PXXX2P//v2QyWS4efMmWrVqhTZt2sDHxwdSqRSxsbEICgpCdHS0cJ+hQ4eiQYMGVuw1ERUGDBaJiCwsewyioanQdlDDVZ6OpefCsOSzGpbpGBERERG9kUqUKIHNmzdjzJgxiIiIQHp6Oo4ePapzX0dHR0ydOhVffvmlhXtJRIURg0UiIisxNBUayJoOnezoYqHeEBEREdGbrFq1ajhy5AiOHj2KEydO4OHDh3j58iXUajWKFy+OsmXLok2bNujUqRNKlChh7e4SUSHBYJGIyMKyl010y9Q/FRrIChZjLNAfIiIiIno7ODo6omvXrujatau1u/LGGD16NEaPHm3tbhBZDYu3EBFZiTEjFomIiIiIiIhsFYNFIiILU/9vlUVDxVsABotERERERERk2xgsEhFZ2P9PhTY8YtEjM9UCvSEiIiIiIiLKGwaLRERWwqnQREREREREVJgxWCQisrD/DVg0qngLAMjS5GbuEREREREREZHpGCwSEVmJq5EjFlcFPbZEd4iIiIiIiIhMwmCRiMjC1Ors4i25BIv/K+4Sm5Rh9j4RERG96ezsxF99lEqllXpCRESUfznfx3K+z1kKg0UiIgszdiq0RwbXWCQiIiooEokEDg4OwnZqKoukERFR4aX5Pubg4ACJRGKVfjBYJCKyktyLt2S9UWRXkSYiIqL8cXNzEy4nJiZasSdERET5o/k+5u7ubrV+MFgkIrKw7KAwt2DR7X9ToZkrEhERFQwPDw/hckpKChISEqzYGyIiorxJSEhASkqKsG3NYNEh912IiKggqf8XFbplGle8hYiIiAqGi4sLpFIp5HI5ACA2NhbJycnw8PCAi4sL7O3trdxDyiu1Wi1ab0ypVFptWiARWcebfh5QKpVITU1FYmKiKFSUSqVwcXGxWr8YLBIRWUn2iER9soNFNedCExERFQiJRAIfHx9ERkYK4WJKSoroCxoVXiqVSrhsrSIGRGRdb9t5QCqVwsfHx6oB6pv/VyYisjGpmUpArc51xKJHJqdCExERFTRHR0f4+PhAKpVauytUgNRqNRQKhfAff5glevu8beeB7FDR0dHRqv3giEUiIgvbefMZiigyYZdLZMip0ERERObh6OiIypUrIzU1FUlJSUhKSoJCobB2tyifNP8NGRwTvZ3e9POAg4MD3N3d4e7uDhcXF5uY6s1gkYjIwpaeC0OJXKZBA5pToc3dIyIiorePRCKBq6srXF1dUapUKajVatEUOipcFAoF7t27J2xXrlwZDg78ukv0NnnTzwN2dnY2ESTm9Ob8hYmICpHcpkED/wsW1Wqh2AsRERGZj0QiYfGWQiznlEd7e3v+exK9ZXgesA6usUhEZAW5FW4BAEeVAk5KOe48S7RAj4iIiIiIiIhMw2CRiMgKjBmxCGSNWrwcKTNvZ4iIiIiIiIjygMEiEZEVuMm1g0WlRPuUzAIuREREREREZKsYLBIRWYGuqdDPXL20rmOwSERERERERLaKwSIRkYVJJLqnQse4FdO6jsEiERERERER2SoGi0REVqBrKnSMq3aw6JGZaonuEBEREREREZmMwSIRkYVJALjpGIn4nFOhiYiIiIiIqBBhsEhEZAXGjlhksEhERERERES2isEiEZGFSSQSncHiMzcdIxZ1FHkhIiIiIiIisgUMFomILEzfVOgYToUmIiIiIiKiQoTBIhGRFbjqmgqtoyq0RwaLtxAREREREZFtYrBIRGRhEgnglqkdLD530bHGIqdCExERERERkY1isEhEZAVuOQLDZKkzXju5aO/HqdBERERERERkoxgsEhFZQc7iLclSZ6RInaGCRHQ911gkIiIiIiIiW8VgkYjIwiSQaE2FTnZ0BiSSrP9rYLBIREREREREtorBIhGRhUkkuqZCFwEAJDkWEV3vkcniLURERERERGSbGCwSEVmBrqnQDnYSJEmLGNyPiIiIiIiIyFYwWCQisjAJtKtCJzs6Y0ufekhzcBRd76SQW7BnRERERERERMZjsEhEZGFSpRyOKoXoumRpEfSqWwbpOYJFZ2WmJbtGREREREREZDQGi0REFuauY3pzsqMz7OwkyLCXiq535ohFIiIiIiIislEMFomILKy0RKF1Xer/irakO+QIFjlikYiIiIiIiGwUg0UiIgvrWtFN6zrfd70BAOn2OdZYVCogUass0i8iIiIiIiIiUzBYJCKyMC+JUuu6CmXfAQCtNRYBFnAhIiIiIiIi28RgkYjIwrZdDNO+0skJgPZUaABwUjJYJCIiIiIiItvDYJGIyMJ0BYUqx6xgMdNeO1h0ZrBIRERERERENojBIhGRhekOFrOmQOdcYxEAnBUs4EJERERERES2h8EiEZGF6QoW1Y76p0I7c41FIiIiIiIiskEMFomILMxJqdC6LuN/gaLOEYtKjlgkIiIiIiIi28NgkYjIghRKlc4Ri2l2DgD0F2/5Ly7Z7H0jIiIiIiIiMgWDRSIiC0rMUMBJx9RmpTRrpGKGruItCjmWX3hs9r4RERERERERmYLBIhGRBTnYSXSOWFT8L1hMd9A9FXrNxQhzd42IiIiIiIjIJAwWiYgsyF6iO1iUC2ss6hqxyDUWiYiIiIiIyPYwWCQisiCJRHdVaIMjFlkVmoiIiIiIiGwQg0UiIgtKV+gu3vL/waLu4i1EREREREREtobBIhGRBcWnZOoOFv8XKOos3qLkVGgiIiIiIiKyPQwWiYgsSK0GnJQKrevl2SMW7TkVmoiIiIiIiAoHBotERBakhlpnMRZDU6FZvIWIiIiIiIhsEYNFIiILyhqxqKMq9P+mQOss3sI1FomIiIiIiMgGMVgkIrIgtRpw1BUs/m/Eoq41Flm8hYiIiIiIiGwRg0UiIgvTXRX6fyMWdRVv4VRoIiIiIiIiskEMFomILEgNwEmhXbyldY0yAPRMhWbxFiIiIiIiIrJBDBaJiCxIrVZrjVjMsHeAX0l3AHqqQis5YpGIiIiIiIhsD4NFIiILUkN7KrTa0QkSiQSA7qrQThyxSERERERERDaIwSIRkQXpqgqtcHQSLrN4CxERERERERUWDBaJiCxIDe2p0Erp/09/VtjZQykRn5o5FZqIiIiIiIhsEYNFIiIL0jliUSNYhESiVRmaxVuIiIiIiIjIFjFYJCKyMEMjFr94r4xWZWhnBUcsEhERERERke1hsEhEZEHRr9PhpFCIrkuGvXB5XMvKWgVcnLnGIhEREREREdkgBotERBa0+1a01ojFWI3Nhj6eWgVcWLyFiIiIiIiIbBGDRSIiC7ofm6QVFOYMEtPtORWaiIiIiIiIbB+DRSIiC1KotKtCawWLOadCs3gLERERERER2SAGi0REFqRUqrTWTMx1xKKSIxaJiIiIiIjI9jBYJCKyIDu59ujDDAcH0TZHLBIREREREVFhwGCRiMiC7HWEhDlHLLJ4CxERERERERUGDBaJiCzIPiNd67pMrTUWxVOhHVUK2KmUZu0XERERERERkakYLBIRWZC9XHu9RO01FqVa+zgpFWbrExEREREREVFeMFgkIrIgo4LFHCMWAcBZwQIuREREREREZFsYLBIRWVBKUqrWdVprLDpoj1hkZWgiIiIiIiKyNQwWiYgsyD4z9xGLObcBFnAhIiIiIiIi28NgkYjIgnQFhBkODqLtdHtdU6EZLBIREREREZFtYbBIRGRBuoqwaK+xqGMqNNdYJCIiIiIiIhvDYJGIyIJ0jljUqgqtY8Qip0ITERERERGRjWGwSERkQbqCxUwHjlgkIiIiIiKiwofBIhGRBekKFhUO4hGKLN5CREREREREhQGDRSIiC9IVEEqcnUXb6Q4s3kJERERERES2j8EiEZEFOekICIe39hNtp+sYseis5FRoIiIiIiIisi0MFomILEjXiMV6FUuItjlikYiIiIiIiAoDBotERBZU2c1B6zp7lyKibZ3BIkcsEhERERERkY1hsEhEZEGOukYeOjmJNjPstcNHJ6UcarXaXN0iIiIiIiIiMhmDRSIiC3olS9a+MkewmG6veyq0irkiERERERER2RAGi0REFuSg0DGlOWewqHONxUwE3IkxV7eIiIiIiIiITMZgkYjIQmIS03VWhdYOFnVXhf714mNzdY2IiIiIiIjIZAwWiYgsJEOh0l2Excip0OfDE8zVNSIiIiIiIiKTMVgkIrIQezsJnJQK7Ru0irdoj1h0UuoY6UhERERERERkRQwWiYgsxF4igaOugNCYqdC61mYkIiIiIiIisiIGi0REFhKfkmnkGovaU6E5YpGIiIiIiIhsDYNFIiILUUOtOyA0Yio0RywSERERERGRrWGwSERkQTmDRbmdPWAnPhU7OTlmXa/BmSMWiYiIiIiIyMYwWCQishC1WjtY1DU6sWxRZ63rORWaiIiIiIiIbA2DRSIiC1GptadC6woWASA9x/WcCk1ERERERES2hsEiEZGF/HHtKZyUCtF1uoLFDyu/o1XAxVlX0RciIiIiIiIiK2KwSERkIasCH+sYseigtd+Qxj5Id8gxYlHJEYtERERERERkWxgsEhFZkDFToRv5FNO6niMWiYiIiIiIyNYwWCQisiCnHAFhhoPuNRbh7Cy+H4u3EBERERERkY1hsEhEZEE5A0J3D1ed+2VqrbHIqdBERERERERkWxgsEhFZUM5g0b5IEZ37ZUjFwWIRBotERERERERkYxgsEhFZUM5gUZEjQMyWqLY3eD8iIiIiIiIia2OwSERkQU5KhWhbKdW9xqKji3iNRQe1CnYqpdn6RURERERERGQqBotERBZir1LCXq0SXadvxKKdk5PWdY45QkkiIiIiIiIia2KwSERkIbqmMyv1BItyHdWiOR2aiIiIiIiIbAmDRSIiC9FV2VnfiEW5g/b1DBaJiIiIiIjIljBYJCKyEFNGLGbqGLHIqdBERERERERkSxgsEhFZiK5gUe+IRR3Xc8QiERERERER2RIGi0REFuKk0B5xqC9YVNg7aN+fIxaJiIiIiIjIhjBYJCKyENOKt3DEIhEREREREdk2BotERBaieyq09lqKACDXcT2DRSIiIiIiIrIlDBaJiCzEpDUWdYxYZPEWIiIiIiIisiUMFomILMS0YJEjFomIiIiIiMi2MVgkIrIAhVJlUrCoYLBIRERERERENo7BIhGRBZwPT9A5lVl/8RYGi0RERERERGTbGCwSEVnAhiuRuoNFHQEiwKrQREREREREZPsYLBIRWUB8SgYcVdrB4tNUpc79M3UEjizeQkRERERERLaEwSIRkQWo1YCjjhGH11+k6dxfYc+p0ERERERERGTbGCwSEVmIrhGHGfYOOvflGotERERERERk63R/o6U8e/DgAfbu3Ytr167h+fPnSEtLQ9GiRVGpUiW0aNECvXv3RtGiRa3dTSKyMDWgcyp0hp29zv3lOoq6OCkYLBIREREREZHtYLBYQNLT0zFv3jwEBARo3RYfH4/4+HhcuXIFa9euxbx589CpUycr9JKIrEWlUuscsZgu4YhFIiIiIiIiKpwYLBaAzMxMDB8+HJcuXRKus7e3h6+vLzw8PBAdHY2nT58CAFJSUjBhwgQkJSWhT58+1uoyEVmYGrqnQqdL9IxY1FEVWteIRyIiIiIiIiJrYbBYANavXy8KFVu3bo05c+agdOnSwnVXr17FlClTEB0dDQCYP38+GjRogKpVq1q8v0RkeVnFW7SDwdLFPXTuL3fQPj1zKjQRERERERHZEhZvyafMzExs3LhR2G7SpAlWr14tChUBoGHDhtiyZQvc3d0BAAqFAmvWrLFoX4nIetRQw1GlHQx66w0WdayxqCOYJCIiIiIiIrIWBov5dOvWLSQnJwvbY8aMgb297qmN5cqVQ9++fYXts2fPQq1Wm72PRGR9Kj0jFuWsCk1ERERERESFFIPFfHr+/Llou2bNmgb3r1u3rnA5JSUFr169Mku/iMi2qNW6i7foChCzrtexxiKDRSIiIiIiIrIhDBbzKXtqc7aUlBSD+ysU4mDBycmpwPtERLZHpdY94jDThKrQuoJJIiIiIiIiImthsJhPVapUEW1fuHDB4P5BQUHC5dKlS8PV1dUs/SIi26IGINVR1TlD71RoHcVbOGKRiIiIiIiIbAiDxXwqX748WrVqJWwvX74c8fHxOve9du0a9u/fL2xrrrdIRG82lUr3VOhyJXUXb1HoCBwZLBIREREREZEtYbBYAKZPn47ixYsDAKKjo9GzZ0/s378f8fHxUCgUiIqKwtq1azF48GDI5VnBQI0aNdCvXz9rdpuILExXsNi3cSXdO0skSLcXT4dmsEhERERERES2RPccPDJJhQoVEBAQgPnz5+PkyZOIiYnBtGnTdO4rkUjQuXNnzJo1Cy4uLhbuqVjO9R4LI6VSaXCbyFao9BRvqVOuqM7XYvUSbsiwl8JZI0x0VCreiNdtQeN5gIh4HiAingeIiOcB62CwWEC8vLzQsmVL/Pfff4iIiNC7X7NmzTB06FCtoi+WplKpcPv2bav2wRzu3btn7S4Q6ZSSmgpHlXjEYYa9A+7dvatz/4/fUSBDx4jFN/F1W9B4HiAingeIiOcBIuJ5wDIYLBaA4OBgfPfdd3jy5IlwnZOTE3x9feHi4oLY2FghbAwMDESXLl0wcOBATJgwAQ46CjQQ0ZtHrdaeCp1pp135OZu7ox0yc6yz6KSUQ22W3hERERERERGZjqlWPkVFRWHgwIGQyWQAAGdnZ4wbNw5ffPEFnJ2dRfstW7YMR48ehVKpxMaNG/HixQssXbrUSj0nIkvSNRU6Z3CoSQLoHLGYbo7OEREREREREeUBg8V8mjdvnhAqOjk5YdOmTahfv77WfuXLl8cvv/wCHx8frF27FgDw559/onXr1ujUqZMluwwAsLOzQ+3atS1+3IKmVCpFw5tr1aoFe3t7K/aISDfns4FwVGkHi3Xr1tW5f3KGAs90BIt+evZ/m/E8QEQ8DxARzwNExPOA6e7evQuVSpWvNhgs5kNUVBTOnz8vbA8fPlxnqKhp3LhxuHTpkrBO2u+//26VYBHAGzkN297e/o18XFT4qaFrKrSD3uerVJm1BqMmR6WCz28j8DxARDwPEBHPA0TE84Bl2Fm7A4XZtWvXRNs9e/Y06n5ffPGFcPnhw4d4+fJlgfaLiGyPzjUWDUyFzrpde8Ri+MuUAu8bERERERERUV4wWMyHFy9eCJeLFi2KkiVLGnW/atWqibajo6MLtF9EZHvUamhVhTa4xqJEe8Sik1KBKFmaWfpHREREREREZCoGi/ng6OgoXJbL5Qb2FLOzE//ZJRJJgfWJiGyTGtrFW3IWZ8lJV/EWO54viIiIiIiIyEYwWMyHUqVKCZdTU1Px+PFjo+4XFhamtx0iejOpTJwKLZFIkOGQI1hUyCGB2iz9IyIiIiIiIjIVg8V8aNy4sWj04e7du426X0BAgHC5atWqKFGiRIH3jYhsi1qt1q4KbWd4jcWcIxbtoIZEmb+KXUREREREREQFhcFiPnh5eaF9+/bC9pYtW3Dp0iWD99m6dSuCgoKE7d69e5utf0RkO1TqrBGHmnIWZ9Ekge7g8ekLWQH3jIiIiIiIiChvGCzm08SJE+Hh4QEAUCqVGDp0KFavXo2EhATRfnFxcfj+++8xf/584bqaNWuiT58+Fu0vEVmHGtAesWhgKrSdjqnQAHDgWkQB94yIiIiIiIgobwzPw6NclStXDqtWrcLw4cORmpoKuVyOlStXYs2aNahYsSKKFSuGV69e4dGjR1Cp/n8KY4UKFbB27Vo4OPCfgOhtkJkph1SlFF9nYCq0o4OdzhGN5x/GFHjfiIiIiIiIiPKCIxYLQOPGjbF3717UrFlTuE4ulyM0NBSXL19GaGioECpKJBJ88skn2LdvH0qWLGmtLhORhT1PSNG6ztCIRUB31eicox6JiIiIiIiIrIXD5QpIlSpVsH//fpw7dw4nTpzAjRs3EBcXh9TUVLi7u6Ns2bJo1KgRunbtCj8/P2t3l4gszFEl17ouL8FiznUaiYiIiIiIiKyFwWIB+/DDD/Hhhx9auxtEZGMcldojDeW5VIXWFTw6KRksEhERERERkW3gVGgiIgvQFSwaqgoN6BmxyGCRiIiIiIiIbASDRSIiC9C1NmKepkIzWCQiIiIiIiIbwWCRiMgCdI5YzGUqdIaO4FFXO0RERERERETWwGCRiMgCdE+F5ohFIiIiIiIiKrwYLBIRWYCjjkAwt2CRxVuIiIiIiIjIljFYJCKygIJbY5FToYmIiIiIiMg2MFgkIrIAXVOhpUWKGLwPp0ITERERERGRLWOwSERkAbqCxQ51yhm8j65gUdeUaiIiIiIiIiJrYLBIRGQBuqZCly7ubvA+utdY5FRoIiIiIiIisg0MFomILMBJoT3SUC11NHgfToUmIiIiIiIiW8ZgkYjIAnSNWFQ7ageHmnQGizoCSiIiIiIiIiJrYLBIRGQButZGVDkYHrEocXbSuo4jFomIiIiIiMhWMFgkIrIAXcVb1I65TYXWXmNR18hHIiIiIiIiImtgsEhEZAG6AkGVQy5Toe10T4VWq9UF1i8iIiIiIiKivGKwSERkAbpGLKpyKd6SritYVMrBXJGIiIiIiIhsAYNFIiIL0Bks5lK8JV3HVGgnpRwqJotERERERERkAxgsEhFZgKNKV/GW3IJF7dulKgVUzBWJiIiIiIjIBjBYJCKygLxMhU6z0zFiUSGHGkwWiYiIiIiIyPoYLBIRWYDuYDGX4i16p0IXWLeIiIiIiIiI8ozBIhGRBegKFtW5BIsKiT2UEvFp2kmpgIrJIhEREREREdkABotERBbgqDJ9KjSgPWqRIxaJiIiIiIjIVjBYJCKyAF0jFpWOxgSL4lGNjqwKTURERERERDaCwSIRkQU4KnVUhc5lKjSgHSw6KRUMFomIiIiIiMgmMFgkIrIAqY6p0B7uLrneL1PHVGjGikRERP/H3n2HSVWefRz/Td++sPTeqzQLgh2wxI69RE00xhRjippiEk2x65tETUyiYsHYYxS7ooKgSBWk97rUXbb33Snn/WNlYOachd2dOTOz8P1cV65355mZcx6vlx3Y3973cwMAgFRAsAgACWDVCj2sV4dDvs9csUgrNAAAAAAgNRAsAkAC9Eo3f9w6DnHG4r3nDLUOFkNx3RoAAAAAAK1CsAgACeAORJ6x2OB0Sw7HQd/z/eN7WwxvCajWH4z7/gAAAAAAaCmCRQBIAFOwGHV2opXO2T7LMxanLMiP694AAAAAAGgNgkUASABP1BmLzQkWJeszFu+fsSFu+wIAAAAAoLUIFgEgAaqraiMeNzhbHywCAAAAAJAKCBYBwGar91TKG2x5K7RkFSwGJKZCAwAAAABSAMEiANjsl++ukjfUylZot/l1nqhrAQAAAACQDASLAGCzouoGeaPPWHR6mnh1JKvX0Q4NAAAAAEgFBIsAYLNjerYzB4vNrFi0ep0vQMUiAAAAACD5CBYBwGZOh2JohaZiEQAAAACQmggWAcBmhmTRCt264S2S5A0RLAIAAAAAko9gEQASoLWt0FbBIq3QAAAAAIBUQLAIAAkQXWVoFRhasTxjkVZoAAAAAEAKIFgEALsZhnzxrFgkWAQAAAAApACCRQCwmTNobl0mWAQAAAAAtHUEiwBgM4/fHAQ2OJvXCm05vMUiqAQAAAAAINEIFgHAZk6rYJGKRQAAAABAG0ewCAA2cwfMQaC/mcEiw1sAAAAAAKmKYBEAbOayCBYbnFQsAgAAAADaNoJFALCZVcUirdAAAAAAgLaOYBEAbBbvYJHhLQAAAACAVECwCAA2s26Fbt5UaM5YBAAAAACkKoJFALDZ2p0lpjVaoQEAAAAAbR3BIgDYbNuectNa84NFKhYBAAAAAKmJYBEAbOYNxXl4S4AzFgEAAAAAyUewCAA2sxq20uBsZrDothjeYhFUAgAAAACQaASLAGAzy2CxmRWLVgGkj6nQAAAAAIAUQLAIADbzhsxBoFWLsxXrVmgqFgEAAAAAyUewCAA2s65YbGawaNEKzfAWAAAAAEAqIFgEAJvFdMaiRQDpsaiABAAAAAAg0QgWAcBmVhWGzT1j8fSjepivRys0AAAAACAFECwCgM1iGd4S8tAKDQAAAABITQSLAGAzb6j1FYsOl0t+pytijWARAAAAAJAKCBYBwGaxnLHodJjPWSRYBAAAAACkAoJFALBZR4sB0M2dCp2X4TUFi1ZBJQAAAAAAiUawCAA26+pzmNaa2wr93eN6UbEIAAAAAEhJBIsAYDN3DK3Qx/duZwohCRYBAAAAAKmAYBEAbOYJtH54i8vhsKhYpBUaAAAAAJB8BIsAYDOPRRBoeJp3xqLDIdVTsQgAAAAASEEEiwBgM2/IHCzecNLAZr+f4S0AAAAAgFREsAgANnNbtELfftawZr3X4XBwxiIAAAAAICURLAKAzayCxazsjGa/n6nQAAAAAIBURLAIADZzByxal73eZr/fKljcW1Uf67YAAAAAAIgJwSIA2MwVaIh47He6JGfzP36jg0VPKKg/f7Q2LnsDAAAAAKC1CBYBwGYVFTURjxuc7iZeaS06WJSkvaWVMe0JAAAAAIBYESwCgI3Ka/2mMxGjh7EcitXrPX7OWQQAAAAAJBfBIgDYqKCqXt5Q5BmLLQ8WzRWLnqj2agAAAAAAEo1gEQBsFAwZ8gajgkWnOSg8GKtWaDcViwAAAACAJGtZ2UwMSktLtWnTJu3YsUNlZWWqqamR0+lUZmamcnNz1bdvX/Xv319ZWVmJ2hIA2C5gFSy2sGKx3k3FIgAAAAAg9dgWLAYCAc2dO1effvqpFixYoPz8/EO+x+FwaNCgQTrhhBN0xhln6LjjjrNrewCQEIGQocwYW6HrLV7vDlCxCAAAAABIrrgHi0VFRXrllVf02muvqbi4OLxuGIakxvDwwMf71gzDkGEYWr9+vdavX6/nn39ePXv21BVXXKGrr76aSkYAbZJlK3RLz1i0aJ12NNTHtC8AAAAAAGIVt2CxtLRUTz31lF555RXV1zf+wHtgeLiPYRjy+XzKzs6W0+lUbW2tqqurw6898D07duzQ3/72Nz3xxBO65pprdNNNNyk7OzteWwYA21m2Qjtb2gptUbHYQMUiAAAAACC54hIsvvLKK3rkkUdUWVkZEQx26NBB48eP17BhwzR48GANGTJEeXl58ngiq28CgYD27Nmj/Px8rVy5UsuWLdOCBQtUVVUlSaqurtaUKVP02muv6ZZbbtG1114brnwEgFS2ubhaA4ORIWDLW6HNFYvd0mLaFgAAAAAAMYspWNy+fbt+9atfadmyZeFAsWPHjrr44ot11llnaeTIkc3bhNutnj17qmfPnjrxxBMlNYaNixcv1nvvvaePPvpIlZWVKi8v1/3336/33ntP999/vwYMGBDL9gHAdu3SPfKazliMfSq0JxCweCUAAAAAAInjbO0b33rrLV100UXhUPGoo47SI488olmzZun2229vdqjYFLfbrXHjxumee+7RnDlz9Kc//UkDBgyQYRhatmyZLrvsMr3xxhsx3QMA7OZ0OGJvhbYIFr1BWqEBAAAAAMnV6mDxjjvuUHV1tXr16qW///3veuONN3TOOefIbXEWWKx8Pp+uuuoqvf/++/rLX/6iPn36qLa2VnfddVfc7wUA8WSEQrEPb7F4vSfQENO+AAAAAACIVauDxczMTP3617/W+++/r7POOiueezqo888/Xx988IHuuOMOZWRkJOy+ANAaRiAopyIHWcXjjEXVMxUaAAAAAJBcrS4v/Oijj9SpU6d47qXZXC6Xrr/+ep133nlJuT8ANJvfXFloGRQehNXr567bo++3elMAAAAAAMSu1RWLyQoVU20PAHBQDeZgMeiOPVj0BgOq8wdbvS0AAAAAAGLV6mARAHBojgbzkJXj+rfslyJWrdO+oF81BIsAAAAAgCSyJVg8++yz9dRTT6mgoMCOywNAm+H015kXfb4WXcOqYtHHVGgAAAAAQJLZEixu3bpVjzzyiCZNmqSbbrpJH330kfx+fggGcASyqFg0PLG3QvuCfhmGxYsBAAAAAEiQVg9vaY5gMKg5c+Zozpw5ysnJ0QUXXKCLLrpII0aMsPO2AJAyHBZnLIZaGCyeNqybac0X9MsQySIAAAAAIHlsqVj87W9/q+HDh0uSDMOQYRgqLy/XSy+9pMsvv1wXXHCBpk6dqpKSEjtuDwCpwzJY9LboEueO6W1a8wYDVCwCAAAAAJLKlmDxu9/9rt544w29//77uummm9StW2O1zb6QcePGjXrooYd06qmn6ic/+YlmzJihYJAhBAAOPw6LYyBa2gqdkZluWuOMRQAAAABAstk6FXrAgAG6/fbb9dlnn+n555/XJZdcoszMzHDAGAgENHPmTN1yyy069dRT9dBDD2n9+vV2bgkAEsrpN1csGi2sWAx5zcNeOGMRAAAAAJBstgaLBxo3bpzuv/9+zZ07V3/961916qmnyuVyhUPGkpISTZ06VZMnT9all16ql19+WRUVFYnaHgDYw6IV2vC2NFg0v94X8HPCIgAAAAAgqWwd3mLF5/PpvPPO03nnnafi4mJ98MEH+vTTT7V48WIFAgFJ0qpVq7R69Wo99NBDOv3003XZZZfpxBNPTPRWASBmzjgMb7EKIhvPWCRaBAAAAAAkT8IqFq106NBB1113nZ5//nnNmzdPf/nLXzRmzBhJjecx1tfX68MPP9SNN96os846S1OnTlV1dXUytwwALWN5xmLsrdDeEBWLAAAAAIDkSmqwuM/atWv1/PPP69lnn9WyZcvkcDjC/9vXKr19+3Y99NBDmjRpkqZNm5bsLQNAs1iesehtYcWiRYWj75sKbwAAAAAAkiXhrdD7bNy4Ue+++67ee+897dq1K+K5fe19w4YN05lnnqmvv/5ac+fOVTAYVHl5uX73u99p+fLl+uMf/5iMrQNAswXr601rLa1YlMOhepdbvuD+MJHhLQAAAACAZEtosFhQUKD3339f77zzjtatWydJpjPC8vLydP755+uSSy7R0KFDw+t79+7VK6+8oqeffloNDQ169dVXdfTRR+vCCy9M5H8CALTIuh2lmhS11uJgUVK9y2MOFmmGBgAAAAAkke3BYlVVlaZPn653331XixYtUigUkhQZKLrdbp166qm65JJLNGHCBLnd5m116tRJP/vZzzRixAjdfPPNkqSXX36ZYBFASuuZbj5xosbZso/ebWU1GubySKoNrzUOb4l1dwAAAAAAtJ4twWIgENDs2bP1zjvvaNasWWr4ZipqdHXikCFDdPHFF+vCCy9UXl5es649adIk9enTR9u2bdPGjRvjvncAiCuLMxZ7dc5t0SVKa/yqd0Wes9hYsQgAAAAAQPLYEiyedNJJqqiokNQYJu4bwiJJ7dq1C7c6Dx8+vFXX79atm7Zt22YKKgEg1Rj15mDRm57WomsEQoYaXJEf176gedo0AAAAAACJZEuwWF5eHhEmulwunXzyybrkkks0ceJEeSwmnLZEcXGxJGnQoEEx7xUA7LRkU6GiD2xwp/ladI1AyLCuWOSXKwAAAACAJLLtjEXDMDRo0CBdcskluvDCC9WhQ4e4Xfvmm29Wjx491L9//7hdEwDs0CfLZVpLz2p5xaJ1sBjT1gAAAAAAiIktweI111yjiy++WCNGjLDj8jrnnHNsuS4AxFumETKttc/NatE1AkFzsOgNBlQX084AAAAAAIiNLcHiXXfdZcdlAaBNMQxD2wrKzE94vS26TiAUUr3FGYu1VCwCAAAAAJLImewNAMDhasXuSnlDAfMTLQwWh3TOUoNFKzQAAAAAAMlk2xmL0QzDUGlpqRoaGhQKmVsDD6Z79+427QoA7PPr91ZrcjD2YHHyUV012xQsBmSIkkUAAAAAQPLYGixWV1drypQpmjlzpjZv3qxgMNjiazgcDq1evdqG3QGAvQqq6uWNQ7DocjpMrdAuIyTDb3FtAAAAAAASxLZgcdOmTbrpppu0e/duSY0ViwBwJHFI8sShFVqSaXiLJKmhoeWbAgAAAAAgTmw5Y7G+vl4///nPtWvXLkmEigCOTA6H4lKxaBiGGlzm3wM5GupbuzUAAAAAAGJmS8XiBx98oI0bN8rhcMgwDI0ePVpXXnmlhg0bpqysLDmdzIwBcGTwWg1ZaXGwKNPwFkky6ggWAQAAAADJY0uw+N5774W/vuiii/TAAw/I4XDYcSsASFkOOUxToYMOp1wuV4uuY8i6FXrplkINGDEgli0CAAAAANBqtpQObtmyRZLk8Xj0u9/9jlARwBHJqhXaqqX5UAzDOli8572Vrd4bAAAAAACxsiVYLCoqksPh0NChQ5WTk2PHLQAg5TlkDhYth7AcQsgwVO82vy9YTys0AAAAACB5bAkWMzMzJUk+n8+OywNAm2GqWHS2omJR1oFkWoCp0AAAAACA5LElWOzTp48Mw9D27dvtuDwAtAkOh/mMxda1QhuWwaLPajAMAAAAAAAJYkuwOGnSJElSQUGBvvrqKztuAQApzyFz+NeaYFGS6ixaoQkWAQAAAADJZEuweOWVVyo3N1eS9OCDD6qhgXY9AEcey+EtrWiFbpfuUZ3La1pPCxAsAgAAAACSx5ZgMTc3V3/6058kSatWrdIPfvAD7dixw45bAUBK88ahYtHhcFhWLKYF+aUNAAAAACB5WteTJ+nxxx8/5GsGDhyoDRs2aMGCBfrWt76loUOHatiwYcrNzVV6enqz73XLLbe0dpsAkDRV9UGLMxZbPhVaknp2bmda81GxCAAAAABIopiCRYfDccjX7XtNMBjU6tWrtXr16hbfi2ARQFu0qqAyLq3QkhTwWrRCc8YiAAAAACCJWh0sSo2TSu18vaRmhZcAkIp6t0s3B4utHN4S8PpMa2kBWqEBAAAAAMnT6mBx7Nix8dwHAByWzK3QrQwWPeaKRaZCAwAAAACSqdXB4gsvvBDPfQDAYSleFYtBj1XFIsEiAAAAACB5bJkKDQCQnKGgXEYoYi2+ZyzSCg0AAAAASB6CRQCwiduiVbm1U6FDFmcs0goNAAAAAEimlA8WGxqoyAHQNtVW1ZnW4ju8hWARAAAAAJA8MU2Fbi7DMFRaWqq6ujoFg0HL14RCIQUCAfn9ftXU1Gjv3r366quv9MEHH+jLL79MxDYBIK78deZg0U8rNAAAAADgMGFrsLh8+XL961//0rx586g8BHDEcQcCprX6eLZCU7EIAAAAAEgi24LFTz75RL/4xS8UCoVkGEarr+NwOOK4K/sFg0F9/PHH+uSTT7Ry5Urt3btXwWBQHTt21IgRI3TBBRfo9NNPl9OZ8l3oAGLkDVmdsdi6j92OHXJMa5yxCAAAAABIJluCxaqqKt15550KBoOWweC+tejA8cDX+nw+DR48WBMnTrRji7ZYvny57rrrLq1du9b03M6dO7Vz505Nnz5dY8aM0d/+9jf16NEjCbsEkCjeoLlisbXB4kXH9DGtpQWoBAcAAAAAJI8tweJbb72l8vJyORwOGYahM888U9/61rfUsWNHvf3225o2bZrcbreeeOIJuVwulZWVae3atZo2bZoKCwslSVlZWXr88cfVuXNnO7YYd/PmzdPNN9+smpqa8FqnTp3Uu3dv+f1+rVmzRn5/Y3XR0qVLdd111+nVV19tM/99AFrOqqKwtcFitw5ZCjicchuhA65vDi4BAAAAAEgUW/px586dG/766quv1j/+8Q+df/75Gj9+vCZPniypsWXYMAydcMIJOuecc3Trrbfq/fff16RJkyRJxcXF+sMf/mDH9uJu27ZtEaFi9+7d9cQTT+iLL77Qyy+/rNdff11z587Vd77znfB7du7cqXvuuSdZWwaQAJYVi60c3iJJde7IAS4MbwEAAAAAJJMtweK6desaL+506uabb454buTIkeHzBRcuXBjxXHZ2th599FENHjxYhmFo9uzZWrZsmR1bjKu77747HCr27dtXL7/8siZOnBjR2p2Tk6Pf//73uvbaa8Nrn3zyibZu3Zro7QJIEOtW6NYNb3FIqot6L63QAAAAAIBksiVYrKiokMPhUJ8+fdSpU6eI5zIzM9WzZ09J0ooVK0zv9Xq9+tnPfhZ+/MEHH9ixxbhZsWKF5syZI6kxSP2///s/devWrcnX//znP5fX21h1ZBiGZs2alYhtAkgCbyh+Zyw6HA7VuyODRVqhAQAAAADJZMsZi7W1tZLU5PmB/fv3V35+vtavX2/5/IQJE5SVlaXq6mqtWrXKji3GzZtvvhn++qKLLtKoUaMO+vqcnBzdfvvtKi4uVm5urkaOHGn3FgEkSTxboRsrFqNaoQMNqg8E5XO7WnVNAAAAAABiYUuwmJ2drbKyMtPU53169+4tSSotLVV5eblyc3MjN+V2q1evXlqzZk3KtwofWHF4xRVXNOs9119/vT2bAZBS4jkV2uGQaqMqFtOCDZq5oUjnDOvSqmsCAAAAABALW1qh27dvL8MwwhOeo/Xq1Sv89caNGy1fk5WVJUmqrKyM/wbjZM+ePdq1a5ckKT09/ZDVigCOLN5Q/KZCS1J91BmLvkBAC/LLWn09AAAAAABiYUvF4lFHHaXNmzdr27ZtKigoUJcukdU0+yoWpcYzCo899ljTNfbs2SNJTVY9poJ9Q2qkxvZul6uxHXHHjh1666239Nlnn2nnzp2qra1V586ddfzxx+uyyy7T0UcfnawtA0ig+LZCO8yt0MEGpe4nJAAAAADgcGdLxeL48eMlNYaCDz74oOn5oUOHhr+ePn266fl169Zpx44dcjgcpjbpVJKfnx/+unPnzgqFQpoyZYrOPfdc/eMf/9DKlStVWlqquro65efn63//+5+uuuoq3XHHHaqvr0/izgEkQlynQjukuuhW6IA/pX/5AgAAAAA4vNlSsXjOOefo4YcfVkVFhT766CMVFBTohz/8oU466SS53W516dJFgwYN0oYNG7R06VI9+eST+uEPfyhJKiws1O9+9zsZhiGHw6Hhw4fbscW4KCoqCn+dkZGhe+65Ry+//HJ4beDAgerQoYOKioq0adOm8Pq0adOUn5+vqVOnhidEJ0Mg0PYnygaDwYM+BpKpqTMWW/O9FwwGza3QQb+CodBh8b0cCz4HAPA5AIDPAQB8DiSHLcFiRkaGfvzjH+vBBx+Uw+HQkiVL9KMf/UgvvPCCjjvuOEmNg07uu+8+SdKjjz6qV155RXl5edq4caP8/v3nkn3rW9+yY4txUVFREf76iy++CD8+44wzdMcdd0ScJbl9+3bdc889mj17tiRp8eLFuvfee3X33XcndtPfCIVCWrZsWVLubaeVK1cmewtAmDdkHSy25ntvT3VADe7IX0R4QwEV7t6lZctqW73HwxGfAwD4HADA5wAAPgcSw5ZWaKlx8vG1114b0aZ34NmKV111lYYNGxZ+fs+ePVqzZo0aGhrCrxkyZIguvPBCu7YYswP3ui9UvPLKK/X4449HhIpS48CaJ554QmeffXZ47b///a/Wr1+fmM0CSDhv0GJ4SyvPWJQcqrNoo/b4zfcAAAAAACARbAsWJenOO+/UlClTNHbsWKWnp6tz587h5zwej5566imNHj06HC4e+H8HDRqkJ554Qm63LUWVceFwOCIe9+rVS3feeadpfR+n06l77703PPHaMAy9+OKLtu8TQHJYtUJHtzO3RL3b/F53gGARAAAAAJActqd2p5xyik455RRVVVWZnuvUqZNefvllffLJJ5o9e7YKCwvVrl07nXLKKTr//PNTOlSUGlu+D3TVVVcd8szE7OxsnXvuufrvf/8rSZo7d65t+zsYp9OpkSNHJuXe8RQMBiPKm0eMGBGezg0k21tNtEKPHj26xdfqWd2gt1zmz5euubmtut7hhM8BAHwOAOBzAACfAy23YsUKhUKhmK6RsORuX5VeNJfLpbPPPjuiRbityMzMjHh8zDHHNOt9Y8aMCQeL27dvV0NDQ1KGuKR6cNsaLpfrsPzvQttjGEaTw1ta82e0S67bNBVakvw1tfyZj8LnAAA+BwDwOQCAz4HEsLUV+nDXvn37iMd5eXnNel+HDh0iHpeVlcVrSwBSRK0/KJ/lGYsxtEJbtFHXVdW0+noAAAAAAMQi4dFtQUGBCgoKVF5erpycnHALX21trbxeb5sqUx00aFDE4wOnRB9MIBBZxUSCDhx+XE6HZbB43Yn9W33NOotWaI+/weKVAAAAAADYLyGJVn5+vqZOnapZs2Zp9+7d4fWTTz5ZU6ZMkSTNmDFD9957r6644grddNNNys7OTsTWYjJkyJCIx1u3btWoUaMO+b49e/aEv05LS1O7du3ivTUAKcAqWPz56UNbfT2rVmhPQ32rrwcAAAAAQCxsbYU2DEOPPfaYzjnnHL3yyivatWuXDMMI/+9Au3btUllZmaZMmaILL7xQK1assHNrcZGXlxcRLn766afNet+iRYvCXw8fPlxOJx3pwOHIZzGxOTMn0+KVzWPVCs1UaAAAAABAstiaaP3iF7/QE088oWAwaAoSHQ5HxOMdO3aEv969e7duvPFGbdq0yc7txcXkyZPDX8+cOVMbN2486Ot3796tGTNmhB+fddZZtu0NQHJZDW+Rz9fq69W5za3QbioWAQAAAABJYluw+Pjjj2v69OnhxyNHjtRdd92lV1991fL1F1xwgY499lgZhiGHw6GKigrdcccddm0vbi6++GLl5uZKkvx+v+644w5VVlZavrahoUG/+c1v5Pc3VhhlZWXpkksuSdheASSWVSt0TMGiRcUiZywCAAAAAJLFlmBxz5494bMTJen222/X66+/rmuuuUZjxoyxfM/YsWP10ksv6c477wyvrVy5UrNnz7Zji3GTl5en3/72t+HHK1as0Le//W3Nnz8/4nWbN2/W9773PS1YsCC89otf/CIcSgI4/FgGi54YpkJbnLHo9lOxCAAAAABIDluGt/zvf/9TfX29HA6HLr/8ct10003Nfu+1116rHTt2aOrUqZKkDz74QKeddpod24ybiy++WFu3btUTTzwhSVq/fr2++93vqmvXrurVq5fKy8u1fv36iPdMnjxZ1113XTK2CyBBooPFOpdHaVHHQLSE1VTo9duLW309AAAAAABiYUvF4pw5cyQ1nqP4s5/9rMXv/8EPfiC3uzHzbAtDXCTp1ltv1f3336/27duH1/bs2aNFixZFhIput1s333yzHnzwwWRsE0ACRQeLQa85GGwJq6nQXTyGxSsBAAAAALCfLRWLO3bskMPh0MCBA9WxY8cWvz8vL0+9e/fW5s2bVVBQYMMO7XHppZfqjDPO0DvvvKMZM2Zo8+bNKikpkcfjUd++fXXCCSfo6quvVq9evZK9VQAJEB0sBiyGr7SEVcVipmExIAYAAAAAgASwJVgsLy+X1BgQtlanTp20efNmNTS0rcEEubm5uu6662hzBmCaCh3wxBYs1lsMb3G3sc9IAAAAAMDhw5ZW6OzsbEn7A8bWKC5uPDeM4SYA2qroikW/RStzS1i1QjO8BQAAAACQLLYEi926dZNhGNqwYUOrwsXdu3dr06ZNcjgc6t69uw07BAD7mYLFGCsW6yxaqYtLqmK6JgAAAAAArWVLsHjSSSdJkoLBoJ599tkWv//vf/+7DKNxIMG4cePiujcASBRfIKoVOsaKRatW6LQArdAAAAAAgOSwJVi88MIL5XQ2Xvrpp5/W9OnTm/3eJ598UtOmTQs/Pu+88+K+PwBIBHMrdKzDW8zBYrYY3gIAAAAASA5bgsWBAwfq4osvlmEYCgaDuvXWW3XHHXdowYIF2rt3r+n1NTU1mjVrlm644QY9+uijkiSHw6GzzjpLQ4cOtWOLAGA781ToWM9YNAeT3qh7AAAAAACQKLZMhZaku+66S2vXrtWqVatkGIbefvttvf322xGvWbRokcaPH6/KykqFQiFJCrdA9+rVS3fffbdd2wMA25mCRU/8W6F9flqhAQAAAADJYUvFoiSlpaXpmWee0SmnnCLDMCL+53A4JEn19fUqKytTMBgMB4qSNHz4cD333HNMhAbQZhVXNSgtKli0amVuCaup0D7OWAQAAAAAJIltwaIktWvXTlOmTNFDDz2kIUOGhNcPDBkP1LlzZ/3mN7/Rq6++qh49eti5NQCwVVV1rWltd71h8crm8zvdCskRsRZdFQkAAAAAQKLY1gp9oMmTJ2vy5MnKz8/XkiVLtG3bNlVUVMjv9ys3N1ddunTR0UcfrWHDhoWHvgBAWxaqrTOt9e7SLraLOhyqd3uUfkCVoi9AsAgAAAAASI6EBIv79O7dW717907kLQEgKYJ19aY1w+uL+bp1rshgMY1WaAAAAABAklAeCAA2CNaZKxZDPvNU55b45yUjTZOh2zlDMV0TAAAAAIDWSmjFYktMnTpV69atk8Ph0P3335/s7QBAi5SXV5nWYq1YvHJMd1VEDYBx1JsDTAAAAAAAEiFlKxbnzJmjadOmadq0acneCgC02O69Faa1Omdsv8vJy/Aq4I2sWHQ30AoNAAAAAEiOlA0WAaAty3GYW5TroqoNW6PKEXmNNKZCAwAAAACShGARAOxg0aLcpUNO7JeNCifTCRYBAAAAAElCsAgANvhs1S7TWqzDWyTJm5Ue8djHVGgAAAAAQJIQLAKADZZsLjSt1Tpin5dVEnJFPPZSsQgAAAAASBKCRQCwgc8i8KuPcXiLJFUr8hrpgQZtL62J+boAAAAAALQUwSIA2MAqWAx6Y2+FrnObB8Dc98GqmK8LAAAAAEBLESwCgA18AXOwGPDEI1g0X+OV+Ztjvi4AAAAAAC1FsAgANvAFA6a1YByCxQaXuWIxLcgAFwAAAABA4hEsAoANLFuh41GxaBEspjPABQAAAACQBASLAGADr1XFYlzOWDRfIz1kvhcAAAAAAHYjWAQAG9hVsVhvWbFIKzQAAAAAIPHcrX3jW2+9FcdtmBUUFNh6fQCwk3Ww6Iv5ulZTodMtBsUAAAAAAGC3VgeLd9xxhxwORzz3AgCHDctgMR6t0C7zNdJCBIsAAAAAgMSjFRoAbJDYVmiCRQAAAABA4rW6YlGSDMOI1z4A4LBiFSwGLNqYW4pWaAAAAABAqmh1sDhjxox47gMADiu2tUJbTIXOYHgLAAAAACAJWh0s9ujRI577AIDDis+iijAerdC1FsEiU6EBAAAAAMnAGYsAYANvMGBaC3pib4W2DBYDBIsAAAAAgMQjWAQAG9g1vMUqWDRqa2O+LgAAAAAALdXqYPGFF15QKBSK515axDAMvfjii0m7PwAcjGWwGIfhLbVun2kt3U/FIgAAAAAg8VodLN533326+OKLtWDBgnjup1kWLVqkSy+9VPfdd1/C7w0AzRHdCl3n8kgOR8zXpRUaAAAAAJAqWh0sduzYUevWrdP111+vH//4x9qwYUM892Vp6dKluvHGG/Wd73xHq1evVocOHWy/JwC0RnTFYr3Lo9hjxaaCxfo4XBkAAAAAgJZpdbD4zjvv6NRTT5VhGJo1a5YmT56sH/3oR/rss89kGEbcNlhfX6/33ntPV111la6++mrNnTtXhmFo7NixmjZtWtzuAwDxsrm42jJYnDSwY8zXtmyFpmIRAAAAAJAE7ta+MS8vT0899ZReffVV/e1vf1NFRYVmz56t2bNnq3Pnzjr99NN12mmnafz48fL5zD8IH0x5ebm+/PJLzZo1SzNmzFBNTY2kxnMV09PTdeutt+q6666TIw5thQAQb3urGiyDxX55GTFfm1ZoAAAAAECqaHWwuM9VV12lM888Uw899JDee+89hUIhFRYW6pVXXtErr7wil8ulPn36aPDgwRo0aJA6dOig7OxsZWZmyuVyqa6uTmVlZdq1a5e2bdumVatWKT8/P1z1uO//OhwOXXjhhbr11lvVrVu3WLcNALZxOhzmYNEd88etJOtgMY1gEQAAAACQBHH5SbdDhw56+OGHddNNN+mxxx7TzJkzwxOjA4GANm/erM2bN+ujjz5q1vUObKV2uVw666yz9MMf/lBDhw6Nx3YBwFYOh/UZi/HAGYsAAAAAgFQRnxKabwwaNEiPP/64tm/frpdfflnvv/++CgsLI4LCfe3LB1YiHvh4nx49eujCCy/UpZdeqp49e8ZzmwBgK6dD8gUip0LHK1h84sqj1fCYW97Q/uvTCg0AAAAASIa4Bov79OrVS7/5zW/0m9/8RsuXL9e8efO0bNkybdq0Sbt27ZLfv7+SxzAMeTwe9e7dWwMGDNAxxxyj8ePHU50IoM2ybIWOU7B4/rAuqnV75W0gWAQAAAAAJJctweKBRo0apVGjRoUfG4ahqqoq1dTUyOFwKDMzU5mZmXZvAwASxs5g0et2qtbtVW5DTXgtPdAgwzAYaAUAAAAASCjbg8VoDodD2dnZys7OTvStASAh7Dxj0eVwmM5ZTA/Ua3VBlY7qyucqAAAAACBxnMneAAAcbpyS0qKCxQZXfH6P43Q4VOv2RaylBxpUUedv4h0AAAAAANiDYBEA4swRNbhFil/FYpbPZVGxyBmLAAAAAIDEI1gEgDhz+utNa/UujzK8rpiv7bBshW6QEfOVAQAAAABoGYJFAIizzbtKTWsNLnfchqtYnbFokCwCAAAAABKMYBEA4uy9r/NNa/Xu+LRCS1JdVLCYEWiQYYTidn0AAAAAAJqDYBEA4mzX3nLTWrzOWJTMFYuNNzC3XwMAAAAAYCeCRQCIs/SQfcNbJOtg0VVXF7frAwAAAADQHASLABBnvoDftBbPYLHO7TOtOetq43Z9AAAAAACag2ARAOLMF7Q3WLSqWHTUUrEIAAAAAEgsgkUAiLNkBIsFe8vidn0AAAAAAJrDlmDxww8/1NSpU1VUVGTH5QEgpWUYiT9j8dPl5knUAAAAAADYyZZg8Y033tBDDz2kCRMm6KmnnrLjFgCQso7vnGFaO3Zg57hdv9bijMWde0rjdn0AAAAAAJrDlmBx/fr1MgxDwWBQxxxzjB23AICUlRYyt0KP7NMpbte3qlj0+uvjdn0AAAAAAJrDlmCxrKws/PXw4cPtuAUApCyHv8G05s0wVxm2llWw2C/NEbfrAwAAAADQHLYEi50772/5OzBkBIAjgavBHCwaXnuDxQk9MuN2fQAAAAAAmsOWYPGCCy4Ifz116lQ7bgEAKctpESzKZw4DW8vqjEUfrdAAAAAAgASzJVj88Y9/rJNOOkmGYeiFF17Q/fffr5KSEjtuBQApxypYNLxpcbt+rcccUjrrCRYBAAAAAInltuOi+fn5+tWvfqXMzEx9/PHHeuGFF/Tiiy9qwIABGjp0qPLy8pSVlSWHo3lngt1yyy12bBMAbOG0OGMxvhWL5mu56uvidn0AAAAAAJrDlmDx/PPPD4eGDodDhmHIMAxt2LBBGzdubPH1CBYBtCXOBnP1oOGL5xmL5mu56mrjdn0AAAAAAJrDlmBRkgzDaNF6U5pb1QgAqaK8vNq8aPPwFjcViwAAAACABLMlWBw7dqwdlwWANqGyvMq0Ft+KRXOwWLi3PG7XBwAAAACgOWwJFl944QU7LgsAbUIXi+MUc3Iz43Z9q2Bx667iuF0fAAAAAIDmsGUqNAAcyRqqzW3J7dtnxe36l40bYFpLC1gMjAEAAAAAwEYEiwAQZ3uKzG3J3vT0uF1/8nF9TWvpVpOoAQAAAACwkW3DW5pSUFCggoIClZeXKycnR6NHj5Yk1dbWyuv1yuVyJXpLABA3eyrq5A0GTOu+zPgFi4bPp5Accmr/MKz0QIMMw2DgFQAAAAAgYRISLObn52vq1KmaNWuWdu/eHV4/+eSTNWXKFEnSjBkzdO+99+qKK67QTTfdpOzs7ERsDQDiqrTWr7SguXrQnZkRv5s4HKpze5RxQPtzeqBehiGRKwIAAAAAEsXWVmjDMPTYY4/pnHPO0SuvvKJdu3bJMIzw/w60a9culZWVacqUKbrwwgu1YsUKO7cGALbwuZ1KC/gj1gIOp+SO3+9xQoZU646cMp0eaFAo6nMVAAAAAAA72Ros/uIXv9ATTzyhYDBoChKj2/V27NgR/nr37t268cYbtWnTJju3BwBx53M7TRWL0SFgrEKGYZoM3RgsxvU2AAAAAAAclG3B4uOPP67p06eHH48cOVJ33XWXXn31VcvXX3DBBTr22GPDZ4RVVFTojjvusGt7AGALt9NpmtBc5/bE9R7BkHWwaIhkEQAAAACQOLYEi3v27AmfnShJt99+u15//XVdc801GjNmjOV7xo4dq5deekl33nlneG3lypWaPXu2HVsEANtEt0LXubxNvLJ1Gluho4PFeioWAQAAAAAJZUuw+L///U/19fVyOBy6/PLLddNNNzX7vddee62++93vhh9/8MEHdmwRAGyTbnPFYsgwVGfVCk2yCAAAAABIIFuCxTlz5khqPEfxZz/7WYvf/4Mf/EDubwYdMMQFQFtjPmMxvhWLTbdCAwAAAACQOLYEizt27JDD4dDAgQPVsWPHFr8/Ly9PvXv3lmEYKigosGGHAGAfUyt0nIPFpoe3EC0CAAAAABLHlmCxvLxcUmNA2FqdOnWSJDU0NBzilQCQWqIrFutc8W2FzvC4TJOmvaGAQoFgXO8DAAAAAMDB2BIsZmdnS9ofMLZGcXGxJCk3NzcuewKARDGfsRjfisVT+newbK82amrieh8AAAAAAA7GlmCxW7duMgxDGzZsaFW4uHv3bm3atEkOh0Pdu3e3YYcAYBPDMAWLWTlZcb1Fls9tGVYaNbVxvQ8AAAAAAAdjS7B40kknSZKCwaCeffbZFr//73//u4xvzgobN25cXPcGAHYqLasyrTV4fRavjI1VxWKIikUAAAAAQALZEixeeOGFcjobL/30009r+vTpzX7vk08+qWnTpoUfn3feeXHfHwDY5bkvNpjWttWG4n6f7l3bm9b27C2L+30AAAAAAGiKLcHiwIEDdfHFF8swDAWDQd1666264447tGDBAu3du9f0+pqaGs2aNUs33HCDHn30UUmSw+HQWWedpaFDh9qxRQCwRXlZpWmtPs5nLErS3qDLtLZic2Hc7wMAAAAAQFPcdl34rrvu0tq1a7Vq1SoZhqG3335bb7/9dsRrFi1apPHjx6uyslKhUGNFz74W6F69eunuu++2a3sAYIuskN+0VueKf7A4sFdH09qrczfq6hvifisAAAAAACzZUrEoSWlpaXrmmWd0yimnyDCMiP85HA5JUn19vcrKyhQMBsOBoiQNHz5czz33HBOhAbQ5WUbAtFbn9sT9PkFfmmmtqtxcLQkAAAAAgF1sCxYlqV27dpoyZYoeeughDRkyJLx+YMh4oM6dO+s3v/mNXn31VfXo0cPOrQGALcbkmasTM3PjOxVakqpd5rAyeho1AAAAAAB2sq0V+kCTJ0/W5MmTlZ+fryVLlmjbtm2qqKiQ3+9Xbm6uunTpoqOPPlrDhg0LD30BgLZod2G5ae2ovp3jfp/Pdlbroqg1gkUAAAAAQCIlJFjcp3fv3urdu3cibwkACdXd4jjFOovqwljt9pt/CUOwCAAAAABIJFvKAx999FEtX77cjksDQEpz1tWa1rp3aRf3+9R7faa19EB93O8DAAAAAEBTbKlYfOKJJ/Tkk0+qY8eOmjhxoiZNmqQTTzxRXm/8J6MCQCpxNpjDPVd6etzv4/eah7dQsYjDQVmtX6sLKtWrXbp6tYv/9w4AAACA+LG1FXrv3r16/fXX9frrrystLU0nnniiJk2apIkTJyovL8/OWwNAUjjr68yL6eYQMFaBNHPgkum3uDfQhqwpqNTZU+Zre1mdMjwuvXTNMZo8omuytwUAAACgCbYEixMnTtT8+fNVW1sbnvxcW1urmTNnaubMmXI6nRo5cqQmTZqk008/XQMGDLBjGwCQcMXFlaY1wxf/YDGjXY5pLdNPKzTatn/P26btZY0BeY0/qHs/XU+wCAAAAKQwW4LFf//73/L7/Vq0aJFmz56tzz//XFu2bAmHjMFgUMuWLdOyZcv0yCOPqFevXpo0aZImTZqk4447jsnQANqsrzbs0bVRa+U2fNTWWrRCZxAsoo17fM6WiMeLd5Sr3Z0fKsPj0i8nDNAvTukvp9ORpN0BAAAAiGZbK7TH49GJJ56oE088Ub/97W+1Y8cOzZ49W7Nnz9bChQtVV7e/ZW/79u16/vnn9fzzzysnJ0ennnqqJk2apFNPPVWZmZl2bREA4s5l0Qq9qTqok+J8nzqLYJFWaByOKuoCqqgL6JfvrlaXbJ+uOaZnsrcEAAAA4Bu2nrF4oJ49e+qaa67RNddco/r6ei1YsECff/65Pv/8c+Xn54dfV15ervfee0/vvfee3G63jj/+eD3zzDOJ2iYAxCQtaB6gYqTFvxW6hopFHGZKaw49fOi6l78mWAQAAABSSMKCxQP5fD6deuqpOvXUUyVJW7du1eeff67Zs2dr0aJFamho/OHC7/dr7ty5ydgiALRKWsBvWjMsBq3EqtbjM61RsYi27G+fb072FgAAAAC0UFKCxQPV1dVp165dKi4uVnV1tUKhkByOxvOT9p3JCABtRVrAourKhorFkNOlWrdX6Qfcj2ARbU2tP6i5W0vUJcun+z7dkOztAAAAAGihhAeLDQ0NWrx4sRYuXKgFCxZoxYoVCgQCEa85MFBMT49/pQ8A2CXdIlj0ZMb/c8wwDFW7fRH3ywjQCo22o7CyXqf960ut21ud7K0AAAAAaCXbg8WGhgZ9/fXX4SBx+fLl8vv3twpGVyV6vV6NHj1a48eP1/jx4zV69Gi7twgAcZOtgGntW6N7xf0+3XLSVOPxSXWV4bVMf738wZA8Lmfc7wfE2wuLdxAqAgAAAG2cLcHiokWLtGDBgnCQuO/MRMkcJLpcLh111FEaP368TjjhBB1zzDHy+cxnhwFAW9Av3RzqpWdnxf0+95w9VNV3RrZYZ/rrFOIICbQRf/p4XbK3AAAAACBGtgSL1113XZPnJDocDg0ePDhckTh27FhlZcX/h24ASAafRSu0MyP+rdAn9m2vxZ7oYLFeIXJFtBHVDcFkbwEAAABAjGxthd4XKqanp+vSSy/VpEmTNGrUKIJEAIcttz8yWAw6nHK44/9R63A4VB01GTrTX6cQySIAAAAAIEFsDRb3VS3W1dXp5Zdf1sKFCyMqFbOzs+28PQAknLchcjJzncsjj9OeMw9r3JHBYkagXrW0QuMw9+aK3bpkZLdkbwMAAACAbAoW7777bs2dO1cLFixQaWmppMbqxQ0bNmjDhg164YUX5HQ6NXToUI0bN07jx4/Xcccdp4yMDDu2AwAJU10ROYyizu2V12HTvaJaoT2hoKrrG6Q0jz03BFLAZc9/pcDD58vptOkbCwAAAECz2RIsXnHFFbriiiskSWvWrNG8efM0d+5cLV68WLW1tZKkYDCo1atXa/Xq1Xruuefkcrk0YsSIcNB47LHHyuv12rE9ALBNdCt0rdurdg57ApDoVmhJMqqqpNxMW+4HxEsgGIrp/Yu2l2lcn/Zx2g0AAACA1rK1FVqShg0bpmHDhul73/ue/H6/li5dqrlz52revHlauXKlAoGAJCkQCGjZsmVatmyZnnrqKXk8Ho0ePVrjx4/XT37yE7u3CQBxkRY1vKXO7ZFddVU1URWLkmRUV0nqYtMdgfh4c8WemN5fF2DwCwAAAJAKbA8WD+TxeDR27FiNHTtWP//5z1VVVaVFixZp4cKF+uqrr7R69WoFg40/LDQ0NGjRokX66quvCBYBtBlpwahg0eWVTQWLplZoSTKqau25GRBHv/twTUzvZ0YRAAAAkBoSGixGy8rK0sSJEzVx4kTV19dr9uzZ+uc//6l169bJ4XCEp0oDQFuRbqpY9IYHWcVb9PAWaV/FIpDaNhfXxPT+IMkiAAAAkBKSGiyuXr1aX375pebOnaslS5aooaHxB3K7fggHALulBfwRj+tc9g1SsTpjUdXV5jUgheyuqDv0iw4hxC8eAQAAgJSQ0GBx586dmjt3rubOnav58+errKws/Fx0deKwYcM0YcIETZw4MZFbBICYRJ+xWOu2bwiVVSt0/s4idbTtjkDs3li+O+ZrULAIAAAApAZbg8XKykrNnz9fX375pebNm6f8/Pzwc9FBYlpamsaPH6+JEydqwoQJ6tKF4QMA2hjDUFowqmIxwcHiUzNW64kbbbslELMXF+846POjCrfolJ2rVO1J04vDJijgMv9ThVZoAAAAIDXYEiw+8sgjmjdvnlatWqVQKBRejw4Tu3btqtNOO00TJ07UCSecIJ/Poq0PANqKQEAuIxSxVOe2rxW6xqIVurqs0rb7AfGwtdT6fMUzt36tP8x7RSftWhte+/HSD3Tm5feowpcZ8VpaoQEAAIDUYEuw+OSTT1oOX3E4HBo5cqQmTJigSZMmaejQoXbcHgCSo9Y8kbnOZWfFojlYzPTX23Y/IB4KqxpMaxPyl+vDN/4kpyL/3TC2YKPemXaPzr70z6o74M87BYsAAABAarCtFXpfqJiRkaGTTz5ZEyZM0IQJE5SXl2fXLQEgqdbmFyn61yX1CW6FzvTHPhgDSCSHEdLfZj1jChX3OXXnar34wV912YW/lb4Z7nbx1EXaducZ6tUuPZFbBQAAABDFlmCxV69e4Rbn448/Xh6Pfa2AAJAqKi3akBM9vIVgEW3NFevmaMzeLQd9zSUb5+vMbUv1Sd+jw2vjHvtC+XeeIbfLafcWAQAAADTBlmDxk08+seOyAJDS3A3mNuQ6l32/WKEVGm2dOxjQ3V++1KzX/nDZhxHB4p7Ker2+fLeuPrqHXdsDAAAAcAi2ToWOVlFRoSVLlqiwsFBlZWVyOp3KzMxUjx49NHz4cHXs2DGR2wGAuHLXWwSLNlYs1rjNwWJGgGARbcd3Vs/UoLLdEWvbsjvphG//n1ZP/Yna1VeH1y/ctFDdqoq1O6tDeG3u1hKCRQAAACCJEhIszp49W1OmTNGSJUtMA10ONGzYMH33u9/V5MmTE7EtAIgrt0W1oJ1ToWmFRlv33VUzTWt/PvFq7cnK0wvDJ+qnX78XXncbId244hPde8JV4TWGuAAAAADJZevBRHV1dbr99tv1ox/9SIsXL1YoFAoHi4ZhmL5evXq17rjjDt1www2qqKiwc2sAEHfWrdCJPWMxg1ZotBEda8p14q61EWsb23XVC8MnSpKeHHW26T3fX/GxnKFg+HHoIL+sBAAAAGA/24LFQCCgm266SR988IGpStHlcikvL0+5ublyOvdvweFwyDAMzZ8/XzfeeKPqLdoKASBVuSyCRTuHt1hdm4pFtBXnbvlKLiMUsfbGoJMUdLokSas79tYXPYZHPN+7skhnblsafkywCAAAACSXbcHiX/7yFy1atCj8uHfv3rrzzjv14YcfauXKlZo7d64WLFigFStW6L333tMdd9yh3r17S2qsYFy5cqX+9re/2bU9AIg7V4LPWJTDoeqocxY5YxFtxQWbFprW3hlwfMTjp0Z9y/Sa8zZ/Ff6aVmgAAAAguWwJFnfs2KEXX3xRDodDknTppZfq3Xff1bXXXqt+/fpFbsDp1MCBA3X99dfr3Xff1eWXXy6pMVx86aWXtHv3btP1ASAV7SksM63ZORX6gXOHmdqhqVhEKttWUiNJ8gUa9K2tX0c8V5CRqwXdBkesTRt0gupdkcdBn3FAxeL6wip7NgoAAACgWWwJFt966y0FAgFJ0qmnnqr77rtPXu+hq3a8Xq/uueceTZgwQZIUDAb1xhtv2LFFAIi7GSt3mNbsrFi8aXxvVXsiKxbbBRtsux8Qq3/N3SpJmrh9hbKiQvD3+49V6Js26H1qPGma231YxNrQ0p3qWbFXkvTFlhLN3Vpi34YBAAAAHJQtweKXX34Z/vq3v/1ti99/xx13hL+eN29eXPYEAHbLDPlNa3YGi3kZXjWkpUespVOxiBS1YneF/m/WJknShZsWmJ6PboPe55M+Y0xrB56z+IeP1sVlfwAAAABazpZgcfv27XI4HOrTp4/69u3b4vf37dtX/fr1k2EY2rhxY/w3CAA2yDYCpjU7h7dIkj8tI+JxRgPBIlLTP7/cGv769G3LIp6rdXv1qUWAKB06WJy5sSgOuwMAAADQGrYEi2VlZZKkrl27tvoanTt3liRVV1fHY0sAYLvKcvN5bwN7dLD1nlWuyOAyzWIyNZAKnpq/TZLUsaZcg8oiz0+e032YaqLOC93n6879VZyWHbF2ev4yOaImSgMAAABIPFuCxczMTElSRUVFq69RWVkpScrKyorLngDAbuUllaa100f2tPWeRY7I4TCZ/joZIQIXpK7xu82ty/OizlE8UMjp0ozeoyLWOtVWaEzhlrjvDQAAAEDL2BIsdu3aVYZhaP369a0KF8vLy7V+/Xo5HI5w5SIApLo0i8EpGTmZtt6z2h1Z5eWUoT17y229JxCLE3atNa3N6z7koO/5pM/RprUDp0MDAAAASA5bgsXjjjtOUuNU52eeeabF73/mmWfCU6XHjh0b170BgF3SAubhLUGfdXtnvNRETYWWJKPK3JINpAqrisUF3Q4eLH7aZ3SzrgMAAAAgsWwJFi+88MLw108//bQ+/PDDZr/3gw8+0NNPPx1+fM4558R1b8ny29/+VkOGDNGQIUP05ptvJns7AGxgVbEY9JqDv3iyChZVU2vrPYHWcoWCOn73+oi11Xm9VJZ28GNPtuV01q7MvIi14/fsv857qwvit0kAAAAAzWZLsDh69GiddNJJMgxDwWBQt912m+68886DTnjesGGDfve73+n2229XKBSSw+HQ+PHjw9WPbdns2bMJE4EjgC9gESz67A0Wq60GXlRTsYjUNHLvVmUGIgcMzT9EG7QkyeHQwq6DIpZ6VJWoe2WxJOnJeVvjtUUAAAAALeC268L333+/LrroIpWVlckwDL3xxht644031KlTJw0cOFA5OTmSGge8bNiwQUVFRZIkwzAkSR06dNADDzxg1/YSprKyUnfddVeytwEgAdKtgkWbKxatgsXCghJ1t/WuQOtYDm7pNtS09vNT+mn+tlItyC8Lry3sNlgXbVoQ8brj96zXW9kn6P01hXHfKwAAAIBDs6ViUZK6dOmil156Sd26dQuvGYahwsJCzZs3T9OnT9f06dM1b9487d27NxwoSlL37t319NNPq2vXrnZtL2Huv/9+FRTQogUcCaLPWAzJoZDHa+s9qy1aoV/8Yr3FK4Hks54IbQ4WH5k8wrS2sOtg09q43fxZBwAAAJLJtmBRkvr3769p06bpe9/7nnwHtAMahhHxv33S09P1ne98R9OmTdPQoeYfNNoaWqCBI0v0GYt1bo/kcNh6T6uKxTWb+WUGUstnGxu7EqKDxTJfptZ06Gn5nkDIiHj8VdeBpteMPeCcxQP/PQEAAAAgMWxrhd4nNzdXv/71r3XLLbdo4cKF+uqrr1RYWBhukc7JyVG3bt10zDHH6Pjjj1dW1sEPcG8rKioqdOedd0qSPB6P3G63amsZqAAczqJboevc9lYrSlKN21yxmBF1hh2QbI/M3qyshhoNLt0Vsb6oy0AZjsjfcfbMbQzLo4PFCl+m1uT11LCSHeG14wo2yhkKKuR06c0Vu3XpKA4BAAAAABLJ9mBxn4yMDE2YMEETJkxI1C2T6v7771dhYeOZTz/4wQ/01ltvaefOnUneFQA7ZfgjA70at09ltf4mXh0fVhWLmf46W+8JtNR7awp0wt5tpvWlnfub1r4/ro8kKRA0VyAu6DY4IljMaajVkNKdWtOhty7/z2KF/kKwCAAAACSSra3QR6pZs2Zp2rRpkqTBgwfrRz/6UZJ3BCARoisFazw+9ci1mNocR1ZnLGb6qVhE6pizpXFy86iirabnlnXuJ0m6/9yhunhEVz0y+SjdeUbj9OdAKGR6/aKDnLOY5uafNAAAAECixbVisbS0VJs2bVJhYaEyMjLUs2dPDRxoPhPpcFZRURGeAu12u/XAAw/I67W/HRJA8llVLHbKsnt4CxWLSF3V9QGd/sQ8SdLovVtMzy/v2FeSdMekQabn2qV7TGsLu5pfd/ye9Zo64owYdwoAAACgNeISLC5fvlz/+Mc/NG/ePAWDwYjnOnfurOuuu07XXXddxACXw9W9994bboG+8cYbNWKEebIlgMOTqWLR7ZND9g5vqbGsWCRYRGp4emG+/N+0NI/cuzXiuQanW2vzrAe3SNJfLzxKJz/+ZcTa8k59Ve9yyxcMhNdGF5oDSwAAAACJEXPf0L///W9dffXVmjNnjgKBgGnic0FBgf7617/qsssu0/bt2+Ox55Q1c+ZMvf3225KkAQMG6JZbbknyjgAkkqli0eOT095cUVWWFYu0QiM1bNhbLUlyGCGNijpjcXWHXgq4mv795vje7XXT+N4Ra36XR6vzekWsjSzaJocRUl3A3DoNAAAAwF4xVSz+97//1WOPPSZJcjisf3p2OBwyDEMbNmzQ97//fb3xxhuHzeTnA5WXl+sPf/iDJMnpdLaJFuhAIHDoF6W46ArZ6MdAwhiGMi0qFjNCIVu/16o86aa17Ibaw+L7u7n4HEhdDjVWK/YtL1S2vzbiuWWd+oa/burP6z8vOkp/PGOget47c//7OvfT0Qe0VWf569S/bI82te+ulxdv1xWju8XxvwBtBZ8DAPgcAMDnQHK0OlisqqrSX//613CgaBiGxo8fr7POOks9evRQIBDQunXrNG3atHClYn5+vv75z3/qN7/5TXx2n0Luvfde7d27V5J0/fXXa/To0Une0cGFQiEtW7Ys2duIu5UrVyZ7CzhCFZRU6dyotRqPTxs3bpCv1L5fMlR6zcFiVkPtYfn93Vx8DqSOkuJySdbnK674Jlh0OtSiP6/LO/UzrY0q2qpN7bvr2leWaogKW7dZHFb4HADA5wAAPgcSo9Wt0B999JHKyxt/YPD5fPrnP/+pqVOn6tvf/rZOO+00nX766br55pv14Ycf6uKLL5bUGD6++eabqq8/vNr0ZsyYoXfeeUeS1LdvX/385z9P8o4AJNrX2ypMazUen80nLEpVXnMrdHZDrcUrgcTb9+d/VNT5ipK07JuA8NqhLeti2Dfw5UCjC83XBwAAAGC/VgeLCxYsCH/9q1/9Sqeffrrl69xut+655x4NGtQ4ybGiokJLly5t7W1TTllZmf74xz9Kamz7vu+++5SWZv5BH8DhzW3xC5Mat08d01223tdwOFUZ1Q4d3XIKJIvrm2RxZNFW03PLv6lYvH74oYPFIe33T4hefkAL9T6jLCoiAQAAANiv1a3Qa9eulSRlZmbqiiuuOPhN3G5dffXVuvvuuyVJq1at0rhx41p765RyYAv0tddeq+OOOy7JO2oep9OpkSNHJnsbMQsGgxHlzSNGjJDLZW+QA1hZv77UtFbj8enME46x98av7FKlNz0iTMypr0n54xjiic+B1NVl1zpp7WZTK/TuzPbam9FO9549WCePHXDI6/y0Nl+3vLVKklSUkatdmXnqXl0Sfn7UAcHlkfRnH/vxOQCAzwEAfA603IoVKxQKxTYEsdXB4t69e+VwONS7d295PJ5Dvv7YY48Nf52fn9/a26aUTz/9VO+++64kqVevXrrtttuSvKOWcbtjmt2Tklwu12H534XUl2YxibnG7UvIn8dKb7pUvf9xtr/2iP4+4HMgdXjcTmX46zSwbE/E+r525q456c36/9WPT+qnkBz62VuN/1Bc1qlvRLDYv7xA2fU1qvRl8P97SOJzAACfAwD4HEiUVrdC19TUSJKys7Ob9foePXqEv66srGztbVNGWVmZ/vSnP0lqbIG+9957lZGRkdxNAUgab12daa3G40vIvaMHuGQ31Gre1pImXg0kzoJtZRpassO0vqpjb0nShUd1adZ1HA6Hbjm5nzb/7nSle5zhwS8HsjrHEQAAAIC9Wh3d+v1+SWpWtaLU2DK9T3V19UFe2Ta89tpr4Rbo9PR0TZkyRVOmTGny9UVFReGvn3vuOb3//vvhxw899JA6duxo32YB2M5bbxEsupMXLD69MF8n9M1LyP2BpszcWKRrireb1ld36CVJ6pjZsu+RvnkZqrzvXF23/DPTc6OKturLnsPlD4bkcbX696YAAAAAWqDVwaJhGHI4HHI4mjfz9MDXBYPB1t42ZTQ0NIS/rqmp0Zw5c5r93vXr12v9+vXhx3UWlU4A2haPxSTmhFUsRg1vyfLX6ZM1BQm5N9CUyrqAJGmYRcXi2rye2vI766Fvh+J0OiwHuOw7x3HOlhJNHMgv6wAAAIBE4Ff6ABAHnjqLYDEBFYsDO2aqwpduWnfXtv3KcLRtJ/+z8RduQy0qFtfk9VKfvNYfH7KufQ/VuyJ/Nzrym1bobaVMRQcAAAAShVMsW+mnP/2pfvrTnzb79ZMmTdLOnTslSQ888IAuueQSu7YGIAk8Vq3QCahYfODcodr7qjlYbCitsP3ewMGs2N14nnJ0xWJBRq787drFdO2Ay621eT01+oBzFYeV7JAMI6brAgAAAGgZKhYBIB6+GWh1oAZfmu23PXtIZ1MrtNR4ziKQbO5gQAPLdkesrcnrpQn9Y29VXp3XK+Jxu/pqda0uVVV9IOZrAwAAAGgegkUAiIOFa3eZ1i48rr/t9830uU3DWyQpp8EcdAKJNrBstzyhyHOV13boqWYez3xQazv0Mq0NL96un721MvaLAwAAAGgWgkUAiIPS4nLTWjDd/opFyTwVWqJiEalhWIn1+YrOOASLqy2CxX33q/O3/SFxAAAAQFsQ8xmLBQUFeuutt2x9z0UXXdSi6wNAomX4601rDV6CRRzZhhWbJ0Kvyeup7DiULK7Js65YlKTxf5+jT380Xh0zEzOZHQAAADhSxRwsbtiwQb/97W+b/XrDMFr8HoJFAKkuI2AOFgNp5sDPDpVe83TdbD/BIpJn+rpCSdJQq4rFDr00Pg7B4ob23RRwOOU2QuG1od8Milm+u0JPzNumO88YHPN9AAAAADQtoVOhHS38QcIwjBa/J1XNnDkz2VsAYKN0i2AxEcNbJKmCikWkmAdnbJRkrlis8KZrZ1aHuLRC+10ebWzXTUNLd4bXhhfnh7/+w0frCBYBAAAAm8V0xqJhGLb+DwDaCqtWaH/CKhYJFpFaZm8ulsMIhSsI91mb11NyOOL2S8Pocxa71JQrr7YiLtcGAAAAcGitrlicMWNGPPcBAG1adCt00OFU0O1JyL0JFpGKelYWKzPq+2JNXk9Jinkq9G8mDdRDMzc2TobeOD/iuWHFO/Rlz+Gx3QAAAABAs7Q6WOzRo0c89wEAbVp0xWKN2ydDiTnKgWARqWjwAS3K+6z7JljskRvbMQE3jO2lh2ZubHIyNMEiAAAAkBgxtUIDABpFVyzWeLwJu3elx2J4S0NNwu4PWBlUusu0tqF9d0nSvWcPjenagztlSTr4ZGgAAAAA9iNYBIA4sK5YTAwqFpGKBpXtNq1taNcYLKZ5XHG5x9q8ngpFVQZbTaIGAAAAYA+CRQCIA3PFok+JmkHV4PaowRl5sgXBIpJl3/C1gRYVixvbd4vrvWo9Pm3L6RSxRsUiAAAAkDgEiwAQBxn+hojH1Z7YzpBrqeiqRYJFJEtJjV+SuRV6Z1aeamz4vljdoXfE496VRcr85s9/RZ0/7vcDAAAAsB/BIgDEqKi63lyx6PYldA8V0cGin2ARyWHIkCsUVP/ygoj1fW3Qi289Na73W/vNQJgDDS3ZIUnaXVFveg4AAABA/BAsAkCM/jZ7szL9dRFrja3QiTplkYpFpI6y2oB6V+yVNxSIWN/YvruGdMrU0T1y43KfU/rlSZLlZOh97dArdlfE5V4AAAAArBEsAkCMPl+3R55QMGIt0RWLBItIFe+u3qNBZRYTodt105c/PTlu97n3nMbJ0mssgsVh3wxw+d9y8wAZAAAAAPFDsAgAMcoMmNstazzJDRZzGmqUsOkxwAG2ltRqYKk50NvYvpvyMrxxu88p/Tso0+vSGotW6GHfVCzWBYKm5wAAAADED8EiAMQow28OFmvdPiUy1osOFj2hoFTP+XJIvA17q5qoWOwe93st+NkpKk/L0q7MvIj1Yd+csUi2DgAAANiLYBEAYtRUxWIiQ40qT7ppzajgfDkk3u7KesuKxU3tusX9XsO7ZuvZK8eYzlkcULZHvkBDE+8CAAAAEC8EiwAQo3SLACPxZyxmmNa2biuweCVgr2W7KkwVi9uzOqrWpuMBDMMwTYZ2GSENKjVXTQIAAACIL4JFAIhRekOdaa3G45WRoGbobJ9bFT5zxeLTn65KyP2BA7lCQfUrjwy1N7SPf7XiPiHDeoDL8OLttEIDAAAANiNYBIAY1VZUmdZq3D71yzNXEdrhuavGqNKiFfrzZdsScn9gH8Mw1Le8wDQlfWP7+J+veKDoVmipcTL03G0ltt4XAAAAONIRLAJAjFy1Naa1Go9Pl460r0rrQJOP6moa3iJJ2f7ahNwf2GdhfpkGlZnPV7RjcMs+howmJ0OX1Phtuy8AAAAAgkUAiFm/NIdprcbtU9ectITc3+V06Jhh5oqt7AaCRSTWH6evszzbcEP7bjp9UEdb7mkYUmFGOxWnZUes75sMDQAAAMA+BIsAEKMx7d2mtRqbBlU0pS7N3HadU2+upATsVFhV30Sw2F3fH9fblnuGDENyOExVi0NKdsoVCuqzjUW23BcAAAAAwSIAxCwzUG9aS/RU6Lr0TNMardBItKW7KjQwaiJ0SA6NPfUYXTmmhy333DegZW3UOYveUED9ygv03MJ8W+4LAAAAgGARAGKWv7PYtJboisX6dHPFIq3QSIZBpZFnLObndNKfJo+27X77Bj9bnbM4tGSHXlyy07Z7AwAAAEc6gkUAiNHarYWmtURXLNZmZJnWCBaRaJ6gX30rIr8fNrTrJpfTfA5pvIQrFpsY4AIAAADAPgSLABCjDKtW6BQ4Y5FgEYm0eEeZ+pUXyGWEItY3tu8uG3PFxjMWJa3pYF2xCAAAAMA+BIsAEKMMf4NpLdEVi/VWZyw21CgYMixeDcSXYRga++gXpjZoSdrYrpucDvuSxRFdG6dB52d3Uq3bG/HckBLaoAEAAAA7ESwCQIxSoWKx2puuoCPyIz23vkb5pVQtwn5rC6skyTS4RWqcCN0hw2taj5fTBnTQgA4ZCjldWt++e8Rzw0q2S4ahFxbTEg0AAADYgWARAGKU7jcHi9ecNDihe9hZUadyX2Q7dLv6KjUEQ028A4ifL7eWSDIPbpGkDe26y+u2758bDodDc245WZK0Ji9yMnT7+mp1rinTj/633Lb7AwAAAEcygkUAiFGmv860dtvZRyV0D6cP6qQyX2Q7dLv6ahmiFRr2e2ZBviRzxWLQ4dSbd19h+/27ZPu0/PbTtC6vh+m5oSU7VesnYAcAAADsQLAIADGKboWuc3mUluZJ6B7SPS7rYJFcEQmwIL9MkjSoNDJY3JbTSdnZ5sFCdhjRLcd6MnQJbdAAAACAXQgWASBGGVGt0NWeNDlk4xhcC2cPsahYrCNYROJ4A371riyKWNvQrrutg1uiRbdCS/snQ/s5FgAAAACIO4JFAIhRdMVijdunBGYpkqRBnbJMwWJmoF6G35/YjeCI1b98j1xGZHi3sX03uZyJ+2ZY3767QlGh/pBvgsU3V5jPfwQAAAAQG4JFAIhRdMVijceX4HrFRuVRwaIkOcvLk7ATHImi26ClxonQCcwVVefxaWtu54i1YcWNweId769J3EYAAACAIwTBIgDEKDM6WHR7E9r+uU9ZWpZpzVlRlvB94MgSCjX22w8qswgWE9wKLcl0zmKfyr3K8NdpW2ltQvcBAAAAHAkIFgEgRtn+yMCi0pue8FZoSaZWaEnavb0g8RvBEWXJzsaq2EGl5lbjRFcsStI6iwEuQ0p2JnYTAAAAwBGCYBEAYpBfUq2shshgscqbnvDhLZJ1sPjGbNo/Ya+pixqnLg+MqlgMOJzamtNZ2T53QvezxiJY3DfABQAAAEB8ESwCQAyKiivkjhpYUelJnYrFPTuoWIS9stMag8PoMxa35HZRwOWW25XYf2pEt0JLBIs4cmwrqdHbK/eooLL+0C8GAACIg8SWEQDAYSaroc60Vu1NS8rwFqtgsV1ddRJ2giNJ73bpSvPXq3dlUcT6hvbdk7If62BxexJ2AiTWf5fu0rdfWqyQIWV4XPrwpnE6pX+HZG8LAAAc5qhYBIAYZNTXmNaSdsZimkWwWE+wCHs5JA0o32Na39SuW+I3I6koI1dFadkRa0M5YxGHkfpAUDe9vkxd/zRdE/71pTbsrdKLi3foqhcbQ0VJqvEH9fBnG5O7UQAAcESgYhEAYuCqqTKtVXnS5UjGVGirikWCRdjM6XSY2qClxonQybI2r6dO3rX/fNHBpTvlDAWTth8gnh6auUnPLMiXJBVWlWjIQ59Zvu79NYWJ3BYAADhCUbEIADFwVJqDxUpvepJaobNMa+3qzfsD4skhaWCZ1UTo5FQsSubJ0L5gQP3KOW8Uh4d/zd3S7NfO21pi404AAAAIFgEgJs5qq4rFtJQZ3pJLxSJsVlTdYF2xmKQzFiVpTQercxZph0bb9NX2Ml303EJd9vwirSmoVGFVQ7Pf+5v31xz6RQAAADGgFRoAYuCoaqpiMfHJ4oiB3RSSQ04Z4TVaoWG3+2ds0DtRFYt+p0vbcjonfC9juudo6a4KJkPjsFFc3aCTH/9SDcGQJOnNFebzTA9mzhYqFgEAgL2oWASAGJQXlZrWqrzJqVjcUlancl9GxBpToWG36oagqWJxc25XBZ0uHdczN6F7eeyiEZKkNXm9TM8NK9mudYUcDYC25W+fbwqHigAAAKmIYBEAYrB8nbm9stKTnDMWa/1BUzs0FYuwW7q/Xj2riiPW9p2v+MMT+iZ0Lyf3y9NfLhiubTmdVOfyRDw3pGSHhj38mQzDaOLdQPKFQobu/XS9Ov3hIw1+cKYemBH7ZOdtJTVx2BkAAIA1gkUAiMHGreapm1Xe5EyFDoQMgkUkVCAY0sAy8/mKG7+ZCH3DWHPloJ0cDoduO22AQk6X1ked8TisZIdkGNpUTMiC1LG1pEbjH/tCzl++qxP/MUcvLN6hP3y0TsU1fm0sis/n92n/mqs6P1PRAQCAPQgWASAG6fXmkCJZU6EDIUNlaZGToXMt9gfEyxdbSjSo1GoidGOo53Qm4zuhUXQ7dF5dlTrVluvDteZfBgDJcs+n67Vwe5kkaf62Ut3w2tK43yO/rFafbiiK+3UBAAAkgkUAiI3F8JZkTYW2qljM9tdKgUDiN4MjwqbiauuJ0O26JWE3+3XI8GhdEwNcgiFaoZE6nlu4PSH3WZhvPg8YAAAgHggWASAGWQ21prXKJLVCt0/3mIJFSVJ5ecL3giNDyJAGWbRCb4hqQ06074/vo7V5PUzrw4p3yJXEKkoAAADgcEOwCAAxyPKbg8UqT3oSdiIN65ylcotgsb6o2OLVQGw27K3SQzM3amBUxWK9y63t2R2TtKtGt53aX2s6mM93HFqyQ+SKAAAAQPwQLAJADLKjKhYbnG41uD1NvNpehmRZsfjFks2J3wwOayt2V+iYRz7XlpIaDSqLPGNxU243hZwundi3fZJ2Jzkc0vr25orFISU71C0nLQk7ApKrsKoh2VsAAACHKXeyNwAAbVlWQ13E4ypv8kILl8OhsjRzsBgs4WwtxNcDMzaouiGorIYadauO/PO18ZvzFdulJSdgl6RQSKr1+LQ1p7P6Vuwf1jKsZIem7qrQJSOTewYk0BqeoF+n7Fit8bvXaWDZLpWkZWt+tyGa1WukijJyD/reKQu26YnLRiVopwAA4EhCsAgAMeiiyCqQyiS1QUvSTeN76+N3zcGip5IzFhFfry5tbH8eaDERemP7xtAumSNS9t17TV7PiGCxb0Wh/u+DFbru2J4a0NHiPFIgFRmGLl//pR757Gl1ry4xPd3gdOvxo8/TXSddq1qPr6lLAAAA2IJWaACIQV4oMlis8qbprjMHJ2Uv5w7rYtkK7amsSMJucCSIboOWkj+4RZJC36QoVpOhB5fu1N/nbEn0loBWaV9bqWlv36fX3nvYMlSUJG8ooNsWv61l//mpjt+9LsE7BAAARzqCRQCIQbA8MrSr9Kbr8lHJabNsl+5RmS/LtJ5RU5mE3eBIMNBqInS75AeL++azrOlgDhaHFW/XPwgW0Qbk1Fdr+ht/1ORNC5v1+oFle/Tp63dp3K61Nu8MAABgP4JFAGglwzBMU6GrPOlyOJI3dtaqYvHD+euTsBMcCaxaofdVLF59tHl4SqJ0yfZpYMdMrbWoWBxasjMJOwJaJsNfp3en3aPjCja26H1Z/jp98OafNarQHJ6P+etsnfiPOcovrYnXNgEAAAgWAaC1qmvqlRGIOmPRm64euckb4GI1vKVdXbUKKuuTsBsc7gaVRlYs1rq92pHdQZJ03rDOydiSJMnhcOj/zh9uGSwOKdkhSaqo8yd6W0DzGIae++hRnbJztempnVl5+tEZN2voDf/SOZf8UbN7HmV6Tfv6an30xh/VOWqw0vLdFZq/rVR975uhuz/mF04AACA+CBYBoJVCVVWmtSpPmjI8riTsppFVxWJufbVeXUqVFuJvUFQr9KbcrjIcjf+0aJ/hTcaWwiaP6Kq96bkqTsuOWB9Wsl2S9MGaQqu3AUn3ndUzdfn6uab1Gb1H6ajr/6mnRp+t9Xk9Nb3fsZp0xX36/cnXml7btaZMT3/8jyantvzp43XaXVEX970DAIAjD8EiALSSUWE+u7DKmy63M3mt0JXedIUUef929dVMBEXcZdfXqEtN5MTxVBjcEsHh0Nq8yJbswaW75AwF9a+5W5OzJ+Ab/mDItNanvEB/n/mUaX1ut6G6aPLvVRH1yyPD4dQD467Q3eOvMr3n/M1f6QfLpzd5/w/XEq4DAIDYESwCQGtVmYPFSm+6nEkMFg2HUxW+jIi19nVV4Sm5QLxEVytK0sZ2yRlcdDDRk6HTgn71qdir6oZAknYESJV1AZ3y+JeRi4ahZ6b/XTkNkWf3bs/qqAsuvkvV3vQmr/enE6/W88Mnmtb/OusZ9SvbY/meWn+w5RsHAACIQrAIAK1kVFq3QidbdOtnh7pKKhYRd9HnK0opWLEoaU1eL9PasJLtfE8gKQzD0Dur9uiS5xdp4fayiOcu3jhPk7avML3nhrN/rtL0bNN6BIdDP5v0Q23JiTzbNDNQr4c+nxrjrgEAAJpGsAgArdVExWKyFUf9ANqhtpKKRcRdWwgW/3DmYK3pYB7gclRRfhJ2A0jfe22pLnpukWZsKIpY9wT9lgHgY8dcoJl9Rjfr2pW+DH3nnNsUdET+8/6yDXN1yo6Vptc7lLzqegAAcPggWASA1rKsWExusNi/Q4aK0nMi1vLqKmWEzGd5AbGwDBbbNQaLAzpkmJ5Lhj+eNVgrO/YxrR9VnC8HmQoSbGd5rZ7/aoflcz9Z+oEGRrUs78zK0+9Pvq5F9/iy53A9NepbpvW/znpWDiPy74Fbpq1gOjoAAIgZwSIAtNLOnUWmtWRXLP7ytAGmVmi3EZKnqiJJO8Lhakhp5KTxKk+admXlyeV06K8XHpWkXUVyOBzKz+6kyqjAf+Terfp6J98TSKxfvbvacj2nvlp3zn/NtP77k69TTSuO1/jjid9WWdSQl+MKNurqtZ+bXvvLJvYEAADQXASLANBKb85db1qr8ib3jMWOmV6VWJzF5SktTcJucNgyDA0piQwW17fvLjkcmvOTk3ThUV2TtDELDodWduwdsTSsZIdcoaA27DVXHQN2eXWpucpXkn6y9H3l1UX+WVzSub9esBjG0hxFGbm6b9wVpvXfz/+vnKHIgS1PL+BYAAAAEBuCRQBopfIic1iX7IpFl9NhaoWWJE9pcRJ2g8NVl5oy5TbURKyta99Dl4zsqnF92idpV01bFdUOnRb0a0DZbr25wnpaLpAoGf46/WLxO6b1X596gwxH6/+Z/o+jz9fm3C4Ra8NKdujSDfNafU0AAAArBIsA0EpdZT6bKtlnLDodDlMrtCR5y6hYRPxEVytK0vq8HvK4UvOfFdEVi5I0oihfz3+1PQm7Afa7afl0daqNbMuf032YZvYeFbF20YiDVwF/++geEY8b3B49cPzlptf9fv5rprMWAQAAYpGaPwEAQBuQ2VBrWkuFisVii4pFbznBIuLDMAwNKTUPoFjXvoecKToRZWUH8wCXEUXbtLawSvWBoMU7APt5A37d/tVbpvX7x1+hA6cLtUv36NVrjz3otZ66fJRp7T9HTdT2rI4Ra6OKtumCTQsj1jYXV7dg1wAAAJEIFgGglTLra0xrVa04aD+eRnXLVpHFGYtpVCwiTmZuLLKsWFyX11PO1MwVtaKT1WTobZKkhz/blOjtAJKkK9d9oZ5VkcdULO48QB/1PSZi7YWrj5bXffB/smd43aY1v8ujh4+/xLQeHWYOfGCmlu4sb+auAQAAIhEsAkArZTbUmdaSXbHYu32GitPMFYt5tUzARXyc+eR8DS61aIVu3z1lKxb3ZrRTYXpuxNrIvY3B4h+nr0vGlnCkMwz99Ov3TMsPjrssolpx6+9P13nDu5he11zPjDhTuzMjzz09ZedqHbtnQ8Ta9/+7rNX3AAAARzaCRQBoJauKxRqPLwk7iTRsuLk6q1fQvFegpYqq6yWZz1jckdVB1d50jexmDrVTRfQ5i4PKdssXaEjSbnCkO2HXWh1XsDFibXNuF00bOD5irXf7jPDXf/7WEMtrHdMj13Jdkuo8Pv1zzHmm9Z8teTfi8ZKd5WoIcPYiAABoOYJFAGilTH9kxWKlJz2mKZ7x0q1vd9Nacf6uJOwEh5upi3bIE/SrX3lBxPq6vMbBET8+wRxqp4roydAuI6ShJeazIoFEsKpW/OeY8xRyupp8zw/H99Ep/fJM6z8+se9B7/XUqG+p1u2NWLty3Rx1rSqJWGOYEQAAaI3k/wQMAG1Urj9yeEuVN009cpN7xqIkvbimRNXuyMrJmj17k7QbHE7qAkENKNsjd9RU2fXtG4PFTJ/5nLdUYT0ZelsSdoIj0YFDgrpXFuuy9V9GPF/t9unZEWcc9Bqds32a+eMT9fEPxmtM9xx1z0nTLycM0A1jex30fUUZuXp56GkRa95QQDcv+yBi7asdZc34LwEAAIhEsAgArZQTqI94XOlN182HqBxJBK/LqeKoAS4daitUVutP0o5wuHA5HE0MbumRhN00z3E9G9tErSdD5yd6OzhC/d+s/UOCblz5iSmc/89Rk1SelhWxlpNmDupdTofOGNxJS247TTv+cKYePn+4nN9MTfr+OHN4vs9jx1xgWrtxxSdyBwPhx/6A0bz/GAAAgAMQLAJAK7mrqyIeV3nSdOmobknazX6nDeigovTIs+461lZqynyqsxCbFbsrNMRicMu69qkbLN5/7jC1T/dolUXF4r7J0IDd/jZ7syTJYYR0/cpPTc8/frT5HMQbj286KLRy66n91THTa/ncyk59NaP3qIi1btWlOnfLV+HHtQdUVQIAADQXwSIAtEIgGFJW9BmL3nS5ncmfinvF6O4qTouqWKyrUHV9oIl3AM3z6tJdGmJxLuG6vB76XgtDkEQ5Y3Anbf7d6TppdD9ty+4U8RwVi0iE6vpAuGJ8wvYV6ldRGPH8Fz2Ga02HyO+fv114lB4+f3iL7jOsS7aW3naaXvj20fr8Jyfq7RvG6uge+3/J9NSos03v+f6Kj8Nff7i20PQ8AADAoRAsAkArfLKuUNkNUWcsetLlcyf/Y7VHbpqKoyoWfcGAXLXVSdoRDieDoyoW61we5Wd30mOTj0rSjg4tN92jJy4bpZVRA1z6VhQq22K6OxBP/1u+O/z191aYqxWfszhb8Ren9perFb+o6p6bpmuO6amT+3XQBUd11eJbT5Pjm8u8PWCciqJ+6XTOliXqUVkkSRrSKSv6csBhqbi6QUXV9Yd+IQCgWZL/EzAAtEGPfLBcrqgzssp8meqek/zhLS6nw3TGoiSpqDjxm8FhJ/qMxQ3tu+vfVxyd0oNbpMbzIa3boalahL1++8EaSVK7uipdumFuxHNVnjS9PvikiLUbD3JWYms8fvFISVKD26P/HDUp4jmXEdIN37RmL9peFjFkBjjcGIahn721Up3/NF2d//ixfvS/5QqFOFsUAGJFsAgArZBbX2Vaq/BlyOFIfit0yDBUnJZjWp/z1YYk7AaHk7zaCnWsq4xYW9e+R0ocAXAoWT6XqWJRapwMva7Q/P0MxMueysbKqKvWfq60YOQQrf8OOVnV3vSItbu/NSSu9x/Tff/fB0+PPMv0/PdWfirHN78oG/7wrLjeG0glX20v1+Nztsj4Jkt8av42zd1WktxNAcBhgGARAFoht87cPlnmy0zCTswyPC7risViKhbRekXV9ZYTodfn9VBbqPfISfNoZQdzJdiIonw9OJPQHfa7wWJoyzMjzgx/ffmobiq792x1i3Plu9u5/5/7azv00pzuwyKe71tRqDO3LZUkbSmp0Stfm7/PgbagrNav/6yu1LOrKrWzKqBAMGr6+uLtpvc8u9C8BgBoGYJFAGiF3HrzeYXlKRIs9m6XbpoKLUkdayuSsBscLv755dYmJ0K7UqBStznW5vVU0BH5T5+jirfp+a/MA2mAWJTV+nX581/J+ct3JUkj927R2IKNEa9Z276H5nUfGn782neOU06aJ+57cUb9a//pUeaqxRsPGOJyzUtLTIEMkOoaAiGN/8eX+seySv17eaUuerdQ4x+fq20l+38RvLeqwfS+PRV1pjUAQMsQLAJAK2TWVJrWUqViMdPntqxY7FBr3jPQXDM3FFlWLK7L66HTB3VMwo5a7vpTB2tju24RayOKtiVpNzic3f7uKr2x4oChLRbVis+NOENKQCgfHfy/Pvhk099XkzcuVKeasvDjP3283vZ9AfF07ctLtLkkcqje8t2VeuSLzQd9X1uouAeAVEewCACt4CgvN62V+zKSsBNrxWnmYJGKRcTC43KaJkJLjRWLPdulW7wj9QzqlKkVUecsdqkpjwhUgHh47oD2Sm/Ar2tWz4p4PuBwmgap2GVYlyxleFzhx7Uen14eelrEa7yhgL67amb48f0zOB4AbceSHWUR09cP9Pcvtqi8tvFs0zZSXA8AbQ7BIgC0QlatedhDqlQsSrJshe5QR7CI1vO4HKaKxYKMXJWnZSVpRy3XPt1rORl6RNE2fbS2MAk7wpHggs0LTUOP3u9/nAoy24cf/+Skvrbd3+d26e8Xj4hYe3rkmabX3bjiE4WnWgBtyKHOSWx/10eqaQgkaDcAcOQhWASAVkirSe1g0aoVOo9WaMTAEwpqYFlkRci69j2StJvWOW9Y5yYmQ+fr3KcXqCHAuXKIv+8cUAm4z3Mjzgh/ne5x6u8XjTC9Jp6+d3xvPXX5qPDjpV0G6KsuAyNeM6R0p8bvXhd+fM8n62UQNKINeHXpoQcOPb0g33KdP+IAEDuCRQBoha7BWtNaqgxvkaQqT7oanO6INVqhEYs1C1fKG4qs+Fif1zNJu2mdTlk+NQwbbloftXerJGnu1pIE7wiHuw41FTp765KItYKMXH3Q7zhJ0lmDO6ns3nPkSECPZprbFfH42QPCzX0ObIf+4/R1DDZCyntr5W6V1PgP+bpfvL1Kry3dlYAdAcCRh2ARAFqhdE+RaS2VKhZvGNfb1A7doY6KRbReUxOh25pnf3eZat3eiLXRe7dIksrraJVDfF2+fo48oWDE2mtDTlXA5daxPXP10Q/Gy+NKzD/HQ1GlWa8NOUX1rshfQF2x7gv5Avsn506Zz3AjpB7DMLSmoFIn/WOOLpn6VWzXkqFNRdW666O1+vPH67S9zPyLYwDAwbkP/RIAQLQhHnMAkUoVi/d8a6iK07PVvXp/BVZngkW00q7yuiYnQo/oam67T2VOj1vLO/bVuD37p96OKNomdzAgg/mgiIMF20rDX1+99nPT8y8NaxycclK/vITtSZImH9VVHpdD/mDjn/PS9Gy9M+B4Xb5+bvg17eurdeGmhXp9yMmSpHkH/LcAybarvE5ztpTol++u0o7yurhcs6CyQYMe3F+pO3XRdi2/fYKy0/gxGQCai4pFAGiF7qqPeNzgdOvJ68YlaTdm3XPTVJDRLmKtU3UphwmhVa56cXGTFYs/PMF8ZmEqczkdWta5X8RaWtCvIaU7FeLbAzF65PNNOuEfcyRJvSsKdcrO1RHPb2zXVYu6DpIkuRI8ojY33aNfTYg8V/E/w083vc7qTEgg2T7fVKxBD87QVS8ujluoKEnLd0ceE7OttFYfr2eYFwC0BMEiALSCs7ws4nG5L0NjeuQmZzNNiA4WfcGAqgvMLdzAoczZUqLBURWLfqdLW3K76Ccn9WviXanJ6XBoaSfznscUbpY/yPAWtF4oZOjX760JP/72mtmm17w8dIL0TaDociY2WJSke88ZqrG92oUfT+97tAoyIv/u+tbWJepSvb9SsbSmQUCy/d+sjar1J+Yz+vE5WxlcBAAtQLAIAK3gL45sDyvzZcrtSvwPiQdTkNnOtPblgjXmFwLNMKxke8TjTbldFXC1vVYxp0Na2rm/aX1M4Ra9uXy3xTuA5qlqCCh4QNmrVRv0y8NODX995ZjuCdlXtI9uGqcLhneRJAVcbr08bELE824jFBGKTmlimi6QSO+vSVwV4ezNxRr1l9naFcfKSAA4nBEsAkAL7a2qV25DTcRauS8z4W1thxJdsShJ785clviNoM3rUFOhLjXlEWurO/RK0m5ik+5xaXmnvgop8vt1zN7Nep1gETFwHvB3wMi9WzSyKHLwyVddBoYnqZ81uJOO7dkukdsLa5/h1dvfOz78+Pnhk0yv+c7q/e3Qd7zPL6SQXFtLag79ojhbVVCph2dtTPh9AaAtIlgEgBaq9QfVrr46Yq3Ml5mUtraDsapY3Ltpu/mFwCFEVytK0poOvZOwk9g5HA7VeNK0vn1ktdiYwi2cQYqYHPg3wDVWbdDfDG358Yl99d6Nx5ueT7TTB3WUJC3v3M90PMDovVs1unBzMraFI9z6vVW65c0VuvG/S7Uwv7E75Pv/Tc4vRf/+xZak3BcA2pq218MEAEkWqqtXeiDyzKlyX0bKVSzuyWxvWutaw4RPtMzSneUaXmwOFttqxeI+Szv319ADBtJ0qKtUz0rOIEXr7fsrwGGEdFVUG3RIDr065BRJ0v3nDJXblfzf7f/j4hEa/vAsSdILwydqzOzIEOW7q2bqNotjAwC7VNYFdNq/5qqgsnFA3nMLt+u8YZ01c+OhP5vT/fU6d8tXOmXHao0o2qq+FYVyhUIKOp3Kz+6kpZ3768sew/R+v+NU5/G1eG+L8st0xaBFIQAA3A1JREFU50drVFzt1w9O6KMfjG9bg8sAwE4EiwDQUlGDW6TGVuiUO2PRohW6S3VZwveBtqumIaBjHvlcjxWbz1hb1aG3juuZWgOLWmJp5/66at0XEWtj9m6RYRhypNgvCZD6tpfVhs9XPHnnavWOCqln9h6lPVl5kiJbppNpaOds/efqo/WdV77WS8NO00OfT5Xb2D8c49trZuvXp16vgMut8lq/ctM9SdwtjgQfrC0Ih4r7HOpsxaHF2/XrRW/o0vXzlO2vtXxN//ICTdixUr9Y8o7KfJl6bcgpenjsJdrSrmuz9lUfCOrsKfNVWuuXJP3of8vVPy9DZwzu1Kz3A8DhLvm/LgWANsZRXmFaK/dlKt3jSsJummZVsdilpizxG0Gb9fLXjRV9w6IqFoMOp9a3764fntA3CbuK3d1nD9HSztaToY9/7AsVVddbvAswC4YMXf/K1+pz76fqf/8MSQdvg5YaBwilimuO6SFJKsxsr4/6HRPxXOfacp29dYkk6TFaQpEA87c1v6uie2Wxpn74iFY8/1Ndv2pmk6FitHb11frh8o+05rmb9bfPnla7uqqDvv53H6zRjA1F4VBxn6cZagQAYQSLANBSFhWLZb5M5WV4E7+XgyhKzzENqKBiES3x9PzGH5yiW6E353ZRncenTlmp9We+ue48Y7DpTDlJOrpwsxbvKOdcLTTbl1tK9J/FO8KPPUG/Llv/ZcRr6lwevTnohPBjZwoliwdW5/7HaojLqsYhLltLEz88A0eeUHOOuTUMfWfVDK18/hZ9Z/Vnch1QZdsS3lBAv1jyjpY//1NNzG/6DMcHZ27U+c8sNK2/vnxXq+4LAIcjgkUAaCFneblprcyXmYSdHFzQ6dLejJyINSoW0RJOp0Pt6qrUvbokYn3VN4Nbzh3aORnbiovCzPbalZkXsXZsQeME0PtnbEjGltAG/eLtlRGPz96yRHlRFVDvDhirigP+jkihXDHCuwOOV2nU32UXbF6o9rWVqmkIJmlXOJKEDjFAK7OhVq++97CmfvSYaYjegYIOpza066alnfppffvuCjqa/pG3Z1WxPnn9D7pnzotytCCkTNFvYwBICs5YBIAWclgEi+W+jCTs5NAKMtqpS83+/XatZngLms/lkIZbnK+4pkMvXTWme0oMoIjFV10G6sLN+ytRelcWqXN1qQotjhEArFRHBW7ftmiDfmXoaRGPU+WMxWj1bq9eG3qKfrTso/CaLxjQVeu+UM55RydxZzgSrNxdoX9+ubXJ5/uV7dG0t+/TqKJtls83ON16bcjJemXYaZrVc0TEgJZ0f70mbF+h766aoUs3zDNVOTpl6PcL/qsBZbt1w9k/V727bVbjA0CytO2fCAAgCQIl5nCuIi0rCTs5tOgBLp1ryqVQ69qGcORxOhxNToS+bHT3JOwofkZ0zdbirgNN68cWbErCbtBWuQ4oP8xqqIkIqiWp1JepD/odF7GWqsGiJD1v0Q593eqZemjmRpVHnTEHxMuqPZUa9VdzKL/PMQUbNf/lXzYZKk49apKGfO/f+u65t+mjfseapj7Xenz6sP9xuuqC32jUd/+u9/ofZ3mdq9Z9oen/+4OyGg7d+s+QLwDYj2ARAFpo02bzuTrV6anXCi2ZB7h4QwGplKpFHJphGPpiS4llsLiqQ++Ubedsrp+d0k9fdTEHi8d90w4NNMfawv1tzxdvmK/0QEPE828MPkkN7shpyqn8vbOg2xCta98jYm387vUaXLJDb67YnaRd4XAUDBm6/Z1Vcv7yXY38y6wmX3fq9pWa+d/fq1OteXBefnZHnXXpn/W9s3+hbbldmnXfNR1668KL7tL1Z/9clZ508/12rtb7b96tzIaDD4MJNutASAA4MhAsAkALFewoMK0VulOvFfqcoZ1VGFWxKEnGnj2J3wzanFV7KiWZW6FDcmhdXk/1zDX/QNaW9M/L1OIuA0zrxxAsopm2lkRWNVm1Qb889FTTWkpXOjkcemH4RNPyd1fN1I3/Xab/+4zvD8THP+Zs0SOfbz7oaybmL9OHb/5JORYh3/Q+R+vo6x7Tp31b0abvcOg/R52usdf+VZtyu5qePmXnar037W6l++sPepntZc2bRA0AhzuCRQBooYyaKtNaKp6xeOO43qaKRUn6fN7qJOwGbc3ryxurk6IrFrfkdlGtx6dje+YmY1txk+1zqzCzvbZndYxY31exSNsnDuWeT9eHv+5cXaozoibL7sjqoNm9RkSsHZeC3zdXRB1r8MLwiQpFjaa4dvUsOUNB/eb9NXrl652J3B4OQ59vKtZt76w66GtO3Lla70y711QFLEmPHnOhzr/kDypNz45pH+vzeurEbz+sBV0Hm547bccqvfDBX+UMNT24iEFfaIs27K3S37/YrHdX7VGIylvECcEiALRQRrU5WCzzpd4Zi5eM7KaCzHam9Xnz1yR+M2hTDMPQPZ+sV7u6KvWsKo54bnWHXnI6UrzqqhmO7tE4Mf2rqHMWe1SVqFtVsWr9TMFF0wzD0HML94fuV66bYxoI8erQU2UcMI22Y6ZXD5w3LGF7bK67zhysLtn7z6TbntNJn/UeGfGaXlVFmrh9hSTpmpeWqD7A9wdazjAMXfmfrzTh33MP+roxBZv0wZt/VmbAXDH4u5Ov020TblTQ6YpY75Tp1d4/ndHiPe3NaKczL79bc7sNNT13ycb5+uvsZ5t875PzrM98BOxUUtOgneW1MqKmqG8prtGT87bq0/V7Tc/t89X2Mh3zyOf6xdurNPm5Rbpl2opEbBlHAIJFAGghR3mZaa3Cm5ptoZXtOpjWCjaZp/wCB/rfN9WKI4u2mp5b0amvPv7BCQneUfztm2i92OKcxWMLNinYxD/KAUmmqr2r1zbdBp1/5xnaftcZ2vTb03X6oE4J2V9LHNU1W9t+f4a+vOWk8Np/LIa4fGfVzPDXeXd9pEcP0cYKRLv25a/D1fBN6VNeoPen3W3Z/nzLpB/qwXGXS1G/2Jp61Rjt+dNZyk3zmN7THFXeDJ1z6Z8sKxd/vuRd3fz1+626LhBvT8zdqm5//li97vlU335piRoCjb/QWrKjTKP/Nks/fmOFznpqvn71nnV30pQF21TdEDzgcb6q6gMJ2TsObwSLANBC3urKiMcV3nSFon5znipKc/JMa12ryxK/EbQpV76wWJI0cq+5GmNFxz7q3yH1Wv9bK7piUZKO27NRi3eUJ2E3aCv+NXdr+OsBpbs0fvf6iOdX5/XS0s79JUk926WrR266stPcidxii3jdTo3psb9N+81BJ6jKkxbxmks2zAtPy631h3TbO6u0s5wz5tA8awoqD9lG3762Uh+8+Wd1qzYPmbttwo3619HnWb7vO8f1irmKvtKXofMu+YNpeJEkPTLraZ2yY6Xl+yrqODYD8WcYhh77YrMmP7tQv/9wjeoDQdU0BPTLd1fLH2z8xedrS3fpk/V7JUlPzt+mqvr9geHfZm/WD15fphH/95m+/eJiFVc3HikwZX5kcUEwZGjoQ5/pR/9brjKOgEEMCBYBoIXa1VdHPC73ZsrrSs2P0zVOc4t255qyxG8EbdLIIqtgsa8Ol2K+xy4aocWdrSZDb9BdH61Nwo7QVszduj/4+Pbaz03PvzzsNFNVVao7sHWu2puu/w0+MeL5zEC9Llsf2cL61kqGgaF5/jr74BWurlBQr733sIaV7DA9d9dJ1+jRYyc36z7juvoO/aImlKTn6NxL/qjC9MizUD2hoF5/5yH1rNhres/AB2Zq8Y4yQhnE1b/mbtWtb6/Su6sL9MCMjfrlu6s1beUe1UQd03LBswslmQNDSXp6Qb5WF1Tp1aW7dOvbK/X4nC2W99pVUaen5m/TDa9+Hf//EBwxUvMnYQBIYbn1kZNAy9IyNbxL6p2xKEm5Pboo6Ij8qO9qUQkAWBkR1Qrd4HRrffvu6prT+h/cUsl1x/ZUcUaOtuZ0jlg/fvd6rdhVkaRdoU0xDF1tNQ16mHkadKqL/oXBodqhJRGmoNmch8jZ/zL7WdMAJEn69+hzdN+4K5p8351nDIp4/NMxORGPu2b7NPvmyJB8n2yfuYp4S7uumnzR71Xvinyuc225Xnn//+SKGuZSVN2gsY9+oSEPztTnmyLPJAZa66fTIitk//nl1nDbc2u8uGSnfvaWddXtPm+vKmjybEbgUAgWAaCFoisWy3yZSvOkZiv0qJ7ttTc98h/ZXahYRHMYhqlicU2Hngq43EpP0T/vLeX+5ifd6HO1OtZVakDZwc8BAyTp2IKNGloa2d45t9tQbc3tKkka1DEzGdtqlejhoLN7jdC27MgzISfsWKm+5VQpouWcB6ngvX7lp/r5kndN628NGKefTvpBk9W/p/bP05+/NSRibUh7j/5ySnsd09mrC4Z31hc/OUmn9O+g/1x9tE7o0z78uuFdsvTm9cdZXndB96H6yek/Mq2ftGut/jDvVcv37K1uiJgUD8Tbwb6H4uXAvwc2FVXrL7M26Zi/zdbwhz/TlPkMK0LTUvewFwBIRaGQcqIqFst9GfK6UrPlzeVwaE9me3U9IEzsUlOmPRV16pqT1vQbccTrU1FoOjx/Rcc+Omtw6g2faC1/sPG3/wu6D9GV6+dEPDduz3qt3F2hEd1yrN4KSJKuWz3LtPbysNPCXy/4+SkJ3E1sQlGVKobDqReHT9TvF/w3Yv3a1bN07wlXNb4mYbtDW9dUxeL4XWv170//ZVpf1qmvrjv3NsszrDtlerX8lxMippkf6LSe6TqtZ7pGjx4tt7vxx91rj+2pa4/tKamx7f9QZzI+O/IsHVuwST9e9mHE+u/n/1cze4/S7F4jTe+ZsaHooNcEmmNmE3+Omvoj+/IS8/EBrfXBmgJdcFRX/erd1frr7E0Rz/3wf8s1pnuuxvZuF7f74fBBxSIAtERlpZxRP0qV+VL3jMVT+ndQQUa7iLUu1WVatassKftB29HU+YrfPsZ8sH1bta8Nbn63Iabnxu9ap3OeXpDoLSHFGYahzzY2/tDnDgZ0VdT5in6nS68N2R8mtktv3ZTaZLD6ofU/wyea1q5b/Zm5bxo4hEB0SaykHpVFevPt++ULRk6l3Zueo4sm/17V3nTLa235/elNhorN0dxBL7dO+L6+7tQvYs0pQy988Dfl1XJcBuLPHwzp8v98ZflcQWW95fq1L8fvbMTJzy3S55uKTaHiPt95ZUnc7oXDS2r+JAwAqarUfD5huS9TPndqfpxeNqqbdmVFToZ2GyEFd9PKhoMbGXW+oiSt6NRX3zmuV+I3YxO3y6k/njVYX3furwZnZBPHuN3rtLO8TttKapp4N45Ev/twrU5/Yp4k6axtX6tzbeT08A/7HqvijLZZ5ZqT5tGIrtkRaxvyemhut6ERa4PKduvEXWskSX/4aJ1+/d5q1TREBkNAtKcXRA6X8AT9ev3dByM6KqTGcP7yC+7QttwukqTR3XPkdTmVm+bWCX3a6+vbTlWGNzFNdw1uj64+/1eqdkeGmD2rivX09H9YBuyPfn7wITXAwUxbsUelTZxd+5v31yRkDxP+PbfJ59btrdb8bZzVDrPU/EkYAFLU7k3mdoPitBx1yU7NtuKuOWnakd3RtP7pTCa/4eBG7DVXLHpGj0rCTuz1x7OGqN7t1ded+0esj9m7RWn+evW7f0aSdoZU0xAI6ZEDJttea9EG/eLwCYnbkA3+duFR6pjpjVj7z1HmIS7fPWCIy19mbdKP/rfc9r2h7fpyS4lp7aHPn9f43eYzCX826Qf6vNeI8OOvbztNdQ+dp9J7z9GXPz1Zo7vnmt5jp/V5PfXT039oWr9o0wLdvPQD0/pt76xSbdTkXqC5iqobkr2FQzrxH3N098ecJ4pIBIsA0AL/+Xipaa04PVs5aal7ZO12i2Bx03L+QQBrgW/OHYxuhS71Zeqibx2bjC0lxIKodmhPKKhjCq1bgXBk2llep4Zvvj9y6qs1eVNkq3yZL1PvDjg+GVuLmzMGd9K2O89Q4Z/PCq+9NuRk1bkiW7qvWDdHaf79bXkvLokcYAMc6Iwn50U8vmjDPP1iyTum1z0x+mw9Ofqc8OPTB5n//ZIMU486Xa8MMZ+X+vDnz2lQifnP/k+nrWS6LpotFDJUXd9Y9Z2A+Sxx8aeP1+mT9XuTvQ2kEIJFAGiB3Vt3mdaK07ObPJQ8FVhVLPasLE7CTtAWbC6pkTfg15CoSbcrOvbR4VyDMb/bYNPa+N3rkrATpKq3V+0/QuLS9XOVHoisLPnf4JNU7/ZGv63NSfe41DFzf+tneVqW3h4wLuI1uQ01pmAVkKTp6wo15q+zNeovs/TOqj3aU1Gn+kAo/Hz/st16dvrfTe9b0HWwfj7xpoi1q49OkTN9HQ79+Mybtfmb9ux9MgINenb6Y3KGIv92fHZhvv4wnb8/cGj3frpe7l+/p+zff6gr//NV+JdXbcG3nppPgI4wgkUAaIGOtZWmtaL0HLVP4QP6d2R1MK31qmRyIax5XU4dVZwvT9QPSis79lXQ4vD9w8X87uYBLuMIFnGA295ZFf762jWzTM+/0MbboA/Gqh36Owe0QwOSVFrToAueWajluyu0ck+lLnpukbrf/Un4eV+gQa+9+7Da1VdHvK8kLUtXXvBr+aMqYzM85onQyVLhy9Q1596uoCPyx+eTdq21rL78x5wthC44qNmbivSHj/b/O+P15bt169urDvKOVjAMpfnr1ammTD0qi9S5ulQ59dVxG8Dl+tV7euTzTfxZh1K3dw8AUlBorzmQK07L1k9O6mfx6tRg1Qrdg2ARFjYWVWv0X2fpqkLz4fNfd+6vo9vOL9JbbGtOFxVk5KpLzf5hHCfuWsv0W5j0qtiridtXRKxtzemsOT2GJ2lH9vu479Hak9EuYtDGWduWqltVsXZ/88ur5xbm6/qxvZo9cReHn7/P2WI5/Xmfv856VsdaHDHx3bNvVX5OZzu31qQnLxulHx5wRuiN43rr20f30Cfr9+rBmRsjXrug+1A9PPYS/Xbh/yLW753zot7vN1brOvQMr1XUBRQMGXK7+H6AtWteiuN554ah4cXbdcKutRpRvE3DirerT8Ve9arcq4yA+dzGOpdHBRnttC6vh9bm9dLCboP0RY+jtD2nU4tvffs7qzVxQEeN6ZHY80+RWggWAaAFOtRVmNaK07PVLoUrFst9marypCnLXxde61lFKzTMvv3iYtX6QzraKljs0l83922fhF3Z7+qje+iVr3dqfrchmrxpYXi9R1WJ+lQUqqo+oCwf/2RCo2ssqhVfHnaajKhKpktHdkvQjuwXdLr08rDTdNvit8NrLiOka9bM1l/GXiJJuvG/y7S1tFZ//pa5+hdHho1F1U0+d+Xaz3XzMvOwk4fHXqL3B4y1fM8xPe0PKr4/rrfqAyFNX1eooZ2zdffZQ5TucWniwI6auaFIC7eXRbz+zydcrQs2LdSI4v1TrtOCfk396FGdfPVDCjpTp8oSqW1XRd2hX3QQQ4u366xtX+vU7St1ys7V6lRr/hmlKWlBv/pU7lWfyr06a9tS6ZuMc137Hpo2aLxeH3yyvu4yoNnX++6rX2vZ7RNa9h+Awwqt0ADQAnkWrdD3fPukJOyk+RxOh6kdmlZoRKvzB/XVjsZqvTFRwaLf6dLKDn00ultOMrZmu6lXjZEkfWlRcXbKztXK+f2HKq1J/UmNSADDsJwG/cKwiRGPO2d59YezzOd2tiXv3Rg5iOZ5i3boG1d8ElHVe88nDAY7krmaqFYdXLJDT338T9P6nO7DdOdJ11q+5+whnTSoY2Zc92fF4XDolpP76d0bx+n/Lhiu9APar9/53vG6+cS+Gte7XXitwe3R9ef8QoGoXySM27Net3/1lu37xRHMMDSqcIvu/vJFrXzuJ1o99Sd69LOndcnG+S0KFQ9mSOlO3bHwDS1+8VZ99cIv9INlH0UM6mrKit2V2rC3SntiDEvRdhEsAkALdKiLDBYbnG45crKTtJvmmX7TeNMAlx5VxVLoMO5rRYv5g43hgMMIafTerRHPre7QSw1uj5ypPKUoBh6XU09dPkpfWAWLOxrPO+rwh+mqaQgkemtIMccUbtLwku0Ra4u6DAy3QBbf/S0tufVU5d95pka28SD+3GFd9J+rj9bIbo1/x63o1E+LO0dWsAwp3amJ25dbvR1HmH/P3ar/LN5hWk/31+u/7z6kbH9txPre9Bxdff6vFHCZq8GfvXKM3rx+bNLb6jtn+/T4JSP1zvciQ/YlXQbqwXGXmV7/57kvaXjR/krG8jr+zoAUCIb054/X6bR/fqlb3lyh6vqA3lq5u9nv71ZVrDsWvK61z/1YS1/4ue6c/1/T30N2OKZws5749F/a8vT39ZsF/1NmQ+1BXz/koc/U575P9a8vt9q+N6Qe+noAoAU6Rv1GsDg9WxMGtvw8kkTql5ehz6OCRU8oqOCeArm6Hz6teoiNocZgcWDpbtMPgEs79VP3nLRkbCthQoa0pMsA1bi9EecRnbRzTfjrFxbv0A9P6JuE3SHZVu1p/KXSDSs/NT334vDGasXjeuaqfYZX7TPa/mTofa49tqeuPbanfv/hGj0wY6OeGv0tPfnJvyJe88NlH+mz3qOTtEOkgo1F1frJmyssn/v7zKc0qmhbxFpIDl177u3aaXEGdO2D58rnTq12Yqt8857xV+qCTQsjfhHnCwY09aNHdeLVDyvgcqvTH6er4aHz5HZRy3Mke/SLLfrzx43V3F9sKVF9MKRnFuQf9D2uUFDnb1qk7638ROduWSyX0bJigJAc2pbTSfk5nVSQ0U6V3gw1uNxyh4LKaqhV59py9S0vVL/yAjl18LOku9SU64E5/9HPl7yjP534bT0z8swmW/79QUO3TFuhjpleXTGme4v2jLaNYBEAWqBDVCt0cVq2jsrxJWk3zdMtx6ed2ebJ0LNmLdXp/8/eXQdEff5xAH9f0Z3SXQIiBord3V2zYzqdzp45Nzdjbm7+1KnTmZvd3ZhgIKASIql0d178/kCRL987REGO+Lz+4p7nueODwt19P/c8n88YSiySEu/r7TdNjmTN+RtYw0JbuYYjqlkO+qoo5gnwyMiB0Zijcdpb6OZlIVVFAzNPvqDEYgMkkUjguskLSsWFGBN8hzFXzOXhiGN7AMD4FmbyCK9GvD8eetixA369sxcaZXauDA7zgWFuOhJV62cNVlKxoIRsuGzykjo3PvAmpry8zhr/pfVwXLd0Z43/2q9xrUsqAoC6lBq7xTwBJvWci0f/LYRALCodb5EYhsVPTuGX1iMAAApLLkK8qX+NxUpqn8UXghi3K0oqaudnY+qLa5jlfwkW2cmV/h4JKlq4Y+qCu2Yu8DFyQLCOKQoEH78+US4uhHtSONrHBKFXlC/axwTJTDQ2ysvAjhvbMTPgEr7uNguPjB1lPu6oQ77IKRJisod5pX8GUrfRxyeEEPIJyh+FTlVWl/tRnY9RFvAQo8beFbDt6D05RENqK/G7OmnuUjp2+hnYQF+t/uzCkqatpQ7UFHl4YOLEmmsXGyTlHqQhiE7LQ+ONtwEAg8J8oF3IbE5xzsYDySpaAAB+PS0VAACLO9kCAHIUVPCvUyfGnEAswmQpySNS/0kkEvTb80jqXOOUN9h2Ywdr/JaZK37wHM0a72Krh5ltLKo9xuqgyOdhYkv2Bwf+hjb4udUI1vgq7yNwKbOTMTaz4iOkpO4RV9D9/L2QpGyZO3nLs0+LwV/Xt+PtrknYcG9/pZKKD40csbDjJDhO2g7jr/djdP/F+KtpH/gZ2lQqqQgA+QJFPDRpjA2thqHzyHUw/nofFnScjBBtE5n3cUuOwoPDS/DnrV0V1l/ceDtM5hypfyixSAghlVVQwOisDAApyrW/hhaHw8FbKceNTLNTqSEFKfW+/0L5xi0A4G9ghemta+cFX3Xh87h4vqAT7pk4s+YosdhwrbkeilfJJcnEyVKOQf/j0r30a3Wl+nsQSIH/4ZJhh1sv1vz0gKvgvtu1VdkLaVL3haXkIiqdnTRTLcrH8fProSpkJh0SVLQwtu9CiMsdo/Se0w7XpreGikLt/RvaNayJ1PFfWg2Hn74VY0xBLMTeK3+CLyqpsfjzjddfPD5SM14n58Djj7tQ+f4S+vztg5+uh2LyEX/se/IWkjKNrDLyi9Fh20P89TCqwsdrkhSJw+c3ImjvN5jx/AqjFIs0jxrZ49vO02E6fS/ajdmI31sMRqiOqfTz+p8hSVUbm1sMQuNJ29F/0Eo8NJK+K5ELCeb4XcCj/xbCuVypg/dCk3PBW3Se8e9C6i9KLBJCSCVJUtidlNOUanfjlvdipByFNs1JQV6xSMpq0hCJJRJAIoF7ucRiuGYjZCmqoptd7a4lWh0sdVTw2NgBonLdPimx2HDte1JSIN8iMxHd3gQw5mLVdHDt3XFONUUehrjW79IS/41tBqCkicuDckfgLLKT0SvqGYCSJh6zTlJDl/ouM78YwUk57AmJBDuub4dTGrORi4jDxZi+C6UemXcz1qj1zcH4PC6U+OxLZyGPj4m956GIy0yKNk8Kx+InpwAAO7yjEZWWVyNxki9r4hF/PI3JRJFIjCuvkrH66ivse/oWk4/6Y4d3NDLzi3ExKBGrrr5CSq7sJKFH/CucOb0W/gfnYmTo/QrrHCYra2Bz84FwnfA/eI7dhK3N+iFOyvv6asXh4KJNS7QbvQH9B61EsI6p1GWuKdF4cmg+vvG78OET6jIkkpKmLt5RaV82XiJ3lFgkhJBKEiazE4upynUksSjlKLRJdioC4rKkrCYNkUQCGOWmwTAvkzHub2CFR9+2Z+xYqs+UdbXhX273SfPEsI92QyT126SXN1lj+527lhaw/3OgS2kdwvpqaJMPidOdbr1Z8zMCrpR+vcNb+g4WUvclZRdi1EFfaK+8gkF7n7Dmpz+/irEhd1jjP7QZDS9z6bv+6koZgcaG0t/zvdC3wtrWFR+Jtv7lJiYc9kNMBr2W1GXe0eky57459QLaK6+g/z+PsfU+u141AHR4+xLXjq+Ez3+LMCDicYXf61Eje4ztswCmM/ZiQacpCNSTw8mRdwnGJhP+h4UdJyGXzz5irSQqxv9u7cLZM2uhWcD+sCEsJRcdtj/E5eDEmoiYyEnDuEoghJBqkB3LfkFMVar9R6EBYGjHxsjjM2vkmWUn43JIkpwiIrVNgVCE5ons+or+BtYoEDacna3FIjHumzZmjPElYtq12IBxxSJMDGQfg97r3BUAELmsKyY1gAL1gjKdbY/bt0VquR37fSOewjyLXlPqs+i0PLhvvoNjAXFS590Tw/Hn7V2s8SuW7vil1XCp9xni2qjOdE3+c5CLzLn1HsPwzMCaMVb+SPRB3xh02eFNR0MboGaJYbh8YjW8ji1j7X4vS8jh4ohDe3iO3gjPsZtw2KkjinmCGoxUOhGXh99bDIbzpG3wMpX+d9A/4gl8/lsE+3K7lQFAJJZgw+0wbHsQib2P36BY9GldrkntVzeexQkhpBZ4Hsj+9LEu1FgEgC52+nirzjzKapqTWusbz5Cas+1BFFomsOtAPTW0hbASRcrriyKRBLfM2Ltquryho50NTVZBMQCg65vnMM9m7lj3MnVBuLYxNg90hoWOijzCk4tlXe0AAIV8Bex7l1h9jwsJpj2/Vnr7QSQdfatvDj6LQXyW9GYNGoW5OHZ+AxTfJdHei1HTxVe9F0BSrsSEpbYylnSxxb5R7O7QtZWnhTbW9WE3+AJKjkRP6jW3wiPRQMnurZuv2SdgSO33OQlhu7RYHD6/EU8PzUfPaD+Z6wp4Avzl1ht2U3ZiTL9FFXZclqc3GgboNvwnrGg7DkIOO5XkkB4Ln/8Woce70hhl3Y1Iw5zTLzHlWAD67Jbe9InUXZRYJISQShJLOQrN1fvCNU6qSXp+MavOoklOKgoKi+UUEalt/nc/Ei2kJhbt0MJUq+YDkpNikRh3TZ1ZdRY7v6WGFA3Jo+h0aK0oOdo7+QW74/Fel24AgBFuxjUal7wt7GRT+vWuJj1Z81NfXIXiu+YDXXd4IzOfXmPqk1VXXkmfkEjwz5U/YZOZwBgu5vIwst9ipKqwP4R9PK891vVxgppi7W3YUh6Xy8GSLrY4O6ml1F4ZlTkSDQA9dvngWUzGlwuUfLawlFy0+vMeVJZexKC9j5Fapk5idqGwgnsyGWenYsf1bQjc9w1Ght6XuS5HoITfmg+C9dS/8U23mYjWNPzoY2+pYOcsAIg39ceZSS0ZY9a6KhD92g/iTf0r9wNU9PhcHn5pPQLtR61HuGYj1rxWYS4unvoR83zPSq27CAA3X6fgbnhqlWMhtQclFgkhpJLUczJZY87OljUfyGeISstDjBozsagoEuK8FyVLCCAWS1BQLEKLxDDGeISmIVJVNOp1t9vyisUSZCqpwdfQhjHeLDEcWlJqB5H66cfroQAAnfwsDAr3YcxlKSjjhH1bAIB6HUqKVActZQEstZUBAK91THDD3I0xb5iXiTHBJfX1ikRiNFpzjY59NgBzn53DkDAf1vj37cfD24S9w2+gsyH0VNm12uqK/s6NcH26J+Z1sMaOYU3Qx9GgdK4yR6IBoMUf92osXlJ5iy8E4cnbDBQIxTgXmIg/731oaDfhsOwdh++pFBdgzYN/8fqfGZj+/Cr4EulHfjMUVfFT65GwnLYbizpNRoKaTqVj/KatJRZ1spE6Z6he8nfVx9EAy7raQVdFACcDNRwa06zCU0pDXBshfnUPHBrjjkkeZhDwPn6i6ZGxI5p99QfO2niw5ngSMX732oNtN3eAK5ZeTqfTXw+x+EIQvUbUE5RYrGaPHj3CqlWr0L9/f7Rq1QrOzs5o1aoVBg0ahLVr1yIoiGo0EVJXCdLZx7o83G3lEMmna26qhTcaBqxxy0wqpEyAnT7RsMhKgn4+s5nPU8O68ftdnbYPcQUA3C53HJoLCTq+fSmPkEgNk0gkpfVnxwV7sY52HnHsgHxBycVbXdptVV1s9FRLv/6fez/W/HdldqkUCsU48zKBtYbUH63jQrDx7j7W+BmbVvi9+SCp9zn6VYsvG1QN6GKnh98HOGN6awsolmluVtkj0QBwi45E1zrln6/W3ig5ySESS3A2sIL3zBIJRobcRfA/s7DS5yiUhdI7QufxFbDOYxispv6N1W3HIu0zSipxOBxs6NcYl6e1Ys2dmlDyt8XncbG2tyOSf+yFwMWd0dqC3Y29rBMTWsJQXRFjmpliz4imSP2xF4aXadglS7aiCoYMXIafW7F36gLAzIDLOHZ+A5SKpZdQ2OQVjgfUMbpeoMRiNYmJicHYsWMxfvx4HD16FKGhocjIyIBQKERGRgaCg4Nx8OBBDB48GPPnz0dODu16IKSuEWSwO8Fx6shR6CGujRAh5biCNSUWCYC/Hsqor9jITg7RyNfwd0dbb0npXkrHoeu/nEIheux6t/NKIsHX/pdZa/a4dAcABCzoWJOh1Rq6Kh8agV2waYlQbeZxcJfUN+hRppbYTuoQXS+UPRL6XqOcNJw4tx6CcjuSIjQNMbnXXEg7Lxy8uDMU+PXrEnR8CzPG7coeiV56kTac1AWLLwRBawX7teC9ponh8Dr6PQ5f3ASzHOnJ4mIuD3+59YbtlF1Y3n48MpXUPiuWOe2sSr/u6WCAxB96YNfwJtg62BWJP/SAp+XHdz4u7cL80Ljsjtv31BT5ODq+Baa2+nhjMgmHi5XtxmF034XIL9coEgCGhPng2olV0M7Plnr/DtseQtSAannXV/XrWV1OoqKiMHz4cDx9+rR0TCAQwNnZGa1bt4adnR1j6/HFixcxduxYSi4SUsekxzA/xRSDA652xZ8A1hZ8HheRUuq2WGfSThICvEzIZh2DBoAnDTCxqKVc0n3xgYkTa8dJ57fP8e0Z2rVYn0084lfaWKHrmwA4pscy5p/rWZT+Xbg0UmfdvyHoaqdX+rWEw8UfzQaw1nz39Gzp19dCk2skLvJlnQtkvl9QEBbjxLn1MM5l7jYq5PExov8SZJRLnMzrYI2IZV3hYPB5CZXarKudHpwNmc8Hso5EH7i8GQrCktqjT2PYJXZI7bPJKxy5RezjvLp5Wfjr+nY8PTQfHWJlJ4n/c+yAxhO34ZtuMz/pyHNZXE5JbcXfBzgzxvXVFDG1lQVmtbWEvlrlygvMbW+NzjYlGyMcDdSwrq/0hkQAsLizbaVf6446dkCHkesQp8r+GdvFBePu0aUwzZL+enA2kK5H6jpKLFaRSCTCnDlzkJZW8qLK4/Ewe/Zs+Pj44NSpU9i/fz8uXLiAO3fuYNCgQaX3CwkJwfLly+UUNSHkc/DTmUWG05XUwBcI5BTNp4uQkli0oh2L5J3yjVvE4OCZgfQaPvWdoboi8gRK8DGyZ4y7pkTj+NVnWHNNRgMDUqcVCkU49eLDxc0s/0usNdub9gU4HDgZqFVYr6o+G9/CFPqqH3al7HfuilQl5oVnz2g/xs6s+5FUpL8ukkgkuBKShN+8wjHlWABjbsvtXWgTH8K6z3edpuKZlDIavw9whmU97aCupsjHvdltGWOyjkQ3TY7Ejw//Lb3NXXgeEam5NRInke1VUg5uVPZDEIkE4wNvImTvTMx4fgVcSN9td9ekMZqP24xxfRciXPvzGn056Kviuw7WyF3XB7PbWYHHrfrrjqG6Im587YmiDX3xcmEnuBrJPo5tq6cK3+86YNu7MjEf49vIDm1Hb0CItglrzjn1LR4cXgLH1LesuX8evan8D0BqJUosVtGpU6cQGhpaenv9+vWYM2cO1NSYn8YZGhpiw4YNmDRpUunYlStX4O/vX1OhEkKqoKBYBN1yW/hTlDVgpassp4g+XbauAesNLiUWSXaBEByJGM0Twxnjr3RMkK1YPy8CP+b7d8eEbks5Dt092h9rroUiIaugpsMiX5hQ9OHi0CwrGQPCHzPmMxVU8K9TyfFnHZW686FSdVPk8/BkXvvS2/kCRexw681a953vh12LB57G1EhspHo5briNPrsfYdEF5m6s6QFXMP35Vdb6PS7dpf4uTGxpxhqrb7SUBTg0xp0x9kLfCj95jmStXfjkNDqUqdnbduuDLx4fkW3Pozdw2eT1oQxGBawyEnD1xCrsu/IndAukH+19o66HUX0XodPIdfAzrNoHtMFLuuC3Ac5Q5POq9DjlcTgc8HlccCuRqBTwuJjZxhLtrSq32zJa0xDtRm+At5EDa84sJwV3jyxlfZh9KSQJM04EICRJ+r8pqf0osVhFZ89+eNPUrl07DBjAPg5S1vz582Fg8KGOwcWLF79YbISQ6hOemsd6A5GqpA5FXvW+0H9Jm4e4IUqTWUfFOoOOHjRk5wIToLniMuzT4qBZlMeYa4jHoN8b06zkk/ZrFu6suZ6RzwAAJ1/E12hM5MsruxNkxvMr4JXr5rnfuStyFUo+TBrbzLRGY6ttzLVVELS4Exq960C6rWkf1gdXY0LuwDC3pDbxbtqNUuc8iEzD6xT2Tro2sUHYcmsXa9zHyB7fdP1aal1FBV7DuOQc2dQEP/ZygImmUunYeo9hrAQLFxLsv7wZGoUl/76J2dIbW5AvSyKRoFgkxrTjAR+t8ccTi7DwySm82D8b3d8ESF2Tz1fAj61HwWnSXzjm2F7q30JddmtmG9z62hNHxjX/6No0ZQ10G74W56zZHaP1CrJx69hydI32Z4z/7fMGLr960d9DHdUwnuW/kKKiIjx79qz0dr9+7M545SkoKKBdu3alt1+8oELwhNQFGnxAq4D5BjtVWR0K/LrzpmFiSzPWcWjTnFSgSHrnOlK/5RQKMeqgLwCgVQL7aK/vu6Ns5Yt8NwR6qiXJksdG9khXVGXM9Yj2A0cixvP4LGl3JXWY8N2FpYKwGFOfX2PNb2/6YSfWQBd2M6yGxtFAHZHLuwIAEtR08J9TB8a8okiIb/w/fIAupuL8dUaRUIz229i76IyzU3Hi3HooiJmd0uNVtTGs//co4kvfydtQ6pHyuBys6GaPtyu7l46JuDx81Wc+cgRKjLUW2cmMBO3oQ76Ip53wNeb0i3iYr70BxSUf3+TjnhiOR/8uwMa7+6Aio9vzCbs2aDxxG35oOwb5gsrVOvyYng761fI41YXH5aCTrR5GNDWWugtZW5n5958vUMTQgd+XNjwrS624ABdO/4ghoQ8Z42IJYLTmGjz+uIvXydSPoi6hxGIVxMbGQlHxwxOHjU3ltjpraWmVfp2ezu4ySwipfQSZGawaKqnK6hBw69bTaFS5xCJPIsbmQ7flFA2Rpz2P36BAWLIjyzOOnVj0MXKAqaYSZrWxrOHIagdzLWWIuDxct2jKGNfPz0KzcsfGSf3wn19Jo5Zhrx/AIJ/ZVOG6uRtCdT7sUjTSYCYJGqqyx/M2Nx/Imv/a/zJUi/IBAGZrr+Pma2rkUhfciWDXxFQQFuPE+XVolJfBGC/i8jGs/1LEqevKfLzKdJatb6a3tij9OkLLCN91mspaMz7oNkaE3AMAHPWPg+OG28jML66xGBuqnEIhRh96htjMihO5PLEIK72P4NG/C9AsKULqmigNA/QZshojBixFtJRa5u+t6PZpp0AEPA7mdbD++EI5WdWdWYNaTZGHmFXsBKKIy8O0HrOxoeVQ1pyiSIijFzZiqpSyCk9jMjF43xO8zcivvqDJF1W3rohrGSsrK/j5+eHp06e4ePEi7O3tP34nlCQk39PU1PxS4RFCqhE3LY01lqqkUanaJLVJhCZ7l83lS4/kEAmRt/isD0dNWpcrwJ/PV4C/gRX8F3SEqVbdqSNanf4c5AIAuGrZjDXXK+oZa4zUfV+feA4AmOUno2nLO/2cZF88NkSLO5fsan6hb4Xr5m6MOb2C7NImOPFZhZh58gUkEtq5WBuJxRJsuBWGVn/eQ8/yteYkEvx1Yztax4ey7jen63R4m8juKju/ozWUBHWnbEx1WdyZueFkj2t3nLVhHwvdcWM7rN6VpckuFEJ75RXkFgpZ60j1uR2WgiKRuMI1FpmJuH10GdY8/A98CXutiMPF5uYD4Trhf7hiVfHR4FbmWvi2vRV6VWIHou93HbB7hBteLOyEng4GH10vL5Y6Kjg5oQXcjDXgYaaFS1NbQVnAw/1yTYwAABwOvu8wAYs7TGRN8SRi7Lq+DUsenQDKvTYEJebA+peb+M0rHGl5Rfj9TjhWXQlBcCLVYayN+B9fQj5GXV0d6uqV2+Kfk5ODBw8+HC2o7C5HQoh8cVPYuyxSleve0Z5IKZ+mWlMDlwbpfckr9cI8uKQw65/5GtigmCeAjoqClHs2DP0al/ytXLOUXmdx2MsE7BzmxpojdVvTxHBWp9todX1csGlZenvLYJeaDqtW+6GHPTbeDgMAbGo5hFV/bOHT09jetA9yFZQRlpKLoMQcODeQo7F1yR/3IvD9pWCpc0sen8SkwJus8V1NeuLvJr2k3mdkU2N818EaHuba1RpnXWGtyyyjAQ4H03vMRuv9c2CY92FHtFZhLo5e2Ih2ozaUHiVfcD4IO4axm4eRz5NfLMLcMy9x4nk8rHVUPvr8MybYC9tu7GDVnn4vQN8S03rMwdNK1KI21lDCxn6NoaeqiEvTWgMoaZrXe7cPHkYxTy56mGnB3UQT7iZ1Y+PRYFcjDHY1Yox5mGnJXL+p5RCkKqlj1/VtrBrG6+4fgH5+JhZ1nAQJ58PeN5FYguWXQ7DLJ7q05uv/7kfi6bwOsNEr9zdG5Ip2LNawPXv2ICfnQ72Azp07yzEaQkhlvfR/zRpLUK17b5al7Vi0zqQGLg0R911RcY+EUNYbPB9jR3mEVKu8b+QRq66HF3oWjLnW8a9QmMLexUzqrrS8krpZs/3Z9bZ2uvWCiMvDiQktkPpjT1jqNMxu6bIoCXjo7Viys+a6RVP4GDFP8OjnZ+Eb/w+7QDML6KhnbfTPY+kNdoa9uo919w+wxh8YO+LbztMZY4s728JrZhuk/dQLh8c1b7BJxfcOlusSnayihSk9v2Wta5EYhl/v7i29vcsn+ovH1lB4R6VB9ftL2P3oDTLyi/EsNhMHfaV3qdcozMWBS7/h0KXfpSYVC3gCfN9uPFqO/b1SScXUH3si7PsuaG/NLBOgrsTH3VnsnX3TWluwxuoazkca1ux17Y5h/ZeigMeuxzrf9yz2XN0CnljEGC8SiRmNpDILhDjiH1v+7kTOaMdiDXr+/Dn+/vvv0tuWlpbo0qWLXGLJKxLBccOtz76/lbYyzk9uKXN+0YVgXH5VtTo6XWx0sWWQs8z5oQd88SopB4WFH4roKl6/80kduKa0NMN3Haxkzjf74/5Ht8p/zNqe9hgko8h7bGYBeu5+XKXHB4BDo5uiqbGG1Ln7kWn4+tTLKn+Ph994QkNJelHuA74x2OglvfZIZempKMBrZmuZ82uuv8bx51XrwtrSVBN7R8reYTTpaACexGRKnet+wx+dyo0lqGqz/o6GNzHC6u6y32x0+ssHKXlVa5ayuJM1xjeX3pE0q6AYbbZ5y7xvopQdi5aZiTBYfYWxO23HEBe0s9KR+hj+cVkYd9j/04KW4upUD0bnxLLOvEzAiqvsI1dSSSRSnwcUeFw8m9dO5t02343EnidvPynm8hz0VXFyvOwjMN+eCcStcHatqk/R20Efv/aTfcys/z9PEJn+6TVoUnNL/s0840JYc97GJR0shcKS41guv9395Mcvb2NfR/RxlH6sJyI1DwP2Pa3y9zj+VTM4GahJnbv5OgVzzwV90uMZqSsiPrsQVy2bwTXlw4UeXyJGzyg/zDzRGFsGNi59I7370Rv8cT/qs+MHABMNJVydxj4u997yK69wNrBqu4zbWmhj5zBXmfNj/vPD8/iqHTUa18wESzvLPpXhufUhsqt43G9lN1uMdDMGAIhEzAuRhKx8dPv7SaUfKzQ5F41y0jA22IsxXsjjY7drDwDAAKeSY2zv/y6evM3ApGPPPzf8UrdntIK+mvRi/0cD4vDTjbAqPb66Ih/es9vInF9/OxyHnlXtIk1T6d0lBYeDNZ6jcfnUGsb8wiensO3drsVh+59CQ+nTL0EGOhvi514OMud7/v0YsVVsfjGvnaXMeoCFQhGa/8luaPKp/hzQGF3t9KTOBSflYPjBqpdaODexBax1pSfAL4UkYfHFd8/7EiCrUAihWIyUXHbCt1VcCPZf+YM1/lZND8P7L2U1a5nQ3Bh2eqrY/jAa272rlhz7rGsNGe8HZKnUtUYyuzN2ZUlrWHTJuiV+az4IC3zPMMbn+F3AXVNnnLQvSThpLb+MRhqVawJC1xrlSICU3CKkfUK9yjaxQTh46XdYZSVJnQ/Qt8TYPgsRpFf5eqHqClwAktLXDIB5rWGvp4qMgmIUCsVQVeDhV68w/Or18ef72n6t8TFn7Vqjz5DVOHP2Z2gUMd+/Tgy8Be2CHIzuuwgFFTTBWX31lcwEcdnnge1ddFnvD977pGsNGerLtca+LpoQVHHLISUWa0hMTAxmzZqF4uIPT3BLly4Fny+f/wKxRILQKrxQFhYUIiAgQOZ80Js0hCZX7c2dkYIIAQGyLzpC4tLwOqPcfPanXaQERsYgQFN2Z8/QpGwUVS2viJevI2Elkn4RGJcjrNL/Q+n3CH4FTrL0I4sv4gqq5Xs8f/Hy3QskW2BYTpW/R4pSfoW/U8HRGQhNln4kobLUOMUVf4/YFIQmS38h/io3gzWWoKLF+rmDo+MQECA7zpDETKQVVO2XKjAsGgF86S8g2UXiiv8vlNSQrqgK7cIPa6wzE5GSW8y4qHgR8hrqWdKTfi9Tiqrnd+plIFLUpD8HvozI+/zv8e55QIGLCv+/AyOzqvxzSIorfi4Mflv150ILZRECAmS/QQyJz0D0Jz73ldU6nt24xduoZMfi+5+tOv6/A0MjYFIo/cOBqKziavkeL4JCUBQv/aLkZUz+Z3+PS1bNsfDpacbYgPBHGOfTHqpFGRjtUJLMDIzIrvLPkZ1XUPHra3Q6QpOrVsxchyes8HuExKYiNLVqu8qCImMRoCO7o+OrxCzkFFet1l7g6ygEQPqHmIFBwZ/8f/Gt33koiph/S0cd2iNFpeRYWvl/sxeJhdX2XKinLL0GXeDr3Cp/DzUBp+LfqcjMKn+Pxjof/u6uWjaDt5EDPMs8t+gVZGO230VsaDUMCdmFSMgulPYwFQqKjkdAgOzn05CEDMTnSr+ArKzAiDcIUJLeWLFQVLX3zu+9DA2DXp70RO6r9Op6LgxCtob058LA6Mo9F1pkJuLM2Z+hXK4LbrZAGf0Hr0SCGvvDx7zYMATEAoERVX99rZZrjY+8Nn7WtcYnGmSjgjPhzPeF37cfjzZxwYy/EQDYffV/8DOwRoSWEbIKhchKrtz3pmuNz8cTi7DC5yhW+Bxjnd54b3PzgVjW7isU8j+tPIy0319Z1xqZBUIAlXterPXXGpXgZd4EnUf8gssnf2A1SxsY/hiXTq3BoEHLkaUo/bizWFK596ZCsQQvX0pPelfpWuOd+nKtIZZoAKha3wA6Cl0D4uPjMWHCBCQnf3jzO3HiRDoGTUgd0iiXfaGRqKpV84FUg/LHoekodMPFkYhZicVIDQMkqOlgjAPVrnnvvkljpJd7c9sn0hd8kRC/P8uCmJpR1HlqRXn4OuAKa3xTi8FyiKbu4XIAY9V3yVEOB2vajGatWfD0NNRk1CwjtYt2fjYunP6RUQsQKGlYMbrfQjw3YJ/2OdLn440pGiINBS5G2jNfP4Q8Pkb1W4xUJWatP82iPBw7vwHKxZ+eeCefziojAXeOfI/V3kekJhXjVbXRc+gaLOg05ZOTiuTj/Axt0H7UekSrs587OsW8xO2jy2Ag5fqL1E6UWPzCwsPDMXr0aMTEfNiq265dOyxcuFCOURFCPpVhHvOFTQwOkpXrRnHl8iK0mMehdQpyoFkge2cRqb/s0+KgU+7/3vtdfcWxjtKPFDdEQh4fl6xaMMa0CnPRISYQABAgY6czqTumPb8GrULmroLLls3wUt9SPgHVQcs8tEq/vmbhDm8j5rHl97sWSe2mXFyIs2fWwjmVfXzvu05TccmafTz55zbasNGUvkOSADObsJuFvNXQx8Re81jjzZIisOfqFlaHXFKNJBKMC7oNv4NzWc263jtr4wG38VtwXUoDN1J9XuuYoN3oDQjUNWPNuSdH4t6RpbCgJpN1Ah2F/oKePXuGWbNmIT39Q0KidevW2Lp1KwQC+b74cjkc2Ot//m4UK21luLnJrlXX+G0wovOrVmPRyUwXbm6y6544BviCwy9XY1FR4ZNqLDpbmcLNTXaNRfvb2VWusehiZwU3GXVP9DILYO9T9W39Lk4OcJNR9yRbIw32QVWve9LE1UVm3ZMAYQzsY6peY7Gi3ymnpNewz6xajUUnE82Kv0dIAHIk0mssGpY7Cp2irAFNdWXoqjI/wXSyMIKbm+y6J44P86tc98TZ1gJubrLrntjflV0bLTQ5F1Ea0jtD55p9GHd1tIObjBqLkrgs2PtX7SgmADRxcZZZYzGSlwD7iM+ssfjueUCBx63w/9s5MxL2KVWve1Lh71RkIOKLqlb3pLG5PtzcZNdYdPR9AkWlT///CE3ORds4ds1BHyNHLOhohe6eHxq42N+Q/nfxKZztreEmo8aiemoe7B9Xvcaia2NHmTUWU1RSYB/yaTUWAaBQKEZ0ej7O2bbC2JA7jLkB4Y9xy8INhmaWcHM0gHPBG9jHRX1O6KVMNJQqfn2Nf4XXOVV7k+1kqg03N9k1Fh0D/VDErVqNxcZWJnBzk11j0eFebpVrLDrbWcKtTI3FssednBs7wf5BBR+YSIDQd8XgBaJizPM9x1rya8shpV8v7mQNNzdmoqzobQbsX1S9xmITF2eZNRZDEAf76KrXWKzwdyotHPbpVaux6Gikjuk93dHYPg1ddj4COBz80GYMrp5czVi34OkZbGvaF9mKJfX/PuW9aGMLQ9b/ASOGx4+hXsUai87W5nBzk11j0f627PI5leVibws3GTUWFZJyYO9b9V2dro0bS62xmJxTiIKkN+AgHdLSVjyxCEcubES7OHZ36P+598PWZv1Y486GapjRoznjPaJzbjTsE6teY/GTrzVkvB+QpVLXGoKqvU93tjJFmxZWwInLrLmLNi3xa4vBWFSu1MaoV/cQqGeOn1uPLB3TVRGw3nO+R9caJQqLxYjOqPj9kGZBDrbd3IExIdJrR+fxFbCg0xTsbNLrk64py5vqYQY3NxfWeEXXGpVV2681yvvYUeBYdT10HLkOF07/iNbxzPf+dhnxuH9kCXoNXYNAvYqb2xhrKEJNkc94HuBzOXBxcQGPxy438knXGjLUl2sNbhV+19/jSCT0cciXcP78eSxbtgxFRR/+qDt27IgtW7ZASUn6hfSX5ufnB7G4JEnG5XLh7l73P4ERCpl1otzc3ORWt5LUb2/V9WGWk1J6+7meBbRfB8NMS1mOUX26gf88RqMj+7Hz+nbG+Jg+C3Dw/K+lnXDrEnoe+Dzchefxz5U/MDGQ2YCoxbjfceyP6bDWpaPQACCRSMBbdAHqhXlI3j4OCuIPybAoDQNYT/0bZyd7oL+z9Is6UjM+5XlALJbA8ucbiMksSUJ9FXiL1aDiiaEtWo39rfTCMvz7rrCS0QyDMNn8chORaXmARIL7h5ewdgT91HokVrcdCwAQbuwHbh183amLjgfEYeRBX9kLJBLsuboFkwJvsqbOWXtgyMDvIeZ+uDhf1d0eToZq6OVgAE3l2rFbsTa/H2iyyQsvE9jJGL5IiGsnVqFTDDsxN2TA9zhj51l6O351DxiqV66hS30lkUgQm1kAJQEXeqol/xaH/WKx8XYYAuIqTvy3iwnEgcubYSmjQYufvhXG9l2IECm756RZ2d0eCzva4Hl8FjZ5hZU2VlNT5OH2zDZobqpV+R+sHmv62x08j//4hzKqRfk4eW4dekT7s+bSlNTQb/Aq+Bg7su9YRsqPPaGhwK21zwO1VXXkiego9Bfwv//9DwsXLmQkFQcMGIDt27fLLalICKkCsRiGeRmMoUQVLZho1L2/5+mtLRCiw/4E0iE9lurENUDvj/K+l6WgDJ6bGyUVy+BwONg3qimyFVVw24y5y88yKwlNkqMgor+dOsUvLrM0qQiJhNWYB3i3W/FdUnFaa3NKKn6CA6PfXZDIqLU4/+kZGOWU7K7Y4R2N5ZeD8Sia6mh9SYEJ2RUnFQH8fP+g1KTiA2NHjO63iJFUBIDBro0wsqlJrUkq1nabB0rfGSnk8TG8/1JEarB39B+4vBmuyZGlt43WXEN8FXfl1mWFQhFGHfSF+dobMP3xBv56GIWX8VkY99+zCpOKfJEQPz44hNvHlstMKv7WfBA8x2yqdFJxZhtLLOlsA3UlPtpa6eDUxJa4PK0Vtg52hd93HSmpWMaUVsxd4CObGqOTjS5rXa6CMgYMWomj9uwuyzoFObh+fCV6RD2r8Htt8gqvWrDks1FisRoVFxdj8eLF2Lp1K2N8xowZ2LhxI2XKCamr0tMZu5QAIEFVu07usuhgrSs9sZgWiyJhFVugkzrFNCsZ1uXq1jwwdkILayrAX974FiUXGudtPFhzQ18/xJkX1ACpLjn5/ENZjV5Rz+CawjyyGa7ZCKfK7BJqaaZVU6HVC23LlNG4btGUlZBXFRbixwf/AQBmn36BdTfD0H7bA9wOSwGpftdDk9HiD+nHPt9b9Pgkvn98gjUeqGuGAYNWIl/QsHfJVYeudvo4M6klRrwr31BWqooGBg5agWwB8xSMWnEBzp75GY1y0krHTH68jgmH/SCsYqmmuujMywQcf/f8XSQS45tTLzDpqH+F5SitM+Jx9+hSmV2f41R10H3Yj1jUaTKK+BUnyRd2ssHBMe4Q/doP24a4QkXhw7U9h8NBTwcDzGprCRs9+nC2rNltLbFtiCv6NzbE911tsWeEG3YMayJ1bRFfgLF9F2CHWy/WnKqwEOdOr8VX5U7alHX2Jb0fkxdKLFaToqIizJ49G2fPni0d4/P5WLt2LebPnw9ONZxbJ4TIR+LrKPaYqnbNB1IN1BR5SFbWRJoSsw6dY1oMvMKrVp+D1C0dYgNZY/dMndHEiF1kngCZa3vjrG0r1vjwV/dx4GnV6ueQmlVY5kOUxY9PsuZ/bzGIsTtrQGM65v7ZOBws7jCRNTwx8CZckqNKbwvFEux9/Kbm4mpAVl99xfidL2/Os/PYcG8/a/yNuh56DV2DdGX2awKHgzpXCqY2GODcCEe+ao4n89qz5l7qW+KrPt9BDOY1o2VWEq6eXA2tMo3WDvrGlCbYGpLRh9i71XxjZNQrlEgw4eVN+B2Yx6rb994Zm1ZwG78FNy2afvR7r+/rhI39GmNsM1O6rv9EHA4HM9tY4uxkD/zc2wkqCnzY68tuECjm8jCr60z8VKbG6HsKYiH2X/kDv3r9A55YxJrPLKha7Wby+SixWA2EQiG+/fZbeHl5lY6pqqpi586dGD58uPwCI4RUixPX/VljCapaNR5HdeBwOACHg1faJoxxh/RY7HsUJZ+gSI3LLRSyjkEDwB1TF7SxlN60p6FTV+IjVl0P942ZjXQc02PhmhIln6DIJ4vNzMfmuyUNADq9ec6qa5asrIF9zl0BAJpKfOwc1gQGDbymWVX5NrLDf44dGGM8iRh/3P6b0fn20LNYCEVipOYWoVDIvmAkn8engmPm055fwZ+3/2aNpyqpo9fQNYhVl95kZnxzU+ioSG8kQj5O1jHZc7atsbLdWNa4a0o0zp/+ESrFH45Bj/33GbY/iEJDaZdQUFz55wStghwcvvAr9l79E+rF7GYueXwFzOg+C0MGLkOqivSGNGXdmOGJxZ1tPyle8nHr+shuTAgOB6vbjsW8zlOlTi/wPYMLp35kJNwBIK4BlwqQN0osVoNff/0Vt2/fLr2to6ODgwcPol07dn0AQkjdk/Ca3dkwUUWr5gOpRuWPQysLi8CPjZFTNKSm9dvzGO3LJRbz+Qp42sgWLo1ox2JFjjuwX9tHvHqAtx/pRElqh8lH/Uu+kEjw44N/WfNb3fthUkcH5PzSG8lremJa64q7UJLKWd7uKxTymCWBurx9gWGhDxhjbf53H/qrr8Jxw208fZtRgxHWPxKJBIP3PpY5Py7oNv66/hdrPFugjL5DVsmsNbe6hz3+Hi67QympmnUew3HQqRNrvG1cCI6fWw+BqLh0bPbpF/jjXsWdkusDkViCdlsffHwhgA5vX8L/wLcYGXpf6ryvgQ2aj/sDf1ei67MSn4vj45uji4wu7qRqvmpuCiudiusXb2k2AON7fwchh5226hnth0f/LkDjFOZud4Wll9HycBxepRXjclQetj6IQgIlHL84SixW0Z07d7B//4fjA5qamjhw4ACcnaUX6CWE1D15b2JZYwl19Cj0e6+k1Fk0i4+q+UCIXAS9DIdTGjOR7G3kgC6NjemIz0ectGvDGhseeh9DKriAJ7VDdoEQ10NL6vj1iPZDu7hgxny6oiq2uPeDrZ4qVBT44PPobXJ1idY0xO/NB7HGN935h7EL6+m7Y43R6flYeSWEtZ5U3uuU3NIuteWNCr6DvVf+BBfM3W55fAX0G7ISj40cpN5vQ18nrO7hQH8b1cBIQ8ZOaA4HU3p+i0tWzVlTvaOeYd/lP8AtcwR0wbkg/Ho7DC3/uIsh+57gdXIO63513dVXSXgWK+PI8zsKwmKsu7sft44th3k2u16rGBxsbDkEbcZsxCtd9nvg8mz1VBG0uDOGNmHXxCTVw1hTCX7zO2B4E6MK1x1q3Bk9h61BqhL7g2+7jHg8/nc+Jr+4hvLFNsddTcYq7wzMPx8Mt9/uIDaTPgD+kuhVoQpEIhF+/vnn0i3oHA4Hv/32G+zs7OQcGSGkOjXKZR8jqsuJxT8HuSBEx4Q1bpJI9a0aCmnHoO+ZOkORT28LPiZOXRf3TBozxuzT4yB65ieniEhlTTr67v9IIsFP9w+x5je1HIxMJTWYairVcGT1z2QPc9bYL62GI0aN2QnUPDsFK72PSn2Mq6+Sv0hsDcVR/zip4+MDb+LQpd9ZjSwKeAIMHLQC90xdZD7mIjoOWm3W93WCrB6A7ztFly+9AQCjX93D/st/gC/6UEtuycVg+MZk4szLBDhsuI0h+57U+R2/d8JT0H7rfTTZ5IV+eyr+4M41ORKP/luAJU9OspLlABCrpoPuw3/E0g4TUcxjN2hJ/KEHHn37oe7lENdGuP9NW1h+ZDcdqToNJQF2DXeDhlLFTW5vm7vBY+xveKHHPkWgIizC7mtb8e/FTdAozJV6/+TcIuoY/YVRm+IquHLlCqKjPxyRVFZWxr59+7Bv375KP4aenh42bNjwBaIjhFQXg7wM1liCSt1NLI5rZoJtUnYsKoaFolgkhoB2ItRrr5Jy0OntC9b4HVMXqIobRq2mzzXYpRFOv0zAcft2aB8bxJgbHXIXZ16OxEDnRrTrsxaSSCQ49a57d//wx2iZGMaYT1bWwBb3/gCA7vbUGb2qlnaxxX/PYlBQpmlIroIyFnWchMMXNzHWLnh6GocdO+C5gVVNh1kvSSQSfHcuEFvuRbLmpj6/ih3Xt7OSL0VcPoYNWFqpJhakenzV3AyO+urY8/gNdvmwS+7kCxTRf/BKeB1bBrcyjY4AYGzIHagWF2B0v0Uo5LNrXZ55mYAzLxPweG57tKiDXe2zC4Tou/sx8j5SV5ErFmHh0zP48cG/UBBLb9pxyrY1pveYjTRl6bUUJ3mYQV9NEfpqihBv6l/l2Mmn01QW4Pp0T6y79Rpe4anIyC+Wui5SqxHajN6I/Zc3Y0iYD2t+9Kt78Eh4jTF9F+KJkT1r/s97kVjQ0QamWsqIzcxHSm4RnAzUoUAfqlcLSixWwZUrVxi38/LycP++9HoOspiYsHcNEUJqj7cZ+WiUm8EYK+bykKYsu5tZbaehJECEZiMUc3kQlDlO45AWizXXQrG2t6McoyNf2syTz/FXdABjrJDHxyMjB3SivGKFZrW1xOmXCThh3wabvXYzdvyMDb4D838eYU2fxljejf2GlsiX8F3SnCMRY83D/1jzG1sORa6CMiy1laGpzN7RQj6NrZ4qMn/ujYdRaYhKy4eZljJ+uPYKRyXtMf35VXQu8+EGXyLGrutb0Wb0RkY3bvJ5jNZcQ1JOEWt8lt9FbL21kzVezOVhdL+FuGTdssLHHfaR44rk07U010IzU01EpObixmv28d1MJTX0HvID7h1ZCpvMBMbcoPBHOHf6JwwetBx5Aum7rP+8F4GDY5p9idC/qGMBcR9NKlpnxGPf5T9YJS3ey+UrYl7nadjj2l1mLcUJLUzxW38qX1YbtDTXwqmJJc9B62+9xrJL0kth5CooY/iApVj26Dh+eHiYtfPaJjMBDw8vxubmA7G6zRjkC5glB9x/v4OxzU0ZH7z0ctDHsfEtoKZIqbGqoPRsFURE1P9iuYQ0dBeDEtEoj3kUOklFExIpRYTrCh6XAyGPj3DNRoxxx7QY/HLztZyiIjUl3C8EDunMuqH3TRojX6AIEe1YrFAzE00AQIKaDm6YM5sXGOemoeub59j+MEoOkZGKSCQSGP5wDQAwNPQhmiYzd3LFq2pje9M+AIDAxZ1rPL76SsDjoqONHia0NEMXO72S49EcDmZ2m4mCcscRPRJeY+6z83KKtP5IzC6UmlRc+OSU1KRiEZeP4f2X4LSU2rFlCXgczPCkRkZfAo/LwfkpHrg4xQNqiuzEeoKaDroN/4n1ng0Aur8JwNUTq1idcd/79xm7RnhtkV8swvxzgWj7v/tYejEYRUIxAhOyMf9cIKYdD5B5P45EjK/9L8H/wFyZSUVvIwe4j/8Te5r0qLBBy95R7tCiD5JqnaVd7FC8sZ/MeQmHi59bj0SXEWtZ5TUAgCcRY+HT03i+fw66Rvsz5lLzilm7ua+8SsbC80HIzC9GZGpeg+m0Xt0oLVsFFy9elHcIhJAvLK9YxKqxmKCijWVd63Yt1e+72iLkjCkcyySYjHLTZdYmIfVDbqEQXd+w37DffJcka/oucUakK3sBctC5M3pGM+sqfhV0C+Mt3Ws6LFIBsViCYQeeIiO/GFyxCKu9D7PWrPMYjnyBItpYakNZQDvmvpS2liUlREJ1TPFz6xH4qVxX7p/vH8Rlq+aMbsT3I1PRzop94Uik8wpn7nrjSMTYeGcfFvieYa0t4AkwZOAyXJHSJKSswS6NsKK7Pdzp9eGLUeTz0NvJEBcmt0Knvx6y5qM1DdFh1DpcO7EKzqlvGXNt40Lw4PBiDBi0AuHa7EYja2+EYkUt3EU/7+xL/O1TUtvbOzodG2+HfeQegGPqW+y8vo1ViuS9Yi4PP7QZjY0th0L0kd3PClT2p1bjcTmIXNYVVr/clLnmnqkLmo7/E/9c2YIBEew6nDaZCbh+YhX2N+6MFe2+Qqy67O7eu3yisftRNN5/vr6ujxMU+BwkZhdBic9FUk4h3E00McXDHLfDU7DvyVsYqitidXcHqH+kPmRDQX9RhBBSAY5QCP28LMZYgqo2JrU0k3GPumF6KwupnaEd0mrvp9uk6v5+9AZdo9mJxRvv6mqNa0blOSrC4XBw62tPAMAZ29bIFigz5oe89oZaUZ48QiMyPHmbgTMvS44QTnl5nXVR/lZND3836QEAuD7Ds8bja0jKHjPb2HIIXuoyG7woiYqx//JmRlOKDtseIi2PvQOPfBCbmY+5Z16Cu/A8Rh96VjrOFwmx98qfUpOKeXwF9B+8kpVU9J/fkfEBSgtTTRwf34KSijWkvbUO+joZSJ2LV9NFpxHr4Gtgw5pzSouBz3+LWLuzAGDVlVfosdMbk474ITpN/q9PEokEeUXC0qRiZQhExVjpfQR+B+fKTCq+1DVHqzGbsK7ViI8mFQFgOu3ArfUsdFSw+CMNo9KUNTBo0HLM7TwN+VLqjQLAhKDbCP3na/xybz80ZezuBYCyh3a+vxSMBeeCsPF2GH68Hood3tGYceI5+IsvoPtOH/z7LBa/34lAyz/vftbPVh9RYpEQQiqglJnOKnKeqKoF4zreNdRIQwkhUhKLLinsAuKk/ph/9iW6vfFnjKUrquKZgTX2jWoKFyPpxc3JB51s9SDc2A95AiWcsGceH1QRFmFYKHu3CZGfFVdK6jRpFObip/v/subXeo5AIV8BPez1abfiF2akoVTaBbeYJ8CkXnMhLFdWpGViGJY/OsYYOx+YWFMh1nq+MRngLjwP7sLzGHHgKZJzCtH0tzv4333m0T6V4gKcOfszxgfdZj1GjkAJfYb8wGrU8ksfRzQx1oD3nHZY1d0efwx0xrUZnuDKal1Mqh2Hw8HPvdmdoN9LVdFA1xFrpXaL1i3IxtUTq/HT/UPgiZn1CW+8TsH+pzHo+bePXI55nnkZjw7bHqDLXw/h/vtdqC27XOn79oh6Bv8Dc7Hm4X9QFLEbtIjBwaYWg9Fy3O/wN2QnXd/bN6op+joZwEFfFdNbW2BDX9n/zqT2WN/XCaPdP/KhN4eD/zXrjybjt+CWmavUJcrCIix9fBJhe2ZgwZPT1fYhcGhyLs68jK+Wx6rrKLFICCEVUElLZo0lqmihrr/P5nM5eKlnzhp3S46i2iL1VHJOIVxSomGYl8kYv2XeBGIuD+Nb1O1duDXp/YX2wcbsenxTn18DdyHViqstvKNKSlms9D4Kg3zm736wjin2OncDAPwxiAr414TgMjUsfRvZ4ZdWI1hrVvgcQ4e3L0tvzzv7Eum0axH5xSK0/ONe6e0Tz+Nh+MM1pOYxO6ga5qbj5rEV6BPpy3qMZGUNdB7xM+6auTDGhzcxwpJ3O4McDNTwQ08HfNvemurPyYGWcsXHKrMUVdFr2Bqcs/ZgzXEhwfJHx3Dr2HKYZLObwYQm58InOp01Xl1uhCZj9qkX+ONuBO6Ep+DsywSsufYKQ/Y9xf3INHiFp+J5fNbHHwiAbXoczpxeiysnf4BTWozUNaHaxug88mcs7jhJanfsssa3MMP5Ka0QvKQLdgxrQh8k1SEzWltAwPv4hVe4tjG6DV+LKT3mIF1RVeoa3YJs/Hp3L97unIxNXntgkVn1D65mnXzx8UUNACUWCSGkAomh7B18CaraUOTX7TckXC4HgbrmrN0iTZIjEZIk+5gAqZtE4pLmFd0qqK9IPt0dMxdEajCPrbWJD4FLchTG/ftMxr1ITZFIJMgrFsE2PQ5z/C6w5hd0mgIhr+QiXpFXt5/T6wo7fTVGUf61rUewjnbyJGL8e2kT9N59CJJZIITuqquISG3YNYCvh7I/6CzPNTkSPv8uRKuEUNZclIYB2o3aAN9GzBrR8zta4+j4FuBU0OSC1BxzbRV4mGlVuCZPoIQhA7/HphaDpc63jw2C/4G5GCJlB33brQ+w0zuq9PYRv1iMOPAUC84FIq9IiKTsQuz0jsLJ53Gf9EHztVdJ6Pm3D7Y/jML8c4Ho/Jc3Bu97gjXX2L+LFdHJz8LGO3vxct9sqXXzgJJair+0Go6mX/2Je6YuUteQ+qODjS7ufdMWS7vYYuewJmhlriV7MYeDva7d0XjSdhx06gQxpD+vaRblYb7vWYTtmYETZ39Bv/DHjDIcnyIhu/Cz7lffUKVJQgipgF5GEmssXlVbDpFUvwKBIl7pmDBqjrklR+KfoEQ4GarLMTJS3a6ElPwe94xkJ7uulzsORypPwuFij2sPrH1wiDE+4/kVzNG3xKGxzeQUGbnxOgV99jwBAGzy+gcKYuYFwyWr5oz6cjoqtDOrpvC4HLxZ0Q3ma29AyOPjqz7z8eTQfKgKP1ycmeSk4eCl39F3yCqI39VLs113C0NcG2HnMDfoqla8O6k+mn2q4l0xvSOe4siFX6FenM+ae65ngd5Df0C8lA6qm/rTbt3a5sSEFph75iXisgowpZU5pniYwyc6HW23PihdI+bysLjjJPgbWGHH9e1QKy5gPIZuQTZOnF+PU7at8W2XGYhT//B/P/PkC8yUsstq890Ixu3JHubYPcINxSIxsgqEUFPkyfxgff65QFTlwItmQQ7m+57F3GfnoFHE/h1+73EjO0zrMRsv9K0q/di9HaXXrSR1h4e5NjzMS66/VBR4ePSfX4XrE1W1MaHPfPzeYhDW393Parb3Hk8ixpAwHwwJ80GqkjquWTTFNctmuGbZVOrzJZGNdiwSQkgF9NLYW+TfVtBVrC75roM1Asq9MdMuzMX/Dt+RU0TkS5l39iVUigvQKYZ5IRGpYYBwLSM5RVU//OPSDcXlCsWPC/KCSnEBikViOUXVsD1OKCxNKnaL8mPteinm8rCg45TS2/2cDKFJRz5rlKmWMvaObAoACNE1w5yuM1hrekb74ef7zKT9qRcJmH26YRw7S84phE90OoqEYryIz0JMZoH0hRIJvn12DufOrJWaVLxr0hgdR66TepGc/XPv6g6bVANTLWWcnNgS3t+2x9RWFuBwOPC01EHiDz1Ya/9z6oTm4zbDT0aibUiYD1798zWW+xyFUvGn7az65/EbaK+4DMUlF6G/+iqcf/XCg8g0rLgcgqa/3cHgvY/xLCYD3XZ4Iyjx8067aOdnY7nPUUTsnoaVPkdlJhVTlNQxq+vXaDN6o8yk4sSWZnixsBPW9nYsHVNV4OGHHg6fFRupnfo6GcJeX/pR5/ICDKzRe9gadB/2I54aVtwIRrcgG6Nf3cPeq38iduckPN83G7uvbsE3fhfQNdofVhkJUP7Ev6GGhHYsEkKIDBKJBKkh4azxxi3rx6f741uY4rC+FcaEMDuauSVFyrgHqavCU/PQ781zVuHzS9YtAA4HK7vbyymyui9BTQdnbVph2OsPR840i/IwKuQuWm8xwJO5Haj5QQ078brkyCxPLMLvXntY89ub9sEr3Q/Nqw6Nda+x2MgHo9yNMemoPwBgn3NXdHkTgHHBzA+2ljw5CT8DaxxzbF86dtQ/Dq0ttDHT0xIK/Pq5R2Lv4zeYejwAEglgoa2M6HTpyRbl4kLsuL4NXwV7SZ0/0LgzpnefjSI+O3E+vbUFVBXpUrAu0VdTRNKaHtj/JAaLLnzojvxaxwRtxvyKTXf+wTf+l1j3UxUW4qcH/+LrgMtY7zEMu117fLQm4XuZBR/eN0Sk5qH9tg+7Jp/HZ+HsZzZXck6JxrfPzmNssBdUhLJrqAo5XGxz74s1nqORoaQmc93hcc0wsmlJkw/nRupobqqJiNQ8dLPTg52+7PuRukdLWYAHs9vhXGACFPlcGKgposcunwrvc9OiKTzM3dDp7QvMfXYO/cOfsJpzlueS+gYuqezu5ZkKKjhh3xYLO05CZgW/kw1N/Xw1JoSQavDkbQbMyhW/LubyMGMQu2B2XaTI5yJA35I17pZMicX6qG/EU9bYJasWaG+lg5Xd7KTcg1TWriY9WWOz/S7CLyYTWx/Q31NNkUgk2PkiC7djSnZ2zfG7wLooSFFSxxrP0aW3T09sCQ0l2q0oD4p8Hl4s7FRyg8PBzG6z8FKX3VRs79U/4RkbzBj77mwgBvwjvf5aXScSS7DoQlDpsVJZSUXrjHg8PLxIZlJxRdtxmNhrntSkIgD0cNCvjnBJDdNTVcSCTjYQb+rPGC/kK2BO168xeMAyJKhoSb2vSU4a/ndrFyL/norlPkdL65jWFLWiPIwLuo3rx1fgxf45mPbiWoVJxYtWLeA2YQu+6zytwqRi+PddS5OK7/V0MMDMNpaUVKyndFUVMMnDHGOamaKzrR662FbiNBmHAy/zJhg8aAUcJv+F/7n3Q4aMJi8V0SzKw5SX11llcBo6SiwSQogML+KzWYnFWDVdqKsoyimi6qWvqsg6Cg0ATZKjIBZTZ+j6olAoAiQS9I5kJhbz+QrwMnPFrZltwOfR24FPtabnh6NVNy3cEKbViDHfNDkSnd8+x7yzgdRpvYbcjS3E7pclx/HMspLx44N/WWtWtx1beoH6+wBn9G9sWKMxEibnRh/q+eYqKGPIwGWsCz1lYRHOnlkL2/Q4xvi10GQEJ2bXSJw16UFkGtLKdXour0/EEzw5NB9uyVGsuXy+Akb2W4xfWo8AZDRksdBWRg97SizWdfnr+7DGztq1RuNJ27HHpbvM+zXKy8BPD/5FzM5JOHZuPQaE+XzyMenKUivKw+DXD3H0/Hok/jUeBy5vRtc3zyu8zw1zN7QZvRH9h6xCsJQPG8r6c5ALrHRVqjNkUsfwuBxcmOKBs5NaVi7BiJIO0nO7TIfR1/sxrP9SHLNvi7RP3H3oksJu8NmQ0f53QgiRgc8BzLKZXRjfquvBsJ4caxSKJUhQ1UaSsiYM8j98au2WHIkDvjGY2NJMjtGR6jLigC+cU9/AvFyS/JZZEwiVlMCrJ7/PNW1+B2usvvoKQEkTl/+598eft/9mrJnnew63zd3g/vtd3P2mDe2M+8LeH4GGRIKtN3ewmhk817Ng7C6d18G6JsMjMhwZ1xyjDvkCAMK0jTGm70KcP/0TeJIPNUr1CrJx5eRqdBi5ntGEwjs6vV41GwtPyUWnv9idfN8TiIrxy72DWOB7Rur8WzU9DBuwFE+MZJe3mNrKHCu720ONjkHXeYp8HtpaauNBVDpjPENJDdN6zsGuJj2x+fZutIkPkXp/BbEQw14/xLDXD5EjUMINczd4mbvirokzAvXMUcz79NcsvbxMuCdFoPPb5+j09gVaJISBL6lcveF7Jo2xqu1Y3DFzrXCdcGM/KjFCGJQEPPR3boR2Vjpou/U+QpJyK3W/Qr4CTtm3wSn7NuCKRWiRGIYeUX7oHu2P5olhFe6ovUHNDxnoFYUQQmRQzc5gvaC8UdeHsYwdAHWNioAHcDgI0LdE9zcBpeM2GQlodtCbEov1xPmgRCyWcgz6slVzHBnXXMo9SGWoKvIRtLgTxv77DH6xWdjr0hU/PvgXmkV5pWv6RzyBfVoMnsMU4/71w7kp9aOMQm3lk1Cy42ZY6AP0j3jCmBODgxndv4GIK72jKZGf4W5GGFXmRNkVq+aY23katt7ayVhnnZmI6ydWotPIX5D87qjn1GMBOPMiAYfHNauz9QIfv0nH/cg0aCsLMOVYgMx1dmmx+O/iJjRPYtd+BoBbZq4Y3W9R6b9NeYp8Ltb2csSCTjbVETapJcY2M2UlFt97YmSPdqM3YFCYD1Z7H5a6w/U9teICDAp/hEHhjwAAhTw+gnTM8FrbGNEaBkhW0USWggokZd4CK4iE0M3PhmlOKhxT38IxLQZ6BZ+2i7iYy8Mx+3bY0qx/hQnxsurJ23DyBWirKODxnLbQWHntk+8r5vLw2MgBj40csNZzFHhiERzSYuGU9hY2GQmwyEqCXn4meGIx7pi5Yqt73y/wE9RddfMVmBBCaoB6cjxrLEZdr97s8FJXKnkJeK5vxUgsciGBK23vrxeSsksSLf3C2bXILlk3xx90DLRKHA3U4ftdRxisvooUAH836YmFT08z1nznew4zu8/CheBEFApFUORTYutL0s/LwLabO1jjO9x645Gxo5R7EHnjcDjI+rk3/nc/EmuuhaJIJMZ2976wzEpi/T05pcXgxvGV6D7sRySpagMALgQnQn35ZfxvsAvGNTPFAd8YpOYWYZS7MRwNavduxsN+sRj33zNUWC1BIsHEwJvYcmsXaxfuextbDsHydl/JTJzvHuGG0e4mUBbQ8099M9jVCD9ce4WkHBk7qzgcnLHzxFnbVhgQ9hjznp1Fx5jAjz6uokgI9+RIuH+huttxqjrY49odO9x6Se1YXhEOZRZJBZQEPIyyV8WR0MrtWpRFxOUhSM8cQXoVH8cnJSixSAghMqgmsBOLb9X1UCSq3JGOuiB6RTcsD7rNGndPipBDNKS6nX4ZD4PcdLSJYx6DCtIxQ5RmI6qtWE0M1BSQkluE/7n3wzzfs4xjXxMDb+Cn1iMRp66LYpEEdXRTVa0iEksQnpoLDUU+GmkoISAuE+6/l3S333pzB/Tzsxjr41R1sKz9V/IIlVSSmiIf33e1w/dd7cBdeB4AsKTDBDTKTWN1inZNiYbX0WXoPvwnxKp/qKc15/RLzDn9svT2n/ci8Ghue9jXouYNidmFmHLUH/ci09DXyQC+MZkVJhWNs1Px143trB2472UpKGNKz29x0r6tzMcwVFfE+Oam9HxfTxmqK+L+7HbY9+QtBDwOJnuYIyYjH223PmCsk3C4OGvXGmftWqNpYjimvLyOMcF3oF1YteTLp0hTUsNJuzY47NgBd02dIf6MHeSjmhp/gchIfTPWUXpi8cYMT3Tb6S2HiOo/entLCCEyeHk9Q7tyY2809GGn9+kdxGorMy1l+Bmw64y1TAiVQzSkuv37LBYDwx+BC+aV61nbVnKKqH5a2MkWk4/6462GPo45tMOYkLulc4oiIRY+PY35nafKMcK672FUGq6EJMFMSxlH/GJxOzwVCjwuvu9qizXXSp6vRobcxfBQdn26md1mIqtcQxB1yvDWWgs62uC3O+GQcLiY1GseVIoLMSTMh7HGMT0W944sRd8KmjtkFghx2C8Wq3s4SJ2XhyUXgnApJAkAcMQ/TvZCiQRTX1zDr3f2MsorlOVjZI+xfRYislzjKAAw0VRCel4xrHVVsG2IKyUV6zlbPVWs7f1hR7aZljLuz26LduWSi+/5G9pgjqENFnacjK5vAjA09CF6RvnBODetWuMSgwN/Ayt4mbniprkbbli4fVbdxu+72uLp2wy4GWtidffKHZcmDVsjVT7uDTfC2scZuBqdD10VAfaOckdnW10s6mSDX72kl5Qgn4/eVRFCiAwKcbGssbfqevXuCEawjimyBcpQL84vHWsd90qOEZHqcj8yDd+/9mGNn7bzlEM09ddgl0aYfLTk6/UewxiJRQCY/vwK1rUahrCUXDQ10ZRDhHXbhaBEDNr7GOWb1ReJxKVJRcvMBOy4vp1134NOnXBeSiJ9TjurLxIrqboNfZ3w252Siz4Rl4cxfRfhxPl16FeuVqxlVhIeHF6CYf2X4paFm9TH2ng7rMLEYmRqHq6FJsFaVxXd7Krv9T0iNRevU3LhZqQBRT4XEWl5sNBWxgHfmI/e1zY9Dn/d2C6zc64YHKxrNRxrPEdByGNeyo12N8GhMe717n0K+XRtLHWgIuAhr1gkc00hXwGXrFviknVLQCKBQ1os2scGonliOJomRcA+PbbSOxoLeXyEapsgRMcEr3RM4Wtgi7umzkhXrlo5guQ1PaGrqlClxyANkxKfg7VttHF2Rkfw+fzShj8b+jXG8m520FpxpVq+j64KNeYDKLFICCEymZbroguUJBbrm5JixXaMixjH9FjkJCRDrZG+HCMjVaVRmMu6OH2rpoenhrbYO7KpfIKqhzSVBRjfvKS220t9S5y2bY3BZXZYqQiLsODpGTTbrAV9VQUcHOOOHg4Gcoy4btnxMIqVVCyLLxLiv4ubWDu74lW1Ma/zNMaYhhIf/ZwMsayr7ZcIlVSD8t1ei/gCDB3wPf69+BuGvWbuSNUqzMWVk6uxuOMk/NFsAKurQ36xGJGpebDSVWF9H7/YTHTa/hDZhUIAJV3Cfx/gXOX4zwcmYNQhX+QXf1rZFLWiPKzwOYZ5vuegIBZKXfNWTQ/j+3wns2vu3pFNKalISqWv7QXFJRcrt5jDwStdU7zSNcXuMsPa+dkwyk2HQV4GlMs1NBRxuUhTUkeysgZi1PWqtTnWDE8LbB/iSr/PpMq4XA7rdUVDSYBf+jhi2SXpHdPfG9XUGC5GGjDTUsJINxM4bbyNyDTme41v2tIHlQAlFgkhRCazconFXL4i0pRqdyH4z/W4kT0rAfXkxFV0nj1OThGRqsrML0afiKesC9Sztq0ADgcTqOt3tfpzkEvpbqSfW49gJBYBYLbfBfzRbAASoIPJRwPwZkU31htdIt37o6Oy/PjwX7SOZ5dvmNpjTulumSmtzLF1sAs1z6mjinkCjO63CLlXt2BCubrAfIkYv3vtQZvYYEzvMRsZSsyaijbrbkJbWYC+TgZQVxJALJGgnZUO7kWklSYVAWD7gyis7eUAFYWqXR796hX+SUlFjkSMr4JuY929AzDKld7dFwB2NemJxR0mso71v3dnVhso8OnIM/lAwOMifnUPDD/wFPcjP++Yc7qyOtKV1RGEmmlgMa6ZCTrY6GKKhzklFckXtaiTLYRiCe5FpMLdRAszPS0w+t9n8IlOh5ayAAdHu6NvuSaHfw93Y9VonOFpUZNh11qUWCSEEBnMs5IZt9+q67F2Q9QXPkbso2Jehy9TYrEOO+Ifi0Fh7GPQp+gY9BehqSxA/8aGOB+UiGeGtrho1QJ9Iz8c3VQRFmGVzxHM6jYLcVkFuBuRik629W8HdE3rGu2PxY9PscY3Nx+Iy9YtAJTsOPh7uPSjsqTuEHF5mNRrHt5oGGClz1HW/LDXD9E6/hUm9/wWNyzdGXPp+cU49OxDeZOd3tGs+xeJxEjLK/7sxOKrpBw8fpte+QSORIIB4Y+w+uHhCjvvhms2wrQes+Fl3kTmmh96OKC99ad11iUNg6G6Im7PbIO0vCKoKvCQVSBE1x3eCE7KqdE47PVVEZos+1i1gMfBjRme9HtMagyPy8GKbsyanXdmtUFcZgG0lAXQVGYfce5sq4sfejhgy/0IqAh4+KWPE4w0lGoq5FqNEouEECKFsKgYJjmpjLG36npoY6ktp4i+rEdG7GLYreJfISwlF7b1qFlNQ7Lw8GMkluskmqKkjnumzviaPl39Ijb1b4z4rAI8jcnEqrZjGYlFAJj6/Bo2NxuI1zomOBYQR4nFKtLPy8CBy5tZzYl8DWzwfbvxpbe/9rSs4chIVU1vbYFdPuzkHzgcrG47FuFajbDj+nYoiYoZ06Y5qbh2cjX2N+6MxR0nIVlF65O+79YHUehqp4fu9pUrAyKRSHDQNwbrb4UhpLKJGokE/SKeYPXDw2ieJLuBQDGXhy3u/bG67RjkCWRfuHay0cWCjuwmbIS8x+NyoK+mCABQUeAjcHFnpOcVQXfV1RqLIWRJFwBAVFoe2m69j7S8Yuwa3gSqCny8Ts5FL0d9uBlTDWIiXwIeFxY67NIZ73E4HKzqYY8V3ezA4YB21ZZB++UJIUSKk9f8wJcwjzLFqOthUsuaOQpSk0Y2NUaSqjaiNJg131rFh+K4P7uBDan9fvMKR//wx1ApVw/pvI0HRFweJVq+EDt9NTye1wEA4GdogyMO7RnzfIkYax8cBADs8I5G178eIiYjn/U45OP4IiH+vfgb6+hotkAZo/stQhH/w04DFQU6/lzXLO9mB0cDNZnzB5y7ot3oDYjUkF6rdELQbYT8MxMLn5yCYrnnwYpsvB2Gnrt8sOFWGGNcLJbgYlAiRhx4ip67vPEwqmRX4ua7EZh4xL9SSUWl4kJMfnENzw7Ow7kzaytMKl6zaIqm4//Eok6TZSYVk9b0QMiSzrj5tSdUqcs5+UTaKgoY28ykRr7X9iEfaoJa6qggdlUP5K/vi6+am2GIqxGWdLGlpCKpU7hcDiUVy6FXIUIIkeKVbxBr7I2GPmwF9e/zmB97OuCofxx8jBxgmfWhlpluQTbyg18B3di7GUnt9SopB4suBOFMyD3W3GHHDtBWFqCJsYYcImt4VrYdi6GvH0Ig/tCVc3joQ2x/+wJ3zFxxOzwVTX67g3vftIVzo/pZv/VL+d1rD7q9CWCNf9Pta4RpGzPGBDx681/XmGkpI3BRJ0Sm5cFUUxl3I1LRYxeztMMzQ1u0GLcZO69vYzV1AQDtwlxsvLsPc55dwKaWg7HHtXuFO//K+v5SMJQFXFwMTsT1UHYjt+uhKVjdw760K3lFLDMT8HXAFUx5cR26BdkVrg3XbIQFnSbjnE2rCkuvjGpqDD1VReipKn78hyFEhoWdbHA5JAlpecWsOT6XA2FFXbPKsdVTRVgK+6jznhFumORR/z6UJ4QwUWKREEKksMpLZY29VdeDufDTujzWBXb6arg8rRWu+tpj1CtmMqr4oQ8wp7+cIiOf499nMdAqyEGvqGeM8UQVTdw2b4Jd/RvLKbKGJ1zbGLtde2BmwGXG+J+3dqH5V39AxOUhI78YG2+HYf9odxmP0nBFpOZK7dg4I+AyZvuzO50eaNwZhxp3Zo3zufXvA6GGgMPhwFq3pBRHN3t9iDf1B3fhecaadGV1jOi/BOOCvbDl1i5oFbITG2Y5Kfjz9t9Y5X0EB5y7YLdrdwTrfjzRMe9sYIXzFSUVTbJTMDz0AUa8uie1sVB58araWO8xDLua9EQhX6HCtfb6qvi5t9NHH5OQj3Ez1kT4913x+G0GGhuqQcDlIjItD+4mmuBwgPuRaRDwOMjMF6L/P49Z929npYOJLc0wsYUZNSMjpIGjxCIhhEihmxzPGnurrl/h0ay6rIWpFtZIaeBiGfRMympSm6298RqTXz9kdYM+Yd8WIi4PY2ro6FND9mu/xlh0oWTX8w9tRmN0yF1GwqNJSjRm+l/G1mb9AAAHfWMosVhGVkExFl8Illpjr9Ob59hyaxdr3F/fCt90/Vrq4+mpVpyoIXXHiQktMGw/s3YpOBwcatwZ1y2a4jevPRgTclfqfXULsvGd71l853sW/vpWOGnfBlcsm8HPwBpibtWOy6sUF6BNbDA6xbxE5zfP4Rn/qlL3S1DRwgaPodjZpBcKBLJ3H3a20cX1GZ5IzClEI3VFOoJHqo2msoBRU9RA/cPvYecydYAXd7bFxtsfSgRYaivjzqw29LtICAFAiUVCCJHKLIVdWzBC0xBKgvpZq0uJz4WfgTUKeAJGMfwOMS8x/1wgfh/gLMfoSGUdePoWADBKxjFoAFDk18/f4dpkQScb5BQJseZaKJJVtLC6zRj8eftvxpqfHhzCKTtPxKlTB8zyJh/1x6kXCaxx64x4HD+/gXG0HCjZjTto0HLkKiiz7tPVTg+G6nRctL7o62SA1hba8IlOZ80lqmpjXN+F2O3aAxvu7kPLxDApj1CiaXIkmiZH4qcH/yJNSQ1PDO3gZ2iNEB1TvNYyRryaNpKVNZEnUISEw4VAVAyNwnyoF+dBszAPNhkJcEiPgV16HJxSY9AsKZz1e1mR11pG2OreD7tdeyC/goTieycntgSXy6Huo0Ru1vVxhLWuCv53LxI6KgJsHeJKSUVCSClKLBJCiBQ68W8Zt4UcLqI1DKDAq59H6lQV+SjkK8Db2BGd374oHXdKi8Hhy75Y08MB6kr0klHbTTziD9OsZHR585wx/kZdD97GjlCpp4nx2mhWG8vSo5Lbm/bB1BfX4JryYQeeZlEett/4C4MGLa+wllpDJC2pqJeXiQunfmTVqCvk8TFkwDK8edfEY3UrLXA5gHe6ACZaytjQl46M1ieKfB5uzGiNq6+SIRRLMPKgL2uNl3kTtB67CUNDH2LZo+NomhxZ4WPqFOSgZ7Qfekb7SZ0XcrisZm6f65JVc2x174erlu6QcCr3fuKHHg7QUhZ8fCEhXxCHw8H01haY3tpC3qEQQmqh+nmFTAghVSQOY+50iNYwgJDHh42uipwiqhleZq6ssU5vX+B5fJYcoiGfY3zQbXDBLLh+xLEDJBwuvutoLaeoGh59tQ+7kERcHuZ0mcFaMyDiMUa9O7Z5LpCdTGuIxFKaBWgW5ODKydVwTGfvJP+62zfwNvmQPOxnrYI+Vio4N6kF/h7uBh0VOgZd36go8DHY1QjD3Ywxws1Y6hoJh4sTDu3Q7Ks/0GvoDzhn7QFRJRN55VU1qRioa4bVbcbAfvIO9BuyGlesmlc6qdjRWhdz21tV6fsTQgghXxptPyGEkHJysnJhnJnMGAvTMkIbS+16exQaAH7p44jLMS6s8U5vX6JYVP+a1tQ3KbmFgESCCYE3WXP7nLsCAFZSh2+5uWvmgr9de2Dai2uM8S23duGOmQsG7X2Co181R0RqHrrY6qGluZZ8ApWz/GLmcVLl4kKcP/0TmiVFsNZuajEY+126lt620qC3tQ3N7hFu0FDiY/ejN9IXcDi4ZtkM1yybwSQ7BWOD72BY6AO0qOCYdFWJwcFzfUtcsGmJow7tEaj36Tu8NJT42DXMDSOaSk+cEkIIIbUJvQMjhJByIp8FwbXcDoVwLSPMamMpn4BqiI6KAh41ckA+XwHKwqLS8Y5vXyBGyi4iUrucfZmIdrFBsMtgNh7yNnJAiK4ZJrY0gwKfDirUpKGuRjj54sP/x6KOk9A70hemOR+6zusVZGP/5T/Qc9ia0mOdXE5Jk4pBLkY1HrM85ReLYP3Lh8S4QFSMk+d+Qbu4YNbak3aeWNp+PGOMRyfKGxw1RT52DXfDruFuSMsrQnR6Plr+cRfSXrJi1fWw0WMoNnoMhVlWMrpF+6PrmwB4JITCNuPzdwzn8RUQrGOG+6aN4WXqirumzkhXVq/UfT0ttGGlo4JjAXHgcTlY0c0OE1uaoZG6EnjUZZcQQkgdQYlFQggpR+UNux5TuFYjDNdVlUM0NYfLAYr4Ajw0dkTXMjX6HNNjERsfB5TpGkhqn8UXgrDp5Q3W+L53O7omtTSr6ZAavKmtzXH6ZXxpkiNLURVfd5+FC6d/Yqzr9iYAi56cxkaPoQAAsQTY9iCqQSUWJRIJ7NbdQnJuyYcaAlEx/r34G3pFseveXbNoirF9FrI6+VIipmHTUVGAjooC7n3TFksuBuN+ZJrMtW819LHXtTv2unYHAGgV5MAp9S3sMuJgkZUMg7wM6OZnQ0lYBAWxEHl8RWQrKCNHQRnZCsqIV9XGK20TvNIxRYy6bqWPNpe1b1RTjG9R8rz819Am4PM4UK7HpyIIIYTUX5RYJISQcgSR7MRimJYRWppp1XwwNYj7roGEl5krI7EIANf/PomuHd3kERaphODEbAgzMjE89AFjPI+vgKMO7aHE56K9NXUfrmk9HQxwe2YbdNz+sHTsknVLqUeif3pwCA+NHXHftKQD+83XKTUaa00TisT4+9EbxGcVYGwzU+x98hZxWQUASo4/Hz+/Hn0i2Y05Hhg7YsjAZSjis5tZjHGo3x/+kMrxtNTB3W/alt6+EJSIAf88rvA+GUpq8DZxYtTr/FLGNjPByu72sNdXKx2j5miEEELqMjoTRQgh5Vy++JA1Fq5lVO93w5QmFk3ZDVxsnz+q6XBIJeUVCeH8qxfGBXtBrbiAMXfKzhNZiqq4PsNTTtGR9ta6sNVjJry+6zwVwTqmjDGBWIRj5zfAOPvDMem4TOb/Z30y/rAfvjn1AmtvvIbTxtvYeLuk5t37Ri3Skor++lboN3gV8gRKrDkHfVV0M1f+4nGTuqdfY0MEL+4s7zAAAPb6qtg/yp2RVCSEEELqOkosEkJIGWl5RTBNiWONi63qf1dGpXf19x4b2SGXr8iY6xXpi/TcQnmERT7iiH8cIJFgpv8l1txu154AgLZWOjUdFimjfFfXPIESRvddhEIec5dSo7wMnDi/Dorvapya/nQdWQXFjDWZ+cWIyciX2j25rkjOKSz5vS3HIDcdt44tR/vYINbcK20T9Br6AzKVmAmZX/o44u/hbvCZ0wYKVGSRyOBgoIa/hrI/NPvSZrezgua73YgLOtrA59v24NbzDykJIYQ0PJRYJISQMk4+j4dtueYXMWq6SBLV/6fLrnZ6AIBingC3zJsw5kxzUrH3H3biisjf1GMB6BATCJdUZlfUl7rmuGvqjINj3OUUGXlvRmt2V9jnBlaY3eVr1njr+FAcvPQ7uOKS7shaK65A9C6JeDwgDqY/XYf52hvot+cRK+lYF4jFErT68x5r3C4tFnePfg/3ZHYpiud6Fug84mckqWozxjvb6GJpFztMaWUOVQU6SkoqNqGFGaa1Ni/9EO1LuzOrDbYMckH62t4Qb+qPX/s3hpYy+wg/IYQQUtfV/ytlQgj5BKJiIawyExljYVpGUFes/xet+mqK+KGHAwDgslVz1nzKsdM1HRKpJGm7Ff9q2gfgcNDPyVAOEZGy+DwuRL/2w19DXTHCzbh0fE+THtjZpBdr/bDXD7HZaw8gKUkoChZfgFgswbyzL5FbVJJwvPIqGSeex7PuW9s9epOOqPR8xljPSF88+m8h7NPZuxgfGjmi08h1SFBj7ro111LGiQktvmispH5REvCwc5gb8tb3hXhTf1yc4gE9VQWpa2d4WqBwQ8k68ab+EG7shx3DmmBUU2Op68u7MMWD6toSQghpMOr/lTIhhHwCpYQ4KIiFjLFwLSMs6mQrp4hq1qoe9ujpoI9RaxNZc70jffEiPguuRhpyiIzIYpydiiFh3oyxbIEyDjl1wsimxtCkHTK1AofDwQxPS8zwtEQ3ez1MP17SIGlu52lwSYlC27gQxvo5fheQqaiCVW3GAhwOOm5/gPgsZjmCqccCMNnDvMZ+hs+RWyiEX1wmnA3VkVskQtutZRoMSSRY+PQ01t07AJ5EzLrvVQt3DB34Paum4hh3Exwa2+xLh07qud5Ohkha0xM5hUJEp+fDyUANXC4HEokEHA7zuDKXy8H01haY3toCU1tZoNvOD8+5PC4He0a44dSLeGgpCbCkiy2cDNVr+schhBBC5IYSi4QQUob6W/YxvHCtRljewlTK6vrJVEsJ0ZqGCNQ1g3Pq29LxNnEhmHvRH1undpBjdKSsA0/fYo7fBQjeHZt971DjTshWVMHOYU1k3JPI0+imJjj8LBa3w1NRxBdg0MAVeHBkMWvH3gqfY5CAg9VtxuBBVLqcov18p1/EY+j+p1LnVIoLsOP6NowLviN1/rh9G3zVewGj+7OtniqWdrHFpJZmXyRe0jCpKfLh3OhDIrB8UrG8DtY6GOFmjGMBceBwgFXd7TG+hRnGt6DfS0IIIQ0TJRYJIaQMTng4ayxMywiqDeAo9HsCbkmVjMtWLRiJRZ5EjJQzFyCeTMXna4P/nsVg9oGHePP8CmtuW9O+AAANJdqtWBupKvJx42tP8BZdAACkqmig95Af8PDwIhjmZTLWrvQ5CrXiAizsOAkSDruCzfGAOFwOTkLjRur4tp0VFGqoftzHbL4bjgXn2E1YAMAj/hUOXvoddhnSj3L/0mo4VrUZAzGXBwDo52SIQ2Pd6feZ1Ap8HheHxzXD2t6OUORzYaZF3cgJIYQ0bA3nSpkQQioh6lEAayxcy0gOkcgP/11n1YvWLbDwKbOuYt+IJ/CPy0QzUy05REbee/o2A+P+88O3L29AqzCXMXfJqjmC9Myxvq+TnKIjlVF+V1SkViP0GroGN4+vgE5BDmPuO9+zMMxNx+Secxk7+ABg5EHf0q8DE7Kwd1TNN+sRiyXY6BWGP+5GQFNJgDU9HaQmFfkiIVb4HMOyR8fAl3L0OY+vgMk95+KYY/vSsSZGGjg7ueVHd5ERUpM4HA5s9VTlHQYhhBBSK9SOj7UJIaSWcCqzQ++919oNK7GorSyAEp+LB8ZOyFJg7sToH/EEUfF170hmfbPhVhh4YhHm+Z5jzf3WYhAAYFEnmxqOinwqDzMtxu0AA2t0H/YT0pTUWGvHhNzF7WPLYJSTKvPx9j+NKe0gDQBP3mTgp+uhOPk8DuIy49XpRmgy+IsvYNmlECTlFOF1Si7G/PuMtc4lOQr3jyzBKp8jUpOK0er6aDt6IyOpCAB6qgqUVCSEEEIIqcUosUgIIWU4p75h3I7SMECOgoqcopEPDoeDg2PcIeTxcdGK2XVVqzAXe3/ZK6fIyHsXgxMxKuQuLLOSGON++la4bdYEDvqqlIypA77raI3y/01+hjboPuwnJClrstZ7xr/Ck0ML0PHtC5mPKVh8AbGZ+Tj7MgFttt7H6quvMPyALxZekH4suSrEYonUJGJZmgU5+PPWLvgdnAePhNdS11yzaIqW435HgIE1a07Ao99jQgghhJDajBKLhBDyTkZiKsyzUxhjgbrmmNCAGre8N7SJMQDguEM71tyIV/dwIiCONU5qhkQiQVFRMZb7HGPN/d5iEMDh4LcBzjUfGPlkI5ua4PHc9ljQkbm71M/QBm1Hb0C4ZiPWfYxz03Dz2Aqsv7sPCsJiqY9r9tMNDN73hLF78Y+7ETjzMh5peUWVju9GaDKG73+Kr088R0ousyP187gs9Njlg5Rc6Y/HkYgx6cV1vPpnJub4XZDa9Tmfr4A5Xaaj99AfkKLCTqQCwNIutpWOlxBCCCGE1DyqsUgIIe94X3mI3uXGgnXN0MRYQy7xyNtQVyNcEDZHtkAZ6sX5peMDwx/BcK83+m8aBEU+T44RNkw7vKMxPPQBHNNjGeMRmoY46lByjNTTQlseoZHP0NxUC81NtcDlAL96fWgeFa5tjHajN+DU2V/gGf+KcR8uJFj85BQGhD3CrG4z4WVeue7fQ/aVdGhuZ6UDLSUBxjU3xYimxlLXPovJQM+/fSB5l5sMiMuE97ftkVMohMbyyzK/B1cswshX97Hs0TFG86fynhra4qve8/FKV/YHN13t9NDBWrcSPxkhhBBCCJEXSiwSQsg7J/67zkosBuqao1UDTZ7pqiqgkK+As7YeGBd8p3RcoygfPaOe4VJwGwx2bVj1J+XtXkQqZp8MwHOfo6y5dR7DIeTxYaKpBC1l6p5b12zo1xgz21iiUCiG08bbAIBEVW10HvELtt3cgSkvr7Pu45gei1vHV+CknSdWtP2qwiRdWfcj0wAAF4IToanMR08HAwCASCxBXFYBTDWVsOrKq9KkIgA8epMB99/vICAuS+pj8kVCjAv2wtLHJ2CfLntHcyGPjw0th+Hn1sNRzGP+nv5vsAs62+ghJjMfEgDd7fTpSD8hhBBCSC1HiUVCCHmnfH1FAAjUM0d7fsOsGuFoUNJA4phDe0ZiEQBGvLqP3Y8GUGKxBonEEnTc/hAjX91n7QSL0jDAAefOAICDo90pGVNHWeqU1HNd2sUW62+FAQCK+AJM6zEbD0ycsOXWLqgVF7DuN/S1NwaFPcJhx/bY1GIInhtYVfp7/vUwCj/feF2abARK/vZDknJYa6UlFR1SYzD55XWMD7oFw7zMCr/XOWsPzO88BRFa0p83vmlbEnfjRuqVjp8QQgghhMgXJRYJIeSdxlISi8E6pujtaCCHaORvaitzzD8XiGsW7shUUIFmUV7p3KAwH2xLSJZjdA1LoVCErju8IRAVY+39Q6z59R7DUMwTIGJZ19LkFKm7furliOj0fBz2e3fcncPBPpduuGfSGAcub2YdjQYAnkSMccF3MC74Du6aNMY/rt1x2tYT2YoV/z6cC0xkjUlLKpZlmZmA3pHPMDr4DtrFBX/053mtZYR5nafhsnULmWuefdfho49DCCGEEEJqH0osEkLIO42l7ALLVVCGkYaSnCKSLzVFPu5+0wYdtj3EKTtPTAq8WTqnIixCkzuXgBX95Bhhw7H1fhQeRqXjm+dXYZOZwJiLVtfHPueu2D3CjZKK9QSPy8GhMe64H5mKtxkfdiiGaxuj/aj1mPbiGtbdOwCtwlyp9+8QG4QOsUHYyduGW2ZNcM3SHXdMXfBC3xIi7ieWdpBIYJmVCLekKHSKeYFekc/gUK6+pyxRGgbY4DEUe527oYgv+3j+T70c0NREevMWQgghhBBSu1FikRBCABSlZUjtCN3QtbPSxZ1ZbbAsJoiRWASAKS+uY/2t11jaxU5O0TUciy4EQb0wDyu92bUVV7YbhyK+AJM96Pe1PuFwONg/yh0Tj/jjTcaH5kliLg873XrjlJ0nVnofxfTnV6EgFkp9DEWREL2jnqF31DMAJV2YX+qa45WOCaI1DJGsooFMBVWIORwIxEIIxCIIRCLoFGTDJCcVjmkxaJIcxditXBmvtYywrtVwHHLqBCGv4reaMzwtsLgzdX4mhBBCCKmrKLFICCEA/K4/RKtyY0G6Zng4p51c4qlN2lvr4oGJE0K0TRidiFskhmH63otY2mWe/IJrAMJTSnalff/4OAzymTXsAvQt8Z8jHSGtrzrZ6iFqRTcAgMXa64zdi8kqWvi26wxsbj4QS56cxPjAW1ASFVf4eMrCIrRMDEPLxLBqj1UMDq5aumOPaw+csW0F8Ud2Rj6Z1x7NTbWqPQ5CCCGEEFKzGmZHAkIIKSf72XPWWKCeOVqZa9V8MLURh4N/XLuzhqe8vA6vsBQpdyBVJZFIsPtRNOzW34Jtehy+8z3LWvN9+wkfTeCQ+uHS1NZSxyO1GuHr7t/Aatpu/OA5GlEaNVsTNlLDAKvajIHltN3oO/QHnLJvU+HvZBMjDewf3ZSSioQQQggh9QTtWCSEEAAvbvqgW7mxIF1z6q77zoQWpjiQ2xk/3z8IgVhUOj4uyAsL7wSjk217OUZXP50PSsT04yUJ79+9dkNRxDzuetO8Ca5YNgMAhCzpXOPxkZrl3Egde0a4Yc21UMbR6PcSVbXxY5vR+MlzJDq9fYHBr30wIPwRq8RDVRVzebhv0hhXLJvhilUzvNCzBD7yPGmtq4LtQ1zRw6FhNsIihBBCCKnPKLFICCEAmiRHssaCdUzlEEntNNnDHPufxuCcjQeGvvYuHdcsyoPKvweBKZRYrG5zz7wEAPQNf4J+EU8Zc0IOF3M7Twc4HNz7pi3s9dXkESKpYZM8zDHJwxyD9j6W2s0ZACQcLm6bu+G2uRu+7TIdthnx6Pj2JTwSQuGWHAnnlDdQFRZW6vsVc3kI0TFFgL4lnutbIUDfCt7GDshRqHyToKfz2qMZ7U4khBBCCKm3KLFICGnwCoqEaJ4Yzhh7pW2CXAVlOUVU+9joqgIAtjftw0gsAsC3z87jaVQqWljqyiO0ekcikWD+uUBEp+dDrSgP227+xVqzzb0vgvRKmrW0tdKp6RCJnC3qZCszscjA4SBM2xhh2sbY06RHyZhEAr38LJhnJ0O7IAeahSWNWYq5PBTz+Cjm8pCtoIw4VR0kqGp/tPlKRVqaacGduj0TQgghhNRrlFgkhDR4j249RcfCXMbYU0PqUlqWkYYiAOC2WRME6FvCLTmqdM4mMwFD5v6G3/eugKVO5XcyEen+fvQGf94r2UG79v6/rKOsScqa+MFzNABg+xDXGo+PyF9bKx38NdQVM0+++PQ7czhIUdFEisqXTfhN8jDDHwNcqJwEIYQQQkg9R4lFQkiD9+j0TXQsN/bM0AbWupQke4/D4eDuN23QYdtDbG4+EPuu/MmY/873LKx/8UTOL72hokAvLVWx0zsKAOAR/wqz/S6w5hd0moxMpZKjz2OamdRkaKQWGdnUBLNPv4RILCkd+6mXA9pZ6aDzX94V3LN6bR3siiKRGAAwtZU5FPlcCHjUG5AQQgghpKGgd36EkAaP88yXNeZraIuvPS1rPpharJ1VyVHnIw4dkKCixZhrHxuE9jEvceM1dYiuKr/YLCgXF2Lf5T/AhYQxd8XSHf86dQIA3PumLTSUBHKIkNQGWsoCLOpkU3rbVk8Vk1qao61l5Y/GBy/ujEkeZhWuMdFUwtGvmiPnl944MNqdMXdwjDtmtbXEvA7WmNfBGmqKfEoqEkIIIYQ0MLSthBDS4DVPDGPcFoMDPwNr/OtuLKeIaq+kNT1gsPoatrn3xU8P/mXM/fDwMLrudUHB+r5Q4FNy4VMJRWLcjUgDAGy4uw+O6bGM+Vy+ImZ1m1nagddYQ6nGYyS1y8+9HfFVc1PEZRXA00K7dLdwxtpe6Lj9IQLishjr/zfYBU2MNCASS9DBWhdcLgdrejggLDkX3tHpEIolrO/xdmX30q/HNTeFk6EavKPS4WmpjebUlIUQQgghpMGjxCIhpGGTSNAsKYIxFKptjGxFFZhoUvOW8vRUS2otbm3aFwuenoFWmdqUnd++QMe3L7DlfmMsLLOTinxcsUiMQXuf4HJIEnpEPcNs/4usNSvajUOUZiMAgI2uCqzoqH6Dx+Fw4GSoDidDdca4hpIAfvPLF3iQzlRLGXe+aQsAeJ2cg8a/epUer079sSdrfXNTLUooEkIIIYSQUpRYJIQ0bOHhjOQYADxtRI1bPiZTSQ1/NuuP1d5HGOM/PPwPnU1dKLH4ifY9eYvLIUkwzk7FgUubWfM3zZtgS7P+AICvPS3wUy/Hmg6RNAB2+moo3thP3mEQQgghhJA6hM6qEUIatKJHT1hjz6gjdIVeL+0CAPij2QBkKKoy5jrGBKJfxBP4x2bKI7Q66Z/HbzDjxHPwRUIcvvgrDPKZ/3YZiqqY1HMuJBwuxJv6Y/vQJtBVVZBTtIQQQgghhBDyASUWCSEN2n9/n2WN+RrSbruK2OiporONLjKV1LC5+UDW/G9ee9D615tyiKzuSc4pxNRjAQCAdfcOoH1sEGvNrK5fI0ZDHwfHuLPmCCGEEEIIIUSeKLFICGnQLMMDGbffN24hFbs2wxNAya7FRBVNxpxdRjy+9TuPS8GJ8gitzhCJJei0/SEAYHzgTSzwPcNas7NJLxxxKqmVN8KNmgkRQgghhBBCahdKLBJCGq6iIrRKCGUMheiYIkdBBRemeMgpqLqBx+Xg9kxPZCuqYFm78az5FT5HMf2Py/jn8Rs5RFc3rLwSguCkHHjGBmPn9W2s+WcG1pjXeSoAYGILMwh49JJNCCGEEEIIqV3oKoUQ0mD5nLwOZWERY+y+aWMAQA97fXmEVKd0tNEDAOxz6Yqn5epSahTlY8eNbZh61B9CkVge4dV662+FwS4tFmfO/gxFkZAxl6qkjhH9l6CQX1JLcWJLM3mESAghhBBCCCEVosQiIaTBOvPXcdbYXVNnAACfdodVSg97fUg4XMztPI011y/iKb4Kuo1fvcKxySscftTQBQBw7VUSeu3ygWFuOi6f+gH6+VmM+WIuD8P7L0GElhEA4K+hruhgoyuPUAkhhBBCCCGkQnx5B0AIIfLSPiaQNXbPxBkTW9DusMrSe9ed2NvECTub9MKM51cY83/c/htNzJsgVl0PPC4HZye1RB8nQ3mEWisc84/DqEO+0CrIwc2TP8A6k12Hcm7nafAybwIA+L6rLWZ4WtZwlIQQQgghhBBSObQlhxDSMIlEaBsXzBiKVtfHWw19/NzHUU5B1T1ftTAt/Xpxh4mIVmceIdcuzMV/FzeBJxZBJJZg+4OoGo6w9ohOy8OoQ77QKMzFlZOr4Z4cyVrze/OB2NG0DwBAV0WANT0cajpMQgghhBBCCKk0SiwSQhqmFy+gVZjLGHp/DNpIQ0keEdVJ3ez00dRYAwCQraiCaT1ms9a0jw3Cjw/+BQBcCkmq0fhqA5FYAu+oNFj9chNaBTm4dHINPBJes9b959gBizpOKr2d+ENPOpJPCCGEEEIIqdXoioUQ0iCJ795ljd03bYxlXe3kEE3dxeNy8GBOOzgbqgMAbli6Y9u7HXdlff/4BPqHPQIAnAiIq9EY5UkikWDIvidou/UBDHLTcfvYMrSJD2Gtu2bRFJN7zoWEU/Ky3N1eD1wup6bDJYQQQgghhJBPQolFQkiDFHPhOmvsnokzvutgLYdo6jZlAQ8XpniU3l7YcTL89K1Y6/699BvckiIw4qAvLgWzawvWR0GJOTgflAiH1BjcP7IEbslRrDW3zFwxeOByFPEFsNVTxVBXIxwY3azmgyWEEEIIIYSQT0SJRUJIwyMWQ+n+PcZQsrIGQnRMofuuGQn5NIbqiqVfF/IVMLL/EmQLlBlr1IoLcPbMWhjlpOLA05iaDlEutj6IRK9IX/j8txC2GQms+bsmjTFw0ArkCxRx82tPhC7tguMTWjD+PQkhhBBCCCGktqLEIiGk4Xn2DAb5mYyhO6YuAIeOnn4uJQEPw5sYld4O0zbGhN7zWOvMs1Nw4/hKeD0MhEQiqcEIa879yFTY/HIT3AXnoLx1C86f/gmaRXmsdZctm6H30DXIVVCGIp+LzrZ6coiWEEIIIYQQQj4fJRYJIQ1O2KGTrLErVs2wsJONHKKpP/aNdmfcPmPniWXtvmKtc0qLwfUTq2D4zb9QWnIRM04EIDO/uKbC/KJ+vxOODtseIj4xHXuubsHvXnvAk4hZ647at8OgQcuRLyjZmVj2KDkhhBBCCCGE1BWUWCSENCgSiQQJx8+yxq9aNsOCjpRYrAplAQ/RK7pBQ4lfOrbeYxj2OXdhrXVNicb9I0tgkhqHv33eYObJ5zUZ6hcx6+RzLDwfhMYpb/Dov4WYFHhT6rofW4/CmH4LUcwTlI61t9KtqTAJIYQQQgghpNrwP76EEELqD98XUfCMf8UYe6FngVh1PaprVw3MtJThP78jRh/yxaM3GQCHg+ndZ0OjMA9DwnwYa+3T4/Dg8GIMHLQCRwBMaWWOJkYa0FerG/8PEokEh57FwDcmE6+ScnArKA5Ln57BSp+jUBYWsdbn8xUwqedcHHNszxgPWNARCnz6nI8QQgghhBBS91BikRDSoMScvIAW5Y6mXrGkDrzVyVJHBd7ftscvN19jxeUQCHl8jO63CCfPrUO/iKeMtY3yMnDn6PeY1W0muu8sGbv5tWedqDfYftsDPIxKBwC0iQ2C7/XtcEl9I3VtrJoOBg1cDt9GdqVjbsYaeDK3Pfg8SioSQgghhBBC6ia6miGENCgqN6+zxq5YNcMvfRzlEE39tqyrHdJ+6gUAKOYJMLz/Uhy3b8NapyQqxj9Xt2D31S1QLcpH1x3eOBEQB7/YTIjFtaPBi0QiQUpuIYSikqT0Eb9YPIxKh35eBnZc34b7R5bKTCp6mbrAY+xvjKTitemt4Te/IyUVCSGEEEIIIXUa7VgkhDQY//hEoZf/A8ZYjkAJD4wb40RrCzlFVb9pKQvQ1FgD/nFZKOQrYHTfRUhS+Rvf+F9irZ388gY6xLzEtB5zMOJgydhQVyMcG98cHDl27D71Ih7D9n/YaamjIoAoLR0/PT2Duc/OQa24QOr9hBwu1rQZjXUewyDm8krH945sim72+l88bkIIIYQQQgj50mirBCGkQcgpFGL3luMwzk1jjN8ya4IivgDaKgpyiqz+uzS1VenXYi4Pc7rMwNzO0yDksF+CbDMScPvYchy6uAlmWck4+SIeA/55jKdvM0rXxGbm43/3I3HMPw4SyZfb0SiRSJBdIGQkFTUKczHt9mFE7J6G5Y+OyUwqPjG0hcfY3/Bz65GMpOKWQS6Y0NLsi8VMCCGEEEIIITWJdiwSQhqEh1FpGB76gDV+1raVlNWkOhmqK8JSWxlR6fklAxwO/tesPwL0rXDs/AYY5Gey7jMm5C6Gvn6I3a49sCFrKDyCk7ChrxO62euj+ea7peuuvzbHX4OdqzXenEIheuzygU90eumYe2I4ZgZcxujgO1AVFsq8b7ZAGSvajcO2pn0YCUUAmN3OClNbmVdrrIQQQgghhBAiT5RYJIQ0CEEJ2RhaLrEo5HBx1rYVNg+s3sQUYeJwOPixlyOmHgtAkehD45y7Zi5wm7AF/1z5E72jnrHupygS4hv/S5gRcAXHHNphe2wfLDF2Asoci97z6A32PHoDPheY2FgNU5zVIRSJceJFLO5EpGJpZ1tY6KiwHvuofyy8wlNhq6uKrz0toKLAw4bbYdh6PwpxWSW7EI2zUzE4zBvjgrzQKiH0oz/nSTtPfNdpKmI0PhxzHuLaCMPdjDGyqckn/ZsRQgghhBBCSF1AiUVCSIPgdeQy5mWnMMZumrshTVkD02gX2Rc3rrkpOljr4E5EKiYc9i8dT1TVRt8hq/F1wGX8cv8gtApzWfflS8QYE3IXY0Lu4pW2CY45tMM5Gw88M7SB5N1xaqEY2P0yB7tf5gBH40vvu9M7GsObGGHLYFdoKwuQUySE3qqrjMdfdCEIAMATi+Cc8gajo/0x5PVDeMa/qtTPdt3cDSvbjcNjIwfG+OO57dHCTKtSj0EIIYQQQgghdRElFgkhDULbp7dYYyffdShWUaCnwppgrq2Cr5qrYISbMQListB6y/2SCQ4HO5r2wSk7T6y7dwATAm+BC+m1Ex3SY7HS5yhW+hxFhqIqnhja4rGRAx4Z2eO5viVi1HRZR5CPP4/H8efxjDGtghzYZsTDJiMeTZKj0Dr+FVomvJZZM1EabyMHrGg3DrfN3Rjjx75qjkEujajjMyGEEEIIIaTeo6tpQkj9J5Fg6OuHjCERh4sztq3xZkU3OQXVcCnyefAw10bgok5w/tWrdDxJVRtTes3Fby0GY5X3YYyQUhOzLK3CXHR/E4DubwJKxwp5fMSp6iBFWQP5fAVIOBxIwIGYw4GiqBgaRfkwzkmDbkH2Z8VeyOPjhF1b7HTrhfsmjRnHsgc6G+Ln3k5o3Ej9sx6bEEIIIYQQQuoaSiwSQuo9yf37sM5MZIx5mbkgRUUTplrKcoqKOBmqQ7ixH7bcj8T8c4Gl40F65hjVfwlWpcXgO99zGB90C8rCoko9pqJICKusJFhlJVVrrK+1jLDHtQf2unRFsooWY+7QGHeMamoCLpcj/c6EEEIIIYQQUk9RYpEQUu/FbN4Os3Jjx+3boa2ltlziIR9wuRzMbGOBiLQ87HvyBjmFotK5UB1TzOw+C0vbj8eoV/cwIfAmWsd/vIlKdXmpa45Tdm1wys4Tz/UtGbsT30tY3QMG6oo1FhMhhBBCCCGE1CaUWCSE1Gsxb5OgfeEMYyyfr4CjDu1wa7CrfIIiDIp8HrYMcsGWQS5IzS2C/mpmc5VMJTXsdOuNnW69YZSTir4RT9E+JhCtEkJhnx5XbXEE6ZjhkZE9vI0dccfUBa91ZHdy1lIWIGJZV2gpC6rt+xNCCCGEEEJIXUOJRUJIvXb9l78wqVxDjpN2nshUUkNTYw05RUVk0VVVQM4vvbHgfBB2ekez5uPVdLG7SU/sbtITAKCdnw2PhFC4J0XALj0OVpmJ0M/PhG5+NhTEQnAlEnAkEnAlEgi5XGQqqiJNSQ3hWo0QoWmEMC0jhGkbwV/fCplKajLjmtPOCqu620NXVeGL/eyEEEIIIYQQUtdQYpEQUq/ZnzvCGvvHpTsAgCPlaCuRPxUFPv4a2gSz2ljC7bc7Fa5NV1bHVavmuGrV/IvEMq21Of4Y6AJlAe/jiwkhhBBCCCGkgaHEIiGk3srx9UPbuBDGWISmIe6YuSBuVXc5RUUqy9VIA/+MbIo5p18gt6ik9uJ3Hawx2cMc2x9GIbdQiAO+MdX+fZsaa2DbEFd4WupU+2MTQgghhBBCSH1CiUVCSL11a9ZyDCg3ts+5KyQcLhppKMklJvJpJrY0w9hmJsgpFEJb5cMx5G1DSupjruphD9t1tz76OI0N1WCmpQzfmEyk5H7oMG2lo4Kn89ozHpsQQgghhBBCSOVQYpEQUi9d9gpAT9/rjLEiLh97XLvD2VBdTlGRzyHgcWUm/qx1VZH5Uw/ceOQPbUUu1BW4cHNzQ26xBM9iM5FTKEQHa11olmmyIhSJcSE4EVwOB32dDMHj0pF4QgghhBBCCPkclFgkhNQ7hUIRfL//Bb1FQsb4Ycf2iFfTxa9dbeUUGfkSlAU8mKszX840lQXobKsndT2fx8UgF6OaCI0QQgghhBBC6jWuvAMghJDqtvzkM3ztf5k1vrn5IJhoKmFMM1M5REUIIYQQQgghhNQvtGOREFLvcLb/Bb2CbMbYdXM3PDewwps57eQUFSGEEEIIIYQQUr/QjkVCSL2Sk5KOxU9OssZ/bzEIAGCqpVzDERFCCCGEEEIIIfUTJRYJIfWGRCLB+kHfQj8/izH+uJEdrlo2w8ru9nKKjBBCCCGEEEIIqX8osUgIqTe8AyKx4Olp1viqtmMBDgfLu9rJISpCCCGEEEIIIaR+osQiIaTe8Jk6H9qFuYyx+8ZOuGbhjs0DnaHAp6c8QgghhBBCCCGkutBVNiGkXgi754s5fhdY4yvbjQM4HIxxN5FDVIQQQgghhBBCSP1FiUVCSN0nkeD1+OkQiEWM4UtWzXHHzBX9nAyhr6Yop+AIIYQQQgghhJD6iRKLhJA67+am3egd9YwxVszlYX6nKQCAPwY5yyMsQgghhBBCCCGkXqPEIiGkTkuIikPjNUtY41vc+yNUxxTXpreGta6qHCIjhBBCCCGEEELqN0osEkLqtBt9xsAoN50xlqiiiZ88R2JpF1t0s9eXU2SEEEIIIYQQQkj9RolFQkidtXzqWowLvsMan9NlBrIUVfFDDwc5REUIIYQQQgghhDQMlFgkhNRJ4Y/8sfjgOtb4Mfu2OOHQDgo8LhT49BRHCCGEEEIIIYR8KXTVTQipe/Lzkd1/CDSL8hjDycoamN31awDAiQkt5BEZIYQQQgghhBDSYFBikRBSt0gkeNFnOJomR7KmpvT8FikqmtBTVUBXOz05BEcIIYQQQgghhDQclFgkhNQZRUIxfu80Dq5eF1lz6z2G4oKNBwAgcllXKAt4NR0eIYQQQgghhBDSoFBikRBSZ6z/ahnm3/2PNe5l6oKVbccBAPLW9YGqIr+mQyOEEEIIIYQQQhocuvomhNQJUTv3Y/nRX1njkRoGGNl/MURcHsSb+sshMkIIIYQQQgghpGGiHYuEkFov98RpGM+aCp5EzBjPUFRFvyGrkKyihdx1feQUHSGEEEIIIYQQ0jBRYpEQUqvtmLMOCiOHQ0EsZIwXcfkY1n8pgnXNcWOGJ9VUJIQQQgghhBBCahgdhSaE1EoFRUIs6TULm2/vBhcSxpyQw8Wofotwy8IN6/s6oQt1gCaEEEIIIYQQQmocJRYJIbXO3eA4vBo5CX++uMaaE4ODSb3m4oydJ7YNccXMNpY1HyAhhBBCCCGEEEIosUgIqV2uXXkE9ckTMC3+FWuumMvDhF7zcMSpI7zntEMrC205REgIIYQQQgghhBCAEouEkFokaututFowF5pFeay5fL4CRvRbgos2LTG1lTklFQkhhBBCCCGEEDmjxCIhRP6yshA2ahJsL5+SOh2vqo3BA5fhsZEDTk9siYEujWo4QEIIIYQQQgghhJRHiUVCiNxIJBJc/nUPnNcug212stQ1TwxtMWTgMsSq6+HhnHZoTTsVCSGEEEIIIYSQWoESi4QQubhx6jbyFi3FgIjHMtf81nwQlrf7CkV8AXLX9YGygFeDERJCCCGEEEIIIaQilFgkhNSoIO8APJ36HcYFeYELidQ1CSpamND7O1y3dAcAvFrSmZKKhBBCCCGEEEJILUOJRUJIjSh49Rr/jJyHqS+uobFYKHPdBesWmNLzWySraKG7vR5OTmgJNUV6qiKEEEIIIYQQQmobulonhHwxIrEE9w9fRNKP6zDktQ9mScQy1yaqaGJBpyn4z7EjwOEg/ade0FQW1GC0hBBCCCGEEEII+RSUWCSEVCuJRILMpDQ8/HUntP47iI7xIRWuL+Tx8ZdbH/zoOQoZSmoAgJxfekNFgZ6eCCGEEEIIIYSQ2oyu3Akh1aIgvxC//7AbFueOY3CYN/oIiypcL+Jwsd+5C9Z4jsZbDX0cHOOOMe4m4HA4NRQxIYQQQgghhBBCqoISi4SQzyYpKMDLf0/jyR//YEDYIywryP7ofUQcLk7YtcGaNqMRomsGoKQ5i52+2pcOlxBCCCGEEEIIIdWIEouEkMqTSCB+FYqksxfxcPdxdH3zHK5FeXCtxF1z+Yr4x7U7/mg2AJFajQAAiT/0gL6a4peNmRBCCCGEEEIIIV8EJRYJIVJJJBLkFAjh8yAAit7eSDl3CS1ePYV5dgoaARhSyceJ0DTEbtce2NmkF9KV1QEAwo39wOXSkWdCCCGEEEIIIaQuo8QiIaRUcXwCIq7cQcyNu8j3eYyWCa/RPS/zkx8nW6CM4w5tsd+5C+6bNIaEw8W8DtZY3MkGjTSUvkDkhBBCCCGEEEIIqWmUWPwCwsPDceTIETx69AgxMTEQCoUwMDCAvb09+vfvj+7du4PPp396Ij8SoRAZga8Qfu8pTh+9gWaJ4WiREAaL7GQ4AHD4jMfM5SviknVznLJrg/M2HsgTKKGvkwFEU1pVd/jk/+3de3zPdf/H8eeONttsZnOa89gI6eCSC6VUKKEULiRUVyiEq4iu1pUcUnKISgcl5XxWulR+JBKuRHLcZcK2sDkMM9u+++77+2P5XN/vZtv3tH2Hx/12c/N+f76fz/v9/m7z9v6+9j4AAAAAAFAGEN1ys5kzZ2r27NnKycmxuZ6YmKjExET93//9n5o0aaK33npL9erV81ArcUOwWKSTJ2WJj9fezb9o1/c/K+j472pw7g/FnPtDFc0mNZfU3IUqTpYP03e1b9GqBi21rs7tuuxXToF+3ro0qZO73gUAAAAAACijCCy60fjx4/X5558beV9fX8XGxiowMFAJCQk6d+6cJGnv3r3q27evlixZoqioKE81F9e6y5dlOX5clxKOynz8uDZu3K3UA4dV4+Jp1bx4WrUvpCrEdFlekpr++cdVF/0C9X3NJtpQ62atr32L9lWqJXnl7ZU4/K56mtypkfx8vN1QEwAAAAAAKOsILLrJunXrbIKKHTp0UFxcnCIiIiRJJpNJK1as0KRJk3T58mWdPn1aQ4cO1fLly+XlxSEWkGQySefO6dKJFAVePK/f9hzWyYRE/bjtgCpnnFfljDRVzjivKhlpqpKRpvDMdHlJCv7z8YdLoEnHQiL1n6oN9HPVBvqxeiNtrxajHJ+8bmPgX2vr3/c2UI2wwBKoGQAAAAAAlHUEFt3AZDJp8uTJRv6ee+7R9OnT5e39v5lbfn5+6tmzp6KiojRw4EDl5ORo3759+uqrr9S5c2dPNBvukJMjS3q6/kg+Lb/MDJnPX9Sh30/qpiAv+Wdm6PfjKfrP/iQdT0pVsOmygrMzFWTKVGjWJVXMuqTwzIuqmJmuipmXFGK6LEkK+rPoZn/+6VBKb+VU+dC8IGKVBn8GE+srtXyY8frodvX1Rcvaqh1evpRaBAAAAAAAyjICi27w3Xff6Y8//pCUt/w5Li7OJqhorU2bNurZs6fmz58vSfr0008JLLri1CldnLtUGadOy2y26ECOt1IuZsmSmytLbq4yTWZ5WyyqGOCrCxnZ8pJF3haLvC258jfnyD83R37mnD/TJvmbc1TOnPf3ldevpI3rf94XYDYpMCdbXpKsF7RXs0rf+uefsuR0QIjiK0Zpf0Qt7a9UU/sr1dS+SrWUHFxJ8vJS8xqh2ji4lcr5esuXZc0AAAAAAKAQBBbd4OuvvzbSrVq1UvXq1Yu83zqwuG/fPiUmJqpmzZol2sbrUc7RY7rYsLHuzrrk6aaUKbny0ongikoMiVBCaDUdrlhN/61YXf8Nq67/VqyutIBg497nWtfRqoduUoCfjwdbDAAAAAAArkUEFl1ksVi0fft2I9+6detin4mNjVVkZKRSU1MlSRs2bFC/fv1KrI3Xq/0TpunmGyyoeMm3nE4FhSmlfKhOlq+opJAIJRp/IpVYIUJ/BIUb+yBKUo9m1dXppsp696aqqhDgy56eAAAAAADALQgsuig5OVkXLlww8k2aNLHrudjYWCOw+Ntvv5VI2653x0w+utnTjXBBul+AzgYE61xAsM6VC9bZgGClBQTrbECIzgUEKTUwVKfK5wUR84KJYcrwCzCerxpSTjuev1Pl/X3k5+2tkAD+OQMAAAAAgNJDJMJFR48etcnXqlXLrudq1KhhpI8fP+7OJt0wmk0Yq83r1+nO5P1uLTfLx1fZ3n55f/v4KdvHN++Pd97fWX9ey/LxU7pfgNL9A3XJL8BI5/0doHS/fOl810w+fpLyAoS9bo1Sx4aV9ZfKwcoxWxQR5K/gcj7MLgQAAAAAAGUWgUUXXZl1KEne3t6KiIiw67nIyMirlgH71YqqpAs7ftRf31iu3DNpyvXyksXLS7nK+9sir/9d+zN/5Vqul9f/gobevsry9VO2t69yvH2kqwTzyvv5KMNk1s3VKuj5O+sqLdOkaiEBqhpSTm2qhCi8vB8HnQAAAAAAgBsKgUUXnT9/3kgHBQUVehp0fsHB/ztAw7qM0pSTk+ORet2pQaVAzep3i5Fv0qSJfHw8cBCJJVc5ObmlXy8Amc3mIvMArn/0AwDoBwDQD3gGgUUXZWVlGemAgIAi7rTl7+9vpLOzs93aJnvk5ubq119/LfV6S9revXs93QQAHkY/AIB+AAD9AAD6gdLB2k0XmUwmI23vbEVJ8vX9X0z3epg5CAAAAAAAgBsLgUUXWS+7zc21fymsdTDRz8/PrW0CAAAAAAAAShpLoV0UGBhopK2XRRfHevlzuXLl3Nome3h7e6tp06alXq+7mc1mm+nNHttjEYDH0A8AoB8AQD8AgH7Acb/99ptDk+SuhsCii0JDQ430pUuXZLFY5HWVU4XzS09PN9JhYWEl0bRiWS/Hvl74+Phcl+8LgP3oBwDQDwCgHwBAP1A6WArtoipVqhhps9msc+fO2fVcamqqkY6IiHB7uwAAAAAAAICSRGDRRbVr17bJJyYm2vVcUlKSka5bt65b2wQAAAAAAACUNAKLLoqKirJZynzgwAG7njt48KCRbtiwobubBQAAAAAAAJQoAotucMcddxjprVu3Fnv/wYMHdfr0aSPfsmXLEmkXAAAAAAAAUFIILLpB+/btjfTGjRt16tSpIu9fuHChkY6OjlZsbGyJtQ0AAAAAAAAoCQQW3aB9+/aqXLmyJCk7O1svvfSScnJyrnrv5s2btXTpUiPft2/fUmkjAAAAAAAA4E4EFt3A399fI0eONPJbt27V3//+d5uDXHJycrRkyRINHTpUZrNZkhQTE6Pu3buXensBAAAAAAAAV/l6ugHXi0ceeUS7du3S4sWLJeUFF9u3b6/Y2FgFBwcrISFBZ8+eNe4PCwvTjBkz5OvLtwAAAAAAAADXHqJabvTaa6+pYsWKmjNnjkwmk3Jzc696SnR0dLRmzJihevXqeaCVAAAAAAAAgOsILLqRl5eXRowYoS5dumjZsmXasmWLTp48qcuXLys0NFSNGjVSx44d1aVLF/n7+3u6uQAAAAAAAIDTCCyWgOjoaI0ePVqjR4/2dFMAAAAAAACAEsHhLQAAAAAAAAAcRmARAAAAAAAAgMMILAIAAAAAAABwGIFFAAAAAAAAAA4jsAgAAAAAAADAYQQWAQAAAAAAADiMwCIAAAAAAAAAhxFYBAAAAAAAAOAwAosAAAAAAAAAHEZgEQAAAAAAAIDDCCwCAAAAAAAAcBiBRQAAAAAAAAAOI7AIAAAAAAAAwGEEFgEAAAAAAAA4jMAiAAAAAAAAAIcRWAQAAAAAAADgMAKLAAAAAAAAABxGYBEAAAAAAACAwwgsAgAAAAAAAHAYgUUAAAAAAAAADvOyWCwWTzcCpWPnzp02eW/v6yOunJuba6Svl/cEwDH0AwDoBwDQDwCgH3CM9ddLkm6//XaHy/B1V2Nw7cn/A3Q9uB7fEwDH0A8AoB8AQD8AgH6gdBC+BQAAAAAAAOAwZizewJgWDAAAAAAAcGNyx6xO9lgEAAAAAAAA4DCmrAEAAAAAAABwGIFFAAAAAAAAAA4jsAgAAAAAAADAYQQWAQAAAAAAADiMwCIAAAAAAAAAhxFYBAAAAAAAAOAwAosAAAAAAAAAHEZgEQAAAAAAAIDDCCwCAAAAAAAAcBiBRQAAAAAAAAAOI7AIAAAAAAAAwGEEFgEAAAAAAAA4jMAiAAAAAAAAAIcRWAQAAAAAAADgMAKLAAAAAAAAABxGYBEAAAAAAACAwwgsAgAAAAAAAHAYgUUAAAAAAAAADiOwCAAAAAAAAMBhBBYBAAAAAAAAOIzAIgAAAAAAAACHEVgEAAAAAAAA4DACiwAAAAAAAAAcRmARAAAAAAAAgMN8Pd0A3JgSEhK0aNEibd++XUlJScrJyVHlypUVExOjzp076/7775evr/t/PE+cOKFFixZpy5YtOnbsmDIzMxUZGal69erpwQcf1IMPPqjAwEC31wugoNLuB3777Tc99thjDj83f/58NW/e3G3tAFC0GTNm6L333lNUVJQ2bNhQInUwHgDKtpLsBxgPAGXP9u3btXbtWu3atUspKSlKT09XcHCwqlWrpubNm6tbt2666aab3F7v2bNntXTpUn3//fc6cuSILl26pPDwcNWqVUsdOnRQly5dFBoa6vZ6rzdeFovF4ulG4MYyc+ZMzZ49Wzk5OYXe06RJE7311luqV6+e2+pdtGiR3njjDV2+fLnQe+rUqaM333xTzZo1c1u9AAryRD+wZMkSvfLKKw4/xwcJoPTs2bNHvXv3lslkKrHAIuMBoGwr6X6A8QBQdiQlJWn06NH6+eefi723U6dOGjdunIKDg91S9/r16/Xyyy8rLS2t0HsiIyM1YcIEtW3b1i11Xq+YsYhSNX78eH3++edG3tfXV7GxsQoMDFRCQoLOnTsnSdq7d6/69u2rJUuWKCoqyuV6586dq0mTJhl5Ly8vNWjQQGFhYTp69KhSUlIkSUePHlW/fv00f/58NW7c2OV6ARTkqX7gwIEDRrp27dqqWbOmXc/xW0qgdCQmJurZZ5+VyWQqsToYDwBlW2n0A4wHgLLh6NGj6tWrl86ePWtc8/PzU0xMjEJCQnTmzBkdPnxYV+bCrV27VgkJCZo/f77LwcV169Zp5MiRMpvNxrW6desqMjJSycnJSk5OliSlpqZq8ODBeu+993T33Xe7VOf1jBmLKDXr1q3T888/b+Q7dOiguLg4RURESJJMJpNWrFihSZMmGbMIGjdurOXLl8vLy8vpenfv3q3evXsbncZf/vIXTZw4UbVq1ZIkWSwWfffdd4qLizMCGlWrVtW6detYBgW4maf6AUn629/+pl27dkmS3njjDT3yyCMulQfAfeLj4/X000/r1KlTxjV3z1RiPACUbaXRD0iMB4CywGw26+GHH1Z8fLwkycfHR4MHD9aAAQNsgoanTp3S1KlTtWrVKuNax44dNWPGDKfrTkxMVJcuXZSRkSFJiomJ0eTJk22WWm/btk1jx441AoxBQUH697//rSpVqjhd7/WMw1tQKkwmkyZPnmzk77nnHk2fPt0IJkh5v53o2bOnZs2aZeyrtm/fPn311Vcu1T1p0iTjQ0Tjxo318ccfGx8ipLzZCu3bt9fcuXMVFBQkSTp58qQ+++wzl+oFYMuT/YDFYtGhQ4eMfMOGDV0qD4D7rF69Wj169LAJJpQExgNA2VVa/QDjAaBsWLFihRFUlPKC/EOHDi0wE7FKlSqaPHmyBgwYYFxbt26ddu/e7XTd06ZNM4KKUVFR+uyzzwrs39iyZUstWLBAlStXliRdunRJs2bNcrrO6x2BRZSK7777Tn/88YekvGWPcXFx8va++o9fmzZt1LNnTyP/6aefOl3vr7/+atPpvPLKKwoICLjqvQ0bNtRzzz1n5D/77DObqdEAXOOpfkCSjh07Zgwg/Pz8FB0d7VJ5AFx36tQpjR49WqNGjSpyv0N3YDwAlE2l2Q9IjAeAsmL16tVGuk2bNurSpUuR948cOdII8kl5y6KdcerUKX3zzTc25YaHh1/13qpVq+rll1828itWrChyP8YbGYFFlIqvv/7aSLdq1UrVq1cv8n7rgMK+ffuUmJjocr3R0dG69dZbi7z/scceM2ZJnT17Vjt27HCqXgAFeaofkGz3U6pbt678/f2dLguA695//3117NjRZmlTvXr1NGjQoBKpj/EAUPaUdj8gMR4AyoLs7Gz98ssvRv6hhx4q9hl/f3+1adPGyP/2229O1f3NN98Yh0eGhISoQ4cORd5///33G4HHnJwcrV+/3ql6r3cEFlHiLBaLtm/fbuRbt25d7DOxsbGKjIw08s7urfLTTz85VG9oaKiaNGli5Ddu3OhUvQBsebIfkKSDBw8aaZY9AZ43Z84cY9aQJHXv3l1Lly5V7dq1S6Q+xgNA2VPa/YDEeAAoC5KTk1WuXDkjb+/M4bCwMCN9ZS9kR1mPB1q0aCE/P78i7/fx8dFf//pXI8944OoILKLEJScn68KFC0beeqBelNjYWCPtzG8kTCaTjhw5YuTtPdXR1XoBFOSpfuAK6xkKfJAAyo4mTZro888/1/jx410+4bEwjAeAsq00+oErGA8Anle3bl3t2rVLP//8s9auXauYmBi7nrtykIrk/Cnt1nus2jsesO4rGA9cna+nG4Dr39GjR23y1hulF6VGjRpG+vjx4w7Xm5SUJJPJZOTt/e2nq/UCKMhT/cAV1h8kYmNjdfDgQS1fvlzbt29XUlKScnJyFBERoWbNmumBBx7Q/fff7/Ip1AAK16JFC3Xr1k333ntvif9bYzwAlE2l2Q9cwXgAKDtCQkIUEhJi173p6en68ccfjbwz+6NmZ2cb+71Lzo0HTp06pczMzEL3ab5REVhEiUtNTTXS3t7eNifAFsV6CaR1Gc7Um788e+s9c+aMcnNzCz1gAoB9PNUPSHn7o6WkpBj5jz/+2GYZxBXJyclKTk7W119/rSZNmmjatGl2B0ABOOa9994rtboYDwBlU2n2AxLjAeBaNmfOHKWnpxv5e+65x+EyUlNTZbFYjLy944H8n1tSU1NVs2ZNh+u/njE6Qok7f/68kQ4KCrJ7UG69FMK6DGfqlaQKFSrY9Zz1b00sFovN8k0AzvFUPyDZzk6Q/re3SmBgoBo2bKgWLVqoTp06Nvfs3btX3bt31/79+52qE0DZwXgAgMR4ALhW7dmzRx999JGRr1Onjtq1a+dwOe4YD0hiPHAVzFhEicvKyjLSjkwZtj6lLTs726V6Hak7/wau+csB4DhP9QNSwQ8SwcHBGjlypB5++GEFBQUZ15OSkvTOO+9o9erVkqS0tDQ9++yzWrlypSpWrOhU3QA8j/EAAInxAHAtSkpK0rPPPmuzpclLL70kX1/HQ1n5/x+3PkCmKPlPj2c8UBAzFlHirDsBR5YQWXcWV46Ed0T+Z+ytO38nZTabHa4bgC1P9QOS7f6OFStW1LJly9SnTx+bDxFS3v4pb775poYOHWpcO3HihGbPnu1UvQDKBsYDACTGA8C15sSJE+rXr5/Nlib9+/d3ahm0VHA84OPjY9dz+e9jPFAQgUWUOOt/iLm5uXY/Z/0Pv7hj4K8m/wcHe+vO3+E4UzcAW57qByRp/Pjx2rFjh5YvX66FCxeqbt26Rd7/3HPP6dZbbzXyixcvdnq2JADPYzwAQGI8AFxLEhIS1KtXLyUlJRnX2rRpoxdeeMHpMvOPB+wNEOa/j/FAQQQWUeICAwONtCPThq3/47Z3mnJh9TpSd/4BgzN1A7DlqX7gitDQUDVp0qTYDxGS5OXlpb59+xr5y5cva+fOnU7XDcCzGA8AuILxAFD2/fLLL+rTp49OnDhhXGvZsqVmzZrlUlAv/3jA3l8UOLuE+kZCYBElLjQ01EhfunTJ5iSmolif+hQWFuZSvfnLs7deX1/fApu1AnCcp/oBZ9122202eevlUwCuLYwHADiL8QBQur788kv169dP586dM661bdtWH3zwQYHAoKPcMR6QSvczybWCwCJKXJUqVYy02Wy26SSKYr2XQv4j3h2tV5JOnz7tcL3h4eHy8vJyuG4AtjzVDzirUqVKNnlnT6QG4HmMBwA4i/EAUHpmzpypF154wWYmYZcuXfTee+85dPhjYSIjI22WQ9s7HrC+z8vLq0C/AAKLKAW1a9e2yScmJtr1nPV+CvYsV8ivevXqNlOlnam3Tp06DtcLoCBP9QPOyr80Iv/G7gCuHYwHADiL8QBQ8kwmk0aNGqVZs2bZXB84cKDefPNNp06Avhp/f39Vq1bNyB8/ftyu56zHDdWrVy9wSjQILKIUREVF2UwXPnDggF3PHTx40Eg3bNjQ4Xr9/PwUExPjcL3W9zVq1MjhegEU5Kl+IDk5WW+99ZbGjBmjZ555xqa8ouQPPFgPQgBcWxgPAGA8AJRN2dnZGjJkiFavXm1c8/X11fjx4zVy5Ei3rxZo0qSJkba3H2A8UDwCiygVd9xxh5HeunVrsfcfPHjQZspxy5YtS6XetLQ07d+/3+V6ARTkiX7AYrHo448/1ooVK7Rp0yZt2bLFruc2b95spL28vArssQTg2sJ4ALixMR4Ayp6cnBwNGzZM33//vXEtKChIH3zwgbp3714idbZo0cJIb9++Xbm5uUXebzabtX37diPPeODqCCyiVLRv395Ib9y4UadOnSry/oULFxrp6OhoxcbGulzv3r17tXfv3iLvX7JkiXJyciTlbe7aqlUrp+oFUJAn+oEaNWooKirKyK9YsUJms7nIZ9LT0/XFF18Y+TZt2ig8PNzhugGUHYwHgBsb4wGg7Hnrrbe0ceNGIx8eHq7PP/9cbdq0KbE677vvPvn4+EjK2zvxu+++K/L+b775RmfPnpWUN5PSejyB/yGwiFLRvn17Va5cWVLedOeXXnrJGLDnt3nzZi1dutTI9+3b1+l6b731VjVu3NjIjxkzptDTnw4cOKD333/fyPfo0cMtm8QCyOOpfuCxxx4z0gkJCZo9e3ah95pMJr300ktG0NPLy0uDBg1yum4AZQPjAQCMB4CyY9OmTfrss8+MfGhoqObNm2fzf3VJqFq1qu69914jP2HChEInO5w4cUITJ0408u3bty9wIBzyEFhEqfD399fIkSON/NatW/X3v//dZt+SnJwcLVmyREOHDjV+gxgTE1PoNOh27dopNjZWsbGxateuXaF1jx492tibIT4+Xn379rXZT8Fisejbb79V//79lZGRISnvxKiBAwc6/4YBFOCpfmDAgAE2sxTeeecdjR8/vsDJ1AcOHNCAAQNsfnP5+OOPq3nz5o6/WQClhvEAAMYDwLXDbDZrwoQJslgskvIC92+//bYaNGjgUrl9+/Y1+oGiVjqNGDFC5cqVkySdOnVKvXv31o4dO2zu2b59u/r06aPU1FRJUvny5W0+x8CWe47XAezwyCOPaNeuXVq8eLGkvKBC+/btFRsbq+DgYCUkJBjTjCUpLCxMM2bMcPkUqDvuuEMjRozQ1KlTJUn79+9X165dVb9+fYWHh+vYsWM2v6UICAjQ9OnTFRIS4lK9AAryRD8QGBioDz74QI8//rjS0tIkSZ9//rkWLVqkmJgYBQcH68SJEwVOhnvooYc0ZswYp+sFULYwHgBubIwHgLJh3bp1OnbsmJEPDAzU3LlzNXfuXLvLiIiI0OTJk52qv169eho/frxGjx6t3NxcJSUlqW/fvqpVq5aqVq2qEydO2Ex88Pb21oQJE1SzZk2n6rsREFhEqXrttddUsWJFzZkzRyaTSbm5uVc9nTE6OlozZsxQvXr13FLvwIEDFRQUpLffftuYhXD48OEC91WtWlVTpkzhN5JACfJEP9CgQQMtW7ZML774onbt2iUpb5nTvn37CtwbEBCgQYMG6ZlnnjH2YAFwfWA8ANzYGA8Anrdu3TqbfEZGht0HKl1hPfvYGV26dJG/v79effVV4xcNx48fL/CLhdDQUL3++uvq0KGDS/Vd7wgsolR5eXlpxIgR6tKli5YtW6YtW7bo5MmTunz5skJDQ9WoUSN17NjR+IfuTo8//rjuu+8+LVmyRJs2bVJSUpLS09MVHBysmJgY3XfffXr00UcVHBzs1noB2PJUP1CzZk0tWrRIP/74o7766ivt3r1bKSkpysrKUnh4uGrWrKm2bduqc+fOqlatmtvqBVC2MB4AbmyMBwDPOnLkiKebIEnq2LGjWrZsqaVLl2rDhg06duyYzp8/r/Llyys6Olpt27ZVz549ObTJDl6WKwvbAQAAAAAAAMBOHN4CAAAAAAAAwGEEFgEAAAAAAAA4jMAiAAAAAAAAAIcRWAQAAAAAAADgMAKLAAAAAAAAABxGYBEAAAAAAACAwwgsAgAAAAAAAHAYgUUAAAAAAAAADiOwCAAAAAAAAMBhBBYBAAAAAAAAOIzAIgAAAAAAAACHEVgEAAAAAAAA4DACiwAAAAAAAAAcRmARAAAAAAAAgMN8Pd0AAACAktSuXTslJye7XM68efN0xx13uKFFQOnJysrSY489pvj4ePXr109jx441Xtu+fbueeOIJI3/o0CGX6oqNjTXSQ4YM0dChQx0uY+bMmZo1a5bb2lScYcOG6ZtvvlHLli316aefytubeRcAADiC/zkBAACA69SkSZMUHx+viIgIDRs2zNPNKXNGjx6tgIAAbdu2TR9//LGnmwMAwDWHGYsAAOCGUblyZcXExDj1bGhoqJtbA5SsH374QQsXLpQkDR8+XMHBwR5uUdkTFRWlAQMG6P3339eMGTN01113qWHDhp5uFgAA1wwCiwAA4IbRunVrvfHGG55uBlDiMjMzNW7cOElSTEyMHn30UQ+3qOx65plntHTpUp0+fVqvvvqqFi5cyJJoAADsxP+YAAAAwHXmgw8+UGJioiRpxIgRBMqKUL58eQ0aNEiStHv3bi1btszDLQIA4NrBCAMAAAC4jpw5c0Zz586VJNWvX1/t2rXzbIOuAT169FBYWJgkadasWcrKyvJsgwAAuEYQWAQAAACuIx9++KEyMjIk5QXMULxy5crp4YcfliSdOnXK2JsSAAAUjT0WAQAAnPDSSy9p5cqVkqTZs2erbdu2mjdvnhYvXqykpCRVqFBB9erVU8eOHdWnT58Cz1+6dEmrVq3Spk2b9N///ldnzpyRv7+/IiMj1bx5cz3wwANq1aqVQ2366aeftHz5cv3yyy9KSUlRUFCQatWqpQceeEA9evRQcHCwvvjiC73++uuSpCFDhmjo0KE2ZaxYsUJjxoyRlHewxYYNG4qtt127dkpOTpaUdwpxt27dirw/OTlZK1eu1JYtW5SUlKS0tDQFBwerevXqatWqlR555BFFR0cXWcbMmTM1a9YsSdIrr7yixx9/XNnZ2Vq9erXWrVunhIQEnT59WiEhIapbt67atWunnj17KiQkpNj3c8WOHTv01Vdf6ZdfflFycrJMJpNCQ0MVExOjtm3bqlu3bqpQoYLNM+PGjdP8+fMl5R34s2XLFvn7+xdb12effaaJEydKkurUqaNvvvnG7nZaS09P19KlSyXZBstcYTabNWLECJs29evXT2PHjnW5bEdZf9+dUdTPZ48ePYyZnvPmzdMTTzzBEnIAAIpBYBEAAMAN/vnPf2r58uVG/vTp0zp9+rRiY2ML3LtmzRq98cYbOnPmjM31rKwsXbx4UUeOHNGSJUvUsmVLTZ48WVWrVi2y7jNnzmj06NHavHmzzfW0tDSlpaVpz549WrBggd555x0X3qHrzGazpk+frrlz5yo7O9vmtXPnzuncuXPat2+fPvnkE/Xo0UNjx461KygnSQcPHtQ//vEPHT582Ob62bNndfbsWe3cuVNz5szRlClT1Lp16yLLOn78uF5++WXt2LGjwGtXvq9bt27V7NmzNX78eN13333G64888ogRWDx//rx++OEHm9cLs3r1apsynLV69WpdunRJknTHHXe4fJq5xWLRmDFjbIKK/fv3N4LP15Po6GjVr19fhw8fVnJysjZu3Kh7773X080CAKBMI7AIAADgopUrVxY6w6xLly42+VmzZmnmzJk216pXr64aNWooKytLCQkJSk9PlyRt27ZN3bt319y5cwudwXfmzBn17t1bR48eNa75+fkpNjZWAQEBOnz4sNLS0pSYmKinnnrKLTPYnJGdna1nn33WJvjp5eWl6OhoRURE6MKFC4qPj1dOTo7MZrMWLlyo+Ph4ffzxxypfvnyRZR89elSzZs3SuXPnJEmVKlVSvXr1lJmZqYSEBGNZ8NmzZzV48GCtXLmy0K/nwYMH1a9fP6WlpRnX/Pz8FBMTo/Lly+vo0aNKTU2VlBcMHTZsmKZOnaqOHTtKkpo2baqYmBjFx8dLygsiFxdYTEhI0L59+yRJ3t7eLn2P1qxZY6Tvvvtup8u54tVXX7UJeg4YMEAvvfSSy+U6q1atWmrTpo3d9//0008ym82S8mZw3nTTTUXef9dddxnB6TVr1hBYBACgGAQWAQAAXHQlqPjggw9qyJAhqlatmg4fPqz169fr5ptvNu5bu3atTVDx9ttv15gxY9S0aVPjWnZ2tr766itNnjxZaWlpSklJ0ZAhQ7Rs2TIFBQUVqHvMmDE2QcXu3bvrH//4hypWrChJMplMWrlypSZNmqSzZ88aSz1L2/jx422Cit27d9eQIUNsZmOeP39ec+bM0UcffaTc3Fzt3LlTcXFxmjJlSpFlf/7555Lygk7//Oc/ddddd8nLy0tS3tLgmTNnGu87KytLM2fO1PTp0wuUk5GRoeeee84IKvr4+GjQoEEaMGCAzRLq9evX67XXXlNKSorMZrNefvll3X777YqMjJSUN+Nw8uTJkqSNGzfq4sWLRS7BXrVqlZFu1apVsTNUC5OSkqJff/3VpixXTJo0SYsXLzbyng4qSlLXrl3VtWtXu+6dNm2atmzZYuTHjRunhg0bFvlM69at9cknn0iSNm/erOzsbLtnzQIAcCMisAgAAOAG7dq109SpU42A1s0332wTVExPT9e//vUvI3/vvffqnXfeka+v7XDM399f3bp1U7NmzdSrVy+dP39eR44c0UcffaThw4fb3Lt161Zt2rTJyD/55JMaPXq0zT1+fn7q0aOH6tevr379+hVYglwafv75Z5sA1ahRo/TUU08VuC80NFQjR45UbGysRo4cKUn68ssv9eijj+qvf/1rkXXUqFFDS5YsMQKqVwQHB2vMmDFKTU3V2rVrJUmbNm26asBo7ty5SkpKMvJTpkzRgw8+WKCu++67T9WqVVPv3r2VmZmp9PR0ffHFFxoxYoSkvFmqb7/9tnJycpSdna1169ape/fuV223xWLRl19+aeQfffTRIt9nUbZv3y6LxSJJCgwMVO3atZ0u68qS9Suu9rNVlDVr1mj37t0O13v8+HGHn7ma1atXa/bs2Ub+ySeftGsmaKNGjYz0pUuXtGfPHjVv3twtbQIA4HpEYBEAANwwVq5caRy4Yq958+bpjjvuKPa+wYMHG0HFq1m2bJkuXLggSQoJCdHEiRMLBBWtRUdH6/nnn9e4ceMkSQsXLtSgQYMUEBBg3GN9cm3NmjWNwNbV3HbbbRoyZIimTp1a7Htxtzlz5hjp22+//apBRWudOnXSt99+q3Xr1kmSPvnkk2IDi8OGDSsQVLTWq1cvI7CYkZGhxMREm+XQubm5NsHPTp06XTWoeEXjxo3VuXNn46CUb7/91vj6R0RE6M4779TGjRsl5QVHCwssbt++XSdOnJCUF1i1Zz/GwljPVqxfv77TB498+OGHev/99428o0FFKS9A6K4goaN27typf/7zn0b+rrvu0osvvmjXs5UqVVKlSpWM/U9//fVXAosAABSBY84AAABcFBQUpCZNmhR5j/UejPfcc4/CwsKKLbdz587y8fGRlHcQi/UMMJPJZLPMs1u3bsUu2ezdu7cCAwOLrdedMjMzbZZA23swifXssp9++klZWVmF3uvt7V3sXnj169e3yV+8eNEmv3//fp08edLI9+rVq9g2PvHEE3rxxRf13nvv6d1337V5zfp9/uc//7Ep25r1/oWdOnVyadltQkKCkW7QoIFTZcybN09vv/22kXcmqOhJSUlJGjJkiDEzt169epo6dapDQdaYmBgjnf8wIAAAYIsZiwAA4IZRuXJlm6CBPew5VTcmJqbIwEV2drb27t1r5As7OCS/ChUqqFatWvr9998lSb/88otatmwpSTaHkkiya1ZVSEiIbrvtNv3444921e8Oe/bskclkMvL2vnfrQK3JZNJvv/1W6HusUaOGgoODiyyvQoUKNnnrNl1p5xV+fn5q1qxZsW2MiYkp9OfpSvA4LS1Nubm5+uqrr/T000/b3JOZmWkTcHblNGhJNsu4K1Wq5PDzS5cu1cSJE418TEyM00HFIUOGaOjQoQ4/N3PmTM2aNcupOtPT0zVo0CCdPXtWUt73/P333y9yf8ursf7aWX9NAQBAQQQWAQDADaN169Z644033F5ueHh4ka+fPHnSZm/DadOmadq0aQ7Xc+rUKSOdnJxs81qdOnXsKiM2NrZUA4vHjh2zydszE/BqUlJSCn3NntmfV2Z+XpGbm2uTT0xMNNJRUVEuH9jh7++vzp07GwfLrFmzpkBgcf369bp06ZKkvBmG1ntyOuPKqdiSHA6mSVJcXJyxR6MkxcfH65tvvlGHDh1caldpMJvNGj58uP773/9Kyvt+T5s2ze5/F9asg9TWp4MDAICCWAoNAADgouJmy50/f94t9ViXk56ebvOavYGkovYhLAlX9pV0VVEBHut9J51l/fV0Jih3NdYzEA8dOqT4+Hib162XQXfr1s3l+i5fvmyki/uZvJorwVbr5fKvv/66235+S9KkSZNsltyPGjVKbdq0caos6++/9axgAABQEDMWAQAAXFTc/m05OTk2+aZNm9q1xDo/630Cy5UrZ/Oa9Uyzorg6E89R+d+7s8GeypUru6M5hSrq4B1nNW7cWLGxsTp06JCkvENc/vGPf0iSTp8+bcwc9fX1VZcuXVyuz/o9OHtwy9/+9jd16dJFffr0kcViUWpqqiZNmlQiM33dZcGCBcbMUCkvSNu/f3+ny7Oe3ers1xEAgBsFgUUAAIASln9/v2effVbt2rVzqcz8gcmLFy+qfPnyxT6Xf6ZjUewNVhZ1sEr+9z5jxgynZtOVNOt25j/YxRXdunXTpEmTJElr1641Aotff/21zGazpLxTiyMiIlyuKygoyJjZmZmZ6fDzffr00SuvvCIvLy/16NHDOCV75cqV6tSpk+68806X2+huP/74oyZMmGDkb7nlFr322msulWk9SzEoKMilsgAAuN7xKzgAAIASVqVKFZvZZCdOnHC5zNq1a9vk7T299vjx40W+bt3O/AecXE1ubm6RS2WrVKlik3fHey8J1u1MTk62671L0uLFi/XDDz/o999/v+oznTt3lq+vr1HugQMHJOXtr3jFo48+6krTDdZ7TTqzN2BcXJzx/X/hhRcUGRlpvPbqq68a+0GWFQkJCRo+fLgxK7Zq1aqaNWuWy7NyrX+enZlZDADAjYTAIgAAQAkLDg5WgwYNjPy2bdvses5kMmns2LGaNm2aFi9ebBM8rF69uqpXr27kf/rpp2LLs1gs2rlzZ5H3WAdl7AkkFRZQu+KWW26xCVba+94PHz6ssWPH6t1339WqVauMk35LivUp0FdOoS5OYmKi4uLi9Pe//10dO3ZUQkJCgXsqVaqku+66y8ivX79eFy5cML4P4eHhatu2rRvegVSrVi0j/ccff7hUVoUKFTR27Fgjn5ycrLffftulMt3p3LlzGjRokLGHZ0BAgN59912bYKizrL92zhz+AgDAjYTAIgAAQCm4++67jfSGDRtsTiEuzOrVq7V8+XLNnj1bcXFxBQJXHTt2NNIrVqwodpnz5s2blZSUVOQ91rPeMjIyig1QrV27tsjXw8PDbYJ28+fPt2s24Icffqjly5frnXfe0dixYwuc4uxuN910k81y5KVLlxb7jPV7Dw8PV0xMzFXvs56R+H//93/atGmTMcuuS5cu8vPzc7bZNqKjo410/tO4nfHggw/aBD0XLFign3/+2eVyXWUymTR06FCb2bcTJ05UkyZN3FK+9deuXr16bikTAIDrFYFFAACAUvD4448bAaScnBwNHz68yEBgUlKSpkyZYuSrVaume+65x+aeJ554wijzzJkziouLKzQAd+bMGf3rX/8qtp2xsbE2MwytD8XI7+DBg5ozZ06xZT755JNG+vfff9frr79e5P6NGzZs0Jo1a4x8+/bt3bIHYVF8fX3Vq1cvI79y5Ur98MMPhd6fnJxs894fe+yxQg/6aNu2rcLDwyVJBw4c0Pz5843XrE+OdtVtt91mpA8dOmTs4eiKV1991di702Kx6OWXXy5yT83SEBcXp//85z9G/rnnnlOnTp3cUnZKSopSUlKMfPPmzd1SLgAA1ysCiwAAAKWgSpUqGj58uJHfu3evevTooS1bttgE2cxms9asWaPevXvr3LlzxvVRo0YV2DuuWrVqeuGFF4z82rVrNWjQoAKzIbdv365evXopOTm52HZGRETYBKg+/fRTffjhh8rOzjauZWZmauHCherVq5cyMzONPQQL0759e5sZm4sXL9bAgQML7AuZnp6u999/X8OGDTO+JuXLl9fIkSOLbbc79O/f31j6arFYNGTIEM2dO7fAQShbt25V3759jWW4kZGRevrppwst18/PTw899JCR37Vrl6S8U6MbNmzotva3aNHCCApnZmbq4MGDLpcZFRWloUOHGvmjR49q5syZLpfrrI8++kgrVqww8l27dtWwYcPcVv6ePXuMdFhYmBo1auS2sgEAuB5xKjQAAEApefrpp/X7779r2bJlkvIOn3jqqadUqVIl1a1bV9nZ2Tp27FiBw1CeeeYZPfjgg1cts3///jpy5Ihxgu+mTZv0ww8/qEGDBqpYsaKSkpKMgKK/v79CQ0OVmppaZDtHjhypJ554QmazWRaLRW+//bY++ugjRUdHy2Qy6ffffzf2X7zpppt0yy23aMGCBYWW5+XlpTfffFMDBgzQvn37jHZu2rRJtWrVUtWqVZWWlqbjx4/bBPH8/Pw0ZcoUm70DS1JwcLDeeecdDRgwQGfOnFFWVpYmTZqkGTNmKCYmRuXKldOxY8d08uRJ45nAwEBNnz692EM+Hn30Uc2bN8/mWrdu3dza/rCwMDVv3tyYzbdlyxY1btzY5XL79eunL7/8Uvv375ckffLJJ3rggQfcUrYjDh06pKlTpxp5X19f+fj4aOTIkcrMzFROTo5dszSLmmW7efNmI92uXbtCZ6ECAIA8BBYBAABK0YQJExQbG6uZM2caM97OnDmjM2fOFLg3ODhYL774ov72t78VWea4ceNUo0YNvfvuu8rMzJTFYlF8fLzNPWFhYZo8ebLmzJlTbGCxefPmmjp1ql555RWjjRcuXDBm2l1x9913a9KkSfrkk0+Kfd+hoaFasGCBJk6cqGXLlhkBoOPHj1/1pOratWtr4sSJpb4UNTY2VkuWLNGoUaOMA1YyMjK0e/fuAvfWqVNHU6ZMUdOmTYstt2HDhmrUqJFxKrS/v7/NLEZ36dq1qxFY/P777zVw4ECXy/Tx8dG4cePUo0cP5ebmymw2a+zYsVq+fHmxs1XdKS0tzWapf05Ojs3sRXewDiy6c5k6AADXKwKLAAAApeyJJ57Qww8/rFWrVunHH39UfHy8zp49q9zcXIWGhio2NlZ33nmnunbtqooVK9pV5jPPPKNOnTppyZIl+v7775WcnCyz2awaNWro/vvvV58+fVSpUiW79kSU8g6GadGihRYvXqyNGzfq2LFjysjIUGRkpJo2baqHH364wJ6PxQkICNC4ceP01FNPafXq1dq2bZuOHz+utLQ0+fr6KiIiQo0bN9b999+v9u3bF1j6XVpq1KihBQsWaPPmzVq3bp127typ1NRUZWVlqWLFimrcuLE6dOigTp06OdTG+++/3wgstmvXzuagHHd54IEHNHnyZF28eFG7du1ScnKyoqKiXC63adOmevzxx41ZlwcPHtSHH36oZ5991uWyy4qdO3cas3vr1q2rv/zlLx5uEQAAZZ+XpaidswEAAHBd6du3r3bs2CFJGjJkiM3+eShZTz/9tDEjbs6cOWrTpk2J1PPWW2/p448/liQNHz5cgwcPLpF6rjdxcXHGlgLjx49X9+7dPdwiAADKPjYNAQAAAEpYSkqKtm7dKkmqWbOmWrduXWJ19e/fX4GBgZKkRYsWKScnp8Tqul6kpaUZJ5FXq1ZNXbt29XCLAAC4NhBYBAAAAErYokWLjH0le/XqZZzeXBIiIyPVv39/SdLJkyf173//u8Tqul4sWbJEly9fliQ9//zzHluGDwDAtYbAIgAAAFCCNmzYoI8++khS3iE2PXv2LPE6n376aVWuXFmS9N5779l1WvKNKj093TiAqHHjxsxWBADAAQQWAQAAADf6+uuv1blzZ/Xr108dOnTQ4MGDlZ2dLUkaNWqUgoODS7wNwcHBevXVVyVJR44c0apVq0q8zmvV3Llzde7cOfn4+Oj111+XtzcfkQAAsBf/awIAAABuVKNGDcXHx2vbtm06evSocb1nz5567LHHSq0d9913nzH7bvr06UpPTy+1uq8VJ0+eNE5KHzhwoBo3buzhFgEAcG0hsAgAAAC4Ud26ddWsWTOVL19eQUFBatasmSZPnqxx48aVelv+9a9/KTo6WikpKZo5c2ap11/WTZw4URkZGWrRooWGDBni6eYAAHDN8bJYLBZPNwIAAAAAAADAtYUZiwAAAAAAAAAcRmARAAAAAAAAgMMILAIAAAAAAABwGIFFAAAAAAAAAA4jsAgAAAAAAADAYQQWAQAAAAAAADiMwCIAAAAAAAAAhxFYBAAAAAAAAOAwAosAAAAAAAAAHEZgEQAAAAAAAIDDCCwCAAAAAAAAcBiBRQAAAAAAAAAOI7AIAAAAAAAAwGH/D56lGL+hdWCPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime, limit_k=250)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAPkCAYAAAAOAWiuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAADtr0lEQVR4nOzdd5jU5NrH8d8WigjIAbGh2AWliQUUPRbsXbF3jxXrsQIWRLCAIr54bCgqIhYQRbErVhTEAkiRJtIF6b1snfePsLM7uzOzmZkkT5L5fq6Li8ls8uSeTJJJ7jwlJxKJRAQAAAAAAAAg6+WaDgAAAAAAAACAP5AsBAAAAAAAACCJZCEAAAAAAACArUgWAgAAAAAAAJBEshAAAAAAAADAViQLAQAAAAAAAEgiWQgAAAAAAABgK5KFAAAAAAAAACSRLAQAAAAAAACwFclCAAAAAAAAAJJIFgIAAAAAAADYimQhAAAAAAAAAElSvukAkJnx48fHTOfmkv8FAAAAAADIRqWlpTHTBx98cMplkCwMmco7BQAAAAAAAGAX1dAAAAAAAAAASKJmYeiEpRlyxRqSYflMAFLDeQAA5wEAnAcAcB5IjRMtTkkWBlxubm50R8jNzVXbtm0NR5S54uJiTZo0KTrdqlUr5eezqwLZhPMAAM4DADgPAOA8kLqJEyfG5InSQUoWAAAAAAAAgCSShQAAAAAAAAC2IlkIAAAAAAAAQBLJQgAAAAAAAABbkSwEAAAAAAAAIIlkIQAAAAAAAICtSBYCAAAAAAAAkESyEAAAAAAAAMBWJAsBAAAAAAAASCJZCAAAAAAAAGArkoUAAAAAAAAAJJEsBAAAAAAAALAVyUIAAAAAAAAAkkgWAgAAAAAAANiKZCEAAAAAAAAASSQLAQAAAAAAAGxFshAAAAAAAACAJJKFAAAAAAAAALYiWQgAAAAAAABAEslCAAAAAAAAAFuRLAQAAAAAAAAgiWQhAAAAAAAAgK1IFgIAAAAAAACQRLIQAAAAAAAAwFYkCwEAAAAAAABIIlkIAAAAAAAAYCuShQAAAAAAAAAkkSwEAAAAAAAAsBXJQgAAAAAAAACSSBYCAAAAAAAA2IpkIQAAAAAAAABJJAsBAAAAAAAAbEWyEAAAAAAAAIAkkoUAAAAAAAAAtvIsWfj000+rWbNm6tixo1erlCS9++67atasmZo1a5bW8pMnT1b37t118sknq23btjrwwAN10kkn6c4779T333+vSCTicMQAAAAAAACAGflerGTy5MkaOHCgF6uKsWjRIj3++ONpLVtUVKSHH35Yw4YNq/K3efPmad68efrkk0905JFHqnfv3tphhx0yDRcAACB7FBRIa9ZIDRpItWqZjgYAAABbuV6zcOHChbrppptUVFTk9qpirFq1Stdff73WrVuX8rKRSES33357TKKwVq1aat26tdq2bau6detG3//xxx915ZVXprUeAACArDRtmtS6tbTTTtb/06ebjggAAABbuZosnDVrli699FItX77czdVUsWTJEl155ZX666+/0lr+1Vdf1VdffRWdvuSSSzRmzBgNHz5cQ4cO1ZgxY3THHXcoP9+qmDlnzhzdd999jsQOAAAQer17S7NmWa9nzbKmAQAA4AuuJQtHjhypCy64QEuXLnVrFXH9+OOPOuecczSr7AI0RatWrdJzzz0Xnb744ovVo0cP1atXL/pe7dq11blzZ/Xq1Sv63qhRozRhwoT0AwcAAMgWb7wROz1kiJk4AAAAUIXjycKlS5eqa9eu6tKlizZv3ux08QmtW7dOffr00XXXXafVq1enXc67776rjRs3SpIaNGigLl26JJz33HPP1THHHBOdHjRoUNrrBQAAAAAAAExzNFn4wgsv6OSTT9YHH3wQfW+vvfZS586dnVxNFcOHD9cJJ5ygQYMGqbS0VJLUuHFj3X333SmX9dlnn0Vfn3LKKapTp07S+S+88MLo69GjR2vTpk0prxMAAAAAAADwA0eTha+88kpMsuz888/X8OHDtfvuuzu5mireeOMNrVmzJjp9/PHH6/3331fr1q1TKmfNmjWaXqGD7SOPPLLaZQ477DDl5eVJkrZs2aKxY8emtE4AAAAAAADAL1zps7Bly5YaMmSIHnnkkZiRg922xx576Nlnn9Vzzz2nxo0bp7z8zJkzFYlEotMtWrSodpk6deqoadOm0ekpU6akvF4AAAAAAADAD/KdLKxdu3bq1KmTjjvuOOXk5DhZdFIHHHCA/vOf/+j000+PjlCcjnnz5kVf16xZUzvvvLOt5XbddVfNnTtXkrRgwYK01w8AAAAAAACY5Giy8Pnnn3eyONt69+7tSDnLly+Pvk6lZmLFeSuWAQAAAAAAAASJo8nCoKvY72G9evVsL1exqfXatWudDCllxcXFRtfvhJKSkqTTAMKP8wAQbvEuQCtfw3AeAMB5AADnATNIFlZQWFgYfV27dm3by9WsWTNuGV4rLS3VpEmTjK3fLVOnTjUdAgDDOA8A4XJwnPequ4bhPACA8wAAzgPecGWAk6AqKiqKvs7Ntb9pKvaTGIaafQAAAAAAAMhOJAsryMvLi74uLS21vVzFBGGNGjUcjQkAAAAAAADwCs2QK6jY9LigoMD2chXnrVWrlqMxpSI3N1etWrUytn6nlJSUxFQtbtmyZUwiF0D4cR4Ask+bNm1ipjkPAOA8AIDzQOqmTJmSUgW4eEgWVtCgQYPo6w0bNthebuPGjXHLMKFik+iwyMvLC+XnAmAf5wEg/Ko7xjkPAOA8AIDzgDdohlzBjjvuGH29cuVK28stX748+nr77bd3NCYAAAAAAADAKyQLK9h9992jrzdt2qQVK1bYWm7hwoXR13vuuafjcQEAAAAAAABeIFlYwQEHHKCcnJzo9PTp06tdZuPGjVqwYEF0unnz5q7EBgAAAAAAALiNZGEFdevW1QEHHBCdHjt2bLXLjBs3LtpxZF5entq1a+dafAAAAAAAAICbSBZWctJJJ0Vff/jhh9q8eXPS+d9+++3o6w4dOqh+/fquxQYAAAAAAAC4iWRhJeeee6622WYbSdKKFSvUq1evhPMOHz5cP/zwQ3T6iiuucD0+AAAAAAAAwC2+TRZ27NhRzZo1U7NmzdSxY0fP1rv99tvr2muvjU6PGDFCd911V8zoyFu2bNGAAQPUo0eP6HtHHXWUjjrqKM/iBAAAAAAAAJyWbzoAP+rcubOmTJmi7777TpL08ccf64svvlCzZs1Us2ZN/fnnn1q/fn10/l133VWPP/64oWgBAAAAAAAAZ/i2ZqFJ+fn5euaZZ3TeeedFR0cuKirS1KlTNWHChJhEYdu2bfXWW2+pYcOGpsIFAAAAAAAAHEHNwgRq1qypRx99VBdeeKHef/99jRs3TkuXLlVhYaEaNmyo1q1b6/TTT9eJJ56o3FxyrgAAAAAAAAg+T5KFnTp1UqdOnVJa5ptvvsl4ve3bt9fMmTMzKqN169Zq3bp1xrEAAAAAAAAAfkeVOAAAAAAAAACSSBYCAAAAAAAA2IpkIQAAAAAAAABJJAsBAAAAAAAAbEWyEAAAAAAAAIAkkoUAAAAAAAAAtiJZCAAAAAAAAEASyUIAAAAAAAAAW5EsBAAAAAAAACCJZCEAAAAAAACArUgWAgAAAAAAAJBEshAAAAAAAADAViQLAQAAAAAAAEgiWQgAAAAAAABgK5KFAAAAAAAAACSRLAQAAAAAAACwFclCAAAAAEBwrV4trV9vOgoACA2ShQAAAACA4CktlW6+WWrYUGrUSHr2WdMRAUAokCwEAAAAAATPTz9Jzz9vvS4qku68U1qzxmhIABAGJAsBAAAAAMFz662x00VF0sCBZmIBgBAhWQgAAAA4afp06cMPpUWLTEcChNvKlVXf27TJ+zgAIGRIFgIAAABOeecdqU0b6ayzpFatpF9+MR0RAABASkgWAgAAAE65916rKaRk9Z32+ONGwwEAAEgVyUIAAADAKXPmxE6PGGEmDgDJ/fOP9N//SjfdVPW4BYAsl286AAAAAAAAPFNcLB16aHm/om++KS1cKNWvbzYuAPAJahYCAAAAAMIhEql+nuHDYwcgWrdOeu4592ICgIAhWQgAAAAACJ6cnPSW++67qu99+GFGoQBAmJAsBAAAAAAAACCJZCEAAAAAIIjsNDkGAKSMZCEAAAAAIBzSbZoMuKm0VHrySenss6WHH7YG2QF8jNGQAQAAAAAA3NKvn9Sli/V65Ehp0yapd2+zMQFJULMQAAAAABAONE2GH5UlCsv06WMmDsAmkoUAAAAAgOChyTEAuIJkIQAAgEmrV0tLllAbBgAAAL5AshAAAMCUl16SdtpJ2mUX6ZJLpMJC0xEBQPjxcAYAkiJZCAAAYMKmTdKdd5YnCIcOlUaNMhsTAGQrmjQDQBTJQgAAABNGjJA2box974orzMQCAAAAbEWyEAAAwISCgqrvrVnjeRgAAABARSQLAQAAAAAAAEgiWQgAAAAAAABgK5KFAAAAAAAAACSRLAQAAAAAAACwFclCAHDL339LEyZImzebjgQAAAAAAFtIFgKAG4YOlfbZRzr4YKldO2nRItMRAQiCSMR0BAAQbJxHASBjJAsBwGmRiPTAA9KWLdb01KnSa68ZDQmAD+XkmI4AAIKN8ygAuIJkIQA4bd066a+/Yt/r3t1MLAAAAAD8adMm6fHHpQcfpCUSfCXfdAAAAAAAAKSMJscIskhE6thR+vlna/q556RZs6RGjczGBYiahQDgPJrEAAAAmMF1GIJi3LjyRKEkrVolPfOMuXiACkgWAoDTuEgFAAAAkMx331V978UXPQ8DiIdkIQAAAAAgHGiaDAAZI1kIAE6jZiEAwAmLF0udOkkHHyw98YRUWmo6IsBfuOYCAFcwwAkAAADgR5dfLn3zjfV6wgRpt92kiy82GxMAAAg9ahYCAAAAfrN+fXmisMxll5mJBQDgPJrMw8dIFgKA02gSA5OefVaqX1/617+k114zHQ2AdG3ZUvU9miEDziBJA7/iPgI+QbIQAJzGjzxMmTNHuvVWq0bSmjXSNddIy5ebjgoAAP/j+g0AokgWAgAQFj16xE6Xlkp9+5qJBQAAAEAgkSwEACAsFi2q+t7Spd7HAQAAgORoDg8fI1kIAAAAAABgGs3h4RMkCwEAAPyCWgYAAAAwjGQhAACACdQeQDLsHwAAwBCShQAAAACcF4lIr78u3XijNGgQNWcBoDqcJ+ET+aYDAAAAABBCzz4r3Xab9XrAAGnVKumuu8zGhPAj2QIAGaNmIQA4jYtUAADKE4Vl7r7bTBwIL5rrI2zYp+ETJAsBAAAAAAAASCJZCAAAAAAIIlpzAIArSBYCABBm3EgBALIJzTgBIGMkCwEACAtukAAAAIKBB7rwMZKFAOA0fvgBAADM4DoMQcaDX/gEyUIAAAAAQPCQWAGkwkJp4UJp/XrTkSBESBYCAAAEQSQiDRggXXWV9Pzz1J7JVqWlpiPwt99/l/73P+nrr01HAgDuW7RIOvxwqWlTae+9pe+/Nx0RQoJkIQAAsKxcKX31lfTnn6YjQTxPPindeKM0eLB0883S44+bjggmfP656Qj866uvpHbtpP/+Vzr+eOnZZ01HBACJOfHQ74UXpAkTrNfLl0v33595mYBIFgIAAEn64w+pVSvphBOkli2lt982HREq69Ildvree83EAbOuucZ0BP7VpYtUVFQ+feut5mKBv1EzG36VatP6xx6LnR4zxrlYkNVIFgJAJgoKpG++kSZNqn7en35yPx5kt0xufp59VlqyxHpdWCg9+KAzMQF29e4tvfkmN/FlEt0w/vOPt3EEycSJpiNAkNH/IQBEkSwEgHStXi0ddph03HHSgQdKPXta7ye60T3qKG7y4D27Nz8DBsROz57tfCyIxY1prPvuky67TLrzTtORAABgBg/M4BMkCwEgXe++a3WkXqZXL2nDhsTzFxdXbSoAAIjVv79VuxUAgDDjoSF8jGQhAKTr+utjp0tLqx998dtv3YsHiIcn1AiitWtNRwAAgLu4RoOPkSwEACAseEINhAc3kQDgjDVrpL/+svoa9zuu5eATJAsBwEtcAAAAAADeGDVK2ntvaZ99pPbtpYULTUdk36hR0t13Sy+/zAMkeC7fdAAAkFVIFgIA7OD3AgAy98AD0qpV1utJk6QXX5QeecRsTHaMHCmdfXb59Jw59H0OT1GzEACcxpM/AMgM51EA6eL8gYp++SV2+tFHzcSRqptvjp3u3dtMHMha1CwEAC9RUwSwBgL65x/p5JOlRo1MRwMACKp0r6tIKPrH339Lw4ZJjRtLl14q5WZRfaZk++Hff3sXBxAHyUIA8BLJQmS7e+6RnnzSet2kifTTT9Juu5mNCQAAeG/BAqlt2/Jmwl98Ib3xhtmYTONeAT6RRWl7AABg1Pr15YlCyXpq/sIL5uKBf3GzBMCOdGsIco7xh6eeKk8UStKbb1otDwAYR7IQAIBsUFIi9esn3XCD9OGHZmKYPLnqe/TBAwBwEonA4Hj66arvTZzofRwAqqAZMgA4KRKhHxz4S9n+ePvt0rPPWq9fekkaMUI65xxjYQFJcR4l4QEAYcdvHXyMmoUA4CVu/uCmZPtXWaKwzA03uBsLAAAmkIBBkHGvAJ+gZiEApKq0VJo2Lf7fqvuB5wIAfrF8uekIAAAAUBHJbvgENQsBIBUbNkgnnii1apXe8hMmSC1aSAMHcjEAAACQCR7CIsji7b8LF3ofBxAHyUIASMVHH0lff51ZGdOmSddfL40b50xMQHXWrzcdgYWbulhsDyTDAyUAAGAIyUIASMUllzhX1q23OlcWIMVPLgwdKu28s/exAAAAIDEeCsHHSBYCgNPs/vCPH+9uHIAkFRdLGzeajgIIr8mTpZNOko4+Who1yrlyqXkKSJLyV61S3tq1zhZKkgYAkmKAEwAAACAdhYXSMcdIq1db0yedZDQcIFRKS5V7001qM3CgInl5+vumm6Snnoqdx8mkHwn67LVpk/VgtVEjKdeF+lQFBc6XCbiMmoUA4KQRI6RzzjEdBeBP3IghbN5+uzxRKFFbCXDSL78od+BASVJOSYmaPP+8tGKF4aAQOl99Je2+u7TDDtLxx0srVzpbfiQinXCCs2UCHiBZCABOev116bvvTEcB+BOJFITNjBmmIwDC67bbYiZzSkqU88ILsfPwEAqZuvPO8iT0t99Kr73mbPm//CL98EP8v3FdBB8jWQgAAAB/4QYKQJx+CnO2bDEQCEJr/XppypTY9+6+29l1fPyxs+UBHiFZCABAWFDDAgAAwJ7SUtMRAL5FshAAAADwG5L/CIJFi6xmnPfcIy1dajoahAHnPsAXGA0ZAAB4gxsAe0pKpC1bpNq1pbw809GYwb4C+N+mTVLbtuX9vb39tjR3rlSjhtm4EGx0QwH4AjULAQAA/OTAA6W6daVDDpH++st0NGYE5Wbxn39MRwCY8/LLsaMT//23NHSouXjKBOX8AbCvwsdIFgIAAPjJ1KnW/7//LvXubTQUVMPpUTOBIBk5sup7X37pbQzUQobfkRBEQJEsBAAA8KtXXjEdAUzhBhOoHscJgiybk91ff211Y9CypfT++6ajQRz0WQgAALyRzRfFsJoorlwpNW9uOhIAYcZvDeBv69dLp50mFRRY0506SQsXSrvuajYuxKBmIQAAANw1eLC0115SmzbSEUeYjgZAUM2YYToCAJl6/vnyRGGZXr3MxIKESBYCAABv0FwsVrbUfiktle67TyostKZ/+81sPEGRbP946inv4gBMiXMM5H74oTR2rIFgABeYuC5atkx68EHpoYekVau8X78kzZ5d9b0//vA+DiRFshAAAADumT1bWrzYdBSp+eADqWNH6dxzpXnzTEdTVa9e5clXIKwSJVIefDC95YBst2WL1U/gww9LPXtKhxwiFRebjgo+RbIQAICwCFtNtZISq6nK/fdbIwMjmIJ24z5hgnTOOdK330ojRkgnneS/z7B2LbWrwiISkX75RRo/3n/7WZn33pNatLC6EfjqK9PRWAMjlAnb7x7gpiFDYh/ezZ0rvfuuuXjgayQLAQAIC7/eaJZJ9abu2mulm2+WHntMat/eupkG3HbXXbHTs2ZJ48aZiSUZkiTBF4lI551nnd8OOUS66irTEVW1aJEV47Rp0uTJ0umnW4MTAGHg9+smp73zTtX3PvrI+zgQCCQLAQCAcyZPlp54wnpSnclF+Pr10muvlU8XFkoPPJBxeJKsGH//PftuEmDPd99VfW/BAs/DQBb47Ter9mqZ11+Xpk83F088PXvGThcUWDW+AWSO6xD4GMlCAADgjLFjpXbtpK5dpfPPr5rcW7TIfln//FP1vc8/zyw+yaqt2KaN1WfPxRdzoe5XfC/IBt26VX3voYc8DyOpqVOrvjdnjvdxOI1zjH9RaxrwBZKFAADAGfffb9U6KfPYY7E3ZHfc4X1MFc2YIb3ySvn0sGFW/3TZIhKRBgyQjjpKuvRSa0RE+FNxsdS/f/J5SHaEU7xmgkFXWiqNGWP1zej0futkeSSpACCKZCEAANnK6Zu2eM03S0vLX6dSs9ANjz5a9b177/U+DlNGjpRuvFH64QfprbesmpVe4AY8dbfeao14jHBLN2G/cKF05JFSjRrW/wsXOhuXk0pLrX4OjzzS6pvxP/8xHRFQzovfJz892PFTLPA9koUAAGSr6kYYDttFZcXEZbL3wuqaa2Knv/lGWr3aTCzV8VuC0ctjoawGKMJv8+b0luvVy6qpV1xs/f/II+nHEIlIgwZJJ58sXX+9tGZN+mVJ1oOIisaMkT77rHx68GBr0CCn+O1cAfjBTTdZx3XYruPgKZKFAABkq0xvCoMm3k1lNl1Ir1pV9b0NG7yPA86JRKTly6WNG01HgupMmCAdeqi0555Sv36ZPah4+eXY6ZdeSr+skSOlq6+WvvhCGjjQ6qIgE6WlVpllunSpOk+/fpmtA+GWTb/LbnnhBeu4fuqp2Pf9nFzne/cdkoUAACA7+PkiOczSuQHgpqF669dbzTt32EFq0kT66CPTESGRSEQ691xr9ON586S777a6bfDDfn7ttbHTn36a+UOE667LbPkynLOBzNx9t+kI4uPYDgSShQAAIHv54WYdSMfQoVZiR5LWrpVuu4392a9++slKElZ03XX+uGFeubLqe+k2jy6zfHlmyzuhoED6/HNr2wPwF36rAoFkIQAAYeGHG8/K/BSTn2LJJmx3d1TuG27ePOnPP9Mrq7SUmzc3xUvIzZnj7LFx9tmZJ/nCYv166fDDpVNOkTp0kP77X9MRwQlr1kiTJ/u3r91E+A20h+3kOyQLAQDmRSJSYaFUUmI6ElSUDcmDbPiMyWT757fL6wFO0pXqOXTLFmvgm7w8aaedpFGj0l83zBo5UurY0XQUzolEpJkz01v2vfekiRPLp//3P2npUmfighm//iodcIDUpo31/6+/mo7IPn5nEVAkCwEAZq1eLZ1xhlSrltXxO02Gwmf0aKlv39SWceMJM0+tgVgffCC9+qr1etkyq2ksN7bBNW6c6Qic8+239uaLd17/+++q733wQUbhwLC+faUlS6zX//wjPfGEM+WaPt+ZXj+QBMlCAIBZr74qffKJ9XrhQumOO8zGA2e9/bZ0zDHxR8T0A5MX6iQvYdrFF8dOz58fWyMLlo0braasp5wiPfccN/heuOEGe/PxXfjL559LTz8tTZnibLnDh8dOv/uus+UHxe+/W6Of//yz6UiQBfJNBwAAyHKVR2r7+WepqMhMLHDerbf6ZzTceMk5bjSBWJdcInXtKl11FQntMp07S2+8Yb3+/HNp222t7ZMNTJ0jZ882s15JWrRImj5datZMatrUXBxB07dv+YPBWrWkL76Qjj7abExh066ddY2cmysNGWKdrwGXULMQAAC4x08dkZMsrMqLzx+GhJOXn8H0PjlzpnT11dKAAWbj8JOyRGGZ//zHTBxesbu/25nP9P6cqtGjpZYtpRNPtP7/6ivTEQVHxRYEBQXSvfeaiyWsyh6ml5ZKt99uNBSEH8lCAEBqioqk/v2ti8A//jAdDdwUtJs8INs5eczedJO0YYNz5aGqICTSk8UYxt+I3r2ltWut1+vXS48+ajaeIEu3D+ogHBdOyeQYWr7c2/Uh65AsBACk5pJLrH4F+/SRDjmEhGGQZdMFOVJTUmLdJO+1l9ShQ2bHeRhuTsLwGdLRpo00Y4bZGCIR6ZdfrMRDtn4PQRa035nPP4+d/u47I2EgRDhvIaBIFgIA7Fu6NLZT6S1bpJ49zcWDWFyQJkczZPs+/lh64AFp7lwrSVN5IAy38b34w5w50rPPmo3h8sul9u2tpPU55wRz30gUs18/S8W4/BpjGSebTKOq5culL7+U/vzTdCRwgp+PA7+fa7IQyUIAgH3xOhyvPEIdgiPbLsxIFlaV6Mbhiitip6dM4WYxWz33nLl1T5smvflm+fTIkYwCGhTPP2/1q4bgmjxZatVKOukkq//GYcNMR4Sw8HPSElEkCwEACAsuvpJj+1SVKFm6bp299+xIZ7tn83eV7Qnsinr3rvre/fd7H0emgrw/pxv7zTdbtZMRXP37Wy1KJKmwUOre3Wg4rvDi2Azy8Y+sRrIQAOA/3Cz7g8nvgYtrAGEX9vNcvGQvgmPQoNhpapcHn1+ur/0SB5IiWQgAALJX0C9Yd9hB6tXLGpDED37+2erfqrDQdCTOCvp+Avf8/bd0yinSnntaI0hv2mR/Wb8mCyvG5fd9P934/P65shnfjbf8ch7ySxyIIlkIAACyQxj7LFy+XOrRQ/rmG/fXVd2F/J13SocdZvVv1aGDtGFD+usK+veC7HHrrdYIuvPmSS+8YPXVZ1c27OdB+owkK+AGvx8Dfo8PxpAsBAAA2SHMN4JXX53eck7dJCxfLv3f/5VPjx8vvf++M2VnG27ckvPb9qm8n99zj5k4ypSUWANRvPqqtH595uW5cd50sswwn9fhPr+dT9zG8YIUkCwEAADxZcNFdFg+46JFzpU1bVrqy4wYUfW9a6+1/ufmBOkK+77jxufr1Em66CLpmmukgw7KrIZvmDz9tLRwoekogFhhuQZBKJEsBADY59WNW9hvEGFGGJshO624WDr2WNNRAOHi5Xnmww/LX8+eLb3xRmblJYs93d9qE+fdadOkNm2kv/7yft3IzNy5piMAshLJQgAAYFa8wTncuJn0WxLa6Xjq1ZOeeCKzbff++9KyZc7FJIUjIRuUzxCUOOGdhx92r2w7+5ufzrurV0t9+5qOAql69VXTEYQHvxFIAclCAACylV9u4m6+2XQEzlixwqoBUVpqZv0bNkhdu0pTp6ZfxqxZzsWDWKWl3Kg5IUzb0C/n4GSCEGMqXnzRdASoTtj2uTCds9zEdvIdkoUAECbffSc99pj0xRemI8kMFwzZ5cUXreavFXl1s+DUvjZ4sLTbbtJee0mnnOLMwALpuusu+/NyrNmT6f545ZVSXp60887S118nn5fvJHwS7T981/4yerTpCAB3xTsXmXjAGbaEcEiRLAQAk5zseHzoUKljR+n++6WTT5YGDnSubASD0xdfXt7IFhW5vw63+iwsKrISdFu2WNNffil98EHm5aZr/nx3yk13/+KmQHr9dev/pUulG25w79jKhm2dDZ/RT/ye0GR/QJD54fgaOtQfccB3SBYCgElDhjhX1k03xf7YX3+9c2UDYeBWsnDsWGnlytj3rrgi83K9wI229/76S5oxw3QUQPr8dN4gyWFGYaE0Zow0fbrpSPzPL8fLO+9IX30V/29jx3obCwKBZCEAmNSnj3NlrV7tXFmJ+OWCB/CTyk2okTm/JQCcjqew0NnyEExB/U1N5Xjw27GMzK1ZIx15pPWvRQupd29318c+lLkVK6RLLkn898ce8y4Wie80IEgWAgDs48c9XPz0ffopllT5LXZu5INpxgzp7belp55Kv4xs+D6z4TM6KZ2E5KOPlo9S70ZCM6hJUljef1/69VfrdSRi7S+bNnkfx7HHSjNner/eIHryyfJj2q84L/hOvukAAAAAPOFWM+QwSXaxng0X8suWmVnvF19IZ59d3u9lUJWWSu++K61aJZ13XublZcM+50f9+1uJmDPP5ByJqq6+OnZ648bEzVvd9N130rnnSlOnJp7HD/tvshi8Ose51ZcxQo2ahQAAID4vL7K9uGB2K1mYrIy1a6W//zYz2mA6kn2WdP+WzndrIkk0bZrUunXivxcWSg89JF1wgfTyy5ntO5U/X/fuwU8UStaozxdeKN14Y/JtmW38kLBI1eWXJ/4bSVxUZmqf+OMP69wdVEE8NyBrkCwEAPgPF0/pYbsl53XNwg8+kJo2lXbdVTrhBG/6FfWjoOyX/ftboxUncuedUs+e0vDh0nXXSYMGObfusiZ9mRowwNz2/vtv6Y03yqeXLDETR5B4kWBJd39Yt076/vv4fbJmuo85uY+SuAy/6r7jCy6w9lcnjR5ddeAyIMuQLAQAk7jIBcLrjjvKb2C++cbqj84LbiWLvGyibCLhNXBg8r8/91zs9DXXpL8utz7fs89K/fq5U3Z1fvzRm/UEJfnsF6tXS7//bjUNT9Uxx0jjxyf+u53jnuscJJLoNzHVY/yPP6Qbbsg8noqOPlpq1UqaNMnZcv3q00+r/w1E1iFZCADwH24uvOGn7Vz55iAMnerPmxc7ffPN3q7fDhIv9gRpO91zj+kI4CebN0tt20r77y+NG+ds2UE6LuAvc+cmH523Ijv72dChmcUTz5Il0jPPpL7c339LV10lderk3UMUJ3TubK7fXin2e16yxNqOMIpkIQDAPj8ll+AvK1Y4W55XN6Fu91kIxBPGc6lXx0EQt50fYl62THriCWfK8sPngb+kuk907+5OHE575ZXU5o9ErBq5gwdbo0YffbQ0e3by+f2itFTq29ebdSXbX+67T9plF6sLl1tu8dc2yjIkCwEACAtTTUEXLw7GYAbZcoPrt8/pt3gAt336qXXT/csvyefz+th4/31nyknl5t3tG/10yw9SAuKvv6RZs0xHkbkhQ6QddpC23156803T0bjj229jk4NlI8QHhcmahZI1anPv3uXTzz2XfLRruCrfqxU9/fTTev7559WkSRN98803rqxjyZIlGjp0qH788UfNnz9fW7ZsUePGjbXXXnvp1FNP1amnnqptttnGVlmvvPKKnkjx6VteXp6mBXk0JgAA0vHcc5kPZkBCyR+87JfQS3//bfXd1ry5lO/Z5W92CVLyxW2nnWb9n58vffRR4vmydZsF+VzitdtuK28Ke9VV0quvmt1+996b3nLLllnxl5ZWP2+Q94/p001HEGwVE4VlunWTRo70PhZ4U7Nw8uTJGuhyh5lDhw7VKaecogEDBmjq1Klav369ioqKtHjxYv3444+67777dPbZZ2uSzU5KSfoBAGDTY49lXkY23jS7dUOUybYM4/fw8svSnntandUffXR6o1IH+eY1bIK0jxYXS3fdZTqKcAvzsTl7dmyfea+9Zg1WY1KfPukt98QT9hKFcEdQjpN4/RRu2uR9HJDkQc3ChQsX6qabblJRUZFr63jttdfUu0IWOicnR/vuu68aNGigefPmadnW6rTz5s3TlVdeqTfffFMtWrRIWuaMGTOir1u3bq369etXG0deXl6anwAAALjOrSRDkJIX2aa42KoJU3YdOnas1STsuuvK51mwoPqEDt9x9dzYRkG5wU0mjBUQwvC9BEG8/uO6dpW+/NL7WDLFYBXuKCkxHYGzPv7YzHrHj5eGDZOaNLEGo6MFgiSXk4WzZs3Stddeq+XLl7u2jt9//z2mufChhx6qxx57TE2bNpUkRSIRjRo1Sg8++KBWr16tzZs366abbtLnn3+esElyQUGB5s6dG53u37+/mjRp4tpnAABUwo05vMJNb7iNH1918J3rry9PFkYi0skn03QM7grbb5qTn+eff6yR4/fdV2rUyP5yX3whnXSSc3H4UXFx1feoZZUar4+9VH9LEsW3ZYu95e0mtfx2DvJTPL/+Kh1xRPlDxfHjpddfNxuTT7jWDHnkyJG64IILtHTpUrdWIUnq3bu3SrZm1Fu0aKGXX345miiUrFqGJ554ol577TVtu+22kqR//vlHgwcPTljmzJkzo2XWr1+fRCEAlCGxkr733rP6Hho0yF8XSckEJU7Tsm07vfuu9OCD0tdfm46ketU1e/vtNxKFgCnffivtv790+OFSixbWTbpd110X/nNvjRpV33OxtV7gFRRIAwZI/fun192EE154wZlyglh7NFM//WRmvRVbH0jWQDzr15uJxWccTxYuXbpUXbt2VZcuXbR582ani48xadIk/V6h34bu3burdu3acedt3ry5br755uj04MGDownByio2QW7WrJkzwQIAstegQdJ551l9D119dfp9/jgt7Dda2crN7/XJJ6Xzz5ceflg6/vjyUR6Dui8tWGA6AvfNnCmdfrp01FHJB9sIiqDua/Fk6wO4su+wTx9pzRrr9dKlVpLHroULrVqJYRav1li82oawHHusdOON0h13SG3bShs3eh+DU/0yXn65M+WEgdvnyXgPPk2PCu0TjiYLX3jhBZ188sn64IMPou/ttdde6ty5s5Orifr000+jr/fee2+1bds26fznnXee8reedFetWqVffvkl7nzTKzxhbt68uQORAkACQbtRCNNNmpeuvjp2+r77zMQRJEE7NoKq8jFd3WjI99wT+16FB7GOCvu5xu39+5hjpMmTrRvX446TPvlE+uEH6cwzqUmJzJXtv3b242TzVK499cYbqcXxzTepzR80QapZ6MY5bflyae1a+/NXrJk2f750993SZ585H5eTEm23wkJv4yjDtRcqcDRZ+Morr2hThX4Uzj//fA0fPly77767k6uJ+qnCCeGII46odv7ttttOLVu2jE5/++23ceermCykZiEAAD5SVCRt2BD79L64WHrpJal372DVFLObEFu1SurRw91Y0lX29D2oNxh24w5a8vL7763+3D75pOrAAl27urNOr7ZRUPe1eML0WUwYNSrc2zBIyUInFRVJV14p7bCDtOOO0sCB6ZUzYIBVqzqZoJ3bAQ+5MsBJy5Yt1bVrV7Vr186N4iVJRUVFmjNnTnS6utGNyzRr1izadHnKlClV/h6JRDRz5szoNDULAbhq3TrTESBMUr1pqm5+P15EN2smzZ1rdUb9zjvSLrtIF14ojRhh/f2JJ6RJk6QK/RdHBXU05EMOsT6zXWG+eYZ9//wj/e9/Vd9P8LAcKfrkE6lVK3vzJjom/XiOtaMsbjvxu/0Zg7oN7QjTuTyVz/L11+UDTBQUhLtJaJj3XwSeo8nCdu3aqVOnTjruuOOU4/LJbdGiRSqq8GTFbu3FXXfdNfp6QZzaB/Pnz4/WjszLy9M+++yj0aNH66OPPtLEiRO1bNky1ahRQzvuuKPat2+vc845R61bt87w0wDIWqtWmY4A8IdDDpFee02q7kFjWdJszBirD8jOncsThZLV/9VTT9nv+8rkzZjddaeSKJQyu/lw48YlTDe8QbNwoXfryrab3tNPl+rXNx1FMHFO8FZpqbR4sVS3rtSggeloqvf006YjCB+/HXN+iwdxOZosfP75550sLqnly5fHTDdu3NjWchXnW7lypUpLS5WbW94au2IT5Dp16ujyyy+vUgOxoKBAGzZs0F9//aW33npLZ5xxhnr16qU6deqk81EAAJVlw03npk0Svxvlpk+Xzj5bWrRIys21tw/06WMlGSt7+mn7yUIn9rUg769Bjt0J3LAEj5/22UxbB6Sz/z3+eGbrdIJfjhu/xOGlVPf/tWutQalGjbKShWUDrjktqN9FUOOGu9gvJLnUDNkLayt1dlrf5pO9evXqRV9HIhGtW7dODSo8Yak4EvL69eujicJ//etfatq0qWrUqKEFCxZoWYXq0B999JFmz56tIUOGxJRvQnEIRsiqPEp1olGrARPcOGk6ddzGi83xc0JJiePriVde2M4D8T5jZJ99VPL221ZzWofkRiIpdUZcUlKiyNbvLuH3auO7dey4WLJEJZ9+qsjJJ0vFxbbKLSkpUV6c9+Ptk/G2TyQSUUmGx0lOghjiqRhXKsulIiLF/Ux2vuOc0tKEMZXMnp1wW8f7LNE4bH6XMWUWFaV+Hli7VjlDhkg1aypy5ZVSrVoJ1132Pdj9DhLtZ+mqvN3duiCPRCKqfMtTcf+wu14753i72zKV34tUj1m3fgcz/X5KiovjbpvIjBlVvh8pSczTpyu/W7eMYqlcdjqfrbS0VKXFxbZ+c+Ltg2XLJ/u+7MRVWlKiHCnuNkymuLhYuaWltn8vTd1fxYsx0fk9kZy33lLeqFHWxIYNitxxh0rOPNN6KFeNVPaN6n6LU9neXoh+pzZ+n1L5/lM9nkoTbJeIUt+vEym2eaxK1jkp02siO1LZH0ojEVfvCzK5/g27wCYLCwoKYqZr165ta7kalTqKrVzO9EojxO2xxx7q1q2bjjrqKOXllZ8CJ0yYoD59+mjSpEnR5e68804NTLcDVgeUlpZG4wmTqVOnmg4BiDrYhTKdOm7jxeb0OWHb2bMVryfXTNYTL+4//vjDutHfKujngXifMWfJEm2+6y7NevFFx9az77p1SqVR3OzZs7Vh6wOzeDFOnjJFERu/r04eFwvGj9eqnXdWrYUL1bL62TVv3jztHef9ePvkbitWaIdK723evFnTMzxO6s+Zo31tzlsxroYLFmjPjNYcX0FBgf6I85nifU8zZsxQwcaN0emdlixRkwTl5p17btz3J02apO0XLVLlDmEikYgmTZqkmosWyWbPblHTpk1T0cqVMe8lOw/kbNmiFhdeqFpbB/PY8OKLmvnKK9Wes7abP1/72Ign8t//2g3dlpmzZmlLhUF63PhtkaSCLVtU+QiueL1od712zvEN58+3tT+n8nux++rV2r7Sexs2btSsBGW49TuY6fczd+7cuPtZTsWBmipIFPPed96pBhnGUrnsdD7byhUrtGDSJO27YUO1vzkbN21S3crLr1ypBZMmJf2+7MS1avVq1S0oqLKPV2fSpElx961EVlx7rTa2aKE1HTumuKbMNFm2TDtVem9LQYGmpbBPH3zTTTHTOYsWaeb772vLPtWf+VLZN3LPOivu+2Xf556rV6thCuW5rSyuvPXrdaDNee1I9XhatnRple9YkiKlpY4lCydNmmR7++f8/LMm/f676zXrmq5aJXvtQqUNGzboz0q//07eF8T7zqZPn67C9esdW0dQ+SnBn5LKGf5cG09HJCk/PzY/WjkrPW/evOjrtm3basSIETr22GNjEoWSdNBBB+mNN97QkUceGX1v9OjR+vrrr23FAQBAvfHjja6/WefOqvvbbwn/npOguVONf/7Rrv/3f2ryzDPKW7PGpehc4Kfmiy5K9L3ZWziYTW8affZZNFEoSXUnT1bdiROrXc7utspnMCr4QI0VK0yH4C8ena92GjxYe3fposbDh3uyPrclSlJnVGaW/L5mgzoVWloiuwW2ZmHl5GCpzZNe5SRj5ZqGX3zxhZYtW6ZFixZpzz331LbbbpuwrJo1a6pv3746/vjjtXHrU/nXX39dxx13nK1YAAAwba9u3TT5889tz5+7caMOuPRS5W/tDuRfX33laDw5paVqPGyYthszxtFyE4kENDnmlLB8/sbvvFPlvQbffqvVJ5xgIJrwyd20SY3ffVc5RUVa0amTiv/1r6ozeZUsCGBSIi9sNVQCft5oPGyYtv/445SXa/r441p+/vkuRGRfYJNyAd9n3FL/p59Mh1BFvt8GX2TfMSawycJtttkmZrqgoEA1a9asdrnCwsKY6VoVmrlJUk5OjnbccUftuOOOtuJo2LChTj/9dA0bNkySNH78eG3evLlKfF7Izc1Vq1apNvTxn5KSkpiqxS1btqxSsxMIkzZt2gSn7M2bPVlPixYtNHX27Oh0mM8DTm673DT6za2xZo0OrFAjq6JWrVpJlR6a5Tz1lPIq9BtcK8Gy6dr9ueeUU6n5aTJ77LFH3Pfjbdfc7as2OquzzTYZfwc5KWyDiuvK+eOPjNabSM1atWx/pv2bNZMqNEfL2XnnlNfXpk0b5YwbV+X9nJwcK4409ssD9t9fJbvsYvt6IC9Oc/nGjRurUYKmdmXbJ6dCixIvNdtvP8mDa7ZacbZLbm5uyvv8gTffrJyt/XjvMnKkSqZNq3pumDzZVlmprDs3TlKy7rbbplSGm7+xdu350EMpzZ8o5jwH7i+c2B6NGjXSv9q0UW7dyg2Mq9o2zkBejRo21L8SxJFKfA0bNlSOza6oKmrat2/Ky5TxbH/a2s9cZbVq1844hv3220/y6HOUxRrvWDYpug1ttI5w8zuv8+efcd/Psdlq0o42bdooN4VRsPd56CGVfPWV1Lq1YzFUlsr+ULduXbVs2dLT/MD+Bxwg7elGRzHemTJliu0KdYkENlm43XbbxUxv2LDB1uAiGzZsiL7Oz893ZECSgw46KJosLCoq0uLFi7X33vF6UHJf5WbWYZCXlxfKzwWUcXP/drzsBOU5vZ7KFwBhPg84+rnSfPqaV2nQsDL5+flVv/P33ktrHXalkiiUqu4rZeJu1zgX3zk5OZl/BylcsMasy6V9OqfyeqqLp+K8aexD+fn5cbdBdNum8TnjlZn0PBAn7tzcXOVWd8769deUY3NCutslVfFqIaWyf0SX2ZoolKScxYuV//rr0q23xs5k8zhIad3xjtnc3PIyIhFp2DBp9mzp5JMzX59PpLKfO1Z2CnJzcqxjy0Y8Oekem3bicDChYpcn+9M//0idOklxap2lc/xW5tX5J7ouyXe1w6Jx2dgOJs4hTm6tfJvHanTdq1crv0MHaeFCqXE1PQuuXCm99Zb1UPCyy+zvVykcu7k5Oc7fF3zxhfTLL1L79nH/7OUx4meB3QKVa/6tWLFCO9t4Gr58+fLo64YNG8b9AUvV9pVqKlQeqRkAQsPUxd4//0j9+kklJdLdd0tNm5qJA/4T1CZZ2SAI383jj5tZr1fn0njfgRPrfu21qslCE7p3lx591Hrds6fZWIJizhzpxhulxYulK6/MrCw7+9LPP6e3nF1BOM+kauDAuIlCSeH8vKhqyxZny0v1mCsokPr2lZ54IvE8q1ZZNVTLWle8+66URvN+z736qnTNNaajCITADnCyyy67xPQ3uHDhQlvLLVq0KPo6UdOlVFUeUTlZP4cAABsqXgwXFyvvsMOk/v2lZ56R2raVKozeigqcTkAE+aZk/HipQwepZUtp8GB3P0uQt5NTfFZrJBA2bnT+htArTu7zhYVWDY+//kp92bJEoSRV6pccCVx4ofTll9LUqdI996RXRqbH+4svWjWSMhXWc++DD7pbfli3G5z12WfJ//7SS+WJQkn65BNp+nR3Y3LCDTdUPw/HiKQAJwtr1Khh9bew1XSbO2bF+fbff/+Yv/3yyy967LHHdNddd+n666+33ca7YqIyJydHO+0UbwB0AEA6Gn7xRWyfcKtWWTcacN/mzdKUKdLSpaYjSSzRTetpp1k1M/74Q7rqKun337n4s8ONpB+JxKpuvVWqW1dq2NCq5RAG6RxfK1daSf327aVmzaRnn3VnPSj322/OlZXJd3HJJc7EwPkFmeB8klh126biw5oydge9M3nc8mDJtsAmCyWpfYU25mPHjq12/jVr1mjatGnR6cMOOyzm74sWLdLgwYP18ccf6/vvv4/pRDOZH374Ifp63333rdKfIgCEhoGLqvq//FL1zY8+yqzQ5culLl2k22+XDA1wEAg77GB1cL3TTtLIkdZ7Qbkxq5zgvOOO+PM58XmCfLPh19j9GpdTvvvO+n/zZumWW4yGkpaJE63+qbp3z6x25DvvWLWAJaubiR49pKKi8r8H5XyTbZw4Pr/8MvMy2D8AuIFzi6SAJwtPPPHE6OupU6dWm9x75513VLw1k7zddtupQ4cOMX8/9NBDY/owHD58eLUxTJ06VWPGjIlOn3HGGbZiBwAkMXGi6v/4o/LWr3e+7JISqxZL377S009bzZrXrXN+PSbY7JIjLWef7V7ZXojXbxbcVVhoOoJgSDDKvO+9+ab0yCPStdda06kkkDZtku68U7rpptj3V61ytuYbgueCC6T58+3Nyw19cPBdBU86DwWGDbP6O0QoBDpZ2LZtW7Vo0SI6fe+998aMdlzR9OnT9cILL0SnL7jgAtWuXTtmnt122y2mtuF7772ncePGJVz/8uXLdddddymy9UBq2LChLrroorQ+CwCgXP7RR2vf22/X/pdcoppLljhb+AcfSHPnlk+vWSM9/7yz6zBlxgzTEWSXt96SzjhDuvlm05HECnutvHiy8TPb4cV2efPN1Jt13Xqr9H//5048cJ+biZ/hw6UKFULgAhOJO87R2WHMGOmII5xt6kui2RjfJgs7duyoZs2aqVmzZurYsWPC+bp27RqtDThr1ixdfvnlmlHhZikSiejLL7/UVVddpU2bNkmSGjdurBsSdGzZrVu36DDcJSUl6ty5s958800VVng6Xlpaqq+//loXXnih5lVovtazZ0/Vr18/7c8MAIhVa8kS1ZswwdlCv/mm6nvvvefsOoLG7oXYOeeEr4Zeujcwn3wiXXqpNfKfmzU6Aae5cdNeUpJauZn000jSIfxmzTIdAYB0jR9vXSMh8PJNB5Cp9u3b64477tBTTz0lSZo2bZrOOuss7bPPPmrYsKHmz5+vpRX6Lapdu7b69++vevXqxS2vefPm6t27t7p27arS0lJt3rxZvXr1Ur9+/dSsWTPl5uZq7ty5WllpBK8HH3wwplk0AIQST/fCye7N9wcfuBpGoNgZTS8IwpJ44dwUn1fbJSz7EeB3ThxrHK/ZJ53fgkz2kyeflM46K/3l4QuBTxZK0g033KBtt91W/fr1i9YenD17dpX5dtppJz355JM65JBDkpZ35plnavvtt1e3bt2iicaNGzdqQpzaLTvuuKO6d++uE044wYFPAiArPf+8dPDBVj96AFKT6U1PusmUiiN0w3lO3cySRAye6r6zbP5Os/mzA/CXMCedOddKCkmyUJIuu+wyHX/88XrnnXf0/fffa9GiRdqwYYPq1q2r/fbbT8cff7zOPfdc1a1b11Z5HTp00FdffaWPP/5Y3377raZOnapVq1YpJydHjRo10r777qvjjz9ep5xyirbddluXPx2AULv5Zik3V3r7batjbwDIRCoX8E5dEJu+aUi0/kTvb95s9VcadvE+f7bdBF1xhdSypXTXXVJenuloAPhJtpwPvf6NNn1NEE8kIr37rukoAsWTZGGnTp3UqVOnlJb5Jl6fUtXYaaeddNttt+m2225Ledl4atasmVbsAJCy0lLpjjtIFtpVWmo6gnAJ8sWyU7HPnSt99pm0++7Saac5U2Y2WbTIdARVJds3DjhAqtDvNDLkxxvDMkOGWP8vW2Y1jQsyP29nIJkgX2fAeSbOZTfcIA0c6P16A8y3A5wAQNZZvNh0BMExerTpCMIlW25Ax46N//6UKdKBB1q1fE8/Xbr/fk/DcpyJm7JHH/V+ndVJtl9nS6LQy2Pbq6bjZetJdX39+qUXDxIjAeQ9J46zBQukI4+U8vOt/xmkC/FUt68lO/4TLbt2rVWz32urVpEoTAPJQgAAEH5btkgTJ8b/26OPSuvWlU8/9phUVORNXKZ5kUzyIqFA0sIsJ/ejimXxvSIZ9o/0PPywNGaMNYr5mDHSI4+YjghhV1BgdQnRoIG0447SO++4s57PPpP695cmT459/48/3FlfyJEsBADYx4U5wmjYsKrvZUN/dn6WavIpW2rHpsrLczbfARAMv/0WO/3SS2bigL85eU7/9NPyLiHWr499QJtiTPV+/VU5H3wgbR3YNqpvX+nUU61unQ49VPr++/Tj5X5HEslCAAi3wkLTESAIsvmiyORnd2vdJG0sOTnZvW9L8feF9eudX4+T29luWdm4n/ttf87G7wDhwj6c2OzZUq9e0oABUnFx1b+nsu0uvjj9OCqc95r26aP9brxReeefLx1ySOyD3S5dyl8XFkr33pv+OiGJZCEAhNthh9EXjR1btpiOwKwgXyx7HXtRkbR6tbfrRPqCvG+7KZMaF/FEIt5ta75TVOS3BKofjB5t9b1bVpPLpDPPlG67zZ2HFLAvneOkpETq0UO68UbpkksyW39BQWbLS8pfsUKN33uv/I3p06W33068wE8/pb8yfmckkSwEgHCbOFF6/nnTUbgvEpFefVW66CLrKWiy/ubiXTBNnepebAiPWbOktm2lhg1NR+IcJy6I/To403PPMXJ6IrfdZjoC/1u/XrrmGqlNG9ORIBEShVV9+ql0zDFW37tXXGE6Gumjj6RnnrH+D5uNG63ad9mQCB0+XPrnH6MhbPfjj1XfvOUW6/8+fZIvTPIvLSQLASDsqvsBDYPXXrNu6oYNs56C3nln6mVky4AW8XDDZc9jj9FJdjwDBpiOIP4+XFgoPfCA97H4SaKuKCp3/p4pL2/EvDpf3X+/9RDK6W0FuOm//yUx4oWpU6VWraR995X2379qP5B+4tT+MH269+u0o6DAOl/DcSQLAQD2+fUC9OqrY6effTbxvIk+Q7z+WOB/XiY6Bw/2bl2Z8Po4ffhh58t0aoCT777LOJRAW7TIdARVVVfb0y99Fj7zjLvlp8Ovv8EmzZxpOgJvVbcPzJ7tTRzZrm9fae5c6/Xff1sPE/3qjDOsJsVhNXWq860IHGg2HQYkCwEAACqjtiXgjpEjTUeAsFi+3HQE4XHaadLuu1utNDZsMB2N/73+euz0+++bicOOTz6RxoxxvtwwXycNGmQ6Al8gWQgAsC/MFwYAgPSkMsBJz56Zrytb8Rsci8Szcz79VFqwwGp6/3//ZzoaOM2JWuaVB0xMdi4uG1xk+XLp9NMzX7fXHn/cdAS+QLIQQLAVFkpvvim98QZVxpGZbL4BRVVB3h8ySSiQjIDbJk2yP2+y/THIx2g6Fi6Ufv3VdBSxOF94z4v9/sEH3V8HgufKK1M7fy9aZPWb/skn7sUUiXAechHJQgDBVVpqjfh22WXS5ZdLRxwR7j45/K6kRHriCemss6w+zOgDEDAjk5tJN25E3b6QX7VKmjLF3XWgetmWvPPS6NFS06amowCQ7Xr3tj9vnz7SU0+5F4sdd90l3Xhj9vVt6hCShQCC69tvy6u5S9L48e4+vUJyfftKXbtKH35oPZXu0cN0RKlxOqERiVhNeXbe2dlyEYsERWZWry5/PWKEf0YUTOV7vfhi9+IATOjfX9pzT+ngg6VffpGOPtp0RPALalHBpGHD7M+7caMz60y2z1d3PDz1lDRggHT99c7EkmVIFgIIrpdfrvrec895Hwcs994bO+3nkeG88Msv0p13Sv/8k3y+qVOlNWs8CQlZqKhI2rQpcfLt8MOtWsEDB0rnnuttbE5YvVr68kvTUcDJpH11N39l63LzQcG777pXth133CHNmydNmCC1b282FiDMSL4CCZEsBADADbfcYm++Vq2kAw6Qfvst9XVs3iy9/bb0wQdWs3ykLtGNQhhuIEaNkpo0kbbdVjrvvMTzffSRu0/d3UzqrFvnXtlITVhq+fbpI51/vukogiEs33mQsM0RFOyrgZdvOgAAQICEIYGS6DM4fVEzdar9eZcssfp7fOcd+8ts3iwdeqj0xx/W9NlnpxReaPTpYzoC/ykbmfbmm62RCCWriXEiX3zhTVwIr2HDpD//9GZdZefwGTPcKb9yLXkA4UVCK9j4/lxFshAAAKctWiRt2ZLaMsOHx3+/pMTq+/CPP6QTTpAuucR6f8SI8kShZNUuzEbjx5uOwJ969/YueVOddB4ybL0ByNmyRbv166eGn32m3KZNrZHvDz3U4QCRseuuc66snByra4Zkzed/+EHq2NG5dQLITitXmo4gvJyuYBDmliA+RbIQAADJ2YuNu+5yrqyuXaV+/azXr71mjTJ9xRXODiDDhZYZbm33BQv8M1BJhhqOGqXG779vTcyaZTWXnjixfIYbbjATGNzz5pvSSy9ZycJ4IhGpe3frXJiJ4mLp0Ueljz+W9ttP+t//pEaNMisTcBs1qZx10UWmIwgvp/dV9n3P0WchgHAJ8w/J7NlWk8vBg+mfzu9SaU5cnbJEYZn//Mf6P9fBn/DK68gmv/5qOgIksUfPnrFv/P671WxfktaupQl1GPXvnzhRWOb77zNfz8svSw89ZPUX+9ZbJJ4RHFu2SFOmVD+AWib8UjPdTatX0zoh6HjY7SpqFgIIrmz6gZg+XWrXTtqwwZr+4Yf4o0GjeokSykFJNJclilevdq7MKVOcKwvBE5R9v0xhofX/vHlGw0DA3Xhj7PR775mJA0jFvHnW9eCUKdbgVa+/LnXq5Px6OnRwvky/YYCs9HTpIi1eLG3caDoSuIyahQAQBI8+Wp4olKRXXrH6dEJ2GjpUWrHCdBSAGZGI1Y/ngQeajgQAvBWJlD/g27hReuABd9bDNQYS6dvX6i7CD4L2sDNgSBYCQBDE+1GeO9f7OOCupUulIUOkb75JPt8993gTD+CEDAY4iWv8eOnOO9OPB4AzsqmFh19Nn576gGpAkJSdZxjgxHM0QwYAQCq/2Cgutpr61qyZXjmzZ6cfQ+vW0rJl1uvu3aVeveLPt2hR+usAKps82XQEqfnvf01HAJOoSQLEIlmCbMZvgmuoWQggXPjBQCaGDZMaNpRq1bISEumMttm7d/rrL0sUStLDD1NbAN746Sd3y3f6vPz3386Wh2Dhdx5+8P330sUXS7feKq1aZToaIPw493uOmoUAgosnqZCkkhJnytmyRbruOmn9emv6f/+TzjxTOu641Mp59VVn4pGk+fOdKwsAwmDcONMRINtNmiR17Fg+4Nivv7JfAibk5HA/6CJqFgIAgq1//9TmT3RRMWJEeaKwzDXXpBUSQoCLTwBILltr+tx7b3miUJJ+/lmaNs1cPADgApKFAILL64tUp2qwJbN5s9Szp9S5szRmjLNlb9woTZggLV7sbLmm3X23M+VUHG26jOnmjtl6I4Zweeut1Jdh3wfgV599VvW9Fi2kBQu8jwXwq8GD3V8H1wquIlkIIFzcrA30ww/ulV3mooukhx6SXnxROvpoq2mLE+bOlQ4+2Pq3777S++87U26ZtWudLQ9AOPz8s3TffaajAAD33XuvmfWSMEE2YDRkz5EsBBAubl4wbdzoXtllPvyw/HVJidSlizPlDhwozZxpvd60SerRI71yEv0gH3hg4mUiEasfv+OOk668UlqxIr11uy3evpPqBYjTn+2335wtD/Zx8+UMRi4GkC3SqUUNIDNcr7mGAU4ABFc2PEn67rvEf0vl81ceoXfKlLTCSWjevMR/++ST2L7/Fi2Svv7a2fV7rbhY+uILqUYN6YQTyr+La691dj2XX+5sefAXL7o2MO3nn01HAADhlg3Xw24gyRQMZfs335fnSBYCgF1+uxgLwo9mkyZV+0j85htp5UqpUSMzMSVid3sWF0vHHiv9+KM1fc45Vr+JkyZJI0e6Fx/Cp2wfAkw46CDTESCo/HY9BCA7MRqyq0gWAgDck2gwlXXr/JcsjCfeBcioUbFJnvffd74PSJjnxcXngAHuryOogvAwJOgmTjQdgRmbNiXuW+7tt72NJag4PgH4AeciV9FnIQAguyS6sLB7wfHQQ46FAgDw2H33Sf/7X/y/3Xmnt7EEHTV6EGTsv8HCACeeo2YhgHCxm/BZtkz66COpXj3p3HOlvDx34wIAAOY9/XTiv/3zj3dxAN9/L911l9W9ydFHS3vtJR11lOmogGChdqFrSBYCCK50nyQtWyYdeqi0YIE1ff750jvvuLc+AACAsOB6KHMbNkgnnyxt2WJNT5pk/V+jRuplkSwB4AKaIQPIPh9+WJ4olKThw6UJE8zFk82GDPF+ndzkAACQPpJTmXvxxfJEYUVFRd7HAgQZ1/WuIVkIIPu8+WbV9z75xPs4IN1wg+kIynHzg4q4+DSL4xHwtw0bpK+/Nh1FcP35p+kIstvcudk7yBNgE82QAWSf2bNNR+CMICczyhIBmzebjaOieMmJIG9jZIZkFQAk9p//mI4g2Jy8vuBaJXX77COVlpqOAvA1ahYCgGQvMcDFWLjZTQ6xHwAAsllxsfTuu6ajCDauJcwiURgcHCvGkCwEEC6JEj7PPCNtv720667SokX2yioulgoK/FvDKBKRCgule++V/v3v9JY3JSg//PHi9Ov+gGB4/XXTEQBAZgoKTEfgX8XF9uYLynUQgKxFshBA+E2fLt12m7RypfT33/HnqZwA+vFHaYcdpNq1rSTjihXSSy+5H2uqeveW+vSx4oV7ioqkv/6y9iEgEzTdA4DweuGF8tc//ii9+mr87m9IFgLwOfosBBAu8S6+unZNvZwrrpBWr7Zer1olNW6cWVxueeghb9cX5ovbRDUGV6yQzjhDGjdOqlvX6tQdSBdNn+yhBi/gX2G+FsjUbbdJF1wgNW1qtf6QpG23lb76SjrssPL5nNyGnC+9s3mz9M47pqNAmUiE85GLqFkIIPz++iu1+TdssEZJ84vHHnOnXC4u7RkyxEoUSiQKs8mYMVZt4j/+cL7skhLnywQAr3Bzntwhh5QnCiVp40apZ0/rdSRiv6ky/KWwUGrXTrrqKtORAJ4gWQgAlfntRv7++01HkN0ef9x0BDDhrLOkG26wbvq++cbZsq+5xtnyAMBLPGxMLl7f2J9/Lm3aJF1+uVSjhvTss97HhcyMGCFNnWo6ClTEgwtXkSwEEC7pXsBy4estE9t7wwbpnnuk556L//dEMS1d6l5M8L8tW5xP2A8eLP3+u7NlAgD8bfhw6c03nS+XhIk3+vUzHQEq4/7NVfRZCCC4sv3iyO3P/9ln0rx50kknSXvt5e66vHDRRdInnyT+e7wLji1b3IsHwVHWDN1Jbds6X2aYzJkjNWxoOgqETYsWpiMIhylTTEcQTDRfBRAgJAsBQMrOJ1PJPnOPHlKvXtbrevWk0aOlAw/0JCxXrFyZPFEoZec+APjVaadxkQrnTZtmOoJwoGY0shHXiUbtNHhw/D9ke+URF9EMGQAQq6SkPFEoSevXS48+6uw6nPhhf+UV+/OuWJH5+gAAAPyGJJY/fPyx6QjCKSdHWr1atRcsMB1J1iFZCCD8Ur2ICspFl1txxhvx9913rf/99PTullsYnRgAAADuq+66m2bmrsl5443Ef3zvPe8CyTK08AAQLkFJ9PlB0LfVli3WQBGAF377zXQEAADAa7/+Ku23X/XzrVzpfizZ6LPPlPfZZ4n//tBDnoWSbUgWAgguJ2u5BT1x5hW/bScnaxb67bPBXzp0MB0BAADwWrt20u67S8uXm44E8BTNkAEgW0Ui0iOPSLVqSdttJ735prfrBoKkqMh0BAAAwIT586VNm0xHAXiKZCGA8PNTP3t+8vvvUvfuUmGhtG6ddM011mAmQeJk0pEEJgAAAACQLASAKoKSNMo0CXrHHbHTBQXSyy9nViYAAAC8E5TrVgCBQrIQQPhxERXfggVV31u1KvkyfqulaTeeX3+tfh72EwAAEDR2rnEAIEUkCwFAIlFUUbIRx5ziddLx4Yern4d9AAAABM1tt1n/MwAHAAeRLASAbBUvOfbTT9LFF3sfS7rsJvhmzXI3DgAAABNWrLD+93KgOgChR7IQAKTsrFUW7zN//bX3cfhFNu4DAAAg+KZNq9oXNQBkgGQhkIpIRBo4UNpzT6llS+m770xHBDf4rV++RIKc3HIq9qB8VwAAAG74+2/pkENMRwEgZEgWAqmYMkW6/npp3jzpjz+ks8+WCgtNR+Wu0lLphx+ksWPNJqeWLJHOOUdq3Vrq0UMqLnZvXUFOwmUbO9/VtGnuxwEAAMKvWzfTEcS3ebPpCACEDMlCIBV33RU7vXatNHSomVi8UFoqnX66dNRR0hFHSJdeai6Wa66RPvjAStj26iW99lr8+dJN9PXrZ33ebJItSdHHH7c3X7ZsDwAAkB671xQAEHAkC4FUTJ5c9b0lS7yPwytjx8aOjPv221aNSq+VllYdofe665xtgrpli/Tuu86V5wUTTXCdWuebb3pXK/f11+3NR7IQAAAAAEgWAkji/vurvvfkk97H4VUS5/LLvVmPX5hMjj34oFVjFQAAAADgK/mmAwAA3wh7/5OVpZosHD1aWrnSufX//LNzZTmBmoUAAAAAQLIQAGDT0UebjsBdJAsBAAAAgGbIQNaIRKxBQa6+WnrmmfAO5uFEwoekUXbiewcAAAAAahYCWWPAAOmmm6zXgwZJK1ZIPXuajSlTJgb48JNnnsls+bAnx374Qfr3v01HAQAAAACBQs1CIBVBTq6UJQrL9OqVXjlB3gZh8+qrpiPwt8suk267zXQUAAAAABAoJAuBTIW5dpvfP5vdxCUJzvjCvl0WLEit9mXYtwcAAAAA2ECyEEC4+D3BCf8iWQgAAAAAJAsBhEymCZ+BA6UWLZyJBQAAAACAgGGAEwDB5UYtwuuvd75Mv6ImXSy2BwAAAABQsxDIWJgTDGH5bDRNDq9+/ZwrKyz7OwAAAABkgGQhkAqSTgiTMCTHVqwwHQEAAAAAhArJQiAVYUiupMIvydFM48i27w0AAAAAgDSRLAQy5ZeEGgAAAAAAQIZIFgLwv1RqBlKLEOlasMB0BAAAAABgHMlCAMFFrc7MkFiN9dZbpiMAAAAAAONIFgJAtiJZCAAAAACohGQhgNSQYAIAAAAAILRIFgJIjGa+4UbiFwAAAABQCclCIBUkV/yP7wgAAAAAgLSRLAQyRe07AAAAAAAQEiQLASQWxFp6JG8BAAAAAEgbyUIAyFarV5uOAAAAAADgMyQLgUwFsfadXdTSAwAAAAAgq5AsBFJB8sz/wpy8BQAAAADAZSQLAQQXyVsAAAAAABxFshBIBbXWgonvDQAAAAAAW0gWAvGUlEgzZ0r//FP9vNRuAwAAAAAAIUGyEKhszRrpuOOk5s2lPfaQBg0yHZG/pFNLb/Fi6dhjpdq1pX//W1q40Pm4AAAAAABAxkgWApW9+670/ffW64ICqWtXq6ZhNnKq1uQjj0jffWdtzx9/lHr2dKbceGhyDAAAAABA2kgWApVdd13s9PLl0q+/moklLF54IXb6lVdSWz5RAtBuMnPVqtTWBwAAAABAliJZCNhBbbXgGj7cSvgCAAAAAIBqkSwEkFjQk6SRiHTPPaajAAAAAAAgMEgWAqkIevLMCX4a/bm672PePGn+fE9CAQAAAAAgDEgWIjy+/FJ67TXpn3+8Xa+fkmde8HvCtOL3UVpqLg4AAAAAAAIo33QAgCO6dZMef9x6vcMO0tix0t57O1d+sgSZ35NnmQhiIrTi9xHE+AEAAAAAMIiahQi+TZvKE4WStGyZ1L+/O+si+eQvW7Yk/zvfFwAAAAAAKSFZiOD766+q7z37rLPrIOnkT2+/nfzvfG8AAAAAAKSEZCGAcFmxwnQEAAAAAAAEFslCAOFSVGQ6AgAAAAAAAotkIZCKMA9mYpfftwEDnAAAAAAAkDaShYAdyRJkYU5IBf2zBT1+AAAAAAA8RrIQQHiRLAQAAAAAICUkCwEk5vcmx/EEMWYAAAAAAHyCZCFgBzXUyrEtAAAAAAAIrXzTAQCB0KGDNGqU6Sj8wUTNvVTX+fbb0uzZUqtW7sQDAAAAAEBIkSwE7DrzTNMReM8vtQhnz7Y/79y50iWXuBcLAAAAAAAhRjNkwK7Nm61/YbJ2rekIqjdxotS2rekoAAAAAADICiQLgWx24IHS0qWmo0jukUekggLTUQAAAAAAkBVIFgLZbN486eWXTUeR3IgRpiMAAAAAACBrkCwEst0DD5iOAAAAAAAA+ATJQgCpMTEaMgAAAAAA8ATJQgSfX0bsDSMvtm1xsfTkk9LNN0tffeX++gAAAAAAQEL5pgMAMkZNt2C78cbyfhNfeEH64gvphBPMxgQAAAAAQJaiZiGAxNxOxBYXxw6wEolIt93m7joBAAAAAEBCJAuBTGVbM2gnP29RUdX3ZsxwrnwAAAAAAJASkoUAAAAAAAAAJJEsBJAq+ogEAAAAACC0SBYCSCzbmlgDAAAAAJDlSBYi+EhoAQAAAAAAOIJkIZApmuUCAAAAAICQIFmI4CNZ5x/jxkn/+Y90zz3SunWmowEAAAAAACnKNx0AEHg0g7ZMnSodeaRUUmJNjxsn/fBD4vkjERK9AAAAAAD4DDULAaQmUYLv/vvLE4WS9OOP0syZics55xxp/XpnYwMAAAAAABkhWQggsVRqTX74YdX3Zs9OPP/IkdKwYanHBAAAAAAAXEOyEEBibjcT/u9/3S0fAAAAAACkhGQhgo8+A72VyvamT0IAAAAAAAKFZCEAAAAAAAAASYyGDCBVb74prVgh7bGH9Pjj0nbbmY4IAAAAAAA4hGQhgs90U9cwN4NO9Nm++ML6f8kSa6ASAAAAAAAQCjRDBpC+Dz+UCgpMRwEAAAAAABxCshBAZgoLTUcAAAAAAAAcQrIQyJTpZtAAAAAAAAAOIVkIBMHChdLpp0utWkmPPCKVlJiOyB4SqQAAAAAABAoDnCD4wjzASJkrr5S+/dZ6PXWqNRLxZZcZDQkAAAAAAIQPNQsBv9uwoTxRWObyy71Z9zffeLMeAAAAAADgCyQLgUy5XbPR1GjDP/wglZaaWTcAAAAAADCCZCGA+O6809589EsIAAAAAEBo0Gchgo9klXN+/13q3t3apr/9ZjoaAAAAAADgMZKFACwbNkhHHCFt2mQ6EgAAAAAAYAjJQsDvvBjt+YgjpM2bnU8Uplvr86CDpIkTpX//29l4AAAAAABAUiQLEXxeJNP8LhKRPvhAWrxYOvNMabfdUlt+7FhXwkrbxInW/z/8YDYOAAAAAACyDAOcAGFwxx1Sp07SLbdIbdpIs2aZjggAAAAAAAQQyUIgU6ZrNm7YID39dPn06tXSE094t/6cHGnePO/WBwAAAAAAXONZM+Snn35azz//vJo0aaJvvvnGlXUsWbJEQ4cO1Y8//qj58+dry5Ytaty4sfbaay+deuqpOvXUU7XNNtukVObkyZM1fPhw/frrr1q6dKkikYh23HFHtWjRQmeddZaOOuoo5ZhOFiG7zZ1b9b1XXpFeftmb9T/3nPTAA96sCwAAAAAAuMqTZOHkyZM1cOBAV9cxdOhQ9enTR5s3b455f/HixVq8eLF+/PFHvfTSS3riiSfUpk2bassrKirSww8/rGHDhlX527x58zRv3jx98sknOvLII9W7d2/tsMMOjn0WBEy6g3jY5fdk9AMPSCUlpqMAAAAAAAAOcL0Z8sKFC3XTTTepqKjItXW89tpr6tGjRzRRmJOTo/3220/t2rWLSeLNmzdPV155pf7444+k5UUiEd1+++0xicJatWqpdevWatu2rerWrRt9/8cff9SVV16pdevWOfypYJvbyToklyxRyHcDAAAAAECguJosnDVrli699FItX77ctXX8/vvveqJC/2yHHnqovvzyS3300UcaMmSIRo8erWeeeUb/+te/JEmbN2/WTTfdVKUGYkWvvvqqvvrqq+j0JZdcojFjxmj48OEaOnSoxowZozvuuEP5+VbFzDlz5ui+++5z6RMCAUayEAAAAACAQHEtWThy5EhdcMEFWrp0qVurkCT17t1bJVtrNrVo0UIvv/yymjZtGv17Tk6OTjzxRL322mvadtttJUn//POPBg8eHLe8VatW6bnnnotOX3zxxerRo4fq1asXfa927drq3LmzevXqFX1v1KhRmjBhgqOfDTb5vZluNrvgAtMRAAAAAACAFDieLFy6dKm6du2qLl26JK2954RJkybp999/j053795dtWvXjjtv8+bNdfPNN0enBw8eHE0yVvTuu+9q48aNkqQGDRqoS5cuCdd/7rnn6phjjolODxo0KMVPAIRcUZE0darpKAAAAAAAgE2OJgtfeOEFnXzyyfrggw+i7+21117q3Lmzk6uJ+vTTT6Ov9957b7Vt2zbp/Oedd1606fCqVav0yy+/VJnns88+i74+5ZRTVKdOnaRlXnjhhdHXo0eP1qZNm2zFjhChZmNyLg9uBAAAAAAAnONosvCVV16JSZadf/75Gj58uHbffXcnVxP1008/RV8fccQR1c6/3XbbqWXLltHpb7/9Nubva9as0fTp06PTRx55ZLVlHnbYYcrLy5MkbdmyRWPHjq12GcBRJCsBAAAAAIBDXOmzsGXLlhoyZIgeeeSRmJGDnVRUVKQ5c+ZEp1u0aGFruWbNmkVfT5kyJeZvM2fOVKTCgAx2yqxTp05MH4mVywQAAAAAAACCIt/Jwtq1a6dOnTrpuOOOU47LtZ0WLVqkoqKi6LTd2ou77rpr9PWCBQti/jZv3rzo65o1a2rnnXe2XebcuXPjlglkLOg1B5csMR0BAAAAAACwydFk4fPPP+9kcUktX748Zrpx48a2lqs438qVK1VaWqrc3NwqZdotr/K8leOCByrUBs1Kfv/8w4ebjgAAAAAAANjkaLLQS2vXro2Zrl+/vq3l6tWrF30diUS0bt06NWjQQJLVZ2G8+apTsal15bi8VlxcbHT9Tqg8SnW8UatjFBfH3ZHT3RapHhQlJSWKuLndq/t8Nj9/YA92AAAAAAA8Eoa8SqYCmz8oKCiIma5du7at5WrUqJGwnMLCwpTLk6wmy/HK8FppaakmTZpkbP1umTp1atK/1549W/F6l0x3Wxyc4vyLFy/WMpe2e61587TLgAFqGOdvZZ8v2efP3bRJuz71lOqNHx/cgx0AAAAAAI+EMa+SqsDmDypnesuaElcnPz/2I1estVaxD0S75VUukww0nJK3dq32v/xy5W3enHYZO77+uhp/8IFzQQEAAAAAgFBzZTRkL1RO5pWWltparnIyr2JNw7y8vJTLq1xm5ZqLQLp2fOutjBKFkrTLyy87FA0AAAAAAMgGga1ZuM0228RMFxQUxDQHTqRyM+FatWpFX1dsely5mXMyFeetWJ7XcnNz1apVK2Prd0pJSUlM0+OWLVvGJHKrSPC3Nm3aOB1aXLvssot2dmFdeePGJf179PMZ/vwAAAAAAIRF0O+lp0yZklIFuHgCmyzcbrvtYqY3bNhga1CSDRs2RF/n5+fHLFM20Enl+aqzcePGuGWYULmZdRjk5eUl/1wJ/ubVtsjLy7MSdiNGSH/+KZ10ktS2beYF5+Qk/XP08xn+/AAAAAAAhAX30gFuhrzjjjvGTK9YscLWcsuXL4++btiwoXIqJGQqlrly5UrbsVQsc/vtt7e9HHxi8WJp0iQphdqkVfTsKZ13nnTvvVL79tL33zsXHwAAAAAAgEcCmyzcZZddYvoHXLhwoa3lFi1aFH29xx57xPxt9913j77etGmT7QRkxXXvueeetpaBT7z1lrT33tKBB0qHHSYtWZJeOT17lr8uKpK6dXMkPAAAAAAAAC8FNllYo0YN7bffftHp6dOn21qu4nz7779/zN8OOOCAmJqGdsrcuHGjFixYEJ1u3ry5rTjgA5GIdN990pYt1vTvv0tDhjhTdjX9DQIAAAAAAPhRYJOFktS+ffvo67Fjx1Y7/5o1azRt2rTo9GGHHRbz97p16+qAAw5Iqcxx48ZFO47My8tTu3btql0GPrF0qTR/fux7XbumXk41fQsCAAAAAAAERaCThSeeeGL09dSpU2NG0I3nnXfeUXFxsSRrgJQOHTpUmeekk06Kvv7www+1efPmpGW+/fbb0dcdOnRQ/fr1bcUOH4hETEcAAAAAAADgK4FOFrZt21YtWrSITt97770JRzGePn26Xnjhhej0BRdcoNq1a1eZ79xzz9U222wjyRo0pVevXgnXP3z4cP3www/R6SuuuCLlzwC45pVXTEcAAAAAAAACxrfJwo4dO6pZs2Zq1qyZOnbsmHC+rl27RvsZnDVrli6//HLNmDEj+vdIJKIvv/xSV111lTZt2iRJaty4sW644Ya45W2//fa69tpro9MjRozQXXfdFTM68pYtWzRgwAD16NEj+t5RRx2lo446Kr0PC7ihwn4MAAAAAABgR77pADLVvn173XHHHXrqqackSdOmTdNZZ52lffbZRw0bNtT8+fO1dOnS6Py1a9dW//79Va9evYRldu7cWVOmTNF3330nSfr444/1xRdfqFmzZqpZs6b+/PNPrV+/Pjr/rrvuqscff9ydDwj30AwZAAAAAAAghm9rFqbihhtuUPfu3VWnTp3oe7Nnz9Yvv/wSkyjcaaed9PLLL+uQQw5JWl5+fr6eeeYZnXfeedFai0VFRZo6daomTJgQkyhs27at3nrrLTVs2NDhT4XAcCvpyMApAAAAAADAY4GvWVjmsssu0/HHH6933nlH33//vRYtWqQNGzaobt262m+//XT88cfr3HPPVd26dW2VV7NmTT366KO68MIL9f7772vcuHFaunSpCgsL1bBhQ7Vu3Vqnn366TjzxROXmhiLnGlxhTarZTUKG9fMDAAAAAADPeZIs7NSpkzp16pTSMt98803K69lpp51022236bbbbkt52URat26t1q1bO1YeXGC6OTHJOgAAAAAAEBJUiQMAAAAAAAAgiWQhAAAAAAAAgK1IFgJ+Zbd5s+lm2AAAAAAAIDRIFgIAAAAAAACQRLIQ8C9GQwYAAAAAAB4jWYjgI1kGAAAAAADgCJKFyF709QcAAAAAABCDZCGCL6xJP2pMAgAAAAAAj5EsBDJlOlk5e7bZ9QMAAAAAgNAgWQgE3fXXm44AAAAAAACEBMlCIFNu1Sy0U25hobRsmTvrBwAAAAAAWYdkIRBkJSWmIwAAAAAAACFCshDZa/Nm0xEkxwAnAAAAAADAYyQLEXzpJtVee83RMOKKRKSXX5ZuuUUaPtz99QEAAAAAAGSAZCGy14cfur+ORx+VrrtOeu456YILpFdfdX+dAAAAAAAAaSJZiOBza4ARJ9bfvXvs9DXXuBsLAAAAAABABkgWIntNmeJMOX36OFMOAAAAAACAYSQLgUytWGE6AgAAAAAAAEeQLAQAAAAAAAAgSco3HQCQ9QoKpLfekkpLpUsukbbZxv6ypvtrBAAAAAAAoUKyEMGXk2M6gvSVlkr//rf066/W9P/+J40fL+VzaAIAAAAAAO/RDBnw2k8/SUuWWK9HjSpPFErS5MnShx/aLyvIiVIAAAAAAOA7VF8CvNahg7TddtK770qvvVb17+eeK3Xq5NxozQAAAAAAADZRsxAwYe1a6YknEv99xAjvYgEAAAAAANiKZCGCL6iDfIwaZToCAAAAAACAGCQLAQAAAAAAAEgiWQgAAAAAAABgK5KFCD5GBAYAAAAAAHAEyUIgqDZvlm67zXQUAAAAAAAgREgWAkH11FPSyy+bjgIAAAAAAIQIyUIgqB54wHQEAAAAAAAgZEgWAgAAAAAAAJBEshBhEImYjgAAAAAAACAUSBYCAAAAAAAAkESyEGGQk2M6AgAAAAAAgFAgWQgAAAAAAABAEslCAAAAAAAAAFuRLARM+vZb0xEAAAAAAABEkSwETFq61HQEAAAAAAAAUSQLAQAAAAAAAEgiWYgwiERMRwAAAAAAABAKJAsRDIMGSY0bW/8GDTIdDQAAAAAAQCiRLIT/LV4sXXONtGKF9e+aa6QlS8r/npNjLjYAAAAAAIAQIVkI38vt3Tu2qXEkIj36qLmAAAAAAAAAQopkIfzv77/tvVdZxdqHFRUWSl27ZhYTAAAAAABACJEsRPAVFcV/v1Ur6bffqr7//PPSE0+4GxMAAAAAAEAAkSxEMFVslvz55/HnWblS6tu36vt33OFOTAAAAAAAAAFHshD+V90AJr16Jf7bO+84GwsAAAAAAECIkSwEAAAAAAAAIIlkIYKqYjNkAAAAAAAAOIJkIfyvumbIAAAAAAAAcATJQvgftQgBAAAAAAA8QbIQwUfNQwAAAAAAAEeQLIT/kQwEAAAAAADwBMlCAAAAAAAAAJJIFiKo6McQAAAAAADAcSQL4X80QwYAAAAAAPAEyUIAAAAAAAAAkkgWIqhohgwAAAAAAOA4koXwP5ohAwAAAAAAeIJkIQA4qUMH0xEAAAAAAJA2koUA4KSaNU1HAAAAAABA2vJNBwBkzG4z5bVrpXXr3I0FAAAAAAAgwKhZiGBKdYCTTz6Rdt9datrUnXgAAAAAAABCgGQh/C9ezcFp01Ir4557rJqFgNsYqRsAAAAAEGA0Q0YwzZ0rFRZKS5ZIGzcmn3f1amn6dG/iAgAAAAAACDBqFiK4XnlFOuig6ucrLXU/FqCM3T40AQAAAADwIWoWwv8SJV9uv92qXQgAAAAAAABHULMQ/peoDzgShQAAAAAAAI4iWQgAAAAAAABAEslCBAF9wAEAAADZpVYt0xEAQNYiWQgAAAAA8I8995R+/12l115rOhIAyEokCxF+pmomrl1rZr0AAABAkE2cKDVvrtIXXjAdCQBkJZKF8L9Mk32JBkhx2+zZZtYLAAAABNl225mOAACyGslCAHCSqeQ0AAAAAAAOIFkIAAAAAAAAQBLJQgBwFqN3AwAAAAACjGQhAAAAAAAAAEkkC5ENTNX0ooYZAAAAAAAIGJKF8D+SbgAAAAAAAJ4gWQgAAAAAAABAEslCZIOFC82sNxIxs14AAAAAAIA0kSyE/2XaDPnbb52JAwAAAAAAIORIFgIAAAAAAACQRLIQ2YDRkOElmp8DAAAAAAKMZCEAAAAAAAAASSQLAcBZ1CgFAAAAAAQYyUIAAAAAgPu6dTMdAQDABpKF8L9Ma2pR0wsAAAAwj+tyAAgEkoWAW6ZMMR0BAAAA4B+tW5uOAABgA8lChN9//2tmvVddZWa9AAAAgB/tvbfpCAAANpAshP/RXAEAAAAIPq7rASAQSBYCAAAAAAAAkESyEAAAAGG1yy6mIwBQUSRiOgIAgA35pgMAkslfsUK5Q4eaDgMAAARNQYFUo4aUy7NxAACAVHD1BF/b+557TIcAAACCKCeH/tEAv+GYBIBAIFkI36q5ZInqTpliOgwAAAAAAICsQbIQvpW/Zo3pEAAAAAAAALIKyUIAAAAAgPtohgwAgUCyEAAAAOFDUgIAEAQ1apiOAKiCZCEAAAAAAAAASSQLAQAAAABeiERMRwAAsIFkIQAAAADAfXQPAACBQLIQvpW/cqXpEAAAQFCRlAAAAEgLyUL4VqPPPjMdAgAAAACnkMQHgEAgWQhfytmyRQ2/+MJ0GAAAAN7bfntp551NRwEA8AJJdPgQyUL40p7du5sOAQAQJG3bmo4AcE5urtSzp+koAOeRFAGAQCBZCP9Zt07/+vZb01EAAIKkf39qYiFW0JMS111nOgLAeUE/LgEgS5AshP+sXm06AgBA0Bx1lDRvnjRypOlIAAAAgEAjWQgAAMKhZk2pXj3TUQDJtWhhOgIAAICkSBYCAIDwiERMRwAkt+uupiMAAABIimQhAAAA4BUS2shm9FkIAIFAshAAgGyUyyUAQo6kBAAAQFq4UwAAIBvdfrs75W6/vTvl2kWtLcC8m24yHQH8iiR+cq1bS7VqmY4CAEgWAgCQlfr1c7a8e+6R3ntPmjDB2XKBbBT0pLfbNZevusrd8mHW8cebjsCMCy6QPvnEdBQAIIlkIQA4K+g3eEB1GjWK//5xx0mdOknbbuttPEDQdOliOgJki6uvNh1BVXZqFm6zjftx+NGwYcEaAOmYY0xHAMBFJAsBAIB9tWvHf79GDW/jSIQmbijj133h2GOlo49OPo9fY7cr6PGHQYsWUrdupqNIDw9eAcA4koUA4KR4N0gtWngfB+CmeImO3Xf3Po54uMmE3+XmSl99JX30kelIEFZDhkgTJ0r77ms6EqQj3rXklVd6Hwe8wwMW+BDJQvgPJ0uEzcEHZ2//OwifnBzp8cdj3zvySGnvvc3EAwRRfr50+ummo0BYNWzon9relXGdX714D73at/c+jurwXQKhRrIQALzw+uvSWWdJjRubjgTIXPv20mefWX0U3nijNHKk6YgA+InbSQSSFMg27PMw5ZRTTEcAQ/JNBwAAWWHnnaUPPpAKC6VatUxHA2Tu5JOtf5WZvqGhGTKAZPbYQ/ryS2m//UxH4h7T5+Fk/BybSW++aToC+NnChdJuu3m/3m23lQYPlnbYwft1wzhqFsJ/uNEDAABAIpkknCZNknbZxblY/Mjv19LVJT2OPdabOPzk7LNNRwA/MzVK9s03W91mICuRLAQAAOFBrRXAPL8eh7vtJtWv79/4skFOjvTss4m/g/r1pRtu8DYmP6hTJ/nf/Z4ARjiF/VzZqpXpCHyNZCEAeCnsP7qAadxQ+R99tyJT/JYm5/ftc+aZ1ojg3bpZfTr/+ad0xRXWv99+s5o+ZjO/f39AGDRoIPXpYzoKX6NOKQAAQDY65RRroBoA8EpZIqxjR+tfmcGDzcTjR4keel10kTR0qLexAGF02GHW9U+DBqYj8TVqFsJ/eJoGAID7PvjAzHr5na8eNWSRiT32MB0BnJaTI/XsaToKZJuw/l7vuSeJQhtIFgKAk26/vep7V1/teRiAMWG9sAwjviu4oWlT60bMz8K877dvL+2/v+ko4IYwj+ANwHdIFgKAk047TTrooPLpf/9bOuooc/EAAIInyMmsV16Rrr1W2mYb05Fkn7p1pU8+MR1FckHet+GdHXaQPv5YeughacgQ09EAWYlkIQA4KT9fGjvWurB56y3p66+5MAaAsLv+etMRmPPII9K++0oNG1o39sceaw1Q8dFH1kiT++1n/R46id/V+J5/XmrUyHQUSFXfvqYj8J+cHOsBfI8e0gknmI7GfX4+p/k5NriKZCEAOK1WLemyy6SLL5Zq1DAdDQD4SxhvPF580bt1/fCD9L//ebe+6hx1lDRrlrRypXVjn5dnvX/ccdLkydLMmdbvoR+U7Xth3AeDgm1f7j//sc4dd91lOhKkqksX0xEAriNZCAAAwoOBIewZPNjcTTvJgsx06ODsfl6vnnNleSWb9qEDDjAdAdzy6qtWreRs2p/tyuQc99hjzsVR2S23WDV4e/d2bx2puPVWqV8/01EgpEgWAgAAZJNttpHOOcfc+knoZibX4ct3Rlj1t+HDTUfgLBJj7jj6aO/X6cfv8sUXpW7d3Cv/mWekG290/jycrmuvlc4+O/k8ubmx/amD6xCbfLKXA0CW8OOFFbLX0087Xyb7uP+tWWO2NhkX6Zlzchs2aiQ1b57+8qaO+bLmzqkI4r5HzULYYWLfdnOd6fa9mY01NffaK/nf+/eXxo+XfvxRatAgtbJzcoJ53sxUhw6mI/AFkoUAAARd06bpLXfxxdIeezgainF16piOwP9q1jS7/my7kQuCoH0nOTnSwIGZLQ/Av7JtoJ7qEn5OOOIIaepU99cTBNX9Blx5pTdx+BzJQgAAguCUUxL/7YUX0iuzcWNr8IEwDcRz+OHSLruYjgLJkKgJFxPf50EHWYNDIHg4/pGqbNhnBgxIbzk726ZizcAmTdJbT9hUV1uSB8+SSBYCABAMbl0s16xpNU+x25+N35uj5OZKgwaZjgJuO+MM0xGE3xVXmI6gXMXasA0aSFddZSoSwJ922810BMjEEUdI3bunvpzb12TZ2gwZkkgWAgAQDK1aJf5bponEVq2shGFYnHii6QjgtssvNx2Bu7g5izVmjJUgPuccaexYqVatzMoLSk2lPn1MR+C8oGz7oHn4Ye/XyXfpnNxcqVcv01Fk5rTTTEcAh5EsBIBUJHtyu/323sWB7HPPPaYjsHBzgEw5sQ9l+36YbcnEQw6RPvxQGjFC2n//zMsLyva76SbTEaCitm1NR5DYnntKzz5rOgr4kVcjNz/3nDfrgWdIFgJAKu68M/HfXn+9+uWDcoMC/2nUSOrRI/7fsj1xgnLZsi+E/Vzq9fcYb312t3GQ9rmyWEtKzMZhx5FHmh213C1B2l/q1y9/3batP2rgP/NM4r/dfLN3cUjhPw8HgZ3jyatk4e67e7MeeIZkIfxn5UrTEQCJJfpRvuce6YQTvI0F2Yd9zHlhq7lz6aX25w3STTticZOemdq1TUeAIPj9d+nuu60Hdd9/b50zTQ8IdsstZtfvldNPNx1BeGSSLOQ6IauRLIS/bNyo/HbtTEcBJJboBu2JJ6T8fG9jAZCZ66+XOnY0HYWzGjQwHQHCIsw3ibm50uOPm47C3/77X9MRuOvkk6ufZ889pb59pYceKq/l6cUoqUF5GODkOWLnnctf168fvgd5JmWSLAzKvpiqMP++OYhkIfxl8GDTEQDu4scJmUh00ebUfnXJJc6U41eLF0vHHy/tsot0//3S//5nOqLsRJ+FmfPTDVxQv4suXazaYk5ee954o3NlBV379qYjSO7cc01HkJqgHmd2/fqr1Yz6hhukiRPD2QTflEybIfvp98Yp1X2msB9vNlENBv4ycKDpCAAgew0caD3d/+kna8TRdPj5onLnnaVRo0xHASdwIe8cPx+zbjvqKOvflVdmXtaBB1pdkrzwQuZlhcG4cfGPU47d9IT9OG3SJPEALewzmaEZMtJEzUIA8FLYL/YQbHXqSE8+KY0caToSIHiSDYDlpaZNnSnH7k1ikG4m3foN7tXLqhm1557ulB8mQdpfTGEbwUleDXCC0GHPAQA/aNnSdASAM/xyk3PxxbHTd99tJg6v8UDCnLvvtmqpmVazZmrzJzpm/XIsB0GDBvRbjOzTq5fpCGBHpudyriuyFslCAPCDHj2kWrVMRwG/C/tN/SGHOFfWY49Jhx9ujXp68slW80D4Q1j7LNx5Z+m776TSUtOROKNRI2m//UxHAVPcOsb8eOymwov4g5KcOfxw0xHADpohI02uPAL766+/NHToUP38889atGiRiouLtcMOO2i//fbTGWecoRNOOEH5Ljx9GzNmjD7++GNNmDBBy5YtU0lJiRo3bqwDDzxQZ555po4++mjbZb3yyit64oknUlp/Xl6epk2blmrYqCgoP46A0847T2rbVtpnH9ORAOY89ph0xhlSQUHmZe2xR/r9LvpNbq79BBQX9mZ5tf2dvF5KVlbfvtLll0vr1jm3PpM4PhBUftx3c3OlO+6Q/u//TEeCZGiGnDpyEpJcSBY+88wzGjBggIqLi2PeX7hwoRYuXKivv/5aLVu2VN++fbXXXns5ss6lS5fq7rvv1i+//FLlb4sWLdKiRYv08ccf68ADD1SfPn20p43+REj6AfDc3nubjgDIXCYXWCecIE2YILVo4Vw88J8U9pE1//63Gvzwg4vB+FQmx1E6SYVEy5x5pjRvnrRmjZTouj2TJMbLL0s9e0oLF6Zfhh9wY2mfX5Je6X5nt91G89uKSET5X16e6Qj857jjTEcQCI4mCx955BENGTKkvPD8fDVr1kzbbLON/vrrL61evVqSNHXqVF1++eV655131KRJk4zWOX/+fF166aVavnx5zPt77723tt9+ey1dulTz5s2TJP3+++8699xzNXDgQB188MFJy50xY0b0devWrVW/fv1qY8njQMycXy4gAIRfv37SXXdVff+446Svv/Y+Hj8xeS4+4ADpqquk114zF0O2CMBvbtH225sOwZ+8TE7961/WPzdccw2JF79yolLHZZdJb7wR+96OO2Zerkm33io9/7y0YoXpSPwhAL8joWZn+5PQjdW4sVVjPhn2a0kOJgs///zzmEThSSedpAcffFDbb73IKyoq0ogRI9S7d29t3rxZK1as0K233qr33ntPOWl+GZs3b1bnzp1jEoXHHHOM7rvvPu2+++7R9/7880899NBD+u2337Rx40bdeOON+vDDD7XTTjvFLbegoEBz586NTvfv3z/jpCYASIrfAfppp3kfBxJfCAwa5Nxool4JwkXNqadKn35qOgr4QRD2V9OCtI2CFCvsqVPHSuTedltm5XTrJn30kbR2rTXdpYvVj6ybmjeXKlT6cNz220uTJkle3xv6tfaqX+NCuWoqSSUVxvP7+PH0E2+TI2nmoqIiPf7449HpY489Vv37948mCiWpRo0auvDCC/Xss89G+yv8448/9PHHH6e93jfffFNz5syJTl9wwQUaMGBATKJQkvbdd18NGjRIRxxxhCRp7dq1evjhhxOWO3PmTJWUlEiS6tevT6IQQLlMfzRzcmJrUWy7rfTQQ5mVCWdtu63pCBLzw9Phq65K/vdEx8gnnzgeCuJo1Mh0BN6o7lx88smpl5nk2tB3uEGHG1q2tBILn39uJQwz1aKF9Pvv0rPPSiNHSn36ZF5mdfr1c38du+zibvlBStB4EWuQtofXqvstOO00ujmqbLfdTEcQGI7cdYwaNUqLFy+WZDU9fvDBB5Wb4IbmyCOP1IUXXhidHjRoUNrrfeutt6Kv99prLz344IMJaynWrFlTffr0Uc2aNSVJX331lf7888+481ZsgtysWbO040MauPiF3zmxj3bvbtWwevZZaeJEZ0eAReb8fFF66KFVk0EDB3obw3//m/zvnMfNyc/PvCaQF5w4xhLtZ/XqWefU/v1TL/Pqq2ObXt58c1qhSZIeeST9ZYPGz+dMpGbyZOm336R//9v+Mg0aJP/7HntYx9KZZ7q/r/z0k1WLPeiC9DvK8Z+5Sy91p9xnnpHefz/zcoK0P8JRjiQLP63QrKhDhw7apZqnLRWThX/88YcWptGp8bx58/T3339Hp6+66irVqFEj6TI77LCDjj322Oh0olqN06dPj75u3rx5yrEBQLVOOcW6eN53X9ORIEjy86XHH5e2PvjSv/9tjaTtJfqQ86+XXpIaNjQdhVnr1km//iql87B3l12sBzgjR0rjxkkPPph+HPfdJ736avrLA37XvLk1gv2kSaYjKWejj3nHnHOOd+uS/JuUI5GUmSuusCoPpCvZfnHLLVI1+ZGMykfoZZwsjEQi+vnnn6PTZU19k2nWrJkaN24cnf7mm29SXu/8+fNjptu3b29ruZYtW0Zf//rrr3HnqZgspGahxzghAUBy11wjzZkjTZ0qffONVavD6XMn5+Lguegi6T//MR1F8NWvb9WAat8+8xGJ//Ofqp2o9+2bWXxlLrss+bqBdKSy71x7rXTvvcHr49cpXjSphiXMCcnBg6uvnWtSmLc9qpVxsvDvv//WunXrotMVk3HJVEzCTZkyJeX1VlynJO1oc2StBhUOxopJwTKRSEQzZ86MTlOzEAB8KtOHOYluirbZJrNyvdCkidUXVLwBcyrbdVfn1nvWWc6VlUybNt6sB8HldEJs8GBnyyvz9NNWwvCgg6zBHpxqJr7zzlatEaSmQwd3yuWGOvvst5/pCJDM00+bjiA8OL9lrYyThfPmzYuZbmrz6dKuFW5eFixYkPJ6t6l0M1dYWGhruY0bN0Zfb9q0SWvWrIn5+/z587Vp0yZJUl5envbZZx+NHj1a99xzj44//ni1bt1aBx98sE499VT17NlTkydPTjl2AICP1a7tffMiNzmZVDnuOOfKSub66/090Awy48Q+mWkZl1xSXsbhh8dPhDsR57/+Jb3+ujX6Yu/e5V0IOOGZZ6QK3es4Low3iNnUlyTCxcTxeOKJ3q/TKTxMQSaooS/JgWTh8uXLywvLzY0ZATmZis2QK5Zh18477xwzHa+WYDyV56u87op/r1Onji6//HJdd911+vDDD7Vw4UIVFBRow4YN+uuvv/TWW2/p/PPP19133x1NMCJDaewLALJUXl5myye78H79den22zMrH+mrU0f64QfppJNMR+IPXLQ6r0sXacYMq2/C0aOl7bYzHVF62rWr+l6q+0skktk+FqT9k1FBAfs+/ti9WtduSzDYKiTdc4/9eYN0fofjbLRfSm7t2rXR19tuu23CUZArq1u3btwy7GrevLnq168fbY48fPhwHXbYYUmXWb9+vb7++uuY9zZv3hwzXXEk5PXr10ebSP/rX/9S06ZNVaNGDS1YsEDLli2LzvfRRx9p9uzZGjJkiOrVq5fyZ3FScXGx0fVnKr/CoDWAH5WUlCheisqpYy/jk3IWidSsKXXooJyxY9NaPul3Wbu21LevcleuVO6QIZkFmqJIbq5ySkvjx5VATmlp3M8iSRFJ8S71ku6zxcVx98WSkhJFqtvXEyxbnOD9hDG1aiV9/LHybXbOne4xmJNgP/CTRN9hRaW1a6t06zawvZ0jESPnnEhOTrWfpzqpnIsT7Y8xIx/H239s7LPJ1mtHovIjkkqSHEtlcktLqzz5j0QiKW3fkpIS5cZZprS0NLpPJYu1uLg4/varJNFnyVPy/bvkkUcSnndS3X8TfU+ZHgcVz41OHVORSEQlKZYZ7xydSjyVt0+yZUtKS5N+Zqeui0pKSuwfhyUlto7b0nvvVSQ3t9pzf3WfIdPvOlH58Y4Ju9vbyXN6sSRdconyr7wy/t+Li5UbiTgyYmo61yTVlePG75vT5ds95hJdQyXb5xNu0+7dlVtQoNz//a/a+EpLS1VaVGTrs9q5zvMDO9vc1vVuFsj4+ywoKIi+rl27tu3lalZohmG3CXFFeXl5Ovvss/X6669LskY2PuaYY3TGGWfEnT8SiahHjx7asGFDzPuV11255uEee+yhbt266aijjlJehVosEyZMUJ8+fTRp6whg06dP15133qmBAwem/FmcUlpaGo0nqA42HQBQjcWLF2u3OO87dexxDNi3edMmze3WTS3STBba+S5rXnCB9pw0SXU97HJiyXXXaZcXX0waV2X1/vpLiXpPKiosVLyGj8nKy1u3TgfGef/vxYu1vJp9PW/9+rjLTpo0qdr9O15Mdo+JdI/B3F12UZuaNZWbxrWIn/xxzjkq3LoNbG/nSMTIOaeooCDuPpmKufPmaZ8479vdh2bNmqXNcd6vKH/VKtntPTPd/S/R9i8uKtLkBMdMxXU1WbZMO1X6e8GWLbJ/RS4tXLhQO27Zosq9tS5fvlyLKqwrUax/zp6tTTaS+ok+S8vCQtVKsMymZs305yGHqDjB9k1l/53z2GNa7UA58SxevFjLbB5/dv2z335anGKZCxYs0KpKnzGVeCrvx8mWre4zO3lPYvczzJw5U1sKC5POX7Dzzpp5xBEqqV9fbWrVUm6Fe9nKqvsMmX7XicpvGyd5v2jRIq3YOv9ON96oJi+8EP3b6mOP1RyH979ofDk5CcucNGlS3HNQ2utKIH/16rTOxW78vlUsf7+2bVVv4kTHypMSx5zoGmrmjBnaUlyc+jF4xRU62Eay8J+lS7X8jz9sbX8713l+YGebz1+wIOHvRTbJ+EFAUVFReWEpVPfNr9Ape7pPnq6//vqYAUu6dOmifv36VampOH/+fHXu3FmffPKJ6tSpE/O3yjFX7IOxbdu2GjFihI499tiYRKEkHXTQQXrjjTd05JFHRt8bPXp0lZqLAAD3bNlnH5XarHlWhY2mFYU776yZr76qKR98kN46UlTUoIGWn3uuJ+tKSwj7MCvdZhstufpq02EkV812L2rUSIVNmngUDHwvxWZjER82M1t23nn6Y9gwzRg0SMU2uzhKZv3BB2tthWt2vyutUUNLk4147ZENIRpsavrgwZrdr5+mv/WWinbaSaV16ujvm282HVZall10kVaeeqqKGjbU+oMP1qI773R8HatOOIEmqNVYfMMNKkmhslSV5a+7zsFoUrehVSuj64f/ZVyzsGISrTROs6lEKiYIa6R5o9e4cWP1799fN9xwgwoKClRaWqqXXnpJr776qpo1a6Z69epp2bJlmjNnjiQrQdm3b1/dXOGHoVat2GeZX3zxhZYtW6ZFixZpzz331LZJOlivWbOm+vbtq+OPPz46cMrrr7+u47zqAB4AECrThg5VccOGjpbpeSIggAnFf669VuvbtVNzvycNE/j7xhtNh5ASPyanfMfDbZST6Jg1eCwXN2yoLQ72Lzjr+ecz7+fWA6s7dlROSYmWXHutSnzQj+bi667TXt26Kb9Sy6wg2tSiRZX3ll1yiXZ76ikD0WSmdNttNa9XL9fKX3rRRVp800225i3J4sHINhxyiKa/+aZapvGQd/Mee2hFvIG1PLShbVvV3drlGhBPxsnCiqMSFySpxl1Zxea/lRN2qTj88MM1ZMgQ3XHHHfp7a393xcXF+uOPP2Lma9Kkifr06aO9K114VE4G5uTkaMcdd9SOO+5oa/0NGzbU6aefrmHDhkmSxo8fr82bN1cZrdkLubm5asUTAsBVO59+ulTpwrKkVy+1CdHT96DYZptt1KZNG+WkeVO9yy67xH0/7ndZoZ9dN7U4+mgpP/5Pc7J9LGfVqoR/q5lg9NWk++zq1XHfbtKkiXapbl9PsKydYyST4yjjY3DPPRP+qeTtt5V38cWZle+i3XbbTbum8Pmj28pQMijRPpmKPRN8X3b3g/3220+qbt4K/VNXx+nfgPz8/IRlVnw/t8KAgWVqpVjTZbfddlNunOvWxo0bq5GNz7XvvvtWvy0TaNOmjfLi7A877rSTdnBwm7Y56CDHyopnl1120c4OxFvviy8kSfumuXzTpk21m5Pn0TZtpHPOkeLUXK7uMzt1TJSUlNiet9nBB0u7xetgJL143L62S1R+vOuaXXfdVU0ciKf0hBOkRo2UM2qUclaujDtPoyFD1MhGWW3atLEGixowIOO4km7rFAbAtPudlTzyiPIeeMB2uQnLT+M7KR43TjX2318HVGrxmNJ6t2rWvLkUJxGebJkyuTvsUO16d9ppJ+2QoPxU1+cXduLcvWlTNQ3I50lkypQpKVXmiyfjZOF2FZ56bdy40epU2caNW8W+Ays2JU5HmzZt9Pnnn+v999/Xl19+qRkzZmjt2rVq2LCh9tprL51++uk67bTTtM0222j27NkxyzaOc5GVqoMOOiiaLCwqKtLixYurJCW9kp/gJhOAM/Lr1pUeesj6J0l77628a69NmOCBe3Jyc61zXprJwrwED3Xinkc9+n7za9RIWPsl6fk9SY2ZRFsnaXkJavzn5edXvy0SLGvn9ymT37CMf/+StHLIu+gi6ccfpeeey2wdaapuD8/Ly0tpH41uK0PJQifqzFXuHqaM3f0g386+nM42dUhOkjJj3o/TBVCqD1ASbcvc3Fzl2jlua9RI+xyZn58v7bqrtGBBbEwNGzp63nX7+jgvN9eReDONM9Vzga31J3iwVt1ndv2e5LbbpIp9rh18sPKTPPRJJx63P0PC8p9+WqpUYzzvrLMc2cdyv/zSetG6tRQvWdi3b2rn0Qzv42PKSvxHZ8qpIK9bN+va6d57bZedSvlJy2jfPvVlkv0e2PmtiMdGF3K5eXm2fgdsrc8n7MSZ6bk0LDLeAhVr4JWUlGj16tVqaKMJ1fIKTwi2d6Avkpo1a+rCCy/UhRdemHS+WbNmRV9vt912SZsZ21U5/nRGdwYQID16SCefLC1dKh17rGR4FPSslUmio04d6YILpID2V1RFsgu+ADYL9qX+/aXdd7dqUcA8mjK7z6tt3L+/1K5d+XTt2lJAuwTIWnXrSl43VT77bGn77aXXXrNqPhocZNJxF19sJULLBt689tq4tTtd0aGDvfluu83dOCpy4zomL0/q1i3lZCEycO650nvvuVP2a69Jr78uffONO+VnqYwHONl9991jphcuXGhruUWLFkVfJ2pK4oapU6dGXzdr1syRMis3v3YiAQnA59q3l848k0RhUD35pJUwtMurhFu6N+eHHy75oH8rScFNTla37fPzpXvu8SaWysKWGDv+eG/Xd+utVd/bJ95YygEUL4Hg0PWt7WM50/3zkEOkBx6wytl2WyvpE7Tf1rAdo3ZU3D8qN0N98UX315+XJ3XvLv31lzR6tHP7vR9st53022/S8OHSl19KL73k3brtDljao4f1fzbu+9kmCNd1228vjRplOorQyThZ2KRJk5hmxNPLnoBUY8aMGdHXzZs3T3v9GzZs0Jw5c2zX5hs9enT0deX26r/88osee+wx3XXXXbr++uttt/GumCDNycnRTjs5MYA8ACBt//1v8r/feGMwLn7sqlVL6tkz/t+4kA+/oH3HdeuW32hWx4nBN26/XarYN9Pdd1tJqTC49tqqDz4efzz1ckzuQzk50sMPSyUl0vr1kg9GAU5ZmH5P0nHppdaNes+e0iefSNdfbzqi4KtTRzrvPMmtUYkzLTODMQeQpngJ8UZ2epfMEnYT3bDNkS3avkK7+7Fjx1Y7/4wZM7RixYro9GGHHZbWei+55BIdfPDBOuWUUzRixIhq5581a5b+/PPP6PSxxx4b8/dFixZp8ODB+vjjj/X999/H1EJM5ocffoi+3nfffWP6cQQAGBDUGgaZXLxXlyANqtNPNx1B8NgdHdntBNEVVyT+20MPxfY35qa99pImT5ZeeUX69FOpb19v1uuFOnWsZl377GP1/ffSS96f/5zaj3Jygpf4Rrnjj5cefFA69VTTkcALXo4uznnBUrnf5GOPlYJWSem880xHgBQ4kiw88cQTo6+//fZbLV26NOn8b7/9dvT13nvvnXZz4H0qNCH56quvqp3/hRdeiFn2oEojox166KExnUIPHz682jKnTp2qMWPGRKfPOOOMapcBADiAi8eq4jWtTmc7+Wnb9upl9WFW5sgj3VmPnz5zpp56Sura1b2mnHPmSHYGcuvTJ/nf4zUPtivV72vHHa1+8E45Jf11+tXJJ0t//iktXChdd53paJAtwnTORHKvvBI7fdxx5b/L7AfOSpZ/OO446Z13pNNOs871777rTUxO1pw21Z0L0uJYsnCHrc07CgsL1a1bNxUXF8ed94cffohJwl1++eVpr/eUChd8v/32W0zSrrJ3331Xn376aXS6c+fOVUaL22233WJqOb733nsaN25cwjKXL1+uu+66S5GtB1DDhg110UUXpfw5AABpSHbx4vTFq9d9Ft55Z+z7dmuK+YHT275tW6vvpocflgYNMjYicaDUrm0l6j7+2Gwcbo4kyA0qTHCyNlXHjrHTlRMygJtSua65/HLp/vutWssnnyy9+mr6662839uRTc38zzkn+d/PP9/6bX/pJcnGoLK+066ddV3nd1xjSHIoWVizZk3dWeHGZuzYsbruuuti+vIrLi7WO++8o1tvvVUlJSWSpP3220/nn39+3DI7duyoZs2aqVmzZuqY4KRy2GGHxfQ7eMcdd1SpYbh69Wr17dtXDzzwQPS9o446KmENwG7dukWH0y4pKVHnzp315ptvqrCwMDpPaWmpvv76a1144YWaN29e9P2ePXuqfv36ccsFAPjE4Ydb/5u8EKguidK9uzUaYtOm1uhxvXp5E5cT3Liob9HCGgDhqqvc65PGi/3BrVptQbuR4iI8GIK2X3khUQuidLbVK69YTXf33tuqCRzEvhqRHWrUkB55RJoxQ/rsM+vapEyqv8lujYYbFl4277bDyd/rsrK+/tre/I8/bo1yDGMce+R7zjnnaOLEiRo2bJgkK2F44oknqlmzZqpbt67++usvrVq1Kjp/gwYN9PTTT0cTc+nIycnRY489posvvljr1q3T2rVrdfPNN2unnXbS7rvvrrVr12rOnDkxib4WLVroqaeeSlhm8+bN1bt3b3Xt2lWlpaXavHmzevXqpX79+qlZs2bKzc3V3LlztXLlypjlHnzwwZjm2ACAFN1yi9VUsHv3zMtKdONWs6b02GPOlZeqRo2sRGH//lYyMJEG/9/encfpVPd/HH9fs1vGPvaEwciSUEhSyppSlkJupaREylK0IqWSVO4k1U2hRSktN5X4taK0UMptixYKkQgRM+b3xxlnrjMz1zXXcq7rXMvr+Xh4uM6Zc77ncy3ne53rc75LOemll+w5ZqRdeHpyzTVORxB6NWsan/MZM8JzvFAme3z5AUFSMDrk5gb3XsXb+1y2rOTjxIpe1a4d3bN3Op1Mdvr4MKSnS2ecIX3zjW/bu02MGhFKlJCOHHE6ishWurS95ZUv79t2aWnS1VcbN4rhCFtvz997770aOnSokpOTJRkt8DZs2KAvv/zSkijMzMzUCy+8oLp16wZ9zHr16mnu3Lmq5XaHY9euXVq9erU2btxoJgpdLpd69eqlF154QenFjOHTo0cPzZ49W1WqVDHXHT58WGvWrNFXX31lSRRWqVJFM2bM0IABA4J+LgAQ1x56yGg95i9/fqh+/bV0/vn+H8Mue/dKu3ZJoRqy4sEHC6+zszVbqJICzZsbXZycFI6Ex+23S088Ia1aJb3/vn3leoo9VD+mXS5+qAPu4i1hiuhn52d2+nSpWjX7ygun6dPzX4tQjfPrr65drcuhGovW17kW7HpdAr1uCGLYOgTH1sFkXC6XRo0apR49eui1117TihUrtGvXLh05ckRly5bVaaedpq5du6pHjx5KSUmx7biNGjXS4sWL9cYbb2jZsmXasGGDDhw4oLS0NJ1yyik666yz1KdPH78mUmnbtq2WL1+uxYsX68MPP9T333+vffv2yeVyqWLFiqpfv746duyobt26qVSpUrY9FwBwVIUKUqlSxkD5kS6QC91GjeyPI5JcdZUxw+zWrcZy377GTLAFFXdnP5w/fJ97zojb165M0fqjfMSI/PfiZFd4X5xyivTbb6GJKZpF6+cA0Y3PHVBY+/bSTz9J+/ZFX9JwyBCpWTNp82bpnHOKvmYKt3vukdaskX7/3Yhn5MjQHOecc6TWraXVq4vftkIF4/0Np5P17V13KXfRIrkOHw7v8WFvsvCkzMxMjRs3TuPGjQu4jA8++MCv7VNTU9WvXz9bJxhJSUlRr1691KtXL9vKBACvatc2LricFC0thqIlznAqV05au1ZatEgqU0a69FLjrrldfHnN/e32nJYWunEI/RHKJMDmzVL9+qErP9r48Vq7OM/Do04dad066zq3HjZekUDj+whISbG/u2qojBhhXW7VyvgXKdq2lTZtMnqi1KwZutfV5ZI++kj6z3+ko0elCROkv/8uvI1kXF+GO1l4UlaWcr74QkmNGztz/DgWAVfnAADTffcZA0k7pUUL544dyT84o+mHYHq6McZLz57OJOHKlCn8OXriifDHEUk8JQp9SSBG4nnh6/ngabtoOp/ixZQp1uWUFGnYMGdi8Yf7RAue2HnTP9jxHRGQ7KK6QUZKl9Fo4uQwLJHizjulqVOdjqJ45cpJDRuGPgGblmaMpXzrrZE9u3KDBt7/fs45gZc9dmzhdW3aBF5eDCFZCACR5F//ktavd+7406Y5d2w7kYwIDV9/JD/5ZP6P+N69jW7GwZYZak7E8fTToS2f8wC+ysoyhjAoX95oUfjCC0bi3xdOnsMzZ1qXr7lG6tQpfzk5Obpmk0eRfir4HmZmGmPdwj+PPBLa8iPl+9ybyZOl1FSno4hM0XrN0KNHcBPn3HyzVKlS/vJllxmt7RGabsgAgCA40V0xK0u64w6padPwHztY4bg4rVfPmMnYbYIreNGmjdGd/mQrHDvfo2i9mC1K+/ZGt59HH5UOHnQ6mugSDT9Ko82IEYW75/mialX7Y/FV9+7Sf/8rvfGGMbbXbbdJ2dlGy6E9e6Rrr5Xs7LoWy5+7oUOdjsCjA2efrd+GDFHG668rqVo1uebMie33wm6XXirdeKPUsmVojxNL388w2HmeheqcDTYJXqOG9O230ksvGTfMrr7anrhiAMlCAIh348YZMxFHm3D+UEhMNFqnDB8evmM6yY7X1u4kYag5EWtiojRxovEvml6rYMXTc40GzZoFvu+ll0oZGfbFEoiLLzb+nZSSYiThQ2XMGGMCAncXXJD/+KqrpHnzQnd8u11zjdHF79ZbnY7Es6Qk7bzhBu284QY1a9ZMSUn8hPXLm28WXkc9jEgXzs9o9eqRXQc6hG7IAIDodPIOtj93soO58Bg2zBgEOhZw9z+2hPtHXyT8yOQzbJ9gxqpdsMC+OKLFjTdaJ3+58EJrwnX8ePu7ORZ1zqWlFV5Xs6b/Zc+ZI91+u0QCDsEKVb0caLnnnmtdbt06+FhimbfX+aKLwhcHIgbJQgCAVSQkAoIVqufQsGFoyg2laOhCguhDsg5S0QmrWFexotFlbcoUY3zWd96x/j0zU/ryS3tbor/yinW5Zk1pxQrrutq1mcACcDd+vFSqlPG4ZEmjFT8Cc+edzk7A6A3XpiFDshAAEHt8SWRwcREZIuV9iJQ4ilJcbJGauKtYMXRlR/L7hdhXpYoxg+awYUa354KaNpVmzLDveD16SEOGGI8zMoxW7i1bGknENm2krl2lpUs5LwB3HTtK69YZ3bC//dY4T+CZt/qjWjXp88+lK67wPqbfpZd6/pu/1yrUZ44jWQgA0e7aa63LHToEV16kJh484WIifCLhs8H77btQvl++vA8JPlxmTpkSuuMDdnPqc5eaKj3zjJSTI+3aJXXpYqy/4grps8+kd981xh0Mp0j4PkDgQvH+ReJnom5dI4FVr57TkUS/Fi2MGxTPP+95m4kTpRIlwhWRIRI/dzGCZCEARLubbzYG5pWkMmWMWY2jET/+I0c434tIed8jJQ47RcIFdFEzrLu/1oMHG2O+eRIJzwGIFAkJviXhgUBFYp0bi9/PkciO9/6MM6Svvgq+HEQEvm0AINo1ayZ9/73RPWDjRqlTJ6cjQqQL9IKQC3ZnROKPN7tiqlhRev996c8/pbPOsqdMAAjW5MlORxBaofg+j7QJThC8QD4njRoVPSEK15BRh2mvACAWlC/PLG/uuLDMx8WZbyL1dfIlrkiN3VcJCVK5ckWP/QZEkho1nI4A4dC3b/T20gAAm9CyEADiXbQnGgKNPy2tcHLi+uuDjwf+ifbPH7wLNnHv6fMRjs9NPHw2vQ1Gj8LuvNPpCCJHLJ8fV18d28/Pm2Ced7zeqJ092+kI7BFp71+8noMRhGQhAMS7SLs4CBeXS5o2Lf9ipEoVaeRIR0OKGPF4gRaLzznQc/v99+2NoyB/Xut4rZ/CoXRp6Z57nI4ielx/vVS1qtNRIBxi8fsAoXPNNU5HEDqcC3GNZCEAwCqeLgxuukn68kvp9delb7+VTjvN6YgiWyR8NkgehV6nTtKoUeE/biR8vtzF8mdt5kxp7VqpZUunI4kesZwQCEQsnx8ITHF1uN0tcwuOizdjhr3l+yrSvrtiha+vqz91Ed95fmHMQgBA/CjqwqNlSy4efBXLPw4j+WI/kmMLRCx/jqLFjTc6HUH0sfM8rFjRvrJgP+qowHh73c47Txoxwt7jzZolDRkibdki9eghXXedveUjNjRrZjQIKFcu9icushnJQgCIZnfdZX+ZXCTHvkh6j2MtEWa3aH99oj1+IBTmzXM6AsS7cNbNR44YY0Qn2Nyp8ZRTpPfes7fMiRONf/4aO1Z6+GF7Ywk3O68Nk4pIM/n7/vfqZU8sq1dLv/xi3KSpUMGeMuME3ZABINqcfbbUubMx1tSECcGXFyk/5iMljkBkZTkdgWfR/LrCN23bFr0+EpLCwcbgaX8+14hWgwdLHTs6HQVQtGDqbE/7pqXZnygMlWHDAjs/Y3WCvEC/a++7r/C64pKwLVrkPx4xwhhL3BfFfWZTU6X69UkUBiBKzloAgGniRGnpUmnSJCk5OfjyIiGhEO0KjpNz+eXOxGGXSE7EhCq2SH3OxZ2f3bqFJlnt7bgul9SkSeBl2zHDMfUWokHv3tbl88+X/vMfo5UV4ketWk5HAF9lZBiTfL31ln/7ZWaGJp5o1bSpMav4SYMHFz8u+KpV0jvvSCtXSv/+t+/H4nogZEgWAgAQrI4dpcWLpYEDpbvvjt0uZqFIqEVqki4azJzp/w8auzz0kP1lcsFvn6uucjoCSNKYMVKlSsbjChWKbm2D2Pa//zk38QYC43LFZ0K/TZvC62rXDqwsl0t6/nnp+++l9euNmyTFSU01boB66i3hCdcOIUOyEAAAO3TvbiQJ77vP6HIDhNqNN3pvXRzKC+jTTpNmz5bq1AndMSR7WiFGs1NPDWy/KVOMOgn2CeQzd/bZRrJo1Srj/3bt7I/LKd26OR1BdCiuNZVTMjLsL5OkTXQreBOwQgWpT5/gymzcWGrUKLgy4BiShQAQ72LxR3c0XLAOH25dbtXKmTicFoufv1h38vy69lpp2zZp+fLitw32WAWF43MTCZ/NJ56wxnHnnb7tV7Wq0dr5s89CExd8l5FhJA19HX8rWgQzFAGc98gjRa8PR7335JPW5VmzvG/vxDVdNFxH2i0rS3rtNWPswHPPNbpj2zHcUajF43sVJsyGDADRJhJ+wJYqJR0+7HQUhkh4PQIxbJj09tvS9u3G63n33eE7dqAXVhdcYG8cEhd5xXG5pAYNjFZJkcrfHxPx3lrQH5dcYiRjly6VGjaUBg1yOiIAkey666xdPgcOLHq7pk3tP7av3+fDhhnJ89Wrja6vds16i+D17l14rNVIx3VkyNCyEADiXcEvWV9+sE+dGppYYsmFF1qXC44h1qiRtG6d0T1t40YjKRAKgSRgPO0T7EQac+dal0uWlLp2Da7MeFBcq4tQ8KcVVNu2+eOynfTCC/bGE88uuMDoVnzNNSRUnRTPr/3tt1uXH3jAmThQvDvvzJ9V9vTTpXvuKXo7pz/PvXtLDz8cuYlCp18fIAKQLASAaFOzZmjL9+UOXSRcRNWo4f3voWgF54/bb5fKljUeV6ki3Xxz4W3KlTO6p4X6PY0Ul14qtW5tPHa5jNaUJUs6G1M0OOecwPYL5m77sGG+b5uUJE2fnv9eXnyx8V4DiA2TJkkTJhjjYD74oDR2rNMRwZM6daQvv5SOHJHWrJHq1/dv/2C+N5LotAgfxdL4rTGMMxoAosmZZ9o/WHYkJP6KkZuaKteJE9Lx4/krvbVuzM2V7r/fSBgePWqsmzgxpDEW0rGjtGGD9OOPRjfSgi2vwuWMMwqv69cv7GFIMpKnn35q/JApXz6wz3I8djdJcODebpkynv9WVJ1x5ZXSRRcZwxNUr56/TTS/X9EcO2Cn5OTwf4eGS+/e0uuvW9c1aODbvtOnS7fcYn9MwUpIcGaitbJlpZYtpa+/zl83c2b440DkmzxZ6txZ+ucfY/nBBwMvi+/qkKFlIQBEi6uvNgasj1Xekpblyxszr5YpY1wAT5mSn2jytN/ZZxtJqWnTpDffNFpFhFu1akV30Qyndu2M2ehOSkkJ7/iIBSUnG69JpM4QWVD79k5HED3KlTNa/BZ3A8KOGxRRcJMDQBSYNMk67uqFF0qZmb7te+21xpiApUqFZgzAaDRzptG6MSFB6t/f85iJiG/t20tffCE9+qjx26bgUAf+IFkYMrQsBIBo8fzzTkfgrIEDi77o9HaR0KQJMza6XNJHH0n33Sf99ZfRCuLUU52OKnp4mjEyXEiKAUDoNGpkTLTxn/8YM1f708W6dGlp3jzjn0R9LUmtWknbtjkdBaLB6acb/xCxSBYCQLxLTPR/n0i/i8cFu1WlSkZ3KV9F8usX7thODhQfjXw5T/v3l15+OX95/vz8x48/Lo0caXdUCKdIr6uBSNC8ufTkk05HgUhC3Rk9eK9Chm7IADBmjNMROMflkm66yekoipXbs6fTISBeRXLi1A7PPGNMvtOtm/TUU9KAAfl/u/rq0ByTC3tEo1ivCwAgGnFNETK0LASA4cONce3i0bhxUtWqTkdRrBPjxvl3d4sLB8A3pUt7bnVarlxYQ/ELiRsAsB91K4A8tCwEgFq1nI4gvHr3ltavl374oejZxyLxQrFGDc9/i8R4gUhgR9K8Xr3C68qWDa5MT+dspJ3LkRYPnMXnAXAGN4DhDZ+PkCFZCADx9gPA5TIG9PY02x9fugBOmjnTuty9e2S0OKSeAgD7UbcCyEOyEADiDReCKE68JdDtkpXldARWZcoUXlepkn9ldOokLVpktEgeOdI6GQoQT4JtUQsAQBRhzEIAgP9CkXAkQYVI5M/n8tFHjZZ3kaJtW+mUU6Tt2/PXzZ3rfzk9exr/AhFsXeFpf+oL3/A62aNZs6K75AMIPeoxeEMjiJChZSEAxKJzz3U6Amdx4QAnXHSR1LWrdd399/u276hR9sfjckkvvSTVr2+0irrzTqlzZ/uPE0hckVAG4M0ZZ0gNG0odOkivvup0NACAorhf87dqZf1b06bhjSXGkCwEgFg0YYJUqpTTUYQHSYP4kprqdATePfqo0QopNVW67DJp2DDf9rvrrtDE066dtHmztH+/NHmylBRlnUqcPL+56RDfbr1V2rBB+uADqUEDp6MB4hd1Mbxx/3xMmiSVKGE8Tk01rnsQMJKFABCLyaYLL5TWrQtd+bH4miE6ZGYWHhtw3jxnYinKaadJ33wjHT0qvfGGVL68b/tVrCjdfXfh9ZxrAAAAxevSxbgGe+UVae1a6ZJLnI4oqpEsBIBYVbeu0S2yoFhLPnDH2X6R/BlxuaRnn5Vq1jQeX3ON1KeP01HBk1CNWQjf8PoBAGJZwe+5Bg2kK64wbt4iKCQLASDeFPfj0alEET9q4atzzzUm7ThxQpozJ7/LSbCefda63K1bZCdOo5Wn19Sf1zpW3pdmzZyOAJ7EymcMAGIZvx9ChmQhAMSyQH7s+PKlG0lfzPygg10GDZLGj5eaNJEuvVSaPdvpiBDrpkxxOoLwmTrVuhzpzz2SvucAAAizKBvlGgBCgGQTAMmY/OPee41/TiA5EVnC8d3QpYt05ZXGrNWxbswYqUwZ6fPPpdatpeuvdzqi+NC5s/T++05HAQSubNnC6848M/xxAHGGloUAAMCKBHrk4L2Ifaef7nQE4eFyGQnCOXOkG27gsx0uDz4YfbOgA+5KlpQGDsxfTkiQHn00tMfk5l304L0KGZKFAAAACI0BAwqvO//84Msl0QT4pkULadUqqXlzpyMBAjd7tvTww9JNN0kffWSMXQxIJAtDiGQhACA8Klf2/nc7v+xDdeFQr17hdczEi1CK9ovgm26SypXLX87KMrreAgifs86Spk93Oor4k5bmdASxIzlZuu026YknSBTGqT+6d3c6hLhDshAA4L9AEhhz59ofhxTeFkZVqki9e+cvp6VJEyeG7/iIbbHYWq5cOenbb43x6u66S/rsM6MLGRDpYu18jPYbD9Hgxhuty3PmOBMHEIN2uXdFd0fdFjIMYAEA8SbSv1SvukqaN89c3NOzp8o7GE4hL78sPfmktGuX9K9/SY0bOx0RYkWkn5uBqlVLeuQRp6MA/BOr5yNCZ/p0qUYNaeNG6aKLpP79nY4IiBlHi+rdI1FXhxDJQgCIZdHUMuLkl/348cr99lu5vv1Whxs10q5rromsZGFysjRypNNRhFY0fW5i3cn34tlnpSFD8tffeqsz8YSZy8kfAfwAQSyhXg+95GSjBXW0mDBBuvde67p4mXCpOJwvAMlCAIhIY8caAzmf1Lp1YOWE6sduIBdRvsaSmamcL77QujVrlJuYSJdFQJIGDzZmNF2+XGraNDaThf7UK/yQA4DgDBkiPf+89PPPxvLdd0ulSjkaEqLEjBnGmMQnTZ7sXCzc2AsZkoUAEIluvFFaskRav14qX16aNMm+skP9I3vqVGMQ6mAkJCg3Odm3bQcPlh57zLou0OQqEKlcLmnQIOMfnHXDDdLTT+cvd+zoXCzFadSo8Dr3H3gA4leNGtI330j/93/GmMzt2jkdUeQgAeXdsGFSerq0cqXUsqW150O48V6FDM01ACAS1a4tffWVMe7NDz9InTs7HZFvpk2TRo/2f79q1QKfNfC226TSpfOXW7aU2rQJrCwAKM7IkVJmpvG4UiXpnnscDcersmWl4cPzlytVCqyOBhCbypUzJm4jURjdHnrIuhzqm0IulzHG+NNPS9dfT2v/GEXLQgCIVGlpUlaW01EUzdNdPG8/Qr3d+bv//sAvNKpVk9aulZ56ykgaxmL3TES+GjWcjiD6nXmm9NFHllVHTiblnOCpTmrY0GiN88svRv1TPshRVRs2LLzOztaKTzwhXXihMSnTZZcZMQfimmuk557LX776alvCA4C4cfHFoSl3zBjp6FHjO/SMM6QHHgjNcRy2fdQoneLemyg11WgkgJCgZSEAxJtIa65fpYp07bXBlVGvntGq8d57jW4RCA53iD17/PHC65KSpClTgi870s7NcBs7VkpMNBdzS5TQnj59it7W6c9o6dJGF99gE4WSdMklUvXq+csul3TffcGX615ez57G8BaBJgolY+KGM84wHjdrZoxvBgDwTenSxqQyoZCUZJT94YfG0DwlSoTmOA7b162bjtStm79i4sTAeyahWLQsBBA/qlSRdu92OorwCtUPajuTGkW1qgEi1c03Sykp0iefGHVK+/ZGC+DGjUNzPKeTYuGUkWFM4DJ+vJSYqJz779eJePgRkJAgffyxkSw9fFgaN05y/zEUKTIzjeEx/vnHaM3hlthFFCgqsV21avjjAOLNu+9K27ZJnTpJ9es7HU1Uy65QQRvmzVOzQ4eUWLWqceMKIUOyEAAAwFcul9FC68YbnY4kNp1/vpGIlaTsbOnbbx0NJ2zq1ZMWLXI6iuIlJkolSzodBQLRpInRGvZ//8tfN2eOc/EA8aJrV6cjiCm5aWnKbd3aaE2JkKIbMoD4EU8tdJw2bpx1ecQIz9vyvgAAEHoLFxoTWdSvL02dKnXp4nRE8SE1tfC6BH6GR7R4HxYEEC0LAcQTvvjtU1yC7557pD//lFaulM46y5jA5NNPi96W9wUA4KS77pImT7auO+ccZ2IJpUaNPH8XI3Q6dJAqVJD27ctf9+qrzsWD0Gje3JhwD4gR3NIAAPivuARfqVLS009L339vzJ5Zpkx44oI9aO2JSMdnFHYaPlyqXDl/uXdvqXZtx8JBjElOlmbMMK6NJKlfP6l7d2djgv3uvNPpCABb0bIQQPywowVbLLSCi4XnACC+hWNyDerK+FGtmrRunbRggTERyIABTkeEWNO/vzHz+T//GK0MueERey64wOkIAFuRLAQAX1WsaHQxQGAXuS1a2B8HgPjUpo1UqZK0d2/+uuefdywcxIAqVaRbbnE6CsSy0qWNf4h8JHMBuiEDgM8mTjS6kkQ7py6AqlVz5rgAYk9SkvTII/kTB3TqJPXsae8x+LEIAADiFMlCAPDVTTc5HUH0+9e/Cq/jBzmAQFx9tbR9u/TDD9J77zE2KgDAOVzPIsbQDRkAED4J3KOKClzwOoMx8vyXkWH8AwDALnwfA7QsBBBHSIDYh4soIDyotwAAiHxcGyPGkCwEAFjddpvTEQAAAAAAHEKyEADiTXF3PgcNkmrVcubYAAAAAABHkSwEED/iMVEVSBfGMmWkb76RunTxvE08vpbxhK6vAAAAQNwiWQgAKKx8eWn4cPvLJQkFeEYSHgAAABGAZCEAoGgkLgDnkWAHAABAmJEsBIBYRsIPAAJTsmThdWXLhj8OAEB4lS5deF2ZMt734ZobMYZkIQDEG1oqAdGDHx/66e67rSt69gzPgUuVkrp1s66bMyc8xwYAOOfcc6Vq1azrXnzRmVgAh5AsBBA7Tt4FvOqqov9Okszga/IhFEkKEh/Ro1076/IjjzgTRzyhjirSHz16aMdNNym3dWvpX/+Snn02fAd/8UXp2mulCy+UnnkmfIlKAIBzEhKkuXONhGFSknTLLd4n/pP4DkfMSXI6AACQZHwBL10aXBm//y4dO2Z0E5s3r/Df69SRdu8O7hjRJlQXLnaWy8VVZPr3v6W+faUffpAuu0y67jqnI4p9JNOLlpCg3YMGqepjjykpKcyXruXLS7Nnh/eYAIIzdKg0a1b+8qWXOhcLolenTtJvvzkdBeAYWhYCiAxTp0pZWcGVUaJE/nhSvXoV/jtJKf+QuIhvzZtLmzdLJ05IixYxVptTqLcAwD9jxkiNGxuPa9eWJkxwNBwAiEa0LAQQGZo2lTZsMBJUiYnBl1exYvBlxDtvyUISiQAAIBLVqyetWSPt22fc6CpRwumIACDqkCwEEDlcLlrRRBISggAAIBqlpEhVqzodBeIJ182IMXRDBgCEDxdSAAAAABDRSBYCiE0kpQBEG+otAAAARACShQCcV716eI5DF2eDrwmJUCQueA8A/3DOAAAAIMxIFgJw3qxZTkcQu0KVaLBjEhoAAAAAQMRhghMAzhk4UOrZU7rkEqcjiV3BtA70tG+DBtIppwReLgAAAAAgYpEsBOCMkiWlefOcjiI++dra0FOy8N//lo4dsy8eAAAAIJqlpDgdAWAruiEDiB9MHuAfT69Xly72lwkAAABEq/R0qW1b67rZs52JBbAByUIAsYlJAaIH7xUAAACi3ezZUps2UrVq0i23SAMGOB0REDC6IQNAvKF1HwAAAGCvhg2lzz5zOgrAFrQsBBCbSIgZgmm1x2sIAAAAAHGHZCGA+EF3V/94SxaSSAQAAACAmESyEAAQPiQZAQAAACCikSwEABTNW2KPVpqA/UimAwAAIAKQLATgm+RkpyNAuJUuXXhd5crBlUmSEfAP5wwAAADCjGQhAN8sWOB0BAi3rl2lChWs6+bOdSYWAAAAAEBYkCwEULyrrpK6d3c6CgTiwgsLr7vgAt/2TU6W5syRypUzlm++uejyAAAAAAAxg2QhgOLNnSulpjodBQJx3XVS+fL5y+XLG+t8deml0h9/SDk50vTp+d3RAx1bjTHZAAAAACCiJTkdAACEhN1JqWnT7C0vXEqWlL76SnrgAWPsszvvlEqU8K+MhBDfV2JMNsBAMh0AAAARgGQhIku1atLOnU5HgVjlb1LqlFOkWrWkjh2NLrjRqm5d6T//cToKAIEgmQ4AAIAwoxsyIsv55zsdASLBI4+Eplx/W+089ZS0YoU0caKUxL0VAAAAAEDsI1mIyJKY6HQE8Ob668NznDFjgi/DU2ucgt2J+/QJ/lgAECp0TQYAAECY0VQGgO9GjJD++9/o7io+fLj022/Su+9Kp50mPfmk0xEBgIEuxwAAAIgAJAsB+K5JE2ndOikjw+lIApeaanRzDlVX53hBayfAfpxXAAAAiAB0Q0ZkoVVF5Ctb1ukIACB+8L0IAACAMCNZCABS0ROYpKaGPw4AAAAAABxEshCRhS5Y9qpYUVqwwOkonOHvZ+mVV6zLlSoxOzcAAAAAIO6QLARiXY8e0plnOh1FZPDWna97d+nqq43HZcpITz1VdGtDAAAAAABiGMlCRBbGZrJfiRLSypX2lZecbF9ZkSQ1VXr+eemvv6Tdu6U+fZyOKDbRehjwjPMDAAAAEYBkIRAPUlKktDSno4gO6em8Vr5o167wugceCKwsbhIAnnF+AAAAIMxIFgKIDY884nQE8aViRWnEiPzlOnWkwYOdiwcAAAAAYAsG5AJiWay3SGnTRtq8WbrkEumGG5yOJv5Mn26Mibl3r3TRRcZYjwAAAACAqEayEED0+uwz/7ZnPDB7uVxSx45ORwEAAAAAsBHdkAEAACIVNzkAAAAQZiQLgVh2441ORxBZYr1bdjTo16/wukGDwh4GEJFuvrnwuhkzwh8HAAAA4hrJQiCWuU9AAUSC7t2lpk3zl+vXly6/3Ll4gEhyyinSsGH5y127Su3bOxcPAAAA4hJjFgKxavRoKSMjf5mubIgECQnGWJNz5kgnTkjXXiulpDgdFRA5nnxSGjJEOnpUatXKOGcAAACAMCJZCMSqGjWcjgAoWqlStHoFvDnjDKcjAAAAQBzjdjUAAAAAAAAASSQLEWmqVHE6gthRcDIPJvcAAAAAAADFIFmIyDJypNMRIFp07ux0BAAAAAAAxByShYgsFSs6HUHsiOUJTZKSpIce8r5NLD9/AAAAAABChGQhEC+cSJ5VrWpveY0aSTfeKK1YITVv7v/+dMUGAAAAAMArZkNGZCGZY59IeC3Xr5d+/FFavFiaODH48saPl/r2Db4cAAAAAABQJFoWAgidChWkli2lSpXsKS/YBChdkwEAAAAA8IpkIYDYFAktKwEAAAAAiDIkCxFZSPDYJyEGT29aBgIAAAAAEFIxmE0AIEm66irrsp2J2BYt7CsLAAAAAABEDJKFiCy0LLRP+fLWZTtb5T3+uHW5Uyfv2zdpUnhdnz62hQMAAAAAAOxBshCA/849V3rnHWNm4pEjpddek6ZOtW7Tv3/+4/btpYYN85eTkuyZHdkbuiwDAAAAAOC3JKcDABClunUz/p00YoS0a5e0dKnUqJH073/n/83lkj7+WBo/XvrrL2nUKKlOnfDHTMtVAAAAAAC8IlmIyEIyJ3qlpkqPPGL8K0rlytKsWeGNCQAAAAAA+IVuyEBx3FvPAQAAAAAAxDCShYgstCyEN4xDCAAAAABASJEsBAAAAAAAACCJZCFQPFo7AgAAAACAOEGyEJGFxBy84fMBAAAAAEBIkSwEEJt69y68btCgsIcBAAAAAEA0IVmIyELLMdila1epadP85dq1pQEDHAsHAAAAAIBokOR0AADCJN5mEk5IkD77THr2WSk7W7ruOiktzemoAAAAAACIaCQLAUQPfxOepUpJI0eGJBQAAAAAAGIR3ZARWeiGDAAAAAAA4BiShUC8IBELAAAAAACKQbIQAAAAAAAAgCSShYB3117rdAQAAAAAAABhQ7IQ8GbSJKcjCMzAgYXXxdtsyAAAAAAAwG8kCwFPypWTatSInrH+KlUy/q9RQxo1ytlYAAAAAABAVEpyOgAgYp1MEgbSIu/++6Xy5aXhw4v+e3q6dPBg4LEVZcMGaft2qU4dI9EZi2gdCQAAAABASNGyEAiFnj09t0icNUv66y+pY0d7j1mpktS8eewmCgEAAAAAQMiRLETEyZk61ekQDKHqfnyydVy0dG+OJLxmAAAAAACEFMlCRJzckSOdDsEQa4mpWHs+AAAAAADAdiQLEZGOVanidAj5Ak2y9etnbxzBYrw/AAAAAABQjJBNcLJ161YtWLBAq1ev1o4dO5Sdna3KlSurQYMGuuSSS9SpUyclJdl/+JUrV2rx4sVas2aNfv/9d+Xk5CgjI0NnnHGGevToofPOO8/vMtetW6eFCxfqyy+/1O7du5Wbm6sqVaqocePGuvTSS9W+fXu5aLUVe4J9T8uXtycOAAAAAACAMAlJsvCJJ57QrFmzlJ2dbVm/fft2bd++Xf/3f/+nJk2aaOrUqapbt64tx9y9e7duvfVWffHFF4X+tmPHDu3YsUOLFy/WGWecoYceekh16tQptszjx4/rvvvu0yuvvFLobz/99JN++uknLVmyRO3atdODDz6oypUr2/JcIP1++eWqOWOGs0HYkQBOTZX++Sf4cgAAAAAAAMLA9m7I999/v2bMmGEmCpOSktS4cWOdeeaZKu/W0ur777/XwIED9euvvwZ9zJ9//lm9e/culCjMzMxU69atVbt2bXPdN998o969e+vrr7/2WmZubq5GjhxpSRSmpqbq9NNPV/PmzVW6dGlz/YoVK3T11Vfrr7/+Cvq5wLC3d2+nQ6DbbiTiPQEAAAAAIKRsTRa+9957mj9/vrncpUsXffzxx1q0aJFefPFFffrpp5o0aZJKlCghSdq7d69GjBih3CASAEeOHNHQoUO1Z88ec93555+v999/X++8847mzZunpUuXavHixTrzzDMlSYcPH9aNN96oXbt2eSx3zpw5Wr58ubl85ZVXauXKlVq4cKEWLFiglStXatSoUWZX6m3btunOO+8M+HnAKic9XTsHDXI6jNBgNmQAAAAAABChbEsWHj9+XFOmTDGXO3TooMcff1yVKlUy1yUnJ6tv376aMWOGmWRbv369Fi9eHPBxX3zxRW3bts1cvuKKKzRr1iydeuqplu3q16+v5557Tuecc44k6cCBA7rvvvuKLHPfvn168sknzeX+/ftrwoQJSk9PN9elpaVp6NChmjRpkrlu2bJlWrNmTcDPBVbZTo/5F0wyz5eEYLhbyTVsGN7jAQAAAACAqGNbsnDZsmX67bffJBldj8ePH6+EhKKLb9eunfr27WsuP/fccwEf96WXXjIf161bV+PHj/c42UhKSooeeughpaSkSJKWL1+uLVu2FNrutdde0+HDhyVJ5cqV09ixYz0ev3fv3jr//PPN5WCeCwpwuuWd08e3m1sCvEh55wUAAAAAAIhftiUL33nnHfNx27ZtVb16da/buycL169fr+3bt/t9zJ9++sky5uGgQYOUnJzsdZ/KlSurQ4cO5nJRrRrfffdd83G3bt1UsmRJr2W6P5dPPvlEf//9d7GxwwdOJ+uCOb7TsRelbVtp8mSpXLmi/z5nTljDAQAAAAAAkceWZGFubq5Wr15tLp/s6utNVlaWMjIyzOUPPvjA7+P+/PPPluXWrVv7tF+TJk3Mx19++aXlb/v379eGDRvM5Xbt2hVbXps2bZSYmChJOnr0qFatWuVTHIhwdiT8nnmm8LpevYIvNxAJCdKdd0p//ln03wcMkOhGDwAAAABAXLMlWfjrr79aZgJ2T8Z5k5WVZT7+7rvv/D5uwdmHq1Sp4tN+5dxaVrknBiVp06ZNlglXGjduXGx5JUuWVK1atczlQJ4LCsuNxNZ5/urZU2rZMn95xAjJx88pAAAAAABAuNmSLPzpp58sy+6JM29q1qxpPv7ll1/8Pu7JWZVPOnbsmE/7nRyPUJL+/vtv7d+/31x2fy4pKSmqVq2aT2UG+1wQwYJJWpYuLa1aJb37rrRypfTvf9tTbqiEe9IVb15+2bpcooR0ySXOxAIAAAAAQJywJVm4Z8+e/AITEiwzIHvj3g3ZvQxfFUzkFWwl6EnB7dyP7f7YPb7iBPtcEIHsSualpEhduxpjBsJ3F18snXee8djlksaPN5KvAAAAAAAgZJLsKOTAgQPm41KlSnmcBbmg0m4//N3L8FXDhg1VpkwZszvywoUL1aZNG6/7HDx4UP/3f/9nWXfkyBHzsXsrw/T0dJ9jCfa52CU7O9uxY9slJyfH6RAkSbmScrKzlZCb63dWPTs7WyrmvQik3GKP6aOiTvyTMXv8W7ilpUlLl0rffCOVKSPVr1/sa4rYUbAeiJR6AUD4UA8AoB4AQD3gDFuShf/884/5OC0tzef9UlJSzMe+diF2l5iYqMsuu0zz5s2TZMxsfP755+sSD10Vc3NzNWHCBB06dMiy3v3Y7o/D+VzscOLECX377beOHDsWHc/O1nfffqvMAwdUzs99N23cqKPHj3vdpt7BgyobcHSF+fPetyxi3bfffqsSW7aoUZBl2y4pSfr7b4nPdlz7/vvvnQ4BgMOoBwBQDwCgHggPWxo2HXdLivjaqlCSkpLyc5WBtly6/vrrLROWjB07VtOmTSvUuu/nn3/W0KFDtWTJEpUsWdLyN/eYnXwuKMDpMf38eP8BAAAAAABigS0tCxMTE83HJ06c8Hk/96RacnJyQMfOyMjQ448/rhtuuEH//POPTpw4oWeeeUZz5sxRVlaW0tPT9fvvv2vbtm2SjKTe1KlTNXz4cLOM1NTUiHguKMDhZGHuyQRwqOJwOhkKAAAAAABQgC3JQvdZid27JBfHvbuue8LOX2effbbmz5+vUaNG6ddff5VkJO/Wr19v2a5GjRp66KGHlJmZaVlfqlQp87F712N/nov7tsE8l2AkJCSoadOmjhzbTjk5ORHRtDglNVXNmjVTQpkyfu+blZUlNW7sdZsEmyfraNasWfD7e0iQB1s24K+C9UCTJk0sN3MAxD7qAQDUAwCoB/z33Xff+dX4rSi2JAvLls0fee3w4cPKzc2Vy4dWU+5jB7p3JQ5Es2bN9N577+mNN97Q+++/r40bN+rAgQOqUKGC6tatq4svvljdu3dXiRIl9MMPP1j2dZ/J2D2OgmMbenP48OEiywg39+7QUc/hlncu5b2eAcSRlJxsjLXn9QD2Pr9g3/ukpCSPMcfU5wpRKTExkc8hEOeoBwBQDwCgHggPW17hKlWqmI9zcnL0559/qkKFCsXut2fPHvNxpUqVgo4jJSVFffv2Vd++fb1ut3nzZvNx2bJlLS0L3Z/LH3/84fOx7X4ukHLppgsAAAAAABBWtszgcOqpp1qWt2/f7tN+O3bsMB/XqVPHjlB84t6ENSsry/I39+fy999/a+/evT6V6f6cw/lcYtmxGjWcDYBkJQAAAAAAiDO2JAtr1Khh6Xq7YcMGn/bbuHGj+bhhw4YBH//QoUPatm1boRmQPfnkk0/MxwXHYmvUqJGlC7Uvz+Xw4cP65ZdfzOVgngvy/dWmjbMB5OY6e3wAAAAAAIAwsyVZKEmtW7c2H69atarY7Tdu3GhptdcmwMTQlVdeqZYtW6pbt25atGhRsdtv3rxZW7ZsMZc7dOhg+Xvp0qXVqFEjc9mX5/L555+bg0cmJiaqVatWvoYPb6K5ZZ8vicZIfH4kSAEAAAAAiGu2JQs7d+5sPv7www+1e/dur9u//PLL5uPMzMxC3YF9Va9ePfPx8uXLi93+qaeesuzbokWLQtt06dLFfPz222/ryJEjXst0fy5t27ZVmQBmz0UEisRkHgAAAAAAQAjZmiysXLmyJOnYsWO6/fbblZ2dXeS2n376qRYuXGguDxw4MODjduvWzXz81VdfaeXKlR63fe211/TOO++Yy0OHDi1y1ubevXurRIkSkqS9e/dq0qRJHstcuHChPv30U3P5qquu8it+wBF3321dvuEGZ+IAAAAAAAARxbZkYUpKikaPHm0ur1q1SkOGDLFM/JGdna1XX31VI0aMUE5OjiSpQYMGuvzyy4ss84ILLlBWVpaysrJ0wQUXFLlNmzZtLOMOjho1qlALwz///FNTp07V3W4Jkvbt2+uSSy4pssxKlSrpuuuuM5cXLVqkMWPGWGZHPnr0qGbNmqUJEyZYymzfvn2RZQIR5Y47pGHDpCZNpKuukqZMcToiAAAAAAAQAZLsLKxnz55au3atXnnlFUlGwrBz587KyspS6dKltXXrVu3bt8/cvly5cpo+fbqSkgIPw+Vy6YEHHlD//v31119/6cCBAxo+fLiqVq2qU089VQcOHNC2bdt07Ngxc5/GjRvr0Ucf9Vru0KFD9d133+mjjz6SJC1evFhLly5VVlaWUlJStGXLFh08eNDcvmbNmppCwiWyjRwpPf6401H4JyHBGEfQ7rEES5aUnnyy8Hq6XgMAAAAAENdsa1l40r333quhQ4cqOTlZknTixAlt2LBBX375pSVRmJmZqRdeeEF169YN+pj16tXT3LlzVatWLXPdrl27tHr1am3cuNFMFLpcLvXq1UsvvPCC0tPTvZaZlJSkJ554Qn369DG7Kh8/flzff/+91qxZY0kUNm/eXC+99JIqVKgQ9HNBCI0dK3XoYCTgfHEycRZIAi3QpNsVV0i33GI8TkyUHnxQqlIlsLIAAAAAAAD8ZGvLQslIyI0aNUo9evTQa6+9phUrVmjXrl06cuSIypYtq9NOO01du3ZVjx49lJKSYttxGzVqpMWLF+uNN97QsmXLtGHDBh04cEBpaWk65ZRTdNZZZ6lPnz5+TaSSkpKiyZMnq2/fvnrjjTf0+eefa/fu3Tp27JgqVKig008/XRdffLE6d+6sBF8TUHBOtWrSBx8Yj+fOlQYNcjScIrlcRuvHe+4xkoXlykmPPeZ0VAAAAAAAIE7Yniw8KTMzU+PGjdO4ceMCLuODk4kdH6Wmpqpfv37q169fwMcsyumnn67TTz/d1jIRA845R/IyoU5QKlYMTbkAAAAAAABe0BwOKI6n8QIXLfJ/HwAAAAAAgAhGshAIRM+eUuXKTkeRr2RJpyMAAAAAAAAxgGQh4pM/E5B42/bFF4OPxV2gLRKffdbZ4wMAAAAAgJhAshDwxJeE4hVXhLZ8X8yfL115pT1lAQAAAACAuEayEAhGUsjmCMpXXFLx4otDHwMAAAAAAIgLJAsRn2Kpu61dLRQBAAAAAEDcI1kIBCKWko3uSDwCAAAAABDXSBYCnpxMnAWSQCPpBgAAAAAAohDJQqA4oWpFePvthdeNHh2aYwEAAAAAAPiAZCHgScuWnv9WXMtBXxKM554rdeyYv3zRRVKrVr7F5k8sAAAAAAAAPgrDVK5AlLr//tCWn5AgvfeetHy5kfDr2DGwxF+sjp8IAAAAAADCjmQh4lOlSkWvP/ts6cgR6Z57pLp1Pe9vV4IuMVHq0sWesgAAAAAAAIJEshDxqWtXqXJl6fff89d98onRNbggp7v5On18AAAAAAAQNxizEPEpMVF6/XXptNOkatWkhx+WzjnH6aicR5dmAAAAAADiGi0LEb/atZP+9z+nowgeLQ8BAAAAAIBNaFkIAAAAAAAAQBLJQiA07Gzt9+ij9pVVHFopAgAAAAAQ10gWAsW54YbC666/3vs+do7916OHdOaZ9pUHAAAAAADgAclCoDhduliTdWeeaawLlxIlpJUrpcWLw3dMAAAAAAAQl5jgBChOYqK0YoX0yitGN90rrpASwpxnT0mRuncP7zEBAAAAAEDcIVkI+CI1VbrqKqejAAAAAAAACCm6IQMAAAAAAACQRLIQAAAAAAAAQB6ShUC0c7mcjgAAAAAAAMQIkoVAtMvNjcyyAAAAAABA1CFZCASrU6fC66pVC38cAAAAAAAAQSJZCATrwQel5OT85b59pQoVnIsHAAAAAAAgQElOBwBEvZYtpVWrpJdekqpXl265JbzHt3PMQsY/BAAAAAAgrpEsBOxw5pnGPwAAAAAAgChGN2QAAAAAAAAAkkgWAgAAAAAAAMhDshCIJhdeWHhdiRLhjwMAAAAAAMQkkoVANJk8WUpNzV8eM0ZKYuhRAAAAAABgD7IMQDRp3Vr68kvpv/+V6tSR+vVzOiIAAAAAABBDSBYC0aZpU+MfAAAAAACAzeiGDCBfbq7TEQAAAAAAAAeRLAQAAAAAAAAgiWQhAHcul9MRAAAAAAAAB5EsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWQgAAAAAAAAgD8lCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCwEkO+UUwqv69Yt/HEAAAAAAABHkCwEkK9SJenyy/OXk5OlyZOdiwcAAAAAAIRVktMBALaqVk264ALpxRedjiR6vfCC1KqVtHOnNGCA1Ly50xEBAAAAAIAwIVmI2JKQIM2fT7IwGCkp0q23Oh0FAAAAAABwAN2QEVtcLuMfAAAAAAAA/EayEAAAAAAAAIAkkoUAAAAAAAAA8pAsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWYhYw0zIAAAAAAAAAUtyOgDAb7NnS8nJ0ubN0v33Ox0NAAAAAABAzKBlIaLPNddIAwcaCUMAAAAAAADYhmQhYkturtMRAAAAAAAARC2ShYg+JAQBAAAAAABCgmQhItqOW26xrmjbVkrw8rFlghMAAAAAAICAkSxERNt72WU6ccklxkKdOtL06c4GBAAAAAAAEMOYDRkRLSc9XSdef10JSXkfVVoOAgAAAAAAhAzJQkQ+l4skIQAAAAAAQBjQDRnRi4lOAAAAAAAAbEWyELGFFogAAAAAAAABI1kIAAAAAAAAQBLJQgAAAAAAAAB5SBYCAAAAAAAAkESyEAAAAAAAAEAekoWIXsyGDAAAAAAAYCuShYgtzIYMAAAAAAAQMJKFAAAAAAAAACSRLESsoWsyAAAAAABAwEgWInrR5RgAAAAAAMBWJAsRvWhFCAAAAAAAYCuShYgttDYEAAAAAAAIGMlCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCxE9GI2ZAAAAAAAAFuRLERsYTZkAAAAAACAgJEsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWYhoxgQnAAAAAAAAtiJZiNhycoKTwYOt6+fMCX8sAAAAAAAAUSbJ6QAAW51sbThjhlSpkrRhg3TRRdKgQY6GBQAAAAAAEA1IFiJ6nWxFWJS0NOmhh8IXCwAAAAAAQAygGzIAAAAAAAAASSQLEc2Y4AQAAAAAAMBWJAsRW7x1TQYAAAAAAIBXJAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshDRi9mQAQAAAAAAbEWyELGF2ZABAAAAAAACRrIQAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIaJZ+fKF11WvHv44AAAAAAAAYgTJQkSv666TUlOt6x5/3JFQAAAAAAAAYgHJQkSvMmWkZ5+VSpWSEhKke+6RWrRwOioAAAAAAIColeR0AEBQBg6U/vUv47HL5WwsAAAAAAAAUY5kIaIfSUIAAAAAAABb0A0ZAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIQAAAAAAAIA8JAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshAAAAAAAACAJJKFAAAAAAAAAPKQLAQAAAAAAAAgiWQhAAAAAAAAgDwkCwEAAAAAAABIIlkIAAAAAAAAIA/JQgAAAAAAAACSSBYCAAAAAAAAyEOyEAAAAAAAAIAkkoUAAAAAAAAA8pAsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWQgAAAAAAAAgD8lCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIQAAAAAAAIA8JAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshAAAAAAAACAJJKFAAAAAAAAAPKQLAQAAAAAAAAgSXLl5ubmOh0EAvf1119blhMSYiP/e+LECfNxrDwnAP6hHgBAPQCAegAA9YB/3F8vSWrZsqXfZSTZFQwiQ8EPRSyIxecEwD/UAwCoBwBQDwCgHggPUrIAAAAAAAAAJNGyMObQJBcAAAAAACA+2dH6kjELAQAAAAAAAEiiGzIAAAAAAACAPCQLAQAAAAAAAEgiWQgAAAAAAAAgD8lCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIQAAAAAAAIA8JAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshAAAAAAAACAJJKFAAAAAAAAAPKQLAQAAAAAAAAgiWQhAAAAAAAAgDwkCwEAAAAAAABIIlkIAAAAAAAAIA/JQgAAAAAAAACSSBYCAAAAAAAAyEOyEAAAAAAAAIAkkoUAAAAAAAAA8iQ5HQBw0tatW7VgwQKtXr1aO3bsUHZ2tipXrqwGDRrokksuUadOnZSUxEcWcNp7772nW265xe/9Pv74Y1WtWtXj39etW6eFCxfqyy+/1O7du5Wbm6sqVaqocePGuvTSS9W+fXu5XC6fj5ebm6vly5fr7bff1nfffac//vhDJUqUUJUqVdSmTRv17t1bDRs29Pt5APFo+vTpmjlzpmrUqKEPPvjAr30/++wzvf766/rmm2/0+++/KykpSVWrVlXz5s3Vs2dPnXnmmX6Vd+zYMS1ZskTvvvuu/ve//2n//v0qXbq0qlWrpvbt26t3796qVauWX2Xu27dPCxcu1EcffaRt27bp8OHDqlChgmrVqqUuXbqoR48eKlu2rF9lArEmkHpg0qRJevHFF/06Tq1atbRs2TKv24TiO/7w4cN64403tHz5cm3atEkHDx5UuXLlVL16dV144YXq2bOnKleu7FeZQDRbvXq1lixZorVr1+r333/XoUOHzO/bM888U7169VKjRo18Li8arvWpB/K5cnNzc50OAnjiiSc0a9YsZWdne9ymSZMmmjp1qurWrRvGyAAU9Nhjj2nWrFl+7+cpWXj8+HHdd999euWVV7zu365dOz344IM+fUHv3r1bo0aN0tdff+1xG5fLpUGDBmn06NFKSUkp/gkAcWrdunW68sordfz4cb+SBIcOHdK4ceO0fPlyr9v16NFD48ePV3p6erFlbt26Vbfccou2bNnicZvk5GTdfPPNGjJkiE8/OpYvX6677rpL+/fv97hNRkaGJk+erPPOO6/Y8oBYFGg90K9fP61du9avYxWXLAzFd/zXX3+tMWPGaOfOnR63KVWqlO6++2716tWr2PKAaLZjxw6NGzdOX331VbHbdu/eXZMmTVLp0qU9bhMt1/rUA1YkC+G4+++/X/PnzzeXk5KSlJWVpRIlSmjr1q36888/zb9VqlRJr776qmrUqOFEqAAkXX/99fr4448lSQ0aNPD57trUqVNVoUIFy7rc3FzddNNNlmRCamqqsrKylJiYqC1btujQoUPm3+rWratXXnlFZcqU8Xicffv2qW/fvvrll1/MdeXKlVO9evV05MgRbdq0yXJjonv37nr00Ud9eg5AvNm+fbv69++vPXv2SJLPSYJ//vlHAwcO1LfffmuuK1WqlBo0aKCcnBxt3rxZR48eNf921llnac6cOV4v5n/88Uf179/fcl2QkZGhOnXqaP/+/dqyZYvcL2uHDBmiW2+91Wuc7733nkaPHq2cnBxzXZ06dZSRkaFff/1Vv/76q7k+MTFRM2fO1Pnnn1/s8wdiSaD1QG5urlq0aKG///5bktSqVSuffrBXrlxZDz74YJF/C8V3/Ndff61rr73WUifVqFFDNWrU0J49e/Tjjz9atp84caL69+9f7PMAotFPP/2k/v37a9++fea65ORkNWjQQOnp6frjjz/0ww8/WL5vGzZsqBdffLHIhGG0XOtTDxRGshCOKtidsUuXLho/frwqVaokybgLsWjRIj344IM6cuSIJKlx48Z6/fXX/WqiDMA+5557rn7//XdJ0vz589WqVauAy5o9e7Yefvhhc/nKK6/U6NGjzRZGR48e1fPPP68nnnjC/NLv1KmTZsyY4bHMG264QR999JEk42Lkjjvu0OWXX24OY7Bnzx498MADeuedd8x97rrrLl111VUBPw8gFm3evFnXXXeddu/eba7zNUng3vXQ5XJpxIgRGjx4sNLS0iRJf/31l5544gnNmzfP3GfQoEG64447iiwvJydHvXr10saNGyVJZcuW1aRJk9SlSxfzemD79u26++679fnnn5v7zZw5UxdeeGGRZW7fvl09evQwExkNGjTQlClTLF2qPv/8c915551m0rBUqVJ69913VaVKlWJfAyAWBFMP/PTTT+rSpYskI9mwdu1aJScnBxWP3d/xhw4dUrdu3czrmmrVqunBBx/U2WefbW6zYcMG3XHHHdqwYYMko2HDq6++qsaNGwf1XIBIk5OTo8suu0ybN2+WZNwku/HGG3XNNddYEoG7d+/Wo48+qjfffNNc17VrV02fPr1QmdFwrU89UDQmOIFjjh8/rilTppjLHTp00OOPP24mCiXjwqJv376aMWOGefKvX79eixcvDnu8AIw7eSe/SCUpKysrqLKefPJJc7l///6aMGGCpStiWlqahg4dqkmTJpnrli1bpjVr1hRZ5qeffmpePEjSQw89pP79+1vGO83IyNBjjz2myy67zFw3c+ZMy11NIN699dZbuuKKKywJAl/98MMPWrBggbk8ZswYDR8+3EwUSlKZMmV01113afjw4ea6F198UTt27CiyzIULF5qJwqSkJM2aNUtdu3a13Dg85ZRT9J///MdycT9t2jRLq0F3jz32mJkorFGjhubOnVto7KU2bdropZdeMltQHz582OsPGCCWBFMPSDJ/VEtSZmZm0InCUHzHP/300+Z1TXp6up5//nlLHSJJp512ml544QU1aNBAkpSdna1p06YF9VyASLRo0SIzUSgZ59iIESMKtRisUqWKpkyZomuuucZc99577+mbb76xbBct1/rUA0UjWQjHLFu2TL/99psk48J//PjxSkgo+iPZrl079e3b11x+7rnnwhIjACv3C//q1asHNeD/a6+9psOHD0syug6MHTvW47a9e/e2dP3zVAfMnTvXfNyuXTtddNFFHsucMGGCKlasKEn6888/9cYbb/gTPhCTdu/erXHjxmns2LFmi35/zZ8/30zQ1a1bV4MHD/a47U033WReeB8/flwvvPBCkdu5t0Ds3bu3WrRoUeR2ycnJmjJlipmU2Lp1qzlsgrvdu3dr6dKl5vLo0aMLDZNwUtWqVXXXXXeZy4sWLfI6viEQ7eyoBySZCX5JtkwoZvd3/D///GMZQ23IkCGqXbt2keWVLl1akydPNpdXrlypTZs2+fsUgIj21ltvmY/btWunHj16eN1+9OjRluGIlixZYvl7NFzrUw94RrIQjnFvFty2bVtVr17d6/buycL169dr+/btIYsNQNHck4XBtCqUpHfffdd83K1bN5UsWdLr9u51wCeffGK2CDrpwIEDWrVqlbncu3dvr+WVLFnSchH03nvv+RQ3EKueeuopde3a1dKtqG7duho6dKjPZZw4ccKShOvVq5fHG4GSlJCQoCuuuMJcdt/3pI0bN2rr1q3mcp8+fbzGUKVKFXXo0MFcLurcXrp0qdndKT093ewq6UmnTp3MZGJ2dnaxk7YA0cqOeuAk92uGYJOFofiOX7FihQ4cOCDJqIuKm7Dg9NNPt3Q55LoBseTYsWOW1nwXX3xxsfukpKSoXbt25vJ3331n+Xs0XOtTD3hGshCOyM3N1erVq83lc845p9h9srKylJGRYS77OgsbAPvYdeG/f/9+S1nuFxqetGnTRomJiZKM8U3cLxYk6YsvvjBbM7lcLp/qFfdt1qxZY14sAPFo9uzZlgvzyy+/XAsXLtSpp57qcxkbN260TEDiy7ntfh7+9ttvltZIkixjEJYtW1ZNmzb1q8yPPvpIBYfo/uyzz8zHrVq1KrZ7ZGJioqVL0ocfflhsDEA0sqMeOMnOZGEovuPd64EGDRpYfmf4Uib1AGLJr7/+qtTUVHM5MzPTp/3KlStnPnb//o+Wa33qAc9IFsIRv/76q/766y9zuUmTJj7t596SqeCdCwChZ1eXok2bNll+vPsyOHDJkiVVq1Ytc7lgHeAeW82aNX3qIu3+HE6cOKH169cXuw8Q65o0aaL58+fr/vvvL3JmQ2/cz8Pk5GTVr1+/2H3q1KljGc/Q27l92mmn+TTBmfu5feDAAcuMiZIs3YZ8HZzcvUyuQRDrgqkHJHvHOJZC8x0fbD2wZcsW/fPPPz7tB0S6OnXqaO3atfrqq6+0ZMkSc4iQ4pycAEyS5byMlmt96gHPkorfBLDfTz/9ZFl2rxS8qVmzpvm44IU/gND6559/9OOPP5rLWVlZ+vrrr/Xmm2/qq6++0s6dO+VyuZSRkaGWLVuqR48ehQYHPsm9DkhJSVG1atV8iqFmzZpmDAXrAPcyfW0BkZGRobS0NB09elSS9PPPP6tt27Y+7QvEmlatWqlXr1668MILfUrIFcX9PKxRo4ZlwHFPXC6Xqlevrm3btkkyzkNPZfp6brtfL5ws8+S+x44dM8dMDrTM3bt36+jRo5YkJxAL7KgHJGurwoyMDKWnp+vdd9/Vu+++q3Xr1mnv3r0qWbKkqlWrprZt2+ryyy9X3bp1PZYXiu9492uaQOqB7Oxs7dixw+cWWEA0SE9Pt0xA4s2hQ4e0cuVKc9n9XIiWa33qAc9IFsIRe/bsMR8nJCRYZkD2xr1ZsHsZAEJv06ZNlqb/9957r6Xp/kk///yzfv75Zy1atEjt2rXTww8/bA4ufJL7+etLc/+iti1YB7i3YPCnzIoVK5p3RalXEM9mzpwZdBnu55D7oOfFqVSpkpkstOPcrlChghITE806y73MPXv2WFo7+FpmwWuVPXv26JRTTvFpXyBa2FEPSNZkYVJSki6++OJCjQUOHDigAwcOaOPGjZo7d64GDhyo2267rcibDHZ/x584cUL79u3zu8yi6oFYTBIAvpg9e7ZlhmH38YKj4VqfesA7uiHDEe5jBZQqVcrr4Ofu3LtBMLYYEF7uTf9zc3PNRGF6eroaN26sVq1aqUaNGpZ9VqxYocsvv9zSikeSZSZRX+9eSt7rAPdlf8p039Z9eAQA/gv03Hbf1o5zOyEhwTKQuvu5XbD8MmXK+B1jwTIBWLknC3fu3GkmCjMyMtSiRQs1b97cMtZZTk6Onn/+ed1www06fvx4ofLs/o4/ePCgeTNBoh4A/LVu3To9++yz5nLt2rV1wQUXmMvRcK1PPeAdLQvhCPd+/f504UlJSTEfHzt2zNaYAHjnfuEvGRf8Y8eOVdeuXS3n5ubNmzV16lR98sknkoyxTIYNG6ZXX33V3M79/LWrDrCjXonVMUeAcImGc7vgee4+oLuv5RVVDoB8BScqatq0qcaNG6ezzjrLXHfixAmtWLFCDzzwgNkVcMWKFZo8ebImTpxo2Z96AIgcO3bs0LBhwyyJ/dtvv93SKpjrgehHy0I4wr1i8bVVoSRLBZSdnW1rTAC8KzhOyFtvvaUePXoU+sJs0KCBnnnmGfXu3dtct2HDBi1YsMBcDkUd4L7sT5knZ10rqkwA/gn03PZ2Hrovu28XaJkFy/e1zILbubdGAJDv2LFj2rFjh7ncpUsXvfzyy5ZEoWTUEe3bt9fChQt12mmnmesXLFhQKNlo93c89QAQmJ07d+rqq6+2dOcdNGiQpQuyFB3X+tQD3pEshCPcT7ATJ074vJ/7CZ2cnGxrTAC8e+6557Rq1Sq9+uqrmjt3bqFxCN25XC5NnDjR0i153rx55uNQ1AGBlun+BU+9AgQnFOehe5n+XJC7b+t+U6PgDwxfyyy4HfUFULSUlBStXbtWH374oebPn68pU6Z4PV/S09M1bdo089zMzc21XDNI9tctgf7Ypx5APNu6dav69+9vuRnQrl073XrrrYW2jYZrfeoB70gWwhElSpQwH/vTbNe9KbKvzYQB2KdixYpq1qyZTzOapaSkqF+/fuby9u3bzVnN3LsO+FMHuG9bsA4IRZkA/BOp57Z7stD9GkTyfViTQLsrAfEoISFB1atXV6tWrQqdc0XJzMy0zFDqPsOqZH/dUrALo69lUg8gXq1Zs0YDBgzQzp07zXVt2rTRjBkzikyWRer1APWA70gWwhFly5Y1Hx8+fNgyK6E37rMtuQ+KDCAytWjRwrJ8siuz+/nrfl4X5/Dhw+bjgnWAe73iT5nUK4B9Aj23vZ2HgZzbJ06c0N9//11kme7l+VNmwe2oLwB7uV8z7Nq1y/KD3O7v+PT0dEsrY+oBwLP//ve/uvrqq/Xnn3+a68477zw9/fTTHm8GRMO1PvWAdyQL4YgqVaqYj3NyciwVjzfuYyMUnLIcQOQp2FX55Cxm7nXAH3/84XN53uqAQMt03zYjI8Pn/QAUVrlyZfOxP+fh3r17zccFz8NAzu19+/ZZuii5l5mRkWH5ceB+bF9jdLlcXodiAOC/gt/r7rOp2v0dn5CQYFn2tcyC9QW/RxDrnnjiCd16662WVvg9evTQzJkzvU4yEg3X+tQD3pEshCNOPfVUy/L27dt92s99fIQ6derYGhMA+xVspl+qVClJ1jrg77//9vnHuntdUbAOqF27tvn4ZHfn4vz+++86evRokWUA8J/7ObRjxw6feg7k5ubq119/LbKMgsu+ntsFryvcy0hJSbEMpRBImdWrVy80uROA4Hi6ZpBC8x3vfi0SSD2QnJxsGZsZiCXHjx/X2LFjNWPGDMv6G264QQ8//LBlIpKiRMu1PvWAZyQL4YgaNWpYmutu2LDBp/3cZ0Zr2LCh3WEB8GDjxo2aMmWKxo4dq8GDB/t85809wS8ZP7AlqVGjRnK5XOZ6X+qAw4cPW77EC9YBjRs3Nh///PPPOnLkSLFluh/X5XIpKyur2H0AeOZ+Hh45ckQ//vhjsfts27bNkiRwnxW1YJkFZ0j1xP3cLlu2bKEL+SZNmgRVZsEYAeRbvny57r//fo0ePVpjx471eT/3H+BlypRR6dKlzeVQfMcHWw/Uq1cvZic2QHw7duyYbrrpJr311lvmuqSkJPO8dr+G9yRarvWpBzwjWQjHtG7d2ny8atWqYrffuHGj5Y5EmzZtQhIXgMIOHDigOXPm6K233tKKFSv0xRdf+LTfJ598Yj5OT09XgwYNJEmlS5dWo0aNzL/5Ugd8/vnnZrfCxMREtWrVyvL3li1bmnc5c3JytHr16mLLdD9uo0aNCo1lBsA/9evXV4UKFczlzz77rNh93CcyKF++fKELefdzfc+ePdqyZUuxZbqf2+7XG0WVuXr16mJnVSxYp3ANAni2YcMGzZ8/X0uWLNHbb7/tc4uiFStWmI9btmxp+VsovuPd64H169frr7/+8qtM6gHEouzsbN1888366KOPzHWlSpXS008/rcsvv9zncqLlWp96wDOShXBM586dzccffvihdu/e7XX7l19+2XycmZlJCyAgjJo0aaKSJUuaywsXLix2n127duntt982l7t3724ZJ6xLly7m47fffrvYu4PudUDbtm1VpkwZy9/LlClj+cJesGCB1/IOHz5sia9r165etwdQPJfLpU6dOpnLr776qtdE3IkTJ/Tqq6+ay126dCnUYqFBgwaWrkjFnds7d+60/Mjp1q1boW06duyoxMREScbYQ8uWLfNa5tKlS7Vv3z5JRusK92sYAFbuP75zc3P12muvFbvP+++/r23btpnLPXr0sPw9FN/xZ599ttLT0yUZXS6Li/Pbb7/V//73P3O5qLoFiHZTp07Vhx9+aC5XqFBB8+fPV7t27fwuKxqu9akHPCNZCMd07tzZHAj92LFjuv3225WdnV3ktp9++qklOTFw4MCwxAjAUKpUKV100UXm8sqVK/Xmm2963P7QoUMaOXKkeVGQmpqqwYMHW7bp3bu3OYPa3r17NWnSJI/lLVy4UJ9++qm5fNVVVxW53YABA8zHH374oRYtWuSxzIkTJ5o//kuWLKk+ffp43BaA76688koz4bdx40Y9+eSTHredPn262VIwISHB4/e7+7m9YMECjy0Ujh8/rnHjxun48eOSjKEPOnbsWGi7qlWr6sILLzSXJ0+e7PGm5c6dO/XAAw+Yy507d7YMsg7AqlWrVpZxwZ555hn98MMPHrfftm2bxo8fby7XrVu3yIS83d/xaWlplvUzZszQpk2biizv4MGDuuuuu8zlM844Q82aNfN4fCAaffzxx5o7d665XLZsWc2bN8/S/dcf0XCtTz3gGclCOCYlJUWjR482l1etWqUhQ4ZYxivJzs7Wq6++qhEjRignJ0eS0cLAnybQAOxxyy23mHfeJOmuu+7SjBkzdPjwYct2X375pfr376+1a9ea60aPHq1atWpZtqtUqZKuu+46c3nRokUaM2aMZTzEo0ePatasWZowYYK5rn379mrfvn2RMV5wwQWWLof33HOPnn76act4aHv37tWoUaMsdxqHDRtm6ToJIHANGzZUz549zeUZM2bogQce0MGDB811Bw8e1OTJkzVr1ixzXd++fVWvXr0iy+zbt6/ZujA7O1vDhw/XwoULLTcZt2/fruuuu87SLem2227zOBHJqFGjlJqaKknavXu3rrzyykJDLKxevVoDBgwwZ2csWbKk5doFQGEul0t33nmnuXz48GH961//0pIlSywtjY8fP6433nhD/fv3159//inJmCxgypQpRU6eEIrv+Ouvv9782+HDhzVo0CAtW7bMMjnTxo0bNXDgQPPGRmJiom6//Xa/XhMg0uXk5Gjy5MnmZ9/lcmnatGmqX79+wGVGy7U+9UDRXLm+TFMHhND48eP1yiuvmMsJCQnKyspS6dKltXXrVvNugCSVK1dOL7/8surWretEqEDc+/zzz3X99ddbvpDT0tLUsGFDpaSk6JdfftGuXbss+wwePNjjAOcnf/S7dxlMTk5WVlaWUlJStGXLFkuCoWbNmlq4cKHXxN7u3bs1YMAAy42H9PR01a9fX8eOHdOmTZvMVkeS1KFDB82cOdPSRRpAvkWLFumOO+6QZExQ9sEHHxS7z6FDh3T11Vfr+++/N9eVKFHCHEJk06ZNlu5ITZs21QsvvKC0tDSPZW7evFkDBw7U/v37zXUVKlRQZmamDh48qM2bN1sSEQMGDLC0VirK22+/rXHjxln2q1WrlqpWraqdO3da6pGEhARNmzbN0soaiBeB1APPPPOMpk2bZllXrlw51a9fX9nZ2dq6datlfLDk5GQ9/vjjRbYGPikU3/GfffaZhg4dapkxtWrVqqpVq5b++OMPbd261bL9ycnegFiyZMkSy82wkiVLqkWLFn6VUalSJU2ZMsWyLlqu9akHCiNZCMfl5ubq8ccf1+zZsy0ndUGZmZmaPn16UHc3AARv/fr1uu222wp9aRZUtmxZjRkzRn379vW63bFjx3Tvvffq9ddfl7evpObNm2v69Ok+df/buXOnRo8erTVr1njdrk+fPpowYYLHlkcAAksSSEbrwbFjxxa7fYcOHTR16lRLy2VPNm3apDFjxnid5CQxMVFDhgzRyJEjfZqx8b333tOECRMsSciCypYtq/vuu88y/hIQTwKtBxYvXqxJkybpwIEDXrfLzMzUvffeq7POOqvYMkPxHf/FF19o3Lhx+u233zxuk5aWprFjx1q6QQKxYsSIEXr//feDKsNT3RAt1/rUA1YkCxExtm7dqtdee00rVqzQrl27dOTIEZUtW1annXaaunbtqh49evCDHogQOTk5Wr58ud5//32tW7dOe/fuVXZ2tipVqqTatWvrggsuUPfu3f3q2rtu3Tq98cYb+vzzz7V7924dO3ZMFSpU0Omnn66LL75YnTt39qv1X25urpYtW6Z33nnHjDEhIUFVqlRRy5YtdcUVV+iMM84I4NkD8SXQJMFJn332md5++2199dVX2rt3r3JyclSpUiU1b95cPXv29HvQ9OzsbP33v//V0qVLtWHDBv3xxx9KTk5WzZo11bp1a/Xr189jd2ZP9u/fr4ULF+qDDz7Qzz//rAMHDqhkyZLKzMzUeeedp759+zJUAeJaMPXAoUOH9Oabb+qTTz7Rxo0btX//fiUmJiojI0ONGjVS586d1bFjR7+u80PxHX/kyBEtWrRIy5Yt0w8//KD9+/crNTVVp556qs455xz169dPNWrU8KtMIFp0797d69iiviiuboiGa33qgXwkCwEAAAAAAABIYoITAAAAAAAAAHlIFgIAAAAAAACQRLIQAAAAAAAAQB6ShQAAAAAAAAAkkSwEAAAAAAAAkIdkIQAAAAAAAABJJAsBAAAAAAAA5CFZCAAAAAAAAEASyUIAAAAAAAAAeUgWAgAAAAAAAJBEshAAAAAAAABAHpKFAAAAAAAAACSRLAQAAAAAAACQh2QhAAAAAAAAAEkkCwEAAAAAAADkIVkIAAAAAAAAQBLJQgAAAAAAAAB5SBYCAAAAAAAAkESyEAAAAAAAAEAekoUAAAAAAAAAJJEsBAAAAAAAAJDn/wH2Cmetv/GrpgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Still imperfect, but this is a _very_ high count rate case. In more typical cases, the correction is more than adequate:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 3402.34it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAAQ1CAYAAABKuwqzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT1/8H8HeAAALKcICiuMG9tXVWrVVrHVVbrXvXUa17z1pX66qraq1aV9272roXOHDjAhRkiohg2COQ/P7gx/3mkhCSkAjK+/U8fXrvzb3nnGByxyfnnI9EqVQqQURERERERERERGQiZvndACIiIiIiIiIiIvq4MQhJREREREREREREJsUgJBEREREREREREZkUg5BERERERERERERkUgxCEhERERERERERkUkxCElEREREREREREQmxSAkERERERERERERmRSDkERERERERERERGRSDEISERERERERERGRSTEISURERERERERERCbFICQRERERERERERGZFIOQREREREREREREZFIMQhIREREREREREZFJMQhJREREREREREREJmWR3w0gIgKAdevWYf369QCAJk2aYNeuXXkuc8aMGTh69CgAoHv37li2bFmeyzSF58+f486dO+jTp4/G1wcMGABvb28AwNixYzFu3Lj32TzSg4+PDw4ePIjbt28jMjISSqUSzs7OqFmzJrp164ZWrVpBIpGYpO6AgADs27cPt27dQlhYGNLT01GqVCm4u7ujS5cu+OKLL2Bhod9l/8aNGzh8+DAePHiAN2/ewMLCAi4uLqhfvz66d++ORo0a6VVeWloaTp06hX///RdPnz6FTCaDnZ0dSpcujVatWqFnz55wc3PTq8yXL1/i8OHDuHPnDkJCQhAXFwcrKyuUKFEC9erVQ/v27dG2bVuj/N3Xr1+PdevWATDed9HYZR46dAizZ88GAPj5+eW5fQCgVCoxZMgQ3LhxAwCwc+dOfPLJJzofb4rvxZs3b3DixAlcvnwZISEhiImJgbW1NcqWLYsmTZqgd+/eqFy5ss7lyWQyHDlyBDdu3IC/vz9kMhkAwNHREdWrV0erVq3QvXt3WFtb51qWUqlEw4YNkZiYqNd7Gj9+PMaMGaPXMR+zwnrtCwsLw+effy6sX7hwAWXLls1zuXfv3sXr16/x1VdfaXy9bdu2CA8PBwAsXboUPXr0yHOdZBrGvjbrw9jnc6VSifPnz+PEiRN49OgRoqOjUaRIETg7O+PTTz9Fz549Ua1aNb3aGBkZiYMHD8Lb2xuBgYGIjY2FhYUFnJycULt2bbRt2xadOnXS6Z4oJiYGTZs21at+APj111/RrVs3vY8jKgwYhCQiyifJyclYv349duzYgc6dO+cYhKSCTy6X4+eff8b+/fvVXgsKCkJQUBBOnTqFFi1aYOnSpShVqpRR61+3bh02bdqE9PR00fbQ0FCEhobiwoULqFWrFpYvX45KlSrlWl5CQgKmT5+O8+fPi7anpqYiICAAAQEBOHToELp27Yp58+ahaNGiuZYZEBCA8ePH4/nz56Lt7969w7t37/D06VNs3boVP/74I0aMGJHrQ0xSUhKWLl2KgwcPQqlUil6Ty+VISEhAUFAQjh07hho1amD16tWoUKFCru3Mia+vLzZt2mTw8e+jzLCwMPzyyy9GKy/L3r17hQCkPkz1vdi+fTvWrl2LpKQktfqePXuGZ8+eYdeuXRg+fDgmTpwIM7OcB/4olUrs3r0bK1euRHJystrrERERiIiIwMWLF7Fu3TosWbIErVu31tq+4OBgvQOQRKby7t07rFixAocPH8YPP/yQ382hPDDFtVlXpjifR0ZGYuLEibh7965oe1paGmJjY+Hv749du3Zh8ODBmDRpEiwtLbWWl56ejnXr1mHr1q2Qy+VqZSYlJSEsLAz//vsv1q5di1WrVqFOnTpay3z27Fmu74OI9MMgJBFRPlmyZAkOHDiQ382gPFIqlZgwYYLoocDKygoeHh4wNzfH8+fPkZCQAADw9PTEoEGDsH//fhQrVswo9S9atEjUc9jCwgIeHh4oUqQIAgIC8O7dOwDA48ePMWDAABw4cACurq45lpeamoqhQ4fi4cOHwjZbW1u4u7sjIyMD/v7+SElJAQCcOHECERER2LZtm9aHg5cvX6Jfv35CWwCgZMmSqFixImQyGZ4/fw6lUgm5XI6VK1ciLi4OU6ZMybG8lJQUDB06FPfv3xdtr1SpEkqWLImkpCT4+fkhLS0NAPD06VN888032LNnDzw8PHIsNydyuRwzZsxQe6jJC2OXGRMTg++//x5xcXFGKS9LWFgYli9frvdxpvheKJVKLFy4EH///bewzdzcHG5ubihZsiQiIyMRHBwMAFAoFPjjjz8QGxuLhQsX5ljm0qVLsWPHDtE2Z2dnuLm5ISMjA4GBgUKvyOjoaIwaNQpLly5F9+7dcyxT9aHVwcEBtWrVynFfVfr2AibSxeTJk+Hl5ZXfzaA8MsW1WVemOJ/HxMSgf//+CAkJEbY5ODigSpUqSE5Ohp+fH9LT06FUKrF9+3a8efMGq1atyrE8hUKBiRMn4uzZs6Lt5cqVQ+nSpZGWlgZ/f3/hx6vQ0FD07dsXf/zxB5o1a5Zjuarnc2dnZ1StWjXHfVUZ+8dmoo8Jg5BERPnEmAENyj/btm0T3Zj37dsXkyZNEnogpKSk4K+//sK6deuQnp6OwMBAzJo1S5h+IC/+++8/UQCyQ4cOmDdvHkqUKAEg8zN25MgRLF26FMnJyXj79i3GjRuHw4cP59jT8JdffhEeciQSCcaNG4dhw4YJw1Dj4uKwbt067Ny5EwBw+/ZtrFy5EjNnztRYXkZGBiZMmCAEIO3t7bFw4UJ06NBBaENoaCjmzJmDmzdvAgC2bNmC+vXri4Ykqlq6dKkoANmxY0dMnTpVNGQxOTkZu3btwtq1ayGXyxEfH4/Ro0fj9OnTOg2pVbV582aj94YwZpkRERH4/vvvERAQYJTysiiVSsyaNUutx6EuTPG92LJliygA2aFDB0ydOhXlypUTtj19+hSzZ8/G06dPAQD79+9H69at0bZtW7XyTp8+LQpAVqtWDfPmzUPDhg2FbQqFAufPn8fChQsRFRUFpVKJuXPnonr16jkOEfT19RWW27Zti6VLl+b4nohMjfcaHwdjX5v1YYrz+cyZM4UApJWVFWbOnIlvv/1WGCIdFRWFJUuW4PTp0wCAU6dOoV69ehg4cKDG8v78809RAPKTTz7B7NmzRT88yuVyHD16FMuWLUNiYiLkcjl+/PFHnD59Osegoep1ulevXhg7dqzWvxUR5Y6JaYjoo7Vs2TL4+fnBz8+vwM4HqYtdu3YJ76OwzIn1oYiJicGGDRuE9T59+mD+/PmiIVDW1tYYNWqUqDfWuXPncO/evTzVLZfLRUNv27Rpg99++00IQAKAVCpF7969sX79euHG/smTJ/jnn380lvnixQvs27dPWJ88eTJ++OEHUdCuWLFimD17tmhY3549exAWFqaxzIMHDwpBGQsLC2zatAkdO3YUBUHLlSuHP//8UzTv0sqVK5GRkaFW3suXL3Hw4EFhvVevXlizZo3anGlFihTB999/jzVr1gjbwsPDhQc0XRX0Ydienp7o3r07/P39jVKeqr///hu3bt3S+zhTfC/CwsKEuTOBzIfgNWvWiAKQAFCjRg3s2LEDLi4uwrYtW7aoladQKLBixQphvXr16ti7d68oAAkAZmZmaN++Pfbu3QtHR0cAmd891WOzU31oNaTnLVF+uHjxonCvwfkgCxZTXJt1ZYrz+bVr13D58mVhfdmyZejTp49ojsaSJUti9erV+Prrr4Vtv//+u9DjUlVcXJzomtqyZUts27ZN7fwrlUrRq1cv/PXXX7CysgIAxMfHi95fdqo/Kuk7NyURacYgJBERkYEOHTokzP3m4OCAadOm5bhvz549RXPJbd++PU91nzt3Dq9evQKQGdybN29ejnPftWjRAr1798617l27dgmBv0qVKmHYsGE51j927Fi4u7sDyAzK7N69W+N+qkG/nj17okGDBhr3k0ql+OWXXyCVSgFkziF55coVtf1OnjwptNHBwSHXXh6ff/452rdvL6yfOnVK6/6q5HI5pk+fLvQkMsb8WsYqMy4uDsuWLcOIESNEw9yNJTQ0VAi06Tt1gCm+F9u2bROG11erVg1z5szJsTdvsWLFMGrUKGH9/v37iI2NFe3j7e0tJOEAgAULFsDGxibHdpYrV070cO/l5ZXj3101CMmHViLKK1Ncm3VlivO5ag/0Fi1aoFOnTjmWOX/+fBQvXhxA5vymWQknVZ07d05oo1Qqxc8//6w16UydOnXQt29fYf2///7T+KNnamoqXr58KazzRyUi42AQkoiIyED//vuvsPzll19qDWIAEAUCr169atAw1yxZQ5QAoFmzZihTpozOdT958gShoaGi1xUKBc6cOSOs9+jRQ2tCDzMzM/Tq1UtYVz02i6+vr2iI8DfffKO1jc7OzmjTpo2w/t9//6ntkzVkG8gc6prb3xyAaFi3r6+vEMzKzaZNm4ReEF9//TWqV6+u03GmLvPgwYP44osvsH37digUCgCZvUa0zaOpD6VSidmzZwufzxkzZuh1vLG/F3K5HCdPnhTWZ8+eDXNzc61lduzYEf3798fYsWMxa9YstQdM1c+Rq6sr6tWrp7U8QPw5UigUwpBvVTExMXjz5o2wziAkEeWFKa7N+jD2+Tw2NhbXr18X1nv27Km1PBsbG3Tt2lVYz+2+oH79+ihdurTWMgHx+Vwmk6ndEwGAn5+fcO2ws7MzSpZ6IuKckERUgCUkJODvv//GmTNnEBISgvT0dJQqVQqNGzdG586d8emnn2o9fsaMGcIvpt27d1cbkn3kyBGhF9XQoUMxffp0KBQK/Pfffzh16hSePXuGt2/fokiRIihbtixat26N7777DiVLlszT+9L0S+rRo0dFv+76+fkJywMGDIC3tzeAzF+4sw/JXrdunTDvzoIFC9CnTx8kJSXh5MmTOHnyJIKCghAXF4cSJUqgWrVq6N27Nz777DNRGS9fvsS+ffvg6ekp9K4rW7YsWrVqhcGDB+v8nmNiYnDkyBFcu3YNL1++xLt372BjY4NSpUrhk08+QdeuXXPNRPihkMlkoh5PLVq0yPWYTz/9FObm5sjIyEBKSgquX7+Odu3a6V23UqkUDZNt3rx5rsd4eHigZMmSiIqKApA59G7QoEHC676+vqKeXbq8H9V6X716BV9fX1HQRfXBwN7eHrVr19apzKx5nS5fvgylUinq8RYdHS0sV65cOdfygMzeG6pkMlmuk8Y/e/YMmzdvBpAZ4Js1a1ae54IyVpm7d+8WkqUAQLt27bBgwQIEBgbmqX1ZVIdht2jRAj179sSsWbN0OtYU34u7d+8KCXcqVKiAJk2a5Fqmo6Mj5s6dm+PrUVFRMDMzg0KhQJUqVXItD1D/HGnqCan63l1cXNSOeR8CAgJw9OhR3L59G0FBQUhISICdnR2cnJxQt25dtGrVCh06dNAayA0LCxM9pGu6hubFjRs3cPjwYdy7dw9v3ryBra0t3Nzc0KlTJ/Tq1Qu2trZ6l2ns649CocClS5fg5eWF+/fvIyoqCjKZDFKpFMWKFYObmxsaN26M7t27q00LkJOkpCQcOXIEZ8+ehZ+fHxITE1GiRAnUqlULvXr1QqtWrfR+35pk//fLsn79euF+wdXVFRcvXhRea9u2rdA7eOnSpWpDslXvqbZs2YJWrVpBJpPhyJEj+O+//xAaGoqkpCQ4Ozujdu3a6Nu3r9r0Bo8fP8b+/fvh7e2N169fw8LCAhUqVEC7du3Qv39/nXuGh4eH4+jRo/D09ERYWBhkMhns7OxQpkwZNGvWDN27d9f5+lDQmeLarCtTnM+9vb2FwJ5EItHp/qV58+ZCr8p79+4hNjYW9vb2wutv376FRCKBUqnM0/m8QoUKom2qQ7E9PDxy7H1vSj4+Pjhx4gTu3r2LsLAwJCcno2jRoihRogQaNGiAtm3bqt3TExV0DEISUYHk4+OD8ePHCwGxLEFBQQgKCsLBgwfx2WefYdmyZXBycjJKnWFhYZgyZYpaxt3U1FTIZDI8fvwY27Ztw/z580Vz1BQ0Pj4+mDJlipAlNkt4eDjCw8Nx4cIF9OrVCwsWLIC5uTl27NiB5cuXq01e7+/vD39/fxw5cgSbN2/O9eHtr7/+wtq1a4UhMVnS0tIgk8ng7++PXbt2oWPHjvj555/znB1aNYicF5oetnTh5+cHpVIprNesWTPXY2xsbODm5iYM73n06JFBQcjw8HBRFmRds+96eHgIQchHjx6JXlO92ZZKpTplgKxYsSKsra2FjJyPHj0SPeiollm9enWdbuBVj4+NjUVISAjKly8vbDtz5gxSU1MRGRmpc6Ai+5xYqg8vmmTPXL1gwYJcj8mNKcqsUKECpkyZgi+++AIAjBKEVB2GbWdnh0WLFul1vCm+F6rzin3yySd6tScnixcvxk8//YSoqCikp6frdEz2z5Gmc1h+DsVWKBRYvnw5/vrrL6GHbBaZTAaZTIbAwEAcPXoUFSpUwC+//KJTD1BjiomJwfTp03H16lWN7fPx8cHu3bvx22+/6VWusa8/np6eWLRokWgoZha5XI6kpCS8fv0a3t7e2Lx5M4YPH44JEyZoPcddv34d06ZNE87BWSIiIhAREYFz586hY8eO+PHHH/V45/nnypUrmDVrFt6+fSvaHhwcjODgYPzzzz8YN24cxo4di4yMDKxZswZbtmxR+2w+fvwYjx8/xuHDh7F9+3atAd2MjAz89ttv+Ouvv9R6tL979w7v3r3DkydPsG3bNvTq1QuzZs3Kc3Zo1R9682Lnzp0Gnb9McW3WlSnO56rvp2zZsjpdB1XbrlAo8OTJE1FG6+3btyMtLQ1v3rzROgxbVUE/n6empmL27NmiUQBZYmJiEBMTA39/f+zbtw81a9bEqlWr1IKoRAUVg5BEVOCEh4dj2LBhQpDF0dERlStXRnJyMvz8/IQHxitXrmDAgAHYtWtXngORMTExGDJkiJCpr1ixYqhSpQqUSiUCAgKEtiQlJWHmzJlwdnYWJdHQR9Yvyf7+/sKwvVKlSglz+OSFn58fVqxYIUzcXbp0aZQrVw6xsbHw9/cXbiYPHDiAqlWrQi6X49dffwWQmZ2wWrVqMDc3h7+/v1BGTEwMxo0bh3///VfjMJysoZuHDx8WbS9fvjxcXFyQlJQEf39/pKamAsgcSvP8+XPs2LEjz71K81NQUJCwbGlpqdPwHyDzpjvr5jzr85aXugHAzc1N57qzZK9btUxXV1edbuQlEgnKlCkjBL+yB75Vy1QNJOraxqwysx9rZWWl83sGxMPRXF1dhQnpc/L7778LD0qdO3c2KFBsyjJr1KiBIUOGoHPnzjo/cOkiezbsadOm6fy5zmKK74Vqz3DVB/Dr16/jxIkTuH//PiIjI2FlZYVy5cqhTZs26NOnT67XBQsLC73eX/ZhjZUqVVLbJ3tSmjdv3uDIkSO4evUqAgICkJiYCAcHB7i7u6Nt27bo2bMnihQponMbtFmyZAl27dolrFtbW6Ny5cooVqwYZDIZQkJChCBdUFAQhgwZIlwL3oeYmBj069dPFCyXSqWoVq0arK2tERAQgJiYGISFhWH48OGws7PLtUxTXH9Onz6NqVOnioLTpUqVgpubG6RSKWJjY/HixQshCJaeno5NmzahaNGiGD58uMYyz58/j/Hjx4vKLF68OCpVqiS0US6XCz0K88ra2lq413j06JEwJ6qbm5tw7lRNYqav69evY9euXcL7cXNzg4uLC96+fSv69123bh2qV68OLy8v7NmzB0Dmjxvu7u5QKBTw9fUVAmWhoaEYP348Dh8+rDGYm5aWhjFjxuDatWvCNolEgsqVK6NEiRKIi4uDv78/0tPTkZGRgb1798Lf3x9//vmnTtN2FFSmuDYbUrexzueG3BeULFlSFFQNDg4WBSGz2qfPcGnV87m1tTVcXV3V9sl+Pg8JCcHhw4fh5eWFoKAgpKSkoHjx4qhRowbat2+PLl26GO2aPGHCBFFPZTs7O1SqVAm2traIjo5GSEiI8Pd48uQJ+vfvj+PHjwvzZxIVZAxCElGBkzUcKCvTX5cuXYRhYzExMVi+fDmOHDkCIDNj4IIFC7B27do81Xns2DEAmQ8FM2fORKdOnYQ6U1NTsWPHDqxevRoKhQIKhQKrVq0SZejVx9atWwGIhzY1b97cKEPd9u7dCyCzh9TChQtFv7r7+vpi+PDhQi+M1atXIzk5GRKJBKNGjcL3338v3KgnJSXhl19+EbIxvn79GidPnhTN9ZNly5YtogfAzz//HFOmTBE9oCcnJ2Pfvn347bffkJKSgoCAAEyaNAl//fVXrnO75cTZ2VmnoUG6lGMI1d4s+gRTVffN3iPGkLrNzMx0fpjUVrfqem5DlVWVKFFCeNDJXqbq3Hi6/o2cnJyEoVyaytTXjRs3hOkMgMwhh9o8efIEf/zxB4DM88Hs2bPzVL8pyly6dGme26TJ7t27hb9V06ZNNX7fc2OK74VqUMbZ2RmRkZGYO3euWuKi5ORkyGQyPHr0CH/99Rfmz5+Pzp076/sWNIqJiREleHB3d9f4wKvay+f27dvYsWOH8KCYJSoqClFRUfDy8sKmTZuwePHiPA+ny+rpl+WHH37A999/L8qem5qair///hvLly9HRkYGkpKSsGrVKmzcuDFPdetq7ty5ogBV3759MWHCBKEnVEZGBs6cOYOFCxfi3bt3oikHcmLs68/bt28xf/58Ibjm7u6OxYsXq40ESE5OxoEDB7By5UohwPnHH39g0KBBQnKtLK9evcL06dOFMh0cHDB//nx07NhRmNtPJpNh7dq12LNnD548eZLr+85NiRIlhHsN1SldunbtqjaliyGyhsbWq1cP8+bNE/WQu3HjBsaMGSP6MSMhIQGWlpaYOnUq+vTpI/yN3r17hzlz5uD8+fMAMs+VXl5eGq/tixYtEgUgv/32W4wdOxYuLi7CttjYWGzdulXocXn37l3MmzdPazb73Li5uRnlXsPQnu+muDYbUrexzueG3BcAmdfOrOeDvN4XBAQE4J9//hHWmzZtKjpXApk/cKj+APbPP//gp59+Uptf+PXr13j9+jUuXryITZs2Yfny5Xmedujy5ctCANLMzAzz5s3DN998Izq3xMfHY/PmzdiyZQuAzL/Jxo0bMWfOnDzVTfQ+MAhJRAWSjY0Ndu7cqZa0wcnJCUuXLoWtra3wwHXmzBncvXtXbe4hfdnb22Pfvn1qPaysrKzw/fffIz4+Xggk+Pj4IDIy0uAAlimVLl0a+/btg6Ojo2h7tWrVMG3aNEydOhUAREknhgwZItrXxsYGCxYswIMHD4SH6uvXr6sFJUJDQ7FmzRphvX///hrnYStSpAiGDBmCWrVqYciQIZDL5fD29saRI0fw7bffGvQ+mzdvrtNcQqai+oCsT4Zj1d492TP26kr1OFtbW62T1Otat6HvR3Xf7GWqrutappmZGWxsbBAfHw8AomHn+pLJZKIbcqlUKpoHM7u0tDTMmDFDCBbMmzcvz72sTVGmKYSEhGDlypUAMr//+g7DzmKK74XqcM+kpCT07dtXGEpXpEgRuLu7w9LSEoGBgcKcoXFxcZgyZQpkMhn69+9vyFsRKJVKzJ07V/TeNGWnzZ5JNWsYubm5OcqXL4+SJUsiLi4OL168EIblR0VFYfTo0Vi4cGGuiZu0yZpHFQDatGmjcUivlZWVcP7N+re+du0akpKS1HqKlS1bVvQAnld37twRAk0AMGrUKEycOFG0j7m5OTp16oSqVauid+/eakOrszPF9Wfv3r3COado0aLYunWrxsBPkSJFMGjQIJiZmQnfldjYWPj4+Kjdi6xfv14YWWBtbY0dO3aoDe10cHAQzg3r1q3T+r4Lipo1a2LHjh1qwZumTZvi+++/F4bUZ733lStXon379qJ9HR0dsWLFCrRr1074nl+/fl0t6Hfnzh3s379fWJ82bZrG76C9vT0mTZoEDw8PTJo0CQBw8uRJ9OzZ0+DRK926dUO3bt0MOtYYTHFtNnXd2s7nhtwXZN83L/cFWddk1SmINPVgDg4OFiXVyQrkS6VSVKxYEY6Ojnj37h1evHghTDEQFBSEAQMGYN26dXma31W1l2a/fv3Qp08ftX2KFi2KKVOmIC4uTvhunDlzhkFI+iAwOzYRFUjjx4/XmjV22rRpoqETWT0A82Lw4MFah3hmvwkw5gOaMf34449qAcgsn3/+uWiYk6ura45BGYlEgtatWwvrmoYO79ixQwiulCtXLtcsuo0bN8bAgQOF9azeFB8i1fmosj+EaaM6P5WuWZqzy+p5Y8y6TfF+jNFO1TL0kZaWhh9//FE079OAAQO0zjf2+++/w9/fHwDQoUMHdOzY0aC6TV2msWUNw05OTgYATJkyxeAsoKb4HKk+cC5evBhhYWGwsrLCzJkzcevWLRw4cAC7d++Gp6cnNmzYIPSuUSqVWLp0Ke7cuWPQe8myevVqUQCtTp06omytWVQzqQKZ59BBgwbh4sWL+Pfff7Fz504cO3YMN2/exIQJE4ReLRkZGViwYEGe2qnauyi3f7tvvvkGDRo0QJcuXTBixAi17LWmkDXaAMjsqa+tN17VqlUxfvz4XMs0xfVHNZnWt99+m2vPs+xBtcjISNF6WlqaKLvwiBEjtM4tN2bMGJ3m3SsIpk+fnuN3PPt0Ew0bNlT7W2UpUqSIKECo6V4jq1dnVlmaApCqvvrqK9G5dtu2bVr3L8jy817jY7svyLrW+fj4CNs6dOiARo0aqe2rOhQbyAw+jh8/HteuXcPJkyexc+dOnDx5Ep6enhg8eLBwb52SkoKJEyeqTZujD9XzuaZh4qr69euHxo0bo0ePHujdu7daz3uigohBSCIqcGxsbHLtHWdpaSlKJnL16lXR5NmGyOkGOUuZMmVEvUWyemoVJBKJROv7sLW1FfXCatWqldZedKo9PTW933PnzgnLnTt3VhuGpolqUp+AgACjzH+VH1R/Rde1JyIA0XxBuibEeB91G1qm6nDG7GWqrusz7F5bmbpIS0vD2LFjRRnE69atK/SM0eTJkyfCsKas4ZJ5ZYoyTWHXrl24ffs2gMxATd++fQ0uyxSfTdWH2Li4OEilUmzZsgWDBw8Wze9pZmaGdu3aYd++fULm0/T09DxNdfH7778LGc2BzJ5Wq1ev1vjeVIcam5mZ4bfffsOsWbNEw0WBzF5Co0ePxpYtW4T3LZfLsWTJEoOvY6p1HD16FA8fPsxxXycnJ+zduxcrVqzA+PHj8zQ3oK5Uh8736NEj13nTevbsmWuAwhTXnz179uDWrVs4ePCg2ggBTbIPJ80eAPD29haCvBKJJNd7GzMzM429ngoaJycnrUlWsv/Y06ZNG63labvXSElJEQ3D7t69u05tVP23vnHjhsGBq/xmimuzqevWdj5XXX+f70epVGLevHmiRC/lypXLsde/aq92Kysr7Ny5E2PGjFH7kT9rGifVaVISEhLyNAWA6vl8x44dGhNkZfHw8MDu3buxdOlSjB07Vq/ALlF+YRCSiAqc+vXr65T1VvWXy6yJ4g0llUo1JhnITjV7XvZs0gVBmTJlcp3MX/UGpWLFilr3VX3Az57RMjw8HK9fvxbWK1eurFMbq1atKmqDaubbD4nqDXH2v402qjfPujw0v6+6DS1TteeXtjKzz6Oka5n6ZjZNSEjA999/Lwp6lClTBuvWrcvx7519yPScOXPyPLm7Kco0hZCQEKxatQpA5rlh8eLFOmUxz4kpPpvZ2zN8+HCtAZCyZcti2rRpwvqjR4/w4MEDnduSZfny5aLhvlKpFGvWrMmxp+HXX3+Nhw8f4p9//sH+/ftz7fXatGlTUY+uJ0+e4O7du3q3E8jszZP1d0pISEDv3r0xbNgw7Ny5EwEBAQaVaSzBwcGinj26TJ1iZ2eHWrVq5fi6Ka8/Dg4OqFOnjtZekHK5HI8ePRL10APUz3NZwX0g83OpyxQun376aa775LcqVapofT17ICQv9xo+Pj6i+y1d/61VPz9Z/14fIlNcm01d9/u+18iNXC7HlClTcODAAWFbsWLFsGHDBo1ZsYHMXsl3797F8ePHceDAATRo0EBrHd27dxfNQXzu3Dm8evVKr3Zm6dChg7AcERGBLl264IcffsCBAwfUsnoTfYg4JyQRFTi6BAMB9ZvaiIgIg7N8FitWTKdfZA29eXpf9A1y5Baw1BaMyD5kasqUKZgyZYpe9QPqw9c+FNkTPuhKdd/csjTnRDWbrj51q/Yoy163Kd6PtbW1MB+YoWXqE4R88+YNRo0aJUrs4OLigr/++kvrw/+GDRuEIdNt27ZFly5ddK7zfZZpbEqlEjNnzhSGYU+cOFHnbKU5McXnyMbGRhiSLZFIdJrjsUuXLli0aJHQC83Lywv16tXTqS1paWmYN2+ekDgM+F8AMrd55aytrfW6DvXv31/U09LT01Pj0MDcVK5cGSNHjsSmTZsAZP7benp6wtPTE0BmT7NmzZqhZcuWaNmyZY4P3qagGoAEdM+IW7ly5RyHqL+v609cXByePn2KkJAQhISEIDQ0FC9fvkRgYKBOP0Sqvndd33fZsmVFmYALovd5r5E9s7OhPUWzfw4/FPl5r2Gq+wJjl6lNQkICxo8fL5wLgcz5FP/88094eHhoPdbOzk7r9AnZDRgwQJTwxsvLy6B5z1u1aoXOnTsLZcnlcpw/f16YFsTNzU04nzdv3lx0T0j0IWAQkogKHF0fjrJPaG3oxNuAfvPSFGT63mjmpcdTXv7exijHy8vLKPM8DR061KAEN1nDPYH/TbyvC9VkC6pl6EM1y2ZiYiKUSqVO/5aq7cxet6HvR1uZ9vb2wuu6lqlQKERz1On6N/L19cXIkSNFvaPKlSuH7du3a50H8vHjx/jzzz+F9v7000861aeNKco0hZ07dwpBnvr164vmyzOUKb4Xtra2QhCyfPnyOg0ftrS0RM2aNYWeaKpDpbWRyWQYN26cKKN6kSJFsGbNmjxnsNakVKlSKFeunDAsOHvARR8TJkxAqVKl8Ntvv6klboiMjMTRo0dx9OhRSKVStGjRAiNGjMhzQjddZCULypJbQCqLtmzCpr7+XLp0Cdu3b8ft27e1/uBoYWGhdWhoTEyMsKzr+5ZIJChatGiBDkK+z3uNvCQhUaVLtnVNjh8/jhMnTuS5/qlTp+oV0MpiimuzqevWdj5X/V6b+v2Eh4dj1KhRwg+CQGYypC1btqB27do6162rWrVqQSqVCj9Q5OV8vmzZMlSsWBFbtmxROxdk/Siyb98+FClSBG3btsXo0aMN7ohB9L4xCElEH6zsc2d9LIHEvMjLjb6+sj94NW7c2KBf27UFiLSJjIwU/bJtqK+++sqg41R71mV/yNYmKipKWDZ0LjbVujMyMvDu3TudMi5rq1t16KE+70c1c3H2+dGcnZ0RHh6uV5kxMTGih/7sZWpy8eJFTJ48WRS8rF69OrZs2aL1+LS0NMycOVP4LM+cOTPXRBS5MUWZphAcHIzVq1cDyAwoLFmyRK/5uXJiiu+Fo6MjIiIihGVdqX4ndAlAvHz5EqNGjRIlFHBwcMDGjRtzHYqXFyVKlBCCkHkJrkkkEvTr1w/du3fHuXPncP78eXh5eallmZbL5bh06RIuXbqkMUu1sRk6dYm2XtCmuv7I5XLMnj0bx48f17i/jY0NKleujJo1a6Jhw4Zo2bKl1uHTpnjvBUF+3mtkz5ytK0PPwyEhIUa51/j+++8NOs4U12ZdmeJ8bmiZqvvq8n4ePnyIMWPGiP4Orq6u+PPPP3UecaUvCwsLODg4CO8/L+dzqVSKsWPHYsCAAfj3339x4cIF3Lp1S633aHJyMk6dOoX//vsPc+fO/SDmlCViEJKICpzsD0w5yf7r+PscXkbqf++5c+fmOrTlY6I6tC4pKQlv377VKaiomgght3mydKk7q0xdgpCqcwllr7tChQqi/XTpXalUKoUgY/Yystaz5lzTlPFUk+yJIrKXmd2ePXuwaNEiUeCyRYsWWLNmTa49j86ePSv0kDA3N8c///wjGkqVnZ+fn7B84sQJ0TyDWb1cTFGmKWzdulUYhm1ra4vFixfrfOzy5ctFvVlU58UzxfeiSpUqePr0KQD9EoLpkxjp3r17GD16tChYWbZsWWzZssVkD6xZVB8qdZkPOTc2Njbo1q0bunXrhvT0dPj4+ODWrVu4fv067t27J/q7bNq0CdWqVcOXX36Z53pzkv1aERcXp9PwQW29pEx1/Vm1apUoAOnq6opu3bqhXr16cHd3h4uLi+i8mFuCDNURG/p8dvXpIfaxy/5vrcu5/WNiimuzrkxxPldti673BW/evBH1Bszt/Zw/fx6TJk0SnVtr1qyJzZs3GxyQ1ZXqtDfGOJ/b29vju+++w3fffYfU1FTcu3dPOJ8/evRIuPfJyMjATz/9hBo1aqBu3bp5rpfIlBiEJKICR9dJl7MnosnrXGakn+xz7EVERLzXIGSPHj1EGdLftxo1akAikQg9cp89e4aWLVtqPSYxMVF0021ogMnV1RUODg5CwOTZs2c63XT6+vrmWHfNmjWF5eTkZLx8+TLX4EtgYKDoJr969epqZR45ckStbm2ePXsmLNvb28PV1TXHfTdu3IjffvtNtO3bb7/FggULcs2+C4gfFjIyMvTq7ZI1HCpLVi8XU5RpCqrtjImJ0aud2hI8mOJ7oXpeCQ8PR1pamk49xVSH5mfPUK3Ky8sLY8aMET3k1qlTBxs3btS5t7JSqcSaNWsQHR2N6OhotG/fXpSdNycKhUIULChdurRO9enKwsICDRo0QIMGDYQg6+7du7F+/Xrh32jHjh0mDUK6ubmJ1gMCAnRK0KJtKKMprj9v3rzBzp07hfXPPvsM69ev1/pZy62nk+p9ia7J82QymdGGm38MNP1bv89hp+PGjcO4cePeW33ZmeLarCtTnM9V309wcDCSk5Nz/VFC9b5AIpFo/a4fO3YMs2bNEiWyadOmDVauXKlzUDA+Ph5btmwRzuf9+/fXqQeuTCYTdZAw9vncysoKTZs2RdOmTTFhwgRERkZi06ZN+PvvvwFkXod27tyJlStXGrVeImNjdmwiKnAePnyoNtRak+vXrwvLpUuX1vqQScZXtWpVUS+Pmzdv6nRcTEwMZsyYgbVr1+LQoUOiB/APiZ2dHWrUqCGsq34ec3Lz5k3hV2tzc3M0adLE4PpVswPrUrevr69oWFL2IYRVq1YV9aa8ceNGrmV6eXkJy46OjmoPBqrvLyoqCs+fP8+1TNX3oi0D8h9//KEWgJw4cSIWLVqkUwCSTMMU34tmzZoJy8nJyaLPXU7i4+NF84DlNP+Xt7c3Ro8eLQpAtmvXDrt27dJrugSJRIITJ07gwIEDuHDhAk6fPq3TcT4+PqKAkyFJaVJSUnD16lXs2LEDCxYsEH3Ps3NwcMDYsWNFyRJ0DY4ZqkKFCnqfW9LT0/Hw4cMcXzfF9cfT01PUs3HGjBm5BrtVgyOAesK6+vXrC8uRkZE6zU1qaIb0j1W9evVEPf90/bd+8eIFZs2ahQ0bNuDYsWOi+Tk/JKa4NuvKFOfzhg0bCtfojIwM3Lp1K9cyVeutUaNGjvPF/vPPP5g5c6YoANmnTx9s2LBBr16J1tbW2LZtGw4dOoRLly7hwoULOh3n5eUlen4x5HweFxeHS5cuYevWrZg3b57WKR2cnZ0xf/580bzmpj6fExkDg5BEVOBERUXh0qVLWveJi4sTZS5t166dqZtldO9zTiVTMDMzQ6tWrYT1o0eP6jSB/K5du3D06FFs2LABs2fPxrt370zZTJPq0KGDsHzixAlheGtO9u7dKyw3a9YsT1MItG/fXli+dOlSrlleVeuuXLmy2kOJRCLBF198IawfOHBAa0IGhUKBAwcOCOsdOnRQ+0y7u7uLhmLt27dPaxsjIiJw+fJlYT2n3lnnz58X/dJvbm6OpUuXYtSoUVrLz65Hjx7w8/PT+T/Vh6mxY8eKXssKmJqiTFNYtmyZXu1UtXPnzhxfA4z/vahRo4ao59OWLVty/aFq3759wsObVCpF69at1fYJDw/HDz/8IOox1Lt3b6xbt86gOYZV/y29vLx0+oElK5s1kBkgzK2XkSZyuRwjR47EkiVLsHfvXly8eDHXY6pUqSIsS6VSvevUR/Zzy5EjR3Idbnz27FmtQSNTXH9U57EDdJtDcNeuXaL17MOzmzZtKvo8q/a0zElu50l9fej3Gk5OTqKe/nv27NFprs0//vgDhw8fxtq1azFr1iyt17OCzBTXZn0Y+3xerFgx0Y+guX3eExMTRYmBOnbsqHG/R48eYcaMGaK/zfjx47FgwYJcp+PITiqVin5AOH36dK7nrPT0dCEhHZB5jlUN4OoqIiICo0aNwq+//or9+/eLkqTl5H2ez4mMgUFIIiqQtPXmyMjIwNy5c4WHB3Nzc6NkdX3fVCfRzz7R9Idi6NChwrJMJsO0adNEwzyze/TokWj+uDp16qBWrVombaMp9ezZUxhG9PbtWyxcuDDHfQ8ePIhr164J63n9zLZv3154SE5LS8OMGTNynJ/s2rVrOHjwoLA+YMAAjfv17dtXeFjx9fXFhg0bcqx/zZo1Qs9GMzOzHMvs16+fsLxv374ce1LI5XJMnz5deLgsU6aMxh8XIiMjMXv2bGFdIpHgl19+ydeh+SRmiu/FoEGDhOW7d+/ijz/+yLHM7J/dTp06qc0DlpGRgSlTpogCV71798bChQsNTtDzzTffCMvp6emYN2+e1jkDt23bJvrBbfDgwTrNlZhd0aJFRT1uNm/erDWAp1QqcfbsWWHdkAdlfQ0ZMkToVfj27VvMmzcvx0BKZGQklixZkmuZxr7+ZM+4q/q51GTz5s2iH00A9UQ01tbWos/uvn37tP7IevjwYVy9elVrvfr62O41Xr58iZ9//lnrDxEXL14UBa7at29vcCK4gsAU12ZdmeJ8rnpfcOnSJWHaFk0WLFggnM9sbGxE59ksiYmJmDx5suj7N2nSJIwZMybHcnOjWo9MJsv1nLRs2TJh7mIAGDlypEHBX3d3d9E0NKtXr9b6vU1NTRWdh97H+ZworxiEJKICKTIyEr169VIbdhIaGopRo0bhv//+E7aNGTNGbc6pD4HqA8+DBw8+yDmgatWqhb59+wrrly5dwoABA9SG0aWlpWHPnj0YMmSIcDNlbm6OmTNnvtf2GluJEiUwfPhwYf3IkSOYPHmyKItjSkoKNm3ahPnz5wvbWrVqJerFk52Hh4fwX04PEJaWlpg0aZKwfv36dYwYMUI0IXx6ejoOHDiAcePGCcOT3N3dRUMxVVWrVg3du3cX1tevX48lS5aIEirEx8dj8eLFoh5cvXv3Fv0Sr6p3795Cb8j09HT88MMPOHjwoCg4ExoaiuHDh4uGZU2dOlXjUMjffvtNlDxk5MiR6NKli8a6KX+Y4nvxzTffiHrPrFq1CvPmzRP1AFYoFDh9+jQGDhwo9NYpWrSoxuzPJ0+eFJImAZnZlVXbYohGjRqJeu96enpi2LBhCAgIEO0XFRWFefPm4ZdffhG21axZU/Q305dqkCYsLAzDhw+Hj4+P2n6RkZGYOHEi7ty5I2xTDZKplqF6HpoxY4bBbQMyk1OoBgROnTqF0aNHq80B7enpiT59+qj1StTE2NefZs2aiYIGCxYs0Nir9OHDhxg7dixWrVql9lpSUpLatu+//17oyatUKjFu3Dhs27ZNFFhITk7G+vXrMWfOnFzft75U7zVu3LihNVBbULVv317Um3n//v0YOXKk2tDThIQEbNy4ET/++KMQpLSxsRFdKz9Eprg26/odN8X5vG3btqKe/nPnzsXmzZtF34m3b99i4sSJomDymDFjNCbh2759u2gO2c6dO2PkyJEa69ZVly5dUK9ePWH98OHDmDBhAiIiIkT7hYSEYOzYsaJe0W3btkXXrl0NqlcikWDYsGHC+qNHjzB69Gi16wgABAUFYcSIEcJ7NzMz+yA7ZVDhw0mTiKjAadWqFW7fvo3w8HAMHjwYZcqUQdmyZREbGwt/f3/Rr98dO3bM0y+d+cnd3V1YfvXqFTp16oSqVasiPj4e27Zty3HOm4Jm5syZCA0NFX79fvDgAXr16gUXFxe4ubkhISEBQUFBoocziUSCOXPmoEGDBvnVbKMZNWoUHj16JPwS/c8//+DMmTPw8PCApaUlnj9/LnpQKFu2rCj4kBfdu3fH/fv3sX//fgCZgcj27dvDw8MDdnZ2CAgIEPWIcnBwwJo1a7TOmTh79mz4+/vj8ePHADKTVhw4cEAYvu3n5ycajlW7dm2tAQpLS0usXbsWAwYMgEwmQ1JSEubMmYNVq1ahcuXKwtx9qr2i+vXrh06dOqmVFRERIXogATI/b6o37Lr45ZdfPuheMR8CY38vJBIJVq9ejWHDhgm9Tfbv34/Dhw+jYsWKcHR0RGBgoKgHvVQqxcqVKzUmB9i8ebNoPSEhQe9EQEOHDhXNxQUAixYtQmhoqPD9uXnzJjp16oRKlSqhVKlSkMlkap/3qlWrYsuWLXkaRtemTRv06NFD6FH05MkTfPvtt3B2dkb58uVhbm6OqKgoBAYGiuru37+/1h9EjGnEiBF49uwZzpw5AwC4fPkyrly5And3d9jb2yM0NFR4wC9SpAgaNWqUa29EY15/ypUrh169egnnU5lMhtGjR6NkyZIoW7YsFAoFXr16JQqQWlhYwNHRUdimKXhqaWkpfHYjIyMhl8vxyy+/YMOGDXB3d4dSqYSvr69wXm3SpAn8/f1FP7bkheq9xuPHj9GxY0e4ubkhNTVVNHS2IJNIJPj1118xZMgQPHnyBABw5coVXLlyBW5ubnBxcYFMJkNISIhoflepVIoVK1Z8kD9UZ2fsa7M+THGfs3z5cvTr1w+hoaFIT0/HqlWrsGXLFlStWhVpaWnw8/MT9Wxs06aNxmt9cnKy2rQI4eHhet8XTJ06VZREx8zMDGvXrkXfvn2FH0v+/fdfnDlzBlWrVhW+99mDg02aNNH4A4U++vTpg/PnzwsjR7y8vNCpUyeUK1cOZcqUAZCZeC178q6pU6fmGHQmKkgYhCSiAqdGjRoYOHAgpkyZAplMhlevXuHVq1eifaRSKYYOHYoJEyYYPHQuv33xxReoUaOG8ED99u1b4QHa19fXpPPBGZOlpSU2b96MtWvXYvv27cIv2a9fvxZlp81SsmRJzJ8/XzTH0YfMwsIC69atw08//YTDhw9DqVRCLpcLDwqq6tevjzVr1mj8Jd9QP/30ExwdHbF161bI5XIoFAq1ZAlA5jyQa9asyTWrpp2dHf766y9MmzZN6AWUnJyMBw8eqO3bpk0bLF++PNf589zd3bFz505MnjxZGCYWExOjNmTU3NwcI0aMwIQJEzSWc/78ebXhrbomKVCl+pBKpmGK74WTkxN27tyJxYsX49ixY1AqlUhPT9eY8KhMmTL49ddf0bhxY7XX/Pz81BKEaPrO5Oarr75S22ZnZ4edO3di0aJFOHr0qPCjWWBgoMakJF27dsWsWbPg6Oiod/3ZLVq0CPb29ti5c6fQ8zkyMlLjfLE2NjYYNWqUSTOwZ2dhYYE1a9ZgxYoV2LZtGxQKBZRKpdq8ovb29lixYgW8vb1zDUIa+/ozZ84cxMfHixILRUVFaQwuVq5cGYsWLcKFCxeEueBUe5iqqlq1Kg4cOIAxY8YIQbSEhARRb1wgM2nHmjVrjNq7u1evXtizZ48Q4A0PDxfmKw0LC0PZsmWNVpcp2dvb4++//8aSJUtw6NAh4TMeEhIiysacpXz58liyZIlByUEKIlNcm3VlivO5s7Mzdu3ahUmTJgnfg/j4eLXvBJDZE37+/Pka7/dv3LihFrC/f/++Hu8uk6ZzobOzMw4ePIhZs2YJ0ygoFAqNcyGbm5ujf//+mDhxokHTaqgyMzPDxo0bMXfuXNEPr6GhoaLRLlkcHR0xefLkHEe5EBU0DEISUYHUsmVLnDx5Ert378bFixcRHh4OiUSCMmXKoGXLlujVq5co4cWHSCqVYteuXdiwYQMuXryIyMhIpKeno2TJkh/c0Gxzc3NMnDgR/fr1w7Fjx3D9+nUEBgYKN4ZOTk6oXr062rRpg6+++kqvLIUfAktLSyxevBi9e/fG0aNHcfPmTURGRiItLQ1OTk6oU6cOOnfujPbt2xs9aC6RSDBx4kR07doVhw4dgqenJ16/fo3k5GTY29ujevXq6NixI7p27ZprptcsRYsWxcaNG3Hjxg2cOHECd+7cwdu3b5GRkYESJUqgfv366N69O1q0aKFzOz08PHDs2DGcPHkSZ86cwbNnzxAdHQ2pVIqyZcvik08+wXfffaf1V3xdMstSwWGK70XRokWxbNkyDBo0CCdOnMD169fx+vVrJCQkoFixYqhRowbat2+Pr7/+WjQXnipTf45sbW2xdOlSDB8+HIcOHYK3tzfCwsKENjo7O6Np06b46quvjDonrrm5OWbMmIHevXvj+PHjuHPnDl6+fIm4uDhIJBKUKFECbm5uaN26NTp16qRT4pUsxkpuIpFIMHXqVHTr1g379u3DjRs3EB4eDnNzc7i6uqJNmzbo378/nJ2ddUrIABj3+pPVa7Fnz544evQoHjx4IJz7bG1tUaZMGVSrVg2tW7dGu3btYG5uDoVCIQQh/f394ePjgzp16qiV7eLigkOHDuG///7DiRMn8PjxY8hkMhQrVgxVqlRBt27d8PXXX+udRCM39vb2OHDgANavXw9PT0/hx85SpUrh7du3H0wQEsicY3PhwoUYNmwYjh8/jps3byIkJAQymQwWFhYoUaIEatasiS+++ALt27fX+Zr3oTDFtVlXpjifly5dGn///TfOnTuH06dPw8fHB2/fvoWZmRmcnZ3RsGFD9OrVSzQsOjtTn8+dnJywadMmPHz4EMeOHcPdu3cRERGB5ORkODg4oHTp0mjZsiU6d+6c64+8+rC2tsby5csxePBgnDx5Evfv30dwcDASEhJgYWGB4sWLo0qVKsL5/EMZPUUEABJlbukFiYiIiIio0Dl9+jQmTpyIgQMHihJCERERERniwxzDSEREREREJpU1FYo+vSaJiIiIcsIgJBERERERiWRkZAhzI7Zs2TKfW0NEREQfAwYhiYiIiIhIEB8fj2nTpuHJkydo2bKlKGssERERkaEYhCQiIiIiIoFCocCtW7fQpEkTrFy5Mr+bQ0RERB8JJqYhIiIiIiKRsLAwuLq6Gi0zNhERERGDkERERERERERERGRSHI5NREREREREREREJsUgJBEREREREREREZkUg5BERERERERERERkUhb53YD8pFQqcfXqVZw4cQIPHz7E27dvYWZmBhcXF9SsWRNdunRBixYtYGZm/FhtYmIijh49ivPnz8PPzw/x8fFwcHBAmTJl8Pnnn6N79+4oVaqU0evV1d27d0XrpvgbEBERERERERFRwadQKETrDRs21LuMQpuY5tWrV5g2bRpu376tdb969ephyZIlqFy5stHqvnv3LiZPnoyIiIgc97G1tcWcOXPQo0cPo9Wrj+xBSCIiIiIiIiIiIoBBSJ2Fh4ejf//+ePXqlbDNxsYGHh4ekEqlCAwMxNu3b4XX7OzssG/fPlStWjXPdd+9exdDhw5FSkqKsM3V1RWurq6IiorCy5cvRfsvWLAAffr0yXO9+mIQkoiIiIiIiIiINGEQUgcKhQL9+vXDvXv3AABSqRQTJkzAgAEDYGVlBSBzmPaZM2cwf/58yGQyAEDZsmXx77//wtLS0uC6ExIS8OWXX+LNmzcAgNKlS2Pp0qVo2rSpsM+zZ88wc+ZMPHv2DABgYWGBAwcOoGbNmgbXa4iPcTi2atfhj+H9EJH+eB4gIp4HiIjnASLieUB/xhiOXejmhLxw4YIQgASAn3/+Gd27dxftI5FI0LFjR7i4uKBPnz5QKBQICwvDiRMn8M033xhc9+bNm4UAZNGiRfHXX3+hQoUKon2qV6+O3bt3o0+fPvD390d6ejpWrlyJbdu2GVyvIczMzIQPmJmZGerXr/9e6ze29PR0PHz4UFivXbs2LCwK3cefqFDjeYCIeB4gIp4HiIjnAcPcv39fFCcyRKEL9x48eFBYrlOnjloAUlW9evXw2WefCevnz583uN7U1FTs379fWB8xYoRaADKLnZ0dFi9eLKx7eXnBz8/P4LqJiIiIiIiIiIjyU6EKQiqVSrx+/VqI2H711Ve5HqM6D2RwcLDBdXt6eiI2NhZAZsQ4t4QzderUEQ3B/u+//wyum4iIiIiIiIiIKD8VqiCkRCLBiRMncO/ePRw6dAhdunTJ9Zi4uDhh2dbW1uC6b9y4ISy7u7ujZMmSuR7TvHlzYfnSpUsG101ERERERERERJSfCuWg9yJFiqB27dq57peWloZr164J6zVq1DC4TtXh1LommalWrZqw/Pz5c6SmpgrJc4iIiIiIiIiIiD4UhaonpD7S0tIwZ84chIeHA8gcQj1o0CCDy3v58qWwXL58eZ2OKVu2rLCcnp6OsLAwg+snIiIiIiIiIiLKL4WyJ6QmCoVCCPR5enpi165dCAkJEV6fP38+KleubHDZMTExwrouQ7EBoESJEqL1qKgog9tARERERERERESUXxiE/H9Lly7Fzp071ba7uLhg1qxZ6NChg8Flx8fHIyMjQ1gvVqyYTscVLVpUtK46P+X7lp6enm91G4Pq31/TOhF9/HgeICKeB4iI5wEi4nkg/zAI+f9evXqlcbujoyPevHmDlJQUWFtbG1R2amqqaF3XeR0tLS21lvO+KBQKPHz4MF/qNpXHjx/ndxOIKJ/xPEBEPA8QEc8DRMTzwPvDOSH/39u3b1GtWjV8+umncHd3h5lZ5p/m2bNnWLRoEbp164aAgACDys7ei9Dc3Fyn47Lvx+g8ERERERERERF9iNgT8v/9/fffoqBfVFQU1q9fj3379gEAgoKCMGTIEBw/fhyOjo56lW1oMDH7flKpVK96iYiIiIiIiIiICgIGIf9f9kBhyZIl8dNPP6Fs2bJYsWIFACAyMhIbNmzAnDlz9Co7+zBuXYdVGzqM29jMzMxQu3btfKnbWDIyMkRdrGvVqqVzj1Qi+jjwPEBEPA8QEc8DRMTzgGEePXoEhUKRpzIYhMzFiBEjcPbsWfj4+AAAjh07hlmzZgnDtXVRtGhRmJmZCf9YCQkJOh2XfT8HBwed6zQ2C4uP66Nibm7+0b0nItIPzwNExPMAEfE8QEQ8D7w//CvroFu3bkIQMj4+HkFBQahUqZLOx5uZmaFkyZKIjIwEAERHR+t03Nu3b0XrJUqU0LlOIiIiIiIyPqVSmeeeIJR/NGXFlUgk+dQaIsoPheE8YGZmViDfE4OQOnBzcxOty2QyvcsoX768EIQMCQnR6ZjQ0FBhWSqVwtXVVe96iYiIiIgob9LT0xEbG4vY2Fidp1aigkmpVIrWAwICCuSDOhGZTmE5D1hYWMDOzg7FihWDjY1NgXiPhSoIGRgYiIMHDyIsLAwRERHYtWsXihQpkutxaWlpovVixYrpXXetWrXg7e0NAPD19dXpmGfPngnLVapUYWIaIiIiIqL3TCaT4fXr12oPrfTh4rBLIioM54H09HTIZDLIZDJIpVK4ubnB0tIyX9uk+8SGH4HExERs27YNZ8+exaNHj3Djxg2djnv06JGwLJVKUbp0ab3rbtKkibD85MkTxMXF5XrM9evXheVPP/1U7zqJiIiIiMhwiYmJiIiIYADyIyKRSGBhYSH8VxB6BhHR+1UYzwNyuRwhISFqnezet48/9KuiWrVqcHBwEIZT79mzB23bttV6TFJSEg4fPiysf/LJJ7C1tdW77qZNm6Jo0aKIj4+HXC7HoUOHMHTo0Bz3f/jwIZ4+fSqsf/nll3rXSUREREREhklPT0dYWJiwbm5uDgcHBxQrVqzQPLR+jJRKJZKSkoT1gjJEkYjen8JwHsjIyEBSUhLi4uKQmJgI4H+ByMqVK+fb+y1UQUipVIqePXti69atAABPT0+cPHkSXbp00bh/eno6ZsyYgaioKGHbiBEjDKrb2toa33zzDbZv3w4AWL9+PZo3bw4PDw+1fePj4zF79mxhvV69eqhbt65B9RIRERERkf4SExOFBDQSiQTlypXTaSonKtiUSiXMzc2FdXNz848u+EBE2hWG84C5uTksLS3h4OCAmJgYIUeJXC5HUlKSQZ3rjKFQDccGgDFjxsDZ2VlYnzlzJjZv3ozk5GTRfo8fP8agQYNw5swZYdu3336rcVj0jBkz4OHhIfyn+oupqu+//x5OTk4AMm9qBg8ejHPnzomGd/j6+mLAgAF4/vw5gMwPzowZMwx/w0REREREpLeEhARh2d7engFIIiL6IDk5OYmCjvHx8fnWlkLVExIA7Ozs8Mcff2DgwIGIjY2FXC7HqlWrsHHjRnh4eMDS0hLh4eEIDw8XHdeuXTssWLAgT3U7OTlh1apVGDVqFFJSUhATE4OxY8fCxcUFbm5uiI6ORkBAgOiYyZMno379+nmql4iIiIiI9JM1fA1AvvUYISIiMoZixYoJ17X4+Hi4uLjkSzsKXU9IIHNuyEOHDqFevXrCtuTkZDx48ADe3t6iAKSNjQ0mTZqE9evXGyV7UtOmTbFlyxaUKVNG2Pb69Wt4e3uLApDW1taYN28ehg0bluc6iYiIiIhId0qlEhkZGcK6tbV1PraGiIgob2xsbITl9PT0fEu4Vuh6QmZxc3PD/v37cfXqVZw6dQoPHjzAmzdvIJfL4eDggKpVq6J58+bo0aOHMITaWJo0aYLTp0/jyJEjOHfuHF68eAGZTAYrKyuUL18ezZs3x3fffQdXV1ej1ktERERERLnLmgsyi+rcYURERB+a7NcxhUKRL9e2QhuEzNKqVSu0atUqT2UsW7YMy5Yt0+uYIkWKoF+/fujXr1+e6iYiIiIiIiIiIiroCuVwbCIiIiIiIiIiInp/GIQkIiIiIiIiIiIik2IQkoiIiIiIiIiIiEyKQUgiIiIiIiIiIiIyKQYhiYiIiIiIiIiIyKQYhCQiIiIiIiIincnl8vxuAhF9gCzyuwFEREREREREpvT48WMcOHAAd+7cwatXr6BUKlGiRAnUrl0bnTp1Qrt27WBmplsfneTkZBw8eBDnzp2Dv78/EhMT4ejoiMqVK6NTp074+uuvYWlp+d7Leh8UCgX279+P69evY926dTods2bNGvz+++8oVaoUrl27ZuIWElFBxiAkERERERERfZTkcjkWLVqE/fv3Q6lUil4LCwtDWFgY/v33X9SpUwfLli1D5cqVtZbn5+eHH374AaGhoaLtb968wZs3b3Djxg3s2LEDq1atgoeHx3sr632IjIzE6NGj8eTJEzRp0kTn4y5dugQAaN26tYlaRkQfCgYhiYiIiIiI6KM0ZcoU/Pfff8J6rVq1ULt2bdjZ2SEkJARXrlxBSkoKfHx8MGjQIOzfvx+urq4aywoNDcXAgQMhk8kAACVKlED79u1RqlQphIaG4ty5c4iLi8OLFy8wbNiw91bW+xIUFIQnT57odUxkZCSePXsGgEFIImIQkoiIiIiIiD5Cx48fFwKQ5ubmWLZsGbp06YKkpCRhH5lMhsmTJ+P+/fuIiorCzz//jE2bNmksb+bMmULQsGXLlvjtt99gZ2cnvD558mSMGzcOd+/eRVRUFObPn48///zT5GUVZFm9IK2srNCsWbN8bg0R5TcmpiEiIiIiIqKPjmrQbuzYsejatavaPmXKlMGaNWsglUoBAJcvX8arV6/U9vP09MTt27cBAMWLF8eaNWtEQcOs7Zs3b0bJkiUBANeuXcOdO3dMWlZBd/nyZQDAJ598giJFiuRvY4go3zEISURERERERB+VV69e4fnz5wAye0H26dMnx32dnZ2FOReVSiX8/f3V9jl06JCwPGjQINja2mosq2jRohg2bJiwfvToUZOWVZClpqbi5s2bADgUm4gycTg2EZERyZLl+PteOGwszdGvgSuk5vyth4iIiOh9K1OmDO7evYvAwEBER0fD0dFR6/5paWnCclavyCwKhQJeXl7Cem4BtdatW2PZsmUAgPPnz2PRokWQSCRGL8tQt2/fxvHjx3Hnzh1EREQgIyMDTk5OqFmzJrp06YKOHTuKMoWvW7cO69evF5Xh7e0tBG6bNGmCXbt2qdVz48YNJCcnC+9Dk8uXL+PUqVN48OAB3rx5AwBwcHBA1apV0bx5c/To0QP29vZ5er9EVHAwCElEZCTxKelosOoKgt5l3mz9fS8MZ0c2zedWERERERVOtra2qF27dq77+fr6Cr0mraysUL16ddHrwcHBiIuLE8rMLVN1xYoV4eDgAJlMBplMhsDAQCHrtjHL0ldUVBRmzJgBT09PtdciIyMRGRmJixcvYvv27Vi/fj2cnZ0NqifLxYsXAQDu7u5qSXXi4uIwfvx4XL9+Xe24169f4/Xr17h27RrWr1+Pn3/+GZ06dcpTW4ioYGAQkojISHbeDRUCkABw/vlb3A+PRX1X/npLREREVNAolUp4enpi3rx5UCqVAIABAwbAyclJtN/Lly+F5bJly+pUdpkyZYTEM0FBQULg0Jhl6ePdu3fo27cvQkJChG2NGzdGgwYNIJVK4e/vjwsXLiAjIwM+Pj4YOHAgDh8+DDs7OzRv3hw2NjYICQnBvn37AADlypUThriXLl1aY51XrlwBoLkX5OTJk4UApL29Pdq0aQM3NzcAQHh4OM6fP4/Y2FgkJCRg8uTJcHV1Rd26dfV+30RUsDAISURkJCsuB6htO/74NYOQREREhYA8Q4GF5/xx+lkkktIy8rs5BYqNpTk6VXfGvC/c832qmtDQUBw5cgSvX7/GvXv3EBwcLLzWs2dPTJ48We2YqKgoYTmngFt2zs7OePr0qdrxxixLHwsWLBACkE5OTli7di0aN24s2sfPzw9DhgxBdHQ0goKCsGHDBkyfPh0NGjRAgwYNcOvWLSEIWbp0adF8ldk9e/YMr1+/BqAehHzw4AGuXr0KILOn599//60W+J01axZGjRqF27dvQ6FQYOPGjTlmLSeiDweDkERERERERHn001l/LLnwPL+bUWDdD88cgvxzx2r52o47d+5g48aNattHjBiBCRMmiOZCzBIfHy8s65rh2draWuPxxixLV0FBQfjvv/8AZCbp2bhxI+rVq6e2n4eHB3799VchuHjgwAFMmjRJbY5MXVy6dAlA5vyO9evXF7324MEDYfm7775TC0ACgJ2dHZYuXYp27doBAJ4+fYqMjAyYm5vr3RYiKjiYMYGIyISU//9/vzcJmPufL9ZeC4Q8Q5GvbSIiIiLj8w55l99NKPBuBef/3+jVq1cat2/ZsgUdO3bEjRs31F5TTVqjGhDURnU/1eONWZauzp07Jyy3bdtWYwAyS4sWLdCkSRM0bdoUX331FWJjY/WuD8hMOAMArVq1UgvsqgYS7927l2MZ5cqVw/Hjx3Hr1i1cvXqVAUiijwB7QhIRGUlOeQr9oxLQcPVVJMkzh2ZdCYjG4cGNc9ibiIiIPkRN3Bxx/vnb/G5GgfZJee0Zqt+HL7/8Ep06dYKTkxNiY2Nx//59bNy4EUFBQQgNDcXw4cOxceNGtGrVSjhGU+9IfahmszZmWbq6du2asNy2bdtc99eU6Vof0dHRePToEQDN80E2adJEWD5z5gwGDhyIb7/9Fs2bN1frFVmtWv72nCUi42IQkojIxBaffy4EIAHg6OPXCI9Nhqu9bkNwiIiIqOCb394dEgk4J6QGqnNC5rdKlSohKSkJAFCiRAl069YN7dq1w7Bhw/DgwQOkp6dj1qxZuHDhAqysrAAANjY2wvGpqak61ZOSkiIsZ5Vj7LJ0FRERISy7u5v+3+Dy5ctQKBSwsLBAy5Yt1V738PDAN998g0OHDgEAbt26hVu3bkEikaBatWpo2rQpWrZsiUaNGsHS0tLk7SWi94dBSCIiE1Iqldh1N0xt+7PIBAYhiYiIPiJSczP83LFavs95SPqzs7PDihUr0LFjR6SnpyMqKgoXLlxAp06dAIgDh8nJyTqVqRo4LFasmLBszLJ09fbt/3ro2tubPmFi1lDsBg0a5NjeBQsWoESJEti2bZswxFypVOLZs2d49uwZtm3bBltbW3z++ecYOnQoqlevbvJ2E5HpcU5IIiIjMWR4DBERERHlv3LlyqFu3brCetZwYiAzO3WWN2/e6FReZGSksFyyZEmTlKWr9PR0vY8xVFpaGry8vABoHoqdRSqVYuLEibhy5Qrmz5+PVq1aqSXqSUxMxIkTJ9CjRw/8+eefpmw2Eb0nDEISEZmQUs/tRERERGQ8CoVC1JNQm9KlSwvLCQkJwrLqEObw8HCdylLdr2LFiiYpS1eqvR8NTTSjq9u3byMxMRGA9iBkFicnJ/Tt2xdbtmyBt7c39uzZgx9//BH169cXfuBXKBRYvnw57t69a8qmE9F7wCAkEZGRsCMkERERUcFw7NgxdOjQAXXq1MH8+fN1OkYmkwnLjo7/S6Lj7OwMBwcHYZ+goCCt5QQGBgrBPnt7e7i5uZmkLF2VK1dOWH7x4kWu+x87dgyzZ8/Gpk2b4Ovrq1ddly5dAgC4ubmhcuXKeh1raWmJRo0a4YcffsC+ffvwzz//iALDx48f16s8Iip4GIQkIsoHSiX7QhIRERGZip2dHYKCgiCXy3Hp0qVce0MmJCTg3r17wnqdOnVEr6tmlb548aLWsrICcQDQokULtSl7jFmWLho2bCgsX716Ndf9jx49ikOHDmH16tUIDg4WtutSd9Z8kJ999pnG15VKJWbPno1vv/0WjRo1EiXNya5KlSoYNGiQsK5tXyL6MDAISURkQow1EhEREb1/LVq0QNGiRQFkDkH+66+/tO6/cuVKUdbsFi1aiF7v2rWrsLxt2zbExcVpLCcuLg7bt28X1r/55hu1fYxZli66desmBBDPnj0Lf3//HPf19fWFt7c3gMwkOs2bNxdeMzP7X/ggI0M9A/yLFy8QGhoKAGjTpo3G8iUSCQIDA+Hj44P4+PhcezdGR0cLyy4uLlr3JaKCj0FIIiIj0ed3acYmiYiIiEzH2toa33//vbC+du1aHDlyRG2/1NRULFu2DH///bewberUqbC2thbt17RpUzRt2hQAEBUVhZEjR4oCZEBmwGzUqFGIiooCADRu3BjNmjVTq9OYZemiatWq+PLLLwEAcrkco0aN0jjMOjg4GOPHj4dCoQAA9O/fH3Z2dsLrqsuvX79WC0Rm9dq0tbVF48aNc2xP7969heX169fjzJkzGve7d+8edu/eLaxnvQci+nBZ5HcDiIiIiIiIiIxt6NChuHfvHi5duoSMjAzMnDkTu3btwieffAIbGxtERETg2rVrQqAPAIYPH46vv/5aY3kLFy7Et99+C5lMhnv37qFjx47o0KEDXF1d8erVK/z3339Cr0YHBwcsXbo0x7YZsyxdLFy4EL6+vggMDER4eDh69OiBli1bolatWjA3N4efnx8uXryItLQ0AJnD0ceOHSsqw9XVFRKJBEqlEuHh4RgzZgwaNmyIIkWKYMCAAcJQ7ObNm8PS0jLHtnTt2hWHDh3C7du3IZfL8eOPP6JmzZqoW7cuXFxckJycjCdPnsDLy0sIdH755ZcGB2GJqOBgEJKIyISU7PNIRERElC8sLCywdu1a/PLLL9izZw+USiWePn2Kp0+fqu1ra2uLGTNmoFevXjmW5+bmhh07dmDs2LEIDQ1FXFwcDh48qLZf2bJlsWHDBlFCGFOWpYuiRYti7969mDp1Kq5evYqMjAxcvnxZCByqatOmDX799VdYWVmpldG5c2ecPHkSAITj7ezs0LVrV9y/fx9A7lmxzczMsHHjRkyYMAGenp4AgCdPnuDJkydq+0okEnzzzTeYN2+eAe+aiAoaBiGJiIxEn4nCOVckERERkelZWlpi7ty5+O6777B//37cunULr169QkpKCuzt7VG1alW0bNkS3377Lezt7XMtr1q1ajh16hQOHjyIs2fP4sWLF4iNjYWtrS2qVq2K9u3bo1evXihSpMh7LUsXDg4O2LJlC27cuIGTJ0/i7t27ePPmDdLT01GiRAnUr18fPXv2FM0Dmd2SJUtQoUIF/PPPP4iIiIBSqYSDgwMuXryIjIwMSCSSHJPSqCpatCi2bt2Ka9eu4dSpU3j06BEiIiKQkpKCYsWKwcXFBU2bNkXXrl1RvXp1o7x/Isp/EiVTtJIG9+/fF+YCMTMzQ/369fO5RXmTnp6Ohw8fCut169aFhQVj8JR3SqUS672CcMb3DU77vlF7febnVbD0wgu17VJzCb6pUwaLv6yGCk4276OphR7PA0TE8wDpKiMjQ5S8w93dHebm5vnYIjIWpVIpJKABMpOvGJJxmog+XIXxPGCM65ox4kS86yIiyoMtt0Iw/tjjHF/P6WceeYYSe++Hw/NlNF7Oagczs4/7okdERERERESFG7NjExHlwahDPnk6PlSWorEHJREREREREdHHhEFIIiIT0mW+i6eR8SZvBxEREREREVF+YhCSiIiIiIiIiIiITIpBSCKifMb0YERERERERPSxYxCSiMiEGGAkIiIiIiIiYhCSiIiIiIiIiIiITIxBSCIiIiIiIiIiIjIpBiGJiEzosM+rXPdR6pRDm4iIiIiIiOjDxSAkEZEJBUQn5XcTiIiIiIiIiPIdg5BERERERERERERkUgxCEhHlM2bQJiIiIiIioo8dg5BERERERERERERkUgxCEhERERERERERkUkxCElEZAC/NwlouvaaUcriaGwiIiIiIiL62DEISURkgFGHfHArRJbfzSAiIiIiIiL6IDAISUSkJ3mGAlcCo/O7GUREREREREQfDAYhiYj0xGzWRERERERERPphEJKISE8SiXHLUzKqSURERERERB85BiGJiPSUmJaR300gIiIiIiIi+qAwCElEpIegmCQ0XH01v5tBRERERERE9EFhEJKISA/bvEPwMibJqGVyMDYRERERERF97BiEJCLSw6Lzz/O7CURERERERGQAuVye300o1CzyuwFERERERERExubh4ZHnMrp3745ly5YJ6wMGDIC3tzcAYOfOnfjkk0/yXAcZJi0tDcePH8fZs2fx7NkzyGQyWFtbo1KlSmjVqhV69+6NkiVL5lpOQEAAOnXqpFfdhw4dQu3atQ1teqFy5MgRzJw5E4D69wkAZsyYgaNHjwIAli5dih49episLf/++y927dqFPXv2qL0WFhaGzz//HADg6uqKixcvmqwdhRmDkERE+YzJsYmIiIiIdPf48WOMHz8eYWFhou1yuRwPHz7Ew4cP8eeff2LixIkYNGhQrmXRxy0xMRFjx47F9evX4erqmt/NKdQYhCQiIiIiIqKPzrRp09S2KZVK0XBMqVQKiUQirF+7dg03btwQ1suUKWPaRpLe7t+/j0GDBiE1NRUAIJFI0Lx5c9StWxdmZmZ48OABPD09kZycjCVLliA8PByzZs3KsbwnT54Iyz169ECVKlVybUPp0qXz/kbovXn37h2uX7+e380gMAhJREREREREH6Fhw4apbVMqlUhK+l+SQRsbGyEI6e3tjd9++014rUGDBhg9erTJ20m6S0hIwLhx44QApLOzM9atW4e6deuK9nv48CF++OEHREVFYceOHahVqxa6du2qsUzVIOTIkSNRoUIFk7Wf1C1btkxtiHZ+KFu2LPz8/PK7GR89JqYhIspnW2+F4Ovt3pj+z1PEp6Tnd3OIiIiICp2QkBCMGzcOaWlpAIBSpUph7dq1kEql+dyyj5eHhwc8PDzQtm1bnY/ZvXs3oqKiAGQGkLdv364WgASAunXrYtOmTTA3NwcA/Prrr0hJSVHbT6FQ4OnTpwCAYsWKoXz58oa8FSLSEYOQREQ6kmcoTFJuiCwZJ55EYvnlAAzYe88kdRARERGRZomJiRg9ejRkMhmAzCHa69at0ympCb1fZ86cEZaHDBmCypUr57hvrVq10KFDBwBAVFQUzp8/r7bPy5cvhZ6xNWvWFA3NJyLj43BsIqJcpKZnYNj+hzjkE2Hyuk48iURaugKWFvyNiIiIiOh9mDlzJl68eCGsz507F/Xq1dP5+LNnz+L48ePw8fHBu3fv4ODggAoVKqBTp07o3r07ihQpkmsZjx8/xr///ou7d+8iPDwcsbGxkEgkKFq0KCpWrIhPP/0UvXr1yjEwum7dOqxfvx7A/zI3P3z4EAcPHoS3tzfevHkDc3NzlC1bFq1atUL//v3h7Oyca7vevHmDPXv24MqVKwgODkZGRgZcXFzQsmVLDBw4EOXLl8e8efOwf/9+AKbNGC6Xy/Hs2TNh/csvv8z1mObNm+P06dMAgCtXrqBz586i11WHYteqVctILc2Z6r/Tnj170KhRI1y5cgV79+7F48ePIZPJUKxYMdSsWRPdunVDp06dYGam+blANev0mjVr0KZNG6xbtw7Hjx9HXFwcnJ2d0bhxY4wfPx6lSpUSHfv69WscOHAAnp6eCA0NRXx8PIoVK4aKFSsKmcUdHBx0ek+XL1/GkSNHcP/+fbx79w7FihVD9erV0bt3b7Rv3z7X4/XJjv3s2TMcPnwYt27dQlhYGORyOezt7VGtWjV06NABX3/9NSwtLTX+jbKEh4ejWrVqADLn9jx16hQA/bJjJyQk4OjRo7h8+TL8/Pwgk8lQpEgRuLi4oEmTJvj666+1Zk/P/m/XsWNHvHjxAvv374eXlxdev34NpVIJFxcXNG/eHH379kWlSpW0/Rk/GAxCEhHl4vfrQfj7fvh7qy8tg0FIIiIiovdh69atot51vXr1Qu/evXU6NjY2FgMHDsStW7dE26OiohAVFYXbt29jz549+P3333Mc5hsXF4fp06fnGPBISUlBVFQUvL298ccff2DRokXo0qWL1nYplUosXboUO3bsgFKpFL3m6+sLX19f7Nq1C8uWLUPHjh1zLOfixYuYPHmyaA5NAAgODkZwcDAOHjyIuXPnam2LMclkMtH70WXotIuLi7CsKQu2piBkaGgofHx8EBMTA1tbW1SoUAF169YVhnYb04IFC7B3717RtujoaFy9ehVXr17F7t27sXHjRjg6OuZa1uTJk3Hu3DlhPTg4GFFRUZgzZ45ov82bN2PDhg3CvJqq9UZHR+POnTv4448/MGfOHHTv3j3H+pKTkzFp0iS1z250dDQ8PT3h6emJzz//HK1atcq17blJTEzEggULcOLECbXX3r59K9S3detWrF+/HlWrVs1znTk5ffo0fvrpJ6HndBa5XI64uDj4+/tj9+7d6Ny5MxYuXAhbW9tcy9y6dStWr14tSpoFAIGBgQgMDMTevXsxffp0DBw40JhvJV8wCElElItVVwLzuwlEREREZGS3b9/GqlWrhPV69erpFVSbMWMGEhMThezMtWrVglQqxcOHD3Ht2jUolUq8ePECEyZMwIEDB9Tml5TL5Rg0aJAwJ6GlpSVatmwJd3d32NjYID4+Ho8fP8bNmzehUCiQkpKCGTNmoFq1alqDLKtWrRIyfNevXx9NmjSBlZUVAgICcP78eaSmpiI5ORlTpkyBh4cHKlasqFbG6dOnMWXKFGRkZADITADzxRdfoESJEggPD8e5c+cgk8kwd+7c95Yp2pD5OVUDba9evVJ7XTUIGR0djV69euHhw4dq+zk6OmL48OEYNGiQ0eYJXbduHW7evAkAcHd3x2effQZra2s8evQIV69ehUKhwP3799GnTx8cOHAAxYoVy7GsrF552bVt21bUE1e11yoA1KhRA59++ikcHBwQHR0NLy8vvHjxAgkJCZgxYwbevXuHoUOHqpWblpaGgQMHwsfHB8D/MpTXq1cPCoUCd+/exa1bt3DhwgXcvXvX0D8RgMx/w6FDh+LBgwfCtpo1a+LTTz+Fra0tXr58ibNnzyI1NRVBQUEYMGAAjh07BhcXF9SuXRvTpk1DXFwcNm3aBACwt7fH999/D7lcDjs7O73asnfvXixYsEBYd3R0RJs2beDm5obExETcuXMH9+/fBwD8888/CAgIwO7du7XWs2/fPuH7Wq1aNTRr1gzFihVDSEgIzp49i4SEBKSnp2Px4sVwd3fHp59+qlebCxoGIYmIchEeqz6JNREREZGIXA4sXAicOgVk6zlW6NnYAF99BcybBxSQRC+RkZGYOXOmEGQrWbIk1q5dKxrKmZvExERUqFABa9asEYZ3Zrl8+TLGjBmDjIwMPH36FJcvX8YXX3wh2mfnzp1CANLFxQU7duzQmJn52bNnGDp0KGJiYpCeno79+/er9W5TdePGDTg6OmL16tVo2rSp6LXAwEAMHjwYkZGRkMvl2LlzJ+bPny/aJyYmBj/99JPwt+nZsyfmzZsHa2trYZ+pU6di+vTpuHTpksbgninY29ujSJEiSE5OBgAEBASgevXqWo9RHWafkpKC+Ph4FC1aFEBmj9Gsvz8ALFy4MMdy3r17h+XLl+PKlStYv3497O3t8/JWAAA3b96ERCLB1KlTMXToUNF8lPfu3RPmKX358iVWr16t9u+k6vLlyzAzM8P48ePx7bffwsLCAjdv3hQNwz548KAQgCxatCiWLVuGdu3aicpRKpU4dOgQfvrpJ8jlcqxYsQJ169ZFw4YNRftt3bpVCEDa29tj/fr1aNKkiWgfT09PjB8/Xq3HoL7WrFkjBCBtbGywdOlStR68r169wpAhQxAUFIR3795hyZIlWLt2LapWrYqqVasiLCxMCELa2dlh2LBhaj18c/PgwQPRZ6RHjx6YPXu2WoDxypUrmDJlCuLi4vDs2TPMmjULa9euzbHcGzduwMrKCsuWLUOnTp1Er02cOBHDhg2Dv78/AGDbtm0MQhIRERERERV6P/0ELF6c360ouP6/dxB+/jl/24HMHohTp05FTEwMgMwedmvWrNFpjkRVRYoUwZ9//oly5cqpvda6dWt06dIFx44dAwB4e3urBSEPHz4sLM+ePVtjABIAqlevjqFDh2LFihUAgEePHuXatl9++UUtAAkAlSpVwo8//ojZs2cDAK5fv662z8aNG4XAUYsWLbB48WK1hC329vZYt24dvvvuO43DnLNcvXoVz58/19rWhIQEbN26VeNrVatWFYbzSiQSNG7cGFevXgUA7N+/X9QrLTuFQqE2fDclJUUIQr58+RKJiYnCa1KpFH379sXXX3+N8uXLQ6lUwtfXF/v37xfK8fb2xrhx47Bt2zZYWOQ9nDJ27FgMGzZMbXuDBg2wfv16DBgwAEqlEvv27cPQoUM1ftayjB49GqNGjRLWs5LyAJk9F9esWSOsr1mzBs2bN1crQyKR4Ntvv0V8fDx++eUXZGRkYM2aNdi5c6ewT0JCAjZv3iysL1++XC0ACWR+dlatWoXvv/9ey19Au8TEROzevVtY1xSABIAyZcrg999/R+fOnaFQKHDu3Dm8efNGbS7MvFi5ciUUisxEpV988QWWLl2qcb/PPvsMGzduxMCBA5GRkYEzZ87gwYMHWueZnTFjhloAEgBKlSqFWbNmYfDgwQAg9IrOaZ7QDwGDkERERERERHmVbV5A0uD/h57mt19//VUUOJs1a5ZaTy9dfPnll1qDQs2aNROCkNl7C2ZkZGD48OEIDw9HVFSUkBAjJ6o9LePj47XuW758eXz22Wc5vq7ak+rNmzei15RKJf79919hffLkyTlmjJZKpZg6dSoGDRqUY12nT58Wko7kJDY2Fr/++qvG17p37y6aU/C7774TBSGbNGmiMXgDACtWrBD1hASA9PR0YVl1KLatrS22b9+OunXrivZv1KgRGjVqhGbNmmHGjBkAgFu3bmH//v3o16+f1veVm5IlS2LkyJE5vt64cWO0atUKV65cgUKhwPnz5zFkyBCN+0okEvTv3z/Hss6fP4+oqCgAmUP0NQUgVQ0cOBAbN25EXFwcbt26hdevXwvza167dk3ojVqnTh2tn7XPPvsMjRs3xu3bt7XWl5MrV64IQ+pr1KihdQ7TypUro1OnToiMjET58uURHx9vtCBkREQEvL29AQBmZmbCZyEnjRo1QqdOnXDy5EkAmZ/VnIKQNjY2+Oabb3Isq2HDhpBKpZDL5UhNTYVMJoOTk5Nhb6QA+HDDp0RERERERAWFiTICf1QKwDDCI0eOiHog9uzZE3379jWorAYNGmh9XTWTtWqPOwAwNzdHjx49MG7cOCxcuFBr0pO0tDQEBQUJ66qBNE2yB9KyK168uLCckiKedujx48dCsMrV1RU1atTQWtann376XgMin3/+Odq0aQMgs6fjpEmTMG/ePDx+/BgpKSlITEyEt7c3Ro0aha1bt8LJyQk2NjbC8arD7Tt27Ihz585h+/bt2L17t9a/W/fu3UWBopx6burjyy+/zHV+SdXes1nBV00qVqyo9d9BNXlSzZo1c22bhYUF6tSpI6zfuXNHWL527Zqw3Lp161zL0iVDdk5U62rbtm2u+69cuRK7d+/G4sWLUblyZYPrzS5rzkYgM/BatmzZXI9RzcSePXmVqurVq2udBsLS0lLovQtALaHQh4Y9IYmIiIiIiPJq/nxAIuGckJqozgmZj54+fYqffvpJWK9Vq5bWefZyoxrM00Q1sJg1v6I2CQkJCAwMRGhoKEJDQxEcHAx/f3/4+fmJsuZmz3idXYkSJbS+rpqoJGt4aZbg4GBh2d3dPdc2A5m9NDUN6waAZcuWYdmyZRpf8/DwAJAZ7MwpO7gmK1aswOjRo+Ht7Q2lUon9+/eLkq1kcXBwwObNm0WJVVTntZRKpXBzc4Obm5tO9Q4YMACHDh0CAISHhyMgICBPga6sbNzaqCYg0jb3prYeuYB4bszdu3eLhjjrQrXu8PBwYblKlSq5Hpt9vlR9RERECMu6fh5NISQkRFjW9f2ozlf66tUrZGRkaPyxIbfvK6D9O/uhYRCSiIiIiIgor6TSzPkOC8Cch6ROJpNh7NixQi8iJycnLF++XK9ENNnZ2trmuV0pKSnYt28fjh49Cj8/vxwDjObm5joFMgGIev7pK6sXJACdk684OjoaXJ8h7OzssG3bNmzbtg1bt25FbGys6HVLS0t07NgR06dPh5OTExISEgBk/l3y8m/m4eEhSowTEhKSpyCkLsEn1X8D1X+b7LRlzgaQ5+Qw7969E5ajo6N1rhfI2+dD37pMRfXvp+v7Ud1PqVQiNjZWY29Vfb+vuf0IUdAxCElEREREREQfLYVCgcmTJws9uCwsLPDLL7/onYjG2EJDQzF8+HDRUGsgc34/FxcXVK5cGTVr1hTmq8xLgg9dqfa41DXomR9BEalUipEjR2LIkCG4d+8eQkJCkJ6ejtKlS6N+/fpwcHAAkJlBO6t9WXMaGkoikaBo0aJCEDIruGkobUPws6j2etMWMM8tSY7qEP6OHTuKhlrrQpch3DnJS6Bf9fOYnwz5jGfvsZjT3KqFDYOQRERERERE9NFas2YNPD09hfVJkyYZlIjGmORyOcaMGSMEIJ2cnDBo0CA0bdoUVatWVesddeXKlffSLtWed3FxcTodo+t+pmBpaYlPP/1UlGxHlY+Pj7Cc0zDa1NRUmJub65TtWjXwmNeeeboEMVV74KnOMaov1X/XevXq5ZjgRhclS5YUMp7r0sMyL58PQz6PppAV1AbEvUK1Ud3PzMwMdnZ2xm7WB4mJaYiIiIiIiOijdOHCBWzevFlY//rrr/Hdd9/lY4syXbhwAf7+/gAyh2MeOHAAo0aNQt26dTUOz1QdlmrKnoeqc/xlBZpyk/U+3gelUol3797hxYsXuWYJBzL/zlkaNWokeq1nz56oX78+6tSpg8uXL+daVmhoKJJU5ntVna/RENkzd2vi6+srLJcvX97gulTnvdT13ys2NlZjb1jVpCyq7ctJQECATvVpojrXpS5/r2vXrmHGjBlYv369KJlOXlWoUEFY1uU9A+Ls66VLl841CVFhwSAkERERERERfXSCg4Mxffp0IWhXs2ZNUWKa/HTv3j1huXnz5rkmFlHNzmvKxBS1a9cW5k189epVrgGXx48f482bNyZrT3aLFy/Gp59+iq+++gonTpzQuu/r16+FHqTm5uZo166d6PWiRYsKQUVdEuOo1lepUiWUKVNG3+aL6BL4PHfunLD8+eefG1zXJ598IixfuXIl1wzLaWlp+Oqrr1CnTh20bds2xyzVZ8+ezbXuvPTiVe2xrC07eJZ///0XR48exbp160S9YPM6FFo1gO3j44OwsDCd2pIlv3teFyQMQhIREREREdFHJSkpCWPHjhV6yzk5OWH9+vWwsrLK55ZlUp3rLiYmRuu+9+/fx+nTp4V11fn9jM3S0hLdunUT1n/77Tet+69Zs8ZkbdFENZhz+PBhrb1ClyxZgrS0NADAl19+qTYH6Jdffiksnzx5EoGBgTmWFRwcjK1btwrrAwcO1Lvt2d2/f19rYO369eu4efMmgMzsyHkJQnbo0EEILkdHR2Pjxo1a99+2bRuioqKQnp6OmJgY0RySzZs3F5KuBAYG4sCBAzmW8+zZM1Eg1ZB2Z2U0f/DggWhaheyioqKEwJ9EIhH9vfTNVJ9duXLl0KRJEwCZPwLklPE9y71790RByK5du+pd58eKQUgiIiIiIiL6qMyZM0cYdmppaYkNGzbkueeaManOT3jv3j1RkDGLUqnEqVOnMGLECFHgMSUlxaRtGzlypBCwunTpEn766SchmKfahrlz5+rUOy0nfn5+8PPz06kXYpbPP/9cmBvxyZMnWLlypVpQNjk5GbNmzcKZM2cAZGYxnzJlilpZX3/9tTDEOS0tDSNHjtQ4dPjRo0cYNGgQEhMTAQB16tRBr169dG6zNpMnTxb1cs1y48YNjB8/XgiyTpgwIU9zUBYrVkyU2GjTpk1Yv369WuIXhUKB/fv3Y926dcK2oUOHiuZmtLS0xPTp04X1hQsX4tixY2p1Pn36FCNHjsxTchknJycMGDBAWJ88ebIQmFX19u1bjB07VujZ2qlTJ9HwddX5GGNiYkTD6nU1YcIEIZh57tw5zJw5U+O8np6enhg9erQQ7GzXrh1atmypd30fKyamISIiIiIioo/GhQsXcOrUKWG9Xr16uH//Pu7fvw+lUikKikil0lyHavbu3dvoSSW++uorrFu3DlFRUVAqlZg4cSL27duHWrVqwdbWFpGRkfD09BRl9M7IyIBSqUR8fDzS09N1SqRiCBcXF8yfP18Yyv7333/j0qVLQgAwMjIS58+fx5s3b2Bubg4zMzPhb2pmZtp+TpaWlpg/fz7GjRsHpVKJLVu24Ny5c2jRogWKFy+OV69e4dy5c0LCFKlUitWrV6N06dJqZVlZWWHVqlUYOHAgEhMTERISgq5du6JNmzaoUaMG0tPT8fDhQ1y/fl0YAu/m5oa1a9fqlNk6N1KpFHFxcRg8eDCaN2+O+vXrA8gMSl+/fl3Yr2XLlkbpeTly5Eg8evQI58+fh1KpxLp163D48GG0bt0azs7OiIqKws2bN0VzLzZp0gRjxoxRK6t79+7w9PTEP//8A7lcjunTp2PPnj1o1qwZLC0t8fjxY1y5cgUZGRmoWLEiXr58aXC7x48fjwcPHuD27duQyWQYNGgQmjRpggYNGsDGxgaBgYE4e/asEFh0c3PDnDlzRGXY2dnBwcEBMpkMaWlpGD58OJo3b46MjAwMHz5cp3Y0bNgQ06ZNw9KlSwEAR44cwaVLl9C2bVuUK1cOycnJuH37tmiqhYoVKwr7UyYGIYmIiIiIiOijERsbK1r39vaGt7e3weV16NDB6EFIOzs7bNy4EaNGjcLbt28BALdu3cKtW7fU9nVzc8PSpUsxa9YsBAcHQ6FQ4OnTp6IhssbWrVs3yOVyLF68GElJSYiIiMDu3btF+9jY2GDZsmVYunQpIiIiAGQGCU3tiy++wNKlS/HTTz8hOTkZQUFBQpZxVWXKlMGvv/6Kxo0b51hWrVq1sHv3bkyaNAkvX75Eeno6zp07p3EIcYsWLbBkyRK1Yd2GGjhwIJ4/f46rV6/Cy8sLXl5eavsMGDAAM2fONEpwVyKRYO3atVi1ahV27NgBuVyOV69e4e+//9a4f7du3bBw4cIcg90rVqyAs7OzMEzdx8dHNA8jkPkDwLRp09C3b1+D2y2VSrF161bMnz8fR48eBZDzd7p+/fr47bff4OTkpPbad999h02bNgHIDPRmBQu/+eYbjcmgNBk8eDBKlCiBhQsXIjY2Fu/evcPhw4c17tutWzfMnz9f6FVMmRiEJCLKgUKhxKqrOc8NQ0RERERkqNq1a+PkyZP4+++/cfnyZQQFBSEpKQnW1tYoWbIkPDw80Lp1a3Tu3BmWlpZo1aoVdu3aBQA4duyYSYOQQGZwplmzZti7dy+uXLmCV69eIS0tDaVLl0arVq0wbNgwuLi4iJL96BrMyavu3bujSZMm2LNnD7y8vBASEoK0tDQ4ODigWrVq6NChA7p27SrMJ6hNjRo1cPLkSZw+fRpnz57F48ePERMTAwsLC5QqVQoNGjRAp06djD6ktkiRItiyZQtOnDiBQ4cOwc/PD4mJiXBxcUGTJk3Qp08f1K5d26h1mpubY+rUqejTpw8OHjyImzdvIiQkBHFxcbCysoKrqysaNGiAnj175vr5kkgkmDZtGr788kvs3bsXt27dQmRkJGxsbFCpUiV06dIFvXv31jrXpq6srKywbNky9O/fH0eOHMGtW7fw+vVrpKamwtHREbVr10bXrl3Rvn37HAO2EyZMQPHixXHo0CGEhoZCLpejePHiiIyM1Guqhs6dO6N169Y4ePAgrl69iufPn0Mmk8HCwgJly5ZFo0aN0KNHD5N/Pz9UEqW2mVyp0Lp//77Q5dzMzEzoGv6hyupKn6Vu3bomG75AH4/DPq/w7c67773euMVfws6Kn09j43mAiHgeIF1lZGQI8wkCgLu7u1GGX1L+UyqVovngbGxs8pw5t7CrXbu2MGfkzZs3haQlpG7dunVYv349AGDs2LEYN25cPreocCqM5wFjXNeMESfiXRcRUQ5GHvLJfSciIiIioo/I1q1bUbx4cbi5uaFBgwZa9w0MDBQCkI6OjgxAEpFWDEISEeUgJsnwTG5ERERERB+iEydOwNfXFwBw+PBh1KpVK8d9//rrL2G5SZMmpm4aEX3gTJu6ioiIiIiIiIg+GM2aNROWFy1ahHfv3qntk5GRgT///BP79+8HkDk00xgZnIno48aekEREREREREQEABg6dCiOHDkCmUyG+/fvo3Xr1mjbti3c3NwglUoRGRkJLy8vhIeHC8eMGDECjRo1ysdWE9GHgEFIIiIiIiIiIgIAlCxZEjt27MD48eMRFBSElJQUnD59WuO+lpaWmDFjBvr16/eeW0lEHyIGIYmIiIiIiIhIUK1aNZw8eRKnT5/GuXPn8OzZM0RHR0OpVKJEiRJwdXVF27Zt0blzZ5QsWTK/m0tEHwgGIYmIiIiIiIhIxNLSEl9//TW+/vrr/G7KR2PcuHEYN25cfjeDKN8wMQ0RkQbXAqPzuwlEREREREREHw32hCQiUqFUKtFn9z0cePjKoOObhz1F14BbSDczx9sixfCgVEVcKlcHkEh0LiNdoTSobiIiIiIiIqKCikFIIiIVN4PfGRSANFNk4KfrezH71gG11/ZU+wxDO/4IublUp7JGHfLBvgEN9W4DERERERERUUHF4dhERCrGH3us9zHW8lQcO75YYwASAPr5XsGxY4tRRJ6qU3kHHr5CijxD73YQERERERERFVQMQhIRqbgTFqv3MWsvbUHnwDta9/ky6B6OHF8CiVKhU5kJael6t4OIiIiIiIiooGIQkogoDxpH+GP4o7M67dsh+D76Pbti4hYRERERERERFTwMQhIRGUiiVGDtxT/UtofalcDYtiMRXLSk2mtLr+2AbVpyrmVffsHs3ERERPnFzEz8mJSRwWlSiIjow5X9Opb9Ove+MAhJRGSggU8u4ZPX/qJtCVJrNO27HL/X/wr1Bq5BoL2z6HXXhBjM8D6ca9m9dt3F715BxmwuERER6UgikcDc3FxYT0lJycfWEBER5U1SUpKwbGFhAYlEki/tYBCSiMgAEqUCc27uV9u++JNeeFW0OAAg1toOUz8borbP5DtHUSY+956OY48+yntDiYiIyCC2trbCcmJiYj62hIiIKG/i4uKE5aJFi+ZbOxiEJCIywGehj1E59rVo2wsHF6xu2E207WiVprhUrrZom3WGHCMenTF5G4mIiMhwdnZ2wnJsbCySk3OfToWIiKigiYmJEf2Ylp9BSIt8q5mI6AM25PF5tW3LmnyDNAupeKNEgkmth+H+rgmizcMencOiT3sjw8wcREREVPDY2trCzMwMCoUCSqUSoaGhcHBwQLFixfJ1KBvljVKpFM2NlpGRwX9LokKmMJwHMjIykJSUhLi4OFEAUiqVwsbGJt/axSAkEZGeiqUm4pvn10XbEqTWOODRQuP+D0tVwpWyNfFZ2BNhW9mEaHQKvIOTVT4xaVuJiIjIMBYWFihbtixCQkIAZD7QRUdHIzqayeM+dAqFQljOr+QMRJS/CuN5QCqVws3NLV8DroXjL01EZETf+V5DkfQ00baD7s2RYJnzL0p/1Omotu17n9yHZCuVSv0bSEREREZha2uL0qVLf3Q9ZAozpVKJ9PR04T/eaxEVPoXxPJAVgLS0tMzXdjAISUSkJ01DsbfV+kLrMYerNsNba/HcG1++vItycVFaj/vrdqj+DSQiIiKjcXBwQJUqVVCqVClYWVnld3PICFSDD0RUOBWG84CFhQUcHR3h5uaGypUr53sAEuBwbCIivbjGv8Unr/1F2/wdy8DLtbrW49IspNhR83NMvntM2GYGJfo+u4JfPvkmx+OGHXiIIU3c8tRmIiIiyhsLCwsUL14cxYsXh1KpFA3jow9Leno6Hj9+LKxXrlwZFhZ8LCYqTArDecDMzKxA9uL/uP7KREQm1iHontq2PdVbAzqc4LfUaS8KQgJAt4CbWoOQREREVLBIJBKYmzOx3Icq+7BLc3Nz/nsSFTI8D+QfDscmItJDx5fqQcjTFRvqdKy/U1n4lCgv2vZphD9KJ3CCeyIiIiIiIvq4MQhJRKQji4x0fBH8QLQt0sYe95wr61zG8Sqfqm3r9uJWXptGREREREREVKAxCElEpKOmEb6wT0sSbTtToQGUEt1PpUcZhCQiIiIiIqJCiEFIIiIdffnyrtq2/yo00KuMB6UqIahYKdG2tqE+sE9JyFPbiIiIiIiIiAoyBiGJiHSUfT5IBSQ4V76+foVIJDhe5RPRJqkiA500BDiJiIiIiIiIPhYMQhIRqcgpyXWpxHeoF/VStM27dFVE2xTTu45jGoZka8q6TURERERERPSxYBCSiEgHzV89U9t2trx+Q7GzeLrWgMzKVrStXfBDQKk0qDwiIiIiIiKigo5BSCIiFTl0hESzcF+1bVfL1jSojgwzc1wuW0u0rUxiDKrFhBlUHhEREREREVFBxyAkEZEOmr4SByEzJGbwLl3V4PIuutVV2/Z5yEODyyMiIiIiIiIqyBiEJCLKhVV6Ghq+eSHa9rBkBSRY2hhc5oXyddS2tQ3x0bjvNu8QuC48i/KLzuHQw1cG10lERERERESUXxiEJCJSIdGQmaZh5AtYZaSLtt0oUy1P9TxzKodXtk6ibW1CH8FMkaG27/ADDxERl4pQWQr6/X0P75LS8lQ3ERERERER0fvGICQRkYoMhXpymGav1OeD9CpTPW8VSSS46FZbtMkhNRENIwO0HibPUGLNtZda9yEiIiIiIiIqaBiEJCL6f+s8NQf3moWrZ8a+7prHICSAC2711LbpMi9kWGxKnusmIiIiIiIiep8YhCQi+n/jjz1W36hUqvWEDLdzQkjRknmu74Kb+ryQrcI0tCF7k6DeW5OIiIiIiIioIGMQkohIi8qyCJRKjhVt8ypTHdAwd6S+woqVRIC9i2hb01d+kCgVeS6biIiIiIiIqCBhEJKISItGkS/Utt3MY1IaVV7ZhnXbpyWh5tsQo5VPREREREREVBAwCElEpEX9N4Fq2+44VzFa+ZqybDd/pT4HpSolR2MTERERERHRB4ZBSCIiLeppCEI+LFnRaOVryrLdVEM2biIiIiIiIqIPGYOQRFRoKRRK3AuT4UrAW6SmZ6jvoFSq9YR87lAa8VY2RmvD0+LlEGspLq+5hmzcRERERERERB8yi/xuABFRflAqlRi87z523wsHADQsa6+2j2tCNEomx4m23S9VyajtUJiZ40YZD3QMui9sqxz7Gs6J7xBp66j5IA7HJiIiIiIiog8Me0ISUaHkF5UgBCAB4G5YrNo+muaDfGDkICQA3NAwJLtZLvNCEhEREREREX1IGIQkokLpxJPIXPfRFIQ0dk9IQPO8kNqGZCvZFZKIiIiIiIg+MAxCElGhlK7IPZCnKSmNKXpC3irtjgyJ+HTM5DRERERERET0MWEQkogoB9l7QkbYOuY8T2MeJFoWgU+J8qJt9aJewiIj3eh1EREREREREeUHBiGJiDRwTI5Hhbg3om3GGIq9q299jdvvuFQVrRdJT0PN6BCN++64E4bYZHme20JERERERET0vjAISUSkQb0o4w/FntCqEmq5FNX42u1sQUgAaPz6eY5lddvunae2EBEREREREb1PDEISEWlQ+22w2rYHJSuqbetVt4xO5T2c/BlWda2JGs6ag5B3nKuobdMWhLwaGIPgmCSd6iYiIiIiIiLKbwxCElGhJMnl9Zpv1YdCPypRQW3bn73qai3HysIM/434BLVLFwMASM3NMLudeq/HxyXKI9nCUrStkZYgJABExKdqfZ2IiIiIiIiooGAQkogKpdxyY1ePDhWtp5lZ4IVjab3ruTuhFdp7lBJt+7ljNaQs+wqPprQWtqWbW6j1tKwVHQJrec6BRqUy9wzfRERERERERAUBg5BERNkplagRIw5C+jm5IsPMXO+iauQwB6SlhRlqZnste3IaqSIDdaNe6l0nERERERERUUHDICQRFUrahmO7JL6DU0qCaNtTp3ImaUdNlTkiNc8L+cIk9RIRERERERG9TwxCEhFlUyPbUGwAeFrCTW3bpM8qaQ1mDm6Ue+DSzup/vSs1ZchuFKl9XkgiIiIiIiKiDwGDkERE2dSMVk9K87S4ekBxymeVtZYzva16z8bsmld0Epb9nFwRZ1lE9Lq2DNmcEZKIiIiIiIg+FAxCEhFlo6kn5JPi6j0hXYpZay3Ho5RdrnV9XctFWFZKzHCvlDiw6RETDht5Sq7lEBERERERERVkDEISEWVTI1tPyDQzC7xwEGfG7lrTGQAg0TYeWwcO1lLR+oNSlUTrZlCidlRQ3iohIiIiIiIiymcMQhIRqVIq1YZj+zuWQbq5hbDes3ZpbPm2rlGqMzcTRzHvZwtCAkD9N4Eaj1VyPDYRERERERF9IBiEJCJSUSpJpp4ZO9t8kAcHNUJJOyuj1GcmyT0IWS/qpcZjN14Pwq+XXiAyPtUobSEiIiIiIiIyFQYhiYhUaE5Koz4fpLGoZscGAF+nskgxFw/RrpdDT8i/74djxqlnqLfqCqIT00zWRiIiIiIiIqK8YhCSiEiFpqQ0mjJjZ5HkcVJIV3txNux0cws8LlFetK3222CYKzJyLCMyPhUbbwTlqR1EREREREREpsQgJBGRCo+YcLVtz7QEIU0he3KaIulpGtulavUVzb0liYiIiIiIiAoCBiGJiFRUffdKtK6ARC0ztrG5FBXPL/mgZEW1fepFMchIREREREREHy4GIYmoUMppFLX7O3GPw+BiJZFqYfkeWvQ/GjNkR2oPQjJRNhERERERERVkDEISUaGk1BC1s0pPQ/m4KNE2f0dXreXkbUZIzXxKVoAiW8l1c8iQTURERERERPQhYBCSiAql+Wf81LZVin0Ns2x9Cp87lnlfTRIkWhZRq7f+m0DNkdP/p9TyGhEREREREVF+YxCSiAqdZHkG0hXqQTv3mFdq23LrCZmTlV1rGHRcluxDsounxKN0YkyeyiQiIiIiIiLKLwxCElGh8zouVeP27PNBAsBzR8OS0kxoqT6voz4elyivtq322+A8lUlERERERESUXxiEJCL6f+7v9O8JmVOCG0lOL+jokaYgZFTOQUgOxiYiIiIiIqKCjEFIIip0lDmE7Kpm6wmZZmaB4GIl30eT1GjqCVkzmj0hiYiIiIiI6MPEICQR0f/L3hPyhUNpKMzM86UtQfalkCC1Fm3T1hOSiIiIiIiIqCCzyO8G5Kdbt27h1KlTuH//Pt68eYOEhATY2dmhdOnSaNSoEXr06IEaNfKWXEJVTEwMmjZtqvdxv/76K7p162a0dhAVdpoSSRdNTYJLkky0zf89ZcbW1C9TKTHDk+Ju+OS1v7CtRkwozBQZGgOjcSnpUCqVeR4GTkRERERERGQKhTIIGRYWhunTp+POnTtqr8lkMshkMjx79gy7du3CV199hYULF8LOzi7P9T579izPZRCRaVSVqc8H+UKHIKQEpgv6PS5RXhSELJKehsqy13jupHmeyoDoJFQpYWuy9hAREREREREZqtAFIYOCgtCnTx/ExMQI26RSKdzd3VG0aFFER0fjxYsXUP5/V6lTp04hICAAe/bsyXMgUjUI6ezsjKpVq+p0XKlSpfJULxHlzj1GPTP2++oJmZPHJdzUttWKDs4xCHn88WtMbl3Z1M0iIiIiIiIi0luhCkJmZGRg3LhxQgDS3Nwco0ePxpAhQ0QBxsjISKxatQrHjh0DAPj6+mL27NlYs2ZNnupXDUL26tULY8eOzVN5RGQYTcOfDcmMbSxKTePDATwqUUFtW+2oYByt2kzj/inpGcZsFhEREREREZHRFKrENEeOHIG///+GNi5btgzjxo1T6+Ho7OyMX375BUOGDBG2/ffff3jw4EGe6vf19RWWq1WrlqeyiMi4qmgYjv3csXSux1lamKFScRvRtiFNyhmlTZp6QmrLkK05lElERERERESU/wpVEPL48ePCcosWLdC1a1et+0+aNEk0FPrUqVMG152amoqXL18K6x4eHgaXRUR5o6nnYSVZpGg9ycISEbZOOpW3umtNWFlknk7L2ltjZlvdplrIzRtbR7wpYi/api1DduDbJKPUS0RERERERGRshSYImZaWhnv37gnrnTt3zvUYS0tLtGjRQlh/9OiRwfX7+fkhIyNzqKSdnR3Kli1rcFlEZHyVYl+L1gPtXQAdM013qemCqJ864N7EVgic9blRk8M8KlletF5VFgFrearGff+6E4qRhx7mOLybiIiIiIiIKL8UmiBkeHg4rKyshPXKlXVL3uDg4CAsv3v3zuD6VYdie3h4QKJjcIOITM82LRkuSTLRtgAHF73KsLOyQD1Xe1iYG/e0+qS4OAhprlSgWkxYjvtvuRmCp5EJRm0DERERERERUV4VmiBkxYoVcf/+fdy5cwenTp2Cu7u7TseFh/8vY669vb2WPbVTTUrD+SCJ8lf2foIVYyPV9nlpr18Q0lQelSivtq3225yHZAPAnH+faX2diIiIiIiI6H0rVNmxAaBo0aIoWrSoTvsmJCTAy8tLWNe196QmqkFIDw8PhISE4PDhw/Dy8kJQUBBSUlJQvHhx1KhRA+3bt0eXLl1gYVHo/nmI8kX2odiA/j0h86JPfVesufZS42uaktPUyiUImZbB4dhERERERERUsBSanpCG2Lp1KxIS/jessU2bNgaVo1Qq4efnJ6z/888/6NixIzZt2oRHjx4hPj4ecrkcr1+/xsWLFzFjxgx89dVX8PHxyfN7ICJ12adMrCxTD0IGvseekIMbl4OFmeYpGp4YEIQkIiIiIiIiKmjY1S4HPj4+2LJli7BeoUIFtG3b1qCygoODkZT0v6y13t7eAACpVIqKFSvC0dER7969w4sXL6BQKAAAQUFBGDBgANatW4dWrVrl4Z0YR3p6en43IU+ykgLltE6FS3qG+POsqSdkTkHIxuXsjf59qFnKFscGN0TnbXfUXkuwtMHLYqVQMe6NsK3W2xCt5UXGp3zw31lT4HmAiHgeICKeB4iI54H8wyCkBmFhYRgzZgzkcrmwbcaMGQYPj1Ydig1kBh/HjBmDPn36wNHRUdgeHR2NP/74Azt27IBSqURKSgomTpyIw4cPo0KFCgbVbQwKhQIPHz7Mt/pN4fHjx/ndBMpHQXHZgpDZekIqIEGQfSmNx3YoDZN8H5wBtC5rjcthKWqvPSpRQRSELJfwFg4pCZBZ22ksq6SF/KP7zpoCzwNExPMAEfE8QEQ8D7w/HI6dTUREBAYNGoSoqChh2+DBgw0eig0AL1/+b643Kysr7Ny5E2PGjBEFIAGgePHimDlzJpYuXSpsS0hIwIoVKwyum4g0EY/HrpQtMU24XXGkWlgK65+5WqOGkxQ/1iuGrpVsTNaq7pU1l61pSHZNLb0hrc01D+0mIiIiIiIiyi/sCakiICAAw4YNQ0REhLCtRYsWmDJlSp7KHTNmDAYOHIiwsDAAuWfH7t69Ozw9PfHPP/8AAM6dO4dXr16hTJkyeWoHEakzU2SgQpw4CBno4CxaX9HK6b20pYmLlcbtmjNkB8GrbA1TN4mIiIiIiIjIKBiE/H/37t3DmDFj8O7dO2Hbp59+ivXr10Mqlea5fDs7u1yDj6oGDBggBCEBwMvLC99++22e22EIMzMz1K5dO1/qNpaMjAxRF+tatWrB3Nw8H1tE+cnyTQJwKrO3s2tCDKyyzRGZfT7IunXrvre2YX+E2qbHGoOQOSencXJyQt26H/Z31hR4HiAingeIiOcBIuJ5wDCPHj0S8pgYikFIACdPnsSsWbOQlpYmbPvss8+wdu1aWFtb50ubatWqBalUKsxLGRycv9lwDZ0Ps6AyNzf/6N4T6c5C5QKjMSmNgzgImd+fFT8nV8jNzCFV/G/C5JpagpBm5mb53uYPAc8DRMTzABHxPEBEPA+8P4V+Tsh169ZhypQpogBk165d8fvvv+dbABLIDHo4ODgI67GxsfnWFqKPWWWZes/DgBwyY+cXubkUvk5lRdtqvw0GlEqN++ewmYiIiIiIiCjfFNogpFwux7Rp07B+/XrR9pEjR+LXX38tEFFw1cCora1tPraE6OOhUChFQbrsSWkA9Z6QBcHj4uLkNI6piSiTEJNPrSEiIiIiIiLST/5H2vJBWloaxo0bh8uXLwvbLCwssGDBAqPPuxgfH48tW7YgOjoa0dHR6N+/P1q0aJHrcTKZDHFxccJ66dKljdouosLmcUQcBvwfe/cdHUXZxQH4t+k9IaGFhA4h9N5BpEjvFlAQREWFD7GBYgWlKCpFRIoggiC919ATagIkISG99957smW+P2JCZmc22d5yn3M8x31ndvYFtszcue+9RwIRkVWCdk2sa8fbF/Asx9ZhJmQrByukFVVwxkOatQUi77LGeuQmIs3ehbOvgJpjE0IIIYQQQgjRM40uCCkSibB8+XJWANLW1hbbtm2TKzioKCsrK+zbt6+2tqOrq6tcr3P//n0wddK1BgwYoPa5EdKYvHkkEEFp1YH9yOzS2vH2Up2xi82tkWPtoNW51eXZ3I43CBnm3IYz1jU3Gdfa9dPGtAghhBBCCCGEEJU0uuXYv/zyC27fvl372NnZGQcPHtRIABIAzM3N0bdv39rHly9fRklJSb3PEYlE2Lt3b+3jTp06oVu3bhqZHyGNQYVQXBuAlNauMIv1ON6xuU5TCWW9dJhLa85Yt9xkDc+GEEIIIYQQQghRj0YVhPTx8cGBAwdqHzs6OuKff/5B9+7dNfq6r7zySu3/FxQUYMOGDfXu/9NPPyEsLKz28fvvvw8Bra8kRGkSGZ1arISVaFlWwBpLdGiuhRnJJuuTHufUEpWm7OR1z7wU3n3/8ktS86wIIYQQQgghhBDVNJogpFgsxvr162uXOAsEAmzatAmdO3dW6bhvvvkmunTpUvsfn2nTpqFPnz61j0+dOoWPP/4Y6ensrrxJSUlYtmwZDh48WDs2ZswYTJ8+XaU5EkL4tSnO5oxJByFHtHfW1nTqJTYxRVQTN9ZYt9xkma2wy6pE2pgWIYQQQgghhBAil0ZTE9LLywuJiYm1j62trbF//37s379f7mM0bdoUGzduVPi1TUxMsG3bNrzxxhtISanOXLpy5QquXr2Kzp07o0mTJsjOzkZsbCzreYMGDcLmzZsVfj1CCJuMOB3aFWVxxhIc2UHIdwdzazFqUn1Jz+HO7uiZ8/x7zKWiGM3KC5Ft48TZ1z+lECM7cJvWEEIIIYQQQgghutCogpB1lZWV4d69ewodw83NreGdZGjRogVOnDiBr776qrYmpUQiQWRkJGdfU1NTzJ8/H5988gmsra052wkh6iFdDxIAEhxasB4vGMCtxagr4TLqQvrwBCFFEhmRV0IIIYQQQgghRAcaTRAyLi5O11OAs7Mzdu3ahaCgIJw9exb+/v5IT09HeXk5nJyc4OrqipEjR2Lq1Kno0KGDrqdLiNGQFY5rJ9UZG+BmQmqbQGZVSCDcmRuE7JqbDJ/WPTU5JUIIIYQQQgghRGWNJgh56dIljRy3bv1GefXu3Ru9e/fWwGwIIYpoU8StCZmg48Y09VGkQ7asJeiEEEIIIYQQQoguNJrGNIQQIk16OXaJuRXyrOx1NJtq9dWEjGriBrGA/bUtq0M2IYQQQgghhBCiTygISQgxevI2pklwaF5/FFDHqszMEevUkjUmKxOSEEIIIYQQQgjRJxSEJIQ0SpaiKrQqzWON6boeJIB6KkJWC3d2Zz1uVZoHx4oSzU2IEEIIIYQQQghRAwpCEkIaJb56kIl6UA9yVk/XerfzdcjuSkuyCSGEEEIIIYToOQpCEkKMHsPTH7ut1FJsAEhwaKGN6dRrZo+WaGZrIXO7rA7ZhBBCCCGEEEKIPms03bEJIaQu6XqQgH4sx25mZ4m7y4bjL78kCAQC/Hw7hrVdkQ7ZhBBCCCGEEEKIvqAgJCGkUeINQurBcmwA8Ghmh41TuwEAJwgZIVUTEqAO2YQQQgghhBBC9B8txyaEGD2+7thtC7lBSH2oCdmQUgtrJNo3Y411y03S0WwIIYQQQgghhBD5UBCSENIoSdeELDWzRI61g45mo5hwF3Y2ZNuibNgIK3Q0G0IIIYQQQgghpGEUhCSEGD2eREi0leqOnejQHBAItDMhFUVINacxAYMueamssduxOQhIKYBEwvenJ4QQQgghhBBCtIuCkISQRsdMLEKr0jzWWKJDM85+ze1kd6nWltf7unHG+JrTdM1jN6dZfyMaA7bexdvHnoLhW49OiA4cDUzFgsMBWHcjCkKxRNfTIYQQQgghhGgRBSEJIY1Oq9I8mDLsAEgyTxDy/aHttDQj2d4Z1AZmJuwMzXBn+Ttk/+OfgpicUo3MjRBFHHuaijf+DcChgFR85xWJ5WdDdD0lQgghhBBCiBZREJIQYvSkMwHbSC3FBoCkOs1elo1oj/1z+2DNeA+Nz60hYzo3hc/SYawx6ZqQAOApIwgJAJfCuU14CNG2d48HsR7vfpioo5kQQgghhBBCdMFM1xMghBBta1PME4Sskwm5bWYPbU6nQUPbObMe51k7INPGES3KCmvHZGVCAoCY6kISPVBaJdb1FAghhBBCCCE6RJmQhBCjllJQjgVHAlljDWVCGoIwlzasx50K0mEuFvLu+ygpXxtTIoQQQgghhBBCZKIgJCHEaDEMgzG7HnKWI7cuzuHsm+TQVFvTUosIZ/aSbDNGgs756bz7ngjmHyeEEEIIIYQQQrSFgpCEEKPlHZvL25SltdRybAkESLVz0da01EKeDtmEEEIIIYQQQoi+oCAkIcRoRWaV8I5LL8fOsG0Coam5NqakNop0yCaEEEIIIYQQQnSNgpCEEKMlEPCPt5Fajm0IS7Ff6eXKeszXIbtLXoq2pkMIIYQQQgghhCiEumMTQoyWgCcK6VBZCqdK9hJtQ2hK88PELvBNzEdKYQUAIN3WGYUWNnCsKqvdpytlQhI9c/xpGlZfjUC5UKLrqRBCCCGEEEJ0jDIhCSGNCl9TmmQDCEJ6NrdH/NfjEPHF6OoBgYCTDdklPxUChoI9RD+kFpbjjX/9EZldiqSCcl1PhxBCCCGEEKJjFIQkhBgtvtXY0vUgASDJQf+DkABgaiKARzO72sfSHbJtRFW8fz5CdOFkcDokjHqOxTAMjj1NxcoLYfCKyGr4CYQQQgghhBC9Q0FIQojR4qsJ2aaYJwhpAJmQfCJ4mtN0lVEX8mxIOjKLKzU9JUJqxeeVNbxTHVUiCY49TcXWO3GIy2WXTPj+WhRePxSATT6xmLzXD38/SlLnVAkhhBBCCCFaQEFIQojREvDkQhpyJqS0CGc3zpinjCDk7P1P0Pmnm3iUlK/paRGilPmHA/D6oQB8ej4UA7beRXhmce22HQ8SWPvuepio5dkRQgghhBBCVEVBSEKI0eLLhGxtRJmQ4XyZkPU0pympFGOzT5wmp0RILUaBpdipheU4GZxe+7igXIgDT54H1HNKq1j7P04uUHV6hBBCCCGEEC2jICQhxGjx1YSUbkxTZmaBXGt77UxIzeKcWqLKxIw1JisTssbxoDRNTomQWoqUgwzPLOGM/Xw7Rn2TIYQQQgghhOgcBSEJIUZLwJMKKb0cO9m+GStlcsmwdpqeltqITUwR3cSVNdZQEJIQQgghhBBCCNEFCkISQhoNASOBe0kuayzZvmnt/9tZmmLL9O7anpZKpJdkNysvgktZkY5mQ8hzjCLrsQkhhBBCCCFGj4KQhBCjJZ0H2bysEOYSMWusbhDy23EesDAzrK/FCBd3zhhlQxJ9oEgMksKVhBBCCCGEGD/DutomhBAFSK/GdpeqBwkAqfYutf9viIGQCGduELJrnuzmNIQYC5MVF3AzmttoihBCCCGEEKKfKAhJCDFa3CBkLmefFLvnmZCGuHqUt0M2ZUISPbDjQYLGX+Ol3b64F8/9XBNCCCGEEEL0DwUhCSFGSyC1INu9hJsJmcLKhDS8KGSksxtnrAsFIYmWZRRVYP2NKHx9JRyRWSWQSOT7LKmjbuTuh4kqH4MQQgghhBCieRSEJIQYrcaQCVlmboVE+2assa65tBybaE+FUIxROx7gW69I/HgzBsO338OTlAKtvf6/Aalaey1CCCGEEEKI8igISQgxWtKNadwayISUGGIUEkC4VHOatkXZsBZW6mg2pLG5HZOD6JzS2sd5ZUKcCcmQ67kG+pEjhBBCCCGEKIGCkISQRsOtJI/1uMLUHHlW9rWPTU2kw5aGIVKqOY0JGHjkU3YY0Q7vWG6G8T6/JB3MhBBCCCGEEKLPKAhJCDFaAqn12NLdsVPsXVhrtqd1a6mVeakbb3MaWpJNdEi6FIIslAhJCCGEEEJI40FBSEKI0WLFQRgG7iXsjK269SBf7eWKbi3stDMxNZNejg1Qh2yiW/JmFa+/EV3vdqFYItdxmn7nhbMh6XLtSwghhBBCCNENCkISQoxW3Wws54piWIuqWNtr6kE++HAEDs/vz8mcNBQRztwgJHXIJrok3ZleljXXIuvtkP3OsadyHSevTIhFR5+iSiRf0JIQQgghhBCifRSEJIQYrbqBEL7O2Kn/ZUIOadvEYOtBAkC2tSNy69S2BCgTkhgOST1rsg8FpKK0UiTXcQorRDj9jLIhCSGEEEII0VcUhCSEGK26iY3uDXTGNmgCASKc3VhDHvmpMJGIdTQhQuTHMAwyiitkbs8rF8p9rMIK+fclhBBCCCGEaBcFIQkhRqtubiN/JqSRBCEBREg1p7EUi9C+MFNHsyFEfhIGWHjkqcztbx0JlPtY9azsJoQQQgghhOgYBSEJIUarbiakWwk3CJli35QzZqioOQ0xVAGphfVuvx3L/ezKEp9XhhNBaXiWXqTqtAghhBBCCCFqZqbrCRBCiDa4F/MsxzaqTEhuENIzLwUXOw7SwWwIkV90TonajvWLdywAwMxEgH9e74u5fd0aeAYhhBBCCCFEWygTkhBitOp2u5bOhBSamCLLxlHbU1ILFxtzzli41HJsAOiam6yN6ZBGjGEYxOSUcsbTimTXeJQWmcV9vqpEEgarLoWr/biEEEIIIYQQ5VEQkhBitOqrCZlm6wyJial2J6Qmr/RuxRlLdGiGcjML1pgnLccmGlRcIcKLOx7gTEiGSsfZcDNaTTNiSyoo18hxCSGEEEIIIcqhICQhxGjV1x3bkDtjW5hyv7olJqaIasIOTnrmpVCnDqIxB54k4258nq6nQQghhBBCCDEQFIQkhBgtk/+ikPaVZXCoYmdFpdgZT1OaGtJLsptUlqJFWQFnv4cJFDgiqtt4O0bXUyCEEEIIIYQYEApCEkKMVkt7SwDcLEgASDPgTMi6GZ518TWn4asLueJCmLqnRBqh1EL56z7qyqWwTF1PgRBCCCGEEPIfCkISQoyW4L+qkNL1IIHnnbF3vdJLq3PSJFkdsqU9TMzXxnQI0blp+x7Bl97vhBBCCCGE6AUKQhJCjNbVqCwA3M7YAJBiX70ce24fbpMXfScjERLhLjyZkNSchjRyn5wL0fUUCCGEEEIIIaAgJCHEiH3nFQkAcC/mLseuyYR0sDLX6pw0KdqpFSRSIcouFIQkGlBcIdL1FOTml1Sg6ykQQgghhBBCAJjpegKEEKIJKQXPG9G415MJaYgEMopCVphbIt6xBToWZtSOdc2lICRRj7yyKvx0Kwa3onMQkFqo6+kQQgghhBBCDAwFIQkhRulQwPPgm5tUTUgJBEi3baLtKWlFuIs7KwjZuiQHdlVlKLGw0eGsiKFjGAaj/niA0MxiXU+FEEIIIYQQYqBoOTYhxOhJd8fOsG0Ckalx3oOJbMKtC9klL1UHMyHGxCc2lwKQhBBCCCGEEJVQEJIQYpQEdWojSnfHTrVz1vZ01EpWYxqAmtMQzXiUXKDrKRBCCCGEEEIMHAUhCSFG6fSzdACAtbASLhXsDC5DrgcJADN7tJS5Ldy5NWesa26yJqdDCCGEEEIIIYQ0iIKQhBCjcy4kA4//y9xy42lKk/pfZ2xDNaRtE/R1c+DdFuHMtxybMiGJaurLviWEEEIIIYQQeVAQkhBidJaffVb7/3xBSEPPhDQ3NYHP0uE4PK8fZ1u+tT0ybRxZY7Qcm6hKVkd2QgghhBBCCJEXBSEJIUYnuaCi9v/di3M421PsDTsTEgDsLM0wt68b7zbpbMhOBekwE4u0MS1ipCgESQghhBBCCFEVBSEJIUZNuikNAKTYGXYmZEMipOpCmkvE6FiQoaPZEEMmljBYdyMKKy+G6XoqhBBCCCGEEANHQUhCiFFzL+FmQhp6d+yG8HfIpuY0RHEbbkbjO69IXU9DZSYrLiCntFLX0yCEEEIIIaRRM9P1BAghRJPceDIhaxrTWJsb530YvuY0XfOScRZDdTAbYsj2+iXqegpqs+x0CI6+2V/X0yBEbbxjcnAlIgu5ZUK0bWKNnq72mNnDVdfTIoQQQgiRiYKQhBCj5i7VmCbHyh4V5pYAgODPXtTBjDQvXGo5NgB0yUvVwUyIoatbX9XQHQ9KoyAkMRpXwjMxdd8jMAx7fOOUrlg5upNuJkUIIYQQ0gAKQhJCjJp0Y5q6nbE7NrXV9nS0IsXeBSXmVrATPg8gdc1lL8f++ko4rkVmo1sLe2yd0R1NbCy0PU2ip04EpeFCaAY8mtvpeiqEEBk+PhfKCUACwBeXwikISQghhBC9RUFIQojRMhcL0bKsgDVmDJ2x6+rv7gj/lELWGCMwQWQTN/TPiq0d88xLBRgGEFT3Of7xZgwAwD+lECIJg3/n9dPepIneOhKYinn/Buh6Ghpjs+oSWthb4qcpXTGnD393eUJ0rUIoxrP0YjS3s0BbZxvefaJzSrU8K0IIIYQQ1RlnQTRCCAHgWprPGUs1ss7YS4e14x2Xbk5jLyyHWwm3PiZQHXgiBAD2+hpPDUg+FSIJEvPL8ca/AcgspkY1RP9kFFVgyLZ7GLztLrpsvI39j6mpGCGEEEKMBwUhCSFGi68pTZqRdcZeNKgNvBYP5oxH8NSFlF6STYi027H8gWpjwzDAj7eidT0N0ojF5JTiXnwuSitFrPGD/ikITi8CAFSJJfjWKwISCc+6a0IIIYQQA0RBSEKI0WpVmscZSzWyICQAjO/SnDPG1yHbk5rTEFLrdkxOwzsRogF7/RLR7efbeOGPBxj4212kFJTXbvviUjhr39TCCiTklyl0fLEagpbXIrMwcOsdePx0C7/fi1f5eIQQQgghANWEJIQYsVYl3CBkmp1x1YSURXo5NgB0zaNMSKI/HCtKMCY5GIPSo9EtNwmmjARVJmZIdmiGO+7d4e3eE7k2Dhp7/WfpxRo7NiGySCQM1lyNgui/QGFEVgn+8U/BV2M7y3wOXwOa+tyNy8WLnZQvPVJQLsSMvx+jUiQBAHx0NgQ9W9qrdExCCCGEEICCkIQQI8YXhDTGTEg+MU6uEAlMYMZIasc881J0OCNCqnXOS8UnAeewIPQWbERVvPt8GHgRIoEJTngMx8ZBryC4eXuNzIVhGAj+a9ZEiDakFVUgraiCNfbNlYj6g5AKvkaFSNLwTvW4GJZZG4CssccviYKQhBBCCFEZLccmhBgtV57l2Gm2jSMTUmhqjlgnV9YYBSGJLlmIhFh77xBC9/8PHwR5yQxA1jBjJHg98i6eHvwIBy5vhlNFidrntPhEMBhF08wI0XOqvqdTCss5Y7eofAEhhBBC1ICCkIQQoyWdCVllYoZca3sdzUb7wqXqQrqW5sNRA4EcQhrSOS8Vfoc/w9d+x1nZufJ6M9wbwQc+xJjEILXOa9+jJJwPzVTrMYnxSyusgH9KAUqkmsrIQ5nE2wVHAuH6/TVM2uPLqh/ZEHU2tKFgPSGEEELUgYKQhBCjJR2ETLNzVu4K0EBF8jSn6UrZkETLBqVH4v6Rz9E7O6He/YQmpvVudy/JxdVTq/FO8DU1zg5YdOypWo9HjNu5kAx02XgLA7feRf8tdxCbU6q2Y/8ko2O7b2I+MosrcTUyW673672EPIze8QA2X17GmJ0PkCG1/JsQQgghRFeoJiQhxGhJd8dOs20c9SBr8DWn8cxLgW8rTx3MhjRGLyUE4vS5DbAVVXK21dR83N9jHB617IxCKztYCSsxJD0ScyLvYWHoTViJhaznmDIS7Lm+Ha6leVg3ZI5abioUlAsb3omQ/6y5FonSKjEAIDqnFH/6JmLj1G5yP18A/vfss/QifHU5osHn34xueFn0jzdjav/fOzYXH50NwbEFA+SeIx+qnUoIIYQQdaAgJCHEqFSKqi8ObYQVcKpkZ6ikNZKmNDXCnVtzxrrmUodsoh0DMqJlBiB9XT2waMLHiJQKlFeYW8K7TS94t+mF74fOxe+3duPl6Iec5//w4DDEJib4cfBrap1zQbkQ6UUVcHe0hr0VnSIRrqC0ItbjX7xjFQtCyojl7fFLUmVa9ToRnI5jDeyTXlSBpaeCEZtbhshsbtkOWo5NCCGEEHWg5diEEKPiHZsLgL8zdnojC0JGOrtxxrrkpepgJqSx6VCQjounf+ANQP46YBZGzt3ICUBKy7BzxqvTVmHRhI9QacoNCK6/dwjvBl9Vy3wlEga+ifno+vNtdP/FG702eSNYKthEiCzT/vLDS7sf4rYKzVu234tX44y4ckq5n8W6Fh8PwrnQTIRkFEMopoAjIYQQQjSDgpCEEKOy17c6m4QvCNnYlmMXWdoiVSrw2jWPMiGJZtlVleHi6R/QvLyQs+3TF9/B56MWQdxA/cdaAgEO9BiLiS9/j0ILG87mnTd2YlLcE1WnDLPPL2LY7/eQWVwdqEnML8dmn1iVj0sah0vhWbgZnYNxux822DhGV4uax+3yhXdMDoZuu4vBv93F9ajs2m0Mw+ByRJaOZkYIIYSQxoSCkIQQoxKXV70Eu1VJLmdbY1uODQARUs1pOhRmwlJUpaPZEKPHMNhxYyc887kZt5+++A629p+h1GF9WvfE6NfWcwKRpowEhy5vQvuCDKWOW59//KmJE1EMwwDfX48CwzA4EZSGb70icCeW/Vukq9qKwelFGLPrIfySCvA4uQCT9/rVZkfSSmtCCCGEaAsFIQkhRiUwtXoJpXRTGoCCkEB10KZTQbqOZkOM3VuhNzE/3IczvrXfdKUDkDWetuiImTO/RoWpOWu8SWUpTp3/EdbC+pebEqIN9+Jy8eXlCMw56I/1N6IxetcDnApO0/W0OMQSBhtvVWf7yhODpMY0hBBCCFEHCkISQowS73LsRhiEpOY0RFvaF2Tg95u7OeNX2vXDZy++rZbX8GndEwsnfcIZ75Mdjy3ee9XyGoSoggGw48Hz+o4MA+x6mFj7WB2hvONP1RPUfJZefdNOnqYz1JiGEEIIIepAQUhCiFFypZqQALiZkADQNY+WmRI1Yxjsuv4HpxFNqp0zFk76BIxAfacbJ7qMwK8DZnHG3wu+ionx/mp7HYACL0RxDAOUVIpZYzejnzesUUdC4c4HCaofpA56lxNCCCFEWygISQgxGl9cDKv9f+nl2GVmFii0tK19vPuVXlqblzb0c3PkHQ/n6UDchYKQpI6SShEWHA6A2w/XlD7GgrBbeCkpiDUmFphg/uTPkGPD/95UxZcjF8DbvQdnfO/V3+Fcrr6u1lvuxKntWISoi08ct+axMpj/wo8UayeEEEKItlAQkhBiFFIKyvGL9/NuttLLsVPtXFgpKO8ObqO1uWmDZ3M73vF0W2dOMw9ajk3q+vJyOA4FpCK9SLmaik3LCrHJex9nfFu/afBp3VPV6fESm5hi/uTPkF/nxgJQffPht1t71PY6Ky6ENbwTIXU0FM/Tp9KK16Ny4PKtF8b/+VDXUyGEEEJII0FBSEKIUbgSkfX8AcNwgpDS9SAbTZF9gYCzJLtLfioEjERHEyL65o/7CSo9//sHh+FSUcwaS3Boju+GvaHScRuSZu+C/439gDM+L8IH4xICNfrahMhiaEv488uFuBPHLV8iLaukCiWVIi3MiBBCCCHGjIKQhBCjUCl6HlRzqCrj1KZrjPUga0gvybYRVaFNUTZrLDSDHUQiRB7dcpLwXvBVzviScUtQamGt8dc/6vkCjnmM4Iz/cXMXLEVVGn99QuTln1KAoLRC/HY3vuGd9dSSU8G6ngIhhBBCDBwFIQkhRoevM3Z6I+yMXSOCr0O2VF3IKXv9tDUdYkR+9fkLplJZtSc7D8PV9v21MwGBAMvHvoc8K3Y5gs4F6Vj16KR25kBIHbLyIAduvYu+m+9g/Y1orc5Hnf4NSNX1FAhRWHZJJd445I8ev9zGp+dDIRTTShBCCNElCkISQowOXxBSejl2YxLh7MYZk64LmVRQrq3pECPxUkIgJkote640NcMXL7yl1Xlk2zhh1ciFnPEvHp1Cm6IsnmcQojkGthpbYd4xOQ3vRIgeWXgkEEefpiEsswRb78Rh7fUoXU+JEEIaNQpCEkKMQt0Sj9KdsQHjX47d1M5C5rZwnkxIT+qQTVTBMFh37yBneFvfaYh3aqn16fzV8yXcb+XJGrMSC/HjnQNanwtp3AytJqSiPjkfquspECI3hmHgFckuP/Onb6KOZkOIfhJLGPx4Mxoz/36EDTejIaJsYaJhFIQkhBgd/kxIFx3MRHve7O8uc1ucU0tUmZixxigISVQxNe4xBmbGsMayrR2wfshrOpkPIzDB/8YugQTshlOvR97FkLQIncyJNE7GHYIEgtKKdD0FQlSSVaJcveDSShEWHQ1E23XXMXv/Y2QVVzb8JEIMwI+3ovH1lQicD83EN1cisM6Ay4YQw0BBSEKIUaibfNLQcuzBbZy0MCPt6ufmiGUj2oOv6bfYxBTRTVxZYxSEJMoSMBJ8f/9fzvjGQS+jyNJWBzOqFty8Pfb1fIkzvtl7r/GvkSVEiyQS+jwRw6DOr/5Vl8Nx4EkKkgsqcDYkA4tPBKnv4ITo0HdekazHP1DJAqJhFIQkhBgd19Jczli6bZPa/39ncBttTkcrBAIBts3sgcw143m3Sy/JblZeBJcyymghipsZ44u+2ewOvxk2TtjZe7KOZvTct8Pnodic3ZV7SHoUZsb46mhGpLFpDPHugb/dQW4pdZ8njcvOBwmsxxfCMnUzEUIIMXAUhCSEGAVWTUipTMhCCxuUWlQHJrbN7IF3BhlfELJGU1tL3vFIZ+5y7a55yTx7ElIPhsGXftyu0z8NfgXl5vzvPW3KtG2Cnwa/zBlfe/8QTCRipY75+iF/BKYWqjo10kgwRr8gGwhMLaK6esQgqPPTSAnAhBCiHhSEJIQYHekgZN2l2NVLlnnWLBu5cBduEJKWZBNFjUkKxgCpWpCpds7Y3WuijmbEtbXfDE4jqu65yZgf7q3U8Y49TcPYXQ9RWC5Uw+wIMQ7UYZjom9sxOfj6SjhOBqUZfYMoQggxZBSEJIQYF4bhdMeuG4RsrPg6ZHelICRR0BePuFmQm/vPRKWZ7O7s2lZubom1Q+dwxtc8OAJzsXKBxIJyIS6G09I70rDGEvuoEFH3VKI/jgamYuyuh/jxZgxeO+iP1VcjG34SIXooKrsEE/58iH6bffCXXxIF1IlRoiAkIcSouJQXw1IsYo1JZ0U1RpHObpwxz1xajk3k1y8zBi8lsQvx51vaYk8v/jqkuvRXj5cQ49SSNdauKAsLQm8rfcxg6gpM5NAYLxevR2XjvRNBWH8jClUUnCQ68NMtdob+jv/qN8oK4Mw64I+iKnqvEv3CMAym73uE61E5eJpWhMUngnAvnttskxBDR0FIQohREKB6iXUrnqY0aXYu2p6O3ikzt0KifTPWGC3HJor47PEZztgffaegxMJGB7Opn8jUDKuHzeOMf/H4JEyVrA1JiDwaW9LKzehsTPjTF3v9kvCtVyTePf5U11MijYxPbA6C09k3ifLK6s96vxSeha0BVOuX6JcnyYWIyi5ljf3v9DMdzUZ/CMUS/PMkGauvRuJJcoGup0PUgIKQhBCjUNMMQLoeJEDLsWtESDWnaVuUDWthZe3j1w/5IyyjWNvTIgbArTgHr0bdZ42Vm1ng975TdTSjhh3rMgIRTdgZwJ0KMjAn8q5Sx2uMtWSJ4hpDY5q6Pjobwnp8KCAVFUIK9BPt+c5L9tLr+j6NF+LL1T8ZQlSQWVLJGQuh83K8dyIIbx19irXXozB8+z3cieUmnBDDQkFIQohRoSCkbBFSzWlMwLCyIY89TcPY3Q9pOR3hWBJ0BWYM+31xoPsYZNs46WZCcpCYmOKnwa9wxr/0OwEBo/h7nGKQhHCFZZZwxsooCEk0KKu4EisvhOHNwwG4Ep6JuzKWqx4JTOVkSCqipFKEogpqSEaILpVWinDgyfNrFaGYwR6/RB3OiKgDBSEJIUZFuikNQDUha4S5cJvTdM9NYj3OLK6ETxzdYSTPWQkr8V6QF2d8W99pOpiNYg57jkK8Q3PWWPfcZMyM8VX4WBSDJPJobMux+dDfAdEUhmEwea8fNvnE4t+AVEzb90jmvvP+DcDArcplvv9yOwZNvvVCk2+98OXlcGWnK1N6UQXuxedS1jBhofMMrsIKEWfs34BUHcyEqBMFIQkhRqG2JiRlQsoU4tKWM9Y9J4kzFpdbCu+YHBwNTEVuaZU2pkb02OsRd9C0gr0c6GrbvojgCWrrG5GpGX4e9DJn/Gvf4xQpIRrRmN5VJisuqOU46UUVmPPPE/T61RurLoVDLGlMf4tEEZHZJQhIfV7LURNvlbTCCnzx3/uQYYCNt2IQqsYlsXt8E+H2w3W88McDePx0C3G5pQ0/iRBCjAgFIQkhRsWVJwiZTpmQAPgzIbvlcoOQS049w5hdD/HGvwHou9kHyQVUN6nRYhgsC7zIGf69n/7WgpS2v/tYpErdiOiXFYeJCQEKHYeWYxN5yOrG25goWhfzjUMBOBGcjpCMYvx8Owa/eMc0/CTSKKUWVmj8NTbfieWM9fzVWy3HFksYrLr0PLMypbAC2+7Fq+XYhBiqvLIqBKUVorCcW/6gsdVZbiwoCEkIMQppRdUnptLLsXOs7FFlZq6LKemdQis7pEh1Cu+RU39dlZTCChz0py7ajdWgjCj0zWZfIEU1aYUr7fvraEaKqzSzwKYBszjjX/seUygbUkALpYgcKAapmCqRhFMC5M+HVO/LmFQIxVhzNRIv73+M3Q8TVArUa+PzVVzJXf6pLrmlVciXCrRsu0tBSFJNmzc7iyqE+Ox8KCbtUbw8jTo9SMhD14230XfzHfT41RsBKQVKHYdhGAjFVNPeUFAQkhBiFM48SwfAXY5NS7HZQpq2YT1uX5QF26r6Mx1XX5XdeZIYHoZhsO1uHCb8+RAfnwupd9/3eWpB7uo9CYzAsE4f/uw1AdnWDqyx4WkRGJVS/5+/rqjsEpnlCfLKqpBVzO1qSRqfSroIUihQJJJw/74S8in73pi8fzIYP1yPwpmQDCw59Qy/K5n5xzAMPjkXqta5CcXcN6siN5wo6EEM1YIjgdhyJw5XI7N1Oo+Nt2KQ/d+5VWphBbbciVP4GDejs9Fhw03Yf3UFCw4HUINNA2BYVxGEECJDeFYJTCRitCzNZ41TEJItzKUNZ6xrXv2ZjlSfy7jseJCAj8+F4npUTr0ZGE4VJZgbyS7qX25mgQPdxmh6impXZm6FLf1ncMY/fXJW7mOcDE5Hs9VXcTEskzW+yTsWLdZcQ8vvr+G9E0GQ0OfFKBVVCPHDtSg59tNcFpWh2HYvHnllzwP2YgllqDRm0qsp/nqUhNTCct5AwXsngmCy4gJMVlzA6quRrH223o1DaKb6ajMCwMSzGQjJef5eXXs9Cn/6yp+JO3DrXcTmlCIwtRDb7sbhQQJ/p+4asn4dRPT5IFBfY5qiCiGisktkZh0LxRKcD83k3SZLlUiCbXfjsPpqJOJzy9QxTQDABalzKummMw3d1BJLGMw56I/E/HJUiSU4FJCK3Qp8holuUBCSEGLwai76m5UXwYxhn8jVrQfpbEPLskN5gpB8zWmI8drrJ9+/95tht2EtYmf+HfcYjnxre01MS+N29JmMQgsb1ti0uMfonKdYl8Xp+x4hOrsEQHUG5JeXnzfS2OuXBN+k/PqeTgxQaEYxnL7xwpprlBUuj/U3ojF210MIxRLsfJCA5quvwvlbL3x1ORwMw6BcKMbCI4Fw/tYLw7ff1/V0iYYwDIPNPtz6is/Si9F67Q00Xe2FcyEZteNb78Sxfp/WXo+C87detd+3n50PU/sci6oY/B5UBAAITC1UeOVHcHoRhmy7i4Fb7+Djc6EYsf0+dj5IkLl/WRV/N+wh2+4hMU99gR1iXEorRcgqrpQrKWCvXyJcvrsKz423Mfi3u6wbQjXkuSk04c+HeGn3w9rA+ssHHuPjc6FYez0Kfbf46M37NTyzGHll7BIHW5XIpiTaRUFIQojBy/kvjZ+/M/bzGoh/zO6ptTnpq9Cm3CBkQ3UhiXEJSitqeCeGwXvB3KXYu3tPUutc1k/yxKu9XDGuc1P0c3NU67GlFVnaYk+vCZzxjwPOK3ysLhtv4/d78dj9MBEiqYuCZaefKT1Hon9C0ovU1pSiMQlKK8KRwFT87/Qz5JcLUVolxk+3YnA7Jhfrb0TjoH8KCsqF8n0fEYN0ODAVKy7IDhyWVIpZ2eOfnucutS4TirHhZrTG5ggAAVnV55AjlQyI55YJWV26ZQVAyoViDPrtDv8cUgux9S4FTho7gYyikO033ETL769h3K6HyCmVXfqlUiTGR2dDaoOVT1IKsZunxq48JTOuR+XgZnQORu98AP+UAlwKz6rdVlQhws/e3BsMusBXAiVeTwKkRDYKQhJCDJ7kv19T/iDk80zIOX3ctDYnfSVvh2zSuA3MiEb33GTWWFCzdvB17aLW15nStQWOLRiAa+8PxeSuzdV6bD6/950KkVQ9y4WhN+Fcrngg5KvL4Sip4i69LaTluEblH2rMpbQlp4I5Y3v8ErHtHgVbGoM9ciyJzC6tQlZJJXxic2Tuc+BJCrJLNF9zt0zIn6WoqOicUt7xk8FpyC3jdv+t8Rs1qGnUIrKKEZhayLutJtnCJy4Xfz9K5t0HAMIyS1AuZAfl1t1ouIxIfYRiBvP+DeCM15fxq04NxUupGZxhoiAkIcTg1fz+tCrN5WxLs6WakHWVWNggwYEd7OlOQchGI0bGxZG0t0Jvcsb29hyv9taNvVo9bxbTy9Whnj3VI9mhGU56DGeN2Yiq8D5P1mdDSqvEvPX/VOn8SvTLtcgs/Kon2R6GSPpiGKhe2l5SqZ5gD9Fvd+Lqr49YwycuF2N2Pax3nxZrrqljSlqXW1qFH29GY8WFUCw88lTX0yF6atWlcHT72RtfX4locN8vLoUDAIorRHjvRBD6bPLBh2eeoUIo5l2uzfc9rOhZSlS2fOeOhMjLTNcTIIQQVdVc8/NlQqbau3DGGrtQlzZoV/R8WUWb4hw4VJaiyNJWh7Mi2rBejjvilqIqzI1gLxmrMjHDEc8XNDUtAMCsnq4aPX6NLf1ncBru/C/wMn4dMAtCU8XqxspaOkUMn0TCYNGxp7qeBiFGb8WFMJ1nM/lpoJavRMJg/J8PEZhKJQeIbFnFlfjVO0bh5/3vdDAO/dfEJTi9CCYCAeb3c1f39OoVnlmMMyEZcHe0wpv93emciMiNMiEJIQZPXN9ybMqE5OCrC9ktV/byDmI8DjxpeGnptNhHaFLJvut9vuMg5FlrNlPR1EQ7J6+PXT1wr1VX1lir0jzMibyn8LEo69F43U/IQ3qR5peAEmKMJHI00KiRWlihwZnIZ+QOX7Uf0z+lkAKQpEF7/BKhwMel1iGpLtKKdHVX16nLgK138M2VCLx19Cn+p6N62HQaZpgoCEkIMXj+KQUAANdSdhBSAgEybZ20PyEda2prUe926pBN6rMw9BZn7ED3sTqYieZs7T+DM/bJk7NqOZul82HjUCqjiy0hpGG7eJphNCZrr0fhyX/npoTUR5lzhr8fcc/ZK0USxOTKt2yaUdOZSt2l3rseJqK0Uv01selmr3Gi5diEEIN3JaJ6abF0JmSmrRPEJqa6mJJOfTqqA766LLuuDF8mJNWFJADQsiQPExPYBcgzbJxwtV1fHc1IM852Gow4xxboUJhZO9Y3Ox6jUkLg07qnDmdG9IW+rSozlYjRPScJPXMS4Fqaj+Zl1Q0MqkzNkGPtgFjHlohwdkd0k1b6N3nS6Ox40LibrKy+GqnrKRA9Vi4UI72oAs1sLZV6/k+3+Jdv8zWQ4VPBUydSHeLyytCTp753bmkVHK3MYGZK+W+kGgUhCSEGb49vdQDNrYTdmKaxLsX+eGQHBKcV4UxIBipF3BONcOfWkEAAkzp3QrvnNO6sBVJtfrg3TBn2e+Zw11EQmRrX6YLExBTb+k3D1tt7WeMf+Z9XOQhJN+2Ngz6E8ZqWFWJmjC9mRz/ACymhsBFVNficdNsmuN26J053HoaLHQaiykyxOqeaxtfMiRifsMwSXU+BEL0UmVWC6fseITqnFK4Olujv5qTwMWR1YJelXCiGtfnzpIyrUVn17K283pt8sGZ8F3w33gMAUFIpwqv/PMHVyGw4WJnhr9d64+VerdT6murK6iTaReFoQohRMBOL0OK/zJAaaXaNMwhpZW6Kw/P7o3j9JN7t5eaWiHNqwRrrTjUhCcNgAe9S7DFam4K26kICwL4e41BoYcMamxb3GK2LsrU2B6K/dFlgv3dWHPZ5bUXyn4vw5/U/MDEhUK4AJAC4lubjjYg7OHnhJ6TvWoBN3n/BXY/e00kF5bqeAtEwvqWihJBqW+7E1QYR04sqcTE8s4FnqG7bXXZm8o77CRp7rTXXIhGVXX0TYtfDRFyNrP79KaoQ4e1jQRCKFcvCpBu7xomCkIQQo9CylNvZML2RBiFr1LfsQbouZKvSPDhVUOaCsSgoFyIyqwSllSKIJQwOPE7Gtrtx9T6nf2YMekgty/dv3hHPmrXX5FRZVrzYUWuvVWJhg797jGONmTISfBB0RWtzIPpLFyHIDgXpOHphIwIPfoy3Qm/BUqxa1mCTylJ84n8OsX+9h93XtqMFz++kvqoUUU1OQ/XuiSBdT8FgFZQLdT0FoiSRnME1RRrIqMsmn1jW45xS+W5qKWv87upGTxtvRbPGiytF8E8p5HsKaWQoCEkIMVgisQQXw6rvILYqpc7Yigij5jRG6358Hjw33kLXn2+j75Y76PWrNxYde4qPz4XW+7y3Qm9yxrTdkOarMZ0xrVuLhndUkx19JnPG3n12DZZyZp3xoaVBxkGbiZDmYiG+v/8vwv7+H16Luq/+40vEWPzsGiL3fYCVj07BVKL/Ab5D/qkN70T0hlAsgV9iPqKySyhzSQXNV1/F8adpup5Go5WYV4Zpf/mh72YfbPKOlavLe0xOKQZuvQObLy9j/O6HyNVwgE8Z0kFHZbpxK6Im4z23jBtU3+QdyxlTBX3fGCbjKvJECGlU3j72FIcCqi9UpJvSAOzl2DN7tNTavAxBSNO2nLEeuYm4795NB7Mh6rT2ehSySqpPOGPkrBtkIRLi9Yg7rLEqEzMc8XxBLXNytDJDoRy14OytzHDu7UEwWXFBLa/bkJgmrXC1bV9MSAysHWtWXoRXo+7jULfRDT7/Dw0uaSLaVVQhxKXwLDSxNseELs0g0FIuZJ/MWBzw2oqeDdTlTbJviutt++KRa2dEO7VCpq0TRAJTWImr0Lo4B13yUjEsLRyjk5/BWUZWu0NVOTbePYBXo+7jrYkfI4ynSZm+2HInFu8M1t/5kecKy4WYtNcPvomGk2mrr0QSBp9dCMWrvV11WhKisXr934Da93FQWhg6uNhgVk/Xep/z3omg2uy+G9E5+OJSOPa+1lvjc1VFfF6Zxl9DVjb7qWfpCh2HYozGiYKQhBCDlFFUURuABOoPQjpZm+PrcZ21NjdDIL0cG6BMSGNxLUrx+m8TE/w5gYuLHQYg14bb5VAZbZvYIDi9SC3HUrcdfSazgpAAsPTpJbmCkHzorrzhyS2twpBtdxGbW31htnhIG8zt46bZF2UYvPPsOn6/tRtWYv4lmJWmZjjsOQq7e0/Eo5YeMtMznzVrj8sdBmILZsJcLMSEhEC88+waZsQ+4t1/QGYM/A99jE9ffBc7e0/Sy27a1NhEf5RWinAhLBOlVWJM794CzezYHX3PhmRQAFKNUgsrUFolhp0lXaZrU0ZRBed9/NbRpw0GIb1j2U0x9z1Kwt7XeqNKJMGzjCJ0aWanF/+WV8IzMamr9laa9PrVR+Y2kxUXMLC1EzZM9lT5deiUyzDp/hNBCCFKCMkoZj2ubzl28jfjYKsHJwD6JNLZDWKBCasTcrdcCkI2VnMj7nLGDnZTX0OaN/u7Y+XFMLUdT50udRiABIfmaFf0vFvkkPQo9MuMQUCLTjqcGdGWA0+SawOQALDHNwkvdmyqsdczFwux48YuvBNynXe7SGCCvb3G4/uhryPTtolCxxaamuNix0G42HEQuuYm4duHxzA3kvv5thSL8MfNXRiREor3xi9DqYW1Un8WYtzEEgaT9vrhXnz1OdaGmzbwXT6CFYhcdOypjmZHiPoUV3JXa/CNySM8sxhjdz1ERnElrMxMsGl6d3hFZCnc1Vqdpvz1CCcXDkA/N0etvF5Df9bHyQWY9hf/jbI+m3ywfpInpmixPA/RLqoJSQgxCq71ZEJSAJKr0swC0U7su7vdKQjZKNkIKzBNKmMq39IWV9r3V/qY30/oAhtzU9iYm2LN+C7oq6WTXmVITEyxu9dEzvj/Ai/pYDZEF1Zc4AbIb0bnaOS1HCpLcfH0DzIDkL6uHuizYBuWjluqcABSWrhLG7wxdSVGzP0JgTIaTL0eeRd3jq6CW7Fm/rzEsD1OLqgNQALVyzjPhGTocEaNA2XUa586l7+vuxGNjOJKAECFSIL/nX6GC2GZiMjSbYb3Xt9EPEoq0Okc6qoQ8TfzCU4vwuwDj5FXViXzs8DQh8SgURCSEGIUpJdjC01MkW2jv4EPfRAqVQ+sRVkhmpZR17rGZlrsI9iKKlljZzoPRZWZudLH/PYlD+StnYi8tRPx3XgPVacIABjcxkktx+HzV8+XUGnKvlkxN/IunMsVX0JOp8XGQRMrlJuX5sPn2Jd4KYnbPVgkMMGXIxZgxNyNaq/V+MCtGwbP24TVw96A0MSUs71vdjx8D69An0z1Ngwghu9yeCZn7POLYZj19yMM2HKHdzshhkidX/lHAvWzsZZXpOLlenRFKGZwPlT298uoHQ9QXCGiYKSBoiAkIcQoSC/HTrdtAkZAX3H14e2QTdmQjc5cqYY0AHC0y0iVj2thZgILM/V9Bne+3AvdWtjVZliqU46NI45J/ZmtRVVYFMLtGE6IMlxLcnH7+NfonZ3A2ZZm64wxr63HxsGvQMITJFQHkakZ1g6dixfm/Igke+5Sc7eSPHgf/wojU0I08vpEv2WXVCKtsIIzznd5X1QhwrnQTASkFmKqjOWURDUM3c4iGqKHJYBlevvYU9yM4Q+c3ovPw7Eg/Qz2kobRFTohxChIZ0LW7YxN+PF1yO6ZXX+HVmJcnCpKMCk+gDWWaeOI2216qfV1OjW14YzNUrBjfR83R4SsHI2SHyfj77l91DSz53b0mcwZ+yDoCgQM/3IhYtz+8lPfDRnXklx4H/sKXfNSONsCm7XHwPmbcM+9u9perz5+rTzRf/5W3GjD7d7qUFUOr1NrMCnuiVbmQvTDL7dj0OqH63Bfex3vHH8KiYQCYKTxMaTgnCpSCst1PQWFvHciWOa2n29T9r6hoiAkIcTgWYqq4FLBblRT05SGyPaMLwiZk6D9iRCdmRX9EBYSduH1kx7DIVZzNlabJjaY2KVZ7WMLUxN8P6GL0sfTxLXCo5YeeCzViKZjYQYmSgVpG5JaWIHCcv5ux6TxcS4vwrWT36FzQTpnm1e7vhg190ek27lodU65Ng6YPHs1/uw1gbPNWlSF0+c34KWEQJ5nEmOTW1qFr65EQPxf4PHvR8l4kMitsU20i1aYap9AiTMLvuxhfffZef1sEqiMmJxSyhk2UBSEJIQYPFeeztjplAnZoOgmrVBhyq77R0HIxmUOT9fco11e0MhrnXprIH6Y2AXLRrTHw+Uj0MPVQeljaSRjQSDAjj5TOMNLn15W+FDj//Stvagn+qVKJMGNpHIcjSxBaolynU/lZVdVhsunv0f33GTOttOdhmDGzG9QYsHNEtYGkakZPhi3FF+PmM/ZZikW4cy59bQ028iVVIrQf8sdznfV0lPPav+fgmH6oVIkRmRWCWWpapAy5xWHArjZ7YSQhlEQkhBi8KSXYgO0HFseYhNThErVheyZnci7/JROfI1Ps7ICjE1iL3NJsm+KB26eGnk9a3NTfDPOA9tm9lC5W7aZiWZOX451GYFcK3vW2KR4f7QvUKwb7OPkAvgl5atzakRNFhwLwpf387EpoAgLrmYjMlsz3UpNJGIcvvQrBmVEc7Yd8xiBuVM/h9BU+eZPaiEQ4MfBr2Hp2A8gkcoCshFV4eLptRiUHqmjyRFNYhgG0/c9QlIBd2lmUYVmg/NEMTeismHz5WV0/fk2zD6/iHeOP6WbXBqgzL3N1Vfp+1GXBAK6UWKoKAhJCDFIdX9zeIOQttpd3qavhrVrUu/24GbtWI9tRZXowBNw+eNBghpnRfTBq5H3YSoVcD7eZaRBNHQa3r4JJ2vhx8ld4WStWlCnwtwS+3qMY42ZgMGSoCsKH+t2TI5KcyHql1JQjtPPnn+/FVUxOOivmcL2G+8cwFSe2ornOwzCm5M/hUiqG7su7eozGe9O+JAzbi8sx5VTa6hrtp4oKBfi43MhmPdvALxV/H6JzC6Bd2yummZG1M0/pRBCcfXv80dnQ1iBlr8fJWP9De7NDaIaZTIhK0VUM5oQZej/lQYhhDRAujM2QJmQNT4Y2q7e7c+acbf34lmS/dHZEFTRyZZR4V2K7al6V2xtaGpriS/HdK593MvVAe8ObgOvxYMxoU7tSWXs7DOJkxX2dsh1WAkrFTrOt16RKBeKVZoLUa+wzGLO2M/ecWpf3r/o2XV85n+WM367dU/Mmfa5XgUga+zvMQ7LxrzPGW9SWYqrp1ajY36aDmZF6pq+7xG23Y3HkcBUjN39EIGphUofKzSD+1moUbczM3Vp1o1xux/C8otLiMstRXgWN1t7zbVIePx0C87feuFbrwjKjJRTfG4ZnqYW8v59CRr4ISitFOFqZBYCUwvBUPqd3vvpFgXq9ZnWzoLy8/MRGxuLlJQUFBQUoKysDCYmJrC1tYWjoyPatWuHDh06wM7OTltTIoQYCb5MyHTb+jMAG4v5/d3RxNoc16Ky8fu9eM724KbtOGO9shNwpvMwzrhPXC5e8lAtwEP0Q+uibIxMZRcnj2rSCgHNO+poRmxjOzfFzejnmT6/TO3G2WfdJE+8M6gNMksq0d/dEeamJnCxtcCVxUPwJLkAg37jBlnlkeDYEpc79GdlsTlXlOC1qHv4p/tYhY71060YlRrwEPUprRQhr0zzDYNGpoRg542dnPEw59aYNeMrVJpZaHwOytrRdwqsRVX45c7frPFm5UW4eGYthr3+M/Kt7WU8W/08froFMxMBNk3rhkldW2jtdfVRTE4p7sU/P9dhGODzi2G4/v5QpY7XUMCF6Iclp2R3Bo7JKQUArL8RjZHtnTG+S3NtTcsgbbkTi5UXwiBhgBc6OOPC24NhbyVfKCSruBItv79W+3jJsHb4Y3ZPTU2VyEkA2TdKvr8Whf8Na1/7b1whFOPT86E4EZSGtk1ssH9uH3g2001NZqLBIKRIJMKDBw9w48YN+Pn5ISkpqcHnCAQCdO7cGUOHDsW4ceMwYMAATU2PEGJEXHmCkKla7jaqz6Z0a4Ep3VrgVHA60orYnfykl2MDQM/sBN7jpBcZXhdAYyUSS2Bmqvxihlei7nPGjnUZqaGOL4rbNrMH5h8OQHROKaZ3a4n3hnA7uQNAexcbtHfhnkT2d3fE77N64MMzyjXW2NFnCmcp7ZKnVxQOQv52N46CkHrgoH8ylpx8hjIZmanVFzKqa1+QgVPnfuR0nM+1ssf0Wd+gyNJWDa+iWZsGzoKNqBLfPzjMGu+Sn4pT53/EhFe+11oty5ogy+wDT5C1ZoLcAQNjlJBXxhmre6NGUfV90zNMdc3IH2/F4MebMUq/BlHd9Sj5/o0XHXuK1O/Ga3g22lcpqv7OtjQzVek45UIxvvOKRE0C5J24PJwPy8C8fu61+9T3meiz2Yf1eOeDBHwzrrOMvYk2lQv5V2lViiQ4GZyGRYOqa98f9E/BroeJAIDcskK8fzIYPkuGcJ4XmlGM+LwyDGrthOb2lpqbeCOn9l/znJwcHDlyBMeOHUNu7vNaIzVpyzV33uqmMQsEAjAMA4ZhEBUVhaioKBw4cADu7u547bXX8Prrr1OGJCFEJunl2BWm5si3ou8MaQ5WZkgrYo/l2Dgi3bYJXEufN9HoLSMISXQvrbACcw4+gV9SAQa1ccLR+f3h7mSt8HFmRT/kjB3roj9Lsbu2sIf/J6OUfr5AIMD/hrdXOgh5tV1fxDm2QIfCzNqxwRlR6JcZg4AWneQ+DjV40L1KkRgfngmRGYAEAHWsZLQUVeHU+R/RtIK9zFVoYopXpq9CnJOr6i+iJWuHzIFjZSk+9T/HGn8xJQR/XtuORRM/1uoNi0qRBH88iMeqMXTRry1nQzLwzZUIXU+DyCm9qLpcSHJBOTb5xMJUIMDnozuhhYEGURiGwbob0dh4KwYMGKx4sRPWjPdQOoP3WmQ2SqvYvwFvHg5kByHrOXRGMbccS93MZKIbEgaY8KevzO3iOvGm90+ys4ofJuajuJJ9jvbPkxS8fzoEYgmDFvaWuP7eEPRwdVDvpAkANdaEzM/Px8aNGzFu3Djs2LEDubm5tYHFugFHhmFgYWGBpk2bonnz5rC3t2d9odR9TkpKCjZv3oxRo0Zh8+bNKC6WXb+EENJ4uZawu9Cm2zbRm4wuffLZKP6lttJLsjsWZsCuipt1QX+luvfxuRDcT8iHSMLgQUI+PjzzjLU9KK3hGmEtSvMxLI19cRnu7I6wpm1kPMNwtXayUup5jMAEu3tN5Iwveap4gxqiWxdCM7USDN7kvQ99srklL5aOXQKf1ga2bE8gwMpRi3C6EzdLZGHYbXzje0zrU9rr1/CKKiK/+n7PRRIGLx/gNlUi+q20UoR+m32w7W48ttyJw8Ctd2qb2wDA46QC9NvsgzZrr+OnW9GQ6HEdyaC0Iqy+GokyoRjlQgnWXo/Ck2Tla6DKU9tUoGB/7DkH/ZWdDtGShkp31v18AMDXXpG19UIziyux9S73N52oh1oyIY8cOYItW7aguLiYFXB0cXHBkCFD0LVrV3h4eKBLly5wdnaGuTl7GYdIJEJGRgaSkpIQEhKCoKAg+Pn5oaSkuhBvaWkp9uzZg2PHjmHZsmWYP38+1TIhpJGr+w0gnQlJTWn4zerZEotPBHHGnzVrhwmJgayxHjlJ8G3lqa2pETmdDE5nPT4Xmsl6vOpSeIPHmBHjBxOpE/IznZWrK/bL1G5YeZFdW3JwGyeljqUJO1/uhal/PVLquft6vITvHxyGlfh5HcHXI3ywctQiFFCmtcGo0EJDrdlRD7A06DJnfGu/6firl2EukWQEJnhz8mdwP/4VBmWwC/z/8OAwIp3dcaLLCK3NJ+6/hhJ93By19pr6RJuXPXxZX/rMubwIQ9Ij0Ts7Hp65KehQmIEWZQVoVlYES7EQ5hIxKkzNUWJhhWxrR6TYuyDesSWCm7XD02btEdCio9ZKDGjSHr8k5Nape5tSWIHjQWmY188dDMPgtYNPkJhfDgD46nIEBrg7YZye1vn+xz+FM7b/STIGKnF+IZEw2P3fMtz6UGjB+DQUepYOUmaWVLEe73uUhL2v9VbvpAgAFYOQycnJWLlyJYKCgmqDj02bNsWsWbMwfvx49Owp351fMzMzuLu7w93dHcOGVTdDEIlE8Pf3x8WLF+Hl5YXi4mIUFhZiw4YNuHjxIjZs2ICOHfWjgD4hRPtqfjeshZVwqixlbUu3pSAkH2cb/oYIfHUhe2UnUBDSAF2NzG5wn5kx3KXYZ3gynhoyybM5lg5vhz/uxyPhvwsbAHi/gY7s2jTJszn6uzvCP0XxDIpcGwec8BiON8O9a8dsRFVYEHYL2/pNV+MsiSZp+sKyXWEG9l77nTN+160bVo5apNkX17Byc0vMmPkNfP9dgbbF7O+Wv65uQ5hLa4Q25a/XqgmfXwzDNRmNWB4nFeDDM89QXCnCytGdsHCAOyUs1EPRrC99YiIRY0RqOKbGPcbEeH/0yG04S9ZWVAlbUSValBVy9i8zs8CDVl1xpX1/nO84CLFNWmlq6hq1x5cbaLsemY15/dzxICG/NgBZY/GJIMR/PU5b01NIstRcASCRpy6qPD46FyLXuZHhfiKILDV1hWXR31xg46f0cuyzZ89i5syZtQHI7t27Y8uWLfD29sZnn30mdwBSFjMzMwwePBhr167FvXv3sGbNGnTs2BEMwyAoKAivvPIKTp06pdJrEEIM11eXqzO+XEt5OmNTJqRCZHXIJsbHsaIEY5PYdXGS7JvCX4E6hwAQ+OkLuPjOIFibm+LCO4MxrnNTeDSzxerxHlg4wL3hA2iJQCDAWwNbK/38nX0mc8aWPL3S8BqfOtqsvQ6TFRfg9sM1hGZQWRlt0+SFpblYiCMXf+XcCMu1sse8yZ9BbKJaMwV9kGnbBFNnf4dCC3YDKDthBU6f2wDHihKtzeWGjEYsYgmDqX/54VFyAcKzSvD2sacIki6ATAyeR14Kfvb5G4l73oH38a+w4skZuQKQDbERVWFcUhA2+exD9L4P8PjgJ1gecB4uZYb1HgrP4n4WK/9bbppfLuRskw5KGiOJhMEf9xN0PQ2iI796x2LXgwRdT4PwUDoIuWrVKpSWlqJ169bYtm0bTp06hUmTJsHMTP2d6ywtLTF37lxcunQJv/76K9q2bYvy8nJ8++23an8tQoj+e5ZeVJvZ1IqnM3ZanUzIL8YoFlxpjCKc3SGUuljumZPA2U8kZvAkuaDBO4tEf02JfwJzCbs4+9lOQ+VOF5vQpRn8P3kBvVs51mYZdW9pj2vvD0XEF2OwenwXo8o+8nXtgqfN2rPGuuSnYoxUILc+KYXVXeXTiyrR81dv3i63xDCtu3cIgzOiOOOLJn6EFAf9XOaojNCmbfH61JWQSIV0Oxek49DlzRAwml/yXp/zoRnILmUvo/v0fKiOZqMZ6s5cNJivaYbBuIRAeJ38DhF/L8WKJ2fgxnPep079s2Kx9fZeJO15Gztu7ECn/DSNvp4mPUku0PUUtKJSJMbbR5/C+VsvDPntbu0NP5ECdS9lnbtEZ2vvRgtRv9VXI2XWP2UUuKFM1EvpIKStrS0+//xzXLp0CePHa6/ezdSpU3H58mWsWrUKNjY2DT+BEGJ0+m+5U/v/fEHIdLsmAKoDJp+M7KC1eRmqKjNzRDizs9d6ZSdwsr3eOR6EQb/dhefGW/jldowWZ0jUha8r9mkF6kFeWTwEfQ2sJptK55gCAXb2mcQZ/iBI+QY1J4LYF7QMwyAxrwzl9XRvJsrTVFD8heQQrHxyhjO+pf8MXOw4SCOvqUte7fvju+HzOONT4p9g9YOjOpjRc6n/BfrrepRUoP2JGBBDiEG+kBwC72Nf4tqp1Rif+FTu55WYWyGyiRvuunXD1bZ9can9ANxs0wuPW3RCip0LxAL5Ln+tRVX4IMgLEfuW4OS5DRicZnjdwmtiL4bw710X39e2UCLB9ahsHHuaivwy9k2HX7xjsf9JMgrKhXiUXIC5/zWNMWngD77uRhQWnwjCtcgsXArP5N1H2brSRD9kl1ahjM6v9I7SaYteXl5o1kw3d3lNTU3x1ltvYcqUKTp5fUKIbtW9s8m3HLsmE/LKYsXr3DVWwU3boWfO83pCjlVlaFOcjSSH5px9JQzw/bUo/G94O9hYqD/7nWiGtbASE+MDWGPZ1g6459ZVRzMyDIc9R+Fnn/1wrNMxfmaML1oV5yLN3kXh4/3pm4iVo6sztPPKqjBlrx/8kgpgZWaCfXP6YG5fN7XNnWjm4tuuqgz7rv7GGX/cohNWjVyggVfUDz8OfgX9M2MwK8aXNf6d71E8adlJZ8FXvoCFPN1wDYmsWPqz9CL4JeVjSJsm6OHqUDt+ITQDux4mwt7SDF+N7YxerRxYz9PnjPVB6ZFYd+8QxiVxG+lJEwlM8LCVJ3xa94CvaxcEN22HFPum9aZ6mouF6JKXir5ZcRieFo4Xk5/Bo55sRxMwmB3ji9kxvjjdaQi+eOEtg6kbKdbjDtiKuh6Vg+tR1SUZOrjY4P6yEWhhbwkA2CbVxTg0sxhFFULYNnCO+p1XJIDqBiSyblhG0+ofg5ct1XCmhvF8OgyP0lePugpA6tscCCG6xbsc207xwEBj96xZOyDChzXWKzuBNwgJAGVCMbwiszG7p6sWZkfUYXxCIGxF7K6n5zsOhsQI6tZpUqmFNQ52G41lTy/VjpkxEix+dhXfD3tD4ePVPen9/V48/P7L2KoQSbDkVDBe6eUKM1OlF6oQLfjFZz86FLKzZorNrTF36udG0WVXFkZggrcmfgzPwyvQNY/dvfbAlS3ou+A3mb8ZmsS3VLmxrLLrs9kHDFOd8XVkfn+82rsVAlMLMfvAk9oA1I3obCR9M4510zC/nP+iXJecKkqw8c5+LH52rd79xAIT3GjTG4e7jsKFjoNQYGWn0OsITc0R0qwdQpq1w8HuYwBU15ucGeOH+WG3660zOTvGF1PjnmBHn8lYO2QO8q3tFXptbZOo6YMQmlGMU8HpcHWwxLx+birdgGYYBj/disHxoDS0d7bBpmnd0d5FsdWNcbllOB6Uhg9HVJdLySnlvp8VWYrdWL4vGqs+m314xxccDYKNuAzzPO3Qycl4f7v1EZ3lEkIMGm9jGtsmOpiJYZPVIbs+smqsEN3wTymodztvV+zO8mcLj+7YeIP7fEuy3312DWZikcLHqhsuWXcjmrWtsELUKJoFaJO6E75eSgjE+8FenPHPXnwb8U4t1ftieqjY0gazp3+FIgtr1niTylIcvfgzzMXcBhiaklpYjr/8knAtKouzrbH8OtUETyQMsMk7FgDw9+NkVgZcXpkQXnW6AwenFWHhkafanGb9GAZzw30Q/veSegOQuVb22DD4VXR4dw8mvfI9DnYfo3AAUpYoZ3f8POhl9Fr4Owa/8SuOdBkpc9m2hUSEjwPOI3rf+3g3+KpeR7Bql2PL+B4cs/MBbkTV3zn6WXoRhmy7izXXIvH+yWDM3v9EpTnte5SMr69EICitCGdDMjDjb+WWO/94M7re7f4phfjFm0oHEaC4kv9c7VZMLi7Gl+ODm7koqdJtbePGRiNByIkTJ+LPP/9EZiZ/bQVCCFEX19J81uMKU3Pkq+mktDHh65Dds4EgpP6edjc+F8MyMXTbPZnbzcQiTI9ln+gXWVjjZpvech3f3FSADZMNc9m2Ot6n4S5t4O3egzXmVpLH+TtVFN9SOfpcqZc6G3o4VpRg79XfOeNX2vXD3p7aq4+ua5Eu7lg48RPO+JD0KGy4e1Arc4jKLkHfzXew+EQQzodyrzcqRRIsO/0MeWX6l/GnDHnexY/+a0IiXXcWqP77qrH9fjxnu664F2Xjyqk1OHx5E1qUFfLuU2Bpi++GvYEO7+7BNyPeRLImmz4JBHjs6oF5U1ei0zu7sa3vNJSYW/Hu6lxRgj+v/4HrJ79F+4IMzc1JBeIGAqTesbmYsMcXSfmyG6b98yQFpVXPa+pdi8pGXK7yS5T/9E1kPQ7JKIblFxcxZucDhY5bWFH/DY8Jf/riq8uGV8eTaF9hlQR3Urm1hYHqhItrkVnY45tY7+eEKEYjQciEhARs2bIFY8aMweLFi+Hl5QWhUHt3RgkhjYf0cuw0O2cDavuoP9LsnJFjxV5W1IunQ3Zdux8m1rudaM8XF8PqXXo0KiUETSrZJ/eX2w9ApZlFg8ce2rYJHnw4AoPbNu4M4519JnPGlgRd1sFMiCLU+XOwxXsvWpfksMbyLW2xePyHje5351znIdjabzpn/DP/s5gS+1jjr7//cTLvEsy6djxIwMQ/fevdx1AosrS0IXv9ZC831qaZ0Q/x9OBHmJAYyLu9xNwK64a8hg7v7sG6oXNRbKndhqSJji3w8ZjF6PDuHvzRZzJEMjIjxyYFI/jAh/jI/xxMJPrVACOzuBLT/vLD28eeytyHYYA1V6NYY3llVTgfmoGIrGJs8onlPCcyS/mO0Y95OnYLxQy8Y3PxwclgFJQLcTI4XenjE6KMsDz+WNWHZ0MwcY8f3j8ZjD6b7yAkvUjLMzNOGu0oIBaLce/ePdy7dw8ODg6YNm0aZs6ciR49ejT8ZEIIkYN0EJKWYitJIEBws3YYk/ysdsgjPw1WwkpUmFvyPuVWTA5KK0WwtaTmNLoW3sAFwWyerthn5OiK3dHFBj5Lh1GNQgBnOw1Gum0TVvb12KRgdMlNQaSLez3PZNPnhhDG6F48t2SHMibG++Ot0Fuc8Y/GvKdUgyJj8MULCzEsLRyDMtjLIvd7bUW/N7dqNGPtp1vyLbN8klKIZ+lF6OnqwNlWViVCRnEl2jvb6PXnkmEYvHmEP1BniKyEldjksw9Lgq7I3Od0pyH4aMx7SLVvqsWZ8cuxccSHYz/AH32mYOOd/ZgWxw2y24oqscX7L8yOfoj5kz/TbLamgi6Fc8sVSLsTn1v7/yHpRXhx5wPklclOINLU5+VGdA5e+0e+5d7lQgkyiytrm9M0dtbCSvTMSUDP7ES4l+SgVUkeXEvz4FqSDzthBUwYCUwZCUwYBmKBCXKsHZBt44Bsa0dk2zgi2qkVQpq2QWjTNiix0G7AX5/tfphQ+/8F5ULsfZSErTMolqUqjVw5fvnllzh//jxCQ0PB/JcGXlhYiH///Rf//vsvOnXqhJdffhnTp0+Hs7OzJqZACGkEbIQVrI61wH+ZkESmlS92xC/e3LvaQHVzmrpBSFNGgm55yQho0Unm8XyT8jG2s/6cbBMuASPBjBg/1liFqTmutO9X7/MGtnbCqYUDDD4AyaipXpfQ1Bx/9XwJ3/geZ41/EHwFn4xerPDxbsfkNLwTUcl3XhH4/Z7qS09tq8qx8/oOzvjZjoNxqOuLKh/fUAlNzTF36koEHPwETnUyrV0qinHk4i94cc4GiEzVe6kxbtdD1tJieUTnlHKCkAf9k7H4eDCqxBIMau2Ey4sHw9mm4cxwXYjKLkVmcWXDOwJw/PqKzPpn+qBrbhKOXfhZZvOXZLum+HDsezjfSf56xdoS4dIaM2Z9i3EJgdh5Yyc6FnKXYI9MDUPgwY+wePwynOk8TAezVE5c7vNz6d/vx9cbgASqGyFpyo1o+X8be2/yxoMPR2huMnqsXWEGJiQEYnhqGPpmxcEzLxWmjPx1DfnevzXiHZojoEVH3G7dCzfb9Eaks1ujy/avIZ2Evu1uPAUh1UAjVxYLFy7EqVOncOnSJSxevBiurtXdUxmGAcMwiImJwcaNG/HCCy/gf//7H27evAmxWL/S1wkh+s+VpzN2um3jzEiR15Jh7dDaib++EV9dyIaa06hziRjRjMHpUWgl1cDpets+9d7pjv9qLPw+Ggl3J2uZ+zRGf/acwGlWsDD0FmyE/LWE+AgABKUVYuIe/mWi8XlUc0gRASkFeOtIIP53+hmypAI10o1/lPXDg8NoW8xu3pBrZY8PXlraaC/MaiQ4tsTbE5ZzxoelR2Dd/UNqf71bMTlIKZT/8wZwb0QIxRL87/QzVImrL9gfJRdg54MEdU1R7bwiG85kqyErAMkwQKVIjC8uhqlrWgqbFuMH339XygxA7uw9Cd0XbdfLAGRdN9r1Re+F27Cl/wxIeKp1OleU4NT5n7Djxg5YCeULHuuDa/+9z/b4NrxcX18yh7NKqrD1rv7UONUkM7EIE+L9se3mbkTs+wBxe9/Dzhs7MT/cB91zkxUKQDakfVEWXo5+iO23diN8/1Kk7F6E/Ve2YHqMLyxFxlFnV5p+vKMbD42mN3Ts2BGfffYZbt++jQMHDmD27NmwtbWtDUaKRCLcunULy5YtwwsvvICNGzciKiqq4QMTQgjACawAtBy7Ie2cbRC2cjSuvcc9yefrkN07u3Gc3BmzWUosxW7rTEtx+KQ4NMOFDgNZY06VpZgbcUeh4/zzJAVCMX8Av6GOn+S5pPwyDP39Hv7xT8HOBwl4ceeD2oBTTql6Lv4HZERjecAFzvinL76DLD35vZnTp5VOX/9s56H4ve9Uzvjnj09jMs/SVV2Lzi5FSSU7+UFdAWtNkKgpm/ujs6EyV0JoFMPgK9/jOHNuA+yF5ZzNuVb2mDnjK/xv3BKDWQZaZm6Fz158B8Nf34hQl9a8+3wQ5AW/wyvQOS9Vy7NTzrIzIfj5tnxlDmQFbBiGQWhGMR4k5EEofh4Uyyurws+3Y7CZp76kqrarIdtdbzEMBqVHYtvN3UjZvQhXTn+PZU8vwSOf23xKk1qV5mFB2G2cPbcBGTsXYP+VLZgc9xhmYv3Nuib6TWtrrAYPHowNGzbgwYMH2LRpE1544QWYmprWBiTz8vKwf/9+zJgxAy+//DIOHz6MoiIq/EkIkc21JJ8zRsuxG2ZraYZxHtwl1KEubThZXn2y4rQ1LaIJDINZMewgpFhgggsdBuloQtqn7lxd3gY1T69UpxrJITqnFFvuyP5cecfmytxG2NbdiGYFcyOySmr//tTRfMNMLMKf17ZzMkyute2Dg91Gq3x8dXm5p6uup4CVLyzCE57SHfuvbIVbsW5LD0h/NPk6BleK1JdFpG5qikHir0fab0hjI6zA0Ys/Y939QzDh+Tb2du+BPgt+0/vsR1n8WnliwPwtvEF4AOiZk4hH/36GaVIlUfRRTE4pVl0Kl2tfWYmQH5wKRs9fvTFi+32M2H4fRRVClAvF6Lf5DlZdCseKC7rLxDUkjhUl+Nj/HCL+XgLfwyux7OklNC/n7x7fkEwbR0Q0cUOoS2s8a9oWT5u1R7izO7KtHXgzeRucW1UZFoTdxsUza5Gw512suX9Y59/xusIwDELSixCdXYLSShEqRbSyV15a7yZgaWmJKVOmYMqUKcjNzcXly5dx48YN+Pv7QySqjqaHhoYiLCwMGzduxNixY/HKK69g2DDDqatBCNGO+jIhZ/Zoqe3pGLwKc0uEO7uzlkr1zYqDgJGAkdEVkuhefRlfPXIS0amAXffHx707cm24TRqIfG607Y1oJ1d0LnjevbN/ViwGZkTjsauHDmfWOJRWinA7Nhf2lqY4EsjNMApKK8LoTk3VUiriU/9z6COVDV5mZoEl42gZtrQqM3PMmfo5Ag5+zKrV3LSiGIcub8LYV9dBYmKqwxk+p66gnqERa7l8SsuSPFw88wP6ybiZ+cOQufhh6By9eV8oq9LMAh+NeQ/X2/bBPq/f0LSimLXdsaoM586tx7ohr2HN0NcN/s8LAAKe4FVsTilrKffj5AKcfpYBoViCpAJuBizh6pKbgg8DL2JB2C3YKVDmpcDSFk+btcfT5h3wtHl7RDi7I83WGZm2ThCamst8nolEDOeKErQpzkb3nCT0yElE99wk9M+MQYuyhoOerUrz8J3vUXzldxznOw7C9r5T4d26p0H+Pj7KVGz1hFjC4LV/nuBMyPNzbBtzU6yZ0AUrXuzI2je3tArONuZ6U8ZAH+i0pamLiwvefPNNvPnmmyguLoaPjw8OHTqEp0+fgmEYVFZW4sqVK7hy5Qpat26NN954A6+++ipsbW11OW1CiJ6Q7owNAGl21TUhf5jQRdvTMQqBzTuwgpAOVeXoWJCBmCb8y/0a68WcPonJkV1DkK8r9tlODXfFbmyWj2yPD4e3R+efuN2PpTECE+zuPRG/+vzNGl8SdJmCkBqWX1aFUTseICSjWOY+jJpyXzsUpGP1wyOc8e+Hvo54J/25yTWla3O9ud6Ld2qJdyd8iBMXNrLGR6WE4hvf4/hh2Os6mZf0O0Jd7xFNSSkoh0AAuDlW1+Q1xN9Zz9xkXD79PdoVcetZlphbYcGkT3C2gbIghuZix0Hos2AbDl7ZjNF1mvzV+Mb3OPpnxGDelBUosLLTwQzVh+8751J4JmfsV+8YhGUq1kiqMeqbGYvvHh7BjNhHcu1faWqGu27dca1dX1xr27e6nJISPwQSE1Pk2Dgix8aR3YSSYdAtNxljkoIxOjkYY5KCOY1A6zJjJJgd44vZMb546NoFPw5+FRc7DDSoYGRcoWJLy+/G5bICkABQJhTj84thmNWjJTo2tUVCXhmm73uEkIxidHCxwblFg9C9pb06p22w9CK1JSIiAgcOHMC+ffsQFBQEgUBQ+1/Ncu3k5GRs3LgRY8aMwZkzZ3Q9ZUKIHmjJkwlZsxy7hytlejVkaFtuPbPAFh05Y31pSbZeq6/788wYbvOTs50Ga3I6ekeeC3grM1N0bCr/Dc793cei3IzdSXduxF04l1MZGU06G5JRbwCyLpUufRgGv9/cDWupAvyBzdpj84CZqhy5QY5WDecHvNnfHe6OVlg4wB1nFw3Sq+yKUx7DsbP3JM74t77HMDIlRAcz4tLXoB7DMFh+NgRt1t1A67U3sNJAl64OTwnDvaNf8AYg4xxbYNjrPxtdALJGmr0LXnrlB2wY/Crv9kkJAXhweCU6abmmn7rxfePw1TlOyKMMyPr0y4zB2TPr4H/okwYDkFUmZjjXcRBem/o5XP53GONfXYtfB85GcPP26g/2CQQIa9oG2/tNxcszvkKLJQcxfeY3ONR1FIrN629YODQ9EufPrsPTf5ZjTsQdCNTYMEdfhGUUY8wu7k3+Gi/tfohyYXUjsJpzlrjcMiw/w7050VjpLAgZExODLVu2YOzYsZg1axb++OMPhIdX16GoCTx6enpi+fLlGDlyJExMTMAwDAoLC/HVV1/h+++/19XUCSF6QjoTssLUHAWWlCktr72v9eaMBTTnBiH7ZcouJK5H176Nlqzr6fYFGZylpI9adkaKA7ceqDEzM2n4Taro+zjP2gHHuoxgjVmJhXgr9KZiB5LB/Yfr2OObqJZjGZPNPg3fEFFHgGlWzENMSghgjYkFJlg84UOINbiUsp+bIyK/GNPgfgde74ukb1/C33P7wlSO97e2fTbqbQQ3bcsaM2Uk+PfSJp0E6qXfE5qIQTIMA5FYtYvtsMwSVpONTT6xiM0p1fO8TbbZUQ9w/eS3cK7gZr/dbNMLg+ZtQghPEzxjIjExxTcj3sTs6V+iyIIbsPHMT4Xv4RV4MSlYB7NTD3l/M8uEVCOPT5fcFJw+ux5PDn2K6XH1Bx/9m3fEknFL0OqD/Zg18xuc7DICZeZWWppptSozc1zsOAgLJn+GFkv+wZypn+NW6571PqdXTiKOXPoVAQc/rm5Qpq93f5TQd4tPvdsT8svh8q0XTgSns8ZvU83vWloNQmZmZmLfvn2YOXMmpk2bhj///BOpqam1QUeGYdCkSRMsWLAAZ8+exZkzZ7B06VLs2bMH3t7eWLp0KSwsLMAwDI4ePYrz589rc/qEED0jHYRMs3OmqJgCurawx8mFA1hjT5u35+zXN0t2ENKIzimMjnRDGgA40wiXYk/ybN7gPoPbOCl83J29uQ1qPgi6opa7/mlFFXj/ZDCC0pQrRG+sCiuEDe7z/bUoiMQSpbMDbYQV2HJ7L2d8e98p7OVqGvDLtG5obm+p8PP07VevwtwSc6d+jlIz9p/FvSQX+7y26fyHo77scWWcDEpDm3U34PydFz45FwJJA7UXkwvKceZZOpKl6uR96xXB2XfdjSi1z1dTFoTexPELG2El5n5OD3QbjcmzVyPPuvGsUjnbeSgGzduEMGdu92znihJcPbUai4O9dDAz1fHVhCQNa1ZWgO03duHZgWWYGSu7WZFIYILjHsMxYu5PGDh/M3b3nqQ3n50Kc0uc6DIC415bj+5vbcfvfaeisJ6u9r2zE3DxzFp4H/sSw1INM7tbGl/Wr7QKPW52pg80XhOypKQEV69exYULF/D48WNIJNX/IHV/UM3MzPDCCy9g9uzZePHFF2Fmxp1Ws2bNsHz5cvTo0QNLly4FABw+fBjTp09XaX5+fn64dOkSAgMDkZWVhZKSEtjZ2cHV1RUDBgzA7Nmz0a1bN5Veg09eXh5OnDgBb29vxMXFobS0FM7OzmjTpg0mTJiA6dOnw9HRUe2vS4gxcS1ld8dOs6XO2IqaLBWgKbK0RYxTS1Yzk36ZsdUXjRTg1Uuyrk9n8dSDPNPZMDuQqqJjU1u8PagN9tXTGXZcZ8WzQx+37IwnLTphQGZM7VinggyMSwzC9XZ9lZqrtP2Pk7FlBp0LKKK4UoR/A7gNa+T17cNjaCPV6TPN1hnfDZun6tTq9d1LHhjdqanaj9unlQNGdXTBb3fjG95ZjSJcWmP5mPfw17XfWePT4x7hw8CL+L3fNK3NRboGZEOXjxVCMQJSC9G5qS2a2dUfFC6qEGLe4YDai9Lf7sZjRHtnvNyLv47y5fBMzNr/GEIxA3NTAc68NRCTu7YAAJTzZI2VCw3jQnbRs+vYc207bwfsDYNfxTfD5zfKc4goZ3cMmfcL/rm8hRN0MpeIsfv6DnTLTcaKUW9rNMta3Uz0oqCb4bAQCfGJ/zl8+egEHKpkL1EvM7PA7t6TsKXfdINYtRLu0gYfjXkP3wyfjyVBV/CJ/1mZDW1eSA3DvaOrcMJjGFaOehtJDg3fICbGSyNfISKRCDdv3sRHH32E4cOH45tvvoGfnx/EYnFtxiMAdOnSBatWrcKdO3ewY8cOjBs3jjcAWdeYMWPQtm1bMAyDmJiYevetT0pKCubNm4cFCxbg2LFjiIqKQkFBAUQiEQoKChAeHo6DBw9i1qxZ+PTTT1FSor6iujdu3MCkSZOwefNmBAQEoKCgAEKhEJmZmXj8+DHWrVuHKVOmwMen/lRfQhoz26pyTpHkdDtujUNSPytzU+x+pRdrTHpJdtOKYrhLXZTXiM0t1djciHxePvCYM9ayJA9D0yJZY6EurRHl7K6taemVPa/2wtNPR+H2Ev5MUKUujQUC7Oo9kTO85OllZY7G62mqYktXxRKm3m7pjcWiY0+V+jf1zE3Gp/5nOeMrRi1CsaXsTA9VNbE2x6oxymdZ1hfb8f/kBXRSoN6pOv3dYxwOe77AGf/5zt/oW0+ZD02T1BPXi8kpRacfb2HE9vto+f01HPJPqfdY1yKzOVkxO+4nyNx/w83o2v2FYgYbbkbXbpP1z6iOPEhN5lK+G3wVf137nROAFAtMsGTcEnwz4s1GGYCsUWJhg5dnfImNA1/m3f5RwAWcO7sODpWGcz5FmZDyG5MYhKB/luPHe//IDECWmVlgU/+Z6PDuHnz24jsGEYCsq9jSBj8Pehnt392LZWPeR6K97Pm/GvUA4X8vxeoHh2EtpPOVxkojQcjhw4dj2bJluHbtGiorq99cNYFHJycnzJ8/H6dPn8a5c+fw1ltvwdlZsewlV1dX1jEVlZCQgFdffRVPnjypHTM3N0f37t0xZMgQdO7cmbWM59KlS5g3b55aApFeXl5Yvnw5CgoKasfat2+PQYMGwc3NrXYsOzsbS5Ysgbe3t8qvSYgxks6CBIB0WxcdzMTwWZiyfwoC+epCyliSLU+NNqJZWSVVnLEZsX6cC8LG3BVbIBCgVysHjOpYf6bZ+kmeCh33iOcoTh3aaXGP0booW+E58lGki+/VyCy0WHMVzVdfw4s77iO/jPu+aEy+vsJd2lovhsH2m7tgLmFno91q3RNHeQJp6nT1vSGwMlc+C6q+gIBOm9YIBFgybiliHdndxC3FIhy59Avs6um2qk7cmpD8n6t78bnY5BOLtKKK2uctORWMtMIKmcfOL+cuPb4bz22aV+NBQn69j6UxDAOhirUmAeAbRT8Pcno/6Ar+vP4HZ7zS1AyvTFuF3TxNihojRmCCL19YiEUTPkKVCTfhZnK8P+4d+QJtC7kdpvXZk+QCjN7xAPP+DUBopnxNwxqLliV5OHTpV9w4+S265PNn51eZmOG3ftPQ4d09WPni28iyNexkigpzS+zoOwVd3t6F5aPfQ5Y1/0oOa1EVVj88irC/l+KVyHs6L9FBtE8jQcjCwuo03JogoampKV588UVs27YNd+/exTfffKPSEufc3Oqinp07d1b4uWKxGB9++CHy8vJq57Zs2TL4+vri9OnTOHDgAC5evAgfHx/MnDmz9nkRERH4+uuvlZ4zACQnJ+PLL7+EWFx9guvh4YEzZ87Ay8sLBw8exK1bt3DgwIHaYKRYLMann36KzEzD+kEiRBtc6+mM3UKJmlqNmfRPfwBPh+x+mfzBxvg87VxEEsXMjOZ2xT5tpN1I1aEmTrNggGKZouXmltjffSxrzJSRYPGzq+qamlwYhsHbx54ir6w6IHInLg+bDPQGQW5pFX66FY0VF0IRmMpe1qXJeNrciDsYk8zuXFllYoZlYz/Q6AvP6N4CA1o7qXQMz+Z29W7XZdZSsaUN5k5dyQm8eOSnYfvN3TqZk6zr3fG7fbH7IbshVGmVGO5rr2P2/seoFHGXS6vz0pkvYPwkpRDfekXy7K17SwMvYeeNnZzxClNzzJ7+Fc41wvIfDTnQYyzGvroO2Tz1/XrkJsH38AoMTtNMwFidBALgL78kDPrtLnzicnEkMBX7Hyfrelp6wUQixrKAiwj/eyneiLgjc7+TnYeh+1vb8cnoxQYffJRWZWaO7f2motO7u/HdsDd4GzQBQNvibBy/+DNunvgGPbITtDtJolMaq+jAMAw6d+6ML774Aj4+Pti1axfGjx8Pc3NzlY+9dOlSHD9+HHv3cguHN+T06dOIioqqffzTTz/hww8/hJ0d+wSuRYsW2LhxIxYtWlQ75uXlhadPnyo97y1btqCsrPqC3c3NDQcOHOAEY4cMGYLDhw+jefPqOgmlpaXYvn270q9JiLGSbkoDAOn//Yj/MKGLtqdj0KSzygObd+DsU19zmtJKkdrnRJTnVFGCMcnsrpsJDs15/10Jm5sj/4lyffiWZL8bfA3mPM0ZFCVvckB2SRXSi9jLmn68FS1jb/3FMAwm/OmLry5HYLNPHEZuv4+QdM13U7avLMOvPn9zxrf0n4EIF25TCX3j0cwWozro70oA/5ad8eXIBZzxBWG38WboLY2/vvTHSNbHqr5GAmdDMnBSqtOpLNKxxCqRBCsuhKLTjzflen5d+nqjb3nAeWy/xQ0iV5iaY+bMr3GlwwCeZxEAuO/eDUPe+BWhPN8tLcoKcfv415hTT/BKH2z2icXiE0G6nobe6ZcZA79/V2Db7T85JaNqPGrZGSPm/oTXpq9CbBP+2rHGosTCBuuGzkWnd/7E7l4TIZFxQ2x08jP4H/oEP945QEu0GwmNBCHnzZuHkydP4sKFC1i0aBFcXNR7YjRp0iT06tWLEziUx7lz52r/f8SIEQ02tvn0009rA4JA9dJsZWRmZuLq1eeZEZ9++qnMZegtW7ZkZV2ePn2atXybEMIfhKzJhDQ3pYrZqsixcUSyHXvZat8s2VlVX1wK1/SUiAKmxj3mLCk922lIo67JpUlRzu640aY3a6xlWQFm8WSjKkreLCsJT7TSEFc3BaQWIqBO9mOZUIx/A5VvMiOv7x8cRiup7Pok+6ZYO3SOUsdrbmehjmnJTSAQ4Pzbg2Rub2KjegKAqrb2n45L7bmBqT9u7oJHXv11F9VN2XJOW+9wfwflOdbfj5Ow2ScOcbn1BxQN5Rv6kydnsZWng3y5mQWmz/wG19r108GsDEu8U0sMe/0XXG7fn7PNSizEkUu/4tuHR/X2i/z0s4yGd2pELERCrLt3EL7/rkB/GTft8y1t8cG4pRj6xi944Kb+prf6LMfGEUteWooB8zfjrow/u7lEjC8en0LI/v9hQry/lmdItE0jV+rffvstevTooYlDq6SqqgoBAQG1j6dOndrgcywsLDBixIjax8+ePatnb9muXr0Kkag6W8je3h4TJkyod/+XXnqpNkgpEolw48YNpV6XEGOTlF99Es9XE7ImCEkUw3eKG9CCnTXnXpKL5jx/5wCw82GC+idFOCQS+S5GZlJXbIXVXQZpba74qdEunrpn/3uq3E1LZejnZariQtK5NcV+vq18E0J59MyOx7LAi5zxT0a/izJzK6WOWdPtWJvsrcwwwJ1df2tE++rfxEmezWFqotsQFyMwwaKJHyHNlv07bSeswJGLv8BSpLkapuI6351nQ9Ixeif3O1Ie4Znc2vB8MSLpRjVLTil37aCPVjw+jU0++zjjZWYWmDbzW9xo11cHszJMxZY2mDHzG2zvM4V3+/cPDuPAlS2wEKmeVU80Z2B6FPwPfYyv/E7AjOHPpt7ffQw8396JP3tPBCNovIkST1t0xKg5P+KNyZ8hxY4/Sa19URaunP4ehy/+ghYyrjuI4WtUn4LU1FRYWj6vFdexI7fuGR8nJ6fa/8/PV+7Dgdn8ZwAA/KVJREFU8PDh8xOeQYMGNbgs3dTUFEOHPq/fdfv2baVelxBjs/ZG9RJDV97l2NUXN8pmOTRWfH9dfM1pZGVD0l+35pVUijBpb8OZddbCSkxMCGCNZVk74n6rrpqamtF5d3BbhZ9zvuMgpErdBBmZGoZ+maoF0Oi7TMPfLwyD7Td3cy4cr7TrhzMqNHJa/ZKHqjNT7nXHd4GVWfWpvY25Kb77bx5O1uY4+HpftLS3hK2FKXq0tNfJ/HJsHDF/8qecJXl9s+Px8539GnvdLy6FAQACUwsxe/8TVCnZ6EWRZPIKIbd+pDqPrwtf+J3k/XcqNbPElNmrcattb+6TSL3EJqZYPvZ9fDjmPYh5glNvhnvjxolv0LSskOfZRJcsRVX46c5+PDjyObrn8tfDDHVpjVFzNuDtiR8j28ZJuxPUVwIBjnYdBc+3d2L94NdQacpt1AQAcyPvIvzvpXg/6AoEMoK7higgpUDXU9ALWgtCMgyDvLw8ZGRkIC0tTaH/1KV9+/YIDAzEkydPcOnSJXh4yHeSmJr6fCmQoyN/l6eGREY+LyrdvXt3uZ7j6fm8S6eyGZiEGJuM/7pWSi+dKzez4HSpJcrjrwtpmI0ujMG50Axcj8ppcL8JCQGwkcooOtdpMCQmynfebWx+nab4MimRqRlvNuTygAsqzUXe+BvFKpUzP9wbI1PDWGMVpuZYPuY9lSJCbZ1tVJrX4XnKLWed0q0Fnn42CqcWDkDQZ6MwzqNZ7ba5fd2Q+t1LyFs7EcErXlRpfqrwbtML64e8xhn/MPAipseoXsKAT0291JUXwhrYU3GyPnoHnsjfpOOTcyH4+XYMCiv0t77y177H8OO9fzjjJeZWmPzyavi07qmDWRmPP/pOxbRZ3/I28BiRFo6Hh1eiS652yxYQ2YakRSDwn4/w+ePTMOUJkJWbWWDVyIXo++ZvuOuuf6tD9UGZuRW+HTEfvRdsw20Z3x9OlaXYeWMn7h5ZZTSNa6iUQTX+0LOalJaWYs+ePbh16xbi4uJqu0IrQiAQICxMvScN9vb2sLeX7y5wSUkJ7t+/X/tY3uzJuqqqqljB1LZt5cuycHd/3qUzMzMTFRUVsLJSbmkQIcYiu6Q6wCKdCZlm61x70UjX44pheP7G+Dpk19echmjWm4cD5dpvFu9SbOqK3ZC64SZzUxO85NFUrqBvXbt7TcTXvsdhVachzdyIu1g1ciEyqFSEXBr67lZnl2f7yjL8zNOM5ueBL+u8WcDLvVzR57YDnqYp3pTHo5kdPJrx10wXCAQwN9V9ut0PQ+fixeRnnADwvqvb0Kd5R6Q4NJPxTOVFZZfgVoxin2lpfHFpsYwyGUcD0/D+0HZyHfe3u/EqzErzvntwBGseHuGMF5tbY/Ls1bjv3rjq22mKV/v+GDF3Iy6cWYu2xdmsbR0LM/DwyEq8Ou0L3GzbRzcTJLAWVmLt/UP42P88TGT8Yt1v5Yl3JixHlLM773bCFuXsjrGvrsOCsFv41XsfmlZwy7IMS4+A/6FPsGnATKwdMhfl5pY8RzIMNWXFGjuNBSFjY2OxePFipKdXd5Iz1CVFf/31F0pKnteAGT16tMLHyM7OZv35mzWT7+SqaVN2Y4js7Gy0bq39Lo1lVWJ4blS+e2H7Jta48PZAmdtXXgzHlchsmdvlMaajC7bNlJ1hOvvAEzxLeb6U3vK6j8JZDu8MbI1PXmgvc3u/rfeUXuJTY90ED8zs0ZJ3W2phBSbsfaTS8QHg0Ot90KeVA++2e/F5+OB0iMqv8eB/Q+FgxV9y4B//FPzsrXxGXVR2KQBuJmRNZ2wAOPssTeU6YgPdHfH3HNlLixYdC8LjFNWWx7zayxWrX+osc/uLO32RU6ZanazPX+yABf35T4SKKoQY9sdDFJZz6w2l2rkgy9oRzcuf/xn7Zcr+d8ssLIOLLbcZw9O0Isw/8lTxiUu5+u4guDny34Q5G5KBb65GNXwQhkFl5fO/z7rfAxamJgj4eISsZ2LLnXj89Vj+zBY+XZrZ4tQCbhH6GsvPhuJWbK7SxzcXCzE17jFrrNDCBrda91L4WPV95y8d2hZLh8m+mdZjk+pdPX+e4onJns15t8XllmH6/idKH1sAbrBLIhZDJHg+mlOieHfGHBtHHO46Cm+HPK/hbCER4YMgL6wZ/oZScw1IKaz338LNwQpXFw+CUMSfQfXFxVCcC81U6rVrDG/bBLtfkZ3l9MbhQATz1HJUxPx+blg1uiMkMm5WW35+EXaWpihSY6bYmodH0LKsgDUW79AcPw16WeVji2T8e/C5GZ3D+2/MMAzsLExRUsX9O5F1/GNBaVh7Q77fvibW5sjn+e7XBrGJKeZP/gyBBz+Cc8Xzc2znihL8e3kTxry2HmI1Z2/3+MVb5WNInw9/PKIddj9M5N23SqzaubNeYBh8/+AwvvU9xtlUZGGNSbPX4KEblfpQp5Bm7TBk3q84e3Y9Bmewz2ucKktx5dQaLB23BHt71d9bgKjf0NRw/H31N3jk86/SLDOzwNcj3sTvfafS6hNFCQT4p/tYXGo/EL/c2Ye3QrnfneYSMVY9OoXXIu9h2dgP4MXT1MkQ9GxpL/M33BCuNQBg/xhHKFE+nUUjQcjKykp89NFHSEtLg0AgMNgAZHBwMPbs2VP7uF27dhgzZozCxyksZAcqHBz4A0DSpLM1i4oUvyOuDhKGqQ38KKOyohJBQUEyt4cl5SEqu0Lp4wOAq4UYQUGyT/oj0/ORWFxne7HiFzKh8SkIcpT9bxCVVYwqFUtWhETHo72Y/4IxrUSk0r9D7WuER0KQzd+581lahVpeI/hZCOwt+L+dQmNKVH4Nu6oyOFSVs8bqNqVJyylEVLZqwTs7gbDe9214ao7KrxGemIagINl3xCIyC5FXodqbKjQmEUFm/D82xVUS2f8WAgECWnTAxITnGXgdCzPgWFGCQituls2f1/0xuT13CWJITpV63lMhocix4//JCokrU+416nwPWJig3n/v0Pgilf8cjLD+78LwZNW+C19MDkGTSvYcL3UYgCozxTvj1vdnDY1LQpBtgVLPlVdoVBzcKtN5tyUUCdXyGjU8m5gjPJRd8qS4tFzG3vX7rd80VhASAD4IuoIfB7+CSjPFOyZXiOr5jAIoLqtAUFAQssr4g3dhiemIylbuz1LD2VRU7/s2IjUXUbmqBbPC4lMR5FyCpGT+70OhhEF+ufoCkN1ykvAhz1L5T0a/iwo1ZFjU9/clraRKrPD7WdbxQ6NL1frZ0KRkh2Z4Z/xynDm/gTU+MjUMax4cwbcj5qv19URyNvaqj4Rhf7+FxiUhlKdZDQAUlZQgKld/l1c3iGGw7v4hfOV3grOp0MIGE19eA79WnjxPJKrKtG2C0a+tx99ev2FO1D3WNjNGgj+v/4Euean44oWFFOzSAithJdbe/xef+J+Tmf14x60b3pmwXOdZ9IYu18YBb0/8GP90G4NdN3bwBnw7FGbi8unvccxjBD4Z/a7BrTRJT09DUBB/PMEQrjUAQMI4ACquTNFIEPLy5cuIiYmpDUD27t0bc+bMQdeuXWFnZwcTE/3vh5OSkoKlS5dCKHx+Yr1q1SqYmSn+V1ZZyc6oqNscpz4WFuwLFunjENJYuZZwG0SlG9iPkCEIbN6RFYQEgD7Z8by1nx5lVvIGIYn2zIqhpdiKsDQFOjqa4/uhTpxtLWxMEVOoeADhWbP2uNmmF8YmBdeONS8vxOsRd7C/xzhVpkvUhWGw7RZ/M5rzHQfraFKN07nOQ7C9zxQsk+ok/7XfcTxs1QWXO8heRaPv1BDz1B2GwY93/8EXj09xNhVY2mLCy9/jsatumi81FhXmlnhj6gpEP2iFb3yPc7Z/5n8WHQvSMX/KZygzp1JdmjIoPRJ/e/2Grnn89ThLzSzx5ciF+KPv5Ebd9VrdvNv0Qu8F2/Cl30msenQSFhLu+dicqHuYmBCAL0cuwG4D6jqu+4Io+kEj/1oXL16s/f+ZM2fi6NGjmD17Nrp27YrWrVvDzc1Nof+0LT09HQsXLkR29vMlwm+99ZZSS7EB7rIZU1P57lpJ76dMTU1CjJFrKU8Q0vZ5ENKQz/31CV9zmn6Z/HUhL8Wrlm1FVCNgJJgR48caqzA1h1c75RpcNAZ/jWuKAxOaoZ0DN1N0TGvlL+p+6zedM7Y84IJGu8fQd578Xou8hzHJ7MzXKhMzfDx6sf63JzZCK0ctwtNm3FI3/1zZgnaFhlvAP6PEQM/ZGQY/39nPG4DMs7LDuFfXUgBSSxiBCb4bPh8LJ36MKhNuEszMWD/cOboKrYpVW1pJuCxEQmy4ewD3j3whMwB5u3VP9Fr4O7b3m2owATBDUmlmgTXD30DvBdvgLaO5j2NVGXbc3IX7Rz5Hryz9rq1L2DSSCRkfX/0mMDc3x1dffQWBAZ3UxcbG4p133qmtZQkAI0aMwIoVK5Q+pnTmp7zBROn9zM0VX1KnDiYCATyaKd91uH0Ta/TuLbu2XrfkcCSWq1YTsmtrF/TuLbsmZJenT1AlrlMT0tJC4YuN7u3d0bu37JqQHreLVa4J2aNze/SWUROyaWEFPHxVX2bVo2sX9JZRE7LYIQ8eYarXhOzVs4fMmpBBohR4pChXEzK7pBL55SK0KuGecNVdjt3KxRGlUK3wb1c3x3rft10jglDCqFYTsmtbV/TuLbsmpOeDcpVrQnbv1Ba9e8uuCelxpxgMA8TmlnIyNxRuTtOsPee9xaQVweOp6gHKXj26y6wJGW+aAY84JWpC1vkesDA1qfffu3thPDxyVK/TUu97Kj4U6VXs93ZhuRCZJQ2/B4akRXKC81fb9UUpT6dNedT3nd+9Qxv07i27JqTHDdU+FwDQ3aMDesuoCWmfWwaPR8rXhKzRs3tXdG3O38AjxyYHePSYd1tDLnUYgBinluhU8DyA0ic7HqNSQlTqIMv3b+LmYIXevXsjpbAcOMct5dGtrSuiS1SrCdnVvQl695Y9b8/QQFSZqFYTslt7N/Tu3RFBwhTAr0ClY9XHtqocv/rs44xvGjAT0c7qu+ndu3dv4Ah3GVkzWwtkl7I/z22drGEpo7hScaWotrMz5/g8IpAGj0TF6iEn5ZejQqRiLRkVVJpZYM7Uz/H4309ZZVacK0pw4vxGjHh9o1KlDDTN0coM3Tu0AYJCebfnVxngrQGGwWbvv/BxwHnOplwre7z0yg94ynNeQDTrYPcxiHdsgdPnNnCadvTLioPf4c8wa8bXeNJS9vkkkV+/zBjsv7IVPXKTeLeXmlniixfews4+k/Q2+OjRzBYJeeUqX5fqg0gXd4x5bT0Wht7CLz78jWuGpEfhyaFPsLX/DKwZ9rpeZwe7ubWSGU/Q1bWGokzUENsTMBoo2NirVy8IhUL07NkTx49zU8j1VUBAAJYuXYr8/OcXckOGDMGuXbtgba3chRwAhIWFYdasWbWPz507B0/PhuuoSD/v7Nmz6NpVOwWgAwMDIZFUf3GZmJigb9++WnldTRGJ2DWtevfurdTSeqJbJiuqa3h9+uQMfpXqajrulbW41bb6S/fPV3vh3cHydaEn1S6FZWLaPqnGRwyDvD/egFOdOoMRTdzQ7e2dvMfo2twOoZ8rlzGuDYb4PfD3oyS8c7zh+nK/eO/DZ/5nWWOLJnyEAz3GKvyaQ9o2wYMPZTfpaSxqvm+U8WHABfx2ew9r7FzHQZg18xuljyn5dZrMbckF5Wi77gZnvL7n6CN53+/K+vHOAU6GV7JdU3R9e4daL1okv07jff+If5mK765G4lfv6ps5K1/siO8ndJF5s/5EUBrmHPTnPb66DNp6B094mqxN6NIMV1VsGqiI2VEPcPLCT5zxPT3H4/3xy7Q2D0XI+nc2SAyDrbf3Ynkg98+TY2WPca+uQ3Bz2TfiieZ1zE/DxTNr0SU/lbOt0tQM/xv7Afb1HK+DmRkHc7EQ3/gex5d+JzjlOmrcceuGtyd+hDgnVy3PTjGSX6eh16/eCMlQ7QahvnEpK8LPd/7GotCbMvdJtG+G5WPew4WOg/RydcOWGd3x0UjuSjNDoo44kUbC97a21Xfr5a19qA8uXLiAhQsXsgKQo0aNwu7du1UKQAKAo6Mj63Hdbtv1kd7PyclJpXkQYiz4a0I+745toL2wdGpKtxYY2rYJe1AgQIDUkmzP/FQ4VPJn5IZnlSAkXTcNtBo1hsHMGF/WkEhgggsdlauntmx4OzVMqnH7u8dYFFqwa6ROi30MDxnLuojmeeSl4BP/c5zxFS++rZGsCXNT9sVPj5b2EAgEWDvRE3lrJyJv7UT8MNGz3tVCzjbcFQUveTRV+1z5XFk8RCuvU+O0xzBs6j+TM7742TW8FcINsBP1ETASbL+5mzcAmWXtiDGvracApB6IbdIKQ9/4BTfb9OJssxSLsPfaduy6/gcsRLrpem/IemXFw+/fFfjW9xhvALLMzAIfj34Xo+ds0PsApDHLtXHAOxM/wujX1iOiCf/qhbbF2Th3bj28Tq1G95xELc+QyEsjQci2bduCYRgkJ6uWTqotv//+O1asWIGqqudLZKZPn44dO3bAykr1E9NmzZqxlmTn5OTI9by6+wkEAri4uKg8F0KMgWtpHmcszZYa02jC45bc2k8DM6Jl7l9QQSe/6iRPOZNe2QnoKFU7zad1D+RZ85ddaEhPV+WeR54rsbDBvp4vscZMwOCzJ2fVcnyGYVB3IYsGFrUYF4bBb7f2cIrb32zTCyc8hmvkJaWz8d8Z3Kb2/63NTWFt3nB98BHtneFoxc7W/mBoO7XMrwbfd8wHQ3WzkuDLkQtwx60bZ3zHjZ0YmC5HyQ2iMAEjwY4bu7A06DJnW6ZNdQAypFk77U9MjXJ+mKDrKahNgZUdJs1eg70yMh7fC74Kn2Nfwr1Ie1nMhsxCJMTqB4fx+N9P0Sebv6bg/Vae6Pvmb9jWb7reLr/mY8ynBT6te6LPgm1YPewNVJjyl/8an/gUT//5CH/c2AmXMv1JkNC/3Ezd0MgnacyYMQCAzMxMPHmiet0mTREKhfj888+xfft21vj777+Pn3/+WW3L9CwsLODq+vyuSVISf40JaXWDuK1ateJ0yyaksWpVwg5ClplZoNDyeb00I/7d1To/ngL0gzJkXwwa80mPLshzssLbFbsTdcXWta39pkMkdcGyIOwWWvA01pJHZnElXj/kD5MVF2C68iLarb+Bo4HcZXmEa2aMLyYkBrLGhCamWD7mPY0t19o6ozt+mdoN8/q54a/XemP5CMUzySzNTHHxncEY3MYJ7ZpYY+3ELpgpo260MRCZmmHu1M+RYePEGrcSC3Hm3Aa48tSD1qXsEm69TkMiYCTYfX0H3g/24mzLsHHCmNfWI6xpG55nGo7FQ9rA2caCu9LDgIlMzfDeS//Dx6Pf5fzGAMDgjCgEHvwY06Sa1RG2ESmhCDz4EVY/PApzCbdfQ4WpOVa+sAij5vyo1prB2mLsSQFVZuZYO3Quei/YxpsdDACmjARLgq4get/7+Nj/HMzFuv87MaReKZqkkSDknDlzapcg//TTT6wMQ31RVVWFZcuW4dy550tzzMzMsG7dOnz66adqf4P06PG8q1NERIRczwkPD6/9f23VgiTEEEg34Ei3ddbLuh+Ghi9++IgnE3JQPRkpEopCqlW5sOFGZrOiuUHIs520u5TSGL01sDVnbEwn+ZfCJjs0wxHPF1hjlmJRdadsJSw4EoBjT583O0kuqMD8wwHILK40muC/dNMWdbAWVmKz91+c8W19pyHcRXMBFnNTE3z2YkccfKMfFg1qo/R55fD2zni4fCTivh6Hr8d5GP0FTIadM+ZO/ZwTXGlVmofT536EpUh/rilarLmm6ykozUQixp5r2/HuM+6fIc3WGaNf26DRz4csr/RSz1JXEwEwrF0TfDOu+hzm/ocj4LvciGodCwTY1m86xr62jhO0BwCXimKcO7cev936k5ZnS3GsKMGu63/gzrEvZXa+9mvpgX5vbsWmgbMgMWk4a10fTe7K39zP2EQ7u+GlV9ZiwaRPkGnjyLuPU2UpNnv/hWcHPsRrEXchkFHzk2iPRoKQjo6OWLNmDQAgNDQU7733HlJS9KcOkkgkwvLly+Ht7V07Zmtri927d+PVV1/VyGsOGjSo9v/9/Pxqi3nKIhaL4ef3/A7WkCF0QUlIDelMyLqdsQFamqhOafYuSLFjl4IYnB4lM+VRusM2Uc0n5/k7r9bomJ+GXlI1b3xdPZBmr3z5DuMOccjv7UGtWXX9Jnk2x1djO8PMRP6/oV8HzuKMLQm6AvvKMoXncz2KW8pFwgBnnqUrfCx9VC4UY9Wl8IZ3VNCqRyfRriiLNZZu2wQ/DJ2rluMvHdaO9fijkVQ7T1V3WvfAJ6Pf5YwPzojC7ut/UMq9ikwlYuz32oq3eWptpto5Y/Rr6xHp4q6DmQFH5/dH9vcTYKrA9ywf0S/TcG/ZCLR2el7Xf1AbxbIhQ1e+qND3vS7cde+B/m9uwQNX/oanHwZexIMjK9E5j7LmwTB4Oeo+wvb/D+8FX+XdpdLUDF+OWIARr29EhAv3RqQh+W1Gj4Z3MhYCAQ51Gw2Pt3dj48CXUWnKv5rVIz8NRy/9goCaTGEd/Jbo9zeK9ii93lh6CTOfTp06ITo6Gn5+fpgwYQI8PT3RtWtXODo6KtTsZdky9XbF++WXX3D79u3ax87Ozti7dy+6d++u1tepa9y4cdiwYQPEYjFycnJw/fp1TJggu0bJ1atXkZdXHWgxMzPD+PHU7YwQALCrKoO9sJw1RvUgNcvP1QPudbLtWpYVoHVxDpIdmnH2pUxI9aoU1X/DapZUQxoAOEtLsdViRHsXeC8ZhpPB6WjtZI3Fg9vA1tIMPkuHYfj2+3Id41mz9rjSrh8mJQTUjjlVlmLxs6vYPIAboFRGRrHsJaEfnQ1BhUiMz0Z1hEczO7W8niKuRmbhz4eJaGpngfWTPNHUVnbDwkP+6r9Z3aEgHSsfn+aMf/7CWyi2tOF5hmLcHa3ww8QuyCmtwqOkfAxp2wTfvcTNHjdUHV1sEJvLDZifeWsgUgrLsetBIkIzNdN99Y8+U9A7O4GTqbcg7DaeNW2HTTwBftIwc7EQ/17ahFeiH3C2Jds1xZjX1iG2SSsdzOw5F1sL/D2nDz45FwKhhMHaiZ746GyI3M9Xx42AnS/3RNcW9ji+oD9m79ff0mIAkG7ngtFz1uNXn7/xYeBFzvZ+WXEIPPgRvhq5AL/3nWpQdQ3VpUNBOrbc3otpcY9l7vPQtQveG78MoU11UxNX3azMTZGxejwWHAnEtajGUSO02NIGX76wEH/2moCf7/yNl3lWCgFA7+wEnDu3Ho9adsaGwa/iQsdBjfJzoUsqBSHlWRJSs49YLEZYWBjCwsIUfi11BiF9fHxw4MCB2seOjo74559/0LlzZ7W9Bp+WLVti7NixuHat+mRq/fr16NOnD1q0aMHZNz09HRs2bKh9PH78eN79CGmM+DpjZ9ix725THEw5sjJIH7f04PyQD8qI4g1C0t+9ds2M5gYhz9BSbLUZ2s4ZQ9s5c8YU8cvA2awgJAB87H8ev/edCqGMguqKkvWx+/1edaH9wwGpSPh6HFxstVdb+klyASbteb6iIzitCA+Xj5S5vybqW26+/RespGpA3XXrhn+7vqiW43svHQZnGwscfbO/Wo6nb1o5WHGCkAPcHTHjv7qU7w1pi96bfBCRVaL+FxcI8L+x78MzNxkj0tgZshvv7EesU0uc7Uw3XBRhKarCiQs/YWocN6iWaN8MY15bj3gn3dYcrbm0nN/fHfP7P8/G5AtCzujeAudCM1ljns3t8OUYxa7pZnW0wZlY9vv8hQ7Vqwlm9nCF1+LBmLhHv+srCk3N8dGY93C7dU/svfY7nCvYn0kbURW23t6LWdEP8c6E5Y2mw7ONsAJf+Z3AZ0/OwFIs4t2nyMIaX41YgF29Jxrs0mtZmttb4o/ZPdH5p1u6nopWxTu1xKvTv8So5GfYcnuvzKZDgzKicfbcBkQ0ccOvA2fhUNfRqDJTz3mZLEZeUUVuKoV8a7ozyvOfovtLd35UB7FYjPXr19ceVyAQYNOmTSoHIN9880106dKl9j9ZPvnkE1haVmcBZGZm4o033sCjR49Y+/j5+WHevHnIzq6+Y2FjY4NPP/1UpfkRYkxaUWdsreNrTjNYRl1IyoTUHteSXAxLZ9cYDnFpo3IBdWOvOadt3q174nGLTqwx95JcvB5xRy3Hl+cTV1olxpY7cWp5PXmtvMC+6eyXVIDIeoJVJmpe9jg57jGmx7HPscQCE3w45n21XAXEfjkWHVxsG95Rz83rx/2+qKl9amHGvUzo1ep5zS1zUxMMbae5hh9CU3O8Mn0VkuzZtVhNwODfy5swJE2+GuukOhhz4cxa3gBknGMLjJ6j+wCkot4d3Jb1UR7ergnCPh+N5vayM67/eb0v63Ebe1O828Me7o5WtWOTPZvDs/nzzPFxnbk3XPXV2c5D0ffN33CvFX8vgVEpoQg6sBwfBlyAKU8zFmMhYCSYG+6DiH1L8JXfCZkByHMdB6H7W39gR98pRheArNGYz8t9WvfEgPmb8c74D5FoL/tz7Jmfir3XtiN+77tY/eCwRrvLpxZWaOzYhkTpTMiBAweqcx5a4eXlhcTE57WzrK2tsX//fuzfv1/uYzRt2hQbN25U6vU7dOiAdevW4YsvvoBEIkFKSgrefPNNtGnTBi1btkR6ejqrI7aJiQnWr1+P1q0NuyYFIeokXQ8SANLtKAipSf4tOkICAUzqhDsGyuiQTTUhtWcGT+fLM5QZpH8EAvwycDaOX/yZNbzy8Wkc7DZaLUuA5LnGOPMsHesm8dcN0wSfOG4n44T8MnRpzr8sXJ0hSEtRFbbe3sMZ39l7EoKbq75Uc0rX5mjvovpybn3wci9X/HA9Cnll1RmjbZysMdGzuqHB+0Pa4mY0uxbp3D7spboCDVe4yrJtgpkzvsa9o1/Apk5TGmtRFc6fWYthb/yCGB0vH9Z39pVluHjmB4xM5a5Gi2zihnGvrkWqvfxNtzRJkZtgU7q1gNfiITgbkoFOTW2wZGi7Bp/zci9X+MTl4u9HSWhqZYKvBjmhuY0pHi4bhqvRuXCxscBEz2aseci6QeLmaAUnK3OUCcWIz1O8zq+mJDs0w+g5G7DmwRGsenQSplJNOGxFlfjt9h4sCrmBZWPfxwO3bjqaqWaMSQzCT3cPYEBmjMx90mydsXzMezjdeajRp6apelre0t4SW2f0wNxD/mqZj7ZJTEzxd8+X8G/XF7H42VV85XeC0+C0hmtpPlY/PIpvfI/jSvt+2NNzAq607w+RjBqTyjgZnI4Nk6nhsNJ/owcPHlTnPLTCy8uL9bisrAz37t1T6BhubqplmEyfPh0WFhZYvXo1CgoKAABJSUlISkpi7efo6Ii1a9fWWzeSkMbIVY5MSIqDqVeJhQ1Cm7ZBzzoNUAZkxMBUIoZY6s6xqsXkifz4umLTUmz9dLrzUMQ6tkTHwozase65yZgR49eolpQeDkjFPr8keDS3wxejOyGzuBIt7C1hZ2mm1uvALx6dQqeCDNZYlrUjvh0+T30vYiTcHK1x93/Dse9RMizNTLB4cBvYWVZfHkzo0hw9Xe3xLL267uOQtk0wsoP2b/o9bdER8yd/hpPnf2LdDGtaUYzLp9dg+Os/I5unQzABmpQX48rpNRiUEc3Z9qxpW7z0yg/IstVcNqumveTRDC95yJ+paG1uij2v9sbOWd0RFBRUO97C3hJvD5LdDbyvmwMCU4tYY7N6umLbzOrmHyYrLig4c80Sm5ji2xHzcaHjQPzt9RtvF+g+2fG4d3QV/uk2GqtGLkSGgd/Q75sZix/vHsD4xKcy9xELTLCz9yR8O3weCq20XydZF1TNhNwyozte69PKYIOQNarMzPFH36nY1+MlLH16GZ89OYOWZQW8+5oyEkyNe4KpcU+Qa2WPc50G46THcNxs00vlMjoxOaUqPd9YqC+sawDi4rS7FEmWiRMnYsiQIThx4gRu3bqFxMREFBYWwsbGBh07dsSoUaMwZ84cODsb9o8BIZrAlwkp3R2bKKe+85THLTuzgpC2okp0z0niZBU102LNucasSXkxXkxh18iKd2iOp807qHxsCiOrn8TEFJsGzMSOm7tY498+PIqznYaonInByHHrJTyrBBfDMjG1m+5qTB+s03xm/Y3qoIi5qQA7X+4FEzVFITvnpeLLRyc441+OXKC2i05NZ/9pW9cW9vhlGjcbyt7KDHf/NxyXw7NgbirAxC7NYWnGvvGkrSSis52H4qMxi/H7rT9Z450KMnD+zDqMe3UtSi3kb3rZGLgV5+Dy6e9Zv901/Jt3xIRXvkeetYMOZka05ZFrF/SfvwXfPziMz56cZQXxaywIu41Z0b74rf80bOo/0+CCc4PTIvCl30lO+Q1pt1v3xEejFyOkWTvtTExHpnRtznosqb+/YYNcbIzrvL7c3BKbBs7C9r5TMD/MGyuenEGXfNk1qV0qivF2yA28HXIDBZa2uNq2L3xa98Dt1r0Q6eym8I8g5WpUa1RByEuXLmnkuMpkhTo5OWHx4sVYvHixBmZEiPFy5VuOLXUXv3crOqlWNz9XD7wdcoM1NigjihOEbMy1Z7RpatxjmEvVczrTCJYVGbK/e4zDN77HWXVt+2bHY3qsH85rKYP1tX+e4Pzbg7DZJxZmJiZYP9kTPV11+30pFDN493hQwzvKg2Gw4+ZOTv0vX1cP7O8xVj2vAWBq98bTLNDByhxz+6q2Ckhd/ug7FW2LsrHiyRnW+OCMKJw7uw5TZ32HCnPZ9QAbE8/cZHidWo02xTmcbQ9cPTFl9ncGF2zSZwPcHfEkpVDX0+BVYW6JL0YtwpnOQ7Hn2u/onpvM2cdeWI5vfI9jWeAlbBowE7/1m4YSCz0uOcEwGJsUhC/9TmBM8rN6d020b4aVoxbhpMfwRnGOtPPlXqzHdFbOr9LMAn/1Go99PcdheswjfBxwDqNSQut9jlNlKeZE3cOcqOqVtBk2TnjYyhNhLm0Q0rQNQl3aILpJK1SayQ7cquuGq6HT+yBkVVUVLCyMKwJPCFGedB2PMjMLFFo+bw7Qo6U9Brcx3KVF+upRS/7mNHt7sUtGUE1IxUkkDH64HoVzoRnwaGqLzTO6w83Rut7mbDNj+LpiN55lvYao0swCPw+aja2397LGv3t4FOc7Dlb64qi6kZ98+1aIJBj/5/P3zp34XGSsHg8rc9UL8jMMg71+SbgamYUeLXUT2JwX7o2xScGsMZHABB+M+59aam8CQFNbC8zsblgNPDSJ713b1NYCOaVVPFtU98ULC+FenIO5kXdZ42OSn+HU+R8xa8bXGu9uqu+Gpobjwtm1nA7JQHU22PSZ31DWqJr9NrMHhm+/r+tp1Mu3lSf6vvkblj29hDUPDsOhqpyzj1NlKdbe/xcf+5/Hnl7jsbP3ZCQ76E9jHofKUiwIvY33g6/wBlPryrWyx4+DX8EffabUGxTSZwv6u6N/aycs6O+Oq5HZDS6J/mVqN7g7sT/bqiYHqBoza25ngawSzfweqAMjMMG5zkNwrvMQdMlNwbvPrmFh6E00rShu8LktywowK8YXs6TOyQstbJBl44gsG0dEOrvjjz5TENiiIwAKQtbQShCSYRjk5+ejoqICYjF/Jy6JRAKRSAShUIiysjJkZ2fjyZMnuHz5Mu7f1+8vdUKI9kh3x06zc679hRzR3hknFwyguoQaENK0LcrMLFiNAfia06y+GolL7w7W5tQM3vb78fjhevXfZVBaEWJzy/Bw+QjM+zeAd38bYQUmJrC3Vd+N7aKW+dD5keb82XMCvnh0inUzpV9WHKbFPsKFTtr/3BT9n737jm+y3v4A/nmSdO+996AtLWWWMsreGwQUFEEFRUXFjQP1uvXnHgiCyr2gooiAIoIKgrL33rN00LK6S0eS3x+laTPaJm2ejObzfr183eb7PHlybmnT5OR8z7lZjUU7MzGrZ8uHtXyx7SJmraypSPn58OUmzjY+r/JivL/pa631jzqNbvEwmj4xPmgf4gGlUon70yManb5LaPQDlBZfW5DgniGPIaj0ulbVytAL+/DDmncwYeQcow4SsCYjzu7CsjXvqv2trvVbVGdMHPksylktarCmfqTTI7zw+bgUfPTPOZy24J5v1VIZPuo0GsvaZODtf/+Lu4/9rfM8n5vFmLNrBZ7evRKrY9LweYfh2BSWYrQPcwwhUcjRPecEph7diDtO/AOX6opGzy+T2eOjTqPxf53HWn2175vDEhF8a3L7xPbB+O+eS/j9RH6D5+t6/ebvat7f9z2ze+Gdv89AqQTmbbtg1liactInFE/3uRcv9JyC0Wd3YvypLRh2bm+TP3OaPCrL4FFZhriCXPTIOYGJJ7cgadrnyHL342vsW0T9C33o0CHMmzcP27dvR2Wl5WbAiciyKZVKrDiUC0C7J2RuvaE0cwfG881hCzT2GlsukWJvQKzadM221y7BpbJcraKisRdHpO5qaQV2XizA7NXqb6T3ZRfi12N5+OnWz7ymIef3wUnjDeYvsV2hkBhezdYnxgebztZNMXZ1kCLW16WRe1BL3LRzwP91GYcPNn2ltv7S9mX4NSat2RngllQ67Ku3hfDo5WJ8szsTznZS3J8eoVVR0Zi56040OwZjeOff/8K/XH075EU3P7zSfVKLrx3v54oPRrVt8XVaI10/smIXxFfI7DF6zIv4c/lcdNGYgDv67C4sXfs+7hz+lNbgtFZNqcTje1fj/zZ/o7Pv3zdt++OBgQ/bbHJWbIIg4MHukXiweyQAyxtUo+myqzemDX0cX6QOxWtbv8WATN0tMaRKBcad2YFxZ3Yg29UbP8d1x/L4HtgWnNCs1xz6kirk6Jl9DBNObsXYM9sbnGZcX4mdI+anDsUHnUZb3JAdH2c7XCuravF1BsT7Gvw6O8DNAUkBrjiWp10ZbYiRSQH49ViewfcL9XTCp2NTAADLDmTjuhG+D2KrlNlheZueWN6mJ5yqKjDkwl7cdmobBl3Yr1eFpCbXW8UDi9oNbmUdpZtPtL9Ef/75J2bPng2FQtGiT0QFpouJbN4TvxzFx/+eh2tlGVyrbqodqz8ZO53bsFvEx7nxLWy7AuPVkpBSpQKd8s7in7BksUNrdbZfuI7BC3egpEL37oDx/93T4H3Hnd6mtdbcqdgzu0XielkVDuUWQSIAH4xqCzup6SsdbMmCdkPwzK4ValMZO+WfxfBze/BbTJdmXVMzkW2I6ltd6zNvlCHj860oKK95g/Dd/mwcfqoPnPTYqj1v6wXcKDffG4seWccw/fAfWuuP9H8AZXaOZojItpmiNXCRgwuG3PYfbFj+ItpfOa92bOKprZAp5Lhz+FNWuw3TEHbyKny+YYHO3wEAeCttPF7oOYVl7mZ29rn+iHlrg7nDULMzOAGDJryGXpeO4NWtS9Gr3ms8TSEl1/HI/jV4ZP8a5Lp4YWNYO2wLScTW4EQc8Q1vUVLSTl6Fjnln0TvrKHplHUHP7GM6t4vrct3RFZ90GInPOgy32EFLT/aJwfNrDf+gTvNXdmJqMF5ef7LB144N+XFKZyS/t0lrvXukF7ZdaDzBWzuI7b6u4c1KQlq7cjsHrIzrjpVx3SEoFWh7NRN9Lh1B76zD6J5zQq8EOQCc8A4FwO3YtURJQpaUlODFF1+EXC7XmUSsXdNMTtY/18HBAfHx8ejbt68YIRKRldh6/jo+/rfmDYauydi59T7tdHPkJ/wtMbN7JNadvNLg8Z1BuvpCnmQSshne+fuMwS8iAcChuhIjzu1WWytwcMHG8HYN3KNxyYFu2Pd4LxzPL0GIhyM8nWy7l5oplNs54L0uY/He5m/U1l/a/j1+i+5scKKgvErRogrkqluNXJcfzFUlIAHg3LUybDh9tclp2pXVCrxoxipIO3kVvvhrntb6z7HpWBOTZpTH4HuGhumaFG6q1sA3nNwwaPyr+PvH57X6w407swO//fwfjB39AoodLHjARgt5lxdh+a/voK+O4RwKCJjddwY+6zjC5HH1j/OFk0yKNcf1T1rckxYmYkTmF+VjuT+H/4Qlo8/tb2HAxQN4Yu8qDLmwv9Hzg0pv4M4Tm3Hnic0AanrgHfcJxTmPQJz3CMQ5jwBcc3LDTZk9ymX2KJc5wKG6Ch6VpfCsKIXnzVJEFOWjzfVsJNzIQnTBZciUho1xPuwbgQXthuB/bfta9hAdAI9lRGNfVmGDO1z0FeLhhL8e6IZPt5zHt/u0Jzo39LfKvYH3R8vv7oyQV//U67FHtQ3Et3d2xLL92QjzdLL4rdViUAoSHPGLxBG/SNXzqnd5Edpey0Tbq5lIunYJQaXX4V9WeOu/AuQ5e+KL9sOwJbRmN4WEn/MDECkJuWrVKhQWFkIQBCiVSgwcOBCDBw+Gr68vVq9ejZUrV0Imk2H+/PmQSqUoKCjAiRMnsHLlSuTn17yQdnV1xWeffQZ/f/8mHo2IWqtquQIZn9f1hNWZhHRh9aOxDIr3w4A4X/x1WnuaJgDs0pGE7HL5tNhhtUq/HG3ep8kDLx7Qqg5YHZOGKqnhycO2AW5IDHCFIAhoG+jWrHioeeanDsUzu35W2z7cJe8MRpzbbXDi7P3NZ1sUS0V1zRu/r3Zlah3799y1JpOQ2y9eV0temtoTe1Yj+Zp67MV2Tnis3/1GewzmIA3T0A6oM8/1Q6CbAyqqFdiXXYiBC7QHbBnqqrMHBo5/DZt/eA5xBepv8PtdOowNy1/EsHEv46qzR4sfy9K0zzuL5b++g5hC7R6sZTJ7TB36OFbE9zBDZMBLA+Nx5mppo0nIp/vEIM7PBX+evILUEA882TvahBGKKznQDUcu123bdHWwgtYAgoC/Ijvgr8gOiLuejYcOrsW0IxvgUVnW5F09KsuQnnsK6bnavcKNqUIqw4/xPbEgdQi2BSdaxSdEo9oGwMlOih/v7oybVXJM/X4/lt9KRnYM8cC+bN1T1V0dpPB10a7kTgv3wpLJXjhyuRgHc4rUjtk3sJPFWB8MTeoQgkkdQgAA3+7LQuHNaiNd2Xpdd3LHv6HJ+DdUv4IMXR/c2SJRcrHbttVtFZs0aRI+/fRTjBgxAunp6Rg9ejQAQC6XQ6lUolu3bhg6dCgef/xx/Pbbb+jXrx8A4Nq1a3jppZfECI+IrMTOzAK127pK3nMsrO+LNXO0k2LdjIa39Wa6+eGys6faWlcdLzjTP/4Xn245r3ojuvrIZfSZtxWjvtqF01da1pPG1unaiv1zXHeDr/Ng90isu78rW56YSZmdI97rMlZr/c1//weJwvAK2ZZYdeQynl1zDCfy9fvdPJFfjNmrj+CldSdQfLPaJFtvGxJZeBlzdyzTWp/b805ku/maISLbY0hPyGgfFzjby+DlbI/+cX5I8DfO0IjLrt7oP+F1nPAK0TrWOe8M/l02BxGFrWgboVKJGYfWYdv3z+hMQGa7eqP37W+ZLQE5LiUQGdE+jZ4T4eWEB7pFYHrXCPxwd2c83z8ODjIrSNTV09hfz7eHJ8JOWnOGIACfjEkxTVBGcto7BI/3nYHQB77BvYMfxW9RnVEpMc9uowqpDL9Ep2HqkNkInPk/TB32BLaFJFlFAhIAXuhf9wG+o50U393VCdsf6Yk/H0jHllkN/47OHRDfaHucx3tpJ+1HJDb+oaEmff5+W8m32Wrw+1lDlGeTkydPAgAkEgkeeughtWMpKSmQSCRQKpXYtWsXMjIyVMfc3Nzw0UcfYfz48Th16hQ2b96MgwcPIjU1VYwwicjCXStTH76hqxKSSUjjkkgEONlJUF6lY1uMIGBXYDxGndulWgoruYrg4mvIcat7w7HrUgF2XSpA0c0qjGobiLGL67YPH75chHPP92fyqxns5FUYfWan2lqxnRP+iOxg0HWe6hODd0ckGTM0m/NIzyh8uuV80yc2Yl77YXhyz0oElNVVQSRfy8TUoxvxTcrAloZokP/bpLuaUvP3NPNGGTp/+C/KqmoSpX+dvoo3hyaIHp9OSiW++PMLrSnAe/1j8Fn74UZ9KD5fGUbf79adHUMwd91Jozxmlrsfet3xNtb+/B901hhW0+ZGNnZ9+yRuH/EMNjWzdYWlcK66iXl/fdHgVOO9/jEYPeZFtb/JphbpXbM1tqHfm3UzuiIt3Mvq2380lr8ZlhiAnY9mYPvFG2gX5I4eUdb5WrXU3gmLkwdgcfIAeNwswchzuzHu1Db0zjoCrwrxpoCfd/fH5rBk/BXRHmuiu6DIwXoH5rk5qifXpRIBXSMa38W19/Fe6BDSePX2bSlB+HpXJv45V/PeaHavaER4696W3pL5HGRc7AlZQ5QkZFFREQRBQEREBPz8/NSOubi4IDQ0FJcuXcLhw9r9S+zt7fHoo49i1qxZAIC1a9cyCUlkozT/ZgaX6tqObZ0v7KzVzmD1JCQA9Mg5juVtemqdO3fdSWw5r/5vdvFGObp+/C9eHtQGw5vY5knq+l46rPWi/7fozgYNXhAE4Akdn56TYd4bmQQ/V3scu1yMCG9nvLPxTNN30lBm54hXu03C5xvmq63/Z9t3WJbQC+V2DsYK12je3nhGlYAEgB0Xb6Df/O1mieWeI39h8EX1vmVyQYKZAx8y+tRWvmVomK7vTayvCy4XVyC7sG6Q3CdjtLeqGTu5e9XZA/0mvo6Vq99E/8xDasf8yovwx08v4ene9+DjjqOsshylQ95Z/O/3D7T6X9b6Ka47pg593CKfO+ob1MbwVltTO4fiv3uyVLe/mmj57w3bh3igfROJJGtS6OiKpUl9sTSpLwSlAonXstAz+xi65xxH+/xziCrMh1uVfsNk6sty9cEJ71Cc8grBjuA22ByajEvufk3fsRVL1KNK3MVBho0zu+PI5WJ4OMoaTEC2lPU9U1o2fj9riJKELC+veQJqqJ9jdHQ0MjMzceqU7r4Rffr0gaurK0pLS3H0aPMnPhJR6xLISkiz2xqsXUHXI1t3EhIA1usYdLMnqxAjv96Fz8am4KEekcYOsdW67ZT2VuwV8fpvxZYIwGtDEhDozmnBLWUnleDFATVbrE5fKWlWEhIAFqYMwmP7fkH8jRzVWmjJNTyyfw3eTbvNKLEa08Kd2n0jzSGk+Co+2PSV1vq89sOwNzDODBHZrgA37YRXGz9XPN4rGjOWH0R5lQI9Ir1UfcTqE+PNWIm9M0aMfQlL176P206rJ8hlSgU+3PQVOuWdwQMDZ1l8sq6WnbwKL+xYjud3/qhzeEe1IMFzGVPxfucxJkuurp3eFaeulGD26obfpxkzks/HpcDHxR6n8ksxNNEf07q07iE2lk4pSHDMNxzHfMPxZeqQW4tK+JYXIbrwMiKKrsC1shxO1ZW3/qtAlUSGG46uKHBwQYGjC646ueO0Z3CrHhwlNolEQLvgpieCN9wrkhWSpiZhFhKASElINzc3FBQUNFj6Gx4eDgC4ceMGCgsL4eGh/imRTCZDWFgYjh8/jgsXLogRIhFZAc0/jpqVkKUyBxRZ+EQ8a/TyoDaY89txncd2B8ahSiKFXb2+dd1zdJ/blC+2XWASUk8ShVxrK3aZzB6/R3XS6/55rwyCRBDgo6PJObVMS6q5qqUyvNBzCpb/+o7a+pxdP2FRykBcd2r6zYUpWcRrZ6US8/+cpzUs4by7P57vOUWUh7TCojmTmdQhBP/5Q72oYHrXcPSJ9UX/OD8UlFchxscZMh1vgsX6vlbI7HH7iGfwwaav8ej+X7WO33V8M9rnn8ddw57EIf8ocYIwknb557F43Udof0V3+4csVx/cMeLpmh55JjQgzhfdIrwaTUKGeGh/4KUrGa0PZ3sZ3hvZtln3JRMRBFx19sBVZw/sCmpj7mionkB3R6QGu6sNsvn69vZ63bexvpRkOLZ3qSHKT5WXlxeUSqVq0rWmsLC6T6/OnNFdPeDqWlOGXFxcrPM4EdkezZ6Qua5efHcogvvSwhs8Vm7ngH3+MWpr7fPPwaXS8C04R/P4/K6vjOxjapOUAWBdZEeU2elX1ejn6sAEpEha+gy0Iq47dmhMnvesKMXzO5e38Mot9+7fZ7C23nRbS3i6nXLsbww/v0drffrgR1Bq72SGiGxbvJ8r3h6eCBd7KRxkEjzROxq9Y2r6EQa4OaCNv6vOBCQg7pRQhUSK2f1mYNqQx3BTqt17MPlaJnZ+9yTm7FwOmdzyJrx63CzBe5u+wu5vn2gwAflHRHt0nPKRyROQACCTSuDRQE/H2hqUXtE+8NP4u9PY6wtrYwFPh0R6WzQxFYn+rnB1kGJGejhubx/c5GCaADcHpDfQv1LXhwxN4e8MKyFriZKEbNu25pOqixcvIi9PexpdbSUkAJ19IQHg8uWaaW9spEpku9R+/ZVKrenYOewHKQofF3vclhLU4PFtIYlqt2VKBdIu626vQcYx/tRWrbWfDdiKTeKpnYDabIKAZ3tN01p++MBvFjHRd+zi3bh4vabqUMykkT6CSq7ho78Xaq0vaDcEf4eL1yOOlQuNe6ZvLK69OgTXXxuC90a21fv7ZYpv6//a9kfPSe8gU8e0dAd5Nd7csgS7v30CabnGGZDTUlKFHA8c/B2nvp6JJ/auVtt1UOum1A7P9JqGYeNexlVn8/YcbBvg1uAxe5kEfz7QDaPbBqB7pBe+ub09+sVZ59T6O3RUcPaI5GtQarl7NRLz4Z5OcJAZP0XTKdQTR5/pi6I3hmHB+FQ42TXeO9nVQYqPRydD2kDW7Kk+sQbHwKwOX0/UEiUJmZ6eDqAmgfj2229rHU9IqJukuH79eq3jJ0+eRFZWFgRB0NqqTUS2ya2yHK5VN9XWclzNN/2xtfN0bnhq5dbgRK21HtnN25Jtiy4VGFY1KigVGHt6h9pahVSGNdFdjBkWNVOYp1OzKgLq+zc0Gb9q/Hs6yKvx7j/ftOi6xlAlV2LZgZqelWZ97XxrGrbmcKaLbn54RkcS15j4lqFp9jJJk29qNZnq+7ovIBZd7voAf4el6DyeeuUCdnz3NP639n2EFmn3MTYFiUKOsae3Ye+S2fjiry/gV16k87xdgXHoOOUjvNdlnNEHMOlrgAGJxHbB7lh5Txq2zOqJqVbcx/H21GC4OdR1MQt0c8DQBMMH7OgjLcxTlOuSeTT14d3TfWIQ5F7Tn1YqEfDuiCSzJ6ryXhmEnJcGYWL74AbPuS0lqMEqyYb4OHNHDisha4iShBw6dKgqebhu3TpMnjwZmzdvRnV1zXaHgIAAxMXFQalU4sCBA1iwYIHqvvn5+Xj++edVFZBJSabfYkBElkdzKzYAXHYx7I8f6a+xv5HbghO01prbF9IWnb1a2vRJ9aTnnNTqh/pnRHsUObgYMyxqJkEQsPzuzkgKcIWzgUmY+p7LmAq5oP6ybMKpbRh4YX8D9zCdfVkFAMybjJtxeD1GndultX7/oFkcbGClTPlG+4qzJwaOfxXP9bwblRLdLfHvOr4Zp79+AJ/9Nd9kyUiH6kpMP7QeRxfPwopf3ka7qxd1nlchleG5nnejx6R3ccLHvMm8+7rWVW7ZSlFPhLcz/n6wG+5Pj8CjGVHY/FB3uDkad7SCm4MM7wxPRNughqtLqfVp4++Ks8/1x7ZHeiLvlcYTf8bWUGWin6sDXB0a//l2c5Th34d7YMejPXHi2b4YFN/0RPPURoboxPnaxmtaia08aTZBlCSks7MzHnzwQVUicd++fZg5cyYOHDigOmfixImqrz/66CP06dMH48aNw4ABA3Ds2DHVscGDB4sRIhFZgfp/HINKORnbUlx29cY5jwC1tW45JyHRsW2MtDW0taUht53Wnor9cxy3YluS9AgvHHm6L4reGNrsN+XHfMPxdfIArfVPNy6AfXVVCyNsmeWHclFYXmW2hEPc9Wx88Lf2NOyvkgfiz8gOBl3LUSbBmBjDkpZ8zyCO2uofU1FIpHin63ikT/4/7POP1nmOg7waDx1ci3OLZmDZr++g96XDEHRMpG6pmBs5eHXrUpxbNANf/vk52tzIbvDc36I6o/2UT/BO1/GQm6H6cXTbADyWEYVRbQPw30ntcXv7xofLtNYtlx1DPTF/fDt8NDoZcX6uRr32s/1iUfjGUDzdN7bJPn1kWZZONuxvkC6OdlKkR3jB28oqBaUSAWnhXoj3c8Vv07tqHb9dI6H6xlDtIoZapv57YC4Brrbx/7MpokzHBoBp06YhKysLS5cuVa3V7wV5xx134Oeff8bx48chCAIuX76MvLw8KJVK1Sejbdq0wahRo8QKkYisiGYlGMAkpDltDU5EdL1+dR6VZUi+mmnxk0YtgUFJSKUS405vV1uqkkixOkb7xR6Zn0QitOgN5PM978a409vhc7NuaFP8jRw8uXcl3uo6sZF7iu/1v06bpSeknbwK3659Hy7VFWrrF9z98WSfew2+XtHrg3Hw4EF4OUjwzbES1XqIhyNyim7q/PdjDlIcwxMDYCcVUCU3bdblQEAMut75Pmbv/QUvb/9eq9ULUNPreOKprZh4aisuuvlheZue+C26M7YGJ6JaavjbJ4lCjtQrFzDkwl6MOb0DXfJ0D+as75h3GJ7scy/WR3Uy+PGMycvZHh+OTjZrDK0dE4/Wy8W+8eeDMM+WtWuxFlKJgLXTu2Lc4t24Wa2An4s9Xugfp3ZOnJ8rhrTxw7qT2pXmzfkdGN8uCD2ivBHr44KRX2vvlLBEAW5MQgIiJiEB4MUXX0Tv3r3x5Zdf4ujRo/D3r+udYWdnhy+//BKzZs3CwYMHAdQNoVEqlYiLi8P8+fMhk4kaIhFZsPqDqXRtx86ttx37P4PbmCQmW9FU5c/WkCRMOb5JbS0j+yiTkHqQGZCE7JR3BpFF+Wprf4el4IYTt2u1Rtec3fFcxt348s/P1dZf2PEjvkvojYsaFcim9P7ms3CxN30V1ivbvkdnjYSNXJDg7qGPt6glwZREVxy+Wok9+ZXwc7HH4jvaY/3JK3hv09mWhkx68nSyw4qpXTDKDG8e5RIp3u8yFt8l9sLrW5Zi6tGNkDRQwxdRfAVP7VmJp/asRKnMAXsCY7E3IBYnvUNw3j0AV5w9UOjgDLkghVQph3tFOfzKCxFZmI/4G9lIvXIeXS6f1upn2pAcF2+8nTYe81OHNCvhSdan/uvdWT0isXj3JTNGQ4Zo6iWdcxNJSnMy9gDgIQn+yHtlME7kl6BdsBscZNqvGaZ1CdedhNTj+q4OUpRU1Oy6cneU4Zvb28PFQYbCcvPuFjEEP9SsIfpvRUZGBjIyMlBSUqJ1zM/PD9999x3+/PNPbN68Gfn5+fD09ERGRgZGjBjBBCQRqWhOxgaAHJe6wTRP9YkxZTg275/QtlprvbKO4PMOI8wQjXUxpBKSW7Ftz1cpA3Hf4T/Rtd7EeefqSnz49yKMG/OCGSMz/bbkjKwjeHbXCq31t9PGY4uO5yBDuNlL8EV/X4THJcHH1RESiYAuYZ46k5DmHhLQmo1ICsCe2Rno/NG/Znn8XFcf3DfkMXzQeQxe3P4DJpza2mAyEgBcqivQO+soemcdNXosJ7xC8H9dxuHbxD6olDU8HM7UGvvxT4/wwpHLxWprkV5OIkfU+tT/iesQ4gF3RxmKblabLR7Sn4ej5fyuWgI3Rxm6hHs2eFzZwPOrQo+E6J7ZvfD6nzWvjV4cGA+XW30r+Sfa+pgsy+fqqrt3hlQqxZAhQzBkyBBThUJEVqL+36MgHZWQtdux3RxkBk/lpJY54R2KfCcP+JcXqtZ6ZR2t+Ufjq4FGSfX9/iiVuO2UehJSAQGrYrkVuzVTChI8PGAmdi19Ui0ZMubsTgw7txtrzTgV3ZTbsb3Ki/G/tR9qJYR2BcbhP93uMN7jONtBcuuDAXdHOyQHumklVaj1O+obgUkjn8Er17Iw68AaTD26Uec2bTH8HZaCjzuOxK8xaVAKorTrF819aeFYtDNTdVsqETC+nekGa7QW9V/vCoKAldO6oP/87Q3fgSyGvUyCFwbE4Y2/Tps7FINZUhuApmJJ8HdFvJ8r/je5o2kCEgnfItWwrr90RGSzgkuuqd0ulTmg2J6ftoulyWSDIGhVQwaUFSK+keb6VEPf7dgpVy8griBXbe2f0LbI51T4Vm9fQCzmpw7VWv/8r/lwqygzQ0Q1GqpgMDZBqcCS3z9ARLH6lq1SmQPuGvakqFtU2RPS9CzofTBO+oTikf4zEfLAYtw7+FFsDEvRmlpvDPv9ovBS98mInv4l+k98A7/EpltsAjLIreGedl0jvPDZ2BRE+zijbYAbfpjSCcEettEDz5g0n1sNnF9HJjB/fDud6wKA14Yk4Jvb25s0HmvVULKxqb8DK6eZ7wNYYzJHb21LZPL9znl5ecjLy0NhYSHc3d2RmpoKACgvL4e9vT2kUlYzEVEN9enY6tuxc1y9+XGSiPTZMvxvaFuM19gu3CvrKE55h4oVVqug7xvu205pV0FwK7bteLHnXRh/aqtatXFE8RW8+89iPDjwIbPEVNuLSWwv7vgRw87v1Vqf3XcGzng1v8qqb4xP0yfpwD81tqfYwRmLkwdgcfIAeJUXY9DF/Rh48QDSck8h6dqlRrds63LaMwg7g+KxKSwFG8JTzdrf1VCTOzQ+DfuhHpF4qEekaYJppSypIo10m9Q+BDN/OqS1Lrn1B2JEkvX8TluiaG9n7Lio3XoLAP59uAfa+Dc8kZ6JPetjkiRkZmYmFi9ejE2bNiE3t66qo2fPnli4cCEAYMOGDXj99dcxceJEzJgxA25ubLpPRLcolVqDaepPxjZVdY4tuT01GF9su9DoOQ31hVzUbrBIUbUO+SUVTZ+kVGLCqS1ayz/HdWvwLoLANzKtSYGjK57qcy/+9/uHausPHFqHn+K7Y0NEe/MEJrLB5/fi5W3fa63/GN8DX6UMbNG1p6WFNXnO9PRwPL5avd/fsAS+uRSTpT9v3XByww8JvfBDQi8AgEtlOeJu5CD+Rg4Cy27Ar6wIrlXlkCoUUAgSFDk4odDeBZnufrjo7odjPmEosXc28/+LxkklAuQK9X8IR5kELw6MR1Ig35MZi4u9FKWV2h/mJAXo9z2O8nbG+evmq4a3VY9mRMHNUXfapPZDKm9nO4R4OCK7sK6NwzN9Y00RXrOZ46k3XEfP2N7RPvjP4Db4br/2bqrjz/RtNAHZXM/0jcXCHRdxw8RDbUJtZFp6U0RNQiqVSnzyySf48ssvoVAoGp3AlJOTg4KCAixcuBC//vorPvnkE6SkpIgZHhFZuNqnDPfKMrhUqyducl28ddyDjKVbpBd6R/tg87lrDZ5z2DcCNxxc1CZ+9r7EvpBNsZc2veWu3ZULSLyepba2LSgBOW66K7nuT4/AnH6xiH5zg1FiJMuwNLEPJp78FyPO7VFb/3rdJ0id+gkKHI3/wtycwovysXTtB1pVZse9QzF98CMmeV65Ly0c7/59BrlFNX9zOoZ4oG9s8yooqXUqtXfCgYAYHAhoPQPxZmdEY/elG/jn3HU42Unw6dgU3NkxROd0W2q+/03qgNv+q/587mwnxZjkQL3uf/LZvjiaV4wOH/wjRnik4fNxKQh2d8Sotg1/EFW7cUgQBCyamIpJS/ehoLwK6RFeeJpDM7V0i/BCnK8LTl+te+/w/qgkxPi64LOxKZi18rDauj4JyOa8NAjxcETeywOQ8s5fOHnDdInIFwfEm+yxLJmoScjZs2fjjz/+0Jl81Jw0mJVV92YrNzcX9913H77//nvExPCXl8jWBZVol+fn1q+EtPAqCmtkJ5Xg9xldMW7xbqw7eUXnOQqJFFtCkjDy3G7VWljJVUQW5eGCh34vqG2RPj+vd5zUfoPxQ0JGo/eJ9HZGuyB3HMotam5oZASD4v3wxyndvzMGEwTMHPAwjvx3FjzrJfvDSq5i/p+f444Rz7SahL9DdSWW//I2fG6qD4UpsXPE+FFzjFJJ5qzHADNXBxkOPNEbC3dmwkEqwcxuEZyOTa3ezG4ReHt4Is5fL4OHowx+rg7mDqlVGtU2EK8OaYOX1p0EAIR7OmHJ5A7wcbHX6/4yqQSpwR5ihki3zB/fDvenRzR5Xv2/D4Pb+CP/lUG4WlqJQHdWvOkiCALWzUjHk78exY2yKjyaEYWOoZ4Aalo7PNg9AlmFN+EglcDfTbznoTZ+LgCA+f19sOpMGT4+YJrXzuyZW0O0DsifffYZ1q9fr7qdkpKCuXPnYtmyZTrPHzlyJDp16gSlUglBEFBUVIQ5c+aIFR4RWYHabdbBpdrVeDmshBSdo50Uv03vioUTUpEUoPuTyH91bMnufemojjN1K62obnZ8rZZSidtP/Ku2pICA5fE9mrzr28MTxYqK9PTOCOP+G+S4+WB23+la6xNPbcW0o62j8lVQKvD1uo/RJe+M1rEZg2bhuE+4UR6nf5yfXuf5uTrg+f5xeLJPDFwcTN4+3ebwg0TzmtUzCjG+LpBKBMT6ujABKSKpRMCLA+KheG8kFO+NxIUXByAjmpXWlmhCuyC9ztNsoS6TSqwmAWmu594oH2f8PK0L/n6oO8amqH+fBUFAmKeTQQnI5nxMODC+5vWAq50EdyWaZleJvhXPtkCUJOTly5dVvR4B4Mknn8Ty5ctx5513on379jrv06VLF3z77bd48cUXVWtHjhzB5s2bxQiRiKyIZj9IAMh15YRgUxAEAfd1DceSyR11Ht8Upt02o1/mQb2vv3BnZrNjs1ZN9TBNu3wKUUX5amubwpJx2bXpxHu/WN8WxUYtlxrsgdX3dDHqv8X/kvrhJx1DiT7dsABJV63/d+iNLUsw6eS/WuufdBip6sNnDJ5Odka7FlFrMLtXND4erf1hIpEt6xvjAy9n/apTJayUt2g+ztp/9/9+sBt3OJiZKEnIn376CRUVFRAEARMmTMCMGTP0vu9dd92FqVOnqm6vXbtWjBCJyArUfkKnORkbUK+EZBWF+Brq6bvfPxoFDi5qa/0uHdL7H+WJX/SvmrQVd5zQTsY0tRW7Fl9TWYaRbQPx18yGhwgZTBDwwMCHcclVPbHpUl2BFb+8BbcK6x1UMOPQOszZtUJrfWtwAp7uPc30AZHJcbiceczsFoEPRrXlm3GyeZrVjA/3jNL7vtb829Nannsbegr764FuyHppIFZM7Yyu4Z7oFuGF1fd0Qe8Y83xgb80/K8YmShJyy5aaiZ6CIODRRx81+P73338/ZLKa7S+HDx9u4mwiau10VkJyO7ZJNfQyRS6RYrPGluyQkuuIv6E94Y5qNJafFZQKranYVRIpfo7VroIj23LDyQ13D3scCo2XsW1uZOOr9Z9Y5acxg8/vxed/zddaP+sRiHGjn0eVlJWLRGIJELHfGrWMrqpt7nQQz09TO6ONnwt8nO0wp18sxhqwbZaVkJarX5wvHGRSjE0JwvZHM7D1kZ4Y2da4W6LfHZFk1OvZClGSkFlZWRAEAbGxsfD1NfwJ09vbG+Hh4VAqlcjLyxMhQiKyJkE6kpA59QfTtJJP8qzV3+HttNb6ZR4yQyTWr2f2MYRo/Lz/GdEe15zd9bo/Xwq3bpvDUvByj8la6+NPb8PL2783Q0TN1yHvLH789V3IlAq19euOrhg+7iVccfY0T2BkUaJ9Wj6QiMjapAS6I8xTva+gPkNSDCHVLP+zYcMTA3D82X7I/89gvDks0aDqYOYgbVuCHtO7a/FnpY4oScjCwkIANcnE5vLzq2kWWllZaZSYiMj61KYWg0rVkzIldo4otncyfUA2rLEiq41h2knIvpeYhGxIYylznVux2+i3FRuAzhfOMr7RMJuRSQFGv+abXSfgt6jOWusvb1+GO45bRx/tpKuZWP/TS3CrKldbr5DKMHb08zjlHWqmyMgcory1E423pQRB8d5IrL4nzQwR2QaBH1tZLIlEwNrp6Ria4I92Qe54d0QSJqQ2Pijlvq6GDfCqfGc4vr1Td79va/SIHluovZroC9xU8vGxDO3H0PX8ZS2scAOFTmK3lMiIajinNaSNfgPvAD7n1idKEtLNzQ1AXTKyOa5dq5mG6+HhYZSYiMg6lFfJ8fza45i8dC9e+/MUACBYIwmZ6+Kl9nFSa/kjaska+x4f9Q1HvpP6c3XfzMMQNCqcbNWNskp8vSsTX+/KxI2yhj9YkyrkGH9qq9raTakdVsd21fuxpBIB6RHqQ5sey4g2LGAymhnpEUb/5FspSHD30MdxzkM7wfnN+o/R14DBUOYQfz0Lfy1/Eb43i7WO3TP4MfwbmmyGqMic/FwdMDE1WHXbUSbBy4PiATTcj5hajlU5lq1toBt+m94VB57sjaf6xDSZaHk8I1pnQszVQarzfEEQMKlDCLqGexojXLOK9XXBx2Oa/tux6zHdH+rq+6vwSM8oBNZrYzB3YDwc7XR/f6l1cLKTYN396Q0el0lFSae1eqJ814KCgqBUKnH69OlmJSJzc3Nx9uxZCIKA4ODgpu9ARK3GfT8cwNsbz2DZgRycyC8BlEqtnpC5LpyMbUmUggR/a0zJ9r1ZjJQrF80UkeUoqahGr8+3YfqPBzH9x4Po9fk2lFRU6zy3X+Yh+JUXqa39HtUJRRqDf5ryv0kd0D3SC24OMkxMDcYrt97Mk+mNSArAH/enY5YBTe71ccPJDSPHzkWhvfobTgd5NVatehOdL5826uMZS9urF7Hph+cRWFagdez5nlOwLLG36YMii7B0cgd8PCYZc/rFYvfsXkgO0q8FBTVNc1tvLSYhW5ekQDccfLK31t+bprZxj0nWrrBMNGCLqSXQt19mjK9hr6c0Rfu44MATvbF0cgdsnNkN/xncpkXXI+MwxlNZRkjDPXKdGkg020kNe2Q+59YRJQnZo0cPAIBcLsfXX39t8P0/+eQT1SefXbvqXwFCRNatSq7AsgM5amseFaVwrlavHst29TFlWISm+27q6gs58OIBkaKxHn+euoKjeXUVX0fzirFwR6bOc+848Y/WmiFbsWvF+rpgy6yeKHxjKJZN6QQXB5nB1yDj6R/nh0/GJGNa5zCjXve4TzhuH/kM5IL6Szm3qnKsXfEK2uedNerjtVSny6fxdwMJyHe7jMPbaeNNHxRZDJlUgkd6RuHNYYloG+hWb53v2lpq5bQuOtf7xPC1VGvj6iDDJ2OSseyuTpiRHo7549vhneGND864o30wXOzrkiy+LvZGH94htpcGtuzDVkO28/q7OWByx1D0aQWDglhnXmd0tOEJ6tpCfWN/0GwLRElCjho1ChJJzaUXLVqE9evX633fBQsWYOXKlarbw4cPN3p8RGSZquTa23c1h3QAQI5GEpJ/RMXX1I64DTqSkAOYhMSSvVlaa2uOaw9cc6iuxNgzO9TWSmUOWBOj+80jWR8xBmj9EdkRDwx8SGvd92YxNix/0WIqIoed241NPzyvcwv2px1GYE7GVJYIkE5t/FwR4cUe0M3VP84XHUM9ceU/g9X64XUK9UCPyOb37ifLNrF9MBaMT8X96RGQSgR0CfNUO16/givC2xkbZ3bHtM5hmJEejk0Pdm+yd6Kh7u4kXp/fJZM7INhDd7WvvvjXx7oZ4+VD71BHDDWgv2N9T/TSr+0Rf87qiJKEjI2NxdixY6FUKiGXy/H4449jzpw52LlzJ65cuaJ1fllZGTZt2oR77rkHH330EYCaTyQGDRqEhIQEMUIkIisRUnJNa63+ZGyyDGc9g7R61PXKPgrHqgozRWQeldUK/H48D5vPXoVSqcSVEv3+/488uwueFaVqa7/EpKHMrmUvrKn1+zplEJ7NmKq17lVRir+Wv4gBF/abIapblErM2rcGq1e9AZdq7d+FTzqMxOy+05mApAYJgoBPxiTD08hJEVvRP66mWsvHxR4HnuyN5/rH4vWhCfj7we6iD3Mgy/H60ATY1+td9+lY9RY6XcI98fUd7bFgfCqSAt2M/pS8eFIH9GxkuEdL3NmRg8yai3ML1Q1J0E5C6jNMJtLbGZH8sMwgou3Rmjt3Lk6cOIGjR49CqVRi9erVWL16tdo5u3fvRnp6OoqLi6FQ1FRA1W7DDgsLw6uvvipWeERkgXS9INbsBwlob8dm33rxNfktFgT8EdkBMw+uUy05VVeiZ/Yx/BXZQdTYLEV5lRx95m3D7ksFAGomVW69cEOv+0459rfW2rdJfYwYHZnbnR1D8d892pWxxvB/abfBs6IUz+36SW3dvbIcv618FQ8OeBBfpwwS5bEb4lRVgS/+moe7dfxsA8BbaePxQs8pTEBSk0a2DUTW3AFwff53c4dideq/gQ7zdMIbQxPNGA0Zy9jkQKw8cll1O8Ct4X52ADAw3g+7HsvA1gvXkRzohoxo292Kf29aOL7eVdcWJynAFRIbzcZFeTsj3NMJmQXlqjV9BvxYGnNNna7/3ujNYYmY/O2+Rs/nBz91RBvn4+joiK+++goZGRlQKpVq/9X+A1RUVKCgoAByuVxt+l1SUhK++eYbTsYmIp2VkOwJaXr6TCj9I0I72ThYjyqsR1cdwU8Hc5o8z9KtPnJZlYAEgK926u79qMmvrABDLqi/cMlz9tD5/STr1T/OF2kaW+KM6YWeU/Bq+h1a63YKORb98Rnm//m5ySqTU/PPYee3TzaYgHy61z14IeNukyYgl0zm75M1c7Znb1uiWs/2i1VVB0slAt4Z3nRyuV2wOx7sHqlXArI1b9WfOyAO8X41/f88HGX4ZExKE/dovQRBwLsjkuB8a/BKRpQ3JncIMXNU1un29sEY0szt3LZI1L/onp6eWLhwIVavXo2vv/4aJ0+eBNDwm1l/f39MmzYNd955J+zt7cUMjYisBLdjW4+N4e1QLUggU9b19hx4sekk5GdbzuOzLeexqKIa96aFixmiaA7lFDX5CWhD7jjxL+wUcrW1ZQm9UC3lm+7WRBAEbH64O77dl43pPx4U4wHwSo/JuCmzw5tblmgdvv/QenTNPYlpQ2bjoL9+/YsMZV9dhaf3/Iy523+AvUJ7CvxNqR3uHvo4fmrTU5TH15Qa7I6sgnLc1SkU49tpT4Cl1inezwWnrpQ2fSKRlUoL98KBJ3phV2YB4vxckBps3MKd9Agvo15PH4vvaI8wTyf0n79d7/v0iDQ8zghvZxx/pi/OXy9DmKcT7KSi1WRZhYntg9EvzgeF5dWI9HaG1EarQpujfk5LEATMHRiPdSe1Ww/WnWOKqKyDSd7hjB49GqNHj0ZmZib27duHixcvoqioCFVVVfDw8EBAQAA6dOiAxMRE1UAbIrI9up6bg3QOplFPQoox8IHU6fMdLnJwwY6gNuiZc1y11u7qRQSWXMdlPRLH0388aJVJyGq5AoMX7mj6xAbcpaNabElS35aERBbKQSbFvWnh2H2pAAu2XxTlMd7uOgFZbr5YtP5TrURg6pUL2L30CbzfeSze7DoBxQ7OxnlQpRJDz+/FB5u+Qpsb2TpPyXL1wfhRc7ArqI1RHlL+fyOw/GAu7li6t8Fz9j/R2yiPRZZhWucwLN5zqcnz/n24BwJe+cMEEVk+vultvcK9nBHuZaTncA1SiYCPRrfF7NVHW3yt7rcShY0Nu5ncIQR3dw6DUqnEoHg//HGq4UROfQ/3aN5UYkEQEO1j+DTk1srXxQG+Lo1v6bdkxnqea2zTl4u9FKWV8oZPIIOYtMwiPDwc4eHW9waTiMxHsxLyqqMbKmSslDY1Nwf9/lz8GdlBLQkJAIMu7sf/2vYXIyyLsDOzAHnFzdvmmnDtErrknVFbO+oThn3+McYIjSzU3AHxOH2lFBvPXBXl+kuT+iLTzQ8//voO/MsL1Y7JlAo8u3sF7j3yJ97sOgGLUgah1L55DdUFpQJDzu/DCzt+RPfcEw2e93dYCu4Y8TSuOHs263E02UkFCIKAUE8ObrIlT/eNwdYL13H6auNVjg4y2yho6BfrK9pzCNFdnUKNkoSc3jUCAHB/egR+PZan85ywW0M9BEHAynu6YPWRy03uLgl2d8TE1OAWx0fUmNoE56MZUXhrw5nGT27qWkaIp7Wwjb/SRGQVdH2SFVyqXgmpays2B9OILznQDXG+TX9q/EdEe621oecarlTS9PnW83r1n7Qk+XpOwNZF10CapYl9Wb7SygV7OOKvmd2w/RHxtiX/E5aMDnd/hM2hbXUe9ysvwoebvkLWgnvwyYYF6Jl1FBKFHp/yK5Voe/UiXty+DKe+monfVr7aYAKyUiLDsxlTMXD8q0ZLQALAQ90jjXYtsh6JAW448GTvJnurmmtIgan9el8aPhjVFrN6RmHDzG7wdeEHtGQ89kbYpvzyoHhM6xIGABgQ74sBt6a1N8bJToo7GuhL+NHotnigWwR+mtoZWS8NNGigzLiUQL3PJetiimf8aG/t90CGvlvhYJo6FttwavHixTh58iQEQcCbb75p7nCIyAykCjkCSwvU1jiUxjwEQcB3d3XE9B8P4nJxBWZ0Dcfrf53WOm93YByuOrrB92axam3wxf2Qyav16nH4yMoj6BnlbfT+RpZIUCpw5/FNamsKCPg2kVtIbUXXCC98OjYZT/16DBXViqbvYKBcVx8MmPA6ntm9AnO3/wBHeZXWOR6VZZh14DfMOvAbrju6YldgHA75RSHL1RfXnVwhKJVwrbqJsOKrSLx2CV1zT2l9OKTLzsB4zBz4kNH7T07rHIY3hiYAYFWBLXKykyLM0wm76g0B02Qr7/Oc7KSY3avx3y8b+VaQhZretW4HpINMit9npMPumTXNvt6jGc37e+LtbIcne3OHSWsl0fGkH+VteKsCP1ftD3L6xdYkzm3l74qpWGwScsuWLdiyZQuTkEQ2LKC0AFKl+hvzXB2VkDE+4vTEIXWdQj3VeqzpSkIqJFKsi+qIu45vVq15VpSie84J/BOWrNfjPPnLMfw1s1vLA7ZwvS8dQXix+la6v8NTkOXO6Xq25OEeUXi4RxQkT/0qyvXlEine6joRK+K6Y95fX6DfpcMNnut9swRDLuzHED2m2jck38kDc3veiUUpg6AUjLfhRvHeSK01f1fr7WFFRGTJxMi5SCWCzsFRYm6Aeb5/HGb1iESgO9t3tFYSiYChCf74/US+am1GuuEtAAfH+8JBJlH7UPiBbjXtBALdtF9vjGlrWHUt85h1uB2biCyG5hYqXdU2uiohn+4bK1pMZLi1UZ211oaf2633/Y9cLjJmOHr74UA2Mj7bgiFf7sDW89o/e3KFEnPXnYDb82sR9tqfWH8yX8dV9NfgVmwiEZzyDsWACa9j6LiXsd+vec38G3PN0Q3P9bwbMdO/xMJ2Q4yagGxIjK8LOoW2/qppUtfUMDpbeKNXu8W1PmtrZUKWTazKLzF/P1OD3bXWJnUIYQLSBiyZ3AH3pIUhLcwTLw2Mx9N9DH9v6O5ohxVTO6NtgBuC3B3w6pA2GJrgD6CmItLdUb1+7/5bCcpa3G6tP4uthCQiCim+prWmmYTsGeXNxtRmIpMIqFZov+lZH9kRckGiVsU67PwePNv7Hr2ua473UXuzCjD5232qx9564TouzR0Iz3rTHP85dw1v3Kr+LK2U465v9yH35UHNejynqgrcdnqb2lqZzB4r4lt/BSiZkSBgfVQnrI/siD6XDmPW/jUYeW437PTpBdmAnYHxWJA6BMvaZOCmnekrE3+7rytmrTyMnw7lmvyxqXWL9nHGuWtl5g5Dpxf6x+l1Ht8UU3M52UkR4eWEizfKVWsPdo/EF9sumC+oJnw6Nhm9Pq97bZUa7I62gW5mjIhMxdvZHl9NbN/i6wxLDMCwxACtdUc7KdZO74rnfjuOa2WVmJEegcFt/A26Np+O6zAJSUQWQ/PJWXMyNqA+mObwU32QFODKF9lmMiM9QueL0RtObtgWnICM7GOqtbbXLiGy8DIueFhmY/Bvdl1SS36WVsrx67HLmNKprtrkgZ8Oqd3nWlkVfjvevGrICae2wL2yXG1tZWw3lNiztQCZgCBgU3g7bApvB8+bJRh+bjeGnduDLnmnEVtwudG75rp4YWdgPDaFp2BVbDoy3Q17EW5s/m4OeH9UWyYhbUhTH1QZ4yWBh6PMoofexegYFGfB4ZIVEgQBn4xJxu1L9uJmtQKxvi54pk+MRSche0b54Ns7O2LB9gvwc3HAB6N1D2Yjao7ukd7Y/HCPBo+7OTC1pi9+p4jIYjW1HZufbprX+yOTGnwx+lt0F7UkJAAMP7cHn3cY0eR1r5RW4s0Np/Fcv1iTJZjX6dhardmz6MzVUq1zCsqr4OZo+J/S6Yf+0Fpb0pZbscn0Chxd8W1SX3ybVPPz53mzBBFF+QgqvQG3ynIoBAGVEhmy3XyQ5eqDfGdPfpxPrd7iOzqgoLwK9/xwwNyhaInwctL7XP6mUkuMbBuIq68OxoXr5Ujwd21wGvXTfWJw9lopfj5c9yGWTCLA21m/ie3GbCUwqUMIJjUwXZtITEkBrgj3dEJmQbnO43w+rsOekERksYJ1VEJm6xhMQ+bhaCdt8Nhv0dp9IUee3aX3tV/8/QQ+33qhOWE1S3Nf/zbnbonXMtEz57ja2gV3f/wZ0b55QRAZUYGjKw76R2NdVCcsb9MTK+J74NfYrtgXEIt8Fy+LTEBaXkRkTsb48Mrf1R4TUoOQFOBqhIgME93EsL0OIeyDSqbjbC9DUqBbgwlIAJjZLRLP9Y+Di33d68IHu0fCScfrRO5eotZKEAT8Nr0rBrfhgMmmMAlJRBbjcnGF2u3gEvVKyCqJFFec+eLbGhz1Ccd5jW2afS8dhufNEr2vsXDnRWOHZRB9XiY359P76Yf/1Fr7OnmASQZ5EBFZuzEpTbf16NjCRF2UtzOc7WXY9VhGi67THPPGpcDrVj9iXxftSrIHNIYh1LLk7ePUekzvqj112NfFHp1CPXHgid74dGwy1k7vig9HcSs02Z62gW74fUY6+sZoD1JlAr4O3/EQkcX4v01n1W5r9oTMdfFiosZaCAJWx6arLdkp5AZNyT6cW6z3uVVyBT7+9xzm/HYch3IMn67d3K1ASgAHsgv1Pt++ugpTjm5UW5MLEnyTPKBZj0+tx6yexp9YbSv4ut623J4agjDPhqfdCgBeGdym2dcf3y5INU3X2b55natSg92R+/IgzOoZhckdQjB/fDud5w3RqJhxlEkwIM4Pea8MQuaLA5D3yiAsmpgKXxd7uNhL8UzfWAyK17/Khr8bZGz3pYXDUVb3WnxalzBVW5oYXxc83CMKQxL8G62cJGrtXh2SoLX2dJ8YM0RimdgTkogsxqrD6oMFQjQqITUnY5NlWxmXjtn7flFbG3Nmh6r3nDHd/f1+/HAgBwDw8b/nsOuxDKQEubfomvU/sWwoSalUAq/fmpitjzFndsD3pnpydW1UJ2S7+TYvSGo1pnYOxWdbzps7DCKLZy+TYO/jvfDplgt47c9TWselEgEjkgIwIz0cC3dkGnTtNn4uWDq5Y7PicnOQ4evbU1EpV2JsciAc7aT4ZEwyAODYZd0fqs3sHon1p66oqhhndo+ERCJAAgGhnjW9H+9NC8e0zmGQK5Wwk/KDWDKvrhFe2D27F9Ycy0OUtzPG6VGZ3BQW8VJr0y3CC8MS/LH2RE3P+dvbByO5he9LWhMmIYnIYtT/xN656iY8K9QHgeSwH6RV2RqciCtO7vArr6tMHHJ+HxyrKnDTzsFoj3O1tEKVgASAimoFXl5/Ej9P66L3NZp6Aby/gWpHpYEvnacf1h5I81XKQIOuQa1Tp1BP/DClE25fstfcoVgdgV0hbY6viwP+M7gNPJ1kePKXuiFoQxP8VYm6frG+OpOQIR6OyC68qfO6kzqEwl7WvETf0skdMLKtYQmZUW0Dsfmh7lh/8gqSAtxwe2qwzvNqE5ONSY/wwu8n1IeshXvqP8SGSF9tA92aPRySz9ZkCyQSAb/cm4atF65DKhHQLcLL3CFZFH6cRkQWQ1IvC6nZDxIAclgJaVUUEil+jUlTW3OprsCgi/uN+jgXrmtPoVt15LKOMw1T/4XyySvak7EBw3pwRRfkYkDmQbW1HBdv/Batf7J0eKK/QZNRybpMSA2G4r2RULw3UmffLSJSNzsjGm8PT0SvaG880C0CSyd3UB27LSUIPs52aucferI3hicGNHg9Qz9YqjUswR+DGhlG4KURBwCMSa5JWPaM8sFrQxIwqUNIi7awvjM8Ue22n4u96jGIrM2EdkFqt+/j30SyMhKJgIxoH3SP9GY/SA1MQhKRxaj/9KwzCenCSkhrszK2m9bamDM7zBBJ40wxHfs+HQNpFif3h1zS8JRxTQn+bgh0M14VKVmuBePb4fBTfcwdhlXga3vbJQgCnukbi00P9cAXt7WDl3PdIBeZVILfpndF13BPJAW44r+T2iM5yB0vDogzehy/3pcGB1nDz+VB7o7oEaleCXNvmnGTKslB7vjuzo5IDXZHj0gv/D6jK2Tcvk0Wpl2w9pZUXa9rXhwYj1hfFwBA2wA3PMN+ekStRrO3Y69atcqIYWjLy8sT9fpEZHnqf0qkOZQGALLdWAlpaR7oFoEF2xueYv1XRCpK7BzhWlW39W3MmZ2YWV2FSpl2ZYimtcfzMKyRqhUx6ZPY0HegjVQhx7SjG7TWvzZwII0gAJ5O2t83Rzu+0WxtBEFo9na31sapiZ9vJzvt5E9GFD+0IiAt3AvbH1WfcB3q6YSdj2ag6yf/ap3fnA+kEvxd9apyWXVPGt75+wwuXi/DxPbBGJFk/L9td3QIwR0dQox+XSJjmdE1Qq2FDlCzC0BTSpA7Dj/VG4Xl1fB0smt2mwQisjzNTkLOmTOHZaVEZFTnr5epvtaZhGRPSIszMTW40SRkhcwea6K74I6TdW/2PCtKMejifqzR2Kqtyz3LDiDn5UGQNrJFzRh/ipq7BU9fI8/uQlDpDbW1v8JTcc4zqIF7NOzB7pFYf/KK2tqdHUJbFB+RJXtlUOOTjj2d7NAj0gtbL9T9jnHrHjWmS7gn/F3tkV9S2eJr6fsnyMfFHu+OSGrx4xFZs76xPni+fxw+3XIeDjIJXh+agLAGepc6yKTwd9N/twgRWQd+pEBEFiGrQL2vn+7t2KyEtDT6VI382Kan1trEk9oVKLpcKa3EHyfzmz5RBPoMu9C3aubRfb9qrS1KGWRoSBAADIz3Q5+Yut+F21KC0DHUw+BrEVmDWF8XTOnUdJJ9xdQumJEejn6xvvhsbIpe9yHbpquCllN6icQlCAJeH5qAa68OxuWXB+H+9Ahzh0REJtai6dj6bkMjImqK5taMYJ3bsVkJaWlkejTR/z2qE4rsneBeWZdoHn1ml95TsgtvVjd63Bg1+WL2hEzNP4c+WUfU1i47e2JVbHqzHtPJToo/7k/HnqxC2EsFtA/2aNEwAyJLtGRyB/g42yMjyhsuDk2/XPV3c8CC8akmiIxaC2M9a3JjGJHh2K+UyHY1Owm5YYN2bysiouY6nFukdltzO3aRvRNK7J1NGRLpobtGo31dKmT2WB3TFVOOb1KtuVWVY+iFvVgZ173J+09dth8+LvYYEOdr0jYg+vWEbPqcR/av0VpbkDpEr56Y2jHVBCWTSpAe0fT3nqzfQ90jMW/bBXOHYXIdgj2QxJ6YZGK6CiwGxPnir9NXzRANERFR69PsJGRICJseE5F4NLdjczK2ZZJJJXCxl6K0Ut7oeT+2yVBLQgLAxBNb9EpCVsmVGPzlDtzePhjf39WpJeE2qLl1/U31kvQtK8Tk45vV1iolMsxPHdrMRyRb89qQNtiZeQN7swrNHYrRpUd44aWB8Ri2aKfWMVaXkdj0rcR6dUgCdl3agaIGqvL1ad1BRERENVgHTUQWQS2Vo1QiuFQ9Cak5GfvjMcniB0V6ufrqYNzXNRxtAxquWvojsj1uOLiorY06twvuFaV6P84PB3Jw5FbFbLVcoVoXqzrSGJWQ9x9aD0d5ldrasoQM5Lk0r4qRiRnb4+Vsj92ze+H0nH54pm8s/jO48SEt1uSfh7pjULyfzmO+LvYmjoZszawekVpr/WJ9tdbSI7yQ89LABq8zsq3xp1wTERG1VkxCEpFFqL8Fyqe8GA5y9YqD+pWQI5MCcDeHDlgMB5kUCyek4vDTfRo8p0pqhxXxPdTWnKorMeHkVoMea8zi3ej4wWY4P7cWQ77cgetlLZ9sCojTE1Imr8aDB9dqrX/ScWTzHoxsWoyvC94enoi5A+PNHYrRyKQSSCQC/nqgm9r6oHg/+Lk23S+WqCVuaxeEALe6n7PUYHf0iNK968LZXvfmMSc7CZ7sHSNKfERERK1Rs5OQS5YsgUKhaPpEkSiVSixdutRsj09ExlU/maPZDxIAclxrKiEvvzwIq+7pAg8nw/vpkXn9L6mv1tqUYxsNusa5a2U4kFOEaoUSf5y6ghd+PyHaRjh9rrv2eF6Dx8af2ooQjbYCW4ITsS8gVtSYqPX7ckI7c4dgVP3ifPHztM4YmxyIh3tE4ocp4rRdIKovxMMJ2x/piTeHJeCTMcnYMLMb7AwclrFndi/4sGqXiIhIb83uCfnGG2/gp59+wvPPP4+uXbsaM6Ym7d69G2+99RaOHz+Ou+66y6SPTUTi05WEzL6VhPR3Y3WMtdoakohzHgGILqxL3PXKPoaogss47xnYrGsu2H4RHo4tT0g31NuxvEqOlYdz8fSaYzqPrz95pcFr6hpIwypIMob70sJxs0qB9SfzkeDvBiWU+GDzOXOH1SJjkoMwJjnI3GGQjYn0dsacfnHNvn9iI21IiIiISFuzk5C+vr44efIkpk2bhj59+uCJJ55AXFzz/4jr48CBA/j000+xbds2KJVK+Ppq920hIutUfzus5lAaAMhx5WAaa6cUJFia2Bcv7Vimtj7l2N94tfukZl/33b/PtDQ0nW5WK5D20b84mlds8H275J5Ct9yTamuXXH2xKja9RTGxJyQBNX1QZ/WMwqyeUQCAwvIqHMop4gRfIiIiIrJozd6O/csvv6BXr15QKpXYtGkTRo8ejZkzZ+Lvv/9W6+3WUhUVFVizZg3uuOMOTJo0SZWA7NKlC1auXGm0xyEi82pqO3Y2k5Ctwv/aam/JvvvYRghKcdt7yBVKLNhxEa/uuIG158sgVyhxIKcIV0srAOjuCfnzodxmJSAB4Mk92n+f5rUfhmppsz/7I2qQh5Md/nigG1bf08XcoRARERERNajZ74a8vb3x5ZdfYtmyZfjggw9QVFSEzZs3Y/PmzfD390f//v3Ru3dvpKenw8HBsO2ThYWF2Lp1KzZt2oQNGzagrKwMQE0fSCcnJzz++OOYMmWKaBNRicj06n940dh2bLJu5zyDsCU4ET1zjqvWogvz0P/iQfwV2UG0x31u7XG8t+ksAODX8+V4eUcBgFwIAvBJA5PWj+eXNOuxYm/kYPypbWpr5TJ7LGw3qFnXq09gV0hqhJuD9SS5Xx+aYO4QiAzSP84XG+pVGz+sY7o2ERERNa7Fr1bvuOMODBw4EO+88w7WrFkDhUKB/Px8fP/99/j+++8hlUoRERGB+Ph4xMXFwcfHB25ubnBxcYFUKsXNmzdRUFCAnJwcXLx4EUePHkVmZqYqIVH7v4IgYNSoUXj88ccRFMSeQUStTf1CtKBS9e3YCgi47OJl2oBINN8kD1BLQgLA/YfWi5qEXLjjos51pRJ4Zs0xOMikRnusZ3b/DIlGj8mvkwfgupN7o/dLCXLD+etl6B3tgzg/V3z0j3aPP372Ro3xdrbsARkOMgkqqhVIDnTD1M6h5g6HyCAvD4rH4dwi5JdUIsHfFY9lRJs7JCIiIqtjlI/MfXx88O6772LGjBn4+OOPsXHjRtXk7Orqapw7dw7nzp3DunXr9Lpe/YooqVSKQYMG4YEHHkBCAj81J7IFIcXqlZD5zh7cxtqK/JCQgQ82fQWPyjLV2uizOxFQegN5IiWbC29WN3isvEqB8irjbAcPLr6Gu4+qT/yuFiR4r/PYRu8X5umIg0/2gVKpVFX5D0/0x8AFO1TnCALwUPdIo8RJrVNKkOUOyQhwc8DOR3siv6QSbQPd4GRnvMQ/kSn0jPLByWf74UppJUI8HPkzTERE1AzN7gmpS1xcHD777DOsX78e99xzD/z9/QHUJBVr/6vV0O3atZCQEDz44INYv349PvzwQyYgiVo5tcE0GpWQ3IrdupTZOWJpUh+1NTuFHPce+dM8ARnRE3tXwV6hnvD8PqEXLnoENHq/2p//+m1Gekf7YERi3f2e6BWDIHdH4wVLrY4gCAj1aNnPyLxxKUaKRp1SqUS4lzM6h3kyeUNWy8PJDrG+LvwZJiIiaiZRSovCwsLw7LPP4tlnn8WhQ4ewfft2HDx4EGfPnkVOTg6qqqpU5yqVStjZ2SE8PBwxMTHo2LEj0tPTmXQksjG1H0DYyasQUFaodoyTsa3Hvw/3QMbnW5s878t2g/HwgbVqa9MP/YF3utwGhcQ639wFlN7AzIO/a62/m3Zbk/fVNc5NJpVg9b1dcCCnCI4yCRIDLLfKjSxH20A3ZBXebPb9e8eI86GPEWcWEhEREZGVEn1/Y7t27dCuXTvVbaVSiZKSEpSVlUEQBLi4uMDFxUXsMIjIwtW+Pw0qvaF1LIeVkFajW4R+26kP+0Vhe1AbdMs9qVqLKsrHyLO7sTouXazwRPXM7p/hXF2ptrY6Jg1HfSOavK9MorvZoyAI6BDiYZT4yDa0tG1oS5KFbw9PxJzfjus8xhwkERERERl1O7Y+BEGAm5sbAgIC4O/vzwQkEanR7AcJsBLSmkgkAt4ZnqjXufNTh2qtzd632mixtHtvExyeXYPbFu822jUb0lAV5KvdJul1/wR/V2OHRGRSn41tfBu3kqWQRERERDbP5ElIIiJdat+fhpRoJyGzWAlpVaQNVPVp+qFNBi47e6qt9c46ig55Z40Sx5HLxaiSK7HyyGWjXK8xc3b9BCcdVZD7A2L0un9DlZBEhrKTmvalnZeTHe5NC8e0LqGNVlEyBUlERERETEISkUVQ3nqLGqorCenmCwD4+8FuJo2JmmdYor9e51XK7DCv/TCt9dl7jVcNaQoRhXk6qyD/o2cVJABEejsbMySyYfekhbXo/oYkC3tFe+Paa0OwaGIqnO1lqudxnddlFpKIiIjI5jEJSUQWofYNamjxVa1jWW41lZC9Y3xNGRI1Uxs/V9zRPlivc+enDsVNqZ3a2u0ntyC06IoYoYniP9u+g4NcfSL2qpiuOKBnFSQAvNA/zthhkY0aGOeH1GD3Zt13WhfDEpivDGqjdttO0vDLSmd76xw4RURERETGwyQkEVmESrkCgO6ekFmuvlgyuYOpQ6JmEgQBSyZ3xNZZPZo896qzB5Ym9VVbs1dU45ndP4sVnlG1yz+Pu45tUluTCxLM7XmXQdcJdHc0YlRky1wcZNj8UHd8e2dHg+7XIcQdrw9JaLR349jkQNXXA+N90StavVXGPWlhDbYWeKZvrEHxEBEREVHrwyQkEVmE347nAwBCS9QrIYvsnVDs4IxxKUHmCIuaSSoR0C1Sv4FCH3QaDYXGTN/ph/9AYMl1MUIzHqUSb/+7GBKNLaj/S+qr10RsIrG4O9phUocQ9IlpuJ9u59CaqesJ/q7Y9GB37H28N4I9Gk+G/zS1MzbO7IY/H0jH79PTIdFIOHo72+OVwW207hfu6YTx7fgcTkRERGTrZOYOgIiovlCNSsgs15ot2E523MrXWp3wCcOK+G6YcGqbas1RXoWn9qzEU33uM2NkjRt+bg+GXNivtnZTaoeXu082U0RE6j4c3RYjvtqF7MKbWsd+n5EOHxd7KJVKCEJdMrGhOsgF49tBEAT0iW28Lcbz/eMwpVMoCsqrcOpKCQrKqzEyKQD+bg4t+b9CRERERK0AKyGJyGJIFHIEl6pXv9X2g6TW7Y2ut2utPXBwHfxLb5ghmqbZV1fhg02LtNY/7TACWe5+Dd4vzJPbrsl0UoM9cPGFATqP1eYd6ycgGzOpQ4jejxvm6YSUIHfc1i4Y93UNZwKSiIiIiAAwCUlEFsS/rBB2CrnaWrYrk5C24JB/FFbHpKmtuVRX4KXtP5gposY9tu8XxBXkqq3lOXvgjfSJjd7PQcaKXjItzS3TTWmoJaSrAzfPEBEREVHLMAlJRGZXXlWTeAwp0R5Kk81KSJvxerp2NeSMw+sReyPHDNE0LLwoH3N3aCdHn+95N4ocXBq9b2NDP4hMybDUJBERERFRyzEJSURm9/eZmmE0mv0ggbqekNT67Q2Mw09x3dXW7BRyvLHlf2aKSAelEvP++gKuVeo99nYHxGJxcv8m7+5sL4WLvXo15J0d9d/mSiQ2ZYNdIYmIiIiIWkaUJOTvv/+OxYsX4+rVq02fTEQ275tdlwBoT8YG2BPS1rzQcwqqJOpJugmntqFH1jEzRaRu0ol/MOz8XrU1BQQ80v8BKIWm/6R2DvPEoxlRqtuOMgke7B5p7DCJmqRvL0giIiIiImMRJQm5YsUKvPPOO+jTpw++/PJLMR6CiFqRSrkCACshWyN/V3uDzj/tHYKFKYO11udt+AIyebWxwmqWgNIb+OjvhVrr89oPw66gNnpd47aUILw+JAF/PpCOT8cm48CTvdE90tvYoRKpeWFAnNrtME9HeDjq7vHIjgFEREREJBZRkpCnTp2CUqmEXC5Hx44dxXgIImpFat/0hrASstWZd1s7g+/zarfbUWTvpLaWcvUiZu/7xVhhGU6pxKL1n8KvvEht+ZKrL57PmKL3ZfxdHSAIAvrH+eHhHlGI93M1dqREWu5LC0eMjzMAwE4q4JVBbVgJSUREREQmJ0oSsqCgQPV1UlKSGA9BRK2QZiVkucwe1x3dzBQNGcO4lCD8OKWTQffJd/HCy90na62/vO17RBTmGSs0g8w8+DuGn9+jtf7wgJkosXfW+zo+zoZVhhIZQ6S3M/Y+3gt/P9gNR57qg3vSwhs8l4WQRERERCQWUZKQ/v7+qq/rJySJiHRR3CqF1OwJmeXqA7Bax+qNTw02+D6fdRiB/X5Ramsu1RVYvO4jSBRyY4Wml9T8c3h/89da69+07Y81MWkGXSvKR/+EJZExuTvaoXeML+JYfUtEREREZiJKEnLkyJGqrxcvXizGQxBRK7L2RD6gVGpVQma7ciu2rZJLpHhw4ENQQD0J3TvrKJ7as8pkcXiVF2PFL2/BqbpSbf2sRyAe6zfDoGv9Z7B+fSOJzEnJppBEREREJBJRkpAPPvggevToAaVSiSVLluDNN9/E9evXxXgoImolfMqL4SivUltjP0jbtiuoDT7rMEJr/dWt36Lz5dOiP75UIcfSte8jWmMLuFyQ4O6hjxu0DXvHoz0xd2C8sUMkIiIiIiKyGrpHI7ZQZmYmnn76abi4uOCPP/7AkiVLsHTpUsTExCAhIQHe3t5wdXXVuyn6rFmzxAiTiCxISIn2ZOxsTsZuNRxlEtysVhh8vzkZd6Nf5kEkX8tUrdkrqrFy9RvocucHuOwq0mRppRLz/voCQy/s0zr0XMbd2B6SqPelnugdjbRwL2NGRyQabx19S0M9HM0QCRERERG1NqIkIUeMGKFKMAqCAKVSCaVSidOnT+PMmTMGX49JSKLWT7MfJMBKyNbE18UeWYU3Db7fTTsH3DXsSez87kk4yKtV6yEl17Fy9Zvoc/ubqJAZf9jLK9u+x4zDf2itL4/vjvc6jzXoWgLY15SsR6S3MzqHemBPVqFqbcF4w6fcExERERFpEmU7NgBV4lGzt1D9dX3+I6LW7WppBQDtydgAkMVKyFbjuf5xzb7vIf8oPNPrHq31rpdPYfmvb8O+ukrHvZpJqcSL25fhpR3LtA4d9QnDfYMfNXhYEmcrkbX5aWpnjGobgC5hnvjithQMSfBv+k5ERERERE0QpRKyS5cuYlyWiFqhO5bUbHdlJWTrNiE1CJ9tOY/j+SXNuv+nHUYg9cp53HvkL7X1Eef24Ic172DiyGdRJbVrUYyCUoG3/v0fntn9s9axLFcfDBv3ikF9IGuNTApoUVxEphbu5YxV9xg2+Z2IiIiIqCmiJCGXLFkixmWJqJW5WSXHxjM1yccQXZWQbqyEbC18XRyw67EMuL3we/MuIAh4qP+DaHM9Cz1yTqgdGn12F9b/9DImjJyDa87uzbq8W0UZFq/7CGPP7NA6VuDggqG3vYJL7n7NunbPKJH6VhIREREREVkR0bZjExE1pVJeN6gktFi9ErJKIkW+s4epQyIRuTi07HOvSpkdxox+EYd9I7SO9ck6gl3fPoFu2ccNvm6PrGPY9e2TDSYgh417GUd1PKY+kgPd9B7CRkRERERE1JoxCUlEFiFUYzp2jos3lAKfokjdNWd3DJjwGo76hGkdiyrKx9Zlz2LeX/MQpGPauqboglx8te5j/PvDHLS5ka11/IqTO/pNeB07ghOaHe+XE1KbfV8iIiIiIqLWRJTt2I3Jy8tDXl4eCgsL4e7ujtTUmjdo5eXlsLe3h1QqNXVIRGQmqtlTSiXCNCoh6/eDHBjPbdmtxYjEAKw5nteia1xx9sSACa9jzc+volP+Wa3jMw+uw32H/8RPcd2xNrozdgS1Qb6zJwQoEVp8Dd1zjmPE2d0YcW43JNA9AO20ZxBGj3kRJ3QkO/X1RO9opIV5Nvv+RERERERErYlJkpCZmZlYvHgxNm3ahNzcXNV6z549sXDhQgDAhg0b8Prrr2PixImYMWMG3NzcTBEaEZlRlaJmO7Z7ZRlcq26qHas/GfvdEUkmjYvEc2/XsBYnIQEgz8ULve54G1+t/wR3nPxX67idQo5JJ//FJB3HmvJrdBfcPfRxFDq6Nju+nY9moEu4Z7PvT0RERERE1NqIutdRqVTi448/xtChQ/H9998jJycHSqVS9V99OTk5KCgowMKFCzFq1CgcPnxYzNCIyAL8cfIKACBEx9bZ7FuVkBIBSA1mb8jWYkxykNGuVW7ngMnDn8Kjfe9HiZ1ji69XZO+Ex/rOwJgxL7QoAQkATnZsJUBERERERFSfqO+SZs+ejfnz50Mul2slHTUb9WdlZam+zs3NxX333YezZ7W32RFR6/HFtgsAgNBGJmNLJRzqQY0QBHzWcQSSpn2On2PTm3UJuSDBtwm9kTRtHj7tOJK9SImIiIiIiEQg2jutzz77DOvXr1fdTklJwdy5c7Fs2TKd548cORKdOnWCUqmEIAgoKirCnDlzxAqPiCzAxRvlALQnYwNAlmtNJaQAJiGpaVnufhg/+nkkT/0Mi1IG6VUZmefsgU86jETcffMxZfiTyKnXh5SIiIiIiIiMS5SekJcvX1b1egSAJ598EjNmzGj0Pl26dMG3336LpUuX4o033gAAHDlyBJs3b0bv3r3FCJOILITmZGygrhKSyBDHfMNx/6BZeLj/A+hy+TQyso4htOQqvMuLIQDIdfVGppsv/glNxgH/KNGqHqO8nUW5LhERERERkbUSJQn5008/oaKiAoIgYMKECU0mIOu76667kJWVhcWLFwMA1q5dyyQkUStV26RBVyVkdm0lJAshqRmqpHbYFpKEbSHmGWrk4mCSuW9ERERERERWQ5QSkC1btgCo6fv46KOPGnz/+++/HzJZzRs4Dqghar2yC2smYmsOplFAQK6LlzlCIhOYkR5u7hCIiIiIiIjIxEQp1cjKyoIgCIiNjYWvr+FbKr29vREeHo5z584hLy9PhAiJyJJoVkJedvFCtbTm6YmFkK3PJ2OS4etijxN5JRic4I+ZPx0yd0hGZSflTy0REREREZEmUZKQhYWFAGqSic3l5+eHc+fOobKy0lhhEZGF0uwJmcUBIa2ag0yKN4Ymqm63tiSkUtn0OURERERERLZGlO3Ybm5uAOqSkc1x7VpNUsLDw8MoMRGRZXKqqoD3zRK1tdrJ2AB7QpL1YQ6SiIiIiIhImyhJyKCgICiVSpw+fbpZicjc3FycPXsWgiAgODhYhAiJyFJo9oMEgOx6k7EFbsgmK6NkKSQREREREZEWUZKQPXr0AADI5XJ8/fXXBt//k08+Ub2J69q1q1FjIyLLomsydv1KSCJrwxQkERERERGRNlGSkKNGjYJEUnPpRYsWYf369Xrfd8GCBVi5cqXq9vDhw40eHxFZDs1+kACQVb8SkoWQZGVYCElERERERKRNlCRkbGwsxo4dC6VSCblcjscffxxz5szBzp07ceXKFa3zy8rKsGnTJtxzzz346KOPAACCIGDQoEFISEgQI0QishBhxdrPCdmshLQpbg6izEgziXvTwrXWMqKaP5SNiIiIiIiotRLtnd/cuXNx4sQJHD16FEqlEqtXr8bq1avVztm9ezfS09NRXFwMhUIBoK6XVlhYGF599VWxwiMiCxFepL0dO9OdlZC2xJr/jT8YlYQley+hSl5X/vhQj0jzBURERERERGShRKmEBABHR0d89dVXyMjIgFKpVPtPuPWOs6KiAgUFBZDL5WqN/JOSkvDNN99wMjaRDdDsCamAoFYJycE0rZ81/wu7O9ph6eSOCHJ3gJOdBA/3iMSEdhyoRkREREREpEnUPXCenp5YuHAhVq9eja+//honT54E0PDkUH9/f0ybNg133nkn7O3txQyNiCxEuMZ27MsuXqiS2pkpGiLDTUgNxvh2QahWKGEnFe2zPSIiIiIiIqtmkkZco0ePxujRo5GZmYl9+/bh4sWLKCoqQlVVFTw8PBAQEIAOHTogMTFRNdCGiGxDeJF6ErL+VmzAurfqkn6EVvCPLAgC7KTW//+DiIiIiIhILCadBhAeHo7wcO0m/kRkm9wrSuFRWaa2dsnNt4GziYiIiIiIiMhaiVJ2+NFHH+HQoUNiXJqIWonDuUUIK9YeSnPJzU/tNmvLWj/+GxMREREREbV+olRCzp8/HwsWLICvry/69u2Lfv36oXv37uzzSEQAgP3Zhej04T8YojMJyUpIW6NrN/b/jUhCjyhvnL5ago4hnkh5b5PJ4yIiIiIiIiLjEXU79pUrV7B8+XIsX74cjo6O6N69O/r164e+ffvC29tbzIcmIgv2+OojALT7QQJAprtGJWQr6BdIhlMCSI/wQnqEl7lDISIiIiIiIiMQJQnZt29f7NixA+Xl5apJ2OXl5di4cSM2btwIiUSClJQU9OvXD/3790dMTIwYYRCRhfrn3HUA2pOxASCT27FtToCrA66XVamtaQ6ZbhfkjkO5RSaMqo6Psx2uacRHREREREREhhGlJ+QXX3yBXbt24euvv8bUqVMRFRUFAFAqlVAqlZDL5Th48CA+/PBDjBgxAoMGDcLbb7+NXbt2QaFQiBESEVmgUG7HJgBP9dH+IGpEYoDa7U/GJJsqHC1f397ebI9NRERERETUWoiShAQAOzs7dO/eHc899xx+//13/PXXX5g7dy569eoFR0dHVUJSqVTi0qVL+O9//4upU6eiW7duePrpp/H777+jtLRUrPCIyEyKb1arvtbcjn1Taocrzh5qa9yN3fqNSwlCx5C6f/dpncMQ6+uidk5GtDcWjG9n6tAA1GwNJyIiIiIiopYRtSdkfaGhobjzzjtx5513oqKiAjt37sQ///yDf/75B5mZmarzCgsLsWbNGqxZswYymQxpaWn46quvTBUmEYns231Zqq81p2NnuflAKYj22QhZKA8nO2x7pCe2X7wOTyc7pAS6a/UCFQQBM9IjsOX8dSzZm9XAlYiIiIiIiMhSmSwJWZ+DgwN69eqFXr16AQAuXLiAf/75B5s3b8bu3btRWVkJAKiqqsK2bdvMESIRieQ/f54CAAhKhVYSUrMfJAB4O9ubJC4yL3uZBL1jLHMrfoK/q7lDICIiIiIisnpmLzm6efMmcnJycO3aNZSWlkKhUEAQBE7EJWqlan+z/csKYa+oVjumORkbgNm24JJl6hHlrXPdy8lO72tMS9I/qTihXRDi/Vxhrzkph4iIiIiIiAxi8krIyspK7N27F7t27cLOnTtx+PBhVFerJyJqJ2oDgJOTk6lDJCIR1X6+oNkPEgCyNIbS3JMWhowGkk5km8YmB+LZNcdQeKu3qJOdBMee7osIb2ccyilC+w82N3mNGcluWHyspMnzHGQSPNQjEgDw631pGPzljhbFTkREREREZMtET0JWVlZi//79qqTjoUOHUFVVpTpeP+EIAPb29khNTUV6ejrS09ORmpoqdohEZEKSW1nI8GLtJGT97djnn++PCG9nk8VF1sHP1QEbZnbDh/+cQ7VCiUd6Rql+TtoFuzd5/ze6e8Fe2nSlvUQA9j3eC4kBbgAAF3tpywInIiIiIiKycaIkIXfv3o2dO3eqko61PR4B7aSjVCpF27ZtkZ6ejm7duqFjx45wcHAQIywisgC16R/NfpAAcKleJSQTkNSQjqGeWDK5Y7PuOyiiprr+3rau+Ppow9WQLw1so0pAAoCSI7KJiIiIiIhaRJQk5JQpU1Q9HTWTjoIgID4+XlXp2KVLF7i6suk/ka1obDt2bU9I9t8jMcgkdRWQE+JcsOZiJfJLKnWe90jPSLU1JZiFJCIiIiIiaglRt2PXJiCdnJxw2223oV+/fmjXrh2TjkQ2TLhVCxnaSCXkIz2jTBoT2R5fJyn2PtYTPx3Jg5eTHU5fLcVbG07DQSbBx2OS4aUxlZ2VkERERERERC0jahKythry5s2b+O6777Br1y61Ckg3N7cmrkBErU1tMZpmT8gbDi4osa/Zgv3KoHhTh0U2KMDNAY9lRKtuvzwwHoIgQCrR7hnJJCQREREREVHLiJKEfPXVV7Ft2zbs3LkTN27cAFBTFXn69GmcPn0aS5YsgUQiQUJCArp27Yr09HR07twZzs7sAUfU2l0rqxlMpbkdu3Yr9v8mdYCLg+gzs4i0yNgGgIiIiIiISDSivNOfOHEiJk6cCAA4fvw4tm/fjm3btmHv3r0oLy8HAMjlchw7dgzHjh3DN998A6lUiuTkZFVSslOnTrC3t2/sYYjIyly8XobiimrYV1chsKxA7VjtVuwJqUFmiIyocbombz/dJ8YMkRAREREREVkn0cuNEhMTkZiYiHvvvRdVVVU4cOAAtm3bhu3bt+PIkSOorq4GAFRXV+PgwYM4ePAgvvzyS9jZ2SE1NRXp6el4+OGHxQ6TiExg6b4sAEBoia5+kDWVkA4yqUljItKHp5MdHu4Ric+3XgAABLk7YBZ7lxIREREREenNpHse7ezs0KVLF3Tp0gWPPfYYSkpKsHv3buzatQt79uzBsWPHIJfLAQCVlZXYvXs39uzZwyQkUSsxd91JAEBYI0NpiFoiOdANRy4Xi3LtT8YkY0gbf+SVVGBkUgD8XB1EeRwiIiIiIqLWyKyN11xdXdG3b1/07dsXFRUV2Lx5Mz7//HOcPHkSgiCopmsTUeui2Q8SqOsJSdQSz/aLxd3f7xdlkIwgCBieFGD8CxMREREREdkAsyYhjx07hq1bt2Lbtm3Yt28fKisrAdRN1Sai1klXJWSmG5OQ1HJ3dgxFh2APzFxxCFvOXzd3OERERERERHSLSZOQ2dnZ2LZtG7Zt24YdO3agoKBAdUyz6jExMRF9+vRB3759TRkiEYnkzNVS1dfhxdqVkNyOTcaSFOiGuzqFMglJRERERERkQURNQhYXF2PHjh3YunUrtm/fjszMTNUxzaSjo6Mj0tPT0bdvX/Tp0wcBAdzyRtSaFJRXqb4O09iOrYCAbFcfU4dERERERERERCYiShLyww8/xPbt23H06FEoFArVumbiMTAwEL1790bfvn3RrVs3ODiwyT9Ra1W/y4LmduxcVy9US83aHYKIiIiIiIiIRCTKu/4FCxboHCwjCAJSUlLQp08f9OvXDwkJCWI8PBFZoPqdXjW3Y9f2g0yP8DJhRGRr2G6YiIiIiIjIfEQrPapNQDo7O6Nnz57o06cP+vTpA29vb7EekogsWO3AKfeKUrhXlqsdq01CfjS6rcnjIiIiIiIiIiLxiZKEDAsLU22zTktLg52dnRgPQ0RWpLYILbxIeyhN1q2hNJ1CPU0XEBERERERERGZjChJyD///FOMyxKRFavdCqtrMname00lpFTC/bJkHPG+LlprM9LCAVRpn0xERERERESiM+kkiKKiIuzbtw/5+fkoKCiARCKBi4sLQkJCkJSUBF9fX1OGQ0QmJNyqhdQcSgMAl9z4u0/G1TPKGxFeTrh4o2brv0wi4O5OIcC1C+YNjIiIiIiIyEaZJAm5efNmLFy4EPv27dMaVlNfYmIipk6ditGjR5siLCIyIVUlpI7t2LWVkETGIpNKsHFmd/zfpjO4XlaF+7qGo2OoBw5eM3dkREREREREtknUJOTNmzfxwgsvYO3atQDqhtXUn5xd/+tjx45hzpw5WLVqFT7++GO4u7uLGR4RmVDtRuswXdux3ZiEJOOL8nHGvNvaqW5XV1ebMRoiIiIiIiLbJhHrwtXV1ZgxYwbWrl2rVf0olUrh7e0NDw8PSCR1IdQmJHfs2IH77rsPFRUVYoVHRCZWOx07QqMSslxmj6tO7nB1kJojLCIiIiIiIiIyAdEqId977z3s3r1blXgIDw/HlClT0KNHD0RFRanOUygUOHfuHLZs2YLvv/8eFy9ehFKpxJEjR/DBBx/gueeeEytEIjKh+344AACILMxXW7/g7g8IAp7qHWuGqIiIiIiIiIjIFERJQmZlZWHp0qWqBORtt92Gl19+Gfb29lrnSiQSxMbGIjY2FpMnT8Zrr72G5cuXQ6lU4ttvv8W0adMQFBQkRpgN+vjjjzFv3jyEhIRg48aNRr324cOHMX78eIPv9+2336Jz585GjYXIVDJvlGHXpQLYyasQXHpd7dgFd38AgIeTSedkEREREREREZEJibIde9WqVareW7169cIbb7yhMwGpyd7eHq+99hr69OkDAJDL5VixYoUYITbo0KFDWLhwoWjXP378uGjXJrJUr/91GgAQWnwNUqVC7VjmrSQkEREREREREbVeopQebd26VfV1c7ZTz5kzB5s2bQIAbN++HbNmzTJWaI26dOkSHnroIVRVVYn2GPWTkBEREQgLC9Prfh4eHmKFRCS6KyU1/V0ji/K0jl1gEpKIiIiIiIio1RMlCXnp0iUIgoCIiAhERkYafP/IyEhERUXh/PnzOHPmjPED1OHUqVOYPn06rlzRntxrTPWTkA8++CDGjh0r6uMRWYKGhtIAwAUPJiGJiIiIiIiIWjtRtmMXFBQAAAIDA5t9DX//msREaWmpMUJq1OrVqzFx4kTk5WlXaRmTUqnEyZMnVbcTEhJEfTwiS7HnUgEA7aE0AHCRlZBERERERERErZ4olZAuLi4oKipCUVFRs69RXFwMAHB1dTVWWFry8vLwwQcfYNWqVaI9Rn0XL15EWVkZAMDOzg4xMTEmeVwic8sqvAkAiOB2bCIiIiIiIiKbJEolZGBgIJRKJU6dOtWsRGRhYSFOnToFQRBUFZHG9sUXX2DIkCFqCcjo6GjMnDlTlMcD1LdiR0VF6TWsh6g10dyOfVNqhzwXT/MEQ0REREREREQmI0oSsnPnzgBqplt/9dVXBt//q6++Uk3X7tKli1Fjq/8YtVWJADBhwgQsX74cERERojweAJw4cUL1Nbdiky2KLFLfjp3p7gelIMrTEBERERERERFZEFHe/Y8aNUr19aJFi/D777/rfd+1a9di0aJFqttDhw41amyakpOTsWTJErz++uuibv0G1CshmYQkWyNVyBFafFVtjVuxiYiIiIiIiGyDKD0hU1NT0aNHD2zduhVyuRxPPPEEtm7dimnTpiE2NlbnfU6fPo1vvvkGK1euhFKphCAISE9PV1VVGltaWhrGjRuH/v37qyb3iq1+ErJNmzY4ceIEVqxYgZ07dyIrKwvV1dXw9fVFamoqhg4dioEDB5osNiKxyBVKAEBo8VXIlAq1YxxKQ0RERERERGQbRElCAsCbb76JMWPGoKCgAEqlEitWrMCKFSvg5+eH2NhYuLu7AwCKiopw+vRpXL1aUyGlVNYkLHx8fPDWW2+JFR7mzZsn2rV1uX79OvLz67aiLlq0CNu3b9c6Lzs7G9nZ2Vi7di2Sk5Px4YcfIjw83JSh6lS7Pd5ayeXyRm+TeK6VVgLQ7gcJABc86pKQCrnC6n/OyLLxeYCI+DxARHweICI+D5iPaEnIgIAAfPvtt5g+fTpycnIA1CQY8/PzceWKejKiNvFYW/UXHByMefPmITAwUKzwTK5+FSQAVQLSyckJERERcHd3R35+Pi5cuKA658iRI5gwYQK++eYbJCUlmTJcNQqFAgcPHjTb44vhyJEj5g7BZhRU1DyhR+qYjF2/EjI7JxsHDxaaLC4iPg8QEZ8HiIjPA0TE5wHTEXUiRHR0NFauXIl7770XDg4OqnWlUqn2Xy0nJyfcfffdWLlyZavrmaiZhHR1dcVLL72ErVu3YvXq1ViyZAnWr1+PDRs2YPTo0arzCgoK8NBDD+HGjRumDpnIKGp/xSML87WOsSckERERERERkW0QrRKyloeHB5555hnMmjULu3btwp49e5Cfn6/apu3u7o6goCB07NgRaWlpog+HMZf6FY5eXl74/vvvERUVpXVeaGgo3n33XYSHh+PTTz8FAOTm5mL+/Pl47rnnTBUukdHUfswQUaQrCRlg2mCIiIiIiIiIyCxET0LWcnZ2Rp8+fdCnTx9TPaRFef311/H000/j0qVLcHFx0ZmArO/hhx/Gli1bsH//fgDADz/8gCeffBL29vamCFeNRCJBSkqKyR/XmORyuVqJdXJyMqRSqRkjsh15xRXAyjytJGSlRIZcVy/V7ZDgEKSmRpo4OrIlfB4gIj4PEBGfB4iIzwPNc/jwYSgUiqZPbITJkpBUUxXq4eGh17mCIGDKlCmqJGR5eTn27t2Lbt26iRlig2Sy1vWjIpVKW93/J0slldYMm4nUSEJmuvtCKdR1hJBIJfw3IZPi8wAR8XmAiPg8QER8HjAdo36Xb9y4gbNnzyI/Px/Ozs4IDQ1FbGysMR/CpnTs2FHt9oULF8yWhCRqLiUAiUKOsOKrauvcik1ERERERERkO4yShDx06BA+/fRTbN++XWu0ub+/P6ZMmYIpU6aoDaehpvn4+KjdLizk5GCyPssP5iC45DrsFOrPDZnufmaKiIiIiIiIiIhMrcXTsb/44gtMmjQJW7ZsQXV1tdbk67y8PLz//vsYP348Ll26ZIyYbUZlZaXabRcXFzNFQtR8s1cf1dqKDXAyNhEREREREZEtaVEl5I8//oiPP/4YQE0PQ10EQYBSqcTp06cxffp0rFixotVOwG5IdnY2vvvuO1y/fh3Xrl3DE088gYSEhCbvp5m0DQoKEitEIlE89etRAA1MxvbgdmwiIiIiIiIiW9HsJGRJSQnef/99VfJRqVQiPT0dgwYNQkhICKqrq3Hy5EmsXLlSlUzLzMzE559/jmeffdY40VsJpVKJRYsWqW6npaXplYT8999/VV8LgqDVI5LIkuUXV+Cjf84B0B5KA7ASkoiIiIiIiMiWNHs79rp161Q9Ch0cHPD5559j8eLFmDx5Mnr37o3+/fvjoYcewu+//46xY8cCqEnG/fzzz6ioqDBO9FYiNDQUISEhqts///yzVu9MTSUlJVi6dKnqds+ePeHt7S1ajETGtnjPJSiUNV9HFmonIS8yCUlERERERERkM5qdhNy5c6fq66effhr9+/fXeZ5MJsNrr72GuLg4AEBRUREOHDjQ3Ie1WuPHj1d9ffbsWcyfP7/Bc6uqqjBnzhzk5eUBqKmCnDlzpugxEoklXKMSskoiRY4rk+pEREREREREtqLZScgTJ04AqBmWMnHixEbPlclkmDRpkur20aNHm/uwFqlfv35o06YN2rRpg379+uk855577lGrhvzkk0/w+uuv48aNG2rnHT9+HPfccw/+/PNP1dpdd92Fzp07ixM8kUjqd4nV3I59yc0XconUtAERERERERERkdk0uyfklStXIAgCwsPDYWdn1+T5nTp1Un2dmZnZ3Ie1Wk5OTliwYAHuuusuFBQUAACWLFmCZcuWIT4+Hq6ursjNzdX63owYMQLPPfecGSImapnafrGCUoHw4itqx7gVm4iIiIiIiMi2NLsSsqysDADg5uam1/n1qwCLi4ub+7BWLS4uDj/99BM6dOigWquqqsLRo0exc+dOtQSko6MjZs+ejXfffRdSKSvGyPrUVkIGlt6Ag7xa7ZiuoTR+LvYmiIqIiIiIiIiIzKHZlZBVVVUAoFcVJFCzbbtWaWlpcx/W6oWFhWHZsmXYunUr1qxZgwMHDiA/Px8VFRXw9vZGWFgYevfujZEjRyIoKMjc4RI1261CSL2H0gxPDBA7JCIiIiIiIiIyk2YnIZVKJQRBUG25bEr985qaDG1O48aNw7hx4wy6z8aNGw1+nB49eqBHjx4G34/IWqiSkEXaScgLHupJyO/v6ggPJ/0+0CAiIiIiIiIi69Ps7dhERI1Ze7wm+RhZlKd1TLMSckxyoEliIiIiIiIiIiLzYBKSiIwuu7AcG05fBQBEFF3ROq6rJyQRERERERERtV5MQhKR0f1wIEf1dYRGT8hqQYIsN1/V7VAPR9hL+VRERERERERE1JrxnT8RGd3+7ELV15o9IbNdfSCX1E18f21Igt69ZYmIiIiIiIjIOjEJSURGp1TW/K+gVGj1hKw/lCbCywlTu4SZMjQiIiIiIiIiMoNmT8eulZeXh1WrVol6nzFjxhh0fSIyr1s5SIQUX4ODvFrt2DmPuiE08X4uJoyKiIiIiIiIiMylxUnI06dP47nnntP7fKVSafB9mIQksi7KW6WQ0YXak7HPedYlId8enmSymIiIiIiIiIjIfEy6HVsQBIN6v9UmMojIutT+5kYXXtY6Vr8Ssn2wu4kiIiIiIiIiIiJzalElJJOERKRL7VNDTIF2EvJsvUpIDqQhIiIiIiIisg3NTkJu2LDBmHEQUSty7lopACCqiUpIIiIiIiIiIrINzU5ChoSEGDMOImpF9mQVAtDejl1s54SrTjVbsN0dW9ySloiIiIiIiIishEl7QhKRbYkuUB9Mc9YzELi1BfuDUW3NERIRERERERERmQGTkEQkCtfKMviXF6qtnfMIAAD0ifHBHe2DzREWEREREREREZkB90MSkSg0qyAB4PytfpAbH+xu6nCIiIiIiIiIyIxYCUlEotDsBwkA5zw5lIaIiIiIiIjIFjEJSUSiiCnQTkKeZRKSiIiIiIiIyCYxCUlEotBZCekRiHBPJzNEQ0RERERERETmxCQkEYkiSiMJqYCAi+5+cHWQmikiIiIiIiIiIjIXJiGJSBTRheqDaS65+aJKamemaIiIiIiIiIjInJiEJCKjkyjkiCzMV1ur7QepVJojIiIiIiIiIiIyJyYhicjoQkuuwV5RrbZ23uNWEtIcARERERERERGRWTEJSURGtfH0VUTrmIx9zjPADNEQERERERERkSVgEpKIjOZmlRwDFmxvcDI2ACi5H5uIiIiIiIjI5jAJSURG88+5awCAGB2VkGc9g0wdDhERERERERFZCCYhichorpVVAQCiNCZjA8A5j5rt2KyDJCIiIiIiIrI9TEISkdGsPJwLAFrbsQvtnXHd0Q0Ap2MTERERERER2SImIYnIaH46VJOE1NyOfc4jABAEc4RERERERERERBaASUgiMiqPmyXwuVmstla/HyQLIYmIiIiIiIhsD5OQRGRUuvpBnr/VD5KIiIiIiIiIbBOTkERkVNG6htJ4Bqq+VrIpJBEREREREZHNYRKSiIwqpiBXa+2cR6COM4mIiIiIiIjIVjAJSURGpasS8mz9SkhTBkNEREREREREFoFJSCIyqqhC9cnYckGCTDc/1W3uxiYiIiIiIiKyPUxCEpFRxRSoJyEz3XxRLZWpbveN9TV1SERERERERERkZkxCElGLyRVK2D+zBlKFHBFF+WrH6g+lAYD70sJMGRoRERERERERWQAmIYmoxSb8bw+qFUqEF12BTKlQO3a+3lCabhFe6BbpberwiIiIiIiIiMjMmIQkohZbdaRmC3ZcQY7WsdOeQaqv700LN1lMRERERERERGQ5mIQkIqOJv64jCekVbIZIiIiIiIiIiMiSMAlJREajsxKSSUgiIiIiIiIim8ckJBEZTewN7STk2Xo9IZVQmjIcIiIiIiIiIrIQTEISkdHEayQhL7r54aadg+p2r2gfU4dERERERERERBaASUgiMgo7eRUii/LV1upvxR7dNgBxvi6mDouIiIiIiIiILIDM3AEQkXWrrFYAAKIK8yBVKtSOnfGqmYz9+tAEPNU7BoIgmDw+IiIiIiIiIjI/VkISUYv8fDgXABB3I1fr2CmvEADA8ER/2Mv4dENERERERERkq5gVIKIWySupAADE38jWOnbak5OxiYiIiIiIiIhJSCJqIcmtLdZxBdqTsU/f2o5NRERERERERLaNSUgiahHJrTaPsRrbseWCBOc9AgAALvZsP0tERERERERky5iEJKIWUVVC3lCvhDzv4Y8qqR0AINTD0eRxEREREREREZHlYBKSiFpEAOBYVYGI4itq6/X7QTpwKA0RERERERGRTWNmgIiaTa5Q4qGfDyOm8LLWsTNedUlI4Va1JBERERERERHZJiYhiajZNpyuqX7U3IoNAKduJSGZfyQiIiIiIiIiJiGJqNmGLNwJQHcS8vStJOTGmd1MGhMRERERERERWR4mIYmoxeJ1JSFv9YTMiPIxdThEREREREREZGGYhCSiFostUE9CVkpkyHT3w9VXB0Mi4X5sIiIiIiIiIlvHJCQRtVjcjVy122c9AyGXSOHtbG+miIiIiIiIiIjIkjAJSUQt4lJZjuDS62prtVuxiYiIiIiIiIgAJiGJqIV0DaU54xVkhkiIiIiIiIiIyFIxCUlELRJXkKu1dsorxAyREBEREREREZGlYhKSiFpEVyXkaVZCEhEREREREVE9TEISUYtoTsYG2BOSiIiIiIiIiNQxCUlEzaJUKgEA8dfVk5DlMntku/mYIyQiIiIiIiIislBMQhJRs7y18QwAIE6jEvK0ZxCUAp9aiIiIiIiIiKgOMwVE1Cwv/n4CHjdL4FdepLZ+2otbsYmIiIiIiIhIHZOQRNRsuiZjn2E/SCIiIiIiIiLSwCQkETVbm+tZWmucjE1EREREREREmpiEJCKDHc6t2YKdcD1b69gJ71BTh0NEREREREREFo5JSCIyyK7MG0j7+F8AQML1S1rHmYQkIiIiIiIiIk1MQhKRQV5adxIV1QoAQOI19e3Y+U4euO7kbo6wiIiIiIiIiMiCMQlJRAb549QVAIBMXo24ghy1Y8d96qogQzwcTRoXEREREREREVkuJiGJqFmiCy/DTiFXWzvhHWamaIiIiIiIiIjIkjEJSUTNorkVGwBOeIeovlYqTRkNEREREREREVkyJiGJqFkSdQylOe5TVwl5d2cOqCEiIiIiIiKiGkxCElGzJFzXroQ8fms7toNMgrs6MglJRERERERERDWYhCSiZtFMQpbYOSLLzQcA8Mf96UgKdDNHWERERERERERkgZiEJCLDKZVaSciTXiFQCjVPKRnRPuaIioiIiIiIiIgsFJOQRGSwkJJrcK8sV1s77lOz/bp/nK85QiIiIiIiIiIiC8YkJBEZLPGa9lCaE7f6QU5MDTZ1OERERERERERk4ZiEJCK97cq8AQBIuJ6tday2EtLRjk8rRERERERERKSO2QIi0tsDPx0CACRe11UJWZOE7BPD7dhEREREREREpI5JSCLSi1KpxMGcIgDak7GrBQnOeAYBAAJcHUweGxERERERERFZNiYhiUgvCmXd15o9Ic94BqFKamfiiIiIiIiIiIjIWjAJSUR6USprspCeN0sQWFagduy4T5gZIiIiIiIiIiIia8EkJBHppbYQUnMrNgCc9A5RfS0IJgqIiIiIiIiIiKwGk5BEpBfFrUpIza3YAHDcu64S0k7KpxUiIiIiIiIiUsdsARHp5VYOEok6KiG5HZuIiIiIiIiIGsMkJBHppW47tnYl5EmvEK01IiIiIiIiIqJaTEISkV7OXC0FoN0TMsvVB8UOzuYIiYiIiIiIiIisBJOQRKSXUV/vgkN1JaIK89XWj3uHmikiIiIiIiIiIrIWTEISUZMO5xbh4o1yxN/IhlSpUDt2gv0giYiIiIiIiKgJTEISUZOyCsoBAInXtIfSnGAlJBERERERERE1gUlIImrSzBWHAGj3gwS4HZuIiIiIiIiImsYkJBE1qqJajksFNwEAba9d1Dp+vN527BgfDqghIiIiIiIiIm1MQhJRo0or5aqvU66oJyGvOLkjz9lTdXtqF/aHJCIiIiIiIiJtTEISUaOO5RUDAByrKhBXkKt27IhvBCAIqtvdIrxMGhsRERERERERWQcmIYmoUf/dU9MHMvF6ltZk7CO+EWq3lUqThUVEREREREREVoRJSCJq1A8HsgEAyVe1+0Ee1kxCmiQiIiIiIiIiIrI2TEISUaPkiprUYoo+SUiWQhIRERERERGRDkxCElGjqm8lIZOvXtA6dtQ33MTREBEREREREZE1YhKSiBpVJdddCXne3R8l9s5qa6yDJCIiIiIiIiJdmIQkogaVVFQDALzKixFScl3t2GHfSK3zuRubiIiIiIiIiHRhEpKIGrTuRD4AIPmadj/II34RWmvsCUlEREREREREujAJSUQNOppXDABIuaIjCemj3Q+SKUgiIiIiIiIi0oVJSCJqkEQQADQwGdsv0sTREBEREREREZG1YhKSiBokldQkITUnY1dKZDjpFaK2JghAWriniSIjIiIiIiIiImvCJCQRNUgiAFAqkXw1U239hHcIqqUytbXHMqLh6+JgwuiIiIiIiIiIyFrImj6FiGzV3kuFCCu+Co/KMrX1I751Q2lcHaT49+EeaBfkburwiIiIiIiIiMhKsBKSiBq04nAuUjS2YgPqSchB8X5IDfaAcKt/JBERERERERGRJlZCEpGa62WVeHTlEXy3PxuA7snYh30jVV8rORKbiIiIiIiIiJrASkgiUjN7VV0CEgDaXtM1GbuuEpI5SCIiIiIiIiJqCpOQRKRm6b5stdspV9WTkEX2Tsh081PdVrIUkoiIiIiIiIiawCQkETVIJq9G4rUstbUjPhFAvf6PTEESERERERERUVOYhCSiBsXfyIG9olpt7Ui9rdgAe0ISERERERERUdOYhCSiBumajH3Yl0lIIiIiIiIiIjIMk5BE1KDkq5laa/UnYwOAkhuyiYiIiIiIiKgJTEISUYOSdVRCHvENV7vNSkgiIiIiIiIiagqTkETUoPb559Vu57h447qTu9oac5BERERERERE1BQmIYlIJ+/yIkQUX1Fb2+8frXWekqWQRERERERERNQEJiGJSCfNKkgAOKAjCdkpzNME0RARERERERGRNWMSkohUFIq6qsaO+We1juuqhLyrY6ioMRERERERERGR9WMSkohU9mUXqr5un39O+3iAehLy0YwotPF3FT0uIiIiIiIiIrJuTEISkUp1vUrIDhpJyBsOLrjgHqC6HePjjA9HtTVZbERERERERERkvZiEJCIVe6kAAHCpLEeb69lqxw74RwNCzfFANwf8PiMdwq3bRERERERERESNkZk7ACKyHFdLKwEA7a5cgATqU69r+0FeeKE/wr2cTR4bEREREREREVkvVkISkcp9Px4EoL0VG6hLQrL6kYiIiIiIiIgMxSQkEQEAKqrlyC68CUD3ZOx9ATEAAKYgiYiIiIiIiMhQTEISEQBg4+mrqq81J2OXyexx0isEgKotJBERERERERGR3piEJCIAwPnr5QAAO3kVkq9mqh075BcJhUQKABBYC0lEREREREREBmISkojUtL2aCXtFtdrafv8Y1deshCQiIiIiIiIiQzEJSUQAAOWtadiNDaUB2BOSiIiIiIiIiAzHJCQRAQCUNTlInUnI2qE0AKdjExEREREREZHhmIQkIgDA6qOXAQAdNCZjV0mkOOITobrNFCQRERERERERGYpJSCLCtdJKbDh9FRKFHKlXLqgdO+YThkqZneo2CyGJiIiIiIiIyFBMQhIRfrlVBRl3IxeuVTfVju2rN5QGALyd7U0WFxERERERERG1DkxCEhFyiysAaG/FBoAD9YbSAIBUwlJIIiIiIiIiIjIMk5BEBKVSv8nYRERERERERETNwSQkEWHB9osAdCchD/hHqb4e3y7IZDERERERERERUevBJCSRjauSK5BVeBNQKrWSkKe8glFi76y6fW9auKnDIyIiIiIiIqJWgElIIhu3+ew1AEBUYR58bharHdvvp74Ve0iCv8niIiIiIiIiIqLWg0lIIhv36KojAICuuSe1ju0OijN1OERERERERETUCjEJSWTjrpZWAgDSLp/WOrYzsI2pwyEiIiIiIiKiVohJSCIbplAo65KQuafUjlULEuwLiFHdHp7IrdhERERERERE1DxMQhLZsL/PXgUAyOTV6Jh/Vu3YYd8IlNs5qG6HeTqZNDYiIiIiIiIiaj2YhCSyYbsyCwAA7a5egKO8Su3Y7qB4tdtz+sWaKiwiIiIiIiIiamWYhCSyYZVyBQDtrdgAsDOwLgn58qB4hHs5mywuIiIiIiIiImpdZOYOgIjMZ/nBHABA2mUdScigmqE06+9Px8B4P5PGRUREREREREStCyshiWzYsbwSAEBarvpk7GI7J5zwDgEAeDvbmTwuIiIiIiIiImpdmIQksnHuFaVIuJ6ltrY7MBYKidRMERERERERERFRa8MkJJGN63L5NCRQqq3tDoxv4GwiIiIiIiIiIsMxCUlko6pqh9Lo7AfJJCQRERERERERGQ8H0xDZmN2ZBbjru304fbUUQAOTsZmEJCIiIiIiIiIjYhKSyMbc+d0+nLmVgIRSia4aScgsVx/kuvqYITIiIiIiIiIiaq2YhNTh448/xrx58xASEoKNGzeK8hi5ublYtmwZtmzZgosXL+LmzZvw8/NDdHQ0hg0bhmHDhsHJyUmUxybbVVBeVZeABBBWfBWBZQVq57AKkoiIiIiIiIiMjUlIDYcOHcLChQtFfYxly5bh7bffRnl5udp6Tk4OcnJysGXLFnz55Zd49913kZqaKmosZFuqFQq127r6QXIoDREREREREREZGwfT1HPp0iU89NBDqKqqEu0xFi9ejJdfflmVgBQEAfHx8UhLS4O/v7/qvAsXLmDq1Kk4evSoaLGQ7VGqD8HW2ooNsBKSiIiIiIiIiIyPSchbTp06hTvvvBNXrlwR7TEOHDiAd999V3W7S5cu+OOPP/Drr79iyZIl+Oeff/Dpp5/Cy8sLAFBeXo6HHnpIq2KSqLkUGknILhqVkHJBgj0BsSaMiIiIiIiIiIhsAZOQAFavXo2JEyciLy9P1Md56623IJfLAQBt27bFokWLEB4erjouCAIGDRqExYsXw8XFBQBw+fJl/Pe//xU1LrIdinqlkFKFHJ0vn1E7fswnDKX27EVKRERERERERMZl00nIvLw8PPvss3jmmWdErzY8ePAgDhw4oLo9d+5cODo66jw3ISEBDz/8sOr2f//7X1Xykqgl/vNHXeVj26uZcKmuUDu+i/0giYiIiIiIiEgENpuE/OKLLzBkyBCsWrVKtRYdHY2ZM2eK8nhr165VfR0TE4MOHTo0ev748eMhk9XMDbp+/Tp27dolSlxkW77ccVH1dc/sY1rHdwXFmTIcIiIiIiIiIrIRNpuE/Oqrr1BWVqa6PWHCBCxfvhwRERGiPN727dtVX/fo0aPJ8z08PJCcnKy6/ffff4sSF9muHjqSkP+GtDVDJERERERERETU2snMHYC5JScn49lnn0VaWppoj1FVVYVz586pbrdtq1+ip02bNqot3IcPHxYjNLJVSiUyNJKQVx3dcMI71EwBEREREREREVFrZrNJyLS0NIwbNw79+/eHIAiiPlZWVhaqqqpUt/WttgwNrUsIZWZmGj0usi2lFdWqryOK8hFack3t+JaQJEDk3wUiIiIiIiIisk02m4ScN2+eyR7rypUrarf9/Pz0ul/9865duwaFQgGJxDw76Kurq5s+yYJpDvaxxUE/I77aqfpaswoSALaGJOm8n73E+v/9iQA+DxARnweIiM8DRMTnAXOy2SSkKRUWFqrddnd31+t+bm5uqq+VSiWKiorg6elpzND08v/t3XmAzdXj//HXrGbMMIx932esiXwQSsmaLBE+tlB9QyF8KtEnfT6ypFCiKCmp7HspyocsCWVJ1slYZ8IwDMaY/f7+8PNu3nNnvXPv3Dszz8df73Pu+33OmcHbe15z3uckJyfr999/z/V+HenIkSPOHkKuuh6bpO2nrxnlh8KOWp2zs6J1CFnK112xf53S7xeZIYn8p6DdBwBY4z4AgPsAAO4DuYcQMhfExcWZyj4+Plm6zsvLK8N2gKy6FpdsKrcMP24qx3h662Dp6qa6hiW99fIDReXOK9oAAAAAACCHCCFzQepXWbP6SrWnp/mPhynCsJXF8vdxiZibqnvtgunzPeWCleDxd+j9WpMA9azll1vDAwAAAAAA+RwhZC5IHTomJyenc6ZZ6vAy9czI3OLu7q4GDRo4pW97SUpKMk2xrl+/vjw8PJw4otyVFHZD0t21SVv+lfl6kBUqVlDDhlnbQAnIKwr6fQAA9wEA3AcAcB+w1R9//JHlPCs9hJC5wNfX11SOi4uTt7d3ptfFx8ebyoUKFbLruLIj9azMvM7DwyPffU0ZWXXksnH8UJh1CLkzVQjp5lawvj8omArafQCANe4DALgPAOA+kHucs9VyARMQEGAqR0dHZ+m6lOd5enqaNqoBsuODnWeM41apdsZOcnPXnvLBpjqLLAIAAAAAALAXQshcUKZMGVP56tWrWbruypUrxnFgYKDc2CAENkhOtig+6e6U6cIJsWocEWr6/GDp6or2Lmyqs5BBAgAAAAAAOyKEzAXly5c3red44cKFDM7+W1hYmHFctWpVew8LBcTe89eN42YXT8or2bzB0c8V6lhdU6mYr1UdAAAAAACArQghc4GXl5eCgoKM8vHjx7N0Xcrz6tSxDoqArBi9/qhx3Crc+u/ezgr1TOUAH0+1Dy7l8HEBAAAAAICCgxAylzRr1sw43r17d6bnR0VF6dixv9fua968uUPGhfwrISlZh8Jv6NcLUUZdq7CjVuftSjUTcvPzzeXrxc5gAAAAAADAfgghc0n79u2N4yNHjpi2g0/LihUrlJiYKOnuxjYtWrRw6PiQv1yPiVfrj3ar8Xs7jDqP5CQ9ePGk6byQ4uUV4VfcKPdtVEFNKxcXAAAAAACAPRFC5pJGjRqpXr2/X3sdP358urtkHz9+XPPmzTPKvXv3lo+Pj8PHiPxj5eGL2nPuuqnu/ojT8k+INdXtqlDXVH6maSWHjw0AAAAAABQ8hJB20KZNGwUHBys4OFht2rRJ97xx48YZO1yHhIRo4MCBOnHihPG5xWLRDz/8oMGDBysmJkaSVKpUKQ0dOtSxXwDynWGrDlvVPZzmq9jmEPLh6iUcNiYAAAAAAFBweTp7AAVJs2bNNGbMGM2aNUuSdOzYMXXr1k01a9ZUYGCgzp07p8uXLxvn+/j46P3331eRIkWcNWTkI49c+MOqbmeKEPLzPvfLy4PfSwAAAAAAAPsjhMxlQ4cOlZ+fn2bOnGnMdjx16pTVeWXLltWMGTPUpEmT3B4i8iGP5CSrmZAX/EsqtFg5ozzggYq5PSwAAAAAAFBAEEI6wYABA9S2bVutWLFC27dvV1hYmKKjo+Xv76+goCC1bdtWPXv2lL+/v7OHinyi8eVQBcTHmOq2Vm4g/f/lASoX85WHu5szhgYAAAAAAAoAQshUevTooR49emTrmq1bt2a7n7Jly2rUqFEaNWpUtq8FsqvNees1In+qdJ9xTP4IAAAAAAAciQXggAIgrfUgt1VuYBy7k0ICAAAAAAAHIoQE8jmvpAS1Cj9mqgsNKKvzRUsb5dEPVc/tYQEAAAAAgAKEEBLI55pe/FN+iXGmum2V7zOVH6lRIjeHBAAAAAAAChhCSCCfa3PBej3IrZUamMpeHtwKAAAAAACA45A8APlc23OHrOp+ShFCBhb2Us2Sfrk4IgAAAAAAUNAQQgL5WJG4GDW/eNJUd6REZV3yDzTKX/dvLA82pgEAAAAAAA5ECAnkY49c+ENeyUmmui1V7jeVOwSXFgAAAAAAgCMRQgL5WLs0XsX+MVUICQAAAAAA4GiEkEA+lno9yHh3T22vVN85gwEAAAAAAAUWISSQT1W6eUW1r4eb6n6uUEcxXj5OGhEAAAAAACioCCGBfKrduYNWdVuqNDSVu9cvm1vDAQAAAAAABRghJJDPHL10S5LU9tzvVp/9WKWRqfxm+6BcGRMAAAAAACjYPJ09AAA5ExOfqBk/ndaV23F6pmllNXl/hzySk9Q+1UzISJ8iOlC6uqmuYfmA3BwqAAAAAAAooAghgTyu++e/asufVyVJH/58VpLU9GKIAmOjTef9UOV+Jbt75PbwAAAAAAAAeB0byMvORMYYAWRKnc7ut6rbVO0BU3lSx2CHjQsAAAAAACAlQkggDzt2+Vaa9Z1OW4eQm6ua14Mc8o9KDhkTAAAAAABAaoSQQB625c8rVnVlbl/XAxGhprpfy9RUhF9xo1y2SCFVCPB1+PgAAAAAAAAkQkggT1uw57xVXYezB6zqUr+KXdibtSEBAAAAAEDuIYQE8jAvDzeruo5nrEPI71OFkNZXAQAAAAAAOA4hJJCHeXmY/wl7JiWqY6qZkJE+RbSvbC1TnZsbMSQAAAAAAMg9hJBAHpZ6JmSr8GMqFnfbVLepamMlu5tfvyaCBAAAAAAAuYkQEsjDvNzN/4S7hu6zOuebGk2t6txJIQEAAAAAQC4ihATyqFW//6XzUXf+rrBY9MRpcwiZ4O6hTdUaW13L69gAAAAAACA3EUICedAPJyPU+8v9prra18JUM+qSqW5HxXq6WcjP6vpeDcs7dHwAAAAAAAApEUICedDItUes6rL6KrYkvfRQNbuPCQAAAAAAID2EkEAe9OfV21Z1T6QVQlZPO4QMLOxt9zEBAAAAAACkhxASyAfK3L6uFn+dMNUdLVFJZ4qVddKIAAAAAAAA/kYICeQD3U7tlbssproNNZo5aTQAAAAAAABmhJBAPtD91C9WdWtqPeiEkQAAAAAAAFgjhATyuIDYaD12/rCp7nyRktpfpqaTRgQAAAAAAGBGCAnkMYlJyabyE6d/lVdykqluba0HJTe33BwWAAAAAABAugghgTzmy/1hpnL3U3uszuFVbAAAAAAA4EoIIYE8JCEpWc+u+N0oF06IVacz+03nRPgG6OfydXJ7aAAAAAAAAOkihATykKeXHjSVnwj9VYUT4011G2o2U7K7R24OCwAAAAAAIEOEkEAesvzQX6Zy75M7rc5ZEdQywzaGNK1k1zEBAAAAAABkhhASyCMsFoup7B8fo8dTvYp9xbeotlW+L9023N2kIf8ghAQAAAAAALnL09kDAJA1qTJIdQ3dJ5+kBFPdmlotlJTqVez2QaVUv1wRXboZpwEPVFSraiUcPVQAAAAAAAATQkggj0iVQar3iV1W56wINr+K/Umv+zSoSSV5eTDpGQAAAAAAOA8hJJBHxCclG8cBsdHqcO6A6fNLhYtpe8X6RnnRP+/X00149RoAAAAAADgf06OAPOLrA2HG8VMhu1UoKdH0+eqgFqZdsQc0rphrYwMAAAAAAMgIISSQRzy/8rBx3P/4T1afLwt+2FR2d3dz9JAAAAAAAACyhBASyANORNwyjivdvKJHwo6YPj9TtLR+rlDHKHepWybXxgYAAAAAAJAZQkggD5i46aRx3PfEDqvPl9R5RHL7e+bj/RUCcmNYAAAAAAAAWUIICeQBt+L+//qPFosGHNtm9fnXdVqbyknJqffSBgAAAAAAcB5CSMDFzdt9VptPXpEkNbxyRvUjz5s+/61MTZ0oYd4FO9lCCAkAAAAAAFwHISTgwv66EasX1/xhlIcc+Z/VOUtSzYKUpLa1Sjl0XAAAAAAAANlBCAm4qMSkZDWdvdMoeycmWO2KnejmriW1zbti31euqB6tWSI3hggAAAAAAJAlns4eAABrW0KuqP0ne0x1XU7vU4nYW6a6jdWbKMKvuFGe0qm2RrSsJrcUm9QAAAAAAAA4GyEk4GKWHAjTgCUHreqHHNliVfd5/bbG8eROtTX+sVoOHRsAAAAAAIAteB0bcDHzfzlnVVf+VqQ6nDUHk5cLB+i7ak2M8uiHqjl8bAAAAAAAALYghARczK4z16zqhhzdIg9LsqnuqzqPKtHj78nMhb2Z2AwAAAAAAFwTISTg4tyTk/R/hzdb1ad8FRsAAAAAAMCVEUICLiQ52WJV1/HsAVW+ddVUt7NCXR0rWTm3hgUAAAAAAJAjhJCAC1l2KNyqbujvm6zqPrmvQ24MBwAAAAAAwC4IIQEXknpX7Io3r+jxM/tNdZE+RbQqqGVuDgsAAAAAACBHCCEBFzb08GarDWm+qNdGcZ7eThoRAAAAAABA9rGdLuACLBaL4hLNYWOhxHg9f5hXsQEAAAAAQN5HCAk42Y8hV/Ts8kO6dCvOVN/3xA6VunPTVLe5SiOFBFa0auOD7vUdOkYAAAAAAICcIIQEnCgp2aK+X+3XtZgE8wcWi0Ye+Mbq/DmNn7CqG9K0kka0quaoIQIAAAAAAOQYa0ICTnQyIto6gJTUKvyYGl05Y6o7Vaysvq/2gNW5PRuUc9j4AAAAAAAA7IEQEnCihOTkNOvH/rbOqm5uoydkcbP+J2ux2HtUAAAAAAAA9kUICThRWgFi0LUwdQ3dZ6q75eWrRfUeS7sNRwwMAAAAAADAjgghARfzr9/WyT1VtPjpfe11s5BfmudbmAoJAAAAAABcHBvTALkkISlZK37/S+eu31HXumVUv1xRq3PK3L6up49tNdUlurnr/cZd022XCBIAAAAAALg6Qkgglzyz/JC+PhAuSZqyJUTbhreQt4d5MvKoA9+oUFKiqW5p7Yd1oWipdNtlIiQAAAAAAHB1vI4N5ILrMfFGAClJdxKStXDfedM5xWKj9eKhjVbXzmzypMPHBwAAAAAA4EjMhARywaVbcVZ1C/ac14I9fweRLx3YoKLxd0znbKraSIdLV8uw7YrFfOwzSAAAAAAAAAdhJiTgAorExWjUgW+s6ic375PhdbVK+qlR+QBHDQsAAAAAAMAumAkJ5AI3t4w/H3HoWxWPu22q21qpgXZXqGuq+2tiO+27EKUvfr2gMkUK6bU2NeXunknjAAAAAAAATkYICThZQGy0Xv51rVV9WrMgAwt7q2u9supar2xuDA0AAAAAAMAueB0bcLCY+ER9sud8up+//Ns6q1mQu8rX0U+VGpjqPN3d5O3JP1kAAAAAAJD3MBMScLAnF/2qH0OupvlZ6dvX9dKBDVb1b7QaYPUO91f9GjtkfAAAAAAAAI7GtCrAgU5H3k43gJSkCXtXyT8h1lT3Q5X7tT3VLEhJKuztYffxAQAAAAAA5AZCSMCBTkREp/tZjet/adjv31vV/7vVwDTPt1gsdhsXAAAAAABAbiKEBJzk7Z1fyDs50VS3tmZz/Va2VprnE0ECAAAAAIC8ihAScIKHwo6o55+/mOoS3dw1odXT6V7DREgAAAAAAJBXsTENYGcWi0U7TkfqVlySEpKSrT53T07SzJ8+s6r/uGFHnSxRMd12k0khAQAAAABAHkUICdhRcrJFXuO+zXDW4nN//Kgml0+Z6qIK+em/D/bNsG0iSAAAAAAAkFfxOjZgR0OWH8owgCwRc1NTdy22qp/arJeuFg7IsG02pgEAAAAAAHkVISRgJ9di4vXl/rAMz3l75xcKjDXvmH2ieAXNbtwl0/bJIAEAAAAAQF5FCAnYgcViUedP92Z4TusLf+jZIz9a1Y94bJgSPLwy78Pm0QEAAAAAADgXISRgB6eu3tbe81Hpfu6bEKdPfphrVb8s+CFtrdIwS30wExIAAAAAAORVhJCAHczacTrDz/+ze4lqRV001d3wLqyXWz+T5T5ql/a3aWwAAAAAAADORggJ5NDtuER9/Mu5dD9/MPy4xu5fb1X/auvB+qtIiSz10axyMTUoV8TmMQIAAAAAADiTp7MHAORVdxKStPlkhP7359V0z/GPj9GX38+ShyXZVL+tUgN92qB9hu13r19WNUv6qbR/IT3XrLLc3NzsMm4AAAAAAIDcRggJ2CA2IUkPf/iz9ofdyPC82VsXqPqNy6a6GE9vPd/uRVncMp6IPL/nfSpdpFCOxwoAAAAAAOBsvI4NpMNisejIxZs6HXnb6rPvT0RkGkD2Pb5dQ47+z6r+5dbPKLR4+QyvfbtzHQJIAAAAAACQbzATEkhDfGKynvriN317/LLc3KQ32wVrYvsgSdK1mHj1/OK3DK+vHXlBH//4oVX9xmpNNL9hpwyvbVIxQM81q2z74AEAAAAAAFwMISSQhv/9eUXfHr/7GrXFIv3nh5N6Z9spTe5UW14eGa/N6Bd/Ryu/eVv+CbGm+gjfAD3XYaSUztqOT9Yvqy/7NZKvlwfrPwIAAAAAgHyFEBJIw/OrDlvVxSQkaeyGoxle52ZJ1pffzVK9yAum+mS5acDjY3XZr3i61xb18VRhb/5JAgAAAACA/Ic1IYE0xCcmZ35SGqbs+lLdQ/da1b/1YB9tqdoow2v7N65oU58AAAAAAACujhASSIO7e/Zfh3728A96bd9qq/rNVRrpreZ9Mry2ZdXieqh6YLb7BAAAAAAAyAsIIYE0ZDeD7P7nL5q/5SOr+pPFK6jvE68o2d0j3WubViqmH4Y+qEKe6Z8DAAAAAACQlxFCokC5HJOkuYduavT6YzoYfiPd89yzsTHMY+cOacnGGfKwmF/hvubjry5PvqEoH/8Mr3+8Thn5ehFAAgAAAACA/ItdMFBgxCdZ9PyWq/rrdpKkaC0+EKaDY1qrtH8hfbj7jM5fv6NeDcvr0ZolszwTst3Zg1q3fop8khJM9XEenurZdbxOFS+faRsWWWz4agAAAAAAAPIOQkgUGL9ejvv/AeRd0XFJWv77X1pyIEzHLkdLkub/ck7/G/agLkTFZtpe59BftfKbt60CyCQ3d/Xr/LK2V2qQpXElk0ECAAAAAIB8jhASBca60Birun9/f8Kq7vN95zNt67nDmzVvyzyrV7Al6YW2w7S2VossjyvZQgoJAAAAAADyN0JIFAg3YhP0U1jmsxsl6asD4el+5pGcpCm7vtSrv65J8/PhbYdrwX0dszU2MkgAAAAAAJDfEUKiQNhwNCLHbZSKidLXG2eq7fnfrT5LlpuGt8t+AClJtUr65XhsAAAAAAAArowQEgXC/rD0d8LOiidC92nBD3NUJsa6nTgPTw3sNFargltlu93CXh7qWq9MjsYGAAAAAADg6gghUSCE38zaq9iplY2+pnd2fK4Bx7en+fn1Qn56stvr2lGpfrbbblurpN5oF6Tihb1tGhsAAAAAAEBeQQiJAmH90cvZOr9IXIxGHvxWr/66WkXj76R5zuGSVdSj2wSdLlYu2+PpXr+s1gz+R7avAwAAAAAAyIsIIYEUKt28oucPb9aw379Xidhb6Z63uO6jeqHtcMV4+djUzzNNK9s6RAAAAAAAgDyHEBIFm8Wi4Gvhanv+kLqf2qNHLhyRhyU53dMjfYpoWLsXtDqopc1dLu7bSE/UZR1IAAAAAABQcBBComCwWNT84kl1OHtARePvqHjsLdWIuqS6kRcynPGY0qJ6bTT+oUG67Fc8W113qVtG1UoUVqfapdUhuLQtowcAAAAAAMjTCCFRIIzZv14zt39m07U7K9TV+Iee1u4KdbN8zchW1XTpZqyealhevRqWt6lfAAAAAACA/IIQEgXCmP3rs33NlsoNNb1pT/2vckPJzS1b187unv3dsgEAAAAAAPIrQkgUCNd8/FUxOjLT80IDympNrQf1aYP2+jOwgk19fd7nfpuuAwAAAAAAyK8IIVEgDG33ojasm6xSd24adbEeXjodUFa/l6qqX8rX0fZK9fRHyarZnvWY2j8b8fo1AAAAAABASoSQKBD2lq+tssMXq9b1v5To7qFb3r666ltUFjd3u/dVyNPD7m0CAAAAAADkZYSQKDAsbu4KCazo0D5qlCjs0PYBAAAAAADyIvtPAwMKsCmd6jh7CAAAAAAAAC6HmZCAHTQoV0RL+z+gumWLOHsoAAAAAAAALocQErCD/aMflqcHE4sBAAAAAADSQmoC2AEBJAAAAAAAQPpIToAcqlTMx9lDAAAAAAAAcGmEkEA2vPNEXQ18wLzD9vAWVZ0zGAAAAAAAgDyCNSGBbHj5kRqKS0xSjRJ+OhAepUdrltTIltWcPSwAAAAAAACXRggJZFHD8kUlSYU8PTSxfZCTRwMAAAAAAJB38Do2kI7CXh6m8lf9GjtpJAAAAAAAAHkbISQKhH6Nymf7mmUDH1CV4r4q7e+tD7rXV72yRRwwMgAAAAAAgPyP17FRIIxoUUXr/riomESLUVfKz1tXbseneX6Aj6eeqFtGT9Qtk1tDBAAAAAAAyLcIIVEgNKlUTCs7l9b+iDhVK+qpPo/+Qx4eHqr/7k86HhFtdf4zTSs7YZQAAAAAAAD5EyEkCozShT3UqWpho+zm5qZNzzfXf38I0fnrMTofdUdVivuqRdVATXislhNHCgAAAAAAkL8QQqJAq1TMV5/2bujsYQAAAAAAAORrbEwDAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEMRQgIAAAAAAABwKEJIAAAAAAAAAA5FCAkAAAAAAADAoQghAQAAAAAAADgUISQAAAAAAAAAhyKEBAAAAAAAAOBQhJAAAAAAAAAAHIoQEgAAAAAAAIBDEUICAAAAAAAAcChCSAAAAAAAAAAORQgJAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FBuFovF4uxBwPXs37/fVHZ3z/t5dXJysnGcH74eANnHfQAA9wEA3AcAcB/IvpTfM0l64IEHst2Gp70Gg/wt9V+2vC6/fT0Aso/7AADuAwC4DwDgPpB7iHsBAAAAAAAAOBQzIZElTE8GAAAAAAAomOwxY5Q1IQEAAAAAAAA4FNPbAAAAAAAAADgUISQAAAAAAAAAhyKEBAAAAAAAAOBQhJAAAAAAAAAAHIoQEgAAAAAAAIBDEUICAAAAAAAAcChCSAAAAAAAAAAORQgJAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEMRQgIAAAAAAABwKEJIAAAAAAAAAA5FCAkAAAAAAADAoTydPQAgM6GhoVq2bJn27t2rsLAwJSYmqnTp0goKClKXLl3Url07eXra/6/yxYsXtWzZMu3atUvnzp1TbGysSpUqperVq+vxxx/X448/Ll9fX7v3C8Babt8H/vjjDz311FPZvu7rr79WkyZN7DYOABmbPXu2PvroI1WoUEFbt251SB88DwCuzZH3AZ4HANezd+9ebdy4UQcPHlRERISio6Pl7++vcuXKqUmTJurRo4fq1q1r936vXbumlStX6qefftLp06d1+/ZtBQYGqnLlyurQoYO6du2qgIAAu/eb37hZLBaLswcBpGfOnDmaP3++EhMT0z2nfv36evfdd1W9enW79bts2TK9/fbbunPnTrrnVK1aVe+8844aNmxot34BWHPGfWDFihV64403sn0dP3QAuefw4cPq16+fEhISHBZC8jwAuDZH3wd4HgBcR1hYmMaNG6fffvst03M7d+6sSZMmyd/f3y59b9myRa+//rqioqLSPadUqVKaMmWKWrdubZc+8ytmQsJlTZ48WV9++aVR9vT0VHBwsHx9fRUaGqrr169Lko4cOaKBAwdqxYoVqlChQo77XbRokaZNm2aU3dzcVKtWLRUrVkxnz55VRESEJOns2bMaNGiQvv76a9WrVy/H/QKw5qz7wPHjx43jKlWqqFKlSlm6jt9+ArnjwoULeuGFF5SQkOCwPngeAFxbbtwHeB4AXMPZs2fVt29fXbt2zajz8vJSUFCQihQposjISJ06dUr35tht3LhRoaGh+vrrr3McRG7atEljx45VUlKSUVetWjWVKlVK4eHhCg8PlyRduXJFw4cP10cffaRHHnkkR33mZ8yEhEvatGmTXnrpJaPcoUMHTZw4USVLlpQkJSQkaM2aNZo2bZoxO6FevXpavXq13NzcbO730KFD6tevn3GD+cc//qGpU6eqcuXKkiSLxaIff/xREydONMKPsmXLatOmTbyKBdiZs+4DkvTPf/5TBw8elCS9/fbbevLJJ3PUHgD7CQkJ0XPPPafLly8bdfaeAcXzAODacuM+IPE8ALiCpKQkde/eXSEhIZIkDw8PDR8+XEOGDDEFjJcvX9asWbO0bt06o65jx46aPXu2zX1fuHBBXbt2VUxMjCQpKChI06dPN73uvWfPHk2YMMEII/38/PT999+rTJkyNvebn7ExDVxOQkKCpk+fbpQfffRRvf/++0bwIN39rUefPn00d+5cYx24o0eP6ttvv81R39OmTTN+4KhXr54+/fRT4wcO6e4siPbt22vRokXy8/OTJF26dElffPFFjvoFYObM+4DFYtHJkyeNcu3atXPUHgD7Wb9+vXr37m0KHhyB5wHAdeXWfYDnAcA1rFmzxgggpbu/EBg5cqTVDMcyZcpo+vTpGjJkiFG3adMmHTp0yOa+33vvPSOArFChgr744gur9SabN2+uJUuWqHTp0pKk27dva+7cuTb3md8RQsLl/Pjjj/rrr78k3X31cuLEiXJ3T/uvaqtWrdSnTx+j/Pnnn9vc7++//266Qb3xxhvy8fFJ89zatWvrxRdfNMpffPGFaXo2gJxx1n1Aks6dO2c8bHh5ealGjRo5ag9Azl2+fFnjxo3Tq6++muH6jPbA8wDgmnLzPiDxPAC4ivXr1xvHrVq1UteuXTM8f+zYsUYgKN19NdsWly9f1ubNm03tBgYGpnlu2bJl9frrrxvlNWvWZLh+ZEFGCAmX89133xnHLVq0UPny5TM8P2X4cPToUV24cCHH/daoUUONGjXK8PynnnrKmH117do17du3z6Z+AVhz1n1AMq//VK1aNXl7e9vcFoCcmzdvnjp27Gh6vap69eoaNmyYQ/rjeQBwPbl9H5B4HgBcQXx8vA4cOGCUn3jiiUyv8fb2VqtWrYzyH3/8YVPfmzdvNjbGLFKkiDp06JDh+e3atTNCysTERG3ZssWmfvM7Qki4FIvFor179xrlli1bZnpNcHCwSpUqZZRtXQvml19+yVa/AQEBql+/vlHetm2bTf0CMHPmfUCSTpw4YRzz6hXgfAsXLjRmI0lSr169tHLlSlWpUsUh/fE8ALie3L4PSDwPAK4gPDxchQoVMspZnZFcrFgx4/je2s3ZlfJ5oGnTpvLy8srwfA8PDz344INGmeeBtBFCwqWEh4fr5s2bRjnlQ31GgoODjWNbftORkJCg06dPG+Ws7m6Z034BWHPWfeCelDMf+KEDcB3169fXl19+qcmTJ+d4p8v08DwAuLbcuA/cw/MA4HzVqlXTwYMH9dtvv2njxo0KCgrK0nX3NomRbN+tPuWasFl9Hkh5r+B5IG2ezh4AkNLZs2dN5ZSLwGekYsWKxvH58+ez3W9YWJgSEhKMclZ/q5rTfgFYc9Z94J6UP3QEBwfrxIkTWr16tfbu3auwsDAlJiaqZMmSatiwoTp16qR27drleDduAOlr2rSpevTooccee8zh/9Z4HgBcU27eB+7heQBwHUWKFFGRIkWydG50dLR+/vlno2zLeq7x8fHG+vSSbc8Dly9fVmxsbLrrShdUhJBwKVeuXDGO3d3dTTvhZiTla5gp27Cl39TtZbXfyMhIJScnp7t5BoCscdZ9QLq7nltERIRR/vTTT02vYtwTHh6u8PBwfffdd6pfv77ee++9LIelALLno48+yrW+eB4AXFNu3gckngeAvGzhwoWKjo42yo8++mi227hy5YosFotRzurzQOqfW65cuaJKlSplu//8jKcjuJQbN24Yx35+fll+gE/5OkbKNmzpV5KKFi2apetS/jbGYrGYXiEFYBtn3Qck86wH6e+1YHx9fVW7dm01bdpUVatWNZ1z5MgR9erVS8eOHbOpTwCug+cBABLPA0BedfjwYS1YsMAoV61aVW3atMl2O/Z4HpDE80AamAkJlxIXF2ccZ2facsrd6uLj43PUb3b6Tr04bep2AGSfs+4DkvUPHf7+/ho7dqy6d+8uPz8/oz4sLEwffPCB1q9fL0mKiorSCy+8oLVr16p48eI29Q3A+XgeACDxPADkRWFhYXrhhRdMy6q89tpr8vTMfuyV+v/xlJvjZCTlzyNptQNmQsLFpLxhZOc1ppQ3lsTExGz3m/qarPad+oaWlJSU7b4BmDnrPiCZ16MsXry4Vq1apf79+5t+4JDurvfyzjvvaOTIkUbdxYsXNX/+fJv6BeAaeB4AIPE8AOQ1Fy9e1KBBg0zLqgwePNimV7El6+cBDw+PLF2X+jyeB6wRQsKlpPxHm5ycnOXrUt4kUs9GyIrUP2Rkte/UNydb+gZg5qz7gCRNnjxZ+/bt0+rVq7V06VJVq1Ytw/NffPFFNWrUyCgvX77c5lmYAJyP5wEAEs8DQF4SGhqqvn37KiwszKhr1aqVXn75ZZvbTP08kNUwMfV5PA9YI4SES/H19TWOszN1OeV/8lmdKp1ev9npO/XDhS19AzBz1n3gnoCAANWvXz/THzgkyc3NTQMHDjTKd+7c0f79+23uG4Bz8TwA4B6eBwDXd+DAAfXv318XL1406po3b665c+fmKABM/TyQ1V8q2Poad0FCCAmXEhAQYBzfvn3btCNVRlLuflWsWLEc9Zu6vaz26+npabUQLYDsc9Z9wFaNGzc2lVO+wgUgb+F5AICteB4Actc333yjQYMG6fr160Zd69at9fHHH1uFiNllj+cBKXd/JskrCCHhUsqUKWMcJyUlmW4oGUm59kPJkiVz1K8kXb16Ndv9BgYGys3NLdt9AzBz1n3AViVKlDCVbd2ZG4Dz8TwAwFY8DwC5Z86cOXr55ZdNMxS7du2qjz76KFsbW6anVKlSpleys/o8kPI8Nzc3q/sCCCHhYqpUqWIqX7hwIUvXpVz/ISuvTKRWvnx503RtW/qtWrVqtvsFYM1Z9wFbpX49I/Wi9QDyDp4HANiK5wHA8RISEvTqq69q7ty5pvqhQ4fqnXfesWkn7LR4e3urXLlyRvn8+fNZui7lc0P58uWtdssGISRcTIUKFUxTlo8fP56l606cOGEc165dO9v9enl5KSgoKNv9pjyvTp062e4XgDVn3QfCw8P17rvvavz48Xr++edN7WUkdUiR8oEFQN7C8wAAngcA1xQfH68RI0Zo/fr1Rp2np6cmT56ssWPH2v0thPr16xvHWb0P8DyQOUJIuJxmzZoZx7t37870/BMnTpimPTdv3jxX+o2KitKxY8dy3C8Aa864D1gsFn366adas2aNtm/frl27dmXpup07dxrHbm5uVmtCAchbeB4ACjaeBwDXk5iYqFGjRumnn34y6vz8/PTxxx+rV69eDumzadOmxvHevXuVnJyc4flJSUnau3evUeZ5IG2EkHA57du3N463bdumy5cvZ3j+0qVLjeMaNWooODg4x/0eOXJER44cyfD8FStWKDExUdLdhWtbtGhhU78ArDnjPlCxYkVVqFDBKK9Zs0ZJSUkZXhMdHa2vvvrKKLdq1UqBgYHZ7huA6+B5ACjYeB4AXM+7776rbdu2GeXAwEB9+eWXatWqlcP6bNu2rTw8PCTdXevxxx9/zPD8zZs369q1a5LuztBM+TyBvxFCwuW0b99epUuXlnR3yvVrr71mPNyntnPnTq1cudIoDxw40OZ+GzVqpHr16hnl8ePHp7sL1vHjxzVv3jyj3Lt3b7ssgAvgLmfdB5566injODQ0VPPnz0/33ISEBL322mtGQOrm5qZhw4bZ3DcA18DzAACeBwDXsX37dn3xxRdGOSAgQIsXLzb9X+0IZcuW1WOPPWaUp0yZku7EiIsXL2rq1KlGuX379lab3eEuQki4HG9vb40dO9Yo7969W//3f/9nWmclMTFRK1as0MiRI43fTAYFBaU7FbtNmzYKDg5WcHCw2rRpk27f48aNM9aSCAkJ0cCBA03rP1gsFv3www8aPHiwYmJiJN3dOWvo0KG2f8EArDjrPjBkyBDT7IcPPvhAkydPttqh+/jx4xoyZIjpN6IDBgxQkyZNsv/FAsg1PA8A4HkAyDuSkpI0ZcoUWSwWSXdD/pkzZ6pWrVo5anfgwIHGfSCjN6jGjBmjQoUKSZIuX76sfv36ad++faZz9u7dq/79++vKlSuSpMKFC5t+joGZfbYOAuzsySef1MGDB7V8+XJJdwOI9u3bKzg4WP7+/goNDTWmOktSsWLFNHv27BzvhtWsWTONGTNGs2bNkiQdO3ZM3bp1U82aNRUYGKhz586Zfvvh4+Oj999/X0WKFMlRvwCsOeM+4Ovrq48//lgDBgxQVFSUJOnLL7/UsmXLFBQUJH9/f128eNFqh7wnnnhC48ePt7lfAK6F5wGgYON5AHANmzZt0rlz54yyr6+vFi1apEWLFmW5jZIlS2r69Ok29V+9enVNnjxZ48aNU3JyssLCwjRw4EBVrlxZZcuW1cWLF02TJNzd3TVlyhRVqlTJpv4KAkJIuKz//ve/Kl68uBYuXKiEhAQlJyenuUtljRo1NHv2bFWvXt0u/Q4dOlR+fn6aOXOmMbvh1KlTVueVLVtWM2bM4DedgAM54z5Qq1YtrVq1Sq+88ooOHjwo6e6rVkePHrU618fHR8OGDdPzzz9vrBkDIH/geQAo2HgeAJxv06ZNpnJMTEyWN4u6J+WsZlt07dpV3t7eevPNN41fSpw/f97qlxABAQF666231KFDhxz1l98RQsJlubm5acyYMeratatWrVqlXbt26dKlS7pz544CAgJUp04ddezY0bgp2NOAAQPUtm1brVixQtu3b1dYWJiio6Pl7++voKAgtW3bVj179pS/v79d+wVg5qz7QKVKlbRs2TL9/PPP+vbbb3Xo0CFFREQoLi5OgYGBqlSpklq3bq0uXbqoXLlydusXgGvheQAo2HgeAJzr9OnTzh6CJKljx45q3ry5Vq5cqa1bt+rcuXO6ceOGChcurBo1aqh169bq06cPG1JlgZvl3sv1AAAAAAAAAOAAbEwDAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEN5OnsAAAAArqBNmzYKDw/PcTuLFy9Ws2bN7DAiIPfExcXpqaeeUkhIiAYNGqQJEyYYn+3du1dPP/20UT558mSO+goODjaOR4wYoZEjR2a7jTlz5mju3Ll2G1NmRo0apc2bN6t58+b6/PPP5e7OXA4AALKL/z0BAACAAm7atGkKCQlRyZIlNWrUKGcPx+WMGzdOPj4+2rNnjz799FNnDwcAgDyJmZAAAACplC5dWkFBQTZdGxAQYOfRAI61Y8cOLV26VJI0evRo+fv7O3lErqdChQoaMmSI5s2bp9mzZ+vhhx9W7dq1nT0sAADyFEJIAACAVFq2bKm3337b2cMAHC42NlaTJk2SJAUFBalnz55OHpHrev7557Vy5UpdvXpVb775ppYuXcpr2QAAZAP/awIAAAAF1Mcff6wLFy5IksaMGUOoloHChQtr2LBhkqRDhw5p1apVTh4RAAB5C08ZAAAAQAEUGRmpRYsWSZJq1qypNm3aOHdAeUDv3r1VrFgxSdLcuXMVFxfn3AEBAJCHEEICAAAABdAnn3yimJgYSXfDNWSuUKFC6t69uyTp8uXLxlqaAAAgc6wJCQAA4ECvvfaa1q5dK0maP3++WrdurcWLF2v58uUKCwtT0aJFVb16dXXs2FH9+/e3uv727dtat26dtm/frj///FORkZHy9vZWqVKl1KRJE3Xq1EktWrTI1ph++eUXrV69WgcOHFBERIT8/PxUuXJlderUSb1795a/v7+++uorvfXWW5KkESNGaOTIkaY21qxZo/Hjx0u6u2nH1q1bM+23TZs2Cg8Pl3R3N+YePXpkeH54eLjWrl2rXbt2KSwsTFFRUfL391f58uXVokULPfnkk6pRo0aGbcyZM0dz586VJL3xxhsaMGCA4uPjtX79em3atEmhoaG6evWqihQpomrVqqlNmzbq06ePihQpkunXc8++ffv07bff6sCBAwoPD1dCQoICAgIUFBSk1q1bq0ePHipatKjpmkmTJunrr7+WdHczo127dsnb2zvTvr744gtNnTpVklS1alVt3rw5y+NMKTo6WitXrpRkDtZyIikpSWPGjDGNadCgQZowYUKO286ulH/utsjo72fv3r2NGaSLFy/W008/zWvsAABkASEkAABALvr3v/+t1atXG+WrV6/q6tWrCg4Otjp3w4YNevvttxUZGWmqj4uL061bt3T69GmtWLFCzZs31/Tp01W2bNkM+46MjNS4ceO0c+dOU31UVJSioqJ0+PBhLVmyRB988EEOvsKcS0pK0vvvv69FixYpPj7e9Nn169d1/fp1HT16VJ999pl69+6tCRMmZCnAk6QTJ07oX//6l06dOmWqv3btmq5du6b9+/dr4cKFmjFjhlq2bJlhW+fPn9frr7+uffv2WX1278919+7dmj9/viZPnqy2bdsanz/55JNGCHnjxg3t2LHD9Hl61q9fb2rDVuvXr9ft27clSc2aNcvxru4Wi0Xjx483BZCDBw82gur8pEaNGqpZs6ZOnTql8PBwbdu2TY899pizhwUAgMsjhAQAAMgla9euTXfmWteuXU3luXPnas6cOaa68uXLq2LFioqLi1NoaKiio6MlSXv27FGvXr20aNGidGcGRkZGql+/fjp79qxR5+XlpeDgYPn4+OjUqVOKiorShQsX9Oyzz9plZpwt4uPj9cILL5iCUjc3N9WoUUMlS5bUzZs3FRISosTERCUlJWnp0qUKCQnRp59+qsKFC2fY9tmzZzV37lxdv35dklSiRAlVr15dsbGxCg0NNV5NvnbtmoYPH661a9em+/08ceKEBg0apKioKKPOy8tLQUFBKly4sM6ePasrV65Iuhucjho1SrNmzVLHjh0lSQ0aNFBQUJBCQkIk3Q2cMwshQ0NDdfToUUmSu7t7jv6MNmzYYBw/8sgjNrdzz5tvvmkKSIcMGaLXXnstx+3aqnLlymrVqlWWz//ll1+UlJQk6e7M0Lp162Z4/sMPP2wE2Rs2bCCEBAAgCwghAQAAcsm9APLxxx/XiBEjVK5cOZ06dUpbtmzRfffdZ5y3ceNGUwD5wAMPaPz48WrQoIFRFx8fr2+//VbTp09XVFSUIiIiNGLECK1atUp+fn5WfY8fP94UQPbq1Uv/+te/VLx4cUlSQkKC1q5dq2nTpunatWvG66a5bfLkyaYAslevXhoxYoRplueNGze0cOFCLViwQMnJydq/f78mTpyoGTNmZNj2l19+KeluQPXvf/9bDz/8sNzc3CTdfT15zpw5xtcdFxenOXPm6P3337dqJyYmRi+++KIRQHp4eGjYsGEaMmSI6TXuLVu26L///a8iIiKUlJSk119/XQ888IBKlSol6e5MxunTp0uStm3bplu3bmX4Gvi6deuM4xYtWmQ68zU9ERER+v33301t5cS0adO0fPlyo+zsAFKSunXrpm7dumXp3Pfee0+7du0yypMmTVLt2rUzvKZly5b67LPPJEk7d+5UfHx8lmfjAgBQUBFCAgAA5KI2bdpo1qxZRvh13333mQLI6Oho/ec//zHKjz32mD744AN5epof27y9vdWjRw81bNhQffv21Y0bN3T69GktWLBAo0ePNp27e/dubd++3Sg/88wzGjdunOkcLy8v9e7dWzVr1tSgQYOsXoPODb/99pspzHr11Vf17LPPWp0XEBCgsWPHKjg4WGPHjpUkffPNN+rZs6cefPDBDPuoWLGiVqxYYYSv9/j7+2v8+PG6cuWKNm7cKEnavn17muHSokWLFBYWZpRnzJihxx9/3Kqvtm3bqly5curXr59iY2MVHR2tr776SmPGjJF0d/brzJkzlZiYqPj4eG3atEm9evVKc9wWi0XffPONUe7Zs2eGX2dG9u7dK4vFIkny9fVVlSpVbG7r3mvz96T1dysjGzZs0KFDh7Ld7/nz57N9TVrWr1+v+fPnG+VnnnkmSzNM69SpYxzfvn1bhw8fVpMmTewyJgAA8itCSAAAgFTWrl1rbCaTVYsXL1azZs0yPW/48OFGAJmWVatW6ebNm5KkIkWKaOrUqVYBZEo1atTQSy+9pEmTJkmSli5dqmHDhsnHx8c4J+UOvpUqVTJCsLQ0btxYI0aM0KxZszL9Wuxt4cKFxvEDDzyQZgCZUufOnfXDDz9o06ZNkqTPPvss0xBy1KhRVgFkSn379jVCyJiYGF24cMH0SnZycrIpKO3cuXOaAeQ99erVU5cuXYxNYH744Qfj+1+yZEk99NBD2rZtm6S7QWp6IeTevXt18eJFSXdD2KysH5melLMga9asafOmKp988onmzZtnlLMbQEp3w0R7BYrZtX//fv373/82yg8//LBeeeWVLF1bokQJlShRwliv9ffffyeEBAAgE2zjBgAAkEv8/PxUv379DM9JuWbko48+qmLFimXabpcuXeTh4SHp7iYzKWeWJSQkmF417dGjR6avjfbr10++vr6Z9mtPsbGxptews7rpSspZa7/88ovi4uLSPdfd3T3Ttftq1qxpKt+6dctUPnbsmC5dumSU+/btm+kYn376ab3yyiv66KOP9OGHH5o+S/l1/vrrr6a2U0q53mLnzp1z9OpvaGiocVyrVi2b2li8eLFmzpxplG0JIJ0pLCxMI0aMMGb8Vq9eXbNmzcpWIBsUFGQcp97oCAAAWGMmJAAAQCqlS5c2BQxZkZXdhYOCgjIMOeLj43XkyBGjnN6mKKkVLVpUlStX1pkzZyRJBw4cUPPmzSXJtOGKpCzN1ipSpIgaN26sn3/+OUv928Phw4eVkJBglLP6tacMdRMSEvTHH3+k+zVWrFhR/v7+GbZXtGhRUznlmO6N8x4vLy81bNgw0zEGBQWl+/fpXtAcFRWl5ORkffvtt3ruuedM58TGxprC6Zzsii3J9Cp5iRIlsn39ypUrNXXqVKMcFBRkcwA5YsQIjRw5MtvXzZkzR3PnzrWpz+joaA0bNkzXrl2TdPfPfN68eRmux5mWlN+7lN9TAACQNkJIAACAVFq2bKm3337b7u0GBgZm+PmlS5dMazG+9957eu+997Ldz+XLl43j8PBw02dVq1bNUhvBwcG5GkKeO3fOVM7KDMO0REREpPtZVmaV3ptRek9ycrKpfOHCBeO4QoUKOd6MxNvbW126dDE2zdmwYYNVCLllyxbdvn1b0t2ZiynXELXFvd3BJWU7eJOkiRMnGmtKSlJISIg2b96sDh065GhcuSEpKUmjR4/Wn3/+Kenun/d7772X5X8XKaUMtFPukg4AANLG69gAAAC5JLNZeDdu3LBLPynbiY6ONn2W1dApo3UTHeHeOpg5lVEYlHKdTFul/H7aEuClJeXMxpMnTyokJMT0ecpXsXv06JHj/u7cuWMcZ/Z3Mi33gtmUr+y/9dZbdvv760jTpk0zvfb/6quvqlWrVja1lfLPP+VsYwAAkDZmQgIAAOSSzNabS0xMNJUbNGiQpde8U0u5rmGhQoVMn6WcwZaRnM7wy67UX7utwVDp0qXtMZx0ZbSpkK3q1aun4OBgnTx5UtLdDWr+9a9/SZKuXr1qzEj19PRU165dc9xfyq/B1k1p/vnPf6pr167q37+/LBaLrly5omnTpjlkBrG9LFmyxJhxKt0NdAcPHmxzeylnzdr6fQQAoCAhhAQAAHARqdcjfOGFF9SmTZsctZk6xLx165YKFy6c6XWpZ1BmJKvBZkabxqT+2mfPnm3TLD1HSznO1JvW5ESPHj00bdo0SdLGjRuNEPK7775TUlKSpLu7N5csWTLHffn5+RkzRmNjY7N9ff/+/fXGG2/Izc1NvXv3NnYLX7t2rTp37qyHHnoox2O0t59//llTpkwxyvfff7/++9//5qjNlLMf/fz8ctQWAAAFAb+yAwAAcBFlypQxzVK7ePFijtusUqWKqZzVXXzPnz+f4ecpx5l685a0JCcnZ/i6bpkyZUxle3ztjpBynOHh4Vn62iVp+fLl2rFjh86cOZPmNV26dJGnp6fR7vHjxyXdXQ/ynp49e+Zk6IaUa2PaspbhxIkTjT//l19+WaVKlTI+e/PNN431K11FaGioRo8ebcy2LVu2rObOnZvj2b4p/z7bMmMZAICChhASAADARfj7+6tWrVpGec+ePVm6LiEhQRMmTNB7772n5cuXm4LG8uXLq3z58kb5l19+ybQ9i8Wi/fv3Z3hOygAnK6FTeuHbPffff78p2Mzq137q1ClNmDBBH374odatW2fseOwoKXfDvrcbd2YuXLigiRMn6v/+7//UsWNHhYaGWp1TokQJPfzww0Z5y5YtunnzpvHnEBgYqNatW9vhK5AqV65sHP/11185aqto0aKaMGGCUQ4PD9fMmTNz1KY9Xb9+XcOGDTPWHPXx8dGHH35oCk5tlfJ7Z8vGNgAAFDSEkAAAAC7kkUceMY63bt1q2o05PevXr9fq1as1f/58TZw40Srk6tixo3G8Zs2aTF+13rlzp8LCwjI8J+VsupiYmEzDrI0bN2b4eWBgoCng+/rrr7M0y/CTTz7R6tWr9cEHH2jChAlWu1nbW926dU2vRK9cuTLTa1J+7YGBgQoKCkrzvJQzHf/3v/9p+/btxuy9rl27ysvLy9Zhm9SoUcM4Tr0ruS0ef/xxU0C6ZMkS/fbbbzluN6cSEhI0cuRI06zeqVOnqn79+nZpP+X3rnr16nZpEwCA/IwQEgAAwIUMGDDACJsSExM1evToDEPDsLAwzZgxwyiXK1dOjz76qOmcp59+2mgzMjJSEydOTDesi4yM1H/+859MxxkcHGyauZhyw4/UTpw4oYULF2ba5jPPPGMcnzlzRm+99VaG601u3bpVGzZsMMrt27e3y5qJGfH09FTfvn2N8tq1a7Vjx450zw8PDzd97U899VS6m5i0bt1agYGBkqTjx4/r66+/Nj5LuYN2TjVu3Ng4PnnypLHmZE68+eabxlqjFotFr7/+eoZrgOaGiRMn6tdffzXKL774ojp37myXtiMiIhQREWGUmzRpYpd2AQDIzwghAQAAXEiZMmU0evRoo3zkyBH17t1bu3btMgVySUlJ2rBhg/r166fr168b9a+++qrVWnflypXTyy+/bJQ3btyoYcOGWc2y3Lt3r/r27avw8PBMx1myZElTmPX555/rk08+UXx8vFEXGxurpUuXqm/fvoqNjTXWPExP+/btTTNBly9frqFDh1qtYxkdHa158+Zp1KhRxvekcOHCGjt2bKbjtofBgwcbr99aLBaNGDFCixYtstrkZffu3Ro4cKDxKnCpUqX03HPPpduul5eXnnjiCaN88OBBSXd3z65du7bdxt+0aVMjQI6NjdWJEydy3GaFChU0cuRIo3z27FnNmTMnx+3aasGCBVqzZo1R7tatm0aNGmW39g8fPmwcFytWTHXq1LFb2wAA5Ffsjg0AAOBinnvuOZ05c0arVq2SdHdjjWeffVYlSpRQtWrVFB8fr3Pnzllt9PL888/r8ccfT7PNwYMH6/Tp08ZOxtu3b9eOHTtUq1YtFS9eXGFhYUb46O3trYCAAF25ciXDcY4dO1ZPP/20kpKSZLFYNHPmTC1YsEA1atRQQkKCzpw5Y6wXWbduXd1///1asmRJuu25ubnpnXfe0ZAhQ3T06FFjnNu3b1flypVVtmxZRUVF6fz586bAz8vLSzNmzDCtdehI/v7++uCDDzRkyBBFRkYqLi5O06ZN0+zZsxUUFKRChQrp3LlzunTpknGNr6+v3n///Uw3MOnZs6cWL15squvRo4ddx1+sWDE1adLEmCW4a9cu1atXL8ftDho0SN98842OHTsmSfrss8/UqVMnu7SdHSdPntSsWbOMsqenpzw8PDR27FjFxsYqMTExS7M/M5q9u3PnTuO4TZs26c5uBQAAfyOEBAAAcEFTpkxRcHCw5syZY8yki4yMVGRkpNW5/v7+euWVV/TPf/4zwzYnTZqkihUr6sMPP1RsbKwsFotCQkJM5xQrVkzTp0/XwoULMw0hmzRpolmzZumNN94wxnjz5k1jBt89jzzyiKZNm6bPPvss0687ICBAS5Ys0dSpU7Vq1SojLDp//nyaO3ZXqVJFU6dOzfXXYYODg7VixQq9+uqrxuYxMTExOnTokNW5VatW1YwZM9SgQYNM261du7bq1Klj7I7t7e1tmh1pL926dTNCyJ9++klDhw7NcZseHh6aNGmSevfureTkZCUlJWnChAlavXp1prNg7SkqKsq03EBiYqJpVqQ9pAwh7fmqPAAA+RkhJAAAgIt6+umn1b17d61bt04///yzQkJCdO3aNSUnJysgIEDBwcF66KGH1K1bNxUvXjxLbT7//PPq3LmzVqxYoZ9++knh4eFKSkpSxYoV1a5dO/Xv318lSpTI0hqO0t1Nb5o2barly5dr27ZtOnfunGJiYlSqVCk1aNBA3bt3t1qjMjM+Pj6aNGmSnn32Wa1fv1579uzR+fPnFRUVJU9PT5UsWVL16tVTu3bt1L59e6vXz3NLxYoVtWTJEu3cuVObNm3S/v37deXKFcXFxal48eKqV6+eOnTooM6dO2drjO3atTNCyDZt2pg2AbKXTp06afr06bp165YOHjyo8PBwVahQIcftNmjQQAMGDDBmc544cUKffPKJXnjhhRy37Sr2799vzBquVq2a/vGPfzh5RAAA5A1uloxW+wYAAECBNHDgQO3bt0+SNGLECNN6f3Cs5557zphpt3DhQrVq1coh/bz77rv69NNPJUmjR4/W8OHDHdJPfjNx4kRjWYPJkyerV69eTh4RAAB5A4uXAAAAAC4iIiJCu3fvliRVqlRJLVu2dFhfgwcPlq+vryRp2bJlSkxMdFhf+UVUVJSxI3u5cuXUrVs3J48IAIC8gxASAAAAcBHLli0z1sHs27evsYu1I5QqVUqDBw+WJF26dEnff/+9w/rKL1asWKE7d+5Ikl566SWnLQUAAEBeRAgJAAAAuICtW7dqwYIFku5u0NOnTx+H9/ncc8+pdOnSkqSPPvooS7tGF1TR0dHG5kr16tVjFiQAANlECAkAAAA4wXfffacuXbpo0KBB6tChg4YPH674+HhJ0quvvip/f3+Hj8Hf319vvvmmJOn06dNat26dw/vMqxYtWqTr16/Lw8NDb731ltzd+VEKAIDs4H9OAAAAwAkqVqyokJAQ7dmzR2fPnjXq+/Tpo6eeeirXxtG2bVtjVt/777+v6OjoXOs7r7h06ZKxY/zQoUNVr149J48IAIC8hxASAAAAcIJq1aqpYcOGKly4sPz8/NSwYUNNnz5dkyZNyvWx/Oc//1GNGjUUERGhOXPm5Hr/rm7q1KmKiYlR06ZNNWLECGcPBwCAPMnNYrFYnD0IAAAAAAAAAPkXMyEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEMRQgIAAAAAAABwKEJIAAAAAAAAAA5FCAkAAAAAAADAoQghAQAAAAAAADgUISQAAAAAAAAAhyKEBAAAAAAAAOBQhJAAAAAAAAAAHIoQEgAAAAAAAIBD/T/jAgsX9hP/ogAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 300\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime, limit_k=250)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAAPoCAYAAADOflDyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZzT1P7/8XeHYWQHuYwg7oCALCIuyEV/XPVy0cvVe6+CuKLcK9cF71fFBVxREUEQubgBLijIIgIi4i4oiqiIyi6b7CAwDDszMMzW3x9xSjvTmaZt0iTt6/l48KDpJOd8miYnyafJOT6/3+8XAAAAAAAAANggzekAAAAAAAAAACQvEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA26Ymq6Pnnn9fIkSN1wgkn6Msvv0xUtZo2bZoeeeQRSdLq1aujXn7p0qWaOnWqfvzxR2VlZcnv96t+/fpq2bKl/vGPf6hjx47y+Xymy/P7/Zo9e7ZmzpypZcuWaffu3apatarq16+v9u3bq2vXrmrevHnUcQIAAAAAAABu5PP7/X67K1m6dKmuv/56FRQUJDQBuXXrVl155ZU6cOCApOgSkAUFBXrqqaf0zjvvVDjfhRdeqMGDB+u4446LWGZWVpb69Omjn3/+udx5fD6fevbsqXvvvVcZGRmm4wUAAAAAAADcyPYE5JYtW3TdddcpOztbkhKWgNyzZ49uvPFGrVu3LvCe2QSk3+/Xf//7X82ePTvw3jHHHKNmzZqpUqVK+vXXX5WTkxP4W6NGjfTOO++oVq1aFcZzzTXXaPPmzYH36tSpoyZNmujw4cNavXq1CgsLA3/729/+puHDh5uK12qlE6RpaTypDwAAAAAAkIqKi4tDps8555yoy7D1Eew1a9aoV69egeRjomzfvl233nprSPIxGm+88UZI8vH666/Xvffeq5o1a0qS8vLyNHbsWL344osqLCzU+vXr9fDDD+ull14qt8yHHnookHw85phj9NBDD+nqq69WerrxFWRnZ2vQoEH6+OOPJUkfffSRzjrrLN10000xfQYrld7QAAAAAAAAALNsu7Xt/fffV/fu3ZWVlWVXFWHNmzdPV155pdasWRPT8nv27NHLL78cmL7uuuv0+OOPB5KPklSlShXdfvvtGjBgQOC9WbNmaeHChWHL/Oabb/TVV18Fpp955hldd911geSjJGVmZup///uf/vnPfwbeGzlyZMidlgAAAAAAAIDXWH4HZFZWloYPH64ZM2ZYXXSFDhw4oJEjR2rcuHFx3bE3bdo05ebmSjIeke7bt2+583bt2lWff/55ILn45ptv6uyzzy4z37hx4wKvL7zwQnXp0qXcMh9//HF988032r17t/bu3av33ntPPXr0iPHTWCMZHsEO3iaS4fMAiB7tAACJtgAA7QAA2oFoWfFkrKUJyFGjRunVV1/VoUOHAu81atRInTt31ujRo62sKsTUqVM1bNgw7du3L/BeZmambr75Zg0bNiyqsj755JPA67/+9a+qVq1ahfNfc801gQTk3LlzdejQoZBl9u/fr++++y4w3bVr1wrLq1atmv7+97/rzTfflCR9+umnCU9ApqWlBTautLQ0tW3bNqH1W62wsFBLliwJTLdu3Trk7lMAyY92AIBEWwCAdgAA7UAsFi1aFJInioWlad4xY8aEJB+vvvpqTZ06VaeccoqV1ZQxYcKEkORjp06d9N577+nMM8+Mqpx9+/Zp5cqVgekLL7ww4jLt27dXpUqVJBl9QwYnGyVpwYIFKioqkmSMcH3BBRdELDN4noULF2r//v2m4gcAAAAAAADcxpb7TFu1aqXx48dr4MCBqlGjhh1VhHXqqafqpZde0ssvv6zMzMyol1+9erWCBwVv2bJlxGWqVaumk08+OTC9bNmykL+vWrUq8PrEE09U7dq1I5bZvHnzwOvi4mL98ssvEZcBAAAAAAAA3MjSe0zbtWunq666Sn/+85/l8/msLLpCLVq00L/+9S9dfvnlcd02u3HjxsDrjIwMHX/88aaWO/HEE7VhwwZJCox0Ha5Ms3eCZmZmqkqVKsrLy5Mkbdq0SR06dDC1LAAAAAAAAOAmliYgR44caWVxpg0ePNiScrKzswOvo7mDMnje4DIkaefOnTGV+Yc//EG//fZb2DIBAAAAAAAAr6CXzSDB/UjWrFnT9HLBj5mX7q8xeDqaMoPnPXDggOnl7FBYWOho/fEq6YOzvGkAyY92AIBEWwCAdgAA7YBTSEAGyc/PD7yuUqWK6eUyMjLCliFJR44cibvM4DISrbi4OGR0qGSwfPlyp0MA4DDaAQASbQEA2gEAtAOJYssgNF5VUFAQeB3NsOLB/U6WvlsweDqaMktG1g5XJgAAAAAAAOAVJCCDBCf9iouLTS8XnCCsXLmyJWUG3wJcukwAAAAAAADAK3gEO0jwI9LRPPYcPO8xxxxje5mJlJaWptatWztWvxWKiopCbqlu1apVSGIYQPKjHQAg0RYAoB0AQDsQi2XLlkV1U104JCCD1KlTJ/A6JyfH9HK5ublhy5Ck2rVrx1Rm8Lyly0y04EfMk0GlSpWS7jMBiA7tAACJtgAA7QAA2oFE4RHsIPXr1w+83r17t+nlsrOzA6/r1atnSZnB82ZmZppeDgAAAAAAAHATEpBBTjnllMDrQ4cOadeuXaaW27JlS+D1aaedFvK3U089NfB68+bNpsrbuXOn8vLywpYBAAAAAAAAeAkJyCAtWrSQz+cLTK9cuTLiMrm5uSGJxebNm4f8vWXLloHXmzZt0uHDhyOWGVyvz+dTs2bNIi4DAAAAAAAAuBEJyCA1atRQixYtAtPfffddxGXmz58f6IizUqVKateuXcjfzznnnEBfAkVFRfrhhx8ilhlcb4sWLUL6kQQAAAAAAAC8hARkKZdeemng9cyZMyPesfj2228HXnfo0EG1atUK+XutWrXUvn37wPTkyZMrLC83N1czZ84MTF922WWm4gYAAAAAAADciARkKV27dlXVqlUlSbt27dKAAQPKnXfq1Kn65ptvAtM33XRT2PluuOGGwOs5c+Zo+vTp5Zb5xBNPaM+ePZKkatWqqVu3blHFDwAAAAAAALiJaxOQl1xyiZo1a6ZmzZrpkksuSVi99erVU69evQLT06dP13333RcyKnVeXp5Gjx6txx9/PPBex44d1bFjx7BlXnLJJTr//PMD04899pheeeUVHTlyJPDerl271KdPn5C7H3v37q26deta8rkAAAAAAAAAJ6Q7HYAb3X777Vq2bJm++uorSdKHH36ozz77TM2aNVNGRoZ+/fVXHTx4MDD/iSeeqCFDhlRY5rPPPqsbbrhBW7ZsUWFhoYYPH67XXntNp59+uvLz87V69WoVFBQE5r/44ot1yy232PL5AAAAAAAAgERx7R2QTkpPT9eLL76obt26BUbFLigo0PLly7Vw4cKQ5GPbtm01adKkiHcq1q9fX+PHj9fZZ58deO/gwYNauHChli9fHpJ87Natm1544QWlpfH1AAAAAAAAwNu4A7IcGRkZevrpp3XNNdfovffe0/z585WVlaX8/HzVrVtXZ555pi6//HJ17tzZdKLw+OOP16RJkzRr1ix9/PHHWrp0qXbt2qW0tDTVr19f55xzjrp3766zzjrL3g8HAAAAAAAAJEhCEpBXXXWVrrrqqqiW+fLLL+Ou9/zzz9fq1avjKuPMM8/UmWeeGXcsJXw+nzp37qzOnTtbViYAAAAAAADgVjzjCwAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAADAXfLypKwsKT/f6UhgARKQAAAAAAAAcI8lS6QWLaQGDaSzz5Z+/dXpiBAnEpAAAAAAAABwjwEDpA0bjNe//CING+ZsPIgbCUgAAAAAAAC4x/TpodOvvupMHLAMCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAALzl55+liROldeucjgQmkIAEAAAAzMjPl3bulI4ccToSAABS29ixUrt20o03SmedJX37rdMRIQISkAAAAEAka9ZIbdtK9etLLVtKy5Y5HREAAKnr3nul4mLjdU6O9OSTzsaDiEhAAgAAAJEMHSqtWGG8XrdOeuopZ+MBACCV7d0bOj1rljNxwDQSkAAAAEAkY8aETk+d6kwcAAAAHkQCEgAAAAAAAIBtSEACAAAAgJstWSK9+660ZYvTkQAAEBMSkAAAAADgVuPGSeecI3XrJp15pvTTT05HBABA1EhAAgAAAIBb9e0rFRUZr/ftkwYPdjQcAABiQQISAAAAANxq587Q6enTnYkDAIA4kIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAADAy4qLpRdekG69VZo61eloAAAAgDJIQAIAAHjZww9Ld98tvfaa1L27NGGC0xEB5i1aJL35prR0qdORAAAAG5GABAAA8LIhQ0Kn//1vZ+IAojVtmtSunbHNnnuu9MEHTkcEAABsQgISAAAgmRQUOB0BYM7990uFhcbrggKpXz9n4wEAALYhAQkAAAAg8TZtCp1eudKZOAAAgO1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAD8/LP0t79JXboYrwEAAAAAlkl3OgAAABx18KB04YVSXp4xPWeOlJUl1arlbFwAAAAAkCS4AxIAkNpeeulo8lEyXr/wgnPxAAAAAECSIQEJAEhtCxaUfe/HHxMfBwAAAAAkKRKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQCpze93OgIAAAAASGokIAEA8IodO6SPP5ZWr3Y6EgAAAAAwjQQkACC1+XxOR2DOokVS69bS3/4mnXmm9M47TkcEAAAAAKaQgAQAwAuGDZN27TJe5+dLjzzibDwAAAAAYBIJSACA/fx+aexY6aabjERaUZHTEXnPpEmh0+vWORMHgORXVCQVFDgdBQAASCLpTgcAAEgBr78u3Xrr0eldu6RnnnEuHgBAeJ9+KvXoYbTTN90kjR4tVa3qdFQAAMDjuAMSAGC/4OSjJA0Z4kwcAIDy+f1Ge13S3cNbb0nvv+9sTAAAICmQgAQAAAAgLVwobdkS+t511zkTCwAASCokIAHATn6/9NRTUuXKUs2a0vjxTkcEALDK9ddLF1+cPG17Xp7TEQAAgCRFAhIA7LRkidS/v1RYKOXkSL16SQcOOB0VAMAKb78tffWV0Vfi7NlORwMAAOBaJCABwE59+oRO5+dLr77qTCzJbNMm6ZtvpL17nY4EQKq6/XanIwAAAHAtEpAAYKetW8u+R5LMWtOnS2ecIXXsKJ15prRypdMRAUhF69Y5HQEAAIBrpSeqoueff14jR47UCSecoC+//NKWOrZv367Jkydr3rx52rRpk/Ly8pSZmalGjRqpS5cu6tKli6pWrVru8tOnT9dDDz0UdxyrV68O+/6AAQM0ceLEqMo6+eSTNWvWrLhjApAA+fnSpElSUZHRaX+1ak5HlBoGDJAOHzZeb90qjRwpvfiiszEBAAAAAAISkoBcunSpXnvtNVvrmDx5sp555hkdLrkI/d22bdu0bds2zZs3T6+++qqGDh2qNm3a2BpLeVasWOFIvQASwO+XLrpI+v57Y/p//5MWLXI0pJSxZEno9EsvkYAEAAAAABexPQG5ZcsW9e7dWwUFBbbVMXbsWA0ePDgw7fP5dPrpp6tOnTrauHGjdu7cKUnauHGjbr75Zk2cOFEtW7YsU079+vV14YUXRlV3dnZ2yB2PF1xwQdj5/H5/yHzt2rVTRkZGxPKPO+64qOIB4JCvvjqafJSkX36R3nvPsXAQBb/f6QgAAACA1HHkiPTQQ9KUKdKpp0pvvCE1bep0VLCZrQnINWvWqFevXsrOzratjsWLF2vo0KGB6fPOO0+DBg3SySefLMlI/M2aNUv9+/fX3r17dfjwYfXu3VuffvppmcexL7jggnITiOEcPnxY11xzTWC6cePGev7558POu2nTJh06dEiSVLlyZb3xxhuqXLmy6boAuNxbb5V97+WXEx8HrOHzOR0BACQebR8AIBEmTDCeGJOk336TevWS5s51NibYzrZBaN5//311795dWVlZdlUhSRo8eLCKiookSS1bttTrr78eSD5Kxt2QnTt31tixY1W9enVJ0o4dOzRu3Li4637yyScDdzVWqVJFzz//vGrWrBl23pVBgyI0btyY5COQyrjjzv34jgAAAAB79OoVOv3NN1JurjOxIGEsT0BmZWWpX79+6tu3b5n+GK22ZMkSLV68ODD92GOPqUqVKmHnbd68ue68887A9Lhx4wKJy1h89tlnei/o8coHH3xQp59+ernzr1q1KiQWACmCu0ncj+8IAAAAcFZhodMRwGaWJiBHjRqlyy67TDNmzAi816hRI91+++1WVhPw8ccfB143btxYbdu2rXD+bt26KT3deOp8z549WrBgQUz17t+/X08++WRgul27drr22msrXCb4DkgSkAAAAAAAAEgVliYgx4wZE+jnUJKuvvpqTZ06VaeccoqV1QR8HzTgg5m+G2vXrq1WrVoFpufMmRNTvc8995x2794tScrIyNDAgQPli3AHDQlIwITdu6VrrjE6IP7Pf7gNHwAAAACAJGBLH5CtWrXS+PHjNXDgQNWoUcOOKlRQUKD169cHpsONah1Os2bNAq+XLVsWdb2rV6/W1KlTA9M9e/aMmGDds2dPYCTu0jEACNKvnzES2q+/Sq+/Lg0Z4nREAAAAABLF75dmzjQGeNy/3+loklt+vvTAA9Lxx0vnnSctX+50REhylo6C3a5dO1111VX685//HPGOwHht3bpVBQUFgWmzd1meeOKJgdebN2+Out5hw4apuLhYkpSZmWnq8fLgux8zMzNVs2ZNffLJJ/rkk0+0dOlS7dq1S9WqVdPxxx+vDh066Oqrr1ajRo2ijg3wvDFjQqefekoaMMCZWAAAAAAk1r/+JZUMGHvaadKPP0p/+IOzMSWrKVOkYcOM1zt2GOv+xx+djQlJzdIE5MiRI60srkLZ2dkh05mZmaaWC55v9+7dKi4uVlqauRtBFy5cqLlBQ8PfeuutgZG1KxKcgExPT9fll1+ujRs3hsyzf/9+7d+/X6tWrdK4cePUo0cPPfDAA4E+KwEAAABbMSgXACf99tvR5KMkbdggvfGGcZcerNejR+j0Tz9JWVlS/frOxOP3O1MvEsaz2a39pW7HrlWrlqnlatasGXjt9/t14MAB1alTx9Syo0ePDrxu0KBBxIFnSgQnILdv3x54nZmZqZNOOkl+v18bNmzQvn37JElFRUUaO3as1q5dq9GjR6ty5cqm6rFLocdHoyo92nk8o5/DXuEaJK9sf2nFxWX6tPD/frd06cu54qIiFXvkc1nFzu/WTNkVtQNpfn+Z767Y73fdd+Tl/QP2YtswL55zAjMnzZ5f7wUFCd2e2HbNYT1Zi2sD9/J99pkqlX6zb18V9unjRDhJL2zbkpOTkDtOy23Xgtq2SG1fPG0j7YAzPJuAPHLkSMh0lSpVTC1XOplXupzyrFmzRl9//XVg+l//+pcyMjJMLbtq1aqQ6datW6tfv34677zzAu8VFxdr3rx5GjRokDZs2CBJmjdvnp5++mk98cQTpuqxQ3FxsZYsWeJY/XZYTt8WrnVOmPe8sv2dsnev6pV6Lyc3V5WPHFHp1ilr505t88jnsoqd320sZQe3A43279expf5+YP9+rXPZd+Tl/QP2YtuIXTTnBOHWc2leX+/V165VuKES7fpcbLvmsJ7sxbWBe9TdskWnhXmf7d0e4dqWlStXKv/3G6MSXffy5ctVFHTDWKS2z8q2kXYgMWwZhCYRSme2zT5GXfqRZrOZ7kmTJgVe16hRQ926dTO1XH5+vrZu3RqYvvTSS/X222+HJB8lI/6OHTtq6tSpOuOMMwLvT548uUwCEwAAAAAAIFn46QYk6Xk2AVk64VgyMEwkpROXZh5vPnz4sGbOnBmY7tq1q+nRvTMyMrRo0SLNmTNH48eP15AhQyqss2bNmnruuecCn8/v9+utt94yVRcAbzh+7Fg1+b//UzV+aUMKqf3VV2p8zz06ZcAApe/d63Q4AAAAABLIs49gV61aNWT6yJEjph6Jzs/PD5k+5phjIi7zxRdfKDc3NzDdtWtXk1Ea0tLS1LBhQzVs2NDU/I0bN1aHDh00b948SdK3334bVX1WSktLU+vWrR2r3wpFRUUht1S3atVKlSqV6V0ELtWmTRunQzAl7djSD/Ead0srJyfs/LW//161fv5ZRb/9JpnshzbZ2Pndli67onYgrXbtMsvXql3bE9ueF2KUJH37rdLvvz8w+YesLBX9foyDPTyzbSSY3ecEnl/vQee7wSz9XH6/dOSIVM569/w6TBDWU+y4NnAvXzmPz7K9J84ZZ5whnXKKI3W3btVKCnNeHizStmB2W6EdiN6yZctM3/hXHs8mIGuX2jBzcnJCBpgpT05QMiA9Pd3UMh999FHgdcuWLdWsWbMoIo3N2WefHUhA7tixQ0eOHDGVLLVDso3EXalSpaT7TMnMM99VmG4gfBEeI/Dl5yv9xRelJ5+0KypXs/O7jVR2SDsQ5ntK8/mU5oFtzzP7R1DyUZJ8P/yg9E2bpMaNHQoo+Xlm23CY1ecEnl/v5cRv2ec6fFj6z3+kiROlunXtrSvJsZ6sw7WBi5STAOL7SZz09PRyjwW2112pUsS6I20LsW4rtAOJ4dlHsOuXGhp+165dppbLzs4OvK5bt27EBEFeXp6+++67wHSXLl2iiDJ29eqFDmexLwEdwQJwwIIFTkcAv9/pCJLfTz+VfW/btsTHAaBidve/9d57RvJRkvbssbcuAN6Tyn0Abt8uXXGF8ePsHXdIhw45HRFgOc8mIBs2bBjSl+KWLVtMLRc8IMypp54acf4ffvhBeXl5gem//OUv5oOMQ+nRuatXr56QegEASu0TYACwyw03OB0BALjT3XdLH34orV8vjR4tvfii0xEBlvNsArJy5cpq2rRpYHrlypWmlgueL3i06fLMnz8/8PrUU0/VKVH2hzB79mwNHDhQ9957r/r27Wt6ueCEaq1atUwPegPAZUhkAQAAAKjI1Kmh0w8+6EwcgI08m4CUpPPPPz/wOvgx6fLs27dPK1asCEy3b98+4jILFy4MvD7zzDOjjNBIeI4fP14fffSRZs6cafpR8XlBnfOfc845UdcLwAV4tNe7+O4AAABSx86d0g8/SCav1wFEz9MJyM6dOwdeL1++PGQUo3CmTJmiwsJCScYgNh06dKhw/oKCAv3yyy+B6VatWkUdY7t27QKv/X6/pk2bFnGZzz//XOvXrw9M//3vf4+6XgAJxp2O3sV3BwAAkLrmzpXOOENq315q2VL68UenI3KOkz/Cc06e9DydgGzbtq1atmwZmH7ooYdCRrkOtnLlSo0aNSow3b17d1WpUqXC8tevX6+CgoLAdOvWraOOsV27diF9Tb766qtau3ZthXX2798/MN2oUaOQRCsAAAAAwGNyc43BRdq3l/r2lUr1+Q85l4AaOvTowFg7d0rDhzsTR6rjCaSk59oE5CWXXKJmzZqpWbNmuuSSS8qdr1+/foGRrNesWaMePXpo1apVgb/7/X59/vnn6tmzpw79PpJUZmambrvttogxrFu3LmT6pJNOivpz+Hw+Pfzww4Hp3Nxc3Xjjjfroo49UXFwceL+goEDvvfeerrvuOu3du1eS0c/lkCFDGA4eAAAAALysXz9jcJEffpCefVYaMsTpiFDio49CpydPdiYOIMl5PrN1/vnnq0+fPhr++68UK1as0D/+8Q81adJEdevW1aZNm5SVlRWYv0qVKhoxYoRq1qwZsezgEbMlYzCYWPzpT3/Sfffdp+eee06StHfvXt17770aMGCATj/9dBUWFmrdunU6cOBAYJnKlStrxIgRMfU7CQAAAESNx98A+7z8cuj0449LQU++AUCy83wCUpJuu+02Va9eXc8991zgLsdwjzk3aNBAw4YN07nnnmuq3OABYzIyMnTMMcfEHOOtt96qhg0basCAAdq/f78kY1CcH8P0L9G4cWM9+eSTOu+882KuD4BLcDEHAAAARMYjuEBSS4oEpCTdeOON6tSpk6ZMmaKvv/5aW7duVU5OjmrUqKGmTZuqU6dO6tq1q2rUqGG6zJJkphT73Y/BLr/8cl100UWaMWOG5s6dq1WrVmnfvn2qVKmSMjMz1aJFC3Xu3FmdOnVSRkZG3PUBSKBYT5hIUCJVcZEBwAmHDkmPPiqtWiX99a/Sf//LsRgAgARISALyqquu0lVXXRXVMl9++WXU9TRo0EB33XWX7rrrrqiXDWfgwIEaOHCgJWWVqFGjhm688UbdeOONlpYLwIW4oAEAwF3++1/pzTeN1598IlWrJt1yi7MxATBw7gwkNdcOQgMAnscdXgAAL0mF41ZJ8rFEr17OxAEACJUKx6AURwISAKxQ3i+2HEgBAAAAACmOBCQAAEg8HrMCAABwFyfPzzg3THokIAHASdwh6Ty+AwAwePHib9ky6ayzpGOPlW67TTp82OmIAABAGCQgAcBOXryYs9q+fU5HED2+NwDwhltvlZYsMY41r74qTZjgdEQAACAMEpAAAPs8+qhUt67TUQDu4/dLzz8vnXaadPbZ0g8/OB0R4D0HDkjz54e+d+utzsQCIH78AOw8ngyCjdKdDgAAkKTWrJGeftrpKAB3+vZb6Z57jNcbN0pXXSVt2SKl8dswYFpBgdMRAACsQvIz6XGWCwBOSuZfevv3dzqC2HECZL9UX8d33BE6vW2b9MUXzsTiJt9/L737rrR7t9ORAAAAwEIkIAEA9ti/3+kIzEnmJDDca/nysu/t2pX4ONxk0CCpQwepWzepTRtpwwanIwIi271bWrdOKix0OhIAAFyNBCSA1LRqldSpk9S2rfTGG9yNBQBOys+XHnnk6PRvv0kjRzoXD5zzySdOR2De1KnSKadITZpIF1/MnbsAAFSABCSA1OP3S3/7m/G44+LF0i23SN9953RUAJC6Nm0q+96wYYmPI9W54Y7w0t0TuJXfLz3wgJSba0zPmydNmmR9PTk51pcJuJUb2iA4h+8/6ZGABJB6vv9eWr8+9L3/+z976uJACgCAeeGS0W60cWPZWO+6y/p6uncvv/6JE6UFC6yvEwAAGzAKNoDUs3172fcWLUp8HACA1PPjj9LSpVK7dlLr1k5Hg1gVF9tfx86d5T+S3qaNdOCA8UPnqFHSbbfZHw9gN7pEApIad0ACAAAAiTBpktS+vdSrl3Tuud7q7xCJl5VV/t8OHDD+9/ule+5JSDiwwTnnGP2SAyABnQJIQAIAAACJcM89R++cy8+XHnrI0XA8j25ODHl5TkeQ3A4dMvoLr15dOuMM6eefrSt74UKpTx/rygMAFyMBCQAAEo/EAVJRdnbo9JIlzsQBwLyJE6U33jASkatWSbffbm35n35qbXlexrkBkNToAxIAnMSJFpJVVpb0yCPSvn1OR+IdPHoEAO5z662h0z/9JO3ZI9Wt60w8gJ04F4GNSEACSD2JSvqZOYC77SCflyc984y0dat0ww3SxRc7HRG8yO+X/vxn6ZdfKp4HAAAvKihwOgIA8BwewQYAKyTLnYw33CA9+aQ0ZoyRQJo3L/ayvLJOSIRZb8GCipOPyWTvXmnLlsSMiJvMvNJeAABi9+OPxrnmHXdUPMgSUhPnAkmPBCQAwLBvnzR9+tFpv1+6917HwnEUJ0DxWbPG6QgSY8oU6aSTpJNPli67TNq/3+mIAABwpw0bpA4dpEmTpNGjpYsu4kdghGJ7SHokIAEAhtKDI0jGL9UAyiouNkYuzc01pmfNkqZNczYmL+OiAwCS25NPSoWFR6dXrZLmznUuHiBYcbFxThe8jcJyJCABwApcPJeVbOtkwgTjTrdTTpGmTnU6Gjht2TJp27bQ93r1ciYWAMnJ7uPo2rVGdyvNmkkDB0pFRfbWh9QW7txp+fLQaZ5AgQMq79ypSh07SjVqSC1aSEuXOh1S0iIBCSD1JOrkhpOo5PHbb1KPHkZff5s3S9ddJ+3aFXt5EyZIV10l3X+/dOiQdXEicez4hZw2A4gO+0x8brhB+vJLo9uMxx6T3n3X6YgAOC0F29XjJk2S74cfjIlff5UefdTZgJIYCUgAAEorfdfJwIGh00VF0rPPxlb2u+8aycz33pOee076979jKwcApk2T/vpX6V//Ct+NRrRS8MIzZe3YYQwYFuyGG5yJBQAc1GDChNA3PvjAmUBSQLrTAQBAUot0McfFnvPMfAfr15d9b/Pm2Oor/ZjuO+9IEydKlSrFVh4A9/D7pZdflubPl9q1k/77XynNht/7N26Ubr9d+uyzo+/9+qs0b571dblZsnX1kUizZpV9j77PAAA2IgEJADCQDE2MffvKvldcTAISSAbPPiv162e8njhRysmRHn7Y2jo2bJDati076vq330qbNhn91AIVefZZqW9fp6MAgFD8qJT0eAQbAOzCQRSpysy2z/5RViqvk2T5AaQk+VjikUesr+PZZ8smH0vs3Gl9fbDGnj3SFVcY23qzZtKSJc7EUVRE8hEA4AgSkABghWS5eIZ5qZwsgvs1aiRVry7dfbeUn+90NLDSqFFOR4BYjB4tffih8XrNGunee52JIyfHmXoBIBKup5IeCUgAgD2S6SQimT5LIphZX6xTe23YYIyw/sILznSm/sknRh+IF1wgffdd4usH3Kb03bBffulMHLAGP0IiWbFtw0b0AQkkysqV0pYt0rnnSnXrOh0NUBYJofJxMgYv697deOwyUbZvl/72t6P7TadOxgjN1asnLgYAAAC4CndAAonwxhtS69bSpZdKbdoYj94A8DYStvCK4uLE1jdwYGjS/vBh6ZVXrCl7xw4jwQnrHDgg/ec/0h//KD3+uNPRRCeZ2uHt26WePaV//vPo3ZH8+IVkwvYMpDwSkIDd/H7poYeO3n2ydSv9NyExdu2SunWTTj1VuuGG8KMvA4DVFi4s+97q1RUvY+bCtF8/6fjjpYYNpT59YovN7daule65x3hct7yBZqx2993S669L8+dLn36amDrtdtxx0rhxTkdhnt9v3Ck8bpz0/vvG6+XLnY4KFUmm5Leb2LVe9+yRVq0yfhCDe5GkTnokIAG75eeXHZVyxAhHQkGKefRR6d13pU2bpEmTpEGDnI4ouXCSBCTOunXS0KFHp0eMMLo2SSZZWVLbttLzzxvtdceOiWlnxo61v45Ey86W/vUv445ZL1iwQFqx4ui03y89+KBz8QB2iCe5ePXVUvv2Rr/G0baLs2dLTZpIZ5whnX22cTwB4AgSkABSjx2/rroxGVX6kcdnn3UmDrcz891xp4Nz/H7pxReNfgyfeSaxfRkicSLtYwMGlH2vf397YnHKsGGhIxQvXSrNnetcPF7n9xtthhesXVv2vY8+sufYw/EMbvLf/0pXXhk5KThtmvTDD8Yd2++9F10djz8u7d1rvF61Sho5MrZYAcSNBCQA2IWTfO/iu4uPlQn5//1PuusuaepUozsLr/VRB2scOmTuPS97662y782fn/g4kslvvzkdAeBtP/1kJAi7d7evD/sZM6Q//9n8ucPNN0dX/nffhU4PHx7d8gAsQwISAOzixrsiERu+S+fcd1/o9NNPOxNHaWwTQGqjDXC/ffuk66+XTjrJGNyndJdIqaKgwBgc7IYbpPHjzW+72dlShw5GgnDqVGOgqvx8e2LctEmaNcvcvMF3iiO5cANA0kt3OgAAsF1hofH48dKl0sUXS5mZ1pXt9xsnYzwWWhYXZ6ljwwZjwIzWraVKlcwtw/YBJLf8fGn0aGNAtJtuMvpgAxJp0CDp7beN11u3GoMTvfqqM7GEG5wrUe655+hjx5MmGf/36BF5uSFDjORliT17jOV79rQ6QsO6dVKdOvaUDcAVuAMSQPJ7+GHj3+TJ0m23le0bMVY5OdK110pVqoR/dE7il7xkkSrfo98vHTliJO3NGjbMSCy0bWuM3JoqdyakyjbhZiSx3a1bN6O/tqeeMtqHZBv4gTbA/Ur3ff3aa87EUVgoXXqpM3VLZfs8/Ne/zC33xRdl37M7kcp+ldrsOK77/caPEdWqSX/4gzRlivV1wDQSkIDdOJA6r/QJ6GefWVPuO+8k10GMbfWoRCc23JBIOXRIuvFGI6F+/PHm9pNDh4w+GYuLjemvvpI+/JBtya327ZMeecRICtnVl5dd2KbMcUNbIhmPU37wwdHpnBx7BoSxertYu9YY8Gj06Oh+iPES9qXEe/dd405gtzD71E7JsT2Y2accALdYtMg49zl82LiLt2dPKTfX6ahSFo9gA0CsevVyOgJ388pFjlfitNu77x59NGvXLun226X16ytePx99VHYgkOuuK/+OYDjH75f+9CejKwpJGjPGSLY0aJC4+p1c3qu8+rlLtrNgr7+e+Dii8euv0tlnH72Le84c44dGIF4bNzodQWzCJSDT4rh/yavtWapJtu+pT5/Q6cOHpTfekO64w5l4Uhx3QAIAEAsrT9DckAS96abQ6Y0bpeXLK14m3MUJYmfnReq8eaFJodzcsneHe40b9hsrWfF5km2dJNKgQaFdSEyZIu3YkZi6y/ve7HocEfFLhfVodQIScEK4c6s9exIeBgy0IAAAIDy7RruUSJSEY+cdYvPnl30vkXeqRvq+2R7gtLFjy763cmXCwwBcI1wCkrY6+fEdw0YkIAHASW46yLspFi9gfcFqGzZEv0w8d+G46Q6eWGJxU/ypyO837qLNzJQaN5Zmz3Y6IgBWCtfG2nkHJG06kPRIQAKAXTiRQqpi23efcAnz4O/pp5+kv/xFuuQS6ZtvEheXWST83eeHH6S+fY0+Y9evl7p3lwoKjL/RBrgX+xLMsvoRbLY9RMKxI+kxCA1gNw62qY3vH4AbVNQW5eYaA9SUDCg0d67R9129eomJDeVz88XYnXeGTu/dK733npGITBQ3rx/A6+gDEoDFaEGAZFRcLC1aJK1e7XQkztq3T+rd2+kokKy48I0vwc76c17Jd/Dqq6GjmRcVSUOGOBNTeVJhe/HaD1YrVpR9b/fuxMdhp0cfDT+it9Ws3L7z86UJE6Rx46S8POvKRSiv7a+x8EIfkH6/NGqU1Ly5dMEF0pIlTkcEL0iFcwqXIgEJJJv8fOnyy6WzzzYOxg8/7HREzune3TgpcYqZkzQOgN7gthNuIFoVPYIdLsGyYIG98ViB/dK9EvXd2F3Pd99J7dpJixfbW49V/H7pooukHj2knj2l9u2lwkJnY8rKMu6q/u03Z+NA9BLdB2Qsvv3WuNlg9Wpjf/373zm3TnaDBhk/lJrFuYKruKwFAVxi40bp9tulO+6QNm2Kr6xEHwTnzJE++eTo9NChUnZ2YmNwg+xsadYsp6PgJMgLzHxHfI/R4WQvdrNm2TP6eKQ+IL3I6/HDG44ckR57rOz7btz+vvxS+v77o9NLlkgffhh7eb/8Il14oXT66caAQ+HuiKvI/PlSy5ZGFw8tWkhffBF7LEi8RD+C7fMZ21w0SncFsXmzkfBG8nrkEWnSJKejQIxIQAKlHT4snXOO9Mor0ujRxms3P8Lyyy/SZ58ZfS9JUq9eoX8vKpLGjEl8XE7bs8fpCMzJzzcuELZudToSBDOTQCPJ5s4LcK/r3Nm44M/NNTe/2e/AybvBrZAK+5ub96dof8h082eJRTxJvE2bpCeeqHgeq7bvN94o+97LL8deXrduxh1ma9caAw599ll0yw8ffvSx/AMHpGeeiT0WJF6iE5BffSUNHBjdMuHu4N+505Jw4GI33eR0BIgRCUigtDFjQpNXu3dLb77pXDwVefVVqU0b6bLLjP/Xrg3/qE2yXQgkk9mzpbPOkho3NvprSibJnjBgv0ptdn7/P/4ozZhhbZm//lr2vURuw5HqSvb2IlbRrpeSUaitdvPN9pSb7H77zTg/e/LJ2Ja3Yx81u00tXy6tWhX63r//HV1dU6eGTs+eHd3ycJbVfUBG2p6nTIm9bCcUFUmDB0t//rN0992hfSkjNpxbJz0SkEBp4X7djeeEya6LKr9feuiho31gbNli3LEJb8rPN/rrjPbxJjdLppMIkiNItFtvtb+OZNhHV6ww7oBJhs8STrSfa/Jke+L45BN7ugbwMjPHheeek/bvtz8WO5Q8WRNsx47ExwG41UsvGefuX34pvfCCdM89TkcEuB4JSMCrcnLKPmb83HPOxILyRZO42rZNWrfOvlgiIcnmHK8mT8rbZrz6eWAfO9qXTz4x+pdr00a69lrvb3dWrKMvv4y/jPJE0+k/DP/7X+LqWrgwcXUhNXBeWLHSCcfXXnMkDMt5/VgKVyMBCQB24QCePPguUVoyXJi5abuON5YpU4xH1+EOybB/uEE067FLF5LEAABXIwEJAACQiipK+rkpOWnWAw84HQFKeHH78bqsLOmjj8q+z3dhD9ar++XlSffe63QUAIKkOx0AACAORUXSpElGH1PXXivVq2dPPStWGKNXVq4s9e8vnXKKPfW4BRcW9uMOKfew4ruYP1965x3pxBPtGwglkvL60J0/X9q4UerYUTruuISGBJvRjoTKybGuLI6D8Po2MHhwYrtBABARCUgg2Xj9ZMEqqXJR0q3b0dFyBw+WliyxPgm5d6903nlHR/f76CNj0KPKla2txylmthW7tyeryvf7pTffNAbOatVK6ttXSnfpoZ62qmJm148V6zHeMubPly680J2Pf44YIfXpY7z+wx8YhRfulGznLH4/AyMGS7bvN1aJXg8DBiS2PsSPc8OkxyPYQGleafiiOYin4omPV77HePz669Hko2QMYvPKK7GXV952MmLE0eSjZDzm9fbbsdcD+4wZI91yi/H9PPKIkYCMR6z7USq2OV5U0fcbzXfYr1/8yUc7tpni4qPJR0navVtpw4dbX4+d3HQs+/XXyPO4KV44Z8kSqXdvp6NwD6/uFxzLAViMBCRgBgdgxMLns3fbCTfaqR2/9n76adn3vv/e+noQv//8J3SaR4+QCHPn2l9HLG3pkSNl3kobP96CYGzi9nONm28OnXZ7vJIziZ/vvkt8nW5TenRgAEgUryb8UwQJSADu9t130rRp0u7dTkeCYGbuhIH3eSHBgNh56STdS7Emq8WLORabcffd1pXlZBcL8bT/y5bFviySF+04EuHqq8vvE7oE26JjSEACZtBIOeeCC4wDSZs2xiACyc7MtlZUJI0aJT32mP3xlOeLLyIf3CNdvKxbZ108dgt3F2iwoiJj4A3aCoPd62Hr1rB3tyFKidxeE1EXCXP75eUdfe2F9s7ObaK8z//TT9aVZQf2E2uwHgF3evfd0Ce12FddhQQkUBqNlDv99pv08stORxEduy4oevY0+lbKzra23Gi3/Y8/jq++p5+Ob/lEifQ9fvWVMfJvRoYxErmVo5AivJNOks49V1q/3royV60y+lD96ivryoxHIo5FXkggRcPk5zlm82b5nBqpO9lxDuU+sX4nydY+IHXQDsUnGdaflXeiw1IkIAG4w48/Rp5n2DD743C7vXulCRPsKbu8i43yTkTifQz7zTfjWz5R1qyp+O+9e0s7dhivp0xhgJ5EWb7cGCDJCt9+K51zjnT77dLFF0svvGBNufFI5CjYiSjXRRc0ra66Ss3+/W+l79rldCiRkQQCgOR14ID03/9KV1zhdCQVy8kxnj7Jz3c6EnPiHRgPtiEBCZTGyX7iFRRIl15qbZluudi1envavNna8hD5OyosLH+5rVullStD37/1VmviSiV790q9ekl/+Yv02mvm95sXX7Sm/v79Q0d6T5VfzkvWs1vay4pYHGP1lStVb+ZMS8uEhdaskRYtir+rD7PKa+cTxQv7YDSS7fMgdl99JTVtKtWvLx0+nJg6vXQtd+ONxhNeH37odCTlmzdPatLEePqkfXt7r0W89N0hJiQgATPiOZHyWkNaXGz08ZTIX46mTDESEIBbmN3nU/0xTqsuMnv0kMaMkWbPNhK406dbU65Z4UaUj8RrbXs4yfAZ4nDCyJFOhxBZtPuY3YmfRN2Z26yZdPbZ0mWXhfY7aZeLLop+GZJsMCtR28rBg+4aKKqw0OjH/ddfpZ07nY7GfQ4dkj74wOkoyirdfj/yiJSVZbxetEjywrETrkUCEsBRW7ZIHTpIVatKrVuXvbPLLsk8uEyiLx4TeUGU4skLSzVpIl14obRihdORhLLzOy4p+/Bh6aOPQv/2r3/ZVy+8ycy2WLr9I0HkfbNmGf/KY1Ub9e231pTjRhyrnZeI72DcOOMuw3r1jB/1Yh2oraDAGMBj1arwf6/os+TkGImqkjuXP/pI8kJXF05J1B2h8Zo7N3R6yBBn4ogG7Z5rkYAEvMqOC6tnn5V++MF4vXKl8ViiV8V64HntNem446SGDaXJk62Nye3K26bowD48K/fBzZuNC+BrrrGuTCdFs27C3d108KB1saB8JftoPPuq1YNhIT52t7tm920r28ebb7auLJj/bpL9GB4vN62fI0eku+46mtCaMKHixH15DhyQOnY0bkZo0cIYANKsmTONAfkaNJC6dJH27SP56GZ5edK2bU5HgRREAhLAUaX7U5s2zZk4nLJxo/H4Z3a2tH278Qvynj1OR2Wt4mJp6FCpVSupc2dp3brIy0Q7OA1it3y5tHq1+fmdfgTcTRdgiF5F35/Z/bt3b2tiiYT2JnWV1yVMXp53BkRwE9ptdzpwIPZlP/yw7PI33BB9OTNmSPPnG6+jOffz+6V77pH27zemP/ss9X7E95JVq6SzzpJOOMHpSJCCSEACQInSd3wWFkr/+19iY7D7wuD996V+/aRffjF+Hb/uOnvrS2YVfVeRBk6oSDQXIe+8E3s9ZpRcaKxYYdwRceqp0uOPRx6wIZbHZb3GLX3tOc3NP1R5ZR1KxiNu27eXfd9tn+H++2N/tNMqxcXSAw8Y3cUcd5yzsdjNye/f62201zRsKL39dmzLhnuSIJaEZqx3G69bJ23YEPreHXfEVhbsN2RIdD92exHtl2uRgARKc9vJPhKn9MmTlHyPJ5Q+ufzxR2MkZ1jrssviS0Ka9euv9tchGXdSfP+9tGmTNGCAcZeEZM0JHieJ8YnnmJXI4x3H1vIVFkpXXeV0FOZMnmx0VVIeKx7rj2TBAmnYMPvKB5yQmyvdfbfzI7LHIpEDVyJ+Y8c6HUH5rDp2cM7hWiQgATO4QPYeq74zv9+4C/K006Rzz5V+/tmacp0Srm+9kvei7QMymQ/u8X62WbPKdtrtVZs2SYsXh753/fUVL7N0qW3hJAUzF5hOH3eSef92mxkz3DVybST/93/G/05toyX1xyIVt+tU/MxelZ0tzZvndBQVY3tKrJtukho1MkYT99JxIlbXX885ZJJLdzoAwBO8dLD1Uqxe8PXX0ptvGq83bjTuUtm40fnkgBd4ZR1FijPWfvIef9zYfrwuJ6fse5H6nnzuOXtiSQZFRdLFFzsdRSiv7KvJKivL6Qi8ZccO8/N65ZyIfTC5RfP9Ot23s5XYruM3frzx/4YNUt260iuvOBuP3b78Ujr/fGnLFmNEdyQd7oAESvPKwTKak2qvfCY3Wr8+dHrzZumbb8wvn8zrPpk/m1leubiFe3zxhXvucEnk9htrezFiROLrLPHll8bFXrL3lYXYeKX9j3U/iOfzcX6QvPhunfPqq05HkBh5eXSzkcRIQAJeNXu20xGkrlR4BCJYMpxsFhYqLSfHm30rVcTuC2CvXGB7yZAhTkdwlJu+3/LamT59EhtHieHDpT//Wbr9dql5c6ljR2ficNN3FA0rjxvxjA7sleNXNCMOwzvy8qR9+6TPP7e23PnzpbfeKvsjuVPctp26LR5E77PP7C3fq8fWJEACEvCqhQudjgCpzisH7w0bVKl9e7W96CK1vOYaVXHLCTsMVlwo+P3SqFHSBRdI11wTfjRhr3Hj/uX3Gxe+33/vzvhi5fcbd6XOm3f0c913X+g80dz5Duu3jw8+sLY8IF6Rjl2zZkknnSQde6xx57tVXnlF6tDBGFSwTRujTXZaMh0PkHxISLsKCUgAyYmTIZQYOlS+JUskSVU2bdLxFY3g6gZeOlGKJ1Yr99GZM6XevaXvvpOmTJGuvda6sq1m9fcb73pcvFj66Sdz9Vx7rfTHPxoXv1ddZe136FSb7fcbn+X//T/jn9Wfy2wMVpo7V3r0UWnCBHs/SyLXU+/eiavLrC1bnI4Abnb33dKuXfaUW7Lv5eRIAwbEVs5f/ypNnBj9cpxfJz8rvmO/39g2MzKk2rVj29aQlEhAAqV55cDqpSQFzIu0/fG9R2/06JDJurNmORSIB40ebTyGWh43tJe9ekn//Gfoe3Pn2nPhZwW37cNt20rLlkWeb9kyI7lbYsYMc4lLt/vpJ+OzlJgxQ/r558TGYGV9v/wiXXSR9PTTUo8e0hNPWFe2GXZt31u3WlOHlW3WM89YV5adnGin3dbOJdrOndLKlfaUfeRI6PQnn8RWzqefSjfeGPvyTrvjDunQIaejSE6//mrcWVt6W4vG4sXGYIwFBUY3GrfcIh08aH75VG9DkhgJSMAMGkHv4TuzTnnrMlnWsV0XZ050/G+1MWPcP0LvmDHh34/mRDcWbvqe7FB6+3366bLz9O+fmFgk29qbtMGDy74Z7rPaaezY8v/Wv7/UpIkxcvratebKC942Y707ys3csu9Z3a9fMknkd3TokNSzp1SpknTKKcad8E4rKnI6AvNuvTX+Msprn999N/6yyzN6tBSu/Zbc00aE4/cbd67Gk9yz21//evRph1j7vS/df/ORI5Lbn0BCQpCABIBoRXMhHO1Fc7wX2XZcpJd3IufmE7x4mV2PFc2XiPWTzN9BsvJK4t7qbevXX6WnnjJG8Yzl4jyWeLyyrivi90vr1klffWX0+eZ2hw87HYE3lbet0sZHNnmyNG6cVFwsbd4s3XZbYupNlu8m+O5iM6JpVz/+OLqyozVwoL3lW+3QIem666SaNaXjj5c+/NDpiCq2cKE0dWpsy4bromLv3vjiiYZV++eaNdJHH0m//WZNeSABCSSdcA1uMlyEeZHf740T1JLtg+3EHaJJznhh+4rErdvdk0/aU65bP6/d5swx7ua77Tbj0eBoPPOMkVyIVjLsH8G++y72u1Ekaf9+Y4AmO9fLffcl/rFvuE9F29gDDxh3GVv1+Owtt4ROL18efVIN5iVbu5pI06dL77xjvN67151925Z2xx3O1OuGc6Xp06Uzz5Quv1xq3Vr64QenI0oKJCABu7nhQO2GGGANO75Lto+KJXr9fPSR+XndcIKWrEii2Oftt6Xs7ND3KtqWH3pImjbN3pi8Ii8vtuXeesu446ZhQ+nqq+29U/HJJ6XVq+0rH/Gx+5iWl1dxonzYMGOQpC5d7IuhoMC+soFYlf7xjT4sy7dwodF3pJMee+zoo/J790pDhjgbT5IgAQmY4bYEzYoV5ffrREIiMXbudDqCxGGbCs+udiF4QAy3i2fbSNXtKpk+dzz7wJo11sVRIpnWrZXy842Rc0uSju++a/+jkQ8/bG/5MC/R57Bm+8b8+mvjfDYZJXqdp9I5KSq2YoU0c2ZiHhnetEnats38/NHuFxdcEN38VivdPr33njNxJJn0RFX0/PPPa+TIkTrhhBP05Zdf2lLH9u3bNXnyZM2bN0+bNm1SXl6eMjMz1ahRI3Xp0kVdunRR1apVTZU1ZswYDR06NKr6K1WqpBUmDqTff/+93n33XS1evFg7d+5Uenq6GjRooLZt2+rKK6/UueeeG1W9SDEbN0psI/Ywe/E6d27ZR37iKc+rkv3zmVHRyVSyr5/8fOMkF9GJd7s4cMDY7mrXNqYTdaGb7NtzMps1S9q3L/S97t3jHyijom3CzkE43DIKNsK78Ubz8y5aJLVoYX0Mifqei4qkQYOkKVOMAXBGj5ZOPDExdQfzyojssNekScaATAUFUt260mef2XfN+K9/GQOo+XzGaNePPx76dyvOGZYvj78MuE5C7oBcunSpXrN51KPJkyfrr3/9q0aPHq3ly5fr4MGDKigo0LZt2zRv3jw9/PDD+uc//6klS5aYKs9MIjFaOTk5uvPOO9WzZ0998MEH2rJli44cOaLc3FytW7dO06ZN0w033KAHHnhAB+0evRPRcdOF16BBdPLutP/9T9qzx+konOfhCznfyy9LEyZ4a6TKcJz8Djp0kMaPd65+r4rnePLUU9Kxxxr/HnvMupiShYfbJFvl55d9L5Y+Nb2IbSL2NifWdZebG9tyXjRpktG37fLlRvcpdgwUVVAgPfKIccy9/fbw8yTyDkg3XRMh1MMPH+1+YM8eKcqbqaIydqzxv99vdLuxY0fo32l7UQ7b74DcsmWLevfurQIb++IYO3asBg8eHJj2+Xw6/fTTVadOHW3cuFE7f2+UN27cqJtvvlkTJ05Uy5YtKyxz1apVgddnnnmmatWqFTGOSpUqlfu3I0eO6N///ndIArR69epq2rSpioqKtGbNGuX93q/PzJkztX37dr3xxhvKyMiIWC9SjM3JfKQwp04qly2TsrKkP/5Rql49IVVWuuce48X778deiF3ryysnbT//bE05Xr2YSXTcGzcaF7olBg6UbrpJOvnkxMaRCryyD6Yqvh+4xU03hU5/+aX1/foNH27cfCBJ339vbdmxYP9zr02bQqdjHcE6Wn6/9PzzUlA+Jiyvnu/BUrYmINesWaNevXopu3RH4xZavHhxyKPS5513ngYNGqSTfz8h9/v9mjVrlvr376+9e/fq8OHD6t27tz799NNyH8c+cuSINmzYEJgeMWKETjjhhLjiHDJkSCD56PP59H//93+65ZZbVKVKFUnSgQMH9OKLL+qtt96SJP3444967rnn9NBDD8VVL4Ao2HFSFe3BNt4Y7Di423nCMGyY1Lev8bmbNTNGyj3+ePvqK23aNKlNm4rn4YTJHql6EWN2eyq9fp5+uuw8jz0mjRsXf0xu4FT7mwr7d6rc7RhOKny/dvHyunPy+GL1TTcPPmhteanAy9uuV4W70760VD3vQwjbHsF+//331b17d2VlZdlVhSRp8ODBKvr9EbqWLVvq9ddfDyQfJSPZ17lzZ40dO1bVf7+zZseOHRpXwQn76tWrA2XWqlUr7uTj2rVrNXny5MD0fffdpzvvvDOQfCyp55FHHtGdd94ZeG/ixInaunVrXHUDkjgQpxKvHdz79Tsa8+rV0T3Su2SJ9Oc/xx9DuK45zKxHv9/5fctr3zdiF240yP37Ex9HMLdtf07vj241f77TEQDuEXSTiS18PuvaRre1seWh7UVp4baJSHdIWinSvuOVfSsJWZ6AzMrKUr9+/dS3b18dtrmfuiVLlmjx4sWB6cceeywkqResefPmIcm9cePGBZKMpQU/ft2sWbO44xw/fnygrkaNGumWCgav+O9//6umTZtKkgoKCjRhwoS460eKoUF1Dyu+i337pEcfle67z/6TZieUvjOnXz9zyxUWSp06GY87AbCf1ReYXLAmzrBhTkeAWE2fHn8ZnBeGatFCPjtHs7WybXvxRevKSiUFBUb3PnAXp+7G53zDVSxNQI4aNUqXXXaZZsyYEXivUaNGur28DnPj9PHHHwdeN27cWG3btq1w/m7duik93XjqfM+ePVqwYEHY+VauXBl43bx587hiLC4u1meffRaYvuqqq5SWVv5qT0tLU/fu3QPTwcsCSDF+v3Thhcajl8OHS2edJe3eXfEyeXlSnTpSvXrm6yk5MHvpAP3ee9KuXU5HYY9oLhbjvbDMz5ceeEBq0iS+ctzIrclpq/ezZEkueKn9cRLrKbXWwcCBztWdLG1LaXl5SnvqqfjLKW879Pms20bvvtuacqwU7rO5bVu5/nrpzDOdqbuoyBiU5dRTjYGDfvnFmThSQVAuCN5haQJyzJgxOhTU8e7VV1+tqVOn6pRTTrGymoDvgzriveCCCyLOX7t2bbVq1SowPWfOnLDzBScg470DctWqVdq7d29g+sILL4y4TPBn2bZtW8gdmUgAtx1EUb7PP5fGjJGs6qrAbRc1X3wReuJy4IDRyXMk+/dHTlSG46Vtf/36xNXlpfUSrTffNO6OWrfO6Uis16uX9OGHTkdRltl2xm3tEZAMkrk9x1ERvmdfpLvjcnON8ygnthe3t/3sQxV7/33piSeMAWG+/1668UanI0peXbuW/ze370cpzJY+IFu1aqXx48dr4MCBqlGjhh1VqKCgQOuDLkAjjWpdIjihuCzMwcfv92v16tWB6XjvgAxOHlauXFmnn356xGVOO+20kEfJw8WJBKMRs1cs6/exx6RLLzWSDG3aSEE/HHha8Lr45puyf585M3GxIPnZ9ISCa9x1l9MR2MvpC0Gn64/EbF+uiA3rLjXVrSs1aCBNmeJ0JNK771pf5vTpxmB49eoZCY7cXOvrqIgX9yuuk4664YbQ6cWLk7MLJTfIy3M6AsTA0lGw27Vrp6uuukp//vOf5bO5Idq6dasKgkYZM3uX5Yknnhh4vXnz5jJ/37RpU+AuzkqVKqlJkyaaO3euPvjgAy1atEg7d+5U5cqVVb9+fZ1//vm68sordWYFt3hv3Lgx8PqEE04IPAJeEZ/Pp4YNGwYSrJs2bTL12WAjL54MeEm06zc/P/SxpD17pGefld54w9q4UoUXt2+3nOx6cd25jZ3r0M6T/ljjjnUUbLds88GOHHE6Anu4cV3jqGRqd2+4QcrIkOK84SGhSp7s6tHD+CG4enXjx1GfT7riisTuP3fcYW15xcXSf/8rHTxoTL/3nvEvnPK2QysHoUkkL8bsRuGSYjk5iY/DrYYNM/pxv/VWe+sJ3p7DbdsDB6rSrFmq3b279v/pT/bGghCWJiBHjhxpZXEVys7ODpnOzMw0tVzwfLt371ZxcXFIn4zBj19Xq1ZNPXr0KHMH4pEjR5STk6N169Zp0qRJuuKKKzRgwABVq1atwjiPO+44UzFKUr169QIJyNKfFTZL5guPw4el/v2lFSukyy4zTrK8+Hmzssq+9+aboQlIN3yu776Tatd2OgrzvDTIhBdOlBOxDbphO0d0kuk7mzvX6QjsYXX7UquWcQFqdpAtpI5Jk+yvw67jZX6+9NJL0mefHX1io2PH6AaaiLc9LO8aKdbP/PPP0vbtoe/16BFdGV5t47t1czoCpIIHHjD+T2DeqDy+H35Qkx9+0HIrBvuCaZYmIBNp//79IdO1atUytVzNmjUDr/1+vw4cOKA6deoE3gt+ZPrgwYOB5OOxxx6rk08+WZUrV9bmzZu1c+fOwHwffPCB1q5dq/Hjx4eUL0n79u0LW3c0cZb+rIlWWFjoaP3xKj3aeXmjn5dI8/vL9E1Q7PerOJb1cPCg0h56KGxfB7Gu10g7rV9S6VOfouJi+QsLlfbf/yqtJEn38ccqSk+X/z//qbDsRHz/vuJiVTI5b2FhoVRYGDnWgoKoGzi/319m3cUtyv23sKDA+GVQUlpxsT39ZJSu8/d1Wt56DbdNSca+5K9g+wi3L5mOJ5ziYvleflm+BQvk++abCr+r4DJiOdAVS0f3+XLWS7Hfr+KionLLL6/dMLMPF5lcrrioKKSOaPdhJ08CAttPhP053hjNtGHl1VHhsmbaoTDM7helt4OKjk12fI9+vz9i/fEItDtH34j7c5SO2UyZ4dIUxRZ/1sDdVM88E3dRhRZ+3/HsY4WFhaqk8McGu5TEG029ZdrhONZf6X27onKsar+sUGa/iHB+VBK7r6go4rmZ/+235QvuqzrKHyWKCgsrPI+IpMK2O4rvOnBtcOiQ6WXK2xejrTtcLH6Lj3+RyilctEjpJpMwJdcUpSpyxbYeDTP7c6TjueltpajIsnUU7TlduPnt+K6Ki4tD2tqI7fSWLTZEcVRwu1fJ56swlhNeftl0uV7Pi7iB19qKgCOlHvsJ7jOxIpUrV66wnJWl+pE79dRT9eCDD6pjx46qVOnoYXjhwoV65plntGTJksBy9957r1577bWQ5fPz86OOUZIyMjLClpFoxcXFgc+YLJYvX17h35scOKDS96zt37dP62NYD03uuku1v/su7N9iXa/nRPh7YUGBKpd6b/v27cpaskTnlHpEuVLv3vq5XbsKy07E999g+3adYHLeJUuWqPKOHQrX8UFwrMds2qRWYeapSE5Ojsz/TGCPVatW6cjvj28cn5Wlhgmoc/Xq1crLz1fl7Oyw6zUnNzfsetm2bZt2VrB9ND5wQHViiCenUydt7N9fRaXuHm3w5pumTxKCt4VI+0w4B/bv17rfy6iydq3C9TK8f+9ebV25Uq3LKSP34EGtCbN+IsWTl5enFSaXy8rK0rYIn7WifTiWdWOVtWvXKqdOHaXl5KhtmL+XxB1vjGbasPLqqGjZar/+qjMiLFM5K0snjhih9P37lX311dp38cWm9wu/3x9S1ml796puqXkOHjyodUuW6GwT5UUrJzc3ZPsNV3881q5dq9zq1QPTGVu3lrsvmVU6Zt+RIxHXzcEw38eB/ftjarsSYcWKFWHb6VjEs48tWbJEbe340S5CnZLUuqBAGRHmLVHm/K2wMOY2pXR7UFE5VrVfVsjJyQnZL9Jyc8O2uSVKYq+xdq0iDcXpi3OE382bN2tPHOeZ5a3fVatX68ihQ6bXf8m1QfW1a2X2YfjN48erUZj3ly5bpvQDB2LeT9etW6eDvz+xZ9XxL1I5u4cOVX2TZe7YsUM7Sn1nx2zZEvU5t9PM7M+Rzh/Mfj+rV69WXlGRJe1BtOd04ea3o13Kzs7W1qC6Wubny3zmw3r+NWsCn73VkSM6poJ5qy9darrcZMuLOCERN9fYonT2Ofgx6oqU7oOx9N1wwX02tm3bVtOnT9fFF18cknyUpLPPPlsTJkwIGdV67ty5+uKLL0LmC+6n0myMkkLqI9OeYBY9qlJp375yk48J54XHVaNQ6fd+WuFuvhi3uzpff63j3n67zPvR/EIJuEGTu+9W3VmzVGvBAjV+4AFVW75cfq8+ngd3SLLjue1YX959JDgedvfRK6nRww/HVkcySsH97Bib7+CrUHGx6o8fr6a33aaTBw1SWqIHSjLD4W0iLT9f9ceOdTQGhOfZBGTpZF6xyf5GSifzSt8R+dlnn2nu3LmaNGmSRo4cqepBv86XlpGRoWeffTZknrfeeitknuBEotkYpdDEaOkYkXixXDCmBz1+n1BJfqJZZe1atbj2WnsKT/J1FzMH1kvD119PeJ1RY3tJfnGcQFddvVrV1q4Nee+k4cO9u914NW4A8BLaWk9oGE0fhhZ/p/VmzNCJzz+vmj//rMzp03Xy4MGWlh+L+hMnKuO335wOI8Txr78uHyNlu45nH8GuWrVqyPSRI0dCHlsuT+nHmY85JvSGXJ/Pp/r166t+fXM3otetW1eXX3653nnnHUnSzz//rMOHDwfiC37suvTj3hUJnrd0jImUlpam1q3jfSjKWUVFRSGPXbdq1arMHa3B0sL0J3rs6tWq1bSpVGq7q1CER+7btGljvqwohBtp/fiGDdWgnPoixWFXnMF8xx9vet4zPvxQvnKS+SGxRvNd/a5GBT84JErz5s2lZsZDT2km26F4NWve3BiBs3TH678rb700bNhQx1ewfYTbl6IRz7YX73Zbq3bto2WUc/d67Tp1VPOMcA/hGqrXrBlTHFWqVDG9XP3MTGW6YB+ORZMmTeRv06bcflKtijvu7ai8C4egJxzC1ecLc3dEjaVLVfzPf5qq2+fzhcSeduyxZeapWbOmzjzTqgdyQ9WoXj1i/fFo0qSJFPzdRNFPdnlq1KgR+n2buPCoGaadquXiwcNatAzXIURszu7TR/6TTopt2d695UvwKOgl320lE+f7JWrXqRO6TZSz30ZTv9Xz2q166f2ipE/ScgTasAT8kH7yySfrpGjX1fz58m3YIH/QU2ilNW/eXDr9dNNFBq4NLLiT7MzWraU9e2JevnGjRsax0QJmt8Pjpk41XWaDBg1Uv3S5YQZidTsz66aieaJ5GqtZs2aSRW13mzZtlH7uuSHv/eHTT1X7gw/KnT9RWvXooaJVq6TMTFVyMH9RolJentps3640C2NxU9vuhGXLlkV1U104nk1A1i51cpiTk2NqkJecnJzA6/T09KgGhinP2WefHUhAFhQUaNu2bWrcuLEkhQxwE1x3NHEGl+GEcAktL6tUqVLFnynMxaZvyxalX3CB9PnnUoMG5iqKsN7SfT6pdCK0qEh6+mlpxgypcWNjdMEok1DhLpUrpaWVG0+k7zch338FCeHS0iZMKPdvIbHGELfPBb86p6enH409QfEE6ixnnZW3XipVqlTxeo4z/ni2vXi32zSfT2klZZSzfYbME8Pfy+Pz+03Hn5aWFrEOt7bhge0nxrbJrLi3o/K240hxV7DdmOELLqu4WJoyJWxZsWxjpur3+ULXncXtUXrp796CzxGyzkyWGa59M/sdOcHK/TnSYF4VLrtggWVxmBXLZy/TRsZxV3M09bup3U2TQteB2WNGFOdmsYp4HlHaSy9J//d/xusKro/KtC8m4khPT5cseOosPdrPFCYWK9pDyfx26IswQGewsNcUHnxaz8y6CZmn5Camkh9AojhORLs9mo4pjvft4DtwQOkvvWRcy7pERTcdxcJNbbtXefYR7NJ3KO7atcvUctnZ2YHXdevWtSThUK9evZDp4FGrjzvuuMDr3bt3my4z+PNk/t4RMRy2bJk0aZJ15YXruHvsWOnxx6VFi6Rp06RevayrL9W4+AISScKu/m1SsC8lT4q1jYlluaeeiq0uN6ONBtzNjceie+45+rqiOzSdjp32LbkMGmTc5VmjhjRihPEe33F4Jd3ReWn9ON1epBjPJiAbNmwY0jfiFpMdwW7dujXw+tRTT7UkltKPVgf3CRlcx9atW+U3sYH7/X79FtSHglVxwgL33Vf+3w4eNBKGLVpIN91U7mOFAeEa5tIJxw8/jD5GIFE4YHvrBAve9cQTia8zlQf7om0D3CmKO/UAS/z6q/TII8a2V1Ag9ekjbdvmdFSIBufqruLZe0grV66spk2b6pff7yJbuXKlunTpEnG5lStXBl6fUarvrgULFmj27NnavXu3Dh48qNGjR5sauTo4+enz+dQg6BHdlkH9PRw+fFgbNmxQo0aNKixv/fr1IUnN0nHCpQYOlMaMMV6vXCllZTkbTzC3N7x2XOx59QLSybjdvp0kktnvIdrvy+rv16vbeSqzcj/z++3bBn7+Wbr3XmnYMKMfVC+2D2bWjRc/F2JHm+kubtv/3BYPnPfYY2Xfe+aZ6LaVVNyuaGtRDs/eASlJ559/fuD1d999F3H+ffv2acWKFYHp9u3bh/x969atGjdunD788EN9/fXXIQOXVOSbb74JvD799NND+qc8/fTTVbdu3cD0999/H7G8b7/9NvD62GOPNTquhfsNHRo6/fnnkZc5cEDq3Vvq0kV64w1r4qDBR7Ri3Wbef1867zzpT3+SFi4s+/dkP+Gy6/MFl1tQID33nHT33fbU5Qap1mZ5ab/43/8ku/r6Ky42/pUIOpeKmZfWLZLb6NHSDTc4HUXqcvK4Eu8PQ7RjiTFjhnHzSNB1d1jhrt337rUlJCAVeDoB2blz58Dr5cuXR0wYTpkyRYWFhZKMQWw6dOgQ8vfzzjsvpE/IqSZGBFu+fHlIwvCKK64I+bvP59Nf/vKXkBgqGjmouLhYU4I6mr/00ktdMTAGbHLzzdKoUdInn0i33OJ0NHCD4P090ft+tCfM33wj/fSTNHeu1KlTXKOLelIiLnB69ZLuv1964QX760JZTl/EukHJgA9Wu/BCYxCJd96RCgulnj3tqScSt6xnuF/DhtI115hLPtxxh7X9hsej9Da+eHHkZY4cMfbNVMM1V2TJ0mZeeaVxd2PHjlI5I0hLkjZvLvtesqwDO7llXzITh1tiTRGeTkC2bds25BHnhx56qNyRpleuXKlRo0YFprt3764qVaqEzHPSSSeF3BX57rvvav78+eXWn52drfvuuy/Qr2PdunV17bXXlpnv+uuvDyQRV61apZdffrncMp9//nn9+uuvkoyR+3r06FHuvPC4I0eMX9/cbtUqpyOA08wcmPfulSZPtj+WVHL48NHOvJNRqp7Ae+1Ed+dO+8ou6TvZbW2H174jJMb27cZo9M8843QksVu61Ei4VKSgQOrQQXrllcTEhFCpemx0SnFx9E+ZFBZGd5wYOtT48SIVuG37tbOrGsTEtQnISy65RM2aNVOzZs10ySWXlDtfv379Asm9NWvWqEePHloVlDDx+/36/PPP1bNnTx36vUP1zMxM3XbbbWHLe/DBBwPDqxcVFen222/XxIkTlZ+fH5inuLhYX3zxha655hpt3Lgx8P6TTz6pWrVqlSmzefPmuvLKKwPTL730kgYNGqSDBw8G3jt48KCefvppjR49OvDeNddcoyZNmpT72RGdSgcP6oQRI5R2663hHxdNtFKDF7nWgw86HQG8Yv16pyNIDiUnSgcOOBsHKhbphLa8O4LNXrTk50vz5kUXkxfl5EjPP+90FIB5pbvc8ZL+/SPP88EHzpwn794tXX21cWdavF0/kHCwTzL+QLNhg73ljxtn/HiRCoIG0vWMeNqLOXOkli2l006TXn+dtscEzw5CU+L8889Xnz59NHz4cEnSihUr9I9//ENNmjRR3bp1tWnTJmUFDQZSpUoVjRgxQjVr1gxbXvPmzTV48GD169dPxcXFOnz4sAYMGKDnnntOzZo1U1pamjZs2KDdu3eHLNe/f/+QR8JLe+SRR7RmzZrAY+Ljxo3TlClTAv07rl69WocPHw7M37p1az1I4sdSp/fureolgxBNmGAMFNO4sbNBeYHdB2W7JOMJkl2sWlccdJFspk41LoYzMqJf9qabwr8fzf7WsaM0fnz0dXtN0A+yiIBjG6IVvM28/37k+YcMsS+W0krOG/bvl+rVO/r+jBnGEzj0gw94TwXdzSWNH36Q/vMfadmyo+/95z/SH/9oJCRRLtfeARmN2267TY899piqVasWeG/t2rVasGBBSPKxQYMGev3113XuuedWWN7f//53jRkzRvXr1w+8l5ubq4ULF+qnn34KST7Wr19fL730km6I0NF0jRo1NHbs2JC7OQ8fPqzFixdr8eLFIcnHiy++WG+++WaZR8QRu6qrVh1NPkrGnSlPPOFYPCiFC6rwSOghEi9vIyX7vZs/w7XXSv/v/0lFRdEtt2+flJsbf/1+f8V9MPJokT1Yp+61Zo20ZYv5+YO/yxkzpNNPtzwkWODhh8u+F2704Wg4lQRJ9nY53GdLtfP4ZP5+rRBNG50IVm+fRUXSFVeEJh9L3H//0dfz5kl33SUNG5Z6/eRXwPN3QJa48cYb1alTJ02ZMkVff/21tm7dqpycHNWoUUNNmzZVp06d1LVrV9WoUcNUeR06dNDs2bP14Ycfas6cOVq+fLn27Nkjn8+nP/zhDzr99NPVqVMn/fWvf1X16tVNlVmzZk2NGjVK33//vWbOnKmffvpJu3btUlFRkerVq6e2bdvqyiuv1IUXXhjPqkAYVdeuLfvmhAnh7yyJ5aASlEC2nN8ff8OZaicGsJbZ7SeZTsjMfuaK5kvEfpdM69ytFiyQPv1U+tvfzC+zfXv5f4t2u2C0TXtxfPSON9+Ubr01tmV37ZK6dYv+x4RU5ET3HyNHln3PxGCg5fL5pH79Yl/eSV5skzgXSZzfu5SDSXbsTx98IGVnh/9byaDI33wjXXTR0R9Cli5N7n7do5CQBORVV12lq666Kqplvvzyy6jradCgge666y7dddddUS8bTkZGRkyxR/LHP/5Rf/zjHy0tEw6LcAdsQnESEDs3nPS58fuLNSY3fpZECvf5zayTVF9viVJUJD35pDRiROR5hw+PLgFZESvbGTe0WW7y/fdORwA79e9vDP4Qi2HDUjf5GO0xxa2DD0bzOVq0iO0OSNpUmOXUtmLmnAX2quhH5hL33x/aBo0fL40eLQU9sZuqkuIRbMBR+/dL773ndBTeZkfChSQOgIp89ZX01FP0P2iWnRdbVpWdnx/1XVNpZvrEgzts3Rr7suvWWRcH3M/pPujiadPcfv5KktbZdfDII87VbZbbt+FECDeQ1v79iY/DhUhAAvHasye25RLZOHMgMIf1hGixzXhXeYPEIPGs3I/uvtuect0iGT+TnUiWuJvbvh+3xeMVqbjeUvEzR4P1g3KQgARK83qDaXX8XOwg1j4gvb4vRWL3vpEqj2s79Rm2bXOmXislw/dvNTOPRgHwHq+0d4884kw/monile8BznLLdvLVV05HcFSyXxeZlDSD0ACeQyNkL9aveW45SUg2bIMVY7sDACSbF1+Upk1zOgrYyYoBQpEYzz/vdAQohTsggdISdVHMxTeSTapt0145+czKcjoC7ysZsObEE6VzzpEWLXLP958M+51b1qUXsK4QLS+3EYnuy9Gq/SueO7Gt3Mf/9S/p3/+2rjwAFYunr+IUQQISgPO4oDoqeF24Zb24JQ43cnrdmKl/2DD743C7/fulfv2k226TliyJfvmvv5aeeEL67Tdp4ULp2msrvqh3eruwQzJ+pvJ4OWEDJJOnnz76mv0yemPHSm++aW2ZqXQsKA/rIDLWEcpBAhJwOytOuDgImJOq6ylVP7dZ5e2Ddl8MmflezMQwZUr8sXjdX/4iDR0qvfqqdP750vr18ZW3Zo20dGlsy7K/AYDB75def738v/fvn7hYgGhwLEe02GYkkYAEkg+/ECePRH+XbDtH2bUurC6X7yyyhQulH388On3kiPTUU/GXW94gA4sXJ/cABKmAiwQkEzdvz7/8Iv3nP05HcZQb1pXbj+tujw+Iko9tOqEYhAZwilcaOzecjKUSr2wX4Xg5djjH7u0m3CPXY8faV1/btvaVXVqy7HPJ8jkARGfwYPPz0k7ALbg2qtiAAVJhodNRuA/bjSQSkIBzvHIilYg43bIu3BIHkssPP0iHD0v/7/+Zm5/t0Bvc8j3NmJGYejhxBgCEk2rHB7cc/93K6n5HkVR4BBtwSqodrIFo+f3S7NnSxx+785dUny/ySejtt0vt20sXXyxdcomUnx+53JIyk/0EN1XbQKs/d79+1pZXHju3x1TdFmJhpg3BUcnejprBOgCs5fe777g1bZrTEQCmcAckUJqZE7UvvpDuu8+4EPjXv2Krx20HLsBtrr326AAqHTo4G0s4kdqKLVukOXOOTs+dK33+ub0xIbX4fNK2bU5H4V579jgdgfUefdTpCABnpEoilesDxOLqq52OwLP8Vu9z//ynteUlGRKQQLRycqTLL5fy8ozpvn2djQfW4aQvPlZfHASP3vzdd9EtW1Rk/ECQkRFb3Wa3hYrmW7u27Hv/93/W1S2lzgVZMuE7K8uOtnfNGuncc60v12kTJjgdAeCMSZPsr4PzwNhwXAOOev/98O/TvkgiAQmUFalxeOWVo8lHr3B7g+f2+FJdrCP6Ovm9nneetGiRdOaZzsWQCF4+6U/Uo+Z2le+GdsvL37/d/vc/6eDB2JZlvSYPN+yniF9urtSrl9NRINi+fdIjj0g7dkh/+pPT0SQebUvSYBTsxCIBCURr/XpryqGxg1csXGhuvtLbtJPb+KJFxv9LlzoXA5BMvHaxNXq00xEA7pGf7+3H98ePt78v6IIC6Zln7K3DDK9cH1x5pfTVV8br6dMdDQVRcGOf6qnCa+dRNmEQGiBaaRbtNmZPMKI9ESlv/h9/jK6cWOsHko2V+wD7EzgBLWvlSqcjAJKX3y+9+KL07LNORxK7/fvtr+Puu6WpU+2vJ5KpU6Vff3U6iopt3Xo0+ZiKfD7vHssZrAYOIwEJRMuqBGQivfCCdP75TkdhvxEjjMdBVq1yOpLYkaBCNNuAV0+A4R25uU5HALjPzz87HUF07r/f6Qjis2uX/XWMGmV/HWa89prUpo00a5bTkZRv+3anI0Cs1q1zOgLv41otLh7MpAA2i9SouD0BGS4hsXlzajSWffpIgwZJ55xjDEAAuE00CUMz83p5vx4xwukIYMbu3aGjuXsBI4PDbgsWOB1BannhBacjSKzDh6XHH3c6ClSEH4BT0y23SHfe6XQUnubyTArgQm5PQHqR1UmUQ4ekgQOtLTNRvHxC4+VkWKKYWUcl24BV63PzZmncOOm336wpzyozZxoDenl1u/HyvhqtBx/01udNxOOagFd4ad8NZ98+ow/LVPP9905HUL7Zs52OwHlePXdBfN54I/Zlvd4WW4RMChAtEpDeMH++0xHA67KypHvukXr3Tmy9dpzU9uxpPNLltr72EnERwyjY8eNuLyCUG/b/VDF2rP11eLnrHic89ZTTEQCWqbx7t9MhpBRGwQailWoJSE6yYVYy/RpcVGT0m7ppU/nz2PV57Sp3925p2DBpzBh7yo+Fl7eZWGOnTXU/viPAPRLwKHLaY4/ZXkdSOXzY6QicNXeu1KCB01HExsvnXUgKKZZJASyQagnIWBUVGYmOp592/2h+MHBSctSHH1acfIyV1YmNaL+zeB4dAVIFbSEi8VKSmu05Il9WltMhwEu2b5cWLXI6CnN4XB4uQyYFiJbbE5BWn2jGWl7PnlKvXtKjj0pnn13x4y1eOpEHSrhhu+XCMjI3fE/wFvar5MF3CSCVPfyw0xGgBOejkkhAAtFLdOPhxZPn3bulCROOTufkGKNTI7VwoC3Li/uz3by6TtwQdyL3MfZnAAC85ccfnY4ACEECEoiWk3dAFhc7V3c01qwp+9748YmPw4ucSGpYlVhYtUrq21caPNjoH2jzZmvKdSu/n8GOUlmfPk5HkNj2wg0JVwAAAC/ih1xJDEIDRM+qBGS0F3Nr1kjdullTdzwOHZK+/FL6wx+kP/7R6WiSW6Iu+K2q5/33j77+4gtp6VJrynUzOzqu5wTFkJMj1agRfzlz58ZfBgAEo532PF9envxVqjgdBpBY/JgIh3EHJBAtp046n3hCWrbMmbpL7N4tnXuudMUVUocO0oMPhp8vJyexcVmFCwrrfPGF0xEkhh0DLHFyaPjLX6wpZ9w4a8pB6rBjACo4o+S4nsrHd44pYbX++99V46efnA4DQKqgLZZEAhKInlONx9tvO1NvsAkTpJUrj04PGSLt3x86j98vde4cXbluaZDdEgcA4/H2hQudjgKpyOkf+2A9ju8opfKePTrx+eedDgNuxo9RgOVIQAJO8eKv8ffcU/a90o83fvtt5HKys6WdOy0JCfCUwkL7yt63z76ynULn6RVL5Prx0jGLZBPs5qX9wetsXNfVV66097gMb+vXz+kIgKRDAhJAxaK9kJszp+K/P/aYVL++8e+BB2KPC/Ci/HxrywveP194wdqyE4VkUewOHHA6AiA13Xqr0xHAKiSTUZ533nE6AuuxvcNhDEIDlBbpYvjJJxNTj9vKtcKGDdLAgUenhw2TbrmFg2F5WC/Jx8z+Ges+PGuWufk2bZI++EBq2DC2ehAf9msAiUSbExnryDw3X2cgMr4/OIwEJOAUsweAZDpQ9OpV9r1HH5XOPjvxsbgVJ8HJLZoEZF6ePTG0aVO271YgmdCOAohGMp1r2233bqcjALyJdkYSj2ADxmi9Y8bQ0XB5rLyQ+/LLsu/l5lpXfjK47z5pxAj6JEplJfvc8OGR543lZIbkI4BUMW2a0xE4j4teWOnFF52OAICHcQckUtugQdIjjxiva9eWvv46cXdO2FUPd37ErvSAOk74+GPj388/S6edlpg62WYSJ5p1zUk+AMTP7+c4BwCAC3AHJFJbSfJRMu4KGjzYuVjKs22b0xFUjF/W7TFhAgNMJCMugsuqqA2hfQEQry1baEu8zO679tk2ACBhSEACwdw42lnr1tJPPzkdhXmcyFln587E1HPOOdIf/yh9+21i6gNS2ZIlTkcQG9p2eBU//ACAgWM5HEYCEqkhmpNPtzXMBw9Kzz7rXP12r49ly9y3zlNNbq40f750zTVOR4Jose94z9KlTkcAAACAROKcXRIJSMA50TRCU6bYF0e84r2z4LffrIkDSLRYTiSiGQXbjJdfloqLjWWScUCnO+5wOgKU4C4ywJu46AUAuAQJSKSGVDr5cvqzxnKR+uij1seRDJz+LmE9O77Tjz+WrrhCWrTI+rKBErRHAJIV7RsAJASjYAMAEAu3jGR/xRX2xJEoXPh5g5e+Jy/FisTgDl4AABxHAhJwChdIiMTtI6AjemYugmkbAMA6554rZWQ4HQXcyucjQY3UwTkmHEYCEkB8Sh/IOLBZZ+5cpyOA1UhAAkBi7dzpdATOIrlWMY65AJAw9AEJAEAs7BqEBgAAJA7HZgB2o52RxB2QSBVu/PXXjTHFyu+X9uyRqlRxOhIAAACU4KI3MtYRUsWePU5HgBTHHZAA4pOTI115pVSvntSwofTee05HBLiXmR8ekunHiUh8Pmn/fqejgBleukBPpX0IAACzXnzR6QiQ4khAAk6x62Iu0ReJ06dL779vvD5wQFq8OLH1A0757bfolzGTGFm/XuraNfqyvcjvl6691ukokGxeeMHpCAB4iZd+YAHiwbYOh5GARGqgsbXPu+86HQHgjB9/jH6Z3bvNzTd9evRle9GePdKSJU5HATO8dFfh6NFORwAAAIBSSEACAABn7N3rdAQwix/yAAAAYsN5lCQSkEgRx37xhdMhAAAAAInFRS8AwCVIQCL5HT6sOt98Y35+r5+oeekxOQAAAAAAkPRIQCLp+SZPdjqE8LyS6PRKnAC8hx9MAAAAgJRAAhLJb/9+pyMIj8QeAAAA4Ji0vDzOyQEgQUhAAgAAAEAy2rDB6Qhcre6sWU6HACAV8EOHJBKQSAWptrOn2ucFANiPYwvgTTt2OB2Bq53y9NNOhwDYa/lypyMAAkhAAqXRJxkAAACQGviBBcmsdWvpgw+cjgKQRAISAAAAkUyc6HQEAGAPEpBIdg8+6HQEgCQSkEBZnISEKrkjND/f2TgAJJ+iIqcjAAAASG4rVjgdASCJBCSAEl9/Hf59v1/64gupTp2EhgMgBUyY4HQEAAAAABIg3ekAgJTlpjst/X6pR4/wf1uxQurUKbHxAEgNixY5HQEAAABgLzdd+zuIOyABSD/8IG3Z4nQUAAAAAAAgCZGABJJNLL+uHDxofRwAAACAy/l+/tnpEAAgJZCABJzyl784HcFRJQPNAAAAAAAA6/AItiQSkEBZqdY45OSQgAQAAAAAwA6TJzsdgSuQgETyS7WEYrR4/BoAAAAAAHt88onTEbgCCUigNK/fDRhL/F7/zAAAAAAAuNHhw05H4AokIAEAAAAAAADYhgQkkOp8Pu6ABAAAAAAAtiEBieRHH5CRkYAEAAAAAAA2IQEJlOb1hGUs8ZOABAAAAADAel7PMViEBCSQ6kg+AgAAAAAAG5GARPLj14bISEICAAAAAACbkIAEAAAAAAAAYBsSkEh+3N1XMUbBBgAAAAAANiIBCYAEJAAAAAAAsA0JSCS/aPuATLVk3JYt0tKlTkcBAAAAAACSVLrTAQCuk2qD1px7rtMRAAAAAACAJMYdkECySbUEKgAAAAAAcDUSkEh+JOQAAAAAAAAcQwISAAAAAAAAgG1IQAIAAAAAAAB24KlMSSQgkQpSbWdPtVG8AQAAAACAqyVsFOznn39eI0eO1AknnKAvv/zSljq2b9+uyZMna968edq0aZPy8vKUmZmpRo0aqUuXLurSpYuqVq1qurzi4mLNmTNHs2bN0pIlS5Sdna28vDzVrFlTJ510ktq1a6err75ap5xyiqnyBgwYoIkTJ0b1mU4++WTNmjUrqmUQp1RLWAIAAAAAANgoIQnIpUuX6rXXXrO1jsmTJ+uZZ57R4cOHQ97ftm2btm3bpnnz5unVV1/V0KFD1aZNm4jlrVy5Un379tWaNWvK/G3Pnj3as2ePlixZojfeeEPXX3+9+vXrp8qVK1dY5ooVK6L7UAAAAAAAAIDH2Z6A3LJli3r37q2CggLb6hg7dqwGDx4cmPb5fDr99NNVp04dbdy4UTt37pQkbdy4UTfffLMmTpyoli1bllveokWL1LNnT+Xl5QXeq1Klipo2baqqVasqKytLGzdulCQVFRVp/Pjx2rBhg1555RWlp4dfpX6/X6tXrw5Mt2vXThkZGRE/23HHHRdxHkSQao8kcwcnAAAAAKDE4sVORwDYm4Bcs2aNevXqpezsbNvqWLx4sYYOHRqYPu+88zRo0CCdfPLJkozE36xZs9S/f3/t3btXhw8fVu/evfXpp5+GfRw7JydHd955ZyD5WKVKFd1///3q3r27jjnmmMB8GzZs0KBBgzR37lxJ0rx58zR8+HD17ds3bJybNm3SoUOHJEmVK1fWG2+8EfGOSVgk2oRcqiUsAQAAAADJ6957nY4AsG8Qmvfff1/du3dXVlaWXVVIkgYPHqyioiJJUsuWLfX6668Hko+ScTdk586dNXbsWFWvXl2StGPHDo0bNy5sea+//rp2794tSUpPT9drr72mHj16hCQfJem0007Tq6++qksvvTTw3ltvvaVt27aFLXflypWB140bNyb5CAAAAAAA7DdnjtMRANYnILOystSvXz/17du3TH+MVluyZIkWB91K/Nhjj6lKlSph523evLnuvPPOwPS4ceMCictgM2fODLzu2rWr2rVrV279Pp9PTzzxRCA5WVBQoM8//zzsvKtWrQqJBQAAAAAAAEgFliYgR40apcsuu0wzZswIvNeoUSPdfvvtVlYT8PHHHwdeN27cWG3btq1w/m7dugX6aNyzZ48WLFgQ8vfNmzfrt99+C0xffvnlEWOoW7euzjrrrMD0smXLws4XfAckCcgEo09EAAAAAAAAx1iagBwzZkygn0NJuvrqqzV16lSdcsopVlYT8P333wdeX3DBBRHnr127tlq1ahWYnlPqNuTffvst5FHrJk2amIqjTp06gdf79u0LOw8JSA8hYQkAAAAAAGAZWwahadWqlfr161fh48vxKigo0Pr16wPTFY1qHaxZs2aBx7ZL3634xz/+UUuXLtXevXuVlZUVklisyNatWwOva9WqVebve/bsCYzEXRIDAAAAAAAAkhw3OUmyOAHZrl07XXXVVfrzn/8sn80jCW/dulUFBQWBabN3WZ544omB15s3bw47z7HHHqtjjz3WVHlbtmzRihUrAtONGzcuM0/w3Y+ZmZmqWbOmPvnkE33yySdaunSpdu3apWrVqun4449Xhw4ddPXVV6tRo0am6gcAAAAAAADczNIE5MiRI60srkLZ2dkh05mZmaaWC55v9+7dKi4uVlpa7E+iv/jii/IHZbMvvvjiMvMEJyDT09N1+eWXa+PGjSHz7N+/X/v379eqVas0btw49ejRQw888ECgz0rEIdV+bUi1zwsAAAAAAFzNs9mt/fv3h0yHe/Q5nJo1awZe+/1+HThwwPSj1qXNmjVL77//fmC6ffv2YR8FD05Abt++PfA6MzNTJ510kvx+vzZs2BDoP7KoqEhjx47V2rVrNXr0aFWuXDmm+KxSWFjoaP1xKy6Obna/3/rh4RPIL8ne+48BAAAAAIAZfr9fRV7Pq1jAswnII0eOhExXqVLF1HKlk3mlyzHrl19+Ud++fUPK7devX9h5V61aFTLdunVr9evXT+edd17gveLiYs2bN0+DBg3Shg0bJEnz5s3T008/rSeeeCKmGK1QXFysJUuWOFa/FRrs3KkTopg/JydH5tLZ7lRcXKxKTgcBAAAAAACUe+iQVns8r2IFz97oVfquPLOPUZd+pLmoqCjquletWqV///vfISN+9+3bVy1atCgzb35+fsggNZdeeqnefvvtkOSjZMTfsWNHTZ06VWeccUbg/cmTJ5dJYCJKPJIMAAAAAADgGM8mIEsnHItNPmZbOnEZ7ePNP//8s2666abA49KS1K1bN910001h58/IyNCiRYs0Z84cjR8/XkOGDKmwzpo1a+q5554LfD6/36+33norqhgBAAAAAAAAt/DsI9hVq1YNmT5y5IgyMjIiLpefnx8yfcwxx5iuc/bs2brvvvuUl5cXeO+KK67QgAEDKlwuLS1NDRs2VMOGDU3V07hxY3Xo0EHz5s2TJH377bemY7RaWlqaWrdu7Vj9lqhfP6rZa9SoYVMgiVEpN9fpEAAAAAAAgKTq1aqpTZs2TocRl2XLlpm+8a88nk1A1q5dO2Q6JycnZICZ8uTk5ARep6enm1pGkl5//XU999xzISu8W7dueuqpp+IaRbs8Z599diABuWPHDh05ciSqZKmVvD4Sd5EvuiFZ0qKcHwAAAAAAIByfz+f5vIoVPPsIdv1Sd7Xt2rXL1HLZ2dmB13Xr1pUvQrKpoKBAjz76qJ599tmQ5OOtt96qp59+2pbkoyTVq1cvZDr4kW8AAAAAAADAKzybgGzYsGFIX4pbtmwxtVzwgDCnnnpqhfPm5ubq1ltv1dSpUwPvVapUSY8//rjuu+++6AKOUunRuatXr25rfQAAAAAAAIAdPHsPaOXKldW0aVP98ssvkqSVK1eqS5cuEZdbuXJl4HXwaNOlHThwQP/+97+1bNmywHvVqlXT8OHDdfHFF5uOc/bs2Zo/f7727Nmj9PR0DR061NRywQnVWrVqeb5fQk9h1GwAAAAAAGAFcgySPHwHpCSdf/75gdffffddxPn37dunFStWBKbbt28fdr7c3NwyycfMzExNmDAhquSjZCQ8x48fr48++kgzZ840/ah4Sf+PknTOOedEVSdKYWcHAAAAAABwjKcTkJ07dw68Xr58uZYvX17h/FOmTFFhYaEkYxCbDh06hJ3vwQcfDEk+nnLKKXr77bfVsmXLqGNs165d4LXf79e0adMiLvP5559r/fr1gem///3vUdeLOGzc6HQEAAAAAAAAScPTCci2bduGJAUfeuihkFGug61cuVKjRo0KTHfv3l1VqlQpM9/bb7+tzz//PDB9wgknaPz48TrppJNiirFdu3YhfU2++uqrWrt2bbnzr1+/Xv379w9MN2rUKCTRigQISv4CAAAAAAAgPq5NQF5yySVq1qyZmjVrpksuuaTc+fr16xcYyXrNmjXq0aOHVq1aFfi73+/X559/rp49e+rQoUOSjMepb7vttjJl5eTkaPjw4YHpjIwMjRo1qsyI29Hw+Xx6+OGHA9O5ubm68cYb9dFHH4WMql1QUKD33ntP1113nfbu3SvJ6OdyyJAhDNcOAAAAAAAAz/J8Zuv8889Xnz59AonDFStW6B//+IeaNGmiunXratOmTcrKygrMX6VKFY0YMUI1a9YsU9akSZN04MCBwHSNGjVMDxpTolmzZurbt2/Ie3/6059033336bnnnpMk7d27V/fee68GDBig008/XYWFhVq3bl1I3ZUrV9aIESN05plnRlU/AAAAAAAA4CaeT0BK0m233abq1avrueeeC9zlGO4x5wYNGmjYsGE699xzw5bz6aefhkzv2bMnZDAYM/Lz88O+f+utt6phw4YaMGCA9u/fL8kYFOfHH38sM2/jxo315JNP6rzzzouqbgAAAAAAAMBtkiIBKUk33nijOnXqpClTpujrr7/W1q1blZOToxo1aqhp06bq1KmTunbtqho1apRbxnqb+/67/PLLddFFF2nGjBmaO3euVq1apX379qlSpUrKzMxUixYt1LlzZ3Xq1EkZGRm2xgIAAAAAAAAkgs/v9/udDgLusmjRokD/lGlpaWrbtq3DEcWn6MknVemJJ5wOAwAAAAAApJr27aXvv3c6irhYkSdy7SA0AAAAAAAAALyPBCQAAAAAAAAA25CARPKjlwEAAAAAAOAEchKSSEAiBfiKipwOAQAAAAAAIGWRgETS882Z43QIAAAAAAAAKYsEJJKe79tvnQ4BAAAAAAAgZZGABAAAAAAAAOzg8zkdgSuQgAQAAAAAAADswCA0kkhAAgAAAAAAALARCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAGAHBqGRRAISAAAAAAAAgI1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADYwedzOgJXIAEJAAAAAAAAwDYkIAEAAAAAAAA7MAq2JBKQAAAAAAAAAGxEAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAANiBQWgkkYAEAAAAAAAAYCMSkAAAAAAAAABsQwISAAAAAAAAsIPP53QErkACEgAAAAAAAIBtSEACAAAAAAAAdmAQGkkkIAEAAAAAAADYiAQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACwA4PQSCIBCQAAAAAAAMBGJCABAAAAAAAA2IYEJAAAAAAAAGAHn8/pCFyBBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAACAHRgFWxIJSAAAAAAAAAA2IgEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAADswCA0kkhAAgAAAAAAALARCUgAAAAAAADADj6f0xG4AglIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAADswCI0kEpAAAAAAAAAAbEQCEgAAAAAAAIBtSEACAAAAAAAAdjhwwOkIXIEEJAAAAAAAAGCHX391OgJXIAEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYJj1RFT3//PMaOXKkTjjhBH355Ze21LF9+3ZNnjxZ8+bN06ZNm5SXl6fMzEw1atRIXbp0UZcuXVS1atWoyly6dKmmTp2qH3/8UVlZWfL7/apfv75atmypf/zjH+rYsaN8Pp/p8vx+v2bPnq2ZM2dq2bJl2r17t6pWrar69eurffv26tq1q5o3bx7tRwcAAAAAAABcyef3+/12V7J06VJdf/31KigosC0BOXnyZD3zzDM6fPhwufOceuqpGjp0qNq0aROxvIKCAj311FN65513Kpzvwgsv1ODBg3XcccdFLDMrK0t9+vTRzz//XO48Pp9PPXv21L333quMjIyIZdph0aJFKi4uliSlpaWpbdu2jsRhmSgSxAAAAAAAAJayP/VmKyvyRLY/gr1lyxb17t1bBQUFttUxduxYPf7444Hko8/nU9OmTdWuXbuQxODGjRt1880365dffqmwPL/fr3vuuSck+XjMMcfozDPPVNu2bVWjRo3A+/PmzdPNN9+sAwcOVFjmnj17dOONN4YkH+vUqaNzzz1XLVu2VHp6eqDuN998Uw8++KD5FQAAAAAAAAC4lK0JyDVr1uiGG25Qdna2bXUsXrxYQ4cODUyfd955+vzzz/XBBx9o/Pjxmjt3rl588UUde+yxkqTDhw+rd+/eFd4p+cYbb2j27NmB6euvv17ffvutpk6dqsmTJ+vbb79Vnz59AknD9evX6+GHH64wzoceekibN2+WZCQzn3jiCX377beaOHGipk+frq+++kpdunQJzP/RRx/prbfein6FAAAAAAAAAC5iWwLy/fffV/fu3ZWVlWVXFZKkwYMHq6ioSJLUsmVLvf766zr55JMDf/f5fOrcubPGjh2r6tWrS5J27NihcePGhS1vz549evnllwPT1113nR5//HHVrFkz8F6VKlV0++23a8CAAYH3Zs2apYULF4Yt85tvvtFXX30VmH7mmWd03XXXBRKYkpSZman//e9/+uc//xl4b+TIkcrJyTGxFgAAAAAAAAB3sjwBmZWVpX79+qlv374V3mVohSVLlmjx4sWB6ccee0xVqlQJO2/z5s115513BqbHjRsXSFwGmzZtmnJzcyUZj0j37du33Pq7du2qiy66KDD95ptvhp0vONl54YUXhtzpWNrjjz+uP/zhD5KkvXv36r333it3XgAAAAAAAMDtLE1Ajho1SpdddplmzJgReK9Ro0a6/fbbrawm4OOPPw68bty4ccROMLt16xa463DPnj1asGBBmXk++eSTwOu//vWvqlatWoVlXnPNNYHXc+fO1aFDh0L+vn//fn333XeB6a5du1ZYXrVq1fT3v/89MP3pp59WOD8AAAAAAADgZpYmIMeMGROSgLv66qs1depUnXLKKVZWE/D9998HXl9wwQUR569du7ZatWoVmJ4zZ07I3/ft26eVK1cGpi+88MKIZbZv316VKlWSJOXl5YUkGyVpwYIFgTstfT6fqTiD51m4cKH2798fcRkAAAAAAADAjWzpA7JVq1YaP368Bg4cGDJitJUKCgq0fv36wHTLli1NLdesWbPA62XLloX8bfXq1fIHDY1upsxq1aqF9DlZusxVq1YFXp944omqXbt2xDKbN28eeF1cXBxx1G4AAAAAAADArSxNQLZr104vv/yypk2bpnbt2llZdBlbt25VQUFBYNrsXZYnnnhi4HXJqNQlNm7cGHidkZGh448/3tIyzcaYmZkZ0pflpk2bTC0HAAAAAAAAuE165FnMGzlypJXFVSg7OztkOjMz09RywfPt3r1bxcXFSktLK1Om2fJKz1s6rp07d8ZU5h/+8Af99ttvYcsEAAAAAAAAvMKWR7AToXS/iLVq1TK1XM2aNQOv/X6/Dhw4EJjet29f2PkiCX7MvHRcwdPRlBk8b3CMAAAAAAAAgJdYegdkIh05ciRkOviR5YpUrly53HLy8/OjLk8yHtcOV0bp8mMts/RnTbTCwkJH64+XZzdyAAAAAADgeV7Pq1jBs7mZ0l9eyWPUkaSnh37kkhGqJYX0KWm2vNJllo4reDqaMktG1g5XZiIVFxdryZIljtVvhXOcDgAAAAAAAKQsr+dVrODZR7BLJ/OKi4tNLVc6mRd8R2Rw0s9seaXLLH2HZaxlBidGS5cJAAAAAAAAeIVnE5BVq1YNmTb7mHLpR6SPOeaYwOvgR6Sjeew5eN7g8uwqEwAAAAAAAPAKzz6CXbt27ZDpnJwcU4O85OTkBF6np6eHLFOnTp2w80WSm5sbtozScUZTZvC8pctMpLS0NLVu3dqx+gEAAAAAALysTZs2TocQl2XLlkX1VG84nk1A1q9fP2R6165dOv744yMul52dHXhdt25d+Xy+sGXu3r3bdCzBZdarV6/cOKMpM3jezMxM08vZoXS/mQAAAAAAADCHvIqHH8Fu2LBhSN+IW7ZsMbXc1q1bA69PPfXUkL+dcsopgdeHDh3Srl27TJUZXPdpp50W8rfgOjZv3myqvJ07dyovL6/cOAEAAAAAAACv8GwCsnLlymratGlgeuXKlaaWC57vjDPOCPlbixYtQu6INFNmbm5uSGKxefPmIX9v2bJl4PWmTZt0+PDhqGL0+Xxq1qxZxGUAAAAAAAAAN/JsAlKSzj///MDr7777LuL8+/bt04oVKwLT7du3D/l7jRo11KJFi6jKnD9/fuA5+EqVKqldu3Yhfz/nnHMCt9oWFRXphx9+iFhmcL0tWrQo098lAAAAAAAA4BWeTkB27tw58Hr58uVavnx5hfNPmTJFhYWFkozBYTp06FBmnksvvTTweubMmRHvWHz77bcDrzt06KBatWqF/L1WrVohic7JkydXWF5ubq5mzpwZmL7ssssqnB8AAAAAAABwM08nINu2bRvyiPNDDz1U7kjTK1eu1KhRowLT3bt3V5UqVcrM17VrV1WtWlWSMbDNgAEDyq1/6tSp+uabbwLTN910U9j5brjhhsDrOXPmaPr06eWW+cQTT2jPnj2SpGrVqqlbt27lzgsAAAAAAAC4nWsTkJdccomaNWumZs2a6ZJLLil3vn79+gX6bVyzZo169OihVatWBf7u9/v1+eefq2fPnjp06JAkY1Tp2267LWx59erVU69evQLT06dP13333RcyKnVeXp5Gjx6txx9/PPBex44d1bFjx3I/S/Dj4o899pheeeUVHTlyJPDerl271KdPn5C7H3v37q26deuW+9kBAAAAAAAAt/P8OODnn3+++vTpo+HDh0uSVqxYoX/84x9q0qSJ6tatq02bNikrKyswf5UqVTRixAjVrFmz3DJvv/12LVu2TF999ZUk6cMPP9Rnn32mZs2aKSMjQ7/++qsOHjwYmP/EE0/UkCFDKozz2Wef1Q033KAtW7aosLBQw4cP12uvvabTTz9d+fn5Wr16tQoKCgLzX3zxxbrllltiWSUAAAAAAACAa7j2Dsho3HbbbXrsscdUrVq1wHtr167VggULQpKPDRo00Ouvv65zzz23wvLS09P14osvqlu3boG7KwsKCrR8+XItXLgwJPnYtm1bTZo0KeKdivXr19f48eN19tlnB947ePCgFi5cqOXLl4ckH7t166YXXnhBaWlJ8fUAAAAAAAAghXn+DsgSN954ozp16qQpU6bo66+/1tatW5WTk6MaNWqoadOm6tSpk7p27aoaNWqYKi8jI0NPP/20rrnmGr333nuaP3++srKylJ+fr7p16+rMM8/U5Zdfrs6dO5tOFB5//PGaNGmSZs2apY8//lhLly7Vrl27lJaWpvr16+ucc85R9+7dddZZZ8WxJgAAAAAAAAD38Pn9fr/TQcBdFi1apOLiYklSWlqa2rZt63BEcfr9LlYAAAAAAICE83jqzYo8Ec/4AgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwTbodha5bt06TJ0/WDz/8oK1bt6qwsFDHHXecmjZtqiuuuEJ/+ctflJ5ufdXffvutPvzwQy1cuFA7d+5UUVGRMjMzddZZZ+nvf/+7/vSnP1W4/PTp0/XQQw/FHcfq1avDvj9gwABNnDgxqrJOPvlkzZo1K+6YAAAAAAAAACdYngV88cUXNXr0aBUWFoa8v2XLFm3ZskVffPGFWrVqpWeffVaNGjWypM6srCzdf//9WrBgQZm/bd26VVu3btWHH36os846S88884xOO+00S+qN1ooVKxypFwAAAAAAAHCKpQnIgQMHavz48UcLT09Xs2bNVLVqVa1bt0579+6VJC1fvlw9evTQlClTdMIJJ8RV56ZNm3TDDTcoOzs75P3GjRurXr16ysrK0saNGyVJixcvVteuXfXaa6/pnHPOKVNW/fr1deGFF0ZVf3Z2dsgdjxdccEHY+fx+f8h87dq1U0ZGRsTyjzvuuKjiAQAAAAAAANzE5/f7/VYU9Omnn+ruu+8OTF966aXq37+/6tWrJ0kqKCjQ9OnTNXjwYB0+fFiS1LJlS7377v9n777jpKbzP46/Zxu9s/S+wFJFQAGRQ8ACKqCCiKCcnp6I7VQsWFFAEeTw9OAUvbOCFQWPH9hAvUNQUQRREQTpoDSBVZC25fdHbsPM7vRJJpmZ1/Px4MFkNvnmM5nkm+Qz33y/b8nj8US1zsOHD2vQoEHauHGj+V6vXr10zz33qHHjxuZ769ev14MPPqjly5dLkqpUqaJ58+apTp06Ua3Xe/1Dhw41E4s5OTl6/fXXValSpVLzbt68WX379pUkZWZmauXKlcrMzIxp/XZZuXKlCgsLJUlpaWnq2LGjwxHFKMr9CwAAAAAAIGbWpN4cY0WeyJJBaI4fP67Jkyeb071799bjjz9uJh8lI+k2dOhQTZ8+3ez/cfXq1Zo/f37U63355Zd9ko+XXHKJZsyY4ZN8lKQWLVro+eefN1sn5uXlacKECVGvt9i4cePM5GPZsmX1xBNP+E0+StKaNWvM1zk5Oa5NPgIAAAAAAABWsiQBuXDhQv3000+SjMeux44dq7Q0/0X36NFDQ4cONaeff/75qNf7yiuvmK+bNWumsWPHBmxNmZWVpUmTJpmPPS9atEjr16+Pet3vv/++5s6da07fddddatGiRcD5165da75u1apV1OsFAAAAAAAAEoklCch33nnHfN29e3fVq1cv6PzeCcjVq1dr27ZtEa9z8+bN2rFjhzl95ZVXhmxVWKtWLfXu3ducjrb1ZV5ensaNG2dOd+nSRZdeemnQZbxbQJKABAAAAAAAQKqIOQFZVFSkZcuWmdOBBmHxlpubq+zsbHP6o48+ini9W7Zs8Znu2rVrWMu1a9fOfP3ll19GvF5Jmjp1qn755RdJRsvKhx56KGQ/liQgAQAAAAAAkIpiTkDu2LFDv/76qzntneALJjc313z97bffRrxe73VKxgjW4ahatar52jspGK4ffvhBs2fPNqevvPLKUn1OlrRv3z7t3r3bnPb+7AAAAAAAAEAyy4i1gM2bN/tMN2rUKKzlGjRoYL7eunVrxOstV66cz/SxY8dKvefPoUOHzNe///67Dhw44JOUDOWvf/2rOfJPdna2Ro0aFXIZ70Rndna2KlWqpHfffVfvvvuuvvnmG+3du1fly5dX3bp11b17dw0ZMkTNmjULOyYAAAAAAADArWJOQO7Zs8d8nZaW5jPydTDej2B7lxGuunXr+kyvWbNG3bp1C7lcyVaPe/bsCTsBuWLFCi1evNicHjlypCpUqBDROjMyMtS/f/9Sidu8vDzl5eVp7dq1evHFFzVixAjdcccd5ojhAAAAAAAAfi1eLPXs6XQUQEAxZ7fy8vLM1xUqVAg4+nVJFStW9FtGuFq1aqXKlSubj2LPnj07ZALyt99+04cffujz3uHDh8Ne54wZM8zXderUCTnwTDHvBOTPP/9svs7OzlbDhg1VVFSkTZs26cCBA5KkgoICvfDCC/rxxx81Y8aMkIPr2C0/P9/R9ceKFC4AAAAAIJnlN27Mva+LJXpexQox759Hjx41X5ctWzbs5bKysszXx44di3i96enpuvDCC/XSSy9JMka07tWrlwYMGOB3/qKiIj3wwAM6ePCgz/vhrnvdunX673//a07/6U9/8vkMwaxdu9Znun379hozZoxOPfVU873CwkItWbJEEydO1KZNmyRJS5Ys0cMPP6wHH3wwrPXYobCwUKtWrXJs/Vbo7HQAQAAFFSqosGxZZf5vUCsAAAAAiMb333+vlg0aqOz27U6HAj8SPa9ihZgHoTl+/PiJwsJs/SjJ59HiaDPBI0eO9Hl8+s4779TUqVNLtajcsmWLRo0apQULFqh8+fI+fws35ldeecV8XbFiRV188cVhLXfs2DFt96oA+vbtq1dffdUn+VgcR8+ePTV79my1bt3afP+1114rlcAEkPi23HOPvn/5Zf3esqXToQAAAABIcEUej3ZdfrnTYQABxdwCMj093XxdPDhLOLyTjtE+Ypydna3HH39c1157rY4eParCwkI988wzeu6555Sbm6tKlSpp9+7d2rhxoyQj6TllyhTdcMMNZhllypQJuZ7Dhw9r3rx55vTgwYN9HiEPJisrSytXrtTOnTu1fft2tW/fPujnrVSpkqZOnar+/fursLBQRUVFeumllzRx4sSw1gcgMewdNMjpEAAAAAAkkfwIBtgF4i3mBKT3yNPej2OH4v3oczhJwEBOO+00zZw5U7feeqt27NghyUhurl692me++vXra9KkScrJyfF5P5xBZD788EOf0bMHDx4cUYxpaWmqV6+e6tWrF9b8OTk56t69u5YsWSJJWrp0aUTrs1JaWprat2/v2PqBZNWhQwdJUlqlSg5HAgAAACDRtW3TRp7/jSsB9ym+/0tU3377bUSNDv2JOQFZpUoV8/WhQ4dUVFQkj8cTcjnvvhjDHYU6kA4dOui9997T3Llz9cEHH2jt2rXKy8tT9erV1axZM/Xv31/nn3++ypUrpx9//NFnWe/RuANZsGCB+bpt27bKzc2NKd5wdOrUyUxA7ty5U0ePHo0pURsLRuIGrGceV2HUlwAAAAAQTEZGhhRBt3iIL/IqFiQga9eubb4uKCjQ/v37Vb169ZDL7dmzx3xds2bNWMNQVlaWhg4dqqFDhwadb926debrKlWqhGwBeeTIEX366afm9HnnnRdboGEquU0OHDjgs60BAAAAAACARBBzerxx48Y+09u2bQtrOe+BWZo2bRprGGH77rvvzNfhtGRctmyZjhw5Yk6fffbZtsRVUsnH2cN5VBwAAAAAAKQgj4enq+BqMbeArF+/vqpWraoD/+trYM2aNWE92+49snOrVq2iXv/Bgwe1e/du1ahRw+dx8EAWL15svg4nzs8//9x83aRJk1IJ11AWLVqkzz//XPv27VNGRoYeffTRsJbzTuRWrlw57EFvAAAAAAAAADexpIOArl27mq+9H1cOZO3atdq7d6853a1bt6jWO3z4cHXu3Fnnnnuu5syZE3L+devWaf369eZ07969Qy6zYsUK8/VJJ50UcYxr1qzRzJkztWDBAs2bN8/ncwdT3P+jJHXu3Dni9QIAAAAAAABuYEkC8pxzzjFff/zxx9q1a1fQ+V999VXzdU5OTtSDujRv3tx8vWjRopDzP/XUUz7LdurUKej8x48f9xlNu127dhHH2KVLF/N1UVGR3nzzzZDLfPDBB9q4caM5PXDgwIjXCwAAAAAAALiBZQnIWrVqSZKOHTumu+66S/n5+X7n/eSTTzR79mxzesSIEVGv99xzzzVfL1++XEuXLg0475tvvql33nnHnB41alTI0bo3btyo48ePm9Pt27ePOMYuXbqoSZMm5vQzzzxTaiTukuscO3asOd2sWTOfBC+AJFNU5HQEAAAAAADYypIEZFZWlkaPHm1Of/rpp7rmmmt8+jHMz8/XG2+8oZtuukkFBQWSpJYtW2rIkCF+y+zTp49yc3OVm5urPn36+J2nW7duPv043nrrraVaQu7fv19TpkzRfffdZ77Xs2dPDRgwIOTn2rBhg890w4YNQy5Tksfj0T333GNOHzp0SJdffrkWLFigwsJC8/3jx49r7ty5GjZsmPbv3y9JyszM1OTJkxmuHQAAAAAAAAnLsszWRRddpJUrV+r111+XZCQhzznnHOXm5qpixYrasGGD9u3bZ85ftWpVPfHEEzEl1zwejyZOnKhhw4bp119/VV5enm644QbVqVNHjRs3Vl5enjZu3Khjx46Zy7Rt21aPPfZYWOV7j9QtGYPBROOMM87QbbfdpqlTp0oykqKjR4/W+PHj1aJFC+Xn52vDhg369ddfzWUyMzP1+OOPR9XvJAAbnXmm9OGHTkcBAAAAAL4YBRsuZkkLyGLjxo3TqFGjlJmZKUkqLCzUmjVr9OWXX/okH3NycjRr1iw1a9Ys5nU2b95cL774oho1amS+t3PnTi1btkxr1641k48ej0eDBg3SrFmzVKlSpbDK9h4wJisrS2XKlIk6zpEjR2rq1Kk+I3UfOHBAX375pVauXOmTfMzJydHzzz+vs846K+r1AbBJGP3NAgAAAACAEyx9ttfj8ejWW2/VwIED9eabb2rJkiXauXOnDh8+rCpVqqh169bq16+fBg4cqKysLMvW26ZNG82fP19z587VwoULtWbNGuXl5als2bJq2LChTj31VF188cURD3bz+++/m6+jbf3orX///urVq5fefvttLV68WGvXrtWBAweUnp6u7OxstWnTRuecc47OOussS7cPAJehX1cAAAAAVqN/ebiYp6iIPRS+Vq5cafZPmZaWpo4dOzocUYxohg4rFRXFtk9VqSLNmSMV923bt6/0wQfWxAYAAAAgNe3cKX3yiRRgnA04LMFTb1bkiRjdBADi6fvvpXr1nI4CAAAAQLKh8Q1czNI+IAEAIZB8BAAAAIDUMXq00xG4AglIAAAAAAAAwA433+x0BK5AAhIAnJTgfYEAAAAAAIJo1MjpCFyBBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAEKnKlZ2OAAAAAAB8MQo2XIwEJAAAAAAAAADbkIAEAAAAAABIZLR+hMuRgAQAAAAAAABgGxKQABCp++93OgIAAAAAABIGCUgAiNTVV0uNGjkdBQAAAAAACYEEJABEqlo16euvpSefjL2soqLYywAAAAAAwMVIQAJANKpVk667zukoAAAAAMAYhIaBaOBiJCABAAAAAAASWVERT1fB1UhAAgAAAAAAALANCUgAcBK/UqaOkSOdjgAAAADJjEew4WIkIAEAiIfOnZ2OAAAAAAAcQQISAJzEr5Spg+8aAAAAduFaEy5HAhIAgHjgohBw1ttvOx0BAABAyiIBCQAAgOR3wQVORwAAAJCySEACgJMYhCZ18F0Dye/++52OAADgFpUqOR0B4CokIAGkplGjnI4AAJBsRo92OgIAQKqiux+4HAlIAKnpqaecjgCphotCAACA1OHEtR/Xm3AxEpAAEC/nnut0BAAAAACSFV3+wMVIQAJAvDRo4HQEAJB4srKcjgAAAPcj+QiXy3A6AABIGTwSAQCRW75c+vJLKT1duvJKp6MJjnoeAOAkzkNwMRKQAAAAcK/27Y1/333ndCQAAIQv3i0SST7C5XgEGwCAeOCxGACQpk2TPvnE6SgAAECckYAEAACA+5HETw6VKkllyzodBQAgVV16qdMRpCwSkAAQL5ddVvq9SG6oO3e2LhYASDQkIAEAQKxefNGacoYNs6acFEICEgDi4fTTpT/8IfrlL7tM+r//sy4eAEg0sSQgr7rKujiCof8tAEAxzgnulJVlTTmZmdaUk0JIQAKA3V58Ufroo9guQmbNkurWtS4mxF/lyk5HACS2WOrQ8uWtiwPJb9AgpyMAgMh5PO5JejZuLLVpI9WoIWVnOx3NCbm51pTTqZM15aQYEpAAYLc//tG6X9qQuC66yOkIgOAWLXI6guDatpVq1YpuWR7fdhe33CAH4vb4AMDtunSRVq+W9u6VHnrI6WhO+F/9XjhggMOBpCYSkAAAxANJaLjd6ac7HUFw6enSxIlORwEAABLV/36QLPz735XXvbvDwaQeEpAA4Ha1azsdAWLFr6xIBInQ6uvqq6NbLl4tIBNhG7oBLVIBwB5dujgdgcHt9XyDBvrx73/XsWifrJDc/xldiAQkALjdM884HQFiMXiw9M9/Oh0FAAAA4smJBFXdutKIEfFfb6Kw6odCfnCMCglIAHC7gQOdjgDROukk6c03acUKuETBrFlOh4BEwI0lYI0KFZyOIDW98IL06qtOR5H8OFdEjAQkALiZVSO1AQBUdMEFTocAAKlj1arU7obGqQRVWpp06aXOrLvYaac5u/5ArGyVyiPYESMBCQBOCnXi4pe1xNa2rdMRAPBWtqy95VNnh4ftBKSGnByjKxqknmuvPfHazYk6N8eWhEhAAgBgl4cfdjqCyD33nNMRANbjBgORIEEKIFZDhzodgbOS/fF7zhNRIQEJIHXNnOl0BEh2TZs6HUHkhg93OgIAgFtFOxI9kGqaN4//Ot2aFHNrXFL0P1C6+TO5GAlIAKlryBDpL3+RqlRxOpLwtWzpdAQAklUyX0zTAtJd3P59uD0+J5Up43QESDTJfG5Jdjt2uPeYnzdPWr485mI81PdxRQISQOoqU0Z64gnpwAGnIwmfd38qgB24UQCix/GTHPgeAcQqGeqRevWk7Gyno/BvwACpc2fn1p8M368DSEACQCKpWNHpCAAAbrFsmdMRJCduLANjQBFEihZmAP6HBCQAAADia9Gi6EekPu88a2NJZI0bOx1BdEjwJa7evZ2OAEgcdJ0E+CABCQCAHa66yukIAPc680zp+uujW/Zvf3Omc3+kDhKkgbFtgPB4PNL06U5HAbgKCUgAcLOSF/pc+CeGKlWkMWOcjgJWq1bN6QggGS1KvvwysmV4BBBwtwkTpJEjnY4CsFaXLtIjjzgdBezAPVlUSEACieDGG52OAHbhpjj59OghrVrFYzfJiItNhMI+ElqTJpz7UNqQITw5kKxSuV70eKS77pK2bnU6EgQS7fkolffrGJCABBJBw4ZOR4BoTZvmdASIt9tuS9x+2VJZVlboeZL9YjOZPx8JL3fIyZF69nQ6itCS+VhwK7Y5kg37tDtxPeAoEpAAYJeXXpJuuMHpKABYhYtW9+DGzpAo26FGDWnQIGnhwsSJGQBi4X3NEK96j/o1clzbxRUJSACwy4gRXAgAyYSL1MTVtavTEaS2Dz+U3npLatrUmHb7udHt8SUr6tjkZPf3Oneu1KGDvetA8qB+dxQJSAAAgHAGDeKiNXFdfnl81hPvfYSEjT3YrkDiuPBCqV49p6MoLVmuGZLlcwRCH5BxRQISAJx09tlOR5BSCsqXdzoEuFU4g31xsekekX4X4fTxCQCpompVpyNILal+/eCmH3XcFEsKIgEJAE668UapQgWno0gZeaefriMM6uQO5cpJlSo5HcUJtWo5HQEQuVS/qbUL2xXJ7pdfpHHj4rMujie4mCfahGRaGsnMKJCABBIBlVvyqlxZWr5c+uMfnY4kZRyrU8fpENwtXjcKF1wgbdokrV8vLV4cn3XGKtlvopL988E93H5dw7GAZDZmjJE8gb1iqUeysqRbb43vOgNxe30dKau20V//ak05KYaaBwCc1qqV9OKL0u23l/4bN0FIZjVqSM2bS5mZTkcCROass/y/H22dTXccAOKF+sb9pk2THnvM6SiSk1UJ1S5duE+LAglIAEgknOiQjBJlv06UOFOBk9/F8OHSK69YV97QoVLbttaVlwjcfizRZyhSgduPw2RSUBCf9VjZWrFuXevKSkY8gh0VEpAAkOqaNHE6guRStqzTEQCwS5Uq0ssvS9nZ1pVZpox1ZblV48ZORxCZUaN4RNUJ3Mwnp1T9Xr0TvMeOORdHtKxMULs52R1s//zqq/jFkSI4swJIbi+84HQE4XPqAu3RR51Zr1Psvghq3dre8pOFlQkcINFde63TEfhq1sza8hJtxN1ataT773c6iviweiC888+3tjzYJ1UTg/HivX2PH3cujli5OXlot44dg/89lbdNlEhAAkhed9whXXGF01G435Ah0oUXOh1F/Nh9wZ1oLX1KSk+Pz3ruvjs+67FSjRpOR4Bibr3ojzauVq2kYcOsjQWxefBBpyOw37PPWnvOat06+uS1W4/pZBTvbc13G78EJNvaWqG2J0n8iJGABJBcMjOlQYOkCROkiROdjiYy4Vw02HWiq1nTnnJd5jit7kJLS4vPqOyJ2LfQtGlOR4BkNGKE8f/LLzsbB06oX9+6stw6yNa8edJVV1lbZizJj6Iibubjhe0cH97HQ4sW0ZUxYYI1sSAwjoe4IgEJILn85S/SW29J990nZWQ4HQ1cZictYsPzzDNG659U6JsuEl26OB2BvWg5EX9dukh9+hivU2n7u/mGLyMj9kFo/vUv41rkkUekzz+3Ji4rNW8uDRgQ+XL9+gX/u5u/V8BJ5cpJd911YrpOnfCWu/deacYMe2ICHEACEoDzrHys0d/F7403+k679TE3LtxtVVimjPJ5hDY8ZcpIDzwgHTgQuv+bVMKgFO6RLMm6xYtj26+SZTu4ydix0S1XPABZnz7SxRcbT2PcdZfUqZN1sTmhuAVnpUpGMgSJr7jeSKb6IxE+yyOPSAsXSi++KH3zTXjLeDxGH8FPP21vbKmM+6+44koagPOGDpWWLLGv/DFjpO7djdcdOkjjxtm3LqslwgVVgvjlvPOcDiHxlC0rffaZ9Pe/Ox0J3O7NN52OIPFUqRJ7K+NEvXFy87kt2ti2bpV+/FH64APju00GFSpIK1cax/c330g9ehjvJ9J1FFKDG+tCf3XJWWcZ3dzY1SWQm+tWt+B+wFEkIAE4z+M50XLAirJKatDASHDm5xsX0v76YSnZ2XzxI3FIGgc7dHA6hMRUpozRksdOXDAnvpNOcjoCd4hkX3bzfu/m2NwqO1vKyYnfQF6hnHFG7GV4PFLbttLgwVKTJifet2ukazcmkRAfJ5/sdASRc+sTVQjO+1F4SR7qnbgiAQkgNXg8xk1BoJuq6683fpWUjBEcp0yJX2xukAIn332h+q5yyqhRTkeAcJGUAfsAEoUV5/VA+7sdx0GiHVtVqzodQfLo3196553olm3UyNpYIpFo+2wyiSVhXbu2ZWEgciQggUTACc5+2dnGY1NHj0rr1vnvs8n71387pEAS0FFWD0p0/fXWlPPEEzzOhsQX7/qL8yJgv0DHWaDj3eNx17XMe+/ZU25urrRrl3TwoHTllfasw05uqz/T0qKPyc19I7ptO0fKymPZ6nph2jRry0PckIAEgGIejzHyZfHjU7ff7vu36dOdiSnYtF3rQWhWPXqTlWUMejBrljXlIXp/+EPwv7vl0Uq7UA8klqZNE/ec4KYkVUkcByfEe+AtqweKq1TJ2vK8ZWUZfWTCOTVqhB6Z3Umx1HMl66FwyypXLvp1utnMmcaYAb17S6+9dqI/2khRvzvO4uYgAGxh14V6vXrSTz/ZU3YymDzZ6C/yhx+MDovPPNPpiBBIo0bGAABITG65IJwwQerVK/DfreqrFsnL7n25TBmjpX5GRup1FYL4i3R/juV6tahIatVKat9e+vbb6MuJN7ecv6Lh7/HlZs2kjRvjH0s0hg93OgJ3ueYaIzGejOrXNxKPdoil3rLzR44kRQtIIJUlwi+3kT6aamWyNi1NGjlSmjo18uSjVR20x6uViJtbo4SSni499pjTUTinW7fo+04KVyLvH5E444zAj9aPHRvfWCLhhgGW4n0Tnsg3/bFYsUJ66SXpq6+MgUHsYvcxn6rfH0KbM0c65xwjEenkY5bVqwf+m/f+G+6x0qZNbPHYYdiw0n1ZTp4c/ziSdVTiWOq5aOrgp56Kfn3+UE+HVmJAG4RGAhKAtbp1M1pWWuX++60rK56eeCLyZTjRR+ezz+y9EQ/ETd/Xuec6HUHyaNXK//vNmsU3jkg8/bR0/LjTUSAe2rSRRoxg1HHERzTnuZtvjm1dzZtL778vffONdOON0ZVlhenTrfuh/qKL3PlobFaW8QPmqacadcvLLwc+B9rpiiui29e8l3HTNZkTMjOTu5sYq75ff+XE8oObk4MgJSgSkACss2SJtHixtc3RE/WCIicn8mVSpZWZlbKzjQtnJ/B9WceuG7Py5e0p142sHmQpEo8+6ty6482J1kFANOwcBTvY/M2bS337xr5upw0bJu3caU1Zbh5o7rTTpC++kFavtu+R5mD7UbVq1nRvkuzXZKGORTvul4q3aaLei8VL9+5OR5BQSEACqczqk/Xppxu/wDkdRzKx+6Q/aJC95duNfSc5tG1rT7kffxz5MuxT4bv8cukf//AdsCsBHK1fP7oFW7cOPfhUstyopfJxkCzfoRWiHYTmueesjcMpFSv6f9/7+Aj3WEnl/aqwMPDfiuvjRKxznEgKxnNd2dnWl+k0f41kEnHfS2AkIAFYL5qTIJW/M/70p+iXvfJKy8KAy9l9EW1X+cn8OJIbzJxp9Jnp8cS/Do9hn9ly773hz1y/vjR/vtH5/fLldDifClLheiTc4yfa4yyVk22JIN7fT7AEZCycfETfbez4Ttu1M/5Ppjpx5kynI0h5JCCBZHD77dI990S+XDJeICbjZ3KrMWOcjsBZ7GvJo2bN0PO4+QLcqthSZJ/+7dRTtW30aB1p0EBFXbsGn9njMQYVGzo0tR7pt3tfiLYVKqzXokXgv6VqArJLF2vLS/TtEauCAnvKDbbvJrqS+0yo87zb9zEn4yvuombwYGOAKziKBCSQDKZMkR5+OPLl3HxDnYoS7ftwoqPyZOb2i8dk9uyzTkeQ+BJp//V4tHv4cK1++20VLFli9FkXSKLVy4miTh0Gz3KLSZMC/y2Rjmt/GjeObrlI+rUNp45I9XokWAvIZN42iX78JIsdO6RNm6TZs6UyZZyOJuWRgARgPScvJpLtQoaLF8B+AwY4HQEiZWXd+Ne/WldWJHHFo353cwu22bOje3oD4fXfHO532KqV9OSTkZWRKF0RVK4c+TJ9+khnnGF9LInCjmM/nEewE/F6N1TMiX5PkojfiT+1aklNmgT8PJ5Yv6dE/57jjAQkgMCuvlp6/nn7OyFOlhNcPNi1rTh5IhmFs19nZfkeV4GWoZ5KXhdc4HQE9qhSJXBiyQ0qVIju6Q27JcKx/uijUteuxja84AJp4MDS8wSr/0r+7brrpAkTSs8XaBCali3DjzXRpEJXC27qA9KqWBLhuI2EG67L3TQKthtigCVIQAIIrGdPY6CRJk0iWy6akwQnFv9KXoBYfUFixwVOtWrWl+lGVu+z0X4Xbj92ommBEk/hbj833AwE4vZ9AM7Yvl3q0cPpKGCHnBzp88+lgwelt9+WatSIvUx/SaJgdcuZZ8a+zni4777I5g+nPvU+H5x6amTlu0EkyWkr2NUHpNsl+ijYbuLmazBEhAQkkMqS/WQFZ/z1r/HrY4V92P2qVnU6guCS4aLWDZ8hmhh69Yp+fRz7ocWyjdywTyWSwYOdjiB2/r7zYPtQx46RleWUBx+0tpsFyWg5X+zqq8P7oc1N2yRebrrJ+D8eCUgntq+bzkNuigUIIsOugjds2KDXXntNy5Yt0/bt25Wfn69atWqpZcuWGjBggM4++2xlZFi/+qVLl2r+/PlasWKFdu/erYKCAmVnZ+vkk0/WwIEDdUYEfXo8++yzejSSToglpaen6/vvvw8532effaa33npLX3/9tXbv3q2MjAzVqVNHHTt21EUXXaRTTjklovUCtkrFiya3iNcFhZXrueoqo0+9WrWsKxPOiuV8zUVx4oj3d3X++fFdXzxEsg05tyaHSpUib2XnNH/76UknlX6vXz/7Y7Fberp0223Syy9LK1daX365ctKnn0r3328k2ubNs34dVotXXT95svF/OH1AulmvXtJ//hPfdZb8jhL9WirW852dn58+IOPKlgTktGnTNGPGDOXn5/u8v23bNm3btk0ffvih2rVrpylTpqhZs2aWrHPXrl26/fbb9cUXX5T62/bt27V9+3bNnz9fJ598siZNmqSmTZuGLDOcRGKkDh48qDFjxmjRokU+7x89elQbNmzQhg0b9Oabb2rgwIEaO3asKiVKJ89ITtFW9u3bS2vXWhsL7GX1ydPufkPdINEvBiNRu7bUpo3kfV6cPFkaM8a5mMKRSt+R06LZ1mlpxs374cPWx5Mq7NrHwym3WzfjMeBU9/XXkkX3M5Z7/HHpllvCm3fgQKl+fWPEWMlI3I0da1dkpdmxL3u3VLRT27bSnDnG60Q/71gV/5QpRv0uhdcC0s33vAMGGNvl448jW87KfSHUdXqi73dOIoEYV5Y/gv3QQw9p+vTpZvIxIyNDbdu21SmnnKJqXv2CfffddxoxYoR2FJ/kYrBlyxYNHjy4VPIxJydHXbt2VROv/uu+/vprDR48WF999VXIctd6JVBOOukk9ejRI6x/gRw9elRXXXWVT/KxQoUK6tixo0466SSVLVvWfH/evHm67rrrdOzYsXA2AZJdolWMEyc6HQFShd3Hxp/+FL91R3vxGK/6Ydq0E61aL7hAuvzy+Kw3FuFsm5LbPdCTEolWDycKK/quS1RW3DAG2y/tvCG96CLpiivsKz9aw4fHXkak282tyceiIunmm40fhcORni4tWWJswwsvNF43aBC8fDcbONCa7mCuuy72MlKRd/cr4fwoXb68NGSIbeFErVw56dpr3b+/21nfN29uX9l2i0c/yBUr2r+OJGJpC8j33ntPM2fONKf79u2rsWPHqmbNmpKk48ePa86cOXrkkUd0+PBh7d27VzfddJPeeusteaI8aA4fPqxRo0Zpz5495nu9evXSPffco8aNG5vvrV+/Xg8++KCWL1+uQ4cO6brrrtO8efNUp04dv+UePXpUmzZtMqcff/xx1a9fP6oYi02ePFmrVq2SJHk8Ht100026+uqrzcTjr7/+qmnTpumll16SJH355ZeaOnWq7r777pjWC8Rd8+bGYzvvvRf/dbv9AiGYRI49Wf3jH8ZI8JD69JG2bZOOHzduFH7/3emIfDVuLG3ZcmJ61qzwlit5/XHyyZaFFDeJVnfcfPOJ124ffCnRW5XYtW+89Zb06qv2lB2LG2+UXnnF6SjiL9h+2r+/9O234ZXTpInxqLITrNpX+/Y1Pkfx47+xKm7Fh+hdeqnRH+TBg8Hne+klKTdXeuih+MQVTKdOUmam0X9ohQr+53HT+cHOWB57zPlro2gHOJ06NfR8sdY9U6YE7xMXPixrAXn8+HFN9qroe/furccff9xMPkpSZmamhg4dqunTp5v9P65evVrz58+Per0vv/yyNm7caE5fcsklmjFjhk/yUZJatGih559/XqeffrokKS8vTxMmTAhY7g8//KCC/zUXr1y5cszJxx9//FGvvfaaOX3bbbfphhtu8Gn1WLlyZd1777264YYbfD7f9u3bY1o3koDTJ7ho1n/ZZdbHkYqc/u5D6dnTd9qu1q/16tlTLiKTlWVciLuxn7unn5aKrzkuv9xooWUlO4/FVq3sK9stTj9dKltWOvts6a67nI4GsXL7uQn2c+s+8N570owZUpUq0S3v1s9lpXh8Ru91lC0rvf566GXKlpWC3J/H1VdfGV1MBGtB56bHou1YV/HnO+kkI5FXrZpxPe6V34mbSK8lhw2TFi6UunSxJx5vHTpIXvkbBGdZAnLhwoX66aefJBmPXY8dO1Zpaf6L79Gjh4YOHWpOPx9D65JXvH7lbNasmcaOHRuwNWVWVpYmTZqkrP/1B7Jo0SKtX7/e77zej1/n5uZGHV+xmTNnmgnNZs2a6eqrrw4474033qiWLVtKMhK7s8JtxQE4qeRoppGeKKxKUqTChaObPPmkcWFSvrzx2NaNN9qznlWror+ZsAv7mrv07Sv9/LN05Ig0c6axT6aaK6+M37pKtgoKVYcvWWL09fjBB5L30yfJdhzF+/OEWp+dXTu48buz4lrC7X0Y339/ZPMnWgtpOMuux23PO08aPdqesiVr66N77rGmnFiOPat/RI2Fx2N8d/v2GX3EXnCB0xGF9sor0plnhjWrx4oBcqZPj62MFGJZAvKdd94xX3fv3l31QrRW8U5Arl69Wtu2bYt4nZs3b/bpQ/LKK69UZmZm0GVq1aql3r17m9OBWl+uWbPGfN0qxpYJhYWFev/9983pQYMGBUzOSlJaWpouueQSc9p7WcBSQfZDSZGdOC+8MKZQkKDatjWSg4cOGY9t2dWJeM2a0r332lN2MG68wUZgGRm+fX5ZeeOdCDfxDRvaV3bJvhqtevw21HYN9MMDx2ZobKPIVazo/v5tR46MvQy79w32vcRlRb+ZUmKcMwO5/fbw5rNrPx89OvJWhhxzSBCWJCCLioq0bNkyc7r4MedgcnNzle31C+NHH30U8Xq3ePf1JKlr165hLdeuXTvz9Zdfful3Hu8EZKwtINeuXav9+/eb08EGqinmvQ1/+uknnxaZgCXOOMO6iwyJE1+8WL2d+d4QLfad5BKqhfFTT534geHKK41+fr3ZtT8895w95boBx5D1Yt2mr75qPAbqZsEGhklkiXQ8JHJyLRx9+8ZvXVZtSyu/E6+Bc2MSzT49fnx4/RamGhvrh0Nt29pWNkqzJAG5Y8cO/frrr+a0d4IvGO/E3rfhdo7sxXudklS7du2wlqvqNSqXd6KxWFFRkX744QdzOtYWkN7Jw8zMTLVo0SLkMk2bNvXpHzKa7QME1K2b0V9auOy+0Er2C7lw+WvVYHdH3Cm47Y/a2UoMiccNx0CsF9bF112xfJZQjw8NGSLt2SP99psxMJOVP2D506eP9Mwzzj+GFmybuqEusWv/TaRkkFXOOMMYsCVZBNs3rNhv3FB3xkMqHgvUK84Js0FVKWzbqG277TanQ0gpliQgN2/e7DPdqFGjsJZr4PUL3tatWyNeb7kS/Q8dO3YsrOUOHTpkvv7999914MABn79v2bJFv/9vdM/09HQ1b95cixcv1h133KGzzjpLJ510kjp37qzzzjtP48aN0zfffBN0fd7bp379+uYAPMF4PB6fx9hLtvYEYvLZZ8Yoc27qPBlS69aSV/cU6t69dCsjuyTCjYRFMf785z9bUg7HB1zhjjti7/pg0qTwHjstU8Z4RNVK/o7rCROkDz+UrrnG3cfZk0/6Tl99tbsGaPJ43D/KeCor2cqpQoXoB2gK9n0l+kAYVkmE6xy4l9P7zznnBP+7m489l/u9TRttv/lmp8NIGZYkIPfs2XOiwLQ0n5Gvg/F+BNu7jHDVrVvXZ9pfa0Z/Ss5Xct3efy9fvrxGjBiha665RvPmzdO2bdt09OhRHTx4UBs2bNArr7yiIUOG6PbbbzeTliV5l1+rVq2wYpTksx2j2T6AZaI5qUWyjJUnTacvEGL16qvGjfc770j//a8Uol/blBfFvnO8Vi0VvPyy1KyZDQGFMGSI77QT/VrCVyJetDdpYgy0s3Ch9OijsZcXRtcwruOG761/f+n//s9IPE6caDymHm92bYdEP5cmgssuk9q0MV57PMajl+PHS/fdZwye0KePs/HFIpH3HzfULf6cfbbTEcQukfcLf+waBMyfpk0lrzEibF1XqvF4tMfppy1SSOimeGHIy8szX1eoUCHoACveKnr9iu5dRrhatWqlypUrm49iz549W926dQu6zG+//aYPP/zQ573Dhw/7THs/Mv3bb7+Zjz9Xq1ZNjRo1UmZmprZu3ardu3eb8/3f//2ffvzxR82cOVOVSrRE8G5hWfJvwXjPG832sUp+fr5j67aCJTu5wwoKC5Ue5O/F31G4n7V4/vSiIgU7XRUUFKgoPz/kfJJUkJ+vIq99xZOfHzRmb4WFhSrMz/cbf36A90OVFS+BYovpuOnZ07sgnz95CgrC3q7hKP6O0woLI/5FKtRntPLYy8/Pl8fPcVBUVKSCCPd/ScofPFhFl1yitLvvVtpf/xp0vcG+40D7bEATJyr9p5+k775TUe/eKvzLX8zvONrvtngbWLW9w953CwrCWmdRVpbf+qPkemKN32/cYWyXIsnch4LFUnys2HFOKQqjjvWZv3p1FVx6qTHhFXtaUVFUvyznFxSY5URdp4XYNoGWT/d4Sn32gsJCn/OJX2HufyXXX1BQUKIYYzpQWf72Dx/9+vm2VI9gHwl33/NWajuGqKMiiadkbMH2yfz8/IjqrGD7j9XnimjL8z6fFAunrHDqTL/niho1pM8+k+eLL1SUnW0M6iZJDzxg/P/558rw00e+v/X5O4cXfx6/f1OI/ToMwdYZzX5XvL+WFFU5fqQr+D5drLCoyOc6MtLtF+i6IJxr6aIqVeQJcM+XP3++tH69MsLs6iyY/MJCv9u6WLTnEm/F50yfcsPclpHez0jWxOyv3GL+vr/CENfOoc5lwa41/Jo5U54LL1T68OGl/lTk8fjdJ2OpXwPdU6UVFIS1rb23Y6z3L97XKSVFfC3+P97XA4FGwg51HxAqjkhjSgWWnPOPHj1qvi4bQcfNWVlZ5utwH5/2lp6ergsvvFAvvfSSJGNE6169emnAgAF+5y8qKtIDDzyggwcP+rxfct0lW0g2adJEd911l3r27Kn09BOHzooVKzRp0iStWrXKXG706NH65z//GbD8eG4fKxQWFpqfL1F1djoAC/z8008K1uV48XcU7mctnr/10aMqH2S+rVu3at+qVWr1+++qEKLMn376Sbu99pXqW7eqaZjx7N27V7+sX6/WAWKN5Dvcs2ePtsdxnw0Um13HTY1t29TEwvI2bdqkvFWr1Hj/fkU43l7Iz2jlsbdq1SrV/vnnUsdBfn6+volw/5ek7777TpJUf/du1Qky3zfffKNOAf62fsOGgPtsUE88ceL1tm3GP0nVtm5VNG0yD/3+u36I8DgJJtx913PkiN9tU5SWJk9hoTm9fvRotbz++pDriTV+f3GXD1CveCsqKgorlm3btukXC7ezt6OHDyuSYS9+P3JEa/183rq7dqmen/lD+fHHH3WoglHLR1unldm6VcFuiwMt3/7YMWWVeG/nzz9rZ6j9sKAgou8i0PqL64JAZR0/flzfRlifhxtXQUFBxMdByfnTDxzQyQHm/ebbb1Vm61ZF073+0aNHA+6TRenpWrVqlapt2RJ2nRVs/7HymPpxwwZF23P7wYMHtS6KeimcOtNfOeZy1aoZN9Ylyqmwfr3fz+JvfY337St1Dj906JB+WLVK9XbtUt0Sfzt69KhWx3idUn/v3lLnzyNHjuj7VauUsXevOkRY3tq1a3XUq5usYpHuH4G+j9aHDwe95i32a16eNniV0WD3bpUcZeDI4cP6PsB6/MX7w7p1anL4cNBr6cKsLG2/5ho1CvCj6Kr/NYix4njZ8OOPOhikUUzj8uUjviYsadv27fqlxDZqsGdP6W35v33GW6T3M5LU/LffFGwotT0XXqjst9+OuNxiLQ8eVMktti/EtfPPP/+sXRHWfRs2btRvwY7Nli39Lud9PRxqHeE6sH+/NoVZ3/jjvR1r7tihxjHEsuHHH3WwcmW/fwtav8Yo2H1orOfvVGXJDwXHjx8/UWCYrR8l+fSFGG1GeOTIkT6Dytx5552aOnVqqRaDW7Zs0ahRo7RgwQKVL+97+ikZs3efjR07dtScOXPUu3dvn+SjJHXq1EmzZs3yGdV68eLFpVpYRrt9vNdHxhxJj0cHnGXDYzG/RtuRtkscbtLE6RAS0s9XX22+3t+7t37rFCiFCwQQzvkgXucMO9eToOe9jQ8/7HQIgSXbI55wJxuO3TUvvaS9F15oebnR+Omaa5wOwXLbbr/d+kJdVIcf9+razjIu+nyuigUxsaQFpHeirNCr1UMo3km1zCj7OcvOztbjjz+ua6+9VkePHlVhYaGeeeYZPffcc8rNzVWlSpW0e/dubdy4UZKR9JwyZYpuuOEGs4wyJUZyfP/997V7925t375dTZs2VYUKgX+vysrK0pQpU3TWWWeZg9u89NJLOvPMM815ot0+3s2Co90+iK/fOnZUpZUrnQ4DcIXtN92k1l9+6dMaznUC3KwWpadr+y23BF000OMaqe7na6/VL/37K+3oUR1p2jR5Lhr5vgH9/Kc/6UCvXk6HkRrcXue4Pb6SXB7vkebNJUk7Ro1S/RkzHI3leJ1gz4bAab+dfLIqff21z3uFETxlGbNorutcfvwhfixJQHqPRu39OHYo3o8Vl0wCRuK0007TzJkzdeutt2rHjh2SjOTm6tWrfearX7++Jk2apJycHJ/3SyYYPR6Pateurdq1SzYS96969erq37+/Xn/9dUnSV199pcOHD5vbxfux60i2j/e8sWyfWKSlpal9+/aOrDsRlXv5ZRWOHy/Pjz/Ks3y5ZeXWrRf8oboOHSJ70KV4/vQQJ6tGjRqpYYcOSi8f+qGVevXrq65XHJ7/PSoSjpo1a6p6ixZBYw1Xdna2akS4jB0ijTtcnq++srS8pk2bqqhDB6VVrx7xsiE/Y4cOKqhfXxm9e0cZnaGwTx916NBBHj/HQUZGRlTbul27dkpPT1dagIHBCj79VE07dZKOHAlYRvP/3SyUFO137/n++6iWq1C+vKX7W9hlBdg2HTp0kMIow+pjxG95YZxzPWlppZYt8nhKJZgbNmyoBjYd12UivHEoX66c38+bFuZ1S0nNW7QI+Z2F/L5CnCcCLZ/WrZsxkIuXOl26qHao9UX4w0bx+gsKCszHrqUTdUEgmZmZttXn6enpUZ+/TXv3Bpz3pJNOkqK8KQ103Zn9zDMqbmfjCXPwR8m+c2JJgerlcFSsWDGqOKP9bCGX8/M4cqDl/J3DK1SooA4dOvg9z5UpWzbm7yTNT4urssV1088/R1xeq1atpBi+v2KBPle61/1qMJWrVPEpw+/nDLL9isqWlafE+TG3U6eQ6zfLmzZN8pOAtPIYymnePKzzdCwaNmhQ6pwZ6bYMxed7CjHOwkkRrMNfPOl+GiRVr1YtaDl169VTnQg/W06zZioKsUzaKadIJRKQga4FC2+/PWhf58FUrVYt7PrGH+9lPcuWRRVDsUj32XD2qZLXA5GWE/P5OwF9++23ETWo88eSBGSVKid6XDh06JDRmXoYmXHvvhi9H6OORocOHfTee+9p7ty5+uCDD7R27Vrl5eWpevXqatasmfr376/zzz9f5cqV048//uizbLYFTZY7depkJiCPHz+un376yUx0en+2kv1PBmPl9omF96PyCC6jTh1jFGPJ0lY/6SEe3Te/oxYtpPXrQ5Znzh8ixvSMDCkjI6zPkp6ebsx74o2QyxRLS0tTWoD9LNL9L1hZ8WTbcROkRXY0zO8tgu4hioX1GXv1kjp3lmJInKY9+qjxnfqJ0RNuHCWkp6cby/n73K1bK6NLF+N1kNbnGQH+FvV3H8Ex483j8Vi6v4VdVozHrNXHiN/ywlhHuNuvVB3n7eGHpbVrjZGpoxDONVPJ+f3GHMVxLP1v24XYBiG3UbTLT57sm4CsWtXoYD/U+iJsTRFo/WZdEEC0dUw4oim71PxBls/IzAzrGPAn0D7ps/4I6qx4XUvGsp5ov+to1xntMRXusW/WExaeO0OuU+HVJ/5Eu5zfcvwJs54tdR3pZz8Puv1eflkaPPjEdIcOymjRIuT6Q30flp7ng53PLOL3nBlsP42Cz3Ixbt9o5g3VtVp6WlrE2znotcaJFZd6K+B2nDhRijIBmebx+L+nCvNaI+zzxe23h4wx47TTItqWEe9TAa4pgpUT8/k7RVmyFbxbChYUFGj//v2qHkZmfM+ePebrmjVj7erWeBx66NChGjp0aND51q1bZ76uUqVK0Eesw1Uyfu8+KGt5/fL4yy+/hF3mXq9fta1IkiIO7GpeHqzczl5d3j71lHTWWfbEYDea5odn0CAjCendMqJHD2nJEudislvnWLrQjoJT+2K0P1okyyPObhLpPnDPPcb/+/dL8+dHtmz37lKAUU8jloj7QuvWxg37xIlG3fbEE1JWyWFp4EqJuL855Q9/kD755MS0Hf3RQbrsssB/C3d/jfLHQNMFF0jjx0vPPSfVqyeVGJzUrwADqMIBd94Z/rxO1YGRXKME+iF9xQopVB/d8boePuWU0PM49DQorGfJIDSNG/uOabTtfyN6hrJ9+3bzddOm4Y6XGzvvpra5ubmWlFny0WrvpGYTr4EMtm/frqIwDuaioiLzcfKSZQA+Jkw48frMM6VZs6TevY2bWiSfcuWkv//9xGN1V15pfO9uxk0qnBLOvufkjx85OcbxHCkrf2iqUMGaJH8s23H4cOm776Rly6Ru3WKPBbFL1B8F3Xq+GT9eKm5M0L695NUXfVJxer+5446IZv/VX+Jj3LjYYkhPl+6/X9q0SVq6VGrTJvQyDzwQ2zoj5abjxOl95s9/PtGir3Fj6dprrSs7nts50nV17GhPHNEIFfuoUfGJA3FhSQvI+vXrq2rVqjpw4IAkac2aNWE947527VrzdatWraJe/8GDB7V7927VqFHD53HwQBYvXmy+LhnnF198oUWLFumXX37Rb7/9phkzZoQ1crV30tXj8aiOV+e9bdu2NV8fPnxYmzZtUrNmzYKWt3HjRp+kZuvWrUPGgBR0yy3Suef6vnfZZca/zZulOCb2EUdXXSUNGSIdOybVqGE8/hmtMPr3TDluujB3s0TYTtHe2Hg80S0b6TYp0SVM2KxqPeXxGDfbtDhMXMH2uUQ4RlNFr17G8f7LL0aruHBa88SamCle3t89mRU/XLpt33v66eB9xPnZnkdycnSsXj3VnDfPeOPqq8NLGFopOzv+T3o4xcr9wqpWoyNHGvdTO3ZIXbpIDnZ7ljCsTho7nYRGXFnSAlKSunbtar7+9NNPQ86/du1an0eMu0X5i/fw4cPVuXNnnXvuuZozZ07I+detW6f1Xn3k9S4xOML27dv14osvav78+frvf/8bsmPSYp94PVbRokULn0RoixYtfB5J/+yzz0KWt3TpUvN1tWrVLGupiSRjQdcFSFCVKhnJx1jUrm3cFCUKfz8w1a8f/ziKWX2DFe0FGBduqWXBgtiP/TJlpPffN1od3nZb6Plbtgw9T7wTDiTXnEfdE5nKlY0fhu14lDDY8XDxxcb5vlh6unTffbGv023ff4hBSPwp8ni0ZexY5X/zjfT999K//mVf3RJoe4VTv6K0Bx/0nY7le2vbVjrnnMRJPrrt2AMiYFkC8pxzzjFff/zxx9q1a1fQ+V8tHqhDUk5OTtQJNu/R7hYtWhRy/qeeespn2U4l+j449dRTfTrenj17dsgyv/vuO5+E4YASv8h4PB6dffbZ5vQbb7wRdPSgwsJCvfHGG+Z03759I+6gHg5Jtu+p+ASXbJ8rlV1xhfF/zZpG/0Sx9nUUT5dfXrrF5pNPOhMLkocb6rdIbiasGEXxn/80brbCbekzdWrs64Q9Qu07iVTHW4Eb89IyMox+oi+5xGg19sknRitMOxTXp4n2PbRubfxD4gjVf6EbuPkRbPhKtDorgVmagCwebOXYsWO66667lJ+f73feTz75xCexN2LEiKjXe67X46fLly/3SQSW9Oabb+qdd94xp0eNGlUqsdewYUOf1phvvfWWPv/884Bl7tmzR7fddpvZr2P16tV16aWXlppv+PDh5rrWrl2rf/zjHwHLfOKJJ8xWmmlpaTFtH8SZXZVXvH+NtcL/RoGHy/z978b3vmePdN55J95PhBNv+fJG4qRiRWN6zJjY+4tLhM+NxJGs+1P//k5HgGh4PEZSpWFDpyOB05o3l15/XZo3TzrtNKejcQ1Pqj55kOjJqosvtq6sRNwWib7/lRTq8yTid4SALEtAZmVlafTo0eb0p59+qmuuucanb8T8/Hy98cYbuummm1RQUCBJatmypYYMGeK3zD59+ig3N1e5ubnq06eP33m6devm04/jrbfeWqol5P79+zVlyhTd5/W4Qc+ePUu1VCx21113mcOkFxQUaNSoUXr55Zd17Ngxc57CwkJ9+OGHGjp0qDZv3my+P27cOFWuXLlUma1atdJFF11kTk+fPl0TJ07Ub7/9Zr7322+/6eGHH9aMGTPM94YOHerTyhNJ5k9/sq9sKyrrSMooefI47TTJia4Dku2knAwmTrSurOHDjRGD8/OlSZNOdBxupXD3+1S/IEqEz29lfUDd4j49ejgdgft5PNLjj594PPXss8N7VDURju9kl2p1TiT73Omnl37Pri5ZOBaiY/X+O3iw0XL37LOlv/3NuvWFu1w05cdz5OZk3k8jGZkcrmfJIDTFLrroIq1cuVKvv/66JCMJec455yg3N1cVK1bUhg0btG/fPnP+qlWr6oknnjCTfdHweDyaOHGihg0bpl9//VV5eXm64YYbVKdOHTVu3Fh5eXnauHGjT/Kwbdu2euyxxwKW2apVKz3yyCMaM2aMCgsLdfjwYY0fP15Tp05Vbm6u0tLStGnTJv3yyy8+y40dO9bnUfSS7r33Xq1bt87sV/LFF1/UG2+8YT5+/sMPP+jw4cPm/O3bt9ddd90V1XaBDU47TQqj/86EEu7JKtrBGBYuNFqp7d8v3Xxz6QFzkBr69DH+ffSRNeXZkXRE6kqmi3YnP4sTyZInnjAeK92wIf7rjtSUKRGP0BuWcL7zQYOMQUcOHpTq1jVGevX6ATypJNPxHKtkTmD+7W/GgCHFmjWT/vCHiIspStX9JTPTmfXGsk8+95zRj6qbhNp/irs9SlRuqUOaNLF/HalaFzjA8ru4cePGadSoUcr8X8VWWFioNWvW6Msvv/RJPubk5GjWrFkhR4MOR/PmzfXiiy+qUaNG5ns7d+7UsmXLtHbtWjP56PF4NGjQIM2aNUuVQvz6O3DgQD377LOq7dVp86FDh7RixQotX77cJ/lYu3ZtTZ8+XZdddlnQMitWrKgXXnjBpzXn4cOH9fXXX+vrr7/2ST727t1bzz//vMqWLRveRoD9/DxajxAaNpReeUV6912pXz+no0Ewdp5409OlDz6wr/xY+Bv917vepf+e+HntNacjCC4Rvh+33CzES6dO0Y8k7gbx3KeqVDFaiMXjB5wbb/Sd/utf7V9nMorkeHZL/RSvOujUU6VXX5W6djWuL999NzG7K4pH+SWfQqlXTzrlFHvXGQm37Lt28Dd4YijJvD0AWdwCUjKSfLfeeqsGDhyoN998U0uWLNHOnTt1+PBhValSRa1bt1a/fv00cOBAZfm78YtSmzZtNH/+fM2dO1cLFy7UmjVrlJeXp7Jly6phw4Y69dRTdfHFF0c02E337t21aNEizZ8/Xx9//LG+++477du3Tx6PRzVq1FCLFi101lln6dxzz1WFChXCKrNSpUp66qmn9Nlnn2nevHlavny59u7dq4KCAtWsWVMdO3bURRddpB48VpSYUu3mD4kn0IWN3ftuero0bZp0002RLffEE/bEU+ymm6RHHvH9/H//u73rhH8XXmh8H9OmWVdmMl7IW3HtZMfxnozbOtE59Z1MmWL8kLNqldS7t3TLLc7EgcQSab106aXONQ6I5thy6ni86CLpq6+kt94yWhBOnx6fHyKs/rxOn2O4xzvB6m3hhm3rhhhShOUJyGI5OTkaM2aMxowZE3UZH0X4uF6ZMmV06aWX+h0EJlpZWVkaNGiQBg0aZFmZknTaaafpNDqBRqziVVk6fdKPRCLFmmqGDYs8ARnp/JGqU0e67z5pwgRj+rLL6KDfKWXKGMlfKxOQVor3xelttxmjVF999Yn3OnWSsrPjGwfcLZo+xsqXtz4Ob2XLGknIRMP1Q+zC2YbZ2cZAeIiPevWk2bOlAweM+iKW4796dcnriUZXceL4darOIFmGBEZHWoCTkukEEutJmAv/+HByn6tRI/Jl4rFfjB8vbd1qPMo5axZ9TIYrEY7ZaPd3N3w2j8dI2o8caYz83qaNMQo8kocV9XHFitIZZ0S2jNdgh/DitmuyTp1Kv/fQQ/GPw0rLlknff+/Mulu0KPXW8Zo1HQikBCv2u3vu8f/+hRcarR49HqlaNft/fHAzu87rbdrYU26k3HDdEkz16oH/5vbYYSnusoBElkwVttsu/JFaGjaUcnJKv89+iZKuv953+vzzT7y2uk4uV056+mljwJDVq/0nJIAXX/T/fqD98Q9/kIYOjX29yXQN4kYVKhgt9Is1ayZddZVz8VihSxcpUNLP7v2pRF+IhVlZ2jNkSHRlue3aoEcPacEC6eKLjf3kvPOMkYNnzXI6stDcti0jNWmStYP6hLM9EnGbXXihVLWq/78l4udB1EhAAuFKxcoxEW8uUvF7skKvXk5HACSG0aOltm2N1w0aSA88cOJvkdQ/DRueeO09mmsxP611QkrEOjuVWfV9NW4c2fwZGcYAHgMGBJ6HfckdJkyQli6V5s6VVq40RjEPF9dDvpo3l/71L6lePRU1aaKNjzyiwnD68LfqWLD7+zjvPONR6w0bjGTk5MlGEttKsX6GRK5XAn32AQOk5cvjG4s/bt+2mZnGeSdSL71kfSxwFAlIwEp2XVwEKtftJxskjuHDjf4QET6rj7+WLa0tD9Hz1w/lueca/+fkGB36b9smrV1rjMYajWefPfF63Djfv1WuLF1xRXTlwnmTJ/tO33abM3EE4/EYCZlAzjwzfrEguO7dTzxKi9hcfbW0Y4cK1q9XXqRdF9glWRPF8f5c0a4vljiLrwNPOin6MqKRqPtMv36RL3PZZdbH4U+ibtMERAISCFd6uvVlJkoCsUoVpyNAMJEMvBVon8vMNH7BLfl4KeKnc2epQwenowhfItRf4VxQ+vscw4dLrVqdmL7mGqMj/2JlyhitH6NpXVKzppFw7NPnxHuNGhktVrp2lXr2lD78MLrBReAOt91mPO7Zr5/RN1uJRz/jJpZjtFo16+KIVjStgHGC3XU0N+ypJxHO+6kqnt9NvNY1ZIg7+mVv0MDpCJKKC75RIEHYUQEmysXbo486HQGCycmx5hfC+vWlf/zDGIkYzli0SBo1yukoULWqkZCfPVv64AOjH0Yr/Oc/xuivY8eW/lHrvPOkzz+X/vtf6ZRTrFkfYhfNjVZ6unT33dK770oPPyxlZVkfV7IrW9Z4/Bipgx9d4IRw6/h43bOlYpI30LZ1y33yk086HUFSIQEJhCucFpBuOmlYGUsitcpKVTNnSu+953QU1jrvPKcjCM6O471mTempp6Qbb7SuzHg9vmInJ/oorVDB6ND/7LPdVbcDdrv3XqcjkNavt2agHNgnlnqx5MBJ7dunbisjtyRZwuFkrJyHTxg+vPR7114bv/Un0j5rhZ49nY4gqZCABMLlhibgJcXz17i77nJHLPDP45H69nU6Cuv07Cn9859OR5EYF7yhYpw1K/DIg4ninnukSpUiXy4Rvj+khkQ6R3oPrOSUVE1GWcnN+9wllxit/cuXNx61/9e/nI4osbn5u46XaM/34W47N11PnHWWb//TrVoZP5gmG7dsc7fEkSRcmFEB4iCaR0zDaQGZaBcADz0U/O/enyfRPhsS27//7dvnHtwnnhdkZ58trV4tffSR9Omn4S/ntnrLbfEgNDu/M7uPoWjKb9/e6BM4UaXqjWKife6yZY3W/ocOSevWSV26OB1RZKjL4SSPR/rkE+OH+qeeMrqMSeSuPjieUkqG0wEAjujaNfJl3NgCMlb9+hmjK0ZyQ28HKy+cGbkzuHC2NRcCJwTbFv5GJC1f3r5YAgnn+0qG77RhQ+Pfpk1ORxJYsJHkK1c26ls7OZmEYITeyLn5uEy0hFYxN2/TZJMq2zoRBvNx4/Hqxphi4bb9vUwZ6c9/tncdbvvMSApJmFEBbGLHKNh2CuekkZlpDHiwYIH/vyfaxUNurvv7DXRaolxMJEKcLVpI7dr5vjdrljOxpBKr6yUry7v/fv/vp6UZj7UmcguFUGrXlk47zeko3CvRzqfhiEc9nYyPFSYz9vPkxrbwlYz7O0rje7YUCUikpmhOoMk6CnZGRnhJOycr31C/8I0ZY9z4f/55crZUhXu98orRD0+DBkaCacAApyNCpKys2xo1Mrr4KFPGeMTwscekpUul77+XRo+2bj1u9frrUo0aTkdR2jnnOB0BovXII1Lnzk5HAfiy8ryRrMkNf/c4dt73RFt2sm7/ROL2UbDdEkeS4BFsJL2iU06RZ/ly3zerVYu8ICf7gEz2k2Oo7TZ1qlRYKD33nP+/T5pkfUypLNn3Nyu1by998UV81tWpk3TKKdIzz8RnfaGwn/h3003Gv1TUsKE0b550+ulOR2K08D9+3Bi86L77nI4mcURyHROPOqB5c6N/s3isi5vM2LENA3N7kiVVhbv94/U9JfOTEoBoAYkUUDBlioq8WsUVXnqpVLFi5AWVK2dhVBZx00WLnTcHlStLzz4rLV5s3zqAZJZMycJIPoub6kg3SYXtsnKl9Oab0qpV0h/+4HQ04W9zNz9yXKaM0xEgEnYf58l0XkH0Ihkw0Ml9xo51x1rma6/5TteqJfXoEVuZgMuRgETy69FD62bM0O6LL9aOG25Q4bPPRlfOuedaGxeS14UXOh0BgHA1auR0BNbp2NHpCNyTlGjbVho8WGraNLZy7Pw8/sqONlk6bZrvdLSPnQf7vA0aRFdmPLll/4u3VP3ciSQZviN/Se3bbze6c7JbMmy/kgYOlIYONV5XqiT94x+JMeZAKvyICdvwCDZSwsFOnXSwUydJUu1om7a7sUl8Mp6Mk8GjjzodQWBW7TNu/oxAsXD294cftj+OeOnfX2rcWNqyxelIEG9XXy2tWSO9/bbx2PKTT1q/Dm464S3Y/pCZGb84Eh3HlTUS8Z6oXDnp1Velp54yWpiXL+90RM7gGEgptIAEnESFm5xatHA6Ant06GBcLF1yiTRypL3rckvCPxEvaOPFqW1jdXcYOTnWluektDRj0Jurr3Y6EsRbuXJG65kdO6T//je59utIcF3lrOLzQs2a0skn+/7NLf0XWyFV97NUviays5//atXcmXxM1f0ctiIBCVipShV7ynXqBJDKFxrwVbGi9PXX0u+/GyPd2rWvF6tQwd7yw8XFl/vUqmWMPO5t1iz/86bi91e/vvSvfzkdReJxS/+Gbt5nuSZAJJ5+2kiEZ2ZKf/yjNHy40xFFJxH2+0SIMRmx3e11//1ORwAbkIAErDJ6tHtabdkh1Ek2nJumwYNji8HNN2awzvnnOx0B3O7FF6Vu3Yxk2513Gq1yo8UNBCTplVecjsAdkv08m6xPKPjj9HfZpYv044/SsWNGne2WHxbdxunvCXBaoMFh27ePbxyBcJ1oKfqABGJ1yy3GjXA0N8CpVqHdf7/01ltOR4FQTjqp9HtDhsRv/bVqxW9dSEytW0uffeZ0FInLznNPnTql32vXzr71WWXgQHvL9ze4jN1dWYSSjNcgoT5T06bGd/Hcc5Ev62aJHDsSh5PJ0lDrtju2VEwUx6teOf98qWpV6cCBE++9915c6zVPKn6/DqEFJBCrO+4wRjCLtpKMx8hxbtGhg/2P7iJ2PXtKrVqdmM7MlMaOdS4exM6OCytueN0t2KNLdl5oN20qde3q+94//mHf+qySkSGNG2df+V27Gi3CilWtavyA6aRUveFKxi4K3PJduiWOVOPkdvd4/F8j9uoV91CiEsu24zrIGllZ0rPPnrhHvPFGqU8fZ2OCbUhAIjVZeaKO9eRjx0iVdrBqm8XSMT4n+vjweIxBDK67TrrsMunTT6UmTZyOCohcKt8Mjx4d26Ppsfj3v6URI6Szz5beeMP4USPVeTzSRx9JEydK99wjrVolZWc7HVVpqXCe9XikK690Ogr7pcJ3mQyS4Tw1apRUt+6J6YEDU6O7g2T47txi0CDpl1+MLhumTTMaPyAppVDTK8CFioqka64xknIrVhitIy6+WNqzx+nIDPE6sXKR7D61ajmXHOeCDvGUrPtb1arGgFFvvBH/ddeuLb30UvzXawcr948KFaS77w4+T3q6deuzWrIeK8H861/Sn//sdBSJg+u5wBLt+LnoImnuXN/pjz7yP292tvTNN0ZfulWqSJdfbn08ofYtu/e9VNy3A+2zPXpIL7xg/frS0915Dky0Y9flaAEJuEGfPtLttxutRNIsOiypLAEUS8ULZyl1PzcS12WXuaPlR7IeO/37Rzb/n/4kTZliTyyAm91+u1SjhvG6Rg1jOti9Rc2a0l/+Il1xRWRJJKfvV8Kt65yO001GjDC+72LlyzsXCxIOCUggkdl9MkzWGxAgUXEBDMRXvM+D1aoF77/TTdx6jTBpUuC/XX114L/5q1/T0ozESyLifJEY3Po9de8uff+90Q3P998b0/5EUg+4sc6gD8jIZWVJX35p/EAzYoT01VdORxQ7tx6HSYgEJAB3oOJHMTdd0GVluf+X3eLt9corsZc1bFjsZbhJOPWKm/Y3QDISkMuWObNut56L27YNf96RI6VTTvH/t+L6PNmO+2T7PHCHWrWk004z/reCW+sXRK5JE+m554zuVrwHrgRCIAEJIDxO970CayTz93TBBdaX6fEkzuN3F10UexmJMmolkOyaNrV/HYl0Pvj738Oft1o1ad48+2IBrGTFcZhIx3JJ8Yo91vWQPE1uwfaPRD6+XIgEJOAkTmZINX/6k31ljxljDLxhteuvt75MKxXXI2XLOhsHEgfnHiSaPn2k9983BvKBO3ToUPo9fsSKHPWxNZzYjiSmgIiRgARiZUfCA/5xkZb47rhDat7ceN2wobU3k6edJn33nTRhgnVluo3bLnbbt/edvvdeZ+IAkk08jvVYz6nxPiefc4707LPxXScCGzbMdyCK9HTOAXCvoiLprLNKv9+wYfxjAVIYCUggVuXKWVueVRf0bktUBFNUlFjxInqtW0vffCNt2iStWSN16mRt+fXrS337WlsmApsw4UQSuXVr6ZprnI0HQGyCnYv5ETCx2P19ZWZKS5ZIgwZJ558vffKJVKeOvesEYjF5su8I3eedJ9WrZ03ZlSv7TidDYjOSOuSZZ3ynb7vN2ljsxvktbjKcDgBAGALdELjpRiHc9ZFoRLlyRufVSHwXXCD9+KO0a5fUooX7BuzhghKIznXXSQ895PvejBnOxILQnLq2ys2V3nrLmXU7ycpzC+ep8FjRF32nTkai/IUXjGT5XXeFv/5Q39P06dIVVxjzpadLjz8eftnJ4M9/Nj73okXG0zF33OF0RHApEpBITYl2sncqXpKFyScz0+kI4GbRHPN16tDqBUg29epJf/nLicFfzjpL6t3b2ZjCwXULrGbVPpUM+6aT909WdRlx2mnGPyt4f6cjRhg/rq9cKXXtavxLJR6PdNVVxj8gCBKQgF2qVpUOHIh8uUguUKI5GU+bFvkySA5DhkhZWU5HASdcdJH0/POh50u0H2dCSYYbPjuwXdzPqWPRe71PPGHcTB4+LHXpIqUlQM9NyVaHIXkk677J+eSEP/zB+Ifkwj5uqQS4kgAS1BNPOB2Bf8OGOR0B4q1qVen2241HThJBsl6kO+mBB6QMr98cmzf3nQaQenVPODdVHTpI3bolRvLRCck86BniI9XqHack2qBbcI+KFY1+zr1NnOhMLEmAqwmkpnj8kvHHP0pvv23/eiJVo0Z0y/HrT+J6801pyhT39c8nsV/FS+PG0tKl0tCh0tVXS4sXOx1RfHDDgFhRR7mLm76P5s2lP/3J6SiAxJbI52k31Uew16RJUqVKxutTT6XujwHNHwA7devmdATWseoCIZEvNIBE1qWL9Nprweex62L67LOlhQtPTP/1r/asB+GhHg5fMm+rZP5s8bBixYkbUjfi+7UG2/GEWLeFnQk7vifrlSnjdATxE2r/GThQ2rRJ2rfP+FGfLq2iRgtIpKZUOEkl0mfkF0QguU2bJp1yilS5snT55dLIkU5HBJTGuSiybZBs2yvS6yY3JR+T7btwOyu3dyJdr/uTKPueHds5Ub678eN9px9+OLzlHnjA+lgSWY0aUosWJB9jRAtIAIHF88QazroS5SIHzkqUC8JUkpsrffml01EASHbF1wnp6eHNByA5cEwHds89Urly0rJlxgjgt9wSeplbbjGSbYDFSEACdgqVCCFREhm2V/LhO4Wd2L+QqNwwCnYiq1VLattWWr36xHvTpzsXj92S5XtLFGzv+Is1wWjHd5YoSc/0dGMwynBs3mz837ixbeEgtfEINoDAUvlRrESVm1v6vezs+McRC/al+OAGCkhtbqlre/b0nb7xRmvK/fvfjUSkJPXvb3T/UCwV6j+3fL+Jzu7tmEj7or9j8/TTw1/eqc/aurU7B2J0o8aNST7CViQgkZoS6WQPROKpp3yn27SRTjrJmViQeJLthjXZPg+QjB54QKpWzXidkxNbAtL7+q5PH2nbNunXX6V586QqVYIvm2z1Bde6sNott0hVq56Y7tFD6tQptjLtPu4qVpQmToy9HI6npFZQsWLpN//wh/gHkgJ4BBuwk90n1WB9HCXbhTTC06uX9Oyz0pNPGi0/pk1zOqL4Y98HgMTRp4+0fr30889SkyZGwsAqWVmpMWAA5z3EQ+3a0qpV0j//aQwqZ1VrZbu0aSN9/PGJltBW47hLGkVlyqjw6quV9uyzxhsZGdLkyc4GlaRIQAKJLDMz8N+s/qUu1EmWXwbdweORrrrK+AcA/lBfw21q1DD+hcK+CzirUSNpwgSnowhPmzb2JR+RdAr/8Q+lde4sbd0qDRoknXqq0yElJRKQSE2J+ItVtWrS/v2+7yXi5wAQPStvvlPhRj4VPiOsk2r7SzJ+Xq6L4FZ2Hm/s98lZnyG+0tOl666Lfvm//MXoexhB0Qck4KRITpbJfnGR7J8P8ZNqF6FWHjsch4CvVDsm3P553R4fAHs4fW3n9PqTRclBx+65x5k47DB1qtHfaKVKTkfiaiQgkZridRKxaj3JftJL9s+HyLA/RIbthUiRxEEg1CdAaDyN4D5OnNc4l0bukUekevWM1126SNdf72w8VsrIkO6+W5o1y+lIXI1HsAG3cdPJzI5Y3PT54Dz2h8iwvQBYhfokuZHYskYiHCeJ/F2HG3sifA8IrXt36ccfpd9+k6pXN5J2SCl840A4go02HUw0J8tEvoiwG9sGgNW4qQGic8oppd+76ab4xwHqsUTAd5TY24B7EOuUK2f8Q0riEWzAn5Ijpr3+ujNxFHPDCTvYiNuR4AQOwE2ok4Do5ORI5513YrpKFen2252LJ1bUBfDH7v2C/S5xueH+DO7DfhEUCUjAn2eekapWNV5feaV0/vlORhMdqy9orr9eSrOpyvB4uAADALgP56bg5s41Rv188EHp66+lRo2cjig83CAiFnbvPyef7Dt95532rg8A4oRHsJGaypcP/vcLLpB275by82kiXqxWLWnsWGncOG7IACCRUYf756akVDy+IyvWkZXFY9eA1caNky67TDp4UGrRQho50umIAISLa6ygaAGJ1FSjhtEJbjCZmSQfS3rgAWnLFqejAILjxI9i7AtAZNyUhEVsqP8Sg7/vaeBAad06acUK419OTvzjSjT+uoqKtg9/fy66qPR7f/iDdeUDKYIEJFLXrFnSOec4HYV97LqJaNhQqlTJnrJDceON0eDBvtM33OBMHImKGyTnsO0BlES9kJjceH2UzOJxnNStK3XsKFWsGHpevn9pwoTS7z34oHXl33ST7/1Po0b+k5IAgiIBidTVtKn0/vtOR4FEN26c1LKl8bpTp8TugN8tuJB2DtseqSzVkm8c70BoVh0nqVa/xFu7dtJVV52YvvZaqVUr68qvVk1auVK67jrp5pulL76wtoUlkCLoAxJA5LhpOaFtW+m776TDh42+RTOoVoGEQn2GYNg/3CXU98H3hUSTSonJWD5rOMf+s89Kd9xhvM7NjX5dgeTkSE8+aX25QArhThlwUqwXHcGWT6ULGqdlZvrvewYAAMQP1z5AYrH6RwMrWz0CsByPYAMA3IUbSFilU6fQ87C/wY3YLxEJ9hcAcAfq46BIQAKJLNUeNaJCTz527MOpdlxEKxWOpwoVpPvvdzoKZ11wQen3mjePfxxwn1SoAwC3697d6QicFW49RH0FJAUSkAAAwJCMydvx46WlS6U5c5yOxBkTJ/p+ry1bSj16OBcPEAuSEP4lY92dKsaOdTqC+GE/BVIefUACiSAVLri5KIFVUuF4QWRSuYVJmzbSwoXS449LVatKkyZR38LAfgBEx6rrjLZtpYYNI1umXTtj8ENvtWtbEw8A2IwWkICdKlYM/nd/FzBuuiFwUywAgOiceab0f/8nzZwp1a/vdDQIB+ff6IS73c49t/R7Q4ZYGwuSg53H4plnRr7MP/7hO926tXTyyZaEAwB2IwEJ2KlCBenCC51Zt1tbgfkbna5hQ/fGC7gJx4n1SPQAqeeii6RmzU5M16ol/fnPzsUD93LbefcPf5BeeEE69VTpvPOMH5cAIEGQgAROP913um5da8ufNUu67TZry0xkDz3kO12mjHTddc7EAsAXyTjAHdyW9Eg26enSl19K990n3XWX9PXXUvnyTkdlLfYh+zh5rvR4pCuukL74QlqwQMrJcS6WeOL6BEgKJCCB8eOlcuWM1+np0l//Gnje++7znb733tDlV6hglHnWWaX/loon06ZNpZdekpo0kVq0MAaGqFTJ6aiAxJCKdQYQL127ln6Px3ITSyRJt+rVpQkTpEcesf7H53hL5nPDSSf5TmdlORNHrDp3Lv1eixbxjwOAvc4+Wypb1ve9Z591JhYXYhAaoE8faeVK45fwtm2ljh0Dz1s8Ut3nn0vdurl75Do3X4yOGGH8AwDALfr2NRIC69cb0+XKSXfc4WxM8OXmaxvYY/JkaeBA6fhxY7pkH4iJ4oEHfJMQFSpIV1/tXDwA7FG+vNFoqbjh0qmnSoMGORuTi5CABCQpN9f4F0pmpvFruZ0S4ZGZkSNLtxQ97TRnYkFiS4T9PZWk4veRip8Z/nk80qefSg8/LP3+u3TLLck9umyvXtJjj/m+N3SoI6EAAfXrZzQSWLpUat/e6AMxETVsaPTXOG6c0Ypz6tQTT2ABSC733muMA7Fvn/F0RaK23LYBCUjASeHe+LrtF//bbpOeeUb69VdjumtXqUsXZ2NC8oh1fyehBCBaNWtKf/ub01HEx/nn+7b4rFJFuvFGZ2OKlduul2CNDh2Mf4muf3/jH4Dk17at0xG4EglIIF7cflE8bZp0002+7/nrt1KS6tQxOmx/+mmj/8ZbbrE7OkPNmqXfa9o0PusGUoHb6ykA1klLM7qUmTJFOnJEuvlmqWpVp6MC3I8fOgEgKiQggWQV6cXR8OHSU09J339vTN9yi1SjRuD5mzaVJk2KOryotG0rtWsnfffdifeeeSa+McB+XNintpo1pb17T0zbPUgVSVe4UbzqwerVjUFYkHw4l1qDc4R12rcv/V7PnvGPA4BjGAUbSBQ5OaXfq17duvKrVzf62Pn3v6XFi937CNrbbxsDBZx8sjRjhnTmmU5HhFhwYY+Spk07sV94PIk74AAAxAvnUiSCYcN8GzekpUn33x/esmmkLYBkQAtIIFFMm2aMvF2sYkXjRG6l8uWNkQbdLCdHeu89p6MAYJdLL5UaNJCWLZNOOUU64wynIwKQ6m68UZo+/cR09+7OxQIkqsxM6ZNPpLvuMrp9uO8+qV690vM984wx4GWx3r2lMmXiFycA25CABJwUyeMxXbpIDz1kPCpVsaLR/2LZsvbFBgBO6dHD+AcAkcjOtqfcG26Q5s+XNm+WKlcOv9UWAF+tWxtPWwXzxz9Ka9ZIb75pdPn0z3/GJzYAtqMtMxAvsT4e4/FI994rHTwo7dwpXXCBNXEBcJ9Ro0q/N2GC/evlMT4AiapbN6lJE3vKbtVKWrVK+uorad06qV8/e9YDwGjt+Nhj0tat0n//678bKgAJiQQkkAhSoSPxFi1Kv3fVVfGPA4kvGZJobdtKl1xyYrpHD+mcc5yLJ5mlQv0KJItAj2EOHy7NnWvvuitXljp1kmrXtnc90ahYsfR7jGgOAHAZEpCA2yRD8iQaVav69vdSpYo0Zoxj4SCBJUtC6bXXpA8/lN59V/r4YymDXlMApLh+/YzrA29z5kgvvyzVqeNMTG5w882lB+mYOtWZWJLNH/5Q+r2hQ+MfBwAkARKQANxjxgzp1VeNxy5WrZJatnQ6IsA5Ho/Up49xw03y0T6p+qMP3K1WLalcOd/37rjDmVjcJCvLGJSveNsMHSqde66zMblBrVrSo49K6enG9C23SB07OhpS0ujXz/d6tFIlI+ELAIgYdzQA3MPjMUbABeAMknGAO6SnS5MnG4mOoiKpUSPpuuucjsodRoww+sE+csQYdIZ6y3DbbdKf/ywVFkrVqjkdTfJIS5M+/dRI8B4+bByTNWo4HRUAJCRaQALxctZZpd/r2TP+cQBIXldc4Tt9/fXOxIHE1b277/QNNzgTB6SbbpJWrDBGX/76a2M0WBgqVzZa/ZF89FWlCslHO9SoYfwg8Pe/MyAKAMSABCQQL9ddZ1wwF6teXfrTn5yLB0DyefBBYyTY9HTjB4577nE6IiSa++8/ca5q3JgkttNOPlk6/3ySSgAAIOHxCDYQLxUrSsuXSxMnGr/Y33+/VLas01EBzmrYsPR7qTyQQCihBthp0kT67LO4hIIk1a+f9MMP0vbtUosWpQf8AAAAAKJAAhKIpxYtpOefdzoKwD0mTDBGLy2Wlmb0YwXAOXXq8EMAAAAALGVLAnLDhg167bXXtGzZMm3fvl35+fmqVauWWrZsqQEDBujss89Whg0jei5dulTz58/XihUrtHv3bhUUFCg7O1snn3yyBg4cqDPOOCOi8goLC/Xxxx9r4cKFWrVqlfbs2aMjR46oUqVKatiwobp06aIhQ4aocePGYZU3fvx4vex9ox2GRo0aaeHChREtA0gK3VIKcIOmTaXp041HhdPTpb/9TapZM7Yyk3nfp78zAAAAAAnI8izgtGnTNGPGDOXn5/u8v23bNm3btk0ffvih2rVrpylTpqhZs2aWrHPXrl26/fbb9cUXX5T62/bt27V9+3bNnz9fJ598siZNmqSmYXTivWbNGt15551at25dqb/t27dP+/bt06pVq/Tcc89p+PDhGjNmjDIzM4OW+f3334f/oQAgVdxwAwNdID4ef1y65ZYT03XrSrm5TkUDAAAApAxLE5APPfSQZs6ceaLwjAzl5uaqXLly2rBhg/bv3y9J+u677zRixAi98cYbql+/fkzr3LJliy677DLt2bPH5/2cnBzVrFlTu3bt0ubNmyVJX3/9tQYPHqx//vOf6ty5c8AyV65cqSuvvFJHjhwx3ytbtqxatmypcuXK+ZRZUFCgmTNnatOmTXr66acDtuwsKirSDz/8YE536dJFWVlZIT9frVq1Qs6DJJPMrbcAwEnDh0uzZhn98WZlGX3ypjEeHwAAAGA3yxKQ7733nk/ysW/fvho7dqxq/u9RuuPHj2vOnDl65JFHdPjwYe3du1c33XST3nrrLXmifKTs8OHDGjVqlE/ysVevXrrnnnt8Hotev369HnzwQS1fvlyHDh3Sddddp3nz5qmOn/6NDh48qBtuuMFMPpYtW1a33367LrnkEpUpU8acb9OmTZo4caIWL14sSVqyZIkee+wx3XnnnX5j3bJli37//XdJUmZmpp577rmQLSYBE49dAkDssrOlpUulNWukGjWkBg2cjggAAABICZb87H/8+HFNnjzZnO7du7cef/xxM/koGUm3oUOHavr06WYrwdWrV2v+/PlRr/fll1/Wxo0bzelLLrlEM2bMKNUnY4sWLfT888/r9NNPlyTl5eVpwoQJfsv817/+pV9++UWS0YLzn//8p0aMGOGTfJSkpk2b6plnnlHfvn3N91566SX99NNPfstds2aN+TonJ4fkIwDAfVLhx46sLKlDB5KPAAAAQBxZkoBcuHChmXjLyMjQ2LFjlRbgkaYePXpo6NCh5vTzMYwI/Morr5ivmzVrprFjxwZsTZmVlaVJkyaZjz0vWrRI69evLzXfvHnzzNeDBw9Wly5dAq7f4/HowQcfNJOTx48f1wcffOB33rVr15qvW7VqFeRTAQAAAAAAAMnDkgTkO++8Y77u3r276tWrF3R+7wTk6tWrtW3btojXuXnzZu3YscOcvvLKK0O2KqxVq5Z69+5tTpdsfbl161afMvv37x8yjurVq+vkk082p7/99lu/83m3gCQBiYjRLyQAAAAAAEhQMScgi4qKtGzZMnO6+DHnYHJzc5WdnW1Of/TRRxGvd8uWLT7TXbt2DWu5du3ama+//PJLn7/t2LHD51Hr5s2bh1Vm1apVzdcHDhzwOw8JSIQtFR6BBOxUossMAAAAAICzYh6EZseOHfr111/Nae8EXzC5ubnm4DGBWg0G471OSapdu3ZYy3knC72TgpJ02mmn6ZtvvtH+/fu1a9cun3mD2b59u/m6cuXKpf6+b98+7d6925zOzc0Nq1wAQBQ6dpQaNpS8WtcXeA2SBgAAAACIr5gTkJs3b/aZbtSoUVjLNfDq/H3r1q0Rr7dcuXI+08eOHSv1nj+HDh0yX//+++86cOBAqURjtWrVVK1atbDi2LZtm77//ntzOicnp9Q83onO7OxsVapUSe+++67effddffPNN9q7d6/Kly+vunXrqnv37hoyZIiaNWsW1voBACV4PNIzz0gjRkh790p//KOKLrhAWrfO6cjcjxbYSESXXiq99tqJ6Ycfdi4WAAAA+BVzArK4FaMkpaWl+Yx8HYz3I9jeZYSrbt26PtNr1qxRt27dQi5XstXjnj17wm7p6M+0adNU5NU/n3cfk/7WmZGRof79+5dK3Obl5SkvL09r167Viy++qBEjRuiOO+4wRwwHAESgXz/p55+lggLjkez8fKcjAmCXxx6TfvtN+u476eyzpZtvdjoiAAAQD6NHG9cBxS6/3LlYEFLM2a28vDzzdYUKFQKOfl1SxYoV/ZYRrlatWqly5crmo9izZ88OmYD87bff9OGHH/q8d/jw4YjXXWzhwoX697//bU5369ZNbdu2LTWfdwLy559/Nl9nZ2erYcOGKioq0qZNm8z+IwsKCvTCCy/oxx9/1IwZM0IOrmO3/AS/cS8oKAg67Tbpkkq2QSooLFRRpN9Dfr7fAzzRv08gIunpUn5+zPWAW46ltMLCUp03FxUVqSCKWPx9poKCgsjrGsBp2dnS22/7vhdgP060awIA1qMeANxzbRuz229X2po18nzyiXTyySoYNy6shgfUA86IOQF59OhR83XZsmXDXi4rK8t8fezYsYjXm56ergsvvFAvvfSSJGNE6169emnAgAF+5y8qKtIDDzyggwcP+rwfzbolY/TuO++805zOzMzUmDFj/M67du1an+n27dtrzJgxOvXUU833CgsLtWTJEk2cOFGbNm2SJC1ZskQPP/ywHnzwwahitEJhYaFWrVrl2Prt8N133zkdQlAnHT+ukinnnT//rJ0Rfg9ltm6Vvx5Zk+37BKIRaT3Q2c97ThxLjX75Rdkl3jv0++/6IYpY/H2mrVu3ah91BFKI268JANiPegCpyC3XtpaYMOHE6/37jX8Roh6Ij5hHwT5+/PiJwsJs/SjJ59HiaDPtI0eO9Hl8+s4779TUqVNLtajcsmWLRo0apQULFqh8+fI+f4sk5mJr167VVVddpd9//91n3W3atCk177Fjx3wGqenbt69effVVn+RjcRw9e/bU7Nmz1bp1a/P91157rVQCEwAAW9AHJAAAAAAbxJyATE9PN18XFhaGvZx30jHaR4yzs7P1+OOPq0yZMub6n3nmGXXv3l2DBg3SFVdcoXPPPVfnnHOO/vOf/ygjI0NTpkzxKaN42XB99dVX+uMf/2g+Li1JF198sf74xz/6nT8rK0srV67Uxx9/rJkzZ2ry5MlBP2+lSpU0depUMzFaVFRktvIEAAAAAAAAEk3Mj2B7jzzt/Th2KN6PPkeaBPR22mmnaebMmbr11lu1Y8cOSUZyc/Xq1T7z1a9fX5MmTSo1SnWFChXCXteiRYt022236ciRI+Z7AwYM0Pjx44Mul5aWpnr16qlevXphrScnJ0fdu3fXkiVLJElLly4NO0arpaWlqX379o6t3woFBQU+TarbtWvnkzh3m3Q/Ceo6deuqdocOkRVUorVvsQ6RlgMkATvqASeOpbQaNUq9V6F8ectiadSokRpSRyCJJdo1AQDrUQ8A/qXSfSL1QOS+/fbbiBod+hNzArJKlSrm60OHDqmoqEieMB7h8u6LMZZRqCXjQHnvvfc0d+5cffDBB1q7dq3y8vJUvXp1NWvWTP3799f555+vcuXK6ccff/RZ1ns07mD+9a9/aerUqT4b/OKLL9aECROieow7lE6dOpkJyJ07d+ro0aMxJWpjkWwjcaenpyfcZ0pPS5MijTnA/In22QE7xFwPNGzozLHk9aNfMU+5cpbFkp6eHnldAySwRLwmAGAt6gHAkMrHAfVAfMS8hWvXrm2+Ligo0P79+1W9evWQy+3Zs8d8XbNmzVjDUFZWloYOHaqhQ4cGnW/dunXm6ypVqoRsAXn8+HGNGzdOs2fP9nl/5MiRuu2226IPOISS2+TAgQM+2xoIib7cAOvcdJM0bdqJ6SefdCaOO+7wjUOS/vrX6Mq6+GLpzTd932vVKrqyAAAAACCImJvuNW7c2Gd627ZtYS3nPTBL06ZNYw0jbN7NbHNzc4POe+jQIY0cOdIn+Zienq4HHnjA1uSjVPpx9kgeFQcAWOxvf5OeeEK64Qbp3Xel/v2diaNhQ+nuu09MX3211KlTdGVNmCB5P2rSsaPU2d+YiAAAAAAQm5hbFIgsKAAANudJREFUQNavX19Vq1Y1B2VZs2ZNWH0HeI/s3CqGFhcHDx7U7t27VaNGDZ/HwQNZvHix+TpYnL/++quuuuoqffvtt+Z75cuX12OPPabevXuHHd+iRYv0+eefa9++fcrIyNCjjz4a1nLeidzKlSurYsWKYa8TkCQVFTkdAZA80tOlv/zF6SgMEydK110n5edLsfyA16qV9Mkn0vTpUrVq0rhx1sUIAAAAAF4s6bywa9eu5utPP/005Pxr167V3r17zelu3bpFtd7hw4erc+fOOvfcczVnzpyQ869bt07r1683pwMlEg8dOlQq+Zidna1Zs2ZFlHyUjITszJkztWDBAs2bN8/ncwdT3P+jJHWmRQoAwFvDhrElH4uddpr08stGEtLPADcAAAAAYAVLEpDnnHOO+frjjz/Wrl27gs7/6quvmq9zcnJCPgodSPPmzc3XixYtCjn/U0895bNspwCPrd11110+ycfGjRvr1VdfVdu2bSOOsUuXLubroqIivVmyvy0/PvjgA23cuNGcHjhwYMTrRQKbNKn0e0OGxD8OAAAAAAAAC1iWgKxVq5Yk6dixY7rrrruUn5/vd95PPvnEp0/FESNGRL3ec88913y9fPlyLV26NOC8b775pt555x1zetSoUX5H63711Vf1wQcfmNP169fXzJkz1bBhw6hi7NKli5o0aWJOP/PMM6VG4va2ceNGjR071pxu1qyZT4IXKeDii6X27U9MDxsmeSXbAQAAAAAAEoklCcisrCyNHj3anP700091zTXX+PRjmJ+frzfeeEM33XSTCgoKJEktW7bUkAAtu/r06aPc3Fzl5uaqT58+fufp1q2bTz+Ot956a6mWkPv379eUKVN03333me/17NlTAwYMKFXewYMH9dhjj/l8rqeeeiqm0ac9Ho/uuecec/rQoUO6/PLLtWDBAhUWFprvHz9+XHPnztWwYcO0f/9+SVJmZqYmT57McPCppkIFadky6Y03pAULjMcjAQAAAAAAEpRlma2LLrpIK1eu1Ouvvy7JSEKec845ys3NVcWKFbVhwwbt27fPnL9q1ap64oknYkqueTweTZw4UcOGDdOvv/6qvLw83XDDDapTp44aN26svLw8bdy4UceOHTOXadu2rU+S0dsrr7yiX3/91ZyuWLFi2IPGFMvNzdWdd97p894ZZ5yh2267TVOnTpVkJEVHjx6t8ePHq0WLFsrPz9eGDRt81p2ZmanHH39cJ510UkTrR5IoV47HrgEAAAAAQFKwtGnduHHjVK1aNT377LM6fvy4CgsLtWbNmlLz5eTk6IknnlCzZs1iXmfz5s314osv6uabb9bWrVslSTt37tTOnTt95vN4PLrooot0//33q3z58n7Leu+993ym9+3b5zMYTDi8k53eRo4cqXr16mn8+PHKy8uTJB04cEBffvllqXlzcnI0btw4nXrqqRGtG/DBKNgAAAAAAMAFLE1Aejwe3XrrrRo4cKDefPNNLVmyRDt37tThw4dVpUoVtW7dWv369dPAgQOVlZVl2XrbtGmj+fPna+7cuVq4cKHWrFmjvLw8lS1bVg0bNtSpp56qiy++OORgN94Dv9ihf//+6tWrl95++20tXrxYa9eu1YEDB5Senq7s7Gy1adNG55xzjs466yxLtw8AAAAAAADgFFs6F8zJydGYMWM0ZsyYqMv46KOPIpq/TJkyuvTSS3XppZdGvc6vv/466mXDVbFiRV1++eW6/PLLbV8XAAAAAAAA4DRLBqEBAAAAAAAAAH9IQALJyuNxOgIAAAAAAAASkAAAAAAAAADsQwISSFaMgg0AAAAAAFyABCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJJKuiIqcjAAAAAAAAIAEJAAAAAAAAwD4kIIFk5fE4HQEAAAAAAAAJSAAAAAAAAAD2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkkKwYBRsAAAAAALgACUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISSFZNmpR+b/TouIcBAAAAAABSGwlIIFmVKSONH39iul496cYbnYsHAAAAAACkpAynAwBgo/vvl3r3ln76SerTR6pZ0+mIAAAAAABAiiEBCSS7Hj2cjgAAAAAAAKQwHsEGAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAACAVPHHP/pOjxrlTBxIKSQgAQAAAAAAUsUDD0idOxuvTztNuuceZ+NBSsiwq+ANGzbotdde07Jly7R9+3bl5+erVq1aatmypQYMGKCzzz5bGRnWr37p0qWaP3++VqxYod27d6ugoEDZ2dk6+eSTNXDgQJ1xxhkRl/nNN99o9uzZ+vLLL7Vr1y4VFRWpdu3aatu2rS644AL17NlTHo8n7PKKioq0aNEizZs3T99++61++eUXlStXTrVr11a3bt00ePBgtWrVKuI4AQAAAAAAgmrWTPryyxPTEeQzgGjZkoCcNm2aZsyYofz8fJ/3t23bpm3btunDDz9Uu3btNGXKFDVr1sySde7atUu33367vvjii1J/2759u7Zv36758+fr5JNP1qRJk9S0adOQZR4/flwTJkzQ66+/Xupvmzdv1ubNm7VgwQL16NFDjzzyiGrVqhVWnLfeequ++uorn/ePHTumvLw8rVu3TjNnztSVV16p0aNHKysrK2SZAAAAAAAAYSPpiDiz/BHshx56SNOnTzeTjxkZGWrbtq1OOeUUVatWzZzvu+++04gRI7Rjx46Y17llyxYNHjy4VPIxJydHXbt2VZMmTcz3vv76aw0ePLhUArCkoqIi3XLLLT7JxzJlyuikk05Sx44dVbFiRfP9JUuW6IorrtCvv/4atMx9+/bp8ssv91l31apVdcopp6ht27Zmi9CioiI9//zzuuuuu0J+dgAAAAAAAMDNLE1Avvfee5o5c6Y53bdvX/33v//VnDlz9PLLL+uTTz7R+PHjVa5cOUnS3r17ddNNN6moqCjqdR4+fFijRo3Snj17zPd69eqlDz74QO+8845eeuklvf/++5o/f75OOeUUSdKhQ4d03XXXaefOnQHLfe6557Ro0SJzevjw4Vq6dKlmz56t1157TUuXLtWtt95qJg03btyoe0L0m3D33Xdr69atkoxk5oMPPqilS5fq5Zdf1pw5c/Sf//xH5513njn/ggUL9NJLL0W+UQAAAAAAAACXsCwBefz4cU2ePNmc7t27tx5//HHVrFnTfC8zM1NDhw7V9OnTzcTd6tWrNX/+/KjX+/LLL2vjxo3m9CWXXKIZM2aocePGPvO1aNFCzz//vE4//XRJUl5eniZMmOC3zH379ukf//iHOT1s2DA98MADqlSpkvle2bJlNWrUKI0fP958b+HChVqxYoXfMj/55BP95z//MacnTZqkYcOG+fSDmZ2drb/97W+68MILzfeefPJJHTx4MMgWAAAAAAAAANzLsgTkwoUL9dNPP0kyHrseO3as0tL8F9+jRw8NHTrUnH7++eejXu8rr7xivm7WrJnGjh0bcECYrKwsTZo0yexXcdGiRVq/fn2p+d58800dOnRIkvGI9J133hlw/YMHD1avXr3M6UCf5cUXXzRf9+jRw6elY0kPPPCAatSoIUnav3+/5s6dG3BeAAAAAAAAwM0sS0C+88475uvu3burXr16Qef3TkCuXr1a27Zti3idmzdv9ulD8sorr1RmZmbQZWrVqqXevXub0/5aX7777rvm63PPPVfly5cPWqb3Z1m8eLF+//13n7/n5eXp008/NacHDx4ctLzy5ctr4MCB5vR7770XdH4AAAAAAADArSxJQBYVFWnZsmXmdPFjzsHk5uYqOzvbnP7oo48iXu+WLVt8prt27RrWcu3atTNff+k99LykAwcOaM2aNeZ0jx49QpbXrVs3paenS5KOHDnik2yUpC+++EIFBQWSJI/HE9b28Z5nxYoVysvLC7kMAAAAAAAA4DaWJCB37NjhMwK0d4IvmNzcXPP1t99+G/F6S446Xbt27bCWq1q1qvnaO9koST/88IPPoDht27YNWV758uXVqFEjc7rkZ1m7dq35ukGDBqpSpUrIMlu1amW+Liws1OrVq0MuAwAAAAAAALiNJQnIzZs3+0x7J+OCadCggfm6eHToSBSPpl3s2LFjYS1X3L+jJP3+++86cOCAOe39WbKyslS3bt2wygz2WbzLLDk4TiDZ2dkqW7asOV2ytScAAAAAAACQCCxJQO7Zs+dEgWlpPiNfB+P9CLZ3GeEqmRws2ZoxkJLzea/b+7V3fKEE+yy7d++OqszigWj8lQkAAAAAAAAkggwrCvHun7BChQoBR78uqWLFin7LCFerVq1UuXJl81Hs2bNnq1u3bkGX+e233/Thhx/6vHf48GHztXdryEqVKoUdS7DP4j0dSZne85Z83Dye8vPzHVu3FYr73ww0DSD5UQ8AkKgLAFAPAKAecIolCcijR4+ar70fGw4lKyvLfB3u49Pe0tPTdeGFF+qll16SZIxo3atXLw0YMMDv/EVFRXrggQd08OBBn/e91+392qrPYsX28S4jngoLC7Vq1SpH1m2X7777zukQADiMegCARF0AgHoAAPVAvFjyCPbx48dPFBhm60dJysg4kf+MtpXdyJEjfQaVufPOOzV16tRSrRC3bNmiUaNGacGCBSpfvrzP37xjtuOzeE9HUmbxyNr+ygQAAAAAAAASgSUtIL0TZYWFhWEv551Uy8zMjGrd2dnZevzxx3Xttdfq6NGjKiws1DPPPKPnnntOubm5qlSpknbv3q2NGzdKMhKFU6ZM0Q033GCWUaZMGVs/S7RlejcDjnb7AAAAAAAAAE6yJAHpPRp1JI8Kez+q7J0EjNRpp52mmTNn6tZbb9WOHTskGQnB1atX+8xXv359TZo0STk5OT7vV6hQwXzt/Yh0JJ/Fe96Sn8WOMuMlLS1N7du3d2TdVikoKPBpUt2uXTufpDCA5Ec9AECiLgBAPQCAeiAa3377bUQN6vyxJAFZpUoV8/WhQ4dUVFQkj8cTcjnvvhi9H6OORocOHfTee+9p7ty5+uCDD7R27Vrl5eWpevXqatasmfr376/zzz9f5cqV048//uizrPfI1N5xlOwrMphDhw75LUPy3T6RlGnl9omF9+PlySA9PT3pPhOAyFAPAJCoCwBQDwCgHogXS7Zw7dq1zdcFBQXav3+/qlevHnK5PXv2mK9r1qwZcxxZWVkaOnSohg4dGnS+devWma+rVKni0wLS+7P88ssvYa872GeJtkzveb2TpAAAAAAAAECisGQQmsaNG/tMb9u2Lazltm/fbr5u2rSpFaGExbupbW5urs/fvD/L77//rr1794ZVpvdnLvlZmjRpYr7eunVrWOXt3r1bR44c8VsGAAAAAAAAkCgsSUDWr1/f5xHhNWvWhLXc2rVrzdetWrWKev0HDx7Uxo0bS418HcjixYvN1x06dPD5W5s2bXweHw/nsxw6dMgnsVjys7Rt29Z8vWXLFh0+fDhkmd7r9Xg8pRKlAAAAAAAAQCKwJAEpSV27djVff/rppyHnX7t2rU/rwm7dukW13uHDh6tz584699xzNWfOnJDzr1u3TuvXrzene/fu7fP3ihUrqk2bNuZ0OJ/l888/NzvjTE9PV5cuXXz+3rlzZ7M/gYKCAi1btixkmd7rbdOmjU8/kgAAAAAAAECisCwBec4555ivP/74Y+3atSvo/K+++qr5OicnJ+oWfs2bNzdfL1q0KOT8Tz31lM+ynTp1KjVP3759zdfz5s0L2WLR+7N0795dlStX9vl75cqVfRKsr732WtDyDh06pHnz5pnT/fr1Czo/AAAAAAAA4FaWJiBr1aolSTp27Jjuuusu5efn+533k08+0ezZs83pESNGRL3ec88913y9fPlyLV26NOC8b775pt555x1zetSoUX5H6x48eLDKlSsnSdq7d6/Gjx8fsMzZs2frk08+Maf/+Mc/+p3vsssuM19//PHHQVtrPvjgg9q3b58kqXz58rr44osDzgsAAAAAAAC4mWUJyKysLI0ePdqc/vTTT3XNNdf4DM6Sn5+vN954QzfddJMKCgokSS1bttSQIUP8ltmnTx/l5uYqNzdXffr08TtPt27dfPpxvPXWW0u1hNy/f7+mTJmi++67z3yvZ8+eGjBggN8ya9asqT//+c/m9Jw5c3Tbbbf5jEp95MgRzZgxQw888IBPmT179gz4WbwfU7///vv19NNP6+jRo+Z7e/fu1a233urT+vH6668Pa0RxAAAAAAAAwI0yrCzsoosu0sqVK/X6669LMpKQ55xzjnJzc1WxYkVt2LDBbNknSVWrVtUTTzxh9o8YDY/Ho4kTJ2rYsGH69ddflZeXpxtuuEF16tRR48aNlZeXp40bN+rYsWPmMm3bttVjjz0WtNxRo0bp22+/1X/+8x9J0vz58/X+++8rNzdXWVlZWr9+vX777Tdz/gYNGmjy5MlBy5wyZYouu+wybdu2Tfn5+Xrsscf0z3/+Uy1atNCxY8f0ww8/6Pjx4+b8vXv31tVXXx3FVgEAAAAAAADcwbIWkMXGjRunUaNGKTMzU5JUWFioNWvW6Msvv/RJPubk5GjWrFlq1qxZzOts3ry5XnzxRTVq1Mh8b+fOnVq2bJnWrl1rJh89Ho8GDRqkWbNmqVKlSkHLzMjI0LRp03TxxRebj2kfP35c3333nVasWOGTfOzYsaNeeeWVkC0Va9eurZkzZ/r0O/nbb79pxYoV+u6773ySjxdffLH+/ve/Ky3N8q8IAAAAAAAAiBtLW0BKRpLv1ltv1cCBA/Xmm29qyZIl2rlzpw4fPqwqVaqodevW6tevnwYOHKisrCzL1tumTRvNnz9fc+fO1cKFC7VmzRrl5eWpbNmyatiwoU499VRdfPHFEQ12k5WVpYcfflhDhw7V3Llz9fnnn2vXrl06duyYqlevrpNOOkn9+/fXOeecE3aisG7dunrllVe0cOFCvfPOO/rmm2+0d+9epaWlqXbt2urcubMuueQSnXzyyVFuCQAAAAAAAMA9PEVFRUVOBwF3WblypQoLCyVJaWlp6tixo8MRxSY/P1+rVq0ypzt06BDTY/8AEg/1AACJugAA9QAA6oFoWJEn4vleAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC28RQVFRU5HQTc5auvvvKZTktL/Dx1YWGh+ToZPg+AyFEPAJCoCwBQDwCgHoiU9/aSpM6dO0dcRoZVwSB5ldzREl2yfR4AkaMeACBRFwCgHgBAPRAvpHkBAAAAAAAA2IYWkAiJ5sgAAAAAAACpyYpWovQBCQAAAAAAAMA2NG0DAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2CbD6QAAO23YsEGvvfaali1bpu3btys/P1+1atVSy5YtNWDAAJ199tnKyOAwAJz23nvv6eabb454uf/+97+qU6dOwL9/8803mj17tr788kvt2rVLRUVFql27ttq2basLLrhAPXv2lMfjCXt9RUVFWrRokebNm6dvv/1Wv/zyi8qVK6fatWurW7duGjx4sFq1ahXx5wBS0RNPPKEnn3xS9evX10cffRTRsp999pneeustff3119q9e7cyMjJUp04ddezYURdddJFOOeWUiMo7duyYFixYoHfffVfff/+9Dhw4oIoVK6pu3brq2bOnBg8erEaNGkVU5r59+zR79mz95z//0caNG3Xo0CFVr15djRo1Ut++fTVw4EBVqVIlojKBZBNNPTB+/Hi9/PLLEa2nUaNGWrhwYdB57DjHHzp0SHPnztWiRYv0ww8/6LffflPVqlVVr149nXnmmbroootUq1atiMoEEtmyZcu0YMECrVy5Urt379bBgwfN8+0pp5yiQYMGqU2bNmGXlwjX+tQDJ3iKioqKnA4CsMO0adM0Y8YM5efnB5ynXbt2mjJlipo1axbHyACU9Le//U0zZsyIeLlACcjjx49rwoQJev3114Mu36NHDz3yyCNhnfR37dqlW2+9VV999VXAeTwej6688kqNHj1aWVlZoT8AkKK++eYbDR8+XMePH48o8XDw4EGNGTNGixYtCjrfwIEDNXbsWFWqVClkmRs2bNDNN9+s9evXB5wnMzNTf/nLX3TNNdeEdSOzaNEi3XvvvTpw4EDAebKzs/Xwww/rjDPOCFkekIyirQcuvfRSrVy5MqJ1hUpA2nGO/+qrr3Tbbbfp559/DjhPhQoVdN9992nQoEEhywMS2fbt2zVmzBgtX7485Lznn3++xo8fr4oVKwacJ1Gu9akHfJGARFJ66KGHNHPmTHM6IyNDubm5KleunDZs2KD9+/ebf6tZs6beeOMN1a9f34lQAUgaOXKk/vvf/0qSWrZsGfavgFOmTFH16tV93isqKtKNN97ok6AoU6aMcnNzlZ6ervXr1+vgwYPm35o1a6bXX39dlStXDrieffv2aejQodq6dav5XtWqVdW8eXMdPnxYP/zwg8+PHeeff74ee+yxsD4DkGq2bdumYcOGac+ePZIUduLh6NGjGjFihFatWmW+V6FCBbVs2VIFBQVat26djhw5Yv7t1FNP1XPPPRf0BmHTpk0aNmyYz3VBdna2mjZtqgMHDmj9+vXyvlS+5pprdPvttweN87333tPo0aNVUFBgvte0aVNlZ2drx44d2rFjh/l+enq6nnzySfXq1Svk5weSSbT1QFFRkTp16qTff/9dktSlS5ewkgC1atXSI4884vdvdpzjv/rqK1111VU+dVL9+vVVv3597dmzR5s2bfKZ/8EHH9SwYcNCfg4gEW3evFnDhg3Tvn37zPcyMzPVsmVLVapUSb/88ot+/PFHn/Ntq1at9PLLL/tNQibKtT71QGkkIJF0Sj7K2bdvX40dO1Y1a9aUZPxaMmfOHD3yyCM6fPiwJKlt27Z66623ImqeDcA6f/jDH7R7925J0syZM9WlS5eoy3r22Wf16KOPmtPDhw/X6NGjzZZQR44c0QsvvKBp06aZFxJnn322pk+fHrDMa6+9Vv/5z38kGRc4d999t4YMGWJ24bBnzx5NnDhR77zzjrnMvffeqz/+8Y9Rfw4gGa1bt05//vOftWvXLvO9cBMP3o9dejwe3XTTTbr66qtVtmxZSdKvv/6qadOm6aWXXjKXufLKK3X33Xf7La+goECDBg3S2rVrJUlVqlTR+PHj1bdvX/N6YNu2bbrvvvv0+eefm8s9+eSTOvPMM/2WuW3bNg0cONBMjrRs2VKTJ0/2eZzs888/1z333GMmIitUqKB3331XtWvXDrkNgGQQSz2wefNm9e3bV5KRwFi5cqUyMzNjisfqc/zBgwd17rnnmtc1devW1SOPPKLTTjvNnGfNmjW6++67tWbNGklGY4k33nhDbdu2jemzAG5TUFCgCy+8UOvWrZNk/PB23XXX6U9/+pNPcnHXrl167LHH9Pbbb5vv9evXT0888USpMhPhWp96wD8GoUFSOX78uCZPnmxO9+7dW48//riZfJSMi5WhQ4dq+vTpZoWyevVqzZ8/P+7xAjB+cSw+OUtSbm5uTGX94x//MKeHDRumBx54wOcxzLJly2rUqFEaP368+d7ChQu1YsUKv2V+8skn5gWJJE2aNEnDhg3z6T82Oztbf/vb33ThhRea7z355JM+v74Cqe7f//63LrnkEp+kQ7h+/PFHvfbaa+b0bbfdphtuuMFMPkpS5cqVde+99+qGG24w33v55Ze1fft2v2XOnj3bTD5mZGRoxowZ6tevn8+PkQ0bNtS//vUvnxuGqVOn+rRu9Pa3v/3NTD7Wr19fL774Yqm+rLp166ZXXnnFbOl96NChoDdFQDKJpR6QZN6oS1JOTk7MyUc7zvFPP/20eV1TqVIlvfDCCz51iCS1bt1as2bNUsuWLSVJ+fn5mjp1akyfBXCjOXPmmMlHyTjGbrrpplItG2vXrq3JkyfrT3/6k/nee++9p6+//tpnvkS51qce8I8EJJLKwoUL9dNPP0kybibGjh2rtDT/u3mPHj00dOhQc/r555+PS4wAfHnfTNSrVy+mQRnefPNNHTp0SJLx2MSdd94ZcN7Bgwf7PPYYqA548cUXzdc9evTQeeedF7DMBx54QDVq1JAk7d+/X3Pnzo0kfCAp7dq1S2PGjNGdd95pPnkQqZkzZ5pJv2bNmunqq68OOO+NN95oXswfP35cs2bN8jufd0vJwYMHq1OnTn7ny8zM1OTJk81Ex4YNG8wuI7zt2rVL77//vjk9evToUl1EFKtTp47uvfdec3rOnDlB+4sEEp0V9YAk80cDSZYM+mb1Of7o0aM+fdJdc801atKkid/yKlasqIcffticXrp0qX744YdIPwLgav/+97/N1z169NDAgQODzj969GifrpgWLFjg8/dEuNanHgiMBCSSineT6O7du6tevXpB5/dOQK5evVrbtm2zLTYA/nknIGNp/ShJ7777rvn63HPPVfny5YPO710HLF682Gy5VCwvL0+ffvqpOT148OCg5ZUvX97nwuq9994LK24gWT311FPq16+fzyNVzZo106hRo8Iuo7Cw0CexN2jQoIA/LkpSWlqaLrnkEnPae9lia9eu1YYNG8zpiy++OGgMtWvXVu/evc1pf8f2+++/bz7qValSJfMx0UDOPvtsM0GZn58fcmAdIFFZUQ8U875miDUBacc5fsmSJcrLy5Nk1EWhBpU46aSTfB635LoByeTYsWM+rQ779+8fcpmsrCz16NHDnP722299/p4I1/rUA4GRgETSKCoq0rJly8zp008/PeQyubm5ys7ONqfDHX0PgHWsupk4cOCAT1neFy+BdOvWTenp6ZKM/mK8L0Ak6YsvvjBbXXk8nrDqFe95VqxYYV6AAKno2Wef9bnYHzJkiGbPnq3GjRuHXcbatWt9BokJ59j2Pg5/+uknn1ZTknz6dKxSpYrat28fUZn/+c9/VLIb9c8++8x83aVLl5CPhqanp/s8jvXxxx+HjAFIRFbUA8WsTEDacY73rgdatmzpc58RTpnUA0gmO3bsUJkyZczpnJycsJarWrWq+dr7/J8o1/rUA4GRgETS2LFjh3799Vdzul27dmEt593iquQvLADsZ9XjVD/88INPQiCcDpzLly+vRo0amdMl6wDv2Bo0aBDW4+Hen6GwsFCrV68OuQyQ7Nq1a6eZM2fqoYce8juiZTDex2FmZqZatGgRcpmmTZv69A8Z7Nhu3bp1WIPQeR/beXl5PiNlSvJ5ZCrcDuS9y+QaBMkulnpAsrbPaMmec3ys9cD69et19OjRsJYD3K5p06ZauXKlli9frgULFpjdo4RSPEibJJ/jMlGu9akHAssIPQuQGDZv3uwz7V3RBNOgQQPzdcmbCQD2Onr0qDZt2mRO5+bm6quvvtLbb7+t5cuX6+eff5bH41F2drY6d+6sgQMHlurAuZh3HZCVlaW6deuGFUODBg3MGErWAd5lhttSIzs7W2XLltWRI0ckSVu2bFH37t3DWhZINl26dNGgQYN05plnhpXk88f7OKxfv75Pp/CBeDwe1atXTxs3bpRkHIeBygz32Pa+Xigus3jZY8eOmX1QR1vmrl27dOTIEZ/EKZAMrKgHJN/Wj9nZ2apUqZLeffddvfvuu/rmm2+0d+9elS9fXnXr1lX37t01ZMgQNWvWLGB5dpzjva9poqkH8vPztX379rBbigGJoFKlSj6DxARz8OBBLV261Jz2PhYS5VqfeiAwEpBIGnv27DFfp6Wl+Yx8HYx3k2jvMgDY74cffvB57GHcuHE+jy0U27Jli7Zs2aI5c+aoR48eevTRR80OoIt5H7/hPOrgb96SdYB3S4tIyqxRo4b56y31ClLZk08+GXMZ3seQd8f0odSsWdNMQFpxbFevXl3p6elmneVd5p49e3xaZYRbZslrlT179qhhw4ZhLQskCivqAck3AZmRkaH+/fuXaoCQl5envLw8rV27Vi+++KJGjBihO+64w+8PF1af4wsLC7Vv376Iy/RXDyRj4gEIx7PPPuszsrR3/8uJcK1PPRAcj2AjaXj3vVChQoWgHdR7834EhL7agPjyfuyhqKjITD5WqlRJbdu2VZcuXVS/fn2fZZYsWaIhQ4b4tDaS5DOCbLi/skrB6wDv6UjK9J7Xu2sIAJGL9tj2nteKYzstLc2ns3vvY7tk+ZUrV444xpJlAvDlnYD8+eefzeRjdna2OnXqpI4dO/r0HVdQUKAXXnhB1157rY4fP16qPKvP8b/99pv5A4VEPQBE6ptvvtE///lPc7pJkybq06ePOZ0I1/rUA8HRAhJJw7ufhEgeX8rKyjJfHzt2zNKYAATnfTMhGTcRd955p/r16+dzbK5bt05TpkzR4sWLJRl9w1x//fV64403zPm8j1+r6gAr6pVk7cMFiJdEOLZLHufene6HW56/cgCcUHIwqfbt22vMmDE69dRTzfcKCwu1ZMkSTZw40XwMcsmSJXr44Yf14IMP+ixPPQC4x/bt23X99df7/Fhw1113+bRe5nog8dECEknDu7IKt/WjJJ9KLT8/39KYAARXst+Vf//73xo4cGCpk3DLli31zDPPaPDgweZ7a9as0WuvvWZO21EHeE9HUmbxaHv+ygQQmWiP7WDHofe093zRllmy/HDLLDmfd6sJACccO3ZM27dvN6f79u2rV1991Sf5KBl1RM+ePTV79my1bt3afP+1114rlcC0+hxPPQBE5+eff9YVV1zh8yjzlVde6fP4tZQY1/rUA8GRgETS8D5oCwsLw17Ou5LIzMy0NCYAwT3//PP69NNP9cYbb+jFF18s1a+jN4/HowcffNDnkeyXXnrJfG1HHRBtmd4XDdQrQGzsOA69y4zkIt97Xu8fSkretIRbZsn5qC8A/7KysrRy5Up9/PHHmjlzpiZPnhz0eKlUqZKmTp1qHptFRUU+1wyS9XVLtAkE6gGksg0bNmjYsGE+PzD06NFDt99+e6l5E+Fan3ogOBKQSBrlypUzX0fSZNm7GXa4TaQBWKdGjRrq0KFDWCPZZWVl6dJLLzWnt23bZo5m5/3YRCR1gPe8JesAO8oEEBm3HtveCUjvaxAp/C5don1UC0hFaWlpqlevnrp06VLqmPMnJyfHZ2Ra75F1JevrlpKPb4ZbJvUAUtWKFSt02WWX6eeffzbf69atm6ZPn+43AefW6wHqgfCRgETSqFKlivn60KFDPqNRBuM9ypZ3x9UA3KlTp04+08WPcXsfv97HdSiHDh0yX5esA7zrlUjKpF4BrBPtsR3sOIzm2C4sLNTvv//ut0zv8iIps+R81BeAtbyvGXbu3Olzk2/1Ob5SpUo+raGpB4DA/u///k9XXHGF9u/fb753xhln6Omnnw74A0MiXOtTDwRHAhJJo3bt2ubrgoICn8osGO++JmrWrGl5XACsVfIx7eLR67zrgF9++SXs8oLVAdGW6T1vdnZ22MsBKK1WrVrm60iOw71795qvSx6H0Rzb+/bt83k8y7vM7OxsnxsO73WHG6PH4wnaDQWAyJU8r3uPomv1OT4tLc1nOtwyS9YX3I8g2U2bNk233367z9MCAwcO1JNPPhl0IJhEuNanHgiOBCSSRuPGjX2mt23bFtZy3v1NNG3a1NKYAFiv5CMKFSpUkORbB/z+++9hJwC864qSdUCTJk3M18WPeoeye/duHTlyxG8ZACLnfQxt3749rCccioqKtGPHDr9llJwO99gueV3hXUZWVpZPNxLRlFmvXr1SA3ABiE2gawbJnnO897VINPVAZmamT1/XQDI5fvy47rzzTk2fPt3n/WuvvVaPPvqoz2Ax/iTKtT71QGAkIJE06tev79NUec2aNWEt5z0iXqtWrawOC0AAa9eu1eTJk3XnnXfq6quvDvsXQu8fDSTjpl2S2rRpI4/HY74fTh1w6NAhnwuDknVA27ZtzddbtmzR4cOHQ5bpvV6Px6Pc3NyQywAIzPs4PHz4sDZt2hRymY0bN/okHrxHwy1ZZsmRcQPxPrarVKlS6uagXbt2MZVZMkYAJyxatEgPPfSQRo8erTvvvDPs5bxv6itXrqyKFSua03ac42OtB5o3b560g08gtR07dkw33nij/v3vf5vvZWRkmMe19zV8IIlyrU89EBgJSCSVrl27/n979x9TdfXHcfwFd/zoKmKMFluOmjfUWD80lv2cTaOrRXNzmahEtfljrWYpTLFckjbcnGOTjZq61Va2aVxDvYZTcFJKAtZquUxQcau2gIUFAbPBvfH9g3niCJcL2Kdv4PPx1+d8Pudz+MC453Pu+/wyx6dOnQqbv66uzuo5eeihhxx5LgD9tbW16YMPPtDBgwdVVVWl06dPD+m+EydOmOO4uDhNmTJFkjR+/Hilpqaaa0OpA2pqasyUSpfLpZkzZ1rX09LSTG9sMBhUbW1t2DL7/tzU1NR+a8MBGJ6UlBQlJCSYdHV1ddh7+m42cfPNN/f7ctD3s/7rr7/qwoULYcvs+9nu294YqMza2tqwu2leW6fQBgFCO3funHbv3q2ysjL5/f4hj3yqqqoyx2lpadY1J97xfeuBs2fP6o8//hhWmdQDGIsCgYBee+01ff755+bcuHHjtHPnTj333HNDLme0tPWpB0IjAIkxxev1muPKyko1NzcPmn/Pnj3m2OPxMFIJ+BfdfffdcrvdJu3z+cLe09TUJL/fb9IZGRnWumtz5841x36/P2wvZt864JFHHtGECROs6xMmTLAaAXv37h20vM7OTuv55s2bN2h+AOFFREToySefNOmSkpJBg3t//fWXSkpKTHru3Ln9RlZMmTLFmoYV7rPd2NhofXF66qmn+uVJT0+Xy+WS1LuWU0VFxaBlHj16VL/99puk3lEgfdswAGx9v9D39PRo3759Ye8pLy/XpUuXTHr+/PnWdSfe8Q8//LDi4uIk9U43Dfec3333nX744QeTHqhuAUa7bdu2qbKy0qQTEhK0e/duPfbYY8MuazS09akHQiMAiTHF6/Waxeq7urq0fv16BQKBAfOePHnSCnhkZ2f/K88IoNe4ceP09NNPm/SXX36pAwcOhMzf0dGh1atXm4ZGTEyMli1bZuV59tlnzc55LS0t2rx5c8jyfD6fTp48adIvvPDCgPmysrLMcWVlpUpLS0OW+fbbb5uAgtvt1sKFC0PmBTB0S5cuNUHEuro6vfvuuyHzFhUVmRGNkZGRId/vfT/be/fuDTmSoru7W3l5eeru7pbUu+xDenp6v3xJSUl64oknTLqgoCBkR2hjY6O2bNli0l6v11oIH4Bt5syZ1jpru3bt0sWLF0Pmv3TpkjZu3GjSkydPHjDI/0+/42NjY63zxcXFqq+vH7C89vZ2bdiwwaSnT5+u++67L+TPB0ajL774Qh9++KFJx8fH66OPPrKmPg/HaGjrUw+ERgASY0p0dLRycnJM+tSpU1qxYoW1/ksgEFBJSYlWrVqlYDAoqXckxHCGfwP4Z7z++uumh1CSNmzYoOLiYnV2dlr5vvrqKy1ZskTffvutOZeTk6Pk5GQrX2JiopYvX27SpaWlys3NtdaX/PPPP7Vjxw7l5+ebc7NmzdKsWbMGfMY5c+ZY0y3feust7dy501pfrqWlRWvWrLF6RF955RVr2iiAkZs2bZoWLFhg0sXFxdqyZYva29vNufb2dhUUFGjHjh3mXGZmpu68884By8zMzDSjIAOBgF599VX5fD6r4/Lnn3/W8uXLrSlZa9euDblZzJo1axQTEyNJam5u1tKlS/stL1FbW6usrCyzK6fb7bbaLgD6i4iI0JtvvmnSnZ2dev7551VWVmaNiO7u7tb+/fu1ZMkS/f7775J6N3TYunXrgBtcOPGOX7lypbnW2dmpl156SRUVFdYGWnV1dcrOzjadJS6XS+vXrx/W3wT4rwsGgyooKDD/+xERESosLFRKSsqIyxwtbX3qgYFF9AxlK0FglNm4caM++eQTk46MjNTUqVM1fvx4NTQ0mF4LSZo4caL27NmjyZMn/z8eFbjh1dTUaOXKldZLPjY2VtOmTVN0dLR++uknNTU1WfcsW7Ys5CL0VwMJfadLRkVFaerUqYqOjtaFCxesoMWkSZPk8/kGDRY2NzcrKyvL6syIi4tTSkqKurq6VF9fb0ZHSdLs2bP13nvvWdPDAfyttLRUb7zxhqTeTeSOHz8e9p6Ojg69+OKL+v777825m266ySyfUl9fb03Fuueee/Txxx8rNjY2ZJnnz59Xdna2WltbzbmEhAR5PB61t7fr/PnzVnAjKyvLGlU1EL/fr7y8POu+5ORkJSUlqbGx0apHIiMjVVhYaI0GB24UI6kHdu3apcLCQuvcxIkTlZKSokAgoIaGBmu9taioKG3fvn3AUctXOfGOr66u1ssvv2ztlJuUlKTk5GRdvnxZDQ0NVv6rG/IBY0lZWZnVweZ2u3X//fcPq4zExERt3brVOjda2vrUA/0RgMSY1NPTo+3bt+v999+3KopreTweFRUVXVcvDIDrd/bsWa1du7bfi/ha8fHxys3NVWZm5qD5urq6tGnTJn366aca7DU3Y8YMFRUVDWnqY2Njo3JycvTNN98Mmm/hwoXKz88POUIKwMgCD1LvKMd169aFzT979mxt27bNGmEdSn19vXJzcwfdiMblcmnFihVavXr1kHbqPHLkiPLz863A5rXi4+P1zjvvWOtZATeSkdYDn332mTZv3qy2trZB83k8Hm3atEkPPPBA2DKdeMefPn1aeXl5+uWXX0LmiY2N1bp166wpoMBYsWrVKpWXl19XGaHqhtHS1qcesBGAxJjW0NCgffv2qaqqSk1NTbpy5Yri4+N11113ad68eZo/fz5BAuA/IhgM6tixYyovL9eZM2fU0tKiQCCgxMRE3XHHHZozZ44yMjKGNa35zJkz2r9/v2pqatTc3Kyuri4lJCTo3nvv1TPPPCOv1zusUYo9PT2qqKjQ4cOHzTNGRkbq1ltvVVpamhYtWqTp06eP4LcHbiwjDTxcVV1dLb/fr6+//lotLS0KBoNKTEzUjBkztGDBgmEvbB8IBHTo0CEdPXpU586d0+XLlxUVFaVJkybpwQcf1OLFi0NO5Q6ltbVVPp9Px48f148//qi2tja53W55PB49/vjjyszMZJkG3NCupx7o6OjQgQMHdOLECdXV1am1tVUul0u33HKLUlNT5fV6lZ6ePqx2vhPv+CtXrqi0tFQVFRW6ePGiWltbFRMTo9tvv12PPvqoFi9erNtuu21YZQKjRUZGxqBrtQ5FuLphNLT1qQf+RgASAAAAAAAAgGNYnAoAAAAAAACAYwhAAgAAAAAAAHAMAUgAAAAAAAAAjiEACQAAAAAAAMAxBCABAAAAAAAAOIYAJAAAAAAAAADHEIAEAAAAAAAA4BgCkAAAAAAAAAAcQwASAAAAAAAAgGMIQAIAAAAAAABwDAFIAAAAAAAAAI4hAAkAAAAAAADAMQQgAQAAAAAAADiGACQAAAAAAAAAxxCABAAAAAAAAOAYApAAAAAAAAAAHEMAEgAAAAAAAIBjCEACAAAAAAAAcAwBSAAAAAAAAACOIQAJAAAAAAAAwDEEIAEAAAAAAAA45n9Mdi2nq6A9AwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb.txt b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb.txt new file mode 100644 index 000000000..a27f71579 --- /dev/null +++ b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb.txt @@ -0,0 +1,594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on fake data)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.1.2.dev273+g6908e954'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# import some modules\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import stingray\n", + "stingray.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# choose style of plots, `seaborn-talk` produce nice big figures\n", + "plt.style.use('seaborn-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate a fake lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Array of timestamps, 10000 bins from 1s to 100s\n", + "times = np.linspace(1,100,10000)\n", + "\n", + "# base component of the lightcurve, poisson-like\n", + "# the averaged count-rate is 100 counts/bin\n", + "noise = np.random.poisson(100,10000)\n", + "\n", + "# time evolution of the frequency of our fake periodic signal\n", + "# the frequency changes with a sinusoidal shape around the value 24Hz\n", + "freq = 25 + 1.2*np.sin(2*np.pi*times/130)\n", + "\n", + "# Our fake periodic variability with drifting frequency\n", + "# the amplitude of this variability is 10% of the base flux\n", + "var = 10*np.sin(2*np.pi*freq*times)\n", + "\n", + "# The signal of our lightcurve is equal the base flux plus the variable flux\n", + "signal = noise+var" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the lightcurve object\n", + "lc = stingray.Lightcurve(times, signal)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAKOCAYAAAD6VwfUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACorUlEQVR4nOzdd3gU5drH8d+mQAik0EvoTar0KkgRFQtiA0XFAvYuNl4VK/bejnrsR8CCBVQEEaVI7yLSkd4hkBBC+r5/YCJJNsmW2Z2Zne/nXF4n7M7O3Ls7O/PcT3W53W63AAAAAACOFWF2AAAAAAAAc5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAbK1hw4ZyuVyaNWtWmdu6XC65XC5Djrt161a5XC41bNjQkP0BAGAmEkMAAELok08+kcvl0rXXXmt2KAAAFIgyOwAAAEJl7dq1ZocAAIAlkRgCAByjRYsWZocAAIAl0ZUUAOAYpY0xXLp0qc477zwlJiYqLi5OPXv21LfffuvVWMK8vDy99tprat26tWJiYlSzZk2NGDFC+/fvL7Rd3759dd1110mSPv3004J4PHUtzcrK0ttvv63evXurcuXKiomJUaNGjXTJJZfop59+8vp9lRT/yY9nZ2frmWeeUevWrVWhQgW1b99eP/zwg1wul3r37l3i+160aJFcLpfHhHv16tW69tprVb9+fZUvX15Vq1bVeeed59VYUABA6NFiCABwvOnTp2vQoEHKyspS27Zt1aZNG23btk2XXHKJRo0aVebrhw8frkmTJqlv375q1qyZ5s2bp48//lhLlizR0qVLVb58eUnSwIEDlZOTo3nz5qlJkybq1atXwT5O/js5OVkDBw7UkiVLFBsbq9NOO01Vq1bVjh079PPPP+vQoUM699xzDXnveXl5uuiii/Trr7+qT58+atOmjbKysnTOOeeoRo0amjdvnrZs2aJGjRoVe+3//vc/SdI111xT6PFx48ZpxIgRys7OVrt27dStWzft3r1bP//8s6ZOnar//Oc/uvnmmw2JHwBgEDcAADbWoEEDtyT3zJkzy9xWkrvorS8tLc1dq1YttyT3iy++WOi5SZMmuSMjI92S3A0aNCj03JYtWwr216xZM/f27dsLntu3b5+7UaNGbknuTz/9tNDrPv74Y7ck9zXXXFNinOeff75bkrtfv37u/fv3F3ouNTXVPWPGjDLfV9E4S4u/YcOG7i1bthR77d133+2W5H788ceLPZeZmemuWrWqOyIiotB7X7FihTs6OtqdkJBQLM4FCxa4ExMT3dHR0e5169aV+P4BAKFHV1IAgKN9/fXX2rt3r9q1a6f77ruv0HODBw/WJZdcUuY+3njjDdWrV6/g3zVq1NCtt94qSZo5c6ZP8axYsUI//vijqlSpom+//VbVq1cv9HxcXJzOOOMMn/ZZlmeffdZjV9mrr75akvTZZ58Ve+6nn37SoUOH1K9fv0Lv/ZlnnlF2drZeffXVYnF2795dY8aMUXZ2tt577z1D3wMAIDAkhgAAR5szZ44kaejQoR6fv+KKK0p9fXR0tAYMGFDs8VNOOUWStHv3bp/imTZtmiTp4osvVmJiok+v9dfgwYM9Pt6hQwe1bdtWmzdv1rx58wo956kbaV5enn7++WdFRkbq4osv9rjP008/XZK0cOFCI0IHABiExBAA4Gi7du2SJDVo0MDj8yU9nq9WrVqKiio+ZD8uLk6SlJmZ6VM827dvl/RvYhlsNWrUUIUKFUp8Pj/xy08EpRNjIKdMmaJKlSoVSgAPHTqk1NRU5ebmKjExsdDkOvn/denSRZJ04MCBIL0jAIA/mHwGAACpxFk9IyJKr0Mt63mj4vBXXl5eqc+XlhRK0pVXXqkHH3xQX331ld544w2VL19eX375pbKysjRs2DBVrFixYNvc3FxJUrly5TRs2LBS91utWjUv3wEAIBRIDAEAjlanTh1J/7bUFbV169YQRiPVr19fkrRhwwavXxMdHa3s7GylpaWpUqVKhZ7bsWNHQPHUqlVLZ511lqZOnarvv/9eQ4YMKXE20mrVqikmJqZgDGH+bKwAAOujKykAwNHy1+n76quvPD7/+eefG3q8cuXKSZJycnI8Pn/WWWdJkr799lulpKR4tc/85Hb9+vXFnps+fbo/YRZycnfSjRs3auHChapfv7769u1baLuoqCgNGDBAubm5mjRpUsDHBQCEDokhAMDRhgwZoho1amjFihV69dVXCz33ww8/aOLEiYYeLykpSZK0du1aj8937NhR5513ng4dOqRLL71UBw8eLPT80aNH9euvvxZ6rF+/fpKkp59+ulDCOX369GLvyR+DBw9WQkKCpk2bppdfflnSibUbPXV7ffTRRxUVFaVbb73VY3KYm5urmTNnMvkMAFiMy+12u80OAgAAfzVs2FDbtm1Ty5YtFR8f73GbuLg4/fLLLwWJTNFb37Rp03TBBRcoOztbp556qlq3bq3t27dr/vz5uvPOO/X666+rWbNmhbp3bt26VY0aNVKDBg08djedNWuW+vXrpz59+mjWrFkFj2dmZqphw4bau3evOnXqpNatWys6OlqnnXaarrvuOknSwYMHdfbZZ2v58uWKjY1V7969VblyZe3cuVMrVqxQ586dC+1z/fr16tSpk44dO6amTZuqffv22rp1q5YtW6YHH3xQzz33XLE4y4q/qBtvvFHvv/9+oWM2b97c47bjx4/XyJEjlZmZqSZNmqhFixaKj4/Xvn37tGLFCh0+fFjvvPMOi9wDgIUwxhAAEBZKaoGTpISEhFJfO3DgQM2dO1ePPfaY5s+fr82bN6tNmzb68ssvVbt2bb3++uuGTZZSvnx5TZs2TQ8//LAWLFigFStWKC8vTzk5OQWJYbVq1TRv3jy9++67+vzzzzV//nxlZ2erVq1aOvfcczVixIhC+zzllFM0Z84cPfTQQ5o/f75++ukntWvXTpMnT1bbtm313HPPBRz3NddcU5AYdu/evcSkUDoxYU3Xrl312muvacaMGfrtt98UERGh2rVrq1evXho0aJBX60MCAEKHFkMAAErx9NNP65FHHtFtt92mt956y+xwAAAIChJDAIDj7d27Vzk5Oapbt26hx3/++WddfPHFSk9P16JFi9S1a1eTIgQAILjoSgoAcLylS5fqggsu0KmnnqqGDRsqIiJCGzZs0F9//SVJ+r//+z+SQgBAWKPFEADgeNu2bdOzzz6r2bNna+/evUpLS1PlypXVqVMn3XzzzRo8eLDZIQIAEFQkhgAAAADgcKxjCAAAAAAOxxjDIMjLy9Pu3bsVFxfncfFfAAAAAAg2t9uto0ePqk6dOoqIKL1NkMQwCHbv3q169eqZHQYAAAAAaMeOHcVm3i6KxDAI4uLiJJ34AuLj402OBgAAAIATpaamql69egX5SWlIDIMgv/tofHw8iSEAAAAAU3kzvI3JZwAAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAIDjuN1uHUrLVF6e2+xQAMASSAwBAIDjjPrqD3UaO0O3TVhudigAYAkkhgAAwFGSj2XpuxW7JElTV+/VjuR0kyMCAPORGAIAAEdJz8op9O+U49kmRQIA1kFiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAImrkbD2ra6j1yu91mhwIAAEpBYggACIqZ6/brqg8X6eZxy/XRvK1mhwMAAEphycTw2Wef1ZAhQ9S4cWO5XC41bNjQ69c++OCDcrlcqlSpksfnMzMz9eijj6pRo0YqX768mjRporFjxyo7O9ug6AEAknT7hOUFfz/14xoTIwEAAGWJMjsATx566CFVqVJFHTt21JEjR7x+3cqVK/XKK6+oUqVKJXZbuuyyyzR58mSNGDFCPXr00IIFCzRmzBht2rRJn3zyiTFvAACgY1m5ZocAAAC8ZMnEcPPmzWrcuLEkqU2bNkpLSyvzNbm5ubrhhht0zjnnKDU1VUuXLi22zU8//aTJkydr1KhRevnllyVJ119/vRITE/XKK6/oxhtvVM+ePY19MwAAAABgcZbsSpqfFPrijTfe0Jo1a/Tmm2+WuM2ECRMkSXfffXehx/P/PW7cOJ+PCwAAAAB2Z8kWQ19t27ZNY8aM0WOPPaYGDRqUuN2SJUuUlJSkevXqFXq8Xr16qlOnjpYsWeLX8WvXrl3o33l5eX7tBwCAolKOZ+uFaeskSQ8MbKGECtEmRwQACEeWbDH01S233KLGjRtr1KhRpW63e/duJSUleXwuKSlJu3btCkZ4QNjLy3Nr5CdL1HLMNI1buM3scICw8vL09Rq/aLvGL9qul6evNzucsLDr8HGzQwAAy7F9Yvj5559r2rRpevfddxUVVXoDaHp6usqXL+/xuZiYGKWnp/sVw549ewr9t3HjRr/2A9jVjLX79Ou6/TqenatHJq02OxwgrPxvwTaPf8N/N41bZnYIAGA5tk4Mk5OTdffdd2vkyJFeTRoTGxurzMxMj89lZGQoNjbW6BABR1i396jZIQCA146km7NE1d6UDA15d77Of/N3bdpf9sR6ABBKtk4Mn3jiCR07dkw33HCDNm3aVPDf8ePH5Xa7tWnTJu3YsaNg+zp16pTYXXTXrl0ldjMFEP7W7E7VL2v2KTfP81I3sI7MnFxlZP+7FEZGdq6Wbz9c6DHAip6askZLth7W6l2puuuLFWaHAwCF2HrymW3btunYsWPq1q2bx+ebNWum1q1ba/XqE13bunTpovHjx2vHjh2FJqDZsWOHdu/erQsuuCAkcQOwlg37juqCt+YqJ8+tW/o20YMDW5gdEkqwdk+qhr2/ULm5bn0yoqs6Naisqz9crMVbk9W5QWV9fQtLDsG6pqzaU/D3X7tTTYwEobD9ULp2HE5Xj8ZVFRHhMjscr2Xn5un7lbtVOzFGPZtUMzschJCtWwwffPBBTZw4sdh/rVq1UkxMjCZOnKhXX321YPthw4ZJkl577bVC+8n/95VXXhmq0AGU4MDRTG09eCykx3x6ylrl/NNS+M6szSE9drjKC1LL6z1frtSR9GwdzczRDf9bqh3J6Vq8NVmStHTbYe1I9m+sOAAYadeR4zr7tTm68oNFeu6fWYXt4qXp63XvxD90xfuLtGzbYbPDQQhZssXws88+07ZtJwbYHzhwQFlZWRo7dqwkqUGDBho+fLgkqUePHh5f/9Zbb2nbtm269NJLCz1+3nnn6fzzz9crr7yilJQU9ejRQwsWLNCHH36oq666Sr169QriuwJQlr8PpGnwW/N0NDNHz1/SVpd1qR+S4x45bs54o3D267r9QdnvyeNZk49lKTOncPfRov8GADO8PmODjv/Tvf2/c/7WQ+e2NDki7703+++Cvx+dvFpT7uxtYjQIJUsmhh9++KFmz55d6LExY8ZIkvr06VOQGPpj4sSJGjt2rMaNG6fPPvtMSUlJevLJJzV69OiAYgYQuCd+WKOjmTmSpAe/+TNkiSGMN3X1nrI3AoAwlXwsPCocGbvtLJZMDGfNmhW018fExGjs2LEFLZAArGPzAWbpAwAAMIOtxxjCd4ePZenFn9fpyyXb5XYz+yIgSSryW9iXmqHHv/9L4xdt43cCAAAcwZIthgieRyavLpgVrWZ8jPqeUsPkiADruefLlZq/+ZAkqVHViurZlFnZAABAeKPF0GFOnir7penrTYwEsK78pFCS3pvzdylbwmpo4IWVZObk6pZxy9TvpVn6feMBs8NBSHExgv3QYggAsDH7rA0G55m4dKemrt4rSRr+4WKTowGcZ/6mg7rzixWqk1hBn1zXVVUqljM7JEujxRAAACAI5mygldC5wqPSyu7tnld8sEgH07K0ameK3vh1o9nhWB6JIQDHs/uNDwAAlI6KmrKRGAIAYENZOXlKOR4ea6UBAMxHYggAgM2kZ+XovDd+V7snpuujuVvMDgdAMeb0RZn+11598PvfSs/KMWR/4dEhFt4iMXQwZu8DAHuasGi7Nu5PkyQ9+eMak6MBYAVLtybrxs+WaeyUtXrmp7VmhwMbIjEEgFJQfwIr2vRPUggA+U6uJBq3cLuJkcCuSAwBWIZZrdi0ngMAjBX6Tph53MxKxadTNhJDB3PRcRwAAAAlIJlyFhJDAI4XzEqSaav36IK35ur1GayfBDgNhWoAdhJldgAAEM5uHrdckrRqZ4oGtqmlU2rFmRwRACD4qBaA/dBi6GB0RQdCa+WOw2aHEPa4rAFAcGXn5mnB5kM6kp5ldig+YQRV2WgxBOB4VJLYl1PHSjv1fcN6dh5Ol9st1asSa3YojucKUepzx4QVmvbXXiUlVtCs+/sqOpJ2pnDBNwkgYEYlVlYs7LrJGgHAo3mbDqrvi7PU76VZ+n3jAbPDQRB4ui1P+2uvJGnXkeP6de1+n/c5buE2Xf7fBZq2em+A0fmGu3nZSAxhaVk5eXrg6z904dvztGyb8d3wflu3Ty9MW6e9KRmG7xsAypKTm6fJK3dp8ZZks0MBfDby0yXKyXMrJ8+tEZ8sMTsciwl9TafbhNQnLTPHp+33pWbokUmrtfDvZN08bpny8kjXrITEEJY2acUufbV0p1buOKLL/7vA0H3vSE7XiE+W6j+zNuu2CcsN3bfTWLGlD7CDl3/ZoLu+WKmh7y3Qiu2MQYW9ZGTnFfydnUsBv7Dw+DyMfhdr9qQW+nd2Xl4JW8IMJIawtKmr9xT8bfRNZ9yibQV/B6M1EgDK8s6szQV/Pzr5LxMjAQA4HYmhg9HKY46snDy6TlhMad1vXPxQECLpWb51yYL1cfVAKIVq8hmELxJDB2NOjdD7askOtXx0ms5/c66O+dgvH/bHby78rNxxRAv/PmTCkSkA2gE/eQB2QmIIhNAD36xSbp5ba/akatzCbWW/IMh2JKfrscmr9fWynZaYfdMCIQBem7PhgC58e54u/+9Cfblku9nhAIDtcN+3FhJD4CRZOXlasjXZ51m2/FF0ALYZbhm/TJ8u2Kb7Jv6h1btCH8/Wg8e0/6i1Z4S1QsIMa7pt/L+TVj34zZ8mRgIA5vD1HklfB2sjMUSZvl62U80fmaqh7y5QZk6u2eEE1U2fLdWQdxfo4v/Mc8Q4wJOTwfGL/G/B9Cd3mrh0h/q+NEv9XpyljfuO+n1swCxH6Q4eNrYnp5sdAgCYjsQQZbpv4h/KysnT4q3J+nb5LrPDCZrMnFzNXH9igd4N+9K03GFTx8/ecEC3TViuX9fuC8nx7v96lSTpWFau6bMx0igI2FdunltP/rBGl723wO/r9q3jl2vljiPGBgYANkNiCJ+s3pVidghBUzQ5OJYV3q2jRe1JydCUVXs08tOlPs+OGOjEnX8fTAtsB3CsoqceSb7z/PzXXn00b4sWbUnW5e8t9Hs/93610rigAIfYl5qhZduSHTXsYsO+o3rw61WavDL8GkuizA4AcCorX0O3J6erRa14s8MAgDJNXb234O+sXP8Xy952iO6kgK9emr5BknRznyYafU4Lk6MJjSveX6SDaZn6cukOtaubqIbVKpodkmFoMQTgt9w8t376c4/tu92yVCEAoCTZuXk6cDTTUa1ivnp39mavtjNzbeCsnDxd89FitXtiekCtfQfTMgv+PrliKhyQGMKxWAg2cK/P2KBbxy/XrH/GZhqt89hftGrnkaDs+2ShmpHV6QnohEUs6RBuVu9K0eC35+nW8ctYm9UD8gj7y8tz67L3FqjL0zP09JS1ZoejD37/W53HztBTP64xOxS/bN5v3tCRXUeOa/aGA0o5nq27vlhpWhxWRmIISwtmzZKbpYcD9sZvmwzZT0lJ+sG0LN302TJDjmEFTi8kPvQdSzqEm2s/XqI/dhzRT3/u1Udzt5gdDmC42RsOaPn2I5KkD0w+x7Nz8zR2ylodTMvUh3O3aMvBY4Wet3rl456U43rSpgmtU5AYAiVwcpcRK731PSnGr3P4zbKdajlmmi57L/yXYAGC6eQuVZMMnIghJT1bIz5ZosFvzdVaC6z5Cufam2qdtXazi4yhDckyKwaWB96Z5V13U5iHxBCAZYSqtvPeiX/oeHauFm1J1jfLwm9WMX+lZeZo2uq9hQr7VmfmeBVvpGXmUPnghzd/26jf1u3XHztTwqrXAOBkRzPCr7t5uPU+IzF0sN1HjpsdQpmc3GqH0PgzjJdg8dU1Hy3WzeOW6cK35ynleLYtfn9WjvHHVbvV/onp6v/SbO03uNXB4vlwwL5evrPg77JaRax8DiD4ko9laei7C9T3xZlaYfOJ0AIVrJ/Cyh1H9N7szbaqNIR/SAwd7HB6tuZvOujTa8Lp9svkM9aRX8ilfGee9KwcLdt2olC18/BxtXtium7/fIXJURVmtwTg9gkrlJPn1q4jx/XyP1O6AzDW6zM2aPHWZG09lK6rP1psdjgFbHa5KlHK8WwNeXe+np26TreOW252OAgyEkOHu/5/S80OwTTh1vyPwtxut/7v21Xq8+JMff/HbrPDsbw8Dz+HKav2FJvcwEzzNh0yOwS//RGC2XXNxhUVZvjppOUCwrGrore2HjymjfuPGr7fQ8eylJ174te9eGuy4fuHtZAYOlx6lm9jX3xpY8vJzdPNny1T16dn6AcK5sVYuRAVDjWdCzYf0ueLd2jboXTdabGWLztJPpZldggFHpnErKawl3Dv8ouSheK7z+9FsXhLsga8MlsZ2XllvMJ6wqG8EU5IDBE0U1fv1bS/9mr/0UzdQcEcIbZixxGzQwAAwDAlDYG5fcJy5Xjq9oGgC7fElsQQQbPin3V/7CrMfuuW5pRKdc4p4xWdlZQu4uHBl2uClWemDbdCoxNZ9+z61/6jTAoDY5AYwrGK1ryFumxhh5sNAGuy5PXDpCQo1JMSzd90UM9PW6cdyen6YvF2nf/m7/p0/taQxoDQ8ffsCsZpScUXgi3K7ACA0oSyJpiaXfgrJT1bH83bosbVK+qCdnUs3YJRErvN+AmUJDMnV8cyc1WlYjnD930oLVNXfLBI0onJmfKX0li96y8NalcnKMdE6ex3tTWOHe81RZHsWguJIRyrrItRsC+3XAqtwYj76iOTVxdMsFQ7oYK6NqoS+E7D1J6U46qdUMHsMMLOgaOZunX8MqUcz9Zrl3VQqzrxZodkmoGv/a4tB4/psUGtdN1pjQzd98kTqRVdX3HX4eMkhg6wPzVDj0xarejICD11YRu+cx9QAWl9dCVF0FALBKc4ubD40vT1JkZifWe9OkeHLTTTqT/2p2Zo15Hjhu83kNr/56au05Kth7VhX5pu/MykZYgs0niRv8TKEz+sMTkSBCojO1cvTFunp35co9SMbI/bhLqkMWbyak1fs09T/tyj56auLXG7UM5KGu427juqbYess3RSOCMxhE+ccQkCgsMi5WZTHc3I0Ufztvj1Wit0m1q544hOf3GmTn9hpuH7DqSQ992KnQV/7zxsfNIaamZ81xY4vVDE+3P+1n9mbdaHc7foxWnBrXR75ZcNavx/U3T3F6XPov7zX/sK/v5q6c5StjReSbOS2oWn33VZ7+nHVbt15qtzdMbLs7WEdRSDjsQQjlXWxYgk2DryTJyG2yEVsiF1JN1zzb8/Ql1MuuuLFcrIzlMuU8MXZ+BH4pSWEJTu5V82FPz92cJtHrcx4hqQm+fWG79uVJ5bmrRyt9buSTVgrzDC7RNOJOo5eW7dMYGlz4KNxBC65qPFQekWZTeZOfZbGNYpXv91Y4nPLfz7kNo+9rNOf2GmX+cx5c/SWb0VJS0zJ6TH23YoveyNPLBCa2dRu48cV0Z2rtlhWAbXgvCUk5unCYu266ulO0qsZMwr8uXvSfn3XuLvL5fzqThPFT6+DDvam5phZDjwgMQQmr3hgEZ/s8rsMEKu6MVo4tIdJkViPaEeH1pWobm0xPDKDxbpaGaOtiena+yP1h5T5O2nmpqRrTs+X6HhHy7S1oOMq8jnqVDhb7fUUFu7J1VfWega88K0der53G8a9OZcZdm8UiyUVysrJvgo3Sfzt+qh7/7UA1+v0tfLvev6SVIHpyIxhCTp940Hvdou1LfEUHYnWrUzJWTHgnFO7tI3Z8MBw/c/d9NBvezLhDIGnLJvz9ykH/7Yrd83HtRdX64MfIdeKClsqxeQ5m86ZHYIXnvg61XatD+t1G3GLdym0577Tc/+VPKkFkb4z6zNkqSN+9M0eeWuoB4rnPh+T7L4D8gBxk7597f0wNeeK8GLlm1O/pr5BuEkJIYw1NKtyfpm2U5l5eRZvkAJeOvN3zbpWAi7LH4yb2vB33/sOBKy44aKk2csnrZ6T8HfnmZnfWTSau06clzvzflbm/YfDUlMe1KM6Z5l5Ldqx5Y5J5/XOOHA0Uzd8L+luv7TJdp/NNPscCzHjr9rp2EdQxhmze5UDXlvgdxu6c9d1m99s/vsXjCGt/ep9KxcVSxvnUvm+EXb9NZvm3R261p6/ILWXr8uNSNbWw4cU5ukBEVG2Os3EE6Fiv1HM3TOa78XeqxoWrFp/zE1rREX9Fhe+WWDGlSN1eD2SYbtMzs3Tx/O3aJjmTm6uU+ToP52wuesgFmKXlt8SfEbjp6ink2q6t3hnfTUj2v0y5p9Zb8IBYLViHDgaKaWbTscnJ2HMVoMUcy+1AzN3XhQObm+jTt55qe1BT/wT+ZvNT6wUAty5S+z7qEk3pwZD3+3WntSMvTJ/K36a7d3FTHZuXk6/425Gvz2PN3/9R+BBWkRRXNFM39WxzJzNG/TQa9al9/6bZMOWWg9x7u+WGloq/gXi7fruanr9OZvmwxf29Ptdgfl+hku9Q57UzL0n1mb9KdNhkekZebopz/3aP9R+04sMn/zIb0/5299f9KatiguVOWenNw8DX5rrm4etywkxwsnJIYo5GhGts5+bY6u+nCRRn/7p0+vPR6E2e28aSHIy3Nrf2pGwEsahEuhwAjkrPaycV/p49by/fzXXm1PPjGr5rfLGVdmtCs+WKQrP1ikYe8vLLMAtCPZv9lN8wXjemXkjH9jJv9V8PfHJ3WN9te4k5YqeHjSajX6v5/06OTVAe/XV3ZotR756RK9MG29hrw3P6Rd4P117UeLdev45Rr81jyfK6SNUtLvdea6/frUy4ru6X/RUmgV8zcf0m6Dusg7DYkhCvl88faCNca+XlZ89i5f8oVQ3T/v+GKFuj7zq24dv9yn1xUdD2L92z0QmMOlrB9o1/PfU9xbDx7Tx/O2FJpyPhTyx4Ou2pni97IW8OyRSauVm+fWvtQMTVi0XZL0vwXbdCgt09DOHcezcv1eo9Lz8ITQ/7L+2n1iDb6M7DzLd2vMysnT0n+6++1JydDCv62xgLnb7daK7Yd13SdLtG5vaMb6wjgsw+M/EkMUknLcuIWnQ9HqtP9ohqasOjGZw7S/9mrn4X8LY9sOHdM7szZr8wHvWlOsKDfPrc8WbtP7c/5WZg4XurJYoaHTrhNQhDLqYF4bcvPcuvTd+XrihzW68oNFpnXZzjKp5SNceEqncvLydDi9cPfb1AzjWsSyc91q+eg0XfSfeSVebxkCYKyi18usXN/vc8GqhH7S4ssfSda45zlduF0TSAxha8cyC99E8he7zstz64r3F+n5aet02XsLPdYAF63dDfVP25suSd8s36kxk1br6Z/W6t1Zf4cgKnOEonX517X79OOq3QF3ObYiuyajwbBi+2EdTDuRPPx94FhBDwg7CORnUNYZMG7hNvV5caZvS6841KqdKXS1dji35HfLcTDZoCdzqezQFdvpSAxhGCv93HcdOa5dR050IzuYlqm1e1JNjqg4b2qZTl5z6dUZG4IZTiHheO0e+elS3T5hhT5dsNWv1xuRfNmxYtFu54I/hbmU9Gz9unafjmYYl0S++LPvCViwTo+c3Dw9Mmm1th1K15u/bdK2Q8eCdCTjePtZzAhSV8nNZaw3CRRlt2ulGXxtXVsZhss1WZ115l6HLUxYtF07ktP13+GdVaFcpNnhGIpr+r9CncAYdTxvvsMnfrB+96CgZQh2zEzLEGgNtNvt1iXvztem/WlqVzdBk2/vZUhcZY3t8hi3u+g23h/PVfzlBXKKJMt/H7R+YuiJp9P36Z/WKi4mdEWZ0s43z5VH4febCyYjLlHbDh1Tg6oVTY8jGKwaVzAcTMvUpe/MNzuMQiat2KXPTpoIKxzRYgif/b7xoMYvCr8fhoOutziJ0RUC4bw+ptt9Ygbg7ADHz1mpZn3d3qPa9E/r0B87U7TfwJk5g8mK55lZY22OGjjO0Ip2Hk7XJ/O2BDyTrRUF4zzu8+IsvT1zk+H7tSLrXQWMM2HR9mKVWt4KRpfVjOxc3f3lyrBfG5HEEIV4e19fsPlQcAOBo5iZKHh72zGiAFPW+/xk3hY1HD3FshOXjJ2yVl2f+VVD3l0QNmM1s3IKf9b+FkRgrHAu8PrC7Xbr8v8u1OM/rNFl7wX3d7fl4DF9tXSH5m86qLNfnaPhHy5SSpDH6BZtZU0zaHkNX7tyh+uvPn9yPjsK5FrsbSXVvE0HvZ50saTx6uHWiktiCMNYoRUg3H6gsB9/xyIePpalx0vo5nrpO/P18vT1gbfIlNYNzotdfzh3i6QT4z5mbzzgdxhG/k79+UyycvJ0PMuCs/xa4BqKE0o6q0LdKro9OV07D58YL787JUMbgzT2MT0rR4PenKsHvl6lKz5YpPX7jur3jQf15m8bg3K8ktz1xUo9O3VtSI/pmT0KE2VFeduE5UrPsk6LuqeWPDM/6Ss/WKSL/jMvbCo6jUBiCMOYkZTZuRwV6Mf1yvT16vDkdL3kxyQXZkhJzw7pLG92m0L6fwtK7p69dNthvfnbJi3ffiR0Af2jpI/RLl0ui9qbkqF+L81Suyema9rqvWaHYyl2+MmEsgut2+3Wwr8PmTpZT9FLZrBmIP7xjz0eW+t+WLU7KMcrzXuzw3cG7kD5UwG/x0ILvVvxvvz3gWMFa2n646hBrdxWQWKIsOTPtcdOSebhY1l647dNOpyerbdmbtLBtEyzQyrV2B/XqN2T03X1R8FdV856txzvpWeXfXNZsPmgx8e9/kgteFMOtRd+XqddR44rKzdPN49bZq1zxlLB+C4U4YdyaZZXZ2zU5f9dqLNenaOt/0zYE67T7Wea0H39nVmbNey/C0N+XG9wqXSW49n+9yD575y/C2bBDwckhijV+3PsVXM3d6PngrMV7+X+hLR4S7Ke+WmtFm9NLvR48rGsEl5hDR/80wVx3qZDWrK1eM1cML4fowtwdl0rMDfPrXu+XKk+L87U9CBN7R8qnr7Rot9zWd/ScgtPHGD2ZLRWvE6a6Y1fT3SjzMzJ82rMmhUnBPL0nR4+lqW3ftuomev3hzyehX8f0i3jlum5qev0/LR1hvSCsOLnbmVjf1yjfi/N0jfLdpodSqns9K0+P3Wd2SEYhuUqUEjRm8jTP1mhr7/3nv5prTrUT1SNuJiA92XFRGDoewvMDiFg+wzqgjhjzT69ZbOZ58yohZ7+1159t+LEYt3bDpU8q+HMdaEvJFqBlQofW4osI1FabIEkccF6z4Hu1+12647PV+jnv/YqO9fc62/R3+oBL3plWPGe4cnob1fp579OVBL9em8fNaleKWTHvtyiLYRF2eOb9N3qXSkFFbX3TvxDl3Sqa3JEJXcvPRZAF81gtOyX9vvesO+o4cczCy2GKCSQgmvR32Eo+pJ7OsKl7y7Ql0u3B/3YgQrXG0+oXP+/pSx+64VFW5LL3OZoRrbu/nKlx+eC0YrEue+d0j6nQC6vRn3+Rs94+MfOFP24ao/pSaGRrNglMT8plKT/zNwsqeSkPtD4c3LzdNNnS9XtmRn66U/7zJBpxe/NX273iQrC3zce0F+7U8wOxyuvz9hYkMAitGgxhF9Ccc3MysnTb362Yrz9z80OzmKF1p/SChSbD6TJ7XZbbpzSX7tTfX5NuBScwuRtlMqI023rwWP6fMl29WleXT2bVJN0YsZDI5k5yUu4Kut3avSlKDs3T9GR/7Y5/LBqd0Eieuv4wM+Xaav36OzWtQpdQ41oqbXL9cyfOD9bsFWf/jO52YCWNQ2OKDhenbHB7BAcixZDBE2ghd+vlu4o+xgBHaHIvixWWDeT2y1l5uRqR3K64S2/nvZm5hgRb49sRIwfzt2iF0oYq+TN/u1SeLGysn7nXAY8u/bjxXpv9t+64v1FOpLueUxzOJ2eVj0PNgVpuYqyZOXkadm2w2V27/vhj8KzmC71MKY8EDePW64pPrQ8hvti5N749KQZr2estfc4c29ZcfZTuyAxRIGDaZn6Y+cRs8Mo8Mik1SE9XtELyY5ke88ylZWTpxd/XqdRX670ecasPLdbQ95doN4vzNSYycZ+D1sP+tcq8P0fu/Xy9PWWn2inLO/M8tyabZfxSWbyWKlgcAE+VOUJo/MOI8J++Ls/tbeEqe23njQ+tf2Tv2iqh8J5Tq5b787erCd++KvYczf+b6lemLZOOSbMfmkmo89PTxPCpRzP1pM/rNHL09crw8/ZFcuK8+Zxy3TJO/N1yTvzSy10/17CBHBGun3CikL/LqlSbcO+o7r03flBjwf2Z9F6IFOQGKLAgFdma96mQ15t63F2wDD7aT09xV4T7xT1zfKdenvmZn27YpdGlTB+rCS/bzygVTtPjEUYt9DY8Zqv/LJBy7f7Xot75+cr9OZvm/TgN6tK3Obk4opZNYZ7vZhc59e1+/yKL1itGH4t72KRn3uga2Na5G0Elbff78K/kzXqq5VebXuLh26Bu44c13NT1+njeVuLPTd9zT79Z9bmQuPbfOV2h+4+U+wzs3C9zXNT1+qjeVv05m+b9On8rYbu+0BapjKycwuGdazbe9SU9VT98fzUdX5X9FBRFzq+ftKb9pc90UtQJp9xyClBYogCR9KzDd2f3Zvys2xes31yy5Q3E5Cc7MDR4K6LeO9XfxT69/bkdK3d4904t19MWnLB24LCzsNlt86O/HSpvv/DuIWjPf3Uvl62Uw1HT9EnBhcUzeTpVh/o4s1Wvkr9vHqvUo57vi4Ha1bS+ZsLVw7uT83QUz+u8f9gRXgzRKA0Tiuwe3Mf/Xzxv5/pswZPm+92S5nZhe+F6Vn2WNA7kLXpbF58CWvnvP671vgxLr40fN3/IjGEX371MCmM027Yvpi1fn+JXQiNYHQtcbDtSC6+bMKw9xcqz4S7sVln7V1frAzq/u+b+EfZG6EYq7SEStK3K3Z5vQB4sMIe9dUf+jBEswM6cfzn8axcTVm1x+M1MRRcBf9f8of723pnjEuDPWTnuvX498W7qwdbOF5/PCExhN/W7TW2xsZXObl5IS/Uf/D73zr71Tkat3Bb2Rv/Y9P+o7r24yV6flrwFkAdv8jY7p5mJEtH0rMDbv2xm+yTWqXt1hXbqjXqReOy+818jZct6cEyd5OxY8YCOW38Oef2p2Zot49jrD3y4jzyJ77bJyzXbROW69w3fvc4sUvRZNnXQ5R1/nuzv+NZ1u49U9J7tMKSLkFnsUCveH+hOjw5XdNWB3dpkoNerCsaSla9H/qDxBB+m73+gGnH/mLxdp0yZpoufHteyI55KC1TY6es1fp9R/XIpNXFutPk5bkLFfTzvTZjo0/HycjO1eszNuptmy3eDt8ZvQ6cv8K5td/XG3Y43eD9lWLwsAIz9X5hpnq/MFO/rdunzJxcr8ekhuo3kd/75mhGjr5bsSskxwxUab+R9XuPKi2Ahcn9YcRv1ojv24yZza025GX+5kM6nJ6tm8f9OwbZ7XbbdmhRVk6exi3cpul/7TU7lJBhHUMYpmiLx+wNwUscR3/7pySVOP4mGIqOHTuSnq3YclEFcQx9d4H+Ppiml4a00+D2SQXbeXM5zMnN07crdqlKbDmt2nlEb/xmblJo80YW2/hq6Q5d2CGp7A2LCOV5bze+ls3MOtcDKUMePpal/an+15iXdU06lpWjhNhov/dfmlB/3pk5JwrOIz5ZqsgIl5rVqKSvb+kZlGN5+k59KQ97M6Oo1cvXa/ak6vw3ftf0e/qoXJS92x6seB8smsCOnbJGZ7euZVI0ZUvLzNFl7y3Qhn1H9cxFbTVpZfGx9VY4p0v6rl/5ZYPenX1iGNBLQ9qFLiATkRgiaE6e3txsRZPW1IxsQ7vCfvD731q/78RMWXd9sbJQYliiky6G/5m1Wa/8Yt0FXfcfzdCR9Gw1rxlnyP6CdR84+Vv2tvbWKjd/X2qsnzBhfEVZ8vLcGr9om3YeOa6bT29iWhw+txAGJ4yyjxvAgXu/MNOnVhkrdac1swyYm+fWur1HbTUm2wotLUXPn6Vbk/Xc1HVqVrOSx+23HkrXj6t26+KOdUMQnXWY8V1ZfVmtT+dv1V//TBRz/9clzyhuVflJoSSNLmVGdCtdYwNFYgjHycjO1Tmv/V5sbb/SEonnp60rdfKYlTuOBBSTlZNCSTrjpdk6mpmjxwa10nWnNTI7HFNYaQzgt0Z3OTOgPDNj7T6NmXwiYd2ZfFzlo0tuLfC7/GTAV1DWLuxwg/e1q56vn/eUVXv01+4UDe/R0LcXBqisj94ttyG/w792p/j+ohCU+b2pzDL6/PRmd0XPn/weLaWNfz2UdmK9WTN/Twv+9m75LU/c7nDuYB86K2yytIk3ckrphm6B+hvD2LudH/DDN8t3+rTg+8G0zKDOKGoHR/8piD7xg3HT1gdDMNcxtHIxwQqRvfjz+oK/p3hY/BzWUVZZ/emf1mrSyt265J3QLg5uhfM4X9HLR/7v3+yKg2AVQK20RqqvzP5O8pkxxhAwGokhjGOTa6Kva/QlH8vy+LiVCjGeBJLIWP29mWnboWMa8Mpsnf7CzIC7I59caLJSi6QV7UhOD8mkKOFU8wv/bS+yfMSSrYf16i8btG5v2YtrG6n4rKT2OEHJkTwb9dVKtXp0WqEuio5n0VN6/mZjZ2S2C7qSwhA7ktP1504/uud4cDwrV2v2GLMvX4R8fIBNb5wTl+7Qx/O2anD7OmaHYoqHvvtTm/anSZJun7BCM0b1MTkiAwThXNxp4NiXzxZsLeimapb9RzM09U/nzExnRS65DEmMvLnUe5q99PVffZthOhiMrkCyaJk8LP25M0XfLj8xDOC5qet0cx/zxmKHilkVBPuPBrb01fxNB3XFB4sMisZeSAwRsPV7j+qCt+YWzP4WCLfbrSs+WGipfulrg7WOmE3vyPkDyANZX80KEyr4a96mf8et5CeIoVLSx3byvffLJdv12z9T4Hu/Y79DKtHircmG7SuUSeGqnSmqk1ih2ONXf7jY0NYiowtM9v1Fec/qrWXBuKwVvVamZgSn1dzo8vvrv27UyF72GY9erOuw+8S1wEjbko8Zur9gmbh0h9khBOz9OX8H9PpRX/1hUCT2Q1dSBOzRyasNSQolacvBY0FJCv8+WHYBvqTxAc/+FLyF6Z2gpK64ME5+mWZHcroe/OZP/fzXPlPjKVvoCvi+JmA3j1tW7LGM7NyQdyF0Ipt2ogipbYfStXGf9c/Foxk5Wr79iKO6lJY5sVWRLaxaQWrk7KFmff1pmWUv/VKaoz5WwFi90soXJIYImC8TuZQlIzs4i7XePmGFjvm56G5mTmAXGKdjLEXJfF5zr4ztzRwTYZUCYNHbs0XLXiEVToWWUDHjE/P2J/Twd6tDekx/z5/fNx6w7e8vGNeziCL7tOtnYw+BfbhO/mpIDOEYTpspMZCxKEbeEzdYvHbb6wJAULqJ/fu3GQn0V0t36Eh6VqlvzSL5ntdS0mmhtrJAW0mMGGPnTQiBxrn5QJoW/n3Ip8uGp2099WT5c5fxY/CtUrFjFcFI2op+xnleHGTxlmS9PmOj9qZkBC0us/lT8fD3wWNU2gcJYwwRMntSjuuR71arXFSEnr6orapULBfS4+dPJhCM2R/9mabaybX4LpfLMnc4X8Lwdf04bx0OsLutv4XYB75epfH1EvXA2af4fky/jpgveKXQ/DXWnMalkr+TcJnx1iKXjBLl3wbW7U3VoDfnKjvX4gF7KVzOH7MVn2G2dMnHsjTs/YXKzXNr9ob9+vbW04IXnA09NvkvPXfJqWaHEXZoMUTIPPLdav26br+mrt6r56auNTscr7E2ke/u/eoPXf3RYv19wPPYzlCMrTD6EG5JF709r9jjV36wMOB9J5vYyvXHjiOlLtwbKpsPpOnMV2brrFdna8tB4yZpeH7aOg14ZbYmrTgxG2DRMm6ox/nM2XBQY39co62H0sveOAxZ4Xq6YX9wezE88f0av5JCT59MoOfnXV+s1KE035ZoKiot0/8Jb/z9uvu9NEtvzwyvSp6iH8XRjNIrGr9ZtrOgQnt5KXMvbC7hPhvuvlhyYpKc9KwcTV65S9sNvKZavRIqmEgM4Tdffze/njRT4ldLdxobjBf8HWPoj59s3m31aICf1TfLd2rOhgO6fcKKsKlrXvj3IW30MAvpybOUBtuWg+nq/9KsYo8HWtgu7dUlt0KduCHvPJyujGxfu/QU3+u9X/2hjfvTtGFfmh742rgZ4b5YskOb9qfp7i9Xenz+fwu2GXYsbyzemqwP5m4J+Yy2VlFaohOqnPHvA2VXPATymwp0qvyy+BraS9PXB3S8Z/ycgC2QwvWWg8f04s8lx33JO/P146rdkoLT/8CfHj1lvSKiyBf3/FTfPtfJK3d5fPy6j5f4tJ9wc+v45brri5U6783fTyrnhUvJI/RIDB1i+l971eHJ6WaHUcjL09draZEp7b254fk6W1S+sVPWav/RDMOmjC6tgHPr+OVlvj7Y3XMC6aqav9ZSoNbsSTWtw6zRhczUMmp3/eHrd/TN8p36u5TWNH8LYv68bMfhdLV69Gf1en6mWoyZpp2HA5uEauWOIwV/L9l6OKB9+eK7FWWf606uPbaaUHXB96elLtDzJFiJ8eeLzVt+IFi/nWXbDuv2CSs8rjdpVUW/3y99XBbiri9Wenx8e7J1ex94c04Heo7MWn9A0okW2En/JM+BTuzm5KE+JIYOceNny3Q43dj1jwK9h7352yZd9t+FhdZl8uYCMfzDxX4fs+vTvxqW9HjNudcXhEig3c1W+zGZxdszC0+Wk57lfauhHRKtY5k5+mrpDq0Pg2UqwqWQY/V3EegM3Xb4XVhNdm6e5c+LfJ6S2J2H0zX4rbk69/XfSxx6EUwz1lh9aSPfZAZpZnsnITGE3+ZuOhhwgTQ3z+3ThSktM6dQy0IoePMe/apdts3tLDCeKhCCXcm7+UCaXpq+IbgHMYBVJnVY+HfousNK/9ZwH0zL1Pd/7NYRC84kes+XK/XA16s06K25po4BNULRhbqtMM4vHL0wzdg1bw+mZer6/y0t9ri/315unlufL97u8TmrXIt8ZVQyvc2A8WllfYI3flZ8jdQxk1brj50pWrMnVfeYsKi6p/PLSHY9r3wVTpU6zEoKv/2+8aA+nLslpD+IXDvO8hbC6+KO5HTd+cUKSQq4a59dpWXm6II35xq/Yx9O9B3J6Zq14YDOalXT+DjCQJ7brbw8ty55Z762HUpXi1pxxbZxu93KyM5TTLRx9Ze+TG8+/Z8Kq6ycPH0W4nGIRrv6I/97WQTDjuR0ZebkqmmN4t+7nW0LsEtf0Xz92Z/WeTUe0lv/W7BVT/ywxrD9eSPYdRBGVbDeNzHwpMyfSGb+0w1SOjERWOH92bC8E6C8PLeWbgt8KIGv5dJwSuwCRWKIgIydslZJiRVCdryL3yk+K6RRdh72fFO3U+36/337p1aUMnuZGUL5+bnd0qQVu3TMh26NwQjv4nfm68DRTH0yb4vxOw8Ta/akFtTSr/PQXfP/vv1TXyzZoYs7Jhl2zG+WedeNvOjkUVk59u6eVDT+UM/EerKVO47ojJdnKys3T69f3l6D2/v2/YaqBWJZAIVTo6553yw3dpK2UCeFofDjqj3akxL4ZD9F14YkUTDHs1PX6v3fvb9vPvj1qiBG40x0JUXAjCxYl7WvzQbWnhZV0oQX9kkLT3TvdYIFm0vu+miFQvyBoyemhy/rfHVijXC+7NzSv6f8qciNHBM8d9OBsjdS8cmj7FA3ZJcz6WhGjrL++e5LmkyjJKFMaH0ZMxsWgnCOL9marHELPXddNcoDQUoM/Pn+1+5JNTQGT5Ugdvmd5/Nq8pmT/vYlKZR8n8DHW06uGCAxBAxQag2xgy8wwTLs/ZLXDgzax22D7CAY79367xpAIFbtPKKfV+81fL/zS6nAs7pP5m81O4SwEOoEK/82HfCspA4ut9GVFEBQhbKW35/czQrryTntJmTm+/Un0bXr95ORnVswlTvgydq9qbrw7XlBnxDMbqxwX4A5Xvx5XUGvBm+F08+HFkMEzMi1m+xaACtVCSXRw8eMXT7E90XGIUkL/04ueyOboHWvdE6ZIS/f7ROW6+ZxxWdCRHDY8f61elcqSaFFhcNQAxt0tJEkTVl1Ylz5wbTMYksxOQ2JIeCnQAsBCwxeIqCsGk4zJ5wIJae8z5MF8x3nBeHztEthwe5mrN3v8XGrTqhVVuLuVngUlkvi7bdyLCtXXy0xb9F6OJs/695aXf6Y9oNpmX693ppXVP+QGCJgoZx8Bv67+8uVphzXqoVQnwUx4TT7Iyrtrf30p/Fjj6QwOi8sgk/TWR74htkYYY5L351v6P6MrMzN35U/18P9qYHPbhsOLJkYPvvssxoyZIgaN24sl8ulhg0betwuIyND77//vgYPHqyGDRuqQoUKaty4sYYNG6a1a9d6fE1mZqYeffRRNWrUSOXLl1eTJk00duxYZWcb260P4e8/szZ5t6FFKrgnr9ytzQdCP27CiS14dlNaK8yHc4Oz5IYp5wXZk+2Fc3dgKktwMk/nepvHfjYhksIysr0ffxfqU/rJH/1fkuXVGRv8fm04lXIsmRg+9NBD+u2339SkSRNVrly5xO22bt2qG2+8UcnJyRo5cqTeeustDRs2TD///LPat2+vmTNnFnvNZZddpqeeekr9+/fX22+/rb59+2rMmDG64YYbgvmWwlqgC6nf8+UfOvf137WyyOKuVvf54h3adih4y2cEQ/4yCuEqPStXuTYcMGNUzHZ552YW7il8W8vRjGw9/N2feuDrP5ScnlXqtuFex0QlGpzI6Ft2SWtSl2XDvrSwv8Z4w5Kzkm7evFmNGzeWJLVp00ZpaZ5bOapXr64VK1aoffv2hR6/8sor1aFDB91///1aunRpweM//fSTJk+erFGjRunll1+WJF1//fVKTEzUK6+8ohtvvFE9e/YMzptCqdbsSdXwDxbpq5t7mB2KT9btPaoGVSuWvlEp5dBrP16sizoYt4C3FYW6IP7s1HUhPZ4RXpnuf02lEUKdqJk5Tsyfwne4jWuzUgLy5m+bNH7RibXufvxnAggA4XHd8ebecuNnS/XdracZdswj6dlh8MmZx5IthvlJYVmqVq1aLCmUpFatWqlNmzZavXp1occnTJggSbr77rsLPZ7/73HjxvkcK4xzNDPH7BB8ll/A8rdYPWv9AZ8XeUb4mfZXcMbxeSscCiCwp//O+bvg73BZVN7f+wGt2XCiFduPaNP+o2aHYYg9Kcf10Hd/6r9zNtuy95Jk0RbDQOXl5WnPnj2qWbNmoceXLFmipKQk1atXr9Dj9erVU506dbRkyRK/jle7du1ix0f4KO1e/dnCbSoXVXr9ipVm8Hr1lw168JwWalqjkspFWrJeyLqCUGizSsONKcP9bFQIDrdxbXb67O0oXBJcmGvtntAlS263W3/tTlXthJiQHfNkR9KNm+cjz+32c73awG+E93y5smAJrPpVKmpgm1oB7zPUwjIxfPfdd7Vnzx6NGTOm0OO7d+9Wq1atPL4mKSlJO3fuDEV4CCPzNh3SvE2HVCE6ssRtth3yr797MCzakqyL/zNf9apU0MPnev4tGI0iaAhYJMG0A5Ii+9qTctwWSfquI4GNu0doHM/K1c9/7VWbpHizQ/HouxW7Qnasl6av19szN6tKxXIhO2awPD3F8+STwZSfVJ68LvJ7czaTGFrB/PnzNWrUKLVr104PPfRQoefS09NVvnx5j6+LiYlRerp/Bfg9ewqPi0hNTVVCQoJf+4L1HEwrfUIESTpus8XldyQf188h6r4YNjlLGK/nV1Yc/V+epQyDW0HMGOdmkY8bfnrmp3V64OxTzA4DYSA3z63z3vxdfx84pvJl9PoJpZZjpqlB1Vh9cWP3kB43f1H35GNll3e8NW/TQU3507txw0beDRZtSVaNOM9l/TLj8DOQzQeO6dHJq8ve0AbCKjFctmyZzjvvPNWpU0dTpkxRTEzhJvHY2FhlZnqelTEjI0OxsbGhCBMICl8vaCnHWaLFF3ZIcIOVa/19wF6z7zqRHc7PQP2+8YCaVC9jsi/AC/d8ubLgupaZY53hP8ezc7Vu71G9PdPL5bAs7MoPFpkdQkj9b8E2s0MwhHWqSQK0fPlynXnmmUpISNDMmTOVlFR8psc6depo1y7PTfO7du3y+Bo4W9vHzV8zyO6O2XBSIU+C0drk5DGGCK4ez/5a4nN5Nv3C3W7pm2UM+fDHXV+sMDsES/n+j91mh1CqxVsPmx1CSBl9Sdof5ktzBVNYJIbLly/XgAEDFBcXp5kzZ6pBgwYet+vSpYt27dqlHTt2FHp8x44d2r17tzp37hyKcGEjRzPCI6nxJFTd6hZtSS57IziOGWP9XC7/RqjZcdbWPSkZJT43e/2BEEZirNQwviZn5gRvSMLkldZOhOBs/1uwVX1fLL72eKhZZXiHmWyfGK5YsUJnnnmmKlWqpJkzZ6pRo0Ylbjts2DBJ0muvvVbo8fx/X3nllcEKE17634KtZofgGFwAkW/+5kNmh4AQ8ncBaATXMz/Zbw1WBMcfO46YHUJI/bhqj7ZaYKI+m3amMJQlxxh+9tln2rbtRF/dAwcOKCsrS2PHjpUkNWjQQMOHD5ckbdu2TWeeeaYOHz6sO++8U/Pnz9f8+fML7euiiy5SxYonxiScd955Ov/88/XKK68oJSVFPXr00IIFC/Thhx/qqquuUq9evUL4LuHJ54t3lL0RDEJmGG5I9svmz31/0/40w+MAAMBqLJkYfvjhh5o9e3ahx/KXnujTp09BYrhlyxYdOnSipvvxxx/3uK8tW7YUJIaSNHHiRI0dO1bjxo3TZ599pqSkJD355JMaPXp0EN4JYF0kEeHDjl0dzeDvKf/7xoOGxhEMLnmf9FIrDgDBZdciliUTw1mzZnm1Xd++fX2e8jwmJkZjx44taIF0gi0HmVEQCNS4hdvNDqFMdirwr9mdanYIAABIcsbMzt6w/RhDlC2VZQkcgVaj4Fq/76jZIYSNPLf00Hd/mnJsu9biGunXdfvNDgEALIdyFIkh4FgUkM33x84jeuDrP8wOI+T2pZY8YyYAAHZn1xSTxBAATJKRnaevljpvXTYqJQAAsB4SQwewa60FAO/k5pkdgW/MWMPwxHFNOSwQNHl53OF9lZYZvmthwn92GqMfTCSGAGBzZo3XsyOSQ1jZ6l0pPm2fnWezWiELGPruArNDgEWRHJIYAo5FATm8HErLZOC8g/HNW8P1ny4N6PV3fbHCoEhQkjV7mBEZxRldJrJrEcuSy1UAAHyTmUPLQVnseqP2BjXd1jBj7b6AXr/5wDG53W5brJ2J8HDu67+bHYIlHErL0ncrdpkdhulIDB0gnAtD+JevBUMXZwYciAQKVvf2zE16afoGs8OAQ9CCesL25HR9OHeL2WGYjq6kDkA5CICVUCUBlIykEIBZSAyBMPH6rxt92p4xhuFl3MJttIaVweVycd4jbGTm5Orx7/8yOwwAYYSupECY+G3dfp+2p4AcXv4za7N6N6tmdhhe+fvgMVOO6yZzRhj5aulOfb54h9lhAAgjJIYAECaYsKJ0k1buNjsEwDCfL9pudggAwgxdSR2AWnJ4wuQzAAAAyEdiCAAAAAAOR2LoAC4Gk5kmi7XlAABBwK0dgNEYYwgEya4jx7V0a7LZYZSMQgUAAIDhMm3aMEBiCATJvI0HlZGTa3YYAIAwdCwzx+wQAJTgr92pZofgF7qSOgCTz5gjj88dABAkWw+lmx0CgDBDYggESZ7F80J6kgIAACAfiSEQJFZvMWRSIgAAAOQjMQSChC68AAAAsAsSQyBIci3el5T2QgAAAORjVlIgSPLc0i9/7TU7DAAAAKBMtBgCQXIsM0fzNh0yO4wSff/HbrNDAAAAgEWQGAJB8tG8LWaHAAAAAHiFxNABrD3SLXwdTs82OwQAAADAKySGAAAAAOBwJIYAAAAA4HAkhgAAAADgcCSGDsB6dQAAAABKQ2LoAEw+AwAAAKA0JIYAAAAA4HAkhgAAAADgcCSGAAAAAOBwJIYO4GaQIQAAAIBSkBgCAAAAgMORGDqAi/UqAAAAAJSCxBAAAAAAHI7EEAAAAAAcjsTQAZh8BgAAAEBpSAwBAAAAwOFIDAEAAADA4UgMHWD2hgNmhwAAAADAwkgMHeCt3zaaHQIAAAAAC/M7MZw9e7bOP/981ahRQ9HR0YqMjCz2X1RUlJGxAgAAAACCwK/MbcqUKbrwwguVm5ur+vXr65RTTiEJBAAAAACb8iube/zxxxUdHa0pU6borLPOMjomGMzlcrFmBQAAAIAS+dWVdPXq1brssstICgEAAAAgDPiVGFaqVElVqlQxOhYEiZvWQgAAAACl8CsxPOOMM7RgwQKjYwEAAAAA27Njw4xfieHzzz+vzZs3a+zYsbZ8007jcrnMDgEAAACAhfk1+cwTTzyh1q1b67HHHtNHH32k9u3bKzExsdh2LpdLH374YaAxIkCkhQAAAABK41di+MknnxT8vXXrVm3dutXjdiSGAAAAAGB9fiWGW7ZsMToOAAAAAIBJ/EoMGzRoYHQcCKJcxoECAAAAIeN2S3ab5sOvyWdgL+SFAAAAAErjVYvhnDlzJEldu3ZVTExMwb+9cfrpp/sXGQAAAAAgJLxKDPv27SuXy6W1a9eqefPmBf/2Rm5ubkABAgAAAACCy6vE8NFHH5XL5VK1atUK/RsAAAAAYH9eJYaPP/54qf8GAAAAAJxgxyk+mHwGAAAAABzOr+UqTrZgwQKtWLFCKSkpSkhIUIcOHdSjRw8jYgMAAAAAhIDfieHChQs1YsQIrV+/XpLkdrsLxh22aNFCH374obp3725MlAAAAACAoPErMVyxYoXOOOMMHT9+XH369FHfvn1Vq1Yt7d27VzNnztScOXM0YMAAzZ07V+3btzc4ZAAAAACwLrfbLclek3X6lRg+/PDDys7O1uTJkzVo0KBCzz322GOaPHmyLr30Uj388MOaMmWKIYECAAAAAILDr8ln5s2bp4svvrhYUphv8ODBuuiiizR37tyAggMAAAAABJ/fs5I2bdq01OebNWvm764BAAAAACHkV2LYpUsX/fHHH6Vu88cff6hr165+BQUAAAAACB2/EsOxY8dqxowZeueddzw+//bbb+vXX3/V2LFjAwoOAAAAAOzGjgvcezX5zJNPPlnssX79+un222/Xa6+9pt69e6tmzZrat2+f5s6dq40bN2rgwIGaPn26unXrZnjQAAAAAADjuNwn5lItVUSEf0MRXS6XcnNz/XqtnaWmpiohIUEpKSmKj483Oxw1HM3MsAAAAECobHz6HEVH+j2di2F8yUu8ajGcOXOmIYEBAAAAAKzHq8SwT58+wY4DAAAAAMJC2X0yrcf89k0AAAAAgKlIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADAQG4bLnFPYggAAAAADud1YvjOO+9oz549wYwFAAAAAGACrxPD2267TfXq1VOPHj30wgsvaMOGDcGMCwAAAAAQIl4nhnPmzNFdd92l/fv3a/To0WrZsqVat26tMWPGaOnSpcGMEQAAAAAQRF4nhr169dLLL7+szZs3a+XKlXr00UdVrlw5Pf300+rWrZvq16+vu+66SzNnzlReXl4wYwYAAAAAy3Lbb+4ZudzuwMLeunWrvv32W02ePFnz5s2T2+1W5cqVNWjQIF100UU666yzFBMTY1S8tpCamqqEhASlpKQoPj7e7HDUcPQUs0MAAAAAHGPdUwMVEx1pdhg+5SUBz0rasGFDjRo1SrNnz9aePXv03nvvqVu3bvriiy900UUXqVq1arrkkksCPQwAAAAAIEgMXa6ievXquv766zVlyhQdOHBAn3/+uQYNGqRff/3VyMMAAAAAAAwUFawdV6pUSUOHDtXQoUOVnZ0drMMAAAAAAAIUkgXuo6OjQ3EYAAAAAIAfQpIYAgAAAACsi8QQAAAAAByOxBAAAAAAHI7EEAAAAAAMZMcF7kkMAQAAAMDhDF2uYuPGjZo2bZpiY2M1dOhQxcXFGbl7AAAAAEAQ+NViOHbsWNWrV0/JyckFj/32229q37697r77bt14443q2LFjoecBAAAAANbkV2I4ZcoUNWnSRFWqVCl4bPTo0crLy9Pjjz+um266SZs3b9Ybb7xhWKAAAAAAgODwKzHcunWrWrVqVfDvXbt2aenSpbrllls0ZswY/ec//1Hfvn317bffGhYoAAAAANhByvFss0PwmV+J4eHDhwu1Fs6bN08ul0uDBg0qeKxz587avn174BECAAAAgI04JjGsXr26du3aVfDvmTNnKjo6Wt27dy94LDs7W3l5eX4F9eyzz2rIkCFq3LixXC6XGjZsWOr2ixYt0oABAxQXF6f4+HgNHDhQK1eu9Ljt7t27dfXVV6t69eqqUKGCOnfurIkTJ/oVJwAAAAAUFeEyOwLf+TUrabt27fT9999r9erViomJ0ZdffqlevXqpQoUKBdts3bpVtWvX9iuohx56SFWqVFHHjh115MiRUrdduHCh+vbtq6SkJD355JOSpLfeeku9e/fW/Pnz1bZt24Jtk5OT1atXL+3fv1+jRo1S3bp1NWHCBA0dOlQfffSRrrvuOr/iBQAAAIB8ETbMDP1KDO+//371799f7dq1K3js3nvvLfg7NzdX8+bN04ABA/wKavPmzWrcuLEkqU2bNkpLSytx2zvvvFPlypXTnDlzlJSUJEkaOnSoWrZsqXvvvVfTp08v2Pa5557Tli1b9P333xd0ex05cqR69Oih++67T0OGDFGlSpX8ihkAAAAAJCnCZb/E0K+upH369NGPP/6oCy+8UBdddJG+/vprnXPOOQXPz58/X0lJSbrooov8Cio/KSzLpk2btGTJEg0ZMqQgKZSkpKQkDRkyRDNmzNDevXsLHp8wYYKaNGlSaCxkZGSk7rjjDiUnJ+unn37yK14AAAAAyGfDBkP/F7g/55xzCiWDJ+vdu7dWrFjhd1DeWrJkiSSpR48exZ7r3r27PvroIy1btkznnXee9uzZo127dunKK6/0uG3+/oYOHepzHEW7zPo7thIAAACA/TmmxXDEiBH6/vvvS93mxx9/1IgRI/wKylu7d++WpEKthfnyH8ufJMeXbQEAAADAX3YcY+hXYvjJJ5+UOOtnvj/++EOffvqpP7v3Wnp6uiSpfPnyxZ6LiYkptI0v2/pqz549hf7buHGjX/sBAAAAYH+RTmkx9EZGRoaiovzuqeqV2NhYSVJmZqbH45+8jS/bAgAAAIC/KpaPNDsEn/mdublKyILdbrd27NihqVOnqk6dOn4H5o38/XvqApr/WH43UV+2BQAAAAB/xcVEmx2Cz7xuMYyIiFBkZKQiI09kv48//njBv0/+LyoqSo0aNdLy5ct1+eWXBy1wSerSpYskacGCBcWeW7hwoVwulzp16iTpxAQxSUlJWrhwocdtJalz585BjBYAAAAArMnrFsPTTz+9oJVwzpw5ql+/vho2bFhsu8jISFWpUkX9+/fXDTfcYFignjRt2lSdO3fWxIkT9dRTTxW0Cu7evVsTJ05U//79VatWrYLthw0bppdeekk//PBDwZIVubm5evPNN5WYmKhzzz03qPECAAAAgBV5nRjOmjWr4O+IiAhdd911evTRR4MRkz777DNt27ZNknTgwAFlZWVp7NixkqQGDRpo+PDhBdu+/vrr6tevn3r37q077rhDkvTmm28qLy9PL7/8cqH9jh49WhMnTtQVV1yhUaNGKSkpSZ9//rmWLFmiDz74QHFxcUF5PwAAAABgZS632+329UXbtm1TYmKiEhISghGT+vbtq9mzZ3t8rk+fPoWSVOlEV9JHHnlEixYtksvlUs+ePfXss8+qY8eOxV6/a9cujR49WlOnTlVaWppatWqlBx98UJdddplh8aempiohIUEpKSmKj483bL/+ajh6itkhAAAAAI6x9bnzzA5Bkm95iV+JIUpHYggAAAA4lx0TQ79nJc3OztbkyZO1ePFiHT58WLm5ucW2cblc+vDDD/09BAAAAAAgBPxKDHfv3q0zzzxT69atU2kNjiSGAAAAAGB9fiWG9957r9auXathw4bphhtuUL169YK+mD0AAAAAIDj8yuamT5+u008/XePHjzc6HgAAAABAiHm9wP3JMjIy1K1bN6NjAQAAAACYwK/EsE2bNgXrDAIAAAAA7M2vxPD+++/X999/rzVr1hgdDwAAAAAgxPwaY1ijRg0NGjRIPXv21F133aVOnTopMTHR47ann356IPEBAAAAAILMr8Swb9++crlccrvdeuqpp+RyuUrc1tP6hgAAAAAA6/ArMXz00UdLTQYBAAAAAPbhV2L4+OOPGxwGAAAAAMAsfk0+AwAAAAAIHySGAAAAAOBwfnUljYiI8GqMocvlUk5Ojj+HAAAAAACEiF+J4emnn+4xMTxy5Ig2bNig48ePq127diUuYQEAAAAAsA6/EsNZs2aV+NzRo0d1zz33aP78+fr222/9jQsAAAAAECKGjzGMi4vTf//7X0VFRenhhx82evcAAAAAAIMFZfKZiIgI9evXT5MmTQrG7gEAAAAABgrarKQZGRk6fPhwsHYPAAAAADBIUBLDdevWaeLEiWratGkwdg8AAAAAMJBfk8+MGDHC4+M5OTnasWOH5s2bp9zcXL388ssBBQcAAAAACD6/EsNPPvmk1OdbtGih+++/X9ddd50/uwcAAAAAhJBfieGWLVs8Ph4REaHKlSurUqVKAQUFAAAAAAgdvxLDBg0aGB0HAAAAAMAkQZuVFAAAAABgDwElhhMnTtTAgQNVs2ZNlS9fXjVq1NDAgQP11VdfGRUfAAAAACDI/OpK6na7dfXVV2vChAlyu92KjIxUtWrVdPDgQU2fPl2//PKLJk+erPHjxxsdLwAAAADAYH61GP73v//V+PHj1bFjR82YMUMZGRnas2ePMjIyNGPGDHXq1ElffPGF3nvvPaPjBQAAAAAYzOV2u92+vqhr1646ePCg/vrrL1WoUKHY88ePH1fr1q1VrVo1LV682JBA7SQ1NVUJCQlKSUlRfHy82eGo4egpZocAAAAAOMbW584zOwRJvuUlfrUYrlmzRhdeeKHHpFCSKlSooAsvvFBr1qzxZ/cAAAAAgBBiVlIAAAAAcDi/EsNWrVpp0qRJysjI8Pj88ePHNWnSJLVs2TKg4AAAAAAAwedXYjhixAht3bpVffv21cyZM5WbmytJys3N1cyZM9WvXz9t27ZNI0aMMDRYAAAAAIDx/Fqu4qabbtLvv/+uzz//XAMGDFBERISqVKmi5ORk5eXlye12a+jQobrllluMjhcAAAAAYDC/WgxdLpfGjx+v8ePHq3///kpISFBycrISEhLUv39/jR8/Xl988YXRsQIAAAAAgsCvFsN8w4YN07Bhw4yKBQAAAABgAmYlBQAAAACH8zoxzMnJ0VlnnaVBgwYpOzu7xO2ysrI0aNAgDRw4UHl5eYYECQAAAAAIHq8Twy+//FK//vqrrrvuOkVHR5e4Xbly5TRy5EhNnz6dcYYAAAAAYANeJ4Zff/216tevr4svvrjMbS+88EI1atRIX375ZUDBAQAAAACCz+vEcOnSperfv7/XO+7bt6+WLVvmV1AAAAAAgNDxOjHcv3+/ateu7fWOa9eurYMHD/oVFAAAAAAgdLxODGNiYnTs2DGvd3zs2DGVL1/er6AAAAAAAKHjdWJYr149LV261OsdL126VPXq1fMrKAAAAABA6HidGPbp00fz58/3atzg8uXLNX/+fPXt2zeQ2AAAAAAAIeB1YnjbbbdJkoYMGaK1a9eWuN26det06aWXyuVy6dZbbw08QgAAAABAUEV5u2GrVq308MMPa+zYserQoYMuvfRS9e/fX3Xr1pUk7dq1S7/++qu++eYbZWZm6tFHH1WrVq2CFjgAAAAAwBheJ4aS9OSTTyo6OlpPPfWUJkyYoM8//7zQ8263W1FRUXryySf1yCOPGBooAAAAACA4fEoMJWnMmDEaPny4PvroI82bN0979+6VJNWqVUu9evXSddddp4YNGxodJwAAAAAgSHxODCWpYcOGevLJJ42OBQAAAABgAq8nnwEAAAAAhCcSQwAAAABwOBJDAAAAAHA4EkMAAAAAcDgSQwAAAABwOBJDAAB8FOEyOwIAAIxFYggAAAAADkdiCACAj1wumgwBAOGFxBAAAB+53W6zQwAAwFAkhgAA+Ii0EAAQbkgMAQAAAMDhSAwBAPARIwwBAOGGxBAAAAAAHI7EEAAAHzHGEAAQbkgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQDw0eVd6psdAgAAhiIxBADAR3USYswOAQAAQ5EYAgDgIxcLGQIAwgyJIQAAAAA4HIkhAAA+iork9gkACC/c2QAA8NFlneuZHQIAwKKGd29gdgh+ITEEAMAHvZtVU+WK5cwOAwBgUUmVK5gdgl9IDAEA8MG7V3UyOwTbufH0xmaHAAAh43abHYF/SAwBAPBBhehIs0OwnWqVaGEFAKsjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAwAcuV+iOdU0Pe055DgCwHxJDAAAs6onBbcwOwRB2naEPAJyExBAAAAAAHI7EEAAABFUou98CgNncsmc3CRJDALCw3s2qmR0CEDC6kgKA9ZEYAoCF1YqP0W39mqhGXHmzQwEAAGGMxBAALO7+s1to8cMDzA4D/3DRLxIAEIZIDAEAQFh59uK2qlu5gtlh4CTDuzfQuJHdzA4DQClIDAHAwmicAnw3rGt9Vaf7taVEuKRyURQ7ASvjF4qQuLZnQ7NDAACUonvjKkHbN3PPQKKiC7A6EkMAsDBmc0SoREVEqF29RLPDCKoBLWuaHYKjBXo9WzHmTGMCAYLMrvduEkMAAPxw94BmZodgKT2bVC3xOes0FNm0tAZJUuWK5cwOAQhrJIYASnTPgOZmhwBY1q19m+rJwa1L3eb1y9urUvmoEEVkrgk3dNfW587z+JwZ6VhMVKQJR0U4efqiNmaHAIQUiSEQAo8PamV2CD5Z99RAbRh7ju6iRcRSxl5o70JK1TCr7S8XFaGrezQsdZvODatoeI8GoQkIhTx8XkuzQ8BJWOYFvhrZq5HZIfjNrqc7iSEQZFd0q6/Tm1c3OwyfxERHMnucBV3Zrb66NKxsdhgIU+4w62bZJilB7w3vVOgxZio1j9vttm1hGeb4v3NamB2C3xhjCMCj6Ahn3AlrxceYHULYc7lcTJ5hM267lg7CxNmta+m+s5qrZnx53T2gmaqEWas1YCWLHz7DsH3FxUQpKpI0JdT4xAEY4uzWJCyAJ3YZY+iSS2e2rGF2GIa7vX8zLXpogO5mzDQQVC4Dp5lyRpW69ZAYAkHmlHEV4dQu0rJ2vNkhlKhCOXtPqOHEFpuruttjjKFbbl13WnDG9NBwCnjHIZ2MYFEkhkCQud3hNnIneC7ukOTza+pXiTU8Dit3/7u4Y12zQ/CbdT/V4HG5XEqoEG12GF6rWD5KPRqXvOwE4DQ1GJfqtZho0gq7s/03mJaWpmeeeUZt27ZVXFycqlWrpp49e+qTTz4pVrhbtGiRBgwYoLi4OMXHx2vgwIFauXKlOYFbXGnrUQHB4s8sqGe1Cu8urEWTKbt0S8QJVq5kCCWHdJxAKazYe+bNYR30vxFdS93m1LoJIYrG/uJijKsEs+L54gS2Tgzz8vJ0zjnnaMyYMerSpYtefvllPfLII8rNzdV1112n0aNHF2y7cOFC9enTR1u2bNGTTz6pJ554Qhs3blTv3r31559/mvgurOmO/ixTAN+YdQnn3mEfLjFuxKnslB9HR7r0wqWnmh0GQmBQuzqWmzXcRj+VoKJSzRy2rnpetGiR5s6dq7vvvluvvvpqweO33nqrWrRooffee0/PP/+8JOnOO+9UuXLlNGfOHCUlneiuNnToULVs2VL33nuvpk+fbsp7sCo7d34sFxmhrNw8s8NwHLPOGO4d9kIiDyvr2aSqJtzQXZL0wNerTI4GgFkqlY9SWmaO2WGEnK1bDFNTUyVJderUKfR4uXLlVK1aNVWsWFGStGnTJi1ZskRDhgwpSAolKSkpSUOGDNGMGTO0d+/e0AWOoPrtvj4+bT+0c3DHbJG3BCbCVXoyEe6fbzjlUW6RyJfmmYvamh0CUEyLWnFmhwAHoiupOWydGHbt2lWJiYl64YUXNHHiRG3fvl3r1q3T//3f/2nZsmV6/PHHJUlLliyRJPXo0aPYPrp37y63261ly5b5HUft2rUL/desGd0wiwrl77tuZd8mI6lU3j4TQ9hdtUqlD+L3NNU1N4fwQl5ofcH4yV3c0feJpcpybttaPr+mrIoJLjfF3XUGZRrAKWydGFauXFnff/+9qlSpoqFDh6pBgwZq2bKl3n77bX3zzTe64YYbJEm7d++WpEKthfnyH9u1a1foArcBI9eieeaitpZuJbimZ/Cnkrfy+y9Lg6reJdrevMeECv71Xi9t35TjAGMV/b0FunzLgJY1VTM+JqB9eNKgakXD9xmKa/VLQ9qpfJR9il82vn0ZxLp3mWt7NmTWVBjKPlemElSqVElt2rTRfffdp2+//VYffPCBmjZtqiuuuEK//PKLJCk9PV2SVL588R9PTExMoW38sWfPnkL/bdy40e99WYWRYwwv61LPsH0Z6bxTa+ujazsHpXBxMjsnhdKJWdusPBOmWTX8jaqVfN5UiLb3WoPBYt3iFaTgXatOb14tKPuNjvS9CGOFFsFLO9XV2AvbmB2GKYz4+N8Y1sGAvXgn3sBZNoPhsUGttPjhAWaHERRm/1adOvmNrRPDP//8Uz179tSZZ56pF198URdddJFGjhypuXPnqlatWrrhhhuUm5ur2NgTLR6ZmZnF9pGRkSFJBdvgHwb+HiItulrrvWc2V/8WwV/qwC236Re4QJxaN1HzRvcPybHsNOlRad9phEu6poc9FjUPNRv/FOClR89vFZLjXM1vzJEGnVpbl4RoPdeBbXzrrjygZeBliiiLlplCzU6t6uHE1p/6q6++qoyMDA0ZMqTQ47GxsTrvvPO0bds2bd26tWByGk/dRfMf89TNFMAJVl6g26qVelXLGE/pLYu+Pb+E03sJR/mVHYFWZI3o1ajQvzs1qBzYDj24oF2dMscsW9G1PRuaHYLtuVwundGyRqnbtKuXGPBxJtzQ7Z9W6dBeuXydJyFcvTSknanH9/StjyxybfN2qI2d2DoxzE/qcnNziz2Xk5NT8P9dunSRJC1YsKDYdgsXLpTL5VKnTp2CGKkNFSkY3NC7keftvN0dFWBhb4gXs7v6c3u166lzTY+GSoy1bkJtFiOKWC+bXGDwVtWK5VQ7oYLX25vdYm5kJcuH13RWh/qJumdAc7WuY/wC4a3qBDbu0Sy39WtqdghlevjclgV/33/2KZatfCvN+Ou76aNrOwe0D7O6kdr1nmeUzg0q6+Nru6h3M2utLylJrWrH6/XL20s6sd7pq5e1NzWeYLB1Ytiq1YnuKp988kmhx48cOaLJkyercuXKatq0qZo2barOnTtr4sSJBRPRSCcmpZk4caL69++vWrV8n93MSQa1q1P2RhbSrEalMrcJ1b3O7bZuq5aR2iYl6NmLnTPdfmk37wrlIpUQG63p95wesnic5JJOdXVWq+B3Aw9EdKRLE27obtmu9KUx4np1Rsua+u7W03TXAHvNaNk6yAlnlYrlgrp/I/RvWUPvX91ZLw9pp5v7NPHqNd4uadHUi3uzESqVjzJwqIgvv+HAfzwOKC6U6tJOddWvRektwqFQ0rc+uH2Spt9zun4d1Vcd6xvfG8Jstk4M7777blWpUkWjR4/W8OHD9e677+qZZ55Rhw4dtGfPHo0dO1aRkScmgXj99deVmZmp3r1767XXXtNrr72m3r17Ky8vTy+//LLJ78R6zOzb/ch5LcveqAwvD7XXrG/BEsrPwOVyaVjX+obvt6ybpBVbo18Z2l6SVCPO95kYPx3R1eBowpPVC0/3nXWKTmH9N9u5pW9wW/TsUFHgdktntqqpSzrV9Tpeb5cVSowt53WyCe/958qOXm/buHpwJ9zrHISu42bwdI/JP82b14xT/TK6kdp18hpbl5wbNGigxYsXa/jw4Zo5c6buuOMOPffcc6pXr56++eYb3XrrrQXb9uzZU7NmzVLDhg31yCOPaMyYMWratKnmzJmjdu3s0S0pVLo3rlJsavFAl6/w9vcRFeHSmQa0BJxaN1Gz7+9X6jahuj2beWmIsGLWFCaa1/Rc6P/wms46vbn/XWD6BPBaq3PS2ejPT8/IZYICYYfLRrDKXHZo0bMiX06Zizowp4PRzm1b2+ttfx3Vx5Bj1owvryYeksznLnFOz6FwZN056L3UpEkTffrpp15t26NHD/36669BjsjeBrSsobev7KgDR4vP4Go3tRKMXzfLH2ZVGkVGuGxRwCuLr2+hVe14rdmTGpRYTvbQuS01dfXeYo+bmdg1rl5RteJjNLBNLT06+a8ytx83spu+XLpDZ7WqqUcmrVbK8eygxudW4K3YSYnej9kLRGJstI6kB/fzKMrsMYb9TjG/+5avzmpVU9PX7Av5cZvXrKQN+9JCftxQKHrf8OY+QkJtnLqVK2jLwWNebettS22+ga1r+fyakrSqHa89KRnFHm9aIzx6Sti0wS9gtm4xhPHa1U1U+Sjj12Dz9joUykTGCb95J1zYir7H94Z3CnjmP28+t3pVYnXdaYEdx2j/Hd5ZE27ornpVvJsprVezanpzWAcNalcnZL89b2MrybCu/q2L+u5VnXwa37Ty0bMctRxCpwaVdVV3a7zf/w7vpNv6edfd0NexSIFeE3s3q6ZxI7vpfyO6BbYjG/HmM4uKDINaSAtIjI3W2z50C/XV0xf5v36mVZbRWPPk2V73ynHSNdwoJIYoxAp5hFW6U8E/oZ4xsn+RacvrVYnV4xe0DsmxrbyMh6/sUongb5wD29TSDIO6UIWj96/urArljK8U9MdZrWvp/rNbmB2GR59e11W9mlWzTI8Uqwjnu3YoKs26Naqi94Z30k939lZ8TLTHLppGCGQZpZjowteHeJPuf7HlvO/s+ORg/xNhpyIxhEdVKxa+eNStHJruW+HLOqXuSuWj1Lxm8GaGu6RTXX020r8JVPypFGiTlKCHz22p/i1q6Jtbevh1XKt48dJTDdmPHQtpzWpU0pBOwV+0+t2rOinWhATo7Ss6qqJFEq9w99SFJRcGrdK93qjufMHgT4WXp/cTit+zL7o09G9SlFBUmpWPjtTZrWupzj9d5SuWt/5Ir1FnNjc7hKCy8E80qEgMUUj+76BCuUi9eOmp6lA/UWMvbKPKNh0/cHbrfyeyCfY05CWzTlL4+KBW+vbWnqoQHdwCaqjXH7rh9Mb66Nou6tSgSkiPa6RJt52mIZ2Ld5Ps0biqz/vq3riq4ixYsHCp5KT1l1F99GIIWpsHtqmlNU8ODPnMeeedWlt/PTmw1G2sOsbPTrPrLXroDA23SJdYuygfFaHrTmuo6EiXRvZqpGp+tCp5+l0/f4kxFV35Th5f7E+ZvVG14M7G6TQNqob352mjy56hSAxRoiGd6+m7W08L+bgTIydgeHJwGw1oWUNntaqph4ssgxGqH72VLi7XntaoxNk0rcDTd29WrV3PJr4nZIGoelLly0fXdlbDqrE6/9TauqC9L2uInvj8YqIj9eVNPXT/2acYHGVgjPgp2KUW19vf/f1nn6JLOtbVm8M6FLQWwH9FZ9S2Kqsl248Naq2NT5+rMee3KvacN/dkT7/LiCJj0gL97X5yXZeTYgpv955lrWu3FHhPlK6NTlTcXmqxluSSeFsWvb5XI8+vt+lJar0qZYQls8YN1oyP0QfXnLiZbNx31JQYTgj9+y+t4GHT65VHwbr4tk1K0PzNh3x+nRFdxPq3qBnw4syt6sSrVZ14vfjz+oDjcYJykRHKys0L+XHb10vUbf2Cu3ZeoKzc7dGuha/wE9xzpGZ8eTWzcKVmoIp+eqc3q2ZKHKXx5adWI6689heZ3X789d20LzVDSYkV9PWynYHFYqEf/iPnt9IHc7eYHYZhaDFESHhb8+L6538IP+e0qWV2CLAAo27nRcsFpY0r82p/JlWXmDHeMRiigzArZWndqM36viycI5sqnD+XQN7bu1d1UrmoiDLHFxc9m42ojJn7YD/TJkj75Lri8wxER0aobuVYS1c0ncypZVESQxRik9+rQUJTsDhRgDWnEHNr33+nfD+taWi7Rhb1fBkTq/QupYY0vwtKqJhR6DSmArT4D/iJEM3Qarbh3RsYvnxIKC6H7eslhuAowTdupPHLN/iyvIjd+Fo4rhTgmOGqpcwTYMR9P9grGdzRv1mhf1u1qFL0Oj6wTS2teeJs/WLCjMh1K8eaVvHUqk68asT5PwOqFQRaDrBreZrEEF77dERXlQtwceqTNQ7xQHB/fqSNvZgyOirCpXKR1vwpjezdSFd1r6/z2tbWC5f+O7GHGder+JjoUvPj/w7vXOJzz17cVtUqlVNMdPHP2a4X31AZ1rW+2SGEzGODWuslAyewCXb1QLnICMNqz3s1NbfrWTc/JknCv6IjXaof4BqfpRnUruSxykZUStVOKHt8bP5x/ClwD/UwMZddREVGKMKkG1VJE819dG3J99uSWOlWa4dWRwv1dvWJNUuzsKQ+zatr6SMDjNuhxX/X153WUD/e0UvT7u6tfqeUPMvmd7eephrxJdeMmdXlSTqx3s/YC9vq7Ss7FprRzYrXq5LWUHPJpSbVK2nug/21fMyZIYklkC4k5o59KH7skipzrDRz44jT/h283yYpsNmDL+1U1xLLlnhTbqlY3rja/KITffiq1DHJFi7h2KB86JUVj54V1O72wVic/O4BJ1rxEmOjdWu/JmVsHRgjK6XzXdQhyfB9Ws0zF7ct+Pv2k8Yy929RU/NG9/dthnIPp1CgLdkeD2OR37SFL3tBRWLoABeUUlPoq/gY//qreyxoe/jRmZlEney7W3vq0fNbKbZclFrUii+xtm9Y13pqWzdB151UsG1XN6HQNr5eXCKD3SfHpmKiI31a2DYQbrktX3ERiAcGnqLR55izgHjRj/WXe07XmPNbetzWk39/TyX/sLxZtsQqhQ+jGJm82eGzKWh9ssYtI2DeFLCttg7mXWc005Q7e2nGqD6qEVf2bLBWO6+SHDALcPfGVfW/EV310pB2BYl8vqTECvpl1OkB7f+xQa0LvtebTm9c6Dmrfd9GCMf3VBSzkjrAI+e11JHj2crKyVVunltLth42O6RSBeuHV71S4RtXaWs1dajv2xpnV3arrx3J6dqTclwPn9tKp784068Y7z/7FDWuVlG3jF/u82s9zQLmBOFSMAyVxNho3drXvFkwi35d4TzToF3xm7Km96/prCveX2R2GAVcLpda10koe8OirzOg1s2qS7sEO3EYc34rPfXjGp9ec3rzkns81a3sffdlT2+tbd0EfX1zD+08fFznta3tU1yBsHIvBrujxdABasTH6H8juuqLG3uong8XgZI8f0nboHQfkAK/YZQ21i8hNlr/d04LNagaq/87p4USY0sejO+9E/HGREfq8Qta673hnVW/avDGiZTm13tDP7g9FKzSihwu/Fm82kpCWWNL2eMEO4znCRWjPgt/Zovs2cR6SxiY5dS6CQF3vbXSvcXbRMeKE7p0alBFg9snKapI+cvf62e4XHft+jZIDOGzy7rU1+onzvbpNaG4AHdpWFlf3tS91G1u6tNEs+/vp5v6lDwewuiJZNwK/oWud7NqivOzm6/dWa3MasWbwSPnneiqGeGSXihjdthg6uhFS7z3lUOlb9e6TmBjFQMVLoUbBEe/U6qr0T8TsJ1/avBbWgI5HT2dyy8bOMmTP1wul/5zZUf9/cy5GtrZOgumh/Pv3q4VRBNvNn/MuZ2QGMIQ1f2oxYo2MAG7rV8TTby5p89dQD258wxzF5v2577yeBgvSWDWWkLeHLd/ixqGHS+YlScjezXS+Ou76Yc7enmVnAVDzfjyemxQq5Ad78VL2ymufJSiI136+NouxZ4P5wKcP07+OIqW/6zcbctKrT6+iIqM0Pe3n6bvbu2p1y5rX+b2VvsO2tXzvQtpPqO+M5fL5dOkS05dl84oNs0L1aVh2WPOX7ikeIVpoGepTT8uEkOnCdat5dSk0m8Sni7I3RtX8bi2UpVS1lsKBU+1YhcGMHtZKO7nTarbY72vs1rbZ5F7bwovp9ZNVJeG5iRanpSPKmFmV5dLpzWt5td4IKPMvr+f6hk6HX/p30+rOvGa+2B/Lfi/M9TPwAQeMEpcTLQ61K9crAueEZ4aXLiy0K6F1GCqbMhwkn/Fx/g/xMbb1jgzqwd8PYdKe0sd6ycGEorhPDZuWKsuJmRIDFFIKLsKREVGaNJtpxV7vGL5KD130hTLVhDMacSd5Ja+wZ3S3Aw3nW7Mewq0Nrtj/USDEy9jxfwzLbo/vQv8lRAb7fWYSk8VOBd1DP/p7D0JVmXWnf3N7Y1htrJur0Z97EmJFdTT5HUtPTG7xc4tt67sdmJd12qVynu9xmtpUZePilBkhEvRkS69V8pavOHAyPLh5V3Cf31du+aVJIYwVUkF2csttih3VGSE7jqjWdkbeuBrt5lwrtn1Z8KFotrVSww8EAN1PqnF0OUKznphpRl1ZnNNvLmHxl9f+vhaq3jg7FMUE33i1nOnn78pI3hTxmlfNzHocTjJ3QOamx2CaaIiXPrkuq4hOVbHBtbpxRAKviScTw1uo29v7anp95yuigZMondtz4aadV9fzbyvr3o0qer3fqzWVdjq+pQy06phwrkwVgoSQ1hLGP4QG1ataFjf/Gt6NNDW584LeD9DO9czIJoQKfLZ3VLKxEEne3xQK8XHROliP7oBu93FCxs39P53rcqTWz4SY8vpw2s6a2jnuvr2lp4hH6AfEx2hLg2rqILF1jg72cljCxtUrajpd/fRFzd21z0DfE8MW5fRbd1Idh1TE6hgve+ICJdOa+p/4dmu7j/7FM1+oF9AhdnSritFKy09bRlI2pFUufjSEIHkMUa3HPpS+RoR4VLH+pUNGbJStWI53dyniepVifVp2YdAOPSSVMyV3RpoQMsaalA1VgNa1jQ7nLDCOoZAEPzfOS307NR1qlelgq49raH2pWQEvM8Il/TE4DZeb1/arXJI57rasO+ovl62U+lZuT7HUqViOSUfy/L5dSXp6sXg8HxxXo7juPa0Rrr2tBPJ3LcrdvkV18nuHtBcEREuRbpcuqXIOoBntKypM0y6OZnVPeu0plW16O9kjTqruV6Ytr7UbYu28tavGlvisi6lJSWD29dR338K106qYB/Uro5++GN3UI9R2udp5dkI7XAe1E6I8WoxdX8/5U4eWgiLHq9+AN3MO9RLVOPqFfX3gWN+78MKjLpWzn2wnzKyc1UzPqbYbOBWXV/RCL5+eqPPaaF7vvxDkvEz71YoF6kPrjkxqdiXS7Zrxtp9hu5fkn37ggaIxBCmsW5RI3A39Wmiwe2TlFAhWhXKRRqSGBpZOCsfFaknB7fRk4Pb6PUZG/XqjA0+vX5gm1r6a3eq/thxxJB4Xh5q7tTn3qhYPkr/d05Ls8MoxqxZGfO7rh7NyC4zMTTClzd2V7fG9mltMjKX6tygctATw9IEu5tbpfJRSsvMCeox7M7X7yAmOlL/G9FV3yzfqYs6JGlfasn3oLL27HK59N5VnXTmq3NOesyncIocz14l7tOaVtP0Nf8mHqW1Dt7Rv6l+WLVbR9Kzde+Zzu06LUkXtEvSgaOZ2p+aqVv7BW988aB2dfTMT+uUcjzb0P0Gep5eFMCkhWYiMQQCUvKFo1ZCTAjj8N+AVjV8TgyNFsoJSazKboUlXxiRVwS71eqeM5vrxZ9PJLildU1qVsO7GYDt0JJ1slA1CraoFa95mw4VeqxdvYRij4UTsxpcT29eXaf/08L+5ZLtAe3LiPfQtq65a4v6Kv83fFmXepq94YDW7UnV0xeVPjFejfgYzRjVR/tTM9WydlwIogwOIyprIiNcurGEydlKu9/5eq7FlovSlDt7aeWOI5q/+ZAmLArsXDfCe8M7WXoyuNKQGAKwlfJRhYdGRwSp1GXh3nMIghGnNdLBtEylHM/W6IEtStzunas6BjWOqXf11jmv/17wd7i5uU8TfTh3i1fbejNZFb/T4tWTnj6T0rpR+vMRelvx8crQdnr8+7/UsUFlnX9qHT+OZL6Y6Eh95GEt1JJUq1S+2GzIdjtPHzmvpSIiXHrg61Vmh+KVupVPjPNcvu2IYfs88Ztxe3isdGe3rqmzbbQ0V1EkhgAsrehluGP9yqpfJVbbk9PVsX6iKhkws5ydmT0FvNHMammrUC5Sjw1qXeo271zZUU1rBLcVoGXt+GITTIVixsJQfe6VY72fmXhEr0b6ZP5WpWXmaFjXevp88Y6C5+w0i6MVQg28R4J/15mLO9bVxR3rBnhscxiZzJV1DlzQLvCkuU5CjHb/M2xlQEsD1m61wHlrpnDuxVMaZiVFId0aeT8JyMnsVhsWar5cXhJ8KDiZxSXp0k7/3uzrhLDbbESES9/d2lPvXtVJn47wb/p3b87XYBXmXrz0VNWML69Wte3VraokZt06R540S2yXhsUn3yiLNwm1lSddCScl/daqVCynqXf11sfXddFTJUy8ZYWkyyj+vpWiZ2nNeHsMYzjZqXVDN9uw1Vzdo4EGt/duPFq/FjUU+c+SSA2LTOD136s7KymxgprXrKTHLyi9kqssLpdzEyOnc3ZVuwOVVMt6at0E9WxSzePsZkYI3/KV8W+se6OqalU7Xmv2pBq+byMN7VxXa/ekatuhYxpzfquyX+CFGnHeFWiqViqvgW3866oRHenS+Ou7a/WuFD354xqP2wTzdjikcz0N6VxPa3an6tw3fg94f+F28/b2WtGjcVWNvbCNNuw7qlv6ereECeynXpVY247VMVJZlRS39Wuit2duVmJstG46vXGIojLGkE51dWu/pur30qygHsfXckgoKh3uP/sU3ebDxCyVykfpyxu767d1+4stO9UmKUHzRvc3OsQC4XWnCR679+IhMYQk6fvbe4X8mK2TjGsxsfsP8WQRES59e2tPbTl4rGCskT+8van5e/MrHxWpZ8oYiJ+vtpctihXKRerNYR10x+cr/AuqBOe0qaWpq/dKku496xR1bVRFXRtVKTExlMK5MsMMxhcpXC6XrurewPD92lU4tZyhuNK6zrol3XfWKTq7dS3VSaygqpV8m8zL7FPnlr5NVCU28HUFyxIuv5HODauosw9LPJWl3ynVNXP9AcP2Fy7C5XzxFV1JYYiyFnct+gPr3ayabQeih0JMdKRaWriroTfXyw+u7qzICJfKRUXorSs6eL3vQe3q6MaTarxfuPRUPyIs7MnBbXRZ53q68fTGurZnwzK3NzInfGnIv0tx/OfK4E5cEkzh0vXVjro3sc8yHaHS9xQDxlAFSWy5yJAf0+Vy6dS6icUmPbEDJ3TZtvJbfObitjq3bfEeOEXLbaF6C1ZOyJrV9G5WajujxRB+u2dAc706Y4Pa1UvUwDa19Mn8rV6/9rOR3YIXWJiy8H3FowGtamrWfX0VFelS7QTfFv29Z0BzJcZGK7FCOQ0yoAKhelx5Pe8hwby8Sz19sWSHh1cY55KOSaoeV15RES6d1rRaidv5ezMMRWu5N4tz242duuC2qBWvBwe20OwN+7Xw7+SgHMPMz8Pbc/+bW3ro7Zmb1bNJVbVJsu6YtBmj+qjnc78V/NsKSUHlELTIwZ5qJ1TQf67spIajpxQ85nYHtyXZjufjtT0bqnUd6153jEKLIfx214BmWvX4Wfrm5h6KijD3zmenQl5pjCxAeLuvYBZa6lWJ9SopLBpDhXKRurVvU13Rrb4ignhuPTCwhc5oUaPYpEtGnk0ul0t9mlcvlhRaobDoC1/i7XdK9aKvNjSWcOHLeXZL3yb64sYeJT5f9PtpbtGa7UBahzo1qKKPru2i63v/26PAilf+KhWtV+jt36KGmlSvKEm6uGPhiU74dQaflVvBSlI0ZiPfQv8WNdT0nzVhL7HJrLXeTuhTtZL1fv++IDGEBrf3v0UmPiZaUZFln0ZeJyl+R2JtRRe7f+GSUxUZ4VJVPwsQbwz7t2vm/WefElBs/giX76lKxXL68Nou+vKm4gVuu7xHoypFypr+v6SnK0SHvtucWXzJaXo2Kbl1OBRuKmFhaW+E05jtono3K1ppUTKjuoR6mxT4+6l7s3RHVGSEvr+9l6bc2UsvXdquzO3LPGbAeygstrz/n/U5bWsbGAmk4FdcnjgfT9NPd/bWiwYMFwlYgO/3pj4nKqsqlY/SHf2bGRCQeUgMHe6CdnUMm1Ey3AVyI4yPidZzF7dV+3qJeu7ithrapZ4WP3SGZj/Qz6/9DTq1tl69rJ3GXtim0Hg8INSiIyP0+uXtCz1WvFXIetXlwUx+7j2zudqGePr9snIDb8bWFuwrxN9XKFvPuzWqotv6NfFqiZOvbuqhuBhrjLhpVSfwMb4Vy0epdZ0Ev3phBPs7io6M0GuXtVf7eol6bJBvZZI+zaor0YtlnuzWS8Nswb4OxJaLUqs68UHtFRQqowe20Jc3dtfP95xerCHAbkgMHe6NYR1sOVi9KDvUcF/etb4m3XaaLu9aX9KJJReKLs7udc2yy6WLOtTVVd0bKLqEFls7dl1xEqO+H6PO/UC6+BVdgyuQiKz8S/b2O7vjDO9qjK38Xk/2RIBropUllNcql8ul+89uoYk39yxz2zZJCVox5kzVq3KiO3z/Ft5NeOPvT6nox/DOlR0VGeFSXExUqTNABzp5S6hvFSV93xd2SNKk207Tdac18rxBCSIiXLr3rND3nPGFHZNSp0845u3aktKJ32C3xlXDYjy+NarCAMDh7FhwQBgpJTvo1riq3r6io3YcTtdzU9eFLiYvVAzyDKBRkRH64fZeWr0rVV0aBWed35Kc07a25jeorPJREUo0ebIOKhpDr3ZCjPakZJh2/A71K+uq7vU1c90B3TWgWch++8G4F342squGf7jYp9e0qBVnfCA2QIshANPZocUX3qMMab5ACleefo/nnVpbN/dpophoaxUbzm1bW9X+mezhzFY1g3KMxNhy6tWsmspHhX48bc34mDKTQm/GGFoJlWDWl39Kjb2wreaN7q+hneuZG1CAfBlbLJ1Y+9ipaDGEpVj5hhGK0Ep7/8H6bPwpUwRSQIpwSXn2KseEhL9lO6sV1IPFytcGOwjXbmEx0ZH66c7e+nNXino1M3fCn5KEw7lr9ffgzSRY5aN8u1aWN/DaarPc3bZG9Gqoj+ZtkST1ae5bMngyq5/vweSMEgUKcG3yrEHV2IK/L2jnyyytzvlE8z+XqAhXQBPevH91Z6NCCppQ1MAHcuM545+xTnHlo3SRBaf6Ljb1jHN+JpbhdkvPX9JW5SIj1LVRFV3YoYzxMiEqCHk6TKCTXNSIj9EZLWua0qLnDc7/4Dv/1NoFE9CcvFxO/qzrUREu3dTH+5l6W9WOV7Ma5i754u3yCMHg6f5kh5bpupVjNW5kN917ZnO9MtT/2XdPrONo/fcbDLQYApI+ua6rPpm3RT2aVFW9KrFlv8CBXrj0VPVuVk2t6sQHNOvWGS1r6pa+TfTOrM0GRucsb13RUb+s3af2dROLTWBkBbaobbVDjAG6rEt9Xdalvncbn1QGGnVWc83ddFDSiS6k8GzUmc31yi8bzA4DOtFyPOXO3vpjxxH1O+XfSYKev+RU9WpaTS1rx6uODxODfHVzj4An9TmZP7s6K0hdo8Ndr2bVLNt7wA6sV6KAo/lbIRXo9btRtYp6YnCbwHYS5mKiIzXEoHEGHesXnsTBFomEhVQoF+ljy3bZ7FAbHG6s+ol3rF9Zb13RQZv2p+m6nr7NEOkkN57eWG63NHX1Hq3be9S0OMw4jwK5XATrUpOUWKHYrJD+3Lea1ahkiQo3l8ul/i1q6Ld1+80OxXFcLufOfWD+mQ8YIBRlWs+HcOaFI1B2+NRIVmEnRbs9BXr+nn+q54oHpxaWPImJjtRdA5rplFpxunncsoD3Z+XKmWB+65xRsBonX+cYYwhD1C6ji4Zzf2L2U9mLhYIRfozsNlW1ov3XRvXFybNhnhrihe3DgTcTh9hJqAuVoTiadVNWY3RrVKXgb1/GIgabWWUnC9dRhIxTxxiSGDpMt0ZVg7LfpMQKuun0xqpS0fO02t7+vGilMd+bwzqaHQIs6NFBrQr+vrxL8a5Z1/c60eUwMTZaI3uHZ/fDVnU8z+z5xAWt1aF+olrXiderl7UPbVAhFozC0uhzWhZc+6/u0cDw/duFkZUzwWZkqFYofr96WXtd2qmu7jqjWcGENaEQrCVWEJgeTYJTVrYDupI6zCWdkvTbun36c1eKnjJ4TN3/ndtS/3duSzUcPcXQ/SK0Tp6hNVisUBAoy6B2dfT2zBMT5NSIC34LmJU/E5frRI36m8M6aHtyuq7p2bDYNg+f11LntK2telUqqFrF8qoeV14HjmaqQnSk2tq4Fe3tKzrqv3M2a2Cb2mpQtaLHbeokVtB3t57m876tlAaYef6dUitOX9/cU1sPHtMgg8fOWkGw8z0rXzs8sWL+Wyexgl4a4v8slr5KSqyg2/o1VfOa1lxE3czvyAqtlYPb19Hni7ebHYYpSAwdpnxUpD64povZYcAPweqeZIWbtAVCKMQtqUWteD1/SVst3nJYN/Xxf3mOkljhc/eW232iNaO0QrvL5VKnBv9OKjT++m6atGKXBrapZcllBLxd0+y8U2szM6eBSjrvOzWoXOj8sZOyfstWKOgaLRzfUyi9eUWHYpOwwTqiI53boZLEEGHBToVsWC8RLIlP0/2jkOY14/TAwBa+vzBEP+bR57TQ7xvnSpKu7BZ+3zHXRBjJyNOJpNKenPS1ud3OPU9JDBESgd5UoiJcyslz6K80yJx68UNhVp4RMRha10nQhBu6acvBY7qkY12zw4GNOeynYzjqMGA2zsF/ObetFLbickmREf/+dM2Y+S8UF46i3UXrVv53ttdQDoh3Om4SztCzSTVd2a2BYsJsVsxgcvI07ijdyRMHtU2y77jiUKAyoWTB6u3QotaJ8ZzlHNxN1Bt8OrCUkgodLrn02YiuiomOUGJstF68NHSDxM303+GddUrNOHVtWMW/bnl+CEUXNKvfE60eX6jRLTE4jDzPihY0fS14UlA1jr+/F39a7SMjXIWWWggVT7PTjjqzuc5sVVPdGlXR65e3D3lMCC6zbgMnT/72wiWn+r2f96/urLvOaKbPb+xuRFhhi66ksI2eTatp6SNnKsIlxZYL/alrRrmpVZ14/XzP6SYcObTsNE17uOI7AOznq5t6mHI/9CQxtpzev7qz2WHYgreXWytdls2qO/p0RFc989NaNa5WURd2SPJ7P/WqxOqeM5t7vX1Z63OHK2tcTRD2BrdP0gdzt0iSasb7PvV/fIUTp2ql8pyy4cBC9zrYBOeMb6xUoLSL89r6N/usWZ+1YTO5+lHiN7JLMY3VKE3L2vH6bGS3kB/3nDa11LJ2vNbuSQ3KzORWRSkbIdG2boLGXthGy7cd1s19m3j1mkfOa6mxU9ZKksdFozs1qKxl2w5Lki7vGn6zCsJElFRgM6FKToKxwL1VPH5Ba7NDKFPnBpW19J/73g29G5kcDRC+oiMjNOm2njp8LFu1EmLMDidkSAwRMld1b6Crujcoe8N/jOzVSPWrxCq+QrS6N65a7Pm3r+io8Yu2qXPDKkoKkyb/SuWZBAPORkOXfwIdIxgVGZpP3kpdlh89v5We/HGNGlWrqO9vP01xMdFmh1Sm14d10BszNqphtYo6s1UtY3bqx1diZAWBdc6I0GFMr7Xln9/loyJVK8FZ5TISQ1hKy9pxBX+7XC6d1brkG1+thBjde9YpoQirRBeUsuC3t847tbamrNqjyrHRuphp863BiSWVUlioLA8DtUmK1+pdqereuIqqVfK9i7/djejVSIPb11HF8lG2mZk2KbGCnr/U/wk4/GWlhB7m6H9KDX27YpekE0uIITyRGMJ071zZUbd/vkKx0ZF69uLQ3/D89eDAFureOPDZ4F4d2l6XdqyrlrXjVZExlDCJVdYxtEYUoWFm0So+Jkpf3dRDq3elmrL8j1VUNSAhNuqnQ/LlHHb8qh88p4VW707RwbQsvXNlR7PDCSonL8tDKRSmO6dtbc2rX1nloyJUuWI5s8Px2i1ejpUsS7moCPVrUcOQfcEgTspOvGCRnBE+8FSweXNYB93x+QpFuKR3r+qk2HJR6urjUgdOLjABTlYzPkbT7+ljdhgIMhJDWIKTBvZaTdEuZHHlrT/OBkBhUV4s2jyoXR01rl5R5SIj1KxmXJnbwztFW3/8TZ1Na7X34rCVYwvfF6pWdF7XYzNQKRccN/dpondnb5YkDW4f+JCgcMIC94CXGlSJNTuEoKiVEKPh3RsoMsKl63s1UkIsiaEZzO7KWVo3NrO7PSXGRqtdvURzgwgCI7/xBwd6N966dZ0EkkL4LDG2nO7s31QJFaJ1S98mqh7nf2JIsgOz3d6/qYZ3b6Ahnerq0fNbmR2OpdBiCHjpgvZ19PH8LVq9K1X3neX9Iql28NSFbfTUhW1Cdjw7dRkOFrrkeVb0U7n/7FN0ZquaivaiRcxpRp/TQhXLRapx9UpqXce54wQRGqPOOkWjTJ7wLVx4mxybXSlnhvpVKgb9GJXKR4W0zGMnJIaAl6IjIzTp1tN0LDOXVrUAdayfWLAO5cUdkxTJDGcowW39mpodgmXFREVoeI+GHp9rUTs4rYLhvI4hQsOJyQ5Kd//Zp+jFn9drQMsahkzqB/+RGAI+iIqMUEIsLReBcrlc+vyG7tqTclz1KodnF10g1F4Z2k5vzdyks1rVUota8WaHA7sgUQs5kuPCbuvX1FKVgE6uACMxBGCKclERalA1+F1G4B2zxzjCd0XHhV7csS5roQKAj1gq5l80fQBAEaRIhTEe0prMSOY5F8IQFzwA/yAxBAAAMIi/rQ9OabR3yvssDZ8BrIrEEABgma40FgkjJBz0VoESOeE374C3iDBBYggARZhxE6cCGXbV95TqZocQFpyQIDkV13fYBYkhDPfSkHYFfz82iIVDYT/cxKVa8TEFf1/YIcnESMJXOJxnb13RQf+5sqPZYcDGnNit0vtKAGoLEFrMSgrDXdIxSZERUnaOW5d0YoY8wBtWu/1/eG1nPfzdatVOiNGNpzc2OxxY1Pmn1jE7BNgMLaOAdZEYwnAul0sXdSAhBOyk6AyXreskaNJtp5kUDazKyet7lYQ8B75yYiuplXWsn1jwd7nICMVERZoXjMlIDAGgCNb0M0/5KEY4wF64WvjGiZdXKg+sLS4mWuNGdtPU1Xt0WZd6iohw7jfGHRgAYBmPnPfvuORrezY0LxAbMKN8zTqGvmtcvZLZIVgaXUthBb2aVdPTF7XVqXUTzQ7FVLQYAkARVlm6wYnaJCXo8xu6a3vyMSa9gS25JI05v5Ven7FBZ7Wupfb1Er16nRNb0pyCrxZ2QWIIABZgdsHBSslwjyZV1aNJVbPDAPw2slcjjezVyOwwYFEWutx6RCWFc9GVFACKCMUYQ6sXDAA4Q/W48qYe34lJiLfvOTE2OriBnKRtUoKkE5OvnHtq7ZAdF9ZCYggAAEyRUCF0Bd9gsWMdz5ODW0s6UUH1ytB2ZWxtLCdWivn7lu86o1nBhFwjTgtuC/R7wzvpngHN9fmN3RUfY//fJfxDV1IAAGAKJyYJVjC8ewM1rVFJ8THRavNPS1GoOLGF0F/1qsRq6l29te1Quk5vXj2ox6qTWEF3DWgW1GPA+mgxBIAiKpRzXp0ZS3TAG+3qBZ5EnNb03/Gjt/RpEvD+wkUok2SXy6WeTaqFPCn0HEvxxwa2rlXwd8OqsSGMxnoaV6+kfi1qKNLBSyggdEgMAUDSbf3+LaCOvbCNiZEA1jX2wrZKjI1WdKRL/x3eya99vHhpOw1qV0fXndZQ14TBkiRUqRjv0UGt1DYpQY2rVdQ7V/l3nlkJ5wjswnnV4gDgwagzT1HzmnGqFR+jTg0qmx0OYElNa1TS7w/0U3auW1UqlvNrH3USK+jNYR0Mjsw66B4buDqJFfTDHb3MDgNwHBJDAJAUGeHS4PbmrZtHT07YRRwTUwQF14DwRV0B7IKupABgAqsVFKy0jiFgJ/xyAIQLEkMgjFzQrk7B3/effYqJkQAAUFy5qMJFz6hIiqKAVdCVFAgjjw1qpYrlo1SpfGTQ1zwCAMBXTapXVItacVq396jaJMUrKbGC2SEB+AeJIRBGqlYqr2cvbmt2GPCC1YYTsVwFgFBwuVz66uYeWro1WV0aVjE7nJBIjC08UVOzmpVMigQoHYkhAFgAQ/ycJ7ECk7jAmeJjotW/RU2zwwiZclER+nREV32xeLsuaFdH8UzgBIsiMQQAIERGn9NCz01dJ0l6cUg7k6OBEZIq0xUSZevTvLr6NK9udhhAqUgMAcAC6MnpDDed3ljNalRS5Yrl1LE+62WGg9Z1EnRBuzr6YdVu3dG/GTP8ArAtEkMAMAFFR2dyuVw6o6UxXeioTLCON4Z10BvDOgS0j2t6NtQHc7dIkro1csbYOwDWQmIIAKCVAzBZvSqx+vjaLlqx/bCu6t7A7HAAOBCJIQAAgAX0a1FD/VrUMDsMAA7FqqIAAJarAADA4UgMAQAAAMDhSAwBAAAAwOFIDAHAEujKCQAAzENiCAAmYBJQAABgJSSGAADYUOeGlc0OAQAQRkgMAQCsY2gTH1zdWe3qJuj2fk11at1Es8MBAIQR1jEEAMAmBrSqqQGtapodBgAgDNFiCABgHUMAABwuLBLD5ORk3XfffWratKliYmJUvXp19evXT7///nuh7RYtWqQBAwYoLi5O8fHxGjhwoFauXGlO0AAAAABgEbbvSrpt2zb17dtXaWlpGjlypJo3b66UlBStWrVKu3btKthu4cKF6tu3r5KSkvTkk09Kkt566y317t1b8+fPV9u2bc16CwAcqHxUZKn/BgAACCXbJ4ZXXXWVcnJytGrVKtWuXbvE7e68806VK1dOc+bMUVJSkiRp6NChatmype69915Nnz49VCEDgOpViVXXRlW0eEuyujasonpVYs0OCQAAOJitE8M5c+Zo7ty5euONN1S7dm1lZ2crOztbsbGFC1ibNm3SkiVLNGLEiIKkUJKSkpI0ZMgQffzxx9q7d69q1aoV6rcAwMH+N6Kr1u09qha14swOBQAAOJytxxj+9NNPkqT69etr0KBBqlChgipWrKjmzZtr3LhxBdstWbJEktSjR49i++jevbvcbreWLVvmdxy1a9cu9F+zZs383hcA54iJjlT7eomKiaYbKQAAMJetE8P169dLkm644QYlJyfr008/1UcffaRy5cpp+PDh+vjjjyVJu3fvlqRCrYX58h87eTwiADgN6xgCAOBstu5KevToUUlSXFycZs6cqXLlykmSLrzwQjVu3FgPPfSQrrnmGqWnp0uSypcvX2wfMTExklSwjT/27NlT6N+pqalKSEjwe38AEGosVwEAgLPZusWwQoUKkqRhw4YVJIWSVLlyZV1wwQXau3ev1q9fXzDmMDMzs9g+MjIyJKnYuEQAAAAAcApbJ4Z169aVJI+TxuTPUHr48GHVqVNHkufuovmPeepmCgAAAABOYOvEsGvXrpKknTt3Fnsu/7EaNWqoS5cukqQFCxYU227hwoVyuVzq1KlTECMFAAAAAOuydWJ44YUXKi4uTuPGjVNaWlrB43v27NGkSZPUvHlzNW3aVE2bNlXnzp01ceLEgolopBOT0kycOFH9+/dnqQoAAAAAjmXryWcqV66sl156STfddJO6d++uESNGKCsrS++8846ysrL05ptvFmz7+uuvq1+/furdu7fuuOMOSdKbb76pvLw8vfzyy2a9BQAAAAAwna0TQ0m68cYbVa1aNb3wwgsaM2aMIiIi1KNHD02YMEGnnXZawXY9e/bUrFmz9Mgjj+iRRx6Ry+VSz549NXHiRLVr187EdwAAAAAA5nK5maPccPnLVaSkpCg+Pt7scACgTO2emK6U49kF/9763HkmRgMAAIzgS15i6zGGAABjUEcIAICzkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAVKFcpNkhAAAAE5EYAgD08pD2BX/fPaCZeYEAAABTRJkdAADAfL2aVdMn13XRobQsDW5fx+xwAABAiJEYAgAkSX1PqWF2CAAAwCR0JQUAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIeLMjuAcOR2uyVJqampJkcCAAAAwKny85H8/KQ0JIZBcPToUUlSvXr1TI4EAAAAgNMdPXpUCQkJpW7jcnuTPsIneXl52r17t+Li4uRyuUJyzGbNmkmSNm7cGJLjIbxxPsFInE8wEucTjMY5BSNZ7Xxyu906evSo6tSpo4iI0kcR0mIYBBEREapbt27IjylJ8fHxIT0uwhPnE4zE+QQjcT7BaJxTMJIVz6eyWgrzMfkMAAAAADgciSEAAAAAOBxjDAEAAADA4WgxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzG0uby8PL366qtq0aKFYmJiVK9ePd177706duyY2aHBojZs2KBHH31U3bt3V/Xq1RUXF6f27dvr6aef9njerF+/XhdeeKEqV66sihUrqnfv3vrtt99MiBx2kZ6ersaNG8vlcun2228v9jznFMqSnJys++67T02bNlVMTIyqV6+ufv366ffffy+03aJFizRgwADFxcUpPj5eAwcO1MqVK80JGpaUlpamZ555Rm3btlVcXJyqVaumnj176pNPPpHb7S60LecTTvbss89qyJAhBfezhg0blrq9L+fP7t27dfXVV6t69eqqUKGCOnfurIkTJxr/Jnzkchf9VcBW7rrrLr3xxhu66KKLdM4552jt2rV688031bt3b82YMUMREeT+KGz06NF6++23dcEFF6h79+6Kjo7WzJkz9dVXX+nUU0/VwoULVaFCBUnS5s2b1bVrV0VFRenuu+9WQkKC3n//fa1evVpTp07VgAEDTH43sKL77rtP7733ntLS0nTbbbfprbfeKniOcwpl2bZtm/r27au0tDSNHDlSzZs3V0pKilatWqWzzz5bl19+uSRp4cKF6tu3r5KSkgoqIN566y3t379f8+fPV9u2bc18G7CAvLw89enTR/Pnz9c111yj7t27Kz09XZ9//rkWL16sBx54QM8//7wkzicU53K5VKVKFXXs2FHLli1TfHy8tm7d6nFbX86f5ORkde7cWfv379eoUaNUt25dTZgwQbNnz9ZHH32k6667LhRvzzM3bGv16tVul8vlvvjiiws9/sYbb7glucePH29SZLCyJUuWuI8cOVLs8Ycfftgtyf3mm28WPDZkyBB3RESEe8WKFQWPHT161F2/fn138+bN3Xl5eaEIGTaybNkyd2RkpPvll192S3LfdttthZ7nnEJZevXq5a5bt6579+7dpW7XpUsXd1xcnHvnzp0Fj+3cudMdFxfnPvPMM4MdJmxg/vz5bknuu+++u9DjmZmZ7kaNGrkTEhIKHuN8QlGbN28u+Lt169buBg0alLitL+fP/fff75bk/v777wsey8nJcXfp0sVdpUoV99GjR417Ez6iOcnGPv/8c7ndbt19992FHr/hhhsUGxurcePGmRMYLK1z585KSEgo9vhll10mSVq9erUk6dixY/r+++/Vt29ftW/fvmC7SpUq6frrr9eGDRu0ZMmSkMQMe8jNzdUNN9yggQMH6uKLLy72POcUyjJnzhzNnTtXDzzwgGrXrq3s7Gylp6cX227Tpk1asmSJhgwZoqSkpILHk5KSNGTIEM2YMUN79+4NZeiwoNTUVElSnTp1Cj1erlw5VatWTRUrVpTE+QTPGjdu7NV2vp4/EyZMUJMmTTRo0KCCxyIjI3XHHXcoOTlZP/30k3Fvwkckhja2ZMkSRUREqGvXroUej4mJ0f+3d/8xUdd/HMCfxy/5deAZU44zUAtMxSDlUEFTKn9MUsQi00QoxCy0BMvSZZ75o1k2moo1IVvotA2poJwVixiRkJMJ6pKzKw7kZCg/REsBwff3D3f39Tp+XaB3eM/HdmN7vd+fz70+22vcve7z4x0cHMwvWGSWmpoaAMCwYcMAAKdPn0ZrayumTJliMnfy5MkAwBojI6mpqaioqDC6dPROrCnqif4Lka+vL+bNmwcXFxe4ubkhICDA6MdOfZ10VUtCCJSWlt6bpMlqhYaGYvDgwfjggw+QlZWF6upqVFRUYP369SgtLYVKpQLAeqK+Mad+amtrodPpDJ95/5575/4sgY3hAHbx4kV4eXlh0KBBJmMKhQL19fVoa2uzQGY00HR0dGDLli1wcHDAkiVLANyuLwBGv37p6WM6ne7eJUlWrbKyEps2bcK7777b5Q36rCnqiVqtBnD7ypfGxkZ88cUX2L9/P5ycnBAbG4vPP/8cAGuJekcmkyE3NxdDhgzBc889Bz8/P4wZMwZpaWnIzs5GYmIiANYT9Y059WPtteZgsXemPrt+/XqnTSFw+6yhfo6Tk9O9TIsGoDVr1qC4uBjbt2/H6NGjAcBw+VZnNXZnfREBwMqVKzFq1CikpKR0OYc1RT25du0aAEAqleLnn382fH4tWLAAo0aNwoYNGxAXF8daol5zd3dHYGAg5s+fj7CwMDQ2NiItLQ1LlixBTk4OZs6cyXqiPjGnfqy91tgYDmCurq64dOlSp2MtLS2GOUTd2bhxI/bs2YMVK1Zg/fr1hri+dlpbW022YX3RnQ4ePIi8vDwUFhbC0dGxy3msKeqJ/onIixcvNvpRUyaTYf78+cjMzIRarWYtUa+cOXMGYWFhSE1NxcqVKw3xxYsXIzAwEImJifjzzz9ZT9Qn5tSPtdcaLyUdwHx8fFBfX99pcel0Onh5efFsIXVLpVJh69atePHFF/Hpp58ajelv1u/skgZ9rLNLIci2tLa2IiUlBXPnzoW3tzc0Gg00Gg2qqqoAAM3NzdBoNLhy5Qprino0fPhwAIC3t7fJmFwuBwA0NTWxlqhXUlNT0dLSgpiYGKO4q6srIiMjUVVVBa1Wy3qiPjGnfqy91tgYDmBKpRK3bt3CiRMnjOItLS0oKytDSEiIhTKjgUClUmHz5s2Ii4tDRkYGJBKJ0fj48eMxaNAgFBcXm2xbUlICAKwxwo0bN3D58mUcPXoU/v7+hteMGTMA3D6b6O/vj4yMDNYU9Uj/MDX9w7DupI8NHToUSqUSALqsJYlEgokTJ97FTGkg0H/R7ujoMBlrb283/GU9UV+YUz9yuRwKhcLwmffvuYCFPwcttlAG9dnp06e7XcfwwIEDFsqMrN3mzZsFABEbGys6Ojq6nPfss88KOzs7UVZWZojp15zz9/fnmnMk2traRFZWlslr7969AoCYM2eOyMrKEmq1WgjBmqLuNTY2CqlUKhQKhdFaXhcvXhRubm4iICDAEAsJCRFSqVTodDpDTKfTCalUKp588sl7mjdZpzVr1ggAYseOHUbxpqYmIZfLhUwmE+3t7UII1hN1r6d1DM2pnzfeeKPLdQwHDx4srl692u/595ZECCEs15ZSX61evRp79uxBdHQ05s6di3PnzmHXrl0IDw9Hfn4+7Ox4UpiMpaWlYdWqVfD19cWWLVtMamTYsGGYOXMmgNtr84SGhsLR0RHJycnw8PBAeno6zpw5g6NHj2L27NmWOAQaALRaLUaOHImkpCSj5StYU9STffv24eWXX8a4cePw0ksvoa2tDZ988glqa2vx3XffYdasWQCA48ePIyIiAsOHD8fq1asBALt370ZdXR1+/fVXBAUFWfIwyApUVVVhwoQJaGpqwgsvvIDw8HA0NjYiPT0dWq0WaWlpePXVVwGwnsjUgQMHDLdF7N69G21tbVi7di0AwM/PD7GxsYa55tRPQ0MDJk6ciIaGBqSkpEChUODw4cMoKChARkYGEhIS7uFR/ovFWlLqF+3t7WLnzp0iICBAODk5CR8fH5GcnGz0SyvRneLi4gSALl/Tp083mv/777+L+fPnC09PT+Hi4iLCw8NFXl6eZZKnAaOyslIAEElJSSZjrCnqSXZ2tpg0aZJwdXUV7u7uYubMmaKoqMhk3vHjx8UTTzwh3NzchLu7u5g1a5YoLS21QMZkrTQajVi2bJlQKBTCwcFBSKVSMW3aNJGdnW0yl/VEd5o+fXqvvysJYV791NTUiKVLl4oHHnhADBo0SDz22GPiyy+/vMtH1DOeMSQiIiIiIrJxvM6QiIiIiIjIxrExJCIiIiIisnFsDImIiIiIiGwcG0MiIiIiIiIbx8aQiIiIiIjIxrExJCIiIiIisnFsDImIiIiIiGwcG0MiIiIiIiIbx8aQiIiIiIjIxrExJCIiMoNKpYJEIkFBQYGlUzHLtGnTEBwcDCGE2duWl5fDzs4OGRkZdyEzIiKyBmwMiYjIZkkkErNeA60Z1MvKykJRURG2bt0KiURi9vZBQUF45plnsHHjRvz99993IUMiIrI0ifgvPx0SERHdB1QqlUns448/RnNzM15//XUMHjzYaCw+Ph7u7u6or6+Hr68vXF1d702ifSCEwCOPPAJHR0ecPXv2P+/n5MmTUCqV2LZtGzZs2NCPGRIRkTVgY0hERHSHESNGoKqqCpWVlRgxYoSl0+mzvLw8zJo1Czt27MC6dev6tK+xY8fin3/+QWVlJezseNEREdH9hP/ViYiIzNDZPYZarRYSiQTx8fE4f/48oqOjIZPJ4OnpiaioKGi1WgCARqNBTEwMvLy84Orqirlz5+Kvv/7q9H0aGhqwbt06jB49Gs7OzpDJZIiMjERJSYlZ+X722WcAgEWLFpmMXb16FZs3b0ZgYCCkUimkUikeeughPP/88zh16pTJ/EWLFqG6uhp5eXlm5UBERNaPjSEREVE/qaysxJQpU9Dc3IyEhASEh4cjNzcXTz31FM6dO4dJkyahvr4e8fHxmDFjBo4dO4bIyEjcunXLZD8TJkzAhx9+CIVCgaSkJERHR6O4uBiPP/44vv32217lI4RAfn4+fHx84OfnZzI2Z84cqFQqeHh4IDExEa+88gpCQ0NRUFCA3377zWR/4eHhAMDGkIjoPuRg6QSIiIjuF4WFhdi5cyfWrl1riK1YsQLp6ekICwvDO++80+lYTk4OoqOjDfFly5ahpqYGX331lVF827ZtCA0NRWJiIrRaLZydnbvNR61W4/Lly5g3b57J2NmzZ1FcXIwFCxbg66+/Nhrr6OjA1atXTbZRKpWG4yQiovsLzxgSERH1k5EjRyI5OdkoFhsbCwAYMmSIydjSpUsB3F4OQq+srAxFRUWIiYkxagoBQC6X480330RdXR1++umnHvOprq4GAHh7e3c5x8XFxSRmb28PmUxmEvf09ISzs7Nhv0REdP/gGUMiIqJ+EhQUZPJQFrlcDgB49NFHTcZ8fHwAADqdzhArLi4GADQ2Nnb61NQ//vgDAFBRUYHIyMhu82loaACATpu8sWPHIjg4GIcPH0ZVVRWioqIwdepUhISEwMnJqct9DhkyBHV1dd2+LxERDTxsDImIiPqJp6enSczBwaHHsZs3bxpijY2NAG7fx9fdvXy9WU9QfzawpaXFZMze3h75+fl47733cOTIEbz11lsAAA8PD8THx2P79u1wc3Mz2e7GjRudnmUkIqKBjZeSEhERWRF9A/n+++9DCNHla9OmTT3ua+jQoQD+32z+m0wmQ2pqKi5cuIDz589j37598Pf3x65du7Bq1SqT+bdu3cKVK1cM+yUiovsHG0MiIiIrMmnSJAD/v6S0L8aNGwd7e3uo1eoe5/r7+yMxMRGFhYVwd3fHN998YzJHrVZDCIHg4OA+50ZERNaFjSEREZEVUSqVCAsLQ25uLvbv39/pnJKSEly/fr3HfXl6eiI4OBjl5eVobW01GqusrOx0DcWmpia0trbC1dW10/cFgIiIiN4cChERDSC8x5CIiMjKHDp0CBEREUhISMDevXuhVCohlUpx4cIFnDx5EhqNBrW1tZ02b/+2cOFClJaWoqCgALNnzzbEy8vLsXDhQiiVSowZMwY+Pj64dOkScnJycPPmTcM9h3f68ccfYW9vj6ioqH49XiIisjyeMSQiIrIyfn5+OHXqFFQqFdrb25GZmYk9e/bgxIkTGD9+PDIzM+Hl5dWrfSUkJMDR0RGZmZlG8ZCQELz99tuwt7fH999/j48++gg//PADlEoljh07htdee81o/rVr15CTk4Onn34aDz74YL8dKxERWQeJEEJYOgkiIiK6e5YvX45Dhw5Bq9X+5wfH7N27F0lJSfjll18wderUfs6QiIgsjY0hERHRfa62ttbwcJnU1FSzt29pacHDDz+MyZMn48iRI3chQyIisjTeY0hERHSfk8vlOHjwoOGpohKJxKztq6qqsHz5csTHx9+dBImIyOJ4xpCIiIiIiMjG8eEzRERERERENo6NIRERERERkY1jY0hERERERGTj2BgSERERERHZODaGRERERERENo6NIRERERERkY1jY0hERERERGTj2BgSERERERHZODaGRERERERENu5/kYi7uR05OWYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], title=\"Lightcurve\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Zomming in.." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAAKOCAYAAADHxWayAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7xcVbn//5l6enooCSEh2BCuUkQIYAAFrqgoiIgoyhUBv+rFgtcrV6WoXCvywwbXgnQQCwLSRCGhBgghlFBCeu/J6WXa/v0xZ8+s9axn7b1nZs85e06e9+vFi5wpe3Zdaz3t88Qcx3EgCIIgCIIgCIIgCCERH+0dEARBEARBEARBEMYWYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiCMAY477jjEYrHA//3Hf/zHaO9ypJk/fz5isRiOO+64wN+54YYbRuzc/sd//AdisRguv/zyQJ9374/58+eH8vuzZs1CLBbD6tWrQ9meIAiCMPZIjvYOCIIgCLXz/ve/H7NmzfL8zK5du3DPPfcAAPbZZ58R2CtBKLN69Wrst99+mDlzphiogiAIuwFiaAqCIIwBLr74Ys/3HcfBhz/8YQDAYYcdhksuuWQkdmu34rTTTsORRx6J8ePHj/auGNx0003o7+/HvvvuO9q7IgiCIOwmiKEpCIKwG/CDH/wA9957LyZOnIi//OUvaGpqGu1dGnOMHz8+kkYmADEwBUEQhBFHajQFQRDGOA8//DAuvfRSxGIx3HLLLdYU25deegmf+tSnMH36dKTTaey555447bTT8OSTT1q3vXXrVnz961/HW97yFjQ3N2PChAmYO3cubrrpJjiOY3zerS284YYb8NJLL+HUU0/F5MmTMW7cOLzvfe/Dc889V/rs9ddfj8MOOwxtbW3YY4898PnPfx5dXV3WfXnyySdxxhlnYNq0aUin09hrr73w8Y9/HC+88ILnuTn++OPR0dGBCRMm4L3vfS8efvhh6+e9sNVoqq93dXXhK1/5CmbMmIGmpibsv//++O53v4tcLlfVbwbFq0Zz06ZNOO+887D33nujubkZBxxwAH784x8jn88HqsW8//778Z73vAcdHR0YN24c3v/+9+P555/XPnP55Zdjv/32AwCsWbNGqxfm7sf77rsPH/7wh7HXXnshnU5j2rRpOP744/GLX/wi8HEB9lpS9fU//elPOOaYYzB+/HjEYjHs2LEDTU1NaGtrQ09PD7vdoaEhTJw4EYlEAhs2bNDe27ZtGy6++GIceOCBaG1tRUdHB4488kj8/ve/Z58JQRCEsYoYmoIgCGOY9evX46yzzkKhUMC3v/1tfOADH2A/d+edd+Lwww/HbbfdhqlTp+JjH/sYZs+ejbvuugtz587Ftddea3znjTfewCGHHIKrrroKAwMD+MhHPoI5c+bg2WefxTnnnIOzzz7burBeuHAhjjzySKxevRonnngi9t13XzzyyCM4/vjj8frrr+Oiiy7CF77wBUydOhUnnXQS8vk8fvvb3+KjH/0ou70f//jHeM973oM777wTM2bMwKmnnop99tkHf/7zn3HEEUfg73//u/Gdm2++GSeeeCLmz5+Pt7/97fjABz6AHTt24KSTTsKdd95ZwVkORmdnJ+bMmYM77rgDRx55JObOnYsNGzbg8ssvxxe/+MXQfy8I69evxxFHHIHrrrsO8XgcH/nIRzBr1ixcfvnlOPPMM32//5vf/AannHIKAODkk0/GHnvsgX/84x+YO3cu3njjjdLnDj74YJx++ukAgLa2Npxzzjml/z72sY+VPuc4Ds4//3x86EMfwn333Yf99tsPH/vYx/D2t78dr732Gr7yla+Eevw/+clPcOaZZ6JQKOCDH/wgDjvsMCSTSXzwgx9Ef38//vKXv7Dfu+eee9DZ2YkTTjgB06dPL73+4osv4h3veAd+/OMfo6+vDyeddBLmzJmDV199Feeffz7OPvvsUPdfEAQh0jiCIAjCmCSTyThz5sxxADgnnHCCk8/n2c9t3LjR6ejocAA4//d//6e9d+eddzqJRMJJJpPOiy++qL33rne9ywHgnHPOOc7Q0FDp9ddff92ZNm2aA8C55pprtO+cc845DgAHgPPzn/+89HqhUHDOPvtsB4Bz4IEHOnvttZezdOnS0vvr1q1zpkyZ4gBw5s+fr23z3nvvdQA4++67r7No0SLtvXvuucdJJpPO+PHjnR07dpReX79+vdPW1uYAcG655RbtO1deeWVpH4899lj2nHFcf/31pfPBvQ7AOe2005yBgYHSe08//bSTSCScWCzmrFq1KvBvuefxsssuC/T5Y4891gHgzJs3T3v9lFNOcQA4p59+urZfS5cudfbee+/SftN9mzlzpgPAaW5u1q5HJpNxTj31VAeA89nPflb7zqpVqxwAzsyZM6376Z77GTNmOM8//7z2Xi6Xc+65555Ax0X307b/qVTK+cc//mF876677nIAOMcddxy73Q996EPGvdPX1+fMmjXLAeBcddVV2vO2fv1659BDD3UAONddd531+AVBEMYSYmgKgiCMUS688EIHgLPPPvs4W7dutX7uu9/9bskY5XCNms997nOl1x599FEHgDNp0iSnu7vb+I5rXO2///7sto4++mjjOy+88ELJsPnd735nvP/Vr37VAeBcfvnl2uuHH364A8B55JFH2P13z4Nq2LrHfPLJJ7PfOeyww0I3NDs6Otjr8MEPftAB4Nxwww2BfysMQ3PVqlVOLBZzmpqanE2bNhnfueaaa3wNzW9+85vG9xYuXOgAcGbNmqW97mdoZjIZZ/LkyQ4A59FHH636uLj9tO3/5z//eeu+TJkyxYnFYs6aNWu097Zu3eokk0mno6PD6evrK73+61//2gHgfOYzn2G3uWjRIgeAc8ghhwQ6NkEQhEZHUmcFQRDGIH/84x/xy1/+EqlUCn/6058wdepU62cfe+wxAMA555zDvn/uuecCAB599FHjO6eddho6OjqM75x99tlIpVJYsWKFUcMGACeddJLx2v777x/o/Y0bN5Ze2759OxYuXIgpU6ZYe17OnTsXAPD000+XXnOP5VOf+hT7nXqkOB522GHsdXjrW98KQD+ukeDxxx+H4ziYO3cu9tprL+P9T37yk77bOPnkk43Xqj2e5557Djt27MCb3vSm0jWrN6eeeir7eiqVwllnnQXHcXDzzTdr791+++3I5XI444wz0NraWnr9gQceAACcccYZ7DYPOeQQtLe348UXX8Tg4GA4ByAIghBhxNAUBEEYY7z22ms4//zzAQBXXnkl5syZ4/l51xB0xVoos2fP1j4X5DvJZLKkdMoZmlwfz/b29kDvDw0NlV5btWoVgKLBGY/HNZEZ9z934b9t2zZj/23CSH49SathxowZ7Ouuoa4e10jgnoOZM2ey7wdR0eWOyT2eTCZT0f6sXbsWQNlQHQlsxw6UHS/U0LzpppsAAJ/5zGe011euXAkAOOWUU9j7MB6Po7e3F4VCATt27AjzMARBECKJtDcRBEEYQ/T29uL0009Hb28vzjzzTHz5y18e7V1iice9/Zx+77vk83kAwKRJk0qiNDbe9ra3Bdu5OhH0mEaaWCxmfS+s61TrflRLoVDwfL+lpcX63mGHHYYDDzwQr7zyCp555hkcccQReO2117Bo0SLMmjXLiLq69+KHP/xhTJw40fN3pb2QIAi7A2JoCoIgjCHOO+88vPbaazjggAPw+9//PtB3pk+fjtdffx0rV67E0UcfbbzvRmpUdU333+57lFwuV4pQqd8LGzei1traihtuuCHw96ZPn46lS5dizZo17DF7tfMYK0ybNg1AOZJI6e7uxq5du0Zsf9wIuKpW60c6nQZQdLBQcrkcNm3aVNM+feYzn8E3v/lN3HTTTTjiiCO0aCY1jGfMmIGlS5fiy1/+Mt73vvfV9LuCIAhjgWi6VwVBEISK+fnPf4477rgDbW1t+Otf/6qlonrhRmbcRTTl+uuvBwAce+yxxnfuuusuttfgrbfeimw2i/3337+uhub06dNx0EEHYf369XjmmWcCf8/d/9tuu419/9Zbbw1l/6LMMcccA6BYr7plyxbj/dtvvz3U33ONQlvP0MMOOwyTJ0/GsmXL8MQTTwTapmssL1261Hhv3rx5NfcnPfvssxGPx3HHHXdgcHCwdF/QtFkAeP/73w8A1pYogiAIuxtiaAqCIIwBFixYgG984xsAgN/97nc44IADAn/3/PPPR3t7O/71r3/hd7/7nfbePffcg1tuuQXJZFJLw507dy4OO+ww7Ny5E1/+8peRzWZL7y1btgzf/va3AQBf//rXazmsQHzve98DAJx11lmaYJFLJpPB3//+d7z++uul1z73uc+htbUV9913n2FQXX311Xjuuefqu9MRYPbs2fjABz6AwcFBXHjhhVqN6PLly0vnNSymTp2KdDqNLVu2sJHSVCqFiy++GEBRpOmll17S3s/n80Y/1OOPPx4AcM0112Dr1q3a/l944YU17/O0adNwwgknYMeOHfjGN76BdevW4eijj9aEq1wuuOAC7LPPPvjNb36DH/3oR2zN7auvvlqXHq2CIAhRRFJnBUEQxgBnnHEGstksJk6ciH/84x/4xz/+4fn5KVOm4MorrwQA7L333rjxxhtx1lln4YILLsC1116LAw44AKtXr8ZTTz2FWCyGX//613jHO96hbeO2227D8ccfjxtuuAEPP/wwjjrqKHR3d+ORRx7B0NAQzjrrLPy///f/6nbMLqeddhp+/OMf43/+539w3HHH4e1vfzve8pa3oLm5GRs2bMDixYvR29uLBx54oFSnuc8+++Caa67BZz/7WXzyk5/Ez3/+c8yePRuvvvoqXnrpJVx44YX45S9/Wfd9r5Xf//73ePDBB63v33zzzXjzm99sff/aa6/FUUcdhT//+c946qmncPTRR6O3txePPPIITj75ZCxatAhr164tRSNrIZVK4YMf/CD+9re/4ZBDDsHRRx+NlpYWTJkyBT/60Y8AFB0TS5YswY033ohDDjkERx55JGbOnIlt27bh5ZdfxpYtW+A4Tmmbn/jEJ3DllVdiyZIlOPDAA3H00Uejq6sLzzzzDE499VQMDg5izZo1Ne33Oeecg4ceegi/+tWvSn9zdHR04N5778WHPvQh/M///A+uuuoqvOMd78Bee+2Fzs5OvPzyy1i7di3OPPNMfPSjH61pnwRBEBqCUW6vIgiCIIQAhvsdBv2P62X4wgsvOGeddZaz1157OalUypkyZYrzkY98xHn88cetv7tlyxbna1/7mvOmN73JSafTTkdHh3PMMcc4N9xwg1MoFIzPu/0fr7/+es/j4LD1qXRZtGiRc8455zizZs1ympqanHHjxjlvfetbnTPOOMO55ZZbnN7eXuM7Dz30kHPsscc6bW1tTkdHh3Psscc6Dz30kDNv3rzQ+2ja9vuyyy6rqCem45TPo99/ixcvdhzHu9/khg0bnHPPPdfZc889naamJuctb3mLc8UVVziDg4NOOp124vG4MzAwoH3H1p/SxXYdt2/f7nzuc59z9tlnHyeZTFrvxTvvvNP593//d2fy5MlOKpVypk2b5rz3ve91fvWrXxmf3bJli/PZz37W2WOPPZx0Ou289a1vdX760586+Xzet4+mbf9V+vv7nXHjxjkAnObmZqezs9Pz8zt37nS+//3vO+9617ucjo4Op6mpydl3332duXPnOj/4wQ+c5cuX+/6mIAjCWCDmOIprUBAEQRAEAcCTTz6JY445BgceeCCWLFky2rsjCIIgNBhSoykIgiAIuym5XA6LFy82Xl+6dCkuuOACAPZUUUEQBEHwIpKG5g9/+EOcccYZmD17NmKxWKDG2TfffDOOPvpojBs3Du3t7TjooIPw/e9/3/hcV1cXLrzwQkyfPh3Nzc048MADce2110ICu4IgCMLuxuDgIA499FDst99+OPnkk3HmmWfiyCOPxEEHHYRXX30Vc+fOxVe/+tXR3k1BEAShAYmkGNC3vvUtTJo0CYceeig6Ozt9P3/uuefixhtvxOmnn16SIl+1apUhAJDJZHDiiSdi8eLFuPDCC3HAAQfggQcewBe/+EVs2bIFl19+eX0OSBAEQRAiSHNzMy6++GI8/PDDeO6559DZ2YnW1lYcdthh+MQnPoEvfvGLSKVSo72bgiAIQgMSyRrNlStXYvbs2QCAgw46CL29vdbm2ddddx3OO+883HTTTfj0pz/tud1rrrkGX/rSl/CLX/xCkz0//fTT8fe//x3Lli3DzJkzQzsOQRAEQRAEQRCE3ZFIGpoqXoam4zh485vfjPHjx2PRokUAgJ6eHrS3tyMWixmfP+aYY7B48WLs2LEDzc3Npdcff/xxzJ07Fz/+8Y/x3//933U7FkEQBEEQBEEQhN2BSKbOBmXp0qVYsWIF/vM//xPf//73cfXVV2Pnzp0YN24czjrrLFx55ZVob28HABQKBTz//PM49NBDNSMTAN797ncjFoth4cKFVe3H3nvvrf1dKBSwaNEidHR0sAavIAiCIAiCIAhCvXEcBz09PZg2bRri8ZGV52l4QxMA7rjjDmQyGXznO9/Bfvvth3vvvRe/+c1vsHTpUjzyyCOIxWLYtWsXBgYGMH36dGM7TU1NmDJlCjZs2BDKfhUKBcyYMSOUbQmCIAiCIAiCINTCunXrsM8++4zobza0odnT0wMA2LZtG/75z3/ihBNOAFCsuXQcBzfeeCMefPBBnHzyyejv7wdQNCo5mpubS5+plE2bNml/d3V1YcKECVi3bh3GjRtX1TYFQRAEQRAEQRBqobu7GzNmzEBHR8eI/3ZDG5otLS0AgOnTp5eMTJdzzjkHN954I+bPn4+TTz4Zra2tAIChoSF2W4ODg6XP1IqbLjtu3DgxNAVBEARBEARBGFVGo5wvkn00g+KGf/faay/jPbducteuXQCAiRMnoqWlhU2PHRoawvbt29m0WkEQBEEQBEEQBKEyGtrQ/Ld/+zc0NzezxuP69esBAHvssQcAIB6P49BDD8XixYuNqOazzz4Lx3Hwrne9q/47LQiCIAiCIAiCMMZpaEOztbUVp59+OjZv3oy//e1v2nvXXnstAOADH/hA6bWzzjoL/f39+O1vf6t99uqrr0YymcSZZ55Z/50WBEEQBEEQBEEY40SyRvPmm2/GmjVrABSFfjKZDK644goAwMyZM/HpT3+69Nkf/OAH+Ne//oVPfvKTuPDCCzFr1izcf//9uO+++/CZz3wGRx11VOmz559/Pq6//npcdNFFWL16NQ444ADcf//9+Nvf/obvfOc7mDVr1ogepyAIgiAIgiAIwlgk5jiOM9o7QTnuuOPw6KOPsu8de+yxmD9/vvba6tWr8e1vfxsPPfQQurq6sP/+++O8887D1772NaNfTGdnJ77zne/gzjvvxI4dO7D//vvji1/8Ir70pS+FViTb3d2N8ePHo6urS8SABEEQBEEQBEEYFUbTLomkodnoiKEpCIIgCIIgCMJoM5p2SUPXaAqCIAiCIAiCIAjRQwxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVQiaWj+8Ic/xBlnnIHZs2cjFoth1qxZgb/7zW9+E7FYDO3t7ez7Q0NDuPTSS7HffvuhqakJ+++/P6644gpks9mQ9l4QBEEQBEEQBGH3JjnaO8DxrW99C5MmTcKhhx6Kzs7OwN974YUXcNVVV6G9vR2O47CfOfPMM3H33Xfj3HPPxZw5c7BgwQJccsklWL58OW644YZwDkAQBEEQBEEQBGE3JpKG5ooVKzB79mwAwEEHHYTe3l7f7+TzeZx//vk4+eST0d3djeeee874zP3334+7774bF110EX72s58BAM477zxMmDABV111FS644AIcddRR4R6MIAiCIAiCIAjCbkYkU2ddI7MSfvGLX+DVV1/FL3/5S+tnbrvtNgDAV7/6Ve119+9bbrml4t8VBEEQBEEQBEEQdCIZ0ayUNWvW4JJLLsFll12GmTNnWj+3cOFCTJ8+HTNmzNBenzFjBqZNm4aFCxdW9ft777239nehUKhqO4IgCIIgCIIgCGOBSEY0K+ULX/gCZs+ejYsuusjzcxs3bsT06dPZ96ZPn44NGzbUY/cEQRAEQaiCXX0ZPLtqJ/IFXndBEARBiC4NH9G8/fbb8eCDD+KJJ55AMul9OP39/WhqamLfa25uRn9/f1X7sGnTJu3v7u5ujB8/vqptCYIgCIIADGbzeP/PH8OW7iF89NDpuOrjB4/2LgmCIAgV0NARzZ07d+KrX/0qPve5zwUS8WltbcXQ0BD73uDgIFpbW8PeRUEQBEEQquCVjV3Y0l2csx9+beso740gCIJQKQ0d0fzud7+Lvr4+nH/++Vi+fHnp9YGBATiOg+XLl6OpqalUkzlt2jRreuyGDRusabWCIAiCIIwsmVw5XTaXF+0DQRCERqOhDc01a9agr68PRxxxBPv+m9/8Zhx44IFYsmQJAODwww/HrbfeinXr1mmCQOvWrcPGjRvx4Q9/eET2WxAEQRAEb3KKsF5OajQFQRAajoY2NL/5zW/i7LPPNl6/7LLLsHLlStx8881areRZZ52FW2+9FVdffXWpjyYAXH311QCAT33qU3XfZ0EQBEEQ/FGNy4IjhqYgCEKjEUlD8+abb8aaNWsAANu2bUMmk8EVV1wBAJg5cyY+/elPAwDmzJnDfv9Xv/oV1qxZg4997GPa6x/84AfxoQ99CFdddRW6urowZ84cLFiwANdddx3OPvtsHHPMMXU8KkEQBEEQgpLPK6mzEtEUBEFoOCJpaF533XV49NFHtdcuueQSAMCxxx5bMjSr4c9//jOuuOIK3HLLLbj55psxffp0fO9738PFF19c0z4LgiAIghAeauqs4wCFgoN4PDaKeyQIgiBUQsxxJB8lbNz2Jl1dXRg3btxo744gCIIgNBz3vrQR/3nb4tLfy/73ZKQSDS2WLwiCMOKMpl0iI7YgCIIgCJEjT9Jl6d+CIAhCtBFDUxAEQRCEyJHNi6EpCILQyIihKQiCIAhC5MgX9N6ZIggkCILQWIihKQiCIAhC5JCIpiAIQmMjhqYgCIIgCJFDajQFQRAaGzE0BUEQBEGIHDRVVgxNQRCExkIMTUEQBEEQIkcur9do5qUbmyAIQkMhhqYgCIIgCJHDiGjmxdAUBEFoJMTQFARBEAQhchg1mhLRFARBaCjE0BQEQRAEIXIYqbOk3YkgCIIQbcTQFARBEAQhctDUWemjKQiC0FiIoSkIgiAIQuQQ1VlBEITGRgxNQRAEQRAiRy4vhqYgCEIjI4amIAiCIAiRg9ZkiqEpCILQWIihKQiCIAhC5MhK6qwgCEJDI4amIAiCIAiRg/bNFDEgQRCExkIMTUEQBEEQIgc1LAtiaAqCIDQUYmgKgiAIghA5cqRGUyKagiAIjYUYmoIgCIIgRA6jvYkjhqYgCEIjIYamIAiCIAiRI5cnqrN5MTQFQRAaCTE0BUEQBEGIHFRlVlJnBUEQGgsxNAVBEARBiByGGJCkzgqCIDQUYmgKgiAIghA5ctLeRBAEoaERQ1MQBEEQhMhBVWelvYkgCEJjIYamIAiCIAiRQ2o0BUEQGpvkaO+AIAiCIDQSXQNZ/HrecoxvSeGCubORSojPth5kSeqsRDQFQRAaCzE0BUEQBKECfj1vOX772EoAwLQJzTjtkH1GeY/GJhLRFARBaGzEDSsIgiAIFbBmR5/y7/5R3JOxTZb20SQ1m4IgCEK0EUNTEARBECpAtX8knbN+0Igm/VsQBEGINmJoCoIgCEIFqJG1vPR2rBuSOisIgtDYiKEpCIIgCBWgatTkJZuzbmRpexMx6gVBEBoKMTQFQRAEoQLUdFkxfupHPi8RTUEQhEZGDE1BEARBqAA1pVPqBusHNSyp4SkIgiBEGzE0BUEQBKECxNAcGQxDU6LHgiAIDYUYmoIgCIJQAarBI6mz9SNntDeRcy0IgtBIiKEpCIIgCBUgEc2RwYhoyrkWBEFoKMTQFARBEIQKyIsY0IgghqYgCEJjI4amIAiCIFSARDRHBnpu5VwLgiA0FmJoCoIgCEIFqFFM6aNZHxzHMQxLaW8iCILQWIihKQiCIAgVkNMimmJp1gPOqJSIpiAIQmMhhqYgCIIgVEBBNTTF9qkLnFEp7U0EQRAaCzE0BUEQBKECtPYmEmWrC1kmJzkvVr0gCEJDIYamIAiCIFRALi9iQPVGIpqCIAiNjxiagiAIglABmhiQGD91QWo0BUEQGh8xNAVBEAShArQ+mmL81IUckyYrqrOCIAiNhRiagiAIglABWh9NiWjWhRyj5itGvSAIQmMhhqYgCIIgVEDekRrNesNHNKWVjCAIQiMhhqYgCIIgVICWOisRzbrA12iOwo4IgiAIVSOGpiAIgiBUgJY6KxHNusCqzkpEUxAEoaEQQ1MQBEEQKkAXAxrFHRnDcH00RQxIEAShsRBDUxAEQRAqQNqb1B8uoilpyoIgCI2FGJqCIAiCUAE5SZ2tO1z0khMIEgRBEKKLGJqCIAiCEBDHcaAG1iTKVh9yTOqsnGtBEITGQgxNQRAEQQgIjWBKRLM+cOdVajQFQRAaCzE0BUEQBCEgtCZTDM36kOVqNOVcC4IwzJINXfjSbc/j5gWrR3tXBA+So70DgiAIgtAoUMNS0jnrA9fKRCKagiC4fO/eV/Hsqp2476VNmLP/ZLxpj47R3iWBQSKagiAIghAQSZ0dGTjhHznXgiC4rN7eV/r3ym19Hp8URhMxNAVBEAQhIDTQJrZPfeCil2JoCoLgoo4RA9n8KO6J4IUYmoIgCIIQkByxNOnfQjiIoSkIghdZRZm6PyOGZlQRQ3MMM5TL42+L1+Pl9V2jvSuCIAhjAioGJHZmfeBqNOm5FwRh90VNrx8QQzOyiBjQGObye17B7c+uQzwGPPL14zBrStto75IgCEJDQ+0fibLVhyxTo8nVbQqCsHuiRjQbMXX25fVduO3ZtTjp7Xvi+LftMdq7UzckojmGeX5NJ4BiDdHidbtGd2cEQRDGADRVVqJs9YEz4MWoFwQBABzH0dLr+zO5UdybynEcB1+4dRFuf3YtPn/zInQNZEd7l+qGGJpjmKyyIBrMSn6XIAhCrRhiQGL81IVcXlJnBUHgoTXcjVajWXCA9bsGAACZfAEbOwdGeY/qhxiaYxjJXxcEQQgXauyI8VMfRAxIEAQbNI1+sMFSZ+lYlsmN3WCQGJpjmLxIPwuCIIQKFakR46c+SOqsIAg2smQcbryIpj6WDYmhKTQiaqF0o3l7BEEQogjN6JTU2frAiQGJoSkIAgBkc41taNKxbCjXWPtfCWJojmHUG1kMzWjgOA4WrNiB5Vt7R3tXBEGoArpAkNTZ+sC1N5GepYIgAGZqfaOVh9F5Y2gM66hIe5MxTKNLP49Frn10BX7y4FKkEjH8/cJj8La9xo32LgmCUAHU0BTbpz5wNZpyrgVBAPT1LdB4a1yaCSOps0JDotVoZsbuTdxIPLFsO4BiWtjTK3aM8t4IglApIgY0MnA9MyWiKQgCYI4PjZ46m8k31v5XghiaY5ispM5GDlVZjKtBEsYOGzoHsGjNLjhiiIwpjNRZqRusC2xE04E8T4IgGE6ngQbro7k7pc6KoTmGEdXZ6KEa/1Q1TRg7rNvZjxOvehSnX/sUfvHw8tHeHSFEOMOykQWBvvf3V3HI9x7CNfOjdZ9yfTQBMewFQQAyucaOaNLln6TOCg2H4zgkdbaxHsKxiqqUxqWGCWODp1fuKE18jyzdOsp7I4QJ23ajQaNs23uH8IcnV2FXfxY//9cyo+5pNOEimkDjnmtBEOz86bl1OO/GhXhqxfZAnzcjmo21xjUimmNYdVbEgMYohiKXRDQjgTo42jz2QuOTUa7tWG7EvDtC+58BReMzlRiFnamRnsFyutlQroChXAGpRDT8z7bIpUQ0BWFssb13CN+682XkCg6WbunB4//9Xt/v0NKjRlvjGmJAkjorNBo0WiY1mtFAHRyzsmAas6jPnzgUxhZ87WBjPsvUaIvSvWoT/rFFOgVBaEw2dw2Wnut1OwcCOWfpWJUrOA3l1DXFgBpn3ytFDM0xCq3/azRvz1hFTU2L0qJOCBftOsvCeEzB1WM2apSN7neUBMpspQWNXA8rCIIJHYd6BrO+3+HGqkZKnzVTZ8fuelAMzTFKnqYVNNADOJZRDZAoLeqEcFGNy0bysgr+8GJAo7AjIWAamtE5EJvxLo6b0efa+Stw0v/3KP6yaP1o74owBqBGl5rSb4MTU+zPNo7yrJk6O3bX6GJojlHqGdHsHsxiR+9QaNsbaYZy+VFbUGkplY26OhV80USf5DqX+Nvi9fjy7YuxeO2u0d6VquEMnUa9xjTlN0oCZbbSAoloji7be4dw5UNL8caWXnzv7680bDRfiA5mRNPfYOTGqkYKqOxOEU0RAxqj0Ac3rBrNVzd246PXPolCAbjh3MNx1P5TQtnuSLFgxQ6cd+NCtDYlcccFR2L21PYR/X09dVYm6LGKukiW61xka/cg/uvPLyFfcPD65m489LVjR3uXqoIVA2rQGk1qNEep5VJeajQjyY7eTGl90T2YQ18mh3HNqVHeK6GRqSZ1lis9aqQWJ/SYx7KhKRHNMQpd3GbzTig1gXe/uAGD2QIy+QLueWFjzdsbaf783Dr0ZfLY1jOEB5ZsHvHf18SAxAAZs+S0FOmxO4FUwtqd/aXJddnW3oaNhEjq7MhgGx8b9b4ZK9B7pG+ocdIVhWhCsxS6A6XOMhHNiKWfrt7ehx8/+DqeWbnDeI/OGWO5xEYMzTEK5/UdDOFG7h4oDwBRe6iDoA5gvaMwQWrtTRp1dSr4oj5/4lAooqrqOQ7QPeDvtY4iYymiGeXUWWlvEk1o5KU3gFEgCF7Q9WogMSBmPRu1iOYFNz+Ha+evwKevexbd5Jh2pz6aYmiOUbjoZRj566r3shFTmDKjqPrqOI5mdERpUSeES0ZqNA2owd3ZoIYm99w2at1glCOatvmlEeedsQSNvIyGw1YYW1QjBsTNq1Gr0Vy2tRdAcd25bme/9p6kzgoNDxvRDCEC2Z9RDM0ILUqCklG8RiMdaTLqoRrw/AnBUCfBbN6B06ARrzChHujO/swo7UltcNHLRo2yRbu9CT8+NmrP0rGCmTobrcW90HjQLgmBVGc5MaAIqc7mCw7UoYqOtXQcG8qO3fWgGJpjFFaRKwRDU/VeNmJETvXGjnSDXDpBi2d+7EKfDbnW5v3f2d+YEU22j2aDGj908RMl56E1otmA885YQiKaQtiYEc3GFwOiEVdqGJsRzejse9iI6uwYpV5pBeqDbJOfjzKjmTpLBxqJaBYZyOTxhydXwXEcfO6Y2WhJJ0Z7l2qGXutc3kGq8Q+rJqhjp3OgMSOanAHUsKmzZIEXpTFdajSjCX2ORQxIqBX6TAdxXnDjcJRSZ6lDzIho7kaps2JojlHYhzD0iGbjPRiqN3bEU2dpRFM88wCAvyxah5/+YykAoL0pif84er9R3qPaoU6EbKGAFuzeliZ93nb1NWhEcwyJAdGUtSiN6bZ9adRzPVYwUmczYmgKtVFNH00uIy1ShibNFiHBHzqOjWXVWTE0xyj1Sp3tV+oxGtFQ0g3N0Y1oikhMkdc395T+/dqmHo9PNg5G2swYnkSCQg0HLzGgbL6AuxZvgOMApx4yHelkdKo8uIhao0bZjIhmlAxNa0QzOvu4O0IjL0GMAkHwgjrvqEIrB7f+7I9QJwQ6J/j9LRFNoeHgjJjBkFVno9TcOyija2h65+zvrqgTxljxjptOBbnW9P7v8hADuvuFjfjGX14CUFyEfOLd+9Z13yphLPXRpOlbURqTbI7MCNnCuyU08iKps0Kt0Gc9kOps1COaPhlshhjQGK7RjI6bWOGHP/whzjjjDMyePRuxWAyzZs1iPzc4OIjf/e53+MhHPoJZs2ahpaUFs2fPxllnnYXXXnuN/c7Q0BAuvfRS7LfffmhqasL++++PK664AtlsY6Zx2ahH6qzjOJoh0IhefDXdYqQXVaYYkKyYAN1hEaVi/lownQpyrTM0ddZDDOiFdbuUf3fWa5eqgo1oNmg6p19612hi25co7ePuiKk6K4amUBvViAFx9eT9EXJUm2MrjWjqnx/LqrORjGh+61vfwqRJk3DooYeis7PT+rnVq1fjggsuwDHHHIPPfe5zmDZtGlauXIlrr70Wd955Jx588EEcf/zx2nfOPPNM3H333Tj33HMxZ84cLFiwAJdccgmWL1+OG264ob4HNoLUI3V2MFuA+qxEyfsdlKFRjGgaA08Dnr96oJ6HKE0UtWCozsq1NlVnvVJnc+XzFUbKf5iMpfYm1KuunvfRxnZOxc4cXUzV2Wg9n0LjUU2NJleOEiVHtSkGRGo0JXV2dFmxYgVmz54NADjooIPQ29vLfm7q1KlYvHgxDj74YO31T33qUzjkkEPwjW98A88991zp9fvvvx933303LrroIvzsZz8DAJx33nmYMGECrrrqKlxwwQU46qij6nNQIwxXxzJYo8eEpjVGSTgiKNn86BmadIKWKFeRnEQ0dwsq6aOpZh6E0f83TKiADtC4vR2NPpojZMWt3NaL655YhcNmTsRHD92H/YzNkSkRzdFFUmeFsKnG0KxXr/iw8GtvQueMTL4Ax3EQi8Xqvm8jTSRTZ10j04/JkycbRiYAvP3tb8dBBx2EJUuWaK/fdtttAICvfvWr2uvu37fcckvF+xpVuEm61oeQTihRrDtbsa0XH/j54zj92qewtWfQeF+dJEc6ykTPVyNGhOtBVotoRmeiqAW51iaV9NFUDc2BiKUUjaWI5mhlWVz+91dx6zNrcdGfXsSKbbwjWdqbRBNRnRXChj7TA9m8r3OWez9K6wczVdb7b2DsRjUjGdGslUKhgE2bNmHPPffUXl+4cCGmT5+OGTNmaK/PmDED06ZNw8KFC6v6vb333tv4/dGmHn00+0iKTBSjNL9/fCVe3dQNALjz+Q34f8fuX3ovl6epvyOcOmsUh0fv/I0G6nnoHyPecanHNaE1ml4RTTX6GYaIWZhwPTMbtY+mKQY0Mvfp8i1ldek3Nvdg/6ntxmfsqrONea7HCkPkHhHVWaFWuGe6dzCHiW1p63dY1dkIzRVG+Qzto8k4LIdyBTSPwYbbkYxo1sr//d//YdOmTTjnnHO01zdu3Ijp06ez35k+fTo2bNgwErs3ItSjRtNMnY3ehL9yW1/p3zv79IUs7btEF771hv5+lJqjjybqANwXoYmiFmgEM4pOmZGGnoPuwZzV2aJHNKN1T3AGUKOKAZntTUbmONSxt8fiXLI5Z8TQHF0kdVYIG87o8nNgcGn+kVKdNWoyvWs0gbGrPDvmIppPPfUULrroIrzzne/Et771Le29/v5+NDU1sd9rbm5Gf39/Vb+5adMm7e/u7m6MHz++qm2FRT1UZ3sbIHV2c3c5XZZOiPTvkY4omgIxYnwA+nmJ0kRRC/TaSuosb2x3D+YwifFaZ6NcozmGUmfpfo/UmKQuwmyGClcLCzSuUT9WENVZIWy4taRfL01uTo2SU9KvfIY1NCNWJhIWYyqiuWjRInzwgx/EtGnTcN9996G5uVl7v7W1FUNDQ+x3BwcH0draOhK7OSKwhdI1LuL7Seps1NIBHcfBpq6yoUknxNEW4zHSKcX4AKDfR5l8YUxE/0Rh2IS7rrss6bNRVp3l0mTHiqE5UlkW6vPQa4lcSOpsNDFVZ8XQbARWbe/DtfNXYNX2Pv8PjzDcM+0X0eScYlFOnaXHyEVxadbbWGHMGJrPP/88TjzxRIwfPx7z5s1jU2SnTZtmTY/dsGGDNa22EWGb2YYtBhSxxfOu/qw2CdKFLS20Hvk+mqOj8Bh16HmJ0mRRLaPt1IgiGaZ1hk0QaCjCEU02dbZBjR/D0Byh+1RdUPVaxGRUB1QyXlZijNq8s7thpM5m8nAkyhxp8gUHn/jtAvz4wddx1m+fjtx4xRuaVUQ0IyRMRQMxfn00AYloRprnn38eJ5xwAjo6OjBv3jzMnDmT/dzhhx+ODRs2YN26ddrr69atw8aNG/Gud71rJHZ3ROAe3LBrNKO2eN7UNaD9TQcio0ZSIpqRgA7IY6GXpiltHq1nZTTgzkHXgC2iqRqa0Tp3rBhQgy60Ry11VjU0A0Q0m5LlpYqkzo4uXArgWFXLHCvs6BvClu5iNt/m7kFDv2K0qSqiyTjq+7PRcXr4ja3cODZWazQb3tBcvHgxTjzxRLS3t2PevHnYb7/9rJ8966yzAABXX3219rr796c+9al67eaIw3t7xnZ7k81dejsTQ/xnlKNMnIcrKoPiaEINbqpu3Ij4Kc7tjrCps32811r97ECEFg+ArUZzFHYkBEZDDKhQcDT1b67GL19woO5ak6LEGLVozO4GZ1SK8my0Ga3MhaBUE9HkHPWOE50WIb6qs9LeZHS5+eabsWbNGgDAtm3bkMlkcMUVVwAAZs6ciU9/+tMAgDVr1uDEE0/Erl278OUvfxlPPfUUnnrqKW1bp512Gtra2gAAH/zgB/GhD30IV111Fbq6ujBnzhwsWLAA1113Hc4++2wcc8wxI3iU9YUqXAEh9NEkhmp+2FCqd4PZXL6A8296Ds+t2YXLTzkQpx/GN/jeRAxN2iDeFAMa4dRZJnUwV3CQSoy9Br2VQCe9sSAIRI8pahP7aMCdg84BfjGhOonyBQfZvIN0MhrPCbcoatQo22i0N6ElA1yNH3XKaRFNMTRHFa6OrG8oh6kdvNCiMPrQtU7U5iNu/PSr/bXVMw5k8pFoESJ9NMtE0tC87rrr8Oijj2qvXXLJJQCAY489tmRorlq1Cjt27AAAXH755ey2Vq1aVTI0AeDPf/4zrrjiCtxyyy24+eabMX36dHzve9/DxRdfXIcjGT3qocjFeZ5HYgH4/NpOzFu6DQDw6/nLPQxNmjpL25l4/11vuJrMXN5BBMbEUYUOyGOhAbjZ3kQWx1w7IVsvTeokGszlkU5GIwGHWyA0ah9NOgSOhPONPgvcgpKeYzE0owN9NgERBIo6pgJqtAwabvysRgwIKKbPTgxlr2rD6JseRAxIDM2RY/78+YE+d9xxx1WcUtXc3IwrrriiFCEdq9SlRpNJaRyJSb9biXp0WcRDACaiSWs0Rzt1llnEZQsFtGD3tjTpeRkLEU0jTTpiE/towC1QbWJA1CgdzOQxrjlVl/2qFO5SNqrxQzNfRkKgjD4LnJFCx+6mpKTORgVbRFOILvQ554TZRhO+vYlfjSZ/DFERBDKV53ffPprRcBELGo7j1Lww5RYMtYpqsBHNEViYqAahV2pBpTWaBWdkFy2cYSuCQExftohMFNXiOA6jMCzXuaLUWTLhRqnFCeeJbtTUWbrfYY1Hm7oG8LOHluKfr24x3qPPRhAHZlNKIppRgYu6NPqYPdaJekQzLNVZABjIROPYqLPZSJ3lxIAiJnwXFpGMaO7OdPVnceZvF2B77xB+cdYhOGr/KVVth2t2XWsfTW4yGQlDKaMZmvZjoIYmNdY5IzWbLyARH5mIIjcwSqTLnAQbvb0JN2ly0bzdDdbQtKXO0ohmhCZgzpM+VlJnw1qAXnb3K3ho2Mic/1/HYdaUcvkK/Q0uRc6rRlOEtUYX7h7pHQMCbmOZyNdoVpE6azuGqKjWixhQGYloRox7X96I1zf3YHtvBjc9tabq7XCTcT1qNEfCUFIXndm8ww5KjuP4p85yEcVRjmhKpMu8h/oDpmEtWLED18xfHjmpdtahMIZ7pj61fDs+9MvHccldSzxLGfgaTX/VWSBiEc0xJAZkpM6G5Dh8fm1n6d+vb+7W3jNVpv0dmGrqbKO2khkrcBFNW4saIRrQdc5I61P4wY2f/qqz9hrNKOCfOmt+Z6ymzkpEM2LsUhbNnZYec0HgFra5goNsvoBUojr/AhdpGglDiT6gmVwBLWk9Ctk9kDMWo4YYEBfRzBWAERLL4wZGiWhyYkD+g+3GzgF88vdPw3GAp1fuxE3nvrteu1cxXDr5WBYD+tk/38CSDd1YsqEbp7xzGt693yT2c3zqrDnGFQqOcU9EqW53TIsBheAQKRQc7OwbKv1tppGbToRcvoBkwp4eq0U0x/Cz1AhwURep0Yw29XIohQWXgecf0bSlzkZjrjAMzQCps2NVDEgimhFDNeZqCaPbJuNaIgOsDP2IRDRpCqx5DJu6B4zX/Go0uW3XEy6iE7UBfzSoRgxo6ZaeUp+91zd1e394hGFFn8awQ2FrTzmTYN3OfuvnWEOT6aPJedsHI+Tp5bIgGrVukEYHw7hPd/VntD6ZQXr4UecS/YxWoykRzVGFT50VQzPKGM6eiBk0fETTTwzIljobjbnCT/xHUmeFUUM1BGvxbtgMmFrqNLkHeCRST6mBxj2MNG0W4CKaoxORdWEjmmM4pTIoNMIRRFhCNeaiVrPFR66jtY9hoh6bTdwH4Bc3PUO5QD1Ha60vDxNeDGgUdiQE6PgThuNrB0llp9eTexaooUIXZWkt2ilj5mgiqrONRxBnz2jCtzfxS50tf0dt5R6VMgt6zoNENMdq6qwYmhFjMBtORNM2GYcf0RyJvmskoskIg1AhIADIEglvboIcSc8eZxCNZQMkCPmCAzreBoloqvd31Lyz7H02hhfH6n3dZRH3AfiIPgB0EeOUc7BFZfEAjPHU2RAWoNt7h7S/A0U0ydyi3lPJeAyJ+MiKAeULDhau3hkZYZEoIaqzjUfUazS5Z7ovk/fMFFGPob2pXAXYKO1N2IhmhETvwkQMzYihLrJrimjaegxVuWDL5gujlnpqqscyqbOBIpqjnTo7ur8fRYKk0fHfK9/fkZs0udTZiPUtCxN1MUCNRhXbvU4FgbioWpRUZ7nFT6Omc9LFThgRze29urPBbK3gnyanPkOJeAyqrMBIGPVfu+MFnPF/C/D+qx+XOnoC9xz7pTkKo0vkazQt46eXyJQ6RoxvKfdYjmrqrBHRlNRZYbTwS511HAcPvLwJNy9Y7elt5YqrgeoLpfst8uWRSZ3trLZGc7RTZ8P5/ULBacj0Je74g6jOqoN01Ix1XogrWvsYJur590ydtVynrgHvVEsg+hHNRq3RrEd/vR0komksuAJFNMufGY2I5j9e2QwAWLuzH0s2RqsGfDQpFMwewYCkzkYdQ4E/YgaNbb3a7ZE+q44R45rLhmZUxYCC9NGM2nUJi6oNzUcffRQf+tCHsMceeyCVSiGRSBj/JZMialspuhiQ+cAsWLEDX7j1eVxy9yv4zaMrrduxLWyrXbDZUmOiIga0uds/ojk0yhFFboIO4/e3dg/iqB89gnf/778wf+nWmrc3knD3TxCPpHreCk60FvoZJnoZNQ9ymKjn3tauBLCnie8igkCcI2kwSoYms0Bo1NRZWm8ahhG3wy+iyfyGV41mMhFHMl4uwrKd666BLC65awkuu3uJ5wI1COr40u3hPNndsGWP9EkfzUgT9RpNW0TTFil3HN3hMa5FSZ2NyFxh9i4NIgYUjX0Pm6oswfvuuw+nnnoq8vk89t13X7z1rW8VozIkBn0imovXdZb+/fzaXdbt2BYM1S7YbB7LWhbQ2XwBTy7fjgOnjcfUDnuPEVqDx+Wx86mz/l68kYw0cYN7GDWaX/vTCyVD+3t/fxXHvXWPmrc5UnD3T5C6KG7iTMQTlk+PLGxEM2ITe5jkAqTOOo6jLVKbU/FSOiyNgrIRzYh4qYGxlTprCFbUoUbTr1YJMA1NdVwoRjTLhqZtbrv1mTW4+eli7+kZk1px3ntmV7bjwxQKjqaaW6vROpawGSiiOhtt6pG5ECY2R7FNEIh+vqM5gqmzRkSTqNCyYkDRui5hUZV1ePnllyOVSuG+++7DSSedFPY+7dYM+IgBqYaJ1wNlM2CqrXWy1c3VYqj9919ewt8Wb8DktjQe++/j0dbE3470geXOCycGlC84yBec0iKFMzS56FO9YA3NEAzdJ5fvKP175fa+mrc3knDHHyiiyUyczaloGJr1ilxHFdVwsBma9Bme2tGEdTuL6e6d/f6ps5GKaI4pMaD612gGiabQWiw9oqkbmrZF6Yqt5bFvzQ57mx0/6L3qVXe8u2FL7RMxoGhj9CKvw3yUyRWwoXMAsya3IqbKwAbAbmgGC3BEMnXWt0bT/M5YNTSrSp1dsmQJzjzzTDEy64D6kOQKjrGAURfmnoamLXW2yofQFtGsJdXqb4s3ACjK4d+4YLX1c3RQpIvOnsGs1aOqLmpGWwyIM/5rNXSdBo2kuHDnJIihmTdaYkTnPHARm5FsozOS0OgPNRpd6HM2tb2cwUDTbaOuOsu1N4lai52g1COlbkefHtE029f41/hltRrNeCBDU91GLdeDbr97QIwoF3vqrJyjKGNENEN2sGfzBZz1u6dx/JXzcdGfXqz4+9yYCgA9Q7yTh6q462JA0bgX/Wo0d6fU2aoMzfb2dkyaNCnsfRFgGoJ0YM9qEc1gilza9qtcsNkMubDac6z18EAbqbPkby6aWfquamiOch9Lztio9ffX79JFkPab0lbT9kYaXnU2QB/NOqT8hQW3kI7S/oUJTf/pGsiyEyhd2OzR0Vz69y5inHLPaZQMTW7Ma9jU2TrUaPq1N+HGPKNG01CdDWBoKuNGLb026f5J6mwZm4GyO6jOPrhkEz74i8fxy4eXjfauVEy9azT/umg9Fq0plnL9bfGGirdvW0faVGfp5yNZo0nGEbrPnHEtYkAK73vf+7BgwYKw90WA+ZDQekR1wepVgB92jabNqA1rAU0XJyp+YkCqEJAqGlH8bvk8jHrqrE8qdDW8uL5T+3tyW7qm7Y003KIxSEQzyn3BuJ6ZUYq4hok5eQK9zFhBr4+6MKCOI+5cRam/GLdAaNTUWaO9SQgLHV8xIGbMpYam1kczEUNCScWzGfXquFHLuEq/K2JAZTJ5fmweyhXGrDPN5Xt/fxWvbOzGz/75BtbtrD41ezSg1yZsQ/PWZ9Zqf1eaAmp7pruthiaZTyKYOuvnYNudajSrMjR//OMfY8WKFbjiiisaPnUvahiGJhnY1QnYqzFt2KmzvRajNqyUwG299kbvdOFJH0bV4J7QqhtafqmzIxnR5H6r1gH/RUUcqvgbjfU8ckZFJsCixZw4o3PcbB/NMboI4+7pLkZ5lh5/i1JPa3jbI546y7c3GYUdCQFTEba2A+nP5AxHkfGsBohomu1N/MWAwkqdpd+1LXZ3R7wWwmNZedZxHGxSHNqc+GCUqadjdnvvEF7e0KVvv1JDs8IaTbr/Hc1lx2VUxIDomiRQ6myEHKphUpUY0He/+10ceOCBuOyyy/CHP/wBBx98MCZMmGB8LhaL4brrrqt1H3cbCgXHEOuhN566YOvP5uE4Dlt4nSOqfe5AU+2CzdbbsFovJnVQbO+pIKLpcU7amhLY3su/xw2uI2kA0H6gQO2G4Yvr9QG+0fo12va3P5vHuITdDxZlFT22X2qEDOEw4RYIXQNZzCCvGYZmOml9j02djcjiAbCIATWow9Vob1LjfUqjmQCX5u5fo6me40Q8WHsTPXU2zBpNiWi6qIvneAxafXZvJofxrSnmW41PruBAfVQaTfyonqmzdw1rbahUWmuo7l9rOlEyFm2qs2bqbPRUZ/2E1rihdqzWaFZlaN5www2lf69evRqrV69mPyeGZmVw3kK66FIfMMcpqsi2pE21TXVyb29OlgQ3qu6jGXKNJn0Ia0mdVd9vTSfJe+Xf4c5v2EXxXvAGSPUDfr7gYAnxJDaaQWOLRPYP5bV0GAo9zijVNoy2Q2Mk4RwlXC9NevzNqbITIcgiaDBCEzCX8hSlPq6VYKZ3OVbnZRC4cdzsJ2deXxq5UL+TSsQQDxTRLN8jtTxv9LtSo1lGHWc7mlPoHsyWDLCxLAhE55dGO1Y6z4a17nEcB39ZtN54vZaI5oSWlGJo2kQoPVJnI5L9Up0Y0NhcJ1RlaK5atSrs/RDA10HSB5amHfVlcqyhqd7UHYqhWXUfTWt7k+oGrCAtS1z8UmfVhUFLKo5YDKXJz1d1dpT7aNaS8rliW6/hvWu0Ba/N0PbzGBtRkggdN5s6G6H9CxPuWDsHzKiWWgudSsSQUqLVQfrdRj2i2ahiQNxzk807SCerMzSDRDRZ1dmMPXU2EY9pEc0gqrMS0awP6rPZlIyjLZ0spT2P5V6adM3R32BpwlQcKyzH5ysbu/H65h7j9YprNLX1agoYTk22RSdpn922pvIaODKqs0Z7E1KjyYxRUXKYh0lVhubMmTPD3g8BvCeGPrB0YWdbgKkDSXtTCsCA5+f9sLc3qe7B4BY4g9k82wuRRojoOVFTUtPJOFKJeOmBVR9c1tAcwQebW5TXkupK6zOBBjQ0Lfvrd5/WW9ygFrhrOlaFMtgaTWZhrl6fVCJODAf/1Fnpo1kfuP3OFQpIVyffYLQ2AZgFV4A+muq4kArQ3iSXL2jzgtRo1gf1OU4ni07dkqE5hs8TXTtE0ajO5Ap4eUMn/m36BKST+vNbrxpNLprp7kslqCn87c2qgqx/Jl0yEdN6sA9mixoPSY/Sm5HAL6IpYkDCqMAtpoyIJhkgbJEf9UHsaK5d+tkW0aw2IsctNrZ08wX29LND5BhUYzGViCOtRUu8azRHMhIWthopVZwFaj+egUwe97y4Ecu2mF7KemAzEP1Sk0wly+gM0Hx7E/21wWwe5/zhWRz703l4ZuWOkdq10OEW/X6ps6lEXFsEBLmWtHZ9NOHFgBrT0OQWO7WMSduZiGaQ1GgqNqc+L0Ham9D5SSKa9UFdCKcTcW2B32jppJVA12FRiZqpnPOHZ3H6tQvwid8uMDQwgqSvV8Pza3exr1daa5gr8OtVW0RTXcul4nG0N+kxM9t6dSTxEyzcnfpoBopoPvbYYwCAd7/73Whubi79HYS5c+dWt2e7IQMZpkbTR/rfpvSmPrjjNEOzugHGXqNZ3fa4xcymrkHMnGz2gfRLnVUHnXQijlSivCjxbW8ygpEmri6ilprKl4gQEFD7gveK+17Frc+sRSoRwxPffC/2HNfs/6UasB1/v49DhEbSItXeJECN5r9e24JH39gGALj20RU4YvbkEdm3sOGeY25hnvGIaJqLIHObUam7AXjhn0ZNneXGi1oWoWyNpqFsa/5mL2nMTtub+KXO0oV/mDWaQ7mCNdtmdyNDIppNSuQsilG+sKBtXWwq/KPFtp4hLBh2WD6/thNbe4a0uduIaIbkmLVlmlQamStohqZ/qxJ13ZlKxtFKysf6hnIY3zK6wlTVRDSzeQf5gqM51sYCgQzN4447DrFYDK+99hre8pa3lP4OQt7Sd0kw4bxk1MNBF9jWB1H5nOrtGQw9dTYcMSDAHtHkJn7tfRLRTNkimqMtBsSlVFaZOjuUy+O1Td2hbc/FNX6yeQfPrtqJU945rabt+WFVnfWZyA0RkwiJIPE1mvpxblNUlrd224Wwok7wiKaS3p6IIZlQxV0CqM5GyNAcS6mzfBpq9cfC12j6p87SdLc8aW8S94toeqjWVgr33Z7BnBia0OfadHL3iWgaNZoRi2hSBw9dF5o1muGMV7btVGpoVhrR1BxR8RjaiAhkFO5FOo76GZ4umRwv8NnIBDI0L730UsRiMUyZMkX7WwgXbjFFjSN689pSZ/PK59Sc92rVG22/U63nmPveZktvKrNG0646m0rqhmbGN3V25CJhrKFb5YC/rWeI/W6tEU21B+JI1AtYVWd9JnJDRW/42q7d0Y+/LFqHY948Fe/eb1I4O1khXIq0UVutPOtRMqIqhXt+ODEgdYGapBHNAN72TK6AQsHRDI7RgnOuRcjPYWUwm8fFf30JW7qH8P1TD8Sb9ugYmYhmgIg1UMzOGd8aNz5D25tw9xzN7AmzRhMo1h1P7Wjy/N5AJo8/L1qH8S0pnPKOaZG4V8OGZiZohmYE0hXrRdRrNKmDh67z6lWjaYuM1qI629GkGpr+685UIo54PKa1RYnC9TEVvfVzYmuJtdsampdffrnn30I4cGkIXgqrgIcYkBbR9E9F8EONMDUl46X9qtaw4b5na4JMFyq0j6YmBkRTZ33EgEYy5ZJbwISZemz7jeDbLKBHGaDDFGBxHAcFB0ZKiDWi6XOf0vvHvY5fvWMxnl/bid89vgoL/ue9mNCarmGvq4ONaJLrrGYW1Ms7nssXMJDNa6lI4f8Gvyin6AuDGJJxpUYzYP3QYC5vtC8aDbjoZSNENO97aRPuemEjAOD/Hl2JK894Z+iGZjDVWX77ah/GPIlYxBXHNjf0eanWVgo3JgdpcfKHJ1fhp/9YCqCYRfS+A/aseh+iSobUaKrZUlFY3NcLo0YzYqmzVISL1rTXq0bTtp1aVGfbmwJENIkYEAC0NSVLn7eVlI0k1OGcJ9fAtnYuBlLGVj9aEQOKEIEimuTmtEY0LakI1UZP1ElEzX2vWgyIWQhUnTqr1Y3YWyeMduosNyhXaxjaBvha0t6ogRCWoblkQxcO/9+Hcfj//gsvrw/W99OvvQk9fvc6L9lQTCceyOaxbGtvtbtcE0Ha2KjPYT0aTG/tGcScHz2Cd//vw3jk9S2hb98laB9No0YzUVlEE4hOi5NG7aO5ftdA6d/uWMsdSy3OKlZ1NmCau6paatRoJuwqxQAT0axhHOSuZRBBoMVrO0v/fpGpnx8LUNVZta3EmFadDSjCOFpQES46dwd19lSK1dCscO2gjkN0vUqFjejvuuu9qDk9uB7FKjZf2FhUnq3ZPbxgwQIsXrwYXV1dGD9+PA455BDMmTMnjH3b7eDEgIZ8pOE5z5rjONrCVn1wqzUe1MXwhNYUtg7XmFUbkeMWM5sDGpr0GDIBajQdxxnV1Fl6TVyqHfBti/FajqezX5+swhjwsvkCPvTLJ0p//2XROvzbPuNLf1fb3sSs0SwY13i0Fj686izJRFBTZ+tgQP35ufWlOtA/PrsO731bfaIr3KKcj2gqWQfJOIloemdtuEQlxbhR+2j2K60CXEOMi8RWOyblCw529nGqs+T6WsYodXGo3hPJeAwJ5X7hdo9mBdRi+HNjUpAWJ2orhrHaD2+IzLVRrdG896WNeGrFDvzHUbPwlj07at4ezaKK0rECwI5eGtH0qdEMycGeJdlk7vxbaaaYTQzIcYrRWZpKmiUZDwA0p0et16c/k0M8FqupLps6u4KIAQFjU3m2akPz6aefxrnnnoulS4upIo7jlOo23/a2t+G6667DkUceGc5e7iawYkC0lQe5ebloCJ0nNQ9RFYtax3E0D54a0azW+815nK01mmTS9opophJxpJJmjaZt4Bup/ou2hU+1nnfbfteywKKRqEq9khy/fWyl9verRMDI5qjwS33hajTpNR4tryZ3TEZEU3Eq5QoOMrmC0fusFlZt7yv9u57ed+5Yg/TR9GpXkbE8E1FpcdKoYkDq2O86pPh0/uqOZVd/xph7AO5ZtUQ0ledVS51NxJGIVRbRrM3QZFJnA0Q01bl4rBqa6nE1JeNoT6s1mtEwvjZ2DuDLty9GwQGWbu7BX79wVM3bpHNLPbJQasGo0Ryh1Fn1vLQ1JZDpL/5NDXM/bGJAQPG+ooZmjswnADRBoFruxRfWdeLTv38G8XgMd3z+SLxtr3FVbYeOI0YqrWWMiso8FyZVGZqLFy/G+973PgwMDODYY4/Fcccdh7322gubN2/GvHnz8Nhjj+GEE07AE088gYMPPjjkXR67sH00aUSzQAc884Gig4hWozmcilCJmFPxO+W/x7eU695srRwcB54LZ+57W3uGWGlnuhiiHh+alpfW2psMG5qWiT8s9TU/bL9j8+5Xu71a0t52EUNzsMbF0podffjFw8u01/bo0Nul2I7D1qjZhS42M3knMoIN3DWg15k+6wOZfKiG5tod/aV/13PRyx1rfyaPoVweTcny4oDWaGp11PRaWvY3zJrhanFrjSmNENHUDc3wI5pcfSbAZx9wqFEIdVxIkj6a3D1HIxjVjqvF/eMimv6Gpnp+R8qBOdLQ51gds6JiXK/a3ld6Rl/ZGE4Kc1TmFhs0Zd3sVlAfMaCcZmgmS2uIWiKa7cTQ5IIjXI1mWKmzf120vqRV8bfFG/A/J1draOrn3HGgCdpZxYDG4NhRlaH57W9/G9lsFnfffTdOOeUU7b3LLrsMd999Nz72sY/h29/+Nu67775QdnR3gEsNo54hOglynjU6sbcp3qCCU3xfrXnxgz60WkST7M/yrT345O+eQb7g4KbPvRsHThsPDlvT8x29Q9hjHDVG/CKaelqeljqb8zM0R+ahti18wo5o0sGsEmjqbC0Le8dx8J27lhjXiv5tS/X1i2hyNSfGYmCUUme5icIZfu7cBTN91vsUIZQwWLOzHNG0RQjDwOaV7RrIYo+O8rhD09u1iGZAb3sUUmdtx9sINZpqb1p33LH1cqsGTnG2+Fv28VpFj2iWv5MghiZnHNMIBr2nKoGv0fQfS3a3iCbtoxmVBbK6j4PZcHqgGmJAEYto+tVo0ns6jHVPvqA73VRDr5aIZls6iVgMpeAGd6614MJwWn1YadyqU6mW7XBru1zBQXp4LLOKAY3BiGZVLvQnn3wSH/3oRw0j0+UjH/kITjvtNDzxxBPs+wIPV6NJB29qsHApAvQGb6b57RVOwrQOVBMDIvvz1+c3YGvPEHb0ZfDHZ9dZt2nbB1qnydU20gdR6+2V4MWARjt1NhtyTaXXpF5tVJOmztZiaK7Z0Y/Hl203Xjdb0/D76qfEaqQC5aKdOgvo9xr10oa5cBnI5LFF6c1Zz0Wv7fmhqYa0lkd7RgMugqIQ0bRFLhvB0OQimmwfzSrHJKuhGVR11iIGlPJphwOYC8Ka1LfZGs0KU2cjYnSFjXpc6WQcaSVrISoLZOrM5MTJKt7mKM0tL6zrxLE/nYePXfsUejzuQTOi6V33HkYml5k5Vzb0MvnqxYAS8RhaFccAtxbQUmeTZdVZl1pUZ9V5ppa5029s9VadtbOzL4Mf3v8afv/4yoaYd4AaVGff9KY3eb7/5je/udpN77YEUZ2lRdxsWgFZKLSkaCF1ZQ+POqimEsV+RS70RlcXmDv7+VQq7nsutMUJNyB69tE0FrHRSJ21LXyqVu0lC3eVagcf2v+wFjEgTn0S8O8L6+JneJn1DxFKnbWlSauGJpM6GxZrd/Zrf2fqKC5gu9fo4q6iGs0Iq87ahs5GmPDVBZsbMQyzvYktddZsXO6fOqt+J1hEM7w+mlwNaJAazQHl/I5VQ5M+x+kIRjTp/cv19a0UOiZlcoURcVL/4P7XsGZHP55bswvf/fur1s+ZNZo+Ec0QnI/0erfVENHUa7JjaEl7tzjRVKnjruqsooBcw9yv1kjWYmj6dRmwpc76rbuumbccv3lsJa647zU8/Fr9FOXDpCpD8/DDD8eLL77o+ZkXX3wR7373u6vaqd2VAU4MyMi1pxFN74cQYAzNCh8e9UFvTSf1ehmPtDev1EWbsUtbnHAPK30QjRrNpNpHcziiOcqps1aV2Kr7aJa/15zSH+NqIxJGjWYNESSbseVXc+zi1/ybFQMi53i0lAFtCy71nNBzG2YvzdU7+rS/6+lMsS3oPQ3NpN7rlj4DtvMXhdRZ2/1qWzSMFr1DOdzy9Bo8ubycVaBFNN3UWdbQrDYjorzY1a4vdQoFSJ3VF5L+NZr9NKJZw7jO12h6P5+O42ipyWM1dXbIK3U2IsdM9yOMiCZ3bCPRS/PZVTtL//7LovXsZ/ozOcMYM8SA6lCjSdeRam1lpdtXx6FETA9mcIamOoakElxEs/r5VJ1najlPbHmYst/2iKb3b76ysSyo+Prmnir3bmSpytC84oor8K9//QvXXnst+/6vf/1rPPzww7jiiitq2rndjUARTVqjyTxQdFBprTV1VlkEt6UTupAHXSQq++vlVbLV0FDlWW7SNwzNHF3Emu1NbA9vLf3WKsG2IA+jj6apyFbdNrsMQ7OGQdbmraNpz8q+qosWzumibZ/x0NJr3BO1iKay4DYMzRCNKFUICKjvAtCrRlPbByIiorarCJpaGYXUvEaJaF710Bv4zl1L8KnfP4NXhxcm/ZwYELPb1Y4fanqh6tz0qg9TP2er0UwmSESTGVt6Q1SdraaP5lCuoAnmjVUxIE11lkQ0o9L/jxoHVHugGrh0xqio7HKZBGYfTe9U2mqg60hVgbiSsZpmKCTi1ND0Tp0tRzRV1dnq59MhzWFUQwq+b0ST/57ffB1WDelIEkgM6Hvf+57x2vHHH4///M//xNVXX433vOc92HPPPbFlyxY88cQTWLZsGd7//vfjoYcewhFHHBH6To9VBpiH0xBPCSCzTT9j1mjWENFsSiKZ8Foklv/2imjaIgPU0OQ8SvmCg1y+UNoPrYm0UaNZsG7H6/WwsZ3zMPpo0oh11TWaA+GJAdkWekZEU/l7fEu5P6t/exNz4jRqNEMSAxrM5vHn59ZhQmsap7xzmu/nbfe2+mzUM3VWFQIq/m797nHbtjtpjaYyYad9au6sqbMRiGhaazSjZWdi0ZpyJOS5NTvx9mnjdENz+Lpx92q1GRGqgdqSTpSigHRBqn5uYmsKA13F/VINTbVOMhGP+0c0yWKUq7MMSjU1mnQejkp0L2w8U2dDUCm//snVOGTfCfjIwdND2UegjhHNETA0m1NxzeHbPZjFuGZdNG4H07vWr71JwYG2hqoGo0azyogmfZ6pocnNjepvJ0OOaGqpsyFHNMOo0VSduFFxdvgRyNC8/PLLre8tW7YMy5YtM15/4IEH8OCDD+KSSy6peud2NwY5dS0a0SQ3J+vt8UudrcXQTCe0RaKXIqxXRDOoGJA1upFTDU1lEUsimqU+mqOtOhsgnbKy7ZW/RxX1qvXm7+ojfTRDLoQHmBpN5XPjFEPTbxI3oiRMjWZY3r7fPrYSV/3zjdLvnnqI9yLI2npmhMSA1kQhokmiCOoEm0rENdXroKqkUTA0ramzEYtocuOwev7K7U3M71Z7v6jXsTlgRHNCaxobh52L6vOqZrzQ1FkuG4Y+6zVFNJmx2i+iScersWpoeqnO1hrRvPTuV/DoG9tww1PAO/aZgP2mtNW8j4Dp9Apjm4AZRa8HMya2YtnW3tLfr23sxhGzJ2uf2cGIcA3m/CP82byDZA1ivJ41mhXoAtAMhXgshlafGk11HexqVIRmaObUiGb115hzWOWCpM76RIPVsagW0aORJJChOW/evHrvhwCgn+kdaIqnBIlolm/geKy4sIvHyqH6WlJnW9MJzZDzrNH0Sp21PGQ0oullaLY1mZ+ptI/miKXOBhCIqQTP1NkqIxI03bGWiKa90N0u5DSu2XtyUTEi6TmmvUlIhuZNC9aU/v3VO17ARw6e5tmH1h69Vms09c/4pQpXgmFo1tGZYoue03uJPqNJJXW24OgteaKsOtsoqbPqNXcXXeo4XlKdZZ7TqtP5le+pzk06Hqnbn6C09OnRVGdJ6qzyvHH7TFPl8gWn4n7R3P65dA/kPLdHHUdjNnU272Vo1vZ8qj0v39jSU7WhWQ/VWW4M5cqWwobOo0tYQ9M/dZYzejL5AlpQvaWp3uOJeEx75itxtNDnrSgGVEHqbKmPZlhiQGo/3HBT8NXX1GubTsRL95iXw6ZQcLSSoDGVOnvsscfWez8E8CkC6k1XKJjNwvlCaTN/PZmIlx7+SidB1WvSmk5q0Qgvb3XvkH1ytu3DLhIJsT3oQ5rXSV/E6n00oyEGFMT4qHZ7NGJddUSzPzzVWasYENmmuq/jlLY5Q7mC1nfS2D5Tc1IvQ9Mhk/1L67vwzhkTrJ/3cyrkmDTfsCKa2XwBGzoHtNcy+ULVi24/bKIrNIqg1rqkkjEtKwLQ+4up17G9KclG5EYLW+ps1MSA1HPYN5RHoeBozo3c8D3BpndVOSbaIppeNbgTW9Pl/WQMYaA6MSCg8n7RXtvP5Is14LZ+jPT5jUq9YtioKfBFp251xgWHKrgUptpnGDWafESz/ot8Ok+oxrjLNiaiSaNinJJyrWsf9V5IxmNV1+vSMahSMSA3s60tXYfU2SrvQ+vYakmdbU6phqZ9nuvN5LRa8EZJna0+QVsIHU58Rb3ROaXWvkzOWAhTqWhAb4FR6QAzQCKaWuos2Sd1f/NkcWPbR3WAop7pIMIgmpc1EUcqGcUaTZsYUHW/n/EwNKuJSAzl8oxyXfgRTS9xK7U/K+CdPmtG0p269dF8294d2t+3PbPW8/M2RWV3nwfZep9wjKgNuwaMCc5xamv34EU1Ec00aW8C6OOBeh3VKDdXWjDS2ETMohbRpKmz1EjPMU5Ll0wo6fz2rBf1bzWiqdZUa3NYXE+15tKUuWe92nvedi290mfp8ztWI5qq4FM6GUdTSi9ToWuRoAxm89rcUIuhOWKqsyMwHtHffWVDt/EZLqJpdCtgnumaDc2CPqZXm0ZtGJpx/9RZrRQjHr0+mkHEH9U1knq8Xr9Jx6BGSZ0VQzNCcB57dWDnBgvHYQSDlIfQXdDpSrGVTQaq8deWTmppb16ps4B9sa+mcqgGRiZX0Dzj1jS6XJ79DI1o+tVojlTqbOg1moo3sSkVhxqsqmbRSxVngRojmgGlu9V7lYoceE3kXJTEiGgOmk4Yji3dg/jKHxfjW397mc0qoNu958WNnuIgfqqz3G+EFa1bQ3poln67TgvfavtopogIhbpo0dKplbGhFhXksLCLAUXL0NQjmmb7g1yB97gD4bRc8kqdtUU01Zo3Kvahps7mhtNiXRzH8e21Vwm259frmR8gZS9R6SkZNprqbDKuObBrcWjRc1vL+TNrNENQnWX2Z0QimuRYlm/rNRzAXM9qv/YmAIye7C59Qzmc/ftncOJVj+Kl9Z3WfVPbm6SS1SsQ84amjxgQiawDuqGZYdYDQXAcR9v3audN+9jK12iqx+t17qgDdyQEqcJADM0IwabOqgIOlgmQpgmon3MfQk0ptgYxoJZ0QvMue4kBAfbBOG+JWgB6q4cgEU3aU6mSGs2R8jxblUirVXik4ioevU2DwAkmhKU6q05AuYKjRSTUfR3Xot8HXukvpoCMObHkCk6gCe83j67E3S9sxG3PrMVfnzd7ldEIz0A2j7sWb7Buz5omPbwv3HkNa8JYQ3poutRLnERdwKjODr8aTSOiqZxjdV9V50MkUmctC4ioiQFphmYmb8wtuXzBvhgKwUALKgakOhnVZ0Drq0dSZwG9NcBQrsDusy367IdtrO4asD+jojpbpFrnZDc5t0M1POtme5PaI5qcQMtILPK5UpOlpHdikBpN7lm3GfP3vbQJTyzfjmVbe/Hbx1Za942uu6rtqUqzn6ihyaWHZrUabtfQ1DO7qkmfpfdvtfezbQ2gXgf13y2aoWm/9+lzIhFNoSIKBYfvo6lG9ywTIOetdnEn6DQT5QuK1keziYgB+fTAs7WYoGqj2u9pnm3/yJjqWUsn45pR7X6f80h6bT9sbP2Yqo1oZjwW7tVENHexEun5qlOhbN46gNzTJAqi3qeVRTSdqr3Oy7aWJ+4V23qN92ljaqCYPms7N9bo9fA+c895WM2/qRCQS70iLOr9O0mJTpl9NPVFSYrUzukRTd75EGVDM3IRTSIGRIXmCo7doKo+XYyPaGbzegRSvWdam9TPKdk7ynlOxb1TrW3jRPVOvMojmmbqbLTuh7DQVGcZQ7PaeyfMiGZd2puwc8sIpM4yv7uE1GluD6A6yz3rtnlKrfnkts19P2WkzgY/N1x7kxafiGaOzCeA3kcTqC7iTA30au9DuxOvvD31I1pE0yNzhz4nUqMpVITNc6JH7io3NFNhpM5SMSAteqbvE30we4b4QV5bTJKUSfXhsavOKnn0Hml5XERTrR8KM6LpZZQF6a1YCTR1RE1nrmaBxUU0C071+6d560gNqXpPa6Ifibi28PQ0NMl+2VJlgng1dypGNrco4e6R1zf3YN3OAeN1wL5QdbfDTZxh1ftYDc06RVhUkYmJbWVDk9aSUGdQ8BpNNXU2uoZmlTZNXaDRSi51FrDPOdXWjatjRRN55tXTpo5P6gJLNUjV55uLaNLj46i2braaGk1jgVrniOY185fj8P/9F37xsNlarp54tTeh71dCD3FI13L+DNXZEFJnuTYX9VadLRQcdv59ZaNepxmkjyYX3Q+i7u11Hag2RlOyOmEomg0Sj8U0YR+/Gk137dOSSkAdJqoxwuh5q/Y+tLc44yOaagaIVxTVrNEUQ1OoAJu3Xn2YbdEvmsKhGn+JYQOzltRZtf6EtjehDxTN+7dFNNUFahOZsPottToqrrHiOLoITDqptzdxBwqqZOm3/UoYzObxqd8/jaN+9AieWLad/Yzt2vkt6nL5Au5avAEfveZJnPT/PYoX1nUCoOIqsZojmjZlvmol69V0GNp+ZShvqcWK6xNMr8VJAfDpeNykQBcwHGo0lyrv0n1UWbOTT1O1Xuu8R0QzrBrNEU6dVWutO5QU+FzB0c6bX42me24cR++Hqtdojr6haRO5ipIYECeK5adorlJtloUtogmA3At2J5TrpNEdUDHNkQboEWTbgjL8Gs1opM72Z3K4+p/LsK1nCL94eJmRPVBP/FNnq3tG6QK6Fn0Aeu4Hs4Waxw7WiVlnMSBbNO2VDeWIZqHgaI5SlyDtTbxax/ntA/2+GdEMfv2M9iYkosnNjWqGmFvKFSMGajVGmHHeQo5oaqmzmhhQwNRZMgZl82b/8CgS2NC89tprsWnTpnruy26N1dAMUJjsHdEsXmJOICcoekQz4WnU0G3bFgF6fn9cVwxTvmNLOXUHsmK/tPLrQSKa6m+FIQb0yOtb8eTyHdjUNYir/rmU/YztnHv9/j9f3YJjfzofX73jBTy/thNvbOnF74ZrJsy+hGaNZr7gYEv3YKD0V1t6UbUCLOo9aKTOKteC1hOrxoqXkUijtjnLgOuXPuM4juYR3sWcB9tAvn4XH9G0XetSRJN51sPoo1koOFhrFQOqjyGU1wxNu5iTX40mZ2AAev22pM4Gg96vtoimvW699iyLljQxDAtlR4KeVq+nu7n3SZ5ELIidqUVobHVKYddoVqI6W4sCqx+9g7nSGJMrOKG07wgKjWimE3VKnQ2xvQlQe/osN6bXO5pkm0de39xTChZ0DWTZMcmIaHI1mpa1lWpseaVxamN6Um9vUsn18xMD4iLHOaJ466Ku7apJbaYpx37HsXxrL35w/2t4crkeYLDqNKiqs5Zx0Os3OadSI0Q1AxuaX/rSlzBjxgzMmTMHP/nJT/DGG2/Uc792O2wLTdW7YfPQeokBlWs0q0+dVb3htI+moSjIKH9y0BYsrZYGvX6ps/RYivVfZsQ1k9ePwSWMBcG2nnIdw+ube9jt6UIZ/qm7/ZkcLrz9eaMnolszoU5CSaZG03Ec/Mf1z+KIHzyMb/71Jd9j4AwsoPookjqIGqmzqqFJGrMHMTQLxLkADEc08+a++g3C/Zm8tj/cok2tL5ykpIeu38UbdbaMAXeS4YQuwkid3d47ZPUk100MKK8amrrRoKVgkZoao4/m8Dmjz4Ma0VTHodc3d+OoHz6Mo3/0CJZv1cUxKE8u346zf/8Mfv/4Sr/D8cU2BkdJDMg0NPOscInNc16tF191/jQnSaRy+PrT8Zo6odz36RxGI5rquGETZRnJGk1u/q6Xc4c+4yMpCKLWwTcl44jFqu+fqGKIAYUY0QRqT5/l25vU2dC0lVPlCtjYOQiAV5wtfsYU/6IESp31imiS8h01dbaSyLa6FozHipFJvz6a6vigrkdVQaDqIprEgU3ECykX/ekF/PaxlfjcjQu1tYM9olneft6S9VVJ6izQGHWagQ3Nxx57DF/5ylewdetWXHzxxTjggANw4IEH4pJLLsFzzz1Xz33cLRjI2BeIruFiGxjMHmm6EaL+H6g8dbbPQwyITqZUkKXH2t5ESe+N05QH1bj2Tu+gA2E6aemjqaXO6oubWtPe1PPTn8ljY9eg8Rn12qmGrm1Rs2HXAN9XtbQgL38vTYzrXKGADZ0DeHw4jfcvi9b7Ghpdlom42lQo9bhoTZ4epdej7+2aRzL4AtJWo+kX0aRpR5woknrt9pvSVvq3tUbTmjrrFdGsfbGo1tnGYnqKeN3EgJRr0UHEGGwRzXSiuEBV7wn3fqHXUK/RLL/3l+fWY2PXIDZ0DuAvi+wKwADwrb+9jCeWb8cV972GdZaIb1CsqbMRimjShUomX2DTPm3RimprNNX7nqbLu9ukc1izJcVWy8oh7U0Akjobdo2mLXW2gogmUD9Fc/os09Yq9cJxHCMzAQCaEiEYmmG2N6lHRLOKucWLv7+4ET97aCmb9ur1my7bhw3M7YziLGA+22x7kyCpswFrNFNxs71JUAc+VZgG9DUSN19miaPdJcj6wQvOsW67Fx3HwZLhNObBbAGrtpfLVmxjqFoiop6elqA1moyzy8/RVK/MikoIbGgec8wx+NnPfoYVK1bghRdewKWXXop0Oo3//d//xRFHHIF9990XX/nKVzBv3jwUoqSM0CDY0sKK6oCml1eF3miat4cVA6rs+qiL4JaUXQyITkSAh+osMTB0ERglomlLnc26EU1iaCbivu1NzHSt2h5Eqhi6bIsZYbH1mHOjj5RtFrU39zi0HlZMRFO9ZgXHTAmhhJ06q08eeopVxjOiWTYseiwRBG4BaavR9JtsqJBC92CObZ3iMlsxNG0RTdUQ5p47zqkURkRTXQh3NCWrlpuvBHUB05xKaMc74JE6C4BN96aTuqo6qy4C1AnXq5YXKPZJddnEOIEqIUjtzWjDLVS295jjiW1BU3XqrBrtSvHOPDqHmRHNYUNT1RmIx0paA3R7gH2hVXWPYmvqrH0sCdJ/NyyoETFSEc0cySRxDYtqUyZV6FjvlbLpB7dmqDW9mI9oVnfeX9nYhQtvX4xfPrIcX7hlkdUQoL+517jm0r/d51ltbaI5c4kgGGdo2q6VljrrcT3VZzSV1NubVNJTVXXelQ1Nfj1Y+m1G8BLQU2fDqNEEvEphHKPNErd/Ku41ofNF4BpNZgzyimj+et5yHPr9f+JnD/ElXSNFVWJA73jHO3DZZZdh8eLFWLlyJX76059iv/32w69//WuccMIJ2GOPPfDZz34W99xzDwYHa5vYdxdUQ5M4b0sDgs1LQh9EmpYK0BrNyiZgz4gm6QtEx0xrH03VEEnYI5q2h7wU0SQDoVmjaS5gqQx2rdEe+qAv38q0yPDw9nMLO5unsmRoaoM8qdFk1Or8FgCcCA4QjhhQIgZrehVNkWtX0i9tTgrufOXyDnsdbdtw4SKYRmsOZX9nT20v/dtWo2kTO3FfZ8WAQkh/UY2vcS0pfQFYp+hKnji11AiVGmmhzb3dz7uUI16kRrOF76NpU+9j91F5v9Y6z0YwNLlnnXNchZ06qy6uDDGg4feoEUedfqUUW3UOi8eNVGvN0LSKAdXuJFOPo5L2JkD9njm63bAUq31/l9xX7vjSFMI4QxfQtZw7rs1VrRFNzuCqNqL54rqymM8zq3bi6ZU72c/Rc7DX+LKh6TpI1dRZ1RAF9Oe7kj6aqnPZa91AdTaq7amqteOLmYbmYNbs+WuLaKqGZjXPBWto2gxyMn7a1jUq7rhGM2A01Vmv9iZMVoWtNVp/Joef/2sZdvVncc38FegKoc1PtdSsOjtr1ixcdNFFePTRR7Fp0yb85je/wRFHHIE//vGPOO200zBlyhScfvrpYezrmEb1iNJ2H2Xjgr95jR5eakSFEQOqJHU2X3C0gac1ndBrNJVt8b2mbMaCuo/V1GjyqVg2MSB1EKCNfStNJaZQbzZnaKq/YSotBotAAErqbEEf5GlEk27Tb9CvpxhQIm5v5pwjxxGkRtMW0axmMcBJw6v1qoWCo+2jmjq7tWfImJi8xE7ce4CbzMIQulEXax3NuqHJ9QINgxxxGLVq/c/UsUFPhQRIOn+g1NlyX1f1/veLwKn7WKvoUkMYmsx4to2LaNpSZ6sV0fEY41yHBB2vqdOtXBpQ/lw6GUecps4GiWhWqzqrfG+SR8seFV4Zs06GJtnuSKXOmnPtsP6D6kSschwzxYCqHw/5Gs3wU2er7X1MnSbXzF/u+5vpRBxT2ptKf7vrA9UhPX1Ci/b9QUWZn58zLdliauu4oKmziepb3Wg1msPnpoU4oOj8mGXmEyCM1Flzn4PUsgL2dY2KW6NJl3yqoek1bnHOLttx7uzLlK5RvuBYM8RGglDbm0ydOhXnnXce7rvvPmzbtg233347TjnlFDz88MNh/syYRJ0sxrfohqa7gLamznpENBM1ps7SB5z20Sw4ZSEMLmUliBhQIk5VZ/nIhUpZDMic/PxUZ8NOnaUy58u4iKbqJQ8U0SwvDCe2lu8Hd3Go9SVMmPVu9Lz4LQDshmbtYkCJOFGky6vXV/FMxmNanZ+tvpdzDGRy1dZomgtwNc2KRmBUQxOAIdZEr2VLmolosvVc5jWrFC2i2ZysSWk6KHo/s5j2bNkcRmmP1Fl6DtSFQ8EpH4d6D3gZeVQ4quaIpiXNzVa7ORpwzzpnaPqpI1eKnrWhLy3c54iO503JuNb7zv1tvTTAFI9Sr7ktG6Ba41+9tya2qan8Xqmz5nt1i2iOkhgQ/d2mRHFsCyNzIsz2Jtz9a8vYCQoXJa1W7ZPOKY8v244Xh9uWab9JFH6ndpSdHqWIprJOmD6RGprF+8KvrzNFi2jmC1YxHDqmV9vqRsvAG37O28gayauFX0qLaNYqBhTcYUQddXoE2duJZ0Y0g/V2ZyOalvHPENhixBJHirr10Wxvb8fHP/5x3H777di2bVu9fmbMoHr/qaFZimhabl66cFUn/FpTZ6m0dFs6ySgAFrfH3cj2iKbukbLJWVtTZ7OuAalvp6iCF7yPZnFfalsQ0HO0bIupPKuLAflHVFVDc5riqeQ8/qlE3IgyGyJNfhFNqxhQ+BFNdYCm6Tdqjaa1vtfinWUNTZ/UWb+IppnKmcSUdlV5Vjc0aSRZS50dfs9m7NSaAqcuhMe1pLS62HoJk2j9DuNxkjrrU6OZ0KPwgNk+gT4rgxkzu8Pr2Oi9Uus5tgnFNGRE07IQrDYSqC88E1oJiHt+/DJQOHXaVCJeinTQ7QHBsmYqQctISAUT1BpJMSB63cIQEgv2u/rxlFNny89o9e1NSOpsyKqztaQN0t6+Ln2ZXFVCK1x2ya/mmVFNOhZObitHNN1U+B2eEc3ifWEbmwJH6gI4pFKJmHYf0P33gguMUGc8vcdzjHEK0PYm9TU06Wdt6xoVd7/pNVFVuj0NTWY9YzOow6x7rpW6GZoqqVTK/0O7OeqizIxoDnumAosB6VEGoPrUWTqBtpDUWcBeXwV41Wgq+5iIWSOa1sGQiWi6C2u/Gs22kA1NGlHuHswZC7ucl6HJTARqSoxmaHI1mok4EnE9DZHeK14G42A2r3kx1fTVcCKacaTVxYiy71QMqF2LaPKLA+45yBUKfK8zn1TJnUwtrOr9NuqSEnHsM7G19DcVBKJRffVau/ttMzRrXTCq3s5xzSlNfbmWCIEXtEZTT53ln2N3/FAdVq4RniHPMxWVcZ979b7xMvLoe7WeY3tEMxrqfkAFNZqWhUcYNZpJEoXk1GRjseFsBxJ5dxy93jrN1vQqEU1bH80QUmeblEiD1/ZGUgzIiGjWmA4+lOPb31ACpc6GJAYUtqFZS42mzWgoONUdLzff//PVLVi6WRcRpGOh6uB0I5lbesoaKHuNb9Yym9w53fY8284xfd1LDMel6DDS14VBzw1naKZJOZBRHmaJaLanaxQDYvbZdhw0zVY9T7axwr32NErclDLXrMZ38wV2PU0z6lyoUVqt3kYYjIihKfijLuhb0wlt8rXVI7rQGg19wneNr+pSZ9VJLJUopkCqD3Zxe3x9FeDVokI3RCqu0WQGUXdh7Zc625KKa972WlNnuUUGTZ9Vf8Mm6a+iRjSnM4ZmJm9f1OULjhH99kqdpZOwKipQtepsFWJAybheo2mPaJr7lM077MLZK90N4FOqtNRZurhKxrGPkqJEI5r0vLdohmbxvUHLxFDrglEXA0pqbQfqpzpb3m4iEdMiuO7ioKhGXb7OaS6i6UaySMokrfVznzX1vvGKwNF7pVZDk6aEa+9Fw85krzX3ml11trp7hUY4aN043Q9XP0C9D7K5gnE93fE8zmwPAHqtYkDVXRCbGJDXPMGKAdXL0MyHd09v6BzAsT+Zj4O/90/889UtgX83HiuvLWyK4pUQphhQ2KmzXvuirm/uWLgWR//oEfzw/teq2t68pVu1v7XymGQck9UazWEH6abOsqE5bUIzmrV51i+iyb/uFalT0Z7l4Z6q1Sid62uF4jMei8XQmuLXhMV9Nx2XAFWdDUcMyC/Y4TJkyeBRybs1kzR1NkBE07aWsRnUNM02kx29CUoMzYigtRBJJ1glN9sNGKS9SZKJ8gVBnUDdSTdos3XAq72JuuDw6KNprdE0DcgUE9F0G+7qaSiJ0iLHtt82HMfBk8u3a95HzqNEBYFs7U0A/hhVMaDpJHW2QGowqfePi2h6TZbqJByPAVM7yhNatRFNdZEXp6mzWh9NfXHaHkAMyLaA5Lzy1YgB7ewrD9B+EU3al5Ged9WpkKl7RFNJnaViQCOQOpuKxzXD2j1OOt64z6d+z5pZEa6XXP1ceZuqs8J+bEZEs8YaTdrf0eu3RougkQTbQrB6MSDdaZQiWRbq/4Hy+aPjtS1yRp1pLrR0ofSZENq06CId9vPKjT31qtGk17cWB9U/X9mMzd2DyOQKuGPhWs/P0lROFzUaU42hmckVjOeyljQ/NnW2BjEgr2NSo+k/euB1bOgcwG8eW4m1O+z9em3Pl2EYkKi+Kga0o3cIuXwBW5WI5t7jW7T71XUSV1yjGTiiaWaTpRlDl9I7lMPnb34On/zd01i9vU933iljakvadFq65Mg84VIPMaDAqbPK5yqNaDan/A1Nm+q1zaA2UmfrNB4FQQzNiEANujRT02YboOgCVU9LNb2OlSw61f1yvUVJEtG0KUYCwdub2Ppo2tub5I3308yxAsUoEx20q43w3vjUanzq98/g369+rNSsl1voLNuqp8F4GppkAeM4jjV1FigeM00dSWnRoYJxTF4TtxrRnNCaDtw82At1IE0GVJ1NJuLoaFLEN6xiQJYUcsZQ80uf4Rpme0Y0E3HMmOQR0SSfb2UimvWq0VQnoo7mpHZP1Cu6QtOe1HvHHZe4qDAA1hChaqOxWEzz0nMCF94RzeoMzc7+DC65awl++MBr2oJCFf2hmR3VCgK9uK4Tl9/zChau3lnV9ylBr3X47U30KENCqxsfNjTz5txERato+nmacUyoEQFb6lgY7U3UccvLAOfuq7r10STbrWXcUOdnv4W5LV1Rz76qfF84NcwotTfxOib3nDmOo9X2U5E4FdvzRa+jqTpbTp3d1Z/Fxs5BLYtiGjU0fUqu7Nli9kid7fvuXKPWadrWDn98di3+8coWPLViB65/chXb3gTwblXC/TYAbR1Z7z6adN2d0RzoPjWaZK4Ikjpr6+NrjWjS1NkQlO2rRQzNiKBOVM3E0CwpLVomTurRzJJFPlB96qxqRLkeJiOi6RqazHb7M3lfae1UPG6NaPq3N2E85El9/6hQTDoZ1+rXKonwPrZse+nf814vprpw0vbLtugRTc0DR/pe0t/vHsxp53LaBL0/VnExpqet0BpNw9D0WPSohtWElpQ26IUR0aR1WOrETaPvaupsJlcofdZxnJLxan0OmAHXTwzIr0ZTvTaJeDG6ptdoVmBoDu+/LXJZay9NrUazZWQimjSFqZWNaPIRKi2iOXyeh8jiCgArMKQaLF4GQLU1mr94eDlufnoNfvPoStz9wgZ2e1TOv5qIZi5fwBduWYQbnlqNz9+8qOrnTSWo59qeOlv5cXDp0UltTBrOQGEWiCmSOkvnES4Crrc3CTd1VusHmvaPaGYZ8TVg5Go0q22zQbfl51RU31fv/XQV6ZIqnMBJtefOJtxjE7sLgqG2qxyvO2bTZ7/TI1XX3qbOLohEI5oAsGRjuR9nazpRLJdgWs3Y7ltrH82AEU1t7k6YPVVt99OKbeW10ZbuIba9CQDWaVn6bSJC56KnzlY+n3JOhaCR3yARTfd1LzGgfMFhlX6tEU2r6mx4Ss61IoZmRFAXGEbqbIV9NDm56DBSZ11j0BADYuogVThPKY2EWGs0iaqsC1ujyXjIi9soGN5BbRFUwSJc/T034sZN9EbqrJZiGCMqsfr12E6EO4yIZq5g9CWkaWWmGJBHjaYyII1vTWmDHq1DCAqtZbOlV2k9XxNxLXUWKBqKK7b14rgr5+OEqx7F6u191gUkd595eemHcnk2aqp6pvXU7OI5Vms0t/cOaZMg3bcmRgSJExwAak+d1VRnm1N6pGgEIppUddYdO+hCpSzaZYq7+D3PnCqpl4FXbUTzmVU7Sv9eurn8LNO+ryo2oSAvdvVnsbGrmP62sy/jGQkJSlDPtW3hUU0kkJ7nZCLOtq/hUt78UmdZMSBlO7aIXvXtTcrf01JnA86/LrXW/tswDM0anBOqU8IvXZXOoS5aFKsKhxYX0axWuMQ2NwxmC1U7cej5nthajiy68wv93Z2ehqYtYEAiiSS7Y3xLSnO2vLyhbGjuPb65WCPJpM5aazSZdnS5fMH4vFU0iBmrg9Robu4qp/tmye+pz7i6JjSCKZYazXqmzm7tGcSjb2yz9sPWHOg+7U3MPpp8OygVWx9fu+rsGBUDWrZsGX75y1/iuuuuQ09Pj/8XhBLqIrOVps7mTC++SpBCaU4gJwjqtt0HP0Xam2Tz5iJRhXsQaOqDVXVWeeDUQYTro5lmUvLcz1BvbFpNK6zgfKiDZ89gbtjoM7+/oy+jpWXqIid6/RIdVFTF2nHNSaMdy1CuoA1kbI0mFQPyMDTUCN7E1rQ2WVVbK0ML/DnBiDzpcZhM6BFNoDhZ3LxgDdbs6MfK7X3486J1HurLvKFpUwO1pVOp3mhuMqUy8hs6y/U49L7WjCkfMaAwU2fHtSRJVkR9Fr1UZl5dHAxWUqPJ1HmXDAzNIDWzO7wMI1qnF+QcZ/MFLSNBjYYUPAxNW785L+gi2ysSEpSg45k9Ja6ayCwxNIkzzV1M0vRawJybuHR1AIgraXVqmnKQFlqVoKnOJnUjmBtLbA6iTJ361tEFo61GNQiqseG3ENWyhywRzWrmCy4lsNroi5dDrdr0WZpl0dZkOtPMiKb9t2zrOK9UzKZkscXP5Laykfvy+rKh6Tqjm5lspEpqNCtRXdVrNIMrEG/uLq9vMvmCtlZQn/EWi4K5TVwOgJ4Zl8lXrATOOSOGcgV0D2bxvisfxTl/eBaX3vNK8XXaBsYicqjijn9mH03/3uq2OmO76myDRzSvuOIKzJgxAzt37iy99sgjj+Dggw/GV7/6VVxwwQU49NBDtfcFb/qNiKbZm0odMNQFOY2o0SgDAM2wqkx1VlfDBYrpDWr2bFnIo7qIZjIRt/bRVB84NdrlPjRDOdMQoKmzmbxZo5lkoiRB0CKag1nPKJQa1cyRulmqtKiiRjSndDQZjZAzuYJhuNKIJjUsgqrOTmhJaZNVtV4wmg7DTUD0finWcuqKyz2DOS3Ks6s/azUsuPm04NijWDuYtFn3N1w4wYPmVAJ7KIJJ65T0WSpmw91n1hrNGiITjuMYYkDVKABWivrs0BpN10lF7+9yH02zRpOLIOtOCjMyVonqbJCoxoptvdp4oT4f6gKBPpfVRNBo2mAttWQuwWs0/ReQQaHOMjomldW/9ZKJ4mf1WuIgYkB6e5PyOVTnJVvTdD/U79EFIHev2VLeuYhRGBgRzRocVKox7LcQtUc0zTKfSuBSAqsdrzwNTSZ9dlvPEL502/P42h0vWHtt0rUDFzUzIppM7X95e3wEjzpKufOtKs/SiCagp2CWDM0KajQr6SNJ5zogWERzS3c5opnLO0arOxfVaFTvcTrOqvOIem3yBadi44pXnXWwcNXOUvbTw69tGf5s5amztj6atAyD67VqS521jT+modlgEc377rsP+++/PyZNmlR67eKLL0ahUMDll1+Oz3/+81ixYgV+8YtfhLajYx01ykFrNLl6xHFKY/v+rO65oXVlQDips63KQ8wtoG0DC6ceqrc3iaFVHVSU41EfOHXg4YwVro9m8TNMjWaVhrc6ofQM5tBPWsvMmlyu31MNTSPVlVlku6iKs1Pam5CMx7R2LMXFmD7I0+gQ9Zp6qs4qk+LEtjSrXFcpNB2Gc5zYJowOojyrTtqZXKFiVUxbxMO2GOjsz5TvP4sAhq3FCe1hm4qbkXPV0FQXbAM11GgOkci6kTpbp+gK7Z2oq86a0UfAYjgwEc2yQcqo06oRTY/7gQr0BFmUv7apW/tbjTLmPSKa1aTO0ojmrhE0NMNUnTUimpb2Jn4RzVzB0Y3RRAyx4cFPFRdyo8eFgqM5aMYpPairrtH0aEXFLSBt91S9VB5NQ7P6caOSGk11DNFUZ2ut0WQiNW4/1UrhnJcuu/rM37n56TW476VN+NviDbjjOV51l64dtLWKa2iS393lYWiq+6j2TPcUAxo+x6ogkBrh2ns8E9HM8eMvt30X7h6wG5rmWO2nOjuUy+uZXvkC1FOnigG1WlRnjTR95Rqr0Wag8vRZW+qsOme7++KlOsulvgLl8YPOS+r6CODXpKojWX3m7KqzVAyoPo6vIFRlaK5evRpvf/vbS39v2LABzz33HL7whS/gkksuwTXXXIPjjjsOd955Z2g7OtZRb+SWVIJNNcxZBijquclrdW81ps4qD6ra1yjFeastCxTuYdfamxAREcfhmw13NDOps5oojrmAdX+Legep0mFQ1O30DuWMh3zfyW3K++WJIEcGZe78uaiKs1PbmxCLmWI6upc1Znj7jRpND4NRXdxObNUjYWG1N+EEI+g+uudEb3GSLTWndr9baeTIJgi0o6+8XdUTms07pUi+TdJ/xiRFEGhnv/ZdlxS5z9zjVZ1Kk5RUqFoiE3SxNq4lqStN1ym6onmjaXuT4QWwzXBgI5pqSlSpNs88h3pE035vGzWaAc7xqxuJoamcW/XeU7NEALPuJgh0MRBG6mxQL36oNZo0ChmPGwZk8XPeNZo0dVZ9T12EloS1snkt/V6dF6tu01JQDU2zDINiy1AYqT6aNUU0VUPTZ6zX9RIsqbNVHDPniHac6lKf6e+rrbq6mIim2p5q3U6+PpquHbgyHzonefXttK3jDDEgxbB3zzcVBHJxBQObmbIX23zJrXv41FH/+9tNpeYcyipbu3X9iWy+YO1NzM0l7ndU1HuxjZQZVSoIxGlSZHJ5zQB15xD62Yy2BrdENPNmRDMRj5kClj5iQKpuR9A+mg0X0dy1a5cWzXzyyScRi8VwyimnlF5717vehbVreQ+RYKJOVq3pBCueot586gAFEI+PFtGsLXVW9RarDzGtCVT3k8It9PUHLW4OEO4iVdlXrUazZIiakx81zLjUWc4ACIIe0cxqk0NTMq4Zaeq+0bpZr9RdLXV22IPp5cFKxnXV2XzBMTxqQWs0J7TSiGbtYkBJI3V22ElA9tE9JzQ1SU1x5VLr/LB5/FTP6v5T27T3XI+0TUbdGtEseFznghnRnKx4qIMYQa9v7sYvHl5miE3RNJn2pqRWR1Wvnn40dZbzQtsMBy4VkksX444jqxmaHqmz5NkKcj+/tknXF9BSZ1VDk6bOhhDRrKXfn0ut7U2qMZDowiiVjLF9UjPaOGhGrOnzrRmaTISUioSMDyGiqSsL+/c8tosB1eeZo07D2lJng0c0qThN6d+aU7zyfbGlBFYzZtHvqCUOXFq6Oh7YxgbqbGxjWmiYYkD251jLTKshoqlSjmiaQn42gz1o6myYNZqblbRZoOhYpAr1LroYkNqJwMyecGkiiv6hRDTzekSzmHVRYFJn7ftY/q5p/CdiMc2ZCvCps+rcsNe4cieCwO1NGq1Gc+rUqdiwoSz5Pm/ePKRSKRx55JGl17LZLApV1kjsjqiLzOZ0gm0HoT7Y41p0w0w1eLim2FWnzqoRTeXB55Ug+evtKwZEFqjF3zXrC9qVdGH3oeHEWor/Lg82g9mCsUCsNnVW/WzvoB7RbGtKWrdr1u6ZizAX3dBsGt5ne38o2i4lV3CMCJaXN0s1NCe1pbW+hdUOTuotlojF2DoeLt0O0CPXO3ozmjJsJl+oeAHZM8RP+mp60z4TW7Vnzl2UZBhHhvt5l/Wdao0miVxr90NRUVPd/0oimv2ZHD593bO46p9v4Jw/PKvd0+qk0t6URDIRN5wt9YCKAbWkyteOa29iMzTdY2FVZzn1UuWZ8Ypw0/f8zrHjOHiVSZ11HSdeqbPViAFRIRSvSEhQaq3RrMZAowujZJyvT9YimnGzBjdXcKxjOmdoUn0CtaSk2hpNr57HXEqcLeV95CKadsEz322R1Fmv7VBxmtK/LYriQbGpaVbl8FDOTTymj69cWrpqQNjUwIcMQ9OsHaysvYktoulvaE72jWia2UhW1VlmHVhZ6qw5FvqlUauKs8Vt2MWA1BRlTdndI6IZixFhyQpb/3BR/WzeMQT8BjJ5z9RZ29jjjq1q6mw8rq9Xi7/Jpc4qqdJKy7v+bN6YexzHMZyY9RqPglCVofnOd74T99xzD5YsWYLly5fjjjvuwDHHHIOWlrKXf/Xq1dh7771D29GxDk2dVZU/udTZjuaUVren57Dr6WwANQyD33CcGBDA101ZazQDtDdpSup1hq6nWn3ggqrOAnoUhBpmNHWWS1OwoS6oegZzGMjqhjiX5gfo1ySViOmqs2TA36ZE8KYMe2S1iCZZ2BRrPkl7E0tE89E3tuGYHz+C8296rnQfaGJAranAEc18wcGaHX3s4kQdaG2ps0YKTNyNaJYn3zU7+7TPZHLBDE114LanzuoG9oTW8u+6C/4sM9kDxRRjF3VA90qdzRLPKABNRdDPCLrvpU0lReINnQOaUaL10Bw21GvtbxcEXdQrxioF2gyHJOOUCaw6qz5bHo6zStubbO0ZMmp3Cw7Q6/bLc+yGZjViQKbqbLCIZvdgFr95dAXuf3mT8V5w1VnLYqiaGk2mDpeLWOvjoHl9s6T+XM3ESTB9OdWIRToRJ30va49o0tTZSmo06xXRpM9ywaneIUi/53Xv2BxGulO8CkPTMj5Xk+pHjTO1FQknBhQooqmksDYl42hT7rFqxIDshiZNnTWzO2yps25Esylp6it49X+lVBvRDFqjuaWbMTRJtpeLteUdzZ4gRlq7ltpcaUSTP376en825ykGZAvmuCroNKIZi8UMpzRFfU5c8SegmGZO57XBrNnbN4wezdVSlaH5jW98A52dnXjnO9+Jt771rejq6sLXv/710vv5fB5PPvkkDjvssNB2dKyjemxojSYnBpRKxInCI586WxZcUEVJgk/AWtsVxcPEGVRW1VlODIgcSyzG99K012gWjObMaS2iaTc0m0jqLJemYEMd5HozOa2+pDWdIAasMvCQ+hbPiKYiBjS1FNEsb5emg6Rpz7qCOci4i8pfP7Ic63cN4J+vbsG8pdtQKDia97XY3kT1ivLnJl9w8OFfPYFjfzofl9y9hH3fJRmnNabuBMhHNMcp13nNjn7tM0UxIP/rpS4wbJPNTmJoqt8pGZrMZA+ACEJYnj2mXyr1jE5qKy8c/EQ9nlqxQ/tbvffVSchNx+LqvMOGOrVaNTEgM3VLNRySJN2b7idXw8c5KTzbm1RYo0nrM106h4VEVM9xGKmz1arO/uiB1/HDB17HF299Hs+s1O+LoAt09XNpknFQaYSMCtDFYryhmWXnJlKjydR+AXoE3I0I6GJ1CWuvzUrQazT9U2dHukaTW/hXmz5L99HLULTNtWmfujw/woxo0n2kwnKUAWV+C5o6q439rgOKjEE9gznreki9v1TnJhUtpC3ZAL3UwmVcc7IUxVPnbjc6Z3sOWDEgjz6SxuuMoak6xLltGRHNXEHLfooHEQMyBJ/0cZhLbQ4K9yxTMSB3f7wjmpYo8vB9okc0XW0Rbx2Vbkb8yYWuccJUcg6DqgzNY489Fvfeey9OPfVUnHbaafjLX/6Ck08+ufT+U089henTp+O0004LbUfHMo7j6BHNNK86S6NinPpZ8XP6Yrf4+erEgPqYPpru79Pt2SapXiZ1kUZCANIDaciNhiips4qnynGKA52thk6dCA3DLKTUWcfRe162pknqrGJcZsmC3JbK7DiO0d6EHo+ROpswazRtqrPblG2v29mP7sGs1hakmDpr1nlQXtnYhVeGF+W3P7vOGHRpexOtNycToQfK96oqBrR6hx7RHAqYOqumTFUT0SynzvJefG0y09LW9c/TfqlGRLM9WETTcRwsWEENCsXQVCahDiaiWa/oind7E06wizcc3GeAilwBpiqp+n+6D8b+FcznwMtRQdNmXdxoiPpV6kmvro8mMTSZqAvFcRz889Utpb+f9HBAeMEtZF3sYhYF1linDhaARKI9VIU10aqCY42cxRkjUjWWm5MJVjugUrwimqwYkE11tm6Gpvl71SrP0giml2icTRit1vYmnAFIfy8o+viRQDPT11dFTZW0XS9qvOoaAsPGHHOv2ZxG6vao1oZ6L3HneyoT0VSNDm7utqfOMoYmJ4ZjM5iJkr66n7bvcTWauqCcKgbEtzcx+zLr47CeOlt7jWY2b9ZjsqmzWbsx7OJeC01pN24Gg1hDUxMDatbeoynCNFMGAIbqpDwfhKT/R3hOPvlkzbhUec973oPFixdXvVO7G3SAa0klfGvaUrT3pPYglreXYAzNSlJntYimrb0JU1+l0svkyasLQHcfW5vMiKa6r+1EMGgoZ7b5KP/b3p/K6KNZwYKELmq3KoZmW1PCGqnMkgU0V3cGFI1i9X4oiQGlVMNZP59GhDTvGNfCnUDU67mtd8ioW6Gps7aFh2pg5wsOVm7rw9unjdNec0nGY2hio1L6Z1w1UtULvWGXrgQYtL2JZmgGEAOyRTQ5ZT2ARDSHG0PHYjGjD6SqJkdTZxPxmCYG4deTlU7S6qJAnYTcOjUuEhg2tB5cTV10FYKtNZpaurdpiLgGCG2D4jiOdn95Pb/cImsgm0cHSXt1oa1NXNxFY14bt4rp/nnG+H1pfSe+fPtiTGpL4/rPvttYULpUkzq7sWtQe/5WbtOFoYIaOOo90ZxKaAv+XMEB0cHBxs4BnHbNk+jP5PHbT78Lc/afXHovy6TEUucXYKqNA2bqrDXVmoloavcWUd8Oo0YznQjSR3N0U2e99qHSbXlFw62psz5RLD9sYkDVGOq6Uag7vjhDUx2Pbaq7tEZTW6eU2puY98Wu/oymeuui3kN0XOjL5DB+2OHJ99E0I5pqvR7Xmsw2PnLpmZyhZbum3P2gpu5y32NTZxmjC4CWotxvUZ1NKOsGF84REATHcSyqs6Zzuz+TN1VntSwbi6OOqfV31bT9jHRVDGhyWxPSiXjpc3SN2zVgGtgNJwZ07rnn4p577vH8zL333otzzz23qp3a3aCTREs6waYg0LQjXZWrfGNxghV++d821O2qDz7fjNtmaPqnzha3b0Y0bTWaQPG82MWA1JpG/fymqVBKBQ8gHQDUgbM1nSTpD3zUpRjR5A1StbUJoIgBeUY0zZ51tI7BvYfUAXt7z5BW59eaTqApqSse2xYeO8h+vrFFV+qk6TB+EXr1fKg1mnS8HsrlAy0gdUPTXwxoclsaE9vMiKYt7VO9V/OKgIneVzJupJhrol/JuNYyiPZkVZm/dJvxmnrf9nCpsyMQ0aS11lQ8ZSCb9xB3MZ8VNnVWm4AdYxL3qo3kJnyvOk1bRNN9TtT02ERMb7mh7sdPHlyK1Tv68fzaTlx+zyvW36OL7CCG5uK1u7S/V24z65iDMKQZmvpSgFvo/G3xBmzpHkLPYA63P7tWe4+LbqR8U2fN1OhiexNLjSbT3oQuxr3UvINCs21SCd4p6GIz8kZKDMhrH3y3VUHqLDW4uH8HjWiu39WPvy1ej119GWvqbM2GZjLu2xNar9G0RDSVY2pK0oimmzrLGJqWOk1N1LHZ3j2AKuUDRQODokU0mbnbFlgIWqNp68HsV6MZJKKZzRf0NFLlGefq/QF+rFHR15HBI5rFkgHm9VzBcEL0Z5gaTeVvm6Hp1mhyqbNenRCGSIuVcS0pEpjR949z3lTjBAqLqgzNG264AS+88ILnZ1588UXceOON1Wx+t4OmvVgjmqrXmPSsG8zyDyIX0awkvUWtP2uxiAFxipEqvcxNTxeoAF/8rS461JRKoPjwqWl56jlTj1c1dOOx4gInjNRZQK85aCUpz+oAT9ub6Iur8jGqabMdTcnSRKluVx083b6EmuHPpM66k7Y6WG3rHdImQzeixwkKUHaQSXQpNTRJxFpXozNr99QUU3qdVTI5s/6UQiOFXOpsoeDoarvtaUzwqdFUr1kraQxdVknW04DofUZT5G1ZCZR5S7car9lSZ90aV/W3K1209Q7l8P9uXoRP/HYBVm3vs35Ou69JjSZQXCDYDIcUO4Yo98TwPZMiEU06CXs9v3nmXrFFjvszOe1Y1WiD601Wfyoej0EtD1IXD08s3176998WlxXaKTRtsHfIXtvlsnhtp/b3qu19Wtpu8D6aqsiJfy2imgFA27Do45sb0fRJneXKOjwi4JzqLFWF5upCK8FxHKP0hGvTomJVnR3JiGaFKYKlbVWSOpvn59pKRcf6hnL4yK+exNfueBGfv3mRtaVP7amzuo4F99yrr9nKRKjxqm3TrYPkDE2L8qym3pvSW6Kpa0EudTadjGsaBgAwbXx1EU3u/qxEdVbfv+IzogVIyPl0HAdbmD6anKYIQLKGlHkzS9bBlGpTZ21rHU7Ez69G0+bksrU3AXhxPBc6T4xrTnoa1Fw6esNFNIMwODiIZLLqzNzdCjW/OhYzDRauqDuZiJGHWvWmmOlJ1abOqovfNl8xINUzVd4GH9E0BwuuEbI6GNJem0MeaVY21dmykmXlqbP5gmN4vLaSGk3bQkdfbMeNdEAXVQhoipJ2YxMDcq9DgqSMcR6xXF4/X9t69NRZN6LHSaRTdvbpE8Ybm6mhqS/WOE+netwJZZClE6mKm47pRToRR4dP+kzngFmbOlFTnc2Wfq+0XeUY1GcBUFWSHe3zNMKtLuSaUwktHd1mAPUO5bBw9U7jdXVbnBhQLbVTf3luHR58ZTOeXrkT1z2x0vo5Gv2h4ilFQ9PfcChFqJjUWVqjSVtMhBXRXLq5p/R8J+MxHDZzYuk9LnU2GY9ZI5pB4RYEflHNF9Z1an8PZPPYpEQKwohocnOEmuZLz6GfAcnV1rLZNjl7H03OuUlbbnDGaCXQ7yTi3grhQHWpsxs7B/D7x1caac9BqK8YkEfqbM5cVwDexgXHi+s7S47KZ1fvNDKOSvtWhaFO7x3OKFRRW5rY5jotkpvge3CzEU3Lc0yfAa5dCj0Wde6ZQtJx957ARzT925sEi2jaVWfNZ9nL6bCrP2u8liU1mlYxIJvgHhPRbFecwDZFYw5r6nRAQ1PtIevX3kTLjAmgo0Kj/uNaUladCO7zQIMamjQv2sVxHKxduxYPPPAApk2bVvWO7U6ohkNbOolYjF+Y00HU1oZCb4BbfepsoaCLFFnFgIYfKvVGVqND3GKKEwPSBxazRrMlpasKDmXtixI1ckIl8Olngy7MuIFZjWi2pROaAatOlNTjbzN09R6a5XPYZDE0S3VOpObT8FTnCkafsG09Q4biLKB7RXNMdBQwU2fNiKaeGsLV8eiRAyWi2eRhaOYLbC87lbSR3mQOutRQntiqRzQ7fSKazak4215Ij/DFNIdHjkY0U8Eimk8u384+s1qNZshiQKsVtd/NXUPsZ7joT1MyrjmZ+rM56znknF+cYZ8kzyp1ouQKjlUlla3RtJzn9Uo98L6TW7Vm76XUWeU0JuIxTaBGjWjS2qsdvfw55EQbujwEgTK5Al7e0GW8rhosgdubaEYa7Rdpnje15yddZOmLPy6iaWa92FJnbXXRccaoN/vWquNq5Qsr6pig9e9sexPlXASJ7nUNZPHRa57CFfe9htOvfariyB33+UrbONi25ak6azF8bA5vG2uJkriKOh7aFv5e0PGjycNpmi/oKq/W1FmyTe5+4O41W4sTL2PYGtFU7uspJH1Wi2gmzTWhbeynvbaL3wke0fSt0STfo4qzpd/M6XOmi3ovqCJu3Biisse48vnY3DVgvG/D6/rTe2eAS51VjsPWMs+9Xwra+qj4f73vtf79bqa7QatHRJNNna2iXVBYBDY04/E4EokEEsPF8Zdffnnpb/W/ZDKJ/fbbD88//zw+8YlP1G3HxxLq4OJ6KZoYyXC6qGu2pDiy9TJVpM5SL44mBuTT3kStkaOTILdABUhufWnh7hXFzSOjtg1RhFds7U1cKXbVEA26IOHOGzXEaZpf+d/6NUlbvFdaD812NaLJS3Zzi/Gi6qxZo0kX2Dv6MlpNKGdoAvzigabOrt81oBnAhhhQUp80AFNIxqWjmRdOAYYjmj6OEtpUm2vavLNPTzVNJeK8GJDFSIrFYmzqCq3RVO+HbEGv0WxJJ3xTuwC+PhMgqbMhiwGp19c2XnDRn1gsZhyTzXDgok+cinSKPKuc48OqksqmOvLnWT2Hk1rTJVEOAOgajk7QeiL9GMrb2mucrgq4hGmb4jgO63H3imi+tqmbvZZqnWbQa62LAelLAa7lU4/isKHnkKu31uvQva4vTZ3lU62TzP1CjQDOuK0E7p5OMg4RFfVcqA4GWxuxH97/WqlWbVd/Fhs6gy+GAf76+rXtCbqt4O1NEuy/g9x7a3baDU11zlMd7EGj09Q48xIDogtv20Jcj5pTZePie5XUaNK1QJul1s5WEzulQxcE0iOa5pqwZtVZ5poWCg6bncBpMbhs7ubvc/W6xDVDU3c49zOGc5oxNPeZWD4f63dVYGh6XP8BYlT2Z/LM/VNuC6WuUZoYhy+XOuuVddg1YM7v7R5rnG5ODGgUazQD57bOnTu3FMV87LHHsO+++2LWrFnG5xKJBCZNmoT3vve9OP/880Pb0bGMaji4C2TugaWeHK7wG+AVXatJnaUGoipcwuWTqwPSpFZ7ewmzf2Jx3zjVWZpK15RKlIzQIZJmZe+jqdYimYYZ59nj8Fu4tDYltdRa9/OO4xiqjFQl1kWPaCqGplZzWj6eUtNzkoYYi+nXOJM3vXL5goNV28uREDd1lLY6GMzmjbTlHX1mhGbZlh4csu/E0rZdqBhQyXFC6lZdPCOauYLVW+iSTsS1Os8eJnVbq88cdoqoqbNu30T9/tKzOFrTiZJxzUU0Uwlzkao6JppJRNP12lIv7YqtfHqdLaLJ9dGsRAAM0CO+GcsEzEV/gKIsvfuMetVo0rri4n6az3OKPKvc9edUUgHdMHSxpc52kXM4oUVt9p4d/h3d+25LnaXG+ZINXTj2LVON/agk5Q4whYBc1IhmNZ5ro0aTMdDVzBQzddast+bKA6goGhA8dTYe9zNca6/RpGN8Mm7Wv1NUR/GEllRJEZh7bp5fuwt/XLiO/GaFEU3m87b0Uz+GjBrNgKqzilNXF48rlBS4bdgimqlEDONayuN2JlfAym29+NTvn0EmV8BNn3s3Dpw23n4w0I37dFLXseCa2tO/uX03Ipqqk51JCXexPcfUeWnryWyriaWCQHsrEU0ujZk6dLlWUi6s6ixjaNKsInes9opu2zJjVCeJ3t7ELMMY15zyTZ2lhqbf/ehiS53O5jkxoDx7rrJ5B+lkTDs/Tcl46VyUIppcH02PGk19fi/eL5oYqFGjGa0+moENzfnz55f+HY/H8dnPfhaXXnppPfZpt0M1HNwoCaeKShexNtEWLiVRncwLTvGGVz1zHP3ES6Iagnwz7vI+qAqevUM57WGniys2ojlUbBlBFxJ0IAuSltfLRACr6Svq97m2dIJNn6C1nSmiRqoOSlqNZjtfo6mLAXE1mkyaZTbPLrCXbSkvUCdYIpo05RYAdvaa3to3VEOT1CCo93PZcWIuTgG9vQklVzBbt1CakqRG02fQdY9XS/ceFmWx1WgCw06h4etVimiSuhWasj5opM6aXttxxNC0eVpVD6WmOutGNCsU6VBRU6Nt3+WiPwDQki7/7kDWXqOZ1NpfmM6qVMkppKfpcwtzq5x8BTV1qhd4fEuK1OyaqbNxj9RZujBZMpzu2jOYRWd/FjMmtVr7B3ZaREQAvT4zGY+Vjnvldj6iqUrge5EYNqg4dVgXdX+N1FkmoplgFuS62BNfm2S/X8wxjkZ9/NJc/aAGdtJwCnpHE9VevGY9WgHfuvNl4/uV1iJyxqBNkMgLx3EqimjSWkXu30B5sW1jzU5eXGxcc8rI5Prr8+uxaTjl8ronVuGqjx9s3a77HXW/vFRnuflwKFcw5j+aMsw5ibksG5sYUM4wNPlaO9vco64LJrWltf1t8oloNqcSyOZzxvZL32HmGtbQpL0sGTEgun2qOFv+TTMwAsAQlnPHberso+wzsbX074FsHjv7MpjM9B819sMjdZbeKwNZs0YTKBr36WTcOOdu5kq5vUn5O1xEk2ZDcMGodkbTxIXLlGmI1FmVVatW4Stf+UrY+7Lbot9Ew6mzKfOBpd5gm2gL1zw7ZUwG/pNbP/E0qRMKl06kRTSV1Nls3tENsDydzIdrNElE0zTQSOosWcSqg7G6wNeUXBlFTr8ImW2/Ka3pJIm+DF83xrC2SearaXOTLDWaVHXW3WZpe4WCsa9DOb7R+uod5UnfvWbNxKCiCxvHcYzUWQBYurlstNJaNvV+zheKfRBt7U28DE3AP00sndQjmtygyy1mVcMCKF4LW59WgKokczWacWMRraXOphKs15ZiS3mxps622J1VQdkZIHWWi/4AQGtKF7cIIu5S9rKb5ztF0vQ5I8iWTm3ro8nRRZR7J3CpsyTlyRbRpM6Zlzd0Yd3Ofhx/5Xy85yfzcP2Tq1ivM+CdOrtYMTSPe+sepX/bUmdVh58XiVjM06MOEDEgcp+qWSGcyA+bGl1yguoGqS1dPc4YmjQCrrfMqdyD7ycG5NdHU02dpffpbc+sxetENI37nB9hRTT5um/7OaPCSy7UAedlODuOgzWWiOa4lpThkFRLHFSnaJB9tCnEurCGgk+NoiHkV+DneMBuaJpt6ngxIFuqstqbc9oEPUWfWxOqz4F6PtjUWe74OcceXcPFuYimfn632Go01dRZZTyljlp33eM1JwPA1PYm7T4Kmj5ri2hy2WA9g1n2mg8xa3W69gF4MaA0s6Z2Ue8Ld92hrpeNGk1WDKhyx1tYVGVozpw5E+PHe6cwCMFRvViul0IfcIcHDA+FR9UbwwntVGdolverJZ3Q0g/0uikzFUOtdwP0B8EWCaERTS41jxabc3336L/VXpeTh40pziD0w29B0JpOsP0x6UBtekXL76seRXVSsIsBuRFNnxpNxisH6H0q3YV1kkym1NPXl8mzCxK1lyZtb0K93lTURY1u0TRdip9keToZ19IeOfl8rlaMCrh0DWSsi16A1hRzk2DMqFPzam8C8NE2a0Qzly/9X71Gbo0rVZ21CeZQHEdv/WIzUmn0pxzR1Bd3tnPIRaiyZFFHv5PNF9i0TptAFKs6G6BGc3xLCuNbzJpdTWiN9q/1iGiu3zWA79/7aqkm+k/PrWebagNAp0UMaEfvkLZI/9hh00v/3tA5wJYb0HHYRiLhr67aTVJn1ftJLw1wI5rcgtx0LqlzSSZX0IxWNTIWpEaT+0wlcE5BW5mDi25ols83fW7+8cpm9jcrMYgLBd7RUk2NJt/eImDqrPJM0lILr/Tbzv6sNZI/rjlplFioY/3yrb2ao8dvH2kfTapYzp0zv4iekTrrpTobQAwoTSKamhiQxYl+0oF7luaqMw/fV9s2J+Sn7pv6W25mmwp7/GxvTbKmCaA6a41oKtunEUrVCB9gDGcudTYej2F6FXWaVkOTcdLbhJ7KeipKxlRSNe6HU2dJaRHgnTqriwgWz4nepcE/dbZevbSDUHX/kWw2i7vvvhvPPvssdu3ahTzT1DUWi+G6666raQd3B7iweBMZIAGacmEK47hwEwJtbJsdbh5//8ub8Na9OnDQdNNxYGttAvBiQLaIJlA0jtz0BSPtYnhbdMClg1kqETfqQTJkYa9+Vj1WFzftxKZO2NmfwbWPrsCEljTOf89+ei2nX0SzKalNou7v8nU/auqsukD19xpzIgFaHVHeQSxGDU0+dVZFXZQ2p8r1h3Ty4dJmAV151hQDIouRHI106deuJZWw7m+/z3GkE3FdlGNYNY4uOtTfA8p1z67RNpAp6IYPOQYtAu/20SS1uOp9li842jPVnEqUvLbuvcIZ0eo90d6ULF0X9xi4Hlvqcbn4pbS5dA/mtGcmaOqs+6xQMSCb4ZCImxMrt7iikU9usW8zKiqJaNI6VzUa2DWQRaHgaOmxiRjpo6k+x8w5e+jVLaV/b+4aqDii+eSKHaV/dzQncdxb90A8VnYWrdrehwP2GqddOzoOp5Nx9nrSiCb1qA9mdVGnglO8Vq7jj6+9NOcILhoRNHWWM+rpGMK1zKkEY6xOxEgKMJM6m1UNTTWiqX92uaXWOqijE7BHCyvpF+j1u0H7aKarjGiqQkCpRAyOU75O41pShnNMNbwGsnls7BrQUiO99jGViBsZI0O5fMl44YxqztigtZLUeVgUNzSP2VajSQ0lmxiQV+rsgv95L3b0ZjBjkn4uOCE/9Tmg72fzBSTiqtJvsIimPXXWrjq7xWJoqr8ZNwzNRMlRXEqd9YloAsD0CS2lnsjrd9nFp1S4EiFgOKJJ3tvVx19bLqKpnvM8Ix7FtzfRz+8AE9H06qNZSVuXkaAqQ3Pjxo048cQT8frrr3t6ycXQDIYqVtPK1GhyN29qWBjHxRbRdG9iKjCSzRfwkwdfxx8XrkM6GcfDFx1rDFrqIE8jL7Ruyt2mS3tTUqsPUhfD5gJ1OKJJcs7pRMgZ1zYxINuCenLJ0FS86Mp5/dUjy/H7J1YBAGZMasGH3lFu0ROkRlMVScgx5wUYViO1LOr0Jur2OhiXoDWa2bxj1NxS1EVpUzION+OYTr7bGSEgoNguZWdfBpPa0oYYEBUbyZAJkN6f7c1Ju6EZIKJpRiezuqFJRCNcWlKJsqFp1Bfq95RfRDNJokSAHjVzDbIWpW6GrxvSF7KuoemOCzRNxo1o0gVgNl8wXuOg3lqrvL2l1rqVRDSD1FHb2lUU/++dFl58nZ+HKopoeogBFZxi3S4dW7nU2Vy+4Gvk7OrPGi2CXDhDc2dfBt+/99XS34fPmoTmVAIzJrWWopwrt/Vh/6nt2vcmEkNzXHNSU5pWj4Xre+nCRaEGM2VDk4sycEYfdZYW/6//rtXQZM41XYzbxtWgGDWacbPOmqKJASnp1jS1Xe25rFJJjaYttdXP+Rb0d71SZ7n0aIAxND22sUYp1ZgxqRV7jWvGU8MOlI7mpJY6OZTNG2qay7f2ehua5H6gZSADmbKhOZAJdvxqRI9GzYFyKQilayBriLvlC46WRVR0qlrEgHL2uac1nUTrJHP5To93MJvX1o3U8M7k9ZrUoKqz5trMTJ0NGtEc8IhocqrsWvZEnJ/PVEGgoKrO1j6q2YJxLDstadGcAJN6Trg+mnEmdZb+Hpc6a+u/CvCps6NJVamzX//61/Haa6/hE5/4BB555BEsW7YMq1atMv5buXJl2Ps7JlFTId1ms1wKQlYrgo5bBwhucWwW7Bfw9Modpe0/tsxsoaDd3E36AEXrpgDT46nWyanHaBheXERzKMd4zeKGAFKQRayK25vSljq7cM2u0r9f29Stfdc/dTapRypz5uIZGK7zYLz9AOltp1xfm4GQLDkS9EUdtxjnUkhV1EWSfm+RQVZZqE6f0KJNBm76rCEGZEQ0dVEXOsF41Wn6NSdPJ+PoaE5qfS7p4t3moGgmNT1U9VjFr0aTqgsD+oLdrafxmjAA/fyr56VkaCrbbEklWMErIHidpmFoWhbCtC7SNSyayXkJEqEqRbyYxZWZOms+hzajgmucHaxGM6U9D0Ax24E6UDgxoKCNsZdv4yNcNHXWcRx8868vldRME/EYvvy+NwMAZk9pK31u5bY+47cnE0PT1jqIGpr0mnPRV/U8cq0OUoyhmWUin+ozkskV7KnWTM0nrenlBIgqgRoM8RhN2dXPS6HgaE5eTQxIOQ41mplOxLWFcCU1mrZn2M/5FnRbXmMEVU53oeOi1/2vKs7OnNSKjx22T+nvQ/edqGfu5AtGSqAtKuxCx2ujBl65ZznDIlBEkxg3OaZUxaVzwD7vAMV1lBrRdI+Xtg+hGUE2OCE/9Z6lAQNqMPICN1xEk67hhteZliy7wWzemqlha28C0HYtZkSTS50FqmtxYkv55ow2W1o0mzqrpjMzqbPuIVCHqspAVl03uBFNL9XZMRDRfOihhzB37lzceuutYe/PboneR3M4dZYMuIDZf8kmBqR73T1SZ5XvcAN4n+ZF0W+VBOM5ph5PW49As72JJaLJGGhGRJNRqXR/n8NNneVqKR3HwSpl8We0ZfEVA0oQkSHzurm/Tfsrlo9Jn9S4f6u4A3uCLIY4D6ut9stFTZ3VUpTJAKwaIlM6mjClPY0X1xdVNd/Y0oMjZ0+GOk7aDE2vov4OjzpNX0MzEUc8HsO45lTJeKBGtm7Q6BFNF5r2mSLHoPfqdFVndeOZHpc6aZUimmoEkOk5qz7b4xRDwb0uPYwQEMBHNINADU3bwpFOhu6xtpLFgbpQU587bmLlU2f1lKK6RTSV5318SwrNqYSWSt3ZnzVSwvUoW/H/QQ3NZUqquQpNy7r92XX4p5J2+7UT3oyDZ0wAAMye2o55w31WV27vNQwFWqM5zuLAMVNn/SOamqHJOI0SjKqw3iJjuK7LSJ1Vsg2UfYoHiGjWWqNJa6xjsZhx/6lQp4UtdVZtUTRrSqsmcldJ7ZTN6eM3JnKw0bvANZrl8xwbbl/lXgvPiKaSOjtzchtOO2Q6kok4BjI5nHbIPrjsnldK79MaTQBYYXHOqN9xKUY0ieGlXC/O4cQpjxr3GFlL5YlRqNLZn9FUYg1DM6mLAbljk1kDyfRuYuBak6n71mKkztISm2DOB2rQu/odVDXY7TbwxLLt2vfV+8UrouknbkQzoVzUqHfg1Fnl2remE6Vnyq89mgqfOmtm7nBiQF7jjF9Es49Ewv3KpEaaqiKag4ODOOKII8Lel90Wtb1JO2Noug9sjjxgtnz4LFkMAbohApgKmCu2mZLjqpeUesI4Q8ksxLcZwrw3TB0E+zM51mumG0AFa8TJz9DkpKR39mW0xSYdYPxSnFqbEmztKncctibgqlGn12jyE025j6buyecmvi4PNct0UhclaLa0zgH01NnJbWm8Zc+O0t+uMiDt5eq2T3Apps7yBghgj7wAumPGdiyAvugzDE1mwQuYHlQvMSA2okkiO9TBoy7YXQOT245LjqRaqYZkOXXWbG0CVBZpUNlJUqOD1mi6l7clTZ9j1XBQI5pm9IkqPAIkMpYvsNEDW0SBU6PlFuWO45A+msXzTHtp0pQnrm4wqIz8MsX4UB0r6n7k8gVc+dDS0t+Hz5qILxz3ptLfaqpsMaKp/zat0bQ9V3GaOmtENBlDU60n09qW8LW1AIl8cj2eC47VCcSpfdLMBJrZUSls2QnTD9SF3kvjSG24ixq9ftMe7VW11wLsUZdqFpbcc11N6iwANDGlPhxqRHPfSa2IxWL48Dun4czD90U6GTfWPTR11k95lo4fceLkVOeywBFNov5KjaFc3mEzJwBgZ18W85ZuxaI1O0ufVbG1N6HnMEjJA8AJ+RFDkwQM6L3nd/zl7+kOGW4/C8P1t5u7BvHff32p9PqB08Zp85R6TRIxamiaEU29LVqwiGYQITybQ5fDNrQMMS1l1Mw0d9zixIC0NWmg1Fm+LY6t9n80qcrQPOigg7BmzZqw92W3pU8z6FxD08ylz5JJOkhE0514Y7GY4TlWC5y5pvCeYkBq3UHeTBkzelhpqb36ZO56w1QPTTavC6fEYsNtMpL6NnVvozLgWVIqJg+nzmrnYngbaqsPwIxo+qU4taWTmtFSivSyXnJeYUyPaPqnznLtTTjVWcC7bcLE1pSmKtxkubcAPXV2cltak1t3U6TV+ask302EHvQ0Ov16tdcS0Rz+HTWNjfYmtIlIUcVUW4otwEc0aeon9bj2DJWvgft80HYgKnTBoS5ky6mz5W2qqbWViHSo0NY1NsVaev3c+6eFps5alaGZ1FlfsRheeIN7rfi6ud/cYqo/k9fGTddJQe8haoioUTZ38UAdM3uNK7YgaG9K4q2KU2atEt1R6+PVe3VXf1aLMP/wo+/QjNvZU9XU2V7jfjFqNFv45ypJHUGVps6qDhnGQONqcN1nQxsLcwWrE0gvd+AdE15GYRBypDxF3c/i+ySiSZ5XKkLmos6vb5raXnWP2zDFgCpVnfVyDOoiffZtqD00Z042ay2p6J2ROrut19No4Nqd2VqceBma+YJTSlWnWRbUaZ8r2Guyf/Lg6/js9Qtx+rUL8NTy7WzqrFbT7kY0qzQ0AWqc6Y65lpT3nMBFdLnraXtGaUS1P5PHl/+4uDSGpRIx/PCj/6atz1TnCU2d1a+dGy20O39d1IhmfyZvFWZSUe8NvxZrNjJ50+GsOu05leJyexN+TQjo96rrLLCJAVGnINdrdKSpytD8xje+gXvuuQevvvqq/4cFX7g+mr41bYk4G3VyHIekd/ELu0FS4Lyhc8CYrGh7ExU/MaAUMTTVwnvuIQP0nHNA9+ynhtMz2ojSpy390jYAuYYmlzq7kkR1e4cqS51tSSV8I71cb8CyOq0+YamTt93QHE6dJYt2bhFhS/cAzBS7Zg/1ONUQmdSeJoq3rkfP9FLSHqi2+xQIXqPJnZemCiOaqgFJU2dtyn8AH4mkAkd0kO8h9ZQAXaR5e5i11NnhBQAVsXFxI8kugVNne2mNIG+wcQ4tQD+Hgx5iQFz7C3/V2QLr8KlEdZaLiNP7YxxraJqps1zdoLowS8RjuOW8d+PL730Tbj3vCBw4fVzpPXW9vK9iaPYp9x19jvcar/fN20+p0ezL5LG1uxyNjsfMlj0dTcFqNLsGsrj92bV4bnUxEsOKAVlqNF3DjLv3uEiIJoKRt/fR5IwZuuClbZ4qJcfMTVytqUu/UjsVi+mpybmCU3I+qKUp++/RThaVtddoVtXepFLVWSbbgPvbax+3KPcna2iS7VDHW2d/lu3hzP22e+/YSng4o2owV1wX/fvVj+Hw//0X/u/RFUzqrFmjabvXnlM0H/7+0iZDQI2mzvbZUmcrMjTpPGs3lM1+25WLAXkJQ10zbzmeXbWz9Pf/nHwA3rHPBO0ceqfOMhFNy7yjskdHk7beDZI+q94P41q8I5o2yhHN8rbU61EWAyp/h1OdpYEC39RZ5X3V8dyUjPu2ixsJqtqDPfbYA6eccgqOOuoofOUrX8Fhhx2GCRMmsJ+dO3duLfu3W8D20WSU3GgRNCcGRCct9cEtPtzFz1EjCijK46ttTvSIZuViQHTB6aI37S7vXyt5INTFnzsBqQvt7sGsXQyIGZhjMWBSKyMGNLz/RkRziEY07ZNwSyqBeJzW8wx74DQvOSfewy8qg6jOuq+bEU1zX6kwgQoVPrFFywHd0JzclmYVj1mPHYlo6o4TEtH0NDR1Y83w/rr3ijJZ0IJ+W/9VKgZku78Am+qsfq3pd7jUWa+URc+IZtaMaNKUn1QixtazecH1CMvmC8axcNEfwDTA1XtBnfxpujdVb3R/T2tkbYnW2xbrbI0mE8lQz2E8BrSnmdTZ/qzW3iQe0yOapdRZ0qLoTXt04KKT3goA2OsV3VB0mTGpRfu7cyCDPTqaDbEOOg5QQ3J7b3khn07GS+JyLraIZpxkWVx2zytwnOKY+a+LjtXOj4u6aOfq9zhVYS4aoUcMC8QJpGRZMM4vWjqR9DAKg0B1EAAqWuWR0pZKGLV0mXwBsYIevd5/avWps7ZnuC8sQ9NjjOAEn1y8+ie6qOcgFgOrHqvOed2DWdaAW761V6t7VOEcVba5jK/RzOPplTtKjoEbn1rtGTUH7KUqxr7lCsbznIzHNaFFa0TTMv9z0OdEL6WKa3OCmg4NWGpUmfvTVrJEI5q3PbO29O8TDtgTnz16FgBan6+XI2jHol47V9E1QEQzHo9h2oSWkiL3+l0DeMc+E9jP0u0D9lp2P7gaTfV6uOed76NpHxPUccZdV6sGZGY4EySViOulNC0pjH48s0pD87jjjkMsFoPjOPj+97+vpdxRuP6ago5ah8CJAQGMGl88jqZU+WYdZHLDASq+Ud4mlwq1fGuv1dCkuf2coUTTBpuZQYLuo/pw0UJ1NdXT/T11od3Zn7VOftwANLE1Xfo9mkYMoNR3yYV68TMenmc30soJamS0PoLm4spdJFNvsjpANaX4AZVrb2JbjHtJXtNaLpp+o7JTq9Fs0mTLSw2JGY8dXYzQekYVLzGgrJYKlDCiUVyNppf6n9beRDGShrI0Yq6Pc2wfTdI2pZheWT4f6r3v3u9ei2NakzWOU53VJhb9vKUTZTGboAtaLmKQyRVAgt5s9AcwIwjq9KCeaz3N0RT5STOGSFF11jwOW0ShwKTZDTCLKbV+uaM5VVrwqA6YXf0Z7frSiHE5oqkbmio0IukyfUILYrFylLOzP4s9OpqZXsKmx18V1tAMzYTpzbbVaCYTulPE3Q/HAZ5dtTOAGJCZncCqCjOiQZqAWq5gdQJxxoz2WdrjsIJIoUst/e1a0klWgGtj52Dp+Y/FajM0bYZgVRFNZm0WVAzISJ31yIBxUVub7DWu2VBIBfRrbFP2XLa1F0fOnsy+x/WYps5DF5vCqjpXbOkeNEpY6LHn8rz4HqWjOckIqMVYhyU1NOlz7wU1rPPas1l8zt05wUyd5dJki5H5OPM8A/q9QO9/VefiS8fvX7IVbAaiV3uTQVbZ3X5e9pmoGppBIppq6mx1Ec2y6qySOqtFNIfX6YwYkOpUo9dlgMkupMGf/qE8xrfGdXHA5mRF7ZPqRVWG5qWXXuppXNbKD3/4Qzz//PNYtGgRVq1ahZkzZ2L16tXWzz/zzDP49re/jWeeeQaxWAxHHXUUfvSjH+Hggw82Prtx40ZcfPHFeOCBB9Db24sDDzwQ3/zmN3HGGWfU7Xj8UCNn7qDDps6SlIFmcGkFpsfMRb2R1cWpC1V001J6aeqsln7BRzRtfT5ttXmJeAwtqURpMlBVUt2BSY3Y7CCiJVofTWYAclubAGY6HmCmztLFlVfqrJv+oqfEchFNN3XW9JLTCVo1LpssA7Pbt1OPDhWM+wDwrtGcQKwIdYE8SBYfav+/Se1p7Tq4KSNUDKi4TX0x4t3eJNhAT1O6AaVG0yN11paep9aw+LU38Y9olg0lzsvvLoC8Fp1DxHmjplm5i8Iej4gmrXkKAhfR5Pafi/4AulNqIJu3inTRtFNbuhg1Hrjope3Z5IwNquwLmIqzLupz0UXEgGx9NNUFC11M79HBG5oTWtOaSrL7rNK0PW7eVXtjqs9mUyphPEc0AuoSj8Wsi7ZtPUN8RFNLnTWNEE5VOEgNrq0coom5l7XWE0ZEk0n5yxe0emIKX6Np32YfEcyj5zCTK2hps9MntKAlnfBsJeOFLVpYrHk3sw4q3ZZtjHAc/boYqbMVRjT3nWRGM+l2bHV1nJ6ECxcNV+cIv4jmUDaPPq1lkf65StubaNvOFTSns3sf6m3dzIim7bm3QbUxNIdgwtTqcHEcx3r9M/kCmuPl7doyfbwir7Mml9P8banAcXKcnMNbvR40OKGyz4RWADsABGtxMqSlzlYb0TSjrlx7E9omC6gtdRYo6j+Mb00RzYZUVfXbYVPV2bz88stD3g2db33rW5g0aRIOPfRQdHZ2en726aefxnHHHYfp06fje9/7HgDgV7/6Fd7znvfgqaeewr/927+VPrtz504cc8wx2Lp1Ky666CLss88+uO222/Dxj38cf/jDH/DZz362nofFks3rHtxSZIxEQoZyZgqaOqkODSvTUpVFdZJUIwPcwoG2OFEfaJrWSlVTuYnIljrrJSrQ1lQ2NNUoQzkdsrwf23v0BbE6eHET7uS2JvZ912O3Zofu9eodskfBKO7Dn0qqixI3Xcz0/nECE9SbrKvO2jyAZvQgb1mMe7U3mWikzqqRPX0yoqmzKxn1UNreBDDrbzSHA7leNHV2SnuabTTPTTRu+pp3jaZ6r1qicTR1NkCNJlc/krYYmu4CyCsKM6gtchJsQ2zVSKKGRZDaKQpnaHILEFuttRHRVHwYuoqovuAxm4Cb902WpFy72FLXgvbRVO8P3dDUxYAK5JjVNSfXRzNoRHNcSxITWlVDM2Nsy7aIG9ecKj0bNKI5bXwzDp4xAS+s68R73jzFSJEvH4tZJ+2yrWfImmbokmEUSbl6SXXsZw3NQsGIUrrojiquRjPmWaP5ysYufPb6hYjFgG994AB85ODpxjGxY7VHb87HlbYNe45rYgW41Hn1TXsUVYJV4TqavuiFej+0pRNaymx/Jo/xLcENTba9iaVG02xJ5mFoWuZJdX7l6jPpdmwRTa9emlxNfYvF4c3WaPqo9zYNZ6mo2QfFlH//sXUol2fvf3UecR0GarTZ5mS2YYgBkdIdm7qplyNyKFfQtmtz1NJWNy4dzUlt7Aka0eSy4lSjq5lxNLuoyrMbAhialajO2iilzlojmg4cxyHzSPH/Xqmz2lpcUatPJWKltUxnfxb7TKQZTimrUN5IMvpVogwrVqzA7NmzARQVbnt77QPLl7/8ZaTTaTz22GOYPr04cXz84x/HAQccgK9//et46KGHSp/90Y9+hFWrVuGee+7BKaecAgD43Oc+hzlz5uC//uu/cMYZZ6C9vZ39nXrRT+S73RpN94F1B0Mq852Mxw3vTzEfn0Y01dTZ8r+51FmviCZtb0LT/bhohK02QovMksVNMWJTnGB0MaDi76mLQBrRVI+PG8imdDSxn83mC9jSM2gspgazupfYS7TBPT9JstApkHNTatnAiEEYkuYeRfb0dS3CbOmjyU2sLoYYkEUxuHcop00ik9v1ont3ocZFNGkzZ33SpRFNfWjae3wLb2h6RDQ9Dc0gNZoZfdEbRHVWrx8x63G1fU+Z94xXRLMpGWeFg9SUaHre1HMeVHSEPlcAv3jMBqzRVCdQrUaTRDTp/qW4e5uob6vf5wjaR7ObaW0C6FHxXf1ZLQ04EbOlzurOARVXgZbS0ZzChNZ0aTFui2jy31Wcb4qh2TQcCfnT5+dgycYuvGP6ePzjlS3cJpCIx62Lv209Q3DgfR65Z5nLeskyhpx6TziOPt6oTiC/1Nl0IuHZ3uSPz67D1mEl0a/88QU8uXw7Lv/wgVqWAJcOTlO8XQazedz1wobS3x96xzTjHGZzjjavvmm4HU3VNZrKZye0ptGXKS+g+zM57OzLYGJryshQYbfFRjR5Q8tQSzVSZ5VxyWKs0R6aHOrzwvUvBCowNIcdjpWkzg5mC/C6HOp8W76n7aqzKkNEUdm9V2mP8v5Mni23CQpdd+n3dFxzhmuK9x7rg+J9ofaI5R21QPFeoPfWzMmtWlTWlj1BFX05ISf1uqmK7ZR9JuktTvzQajSrFQPyqdEEisEjLnVWPSdm6qwaxS3bCBNa0yV1ZFfssYeo0EcholnZHTxCuEamH8uXL8fChQtxxhlnlIxMAJg+fTrOOOMM/Otf/8LmzZtLr992223Yf//9S0YmACQSCVx44YXYuXMn7r///vAOIiC9JI1LXbyqC1uqlJgihhxQHCjMGk0+ysfV3Kza3qctlLlwPbctLp0tlaCquJZ6Hlr3pvyOXqNpps7aFqb03y6TlTpEOtHT+kwX9SH1WhC4140OoNmCKeIEEC+5mzpLRES0diPWPprFzyRIdNsPqnhNDU1bexMa7ZrcljbSdh1H7/3Iqc4a4lbE4aC2N+loSlrbnbARTaa9Ce0hGrSPppcYkFbPOZwKrKeTuosSfphtKaXOmgtydbsuTcm4Nia476lRDXqevHpzcfRncr5Ny13ylueYpqrZFH6pAWkTwEiSsYaLaNqeTc4A5QxNe0STpM56tDcpp84q14yM0VPa08azBwx7/LWa4uJz5pW6Xf5u+XuqM8Z9DtLJOA7dd2JRBdm2wPNKne0dqqpGk1Pk9RMNAnSnql/qLK2hthmFgOlA+dNz6/Ef1y/UogtUVZgeh3rvPbhkc+m8pJNxnHrwdOMaZfJ5Q3GWHle1fTRpdPp3j63C8VfOx9E/egQbOv0X1nx7E35f6LjkmTprOR61Ti5I6qyK6uDZ3D1o7RXo294k42do5o2WKtz+UYeyet/YhIqGsnrqrHsOW4lg10Amz4oaBYV2I1DH6RSJaOqt1ezRXDo2e82LNIsDAGZO0h0LXiI+KrrDu/ibunaI/dyoYlPrd/X79tJUx+1q25v4RTSB4rnjxIB0p3B5XzKkbE5dI09S5ic31VzNcBrXnDJ+fzSoag/i8TgSiYTvf8lkfQOmCxcuBADMmTPHeO/II4+E4zhYtGgRAGDTpk3YsGEDjjzySPaz6vYqZe+999b+e/Ob3xz4u9TboA6Kao0j/VwqHtPeB4bz8T1UZ9WHmxOGyeYdrY5CHXDNPpp63QrX90n3JJbfzzPRrtLvKAtltkbTw9NUSY0mNZRthqa6wAqSOmtInxORk7LSoul51yMh9olchUs/C9CbGHuP11UuJ7aR1Fk1TU25dmrabFs6geZUwohu07U9H9EsGItElYNnTCid02PePMV6/F6CEuOqqdHUonE53XObJPcq9UQTo8pdjNh6uroGjd6wnkQ0Sb1fk5bSXHyPEwoo73NlC9odTNQYsNRoBkid7SctYvQaTX2xZgrfuOdPT63k6qEqiWj2Z/PGosOm3OvXR1M97nLqrHLNiIMomYhrfWddihFNPXoK6JH3IBFN1ZjiFny2nmqJuDl2uWzrsRiaPqqzNMsCoHW95thV3G7O+AxgqdEk54eKoqn0DpkL6WdX7cTC4RYuxe+Yz6+e2lve5h0L15X+ffJBe2F8a1FEirYRW7ndTJ2tukZT+WxrOqHdEzctWA2g6Hh6+DU+cq1tq4IaTTp2GKmzARxaqpNyD+YZoNtR2XdSq3ZebVFNfawpft6WncOmg+fyrCI/3T8arVfvtePeOhUnvX1PTJ/QgqP2L4sWZYiQWSl1lsxhfZlcoEwGG9RJ7FWjmdEi9Pb7sDJD05yT9yWp0rbrTMenJqb8igpw2VBTZ/syeU+NCnX7QPHZqqb/ZKlGU2tvop+PfMGxRDT1NakLdYyqc7w2Zww/XzQ7xxakGEmqsgTnzp3LFid3dnbijTfewMDAAN75zndaW56ExcaNGwFAi2a6uK9t2LCh4s+OJL1EcEf16KgPo5E6mzAjmoPZvLHIt6fO8oPpim19mD2c3tPZV75hqfeU9oE0U2vi1iJ8zcAwUmf5iKa7WPeSnfZTnVU9jVRemwoBueiGplfqLB/RpIZmsrS4MtNXtOhVym4wqHCqs0GYMalF83p7RTTVhTMVAgLMGkNqLJXFgPSFolet7oTWNO75z6OxeG0nTjpwL/zXn19kj4NG2oFyTQtNnXUcpzRu6SlWvJFEnxF6T1FPdP9QXksnLafOmtfunTMmYPzwM5X0iGgOkgUHt9gOmnkQJKLJ1WcC/GKYa9tD92Egm9dUiVWHBnVQqM+JasTR88MJXdlrNM3XHcesOQpSo9k1kNXEfOKGGFDx/0MeEU2gmD6r9hMEiuOa+gyWUmcDRDZUw1itW+c+bzMmE/G4JlCmsq1niI3CDtjKIZhIPlejWTbk9I33K9tVj4FNnSURX72lin6f2FLIlm7pwRHDKqZ89ole/w4UFVQXrNxRev3Md80o/TuViCM7XGO3ekeftoB3U2e9mrN7QQ2Q1nS5vZN6DbyMJW5bLlWnzmqt1pjnM1/Q5nOqcl7eDn9/jm9JIRGPlebpdbsGcMi+E43P+bY38YloDmULnoa/u80Eidar40xTMo7ffuZdAICbF6zGUyt2DG+bOCKV+UGtazT6N1dao0lF9zxqNFVHFhX90zVC9HNiq6MG+HGHRrCtEU1iV3A6H+p18xID2qOjGcl4rPRcrNvVj4mW+45utzlZdOLkKlRzds+LGkWmDr9iK6/y3+4cwvUjB/RevYBuaKrPkZs6SyOanMNxpKnK0Jw/f771vZ6eHnzta1/DU089hTvvvLPa/QpEf38x+tbUZHrHmpubtc9U8tlK2bRpk/Z3d3c3xo8fH+i7/UxrExd10KWps8lhz5RalD6UKxg9cxK2iKYl9WT51l6c+PY9kc0XtBoJWvNBm63TSauJLIrVh9jW6B3Qo0R6jaZ3RJNGF1gxoHZeDAgA3tjSw263N2DqbEkMiBjOxeJ+PXUFoKmzASKaloGZ87AGYd9JrXh6ZdmTb9RokvQbF7W1yaRhcSXaAJraAZzqrF/qLAC8aY8OvGmPDgD2RbZX6qxqMOQKDvoy+VJqqbW9icX44PaB80SzqbNMRPPfD9zT+BzA9NFUxYBSCdbQHPAwNLUocoAFrdXQ9BUDKv8O9eCq33WvJ2BG9W0ptimyqOPEU2yCBzYDdDCb1/aTCii4qM9FwSlP5sCwYBsT0Rz0eI4BYM9xzQC6Sn/HYsVxT3eMDKfOWqLBKmpEc8BipKn7zJGI27dPnQWl1y0RTfc3EsQBRQXjSqmzZD/VYLMe0TTFgKjhZWvBAAC9ygKsOVXWP1i6uTz2cwJX6nG4To4/PVeOZs6Y1KK120gn4yXnz6sbu0uvT25Llxa6+mI/uBgQNUDa0kk2UqMaVI5TzBagkQ3W0LSJATGlMSp+EU3aXspqaFruwdZ0AuNbUiVDc5MlNVj9bffZowJv5X+b+zmYK7Cq1C5c6mwubxpz5X3QjT6bcm+b4jDoG8ppYkCVRzR140xPB4+zTm7ALN2Jx2Kl82VGNL1rNCkzqaFpEzc02jeZa0iupyRHIh7DXuObS/WZm7oG8Y59rB/X1jnNKVcZujJDk0udpUGDfMHR+zGzfcbL7/cTY1ddd6iGsxvRVNdo41uiYWiGvgcdHR347W9/i2QyiW9/+9thb16jtbV48w4NmeIVg4OD2mcq+exIohoytL5KHYho2k8qXqzho8acLrQTIwXY5c/aI5rFlBR1QQWYqqQ0isWlvdF6NxduUeKiRonUCVRNs+KiWNTDyi3u9fYm+q2/bAufiqMqz3pJmLtOAqPHVqGATM6cNDjJfDrQq9gjmmaNZhCoh9FTDEi5dmoN2BRm0ZQv2COatI7H6z6g2BYgnu1NyDGphqOthYKqYkedMXRxlUzozpT+Ib3vZknshDGiT3r7XuXPefXRpGJAZLHtOI4WAWpJ2ccQqurKwfXQBCprb8I9n0AxkqcaU1qkqOBov2Hr/wvwKW+2Z9OmBtmfySOn1Mro6UblfaTtQFRDPB7j25voEU3zXFDl2famJOLxGEmDqkQMiHe+cc4p23MWj8Ws9ZsAn1Y3YBnTS2M1qd2m9zb3OYrWDF7NsmB6w6YStL0JTZ0tz3mHzSxHw1Qno5aREGeOY/g+u2vxxtJrHz9shjUTaZ0iQrKPMuaqC+1q+2g2JRPs+AeUF6dd/VmccNWjOPyKf+HRN7Zpn6mkRtOW1u7i10ZJVZCNxextdmz3eHtTEtOUco+NNkOTuQ9btAwL1bCy1GgyKdal/WMcuzkS0VSdblS8zdaLVBUEouUGtYgBDZFyKtovV90f1UHm9ud1odffK3WWjWhOphFN+zikHQvj8OYUWG2o4mtbGGeZiuboT8UrPu9AeVzSUmeJg4f2XXXnENt1UR166URcW7tOZMot1DXa1I4mtrxopKmLqRuPx3H88cfjrrvuqsfmS0ybNg0An/LqvuamxVby2ZFEU3YlqXheNZruIGVIWXsI7QRJnXVrH6iXlE4M9KFQH4x4rNwTU903Fy7NivsddUBRj4WTnvbysLrYUmcBaB57dS1WaY0m3Q9qhJcEOrTz50Y09UWEis0rlWIM1yAcsPe40mQ5pb3JKH7nZMUBfaHteqVpXZQR0XSL3RP6QtHrPqBUVKM5vK22dELbN1UQyDZRVpI6CxDl2UyOX3CT2s79p7aVarUA/djphK7eE8UaTf2+GSQCYG1kDAki0qFiaynApsNZaq1ti98376kretMotmoIqNeB3htcypstcmkzQBeu3okjf/gI3vOTeVi3s5/UaJavaXMqYcjTu9AsirLqrN1hBLgRzTLueKY6Gl3ngRqFtjlbbD3fuNocqxgQSakLgk3gjUvnzzO9BjnVWYr67HBCWF41mjRtWr2/DlXSLpdu7inV7HIRTSpqVCg4WtnBCW8vZycUj6e8n+ri1iZGV20fTTd1lsO9f+57eRNWbOtD92AONzy5yrotF1vqrHrt3Pldhcu0UFEdWONbUtbx3jbOt6aTmDZBaVfRyRsNnIFmc5raWvbYxICKGWTmPZGzCP4B9Lzk2ecEMJW6a0qd9WhvkojHrJGzIS2ipxtaNNKt9cD2EQNKJWKGJoS9RlN/vYWUYQC64eVnRO2pOPU2d3kbmjSiGfS8q04H91n2EgOijgnXSWXLbNL6hpLnfWKrmTqrKo9PaW8amxFNl8HBQezatatemwcAHH744QCABQsWGO89/fTTiMViOOywwwAUBXumT5+Op59+mv0sALzrXe+q497yeAnutKn1iqQHontzGwOZpeUAYBcDUn+nFNH0mRi8ohF+A7xNRAQoNrTmUB96bmFFBwU+dbb8UHoNIm9W0vvUxYnXgqDc3kQ/nmyeT5ehfUgB06OmYtvf6ms0W3HFqQfh6DdNxo9P/zdD7a3JIgakGZrtbkRTn3TzRGillDqbUic4PfrutdgEvBYg9ohmLBbTHBfqM2QVAyJCNtp2mWugLxBy+gTMpEkDwEkH7qX9rdbG0dRZvY9m3Jg06LhgiAGFFdH06V2p3vfUg+vylj07tL/pPas+a+rYQWsHOdXYSmo0AeCXjyzH9t4hbOgcwC1Pr7HWaAJmtN/Fljrr1d4EMFucuE4eTugpmBhQ8OiQTQE5GY9VnH6vRTSZcghaW2uLirl9CTn01kO6cVbMntAX7rQnp4vjOJqz9lAlotk9mCvVzPrVaBbb6+jHQedt9RlVDU01Yu1Xo3nTgtU49qfzcM385drr1GlpMzTdZ0TNTKJp8WwfzeF+3BROZ0CF6++rsotxUHLYhEvamhL4/9s783A5qjrvf6u3u+fe3NysN/sCJCQkQBJCQiQBlFVEVlEjuxvi4DqOoiBuoyMvo4g6IyIqAzhxw3kGfEEEGWUJMODgK4RlSIQQ1uzL3br7/aNTfc/51TlV1d3V3dU338/z8JDbt291ddWpc85v+/4mdg0/N5u3eyOaWSFE5859tn2IrUbTVt+qfkepbmzrKSzrigcs17FVOCz7K4loCrV/7RlJJISTO6e918XTszmrX6sBSzaL6XynjG71zPU2p5Z82ZQ6W35E05vNqCJrNMMaaOp60b8vVVl9hOSYlqmz7ne2aTX4aTCoa9OW3QPY3T+kvX9se5Mxq6bWVMXQfPrpp7F27VrMnj27GocvMnv2bCxevBhr164tiv0ABeGftWvX4phjjsGECcObunPPPRfPP/88/uM//qP4WjabxXXXXYeuri6cdNJJVT1fE2qahkydVX/eqgjzqCmxXu+VX0Rz+HarbVXU6MrOviHsGRgqhuEBb9qsPJYUA0oXJ3hzVMzUa9BlksXQVD8vTETTI9ySSWrpKTaPak97BpOUBU2Nag1Z6isKxy8cW26ahnJ546KhKzIGR0KkmqHLsMJjaY9ySzqJdy2din+7eBmOnTve83vbvdO8ZftqNGW9qTV1VtTxmIwyGzZD269GE9D7IO7Ya45oqmqyfnLppuuvbjJ392e1Dbc7BtVrBgDHS0MzpV8/Fb/UWUCfFwBvT7a0tlkIU6NpXoyDajTVMZBIOEZJ9QOFoSmfUVlDZ3vfHsMGMWv5bjYDVFWtfObVndbUWcCe5lcQA1LOwdDexHQdZOqsO5+Z6tzCiAHZpPhN77c5pKSjCQjexGl9NANUZwsRTbOh6TiONX1WS50VY18aBE0iopnPo5ga3S9aBMzqadfu6/p96bPmiKYe0TYprJu+F6AbmmorArl+qvQNZvHVO57Cxjf34P/c9YxmpKnpngVD03zv3XujGtfyepkM3HzeLHoX1GYnKHNCdWB1+/T4tI3xtkxKc0KbUmflfSmmzlram5gcVn1DWatolHpuUjHb5nSTNZr6HkJJnRXnGKatkQ1pnMkxHUYMSEY0/VRn5fnJ51SmzQLhxYCkwzufz/tG+CRhU2eHRC/U5rS9r7BEXS+k+JJ7LJVBS+qsrgasps6aM30A3Wmzbc+gZ6/R05FBcwwimmWJAV144YXG14eGhvDiiy/iT3/6E7LZLK655pqyTuqnP/0pNm7cCAB4/fXXMTAwgC9/+csAgGnTpmHNmjXF937rW9/C6tWrsXLlSlx22WUAgOuuuw65XM7z+Z/5zGewdu1avPvd78bHP/5x9Pb24tZbb8UjjzyCG264AR0d+kaoFqiTmhQDare0+lANSI/3KqsYUx4vkr4Iu0we3Yo/vzQsTvHmrgFsUzyhpubPMnXEZCTpE/zw720bVMDH0FQeFpMgkExPlK0o1GgmYI+gLZrSpUlm77Kkzo5uS2seMjdl0d00uRPFwFDOGO01pUnoNZrmlNBB4VksN6IZlHIiHRguptRZT3sTmTpraW+iRw/8J0Nr6qxPRBOwtzhRBThsgiMqCcd8jmq6u4xouseVzaIP6dWFwkxOBxcZHZOR7m2illouRLbFy0YpYkD+/XBT6BvUjyVTZ/0imnrqbPQRTZX1r+zUepFKw1IqbrskHT2imQ0Z0ZSps8MRTf35ALziLyZMjjfA/MxYIwmOg41bdDG8ZTPH4PdPv2Z8P6DXuxn7aGrK5N4aTb0O14FJ4FE9X/l9pOGUTia0SAFQGBeZhON5b1tTEgeO78C6fa1N1r+yA0cfMFaLVg5/Dz36GGRoqj+rc+donz7OKlt2DxT/biiXx+u7+ot/qz7DTSFSZ9XohrwGNhXq/qGs5zv5PevuuRT/3uAIChvRtGauNOmps1v3DGLPwJBmaJsECQHdeagaU32miO5gThNotJ2bnLNtEU15XWwlG2rJQ6XtTeTaLXUDbPXB/SJ1VP07Gf32rdEUP0shIMC7X1PPT0U1JAeyOewZyGp7Vz8xIECkziqGphsRd1N65ViQNap+qHsMKXIIhBcDsqXO6n1D9WOpa9OW3QOaodm2L7gSh4hmWYbmTTfd5Pv7gw46CJ/61KdwwQUXlHN4/PCHP8Qf/vAH7bXPf/7zAICjjz5aMzSXL1+O++67D1dccQWuuOIKOI6D5cuXY+3atVi4cKF2jDFjxuBPf/oTPvOZz+D666/Hrl27MG/ePNx2220455xzyjpXP8K0E9Dam4j6qvZmc0QzrSk86t6rsKmzKt1tGbSkk0VP0eu7+gMjmjKKZRJXMaWCAbrHVBrDttRZNX3OFGEISp2VTZRNHvSjZvfgq6cvwD//7tnia7rq7PB5j27NaIamKsKSUjZN0gPuLjzqhJrb53n3U50FCtdz94DZ0Cw17S3IE2hKWQH02l23VYVMA7a3N9FVZ02tQGyUpDqrnI+WOquce5g+miq2Z0eNaO7sG9JSt9x7PG1MKza+WdjEz+hp80SP/FVn9eiYHBfqcyojOoDucAkzH9nFgEzGnblGEzDflzmeiKb+N2r2gDp3eMWAvBGHSgzNl0XtjjTcbKmzSdHeJBciMwHwRjSLhqahzs2vjYD8e4nps20OqWTCwYvC0JxmiESoaAJvxrY+9vIKQJ+D06kETJamOkbk99klaqgzqYQnbd+9//K97c0pHDChXTE0CxHurGFtkmJn3hRg/9RBF3UcaZkG4rpItWs12i6zY+yps4Xvq6rVS5Ebm+OpfygH6XL3Myzcc/E77pY9YVNnzdeuvSmJieK5eXlbn5aNJT+3WMKTUh3ehWtgGo9AIS3TWqOpRTTVsV2K6qw5dVZ1bu/pz2qGSKmGptYLejCrCaJJ1Vmtj6bYfzhOeYamdIZOHdPmOUdbBoNHDEisI1KkspyI5gPPv4H33PAwAOCWi5fhyFljPGnUNkMzmXA8a4qWOjuU9axF6X1lCe7rHvGoohiQOXXWL1VYfZb2DmY1p3bPvl61cajRLMvQfOGFF4yvJxIJjB49Gu3t7cbfh8WvfYqJI488Evfcc0+o9/b29uKnP/1pGWdVOrv6BtGj/Kz28XPRIpoZn4jmHnNE0y81Q24qbFGj5nQCPR0ZvLilMEjf2NmvPdCmjZaeT26O2oVJnZUerDFtGa2nlIueOusdtkGps2PadEMzkXCw+sCxuHf962jLJPG5k+fh3KVT4DgOOpp040H9ni5ysVSdBHr9Rk6XKncFYsREOyijwgEGlHytVDGgoHQKW43mHkNNsSYGlPVGNN3FQ6biBLU3USmlRlOdWGUvTRc1ZchWo6l9vuXZsfV9BYbv8UePmYNP/vzPaEkn8YP3eevApYKzioyOyfNQn1NjvaohHdOP0vpo2u+f3AD0drV4SgPCRjQ9hqYpomnZNIcxNCWyBtwa0fSIARX+r7ek8Y6b9qYU2ptSxe/r1lga23eESKErLaJpNzQ/tGoW/u62JwAAx80dh7Ed3lZgKvb2Jl7n15BILwT0cW97/lWDzJs6K1WhHQxmRY18LocWJLWxlU46aEoltVRuV3lWNrcHvPObbEfiTZ01X+PRIWs05TyiClVpTsukPXXWjYLsFhHNXC5fdHTZI5re1/1SJeVrpuOq84pfL0M/MaDmdBJj2jJFZ9jm7XvDGZpaP+992UMW0aNtewY8vciLx1O+Y1KL1ufFvksZsyJLQX+eh8dAmxADUqfGUlNn2zSjdUhzviQTjk+Nph7RdDD8s7ynA2pGkMwmCxPRDCkGJPcpslQkMKI5angOc8vCfvHYpmJUdO1jL+LIWWM8a0ohddb7HI9uzXjSU9X9aL8oCQKG1wl3bsnKPpoGh5aeOqtGNPXnXT5LavcEN7jSsBHNadOmRX0eI5IdyuJ2zV3rcdMDG3D+8un4xNsOLL6uhsU9qbNqRFNZfFSDsckT0fQp0rYsgC3pJHram4qG5pu7B7RUF9PC4NdsfbhGc3iAFybjHFLJhO8GNZFwMKmzGRve1L3r6mRmSp31q5MBgLEd3u/wL2sW4+EX3sTBkzo1w1HdEKubGT9DU13w1XMZzJqFkjxtULL5wEiIXypcKTWaUiLbhExZce/dbkPfV10MKO+JKrhjRabO2qTebedsPM+gGs1Ws6EpU9D8jgfYo0nqM/u/b+gtclyxpDMOn4zF00ejsyVtTENXnQ4e1VmtVUZB9VB1xGzTDE2DSFaJbRS27NIjD+4G0Vij6ZOZIK/jAeO9zsewNZpu3bM7rEz976yqs5b2JjYKUWP93DtbbBFN3QgZFgNSNmyWVOzxo5qw6/XC93UN26CIpm0TblWdNTwzfhHNE+ZPwAeOnomtuwfwyeMPxB/Wv258r4vqadfUNItznP75Mmqgjhnb2qQ+9/L7S1XoTCrhMZLcMWpqI6aKUz372k5Pa6Z0cQOopknmPMIocm7KWO65PXVWH7veiObwuYePaHoVOoFCWqbr2LAamobUV1PbJpWMcHhLVENzjJ+hacsc2efIndTVUjQ0ZZ1mmBrNoqCMKU8berN7z7lZUmf9ajTl91E/V12zW4SonPpZpUY09XKOrPbMp0SNpnrN/FL+/SKanhpN4VwzZUbYUmflNkY6LGVEM1B1VpQpvLK9Dy8o6/Tz+/qySsdDcyppfI6729IeQ7NTpM5K52YqUWi75P7VYDYXmDqrXl9NDEh8346mlBYtVVs1ue384hDRrP8ZjGB27fNEvrazD9+59zns7BvC9+57Xlv0/PpoqpE1rRG3psQnI5r2dDabF6k5k9QifoWIZngxIJkemjFM8MBwHryWZmJYtEx1mqWKAcnJT0Y0gcIEvnLOWI/RqBr4ekRzeHLwj2jqE4ap6brR0BQKo6bzlbiboFIyZ00CJRI5Fnfvk1xXDSHXyNLbm+Q8vQuHU2dFRNMgnGPD5pXz66MJ+EQ0S0ydDRPRVBu/j25Na9dw2pg2o5EJeOudVUzOB/U6qs+p6dxtmwqVfD6PxzZuwa8efwk7lflITTsy/e2gIfpjOxepOAuEj2jK72FqqO62nfjYz57AUV//Pe58cnPx9VIwpeWb5j+gELkwtjcRzgET6hznZozI5yOfz1sdIiryWXUpqUYzUYjy/cOJc/GNMxdiXEezMaIpU7VctNKJotqyqK1V3p9O6j2ebY4v9XyTQhnXU6OZSHg+051jTFoIB04YHpN9gzm8uGWPUET3OvGkQ1BteTH8mi2iGa5Gc7tQkt5pi2imkh7ntIt7raWwjeoo9EudlZhqz1WCVGe1iKafGFBAiYIq1CdbnKif6zjD40/dI7nXxVSfGYTN0JR9EbWMM/H8a5F15XhtEfbR1B3lQ3qapl8fTTFv+UWp/Ws09bl7iiGiGba9iXTUqYamqVRE0pxOas7mV3b04YU3dhd//t/XdiGfz2vfPZNMICEivy6mtO9OjxiQN3NDikcFpc7m88PriV+NpuM42r7i2dcMEc1GNzTXrl2LE044AePHj0dTUxPGjRuHE044Af/+7/8e1fk1NDv7CgPk/728o+iNH8rltZoLvz6a7ZbaG00MSHjr/DbvtsW8JZ3UIn5v7OovTQwoqxsg7gQqvU2uN9GvvQkQwtA0ePBl9FZ6zHra7YubRE7ULurkKg1X9W+k4WBSjmxKSo9h1rePJmCenN1r7Tjh2xME1TUA3uh6QTbbK6gBeJ0O6v4l4aC4EdMimtnSVGdtPQRLqdF0DU0pg+9XB1Z8j8UDq14ndQEzLa429BpNe+qs+zypYyMwdVZE10388++exRnfexAf+9mftdfVmqh+w6Y0a4j+2M5F1mcC3nuuGrly7lCPb+p/N5jN488vbcOvHt+El7buxf+5+xkA9kinDZMTy1cMSDEywooBAcB7jpiGVMJBV2saJx8y0fjeAUtJgiSVNEe2TJ9tjWga+ouYDM1xymuq9153HiaMn6VGNL36Ad7PTzj+/RpVJ2A6WRBmkmuce14mh25Xa0ZLrVv/6k5jlD4lMjaC7om1RrNteBz59dH0RDSV7yk/25aB4W5O5bOiZuiYDErb6wMBc7WfQikgxIB81mLbBt+dZ9V+jDKiKaNs7rrTIgzNfD5vjWj6oZ6XHBNhajQBPWtDndOkqFwlhqan5ZY2Tye0tUy9r6qjuxDRK8/QVI3r8aOajFHHsO1N5HhQHRZh9jGA7jB95pWdmnN2Z/8QXt/Zr7c22Xf+UlASCGNoZj1ruHSQyawvU0QTGL7Gmuqs4TurjtCNbw7vQcYWazTrnzpblqGZz+exZs0avOtd78Jdd92FLVu2oLu7G1u3bsVdd92Fc889F+95z3uiPteGw41oPrV5h/a6OpH7RTTbm8wbHH0i09Ot/AQ6bJ7WQu2DEtHcPRBco6lsFHJ5EXkpps6a00a0NCtDyqfZ0Bw+d1PUIbBGs92/3khF7UtnU53tbEnhxPmFNhVHzOjWRIxkWpRp0ZATxp4BYWgaIiGm1/S6kZCGZoicfZmisbt/yCNE5Hph1fFYkMc3j0GvAl/4iKZVDKiMiKaMIKif7TiO8frYzk9d1FWbZsroUgxNe72W5mU2RDTVeq6g87ZtLP9zX/RPZcKoZk1Ay6g6a4j+2M7FlDrrOHqN4y4lciM3J6oBYdokZnM5bRPizl9ZS0qbDdPcYkudTST08e0aKUHtTQDghPkTsO5zx+Ghfzi2uHmWz3f/kMyGsJ+/SRDIGNG0iXAYro3J0JSvFZ2Hpv6TSbuh6XEMmpxoAaIz2qbdIoo25JM6C+iR9mde2WlsD6ZHNIPviS1a06WMI3UTG1ijaUn5z6QSOFzpB7p0Rnfx36b2JgCwS41olpk6G2RcyzTEfD4fur2J7fiuoamus7KXpow0u6hzUT5fuIamHppBqFk1MsqdtcyF0nGpCg2p41tdb/cMZDXHns3JakONjg5m81pEzFujaRb8kcJz8p7qa7e9RnNat1cIqPA3lnnI4PBS51DVYSH3KDbU9NmH/neL5/fPvb5LMz7dEpRyIpoDhvYm6aQeeS3oWJgimvrnuc+6JgZk+M5qSr66B3HX7zAZbNWmrDP413/9V/zbv/0bDjvsMPzud79DX18fNm/ejL6+Pvzud7/D4Ycfjttuuw3/8i//EvX5NhRuEf9fX9YNTXWS02o0RY2VVKF1sTWxLrQ3sbeMsD3chRpNJaK5s19XFzWmzoq0KHUC3beIyrQHd7KypZm49HY1e14LSp2VE7rccMj2Jn6omzY1yiLrkL77nsNw98feglsvWaalT2k1i4ZUK6CwmKrvKxiaAamzhvunC2qEMzSD6hqAwsZTNaJ29Q95Ni3uAi6jE+r3UBcOvQG0v1NEUpLqbIChaRONKB4zQFRHRT6zLpO7zerJJrRNS0B7E0A3SIIimvKam1AX79nj2rHqwLH4P+cs1D4nsL2JrNFUzsVx9F69KrZUSE9EUzU0LRth9Rzdf6vX05YholJK6mxKps6WENEECpsW9XvKMdY/KCKaSfuxTHOiUTXRYqya5o4xbU2elPxxHfrc7N4LLcJhSDkF9BZXQY5BwPzMqddTnZvd7yrnEZPqrDoOVEGg9a/uNEamZPQqyOgyfZeOppT2Xr2XYUCNZp8ahdRLaBZO6cKPL1yKL582H184ZV7xd25d/R7hlNlliY6qRJ06u3dQd6L6qc4CFkMzM1yj6fKyT+qsegy50e4bKM/Q1CKaPkJXtkAAoBv66rhqVZwfuytMnZXZSGrkPyVTZ9U+moP6vFVuRPMwxfnxlgN6YMLmNDNpTahzpGoQmlqbmVCzFh5+4U3P759/bReefGlb8We3DZfpuncbSrC8fTT15znhyPGip1q7v5LXxL03Wo1mQERTZTh1tv4RzbLEgH74wx9i+vTpuP/++9HSMvzgJ5NJHHPMMfjDH/6Agw8+GD/84Q/xgQ98ILKTbTTcjdNfRURTfaD9+mh22CKafn001dTZ0KqzyaIUMuC2N/EXA5ILulr74U48iYQuXOJ6+gcD0nB6u/xVyox9NMV3cxwHk0e34KWte5FMOJjZE14JWUudVRdmMbk6jmNJCVQ9hjlRV6N7WgezwzL0gX00AzY1oSOaISfotqbUsHqhkMZvyySLURDpLFC/hyaM4Kc6W6YYUFMqgYSje/KC2pv4KRoDwZFBFZnu7jK5hIimpuAszs1co2lWug0UAzJsIPP5PLYpG9tvvWsRDp5U6PP5+6eGeygaxYB8HEbqNZwyutWqjqmKJNjEgAC79Lt6LurzqSr8uXQ0p7TrZVK3Ns0tttraZEJ3pIRtb2LDG9HU++75bTiNEU2TY8oyR5gimsmEg+62DN5QBKLGjdI3WsUsFVMkUDojB82bbMC88TQJcKnXKFRE06dGEwAOUOo0n311Fw6b1lX82Y1MyYwDTUU8ZOpsV5s+rvxqNLf5iAFpa8m+a3H0AWMBeCN8ewazXkOz3xwdVQlSnQ1MnTX0BVUJNDQN49Y1xPQazb2akr/tWZEGyd7BrCfroM8gMNbRnNJbLvm0N7H10Uwl9fVpd78loqmmu/YPYVBVKC7Z0LSv71IMSK/R1NNHB7L2e+pnaL5lTg/+Zc3h2LZnAO9Y1Gs8D9t3MiVcqIam2iYnTGYWoKfObhXZAkBBEEgte1k4uQuAec3vNhh1noimiPY6jrdG0ygGJK6JO3f5qc4C9ufJLYez6QTUkrLO4K9//StOO+00zchUaWlpwWmnnYa//vWvFZ1co7Nzb6GuTR3EgJ5aFbaPpopqyEj5bL/6R5sXqTmd0FJnX9yyR9u4m1Jnvb3tLGJFysNjTrPyDsFJxojm8LmHEQMCgK+8cwFWzunBF0892NO7zg/1uu9VmiwPhez76N2YmBfANuHFDNqgBkU5g5RkXWxKhRJZq6p51tSaVDHO1O+hbmDViIwcq+WmzqaSuoKuFOfoVBaGHX2DyAmF5MJnizowU4qyTXXWYkBNGR0+oqkt/DKiKSTnASkG5F+z4lcLBhTqv9RNkvqsB/XGs9UlAWIzb0ibLf6dcn47fcSAghwRQzk9c8D0zMpShHkTR3kWaVNE01ajmXAcrabIjWjqkYHwS6zcYEvxLX9D05DlYRjHNkPTVKMJePsPj233ps7mhLhFsY+mT41mmIhmUFqqKpLjvi7Tsd37r44tVWRvklLzt2XPgDElUE2FlP0XjXXzxg1qxvoe+Wzt8Ilo+n12a1qfi/oGsp66+lCps4bWH0FRXL0swm5o+inlFo9laglUFAMavl8DQzktJdckugd455K9g1ltv2ITJ5rR0wb1sdDFgFRjLe/rNFUdg6pzRNsL+IkBlZg625JOwvI4G/poKjWaQ/paY2txVvg7e+qs4zg4/uAJOGfJVGv2VNj2JoB+/7TU2bARzYC933Ov7cKflYjmIZMLjlZjRNNQgqWuGUOiH7o7F3lqNA37dFnWMBA6omkev8XU2RhENOtv6o5gdvYPYf0rOyG6PRR7Sg5l9d6JnvYmFkW5tF9E008NzCf9UBUDkhED00ZLbiJ2W9TUTIpvtjQTl/LEgLzf7egDxuKnFx2B9y4rrR1Ph0EIB9BTnPwMI3XzLFu/qPdAnTT2DgzpKXemGk3DhFFWRDOkJ1B1fOzuH7LWOUkDV/0eWhqRSMUsRQzINnZlzYl8n1oXlc8XnsmgPnjmiKb5/GyLXfliQKJG05BOrW7q1DS7oD6apvYm24WH12Zomv7W1jsOAI49aFxxs/POQyd7/talnNRZE7J2bjCbRz6f18Rd5HM9e1w7Zo3Va4hMPXpNxmfh3BOagZY1RDTDpKkXj5fUVVP7h/T1wc/QNLZ8Mlwz2xxhe/5kTWZnS1qLNu8dzGLQUJNUOKb++aUbmgERTUPqLODtewnYI5ot2hyctWwA9Wi6fk/809VdZFTc77n0rdH0GQ/S0bSjb9Czlu+yGK0qRoXpgLlaM0p8Ippj2jIelV6JOaJZOP7Y9iZtLt6spM/anDJp8Vz1DWa1sdjRnDIaZp0tac0BbxMD8qiISgEry5hVz0kK+AwEjDE/HMexOkAL6tL6OuwiHWR+jsbBkPOSjbBiQICe3aKOpbBz64RR/obmIxu2aM/coildACyGpsGok4EP1TB0jUc5J6mPpUl1Fhh+5vYo98W0NwkyNBs2ojlv3jz8+te/Rl9fn/H3e/fuxa9//WvMnTu3opNrdHb0DeKpzTs9r7veIZmO6GlvEiKiqavO2lM45N+ptGSSHs918XfppPGBlsaFGt5Xi9fVxc+N5Aa1N3EbM6uoE5PJe29SCCsXGUl202dMTclNSOlzW52Vmk64uz+E6qxPexPAmyoNmDeWYSdo3cuqq86qC6P8DPV7JLWIpr7ADUYQ0UwnHe0ayPdJI2H7nkHPoik9iaWkztraC/QanCU2dAVne0TTXTBUUQrViWVKT01bNhUuUi5efV6DlCRN6ZIuR8wcg999/Gj89vKVOGnBBM/fuqjjQ/0unvYmAX1iZaQJ2Bdp8KnRnD2u3VM7ajLYmtNJ45hIJPSIvamPZqmLvOw1q6VK+jwjYcWAbOrUptRZwGtodjSndBXPAa/KYqpoaMo6frMDCggvqqNFh1RDU3mvOg8WazQtTrI2ofZpMqh0x6Gcz/3TSF1k5FxLlw/oo6mmb/o5HjIp3aBSU55dVEE3v9TZZ17diX/5w/N4ccuefefoX6Mp54q88jCHbW1iOpb7s1qOo2YnbVKUZ/16O0qH916xeTdFfdoyKa2+z+bMGMzlfLM7VMNulzV1VkQ0Q2Yy2LA5QNOiRlP9nD6RPVNue5Mw2By30mEJ6OtdkCaBCdlLU6I+UxNGNWPcvveb5h+p9ZFOOh4Hj+rUShazIvQsC1UMyJ173X7Rw+9zU2cDVGcNqbOtmeHWRw3b3uTCCy/Ehg0bsGrVKtx7773I7qtZyGazuPfee7F69Wps3LgRF154YaQn22js7BvCXzdv97zuRnx2e9pF6JuFppS3Lxgg25sM38I+j5JnuNTZlnQSo5rTxs+yFRrLY2leHC11Vo+4Av5qlS4yqinVVWV0opzJzkZLOqmrYboRzZw6+dsNW9lSwuaFll7MfoPCqHZck9dfXfwM97fNMDGFjWjqqbNZLe1KHatyLKjfQ61hk8qEWkSzzBrNpKg58W4w9H5g2/cOejaTcpNdihiQabEb12GWdLehGlEyOmQSlinlXPw2CwB81aXVvzXVbQUpus4a246DJozyjWDYnltpoNnay7gMihpNoLAZkjWaKrPHtmPW2GBDEzBndSQTjieiKT+zVCEGqcyspQP6XIOwhqZ73mFeA0yGZtrTLkIamq6hlxAbJzU6X25EU0+d9QrQye8y3N5k+LPVeU1NN83ldWO42EdTOILKEQOS40d9j4yIbRNN6W2ps6axpc5dsrE8oF8z9Vjq3LFj7yDee8PD+NqdT+OiHz+CfF7/zqbaWU/at/IsahHNEKJ8cu2Ta9gkS4uTfu1ZsRuafQNZvZVHOmlU5mxrSmnRMFsfzayP6mzh+5idI+q6qdb69w/ltHFYjqFpy4ZL7tPNcFHHgN5KKyHKsqTqbGWGpnU9N6wVWupsgMq6iSBDU8VNmwW85+g43udYtoEB9L1wqljnbX/e3WHgOMIJsO/eaKqzIcWA1MBRHMSAytqdf+ADH8C5556LdevW4bjjjkNzczPGjx+P5uZmHHfccVi3bh3OOussfOhDH4r6fBuK51/fhSc37fC87hpcUsVTShc7jmOs01QHo5ayIjzgMupmm7Ca0wVhF9MiYPKWmI6thvdtim/F1FlNodC8wZF1mnKTJTeEpdYx+OE4jrGXZujUWS3Vyt4LTzXWQqnOBtVoGox2U8StFDEgl939Q9ijpp/5RjQtqbPK+efyuoCPX4RY/q1KOpHQDc2UXBwcrU5TGpqm+2gyEq01mobrW0raLBAQ0RSS84A9Smbuo2mux3FRU4bkIhrUhD0onS4MNgPHU6MZGNHMecSOCilKSkTTlDorIpq2NFmTIFDS0Z0U2ZzXIC9VWl6dzweyORGlKU111rbBMI15q6HZbohoZnTnoXSOqBFA1Ymiq85KJ6jJiWZI0VSup6lGU35+sb2J8l51TTWlmw4fx1RflcPAkL8RECblTq5X7n3O5vJaPSlQEANyI4Ra2wvD56jPzZumiGa/2dBUHRXrX9mJ13YWjNRnXt2F3QO6KJVpzZZzknrsoFZpEnn9ZKbGJEuLE7/of0tGccgP6RHNZkvWVltTEgv3pVECeq25LI/xKwdSv0/WksUj525VEKqcvY1NpC6VSFgNzT4hRujnaPQLaITB5KwAbGJA5vMNu48Z05bxnGNLOomZPd7WK+r9NpXUyDropnTSt4VNSolWush1Sf1dWuwdASkGFC6iqXaRiEN7k7JUZx3Hwb/927/hlFNOwY033ojHH38cW7ZsQWdnJw499FBceOGFOPfcc6M+14bjxS17sWm39yF0H2jVu9WqqHiqtGVSnpoNW91b32AW2/YOT+py42jbrLmT7Ji2Jry6Q/eC2hYGOZnusaSEqBO460XU1SrDRTTluUsPvm3iKpf2plQxhckt4NfTY3wMTbEI6Wq1w9dNnTQ8YkAhjZ2gGk2joRm6RlM3ttXDaxFNT3sTixiQzz0KWqzMaYCF4/ulzgIF4+H1fRun7XsHtU2H6XPL7aPpUooQkDyHoVy+qKSYz+c9kvOF/5vPxRyJVQyXUiOaAWJAfl78sNgi2d4aTf/xMZT1RjQHsjm9RrNZV3Kc0t3qeWZMBhsAdBkM0GRCF57J5fOeHoSlepO1qP9geDEgU22pbZwYI5qWqLOMaI5qTut1jYaIpnpPkwkHyA6/d/g9MqLp/fygNhq2NESt5UxRddacjSGfX1XhtZg6K3omDvikaNrOu0uWgggjejCbQ3M6iZ19gx5Nh4F9Wg5NQiXZNB7U7/OmIaLpXrN8Xv8eHc3p4tr/0jZdvXYghHCbScjKRY1oBinOAt6aROkgUp3QaosTP4VmNbNq70BOM6paDMYCUBgnF6yYjoF9115VUPVrV+Gp0fQRsnORxvQ2UdJQKlaV76SuaaClzsqIpo+jMegZCKIUMSBbdlBLOpz5kkg4GNfRrKVZT+9pw+TRLfhfIdTpKs4ChjGUTnrWWHmdAGCPoYWNFAMypc4C+/axA27LqMJ7dDEg73c27dHjFtEsy9B0Offcc2lQlkExdday+KmYUqJsYjv9QznNKO30pOtYogf7Hp6ejiZA9G63Ki4mHE22e48l1UPWkAK6N8wWCZE1bnJikhHNKFNnAf26u15ufZH3SwfUvVI2NVk1Krinf6hk1dmEI6TUDdfSlEITvkZTFwNSP0ut35RjoV+LqoczNIMUc/2az/ulzgKixcneAYxu0w0OSUk1moaJv+SIplhcB7N5ZFJOYUFSNp2m9iYq5ojm8LFNgj5qKtJo0YKhkhrNsNief7mgB4oBGWs09Q3y/N5RcJxCLegRM7qRTDjo7WrBqOYUduxzJtlqa8OmzkrPf6mbRL1Juj0bQmKuW7dkARjuVfjUWVmjmfOMK9XxlEo6wL4hpjpNvDWa4Qw21QhR109N/EWrn/PWaKplF/JZV6OkRTEg4QiyqZuazsXFT3UWGF4TZX2my469g5713DTXqe0PXjdENN3UWemUUde7TVt1Q7N/SE/hNs3V8jvbUmdDGZpSTVdE51QntGo8hBVKkjWazemEcU1sb0qhozmNTx5/oOd30vngF9G0zQFqfW9bJqmtoUHp2UHYUmdTCUdzYmups4O6o1tmy6loEe6yxIDM843JX2lzjKsO4yDGj2rSxsrMnjZM6W7F3XhVe98CJXXW1PbMrYN273dB4bdgvLtj3hTR9LTDUSOaWg92dVwVap2DUmdNAkXqvF1oseJ5S02pf0x1P8Q1uNQBaZsYTK+rC6ms6dnmE6GwbdbcFiQ9ptRZn1QXdcFRhWLUCdSYOhsgBgR4N3zSsJORB5MoQyUYU2c1A9kvOic84CHEgPYM6nUjYVJn5YJv2iyaxk9ZqbMDQ1ralVz81euhfo+ENlbtn2tLoXbxU9D0S50F9GhUIXXW3ztvjAxaHAumFKXJpUY0xTm7z4fHaHFTZ63q0aY0eyV11mAsqvNFZ4tM7/OPhpaiGmzDmmUhxkqQI0K2NwG8NZoze9rx/fcejg8ePQtfO30BgML4/OI7DsbMnjZ8eNUsTB1jdhKYUmcTor43JyLQQBmGpqiLCtvmwKTE7VfXLElYdiJqPVwmmUB7c8ojrOLXLkgdF351Z0bjpYSIplbDLzZ18r3qvJZIONpGdoepN6c4D5tTtXiOhvOWThyvoVk4T5m9NHxeg55n0JRCHxTRdOdweSx1nXhlhy7y2D8oU7gNqbPieVWNFk0MKIShKb+XJ6JpqdHUHQD6OeoOb111tiWTNGYQmfQNXFLC+eAf0bSksYp0b1vv5XKc6DahHKnSbqvR9KjOGsoSKjk/29xUSkTTFrU1IdvbTe9p9SiOz+xp05zS8tl2x6W6PzC1HNuj1XkbsiL8IprKvweyhci7n0geUHASyTGnRjQdx6l7i5PQd2poaAgnnXQSmpqa8Mtf/hLptDnSNTAwgDPOOAODg4O44447kCgzpWokY6rRtE0MphpNdYLSJtChnB6h8BEgGH5tuJmsSXnWJgYEFB4KdwnZa63RNIgBhYhoytRZee6ylqqaEU1T6qx/jaYeRbKlv8kmzaWqzsrJ2nQtTc2byxUDUtMj5eKfSjpuxoeuOuuYnSKSciKa7mIflDqrRr937B0KlGY3LWy2+51J6h5OAJhi2TDYkEa2awhLo8VdLEqr0TSnSbn4zRfBfTTtm6uw2BxN0lsd5IgYEs8Z4KrO6k6t4w+egOMP1lVw33noZN8WLIC9xZN6+jKimUo4geNaotVoeiKa9msQto9m4bzsz5Jkek8b3rFoEv7zfzbjA0fPRDqZ0OaPvsGsNg4Ab8N6l70+EU2T8WKKelijQ5pQi+7oy+fzvv2qWzPJ4rmp7zP1wAOCDU1Tbamf0BYwvJG3RjT7hjC6VR/fxjYgAWJAuyyGpuq4zYr7OZCVTejN+wj5Ny6yvUkQ0lCX85pqrKriRnrqrExxtBuaTamk1u+7+LkW5z8gxIByeV9hO9tzKK/jzLFt+Ns+lV+VciKatvYmfjWasmez3/w/UKGT0TYvmlL4bdevFMG9cR26oTmjpx0zhaGpCgEB3rnGnfdaM8niuFN1E/ZV5+it/vZ9T98aTTWiKYQk94o9gMkJnkg46GpJaz1le0QmSlM6gd3yD2tI6BH8s5/9DPfccw8uuOACq5EJAJlMBhdddBHuuusu3HbbbZGcZKNie/6KEU2Ll1XFGNHUIob6BOoXoTAt3OrfGyOaPguDHtE0Kwq2GFJn9ZQ78xAMqtGUHvxyJmM/2pWFd1f/kEd5L2zqbN9gVvNI2cSAdvYNadfFNLnKjYW8n9Ws0dwjxICkN1H97DDtTSRBhorR0DRENE0bUfmMBIsBhYuuAAVvodwIlS4GJCKa2aCIZgmps0l94cqLAjC/DIig1FmbsEUp2DYp8juWkzrbP5TVUo/LNYYBc41mwnE89YBB6e9BSAEOvRbK/twaVWdtUQPDOmCLaALAt951KP7yxePxibcVUghl70n9eXI0lWHZv3D4HORcZjJegrM6TO+VRkD/kFAfbtLvpS3Dw5T2BohWXkaBNkN6m6ddl7dGE9BFYFR27PW2ZQpykqkbT5fdhuwcwN5KDfBGNE1rtuPY1UwrbW8ijaZmEfU3CSXJsd+iZlYNZPUazYxZDMiWZQZ4Bf/86tVtz6EcA1IBO+jv/bDtJ1NJvY+mes20Gs1UUqTxD/+usBcKl9JvI5LU2RIMTRnRnNHTilk9+vU+RKnPLJyjzdAcvrbuuFHv0e4AZ1UhAg7Pe+RnDmZzWqZg4bPN31nu08eKvXy9W5yE/vSf//znmDp1Kk4//fTA95522mmYMWMGfvazn1V0co3OOUumFP+9SFGzch9om+S6imkB0PtoDv+7bzDrG6EwLRAtmqFpimjaFwZ1srC2NxFpVkC4SMiYtoz2cMjNv0ydjTqi2e5jBAJBYkDD30ntWwbYI5pbhaS9sUYzoIm96ZwKNQT6a82hU2eH37erf0j0orOfi7ooqfdXCvfof1966qw7noNqNGUEZiDA0DTWaPpM1Oqinkw4mNgZXk4d8G5k3bEmhWXc71aSGJBP7RSgjzsZtQtqjRJJRDNAoKz4voDxYeqjqW4mC59VvqFpmgeTAamzpnS8IKS4W1gxoFJqNE3XIej+qffDr72JvJ/qcft80oBNa5PpmbM5Wew9DvNa1AswRzRNDPcD1c9j94A5Zbd43oaxKp8t2TMvsEazT29/BYQRAzLUaFoimn6G5kA2q/U8tpWpmAyTbC6vGc9hajQ97U08bd+Gv2MuPzwP+UX/tTVgKKs5C5pT9vYmNtTxmg1QnbXNA6aIpomyIpoW1VlTe5N8Pr+vNZPu6LY5DrK5vOY8r1/qbAmGpmhxMn1MGzpb05imlEosndHte47ueahjqSjQp7ym7vmKc4hI57emzgpDc++AOatJIvf6ci9fSvS3GoQeIY8++iiOOeaY0AdetWoVHnvssbJOaqTw9ycchOvOPRQ//+CROGLm8CB2FwzVW1FKRFMdtHLSVRcq6eUwPdzqABxjMDRtYkCAWd0P0CdGrebI1N7E6tlyiob6zLFtWNCrpzVUs70JoC+8O/uGvHVIvgqqZu8WoJ+nbmjqGwzTjxbbtAAAdBlJREFUhkqmFHkMTYtyoy0FJIh2UaPpp36mRTSVDZE3RS78AqMiPebqsdV7YRT3UdIw94pes6ZNk8lg81tM1fs4YVRzyemSUrXXXdRtaZg2Q9NUsyKvh4xkbNMcU6VFNCOp0QwQKHMJjGiKNkKAN/W4koimFGIBCilPfmJApnS8IGStjy0bQmJSnbUbmvbsgDBI56Ffzb163/q0DVhw6mxQjabtc+SmTs7BshzFqtBpEAMC7E7V4nl7InJJz3wue+a568v2PV7jELBENANSZ3eJ7w0Ml4EMZPVno73Jvs73D+qtg2zzmxSyAgr7EXUMh1Od1Y8v6+DlGHCfc796Zj0Kn9Oidy0ZmxiQfZ3UnBmePpqyRjN4zAKFGnIT5USjrBFNUaMJFM5f9slsFmJA6rWVa0hZ7U0sY8jY3sTy/UsxnqZ0D2fIjW5NF8fhV9+5AMtmduPTJxyI+WKPaVKdBfRnrNmgm7DHJAaklVP5pM4m9XGlzjUtaXNnisJ3EhFNmTpb54hm6BrN1157DRMnTgx94IkTJ+KNN94o66RGCqlkAm9fOAkA8F/PDl+L4YimuS+himnC0COG9gEk071MtSN6RLM0MaCuloynHQqgT/LSkwjIRu/28//iqQfjfUdOw9TuNs/iJjdWQQ3dS0WvTxzUemgC/jVjmqHpG9Ec/owtIs3JmDorazTFz6aNdDrpoCmV9Mi5h0Hvo5lFOmF3jKjXw9beBCh4/uQ1cc8ziKZkQqgfOp7PDlKR9ab6hfOg+olNqddCXdDCYotoqoaSek42D7nJwyu/38BQDlDWoG0+qrO2FCuXMG2KgrAZf3JzEdjeJJf3OIOkNzjK1Fm3tY7mbMvrUeiyIprK5k5G4vwMzbZMqqioW3x/KamzJVwbmTo74NNfWL0+qqKr3PgYI5om49NyDdTjJUWNpt4GxfEYfX7CKfI7AEL4LoRom0lICijcH3c+c41Ie0RzUETsElqKsktQy4e9g1mPQySddHwVPPuHcqH0CUwZEFt26/sDP8d18Tji+rV7UmeF8NBQDh3wb2+i3vO9gyKiaWlv4ic2I9ublKM6K59DKU7jUl6NZriIJlAYe9JJ1yzEgNTxEsbhEYTNUW/MyrJ8l7CihgBw2NTROG7uePzpuTfw8bcdWHx2VszuwYrZPeZz9EQ0Cz+rtbvF1Fnl+6hq2KY+mlkhBqR+jDd11r+Hpovcp8uIZr1bnIQ2NJubm7F7d/hy0t27d6OpyRsh218xRfbKrdFUJzI/NSm5wBnTEjKqoVla6uyMnjasf3Wn5/Xg9ibhIiGO42D2uA7j76otBiRVZ2VTcn8xoOHvtFfk2GvtTRSPqdxghFGdlRsx07VMmSKaIWXB1dqYXf1D2ufJ1Bx1o6ilzorNUG9Xi8eoLqSRBW90M6kEoOxb3PEclDorBbOCDE2TIe632Ksb1VKFgADvfTPVaKr30KRqCYRLnVW/+8BQTtuEy/nClGKl3ie/zVVYggTKiscPjGh6+2j2DUVnaMrsEHdca300o6jRVP5GNcwA/w1dIuGgvSlVNE5thghgSZ0tQf9eOm70/sL2OemN3WqadrAielAfTf29SlRA1EPpKf/e9dSaOmuoAQeCxYDkfbJF8bToxVCA6uzeIV0V1DIWwqQT7uof8kT//DaihVph1ZlgSZ0VrdYAYMtupd1aSzrUOi1rXKUojxwD7mf5tZ1R58a+wayWxt2cLqNG06esQM5V1nRv8b6xHU3oaEoV05tt7wuDyUhO7VtnPYbmUM4T0cykEtbSCa/KdBmGpi2TzfByFKmzjuPghvMWYyibC+0U9bTIcSOayvkERjTdPppSpVjxCCasEc0c9g4OH8svQKCuTy3ppCHdvL4RzdCfPmXKFDz66KOhD/zoo49iypQpwW/cT1ANwmExoPL6aKoPik2Rqy2T9EbAjJvq4ddMC6KMcqhM7zF74LSIq3IOrhcxjBhQELXso7mrxNRZ9Tup9xiQ0V77Qma6V14xIBk9MG/W5BgJ3UdTMSYHhnKaMSwXMnVDaRMDAoDLjpnt+ZywW9wwqbOm+6IZmgN6ywjT+0vpownoTo9plvYYfhTS6PSUGcDH0LSpzhojsYaI5j627dUN/iBlTJkypdbmlWvEmf7O5DwLVJ3N5TziSTKiGZSe7YeMaJqiXdlcBDWayn2WqY9BG061bt1miADmObeU++dXo+mXzq+OPRnZMm08jYam5ZraajSHcvlAh26Ltbl94Zilqs56I5rmNVSPXgTVaA5q49vm+AoT5dktDc2U1xmp0j+U1VJnbXOhVgqyz6mgRjTDpM0C3vlNRuesqbM+EU1Zp98nIpqmNdG3RtMiciV/ZzoX2/scxzHWaZZXo+k9d/e5MBqaov63OZ3U7oPawqWUvZANWS7inp/JOWYz1EsRA3IpZb/pddAXPk+9tu4+SD1HPaLpnUOyOSkeZavRzGPvwPC19jOsu5V9ek+H9zlrmBrNo48+Gg888ECousv//u//xgMPPIBVq1ZVcm4jimbN27cvojlgF1cZft27SKmbLltE05SuY0ovVc8rnUxoRcWpfV5yGzMthqY6kWmexKHw7U2C8PTRjNhjo9Vo9g95Umf9zlu9PzJfX01RsxXsN1miEXIB9ooBGTZrhpqMcmo0AV1cxdTexMXP0HzbwRPw0WPnaK9JoSUbtlRhrb1JQIRyrxRYMb2/xBrNdy2ZiuZ0At1tGZxxuH+bDBt6n619EU2L0WJWukyE6kWo3hsZPfFkCQQICenpdOVGNA1zUonXH7CJAVWvRtM9VsKnRrMcL7K6YfEYmgHHU+csv/earkMp10a9P7KPplcJ23weXR5F9GCDDbAb0NYazWwuOKJpmQ9NaW8ANPVto0NQnLc9oqluKr2qs6qBurNPNw7tvXRDRjSFUWZzXgEFQyRM6qyqmupmOqkRTb9WaSrymkqjKZVM6I7NQTeiadaJALz9vLUazbS5vYltfS6cg2po6vNO6BpNw+szDcqzUYkBuffN5HzUyl0ccy2nO/48ZURlzP2JhOPZr9iyKqJInS0Hb+ps4fNOWlBoj5VwgBPmF/6tpc4aajSTokYzrBiQun/0MzTVHqzTur378oaJaF566aUAgLPOOgtPPfWU9X1PP/00zjzzTDiOgw9/+MOVn+EIQVeH9bY3sdUDBPXRTBgmBMDW9y04eqMKAnW1ZnxTGmdYagrs7Vfc9iZ28YiweNqbRJ46qy/ypaTOqguIqiws/8Z2z6294jwRTTFRG65lypAWFXaC9vPoyklPnUj9DE0AuPzYOVio9KwaPypcir0tojt9zPA4NHmEW+TGWNuQ+DtfbJ+tsvqgcXj4s8fh4c8ei4mdpddoAvpzUOyjaYtoGpxLUjDDRS7oqlGwVUllHGVo+uwXDQXgK+kfFtPfmerOgzzRg9nqqs42pZLamDelzmbzERiaynffUUKNJiAimr5iZdGlzso+mp62JZZr7o1omrIxgp1tLtY+mmFSZ30UOoFCpEkdO3ssPaOHz1t/zVZ+YupTuEMxNNU0/B17vTWaJspKnU2VljprW7MPmjhc5vL05oKh+eYuNaIZcp73qM4ahPEMCrd+DkSZ7q3XaCYMiu7eWl4VPYPHP6Jp7aNpmPuk895xypu3THuLYkRTzuvZrPYdmtNJOI7jmUOKhqbcC5U598vnxHYYmxhQORHNUrCJAR07dzz+8KlV+NNnjsFhU0cDEKmzakTTTZ0VmS+hxICGclofTb9923Fzx+Nt88Zj9rh2jyMfsI/BWhG6RnPevHn43Oc+hy9/+cs49NBDceaZZ+KYY47B5MkFD/6mTZtwzz334Be/+AX6+/vxhS98AfPmzavaiTcaspcfoIfYbZHDoD6aQGEQyWiDaXELivYABUGg515zj+HvgZwRIqLZlPJ+77BiQH5UO3W23Sd1NuH4RwC0TYmPcIRtUxAmPQwIGdFMOp5JJuwE3ZpJegRGXOS4VMekGokzXadEwsHNFx+BS37yKB763y24ZOXMUOdji2hedNQM9A1mkU4mcPZib7q+bAFUTo1mkNiUjAaWiim6UUpE0xaVcY89lPMqM2qtkAxRF1OKlcpgBJkJJkPEWCMbpr2JrNGMMKIJFNJn3bRJ16mjRjRzMnW2DAEGdY5WazSTQnjIhOp8849oGtLWSnD4+YlreaIUNkPTM3+HTJ0N4YSTPet2KQa7yXFrb2/iaP92DWp1IxmmxMFmaMp6LEDPMpjS3YInN20HEG3q7K4+U42mfbz0D+U0hWmb0+2gCYqh+coO5PN5PP3KsIbD5NHhnHBBfTSBwn7KFZXrK0Y07Q4AWaevPqcthtRZPyEgQN+3yJR9b0TTfE9Ma8qscXpEM5O011r74aft4bYZU0s0TA4yed792SyAtPa8yxZPpZBOOlAzxcO2unKpvaE5/PO0MW3W9w5o82HhdU+NpjJkrKmzubyv0r/8/H9932Lr7/20XGpBaEMTAK6++mqk02l86Utfwi233IJbb71V+30+n0cqlcLVV1+NK664ItITbXTUidxN2wgTFjfVaMoFuCmVxE7o3m9TRNM0sUmjRhUECmquPKYtg47mlFcd0aKK607ugyG8o0G0Z1JIOCg2ZC83dc96fGWi3juoN3gOMmrV3/vV85gWUMBnMxVgaJpVZ72biLD5+o7joC2TMsrkyyiA1t5kyL7xdOloTuPWS5Yhlw9vANjEkNqaUvj0CQdZ/046eYJVZ02bx+pO1NrmuIwaTb8NZiaVKHpG1e++bY9dnEV+JhAU0YywRtMwPgPFgHJe5cS9AbVTpdLZmsHL2/sAhIto+imC21DvrWoghcnYUHtp+hmaJuO+pIimT7sg+TzZ5kqZihw2ddb2vWw1mtlcXnPYmLI07O1Nho+ZTiTQB10hNuw52nQOjO1N1IhmdzkRzeAt3a5+3XGaSXnbr6gMCAE1a0Rzwqjiv7fuGcTrO/vxxIvbiq+pvcT9COqjKd/jRuP0tlU+huaAvp6bVGf9SoYA/9RZaTCFbW8CeDNywhWVeDHtJ9VzziQTGMwOOx9NDjI5xtwU5UFNZbr8OVUe3zY91y91Vj8hP8M2SFlYX99zyFnFgPQ5Qe12VIlh3TARTZfPf/7zWLNmDW688Ub86U9/wiuvvAIAmDBhAo466ihccMEFmD59etTn2fBoNZpu6uyA/wJoe11O9KYNTbmps5qh6SMEBOwrXu9pw59f2q69rj4sMs0KiKb/XiLh4LCpo/Hoxq1oyyQ9nsBKkQa+2tg+aNNnW4j9enup2CYtuRkIE9FMiRQgxyktpa+tKekxNE1pRWr6jLqxS/hsYB3HQSnrlLx+YY0bGYEZCIpoGmsEo3VkeI+vejIDVGdNqbM+G0z12NaIpmG+MKVYqegpk+VdH5MBaTY0/Y8/ZKjRlIZmpRFN9Rq5Xnz19As1mpVFNG01mmHGXyU1mqUklkjHzZCPEWKNaIZQnTX30bREhyw1mkPZvKbi2WESA7Js4NRzt0V8w6jO2iOayjM/VBg76pjVUmf79LrKSgRSTLW/fhvR/iF/Z4LLxM5mzfH8h2dex6Zte4u/L9fQNBlNJoVbP0NcvS67B/RraRID8qvPBGREU8wzskeszdA0PHTTRaTM1L84DOaI5vDnZVKJ4v5TigG5Y8HUBkX9P1BZJplXOMwS0TSM9VL3MeXQJJzL/oam/xyiZpFkc/a+qzJ1Vn1fJYZ1w7Q3UZk+fTquvvrqqM9lRGOK7O3pD45oGlNnxQRl2piZFjfTZkW2ujhiRjduemADAGDJ9G7jOanMMBiatvYm7iI6FEHqLAB869xD8evHN+Go2T0ecaBK8RiaSj1b0KbXNvnKiTGTSmgpLMPvC2eAyvpCYy+6hB7RbNlXfxGWQtRV74VmlE5X1SVFak1UBEV0bcgaTT1tLFzqZjnKeqWQFptjwKePpkkp12cRsvXDVFVnTfOFW9/pPq8yRUxva1He9TE5R0qtkQWAbDaPQceeOhu2hY4fXUIoDfCmzpo2bKWgy+Sr2RDBGwV1zvLbWJiem1Lunyd1NucX0axH6uzwv4dyuUDVWZtRoZ6T7fqEicRaazRVB1A251GcneoX0bQ8D2FTZ7XyloDUWRnRtH224ziYO2EU1m3YAgD42SMvFn83ujUdWpHb00czIKJZVJ0N2d5EiqA1pxMeZ72fPgEgMngCasHtYkDh5r5yMNUdq+csUz1NTs2kmP+LNZohxkIYPDWalvnZFEhpLXEfUw5+6ddB73Vxx4JM5w/bRzOrRI9LaeciqbcYUFmGJikdrVZxKIdcLq+JCpTURzNURNO7uLltFFTDRm6qjz94Ar597qHY0z+Edx7Wa/k2w8zo8UYStfYmQgwon89HEgkBCj0ZL13tbZcRBS3ppJaaq0Z/glNnw3u/WzMpbw/NEIIXpvOwRTQzwtAsBdO4NI1J28IbpaEpJ8uwx1Y9orm8voE3p86WbuhUiuokCOyjaYxo+hkWupfUZdtus8KlSiaVwNCAdyMHFIw7l3Lvs+n5N4k/BGU+DOZyENUDmuBHFOOwU1FKTVhTZxXnQDk1mtZshuDxpzrb/MarMaJZwuWRjpshLcIRHNFMJx3PeA3fR9NW76YamqJGM0AMyNbexBZpUAklBmRLnVUMjcFsDtuFAdSr1DT2D+W0mt1SxYC62zLF/sUFw1uPfgeJAYVJnQWAAyd0FA3NRzduLb6+cEpXaMNAnovsowmYI5qDPinN6pwuI7oF1VkR0Qys0TQ7VoHwNZqVONmDyOxT5rX1OpY9km2ZGOr8b7rOlUU0haPcMgmZVMirnTYLeM/Pz9C0p84m9v1fT+e399FUM5v0mv+KIpqN0t6EVIZqDA4M5bBnMKuJrNgWiGTCuyiHaQgsPcbFvw2IhiYSDk5dOAnvWjo1VLjdpDwrI2gq/SIdoNK6qWrhOI5mZKn1bEGTq20BMW0OZI8woBTV2WDDKy1UZ0v1mJq8/aaxqp5LkOpsuXj7aJYe0QR0ZUdjC4VUAnJPFHX7HImmDFuMIJoXf5Mjws/QVM9dradW08FDKWN6IpqV1+qYnn/TghpUo5nN5bVoLaDXTkUxz6ips8WUKK29CSKNaKqEGX9Hzekp/nv5rDHW90lDIeGgpOhAq9L/Vzpu5DNpekZNauZhVWetNZrK38sazV0Bonv29ibmdFwVU7uVTCqBQ6d2ASgoas8ytKwAvNEL1eHY0ZzyPJNv7FLKN0o0NMd1DJfEGNub+IoB+fdKVVGVZ1XCps2656Niuj+qM8ot1fATS/Krly4rddZnvpP1zlbHseU6hlVh90PuXwBvjaaLbG+ijgXT/K8ZmgEieX6E2b8AZoddLfpCppIJzQHnN4bszgRvRHMw69dHU3cKq87SVp++60EwormfIAeimooJ+HvQ2ptSehQmIT0t3kFkFyDQlb4qfWBNvTT1iKZ+btKbWEoD3VrT3jRcb7JVMzSDUmfD1WgCFm+tZdKKQnW21PQLczsA/4hm1VJnQ3xfE3KM7+jzj047joOWdDIw8hkler2WqzprNlrM6tH2+UP9/p/91ZPYvH0v3v+WWVoKmU1hWqb3qaips+VHNA0RZcP4D4ooF7I09BT0vQHqx6ViTJ1VjpuLor2J7dkPMf4OntSJ2y9dgc3b9+LYueOt75PPTamRlWZRbqE/TzKd33vdTU7QsEal3RBX0lyFAbdLOT+zGJBlkxgiddZm8N3wvsW466+vYsWsHusaK5uzq89jV2vaU77xhtIqxNpH0/JdxnY0FRVgd/YPadfBpEyuMjCUE3V59mdJFQRSKcXQVA3snvaMUdXUWKMZsr2JpGBolpY6axsPCQee8w0SipEcNXssfvHfL/l+fhjaMknNeZHUajSHr8dANicUztXsGa+hOTAUzukQRNj2Jumko2WXAZWlkZZCJpUoOiz9xpA9ddZNQx7+fTaXL0EMSFWdbdzU2fju8kcYcrHZIgxNWy8vwCvJLjdnpo2ZKXUW8C+SL4fpBkNTq/8Qx98lFGrjGtEEdCNLTZ0NMo5tk685dTZ8RFO+HqY5ekrWaJY4WZlTZ8OL5ZSiZhmEJ6IZMoomx/iOvfaWM7a/qbYYkC5/7qbOmtMwS41oHqcYHf1DOXzzrmdw+c8e15wnYeaLQY+hWXmtdfiIZunXP3JDU02dLYo86NEzW11tWCqJaAKFFMUT5k/03QDK+avUW+f3PMlxYLruRqG6sKmz1ujQ8DnJnnVaGzGDirttTlSPY1unbPdlTHsTzl06FVN96hJlVEk1Cjpb0kgnE9pzrRqaYectl3EdzcV/7/b00fRXnZWps35j68AJlUc0Z49rx9mLJ6OrNY3LjzvA+B5ddbZwbn0D9mfPdo8zyQSSCcfz/lJUZ7XXDQ9TKaqzAPC5k+cWHX9Xvb38FoHSIWxLnfW2N0la3udVLq+sRjOcw8t1/KpUu7WJy4H7HCeZZAIzLZkJQLAzQdNg8BUD0p1P6hpmSiEOS9B4rjaMaNYI6TFTDc1UwvF9YKVSnpzkTItv2NTZSnPdg/p8Bkc042tolp06W6mhaUvl2pfKMdzSJUREM1Vp6my4dgAmI7fwejVTZ8MdW3pE/SIwLvI6VbtGUy4wQGkRTT9D87JjZmNCZzO+dsdTRYfJHU++ol0/vxpNF3VzmsvltdT/slVnTRszw3xWTuaDavRF4dCaO3E4WuP2EPaIAVUc0bRtSqN7jjy9Lkt0BslnQ60dlOPApKyp1rq6mMZ0WCXawnuHP1edc7w1mt7nxBa9Uo9jG39R1agNZnPYphiarlNjVPNw79bXdwZHNG3q0+OUdMxdQsE2sI/mYC506mx7UwpTulvw4pZhtdmZPW1WR5aNb5y5EF/P560p3aa+5HtFb0zt/RZD2t2feJVuw9doqpjWO7tSsvkY3W0ZPPgPx+K1Hf2+joog/FJnm4STw5o6a1Asj65GUzi8fKYhtW+q+3Mt+KczD8G/PbQRK+eMxdgOe0qzzQHm3mN9Tspp0VmbSNNgVqbOlv+dj5s3Hp0tKbwY/NaqwIhmjZCTzZuKodma8VfQkl5Yj+qsYSKzSqqLnPpyer1JJnY2az9nxESlTiCy52Y1C+IrRYtoKsIpQc3jTX3qAPOkbEqZ9lv01WsbqkYz4fjWzAZhciSYlZDDL7zlIntZhjU+pEdUHYO2hVI6YKqfOqssRAFiQKl9Qg8qfg4jx3Fw9uIpuOcTqzBd2bioEckwypjq+ah/C5RvyJkMVNMYDXrmTEjV2UpZMLkTXzptPs5ZPAWfPWmu57hSDKis9iYhhcAqQc65pTZcTycT2nj1e55MbUHC9ng2bcRtTjh9XlTuSVYamt7Pts2JWo1miRHNMPjVaHbucxSPahmea7UaTct8lEw4xnPy1GiKesbAGs0S6rEPHK+nz5YSzVTx2xPJiOZgNqedo3S82eZHt5+rN6IZVKNpS5U0GZqmTCN/FezmdLIiIxPw6j+EFwNSU2f1FFsAwulQ/rxaiuaCvD+1Sp09YHwHvviO+Thunr0UAbA/jytmFermNfEooXWgOitlLeeegeDOFGHoaW/CPZ9YVfbfV0p8d/kjDDeq4rJl97B3MqgeQBoj3oimPgAdBxhliWjKjUAUnqHJijoeoBvCjqOnpXgimg2SOqtGNIMMnFIimqYF0NfQVI4tN99m1dmE5giY1NXseY8fJkM4qBm0SqSqs2m5MIU/tnqd9f6E5mstHTDVFwMaPv5QgBhQ4WfpgQ9+jrvbMjh1kVlJ2hbRNNXoFM7RX2kxLGHbm5g2IUH3f++gXaSmXNYsm4avn3lIMaKpiwHlNQGiSGs0I+yDJp/VcubgZs1xY88QMDmgTNk2pvtj7qMZHFlUsysGcznteQ8rbgaIGs0S6u7DktaiF3lsV9YY1wDqUJSEVUPUT0VSfp9MMqE931IMqCmVQGpfCqkJNfUYCHa6zRWCQIv2CSNFiTo/9w9mtVo2wLuu2sbNOYunFH5fco2mZb0zOUcMz261HZeANyrr295k0Jw6q14XN7o2oCkQRxjR9JmH5HpcC9XZUjA9jxcfNQPLZxcMTXVOkoamb+qsMq4r/c61igKboKFZI6TBtUWJkAVtEj0RzYD2JqOa09ZFQ0ZDo8h17+3SDU05Yajfe3eDps7q7U38z7kUhUJzRNN+T9QJLUz0IJV0cOqiSXj7wklYMXsMLlk503psE6aNmbm9SQ1SZ2WqcAljxzbJWvvReWo0axfRHCz20VSbiuufLxc2W4sGySmHTDS+Hkp1NmuPaJZ7fUzjwzQnhY18quwdqI4olYo67HOyvUkZc2sYVdVK8aTOlnFtbBkCcuNpmhdMTg1j6qw1EuQ9Hy3ir3yf3f1DWj1UhyGiaUuTVI9jSgGWn1sqmTARTUNNqfxbiUyxa21KapFcb42mOX3UpVQBPykIVG5E0w+tXdxgTsteALybclP08PTDevHhVYX2aF7V2XJrNE1ReFMpQPX3PTIqm9ac1D6ps8r5qmu9Ow6qV6PpH+FV8RO/qweyJdcph0wsZr0A+v2W/ahVZ6XufMppLRCD0rnjTOOeeQPSrChZlhLRlDWaclMnDRObgiRgSp2t3NCcNsYrCKSibUo8Ec34+jpU1T81OhK0qbZNvsYaTYMh56cAqB5bbsRMm6FMMoHWTArXnXuo9Zh+hK3RrIsYUAljx2poWjZXta7RVL/LYDF1toSIZsjn+IDxHZgzrh3Pvrar+FpGiI6o2Go01R6aQPmGnLmPacjoVjrpmU9U+iOu0TQhxYCqVaMZpWqgvBa2Rul+qBt5LXVWKtoa5oVOg1PD9D6bInSTogRpeq96T7aJ3pQmx1lzutDOKK8PaVGjGb4cIiyyRtOcOhtcOy2RoiFtmZT2vT2ps/u+QyaV8EQG3ffbztvEIZM7i9ezoyllVaKtBD111hDRNMyHk0e34KWthdrRo2b34BtnHFJ0ilfSR1PFNA+a5q5qryeAVwzIGtH0SZ1V90Ducz4YUoE4iNIimtKxGq9946KpXWjNFPb3y2eNwTVnL9S+j1/fVXUbkxFzgjquayWAVA3idbdGOKrXY4uo0fTDozrr6YWp/+xXeC8f7igG73nLpxeN4RWzx3h+rxpOHtXZWEc0bUX8Qamz4et5SlGdlb8LU6NZ6fU1GZqm62IzNCJNnS1TDAiwj3NrjaaMaFbQLywMmupsQI2m6eegvm8qJy3Qo5pdrWlrvZBJDAIopCSqlGvImcaHMXXW1NIlYLPRNxRtjaYJ9Xvn8npdaHl9NEsTDikHeS3LuXfqRnyLT1mB6djm9iaGiKYtM8TU/sZSo6kab4BZddZxHKOjxma82j63VGSanGrQuRv8Uc2lG5qm+kQ1kruzr7SIpsxCCjKSpnS34nMnzcWiKV34xpmHVKXsQJ0j+kW/wVTCMY6nz5x4EKaPacW7lkzBD89frI1VWdoUNJ/aMnjCi5vVIqIZTnV2IGtXnVXHjTs+1VTqStI55TjyuyT1Up0Ny7iOZvz2796CH52/BD+5cKlnjlLnj/5Be+qsOn76BnPacxq3dOFSYESzhqjpbqoYUJD3TAoYeFNn9QFoq7cCDKmzEQze7rYMbn3/Mjz8whacunCS5/eqt3BXv77wx7tG096L1A9rzzWjWmhpqbO60FJw9KDSiHFYlUabwVZV1dkSvMJ2Q9N8fvK5qLYHWkujy/mrzgLeMRI2dRYATj5kIr51z7PFn21ps4BPRFOKAZV5fUzX32RoGt8XULc4mDVLyEeJjAburVAZsdL2JmGQ16JUMSAA6OloAjYX/q2OizD1n6bxVkrUx3QtbDWa20TJg21ubcmkNFXLwnHMtVNB5xIW9ZgD2ZwWGXaNBFUMSKXTEukEvI3d2zJJzcDuH9JT8oYNzeFrM66jCa/tU7ktp/f1xStn4uISyzRKQX1O+gaz2Ds4fI62Pc0ph0zCKYd49yfAsGCcOwZkD1NJpRHN2tRoSjEgZe8gI5qW2nJ13LhBAnWcmlLRw+JVzfeJ0ntqNONnukwd02oVcFK/a9jU2deVdkaA/74+7jCiWUOabBHNgNTZoD6acnPit3GsRuosAMzv7cRFR80wSkCrk4TqDUsGKK/VG5vyXHAfzfDeb6kMB4RXnfXWQ5nSzyqMaIYUA6pFRNNTo1nCsW09qEx1YIBumDpO9QwVF1NEs8/SRxPwGp6lKNIdML4DB4wf7gnmt4DJxt7D5xiN6qwpMmA2NMO9z0a1IghyXKipTuWku1prNCM0NL39d0u/NmPbzVL/0pFpmivNfTTDpc4C5uuqzYvK91Ejmn695IwCZwF9NB2nMkep1spgKIfdAwZD0xDRnD2uHSfOn2A9rjS0WjJJT4Ru626vgq16XScpugtyY1ztnsJhkKqzaj12udGuE/dlekwe3YJDJnf5vtdao2nUSfCqhNfC0JRrt6rhINXEtdTZgBpNVfwryCD3Q+5F/XziHk2CmEU0g1D3wKqSLKA7+tTggdo3N+H47+vjDg3NGqKLAakRTf+HxtNH00dsBwiIaHpUZ6s/BNSFT+1hGOdoJmCvnQ2KbpXi/TZGNH3uycGTOov/njdRr30x9tGscEEzXYO6tTfxRDRLMDRLFFlRn6l0MlF1h4i6IQ/qowl4z7vUhfftimd/anf4pvIuUgyo/BrN8sWASpm7bKlulSIjmup1Kau9iXWcRrexkteinHun9mVUCZPOb4rGGVNnS6hXVcepOlbU2npbvSPgNTSlE9TW07OSeUHWaO4yRDRHt+mby1UHjsUvP7zctzxGfpe2TMoTeVL3H+68qs55UuBPO+8Y6Cp4Umc10ZTynpVvnHEIfvGh5bjrY28JLo+xps7a0r3199fCWPf00VTOTaqJW1Nn1RrNfYamnuJdm4imXBNq1d4kKlSjX9YTJ7X2JsPXQK0Z727LVN3ZXU3iF38ewagbIzX9IEhNSk4YQcZil6Ehtos6kBNObYrStdRZVaEw5g+OzQMedN4l1WiaxIB8NqhfOGUeDhzfjmk9bVgo1PxMm+lKIzmma2Aar7Yob3XFgEqo0bRFNEP00azFM6Ia6qHEgCqIaAKF1Lb1r+7Elt0D+OCqWdb3ZUTkwCVb1RrNcKlmqUQhUiCNXhO1EAOSlBPRdNtMyNTkqkY0y3hGbRFNOd+YNtTGPprGiKZtHvWv0bTd6x7LOQNmQ9PvZ6DyeUHWaKrZPu6af/y8CfhW17N4bWcfzl8+HZ85cW7ghtNTz5ZJojld6GftDqs3FTFC99q95YAePLlpO1IJB287eDz+88nNnmMnE05ZqdZRo85/fYNZLUpUbpZWIuHg8GmjQ73XnjprdzKrqdk1iWiKvYU1ddZTo2mJaO4LEmipsxVENOXzU1J7kwaLaJpqw13U721zrvnNXY0ADc0aYjMgggrPPUXdskZTqs62+aXCDf9tSzpZk9RVrb3JgF0KP27YDE3bZFD8fQk1mub2Jj6evUwS56+YYfydMaJZoffZZAib25uYx1GUmxJve5Pw363kGk0toln9Z0T9Lm5aqr8YkPTwljaVt2SS+M67Dwt8X5PYkBTPMafXP5Y7j5i82KZ7ZRrHqaSDZEhDM0qHh3bcEpQSw9JkUP+sZo1mWamzhhIJwJSW641wmuYPx3E8TgObISefhYRIbbdt9se0+UUB/bOGTA67Su+JamzI3pbuBr6zNY0/fGoVdg9kfesyVaRTrS2TguMUrvuOfUaCqd/rx996IBZP78a07laj+mzhnOtvZAL6nqd/SG9vUgvRlFLamwDufK1kc9Whj6YmBqRlqmTtqbPN/qmzfgZUEN6Ips9cKtY7WylMXPFL29drwc3XYEx746bNAkydrSm2VK+gTaL0GslNl4xuhFWdrVUDV/VzGiqiWUYPM6C0iKZpUSy3lUE1VGeNEU2D8WmbIKO8x5VENEtvb2L2/lYL9T4N5nLI5/Pa5kmevxwj1dpc2cSAhiIS2jHdQ7PqrDktPGxkoFZiQCrlPsem8SaFvypBrh9RGprScSDvb1eLXeFY3suwNZph54UeyzkD3ufHU1Nnah1V4bygriPbFOVeQM9iSiUToY1MwBuddedrW5qjex7JhIPVB47DzLHt1rEbh7RZwBTRrDx1thRsaZ62Z8lb+lCL1FkRpVdrNH3FgIb/Tl3/dxrEgGx9XsPgaW/iM5fK5zNsO6+44GtoOmYHgEqjRzTjMWvsJ9g2uzbRmeHfC0NTCvqU0EdTnSBrZ2gqKcP9akQz3oamrUYzyMCx1miGjWiWeV+qUaPZkk5CHtZ0zrYoQlVrNKMwNEO0N6lFmlNGRDSHcnmogbqg9ibV2lypDgRbjWYlzoSksfYynBhQKuGEHl+1EgNSKae9CRAsdlMptYxoyuve6asfEE4wRV4LT2TEcq97fCOawtCUtabViGgq67haMwn4b0yDkIqc7nezZU6Zvoe1zU4NnG5haBIRTbVGsxZplaVHNMPXI0aFXKf92pv0heij6QYJdvRFVKOZkvOQ/b3ePpqNZWja9pKALoJki3SPaaOhSUJik+MPimhO7W7FnHEFlcil07s975eGiV+NppY6W6OH1R7RjPfwkyJMLoGps6WIARlrNMu7LqZJqlIjyXEcz4Jl2rDYIprV7KOZjCR11hbRrG2NpvosDOVyHqVHv/Ym6aS5b1wUqCI0A5YazUoMTVOExFyjaXaihP3sakU0/VJyyxEDsv1dlGNQbpL9Igk2xtkimgHpcKYemi7eiKZfGqL6c7gI7RjfGk17c3vALHYWZY3mDpHpU+4aABgimvu+m80oMAodWT4/LllI6hzRP5jV2grVovWF7bm3RjTFmK2Fwe4VA7LUaPpGNJU+mgNDyOXy0anOerIf7NekVhk81aIplbDvkTTRMVs2RmOnzrJGs4bYPNxBNZqJhINffHg5HtuwFctmjvH83iMGFFJ1tlYF1er57RoBEU2bwqpLoWZNVw0DbKqzERqa4ryiasvR1pTSItEmx0ht2puIxbokMSBLKliI4nu/KExUaKmzWT1tFvAXA6rmcyw93y5qj8pK6o3MYkCm1FlzjWbYOaRaG2Tb3iidDB9tlZgjmtHd46D01jC0N6XQnE5otX5AsJKkb+st5W/TSXvdr1xHw6pXliIG5K3RjN6JZ/v79uZURdoJNoXORVO68NjGrZ73myOalvkyJroK6nzYN5TTDc0aKOknEo4mruQStmymlLWrXDxiQJb2Jh7VWeX6qYZkPl9oF6S+tzLVWeHw8rkmnpY9DZY66zgO2ppSWl9fF3WdsKbOMqJJwmJL3wsj5DGqOY3VB42z1PRJMaBwqrO1aG0C6JOCWksRF++ojdZMEqb1Psxia6zpMfydsb1JmZtKrxc+mvurLlgt6aS5X6fls8qJltiQi3UpG/lSxYCOmtODlXN60N2WwQfeYldljQrZ6kBGNOWzqm4ESxUCKgVbjWY2F02NpifVMmGOzpruUzLhhM6KqFpEM2QEoxSMNZoRRkA8Ec0yro3jOMb02YpSZ5VsG785tkn8LmzbIz9BDW/qbPXFgGybSlNpQimYxIAA4ORDJprPo4TxVot69TCo8+HAUA57apw6C5idD7YSEm97k+pfR78ovVQT77ekzkqdipe379V+rqyPZniHl8wGbDRDEzCnwzsOAtsoAYxokhKw9fILimgGMX1MKyZ1NuPl7X04dGqXb19OdTGvhxiQStxTZx3HQXtGj+YB4dJeUkkHUrgvdESzTAeAtyl0NJtrdYK0jVXbhruaYkClLNa2ulfbZi+dTOCnFx2BXC5fEzl/LXU2m0e/iGjK81QNmWqKX1jFgBRDsxLvvBw3VoeAYa5IJxIlRDSrM9fYHCmVOPFM0aQo1T7lM1muIu/Y9ia8uEXfeHqjpSLbxqesQ73HvoZmYETTkn7mE9H0igEFHzNK1VmVSjbvgF0M6NApXejtasGmbfo9M82BtohmXJzD0pGzXYkU1SJ1FihciwHDayY8NZq1EAMS40Cdp6WauK2PpnR6bN7Wp/1ckaFZghiQ3EM2Wh9NwKLW7wQ7tADWaJISsG12K41IpJIJ/OLDy/FPZx6CG9632DftJlOH1Fnb94576ixgTp8Ns9iGrXtJJxMGI6K8x1Ju2qOSUG/TDE2LQJLlXkba3qQqEU3/a1SrnnGq80JGNFMJx3Mv1TFSzXoVNXrUnzXXaJqEUsIir79trnBT1VRSJaSnNlJE0/S3ldTsSTx1lGXeP1NEUx5LXp+wZR2+hqa4PnL+tN2THr+Iphh3nrnU4Kio9J7YnAd+wiFh8NZoFn52HMcY1TR9D7efqyQ+qbP6eWxVVHtrFtE0XJ+w80FN6v6TCe06JS01mrv7h7QyH/1vHM1g3axENDOpRGWZGyW0N5GlL43W3gQwG5pyf2FNnfVRzG4E4jFr7CfYInuVpsoAwMTOFpy1eIqv4AEAzN4nKgQAB07oqPhzw2Cb+OPeRxMwtzgJ48k2bSJsGxMpCFTu5B2mWXo5qI4Qm1PEtgGJNKIZUizEhG0MxiUVTPU2D+X0Gs0gFdJ6RDS1Gs0KooVyY+YXCTS1vwg7vqoViUklHEzsbPa8Xsm4qnrqrLgW5aa3j+vwfm9TKrSKr6GpZNv4tX/wZDaEyHRIJRyM8qkna/UIpwTPpRXXaFruaSWKswDQkpaqs8M/n2IwNK1psiFT2OuBdEhtVSKatYp2GevGQ7Y3qZXBrrfJUZ+v4WuktisBvOeq7oFe3j4c0ayktQlgiGiO8NRZkwNJRjRt48KvB3AjEI9d1n5CWEOjmpw4fyI+c+JB+ODRs3DRUTNq8pm2zWNc0nD8MEc0Q6TOGms0wzkayk2dlfUhUaULqu13bK14aiEGJK+LrR7GhC3qF5cxqG5ahkRE0+Sgmt7TVvz3DOXfUaMbmsPGbzai9iZy4+q3gTClSNa7RtNxHHzvvYdjprgHlWx2jY4Fy9xRDp7U2TKvjTGiKecgWaPpozqr/q1feYKn1U+IiOaY9ozvRja4RtN0T6pTo1mxoWmJaALAgt5OT/szm6FpWofiGtHcrkQ0axXtKiWi6Yne1chgV0tdbO1N9gz4C8+p4/FlJe26EiEgwDv3+w0t1bFQTZX1amJMnfVkoXnHRUdTqmZlbtWi8e5WA1PNiGZYMqkEPnj0LHzmxIPQ5aMAGCW2ti5x2eT7YWpxEsarW4p4hNwYRKU6K/tUlYtqbNsjmpbU2SjFgCpYrE3OjkwyUZG6Y5ToYkB5UTPjPfdjDxqHD62ahdMWTcJlx8yp2nlp6oRZc41mJUacdBb4LaheoZkSajSruLFbNKULd16+Ep982wHFe/WORZPKPp4pfbiaYkCRGpqeiKao0fRZc9Sx5p86KyOa/lFUILjGSRqaXqdd7Wo0KzU0be1NgIJj5G3zJmi/txm85ohmPLaM3tRZpUazjqmzsYtoKvdefc799hjyd+2KQanWaFZaS+wVA7Kf04ETOoqft3had0WfWy+MqbNiuJjGRaOnzQIUA6opps2u49RO/bVeWKNJMUnD8cMkfhNmg2FapG1/J4v2y/WUV0t1NpwYUO1TZ0s5tsmAiUsaGKAvsoPZnCYGZDI8UskE/v6Eg6p+XlYxIMXorOQ5lvfQb5Moo0rppFP3PpouTakkPnLMHJy3fDpe39mPmWPbg//Ieqxqp86KCGAFYkCSIGeQXx9N9b1+G3F5LcLUaPopzgLedFMpcFUdQ9N83U3lGqVga2/ictbiyfjZoy8Wf7bVhJoimnFZsx2n0GvUdcjtVebLeqbO2lVnhTBPzSKaSuqsJaIpkfOP6mzfvEONaFY2TuVz6+eUbm9KYe0Hj8QDz71pTP9uBIyps54Ufe99afS0WYARzZpiiuy1ZSrrmdUITDDUMAHxV50FKkidNdb0mO+z6nFuSpUfZQtqLVAuK2b3GP+tfbZlIx+lmE4i4WjfsZTxYzJgatE0OyzqvRrK5dEXENGsFeqGRK3L1COa5Z+fHKN+aePezX8ifOpsjebYjuZ0RUYmYBMNi+785eYm2oimvzMobB9NvxpN76Y9OFpkMopVpAMtjLBatSKalYoBjWnPFI2ttkwS3WKjevi00Th/+XS0pJP46DGzrVkEJq2AWojYhMU2L8YyolmH9iYAsHj66OK/D5s2/G/b2E0ahOdUR/MrSo1mR1OlqbOlZSgdNGEULjxqBsaNMu8n447JgWSai+VrfmrZjQIjmjXEtIlqRJnmUpnZ04ZZY9vw/Ou7tddHdOqsqUbTVqOrjIFKjIpq1WiunNOD296/DLv7h7DqwHGWzzZfk6jvcSaZwGC24L0uxZA2RdXjkgYG6Bu4MBHNWhGmj2Yl7U3kGPWt0TS0CAivOhufex2EaQ6I0tlQigiHH+NGmWo0/Q003z6aZabOhlGjDopoBtVomub8ims0LffUtOaUQmsmhS+9Yz5uXfc3vGfZVI8h6TgOrjr1YFz59nmhFepd4hLRBApZKjuEkI37ei0wjTObArc02mslhPjRY+ZgancrJo9uxSGTu4qv28auaZ5RI5eqs7Hi1FnZz3eEB1xM+ham75xKONr6GjR3NQI0NGuIaQKs1HvZCBRk1Sfh2/c8q70ep0XLhun+hDFQjKqzFkEPVfGwEqPCW6MZzWLmOA6WzRzj/9mWaxJ1e5CFU7rwwPNvoimVwAHjw6smm7IJ4uSd1yKaskazjuep1WgO5bB3IIv1r+7EXkVAopK0VDlm/TaJJiXQONRoRo05khTd5tnbuqO8a2Oqe/RGF4ePnUw4vkZUOqLUWdP3CYoKyN6LnvTiEhyHYalWRBMAzjh8Ms44fLLve4IyZ+IsBgTYsx/iqDrrHbO1S519zxHTPK/bHFem122p3JWLAclnrKLDxZ52QwTYtHZmkglt/WdEk5SEabO7P0Q0gYKsutfQjP/MYppkwyy2paRatUUW0ZQ1mrXbXNuivFGnLH7vPYfjN//zMhZPG+2rYCkxRTTj0toE0De2Q7mcZshVs09mELKx9ynX/Zc3M6GSGs2KVGfDtzepdo1mlFS7RjOqSEImlcDo1rQmxCLv50ETRmHamFZsfHMPTpw/wdfxpEU0fWvIRE27J9JtqHMK2KzJPpph2ptU6qiqVo1mVJjVj+MzZ9ragNVqviytj2bwGK0lVqVhwzW1OYcqHafeTIT4jK1qYNK3MM296VQC6B/+2a//b6MQjxltP8Ek+lNLxdl6csD4Dswe147nXttVfK0RUmdNSmFhUmeNG5MQqrOVGJretLXaXd9apc52tqaxZpnXQxuE6brGSQxIqs7uHhhOCbMJMNUCOWalkQlUlqIt/7a0PpreeiL758TnXgdR7T6a3rqg8o81tqNJMzSlAFky4eC3f/cW/HXzdiyaMlr+uUb4Gk3/ejej6myQGJBHddZfPReopupsPJzPGYPREafMANtcUbMazRJ6q9ZLddZGKS1tbAZl1H00a1VHXy9MqcamfZPcl4yEiObIdiHEDJO3qJY9NOvNyQt0tbBGiDKYDM0wm1tvWoi9nqxNEwMqfzyEUTCrFrbPijp1tlwcx/FsTOq92KuoY2owKyKa6fo5o8Jspisx4uRmza8Hnqm34f4S0YzSKeKdm8p/DqQgkKmlUksmicOndQfeA/U7+o07TxpiiBrNIDGgplRC+7swLWCqZ2hWlpIYFeZxGJ85s7EimlJZvr7zUSk1mrbxGHWNZpycGNXAFFQyjRfp1BoJ7U3iM2vsB+zPEU0AOFnIUr/whjc6EjdM9TJh0ofkIuT3N6qzwU91M/gz62dI1SqiWQnS0x2nTZN6nYbiFNEMcY0irdH0cbTIaFnKx3kT9Dlxptp9NKOMaI7r0BUgK4lulysGFEVE03EcLX3WO5eGj16FxeZ8rOfzrmJWP47PnFn3iKZhrIdVna136mwqmfD0cATMxnu1ajRLaW8yEjBdR9M9kM8d25uQkjBtIPaXGk0AHvGWvsGc5Z3xwRzRDKE6KyZRv42iWmtYSbNuqXhXy821rWdnXCKagHcDEqd6I62NSC6HPf3xqNEMY+BsfHNP2cd3HH2z7ScGJKNl6WQi9Ma3kep/ql0b50lvrWCD54loVhCVUO+ln8Eq19FQNZoG4SKJ+pwFqeeaPrccTNer0rYRURH3cgNrRLOOqbM2x5ccK3Ew2E3j12S822o0K41oBrVCGmmY9nahUmcZ0SSlYIxo7geqsypfOGVe8d/vO7L0WrtaY67RDH5s5MbQb1Ny4vyJmDCqGZlUAucunVr6Se7DK2BRw4hmjcSAKkGmZZrS/OqFeu/yeWBnvxLRrGPWg2ncyrVxweTOij5DXWxbfCL60vgopb1JI21iPO07kuX31jUhn9WKUmdFSmolkZr5vaOK/16g/FvimVsD0lxHNadCGYWq0zeMsFoUatCmOTouEU2TIRcHA8nF1gaoVs7Nyvpo1n8+MjmvahnR9IiSNdAcXQ6mvaS5vYlaq56ouN1RHGj8b9BAFDYMhY2ky/4U0QSA85dPL05cpx/aW+ezCabs1Fkxifr9TXdbBn/8+9XYPZAtSUnV85khlBKrhU3hNk61cTItM06bJnkuO/YOC6zUc44wjdt5k0bh62ccgvf9cB36BrM44zD/NgpBpBMOBvb92zeiaVCdDTvG4zQOgwjqE1kpcp6oVAzI79il8M5De5FKJjA4lMM7fdYGWV7giWiW2fC8VXHoSIO5GjWagPn5irPqbL1TPlVMc0Ut50qTg8bmtJEGXBzWnoLYk96H1FyjWZ2IplcMqKLDxR7TXtIY0VTuQU97JlInY72Ix4y2n+A4DppSCS1ldH+LaCYSDs5ePKXepxEa02QaKnU2UdpmMZVMoLOl8pofecxaYfusOG3wZQpqnFJn5Zjarhma9ZsjHMdBJpnAQHZ4zlo8rRsHT+rEg/9wLLK5fMWpvVpE0+dY0qhMlxLRbKBdTFD7jkqRhlglkQRv6mz55+o4Dk5dOCnwfYE1mmWqNraWmDobhbFgUlKuRBAuSswp3PF5jkznV6u0WaDEiGba3xlSD4wRYZPqbK0MzRitx9WgKVUQrxvKDUeazH00h18LasvUKIzsOxtDpBduf4toNhomR0CYDYbcFNfCqJH1brWMaDakGFBM+2gCekSz3ql0cuO+dEY3gIIBFEX9qPo8+W2yPTU9yURo8ZlGEpqodpqdt3VH+cef2t1a/HdXa7omjqUg1Vk5JoKEgFxa/FJnS2hXVQoyfb+SGv2oiXtE03R+fqrVUVNKjabnmY7B2mMav6b5d5QlRdb2elikGFacymyqgeM4nmwFYx9N5RkbCT00ARqaNUem7+1PqrONSGs6CTkXhOujWd30NxuaRH8NBVBs1yROdRfSyROniKa8fmpEs5ZeehN7lFYrALB4+uhIj68+G36ON09EM+GENpLi5PAIIsiQqhTH0a9bJRu8Kd2tuHT1LEzpbsFnT5wbxekFEpSGKG91WENTHXue1gtV6KNZ+Bz9GHFJmwUaQXW2vqmzxoimZR001V3XG3ONZria4ULkPVoxrEaao8tF7veN7U00Q5MRTVIGUhBof+qj2YgkEo5ncgiz2HpqNGtkaKa0iGYNxYBsNZox8lJ6+2jG59zkvdqtGHdxS6+XLS0q5fiDJwAopGEeNs1uxHramyQTVhEqSZxSuIPw9tyL/jlW56dKnUGfOv4g/Nenj8HZS2pTEiE3uPJnx3G0ZzvsZq2rZdggbRFzvsmAiOK+yGPEyfFsim4xdXYYU3Q3bB/NOBhV5oimOYotr2tHczqS2kF13YuTU7payHRj0/6IqbOkYuSEE6eFhZiRHr1wqbP18WDWK3XW1t4kThv8WPfR9LlX9WxvIumuQk+vK98+D7/5yArc/bG3+KYOymuUSjrGcWeKajRUjaZH7Cb6+69G6OKw6S0FOZeanmN13gm7WTt7yWR0NKUwpi2DdyzSa0VN16gaEc1K696ixPT9YpU6azAqpYOgmlSkOhvX1FmLoS4j7VGNU/VZbrR5qByk09i0bZrfO6zivtjH8dpIxGdW20/wRDRjtIkkZtqbUngV/cWfwxhwctKsR0SzlpvrRMLxKCoDMTM0ZXuTGG2abIY6UH9nlHpfzzgseqVox3FwyOSuwPd5hFMSCUvD+5Qn3beR+miW0hqpXKKMaNaaREIXqDI58QqGdOH3Y0Omzh4+rRvrPnccHMeblmmaK6JwHsq1JE7ZC+Y+mvF5jswRzVoK4JlqNEOqzsZgPgqbOgsUemm+vnN4DxSVobm/RTSlI9W0fl28cibaMil0taZx7NxxtTq1qlL/0b6fIT1GcVpYiBl1ckglnFApI9LzW7saTdVDWNvH27R4xslLKSOatbonYUgkHE9tmUu9nVH/ePoCpJMODhzfgY+99YC6nYenbi5prtE0RUXjNA6D8EQ0q+AwiqpGs16oG2JTdEhtEzWpqyX0cVsySWPtX7Xam3hqNGO0HzApkMap3MAY0ayp6mz49U5eyzj0cA6bOgsYIppNlQkBuajXoRHnoVKRz7dJDKi9KYVL3jITZy2eMiJamwCMaNYcqs42HuokGzZKKDeH9Yho1tqQSiUdiEBSrLyUcmMSp00TUHBODAzlPK/Xe444Z8lUnHzIJLRlknVd+DyqswnHmMpnEq+IU2Q9iGq3NwH0TXIjXRuXtqYUdvYXegC2GZ6PjxwzG1+74ymsOnAcFiipaOVirNGMoo9mKr6GZiZpEoGJj3Ou2RTRrHPqrO1ZyiQTaE4Pt7brqFCxNQrCqs4C3nEZVURTzdZpycRnbFWLMBHNkcjIv7MxQ3qMGNGMP+pkGHahlRvgphot0Kk6qriZJs04eSk9EU3DRqqepC33q559NF3am1J19656+yUmjGPclGrcUBHNGihUam0FGujauLx32VQAwMGTRmHhlC7P789dOhVPfOFt+Pa5h0YjWlIr1dkY7Qdinzpb54imSYjMNs8kEg4+sno2mtMJnHn4ZPSWEGWvFuYaTUtE02NoRmMon7u08BzPHNuGpTPGRHLMOCP3+3HaH1WT+Mxq+wmMaDYeakQz7KYvHjWaNU6dNYlyxChqKOt34pC+pJJOJSBDwoV6sfhs7uqJNMQLEU1zjaakkYyparc3AfRofiNdG5ePHDMH7102DW1NKavxE2U2RbVUZ+Nco2kWA4rPWDEZwvVub+L3LH3kmDn4yDFzqnlKJWFyfodOnY0oonne8ul4x6JJaM2kYlXKUi08fTQbcO4th/jMavsJMt0jDtEK4o9WoxlyoY1DH81ap4bGPqKZkRHNeC1sppqftkz9I4lxQTpO0oaIZiph7u9W63rlSkjtq9fN7RNgqobqrPqsmuqEGoGu1to1Mzf20YzE0Iyv6qzpOYrTnGmqpa2lQrexRjNGhngQpaTOjhIRzCjHaS2f43rTLso64rQ/qibxmTX2E9TJsSWdbEhv8v6G6mUOmzrkUcisVeqssvjVOs3JlPoZp/EdRkmynpgcA3FqbVJvTGJAUuUxnUwEtruIO47jaBu+amzu1WvUSGnF9aJqNZqyj2aMIpqm1NQ4jRWTIWwyPquFOaIZrzXFj5LEgKpUo7m/0S5ElBppXaqExnkqRghqGpxJtILEj/YyDE25MalHRLPmNZpGuff4TKRxNzSNaaA0NIuY2puYnjPTdWykSAOg10plqpDirUU0Y/SMxpVa9dGMU42mycERh/6PLiajsqaps8a2Oo3zLBnbm9hqND2ps/UXM2pE5J5/f5l74zNr7CeonmqmzTYGuqEZNnVWbIBrZNTMGNtW/PdM5d+1wCSYEafUECkUETfVWdP1q6WKYtzxigF525tkUgnjs9Zo6aHqd6jG3DG9Z3humD6mtvNEI+I4+lhLJpxInGiyTjxOhqbJ6IhT6qy5j2Z9I5oNZWjGQHV2f0Net5htQaoGR0uNUSOaFAJqDLpah713YZ0Dsn6jVhHNK98+D5M6mzF7XDsOmzq6Jp/pIqNGjhMvj52nRjNG3nmAEc0g5PVJJb3tTTKW1NlG2gACMqIZ/Ti98pR5GNfRhJlj27Fkem3niUYlmXAwtK9wNionlSeiGaMNvLHWOUY7Y6OhWdOIZmNnTpSSOisNJEY0y0Mqosdpf1RN4jOr7Seo6R5xqscgdo6dOx69XS14dUcf3r1PjjsIuRGxTeBRM66jGZ87eV5NPksi61PiFM0EgGbZnzBG3nnAnMrLGs1h5DOVTnjFgJpSjV+jCeiRhWoYmuNGNePKtx8c+XFHMulkAv37+txGNXfI48Qpomkad3EqNzCKAbFGMzSMaNYetjchNWHWuPbiv+co/ybxpb0phfs/vRrb9w6iuy2cQlq9VGfriTQE4ra5lw2h47RpAsw1P6aekPsr6v1K7IuWyzGWSSWMbWsaKdIA6I6puPV73V9Rx1BUSsBxrtE0GR2m9P56Uf+IZmNnTpRUoynG5SgammXhSZ1toPFSCRwtNeboOWPxqeMPxMvb9uIjx8yu9+mQkCQTTmgjE/AuQnGLnlUDOWnGbRL1iAHFzPg3qfYyvX4YNR3dfb48tdCphHEz3EgbQEB3TMWt3+v+ijqGospQibehaRIDis9YrHdE09jOq4HmGdP9Dd9Hk6mz5SAjmkydJVUhkXBw6WoamCMdaTTsFxHNmKfOxl0MyBR1a6UydRH1frnPl0xVs9VoNlJKGyAjmo117iMV1dER1XwuDbc4ldOYxl2c+tHWPaK5H4kBqU72ZMLx9NUk4ZCOpLjtkapFfGYNQkYQnojmfmBoeiKaMTPkpAc8bht4k4FEZephtN6PbkQzbOpsA20AAWDxtO7ivw+bRrGeOKA6gqJyUmnqwqlErNaJRMLxzJFxmjNTyYRnzal3e5NGimiWIgY0sbMF7zy0FwkHOH/5dGoHlElTKuFRr94f4C6GkCpQr/Ym9URG5OLmrYt9H02mzvqipm+5nmFTjabpWWu0Bf1jbz0AB03swIRRzTVXjyZm0skqRDSVY8YpbdYlk0pgIJsr/hyn1FkAaE4lsHsgW/y53mJAcYr4BmGq/bbVaALAtecswpdPmx+rqHuj4TgO2ptT2LZnEEDjtd0ql8Z5KghpIDzN5WPkqa4WcuGN2+Y+mXAwqbMZQEFMZvyo5jqfkY7J8KUY0DALJ3dhxewxSCUcfODomQC8zo2R0t4kmXBwyiGTsHh6d/CbSU1Q57OoHIdxNzRlhCtuhlSTMCxNdZvVwqg6G7MsHj9MzpKgcU0js3LUNT1mvu6qwVFDSBWQG+Cm/WBGkalEcTM0AeDqd8zH9//wPE6YPwETOuNvaDJFaZhkwsG/XbxMe01ufNOphLHWNY5jkTQWqmERVURTPU4cDU35PeNW164awgmndm3EAEsfzQaaZ+S9TSW8fYlJ9KjKs/uLGFDDj6pdu3bhq1/9KhYsWICOjg709PRg+fLluOmmm5DP57X3PvzwwzjuuOPQ0dGBUaNG4YQTTsATTzxRnxMnIxq5AY5T7U21kJuQOKaFHDdvPH7+oeW4eOXMep+KB9PGpY1iQL5IA7LJGtEc+c8fqS566mw0z+XKOT3FteFtB4+P5JhRohpuqYQDJ2ZzuhrBbEkna3p+pjmlkRxaMnpZSyN9f0aNCsetvKhaxM+FVgK5XA4nnngiHnjgAZx33nm47LLLsGfPHtx666244IIL8NRTT+HrX/86AOChhx7CqlWr0Nvbi6uvvhoA8J3vfAcrV67EAw88gAULFtTzq5ARhkdEYT+YxKWyZ6P1Lqw3po1LS7qhp+iqY+pXa0r/op1JKkXroxnR3DZ+VDP++OnV+NuWPTg8hqJPqgpp3GraAd04aqlxmcFIU52VacikOqiZC43kmKiEht7FPPzww/jjH/+Iyy+/HNdee23x9Q9/+MM46KCD8C//8i9FQ/OjH/0oMpkM7r//fvT29gIAzj77bMydOxef+MQncNddd9XlO5CRiad2bD8wNKUC6P7irYsKU1oaI5r+mMSAGNEk1aAaqbMAMG5UM8bFrF7cRevnGkPHoWoctWRq+4w3uuqsjGAyolkbxrQPt4rpaG5oEyw0DT2yduzYAQCYNGmS9nomk0FPTw/a2toAAM899xweeeQRnHXWWUUjEwB6e3tx1lln4Xe/+x1eeeWV2p04GfGYREpGOp72Jg206MYBc3sTGpp+mNSdWaNJqoHWR3M/mM8B3fiIfUSzxhE505zSSA4tT0SThmZNeN+R0zGuowkzx7bh1IW9wX8wAmhoc3rp0qXo6urCN77xDUyfPh1HHHEE9uzZgx//+Md47LHH8P3vfx8A8MgjjwAAjjzySM8xli1bhhtvvBGPPfYYTj755LLOY+LEidrPuVzO8k6yv5DeD2s0G0EMKM6YDCT20fQnbHuTRkppI/FES53dD+ZzQG93EXtDMwaps4205nkjmnRq1oJFU7rwwGeOQcJx9hsxoIbexYwePRq/+c1vcPHFF+Pss88uvt7R0YFf/OIXOO200wAAL7/8MgBo0UwX97VNmzZV/4TJfkN7cwodTSns7B9CUyqB7rZM8B81OHLhjaMYUJxhRLN0TKJb8jo6zv6j7keqhzqu4mh0VQPVaRPHmntdDKjWqbMjrUZz/xjTcWB/U/dtaEMTANrb2zF//nyceuqpWL58ObZs2YLrr78e7373u3H77bfjrW99K/bs2QMAaGpq8vx9c3OhNsJ9Tzls3rxZ+3nHjh3o7Ows+3ik8UknE/insxbi1nV/w+mH9e4XkSm58MZxYxJnTJuU/WHcVIKpFlqm0zbS5o/El2SVajTjjBrlimO6cD1TZ6WTq9EcWlSdJbWioXcxTz75JJYvX45rr70WH/zgB4uvn3vuuZg/fz4uueQSPP/882htbQUA9Pf3e47R19cHAMX3EBIVJ8yfgBPmT6j3adQM6eVnRLM0TF5ORjT9kUZkJplAOsUUbhI96f0wdTYT8xpNNaJZa6ecx7HaYPOMt0aTaw2pDvGbOUrg2muvRV9fH8466yzt9dbWVpx88snYuHEjNmzYUBQLMqXHuq+Z0moJIeGRG/pGW3jrjVTtBWrvpW80pHHelEp46qMbSaCDxBe1/GHMflAKAYg+mjHMUFHPr7nmEU253jXWPEMxIFIrGnpkuUZiNpv1/G5oaKj4/yVLlgAAHnzwQc/7HnroITiOg8MPP7yKZ0rIyEcaSo2URhQHZCSuNZPkNQzAE9FMJZBOUf2YRM/5y2dg4ZQuLJ81Bu88dHK9T6cmxF0MaEZPW/HfM8e2+bwzeqSTq9Ecq57UWdZokirR0CNr3rx5AICbbrpJe33btm24/fbbMXr0aMyePRuzZ8/G4sWLsXbt2qIwEFAQCVq7di2OOeYYTJiw/6Q4ElINksKjyz6apSE3KkybDUYakemkVwyo0TaAJJ7MHteO2y9dgVsuWYaxHV69h5FIJjk8B8Wxj+bZS6ZgzbJpePcRU/GeI6bW9LPlvJKM4fXxw3Eczdhk6iypFg1do3n55ZfjJz/5CT7zmc/gySefxIoVK7Blyxb84Ac/wObNm3H99dcjuW+i/Na3voXVq1dj5cqVuOyyywAA1113HXK5HK655pp6fg1CRgQUA6oMaSBRCCgYU0RTeuoZ0SSkPOIe0RzVnMaXTptfl8/2ps423jyTSSUwkC2042PqLKkWDb2TmTZtGtatW4err74a99xzD2677Ta0tLRg0aJFuOaaa3D66acX37t8+XLcd999uOKKK3DFFVfAcRwsX74ca9euxcKFC+v4LQgZGbC9SWVIw5wRzWAcx0Ey4SCbywMopIM1ukgHIXGhKeZiQPVE1mQ2okMrk0oA+zQya13jSvYfGtrQBIBZs2bhxz/+caj3HnnkkbjnnnuqfEaE7J80es1KvZEiNjQ0w5FSDU1DH03WuRJSHp0t6eK/O5obfrsYKTJVttHEgACI1NnGO3/SGHBkEUIiQdbwcINfGt6IJjd2YUiJ/oas0SQkGk6cPxGzxrahqzWNNcum1ft0YoWnRrMB5xlVeZaGJqkW3MkQQiJBLrQUAyoNb40mI5ph6GhOY/dAQXm8syXNGk1CImJCZzPu+cSqep9GLBkpNZouTUydJVWCLgxCSCTI1M9GU+GrNzIiTEMzHB9ePQvN6QSOmzsOcyeM8lzHRkxpI4TEG49jtRENTabOkhrAiCYhJBIY0awMaRC1NnF6DsP7jpyO9x05vfizk9d/34gbQEJIvHEcB6mEg6F99eGNOM8wdZbUAo4sQkgkUO2zMjw1mkxlKgvZH45tdggh1UCdWxpxnpk9rr3471lj233eSUj50GVOCIkEGZGjGFBpeGo0GdEsm3TSwb6yzYaMNBBC4k9hzSv0oUw2YIr+FSfPxYRRzZja3YojZ42p9+mQEQp3MoSQSJAeXabOloaMALexRrNs0qkEXEuTkXVCSDXQIpoNOM90tWbwyeMPrPdpkBFO47lgCCGxRIqwUAyoNNIpqs5GhRpdZ0STEFINVOOS8wwhZmhoEkIiQaYOMaJZGlK1l300yyejRRq4zBFCokedWxoxoklILeAKTAiJhPQIkHuvJx4xIEY0y0aNDnMcEkKqQZIRTUICoaFJCImEkdBXrJ54+mhSDKhsVGEljkNCSDVo9BpNQmoBDU1CSCSkhGoqN/il4emjyYhm2dDQJIRUG71Gk9tpQkzwySCERIL06HKDXxpMnY2ONCMNhJAqwxpNQoKhoUkIiQS2N6mMjOyjSTGgsmFEkxBSbbTUWaqsE2KEhiYhJBJk6ic3+KXRlNIjmO2s0SwbRjQJIdVGnVs4zxBihoYmISQSPBFNLrwl0dmaxlGzewAAy2Z2Y2xHU53PqHHRI5pc5ggh0ZPiPENIIHSZE0IiQfaBpKFZOj++cCn++vIOzJ3YUe9TaWhUQ5ORBkJINUgyoklIIDQ0CSGRkGREs2KSCQcLJnfW+zQaHjV1Vo5LQgiJAs4zhATDWD8hJBLSUnWWYkCkTjCiSQipNkmqzhISCA1NQkgkyAgmI5qkXmSoOksIqTJ6H03OM4SYoKFJCImEVJI1miQejGpJF//d0Zz2eSchhJQHVWcJCYY1moSQSJALbYILL6kT7z5iKv7wzOtIJx2ccVhvvU+HEDICUZXWqTpLiBkamoSQSJDtTejhJfXigPEduPeTq+p9GoSQEUxLengL3ZymoUmICT4ZhJBI8LQ3oRgQIYSQEcpph05CUyqBzpY0Tpg/od6nQ0gsYUSTEBIJiYQDxwHy+cLPrNEkhBAyUlk5ZyzWfe44JBMO2pu4nSbEBJ8MQkhkpBMJDGRzAGhoEkIIGdl0tlBsjBA/mDpLCIkM1bikGBAhhBBCyP4LDU1CSGSogkAUAyKEEEII2X+hoUkIiQzVuExQDIgQQgghZL+FhiYhJDJSyeEphRFNQgghhJD9FxqahJDIyCiGZjJJQ5MQQgghZH+FhiYhJDKOmNENAGhJJ3FIb2edz4YQQgghhNQLtjchhETGP55xCN528HgcOGEUxrQ31ft0CCGEEEJInaChSQiJjEwqgRPmT6z3aRBCCCGEkDrD1FlCCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERMqIMDS3bNmCT37yk5g9ezaam5sxduxYrF69Gv/1X/+lve/hhx/Gcccdh46ODowaNQonnHACnnjiifqcNCGEEEIIIYSMUFL1PoFK2bhxI1atWoVdu3bhoosuwgEHHIDt27fjf/7nf7Bp06bi+x566CGsWrUKvb29uPrqqwEA3/nOd7By5Uo88MADWLBgQb2+AiGEEEIIIYSMKJx8Pp+v90lUwsqVK7FhwwasW7cOEydOtL5v6dKlePrpp/HUU0+ht7cXALBp0ybMnTsXy5Ytw1133RXZOe3YsQOdnZ3Yvn07Ro0aFdlxCSGEEEIIISQs9bRLGjp19v7778cf//hHfPrTn8bEiRMxODiIPXv2eN733HPP4ZFHHsFZZ51VNDIBoLe3F2eddRZ+97vf4ZVXXqnlqRNCCCGEEELIiKWhDc077rgDADB16lS8/e1vR0tLC9ra2nDAAQfg5ptvLr7vkUceAQAceeSRnmMsW7YM+Xwejz32WNnnMXHiRO2/OXPmlH0sQgghhBBCCGl0GtrQXL9+PQDgkksuwZYtW/DjH/8YN954IzKZDNasWYMf/ehHAICXX34ZALRopouaRksIIYQQQgghpHIaWgxo586dAICOjg7ce++9yGQyAIDTTjsNM2fOxGc/+1mcd955xXTapqYmzzGam5sBwJhyG5bNmzdrP7u50IQQQgghhBCyP9LQEc2WlhYAwLnnnls0MgFg9OjROPXUU/HKK69g/fr1aG1tBQD09/d7jtHX1wcAxfcQQgghhBBCCKmMhjY0J0+eDACYMGGC53euAu3WrVsxadIkAOb0WPc1U1otIYQQQgghhJDSaWhDc+nSpQCAl156yfM797Vx48ZhyZIlAIAHH3zQ876HHnoIjuPg8MMPr+KZEkIIIYQQQsj+Q0P30dy6dSumTZuGUaNG4emnn0Z7ezuAQs3knDlz0NvbWxQMWrJkCdavX4+nn366GOF8+eWXcdBBB2Hp0qX43e9+F9l5sY8mIYQQQgghpN7U0y5paDGg0aNH45vf/CY+8IEPYNmyZbjwwgsxMDCA733vexgYGMB1111XfO+3vvUtrF69GitXrsRll10GALjuuuuQy+VwzTXX1OsrEEIIIYQQQsiIo6Ejmi6//OUv8Y1vfANPPvkkEokEjjzySFx55ZVYsWKF9r4HH3wQV1xxBR5++GE4joPly5fja1/7Gg477LBIz4cRTUIIIYQQQki9qaddMiIMzbhBQ5MQQgghhBBSb+pplzS0GBAhhBBCCCGEkPhBQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGEREqq3icwEsnn8wCAHTt21PlMCCGEEEIIIfsrrj3i2ie1hIZmFZg9ezYAYMqUKXU+E0IIIYQQQsj+zs6dO9HZ2VnTz6ShWQUSiQR6enrw3HPPwXGcep8OiRFz5swBADz77LN1PhMSJzguiAmOC2KDY4OY4LggJmbPno18Po9JkybV/LNpaFaBRCKBRCJRc68BiT+JRKEsetSoUXU+ExInOC6ICY4LYoNjg5jguCAmkskkgOHxUUsoBkQIIYQQQgghJFJoaBJCCCGEEEIIiRQnXw8JIkIIIYQQQgghIxZGNAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTcEzzzyDL3zhC1i2bBnGjh2Ljo4OLFq0CF/5ylewe/duz/vXr1+P0047DaNHj0ZbWxtWrlyJ3//+9yV9ZhTHINWl1uPiqquuguM4xv+++c1vRvnVSAWUMi7WrVuHj370o1ixYgXa29vhOA5uuummkj/z5Zdfxvve9z6MHTsWLS0tWLx4MdauXRvRNyJRUOtxcdNNN1nni4985CMRfjNSKWHHRj6fx80334x3vetdmD17NlpbWzF16lSceuqpePjhh0v6zO3bt+Oyyy5Db28vmpubcfDBB+N73/se8vl81F+PlEmtx8V9991nnTNOOeWUanxFUialrCfXXHMNVq1ahYkTJ6KpqQkTJ07E6tWr8atf/aqkz4xyzkiV/BcjnBtvvBHXX389Tj31VLznPe9BOp3GvffeiyuuuAL//u//joceeggtLS0AgOeffx7Lly9HKpXCpz/9aXR2duIHP/gBjj/+eNx555047rjjAj8vimOQ6lPrceFy7bXXoqenR3vt8MMPj/S7kfIpZVzccccduP7663HQQQdh4cKFeOCBB0r+vC1btuCoo47Ca6+9ho9//OOYPHkybrnlFpx99tm48cYbccEFF0T9FUkZ1HpcuHz2s5/F3LlztdcOPPDAir4LiZawY6O/vx9r1qzBokWL8K53vQszZszA5s2b8f3vfx9HHnkkfvKTn+C9731v4OcNDAzgrW99Kx5//HFcdtllmDt3Lu688058+MMfxquvvoqrrrqq+l+aBFLrceHy/ve/HytXrtRemzx5ctRfj1RAKevJunXrMH36dJx00kno6enBli1bsHbtWpx++um4+uqr8fnPfz7w8yKfM/JE45FHHslv27bN8/rnPve5PID8ddddV3ztrLPOyicSifzjjz9efG3nzp35qVOn5g844IB8LpcL/LwojkGqT63HxZVXXpkHkH/hhReiOH1SJUoZF6+88kp+165d+Xw+n1+7dm0eQP5HP/pRSZ/3qU99Kg8g/5vf/Kb42tDQUH7JkiX57u7u/M6dO8v7IiRSaj0ufvSjH+UB5O+9995KTpvUgLBjY3BwMH/fffd53vfKK6/kx4wZkx83blw+m80Gft7111+fB5D/9re/rb1++umn59PpdH7Dhg1lfhMSJbUeF/fee29Zcw2pPaWsJyYGBwfzhxxySL69vT0/NDQU+HlRzxlMnRUsXrwYnZ2dntfPOeccAMBf/vIXAMDu3bvxm9/8BqtWrcKiRYuK72tvb8fFF1+MZ555Bo888ojvZ0VxDFIbajkuJDt27MDQ0FD5J0+qRthxAQDjx49HW1tbRZ93yy23YNasWXj7299efC2ZTOKyyy7Dli1bcMcdd1R0fBINtR4XKjt37sTAwEBkxyPREnZspFIpHH300Z73jR8/HkcffTRee+01vPbaa4Gfd8stt6C1tRWXXHKJ9vrll1+OwcFB/OxnPyvna5CIqfW4UNm9ezf6+vrKOGtSC0pZT0ykUin09vZi9+7dGBwcDPy8qOcMGpoheemllwAUHmYA+J//+R/09/fjyCOP9Lx32bJlABBoUERxDFJfqjEuVA455BB0dnaiubkZy5cvx5133hnBWZNqI8dFFGzevBmbNm0qjiMVzheNQTXGhcqpp56KUaNGobm5GQsXLsTNN99clc8h0VPK2HjppZeQyWTQ1dXl+75cLof//u//xqGHHorm5mbtd0uXLoXjOJwzYk41xoXK3/3d36G9vR0tLS044IAD8K1vfYu1uw2C39jYsmULXn/9dTz11FO4+uqr8dvf/harV6/2zAOSaswZrNEMQTabxZe+9CWkUim8+93vBlAQ5ACA3t5ez/vd1zZt2uR73CiOQepHtcYFAHR1deH9738/li9fjtGjR2P9+vX453/+Z5x88sm48cYbcf7550f3RUikmMZFFHC+aGyqNS4AoLW1Fe9+97txzDHHYNy4cXjhhRdw/fXXY82aNXj++edx5ZVXRvp5JFpKGRt33HEH1q1bhzVr1gRuGrdu3Yq9e/ca54ympib09PRwzogx1RoXAJBOp3HqqafipJNOwqRJk/Dyyy/jhz/8IS6//HI88cQT+NGPfhTV1yBVIGhsHHDAAXjzzTcBFCKaZ5xxBr773e8GHrcacwYNzRBcfvnlePDBB/HVr361KKywZ88eAIULL3Efcvc9NqI4Bqkf1RoX7rElF154IebPn4+PfexjOPPMM9He3l7B2ZNqYRoXUcD5orGp1rgAgLPPPhtnn3229toHPvABLF68GF/+8pdx3nnnYfr06ZF+JomOsGPj2WefxZo1a9Db24trrrkm8Lh+cwZQmDc4Z8SXao0LAFixYgVuv/127bVLLrkEJ510Em666SZcfPHFWLFiRUXnT6pH0Nj45S9/ib6+PmzatAlr167F3r17sXPnTowdO9b3uNWYM5g6G8DnP/95fOc738H73/9+/MM//EPx9dbWVgBAf3+/52/cXHf3PTaiOAapD9UcFzbGjBmDD37wg9i2bVtFypSketjGRRRwvmhcqjkubDQ1NeGTn/wkhoaGcNddd9XkM0nphB0bL7zwAo499lg4joM777wzcMMI+M8ZQGHe4JwRT6o5LmwkEoniZ/3nf/5n2cch1SXM2HjLW96Ct73tbbjgggtwxx13oKOjAytWrMDWrVt9j12NOYOGpg9XXXUVvvzlL+OCCy7A97//fe13kyZNAmBOVXNfM4Weoz4GqT3VHhd+uFGJN954o+xjkOrgNy6igPNFY1LtceEH54t4E3ZsbNiwAatXr8auXbtw9913Y8GCBaGOP3r0aLS0tBjnjP7+frzxxhucM2JItceFH5wz4k2568l5552HV155Bb/85S9931eNOYOGpoWrrroKX/ziF3HeeefhhhtugOM42u8XLFiApqYmPPjgg56/feihhwAUlKL8iOIYpLbUYlz48eyzzwKonpgIKY+gcREFEydORG9vb3EcqXC+iCe1GBd+cL6IL2HHxoYNG7Bq1Sps374dd999Nw499NDQn5FIJHDYYYfh8ccf90Qo1q1bh3w+zzkjZtRiXPjBOSO+VLKe7N27F0BBJMiPqswZJTVD2U/44he/mAeQX7NmjW8/ojPPPDOfSCTyTzzxRPE1t1/inDlztH6J27Ztyz/11FP5119/vexjkPpSq3ExODho7Jn0t7/9Ld/d3Z0fM2ZMfs+ePRF9K1IpYceFSlC/xN27d+efeuqp/Msvv6y9/slPftLaR7Orqyu/Y8eOsr8HiZZajos33njD895t27blZ8+enc9kMvkXX3yx5PMn1SPs2NiwYUN++vTp+c7Ozvy6det8jzkwMJB/6qmn8hs3btRe/853vmPtiZdKpdirOUbUclyY5oy+vr78ihUr8gDyDz/8cHlfglSFMGNj165dxl7aQ0ND+WOPPTYPIH///fcXX6/VnOHk89QxVrn++uvxkY98BFOnTsWXvvQlJBJ60Hf8+PF461vfCgB47rnnsHTpUqTTaXzsYx/DqFGj8IMf/ABPPvkk/vM//xPHH3988e9uuukmXHDBBbjyyitx1VVXFV8v5RikftRyXGzbtg0zZszAaaedhrlz5xZVZ2+44Qbs2rULt956K84666yafXdip5RxsXHjRvz0pz8FAPy///f/cNttt+H0008veqLXrFmDadOmAQDuu+8+rF69Gueddx5uuumm4vHefPNNHH744XjzzTfx8Y9/HL29vbj11ltx33334YYbbsBFF11Ug29Ngqj1uJg0aRKOPvpoLFiwAOPGjcOGDRtw4403YvPmzbjmmmvw8Y9/vAbfmoQh7NjYuXMnFi5ciBdeeAGXXXYZli5d6jnWW9/61mLkacOGDZgxYwaOPvpo3HfffcX3DAwMYPny5fjzn/+Mj370o5g7dy7uuOMO/OpXv8IVV1yBL33pS1X9viQctR4XS5YswaRJk3D44YcXVWdvvvlmPPvss7jsssvw7W9/u6rfl4Qn7Nh44okncPTRR+PMM8/EgQceiO7ubmzatAm33nor1q9f71k3ajZnlGSW7gecd955eQDW/44++mjt/X/961/zp556ar6zszPf0tKSX7FiRf7uu+/2HPdHP/pRHkD+yiuv9Pwu7DFI/ajluOjr68tfdNFF+fnz5+e7urryqVQqP2HChPwZZ5xBL2PMKGVc3Hvvvb7vvffeez3vPe+88zyf+dJLL+Xf+9735seMGZNvamrKH3roofnbbrut+l+WhKbW4+LjH/94/rDDDst3d3fnU6lUfsyYMfkTTzwx/9vf/rY2X5iEJuzYeOGFF3zfJ8eG+365FuXz+fzWrVvzl156aX7ixIn5TCaTnzt3bv66665jxlSMqPW4+Md//Mf8smXL8j09PflUKpXv7OzMr1q1Kn/LLbfU7kuTUIQdG6+//nr+0ksvzR9yyCH50aNHF9eC4447Ln/zzTd7nvdazRmMaBJCCCGEEEIIiRSKARFCCCGEEEIIiRQamoQQQgghhBBCIoWGJiGEEEIIIYSQSKGhSQghhBBCCCEkUmhoEkIIIYQQQgiJFBqahBBCCCGEEEIihYYmIYQQQgghhJBIoaFJCCGEEEIIISRSaGgSQgghhBBCCIkUGpqEEEJICVx11VVwHAf33XdfvU+lJFauXIlFixYhn8+X/Ld//vOfkUgkcMMNN1ThzAghhIxEaGgSQgjZb3Ecp6T/Gs24dFm7di3++Mc/4stf/jIcxyn57xcuXIgzzjgDn//857Fr164qnCEhhJCRhpMvx7VJCCGEjACuuuoqz2v//M//jO3bt+Pv/u7v0NXVpf3u/PPPR3t7O9544w1MnToVra2ttTnRCsjn8zjooIOQTqfxl7/8pezjPProo1iyZAm+8pWv4LOf/WyEZ0gIIWQkQkOTEEIIUZg+fTo2btyIF154AdOnT6/36VTM3Xffjbe97W34+te/jk9/+tMVHWvevHnYvXs3XnjhBSQSTIoihBBih6sEIYQQUgKmGs0NGzbAcRycf/75eOaZZ/DOd74To0ePRmdnJ97xjndgw4YNAIDnnnsOZ511Fnp6etDa2oqTTjoJ//u//2v8nDfffBOf/vSnceCBB6K5uRmjR4/GySefjIceeqik8/3hD38IADjnnHM8v9uxYwe++MUvYv78+ejo6EBHRwdmzZqFd73rXXj88cc97z/nnHPwt7/9DXfffXdJ50AIIWT/g4YmIYQQEhEvvPACjjzySGzfvh0XXXQRVqxYgd/85jc47rjj8NRTT+GII47AG2+8gfPPPx+rVq3CnXfeiZNPPhm5XM5znMMOOwz/9E//hN7eXlx66aV45zvfiQcffBBvectb8B//8R+hziefz+P3v/89Jk2ahGnTpnl+d8IJJ+Cqq67CqFGjcMkll+BDH/oQli5divvuuw8PP/yw53grVqwAABqahBBCAknV+wQIIYSQkcL999+Pb37zm/jEJz5RfO39738/fvCDH2D58uW44oorjL+7/fbb8c53vrP4+vve9z689NJL+OUvf6m9/pWvfAVLly7FJZdcgg0bNqC5udn3fNavX4/XX38db3/72z2/+8tf/oIHH3wQp512Gn71q19pv8tms9ixY4fnb5YsWVL8noQQQogfjGgSQgghETFjxgx87GMf015bs2YNAKC7u9vzu/e+970ACu1DXJ544gn88Y9/xFlnnaUZmQAwceJEfOpTn8Krr76Ke+65J/B8/va3vwEAJkyYYH1PS0uL57VkMonRo0d7Xu/s7ERzc3PxuIQQQogNRjQJIYSQiFi4cKFHJGfixIkAgEMOOcTzu0mTJgEANm3aVHztwQcfBABs2bLFqIr77LPPAgCefvppnHzyyb7n8+abbwKA0WicN28eFi1ahFtvvRUbN27EO97xDhx11FFYvHgxMpmM9Zjd3d149dVXfT+XEEIIoaFJCCGERERnZ6fntVQqFfi7wcHB4mtbtmwBUKiD9KuFDNPP0o1W9vX1eX6XTCbx+9//HldffTV+/vOf4+///u8BAKNGjcL555+Pr371q2hra/P83d69e41RUEIIIUSFqbOEEEJIjHAN0q997WvI5/PW/6688srAY40bNw7AsPEqGT16NK699lq8+OKLeOaZZ/Cv//qvmDNnDr797W/jIx/5iOf9uVwO27ZtKx6XEEIIsUFDkxBCCIkRRxxxBIDhFNpKOPjgg5FMJrF+/frA986ZMweXXHIJ7r//frS3t+PXv/615z3r169HPp/HokWLKj43QgghIxsamoQQQkiMWLJkCZYvX47f/OY3uPHGG43veeihh7Bnz57AY3V2dmLRokX485//jP7+fu13L7zwgrGH59atW9Hf34/W1lbj5wLA6tWrw3wVQggh+zGs0SSEEEJixi233ILVq1fjoosuwne/+10sWbIEHR0dePHFF/Hoo4/iueeew+bNm43GoOT000/HY489hvvuuw/HH3988fU///nPOP3007FkyRLMnTsXkyZNwmuvvYbbb78dg4ODxZpNlbvuugvJZBLveMc7Iv2+hBBCRh6MaBJCCCExY9q0aXj88cdx1VVXYWhoCD/5yU/wne98B+vWrcOCBQvwk5/8BD09PaGOddFFFyGdTuMnP/mJ9vrixYvxmc98BslkEr/97W9xzTXX4P/+3/+LJUuW4M4778RHP/pR7f07d+7E7bffjlNOOQVTpkyJ7LsSQggZmTj5fD5f75MghBBCSPW4+OKLccstt2DDhg1lC/l897vfxaWXXor/+q//wlFHHRXxGRJCCBlp0NAkhBBCRjibN28uiv1ce+21Jf99X18fZs+ejWXLluHnP/95Fc6QEELISIM1moQQQsgIZ+LEibj55puLqrGO45T09xs3bsTFF1+M888/vzonSAghZMTBiCYhhBBCCCGEkEihGBAhhBBCCCGEkEihoUkIIYQQQgghJFJoaBJCCCGEEEIIiRQamoQQQgghhBBCIoWGJiGEEEIIIYSQSKGhSQghhBBCCCEkUmhoEkIIIYQQQgiJFBqahBBCCCGEEEIihYYmIYQQQgghhJBI+f/WFM/4vyl1qgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], axis=[20,23,50,160], title='Zoomed in Lightcurve')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A power spectrum of this lightcurve.." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 19390.87it/s]\n" + ] + } + ], + "source": [ + "ps = stingray.AveragedPowerspectrum(lc, segment_size=3, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAKOCAYAAADtdZcdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADo8ElEQVR4nOzdd3hUZfrG8XsmPSGE3nsRGwiIXaqg/lZRQcBFRWy7tnXXggXLim3ta1m7NEXXtay6KuqCCOiqYO8gRYr0moSQPvP+/ogzOWfmTDKTmZCT5Pu5Li6TM2fOnAxIcvM87/N6jDFGAAAAAACE8Nb1DQAAAAAA3InACAAAAABwRGAEAAAAADgiMAIAAAAAHBEYAQAAAACOCIwAAAAAAEcERgAAAACAIwIjAAAAAMARgREAAAAA4IjACAAuVlBQoCZNmsjj8WjQoEF1fTuNhsfjkcfjqdFzrL+aNGmiQw45RDfeeKN2795dS3cLAEDt8RhjTF3fBADA2axZs3T++ecHP//+++918MEH1+EdNQ6BsBjLt8jAc04//XQ1adJEkrR+/XotWbJERUVF6tq1qz7++GN17Ngx8TeMhFq0aJGGDx+uoUOHatGiRXV9OwBQp6gwAoCLzZ49W5LUoUMH2+dwr/vvv1+zZ8/W7Nmz9cEHH+i7775Tly5dtG7dOk2ZMqWubw8AgJgQGAHApX755Rd99NFHysrK0qxZsyRJL7zwgsrLy+v4zhCLXr166bbbbpMkvfnmm/z+AQDqFQIjALjUs88+K2OMxo4dq+OPP1777beftmzZovfee8923umnny6Px6MZM2ZEvNYll1wij8eju+++23bc7/fr+eef14gRI9SiRQulpaWpR48e+stf/qKtW7eGXWf27NnyeDw699xztW3bNl188cXq0qWLUlJSdMUVV0iS9uzZo6eeekqnnHKKevbsqYyMDDVt2lSHH364Hn744SoD07x58zRs2DA1adJEzZo108iRI7V48WItWrRIHo9Hw4YNc3zeunXrdNlll6lXr15KT09Xs2bNNHz4cL322msRX2v16tWaOHGiWrVqpczMTB1yyCF64oknIp4fj4EDB0qSCgsLtX379uDxbdu26eqrr9Z+++0XvO8hQ4boueeeC2uHDfwezpkzx3Y8NzdXycnJ8ng8uv3228Neu127dkpNTVVBQYHteEFBgf72t79p4MCBys7OVmZmpvr376/7779fpaWlYdc599xz5fF4NHv2bH311Vc67bTT1KZNG3m9Xr3xxhuSpKKiIv3jH//QYYcdptatWys9PV0dOnTQkCFD9Le//c12Peufpe3bt+uiiy5Sx44dlZ6erj59+uhvf/ub430EzJ07VyeddJLatGmj1NRUde7cWeeff75++eWXiM9Zu3atLr/8cvXp00eZmZlq1qyZ+vbtq6uvvlrr1q0Lfp3Dhw+XJC1evNi2JtX652/YsGHyeDxatGiR3n//fR1//PFq0aKFPB6PvvnmG0lSt27d5PF4tHbtWsf7ibRW1np8+vTpGjBggDIzM9WhQwddfvnlwd/LXbt26c9//rO6dOmi9PR0HXjggXQhAEg8AwBwHb/fb7p27WokmQULFhhjjLnzzjuNJHP66afbzv3Pf/5jJJkhQ4Y4XqukpMQ0b97ceL1e8+uvvwaPl5aWmlNPPdVIMk2aNDHDhg0zY8eONT169DCSTMeOHc3q1att15o1a5aRZH73u9+ZLl26mNatW5uxY8eaMWPGmFtuucUYY8xHH31kJJl27dqZoUOHmt///vdmxIgRJj093UgyJ598svH7/WH3OWvWLOPxeIwkc8QRR5iJEyea/v37G6/Xa6644gojyQwdOjTsefPnzzfZ2dlGkunTp48ZO3asGTp0aPD1pk6dGvac7777zjRv3txIMj169DC///3vzbBhw4zX6zV/+ctfjCQT67fIwHPWrFkT9tj//ve/4OM7d+40xhjz888/mw4dOhhJplOnTmbChAnmxBNPNGlpaUaSOfPMM23v08svv2wkmXPPPdd27ddffz147WHDhtke+/77740kc/TRR9uOr1+/3vTp0yf4+/S73/3OnHTSSaZly5bB65SUlNieM3nyZCPJXHDBBSY1NdXst99+5ve//70ZOXKkefvtt43P5zPDhg0zkkyzZs3MSSedZCZOnGiGDRtm2rRpY9LS0mzXC/xZGj16tOnevbtp2bKlOf30083JJ59sMjMzjSRz4oknmvLy8rD385JLLjGSTGpqqjnmmGPMuHHjzIEHHmgkmZycHLN06dKw57zzzjumSZMmRpLp0qWLOf30081pp51mDj74YCPJzJo1yxhjzDPPPGNOOOEEI8m0bdvWTJ48OfjrrrvuCl5v6NChRpK56KKLjMfjMf379zcTJ040xx57rPn222+NMSb4/7DTnwljTMQ/Z4HjV199tUlLSzMnnniiOfXUU02LFi2MJDNy5EizY8cO07t3b9OxY0czYcIEM2TIkOD/P88++6zj6wFATRAYAcCFFixYEPzBNhAafv31V+P1ek1qamowdBhTEfxat25tPB6P4w+mr776avCHTKtrrrkmeHzz5s3B4z6fz9xwww1Gkhk8eLDtOYEf8gOhsaCgIOz1fv31V/PBBx+EhcItW7aYgQMHGknmxRdftD22fv16k5mZaTwej3nppZdsjz3yyCPB1wwNjBs3bjTNmjUzKSkpYddctmxZWOg2piKM9+/f30gyF198sS2QfPjhh8GwksjAeO211xpJpnPnzsFjgwYNMpLM5MmTbeFs+fLlwSD5+OOPB49v377deDwe07VrV9u1L7/8ciPJ9O3b16SlpZnCwsLgYw8//LCRZG666Sbb13/EEUcEA0lxcXHwsd27dwfD0s0332x7nUBglGRuvfXWsN/fRYsWGUnm0EMPDftzUV5ebvs9MMb+Z2nIkCEmLy8v+Ni6deuC/3Dx8MMP25732GOPGUmmf//+ZuXKlbbHnnjiieA/ApSVlQWPr127NhgWH3jgAePz+WzPW7Zsmfnpp5+Cny9cuDDiP1AEBAKjNWyGijcwtmvXzvz888/B4xs2bDCtW7c2ksxBBx1kfv/739v+7Dz55JNGkunevXvE+waAWBEYAcCFJk2aZCSZG2+80XZ81KhRRpL5xz/+YTv+5z//2Ugyt912W9i1AlXEOXPmBI/t2LHDpKenm+bNm5sdO3aEPcfn85lDDjnESApWS4yp/CE/NTXVrFu3Luava968eUaSGTdunO34tGnTjCRzyimnOD4vEHBCf4APhN6//vWvjs/797//bSSZMWPGBI8tXrzYSDKtWrUye/fuDXvOVVddlbDA+Ouvv5q7777bpKSkGEnmnnvusd1DixYtTH5+fti1Au9zz549bcf79etnJJlVq1YFjx100EGmW7du5sEHHzSSzLx584KPBX7vP/jgg+CxuXPnBt9Lp0rvpk2bTGpqqmnZsqXt8UBgPOCAA8IClzGVFdC//OUv1b9Zlq/R4/GYH374Iezxf/3rX8HwF1BeXm7atWtnvF5vWFgMGD16tJFk/vOf/wSPBf7/OO+886K6t1gC4wknnBDxnHgD4zPPPBP2WKDa3rRp07D/d8vLy4NV4rVr10a8LwCIBWsYAcBl9uzZo3//+9+SpMmTJ9seC3weuk4pcDx0fdvOnTv1zjvvKDs7W2PHjg0eX7RokYqLizVixAi1bNky7B68Xq+OPfZYSdKSJUvCHh8wYIC6dOkS8Wswxmjx4sW64447dOmll+q8887TueeeqyeffFKStGLFCtv5H374oSTpjDPOcLzexIkTHY+/++67kqTx48c7Pj5kyJCwr2Hx4sWSpNNOO02ZmZlhz5k0aVLErysa3bt3D65B69y5s66//nqVlZXp0ksvDU5JDXy9Y8aMUXZ2dtg1zj77bKWkpGj16tXauHFj8PiIESMkSR988IEkaevWrfrxxx81YsSIsMf8fr8WL16s9PR0HX300cFrBN6zcePGOa6fa9++vXr37q2dO3dq5cqVYY+fcsop8nrDf3wYMGCAkpKSNHPmTD355JPatm1bFO+WdMghh+iggw4KOz5+/HilpaXpl19+Cb4H33zzjbZs2aIBAwaoV69ejtdz+j0PrPu94IILorqnWJx22mkJv2bA8ccfH3asZ8+ekqRDDz007P/dpKQkdevWTZK0adOmWrsvAI1Lcl3fAADA7uWXX1ZhYaGOPvpo9e7d2/bY2LFj1bRpU3355Zf64YcfgnsyDhw4UAcffLB++OEHffrppzrqqKMkSS+++KLKysp01lln2cJRYDDIv//972o3qLcOaQno2rVrxPO3bNmi0047TUuXLo14Tn5+vu3zQCCIdN1IxwNfR9++fSO+lmT/GgKvFfjBOlSk49EK7MPo8XiUmZmpHj166KSTTtL+++8fdg/du3d3vEZycrK6dOkSDIyBvRtHjBihhx56SAsWLNAf/vCHYDgcMWKE+vbtq9atW2vBggWSpC+//FK5ubkaMWKE0tLSgtcOvGeXX365Lr/88iq/lu3bt2u//fazHYv0e9GrVy89/PDDmjJlii655BJdcskl6tWrlwYPHqzTTz9dv/vd7xz/rEV6v71erzp37qxVq1Zpw4YN6tixY/Dev/zyy5j+3K5fv16S1KdPnyqfUxNV/b8Qr06dOoUdC+zx6fSY9fGSkpJauy8AjQuBEQBcJlA9XLduXbDKZxX4QXn27Nm6//77g8fPOeccXXvttXruueeCgTFQcQytVPp8PknSgQceqMMOO6zK+3Gq/mRkZEQ8/8ILL9TSpUs1ePBg3XrrrerXr59ycnKUnJysFStWqE+fPmETQEO/tlBOFS3r13HmmWcqJSWlyq9jX7n//vvjDp2RDB06VElJSVq4cKEk2QKjx+PR8OHD9e9//1t5eXm2x6wC79mIESPUuXPnKl/Pqfpc1e/9ZZddptNPP11vv/22FixYoI8++kizZs3SrFmzdNxxx+m9995TcnLNf/QI3HuXLl2Ck0wjOeKII4IfVxcu41HV+1EVv99f7TmR/txX9xgAJBKBEQBcZPXq1frf//4nqaIKZW1HDPXCCy/o7rvvDv4AfvbZZ2vq1Kl66aWX9PDDD2vNmjX67LPP1LVrVw0dOtT23EBQGDhwYELH8O/du1fvvvuukpKS9NZbbyknJ8f2+KpVqxyf16FDB/38889av369rX0yINK2BIEK1G233RZs1atOoFoX2EYh2tdKpMA9RNoCory8PFgVC5wrSU2bNtWhhx6qzz77TD/88IM++OADHXDAAWrfvr2kihD48ssva9GiRREDY+D3/swzz6yVFs127drpwgsv1IUXXihJWrp0qSZOnKgFCxZoxowZuuiii2znR/p98Pv9+vXXXyVVvgeBe+/SpUtMf267dOmin3/+WStWrFCrVq1i/ZJqLDU1VZLCtjSRFPzaAMDt+OcpAHCRwA/BY8aMkakYTOb4q3fv3mF7MrZv316jRo3S7t279dZbb+m5556TVLEmL7TCctxxxyklJUXvvfee4w+zNZWXlye/36/s7OywsChVtMg6GTx4sCTppZdecnz8X//6l+PxE088UZL06quvRn2PgTVub7zxhoqKisIef+GFF6K+Vk1Z72HPnj2O91BWVqaePXvaAqNUGQBnzZqlX375xRYIAx+/++67+t///qfs7OywCnJN3rN4HHHEEcHw+N1334U9/s0332jZsmVhx//973+rpKRE3bt3D7ZfHn744WrRooU+++yzmAJXYC3gzJkzozo/EPSq2jM0Gh06dJAk/fzzz2GPzZs3L65rA8C+QmAEAJfw+/3BkHf22WdXee5ZZ50lKXz4zTnnnCNJevbZZ4PBJ3DMql27drrkkku0Y8cOjRkzxrHSlZubq6eeeiqmH5rbtm2rZs2aKTc3NywcPv/88xHD2AUXXKCMjAz95z//CQ78CXjiiSf06aefOj5vypQpys7O1rRp0zRjxoxgy2KAMUaff/655s+fHzw2ZMgQ9evXT9u3b9c111xje87HH3+sJ554Iuqvt6aGDBmiQw89NLjxellZWfCxlStX6sYbb5QkXX311WHPDYTCxx9/XFJF+A/o3bu3OnfurGeffVaFhYUaPHhwWAvomDFjNGDAAL333nu68sorw9aTShVV1ueffz6mr+mDDz7Qu+++G/bnpbS0NPj+Ow1KMsbosssuswXnDRs2aOrUqZJkW2eZkpKim266SaWlpTr11FP1zTffhF2vsLBQ//znP7V169bgsauuukpZWVmaOXOmHnnkkbB20OXLl2v58uXBzwMhfdWqVXGFxkDb7P3336+9e/cGj3/55Ze6+eaba3xdANin6mg6KwAgxPz584Obnlv3xnOycuXK4PYW1j0ZCwsLTdOmTYNj+UM3bLcqKSkxY8eONZJMSkqKOfzww82ECRPMuHHjzMCBA01ycrKRZIqKioLPCWyFMHny5IjXvffee4Ovf8wxx5iJEycGt+i4/vrrjaSwvQSNMWb69OnBjcePPPJIM3HiRDNgwADj9XqDew2OGjXK8X1r1qyZkWQ6depkTjjhBHPmmWeaE044wbRt29ZIMtddd53tOd9++23wOT179jS///3vzYgRI0xSUlJwC4ZYv0UGnhNpC4VQP//8c3C/xc6dO5szzjjD/N///Z9JS0szkszEiRMdt70oLCw0qampRpLxer1m165dtset+yXef//9jq+9bt0620b3Q4YMMWeeeaY55ZRTTO/evY0kc8QRRzheN9Keg4FtPZo1a2aOO+644PUC+wbut99+Zvfu3cHzA3+WRo8ebbp162ZatWplxo0bZ0455RSTlZUV/P227pMZ8Kc//Sm4JceAAQPM6aefbiZMmGCOOOKI4Pu3bNky23Peeuut4B6bXbt2NePGjTNjxowxffv2dfy6BgwYENxG5OyzzzYXXHCBuffee4OPB7bVWLhwoeP7YUzF3pnt27c3kkzHjh3N2LFjzdFHH22Sk5PN1KlTq91Ww0l1/w9Gc18AEAsCIwC4xFlnnWUkmT/84Q9RnX/44Yc77sl44YUXBn/gfPLJJ6u9zmuvvWZOPvlk07ZtW5OSkmJatWpl+vXrZy6++GLz3nvv2c6NJjAaU7GH3mGHHWays7NNTk6OGTZsmJk7d65Zs2ZNxMBojDHvvvuuGTx4sMnMzDRNmzY1w4cPN++//76ZM2dOMEQ52bhxo7n22mtN3759TVZWlsnIyDDdu3c3o0aNMg899JDZuHFj2HNWrFhhJkyYYFq0aGHS09PNwQcfbP7xj38Yv9+/TwKjMcZs3brVXHnllaZXr14mNTXVZGdnm2OPPdbMnj3bMSwGDBkyxEgyAwcODHvsueeeC97LV199FfEahYWF5qGHHjLHHHOMadasmUlJSTEdOnQwRx55pLnpppts+28aU31gXLlypfnrX/9qhg0bZjp16mTS0tJM69atzaBBg8x9991n8vLybOdb/yxt2bLFnH/++aZdu3YmNTXV9O7d29x+++1V/sPJBx98YMaPH286duxoUlNTTfPmzc2BBx5oJk+ebF577TVTWlrqeI8XXXSR6d69u0lNTTXNmjUzffv2NVOmTAnbV3TNmjVmwoQJpm3btiYpKSlsX8Zog9mqVavMuHHjTPPmzU16errp37+/mTlzpjGm+n0YnRAYAexrHmMijKoDAMAl/vCHP2j69Om67777gnsZon6bPXu2zjvvPE2ePDmhg5cAAInFGkYAgCusXbvWcc/H5557TjNnzlRqaqomTpxYB3cGAEDjxbYaAABXePvtt3XFFVdowIAB6tq1q0pLS7Vs2TKtWrVKHo9HDz/8cNjEUAAAULsIjAAAVxgyZIjOOussffzxx/r5559VXFysVq1aacyYMbriiiuCW1EAAIB9hzWMAAAAAABHrGEEAAAAADiiJXUf8vv92rRpk7Kzs+XxeOr6dgAAAAA0QsYY7dmzRx06dJDXW3UNkcC4D23atEmdO3eu69sAAAAAAP3666/q1KlTlecQGPeh7OxsSRW/MU2bNq3juwEAAADQGOXn56tz587BfFIVAuM+FGhDbdq0KYERAAAAQJ2KZpkcQ28AAAAAAI4IjAAAAAAARwRGAAAAAIAjAiMAAAAAwBGBEQAAAADgiMAIAAAAAHDEthoAAAAWpaWlys3NlTEmqpHzAOAGgb+zmjVrptTU1IRdl8AIAADwG7/frx07dqhdu3byemnEAlC/+P1+bdmyJaF/h/E3IQAAwG92796tli1bEhYB1Eter1ctW7ZUbm5u4q6ZsCsBAADUc+Xl5UpLS6vr2wCAGktLS1NZWVnCrkdgBAAAAAA4IjACAAD8hiE3ABqCRP5dRmAEAAAAADgiMAIAAAAAHBEYAQAAAACOCIwAAADAPrBo0SJ5PB7Nnj27rm8FiBqBEQAAALBYtGiRpk2bltC97Bqibdu26bzzzlO/fv3UokULpaenq1evXrrgggu0atWqur49JEhyXd8AAAAA4CaLFi3SrbfeqnPPPVfNmjVL2HWHDBmioqIipaSkJOyadWn37t1asWKFjj/+eHXt2lUZGRlauXKlZs6cqVdeeUVLlizRgQceWNe3iTgRGAEAAIB9wOv1Kj09va5vI2H69Omjjz/+OOz4uHHjdPjhh+vRRx/V448/Xgd3hkSiJRUAAKCRKS4u1rRp09SnTx9lZmaqWbNm6tu3r6655pqwc99//30df/zxatasmdLT09WvXz89+eSTjtd94okn1KdPH6Wlpal379569NFHNXv2bHk8Hi1atCh43rRp0+TxePTTTz/piiuuUPv27ZWZmanjjjtOP//8syTptdde08CBA5WRkaFu3brp6aefdnzNaO+vW7duGjZsmJYvX66TTjpJ2dnZysnJ0bhx47Rly5bgeeeee65uvfVWSVL37t3l8Xjk8Xg0bdq0Kt/TH3/8UePHj1fHjh2Vlpamdu3aafjw4Zo7d27wHKc1jN26dQu+RuivYcOG2V7jiy++0JgxY9SqVSulpaWpT58+uvPOO1VeXl7lve1rXbt2lVRRgbSK5j2C+1BhBACgEdu9t1RZaclKTebfkBuTyy67TDNnztQ555yjq666SuXl5Vq5cqU++OAD23lPP/20Lr74Yh155JG68cYblZWVpfnz5+uSSy7R6tWrdd999wXPveeee3T99ddr4MCBuuuuu1RYWKj77rtPrVu3jngfkydPVpMmTXTDDTdo+/bteuCBB3TCCSfo9ttv17XXXqtLLrlE559/vmbMmKGLLrpIBx54oI499tga3Z8kbdy4UcOGDdOYMWN033336dtvv9VTTz2l/Px8zZs3T5J00UUXKT8/X6+//roefPBBtWrVSpLUr1+/iF/Hzp07NWLECEnSxRdfrK5du2rHjh364osvtHTpUp100kkRn/vQQw+poKDAdmzp0qV69NFH1bZt2+CxuXPnauzYserVq5euvvpqtWjRQp9++qn++te/6ptvvtErr7wS8TUC8vLyVFZWVu15kpSZmanMzMyozi0rKwtee9WqVcFw/bvf/S54TjzvEeqYwT6Tl5dnJJm8vLy6vhUAAMwzH642Xa972xz3wCKzt6Ssrm/HFbZu3VrXt7BPNG/e3Pzf//1fleds2rTJpKWlmYkTJ4Y99uc//9l4vV6zevVqY4wxO3fuNOnp6aZv376mqKgoeN7mzZtN06ZNjSSzcOHC4PFbbrnFSDInn3yy8fv9weMPP/ywkWSys7PN+vXrg8e3bdtm0tLSzO9///sa3Z8xxnTt2tVIMi+99JLt3EsvvdRIMsuXLw+7vzVr1lT5HgX85z//cbx2qIULFxpJZtasWRHPWbNmjWnTpo3p2bOn2bFjhzHGmKKiItO2bVszePBgU1Zm/3/173//e9j7G8nQoUONpKh+3XLLLdVeL+Ctt96yPbdt27bmgQcesJ0T7XuExKju77JYcgn/nAgAQCP1z8/WS5JWbSvQ52t3V3M2GpKcnBz9+OOP+uGHHyKe8+qrr6qkpEQXXHCBduzYYfs1evRo+f1+vf/++5Kk+fPnq7i4WJdccoltjV67du101llnRXyNP//5z/J4PMHPBw8eLEk65ZRT1Llz5+Dx1q1bq0+fPlq5cmWN7i+gQ4cOmjBhgu1YoOplvXascnJyJEnvvvuu8vPza3ydvLw8nXzyySotLdXcuXPVsmVLSRXv79atW3XeeecpNzfX9rUGqniBCmlVHnjgAc2fPz+qX+ecc07U933kkUdq/vz5evPNN3X33Xerffv22r17t61VNlHvEfY9WlIBAGik9pZU/jBXXOarwzvBvvbQQw9p0qRJ6tu3r3r06KHhw4dr9OjRGj16tLzeinrCsmXLJEkjR46MeJ2tW7dKktasWSOpYghKKKdjAT169LB93rx5c0kVawdDNW/eXOvWrQt+Hsv9RXo9ScFQtnPnzojXqc7QoUN1zjnnaPbs2XrhhRd02GGHaeTIkTrjjDOinhJaXl6u8ePHa8WKFXrvvfds71vgaz3//PMjPj/0a3Vy6KGHRnUvsWrVqlXw92H06NGaNGmS+vXrp23btumpp56SlJj3CHWDwAgAQCNVWu4Pfuz3mzq8E+xrp556qtauXat33nlHixcv1vvvv68ZM2Zo8ODBev/995WamipjKv5MPPfcc2rfvr3jdZwCWCySkpJiOh64J+vHsdxfpOuGXrsmnn32WV1zzTV699139dFHH+mBBx7QnXfeqYceekh/+tOfqn3+pZdeqvnz52v69OnBqmfovd13333q37+/4/M7dOhQ7Wvs2rVLpaWl1X8xkpo0aaImTZpEda7TvYwcOVIzZszQI488orS0NEnxv0eoGwRGAAAaKVtgJC82Oi1atNDZZ5+ts88+W8YYXX/99br33nv1n//8R+PHj1fv3r0l2atHkXTr1k2S9PPPP4eFncDU00SL5f5iZW2TjcXBBx+sgw8+WNdcc41yc3N1xBFH6Prrr9dll11W5TXvu+8+PfPMM7r22mt1wQUXhD0e+FqzsrLi+lrHjh2rxYsXR3XuLbfcUu1k2KoUFRXJ5/MpPz/fNviopu8R6g5rGAEAaKRKLIHRF2d1BfWHz+dTbm6u7ZjH49GAAQMkVVShJGnChAlKS0vTLbfcoqKiorDr5OXlqaSkRJI0atQopaWl6YknnlBxcXHwnC1btuiFF16ola8jlvuLVaCyFngvqrNr1y75/X7bsWbNmql79+4qLCy0vSehXn/9dV133XUaM2aM7r77bsdzTjjhBLVp00Z333234z0VFRVpz5491d5notcwRmqD/emnn7RgwQL17NkzGBbjeY9Qt6gwAgDQCPn9RuWWsiItqY3Hnj171L59e51yyikaMGCA2rRpozVr1uiJJ55Q8+bNNXr0aElSp06d9MQTT+jCCy/UAQccoEmTJqlr167avn27vv/+e73xxhv66aef1K1bN7Vs2VK33HKLbrjhBh1zzDE6++yzVVhYqKefflr77befvvjii4RXj2K5v1gdeeSRkqTrrrtOZ511ltLT04OVMSfPPfecHnzwQY0ZM0a9evVSSkqKFi9erP/+97+aMGGCMjIyHJ+3c+dOnX322crMzNSJJ54YFq7btm2rUaNGKSsrS88995xOO+009enTR+eff7569eql3NxcLV++XK+99ppef/31sH0bQyV6DeNdd92l+fPn66STTlK3bt1kjNEPP/ygOXPmqKysTI899ljw3Jq+R6h7BEYAABqhUp/9X/p9BMZGIzMzU1dccYUWLFig999/XwUFBcEAOXXqVNtauPPOO0/77bef7r//fj311FPKzc1Vq1at1KdPH91+++1q165d8NypU6eqadOmevjhh3X99derS5cuuuaaa2SM0RdffFErgSCW+4vFMccco3vuuUdPPvmk/vCHP6i8vFy33HJLxMA4bNgwff3113r77be1efNmJSUlqXv37rr//vurXJu3Z88eFRYWSqrY/zHU0KFDNWrUKEkVVcbPP/9cd999t55//nlt375dzZs3V8+ePXXVVVdVuU9kbTn55JO1YcMGvfzyy9q2bZt8Pp86duyo8ePHa8qUKTrooIOC59b0PULd85h4V/giavn5+crJyVFeXp6aNm1a17cDAGjE8orKdMitlWP47x3XTxMGda7iGY3Dtm3b1KZNm7q+jQbl8ssv16OPPqrNmzfXOMABiE11f5fFkktYwwgAQCNkHXgjxT8hEnBag7Z582Y999xzOvjggwmLQD1FSyoAAI1QeEtqHd0IGoxFixbpmmuu0dixY9WpUyetXbtWzzzzjAoKCiIOcwHgfgRGAAAaoZIyn+1zpqRG5vcb5RaV1fVtRNQsI0Veb91vR9CrVy/17NlTzzzzjHbu3Kn09HQNGjRIU6dOTfi2FwD2HQIjAACNUGiFkSmpkeUWlWng7fPr+jYi+urmUWqRlVrXt6FevXrpjTfeqOvbAJBgrGEEAKARCl3D6KfCCABwQGAEAKARCg2MbKuB+mD27NnyeDxatGhRXd9KjXzzzTc67rjj1Lx5c3k8Hk2bNq2ubwmolutaUlesWKHnn39e8+bN0+rVq1VcXKyePXtq/PjxuuKKK5SVlWU7/+eff9Z1112nxYsXq7S0VAMHDtStt96qESNGRP2aibgGAAD1CRXG6DXLSNFXN4+q69uIqFlGSl3fAqJQXl6u008/XWVlZbr99tvVrFmzOtk7saF444039M0339SL0P3ss8/qn//8p3788Uft2LFD2dnZ6tWrly666CJNmjRJSUlJwXO3bdum6667Tl9++aU2bNigwsJCderUSUOHDtXUqVPVq1evfX7/rguMM2fO1GOPPaZTTjlFZ511llJSUrRw4ULddNNNevnll7VkyZLgxq+rV6/W0UcfreTkZF177bXKycnRM888oxNOOEHvvvtuVAusE3ENAADqmxKmpEbN6/W4Yo0g6rdffvlFv/zyix544AE2qk+AN954Q88++2y9CIxfffWVmjdvrssuu0xt2rRRQUGB5s6dq/POO08fffSRZsyYETx39+7dWrFihY4//nh17dpVGRkZWrlypWbOnKlXXnlFS5Ys0YEHHrhP7991gXHcuHGaOnWqcnJygscuvvhi9e7dW3feeadmzJgR/J9s6tSpys3N1Zdffqn+/ftLks455xwddNBBuuyyy7R8+XJ5PFVPDUvENQAAqG9KyqgwAtXZs2ePsrOzE3KtLVu2SJJatGiRkOuh/nj44YfDjv3lL3/RSSedpFmzZunOO+8M7lPap08fffzxx2Hnjxs3TocffrgeffRRPf7447V+z1auW8M4aNAgW1gMOOOMMyRJP/zwgyRp7969evPNNzVs2LBg0JOkJk2a6MILL9SKFSv0+eefV/laibgGAAD1EVNS4eTcc8+Vx+NRXl6eLrnkErVp00bp6ek65phjtHTpUtu5Va0nHDZsmLp162Y71q1bNw0bNkzffvutRo4cqSZNmqhNmza6+uqrVV5eruLiYk2ZMkUdO3ZUenq6hgwZomXLljneZ3l5uaZNm6auXbsqLS1N/fr107/+9S/Hc7/44guNGTNGrVq1Ulpamvr06aM777xT5eXljvf8yy+/aNy4cWrRooWaNm1a7Xu2du1aTZo0SW3btlVaWpp69uypG264QYWFhbZrDx06VJJ03nnnyePxyOPxaO3atRGvu2vXLl155ZXq2bOn0tPT1bJlSx166KG67777ws596aWXdOyxxyo7O1uZmZk64ogj9Oqrr4ad5/P5dPvtt6tr165KT09Xv3799NJLL2natGlh9xP4s7Bz506de+65atWqlbKzs3XaaacFw+/TTz+tAw44QOnp6dp///31n//8x/Frifb+PB6Pzj33XH366acaOnSosrKy1LJlS1144YUqKCiwvZ/PPvts8DmBX7Nnz5Yk/frrrzr//PODfz7atGmjo48+Ovgct+jatauMMcrLy4vqXKmiArmvua7CGMmGDRskSW3btpUkfffddyopKdFRRx0Vdu6RRx4pSfr88891+OGHR7xmIq5Rlfbt29s+9/vp9wEAuEPY0BsqjLA44YQT1Lp1a/31r3/Vzp079fe//10nnXSS1qxZE1fFbcOGDRo1apTOOOMMjRs3TvPmzdPf//53JScn68cff1RRUZGuv/567dixQ/fff79OO+00LVu2TF6vvcZx3XXXae/evbr00kslSbNmzdLEiRNVXFysc889N3je3LlzNXbsWPXq1UtXX321WrRooU8//VR//etf9c033+iVV16xXbegoEBDhw7VMcccozvvvFPbtm2r8utZt26dDj/8cOXl5enSSy9V7969tWjRIt111136+OOPtWDBAiUnJ+vGG2/UMccco7/97W/64x//qMGDB0uSWrduHfHa48eP14cffqiLL75Y/fr1U1FRkZYtW6ZFixbpmmuuCZ5300036c4779SJJ56o22+/XV6vV6+//rrGjx+vRx99VJdddlnw3D/96U968sknNXz4cE2ZMkXbt2/XpZdequ7du0e8jxNPPFGdOnXSbbfdplWrVumRRx7RmDFjNHbsWD399NO64IILlJ6erkceeUTjxo3TihUrbNeL5f6kisFAJ598ss477zydeeaZWrRokWbMmCGv16unn35aknTjjTfK7/fro48+0pw5c4LPPfroo1VeXq5Ro0Zp48aNuvTSS7XffvspLy9P3333nT766CNNnjy5yt/TsrKyqAJcQKtWraI+Ny8vT2VlZdq9e7f++9//aubMmdpvv/0c1yUG7qOsrEyrVq0Ktt7+7ne/i/r1EsbUA+Xl5eaoo44yycnJZvny5cYYY1599VUjyTz++ONh5//4449Gkpk6dWqV103ENarSrl072682bdoYSSYvL6/G1wQAIBFeWLLOdL3u7eCvB/67vK5vyRW2bt1a17dQpyZPnmwkmUsuucR2/OWXXzaSzJNPPhk8NmvWLCPJLFy4MOw6Q4cONV27drUd69q1q5FkXn75ZdvxgQMHGo/HY0455RTj9/uDxx9++GEjybz33nthr9mlSxeTm5sbPJ6bm2u6dOlimjdvbgoLC40xxhQVFZm2bduawYMHm7KyMttr/v3vfw+796FDhxpJ5sYbb6z6TbI488wzjSQzd+5c2/EpU6YYSWb69OnBYwsXLjSSzKxZs6q9bm5uruPvQ6gvv/wy4s+rp556qsnOzjb5+fnGGGN++OEHI8mccMIJxufzBc/77rvvjNfrNZLMmjVrgscDfxYuvfRS23WvvPJKI8l07tzZ9jPtt99+aySZ66+/vkb3Z4wxkozH4zFLliyxnfu73/3OJCcnmz179oTdX6jAfdxzzz1hj0Uj8PsU7a9YHHroocHneTweM2rUKLN69WrHc9966y3b67Rt29Y88MADUb9WdX+X5eXlRZ1LXNeS6uSKK67Qp59+qttuu019+vSRpGCZPy0tLez89PR02zmRJOIaVdm8ebPt18qVK2t8LQAAEqm03Gf7nI5UWF155ZW2zwOT4+P9WaZjx44aP3687dixxx4rY4wuv/xy29yIQBXO6TUvueQS2xKmnJwcXXzxxdq9e3ewRXb+/PnaunWrzjvvPOXm5mrHjh3BX4Eqzbx588KuPWXKlKi+Fr/frzfffFMDBgwIq/pMnTo1WEmriYyMDKWlpWnp0qVVtq2+8MIL8ng8mjx5su3r27Fjh0455RTt2bNHn376qSTp7bffllSxds5ase3bt69OOOGEiK9xxRVX2D4P/L6cc845tpbdfv36qWnTprbfr1juL+Coo47SEUccYTs2YsQIlZeXV/leBAT+XCxcuLDaCrGTQw45RPPnz4/6Vywef/xxzZ8/X88995wmTJgQrDY6OfLIIzV//ny9+eabuvvuu9W+fXvt3r07rJV6X3B9S+rNN9+sRx99VH/84x81derU4PHMzExJUklJSdhziouLbedEkohrAABQH4WuYaQlFVY9evSwfd6yZUtJ0s6dO+O6rlPrY/PmzR0fCxx3es0DDjgg7FhgcuQvv/wiScH1j+eff37E+9m6davt89atW6tZs2YRz7favn27CgoKdNBBB4U91qJFC7Vv3z54L7FKTU3VQw89pL/85S/q3r27DjzwQI0YMUKnnXaajjvuuOB5y5YtkzFG+++/f8RrBb7GNWvWSFKw+GLVp08fvfvuu47PD/2zEOn3K/CY9fcrlvuL9HpSbH/+unbtqhtvvFF33XWX2rdvr/79++u4447T+PHjddhhh1X7/ObNm9faLgnWZW6TJk3S1KlTNWTIEH333Xfq2bOn7dxWrVoF72P06NGaNGmS+vXrp23btumpp56qlfuLxNWBcdq0abrjjjt03nnn6cknn7Q91qFDB0nSxo0bw54XONaxY8cqr5+IawAAUB+FTUmlxAgL675wVsbyDwtVTZGPVAWJdN1oXzMWgefdd999tuGGVoGfBQPcVCi4+OKLdeqpp2ru3LlavHixXn31VT366KM644wzggN+jDHyeDx69913I75/ToE2FpGuG83vV03ur6o/I9H+Wbjjjjt0/vnna+7cufroo480ffp03Xfffbr22mt1zz33VPnc0tJS7dq1K6rXkRScbloTkydP1t13363Zs2fr9ttvr/LcDh06aOTIkZoxY4YeeeQRxw7J2uLawDht2jTdeuutmjx5sqZPnx72l1Lfvn2VlpYWVsaWpCVLlkiqmLhalURcAwCA+iiswkhgRIwC20M4/XC9Zs0apaSk1NprL1u2TKeeeqrt2E8//SSpskLVu3dvSVJWVlatVIxat26t7Oxs/fjjj2GP7d69W5s3b44YVKPVvn17XXjhhbrwwgvl8/k0adIkvfjii7r66qt12GGHqXfv3nrvvffUpUsXx6qrVWBq7c8//xxWxfv555/jus9IYrm/WFW37V2PHj10+eWX6/LLL1dxcbFOOOEE3Xvvvbr66qvVpk2biM/75JNPNHz48Kjvo6b/oCFJRUVFkpz/H4p0vs/nU35+fpUDkxLNlWsYb7vtNt16662aNGmSZs6cGTYZS6rY+mL06NFatGiRvv322+DxgoICTZ8+Xb1797aVffPy8rR8+XLt2LGjxtcAAKChYEoq4rXffvtJkt5//33b8RdffFGbNm2q1dd+4oknbJMs8/Ly9OSTT6pZs2bB7StOOOEEtWnTRnfffbfjD+RFRUXas2dPje/B6/Vq9OjR+vrrr/Xee+/ZHrv77rvl9/s1ZsyYGl27sLAwbI5GUlKS+vXrJ6kyYEyaNEmSdMMNN8jns69LluztnqNHj5ZUsSegdXL/999/r//+9781us/qxHJ/sWrSpImk8LAVmCxqlZ6eHgys1W1Lkeg1jOXl5RFbaf/xj39IqtydQYr8nvz0009asGCBevbsuU/DouTCCuNjjz2mW265RV26dNHIkSP1z3/+0/Z427ZtNWrUKEnSXXfdpQULFuj444/XlVdeqaZNm+qZZ57Rxo0bNXfuXNu/PLz++us677zzdMsttwTH0sZ6DQAAGoqSkMBIXkSs+vTpo5EjR+qpp56SMUb9+/fXN998o9dff129evUK+6E9kVq1aqUjjjhC5513nqSKbTXWr1+v6dOnB9tKs7Ky9Nxzz+m0005Tnz59dP7556tXr17Kzc3V8uXL9dprr+n111/XsGHDanwff/vb3zR//nyddtppuvTSS9WrVy99+OGHeumllzRkyJBqt3CIZMWKFRo6dKjGjBmjgw8+WM2bN9eyZcv0xBNPqHv37sHBM4cddpimTZumadOmqX///ho/frw6dOigzZs368svv9Q777yj0tJSSRWtn3/84x/19NNPa+TIkRozZoy2b9+uxx57TAMGDNCXX36Z8J97Y7m/WB155JF69NFHdemll+qkk05SSkqKjjjiCH377bf64x//qNNPP119+vRRkyZN9OWXX2r69Ok64ogjHNdwWiV6DWNBQYE6deoU/L1s27attmzZojfeeENffPGFjjvuOJ155pnB8++66y7Nnz9fJ510krp16yZjjH744QfNmTNHZWVleuyxxxJ2b9FyXWD8/PPPJUnr1693/J9s6NChwcDYq1cvffzxx7r++ut19913q7S0VAMHDtR7770X9W90Iq4BAEB9Q0sqEmHOnDm6/PLL9cILL2jOnDkaPHiwFi5cqEsuuSSqiZY1dc899+ijjz7SY489pq1bt2q//fbTCy+8YPvBW6qoMn7++ee6++679fzzz2v79u1q3ry5evbsqauuuipYsauprl27aunSpfrrX/+q559/Xrm5uerUqZOmTp2qm266ScnJNftRu3Pnzjr//PO1cOFCvfHGGyopKVHHjh31hz/8Qdddd51treUtt9yiQYMG6ZFHHtFDDz2kvXv3qk2bNjr44IP1yCOP2K77+OOPq0OHDpoxY4amTJmiPn366IknntBnn32mL7/8UhkZGXG9H05iub9YTJw4UV9//bX+9a9/6ZVXXpHf79esWbM0dOhQjR07VosWLdILL7wgn8+nLl266IYbbtDVV1+dwK8sOpmZmbrsssv04Ycfat68ecrNzVV2drYOOuig4GBP67rNk08+WRs2bNDLL7+sbdu2yefzBacLT5kyJe41qTXhMfE03iIm+fn5ysnJUV5enm0MMQAA+9rVL3+rf3+1Ifj5mUd00d/G9K3DO3KHbdu2Vbm+CWiIRo8erQ8++ED5+flVDp1B/VHd32Wx5BJXrmEEAAC1K7TCyJRUoOELDFmx+u677/Tuu+9qxIgRhEU4cl1LKgAAqH2l5fYBFH4ajoAG79lnn9Vzzz2nk046Sa1bt9by5cv19NNPKzU1Vbfddltd3x5cisAIAEAjFDYl1R/hRAANxsCBA/X666/rkUce0a5du5Sdna0RI0bolltu0YABA+r69uBSBEYAABqhsJZUKoxAg3f44YfX2hYaaLhYwwgAQCMUXmEkMAIAwhEYAQBohEL3YaTCCABwQmAEAKARCq0wEhgrsNsYgIYgkX+XERgBAGiEaEkFAESDwAgAQCMU2pLKlNQKycnJKikpqevbAIAaKykpUUpKSsKuR2AEAKARCp2SSitmhebNm2vnzp3y+XzVnwwALuPz+bRr1y41a9YsYddkWw0AABqhsJZUAqMkyev1qlWrVtq5c6eMMfJ4PHV9SwAQlcDfWS1btpTXm7i6IIERAOBaxhgt+WWXOjbLUJeWmXV9Ow1KSbm9gsYaxkqpqalq06ZNXd8GALgCgREA4FoPzl+hRz5YpfQUr+ZdMZTQmEBMSQUARIM1jAAA11q8cockqbjMr6Vrdtbx3TQc5T6/QguKVBgBAE4IjAAA1yq3DGYJneqJmgsdeCMpLEACACARGAEALmateoW2UKLmnN5LP4kRAOCAwAgAcC3rujqnqhhqxqlay5RUAIATAiMAwLWsFcaSMgJjolBhBABEi8AIAHAtW0sqG6knjFOFkbwIAHBCYAQAuJa1TZI1jInj9F4yJRUA4ITACABwLb8l1xAYE8d5SiqBEQAQjsAIAHAte0sqgTFRqDACAKJFYAQAuJa1JZV9GBOnpDx8PSgVRgCAEwIjAMC1/OzDWCscp6SSFwEADgiMAADXYuhN7aAlFQAQLQIjAMC1fD7WMNYGp/eSwAgAcEJgBAC4FhXG2uG0HtSwhhEA4IDACABwLR9rGGuFY0sqgREA4IDACABwLT9TUmuF03tJxy8AwAmBEQDgWlQYa4fzlFQqjACAcARGAIArGWNsWz0w9CZxmJIKAIgWgREA4Eqh+YUKY+KU+nxhx6gwAgCcEBgBAK5U7rcHRNYwJo5jSyoVRgCAAwIjAMCVQvKiSsvDq2KoGcehN1QYAQAOCIwAAFcKDTCsYUwc5wpjHdwIAMD1CIwAAFcKHcLCGsbEYUoqACBaBEYAgCuFrqnzG6mcKmNClDi8j7SkAgCcEBgBAK7kFGBoS00MpwqjMRVbmQAAYEVgBAC4ktPUTtpSEyPS+8hejACAUARGAIArlRMYa01JhImz5EUAQCgCIwDAlZyqXezFmBiRgjeDbwAAoQiMAABXcgovBMbEiLQWlJZUAEAoAiMAwJWcwgstqYkRcQ0jFUYAQAgCIwDAlZwqjExJTYxIgdHw9gIAQhAYAQCu5JQNqTAmBhVGAEC0CIwAAFeiJbX2RFoLyhpGAEAoAiMAwJUcA6PPeTsIxIYpqQCAaBEYAQCu5NQeSYUxMUqYkgoAiBKBEQDgSuzDWDuMMVQYAQBRIzACAFzJcUoqgTFuZb7IodDP2wsACOHKwHjXXXdp/Pjx6tGjhzwej7p16+Z43tq1a+XxeKr89cILL1T7erNnz474/D/96U8J/uoAANFwXsNIoolXSXnkdaBMSQUAhEqu6xtwcsMNN6hFixYaOHCgcnNzI57XunVrzZkzx/GxP/3pTyoqKtIJJ5wQ0+secMABtmN9+vSJ+vkAgMTxMyW1VlT1HrKGEQAQypWBcfXq1erRo4ck6eCDD1ZBQYHjeVlZWTr77LPDjn/66afKy8vTuHHj1KpVq6hfd9SoURo2bFiN7hkAkFjlrGGsFVVVaQ0VRgBACFe2pAbCYk1Nnz5dknThhRfG/Nw9e/aotLQ0rtcHAMSPKam1o8oKI4ERABDClRXGeBQUFOjll19W165dNWrUqJiee8opp2jPnj3yeDzq27evrrnmGscKZrTat29v+9zPNAEAiBotqbUj9D1M9nqC1VxaUgEAoRpcYHzppZdUUFCgKVOmyOuNroCamZmpM888UyNGjFCbNm20Zs0aPfbYY5o0aZJWr16tW265pZbvGgAQiqE3tcPa1pua5JXHU9n+y79rAgBCNbjAOH36dHm9Xp133nlRP2fChAmaMGGC7dhFF12kQYMG6Y477tDkyZMjTmqtyubNm22f5+fnKycnJ+brAEBjxLYatcMWGJO9tveZfRgBAKFcuYaxpn766SctWbJEo0aNUpcuXeK6VlpamqZMmaLy8nLNmzcvQXcIAIiWUzGRoTfxKw0JjF6PJ/g5axgBAKEaVGCcMWOGpJoNu3ESqCru2LEjIdcDAESPoTe1w9rWm5bslbcyLzquGwUANG4NJjCWlpZqzpw5at26tU499dSEXHPlypWSpLZt2ybkegCA6PkcFtSxhjF+oRXGJEtiZOgNACBUgwmMb775prZv365JkyYpJSXF8ZzCwkItX748bG3hzp07w87Ny8vTPffco9TUVJ1wwgm1cs8AgMicsmFpuW/f30gDUxoy9MYWGGlJBQCEcOXQmzlz5mjdunWSpO3bt6u0tFR33HGHJKlr166aNGlS2HOiaUf97LPPNHz4cE2ePFmzZ88OHu/bt6+GDh2qvn37qk2bNlq7dq1mzpypzZs364EHHlCnTp0S+NUBAKLBthq1o9RXGbpTk73yWNYwkhcBAKFcGRhnzJihxYsX247dfPPNkqShQ4eGBcZff/1V8+bN09FHH60DDjgg5tebOHGiFi1apHnz5gUnmR5++OGaNWsW1UUAqCOOaxhpSY1bSVlIS6qHllQAQGSuDIyLFi2K6fzOnTvL56u+TWnYsGEyDj+APPDAAzG9HgCg9jnuw0iFMW6hQ29oSQUAVKXBrGEEADQsTnsCsq1G/OxDb5LktfwkwJRUAEAoAiMAwJWoMNaOkpChN9Z9GMmLAIBQBEYAgCsRGGuH9T1MYw0jAKAaBEYAgCs5hRdaUuNnXcOYmuyV12utMBIYAQB2BEYAgCsxJbV22KakJlFhBABUjcAIAHAl9mGsHdZ9GNNSvLLkRSqMAIAwBEYAgCs5FRMJjPErDRl6k0RLKgCgCgRGAIAr0ZJaO+zbaoTsw8jbCwAIQWAEALiSU0uqz29YZxensKE31m01eG8BACEIjAAAVyqPEF5oS42PbehNMi2pAICqERgBAK4UKbwQGONjqzAmeWXJi45twACAxo3ACABwpUitpyXlPsfjiI51L8u0lCRaUgEAVSIwAgBcKXJgpMIYD2uFNi0pdOgNgREAYEdgBAC4UsSWVEZ5xqXKKankRQBACAIjAMCVIlW7WMMYn9ApqR5LS6phDSMAIASBEQDgSgy9qR3WNaCpSV4lWYfe0JIKAAhBYAQAuFJ5hP5IWlLjY1vDmBLakkpgBADYERgBAK4UKbxQYYyPbQ1jkpcpqQCAKhEYAQCuFCm8EBjjEzr0xhYYyYsAgBAERgCAK0Wa2Mm2GvEJHXrDthoAgKoQGAEArhSxwsgaxhrz+43KLEk8Ldkrr9daYSQwAgDsCIwAAFdiW43ECw3bqUlJTEkFAFSJwAgAcCWG3iReaDtvWgprGAEAVSMwAgBcKVK1y7qPIGITGrZTk2hJBQBUjcAIAHAlWlITL6wlNdmrJA9DbwAAkREYAQCuFKnaRWCsubAKY8jQGwIjACAUgREA4EoRK4xMSa0xazuvxyMlez1KsvwkYGhJBQCEIDACAFyJltTEs753qUleeTwe29CbSIOGAACNF4ERAOBK1pZUS6YJm/SJ6FkDY1pyxY8AtsDIWwsACEFgBAC4krXCmJGSFPyYltSas1UYkyve0yTrlFTWMAIAQhAYAQCuFDEwUmGssRJfeIXRGhhpSQUAhCIwAgBcyRpe0gmMCWGvMFb8CGBt92UfRgBAKAIjAMCVrJ2nmakExkQoCRl6I8m2DyMtqQCAUARGAIArWcNLRiprGBPBNvQmxakldZ/fEgDA5QiMAABXoiU18UK31ZDsU1KpMAIAQhEYAQCu5I8w9Ma6+TxiU2p571IdttVgDSMAIBSBEQDgStYKI2sYE8PazpsanJJa+biPCiMAIASBEQDgSuW+SBVGAmNNObakeqkwAgAiIzACAFzJGl7SGXqTECUO22pYp6RSYQQAhCIwAgBcyRdhDSMtqTVnm5KaXPGe2tcw7vNbAgC4HIERAOBK1gojgTExnCqMtKQCAKpCYAQAuJKPfRgTzvrepQVbUisfpyUVABCKwAgAcCVaUhOv1GkNo5c1jACAyAiMAABXsmYXttVIjBKHKakeyxpGOlIBAKEIjAAAVyr3V4Yba0tqud/ITyWsRkrLfcGPHSuMJEYAQAgCIwDAlSx5UemWllSJdYw1ZZ+SyrYaAIDqERgBAK7kizAlVbK3ViJ61qDNlFQAQDQIjAAAV4o0JVWSSiytlYie89CbysepMAIAQhEYAQCuE7pGMbTCyOCbmil1GHrj9VgrjPv8lgAALkdgBAC4TujwldAKI4GxZkocKoy2wEhiBACEcGVgvOuuuzR+/Hj16NFDHo9H3bp1i3juueeeK4/H4/jr1Vdfjfo1N23apHPOOUetW7dWRkaGBg0apFdeeSUBXw0AIFahrZGpSV5Zltox9KaG7ENvKkI4U1IBAFVJrusbcHLDDTeoRYsWGjhwoHJzc6N6zpw5c8KOHX744VE9d9euXTr22GO1bds2XXXVVerUqZP++c9/asKECZo5c6bOO++8WG4fABCn0MDo9XqUmuxVcVlF4KHCWDMlDlNSqTACAKriysC4evVq9ejRQ5J08MEHq6CgoNrnnH322TV+vbvvvltr1qzRm2++qdGjR0uSLrjgAh111FGaMmWKxo8fryZNmtT4+gCA2IRWupI8HqUmERjj5Tgl1VK5ZUoqACCUK1tSA2ExFsYY5efny++P/YeIf/7zn+rZs2cwLEpSUlKSLr/8cu3atUvvvPNOzNcEANRcaKXL65XSLINvCIw14zwllZZUAEBkrgyMNZGTk6OcnBxlZGRo1KhRWrp0aVTP27x5szZu3Kgjjzwy7LHAsc8//7xG99S+fXvbr969e9foOgDQ2IS2pAYqjAElrGGsEccpqdZ9GHlbAQAhXNmSGot27drpyiuv1KGHHqqsrCx9++23euihhzR48GC98847GjlyZJXP37RpkySpY8eOYY8Fjm3cuDHxNw4AiCi00pXs9QbX3ElUGGvKun9lsMJoWcPIPowAgFD1PjDefffdts9PO+00nXnmmerfv78uueQSrVy5ssrnFxYWSpLS0tLCHktPT7edE6vNmzfbPs/Pz1dOTk6NrgUAjUlopcvrrQw4EoGxJsp9fts+i45Db2hJBQCEaDAtqVa9e/fWhAkTtGrVKq1YsaLKczMzMyVJJSUlYY8VFxfbzgEA7BvlIYkx6bcpqQEExtiFbkUSHHpj+UmAwAgACNUgA6Ok4N6NO3bsqPK8Dh06SHJuOw0cc2pXBQDUnrAKY+gaRgJjzEJDNi2pAIBoNNjAGGhFbdu2bZXntW/fXh07dtSSJUvCHgscGzRoUOJvEAAQUdi2GmEVRl/oU1CN0MCYllQxddY2JZXACAAIUa8D4969e4Nto1Zff/21XnnlFR1wwAHq2bNn8HhhYaGWL18etrZw4sSJWr16td56663gMZ/Pp3/84x9q1qyZfve739XeFwEACOM4JdUaGJmSGrPQqmzg/fRYKox0pAIAQrly6M2cOXO0bt06SdL27dtVWlqqO+64Q5LUtWtXTZo0SVJFFfH//u//dNppp6l3797BKakzZ85UUlKSnn76adt1P/vsMw0fPlyTJ0/W7Nmzg8evv/56vfLKKzrzzDN11VVXqWPHjnrxxRf1+eefa/r06crOzt43XzgAQFL4Wjqv196SyhrG2EUKjOzDCACoiisD44wZM7R48WLbsZtvvlmSNHTo0GBgbNeunUaOHKmFCxfqhRdeUFFRkdq3b68zzjhDU6dO1f777x/V67Vs2VIff/yxrr/+ej322GMqKCjQgQceqH/9618644wzEvvFAQCqZa0wJv8WaBh6Ex/re5bs9QSDImsYAQBVcWVgXLRoUVTntWvXTnPmzIn6usOGDZOJ8K+nHTt2jOlaAIDaYw0uXofAWEJLasysbbzW95IpqQCAqtTrNYwAgIbJGhgDFbC05KTgMSqMsbO+Z9bAyNAbAEBVCIwAANexrqULBJo0WlLjYguMlvWgXktLKnkRABCKwAgAcB2/tSX1tzzDGsb4lFi2IrG1pFoCo2R/7wEAIDACAFzH1pIaWMOYxLYa8YimJVViUioAwI7ACABwHaeWVCqM8bGGbOt60KSQCiPrGAEAVgRGAIDr+C15kMCYGCURKowheVEUGAEAVgRGAIDr2CqMnvCW1NBN6FE9a8hOS6IlFQAQHQIjAMB1fJYSo9M+jFQYYxf1GkZaUgEAFgRGAIDr+KppSS1h6E3MIrWkMiUVAFAVAiMAwHVsU1I97MOYCLaWVFtgtJ/npyUVAGBBYAQAuI41tHidttWw7CmI6JT6nPdhZA0jAKAqBEYAgOs4VRhtaxhpSY2ZbQ2jJXx7vaEtqfvslgAA9QCBEQDgOn6HfRitewfSkhq7iENvQvdhpMIIALAgMAIAXMdWYWRKakJYq7IMvQEARIvACABwnXK/wxpGAmNcSsoiBMaQnwQYegMAsCIwAgBcx29bw1jxX9vQG9Ywxsy6FYm1vTesJZUKIwDAgsAIAHAdn8MaRmtVrMxnaJ2MUaRtNUKnpFJhBABYERgBAK5jDYNeh30YJaqMsYo0JdXj8chaZORtBQBYERgBAK5T3dAbSSphHWNMisqc92GU7INvqDACAKwIjAAA1/FZMkswMCaFVBgJjDFZs2Nv8OP2Oem2x6zrGFnDCACwIjACAFzHH0WFkZbU6OUWlmr7npLg5/u1zbY9bp2USoURAGBFYAQAuE65bUpqhMBIhTFqK7YWBD9OS/aqc4tM2+NUGAEAkRAYAQCuY61yBfZhTPbah7MQGKO3Yuue4Me92jQJm4xqX8O4z24LAFAPEBgBAK7jc6gwejwe26RUAmP0VloCY2g7qlQZyiVaUgEAdgRGAIDrOE1JleyDb0p9PiE61pbU3m2bhD1ufY9pSQUAWBEYAQCu49SSKkmpyUnBj9lWI3ort1kqjG0cKozWllQCIwDAgsAIAHAda5Ur2RIYaUmN3a69pdpRUBr83LEl1bKkkbwIALAiMAIAXMdnrTB6rBVGAmOsrANvMlKS1Kl5Rtg5tpZU1jACACwIjAAA1/H5rGsYK4/b1zASGKOxMmRCqjdkQqpESyoAIDICIwDAdaxVLtvQGyqMMatu4I3E0BsAQGQERgCA61irXJFaUhl6E50V1WypIdnXMNKSCgCwIjACAFwnYoUxiQpjrFZuq6ww7hehwmhtUzUERgCABYERAOA61uWJDL2puR0FJdq1t3JCam+HLTUkKcljbUmt9dsCANQjBEYAgOv4I2yrYQuMJJtqWdtRs1KT1LFZ+IRUiSmpAIDICIwAANeJ1JKaxhrGmKy0DLzp1TbbcUKqxJRUAEBkBEYAgOtYJ3V6mZJaY7aBN22c1y9Kktfy04CfCiMAwILACABwHWtgtK6vSyMwxsRaYYw0IVUKXcNIYAQAVCIwAgBcx9qS6o00JdXn26f3VN8YY7RiW2WFMdIejJL9PabCCACwIjACAFzHH6HCSEtq9LYXlCi3sCz4efQVxlq9LQBAPUNgBAC4jq0l1fKdisAYPWs7anZastrnpEc81zb0hgojAMCCwAgAcB2/bUpq5beq1KSk4Mdsq1E168CbXm2byONxnpAqMfQGABAZgREA4DrRVBhLygiMVVlhHXjTJnI7qhSyDyNDbwAAFgRGAIDrlFu31Yi0hpEKY5VWbo1u4I1kf48JjAAAKwIjAMB17C2pzoGxhDWMERlj7HswVjHwRrIHRjpSAQBWBEYAgOvYW1It+zAmMfQmGtv2lCi/uDz4eXWB0daSSmIEAFgQGAEAruO3ZEFr9SsthcAYDWt1MTs9WW2bplV5Pi2pAIBICIwAANfxRWpJTWINYzRsA2/aZlc5IVWyDxbyExgBABYERgCA60RqSWUfxuis2mYNjFUPvJFCKoy0pAIALAiMAADXsQ29iTQllcAYUV5RafDjNtnp1Z7vtYRyCowAACsCIwDAdcp9tKTGo7DUF/w4Ky2p2vOtoZyWVACAlSsD41133aXx48erR48e8ng86tatm+N5xcXFeuaZZ3TqqaeqW7duysjIUI8ePTRx4kQtW7Ys6tebPXu2PB6P468//elPCfqqAADRslYYvbSkxswaGDNSk6s9nympAIBIqv8uUgduuOEGtWjRQgMHDlRubm7E89auXas//vGPOvbYY3XBBReoQ4cO+uWXX/TEE0/otdde03vvvafhw4fH9LoHHHCA7VifPn1q+mUAAGrItoaRltSYFVkCY2ZK9RVGLxVGAEAErgyMq1evVo8ePSRJBx98sAoKChzPa926tb7++mv179/fdvyss87SgAEDdM011+iLL76I+nVHjRqlYcOG1fS2AQAJYp+SWnk8LdnekmqMqXYCaGO0t7RyD8bM1GgCY+XHfiqMAAALVwbGQFisTsuWLdWyZcuw4wceeKAOPvhg/fDDDzG/9p49e5SWlqbU1NSYnwsASAxrlcta/UpNsoefknK/0qOooDU2tgpjWowtqRRuAQAWrlzDGC+/36/Nmzerbdu2MT3vlFNOUdOmTZWenq5DDjlEzz//fFz30b59e9uv3r17x3U9AGgsrBXG5CTnllSJwTeRWNcwRlVhtE1JpcIIAKjkygpjvJ588klt3rxZN998c1TnZ2Zm6swzz9SIESPUpk0brVmzRo899pgmTZqk1atX65ZbbqnlOwYAWPl8ESqMoYGRdYyOCi0tqRlRVGCt60R9rGEEAFg0uMD4ySef6KqrrtIhhxyiG264IarnTJgwQRMmTLAdu+iiizRo0CDdcccdmjx5csRJrVXZvHmz7fP8/Hzl5OTEfB0AaGzsaxgJjLEo8/lVZgncWVG0pLKGEQAQSYNqSf3yyy910kknqUOHDpo7d67S06vfrDiStLQ0TZkyReXl5Zo3b14C7xIAUB1rp6m1+pVGYKyWtR1VoiUVABCfBhMYv/rqK40aNUo5OTlauHChOnbsGPc1A1XFHTt2xH0tAED0Iu3DmOz1yDoUlTWM4aztqJKUEUVgpCUVABBJgwiMX331lUaOHKns7GwtXLhQXbt2Tch1V65cKUkxD88BAMTHtg+jJTB6PB6lJrEXY1XCKozRrGFkSioAIIJ6Hxi//vprjRo1Sk2aNNHChQvVvXv3iOcWFhZq+fLlYWsLd+7cGXZuXl6e7rnnHqWmpuqEE05I+H0DACKLtK2GZF/HWEJgDGPdUiM12avkpOq/1Vv3sjS0pAIALFw59GbOnDlat26dJGn79u0qLS3VHXfcIUnq2rWrJk2aJElat26dRo0apd27d+vPf/6zPvnkE33yySe2a40ZM0ZZWVmSpM8++0zDhw/X5MmTNXv27OA5ffv21dChQ9W3b1+1adNGa9eu1cyZM7V582Y98MAD6tSp0z74qgEAAbZtNbz2wJiWnKQ9qmi7LCmzV9MQ+5YakmTNlD4CIwDAwpWBccaMGVq8eLHtWGCLjKFDhwYD45o1a4LVwWnTpjlea82aNcHAGMnEiRO1aNEizZs3LzjJ9PDDD9esWbOoLgJAHSiP0JIqSc0yU7SjoESStKuwdJ/eV32w17KGMZp2VIk1jACAyFwZGBctWhTVecOGDYupdSbS+Q888EDU1wAA1L6qWlLbZKdp1bYCSdK2/JJ9el/1gbUlNTOKLTUkpqQCACKr92sYAQANT6R9GCWpdXZa8OPtBQTGUDVpSfVSYQQAREBgBAC4ijFG1iJX6MyW1k0sgXEPgTGUdVuNjGhbUm0VxoTfEgCgHiMwAgBcJbTCFdqSaqswEhjDWCuMWdG2pFreYz+JEQBgQWAEALhK6JTO0JbUNk0rA+M2AmMYa2DMYEoqACBOBEYAgKv4Q7ZWDFvD2CQ9+DEVxnBFNZiSyhpGAEAkcQXGpKQknXXWWYm6FwAAVB6SGKsaerNrbwkBJ8TeOIfeUGAEAFjFFRizs7PVpUuXRN0LAADhFcYq1jD6jbSTSak2NdlWwxrKCeAAAKu4AuOAAQP0008/JepeAAAIW0PnDakwNstIUUpS5THWMdoV1qQl1RoYKTECACziCozXXXed3nnnHc2fPz9R9wMAaORCK1yhFUav16NWTdiLMZIaDb1hSioAIILoelUi2LZtm0488UT93//9n0477TQddthhateunTwh39wl6ZxzzonnpQAAjYS/mgqjVNGWujmvWBKDb0LVbFuNyo9D338AQOMWV2A899xz5fF4ZIzRa6+9ptdee02SbIHRGCOPx0NgBABEJazC6BQYm7AXYySFNRl6Y2tJTfgtAQDqsbgC46xZsxJ1HwAASAoPjMkOgdG6FyOB0c66hjEjyjWMtKQCACKJKzBOnjw5UfcBAICk8MDodVjmQIUxMnuFkSmpAID4xDX0BgCARAud0unYkppNYIzEvq1GdBVGD2sYAQARJCQw/uc//9EZZ5yhQw45RL169QoeX7Zsme69915t3LgxES8DAGgEQlsiHfKiLTBu21Nc27dUbxhj7NtqRDsl1fImExgBAFZxtaQaY3T22WfrX//6lyQpIyNDRUVFwcdbtGihG2+8UT6fT1OnTo3vTgEAjYK1wuj1yHHyduvs9ODHVBgrlZT7Zc3bmSlRtqR6aEkFADiLq8L4yCOP6MUXX9SFF16oXbt2acqUKbbH27Ztq2OPPVZz586N6yYBAI2HNbA4taNKUhtLhXFvqU97S8odz2tsrOsXpehbUr22CmNCbwkAUM/FFRhnzpypgQMH6qmnnlJOTo7jvwL36tVLa9eujedlAACNiN9f+bHTwBtJamUZeiNJOwqoMkr2CalSDNtqUGEEAEQQV2BcuXKlhg4dWuU5rVq10o4dO+J5GQBAI2JtSXXaUkOSMlKTlG3ZlH4bbamSwiuM6cnRrmGs/Jg1jAAAq7gCY2pqqgoKCqo859dff1XTpk3jeRkAQCPis5QYvRECo8SkVCf2LTWSqnz/rLzswwgAiCCuwHjIIYfo/fffV1lZmePje/bs0fz58zVo0KB4XgYA0Ij4LC2pkdYwSgRGJzWZkCqF7MNIhREAYBFXYLzwwgu1Zs0anXvuuWGVxh07dujMM8/Ujh07dNFFF8V1kwCAxsM29CbCGkaJrTWcWPdgzIghMNrXMCb0lgAA9Vxc22pMmjRJ77//vubMmaN///vfatasmSTpwAMP1OrVq1VWVqYLL7xQp556aiLuFQDQCFjX0NGSGpu91pbUKLfUkOyB0VBhBABYxFVhlKRnn31WzzzzjPbff39t375dxhgtX75cvXv31lNPPaWnn346EfcJAGgkalJhJDBWKLK2pEa5pYZESyoAILK4KowBF1xwgS644AIVFRVp9+7dysnJUVZWViIuDQBoZKyBpao1jG2y04Mfb49yW40tecX6dkOuhu7XWukp0Qeq+iJ06E20rFNS2VYDAGCVkMAYkJGRoYyMjEReEgDQyFindEY79GZbfvWBcW9JuY5/cLHyi8t1av8Oevj3A+K7UReyBsaMGrakMiUVAGAVV0vqkUceqRtvvFHvv/++iosZOAAAiF95tIGxSWVg3Lm3tNrK2De/5iq/uKJlc/GK7XHepTtZp6RmxdCSaguM5EUAgEVcFcbvvvtOn332me6++26lpqbqiCOO0HHHHacRI0boyCOPVFJSw2v3AQDULmuFq6ptBK0VRp/faHdhqVpZQmQo6wTR0A3uG4qat6SyhhEA4CyuwJibm6tPP/1U77//vhYsWKBPPvlEH374oaZNm6bMzEwde+yxGjFihEaMGKFDDz00UfcMAGjAol3D2CIrVUleT7CyuH1PSZWBsbi8MkyVlvvl85sqr18fFZbQkgoASKy4AmNqaqqGDh2qoUOH6vbbb1dBQYEWL16sDz74QB988IHmzZunefPmyePxqLy8vPoLAgAaPZ+twhg50CV5PWqZlaptv01I3banRAe0j3zd4jL7BoOFpeXKTk+J72ZdprCMCiMAILESOvSmSZMmGjBggHbv3q1du3Zp48aN2rFjRyJfAgDQwPmjrDBKFW2pgcBY3dYaxWX2NtSiUl+DC4w13VbD+jYbU7EXo6eKsA4AaDziDoy7du3SwoULg1XFFStWyBijFi1aaOjQoRoxYoSOO+64RNwrAKAR8FkKgdEExoBYA2NDXMdoW8MYw7Yh3pD32W+kJPIiAEBxBsYBAwbo+++/lzFGWVlZGjx4sC688EKNGDFC/fv3518nAQAxi3ZbDUlqY91aY0/V07pLykNbUhteYNxrG3oT/bf4pJDv1w1xfScAoGbiCozffvutPB6PRo0apeuvv16DBw9mMioAIC62bTWq+YfHeCqMRWUNb219TVtSQ8Ohn3WMAIDfxLUP45VXXql+/fpp/vz5Ou6449S8eXOddNJJevDBB/Xtt98m6h4BAI2IdehKaKtkKOtejLSk1nxbjdBcXt2elgCAxiOuCuMDDzwgqWIdY2AN4wcffKB3331XHo9HLVu21PDhw3Xcccfpj3/8Y0JuGADQsPljqjCmBz/eXlBdYGz4LanWrymWbTWoMAIAIomrwhjQokULjRs3To8//riWL1+uDRs26IEHHpDX69Wrr76qSy+9NBEvAwBoBHyxrGFsaqkw5lcdGIscpqQ2NIWWltSsWFpSQ4K53x/hRABAo5OwbTX27t2rDz/8UAsWLNCCBQv0/fffy//bd5zs7OxEvQwAoIHz17AldU9JuYpKfcqI0IrZ0FtS/X5jq6LG0pIa+j6zFyMAICCuwLh48WJ98MEHWrBggT7//HOVl5fLGKOMjAwNHz5cI0aM0IgRI3TYYYcl6n4BAA2crcJYzaBO69AbSdpRUKLOLTIdzw1vSW1YQ29CK6gZMUxJ9TpMSQUAQIozMA4fPlySlJKSosMOOyy45+JRRx2l1NTUhNwgAKBxsVa3krxVr5zISktWZmpSsFq4bU/kwFhS3rBbUveGBOBY9mEMbUk1VBgBAL+JKzBOmTJFI0aM0ODBg5WVlZWoewIANGI+nzUwVn9+m+w0rd1ZKEnaXsVejGEtqWUNKzCGBuBYttUIzeW0pAIAAuIKjPfee2+i7gMAAEmhFcbqN49vbQuMkQffhLakNrQKo3VNZpLXo9Ro0rblfCtaUgEAAQkberN582Z98803ys3NVU5OjgYMGKD27dsn6vIAgEbCuq1G6No6J9Z1jFUHxtChNw1rDaP168lMSZInivcuIPR9ZkoqACAg7sC4fv16XXLJJXrvvffCHjvhhBP0+OOPq1u3bvG+DACgkYi5wmiZlLqtqsBY3rCnpFq/nljaUSWHwEhLKgDgN3EFxi1btuiYY47Rxo0b1a1bNw0ZMkTt27fX5s2b9dFHH+m9997T4MGD9fnnn6tdu3aJumcAQAPms1S3QoexOIm+wth4WlIzY5iQKjm0pBIYAQC/iSsw3nHHHdq4caPuueceXXXVVUpKqvwXTZ/PpwcffFDXXnut7rjjDj366KNx3ywAoOGLZR9GSWqTnR78eHtBFYGxtKFXGCtbUjNimJAqSaFvs581jACA30S/It7B3LlzNXLkSF1zzTW2sChJSUlJmjJlikaNGqW33347rpsEADQe1oEryVEOvQmossIY2pLawKak2iuMsQVGj8djC41UGAEAAXEFxs2bN+uwww6r8pxBgwZpy5Yt8bwMAKARsQbGaCqMoYHRqTrm8xuV+ezHixrY0Jsi2xrG2BuIrOsYmZIKAAiIKzDm5ORo/fr1VZ7z66+/qmnTpvG8DACgEbGGlVjXMJb7jXKLysLOCZ2QKjXEllRLYIyxJVWyh3MKjACAgLgC4zHHHKNXX31VS5cudXz8s88+0yuvvKJjjz02npcBADQisU5JbZmVavt8197SsHOcAmNDG3qz17qtRowtqZI9nFNhBAAExBUYb7rpJhljNHjwYE2ePFmzZs3Su+++q1mzZmny5Mk69thjZYzRDTfcENN177rrLo0fP149evSQx+OpdluOpUuXauTIkcrOzlbTpk114okn6ptvvonpNRNxDQBA/GLdhzE5yWvbpN4pCBaXh28s2NAqjEVxbKsh2cM5axgBAAFxTUkdOHCgXn31VU2ePFlz5szR888/H3zMGKMWLVpo5syZGjRoUEzXveGGG9SiRQsNHDhQubm5VZ67ZMkSDRs2TB07dtRtt90mSXr00Uc1ePBgffLJJ+rbt2+1r5eIawAAEsPWkhrlP2tmpCaptKgiFBY6rE10rDCW+eT3m6jWSdYH8WyrIUnWbM6UVABAQFyBUZJOPvlkrV+/Xm+88Ya+/vpr5eXlKScnRwMGDNBpp52mrKysmK+5evVq9ejRQ5J08MEHq6CgIOK5f/7zn5WamqoPP/xQHTt2lCRNmDBBBxxwgK6++mrNmzev2tdLxDUAAInhi3FbDamiBTPvt7WLTtNPnQKjVDE5tSbhyo3i2VZDslcYyYsAgIAaf5dcv369Pv/8c3m9Xh122GE666yzdNZZZyXkpgJhsTqrVq3S559/rvPPPz8Y9CSpY8eOGj9+vGbNmqUtW7aoXbt2tXoNAEDixLqthlRRYQwI3W9RkorLwltSpYqqXH0KjKXlfv3lX19r7c5C/W3MwRrQpXnwsXi21ZBYwwgAcFajNYxTpkxRjx49NGHCBI0bN07du3fX9ddfn+h7q9bnn38uSTrqqKPCHjvyyCNljNGXX35Z69eIpH379rZfvXv3rtF1AKAxiXVKqmQPSE5rE0siVBjr2+Cbd3/YrHd/2KJlm/P14PsrbY8Vxruthq3CSGAEAFSIOTC++OKL+vvf/y5jjPbff3/16dNHfr9f9913n1555ZXauMeINm3aJEm2ymBA4NjGjRtr/RoAgMTx16QlNaUyIDm1pBZFCIz1bfDNL9v3Bj9evc2+XKMo3m01LG81FUYAQEDMgXH69OlKTk7Wf//7X/3444/66aef9O6778rr9Wr69Om1cY8RFRYWSpLS0tLCHktPT7edU5vXiGTz5s22XytXrqz+SQDQyNWkwmhtSS1yHHoTqSU1/Fw325pfHPx4S36xyn2VX1cit9WgwggACIg5MH733XcaPXq0Ro4cGTx2/PHHa/To0fr6668TenPVyczMlCSVlJSEPVZcXGw7pzavAQBIHEsGimnoTYBT1TDS0Jv61pJqDYw+v9HmvMrPi2hJBQDUgpgD4+7du7X//vuHHT/ggAO0e/fuhNxUtDp06CDJuWU0cMyp1TTR1wAAJI41rCTVYOiN8z6MDaMldUu+/R83N+YWBT+Oe+iNdR9G54IsAKARijkw+v1+x/bN1NRU+f379jvMYYcdJkn69NNPwx5bsmSJPB6PDj300Fq/BgAgcWpj6E3EltQIlUe3slYYJWnjbmtgjHNbDaakAgAc1GhKqifKb+C1rVevXho0aJBeeeWV4PAaqWKQzSuvvKIRI0bYtsPYsWOHli9frry8vBpfAwBQu2yBMeqWVMvQmxhaUp224HCrknKfdu0ttR3b8FtgLPP5VearfN+yatCSav3WbmhJBQD8pkabTz3wwAN65plnbMfy8/MlSV26dAk73+PxaN26dVFff86cOcHzt2/frtLSUt1xxx2SpK5du2rSpEnBcx9++GENHz5cgwcP1uWXXy5J+sc//iG/368HHnjAdt1HH31Ut956q2bNmqVzzz23RtcAANSumgRGa0WtqCx8kE2kbTXq09Cbbfnha+035lYMZQsNyXG3pBIYAQC/qVFgzM/PDwbEUBs2bIjrhiRpxowZWrx4se3YzTffLEkaOnSoLTAeffTRWrRokW666SbddNNN8ng8Ovroo/XKK6/okEMOier1EnENAEBi+GqyrUZ1Lanl9b8lNbQdVapcwxgafDNqEBi9tKQCABzEHBj3xTrFRYsWxXT+UUcdpQULFlR73rRp0zRt2rS4rgEAqF3+WlnDWP+npG51qDAGWlLDKow1WcPIlFQAgIMarWEEAKC2+GxTUqN7ToZlDaPjlNSILan1JzBucagwbsotkt9vbF9zarJXydG+cRb2CmPN7hEA0PAQGAEArmKtMHqjrDBa1zA6rUssijQltR4Fxm0OgbHMZ7RtT0ncW2pI7MMIAHBGYAQAuIqvBvswWkOS0xYa1gqjNYMW1aOhN04VRqli8M1ey9dRk3ZUSUqyvC9+1jACAH5DYAQAuEq5rwZTUlOrrjBaA2OzjBTLufWnwrglzzkwbthdZGtJzazBlhoSU1IBAM4IjAAAV/HHWWF0CoEllqpj86zU4MdF9WhK6rY9lUNvrG/Lht1FCWlJte6xTIURABBAYAQAuIovzimpJeX+sG0hissrA1WLzMrAWF8qjMYYW4WxT7umwY835hbZqqoZNW5Jta5hrNElAAANEIERAOAq1rAS7T6M1impUnjl0NqSaq0w1pfAmF9cbvuaDu3aLPjxxgRVGG0tqSRGAMBvCIwAAFepUYUxpKoWuo7ROgjHWmGsL0NvQiekDujcPPjxht2F9sBYwzWMTEkFADghMAIAXMUWGGsw9EYK34uxvlcYrRNSWzVJVbdWmcHPN+YWqbAk/imp1reaCiMAIIDACABwFWt1K9qW1LRkry3whAZBa2BsaR16U18Co2X9Ytum6erUvDIwFpf5tWF3UfDzGreksoYRAOCAwAgAcJVyS1pJjjIwejweZVrWMYYFxnLnKamFZT6ZetB+aZ2Q2rZpulo3SVNqUuW38JXb9gQ/piUVAJBIBEYAgKtYt3TwRrmGUbK3pVorhz6/Uak1MGam2B/zVT7mVqEVRq/Xo/bN0oPH1u4sDH5c05ZUa4WRllQAQACBEQDgKr4a7MMohe7FWLmmr6TcXm20Vhil+tGWutWyhrFd04qg2Kl5RvCYNeCFrueMFlNSAQBOCIwAAFexD72J/nnW/QetW1BYJ6RK9impUv0YfGMNjG2bpkmSOjbLcDw3q4YtqdZibn1o0wUA7BsERgCAq9S0JdVeYbQGxpAKYz0MjNYpqW1zAhXGTMdzE7IPI4ERAPAbAiMAwFVq2pIaaQ1jaGDMTEtSarLX8Vw38vmNtluG3gRaUiNVGDMSsoaxRpcAADRABEYAgKv4LWElpqE3KZWtmJFaUpO8HqUkeSOud3SjHQUltm0u2gYCY3PnwGidFhsLpqQCAJwQGAEArlJuSYzJSfEPvSm2DL1J/62yaJ0kWljm7gqjdUJqarI3OOW1U6TAmFazCqO1mMvQGwBAAIERAOAaxhhbNS0pwWsYA22rkdpX3Sh04I3nt/ekXdN0x5bdRKxhpMIIAAggMAIAXCO0sOVNwBrGEktLalpyxTnWtk23D72xBcbsyr0Xk5O8wfWMVpkpNWxJtYRzPxVGAMBvCIwAANcIbYVMdIUxPaXi2549XLp7DaPThNQAp3WMNW1JZUoqAMAJgREA4BqhrZCxTEmNVDUssgXGQIXROVy60db88AmpAZ0cJqXWtCXVy5RUAIADAiMAwDVCK4wxtaRaBtkUlVmG3lhaUhMZGMt9fi1esV0/bcqv0fOjFbqG0cpp8E16cvyB0VBhBAD8pmYLHQAAqAWhrZC11pIaYQuOWMz8eI3+9s5ySdLblx+rgzvm1Og61bEHxqpbUjNSkmIK2VZJln9CZkoqACCACiMAwDV8vpq3pEYaemPfVsOpwlizNYzv/rAl+PHiFdtrdI1oWLfVCG1J7dgs0/Z5Vg3XL0r2ai5rGAEAAQRGAIBrhFUYE7CGsbZaUtfvLAx+nFdUVqNrVKeo1Kf84spAG1phDG1Jzajh+kWJKakAAGcERgCAa4QGlUS0pJZYWk7THKekxh4Y9xSXaefe0uDneYW1Exit7ahSeGBs38z+eU231JDs7zV5EQAQQGAEALhGaIXRG8N3KWsItK5bLK6FKanrLNVFqfYqjNYtNZqmJ4dVENOSk2yDcGq6pYZESyoAwBmBEQDgGmH7MMbUkmpflxiY9GlrSf1tDWOGpX21JhXGfRUYrRXGdiF7MAZ0tGytUdMtNaSQCiMlRgDAbwiMAADX8Ifs/+eNpSXV0o7pN1JJecXFrENvMlK9v51r3YKjBoFx117b5/nFtR8YQ9tRAzo2rxx8kxFPSypTUgEADgiMAADXiGfoTXqq/VtaoHJoa0lN0JTUdTv2UUtqXknw40iBsXvLysDYMiu1xq/lYQ0jAMABgREA4Bq+kBJjbENv7NW1wt+CYpHDlNR4h96EVhj3SUtqhMB41pFd1aNVljrkpOvsI7vW+LWs4dzPGkYAwG9q3rsCAECC+Sx50eNRTJvQZ6TY1+8V/VY5tA+9+a0l1boFRw1aUteHrGHcU1wun9/EVBGNhq0lNcIaxrZN07Xg6qHym9gqsqGs4ZyWVABAABVGAIBrWINKLNVFqSIspSVXflsLTD+1b6sR/5TU4jKfNodsdyFJBcWxt7ZWxzoltW12WsTzPB5P3GHVS4URAOCAwAgAcA1rUImluhjgFASLq2lJLS33x1RR27C7UE55KtFtqcYYbcuvXMMYaUpqoljfbiqMAIAAAiMAwDXiqTBK9lbT4NCbcuvQm4pve6Htq7EMvlkbMvAmIFJg3JJXrKcWr9Z3G3Kjfg1J2l1YplJLj26kNYyJwhpGAIAT1jACAFzDOiW1Ji2WGY4VRusaxvCWVKkiXGanp0T1Gut2xRYYr3zpG336y05lpibp0+uPU05mdK+zJa+yHTXJ61HLJpFbUhPBa9uHsVZfCgBQj1BhBAC4hnXD+JosyXPaLqO6ltSKc6Nfx7hu517H406B0Rijz9buCr7G8i35Ub/Otj2VgbFVk9SED9QJZb1+6PYmAIDGi8AIAHCNcktgTE6K/VuUtdW0qMypwlhxzdQkry0gxRYYnSuM+cXhgTH/t+mpofcUjZ0FpcGPW9VydVFiDSMAwBmBEQDgGvYKY/xDb/x+o5LyygpjIFB6PB5l2sJl9GsYY6kw7t5bavs8lj0fd1me2yIrNern1ZT1/TZUGAEAvyEwAgBcw76GMfbnhw69sYZFqbIlVXJe71idcp9fG3YXBT/v0Tor+LFTYNwZGhhjqTBanttyHwRGWlIBAE4IjAAA14h3Sqo1BBaV+WztqJKUllL5ba8mezFuyi22tc3265gT/DiaCmMsra87Cyq31GiRVfstqbbAyNAbAMBvCIwAANdI7D6M5bYtNaTQCmP4FhzVWbersh21eWaKOrfIDH6e7xAYdxUmpiW1ZZParzB6bFNSqTACACoQGAEArmGtbCViWw3rhFRJSk+ufLwmFca1loE3XVpmqallKw6nCuOu+tSS6mEfRgBAOAIjAMA14m5JtQ6yKbW3pHo9UkpS5TWdtuCoznrLwJtuLTOVk1EZGJ0qjPG0pO7roTfWNaOsYQQABBAYAQCuYQuMcbek+kK21EiytV2GhstoWLfU6NoiU00zYqwwRhlMQ5+7L1pSvbSkAgAcEBgBAK5hn5Jak5ZU+7pEa0uqdf2iFBIuo2wVtQXGlln2CmNxeBjcHbqGMcrXKSn3qaCk8nr7fOgNFUYAwG+Sqz8FAIB9I+59GFOsIdA+9CY92f5vpLEOvTHG2IbedG2ZadvGI6+oTMYYWxUzdFuNaFtSQyuT+3ofRj9TUgEAv6HCCABwjUS3pJaEtKRGPrf6VtFte0psFcuuLbPUNKMyMPr8RntDAmHoGsbQbT4i2VlQ+byUJI+aptf+v+9ap9Iy9AYAEFCvA+O0adPk8Xgi/kpJSan2GsOGDYv4/C+++GIffBUAgABfnNtq2PZhDGlJTasyMFYf5KztqJmpSWrVJNXWkiqFr2MMrRTWpMLYPDPVVrWsLdYhQz7WMAIAflOvW1LHjh2rXr16hR3/7rvvdN9992n06NFRXadVq1Z68MEHw4736NEj7nsEAETPb5uSGvvzrS2ihaU+25rBjJTQltTYht6s3WltR82Sx+NRk7RkJXk9wYCVV1imjs0yJEllPn/YusaaBMZ90Y4qSV7L20OFEQAQUK8DY79+/dSvX7+w4xdddJEk6YILLojqOllZWTr77LMTem8AgNjFO/QmM6zCWEVLakpsFcb1IRNSpYrN7pumJ2t3YUVlMb+4ssIYOvBGiqEldR9PSJXsaxipMAIAAup1S6qTvXv36l//+pc6deqkE088Mern+f1+5efny/CvqgBQZ+Jdw2itGpb6/NprmTQavobRUo2MIsjZKoytMoMfR9paY/fe8G02oq8wlgQ/3hcTUiX7+01eBAAENLjA+Morryg/P1/nnnuukpKSqn+CpI0bN6pJkybKyclRkyZNNHbsWC1fvjzue2nfvr3tV+/eveO+JgA0ZIkceiMpWPmTpPQqW1KrH3qzfpe1wpgV/DgnQmAMXb8oRR8YrUNvWu6rllT2YQQAOKjXLalOZsyYIY/Ho/PPPz+q87t3765jjjlG/fr1U1JSkpYuXapHH31UCxYs0P/+9z/17du3lu8YABDgi3tbDfu3NWtbaHpyfENv1u6orDB2a1lZYbTtxVhNYKxJS+q+WsPIPowAACcNKjD+/PPP+t///qfjjjtO3bt3j+o5s2bNsn0+btw4nXLKKRo2bJiuuuoqzZ8/v8b3s3nzZtvn+fn5ysnJqfH1AKCh88e5hjEjtMJoCV6hU1JjGXqTW1hqG2DTpaVzS6otMDqsYSwsLQ/bq9HJrjpZw1j5MWsYAQABDaoldcaMGZKkCy+8MK7rDB48WEOGDNHChQtVVFSUiFsDAETBZ9kwPqkGFcbUZK+SLclnVxUtqaETVauy1jLwJjXJq/Y5GcHPI7Wkhu7BKFWsDSy1fpER2AJjHbSkUmAEAAQ0mMBYXl6u5557Ti1bttSYMWPivl63bt3k8/m0e/fuBNwdACAa/jj3YZTslUNraAsfemOpMJb5qly3t84y8KZTiwxb9bNpevRrGKXotvDYWVC3Q29oSQUABDSYwPjWW29p69atOvvss5WWFv8315UrVyo5OVktWrRIwN0BAKJR7rPuw1izwJgZKTCGrGHMCAmQxeWRg9w6S4WxW8ss22OxDL2Rqq9mhu7fWCdrGGlJBQD8psEExkA7aqS9Fzdv3qzly5ersLDym35eXp58vvBv3HPnztXHH3+sUaNGKT09vXZuGAAQxrYPY1INK4yWILjHtq1G5CmpUtVBbsPuyu8dXVpk2h6L2JLqsIZRqqhmViW0lXXftaTaP2dSKgBAaiBDbzZt2qT33ntPhx9+eMSpplOnTtWzzz6rhQsXatiwYZKkhQsX6qqrrtLo0aPVo0cPJScn67PPPtPzzz+vVq1a6aGHHtp3XwQAwBZSalphzEh1/tYWGhBDt+CoqlV0a35li2i7HPs/JNqmpFoqgzVtSbVOSE3yemzXr02hU2n9xsirmv0eAAAajgYRGGfPni2fzxfzsJs+ffpo0KBBevvtt7V161aVlZWpU6dOuvjii3XDDTeoY8eOtXTHAAAnvjinpErhQTAgtCU19POqKoxb84uDH7dtal/20DSj8ltpdUNvqnsdyR40m2em1HgtZ6xC32+fMQ3jhwQAQFwaxPeCG264QTfccEOV58yePVuzZ8+2HTvggAP08ssv1+KdAQBi4Y9zH0YpcmBMC2lJ9Xo9ykhJCraIFpaWOz1NkrRtT2WFsW125ApjIDAaY2yVQqvqWlLrYg9GyaHCWP0wVwBAI9Bg1jACAOo/67CVpBp+hwodZhMQOiVVCp+U6qSk3Ger+rVpGjkwlpb7VVzmU1GZTyXllYkrNbnyiymqIphK0i7bhNR9GBgdKowAABAYAQCuUastqQ6B0bquMdLawu2W6qIU3pIausYwv6gsbP1ix2aV+zbGUmFsuY+21JDC14wyKRUAIBEYAQAu4ktAS2qkoTfpyeHf8qzhMtLaQms7amZqkpqk2a+fnW4PjHlFZdq9t3ItY2qyV62aVFYKq1vDWGctqSFvj6HCCAAQgREA4CLWwJi8TyqMleEvUoVxm23gTbo8IUE2yetRdpp98M3OvZa20szUqF4nYFdB3QRGKowAACcERgCAa/gtVa2aTgeNJTBmplgrjM5rC61barTJdm4RbRoy+Ma6B2OLrFRlpFjXMEY/JdVamaxtTlNSAQAgMAIAXMOXkH0YIwXGalpSI6wt3BpSYXQSOil1l6UltUVWqjItFcZIrxNgq07uwzWMoZVTpqQCACQCIwDARXyWkFLjoTcxTEmNZuhNNBVGa2CsGHpT+ZzmWalRvU7Arjpawxj6fvupMAIA1ED2YQQANAyJaUmNNPSm6m01Ig+9qb7C2DTDuoax3F5hzExRclJ0Lak+v1FuUeVzW+7LllTWMAIAHBAYAQCuUastqalOLamWVtGIFcbKwNimafUVxoopqdYqYZrKLf2dVbWk7i4slbWwV5dTUqkwAgAkWlIBAC5i21YjgUNvPB4pNSn8W569VbT6oTdRr2G0Db1JsbXDVlVhtLajejxS88x9GBipMAIAHFBhBAC4RiK21XCqMKYnJ4UNdZFCp6SGB7niMp/yLC2i0QTG/OIyW/BrnpWqcsvXVVTmHEwlaadlS41mGSk1XsdZE6EVXfIiAECiwggAcBHrVg41DUsZDsNtnCakSiEVRodW0W2W6qIU3dCbsJbUzNSo1kpKdTfwRgqv6NKSCgCQCIwAABfxW1tSa7iG0WnojdOE1NBznYKcdeBNdlqystKcG3Os+zDmFpba92FskhpDS2plQG25D7fUCLCGdFpSAQASgREA4CL2CmPNruG0hjFSYGyWWRn0rOEwwLalRoSBN5I9MG7YXWRr56yoMFYGTadKZsCOgrqrMEqStchIYAQASARGAICL+BJQYXRaw5iW7PztrnurrODHG3YXqTgkzFknpEZavyjZW1JDK5XNQlpSox1602IfbqkRYH3P6UgFAEgERgCAi/gTsIYxlgpj91ZZCmQkY6S1O/faHt8axR6Mkj0wWmWnJSs12VujKakt66DCaGtJJTECAERgBAC4SLkv/sCYnhz90Jv0lCR1bJYR/PyX7fbAuC3altR058AYqBLaht6U+WQihLGdljWMddGSap2USksqAEAiMAIAXCQRFUav1xM2KTVShVGSerZuEvx49bYC22O2ltTs2CuMgX0UrYHR5zcq8zmHMVuFscm+H3pj7QJmSioAQCIwAgBcxFrVCt0XMBahbalOW20E2ALj9siBsaoKY2qy1/E1AlXC0McitaW6qiWVCiMAQARGAICLWAtvofsCxiJ08E1VFcYerSsH36yuoiW1qjWMknOVMRgYQ+6nsKw87Fy/32h3YVnYc/cla2CkwggAkAiMAAAX8ddShTHSGkbJXmH8ZXtBcH3h3pJy7SmpDHZVtaRKUtOM8D0aY6kw5hWV2ap6dVFhtE5J9fv3+csDAFyIwAgAcA1bS2pcFUZ7eEtzGIQT0LNNZYVxb6kvuPfitj0ltvOqakmVnCuMgTWMyUlepVo2lgzdekOSdlraUSWpeV23pFJhBACIwAgAcBFrG2Q8LamZMQy9ad0kTdnplQEzsI7Run4xJyOlymsEzgnVIqvymLUtNXS/R8m+frFperJSkvb9t2h7hZHACAAgMAIAXKS8DlpSPR6PejgMvrFWGNtWU12UpKaOgbHyeda2VKcK4y7Llhp1MSFVkryWt4k1jAAAicAIAHARf8JaUqOvMEpST8vgm8BejNusW2pUM/BGqr7CaNuLsZqW1LoYeCOxDyMAIByBEQDgGr4E7MMohQ+ZSU+u+tud09Yati01qhl4I0lN0yOvYZSqb0ndWVD3gdHLlFQAQAgCIwDANexDb2p+nfCW1OoqjJbAuC0QGGNrSa1qWw0pmpbUut2DUbKvYfQxJRUAIAIjAMBFrC2p3jjWMIZOSY2lJXVTXrEKS8ttFcaatKQmeT22qmOGrSU1fB9Gt7WkUmEEAEgERgCAiySqJTWWoTeS1KVlpu31ftm+N+ahN6GBsXlmiq3F01phdJ6SWvl6tKQCANyCwAgAcA1rG2Rip6RWXWFMS05SlxaZwc9Xby+wr2GMosIYOiXVun4x9J4ch95Y1jC2qqMpqdY2YIbeAAAkAiMAwEV8/srEGM8+jLFOSZWkHq0q21K//TXPFuraZMdeYQytElrbZIuq2YexziqMTEkFAIQgMAIAXMMaUpIT2pJafWDs2aZy8M0nq3fYHmudiMBouYeikAqjMUa7C90VGOlIBQBIBEYAgItYi1pxVRhTQofeVP/tzjr4ZvmWPcGPW2SlKi25+sAZtoYxK/qW1PzicpX5Kr/4lk3qaOiN5T33kRgBACIwAgBcxLatRiLXMEYR+Kxba1hF044qVYTSVMsiwBaZoS2plgpjSEuqtR1VcseUVFpSAQASgREA4CK1NyU1ijWMEQJjNFtqSJLH41HTjMrKZiwtqdYJqU3SkqOqaNYGa0ZnSioAQCIwAgBcJHH7MMa2rYZUEfCaZ6aEHY9mS42AZpaqYmhbaWYV+zDusExIrat2VCmkJZUKIwBABEYAgIskqsLYNL0y+Hk90VUYJee21GgrjJI0dmBHSRXhc1ifNrbH7C2pfttj1i01WtZRO6pkf8/JiwAASUqu/hQAAGqf329skzmT4vgnzU7NM3RMr5b6eNVOjRnQKerA2KN1lr5Yt9t2LJo9GAMuHdZLJxzUTu1z0pWZav8Wa29JtVcYrS2pLbLqZg9GyV7V9ZMYAQAiMAIAXCJ0KmeSt+aJ0ePx6PkLjtCG3UXq3CIz6uc5VhijHHpT1TUk2QJk6NAba0tqK7e0pLKGEQAgWlIBAC4RumYunimpUkVojCUsSvG3pFYlI7XyW27otho799b9HoxSRftuAGsYAQASgREA4BKhUznjKDDWWM82tRgYLXtDVjUltWUTd7SkGiqMAAARGAEALhFWYYxj6E1NdW6eoZSkytf1eBLXImqdklruNyrzVQ6+2enGllR/FScCABoNAiMAwBX8IQEl3pbUmkhO8qpry6zg562apCk5nuk7FqFbfVjbUq1rGOu0JZU1jACAEARGAIArhAYUbx1UGCWpZ+vKwNgmxoE3VQkNjIG2VL/faHehdVsNd7SkMiUVACARGAEALlEeUmKsiwqjZB980y5B6xcl+7YaUuWk1LyiMls7bp22pFre8tA1pQCAxonACABwhbCW1KS6CYzjB3VWRkqSkrweTTisc8Kum5Lkta2PLPxtL0brhFRJak5LKgDARdiHEQDgCmH7MNZRhbF7qyx9ftNIFZaUq00CK4xSRZWxzFcRFIt/qzDuLKickJqTkaKUBK2ZrIkkWlIBACGoMAIAXCE0oNTFlNSAJmnJCQ+Lkn0dY2DojbXC2LIOq4uSfQ0jU1IBABKBEQDgEqHbanjrqMJYmzJTKxt7HANjHa5flOwtqaxhBABIBEYAgEuEtaTWYYWxtlgH3zi1pNblhFRJsnbDEhgBAFIDCYwej8fxV5MmTap/8m/eeecdHX300crKylKLFi00fvx4rVmzphbvGgBgFdqS2gDzonNLqnUPxjquMCbZWlIJjACABjT0ZvDgwfrjH/9oO5aSkhLVc1977TWNGzdOhxxyiO677z7l5eXpoYce0jHHHKMvvvhCHTp0qI1bBgBYlFsCitdT8Y+BDU2mJTAG9mHcZWlJbVXHaxit7zkVRgCA1IACY48ePXT22WfH/LyysjJdfvnl6ty5sz766KNgVfL//u//dOihh2ratGl6+umnE327AIAQ1opWsrdBNMCESbe0pAb2YdxhaUltUceB0doGTIURACA1kJbUgNLSUhUUFMT0nMWLF2vTpk268MILbS2s/fv317Bhw/TSSy+prKws0bcKAAhhrWg10LxoqzAG9mHcZRt6U9drGK0Vxjq8EQCAazSYb8mvvvqqMjMzlZ2drTZt2ujyyy9XXl5etc/7/PPPJUlHHXVU2GNHHnmk8vPztWLFihrdU/v27W2/evfuXaPrAEBjYK1o1dUejLXN3pJasW+Fq6aksg8jACBEg2hJPfzwwzV+/Hj16tVL+fn5euedd/Too49q8eLF+uSTT6ocfrNp0yZJUseOHcMeCxzbuHGjDjrooNq5eQCApNAKY8MMjPaW1HL5/Ea7C637MNZ1hbHy49CptQCAxqlBBMalS5faPj/nnHPUr18/3XjjjXr44Yd14403RnxuYWGhJCktLfybdHp6uu2cWG3evNn2eX5+vnJycmp0LQBo6KwbxTfELTWk0JZUn3YXlsqay9xUYWQNIwBAakAtqaGuueYapaamau7cuVWel5mZKUkqKSkJe6y4uNh2DgCg9pT7KxNjw21Jrfx32qJSn21LDY9Hap7pnsBIgREAIDXgwJiSkqIOHTpox44dVZ4X2DJj48aNYY8Fjjm1qwIAEsuSFxtJS6pPOy0TUptnptZ5ZZUpqQCAUA02MBYXF2vDhg1q27ZtlecddthhkqRPP/007LElS5aoadOm2m+//WrlHgEAlaxr5pIbaGAM3YfRNvCmjrfUkEICIyVGAIAaQGDcuXOn4/Gbb75Z5eXlGj16dPDY5s2btXz5ctuaxKFDh6p9+/aaPn26bUuOb7/9VosWLdL48eOVkpJSe18AAECSfSqnt8G2pNrXMO500R6MUkVbbABTUgEAUgMYenPHHXdoyZIlGj58uLp06aKCggK98847WrhwoY444ghdfvnlwXOnTp2qZ599VgsXLtSwYcMkVbSuPvzwwzrjjDM0ePBg/eEPf1B+fr4efPBBtW7dWrfeemsdfWUA0LjYttVooBXGsJZUS4WxVR3vwSjZ1476qTACANQAAuOwYcP0008/6dlnn9XOnTuVlJSk3r17684779RVV10VnHRalfHjxysjI0N33HGHpkyZorS0NB133HG65557WL8IAPuItQWyoQbGKltS63hCqhTaklqHNwIAcI16HxhPPfVUnXrqqVGdO3v2bM2ePdvxsZNPPlknn3xyAu8MABALe0tqHd5ILcpIsbaklruuJdXaCkxLKgBAagBrGAEADUN5I2hJzUi1t6TuslUY674l1fq2MyUVACARGAEALmFdM9dwh95UNvaU+Yy25BcHP3fblFTWMAIAJAIjAMAlrBWt5KSGGRitLamStDnXXYHRS2AEAIQgMAIAXME2JbWBVhitLamSvQ3XDS2p1vedllQAgERgBAC4hK0ltYGuYcwMCYxWrqgwepiSCgCwIzACAFzB56/8uKFWGFOSvEp2CMNJXo9yMlLq4I7sbC2pVBgBACIwAgBcwtcIKoxSeFuqJDXPTHXF15xk+amANYwAAInACABwCZ+lxNhQK4xS+OAbSWrVpO7bUaWQllQqjAAAERgBAC5hXTPXUPdhlJzXMbZ0SWBkWw0AQCgCIwDAFaxr5hpyYMyw7MUY0CKr7iekSlQYAQDhCIwAAFewrmFs0IExJfxbrxsmpEr2wEiBEQAgERgBAC5hrWh5G/AaxkyHCqNb1jBag7qPxAgAEIERAOAS9pbUOryRWuY0JdUtLanW952WVACARGAEALhE42lJde/QG4+HfRgBAHYERgCAKzSellSHwOiSNYzW7UzIiwAAicAIAHAJXyOZkpruWGF0S0sqaxgBAHYERgCAKzSWllQ378PopSUVABCCwAgAcAXb0JtG1JKakuRRdlr45NS6YM3pVBgBABKBEQDgEj5/5ccNucIY2pLaMivNNmymLtlaUqkwAgBEYAQAuITfUtHyNuDAGLoPYwuXDLyR7O87BUYAgERgBAC4hK+RtqS6Zf2iZH/fqTACACQCIwDAJcob6ZTUVi6ZkCrZh96whhEAIBEYAQAu4W+k+zC6qyW18mOmpAIAJAIjAMAlrBWt5KSGGxgz3NySaqns+qkwAgBEYAQAuERjqTBmhE1JdVFgtO7DaCRDaASARo/ACABwBWuFMakBf3cKG3qT5aI1jCFrR+lKBQA04G/JAID6pLFMSXVzS2poZZdJqQAAAiMAwBUayz6MWWn2fRjdNCU1NKizjhEAQGAEALhCbmFZ8OOskM3tG5Km6Ska3LuVJGlAl2bq1Dyjju+okjfkpwICIwCg4X5HBgDUK5tyi4Ifd3RRiKoNs849TN9tzNPBHXLkcVH7bej+l7SkAgAIjACAOuf3G23KKw5+3qFZww6MyUleDezSvK5vI0zoGka/v45uBADgGrSkAgDq3M69pSotr0wnHZql1+HdNF5hgZGWVABo9AiMAIA6Z21HTU3yqpWLtppoTMJaUgmMANDoERgBAHVuoyUwdmiW3qCnpLpZ2JRU1jACQKNHYAQA1LlNtsDYsNcvupkn5KcCKowAAAIjAKDObSQwukJohZEpqQAAAiMAoM5RYXSH0DWMFBgBAARGAECd25RbuaVGJwJjnQmdkkqFEQBAYAQA1DlaUt0hdNYQaxgBAARGAECdKir1adfe0uDn7MFYd0JbUpmSCgAgMAJAPVNa7tef/vmVTn30f/p+Q15d307cNuUV2T6nwlh3PB6PrF2p5EU4WbY5X7M/XqNte4qrPxlAvUdgBIB65j/fbNTb323WtxvydO9/l9f17cTNOvCmZVaq0lOS6vBukOKt/NGgoKSsDu8EbrSjoERnPPWppr31ky574au6vh0A+wCBEQDqmW9+zQ1+/P3GPJl6vs5s4+7KwNixOdXFuta7bZPgx5+v3V2HdwI3+mD5NuUXl0uq+POxt6S8ju8IQG0jMGKfMsbolS9+1eOLVqmAbzJAjSzbnB/8OLewTFvzS+rwbuJn21Ijh8BY147u2TL48Serd9bhncCN/rdyh+3zNTv21tGdANhXCIzYp+b/tFXXvPqd7n3vZz0w7+e6vh2g3vH7jZZv2WM7tmxLfoSz64eNli01WL9Y947u2Sr48edrdqm03F+HdwM38fuNPl5FYAQaGwIj9qkPlm8LfvzfH7bU+1Y6YF/7dXehCkt9tmM/hwTI+sZWYWRCap07rHsLJf82LbWozKdvN+TW7Q3BNZZtyddOy0RjSfplO4ERaOgIjNinvl6fG/x4U16xft1VFPlkAGGs7agByx2O1SfWKakdqTDWuSZpyTqkc7Pg55+soi0VFULbUSVpzY6COriT+skYo/U7C9muBvUOgRH7zJ7iMq3YZq+ELFnDDyJALH7aHF5NDG1RrU/8fqPNlpZUht64g30dY3hIQOP0v1XhfxZ+oSU1an/659cact9CTZq5lA4r1CsERuwz323IU+jfj0t+ITACsXCqMK7eXlBv15ntKChRqa/y3lnD6A5HWQLj1+tzVRTSBo3Gp7jMp8/W7Ao7vmb7XsJPFLbkFWvu95slSR+v2qmft9bff+hD40NgxD7z9frw8exLfwn/5oOa21tSrqte/kaXvvBlg99QeVNukR6cvyJsAEND5xQYy3xGv9TTtrCNlvWLqcletcxKrcO7QcDALs2VmlzxI0Kpz68v1vF3dWP3xdrdKvntH6Y8nsrje0rKtb2gfk9q3he+C1kL/P2GvLq5EaAG6nVgXLFihf7617/qyCOPVOvWrZWdna3+/fvrzjvv1N690bVIDBs2TB6Px/HXF198UctfQeNi3TsuYGNukX7dVbjvb6aBevbTtXrtq4165/stenzh6rq+nVpjjNHFz3+phxes1LmzPms0f4byi8u0wbJnYVpy5V/h9XXwzSZrO2qzDHmsP4mizqSnJGlQ1+bBz9leAx+t2h78+IjuLZSZmhT8fA2Db6r1w0Z7QPxxU/1ee47GJbmubyAeM2fO1GOPPaZTTjlFZ511llJSUrRw4ULddNNNevnll7VkyRJlZFTf3tSqVSs9+OCDYcd79OhRG7fdKBljbANvrJb8slOdW2Tu2xtqoL5aV1nFdaroNhTf/Jqr737719kyn9Gnq2P7M2SMUUFJubLTU2rrFmvFcsv6xbRkrwb3bqX3l1VMHl62eY9O7V9HNxaHjbmVYZ+BN+5ydM+WwaBIYIR14M3g3q21p7g8GHrW7NirI3q0jPRUSPouJDB+v7HxVRjzisokI+Vk1q/vvajngXHcuHGaOnWqcnJygscuvvhi9e7dW3feeadmzJihP/3pT9VeJysrS2effXZt3mqj9+uuItsobusPIkt+2aXxgzrX1a01KMssgeLnrXvk8xsleRtexeblLzbYPv9+Y54mHBbdn6HiMp8mPrNE3/6aq+tO3F8XDe3peF5puV+3vvWjcgvLdO2JfdS1ZVbc9x0vaztqn3bZOqhDTjAw/lxP92LcZNuDkS013OSonq0krZAkfb8hV/nFZWpaz/6Rxeqd7zfr41U79IfBPdStVd3//1yf7CwosVXEhvRurWWb84PHGHxTNWNMWAvqT5vyG+z3aCefrN6hi577UiU+v546+1AN379NXd9Sjfy6q1CZqUlq2SStrm9ln6rXLamDBg2yhcWAM844Q5L0ww8/RH0tv9+v/Px8Fm7Xkq9/rax2dchJ16n9OwQ/X9oAJqXuKCjRrW/9qKcWr5avjsZl5xaW2taDFZf5tb4BtmoWlfr01rebbMd+2BT9v9S+98MWfb0+V34jPbF4dcT/51/64le9sHS95n6/WWc+s9QVa0KtgfGAdk21f7vs4Of1dVLqRtsejFQY3aRfpxxl/dZ26DfSZ/V4zfmKrXt0+Ytf64Wl6zX+qU8rKh37wL8+W6+Bt8/Xn1/8WmW++jmYSpI+tlSYm2em6KAOTdWjdZPgMTftxbgpt0j//nKDK/7ODtiUVxy2f2VRmU+/bK+fa89jlVtYqiv+9Y32lJSrtNyvG17/vl4O0nrtqw0afO9CHXvPwka3BrVeB8ZINmyoqD60bds2qvM3btyoJk2aKCcnR02aNNHYsWO1fPnyuO+jffv2tl+9e/eO+5r1lbUddUCX5jrS0rqyYXeRNuyu38Hmvvd+1qyP1+qud5fr7/N/rpN7WOaw3UJ9rTpV5b0fN6ugpNx2bNnmfJVH+cPYez9sCX6cW1gW9k084FvLmtuNuUW6YPYX2hvyuvuaLTC2z9b+7ZsGP9+cV6y8wn3zQ3AibSIwulZKkleHd28R/Lw+t6X+94ctwX/M276nRPe+F//3+OqU+fy6c+4y7dpbqje/3aRnPvql1l8zFrmFpZrxvzVaGsW08v+trFy/eHSvVvJ6PephqdK6ZejWnuIyjX38E139yrca+cBizf9pa1zXM8Zo/k9bNf+nrXHtnRgpXMTyj5312U1v/KBteyoHI23OK3bd/w/RePaTtZIqwv69/639v0PcpMEFRp/Pp9tvv13Jyck688wzqz2/e/fuuvbaazVr1iy98soruvTSS/Xuu+/qiCOO0Pfff78P7rhx+Nryw3f/zs3UpUWm2jWtbD+r79NSrQN9Hl+02nFz49r2k8P0TKcQWd+9/PmGsGPFZX6tiuJfagtLy7VoxTbbsdXbnJ+3KuT49xvz9OcXv446mCaaz29sY9gPaN9UXVpkKj2l8q/x5fXwHwisgZE1jO5zdM9WwY/rYj/G4jJfQjp/Fq3Ybvv8haXr9WUtT379fmOe9lj+kemh91e6qqJ0+Ytf6/a3f9JZ05dqRRVbPBhj7OsXe1X8mehuCYzrdxbW2d+NVs99uk5b8isqi/nF5frDc1/orneW1bi6++wna/WH577QH577Qv/+Kvx7T7S+35jrfHyD89/ZTyxarXNnfaavGsAsgv98s1Fvf7c57PgTi1Zra757qsDV2VNcZlt3+tHKHbZ/WG7oGlxgvOKKK/Tpp5/qtttuU58+fao9f9asWbrzzjt1xhlnaNy4cbrvvvs0b948FRQU6KqrrorrXjZv3mz7tXLlyriu52bGGN059yeN+vtivf2dvV2wuMynnyz/ijagSzN5PB4d2aPyX67r836Mxhit27XX8rl05cvfaMc+HjPutN3Cvpqc+enqnbrvv8u1tpbXsazfWahPLX9WUpMq/wr7YWP1YenDFdtVXGb/wWG1QyuVMUarHX6wW7B8m25966c6aV1fs2Ov7d73b99USV6P+rStv22phaXl2m2pihIY3ce6H+PyLXu0cx/+vfbmt5t0yK3zdOw9C/Xmt5tq/P9dbmGp4xCwqa9977h/aVGpT7sidB5YlZb7q6w6fRpSkS0t92vqa9/HValKlK/W79ZHv4XAcr/RG19vjHjuLzv2alNe5Q/2x/b+LTC2rgyM5X6jXy0TnOtCYWm5pjtUrZ768Bf9/ukl2pwX2/3tLSnXIx+sCn4+L45q5XeWCmN2euX4EKcK49Jfduqe95Zr0c/bdcnzX6qk3P2tm69/vUHT3vwxLOBuzivSzW9ULg87qEPT4NdfVObT/f+tm46smvh87S6F/q/72MJVzic3QA0qMN5888169NFH9cc//lFTp06t8XUGDx6sIUOGaOHChSoqqtu/AOuLb37N1TMfrdHKbQW65pXvbGHpx035KvNV/F+W7PXo4I4V606tE9WW1ON1jNv2lISFkO17SnT1y9+G/WCwJa9YL3/+q1bWwoa9ToFxX1Sclv6yU2dOX6LHFq7WJS98Vath6tUvfw1+3Kl5hkYdVNl2Hjqy3Im1HTXAKRhuLyjRnuLKykD/zs2CH89Zsq5OWmmsv78dm2UoJ6Ni+EiferyO0VpdlKR2OQy9cZsD2zdVM8tEwyX/3959R0V1bX8A/96BGYYuSO+KNEHAgr1gwxY19uTlZzSJMSbRF0u6SWwpLy/FZ42Jpj190ZimRmNiQxNjw4IV7IgURUB6Z+7vD5w758zcgQFBivuzlmvJzIW5wGXu2efsvc8DygYRRREf/ZGI0goNUnOK8c+Np/DEuqO4klH7a/yvy5nSQE/FbEVz6XYB97es0Yj48uB1dFqyG13e3Y3fzxmuimj9eekOOi7ehb4fxRpdJZGbCD16PRub4m7KHP1g6QdW1QVD7OpiGydreDlUdaS2UyvhxDT+uN7IaanfHU2WJqBU5gr4ttZ1zj5x4y5GLD+I40mmX7/rj9zgJg7091E0lSiK3P1pbEdP6f8X0vIMxgl/nNf9Lm7nleKXk8aD+abgZPJdzPn+NL45lISxqw/h6W/icC41FxqNiFd+OIO8e/dStVKB5Y93xD8H6MqzfjyZYtK9uynQnwACqv5uqludb0laTMC4cOFCvPvuu3jqqaewZs2a+/56fn5+qKysxN27zT8d4EFgBxHF5ZX44k/dzYid2W3vYQe1sqqJAlvHeDO7mGt+0ZwYW1U7cOkO1h2s+jmk5xbjna3n0PffsXj1pzMYuuwvLN19qd6aIJRXanD5tuHN+kZ2EYrKTKu7O5eai3mbT2PjsWSTX7ekvBKv/XQG2hgxIT2vwbrlVWpE/HhClxI0obM3wj11Ta9quumUVlRib0KGweNyAePVDN33YGNhjv8+05VrMPP+b4nYdd4w+GxIfP2irnYx2E33/+aWkprKdEh1srGQ3htI06FQCOjBvFc/qLTUi7fzcTObvyccupqFYcv+wr92Jpr8vgYA+y/q0lEHh7hibCfdgH3Z3stIyizE9cxCTPriMJZsv4Di8kpoRGDp7stGJ8A+2JmIwrJKpNwtxlcHrxs8X1ahwfEk3b2PLcH44LeERk3FS84qMpg8u5JRIPteCEBaiQSA3u2cuOfaMquMjdn4pqS8Ep8z445JXbzx66zeGN7BTXosu7AML3530qQVu6KyCm4cA1QFb3X5vaXcLeYyKR7v5iP9v6C0AklZbIaSiL2JfPC+phGb6ZliWzyfVbYvMQOPrDiIR1f/jYNXdNfOG8NC4O9sgyd7+krBvCgC7+5onKyd2jpsJBNu9UOyytgiAsaFCxdi0aJFmDJlCtatW1cvGz9fvnwZ5ubmcHR0rPlgYlAL8t/DSbhzr8CZrV/syKzU+LW2gqudbnbSlML7puhGlq5hT7CbLfoE6G6o//79IuZujke/f+/Hfw/fQNm9ALFSI2LZ3ssY99khg1q5urh6p0D62gCkNt2iCNlAUl/sxQxMWHMYP51MwRs/n8WhK6YNCpfuvoSkLL5h0V96tUL15dDVTCktShCAcZ090YEJGM/fa1Fu/POzuHoiLblBElsP6e9sDTu1El8/FcUN+ub9cBrJWQ+uWRMbMLZ31wWvwcz/L93Kr1O6W1FZBbbGpzbIynd1+PpFWl1sqnoyaalys+wNYTezysLuOlBeKWLNgat4ZMVBk4JGjUbEAeY9qV+QM94a0R4O91ZNyyo0eObbOAxb9ifikvgJ4ou382XrwBNv5XF/j3+cv2Uw4D2dkoPi8qrAxEwh4Nunu0ob3eeXVuDtLecabZD81d/XDVLrgKrvQ19pRSW3Uto7QC9g5Brf1D1gvJFVeF9B9ObjN6Uxh7lCwHP92sJOrcSqf3TCwpHtpXvi7bxSbNULcOSsP3xDNi25Lp0x2bo3F1sLBLvZcen355jtSq7eKeTGFACQlFWE384aX+3WJ4pinQJMjUbExVv5tUqBFUVR9roB+DTcPgFOmNzdFwBgYW6GN4YFS88duZZ9382JGlpuUTm3rcz/ddcF/dtOp+FGVs3XviiKzbpTcrMPGBcvXoxFixZh8uTJ+Oqrr6BQyH9L6enpSExMRFGR7g8xNzcXlZWGfxg7duzA33//jcGDB0OtfrgGMadv5mDat8fxya6LBp0ojdFoRBy/wd9oS8o1+OLPqwCAeKZDaqRPK+n/giCgWxsmLbW5BoxM/WIbJ2t8MjECTjYqAFV1HT+fTOWCOdaZlFyMWP4Xvjp4/b7qWi4wb2R+ra3gz8z61rTqtOVUKp799rg0uAGAb+51AqvO6Zs5sqmZfzVQwx9278Ve/k7wcrBCqIcuYKypRfkfzIw6e7NOuVuMknL+fYBthON/r3W8u70lvpoaBYt7KW35JRUmz1bXB3bgamyFUbviUVsvbYrHS5viMXLlQdx8gFuxUIfU5qEH0/jmWmZhrWvB6mJ3gm4A+Xy0P5Y9FglnW90E47U7hSa915xPy+NKJKIDneForcL8Ee2lx67e4euD2droLfGG6YD6KYJJWUVcQyqAD6zDvewR5GaLV4bo+irsunAb38fdlK2hbEg5RWX4nkmJZSdtd503HLTvOKPrSm2uELiaVoBfYbxexxXGX0+nIfrj/ej779g6TRyXVWiwZv9V6eNxnbyktFlBEDC1VxuMDHeXnl/757Vq77dyq4taZ+qQPskGjOFeVfesME/d+zabHbMvUT5wWr3f+BZQrBM3stFxyW70+te+WjfMmffDaQz5z58YsfygwT3RmDMpuUhn6lsXjw7lxh8AYKc2x0fjI6BgZn6GhLpxHZjf/y0Bd02oG66LDUdu4Ln1xxFXi3RkfUevZ0mZVLYW5nhrRHt43Cuh0IjAmgM1l6n8fDIVjyw/eF/n0ZiadcC4atUqLFiwAD4+Phg0aBC+++47bNiwQfq3e/du6dg33ngDISEhOHbsmPRYbGwsAgIC8NJLL2HZsmVYtWoVpkyZglGjRsHJyQn/+c9/GuG7ajyVGhEzN57EnoTbWLHvCgZ9cgA7z6bX+CZ1LbMAOTLt/NcfuYHzablcqmlHbwfuGDYt9ej15vlHxK6w+ba2houtGp9OjDQ4rrW1Cm8OD8bhNwZw+1CWVmiwePsFPLr6b+w8m16nmUFu9cnDTi9N0fiq0ZcHr2P29/Go0HvNPQm3q00RLqvQ4LWfzujqgpgB1uFrWfU+CMotKudmMSd08QIA2Fsp4eOoq1Mx1qK8UiNyNTrP9mkDbSKCKIJLCQL4VUd/F91eY+097LB4dKj08dnUXLy/I6EO31Ht3C0skzr/AXzA6GitggszkE6oZVrqiRt3pdndknINdlZTt5VXUo4j17JMHkzUJPUudUhtDvydrblr7NCVhp3cu5Vbwq1OxLR3w+hIT+yb14+rJzalQ+H+i7o09PbudnC5lyUwrpMnt3IKVA1sP50YgXkxgdJjW+NTuffkSo0oG0Tqp3iyAaM2pffJHn7c+b/+81l0WPgHJq45jA9/T8S+xNv11mm0olIjey/539FkaXLQ1sIcH0+IkJ6Lv5mDW8zgXxRFfP13kvTx8A7usFPr6lkBoI0TsxdjHWsYv4+7CVGsuhe+/vPZWk/C/XwyRco+UQhVEwz6nu3bVvr/5YwCbtVZ34YjN6TtllRmCozr5CU9d7YOdYzsqqS2h0MYM9nJBox7mLIJtjFgQnqeQadffcVllZj9fTxyispxK68E0749bnIjuhtZhfjlXuOjKxkFJq/4sfflcC97PNnDD7vm9MOnEyMQ7GYLD3s1Vj3RyaA+XRAEvD2ivXQfTsoqQrf39+KlTadw5FqWScHxmZQcvPnLWcReNCw10TpyLQtvbTmHP87fxuQvj9a5DpVNR+3axhFqpRmmM9fUTydSuL8dfTlFZXjvtwRcvJ2PCWsOy6axN3XNOmCMi4sDACQnJ2PKlCmYPHky9++9996r9vODgoLQpUsXbN++HfPnz8fcuXNx8OBBzJgxA/Hx8QgMDKz281ua2MQMrmbkVl4Jnv/fSTzz7fFqVx3YNB4Pe7XUjKOkXIPZm+Kl5xyslFwROsC/Id7IKnogM9f1jU1F0H5/fQOd8ebwYJgpBClQ/Ou1/pje1x/u9pZY9lhHrPxHR+lnBVTN1D3/v5MY/OkBbDyWXKubJrf65GbHNUKR65QqiiI+/D0RS7ZfkB6zU5ujtXXVyqhGBDYeNV7LuHr/FS4QXTopEub3Zg+LyirrrRW4RiPi9M0cLNlxQQpC7dTmGBKqq0thZ2qNtSg/dj1bSi9SCMAjER7wctAFKGzNIsDX4vgzm1MDwMQu3lzTgm8P38AOmZbh9YmdELBWmXFBMoAaf9/VWbmP795sbCBVUanB5HVH8dgXRzB29aFa1ZAZk0orjM2CIAhccNXQ+zGyq4uudhZS6rmtWon+QS7Sc6dNGPyxg+zoIGfp/4Ig4P0xHaT3vEEhLtgztx/GdvLC6EhPaSB7O6+Uy345ci0Lt/MMO8WyjUpKyitxgnkP1G5NYqYQ8O/x4VCa6VZaSis0OJaUjc/2X8XT3xzHtP8er/F7qsmp5Lvo/O4edHt/L34+mSINvksrKrkA8B/dfNDL34mbDNh9QRcAnEzO4VbHpvbyM3gtdmuN23mltd6rVhRFnGcm+q5nFmKtkdU9ORWVGqxmVhdHR3rCz8na4LhQD3uu/vLzP68aHANUBV3s6uKkKG/EMM3Vzqbm1iqVWBRF+RVGLz5gFEUROUVlOMFka80eFMjVD38WK3/OWsv3XebGcNmFZZj69TGTOv7+rLdqbuo97XcmYNTel80UAsZ28sLvs/vi0BsD0SfAWfZzO3jZYzwTjJdVarA1Pg2PfXEEA++Ng4z9rMsrNXj2v8fx3dFkPPvtcaOlPezvsqRcg2nfHq/TOJObALr3Xjgpykd6/yir1BhdlQaAD3+/KP0eVGYK7r2ouWjWAeM333wDURSN/tu/f7/BsdHR0dJjISEh2Lx5M65evYqCggKUlpbi6tWrWLVqFTw9PQ1fsIVbf+SG7OP7EjMweOkBbD4u39mNLezv2c4J03q3kT6+zPwRd/RxMKgvbeNkzaUZNbX9GPNKyrHo1/OYuzleqo9giaLI1RuwAfH0vv44vSAGx98ahOl9/WGlMuc+95FwD+ya0xf99d44rmUW4o2fz6LPh7EmNVYRRZHbgzHE3Q4hTF1b4q18gzfdz/+8hs+Ym6yrnQV+mNETT/bwkx7bFCcftF68lc+1kh7XyQsjwt3RyUe3evzX5brXMWprIuZ+H4+o9/Zg9Kq/uWY3oyM9ueYoYWzjGyMrjOwsaJSfI5xsLLhAkF1RLCyt4AKZdi784EMQBLw7JgztmJXH134606BbirC/3yA3Wy61B+BXHGvT+OZsSi5iL/K/q7jrd2UHfUevZ+P0vZnyC+l5+Pfv998OPS2XAsbmgt2P8fDVzAatv2NXNwaFuHLXe4S37u/9zM3calML9bfT6B/swj3v52SN2Feisf/laKybEiWtPrrZq7kAmR1Ms/9nV8UT0vOkmuZTyTnSBJfSTEBnX917Y6CrLVY83hEdPO2lujrW/ot37rtr5OLtF5BbXI7MglLM3Xwaz284iayCUmw9lSal55orBEzt5QeFQuACIjYT41umNCHCy57rQaDl42jFfR/Xa/k+mJ5bwjWEAYCVsVdMTo3fdjoNyfeOFQTgBZnVRS12RejItWzZ1ab/Hb2BzALdwP75aH8pyAOAzIIyLgWzJjezi5FbrPv+5FYY80oqcDO7GAcu3ZFWhe3U5ujs64AX+uu+n2NJ2Ua7vF68lS8baCdlFWH6f49XmxUiiqK0uqgVezGjxuD/SkY+N7nKTuSa6t0xYXiub1vYqfnx0bU7VeMgY6uqcUnZ0sRNhUbE8r2G29Zdvp2PfYn86mNGfime+ea4wfd2O68E726/gHmbTyMjn//9ZheWcRPk2sw4S5UZnumjG+9+d+yGbDB6Mvku10zw+Wh/tNWbiG4OmnXASOrPjaxCbmXhzeHB6MTUG5aUV+0fJXczOM40vInyc8DUXn5cG3YtuZtN1X6MuhvzQRObrTwIxWWVePrrOHz9dxJ+PpmK/+y5ZHDM3aJybvsFv9Z8cGFjYV5tEyZXOzW+fqorfpjRAwP1BjMZ+aV45cczNaZ3ZuSXcjOI7T3sEMSkpGYXluEOU8NTqRGx7i9dOkRbJ2v89HxPBLnZ4vGu3tJKYWZBmUGaVVmFBq/+eFraJsXJxgJvPxICAFyzn7rWMZZXavDSpng8t/4Efj6VKqUFaSnNBDzZw5d7jG18I9eiXKMRue9jaFjVTc1YwMhe42YKAT6OhrPVVipzrH6iEyzvBa4FpRV44X8na0zVFEURGXklOHw1CxuO3MCiX89j5ncn8dn+q9UOtIzVL2oF13FrjZWxhjfZskqNbGMT/Wvhm0NJRjtmZheW4WTy3WqDikqNyKXwUEpq08bWrqXllhg05qgN7T6nKXcNv0ZeSTkOM9fV4Pau3PMRXq2k/+eXVlSbBslup2GnNpe9B9mplbIrUo9G6iaNfz+XjuKyShSXVXJbbbw0KADejrrrVjsxxaavdfR2gKWK7/47NMwdv87qjTMLYvDds90wb3CgVA8FoFadqvWduHEXp5i+AUDVKlDM0j+xjBlUj4rwgLt91bnHtNcN9A9fzUJuUTlu55VwjVam9vKTvZepzBXwZrI1atv4hm0kolVSrsGiXy/IHM2r1IhYyUxeDgtzQwCzL62+PgFO3Hul/opQUVkF1hzQTaROjPKCRytLuNmpue1DapPWeCZVd6ybnRoutlW/Z2dbC66J2tnUXK6Ld3SQC5RmCvRu58Td49jVVC2NRsSbv5yVSktcbC0wtaef9PzxG3fx8g+G23xpnbhxVwq6tUorNAbBlj52Vd3f2ZqbRDWVhbkZ3hgegmPzB2HppAhE+fFlS1uN7A+65wJ/br+eSTNo2saOcyyZSeYL6XmY/X08NBoRRWUVWLbnMqI/2o91B6/jp5MpmL0pnrt3sXW19pZKtGfuwZO7+0rBbkm5Bk99HYe8Et0EQUWlBvN/0e1D6dfaSjZlujmggJEAqKpr0PJysMQzvdvixxk98cHYDrC1qPpjqJTZ3Dcjnx84dPZ1hK1aiWf7tIU+tuENqw+TJrL/YkaT2NS4rEKD5zac4Jr5yNVYsrVvKnMFdwOojSg/R3w5NQp/zO6LsZ106VC5xeVcQC6HbXhjb6mEu70aHvZqbnNgNk3x8NUsaZZZEID107pJDQJc7NQYEqYbPGzQW3Ve9Ot5aZUJAJaMDkUrq6qUjD6BupXSs6m5JqXBsMoqNJj53UlsO23Ywa6Dpz1mDWiHnS/1MRgQsDO1BaUVuK5Xj3g6JYer/9POghoLGNn/+zpacfu2sQJdbbHk0TDp4wvpefjByCo8UFXj0PndPej6/l48vvYI3tpyDl//nYTtZ9Lx4e+J6P/xfgxZ+ic+3X0J51JzufojY1tqaLEpqUmZhSguqzmdOfFWHnfDZ9Oj9dNSNRr5Tniv/njGoDnW9jNp6P7BXoxdfQhPfnXMaPOsO/ml0sQDAHg6UMDYlHk7WnHBUW3TUnOKyrD9TBpe+eE0un+wFwM/OYB+H+3HVr16wAMX70jXhY2FuUGTFQdrFZfJEX/T+Gocu51GnwBnmJuZPuQZGuYmNbgqLKvE7oTb2HXhFgrv/W1ZmCswLMwNQ5lVFW163hHmZ9Nd7/xZ1hbm6OnvhFkDA7hB5Nb4tDqnfH95UBcEsSt/WYVlXObENOYe3b1ta+l+UaERse/ibfzvyA0pAHGyscDwDrqmMfrY1ZLaNr5h01GtmMB6T8Jt7Kmhjm77mTRuhevF/u2qPV4QBG6V8bez6dJK5tU7BRi7+pC0uqg0E/B8dDvp89hVxjO16JTK1i92YL4GwJdTxN+8y9XbDgxxkV6bXTXdl5jB/cwA4PvjN7lU1oWjQvHOI+0xMkLXK2H7mXR8tEs+K+QnI/s81pSW+odMOmpdqZVmGNPRCz/M6Il/je0gPb4nIcMg00kURexOuKX3GLgJkYz8Em7V9M3hwXi8q7f08e4Lt/HC/05iwMcHsHTPJa7p36GrWVywzE4AdWvjyGU82KqVmDtYV76WeCsf0/97XDrnbw/f4O7fi0eHNdvtoyhgJCgpr+TSTZ/o5gszhQCFQsDjXX3wFJNiuu10GjfzcoJJR3WwUkrdsZ7s4cutMgoCECEzuwsA0cG6QCOzoKxOXcjqU6VGxOzvT+FPvUHz1TsFBjdxdlsFH0crg1TB2gpys8WnEyPRjeketv9i9emdF7jtFuwgCAIEQeBXnZgVqm2ndW+iPf1bG6zsaFtfA1X1qdo3u81xN7mJhdGRHhjGDCI6eNpLQYco1m61uKS8EjM2nOACmHAve3w8IQLH5g/Er7N6Y15MENq5GM4eO1ir+BbletcPW2MR4d1KSn1kO7ldzSiUJirYDqk1pY2M7+yFUcxNWT+tR6uwtAJvbz1XYxB98XY+lu+9jEdWHET7d37HIyv+wtzN8Vx9hlzA2M7FRhocakTgsgmbm69i6mHaOFnjpYG6zZT3X8rg/s5P3cxBBpOSrZ3QSLlbjPfuNf0RRRGf7b+Kmd+dklbF/7qcice/OMJ1qdRiB69qpULa5oA0XT3b6ib3TN2PMb+kHE9/E4dOS3Zj5nen8MOJFCmVrFIj4s2fz3J14Gw6ar8gZ1iYGw6u2FVGY41v5LbTqA1btRIxzCB4y6lULh01JtQNtmolN1A+mXwXN7IKceqm7r7I1qBVZ3RHT6iVVUOygtIKbK9DXfTNbH5/xU8mRODVoUFczSRQtZdiew/d+4jKXMFluGw/nY7vmFXOJ7r5yP4etNpwW2vUrvENv1WBL9cUaOGv541Ofmm3ptKKae/Kdc02ZmSEhzSxqxGrGr9tjU/FqBUHueyMJ7r5cvcVdpXvbC3GKFz9oqd+wKj7+IcTKdIG92YKAf2YCdghoW5cN9rxnx3Gwm3ncTO7CHfyS/HBb7rGa/2DnDEszA0KhYCPxodzK3af7b+KnXrbc5SUV2L7Gd0kbV/mdatLS03NKeYC56Fh9xcwsoaHu0uN9ApKK3BQL2Pp0u0Cgz1aAWDH2XRcurfKuJ7ZxszBSonxnb2xeHQYl2r++/lb3GQy6/3fEqQtMOTqF1lTevphCpP5dORaNuZtPo20nGJ8ygTpj4S7cz/f5oYCRoLtZ9KlLqcqcwUmRXlzz7MdPa9nFnJvEuwKXGdfRyllRX+VMcjV1qC7mpaLrRoRzMzbvoTqZxUbkihWDWB+O2u4miKKMNiTi11h9NNr6HM/2MYONaWF6NcvagXJpCmWVlRiJzOgYIMdrW5tHBHoqguU1h+5gdM3c/DWFl1aRbCbLT5gZgGBqpsc21TA1P0Yi8sqMe3b49z32dO/NTZN747xnb2kFJ7qsDdzNmAURZHbToNdDWCDweLySunGwe7BaEqKzRQm9edkco7s3oy/nU1HETPwsbEwR7iXPcZ09MTUnn6y105phQbnUvO4bVkEgU8/1bIwN+P2Q6spLfXqnQJukPBCtD8GMAPGm9nFXPdfdia5k08rrk5547Fk7Eu8jTd/OYsPf080eK2zqbkY/9khg5ok/S016mP/XNKwerbj92M0pY5x5b4r2JeYIbvvH1C1ejfn+3hUVGpQXqnhOh7G6KWjarGTj8Ya31xIN9xOo7bGdNS9Px64dIebBNM2vurk4yDV4Ysi8K+didIKqcpcgY5GMmv02amVGNFB93p1SUtl91f0sFdjRLg7Xohuh60v9pbeNxQC8E9mckiLDY73JmZwK21PMBvNy2EDxtrWMLIZMmGe9nj30TBp382Uu8VYvV9+U/RfT/Ori3LfkxylmQJP9/aTPl5/5AZe2hQvrRwDwGNR3nid2ScQ0KudTTGt8Y1Gwze8CdNfYWQCXLbTfGdfBylzBwAUCgEzmdXT4vJKfHMoCf0+isW4zw5JgaZaqcDi0WHSe6laaYYvJnfhfj9vbz2PnCLdxOXehAyprEZlrsBH48Ol9M3q0lLZ/goe9mruHny/7NRKrsRFfzy2J4FPhdVmHIgisGzPZRSVVXA9OSb38IOlygxKMwU+e6Izd68EqsYuU3v64eupUdJjV+8UYtOxZNzJL+V6ccgFjIIg4J2Rodz4YvuZdIxa+bd0XdlYmOPtR9obfG5zQgEj4f6wHungDkdrFfe8v7MN92bAbnrLFmDr554/07sNhoa6wcfRyuDNV9+AYN3AYG8NAVJDev+3BHzPrLZ2a+OIICYFUj8V5Ibelhr1hR28X8koqLYBAJ+uqDtXto7x4u2qY/ZfvKO7OZgpMDTUMM1IEARulXHLqVTM2HBCClrs1Ob4fHJngyY+ANA3kK9jrOmmWlhagSlfH+MGYtFBzvhqapTs1zeG39NK9/P4Pu4mF/iws6BONiqu0F47+GA7purvJyWnk08rruMqu4KrxTbtGdvRE2cXxmDbzN5YOikSC0eFIvblaPwxuy/mDAqUDQi12jnbwNpC/ucSzEwWfP13kmzgqrUq9oq0p5SXgyUe7VjVWZBN9Ttwb+AuioY1oPNigrifzTPfHsfGY7q/G3d7NZcOlZRVhLGfHcLxpGzsS7yN93ZcwKe7dTXBVL/YPLCrZVmFZbh0u/rVpIz8Enx7OEn62FZtjuEd3PCvsR3w1ogQ6fGTyTlYvf8qjl7Llt6fzBUCooNc9L8kACCSGbwnpOfJ1g7HMvcRdjuN2ugT4CzdDys1us3QnWxU0oBWoRC4wJadkOvs41Cr9DM2Ze5Uco5sx2P9plxaucXl2Mzsr/hUrzZQ3lulae9hh20ze+PzyZ2x9cXe3P53Wv0CnWXT70d0cK/xZ8eufl27U2hyQ6S7emmyoR52CPO0x/8x95/PD1wzyBqp1GtyEtPelVutq8njXX24UhstK5UZ/jMpEv8aF27we2O/fm5xuewKl74b2UVcjwP9oMrYOQ8KMbzux3T0xOvDgqXzBqpWSNnaw9mDAuGt10HbwVqFNf/XWVplziwoxZLtuhXJn0/q7k2DQlzgaqeW0mEB42mp7CRiTKhbvU/4sffq3Rducb0c2CyEIaFumDVAN1mw42w63t2RwC2CsH0P7K2U+HJqlNRpfGCwC/6Y3RcLR4Wif7ALd99auucy91qO1ioEymQ5AVVB538ei+TGweyE1csxgXCtY8lSU0EB40PuTEoOl9Lzf3oNRbTYVcZfz6Sh8l6x8DlmdrCLXsCoVpphzeTO+PPV/kZv/FrsG9T5tLxq97Opq5q2qThw6Q7WMkXS4V72WDelCzdDrH/jkttSoz60c7HhBtHG9hkqKqvgZnTZNKMQJvC4dLsAFZUabGOC/X5BzrA3kgY4ppMXrO/VkxSVVUpd4QQBWPZ4R6PBcW+mffatvBKjra6Bqt/Hc+tP4BhTGzq4vSs+n9y51jn++p1SRVFEclYRt21IT//W3EyrIAjcHotX7xSgUiNyP09/E1YYBUHg/j62xPNp28lZRVz964Qu3gY3V0EQEORmi5cGBeD32X0R/85gbH6uB5Y8GobJ3X3RtY0jOnjaY+GoUBjTm1n9SUjPw4jlf3FNK9jvk530eT7aXxpYsmlQ2nS+hPR8blAyJNQNaqUZPpkYKa0EsOPDUA87bHmxF5Y/FsnNit/JL8X4NYfx9DfHsfav69zPWX+bENI0udipuVX3mtJSP9t/FSXlVQM9e0slDr42AKuf6IzHuvrgmd5tMIwZFC7be5lrwtStrSNXV8sK9dB1GC2vFLlJMy1j22nUhtJMwW34rjUywoOrhzRWvyW3GlGdzr4O3M9Xf5Xx2PVs9PpwH3r9ax9e/uE0d0/bdCxZWs2wVplhUlc+U0hlrsCQUDeDOjotawtz9GVWdbSm9mojczSvLbMXY0FphdRk7UpGPsZ/dgi9/rVPtrsnmx1jpTJDm3v3lXkxQXCy0W1X8PQ3cVxg+evpNK65zkuDTFtd1LJVK/G43qppsJstfp3VG48yWyaxXGzVcGcaE7HNbIxhVxc9W1lyjXOAqu7k+o8B/AS6liAImNHPH4feGID5w0O4c9Ge/zO95X9XQW62XH3nTydTcODSHWQWlHJ/J2M7Vm1xMYIpNZFLS80qKOXu2/dbvyhncHtXqQFfXkmF9F6TkV+CeGbMOri9Kx6N9ODu7d8xpTPjOnka/IzbOFlj99y+OL0gBl9OjeL+5l4dEiRNnGQXluHdHboxRPe2jtWWHamVZlj3ZBQC9MYNYZ52mMx0oG+uKGB8yK0/rFtdDPWwk+0iB1TdILVj3Dv5pTh8NQvxN3Ok2TmVuaJWM3z6Qj3s4Gqn+6OuKQ2TlV9SXu1m9+dSczFhzSGEvP07F0Do+y/TQtzf2RrfPNUVtmolQj3kV6+AhlthFASBW2WMNfLzuHgrXxqsmysE7o0vkAkYyyo0OJ+Wx6VyyKWjatlYmGMssz+S1txBgVy6rD7PVpbcytOfRrqlVmpEzPk+nltZHBHujtVPdKq2VsYY9trLL6kKouf9EM8NoD4cF27wefqNb25mF0krqfrPV2c001HxSkYBl7r8EzOD6+VgydWnGtPKSoWubRwxubsvljwahs3P9cCvs3qjVzvDAZ3W+M7eGMMMdvLvdW59e8s5XLtTgK8OXsekzw9j8KcHpL8XNzs1xnfW/Z7ZgPHwtSyUlFdyNaAh7nbSdR7p3Qoz+vHd3gYEu2Dzcz3gaqeGIAh4eUgQFo6sPg3Hw17NbedCmjZT92NMzy3G/47oBm7T+7blAkDtPojaPQArNSKOMNsqDQ6RT0cFqgZm7Eq8fh1jVkEpt51GTROW1Rkj8z6oHVhrdW/b2mBbAKD2AaMgVPUN0PrlVKq0enohLQ/PfBsnrZz8eCIFT6w9iqyCUpRXavANc/+aFOVjtASkOmy3VKAq9TfSyJiA5WpnwTWsuX6nELGJGRiz6hCO37iL1JxivM/U2WmxGTvt3e2kwbi9pRLvj+kgjTky8ksx9atjyC0qR0WlhltdHBJqWu2ivul921b1HRCqajS3vNirxvd7ro7RhMY3Z5l0aTYLRksQBIPH/VpbVZvZYqtW4tm+bfHnq/2xdFIEurZxRJSfA1Y90Uma+JPzQnQ7LlvqzZ/PYuPRZOle4Gitkup8o4NcuLRU/ayvvQm6FHMHK6VBdll9aGWlQk/mfrfzXloq20nWycYCEV6tYG6mwKwB8g2Pnult2IARqCrjkJuQ8na0wtPMJAlbSmJKPbK9lRLfPN1VqpM1Uwh499EOslvoNDcUMD7EcorKuI6Uk7v7Gk0rcLVTc38sW+NTuf0XI7zs6zTQ19IPkPYlmlbH+O/fE9Fh4S50e38vPvojkWvTnltUjre3nMPIlQcRl3RXKnC/INPGO+VuEfYxq3ivDwuRUpFCmZvE5Yx8aVY3r6Sc2/ahPmsYAaA/0wzo0NUs2eJ/NjBp52LD/Q7s1EpulXLFvssovZfWYaUyw6BqBmQAMFlvtXlwe9cau9AB4DbplduPURRFvL31HFeXMLi9K5ZNiqz2hlcdJxsLbsb11R/PII65PheMDDVI1QEMA0a2Q6qzrYXRFQ59ga62XP3o1ntpqRqNyAWM4zp53XdjJGPMFAI+nRiBf48Ll5pnAFUp5wM+OYDF2y/g6PVsrpbsuX5tuWumh39rqdlASbkGcUnZXA3okFD+mnlpUAAGBrtAZa7As33a4IvJnQ1SZqf2aoPlj3eUZm2tVGboG+iM14YGY8uLvfDnq/25elvStLH7MR65lmV0sm7lvivS5IujtYpr86/lYK3CxxMiZD9/cA2rFnwdIz94/+VUKjeg7WRiHaHs63jZc6sX7VxsDAb5KnMFBuq9n1oqzbjmPKYa29FT+hvMLS7HznPpSM4qwpSvj3HpjUBVD4HRq/7Gin1XpCwQhQA81cuv1q8LVGX6sG9PT8n8zuQIgsD9jD7dfQlPfxuHfGZl6tTNHIPmV2zDG3ZiFqhKc3xrhG6y6XJGAaavP46fTqbwq4sDA1EXTjYWiH05GiffHoz3xnQwKaultp1S2WPCjVwL+mmqA4JdTUrvVJopMKajFzY/1wM/zOhZY7CrMlfgw/Hh0u83NacYnzJbhY2K8JDuv5YqMy7r6ze9tFQ2HXVwe9dadR+ujeFMBsIfF26hvFLDdc4dFOIi3U9HRXgY1CYOCnGp01YfL/T3NyjNAkyfAPJsZYktL/bCvMGB+G5aN5MmXZoDChgfYj+eSJECCFu1OUZFGl9xAvT3pbqFv5nVoS5+Na+a1IRNwzh4JbPGPe22n0mT9iTKLCjFqtir6PvvWDzzTRzWHLiKAZ/sx/ojN6BfTvHFn4b7GH0fd1M6zt1ejf5MClOIm530JlteKeLyvbodtkbMTCHU+8bjPdo6SW3dSys0OHLNcDb/Qjo/Q6uPnYXfw8zMxbR3NdgbTF+gqy3+cS9tp5NPK3w6McKkYIetYzxyLcsgFfjT3Ze4lJFubRyx4vGO933TYVcZ2WZMg0JcMaGL4SoBYNgplQ0YTalfZHFp2/Fp0GhEHL2ejZS7ulSqcTKrFfVJEARMjPLGtpm9DdJiWK2slHi6VxuuVhWo2l+SrW/65u8kXGT2ttLvhGdhboYvp0YhcfFQzB/R3ujvcFSEB/56tT+2z+qN0wti8N+nu+L5aH9EerdqsMEGaRjd2zpKKz/5JRUGdd1AVbdOtvP28/38jdbe9g10NghwQj3saqxrjTTSKVUURXzP1PKN6eh1X9eYIPBNX/6vm4/sgF4/La+Ln4PRLXmq42Ct4v7OvjqYhMlfHcWdfN1WSF2Z+23K3WJuxW1omJvs5JgpWttYSNttdGvjWO1WGvrYJmJHr2cb3HdF0TBziA8YDVcJn+ndhlvtOXo9G6//fFb6eGioG1eGUVtmCoFrLlOTDsw1dy41t9otwM6n5SKOScM11hRG//uWq1+sL5Herbi0VfZ3pH9vkktLLS6rxKrYK/iTmQhuiHRUrZhQN2llLqeoHPsv8o2n2ElvczOFQeMjue3dTGGnVmKOXpqzs62FyRlHAOBmr8asgQHoZmKX5OaA7tQPKY1G5PbYG9/Zq8YmI0PC3KSZz/zSCq4uqz5SEnq1ay3dYEvK5TcP10q5W4Q3mBuHlkasaprzr52J3OofWyj+65l0biWyvFLDDTAei/LhBhiWKjNulkpbx8imo3o5WNZ5dcwYS5UZN6Mll6Zb04buxlZu2BTK6rz3aBji5g/CjzN6wtbEFKdubVpLBfYl5RocT7qLnKIyXEjLw7I9l7Fin67rXXt3O6yd0qVe9iUKkxlwtLZW4V/jOhidsWVrFG/llXArFbW5OQDgiuXTcksQl5TNNbvp1sYRPvW8Cm1MoKstts7shYlMoOxhr8bUnn747tluOD5/EN4ZKR/gsWmpbCqSX2srLqWJZcpEgqudGmGe9vX+d0IerFZWKm416O8rhu/Ty/deljqFOttacE1M5Lw2NJib4BhmQot+dl/fa5mFyL2XqnkyOYfraqjf9bsunu7VBv8eF46PxocbTZ/uF+jMrex3v4+B4mNM/eHZ1FzuXrNwZCi+f647tw0Oa1odB8labw4Pwel3YrBpevdaBbxtnAwn2FxsLbgJqL1MSURxWSWuMRN0xgK/t0aEcNcDG+TUtnbxfrHbYuTL7PmrpdGIeGvLOWmV27OVJbq1lZ9U7+zrIE0MO9lY1Mvke3XmDg4y6LcQILNqHh3kIqUZl1ZosGDbefT/eD8++uOi9Ldtqzavtkzifjlaq9Cd+bkt2X5BWuRQKxXorVdzOzLCQwoix3Xykm3uZKrHu/pw477ubVs/9J286c79kLpbVAY3JoWvphs6UFVXwKaNsjr53H/AaKUy5+pj9hpJS62o1GD2pngpPUetVGBGP3+DInCgqhPoPwe0w8HXB0g1kpUaEeuY5jZ7E25Le8yZKQTZAQY7C3ju3ox6Etfwpv7qF1lcHeNFfm88jUZEIrsHo8wNN1gmiHSwUhq80RojCAKcbS1qlUZpbWGOzr6662Hyl0cRuXg3hi//C0uZFBi/1lb49umudaq1kdPBy/B7/WBsB9mmAlo+jlZSYT1QtWm4Vm0DRs9WltzM/8Zjydh5TpfKM65zw64u6rNSmePf4yPw++w+2PlSH/z9+gAsHBWKnv5O1a64GNuvbkhY/XfCI80Tm5aq3/jm2p0C/MzsRzqzf7sasxnUSjN8OSUKg0JcMLaTp0lBj7+zjdSYC9Btr8F2Co30blUv6c4KRdXK/YQu3kbfCy1VZpjUpereYWGuwMjw6jN2qtOjbWvZEod/DgzAlJ5+EAQBcwYHYtljkVxQ18mnVb3ci+2tlLX+W9fPyAj3sse2mb3xNLN6/OclXeZQwq08KaBSmgkIrGYyaumkSHTx5b+vYWFuspOkDcnBWgVvR93Kt7E6xk1xN3EqOUf6eMHI9kZLdpxtLbDqH50wobMXvniyc51WpWvDUmVmsCXW2E5eBr9vS5UZN/748UQKt2ehlcoMn06MbPBN6IeF6VY62eZrfQKcDV7bTCHg88mdcXpBDD4aH35f9ytzMwU+GNsBlkozWKvMuOv4YUUB40OqtY0FNk3vgV1z+mLByPa1aO5heBMMdLWpVVpHddjNg/clZMi2514Ze4VLOXz7kfZ4fVgw/nq1P76Y3Bl9AqpSOQcGu+CPOX0xNyYI9pZKLrXl+7ibuHtvBZLdjH5gsAsXSGvJNb650UB7MLLYBjMpd4u5rqPJ2UXc3lFyN0+5LRqGdXBv8FUeto5RLmvHxdYC65/pJu1fVh/0VxgndvHi9haTozRTcKt+BUzNjSkdUvWN7sh3S9UWzFsqzWqV3lWfgt3sEOJuZ/LNM8DFRnbyZWgDph6R5oXNfIhLyuZa3i/be1mqa/SwV3OrZdXxaW2FdVOiTB6EmikEruPn6Zs5KCitwK/M/qKP1cPqYm3MH9EeX0+Nwh+z+95XNoEgCHiMaX4DVPUY0E+TGx3piU3TuyPAxQYe9mosHh1W59e8X4NCXKXthcZ09MTm53rAzV6NPgHOUmZScXklDt8rrTjPdBANcLGtNlBSK82w9sku0vYdKnPFA19d1Ar3bCX9X66OMauglNuPdlCIS433oUHtXfHRhIh6CfZN0dPfCf+81yTGr7WV0b+TETL3LDOFgP/r7oP9r0RjsJF9UuvTkFA3yN26jDXFMlMIsLdU1kuvgCg/R5x6ZzCOzh+Ejg/od9OUmb7RGWmRAl1tjc7syekf7AJbC3OumL2zb/2lUPQPdgG2ngdQldZ38XY+gpn9BOOSsg06pP3j3o3V3EyBmFA3xIS6QRRFgwHy4918sHLfFeSXVqC4vBLrj9zA6EgP/MV08nzCyEorWx+XeCsPFZUaLk2oobYF8Ha0QjsXGylQjL2YgQBXW4iiiI1xukDX1c5Ctki7jZM1VGYKrvPn6Gq6o9aXRzt6Ys3+q9x1ohCqWpOHe9nj9WHBda6zMcbFTo3oIGfsv3gHga42Jm+S6+9sw20ArVWXYvnhYe5YsPU8KvSi5GEd3GBjpIarqREEAf0CnbGJWalxs1PXqYEHaZmi/BxhrhBQoRFRUq7BqeS7qNSIWPPnNfzJtOmfOSDgvpqh1STCu5XUWfV0Sg52nNFN0lipzPDIA3ivY6nMFVX3sHrwWJQ3Nh5Lxo2sIozv7IVFo0JlJ306+Thg15y+jb76b21hjtiXo5FdWMbtN2dtYY7u/q2l62Jvwm30D3KptuGNHAdrFX55oRe2xaci3KsVNy54kDp42WPHve2KzspsrfHBzkTkFlelR6uVCiwYaXwrpMY0NyYIj3fzgYOVyugETXSQC5xtLaT62aGhbnhlaFCts2/uh7OtBbr6OXIlUIKAevs7q0lDr6A2J81jBEOaDLXSDEPD3PADU5tVny2VvRysEOxmi8R7GxbvTciQbgx3C8swe1O8tGLlZqfGv8bKpx3IPWanVuKJ7r5Yc6Cq6c03h5KQzdQ5ejtaoo+RfHw23bOkXINrmYVcwOjXQCmpANA/yFkKGPclZuCZ3m2xYNs5bGBa1ndrI18vozRTwN/FRtqnzN1ejagGrpEAqtIz/5jTF2dTc9HaWgX3VpZwtbVo8AYn657sgvNpeQhwtamxJlfL39kGu8GnP1sqzeBeh012HaxV6BfobNCGfPwDTke9X/oB45BQ1wbr7kqaHxsLc0R4t8KJe5kez/73OPL0Onh6O1oabTZVX9jGN/E3c7m69UfC3ZvNJI2cVlYq/DG7L+7kl9Y4udbYwaKW0kwhuzn5oBAXJmDMwJLRIhcwmroll72lstH3s2PrGM+l5qFSI0qNWY5d5+vWZw0IqPeJ0frkbl99YylLlRk2PtsNf5y/jZ7+rRttlW14B3cuYOzk41Cv2UnENJSSSmpNv2FKl3pcYQT4ur29Cbdx4sZdvPbjGfT+cJ+0ea8gAEsnRcJBZlWtOk/18pPSY7ILy7i9qx7v6mN0UGynVnKF4seT7nL5/H5ODXdTYGfSjifdxYwNJ7hg0cvBEq8ODTL6+ZHeuhvcqAiPBzbw92hliSGhbuji5wjPVpYPpBumuZkCEd6tTA4WAfluqG2drev8cxqtt/GzZytLdDcS0DdVPds5cftGNWQnPNI8sfXm+sFigIsNvpwS1eCp7+zWGpkFpVzd2KQoH8NPaGbUSrMmHXCYir2np+dWNRe7eEvXsM2UFcamgt1mq7i8Et8cSsLBy5lISM/DW1t0jfj8na3r3KWzKWnnYosX+7dr1JRM/e7cNW0JRhoGBYyk1nr4t5aaewwMduGKwOsDu//PyeQcjPvsEL4/fpOr13sxul2tN0UGqjo1julo2CFUaSZgQufq613YGjm2mYkgVK2MNpQuvo7STHmFRsRuZh+iYDdb/Px8z2pf/4Xodujp3xqDQlzxopHNbR9mcrWK95NyMyjEhdvEelwnz2a3OmdvqcTsgQFQmSkwItz9vjo+kpaJbXyjFeXngC+ndMEfs/vWqtShrtzt1bIrDe1cbO5r70VSv7wcrLga+y/+vCqVSQiCfP19U2VvqeT2+1uy/QL+78ujGLbsL1y6resxsOTRsAZvYPOwcLVTS0GipdIMj4Q3Tj+Ah13zzdcgjcZMIeC7Z7shKasIbZ2s6z0dJtLbAQ5WSty91yadZak0w5M9fDH7Pgrep/dri80nbnLtuWNC3WpMcQj1tJNqFw4xW36426kbNM9dZa5AnwAn7GQ2UAeq9kP74skuNXYZ9Xa0wnfPdm+w82vu/J0Mg8O61C9qWanM8XSvNlgZewWO1iqjdbFN3ayBAZgR7U/bYBBZ3do4YliYG/YmZqBfoDNm9Gtbr/XsphAEARFerbAngU8pfyzKu8mkaZIqg0JcpNKI387q7mVtWlsb3aOzqeod4IRrmfJbagDAo5EeshMqpO4+nRSBP87dQgcv+xax6t4cNa+/UtJkmJsp7mtQXR0zhYChYW7YeIxvjz4pyhuPhLubvB+gMf7ONhgc4opdzEoduzGzMezWGpVMU5OG2lKD1T/IhQsYh3dweyAtrR8G9lZKONmokFmgq3+636L+eTGBGBnhAfdW6nrbNqQxULBIjFEoBHz2f52h0YiNuoIe6W3PBYxKM0E2i4Q0roEhrtwevFrG9l9syuYODoRaaYaE9DzcyS9FZkEZsgtLoRGrJhvnjzCt4RoxnZ1aiQldHmzXY8KjgJE0Sa8OCYaVyhwqcwUejfSsl720WM9H+2N3wm2IIhDkaoseJqTcGauzaMj6Ra2RER749nASLt7Kx5SefnhzeAhXY0buT1tnG2QW6Irq/V3ubxJAEIR6v2YJaYoaO92arWMEgMHtXdG6mr1XSeMI97TnOm5qhXqY1vCmKWllpcKbw0O4xyo1IvJLymFvWfs9LAlpDihgJE2Sg7XK5G0R6qKjjwM+e6ITjl7PxpQefia9wTvZWMDdXo303BLucR/Hhl9htFSZYfus3igsq2zWnf+aKn9nGxy714VNEBq26y0hpP6Ee7WCIEAqMWgJzW5aIoVCwMBgF677MtC8Gt5Ux0wh1Nt+1IQ0RZRvRB5aQ8PcsWBkKPycTA8O5GZD/e5jg+baEASBgsUGwnZK9XawolRfQpoJe0slnu7VBkBV98TeRrZGIo1voEx3y5YSMBLS0lHASEgtyN3cHkQNI2lYg9u7QmlWtco8vAN1YCOkOXn7kfY4v2gI1k3pQqn6TVjvdk6wYDqHuturKX2YkGaClisIqQW5DYZ9HtAKI2k4vq2tsWtOP9zIKkQvWqEgpNlpbp02H0aWKjP0aueEfYkZAGh1kZDmhFYYCamFME/+BudkY0Fpoi1EGydrRAe5UGdQQghpIE/20G0zNCqSutkS0lzQSJeQWnCzU6O1tQpZhVVbMDyo+kVCCCGkuYsOcsHvs/ugvEJEB6/m1yGVkIcVTaUTUguCIHD7RlH9IiGEEGK6YDc7ChYJaWYoYCSkloaGuUn/7xfk3IhnQgghhBBCSMOilFRCaumxKB84WqlgphAwSKZNOCGEEEIIIS0FBYyE1JKZQsAw2nqBEEIIIYQ8BCgllRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogs88Y+gYeJKIoAgLy8vEY+E0IIIYQQQsjDShuPaOOT6lDA+ADl5+cDALy9vRv5TAghhBBCCCEPu/z8fNjb21d7jCCaElaSeqHRaJCWlgZbW1sIgvDAXz8gIAAAcPny5Qf+2qTloOuI1Be6lkh9oWuJ1Ae6jkh9aQ7XkiiKyM/Ph4eHBxSK6qsUaYXxAVIoFPDy8mrU1wcAOzu7RjsH0vzRdUTqC11LpL7QtUTqA11HpL40l2upppVFLWp6QwghhBBCCCFEFgWMhBBCCCGEEEJkUQ0jIYQQQgghhBBZtMJICCGEEEIIIUQWBYyEEEIIIYQQQmRRwEgIIYQQQgghRBYFjIQQQgghhBBCZFHASAghhBBCCCFEFgWMhBBCCCGEEEJkUcBICCGEEEIIIUQWBYyEEEIIIYQQQmRRwEgIIYQQQgghRBYFjIQQQgghhBBCZFHASAghhBBCCCFEFgWMhBBCCCGEEEJkUcBICCGEEEIIIUQWBYwtnEajwdKlSxEcHAy1Wg1vb2/MmzcPhYWFjX1qpIn64IMPMGHCBLRt2xaCIMDPz6/a448ePYpBgwbB1tYWdnZ2GDp0KOLj4x/IuZKm69KlS3jnnXfQvXt3ODs7w9bWFpGRkXjvvfdk338uXryIRx99FA4ODrC2tkafPn2wb9++Rjhz0tRcvHgRTzzxBEJCQmBvbw8rKysEBwdj7ty5SE9Plz2eriViiqKiIuleN3PmTIPn6VoixgiCIPvPxsbG4NiWcB2ZN/YJkIY1Z84cLF++HGPGjMG8efOQkJCA5cuX49SpU9izZw8UCpozILw333wTjo6O6NSpE3Jycqo99siRI4iOjoanpycWL14MAFi5ciX69OmDQ4cOoUOHDg/gjElT9NVXX2HVqlUYNWoUnnjiCSiVSsTGxuKtt97C5s2bceTIEVhaWgIArl69ip49e8Lc3Byvvvoq7O3tsXbtWgwZMgQ7d+7EoEGDGvm7IY0pJSUF6enpGDNmDLy8vGBubo6zZ8/iiy++wKZNmxAfHw8XFxcAdC2R2nnnnXdw584d2efoWiI16dOnD6ZPn849plQquY9bzHUkkhbr3LlzoiAI4tixY7nHly9fLgIQ//e//zXSmZGm7OrVq9L/Q0NDRV9fX6PHRkVFiba2tmJKSor0WEpKimhraysOHjy4IU+TNHFxcXFiTk6OwePz588XAYgrVqyQHpswYYKoUCjEU6dOSY/l5+eLPj4+YmBgoKjRaB7EKZNmZvPmzSIA8cMPP5Qeo2uJmOrEiROimZmZ+Mknn4gAxBdffJF7nq4lUh0A4pQpU2o8rqVcR7S81IJt3LgRoihi9uzZ3OPPPvssrKyssGHDhsY5MdKktW3b1qTjrly5gri4OEyYMAGenp7S456enpgwYQL27NmDW7duNdRpkiauS5cusLe3N3h80qRJAIBz584BAAoLC7Ft2zZER0cjMjJSOs7GxgbTpk3DpUuXEBcX90DOmTQvvr6+AIC7d+8CoGuJmK6yshLPPvsshg4dirFjxxo8T9cSMVVZWRkKCgpkn2tJ1xEFjC1YXFwcFAoFunbtyj2uVqsRGRnZbC5S0jRpr58ePXoYPNe9e3eIoogTJ0486NMiTVxKSgoAwNXVFQBw5swZlJaWGr2OANB7FQEAlJSUIDMzEykpKdi1axeee+45AMDw4cMB0LVETLd06VIkJiZi5cqVss/TtURM8eOPP8LKygq2trZwcXHBrFmzkJubKz3fkq4jqmFswdLS0uDk5AQLCwuD5zw9PXHo0CGUlZVBpVI1wtmR5i4tLQ0AuNVFLe1jqampD/ScSNNWWVmJJUuWwNzcHP/4xz8A0HVETLdu3TrMmjVL+tjPzw8bNmxAnz59ANC1RExz/fp1LFiwAO+88w78/PyQlJRkcAxdS6QmXbt2xYQJE9CuXTvk5eXht99+w8qVK3HgwAEcOnQINjY2Leo6ooCxBSsqKpINFoGqVUbtMRQwkrooKioCANlrjL2+CNGaPXs2Dh8+jPfffx9BQUEA6Doipnv00UcRHByMgoICnDp1Ctu2bUNmZqb0PF1LxBQzZsxA27ZtMXfuXKPH0LVEanL06FHu4yeffBLh4eGYP38+li1bhvnz57eo64gCxhbMysoKGRkZss+VlJRIxxBSF9prp7S01OA5ur6IvrfffhsrV67E9OnT8cYbb0iP03VETOXl5QUvLy8AVcHjuHHjEBUVhaKiIrzxxht0LZEabdiwAbt378aff/5p0M2SRdcSqYtXXnkFixYtwo4dOzB//vwWdR1RDWML5uHhgczMTNkLNTU1FU5OTrS6SOrMw8MDgHw6hfYxuTQM8vBZuHAh3n33XTz11FNYs2YN9xxdR6SuwsPD0bFjR6xevRoAXUukeqWlpZg7dy6GDx8ONzc3XLlyBVeuXMGNGzcAALm5ubhy5QpycnLoWiJ1olQqpbE30LLekyhgbMGioqKg0Whw7Ngx7vGSkhLEx8ejS5cujXRmpCWIiooCABw+fNjguSNHjkAQBHTu3PlBnxZpYhYuXIhFixZhypQpWLduHQRB4J7v0KEDLCwsjF5HAOi9ihhVXFyM7OxsAHQtkeoVFxfjzp072LFjBwICAqR/0dHRAKpWHwMCArBu3Tq6lkidlJSUICUlRWrq1qKuo8be14M0nDNnzlS7D+P69esb6cxIc1HTPoxdunQRbW1txdTUVOmx1NRU0dbWVhw4cOADOEPSlC1atEgEIE6ePFmsrKw0etz48eNFhUIhxsfHS49p96kKCAhoNvtUkYaRnp4u+/i+fftEhUIhDhgwQHqMriViTFlZmfjDDz8Y/Fu9erUIQBw6dKj4ww8/iBcvXhRFka4lYlxmZqbs4y+//LLB3rAt5ToSRFEUGzdkJQ1p1qxZWLlyJcaMGYPhw4cjISEBy5cvR69evbBv3z4oFLTITHjr16+XUnRWrFiBsrIyzJs3D0DVvmeTJ0+Wjj106BD69+8PLy8vqXvhihUrcPv2bfz999+IiIh48N8AaRJWrVqFmTNnwsfHB0uWLDF4r3F1dcXgwYMBVO3p2bVrVyiVSsyZMwd2dnZYu3Ytzp49ix07dmDIkCGN8S2QJmLMmDFIT0/HgAED4Ovri5KSEpw4cQKbNm2ClZUV9u/fL+1xRtcSqa2kpCS0adMGL774IrfNBl1LxJg5c+bgyJEj6N+/P3x8fFBQUIDffvsNsbGx6NatG2JjY2FpaQmgBV1HjR2xkoZVUVEhfvzxx2JgYKCoUqlEDw8Pcc6cOWJ+fn5jnxppovr16ycCkP3Xr18/g+MPHTokDhgwQLS2thZtbGzEmJgY8cSJEw/+xEmTMmXKFKPXkdy1dOHCBXHUqFGivb29aGlpKfbq1UvcvXt345w8aVK+//57ccSIEaKXl5doYWEhqtVqMSgoSJw5c6Z448YNg+PpWiK1cf36dRGA+OKLLxo8R9cSkbNlyxYxJiZG9PDwEC0sLEQrKysxIiJCfO+998Ti4mKD41vCdUQrjIQQQgghhBBCZFE+IiGEEEIIIYQQWRQwEkIIIYQQQgiRRQEjIYQQQgghhBBZFDASQgghhBBCCJFFASMhhBBCCCGEEFkUMBJCCCGEEEIIkUUBIyGEEEIIIYQQWRQwEkIIIYQQQgiRRQEjIYQQQgghhBBZFDASQgghpF689dZbsLS0RFpa2gN9XVEU0blzZ/Tp0+eBvi4hhDwMKGAkhBDSpAiCUO2/LVu2NPYpEhnJycn49NNP8eKLL8LDw0N6PCkpCYIgoHfv3kY/V3uMn59fnV5bEAQsXrwYBw8exI8//linr0EIIUSeeWOfACGEEKLP1tYWc+fOlX0uODj4AZ8NMcWSJUtQVlaGl19+uVFef8SIEQgLC8P8+fMxbtw4CILQKOdBCCEtDQWMhBBCmhw7OzssXLiwsU+DmCg3NxffffcdYmJi4Obm1mjnMXnyZLz22mvYu3cvBg0a1GjnQQghLQmlpBJCCGl29u/fD0EQsHDhQhw7dgwjRoyAo6MjBEFAUlKSdNyOHTswZMgQODo6wsLCAkFBQVi4cCGKi4sNvqYoili5ciVCQ0OhVqvh6emJmTNnIjc3F35+fgbpklOnTjV4Pbnz05ecnIwZM2bAz88PFhYWcHFxwcSJE5GQkGBwrPZ1CwsL8corr8DHxwcWFhZo164dPvzwQ4iiKPvzOXbsGCZNmgRPT09YWFjA3d0dMTEx2Lx5MwAgMTERgiBg8ODBsp8viiL8/f1hbW2N3Nxc2WNYGzduRFFRESZNmlTjsbVRU3qy/s9X+/pffvllvZ4HIYQ8zGiFkRBCSLN1+PBhfPDBB+jduzeefvppZGZmQqVSAQDeeecdLFmyBC4uLhg9ejRat26NY8eOYdGiRdi3bx/27t0LpVIpfa3Zs2dj+fLlcHd3x/Tp06FUKrF161YcPXoUZWVl0te9H8ePH0dMTAxyc3MxbNgwTJgwAenp6fj555+xc+dOxMbGokuXLtznlJeXY8iQIUhLS8OwYcNgbm6OLVu24PXXX0dJSQkWLFjAHb927Vo8//zzMDc3x6hRo9CuXTtkZGQgLi4Oq1evxsSJExEcHIz+/ftj7969uHbtGtq2bct9jT179uDatWt4+umnYW9vX+P3tWfPHgBAz5497/MnxNP/3rTWr1+Pa9euwcrKinvc19cXnp6e2LNnD0RRpLRUQgipBxQwEkIIaXLy8vJkV+eCg4Px2GOPSR/v2rULa9aswXPPPccdt2fPHixZsgR9+/bFr7/+Cjs7O+m5d999F2+//TZWrlyJOXPmAAAOHTqE5cuXw9/fH8eOHYOjoyMA4L333kP//v2Rnp4OX1/f+/qeysvLMXHiRJSUlODgwYPo0aOH9FxCQgK6du2KadOmIT4+nvu8tLQ0REREYPfu3bC0tARQFUgFBgZi6dKlePPNN6XA98KFC3jhhRdgb2+PgwcPIiQkhPtaN2/elP7//PPPIzY2FmvXrsUHH3zAHffFF18AAKZPn27S93bw4EHY2dkhICDA6DHJyclG04xzcnJkH5c7/uuvv8a1a9fQo0cP/POf/zR4PioqClu2bEFCQgLat29vyukTQgipjkgIIYQ0IQCM/hs9erQoiqIYGxsrAhAjIyNlv8bo0aNFAGJCQoLBcxUVFaKTk5PYpUsX6bFp06aJAMSvvvrK4Hjta/n6+nKPT5kyRQQgXr9+3ejnLFiwQHrsl19+EQGIr732muw5z5kzRwQgnjt3TnrM19dXBCBevnzZ4Pgnn3xSBCCePXtWemzmzJkiAPE///mP7GuwysrKRDc3N9HV1VUsKyuTHr99+7aoVCrFiIiIGr+GKIpiaWmpCEAMCAiQff769evV/k7Zf/o/Y3179uwRlUql2LZtWzEjI0P2mBkzZogAxJ07d5p0/oQQQqpHK4yEEEKaHE9PT6SkpNR4XNeuXWUfP3z4MFQqFTZt2iT7vEqlQmJiovTxyZMnAQD9+vUzOLZ3794wMzMz5bSrdfjwYQDAtWvXZFfOLl68CKCqvjA0NFR63N7eHu3atTM43tvbGwBw9+5d6bEjR44AAIYMGVLj+SiVSkybNg3vvvsutm7divHjxwOoWsErLy83WLU1JisrCwDg4OBQ7XG9evXCwYMHZZ9LSkpCmzZtqv38CxcuYNy4cbCxscFvv/0GZ2dn2eO0q8OZmZk1nTohhBATUMBICCGk2TLWkTM7OxsVFRVYtGiRSV9H29jF1dXV4Dlzc3M4OTnV/SSZcwKAH374odrjCgoKuI9btWole5y5edUtvLKyUnpMm9rp6elp0jlNnz4dH3zwAT7//HOMHz8eoihi3bp1sLa2xhNPPGHS19CmyZaUlJh0fF3cunULw4cPR3FxMXbv3o2goCCjx2obGmnPixBCyP2hLqmEEEKaLWNNTezt7WFpaYnKykqIomj0H3s8ANy+fdvga1VUVMiuVikUCul5fXI1edrX2LhxY7XnNGXKlJq/cSO0wWVqaqpJx3t7e+ORRx6Rmt/s27cPV65cwWOPPcbVfdb0miqVSgqI61tRURFGjhyJGzdu4KuvvkLfvn2rPV674uni4tIg50MIIQ8bChgJIYS0ON26dUNxcTFOnz5t0vGdOnUCABw4cMDguYMHD3KreFraFEy2kYzW8ePHZc8J0KWmNoTu3bsDAP744w+TP+f555+HKIpYu3ZtrZvdaHXo0AFpaWnIz8+v1efVRKPR4B//+AeOHz+OxYsXm7TqmZiYCIVCgQ4dOtTruRBCyMOKAkZCCCEtzksvvQSgKvCRWzXMycnBqVOnpI+nTp0KoKorKrtSVlJSgjfeeEP2NbT1k2vXruUeP3v2LJYtW2Zw/OjRo+Hn54fVq1fLBnQajQb79++v/hurgXY7jcWLF3M1mlpydaExMTHw9/fHunXrsGXLFkRGRhqtDTUmOjoaGo1GNlC+H3PnzsXWrVsxZcoUvP322zUeX1paivj4eHTs2NFoKi8hhJDaoRpGQgghLU5MTAwWLVqEBQsWoF27dhg+fDj8/PyQm5uL69ev48CBA5g6dSrWrFkDoKohy6xZs7BixQqEhYVh/Pjx0j6MDg4OcHd3N3iN0aNHIyAgABs3bkRKSgq6deuG5ORkbN26FaNHj8bmzZu541UqFX766ScMGTIEQ4cORd++fREeHg6VSoXk5GQcPnwYmZmZ91UL2L59e6xevRozZsxAZGQkRo0ahYCAAGRmZiIuLg729vaIjY3lPkcQBMyYMQOvvPIKAJjc7IY1duxYfPLJJ9i1axf69+9f5/NnHTt2DMuWLYNarYanp6dso6Do6GhER0dLH+/fvx9lZWUYN25cvZwDIYQQChgJIYS0UO+88w769OmDFStW4MCBA/jll1/g4OAAb29vzJ07F08++SR3/LJlyxAYGIhVq1bh888/R+vWrTFmzBi8//77iIiIMPj6arUae/fuxcsvv4zdu3cjLi4OYWFh+O677+Do6GgQMAJVqa9nzpzBJ598gh07dmDdunUwNzeHh4cHoqOj6yXQefbZZxEWFoaPP/4Y+/fvx5YtW+Dk5ITw8HBMmzZN9nOmTp2KV199FVZWViY3u2H17NkT4eHh2LBhA9577z2pvvN+FBUVAaha5X3//feNHscGjOvXr4dKpcIzzzxz369PCCGkiiCyVf+EEEIIMeDn5wegavuHlmjPnj0YPHgwpk2bZpBia6oNGzZg8uTJ2LZtG0aOHFnPZ1izO3fuwM/PD48//jjWrVv3wF+fEEJaKgoYCSGEkBq09IBxyJAh2LVrF06dOoXIyMg6fQ1RFNG1a1epltFYB9uGMm/ePHzxxRe4dOmSbAoxIYSQuqGUVEIIIeQhdPbsWWzfvh1xcXHYtWsXxo0bV+dgEaiqhVy7di22bNmCW7duPfCgzdXVFevXr6dgkRBC6hmtMBJCCCE1aIkrjN988w2eeuop2NvbY8iQIfjss8/g6OjY2KdFCCGkiaGAkRBCCCGEEEKILNqHkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTI+n+apcKotWH7CwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(ps.freq, ps.power, label='segment size = {}s \\n number of segments = {}'.format(3, int(lc.tseg/3)))\n", + "plt.title('Averaged Powerspectrum')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It looks like we have at least 2 frequencies. \n", + "# Let's look at the Dynamic Powerspectrum.." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 17010.20it/s]\n", + "33it [00:00, 17857.31it/s]\n" + ] + } + ], + "source": [ + "dps = stingray.DynamicalPowerspectrum(lc, segment_size=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAKOCAYAAAARYLzXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjbklEQVR4nOzdd3iUZfr28e9MeicQSkgh9NCbICAdFEUQRBEr6Cp2XRGxrGtDVFxUFLtgL1gQK2ABBCwoSFc6EkpCCz2EtJnn/YM3+RkTyoQrMSbnZw+O3Z155pw+k3vu+7ovl+M4DiIiIiIiIlIpuf/uGyAiIiIiIiJ/Hw0KRUREREREKjENCkVERERERCoxDQpFREREREQqMQ0KRUREREREKjENCkVERERERCoxDQpFREREREQqMQ0KRUREREREKjENCkVERERERCoxDQpFpEBSUhIul6vgn9vtJioqiqSkJM4991weeeQRtmzZ8nffzHLlwQcfxOVy8eCDD5b6dfz5X0BAALGxsZx33nl88803pXbdIiIiUvFpUCgiRfTt25fhw4czbNgwzjrrLOLj45k7dy7//e9/qVu3Lv/+97/Jysr6u29mpVO/fn2GDx/O8OHDOf/884mIiOCLL76gb9++PPLII3/3zZOT1KNHD1wuF3Pnzi32/Llz5+JyuejRo0eZ3i4REam8/P/uGyAi5c/dd99d5A/S7Oxs3n77bUaPHs3EiRP5448/+Oyzz3C7K/dvSzfffDMXX3wxMTExpX5dXbp04Y033ij4/16vlwceeICxY8dy//33M3jwYJo0aVLqt0NEREQqlsr915yInLSgoCCuueYa5s+fT0hICF9++SWvvvrq332z/nYxMTEkJyeXyaDwr9xuNw899BD16tXD6/XyySeflPltEBERkX8+DQpFxCctWrTgtttuA+Cpp54qOP3RRx/F5XJx8803H/OyTz/9NC6XixEjRhScduWVV+JyuXjjjTdYs2YNF1xwATExMQQHB9O2bVs++OCDYrN++eUXRo0aRbt27ahRowZBQUEkJCRw+eWX89tvvxV7mT9f14oVKxg0aBDVqlUjMjKS3r178+uvvxYc+/rrr9OuXTvCwsKoUaMG1113HQcOHCiSeaKawh9//JGhQ4cSHx9PUFAQNWvWpHPnzowbN44jR44c87E6WW63m9atWwOwefPmQud99tlnnHXWWVStWpWgoCDq1q3L9ddfX+S4nTt34nK5qF+/fpH8UaNG4XK5CA0NJScnp9B5L774Ii6Xi3vuuafI5X788UeGDBlC7dq1CQwMpFatWlx00UUsW7asyLEpKSm4XC6SkpLIzc3l0UcfpVmzZoSEhBTcN4Bly5Zx6aWX0qBBA0JCQoiOjqZRo0ZceeWVLFmypFBmfn1sSkoKH374IR07diQ8PJwqVaowYMAAli5deszHdPfu3dx99900a9aM0NBQIiIi6NixI5MnT8ZxnGIv4/V6effddznzzDOJiYkpeD3269ePd999t9D9nDdvHgA9e/YsVCc6d+5crrzySnr27AnAvHnzCp3/59n7Py9BnTVrVsHz7HK5Ch7jPz8GxcnPPd7pkydPpk2bNoSGhlK7dm1uueUWMjIyANi7dy+33noriYmJBAcH07Rp00Iz2SIi8g/iiIj8f3Xq1HEA57vvvjvucStXrnQAB3BSU1Mdx3GcnTt3OoGBgU5UVJSTkZFR7OUaN27sAM7ixYsLThs+fLgDOLfccosTFhbmNGnSxBk6dKjToUOHgut49913i2T17t3b8ff3d1q1auWcd955zvnnn+80atTIAZyQkBBn3rx5RS6Tf1033nijExIS4rRq1coZOnSo06xZMwdwwsPDndWrVzsjR450goKCnL59+zqDBg1yqlat6gBOr169imQ+8MADDuA88MADRc4bM2ZMwX1o3bq1c/HFFzt9+/Z1EhMTHcDZtGnTcR/nv17H8OHDiz2/T58+BY9hvjvuuMMBHD8/P6dnz57OxRdf7DRs2NABnCpVqjg///xzoYymTZs6gJOSklLo9FatWhXch7lz5xY674ILLnAA55tvvil0+rhx4xyXy+W43W6nQ4cOzpAhQ5x27do5gBMYGOh8/vnnhY7ftGmTAzgJCQnOueee6wQHBzt9+/Z1LrroImfQoEGO4zjO119/7fj7+zuA065dO+eiiy5yzjvvPKd169aO2+12HnvssUKZ+a/lf//73w7gdOrUybnkkkuc5s2bO4ATFBTkzJ49u8hjuWzZMqdWrVoO4NSpU8cZOHCgc+aZZzoREREO4Fx66aVFLpOVleX069fPAZyAgACne/fuziWXXOJ0797diY6OdurUqeM4juPs3r3bGT58uFOzZk0HcPr27esMHz684N/q1audSZMmOX379nUAp2bNmoXO//N97N69uwM41113neNyuZzWrVs7l1xyidOlSxdn+fLlhR6DY73O8p/XY50+atQoJygoyDn77LOdgQMHFrwP+vTp46SnpzsNGzZ04uLinIsuusjp1q2b43K5HMB58803i70+EREpvzQoFJECJzso9Hg8TmBgoAM43377bcHpl112mQM4kyZNKnKZ2bNnO4DToUOHQqfnD9QA5/HHHy903vjx4x3AqVu3bpG8mTNnOjt37ixy+qRJkxzASU5Odrxe7zGv65lnnik43ev1OpdffrkDOM2aNXNq1arlrF27tuD8rVu3OjExMcUOjI41KJw6dWrBAGzWrFmFzvN6vc6cOXOc/fv3F7n9xTneoHDHjh0FA5ZXX33VcRzH+eKLLxzAiYqKcn755ZeCYz0ejzN69GgHcBITE52srKyC826++WYHcF577bWC09LT0x2Xy+W0aNHCAZz77ruv0H2oVq2aExgY6GRmZhac/uWXXxbk/3nw7ziO8/nnnzv+/v5OVFSUs2fPnoLT8weFgJOUlFTsIKZHjx4O4Lz//vtFzktNTXV+//33Qqflv5bdbrczbdq0QueNHTvWAZzatWsXuu2HDx92kpKSHMB56qmnHI/HU3Detm3bnLZt2xZ6nP/62LVo0cL5448/Cp2XlZXlzJgxo9Bp+QO6Y73PvvvuOwdwunfvXuz5f84AnNdff73YY051UPjX98G2bduc6tWrF7xPLr74Yic7O7vg/JdeeumY71cRESnfNCgUkQInOyh0HKdgNuXPf6QvWLCgYCbnr4YMGVLsH7D5A7WOHTsWuUxOTo4THR1d7AzW8XTu3NkBnN9++63Y6zrjjDOKXGbZsmUFfwwXN6i97bbbHMB58MEHC51+rEFhy5YtzWZNihsUHj582Pnhhx+c9u3bF8wqHTx40HEcx+nZs6cDOGPHji2SlZub69SvX98BnLfffrvg9GnTpjmAc/nllxec9tFHHxUMFKOjo53OnTsXnLd06VIHcLp161YoP//2zJkzp9j7cssttxQZlP95UDhlypRiL5c/k7lv375jP1B/kv9aHjJkSJHzvF5vQd5bb71VcPrzzz/vAM6wYcOKzVy8eLEDOG3atCk4bceOHU5AQIDj7+/vbNy48aRum+WgsG/fvsc85lQHhcd7H0RGRjrp6emFzsvLy3OqVavm8/tVRET+fqopFJES8Xq9AIVqkjp27Ejbtm1ZvHhxofq8HTt28OmnnxIdHc3QoUOLzTv77LOLnBYQEEDdunUBSEtLK3L+rl27ePXVVxk1ahTXXHMNV155JVdeeSU7duwAYN26dcVe11lnnVXktD/X0x3v/OJux19t376dFStWEBoayiWXXHLC40/Wm2++WVDvFRYWRpcuXVi0aBEJCQl8+eWXREREkJeXx08//QTA8OHDi2T4+/szbNgwgILaNjhao+Z2u5kzZ07Bafn/u0+fPvTo0YNFixYV1JPln9erV6+C49PT01m0aBExMTHHbKfQrVs3AH7++edizx84cGCxp5922mkAXH755SxYsACPx1PscX912WWXFTnN5XJx6aWXAjB//vyC02fOnAnAkCFDis1q06YN4eHhLF++vKAly5w5c8jNzaVHjx7Uq1fvpG6TpUGDBpVa9vHeB+3ataNatWqFzvPz8yMpKQk4ufeJiIiUH2pJISI+83g87N+/H4CqVasWOu/mm2/mX//6Fy+99BKTJ08Gjm5WkZuby/DhwwkJCSk2MyEhodjTIyIigKMtMf7shRdeYNSoUcftl3jw4MFiT4+Pjy9yWnh4+Emd/9fbUZwtW7YAULduXQICAk54/MmqX78+Xbp0AY4O7qpVq0aHDh3o378/QUFBAOzZs4fs7GwCAwOJi4srNid/8JKamlpwWnR0NK1bt2bJkiWsWbOG5ORkZs+eTYMGDUhISKBXr1588sknzJ8/n379+jF79myg8KBw06ZNwNHB4YlalezevbvIaTVq1Djm62PcuHGsWbOG6dOnM336dMLDw+nQoQN9+vRh+PDh1K5du9jL5Q9SjnX6tm3bCk77448/ABgwYMBxbzscfZzj4uIKnuvGjRuf8DKloU6dOqWWfbz3QXHn/fn8k3mfiIhI+aFBoYj47Pfffy/YibJ58+aFzrv44ou54447eP/993nyySeJiIhg0qRJAFx//fXHzPSl3+GiRYu4+eab8ff356mnnqJ///7Ex8cXDCguvfRSpkyZcsydIk90Xafae7G4HR0t/LVPobVevXqxZMkS5syZQ0REBOvWreO6664DoHfv3gDMnj2bs846i++//57Q0FA6duxYcPn82buqVauecGCVnJxc5LRjDQgBYmNjWbBgAT/88AMzZ85k/vz5fP/998yZM4eHH36Yjz76iHPPPdfn+/xn+bf/vPPOIzo6+rjH5g/CS+u5PlnHe8yOJ3+m/3iO9z6o7P1JRUQqGg0KRcRnU6ZMAaBZs2bUqlWr0HkhISFcffXVjB8/nrfeeoukpCS2bNlCr169zGZTPv74YxzH4dZbb2XkyJFFzt+wYYPJ9ZRU/qznpk2byM3NNZ0tPJFq1aoRFBREdnY227ZtK3YGNn9G7K8zib169eKJJ54oGBTmnwbQpEkTYmNjmTNnDosWLeLQoUOcddZZhe5b/nWFhoaWyuDV7XbTrVu3giWoBw8e5LHHHmPcuHGMGDGi2CWLmzdvplWrVkVOz2/T8OfHICEhgbVr13LrrbcWDIJPJDExETj2UuW/U2BgIEDBkt8/27p1a1nfHBERKcf0U5+I+GTlypVMnDgRONrDrjg33HADbrebl19+mZdeeqngNCt79+4Fil9yumbNmuP2oCsLsbGxtGjRgszMzGP2WSwt/v7+dO7cGYC33nqryPkej4e3334bgO7duxc6r2vXrgQEBBT0vnO5XAU98+BoX73ly5fz4YcfAoWXjsLRAVbz5s3Ztm0bv/zyi+n9Kk5kZCSPPvoogYGBbN++vdglqe+9916R0xzH4f333wf+r8YR/q+uderUqSd9G3r27ElAQADfffddwfLZE8kfrOXl5ZXo/JOVv6R27dq1Rc775ptvTilbREQqFg0KReSkZGdn8+qrr9KtWzcyMzMZOHBgsRuZwNFaun79+vH7778zY8YMatWqZbohRv7Sw7feeqvQLEh6ejpXXXXVKf8xbeG+++4D4NZbb+W7774rcv7cuXM5cOBAqVx3/uzp+PHjC2344/V6+e9//8uGDRtITEwssqFKeHg47du3Z8+ePXz44Ye0aNGC6tWrF5zfu3dvHMcpGOj/dVAIMGbMGAAuueSSQhvZ5MvJyeGLL75gzZo1Pt2nJ598slD9X75vv/2WnJwcIiMjqVKlSpHzp06dymeffVbotMcff5zffvuNWrVqceGFFxacfu211xIfH8/LL7/MuHHjiq2LW7VqFdOmTSv4/zVr1uTaa68lLy+PwYMHs3nz5kLHZ2dnF2xgky9/dnL16tXF3tf88zds2HBKr+X8Af0TTzzB4cOHC05fvHhxwetTREQEtHxURIoxbty4guV/mZmZ7NixgyVLlnD48GHcbje33XYbjz322HHrim666Sa+/PJLAK655hr8/e0+bq666iomTJjAkiVLCjZfyc3NZe7cudSuXZtBgwbx6aefml1fSQwZMoT77ruPhx9+mF69etGmTRuSk5PZt28fq1atYsuWLWzatImoqCjz6x4wYACjRo3iySefpGPHjnTv3p2aNWuyePFi1q1bR5UqVfjggw8K6uL+rFevXvz0009kZWUVGfTl//+srCyioqJo27Ztkcuff/75PP7449xzzz306NGDpk2b0qhRI4KDg0lNTWXp0qVkZGQwc+bMYusKj+Xhhx9m9OjRNG3alOTkZAIDA9m0aVPBjORjjz1W7DLdm266iUGDBtG5c2fq1KnDb7/9xsqVKwkKCuKtt94iNDS04NiIiAi+/PJL+vfvzz333MNTTz1Fy5YtqVWrFvv372flypVs2bKFoUOHMnjw4ILLPfHEE6xfv55vvvmGRo0accYZZ1CrVi22b9/O8uXLiYyMLFiumv8YvfHGG4wePZpvv/2WGjVqADB69GgaN25MnTp1aNOmDUuXLqVly5a0a9eOoKAgGjduzOjRo0/6Mbvpppt4+eWX+fnnn2ncuDGnn346O3bsYOHChYwePZrHHnvspLNERKRi00yhiBTx9ddf8+abb/LWW2/x1VdfsWXLFrp3784jjzxCSkoKEyZMIDg4+LgZPXr0ICAgAD8/P6699lrT2xcdHc2iRYv417/+RUhICNOnT2flypVcffXV/Pzzz6Uy0CqJMWPG8N1333H++eeTlpbG1KlTWbJkCfHx8fzvf/8rUo9p6YknnuCTTz6hZ8+eLFmyhKlTp5KVlcW1117L0qVLC20Q82d/Hgj+dVCYlJRUsHNp9+7d8fPzKzbjzjvvZNGiRQwfPpzMzExmzpzJjBkz2LVrF+eccw7vvPMOXbt29en+PPfcc1xxxRU4jsPs2bP59NNP2b17NxdddBE//vgjN954Y7GXGzlyJO+99x65ubl89tlnbN68mX79+vHjjz9y5plnFjm+VatWrFixgocffpg6deqwcOFCpk6dysqVK0lKSuLRRx/lkUceKXSZ4OBgZsyYwWuvvUanTp1YunQpH3/8MRs3bqRz586MGzeu0PHnnXceL7zwAsnJycyaNYtXX32VV199le3btxccM23aNC666CL27t3LlClTePXVV5k+fbpPj1lMTAzff/89F154IZmZmcyYMYPMzExeeeUVHn30UZ+yRESkYnM5x9qeT0TkFLz77rtcfvnlnHfeeUWW74mUtqSkJDZv3symTZuO2ZZCREREjtJMoYiYy87OLpiJuO222/7eGyMiIiIix6VBoYiYef3117nqqqto2bIlq1at4pxzzim0e6WIiIjI8Xi9XiZMmEBycjLBwcEkJCQwatSoQhtmWV5+xowZdO7cmbCwMKpWrcqQIUOK3U164cKF3HrrrZxxxhmEh4fjcrmO234pOzub+++/n7p16xIUFET9+vUZO3Ysubm5J3U/ypoGhSJiZt68ebzxxhukp6dz+eWX88477/zdN0lERET+QUaOHMntt99O06ZNefbZZxkyZAgTJ05kwIABeL1e08tPmzaN/v37c+TIEcaPH8/o0aOZP38+Z5xxRpHetzNmzOD5559n//79xfa//auhQ4cWbDb3/PPP06NHD+677z5GjBjh2wNSVhwREREREZG/2W+//ea4XC5n8ODBhU6fOHGiAzjvvvuu2eVzcnKc2rVrO4mJic6hQ4cKTl+6dKnjdrudESNGFMrYsWOHk5GR4TiO43z00UcO4Lz++uvF3o7p06c7gHP77bcXOv322293AOfHH3887v34O2imUERERERE/nZTpkzBcZwi+xGMGDGC0NDQE65A8uXy8+bNIy0tjWuuuYbw8PCC01u3bk2PHj344IMPCi31rFmzJmFhYSd1P9577z2g6L4K+f+/PK6kKpd9Cl0uV7Gnh4WFFWpUDbB27Vruuusu5s2bR05ODm3btuWhhx4qtqnyqfB6vaSlpREREXHM2yciIiIiFZvjOBw6dIjatWsft1/v3ykrK4ucnJwyua5GjRoV+dv4zy12fLFo0SLcbjcdOnQodHpwcDCtW7dm0aJFZpfP/9+dOnUqktOxY0fmzJnDunXraNasWYnuR1xcHAkJCYVOT0hIoHbt2ie8H3+HcjkoBOjatWuR3mZ/bUyc3wPK39+fO++8k6ioKCZNmkTfvn2ZOXMmffr0Mbs9aWlpRZ5YEREREamctm7dSnx8/N99M4rIysqibp1wduzylMn1ud1uqlevbjJpkpaWRkxMDEFBQUXOi4uL46effiInJ4fAwMBTvnx+zWBcXFyxxwKkpqaWaFCYlpZG06ZNiz0vLi6Obdu2+ZxZ2srtoLBevXpcfvnlxz3mnnvuYf/+/SxevJjWrVsDMGzYMJo1a8ZNN93EmjVrzGb1IiIiAOjaciT+fkVfaCXhPpBpkgPghNrcpnz7m9o1/84Ltp1Zrb5on1mWZ/V6syyArW8V/wFQEkkP2b0+ALaOCTHL8q6INMsCiH/8F9O8Q0Pam2VF/HFyu52dtKVrzaL8GiaZZQGQbvfemrpgnlkWwAVtTrcLM27Pe+Dc5mZZVRbvMssCIMD2a97ZVrJf/4tz4K2aZlkA0TfZfWbmJtUwywLwBPmZZaV1K/6P4ZKq+9w6s6wDPRqYZQFUWZR24oNOkmf3HrOsPCeX73M+KfjbsLzJyclhxy4PmxcnERlRujOZBw95qdMuhXXr1hEZeep/G2RmZhY7oIOjs335xxxrUOjL5TMzj35mFHf8n48tiRPdjpLmlqZyOyiEoy/qnJycQut88x0+fJjPP/+cHj16FAwIAcLDw7nmmmu4//77WbRoUZHp45LKH1z6+wXZDQr97H7BcYxuUz6/wGCzLCfQdlBo9fgDuFwBJz7IB36hdo+bv+HrA8DP8IcDV5Dd/QTwt34eAgyfB3/jX1oN76uf8fset90fm9Z/iPi7LP8Qth0Umr7erJ9TP+NBoeHz4Bdme1/93XlmWY6/7Wecy99uUOgOth0UWr63/A3fCwD+7vL7fX80s3yXE0VGuImMsHvtlYXQ0FB27Sr+x7GsrKyCYywun//f2dnZJbqu4wkNDS02Nz+7pLmlqXwuhAamTp1KaGgoERER1KhRg1tuuYUDBw4UnL9ixQqys7OPuQ4YOKX1urGxsYX+NWzYsMRZIiIiIiJlyYuDt9T/Y/sjW+3atUlPTy92QJWamkpMTMwxZwl9vXzt2rULTi/uWCh+aenJ3o/icvOzS5pbmsrlTGGHDh0YMmQIDRo04ODBg8yYMYPnnnuOefPm8dNPPxEeHn7S64DNrfrD7Jd+x9/u4c/q0sQsCyA3zO7Xr5rT7JamALiCDX+Vj6ttlgVQa7LhL98Hd9plAXVG2c14rb7NdsmMX9NGpnlRH/1qF9aisV0WsO71E/c2OlnJjx40ywJwMo+YZZ150ZVmWQCB1feaZa16oLpZFkCT0YbL0KPtlu4DeNb+YZrHaXZL5IOftp0pdA7vNsvyX7PFLAsgp2N9s6x6Y5eaZQFsv7qtWdYVN3xllgXwwopuZln1L7Wr4XKc8tl8vCJo374933zzDQsXLqRr164Fp2dlZbFs2TK6dTv+a8KXy7dvf7TUZMGCBUX2Ifn555+JjIykUaOS/X3Svn173n33XbZu3VpoT5KtW7eSlpbGeeedV6Lc0lQuZwp/+eUX7rjjDgYNGsSwYcN4//33eeSRR1i5ciXPPPMMQKmuA4ajuyb9+d/69ba1ZyIiIiIipcXjeMvkn6WhQ4ficrl4+umnC50+adIkMjMzueyyywpO27hxI2vWrCnx5bt3705sbCyTJ08u1N1g+fLlzJ07lyFDhhTZ5PJkXXLJJQBFbkf+///z7SgvyuVMYXFGjx7NQw89xPTp07n33ntLdR2wiIiIiIiUrRYtWnDTTTfx3HPPMXjwYPr168fq1auZOHEi3bt359JLLy04tnfv3mzevBnnT5uH+XL5gIAAnnnmGYYOHUrXrl0ZMWIEBw8eZMKECVSvXp2HHnqo0G3bvHkzb7/9NgC///47AF988UXBTqJXXHEFderUAeDcc8+lf//+PPXUUxw4cIBOnTqxYMECXn31VS6//HK6dOlSOg/gKfjHDAoDAgIK1glD6a4DPh53eBhuq80YPHa/roRssts1EOCMx+2WfM7KPMMsC2D3aXZZDe+yXYbjzou1C/PartM/2LqWWVbyc7Y7JDqpO0zzcnrYLdF02T4NJD+y3y7MeJMDp3Fds6yAtbbL9/f1slt+57/L9nGLm55llvX7U7b166OmzzLNe6273dJb15J0sywAT57dRjNHBtlsUpcvdOZysyx39RizLIAaz/9klvVmwNlmWQCNP9lqluU9yabjJ8Pt5IDxxtSl4WhNofGXWDHXYe3pp58mKSmJV155henTpxMTE8Mtt9zCmDFjTqovpC+XHzJkCCEhIYwdO5Y77riDoKAgevfuzeOPP15kHLFp0ybuu+++QqdNmzaNadOmAdClS5eCQSHARx99xNixY3nnnXd4++23iYuLY8yYMdx9990lfWhK1T9mUJiVlcW2bdsKNpFp0aIFQUFBLFiwoMixP//8MwCnnWY4ehARERERkVLl5+fHqFGjGDVq1HGPS0lJOaXL5+vfvz/9+/c/4XE9evQoNCt5IsHBwYwdO5axY8ee9GX+TuWupnDPnuL7yNx3333k5eUxYMAA4GjriQEDBjB37lyWL/+/X+AyMjKYPHkyDRs2NGtHISIiIiLyT1L6O48e/Y9UDOVupnDs2LH8/PPP9OzZk8TERDIyMpgxYwbfffcdp59+OrfcckvBsY899hizZ8/mrLPOYuTIkURGRjJp0iRSU1OZPn16ue8fIyIiIiIi8ncrd4PCHj16sGrVKt5880327NmDn58fDRs25JFHHuH2228v2FkUoEGDBvz444/cfffdjBs3jpycHNq2bctXX31VZGtZK3kN48Coqe2udnYb4dR6ebFZFkDPiFVmWYun2bYviL/O7nE7UquGWRbA4Si7t1ROl3pmWQDZUXYLA0JibJ/Tnf3s6h0B4t783SzLc8C27YNdYxBIG1W0T+upCDpgVxsS0MT2NZIRZ/f6rfGr5bMAmz9tYJaV2d52Ac9ztw41zUt52O410vB12/e9/6rNZlnha23r9PcNbmOWFbY9xywLYNuIOic+6CTVfWKlWRYAMVXtshra3U882bDCLq60eBwHjw/LHUt6HVIxlLtB4cCBAxk4cOBJH9+kSRM+++yzUrxFIiIiIiIiFVe5GxSKiIiIiMip+afuPip/j3K30YyIiIiIiIiUHc0U+sgvMxc/P5uxdNzHdr3ePM3taloAnjwvySzLe8Su5yHAzqdamGVFHLS9bXsutWtclHjZerMsgMjoKmZZTpRtvVjgQbs6UQBi7WpF/Wra9WUDYO8Bs6iE6bvNsgD+eMimXhrAvdL2NZL42EKzLFegUa/Z/2/f4JZmWYeSbHfyq/3uRtO86LqNzbL8DmeaZQEQGGAWdbCZYS0bEL3Y8L26y7a/Y50su1o7V7xtnWhG/WizrOAv7T5DvE6uWVZp8uLg0UyhnCTNFIqIiIiIiFRiGhSKiIiIiIhUYlo+6iPvyrV4XTZLVHJ72G1RHfjbVrMsANx2PR79E+PNsgACDtttJz/j9+/MsgC6rTzfLGv943avD4DGj9gtI9s82LaVR9L7qaZ5nrQdZlnbb2xnlgUQ/1meWZZjuBQVoO5VaWZZrjpxZlkAJCWYRWU2ijHLAsgJt/u8bHjPErMsAOolmsa57V6+ZNW0XTYeEFbbLCtqge13qpOVZZblOZhhlgXwx6Aws6y4eUFmWQBBe7LNsvzj7F4feLPB7uOy1GijGfGFZgpFREREREQqMc0UioiIiIhUMGpeL77QTKGIiIiIiEglpplCH7laJ+Pys1kzn9Lfblv0xuvstuIG2HCD3RbVDV7aYpYFEPjdCrOsRm/cYJYF0HCSXZFBssuuLg4gs63dc5r0VopZFkD9z2xbK6wb0cgsK3aubd3e4Ok/m2VNbZNklgXgNmxb4v3D9n3vrmbXIsCdZ/vLdo2L7O7rwf22tcRVvrVtu1PjI7tWSq4I27YleVu3mWV5jW8bXrtWI3v+1cEsC6DBw3bfqa4Qu7Y2AJ4GdrXJuYl27YXy8rL+ITWFR/+V9nVIxaCZQhERERERkUpMM4UiIiIiIhWMpwya15d2vpQdzRSKiIiIiIhUYpop9NE7U94hMsJmLN1vxE0mOQBOTq5ZFkCDFzfbhQXZ1U4CrHuirVlWgw8yzbIAvLvSzbLSrm1llgVwsFmOWVbyzipmWQAbzjximrfzkiizrNhZO82yAD4+r7NZVsqdtcyyAOq+uN4sa+u/7d6nAPFPLjTLCkzfY5YFsPffdr0Aw9NtP8vT+zc2zas+265+Mr2nXe9JAJfXridutbnGvX/97H6Dr/aa3XsBYM8wuxrFmB9sa+H52a7e0T862iwLx+77tDR5nKP/Svs6pGLQTKGIiIiIiEglpplCEREREZEKRruPii80KPTR5a064++yaf8Q4ve7SQ7Amv+1MMsCSH5wg1mW13ipVoMP7JYGBvxhu9Rl63V2Sz5Dd9p+1Ial2b3d4182XF4MpF5huwwy5ne75ahOqu1rxF3F7vWb9Pl+sywAoiPNohI/3m6WBeB12S1syevUzCwLIGZYil1YLdsFPMEr95nmeRJrmmXFzE81ywI43NTutm270K6FD0Dct3bfg35Rdu9TAHeu3fq/vOq2ty0g126J8erb7dpbeI9kwV1mcSLlgpaPioiIiIiIVGKaKRQRERERqWC8uPDgKvXrkIpBM4UiIiIiIiKVmGYKfZTXIRn8g22yQv1McgAa37PKLAvgwRVzzLIeGHCFWRaA/6oUsywnKMgsCyDhE7saGW9EiFkWwL5xeWZZqcNizbIAXJm2LSn899jU/QJknNXcLAsgL8TuV9XI9xeZZQFkn23XRuK8/802ywL49mK7bfOD1tjWsuXtNazb27PXLgvY8W+7FigAsT8eNMvKaG5bSxy2KMUsK3C/7Wcc2XYtDNbfnWyWBVD/Q7vnlN/s9iMA2Hd+G7Ms/yN2n73erH/G7JjXOfqvtK9DKgbNFIqIiIiIiFRimikUEREREalgPGVQU1ja+VJ2NCj0UeDKTfi7Am2yDLdYz27fyCwL4L56GWZZ7qAUsyyAXZfbLSep8cVGsywAb1SYaZ6lKgO32IU1TLLLAlIH227/XnvKerOs8A0pZlkA7lo1zLJyO9oubQ36aolZ1rfb7JZ7AjjrN9llhYaaZQH4NTX8/E3bZZcFxL212jTPFWTz/QeQW7+uWRbArgH1zbJi3rBdmu3Js1u+7/jbtd4A2DjEsBVNFdvPpCqGLVXO/++vZllZGXk8+IBZnEi5oEGhiIiIiEgFo5lC8YVqCkVERERERCoxzRSKiIiIiFQwXseF1ynlPoWlnC9lR4NCX7ncR/8Z2Dy5tkkOQNYWuy34ARrMsdtjOOeMZmZZACF7vGZZ3vjqZlkAful2W3t70223pncFGL7d03baZQFVNkSZ5pFrt/2749jut71tYLxZVs1Fh82yALbec7pZVuL/7Op3wPb1mzq8iVkWQECG3WvkcFw1syyAOo8sNM1zJTQwy4paa9gKAcipatfGxy8hziwLwAm2q8UMq3/ALAsg/nbDlkAej10W4KlqV+/YK8yuvjbDa/d3iEh5oUGhiIiIiEgFo5pC8YVqCkVERERERCoxzRSKiIiIiFQwHtx4Snn+x3bBsPydNCj0UVbbuvj7B5tkBc62qzGIXZ1llgXgF2NX15IdaPuB5Jdtt5Z/ZyfbWrYD7YPMspIfsXt9AKR3suuPF/OVbX/H0J/WmeZ5jxi+H1o0tMsC4t7fYJa1p69dXzaAOl/Y1bFuv+E0syyA6kvt6p6C9tvWicb8sMMsK/MF29vmF29Xuw7gWf2HWZarqe3r15KTkWmalxsXbZZV83+2rxFvuF3ezK/eN8sCOKffpWZZ9512tllWnjcHeMMsT6Q80PJRERERERGRSkwzhSIiIiIiFYxTBi0pHLWkqDA0KPTRln5+uEP8TLKSH1xvkgMwY/m3ZlkAva+42iwr9Ge75XIAuO0+gIK/sd0SPfYDuyVC2S0TzbIAolLsllQ6sTFmWQDpY/NM86pfbtcyw1m9ySwLwHLhV8z3aYZpsPamWLOssFSzKAByw+2+rqpOWWKWBUCk3bb5QffbPQcAubVt/2A73MFuOWrk9JVmWQDVnrcp7QBYMaeRWRbAx8OeMsu6s8uFZlkAnh12n5cd77zeLAsgeuPvZll/vJpkluXJzILhZnEi5YIGhSIiIiIiFYxaUogvVFMoIiIiIiJSiWmmUERERESkgvE4bjxOKbeksN0MV/5GGhT6qNoSN35GLRY2jGxgkgOQPMl22/z6f9gVBK16qp5ZFkDyDXY1BkfObmuWBRCcble3t62XbUuK+m/Y1Y0cbmxbUxj8mu3yE8ez3SwrZVQrsyyAepPstvTPS9lilgXw89D3zLIuvO42syyA0AV2bUscl+3rLbN9kllW6GbbOmdvqO3nSOTaA2ZZrtBQsyyAHePrmmXVyrOtc779y2vNspwE2z/y/Q8eMsva09L2vVX1S7v7Gv9CgFlWXp4Hu09ykfJBg0IRERERkQrGiwtvKVeKeU23T5O/k2oKRUREREREKjHNFIqIiIiIVDDafVR8oUGhj6otTMffL8gkK+Ynuyn3zPpVzbIAtlwQZ5ZV56NcsywAp7ldLeaRajY9J/OFrc80y6r3oe3jtvX8WmZZiR9uM8sC8O7YZZq3blITs6xGj+81ywLITapplrX1Ott63WF97WqT/Wt6zLIADndtbJYVtnq3WRbABeO/Mct64cNzzbIAEr45bJoXsG2fWda2y21r4eO+3GGWldHMtm7a5bX7vnes/3KLN/xu+DrHLAtg9+CmZln+R+yeA0+u1yxLpLzQoFBEREREpIIpm91HVVNYUaimUEREREREpBLTTKGPnCB/HD+bhy27VrhJDkDoItvNkT0hdks09zW22wYaIPabpWZZIbVsW1Jkx0eZZfnPXmyWBRDaspNZ1uc/fmqWBTCgdV/TPOeA3Tb8rtQUsyyAtGvtlrYmPbnSLAvAFR5mlpXTqIpZFsC+BnZfV+FLbZe4TW9V3SyrXnXbz3Inx/a+eg5mmGWF7kwyywJw5dktWQ7darvslt82mEW5WjUyywJwttq18PGPDDbLAoh5z64FlTu6illWntf2fVVaju4+Wro1f6WdL2VHM4UiIiIiIiKVmAaFIiIiIiIilZiWj4qIiIiIVDBe3HjUvF5OkgaFPnLWb8Zx2dTIuao3N8kBoGoVuywgq4rdh0jsc7+aZQE4hlt7h245aJYF4Npp174gu1c7syyAqh8vN8sa8JVtDSCO7fbeERvtWo04dWLNsgCqrs0zy8rsblefCLC9i93j1uBJuxoqgIBDiWZZnljbFj4Zp8ebZR1Msm2TE9zLtv1GzHC7+qGo9bZ1ezlx0WZZgSm2j9u+QW3MsqrM2WiWBeB47T5//fbY1ZwCuGra1evmbU2zy3JsW0aJlAcaFIqIiIiIVDBqSSG+UE2hiIiIiIhIJaaZQhERERGRCsaLG69qCuUkaVDoo92Xt8Iv0KYPT/R6wz43e/fbZQF5ITXNslzBQWZZAJvutqvFzImxq+8CSB65xSwrO9r27Zk5qKVZVkac7ZdM3NO2dadxr/5mluWqZlenBBC8065v556WoWZZAHXvXmAX1tiu1ylAwA92z6k7obZZFkBU2h6zrEPxSWZZANUu2Gqal31GM7OsfY3s+okC1FhoVyO+/ma7GlaA+g/a9df1tGxolgWQdo9df8eM3Xa9TgEiV9l9XsZ/athPz5sNm+3iRMoDDQpFRERERCoYj+PC45Ruc/nSzpeyo5pCERERERGRSkwzhT6qujoLf6NHzX/Rapsg4FC/VmZZAO48uzXiB861W24EEPGHXVa1exfZhQFrXj3NLKvhq1lmWQB+K+0euCNXtjDLAvB2aGqa51q23iwrJ6maWRaAf4bdVuY13rZrMwLgWH24AWl9a5hlAdT+wG5p4KGWtrdtd2u731frPrrELAvAFW/bUiVosV2rkVqLbGuRPIcOmWU5o4y/U6sZtkH5zbYlRe0Lsu3CjNsLbb+9k1mWY1hm4ziG5T+lyFMGfQo9qimsMDRTKCIiIiIiUolpplBEREREpILxOm68pdyn0Ks+hRWGZgpFREREREQqMc0U+mhbn2DcwTYtKeID7GrtIlbvNcsCiJizyyzLe/iIWRaAX40YsywnMtIsC6DRNYvNsvyq2rZC2DXUrpVH80tWmWUBpP+cYJq373y7msfoFfvNsgD2trJ7Xquu8TPLAlj/ut3j1nicXZsGACfT7nMk4nfb27Y32bBG0W37W60rz67dAMC2q+y+t6I22bYECt5pVxtXbbrN93w+7x6772hv60ZmWQD7G9q1kTgcZ7sTZcJX+82yXGF2LXxcXn+wK3MWKRc0KBQRERERqWC00Yz4QstHRUREREREKjHNFIqIiIiIVDBeSr+5vG0TEvk7aVDoo3ovp+DvDjTJOtgpySQH4GAduzo7gGorg8yyNp0fYZYFUPcTu15UeQ1rmWUBBCxaaxdm2DMOIHi/3Uf30i9s+wombbXtu1Vtl817FMDJMuzhBVT9KMUsy5tte9u82XY1ipl1bOt1g1atM8vyz6pilgWQ9GaKWZZT17a+tvk7hp9JQMb9dp+ZgfvtenYC+K/fZpZVNT3KLAvA26S+WZY707ZHXvQUuxrxX7b8apYFcPWgLmZZ28+2+3z7p/QpFPGFBoUiIiIiIhWMFzfeUq4UK+18KTt6JkVERERERCoxzRT6aM1/4nGH2GxVnfil3Y5NNb7ZbJYF4Klht21+/XfSzbIAcmrZLUd1Z9tu147h0q/MBNtlt5Hz/jDLilpkvF37QbslwQDu6tXswqpVscsCNv7bbhlZg9d3mmUBNLl7k1mWy6h1T76cLq3NspyVdu8FAFyGv69G2rUHAPAzrvgJ2Z5pluWXavvd4Bg20V53nWGbEcATbdd+o+Z3tn+6ZfbpYJbVL9mu7QOA55Ddd4Nfk4ZmWXiyYb9dXGnxOG48pdy8vrTzpezomRQREREREanENFMoIiIiIlLBeHHhpbR3Hy3dfCk7mikUERERERGpxDRT6KOGo1bg7wowyXJXsdvyettljc2yAGpPWmaWNWPDT2ZZAO3vvcEsq8asrWZZAN7ocLOsgEy7GhRruXFVTfP8du42zSPbbrvwnLrVzbIAGr5o95rLjTesnQQCPHb1Zzv6xJplAUT9YfecBtSwbeGTWd/u/RD6o20LieXn2D4PnsY2338Afn52LQIAvAczzLKC021/M6+ywO6+hu7IMssC8D9i14Lqi9VzzbIA+sW1tQsz/HwzzSpFqikUX+iZFBERERERqcQ0UygiIiIiUsF4cOMp5fmf0s6XsqNnUkREREREpBLTTKGP/OJj8XPbrL/fcVZtkxyA2vP2m2UBeI8cMcvq1+18syyAGtl2NVn9vl5ulgXw7G89zLJC5oWYZQGExdQzy/I/YltP4e3b0jRv6zl2WZGrjT8mWyWaRYXssX0ewkLs7mvNaevMsgCyWyaZZR1oZVtTGPXtGrOslFubm2UBxM216ysItr1d93S36+sKUHWG3X1N/GKPWRZAlynLzLJ+7NfALAsgcpXd49Yvvp1ZFoB/nXizrLz1dn1YPU6uWZZIeaFBoYiIiIhIBeN1XHidUm5JUcr5Una0fFRERERERKQS00yhj7wRoXj9bJaP1nhnhUkOgLdFfbMsAL+ICLOs3Fp2rTcA/H7+zSxrerdGZlkAMT1CzbJCdtgu+wrcttc0z5IndYdpXpMf7V6/3oRaZlkAR+LCzLJCUw6aZQFsOc+utUJkzYZmWQBB++2WLUYtM26BEmS3pX/i+MVmWQCZZ7cyzdvWx25WIGq17e/STna2WVbq2bbtXn4Y3NQsy1vT7nsGgN/SzaK23N/JLAvAsi967fk1zLLy8rJg3jSzvNLiLYONZryaX6ow9EyKiIiIiIhUYpopFBERERGpYLyOG28pN5cv7XwpO3omRUREREREKjHNFPrItW0nLlegTVbN6iY5AF6vY5YFsHeAXf1D9KcrzbIA1k6w2/K68X9WmWUBRP5uV7e3erRtLWbc9FizrMg5tu0G1j7b2jSvybMHzLLch2xrO8N/tavf8STY1cgAtDp3tVlWjtfPLAsg8zy7msKNo5LNsgCC9tnVnXpsvl4KJL1n18IHoPWoLLOsRwZ8ZpYFMHLhtWZZ8ZPsatcBUm6xazVSY4ltO4RQw5rYpPHLzLIA9l5gVxMbtHWfWZafx65+tTR5cOGxLMw8xnVIxaCZQhERERERkUpMM4UiIiIiIhWMagrFF3omRUREREREKjHNFPrIOXIEx2VT25LVrp5JDkDwshSzLIDoLLt6xwMDWphlATQevcw0z9KhZLs+b00ftu3dl9GsplnWjqG2NVmNX7btt8cOuz50mR1te4AGTV9klrX/TLvPEACny36zLP/EeLMsACd7j1lWjSVesyyAiDlrzLIyujc2ywLAuN481N+unu2qe283ywLYdZXdfXVctp9xTR/dbJa1o1+iWRZA0KFDZlkuP9ta4rCddq83z0a758Dj2NZ1lhYPpV/zZ1ftLX83zRSKiIiIiIhUYpopFBERERGpYFRTKL7QoNBH3pw8vC6bqfjDsXZ7jwftsFvuCeDautMsy9uyilkWgDfHbtnGhifbm2UBJH1hd9u2nh9nlgWQMOUPs6ywH2234953tu2SueCaoWZZYUtst/R3atq1kYjcdMQsC2DbPZ3Msuo8Z7ulP0afuwDhX9m2yXFFRphlhW0yXkrtZ/sH297z7JYHRsfb3teojXZ/0uxqF26WBZCXmmaWVWtWgFkWQJ5ju8TYUsCspWZZ2+4+3SzLk50FT0wzyxMpDzS8FxERERERqcQ0UygiIiIiUsF4HDeeUl7eWdr5Unb0TIqIiIiISLng9XqZMGECycnJBAcHk5CQwKhRozh8+HCpXH7GjBl07tyZsLAwqlatypAhQ9i0aVOxx65du5ZBgwYRHR1NWFgYXbt2Zc6cOcUeu2XLFq677joaNGhASEgIcXFxDBgwgPnz55/cA1HGNFPoI3egP26XzXr+6A+XmOQAZHe3bfsQctiuVik8NccsCyC7b1uzrIajfzXLAvCLr22WFb/FdmtvgoPMolIvsm2FUHvyctM8PHabZHtaNDTLAvDbtd8uzLDODqD6cruaWCcvzywLwGlS1yzLfdC2FtNr2ALFu8KunhvA1bSRaV52Pbv69S1n2dXVA9R/wO47teavthvtu6vZtSs6nGy7h8DmO+zqnMNTbP+sDEuzax9T5+NdZll5nmzWm6WVHgcX3lJuSeGUQv7IkSOZOHEi559/PqNGjWL16tVMnDiRpUuXMmvWLNzu489p+XL5adOmceGFF9KqVSvGjx/PgQMHePrppznjjDP49ddfqV37//6u27hxI507d8bf358777yTqKgoJk2aRN++fZk5cyZ9+vQpODYtLY127dqRl5fHddddR8OGDUlLS2PSpEn07NmTzz//nHPPPdf8sTsVGhSKiIiIiMjf7vfff+fZZ59l8ODBfPzxxwWn161bl1tvvZX333+fSy+91OTyubm53HLLLSQkJPD9998THn50g6lzzjmHdu3a8eCDD/LKK68UZNxzzz3s37+fxYsX07p1awCGDRtGs2bNuOmmm1izZg2u//9j7Ztvvkl6ejqffvopAwcOLMi45JJLaNiwIZMmTSp3g0ItHxURERERqWDyawpL+5+lKVOm4DgOt912W6HTR4wYQWhoKO+8847Z5efNm0daWhrXXHNNwYAQoHXr1vTo0YMPPviA3NyjK2gOHz7M559/To8ePQoGhADh4eFcc801rFu3jkWLFhWcfvDg0d2V/zzTCFCrVi3cbjdhYWEnfCzKWrmfKczMzKR58+Zs2rSJm266ieeee67Q+WvXruWuu+5i3rx55OTk0LZtWx566CF69epVOjeoQR3ws1mGl94+2iQHIOiQ7ZbSwf52Sxfd2bbLcEL22i392nO5bUuKmAV2y8iczdvMsgCyOzczywo8aPt6O3R2c9u8BLvXb62nfzLLAiDObonxvuRgsyyA6m/bbf9+pJftkvYjMYZfV06kXRZQ5W27di8HLutolgUQssf283dvE7t2COuHvWCWBVAv/DqzrPBNtsv3o/6wex7CZiwzywJost6u/ZErM8ssC2D9LXXMsqJ/s1uu7HjKbxuPf7pFixbhdrvp0KFDodODg4Np3bp1oYHXqV4+/3936lS0HVPHjh2ZM2cO69ato1mzZqxYsYLs7OxjHpufl3+9Z511FuPGjePGG29k/PjxBctHx4wZQ3h4OKNGjTqJR6NslfuZwvvvv5/du4v/Qzt/be+CBQu48847GT9+PBkZGfTt25dZs2aV8S0VERERESkfvI6rTP4BNGzYkNjY2IJ/JZWWlkZMTAxBQUUnYOLi4khPTycn59h7Vfhy+bS0tILTizsWIDU11edjAXr27Mnzzz/Ppk2b6NmzJ/Hx8XTo0IG1a9fy888/07at3f4YVsr1oHDJkiU8/fTTPPTQQ8Wen7+29+uvv+aee+7hxhtv5Pvvv6d27drcdNNNOOW4IauIiIiIiPyfzMzMYgd0cHS2L/8Yi8vn/3dxx5/KsfmqV6/Oaaedxvjx4/nss88KNrI599xz2bp16zHvw9+l3C4f9Xg8jBgxgrPPPpvBgwcXmWY90dre+++/v9A0roiIiIhIZeHBjaeU53/y89evX09k5KkvzQ8NDWXXruJ3is3Kyio4xuLy+f+dnZ1teizApEmTuPHGG1m6dCnNm/9fiUzfvn1p27Yt99xzzwnrI8tauR0UTpgwgTVr1hTaOejPfF3b66u/Tn17vUe3RXbWb8axakkRaVcP5PfLKrMsAK9jtw20344QsywAV6zd9tnuPNvZZNN6iroJdllA0PLie+6URLVDdjUoAH479pnmRc4+ZJblbWdXiwngbLHbFr3e8HVmWQAZ8+PNsrwBttuUu3Pt3quHY23/SPK/yK4OMHrlfrMsAFeaXZ0zQNVR4Sc+6CT163mhWRZAYj27763u434wywL4pYPd4+ZXy+47ECC3eoRZVkCabSuaf5/3pVnWjGft6pzd3qIDA7FRu3ZtVq1aRXZ2dpFZudTUVGJiYggMPHZ9qC+Xz98EJjU1lSZNmhQ5Fv5vaeifj/2rvx4L8Nhjj5GcnFxoQAjQokULkpOTmTdv3jHvw9+lXC4f3bRpEw888AD3338/SUlJxR7j69peEREREZHKoixrCq20b98er9fLwoULC52elZXFsmXLOO2008wu37790c0GFyxYUCTn559/JjIykkaNjvZ6bdGiBUFBQcc8FiiUnZqaiucYPZPz8vLIM+7la6FcDgqvv/566tWrx+23337MY0qyttcX27dvL/Rv/fp/QptSEREREZF/pqFDh+JyuXj66acLnT5p0iQyMzO57LLLCk7buHEja9asKfHlu3fvTmxsLJMnTyYjI6Pg9OXLlzN37lyGDBlCQMDR1YHh4eEMGDCAuXPnsnz58oJjMzIymDx5Mg0bNiy0OrFp06YFm8r82YIFC1i3bl3BgLQ8KXfLR9955x2+/fZb5s+fX/BEFMfXtb0iIiIiIlJ+tWjRoqAF3eDBg+nXrx+rV69m4sSJdO/evVDj+t69e7N58+ZCG0v6cvmAgACeeeYZhg4dSteuXRkxYgQHDx5kwoQJVK9evchGl4899hizZ8/mrLPOYuTIkURGRjJp0iRSU1OZPn16QeN6gAcffJDBgwdz5plncv3119OwYUPWr1/Piy++SGBgIA888EApPoolU64GhdnZ2dx+++3069ePWrVqsWHDBuD/loEeOHCADRs2EBMT4/PaXivu+FjcRn0K/TbZ1RZln2Hb582da1ebEbBtj1kWQN66jWZZVQ37MQLs62xXkxU9P8UsC2DNM3b9nmp9bvMeyBcSZtf7DCAw1a4fFcvX2mUBVIkyi9rxRH2zLICQdcfv/+SL3UNt6548wXY1hQEZJz7GF5GfLzPLch2nVqYkPMl273uA0GF2NYqeeNt+kdsut1uONX9XA7MsgJD6dp+ZeattVy7tHGRXvx4/1baGdfoZds+DNyPdLMvj5JpllSYvbrylvCiwNPKffvppkpKSeOWVV5g+fToxMTHccsstjBkzBrf7xNfny+WHDBlCSEgIY8eO5Y477iAoKIjevXvz+OOPFxlHNGjQgB9//JG7776bcePGFfRH/+qrr+jTp0+hYwcOHMi3337L+PHjee211zhw4ADR0dH07duX++67r9AmmeVFuRoUHjlyhN27dzN9+nSmT59e5Px33nmHd955h/Hjx3P99df7tLZXRERERETKNz8/P0aNGnXCBu8pKSmndPl8/fv3p3///id1bJMmTfjss89O6thevXrRq1evkzq2PChXg8KwsDA++uijIqfv3r2bG2+8kbPPPpurr76ali1bFqztnTZtGsuXL6dVq1bAsdf2ioiIiIhUFh7Hhcd4I5jirkMqhnI1KAwICODCC4tuUZ3/S0D9+vULne/L2l4rnqphuPyNWkms/8MmB8g+3bZ9AYadGia8+6FdGHBHi7PMso4k2i3lA+h/73dmWe807G2WBdDw6sVmWVm9WpplAQSuTDHNcwzblvjVtF0G6d1/wCzrrifeMssCuP20q8yyku4ruorjVGx48nSzrAav7zTLAtj+r7ZmWTVfWXjig3zgWm7btiT12nZmWWE7it+Zr6Ti3rf74sqKiD3xQT4IybUrF/F2aW2WBRD7wq9mWbbPKHjbNznxQSfJ/ze7tkxuxw3/jBWkIietXA0KfeXL2l4RERERkcqiNFpGFHcdUjH8IwaFSUlJhXYW+jNf1vaKiIiIiIhIYf+IQaGIiIiIiJw8x3HjdUp391GnlPOl7GhQ6KONF4biDrGpKUw+2MgkByDiR7u18gCbnqtplnV7vS5mWQDupnatRrYOsy0KmDGmh1lWVjfb6oyc7i3Msg4m2X50hKTZvd4AnFV2bUvSRtjuYlzrp/1mWc+1MosCoEZfu1Y0WefaNuYN22b3h0dubdtaYsvnNKtPG7MsgODttv03cgwfOm/vg3ZhQOz5a0580EkKi7Jtl5Hd1q61wuFY2xY+0Yvs3ltbRtrV1wLUef43s6yUW+1ad3mys+B/ZnEi5YIGhSIiIiIiFYwHFx5KeffRUs6XsqM5XxERERERkUpMM4UiIiIiIhWM1yn93UG9hi3M5O+lQaGPGk1Kx98vyCZs916bHCC3ZZJZFkDdEXY9FF21a5llAXj/2GKWVfNT2357wXtyzLKa/M+2l1pOXbt+ezUXZJplAXiXr7bN625XlxX7jl1NCwBuuy/o3NPs6pIBIr63e997k2zf91suCDTLyow16jX7/4XsDjHLOlLDrq4ToPHTtnV7Cd8Y/tlgmQVk97Or//U7Yvs8ZFe1u69Vv15vlgWw5b36Zlk1XrGt01/3ot1tq/1RnllWXm4eG8zSRMoHDQpFRERERCoYbxnsPlra+VJ29EyKiIiIiIhUYpop9JGzLQ3HZbOMyVW/jkkOQGYNu6VVANkXNjXLinlzsVkWgLeD3W3bdZrtWvu8ana/syQ/E2GWBeD+YZlZlismxiwLwB0aaprn9dgVOWx9M94sCyDh+nSzrMANtkuMPQftlhq6Vh4yywJo9LLhUtlflthlAf5JiXZhObbL7/DaLoM82CDMLCt60S6zLICghSvNsvwa1DXLAsiNrG6W5U2wXZqd+F+715xn9a9mWQBfvPSjWdZtV3Q1y8pzjN+nIuWABoUiIiIiIhWMFxfeUm4ZUdr5Una0fFRERERERKQS00yhiIiIiEgF43FceEq5JUVp50vZ0aDQR67gIFxGNYU7u1Q1yQEIOGzbKCZ6zRGzLCfXrk0DgP/arWZZDd+0rY3b0dXuOd080C4LoM46o1YqAMbPaU7HJqZ5mwYGmGU5223rdalmty369m7VzLIA9rWyq59s+kiqWRaAO8WufnLDwx3NsgDi59i9H4JW2rXcAdg2rKFpXtXVdrVU3i22rxH/BMP63yzbz7iwb+xa23gzbVsC0cTuNZLXq61ZFsCoNlXMslytattlebJhuVmcSLmgQaGIiIiISAWjlhTiCz2TIiIiIiIilZhmCkVEREREKhgvLrylXPOn3UcrDg0KfbTpxib4BQebZIUYthiLXrbPLgxgQ4pZlBNkWMsGZLdKMsvyBNpOlgcdsKvtjP1is1kWAFWizKIcj23vM0+Q7fPQ5OntZln7To81ywLY086uDjB8u8csCyD2S8Marzy72kmAHefVM8sK3WH7R0zQ8k1mWduHJptlASRMtavBBvCm7zXL2j3Mtv7ML9suK2S37es3eI5df9K9/+pklgWwaOyLZlm9rrzGLAvAWz/OLMu9zq5e1+3Y1pyKlAcaFIqIiIiIVDBOGfQpdDRTWGGoplBERERERKQS00yhj+p+uAt/P5vlkN4Im2WopcFdza4dghNiu3z0YB27FgEx79vuKR1m+bhl2rUFAchua7f8LruK7UdH1M/GS9xi7JbKVlm+xywLgN12y+9cRkvZ8+Wl7TDLcgfatQUBCNtpt1TWZbvqlrxGCWZZsVNWm2UB2DYrAjx2D17191aYZQFknNXcLCv426VmWQCHBp9mlpVZy3Zm5pzGXc2yAg7bPm7ueolmWd6Gdu9TrycbbO9qqfA6ZVBTqD6FFYZmCkVERERERCoxzRSKiIiIiFQw6lMovtAzKSIiIiIiUolpptBHroxMXG6brarTu9cwyQH72oy9A1uYZVVZsd8sCyBmoWH7Da9tawUny25PdCehplkWQHoLu9rO2i8tMcsCWDWhpWle41vsbl/Dn23rJTYMq2uWlbdmo1kWAB2a2WWt2GCXBextYvd1Ff/tAbMsAPeBTLOsIx3qm2UBBH6z2DTPP96uRcC2C+zqxQCqbLRrI+Gun2SWBbCvkd1v8EnP29adEmv3t4h/nm3B7pbBdi2B4r8yrOc2rK0VKS80KBQRERERqWC00Yz4QstHRUREREREKjHNFIqIiIiIVDDeMmheX9r5UnY0KPwbVX/brsmNu2Z1sywAvxy77lYbL402ywKo/75hTaGfn10W4E2qZRe21LZuJC7Nrnefq4pdFkDySNuaWKdFY7OsDefsMssC2HuWXS/Lqjm5ZlkA2WF2vQV3/Lu1WRZA3NzDZlnO4t/NsgB2X9XJLCsvxPYPLP8rO9rmZdl9N9R+ZZlZFoCTa1dTuPkOu76CAGFpdo+bZ5/hdyDgH233eb56pG0tfOPJdvfVtd2u56zLm2OWJVJeaFAoIiIiIlLBqKZQfKGaQhERERERkUpMM4U+ymweh39AsElW4De7TXIAXAcOmmUB4NQ2i6r3kG37gsyzWpllhe+OMMsC8K5JMcvac3l7syyAyBS7dhmz3nvNLAugX8vepnnnv/edWdbLTw80ywJoPGyNWdb+hbZLsw/Xsls++vstL5hlAfT76HyzLKd5slkWQPWFhlvdZ2aZZQF4o8Js8wLtltyvf8jusxzAG2rXYqjhzQvMsgA2vNXaLGt/I7vlygD177NrW9Lw3UizLIDDdQ2/o5PssvJys2C6WVyp0Uyh+EIzhSIiIiIiIpWYZgpFRERERCoYzRSKLzRTKCIiIiIiUolpptBHoWt24O8OMsnK7djcJAdg7UUhZlkAjV9MN8vacVVbsyyA2C+3mGXl7bSr6wTwq1rFLOtwrO2vb9V+zTTLOrvu6WZZAPuGNjLN+/DGOmZZ3ttst3/f28vuecju2cAsC2BXZ7tt889bf7ZZFoAr2679Rm4t25Yqe1rYff5GbPWYZQEE7bWrJQZw59jdvvp3/myWBeCflGiWtem/tnV7jW+1azF0qKft56U7xGafBADniG2bnPA5KXZhn4WbReUdzlZN4Z+uQyoGzRSKiIiIiIhUYhoUioiIiIiIVGJaPioiIiIiUsE4gJfSXd5pV3QgfzcNCn20v31tsz6FkdNXmuQAxNWwq08EyI6zq7mp+dZysyyAtH+1Nsuq+bJtTSEuu8n3nGjbj9o1o+z6lTW6Os8sC6DK27a1RX4N6tplfVHTLAsg9wy758H/sO3zELPQrrYo671aZlkAAbnb7bJW29UlA8Q4drVsfovt+lgC9Fts97gBfNkixizLPz7OLAtg7Y12/XXrfnnELAvAFW33neoJMP4jP8DuT0HXlh1mWQAE2ezhAODpmWaX5djWToqUBxoUioiIiIhUMNpoRnyhmkIREREREZFKTDOFPtrRx4M7xGZL7vCP7LamD9182CwLYNdDdsvSYm+qapYFELbDbkv0rXecZpYFkNXMbslRwycPmmUBZCbaLVvMOredWRZA2DzbJXNbB9otXYxKMW4RsNJu6eLW4Q3NsgDiv9prlnUkIcIsC2DD/+yWGgZttFsmC5A0fplZ1oGBrc2yAGYOjjfN855h97w6qzabZQE0emKjXVie7dLsLVcnm2XVHr/ALAtg1786mmXV+HiVWRbAhmdjzbLqDbf7TnU5brDt9lIqNFMovtBMoYiIiIiISCWmmUIRERERkQpGM4XiC80UioiIiIiIVGKaKfRRg9ey8fe3+VXEHWZX4zVz+rtmWQD9WvSyCwu3u58Akd9vssv6JsssC2DrtXatQbJq2749cyLsfgOq8vshsyyAff2bmuYlTt1mlpWZbNuSYuf5DcyyQncad4j6w67eMTTL9nFLvtWu3nHvuU3MsgByOtrlRX1p16oIYNv1rUzzas85YJaV27yOWRaA/5INpnnlVVb/9qZ5NX5KN8s6cKZd7SRAw3vsWlxknGn3XsjLzYKvPjTLKy2aKRRfaKZQRERERESkEtNMoYiIiIhIBeM4LpxSnskr7XwpO5opFBERERERqcQ0U+gj/9Q9+LsDTbLyjtjVs/VL7maWBUBcNbMo7+ZUsyyArK529We5EX5mWQBRm+x62oX+sd8sCyDz9BizLHd2rlkWQNUF203zAt60ayDlf6/tfa3+5gqzrH0XtTXLAnAFBphltf94nVkWwFuLO5llJd+4zCwLwF3bri9mbiu7mlOAuOeXmOa56iWaZR2qadvLMiq2hlmWs8X2eytxil297paL7Z4DgLC1XrOsnOH7zLIAdofWNsvKrmo3o+XJ/mf8+ezFhZdSriks5XwpO5opFBERERERqcQ0KBQREREREanE/hnz3+VI3s5d4LJZYuXXqL5JDgB7bJdsbDmvullW4pe2vz0EzV5mlnXk4tPMsgCi3ltklpV5ju3SwOpf27XyGD5vgVkWwMT/XGyaFzQmzywrIMtuKSqAy2W31CYg027ZF4AruopZ1qI+Nsvs8zXas9QsK69zC7MsAPcPy+yyUoPMsgDcNew+ywE4eNgsKjzF9r46qXbtC/Zd2NosC6DKmgyzrPiZdu1ZAA62sCstANu/RarP2myWdaBjgllWXq5dqUhpUksK8YVmCkVERERERCoxzRSKiIiIiFQwakkhvtBMoYiIiIiISCWmmUIf+dVPws/Ppg7C+4fdFtXpw9qZZQHUeSfFLMuJCjfLAqBFY7OoKh/Ybte++b+nm2XVeXShWRbAqpdam2W9fuE5ZlkAUbvt6kYAnLAQs6wdZ9q1GwCogV3LgciV6WZZAJ6YSLswyywgr6XdNvxBS/4wywJwWiabZe1pG22WBVB99lbTvJ197Z6HGvPsagABDp7d3Cyr6tcbzbIANt3Y0CyrynrbWuLcMLuZnuoX2v1dA5DXupFZ1qF4uxZUnmzbdlalRTWF4gvNFIqIiIiIiFRimikUEREREalgVFMovtCg0Efezal4jVpSuILttuOOWWG33TVAyrAks6zo9bZbN/sftls6E7bLcituSHpimVmWK8lu+2yA5GfttpJ3Zdq2acjbuds0z9u1pVlW9LocsyyA3Ci7933w7gNmWQDOr3bLKtc9394sC6DBlFyzLFeo3fJiAGej3RLN6nsPmWUBZDaLNc2r9trPZlnpwzqaZQHsaeWYZfll1zXLAqj73BqzrNwPw8yyAALOt/scyT29iVkWQOAfdt8NsS+tNcvKc3JZbZYmUj5oUCgiIiIiUsE4ZVBTqJnCikM1hSIiIiIiIpWYZgpFRERERCoYB3DsVlUf8zqkYtCg0EdOywY4/sEmWZmxdnUtoTOWmWUB1FlvuKX/JU3NsgCqbztiluWE2jyX+XKSbespLAVt3W+Wte6GmmZZAPXvSDHN8z9gV/Po+NsuqLh+yqdmWRNvutgsC2DXxXZ1rNWW2v6pkNbF7usqcZlt3d7ewXY1rJGb7D7fAD6a/Ixp3rCzrjTLqj4v1SwLoOqqKLOsjMRQsywAcvPMoty9bduMOKF29zVwy16zLADniN37wV2/jl2WJxvsykRFygUNCkVEREREKhgvLlyUcp/CUs6XsqOaQhERERERkUpMg0IREREREZFKTMtHfZRVPQT/AJs6tPDVe0xyADwe216A6/9jVwfY6MU0syyAbQPjzLLiP0o3ywLw+tstowgx7BkHcKhbQ7OsuO/sekUCbHjydNO8yA12v3fFfmBbOPLs9UPtwvzsogAiN9s9rxEfLjLLAvCeYVe3546MMMsCyKpm977PrmJby3bZBdeb5rk3rTfL2vLvtmZZAHU+tKtRjEzZYZYFQIhd/frmUc3NsgCqrrJ731dZYfd3DcC+F6qYZUWMtXtv5eX9M+ZU1LxefPHPeFWLiIiIiIhIqdBMoYiIiIhIBeN1XLhKeSbPq5nCCkODQh+Fph3G389ma+mcOLvts4MOxphlAdS/d7FZ1q4r2pllAdT4NdMsK6eBbWuF4NQMuzB/27dn8N4cs6yApRvNsgAa/xJkmrf3rPpmWZkd7bIAgmYuMcvadpftstukN+yWLDdcZPuHwvcv2y2/q7nd9vUW9+V2s6zVd9p+ltc0fh68OblmWfGzD5plATj77fLWTkwyywJw+dm1aKn6jW27l58mvGSW1WCK7XLlxtfbLQnOseu4g8ZBUhFpUCgiIiIiUsE4Thk0r1f3+gpDNYUiIiIiIiKVmGYKRUREREQqGO0+Kr7QoNBXhnPxKSPstoGuNrOeWRZAtc9+N8uq+sZCsywAl5/dPvx+1aLNsgDydu4yy/rjsY5mWQCNnttiluVplGiWBeDevNM0L/qTFWZZTjPbmsJXUuaZZV0y6jSzLIBDHeye199vizXLAqi5cpVZlreBYXERsHGIXYuLpuPs6hMBnEOHTfNcNaubZWVF2dZ2ejo2MMtqMNyu9hcgt08bs6zg1L1mWQBnJ9p9jjQKX22WBUCwXS2xO8/uby7LLJHyQoNCEREREZEKRjOF4gvVFIqIiIiIiFRimikUEREREalg1KdQfKFBoY8y6kbgH2Czxr3uy3Z94/bZlVIczevf1Cyr6k9pZlkAeTXs+js2fNG2/mHWR53Msup+YdePEcCzw65uzx0WYpYFsH607Qs4cL/dl1SdV9aaZQEMHjPaLKvmD5vMsgBy6tcyy9p4kW29WPJyu33PrWtYG75l17vvcGO7mj2AkPm7TfMsd5/fcmagYRpErTcMO6etYRgE7zxilrW3jW0tfPQmu+fBMexjCbDlumZmWY7h2jhPtj8ssssTKQ+0fFRERERERKQS00yhiIiIiEgFo+b14otTGhSuWbOGLVu2kJ6eTkhICDVq1KBFixZERkZa3b5yZ09TP/yCbFoixP5kN1EbkGn7rqzyyTK7sOoxdlkAi34zi1rT2Xb5Uu12dtu/p3YPM8sCiI5tZ5YVtch2SXDQHtuahMQX7V4jec3rmmUBVH9vuV2YYXsAgAP17ZYFJ//Xrq0NAG6710hu4zizLIADDewet5if7NraALgi7dplAGweZtf+qP5HB8yyAPx27DPLWjWmtlkWQNP/pptlVT1iu0TT6/GYZeV1tlvuCVBtVZ5Z1uFadu2sPDkaCUnF4/OgcM6cObz66qvMmjWL9PSiH3Jut5s2bdpw4YUX8q9//YuYGOMBgYiIiIiIHNfRmcLSbklRqvFShk56UDht2jTuvfde1q1bh+M4xMXFMXDgQGrVqkXVqlU5cuQIe/bsYc2aNSxbtoxff/2VBx54gGHDhjFmzBhq1qxZmvdDRERERERESuCkBoXdunXjhx9+oHnz5owbN46hQ4eSmJh4zONzcnL47rvvePvtt3n33Xd5//33efvttznvvPPMbriIiIiIiBRPzevFFyc1KMzMzOTLL7+kX79+JxUaGBhI37596du3L7t372bcuHGsW7fulG5oeVHn6WX4u2zq0JzmdtvwpwwIMMsCiHw/2yzrwBnxZlkA23vY1Xo0mGJbmxG4Za9ZVtJ7dlkAzj67+h1vnl2dB0DEVtsaLwLs9tBaP8y2tULd0CZmWUG/2H6uVn031Swro7/tlv7hv9vVZAVus31vZbez+4zLq25bA5jR1rbuNOHZZWZZa55qbpYF0HiSXVbTB3fYhQGed+3q2TgnxS4LcCfYfacGLt1olgWQ8rxdDeuGnq+YZR085CX6DbM4kXLhpP5y+vXXX0t8BdWrV+fJJ58s8eVFRERERMQ3Dra9RY91HVIxqE+hiIiIiIhIJVaiQeGYMWN44oknyMnJOeYx8+bNY8yYMSW+YSIiIiIiUjL5NYWl/U8qBpfj+L6ZrNvtxuVy0blzZz799FOqVatW5JiHHnqIMWPG4DHsf/N3OnjwIFFRUfQKu8SsptDlZ1djsP1y29qMnCi7LL9j/3ZQIm7DMsAjNW0XPjR4dbtZ1pYLbftkJby+3ixrxwV29bAAVdfY1bAC7L3drl9k7vyin2+n4u4RH5hlTb71fLMsgKA5K8yy3CHBZlkAxNYwi3I2bzPLAqCxXS9L1449ZlkA+3va1WQBRM/dZJblRIabZQE4oXb1v4fr2N62kM8WmmW5/O1qpgEODT7NLsy4P0HU73a9Jy1vW54nm9lrn+LAgQPlsjd3/t+s9d76D36hxp/Ff+HJzOKPYY+W28dCTl6Jl4/WrVuXH3/8kU6dOrFhwwbL2yQiIiIiIqfCKaN/UiGUeFA4bNgwXnvtNTZv3kynTp348ccfLW+XiIiIiIiIlIFTWoNw5ZVXkpCQwAUXXECfPn14/fXXufjii61uW7mUek0L/IJspuLjJtgtJzmQbLtMt/Gdy82y0i9tY5YFEPPeUrMsVx3bdhnrH7Fbd1vrfdu2D66IMLOsWp/Ybju+elyCad6m0+yWaJ5zyRlmWQBv/tjfLCvkd9uWFK6YqmZZEVNt140fvNZuuX0JqiaOa9vZ0WZZXn+7LABPsO19jZ5nVz9k3X4jIM1uqWHwLts2T36N7Zbcew2XyQKE7rRbvu9/wLYUwBti9zy4t+02y8JrXBdTWsqi5k81hRXGKe8+2rt3b3766Sdq1qzJZZddxqOPPmpxu0REREREpJLxer1MmDCB5ORkgoODSUhIYNSoURw+fHL7Bfh6+RkzZtC5c2fCwsKoWrUqQ4YMYdOm4uun165dy6BBg4iOjiYsLIyuXbsyZ86cY96WVatWcemllxIbG0tQUBDx8fGcf/757Ny586TuS1kyaUnRtGlTfvnlF9q2bct9993H1VdfTW6ubVNwERERERGp2EaOHMntt99O06ZNefbZZxkyZAgTJ05kwIABeL1e08tPmzaN/v37c+TIEcaPH8/o0aOZP38+Z5xxBmlpaYWO3bhxI507d2bBggXceeedjB8/noyMDPr27cusWbOK3I6vv/6adu3asWLFCm699VZefPFFbr75ZrxeLwcPHjy1B6kUmG1hVbNmTebPn88ll1zC66+/TkhIiFW0iIiIiIj4wHHMN4Qt9jos/f777zz77LMMHjyYjz/+uOD0unXrcuutt/L+++9z6aWXmlw+NzeXW265hYSEBL7//nvCw4/uOnzOOefQrl07HnzwQV555ZWCjHvuuYf9+/ezePFiWrduDRzdY6VZs2bcdNNNrFmzBpfr6HLaXbt2cemll9KjRw8+//xzAgJsl6SXBtN9jUNCQvjkk08YOXIkEydOLHhgfLF27VrGjBnDkiVLSEtLIzc3l8TERPr168fo0aOJjY0tcvxdd93FvHnzyMnJoW3btjz00EP06tXL6m4VEvNbDv7+JhOs+FWPMckBSH7JcNtmwJNtVxdQ9fWfzbIAcrvb1SgGpu43ywKo9rndjyHhq3aZZQFg2B5mw9OxJz7IB03vsGvlAdA47QazrOBrbOslPIa7g1erlmwXBoR+97tZ1sF/2b5GwO716wq0aSuUr86HqWZZm4fGmWUBxM3KMs1zDmeaZfmnZ5hlATgZdrfNtWCzWRZA2q2dzbKi19rWs4Uu32qWtfYp2/d9tZl236nRv9ntlO91tBqutEyZMgXHcbjtttsKnT5ixAjuvvtu3nnnneMOCn25/Lx580hLS2PMmDEFA0KA1q1b06NHDz744AOef/55AgICOHz4MJ9//jk9evQoGBAChIeHc80113D//fezaNEiOnToAMBLL73E3r17+d///kdAQACZmZkEBASU68FhiQaFx5u6dblcPP3001x22WVkZvr+Ab1t2za2b9/O+eefT3x8PP7+/qxcuZJXXnmF999/n2XLllGjxtF+VfnTuP7+/tx5551ERUUxadIk+vbty8yZM+nTp09J7p6IiIiIyD9aWTSXz89v2LAhbvf/TZps316yH3sXLVqE2+0uGFzlCw4OpnXr1ixatMjs8vn/u1OnTkVyOnbsyJw5c1i3bh3NmjVjxYoVZGdnH/PY/Lz8650xYwaRkZHs37+f1q1bs3z5ctxuN507d+app56iffv2J/FolC3bDqh/UtI727t3b3r37l3k9G7dunHRRRfxxhtvcOeddwK+TeOKiIiIiEj5lZaWRkxMDEFBRXfZjYuL46effiInJ4fAY6z48OXy+TWDcXFFV2jkn5aamkqzZs1O+th8a9euJS8vj7PPPpshQ4Zw3333kZKSwtixY+nRowcLFy6kWbNmJ3o4ylSpDQqt1alTB4B9+44uk/R1GldEREREpNJwXKXfMuL/569fv57IyMhTjsvMzCx2QAdHZ/vyjznWoNCXy+evaCzu+D8f++f/PpljAQ4dOoTH4+Gyyy7jjTfeKDi9Xbt29OzZkzFjxvDBB3btsyyc9KCwXr16Poe7XC42bixZP7OsrCwyMjLIyspi1apV3HXXXQD069cPwOdpXF/9tXYxf8ls0I+r8HfZ1KN4GySZ5ACwIcUuC/CLOvU3dj5vxsltIXyyAtMOmGU5YYYFXkD0nD/Msnb1r2+WBVDzG7u6kQY3pJhlAaQOs/21rP5Eu9oRl/X6f8OqfG+MXV9MACfPrjemY9xLLb2t3WdS9V9sfw91tqSd+KCT5JdlW1O4tbftZ5z3HLv3aoO39phlATgnuV39yXAH2z5usa+vNMty1a5plgVwpLldv976ly8zywJwB9t9jmT0a22WlZebBV98aJYn/yc0NJRdu4rfUyErK6vgGIvL5/93djH7aJzKsXB0n5WMjAyuvPLKQsf26NGDxMRE5s6de8z78Hc56W/GlJQUn8NPZenm5MmTueWWWwr+f1JSEu+88w5du3YF8HkaV0RERESksvgn7j5au3ZtVq1aRXZ2dpFZudTUVGJiYo45S+jr5WvXrl1wepMmTYocC/83pvjzsX/112MB4uPjWbNmDbVq1SpyfGxsLEuWLDnmffi7nPQ2mps2bSry79Zbb8XlchV73qZNm/jjj5LPmgwaNIhvv/2WTz75hPvvv58qVaqQnp5ecL6v07i+2r59e6F/69evL3GWiIiIiIgcX/v27fF6vSxcuLDQ6VlZWSxbtozTTjvN7PL5+58sWLCgSM7PP/9MZGQkjRo1AqBFixYEBQUd81igUHb+SsVt27YVOX7btm0Fm2aWJyc9U5hf0/dn0dHRxzzvVMXHxxMff3RJw6BBg7jgggto3749mZmZ3HPPPT5P41pxhYTgMlo+eqiR3dKvsLUnbubpi63X2S0Rchn/ipTw6hqzrIOtGpplAVTZvd8sq8YC26VVHsOlhl/98qVZFkDf2nZLggEOXnC6WVbYJ7+aZQH4J9otD8yKDT/xQT7Ydmlbs6yGj60yywKottTuNZIzK9EsCyBgdIJZVrXf7NoBAexsb7uMt/7LKWZZnhrRZlkA+89vaZZVdelesywAZ6td252qr6ef+CAfbHvE7nnwjzNuReO2q4cLX2/3GZLnsX2flhrn//8r7eswNHToUB599FGefvrpgtWBAJMmTSIzM5PLLrus4LSNGzeSm5tLcnJyiS7fvXt3YmNjmTx5MiNHjixoS7F8+XLmzp3LVVddVdBCIjw8nAEDBjBt2jSWL19Oq1atAMjIyGDy5Mk0bNiwUMnaFVdcwVtvvcVLL73E2WefXXD6F198QWpqKiNGjLB6yMz8YzaaadmyJW3atOGFF17gnnvu8XkaV0REREREyq8WLVpw00038dxzzzF48GD69evH6tWrmThxIt27dy/Uo7B3795s3rwZ509rWH25fEBAAM888wxDhw6la9eujBgxgoMHDzJhwgSqV6/OQw89VOi2PfbYY8yePZuzzjqLkSNHEhkZyaRJk0hNTWX69OmFyub69OnDJZdcwpQpU+jXrx/9+/dn8+bNPPvss8TGxvLggw+W3oNYQv+YQSHAkSNH2Lv36K93vk7jioiIiIhUFmXZp9DS008/TVJSEq+88grTp08nJiaGW265hTFjxhTqhWhx+SFDhhASEsLYsWO54447CAoKonfv3jz++ONFJpcaNGjAjz/+yN133824cePIycmhbdu2fPXVV8X2Rn/rrbdo1aoVr732GiNHjiQqKooLL7yQRx55pGByqzwpd4PCHTt2FFuU+d133/Hbb7/Ro0cPwPdpXBERERERKd/8/PwYNWoUo0aNOu5xx9oE82Qvn69///7079//pI5t0qQJn3322Ukd6+/vz1133VXQQaG8K3eDwhtuuIHt27fTq1cv6tSpQ1ZWFosXL+b9998nIiKCJ598suBYX6ZxrWS3SsLjb7NVdcBBu+3f0261nRUN2W23SLzqa0Vnc09FTk+7uqfAgx6zLAAC7N5Szkn8GuaLva3stvT/z0672h2Arfd1Ns1LesluY6iUD5uc+CAfxLxtV+vc7SHb99aSCxuYZWV2amSWBRD87VK7rKtti2D2d7Cr7Yz4ZLFZFkCd5bZ1e6vG2e0hUPsrP7MsgD2t7L7zq/6Sa5YF4Gnue1uvY9l3kW1NYVCqXd10nsv2e8u/jl27jAPNq5hl5eVmgW3ZtMjfrtwNCi+55BLeeust3n77bXbv3o3L5aJOnTpcd911jB49msTE/9sgwNdpXBERERGRSqO0N5qRCuOkB4XdunUrctqWLVuOeR4c7VM4b948n27QRRddxEUXXXTSx/syjSsiIiIiIiKFnfSg8IcffvD5vNJYvikiIiIiIsf3T91oRv4eJz0o3LRpU2nejn+MgAWr8XcFmGT5xVQzyQGolVndLAvAvfB3uzB/21XKgStS7MKMb9uBLnXNsjxBth+00W/+bJa17DO71y7Aqt9fMM3rO7aNWVb0B3a1QAARy+36lS280a6+FsAdbdfv1C/Htncqfnb1ZzmJMWZZAK3uXG6WtemrELMsAFewbZ/C5AkZZlnujEyzLIAqP9nV6Xt27jLLAgjw2LXIcnJt6x3TphnWTf9UxS4LiH92iVlWlV/t6h3/MX0KRXxwSs3rRURERESkHPoHNq+Xv4/tNlEiIiIiIiLyj3JSM4XH6h3oi507d1KzZs1TyigPXP5+uFw2Sw6dQ3bLcAL+sG2tsHmUXY/HhGfsln8A7D6vsVmWx3ZlFdWXHTbL8t++zywLYPv1Hc2yan20ziwLoOvN15nmRdbdaZZV5edUsywA7/4DZlmH28eaZQGEf/SLWVZAQKBZFsDBwXZLZfc0t12anfVoK7OsbU/YLrsN2Ge7RL7B42vMsg51a2iWBeB/xO6xCzb8fgY41Mru75+ccNvf86uF7TDLCv7O9rY5Hrvn1GXYMgq3cTurUuP6//9K+zqkIjipd2+9evW466672LXL9zX206dPp3379rz88ss+X1ZERERERERK10kNCm+//Xaee+454uPjGTBgAG+//TYbN24s9tjDhw8zb9487r33XurUqcN5552Hy+Vi0KBBlrdbRERERESOxSmjf1IhnNRc+tixY7nuuusYM2YMU6ZMYcaMGQBERkZSs2ZNoqOjycrKYu/evaSlpeH1enEch5YtW/Loo49y2WWXleqdEBERERERkZI56QXWCQkJTJo0iSeffJL33nuPWbNm8eOPP7Ju3f/VFgUGBtK6dWt69OjB4MGD6dSpU6nc6L+TKzAQl8umVsazf79JDoCf4XbtADWW5tiFuW1rDG6662OzrI/6dTbLAvBEhZllHWlYwywLoOO/lppl/THZtu5pTzPb12/417vNsrzNbFtSuHbZ3bZDibaPW5XYU6sdL8T4M2l7X7t2A9GLbNoK5Qubscwsq8ncULMsAPxsP39zWtu13Yn4dZtZFkBmC7u2D9uvaG6WBVBlg913amiGbT2b9xm7llbuA3vMsgBctey+B3Oj7d5beXn/kH0atfuo+MDnqtvIyEiuv/56rr/+egByc3PZs2cPISEhREVFmd9AERERERERKT2nvBVTQEDAKe9MKiIiIiIihhzX0X+lfR1SIdjuVV0JeA9l4HXZLD3a+MTpJjkAjZ/bbpYFELxpr1mWJyvbLAvgpbGDzbKi05aZZQE4KblmWQGO7RLNmSvbmWU1qbrFLAsg6ZnfTPO82XavOXe23bJFAFdSgllWzV+PmGUBePftN8tyx9q2IGr6kF2bkSONbW/bvqF27TKqfV38Jm4lteu8+qZ5Iel2n0v+tauZZQG4c+xu24FGtp+/mbXslizXHbPYLAvAc3pTsyzXEdvve+fgIbMs/0i78g48tvdTpDz4hyyKFhERERERkdKgmUIRERERkQrGcY7+K+3rkIpBM4UiIiIiIiKVmGYKfZRxbmv8A4JNsho/kWKSA7D+VrttwgHyIuzqKRreutksC6DKR3atFQi0aS+S78CFrc2yTO8n0PiGlWZZjsu2sNyyBhDAr1pVs6xNA6PNsgCqbLB7b1X9Kc0sC8AJCTHLOpxs21IldKFdrV3ALNv3VuhZdjWF2c3tak4BavxkVx8OQLZda4WNj0SYZQHUv3WrWVbjnw6aZcHRdlZWnADbP912nm7XqqF2tt1nL4CTtsMsy/9AhlmWy/sPqSlUSwrxgWYKRUREREREKrESDQoPHbLbDUpERERERIzlt6Qo7X9SZvz8/LjssstKJbtEg8LatWtz7bXXsmjRIuvbIyIiIiIiIn8RERFBYmJiqWSXaGF6jRo1mDx5Mq+++iqtW7fmuuuu49JLLyU8PNz69pU7kd+txd9lUxvgfGb3eDW82rZPIZl2/c+yu7cyywIIStljlpVySZxZFoB/h31mWdW+s+3htenKJLOspGdt+woeuKC1aV61H+1q7eo8utAsCyC3m+37wVJG94ZmWaGptj0U975tV6tU7Tq7GioAl2GNojsq0iwLYMPz8aZ5DR62y6p/4za7MGDr1clmWTEr7HrOAri8doVXm/vZ1hTW+dKwr+tB2/e9E2jX3/Fwq9pmWXm5WZBqFldqXM7Rf6V9HVJ22rRpw6pVq0olu0QzhRs3buTrr79m8ODB/Pbbb9xwww3Url2b6667jl9//dX6NoqIiIiIiFRqd911FzNmzODbb781zy7xz01nnnkmZ555Jrt37+a1115j8uTJTJo0icmTJ9O6dWuuv/56Lr30UsLCwixvr4iIiIiInIh2H61wdu3axdlnn80555zDoEGDaN++PbVq1cJVzK7ww4YN8ynb5Th2bSdnz57NpEmT+PTTT8nNzSUsLIxLL72UG2+8kZYtW1pdzd/i4MGDREVF0bvqlfi7bZaPevbaLTW07h76ddoys6zT777BLAvgl3EvmmWde8ZAsyyw3YZ/7quTzLIAmr54o1lWtd89ZlkAodN+Mc3zq17dLsxtW0S/98x6ZlkRW223RU87w64lReLTy8yyALb8u7VZVuRmu7YgAP5Zdp+/EWv3m2WVhg2X2S3jrXvvz2ZZAF+n2i3jPadeR7MsAHdsTbOsvZ1izbIAqnzxu1mWK9TuMwTAiY2xy/ptnVlWnpPLd3kfc+DAASIjbZd8W8j/mzXh6TG4Q2zaqB2L90gWW2+7v9w+FhWN2+3G5XLx1+HbnweFjuPgcrnweHz7W810YXr9+vWpV68ekZGRpKenc/jwYV555RUmTZrEhRdeyMsvv0yVKlUsr1JERERERP6qLHYH1e6jZer1118vtexTHhR6PB4+++wzXn75ZWbPno3X66V+/frcddddXHnllSxdupTx48fz0Ucf4efnx3vvvWdxu0VERERERCqN4cOHl1p2iQeFKSkpTJo0iddff52dO3fidrsZMGAAN9xwA2eddVbBcX369KFPnz4MHjyYr776yuRGi4iIiIjIcaimUHxQokFh3759C2YFa9Wqxb333su1115LfPyxt75u3749n332WYlvaHnhxNXA8QsyyXLH29UYHK4bYZZ11DKzJMsaQGvTf/znvyZP1qobXjDLsq4TTX2zrWneH2e+ZpbV+DXb+1r/zZ12Ye4SbSB9TFVX29RLA9AoyS4LqDN1h1mWs2O3WRZQbIF/SW2+qblZFkB149YKDd5ON8tK/XcnsyyAHtecZpYV3CLLLAsgJ9SuWifyfdse0RvGdTDLSvw6xywLIC/Ezy4swe57Ji83C2Z+bJYn4qvPPvuM9957jzVr1nD48GE2bNgAwOrVq/niiy+47LLLiIvzre1aiT6lvv32W3r27MkNN9zAoEGD8Pc/ccyAAQOoXduuR4yIiIiIiEhl4TgOl19+Oe+//z4AISEhHDnyf/1Bq1atyr333ovH4+Gee+7xKbtEPzOvXr2a2bNnc+GFF57UgBCgefPmpboOVkRERERE/j+njP5JmZk4cSJTpkzhmmuuYe/evdxxxx2Fzq9ZsyZdunRh+vTpPmeXaFDYuHHjklxMRERERERESuC1116jbdu2vPzyy0RFRRVbvtCgQQNSUlJ8zi7R8tGPPvqIF198kbfffrvY9aqpqakMGzaMm266icGDB5fkKsqtLedUwS/IpudLnS/s+hQG7s8zy6pMzq5jV0sBkN3Lrh/nd69PNsuyZl0n2uIpux6KAJ1nXG+WVc1l+zOoZ+Nmsyyno239mf8Ru/59rq12NYAAREeZRR3pmmyWBRD6y0azrPhxC8yyAFLvtK3bS9hqV+MV97VtbSe799plGff+9Yu0q/vP7dTCLAugyhq7rKDlKXZhQHBEuFmWN93u9ZHn2NZOlhptNFPhrF+/nhtuOP5eBzExMaSn+17/XaKZwsmTJ7Nv375jFjDGxcWxf/9+Jk8uv3/UioiIiIiI/FMEBgaSkZFx3GO2bt1KZGSkz9klGhSuXLmS9u3bH/eY9u3bs2LFipLEi4iIiIjIqchvXl/a/6TMtGrVilmzZpGbW/zO0ocOHeLbb7/ltNN83425RMtH9+7dS40aNY57TEmnLsu714c9R3iEzTbw151xmUkOwIJWU8yyrJ1xm91SPoDRj7xjlnXk7NZmWQChc1ebZfXrdr5ZFkB2YlWzrNnvvGqWBbDydrt2GdZOe8C2JYVfvUS7sPVpdlmAv9djluU9cNAsC4B6vm2tfTxha2yXLW4eYbccNX7CYrMsgDpv2i1tBcitV8ssy73wd7MsAHddu/eWK9O2JYUnxvdf7Y/F9dNysyyAiBC7Vg2rx9Q3ywJo8IFdSxVvvRizrLy8LJhrFidy0q655hqGDx/OlVdeycsvv1zovPT0dK666irS09O57rrrfM4u0aAwJiamoB/Gsaxfv54qVaqUJF5ERERERE6Byzn6r7SvQ8rOFVdcwaxZs3j77bf5+OOPC8ZaTZs2ZePGjeTm5nLNNdcwcOBAn7NLNOV1xhln8Pnnn7Nu3bpiz1+7di2ff/45Xbt2LUm8iIiIiIiI/MWbb77JpEmTSE5OZvfu3TiOw5o1a2jYsCEvv/wyr7zySolySzQovOOOO8jNzaVLly4899xzrFu3jsOHD7Nu3TqeffZZunTpQl5eXpHeGSIiIiIiUgbUp7DCuvrqq1m2bBkZGRls27aNQ4cO8dtvvzFixIgSZ5Zo+Wj79u154YUXuOmmm/j3v/9d5Hw/Pz9efPFFTj/99BLfsPLqjruvxz/ApiXFghdKNpIvCx3usaujqvrHIbMsgNu/sqvFbPL7TrMsgMPd7GqLwn6z3dL/UGKgWdYrB2qbZQFcG2VbG2cpZoltbZzrSLZdWESYXRZAjl39TnZ729qikMUpZlmrH6hnlgUQus0uy2nVyC4M8GYbtysqpidWybNs6vPz7e1w/L0OfBH9ie1GeQe72tU7VtlkVx8O4P7Brraz6caaZlkAeZvsWvik39jZLMuT46imUMqFkJAQQkJCTLJKNCgEGDFiBF26dOGFF17gl19+Yf/+/VSpUoWOHTtyww030KRJE5MbKCIiIiIiUtl17NiR3r1707NnT7p06UJwsM1EFZzCoBCgSZMmPPvss1a3RURERERERIqxYsUKFi5cyLhx4wgMDOT000+nd+/e9OrVi44dO+Ln51fi7FMaFIqIiIiIiEjp279/PwsWLGDWrFnMnj2bn376ifnz5/Pggw8SGhpKly5d6NWrF7169aJdu3Y+ZbscxylxiajH42Ht2rXs27cPj6f4/lbdunUraXy5cvDgQaKioti3rh6RRn0Kz15zrkkOwLav65hlASS+utYs68hptvU7wT+uMcvK7GG7zNmda1dxvXmAbb1N40l2tZ2ekACzLAC/Q4Z1dsDMb943zbPU8G27et2ITWZRANT41e414iyx69kJ4OneyizrcKxdfS1A1EdLzLLSPrKtxczYZtcfD6DxPavMslxBts9DynWNzbKckv/YXqy6U8tv32bP6vVmWXuv7GiWBRCzeJ9Z1p620WZZnpwslr17LwcOHCAy0vY9ZiH/b9Y6j4/Fbbi8sDjerCw23/XfcvtYVHQZGRnMmzePOXPmMGfOHFasOFoP7XK5yMvzraa8xDOFDz/8MBMmTODAgQPHPe5Yg0UREREREREpmfDwcNq0acO+ffvYu3cvqamppKeX7EeoEg0K//e///HAAw8QFRXFFVdcQUJCAv7+WokqIiIiIlIuOK6j/0r7OqRM7d27l++++65gdnDdunU4jkPVqlXp3r07vXr1onfv3j7nlmgkN2nSJOLi4liyZAnVq1cvSYQAW2fZLfmsM822fYF7qt2ynsAei8yyANy17La8DptntxQVYPcFzcyynNAcsyyAfc3slnV4Am2/BMIuOf6Kg4pk/RUvmmWddeFwsywAb4DdmrnUu2xbEjmGq6mrL7dt0+A9zW4Zuus72zYjRtUOBVyGPwDnNYw3ywLwM/zI9ATZZQHsb2HXRiJ4j13rGIDd/TuZZUWvtX1v7exst+SzxiK79kJ5HtuSB5GT1aZNG1auXInjOISFhdG1a1euueYaevXqRevWrXGdQtugEn26b926lREjRmhAKCIiIiJSHpVFc3k1ry9Ty5cvx+VyceaZZ3L33XfTtWvXU9px9M9K9BtizZo1fS5eFBERERERkZIZOXIkLVu25Ntvv6V3795ER0dz7rnnMmHCBJYvX35K2SWaKbzooov45JNPyM7OJijIeI2FiIiIiIicGs0UVjhPPvkkcLSuML+mcM6cOcycOROXy0W1atXo2bMnvXv35tprr/Upu0QtKTIzM+nbty9VqlRh4sSJ1K1b19eIf5z87X3bXTQWvwCb7X2rfr/NJAdgwxN29QoANd+z28I4ZGeWWRbAuuvs2iE0+Z9djQEA23fZZdW0XZ69dWANs6yESbbtBja+lGCaZykvNdQ0b+PFL5llnX3uZWZZAO5MuzoZz9oNZlkAf7zX2iwr+psQsyyAmJ/s3vdrbo0xywJoMj7NNM+bvtcs60j3pmZZAIH77IoKc6rYtssIXbjRLMtjXYu5IdUsa99ZDc2yAKqs2G+WtbOLbUuK3179B7SkePSRsmlJ8Z/y+1hUFmlpaXz44YeMGzeO3bt3l11LiubNm5Obm0taWhozZswgKiqKKlWqFDnO5XKxcaPdB6GIiIiIiJyYyzn6r7SvQ/4ehw8fZv78+cyePZvZs2ezcuVKvF4vABERET7nlWhQ6PV68ff3JzExseC04iYcSzAJKSIiIiIiIn+R36h+9uzZLFq0iLy8PBzHISQkhJ49e9KrVy969epF+/btfc4u0aAwJSWlJBcTEREREZGyoJrCCqdnz54ABAQE0L59+4KehJ06dSIw8NSWvavjvI/yAl04Rj3a8uLs6gDrXbPJLAvAXSXKLMuzw7DODmh6n12t3aHT4syyAELD7dbu++05ZJYFUGOxXb3YoZ6NzLIA7m31sWnehzt8/4XsWHKetqvFBBh/Vn2zrK+mv2uWBXBOvY5mWXv/Zdf7DGB9D7v+jj3eHWGWBZBbw/dlOsfSZGyKWRaAk2vb087JtvscCZmz0iwLYMc1bc2yDiV5zbIA6n9t14vVb5/tHgKeBnbfg1Grbb+3tj1s12hz5el2nyEHD3mJftUsTuSk3XHHHfTq1YuuXbsSFmbb1/aUB4WrV69mzZo1ZGRkcMUVV1jcJhERERERORWaKaxw/ve//5Vadol/glmyZAlt27alefPmXHjhhVx55ZUF582bN4/Q0FA+//xzi9soIiIiIiIi/9/27duZOXMmU6ZMYcaMGWzfvv2U8ko0U7hmzRp69OgBwG233cbatWuZOXNmwfndunWjWrVqTJ06lfPOO++UbmB5U2VdJv7+NstKvp72lkkOwLmdBphlAezqZbfldY2vfNsS90T29LBrXxC1IdMsC8CV6zHLOtTSdtli8E67ZV+Ra3eYZQG837GZad7aB+qYZdVMPPExvnhtal+zrNHXvmCWBTDzj5/Nss7tZNtSpc8f/zLLClm8xiwLwBVq1+LCW6uaWRYAf9i1PgJwNW1gluXeY9sSqOoqu8+42lNtHzdvmF1rm0Gf/mSWBTCtRW2zLFey3esD4O6m35rmiVQEW7Zs4YYbbuCrr74qcl7fvn154YUXSEpK8jm3RIPCBx54AK/Xy+LFi2ncuDEPPfRQoUGhy+WiU6dOLFq0qCTxIiIiIiJyCtSSouLZsWMHZ5xxBqmpqSQlJdGtWzdiY2PZvn0733//PV999RVdu3Zl0aJF1KpVy6fsEg0K586dy+DBg2ncuPExj0lMTOTrr78uSbyIiIiIiIj8ydixY0lNTeXxxx/n9ttvx8/Pr+A8j8fDhAkTuPPOOxk7dizPPfecT9klqik8cOAAsbGxxz0mJyeHvDzbZYMiIiIiInISHFfZ/JMyM336dPr06cPo0aMLDQgB/Pz8uOOOOzjzzDP58ssvfc4u0UxhbGwsq1evPu4xK1asKNF61vIuYPdB/N02dQvndjjXJAdg9Wjb1gp1ZthtY36gs119F0D0J3bbmG+9pZVZFkBmbbuawuTn95hlAbhy7X6kyWhj3Mpja4ZpXvLEUyu2/rOsujFmWQBVVhpu2X6tXZS1DSPs6pIBbj5/hlnWl1d3N8sC8FtvV39mWZcMcNbPW03zXpzW3Cyr7ljbVko7r0gyy0pcaduSIq+VXSuaaS2OmGUB+MX6tsTsePY1q2KWBXBZhO33oMg/3fbt27n00kuPe8xpp53GvHnzfM4u0Uxh3759mTlzJgsXLiz2/G+++Yb58+dz7rl2gx4RERERETlJThn9kzITFRXFli1bjnvM1q1biYyM9Dm7RIPCe++9l4iICHr16sV//vMfVq1aBcBHH33EyJEjGTBgANWrV2fUqFEliRcREREREZE/OeOMM5g6dSq//PJLsecvXLiQjz76iC5duvicXaLlowkJCXzzzTdcdNFFjBs3ruD0iy++GMdxSEpK4uOPP6ZmzZoliRcRERERkVOg3Ucrnv/+97/MmDGDrl27cskll9CjRw9q1arFjh07mDt3LlOmTMHtdvOf//zH5+wSDQrh6HrVdevWMX36dBYsWMDevXuJiori9NNPZ+DAgQQEBJQ0ulxz9uzDcQWaZHkO2vVoSn7UrgYQwKle1SwraM0GsyyAg+e3M8tKeHqJWRbA42vmmmXd/bBt78nsZnb9HQMybDeRcqcfMM1L72nXXDD6Q9vXiBNo8/kB0Pvyq82yAGa/86pZVo3FtjVZfa9YZZY14YbeZlkAVX4+9k7cvho3arJZFsCEQReY5sUm2r33d13V1iwLIP5ru88RV3CQWRZA4La9dmFxx9/oz1e7etvV/2YklN9NR85bf7ZZVu7hHOAVszyRk9W2bVumTp3K8OHDefvtt3nnnXcKznMch6pVq/Laa69x2mmn+Zxd4kEhgL+/PwMHDmTgwIGnEiMiIiIiIpbKouZPM4Vlrn///mzZsoVPP/2UpUuXcuDAAaKiomjTpg2DBg0iLCysRLmnNCgUERERERGR0rVlyxYWLVqE2+2mffv2XHbZZVx22WVm+SUaFI4ZM+akjnO5XNx3330luYpy60iHBvj7B5tkhSzZbJID4Nm12ywLwJ1x2C4ryW7ZIsDuNiXaH6lYecFtzLIA7u5nt2zROXT83aV8FfpQmlnW9jfqmmUBBFWzbV9Q7dd0s6xtN9stVwZIeD/FLCtohV2Wte+ff9k4sWS/fBanyQN2rw+AbefbvX6fPru/WRYAYbbL+Q7F2/2WHPu13WcSgCdth1lWZo8WZlkAwT8cv42XLw70t71tljM9q697wS7MWO6t0WZZeR6b1mSlrgxqCjVTWDbuuOMOnn76aRzn6APudrsZNWpUob1dTlWJPt0ffPDBY57nch39AnIcp0IOCkVERERERMrClClTeOqpp3C5XCQnJ+M4DmvXrmX8+PG0a9eOIUOGmFxPiQaF3333XbGn79+/n0WLFjFx4kTOPfdcrr/++lO6cSIiIiIiUgKqKawQJk+ejL+/PzNmzKBPnz7A0Z7w5557LpMnT/57B4Xdu3c/5nkDBw5k6NChdOjQgYsvvrjEN0xERERERKQyW7FiBQMGDCgYEAKcddZZDBgwgB9++MHsekplo5kWLVowcOBAHn300Qq3M6nX3403wKamzRVktzV95qAOZlkA++v7mWXFv7DMLAug/nt2W4UfSYwwywLIiwoxy/I3bF0AkNvvkFlWTEPbFhLeZXbtBgCclslmWe4csygAnMN29brbL29mlgXQ7Fm71gq5Le3uJ8C67m+aZXkjQ82yAGJfWGyW5Yq17e/rrN1kmhcd3dQsy8k8YpYFkNPdrtYu5Jf1ZlkArohwsyznSts9BALeqG6aZynDm2WW5T6YaZfl/YfUFEqFsG/fPpKTi/5d06RJE7744guz67HbseMvEhMT+e2330orXkREREREjsUpo39SqrxeL0FBRSdEAgMD8XrtegKX2qDwl19+ISTEbtZERERERESkssnfyLM0lWj56JYtxW+Vn5eXx9atW5k0aRI//PADF1100SndOBERERER8Z2rDFpSlHrLCwHgySefZNKkSYVOO3jwIHB0deZfuVwuNm/2rfVdiQaFSUlJxx2xOo5Dw4YNeeKJJ0oSX66F7MzE389jknWkaaxJDkB6S7saQICsRLtCKqeJbU87d8p2s6x9Z1Y1ywKIn2LXW3D3YNt6serz7HqCeX7fYJYF4A6z60EHsH54FbOsxJm2tSOHetrVO8Z+YFv3lHp5Q7Os2i8ZL0Q59v5mPlt7bZRdGPDH4F/Mss7tNMAsC2Dt/1qZ5jX890KzLG9bu/pEgODN++3C/Gy/UwM+sMs6+LVt3envE8pvb8GhHS8wy9pwfW2zLG9WFjxsFidyQgcPHiwYBP7Vtm3bTK6jRIPCYcOGFTsodLvdREdH06FDBwYOHFjs+lcRERERERE5Mcu6weMp0aDwjTfeML4ZIiIiIiIi8ncolZYUFZnfrv34uY1mQKODbXKAGkvyzLIAgr7NNcvadH6kWRZA3YfslszFfl/8VHxJObl2j9uhRNui4qrb7JbduusmmGUBbLrEdjlUyA7DrDWGYUBInt171cm17ZdRY4ldi4DsKgFmWdb+GPyyad6Zl1xllhXylt37FCBin+1nnKkVtsufHT+7JcvumGpmWQC5l9lluS+1y7J2wGvbZgTDz8v6b9h9lud5svnDLK0UqXm9+KDUdh8VERERERGR8q9EM4X16tUr0ZW5XC42btxYosuKiIiIiMjJ0e6j4osSDQq9Xi+5ubls3350mYufnx8xMTGkp6fj8RzdmTM2NpbAwMBCl3McvXJERERERETKkxINClesWEGfPn2oU6cOjz32GF26dMHPzw+Px8P333/PPffcg9frZdasWURERFjf5r/Vvk7x+AfY1AJWWbLbJAcA66aW6XvNouqvNv4xICzELMp8P6cYuxYXWXVs68Vyu7YwywpctM4sC6DuM+mmeQd727V98KbvMcsCcIWFmmV5DtjWi23tZffeiptn28rjrAuGm2Xtu9e27mnRlNfNsppPvNEsCyDxC9vXL43qm0Xt7lzdLAsgZvE+s6yhH84yywKYMvRMs6yVt5XfFhKXnjbINC/tQrvXW80FB8yyvB7bliWlSvMxcpJKVFN47733sn//fubOnUv37t3x+//9fPz8/OjRowffffcde/fu5d577zW9sSIiIiIiImKrRIPCTz75hIEDBxZZHpovODiYgQMHMm3atFO6cSIiIiIiIlK6SrR8dM+ePeSeYOv93Nxc9uwxXrZSDkTN+A1/V/GDYV/ltWlkkgMQkGa3bAZgy+RaZlltam0zywLYNL6JWVbkTylmWQBbLrdb6tL0gc1mWQDeKnZLuVOvtVuKCjDhRtsWAeObZpll7bi6nVkWQEai3VqevBi7FigAm/rZLUurH3W9WRbAd4OfMcuadqi5WZa13261XRr48b9sWwLdMftis6zHer1vlgXw2pXnmWU99fxFZlkAh4aXTfPpkujX7XyzrM1XxZplAdSZbNe2JK9RnFmWN89jllWq1JJCfFCimcL69eszdepUDhwofn32vn37mDp1aol3KRUREREREZGyUaJB4fXXX09aWhodOnTgrbfeIiUlhSNHjpCSksKbb77J6aefzo4dO7jpppusb6+IiIiIiJxAfkuK0v4nFUOJlo/efPPNrF+/nmeffZarrrqqyPmO43DLLbdw4422u6iJiIiIiIiIrRINCgGeeeYZLr74Yl577TWWLl3KgQMHiIqKom3btlx55ZV07tzZ8naWG57m9XH527SkcGfa1QOtvdl2HX/dp+y2k0/fa3vbop7fYpaVtznGLAsgYYZdawXn4CGzLACXYV5W9WizLIBHbij649KpCKm10yyr1o+29brumZlmWd5dtq08Wi+3+yGvwXMLzLIArpt8jVnW4Qa2dXafZ9jVF81561WzLIALwm3bllww8BXTPEtZr880y7oycpdZljWPY1uf6Mqw+0zKTMwzywJw+du1fnAvXGWX5djWc5ca1RSKD0o8KATo1KkTnTp1srotIiIiIiIiUsZOaVAoIiIiIiLlT1nU/KmmsOIo0UYzAB6Ph2eeeYbTTz+dqKgo/P3/b3y5bNkybrzxRtatW2dyI0VERERERKR0lGimMCsri7PPPpvvv/+eatWqERERQUZGRsH5devW5fXXX6datWo8/PDDZje2PMioE4JfgE1NYeT7v5jkACRWa2uWBeD4u+yyAuxqAgC8g+zqHzbek2SWBVDv44wTH3SS7l023ywL4KFrrjbL8sTZ9QEECJyz0jTPGxRklpXZ0rYmNvxXuxpFV7ztbcuoY1erVDvKtm7PdeiwWVZYSol/Dy1W3Ul/mGVtzLX7DAGoHxBumleelec6QEvnDhxmG5hg933fZKJtDbZz2O773snNsctSTWHh65AKoUTfjI8//jjz58/n4YcfZseOHVxzTeENAKKioujevTtff/21yY0UEREREZGKz+v1MmHCBJKTkwkODiYhIYFRo0Zx+PDJ/Tjo6+VnzJhB586dCQsLo2rVqgwZMoRNmzYVe+zatWsZNGgQ0dHRhIWF0bVrV+bMmXPC27RixQoCAgJwuVxMnTr1pO5HWSvRoHDKlCl069aN//znP7jdblyuor8y1a1bl61bt57yDRQRERERER85ZfTP2MiRI7n99ttp2rQpzz77LEOGDGHixIkMGDAAr/fEK1p8ufy0adPo378/R44cYfz48YwePZr58+dzxhlnkJaWVujYjRs30rlzZxYsWMCdd97J+PHjycjIoG/fvsyaNeuYt8fr9TJixAiCg21WGpaWEi0fTUlJ4bzzzjvuMVFRUezbZ7uMoDyof/0aAsICTbKWxdrt3PrA9e+YZQEsPFzPLGvJrW3MsgD8PXZL3OLm2m6f7c6yW1LyeK/jv8d85W1st0Qo+b49ZlkAh8+0fY2UvFq6qLRL7JYcAdTdU9Msy8+wrQ1AzFK7LE9yHbswwJ1p9zykPmj7V8z+Ca3Nsm7+IsAsC2DPBc1N8xY++qJZ1nzbVehc9fn1Zlkh222XGFdfZvf6DU23XSabmWz3mbT5ylCzLOD/tXfn4VGWZ/vHv5PJvgeCEPYtLCJKFRBRClZU1GLVilStWwVfW4qKtbZaFKQutdZiXVoruNTXaq3VFt66b4gLKCKgsoOEfYcEQsg28/z+4EcqDSiDZyBkzs9x5LCdPDnzZHhmuee+r/uCoJEsqst9uvstiFSAbtW4fcncuXN54IEHOO+883j++edrbm/Xrh3XXHMNf/vb37joooskP19VVcXIkSNp1aoV7777LpmZu5bbn3HGGRx33HGMHTuWRx75Txuem266ieLiYmbOnEmPHj0AuPTSS+nWrRsjRoxgwYIFe50oe+CBB5g7dy433ngjY8aM+Ub3T106oGe9jIwMNm/+6jeFRUVFNGoU+4N50aJF3HrrrfTp04cmTZqQlZVFjx49uOOOO/Y67Xug07hmZmZmZg3V7t1H6/pL6ZlnniEIAq677ro9bh8+fDjp6ek89dRXT4LE8vPvvPMOa9asYdiwYTUDQoAePXowYMAAnn32Waqqdn34umPHDiZPnsyAAQNqBoQAmZmZDBs2jEWLFjFjxoxa57Ny5UpGjx7N2LFjad269X7eC4fGAQ0Ke/bsyUsvvbTPtbkbNmyoWZ8bq8cee4zx48fToUMHbr31Vu655x46d+7M6NGj6du3Lzt37qw59kCncc3MzMzMTKOwsJCCgoKarwM1Y8YMEhIS6N279x63p6am0qNHj70OvA7053f/7731XO/Tpw/btm2r6aTw6aefUlFRsc9jv5z3ZT/+8Y9p3759rUFqfXRAg8JrrrmG9evXM3jw4FptJ+bMmcPgwYPZsWMHI0eOjDn7/PPPZ9WqVfz1r39l5MiRXH311Tz77LP86le/4tNPP+XRRx+tOXb3NO6rr77KTTfdxE9+8hPeffddmjdvzogRIwgCb4lkZmZmZnY4WLNmDfn5+aTsZRfxFi1asGnTJior970cO5af310z2KJFi70eC7B69eqYj93t2Wef5aWXXuLhhx/eo3VffXVAZ3jWWWcxevRobr/9drp27Upy8q4au8zMTHbu3EkQBIwbN47+/fvHnN2zZ8+93j506FDuuOMOPv/8c+Drp3FvvfVWZsyYUeuTgm9q81WNSQxrtrtv1FFXD/To8cfJsgBWPd5MltVi9hJZFkC0VLdle8qrn8iyANZcc7wsq/kE7UZNaTt1BTxB41xZFkAoqv0AJ/mVmbKs9i/JogAIH9FElhVtrasFAkjdEpFlFXfKkGUBlH5Pd25tR2nbPhDa+fXH7Kd5f+gsywLo/NA2aV7Hp3V1ewXvax/3nd6YK8ta9WQrWRZAyn1LZVmrrta+3rd4/HNZVpdZ2o00Ko7S/TtElhbpstySYs/fASxevJjs7G/eiqisrGyvAzqgZqOWsrKymrHHN/n5srJdLU/2dvyXj/3yf/fnWICtW7dy7bXXMnz48L3OLtZHB1xJPW7cOF577TUGDx5MTk4O4XCYtLQ0zjjjDF599VVGjx6tPE9WrVoFQNOmu94EHeg07v768hR4QUEBhYWFB5xlZmZmZmZfLT09nYqKir1+r7y8vOYYxc/v/u/ejv8mxwL8/Oc/JwgCfvOb3+zzXOubA5opXLFiBcnJyQwcOJCBAweqz6mWSCTCr3/9axITE2t2DDqQaVwzMzMzs7hwGDavb968OfPmzaOioqLWrNzq1avJz8/f5yxhrD/fvHnzmtu7du1a61j4z5jiy8f+t/8+9pNPPuGxxx7jtttuY/PmzTWbc27YsGsH3HXr1rFkyRJatWq1z1nNQ+GAZgrbtWvHzTffrD6XfbruuuuYNm0a48aNo3PnXUtrYp3GjdXatWv3+Fq8ePEBZ5mZmZmZ2Vfr1asX0WiUjz76aI/by8vLmT179j7LzA7k53v16gXAtGnTauVMnz6d7OxsOnXqBED37t1JSUnZ57HwnxK4FStWEAQBt956K4WFhTVfv/jFLwAYOXIkhYWFfPbZZ1/5txxsBzRTmJubS35+vvpc9uqWW27hwQcf5KqrruKmm26quT3WaVyV6Kq1REOaPlLpSbqi0+g3GADvTcvL13z9Qftpw1Btn6xS4Y6+HR7TziZ3OE/34UHFP3JlWQBBtrDGa3OxLgtIWVwkzSsaq1u/32Zs7ReAbyRL9+8Q3rxdlgWQVqnr25lepO0B2vgDXV6Qrq17isxb9PUH7afrjxc2iwRmH6mtjQufnyPLkj4nAVX/ypVltfq+9rUhenQnWVbzP2tr4YMkXW/MUKW21i51ia63YFT4njAhqIS9b8Bfr9RFy4i9/Q6loUOHcuedd3LffffRr1+/mtsnTJhAWVkZF198cc1tS5cupaqqii5duhzQz/fv35+CggImTpzIqFGjatpSzJkzhylTpnDFFVeQ9P8fH5mZmQwePJgXXniBOXPmcMwxxwBQWlrKxIkTKSwsrNnHpHfv3jz33HO1/rYpU6bw0EMP8bOf/Yw+ffrQoUMHxV0mc0Cjkj59+jBrlvaFa2/Gjh3L7bffzhVXXMHDDz+8x/dimcY1MzMzM7P6rXv37owYMYIHH3yQ8847jzPPPJP58+dz//33079//z0a159yyiksX758j24Dsfx8UlISf/jDHxg6dCj9+vVj+PDhbNu2jfHjx9OkSRNuu+22Pc7trrvu4s033+S0005j1KhRZGdnM2HCBFavXs2LL75Y07i+efPmnH/++bX+ttL/v1Finz599vr9Q+2ABoVjx46lX79+TJw4kWHDhqnPqeZ33HbbbVx22WVMnDix5o7eLZZpXDMzMzOzuHIY1hQC3HfffbRt25ZHHnmEF198kfz8fEaOHMm4ceNISPj6yrdYfn7IkCGkpaVx++23c8MNN5CSksIpp5zC3XffXWtyqWPHjrz//vv88pe/5De/+Q2VlZUce+yxvPLKKwdlj5W6FgoOoJnfuHHj+OCDD3j99dfp0aMHvXv3plmzZrUGbqFQiFtuuSXmkxo3bhxjxozhkksu4YknntjnBTBkyBBeeOEFPvnkkz2mcbt160ZKSgoLFy6sdU4Hatu2beTk5PCd1AtIDO27wDUW0R665SRH/1G7LnneebolR/KlWpm6otzEFbqlKQDlR7aUZaUuWifLAghSNdctQFln7fLxKRMmSPPOOv67ujDhMm+A+dfq2r3kz9I8v+3W+O9zZFmh9DRZFkB0u66NREJWpiwLIJSm+1uXDhOujweafSRezveqbpVQ6Cs2izgQlX26fv1B+ylp+777oB2ISEpYlpW0RVsuEsnWvUaHN4vbvRTrlsiX/VW3XLl6RwXTznmAkpISSRsGtd3vWbuMvJNwivY92H+LVJSz4IGb6+19YfvvgGcKd5s1a9Y+l5IeyKDwoYceYsyYMbRu3ZqBAwfy9NNP7/H9pk2bcuqppwL7P41rZmZmZhZPDseaQjt0DmhQ+Pbbb6vPo8bu3oIrVqzgsssuq/X9/v371wwKG/o0rpmZmZmZWV3b70Hh5MmT6dKlC506daJ///51dkJPPPEETzzxxH4f37VrVyZNmlRn52NmZmZmdtg5TGsK7dDY70Hhueeey5gxY7j11ltrbnv22Wd59tlneeGFF+rk5OqlhAQIHVB7x1oS126V5ADMPa2RLAtgRx9d3VMoon3GSHl5hiwr6KTdDjhlVbEsq3q1ri0IQGJL4W68127UZQFnnXSONC+6RXd+C+7tJssC6Pyobh/zaKLmuWi30kHdZVnZ05bLsgCCSl2N17b+HWVZAOv66koVllz4R1kWwBn/vOjrD4pBqENbWVZlgbb+SPn8G6zQtqSIfFvXmil5VbksCyDIEdb/binWZQE7+uoeqxnnL5BlVQfamlOz+mC/B4V7249mwYIFnqUzMzMzM6tvPFNoMdB+zGxmZmZmZmaHFQ8KzczMzMzM4pi2AVccCArbEoQ1ffJK2ut6ZWXP19UnAiSX6HpbJX32hSwLYMkzx8iymv1N1/MQIGPpNl1Y7C1Ev9KOowtkWWnX63pHAVTnJ0nzSo9rKsvq/Ki2J1ioslqWte5XsigAcv6i62cVPSJPlgXaF6vMSTOFadB289GyrMLIj2VZAAVtItK8rJm6WrvEHdpelhv6HSHLavqmtr/jul66noyt3xLXm+/YKctaNqKLLAsgc6XudXDbpbq6zkhlOfxZFldnQv//q65/hzUMMc0Uuu+fmZmZmZlZwxLTh6/33nsvEyZMqPn/27btmhVp3br1Xo8PhUIsX67dgc7MzMzMzL6GN5qxGMQ0KNy2bVvNQPDLVq1aJTuh+i5hexkJYc1ynIwX5klyAIqHHi/LAsiZVyzLqjqmvSwLoMOwRbKsUHq6LAtg5eWFsqyqW3XtAQDaX6W73yKd9v5B0IFKXF8szctdqWtJseoC7fV71f/8nyzr38e3lWUBRLfrlgWHGmvb5ATClSrVJ+mWewIkf7JEltVpgXZJZZCtK1MACMp17RAi6doKliZ/+1SWVd1N+7hvc+8nurBuutcZgE3fypVltR3/mSwLIBTWbX1R3lPX3qK6ukKWZVZf7PczcjQarcvzMDMzMzMzkVCw66uuf4c1DN591MzMzMzMLI5591EzMzMzs4bGNYUWAw8KYxTasZNQgqamsGhcH0kOQHWW9lEZTcyVZTV+Y5ksCyBSKdwqPKJtrdBklq7OIOkdWdQuTRrLoto+qKuhAnjtE239ZOdr58iywhXax9a/e+nqMdcM095vVVm6rHaPalvRLP1xO1lWmzHTZVkAQZquDjDSWtdWASBhfpE0T1l3mjRL2/ah6thOsqyW92if4z555lhZVvM/C+sTgfxlunYZ83+vbUlx5FhdC5Rwua49S1CtbfViVh94UGhmZmZm1hB5Js/2k2sKzczMzMzM4phnCs3MzMzMGhjvPmqx8KAwRhWdCogkpkqy2t4yTZIDkJCqOaeavGa6upagbKcsCyCUmiLLipaWyrIA0r7YLMuKZmn7lSHs81Z0jbZPVttc7atKuFGeLKvp9BJZFkDQqa0s64hPtI8tAt2/w7rBuhpAgBZTKmVZa35+giwLIGuFrmVTzxtmyrIApjzdS5rX6l9rZFnBlq2yLIDklbrn3ylzxLVx/1opy9p0wbdkWQA7m+heG7pcp6vnBggKdO9FQlHd85syy6y+8PJRMzMzMzOzOOaZQjMzMzOzhsYtKSwGHhTGKGXRWhITNNs3V/c5WpIDsPj8dFkWQKfHtsiydnbWbRMOEK7QLdVKnqtb0gNQVZAry0paulaWBRDZpFtalbBWu7R124VHSfMSdxTIspK/WC/LAig5oZUsqyxfu9jjiEd1Sxebrm8pywKYf6OupUqXP+ie3wBYpnseWTyvgywLoMVS7XK+SHW1LCshO1uWBVDVXLds/Mi7N8qyANYN0j0etnbXvQYCpK0Jy7JCbbWP+8i8RbKsrf10bcAilQnwoSzOrF7woNDMzMzMrIHxRjMWC9cUmpmZmZmZxTHPFJqZmZmZNTSuKbQYeFAYo6CqiiBBs31zWXNdXVbh6NmyLICSs3vIsnKnLpNlAQRZGbKsyKZNsiyApBRNvSnAyou0tUUZa3UtAnLnFsuyAI6Yrt2avqRrriwrab22frI6Vbf9e9aqiCwLINy0iSxr1XebybIAOv9UV++YkJcrywIgK1MWVdpaW2f363+9L837zRnny7KCJO1bkMTFunYZZGrr9LOLqmRZldm61xmAsua6GsWSbrq6ToDcYl19eP4zs2RZ1YGuRY5ZfeFBoZmZmZlZA+OaQouFawrNzMzMzMzimGcKzczMzMwaGtcUWgw8KIzR4p93JCE1VZLV/p8VkhwAwro+QwBpG3Xr5as3aOv2EhOFl22gfTaLCnsBFowX1scA4Ua6Wo9fznhLlgXwbc1Dqkav0T+WZUWXr5JlAUyf8rwsa1Cb3rIsgC1DjpVlFby7TZYFEOqqq7GNLvhClgXw8hfTZVldH/mJLAvglzdfLc3LLdbdd5vO0tZNl7ZsJMtq/cp2WRZAypuzZVmn3antU/juA8fLsjJX7JBlAZCoe2/zxa++JcuKlpfD7X+X5ZnVBx4UmpmZmZk1NJ4ptBi4ptDMzMzMzCyOeaYwRoV3LyQxpNkOeuO5R0pyADKydFkAm7onybKym/aSZQFk/+NjWVa4W2dZFkB1rq59QUK5bgtzgLUn5Miy7u6ruz4A7tpRJs3LOU63NDuoqpZlAZzZ5duyrFCq9iPakna6zwlzFmrPLWGzcDlqc227jDNP1rVpaL34Q1kWQPTEo6V5NNI9j1Rl6NqzALS5S/faEEpNkWUBlHy/pyxr3oC5siyAH304WZb1yP1ny7IAdE1yoOu3dUufq3ZUol2EXje8+6jFwjOFZmZmZmZmccyDQjMzMzMzszjm5aNmZmZmZg2NN5qxGHhQGKPiUzsTTtLsn5+3aKckB2DxDzV1jrsdeY+uHUJ10UpZFmhrPSLzl8iyACoH6bb0jzbR/pumnrVelrWoVXtZFkCnB7XXSNIWXY3ipsu0bR+OeG25LEvZAgUgoqxR/Fz72FrwqK5uusnL2nqxxArd/VbdM1+WBZC6JSLNC+/U3XcFb2+RZQFU9O8uy0r9WHv9phTrapNDBUfIsgAmHaurXy/IFVfahXR1pzsHbJBlVQfamn+z+sCDQjMzMzOzBiYUBITE/Zj39jusYXBNoZmZmZmZWRzzTKGZmZmZWUPjmkKLgQeFMcp6/hMSQ5oebeE8Xb+njKIusiyA0m66moWV1zeVZQF0uU1Xs7D6mh6yLIDWExfKss55d74sC+Dp68+SZXWapa0bKbqigzSvxTs7ZFl5C7U9FBf8vLUsq/Of0mVZAKndi2VZCVmZsiyAwss/04WFw7ostH9rtF1zWRZAqEpbUxj6YpUuLEHbpzCtWPfvECRpa7orcnVvtzZ8X/ua2vbxUllWVNxztqpnoS6ss+6xFakuh3f/Jcszqw88KDQzMzMza2DcvN5i4ZpCMzMzMzOzOOaZwhh1nxohJVMzlp4yvrMkByB3iXaJUMYXJbKs5lNyZVkAwfbtsqyW934sywKIVOu2qZ7w2+/JsgCCFrqscGVLXRjQ+uViaV6oVNfuJZqjXaJJfoUsKlSl2+YeoMXPo7ow8RLNcEvd0q/KNo1lWQCLLtAtNexyk3bZ+Jazda08ANZfpStV6DRihiwLQHnFRXeWC9MgZ26xLCttU4YsCyAo1/2toVRNy67dVvfX5bX5P937GiKVuqy65JpCi4FnCs3MzMzMzOKYZwrNzMzMzBoY1xRaLDxTaGZmZmZmFsc8UxijmWOPJTFJs8a98cotkhyAyLxFsiyASEj3eUFOqXaLdZo2kUVVttLWFlVn6B5SR0xZI8sC2Pht3b9D8ibttuMot7lHW+KQUKzdmr7Nk+10YeKawp2dCmRZlVm6xylA5vO6+t+kUl3LEoAOf9e1GdkwpJssC6Dpm6uledlL82RZq246QZYF0Hqy7jU1mKtrLwSQUK6rJU4q1tbrRoWPh+KhXWVZAJFk3bN5dXaKLqv6MJkec02hxcAzhWZmZmZmZnHMg0IzMzMzM7M45uWjMUqdtoDEkGY5WRDRtZFIbNNKlgXw4geTZVlnHa9bkgZAla7tQ8L7c2RZAJx2nCyquGczWRZA3l+mybISWmlbUkTba/NCO4TbyYdCuixg56itsqzUodtkWQApm3JlWWkztMufpU13GuUq0/jiXN2ytPb/1LZCKLpQ+9hq8qnu+bfVbz+SZQFwVCdZVNUpx8qyAMIrimVZCas2yrIANl7SS5Z1xNva5cobTs+XZW3soWtvEakApsri6ow3mrFYeKbQzMzMzMwsjnmm0MzMzMysofFGMxYDzxSamZmZmZnFMc8UxmjDhUcRTtasS+94sa6NxJbRunX3AP2vukqWVTZQu312o7mlsqxVV3SQZQEkCAufmt+jqwEEOPoTXW3c7FHadgMJU2dL8zi+uywqPK9IlgWQfeZ2WVZ132NkWWrhrExtXoLueSS0Y6csC6DdpEpZVki81X3rP8yW5tFe134jGtX+rQuvTZNldfnpAlkWQPZrurrTDxe2l2UBdHpY95q6+SRtC6oud2ySZUUWzZJlVQdVzJel1S3X/Nn+8kyhmZmZmZlZHPNMoZmZmZlZQxMEu77q+ndYg+CZQjMzMzMzszjmmcIYZa6OkJikKRzb+ktdb8HkBctlWQCrR3SWZbV7TlcTAEClrk9Wm4e091soI12WFU3T1ccA3NPsA1nWgMyesiyA9A5tpXlFA4X1bKcepcsCKvKisqzGc7Q9FJtM1fUWXPqjFrIsgPZ/1fVmW/G9I2RZAI3mV8uywjulHRlJTNc+j4RKdPVny/52pCwLgB26qIS8XF0YsO0cXd1ps4Hat26RDN1zUu58Xc00QEXLHFlWSqCrxQwiFbBEFldn3KfQYuGZQjMzMzMzszjmmUIzMzMzs4bGfQotBh4UxqgqI4EgSTPBmv6mriVFENUt/wBo+6+tsqzgixWyLAA6tpVFhdI07UV2i24tlmVtuPRbsiyA7r/vIctqPW+1LAtgc98CaV6b8XN0YQnaBRWhVrq/NViu/XcICnTLKtvfr3t+U8ufkyvNW987WZbV7rFVsiwAMjOkcdUrdNdc+6u0Sw2DlrrH1s4uzWRZAMkluuWjeXO2yLIAir6va2nV+q5PZVkAKe10LVBYLyxlCXT/nmb1hZePmpmZmZmZxTHPFJqZmZmZNTCh6K6vuv4d1jB4ptDMzMzMzCyOeaYwRrlzi0kMp0iyopW6NenhFtqarOoU3aWRWNBUlgVQNLiRLCtrRa4sC6DRx7qahW0DdsqyABYPeEKWddYzZ8qyAJJ3aD9qVG4nv/kR7Zb+Od9dKssKhcOyLID1A3V1VBkbtG0fsj8okmUl37hOlgVQPUPXXmje6JayLIDC/62Q5iWV6/JKe7WRZQGkrS2TZZU1S5JlAaQt3iDLCsrKZVkA7SaUyLK2nq9tV5T3rm5Pgh0n6lptVVeVw+uyuLrjjWYsBp4pNDMzMzMzi2OeKTQzMzMza2DcvN5i4ZlCMzMzMzOzOOaZwhgF4RBBOCTJSsjLk+TsChP3UvuNrg9S9LosWRZA43nVsqy7xj8sywK4dNJPZFkdL/5QlgXQ5+KrZVmNk9fKsgDS1mlrZKrX6GrGGv1A2+ctKqwDTBD32WzyyEeyrHBejiwLoLxHO1lWydO6voIA2cKn30ZztTWAiZt3SPMiwl6sK09vK8sC6HKLrodiRnZ7WRbA1j4tZFnZS7T9HUPzl8my8qavkWUBrB+kqztt+qbu+qiOah+ndSYIdn3V9e+wBsEzhWZmZmZmZnHMM4VmZmZmZg2MawotFh4UxihhRzkJCZpHQFXH5pIcgEi69p8y5ftfyLKiHYTLZIG0SbolbnfM/b4sC6DT+rmyrIQ2um3uAfL++ZksK2ipbYGS8OkSaV6oULfUMFRZJcsC2NJf97hP3q5t5VGVoVs8krtIu2wx8c2ZsqymBbrWGwCRjbpWNIt+f5wsCyB/Zro0r/Ga9bKsZu9qSjF2CwmXLKfMXSnLAkjJ170Orvu2ri0TQEab7rKscIX2OSmSqrtGFl2tW8IbLS+HMbI4s3rBg0IzMzMzs4bGfQotBq4pNDMzMzMzi2OeKTQzMzMza2BcU2ix8KAwRtG164mGNNuZrz1PV1uUWCaLAqDZR7q2D1+cr21JkdP9BFlW46d0dUoACTm6vzXSWHu/Bc1yZVnhBctlWQChNrpaD4A1A5vIsgJdBwkAygp0r6AJ1drFHk1m6eqBQhURWRZAuFVLWVb1am1LlcQWuhrbLg9vlWUBLLxJ21Llf365WJb12xeOkmUBbD5a9+/QfKq4lvjHuhrbFjfpalgBFvwiW5bVddxmWRZAxjzd82WwvVSWVR2tpEiWZlY/ePmomZmZmZlZHPNMoZmZmZlZQ+Pm9RYDzxSamZmZmZnFMc8UxiochpCmyKj57z+U5ACU/FvXlw0g9GZTWVZVjra2qNFfdHWAFacdK8sCSF+0UZaVsGKDLAsgWlwiy6o8UVsLlPTRAmleVaaupjBrpbgXYJbus7i2f1ooywJ46dM3ZVmD2vSWZQEU3dBTltX6Qd1jASDaWFeTFarQ1rJ1uUVb4/V8aTdZVvvSWbIsADq1lUUtujxXlgWQ84oub8klsigAOg2boQsT9wDdeqKuljj30y2yLCIVoH1o1QlvNGOx8EyhmZmZmZlZHPNMoZmZmZlZQ+Pm9RYDDwpjVNG7E5HEVElWyjTdkrlGPwvJsgCCtCRZVpcb58uyANb95HhZVqha+2yWvEXXRiJhnXb5aEKmbmv6pOJyWRbAph8cI81rPF/XUuXm3/1FlgVw/5nflWV1e024HAo45ZIrZVmpzbXXb+uXi2VZlb07ybIAStpq2hQBNPnbp7IsgK1nd5fmZS/T9T+qTte9zgAkvf+5LKvLH46QZQFQrSujCDLTZVkAZOlet7L+Ju6PdcEKWVRQUSHLIlqpyzKrJzwoNDMzMzNrYFxTaLFwTaGZmZmZmVkc80yhmZmZmVlDEw12fdX177AGwYPCGCUXV5Co6UhBKFlXhxJN1WUBBL/TbdkeGiRcxw9U6sofaDNhkS4MKOvdXpaV2lnbZiQ6a64sKxzRthk5YvM2ad7m/rptzB84+VRZFsCqC3TtXkJn7ZBlAdBVmCV+o1DaTvfAT/+nrh0QwBF5ebKsqLCtAkDeW19I8xDWZf3z89dlWQDf+8FVsqztBSmyLIDc6atlWaVdG8myADJWrpFlbRijfBKBVSN1720K79M9FkJRbasis/rAg0IzMzMzs4bGu49aDFxTaGZmZmZmFsc8KDQzMzMzM4tjXj4ao/CGYsIJmlqDbSfremVlvqrrzwSw7IOjZVkZV7aSZQG0uucjXZiwPxNAxifCnkoRbc1CNFH3cA/la2taggRtn83GbxbJsqKl2rq9ph/q+niVnNhGlgWw+UhRwTTQboW2B13qRl0tW7hbZ1kWQGhzsSwroVzb/2zFFR2lea1fWC/LOnXUSFkWQNaHs2RZ5T86TpYFsLOzrpY4bZ22T2xC0yayrJWnafc3yBW2Oa5er+udWh1UybLqUoiD0JKibuPtIPJMoZmZmZmZWRzzTKGZmZmZWUMTBLu+6vp3WIPgQWGMyjs2JTExVZKVMXmmJAcg2vNIWRZAsw91LQcy3lsoywLYPli3rCfrPe127fPG6JbzFT6lXUaWVCRcziduSRGs2yzNCzXStQjYeMFRsiyApq/qlhgnziqWZQFkzz5CllXWKV+WBZC8Vfd4qMpPl2UBJK1cK8uqKmwuywLYedROaV7FjFxZVjRJu/As3Ep33zV7TdemAaB6+SpZVvEPe8uyABJbpcmyOo6dI8sCqOyja3ER7tBWlhVEKkDc7cXsUPOg0MzMzMysgQkFB6Gm0BOFDYZrCs3MzMzMrF6IRqOMHz+eLl26kJqaSqtWrfjZz37Gjh37t/FbrD//0ksv0bdvXzIyMmjUqBFDhgxh2bJlez124cKFnHPOOeTl5ZGRkUG/fv146623ah33zjvvMGLECLp37052djZNmjThxBNP5JlnniGop0tuPSg0MzMzM2togoP0JTZq1Ciuv/56jjzySB544AGGDBnC/fffz+DBg4lGv35n9lh+/oUXXuC73/0uO3fu5J577uHnP/85U6dO5cQTT2TNmj2XkS9dupS+ffsybdo0brzxRu655x5KS0s5/fTTeeONN/Y49he/+AWTJk1iwIAB/O53v+Pmm28mEolw0UUXcdVVV33zO6kOhIL6OlytZ7Zt20ZOTg4D24wgUdSSIrJKV7NQ9t1jZVkAmdfq6h+iP9e2L1h0SaYsq/AZXXsAgFCVrtZu65HZsiyA1K3COtHpS2VZAJXdta0VEj+YK8tadZ12a/rkEt1T7g5ttxcSS3U1XrlLtHWnObN028mrRfJ1rW0S5u790+n6IujYWpaVsEJXiwmw+Uxdq5FRo/8mywK4ZdIPZFmNtB2oyH9H93pPVPuWcsfRBbKsdOHrVnW0kje3PEFJSQnZ2drXaoXd71lPOnmsbB+MfamuLue9t8fK7ou5c+fSvXt3zj33XJ5//vma2x944AGuueYa/vrXv3LRRRdJfr6qqoq2bduSmJjI3Llzyczc9f5y9uzZHHfccVx55ZU88sgjNRkXXHABzz//PDNnzqRHjx4AlJaW0q1bN1JTU1mwYAGh0K7X0XfeeYeTTjqJcPg/rZ6i0Sgnn3wyU6dO5bPPPuOoo7R7FnxT9XKm8K677mLIkCG0b9+eUChE27Ztv/L4Dz/8kIEDB5KVlUV2djaDBg1i9uzZB+VczczMzMzqm1AQHJQvpd3LK6+77ro9bh8+fDjp6ek89dRTsp9/5513WLNmDcOGDasZEAL06NGDAQMG8Oyzz1JVtasn5Y4dO5g8eTIDBgyoGRACZGZmMmzYMBYtWsSMGTNqbu/fv/8eA0KAhIQEzj//fAA+/1z86Y5AvRwU3nzzzbz11lt06NCBvLyv3kVw+vTp9O/fn2XLljFu3Dhuu+02Fi9eTL9+/fjss88O0hmbmZmZmcWnwsJCCgoKar4O1IwZM0hISKB37z132U1NTaVHjx57DLy+6c/v/t8nnHBCrZw+ffqwbds2Fi1aBMCnn35KRUXFPo/9ct5XWbVq18x806ZNv/bYg61eDgqXLl3K5s2bef3112ne/Ku3mL7mmmtITk5m6tSpjBo1ilGjRjF16lRCoRA/+9nPDtIZm5mZmZnVI9GD9CW0Zs0a8vPzSUmpXarVokULNm3aRGXlvlsUxfLzu2sGW7RosddjAVavXh3zsV91bo888gjt27fnpJNO+spjD4V62ZKiffv2+3XckiVLmDFjBj/60Y/2+Edq0aIFQ4YM4fHHH2fdunU0a9ZMdm7RjHSiYU1NYShN1xsoGtb2ewpdqvu8YOFo3d8J0P7vVbKsxOXaOqVo6f7tjLU/8rc2lmUBBFtLZFmVx7STZQFU5Al7KAIpBbpP4Fo/Ml+WBVA0ofYLyoHKfzZDlgWQM3erLOulN/4uywI481unybJKT2grywJYOUiX1fytbrowIOeVedK80JqNurCqal0W0PjjTbKs+8cMlWUBdPpIWD8pvt+2nNRSlpW5qkKWBZD2tq4+HGEfSyIVsEUX1xAsXrxYUlNYVla21wEd7Jrt231McnLyN/75srJd+0rs7fgvH/vl/+7Psfs6r3PPPZfS0lImT55MUpL2fY9CvZwp3F9fN+0bBAEzZ+oaxJuZmZmZHQ4Ox5rC9PR0Kir2/uFCeXl5zTGKn9/9370d/02O3dv3zznnHD7++GMef/xx+vXrt8/zP5Tq5Uzh/lJM5e7Lf6+H3p8tcM3MzMzM7MA0b96cefPmUVFRUWtWbvXq1eTn5+9zljDWn99dorZ69Wq6du1a61j4z3jiy8f+t/8+9st2DwjfeOMNHn30UX74wx/u+48/xA7rQeE3nco9ENG0RKKJminfcLJu6rg6Vbt8NMjULfnsOrpIlgUQ2aRbIhR01C6D3DBYl9f0b8JlM0DVtzrIspK2aB9XyfO163CiJdt0YV32bzn7/mo3qliWVdJbu3y0okDXWuGMztpPQqOlumWLmy9pIssC6Po/62RZqy7TtVUAyNnHMqoD1ihHFrXpeN1zEkBllu51cGdT7exHYvkRsqysmbp2VgCRFN39lrxC9/oMsOn7x8iylDNakcpyWCyLsy/p1asXr732Gh999NEeM2rl5eXMnj2bb3/727Kf79WrFwDTpk1j4MCBe+RMnz6d7OxsOnXqBED37t1JSUlh2rRptX7n9OnTAejZs+cet+8eEL722ms88sgjXHHFFftzFxwyh/Xy0W8ylft11q5du8fX4sV+9JuZmZnZYeIwbF4/dOhQQqEQ99133x63T5gwgbKyMi6++OKa25YuXcqCBQsO+Of79+9PQUEBEydOpLS0tOb2OXPmMGXKFIYMGVJT+5eZmcngwYOZMmUKc+bMqTm2tLSUiRMnUlhYuMeOpxUVFZx77rm89tprPPzwwwwbNuyA75OD5bCeKTzQqVwzMzMzM6tfunfvzogRI3jwwQc577zzOPPMM5k/fz73338//fv336Nx/SmnnMLy5csJvjQLHMvPJyUl8Yc//IGhQ4fSr18/hg8fzrZt2xg/fjxNmjThtttu2+Pc7rrrLt58801OO+00Ro0aRXZ2NhMmTGD16tW8+OKLNY3rAS6++GJeeeUVBg4cuNf+ikcffTRHH320+u77Rg7rQeGXp33/ewQ+ffp0QqEQxx133KE4NTMzMzOzQycIdn3V9e8Qu++++2jbti2PPPIIL774Ivn5+YwcOZJx48aRkPD1ixxj+fkhQ4aQlpbG7bffzg033EBKSgqnnHIKd999d62JpY4dO/L+++/zy1/+kt/85jdUVlZy7LHH1gz+vuzjjz8G4I033uCNN96odY5jxoypd4PCUBDU9dXyzRx11FGUlpZSVFS01+/36tWLhQsXsmDBgpqZwzVr1tClSxd69+6913+IA7Ft2zZycnLoeOOdhFNSJZn5n+u2ld50lHZ83/RjXduH9Pm6ehsAIrpNfyJNcmVZAMGcBV9/0H5KENacAhT/Uzdr3ujHuusDILJae40EVfvuYRSrytN7fv1BMUgu0Z1br4dnybIAnn1N1zep5Zvaa2TT0fveWCBWmau0G4f98JYXZVmTu+XLsgB2nNf76w+KQfabuue4SKfWsiyA8KIVsqxQlq6+FmBrX13bh7zpB7aB3r4su6SVLCtvYUSWBZD1T90O8iFhfW11UMlbO56hpKRE0oZBbfd71m+feAuJiZr3rPtSXV3O1Pd/XW/vC9t/9XKm8H//939Zvnw5ABs3bqSyspLbb78dgDZt2nDJJZfUHPuHP/yBk08+mX79+jFy5EgAHnjgAaLRKPfee+/BP3kzMzMzs0MsFOz6quvfYQ1DvRwUPvroo7zzzjt73HbLLbcAu4pCvzwo7Nu3L1OmTGH06NGMHj2aUChE3759ee655zjmGN2uVWZmZmZmZg1RvRwUTpkyJabjTzjhBN588826OZn/0ubheSSGNMuYooW6JRv5aLemT1tRIsuKrtdtJQ9Q3avr1x+0n4JEbSuPcKBblrb0ce3W9BTronJWz9eFAdfP1y6DHHPLlbKsrOU7ZVkARWfpHquR63rJsgBah3VLW5OmfibLAigoPVKWlbhIu/zuueJBsqz0rIWyLIDMotKvPygGoRzd8rDENdpWNGt+2E2W1XS6sK0NkPv5VllWdJP2fqtorCst2NopLMsCyCnUtXmKLlkuywoCXflPnTpMawrt0DisW1KYmZmZmZnZN1MvZwrNzMzMzOzAhaK7vur6d1jD4JlCMzMzMzOzOOaZwhhtO7kziUma7X2zXvlckgNQ2lvb6yTjtVWyrFCmtt4xPH2uLqvZEbIsgKBRniyr8AZtLWZk/QZZVqhboSwL4IY/ads+NFtRJssKz14sywJov6ONLKuqUZosCyBxu66msOgWbY/YpO26+t+8Jro6JYDU9RWyrFC2thVCJF3XygMgJKxnC7pq/x3yZ+se95E0bUugIEF3/VZ8W1dfC9DpptmyrFB7bZuRjX10LVqarF4vy0oIEkDbdaduuKbQYuCZQjMzMzMzszjmmUIzMzMzs4Ym+P9fdf07rEHwTKGZmZmZmVkc80xhjDImfUxiSFNrEOqoq6dotEBX0wKw6QfHyLIa/+9MWRZAtLeuniK8YpMsC4B/aOpNAbhC+/AMt24py6rMSpFlAbR4Q9fDCyBhs67H2ItLPpBlAZzVW1d3mrjgC1kWQPUJuj5v7X4zR5YFQKe2sqjQ8rWyLICgWtezbP3Qo2RZAEdMWSfNe2nx+7KsQWe1lWUBXPfE32RZfzx5oCwLYM1gXa1d0xnbZVmg7T3JGl3dHkCTS3V9Nldn6x5bkYpy+JMszqxe8KDQzMzMzKyBCQUBoTreCKau8+3g8fJRMzMzMzOzOOaZwhhtuPp4wimaJYLN/qxbVhleskyWBdDobV1W5KQeujAgeZmutcKqIW1lWQAtvqdrM7LhfN1SPoCUEl2H2XCF9pPBdX3TpXlNPtHlnXnKEFkWQGT1EllWODdXlgWQtHWnLCuUqH15iX6+SJa1+DfaFiiFt34qy2r66kpZFsDWvrpl4wBn9j9PF1akbfdyz7WXyLLStsyTZQEUPLNDlhXdrl0+uvmiXrKsvPm65Z4AC5fqShW6vKlrp1IdqWC+LK0OuSWFxcAzhWZmZmZmZnHMM4VmZmZmZg1NAOgWCe37d1iD4JlCMzMzMzOzOOaZwhhF+xcTShetcf+zJgaAhLAwDHacq6u5yZmurZGJrNfVFLZ4NUOWBVB2YmdZVv5zuvpEgKBzG1lWeGOJLAugIqeFNC95iq4dQvRbXWVZAKEeupYq0c8WyrIAEsp07TJI0r68lJ11rCyr469mybIASs/sIctK/9dHsiyAnIXCdgMA23Q1Y2XC+w0gpbhKlrX13O6yLICdjXWfwWeu1U795D4lvOYSQrosoOsvdNdvtF1zWVYQ0bWhqUvefdRi4ZlCMzMzMzOzOOaZQjMzMzOzhibgIOw+WrfxdvB4ptDMzMzMzCyOeaYwRk3+lEpioqZP4bJbdDUy2V/IogA44s1VsqwgI02WBRD01NVkMa9IlwUUn9pEF5bQRZcFpE9fKsuKCGszALYMLpPmZa3S1QNVZWifJjPmrNaFFTTTZQGRFbpzqz5B22fzpLHTZVlzZraSZQFkvSd8Am7cSJcFRGZr++0ltm8ry8pcoOsbB7B4TKYsq8OlH8uyAMqu7S3LynpBe24JjXJlWc/M/rcsC+CCVn1lWYlJSbKsIFopy6pT7lNoMfBMoZmZmZmZWRzzoNDMzMzMzCyOeflojJI3lpEYjkiyOjyzQ5IDsPVo4VbyQFBeIcuKrFwjywLYcPXxsqykLtolbollumUU6R8skWUBrL1Q11oh0HZAoWqrdnvv1nfrlsyt+EWhLAsgulm3ZC6UlSXLAkho01KWtelozTL73WZdols2nsB2WRZAKCVZlrXsMl3rGIA242dL85RCZeXSvA5X6NofLRvTS5YF0OH382VZG67QnltI85YGgAu7n6kLA7ZcriujqE7TtcuIVJbDBFlc3YkC2i4he/8d1iB4ptDMzMzMzCyOeabQzMzMzKyBcfN6i4VnCs3MzMzMzOKYZwpjVNkknaioJUUkWTcmD6k/qKmskkUV3abbihugw30LdGFN83VZQKikVBeWmqLLApq/pGszotb0IWGbBmB1ku6pbcvl2tq4zOyjZVmrLtA9TgFS5+nax7T501xZFsAX1+tqCo+YmS3LAsh8T1f/O2/EH2VZAKffdZw0T/lJ8o6jC4RpkDa1RJaVKX66fGnu27Kss07UXr/B1mJdlvC9A0DeQl27oqpsXe1vdZX276wzbklhMfBMoZmZmZmZWRzzTKGZmZmZWUPjmUKLgWcKzczMzMzM4phnCmNU0j6FcLKm1qvRvJ2SHID0uWtlWQDVW7fKstrd/oksC+CLXx0ry6rK0n7ClVDRWJZV+Btdrz2AUHKSLKt6ua4fGEBis6bSvDXf7yDLavae7rEAEFqmq59sW6btoRhJ1tXJBG2ay7IA2t3zuSwr2q2dLAuQ1iaf3uJbsiyAhDRtbfLW3s1kWTsvLJZlAYR3dpJlZa3S9k7tcddPZFk7/kf7utXpT7pGc39971lZFsDFx2bIsorP7CjLilQeJm+fPVNoMfBMoZmZmZmZWRw7TD7qMDMzMzOz/RYFQgfhd1iD4EFhjFI3R0lM0jwCEj/7QpIDEKRolwiFEoWXxtG6JT0ACVW6Z7jkrdpny8ZzI7KsLd/tKssC2NpZ97d2uHebLAtgwS+1y/kK3tP9O2zrnCPLAsgO6f4dKnK1T+HZUxbLsqLttMtHw43zZFnbWqfLsgByXtctp64Y1FOWBZA2VbsMvdHVy2VZ0bN3yLIAQlmZsqxmz2uf44p+1VmWFSRoX+8X3KFb/nzBRSNkWQDbBulaAuUu0ZXsVFeXy7LM6gsPCs3MzMzMGphQEBCq45q/us63g8c1hWZmZmZmZnHMg0IzMzMzM7M45uWjMYqkhSBJUxMULSuT5ADQoZUuCwin69bxR+culWUBtEbXbiC8TttuIFpcIssKhbWf2TR6OSzLCqWlybIAMlZo/9bsd3S1caEs3ZboAFTq2j7krN8iywKo3qJ7PITaFsiyAIJE3fWb+Y8ZsiwAcrJlUckllbIsgOpvaduWcJbusbX9jKNkWQA5n6yXZa39kbYmNnWrrhVNs7c3yrIAtl7aW5ZV0l4WBUCjp2fKspR1yaGo9nFaZ9ySwmLgmUIzMzMzM7M45plCMzMzM7OGJhpAqI5n8qKeKWwoPFNoZmZmZmYWxzxTGKOcz0tIDGv601Sf2F2SA5C0VttTKZKvq5FZP1hb75i7RFeTlbpAVwMIsPRmXY1Ms+m6XnsACZW6T/OSSqtlWQAtH58vzdtxkq6OKvX/PpJlAew8R1e/k/n+MlkWQMIxut6YoS/WyLIAik/T9XnLq9Jev2vPaCnLOuLxT2RZAF/cdqw0L+OYY2RZzd7V1sRGJupeG5Z+rK2JLXxc9/wbEtb+AjT+RJiXoJ1rWD1S17ez5SubZFlBpAJ0Jax1xzWFFgPPFJqZmZmZmcUxzxSamZmZmTU4B2GmEM8UNhQeFMYokpVMKDFFklWVrrv7E3LTZVkA4UUrZFllN+q2kgdoOmGhLCv6Ld2SNICOj67ThW3focsCih46QpbV6reatiy7BZXa7b23dtI9tpr2/5YsC2DDsbrHQ/rL2mXj4eQkWVa0VVNZFkDOS3N1Ybk5uiyg0cIKWda2c7XXW8fHNkjzQhW6x+rWPi1kWQC5F+haNUTu1f2bAgRJusd9QlttSUYkVfe4D4uXjSfu1D1WQ1t1z5eHTUsKsxh4UGhmZmZm1tC4ptBi4JpCMzMzMzOzOOaZQjMzMzOzhiYaUOc1f+5T2GB4UBijhPIICWHNduZVLVIlOQAZn2u3qI6W6+opOozT1mZEhNvJh6q0bR+iWbrazpJe2pqsfq3nyLKWz9Leb0GCtkax4PfTZFmhRF29DUD7OWmyrA2XatsNNJ44XRfWorEuC0iI6K65JVdpa7I6PKWrZSvu2ESWBUBIXP8rfG3IfXmeLAsgWqE7t66/1NbGRZs20oWJny/Dy3W9FaIl22VZAM3e2SzLWnlhe1lWpKIcHpTFmdULHhSamZmZmTU0QXTXV13/DmsQXFNoZmZmZmYWxzwoNDMzMzMzi2NePhqjhNUbSUhIlmTlrFgryQFYcUUXWRZAi/t0/faic3V9BQESC5rJsuZfq+k5uVvn35XJsq4d+6wsC+DJk3rKsoLqTbIsgMRm2vrJaImwH1WK9hqJlumukZC2tJNld/SRZXW4XVfDCkD71rosbUkWkYVLdFkDdf1EAYJVutcZgOpvFcqywh9qawpDwj6bpGhe53cra5Upy0pfru1PunFwB1lW8cnlsiyAjr/T9QNs9S9dnWh1tIIFsrQ65JYUFgPPFJqZmZmZmcUxzxSamZmZmTU0bklhMfCgMEaRTZsIhTRLVLb/QLdUq9UT2iWay0b3lmW1//MXsiyAYOdOWVbzydp2A2v767Ydf/KsAbIsAKq2yKJCydqlVdHSHdK8recdLcvK+euHsiyAcH6+LCuqvXxp9ytdS4qEtsLlnkBZyyxZVsdHte0Glt3SV5aVvk77BiuhUZ40b8NxurY7LT7XtWcB+GJUN1lW69d0y7wB1vYNy7KaJubIsgCavrxcltV4ovaxRZLutSbaraMuK6L79zSrLzwoNDMzMzNraFxTaDFwTaGZmZmZmVkc80yhmZmZmVlDE3AQZgrrNt4OHg8KYxTOziIc0qxxz/tI1/ah+Du6bcIBbhj6gizrhcd7ybIAAmG7gcx/zZRlAeQIWytEc3U1VABlJ3WWZWUs3SrLqgvFZ+tqFBt/0EaWBRCk6AoB8+doazErT9e1LQkv014j1enChS07tdvmt7pDV3ea2FzXcgcg0kxbU9jiJd3rVmRbqSwLoMPDuvr18q4tZFkA7SbpHqvhzdr7rbKdrg3K+h+0lWUBJJXqRhzVqbpeNJGKcvhUFmdWL3hQaGZmZmbW0Lim0GLgmkIzMzMzM7M45plCMzMzM7OGJhoFogfhd1hD4EFhjEJ5OYQSUiRZS35UIMkBaP9csSwL4IWBx8qyVn+/lSwLIKGypSyr4P90/ZkAosJ6RxppawpXDtLVU3R5QLtcZO1AXU0LQNu7SmRZQaK2H1V1owxZVtJqXe9JgPBSXQ/Qiu7aPoXZH66UZc0bq60T7XKd7npTC2/eLs0L0jSvfwChJO1bkOg23d+aMld3vQHSOtaqYzrIsgDCH82TZbXcqH29J6xb0BZdXCTLqg6qmC9LM6sfvHzUzMzMzMwsjnmm0MzMzMysofFGMxYDDwpj1OixEpIyNC0pqq4XbhW+cJkuCwgy0mVZzZ9eKMsCCGXqlt9Vtte1kABI2pypC1uxVpcFdJ6oWxhQ1UT4dwJH/HGaNG/tdSfIslo8qf13SNywSReWl6vLAhpNqpJlbb1ooywLkNatdPmjcJk3EErVLakMSrXtBtRtH8KNcmVZoc7tZFkAQVi31HtHG93rDEDmQl2LloR3Z8myAMLt2+rCSrTLlUnUvU3deMVxsqxIZTk8/pwsz6w+8KDQzMzMzKyh8UyhxcA1hWZmZmZmZnHMM4VmZmZmZg1NNADqeCYv6pnChsKDwhhtvLEVieFUSVZVY01tIkCookKWBZAgrM14efH7siyAMwb9QBcmnisPlejqd4Lm2nrHUFVElhVN1rZpKP3B8dK8pFLdi9TaH3SRZQHkLqmUZa3vqXsOAVjzdAtZVsH2BbIsgOpOuq3uEzdp657KTuwky0reors+ALa1T5Pm5T0/W5ZV3K1QlgWQ+1mxLCv9xdmyLAA66tqghDtqazGp1r02LL9M2y6j9UTd80jeIt37pOpq7Xsus/rAg0IzMzMzswYmCKIEQd02l6/rfDt4XFNoZmZmZmYWxzxTGKPw+mLCCZrtxzd+p7UkByA3o7csCyB9bbks64xBumVfAKsGNZJllbavlmUBHHmH7nOW6NLlsiyAhQ8fJcs68tb1siyAorNbSvOiGbp/18LHtcv5QtM+lWW1flO7jDchN0eW9fCsybIsgP6vXSfL6nqv9n4rz9XlJZVqP6vN+et0aV6ose75N6FaW4u07chcWdaYf2nbPtw3SLc0e2O/ZrIsgB0tQrKspjO0z5c7e7aXZS0/U/eWN7ozCu/K4upOENR9zZ93H20wPFNoZmZmZmYWxzxTaGZmZmbW0AQHYfdRzxQ2GJ4pNDMzMzMzi2OeKYzRmf+aQ1qm5m77x48aS3IAwjurZFkA0TnzZVmL/3qMLAugw8XTZFmrbzxBlgUQbZQlywon6Oo8ALrcu0OWFS0ukWUBFP5FV8sGsPpW3SeXkTTtlv6pbXW1xBVtdc8hAClfbJRlXXjDDbIsgA4bdbVK0XRtK4+s5boa7FXfSZdlATRPPE6al/D+XFlWVYb2c+lGf50py/r9C9rXrdXXF8iymv/uQ1kWQGNhCyrEr1trr9Zdv51vniPLqg4qWSlLq0PRKITqeHdQ7z7aYHim0MzMzMzMLI55UGhmZmZmZhbHvHzUzMzMzKyh8UYzFgMPCmP04sAOJIY09ShFf5LEANDu4oW6MGDpPcfLsjres12WBfDKal3/qDPO7CrLAqjM19UDlR2prbPLm71ZlhVqoq1lC3boarIASrfkybJ2XqntZdnxnkxZVtLGMlkWQDRXd245r2ufk6r+oTu3nffp6rsAKjN1i27a3PWxLAsg1FnX5w0glJkhy8p/b50sC2D7d78ly8p8WVd/BtDq0QWyrLLTj5VlAWTM1/WdXXearh8jQIundPdb0E7YMzlSAfN0cWb1gQeFZmZmZmYNTBCNEtTxRjOBN5ppMFxTaGZmZmZmFsc8Uxij8m+1JzExVZLV7uLZkhyAxIKmsiyAti/qtn8Pb9K2Lzj9nEtkWQlRbSuPxDd1W6Ln9jhSlgUQ2qZrSbHh9DayLIBGj+najACkrugry8oqSpJlAfC5bs1RtFp8/bbT/bsGjXNlWQBJQ7fJsqLHRGRZABlLi2VZQZL2ZXljH91SaoDGE3XL+cIh7efSWQt0913J2T1kWQDhCt1sSnWq9n5L26grLWj6d+3r/bof6F4Hd55SKsuKlEXgUllc3XFNocXAM4VmZmZmZmZxzDOFZmZmZmYNTTSAkGcKbf94ptDMzMzMzCyOeaYwRklvzyYxpKkxKjtP1/Yha+oSWRZAeKduG/5gu7YlRXWhrn4yZbluK26ArS8WyrIik7UtKfL/rKtla/IPXW0GQOk5vaV5OUt19Ts5f/1QlgWw8I+9ZFldf79JlgUQXaN7PCz6cydZFkB0R74sq93z4k+2N+hqstY901qWBVBwg/Y5Lpqoe9uw5PqOsiyAVm/oauGzX/xMlgXaVh6hJG2d8/oLj5ZlNX1xmSwLoGCSLm9NWNeeJVIprjWvK0EA1PHuoJ4pbDA8U2hmZmZmZhbHPFNoZmZmZtbABNGAoI5rCgPPFDYYnik0MzMzMzOLY54pjFVCGEJhSVTmq59LcgBITtZlAYnrdb2Glo7qJssCaPfPYllW2bHafnv512+VZQXLZ8myAEId28my/jHlWVkWwPnHaXp/7vbSrNdkWacWXS7LAsgW9lLb0VlXZweQsaVYltXpnnJZFkCTh1fLsj79/ChZFkDzolxd1tXFsixAXu8TVOvqzTs+sVGWBRBZrKs/K7lAV/sLkPX3GbKsyLePkWUBpG8S9u1M0z6XU6nrxXrEQx/IsqoDbY/YOhNEqfuawjrOt4PGM4VmZmZmZmZxzINCMzMzMzOzOOblo7FSTsUn6MbkodQUWRZAkKpbjtrut3NkWWorrusizes6eqcsq/rYzrIsgHCZbrlLt3//VJYFcGTyGmnemcecKstKqvhClgWQ1uZIWVbmXG27gS2n6dpIJG/XLinadEljWVaz5R/LsgBo10oWtexK3bb5AG0fnCvNiww4Vpa1M0f7FiTcLk+WlbhTe/1Wnqa731aeor3fOv15nSxrzZnNZVkABc/p2m2Fc3VtnoKgEoplcXXGG81YLDxTaGZmZmZmFsc8U2hmZmZm1tB4oxmLgQeF+2n39Lhyx6mEoFKXFU2SZQEEkQpdlvDvVIvu1O6QWB3V3W/V1dpzCyK6XQOjO7VPHcr7DSCICq858fUbqdT9u6rvt0iV8NyqtG8UqoXPSVHxzoEJwnOLVIifk8TXr/J5qbpK+zwSVOmWsUUSQrIs0J5btFz8/Ku8foXPbwDV9fS5fPfjqr4vnaymCur4FKs5THZita8VCur7FV1PrFq1ilatdHUjZmZmZnb4WrlyJS1btjzUp1FLeXk57dq1Y906Xb3oV2nWrBnLli0jNVXcksQOKg8K91M0GmXNmjVkZWURCmk/QbRDo7CwEIDFixcf4jOx+sbXhu2NrwvbG18X8ScIArZv307z5s1JEG4aqFReXk5l5cFZqZWcnOwBYQPg5aP7KSEhoV5+GmQHbvcTeXZ29iE+E6tvfG3Y3vi6sL3xdRGfcnJ0u5nWhdTUVA/ULCb18+MNMzMzMzMzOyg8KDQzMzMzM4tjrik0MzMzMzOLY54pNDMzMzMzi2MeFJqZmZmZmcUxDwrNzMzMzMzimAeFZmZmZmZmccyDQjMzMzMzszjmQaGZmZmZmVkc86DQzMzMzMwsjnlQaGZmZmZmFsc8KDQzMzMzM4tjHhSamZmZmZnFMQ8KzczMzMzM4pgHhWZmZmZmZnHMg0IzMzMzM7M45kGhNUiLFi3i1ltvpU+fPjRp0oSsrCx69OjBHXfcwY4dO2odv3DhQs455xzy8vLIyMigX79+vPXWW4fgzO1gKysro3379oRCIX7605/W+r6vjfiyZcsWbrjhBjp27EhqaipNmjTh5JNP5t13393juA8//JCBAweSlZVFdnY2gwYNYvbs2YfmpK1OlZaWcuedd9K9e3eysrLIz8+nb9++PPHEEwRBsMexvi7M7HCVeKhPwKwuPPbYYzz00EOcffbZXHzxxSQlJfH2228zevRo/v73vzN9+nTS0tIAWLp0KX379iUxMZEbb7yRnJwcJkyYwOmnn87LL7/MwIEDD/FfY3Xp1ltvZePGjXv9nq+N+LJ8+XIGDBhAaWkpV155JZ06daKkpIRPP/2U1atX1xw3ffp0BgwYQIsWLRg3bhwADz74IP369eODDz6ge/fuh+pPMLFoNMoZZ5zBBx98wGWXXcbIkSMpKyvjmWee4YorrmD+/PncfffdgK8LMzvMBWYN0IwZM4Li4uJat//qV78KgOCBBx6ouW3IkCFBQkJCMGvWrJrbtm/fHrRu3Tro1KlTEI1GD8Yp2yEwc+bMIBwOB/fee28ABCNGjNjj+7424stJJ50UtGzZMlizZs1XHterV68gKysrWLVqVc1tq1atCrKysoJTTz21rk/TDqIPPvggAILrrrtuj9srKiqCdu3aBTk5OTW3+bows8OZl49ag9SzZ09ycnJq3T506FAAPv/8cwB27NjB5MmTGTBgAD169Kg5LjMzk2HDhrFo0SJmzJhxUM7ZDq5IJMLw4cMZNGgQ5513Xq3v+9qIL1OnTuW9997jxhtvpKCggKqqKsrKymodt2TJEmbMmMGQIUNo0aJFze0tWrRgyJAhvPHGG6xbt+5gnrrVoW3btgHQvHnzPW5PTk4mPz+fjIwMwNeFmR3+PCi0uLJq1SoAmjZtCsCnn35KRUUFJ5xwQq1j+/TpA+A3/g3U+PHjWbBgAQ8++OBev+9rI7689NJLALRu3ZrBgweTlpZGRkYGnTp14qmnnqo5bve/+b6uiyAImDlz5sE5aatzvXv3Jjc3l9/+9rc899xzrFixggULFnDTTTcxc+ZMxo4dC/i6MLPDn2sKLW5EIhF+/etfk5iYyEUXXQTAmjVrAPb4ZHe33bd9uZbIGoZly5YxZswYbr31Vtq2bUtRUVGtY3xtxJeFCxcCMHz4cAoLC/nLX/5CZWUl9957L5dccglVVVVcccUVvi7iTF5eHpMnT2bYsGFccMEFNbdnZWXx/PPPc8455wB+vjCzw58HhRY3rrvuOqZNm8add95J586dAWqWh6WkpNQ6PjU1dY9jrOG4+uqrad++Pddff/0+j/G1EV+2b98O7Hqz//bbb5OcnAzAOeecQ/v27bn55pu57LLLfF3EoczMTI466ijOPvts+vbty5YtW3jooYe46KKLmDRpEqeeeqqvCzM77HlQaHHhlltu4cEHH+Sqq67ipptuqrk9PT0dgIqKilo/U15evscx1jA89dRTvP7660ydOpWkpKR9HudrI77s3o34wgsvrBkQwq6ZorPPPpsnn3yShQsX+rqIM5999hl9+/Zl/PjxXH311TW3X3jhhRx11FEMHz6cpUuX+rows8OeawqtwRs7diy33347V1xxBQ8//PAe39u9ecDelvXsvm1vy4Hs8FRRUcH111/PmWeeSbNmzViyZAlLlixh+fLlAJSUlLBkyRKKi4t9bcSZli1bAtCsWbNa3ysoKABg69atvi7izPjx4ykvL2fIkCF73J6ens5ZZ53F8uXLKSoq8nVhZoc9DwqtQRs7diy33XYbl112GRMnTiQUCu3x/e7du5OSksK0adNq/ez06dOBXTuZWsOwc+dONm7cyIsvvkhhYWHN14ABA4Bds4iFhYVMnDjR10ac6d27N/Cfzai+bPdtRxxxBL169QLY53URCoU47rjj6vBM7WDaPaCLRCK1vlddXV3zX18XZna4CwVBEBzqkzCrC+PGjWPMmDFccsklPPHEEyQk7P0zkCFDhvDCCy/wySefcMwxxwBQWlpKt27dSElJYeHChbUGk3Z4qqqqYtKkSbVu37hxIz/5yU8YNGgQV155JUcffTSdOnXytRFHtm7dSps2bcjOzmbBggVkZmYCsHbtWgoLC2nRokXNZjS9evVi4cKFLFiwoGaGaM2aNXTp0oXevXvzxhtvHLK/w7RGjRrFfffdx913382NN95Yc3txcTFHHnkk5eXlbNy4kXA47OvCzA5rHhRag/TQQw/x05/+lNatW/PrX/+61oCwadOmnHrqqcCu/lK9e/cmKSmJUaNGkZ2dzYQJE/jss8948cUXOf300w/Fn2AHUVFREe3atWPEiBF7tKjwtRFfHnnkEf7nf/6Hbt268aMf/YjKykr+9Kc/sXbtWv79739z2mmnAfDBBx9w8skn07JlS0aOHAnAAw88wPr163n//fdrPkCww9/y5cs59thj2bp1KxdffDEnnngiW7ZsYcKECRQVFfHQQw/xk5/8BPB1YWaHuW/Q+N6s3rrssssCYJ9f/fv33+P4efPmBWeffXaQk5MTpKWlBSeeeGLw+uuvH5qTt4Nu2bJlARCMGDGi1vd8bcSX559/Pjj++OOD9PT0IDMzMzj11FOD9957r9ZxH3zwQfCd73wnyMjICDIzM4PTTjstmDlz5iE4Y6trS5YsCS699NKgRYsWQWJiYpCVlRX069cveP7552sd6+vCzA5Xnik0MzMzMzOLY95oxszMzMzMLI55UGhmZmZmZhbHPCg0MzMzMzOLYx4UmpmZmZmZxTEPCs3MzMzMzOKYB4VmZmZmZmZxzINCMzMzMzOzOOZBoZmZmZmZWRzzoNDMzMzMzCyOeVBoZnaYGzt2LKFQiClTphzqU4lJv3796NGjB0EQxPyzc+bMISEhgYkTJ9bBmZmZmcUXDwrNzOqRUCgU09fhNhDc7bnnnuO9997j9ttvJxQKxfzzxxxzDN///ve55ZZbKC0trYMzNDMzix+h4EA+ojUzszoxduzYWrfdd999lJSUcO2115Kbm7vH9y6//HIyMzPZtGkTrVu3Jj09/eCc6DcQBAFdunQhKSmJzz///IBzPv74Y3r16sUdd9zBzTffLDxDMzOz+OJBoZlZPde2bVuWL1/OsmXLaNu27aE+nW/s9ddf57TTTuPuu+/mxhtv/EZZRx55JDt27GDZsmUkJHjxi5mZ2YHwK6iZ2WFubzWFRUVFhEIhLr/8chYtWsS5555LXl4eOTk5fO9736OoqAiAJUuWMGTIEPLz80lPT+fMM8/kiy++2Ovv2bx5MzfeeCOdO3cmNTWVvLw8zjrrLKZPnx7T+T766KMADB06tNb3tm3bxm233cZRRx1FVlYWWVlZdOjQgR/84AfMmjWr1vFDhw5lxYoVvP766zGdg5mZmf2HB4VmZg3YsmXLOOGEEygpKeHKK6/kxBNPZPLkyQwcOJD58+dz/PHHs2nTJi6//HIGDBjAyy+/zFlnnUU0Gq2Vc+yxx3LPPffQokULRowYwbnnnsu0adP49re/zf/93//t1/kEQcBbb71F8+bNadOmTa3vDRo0iLFjx5Kdnc3w4cP58Y9/TO/evZkyZQoffvhhrbwTTzwRwINCMzOzbyDxUJ+AmZnVnalTp/K73/2On/3sZzW3XXXVVUyYMIG+ffsyevTovX5v0qRJnHvuuTW3X3rppaxatYoXXnhhj9vvuOMOevfuzfDhwykqKiI1NfUrz2fhwoVs3LiRwYMH1/re559/zrRp0zjnnHP45z//ucf3IpEI27Ztq/UzvXr1qvk7zczM7MB4ptDMrAFr164do0aN2uO2Sy65BIBGjRrV+t4Pf/hDYFfLh91mz57Ne++9x5AhQ/YYEAIUFBTw85//nPXr1/Pmm29+7fmsWLECgGbNmu3zmLS0tFq3hcNh8vLyat2ek5NDampqTa6ZmZnFzjOFZmYN2DHHHFNrA5aCggIAjj766Frfa968OQCrV6+uuW3atGkAbNmyZa+7oy5evBiABQsWcNZZZ33l+WzevBlgrwO8I488kh49evDMM8+wfPlyvve973HSSSfRs2dPkpOT95nZqFEj1q9f/5W/18zMzPbNg0IzswYsJyen1m2JiYlf+72qqqqa27Zs2QLsqtv7qtq9/ekXuHsWsLy8vNb3wuEwb731FuPGjeMf//gHv/jFLwDIzs7m8ssv58477yQjI6PWz+3cuXOvs4tmZma2f7x81MzMvtLuweNdd91FEAT7/BozZszXZh1xxBHAfwaa/y0vL4/x48ezcuVKFi1axCOPPEJhYSH3338/P/3pT2sdH41GKS4ursk1MzOz2HlQaGZmX+n4448H/rOM9Jvo1q0b4XCYhQsXfu2xhYWFDB8+nKlTp5KZmcm//vWvWscsXLiQIAjo0aPHNz43MzOzeOVBoZmZfaVevXrRt29fJk+ezGOPPbbXY6ZPn05ZWdnXZuXk5NCjRw/mzJlDRUXFHt9btmzZXnskbt26lYqKCtLT0/f6ewFOPvnk/flTzMzMbC9cU2hmZl/r6aef5uSTT+bKK6/kj3/8I7169SIrK4uVK1fy8ccfs2TJEtauXbvXgdt/O++885g5cyZTpkzh9NNPr7l9zpw5nHfeefTq1YuuXbvSvHlzNmzYwKRJk6iqqqqpMfyy1157jXA4zPe+9z3p32tmZhZPPFNoZmZfq02bNsyaNYuxY8dSXV3Nk08+yYMPPshHH31E9+7defLJJ8nPz9+vrCuvvJKkpCSefPLJPW7v2bMnv/zlLwmHw7zyyivce++9vPrqq/Tq1YuXX36Za665Zo/jt2/fzqRJk/jud79Lq1atZH+rmZlZvAkFQRAc6pMwM7P4MmzYMJ5++mmKiooOeJOYP/7xj4wYMYJ3332Xk046SXyGZmZm8cODQjMzO+jWrl1bs5HM+PHjY/758vJyOnbsSJ8+ffjHP/5RB2doZmYWP1xTaGZmB11BQQFPPfVUze6hoVAopp9fvnw5w4YN4/LLL6+bEzQzM4sjnik0MzMzMzOLY95oxszMzMzMLI55UGhmZmZmZhbHPCg0MzMzMzOLYx4UmpmZmZmZxTEPCs3MzMzMzOKYB4VmZmZmZmZxzINCMzMzMzOzOOZBoZmZmZmZWRzzoNDMzMzMzCyO/T9SDGb06jskaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\", vmax=0.001,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.title('Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It is actually only one feature drifiting along time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 0.3333333333333333\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dps.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 1 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_f = dps.rebin_frequency(df_new=1.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 1.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dps_new_f.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAJlCAYAAAAPYLm5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABabUlEQVR4nO3deXwUdZ7/8Xd17lswiCGcKocHQ5RjOIYJCOjIoD9EYhCW4ccsYXABfyDIDo5gwuWyjBvkWJVrcETRcWFWd0BXHUVRYGCc8eZeiEOCCiLkIgdd9fuDSW/FBKE7326a8Ho+HvWAVH/rU1Xd1d355PP9fstyHMcRAAAAAECS5LnYBwAAAAAA4YQkCQAAAABcSJIAAAAAwIUkCQAAAABcSJIAAAAAwIUkCQAAAABcSJIAAAAAwIUkCQAAAABcSJIAAAAAwIUkCQAAAABc/E6S9u7dq1GjRun6669XSkqK4uPj1alTJz344IM6evRove2HDh2qJk2aKCEhQX379tVbb71l5OABAAAAwDTLcRzHnw3++Mc/av78+erZs6datmypyMhIffLJJ/rNb36j5ORkffjhh7rqqqskSQcPHlSPHj0UGRmpKVOmKCUlRStXrtSnn36qV199VQMHDgzKSQEAAABAoPxOks7lpZde0r333quFCxdqxowZkqR7771XGzZs0AcffKCMjAxJUmlpqW688UbFxsZqz549sizLxO4BAAAAwAhjY5LatGkjSfr2228lSWVlZXrllVfUr18/X4IkSYmJiRo3bpz27dunXbt2mdo9AAAAABgRcJJUUVGh48eP68iRI3r99df1i1/8QpI0ePBgSdLHH3+syspK9erVq862PXv2lCSSJAAAAABhJzLQDVetWqXJkyf7fm7btq3WrVunvn37SpKKiookSenp6XW2rVlXWFgY6O6VlpZW62fbtvXBBx8oKSmJLnwAAACXIcdxVFJSohYtWsjjCd9JnCsqKlRVVRWSfUVHRys2NjYk+2pMAk6Shg4dqk6dOqm0tFR//etf9corr+j48eO+x8vLyyVJMTExdbateaFq2phg27ZatWplLB4AAAAuTX/729/UsmXLi30Y9aqoqFC7Non68mtvSPZ39dVX69ChQyRKfgo4SWrZsqXv4hs6dKjuuecede/eXeXl5Zo5c6bi4+MlSZWVlXW2raiokCRfm0B8d7rxU6dO6YorrlDfiLsUaUUFHNfNijYTR5Icr20slmT42CpC85eMQFhREUbj2QbP1RMbbSyWJMk2d4140pobiyVJ9vETRuOZvOas6IA/xurlnDH3peVJTDAWS5Kc06fNxTL8mSTbyBxAkiRPgtkvcvt03e+hQFkRZv8ybfKzXJLkMfeZ6Rj8Q6YkKcrg99bpCmOxJMkxeP1GJJt935u8fh3TlQvL3PvBE1f3j+qBOONU693y/1BSUpKReMFQVVWlL7/2quCDtkpOCm61q7jEVpuuh1VVVUWS5Cdjv1384Ac/0M0336x///d/18yZM9WiRQtJ9Xepq1lXX1e8QNV0sYu0oswlSZa5X4Idy+xfC8wem7kvB9Msy+wvwLbBc/UYfA0kSZbBJMlj5sumhm34XE1ec5ah93sNxzpjLJbHY/p5M/c5YvozSWH83rINvrcsy+wfbkxfv0aTJIPvBUmSwXM1ff2a/EyKCOPr1/j3vckkyfDzdikMvUhMspSYFNzjtBX+z0O4Mpq+nj59WidOnP2Lc+fOnRUTE6Pt27fXabdjxw5JUrdu3UzuHgAAAAAazO8k6csvv6x3/dtvv61PP/3UN3NdYmKi7rzzTm3ZskUfffSRr11paalWrVql9u3bq0ePHgEeNgAAAHDp8jp2SBYExu++TPfff7+OHj2qW2+9VW3atFFFRYU++OADvfDCC0pKStLjjz/ua/vYY4/pj3/8o2677TZNnTpVycnJWrlypQoLC7Vp06ZLohQKAAAA4PLid5J033336be//a2effZZHTt2TJZlqU2bNvrFL36hhx56SK1bt/a1ve666/T+++/rl7/8pf7lX/5FVVVVuuWWW/Taa69p4MCBRk8EAAAAuFTYcmQruOPCgx2/MfM7Sbr33nt17733XnD766+/Xi+//LK/uwEAAACAiyJ877IFAAAAABeB2fmVAQAAAJyXLVvBnlYh+HtovKgkAQAAAIALlSQAAAAgxLyOI68T3IkVgh2/MaOSBAAAAAAuVJIAAACAEGMK8PBGJQkAAAAAXKgkAQAAACFmy5GXSlLYopIEAAAAAC5UkgAAAIAQY0xSeKOSBAAAAAAuVJIAAACAEOM+SeGNShIAAAAAuFBJAgAAAELM/vsS7H0gMFSSAAAAAMCFJAkAAAAAXOhuBwAAAISYNwQ3kw12/MaMShIAAAAAuFBJAgAAAELM65xdgr0PBIZKEgAAAAC4UEkCAAAAQowpwMMblSQAAAAAcKGSBAAAAISYLUteWUHfBwJDJQkAAAAAXKgkAQAAACFmO2eXYO8DgWl0SZLj9cqxzBTInNOnjcSRJCsiwlgsSZLXayyUU11lLJYkRTRrZiyWU1JiLJYkeWJjjMYzyUpMMBbrzKECY7EkKbJNK6PxzhT8zVgsK8JsQdypMvh+qKo2F0uSXVFpLJblMdsFwxMfby6Yoc/wGiaPzak09xpIkmP4GnGqzX1vmWbJ4LmavkaizcUz/ZpGpF5pLJZ98pSxWJJkl5cbi2XqeXOcM0biAI0uSQIAAADCnTcEY5KCHb8xY0wSAAAAALiQJAEAAACAC93tAAAAgBCju114o5IEAAAAAC5UkgAAAIAQsx1LthPkm8kGOX5jRiUJAAAAAFyoJAEAAAAhxpik8EYlCQAAAABcqCQBAAAAIeaVR94g1yu8QY3euFFJAgAAAAAXKkkAAABAiDkhmN3OYXa7gFFJAgAAAAAXKkkAAABAiDG7XXijkgQAAAAALlSSAAAAgBDzOh55nSDPbucENXyjRiUJAAAAAFxIkgAAAADAhe52AAAAQIjZsmQHuV5hi/52gaKSBAAAAOCC2Lat/Px8derUSbGxsWrVqpWmTZumsrKyoGy/efNm9e7dWwkJCWratKmysrJ06NChc8bftGmTBg4cqCZNmig+Pl4dOnTQpEmT/D5PkiQAAAAgxGqmAA/2YtrUqVP14IMP6oYbbtDSpUuVlZWlJUuW6M4775Rt20a337hxo4YMGaLTp09r0aJFeuihh/Tuu++qT58+KioqqhM7Ly9PQ4YMUWRkpPLy8rRkyRKNGDFCR44c8fs86W4HAAAA4Lw+++wzLV26VMOGDdOGDRt869u1a6cHHnhAL7zwgkaOHGlk++rqak2ePFmtWrXS1q1blZiYKEm644471LVrV+Xm5mrFihW+GG+++aZyc3M1Z84czZo1q8HnSiUJAAAACLGaKcCDvZi0fv16OY6jKVOm1Fqfk5Oj+Ph4rVu3ztj277zzjoqKijRu3DhfgiRJGRkZ6tevn1588UVVV1f71i9YsEBXXXWVZs6cKUkqLS29oMrWuZAkAQAAADivXbt2yePxqEePHrXWx8bGKiMjQ7t27TK2fc3/e/XqVSdOz549VVxcrH379kmSysrK9O677+qHP/yhVq9erfT0dCUlJSkxMVEjRozQV1995fe5kiQBAAAAIXZ2drvgL5LUvn17paWl+ZZAFRUVKTU1VTExMXUeS09P1/Hjx1VVVWVk+5oxR+np6fW2laTCwkJJ0oEDB+T1erVjxw79v//3/5STk6ONGzdqwoQJeumll9S/f3+Vl5f7da6MSQIAAABwXuXl5fUmONLZalBNm+jo6AZvX5PU1Nfe3VaSSkpKJEnHjh3TypUrNW7cOEnS3XffreTkZOXl5emZZ57R/ffff0HnKVFJAgAAAELOlkfeIC8192Hav3+/jh496lsCFR8fr8rKynofq6io8LUxsX3Nv/W1/27buLg4SZLH49Ho0aNrtR0zZowkacuWLec8rvqQJAEAAAA4rxYtWuj48eP1Ji6FhYVKTU09ZxXJ3+1btGjhW19fW+l/u921bNlSktSkSZM6laea7oXffvvtec/PjSQJAAAACLFLcXa77t27y7Zt7dy5s9b6iooKffjhh+rWrZux7bt37y5J2r59e504O3bsUHJysjp06CBJat68uVq3bq0TJ07UGXtUc4+kq6666gLP8iySJAAAAADnlZ2dLcuytHjx4lrrV65cqfLyco0aNcq37uDBg9qzZ0/A22dmZiotLU2rVq1SaWmpb/1HH32kLVu2KCsrS1FRUb71o0ePluM4evrpp2vFfvLJJyVJgwcP9utcmbgBAAAACDHbNWYoePtwjMbr3LmzJk6cqGXLlmnYsGEaPHiwdu/erSVLligzM7PWjWQHDBiggoICOY4T0PZRUVF64oknlJ2drb59+yonJ0fFxcXKz89Xs2bNlJeXV+vYZsyYoQ0bNmj69Onat2+funTpovfee0/PPfecbr31VmVnZ/t1riRJAAAAAC7I4sWL1bZtW61YsUKbNm1SamqqJk+erDlz5sjjOX/S58/2WVlZiouL07x58zR9+nTFxMRowIABWrhwYZ2pwZOTk7V161bNmjVLL7/8slavXq2WLVvq4Ycf1qxZsxQREeHXeVqOO727hBUXFyslJUX9rKGKtKLOv0GIWX6+MOeN9z2D4vxl+zlv/PlENGtmLJbz9ykdjbmAN+/FYsXHGYvl/eaEsViSFNmmldF4Zwr+ZiyW5xxTiQbKPsesO4GISEoyFkuSvKVlxmJZHstYLEnyfM9sRn4z/HlpkmPw+ggGp/rMxT6Ec7IizH3+Ol7bWCzJ7LGZ/p7xNLnCWCz75CljsSSzvz9YkWZ+dzvjVOvt6pd06tQpJScnG4lpWs3vrM9/eJPik4L7eVde4tXIjE/D+vkIV36/k/ft26fZs2erZ8+eatasmZKSkpSRkaH58+errKzuF/j27dt11113qWXLloqLi9O1116rnJwc/c///I+REwAAAAAuNV7HCsmCwPjd3W7NmjVavny57rrrLo0aNUpRUVF6++239cgjj+h3v/udduzY4Zur/LXXXtNPf/pTXXvttZo0aZJSU1P12WefacWKFdqwYYM++eSTeu+iCwAAAAAXi99J0vDhwzVz5kylpKT41k2YMEHt27fX/PnztXr1ak2aNEmSlJ+fr4iICG3btk2pqam+9jfeeKNycnL00ksvacqUKQ0/CxcrIkKWZaZ06WnSxEgcSXIMd2kzymO21GsXFxuNZ5In2lxXTO8ps+cZYbjbmEnewi8v9iGcm+muLXHmuj3apyuMxZIMd5Ez3KXNZM9t091srUhzw2+dM2a7s3lSzHZ/cbzmumSa7srqeL3GYllRhrvV2wa77xk8T0myi829H5yqamOxzgY0OGLD1OfbJVQ5qbnha3D30ShG1VwUfr8y3bp1q5Ug1aiZMeLTTz/1rSsuLlZsbKyafCfZqLk5VEJCgr+7BwAAAICgMpa+1tyoqXnz5r51t99+u0pKSjRmzBh99NFHKiws1H//939r2rRpuv766zVixAhTuwcAAAAuGbbjCcmCwBjpg+D1ejV37lxFRkbWmt985syZ+vrrr7VmzRo999xzvvWDBw/W+vXrldSAmZ/S0tJq/WybLJUDAAAAuGwZSZKmTJmi7du3a8GCBerYsaNvfUREhNLT0zVw4EDdfffdatq0qd5//30tXbpUI0aM0Msvv1zrTrkAAADA5YAxSeGtwUnSrFmztGzZMo0fP14zZ86s9dj//b//V9u2bdNnn33mm/Hu7rvv1nXXXaf7779fzzzzjMaNGxfQfo8ePVrr55o55wEAAACgIRqUvubm5mrevHkaO3asnnrqqVqPffHFF3ruuef005/+1Jcg1cjKypIkvfPOOw3ZPQAAAHBJshX8eyUxGCVwASdJubm5ysvL05gxY7Rq1SpZVu0pFwsLCyWdHa/0XWf+PoXqGcNTqQIAAABAQwWUJM2ZM0d5eXkaPXq01qxZI0899ynp2LGjIiIi9J//+Z86efJkrcfWrl0rSerevXsguwcAAAAuabY8IVkQGL/HJC1fvlyPPvqoWrdurYEDB+r555+v9Xjz5s01aNAgNW3aVFOmTNHjjz+um2++WTk5Ob6JG5577jlde+21AY9HAgAAAIBg8TtJ2rVrl6SzY47GjBlT5/HMzEwNGjRIkrRo0SJ17NhRq1at0oIFC1RZWan09HTdf//9ys3NVXKy2TuNAwAAAEBD+Z0krV271tdd7nwsy1JOTo5ycnL83Q0AAADQaHkdj7xBvtlrsOM3ZjxzAAAAAOBi5GayAAAAAC6cLUu2rPM3bOA+EBgqSQAAAADgQiUJAAAACDHGJIU3njkAAAAAcKGSBAAAAISYVx55g1yvCHb8xoxnDgAAAABcqCQBAAAAIWY7lmwnyLPbBTl+Y0YlCQAAAABcqCQBAAAAIWaHYEySTT0kYDxzAAAAAOBCJQkAAAAIMdvxyA7yfYyCHb8x45kDAAAAABeSJAAAAABwobsdAAAAEGJeWfIquFN0Bzt+Y0YlCQAAAABcqCQBAAAAIcbEDeGNZw4AAAAAXKgkAQAAACHmVfDHDHmDGr1xo5IEAAAAAC5UkgAAAIAQY0xSeOOZAwAAAAAXKkkAAABAiHkdj7xBrvQEO35jxjMHAAAAAC6NrpJkRUfJsqKNxLK//dZIHElSRIS5WJL2rbjRWCzHNjuzSt9O+43FuiLqtLFYknSiyty5Tk/bYSyWJN392mRjsSJKzV5vHRbsMRrPio8zFssuLjEWS5KcikpzwTxm31ueuARjsbzFpcZiSZJl8DPOijT71eR4bWOxjB9bVbXReCaPz6mqMhZLkqyUZGOxvMe+MRZLMnv9Gn/fW+biOY6594IkWTEx5oJ5Dc3D5lw687k5smQHeXY7J8jxGzMqSQAAAADg0ugqSQAAAEC4Y0xSeOOZAwAAAAAXkiQAAAAAcKG7HQAAABBitmPJdoI7sUKw4zdmVJIAAAAAwIVKEgAAABBiXnnkDXK9ItjxGzOeOQAAAABwoZIEAAAAhBhjksIblSQAAAAAcKGSBAAAAISYLY/sINcrgh2/MeOZAwAAAAAXKkkAAABAiHkdS94gjxkKdvzGjEoSAAAAALhQSQIAAABCjNntwhuVJAAAAABwIUkCAAAAABe62wEAAAAh5jge2U5w6xVOkOM3ZjxzAAAAAOBCJQkAAAAIMa8seRXkKcCDHL8xo5IEAAAAAC5UkgAAAIAQs53gT9FtO0EN36hRSQIAAAAAFypJAAAAQIjZIZjdLtjxGzOeOQAAAABwoZIEAAAAhJgtS3aQZ58LdvzGjEoSAAAAALhQSQIAAABCzOtY8gZ5drtgx2/MqCQBAAAAgAtJEgAAABBiNbPbBXsxfty2rfz8fHXq1EmxsbFq1aqVpk2bprKysqBsv3nzZvXu3VsJCQlq2rSpsrKydOjQoTrtcnNzZVlWvcuvf/1rv8+T7nYAAAAALsjUqVO1ZMkS3X333Zo2bZp2796tJUuW6K9//avefPNNeTzfn5j5s/3GjRs1fPhwdenSRYsWLdKpU6e0ePFi9enTR3/+85/VokWLOvHz8/OVmppaa13Xrl39Pk+SJAAAAADn9dlnn2np0qUaNmyYNmzY4Fvfrl07PfDAA3rhhRc0cuRII9tXV1dr8uTJatWqlbZu3arExERJ0h133KGuXbsqNzdXK1asqLOPoUOHqm3btg0+V7rbAQAAACFmy5LtBHkxPAX4+vXr5TiOpkyZUmt9Tk6O4uPjtW7dOmPbv/POOyoqKtK4ceN8CZIkZWRkqF+/fnrxxRdVXV1d736Ki4t15swZ/07uO0iSAAAAAJzXrl275PF41KNHj1rrY2NjlZGRoV27dhnbvub/vXr1qhOnZ8+eKi4u1r59++o89oMf/EApKSmKjY1V79699eqrr17w+bmRJAEAAAAh5vz9ZrLBXJy/V5Lat2+vtLQ03xKooqIipaamKiYmps5j6enpOn78uKqqqoxsX1RU5FtfX1tJKiws9K274oorNH78eC1dulQvv/yyHnvsMRUUFOinP/2p1q5d69d5SgGMSdq3b5/WrVun119/XQcPHlRFRYWuvfZaZWVlacqUKUpISKizzaZNm5Sfn68PPvhAlZWVatmypW677TYtW7bM7wM+n1Hv7VF8UoSRWIv23W4kjiQtv/E5Y7Ek6aHJXYzFin/rU2OxJOmb5CRjsY4VN6xU+l2O97SxWDMjbzUWS5I66TNjsU7/+AZjsSRpT14Ho/Hu+dFOY7E+u+9aY7EkSUeOmovl9ZqLJckuvbCZgy4Gx+C5euJijcWSJMt2jMYzyXHMHptTVX/Xk4BiVZ/7F51ARERHG4vliY4yFss02+BrIEneanPfgxHJiedv5AeTn0me+HgzcZwqqdhIKNSjvLy83gRHOlsNqmkTfY73uz/bl5eXS1K97d1ta3y3C58k/fznP9dNN92kqVOnavjw4bW67Z2P35WkNWvWKD8/X9dee61mz56tRYsWqWPHjnrkkUfUu3dvnT5d+5fQvLw8DRkyRJGRkcrLy9OSJUs0YsQIHTlyxN9dAwAAAI1C0Mcj/X2RpP379+vo0aO+JVDx8fGqrKys97GKigpfGxPb1/xbX/sL2ZckXXnllZowYYJOnjypbdu2fW/b7/K7kjR8+HDNnDlTKSkpvnUTJkxQ+/btNX/+fK1evVqTJk2SJL355pvKzc3VnDlzNGvWLH93BQAAACBMtGjRQp9//rkqKyvrVHgKCwuVmpp6ziqSv9vXTO9dWFio66+/vk5bqf6ueN9VM9Pd8ePHz9vWze9KUrdu3WolSDWys7MlSZ9++r9dtxYsWKCrrrpKM2fOlCSVlpbKtm1/dwkAAAA0KpfizWS7d+8u27a1c2ftbvMVFRX68MMP1a1bN2Pbd+/eXZK0ffv2OnF27Nih5ORkdehw/uEA+/fvlyQ1b978vG3djD1zNd3nag6grKxM7777rn74wx9q9erVSk9PV1JSkhITEzVixAh99dVXpnYNAAAAIMiys7NlWZYWL15ca/3KlStVXl6uUaNG+dYdPHhQe/bsCXj7zMxMpaWladWqVSotLfWt/+ijj7RlyxZlZWUpKurs+MQzZ87o1KlTdY73b3/7m5588kldeeWV6t27t1/nauRmsl6vV3PnzlVkZKTvBlAHDhyQ1+vVjh079Prrr+uXv/ylunTpoq1bt+qJJ57Qxx9/rD//+c/n7Ut4Lt+dmYMKFQAAAC4V7jFDwdyHSZ07d9bEiRO1bNkyDRs2TIMHD9bu3bu1ZMkSZWZm1rqR7IABA1RQUFBrghp/to+KitITTzyh7Oxs9e3bVzk5OSouLlZ+fr6aNWumvLw8X9vS0lK1a9dOQ4cO1fXXX68mTZpo7969vgRr/fr1iouL8+tcjSRJU6ZM0fbt27VgwQJ17NhRklRSUiJJOnbsmFauXKlx48ZJku6++24lJycrLy9PzzzzjO6//34ThwAAAAAgyBYvXqy2bdtqxYoV2rRpk1JTUzV58mTNmTNHHs/5O6n5s31WVpbi4uI0b948TZ8+XTExMRowYIAWLlxYazxSXFyc7rnnHv3pT3/Sf/7nf6q0tFSpqakaOHCgZsyYUee+TBeiwUnSrFmztGzZMo0fP9439qjmYCXJ4/Fo9OjRtbYZM2aM8vLytGXLloCTpO/OzFFcXFzvWCkAAAAg3NTcyyjY+zAtIiJC06ZN07Rp07633eHDhxu0fY0hQ4ZoyJAh39smJiZGq1atuqB4F6pBY5Jyc3M1b948jR07Vk899VStx1q2bClJatKkSZ3ZK2q6yn377bcN2T0AAAAAGBdwJSk3N1d5eXkaM2aMVq1aJcuqnak2b95crVu31t/+9jeVl5fXGntUM8nDVVddFejuAQAAgEvWpTgm6XISUCVpzpw5ysvL0+jRo7VmzZpz9j8cPXq0HMfR008/XWv9k08+KUkaPHhwILsHAAAAgKDxu5K0fPlyPfroo2rdurUGDhyo559/vtbjzZs316BBgyRJM2bM0IYNGzR9+nTt27dPXbp00XvvvafnnntOt956q+/eSgAAAAAQLvxOknbt2iVJ+uKLLzRmzJg6j2dmZvqSpOTkZG3dulWzZs3Syy+/rNWrV6tly5Z6+OGHNWvWLEVERDTw8AEAAIBLD93twpvfSdLatWu1du3aC26fmpqqJ5980tfFDgAAAADCmZH7JAEAAAC4cFSSwluDpgAHAAAAgMaGShIAAAAQYlSSwhuVJAAAAABwoZIEAAAAhJgjyVZwKz1OUKM3blSSAAAAAMCFShIAAAAQYoxJCm9UkgAAAADAhUoSAAAAEGJUksIblSQAAAAAcCFJAgAAAAAXutsBAAAAIUZ3u/BGJQkAAAAAXKgkAQAAACFGJSm8UUkCAAAAABcqSQAAAECIOY4lJ8iVnmDHb8yoJAEAAACAC5UkAAAAIMRsWbIV5DFJQY7fmFFJAgAAAAAXKkkAAABAiDG7XXijkgQAAAAALlSSAAAAgBBjdrvw1uiSpPVDeyvSE2MkVurxQiNxJOlRz63GYklSQvQBY7G8FZXGYkmSLHNvSKf6jLFYkmRFGCyeeswWYk0eW9w7nxmLJUmdDlxtNN6fN3czFuvEwlJjsSQpPsbcuTZ5wDEWS5KcQ18Yi+VJiDcWS5KsluaeN+fIl8ZiSZJTVWUslicu1lgsSVKFuWOTJOdMtbFYVoyZ71Ifj7nvBisxwVgsSbJPlRiL5YmOMhbrbEBz3w2mv1M9KcnGYllJiWbi2JVSsZFQuMw1uiQJAAAACHeMSQpvjEkCAAAAABeSJAAAAABwobsdAAAAEGJM3BDeqCQBAAAAgAuVJAAAACDEnBBM3EAlKXBUkgAAAADAhUoSAAAAEGKOJMfs7fTq3QcCQyUJAAAAAFyoJAEAAAAhZsuSpSDfTDbI8RszKkkAAAAA4EIlCQAAAAgx7pMU3qgkAQAAAIALlSQAAAAgxGzHkhXkSk+w78PUmFFJAgAAAAAXkiQAAAAAcKG7HQAAABBijhOCm8lyN9mAUUkCAAAAABcqSQAAAECIMQV4eKOSBAAAAAAuVJIAAACAEKOSFN6oJAEAAACAC5UkAAAAIMS4mWx4o5IEAAAAAC5UkgAAAIAQ4z5J4Y1KEgAAAAC4UEkCAAAAQuxsJSnYs9sFNXyjRiUJAAAAAFyoJAEAAAAhxn2SwhuVJAAAAABwIUkCAAAAABe62wEAAAAh5vx9CfY+EBgqSQAAAADgQiUJAAAACDEmbghvVJIAAAAAwKXRVZK8RV/JsqKMxPJc2dRIHElySsuMxZIkp6LSWCwrIsJYLElG71xmRZm9RD1NrjAWy3v8G2OxJLP9hi3L7F+O7ENfGI0Xd8zcc9dii7n3giTJY+5vR7sfv8lYLEmy4q8wFqvjpP3GYkmSVVFlLFZY96GPNPuZZMWZ/VtlRHS0sVh2pdn3luO1jcWyi08aiyVJlsfcZ6YVG2csliTZpyuMxfLExBiLJUmbP3nLWKx2L483Esc+XSFNNRIq+BiUFNb8+nTet2+fZs+erZ49e6pZs2ZKSkpSRkaG5s+fr7Ky708CnnzySVmWJcuydPz48QYdNAAAAAAEi19/EluzZo2WL1+uu+66S6NGjVJUVJTefvttPfLII/rd736nHTt2KC6u7l9QioqK9Mtf/lKJiYkqLS01dvAAAADAJSkEY5LEmKSA+ZUkDR8+XDNnzlRKSopv3YQJE9S+fXvNnz9fq1ev1qRJk+psN3HiRF177bW68cYbtW7duoYfNQAAAAAEiV/d7bp161YrQaqRnZ0tSfr000/rPPb73/9er7zyip566ilFmB77AgAAAFyCHCc0i2m2bSs/P1+dOnVSbGysWrVqpWnTpp136E2g22/evFm9e/dWQkKCmjZtqqysLB06dOi8+2noUB8jI0aPHDkiSWrevHmt9cXFxZo0aZJ+8YtfqEePHiZ2BQAAAOAimTp1qh588EHdcMMNWrp0qbKysrRkyRLdeeedsu3zT9Diz/YbN27UkCFDdPr0aS1atEgPPfSQ3n33XfXp00dFRUXn3Id7qE+gGjxNj9fr1dy5cxUZGamRI0fWeuyf//mfZdu2HnvssYbupo60tLRaP1/IiwIAAACEg0vxPkmfffaZli5dqmHDhmnDhg2+9e3atdMDDzygF154oU4+EOj21dXVmjx5slq1aqWtW7f6Ep477rhDXbt2VW5urlasWFHvfkwM9WlwJWnKlCnavn275syZo44dO/rWv//++3r66af1b//2b/V20QMAAABw6Vi/fr0cx9GUKVNqrc/JyVF8fPx5ExJ/tn/nnXdUVFSkcePG1aoIZWRkqF+/fnrxxRdVXV1dZx+mhvo0KEmaNWuWli1bpvHjx2vmzJm+9VVVVRo/frwGDhyo++67ryG7OKejR4/WWvbvN3vPDwAAACBoHCs0i0G7du2Sx+OpM4wmNjZWGRkZ2rVrl7Hta/7fq1evOnF69uyp4uJi7du3r9Z6k0N9Ak6ScnNzNW/ePI0dO1ZPPfVUrceWL1+uPXv26MEHH9SBAwd8S0lJiSTp0KFD+p//+Z8GHTgAAACA82vfvr3S0tJ8S6CKioqUmpqqmHpuTJyenq7jx4+rqurcNxf3Z/uaMUfp6en1tpWkwsLCWutNDvUJaExSbm6u8vLyNGbMGK1atUqWVTtLLSgokG3buuOOO+rdvkePHkpISOCeSQAAAMAlory8vN4ERzpbDappEx0d3eDty8vLJane9u62NWqG+jz33HNGhvr4nSTNmTNHeXl5Gj16tNasWSOPp24xauzYsfrRj35UZ/3y5cu1ZcsWrVmzRk2aNAnsiAEAAIBLXLCm6P7uPiRp//79Sk5ObnC8+Ph4ff311/U+VlFR4WtjYvuafysrK8/bNhhDffxKkpYvX65HH31UrVu31sCBA/X888/Xerx58+YaNGiQunTpoi5dutTZ/g9/+IMk6c4771RqamoDDhsAAABAKLVo0UKff/65Kisr61R4CgsLlZqaes4qkr/bt2jRwrf++uuvr9NW+t9udzVDfR5//HEdOHDA18491Ke4uFjXXHPNBZ+rX0lSzQCqL774QmPGjKnzeGZmpgYNGuRPSAAAAODy4/x9CfY+DOrevbtef/117dy5U3379vWtr6io0Icffqgf//jHxrbv3r27JGn79u0aOHBgrTg7duxQcnKyOnToICk4Q338mrhh7dq1chznnMuWLVsuaHuqSAAAAMClJTs7W5ZlafHixbXWr1y5UuXl5Ro1apRv3cGDB7Vnz56At8/MzFRaWppWrVpVK7n56KOPtGXLFmVlZSkqKkrS2aE+L730Up2lX79+kqQ1a9b4fb+kBt9MFgAAAIB/LsWbyXbu3FkTJ07UsmXLNGzYMA0ePFi7d+/WkiVLlJmZWetGsgMGDFBBQYEc18Arf7aPiorSE088oezsbPXt21c5OTkqLi5Wfn6+mjVrpry8PF/bYAz1IUkCAAAAcEEWL16stm3basWKFdq0aZNSU1M1efJkzZkzp94J3RqyfVZWluLi4jRv3jxNnz5dMTExGjBggBYuXFjv1OAmkSQBAAAAF0OwxyQFQUREhKZNm6Zp06Z9b7vDhw83aPsaQ4YM0ZAhQ/w9TElnh/qsXbs2oG0DvpksAAAAADRGVJIAAACAELsUxyRdTqgkAQAAAIALlSQAAAAg1C7B+yRdTqgkAQAAAIALSRIAAAAAuNDdDgAAAAg56+9LsPeBQFBJAgAAAAAXKkkAAABAqDFxQ1ijkgQAAAAALlSSAAAAgFCjkhTWqCQBAAAAgAuVJAAAACDUHOvsEux9ICBUkgAAAADAhUoSAAAAEGKOc3YJ9j4QGCpJAAAAAOBCJQkAAAAINWa3C2tUkgAAAADApdFVkqzoKFlWtJFY9omTRuJIZ4/LJCvazDlKklNZaSyWaaafN+/Xx43GM8kTF2sslh3Gr6kkOV7bWCwrNsZYLEmyy04bi9VxykfGYklSxNVXGYtVvrGpsViS1DbphLFYXw4yFkqSFNHkCmOxvMe/MRZLkqwYs9evvN7wjCXJqTD3uWR5zM7Y5YmPNxbLijX3WS5JnmZXGou1Z0ozY7Ek6Y6ftDAWq9PBz4zEOeNU6YiRSCHA7HZhjUoSAAAAALiQJAEAAACAS6PrbgcAAACEO8s5uwR7HwgMlSQAAAAAcKGSBAAAAIQaU4CHNSpJAAAAAOBCJQkAAAAINaYAD2tUkgAAAADAhUoSAAAAEGqMSQprVJIAAAAAwIVKEgAAABBqVJLCGpUkAAAAAHChkgQAAACEGpWksEYlCQAAAABcqCQBAAAAocZ9ksIalSQAAAAAcCFJAgAAAAAXutsBAAAAIWY5Z5dg7wOBoZIEAAAAAC5UkgAAAIBQYwrwsEYlCQAAAABcSJIAAAAAwIUkCQAAAABcGJMEAAAAhJilEMxuF9zwjRqVJAAAAABwoZIEAAAAhJpjnV2CvQ8EhEoSAAAAALhQSQIAAABCjfskhTUqSQAAAADgQpIEAAAAAC50twMAAABCje52YY1KEgAAAAC4UEkCAAAAQsxyQnAzWSpJAaOSBAAAAAAuVJIAAACAUGNMUlhrdEmSU+2VY50xEsuKMFdoc86YOaYaVkSEsVieJk2MxZIk+9tvjcVyqk0/b+ZeUysh3lgsSbKLS43FMnmekuRJvdJoPLvE3LnaVVXGYkmSFRXGH4uWuTunx2WdNBZLkr5s09JYrB+8u9tYLEl6aesNxmIlFlxrLJYktXqxwGg8+9uTxmJ5EhOMxZIk++QpY7E8VzY1FkuSnNIyY7EiXzT3PpWk1vGFxmJZd5UbiyVJ3hPmvu9NcRzvxT4ENBJh/NsAAAAA0EhRSQprjEkCAAAAABe/kqR9+/Zp9uzZ6tmzp5o1a6akpCRlZGRo/vz5Kiv731K14zhat26dRowYoeuuu07x8fFq3bq17rrrLv3pT38yfhIAAADApaRmdrtgLwiMX0nSmjVrlJ+fr2uvvVazZ8/WokWL1LFjRz3yyCPq3bu3Tp8+LUmqrKzU6NGjtXfvXo0YMUJLly7V+PHj9Ze//EW9evXSunXrgnIyAAAAANBQfo1JGj58uGbOnKmUlBTfugkTJqh9+/aaP3++Vq9erUmTJikyMlJbtmxRZmZmre1zcnJ04403atq0aRo5cqQ8Hnr7AQAA4DLkWGeXYO8DAfErS+nWrVutBKlGdna2JOnTTz+VJEVGRtZJkCSpefPmyszM1Ndff62vv/46kOMFAAAAgKAyMrvdkSNHJJ1Ngi6kbXR0tK644goTuwYAAAAuPcxuF9YanCR5vV7NnTtXkZGRGjly5Pe23bx5s3bu3KnRo0crNja2QftNS0ur9bNt2w2KBwAAAACSgSRpypQp2r59uxYsWKCOHTues93+/fs1evRopaen6/HHH2/obgEAAAAgKBqUJM2aNUvLli3T+PHjNXPmzHO2O3TokAYMGCDLsvTqq6+qWbNmDdmtJOno0aO1fi4uLq53vBQAAAAQbkIxRTdTgAcu4CQpNzdX8+bN09ixY/XUU0+ds93hw4fVv39/lZaW6o9//KM6d+4c6C4BAAAAIOgCSpJyc3OVl5enMWPGaNWqVbKs+qcXPHz4sPr166dTp07pzTff1M0339yggwUAAAAaBSZuCGt+J0lz5sxRXl6eRo8erTVr1pzzXkcFBQXq37+/Tp48qTfeeENdu3Zt8MECAAAAQLD5dZ+k5cuX69FHH1Xr1q01cOBAPf/881q3bp1veeONNyRJJSUl6t+/vw4fPqyf/exn2rt3b61269at01dffRWUEwIAAADCnvO/45KCtQSjkmTbtvLz89WpUyfFxsaqVatWmjZtmsrKyoKy/ebNm9W7d28lJCSoadOmysrK0qFDh+q0e/zxx9WvXz+lpaUpJiZGaWlp6t+/v37/+98HdJ5+VZJ27dolSfriiy80ZsyYOo9nZmZq0KBB+uabb3wHv3Tp0npjvf322xd0XyUAAAAA4WHq1KlasmSJ7r77bk2bNk27d+/WkiVL9Ne//lVvvvnmOXuZBbL9xo0bNXz4cHXp0kWLFi3SqVOntHjxYvXp00d//vOf1aJFC1/bnTt3qm3btho8eLBSU1N14sQJvfTSSxo2bJjmzJmjWbNm+XWefiVJa9eu1dq1a8/brm3btnIcOkECAAAA9boExyR99tlnWrp0qYYNG6YNGzb41rdr104PPPCAXnjhhe+9b6o/21dXV2vy5Mlq1aqVtm7dqsTEREnSHXfcoa5duyo3N1crVqzwxXjxxRfr7G/KlCnq2rWr/vVf/1UPP/ywIiIiLvhc/epuBwAAAODytH79ejmOoylTptRan5OTo/j4eK1bt87Y9u+8846Kioo0btw4X4IkSRkZGerXr59efPFFVVdXf+/+IiMjlZ6errKysvO2/S6SJAAAACDUnBAtBu3atUsej0c9evSotT42NlYZGRm+oTkmtq/5f69everE6dmzp4qLi7Vv3746j504cULHjh3T7t27NWfOHL322mvq37+/YmNjL/g8pQbeTBYAAABAeGvfvn2tsT5Hjx4NKE5RUZFSU1MVExNT57H09HRt27ZNVVVVio6ObvD2RUVFvvX1tZWkwsJC3XjjjbUe69Chg7755htJZytJ99xzj/793//dvxMVSRIAAAAQcr4Z6IK8D5PKy8vrTXAk+So15eXl50yS/Nm+vLxckupt7277XRs3blRFRYUKCwv10ksv6fTp0yopKVGzZs3Oc3a1kSQBAAAAjdj+/fuVnJzc4Djx8fH6+uuv632soqLC18bE9jX/VlZW+rWvH//4x77/jx07Vvfdd5/69Omjzz//XE2aNDnnsX0XY5IAAAAAnFeLFi10/PjxehOXwsJCpaamnrOK5O/2NdN7FxYW1ttWqr8r3neNGTNGX375pTZu3Hjetm4kSQAAAADOq3v37rJtWzt37qy1vqKiQh9++KG6detmbPvu3btLkrZv314nzo4dO5ScnKwOHTqc95hPnz4t6eyEDv4gSQIAAABwXtnZ2bIsS4sXL661fuXKlSovL9eoUaN86w4ePKg9e/YEvH1mZqbS0tK0atUqlZaW+tZ/9NFH2rJli7KyshQVFSVJKisrq9Wmhtfr1fLlyyWdnRHPH4xJAgAAAELtEryZbOfOnTVx4kQtW7ZMw4YN0+DBg7V7924tWbJEmZmZtW4kO2DAABUUFMhxnIC2j4qK0hNPPKHs7Gz17dtXOTk5Ki4uVn5+vpo1a6a8vDxf2/379yszM1PDhw9Xx44d1bRpUxUWFmr9+vXau3evxowZo759+/p1riRJAAAAAC7I4sWL1bZtW61YsUKbNm1SamqqJk+erDlz5tSaZtzE9llZWYqLi9O8efM0ffp0xcTEaMCAAVq4cGGt8UgtW7bU6NGjtXXrVv3+979XSUmJUlJSdPPNN2vWrFm1kq8LRZIEAAAAhNilOAW4JEVERGjatGmaNm3a97Y7fPhwg7avMWTIEA0ZMuR726SmpmrZsmUXFO9CMSYJAAAAAFyoJAEAAAAXQ7DHJCFgVJIAAAAAwIVKEgAAABBql+DsdpcTKkkAAAAA4EIlCQAAAAixS3V2u8sFlSQAAAAAcKGSBAAAAIQaY5LCWqNLkjwpyfJ4oo3EckpKjMSRpIjUK43FkiSnstJYLLu42FgsSbLi4szFsixjsSTJNvi8WbbhTx6PuXO1EhOMxZIk77cnjcaTwefOY/hc7dIyc8Ec21wsSY7BY/MWlxqLJUnW5weNxfrk1ibGYklSp8j/MRbrq2HXGYslSXv+5Sqj8fpdd8pYrG8qzf6K8OMrTxiL9dLf2hiLJUk/vMrcse37SbyxWJJ0wOBXtCep2lwwSVZEhLFY9unTRuI4jtlzxOWL7nYAAAAA4NLoKkkAAABAuGPihvBGJQkAAAAAXKgkAQAAAKHGxA1hjUoSAAAAALhQSQIAAABCjUpSWKOSBAAAAAAuVJIAAACAEGN2u/BGJQkAAAAAXKgkAQAAAKHGmKSwRiUJAAAAAFyoJAEAAAChRiUprFFJAgAAAAAXKkkAAABAiDG7XXijkgQAAAAALiRJAAAAAOBCdzsAAAAg1Ji4IaxRSQIAAAAAFypJAAAAQIgxcUN4o5IEAAAAAC5UkgAAAIBQY0xSWKOSBAAAAAAuVJIAAACAUKOSFNaoJAEAAACAC5UkAAAAIMSsvy/B3gcCQyUJAAAAAFyoJAEAAAChxpiksEYlCQAAAABcqCQBAAAAIWY5Z5dg7wOBoZIEAAAAAC4kSQAAAADgQnc7AAAAINSYuCGsUUkCAAAAABcqSQAAAMDFQKUnbFFJAgAAAACXRldJ8n7zjSwrykgsT0yMkTiS5JSUGoslSY4Txn968HrNhTp92lgsSYq4qpmxWN5j3xiLJUmWxzIWyzZ8vXmSk43Gc0pKjMXynjxpLJYkeeLjzQUz+F6QJPuUuefNijL78W9FRxuLZRu8PiTJsc19Xl7934XGYklS8w1lRuMVldvGYjnV3xqLJUlvJrQyFquJfcxYLEnac9rc34ytCMPXb/UZY7G8J04aiyVJVkSEsVimPns9TpVk9m0VNEwBHt6oJAEAAACAS6OrJAEAAABhj9ntwhqVJAAAAABw8TtJ2rdvn2bPnq2ePXuqWbNmSkpKUkZGhubPn6+ysrqdQPfu3auhQ4eqSZMmSkhIUN++ffXWW28ZOXgAAADgUlQzJinYCwLjd5K0Zs0a5efn69prr9Xs2bO1aNEidezYUY888oh69+6t066B9gcPHlTv3r21fft2zZgxQ4sWLVJpaaluv/12vfnmm0ZPBAAAAABM8HtM0vDhwzVz5kylpKT41k2YMEHt27fX/PnztXr1ak2aNEmSNHPmTJ08eVIffPCBMjIyJEk/+9nPdOONN2rixInas2ePLMvcjF4AAADAJYExSWHN70pSt27daiVINbKzsyVJn376qSSprKxMr7zyivr16+dLkCQpMTFR48aN0759+7Rr164ADxsAAAAAgsPYxA1HjhyRJDVv3lyS9PHHH6uyslK9evWq07Znz56SRJIEAAAAIOwYmQLc6/Vq7ty5ioyM1MiRIyVJRUVFkqT09PQ67WvWFRYGflO+tLS0Wj/btrkb6AEAAADBxM1kw5uRJGnKlCnavn27FixYoI4dO0qSysvLJUkxMTF12sfGxtZqAwAAAADhosFJ0qxZs7Rs2TKNHz9eM2fO9K2Pj4+XJFVWVtbZpqKiolabQBw9erTWz8XFxfWOlQIAAADCDhM3hLUGjUnKzc3VvHnzNHbsWD311FO1HmvRooWk+rvU1ayrryseAAAAAFxMAVeScnNzlZeXpzFjxmjVqlV1pvLu3LmzYmJitH379jrb7tixQ9LZmfIAAACAyw6VpLAWUCVpzpw5ysvL0+jRo7VmzRp5PHXDJCYm6s4779SWLVv00Ucf+daXlpZq1apVat++vXr06BH4kQMAAABAEPhdSVq+fLkeffRRtW7dWgMHDtTzzz9f6/HmzZtr0KBBkqTHHntMf/zjH3Xbbbdp6tSpSk5O1sqVK1VYWKhNmzZxI1kAAABclpjdLrz5nSTV3Nvoiy++0JgxY+o8npmZ6UuSrrvuOr3//vv65S9/qX/5l39RVVWVbrnlFr322msaOHBgAw8dAAAAAMzzO0lau3at1q5de8Htr7/+er388sv+7gYAAABovBiTFNYaNLsdAAAAADQ2Rm4mCwAAAODCWY4jywluqSfY8RszKkkAAAAA4EIlCQAAAAg1xiSFNSpJAAAAAOBCkgQAAAAALiRJAAAAQIjV3Ew22Itptm0rPz9fnTp1UmxsrFq1aqVp06aprKwsKNtv3rxZvXv3VkJCgpo2baqsrCwdOnSoVhvHcbRu3TqNGDFC1113neLj49W6dWvddddd+tOf/hTQeZIkAQAAALggU6dO1YMPPqgbbrhBS5cuVVZWlpYsWaI777xTtm0b3X7jxo0aMmSITp8+rUWLFumhhx7Su+++qz59+qioqMjXrrKyUqNHj9bevXs1YsQILV26VOPHj9df/vIX9erVS+vWrfP7PJm4AQAAAAi1S3Dihs8++0xLly7VsGHDtGHDBt/6du3a6YEHHtALL7ygkSNHGtm+urpakydPVqtWrbR161YlJiZKku644w517dpVubm5WrFihSQpMjJSW7ZsUWZmZq395eTk6MYbb9S0adM0cuRIeTwXXh+ikgQAAADgvNavXy/HcTRlypRa63NychQfH3/eio0/27/zzjsqKirSuHHjfAmSJGVkZKhfv3568cUXVV1dLelskvTdBEmSmjdvrszMTH399df6+uuv/TpXkiQAAAAgxC7FMUm7du2Sx+NRjx49aq2PjY1VRkaGdu3aZWz7mv/36tWrTpyePXuquLhY+/btO+8xHzlyRNHR0briiivO29aNJAkAAABoxNq3b6+0tDTfEqiioiKlpqYqJiamzmPp6ek6fvy4qqqqjGxfM+YoPT293raSVFhY+L3Hu3nzZu3cuVPZ2dmKjY393rbfRZIEAAAAhJoTosWg8vLyehMcSb4kpLy83Mj2Nf/W1/5C9rV//36NHj1a6enpevzxx8/Z7lyYuAEAAABoxPbv36/k5OQGx4mPjz/n2J6KigpfGxPb1/xbWVnp974OHTqkAQMGyLIsvfrqq2rWrNk5j+lcqCQBAAAAIXYpjklq0aKFjh8/Xm/iUlhYqNTUVEVHRxvZvkWLFr719bWV6u+Kd/jwYfXv31+lpaV644031Llz5ws7ue8gSQIAAABwXt27d5dt29q5c2et9RUVFfrwww/VrVs3Y9t3795dkrR9+/Y6cXbs2KHk5GR16NCh1vrDhw+rX79+OnXqlN544w3dfPPNfp2fG0kSAAAAEGqX4Jik7OxsWZalxYsX11q/cuVKlZeXa9SoUb51Bw8e1J49ewLePjMzU2lpaVq1apVKS0t96z/66CNt2bJFWVlZioqK8q0vKChQ//79dfLkSb3++uvq2rVrg86VMUkAAAAAzqtz586aOHGili1bpmHDhmnw4MHavXu3lixZoszMzFo3kh0wYIAKCgrkOE5A20dFRemJJ55Qdna2+vbtq5ycHBUXFys/P1/NmjVTXl6er21JSYn69++vw4cPa/Lkydq7d6/27t1b69gHDRqk5s2bX/C5NrokyYqIkGVFGInleG0jcSTJqafvZUNYlmU0XriyvqdfayCcktLzN7pAntj6Z2cJlFN9xlgsz/cMmgyEffKU0XgmRTRtYjagyfdWVbW5WJL0PdOq+ss5Y+56kyS71Nx7y/T73hNnMN4Zr7lYkpzSMqPxbIPXnCc66vyN/GCfrjAXzGv2dbDOMdtWIIyep8y/DkZ5DHZIcgyVPEzFwTktXrxYbdu21YoVK7Rp0yalpqZq8uTJmjNnjjwXcE34s31WVpbi4uI0b948TZ8+XTExMRowYIAWLlxYazzSN998o0OHDkmSli5dWu9+3377bb+SJMtxGsfVVFxcrJSUFPWPvEeRlqEPFMvgm99jNqkxmSSZvgSsCDNJqiQ5pr8IDR6baUaTpMQEY7EkyTb8i5xJnuTE8zfyRxgnSU4YJ0km36umkyST8TwpDZ8dys0+/o3ZeGGcJBn9riFJCg8mkyRDzjhVeqv8BZ06dcrIbG7BUPM7a9d75ysyyr979/jrTHWFPvjdr8L6+QhX4Xd1AwAAAMBF1Oi62wEAAABhz3GC3z2wcXQYuyioJAEAAACAC5UkAAAAIMSCcbPX+vaBwFBJAgAAAAAXKkkAAABAqAXhZq/17gMBoZIEAAAAAC5UkgAAAIAQs+yzS7D3gcBQSQIAAAAAFypJAAAAQKgxJimsUUkCAAAAABcqSQAAAECIcZ+k8EYlCQAAAABcSJIAAAAAwIXudgAAAECoOc7ZJdj7QECoJAEAAACAC5UkAAAAIMSYuCG8UUkCAAAAABcqSQAAAECocTPZsEYlCQAAAABcqCQBAAAAIcaYpPBGJQkAAAAAXKgkAQAAAKHGfZLCGpUkAAAAAHChkgQAAACEGGOSwhuVJAAAAABwoZIEAAAAhBr3SQprVJIAAAAAwIUkCQAAAABc6G4HAAAAhBgTN4Q3KkkAAAAA4EIlCQAAAAg12zm7BHsfCAiVJAAAAABwoZIEAAAAhBpTgIc1kqTvYUWZe3qsmBhjsSTJOX3aXDCv11wsSXb1GYPBzB6bTL4OhkvYjuHXwSRPcqLRePapYmOxnLJyY7EkyXHMva6euFhjsc4GNFf8tyLNfvx7mjQxFsspKTEWS5KcikpzsaINfvbK7PV2NqBtLJRdae55kyQrOtpYrIjUK43FkiTb4OdIRGKCsVimmf6esU9XGItl7vPSMhQHlzuSJAAAACDELIVgdrvghm/UGJMEAAAAAC5UkgAAAIBQc5yzS7D3gYBQSQIAAAAAF7+TpMcee0xZWVm65pprZFmW2rZt+73tX331VQ0YMEBXX321EhIS1LFjR02fPl1fffVVoMcMAAAAXNIsJzQLAuN3d7uHH35YTZs21S233KKTJ09+b9uVK1dq/Pjx6tq1q/75n/9ZCQkJ2rVrlxYvXqyNGzfqk08+UUJC+M4CAwAAAODy43eSdPDgQV1zzTWSpJtuukmlpaXnbPvrX/9aaWlpeu+99xQbe3Zqx/Hjx6t58+aaP3++3njjDQ0dOjSwIwcAAACAIPA7SapJkC5EcXGxmjZt6kuQarRo0UKSqCIBAADg8sTNZMNaUCduuP322/X5559r2rRp2r17t/72t79p48aNmjt3rjIzM3XrrbcGc/cAAAAA4LegTgH+xBNPqLy8XE888YT+7d/+zbd+7NixevrppxURERFw7LS0tFo/27a5u4wDAAAAwWQ5jqwgT9Ed7PiNWVCTpKioKLVu3Vp333237rzzTsXHx+u///u/tWbNGkVERGjlypXB3D0AAAAA+C1oSZJt2/rJT36iM2fO6P3335dlWZKk4cOH68orr9TChQuVnZ2tgQMHBhT/6NGjtX4uLi5WSkpKg48bAAAACDr770uw94GABG1M0nvvvaetW7fqnnvu8SVINbKysiRJ77zzTrB2DwAAAAABCVolqbCwUJLk9XrrPHbmzJla/wIAAACXE8YkhbegVZJuuOEGSdJzzz2n6urqWo+tXbtWktS9e/dg7R4AAAAAAuJ3JenZZ59VQUGBJOnYsWOqqqrSvHnzJElt2rTR6NGjJUldunTRPffcow0bNqhbt276h3/4B9/EDf/1X/+lnj176v/8n/9j8FQAAACASwT3SQprfidJq1evrjOWaNasWZKkzMxMX5IkSc8//7wWL16s5557TrNnz5Zt22rTpo1mzpypX/3qVw2aAhwAAAAAgsHvJGnLli0X3DY6OlozZszQjBkz/N0NAAAA0Hg5ztkl2PtAQII2JgkAAAAALkVBvZksAAAAgLos5+wS7H0gMFSSAAAAAMCFJAkAAAAAXOhuBwAAAIQaEzeENSpJAAAAAOBCJQkAAAAIMcs+uwR7HwgMlSQAAAAAcKGSBAAAAIQaY5LCGpUkAAAAAHChkgQAAACEmvP3Jdj7QECoJAEAAACAC5UkAAAAIMQsx5EV5DFDwY7fmFFJAgAAAAAXKkkAAABAqDG7XVijkgQAAADggti2rfz8fHXq1EmxsbFq1aqVpk2bprKysqBsv3nzZvXu3VsJCQlq2rSpsrKydOjQoTrtdu7cqQceeEB9+vRRYmKiLMvS2rVrAz5PkiQAAAAg1BxJdpCXIBSSpk6dqgcffFA33HCDli5dqqysLC1ZskR33nmnbNs2uv3GjRs1ZMgQnT59WosWLdJDDz2kd999V3369FFRUVGttps3b9by5ct18uRJdenSpcHn2ei621nRUbKsaDPBIiLMxJFkl5QYiyVJnvh4Y7Ec7/kvaP94zYWyLHOxJMlr7tisSLNvHys6ylwwj9nnzYoyeGySrLg4Y7Hs0lJjsSQpsvlVxmJ5j39jLJZk9nkz/d7yfnPCaDyTIppdaSyWU3phfym9UBFNrjAaz+Q1Z/J7RpKcqipjsYy/t0x+niclmYslyYox9DuNJOdUsbFYkmQZ/K6x4mLNxLE9ktm3KVw+++wzLV26VMOGDdOGDRt869u1a6cHHnhAL7zwgkaOHGlk++rqak2ePFmtWrXS1q1blZiYKEm644471LVrV+Xm5mrFihW+GPfff78eeughJSQk6D/+4z+0bdu2Bp0rlSQAAAAA57V+/Xo5jqMpU6bUWp+Tk6P4+HitW7fO2PbvvPOOioqKNG7cOF+CJEkZGRnq16+fXnzxRVVXV/vWN2/eXAkJCYGf3HeQJAEAAAAhVjMFeLAXk3bt2iWPx6MePXrUWh8bG6uMjAzt2rXL2PY1/+/Vq1edOD179lRxcbH27dsX6KmcF0kSAAAA0Ii1b99eaWlpviVQRUVFSk1NVUxMTJ3H0tPTdfz4cVV9T9daf7avGXOUnp5eb1tJKiwsDOg8LkSjG5MEAAAAhD1HIZgC3Gy48vLyehMc6Ww1qKZNdHT9Y+n82b68vFyS6m3vbhssJEkAAABAI7Z//34lJyc3OE58fLy+/vrreh+rqKjwtTGxfc2/lZWVAe2roehuBwAAAIRazc1kg70Y1KJFCx0/frzexKWwsFCpqannrCL5u32LFi186+trK9XfFc8UkiQAAAAA59W9e3fZtq2dO3fWWl9RUaEPP/xQ3bp1M7Z99+7dJUnbt2+vE2fHjh1KTk5Whw4dAj2V8yJJAgAAAEIt2DeSrVkMys7OlmVZWrx4ca31K1euVHl5uUaNGuVbd/DgQe3Zsyfg7TMzM5WWlqZVq1ap1HVPxI8++khbtmxRVlaWogzfx9GNMUkAAAAAzqtz586aOHGili1bpmHDhmnw4MHavXu3lixZoszMzFo3kh0wYIAKCgrkuLr8+bN9VFSUnnjiCWVnZ6tv377KyclRcXGx8vPz1axZM+Xl5dU6toKCAj377LOSzt60VpL+67/+S0eOHJEkjR49Wm3atLngcyVJAgAAAEIsGPcxqm8fpi1evFht27bVihUrtGnTJqWmpmry5MmaM2eOPJ7zd1LzZ/usrCzFxcVp3rx5mj59umJiYjRgwAAtXLiwznikQ4cOadasWbXWbdy4URs3bpQk/ehHP/IrSbIcJ9hzD4ZGcXGxUlJSdGv8CEVa5x4w5peICDNxJDmnTxuLJUkeg7N52KcrjMWSJMfrNRjMbJ3YMviaWpGG/8Zg8thi659eM+B4hsvZdpm5KTttVwnehMjmVxmL5T3+jbFYkmTFxZkLZpt9b5n+HDEpotmVxmI5pWXGYkmSJynx/I38YPKaM/k9I0nO99w7xe9YZ84YiyWZ/Ty3kpKMxZIkK8bQ7zSS7FPFxmJJZn+38VyRYiTOGbtKf/zmNzp16pSR2dyCoeZ31gE3zVBkhNnv6+86463UHz/917B+PsIVlSQAAAAg1IIw+1y9+0BAmLgBAAAAAFxIkgAAAADAhe52AAAAQKjR3S6sUUkCAAAAABcqSQAAAECoUUkKa1SSAAAAAMCFShIAAAAQarYkKwT7QECoJAEAAACAC5UkAAAAIMQsx5EV5DFDwY7fmFFJAgAAAAAXKkkAAABAqDG7XVijkgQAAAAALlSSAAAAgFCzHckKcqXHppIUKCpJAAAAAOBCJQkAAAAINcYkhTUqSQAAAADgQpIEAAAAAC50twMAAABCLgTd7UR3u0BRSQIAAAAAFypJAAAAQKgxcUNYo5IEAAAAAC5UkgAAAIBQsx0FfcwQN5MNGJUkAAAAAHBpdJUkKzZWlifaSCynrNxIHEnyXJFiLJYk2SWlxmJZsTHGYkmSU2rw2KLNvJY+Xq+xUKZfU8drm4tVUWEsliQ5pw3HM/k6xMUZiyVJzpkz5mIZ/gueJzbWWCzv8ePGYkmSJz7eXDCD14ckyeD1a/L6kMx+lkuSFWPu89xbWmYsliRZERHGYpn8DJHMfteY/vw1/V41yeT73j5VYiaOU20kTkg49tkl2PtAQKgkAQAAAIBLo6skAQAAAGGP2e3CGpUkAAAAAHChkgQAAACEGrPbhTUqSQAAAADgQiUJAAAACDXGJIU1vytJjz32mLKysnTNNdfIsiy1bdv2vNs8++yz6tOnj5KTk5WYmKibbrpJc+fODeR4AQAAACCo/K4kPfzww2ratKluueUWnTx58rztf/7zn+uZZ57RPffco3/4h3+Qx+PRoUOHVFBQEMjxAgAAAEBQ+Z0kHTx4UNdcc40k6aabblLp99w4dPXq1frNb36j3/72txo9enTgRwkAAAA0Jo5C0N0uuOEbM7+729UkSOfjOI4ee+wx3XLLLb4EqaSkRA59IwEAAACEsaDNbrd3714dPHhQvXv31ty5c3XllVcqOTlZV1xxhSZMmPC9FSgAAACgUauZuCHYCwIStNnt9u7dK0l68cUXVVVVpUceeUTt2rXTH/7wBz399NPau3ev3nrrLVmWFVD8tLS0Wj/btt3gYwYAAACAoCVJJSUlkqRjx47pjTfe0MCBAyVJ99xzjxzH0TPPPKPXXntNd9xxR7AOAQAAAAhPti0pyH/kp4gQsKB1t4uLi5Mkpaen+xKkGmPGjJEkbdmyJeD4R48erbXs378/4FgAAAAAUCNolaSWLVtKkq6++uo6j9V0lfv222+DtXsAAAAgfHEz2bAWtEpS586dFRsbq8LCwjqPHTlyRJJ01VVXBWv3AAAAABCQoCVJ8fHxuueee/Tll1/q97//fa3HnnzySUnS4MGDg7V7AAAAIHwxu11Y87u73bPPPquCggJJZydlqKqq0rx58yRJbdq0qXXT2AULFujNN9/UyJEjNXnyZLVt21abN2/Wpk2b9LOf/Uy9e/c2dBoAAAAAYIbfSdLq1av1zjvv1Fo3a9YsSVJmZmatJKl169basWOHfvWrX+k3v/mNTp06pWuvvVa//vWvNXXq1AYeOgAAAHCJsh1JQa702FSSAuV3kuTvjHRt27bVc8895+9uAAAAAOCiCNqYJAAAAAC4FAVtCnAAAAAA9XMcW44T3Ju9Bjt+Y0YlCQAAAABcqCQBAAAAoeY4wZ9YgSnAA0YlCQAAAABcqCQBAAAAoeaEYApwKkkBo5IEAAAAAC5UkgAAAIBQs23JCvLsc8xuFzAqSQAAAADgQiUJAAAACDXGJIU1KkkAAAAA4EIlCQAAAAgxx7blBHlMksOYpIBRSQIAAAAAFypJAAAAQKgxJimsUUkCAAAAAJdGV0lyKiqM9e+0oqONxJEk++QpY7EkKaJZqrFY3hPfGoslSVZERFjGkiQrJsZYLO83Zp83T3KisVhOVZWxWJLkVJ8xGs/yWMZi2YaPLSI6ylgsk+cpSU5JibFYJj/fJMkuKzMXzGP2fR8Ra+59b0Ua/tr0es3GM8iKMnuuHpOfv6VmnzfL4Pve8ZodA2LyeZPp79S4WHPBDFU8LMeWqo2EwmWu0SVJAAAAQNizHcmiu124orsdAAAAALhQSQIAAABCzXEkBXmKbipJAaOSBAAAAAAuVJIAAACAEHNsR06QxyQ5VJICRiUJAAAAAFyoJAEAAACh5tgK/pikIMdvxKgkAQAAAIALlSQAAAAgxBiTFN6oJAEAAACAC5UkAAAAINQYkxTWqCQBAAAAgEujqSTV9Ll8Zu8iJScnX+SjAQAAQKgVFxerVasXLomxOGdULQX5MM+oOrg7aMQaTZJUUlIiSWrVqtVFPhIAAABcTCUlJUpJSbnYh1Gv6OhoXX311Xrvy80h2d/VV1+t6OjokOyrMbGcSyHVvgC2bauoqEhJSUmyLOtiHw4MaN++vSRp//79F/lIEE64LnAuXBuoD9fF5cVxHJWUlKhFixbyeMJ3VElFRYWqqqpCsq/o6GjFxsaGZF+NSaOpJHk8HrVs2fJiHwYMqvlwo/sk3LgucC5cG6gP18XlJ1wrSG6xsbEkLmEufFNsAAAAALgISJIAAAAAwKXRjEkCAAAAABOoJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJOGi2Ldvn2bPnq2ePXuqWbNmSkpKUkZGhubPn6+ysrI67ffu3auhQ4eqSZMmSkhIUN++ffXWW29dhCNHqJWXl+uaa66RZVmaNGlSnce5Ni4vJ06c0PTp03XdddcpNjZWzZo1U//+/bV169Za7f70pz9p4MCBSkpKUnJysn7yk5/oww8/vDgHjaAqLS3VggUL1LlzZyUlJSk1NVW9e/fW2rVr5ThOrbZcFwAuVOTFPgBcntasWaPly5frrrvu0qhRoxQVFaW3335bjzzyiH73u99px44diouLkyQdPHhQvXv3VmRkpGbMmKGUlBStXLlSt99+u1599VUNHDjwIp8Ngmn27Nk6duxYvY9xbVxeCgoK1K9fP5WWluof//Ef1aFDB506dUoff/yxCgsLfe127Nihfv36KT09XXPmzJEkLVu2TH379tW2bdvUuXPni3UKMMy2bd1xxx3atm2bxowZo8mTJ6u8vFzr16/X2LFjtXv3bi1cuFAS1wUAPznARbBr1y7n5MmTddb/6le/ciQ5S5cu9a3LyspyPB6P89e//tW3rqSkxGndurXToUMHx7btUBwyLoIPPvjAiYiIcB5//HFHkjNx4sRaj3NtXF5+9KMfOS1btnSKioq+t1337t2dpKQk58iRI751R44ccZKSkpxBgwYF+zARQtu2bXMkOVOmTKm1vrKy0mnXrp2TkpLiW8d1AcAfdLfDRdGtWzelpKTUWZ+dnS1J+vTTTyVJZWVleuWVV9SvXz9lZGT42iUmJmrcuHHat2+fdu3aFZJjRmh5vV7l5OToJz/5iYYNG1bnca6Ny8u7776r9957TzNmzFBaWpqqq6tVXl5ep92BAwe0a9cuZWVlKT093bc+PT1dWVlZevPNN/Xll1+G8tARRMXFxZKkFi1a1FofHR2t1NRUJSQkSOK6AOA/kiSElSNHjkiSmjdvLkn6+OOPVVlZqV69etVp27NnT0niF+FGKj8/X3v27NGyZcvqfZxr4/KyefNmSVLr1q115513Ki4uTgkJCerQoYPWrVvna1fzmp/runAcRx988EFoDhpB16NHD11xxRX613/9V7300kv64osvtGfPHs2cOVMffPCBcnNzJXFdAPAfY5IQNrxer+bOnavIyEiNHDlSklRUVCRJtf7yV6NmnXssAhqHQ4cO6dFHH9Xs2bPVtm1bHT58uE4bro3Ly969eyVJOTk5at++vZ555hlVVVXp8ccf1+jRo1VdXa2xY8dyXVxmmjRpoldeeUXjxo3Tvffe61uflJSkDRs2aOjQoZL4vADgP5IkhI0pU6Zo+/btWrBggTp27ChJvu40MTExddrHxsbWaoPGY8KECbrmmmv04IMPnrMN18blpaSkRNLZX37ffvttRUdHS5KGDh2qa665Rg8//LDGjBnDdXEZSkxM1E033aS77rpLvXv31okTJ7R8+XKNHDlSL7/8sgYNGsR1AcBvJEkIC7NmzdKyZcs0fvx4zZw507c+Pj5eklRZWVlnm4qKilpt0DisW7dOb7zxht59911FRUWdsx3XxuWlZrbL++67z5cgSWcrCXfddZd++9vfau/evVwXl5lPPvlEvXv3Vn5+viZMmOBbf9999+mmm25STk6ODh48yHUBwG+MScJFl5ubq3nz5mns2LF66qmnaj1WMxi3vm4QNevq6z6BS1NlZaUefPBBDR48WFdffbUOHDigAwcOqKCgQJJ06tQpHThwQCdPnuTauMy0bNlSknT11VfXeSwtLU2S9O2333JdXGby8/NVUVGhrKysWuvj4+P105/+VAUFBTp8+DDXBQC/kSThosrNzVVeXp7GjBmjVatWybKsWo937txZMTEx2r59e51td+zYIensTHloHE6fPq1jx45p06ZNat++vW/p16+fpLNVpvbt22vVqlVcG5eZHj16SPrfyV3catZdddVV6t69uySd87qwLEtdu3YN4pEilGoSHK/XW+exM2fO+P7lugDgL8txvnM7aiBE5syZo0cffVSjR4/W2rVr5fHUn7NnZWVp48aN+stf/qIuXbpIOnuH9RtvvFExMTHau3dvneQKl6bq6mq9/PLLddYfO3ZM//RP/6Sf/OQn+sd//Ef94Ac/UIcOHbg2LiPffvut2rRpo+TkZO3Zs0eJiYmSpKNHj6p9+/ZKT0/3Te7QvXt37d27V3v27PFVEIqKitSpUyf16NFDb7755kU7D5g1depULV68WAsXLtSMGTN860+ePKkbbrhBFRUVOnbsmCIiIrguAPiFJAkXxfLlyzVp0iS1bt1ac+fOrZMgNW/eXIMGDZJ09v4WPXr0UFRUlKZOnark5GStXLlSn3zyiTZt2qTbb7/9YpwCQujw4cNq166dJk6cWGtKcK6Ny8uKFSv0i1/8QjfeeKN+/vOfq6qqSk8++aSOHj2qP/zhD7rtttskSdu2bVP//v3VsmVLTZ48WZK0dOlSffXVV3r//fd9CTUufQUFBbrlllv07bffatSoUerTp49OnDihlStX6vDhw1q+fLn+6Z/+SRLXBQA/Xcw72eLyNWbMGEfSOZfMzMxa7T///HPnrrvuclJSUpy4uDinT58+zhtvvHFxDh4hd+jQIUeSM3HixDqPcW1cXjZs2OD88Ic/dOLj453ExERn0KBBznvvvVen3bZt25xbb73VSUhIcBITE53bbrvN+eCDDy7CESPYDhw44PzsZz9z0tPTncjISCcpKcnp27evs2HDhjptuS4AXCgqSQAAAADgwsQNAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAODy/wEmIrk3CQEdXQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_f.time), max(dps_new_f.time), min(dps_new_f.freq), max(dps_new_f.freq)\n", + "plt.imshow(dps_new_f.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15, 30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 3.0\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dps.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 4 s" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_t = dps.rebin_time(dt_new=6.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 6.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dps_new_t.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAJlCAYAAAAPYLm5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABouklEQVR4nO3deXxU9dn///eZ7CEJS4NIAsgquFBQgSKWX0BAK4pfQSMIpRRLUG/ABlArVpQgYL25uUECLmxFC4JyQ9UWtdUq4gKa0uJCZZEClgRFihJIyDbn/P7ATCcmzDCTmTknk9fz8ZiHcuYs13wy2zXXZzEsy7IEAAAAAJAkuewOAAAAAACchCQJAAAAALyQJAEAAACAF5IkAAAAAPBCkgQAAAAAXkiSAAAAAMALSRIAAAAAeCFJAgAAAAAvJEkAAAAA4IUkCQAAAAC8BJwk7dmzR2PGjNFFF12kpk2bKjk5Wd26ddO0adN05MiROve/6aab1Lx5czVp0kT9+/fXm2++GZLgAQAAACDUDMuyrEAO+Mtf/qK5c+eqb9++atOmjWJjY/XJJ5/ot7/9rdLS0rRz506dd955kqT9+/erT58+io2NVW5urpo2barly5fr008/1auvvqrBgweH5UEBAAAAQLACTpLOZsOGDbr11lv12GOP6b777pMk3Xrrrdq4caN27Nihnj17SpJOnTqlSy65RImJidq9e7cMwwjF5QEAAAAgJEI2JumCCy6QJH3zzTeSpJKSEr388ssaMGCAJ0GSpJSUFE2YMEF79+5VQUFBqC4PAAAAACERdJJUVlamY8eO6fDhw/rzn/+sO+64Q5I0dOhQSdLHH3+s8vJyXXnllbWO7du3rySRJAEAAABwnNhgD1yxYoWmTJni+Xf79u21Zs0a9e/fX5JUVFQkScrMzKx1bPW2wsLCYC+v1q1b1/i3aZrasWOHUlNT6cIHAADQCFmWpZMnTyojI0Mul3MncS4rK1NFRUVErhUfH6/ExMSIXCuaBJ0k3XTTTerWrZtOnTqlv//973r55Zd17Ngxz/2lpaWSpISEhFrHVv+hqvcJBdM01bZt25CdDwAAAA3Tv/71L7Vp08buMOpUVlamDhek6Muj7ohc7/zzz9eBAwdIlAIUdJLUpk0bz5Pvpptu0s0336zevXurtLRUM2bMUHJysiSpvLy81rFlZWWS5NknGN+fbvzEiRNq1qyZfqzrFWvEBX3esArNHBnhRRWuXoyYGLtDaPAsd2Q+NGAfXif1Y8Q79DPOi3m6zO4QfHP657GrAbxGTGe+V1epUu/qFaWmptodyllVVFToy6NuHdrRXmmp4a12FZ80dcEVB1VRUUGSFKCgk6Tv++EPf6jLLrtMTzzxhGbMmKGMjAxJdXepq95WV1e8YFV3sYs14pybJMnhb8oSSVI9GUYD+GBzOMtwbvcIhAavk/oxjHi7Q/DLNJz5Bfo/HP553BBeI059r/7uT9sQhl6kpBpKSQ1vnKac3w5OFdJn+OnTp3X8+HFJUvfu3ZWQkKBt27bV2m/79u2SpF69eoXy8gAAAABQbwEnSV9++WWd29966y19+umnnpnrUlJSNGzYMG3ZskUfffSRZ79Tp05pxYoV6tKli/r06RNk2AAAAEDD5bbMiNwQnIC729111106cuSIrr76al1wwQUqKyvTjh07tH79eqWmpmrBggWefR999FH95S9/0TXXXKOpU6cqLS1Ny5cvV2FhoTZv3twgSqEAAAAAGpeAk6TbbrtNzz77rH73u9/p66+/lmEYuuCCC3THHXfo3nvvVbt27Tz7du7cWe+9957uv/9+/eY3v1FFRYUuv/xyvfbaaxo8eHBIH4iH4XJsP1kjhqSwvizT2f3InR6fJLmaBD9hSiRYJaGb9bIxahCTIrgc/l7o8MlDrMoqu0Pwy+nPQ6dPEONKcv4AezOEMxSHluH4IWfVTFkywxxsuM8fzQJOkm699Vbdeuut57z/RRddpJdeeinQywAAAACALZxZcgEAAAAAm4RsCnAAAAAA58aUqXBPqxD+K0QvKkkAAAAA4IVKEgAAABBhbsuS2wrvxArhPn80o5IEAAAAAF6oJAEAAAARxhTgzkYlCQAAAAC8UEkCAAAAIsyUJTeVJMeikgQAAAAAXqgkAQAAABHGmCRni7okyXAZMgzD7jDqFhNjdwR+WRUVdofgm+Hs4qfhcuhzz4tjXx/fMeKc/bZkxDo7PvN0md0h+FfptjsC31zOfq824pz9GpYkw3D268Qynf3F0SwpsTuEhosprxEizn4XAwAAAKIQ6yQ5m7N/lgcAAACACKOSBAAAAESY+d0t3NdAcKgkAQAAAIAXkiQAAAAA8EJ3OwAAACDC3BFYTDbc549mVJIAAAAAwAuVJAAAACDC3NaZW7ivgeBQSQIAAAAAL1SSAAAAgAhjCnBno5IEAAAAAF6oJAEAAAARZsqQW0bYr4HgRF2SZFVVyTIc+oRwu+2OwD/L4SP8HPqnrWaZDm+/BsCqrLI7BJ+cHp/hcviLRJJlOTtGV3yc3SH4ZJaX2x2CX45/J3T4Z52RkGB3CP459DuNYVmSs9+m0UDQ3Q4AAACIMNOKzC3kcZumFi5cqG7duikxMVFt27bV9OnTVVJSEvLjX3jhBY0fP149evRQXFycDMPQwYMHz+k6r776qgzDkGEY+utf/xrIQ5REkgQAAADgHE2dOlXTpk3TxRdfrPz8fGVnZ2vx4sUaNmyYTNP/VBGBHP/EE09o/fr1SkpKUqdOnc45xpKSEt11111KSUkJ+PFVi7rudgAAAIDTuSMwJinU59+1a5fy8/M1YsQIbdy40bO9Q4cOuvvuu7V+/XqNHj06ZMc/++yzysjIUGxsrCZPnqw9e/acU5wPPvigqqqqNHHiRP3v//5vEI+UShIAAACAc7Bu3TpZlqXc3Nwa23NycpScnKw1a9aE9Ph27dopNjawms5f//pX5efna9GiRUpNTQ3oWG8kSQAAAAD8KigokMvlUp8+fWpsT0xMVM+ePVVQUBDW4/2pqqpSTk6OrrnmGt1yyy31Ohfd7QAAAIAIi2R3uy5dusjl+k9t5MiRI0Gdr6ioSOnp6UqoYwbGzMxMvf/++6qoqFB8fHxYjvdnwYIF2rNnjzZt2hTU8d6oJAEAAADwq7S0tM4ERzpTDareJ1zH+7J//37l5eVp5syZ6tChQ1Dn8EYlCQAAAIgw0zJkhnnduOrz79u3T2lpafU+X3Jyso4ePVrnfWVlZZ59wnW8L3feeac6dOige+65J6jjv48kCQAAAIBfGRkZ+sc//qHy8vJaFaHCwkKlp6f77CpX3+PP5ve//73eeOMNrVq1SocOHfJsP378uCTp8OHDatasmTp27Fij26EvdLcDAAAAIqx6TFK4b6HUu3dvmaapDz/8sMb2srIy7dy5U7169Qrr8WdTnRjdfvvt6tKli+eWn58vSRo+fLi6dOniSZrOBUkSAAAAAL9GjhwpwzC0aNGiGtuXL1+u0tJSjRkzxrNt//792r17d9DHB+KGG27Qhg0bat2ys7MlSY899pg2bNgQUJdDuttFkBETY3cIflmmZXcIPjm+DS3/K03bzX2qxO4QfHN6GxrO/m3JqqqyOwS/XN8NzkVwjNg4u0Pwz+GvY8d/1gW4LowdzIoKu0Ook2W57Q7hnLnlkjvM9YpQt0b37t01adIkLVmyRCNGjNDQoUP12WefafHixcrKyqqxEOygQYN06NAhWZYV1PGStHXrVm3dulXSmfWPJGnJkiVq1qyZpDOLxkpS586d1blz51rxfvrpp5Kkq6++OuAqlfNfhQAAAAAcYdGiRWrfvr2WLVumzZs3Kz09XVOmTNHs2bPPabxPIMe/+eabysvLq7FtwYIFnv+vTpLCwbC807sGrLi4WE2bNtUA/T/FGs78la0h/DLk+F/XqCTVm9P/xo5vQ4dXkmQ6/1dUKkn1Y7kd/hqRHP86dvr7oCvJ+a8RM8hpmsOtyqrUFutFnThxIiSzuYVD9XfWv3zSTk1Sw/uZUnLS1KDuXzi6PZzK4Z/2AAAAABBZzi9tAAAAAFEmHLPP1XUNBIdKEgAAAAB4oZIEAAAARJjbcslthXl2O2cPv3M0KkkAAAAA4IUkCQAAAAC80N0OAAAAiDBThsww1ytM0d8uWFSSAAAAAMALlSQAAAAgwpgC3NlIkiLI6St8S5IrMcHuEHwyy8rtDsGnhrBKusqd3YaW2+4IfDNczv7AsSxnxydJcjm7E4NZWmp3CL65YuyOoMEzYpzdhpbD36eBxoAkCQAAAIiwyEwB7vwf6J3K2T/nAQAAAECEUUkCAAAAIuzM7Hbh7SId7vNHMypJAAAAAOCFShIAAAAQYaZccrNOkmNRSQIAAAAAL1SSAAAAgAhjdjtno5IEAAAAAF6oJAEAAAARZsolkzFJjkUlCQAAAAC8kCQBAAAAgJeAu9vt3btXa9as0Z///Gft379fZWVl6tSpk7Kzs5Wbm6smTZrU2H/btm169NFH9be//U3//ve/lZGRoauvvlozZsxQx44dQ/ZAqhlx8TKMuJCfNxSsqkq7Q/DLLCu3OwTfTLfdEfhkVTj/b2xVVdkdgm+Gsxe+s0y6LtSX099njFiH90Q3GsDvm5ZpdwQ+GfHO/J5QzSwttTsERIDbMuS2wvuZF+7zR7OAPwlWrVqlpUuX6sYbb9SYMWMUFxent956Sw8++KBeeOEFbd++XUlJSZKk1157Tddff706deqkyZMnKz09Xbt27dKyZcu0ceNGffLJJ8rMzAz5gwIAAACAYAWcJN1yyy2aMWOGmjZt6tl25513qkuXLpo7d65WrlypyZMnS5IWLlyomJgYvf/++0pPT/fsf8kllygnJ0cbNmxQbm5u/R8FAAAA0IC4I7CYrJuJG4IW8F+mV69eNRKkaiNHjpQkffrpp55txcXFSkxMVPPmzWvsm5GRIUm1uuYBAAAAgN1Clr4ePnxYktSqVSvPtmuvvVYnT57UuHHj9NFHH6mwsFB/+tOfNH36dF100UUaNWpUqC4PAAAANBim5YrIDcEJyehUt9utRx55RLGxsRo9erRn+4wZM3T06FGtWrVKa9eu9WwfOnSo1q1bp9TU1KCv2bp16xr/Nk1nDxIFAAAA0DCEJEnKzc3Vtm3bNG/ePHXt2tWzPSYmRpmZmRo8eLCGDx+uFi1a6L333lN+fr5GjRqll156SXFxzp5hBgAAAAg1xiQ5W72TpJkzZ2rJkiWaOHGiZsyYUeO+n//853r//fe1a9cuz4x3w4cPV+fOnXXXXXfpmWee0YQJE4K67pEjR2r8u7i4uM6xUgAAAAAQiHqlr7NmzdKcOXM0fvx4PfXUUzXu++KLL7R27Vpdf/31ngSpWnZ2tiTp7bffrs/lAQAAgAbJ1H/WSgrXjcEowQs6SZo1a5by8vI0btw4rVixQsb3FoAsLCyUdGa80vdVfbeYZZXTF7UEAAAA0OgElSTNnj1beXl5Gjt2rFatWiWXq/ZpunbtqpiYGL344ov69ttva9y3evVqSVLv3r2DuTwAAADQoJlyReSG4AQ8Jmnp0qV6+OGH1a5dOw0ePFjPPfdcjftbtWqlIUOGqEWLFsrNzdWCBQt02WWXKScnxzNxw9q1a9WpU6egxyMBAAAAQLgEnCQVFBRIOjPmaNy4cbXuz8rK0pAhQyRJ8+fPV9euXbVixQrNmzdP5eXlyszM1F133aVZs2YpLS2tnuHXZrndsgxnZs2u5GS7Q/DLLCmxOwTfXDF2R+CTVVlhdwgNnhHr8BkvLWf38LZMZ77/1WDW7obtKK6QTPwaNlZVpd0h+GXEx9sdgk9O/6wzYp39HJTOfN8ColnAr8LVq1d7usv5YxiGcnJylJOTE+hlAAAAgKjltlxyh3mx13CfP5rRcgAAAADgxfn1XAAAACDKmDJkyvC/Yz2vgeBQSQIAAAAAL1SSAAAAgAhjTJKz0XIAAAAA4IVKEgAAABBhbrnkDnO9Itznj2a0HAAAAAB4oZIEAAAARJhpGTKtMM9uF+bzRzMqSQAAAADghUoSAAAAEGFmBMYkmdRDghZ1SZIrPlYuI87uMOpklpbaHYJ/rhi7I/DJ1STZ7hB8ssrK7Q7BL8vttjsEn6zKCrtD8M3hrxHD5fyuFUZ8ot0h+GSWldkdgk+uRGe3nyRZVVV2h+CTEevsrz9Oj09y/mcJUF/OfxUCAAAAUca0XDLDvI5RuM8fzWg5AAAAAPBCkgQAAAAAXuhuBwAAAESYW4bcCu840nCfP5pRSQIAAAAAL1SSAAAAgAhj4gZno+UAAAAAwAuVJAAAACDC3Ar/mCFWswoelSQAAAAA8EIlCQAAAIgwxiQ5Gy0HAAAAAF6oJAEAAAAR5rZccoe50hPu80ezqEuSzLJymYZpdxh1iklLszsEv4zkJLtD8Knq6DG7Q/Appqnz/8buE8V2h+Cb4eyF74yYGLtD8M1y5vufN8uy7A7BJyPW2R+NTm8/STISEuwOwSeztNTuEHyyTOf/jYFoR3oJAAAARJglQ2aYb1YYZs8zTVMLFy5Ut27dlJiYqLZt22r69OkqKSkJ+fEvvPCCxo8frx49eiguLk6GYejgwYN1nvfll1/W+PHj1a1bNzVp0kQZGRkaPHiwXnvttaAeJ0kSAAAAgHMydepUTZs2TRdffLHy8/OVnZ2txYsXa9iwYTJN/70ZAjn+iSee0Pr165WUlKROnTr5PO/EiRP13nvvadiwYXr88ceVm5urwsJCXXfddZo7d27Aj9PZfQoAAACAKNQQxyTt2rVL+fn5GjFihDZu3OjZ3qFDB919991av369Ro8eHbLjn332WWVkZCg2NlaTJ0/Wnj17znru5557TldffXWNbZMnT9Zll12mvLw8/dd//ZeaN29+zo+VShIAAAAAv9atWyfLspSbm1tje05OjpKTk7VmzZqQHt+uXTvFnuM40e8nSJKUnJysG264QZWVlT4TrLqQJAEAAADwq6CgQC6XS3369KmxPTExUT179lRBQUFYjw/G4cOHJUmtWrUK6DiSJAAAACDCTMuIyE2SunTpotatW3tuwSoqKlJ6eroS6pjBMjMzU8eOHVNFRUXYjg/URx99pE2bNql///7q0KFDQMeSJAEAAADwq7S0tM4ERzpTDareJ1zHB+Lrr7/WiBEjlJSUpBUrVgR8PBM3AAAAABHmlkvuMNcrqs+/b98+pYVgvc7k5GQdPXq0zvvKyso8+4Tr+HN1/PhxDRkyREVFRdq8ebMuvPDCgM9BJQkAAACAXxkZGTp27JjKy8tr3VdYWKj09HTFx8eH7fhzcfz4cQ0ePFi7d+/Wiy++WOeEDueCJAkAAACIsEiOSQqV3r17yzRNffjhhzW2l5WVaefOnerVq1dYj/enOkH6xz/+od///ve69tprgz4XSRIAAAAAv0aOHCnDMLRo0aIa25cvX67S0lKNGTPGs23//v3avXt30McH6ptvvtGQIUO0a9cubdy4Udddd13Q55KicUySK0YyYuyOok5GaordIfj1xZj2dofg0ye5f7I7BJ86vDbB7hD86jb5H3aH4JORnGR3CD65/33c7hB8MmKc+f7nzQrhzEXh4PQ2tCqr7A6h4TOc/Rux05+DkqQQVyhCxbBMqYG8REy5ZIa5XhHq83fv3l2TJk3SkiVLNGLECA0dOlSfffaZFi9erKysrBoLwQ4aNEiHDh2SZVlBHS9JW7du1datWyVJf/3rXyVJS5YsUbNmzSRJDz74oGffIUOG6G9/+5tuu+02ffPNN7XWXOrXr586dux4zo81+pIkAAAAAGGxaNEitW/fXsuWLdPmzZuVnp6uKVOmaPbs2XK5/CdlgRz/5ptvKi8vr8a2BQsWeP7fO0nasWOHpDML1q5bt67WdX/7298GlCQZlnd614AVFxeradOmGuAaoVgjzu5w6hTbOrBFrOzg/ErSE3aH4BOVpPqjklQ/DeEXaMvttjsEn5zehpbp/I9tI87Zv8E6vRrn9OegJMky7Y6gTlVWpd6q2qgTJ06EZDa3cKj+znrXOyOUkBLe76zlpyr1ZP9Njm4Pp3J2vRkAAAAAIszZP/UAAAAAUSgcs8/VdQ0Eh0oSAAAAAHghSQIAAAAAL3S3AwAAACLMslwyrfDWK6wwnz+a0XIAAAAA4IVKEgAAABBhbhlyK7wTK4T7/NGMShIAAAAAeKGSBAAAAESYaYV/iu4GsPa0Y0VdkmTExMgwnLlS9fH/r53dIfjlDu/Cz/V2beZldofgU9PJ8XaH4NfXt/WwOwSf0p/dYXcIDZrVED4RDWd3YrCqquwOwScjzvnvM1ZFhd0hNHDO/B7jzXK77Q6hTpblzLjQ8ERdkgQAAAA4nRmB2e3Cff5oRssBAAAAgBcqSQAAAECEmTJkhnn2uXCfP5pRSQIAAAAAL1SSAAAAgAhzW4bcYZ7dLtznj2ZUkgAAAADAC5UkAAAAIMKY3c7ZaDkAAAAA8EKSBAAAAABe6G4HAAAARJgpQ2aYJ1ZgCvDgUUkCAAAAAC9RV0lypTaRyxVvdxh1aprzL7tD8KvZ/yu2OwSfTMPZeX2rpR/YHYJfh3/1I7tD8CkmvYXdIfhU9eVXdofgm+m2OwL/XDF2R+CTEevsj0bL3QD+xpZldwS+Gc7+dd2qqrQ7BL9cCQl2h1Anl2VIZXZHcW6sCCwma1FJClrA3zj37t2rhx56SH379lXLli2Vmpqqnj17au7cuSopKanzmM2bN2vw4MFq3ry5kpOTdeGFF2ry5Mn1Dh4AAAAAQi3gn8tWrVqlpUuX6sYbb9SYMWMUFxent956Sw8++KBeeOEFbd++XUlJSZ798/LyNGvWLF177bXKy8tTcnKyvvjiC3388cchfSAAAABAQ2FaERiTxGKyQQs4Sbrllls0Y8YMNW3a1LPtzjvvVJcuXTR37lytXLnSUyV64403NGvWLM2ePVszZ84MXdQAAAAAECYBd7fr1atXjQSp2siRIyVJn376qWfbvHnzdN5552nGjBmSpFOnTsk0zWBjBQAAAKJC9WKy4b4hOCFrucOHD0uSWrVqJUkqKSnR1q1b9aMf/UgrV65UZmamUlNTlZKSolGjRumrrxw++BkAAABAoxSSKXzcbrceeeQRxcbGavTo0ZKkzz//XG63W9u3b9ef//xn3X///erRo4feeecdPf744/r444/117/+VcnJyUFds3Xr1jX+TYUKAAAADQVjkpwtJElSbm6utm3bpnnz5qlr166SpJMnT0qSvv76ay1fvlwTJkyQJA0fPlxpaWnKy8vTM888o7vuuisUIQAAAABASNS7u93MmTO1ZMkSTZw40TP2SJJnhjuXy6WxY8fWOGbcuHGSpC1btgR93SNHjtS47du3L+hzAQAAAJFkfrdOUrhvCE69kqRZs2Zpzpw5Gj9+vJ566qka97Vp00aS1Lx5cyV8b8Gx6q5y33zzTX0uDwAAAAAhF3R3u1mzZikvL0/jxo3TihUrZHxv9epWrVqpXbt2+te//qXS0tIaY4+qJ3k477zzgr08AAAA0GAxJsnZgqokzZ49W3l5eRo7dqxWrVoll6vu04wdO1aWZenpp5+usf3JJ5+UJA0dOjSYywMAAABA2ARcSVq6dKkefvhhtWvXToMHD9Zzzz1X4/5WrVppyJAhkqT77rtPGzdu1D333KO9e/eqR48eevfdd7V27VpdffXVnrWVQulfP79QMQmJIT9vKLTL3m13CH6ZFRV2h9CgGS7n/2LTfvU/7Q7Bp1NXtLM7BJ8SNzt8+QJXjN0R+GXEOD9GZ3PbHYB/DeB56Gim8//GZlmZ3SHUybQq7Q4BUSLgJKmgoECS9MUXX3gmYPCWlZXlSZLS0tL0zjvvaObMmXrppZe0cuVKtWnTRg888IBmzpypGD4oAQAA0AjR3c7ZAk6SVq9erdWrV5/z/unp6XryySc9XewAAAAAwMlCsk4SAAAAgHNHJcnZ6r1OEgAAAABEEypJAAAAQIRRSXI2KkkAAAAA4IVKEgAAABBhliRT4a30WGE9e3SjkgQAAAAAXqgkAQAAABHGmCRno5IEAAAAAF6oJAEAAAARRiXJ2aIuSSrtXCFXkjMLZOaJYrtD8MsynT3Ez3A5/MUeE2N3BH5VffW13SH4VN6svd0h+JSckGB3CD6Z5eV2h3AOHP46cfj7jOH09kO9WZZpdwh+GQ79vDMsS6qyOwpEA2dmEwAAAABgk6irJAEAAABOR3c7Z6OSBAAAAABeqCQBAAAAEUYlydmoJAEAAACAFypJAAAAQIRZliErzJWecJ8/mlFJAgAAAAAvVJIAAACACDNlyFSYxySF+fzRjEoSAAAAAHihkgQAAABEGLPbORuVJAAAAADwQiUJAAAAiDBmt3O2qEuSuj54ULGueLvDqJMV6/zmtsrK7A7BN5ez29CIibE7BL8Mhz8Pj/a2OwLfWvwp1e4QfDLcpt0h+Ody+Ie2adkdgW9WA/gbGw7vqOLw56AR78zvMTU49nXi8OceGgyeSQAAAECEVY9JCvct5HGbphYuXKhu3bopMTFRbdu21fTp01VSUhLy41944QWNHz9ePXr0UFxcnAzD0MGDB8967qKiIv3sZz9Ty5YtlZSUpF69emnDhg1BPU6SJAAAAADnZOrUqZo2bZouvvhi5efnKzs7W4sXL9awYcNkmv4r3YEc/8QTT2j9+vVKSkpSp06dfJ73+PHj+vGPf6xNmzbprrvu0uOPP66UlBTdeuut+u1vfxvw43R2vxsAAAAAjrBr1y7l5+drxIgR2rhxo2d7hw4ddPfdd2v9+vUaPXp0yI5/9tlnlZGRodjYWE2ePFl79uw567l/85vf6MCBA3r55Zc1bNgwSdIvfvELXXnllbrnnnuUnZ2tlJSUc36sVJIAAACACKueuCHct1Bat26dLMtSbm5uje05OTlKTk7WmjVrQnp8u3btFHuOY6mfe+45derUyZMgSVJMTIymTJmi48eP65VXXjmn81QjSQIAAADgV0FBgVwul/r06VNje2Jionr27KmCgoKwHn82R44cUWFhofr27VvrvuptgZ6bJAkAAACIMCsCkzZUV5K6dOmi1q1be27BKioqUnp6uhISEmrdl5mZqWPHjqmioiJsx/s6b/U56jqvJBUWFgZ0TpIkAAAAAH6VlpbWmeBIZ6pB1fuE63hf55VU57mDPS8TNwAAAAARZkmywrzcVPXp9+3bp7S0tHqfLzk5WUePHq3zvrLv1tpMTk4O2/G+zitJ5eXlITsvlSQAAAAAfmVkZOjYsWN1JiOFhYVKT09XvI/FkOt7vK/zVp+jrvNKdXfF84UkCQAAAIgwU0ZEbqHUu3dvmaapDz/8sMb2srIy7dy5U7169Qrr8WfTunVrZWZmavv27bXuq94W6LlJkgAAAAD4NXLkSBmGoUWLFtXYvnz5cpWWlmrMmDGebfv379fu3buDPj5Qt912m/bv368//OEPnm1ut1v5+flq1qyZhg4dGtD5om5Mkll8UqYRZ3cYdTKCKB9Gmuu7wW1OZdZRnnWUyiq7I/DPFdpflUKt64O77A7Bp8JfdLc7BJ/OX/S+3SH45Qqiv3kkWXLbHYJPVoWz45MkI8buCHyzKsM8EKS+LNPuCPwyYhz6R24AbVctHOsY1XWNUOrevbsmTZqkJUuWaMSIERo6dKg+++wzLV68WFlZWTUWgh00aJAOHToky2vgVSDHS9LWrVu1detWSdJf//pXSdKSJUvUrFkzSdKDDz7o2ff+++/Xhg0bNHr0aE2bNk2ZmZlat26dCgoKtGLFCqWmpgb0WKMuSQIAAAAQHosWLVL79u21bNkybd68Wenp6ZoyZYpmz54tl8t/J7VAjn/zzTeVl5dXY9uCBQs8/++dJP3gBz/Qe++9p/vvv19Lly7VqVOndPHFF2v9+vUaOXJkwI/TsKxwz6sRGcXFxWratKkGxt6sWCpJwTOd/QuM0ytJRqwzn3s1OLyS5PTXSRGVpHpzfCXJ7exKjRXEGiKR5tgqw3cs0+FffRpANcSpf+Mqq1JvVW3UiRMnQjKbWzhUf2e99IV7FZNc93TYoeIuLdent853dHs4FWOSAAAAAMALSRIAAAAAeGFMEgAAABBhlhWBxWQd3rPUyagkAQAAAIAXKkkAAABAhDXEKcAbEypJAAAAAOCFShIAAAAQYVSSnI1KEgAAAAB4oZIEAAAARJhpGTLCXOkxqSQFLfqSJMN15uZA5unTdofgn8PnijRinf2Utdxuu0Pwy5WYbHcIvjm8Ddv8/l92h+BTlSvG7hD8MpIS7Q7BJ/ObE3aH4JvD36cbAiPG2a8Ty9lvg5Kc+3lsWKZUZXcUiAbOfIYDAAAAUYx1kpzNmSUXAAAAALAJlSQAAAAgws5UksI9u11YTx/VqCQBAAAAgBcqSQAAAECEsU6Ss1FJAgAAAAAvJEkAAAAA4IXudgAAAECEWd/dwn0NBIdKEgAAAAB4oZIEAAAARBgTNzgblSQAAAAA8BJ1lSRXk0S5jHi7w6iTecq0O4QGzzKd3bvWcDn/Fxvz1Cm7Q/DJlZBgdwg+/fvHmXaH4NMP3nb++0xVYZHdITRshvPfZ5z+Xi2zwu4IfHIlJ9sdgn9OfR5aMXZHcO4YlORoAVWS9u7dq4ceekh9+/ZVy5YtlZqaqp49e2ru3LkqKSnxeeyTTz4pwzBkGIaOHTtWr6ABAAAAIFwCqiStWrVKS5cu1Y033qgxY8YoLi5Ob731lh588EG98MIL2r59u5KSkmodV1RUpPvvv18pKSk65fBfsQEAAICwi8CYJDEmKWgBJUm33HKLZsyYoaZNm3q23XnnnerSpYvmzp2rlStXavLkybWOmzRpkjp16qRLLrlEa9asqX/UAAAAABAmAXW369WrV40EqdrIkSMlSZ9++mmt+37/+9/r5Zdf1lNPPaWYmAbUTxQAAAAIE8uKzA3BCcnsdocPH5YktWrVqsb24uJiTZ48WXfccYf69OkTiksBAAAAQFjVe3Y7t9utRx55RLGxsRo9enSN+371q1/JNE09+uij9b1MLa1bt67xb9N0/oxOAAAAgMQ6SU5X7yQpNzdX27Zt07x589S1a1fP9vfee09PP/201q5dW2cXPQAAAABwonolSTNnztSSJUs0ceJEzZgxw7O9oqJCEydO1ODBg3XbbbfVO8i6HDlypMa/i4uLScYAAADQMFhG+Gefo5IUtKCTpFmzZmnOnDkaP368nnrqqRr3LV26VLt379aCBQv0+eefe7afPHlSknTgwAEVFxerY8eOwV4eAAAAAMIiqCRp1qxZysvL07hx47RixQoZ31t1+dChQzJNU9ddd12dx/fp00dNmjRhzSQAAAAAjhNwkjR79mzl5eVp7NixWrVqlVyu2hPkjR8/Xj/+8Y9rbV+6dKm2bNmiVatWqXnz5sFFDAAAADRwkZiimynAgxdQkrR06VI9/PDDateunQYPHqznnnuuxv2tWrXSkCFD1KNHD/Xo0aPW8X/84x8lScOGDVN6eno9wj4794mTMoy4sJy7vlwJCXaH4JdZUWl3CD65Ep3dhubp03aH4Jfh8PXKnP4c/MGWL+wOwaeKDufZHYJfsd98a3cIPpmlpXaH4FNMaqrdIfjl9Da05PD3QYe3nyTFXHyh3SHUyXCXS7vtjgLRIKAkqaCgQJL0xRdfaNy4cbXuz8rK0pAhQ0ITGQAAABCtrO9u4b4GghLQYrKrV6+WZVlnvW3ZsuWcjg9XFQkAAAAA6qve6yQBAAAACAyLyTpbQJUkAAAAAIh2VJIAAAAAOzBmyLGoJAEAAACAFypJAAAAQIQxJsnZqCQBAAAAgBcqSQAAAECksU6So1FJAgAAAAAvJEkAAAAA4CX6uttZkahdBscsL7c7BP8Mh+fNhsMHIDq9/SRZpjNfHw1FVdERu0PwKaZ1C7tD8MuIj7c7BJ9iYmLsDsEns7TU7hD8c/p7oVVpdwQ+GbHO/3r22d3N7A6hTubpMinX7ijOlfHdLdzXQDAc/i4GAAAAAJHl/J8qAAAAgGjDxA2ORiUJAAAAALxQSQIAAAAijUqSo1FJAgAAAAAvVJIAAACASLOMM7dwXwNBoZIEAAAAAF6oJAEAAAARZlnfLe8Z5msgOFSSAAAAAMALlSQAAAAg0pjdztGoJAEAAACAFypJAAAAQKQxu52jRV+S5IqRjBi7o6ib6bY7Ar+MWIe23Xes8nK7Q/DJFR9ndwh+WW7T7hAaNKvK2e33z1tS7Q7Br87znf2hbZ4qszsE3wzndwKxKivsDsE3l7M/6xTj8PgkXfybL+0OoU5VZrkO2x0EooLz32kBAAAAIIJIkgAAAIAIM6zI3ELNNE0tXLhQ3bp1U2Jiotq2bavp06erpKQkLMe/8sor6tevn5o0aaIWLVooOztbBw4cqHPfbdu26cYbb1SbNm2UlJSkTp06KScnR//85z8DfpwkSQAAAADOydSpUzVt2jRdfPHFys/PV3Z2thYvXqxhw4bJNP13SQ/k+E2bNumGG27Q6dOnNX/+fN17773aunWrrrrqKhUVFdXY97XXXtOPf/xj7d69W5MnT1Z+fr5uvPFGPffcc+rVq5cKCwsDepzRNyYJAAAAcLoGOAX4rl27lJ+frxEjRmjjxo2e7R06dNDdd9+t9evXa/To0SE5vrKyUlOmTFHbtm31zjvvKCUlRZJ03XXX6YorrtCsWbO0bNkyzzkWLlyomJgYvf/++0pPT/dsv+SSS5STk6MNGzYoNzf3nB8rlSQAAAAAfq1bt06WZdVKNnJycpScnKw1a9aE7Pi3335bRUVFmjBhgidBkqSePXtqwIABev7551VZWenZXlxcrMTERDVv3rzGuTMyMiRJTZo0CeShkiQBAAAAEVc9BXi4byFUUFAgl8ulPn361NiemJionj17qqCgIGTHV///lVdeWes8ffv2VXFxsfbu3evZdu211+rkyZMaN26cPvroIxUWFupPf/qTpk+frosuukijRo0K6LGSJAEAAABRrEuXLmrdurXnFqyioiKlp6crISGh1n2ZmZk6duyYKirOvgRAIMdXjznKzMysc19JNcYZzZgxQ3fddZf+7//+Tz179lSbNm30k5/8RB07dtT27duVmhrYEhmMSQIAAAAirQGOSSotLa0zwZHOVIOq94mPj6/38aWlpZJU5/7e+1aLiYlRZmamBg8erOHDh6tFixZ67733lJ+fr1GjRumll15SXNy5r2dJkgQAAABEsX379iktLa3e50lOTtbRo0frvK+srMyzTyiOr/5veXn5OV3r5z//ud5//33t2rVLSUlJkqThw4erc+fOuuuuu/TMM89owoQJPh+fN7rbAQAAAJFmRegWQhkZGTp27FidiUthYaHS09PPWkUK9PjqCRfqmrq7elt1t7svvvhCa9eu1fXXX+9JkKplZ2dLOjMRRCBIkgAAAAD41bt3b5mmqQ8//LDG9rKyMu3cuVO9evUK2fG9e/eWdGaB2O/bvn270tLSdOGFF0r6T9Lkdrtr7VtVVVXjv+eK7nYRZJylD6aTWD4G2zmBERNjdwg+md+Vfx3NCO1MN6FmxJ57f2E7OP052OmRj+0OwS+zW3u7Q/DJ2rHL7hB8c/hrWJLkcvbrRGbtL1JOYsQm2h2CXyeuCH7wfzhVVZZJh+yO4hw1wDFJI0eO1Lx587Ro0SL179/fs3358uUqLS3VmDFjPNv279+vyspKdevWLajjs7Ky1Lp1a61YsUJTp071TAP+0UcfacuWLRo/frxnjFHXrl0VExOjF198UfPmzVOzZs0851m9erWk/yRd54okCQAAAIBf3bt316RJk7RkyRKNGDFCQ4cO1WeffabFixcrKyurxkKygwYN0qFDh2RZVlDHx8XF6fHHH9fIkSPVv39/5eTkqLi4WAsXLlTLli2Vl5fn2bdFixbKzc3VggULdNlllyknJ8czccPatWvVqVOngMYjSSRJAAAAQOSFYR2jOq8RYosWLVL79u21bNkybd68Wenp6ZoyZYpmz54tl8v/SJ5Ajs/OzlZSUpLmzJmje+65RwkJCRo0aJAee+yxWlODz58/X127dtWKFSs0b948lZeXKzMzU3fddZdmzZoV8MQVhuWd3jVgxcXFatq0qQa4RijWcGZ3HSPO+Tkp3e3qxwqwv6stHN5Vx+nd7WSZdkfgU4Po1kt3u/px+GtYkmQ4fMizw7vbuZo0sTsEv07+5FK7Q6hTVWWZCl6aqRMnToRkNrdwqP7O2nb+HLmSwtu10jxdpn/d+6Cj28OpHP4uBgAAAACR5fzSBgAAABBlDOvMLdzXQHCoJAEAAACAFypJAAAAQKQ1wCnAGxMqSQAAAADghSQJAAAAALyQJAEAAACAF8YkAQAAABFmKAKz24X39FEt6pIkw2XIcOhCe0as85vb6YvJOl2D+Bs7fcFblzNfv9WsSoePgq2otDsCv45d5uwFDVvuTbU7BJ+ssnK7Q/DLcjt8sdbE8C7gWV+u1BS7Q/Cr6Y4jdodQpyrT+a8PNAzO/0YHAAAARBvLOHML9zUQFMYkAQAAAIAXKkkAAABApLFOkqNRSQIAAAAALyRJAAAAAOCF7nYAAABApNHdztGoJAEAAACAFypJAAAAQIQZVgQWk6WSFDQqSQAAAADghUoSAAAAEGmMSXI0KkkAAAAA4CXqKkmWaclyagfM8nK7I/DLiImxOwSfLLfb7hB8cnr7SZIRF293CL6ZDn39VjOd/RyUy7A7Ar/+3cvZbdjyOWfH1xD+xqp0dhua5abdIfj0zykd7Q7Br47zPrY7hDqZVoXdIZw7KkmORiUJAAAAALwElCTt3btXDz30kPr27auWLVsqNTVVPXv21Ny5c1VSUuLZz7IsrVmzRqNGjVLnzp2VnJysdu3a6cYbb9QHH3wQ8gcBAAAANCTVs9uF+4bgBJQkrVq1SgsXLlSnTp300EMPaf78+eratasefPBB9evXT6dPn5YklZeXa+zYsdqzZ49GjRql/Px8TZw4UX/729905ZVXas2aNWF5MAAAAABQXwGNSbrllls0Y8YMNW3a1LPtzjvvVJcuXTR37lytXLlSkydPVmxsrLZs2aKsrKwax+fk5OiSSy7R9OnTNXr0aLlc9PYDAABAI2QZZ27hvgaCElCW0qtXrxoJUrWRI0dKkj799FNJUmxsbK0ESZJatWqlrKwsHT16VEePHg0mXgAAAAAIq5DMbnf48GFJZ5Kgc9k3Pj5ezZo1C8WlAQAAgIaH2e0crd5Jktvt1iOPPKLY2FiNHj3a576vvPKKPvzwQ40dO1aJiYn1um7r1q1r/Ns0nT2dJwAAAICGod5JUm5urrZt26Z58+apa9euZ91v3759Gjt2rDIzM7VgwYL6XhYAAAAAwqJeSdLMmTO1ZMkSTZw4UTNmzDjrfgcOHNCgQYNkGIZeffVVtWzZsj6XlSQdOXKkxr+Li4vrHC8FAAAAOE0kpuhmCvDgBZ0kzZo1S3PmzNH48eP11FNPnXW/gwcPauDAgTp16pT+8pe/qHv37sFeEgAAAADCLqgkadasWcrLy9O4ceO0YsUKGUbd0wsePHhQAwYM0IkTJ/TGG2/osssuq1ewAAAAQFRg4gZHCzhJmj17tvLy8jR27FitWrXqrGsdHTp0SAMHDtS3336r119/XVdccUW9gz0Xhss4a9JmN8vttjsE/yyHv5pcMXZH4JMRG5IJI8PKLCuzOwTfHP43drwY57dft2mf2h2CT8U3/NDuEHxK+b8Cu0Pwy+nvhUZCgt0h+NTh9yftDsEvq7zc7hDqZFmVdoeAKBHQu9jSpUv18MMPq127dho8eLCee+65Gve3atVKQ4YM0cmTJzVw4EAdPHhQU6ZM0Z49e7Rnz54a+w4ZMuScpgwHAAAAok4ExiRRSQpeQElSQcGZX6+++OILjRs3rtb9WVlZGjJkiP7973/rwIEDkqT8/Pw6z/XWW2+RJAEAAABwnICSpNWrV2v16tV+92vfvr0sp3fbAgAAAOzCmCRHq3tAEQAAAAA0Us4eWQkAAABEIypJjkYlCQAAAAC8UEkCAAAAIsyIwOx2YZ89L4pRSQIAAAAALyRJAAAAAOCFJAkAAAAAvJAkAQAAAICXqJu4wXK7ZRnOzP1cCQl2h+BfTIzdEfhklZfbHYJPpsPjk6SYtDS7Q/DJLC21OwSfjKQmdofgk5GUaHcI/jn0PbpaVYJhdwg+xaSl2B2CX1Zlld0h+ObwBe+Lspz9Pi1JGR859XXs1LjqwBTgjtaAnkkAAAAAEH5RV0kCAAAAnI4pwJ2NShIAAAAAeKGSBAAAANiBSo9jUUkCAAAAAC9UkgAAAIBIY3Y7R6OSBAAAAABeqCQBAAAAEcbsds5GJQkAAAAAvFBJAgAAACKNMUmORiUJAAAAALxEXyXJcJ25OZBlOT+dNxweo2U6Oz45vP0kySwvtzsEnyy32+4QfLJKS+0OwSfD4X/fhiClsMLuEHz6ctTFdofgV+sX/2l3CD7946EL7A7Bp26/+sTuEPyyXIbdIdTNcmhcaHCiL0kCAAAAHI6JG5zNmSUXAAAAALAJSRIAAAAQaVaEbiFmmqYWLlyobt26KTExUW3bttX06dNVUlISluNfeeUV9evXT02aNFGLFi2UnZ2tAwcOnPX8mzdv1uDBg9W8eXMlJyfrwgsv1OTJkwN+nCRJAAAAAM7J1KlTNW3aNF188cXKz89Xdna2Fi9erGHDhsk0zZAev2nTJt1www06ffq05s+fr3vvvVdbt27VVVddpaKiolrnzsvL0w033KDY2Fjl5eVp8eLFGjVqlA4fPhzw42RMEgAAABBpDXAK8F27dik/P18jRozQxo0bPds7dOigu+++W+vXr9fo0aNDcnxlZaWmTJmitm3b6p133lFKSook6brrrtMVV1yhWbNmadmyZZ5zvPHGG5o1a5Zmz56tmTNn1vuxUkkCAAAA4Ne6detkWZZyc3NrbM/JyVFycrLWrFkTsuPffvttFRUVacKECZ4ESZJ69uypAQMG6Pnnn1dlZaVn+7x583TeeedpxowZkqRTp06dU2XrbEiSAAAAgAirnt0u3LdQKigokMvlUp8+fWpsT0xMVM+ePVVQUBCy46v//8orr6x1nr59+6q4uFh79+6VJJWUlGjr1q360Y9+pJUrVyozM1OpqalKSUnRqFGj9NVXXwX8WEmSAAAAgCjWpUsXtW7d2nMLVlFRkdLT05WQkFDrvszMTB07dkwVFWdfay6Q46vHHGVmZta5ryQVFhZKkj7//HO53W5t375dv/zlL5WTk6NNmzbpzjvv1IYNGzRw4ECVBrjOIWOSAAAAgEhrgGOSSktL60xwpDPVoOp94uPj6318dVJT1/7e+0rSyZMnJUlff/21li9frgkTJkiShg8frrS0NOXl5emZZ57RXXfddU6PU6KSBAAAAES1ffv26ciRI55bsJKTk1VeXl7nfWVlZZ59QnF89X/r2v/7+yYlJUmSXC6Xxo4dW2PfcePGSZK2bNly1rjqQpIEAAAARFoDXCcpIyNDx44dqzNxKSwsVHp6+lmrSIEen5GR4dle177Sf7rdtWnTRpLUvHnzWpWn6u6F33zzjd/H540kCQAAAIBfvXv3lmma+vDDD2tsLysr086dO9WrV6+QHd+7d29J0rZt22qdZ/v27UpLS9OFF14oSWrVqpXatWun48eP1xp7VL1G0nnnnXeOj/IMxiRFktttdwR+mT4G2zmB4ePXCScw4s9eYnYKy+F/YxkO/+3GCn460YhwevtJsqoq/e9ko4SPD9odgk/f3tTZ7hD8Wv6rP9gdgk9jV+baHYJPZklgA8xt4dD3Qsty9vuLt3DMPlfXNUJp5MiRmjdvnhYtWqT+/ft7ti9fvlylpaUaM2aMZ9v+/ftVWVmpbt26BXV8VlaWWrdurRUrVmjq1KmeacA/+ugjbdmyRePHj1dcXJxn/7Fjx2ru3Ll6+umnNXXqVM/2J598UpI0dOjQgB4rSRIAAAAAv7p3765JkyZpyZIlGjFihIYOHarPPvtMixcvVlZWVo2FZAcNGqRDhw7Jsqygjo+Li9Pjjz+ukSNHqn///srJyVFxcbEWLlyoli1bKi8vr0Zs9913nzZu3Kh77rlHe/fuVY8ePfTuu+9q7dq1uvrqqzVy5MiAHitJEgAAAIBzsmjRIrVv317Lli3T5s2blZ6erilTpmj27Nlyufz3Zgjk+OzsbCUlJWnOnDm65557lJCQoEGDBumxxx6rNTV4Wlqa3nnnHc2cOVMvvfSSVq5cqTZt2uiBBx7QzJkzFRMTE9DjNCzv9K4BKy4uVtOmTTXANUKxRpz/A2xguAy7Q/DLcniXQOd3t3N2fJLzu9tZlVV2h+CbQ7uYVDNinfn+583p3e1iftDC7hB82v2Q87vbbRiWb3cIPjm9u13beR/YHYJ/Dn0vrLIqtcV6USdOnFBaWprd4dSp+jtrtynzFJOQGNZrucvLtDv/AUe3h1M5v/M6AAAAAEQQ3e0AAACACGuIEzc0JlSSAAAAAMALlSQAAAAg0sKw2Gud10BQqCQBAAAAgBcqSQAAAECkUUlyNCpJAAAAAOCFShIAAAAQYcZ3t3BfA8GJuiTJ1SRJLsOZC3oaCc6My5v738ftDsE3hy92a5aU2h1Cg+dKTLA7BJ/MsnK7Q/DNoQs8enMlOPtv7D7+rd0h+NTtod12h+DXzIevtTsEn9qV7rA7BJ8aQg8pV3Ky3SHUyWVVSCV2R4FoEHVJEgAAAOB4jElyNMYkAQAAAIAXKkkAAABAhBnWmVu4r4HgUEkCAAAAAC8kSQAAAADghe52AAAAQKQxcYOjUUkCAAAAAC9UkgAAAAA7UOlxLCpJAAAAAOCFShIAAAAQYUwB7mxUkgAAAADAS9RVksyS0zKNKrvDqJNRUWF3CP5Z/ORQL6bb7gj8c8XYHYFPZmmp3SH4Zhh2R+CbEWd3BA2eEefsj0bzdJndIfhlVTrzc7ia0//Ghsvh7zNy7vPQtCrtDuHcMbudo1FJAgAAAAAvASdJe/fu1UMPPaS+ffuqZcuWSk1NVc+ePTV37lyVlJTU2n/Pnj266aab1Lx5czVp0kT9+/fXm2++GZLgAQAAgIaoekxSuG8ITsBJ0qpVq7Rw4UJ16tRJDz30kObPn6+uXbvqwQcfVL9+/XT69GnPvvv371e/fv20bds23XfffZo/f75OnTqla6+9Vm+88UZIHwgAAAAAhELAnXJvueUWzZgxQ02bNvVsu/POO9WlSxfNnTtXK1eu1OTJkyVJM2bM0LfffqsdO3aoZ8+ekqSf/exnuuSSSzRp0iTt3r1bhtP79wMAAAChxpgkRwu4ktSrV68aCVK1kSNHSpI+/fRTSVJJSYlefvllDRgwwJMgSVJKSoomTJigvXv3qqCgIMiwAQAAACA8QjZxw+HDhyVJrVq1kiR9/PHHKi8v15VXXllr3759+0oSSRIAAAAAxwnJHJhut1uPPPKIYmNjNXr0aElSUVGRJCkzM7PW/tXbCgsLg75m69ata/zbNM2gzwUAAABEEovJOltIkqTc3Fxt27ZN8+bNU9euXSVJpd+tdZKQkFBr/8TExBr7AAAAAIBT1DtJmjlzppYsWaKJEydqxowZnu3JycmSpPLy8lrHlJWV1dgnGEeOHKnx7+Li4jrHSgEAAACOw8QNjlavMUmzZs3SnDlzNH78eD311FM17svIyJBUd5e66m11dcUDAAAAADsFXUmaNWuW8vLyNG7cOK1YsaLWVN7du3dXQkKCtm3bVuvY7du3SzozUx4AAADQ6FBJcrSgkqTZs2crLy9PY8eO1apVq+Ry1S5IpaSkaNiwYdq0aZM++ugj9ejRQ5J06tQprVixQl26dFGfPn3qF31dLFOSMydxsOroeug0ru/GiyE4ltttdwj+mc6O0YgNyVDJsHH639jp8UmSVVVpdwg+uZKS7A6hwXP6Goim0z+PrQbwzdapf2PLmd8B0fAE/G1k6dKlevjhh9WuXTsNHjxYzz33XI37W7VqpSFDhkiSHn30Uf3lL3/RNddco6lTpyotLU3Lly9XYWGhNm/e7Pg3UQAAACAcmN3O2QJOkqrXNvriiy80bty4WvdnZWV5kqTOnTvrvffe0/3336/f/OY3qqio0OWXX67XXntNgwcPrmfoAAAAABB6ASdJq1ev1urVq895/4suukgvvfRSoJcBAAAAohdjkhytXrPbAQAAAEC0cfYIaQAAACAKGZYlI8yTdIT7/NGMShIAAAAAeKGSBAAAAEQaY5IcjUoSAAAAAHghSQIAAAAAL3S3AwAAACKMxWSdjUoSAAAAAHihkhRBruRku0PwyywrtzsEhFlMWprdIfjkPnnS7hB8ciUk2B2CT2ZZmd0hNHhWZZXdIfhkud12h+CfZdodgW+Gw38jNuwO4Bw4/W/cEDBxg6M5/F0CAAAAACKLShIAAAAQYYxJcjYqSQAAAADghUoSAAAAEGmMSXI0KkkAAAAA4IVKEgAAABBhjElyNipJAAAAAOCFShIAAAAQaYxJcjQqSQAAAADghSQJAAAAALzQ3Q4AAACwARMrOFf0JUlWJDp4BscsK7c7BP8s0+4IGjbLmc89b1ZFhd0h+GTExtkdgk9mRaXdIfjmirE7ggbPlZZidwg+ub85YXcI/hl0VIl6jv0bu5z6NRANTPQlSQAAAIDTWVb4f1xtAD/eOpVTfwYAAAAAAFuQJAEAAAARVr2YbLhvoWaaphYuXKhu3bopMTFRbdu21fTp01VSUhKW41955RX169dPTZo0UYsWLZSdna0DBw74vc6TTz4pwzBkGIaOHTsW0GOUSJIAAAAAnKOpU6dq2rRpuvjii5Wfn6/s7GwtXrxYw4YNk2n6H9seyPGbNm3SDTfcoNOnT2v+/Pm69957tXXrVl111VUqKio66zWKiop0//33KyUl+DGmjEkCAAAAIq0BLia7a9cu5efna8SIEdq4caNne4cOHXT33Xdr/fr1Gj16dEiOr6ys1JQpU9S2bVu98847noTnuuuu0xVXXKFZs2Zp2bJldV5n0qRJ6tSpky655BKtWbMmqMdKJQkAAACAX+vWrZNlWcrNza2xPScnR8nJyX4TkkCOf/vtt1VUVKQJEybUqAj17NlTAwYM0PPPP6/Kytozzv7+97/Xyy+/rKeeekoxMcHP+EqSBAAAAESYYUbmFkoFBQVyuVzq06dPje2JiYnq2bOnCgoKQnZ89f9feeWVtc7Tt29fFRcXa+/evTW2FxcXa/LkybrjjjtqXSNQJEkAAABAFOvSpYtat27tuQWrqKhI6enpSkhIqHVfZmamjh07pgof6zEGcnz1mKPMzMw695WkwsLCGtt/9atfyTRNPfroo+f+oM6CMUkAAABApDXAMUmlpaV1JjjSmWpQ9T7x8fH1Pr60tFSS6tzfe99q7733np5++mmtXbtWTZs2PcdHdHYkSQAAAEAU27dvn9LS0up9nuTkZB09erTO+8rKyjz7hOL46v+Wl5f73beiokITJ07U4MGDddttt53LQ/GL7nYAAABAhDXEdZIyMjJ07NixOhOXwsJCpaenn7WKFOjxGRkZnu117Sv9p9vd0qVLtXv3bk2bNk2ff/6553by5ElJ0oEDB/TPf/4zoMdKkgQAAADAr969e8s0TX344Yc1tpeVlWnnzp3q1atXyI7v3bu3JGnbtm21zrN9+3alpaXpwgsvlCQdOnRIpmnquuuuU5cuXTy3TZs2SZL69OmjH/7whwE91qjrbmfExsownPmwLDPcHU/rz/CR/TuC2213BD5ZDo9PksyK2tNlOonhMuwOwSdXfJzdIfhkVVXZHYJfTo/RPHVuq8bj7Ix6TLsLyao8+8B3p3B9NybEaVyWJZXZHUX0GjlypObNm6dFixapf//+nu3Lly9XaWmpxowZ49m2f/9+VVZWqlu3bkEdn5WVpdatW2vFihWaOnWqZxrwjz76SFu2bNH48eMVF3fmM3n8+PH68Y9/XCvepUuXasuWLVq1apWaN28e0GN1ZjYBAAAARDPLOnML9zVCqHv37po0aZKWLFmiESNGaOjQofrss8+0ePFiZWVl1VhIdtCgQTp06JAsrxgCOT4uLk6PP/64Ro4cqf79+ysnJ0fFxcVauHChWrZsqby8PM++PXr0UI8ePWrF+8c//lGSNGzYMKWnpwf0WEmSAAAAAJyTRYsWqX379lq2bJk2b96s9PR0TZkyRbNnz5bL5X8kTyDHZ2dnKykpSXPmzNE999yjhIQEDRo0SI899lidU4OHkmFZ4U5hI6O4uFhNmzbVwNibFWs4sztMg+huF+fwvNnh3dkaQnc7Gc4eiuj07nZGrLNfI07vyiY5P0bjLNPTOoVV6ez2k+huV190twtelVWhN8te0IkTJ0Iym1s4VH9n/dGwRxQbF952rKos0wd/mOno9nAqZ39bAgAAAIAIc/ZPogAAAEA0aoCLyTYmVJIAAAAAwAuVJAAAACDCwrHYa13XQHCoJAEAAACAFypJAAAAQKQ1wHWSGhMqSQAAAADghUoSAAAAEGGMSXK2qEuSrKoqWYYzF6N0+iKUkmRVOHsBO6cvUGjEx9sdgl8NYSFKRzuH1cTt5PSFWiVJLme/jq3ycrtD8M2hn3HerCrT7hAatIbwfcEsK7M7hDqZVqXdISBKOP9VCAAAAEQb1klyNGf/JAoAAAAAEUaSBAAAAABe6G4HAAAARBgTNzgblSQAAAAA8EIlCQAAAIg00zpzC/c1EBQqSQAAAADghUoSAAAAEGlMAe5oVJIAAAAAwAuVJAAAACDCDEVgdrvwnj6qUUkCAAAAAC9RV0ky4uJlGHF2h1EnI8b5OalVVWV3CD5ZbrfdIfjWAGaRiUlLsTsEn8xTJXaH4JNVUWF3CD4ZcfF2h+CfZdodgU+W5fDfXi3nv8/IcHYbulIc/j548qTdIfhlJCTYHUKdDMslldsdxTmyrPC/nhvC+4VDOf9bOwAAAABEUMBJ0qOPPqrs7Gx17NhRhmGoffv2Pvd/9dVXNWjQIJ1//vlq0qSJunbtqnvuuUdfffVVsDEDAAAADZphReaG4ATc3e6BBx5QixYtdPnll+vbb7/1ue/y5cs1ceJEXXHFFfrVr36lJk2aqKCgQIsWLdKmTZv0ySefqEmTJsHGDgAAAAAhF3CStH//fnXs2FGSdOmll+rUqVNn3fd//ud/1Lp1a7377rtKTEyUJE2cOFGtWrXS3Llz9frrr+umm24KLnIAAAAACIOAk6TqBOlcFBcXq0WLFp4EqVpGRoYkUUUCAABA48Riso4W1okbrr32Wv3jH//Q9OnT9dlnn+lf//qXNm3apEceeURZWVm6+uqrw3l5AAAAAAhYWKcAf/zxx1VaWqrHH39c//u//+vZPn78eD399NOKiYkJ+tytW7eu8W/TdPaUsgAAAEA1w7JkhHmK7nCfP5qFNUmKi4tTu3btNHz4cA0bNkzJycn605/+pFWrVikmJkbLly8P5+UBAAAAIGBhS5JM09RPfvITVVVV6b333pPx3cJyt9xyi37wgx/oscce08iRIzV48OCgzn/kyJEa/y4uLlbTpk3rHTcAAAAQduZ3t3BfA0EJ25ikd999V++8845uvvlmT4JULTs7W5L09ttvh+vyAAAAABCUsFWSCgsLJUlut7vWfVVVVTX+CwAAADQmjElytrAlSRdffLEkae3atZo6dari4uI8961evVqS1Lt375Bf16qqlGX4388OViVP1Hpz+ovdoc89b+apErtD8Mmq44cVRzHCOilovRnBz4cTOfWYtCcSXAkJdofgk1VRaXcIfllVzo7RqqiwOwSfDIc/ByXntqFlOfu5h4Yj4CTpd7/7nQ4dOiRJ+vrrr1VRUaE5c+ZIki644AKNHTtWktSjRw/dfPPN2rhxo3r16qWf/vSnnokb/vCHP6hv3776f//v/4XwoQAAAAANBOskOVrASdLKlStrjSWaOXOmJCkrK8uTJEnSc889p0WLFmnt2rV66KGHZJqmLrjgAs2YMUO//vWv6zUFOAAAAACEQ8BJ0pYtW8553/j4eN1333267777Ar0MAAAAEL0sK/zDCJw+TMHBnN25HgAAAAAiLKyLyQIAAACozbDO3MJ9DQSHShIAAAAAeCFJAgAAAAAvdLcDAAAAIo2JGxyNShIAAAAAeKGSBAAAAESYYZ65hfsaCA6VJAAAAADwQiUpgoyEBLtD8M/ttjsCnyyHxyfT4fFJksvhL3vD2b/dGHHObj+rosLuEPwy4uPtDsEns7TU7hB8awhjDAzD7gh8c/hnidNfI5LUAJ6FzseYJEdz9rcRAAAAAIgwZ/8kCgAAAEQjS+EvyVFIChqVJAAAAADwQiUJAAAAiDDDsmSEecxQuM8fzagkAQAAAIAXKkkAAABApDG7naNRSQIAAAAAL1SSAAAAgEizJJkRuAaCQiUJAAAAALyQJAEAAACAF7rbAQAAABHGFODOFn1JkuE6c3Mgq7LK7hD8s8LdObaeHP5iNxIS7A7BL6c/Dw2XYXcIvpkOfw7GxNgdgl9WebndIfjmcnYbupIT7Q7BL7O01O4QfLKc/jq2O4Bz4dDvWpKLcTgIiehLkgAAAACnsxSBKcDDe/po5tSfAQAAAADAFiRJAAAAQKRVLyYb7luImaaphQsXqlu3bkpMTFTbtm01ffp0lZSUhOX4V155Rf369VOTJk3UokULZWdn68CBAzX2sSxLa9as0ahRo9S5c2clJyerXbt2uvHGG/XBBx8E9ThJkgAAAACck6lTp2ratGm6+OKLlZ+fr+zsbC1evFjDhg2Tafof2x7I8Zs2bdINN9yg06dPa/78+br33nu1detWXXXVVSoqKvLsV15errFjx2rPnj0aNWqU8vPzNXHiRP3tb3/TlVdeqTVr1gT8OBmTBAAAAESaqfDP0hHi+bh27dql/Px8jRgxQhs3bvRs79Chg+6++26tX79eo0ePDsnxlZWVmjJlitq2bat33nlHKSkpkqTrrrtOV1xxhWbNmqVly5ZJkmJjY7VlyxZlZWXVuF5OTo4uueQSTZ8+XaNHj5bLde71ISpJAAAAAPxat26dLMtSbm5uje05OTlKTk72W7EJ5Pi3335bRUVFmjBhgidBkqSePXtqwIABev7551VZWSnpTJL0/QRJklq1aqWsrCwdPXpUR48eDeixkiQBAAAAEVa9TlK4b6FUUFAgl8ulPn361NiemJionj17qqCgIGTHV///lVdeWes8ffv2VXFxsfbu3es35sOHDys+Pl7NmjXzu683kiQAAAAginXp0kWtW7f23IJVVFSk9PR0JdSxLmRmZqaOHTumioqKkBxfPeYoMzOzzn0lqbCw0Ge8r7zyij788EONHDlSiYmBrTHHmCQAAAAg0sI0+1yta4RQaWlpnQmOJE8SUlpaqvj4+HofX/rdotR17e+979ns27dPY8eOVWZmphYsWHDW/c6GJAkAAACIYvv27VNaWlq9z5OcnHzWsT1lZWWefUJxfPV/y8vLA77WgQMHNGjQIBmGoVdffVUtW7Y8a0xnQ3c7AAAAAH5lZGTo2LFjdSYuhYWFSk9PP2sVKdDjMzIyPNvr2lequyvewYMHNXDgQJ06dUqvv/66unfvfm4P7ntIkgAAAIBIa4CLyfbu3VumaerDDz+ssb2srEw7d+5Ur169QnZ87969JUnbtm2rdZ7t27crLS1NF154YY3tBw8e1IABA3TixAm9/vrruuyyywJ6fN6irrudERcrw3Dmw7J8DGRzjHD3jY1yVh2/jDhN7Pmt7A7Bp6qjx+wOwSdXUpzdIfjUEJ6DMsK9MEj9xDRvancIPrm/OWF3CH65zjLmwClMp79OYmLsjgCo08iRIzVv3jwtWrRI/fv392xfvny5SktLNWbMGM+2/fv3q7KyUt26dQvq+KysLLVu3VorVqzQ1KlTPdOAf/TRR9qyZYvGjx+vuLj/fCYfOnRIAwcO1LfffqvXX39dV1xxRb0eqzOzCQAAACCaNcCJG7p3765JkyZpyZIlGjFihIYOHarPPvtMixcvVlZWVo2FZAcNGqRDhw7J8oohkOPj4uL0+OOPa+TIkerfv79ycnJUXFyshQsXqmXLlsrLy/Pse/LkSQ0cOFAHDx7UlClTtGfPHu3Zs6dG7EOGDFGrVuf+QzFJEgAAAIBzsmjRIrVv317Lli3T5s2blZ6erilTpmj27NlyufyP5Ank+OzsbCUlJWnOnDm65557lJCQoEGDBumxxx6rMR7p3//+tw4cOCBJys/Pr/O6b731VkBJkmFZ0dG/qri4WE2bNtXAhFsVazizOwzd7eAEdLerH1dSYOssRFpD6G5nud12h+BTTIvmdofgU4PobhfvzM/hak7vbuf6rluRk5klZ5962U5VVqW2mJt04sSJkMzmFg7V31kHdZ2u2Jjwdk2tcpfrL3sWOLo9nIqJGwAAAADAC93tAAAAgAgzLEtGmHvwhPv80YxKEgAAAAB4oZIEAAAARFoDnN2uMaGSBAAAAABeqCQBAAAAkWZakhHmSo9JJSlYVJIAAAAAwAuVJAAAACDSGJPkaNGXJLndkuHMApkRH293CH5ZlVV2h9CgGTExdofgV9WXX9kdgm+GYXcEPpklJXaH4JMR5/z3GcnZi8m6j39jdwi+OfQzzptV5fDPEqe3ocMXXJac+3lnWKZk2h0FooHD3yUAAAAAILKir5IEAAAAOF4EutuJ7nbBopIEAAAAAF6oJAEAAACRxsQNjkYlCQAAAAC8UEkCAAAAIs20FPYxQywmGzQqSQAAAADghUoSAAAAEGmWeeYW7msgKFSSAAAAAMALlSQAAAAg0pjdztGoJAEAAACAFypJqMl02x2Bb64YuyPwyYjjJVVvDu8/bVVV2R1Cg+dKSrI7BJ+sSof/jR3+GpEkixm16sU8fdruEBosy6q0O4Rzx+x2jkYlCQAAAAC88LM3AAAAEGmMSXK0gCtJjz76qLKzs9WxY0cZhqH27dv7PeZ3v/udrrrqKqWlpSklJUWXXnqpHnnkkWDiBQAAAICwCriS9MADD6hFixa6/PLL9e233/rd//bbb9czzzyjm2++WT/96U/lcrl04MABHTp0KJh4AQAAACCsAk6S9u/fr44dO0qSLr30Up06deqs+65cuVK//e1v9eyzz2rs2LHBRwkAAABEE0sR6G4X3tNHs4C721UnSP5YlqVHH31Ul19+uSdBOnnypCz6RgIAAABwsLDNbrdnzx7t379f/fr10yOPPKIf/OAHSktLU7NmzXTnnXf6rEABAAAAUa164oZw3xCUsM1ut2fPHknS888/r4qKCj344IPq0KGD/vjHP+rpp5/Wnj179Oabb8owjKDO37p16xr/Nk3nrxsBAAAAwPnCliSdPHlSkvT111/r9ddf1+DBgyVJN998syzL0jPPPKPXXntN1113XbhCAAAAAJzJNCWF+Ud+ighBC1t3u6TvVlTPzMz0JEjVxo0bJ0nasmVL0Oc/cuRIjdu+ffuCPhcAAAAAVAtbJalNmzaSpPPPP7/WfdVd5b755ptwXR4AAABwLhaTdbSwJUndu3dXYmKiCgsLa913+PBhSdJ5550X8utaVVWyghznFG5GTIzdIfhlxMXbHYJvlsPLxg3gb6zKKrsj8Mkynf2GbiQk2B1Cg2eWltodgm8O/QxBCBlh60gTEkZsnN0h+GVVVdodAhBWYXuXSE5O1s0336wvv/xSv//972vc9+STT0qShg4dGq7LAwAAAM7F7HaOFnAl6Xe/+50OHTok6cykDBUVFZozZ44k6YILLqixaOy8efP0xhtvaPTo0ZoyZYrat2+vV155RZs3b9bPfvYz9evXL0QPAwAAAABCI+AkaeXKlXr77bdrbJs5c6YkKSsrq0aS1K5dO23fvl2//vWv9dvf/lYnTpxQp06d9D//8z+aOnVqPUMHAAAAGijTkhTmSo/Du7A7WcBJUqAz0rVv315r164N9DIAAAAAYAtnj1wEAAAAgAgL2+x2AAAAAOpmWaasMM/aG+7zRzMqSQAAAADghUoSAAAAEGmWFf6JFZgCPGhUkgAAAADAC5UkAAAAINKsCEwBTiUpaFSSAAAAAMBL1FWSXKkpchnxdodRJ+v0abtD8Mty+qJjptvuCHyrqLA7Ar8st8PbEPViNYDnoFwxdkfgkxHj9Pic//umWVZmdwh+OHvGL6sBvE0bsXF2h1Anw5JUaXcU58g0JSPMz0Vmtwua899pAQAAACCCoq6SBAAAADgeY5IcjUoSAAAAAHihkgQAAABEmGWassI8JsliTFLQqCQBAAAAgBcqSQAAAECkMSbJ0agkAQAAAIAXkiQAAAAA8EJ3OwAAACDSTOu71W/DiO52QaOSBAAAAABeqCQBAAAAkWZZksI8RTeVpKBFXZJklpyWaVTZHUbdTLfdEfhnGHZH4JMR6/CnrLsB/I2dvmaCw9/QrUq7I/DNiI2zOwS/rMoKu0PwLSbG7gh8Misc/iSUZMTF2x2CT45/Dob7i3MIGDHOfK8xLENy/ksEDYDDv3ECAAAA0ccyLVlhHpNkOfyHRydjTBIAAAAAeKGSBAAAAESaZSr8Y5Kc33XTqagkAQAAAIAXKkkAAABAhDEmydmoJAEAAACAFypJAAAAQKQxJsnRqCQBAAAAgJeoqSRV97n83aHHlZaWZnM0AAAAiLTi4mK1bftCgxiLU6VKKcxhVrGybtCiJkk6efKkJKlt27Y2RwIAAAA7nTx5Uk2bNrU7jDrFx8fr/PPP17tfvhKR651//vmKj4+PyLWiiWE1hFT7HJimqaKiIqWmpsowDLvDOasuXbpIkvbt22dzJM5E+/hG+5wdbeMb7eMb7XN2tI1vtI9vkW4fy7J08uRJZWRkyOVy7qiSsrIyVVRURORa8fHxSkxMjMi1oknUVJJcLpfatGljdxh+Vb9g6RJYN9rHN9rn7Ggb32gf32ifs6NtfKN9fLOjfZxaQfKWmJhI4uJwzk2xAQAAAMAGJEkAAAAA4CVqxiQBAAAAQChQSQIAAAAALyRJAAAAAOCFJAkAAAAAvJAkAQAAAIAXkiQAAAAA8EKSBAAAAABeSJIAAAAAwAtJEgAAAAB4IUkCAAAAAC8kSQAAAADghSQJAAAAALyQJAEAAACAF5KkEHv00UeVnZ2tjh07yjAMtW/f3uf+H3zwgQYPHqzU1FSlpaXpJz/5iXbu3BmRWCNt7969euihh9S3b1+1bNlSqamp6tmzp+bOnauSkpJa++/Zs0c33XSTmjdvriZNmqh///568803bYg8Mvbs2aMxY8booosuUtOmTZWcnKxu3bpp2rRpOnLkSJ37N6b2+b7S0lLP62zy5Mm17m9s7WMYRp23lJSUWvs2trapdvz4cd1zzz3q3LmzEhMT1bJlSw0cOFDvvPNOjf0a0/vyrFmzzvrcMQxDcXFxNfZvjM+dU6dOad68eerevbtSU1OVnp6ufv36afXq1bIsq8a+jem5I0lfffWV7rzzTrVt21bx8fFq166dfvnLX+rbb7+ttW9jfO6gYYu1O4Bo88ADD6hFixa6/PLL63yT8LZ9+3YNGDBAmZmZmj17tiRpyZIl6t+/v95//3117949AhFHzqpVq7R06VLdeOONGjNmjOLi4vTWW2/pwQcf1AsvvKDt27crKSlJkrR//37169dPsbGxuu+++9S0aVMtX75c1157rV599VUNHjzY5kcTeocPH9aRI0c0fPhwtWnTRrGxsfrkk0+0bNkyrV+/Xjt37tR5550nqXG2z/c99NBD+vrrr+u8r7G2T//+/TVx4sQa277/Jbexts2hQ4c0YMAAnTp1Sr/4xS904YUX6sSJE/r4449VWFjo2a+xvS+PGDFCnTt3rrX9448/1vz58zVs2DDPtsb43DFNU9ddd53ef/99jRs3TlOmTFFpaanWrVun8ePH67PPPtNjjz0mqfE9d44ePaof/ehHKioq0h133KFLL71Un376qZ588klt3bpV7733npKTkyU1zucOooCFkNq/f7/n/y+55BLrggsuOOu+vXv3tlJTU63Dhw97th0+fNhKTU21hgwZEs4wbVFQUGB9++23tbb/+te/tiRZ+fn5nm3Z2dmWy+Wy/v73v3u2nTx50mrXrp114YUXWqZpRiJkR3jhhRcsSdZjjz3m2dbY22fHjh1WTEyMtWDBAkuSNWnSpBr3N8b2kWSNGzfO736NsW0sy7J+/OMfW23atLGKiop87tfY3pfPZuLEiZYk649//KNnW2N87rz//vuWJCs3N7fG9vLycqtDhw5W06ZNPdsa23Pnl7/8pSXJeu6552psf+655yxJ1iOPPOLZ1hifO2j4SJLCyFeStG/fPkuSdfvtt9e67/bbb7cMw7COHDkS5gid4eOPP7YkWXfccYdlWZZ16tQpKyEhwbr66qtr7Tt79mxLkvXBBx9EOkzbfPDBB5Yk6/7777csi/apqqqyLr/8cuv666+3Dhw4UCtJaqztU50klZeXWydPnqxzn8baNm+//bYlyVq8eLFlWZZVUVFhlZSU1NqP9+UzTp06ZaWlpVlt2rSxqqqqPNsa43PntddesyRZ//3f/13rvt69e1sZGRmWZTXO584Pf/hDKykpqVaC43a7rcTERKtjx46WZTXe5w4aPsYk2aSgoECSdOWVV9a6r2/fvrIsSzt27Ih0WLY4fPiwJKlVq1aSznTzKC8vP2vbSP9pv2hUVlamY8eO6fDhw/rzn/+sO+64Q5I0dOhQSbTPwoULtXv3bi1ZsqTO+xtz+/zf//2fkpOTlZqaqvPOO09TpkzRiRMnPPc31rZ55ZVXJEnt2rXTsGHDlJSUpCZNmujCCy/UmjVrPPvxvnzGhg0bVFxcrJ///OeKiYmR1HifO3369FGzZs303//939qwYYO++OIL7d69WzNmzNCOHTs0a9YsSY3zuVNeXq7ExEQZhlFju8vlUlJSkv75z3/q2LFjjfa5g4aPMUk2KSoqkiRlZmbWuq96m3c/+Wjldrv1yCOPKDY2VqNHj5ZE26xYsUJTpkzx/Lt9+/Zas2aN+vfvL6lxt8+BAwf08MMP66GHHlL79u118ODBWvs01vbp06ePsrOz1blzZxUXF+uVV17RkiVL9Pbbb+v9999XSkpKo22bPXv2SJJycnLUpUsXPfPMM6qoqNCCBQs0duxYVVZWavz48Y22fb5v5cqVMgxDt99+u2dbY22b5s2b6+WXX9aECRN06623eranpqZq48aNuummmyQ1zva55JJLtGfPHu3cuVM9e/b0bN+5c6e++eYbSdIXX3zRKNsG0YEkySalpaWSpISEhFr3JSYm1tgnmuXm5mrbtm2aN2+eunbtKom2uemmm9StWzedOnVKf//73/Xyyy/r2LFjnvsbc/vceeed6tixo6ZNm3bWfRpr+3zwwQc1/v2zn/1MP/zhD/XrX/9ajz/+uH7961832rY5efKkpDNfbN966y3Fx8dLOvNa69ixox544AGNGzeu0baPtz179ujdd9/VoEGD1KFDB8/2xtw2KSkpuvTSS3XjjTeqX79+On78uJYuXarRo0frpZde0pAhQxpl++Tm5urFF1/UrbfeqkWLFunSSy/Vrl27lJubq7i4OFVWVqq0tLRRtg2iA93tbFI940t5eXmt+8rKymrsE61mzpypJUuWaOLEiZoxY4Zne2NvmzZt2mjw4MG66aablJeXp2eeeUb33XefHn30UUmNt33WrFmj119/XU8++WStGdu8Ndb2qcu9996r+Ph4bd68WVLjbZvqWTNvu+02T4IknakS3Hjjjfryyy+1Z8+eRts+3lauXClJmjBhQo3tjbVtPvnkE/Xr109DhgzR/PnzNXz4cP3iF7/Qu+++q/PPP185OTlyu92Nsn369++v9evX6+TJk7r++ut1wQUXaNiwYRo4cKBuuOEGSVJaWlqjbBtEB5Ikm2RkZEiqu8Rcva2u0nS0mDVrlubMmaPx48frqaeeqnFfY2+b7/vhD3+oyy67TE888YSkxtk+5eXlmjZtmoYOHarzzz9fn3/+uT7//HMdOnRIknTixAl9/vnn+vbbbxtl+5xNXFycMjIyPJXIxto2bdq0kSSdf/75te5r3bq1JOmbb75ptO1TraqqSs8++6x+8IMfaPjw4TXua6xts3DhQpWVlSk7O7vG9uTkZF1//fU6dOiQDh482GjbJzs7W4cPH9bf//53bd26VUVFRXrqqad0+PBhxcbGqnPnzo22bdDwkSTZpHfv3pKkbdu21bpv+/btMgxDV1xxRaTDiohZs2YpLy9P48aN04oVK2oN+uzevbsSEhLO2jaS1KtXr4jE6hSnT5/W8ePHJTXO9jl9+rS+/vprbd68WV26dPHcBgwYIOlMlalLly5asWJFo2yfsykrK9Phw4c9k6I01rbp06ePpP9MEuOtett5553XqN+XJekPf/iDvvrqK/30pz+t1TWqsT53qr/Eu93uWvdVVVV5/tuYnzsxMTHq2bOn+vfvr/POO09ffvml/v73vysrK0vJycmN9rmDKGDz7HpRzd86Sb169bJSU1OtwsJCz7bCwkIrNTXVGjRoUAQijLy8vDxLkjV27FjL7Xafdb9bbrnFcrlc1s6dOz3bqtdU6NKlS1SuqXC26WHffPNNy+Vy1Zg+tbG1T0VFhbVhw4ZatyeeeMKSZP3kJz+xNmzYYO3Zs8eyrMbXPseOHatz+z333FNrja3G1jaWZVnHjx+3UlNTrczMzBrToxcVFVlNmjSxLrzwQs+2xvi+XO3666+3JFkff/xxnfc3xudObm5urdeQZVnWN998Y7Vu3dpq3ry5Z5r0xvzcqeZ2u63s7GzLMAzrzTff9GxvjM8dNHyGZVmWrVlalPnd737n6QKUn5+viooKTZ8+XZJ0wQUXaOzYsZ5933//fQ0cOFBt2rTxzGaWn5+vr776Su+995569OgR+QcQRkuXLtXkyZPVrl07PfLII3K5ahYyW7VqpSFDhkiSPv/8c/Xp00dxcXGaOnWq0tLStHz5cn3yySfavHmzrr32WjseQlgNHz5cR44c0dVXX60LLrhAZWVl2rFjh9avX6/k5GRt2bLFM4NQY2yfuhw8eFAdOnTQpEmTakwJ3tjaZ+rUqdq+fbsGDhyodu3a6dSpU3rllVf01ltv6Uc/+pHeeustz7icxtY21ZYtW6Y77rhDl1xyiW6//XZVVFToySef1JEjR/THP/5R11xzjaTG975craioSO3atdMVV1xRaxKQao3xuXPo0CFdfvnl+uabbzRmzBhdddVVOn78uJYvX66DBw9q6dKl+q//+i9Jje+5c+rUKfXp00fDhw9Xhw4ddOLECa1bt047duzQ3Llz9cADD3j2bYzPHUQBu7O0aJOVlWVJqvOWlZVVa//333/fuvrqq60mTZpYKSkp1jXXXGPt2LEj8oFHwLhx487aNnW1zz/+8Q/rxhtvtJo2bWolJSVZV111lfX666/bE3wEPP/889b1119vtWnTxkpISLASExOtrl27WpMnT7YOHTpUa//G1j51qWsx2WqNqX1efPFF65prrrEyMjKshIQEKzk52erRo4c1d+5c6/Tp07X2b0xt423jxo3Wj370Iys5OdlKSUmxhgwZYr377ru19mtM78vV5s6da0myli1b5nO/xvjc+fzzz62f/exnVmZmphUbG2ulpqZa/fv3tzZu3Fhr38b03CkvL7dGjRpltW/f3kpISLCaN29uXXPNNdZrr71W5/6N8bmDho1KEgAAAAB4YeIGAAAAAPBCkgQAAAAAXkiSAAAAAMALSRIAAAAAeCFJAgAAAAAvJEkAAAAA4IUkCQAAAAC8kCQBAAAAgBeSJAAAAADwQpIEAAAAAF5IkgAAAADAC0kSAAAAAHghSQIAAAAAL/8/Rk9TKOaD12kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_t.time), max(dps_new_t.time), min(dps_new_t.freq), max(dps_new_t.freq)\n", + "plt.imshow(dps_new_t.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15,30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's trace that drifiting feature." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# By looking into the maximum power of each segment\n", + "max_pos = dps.trace_maximum()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Detected frequency drift')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAKOCAYAAAAf5QD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJbUlEQVR4nOzdd3gU9drG8XtDSAiQhGqooYuKKCpNLICKjS5NUAxIC8UjoqKodNBjRQUEKUFEUQSpih5RQY4iRTwoKFKESFWkJnSSzPvHvJvJSkuWTX5bvp/ryuU8syV3kiXm2Zl5fi7LsiwBAAAAAIJKmOkAAAAAAADfo9kDAAAAgCBEswcAAAAAQYhmDwAAAACCEM0eAAAAAAQhmj0AAAAACEI0ewAAAAAQhGj2AAAAACAI0ewBAAAAQBCi2QOAPFCxYkW5XK7Mj7CwMMXGxqpixYpq2rSpRo8erR07dpiOGVTeeecduVwudenSJUeP279/vx5++GGVLVtW4eHhcrlcGjZsWK5khFmNGjWSy+XSsmXLfPrYdevW6Z577lGxYsUUFhbm9ecAgEsVbjoAAISSu+66S6VKlZIkHTt2THv37tWyZcu0ePFiDRkyRP369dOLL76oAgUK+OTzuVwuSZJlWT55Pm8kJyerUqVKqlChgpKTk43lyK7u3btrwYIFqlq1qtq3b6+IiAjVqlXLdCwEiKNHj6p58+batWuX6tevr2rVqiksLEylSpXSsGHDNHz4cA0dOpQ3EADkCZo9AMhDTz/9tBo1auSx79SpU5oxY4aefPJJvfnmm9q2bZsWLFigsDBOvshrp0+f1qeffqqoqCj973//U+HChU1Hgp969913dfz4ccXHx3vsX716tXbt2qVbbrlFy5cvN5QOAGz8JQEAhkVGRqp79+5avny5oqKi9Mknn2jq1KmmY4WkP//8U2lpabrsssto9HBB8fHxuuKKK1SwYEGP/bt27ZIkVa5c2UQsAPBAswcAfqJmzZrq37+/JOm111475302bNigLl26KD4+XpGRkSpevLiaNm161vVA7uvV3LJeL5h1v9t3332ndu3aqUyZMoqIiFCpUqXUvn17rVu37rx59+3bp2eeeUbXXHONChcurOjoaF1xxRVKTEzUhg0bJEnDhg1TpUqVJEl//PGHR4aKFSue9ZyffvqpmjZtqssuu0wREREqX768Hn74YW3btu28OT766CPVq1dPBQsWVPHixdW8eXP9+OOP573/+bhcLlWoUOGcWd3c114mJyfro48+0s0336zY2Fi5XC4dPnw4837Z/Tll9eOPP6pZs2YqUqSIChcurPr162v27NlKTk4+5/dr2bJlcrlcZx0pdrvYNYs5zZj1ezFjxgzVrl1bBQsWVLFixdS2bVv9/vvv5/3akpOT9cgjj6h69eoqWLCgihQpopo1a+rxxx/XH3/8IUmaOXOmXC6XmjVrdt7nmT9/vlwul5o0aXLe+/xTamqqnnzySVWoUEGRkZGqVKmSnnzySR07duy8j8l6Pd6XX36pO++8U8WKFZPL5cr8N/HPa/bcP4+EhARJ0vTp0zO/Z40aNVLFihU1fPhwSdLw4cM9Xl+c0gkgt3AaJwD4kU6dOumFF17Qb7/9pj179qhMmTKZt7333nt6+OGHdebMGV177bWqV6+e9uzZo//85z/67LPP9NZbbykxMVGSVLVqVSUkJGj69OmSlPkH6Lm8+OKLGjRokFwul2rXrq2bb75Z27Zt0+zZs7VgwQLNmTNHzZs393jM2rVrde+992rfvn267LLLdMcddyh//vzatm2bJk+erFKlSunqq69WrVq11KZNG3388ccqVKiQ2rZtm/kcJUqU8HjOPn36aMKECYqIiFCdOnVUunRp/frrr5o2bZrmzp2rL774QnXr1vV4zOjRo/Xcc88pLCxMt9xyi0qXLq0ffvhBDRo0UNeuXXP0vU9ISNDRo0fPmfWfXnrpJU2YMEE33nijmjZtqs2bN2c2Qjn5Obl99dVXatq0qU6dOqWrr75aV199tZKTk9W+fXs9+uijOfo6ssObjG7PPPOMXnnlFd1666269957tXLlSn388cdasWKF1q9fr+LFi3vc/7PPPlP79u119OhRxcfH695771V6erq2bt2q1157TTVr1lSXLl3Utm1bPfbYY/rss8+0Y8eOs06PlKQJEyZIknr37p2trzM1NVUNGzbU//73PxUtWlTNmjVTWlqaJk6cqOXLlytfvnwXfPyHH36oSZMm6dprr9Xdd9+tnTt3nvf06lKlSikhIUFbt27Vd999pypVqujmm2+WJF1xxRXav3+/vvzyS/3000+69tprPa4D5ZpQALnGAgDkugoVKliSrKVLl17wfunp6VZERIQlyVqyZEnm/v/9739W/vz5rdjYWOvLL7/0eMz3339vFSlSxMqfP7/122+/edwmybrQr/pPPvnEkmTFx8dba9eu9bht4cKFVnh4uBUbG2sdOHAgc39KSopVpkwZS5I1YMAA69SpUx6P27Fjh/XDDz9k1tu3b7ckWRUqVDhvjvHjx1uSrFq1allbtmzxuG3ChAmWJKty5crWmTNnMvevXbvWCgsLsyIjI62vvvoqc396err1r3/9K/NrT0hIOO/n/aeLZXX/HPPnz2/95z//Oet2b35Ox44ds0qXLm1JskaPHu3xmI8++sgKCws7Z6alS5dakqyGDRueM+u0adPO+fVf6mupZMmS1vr16zP3p6amWvXq1bMkWcOHD/d4THJyslW4cGFLkvXqq69a6enpHrdv3LjR+vXXXzPrZ5991pJkPfvss2d9PVu3brVcLpdVpkwZj9fBhTz66KOWJKtu3brWwYMHM/fv3r3buvzyyzO/pn/+u2zYsGHmbdOmTTvnc7vv88/Hnu/7blmWNXToUEuSNXTo0GzlB4BLxWmcAOBHwsLCVKxYMUnSgQMHMvc///zzOnPmjMaMGaPbb7/d4zH169fX4MGDdebMGb399ts5+nzu08reeecdXX/99R63NW/eXL1799aRI0f03nvvZe6fMmWK9uzZo9tuu02vvvqqIiIiPB5Xvnx53XDDDdnOkJ6erpEjRyosLEyzZ89W1apVPW5PTExU8+bNtW3bNi1evDhz/7hx45SRkaGHH35Yt912W+b+sLAwvfTSSx5HRX3t4Ycf1p133nnWfm9+TnPmzNHevXtVo0YNDRo0yOMx7dq1U6tWrXya/VJfSyNGjNDVV1+dWRcuXFhPPPGEJGnp0qUe933ttdd09OhRde3aVQMGDDjrqNgVV1yhK6+8MrNOTExUvnz5lJSUpLS0NI/7vv3227IsSz169FB4+MVPTDp+/LimTJkiSRo7dqyKFi2aeVuZMmX0yiuvXPQ57rrrrhwv3QEA/oRmDwD8TEZGhiRn2YSMjAz95z//Ub58+XTfffed8zG33nqrJGnlypXZ/jz79+/XmjVrVKJEifNe93Wu5/38888l2Q2PL6xbt05//vmnrrvuurMavQvl+OabbyRJDzzwwFn3j4yMVLt27XyS71zO1YB5+3Nyfx0dO3Y85/WUnTt39kHiS8uY1T333HPWvurVq0uS9uzZ47Hf/Vrp1q1btvKVK1dOLVu21N69ezV//vzM/adOndK0adOUL18+9ejRI1vPtXbtWh07dkxVq1Y96/RfyX4zo0iRIhd8Dl832gCQ17hmDwD8SHp6euagj6xH+FJSUiTpon+c/v3339n+XNu3b5dkN30XW+Yh6/O6F393/4F/qdzDV9auXXvOZud8OXbv3i1J5xz0cqH9vuAe5JKVtz+nvPw6fPFaKl++/Fn7oqOjJdlNWVbevFb69eunuXPnauLEiZnXTc6ePVv79+9Xq1atVLZs2Ww9z8W+r5L9c8w6WOdctwNAIKPZAwA/8ssvv+j06dOSlHmqXHp6uiQpIiJCHTt2vODj/zn05ELcz1usWLGzBrD80xVXXJG5fbGGLKfcOeLj49W4ceML3rdevXo+/dzeioqKOmtfbv2cvOU+QpyVLzLmZP1Hb14rjRs31lVXXaWvv/5aW7ZsUbVq1TRx4kRJ2R/M4ivn+jkDQCCh2QMAP/LBBx9IkmrUqKFSpUpJsv/oLlCgQOZ1VJGRkT75XO4jNAULFtQ777yT7cfFx8dr48aN2rx5s2rXru2zHPHx8TnKUbZsWW3btk1//PHHOY/2JCcnX3K2nPD25+TO7l6C4J/O93W4r5U8evToOW/fuXOnzzJ6Kz4+Xps2bdLmzZtz1OD27dtXffv21cSJE9WlSxd99913qlq1ao6WXLjY9/VitwFAMOCaPQDwE+vXr9ebb74pSXr88ccz94eHh+uOO+5Qenq6x3VM2ZE/f35JOmvYhWT/MXz11Vdr165dWrVqVbaf0z2YJCkpKVv3dzcl58ogSXXr1lWxYsW0evXqczYo5+O+tmzmzJln3Xb69GnNmTMn28/lC97+nNxfx4cffijLss66/f333z/n49wDaLZt26YzZ86cdfsXX3zhs4zeyulrxa1z586Kjo7W9OnT9frrr0uSevXqlaMjhTfccIMKFSqkLVu26Icffjjr9k8//fSCp3Dmhov9WwAAX6PZAwDDTp06palTp+rWW2/V8ePH1bJly7PWxRsyZIjCw8PVp0+fc/6Rnp6erqVLl541VMN9dGPjxo3n/NwjRoyQZA8HcQ8Kyer06dNatGiRfvvtt8x93bt3V+nSpfXVV1/pqaeeyjzt1G3nzp1au3ZtZl2yZElFRETor7/+0qFDh876HPnz59dzzz2n06dPq2XLludcyP348eOaOXOm/vrrr8x9ffv2VVhYmKZOneqxEHhGRoaefvrpzGu28pI3P6e2bduqVKlSWr9+vV566SWP+8+dO1dz58495+eqWLGiKlasqEOHDmW+SSBJlmVp9OjRWrFihc8yemvAgAEqVKiQkpKS9Oabb551aulvv/3m8dpyi46OVkJCgg4cOKCkpCRFRkbmeN3EggULZg4ReuSRRzwau71792ZOEM1LF/v3CAA+Z3jpBwAICe712e666y4rISHBSkhIsNq1a2fdcsstVqFChSxJVlhYmNW/f3/rxIkT53yO9957z4qMjLQkWVWqVLGaNm1qdezY0brtttusokWLWpKsCRMmeDzmsccey1wbrUOHDla3bt2sbt26edznxRdfzFzL7aqrrrJatWpl3X///dYtt9ySuUbaZ5995vGYVatWWSVKlLAkWXFxcVbr1q2ttm3bWtdff70VFhZ21jpirVu3zlwrrlOnTla3bt2sp556yuM+/fr1syRZLpfLuu6666w2bdpY7du3t+rVq5f5dW/cuNHjMcOHD8/83jVq1Mjq2LGjVa1aNSsyMtLq1atXrq2zt3379vM+hzc/py+++CLzMTVr1rQ6duxo3XjjjZakzDUDz5Xpvffey1wPrl69elabNm2sqlWrWoUKFbIeeeSR83793mR0f56cft8WLVpkFSxYMPP2tm3bWq1bt7Zq1qx5wXXsNm7cmPk5H3zwwXPe52JSUlKsa6+91pJkFStWzGrTpo3VsmVLq3DhwladOnUyv8fnW2fvQutierPO3t69ezO/F7fccovVpUsXq1u3btaCBQu8+voA4GJo9gAgD7ibBPeHy+WyoqOjrQoVKlj33nuvNXr0aGvHjh0XfZ7Nmzdbffr0sS6//HIrKirKKlSokFW1alWrefPm1qRJkzwWP7csyzp+/Lg1YMAAq1KlSlb+/PnP+wf72rVrrYSEBKtixYpWZGSkFRMTY1WvXt1q166d9d5771lHjx496zF79uyxHn/8cat69epWgQIFrOjoaOuKK66w+vTpY/3yyy8e992/f7/VrVs3q1y5clZ4ePh5G4Ovv/7aateunVW2bFkrIiLCKlq0qHXVVVdZCQkJ1ty5c63Tp0+f9ZgPPvjAqlOnjhUVFWUVKVLEuueee6w1a9Zc8I/u8/FFs2dZOf85WZZlrVmzxrr33nutmJgYq1ChQladOnWsmTNnXjTTrFmzrOuvv96KjIy0ihQpYrVs2dL65ZdfLvr15zSjt82eZVnWli1brF69elmVKlWyIiIirCJFilg1a9a0nnjiCeuPP/447/exXLlyliTru+++O+99LubIkSPW448/bpUvX96KiIiw4uPjrccee8xKTU09b8OWW82eZdmv8UaNGlmxsbGWy+VikXUAucplWee4QAAAAPiF5ORkVapUSRUqVMjzoTMmfffdd7r55pt1zTXX6KeffjIdBwACEtfsAQAAv2JZloYOHSpJ6t+/v9kwABDAWHoBAAD4hYULF2r+/Plat26d/ve//6lmzZrq3Lmz6VgAELA4sgcAAPzCjz/+qGnTpmnbtm1q0aKFFi5cqPBw3pcGAG9xzR4AAAAABCGO7AEAAABAEOLciGzKyMjQnj17FB0dLZfLZToOAAAAgBBkWZZSU1NVpkwZhYVd+NgdzV427dmzR+XLlzcdAwAAAAC0c+dOlStX7oL3odnLpujoaEn2NzUmJsZwGgAAAAChKCUlReXLl8/sTy6EZi+b3KduxsTE0OwBAAAAMCo7l5YxoAUAAAAAghDNHgAAAAAEIZo9AAAAAAhCNHsAAAAAEIRo9gAAAAAgCNHsAQAAAEAQotkDAAAAgCBEswcAAAAAQYhmDwAAAACCEM0eAAAAAAQhmj0AAAAACEI0ewAAAAAQhGj2AAAAACAI0ewBAAAAQBCi2QMAAACAIESzBwAAAABBiGYPAAAAAIIQzR4AAAAABCGaPQAAAAAIQjR7AAAAABCEwk0HAELeiRNScrLpFP6nQgWpYEHTKQAAAAIWzR5g0i+/SLffLv31l+kk/qdYMemLL6QbbjCdBAAAICBxGidgyoEDUosWNHrnc/Cg1LKltHev6SQAAAABiWYPMOHMGaltW2nbNtNJ/Nvu3VKrVtLJk6aTAAAABByaPcCE/v2lZcuc+tlnJcviw/3x4ovO92b1aqlnT3s/AAAAso1mD8hrEydKb73l1K1aSSNGGIvjl558UnrwQaeeMUN65RVzeQAAAAIQzR6Ql5Ytkx55xKlr1rQbmTD+KXpwuaTJk6W6dZ19Tz0lffqpuUwAAAABhr8wgbyybZvUpo2UlmbXJUpICxdKhQubzeWvChSQ5s+XypSxa8uSOnaUfv3VaCwAAIBAQbMH5IWUFHvy5sGDdh0eLn38sVSxotFYfq90abvhK1DArlNT7e/jgQNGYwEAAAQCmj0gt2Vk2Nef/fKLs2/8eOnWW81lCiR16khTpzr1779L7dvbE00BAABwXjR7QG577jlp0SKn7tfPni6J7OvUSRo0yKm//loaMMBcHgAAgABAswfkppkzpRdecOrbb5fGjDGXJ5CNGmWfwuk2bpw0aZK5PAAAAH6OZg/ILWvWSN26OXXVqtJHH9nX6yHnwsKk996Trr7a2de3r/TNN+YyAQAA+DGaPSA37NkjtWwpnTxp19HR9uTNYsXM5gp07u9j8eJ2nZZmTzjdvt1sLgAAAD9Eswf42okT9kLpe/fatcslffihdOWVRmMFjUqVpDlznCOkBw7Yp3empprNBQAA4Gdo9gBfsiypRw/7FE63F1+U7r3XXKZg1KiRNHasU2/YIHXubE8+BQAAgCSaPcC3XnpJev99p+7cWXriCXN5glliotSnj1MvWCANGWIuDwAAgJ+h2QN8ZdEiz+UB6te3p0W6XOYyBbvXX5caN3bq0aPtU2YBAABAswf4xC+/2GvBWZZdly0rzZ0rFShgNlewy59fmj1bqlzZ2de1q7R2rblMAAAAfoJmD7hU7gEhR4/adYEC0vz5UunSRmOFjOLF7Qmd0dF2ffKkPQnVPSAHAAAgRNHsAZfizBmpXTtp2zZn3zvvSLVrG4sUkmrUsBewd58yu3u31Lq1s/QFAABACKLZAy5F//7S0qVO/eyzUocOxuKEtGbNpBdecOpVq6SePZ1TawEAAEIMzR7grYkTpbfecupWraQRI4zFgaSBA6UHH3TqGTOkV14xlwcAAMAgmj3AG8uWSY884tQ1a9qNRRj/pIxyuaTJk6W6dZ19Tz0lLV5sLhMAAIAh/GUK5NS2bVLbtlJaml2XKGGv8Va4sNlcsBUoIM2bJ5UpY9eWJXXsKG3caDYXAABAHqPZA3IiNdWe9HjggF2Hh0tz5kiVKpnNBU9lytgTUd1LX6SkSM2bSwcPGo0FAACQl2j2gOzKyLCvB9uwwdk3frzUsKG5TDi/OnWkqVOd+vffpfbt7QmqAAAAIYBmD8iu556z13Nz69fPnvYI/9WpkzRokFN/9ZU0YIC5PAAAAHko3HQAwGf27pWWL3eupfOlbds8x/rffrs0ZozvPw98b9Qo+2jsokV2PW6cFBMjXXWV7z9XvnzSTTdJ5cv7/rkBAAByyGVZLEKVHSkpKYqNjdWRI0cUExNjOg7+acsWqUEDaf/+3P9cVapIq1dLxYrl/ueCb6SmSjfeKP3yS+5/rpgY6dtv7QmtAAAAPpaTvoTTOBH4jhyRWrTIm0YvOto+lZNGL7C4f27Fi+f+50pJybvXIwAAwAVwGicCW3q6PVb/t9+cfddcY59O52uxsfai6blx+h9yX+XK0uef2+vuHTrk++e3LGndOns7OdlenuOLL6SICN9/LgAAgGyg2UNgGzRI+uwzp37sMem118zlgX+rXdse0pJbhgyRRo60t7/5Rnr0UWnChNz7fAAAABfAaZwIXO++K738slPfdZf00kvm8gDDhkmtWzv1xInSW28ZiwMAAEIbzR4C08qVUo8eTn355dKHH9qLnAOmhIXZb0Jcc42z71//kr7+2lwmAAAQsmj2EHh27ZJatZJOn7br2Fh7+EaRIiZTAbbChaUFC6QSJew6PV1q185e1B0AACAP0ewhsBw/bjd6f/1l12Fh0kcfSdWrG40FeKhYUZo7V8qf364PHrQndKakGI0FAABCC80eAodlSd26SWvXOvtefVW6805zmYDzueUWz+v1fv1VeuAB+0gfAABAHqDZQ+B4/nn7ujy3rl3taYeAv+re3b5mz+2TT6RnnzWXBwAAhBSaPQSG+fOl555z6gYN7JH2LpexSEC2vPqqdMcdTv3ii9J775nLAwAAQgbNHvzfzz9LDz7o1OXL29dDRUaaywRkV3i4NGuWVLWqs697d2nVKnOZAABASKDZg3/7+297sMWxY3ZdsKA9eTMuzmwuICeKFZMWLZJiYuz61Cl7Pb7du83mAgAAQY1mD/7r9GmpbVvpjz+cfe++K9WqZSwS4LUrrrCvOQ37/1+7e/fak2VPnDAaCwAABC+aPfgny5IeeURavtzZN3So1KaNuUzApbrnHumll5z6hx/sCbOWZS4TAAAIWjR78E/jx0uTJjl1mzbSkCHm8gC+MmCAlJDg1B98IP373+byAACAoEWzB//z1VdS//5OXauWNH26c/obEMhcLmniRKl+fWffs8/a16ICAAD4EH89w79s3Sq1a+csPH3ZZdKCBVKhQmZzAb5UoIA0b55UrpxdW5a94PqGDWZzAQCAoEKzB/9x5Ig9efPQIbvOn99eYiE+3mwuIDeUKmW/kREVZddHj9qv//37zeYCAABBg2YP/iE9XerUSdq40dk3caJ0003mMgG57frrpXfecert2+0j22fOGIsEAACCB80e/MMzz0iLFzt1//7Sww8biwPkmfbtpcGDnXrZMunRR43FAQAAwYNmD+bNmOE5jv6uu6SXXzaXB8hrw4bZi6y7TZhgfwAAAFwCmj2YtWqV1KOHU19+ub3wdHi4uUxAXgsLk959V7rmGmffI49IS5eaywQAAAIezR7M2bVLatVKOnXKrmNj7fHzRYqYTAWYUbiwPbClRAm7Tk+X2raVfv/dbC4AABCw/K7Z27x5s4YMGaL69eurZMmSio6OVq1atTR69GgdO3bsnI/59NNPdccdd6ho0aIqWLCgLr/8cvXr1y+PkyNHTpywG70//7TrsDBp1iypenWjsQCjKla0J9Dmz2/XBw/aEzpTUozGAgAAgcnvmr2kpCSNGTNGVapU0ZAhQ/Tyyy+revXqeu6559SgQQOdOHHC4/7Dhw9Xs2bNFB4eruHDh+vNN9/U/fffr127dhn6CnBRlmUPX1m71tn3yiv2tXpAqLvlFumtt5z611+lBx901p4EAADIJpdlWZbpEFn98MMPqlatmmJjYz32P/fccxo9erTGjh2bedTuyy+/VJMmTTRixAgNzjrNLhekpKQoNjZWR44cUUxMTK5+rqD3/PPSs886ddeu0tSpkstlLhPgbx59VHrzTad++mnphRfM5QEAAH4hJ32J3x3Zq1279lmNniR16NBBkrRhw4bMfc8//7wuu+wyDRo0SJJ09OhRZWRk5E1QeGfBAs9Gr0EDe+ogjR7g6dVXpTvucOp//1t6/31zeQAAQMDxu2bvfNynZcbFxUmSjh07puXLl6tevXqaOnWqypYtq+joaBUuXFj333+//vrrr0v6fKVLl/b4qFat2iV/DSFv/Xr7dDS38uXt65MiI81lAvxVeLh9HWvVqs6+nj2lffvMZQIAAAElIJq99PR0jRw5UuHh4erUqZMkaevWrUpPT9fKlSv16KOPqkePHpo7d64SExM1e/ZsNW7cWMePHzecHJn277cHTRw9atcFC9pH+f6/eQdwDsWKSYsWSdHRdn38uJSUZDYTAAAIGAHR7PXv31/ff/+9RowYoer/P60xNTVVkvT3339r3LhxGjZsmFq3bq3XXntNgwcP1saNGzV9+nSvP+fevXs9PrZs2eKTryUknT5tj5BPTnb2TZ8uXXedsUhAwLjiCikx0anffpthLQAAIFv8vtkbPHiwxo0bp549e2ZemydJUVFRkqSwsDB17tzZ4zEJCQmSpGXLluVZTpyHZUn/+pf0zTfOvqFD7eYPQPb06uVsJydL//mPsSgAACBw+HWzN2zYMI0aNUpdu3bVxIkTPW4rV66cJKlo0aKK/Mc1X6VLl5YkHTp0KG+C4vzeess+EuHWpo00ZIi5PEAgqlLFc2mSrEszAAAAnIffNnvDhg3T8OHDlZCQoClTpsj1j2mNcXFxio+P18GDB8+6Ns89zOWyyy7Ls7w4h6++ssfHu117rX36ZpjfvuwA/9Wnj7O9eLHnadEAAADn4Jd/dY8YMULDhw9X586dlZSUpLDzNAedO3eWZVl6O+uRI0kTJkyQJN177725nhXnsXWr1K6dc21RyZL2QJZChczmAgJV06b2BFvJPj36H7/3AAAA/snvFlUfP368+vXrp/j4eI0cOfKsRi8uLk5NmjSRZC8oWK9ePW3evFk9e/bUtddeq2+//Vbvv/++brvtNn3xxRfKly+fT3KxqHoOpKRI9etLGzfadf780tKl0k03mc0FBLrRo6XnnrO3S5aUdu5k6RIAAEJMTvoSv2v2unTpcsEpmg0bNvQYvLJ//34NHjxYCxYs0P79+1WuXDl17NhRgwcPVoECBXyWi2Yvm9LTpZYtpU8/dfZNnSo9/LC5TECw+PNP++heWppdv/++9P/L0QAAgNAQ0M2ev6LZy6annpJeesmp+/eXxowxFgcIOh06SB99ZG/ffLP03/+azQMAAPJUTvoSv7xmDwFqxgzPRu+uu6SXXzaXBwhGWQe1fPuttH69uSwAAMCv0ezBN1atknr0cOrLL5c+/FAKDzeXCQhGt94qXXWVU///QCoAAIB/otnDpdu9W2rVSjp1yq5jY6WFC6UiRUymAoKTyyX17u3UM2ZIqanm8gAAAL9Fs4dLc+KE3ej9+addh4VJs2ZJ1asbjQUEtc6dpYIF7e2jR6X33jObBwAA+CWaPXjPsuwpmz/84Ox75RX7Wj0AuSc2VnrwQaeeMMH+9wgAAJAFzR6898IL9nV5bl272tM3AeS+rKdyrl8vrVhhLgsAAPBLNHvwzoIF0rPPOnWDBvbRBZfLXCYglNSqJdWv79RvvWUsCgAA8E80e8i59eulBx5w6vLlpblzpchIc5mAUJR1GYY5c6R9+8xlAQAAfodmDzmzf7/UooV07JhdFyxoH+WLizObCwhF7dpJxYvb26dPS0lJZvMAAAC/QrOH7Dt9WmrbVkpOdvZNny5dd52xSEBIK1DAHpLk9vbbUnq6uTwAAMCv0OwheyxL+te/pG++cfYNHWo3fwDM6dXL2U5Olj7/3FgUAADgX2j2kD1vvWUfNXBr00YaMsRcHgC2KlU8lzuZMMFcFgAA4Fdo9nBxX30lPfqoU197rX36ZhgvH8AvZB3Usnix56nWAAAgZPHXOi5s61Z7CIT7OqCSJe2BLIUKmc0FwNG0qT0VV7JPuc56FB4AAIQsmj2cX0qKPXnz0CG7zp9fmjdPqlDBbC4AnvLl87x2b+pU6dQpc3kAAIBfoNnDuaWnS506SRs3OvsmTpRuuslcJgDn162bFB5ub//9t/Txx2bzAAAA42j2cG7PPCN9+qlT9+/vOeIdgH8pVcoenOTGoBYAAEIezR7O9t570ksvOfVdd0kvv2wuD4Ds6d3b2f72W2n9enNZAACAcTR78LRqldS9u1Nffrn04YfO6WEA/Nett0pXXeXUHN0DACCk0ezBsWuX1KqVM9ghNlZauFAqUsRkKgDZ5XJ5Ht2bMUNKTTWXBwAAGEWzB9uJE3aj9+efdh0WJs2aJVWvbjQWgBzq3FkqWNDePnrUPi0bAACEJJo92OtyPfywtHats++VV+xr9QAElthY6cEHnXrCBPvfOAAACDk0e5BeeMG+Ls+ta1d7+iaAwJT1VM7166UVK8xlAQAAxtDshboFC6Rnn3XqBg3sIwEul7lMAC5NrVpS/fpO/dZbxqIAAABzaPZC2fr10gMPOHX58tLcuVJkpLlMAHyjTx9ne84cad8+c1kAAIARNHuh6u+/pRYtpGPH7LpgQfsoX1yc2VwAfKNdO6l4cXv79GkpKclsHgAAkOdo9kLR6dNS27ZScrKzb/p06brrjEUC4GMFCtiDl9zefltKTzeXBwAA5DmavVBjWdK//iUtX+7sGzrUbv4ABJdevZzt5GTp88+NRQEAAHmPZi/UvPWW/Q6/W5s20pAh5vIAyD1Vqkh33+3UEyaYywIAAPIczV4o+eor6dFHnfraa+3TN8N4GQBBK+syDIsXe56+DQAAghp/5YeKrVvtgQ3ua3ZKlrQHshQqZDYXgNzVtKk9aVeyT+POemQfAAAENZq9UHDkiD1589Ahu86fX5o3T6pQwWwuALkvXz7Pa/emTpVOnTKXBwAA5BmavWCXnm6vpbdxo7Nv4kTpppvMZQKQt7p1k8LD7e2//5Y+/thsHgAAkCdo9oLdM89In37q1P37e45jBxD8SpWyhzG5MagFAICQQLMXzGbMkF56yambNJFeftlcHgDmZB3U8u230vr15rIAAIA8QbMXrFatknr0cOrLL5dmzXJO5QIQWm69VbrqKqfm6B4AAEGPZi8Y7doltWrlDGGIjZUWLpSKFjUaC4BBLpfn0b0ZM6TUVHN5AABArqPZCzbHj9uN3p9/2nVYmH1Er3p1o7EA+IHOnaWCBe3to0el994zmwcAAOQqmr1gYln21L21a519r7wi3XWXuUwA/EdsrPTgg049YYL9ewMAAAQlmr1g8sIL0ocfOnWXLvb0TQBwy3oq5/r10nffmcsCAAByFc1esFiwQHr2Wadu0MBeT8/lMpcJgP+pVUuqX9+pGdQCAEDQotkLBuvX2wunu5UvL82dK0VGmssEwH/16eNsz5kj7dtnLgsAAMg1NHuB7u+/pRYtpGPH7LpgQfsoX1yc2VwA/Fe7dlLx4vb26dNSUpLZPAAAIFfQ7AWy06eltm2l5GRn3zvvSNddZyoRgEBQoID08MNO/fbbUnq6uTwAACBX0OwFKsuS/vUvaflyZ9+QIfY79gBwMb16OdvJydLnnxuLAgAAcgfNXqB66y373Xi3Nm2koUPN5QEQWKpUke6+26nHjzeXBQAA5AqavUD03/9Kjz7q1NdeK02fbi+gDgDZlXUZhs8+kyZPNpcFAAD4HN1BILr2Wumee+ztkiXtgSyFCpnNBCDwNG1q/z5x69PH89RwAAAQ0Gj2AlFMjDR/vjRokL3EQoUKphMBCET58tm/Q9yTOdPS7FPCsw59AgAAAYtmL1Dlyyc9/7x0882mkwAIZJUr22vthYfb9f799nIuqalmcwEAgEtGswcAoa5RI2nsWKdev1566CEpI8NYJAAAcOlo9gAAUmKifc2e2/z5TPgFACDA0ewBAGyvvy41buzUo0ZJs2YZiwMAAC4NzR4AwJY/vzR7tn0dn1uXLtLatcYiAQAA79HsAQAcxYtLCxdK0dF2ffKk1LKltHev2VwAACDHaPYAAJ5q1JBmzpRcLrvevVtq3dpu/AAAQMCg2QMAnK1ZM+mFF5x61SqpVy/JssxlAgAAOUKzBwA4t4EDpQcecOp335VefdVcHgAAkCM0ewCAc3O5pMmTpTp1nH0DB0qLF5vLBAAAso1mDwBwflFR9pp7ZcrYtWVJHTtKGzcajQUAAC6OZg8AcGFlytgNX2SkXaekSC1aSAcPGo0FAAAujGYPAHBxdepISUlOvXWr1KGDlJZmLhMAALggmj0AQPZ06iQ9/bRTf/mlNGCAuTwAAOCCaPYAANk3erTUvLlTjx1rD3EBAAB+h2YPAJB9YWHS++/bC6+79ekjLV9uLhMAADgnmj0AQM5ER0sLF0rFitl1WprUpo2UnGw0FgAA8ESzBwDIucqVpTlzpPBwu96/X2rZUjp61GwuAACQiWYPAOCdxo2lN9906p9/ljp3ljIyzGUCAACZaPYAAN7r3dv+cJs/Xxo61FgcAADg8Ltmb/PmzRoyZIjq16+vkiVLKjo6WrVq1dLo0aN17Ngxj/sOGzZMLpfrnB+vvPKKoa8AAELMG29IjRo59ahR0qxZxuIAAABbuOkA/5SUlKTx48erRYsWeuCBB5Q/f34tXbpUzz33nD766COtXLlSUVFRHo8ZM2aMSpQo4bHvhhtuyMvYABC68ue3r9+rU0favt3e17WrVLWqxO9iAACM8btmr23btho0aJBiY2Mz9yUmJqpatWoaPXq0pk6dqn79+nk8plWrVqpYsWIeJwUAZCpeXFq0SKpf3x7ScuKE1KqVtGaNVKqU6XQAAIQkvzuNs3bt2h6NnluHDh0kSRs2bDjn41JSUpSWlpar2QAAF1CjhjRzpuRy2fWuXVLr1tLJk2ZzAQAQovyu2TufXbt2SZLi4uLOuu2aa65RbGysChQooAYNGuizzz675M9XunRpj49q1apd8nMCQNBr3lx6/nmnXrlS6tVLsixzmQAACFEB0eylp6dr5MiRCg8PV6dOnTL3FylSRD179tTYsWO1YMECvfDCC/rjjz/UtGlTvfPOO+YCA0Aoe+opKcvvar37rvTqq+byAAAQolyW5f9vtz7yyCMaN26cnn/+eQ0aNOiC9z1w4ICuvvpqnTx5Ujt37lThwoV9kiElJUWxsbE6cuSIYmJifPKcABC0TpyQGja0r9mT7FM7P/lEuvdes7kAAAhwOelL/P7I3uDBgzVu3Dj17Nnzoo2eJBUvXlyJiYk6fPiwVqxYkQcJAQBniYqS5s2TSpe2a8uSOnaUNm40mwsAgBDi183esGHDNGrUKHXt2lUTJ07M9uPckzn379+fS8kAABdVtqy9yHpkpF2npEgtWkgHDxqNBQBAqPDbZm/YsGEaPny4EhISNGXKFLnc092yYcuWLZLOPcwFAJCH6taVkpKceutWqUMHienJAADkOr9s9kaMGKHhw4erc+fOSkpKUljY2THT0tJ05MiRs/bv3LlTEyZMUPHixdWgQYO8iAsAuJBOnaSnn3bqL7+UBgwwlwcAgBDhd4uqjx8/XkOHDlV8fLzuuOMOzZw50+P2uLg4NWnSREePHlWlSpXUqlUrXXnllSpatKg2bdqkKVOm6OjRo/rggw8UFRVl6KsAAHgYPVr65Rd74XVJGjtWqllT6tHDbC4AAIKY303j7NKli6ZPn37e2xs2bKhly5bp1KlT6tu3r1atWqVdu3bp6NGjKlGihG666SYNHDhQdevW9WkupnECwCVKSZEaNLCbPkkKD5e++kq69VazuQAACCA56Uv8rtnzVzR7AOAD27ZJdeo4Q1pKlLCXZ/j/wVoAAODCgmrpBQBAEKlcWZozxz6qJ0n790stW0pHj5rNBQBAEKLZAwDkrcaNpTffdOqff5Y6d5YyMsxlAgAgCNHsAQDyXu/e9ofb/PnS0KHG4gAAEIxo9gAAZrzxhn2Uz23UKGnWLHN5AAAIMjR7AAAz8ueXZs+WKlVy9nXtKv34o7lMAAAEEZo9AIA5xYvba+8VLmzXJ07YA1v+/NNsLgAAggDNHgDArBo1pJkzJZfLrnftklq3lk6eNJsLAIAAR7MHADCveXPp+eedeuVKqVcviaVgAQDwGs0eAMA/PPWU9MADTv3uu9Jrr5nLAwBAgKPZAwD4B5dLmjxZqlPH2TdwoPTZZ+YyAQAQwGj2AAD+IyrKXnOvdGm7zsiQ7r9f2rjRaCwAAAIRzR4AwL+UKWM3fJGRdp2SIrVoIR08aDQWAACBhmYPAOB/6taVkpKceutWqUMHKS3NXCYAAAIMzR4AwD916iQ9/bRTf/mlNGCAuTwAAAQYmj0AgP8aPdpelsFt7Fh7iAsAALgomj0AgP8KC5Pef99eeN2tb1/pv/81lwkAgABBswcA8G/R0dLChVKxYnZ95ox0331ScrLRWAAA+DuaPQCA/6tcWZozRwoPt+v9+6WWLaWjR83mAgDAj9HsAQACQ+PG0ptvOvXPP0uPPmouDwAAfo5mDwAQOHr3tj/c3n1X+vNPc3kAAPBjNHsAgMAyZoxUsqS9nZYmTZliNg8AAH6KZg8AEFgiI6Vu3Zx60iQpPd1cHgAA/BTNHgAg8PTqJblc9vbOndKnn5rNAwCAH6LZAwAEnooVpXvvdeq33jIWBQAAf0WzBwAITH36ONv/+Y/0++/msgAA4Ido9gAAgemuu+wjfG4TJxqLAgCAP6LZAwAEpnz57Gv33KZNk06eNJcHAAA/Q7MHAAhcDz8sRUTY2wcOSLNnm80DAIAfodkDAASuyy6T2rZ1aga1AACQiWYPABDYsg5qWblS+t//zGUBAMCP0OwBAAJbgwZSzZpOPWGCuSwAAPiR8Et58G+//aYdO3Zo//79ioqK0mWXXaaaNWsqJibGV/kAALgwl0vq3ds5wvf++9LLL0uxsWZzAQBgWI6bva+//lpTp07Vl19+qf379591e1hYmK677jq1bdtWDz/8sEqUKOGToAAAnNeDD0oDB0pHj0rHj0szZkj9+plOBQCAUS7Lsqzs3HHu3Ll69tlntXnzZlmWpbJly6pOnToqVaqUihUrphMnTujAgQP67bfftG7dOp0+fVqRkZF66KGHNGLECMXFxeX215KrUlJSFBsbqyNHjnDkEgD8UZ8+zimcV14p/fKLfdQPAIAgkpO+JFvN3q233qpvv/1WV199tTp37qwOHTooPj7+vPc/ffq0li5dqhkzZmj+/PnKly+fZsyYoRYtWuT8q/ETNHsA4OfWr5euucaply2TGjY0FgcAgNyQk74kW6dxHj9+XJ988onuvffebAWIiIjQXXfdpbvuukt///23/v3vf2vz5s3ZeiwAAF6pWVO6+Wbp22/tesIEmj0AQEjL9mmcoY4jewAQAGbOlB54wN4OD5d27pRKlTKbCQAAH8pJX8LSCwCA4NGmjVSypL2dliZNnWo2DwAABnnV7I0YMUKvvPKKTp8+fd77fPPNNxoxYoTXwQAAyLHISKlbN6d++20pPd1cHgAADPKq2Rs2bJieeuop3X777Tpw4MA577Ns2TINHz78ksIBAJBjvXo5Uzh37pQ+/dRsHgAADPH6NM5KlSrpu+++04033qitW7f6MhMAAN6rWFHKOlDMvRwDAAAhxutm76GHHlJSUpL++OMP3Xjjjfruu+98mQsAAO/17u1sf/659Pvv5rIAAGDIJQ1o6dKlixYvXqwzZ87ojjvu0IcffuirXAAAeO/uu+0jfG5vv20sCgAAplzyNM7bb79dK1asUFxcnB544AE9//zzvsgFAID38uWzr91zS0qSTp40lwcAAAN8svTCVVddpVWrVun666/X4MGD1a1bN505c8YXTw0AgHcefliKiLC3DxyQZs82mwcAgDzms3X24uLitHz5cjVv3lzTpk3TmDFjfPXUAADk3GWXSW3bOjWDWgAAIcani6pHRUVp3rx5+te//qUTJ0748qkBAMi5rINavv9eWrfOWBQAAPKay7IsKzeeeM2aNTp+/LgaNmyYG0+f51JSUhQbG6sjR44oJibGdBwAQHZYlnTttdL69XbdsyfDWgAAAS0nfYlPj+xlVadOnaBp9AAAAcrl8jy699570pEj5vIAAJCHcq3ZAwDALzz4oFS4sL19/Lg0Y4bZPAAA5JHw7N6xcuXKOX5yl8ul31nIFgBgUnS01LmzM6BlwgSpb1/7qB8AAEEs29fshYXl/CCgy+VSenp6jh/nj7hmDwAC2Pr10jXXOPWyZRKXGgAAAlBO+pJsH9nbvn37WfvGjBmjsWPHatu2bTlPCQBAXqlZU7r5Zunbb+16wgSaPQBA0Mt2s1ehQoWz9hUtWvS8twEA4Fd693aavY8/lv78UypVymwmAAByEQNaAAChoU0bqWRJezstTZo61WweAAByGc0eACA0REZK3bo59dtvS0FyXTkAAOdCswcACB29ejlTOHfulD791GweAAByEc0eACB0VKwo3XuvU7uXYwAAIAjR7AEAQkvv3s72559LrAcLAAhS2Z7Geeutt561b8eOHee9TbLX2fvmm2+8jAYAQC64+277CF9ysl2//bb00ksmEwEAkCtYVD2bWFQdAILIv/8tDRpkbxcvLu3aJRUoYDYTAADZkGeLqgMAEJAeflgaMkQ6c0Y6cECaPVvq3Nl0KgAAfOqSFlUHACAgXXaZ1K6dNHOmXU+YQLMHAAg6DGgBAISmrINavv9eWrfOWBQAAHJDtpq9P//885I/0V9//XXJzwEAgM/cdJNUs6ZTswwDACDIZKvZq1y5sp566int27cvx5/g008/VZ06dfT222/n+LEAAOQal8vz6N7770tHjpjLAwCAj2Wr2RswYIDGjRuncuXKqXnz5poxY4Z+P8+6RMeOHdM333yjZ599VhUqVFCLFi3kcrnUqlUrX+YGAODSPfigVLiwvX3smDRjhtk8AAD4ULaXXti5c6dGjBihDz74QCdOnJAkxcTEKC4uTkWLFtXJkyd18OBB7dmzRxkZGbIsS9dcc42efPJJPfDAA7n6ReQFll4AgCDVp49zCudVV0kbNthH/QAA8EM56Uuy3exlffKZM2fqyy+/1HfffedxLV5ERIRq1qypRo0a6b777tONN97o3Vfgh2j2ACBIrV8vXXONUy9bJjVsaCwOAAAXkqvN3j+dOXNGBw4cUFRUlGJjYy/lqfwazR4ABLFbbpG+/dbe7tBB+vBDs3kAADiPnPQll7z0Qv78+VWqVCmfNXqbN2/WkCFDVL9+fZUsWVLR0dGqVauWRo8erWPHjl3wsRMmTJDL5ZLL5dL+/ft9kgcAEAKyDmqZO1fywRRqAABM87t19pKSkjRmzBhVqVJFQ4YM0csvv6zq1avrueeeU4MGDTKvF/ynPXv26Omnn1Zh94X2AABkV5s2UsmS9vaZM9LUqWbzAADgA37X7LVt21a7du3S+++/r0ceeUSJiYmaNWuWnn32Wf3888+aep7/Afft21dVqlRh6icAIOciI6Vu3Zz67bel9HRzeQAA/uHIEenSrnozyu+avdq1a5/zlNAOHTpIkjZs2HDWbfPmzdPChQs1ceJE5cuXL9czAgCCUK9ezhTOnTulTz81mwcAYF7bttJ119lvAh49ajpNjvlds3c+u3btkiTFxcV57E9JSVG/fv3Uq1cv1a1b12efr3Tp0h4f1apV89lzAwD8UMWK0r33OvXAgdLhw6bSAABM27xZ+vJL6aefpMRE6bvvTCfKsYBo9tLT0zVy5EiFh4erU6dOHrc99dRTysjI0AsvvGAoHQAgaPTv72xv2iR17MjpnAAQqiZOdLarVJGaNDGXxUsB0ez1799f33//vUaMGKHq1atn7v/uu+/09ttv67XXXvP5sg979+71+NiyZYtPnx8A4IfuuEN6/HGn/vxz+wgfACC0HD8uTZvm1ImJUlhAtE4evEqcmprq6xznNXjwYI0bN049e/bUoEGDMvefPn1aPXv21B133KGOHTvmWR4AQJB78UXpnnuc+rXXpHfeMRYHAGDArFnOqfyRkVLXrkbjeMurZq9MmTLq2bOn1qxZ4+s8HoYNG6ZRo0apa9eumpj1MKqk8ePH67ffftOAAQO0devWzA93I7p9+3Zt27YtV/MBAIJQvnzSBx9IV1zh7OvVS1qxwlwmAEDemjDB2e7QQSpe3FyWS+CyrJzPEq1SpYq2b98ul8ulWrVqqVevXurUqZNP17gbNmyYhg8froSEBCUlJSnsH4dN+/fvrzfeeOOCz1GoUCEd9dHUnJysVA8ACAJbtkj16kmHDtn1ZZdJa9ZI8fFmcwEActcPP0h16jj1ypX2/w/8RE76Eq+aPUlasmSJJk2apIULFyotLU2FChVSx44d1aNHD9WuXdur4G4jRozQ0KFD1blzZ73zzjtnNXqS9NNPP53zOrrx48dr2bJlSkpKUtGiRX227h7NHgCEoC+/lO6+2xnSct110n//KxUqZDYXACD3dOsmJSXZ29ddJ61d6yzN4wfypNlz+/vvv5WUlKQpU6bo999/zzzal5iYqE6dOqlQDv+HOH78ePXr10/x8fEaOXLkWY1eXFycmlxgEk6XLl00ffp0/f333ypRooRXX9O50OwBQIh6803p0Uedul07+1oOP/ofPwDARw4dksqWlU6csOtJk6QePcxm+oc8bfay+uqrrzR58mTNnz9fZ86cUaFChdSpUyf16dNH11xzTbaew92snU/Dhg21bNmyiz6eZg8A4BOWJfXsKU2Z4uwbPlwaMsRcJgBA7nj9demxx+ztmBhpzx6/O5vDWLOXnJysSZMmacqUKdq/f79cLpcsy5LL5VLbtm319ttvq0iRIr76dHmKZg8AQtjp0/ayDP/9r7NvzhypTRtzmQAAvmVZ9nCuzZvt+pFH7LM7/ExO+pJLXiwiPT1dc+fO1V133aWqVavq3//+t2JjY/Xyyy9r3759+uKLL3THHXdo9uzZ6tOnz6V+OgAA8l5EhPTxx1KFCs6+hx6SfvrJXCYAgG99/bXT6ElS797msviI10f2kpOTNXnyZE2bNk1//fWXwsLC1KxZM/Xu3Vt33nnnWfe/7777tGzZMh08ePCSQ5vAkT0AgH7+WWrQQDp2zK7j4+0JnZddZjYXAODStW1rv7EnSY0aSUuXGo1zPrl+ZM99FO+FF16QJD377LPavn275s2bd85GT5Lq1KmjI0eOePPpAADwD9dcI82Y4dQ7dtincp4+bS4TAODS7d4tzZ/v1EFwVE/ystlbsmSJGjZsqI8++kg7duzQiBEjVK5cuQs+pnnz5kpyjzAFACBQtW4tjRjh1N9+K/XpY1/rAQAITFOmOMvslCol+Wj5NtPCvXnQxo0bVb169Rw95uqrr9bVV1/tzacDAMC/PPectGGD9NFHdj11qlSzpucSDQCAwHDmjL3Eglv37va12kHAqyN7OW30AAAIKi6XNG2adP31zr4BA6QvvjCXCQDgnUWL7CUWJCkszF5uJ0h41ezNnj1bt912m3bv3n3O23fv3q3bb79dc+fOvaRwAAD4rYIF7es74uLsOiND6tDBc5IbAMD/TZjgbDdvLpUvby6Lj3nV7E2ZMkWHDh1S2bJlz3l72bJldfjwYU3JugAtAADBpnx5ad4853Sfw4elFi3s/wIA/N/mzdKXXzp1kAxmcfOq2Vu/fr3q1KlzwfvUqVNHP//8s1ehAAAIGDfe6Hmtx6ZNUseOzoX+AAD/NXGis12litSkibksucCrZu/gwYO67CJrCpUoUUL79+/3KhQAAAElIUF6/HGn/vxzaeBAc3kAABd3/Lj0zjtOnZhoX7MXRLz6akqUKKGtW7de8D5btmxRkSJFvHl6AAACz4svSnff7dSvveb5RwQAwL/MmiUdOmRvR0ZKXbuazZMLvGr2brrpJi1cuFCbz3MR+qZNm7Rw4ULdcsstlxQOAICAkS+f9MEHUtaJ1b16SStWmMsEADi/rINZOnSQihc3lyWXeNXsPfHEEzpz5oxuvvlmjRs3Tps3b9axY8e0efNmjR07VjfffLPS0tL0xBNP+DovAAD+q0gRe4S3+8yW06el++6Tdu40mQoA8E8//CCtWePUQTaYxc1lWZblzQMnT56svn37Kv0cF6Dny5dPb731lrp3737JAf1FSkqKYmNjdeTIEcXExJiOAwDwZ0uWSPfc4wxpue466b//lQoVMpsLAGDr1k1KSrK3r7tOWrvWXkM1AOSkL/G62ZOkjRs36q233tKqVat0+PBhFSlSRPXr11fv3r115ZVXevu0folmDwCQI2++KT36qFO3a2dfHxIgf0wAQNA6dEgqW1Y6ccKuJ02SevQwmykH8qzZCyU0ewCAHLEsqWdPKeuas8OHS0OGmMsEAJBef1167DF7OyZG2rMnoM68yElfElyzRQEA8BculzR+vHTzzc6+oUOljz82lwkAQp1lea6tl5AQUI1eToVfyoPT09O1adMmHTp06JzX7knSrbfeeimfAgCAwBURYTd3depIO3bY+x56yJ7YefXVZrMBQChaulTatMmpExPNZckDXjd7I0eO1JgxY3TkyJEL3u98TSAAACHhssukhQulm26Sjh2zF/F95hl7HwAgb731lrPdqJF01VXGouQFr5q9l156SUOHDlVsbKw6d+6s8uXLKzz8kg4SAgAQvK691v4DIyHBrj/91D7SFx9vNhcAhJI9e6T58506SJdbyMqrDm3y5MkqW7asfvzxR5UsWdLXmQAACD6dOtlH9HbvljIy7Olvo0aZTgUAoWPyZGdJnFKlpFatjMbJC14NaNm5c6datWpFowcAQHaFh9vTOd0mT7YXXQcA5L60NPv3rlv37vZ11UHOq2YvLi5OaWlpvs4CAEBw695dypfP3t63T5o3z2weAAgVixbZZ1ZIUliY55tvQcyrZq99+/ZasmSJTp065es8AAAErzJlpNatnTrroAAAQO7J+vu2eXOpfHlzWfKQV83e8OHDVbp0abVt21bbt2/3dSYAAIJX1oEAy5dLv/xiLgsAhILNm6Uvv3TqEBjM4ubVgJarr75aZ86c0Z49e7R48WLFxsaqSJEiZ93P5XLp999/v9SMAAAEj8aN7XX23Os8TZwojR1rNhMABLOsi6hXqSI1aWIuSx7z6sheRkaGwsPDFR8fr/j4eMXGxsqyrLM+MjIyfJ0XAIDA5nJ5vqs8fbp09Ki5PAAQzE6ckN55x6kTE+1r9kKEy7Isy3SIQJCSkqLY2FgdOXJEMTExpuMAAALZ4cP29XsnTtj122+HzLAAAMhT77wjde1qb0dG2kNaihc3GulS5aQvCZ22FgAAf1GkiL3unttbb0m89woAvpd1MEuHDgHf6OXUJTd7Gzdu1Lx58zRjxgxf5AEAIDRkPZXzp5+klSvNZQGAYLR2rbRmjVOH0GAWN6+bvR9//FHXX3+9rr76arVt21ZdunTJvO2bb75RwYIFtXDhQl9kBAAg+Nxwg1S3rlNPmGAuCwAEo6y/V6+7TqpXz1wWQ7xq9n777Tc1atRIW7duVf/+/XXPPfd43H7rrbeqePHimjNnjk9CAgAQlLK+yzxrlrR/v7ksABBMDh2SZs506t697QFZIcarZm/o0KHKyMjQmjVr9Oqrr6pOnToet7tcLt14441ak/WwKQAA8NShg1S0qL19+rQ0bZrZPAAQLN591xmCFRPjeZ10CPGq2Vu2bJnuu+8+Va9e/bz3iY+P1549e7wOBgBA0IuKcqbESfZaUCxbBACXxrI8T+FMSJAKFTKXxyCvmr0jR46odOnSF7zP6dOnlZaW5lUoAABCRmKis71tm/TFF+ayAEAwWLpU2rTJqbP+ng0xXjV7pUuX1saNGy94n59//lkVK1b05ukBAAgd1apJTZo4NYNaAODSZP092qiRdNVVxqKY5lWzd9ddd+mzzz7T6tWrz3n7F198oeXLl6tp06aXFA4AgJCQdVDLJ59IO3aYywIAgWzPHmnePKcOweUWsvKq2Xv22WcVHR2t2267Tc8884x+/fVXSdLs2bP12GOPqXnz5ipZsqQef/xxn4YFACAoNW8ulS1rb2dkSJMmmc0DAIFqyhQpPd3eLlVKatXKaBzTXJZlWd488IcfflD79u2VnJzsPJnLJcuyVLFiRX388ce67rrrfJXTuJSUFMXGxurIkSOKiYkxHQcAEGxGjJCGDrW3L7tM2rlTiogwmwkAAklamlSxorR7t10/95w0cqTRSLkhJ32J182eJKWlpenTTz/V999/r4MHDyo2Nlb16tVTy5YtlT9/fm+f1i/R7AEActWePVJ8vPOO9Icf2kszAACyZ9486b777O2wMCk5WSpf3mik3JBnzV4oodkDAOS6du2kOXPs7YYNpWXLjMYBgIBy553SkiX2dsuW0vz5RuPklpz0JV5dswcAAHJB1kEC33wj/fKLuSwAEEi2bHEaPSnkB7O4hXvzoBEjRmTrfi6XS4MHD/bmUwAAEHoaN5aqV3fWh5o4URo71mwmAAgEEyc621WqeC5pE8K8Oo0zLOz8BwRdLpckybIsuVwupbuvPQhwnMYJAMgTb7wh9e9vb0dH29fyFS5sNBIA+LUTJ+yJxocO2fXLL0tPPGE2Uy7KSV/i1ZG9pUuXnnP/4cOHtWbNGr355ptq2rSpEkN4tXoAALySkCANGmT/8ZKaKs2cKfXsaToVAPivWbOcRi8yUura1WweP5IrA1rWr1+vunXr6sMPP1TLli19/fRGcGQPAJBnuneXpk61t2vVkn78Ufr/M2cAAP9Qr560erW9/dBD0vTpZvPkMuMDWmrWrKmWLVvq+eefz42nBwAguGUdLLBunbRypbEoAODX1q51Gj2JwSz/kGvTOOPj47Vhw4bcenoAAILXDTdIdes69YQJ5rIAgD/L+vuxVi37KB8y5Vqzt2rVKkVFReXW0wMAENyyvjs9a5a0f7+5LADgjw4dsq9rduvTh1Pe/8GrAS07duw45/60tDTt3LlTkydP1rfffqv27dtfUjgAAEJWhw7SgAH2HzOnT0vTpklPPmk6FQD4j3fftYdZSVJMjNSpk9k8fsirZq9ixYqZSyyci2VZqlatml555RWvgwEAENKiouyJcq+9ZtcTJ0qPPy5dYPkjAAgZluV5CmdCglSokLk8fsqrZu+hhx46Z7MXFhamokWLqm7dumrZsqUiIyMvOSAAACErMdFp9rZtk774Qrr7brOZAMAfLF0qbdrk1Cz5dk5eNXvvvPOOj2MAAICzVKsmNWkiLVli1xMm0OwBgOR5VK9RI+mqq4xF8WecCwIAgD/LOqjlk0+k81w3DwAhY88ead48p2a5hfOi2QMAwJ81by6VLWtvZ2RIkyaZzQMApk2ZIqWn29txcVKrVkbj+DOvTuOsXLmyV5/M5XLp999/9+qxAACEpPBwqWdPaehQu548WRoyRIqIMJsLAExIS/N806tHD34fXoBXR/YyMjJ06tQpJScnKzk5WTt37tSJEye0c+fOzH2nTp2SZVkeHxkZGb7ODwBA8OveXcqXz97et8/z9CUACCWLFkm7d9vbYWH2m2E4L6+avZ9//llly5ZV/fr1tXTpUp08eVJ79+7VyZMn9fXXX6tevXoqV66cfv75Z23fvt3jAwAA5FCZMlLr1k6ddTABAISSrL//mjeXypc3lyUAeNXsPfvsszp8+LCWLVumhg0bKt//v9uYL18+NWrUSEuXLtXBgwf17LPP+jQsAAAhK+sAgm++kX75xVwWADBhyxZnOrHEYJZs8KrZmzdvnlq2bKmI85wfW6BAAbVs2VJz5869pHAAAOD/NW4sVa/u1BMnmssCACZk/b1XpYq9NA0uyKtm78CBAzpz5swF73PmzBkdOHDAq1AAAOAfXC7Pd7GnT5eOHjWXBwDy0okT0rRpTp2YaF+zhwvy6jtUpUoVzZkzR0eOHDnn7YcOHdKcOXO8ntoJAADOISFBioqyt1NTpZkzzeYBgLwya5Z06JC9HRkpde1qNk+A8KrZS0xM1J49e1S3bl29++67Sk5O1okTJ5ScnKzp06erXr16+vPPP9W3b19f5wUAIHQVKSJ16uTUEyZIlmUsDgDkmayDWTp0kIoXN5clgLgsy7v/Szz66KMaO3asXC7XWbdZlqVHHnlEb7zxxiUH9BcpKSmKjY3VkSNHFBMTYzoOACBUrV0r1a7t1CtWSDfeaC4PAOS2f/7e+/57qX59c3kMy0lf4tWi6pL0xhtv6P7771dSUpL+97//6ciRI4qNjdX111+vLl26qEGDBt4+NQAAOJ8bbpDq1pVWr7brCRNo9gAEt6xH9WrVkurVMxYl0Hh9ZC/UcGQPAOA33nnHuV4lIsJeYLhECaORACBXHDoklS1rD2iRpEmTpB49zGYyLCd9CSNsAAAINB06SEWL2tunT3tOqAOAYPLuu06jFxPjed0yLsrrZi89PV1vvPGG6tWrp9jYWIWHO2eErlu3Tn369NHmzZt9EhIAAGQRFeU5iW7iRCkjw1weAMgNluV5CmdCglSokLk8AcirZu/kyZO6/fbbNWDAAG3fvl3R0dHKejZopUqVNG3aNM2YMcNnQQEAQBaJic72tm3SF1+YywIAuWHpUmnTJqfO+nsP2eJVs/fiiy9q+fLlGjlypP788091797d4/bY2Fg1bNhQ//nPf3L83Js3b9aQIUNUv359lSxZUtHR0apVq5ZGjx6tY8eOedz31VdfVaNGjVS6dGlFRkaqdOnSaty4sebNm+fNlwUAQOCoVk1q0sSps777DQDBIOvvtYYNpauuMpclQHnV7H3wwQe69dZb9cwzzygsLOycyy9UqlRJO3fuzPFzJyUlacyYMapSpYqGDBmil19+WdWrV9dzzz2nBg0a6IT7nF1Jq1evVsWKFfXYY49pwoQJevzxx3X8+HHdd999GjlypDdfGgAAgaN3b2f7k0+kHTvMZQEAX9qzR8p6AKdPH3NZAphXSy8kJyerRYsWF7xPbGysDrlXuc+Btm3batCgQYqNjc3cl5iYqGrVqmn06NGaOnWq+vXrJ0maNWvWWY/v37+/brjhBr300kt65plnlC9fvhxnAAAgIDRvbk+p273bvmZv0iRp1CjTqQDg0k2ZIqWn29txcVKrVkbjBCqvjuwVKlRIBw4cuOB9kpOTVaxYsRw/d+3atT0aPbcOHTpIkjZs2HDBx4eHh6ts2bI6duyYzpw5k+PPDwBAwAgPl3r2dOopU+zpnAAQyNLS7Dev3Hr0sJeZQY55dWSvdu3aWrx4sY4dO6ZC55iIs2/fPi1evFh33nnnJQd027VrlyQpLi7urNsOHjyo9PR07d+/X7Nnz9bnn3+uxo0bq0CBAl5/vtKlS3vUGUw5AwD4o+7dpREj7HfA//rLPu3p/98gBYCAtGiRfcaCJIWFeb6phRzx6sjev/71L/31119q3rz5Wcsr/PTTT2revLmOHTumRx55xCch09PTNXLkSIWHh6vTOdbWuPzyy3XZZZfpqquu0siRI9WmTRt9+OGHPvncAAD4tTJlpNatnZpBLQACXdbfY82aSeXLm8sS4Lw6ste0aVM999xzGjVqlK688kpF/P9h1cKFC+vEiROyLEsjRoxQw4YNfRKyf//++v777/X888+revXqZ90+d+5cnTx5Urt379bs2bN14sQJpaamqmTJkl5/zr1793rU7pXqAQDwO717S3Pm2NvffCP98otUo4bZTADgjS1bpCVLnJrBLJfEZWVdIC+HvvzyS40bN04rV67UwYMHFRsbq3r16unRRx9Vk6zjoC/B4MGDNWrUKPXs2VNvv/12th7TsWNHLVu2TL/++quKFi3qkxzuZu/IkSOKiYnxyXMCAOATliVdeaWzHlW/ftLYsWYzAYA3Hn9ceu01e7tKFWnzZvtUTmTKSV/i1Xdux44d+vPPP3XHHXdo/vz5+vPPP3X69Gn9/fff+uSTT3zW6A0bNkyjRo1S165dNXHixGw/LiEhQX/++afmzp3rkxwAAPg1l8tzGYbp06WjR83lAQBvnDghTZvm1ImJNHqXyKvvXqVKlfTMM8/4OouHYcOGafjw4UpISNCUKVPOuZbf+bjX4jt48GBuxQMAwL8kJEhRUfZ2aqo0c6bZPACQU7NmSe6l2yIjpa5dzeYJAl41e0WKFFGJEiV8nSXTiBEjNHz4cHXu3FlJSUkKO0dHf+zYMR09x7uW6enpGj9+vCSpfv36uZYRAAC/UqSIlHWI2YQJ9umdABAosg5mad9eKl7cXJYg4dWAlvr16+t///ufr7NIksaPH6+hQ4cqPj5ed9xxh2b+453JuLg4NWnSRFu2bFHDhg3Vtm1bVa9eXcWKFdPu3bv1wQcfaNOmTUpISNAtt9ySKxkBAPBLvXtLU6fa2+vWSStXSjfeaDQSAGTL2rXS6tVOzWAWn/Cq2Rs2bJhuueUWTZkyRd27d/dpoDVr1kiyrwtMSEg46/aGDRuqSZMmKleunDp37qz//ve/mjdvnlJTUxUbG6vrrrtOgwcPPucSDQAABLUbbpDq1nX+YJowgWYPQGDIelSvVi2pXj1jUYKJV9M4R4wYoRUrVmjJkiWqVauW6tatq1KlSp11XZ3L5dLgwYN9FtYkpnECAALCO+8417lERNgLE+fipRcAcMkOHZLKlrUHtEjSpElSjx5mM/mxnPQlXjV757qG7pxP7nIpPT09p0/vl2j2AAAB4cQJ+48m95CDl16SnnzSbCYAuJA33pD697e3Y2KkPXukQoWMRvJnOelLvDqNc+nSpV4FAwAAuSwqyj6y516nauJEe90qxpcD8EeW5XkK50MP0ej5ULaP7C1cuFBXXHGFLr/88tzO5Jc4sgcACBhbtkhZ/3/92WfS3XebywMA5/P119Lttzv1L79IV11lLk8AyJVF1Vu3bq0PP/zQY9+sWbN03333eZcSAADkjmrVpCZNnDrru+YA4E+y/n5q2JBGz8ey3eyd6wDgb7/9pgULFvg0EAAA8IHevZ3tTz6RduwwlwUAzmXPHmnePKfO+nsLPsEJ/AAABKPmze1BLZKUkWFPtwMAfzJliuQe5hgXJ7VubTZPEKLZAwAgGIWHSz17OvWUKdLp0+byAEBWaWmeb0J1724vFwOfotkDACBYde8u5ctnb//1l+fpUgBg0qJF9jqgkj0tOOubU/CZHDV7/1w0HQAA+LEyZTxPi2JQCwB/kfX3UbNmUny8uSxBLNtLL4SFhSkmJsZjvGdKSopSU1NV1n1NwD+f3OXSH3/84ZukhrH0AgAgIP1zrPmGDVKNGubyAADLw1ySXFtUPSUlRSkpKWft37VrV84SAgCAvNG4sVS9urRpk11PnCiNHWs2E4DQNnGis125snTnneayBLlsn8aZkZHh1QcAADDI5fIcZz59unT0qLk8AELbiRPStGlOnZhoX7OHXMF3FgCAYJeQIEVF2dupqdLMmWbzAAhds2ZJhw7Z25GRUteuZvMEOZo9AACCXZEiUqdOTj1hgpS9S/YBwLeyDmZp314qUcJclhBAswcAQCjIeirnunXSypXGogAIUWvXSqtXO3XW30vIFTR7AACEghtukOrWdWqWYQCQ17L+3qlVS6pf31iUUEGzBwBAqMj6LvqsWdL+/eayAAgthw55Xi/cu7c9QAq5imYPAIBQ0aGDVLSovX36tOdEPADITe++a0/ilKSYGM/riJFraPYAAAgVUVGek+8mTpRYJglAbrMsz1M4H3pIKlzYXJ4QQrMHAEAoSUx0trdtk774wlwWAKFh6VJp0yanzvp7CLmKZg8AgFBSrZrUpIlTM6gFQG7L+numYUOpRg1zWUIMzR4AAKEm66CWTz6RduwwlwVAcNuzR5o3z6lZbiFP0ewBABBqmjeXypa1tzMypEmTzOYBELymTJHS0+3tuDipdWuzeUIMzR4AAKEmPFzq2dOpJ0+2p3MCgC+lpXm+mdS9uxQRYS5PCKLZAwAgFHXvbjd9krRvn+dpVgDgC4sWSbt329thYZ5vMiFP0OwBABCKypSRWrVyaga1APC1rL9XmjWT4uPNZQlRNHsAAISqrIMSvvlG+uUXc1kABJctW6QlS5yawSxG0OwBABCqGjeWqld36okTzWUBEFyy/j6pXFm6805zWUIYzR4AAKHK5fJ8t336dOnoUXN5AASHEyekadOcOjHRvmYPeY7vOgAAoSwhQYqKsrdTU6WZM83mARD4Zs2SDh2ytyMjpa5dzeYJYTR7AACEsiJFpE6dnHrCBMmyjMUBEASyDmZp314qUcJclhBHswcAQKjLeirnunXSypXGogAIcGvXSqtXOzWDWYyi2QMAINTdcINUt65TswwDAG9l/f1Rq5ZUv76xKKDZAwAAkue777NmSfv3m8sCIDAdOuR53W/v3vYgKBhDswcAAKQOHaSiRe3t06c9J+kBQHa8+649iVOSYmI8rweGETR7AADAnsiZdWLexIlSRoa5PAACi2V5nsL50ENS4cLm8kASzR4AAHBLTHS2t22TvvjCXBYAgWXpUmnTJqfO+vsExtDsAQAAW7VqUpMmTs2gFgDZlfX3RcOGUo0a5rIgE80eAABwZB3U8skn0o4d5rIACAx79kjz5jk1yy34DZo9AADgaN5cKlvW3s7IkCZNMpsHgP+bMkVKT7e34+Kk1q3N5kEmmj0AAOAID5d69nTqyZPt6ZwAcC5paZ5vCnXvLkVEmMsDDzR7AADAU/fudtMnSfv2eZ6eBQBZLVok7d5tb4eFeb5ZBONo9gAAgKcyZaRWrZyaQS0Azifr74dmzaT4eHNZcBaaPQAAcLasAxa++Ub65RdzWQD4py1bpCVLnJrBLH6HZg8AAJytcWOpenWnnjjRXBYA/inr74XKlaU77zSXBedEswcAAM7mcnm+Sz99unT0qLk8APzLiRPStGlOnZhoX7MHv8JPBAAAnFtCghQVZW+npkpPP202DwD/MWuWdOiQvR0ZKXXtajYPzolmDwAAnFuRIp5/wI0fz7p7AGxZB7O0by+VKGEuC86LZg8AAJzfv/8tXX21U/ftaw9sARC61q6VVq92agaz+C2aPQAAcH7R0dLChVLx4nadlia1aSNt3242FwBzsh7Vq1VLql/fWBRcGM0eAAC4sEqVpI8/dhZaP3BAatHCvo4PQGg5fFiaOdOpe/e2BzrBL9HsAQCAi2vYUBo3zqk3bJA6d5YyMsxlApD3pk+3J3FKUkyM1KmT2Ty4IJo9AACQPb162dfsuS1YIA0ZYi4PgLxlWZ6ncD70kFS4sLk8uCiaPQAAkH1jxki33ebUo0dLH35oLg+AvLN0qbRpk1MzmMXv0ewBAIDsy59f+ugjqUoVZ1/XrtIPP5jLBCBvZD2q17ChdNVV5rIgW2j2AABAzhQvbk/ojI6265MnpVatpL17jcYCkIv27JHmz3dqjuoFBJo9AACQc1ddJX3wgTOFb/duu+E7edJoLAC5ZMoUe+kVSYqLk1q3NpsH2UKzBwAAvNO0qb3outvq1VLPnvYQBwDBIy1NmjTJqbt3lyIizOVBttHsAQAA7z35pPTgg049Y4b0yivm8gDwvUWL7KP3khQWZr+pg4BAswcAALznckmTJ0t16zr7nnpK+vRTc5kA+FbWwSzNmknx8eayIEdo9gAAwKUpUMAe3FCmjF1bltSxo/Trr0ZjAfCBLVukJUucmsEsAYVmDwAAXLrSpe2Gr0ABu05NlVq0kA4cMBoLwCWaONHZrlxZuvNOc1mQYzR7AADAN+rUkaZOderff5fat5fOnDGXCYD3TpyQpk1z6sRE+5o9BAx+WgAAwHc6dZIGDXLqr7+WBgwwlweA92bNkg4dsrcjI6WuXc3mQY7R7AEAAN8aNco+hdNt3DjPse0AAkPWwSzt20slSpjLAq/Q7AEAAN8KC5Pee0+qUcPZ17ev9M035jIByJm1a+21M90YzBKQaPYAAIDvRUdLCxdKxYvbdVqa1KaNtH272VwAsifrUb1ataT69Y1Fgfdo9gAAQO6oXFmaM0cKD7frAwfs0ztTU83mAnBhhw9LM2c6de/e9pqaCDg0ewAAIPc0aiSNHevUGzZInTtLGRnGIgG4iOnT7UmckhQTYw9eQkCi2QMAALkrMVHq08epFyyQhgwxlwfA+VmW5ymcDz0kFS5sLg8uid81e5s3b9aQIUNUv359lSxZUtHR0apVq5ZGjx6tY8eOZd7Psiy99957uv/++1W1alUVLFhQ8fHxatGihVatWmXwKwAAAGd5/XWpcWOnHj1a+vBDY3EAnMfSpdKmTU7NYJaA5rIsyzIdIqunn35a48ePV4sWLVS/fn3lz59fS5cu1UcffaRrrrlGK1euVFRUlE6ePKmoqCjVqlVLTZs2VaVKlbR3715NnDhRe/bs0bvvvqsHH3zQZ7lSUlIUGxurI0eOKCYmxmfPCwBAyDhwQKpbV9q2za4LFJD++1+pdm2zuQA42rWzr7WVpIYNpWXLjMbB2XLSl/hds/fDDz+oWrVqio2N9dj/3HPPafTo0Ro7dqz69euntLQ0fffdd2rYsKHH/f766y/VqFFD+fLl0969exUW5puDlzR7AAD4wC+/SDfe6AxpKVtWWrNGKl3abC4A0p49UoUK9vRcyT763qGD2Uw4S076Er87jbN27dpnNXqS1OH/X2gbNmyQJIWHh5/V6ElSXFycGjZsqH379mnfvn25GxYAAORMjRr2lD/3ZL/du6XWraWTJ83mAiBNmeI0enFx9r9NBDS/a/bOZ9euXZLsZi47942IiFCRIkW8/nylS5f2+KhWrZrXzwUAALJo1kx64QWnXrVK6tnTHgwBwIy0NGnSJKfu3l2KiDCXBz4REM1eenq6Ro4cqfDwcHW6yOjXxYsXa/Xq1erQoYMKFCiQRwkBAECODBwoPfCAU8+YIb3yirk8QKhbtMg+0i5JYWH2GzAIeOGmA2RH//799f333+v5559X9erVz3u/LVu2qHPnzipbtqxeffXVS/qce/fu9ajd58YCAAAfcLmkyZOlzZvta/Yk6amnpKuukpo2NZsNCEVZl1to1kyKjzeXBT7j90f2Bg8erHHjxqlnz54aNGjQee+3fft23X777XK5XPrss89UsmTJPEwJAAByLCpKmj9fKlPGri1L6thR+vVXo7GAkLNli7RkiVOz3ELQ8Otmb9iwYRo1apS6du2qiRMnnvd+ycnJaty4sY4ePaolS5aoZs2aeZgSAAB4rUwZu+FzX3qRmiq1aGEv0wAgb2T9O7tyZenOO81lgU/5bbM3bNgwDR8+XAkJCZoyZYpc7qld/5CcnKxGjRrpyJEjWrJkia677ro8TgoAAC5JnTrS1KlO/fvvUvv20pkz5jIBoeLECWnaNKdOTLSv2UNQ8Muf5IgRIzR8+HB17txZSUlJ510r748//lDjxo11+PBhffHFF7rhhhvyOCkAAPCJTp2kp5926q+/lgYMMJcHCBWzZkmHDtnbkZFS165m88Cn/G5R9fHjx6tfv36Kj4/XyJEjz2r04uLi1KRJE6Wmpuraa6/V9u3b9cgjj6hu3bpnPVeTJk2ytVRDdrCoOgAAuSwjQ2rVyp4K6Pb220wFBHJTvXrS6tX2dufO0rvvms2Di8pJX+J3zV6XLl00ffr0897esGFDLVu2TMnJyapUqdIFn2vp0qVq1KiRT3LR7AEAkAdSU6Ubb5R++cWuw8OlL7+UGjY0mwsIRmvXSrVrO/WKFfa/P/i1gG72/BXNHgAAeWTbNqluXWdIS/Hi9vIMF3mTF0AOde/uXC9bq5b044/2sijwaznpS/zymj0AABDCKleW5syxj+pJdtPXooV91A+Abxw+LM2c6dS9e9PoBSGaPQAA4H8aNZLGjnXqDRvs64kyMoxFAoLK9On2JE5JiomxhyQh6NDsAQAA/5SY6Lm484IF0pAh5vIAwcKypAkTnPqhh6TChc3lQa6h2QMAAP7rjTekxo2devRo6cMPzeUBgsHSpdKmTU6dmGguC3IVzR4AAPBf+fNLs2fb1/G5de0q/fCDuUxAoMt6VK9hQ6lGDXNZkKto9gAAgH8rXlxauFCKjrbrkyft9fj27jUaCwhIe/ZI8+c7ddZTpRF0aPYAAID/q1HDnhzonha4e7fUurXd+AHIvilTpLQ0ezsuzv53hKBFswcAAAJDs2bSCy849apVUs+e9rAJABeXliZNmuTU3btLERHm8iDX0ewBAIDAMXCg9MADTj1jhvTKK+byAIFk0SL7qLgkhYXZb5YgqNHsAQCAwOFySZMnS3XqOPueekr69FNzmYBAkXUwS7NmUny8uSzIEzR7AAAgsERF2QMmypSxa8uSOnaUNm40Ggvwa1u2SEuWODWDWUICzR4AAAg8ZcrYDV+BAnadmio1by4dPGg0FuC3Jk50titXlu6801wW5BmaPQAAEJjq1JGmTnXq33+X2reXzpwxlwnwRydOSNOmOXVion3NHoIeP2UAABC4OnWSnn7aqb/6ShowwFwewB/NmiUdOmRvR0ZKXbuazYM8Q7MHAAAC2+jR9imcbuPGeY6XB0Jd1sEs7dtLJUqYy4I8RbMHAAACW1iY9P779sLrbn37SsuXm8sE+Iu1a6XVq52awSwhhWYPAAAEvuhoaeFCqXhxu05Lk9q0kZKTjcYCjMt6VK9WLal+fWNRkPdo9gAAQHCoXFmaM0cKD7fr/fulFi3sSZ1AKDp8WJo506l797bXqkTIoNkDAADBo1EjaexYp16/XurcWcrIMBYJMGb6dHsSpyTFxNgDjRBSaPYAAEBwSUz0vC5pwQJpyBBzeQATLMvzFM6HHpIKFzaXB0bQ7AEAgODzxhtS48ZOPXq0PX4eCBVLl0qbNjl1YqK5LDCGZg8AAASf/Pml2bPt6/jcunSxJxMCoSDrUb2GDT2n1SJk0OwBAIDgVLy4PaEzOtquT56UWraU9u41mwvIbXv2SPPnOzXLLYQsmj0AABC8atSwpxG6JxDu3i21bm03fkCwmjLFXn5EkuLi7Nc8QhLNHgAACG7NmkkvvODUq1ZJPXvaAyyAYJOWJk2a5NTdu0sREebywCiaPQAAEPwGDpQeeMCpZ8yQXnnFXB4gtyxaZB/BlqSwMPuNDYQsmj0AABD8XC5p8mSpTh1n31NPSYsXm8sE5Iasg1maNZPi481lgXE0ewAAIDRERdlDK8qUsWvLkjp2lDZuNBoL8JktW6QlS5yawSwhj2YPAACEjjJl7IavQAG7TkmRmjeXDh40GgvwiYkTne3KlaU77zSXBX6BZg8AAISWOnWkqVOd+vffpfbtpTNnzGUCLtWJE9K0aU6dmGhfs4eQxisAAACEnk6dpEGDnPqrr6QBA8zlAS7VrFnSoUP2dmSk1LWr2TzwCzR7AAAgNI0aZZ/C6TZunOfIeiCQZB3M0r69VKKEuSzwGzR7AAAgNIWFSe+/by+87ta3r7R8ublMgDfWrpVWr3ZqBrPg/9HsAQCA0BUdLS1cKBUvbtdpaVKbNlJystFYQI5kPapXq5ZUv76xKPAvNHsAACC0Va4szZkjhYfb9f79UosWUmqq2VxAdhw+LM2c6dS9e9vrSgKi2QMAAJAaNZLGjnXq9eulzp2ljAxjkYBsmT7dnsQp2UeqO3Uymwd+hWYPAABAskfV9+nj1AsWSEOGmMsDXIxleZ7CmZAgFS5sLg/8Ds0eAACA2+uvS40bO/Xo0fZIe8AfLV0qbdrk1ImJ5rLAL9HsAQAAuOXPL82ebV/H59aliz3tEPA3WY/qNWzoOVkWEM0eAACAp+LF7Qmd0dF2ffKk1LKltHev2VxAVnv2SPPmOTXLLeAcaPYAAAD+qUYNe8Khe6rh7t1S69Z24wf4gylTpPR0ezsuzn59Av9AswcAAHAuzZpJL7zg1KtWST172kMxAJPS0qRJk5y6e3cpIsJcHvgtmj0AAIDzGThQeuABp54xQ3rlFXN5AElatMg+2ixJYWH2mxDAOdDsAQAAnI/LJU2eLNWp4+x76ilp8WJzmYCsg1maNZPi481lgV+j2QMAALiQqChp/nypTBm7tiypY0dp40ajsRCitmyRlixxagaz4AJo9gAAAC6mTBm74StQwK5TUqTmzaWDB43GQgh66SVnu3Jl6c47zWWB36PZAwAAyI46daSpU53699+l9u2lM2fMZUJoSUqyp3C6JSba1+wB58GrAwAAILs6dZIGDXLqr76SBgwwlweh47vv7ObO7corOYUTF0WzBwAAkBOjRtmncLqNG+c5Bh/wtR07pPvuc44iFy0qLVwoFS5sNhf8Hs0eAABAToSFSe+/by+87ta3r7R8ublMCF7HjkktWkj79tl1vnzS7NlS1apmcyEg0OwBAADkVHS0fWSleHG7TkuT2rSRkpONxkKQyciQEhKkn35y9r3+unT77cYiIbDQ7AEAAHijcmVpzhwpPNyu9++3j8CkpprNheAxcqT08cdO3bOnfRQZyCaaPQAAAG81aiSNHevU69dLnTvbR2SAS/Hxx9KwYU596632a83lMhYJgYdmDwAA4FIkJkp9+jj1ggXS0KHm8iDwrVsnPfSQU1esaB9FjogwlQgBimYPAADgUr3+utS4sVOPGiXNmmUsDgLYX3/ZpwMfP27XhQrZbyCULGk2FwISzR4AAMClyp/fnpBYubKzr0sXae1aY5EQgE6dspdY2LnT2ffee9I115jLhIBGswcAAOALxYvbEzqjo+365EmpZUtp716zuRAYLMteJH3FCmffqFFSq1bGIiHw0ewBAAD4So0a0syZzhCN3bul1q3txg+4kDfekKZNc+r775eeecZcHgQFmj0AAABfatZMeuEFp161yh6Zb1nmMsG//ec/0uOPO/UNN0hTpzJ5E5eMZg8AAMDXBg6UHnjAqWfMkF591Vwe+K9Nm6QOHZzlOkqVkubPlwoWNBoLwYFmDwAAwNdcLmnyZKlOHWffwIHS4sXmMsH/HDpkT948csSuIyOlefOkcuXM5kLQoNkDAADIDVFR9hGaMmXs2rKkjh2ljRuNxoKfSEuzXw+bNzv7Jk+W6tc3lwlBh2YPAAAgt5QpYzd8BQrYdUqK1Ly5dPCg0VjwAwMH2tfquT35pNS5s7k8CEo0ewAAALmpTh172Ibb779L7dvbR3YQmpKSpDFjnLppU8+hPoCP0OwBAADktk6dpEGDnPqrr6QBA8zlgTnffSclJjr1lVfay3Xky2cuE4IWzR4AAEBeGDXKPoXTbexY+xothI4dO6T77pPOnLHrokWlhQulmBizuRC0aPYAAADyQliY9P779sLrbn36SMuXm8uEvHPsmD15c98+u86XT5o9W6pa1WwuBDWaPQAAgLwSHW0fySle3K7T0qQ2baTkZKOxkMsyMqSEBOmnn5x9r78u3X67sUgIDTR7AAAAealyZWnOHCk83K7375datpSOHjWbC7ln5Ejp44+dumdPqW9fc3kQMvyu2du8ebOGDBmi+vXrq2TJkoqOjlatWrU0evRoHTt2zOO+q1ev1r/+9S/ddNNNKly4sFwul9555x0zwQEAALKrUSP7mj23n3+2x+5nZBiLhFzy8cfSsGFOfeut9s/e5TIWCaHD75q9pKQkjRkzRlWqVNGQIUP08ssvq3r16nruuefUoEEDnThxIvO+ixcv1vjx43X48GFde+21BlMDAADkUGKifc2e2/z50tChxuIgF6xbJz30kFNXrGgf1Y2IMJUIIcZlWZZlOkRWP/zwg6pVq6bY2FiP/c8995xGjx6tsWPHql+/fpKkv/76S4ULF1ahQoU0Z84ctWvXTtOmTVOXLl18nislJUWxsbE6cuSIYpiYBAAAfOHMGemuu6SlS519H34odehgLhN846+/7DUWd+6060KFpBUrpGuuMZsLAS8nfYnfHdmrXbv2WY2eJHX4/196GzZsyNwXFxenQoUK5Vk2AAAAn8qf357IWLmys69rV2ntWnOZcOlOnbKXWHA3epL03ns0eshz4aYDZNeuXbsk2Q1eXihdurRHncE59AAAIDcUL25P6LzxRik1VTpxwh7Y8sMPUqlSptMhpyzLPj13xQpn36hRUqtWxiIhdPndkb1zSU9P18iRIxUeHq5OnTqZjgMAAOBbNWpIM2c6Qzt275Zat5ZOnjSbCzn3xhtSUpJT33+/9Mwz5vIgpAVEs9e/f399//33GjFihKpXr54nn3Pv3r0eH1u2bMmTzwsAAEJUs2bSCy849cqVUq9e9pEiBIb//Ed6/HGnvuEGaepUJm/CGL9v9gYPHqxx48apZ8+eGjRokOk4AAAAuWfgQOmBB5z63XelV181lwfZt2mTPVjHfelPqVL2hNWCBY3GQmjz62Zv2LBhGjVqlLp27aqJEyeajgMAAJC7XC5p8mR7iqPbwIHS4sXmMuHiDh+WWrSQjhyx68hIad48qVw5o7EAv232hg0bpuHDhyshIUFTpkyRi8PfAAAgFERF2UeEypSxa8uSOnaUNm40GgvnkZZmX5e3ebOzb/JkqX59c5mA/+eXzd6IESM0fPhwde7cWUlJSQoL88uYAAAAuaNMGbvhK1DArlNS7CNHBw8ajYVzGDjQvlbP7cknpc6dzeUBsvC7pRfGjx+voUOHKj4+XnfccYdmzpzpcXtcXJyaNGkiSfrjjz80Y8YMSdIvv/wiSVq0aFHmMg2dO3dWhQoV8jA9AACAj9SpYw/3cF/Dt3WrfU3YZ59J4X73J1xoSkqSxoxx6qZNPYfsAIa5LMu/Rjx16dJF06dPP+/tDRs21LJlyyRJy5YtU+PGjc9736VLl6pRo0Y+yZWTleoBAAB85plnPBuIRx6R3nzTXB7YvvtOatxYOnPGrq+80p6gyt+JyGU56Uv8rtnzVzR7AADAiIwMe0HuRYucfZMmST16GIsU8nbssI+87ttn10WLSqtXS1Wrms2FkJCTvoSL4QAAAPxZWJj0/vv2wutuffpIy5ebyxTKjh2TWrZ0Gr18+aTZs2n04Jdo9gAAAPxddLS0cKFUvLhdp6VJbdpIyclGY4WcjAypSxdp3Tpn3+uvS7ffbigQcGE0ewAAAIGgcmVpzhxnOMv+/fYRpqNHzeYKJSNH2j8Dt549pb59zeUBLoJmDwAAIFA0aiSNHevUP/9sj/nPyDAWKWR8/LE0bJhT33qr/bNgLWj4MZo9AACAQJKYaF+z5zZ/vjR0qLE4IWHdOumhh5y6YkX7CF9EhKlEQLbQ7AEAAASa11+3x/67jRolzZplLE5Q27fPPl32+HG7LlRIWrBAKlnSbC4gG2j2AAAAAk3+/PYEyMqVnX1dukhr1xqLFJROnZLuu89easHtvfeka64xlwnIAZo9AACAQFS8uD2hMzrark+etI9A/fmn2VzBwrLs02W/+87ZN2qUveYhECBo9gAAAAJVjRrSzJnOkJDdu6XWre3GD5fmjTekpCSn7tBBeuYZc3kAL9DsAQAABLJmzaQXXnDqlSulXr3sI1PwzhdfSI8/7tQ33GA3fkzeRICh2QMAAAh0AwdKDz7o1O++K736qrk8gWzzZvsonns5i1Kl7ImnBQsajQV4g2YPAAAg0Llc0uTJUt26zr6BA6XFi81lCkSHD0vNm9v/laTISGnePKlcOZOpAK/R7AEAAASDAgXsxqRMGbu2LKljR2njRrO5AkVamnT//faRPbdJk6T69c1lAi4RzR4AAECwKFPGPuWwQAG7TkmRWrSQDh40GisgPPWU9J//OPUTT3gupA4EIJo9AACAYFKnjjR1qlNv3Wpfg5aWZi6Tv3vnHem115z63nulf//bWBzAV2j2AAAAgk2nTtKgQU795ZfSgAHm8vizFSvs6aVuV15pL2eRL5+5TICP0OwBAAAEo1Gj7GEjbmPH2kNc4Nixw16X8PRpuy5a1F6oPjbWbC7AR8JNBwAAAEAuCAuT3n9fuvFG6Zdf7H19+thryIXxfr8k6ccfpX377O18+aTZs6WqVc1mAnyIZg8AACBYRUfbR6rq1pUOHLCv25szx3Qq/zRmjHT77aZTAD7F2zoAAADBrHJlu8EL5z3+8+rRQ+rXz3QKwOf4Vw8AABDsGjWyB5F8/rmUnm46jX+pVEl68EF7YXogyNDsAQAAhII6dewPACGD0zgBAAAAIAjR7AEAAABAEKLZAwAAAIAgRLMHAAAAAEGIZg8AAAAAghDNHgAAAAAEIZo9AAAAAAhCNHsAAAAAEIRo9gAAAAAgCNHsAQAAAEAQotkDAAAAgCBEswcAAAAAQYhmDwAAAACCEM0eAAAAAAQhmj0AAAAACEI0ewAAAAAQhGj2AAAAACAI0ewBAAAAQBCi2QMAAACAIESzBwAAAABBiGYPAAAAAIJQuOkAgcKyLElSSkqK4SQAAAAAQpW7H3H3JxdCs5dNqampkqTy5csbTgIAAAAg1KWmpio2NvaC93FZ2WkJoYyMDO3Zs0fR0dFyuVxeP0+1atUkSVu2bPFVNCATry/kNl5jyG28xpCbeH0ht+XFa8yyLKWmpqpMmTIKC7vwVXkc2cumsLAwlStXzifPI0kxMTGX/FzAP/H6Qm7jNYbcxmsMuYnXF3JbXr3GLnZEz40BLQAAAAAQhGj2AAAAACAIcc0eAAAAAAQhjuwBAAAAQBCi2QMAAACAIESzBwAAAABBiGYPAAAAAIIQzR4AAAAABCGaPQAAAAAIQjR7AAAAABCEaPYAAAAAIAjR7AEAAABAEKLZAwAAAIAgRLMHAAAAAEGIZg8AAAAAghDNHgAAAAAEIZq9PJCRkaExY8boiiuuUIECBVS+fHk9/vjjOnbsmOloCCCbN2/WkCFDVL9+fZUsWVLR0dGqVauWRo8efc7X0qZNm9SqVSsVLVpUhQoV0i233KKvv/7aQHIEquPHj6ty5cpyuVzq16/fWbfzGoO3Dh48qCeeeEJVq1ZVgQIFVLJkSTVu3Fj//e9/Pe63atUq3XHHHYqOjlZMTIzuvvturVu3zkxoBISjR4/q+eefV82aNRUdHa0SJUqoQYMGeuedd2RZlsd9eX3hQl544QW1a9cu8/+DFStWvOD9c/J62rNnjx566CGVLFlSUVFRql27tmbPnu37L0KSy/rnKx8+9+ijj+rNN99U69atdc8992jjxo0aO3asbrnlFn355ZcKC6PnxsU9/fTTGj9+vFq0aKH69esrf/78Wrp0qT766CNdc801WrlypaKioiRJv//+u+rWravw8HD1799fsbGxmjx5sjZs2KDPPvtMd9xxh+GvBoHgiSee0Ntvv62jR4+qb9++GjduXOZtvMbgrT/++EONGjXS0aNH1a1bN11++eU6cuSIfv75Z9111126//77JUkrV65Uo0aNVLZs2cw3G8aNG6d9+/ZpxYoVqlmzpskvA34oIyNDDRs21IoVK5SQkKD69evr+PHj+uCDD7R69WoNHDhQL774oiReX7g4l8ulYsWK6frrr9fatWsVExOj5OTkc943J6+ngwcPqnbt2tq3b58GDBigcuXKaebMmfrmm2+UlJSkrl27+vYLsZCrNmzYYLlcLuu+++7z2P/mm29akqz333/fUDIEmjVr1liHDx8+a/+zzz5rSbLGjh2bua9du3ZWWFiY9b///S9zX2pqqhUfH29dfvnlVkZGRl5ERgBbu3atlS9fPuvVV1+1JFl9+/b1uJ3XGLx18803W+XKlbP27NlzwfvVqVPHio6Otnbt2pW5b9euXVZ0dLTVpEmT3I6JALRixQpLktW/f3+P/adOnbIqVapkxcbGZu7j9YWL+f333zO3a9SoYVWoUOG8983J6+nJJ5+0JFkLFy7M3JeWlmbVqVPHKlasmJWamuq7L8KyLA4p5bIPPvhAlmWpf//+Hvt79OihggUL6r333jMTDAGndu3aio2NPWt/hw4dJEkbNmyQJB07dkwLFy5Uo0aNVKtWrcz7FS5cWN27d9fmzZu1Zs2aPMmMwJSenq4ePXro7rvv1n333XfW7bzG4K3ly5fr22+/1cCBA1W6dGmdOXNGx48fP+t+W7du1Zo1a9SuXTuVLVs2c3/ZsmXVrl07ffnll/rzzz/zMjoCQEpKiiSpTJkyHvsjIiJUokQJFSpUSBKvL2RP5cqVs3W/nL6eZs6cqSpVqqh58+aZ+/Lly6dHHnlEBw8e1OLFi333RYhr9nLdmjVrFBYWprp163rsL1CggGrVqsUfRLhku3btkiTFxcVJkn7++WedOnVKN95441n3rV+/viTxusMFjRkzRr/99pvHaZtZ8RqDt9x/xMTHx6t58+aKiopSoUKFdPnll3u8+el+/ZzvNWZZltauXZs3oREw6tatqyJFiuill17S7NmztWPHDv32228aNGiQ1q5dq2HDhkni9QXfysnrae/evdq9e3fm/yv/ed+sz+crNHu5bM+ePSpRooQiIyPPuq1s2bLav3+/Tp8+bSAZgkF6erpGjhyp8PBwderUSZL9mpPk8e6Sm3vf7t278y4kAsr27ds1dOhQDRky5LwXo/Mag7c2bdokyT675eDBg5o+fbqSkpIUERGhzp07a9q0aZJ4jcE7RYsW1cKFC1WsWDG1b99eFSpU0JVXXqnx48fr448/Vo8ePSTx+oJv5eT1ZOK1F+7TZ8NZjh8/fs5GT7KP7rnvExERkZexECT69++v77//Xs8//7yqV68uSZmnRJ3rdZf1NQecS2JioipXrqwBAwac9z68xuCt1NRUSVJ0dLSWLl2a+f++Vq1aqXLlynrmmWeUkJDAawxeK1y4sK6++mq1aNFCDRo00MGDBzV+/Hh16tRJCxYsUJMmTXh9wady8noy8dqj2ctlBQsW1L59+85528mTJzPvA+TU4MGDNW7cOPXs2VODBg3K3O9+PZ06deqsx/Caw4W89957WrJkiZYvX678+fOf9368xuAt98Tgjh07erzJWbRoUbVo0ULvvvuuNm3axGsMXlm/fr0aNGigMWPGKDExMXN/x44ddfXVV6tHjx76/fffeX3Bp3LyejLx2uM0zlxWpkwZ7d+//5w/1N27d6tEiRIc1UOODRs2TKNGjVLXrl01ceJEj9vcF6af6zQA975znT6A0Hbq1CkNGDBA9957r0qVKqWtW7dq69at+uOPPyRJR44c0datW3X48GFeY/BauXLlJEmlSpU667bSpUtLkg4dOsRrDF4ZM2aMTp48qXbt2nnsL1iwoJo2bao//vhDycnJvL7gUzl5PZl47dHs5bI6deooIyNDq1ev9th/8uRJrVu3TrVr1zaUDIFq2LBhGj58uBISEjRlyhS5XC6P22vWrKnIyEh9//33Zz125cqVksTrDmc5ceKE/v77b3366aeqVq1a5kejRo0k2Uf9qlWrpilTpvAag9fcw8rcg6Wycu+77LLLVKdOHUk672vM5XLphhtuyMWkCETuP5bT09PPui0tLS3zv7y+4Es5eT2VLl1aZcuWzfx/5T/vK+XC/z99upADzvLzzz9fcJ29GTNmGEqGQDR8+HBLktW5c2crPT39vPdr27atFRYWZq1bty5zn3sNtGrVqrEGGs5y+vRpa/bs2Wd9vPXWW5Yk6+6777Zmz55tbdq0ybIsXmPwzsGDB63o6GirbNmyHmtJ7dmzxypUqJB1+eWXZ+6rXbu2FR0dbe3evTtz3+7du63o6Gjr9ttvz9PcCAz9+/e3JFkvvviix/5Dhw5ZpUuXtooWLWqlpaVZlsXrCzlzsXX2cvJ6euKJJ867zl6RIkWslJQUn2Z3WZZl+bZ9xD898sgjGjdunFq3bq17771XGzdu1JtvvqmbbrpJX3/9tcLCOMCKixs/frz69eun+Ph4jRw58qzXTVxcnJo0aSLJXvOlbt26yp8/vx577DHFxMRo8uTJWr9+vT799FPdddddJr4EBKDk5GRVqlRJffv29ViKgdcYvDVp0iT16tVLNWrU0MMPP6zTp09rwoQJ2rt3rz755BPdeeedkqQVK1aocePGKleunB555BFJ0tixY/XXX3/pu+++07XXXmvyy4Af+uOPP3T99dfr0KFDeuCBB3TTTTfp4MGDmjx5spKTkzV+/Hj16dNHEq8vXNyMGTMyL2UYO3asTp8+rccff1ySVKFCBXXu3Dnzvjl5PR04cEA33HCDDhw4oAEDBqhs2bL64IMPtGzZMk2ZMkXdunXz7Rfi09YR55SWlma98sor1uWXX25FRERYZcqUsR577DGPdzWBi0lISLAknfejYcOGHvf/9ddfrRYtWlixsbFWVFSUddNNN1lLliwxEx4Ba/v27ZYkq2/fvmfdxmsM3vr444+tevXqWQULFrQKFy5sNWnSxPr222/Put+KFSus2267zSpUqJBVuHBh684777TWrl1rIDECxdatW62HHnrIKlu2rBUeHm5FR0dbt9xyi/Xxxx+fdV9eX7iQhg0bZvtvLsvK2etp165d1oMPPmgVL17cioyMtK677jrrww8/zJWvgyN7AAAAABCEOH8QAAAAAIIQzR4AAAAABCGaPQAAAAAIQjR7AAAAABCEaPYAAAAAIAjR7AEAAABAEKLZAwAAAIAgRLMHAAAAAEGIZg8AAAAAghDNHgAg5A0bNkwul0vLli0zHSVHbrnlFtWqVUuWZeX4sT/99JPCwsI0ZcqUXEgGAPAHNHsAgKDicrly9BFoDZ7b7Nmz9e2332rUqFFyuVw5fvy1116rNm3aaPDgwTp69GguJATwf+3dX0hUWxTH8Z93MszUaUQijdIoqeyfhKOlEglRkYWNIPZQMaAThFFEZBFBFlhEhRHhQ1EPEvYilfZgJYlYoIVhglCaNKMWYqmlUSmWcx+iudc7k2Zm6tzvB3xZa5991nkZWO6z9wHGm4/zV/4dCADABJWTk+MWO3/+vLq7u7Vv3z7NmDFjUM5qtSogIEAdHR2aO3eu/P39/0yho+B0OrVo0SL5+vqqvr7+l+epqamR2WxWbm6ujhw58hsrBABMBDR7AACvFxERoebmZtntdkVERIx3OaNWVlam9evX6/Tp08rOzh7VXFFRUfr48aPsdrv++osXfgDAm/CrDgD43/O0Z8/hcMjHx0dWq1WNjY2yWCwymUwyGo1KSUmRw+GQJDU1NSktLU0hISHy9/fXpk2b9PLlS4/36ezsVHZ2thYuXCg/Pz+ZTCYlJyerurp6RPVeuXJFkpSenu6W6+np0fHjx7V06VIFBgYqMDBQ8+fP17Zt21RbW+s2Pj09XS0tLSorKxtRDQCAiY9mDwCAIdjtdq1evVrd3d3KyMhQQkKCSkpKtG7dOj179kxxcXHq6OiQ1WrV2rVrVVpaquTkZA0MDLjNs3LlSp05c0azZ89WVlaWLBaLqqqqtGbNGt2+ffun6nE6nSovL1dYWJjCw8Pdchs3blROTo6CgoJks9m0e/duxcbGqqKiQo8ePXKbLyEhQZJo9gDAC00Z7wIAAJjIKisrdfbsWR04cMAV27Vrly5fvqz4+HgdPXrUY664uFgWi8UV37lzp169eqUbN24Miufm5io2NlY2m00Oh0N+fn5D1tPQ0KC3b99qy5Ytbrn6+npVVVVp69atunnz5qDc169f1dPT43aN2Wx2PScAwLuwsgcAwBDmzZun/fv3D4rt2LFDkhQcHOyW2759u6Rvnzb47unTp3r48KHS0tIGNXqSFBoaqoMHD6q9vV33798ftp6WlhZJ0qxZs344Ztq0aW4xg8Egk8nkFjcajfLz83PNCwDwHqzsAQAwhBUrVrgdXBIaGipJWr58uVsuLCxMkvT69WtXrKqqSpLU1dXl8bTQFy9eSJKeP3+u5OTkIevp7OyUJI+NW1RUlKKjo3X9+nU1NzcrJSVFiYmJiomJ0dSpU384Z3BwsNrb24e8LwBg8qHZAwBgCEaj0S02ZcqUYXP9/f2uWFdXl6Rv++KG2hv3M9+7+75q19vb65YzGAwqLy/XiRMnVFRUpEOHDkmSgoKCZLVadfLkSU2fPt3tus+fP3tcDQQATG68xgkAwBj73hSeOnVKTqfzh3/Hjh0bdq6ZM2dK+qeB/C+TyaS8vDy1traqsbFRly5dUmRkpC5cuKA9e/a4jR8YGND79+9d8wIAvAfNHgAAYywuLk7SP69zjsaSJUtkMBjU0NAw7NjIyEjZbDZVVlYqICBAt27dchvT0NAgp9Op6OjoUdcGAJhYaPYAABhjZrNZ8fHxKikp0dWrVz2Oqa6u1qdPn4ady2g0Kjo6WnV1derr6xuUs9vtHr/x9+7dO/X19cnf39/jfSUpKSnpZx4FADCJsGcPAIA/oLCwUElJScrIyFB+fr7MZrMCAwPV2tqqmpoaNTU1qa2tzWND9l+pqal68uSJKioqtGHDBle8rq5OqampMpvNWrx4scLCwvTmzRsVFxerv7/ftYfv3+7duyeDwaCUlJTf+rwAgPHHyh4AAH9AeHi4amtrlZOToy9fvqigoEAXL17U48ePtWzZMhUUFCgkJOSn5srIyJCvr68KCgoGxWNiYnT48GEZDAbduXNH586d0927d2U2m1VaWqq9e/cOGv/hwwcVFxdr8+bNmjNnzm97VgDAxODjdDqd410EAAAYmczMTBUWFsrhcPzy4Sr5+fnKysrSgwcPlJiY+JsrBACMN5o9AAAmoba2NtcBLHl5eSO+vre3VwsWLNCqVatUVFQ0BhUCAMYbe/YAAJiEQkNDde3aNddpmj4+PiO6vrm5WZmZmbJarWNTIABg3LGyBwAAAABeiANaAAAAAMAL0ewBAAAAgBei2QMAAAAAL0SzBwAAAABeiGYPAAAAALwQzR4AAAAAeCGaPQAAAADwQjR7AAAAAOCFaPYAAAAAwAv9Day/PA0pOpH6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dps.time, dps.freq[max_pos], color='red', alpha=1)\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.title('Detected frequency drift')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Overlaying this traced function with the Dynamical Powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAKOCAYAAAARYLzXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsr0lEQVR4nOzdd3xT5dsG8CtJ996bDkrZo+y9p2yQjcoQEESRIQIiUBBRQWT/UDYuEJWlgCJ7Q0WGzDJaCi20tKV7pG3O+wdvIrFJm5an6bq+fvJRz3nOfe6kOUme8yyZJEkSiIiIiIiIqEKSl3QCREREREREVHJYKSQiIiIiIqrAWCkkIiIiIiKqwFgpJCIiIiIiqsBYKSQiIiIiIqrAWCkkIiIiIiKqwFgpJCIiIiIiqsBYKSQiIiIiIqrAWCkkIiIiIiKqwFgpLCE5OTnYuHEjunXrBg8PD5iZmcHV1RVt27bFsmXLkJ6eXtIpGqRdu3aQyWQ4duxYSaciTHh4OAYOHAg3NzcoFArIZDJs2bKlwONkMpnWw8TEBI6OjqhSpQr69++PZcuW4enTpy+VW0hICGQyGUJCQvLsi4uLw+jRo+Ht7Q0TExO95XQpC39HlUqFBQsWoGrVqjAzM4NMJkO7du1KOi0tW7ZsgUwmw8iRI0s6lVJv5MiRBl9b/z3mxYeNjQ28vLzQtm1bTJs2DaGhocWXdBl07NixYr9W1Od48SGXy+Ho6IjWrVvj66+/Rm5ubrGdn4iIXp5JSSdQEd2/fx+9evXCjRs3YGJigubNm8PHxwdxcXE4ffo0Tpw4gWXLlmHPnj2oX79+SadboahUKrz66qu4dOkS6tatiy5dusDExARVqlQxOMarr74KGxsbAEBKSgoePXqEffv2YdeuXZg5cybmzp2LmTNnQqFQCM19zJgx2LNnD6pUqYJBgwbBzMwMwcHBOHbsGNq3b4+2bduW6kpfQVauXIl58+bB0dERffr0gbW1NapXr27UHPz9/fHgwQOEh4fD39/fqOemf9WrVw/BwcEAgKysLMTHx+PSpUs4ceIEvvzyS3Tq1AmbN2+Gj49PySZawVhbW2PAgAEAnt/4vHPnDk6dOoVTp05hz5492Lt3L0xM+LOjtAsJCcH8+fMxb948vTcWZTIZAECSJCNmRkTFiZ/ORhYTE4NWrVrh8ePH6Nq1KzZu3Ahvb2/N/uTkZEyePBmbN29G27ZtERoaimrVqpVgxhVLREQELl26BH9/f1y6dAlyeeEb07/44os8FYaUlBSsXbsWc+fOxUcffYTo6GisWbOm0LHfeecdDBkyBC4uLlrblUol9u3bB0tLS1y6dElTKQVgUEXwm2++QXp6Onx9fQudk7Hs3LkTAPDzzz+jQ4cOJZyNbv369UOzZs1gb29f0qmUa3379tX5Y/XPP//E5MmTcejQIbRu3Rrnz5+Hm5ub8RMsRZo0aYKbN2/Cysqq2M/l4uKSp+X3wIED6NWrFw4cOICNGzfirbfeKvY8iIio8Nh91MjefvttPH78GC1atMDevXu1KoQAYGdnh02bNmHIkCFISUnB66+/XkKZVkyPHj0CAPj5+RWpQqiPra0tPvjgA+zduxdyuRz/+9//8OeffxY6jouLC6pXr56nUvjkyRPk5OTAzc1Nq0JoKF9fX1SvXt0oPxyLSv23qVy5cglnop+9vT2qV68OT0/Pkk6lQurcuTPOnTuHGjVqICIiAlOmTCnplEqclZUVqlevXmI3fF555RXN99gvv/xSIjkQEVHBWCk0orCwMOzatQsAsHr1apiZmektu2LFCpiZmSE0NBRHjhwBAMTHx8Pc3BzW1tZISUnReVxWVhYcHR2hUCgQFRWlte/p06eYOXMmatWqBSsrK9ja2qJZs2bYsGGDzi4gL44zO3ToELp06QInJyfIZDJcvnw53+d6/fp1zJkzB82bN4enpyfMzMzg4eGBfv364fTp03nKjxs3DjKZDF988YXemJMnT4ZMJsMnn3yS77lfFBsbi2nTpqFq1aqwsLCAg4MD2rRpg2+++UbrOUdEREAmk6Ft27YAgOPHj2vGxojsJtilSxcMHjwYAPDll19q7XtxvOC9e/fw2muvwdPTEwqFAsuXL89TRk0mk8HPzw8A8ODBA61xPSNHjkT79u3zPKf/jjHSN6bwxe1nz55Ft27d4ODgACsrK7Rq1QqHDx/W+1z/+usv9OjRAw4ODrC1tUWLFi2wc+dOzWtt6OuqziE8PBwAEBAQoHkO6nwLGhPp7+8PmUyGiIiIPPuUSiXWrFmD1q1bw9HRERYWFggICMCrr76K/fv3A/h3zNSDBw/y5PBi3ILGFO7Zs0dzHZmbmyMgIADjx4/XxH3Ri6+TSqXC8uXLUatWLVhYWMDd3R2jR49GbGysQa+hWmxsLJYvX44uXbrA398fFhYWcHR01FwTurw4Ji0rKwvz5s1DlSpVYG5uDh8fH0yePBlpaWk6j1UqlVi0aJHm+vP29sZbb7310mNr82Nra6u5Xn788UdER0cDAM6cOQOZTIY6deroPfby5cuQyWSoWrWq5vPhxb9pUlIS3nvvPVSqVAnm5uYIDAzE/PnzkZOTkyfWgwcPsGjRIrRt2xY+Pj4wNzeHi4sLunbtit9++03n+V88V3x8PN5++234+PjA0tISdevWxbZt2zRlT506ha5du8LR0RE2Njbo3r07bt26lSdmQWMKIyIi8O6776JatWqwsrKCg4MD6tSpg2nTpul8XxZFgwYNACBPvKtXr2L48OHw9vaGmZkZ3N3d9X5H1KhRAzKZDA8fPtTa/uuvv2quw5MnT2rtu3nzJmQyGZo3b54n3oMHDzBx4kRUqVJF893Qvn17TY+E/3rxM2THjh1o1aoV7O3tIZPJkJiYCAB4/Pgxpk+fjlq1asHOzg42Njbw8/NDnz598PPPP2vFe3FM7d9//41evXrB2dkZ1tbWaNasGXbs2KH39VQqlVi9ejVatGgBBwcHWFhYoEaNGpgzZ47e3wYAcPr0aQwePFjzfnR3d0eLFi3w2WefISMjQ/M858+fDwCYP3++1udcSEiI5j2q9t+xpGqGfJ8VNK7YkO+l48ePo1OnTrC3t4ejoyP69u2LO3fuAHg+HGTp0qWoVasWLC0t4e3tjRkzZkCpVOp9jYgqMnYfNaJ9+/ZBkiTUrl27wLGCbm5u6Nq1K3799Vf8+uuv6NChA5ydndGjRw/s2rULP//8M0aNGpXnuL179yIxMRFdunTRaoW8cuUKunXrhidPnsDPzw9dunRBeno6zp07h7Fjx+Lo0aP4/vvvdeayfft2rFu3DvXq1UO3bt3w8OHDAlvRli1bhk2bNqFmzZpo0KABrKysEBYWht27d+PXX3/Fd999hyFDhmjKT5w4EevXr8e6deswbdo0rS8XAEhPT8fWrVthamqKN998M99zq4WFhaF9+/aIjo6Gj48P+vTpg+TkZBw9ehQnT57EH3/8ge+++04zWcWIESPw5MkT/PHHH3B3d0e3bt0AIE+r3MsaNmwYtm3bhpMnTyI7OxumpqZ58m7UqBFsbW3Rpk0bpKWl5duCN2LECKSmpuKXX37RGtMDAK1atdL5nAAUajzevn37sHz5cs174Pr16zh9+jS6deuGw4cPo02bNlrlDx48iF69ekGpVKJOnTqoXbs2Hjx4gFdffRVTp041+LwA0K1bN/j7++Pnn39GWlqa1phNDw+PQsX6r4SEBHTr1g2hoaGwsrJCy5Yt4ezsjIcPH+KPP/5AfHw8unfvDg8PD4wYMUJnDgAMap2dPn06vvjiCygUCrRp0wbu7u64ePEivv76a/z444/4/fff0bRpU53Hvv7669i9ezfatWuHoKAgnD59Gps3b0ZoaCj++usvmJubG/R8Dx48iClTpsDX1xdBQUFo3rw5oqKicObMGZw8eRLnz5/X261ZqVSia9euuHLlCtq2bYtq1arh5MmTWLFiBW7evIk//vhDq3xubi769OmD33//HdbW1ujcuTPMzc3xyy+/4M8//8y3cvayOnfuDBcXF8TFxeHYsWMYNmwYWrRogeDgYFy+fBmnTp1Cq1at8hy3du1aAMD48ePzfAYlJiaiefPmSEhIQOvWrZGYmIiTJ08iJCQEUVFRWLdunVb5b7/9FnPmzEFQUBBq1aoFBwcHRERE4ODBgzh48CAWL16M6dOn68z/2bNnaNasGTIyMtCyZUs8efIEJ0+exLBhw6BSqWBpaYkhQ4agYcOG6NKlC/766y8cOHAAFy9exPXr1w3+zDpw4AAGDRqE1NRU+Pr6onv37sjNzcXdu3fx5Zdfok6dOkImTUpOTgYArffpzp07MXToUCiVStSrVw9t27ZFeHg4du/ejb1792L16tWYMGGCpnyHDh1w69YtHDlyBCNGjNBsf/HG1JEjR9C6des8+/7b3fzQoUPo378/UlJSUK1aNfTo0QPx8fE4d+4cjh07hlmzZmHRokU6n8vixYuxdu1aNG/eHD169EBYWBhkMhkeP36M+vXrIyYmBgEBAejYsSNMTU3x6NEjHDp0CFlZWVqfzWrnzp3D+PHj4evriy5duiA6OhqnTp3C4MGDcffuXXz44Yda5RMTE9G9e3ecPXsWTk5OaNKkCaysrBAaGoqFCxdi165dOHHiBJycnLSO+/jjjzF37lwAQHBwMFq3bo1nz57h5s2bmDVrFoYMGQJ/f38MGDAAhw4dwpUrV7TG7qqPc3FxwYgRI7B161YA0Ppb6FLY77PC2LNnD1atWoUmTZqga9euuHjxIvbs2YPz58/j6tWrmDBhAv744w+0b98eAQEBOHbsGBYvXoynT59i06ZNQnIgKlckMprXXntNAiCNHj3aoPLz58+XAEitW7fWbNu9e7cEQGrXrp3OY3r27CkBkL777jvNtrS0NMnf318CIH355ZdSbm6uZt+jR4+kBg0aSACkjRs3asVq27atBEACIG3evFnn+dRljh49qrX92LFjUkRERJ7y+/btk0xNTSVHR0cpLS1Na1/Lli0lANKff/6Z57iNGzdKAKRBgwbpzEOXRo0aSQCkESNGSFlZWZrtt27dkry8vCQA0v/+9z+tY44ePSoBkNq2bWvwedTUr1V4eHi+5R49eqQpe+fOHc32efPmabaPGTNGUiqVeY5Vl5k3b57W9vDwcAmA5Ofnl+cYQ56Tvr+jertMJpO2bdum2a5SqaR33nlHAiC1b99e65jU1FTJw8NDAiAtWbJEa9/u3bslhUKhN9f8+Pn56X199eVf0LHq66V9+/ZSbGys1r7k5GTp0KFDBucgSZK0efNmzXvuRb/++qsEQLK3t5fOnz+v2Z6bmytNnz5dAiD5+vpKmZmZmn3qvykAKSgoSIqMjNTsi4mJkQICAiQA0tatW3XmosuNGzekCxcu5Nl+9+5dydfXVwIgnT17Vmuf+v0DQGrevLmUkJCgdZy9vb0EQDp+/LjWccuWLZMASJUrV9bKPTExUXOt5/fZosuIESN0vv916dSpkwRAmj17tmbb+vXrJQDS8OHD85RPTk6WbGxsJAsLCyk+Pl6zXf03BSD169dPysjI0Ow7d+6cpFAoJJlMluc9ceHCBenGjRt5zhMaGirZ29tLJiYmWq/Lf881ZMgQrc+tdevWSQAkb29vydHRUdq1a5dmX2ZmptSuXTsJgBQSEqIVU9/1HxERIdnY2EgApKVLl2p9L0iSJN28eVNn/rqoz6HrmlapVFLTpk0lANLrr78uSZIkRUdHS7a2thIA6auvvtIqv3PnTkmhUEgmJibSlStXNNt//vlnCYD0xhtvaJWvU6eO5OPjIzk4OGh9V0qSJPXr108CoHUdR0VFSQ4ODpKpqanWZ5r6Oauv8cOHD2vtU283NTWV/vjjjzzPMyQkRAIgTZgwIc++lJQU6cyZM1rb1O9lANLUqVO1Xv9Dhw5J5ubmklwul/7++2+t4wYOHCgBkIYNGyYlJSVptmdkZGhiql/n/752Dg4OeT7TVCqVdOTIESkxMVGzTd/3zIvUuetjyPeZOt/C/r5Qb5fL5Xmug/bt20sApFq1akk1atSQHj9+rNl/9epVydTUVOf1SkSSxEqhEXXr1k0CIM2cOdOg8l999ZUEQKpRo4Zmm1KplFxcXCSZTCY9ePBAq3xsbKxkYmIi2draalW41qxZo/PLVO3ixYsSAKl+/fpa29UfvF27dtWbY0E/xnUZNmyYBED67bfftLZv27ZNAiC9+uqreY5p3Lhxoc5z/PhxCYDk5OQkJScn59mv/vEVGBiotd0YlcLMzExN2XPnzmm2q79EnZ2dpZSUFJ3HllSlcPDgwXmOefr0qQRAMjMz0/rC37JliwRAqlevns5zDRo0qFRUCv/++2/Ne+TZs2cvnYMk6a8Uqn+oLFy4MM8x2dnZUmBgoARA+vbbbzXbX6wUHjhwIM9xS5YskQBII0eONCj3gqgrHe+//77WdvX7Ry6XS9evX89z3MSJE3VWRtSV1h9//DHPMVeuXJFkMlmxVgqHDBkiAZDGjx+v2Zaeni45OjpK5ubmUlxcnFZ59efkf/926r+pra1tnhsHkiRJPXr0kABIW7ZsMfh5fPjhhxIAafXq1TrPZWdnlye/nJwcycXFRW+lVt8NQ33X/6RJkyQA0qhRowzOWx9dlcLs7Gzp5s2bmpuhcrlcc8NBfcOzU6dOOuOp/85vvvmmZlt8fLwkk8mkSpUqabbFxsZKMplMGjlypNSnTx/J1NRU892Xm5srOTk5Sebm5loVefVNmLlz5+o89y+//KK5AfAi9bX/1ltv6Tzu7bfflgBoVVLyo36OPj4+WpV/tfHjx0uA9k3ka9euaW4SvXgDSS0tLU1yd3eXTExMtG5s1K1bt1A3kERWCvP7PnvZSmF+1wGg+wZz3759C329ElUUHFNYikk6xvmZmppi6NChkCQJ3377rda+bdu2IScnBwMHDtTqnnHgwAEAwMCBA3Wep379+rCxscGVK1eQmZmZZ3/fvn2LlH9SUhK+//57fPDBBxg7dixGjhyJkSNH4tq1awCedyt50auvvgoPDw/s2bMHT5480Wy/ePEiQkNDUb16dYPX2jpx4gSA57NB2tra5tn/2muvwdTUFPfu3csz9rK4qVQqzX//t4saAHTq1KlIk8UUp1deeSXPNhcXFzg5OUGpVCIuLk6zXf3aDxo0SGesYcOGFU+ShfT7778DAPr37w8HB4diO09OTg7OnDkDQHdXKxMTE7zxxhsAno/7/C9TU1N06tQpz3b1rMTqMXOGys7OxoEDBzBv3jyMHz8eo0aNwsiRIzVjnv57Xar5+vqiZs2aBuXx8OFDhIeHw9zcXGeXubp166Ju3bqFyruw1NfZi9eYpaUlRo0ahaysLGzevFmr/ItdR3Vp2LAhXF1d82zP7++QkZGBnTt34sMPP8S4ceM0n4HqMVL6XuuGDRvC2dlZa5tCodCMHe7SpUueYwIDA/XmoYv6/W9od3xDvDim2dTUFDVq1MB3330HS0tLbNy4Ec2aNQPw72eEvq6Ho0ePBqB9PTg5OaFevXp4+PChZszY0aNHIUkSOnTogA4dOiA7O1szrvDy5ctISEhA8+bNYWFhoYlT0Pehuiv8uXPndO7X933YqFEjAMCsWbOwd+9eg9caHjBggM75BV577TUA/75WwL9/s969e+vsMm5lZYVGjRohJycHf/31F4Dn4xyvXr0KKysrDB061KCcRCrO77P8rgNTU1PNeHpd+wv7uUlUEXBMoRGpv+RjYmIMKq+eROK/40NGjBiBVatW4dtvv8Xs2bM129UTRah/YKrdv38fANCrV68CzxkfH59nRlT1D5HC2LVrF0aPHq0ZgK+LepyJmqmpKcaNG4cFCxZgw4YN+OijjwAU/GNNF3VFLyAgQOd+ExMT+Pr6aiqF/33OxenFCtR/x30ARXu9i1ulSpV0bre1tUVCQgKysrI029Svvb7nUVqeX2RkJAAU+5Iv8fHxyMrKgpmZmd73mXpGVV03KDw8PHSu7aa+2fHia1+QW7duoU+fPnorI0De61Itv/fAf/NQP49KlSrpHX/s7++PK1euGJR3Uaivs/9eY2+//TaWLVumNX751KlTuHbtGoKDgzUVl/8qzPMHnk/qMWjQoHx/fOp7rfWtr6j+ca1rv3qfoe+H4nj/vzimWS6Xw87ODrVr10bfvn21vscK+nzWdz106NABly9fxuHDhxEUFKQ1ZvDZs2cAno8j7Nq1q97xhOrvw4LGtOqbDEnf59eIESNw7NgxfPPNN+jTpw9MTExQr149tGvXDq+99prW2LwX6ZtwS71dPevyi7kvXboUS5cuNSh/9d85ICAgz/h1YyjOz/v8rgMPDw+dawEX9johqkhYKTSiBg0a4Pvvv8eFCxcMKh8aGqo57kUNGzZErVq1cP36dZw/fx5NmzbFzZs3cfHiRfj7++eZ9CM3NxfA87uLjo6O+Z5T191HS0tLg/JVe/jwIYYNG4bMzEzMnj0bQ4cOhb+/P6ysrCCTyfDhhx/i008/1dkS+tZbb2HRokVYv349PvzwQ6SkpGD79u2wsrIqcEB7WXHp0iUAz7+cdP0gKOzrbQxFWZ5DVytoUWO9rBdbZ9X05VfaiHy9BgwYgLCwMPTt2xczZsxAtWrVYGdnB4VCgYMHD6Jr1656F6Muib9bUUmSpJkhuXbt2lr7AgMD0a1bNxw4cACHDx9Gp06d8NVXXwGA1sQm/1WY55+Wlob+/fsjNjYWY8eOxYQJExAYGAgbGxvI5XKsW7cOb731VpFfaxF/i+J4/+tap1CkDh064Msvv8SRI0cwfvx4HDlyBNWqVYO3tze8vb3h7u6uqQyqZ+3+b6VQ/X04bNiwIlWS9H0+y+VybN26FTNmzMBvv/2Go0eP4syZM7h48SKWLl2KOXPmYMGCBYU+n67cmzRpgho1auRbVl0ZK+nPuZf5PtP1uf2i/K6DsvR5RVRasFJoRD169MD777+P69ev49KlS/nOQBobG4uDBw8CAHr27Jln/xtvvIEZM2bgm2++QdOmTbVaCf/7JVCpUiXcvn0bkyZNQseOHQU+I9327duHzMxMvPrqq1i4cGGe/Xfv3tV7rJeXF/r164effvoJ+/btQ0REBNLS0jB69OhCdfFTt8io76z+V05OjuYOqjFbCQFoppVv27atzhagss7LywvAv3eo/0vXshAvS939KjU1Nc++nJwcPH78OM929bpt+bWaieDs7Axzc3NkZWXh0aNHOluc1O/T4nwv3rp1C9evX4e7uzt+/vnnPHfR87suC0v9PB4+fAiVSqXzB1pxvA/UDh48iISEBJiYmOjscv7OO+/gwIEDWLt2LYKDg/Hzzz/Dzs4Ow4cPF3L+kydPIjY2Fg0bNswzKykg9rUuKl9fX9y+fRthYWHCZ1guiLe3N27duoX79++jZcuWefbrux7atGkDExMTHDt2DJGRkbh7965WRb59+/bYsWMHYmNjcerUKdjY2KBJkyZaMSpVqoS7d+9iwYIFmq6EItWsWRM1a9bEBx98gJycHPz8888YOXIkFi5ciGHDhuWZ9Vnfsh/q6+PF10D92dGlSxd8/PHHBuWjPiY8PFznbNclKb/PbQB5lh8houLFWylGVK1aNfTu3RvA8x8l2dnZesu+9957UCqVaNiwoc7xRK+99hrkcjl+/PFHZGZmapaT+G/XUQCaZQj+u05ScUlISACgu7tVXFxcgYu2T5w4EQDw1Vdf4euvvwaQ/x18XdStpbt379a5btP333+P7OxsBAYGGrVSePDgQc36U9OmTTPKOdVfvLrWUisO6inh9a2z9eJaa6KoK6K3b9/Os+/o0aM6n7t6PMrOnTuRlJRk0HmK8lqamJigRYsWAKBzLcDc3FzN+GD1OpnFQX1dqtcK+6/t27cLO1elSpXg7++PrKwsneu+Xbt2DVevXhV2vhelpKRoFq0fNmyYzmVLunXrhsDAQOzduxeffPIJsrKy8Prrr8Pa2lpIDvl9BiqVSr1r4RmT+v1fElPzqz+f9a2NqR7v+d/rwdbWFo0aNcLTp081a9292BLYoUMHqFQqfPbZZ0hNTUWrVq3yVIKM+X1oYmKCIUOGoE2bNpAkCf/880+eMj///LPO3wI//PADAGj1/FHnvmvXrgJb0dQ8PT1Rp04dpKen48cffzToGEM+59Sv68t8r+T3uX3r1i29NxaJqHiwUmhka9euhbu7O86cOYPevXvnGW+SnJyMN998E9u3b4eNjU2eyWTUvLy80KlTJ8THx2P69Ol4+PAhWrZsqfPO57hx4+Dj44Ovv/4an332mc6+9Ddu3BD2Q0V9J/SXX37RGj+ZlpaGMWPG5DvOEHj+Q6B27drYv38/rl+/joYNG2oG8RuqTZs2aNiwIRISEjBp0iStL907d+5oxmIaq2KWkpKCL774Ar1794ZKpcK7776rcxB8cVBXeu/evWuUiuHAgQPh5uaGS5cuYdmyZVr7fv31V/z000/Cz6l+Lf/3v/9pLeh+9+5dvPvuuzqPadCggWZ9sgEDBmiN9QSe/81eXAMN+Pe1vHnzZqHyU1dSlixZopkAAnjePeqjjz7C3bt34evrq3fyCxGCgoIgl8tx7do1rUW+JUnCokWL8iz8/bLUr/usWbO0xkUlJyfj7bff1tt18mUcOnQIzZo1w82bN1G5cmW9467kcjkmTJiAnJwcTeWiMGOWC6L+DDxy5IjWD97s7GxMnjwZ9+7dE3auopo6dSqsra2xadMmrFy5Mk8l49atW7h161axnHvs2LGwsbHBoUOHsH79eq19e/fuxXfffQcTExNMmjQpz7HqSuDatWshk8m0PkfVPWHU49D/23UUAN5//33Y2toiJCQEGzdu1HTJVJMkCaGhoQXevPyvb775RjM04EWPHj3SjJ1V90540cOHDzF79myt6+HYsWPYtGkT5HK55iYp8HzoSO/evXH9+nUMHz5c5/wEMTExeV7TOXPmAAAmTZqEo0eP5jnm2LFjWjfGDPmcK+pn4YvUf7tvv/1W65qIiYnBm2++aXDFl4jEKH9910o5T09PnDx5Er1798bvv/8Of39/tGjRAl5eXoiPj8epU6eQnp4Ob29v7N69O99xAyNGjMDBgwexevVqzf/rYmtri99++w09e/bErFmz8OWXX6Ju3brw8PBAYmIi/vnnH0RGRmLw4MHo37//Sz/HXr16oV69erhy5QqqVq2Kdu3awcTEBCdOnIBcLseoUaPyzPz3XxMnTtS0Dha2lVDthx9+QPv27bFlyxYcPnwYLVq0QHJyMo4cOYKsrCwMHTpU6A9Btffff18zmD01NRWPHj3CpUuXoFQqYW5ujkWLFmHGjBnCz6uPn58f6tevj0uXLqFu3bpo2LAhzM3NUa1aNb2LZ78MGxsbbN26Fb1798bUqVOxZcsW1KpVC5GRkThz5gwmTZqEFStW6Jxxr6iGDBmCL774AteuXUOtWrXQsmVLJCUl4fz58+jbty8yMzN1dtPasmULunbtikOHDsHPzw+tW7eGo6Oj5m/WqFEjrS7X/fr1w7FjxzB8+HB06dJF06X5888/zzNb5It69eqFadOmYenSpWjWrBnatm2rWbw+LCwMDg4O+PHHHw1ehL4oXF1dMX78ePzvf/9D+/bt0a5dO7i6uuLixYu4f/8+3n//fXzxxRfCzjdp0iT8/vvv+PPPP1G9enV07NgRZmZmOHr0KGxtbdG7d2/s3bu3SLF3796t6V6nVCoRHx+PS5cuaSbX6Nq1KzZu3Jhvt8jRo0djzpw5yMjIQKtWrfKMPXwZDRo0QPfu3bF//37Uq1cPHTt2hI2NDc6cOYOEhAS8++67WLVqlbDzFYW/vz+2b9+OwYMH47333sOXX36Jxo0baxav/+eff7B58+Y83R1F8PT0xNatWzF06FCMGzcOa9euRY0aNRAREYEzZ85AJpNhzZo1Omeo7dChAxYtWoTMzEwEBwdrXXeVK1eGn5+f5lrXVSn08/PDzp07MXDgQIwZMwYhISGoVasWnJ2dER8fj8uXLyMmJgYzZsxA586dDX5OO3fuxIgRI1CpUiXUq1cP9vb2iI2NxcmTJ5GZmYlBgwahadOmeY576623sGLFCuzZswcNGzbE48ePceLECahUKixYsAANGzbUKr9161b06tUL27dvx969exEcHAw/Pz9kZmYiLCwMN27cgJubG8aOHas5ZuDAgZgzZw4+/vhjdOjQAfXr10f16tXx7Nkz3LhxA5GRkQgPD4e9vT2A59ePlZUVdu7ciTZt2iAwMBAKhQK9e/fW9Hbq168fli1bho4dO6JDhw6a77wNGzYY/Jq1adMGnTt3xp9//on69eujTZs2yM7Oxvnz51GvXj20aNFCM3MzERlByayEQUqlUlq3bp3UpUsXyc3NTTI1NZWcnZ2lVq1aSV988YWUmppaYIz09HTJzs5OAiBZWFhoLT6rS0JCgvTxxx9LjRo1kmxtbSVzc3PJ19dXatOmjbRo0SLp7t27WuUNWYNQX5mkpCRpypQpUpUqVSRzc3PJ29tbGj16tPTo0SOD1kC6e/euhP9f7Pu/i9wXRkxMjCYPMzMzydbWVmrVqpW0ZcsWSaVS5SkvYp1C9UMul0v29vZSYGCg1LdvX2nZsmXS06dP9R5vyOtSlHUK1fsHDRokubu7axaPf/E5FrQeVGEXhZckSTp//rzUrVs3yc7OTrK2tpaaNm0q7dixQzp58qQEPF8IvTAKWiMwJiZGGjVqlOTm5iaZmZlJ1apVk5YsWSLl5ubme2xGRoa0bNkyqUmTJpKtra1kYWEh+fv7SwMHDsyzPmBubq708ccfS9WrV5fMzc3zrE2pb51CtV27dkmdOnXSLJ7t6+srjRs3TmdeBf1Ni/Jezc3NldasWSPVrVtXsrKykpydnaUePXpIZ86c0RuvoPPk95wzMzOljz/+WHP9eXp6SqNHj5aePHlS4Bplury44Lf6YWVlJXl6ekqtW7eWpk2bJoWGhhocr1WrVhIA6fvvv9dbpqC/qb5rUv3ca9SoIVlYWEhubm7SoEGDpBs3buiNWdC58rse9b1fCvr73blzR3rrrbekgIAAyczMTHJwcJDq1Kkjvf/++3nWwtUnv8Xr83P58mVp6NChkoeHh2Rqaiq5uLhIffr0kU6ePKn3mIyMDM21N3Xq1Dz7R48eLQGQHB0dtRaE/6+oqCjpgw8+kOrUqSNZW1tLlpaWUkBAgNS5c2dp+fLlUlRUlFb5gj5/jh8/Lk2aNElq1KiR5jPIx8dH6tixo7Rt2zYpJydHq/yL7//Q0FDplVdekRwcHCRLS0upcePG0rZt2/Tmnp2dLW3evFnq2LGj5OzsLJmYmEju7u5Sw4YNpalTp0qnT5/WedzRo0elfv36Se7u7pKpqank5uYmtWjRQlq8eLHWWo6SJElHjhyR2rVrJ9nb22vWFH3xPZ6eni5NnTpVCggIkExNTfOsW2jI95kkSVJqaqo0efJkydvbWzIzM5P8/f2lDz/8UMrIyCjS91JBn5uG5kVUEckkqRj68BC9pE8++QQfffSRplWJyg/133bixImaVm4iY4uMjETlypXh5OSER48eCW25JirIyJEjsXXrVmzevBkjR44s6XSIiDimkEqf+Ph4rFixAgqFQu94MCrdnjx5ojWOTO2PP/7AokWLAOieFInIWObPn4/c3FxMmDCBFUIiIqrwSl2l8Pbt2xg+fDhq1KgBe3t7WFlZoXr16pg6darOaeVv376Nvn37wtHREdbW1mjdurVmfSIqW5YsWYI33ngDwcHBePr0KcaNG4cqVaqUdFpUBH/99Rd8fX0RHByMvn37on///qhduza6deuG9PR0zJo1K89U8UTF7cyZMxgzZgzatGmDTZs2wdPTE1OnTi3ptIiI6AUqlQrLli1D9erVYWFhgUqVKmHatGlIS0srluP379+PFi1awNraGk5OThg4cCDCw8PzlLtw4QImTZqEli1bwsbGBjKZLN+1WbOysjB37lwEBATA3NwcgYGBWLhwYb6rD5SkUjfRzKNHj/D48WP069cPPj4+MDExwT///IN169Zh+/btuHz5Mtzc3AAA9+7dQ4sWLWBiYoIPPvgA9vb2WL9+Pbp27YoDBw7oXMqBSq99+/bh+PHjcHd3x7vvvovFixeXdEpURHXq1MG4ceNw/PhxHD9+HKmpqXB0dES3bt0wfvx49OnTp6RTpAooLCwMGzduhLW1Ndq3b49ly5ZpJtcgIqLSYcqUKVi5ciX69euHadOm4ebNm1i5ciUuXbqEQ4cO6Vz7tqjH79y5EwMGDEC9evWwZMkSJCUlYfny5WjZsiX++usvzdIpwPPK45o1a1C9enXUq1evwImQBg8ejD179mD06NFo3rw5zp49izlz5uDu3bv5ViZLTEkPajTUjh07JADS559/rtk2cOBASS6XS5cuXdJsS0lJkXx9faWqVavqnEiEiIiIiIhKn2vXrkkymUzq37+/1vaVK1cWODFYYY9XKpWSl5eX5OvrK6WkpGi2X7p0SZLL5dLYsWO1Yjx58kQzEeRPP/2U72Rp+/bt0zkh1tSpUyUAeieEKkmlrvuoPn5+fgCAZ8+eAXi+5t3evXvRrl07BAcHa8rZ2NhgzJgxCAsLQ2hoaEmkSkREREREhbRt2zZIkoTJkydrbR87diysrKzw3XffCTv++PHjiI6OxpgxYzTLqgBAcHAw2rVrhx9//FGrq6e7uzusra0Neh4//PADAOTJQ/3/BT2PklDquo+qZWZmIjU1FZmZmbhx44ZmXbfu3bsDAK5evYqsrCw0b948z7HNmjUDAISGhhZ53JKnp6fW/6tUKly8eBG2traQyWRFiklEREREZZskSUhJSYGXl1eBXRlLSmZmJpRKpdHOV7Vq1Ty/j3XNBVKQ0NBQyOXyPL/fLSwsEBwcXGCDT2GOV/+3vrrEkSNHEBYWhlq1ahXpeXh7e6NSpUpa2ytVqgQvL69S2XBVaiuFGzZs0Jp50t/fH9999x1at24NAIiOjgYAeHt75zlWvS0qKkpYPiqVKs8floiIiIgqpocPH8LHx6ek08gjMzMTAf6ueBKTarRzyuVyuLq6vnTDSXR0NFxcXGBubp5nn7e3N86cOQOlUql31ujCHG9oXaIolcLo6GjUrFlT5z5vb2+dM7SXtFJbKezbty+qV6+O1NRUXLp0CXv37kVcXJxmf3p6OgDo/KNbWFholSmK/97dSEpKgoODA0JGLIGFmWWR42pxcRITBwDiEsTFAgATcW8NSfCdKpmzo7hgpoIvgWRxH8AptV2ExQIAu1uJwmJJmVnCYgFAUmMPofHsLz0VFkumUAiLJZpkLeizSB0vNq7gQoZydxUXC0Bqpbyf9UVlG5EhLBYA4FmysFCJTcVeC7nWYpcilgReDi6hRf+O1ikhUVws0Us4ywW+cA624mIByHGwEBZLcUfczXgAkAn8LZJV3bPgQgbKzEzHpx++BltbsX8LUZRKJZ7EpOLB9UmwsxX32alPckoW/GqtRFhYGOzs7F4qVnp6us7f9oD273t9lcLCHF+cdYmC8niZOkpxKbWVQh8fH83dl759++LVV19F48aNNdPZW1lZAXg+3et/ZWZmAoCmjAjqOx8WZpbiKoUW4vKDmeAfOQIrSxLE/qiWmYt83QRfAlkqYaGyLQ3rt24oC3NxlXPRw5GzrEQ/V8OmrTZEqa4UWgiuFIr6bAPEfr4ByLEU98PVwkLwEABzcdOLWwi+FnKsBFcKBX5kWoj7kz5nJvBmlehKocjPEZHfgQByBH6OKER+hkBspVAm+DsVQKkfTmRnaw47u+KvFIpkZWWF2NhYnfsM+X1fmOOLsy5hZWWlM646tsg6iiilsyO0DnXr1kX9+vXxv//9DwA0U8Tq6iKq3qarOZiIiIiIqLyTjPiPKF5eXoiLi9NZoYqKioKLi4veVsLCHl+cdQkvLy+9w9iioqJKZR2lzFQKASAjIwMJCc+7SdapUwfm5uY4e/ZsnnLnzp0DADRq1Mio+RERERERUdE0btwYKpUKFy5c0NqemZmJy5cvF/jbvjDHN27cGAD01iXs7OxQtWrVIj+PqKgoPHz4UGv7w4cPER0dXSrrKKWuUvjkyROd248ePYpr165pZha1sbFBr169cOzYMVy5ckVTLjU1FRs2bEBQUFCRZx4lIiIiIirLVJCM9hBl8ODBkMlkWL58udb29evXIz09HcOHD9dsu3fvHm7dulXk49u2bQtPT09s2LABqan/zglx5coVHDt2DAMHDoSpqWmRnsfQoUMBIE8e6v9/MY/SotSNKZwwYQIeP36MDh06wM/PD5mZmbh48SK2b98OW1tbLF26VFP2008/xeHDh9GlSxdMmTIFdnZ2WL9+PaKiorBv375S39ebiIiIiIieq1OnDiZOnIjVq1ejf//+6N69O27evImVK1eibdu2GDZsmKZsx44d8eDBA0gvjAEuzPGmpqZYsWIFBg8ejNatW2Ps2LFITk7GsmXL4Orqivnz52vl9uDBA3z77bcAgOvXrwMAfv31V81Moq+//rpmXfUePXqgZ8+e+PLLL5GUlITmzZvj7Nmz2LhxI1577TW0atWqeF7AlyCTJNGjqV/Ojh078M033+DKlSt4+vQpZDIZ/Pz80LlzZ0yfPh2+vr5a5W/evImZM2fi+PHjUCqVaNCgAUJCQtCpUyeheSUnJ8Pe3h6fvf01LMzFDKTOquYuJA4AmF15WHChQnjW2U9YLJngd5jjad2tyUWRUc1NWCwAsLr/TFgsyVLs4HDJRNxEB5PeOS8sFgCs/EDsci9ZDQKExTK//EBYLACQOzkIi6X0eLlZ3v7rWVVxnUfcfi/8+lT5kdLFTaaVO0XgzM8AFL+ImzEl17pod6X1SfYXe+/X+Vy8sFgqW7ETLWR4ivs7WD0UN1kVACAhSVgo6/fEdvJ6tl/c96B5lLjnCQAQeG9fshD3nZqZmY6Znw5DUlLSS8+2WRzUv1mfRk41ykQzyclZcPX9UtjrkZubi+XLl2PdunWIiIiAi4sLBg8ejAULFmgtMu/v75+nUliY49V+++03LFy4EFevXoW5uTk6duyIzz//HIGBgVrljh07hvbt2+vN++jRo2jXrp3m/zMzM7Fw4UJ89913ePz4Mby9vTFq1CjMnDmzyC2QxanUtRQOGjQIgwYNMrh8jRo1sGfPnmLMiIiIiIiIjEGhUGDatGmYNm1avuUiIiJe6ni1nj17omfPngWWa9euXZ4KaH4sLCywcOFCLFy40OBjSlKpqxQSERGRYWQywN3NEh7uNjA1zdsbINtabKuSmbW9uGAClxsAgFxLcb0hFP45wmIBALLELVtiIrL5DICyvriWJHk1Z2GxhFPkfy1kZ+cgNioZsVFpwlckKSmiZwbN7zxU9rFSSEREVAbJZEBwXVdUqeIDU1NznePoc83EViBM3ARWlgr4kV5YKlNx8eTKXGGxAAA54uLJ3cX+TXNtBK4FKPp1E0me//tDkiQEVVPi7u0H+OfC43JTMSQyFCuFREREZZC7myWqVPGBmZnoVeCJKh6ZTAYzM3NUqeaHmKhkxDwSPK60BKgkCSoj1G6NcQ4qfqVuSQoiIiIq2PMuo8U/iQRRRWJqagY379I3eQxRcWNLIRERURlkaqrg0ktEgslkMpialo+fx9L/P4xxHir72FJIRERERERUgZWPWyFERERERKShggSVEdrxjHEOKn5sKSQiIiIiIqrAWCkkIiIiIiKqwFgpJCIiojKrUZO66PdqT4PL/7jte3i52uPM6ZNa2yMfRGDUG8NQu3pleHg7YdLkiQCg9d8G5dO0HvoN6GVw+eLyIPwB3hj4Omr4VIObhQveHfNOSadUoO07foBHJWecPnuqpFMpFyQj/kNlH8cUFlJOJWfkWFgLiaXIUAmJAwBJHfyExQIAsxRxF7j16fvCYgFAbjVfYbFMMsX9DQCIXYxZ8KyCaT7i1jLbnewjLBYAJPQIFBrP+USssFjxYz2ExQIAm/NmwmIF9RJ7bUV+7SYslrKyu7BYAGB686G4WN+I/QGT7i9uWQiLy5EGl5VVtYcsU5lvGROl2Hu/2Y7ifjYoMgQFkj1/qEwNKy4pnv9bpdA+5r1Jb+PW9Wt49/334WHnCn9/f+1pFV/47yVLP0PtWnXwSrceek6iXR5m4l431VPDvrfeHfkubt66jvfemQo3Nzf4+wVA9TTv94osN//3kGinz57GmXOnMW70W7C3t9feqfr/Fy1XBeTmAiYKYedVmRp+LeRamiDDy0rv/swMVoKo/GGlkIiIiCqMV4cMQe9XX4WZ2b83aLKysnDh7BmMHDsO49+dBJPUXM2+iLvRUCi0KydLly3GoIFDdVYKTx+/UOJLhWRlZeH8hbMYPXIM3h5fuloIz5w7jaUrvsDgAUPyVAoH9h+Ivr36av1tqOhU0r/17OI+D5V9rBQSERGVEwl9uwI5OSWdRsFMTeHwxxGjnjI1JQU2trZQKBR5KnlxsbGQJAkOjo55jrOwKFwvC3NzcS3HRfU07unz5+OQ9/mUZrr+NkRkHBxTSEREVF7k5ADZ2WXjUUhRUY/w1piRqBboi6qVK+GN1wYjIjxcZ1kfB3tMmTABp44fQ79uXVHV2wsjhwwBAOz4/nv4ONjjzMnnYwqnTJiApnVqAwCWff4ZfBzs4eHjhNNnno9r8/BxwqQpz8cURj6MhIeP0/M4P22Dh4+T5qHWqFneMYWNGtdFv/49cedOGIa/NgiBVSohqKov3hwzArGxMXnyv3HjGgYP7o+Ayt6oUbMy3p00AfHx8fDwdNTkos+kKRPRqFk9AM9bND0qOWvG6Z0+ewoelZyxfccPeY+b9i48/LW7kPcb3BeNWjbEk5gnGP/uW6hWNwgB1f0w5PVBuHf/Xp4YSqUSq79ahY6vtEdAdT8E1QlEl16dsXHrRs05lq74AgDQpHUjePi7wcPfDUuWLQYAbP9pOzz83XD67GmtuPEJ8Zg5ezoaNK6DSgEeaNC4DmbOno6EZwla5bbv+AEePs44dfoE/vfVajRt2RC+lT3RonUT7Nie9zmXd5IRH1T2saWQiIiISrWkpET079Md0VFReH3EaFStWg1nz57GgP69kJmpe3Di1cuXsP/XvRj2xggMGDpUb+zXRo1CrTp1EPLhLHTr2ROv9OoNRaYKVYOq5inr7OyM1Su+wjvvjUezps3x2rARBj+HJ08eo/+rvfDKKz0wd858XL9xDd9+uwWpKSn48cedmnL3799Dn77doVJJGPPmOHh4euLw4T8xdNgAg87zxmsjUbtWHcydPxvdu/VA91eeT8JTtUpVhN0NMzhftfSMdPQd1BsN6zfErOkfIvJRJDZsXo+RY9/AsYMnNC17SqUSQ94YjDPnTqNd63Z4td8AmJtb4NatG9j/+z68OeJNvDHsDaSmpmD/H/uxYM7HcHJ6XpmuWb2m3vMnJyejV59XEB5xH0MHD0edOnVx7do/2PrNZpw+fRIHfvsTNja2Wscs+mwhMjMz8frwETA3M8fWbzdh8qQJ8A+ojCZNmxX6NSCqCFgpJCIiolLtf6tX4mFkJL5csRpDhr4GABg5egzmfjQTG9Z9pfOY2zdvYtvu3Wjdrn2+sRs2aQI3d3eEfDgLNWrVxquDB2uNKXyRtZU1Brw6CO+8Nx6+vv4Y8Oogg59DePh9fP31JvTp3U+zTS6XY8uWjbh79w6qVAkCAHz62UKkpKRg754DaNLkeQXmzdHjMO6t0bh69XKB52nUsDHc3Nwxd/5s1KhRCwP6/5tjUSqFCQnxeHvc23hn/Luabc5Ozvj40wU4ceo42rftAABYt+lrnDl3GpPefg8ffjBbK4ZKpdLkVqN6Tez/Yz+6dXkFvpUKnjhuzdqVuB9+D59+shijRryp2V6rVm18+NEMrFm7CjOmf6h1jFKpxO/7DmnGJvbs0QtNWzbE5k3rKlSlkIvXU2Gw+ygRERGVar8f2AdXVzcMHKTd4jfx3cl6j6lZu06BFUJj8vDw1KoQAkCrlm0AAPfDn3fFzM3NxeHDf6J+/YaaCqHa+PGGL4shklwux5iRY7W2tWrRGgBwP+Lf7rs7d/8CB3sHTJ00TWeMotr/+z44O7vg9eHarbJvvDYSzs4u2P/7vjzHjHxjtNZkNZ6eXqgcWAXhOrq8EtFzrBQSERFRqRb5IAIBlQPzTELi7u6Rd1mD/1e5itilbl6Wn2/epaMc/7/75LNnzwAA8fFxSE9PQ2BglTxlq+jYZgwe7h55Jttx/P8JbJ69MKYvPCIcVQKrFHpinoI8jIxElcAqMDHR7txmYmKCwMqBiHzwIM8xfn46XmtHJ618KwIJgMoID7YTlg/sPkpERFRemJSRr3VTAxcVfAmWlvrXmSsJ8nxm1ZQk4/yslkH/Uhm5ubpnrZXLSz7vwtKXcylNl6hUKCPfHkRERFQQp91/aG94iW57uohcvB6FWLze188f4ffvITc3V6u1MCbmCZKSksTlVMKcnV1gZWWNe/fu5tl3V8e2wlK38CUmJubZ9yAyb4tbYVQOqIy79+4iKysr32U5CruGo6+fH+7eu4ucnByt1sKcnBzcu38PvjpaBek5Y80Myrp2+cDuo0RERFSqde3WHU+fxuKnHdu0tq9ZtbxE8rG2tkFi4jPhcRUKBTp06IRLly7iwoVzWvu++mrNS8f39fWFiYkJTpw6rrU99OIFXLx08aVi9+/7KhKTErF89bI8+15sUbS2tgYAJCYlGhT3la7dER8fh++3fau1/bsfvkF8fBy6d+tR9KSJSIMthURERFSqvf3Oe9i18ydMn/oerl65gmrVquPMmVO4+FconJydjZ5PwwYNcfLkcaxaswI+3j6QyYC+fV4VEnvmjNk4duwIhg4biNGjxsDTywuHDh1EfHw8gMK3tL3I2toGgwcOxffbvsX4iWPRonlL3L9/Fz/+tB01q9fE9ZvXixx77Khx+PPwQSxb9SUuX7mEtm3awdzcHLfDbuPe/bv46ftfAAAN6zcEACz8bAH69xkAC3NzVKtWHTWq1dAZd+KESfj1t72YNfsD/PPPVdSuXQfXrv2DH7Z/hyqBVTBxwrs6jyOiwmGlkIiIiEo1BwcH7Np7APPnzsbPO7YDAJq1aIGfd/6KQQN6Gz2fzz75ArM+mo4Vq5YiNTUVgLhKYZUqQdi9ax/mL5iDDRu+hrmFOTp16opPP/0CTZsGv/RELgvmLYQkSTjw+z78cfAA6tapi282fotvf/j2pSqFZmZm2P7NDny1YS127tmJTxcvgrm5OQICKmPIwCGack0aNcVHM+fgm++34v1ZU5GTk4Np772vt1JoZ2eHvbv3Y8nSz3Dw4O/YvuMHuLq44o3XR2L6tJl51iikf6kggyqfcaQiz0Nln0wqraOES5nk5GTY29vj07GrYGFmKSSm3MZGSBwAyHUSFwsAZBGPhcYTSWYpcGYzweNtMqu4CIulMhH7IWsZGl5wIQPJrMRcA2rvzrstNN7KGQWvfWWozAb+wmIBgNUDceOfcu3FTqQhyxX3dZBrKfaeo+JulLBYKn9PYbEAwH3gE2Gx4r7UP6nHfzXoVh1VaxUww6bgzzih8SSVuFiA2IFNubrXKSwyE8P/rvpcuXoZXbt3xOwZc/DuxPcEJPVcrvPL56aRJfb9pkhRCgxm+PMMu3Uffx+L0Ls/MysdM5e8gaSkJNjZ2QlITiz1b9Y7EZNga6d/fKcoKclZCPJfWWpfDzIMWwqJiIiISpGMjAxYWv57802SJKxZuwoA0KZ125JKi8oYSTLOjKtsXiofWCkkIiIiKkU6dW2Lli1bo0b1mkhPT8efh/7AufNn0ad3P9SrG1zS6RFROcRKIREREVEp0rVLd/x56Hf8/MtPyM3NgW8lX8yYPgvvvC2u2yiVf+rF5Y1xHir7WCkkIiIiKkXmfhSCuR+F6N6pYl89IhKPlUIiIiIionJGggySEWYGNcY5qPhx8XoiIqKyiL/DiIoHG2OpAmJLIRERURmUnZUNSZJeajFzItImSRKys3NKOg0huE4hFQZbComIiMqg2AfPkJ2TXdJpEJUr2dlKxD4St54sUVnBSiEREVEZFBv+DHdvhEOZrYTEhcKIXookSVAqs3D39gPEPkwp6XSEkIz4oLKP3UeJiIjKIEkl4Z8j9xATngA3P0eYmpnmLWSiEHtShcB7ySrBE9mLrBiL7j5oZiYulipXXCwA2X463jdFlSr2/WYamy4umK7rQ00CsrNzEPsoCbEPU7gYO1VIrBQSERGVUZJKQsy9BMTcS9C5X2ZlKfZ8lubCYsmylMJiAQByxVUyVcliW4rkjg7CYklKsa/bs+E24oJFWImLBcDxaKTAYPbiYpURHFNIhcFKYSHJ5ArI5GLuhEmZWULiAIAiTuwd1/jO/sJiOR0W+KEOILWeu7BYKsFXgO1DcV/W8qQ0YbEAIKlNgLBYdhdjhcUCgC+2txEaz8IlWVgsq/BEYbEAQErPEBYry0/sjxyLi+HCYikUYi+uzAa+wmKlegkLBQDIOeAjLNazAWKbKBTpYkeJuP7xRFiszCA3YbEAQKEU99qZCPx+BoBMH1thsXItxP5Nrc3FjZ8zDRNbOZAErskoE9nKLTIWUSnBdzUREREREVEFxpZCIiIiIqJyRoIMksTF68kwbCkkIiIiIiKqwNhSSERERERUznCiGSoMthQSERERERFVYGwpJCIiIiIqZyRJBpUxxhQa4RxU/NhSSEREREREVIGxpZCIiIiIqJyRIDPKzKCcfbR8YEshERERERFRBcaWQiIiIiKicoazj1JhsKWQiIiIiIioAmNLYWEpFICJQkgoKT1DSBwAgFzsXRq7yBxxwWRic2vX9ZKwWBdXVRYWCwBUlubCYmW72QmLBQCVWz4UFuvpKUlYLABI9RR7f8r8eqqwWJKXi7BYAICUFGGhspzEvm5W9vbiggn+TEqqmSssllWEmM9wNbNr4q4tjzAzYbEAADKx75FcH3HXg8WDRGGxAEDp7SAsVlIzL2GxAMAqVtx3qiJL3LUAAKrDtsJiyTLEffYCgMxeXG65VuKuLZVc4G+kYsSWQioMthQSERERERFVYGwpJCIiIiIqZ6T/fxjjPFT2saWQiIiIiIioAmOlkIiIiIiIqAJj91EiIiIionLm+UQzxd/+w4lmyge2FBIREREREVVgbCkkIiIiIipnVJIMKskIS1IY4RxU/NhSSEREREREVIGxpZCIiIiIqJyRIINkhPF+xjgHFT+2FBIREREREVVgbCkkIiIiIipnns8+aoQxhWwpLBdYKSwkKSsLkiSmgfXpgAAhcQDA/WiSsFgAYBKfJiyWlJMjLBYAnNhfX1gsq8SHwmIBAOJzhYVSSJKwWABwLcpXWCwP6wRhsQDA+Ui00Hgi33OyHJWwWAAAZydhoWwfKIXFAgApPV1YLJm9nbBYAOD5W7KwWNnuYnNLbyTu2rK+/lRYLABIqecqNJ5ZqrjPJbm9tbBYACDLEZdbhpvYz1+lnUJYLJffIoXFAgBZgKe4WEqx3/dSZpawWHILM3GxMrOFxSIqLUpd99GwsDDMnTsXzZo1g6urK2xtbREcHIxPPvkEaWl5Kypnz55F79694ePjA0tLSwQGBmLs2LG4f/9+CWRPRERERFTy1GMKjfGgsq/UtRRu2rQJa9asQe/evTF8+HCYmpri6NGj+Oijj7Bjxw6cO3cOlpaWAIDff/8dPXr0QGBgIN555x24uLjg+vXrWLduHX755Rf8888/8Pb2LuFnREREREREVHqVukrhgAEDMGvWLNjb22u2jR8/HkFBQfjkk0+wceNGvPPOOwCAZcuWQaFQ4MyZM3BxcdGUr1WrFsaOHYuffvoJkydPNvZTICIiIiIqUVynkAqj1HUfbdSokVaFUG3w4MEAgGvXrmm2JScnw8LCAo6Ojlplvby8AADW1mLHKxAREREREZU3pa6lUJ9Hjx4BANzd3TXbunbtinPnzmHEiBGYPn06XFxccO3aNUybNg01atTAkCFDinw+T0/tgdcqleDJJoiIiIiIiEqBMlEpzM3NxccffwwTExMMGzZMs33WrFmIjY3Fpk2b8P3332u2d+/eHdu2bYOtrW1JpEtEREREVKK4eD0VRpmoFE6ePBlnz57FokWLUK1aNc12hUIBb29vdOrUCf369YOTkxNOnz6NVatWYciQIdizZw9MTU2LdM7Hjx9r/X9ycrLObq1ERERERERlWamvFM6ZMwerV6/GuHHjMGvWLK19I0eOxJkzZ3D9+nXNjKT9+vVDlSpVMGHCBGzduhVjxowpibSJiIiIiEqMZKSJZiRONFMulLqJZl4UEhKChQsXYtSoUfjqq6+09kVGRuL7779Hjx49NBVCtYEDBwIAjh8/brRciYiIiIiIyqJS21IYEhKC+fPnY8SIEdiwYQNkMu27EFFRUQCejzf8r5ycHK1/ExERERFVJBxTSIVRKlsKFyxYgPnz5+P111/Hpk2bIJfnTbNatWpQKBTYvXs3EhMTtfZt2bIFANC4cWMjZEtERERERFR2lbqWwjVr1mDevHnw9fVFp06d8MMPP2jtd3d3R+fOneHk5ITJkydj6dKlqF+/PsaOHauZaOb7779HYGBgsYwnzKrtA5mlmPUP3Q/GC4kDALEdnIXFAoBcC0lYLPcfE4TFAgDLi5HiginEXgIZDSsJiyX0eQJw/yFKYDSxdwUlwa36MoFrlMbXsxIWCwAsY8VdW9b3E4XFAgDJrGgTc+mS5SF29meziKfCYiluPRQWCwDMavoKi5Xj7SQsFgDY3ksTGg85eXvnFNXTvhbCYgGA63Zx3zUe9zKFxQIAmAj8rlGIvZ+fEmAmLJZ9juD1oZOShYWSZ2QJiyXLEherOKkgg8oIrXjGOAcVv1JXKQwNDQXwfMzgiBEj8uxv27YtOnfuDABYsmQJqlWrhg0bNmDRokXIysqCt7c3JkyYgJCQENjZ2Rk1dyIiIiIiorKm1FUKt2zZoun+WRCZTIaxY8di7NixxZsUEREREVEZwjGFVBilckwhERERERERGUepaykkIiIiIqKXozLSOoXGOAcVP7YUEhERERERVWBsKSQiIiIiKmc4+ygVBlsKiYiIiIiIKjBWComIiIiIiCowdh8lIiIiIipnuCQFFQZbComIiIiIiCowthQSEREREZUznGiGCoOVwkKyuB0LC3NLIbGkt82FxAEAt2+ShMUCACizhYXKCfIRFgsATOLThMWKb+wgLBYAyAPShcWyvm0jLBYAxDV3FhbL+Wi0sFgAkNGgktB41vcShcVyOhAhLBYA5Aq+HkTKCnITFsssUdxnCACkj7IWFsv6ezNhsQDA5OZDYbFklhbCYgHA06GOQuO57hMY64dn4oIBeNbSQ1gsm6hcYbEAQKaShMWKr6MQFgsAnK/mCIslyxR73UMh7rlm+TiIi5VhKiwWUWnBSiERERERUTkjSTJIRlhY3hjnoOLHMYVEREREREQVGFsKiYiIiIjKGY4ppMJgSyEREREREVEFxpZCIiIiIqJyhmMKqTDYUkhERERERFSBsaWQiIiIiKickWCc8X7iFlyhksSWQiIiIiIiogqMLYVEREREROWMBBkko7QUckxhecCWQiIiIiIiogqMlUIiIiIiIqIKjN1HiYiIiIjKGZUkg8oIy0UY4xxU/FgpLCyF/PlDAOnLJCFxAECSxM79NGnxQ2GxPtvVVlgsAJj55mVhsVYvDhYWCwCyHtoKi/XOrAvCYgFAyPF2wmJl1fAQFgsALM/fFxpPshX3d5BZWwmLBQBKB4WwWDKVtbBYAJDmKS438xvRwmIBQObdSuKCVRH7eanIcRAWy/xJurBYAOC6L1tovKdNxb3nXHbHCosFAHM7HhMWa9XsysJiAYDM3k5YLNtwe2GxAMAkPEZcMDNTcbEAwMNFWCjTG+J+1+QqM4TForxUKhVWrFiBr7/+GhEREXB1dcWgQYOwYMECWFsX/BlU2OP379+PhQsX4sqVKzA3N0fHjh2xePFiBAQE5Cl7+/ZtzJgxA8ePH4dSqUSDBg0wf/58dOjQIU/ZyMhIfPLJJzh8+DCioqLg5OSEBg0aYPr06WjTpk3RXpxixO6jRERERETljHqiGWM8RJoyZQqmTp2KmjVrYtWqVRg4cCBWrlyJXr16QaVSCT1+586d6NmzJzIyMrBkyRJMnz4dJ06cQMuWLREdrX1z8969e2jRogXOnj2LDz74AEuWLEFqaiq6du2KQ4cOaZWNjo5Gw4YNsWPHDgwYMACrV6/G+PHjceXKFbRv3x779u17+RdKMLYUEhERERFRibt+/TpWrVqF/v3745dfftFsDwgIwKRJk7B9+3YMGzZMyPHZ2dl49913UalSJZw8eRI2NjYAgFdeeQUNGzZESEgI1q1bp4kxa9YsJCYm4uLFiwgODgYAvPHGG6hVqxYmTpyIW7duQSZ7XkHeunUr4uLisHv3bvTp00cTY+jQoQgKCsL69evRo0ePl3/BBGJLIRERERFROaOCzGgPUbZt2wZJkjB58mSt7WPHjoWVlRW+++47YccfP34c0dHRGDNmjKZCCADBwcFo164dfvzxR2RnP++Cn5aWhr1796Jdu3aaCiEA2NjYYMyYMQgLC0NoaKhme3JyMgDAy8tLKw8PDw/I5XKDusEaGyuFRERERERU4kJDQyGXy9GkSROt7RYWFggODtaqeL3s8er/bt68eZ44zZo1Q3JyMsLCwgAAV69eRVZWlt6yL8YDgC5dugAA3n77bRw7dgxRUVEIDQ3F0KFDYWNjg2nTpuX7PEoCK4VEREREROWMJBnvAQBBQUHw9PTUPIoiOjoaLi4uMDc3z7PP29sbcXFxUCqVQo5Xjxn09vbWWRYAoqKiCl0WANq3b481a9YgPDwc7du3h4+PD5o0aYLbt2/j3LlzaNCggd7nUFJYKSQiIiIiohKXnp6us0IHPG/tU5cRcbz637rKv0xZNVdXVzRq1AhLlizBnj17sGTJEiQlJaFHjx54+FDcbLiicKIZIiIiIqJyRgU5VEZo/1Gf486dO7Cze7nlV6ysrBAbq3u5mszMTE0ZEcer/52VlSW0LACsX78eb7/9Ni5duoTatWtrtnft2hUNGjTArFmzChwfaWxsKSQiIiIiohLn5eWFuLg4nZWvqKgouLi4wMzMTMjx6klgXuz2+WJZ4N+uoYUpCwCffvopqlevrlUhBIA6deqgevXqOH78uN7nUFJYKSQiIiIiKmeMPaZQhMaNG0OlUuHChQta2zMzM3H58mU0atRI2PGNGzcGAJw9ezZPnHPnzsHOzg5Vq1YF8LwyZ25urrcsAK3YUVFRyM3N1ZljTk4OcnJy8n0eJYGVQiIiIiIiKnGDBw+GTCbD8uXLtbavX78e6enpGD58uGbbvXv3cOvWrSIf37ZtW3h6emLDhg1ITU3VbL9y5QqOHTuGgQMHwtTUFMDzpSd69eqFY8eO4cqVK5qyqamp2LBhA4KCgrRmPK1Zs6ZmUpkXnT17FmFhYZoKaWnCMYVERERERFTi6tSpg4kTJ2L16tXo378/unfvjps3b2LlypVo27at1sL1HTt2xIMHDyC90FRZmONNTU2xYsUKDB48GK1bt8bYsWORnJyMZcuWwdXVFfPnz9fK7dNPP8Xhw4fRpUsXTJkyBXZ2dli/fj2ioqKwb98+zcL1ABASEoL+/fujc+fOGD9+PIKCgnDnzh2sXbsWZmZmmDdvXjG+ikUjkySRjb7lV3JyMuzt7fHZ7G2wsNA/wLWkZDnrnmmpqN4fdlJoPCpfPtvVVmi8lOpiu1F8UuO0sFhzT4t9rq7nksUFk4nt7JHlKW4xXfO4TGGxAADKbHGxklILLlMYMnELNye08yq4UCHYPNLdfamozOL0z/pXWIk1bYXFAgCrWHHP1TRF4PsNgMpM3LUqv5t3TNPLeNrPX1gspxti328qU3HXlsD11ZGZkYa577+KpKSkl55YpTiof7Nuvb4cVraWxX6+9JQMjKg1WdjrkZubi+XLl2PdunWIiIiAi4sLBg8ejAULFmgtMu/v75+nUliY49V+++03LFy4EFevXoW5uTk6duyIzz//HIGBgXnK3rx5EzNnzsTx48ehVCrRoEEDhISEoFOnTnnKHjlyBEuWLMGFCxeQlJQER0dHtGnTBnPmzEFwcPBLv06isaWQiIiIiIhKBYVCgWnTphW4wHtERMRLHa/Ws2dP9OzZ06CyNWrUwJ49ewwq26FDB3To0MGgsqUBK4VU5qjSc5C4+z4y/o6DKrP0DdQtTjJzBSzrusDh1cpQ2JiWdDpERERUSqkgg0pkE2k+56Gyj5VCKjMkSULqsWjEfnkFObEZJZ1OiUk79QTPtt+B23t1Ydu1klYfdiIiIiKiwmKlkMoE5cNUxC69jLSzMSWdSqmQm5CFx/NCkbgnAu7Tg2FeufSNaSAiIqKSI0kySFLx3zg2xjmo+LFSSKWaKjMXCd/eRsI3tyEpVSWdTqmT8fdTRLx2CE7DguA8ugbkVrykiYiIiKhw+AuSSq3UM08Q+8VlZEellXQqpVuuhIRvw5D8x0O4Ta0Hm3Ze7FJKRERUwUmQQTLCeD9jnIOKHyuFVOpkP0lH7LIrSD0WXdKplCk5sRmInnkO1s3d4TYtGGaV8k67TERERET0X6wUUqkhZauQsO0O4jfehJQpdq2jiiTtbAwihv0JpzeqwemNapCbK0o6JSIiIjIy1f8/jHEeKvtYKaRSIf3iU8QsvgRlRIrBxygczOAyoTbMg+yLMbPSQ/kgBU/XXEOuAYuCS0oV4jfcRPLvkXCbFgybFh5GyJCIiIiIyiJWCqlE5cRlIHblP0j546HhB8kA+74BcJ1QGwp7s+JLrpSxrOUEmzZeiN9wA8923ANypQKPyX6Uhqgpp2HTzgtuU+rB1MPKCJkSERFRSePso1QYrBRSiZByVEj85T7ivr4OVZrhC9CbV3eA+4z6sKzpVIzZlV4KG1O4Ta4Hux7+iFl8CZlX4w06LvVYNNLOxcD5zRpwGhoEmam8mDMlIiIiorKClcJCSqhtCXMrMa0tzlfThcQBAJOMstOjO+OfeMQsvoSssCSDj5HbmMJlQi049KsMmULcHamVswKExQKAnOrewmJNHXFK7z6LIHv4ft0Wyfse4Onqf5CbqCwwnpSZi7g115C87wHcP6gPq4auRc5tZr/jRT5WlwWH2gmNt/haW2GxRE/XIz1NEBcrwEtYLACQZxfc+mywZ8niYgGAlaWwUMogsd2pzcKfCovl+Pt9YbEA4FnXykLjOT0Td0PJ4YbhwwUMkiLuOxUQeC0AMLGwEBYrt7K47xkAsHoiLpbJQ8NuVBpKZmEuLJaUKm4mc1VWhrBYxUmSZFCxpZAMxEohGU1OYhbi1lxD0t6IQh1n190Xru/UgYmzuC/V8kAml8G+lz9s2njh6dprSNodbtDvGGVECh6+fQK2XSvBbVIdmLiI+7FNRERERGUPK4WUh0yVi5RjUVDeT4ZkwLg1Q0jKXCTujoAqueAWLTWzynZw/yAYVvWL3qJVESjszeAxswHse/kj5vNLyLqdaNBxKX88RNqpx7DvEyBu0Xu5DGZ+trBp4wm5GWc9JSIiIioLWCkkLc6PbqPm6Z2IThLXHaqwZFYmcBlTA46Dq0BmwrFvhrKs5QS/zR2QuOs+4tZehyo1u8BjVGk5ePbDHeG5mHhawX1qPdi0Edu9kYiIiAzDxeupMFgpJACAeVoiapzdC8/7l0s0D9uO3nB9ry5M3TlLZlHIFDI4DgiEbXtvPF39D5L3R5ZIHjmP0xE1/SysW3nAbVowzLysSyQPIiIiIioYK4UVnEyVC79rJxF08Q+YZGeVWB6mlWzg/n4wrJu5l1gO5YmJswU85zWGfW9/xCy+DOV9wZN+GCjt1BNEhB6E88jqcHytKruUEhERGQkXr6fCYKWwAnN8fB+1Tv0M22cCpx4rJJm5nBWGYmRV3xX+33bEsx/vIm79DUgZuUbPQcpSIe7rG0jaHwn36cGwbsqKPxEREVFpwkphBWSWkYJq53+DT1hoiebBroXGITORw2l4Vdh28sHTFVeRcjiqRPLIfpiKR5NOwbaTz/Muwm6c9ZSIiKi4SJIcklT8czMY4xxU/FgprEhUKvjePIuqofthqiy5NXY4CUnJMHW3gteiZkg7F4OYLy4j+2FqieSRcugRUs88gcvYGnAcxMmEiIiIiEoaK4UVhH1sJGqd+hn2cY8MPkZuZQKHwVWgsDMVk4RMBjNva1g394DMlBWBkmLdzB0B2zsj7XwMsh+mQlKJWXZElZaDZzvuQpVc8KynUnoOnq74B0m/PYD79PpCzk9ERET/kmDQ8sVCzkNlHyuF5ZxpZhqqhh5ApZtnISvEZcuFzcs3mYkcNi09hcd1GBiIuDXXkLQ3wqDyynvJeDj+OJrUz8CVbn2RZWMrPCciIiIiyh8rheWVpIJ32F+ofv5XmGWmGXxYqoM7rrfqjzfmxBZjclRemTiYw2N2Q9j38kfM4kvIupNk0HEBly7A++Y/uNqlF+43bglJzpZkIiKil8F1CqkwWCkspBHNjsHWzlxIrO8CmwiJAwAzfC5o/jvzThJiF19CxtV4g4+XWSjg/GYNVB0ahIamYiuEi3e0FRqvS9/zwmJl1/YRFgsAzG6Lm8l11Rdiu1XmOImb0GfK6FP57res6wy/LR2Q+Mt9xH11Har0nAJjmmVmoNHeHWh150+4fRAMy5pOotJ9KYt+Ffv+lbmIe16yWMMq3YaSS+ImFpcyMoXFAgC4OAgLZf4kRVgsAIhv5SEsluPhB8JiAYDz2adC4+W62AmLJYt4LCwWAMhcHMXFUhb8mVUYKhsLYbFk9wwfBmIIC1NfYbGe9HYRFgsAXP8SN2O25GojLFZOIW62E5UVpe52fFhYGObOnYtmzZrB1dUVtra2CA4OxieffIK0NN0X4b59+9CpUyc4OjrCysoKVatWxTvvvGPkzEtebmo2YpdfwYMRhwtVIbRp54WAH7vA+Y1qHOtHwshM5HAcXAUBP3WBbddKBh+XefMZIkcfxZPP/0ZusrIYMyQiIiq/JMl4Dyr7Sl1L4aZNm7BmzRr07t0bw4cPh6mpKY4ePYqPPvoIO3bswLlz52Bp+e84t/nz5yMkJARdu3bF/PnzYWVlhcjISFy9erUEn4WRSRKS/3yI2OVXkRtn+N15U29ruE2rVyxjy4jUTFws4bWgCdJ6+yN2yWUoIwxopZGApJ3hSD0aDdd3asOuux9kcnZPISIiIioOpa5SOGDAAMyaNQv29vaabePHj0dQUBA++eQTbNy4UdMKeOjQIYSEhGDBggWYM2dOSaVcomyinqLuhl/x+Oo9g4+Rmcnh9EY1OL1eDXILLhhPxmHdyA3+33VCwg93EL/pJqTMgrsF5T7LwpOPLyL590h4LWoGhZ2ZETIlIiIq+1SSDCojrCGoknjTtjwodX0FGzVqpFUhVBs8eDAA4Nq1a5ptixYtgpubG2bNmgUASE1NhUolbkxMaabIUqLG9wfRYeoquBWiQmjd3B3+P3SGy9iarBCS0clM5XAeUQ0B2zvDpq3h61Smhz7Fo6mnoVKKG19CRERERM+VukqhPo8ePR9Y7e7uDgBIS0vDiRMn0LRpU2zcuBHe3t6wtbWFjY0NhgwZgpiYmJc6n6enp9YjKCjopZ+DKB6hN9HxvRWotvM45DmG/Ug2cbOE12fN4L2sJcwqiRtsTVQUpp7W8F7cHN5LW8DUy8qgYzL/SUDMZ5cgcfACERERkVClrvuoLrm5ufj4449hYmKCYcOGAQDu3r2L3NxcnDt3DgcPHsTMmTNRr149nDx5EitWrMDVq1fx119/wcrKsB+cZYFVTALqbNoHz79uGX6QQgbHoUFwebMG5FZl4s9NFYhNK09YNXJDwje3kfDNbUjZ+bf0J+97APMqdnAaVtVIGRIREZVNXLyeCqNM1BImT56Ms2fPYtGiRahWrRoAICXl+WQVT58+xfr16zFmzBgAQL9+/WBnZ4f58+dj69atmDBhQpHO+fix9lTZycnJOru1GoM8OwdV9pxEtV+OQVGIabItG7jAfXp9mFcWN4U4kWhyCwVcxtWEXbdKiFl6Benn8m/lf7rqH5j528GmhbhlAIiIiIgqslLffXTOnDlYvXo1xo0bpxk7CEAzA6lcLsfrr7+udcyIESMAAMeOHTNansXF9cpdtJ+6CjW3HTK4QqhwModHSGNU+l8bVgipzDDztYXP8pbwWtQUJq75rOmlAh5/dB5ZEcnGS46IiKiMUS9eb4wHlX2luqUwJCQECxcuxKhRo/DVV19p7fPxeb7ouKOjI8zNtReT9/R8vsTCs2fPjJNoMbCIT0LtLQfgc+Yfww+SAw6vBsLlrZpQ2HKWRip7ZDIZbDv6wLyKPR6MPgpVarbOcqq0HES9fxZ+m9pzRlIiIiKil1RqWwpDQkIwf/58jBgxAhs2bIBMpn0Xwt3dHb6+vkhISEB6errWPvWkNG5ubkbLVxRZTi4C955Cx0nLC1UhtKjlCL/NHeD+fjArhFTmmfnZwuuTJvl+QmU/TEX07POQcirGjMNERESFwcXrqTBKZaVwwYIFmD9/Pl5//XVs2rQJcrnuNF9//XVIkoSvv/5aa/vatWsBAN27dy/2XEVyuhmBdtPXoM7WAzDNVBp0jNLGEpfe6gPfDe1hUd2xmDMkMh7rZh5wnVQ33zLpF2LxdGUhWtOJiIiIKI9S1310zZo1mDdvHnx9fdGpUyf88MMPWvvd3d3RuXNnAMAHH3yAX375Be+//z7CwsJQr149nDp1Ct9//z06dOigWdtQpJ93toaFpbWQWDOGnQQA5CRk4unqa0je96BQx9v39ofLxNqo4yD+z/jprrbCYlnHZQqLBQA/XWsiLJZntNhxaVlB4iY/MY9OEhYLADKdxK1LeTLDQVgsAGhtmahzu+OQKsi6m4Tk3/RfG89+vAuzKnZw6B0gNCc1m0ix719ZtuGTRRXIQnCvAAOXuDFEtr+rsFgAYPogXlisxz1dhMUCADORIxV83AUGg/iWdJnIsUNixyGl+4sbQ2916ZGwWACQWcVJWCzLODG/QdRM7kYLi+X5VOw8Bqo4cdd9crtAYbEy00vdz2edjDXej2MKy4dS964ODQ0FAERGRmomjHlR27ZtNZVCOzs7nDx5EnPmzMGePXuwceNG+Pj44MMPP8ScOXOgUJTuxdmlXAmJu+8jbu11qFJ0j53SxTzIHu4f1IdlXedizI6o5MlkMrjPqA9lZCoyr+r/cRDz+SWY+drCKljsj30iIiKiiqDUVQq3bNmCLVu2GFzexcUFa9eu1XQZLSvsYyIR+eZRZN40/Baz3MoELuNrweHVypCZlMqev0TCyc0U8P6sGR6MOoKcmAzdhXIkRM88B7/N7WHqKfYuOhERUVmkggwqqfhb8VRsKSwXWLMwMtPMdNQ58hNab19WqAqhbddKCPipCxwHV2GFkCocE2cLeH/RAjIL/a3/uc+yEDX9LFTpArtnEhEREVUApa6lsNySJPjcDEXNU3thnpFq8GFm/rZwnx4Mq0ZlbyZVIpEsqjrAc15jRM86p7dM1p0kPJ4fCq9Pm0Em551LIiKquIw1MyhnHy0fWCk0Atu4aNQ5+jOco+8bfIzMQgHnN2vAaWgQZKZsGSQCANsO3nAeWwPx62/qLZN6LBrxG2/CZWxNI2ZGREREVHaxUliMFMpMVDv3OwIun4BcMnwGOJt2XnCbUg+mHlbFmB1R2eQ8ugay7iYj9WiU3jLxG27CvLIdbDv6GDEzIiIiorKJlcLiIEnwvHMZtU7shmWa4csKmHpbw21aPdi09CzG5IjKNplcBs95jRAZlYqsMP3X1+P5f8HUxwYW1RyMlxwREVGpYZwlKUQvL0Mlg/0SBbN+FoNmu9ai0YGtBlcIZWZyOI+pAf8fOrNCSGQAuaUJvJe0gMLRXG8ZKSsXUdPPICde7DqDREREROUNK4WCKLKVqHZmH9p9txiuD8MMPs66uTv8f+gMl7E1Ic9nZkUi0mbqYQWvz5sBJvrvUObEZCBqxlmolOIWZSciIioLJCM+qOxjpVAA9/vX0O67z1A19E/IVYb9+MywcYDXZ83gvawlzCrZFHOGROWTVT0XeMxskG+ZzH8SEPPZJUicHo2IiIhIJ44pfAmWSfGofXwnPMKvG3yMSi7H/frtENakK4LbXyi+5IgqCPte/si6l4Rn2+7qLZO87wHMg+zhNDTIiJkRERGVHEmSQTLC4vXGOAcVP1YKC2nSwLOwsTDBs+/vIH7bTUhZhs8qatnABe7T66NGZTv0wAWsfFJHWF7PbjgLiwUATv/ECIuV7e8iLBYAeOx+LCxWVjUPYbEAQCawl+Ljrg7iggHwOJkhLNbf39QQFgsALme+3ILzMqkB6ntuhctj/V23n668CvMAW1g3K9zffNLE8y+V23/NOddWWCyLeGGhAAC2D8SNvzS5ESksFgDkBombSdbuntgfMJYXHwiLlfSWq7BYAJD5zEJoPI9d4j5/YSk2twxncX/XjC6VhMUCAOe/DV+fuEB21uJiAZAepwmLlVrNXlgsALCxMBUWS6EU11tEkc2eJ1T+sPtoIaVdjEXE8EOI++q6wRVChZM5POc3RqX/tYF5ZbtizpCo4pHkClxtORRptvncgFAB0bMvQPkgxXiJERERlRCVER9U9rFSWEjR088iO9LAO35ywGFgIAJ2dIFdN1/IZGxeJyouOWaWuNR2BLJN9bc+qFKz8ej9M8hNVhoxMyIiIqLSjZXCYmJRyxF+mzvA/f1gKGzNSjodogoh3c4VV1sNy/eTLTsyFdEfnYeUw3ubRERUfqnHFBrjQWUfK4WCye3M4D6rAXw3tIdFdceSToeowon3rArXSXXzLZN+PhaRbx1HZliicZIiIiIiKsU40YxA9r394TKxNkwc9C+oTUTFz3FIFSjvJSPp1wi9ZTKvJeDBiMNwGBAIl7dqQWEjbkIDIiKiEifJnj+McR4q81gpFMA8yB7uH9SHZV2xM4ASUdHIZDK4fRAM5YMUZFzNZ4pOFZC44x5SDkfB7b06sO1SiWN/iYiIqMJh99GXILcygdvUevDb0oEVQqJSRm6mgNdnzWDibllg2dz4TDyeG4pHE08iKzzZCNkREREVL84+SoXBSmER2XathICfusBxcBXITPgyEpVGJs4W8P6iBWSWCoPKp198iojhh/B0zT9QZbzc2olEREREZQVrM4Vk6mcLnzWt4bWgCUxcCm6BIKKSZVHVAZX+1wYmHlaGHZArIeGbMIQPPoiUo1GQJC5STEREROUbK4WF5Le+HawbuZV0GkRUCJY1nRCwvTOcRlQDTAwbM5gTk4HomecQNeU0lI8MXJuUiIiolJAgM9qDyj5WCguJXUWJyia5pQlc364N/+87waqRq8HHpZ2NQcTQPxG34QZUWbnFmCERERFRyWANh4gqFHN/O/isbg3Pj5tA4WJh0DGSUoX49TcRMexPpJ55UswZEhERCSAZ8UFlHpekKEHPboqbsdTpUpKwWAAgf8uwiTkMYbI0QlgsAJDZ2wmLZRYWIywWAKQ28BQXzExsq1S6l7gxsCrBnxxmjTPEBiyATCaDXZdKsG7hgfj1N/Dsp3tAbsHfatmP0hA15TRs2nnBbWo9mLobOE7xBR83O16UlHVa8XVzYbEAQFKIu0+Y2DVAWCxA7DJYto/EXluSv4e4YLfFrnNrIbpXl8D3iMrdQVgsAJALnBtKJXjZ0gxva2GxTFPFvn9T6lQWFssqRmxuyYGF/4zVxzYiU1gsRWaWsFhEpQVbComowlLYmMJtyvNlZSwKsaxM6rFohA86iPhvb0PK5mTcRERU+qggM9qDyj5WComowrOo6gDfr9vCY3ZDKBzMDDpGysxF3OpriHjtENIvPi3mDImIiIiKDyuFREQAZHIZ7Hv7I2BHV9j3C4ChNz6VESl4+PYJRM+7gJx4cd2TiIiIXookM96DyjxWComIXqCwN4PHzAbw3dge5tUcDD4u5feHCB/4B57tuAsph11KiYiIqOxgpZCISAfLWk7w29wBbu8HQ25j2KwTqrQcxC69ggejjiDjn/hizpCIiEg/STLeg8o+VgqJiPSQKWRwHBiIgB1dYNfd1+DjssKSEDnmGJ4suojcJM5SR0RERKUbK4VERAUwcbaA57zGqPRVG5hVNnxJlKQ9EQgfeBCJe8IhqXgrlYiIjIfLFFJhsFJIRGQgq/qu8P+2I1zfrQOZpWFreeYmKRGz6G9Ejj2GzLDE4k2QiIiIqAhYKSQiKgSZiRxOr1VFwI9dYNPB2+DjMq8l4MGIw4hZehm5qdnFmCEREREgQWa0B5V9rBQSERWBqbsVvD9tBp8VLWHqY23YQSogccc9hA86iOTfIyFxdD4RERGVAqwUEhG9BOtmHvD/oTOcx9WEzNywj9Tc+Ew8nheKh2+fRNb95GLOkIiIiCh/JiWdQFmzbE9LWFga2CpQAOe7CULiAEDsADE5qdkdthEWy6yyrbBYAPC4jWFjuQzh8UeGsFgAYHPpsbhY98S+bs/qiYvneErc8wSAp7WchMabe7e5sFiqZ2aGFazbATaz4tD4p1/gc/26QYdk/P0UEa8dgtPwIDiPrgG5ZeE+kmXZYtdDlClzhMVyPPBIWCwAeDqmkrBYykTDlhgxlFmMuBlmM93E5uZ5MFFoPCknV1isHCuxP0Hs74n7O+QU8losiFnEU2GxJDdHYbEAwPG0uOVz0mu6CYsFAHZ304XFSq5iJSxWZrq466A4GWu5CHZ6KR/YUkhEJEiqiwuOjh+Ho+PGINXRwB9uuRISvglD+OCDSDkaxS6lREREZHRsKSQiEkkmw6O6dfGkWjXU/uMgah4+AkVuwXeVc2IyED3zHKybu8Pt/WCY+YhrrScioorHWJPAcKKZ8oEthURExSDH3ByXe/fCb7Nm4nHVqgYfl3Y2BhFD/0TSgchizI6IiIjoX6wUEhEVo2QPdxx6dyJOjhyBdDvDFr6XlCo8CQlFyvHoYs6OiIjKK/WYQmM8qOxjpZCIqLjJZIho1BB758yG45AqBn/yPg4JRdbdpOLNjYiIiCo8VgqJiIwk29ISblPqwW9rR1jUdS6wvJSeg6j3zyAnUdysikREVEFIMuM9qMxjpZCIyMgsqjrA9+u28JjdEAqH/Je8yH6cjuhZ5yAJXn6CiIiISI2VQiKiEiCTy2Df2x8BO7rCvo9/vmUz/o5DzNLLXK6CiIgMJhnxQWUfK4VERCVIYW8Gjw8bwuHVyvmWS9oVjsRf7hspKyIiIqpIWCkkIioF3KbWg1VD13zLxH55BWl/xRopIyIiKtMkGSQjPDimsHxgpZCIqBSQmcjh9WlTmHpb6y+UKyF61nkoH6UaLzEiIiIq90xKOoGyRmX6/CEklkM+P/4KyfWbOGGxAEBmZSksliopRVgsAPDcYyMsVqafg7BYAGBmLujNAUCeliksFgDYRuYIi5VVzV1YLADo7vO30HgXk/yFxco5bCssFgAcrJlPa6AJYLqgBzze3QV5erbOIqpkJW5PvYAnq/th0jvnhea2anb+XVgLI62luFgA8HHV48JiLT3fWlgsAMi1tRAWy3N/vLBYACDl5oqNlyPuc8TsVpSwWACQ1MpXWKwsZ7GjpFxvZAiLJUsX99sBACQ3B2GxLJ+I/d561ltcC9TcAHGfIcnJWVgkLBpR6cCWQiKiUiQ7wAlxszvl2xvH7MEzuHxyCFIuh/cTEZFunGiGCuOlWgpv3bqFyMhIxMXFwdLSEm5ubqhTpw7s7OxE5UdEVOFkNPdD4pimcFyvvyXQ6lwk4r6ygOvEOkbMjIiIiMqjQlcKjxw5go0bN+LQoUOIi8vbZVEul6N+/foYMGAARo8eDRcXFyGJEhFVJMlDgmEangCbQ3f0lkn4Jgxmle1h/4q4bnNERFROGKsZj02F5YLBlcKdO3di9uzZCAsLgyRJ8Pb2Rp8+feDh4QEnJydkZGQgPj4et27dwuXLl/HXX39h3rx5eOONN7BgwQK4u4sdg0REVK7JZIh/vy1MHyXB/Jb+GUdjFl2EWSUbWNZ2MmJyREREVJ4YVCls06YNTp06hdq1a+Ozzz7D4MGD4eur/860UqnE0aNH8e233+L777/H9u3b8e2336J3797CEiciKvfMTPB0QVd4TPgFJvHpOotIShWiZpyF3+YOMHUTN0EUERGVbZolI4xwHir7DJpoJj09Hb/99huuXr2K6dOn51shBAAzMzN07doV3333HcLDwzFmzBiEhYUJSZiIqCLJdbHG04+7QWWm0F8mLhPRH5yFKlPsTJNERERUMRjUUvjXX38V+QSurq5YunRpkY8nIqrolNXdED+9HVw/Oay3TObNZ3jyyUV4LmgMmYx3bYmIiMhwXJKCiKgMSO8YhKRh9fMtk3LwIRK23jZSRkRERFReFKlSuGDBAnzxxRdQKpV6yxw/fhwLFiwocmJERKQtcXQTpDf3y7dM3FfXkXoi2kgZERFRaSVBZrQHlX1FqhSGhIRgxowZ6NixI+Lj43WWOXbsGObPn/9SyRER0QvkMsTN7gilv6P+MhIQPS8UWfeSjJcXERERlWlF7j4aEBCA06dPo3nz5rh7967InIiISA/JygxPF76CXDsL/WXScxD1/hnkJGYZMTMiIipVJCM+qMwr9OL1am+88QZ8fX3x1ltvoXnz5ti9ezdatmwpMrdSySomGxYW+rvNFsak8WeFxAGA1Z/XFRYLAFKq59MSUUi211TCYgFAWjVx67FZxor5W6rJcsU910xvW2GxAMA0JUdcrCdiW6FCP/MSGi+mp7OwWHaCl/8783ctIXHchrmg4/pVQK7ub+Ps6HREzzqPSqtaQWZi2P2/dz+5LyQ3AFj9uY2wWACwPE7c94vZgyfCYj0PaCoslGQv9nXD02dCw8k8XcXFSssUFgsArB+L+4xz+Fvs6yaZmQmLFTzhnrBYAHBpgYOwWDIPce8PAOjmeVNoPCLS76Ummhk5ciT279+P7OxsdOrUCdu3bxeVFxER5SO2ShDc3w/Ot0zG308Rs/SyUfIhIqoocpLKRi8MNhRSYbz07KMdO3bEmTNn4O7ujuHDh2PRokUvFS8sLAxz585Fs2bN4OrqCltbWwQHB+OTTz5BWlpavseuXbsWMpkMMpkMcXFxL5UHEVFp59C/MhxerZxvmaSd4Xj2s9iWBSKiiirtXAwihv1Z0mmUayqVCsuWLUP16tVhYWGBSpUqYdq0aQXWA4p6/P79+9GiRQtYW1vDyckJAwcORHh4uM6yt2/fRt++feHo6Ahra2u0bt0aR44c0ZvLjRs3MGzYMHh6esLc3Bw+Pj7o168fYmJiDHouxiRkSYqaNWvi/PnzaNCgAebMmYM333wT2dnZRYq1adMmLFu2DIGBgZg7dy6WLFmCatWq4aOPPkKLFi2QkZGh87jo6GjMnDkTNjaCu94QEZViblPrwaph/l22Yr+8grS/Yo2UERFR+aSMTEH0R+chZeSWdCrl2pQpUzB16lTUrFkTq1atwsCBA7Fy5Ur06tULKlXBw3QKc/zOnTvRs2dPZGRkYMmSJZg+fTpOnDiBli1bIjpaeybve/fuoUWLFjh79iw++OADLFmyBKmpqejatSsOHTqUJ48//vgDDRs2xNWrVzFp0iSsXbsW77zzDlQqFZKTk1/uRSoGRR5T+F/u7u44ceIEhg4dis2bN8PS0rJIcQYMGIBZs2bB3t5es238+PEICgrCJ598go0bN+Kdd97Jc9zEiRMRGBiIWrVq4bvvvivy8yAiKktkJnJ4fdoUD0YdRXaUnruouRKiJp+G0+tV4TSiOuQWCuMmSURUxuWmKPFo2hmoUorW6FEijNW3U+A5rl+/jlWrVqF///745ZdfNNsDAgIwadIkbN++HcOGDRNyfHZ2Nt59911UqlQJJ0+e1DQsvfLKK2jYsCFCQkKwbt06TYxZs2YhMTERFy9eRHBwMIDnc6zUqlULEydOxK1btyCTPV+eIzY2FsOGDUO7du2wd+9emJqKG3teXIQuXm9paYldu3Zh0qRJelv0CtKoUSOtCqHa4MGDAQDXrl3Ls2/Xrl3Yu3cvvvrqKygU/LFDRBWLwt4c3l+0gNxK/30+KVuF+E23EDH0IFJPPTZidkREZZuUo0L0RxeQHZla0qmUe9u2bYMkSZg8ebLW9rFjx8LKyqrAhp/CHH/8+HFER0djzJgxWj0Ng4OD0a5dO/z444+ano9paWnYu3cv2rVrp6kQAoCNjQ3GjBmDsLAwhIaGarZ/9dVXSEhIwOLFi2Fqaor09PQi96I0liJVClUqFebOnatzn0wmw/Lly3H+/Pl8+9gW1qNHjwA8b5F8UXJyMt555x289dZbaNKkibDzeXp6aj2CgoKExSYiEs28sh08P26CgtYQzo5OR9S0M4iafgbZjw0bn0FEVJE9XXMN6edK3xiwgkiSzGgPAAgKCtL67VwUoaGhkMvleX7TW1hYIDg4WKvi9bLHq/+7efPmeeI0a9YMycnJCAsLAwBcvXoVWVlZesu+GA94Pk7Rzs4OiYmJCA4OhrW1NSwsLNC6desCn0NJEdpS+KLGjRujbdu2QmLl5ubi448/homJSZ4m4xkzZkClUuHTTz8Vci4iorLKppUnXN6ubVDZ1BOPET74T8RvuQUpW+yyMURE5UXSbxF49sOdkk6jwoiOjoaLiwvMzc3z7PP29kZcXByUSv3LiRXmePWYQW9vb51lASAqKqrQZYHnE9Lk5OSgW7duCA4Oxs8//4zFixfj2rVraNeuHa5fv673OZQUYWMKi9PkyZNx9uxZLFq0CNWqVdNsP336NL7++mt8//33OrucvozHj7W7VyUnJws/BxGRaE6vV4XyfjKSD0QWWFbKykXc2utIPhAJt+nBsG7kZoQMiYjKhoyr8Yj57FJJp1Fm3LlzB3Z2di8VIz09XWeFDnje2qcuY6Zn7c/CHJ+eng4AOsu/WPbFfxtSFgBSUlKQm5uL4cOHY8uWLZrtDRs2RPv27bFgwQL8+OOPOvMsKQZXCitXzn/ac11kMhnu3Xu5qdDnzJmD1atXY9y4cZg1a5Zmu1KpxLhx49CpUycMHTr0pc5BRFReyGQyeHzUEApHczzbdsegCQCUESl4NPEkbLtUgtt7dWDiUrSJwoiIyovsJ+mI+uAse1IYmZWVFWJjdc+WnZmZqSkj4nj1v7Oy8q47+TJlgefzrKSmpmLkyJFaZdu1awdfX18cO3ZM73MoKQZXCiMiIgodXD0DT1GFhIRg4cKFGDVqFL766iutfWvWrMGtW7ewdOlS3L17V7M9JSUFABAeHo7k5OQiVWaJiMoymYkcbu/VhV2XSohZfAmZN54ZdFzKwYdIO/UYzuNqwnFgIGQmxTbCgIio1FJl5CBq+hnkPisbi9TrVQZnH/Xy8sKNGzeQlZWVp1UuKioKLi4uelsJC3u8l5eXZnuNGjXylAX+7Rr6Ytn/+m9ZAPDx8cGtW7fg4eGRp7ynpyf+/vtvvc+hpBj8jR8eHp7nMWnSJMhkMp37wsPDcf/+/SInFhISgvnz52PEiBHYsGFDngrmgwcPoFKp8MorryAoKEjz2LlzJwCgSZMmqFu3bpHPT0RU1lnUcITvhvZwn1EfcjvDpsNWpefg6fKreDDiCDKuxhdzhkREpYukkvB4wV/ICksq6VQqpMaNG0OlUuHChQta2zMzM3H58mU0atRI2PGNGzcGAJw9ezZPnHPnzsHOzg5Vq1YFANSpUwfm5uZ6ywLQiq2e6EY9UeaLHj16BDe30jdcw+CWQj8/vzzbHB0d9e57GQsWLMD8+fPx+uuvY9OmTZDL89ZdR40ahVatWuXZvmbNGhw7dgybNm3S5CeSIiUDCuXLtYCqrf60jpA4APC4i9jn6nxN3MKsGYFOwmIBgNWlvHdpiiqhvY+wWACgdBDXzcTjmNiZIWW54v6mWb4OwmIBgFmC2LuxHkfEfZlnu9gUXKgQnKMyxQVrXXARmUIGh/6VYdPeG09X/4Pk3x4YFDrrbhIixx6DfS9/uEysDRNH3WM09IltJfYzqX39vMsRFdU/31QVFgsAZLGGtcQaJFdsV7WaMwXmBuD4JS9hsVz2xwmLBQDJTZ2FxXKKEtu8kuvjKizWpQVip7WX27/cGLAXpXvp79ZXFE0sjL8ERPymW0g9kv/vDKfXqwLzOPlMcRg8eDAWLVqE5cuXo3Xrf7/k1q9fj/T0dAwfPlyz7d69e8jOzkb16tWLdHzbtm3h6emJDRs2YMqUKZplKa5cuYJjx45h1KhRmvUFbWxs0KtXL+zcuRNXrlxBvXr1AACpqanYsGEDgoKCtGY8ff311/HNN9/gq6++Qrdu3TTbf/31V0RFRWHs2LGiXjJhSt1EM2vWrMG8efPg6+uLTp064YcfftDa7+7ujs6dO6NevXqaP8iLfvvtNwBAr1694OLiYpSciYhKOxNHc3jOaQT73v6IXXwZWXcNqzgn/RqBlONRcJ1QG/Z9AyCTi7kpRkRU2qQciUL8+hv5lrFp5wWbEdWBefuMlFXFUqdOHUycOBGrV69G//790b17d9y8eRMrV65E27ZttVYh6NixIx48eABJkop0vKmpKVasWIHBgwejdevWGDt2LJKTk7Fs2TK4urpi/vz5Wrl9+umnOHz4MLp06YIpU6bAzs4O69evR1RUFPbt26fVq1E958m2bdvQvXt39OzZEw8ePMCqVavg6emJkJCQ4nsRi6jUVQrVa3dERkZixIgRefa3bdsWnTt3NnZaRETlglU9F/ht7YBnP91D3LobkNJzCjxGlZyNmM8vIem3CLhPrw+LGuJ7YRARlaTMsEQ8np//+nHmVezhOa8xUnPE9bwpThL+XUOwuM8j0vLly+Hv749169Zh3759cHFxwbvvvosFCxbo7D34MscPHDgQlpaWWLhwId5//32Ym5ujY8eO+Pzzz/MsP1GlShWcPn0aM2fOxGeffQalUokGDRrg999/R6dOnfLk8c0336BevXrYtGkTpkyZAnt7ewwYMACffPKJZoxiaVLqKoVbtmzRmrrV2McTEZV3MhM5nIYGwa6TD2JXXEXKn3nHPOiSef0ZHow6AodXK8NlQm0obAwbp0hEVJrlJGQiavpZSJn6K3sKR3N4f9EccisTILlsVArLKoVCgWnTpmHatGn5ltM3Caahx6v17NkTPXv2NKhsjRo1sGfPHoPKmpiYYMaMGZgxY4ZB5Usap5YjIqqgTFwt4bWwKXxWt4aZn4FjJyUg8ef7iBx9BNkx6QWXJyIqxVTKXETPOIecJ/l8npnI4PVpM5h6WhsvMSIjY6WQiKiCs27sBr/vOsFlQi3IzBUGHaN8kIqo6Wehyii4+ykRUWkkSRJiF18ucKZl9w/qw6p+GZynQjLig8o8g7uPtmnTJs+2yMhIvfuA5+sUHj9+vIipERGRscjNFHAeWR12XSohdtkVpJ54XOAxWbcT8eTjv+D5SdOXXpeWiMjYEn+8i6RfI/It4zAoEA59AoyTEFEJMrhSeOrUqULv448EIqKyxdTLGt5LWiD11GPEfnEZ2Y/z7yKacjgKZpVvwWVMjXzLERGVJmnnYhC74mq+ZayauMHtvbK75vXzRjxjTDRD5YHBlcLw8PDizIOIiEoRm1aesGrkioQtt5HwXRikbP3r58WvvwHzQDvYtvfWW4aIqLRQRqYg+qPzQD7LgppWsoHXJ00hM+FIK6oYXmrxeiIiKr/kFiZwGV8Ldt19ETXzHJT3kvWWfRwSClNva1hUdTBegkREhZSbosSjaWegSsnWW0ZubQLvL5pDYWdmxMyKgbHG+7GpsFzg7Q8iIsqXma8tfL5oAYWD/h9IUmYuoqafRU5CphEzIyIynJSjQvRHF5Admaq/kBzwXNgU5v52xkuMqBQwqFL45MmTlz5RTEzMS8cgIqKSYeplDa/PmgEK/eNTcp6kI3rmuXy7mhIRlZSnq/9B+rn8f4+6vlMHNi08jJQRUelhUPfRypUr491338W0adPg5uZWqBPs27cPISEh6NWrF+bOnVukJEsTKTUDkv4eB4WLlZEhJhAAjwOCF1K1FbcWj8mTp8JiAUBGsK+wWE6HI4XFAoD+C8KExdq5T+zg9hwvR2GxFJlif/TLUsVdCwCQWs1JWCyri2LfI1AY3Gu/QMs2tRIWCwCmjNY/oRgAWNV3hfsH9RHz6d96y2RciUfM4kuwC2gLCJxsrFazgmdDNdShttWFxQIAq/vuwmL165z/36CwDq9tIDSevZO4az+lhbjPcgBwvCHuc0RmKu46BQCTxDRxwRzEtmClVBf33ZDlWHonGNz1QzZqbrubb5nojsE43Kk3EJv/88hI5RqtVP4Y1FI4depUrF69Gj4+PujVqxe+/fZb3Lt3T2fZtLQ0HD9+HLNnz4afnx969+4NmUyGvn37isybiIhKgEPfADgMCsy3TNLeCARcPmGkjIiI8pdxNR7V1+zLt0xidR/cmthD6M0sorLEoFthCxcuxFtvvYUFCxZg27Zt2L9/PwDAzs4O7u7ucHR0RGZmJhISEhAdHQ2VSgVJklC3bl0sWrQIw4cPL9YnQURExuP2Xl0oI1KQfiFWb5laJ3YhxckdcX5iW+WIiAoj+0k6oj44C3mO/h5VmS52+OfDwZAEtxATlSUGTzRTqVIlrF+/HtHR0VizZg369esHCwsLhIWF4fz587hy5QpiYmIQHByMqVOn4vTp07h8+TIrhERE5YzMRA6vhU1h6qO/m7lMktBw/xZYP9NfcSQiKk6qjBxETT+D3GdZesvkmpng6uwhUDraGDEzI5GM+KAyr9C3ROzs7DB+/HiMHz8eAJCdnY34+HhYWlrC3t5eeIJERFT6KOzN4P1FC0S+eRSqtBydZcyyMtBk73qcHDIVOeaWRs6QiCoySSXh8YK/kBWWlG+5G5P7IqWKp5GyIiq9XnpJClNTU3h4eLBCSERUwZgH2MHz4yZAPkNwbJ7FouH+rYCKM5ISkfHEb7qJ1CNR+ZYJH9wGsa1rGSmjEiDJjPegMo/rFBIRUZHZtPSE6zt18i3j9uAmap7aa6SMiKiiSzkShfj1N/MtE9u8Ou4Pa2echIjKAFYKiYjopTgOD4Jd9/yXFwj8+yh8blwwUkZEVFFlhiXi8fzQfMuk+LvjxpR+gJwtXERqrBQSEdFLkclkcJ/ZABa1818fsu7h7XCMDjdSVkRU0eQkZCJq+llImfpnGlXaW+HqnCHItTQzYmZEpR8rhURE9NLk5gp4L24OEzf9E8oocnPR6LeNsEh5ZsTMiKgiUClzET3jHHKe6F9YXmUixz+zBiHTzcF4iRGVEawUEhGRECbOFvBe3Bwyc4XeMhbpKWj86wYospVGzIyIyjNJkhC7+DIyrsbnW+72+B5IrOVnpKxKAS5JQYXASiEREQljUcMRHnMa5lvGIfYR6h38AZD4S4KIXl7ij3eR9GtEvmUe9mqC6K4NjJMQURlUpEphSkqK6DyIiKicsOtcCWFNuuRbxvvOJQRdOGikjIiovEo7F4PYFVfzLWPVxA133uxqpIyIio9CocDw4cOLJXahF68HAC8vLwwdOhRjx45F48aNRedUqmUHuEBhYS0klmlkgpA4ACClpAqLBQCyLHFdu2TOjsJiAUCqr7jZwlSmlYTFAoCdq/KfaKNQMsW9PwDArFf+C/gWRtJZZ2GxAMDERux7xPqBuOshsZ3YrkaOf+XfvakwTB6JiyVazxU2iJ7lhdRj0XrLVD+7Hx36JMC2vbcBEcVNCuH5q9jPy2fB4t6/h1fWFRYLAGAudnbFLEdxHYzsr4v7TAIAVZK4eMqqhrwnDWd694mwWBl1xeYmUkibY0Y9nzIyBdEfnQfyWQbVtJINvD5pipytNsLOq8oUFoqoUGxtbeHrm/9s30VVpE93Nzc3bNiwAc2aNUPDhg2xbt06pKaK/ZIlIqKySyaXwXNeY5hXsc+33OOQUGSGJRonKSIqN3JTlHg07QxUKdl6y8htTOH9RXMo7CroTKMcU1ju1K9fHzdu3CiW2EWqFN67dw9//PEH+vfvj2vXrmHChAnw8vLCW2+9hb/++kt0jkREVAbJrUzgvaQ5FA76f5BJmbmI+uAschJ4652IDCPlqBD90QVkR+bTICEHPD9uAnN/O+MlRlTMZsyYgf379+PPP/8UHrtI3UcBoHPnzujcuTOePn2KTZs2YcOGDVi/fj02bNiA4OBgjB8/HsOGDYO1tZiulkREVPaYelnD67NmeDjxJJCr+3ZyzuN0RM86j0qrW0NmyvnPiCh/T9dcQ/q5mHzLuL5TBzYtPIyUUSllrFY8thQaTWxsLLp164ZXXnkFffv2RePGjeHh4QGZLO9QgTfeeKNQsYtcKVRzdXXFjBkzMGPGDBw+fBjr16/H7t27MX78eEybNg3Dhg3D22+/jbp1BY+TICKiMsGqvivcP6iPmE//1lsm43IcYpZcgvusBjq/3IiIACDptwg8++FOvmXsevjBcViQkTIiMp6RI0dCJpNBkiTs3LkTO3fuBACt701JkiCTyYxfKXxRYGAgKleuDDs7O8TFxSEtLQ3r1q3D+vXrMWDAAHz99ddwcHAQeUoiIioDHPoGIOteEhJ33NNbJmlPBMwD7eE4uIoRMyOisiLjajxiPruUbxmLOk5wn1mfN5cAALL/fxjjPGQMmzdvLrbYL10pzM3NxZ49e/D111/j8OHDUKlUCAwMxIwZMzBy5EhcunQJS5YswU8//QSFQoEffvhBRN5ERFTGuL1XF8qIFKRfiNVbJnb5FZj528K6qbsRMyOi0i77STqiPjgLKVv/VKMmbpbw/rw55GYKI2ZGZDwjRowotthFrhRGRERg/fr12Lx5M2JiYiCXy9GrVy9MmDABXbr8uz5Vp06d0KlTJ/Tv3x+///67kKSJiKjskZnI4bWwKR6MPoLsR2m6C6mA6Nnn4bepPcx8bY2bIBGVSqqMHERNP4PcZ1l6y8jMFfD+ogVMnC2MmFkpxzGFVAhFGtHftWtXVKlSBZ9++ikAYPbs2QgPD8euXbu0KoQvaty4MZIEriFERERlj8LeDN5ftIDcWv89SVVKNqKmn0Vuqv6p5omoYpAkCY8X/IWssPx/Q3rOawSLag7GSYqohO3ZsweDBw9GvXr1UKXKv0Mubt68icWLFyMqKqrQMYvUUvjnn3+iffv2mDBhAvr27QsTk4LD9OrVC15eXkU5HRERlSPmAXbw/LgJoqad0XuHWRmRgscfnYf30paQKThehaiiit94C6lH8v+B6zy6Omw7+hgpI6KSI0kSXnvtNWzfvh0AYGlpiYyMDM1+JycnzJ49G7m5uZg1a1ahYheppfDmzZs4fPgwBgwYYFCFEABq165drP1giYio7LBp6QnXd+rkWybtbAyerv7HSBkRUWmTciQK8evzX6jbpp0XnMfWNFJGRCVr5cqV2LZtG8aMGYOEhAS8//77Wvvd3d3RqlUr7Nu3r9Cxi1QprFatWlEOIyIi0nAcHgS77r75lnn2wx0k7XtgpIyIqLTIDEvE4/mh+ZYxr2IPz3mNIZOzNwFVDJs2bUKDBg3w9ddfw97eXucsu1WqVEFEREShYxep++hPP/2EtWvX4ttvv4W3t3ee/VH/1959x0dVJWwc/016bySEJHSMUkQQ6cXQLYioiCiKyAquK7LKoigWRAEbuqjgrivIYlnLWvaVFQtNRDQIKkUUEkBCSUJP78nc9w+WrNkUMsPJkGSe737mw3rn3OeeJHfuzJlzzzmpqdx6661MmTKF6667zplD1FuWhw3L0K1MNi9zs2MVdW1tLAsgP8rcAtLh6w4aywKI2mRuJZXiCLMD0u3+3sayPGrZC19bZQsLjWUFNS04cyEHWAfTjebR3NyCxbYyY1EAWEXVT5TgqKxeZm/Jf/xLczN+lsXV7uf0GN2DocmvELWn+oZf6pNb8GkRhP9FTYzUzfLzMZJzWuhX5hqtttAQY1kA1uHjRvMCAmKMZVnFxcayAMriK38ecZb3vupnyHWGzc/XWJbVJ8dYFoBnYv2b0Kn0ZCGp9ydiFVZ/AfYI9yFqfk9K/AGr9IyZtgJz55utyOy5W2c00Uyjs3v3bv7whz/UWCYyMpLjxx2/9jv1yX/JkiVkZGRU2SAEiIuLIzMzkyVLljgTLyIibsLu4836eyaQFxFabRnP0jJSH0ik5Ei+C2smIueCVWIn7YGNlB6u4fXuZaPpUz3xiglwXcVE6gEfHx9yc3NrLHPw4EFCQhz/gtGpRuFPP/1Ejx49aizTo0cPtm/f7ky8iIi4kcKwEL6aNpFSn+p72stOFpF6fyL2wjP3CIhIw2RZFkee3ULB9hM1lmsyowt+Xc3cOdCoWTbXPcQlunTpwurVqykpqXp27pycHFatWkX37t0dznaqUXjy5EmaNm1aYxlnuy5FRMT9ZLRuzsbJY2ssU5SUyeE5P2BZuldJpDHKfG8PWctTaiwTPLYtwVe3ck2FROqZSZMmsW/fPm677bZKPYbHjx9n3LhxHD9+nN///vcOZzs1aCkyMpI9e/bUWGb37t2EhYU5Ey8iIm5of++uhB46TOePV1dbJmf1IXzahhB5ewcX1kxE6lrexiMcfbHmO8z8ekYRMbWTi2rU8Nn+83DFccQ1xo8fz+rVq3nzzTf58MMPy9taHTt2ZO/evZSUlDBp0iRGjRrlcLZTPYX9+vVj+fLlJCcnV/l8UlISy5cvZ8CAAc7Ei4iIm9p+3XAOdL+wxjInXv2FnC8dX5hXROqn4gM5pD3yHdirL+PVIpCoud2xeZmbCE+kIXr99ddZvHgx7du359ixY1iWxa5du4iPj+dvf/sbr776qlO5Tr2y7rvvPkpKSujfvz+LFi0iOTmZvLw8kpOTWbhwIf3796e0tLTS2hkiIiI18vAg8fc3kdGi5lku02dvpjA50zV1EpE6U5ZTTOp932LPqXqMFIAtyIum83vhGWJ25uBGz3LhQ1zq9ttvZ+vWreTm5nLo0CFycnLYsWMHkydPdjrTqUZhjx49+Mtf/kJmZib33HMPHTp0ICQkhA4dOnDvvfeSlZXFX//6V3r16uV0xURExD2V+vny1bSJFAYHVlvGKiwj9f5ESk+aW2pFRFzLKrNIf3QTxftrmE3RA6LmdMendf1bOkPkXPP39yc2NpbAwOrfL2vL6T74yZMns23bNu666y4uueQS2rVrxyWXXMKUKVPYtm0bkyZNOuvKiYiIe8qLimD9PROwe1b/NlV6OJ+0md9hldRwz5mI1FvHFv1EXuKRGsuE392JgD7m1lAVach69+7Nww8/zOrVqyksNPul6Fmtjt2hQwcWLlxoqi4iIiLljl3Qlk0TrqP30g+qLVOw9ThH5m8hemY3bDZNdyDSUGR9kkLG27trLBM0ogUhN7VzUY1E6r/t27ezadMmnn76aXx8fOjVqxdDhgxh8ODB9O7dG09PT6ezz6pRKCIiUpf2DupN2MHDtF+1odoyWR+n4NsulPCx57mwZiLirILtJzjy9JYay/h1jqDJA130ZY/Ib2RmZpKYmMjq1atZs2YN3377LevXr2f27NkEBATQv39/Bg8ezODBg7nkkkscyj6rRmFZWRlJSUlkZGRQVlZWZZlLL730bA4hIiJu7sebR9ItK5n8TUerLXP0hW34tA4msJduMxOpz0oO55M6I7HG2769mvoT90wfynyc7/UQLUnRGPn4+JCQkEBCQgJz5swhNzeXr776irVr17J27VpWrlzJypUrsdlslJaWOpTtdKNwzpw5LFiwgKysrBrLVddYbKi8s0vwLi42klUSE2okByA3zuwUzSURjp1INbFiIo1lAdhO1HzOOSK/w9kPzP2t8M0njWXlXFzz7IuOCk4293uzpx0zlgVg8/U1mne0T4CxrIgd5l4LAEUXNDOWFfp99Y0kZ2T2amosK3S9yY8JXsTO7cX+362l5FBe1UXskPbwd7RaOgifljVPSHF4gL/BusG8i/cZy1r0zEXGsgAOj25uNC/6vRRjWVZLs9c4r5MF5sI8zL6nejo/IWAlhT+HmAsDHhuzzmheTewFpaTOSKQso6jaMjZfT+Ke64tXEz9eeaqzsWMfvdTcZ66ifN1oJ/VDUFAQF198MRkZGZw8eZLU1FSOHz/uVJZTZ/Wzzz7LY489RmhoKOPHj6dFixZ4eekFIiIidcMz1Ie45/py4PYvsedV3VC355SQet+3tFw6GM8gbxfXUERqYlkWh+d8T1FSZo3lYh7rjt8FYS6pU6PnquUitCSFS508eZIvv/yyvHcwOTkZy7KIiIggISGBwYMHM2TIEIdznWrJLV68mLi4OH788UeioqKciRAREXGIb5sQYub0JHX6t9V+CCnen0v6I98R93w/bJ66qUmkvjjx2i5y1qTWWKbJ7R0IHmK2d1ukMbn44ov56aefsCyLwMBABgwYwKRJkxg8eDBdu3Y9qzG4TjUKDx48yOTJk9UgFBERlwrqF0PU3Z05tvCnasvkJR7h2KKfaHqP2VsxRcQ5OWtTObH4lxrLBA2MpcmkDi6qkZtQT2Gjs23bNmw2G8OGDePBBx9kwIABZzXj6G85ddN8dHS0w4MXRURETAi/OZ6QK1vWWCbj7d0cnvsDpZnVj10SkbpXmJxJ+uObayzje14oMY/1wOah3n2RmkybNo2LLrqIVatWMWTIEMLDwxkxYgQLFixg27ZtZ5XtVE/hDTfcwL/+9S+KiorwNTxBhIiISE1sNhvRD3aj+EAuhTuqn9wp698p5HyVRtRdnQgd1UYfOEVcrPRkIan3J2IVVj/poGe4L3HP9cEjQHNTiJzJ888/D5waV3h6TOHatWv57LPPsNlsNGnShEGDBjFkyBDuuOMOh7Kd6il8/PHHiYmJ4frrr2ffPnOzromIiNSGh68ncc/2watpzTOJ2rOLOfL0Fg5MWkfhrgwX1U5ErBI7aQ9upPRwfvWFvGzEPt0b7xizM4GLNHYRERFcf/31/OUvf2HXrl0cOnSI559/Hg8PDz744APuuusuhzOd+lrmwgsvpKSkhLS0ND799FNCQ0MJCwurVM5ms7F3715nDiEiIlIjryZ+xM3vw4E7vsIqqnn5o8KfT7J/4lrCRrfDu093SgLMLVsiIhVZlsWRZ7dQsO1EjeWiZ1xMQFezy1bJb2hMYaOWl5fH+vXrWbNmDWvWrOGnn37Cbj+1/mdwcM1LM1XFqUah3W7Hy8uLli3/O6bDsiqfEVVtExERMcWvfTjNHr2E9Ec2nbmwHTLf38s1XzzJ96NHsa9ndziLmdpEpGqZ7+0ha3lKjWXCbmhH2Kg2rqmQSCNxeqH6NWvWsHnzZkpLS7EsC39/fwYNGsTgwYMZPHgwPXr0cDjbqUZhSkqKM7uJiIgYFzKsBVaJnSNP/4hVZD9jef/sHAb8/S3iN2zku5uuJyvW7CLqIu4sb+MRjr64vcYyAT2banZgEScMGjQIAG9vb3r06FG+JmGfPn3w8fE5q2yN6hURkQYv9MpW+HeN5Oift5H3dXqt9mm2ew8j5z7LL0MGsn3E5ZT6aeI0kbNRfCCHtEe+gxq+m/FuEUTsvF7YvJya1kLErd13330MHjyYAQMGEBhodizuWTcKd+7cya5du8jNzWX8+PEm6iQiIuIwn9hAmj/Xl9z1aRz58zZK02uY4OI/POx2Lly1ljbf/8jmMddy4OIuuqVUxAllOcWk3vct9pySast4BHoR91wfPEPOrkdDakljChudZ599ts6ynW4U/vjjj0yaNKnCmhinG4VfffUVV1xxBe+++y5XX3312deyHvHIycej2ExWWUComSAg+GDNkyw4ymunubzjXf2MZQFEfnLUWFbongJjWQBWmbnfW1GE2Q+mgRlZxrJskeHGsgBO9Agxmudt7kfF+7DBMMDbfubbG2vLKjO7XmzwAUMXN6A0wMxius4IujSWgJ5NObEsiZNvJkHpmT+xBGZkMvDVvxPYJ5qm07vi0yKo1sd7YUnfs6luBT4Ts41lAfjlFxrNM+qQuWs5AAaXHLEFmf0Gvuw1c1m2nuayTLHKLNIf3UTx/tzqC3lAkzmXYG/lT4FVfcOxAoPXy6hEc6+twqIzf+EkUtfS09PZunUrmZmZhIaGcvHFFxMT4/xwCKf67nft2sXAgQPZs2cP9957L1dccUWF5y+99FKaNGnCBx984HTFREREnOXh50XUnZ1o8/YwAno2rfV+eYlHSBm3iuOLf8Few9pqIvJfxxb9RF7ikRrLhE3piH/faBfVSKTxOnDgACNGjKB58+ZcddVV3HLLLYwcOZLmzZtz5ZVXOj33i1ONwsceewy73c7mzZt5/vnnK81wY7PZ6NOnD5s3b3Y4Ozk5mVmzZtG7d2+ioqIIDg6ma9euzJs3j7y8vPJylmXx1ltvceONN3LeeecREBBAy5Ytufrqq/nuu++c+bFERKSR8WkVTPOX+hMzrxdeUbW7a8EqtnNiyU5Sxq0i95vajU8UcVdZn6SQ8fbuGssEjmhB8Lh2LqqRnGazXPcQ1zh8+DD9+vXjs88+o1WrVowfP54ZM2Ywfvx4Wrduzeeff86AAQM4fPiww9lONQrXrVvHddddxwUXXFBtmZYtW5KWluZw9tKlS1mwYAHt2rVj1qxZzJ8/nwsuuIBHHnmEvn37UlBw6na/oqIixo8fT1JSEjfeeCMLFy7kjjvu4Mcff6RPnz689dZbzvxoIiLSyNhsNkKGNqfNe8MJHxcPnrW7zbAkNY/UP31L6gOJlNS0ALeImyrYfoIjT2+psYxP53AiHrgIm8bqipy1uXPnkpqayjPPPMPu3btZtmwZTz31FMuWLSM5OZlnn32W1NRU5s6d63C2U2MKs7KyznjPanFxMaWljo93uf7665k5cyahof8db3fnnXcSHx/PvHnzeO2117j77rvx8vJi3bp1JCQkVNh/8uTJdOrUienTpzNu3Dg8PDS7lYiIgEegN03vuYjQEa048swWCrbXvLD2abnr0sjbeIQmt3cg4qZ4bN56XxEpOZJP6gOJWCXVj/vzbOpH1NM9sPmcuzHG7s32n4crjiOusGLFCoYOHcr9999f6TlPT0/uu+8+Vq1axSeffMKiRYscynbqnS0mJoadO3fWWGb79u20bt3a4ezu3btXaBCeNnbsWAB27NgBgJeXV6UGIUB0dDQJCQkcPXqUo0cND2IXEZEGz/e8UFr8LYFmj16CZ3jtlqGwCss4/vIOUm5ZTf73em8R92YvKCX1/kTKThZVW8bm60nUsz3xbGJ2sjkRd5aenn7Ghem7d+/uuttHL7vsMj777DM2bdpU5fMrV65k/fr1jBgxwpn4Kh06dAg41eirTVkfHx/CwsKcPl5MTEyFR3x8vNNZIiJSv9g8bIRe1Zo2/xxO2Oi2tf6iuzglh4NTviZt1iZKj5udvVikIbAsi8NzvqcoKbPGchGPdsWnfZhL6iTVsFz4EJcIDQ3lwIEDNZY5ePAgISGOz+ruVKPw4YcfJjg4mMGDB/PQQw/xyy+/APD+++8zbdo0Ro4cSVRUFNOnT3cmvpKysjLmzJmDl5cX48aNq7Hsp59+yqZNmxg7dix+fvp2SkREqucZ4kP0jItpuXQQfh1qv9RKzhcH2XfDSjLe24PNrllKxX2ceG0XOWtSaywT8rvzCRwa56IaibiPfv368cEHH1Q7qeamTZt4//336d+/v8PZTo0pbNGiBStXruSGG27g6aefLt9+4403YlkWrVu35sMPP6xVr15t3HvvvSQmJvLkk0/WOLnN7t27GT9+PHFxcTz//PNndcz09IozzmVnZ1d5W6uIiDR8/h0jaPnaIDL/71eO//XnGhfgPs2eV8rRP2+jb5Nj/NxvNJnRreu+oiLnUM6XqZxY/EuNZfwTmhE6qfrPaiLivEceeYRPP/2UAQMGcNNNNzFw4ECaNWvG4cOHWbduHe+88w4eHh489NBDDmc7vXh99+7dSU5OZsWKFSQmJnLy5ElCQ0Pp1asXo0aNwtvb29noCh599FEWLVrEHXfcwcyZM6stt2/fPoYMGYLNZuOzzz4jKirKyPFFRMQ92DxthI9uR/CgOI4t2kH2iv212i/kRBp9li/k4AU9Seo5ghK/2i98L9JQFCZnkj675qXGvM8Loclj3bB5aOIRkbrQrVs3PvjgAyZMmMCbb75ZYbUFy7KIiIhg6dKldO/e3eFspxuFcGqyl1GjRjFq1KizianW7NmzmTt3LhMnTuSVV16ptlxKSgqDBg0iNzeXNWvW0Llz5zqpj4iINH5eEX7EzOpO6MjWHJm/heK92bXar0XSJqJTdpDUcwSHLugJNs1SKo1D6clCUu9PxCqs/lZpzzAfop7tiUfAWX20FNM03q/Rueqqqzhw4AD/93//x5YtW8jKyiI0NJSLL76Ya665hsDAQKdy6+0rd/bs2Tz++ONMmDCBJUuWVLu+TUpKCgMHDiQrK4vVq1dz8cUXu7imIiLSGAVcHEnrN4aQ8c89HF+8Eyv/zMss+RTl0/nr92mR9B0/9xtNdmRzF9RUpO5YJXbSHtxIaU1rdXrZiH26D7bYANdVTMTNHDhwgM2bN+Ph4UGPHj24+eabufnmm43lO9UofOKJJ2pVzmaz8eijjzqV//jjjzN+/HiWLl1a7VqD+/fvZ9CgQWRmZrJq1SouueQSh4/lqPy24dj9nWuB/y//AzlGcgAwvShsbp6xqKjDhr+m8jVzazLUwRdoQWbODYCSCMfX+axJWby5Qf9eKUeMZQE0WZtrNK+wfTNjWZbB1wIAvj7GoqyCQmNZABntzdUtLNns+fvi3/oYy8q/4szjBSvo3xO/Dllc9PoKmif+VKtdwo4eoN/HCwgb3Y7I33fEM7h2v9vH1w50rG5nELHd7GuLaHNDM3Lbmb3NNmh/DY0WB3W/o+Zltxy1eXFHY1mzhqwzlnUmlmVx5NktFGyreU3P6BkXE3BxJIvmdTJ6/Mxu5s63kF/NzRZs2cxe3+qKzTr1cMVxpG7dd999vPDCC1jWqV+2h4cH06dPrzC3y9lyqlE4e/bsap873aNnWZZTjcKXX36Zxx57jJYtWzJ06FDefvvtCs9HR0czbNgwcnJyGDRoECkpKUydOpWkpCSSkpIqlB02bJixyW5ERMR9FTYJZdOfxpGybTddXvuY4PRaLHxvh8z395Kz5hBRf7yIkMtbVHvXi0h9lPneHrKWp9RYJuyGdoSNauOaCom4oXfeeYc///nP2Gw22rdvj2VZJCUlMX/+fC655BLGjBlj5DhONQq//PLLKrdnZmayefNmXnrpJUaMGMGdd97pcPbmzacGMR84cIAJEyZUej4hIYFhw4Zx4sQJ9u3bB8DChQurracahSIiYsrRLvGsef5e4pd/TfsP1+JZcuYeg7KTRRyevZms5fuIvv9ifNs6vn6UiKvlbTzC0Re311gmoGdTmt5zkYtqJOKelixZgpeXF59++ilDhw4FTq0JP2LECJYsWXJuG4UJCQnVPjdq1CjGjh1Lz549ufHGGx3OXrZsGcuWLTtjudatW5d3oYqIiLiK3duLpNGDONi/C13+/gkxP9TuVsOCH4+Tcstqwm+KJ/L2DpqQQ+qt4gM5pD3yHdirL+PdPJDYub2weWlCJZG6tH37dkaOHFneIAQYPnw4I0eOZMOGDcaOUyev5M6dOzNq1CiefPLJuogXERE55/KjI0h88Fbi5vfBK6aWE2yUWWS8lcy+sSvJWZuqLzel3inLKSb1vm9rXKvTI9CLuOf74hlqbhyyiFQtIyOD9u3bV9reoUMHMjIyjB2nzr7eadmyJTt27KireBERkXoh6NJY2rw7jIiJ7cGrdmMGS48WkDZzI6nTvqH4oOHJYEScZJVZpD+6ieL9NZyTHhAztxe+rXUbdL1nufAhdcZut+Pr61tpu4+PD3Z7Dd35DqqzRuF3332Hv79/XcWLiIjUGx5+XkTd2Yk2bw8joGfTWu+Xl3iElHGrOL74F+w1rAEn4grHFv1EXmLNs0tH3d2ZoL7mZngWkTNzxSRlTg1oOHDgQJXbS0tLOXjwIIsXL2bDhg3ccMMNZ1U5ERGRhsSnVTDNX+pPzppUjr2wjdJjZ142xCq2c2LJTrI/O0DM0Gaktzc7rb9IbWR9kkLG27trLBNyZUvCx8W7qEZytmz/ebjiOFK3nn/+eRYvXlxhW3Z2NnDq7sz/ZbPZ2L9/v0PHcKpR2Lp16xpbrJZlER8fz3PPPedMvIiISINls9kIGdqcoD7RHF+yk4z39kDZme+vKknNI+H1VzjY6SK2XDWa/LAIF9RWBAq2n+DI01tqLON3YQTRD3bTsioi50B2dnZ5I/B/HTp0yMgxnGoU3nrrrVVeFDw8PAgPD6dnz56MGjWqyvtfRURE3IFHoDdN77mI0BGtarUA+Gktft5OTPIudgy5nOR+g7B7aZZSqTslR/JJfSARq6T6sUleTf2Je7YPHr6eLqyZiABGxw3WxKl3mtosGSEiIiLge14oLf6WQPaK/RxbtIOyjKIz7uNVUkzXz5fT5sdN/HD1GI62O98FNRV3Yy8oJfX+RMpOVn9O2nw9iXu2D15N/FxYMxFxNS0uIyIiUsdsNhuhV7WmzT+HEza6ba0H4YQePczgJQvp/e7r+GVn1W0lxa1YlsXhOd9TlJRZY7lms7rj1yHcNZUSszT7qDhA96Q4yH9HGn4+ZmZVtbeMNpID4JmZbywL4OR4c1NNtwjNNJYFcGKluVnP/PbW7nau2jrZK8pYVsy/zdbNCjD3LW/mgDhjWQBjBq43mrdydvXrazkqq18rY1kARRHm3j3tQWZnq5x34TpjWY/4JxjLAvjTxWuMZW0pNHv+OsIzxIfoGRcTclUrjj67lcKdtVtjqvW272m7ZyuRv+9E2Oi2tV4wfEs/s7OAf7Cru7Gsay/43lgWwDevX2Qsa/U6cz8nQGHv+vep+cTSXeSsSa2xzN4OA1m5dShsrV3myb6hZ1+x34jYcNRYlj06zFiWVabbaKXxcapR2LZtW6cOZrPZ2Lt3r1P7ioiINBb+HSNo+dogsj7ex7G/7KhxofDT7HmlHP3zNrI+SSF6xsX4d27igppKY5TzZSonXv2lxjJH4jqyt9NgF9VI6oSrevHq33ce4gSnGoV2u52SkhLS09MB8PT0JDIykuPHj1NWduqb65iYGHx8fCrsZ1k6a0RERABsnjbCrmtL0MBYji3aQfaK2k0fXpScxYFJ6wi9ujWRUy7EK0yTukntFSZnkj57c41lckKbsaPnaLBplJGIu3Dq1b59+3bi4uLo3bs3X375JYWFhaSnp1NYWMjatWvp1asXzZs3Z/v27ezbt6/CQ0RERP7LK8KPmFndafG3BHzOq/2t+1nLU9g3ZiWZ/7cPy64vXeXMSk8Wknp/IlZh9beeF/sEsKXfzZR56csGEXfiVKPw4YcfJjMzk3Xr1pGQkICn56l7qz09PRk4cCBffvklJ0+e5OGHHzZaWRERkcYqoGskrV8fQtQ9nbEF1O5GHnt2MUee+pEDk9ZRuKt24xPFPdkLy0h7cCOlh6ufg8Bu82Rr33EUBmpiGRF341Sj8F//+hejRo2qdHvoaX5+fowaNYqPPvrorConIiLiTmxeHkSMO5827w0neGjzWu9X+PNJ9k9cy5HntlKWU1yHNZSGKHdDOik3rTzjWpk7u40kM6q1ayolIvWKU43CEydOUFJS86D4kpISTpwwO3uiiIiIO/Bu6k/svF40X9gf75ZBtdvJDpnv72XfDSvJ+uyAxvELJel5pN7/LanTv6UkreZZyvef15vUtmZnXZVzTEtSiAOcahS2a9eODz74gKysqtdMysjI4IMPPnB6llIRERGBwJ7RtP7HUCLv7ITNt3Zv2WUnizg8ezMH71qPLSWzbiso9ZK9uIwTy3axb+wqctenn7H8iabtSO5yhQtqJiL1lVONwjvvvJO0tDR69uzJG2+8QUpKCgUFBaSkpPD666/Tq1cvDh8+zJQpU0zXV0RExK14+HjSZGJ7Wr87nMABMbXer+DH4/hNXIH3X3+EfHNrd0r9lrf5KPtvWc3xv/6MVXTmtUzzgpqwrc9YLA+tvdfY2Fz4kIbPqSUp7r77bnbv3s3ChQuZOHFipecty2Lq1KncddddZ11BERERAZ/YQJo/15fc9Wkc+fM2StNrvh0QwFZm4f3OL3iuTqFkanfKElqATR/hGqPSYwUcfXE7OasO1XofjxAftva5mVKfgDqsmYg0BE41CgFefPFFbrzxRpYuXcqWLVvIysoiNDSUbt26cdttt9G3b1+T9RQREREg6NJYAno25cSyJE6+mQSlZx7Q43EsH99Z6ynrFUvxPT2wmge7oKbiClapnYz393Li1V+w55fWej+/juHEPN6Dz//ZtA5rJ+eUFq8XBzjdKATo06cPffr0MVUXERERqQUPPy+i7uxE6BUtOfLcVvI3Ha3Vfp7fpeF3278pHdeJkps7ge9ZfQyQcyx/23GOPruVoj1Vz/FQFY8Qb6L+cCGho9pg81SvsYiconcDB9njorD7mbnNwlZ85nv9a+vIoFBjWQBNVpsbf5KbV/vFmGvD/6aTxrLKTtRyVr9aCt+RayzLKiwylgWAwbySYLO3Gn32D7N3FniHZBvLCt175lv0HGHbYW65ACvH3PkGMPfQQGNZTb/81VgWwD829DeWVRTlZywLYHuRua/Jp03c4FB5n1bBNH+pPzlrUjn2wjZKjxWecR9bsR3vZT8RsOpXmt7XlaC+zWp9vIu7fO1Q/VypZMLPxrL6+Jm7hphmYVGaUcTxRTvI/mS/Q/uGXNWKyLsvxCvctzzLVmTumlQcYe5zDYDNw6mpL6rO2nfmCXdqnVVcYCyrTqmnUBzg9KutrKyMF198kV69ehEaGoqX13/bl1u3buWuu+4iOTnZSCVFRESkajabjZChzWnz3nDCx8VDLXt/SlLzSJ32DakPJFJSw4LmUn9YdovMj34l5YaVDjUIfc4LpcWrCTR79JLyBqGIyG851VNYWFjI5Zdfztdff02TJk0IDg4mN/e/31i3adOGv//97zRp0oQ5c+YYq6yIiIhUzSPQm6b3XEToiFYceXbLGRcqPy13XRp5G4/Q5PYORNwUj83bXO+MmFO4M4Mj87dQ+HNGrffxCPCiyR0dCRvTFpuX/q4iUj2nrhDPPPMM69evZ86cORw+fJhJkyZVeD40NJSEhAS++OILI5UUERGR2vE9L5QWf0ug2azueNayV8gqLOP4yztIuWU1+T8cq+MaiiPKcoo5Mn8L+yeudahBGDysOa3/OYzwm85Tg1AaFLvdzoIFC2jfvj1+fn60aNGC6dOnk5eXVyf7f/rpp/Tt25fAwEAiIiIYM2YM+/btq7JsUlIS11xzDeHh4QQGBjJgwADWrl17xjpt374db29vbDYbH3zwQa1+Dldz6irxzjvvcOmll/LQQw/h4eGBrYrprdu0acPBgwfPuoIiIiLiGJvNRuiIVrT553DCRret9UJixSk5HLxrPWmzNlF64szjE6XuWJZF1qf72TdmJZkf/FrrcVverYJovqg/MXN74hXlX7eVlPrNcuHDoGnTpvGnP/2Jjh07snDhQsaMGcNLL73EyJEjsdvtRvf/6KOPuOqqqygoKGD+/Pncf//9rF+/nn79+pGWllah7N69e+nbty+JiYnMmDGD+fPnk5uby2WXXcbq1aurrY/dbmfy5Mn4+Zkdz26aU7ePpqSkcPXVV9dYJjQ0lIyM2n+jJSIiImZ5hvgQPeNiQq5qxdFnt1K4s3bvyzlfHCRvQzqRv+9E2GjdeuhqRXuzODJ/KwVbjtd6H5uvJ01+157wm3ULsDRcP//8MwsXLuS6667jww8/LN/epk0b/vjHP/Luu+8ybtw4I/uXlJQwdepUWrRowddff01Q0KnJB6+44gouueQSZs+ezauvvlqeMXPmTDIzM/nhhx/o2rUrALfeeiudOnViypQp7Nq1q8qOsoULF/Lzzz8zY8YMHnvssbP6/dQlp64agYGBnDhR81iFlJQUIiIinKqUiIiImOPfMYKWrw2i6YyueAR712ofe14pR/+8jf0T11LwU+3GJ8rZseeXcvSl7aSMX+NQgzDw0hhavzuUiNsuUINQytlc+DDlnXfewbIs7r333grbJ0+eTEBAAG+99Zax/b/66ivS0tKYNGlSeYMQoGvXrgwcOJD33nuPkpJTs/Hn5eWxfPlyBg4cWN4gBAgKCmLSpEkkJyezefPmSvU5ePAgjzzyCLNnz6Zly5a1/C2cG05dObp3786nn35a7b25R48eLb8/V0RERM49m6eN8NHtaPPP4YSMaFXr/YqSszgwaR2H5/1AaabhpXIEOHWraM6aQ+y7YSUZ/9gNZbW7H887NoDY5/sQN78P3rGBdVxLkZrFx8cTExNT/nDG5s2b8fDwoGfPnhW2+/n50bVr1yobXs7uf/r/V7Xmeu/evcnOzi5fSWH79u0UFRVVW/a3eb/1hz/8gbZt21ZqpNZHTjUK//jHP3LkyBFGjhxZadmJbdu2MXLkSPLy8pg6daqRSoqIiIgZXhF+xMzqTou/JeDTrvbryGYtTzk1vu3jfVh2LUxmSvGBHA7ds4G0h76j9Fjt1r+zeXsQ8bv2tHpnGEH9nfvwLVIfpaWlERkZia9v5Umy4uLiOH78OMXF1a+t6cj+p8cMxsXFVVkWIDU11eGyp7333nt8+umnvPLKKxWW7quvnKrhiBEjeOSRR5g7dy4dOnTAx8cHONWFWlBQgGVZPPHEEyQkJBitrIiIiJgR0DWS1m8MIeOfezi+eCdWfukZ97FnF3PkyR/JWp5C9IyL8bsgrO4r2kjZC8s4+fouTr6ZjFVy5skzTgvo1ZSm93XFp2XQmQuLe3Px4vW7d+8mJKT2XzRVJT8/v8oGHVA+UUt+fn552+Ns9s/PP7U+a1Xlf1v2t//WpixARkYG99xzD5MnT66yd7E+cvrG8yeeeIKVK1cycuRIQkND8fT0xN/fnyuuuIIvvviCRx55xGQ9RURExDCblwcR486nzXvDCR7avNb7Fe44yf7b1nDk+a2U5ZbUYQ0bp9wN6aTctJITS3fVukHoFeVP7JO9iHuxnxqE0mgFBARQVFT1beqFhYXlZUzsf/rfqsqfTVmA+++/H8uyePrpp6uta33jVE/hgQMH8PHxYejQoQwdOtR0nURERMSFvJv6EzuvF3mjWnNk/lZKDuSeeSc7ZP5zLzmrD9H0nosIvqxFlTPvyX+VpOdx9M/byF2fXvudPG2E33gekbd3wCPQG8slXT/SKLi4p9CE2NhYfvnlF4qKiir1yqWmphIZGVltL6Gj+8fGxpZv79ChQ6Wy8N9bQ39b9n/9b9kff/yRpUuX8vjjj3PixInyyTmPHj0KwOHDh9mzZw8tWrSotlfzXHCqp7BNmzY89NBDpusiIiIi51Bgz2ha/2MokXd2wuZbu48IZSeLSH9sMwfv+pqiX7PruIYNk1Vi58SyXewbu8qhBqF/10havzmEpn+8CI/A2s0aK9KQ9ejRA7vdzqZNmypsLywsZOvWrXTv3t3Y/j169AAgMTGxUs7GjRsJCQnh/PPPB6Bz5874+vpWWxYozz5w4ACWZTFr1izi4+PLHw888AAAU6dOJT4+np9++qnGn8XVnOopDAsLIzIy0nRdGoTCCG/wr/4bCkf4b95nJAcgItDwNLceBr/t9TQ7Pbb9r9UPMHbUscubGMsCiNpibma+Kx5JPnMhB3zyZn9jWfYws7eLeSalnbmQAyyDA7qLm4caywLwTck/c6HaCjdbt6IIc1/32vzNLtJrKzT32vI9YbY3K3J87ZcOOJNjZWZn94zydPxbaA8fT5pMbE/wZS04+udt5H1du0ZMwY/HSLllNRHj4mnyuw54BLh2YoU+fvWzQZr3/VGOzt9KcUpOrffxDPcl6o+dCbmiZaXe14V/6W22guHmXg/N1hq8vgFWDROKOKzszGNmz0lWHWtoffdjx47lySef5IUXXmDAgAHl2xcvXkx+fj4333xz+ba9e/dSUlJC+/btndo/ISGBmJgYlixZwrRp08qXpdi2bRvr1q1j4sSJeHuf+jImKCiIkSNH8tFHH7Ft2za6dOkCQG5uLkuWLCE+Pr58xtOePXvy/vvvV/rZ1q1bx8svv8z06dPp3bs37dq1M/ErM8apK3bv3r3ZsmWL6bqIiIhIPeETG0jz5/qSuz6NI3/eRml6LT7wl1mcfDOZ7JUHaTqtC0EDY932ltLS4wUcffEnclYerP1ONggb3ZbIOzvhGWzmC2iRhqRz585MmTKFRYsWcd1113HllVeyc+dOXnrpJRISEiosXD9kyBD279+PZVlO7e/t7c2LL77I2LFjGTBgAJMnTyY7O5sFCxYQFRXF448/XqFuTz31FGvWrGH48OFMmzaNkJAQFi9eTGpqKitWrCi/1sXGxnL99ddX+tlyc0/dlt+7d+8qnz/XnGoUzp49mwEDBrBkyRImTZpkuk4iIiJSTwRdGktAz6acWJbEyTeToPTMPcqlRwpIe3AjgX2iaTq9Kz4t3GdiFKvUTsb7eznx6i/YazGj62l+ncKJvv9i/DqE12HtxK00wDGFAC+88AKtW7fm1VdfZcWKFURGRjJ16lSeeOIJPDzOfPeZI/uPGTMGf39/5s6dy3333Yevry9DhgzhmWeeqbT8xHnnncc333zDgw8+yNNPP01xcTHdunXj888/bxRzrDjVKPzss88YOHAgv//97/nrX/9Kz549adasWaVvA202G48++qiRioqIiMi54eHnRdSdnQi9oiVHnttK/qajtdovL/EIKeNWETqyNZ4hjb/nywLyvk6naE9WrffxCPEm6q4LCR3VBpvJoRsiDZSnpyfTp09n+vTpNZZLSUk5q/1Pu+qqq7jqqqtqVbZDhw58/PHHtSr7v2677TZuu+02p/Z1Bad7Ck/bsmVLtbeSqlEoIiLSePi0Cqb5S/3JWX2IYy9up/RY4Rn3sYrtZH74qwtq1/CEXNWKqLs74xVef2YgFBH35FSj8MsvvzRdDxEREWkAbDYbIcNaENS3GceX7CTjvT1QpmUSHOF7XihNZ3QloIt7TtonIvVPrRuFy5cvp3379px//vkkJCTUZZ1ERESknvMI9KbpPRcRcmUrjj67hYLtJ851leo9jwAvmtzRkfAx7bB5mZ2ZW6SSBjqmUM6NWl+Rrr32Wt59990K29577z2uu+4645USERGRhsEvPpQWf0ug2aOX4KnbIKsVPKw5bf45nIib4tUgFJF6p9Y9hb+d7vW0Xbt2OT3YUkRERBoHm4eN0KtaE3RpLMdf+ZnMj35V78F/+LQKoun9FxPYo+m5roq4G/UUigNcu7KsiIiINFqeIT5Ez7iYkKtacfTZrRTuzDjXVTpnbL6eNPlde8LHxePh43muqyMiUiM1CkVERMQo/44RtPz7IAq2HKfo12y3m4jGM9SHwD7ReIbqdloRaRjUKBQRERHjbDYbAd2iCOgWda6rIuKWbP95uOI40vA51Cj838Xp3VHUpUfwD/Y3knUotK2RHICrLv3OWBbAviJz02QfeK+FsSwAT7u5b5zDku3GsgBsJWXGsr5Y0MVYFoAVbS6r2fI8c2FAUQez54jJd6jMHub+pgCRucHGsjyKzdYt6KC5LKtZE3NhAMWlxqIyRxqLAiB/tbnz993tZm8zzO0WazRv5jVfGcvaXWIsCoDXt5ubGd07y+znneCD5s5fn9wcY1kAxc1CjGWd6OtjLAsAK9BYVLM15n5vtqJ8Y1ki9YVDjcLnn3+exYsXl/93dnY2AC1btqyyvM1mY//+/WdRPREREREREalLDjUKs7OzyxuCv3Xo0CFjFRIRERERERHXqXWj0G43e5udiIiIiIjUES1JIQ7Q6qkiIiIiIiJuTI1CERERERERN6ZGoYiIiIiIiBvTOoUiIiIiIo2NxhSKA9RTKCIiIiIi4sbUUygiIiIi0sjY/vNwxXGk4VNPoYiIiIiIiBtTo1BERERERMSN6fZRB+X9I4Ay3wAjWQFRZUZyADY83dJYFkDmhFBjWWEHjxnLArCKioxlef9ywFgWQOagNsaywjZkGMsC8C4uMZZlBZl5DZxms8yOUvf62dzfNWqHsSgAbMFBxrKsiBBjWQBeeXZjWfnRPsayAIq6mKtbk3+au4YAYCs2FpU+NtpYFkD0ukKjeY9uSjCWFbrX7Os+emeasayMieHGsgC81ph7H8y4tJWxLICwb8393podMPuxsjQuwliWdeyEuaziAmNZdUoTzYgD1FMoIiIiIiLixupdozA5OZlZs2bRu3dvoqKiCA4OpmvXrsybN4+8vLxK5ZOSkrjmmmsIDw8nMDCQAQMGsHbt2nNQcxERERGR+sFmue4hDV+9axQuXbqUBQsW0K5dO2bNmsX8+fO54IILeOSRR+jbty8FBf/tst+7dy99+/YlMTGRGTNmMH/+fHJzc7nssstYvXr1OfwpREREREREGoZ6N6bw+uuvZ+bMmYSG/ndM25133kl8fDzz5s3jtdde4+677wZg5syZZGZm8sMPP9C1a1cAbr31Vjp16sSUKVPYtWsXNpsmyhUREREREalOvesp7N69e4UG4Wljx44FYMeOU7M+5OXlsXz5cgYOHFjeIAQICgpi0qRJJCcns3nzZpfUWUREREREpKGqdz2F1Tl06BAA0dGnZmbbvn07RUVF9OnTp1LZ3r17A7B582Z69uzp1PFiYmIq/Lfdbm7mOxERERGROqXZR8UB9a6nsCplZWXMmTMHLy8vxo0bB0Ba2qkplOPi4iqVP70tNTXVdZUUERERERFpgBpET+G9995LYmIiTz75JBdccAEA+fn5APj6+lYq7+fnV6GMM9LT0yv8d3Z2dpW3tYqIiIiIiDRk9b6n8NFHH2XRokXccccdzJw5s3x7QMCpxbOLqljIvLCwsEIZERERERERqVq97imcPXs2c+fOZeLEibzyyisVnouNjQWqvkX09Laqbi0VEREREXELGu8ntVRvewpnz57N448/zoQJE1iyZEmlpSU6d+6Mr68viYmJlfbduHEjcGomUxEREREREalevewpfOKJJ3j88ccZP348S5cuxcOjcts1KCiIkSNH8tFHH7Ft2za6dOkCQG5uLkuWLCE+Pt7pmUdrYmVkYfkUG8ny8fQ0kgNgFZup02lhyzKNZeV0jzWWBVAUYS4r6ttMc2FAVLejxrJKf/Q3lgVg+Vcef+u0XOfH61bF68gJo3knRrY1ltXk378aywLAz9zfwSOv0FgWgE+ZuVmWfU6UGcsCCNxrrm6Wj9m3Pivd3Ot+aJuDxrIADsaEG83z+Ju565LRaxJQdpe5uoW/kmksC8CKizaWFbb+gLEsAAx+FqHM7Ove+2i2sSzLx8dYlg2zP2ddsVmnHq44jjR89a5R+PLLL/PYY4/RsmVLhg4dyttvv13h+ejoaIYNGwbAU089xZo1axg+fDjTpk0jJCSExYsXk5qayooVK7RwvYiIiIiIyBnUu0bh6QXnDxw4wIQJEyo9n5CQUN4oPO+88/jmm2948MEHefrppykuLqZbt258/vnnDB061KX1FhERERERaYjqXaNw2bJlLFu2rNblO3TowMcff1x3FRIREREREWnE6u1EMyIiIiIiIlL36l1PoYiIiIiInCXLOvVwxXGkwVNPoYiIiIiIiBtTo1BERERERMSNqVEoIiIiIiLixjSmUERERESkkdHi9eII9RSKiIiIiIi4MfUUioiIiIg0NtZ/Hq44jjR4ahQ6yPaf/5lg+XkbyQGIe6DMWBZA+ishxrKCf80zlgUQlGrwtC0pNZcFFPw7wliWN1nGsgAoNXeOFLdqYiwLYPr4r43mLXo62FxYpLm/KUD6IHOvraCDxqJO5X1/yFyYj4+5LMAqKjSWZfP1M5YF4BEeZixr3Y9tjWUBhOwz+97gnW3upLPl5RvLArA+jTGX1TTAWBaA3cvcjVmeUWavSSY/i9jyzL1OAaz8ImNZxX8IMpeV6wF/MxYnUi+oUSgiIiIi0sjY/vNwxXGk4dOYQhERERERETemnkIRERERkcZGYwrFAeopFBERERERcWNqFIqIiIiIiLgxNQpFRERERETcmBqFIiIiIiIibkwTzYiIiIiINDaaaEYcoJ5CERERERERN6aeQhERERGRRsZmnXq44jjS8KmnUERERERExI2pp9BRNtuphwEeWXlGcgDSXgg0lgVQ3DbEXJjdXBSA944UY1lWdJSxLACvjHxjWfbMLGNZAB7hYebChuSYywIWze9qNM/KyzWWdfj6GGNZANHfFBnLsjzNXItOK7owzliW396TxrIArNIyY1mFnc2+7rPbmfs7zOmxzlgWwMItPY3mEdXEWFRZqJ+xLDB7/eVkprkswIqPNZZlyywxlgVg9/c2lmXLKzCWBVDcztxr1edvR4xl2YvM/pwi9YF6CkVERERERNyYegpFRERERBobzT4qDlBPoYiIiIiIiBtTo1BERERERMSNqVEoIiIiIiLixtQoFBERERERcWOaaEZEREREpJGx2U89XHEcafjUUygiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDGNKRQRERERaWRs1qmHK44jDZ96CkVERERERNyYegodZDVtguUXYCSrMNLXSA6A3+F8Y1kAngVl5rJSjxvLAjg2qbmxrJDvzb4EfI8VmguzzH71VhQXaizL532DPydgD/I0mlfYMsRYVvQ3xcayAGxl5qZpy7rSWBQA/onexrKsEDPXydNMfoPpu+2AwTRokhdnLOtRe4KxLIDQJmanBfTbn2ksy6PI3PkGkBMfbCwrZJe590CArNbm3msikrKMZQF4FJUYyzoxsJmxLADfDHPvgwW9Y41lFebnwSvG4uqQ9Z+HK44jDZ16CkVERERERNyYegpFRERERBobdRSKA9RTKCIiIiIi4sbUUygiIiIi0tiop1AcoJ5CERERERERN6aeQhERERGRRsb2n4crjiMNn3oKRURERERE3JgahSIiIiIiIm5Mt4+KiIiIiDQ2lnXq4YrjSIOnnkIRERERERE3pkahiIiIiIiIG9Ptow6yFRVjM/Rr892SbiQHoKB7G2NZAP7p+cayyppHGssCiHrzqLkwHx9zWUBGn6bGsspGxBnLAoh864ixLCs6wlgWgEe2ufMNIOBkrrGsjO5mz98Bl243lvXTU02MZQFYhYXmwoICzWUBlsH57eznmX1teR44Ziwr+rC3sSwAy8/XbF5JqbEsu4/Z76WDN6cay7LHmn3dN1l1wFxYrLn3GYDcFv7GspqsNvc3AMDD3Ou+tJW535tnobnXgUh9oUahiIiIiEhjo8XrxQG6fVRERERERMSNqadQRERERKSRsVmnHq44jjR86ikUERERERFxY+opFBERERFpbDSmUBygnkIRERERERE3pkahiIiIiIiIG1OjUERERERExI2pUSgiIiIiIuLGNNGMiIiIiEgjY8NFS1LU/SHEBdRTKCIiIiIi4sbUU+ggW1ExNkO/tmNXtzGSA2D3MxYFgOUZYCwrcOdxY1kA9tIyY1k2e6GxLIDgg6XGsjx3G4s6JTjQWFSTG48ZywL45UCs0bzofx4yluVR2sRYFsBPT0YYy8rsH2csC6DM4HUkcoPZ1/2xBHN/hyb/3mcsCwBvb2NR9ghz5weALf2E0Tyr0Nw10/OguWs5QFnLpsaywkebvcYd2NzSWFbY+gPGsgCCjpv7KHh4TDNjWQAxn2Qay7KV2A1mNZA1GCzr1MMVx5EGTz2FIiIiIiIibkyNQhERERERETdWLxuFTz31FGPGjKFt27bYbDZat25dY/nPPvuMIUOG0KxZMwIDA7ngggu47777OHLkiGsqLCIiIiIiZ81ut7NgwQLat2+Pn58fLVq0YPr06eTl5dXJ/p9++il9+/YlMDCQiIgIxowZw759VQ8zSEpK4pprriE8PJzAwEAGDBjA2rVrK5X76quvmDJlCp07dyYkJISoqCj69evHO++8g1VPb7etl43Chx56iLVr19KuXTvCw8NrLLt48WKuvPJKsrKyeOCBB1iwYAGXXnopL7zwAn369Kn1CSQiIiIi0mhYLnwYNG3aNP70pz/RsWNHFi5cyJgxY3jppZcYOXIkdvuZx4Y6sv9HH33EVVddRUFBAfPnz+f+++9n/fr19OvXj7S0tApl9+7dS9++fUlMTGTGjBnMnz+f3NxcLrvsMlavXl2h7AMPPMDHH3/MwIEDee6553jooYcoKytj3Lhx3HHHHWf/S6oD9XKimb1799K2bVsALrzwQnJzc6st+9xzzxETE8OGDRvw8zs1S8Idd9xBdHQ08+bNY9WqVVxzzTWuqLaIiIiIiDjp559/ZuHChVx33XV8+OGH5dvbtGnDH//4R959913GjRtnZP+SkhKmTp1KixYt+PrrrwkKCgLgiiuu4JJLLmH27Nm8+uqr5RkzZ84kMzOTH374ga5duwJw66230qlTJ6ZMmcKuXbuw2U4t0PHMM8/Qv39/PD09y/e/5557GDRoEEuWLOGee+7hwgsvPPtfmEH1sqfwdIOwNrKzswkPDy9vEJ4WG3tqNsPAQHMzLoqIiIiINAQ2Fz5MOX175b333lth++TJkwkICOCtt94ytv9XX31FWloakyZNKm8QAnTt2pWBAwfy3nvvUVJSAkBeXh7Lly9n4MCB5Q1CgKCgICZNmkRycjKbN28u356QkFChQQjg4eHB9ddfD8COHTvO+LtwtXrZKHTEZZddxi+//ML06dPZuXMnBw8e5KOPPmLOnDkkJCQwePBgp3JjYmIqPOLj4w3XXERERESkcYiPj6/w2dkZmzdvxsPDg549e1bY7ufnR9euXSs0vM52/9P/v0+fPpVyevfuTXZ2NsnJyQBs376doqKiasv+Nq8mhw6dWjIrOjr6jGVdrcE3Cl988UXGjBnDiy++SMeOHWnZsiWjR4/miiuuYNWqVZVa6SIiIiIijZ7dhQ9D0tLSiIyMxNfXt9JzcXFxHD9+nOLiYiP7nx4zGBdXec3f09tSU1MdLltT3V599VXatm1L//79ayx7LtTLMYWO8Pb2pmXLllx77bWMHDmSgIAAvvjiC5YuXYqnpyeLFy92Kjc9Pb3Cf2dnZxMaGmqiyiIiIiIijcru3bsJCQk5q4z8/PwqG3RA+VCx/Px8fHx8znr//Px8gCrL/7bsb/+tTdnq6nXttdeSm5vL8uXL8fb2rrbsudKgG4V2u53LL7+c0tJSvvnmm/LBnddffz1NmjThmWeeYezYsQwdOvQc11RERERExNXq5/IH1QkICODo0aNVPldYWFhexsT+p/8tKioyWraq56+55hq+//57Xn/9dQYMGFBt/c+lBn376IYNG/j6668ZPXp0eYPwtDFjxgCnBpGKiIiIiEj9Fhsby/Hjx6tsfKWmphIZGVltL6Gj+5+elLKq2z5Pbzt9a6gjZX/rdINw9erVLFmyhFtuuaXaup9rDbqn8PQfoaysrNJzpaWlFf41pTQ6jFK/6r+hcETkx78ayQGwGe6GtoUGG8uyikuMZQHYvM2dtlYVF42z4X28+uVTHGX5VX/Rc465+cFOvNfUWBZAEzMvqXIeAeZmHQ75tcBYFoAV3cRYVvCB6sdVOMXgF8rZXcz9nABhyZWv887KHF77Ga5rw++kuV9cq+H7jWUBJG9qbTQvfGumsSwrr/pbrZzhlWFuXeLkQ82MZQHEbD1pLCu3ewtjWQAlQebeG5r985CxLADL4GcRm8EFw01mSUU9evRg5cqVbNq0qUKPWmFhIVu3buXSSy81tn+PHj0ASExMrHRX4caNGwkJCeH8888HoHPnzvj6+pKYmFjpmBs3bgSge/fuFbafbhCuXLmSV199lYkTJ9bmV3DONOiewo4dOwLwj3/8o3zK2NOWLVsG/PcPLiIiIiLiNhrg4vVjx47FZrPxwgsvVNi+ePFi8vPzufnmm8u37d27l127djm9f0JCAjExMSxZsqTCmujbtm1j3bp1jBkzpnzsX1BQECNHjmTdunVs27atvGxubi5LliwhPj6+woynRUVFXHvttaxcuZJXXnmFSZMmOf07cZV62VP45ptvsn//qW9Ljx07RnFxMXPnzgWgVatWjB8/HoAuXbowevRoPvzwQ7p3784tt9xSPtHMv//9b3r37s2oUaPO2c8hIiIiIiK107lzZ6ZMmcKiRYu47rrruPLKK9m5cycvvfQSCQkJFRauHzJkCPv378f6Tc+tI/t7e3vz4osvMnbsWAYMGMDkyZPJzs5mwYIFREVF8fjjj1eo21NPPcWaNWsYPnw406ZNIyQkhMWLF5OamsqKFSsqDGW7+eab+fzzzxk6dGiV6ytedNFFXHTRRaZ/fWelXjYKX3vttUpjAR999FHgVKv+dKMQ4O233+aFF17gH//4B7NmzcJut9OqVStmzpzJww8/rCUpRERERMQNGe7Gq/E45rzwwgu0bt2aV199lRUrVhAZGcnUqVN54okn8PA4802Ojuw/ZswY/P39mTt3Lvfddx++vr4MGTKEZ555ptIYwfPOO49vvvmGBx98kKeffpri4mK6detW3vj7re+//x6A1atXs3r16kp1fOyxx+pdo9BmWboxujZOL0kxb94H+BkaU+iRdMBIDtTzMYV5ZsdkYfCUNT2m0CMywliW8TGFxebG11qBVU/37KzSALPfT/kczDCWZYWYHfBo2cyN37H7Gv7Sy+C7QX6s2WuS/1FzYwpzWpk93zSm0DmmxxTaAvyNZaVffnbT6v+vmM+yjGXlnh9uLAvMjikMW292TCEGP4vYg/2MZRUW5vPQYzeQlZV11ksw1IXyz6xz3zf2mbUmhYX5PPzImHr7+5DaqZc9hSIiIiIi4jybderhiuNIw9egJ5oRERERERGRs6OeQhERERGRxqZhDimUc0Q9hSIiIiIiIm5MPYUiIiIiIo2MxhSKI9RTKCIiIiIi4sbUUygiIiIi0uhoUKHUnhqFDvI6komXb7GRLHvb5kZyAI52M7umXdNv84xllUSbW2cIwKPU3MXHM83cenYAZaHm1gPyPGZuXSsAe665v6kty+wadIU9Y43meRSZWyfJ63iOsSyAwrbm1hgrNri+GEDwBnNrpwbnhBnLAjg8PMhYVrO15l4LABw3dx05mh5lLAsg7JjZdePsdnPrRdr8zK0rCGavvzFfmH3dZ3cy97rPizP7Adwn0+B1pEmYuSzASj9qLCs/vo2xrMKCEmNZIvWFGoUiIiIiIo2NOgrFARpTKCIiIiIi4sbUKBQREREREXFjun1URERERKSx0e2j4gD1FIqIiIiIiLgx9RSKiIiIiDQ66iqU2lNPoYiIiIiIiBtTT6GIiIiISGOjjkJxgHoKRURERERE3Jh6CkVEREREGhmbZWGz6r4bzxXHkLqnnkIRERERERE3pp5CB1lldqyyMiNZxWHeRnIAmn580FgWQEGXFsayAnYfN5YFYPn5mMvKzTWWBeDp5WksK6NnlLEsAJ+sSGNZAWn5xrIAgn81m1cQE2AsyzPb3OsUwO5tM5bll2E3lgXgERJkLCujc6ixLIDod/cby7IFmDs/APDzNRZVFOFnLAvg6j/sMZr3+cJLzIV5mv1e2uNolrkwX3PvMwB+J8x8bgAo9TP70a04zFwvT0FsoLEsgIACc9eRoE3mPid5FRcYy6pTGlMoDlBPoYiIiIiIiBtTT6GIiIiISKOjrkKpPfUUioiIiIiIuDE1CkVERERERNyYbh8VEREREWlsdPeoOEA9hSIiIiIiIm5MPYUiIiIiIo2NegrFAeopFBERERERcWPqKRQRERERaWws69TDFceRBk89hSIiIiIiIm5MPYUiIiIiIo2OBhVK7amnUERERERExI2pp9BBR4dF4RsYaCQrcmuJkRwAPMy2731ySo1l2XNyjWUBeHiEGMuyDN8Hb+XmGcsKXZ1lLAvAFhhgLOvymbuMZQHEexuN46mPE4xlWSczjGUBPDD9R2NZL81sYywLIO+SlsayQvcUGMsCsDWLMpZlHT5uLAtg6rxfjWXN/nqgsSyAf/2fudcCgH/+MWNZuZ3N/U0BisLNvDcDRPxcaCwLwGvXIWNZHa+xG8sC2P2lueuI38liY1kAeNiMRR27soWxrKL8PFhsLK7uqKNQHKCeQhERERERETemnkIRERERkcZIvXhSS+opFBERERERcWPqKRQRERERaWRsloXNBWsIuuIYUvfUUygiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDE1CkVERERERNyYJpoREREREWlsLOvUwxXHkQZPPYUiIiIiIiJuTD2FIiIiIiKNjXoKxQFqFDqo6RdH8PP1N5KVe3GMkRwAHz9zWQC5cZ7GsvxDWhvLAvD7cb+xLFtstLEsAHuAj7EsW0mZsSyArLZmzluAL541d34AfF5UbDTPv1WpubAyu7ksYOFj5xvLsnmbfSMuiLQZy/I/YiwKAFteobmwsBBzWcDCP19iLCvi6D5jWQD2dnFG8wg0dx0p8zV3vgFEfGbwvcHb7Mejgm6tjGWlP59mLAug38ztxrK+XnuRsSyAYINZMfHHjWUV5OYbyxKpL9QoFBERERFpbKz/PFxxHGnwNKZQRERERETEjamnUERERESk0VFXodSeegpFRERERETcmHoKRUREREQaG3UUigPUUygiIiIiIuLG1FMoIiIiItLYWPZTD1ccRxo89RSKiIiIiIi4MTUKRURERERE3JhuHxURERERaWw00Yw4QD2FIiIiIiIibkw9hQ7K7xiN3T/QSFbAkRIjOQBHe3kaywKIWZlpLMt+IsNYFoDNy9xpax0+ZiwLoLRTS2NZVpDZv6l352xjWUfCI41lAUSvM3uOeOYVG8vK7dPaWBZA8C8njWXZc3ONZQHYvQ1+3Zt21FwWcPjWGGNZwTu8jWUBeJSa+73ZWwUZywLwyjM7AYRHibnrb2hSnrEsgNLz44xlee03e/565ZeZCwsNNpcFbJtrrm6hAceNZZ1iM5ZU8nyOsazS4gJjWXXKsk49XHEcafDUUygiIiIiIuLG1CgUERERERFxY/WyUfjUU08xZswY2rZti81mo3Xr1mfc580336Rfv36EhIQQFBTEhRdeyJw5c+q+siIiIiIiIg1YvRxT+NBDDxEREUG3bt3IzMw8Y/nf/e53vP7664wePZpbbrkFDw8P9u3bx/79++u+siIiIiIi9Y3GFIoD6mWjcO/evbRt2xaACy+8kNwaJlN47bXX+Pvf/84bb7zB+PHjXVVFERERERGRRqFe3j56ukF4JpZl8dRTT9GtW7fyBmFOTg6WvrEQEREREXdmufAhDV69bBTWVlJSEnv37qVv377MmTOHJk2aEBISQlhYGHfeeWeNPYxnEhMTU+ERHx9vsOYiIiIiIiL1Q728fbS2kpKSAHjvvfcoLi7mkUceoU2bNnzyySf87W9/IykpibVr12KzmVvnRkRERESk3rPspx6uOI40eA26UZiTc2oh0mPHjrFq1SqGDh0KwOjRo7Esi9dff53PP/+cK664wuHs9PT0Cv+dnZ1NaGjo2VdaRERERESkHmnQt4/6+/sDEBcXV94gPG3ChAkArFu3ztXVEhERERERaTAadKOwefPmADRr1qzSczExMQBkZGS4tE4iIiIiIiINSYO+fbRz5874+fmRmppa6blDhw4B0LRpU6PH9N9yAD8ffyNZtgAzOQA+Jyo3jM9GUWywsayTQ0OMZQE0++S4sayMwS2MZQFEbDhiLKvr/elnLuSATe93NpYVfdDc3wDgRN8oo3lhyUXGsgIOFxvLAjg8PMJYVvRXPsayALzjCoxl2Xz9jGUBNF2WZi7Mw+w4c5M/qxVpdpiCrczwWJ/jmeayDA/39873NZZleZr9eFQa4GksK6eb2ffUJt+au15aRWavl2WtDH6Ga2butWUvzDeWJVJfNOiewoCAAEaPHs3hw4f517/+VeG5v/71rwBceeWV56JqIiIiIiLnzunF613xkAavXvYUvvnmm+zfvx84NYlMcXExc+fOBaBVq1YVFql/8sknWb16NePGjWPq1Km0bt2aTz/9lBUrVnDrrbfSt2/fc/IziIiIiIiINAT1slH42muv8dVXX1XY9uijjwKQkJBQoVHYsmVLNm7cyMMPP8zf//53srKyaNeuHc899xzTpk1zab1FREREROoFVy0sr47CRqFeNgodnTG0devW/OMf/6ibyoiIiIiIiDRi9bJRKCIiIiIizrMsC8sFC8tbGlPYKDToiWZERERERETk7KinUERERESksdGYQnGAegpFRERERETcmHoKRUREREQaG1etIagxhY2CegpFRERERETcmHoKRUREREQaG/UUigPUKHRQ7HQ7AcFmpvdNXhNtJAcg4KjZKYd9jhUYywpLDjCWBUBhobGo8FX7jWUBWPYyY1kbVnYxlgVghZnL8igLNxcGROzIN5pHUYmxKMvfx1gWAEHm6mYrM3e+AYR9aPA64mEzlwV4hIcayyqNCDSWBXCsu7m30mb/OmwsCyC/S4zRvOwBvsayot8xe/01ySox9zoF8E8zd43zzjX3NwDDP6u3t7ksIPN8c3kR2819rvEoLDWWJVJf6PZRERERERERN6aeQhERERGRRkdrUkjtqadQRERERETEjamnUERERESksbEssGuiGakd9RSKiIiIiIi4MTUKRURERERE3JgahSIiIiIiIm5MYwpFRERERBobLV4vDlBPoYiIiIiIiBtTT6GIiIiISGOjnkJxgHoKRURERERE3Jh6Ch104JOW+PkHGskKPJlnJAfASj9qLAvAstmMZfkXhRrLAiAkyFhUWbi5LAC7r7nvWYKTsoxlAeTEm/s7eOUWG8sC4FiG2TyDbPlmL5NNEpuYCyuzm8sCSqLNnSOlvsHGsgD8tuw3luVZaPb8jfo+3FhWziUxxrIAQnZlGs3zOxZgLCvj8rbGsgAitpt7TyXtiLksgJJSY1Ge+Wa/z7eKzL0eCrqbPX/tXuZ6oOx+5q7l9gby8dmyLCwX9OK54hhS99RTKCIiIiIi4sYaxlcdIiIiIiJSexpTKA5QT6GIiIiIiIgbU6NQRERERETEjen2URERERGRxka3j4oD1FMoIiIiIiLixtRTKCIiIiLS2KinUBygRmEtnV6DpbAw31hmWWGhsSyruMBYFgAG1yn0KPI2lmVaaaHZznK7Ze73Zi8yd64BFBaYe7l7GTx3ASgyfP6aVOZpNK600M9YVpnhc6TY4DlSajf3WgDA4DXOZvZPSlmhr7Esk69TAB/D50iZwZd+Ub65tfvA7Puz6fdUm8G/g2Uz+3sz+doqLDC4ViRQZDCusLDMYNapv2d9X5+vsNjwe/U5Po7ULZtV38/oeuLQoUO0aNHiXFdDREREROqBgwcP0rx583NdjUoKCwtp06YNhw8fdtkxmzVrxr59+/DzM/fFp7iWGoW1ZLfbSUtLIzg4GJvBXjQ5t+Lj4wHYvXv3Oa6J1Cc6L6QqOi+kOjo33ItlWeTk5BAbG4uHR/2cnqOwsJDi4mKXHc/Hx0cNwgZOt4/WkoeHR738NkjOzumLeUhIyDmuidQnOi+kKjovpDo6N9xPaGjoua5Cjfz8/NRIE4fUz683RERERERExCXUKBQREREREXFjGlMoIiIiIiLixtRTKCIiIiIi4sbUKBQREREREXFjahSKiIiIiIi4MTUKRURERERE3JgahSIiIiIiIm5MjUIRERERERE3pkahiIiIiIiIG1OjUERERERExI2pUSgiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDE1CkVERERERNyYGoUiIiIiIiJuTI1CabSSk5OZNWsWvXv3JioqiuDgYLp27cq8efPIy8urVD4pKYlrrrmG8PBwAgMDGTBgAGvXrj0HNRdXys/Pp23btthsNu6+++5Kz+u8cC8nT57kvvvu47zzzsPPz4+oqCgGDRrE119/XaHcd999x9ChQwkODiYkJITLL7+crVu3nptKS53Lzc3lySefpHPnzgQHBxMZGUnfvn1ZtmwZlmVVKKtzQ0QaIq9zXQGRurJ06VJefvllrr76am6++Wa8vb358ssveeSRR/jnP//Jxo0b8ff3B2Dv3r307dsXLy8vZsyYQWhoKIsXL+ayyy7js88+Y+jQoef4p5G6MmvWLI4dO1blczov3Mv+/fsZOHAgubm53H777Zx//vlkZWWxfft2UlNTy8tt3LiRgQMHEhcXxxNPPAHAokWLGDBgAN9++y2dO3c+Vz+C1AG73c4VV1zBt99+y4QJE5g6dSr5+fm88847TJw4kZ07d/LMM88AOjdEpAGzRBqpzZs3W5mZmZW2P/zwwxZgLVy4sHzbmDFjLA8PD2vLli3l23JycqyWLVta559/vmW3211RZXGxH374wfL09LSef/55C7CmTJlS4XmdF+6lf//+VvPmza20tLQay/Xo0cMKDg62Dh06VL7t0KFDVnBwsDVs2LC6rqa42LfffmsB1r333lthe1FRkdWmTRsrNDS0fJvODRFpqHT7qDRa3bt3JzQ0tNL2sWPHArBjxw4A8vLyWL58OQMHDqRr167l5YKCgpg0aRLJycls3rzZJXUW1ykrK2Py5MlcfvnlXHfddZWe13nhXtavX8+GDRuYMWMGMTExlJSUkJ+fX6ncnj172Lx5M2PGjCEuLq58e1xcHGPGjGH16tUcPnzYlVWXOpadnQ1AbGxshe0+Pj5ERkYSGBgI6NwQkYZNjUJxO4cOHQIgOjoagO3bt1NUVESfPn0qle3duzeAPvw3QgsWLGDXrl0sWrSoyud1XriXTz/9FICWLVsycuRI/P39CQwM5Pzzz+ett94qL3f6b17deWFZFj/88INrKi0u0bNnT8LCwnj22Wd5//33OXDgALt27WLmzJn88MMPzJ49G9C5ISINm8YUilspKytjzpw5eHl5MW7cOADS0tIAKnyze9rpbb8dTyQN3759+3jssceYNWsWrVu3JiUlpVIZnRfuJSkpCYDJkycTHx/P66+/TnFxMc8//zzjx4+npKSEiRMn6rxwQ+Hh4SxfvpxJkyZxww03lG8PDg7mww8/5JprrgF0zRCRhk2NQnEr9957L4mJiTz55JNccMEFAOW3iPn6+lYq7+fnV6GMNA533nknbdu25U9/+lO1ZXReuJecnBzg1Af9L7/8Eh8fHwCuueYa2rZty0MPPcSECRN0XripoKAgLrzwQq6++mr69u3LyZMnefnllxk3bhwff/wxw4YN07khIg2aGoXiNh599FEWLVrEHXfcwcyZM8u3BwQEAFBUVFRpn8LCwgplpOF76623WLVqFevXr8fb27vacjov3MvpmYhvuumm8gYhnOoluvrqq3njjTdISkrSeeGGfvrpJ/r27cuCBQu48847y7ffdNNNXHjhhUyePJm9e/fq3BCRBk1jCsUtzJ49m7lz5zJx4kReeeWVCs+dnjygqtt6Tm+r6nYgaXiKior405/+xJVXXkmzZs3Ys2cPe/bsYf/+/QBkZWWxZ88eMjMzdV64mebNmwPQrFmzSs/FxMQAkJGRofPCDS1YsIDCwkLGjBlTYXtAQAAjRoxg//79pKSk6NwQkQZNjUJp9GbPns3jjz/OhAkTWLJkCTabrcLznTt3xtfXl8TExEr7bty4ETg1k6k0fAUFBRw7dowVK1YQHx9f/hg4cCBwqhcxPj6eJUuW6LxwMz179gT+OxHVb53e1rRpU3r06AFQ7Xlhs9m45JJL6rCm4mqnG3RlZWWVnistLS3/V+eGiDRkNsuyrHNdCZG68sQTT/DYY48xfvx4li1bhodH1d+DjBkzho8++ogff/yRLl26AJCbm0unTp3w9fUlKSmpUmNSGp6SkhI+/vjjStuPHTvGXXfdxeWXX87tt9/ORRddxPnnn6/zwo1kZGTQqlUrQkJC2LVrF0FBQQCkp6cTHx9PXFxc+WQ0PXr0ICkpiV27dpX3DqWlpdG+fXt69uzJ6tWrz9nPIeZNmzaNF154gWeeeYYZM2aUb8/MzKRjx44UFhZy7NgxPD09dW6ISIOlRqE0Wi+//DJ33303LVu2ZM6cOZUahNHR0QwbNgw4tb5Uz5498fb2Ztq0aYSEhLB48WJ++uknVqxYwWWXXXYufgRxkZSUFNq0acOUKVMqLFGh88K9vPrqq/z+97+nU6dO/O53v6O4uJi//vWvpKen88knnzB8+HAAvv32WwYNGkTz5s2ZOnUqAAsXLuTIkSN888035V8gSOOwf/9+unXrRkZGBjfffDP9+vXj5MmTLF68mJSUFF5++WXuuusuQOeGiDRgZ7HwvUi9NmHCBAuo9pGQkFCh/C+//GJdffXVVmhoqOXv72/169fPWrVq1bmpvLjUvn37LMCaMmVKped0XriXDz/80OrVq5cVEBBgBQUFWcOGDbM2bNhQqdy3335rDR482AoMDLSCgoKs4cOHWz/88MM5qLG4wp49e6xbb73ViouLs7y8vKzg4GBrwIAB1ocffliprM4NEWmI1FMoIiIiIiLixjTRjIiIiIiIiBtTo1BERERERMSNqVEoIiIiIiLixtQoFBERERERcWNqFIqIiIiIiLgxNQpFRERERETcmBqFIiIiIiIibkyNQhERERERETemRqGIiIiIiIgbU6NQRKSBmz17NjabjXXr1p3rqjhkwIABdO3aFcuyHN5327ZteHh4sGTJkjqomYiIiHtRo1BEpB6x2WwOPRpaQ/C0999/nw0bNjB37lxsNpvD+3fp0oXRo0fz6KOPkpubWwc1FBERcR82y5mvaEVEpE7Mnj270rYXXniBrKws7rnnHsLCwio8d9tttxEUFMTx48dp2bIlAQEBrqnoWbAsi/bt2+Pt7c2OHTuczvn+++/p0aMH8+bN46GHHjJYQxEREfeiRqGISD3XunVr9u/fz759+2jduvW5rs5ZW7VqFcOHD+eZZ55hxowZZ5XVsWNH8vLy2LdvHx4euvlFRETEGXoHFRFp4KoaU5iSkoLNZuO2224jOTmZa6+9lvDwcEJDQxk1ahQpKSkA7NmzhzFjxhAZGUlAQABXXnklv/76a5XHOXHiBDNmzOCCCy7Az8+P8PBwRowYwcaNGx2q72uvvQbA2LFjKz2XnZ3N448/zoUXXkhwcDDBwcG0a9eOG2+8kS1btlQqP3bsWA4cOMCqVascqoOIiIj8lxqFIiKN2L59++jTpw9ZWVncfvvt9OvXj+XLlzN06FB27txJr169OH78OLfddhsDBw7ks88+Y8SIEdjt9ko53bp1Y/78+cTFxTFlyhSuvfZaEhMTufTSS/n3v/9dq/pYlsXatWuJjY2lVatWlZ67/PLLmT17NiEhIUyePJk//OEP9OzZk3Xr1vHdd99VyuvXrx+AGoUiIiJnwetcV0BEROrO+vXree6555g+fXr5tjvuuIPFixfTt29fHnnkkSqf+/jjj7n22mvLt996660cOnSIjz76qML2efPm0bNnTyZPnkxKSgp+fn411icpKYljx44xcuTISs/t2LGDxMRErrnmGv71r39VeK6srIzs7OxK+/To0aP85xQRERHnqKdQRKQRa9OmDdOmTauwbfz48QBERERUeu6WW24BTi35cNrWrVvZsGEDY8aMqdAgBIiJieH+++/nyJEjrFmz5oz1OXDgAADNmjWrtoy/v3+lbZ6enoSHh1faHhoaip+fX3muiIiIOE49hSIijViXLl0qTcASExMDwEUXXVTpudjYWABSU1PLtyUmJgJw8uTJKmdH3b17NwC7du1ixIgRNdbnxIkTAFU28Dp27EjXrl1555132L9/P6NGjaJ///50794dHx+fajMjIiI4cuRIjccVERGR6qlRKCLSiIWGhlba5uXldcbnSkpKyredPHkSODVur6axe7VZL/B0L2BhYWGl5zw9PVm7di1PPPEEH3zwAQ888AAAISEh3HbbbTz55JMEBgZW2q+goKDK3kURERGpHd0+KiIiNTrdeHzqqaewLKvax2OPPXbGrKZNmwL/bWj+r/DwcBYsWMDBgwdJTk7m1VdfJT4+npdeeom77767Unm73U5mZmZ5roiIiDhOjUIREalRr169gP/eRno2OnXqhKenJ0lJSWcsGx8fz+TJk1m/fj1BQUH83//9X6UySUlJWJZF165dz7puIiIi7kqNQhERqVGPHj3o27cvy5cvZ+nSpVWW2bhxI/n5+WfMCg0NpWvXrmzbto2ioqIKz+3bt6/KNRIzMjIoKioiICCgyuMCDBo0qDY/ioiIiFRBYwpFROSM3n77bQYNGsTtt9/OX/7yF3r06EFwcDAHDx7k+++/Z8+ePaSnp1fZcPtf1113HT/88APr1q3jsssuK9++bds2rrvuOnr06EGHDh2IjY3l6NGjfPzxx5SUlJSPMfytlStX4unpyahRo4z+vCIiIu5EPYUiInJGrVq1YsuWLcyePZvS0lLeeOMNFi1axKZNm+jcuTNvvPEGkZGRtcq6/fbb8fb25o033qiwvXv37jz44IN4enry+eef8/zzz/PFF1/Qo0cPPvvsM/74xz9WKJ+Tk8PHH3/MVVddRYsWLYz9rCIiIu7GZlmWda4rISIi7mXSpEm8/fbbpKSkOD1JzF/+8hemTJnC119/Tf/+/Q3XUERExH2oUSgiIi6Xnp5ePpHMggULHN6/sLCQ8847j969e/PBBx/UQQ1FRETch8YUioiIy8XExPDWW2+Vzx5qs9kc2n///v1MmjSJ2267rW4qKCIi4kbUUygiIiIiIuLGNNGMiIiIiIiIG1OjUERERERExI2pUSgiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDE1CkVERERERNyYGoUiIiIiIiJuTI1CERERERERN6ZGoYiIiIiIiBv7fyglalur9KVyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\", vmax=0.001,\n", + " interpolation=\"none\", extent=extent, alpha=0.6)\n", + "plt.plot(dps.time, dps.freq[max_pos], color='C3', lw=5, alpha=1, label='drifiting function')\n", + "\n", + "plt.ylim(15,30) # zoom-in around 24 hertz\n", + "\n", + "plt.title('Overlay of Drifting fuction and Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')\n", + "plt.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb.txt b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb.txt new file mode 100644 index 000000000..1f9070de3 --- /dev/null +++ b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb.txt @@ -0,0 +1,627 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on real data)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# load auxiliary libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from astropy.io import fits\n", + "\n", + "# import stingray\n", + "import stingray\n", + "\n", + "plt.style.use('seaborn-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# All starts with a lightcurve.." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Open the event file with astropy.io.fits" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "f = fits.open('emr_cleaned.fits')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution is stored in the header of the first extension under the Keyword `TIMEDEL`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = f[1].header['TIMEDEL']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The collumn `TIME` of the first extension stores the time of each event" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "toa = f[1].data['Time']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a Lightcurve from the Events time of arrival witha a given time resolution" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lc = stingray.Lightcurve.make_lightcurve(toa=toa, dt=dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHACAYAAAD9fy9UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4ZGddJ/rvL2kIkEACCT1yDwMkXmkIcJAhIJ7IxVFg\nAJ3DjAxHZFAmiqigcDwPjIBoAJUH4w1yniGaGQUVOCg3IRAOyj0JSSCYbkJIQsilk0463Z1rd/o9\nf1TtTvXu3b1r39/a9fk8z352Va21ar311rtWfde7btVaCwAAfTpsrQsAAMDBCWsAAB0T1gAAOias\nAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHduw2jM87rjj2vHHH7/aswUA6MZ55513\nQ2vtgeOMu+ph7fjjj8+555672rMFAOhGVV0x7rh2gwIAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1\nAICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA0LF5w1pVnVlVu6tq18jfqatROACAaTfujdz/srX2\nX1e0JAAAHMBuUACAjo0b1l5UVTdW1ZaqekdVHbWQmVTVsVV1QlWdsGfPnkUUE4Bp1VrLy8/8an7h\nzK9m79621sWhE7fvvisv/LPP5/UfuGiti7Lixglrpyf5/iTHJXlBkh9LcsYC5/OqJJuTbN66desC\nJwVgmp17xU359CVb85lLtuZL39m21sWhE//zS1fk/Cu3531f/W5uuWN9dwTNG9Zaa+e11q5rre1t\nrV2c5NeS/ExVHbGA+Zye5MQkJ27cuHGRRQVgGt2++659j+/Ys3cNS0JPdo0EtPXe37qYY9Zm6qTG\nnqC1ba21La21LRs2jHtOAwAA41y648VVdczw8WOS/GGSf2it3b7ShQMAmHbj9Ky9MsllVXVLkk8m\n+VKSl61oqQAASDLGddZaa89YhXIAADAH11kDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPW\nAAA6JqwB0LW23m/8CPMQ1gCYGGPflBrWEWENAKBjwhoAQMeENQBgorV1fmCjsAYATJyaoiMYhTUA\ngI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQC6Nnpt+qrpuRAqzBDWAAA6\nJqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQCAjglrAMBEa/OPMtGENQBg4kzT9ZGFNQCAjglr\nAAAdE9YAADomrAHQtdbuPnx8ig5Tgn2ENQCAjglrAAAdE9YAADomrAEAE6et9yvhjhDWAICJtt5P\nPBHWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQCAjglrAEyMWu8X1GJR1vv1cYU1ALq2\n3n+IWZxpCu7CGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUA\ngI4JawAAHRPWAJgYlSm6ISQMLSisVdVhVfWFqmpV9dCVKhQAAAML7Vn79SS3rkRBAGBOba0LAGtr\n7LBWVSckOTXJa1euOMvn0q07s+W6ndl1x545h7fWcvY3r8tNt9w5x7S7cvvuu+adx/U778h1O25f\nclmT5MuXbcsV22455Djbdt2Ra26+bd/z1lo2X7szu+/au994B3t9xk233Jnvbb9tzmHz+dZ1O3PH\nnrvrZtcde/KdG27J1dtvy41z1OVqml0/u+7Yk8tvOHSdttZyybU7sucgdTWuvXsH73PX3qX9quy+\na282X7szrY3/PnfsuSvfum7+aW69c08uu35Xrtx2a3bcvvuA4VdsuyU753j9qptuzfZbl++7vebm\n27Jt1x3L9n6jtt96Z666abztyUu37txvOb9ux+25YVa5Zr7XvbO+1xtvuXO/tjaOHbfvzpXbDl22\nnfOMc83N+y9ns5/PmL2czuXq7bfNuf5baVt33J6tO5dnvTnbnrv25pJrdyxo+TmU781TR7fvviuX\nbt2ZJPnODYPl51Dzv/m23fnujQf/fm++9dDD79rb8sVvb5tz/X3LGOu7udrLUr6Pmd+aO/ccuP6c\na31y3Y7bc/3OlVn2Zwy+k137lXE51s1rbcM4I1XVYUn+RwZBbftCZ1JVxyY5Nkk2bdq00MkX7MMX\nfC+vft8FSZIHHHnPnP+GZx4wzq+9/4J8+IKrkySXn/ZT+17/5MXX5hfPOi+PeuCR+fRrnnHQeey6\nY0+e9NazkyTnv+GZecCR91x0eT/29Wty6v86P0ly4RuflaPvc48Dxrl99115wu8O5veV3z4lG+93\nr5z1pSvyxg9fnKc95ric9fIn7xv3YK8ngzDw+Ld8KknyL6/78Tz0/vcZu5wfOO+qvObvLszjH35M\nPnTqU5MkT3/7Ofst/Jt/9zk5YsPhY7/ncpmrfp562mdy822788FT/11Oevj955zujz99ad559pb8\n9GMflD/5zyctev5v+8QleffnLsuLn/SwnPaixy76fX7prPPymUu25g0//YN5+cmPHGuanzvjyzn3\nipvy9hc9Nv/xSQ876Hg/8Yf/X66+ebBSvueGw7Lld39y37ALv7s9z//Tz+eoIzbkG2969r7Xr9x2\na57+jnOSJJe+9Sez4fClHea6dcftecrvfyZJcslbnpN73WP52spde1se9+ZB2/7sa5+R44878qDj\nzqwjfuQhR+cfX3Vytu26I0/+vU8nSS5+07Nz5BGDVeObP/LNnPmFy/PSpzwib37+DycZtLWThsvQ\nl/6vU/J9R99rrPI98S1n58679ubjr35afuBB95tznCe99ezcvntvPvKqk/PDDzl6v2HXzaq77bfu\nnrMuP/S1q/Lr778wmx52TD78y0+dcz5Xb78t/+60wbSruczefOvu/G/Der7od56V+93rwHXdUvza\n+y/IRy66Jq955gl51SmPWdJ7XXXTrTn5bYO2/623/mTuMUfbf8GffSH/es2O/JcffUTO+tIV+15/\n9SmPya8/84T9xm2tZdObPpkkOfs3np5Hb7zvfsP37m3Z9OaZ4T+WR2886oD5/ebfXZgPfu17SZIv\nvP5/z4OPufe+YU9/+znZdsud+btXPiVPOv4BB0x77c0HLntL/T4O9lsz1/rkxlvu3LeMfeNNz85R\nR4wVP8Y2k4+f9yf/ki3X7cpfvOSkPOeHH5R3fmpL/vgzl+YFj39I3vl/PG5Z57maxl3zvjrJta21\nDy1yPq9KsjnJ5q1bty7yLcZ32scv2ff4YL09M0Fttj/61JYkybevP/QWyjev3rHv8Ve+c+NCi7if\nmaCWJBdcNXcWvnyk1+1z37ohSfLGD1+cJPnn4fMZB3s9yX5bNZ+8+LoFlfOtH/vXJMnXrry7jLPr\n99qbV2aLeT5z1c/Ntw226v7yC5cfdLp3nj34vj9y0TVLmv+7P3dZkuR9X/3ukt7nM5cMlo+3fOSb\nY09z7hU3JUl+96OHnubqke9m9pbwX37x8iQ5oCf6o1+/u15m6nMpPrvl+n2PrzxED8Ji7Lr97rJ/\n5KK5l+8ZM+uIr3/v5iTJly67exm+5Nqd+x6fOWw7f/XFu3+IR3s1ztk8/vrszmHv7fsP0UZu3z0Y\n52++cuUBw2baRjIIEqPzHi3T731s8Nku/O7Bt6vP/te7l/2tO1a2p2PU+d+9ad/jr19187K//8xy\n/IfD9fhSfOIb1+57vG3X3L8j/3rN4HdgNKglybs+/a0Dxr1zpPf+A+d/75DDP/S1q+ac30xQS/b/\nDpNk23Bd/N7Pf2fOaedqL0v9Pg72WzPX+uTLl23b9/iSa3ZkOcx1qsmW6wa9au/81OA7+OPPXJok\n+dDXDqzzSTJvtK2qRyd5TZInLmE+pyf56yTZuHHj5iW8DwDAVBmnZ+3kJA9M8o2quiHJTDfQRVV1\n6jgzaa1ta61taa1t2bBhebs+AQDWs3GS098mOXvk+UOTfDHJs5JcMucUAAAsi3nDWmvt1oxcrqOq\nZqa5trW2a+6pAABYDgveJ9lauzxzH9cHAMAyc7spAICOCWsAAB0T1gCYGOUgHKaQsLYsJvs2FjDt\nmmUY6JiwtkirvXW3TLe6mwrLdV9AptN8y3bvzav38i2GMM20E9YmkL0AByq1siL8SB7aWra6iQxl\nk1jmWA6Wm9pcOGENGCvs1nJ0J1tLM9T75tWytPdFGieIL7R0qxru55iXYw2XZl2GtUluE5O+C6/H\n4k9ye1jP9Eot3uzyd/3DTZLVq/MFBT3tYGKsy7AGTJ/1tKtqrk9io2P96PG77LFM3E1Ym2Utu757\nN+m9fkwPyzGwnghrAAAdE9ammH6y9UVvEsDAelsdCmsAAB0T1pbBJB3Ktd62NgBgvRPWsrgD52Ue\nWD8maYMLmD7C2oRYrh+TafhRmoKPyAqaf0Os9xbWe/mWxoYy00hYm0DLtStzPa307N5dGdMQ7pdC\nu1uY9XQtPFhNwhrAKlqu6xUKPquny42WidtSuLu8q1GfXX5nSyCsAWOt95fjp0HAYJ8FNKi1+OFd\n09uhrch7rl4lWsqXn7AG68Sk3WFi4joGOuYae5NvNb9C7WXyCGud6fnndpwFvMfyWzHB/iYt2MO0\nE9aAqTOJ+X0Sy8zcfJcslLC2DGyjQl/m6zma9I6lCS8+K2ghbdsxpJNDWFskW0bQl0kPYKNW87NY\nl5FkfV3LaR0S1mbRXmHyLfQ4xXWU84B1SFibxUr74ByUzDRwQgpTyeq9a8LahHBswQKoqqm0Whlr\nNbZZlvJZbFPB+iOsTSAb/gdSJayF0vIWRJCExRHWYJ2w+46poJknmbxqWO3V03pbHQprU8xGLqy+\n5VrulquXSm/X/FTR8lqR45/X+ZckrLGs1tnGzNQY53tbji1VwWB5LPWr6KEXtvddyGtZRUtZTg5W\n7rnec6W+g9U6Ga2DZrxqhDVgjUzRmnaFrfeanIaQv5rhdb23l/VoXYa11d5qnKQVyTRtiQDAerAu\nw9rqkHomhW9qbq6bBzAZhLVMVs9Y73qsyh7LRF+mLbhO2+eFSSesLQO7FmH9sDgDvRHWgKkz6XcE\nmezSs5IW0mk66cvBNBHWJoRrKo3PCoiV1HvrWmj57BkgiS7lzglrE2i5TvFeT8umHxzWZENkhdrd\nNGxUAeMT1mbxmw93cyA6y0lzgsUR1hZt+dY6k9IrZD27vqz9D+eaF2BNLNshDcvzNoyhx42Wpfxu\nrHUn9GrMv8OvbEmENWCsFX/vtwdisiw2bKxWO1zL1j4pG/CsHmFtGay3BA8A9ENYWzSbPrBQtmtg\nfivRAbCay57lfPkJa7BOTN6uk4krcLcm77tnttX8Dqehuay3ZUJYg3XC7vjlsd5W8uuBps20E9am\n2IIvnrkipVh5k1puAMaz3i+GLqz1ZsLbW4+nuMNs035mq6V09Vk1Lr+aom5wYa0D09PcVoeV4nhU\n0+KsVfsaN2DaYOrftG8ssHDC2gSaoo2JBVAprD6tDlgNwhpwUOu1k2bSj2+Z/b1Myvc0IcVMsvpl\nXb47W4z/RpPSbhDWlsVSV/yrud9drxxrSfNbvmVwuepymo77WU8Wuit1vrGXc9fsXO+knS2NsLZI\n2h2wGO4NOnn0QC0v9blwwhow3lZ15xso62v9v74+zVw6b07dl4/pIqxl/9WiHjOYPrb0gZ4Ja8Cq\nmYRM5LIKfZuGDeqVOAFmPd4bdJouUyOszTJF3/2CqZr1Za1XdNPwo7ta1CULMVd7mfQzpNf7Rpaw\nBqwL62tVvb4+DbA0whoAQMeEtQmxbKf7T3ZP91gO+Ig6KVhGve8u6rt0i7PWu+xhrQlrU2w9ZRjH\n7LAWXOgTWA1jhbWqemtVfaeqdlTV1qr6+6p6+EoXblIsdaNvdHXf+1b7fCa79JNtJXKD73N9WquO\nqmnuIZv0dTtra9yetbOSPK61dr8kxye5Msn7VqpQk2A5fxdtnAPzsp5YN5ZjnT9pvxsTVtzu1EK3\ndKrqyCRvSvKy1tqxC53hE5/4xHbuuecudLIF+aE3fiK33HnXis6DlfHSpzwif/XFK+Yc9ss//qj8\n6TnfnnPYr/z4o/Mn51y6kkXbz/3vc4/cdOvuZXmvF570kHzw/O8ty3utR8/5oe/LJy6+dq2LsWgn\nPfyYnH/l9rUuxrye+Ij755qbb8/3tt+21kVhnbnnhsNy5569+732kGPuPW9b+4dfeWou/O72vOHD\nFy97mU59xqOy4fDD8tOPfVBO+Df3Xfb3H0dVnddae+JY444b1qrqPyf58yT3S7InyW+01k4fc9pj\nkxybJJs2bdp8wQUXjDXPxTr+9R9d0fcHANaHy0/7qTWZ70LC2tgnGLTW/rq1dnSSByX5nSRfX0CZ\nXpVkc5LNW7duXcBkAADTbcFng7bWrk1yRpKPVNUDxpzs9CQnJjlx48aNC50lAMDUWuylOzYkOTLJ\ng8cZubW2rbW2pbW2ZcOGDYucJQDA9Jk3rFXVYVX1K1W1cfj8oUn+NMnlSS5Z2eIBAEy3cXvW/n2S\nb1TVLUm+nOTWJD/RWtuzYiUDACDz7pNsre3NIKwBALDK3G4KAKBjwhoAQMeENQCAjglrAAAdE9YA\nADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA\n0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQCA\njglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0\nTFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBj\nwhoAQMeENQCAjglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB2b\nN6xV1duq6uKq2lFVV1fVGVX1gNUoHADAtBunZ+2uJC9JcmySTUkemuTMFSwTAABDG+YbobX22yNP\nr6+qdyX525UrEgAAM+YNa3M4JcmFC5mgqo7NoGcumzZtWsQsAQCW3/Gv/+i+x2//mcfmPz7xYWtY\nmrkt6ASDqnpRklcmefUC5/OqJJuTbN66desCJwUAWHm/9fcXrXUR5jR2WKuqn01yRpLntdbOX+B8\nTk9yYpITN27cuMBJAQCm11hhrapeluTdSZ7bWjtnoTNprW1rrW1prW3ZsGExe14BAKbTOJfu+NUk\nf5Dk2a21z698kQAAmDFON9e7kuxJck5V7XuxtXbUShUKAICBcS7dUfONAwDAynC7KQCAjglrAAAd\nE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiY\nsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeE\nNQCAjglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOias\nAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWEN\nAKBjwhoAQMeENQCAjglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsA\nAB0T1gAAOiasAQB0TFgDAOjYWGGtql5cVf9cVTuqas9KFwoAgIENY453U5I/S3LvJO9ZueIAADBq\nrJ611to/tdb+JsllK1weAIA18+ef/XZu333XWhdjP6tyzFpVHVtVJ1TVCXv22IsKAPTpbZ+4JFfe\neOtaF2M/q3WCwauSbE6yeevWras0SwCAhfvWdbvWugj7Wa2wdnqSE5OcuHHjxlWaJQDA5FuVsNZa\n29Za29Ja27Jhw7jnNAAAMFZyqqrDk9wjyT2Hz+81HHRHa62tUNkAAFZd1VqXYH/j9qz9lyS3Jfmn\nJIcPH9+W5BErVC4AADL+pTvObK3VHH+Xr3D5AABWVWcda243BQDQM2ENAKBjwhoAwIhJPcEAAIA1\nIKwBAOynr641YQ0AoGPCGgBAx4Q1AIARTjAAAGBswhoAQMeENQCAEZ3tBRXWAAB6JqwBAIyozs4w\nENYAADomrAEAdExYAwAY0ddOUGENAKBrwhoAwIjOzi8Q1gAAeiasAQB0TFgDABhhNygAAGMT1gAA\nRlRnF+8Q1gAAOiasAQB0TFgDABjV115QYQ0AoGfCGgDAiM461oQ1AICeCWsAAB0T1gAARlRntzAQ\n1gAAOiasAQCM6KtfTVgDAOiasAYA0DFhDQBgRGfnFwhrAAA9E9YAAEZUZ6cYCGsAAB0T1gAAOias\nAQCMcIIBAABjE9YAAEZ01rEmrAEA9ExYAwDomLAGADCqs/2gwhoAQMeENQCAEe5gAADA2IQ1AICO\nCWsAACPcwQAAgLEJawAAIzrrWBPWAAB6JqwBAHRMWAMAGFGdnWEgrAEAdExYAwAY0VnHmrAGANAz\nYQ0AoGPCGgDAiM72go4X1qrq8Kp6R1VdX1U7q+oDVXXcShcOAGDajduz9vokz0/y5CQPHb521oqU\nCACAfTaMOd4vJnlza+2yJKmq30pyaVU9orV2xYqVDgBgys3bs1ZVxyR5eJLzZl5rrX07yY4km8aZ\nSVUdW1UnVNUJe/bsWWxZAQBW3APve8RaF2E/4+wGve/w/82zXt+e5H5jzudVSTYn2bx169YxJ1m8\n//7cH1zxeQAA69Mjjj1yrYuwn3F2g+4c/j961uvHZNC7No7Tk/x1kmzcuHHzmNMs2sue+si87KmP\nXOnZAACsuHl71lpr25NcmeSkmdeq6lEZ9KpdNM5MWmvbWmtbWmtbNmwY9zA5AADGPRv0PUleV1WP\nrKqjk7w9yT+11i5fsZIBADD22aCnJbl/kq8mOSLJp5K8ZKUKBQDAwFhhrbV2V5LXDv8AAFglbjcF\nANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHqrW2\nujOsuj7JFas60+TwJP8myXVJ7lrleU86dbd46m5p1N/iqbvFU3dLo/7G94jW2gPHGXHVw9paqKoT\nkmxOcmJrbctal2eSqLvFU3dLo/4WT90tnrpbGvW3MuwGBQDomLAGANCxaQlr25K8afifhVF3i6fu\nlkb9LZ66Wzx1tzTqbwVMxTFrAACTalp61gAAJpKwBgDQMWENAKBjwhoAQMeENQCAjglrAAAdE9YA\nADomrAEAdGxiw1pVva2qLq6qHVV1dVWdUVUPGBn+81W1t6p2jfz9zaz3eGJVfaWqbq2qb1fVS1b/\nk6yNqjqzqnbPqp9TZ43z0mG93FpVX66qJ8waPpX1N2x3o/V2W1W1qjpJuztQVb24qv55uKzumWP4\nktpZVW2sqg9W1c6qun64bpjYdduoQ9XdsN6+UFU3VdUNVfXxqvqRkeHHD9vlLSNt8apZ7zGtdbfk\n5XQ9110yb/39xay62zVsa78xHD7VbW9FtNYm8i/J7yV5fJJ7JHlgko8n+YeR4T+f5NJDTH90kuuT\nvC7JEUmemWRXkqes9Wdbpfo7M8n/c4jhJye5JcmzhvXzW0muS3I/9XdAXb01ycXDx9rdgZ/52Un+\nU5JfSLJnudtZkk8l+eBw3H+bZEuS1631516FuvvlYX0cOaybtya5Jsl9hsOPT9KSPPQQ7z+tdbfk\n5XQ919189TfHuM9MsjvJg7W9Ffo+1roAy/ZBkuck2THyfL6F8WVJrsjwllvD185K8t61/iyrVF9n\n5tBh7S+TnDXyvIb19X+qv/3qacPwB/JXh8+1u4N/9mfM8aO5pHaW5JHDH4VHjQx/eZLvrPXnXem6\nm2Ocew3r4qTh80P+YE5z3S11OZ2WujtY/c0xzt8n+eDIc21vmf/WU5fjKUkunPXaw6rq2qr6blW9\nr6oeOTJsU5KvtWErGTp/+Pq0eFFV3VhVW6rqHVV11MiwTUnOm3kyrKcLcnf9qL+B/5DBluFfjbym\n3Y1vqe1sU5KbW2vfnjX8+Kq634qVuk+nJLk1ybdmvf7l4W6mz1bVM0Zen/a6W8pyOu11t09VfV+S\n5yf5izkGa3vLZF2Etap6UZJXJnn1yMufS/IjSR6c5ElJbk/yqao6cjj8vklunvVW25NMS0M5Pcn3\nJzkuyQuS/FiSM0aGz1c/015/M34pyftba9uHz7W7hVlqOzvY8GSK6rSqTkjy3iSvaa3tHL58Q5Kn\nZNCLcXySDyT5eFU9djh8mutuqcvpNNfdbC9PcmUGuzVnaHvLbOLDWlX9bAYh43mttfNnXm+tXdZa\n29Ja29tauzbJK5I8KMmPDkfZmUGPyKhjkuxYhWKvudbaea2164b1c3GSX0vyM1V1xHCU+epnqusv\nSarqURn0ZuzbotTuFmyp7exgw2eGrXtV9YNJzknyB6210ba4q7X2pdbana21W1prpyf55yQ/Oxxl\nautuGZbTqa27UcMTAl6R5D2jvZDa3vKb6LBWVS9L8u4kz22tnTPP6DMNqYb/L0zyuFnjnJQDd6VO\ni7nq56SZgVVVGZzQceHI8Gmvv19KcmFr7cuHGEe7O7SltrMLkxxdVf921vDLW2uzt9zXnao6Kcln\nk5zWWnv7GJO07N8Wp7buZlnocqruBp6TQcj9H2OMq+0txVofNLfYvyS/mmRbkicdZPhPJXloBo3j\nAUnek8EBo0cNhx+Twdk+v5nB2T4/kXV+Vt6s+nlxkmOGjx+T5AtJPjAy/ORhfZySuc/Sm/b6u2eS\nrUl+Sbubt64Oz+Dg92cl2TN8fK9hHS25nWWw++XvM9h9MnNW2evX+nOvQt09NclNSV5xkGl/NMkP\nZ3ASzL2S/GIGu/ueoO6Wvpyu57qbr/5Gxvlwkr/R9lbh+1jrAiyhIbUMThXeNfo3MvwdSa7O4LIA\n1wwbxQmz3uNJSb6S5LYklyV5yVp/rlWsv88muXFYP99J8kczP5Aj47x0WC+3DevpCbOGT3P9vTiD\nXSJHzXoZH8XSAAAE/0lEQVRduzuwrn5+uLzO/jt+OdpZko0ZXAJgZwbHyrw9yWFr/blXuu4y2PW5\nd/Y6MMnThtP+pySXDtvitgx2Qz1T3eX45VhO13PdzVd/w+EPySDE/dgc005121uJvxpWGgAAHZro\nY9YAANY7YQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQBdqKojq+rbVbVnjHFfOhz31qr6clU9\nYdbwF1bVRVW1q6o2D29POTr8yVX1uaraXlXXVdVZVXXsyPC3VdXFVbWjqq6uqjOq6gEL/DyvHZZx\nZ1V9q6pOXcj0M4Q1AGDFVdXxVTXfxV1Py+BC7fO918lJ/jzJf0ty/wxuFv+xqrrfcPiPJvmfGdz3\n+n5JXpvkf1XVk4fDD0/ykQzu3vPAJD+Q5MFJ/nhkNncleUmSY5NsyuCuF2eO8VFnyvi8JG9K8nOt\ntftmcAHwd1TVM8d9jxnCGgCw5qrq6UmeluRtY4z+iiQfbK19srV2RwZ3pbg9yQuGw1+Y5J9aa59p\nre1trf1jks9ncE/nZHAj+eOSvLe1tru1dmOSv80glCVJWmu/3Vr72nD49UneleQZs8r8iqr6RlXd\nXFVfq6pnjQx+dJKLWmtfGr7fF5NcNDqPcQlrAMCaqqr7JDkjyX/N4FaS89mU5LyZJ21wO6YLcncQ\nqtx94/gZhyV53HD8G5O8O8nLq+qIqtqYwW0EP3SIeZ6SwU3oZ8r8iiSvS/JzGfTu/d9JPlhVjx6O\n8r4k962qp1bVYVX1tCQnJPnEGJ/vgIIDAKyl30/yj621c8cc/75Jbp712vYMdnkmyUeTPKeqnllV\nG6rqBUmeOjI8Sf4ugx64W5Jcl8G9dn9/rplV1YuSvDLJq0defnWSN7fWLhz23n0sg3v2vng4fGsG\n9509J8mdw///vbX2jTE/4z7CGgCwIqrqz4YH8G/PYBdgZp4P/14/PP7sJ5O8cQFvvTODXZmjjkmy\nI0laa5/NIFz9UQah6ecz6Om6YViGxyT5eJK3Jrn3cNpvZ45er+GJCWckeV5r7fyRQY9M8qejnyfJ\nj2dwk/skeUMGvW6PS3KPDHr9fr2qXr6Az5lEWAMAVkhr7dTW2jGttWOSPHb42jEjf6cl+YkkD0ty\nZVXdkOTDSQ6vqhuq6rkHeesLk5w086SqKsnjM7KbsrV2ZmvtR1prD2itPT/JiUk+Oxy8KcmNrbWZ\nY9ZuTnJ6kqdV1TEj7/uyDHaXPre1ds6sMlyR5BdmfZ6jWmv/bTj8CUk+0Fr7Zhu4OMn/m+Rgn+mg\nhDUAYC39UZLHZNAD9bgMjlu7a/j47INMc0aSF1bVKVV1RJLfTHJEhsecDXd9nlRVh1fV0VX1lgwC\n4TuH05+X5JiqeslwnPsm+ZUkl7XWtg/f41eT/EGSZ7fWPj9HGd6Z5Heq6nE1cO+qOrmqvn84/PNJ\nXjDsxUtV/UCS/5CRY+3GtWGhEwAALJfW2o4Md18mSVVdP3z9qpHXfjuDS2D80HDYvwyvWXZGkgcl\n+XqSfz98ryQ5PMl7MuhNaxkcL3Zya+264fTfGR6H9jtJ/iSDcPjVJM8fKdq7kuxJcs6g425feY8a\n/j+jqu5M8t4MdonuTnJ+BpcJSQZnqB6d5FNVdVySGzM4Tu60hdZRDU6gAACgR3aDAgB0TFgDAOiY\nsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHTs/wd0ixt4VWwjSAAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DynamicPowerspectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a dynamic powerspectrum with the a segment size of 16s and the powers with a \"leahy\" normalization" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dynspec = stingray.DynamicalPowerspectrum(lc=lc, segment_size=16, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dyn_ps attribute stores the power matrix, each column corresponds to the powerspectrum of each segment of the light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 2.01901704e+00, 2.32485459e+00, 5.14704363e+00, ...,\n", + " 9.76872866e-01, 9.49269045e-01, 4.60522187e+02],\n", + " [ 2.93960257e+00, 2.48892516e+00, 3.39280288e+00, ...,\n", + " 6.23511732e+00, 4.27550837e+00, 1.06261843e+02],\n", + " [ 3.64619904e+00, 1.58266627e+00, 3.42614944e-01, ...,\n", + " 1.16952148e+00, 3.54994270e+00, 4.56956463e+01],\n", + " ..., \n", + " [ 1.69311108e+00, 5.18784072e-01, 1.57151667e+00, ...,\n", + " 1.09923562e+00, 3.40274378e-01, 2.53108287e+00],\n", + " [ 2.95675687e-01, 2.47939959e+00, 2.84930818e+00, ...,\n", + " 2.99674579e-01, 1.48585951e+00, 7.49068264e+00],\n", + " [ 8.84156884e-01, 1.65514790e+00, 4.17385519e-01, ...,\n", + " 7.54942692e+00, 9.99801389e-01, 2.03835451e-01]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dynspec.dyn_ps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To plot the DynamicalPowerspectrum matrix, we use the attributes `time` and `freq` to set the extend of the image axis. have a look at the documentation of matplotlib's `imshow()`." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(700, 850)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXd4FUX3/9kkEHronZBODyhdpYOBYC+IggiiYC/Yy2vF\nghXFBooiSnlRikgLUgREkCZEagoJLdKr9CTz+yO8vy/nnCEzd5zdewP38zw8PLM5OzO7d3f2zCmf\n4wghIIgggggiiCCCCCKIf4cQf08giCCCCCKIIIII4mJAUKkKIogggggiiCCCsICgUhVEEEEEEUQQ\nQQRhAUGlKogggggiiCCCCMICgkpVEEEEEUQQQQQRhAUElaoggggiiCCCCCIICwgqVUEEEUQQQQQR\nRBAWEFSqgggiiCCCCCKIix6O47zhOE6W4zhHHcfZ6zjOj47jRBYi391xnA2O45x0HGe94zhXq8YI\nKlVBBBFEEEEEEcSlgO8AoJkQohwARAHAdgCYKBN0HCcGAKYAwFsAEHHu/6mO40QVNkBQqQoiiCCC\nCCKIIC56CCE2CyGOnGs6AJAPAPUuIH4XAKwWQnwvhDgjhBgHAGvOHb8gwqzNNogggggiiCCCCMJF\nOI5TCQAqnXfogBDigA/n3wEAnwNAOQDIBYAhFxBtCgCrybE1545fEEVSqSruhIsSUBodOx1ZCrXD\nt59wbfyERNx32tZKXOifk6iZV6k0E2lQax/uJ7UUk8mriM8LPXhcOb/88ryfkMN4zvQadEHnmFuF\nX1fDGvvYMdbPqQhy4CyTYfdZcn90ZFTnyM7TkQlEiAg8xzPluUyTiP3Kfui1OuHhfKzTp1G7ZAPe\nz8lNuJ1bmT8vYfvVz7QO6LMYeobXNXWOqN+D9QeqoHbxXer5Gb8HAfZMmb4bqnNMx7d1f3Suq2rj\nU0xm7/oSPvdjC7bWqTzyzp0+dhByTx13LExRG0mdSosDB/NsdZcJALHntV8FgFd0TxZCjAeA8Y7j\nVAeAgQDw1wVEywLAEXLsMAA0Kqx/pygWVG7RtIRYkVIHHUuq2Qy1U3LWsvOozP6fE5hM5WvTfJ6P\nbCyKdg8NZsdKTfnD57F2vHAFO1bnjd+V59VeXga1cwbVZjL5qZt9no/Ofd71DJ9zrWHqOevgTPeW\nqF18zkor/cqua/XpM+zY89GtlOfR+2ELFZZWZMcOXXnQ53505mx6Xad74N/n19FfKs/R6Vc2n+T2\nN+IDR/5hMnn7sKJjel30vIa/92UyG6/4XtmPzthZb7dlxzp1xuNntzrJZOgc6y3px2SibktVzon2\nI5tjWEwUauduzVb2629kv4Hva9QLy5hMSNmyqJ1/7BiT0bk/f0/DO47UVhOYjMk6EZoQy47lpWUW\nOr9WSTtg1bpTnipVBd/sC8aD+4TQGulrAeC28w75ZKk6H47jVAWArQAQKYQ4SP42DQCyhRCPnXfs\nIwCoI4S46UJ9FklLVVpqKeUDKPt7aCPsOq187Rar8yps/AP/CWUypabg9qlrWzGZEj+vQG2ZAtX5\nL7yTXtCE75p3tqEfGN8VKFMk9Exnx44PU5+ns1hRJUpHwZX1s/fBK4iMej66fVM4LZuwY2LlhTZL\nF4ZMgTqT1AK1i6esUvZjS+mTKyh2+qH44nAtdiwvI8v3wSTIb3cZaocs+VN5Tp1b1rNjwzdEofbs\nRhKzoQain+Uf+2zS/nsI37gA4PsoU6B07rUOTJQo2dg9uvdG7dlzeAyxjsLfacA9qC17D6gSJZ1P\n/JXsmMl86HvQveWdkp7wGhBWi788ubtyUJsqULLx6fzSzPSPfwUBAPmQb6u7PCGE79YPOcIAoDQA\n1AQAuqCuA4BO5NjlADCvsA6LpKWqnFNRtHa6FCoTGhfNjtFF19YOPa/j5Xz8X9cUOj8AvZ0ShZuW\nEB0lRkfG1lgUw7K4Ze+Z6NbK83Y9iz846x/5jMkwK+Ygbh2oPMrs91GNBQAQuhAvoHmdcpiMyVgy\ntHr+ftSuMEZ9XaYwmaPOsxBWtw47NnPZz6jd6JMHmEztN323kJr+piGN66P27LlqBSG0XhyTyduS\noRxfBpN3zEtLqwxpX+CNZf+2vzGZ35sW97lfW9cltZBuSUZt2btra93UmY+q7z/EfDgqDnpqqWre\nNFz8PodvhExQombWaiFEC7UkhuM4IQDwAABMEkLsdRynNgCMAIBmABAvhMgl8rFQoOkOBIDJAHAr\nAIwCgEZCiOwLjlMUlaqIEjVE2ygcgK8yeQJ4uziYILRKFXYs7Rls3s244wsmY7pYquDm/XJrkZGB\nftzOVJPE9cyn8Ygcpkq4Dp7aja0j71bn1hGde/TldvwRujfyKuU5pnM22YDojNX1jrvZsepvbkXt\nzE/qM5ll7+F3w9amILRcOXYs7+hR5Xk6Y+2bjq3na1r8l8n48wMsOy9u3P1MJvYpdxRzU4XWy/XF\nlgWbIm1US3YsYdC/D2+4xJWqGQDQAgqsU4cB4FcAeEkIkek4Th8AGCmEKHPeOd0B4H0AiIECN+Hj\nQoi5hY1TJN1/8fUOwayUyf+6H52X4Zk9/GUYVs3OC7t1PD4v5g4+n9gnSbDrHep+TRfP17N8f2Fl\nYw0/FIXac9vHGM3HBDqm9yojJbFI89V968xZZ4GXIfVysrlRG6qkmPXPhbKDfQN1w5jE2wHwmKrk\nTtwSM2vhj6id3ZMHxRe/FrO/VIzYbTQfipBSPMg4/wQO/tVRoGTQeV6qXEdCECS/u+n7fOy2NuSI\nHeU5I+dzLvOUej7UxV71U241pNcaO/E+JhM3ZLlyLC830CZj0VhQAIC8x3ECSUISX49NlMWM4fg5\nOP2e+v7ZRoH7z78GHCFEPgAkF/L3cQAwjhybAwBzfBmnSFqqqjesKPqM74qO0Y+Sl5YqL8fKmpjI\njqW1H+vK2LbiLdx0O9Dz+mZ3ZDL7rjisHKvVc8Ql9i3febvpQgi0fqhSlTaAxwNl3oYtQ9tzeWB4\nZBhOkLBlVdXpZ9cUnqRT66YNyvMez8Apix/GSdIaNeCltUSG0IY4ESdvIw9DSR+B3efxD3MXu851\nvLAVy7wRw2WOzsZW93I9eDwQONiAkrJLbbG1tXbYWqdCSpRgMrO3YkVGNlb26zjkYMtAifJKztv5\nPI+lq7YKJ9QUm4vjyfxhqbq8abhYMqe6lb7K1NxuZKnyCkVSqdKJqTKF0ULoSJ5P4Z2SR/uOmcfd\nJ1u7fo3aww7EMxlZgLsNmH4kj96Od1jL3le7Pk1dUC/uxcHjK5vxxAJbH3tZP4/k4J3rlhacYuLk\n9TjeZPHno4zGt4X8Dthl+cuEb4z68adb3pbr03Qs0+eFukh3dOXWvS1344+yqZss/ROieD3EFS+T\nLE8deBmzKbvPie/huLwaH5hlLbvlIjTpN6hUuYugUkXgZUDh8lOYt6NNCf4hp+PveFFCT7AIp1Pr\nZCtdLHBrsZLh4N08eP3tF7Bi06Uk52JJ7oCzb/PStzIZCp3rar66Fzu2uvkk1Hbz+Y35BX/Y72rG\n3Qo0qFhHsZDd50p9t6O26LzrwpMtBCbJGDLYUuYTxmALady73M2ad+iQcj462PsQXzv+fB4nbVAL\nJYCZ6zfyD75B294aZykXhbhXW8oZha3rTP+YJ+rEP1I4VY8/lKrLmhYXi2bbUaoiau0IKlW2YapU\nuaUwlV7MA8yPt1cT/7mFpPU8BmTaC9hdamrluHEjvq4jeTwmxZ8WL9lHQWzBWZ/fZyxgMn3qqFOn\nZai3qhhqyyxMbmVMyqDTd5/NO1G7ahjn3jFxecnmV/8rrDQU+4ev5TXfUe/+D9+JFa3y36nds7be\nbx1lxE0Xd2gDblWGfLxu62QIZg/lymp5EtIlu686oNcmoyLIP65Wqrr2wYp66EJ1FrUMTovGqD1n\nOucMM1GMQxJ5goSM9sFkLB0cyccb6PbvPsFkak/Cm7bcv3H8ob+UqoWzq1npq0KtnUGlyjZ0yD9t\nwVb2SdsnecBlufHqgEG3PhTbX+Efik2D1B8KW1mENHXcNG3cBJnv0QBenlXp7x1z+kd8jltvdWeO\nph97yqMzc+Uso35MsO1V/vxuvhc/v502XM9kinfbhto7fmzMZOq8R0qiLvedINMUuvcrrDr+QOXu\n3qOcky2rnAw5Uxuids0bNyrP8RI6z/jZrs2ZTLF5OCs4rAa3tsxcjeOYTd2sXrkI/UH+GVSqAhzx\nTUqKj37CQY86O2sao1NuAldqAolPpCj0c3puFDv2a+NpPvd7uB/fRf/xtjomRAfbXsN9133Jzm5c\nhtFH+KI7qYEds3fm+/j5zbjdjF6DwtR1NfMEDsjtWYqX+Yj/Dluq0u/kwbeqsd3E7ml83ah+wyaJ\npO+g94zSZgB4m2Cz737+jlX5XP0u7LsPn7fmJfVvSC1OAAA3fvoLar+3qAeTSbh/BTtmAzTzEECe\nfUihoyxSK+ofw9QB5jq/c+Z4/rvHSjLEVaDB7NmjP4CTf+/wVKlq1rS4mD+7qpW+KtfaFVSqbEPH\nUhW7kmdgZLbkiz6FP/lNGn/MyQopUaUt69G9O7h5PusZnI4vIzBlZv4YblHJP6W+z9N34XThcKcY\nk/G3tYii0tIK7Nj46IWorTNn0ZbX43SWrUPt+JU88Di9Ja61908vfu+XDvfdmhVosS2y+XRcfwNq\nh1+dbWUsmWuv6id2CEKTu+KYN1n2nU4/OuWRdj/Or6MFYVAfUv0XJjMkiitaqjn5m/OpZ9trUZuS\nvgLYyxCkcDNeilbUoNU0bMEf7r9mTYuLX2bzMBkTVK2VE1SqbEMnpmp4Nl8YGxTH8T9FkdzSzQ/g\nzufwwlz7LTWPTKBdl5fp1abnmVqGbF2HPz+SOvPpfm0fJjPnZ0Qf46nSl9eJV0yYNw5n03qthJ7u\nibPtwmeqOebcfO4o0r/l9yz+LnV8lK3nN9AUQQp/vnNBpcpdFEnyTx08FiWrhWUHtuInaEmGhPvU\nOxOdl1FWgLV7V8xVIguopkoULZJaAHzttli0e1zNA8xpfUKdsRp+yq19G3OwtS962iBJP7it+3Fx\n66Mkg447yQQ1l5dlx3La8OB11XwajOL3Xqf2H7+H45hMi/9gN+IqGQGlS/dZdg10rBHbljKZh+ua\nJT+o5nOhOdmAzj3MHMefu9g+OOPYRIHSHV9HZsVpvr4F4T8IAMgrggYcExRJS5VpoDrbEV/Pi1qa\nFLYNKc2z3XQyXUw+AuGLeHzO6Q6+s0tTll0AgLoz8EJEgzT9DVucQrJ+mr2FFYJqI8z4aPb/nMCO\nVb7WVu1PNQLNCqU6R/c8E8iIETc85Ls73VpM03TOds8Y1TXxz604lb7MD4Wn0evCCedu5zmk5qaX\nv3NYdF127NSX+Js1v+F0ZT+BZlGX4XQysT7O+vclaQACI1C9adPiYvasylb6qlX774C2VBVJpapE\nzToiauAQdKzOG2YfQYp+W3ag9th6vHArhS1rjQ78HWfkFj0ATb0HMAsoDynLrS75x9RWF6oMyRSh\nA/dwC6BDaKkqfmMnCN5L2gXTe0ZRYamk/M+VtPC7GUxcPvW+5s9U1It2atT12oQ3MqbJCDv+gxW/\nOh23c6EuO9mhQHfDa2F+bXYoIhxTBqxMi2YyCXevYsco0j8lhKUPmjHFU/wzh5fcKtMdUxjIQk+o\n58RUwbYR0+UP919QqQpwuEn+qQO3FrSXtnKT+WsxODbB65ght+BPUj03PxwZ33PXSFxf7BoJjeMf\nilmLp1oZP7lhB9TOO3zEqB+T36fx6hB2bPo8/HFr256XidnTFvOqeRn70yH1JDu2KLGkz/2YzocW\nzQ0rw91WspqgJnMyfca3/4CrDUTeqrbmB1pMYLtUnjzzYmUcXiALQdj9Bm5XvV5NhGq6TnVdjzcy\nT1WUlPHR6Ec1H39YqhKbFhMzLSlVkbV3B7RSddHEVIkrcEbV3B+/ZTJa3Dsa/C+22JT5OTy40xZ0\nrn33o3g3Vf0jtfVPdl31vsEWgjKSzbdOTMix3uqCsCa/hexeULqC2Cf0io6WXYIXisxYSakWUiRX\ndu0P7cLKB8300wdWomREsEMq4p21TqyYDBN34Oejdx3ubosBbBnib5MeaKajaUyRl5uLXc/g+1Fr\nGH+fsq7RKOciKbJsEnukYx2xFb9lel/peZSuwHQ+SxJ5NngS0DlyhakqpzpjsMVBNXrK1aid0Z2f\n8wfZtFUDOx4a1yEA8oqe/cYIF62lSufjun8wf2Erj/TdPWCLINTL+A6ZVWF983yf+wm0dPwx239j\nx/pHXqU8L7QSdl1lPMU/QNHPesfifaQPj3mLGOd9dfl/C537Qz/2pm6QQKOBYLxDEtLZ2Cfxb2rL\nFSuDrMTVxgd8Z4Y3RdrX2Lig48aTwS1XuWk/uZ0xaWjYAvdiUXXmTClbKF2LP9x/iYnFxHRLlqro\nOkFLVcBi9cs8g6j9bpwZVvInM64Qk52klx+K92tIsnMkO2IVdLL2TGGy6NUIK2M0Vt4BHPuT1k9C\ncNiPH3LL9aqjQNkK3PcSUgLK63zfyNjia7O1kdGRoQqUDKYKlOza8wTeJCXX4uclDTWxqJs9PyZK\nlK1YVBm01t8bSDLTCu76dFOJotDythzBLm1ejdR7CADwfcteNHHRKFW2rD4lAStRYbX5SvT3tZGk\nH/V82v91I5NZ3ATH0ei8MLdv5prPhPq+28PtfVjtKFAy2HLt2RhbFzJ3hcxtqYKb1xoaj4NtZQWe\np+7E70HSww8zmVJT1RlndI5VwDtrn5vKY8aH2OqUeZua3d7NWDGd9Y4GxQMA1HnD99/Q9DpMMmx1\nrotmQgLYy4akSpSbGxlbCq0Oyaz3cCAPPDWO+Q1aSpXjONUB4CMA6HzunD8B4HEhxDoiNwwAngaA\nO4UQ3593vAUAfAYAjQHgbwB4+fy/24DJAqr3EPNj1b7HcSoyDbzlCziu6MBlEqkm/BAFdUtN4PU8\neSDiczzrqcK3dtyathYHHbilMIkreT/OUjtzjr+flzjRmTc12ZvGDOV3wDEXIYv+ZDJUiaJ8aQAA\nN5LErCU5I/lgn+Km6Uam48B7UTsceCo55YHS4YDKmsCZ66Nvx64Q02c87nFidbqNy2wlfHG24sAK\n+vL9XajzuprMV3d8FWTz04n/SRtNXIQDuXWL9l0G7ChQ/k7eoeMfu427i6OWYtf4gSsPuTqnIHyH\nVkyV4zhTAKAsAPQCgOMAMBQAbgeASHGuA8dxWgHAVwBQGQCe/p/S5DhOBABkAMB7ADAcANoDwFQA\n6CaEMMpvlsVUuWm2NoHOx4TWdjKp66Q7lo4MTRd2vuIMuKV/tLQDNIBOqrKbzOw6MH3G+mzGafP9\nyu1X9m0rLs4UJ6/Hypipq1wHJu+3l2tCxgf8Axg3xE4MnEzp1SEK9hKBtv6aINA2kW6N5Y/sv8aJ\nxcXkmXZiqupHXgSUCo7jpALAp0KIkefa9aDA71NFCLHfcZxwAFgFAIMAYAIAvHieUjUAAF4BgKjz\nFLDvACBXCDFAe6KOUwkAKgEAlIGILW2cbtoXWVSgtTBRHz+Alom6W6/+qJ3zOE/dDlscgdqy7D9b\nQZn+5GUyhb0sz8C/Vi/xSAZ2IcsKM9MCvaEL7TB2e/mbBlpwPYB/+a5ez+IWyf9Et2THTMaK+XEw\nasc/Yoenyhb8+Sz4I1C9cWJxMWmmnTI1jSIDu0yNrlJ1JwD0PffvGAC8AQCthBDtzv39LQAoJYR4\n1HGcbMBK1XAoUKhuOK+/x6HARajNIeA4zisA8DIAQHEoAe2da3RP/VeQMfrOXPoTavt7YWQEghIz\nP8XWYTz2J+YZO8SIIaVwjcXZGXw+Whw+Gq4ACluLFaXoAABwfl8nkfQOoQ0xQemseZOU5+hYLRPG\ncHdx9PPeZcHmdiGK+ny1oj4ojceBjUrgxIwmMPnYUr4pAICEQb7X4zMNwPcyA64oJkiY4tDMeNSu\n0DOdyQRaNiJd29PvxEk3/rJUXSpKlW6g+lIAuAsA9kJBMsEOAOgB8P/jpW4FYKQf/0NZoOQ5AIcB\noJyPcx0BAOMBAIpDuFFtB1q2ovab6hiDFadlC2OxQs8B8NaCoaNE8RdWR8ZsPrvvprFQJ5jMtkk4\noKxuL55Vk9XjK9yP5BELq0vLFfH5mLlHeT8y0I+pyYf0QnOioAGosnNYPUngbiJ6XrQkeJz1+xl3\nQRU7Ekr6VXYjBVWicp7kAdU138PPuC0FKn4lL8vy7sFYn/spv7aYUiZ9BA+oNqmNCKC3nmRNTETt\n6N6pyr51ns2YqYOZzK1XYEvQWo2ylG666uPH4o1CjIQORacflmSiwRl248Z9TOaDVByuUmIFz1Lu\ncifZXIB6c6EzZzq/NHFA2a9tCIBgoPr/4DhOCADMA4AUALgJAE5BQXL5EsdxGgPANwDwoBDinwt0\ncQwAosix8gDAWQkLgRDiAAAcAABo0bQEpKT4rgDIlCgKW7spygmT3KgCkxEncerrjF28KOs1tZqz\nYxS2FDYdGZ2Fuuon6vssU6JMkLtth1KGXtfen3i0f/NX8O5utaRgr7xvcsCRLBzEGpz4Hi88nEqK\nPveI44pF/gmunFLQWBtbH66EB8xieEwU2mvSajCZ4tfhXe6hN6OYTMiTmFo0rKuEdZZARrK6+Ikk\n1K4hCbCmQcRVP9OwDt/Mg/2THvZdqZGBbi4A+Ltp61mQlXwZRn/nC+6x/z0O3q1OAKCkszrX3rM1\n937k7uAlglSoEsZpMeIGZaN23lGfPn8XRFGy/uWLS0OpUrr/HMepDAD7AKCBEGLzeccPAMDrAPAB\nAJxP8lMBAE4AwHQhRJ9zMVUvCyGizjvX55iq8xFogeqysWeewAy+H8dJ0vY0+qFw8yVyi4zUy/gB\nKcP7aLxr3TKQK0zUBWbi/tKdk78XQmoJmvbwO0wmthjeSV++iqe3mRQD/iCb39chUfgjaes9+HsI\nV0xrfICVHzfLqajOkZ2X8Z2kzNGdPINTB7beZyoTO/E+JlPvS2z9yNvE3WQm8PL30elney63HXSa\n8iRqxz3mHkmvjd/UHzFVjRKLi/EzqqkFNdCs7s6Adv/pxlRtAYC5APAsAJyGAkvVFwDQ4Fz7fCwD\ngHcAYLwQ4oDjOOUBIP3csY8BoB0ATAPL2X8UrioopBBoSoMZRmMdHIA/JrJivGe7YktVsXn+Zev1\ndKwQ7F6CfDWNXdZbPFYs+jk7CpLMGkAtZbKiy5W+8n3XHGiQBRW3CscuLzcVbHrevTs4pcL21seV\n/VBcse4MO7bhGLaUTYqZz2TonE/34DFVIWdxJuaCsaOV/Zy4ibsIS+7mgfv+jO/LelPyjmlsQs4k\n4e9gSC7/9lBXsK13JfKP0uyYzvOy52GsmK997jMmY8tlSfvRoQSR4Ux3/Cwu/BqXQvJHTFXDxOLi\n+xlmRccpmtfdcVEoVQ2ggBKhNRQEFGUAwGtCiJ8kstlwXqD6uWMtoYDVpgkU8FS99G94qiLCq4sr\navVBx3Kz1aZ++iC3fpYH6JYfa+cDXBSz23QQ2giXFMnbwK0Vbu2QZdC59uO34A/Vbx9LOJc04GZm\nFEXP5t3Zsdy/d/vcjww61+GE4cgAkZtrNJZOzJnO5oIWoc7LyFKOTWsTAgBUCMVJFKa/qc7HttPd\nmH+r+Bx1vJ0MWooF3YAAaG1C3ILOnPfdJ2HX/8Kehfh8yBJPDjbCz0KlLy0l6jTmXgln59+obVro\nXAeBaKlqkBguxs7gbn0TtKq7regrVYEGHUuVDvxtWtbB0Ttw7MaJapybqPqH6niOJzI2oPb7cY2U\n51DeKgCAcjfgSM3ZW7mp20slb9ezJPkghS9Wc2aOQ22d+cnqpNUZala81NbzEtoAZyLNmv8Dk/HS\nrerPd+WLbbzG4311cY3H08ncevTrVxoFjAlsbYhM4+TcRKCFTeiMHVoFx9fl7eOB4TpjtX0SuzHL\njedrmT9DItyi8vCHpepSUqoumjI1FDoPbacNvAR5cdjmcz+2QAMwAQBWDsXxP1rs3BLG8Pfj1ONf\ntxHHRUxvyGUotWTDT3nQdR2DyummC0itt/FYcyxxE5kqUDLo/GYlF+F4g5Md9jAZkzgVW1xNppbE\nhMW4YOLZL0pwGQMiy+hi6hqPMgXKn0pn5vuJTObeq7FrcUET7qbSGU/nuvYP4uuLacamPzFr3S9K\nGZ3nt2J1bO2cabjWmzxTpv3S390W8agXCAaqBzBsxVTJkLSJZIB04dkfoRVwJt+sDQt5P+SFSP+Y\nx0p0aoWtRzvb8CBIeh3jjlViMmPr8VgfFTr/xeMJ6IJ+9HbOEl0hFZdFkLn/KPpt4Rl6JnOWIbRa\nVTyfPXuZDL2HDT/jimC5LKwu6hQ0NgWNeQAwdw0FOrx0g7dc0wu1V15uh8cr0OPdAAB2P86tYNSC\nTSs4AOhVccifj9/VkC78fd7+Eh6/zy0LmMySRKxQ75zMreUb2mKrsmzTtvFB7Go1/X0ODMRKZtXf\nuMUrb0sGausozzpW1NDyEUyGugR1nvlOA+5hxxZ+Q6hoCGH0H+tHwtF/dnmq4dRPDBdf/yyp6G2A\nK6OyAtpSVSSVqvDIOqLGM4+iY/EP4zRfNy1MOosudT2Ez7LDX3TmF05GWrwbtq7JylpkXTeq0H51\nYau0DoUti4oMNIj419FmFgw355g+BickOIc575FOVpFb7go3x9o1BX9ca920gcnogMborHmJZ3na\nclmabNpk/FfzGpdF7ZrLyzKZbyKXKPsOtCxcW3BzQxZwiTmKc3TPU8EfMVVBpSrAIbNUtUvFGTJ0\nVwTg7cckakVJ1M5udZLJVFiKiyUfuvIgk6Gg9dYA3Ku5RneoAAC/NPhZeV6gxaXZgq04CBkajMQ7\n8k2DzbKMvFSq3IKbyis97+V93FryahXflbpmb3GLSrURdugb0j6XbJKut7NJ8hKU6btHF14hYUsL\nXj6LQuf5nbwTb0Burs2t7qp+ZX3bUnRoqAUAwIPlsQKplVBSrDg7Js7yjNbz4R+lqoT4cnpttaAG\n2kdnBrRSddHEVL1YGdcPs0U+Z5rFklKbxEJJ5qOjRFHoKFCm8Uk6rOI695X206XvQMn4ym4YwWL/\nV6YzmckFhruyAAAgAElEQVQNqrJj/oSMx+beyKskkhiRJA4t6VWz5zfQAtVN0PQdrqBUp/dHMjal\nR5g7tB2TafU8flcrjOEZX/QZ17n2agZxhAAAZ6/G34YFY75iMtL38H4SXvApDy+otAonteRLSN9X\nv+J7zKYpaBksWeCAreBsqkTZ2oweyeebYx3QmElZvOp04KEdKsgUKFr9wJS41yYEAOQDT7K6GFEk\nLVUtmpYQK1IKNwHbStF382Oy7368wFf5nC/wtszGFG5a6bycj85Ytnhkemd1ZseoYuw055YPsdp3\ny4eb12HrXu9+DMfR1FzANwn5qXizY0/ht/PcxS7g/MNxfX0n29QprSMDnWNyh5uYzKxFU9gxL58F\nyvGkw+/kb1fj4Tvx2vrHMDNXMIWpNSu5/Y2ofeQyvhks8wNnqjeB06IxaotV61HbH5aqeoklxKjp\nkVb66hidHtCWqiKpVJkGqvtzF/90Ji/L0qUk5pGx5WenvD8AnPvHliur+auc66vySAO+F0s8O15+\ntHVBi3LnZm27gKR92PqdY+bdzY7F91tjPrFCIJtPzA84/b1uw7+ZzMJG6kLnex/Cyo9OSaXtr3CF\nKfIVO9mhps/dnkfwnKp9rJ6PjFi01BQ7H3KdYHYKL2kFdGDLpZzc5VYmM2buGNS+sw4nr7W1BqkK\nlPtLqfp8Oo8HNkGX6LSAVqouGvefP+NEWrzEFYtKpPbU+8k3MpkuC39E7SOzOO9BRDLOPtG5Lhl5\nIq22bquQq0yBMlIiJAoUHeuDg5w3a8SSrqitc11e76Lp9Yc047b/2bPGezYfCp2x4sFMgcq/Cvcd\n8hu/90f6YleN7DeMBxwjk/muhB6gm46V+YJT/f+gCkJkF98tTgVjqe/r1bfchdoO6DGl6yhRp3vi\nBI0ln0hqD07Bc8z4gMcexf6IXV4yNvfhsTjT8u47hzCZ8t/ZIdfst609aqfkLGYySbVJzVSN9UUG\nne8KP8apT6qGqqkybCmUVIkKBAjhQJ64NNx/F41SpbOAhTZMQO1+UznfyTf1fNemaRkSGWhqLgCf\n8z9TwpkMTbylBJAAnL/o0F38g7PiMmz+bn/DICbT83VMDVEmlJfH0LnPJpYY049SbCffmb61goMl\nGZQyPiUTZT5/7UajOVH8cyu3PFAXgr938Yfq44SNSjzbHCK+952+ItzFjbaplcUEc3/8FrVl9/TA\nvZLSRxrs3+Ezccaxzu8VN0T9W9CYHQCAaxddjtrxEgXK5F25MpW7Q0+cxsHZSW1lmz+sWLjFNyWD\njIrGhA+sKCQfBMFRJN1/pjFVtkBLeIRE8bnMWjwVtaNncz6RBs9i5UNGaqdzHSZs6f4GZSyXkW3a\nMv3TIr60gK8uikKck62x3LL8yubT4+reqJ2/fjOT0emn5YvYYlzxa/diFE3Oe3FvEyazshl2e+sq\na3T8kLKciiH/2DGtvlTj07FKL67CZI6dxdnWJ0by9Pkyk9QKW8u12KI0tCoPm6DFvWWFvQMt9tNE\nCXcr7tUf7r+EJiXFiOnRakENdI/ZFHT/2UZaZiVmNqc7vpMp/Ac8uADT5I8c/AmTeS0G77hO3iDJ\nGpmGLRZHm/GgQ/ogZ+XwrB7ogZsdB97LRMJBzW9FlSjZC5x6BludnoriuylbH1KqMEVN5PEvVInS\nWXTqf8mzwjbnqIkA73oduyKoa1YGN5mKde4rJSYEAKg2F1tQZv6hLuRtijZP4RimCFCX8JBB51pn\nz53ocz8J33KXe+wKTEx7eDbnhTJxD0vjyTTcoVpJLyTTMPmyq5mMDqGtLeVQdl+jyftyvD0nyfyF\nzmeSOnSg1fN8rKFV1dmIa3L+i2UkGcm2Eo6ozK5nJPF1Y7AXYtafc43GovCS4iEIeyiSlqpyZWqJ\n1o0H44Mr+I7GLWS/jj94WwbaySy5lKHDQiy1csTjgM/84+rMJFkZH2epHSXK39YsnY8t3XCUTFIX\nJzYdyy3QmpgAvHabrXsog8m1hpYrx47lHT3qcz8A9uZI+7kpoxuTmRKHLeiyfmmJLZmVkMaq5b5b\nncmUWo9ri85cMZPJuMVZJoOXSgwN7dApSyUr3pzZB1f8SLsLf5/8UfsvvklJ8dF0vskxQc+YDUFL\nlXUcP8mUKC8XeKpE6Yy190G+w6n6qe8BsP6mQnBrkaEKFACPa5JZGY70wS6V5e9+oZzP3B/GMJlf\nT+IgyrdieZ02Hdh67kwpQXRgqkTZgE4cmAw6HGpugRKzAgBsIhbSJn/cwWT+am0n+UDnHau3SkJC\nBWoiTQqZFYpagk5dy633VInSSRII61CZyVAlylYslM49zO3cnMnMzxntylgyyAqkU0w7jmtefs5D\nbCH6Odyeeyt+No7m+6MG36UTqF4kLVUlatcRtR96HB2Lft5OZgmFzI1IP0qmL9GMXTiYspjDaQVM\nFuKcqTy7rM6AXajdeznnThpX3w7jrVswvc80QSFvYxqTyfgQWz4yb1MrZzLozHH3tAZM5qWG+GNy\ncxm1BcPNBd5L2GKB96flTHafvziM44qmNuSxSDr9SK2NhMzSraoKMpg+UyElcNxV+uuXMZnYp+ys\n415SMdjCq1vx96BNCf496F4X/+5ztql/90CIqYpvUkp88BPPbjfBdbF/BbSlqkgqVbJAdfrgpI3i\nRWuzrsE133ReqtezeEzTf6J53ybw54tvujCmf4ItDfEPSawMbYiVZ3mqcnw3LXC0nlpOG3UAr02X\ngi1XhAlMLV46Fkka4xb1Ol/g52znpUhUY12sCDR3pAwRv3FW7yNX8ZIqJrD1jLt1z/6WbHZSW02w\nMrYJXYIMNkIJ/OH+i2tSSrz/U4JaUAM3xK4LaKWqSLr/0lJLKR8uqkABaCoNpLBtq3B3PnYAfD75\n7fjOLQR8Z3eWvbC0NpnMfULZwGVM4FIlikKiRFHUG42DVKM0gsdl0PlNdZQonX6Lwu7XlruElnyR\noe7L2H0t2571SMZuMcrHpQt67w/lnWAyvetwF7sK2W/whICoFzQoUjrihJbMO7hVIWGQOslEB7Zc\nwToZk3CVWcakCZ+Tm3GDJu8hVaBM+5GBcvfJ1l9bG01ad5YZHIQdJdlX5Al/uB29R5FUqnRgvqMg\nbYNad6YwjRPReRlpbTJaygAAIOQwDvKW8Zmf+QUvDsW7qTmpTEkY6XmJ7/PYltQneOFhPpadxTzQ\n4tCGZXEFd/tLWLGIfM2M+fv3poQLyLCWpoyTSwUvLTo6CpQMxf/KRu2saxYwmR6JmCrCJjGtzjMV\nPQfTuMjGr2iwmbH1jOsoZ23X3SyZAZbJ7yDZjC7yfTN61SOD2bHS4DvjfOOP+DpVKwu/h7umyGhv\n8HWZvgfZrczqEwZhBxeN+4+iZ+tr2LHcHTuVfU/aiReZXrXNOI10QF8aSnsAIKc+UEGHsXunpPDv\nwEh1tp2X7khbY6d9g62PCQPUjMO61x7o1iup1fJtvOjL2LkzhuPnLmIz32VW+cJ3agov3V06v2G7\nVP7OLUnEsT+hlblLLG+/77v9/YP4WkILGp8WPLg83OFB6LQ8lKyygZdcY/620AY63EoUCmnKXZb5\n6zahNs2UXT97OBw/sMNTs1Fsk9Li7Wk8U9EEveLWBN1/tqHj/gNQK1Bnu/Jsj14uxWrrfCh0uKNo\n8CsAwH3lcRC6tKq9xkt8pI+6XIgOTAqwuhmvRJUopyUnYZzz03c+9yuDl9asnZP5brf2zdhlm9yU\np8ivXUese8/yOZpYVWTXntzpFnKEVxYIrcZ53vh8fP89dM6hCpQMJgoUAL8/CYt5RqnOHGnhagCA\n6iPVPG+2FNgGo9ShAxTDs7mi/liU2j1Ls6R1MqQDDWkjecytW9mqs2dzlyUHian6i2d4eoH8SyT7\nr0gqVTrQ2+2q+6G+cAC9Mix0/J4tk3k/uzAni86cqQIFwBfPxDV8E5J6udoiSekIksaZKRZUiXLT\nJabD7cL75mP1vOI6cmS7Rj/2PvYmO1mqQMmQt48voMkNO6D2rI2LlP0cv5lTIVw2lHwAgX8AaXkm\nnWLftqDze43YtpTJJBTDmwJbMU1p7cfy+Wi4VcMP8XfXLSuUrJ9Iye9Kkf4R3pA9FqUeS5al/Fdr\nrPDf248XHt45KBK1qWUGgNcwlJXfceseJgz2LpbOZM7+iqm6VFAk3X9lKtYRiV0eRcdKT8a+70Bz\ny9DAVgCA0F8xK3PoQq7lzao3C7XdzJJjO2sZu/Jz7qQ8e3ldXe4cyGTCFpLnRVKA1U3Ycg/MPYFd\nRVeX4u6kQHPV+JOLzRZ01huaLAIAsPY5dUUAmaUq9DRet6t8zt/LkETsbhEbuZVQ5PpeO9PNAHOT\n8W0pvW66pv3piqWks8v++QmO5O731P0X06S0GDqVx/GaoE/8iqD7zzZCDh1nShSF6QvSpS/+4Iae\n4ovOwUalUFunuOm88V+zY3SOVIGSyei8RLKCp8ldKEsct+jQfmh5CpvQ+X0y38VWDRmHDe3nyCzO\nhcJIB4HHVJkulvt/xmnCq5tPMurHLffWEzJrQI46A8/Wot+MxAuv5THFDKeu4c9viRmYriHQ4nou\ne4MrTNR1tTaHJ1XopdqbXWt+qu81FE0VAmrRNymqrjtW7PwBqB0nyZDWiRvUeedtJSHFf483qDGS\ntZWO1WnD9UxmYaOfUNtEoWyVxONp3YYA55LJ/iuSliodniovofPiyQJQkzbcitrhV2fbmhKDLcvd\nrmfxrrnW23yxopkttW7ibiqduKusiTgGJbq3mqqhKCDQFIIGq/nealNztQXDreBbU/jT4iW7rjZP\nk/qJ33vngrLZt1uJA15adGxBGt823E58mw5M3Jo9etyO2su3fAVHTuR4quFENykjXptix1LVL+GP\ngLZUFUmlqpxTUbR2uvh8Hn3Y6G4GQL6jCXQ4lxF+qT+5EkOvvdvtA5jM3maY36T6R/69F2eS8HtT\nPEVNJFkUUBQUi7QvcbBtwr3qOBFZgG69h9ahtjir5r/SgZtxeunfYld9/F3q4skynL0aP7/F5vLn\nd+8DJC7tM713TkfR6dm8O2rn/r1bq28TuKVgB1oYhwy0gPyIASOZzDuxPDnGK7ywFd/DwdftgC2p\n3pJ/RjcpI16ZYlb6i6J/wrKAVqqKpPvPFPTlo9xNgQidxUqmRKmQF87JCm0pUTpzpgtRnaF8bBMl\nypbCkv1fvgBE3WbHUqbl+nyfZ4LW+xgnKeRu22E0/tbxePyYO/g901GiqNIgC9DNeQL/zjXet/OM\nuWmFokqUlANqNuaACjnGl9LMXjjxo+ULPEZRR4kyVT62941B7ZrvmilVh/pjN3yFMeqwgCN9+fO7\n/B1e+omCJp6YZs2dvAG7kBd/NorJ0HsoKx+1TkIIyvvB7XeGcgXKnxa4N2LwWH/7IVBdCAjW/gtk\nJDQpIT6dHoWOubUTMP1I06rtK4d+fgFJ3/qVwa0X9sRNPONrySd4F5bcqBOTmbVhoSvzkSHnafzR\nPn05jxfQcRua3kPqOhteQ60I7s/jrs4+dXCWk+y5o1l7eYePMBm3XCz+tq5RmTuy+HM3Ptq7504H\ngebKkv2GtFh05KtqJS/jex4YF9fXTuUHt4hyZaBcbHGPcVcahZfvQd/sjkxm3xWHlf08l4nXu44l\n81HbH2VqohqXES9NsXOfBtZbGtCWqiKpVJUrXVO0aTgIHZOVVKFg2W1jJdltz/pOaCgDfdHozgkA\noOQ074qgugVb2TC65wUaaJHY/FOcTNLWtfbbgi1TY+txAtxA+5D7E7TsEgBfJ7R+mxvu5AdX/KU8\nz8tn3M2PvUkQuum1587DdAnzG07XOk81vq17QXm0AAD+fEGdwakDr2LO/FFQOapxWfGiJaXq3nq/\nBbRSVTTdfydOscUxcxzePcX2Ue+cZAoUrXn2chVeZoNWCteJE5EpUG5ZDGg8DABAVk/fi0nrwM1+\nbC0yVGbYAZoJCbCgCQ6cvz+dp59/Hs8zC2dvVe9u6ZwO3cW5mlbkYEum7Dq+64u5zlJyvmMytqDz\nUXxmD57jD39x2pCtXXHWq5dKns5GS28+agVK2ndtQi4soekw/Uh6GZRvksknK/ny28c81oiiWklc\np9PWhsyWgksVKNl5suzrrBuw+1EnA9g08zAQN1YCgu6/gIZpoLoO/MknonueST+n50ahtizTkMYU\nVL+Bk+rpgM75qtSbmEzp7lt97pfWtQMAKLkXP78DHua0FB/8fjVq68QLye571z53s2OhvxLl3cP3\nqfmf+ezY6st8X7g+yOabiyFR7pRn8nfmY6BxYoXVxdZG3Tg5t64jbvx9TCb2SfXGwWQsKSfXo/gd\nX/eMWokxHUt1ju55bsHW2h8Igep1G5cVz0/mmy4T3Fd/cUBbqoqkUmVKqRBSGlsj8o/z2BZ/m+xV\nMPWzmywy1LUFwN1btK4UAMCy9wgzu8Zus81aWs4EICKZW4tUcJOY0Nazse01rrDUfQkrNrYW+DPd\nudWy+BzfGZ8PzeTWvY8bTETtNiV48oOtdyWvE16Q/6lVnMnIKAsuZbhFgEnLWQFIqjFYcl3JmPxV\nHIWmY7nZj8lYMpiMT/v1R0xV3cZlxTOT7ehBD9b/NahU2YaOpWrnc9yqUfstHIQZu5IrDWlPY7LE\nI9HhTOZ4Lfw8/jDwfSbzUDquUF9qEBNhZnV/MxXbwq5nCJfVMHeyCmWQWpMWqlPiA40vSHattNTR\nzJVqslhb83GzH7cgu4c3pCeh9skOe4z6phsOEzewTfg76JsiND6GHdt5XXXU1skE9TIwXIa9JKmk\n9c+PM5mEB9TEtD2S70Dt/LU8rEQHNkIi/BFTFdm4nHj6Rzt60MMNFga0UlUkY6oSEk9ASkrhL4RO\nKm5mSx5UHAr4A1xxIROBiqTd6P6STKZ4N6ww6RSDMF0sbLkRr3gcm/7L/teMrJAqUaYLY0gzygau\n7mdejpq53usPkK2PAK0VqQPZ5sJWcVed69LhGstvh+MhQ5ao4yF1fp/6v/EA87q9fA8wl10nVaKS\nNl3DO+qiLupuaiGlcjq/hY7M1re5FTWGxJ5Scl8AgPVtxqF2x/VRTKbG1ep1gcJNi/FTu/FzJ6uP\nypKbHlDHxspgqkRRBNrGJQiOIqlUyWDysL26lZcreTmmuUSycPRs1ZMdy+tYDbVpnT8ZbC0WlFAQ\nACBhUVPUTuvwLZOhStS++/kCSz/I1KUKAFBzvnoT9MW231B73BG+8ViSaGchopDdw+0/YEqOHsm8\nvEuKpLyLW4ucab+0TE/tZDMrYdpX+Pd4q91kJtO77CHUls1Zh2tMR4mi0PnYRv/MXZ867xitDSkr\na0STVSZn/chkbgbsJjNV1N0k0mz4KaZUiHlW/bxQBQoAoPtmvAb+2nganw/4rgjK0PoZnLVd/jt1\nyRfZWFSJkt2fy1/DY1WRlJexFWBuC4GqeOVBMFA9YOFmoLoOdF4aykVEeYhk/dhyw7R6jlNFVPjW\nTh2/tC/wxyThPjUthI4rVgZbcU46uGIIttL9/gEnKpSNX28VLmC8pQUvR2QLtmJk3HLbZXzIY23i\nHncnzsl4A9KK8NlpUCO4CdNnvOfl2I2Zu9vMjakDlnjyMM/s0ylo3yMGPx8y+pFAw8EZuLbnyst5\nbU/6mw1My2IyoxOifR47pGxZdiz/GM6ONFGm/RFTVadxOTHkB74+mGBIw1+C7j9/wEsXT6DxMJkq\nUDplNbKuw6nBjbN4qR/q/pMpUPT+JL7P+9GxinUYjIPVSvxsxv1VFog7Z6Leb7P7FK4An38V544K\n+c27netije+UW+9B5m1cEe35Di6VMnP1HOVYPTYcZjKPVchWjq8z59DjmP6EkxxowpJyRud86lqe\nji9316qVKLd4j2SB4jr9hFbBSkK7Ffx3XpLI41xNxtKB3hqN22M3V1aeY6JAyUAVKBlMLJ1pfmBU\nv5RQJC1VOtl/2yZxhvXNV2FeHy/pEtI/4lp6/KNmDL6qsbwMeI/4rRI7tmFmPdTWsUrZmo+pMt39\nur6oLVat1+qbIm4ctxLGPuVOZp8MXlKCUPibfoSWFjItK+SE4+SUOVnqbDMZmr+Kn4XKI9VuKhla\nPS+xPI9RP1O0LE6VP/jHNG9jGmofu42vU79/qM7so6i0tAI7duDKQxLJwmHrXQmtzNepvP3uKBc6\nFiYvERiWqgjxqCVL1VMN5wYtVbaRllpK+WKdPsR3PNOPl/J5LFsfEx0FSqdvN/31tgjzamvUVBy3\nYylqy9yj1ix5bWgdP35dVImSXfuA7e3YsaW/4srr13fjH2CqnnW7jRezDl2wF8+n8y4mk0WCiGXk\ntW4pz6bWWFtjjdmOY/BqhJWRnKfsmtWxW/GmnfJRMg61yJHq90Cn7wqSOB6dflYSQtkecXyO/PeR\ndP6hcnhegPtKTtvhZbbo3xo1J6nip6P0yZ75RiOwlX3Dw5xbq+0TOLyg3AT198BaRYAAsFQJAMgP\nkn8GLnRiql7aygPDX4vBXDdu7r7DYqJQO3drtvIcNy0YYTVwOrOOG4YrIwApU8YWfo4Eme/ygHdq\nvTEF3YHKdp+Blvrv5nPnlstH59mk9S4BACp+rWGlo2VgLMU5ycaKJ6WpaGab7Lydubye5J2DcGr9\nzk58f5p+p3v1Ph9Mxxam60qfsNY3BbW86FhdAs0aa2rBNkGgU5T4g1KhduMI8cgkrtSb4JlGc4KW\nKn+AKlAAPGZItitjKeCgzl6SYccNuPPUJ6cxGZ20aEp6OG+cHcoAHTinecSJST+2FCgvs6d0r/Oa\nDXh3O6MRd3u4tVjuftyMLmHOCezeos8YAOf20lPO+Fh6146VqD2P8Ota+6y6vtrJ61sRGT5SjIbV\nh6K2xCpGCVRj+B4Fkp5x73f+lHCxfio57/bNmIKjf7m9TEbnWTQJjjaFlxxqgbbZ0hmfsqO3V4eg\nMbRK4gq4F8gDT/U4v+GisVSFVccUBrJsGLcYht3Evvvw7r/KF2bpwybQWTz/6cX95EuH84Bliisf\nw+Zw2TnJTTqjdt6Bg8p+dbD1HW5RicAbf1j1GrcymN5XWgtMxnVDg7NnNyqv7DdnKqd9qHmj7zQU\nst/5jqxOqG0SDyPDaOLGAwAYGHmVlb5tIdDi0ry0bDYYyRNGIl/1PSaSxqUBALRdgZWz35tyVnwv\n4U+2dFMl7585mFR1aeIUJqO6Dn9Yqmo1Ki8emGTnPX+x8cyAtlRdNEqVCfY+xHeAVT+xQ1xJ4aX5\nWQf+zlg0WWS6X9uHycz5mXPmUOjcZ0oUSZMaLjTH4dn4eXksyo6J2xZMn9/vSMzblUseZDIxd6if\nF+oSXDnUjrKauIZ/E96tjvmuvNwQhZYrx47N2rzYSt+2roNymAEAHDuJlZ/aN6uLUOtA+txpFJj2\nEv50lctkrr7lLtSe+yPnEjQBHftSVaocxxkGANcAQB0A+AcAZgLAM0KIC+7WHcd5EgDuB4CqALAb\nAD4UQvCgufPPuZSUKrd2JqGN6rFjeRu2WOlbB4G2szbp298WQVvzOX6LpFbZj2oOH53xwmphf9a2\nEdzVWOsm9UcxpCkunH2oSQST0amjR68juQMvnD1rEd5Jy65zx4tYEa0z1CxblFogY542czt76YLy\nErLnrslwbJmq+Y6dTF0Zfj2JA5WHNeFW7vwTatcUHavpO9y6Vn24HR48SoKbcI9ZOIgO0sdgpTO+\nPyedtfFM+UupGvzf9lb6ernJz6ZK1ZsA8AMU5A6VB4CxAHBWCHHdBeSvA4AJANBFCLHccZy2ADAP\nAG4QQvxyoXG0Yqocx6kOAB8BQOdz5/wJAI8LIdY5jtMPAO4DgAZQQPuyEgCeFkL8dd75LQDgMwBo\nDAB/A8DLQojvdcbWBS3ySQt8AhguapSPBgBSplFqBn6alwuqzi6owyDM57Ro1CgmoxPjZWJNc9Pa\npwNbcVcyaGVPWRqLlqlZ34bX/uvU/V7UlhVPzl+3CbVL1OTM4xQyjjD+3HFXBIX8WVDLxE7E7uK4\nIVzpM1GivOSzM4WbfHo1wY5lnsrQCgUAANEDcemunEGNmcwdA/G3auqOpkyGPi/rciSGg6cLn58u\niu8pphYygPQZ/6+acsDN+FA3IQAg388xVUKI589r7nMc5yMA4Gyu/4c4AEgVQiw/d/4yx3FSAaAp\nAPw7pQoKFKKyAJAAAMcBYCgAzHAcJ/Lc8ZcB4HcoKHH3EgDMdRwnVghxwnGcCACYDQDvAUA7AGgP\nAFMdx8kUQhhtJU9HloK052icCllk31X3o8MdtSOJc45069UftX/JGcNkaPpy0vrdTGbN0UjU3nfF\nYSZjAtlLdPSnoz734+ZiTpnIP67JP/6UEFRHeZXBzaDVQFiwzkfImXzUTvuck0km3I9juiJf4lbV\n+sNOovYingiqdc9MrEeyfjJzCFfSEPV913m/u226lsmEwA5l3zr44CAvKkwRvghn5R47w2OROvfn\nm/JiBgk0vTbxNWhSAzy+rY3U1TdzZSjvKF6D1j3NlaEHduHfLCI5QzmWqUvulsyu5Mh+JhP1gh1F\nvfnqXqjds3VtJhO3Q20dHrENu+VvXnMvk7FV2zOAEeo4zvlU9weEMOKJ6AIA6wr5+0QAuNtxnCsB\nYBkAXAkFOpAkLeX/oOX+O6edfSqEGHmuXQ8ANgNAFSHEfiJbAgBOAkBzIcQax3EGAMArABAlzg3m\nOM53AJArhOCEPReeQyUAqAQAUAYitrRxuume6hMo30zka2bm8KKIQHcjmloV6EL9WS2+ePk7SFV1\njul5snNarsWxLCubhWqNbzIfHaR/gl2m8Q+pyTbdtDDZeg/8vZaYbCYaL+dxizouZbdwxboz7BgN\ncLdGENowgR2j5Ki0bA0AL10zeCdPhMluhTcpMgV3YAQ/poLJBtEf7r+ajSqIgRM7WulraOK0vwGg\nxnmHXhVCvOJLH47j3AwAYwCggxBCWpjXcZwwAHgRAJ4H+P+FCx8TQnxSWN+6lqp3AaCv4zhTAOAY\nAJHloK0AACAASURBVAwCgN+oQnUOXQDgBACkn2s3BYA/Bdbe1gAALyFfOB6GAosYlK32D6SsLXzR\nN7VGhF2GrUWyF5YWXM25j7/4tT/CHypZqZId/yGxJK8XPQVOZ0GjbOUAAHOmq72/9ixMuHYLLez6\nb6Az/pijVVE7v91lTEanqLDOWDofE5kSZdKPCU5dwy1n9Z7Em8V8JuFt5q7WeSQswJHsTaM/xsqI\nLCzbTVeNTl/JXW5F7VqbXAxUN7i2sak8RjEOfC/ALQOfo3rOD8b9qpQpsCkUDmohBACYBPzYxYIC\n8k9retweAOh4XtsnK5XjOLcCwEgAuO5CCtU5/AcA7gCAZgCwCQAaAsB0x3FOCiFGX+gkXaVqKQDc\nBQB7oWBt2AEAPSSTTQCAbwDgCSHE//JnywLAESJ6GAB4ukzhGAEA4wEAju0ps8WWG4qCpqTLPsDz\nc/D9lHLm3IA/HoulHwV8LLH57Uyixg04/sVWWra3lhkuYxKnQePmZH3r3J9Gy/hunGY96X7EeUYi\n/yhNqI8n+UvON0yGXmubp+5jMhHjAqs4MXvGP1PH6ZWYwekkZEqUzvgMhKyWEtXK+nkzi8/n+Wiu\n+FHQuMqEsbyUTFq/RYWOrQtbmcNSHrxN6RLJwkEtiwDcumhrDYq7kytQtjZbOuPvH4StThPqu0dp\nY9JPSGJ9yVHcD01wcVyKE/MQeUKINLUYxznP2fsAcK0QYqlCvDkATBZC/E8p2OA4zjQAuBYALqhU\nKd1/juOEAEAGAKQAwDNQsO3vBwBvAUBjIcSec3INoSB46yMhxDvnnT8cClx/N5x37HEAuFMIwVkH\nNSDL/tN5IA8MxC9IpdH8BQlpjB/S/PWbTaYIYXVxbcKZy35mMnSO+fMlxXi72InvMIHpQu0sqIXa\nspIrFJnvc4Up9gmsRLjp8jk6Oxa1y/XIVJ4DALDzOWxt1CkeLYPOdSSMwR/u6OfV8R7+DrKmVAMy\nmgFa5uOW3ouYzPKm3n0I0j/GSsPWW0YyGVv3sF0qtqLqFBTWRfYbeL2TxQfpPJtxv/ZH7VgJlYaJ\noiODW+5ZL98DY0qFW/ujtrPUd+usDvzh/qvRqIK4a8K/p0ECABjWdLJp9t8jUODt6i6E4EG8XP45\nAOgPANcIIdIdx2kAADMAYIwQ4vULnadjqaoIANFQoCz9L9Lwq3OcD20BYJrjOJdDQfDW60KIEeT8\ndQBwAzl2ORQeIOYz9D6u6n5mz53o2VgUpcO4G5EakumuA4BnhZnC1o5LR4mioAqUbD5ugipRumPr\nWMp07mPzP9X2Gh0lSgf7B+OPrazQrw50nhcanCyT2UCyt6KnD2IyCcAtSqr59Ojem8nkp+JNks67\nm/SIe0ooVaJsfvypEiXr+/JVt6F2let40kIGScSRWe/d8hy4mSxD+6b3AkB+P0yg8644EvejCULL\nY4qUvMPUUeQ9BDg23X+m+AgKkukWOs7/zUUIUQYAwHGcPgAw8n9tKAh7igCAXxzHqQwAB6GAkuHt\nwgbRDVTfAgBzAeBZADgNBZaqLwCgPhQEjM2AAhqFLyXnloeC+Kp3AOBjKMgAnAYA3Uyz/2o3jhAP\nT8IfhnmNcZael4G2pgithmNtZv05l8m4RT3g790d7bv9A/xDWvWJrah9rJ0shM8d2Lx2t7IPSy+u\nwo4db7/Px9npwRadhc59PdabWy1//4Bk/xneQ6Z4SYoMt1l2GI+tw/wdIolTMyC31Ffm3bHoBOE7\nqDWWbiT8DfoctEraAavWnfJUw6neqKLoN96OperdZj8WfUb1c2av9wCgNQAUgwJ34GtCiJ8cx1kI\nAB2gIDj9fPQQQiw5d35LKChP1QQKeKpe+jc8VTL335lf6qJ28W6YEwUg8Ej9aI2zah+7F6iuQ9SY\nl46VmKwJPC26TGnsrljT4r9Mxq3F+/UsbrH9T7SaY8kEHVJ5sOmixJJW+va3S64oQuedo267+Ed4\nFmGgZ7jq4rqNODZ3esNKF5C0Dzef32rLsIIyti53F7v1m8n6Da1HWOhDuC4ya/4Pyn5M5tOz9TVM\nJnfHTqO+z4c/3H/VG1UUfcfbydh/v9mkgFaqtALVhRCbAKDnBf7WSXacyKwEAHX057/AwkY/obbM\nRN39epxwmJKjLkXiZpCojhJlKx6Hj7+VyVBE36720Mrus1uWmVbh6rgaqYvjNRyLtOYldamU3w7E\nMhkA7malRbpLLOfxkzSOSKoQjCAKwcNqhUAG2rcTxl9xkZur7McEW4fxVPL0O/G9Nn0WLnsTx139\nKSF8bLSsUaH9XqhvFSbt5Ab1XrXxtcZ/xwPV6bXLQF01szbyeDLZnB8sj2Mtp4NaqaKKGICeMhYW\nFUmOuOeW39OWuIsl60toXDRqz1o8lcno/M6jjqhjNDY/jO9PyGmui9hS8mg/4gr+2zgWlKog3IVu\n9l9AISHxBKSk+P5RFiv/Qm2dc2hwMABANKl0b4sw78A9/KNkEptV/ys+57qg9rTufhxbztY9xT9c\nJgplXieej6BzXbbS6KuQa9/+/D/KfvI66cWpFT+ALVoy07/Oc1ZlZYhSxsTlE/0zJwfs0xrHr+nw\nVOmMLVMi7Lmv1fPZkDNOKWOm8EuURaIEb73Z7NqpEqV7v6jcoDS+SRqVgMlHqSIGwJUxrRgzmUWH\ncDxRfiddUG6vTffJ1iD1fHQwKAK/45OhKpPR4Uyjhc1NiprLIKv9R6+VFmIHAHisQnah5/gDQgDk\n+T+myhMUydp/EaGVRZuS2HB2eHIN1C49jNczC/21MEoKc8hq/xX/DD/s0+JTmIytD04gvDSFwRYN\nhO55qn5s3i9/xq34m9zSFvpsxrvvcfU527TOnEdv/w21B0aqC7g2k1AerSU0Ym7eZ9OC3IH+3Jne\nM0r2+XIVrqCYXGtYHf5M2XClyaBz7TQ7HAAgdxtWendNacRkKBHrc5mpTGZAyj2onfAATvLwh/uv\nWsOKove4JCt9fXz5xIB2/xVJpcq0oHJYTBRq527NZjK0ZtWmK9UuQjdhsngemhnPjlXoqeajsZWq\nTOFm3ArtO2sir6cS99Jx1M7P4jt2cZZnXpqMrwMa+wMAUJN4fUpP5jvkrePxWDGS1Ha3IHMdzboG\nF4Cd+ds0JuPWu3Imia+pC7/5ysrYISVwRl7+qVMXkPQNGd9x0lfYh8vSyGoa6uBkSjQ7trgJdovJ\n7sfRO3BSwLL31DVTbb0H2f/l72rUbVxJcAu5XfDzGzafFzB2C7J7GDN5MGqX3s4tyDXf/fe1GoNK\nlbu4aJUqN3dTFKEVKrBjeYcO+dyPDnTm/PcQvtut8YHvQfAD07LYsdEJePF+N5t/BJ6KUhcG9TJg\n2FacnK3YMC+zKmWgmZYlp6npCmR4JAPTE4y49WYmI/5Uk6q6ZbENNG4iUxy4l7sfV72qjlWjOJ3M\nkzrySmC3c6kpZsH9LBHmsquZjCy7maLZ2zh2bu2zZiEIJve+3xa+2XplKq7ZF/OsHVoTGY7fjDdb\nso0VOEQXkny/H8/AhNEfxjVAbX8oVVUbVhK3fd/dSl+fNB8fVKpso0XTEmJFCjefng9bVpY5J3iB\nU/qQpn3TnMkkDPDfrkfn2ssuqcyO2aIsOD4Hx3KU7q4OiteBl8qIbr+24r5MxjJ9xumHq3zmWSbz\n65eYHSW5G+fwyduAOXxokWwAgC0teN8q2Pqdj9/CLYK7umE+sITBSg5AV2H6roTG4/No5i6Ae9nO\n/ba1ZzI0wNwWKiytyI5NjF6A2g2W8opnkbf+xY5R0OsarFGzT6cff2eV037Wnj6N2n2v3Q0bU894\nrlTd8j0rwmKEz5uPCypVtmHq/tOBzkeS1v6TmY2pe4K6JgDsKQQ0pot+7Exhyxqgkz3lJdxUzsJq\n8PpdDWfuQe3Uy/k7d2QWTt2OSM5gMpRxX4dt383sVR2Y9C2LcxpWDffT86obmAx1P7oZp+caNPmu\nvIypCrT4LQo3rbytn8VJP3+8zRMSElfg8mK0tJgunGKYD23ONrUFudlbD7Bj1UYU7pXwl6XqUlGq\nimT2nzGI6TRlF1+92z2I/dqlpnITbBhgJUr2Mr65H+9w3FyIqBIVaBYdfypQMujMufbyMuzYzjY8\na9DWoi9ToiioEqXzO8fMHchkyj6Kra+yTMzTc6NQOxyymcyOF0hB8DfULmade0EDxQGAsVnI4rd0\nELtgAGpnduZ1GClsvU8yV3licXVZGtlYtt7n3M4krmgB3yDaCsp3i2pFhhm78HUUc8yKiJenmd5j\nuUwNwEqUzI04tl7hnhUAvbhOOsdqwN85tzbZ/waWCyoHNIqkUhXRKA+SJmFz85CK2PwtfRmJVU4m\nUwqwEpU+ltMBbO36tXKOlCjS33E0thYrf2eKeQWZAiUDvR8t1/rOom2Kxst5Yej1jFZA3Y9OGr2O\njAxuPS+m/dZ7FJMC9yzGg2dTcnCmrq1rkClQOn0P2MKJjL+ph8mOddaAQ3mUnxmgt/pbz6AzFq0W\nAQDQ8R5M7/FrDivAYc3KfU0trCzaWn9lYRM/xs5TntcnByd6nMjnCtSNtTGVo8780j7j9I8/JX+M\n2joxru7DgXyhpo25GBB0/1lAaBVeLiRvn7pciFu7Oxm83G3qQKef3dNw7FqNV/lLaRIIbavkigw6\n45+8ni+EJX8ipv5WTZhMyjSciepvBZdeK43VAuAEt5S4EYCTNyY36cxk8g4cRO2w6tWYTO5u7GaV\n/RZdNl6H2q/FcIvXazF4I2Xrg+w05ynyYvUGiSRG5jhuuovtg63sMi640IVqChkvLUwlF+HfbPco\n/ixEjDPLflRB9ht+ehhrlDIeL4pAe+dM5uMP91+VhpXFjWOl/OE+48uWYwPa/VcklSpZoLrJBy+5\nYQcmQ4tPBporTad8SlHkL/Iym8tUCdVx39hSvPx9P/zZzzUbeObsjEY8w9afsPWuuFk3zsskCp2x\nmw7DSnf1j8zKcuV3wErmLxPULlwZ3HrnAj3r1F9K1fVjedkdE4xu+W1AK1VF0v2XllrK6CFNTsTW\nraMTOUFo6e6+V/R2y1IkO09Wf87U8qIaSwa3FC+dfhZL6IIoqZ+M0M/WnA/nm7lvTM6xJSMDvR+d\n+/G4q2IacYN0fFvPgi0Fat/93E1U5XPsTjJ9d9quw/QRy3ImM5mh++uj9tdrOdVJfD9sTTL9IDf/\nM18pY2rl1sHO5/C1yVzD60hpodYHeeWH8t+pfx8dRnWTd95URmesiN8wc/2XUTOYjI5bU2esQ/1x\nPxXGuEcDoYtLiVG9SCpVpmVq8vZjv3bp7pzQkEKrX8EXtORa3BxPseI0TjeXFQf20rWno6DE/dof\ntWMldcC8dGseXoDTq1uG75VI4aBz091mj+Q7JH37XpLC9MMprsAFrp3f1bUZZaBjUQUKwJ4iuv9n\nXL5kdfNJRv2YPeNm/epcO1WidOYXD9wdp/OMy5ImRkdi9viWL3IFZfXXvpc+MlWyumwk9QHfUp/z\nxzBJbcRh6vO8LERPIYuZpKXMyvHKULDnv1ih6DWCf3t2PYuva/0jnKOLQkfppPQbzrYlyn6DMMcl\n5f5zC7IHu95o/KJtGWinLlpoAi/0O+tX3xd4LxHagDO8523CDO9uuiypTI967ZhM/rFjqP1mFk9n\nbh5enB3TCiYlPGYyDjN/ul4DDbRUCQDA7035vaeg97DtE/cxmXIT1DE7JhsZnRgvUwzL4hnIzcI5\nfx6FWy7cQKOlCLQQjfyruEzIb3Ysgiag19AqaQesWnfKU7NR5QaVRc9vr7fS19jWXwe0+69IKlWm\ngeqTd+IF9ebavjN/AwSeAkdhOr+cJ/FO6a8hajZjN6GzoNFdvE7WnptxEf5e4G/ehC11tGis7nxC\nmuIkgdmzJxj1Q+Hv9+mJDBwY/n4cDx4/eDd2n6wcqt4QeX1d1N224WE7zOPiSj7nuT+MKfQcXaR9\nhb+DCfescq2f7Nfxbxj1H+4C8zIJSKdfnd8ruSN2O+elZfo8lj+UqkoNqojkMXaUqu/bjA4qVbYh\nU6rcylxzJDtCQRhqvbSyyOBWMGVYdF0mM3PpT4Wec6nBy2BgfwYeyxDoiQ2y5zc3i9MTqED5uAAA\nNj6IlRjTa6d1OnVqdALo1YGkbO2/JU5hMm4ph7JakdMbVpJI/nvI5nxNGiaaPNvxb6N+6LXLSoCl\nPmnnWTCByVofVKrcxUUTU0Vx5he+oOpx75CdG1GgZLhsKE8lryohZVONZaoMuaVQmnyAAHiNsfBZ\n/i0F4iXcDAZ2y5pm+hHwZ0aTzth0AyCDTj8yUtOkN/B5W4fxIOOYZ3wPupbBFo9YEqiv1fQ3/SAb\nX+uQKPcIf6mlCiRxnVSJSh/DS4nF98dueJ1rl9VQTfoAn5cxnHtA4h6zQxWh8+4e6UPH95/r8Xzk\nw6URqF4kLVUlatURdQcPQcciX1ErMTRWQydOQwf+dmm4taDZ2unb4oWS9RM9fRA7RpFwn1nBYIqd\nz/Ndau031c8djbH4ZdIY5TlePj/OglrsmOi8S3meiXJ2pjtPxjhZCbNd63AV+ZteQ6ef0UdwyaJJ\nDXgJIxqS0Hwpf563tBurHF82x5ypDVG73IRyTGbp8C+UfScs7ofa0b1TleeElOCZsvmnSPquhIsN\nVqhr9ulA59nc9Qx+n09E8iD0rTeORG0dGh5T0Dm3e2gwk6EFr02eX39QKlRsUEUkfXOjlb4mtv0y\noC1VRVKpKl+/quj41S3o2PH2mGxTZ9GlHDEAALM2Ly70HADOFpy3R5Zx5j/424JBCR5FGU4Dkb8W\nZ83J5jz8UBRqz25UXjm26UeSfuyLz9Gzru19CC/MVT/hSpaXBIuqcwAABmzHgfo5bY4xGR245f7z\nd7C0P38vXej0HdIYUzrkr9/sytgAAD3ir0Tt2elLmYyt66f0BEeuUmdxy2DrfTK5Lh1mdlm/me9j\nK5Soxj0pqtJL/nD/XUpKVZF0/+VvyVUqUTqL3C2ZXZmMW4v3noe5leNkdazQbhkgSTHWGEtnjjr3\nx2RRkVesz/J5fm5+AHWgq0RRyJQoCltp6xSyfmh6t8y9FFJazWl0rDdevMtO5NYjnXt99mq89hWb\ny4OK6XU0GsHd6bWJO/3N/fWYzG+dsMUtJWcBk7Hlck89c0op06N7byIzUTmWKWTjN38FW6xXz3Vz\ns3Vc2U9IqVKoPTuDvzvUEpQfx+voTIr5HrW7dOY8a/O/H43asjnHTsTZoZk53GoXPY1aDtXhFzLQ\n8WWlbXR+i4SvMTGurK6fys2bJsyU0H+LYJmaAEaglamRgb5oyVuSmUxeJ5yZlbiGbx7erY7LUXi5\nmzLtx1bmWMZ3mDk57k5eAJviZAovfbG4yVSJpO/zoRlXAPKsK5O+bcGWkkkz4EJyuUz5sXZIBXXm\nfOAePJ9Vr5lRlLil4GeOl3y0JcHjXs0HACBtNMmSG2iWbbd/MFHOXub3/qqHsauq9GROA+ElaCbz\n4kffYzK96/D3mcLW+5T2BS5NJQtJ8Crxwy/uv/pVRZevb1YLauDHK78IaEvVRaNU0WrrdKcC4G3q\nq5fuNorh2XwH2KB4KYnkv4fOnA8M5DFelUb7/kGW3ee+2R1Re98Vh33uV3csLzPpZPDn87v3p/pM\npur1dtxJJvDy9zEnxMR1Brf9yWPXMvpgBUX3GtxKftj7AFc0qn7mO7nm1nckgftPq995L11yXmav\n2hrLRj9BpcpdFEn3H5QuCdAYBznKlCiKkLJlUZsSPgLISB/tBLPLYOIW6nb7AHaM1r5KqqnegclA\nmXfz0rcyGTpH6t4B4C4emQJlsjjIZewoURTRKdylkCBhHqcwXeDdUphMx+a/j4+T8wEmCqU045Zy\nlC1XB1TbuocyzM+Zjg805DJuWtdM3jEdBUrnnpkoULJ+dK798tc5m/yaHLNQCgpbsXNuUVfoYPdj\n+Htw1qWi1YVBQDD7L6Ch4/5zM9hVh3CS9h0zmWdyxD/snYncrV2ZjkvMzUBfW1xfFJe9Kfloa8RP\n6cDLj6Qp7k/PQO3P4+Os9Oum5Xf3o/hZNC3Y6xYOzkhgx7rVwta+1ZfZiztx63lJG8UzOBu8dxC1\ndUgpdWBrHdeB8f1pk4iaGQ+FMpG4vurQBQoagwYAkH/ihM/9UPjDUlWhflXRcfStVvqadtVnAW2p\numiVKhlhn4xvhkJnITo9Nwq1w6/OZjLbX8bjR74msdbsUsdLdV2PrWnzGpdlMiZwc6dky4RPYUvR\nyHyP88jEPmmWxh/9Ew5kzbp+FJPxMp7NpG/T34fWQqQZnQAA1ZbhDNs9bY/qTNEI/s7IswHZfabF\nmwEAyvXASguNgQOQM8Gr4GbgfI8Y/N7N3qp+52Tz6fwXDopf0KS00Xxo3+1SecX2JYmcGsIt5M7D\n9RPnN5zOZGz8PkGlyl0UTfefBmQKlK0MOKpEyRUCMtar6rFoMCMAADTG7kgdpmJbOzcduDmWzm/R\n4mVs+q8EardDuQy+ntDruC69u9Z8snJGKWVMIOPfSgA135bOM371rf1Ru1hd/kzlbtuh7IcWk5bx\nmu1pq+Y1y3wXKwQ0zkgG2Xy6X9uHHNnAZLykZtDBwQH42mVu1lKdyyv7qfg1f+6TvvbdAnj0dr7h\n0KmXqAPKU6Wj9HoZL/ViZR4jSDPpTOdDy0dNblCVyYR13V7o2AAA72bj3+KpKHWptUCAAIB8EXT/\nBSxMy9RQ/HNra3aszA9qlxzNMCuZlHUBycJhopA0X92LHVvdfJLyvEAL3KR4dSuPV3o5hrMgqyC7\npzHz7kbtrV2/ZjI6H9uYqRIX7oPuuHBv38xr9vUvhxdm2e+z/RVsIS2bxd/vCt/aSRLYn4ctBn3q\nXMlkTPqu/yV3vdZ92Y6VmYJmmALwLFPZZodmb5l+bGNXYkvIZ7X0FBhb1k8b/boJ0/saWqkiaucd\nOHgByf9Dm3Vn2bHlTYspz9MBJdjNWhbJZKJe8D0O7dV9PFDv5Sp4s0Pvlz8sVeXrVxXtvrzNSl8z\n2n8S0JaqS0qpOnwn3hWW/44/xFlvY5noZ91JGwcomqn2OqBMxbWGuRfbkj0U/15b7uZWjp6teqJ2\n7k41W7hMqZlQXx2tbfo700K2zlIzC6Ct33niDvybVQjl8R22nqHQytjSmrdfzaMju89N38HK2Lqn\nzQqCm7gRk+tzvjZKJCyDm65xHY4wE3yx7Td27L66V6G2mxam/A5YEQ5ZxOOVvFQgaWasLCs240Ns\nUcq8jXNiebXxDSpV7qJIKlUtmpYQK1IwKZxb2RU6/VCWWwCA2CfwjlPWz/Tj+EP1aTwPZDWZT/rH\n3AK39RZcbkF2LygVwzVThjCZzN54MfA3bxZF7HyeHRk1Bgf/zv/ODt0GAIBo2xS124/klqu48D2o\nPeyj25kMzbqydc9kZWFKLMWL/uwtS6yMZTrn/HbkI7nE96BeAF7ypdPafkym4jVpRn2rcPxm/s7p\ncDW5udnRsWr0LY8tbg8Q5chNmD4vo7djpW5gJJ+ziWLc5ENuIa35ru8W0jFHuWtPx8qc1+ly1J43\nTm1RN4E/lKqI+tXEVaPsKFWzOowIaKWqSMZUpaWWUj5c3etK4pPgjORY4dB5iOMm8Ow/qqoO3skD\nSbNbnURtp0VjJrNlEC7xopPaHv8IX8yTHlFfx2NR2MIUBxJXRG9+SAXZPaSlbPIyuAu18Wp1JhTt\nOw74B5ly5izm8ajGO1tn2TrUlsZlkPParlzDZDKJUcV08WxGLn/tZZwpfrZLH/KmK7iyWB02Kc/T\nUaKoO2fWX5wtHQC70o4v56VAqhC9Im8jV7JMPshXPcKVKjdhoozJap3+DmolypbVR2fOWRNxJp2s\nzmDtsDLsmGo+OtdQ43eeWUczHRMGqSsvyCzaE0C9cIcuxOuC7P7oWObpefTdcQ7z7EQvcKlQKhRJ\npUoH4ixXoHR2Jn89rqYDYGOtWq+UWTyLx25EktIbc6Z/z2S63cYtLypQNmEAgBBSK3TdU9w10vPy\nJNTO3b2HyVDI4tKWfoStYvW+4TwyOvEDG9uRzJsMLhPaCJcrmfXLf5kMVUTfeJr/pm+Qtm68m0lc\nXGZLrtXZ+nANq0Y+XJJgV/eyCM36CateDbVlzx1VonSuYWOOxP03VH2eCbdXaeAbGZ0adW5aev0Z\nR5n9uqyou/oZ1ynWbAv0Ws/MPcxkEjSSkpgSUz6CydgqukyVqI4D72Uy4YAVPxpPJgQvHB2EPRRJ\npap2k39g2M94EWsWHo7aOpl9x8fyj5stt0fP5jh7LPIV32vEAQD8koOJPWPmclLK+P44yLvme6ZF\nfVOUMhTlfl7HD36EmzIFqt4qHAD6cU2+A1x+ir78kh1WvrqOnQmSasuC5Pli5FZMTM5U7qqpCZyy\nwMZ8Wr7Ald6K39iJJdQBVaL8HX9oCyaFfnc+zzdEMmXVFj+be8qZRIgsXaa/89+53DOgQnKTzuwY\nrQ1pi+BWR4GiVDkAZnQ54bPNapZ6DhHM/gtoRIRVEW0jcMXrvEO40OSIbbxKevpZvHP8OI6X3tCB\nSWCtDG7tEk05uihki95ekvFVNZRzxBTFDyC1uOlkgQLY43yyFRPo1jMlK31E3cU6kJVB+fNF363D\ntpC0nvNmpTQuJ5EsHIH2ewEANP8TbzhsEovaQNrXPCwm4W47wfQZw3Gca9xjZjx0JjBVcJPb42/a\nrMW8ZqnOOvFIDnZZLvoOtzPGfwAn9+zwVMMpV6+aaD3yDrWgBuZ1Gh6MqbKN+EbHYFbKQnSMPmwJ\nxfjHPqEYtkyNINYtAABx+jRqu5lFQt1iURocSzow5ejSAVWi/JnBCADQeDnmJqp1E+cm0kFEKlaM\nTQ3kYTFR7FjmXXgL7GbJF7cCzIc07Co5Dz9nOmPLyqAkfYbPO9Sfu44qjMHvhi1r1pCKklJMGtxE\nNsaWnWfTSmdLidrxI471fKHJbCYztl4ddkyFSr9zugJb61T5Tb7rDHHj72PHTEmBKXR+ZxpXh6+u\nvQAAIABJREFUKrOuAWBXnlyBw9arpI8wVcQ2gTfGQdhFkVSqZDB7GU8rJWy5d2To2Qpzl+RKZGhG\nCA1m1B3flvLjVjwOJaQE4LQCsrFrSQgeVQitUIEdm7XwR+VYeh+8bCYT8xkOgJUpbIyr6SvukttM\n6pnJPgIZd/ienamVoScpj+GWQrCvFb9DK97EfT+/J5HJ6IAqCKYKrg7RqMl7afp+ycbKOovdZJT2\nAAAg/VNsoZXxrtW5BceM9snhlvmxgJUqnWeh2oK/ucxX6uunFS3OflWdyRxsjldTnrLAoaNAyWDy\nm+mcI+PW0vnO0SoPOqTBXiDo/gtg6FAqmMKfBJi2XAjvHoxlMtRff+ImHmBeaorvRJamVgUKHSWm\nc/97mIwt7h2dOT6zh89xLck/CLTyMjr9TDzGlcy3vsCZfNU/VFs/uaIBMOfncahtOueQpg1Qe/bs\nCUyGXsc39TjDuz9x7DZOvfL7h5yviMLW76zzjpm6rij8PWe3EGjxfibudH9QKpStV120+JyvDyb4\ntcsHAe3+K5JKlU7tP1pHCYCXAZAh0GuD7X2Iv0QmhX5tLQ6hCVyB0ymmmvUWVsbC6/Pgzpo3qgOz\nbaFDKqa3eL7yFiajc39O3MiV1ZCz+B0rMYPvHI/0xR/ciO/5rtmWm8HfsT6qsWRwa862FH5/f/x3\n/EcSR/m6HdLd0GqYd2nTa1xZTRisDpgOq00s8xISXp3fY9iBeNRedDO3WtI1yEuuPBkRbN5R92pe\nqkDn3CppB6xadyqoVLmEi1ap8jLo0B6nEJfZNqkJatft9Zey352TG7FjtW9Wu8kO9yOM82N5jNfA\nNOz3H50QzWRs7WxpBpyXSpYu3HK9uqkMmTy/+6bXY8eqXMcVTxtj6aDkomrs2MkOagoQCuMMtCew\nEpP6BKdvMOnXTciuNf7X/qgdc4eddVMHOvdext2nQ2FjMpa/YbKWHJkVx2QikiXcM+fBX5aq5p/1\ntdLXoq7vB5Uq29BRqnTqdcngpambIuMD7h6IG4ItFtTCAwAQ/RxWfkKrVGEyefv2obabO3QdUBK7\nqBfNgvRDG+Bd66z5PzAZL60sOves+as8Xmr1yzheys05m9RFk6HaMpwlt6etJJPO0vvkFMPElXO2\n8XfZnx9J2XXSmpPx/Xg8pA7ouwJg/r6YwGStyBzPf4uMjmOU/bR8Eb8bskLRXkKnXFP893jOMU/z\nOY/bgbPRbdXJ1EGguP8u++xOK30t6fpeUKmyDZ3af/22cROsbNGn0PlI6tS2s6V8jCElGfpLSjLY\nglvuExlM7oejka2pA8rmDiBndKc4dS1X1BeNHKU8j14rTT4AkCcgqLB/EP/YVh6l/gjRossyDjW3\nLEw6FgNbG6LeWTx7qnoJvAZsai5LD3EHIaV5RvLsdPyx9drN6mb2IQUleZ25JoXJmMzH3y5uf4aM\nyMiXKR1MoLj/gkpVAEOmVO18Dn8oar9l9qGgMTGlpvoevG0K2eIQPQsHZ2clf6XsR8da0vB3bord\neAVmdA8087iXkP0WN6QnsWMmLidb6LHhMDs2u1F5V8Yy/bhRxEwezI7FP+zOO6YzH1kGZZsrcKmh\nfVfw+0wtxtRarDsfnXfsZArfBJRMUm8C/KkY53bh5Llh8zFJsZtZy7ZiJHVgcp9P9+Q1OcNnquPS\nbPym/rBUlUmoLpp9xmtxmmBpt3cDWqm6aCgVZEqUCXSUKJ0H+7lMXG7hrVgeTKmzqCTcg7PbejTl\n9dVoJhQtUFswR9zemMNL4niJ47dg5bX0j/y+exkMTPuJW8jLA2V0+oYdazmAuCs0mMgPzuCFs1de\nPkl5ng4ey8Ftmyn6KiQncpc8JcaNl5Rz8WcGWkaORvadpNSPiRIlm49OLTdZeRfZnGzAlqWKKlAy\nmP7Oex/EG+g/X5CUIyJ9L3LpfplCR4GSgV4XJTkFAMjs5TutShD2UCSVqoTEE5CSgl++y1biSr9V\nr1cXtnVzp0SVKFtj5a/jBWrpeSGSosI6CzwNit+c853RHHUgU6JMxtKRyRyHlczYPvz+0H5iJfdQ\n9iGrqEHYSuO+jq2pxGSSrrHjanUro0kHs1Lns2MtXsJKZ6Wv+P2y5c6hcTyxEmWkXSomAG71561M\npnRxXDe0OGxjMrTMiEmJEQCuRLn5AbxuI+eXmt6QP4sUzmU08UX9vOiwpZv+zlU/JaSzn6rPoXxc\nAAAhFXDoQKwkSP/oHVhpKTeeZ+X602UpVbgDVIkSlwhPlZZS5ThOdSio6Nb53Dl/AsDjQoh15/7e\nDwBeBoAaAPAXADwghFh93vktAOAzAGgMAH8DwMtCCGNTSVpqKfbgVAWuRFG8sFVj50gKgZqynNva\nfev0E1YXc3Zt/A/PjNIhOTz9j7p+ognSvuSm7oR78U5NluVDC0ybzocqUc6CWkxGdMbp3abmeRnO\nVMMf3NoLeByYzu9ssinQgYxfKu3uMqgtI4WkkM25ksb7Y8vayAKhc7gM7fvQ25wWssKz6jlTJcr0\nI+mmJVHneZkOWKmKTuG1RRP+xFanq2++i8nMzfmWHPHOuqaDiI28bmj1b9JQW1ZFdNl7xJL5Hpcx\nIXCVyZztil2mC8aOVp4nfQ4corwERIiPEyT/REKOMwUAygJALwA4DgBDAeB2AIgEgCsBIAUAbgSA\nRQDwKAA8AQDxQoijjuNEAEAGFDyOwwGgPQBMBYBuQggjjaVMpTqicdJj6FjZiXgHUWkpJzQ8cCWu\nD+glE7kM/4+9Lw/Qqfr/f9+ZYez7bsbsky3aSNaUGoZPhXYpKrQR+mhREqWSTyWlQkX7HpWdCqWU\nJLLOjBkMI2TfmZn7+2P0+3ovnPOczr3P82he/537nHvOufc595z3eS+vt61N8dyfcU6lw4e4Q3fy\nLViw2HkXd3Ku/nrgpJ2pC/kCm3CTkGRZAeo8DaCXhFqHBoLC3ilRT0Nqa55RLcv3TUop+zIV5v08\n7dJclTp5Knf35vPXJAl0OJC16rQtwatAEy9JXm0h+zk8PzJvkcyqGH6u9a3u576FuvlG/ymC41NV\n2z33Fb5XmGBJ2uiQ9qnSFapWAsB413UnnCyfAwDrAKA6ADwPABGu6/Y8+ZsDRbk6Hndd923HcXoD\nwBMAEO+e7MxxnHcBIN91Xe64cvoxVAUoOlaVg4rrWzhX6N56WngZudZlNRbgpjfiQh7tn6YXAADI\nuVodXaaDlHexGSazp3qRkeAnCWNaN+LYuGQlq2MLXvlm/ZO2TNBiBc7zNaI65ydL73A9Ks+cz/25\nvOLWiijDQ9JnZQWeQ9CW47xpX1dc3wuVS+w8yOropD6yBcmPMuJ7fJAKNe6zYEf2Hbwem/bKfaIm\n3NXpm5tLAdzl+Ds8nsZlgjLrcNDL+gFco570gDqVDiUS/n70eFRu2XErLFtxzHehqvHLvay09XPH\nZ0NaqNL1qRoDALec1FgdAIC+APCD67p/OY7TFACm/F3RdV3XcZzfAaDpyUtNAWC5i6W33wAg0PjK\n/lBkYoTjQs4+k8nvJWUAFaIkhneqIk+9W+DeuduOvT7xIXKKF96+rUXf2nvVEKJsCUM691H/CgDu\nY+GnM73UzpKmJEmtYAIrWIPNHlI7lMtq5h/fKsen5ROokUNQB0kf8ai9ZFD/FyaQ2omg5q3vvMuS\nrbcGqdeFc8few+rUASzQUvZ0qR0JJu/atN2I8tj0WnjgAKujgwqzsKAzy5oAx+tkj8aaM7YeA8/9\nmvRArrJvCTQbQ4nnsOnTAf/NcC78e3L/6QpViwHgNgDYAUX5YHMBoNPJ38oDAM0xshcAKmj+rouX\nAeADAICSEM3iY8+ZjDUxki+ULcGLOqkOqcLTskzch7+szxuwKuKGZzIekzpeYv8snLqmQif+fmz5\nB+m0Q02UOuZJeTzCoiuQHLI6ZIwtVxxndX5siskt/TzFH3NPsDrRDhbOdNo15f+i0HkuSorrJZ7O\n4YedoQmYS6ugPf+YqQ+R335XFHWeU5tVC7bvsNKXKXTW6Fnrv0dlqoUvug+XJY65Ul/j/7XAlbyq\n1KBj/HMgd2VIfEj97k32p7KLONHzobaY6Jm2k+HygIVi2INSqHIcJwIA5kOR31Q3ADgKALcCwPeO\n4zSGIs1VRXJbJQD4eyc9AADxwu8BJUNyXXcXAOwCAIiOi4GMR/FHknMViaJ5lE9IW2pj6qQ630cH\nTGlDHl4dp2+RxkxPSjqO66aQhCgKP+kSTHy8bAqmI7Kxo2+LUtxpVkfA9lMrR/uKqssnTP5WPGhJ\ngKJ8Thm3cbOzyXNsfZhvXHWftUOrQjFo0H3s2qI8bJaXnoFSZ3j5zZkimMSVtkzlktaHQiLpTfsa\n95Vel5PymqDW2MAFKAC9Q9Pwndi0uKTpTlYnJOGGiL+8D9DRVFUBgAQAeMl13b8FoTccxxkNAJcA\nwAoA+P+z8aRP1fkA8MXJSysA4BrS5gUnrxshevNhxrD8zqU8iscEfjqpmvRFBSipHS0ti4bxVRpf\nxkQcFZfaN3DCOqntw914yLNO6DZN0qpzj4QTV2IT/bdTOMmquZ/Ihco6OvBzw+NzaqZGHfW8M9XM\n5DxNyDaHmglQ+3qQxNXvqzVepacJZvlp6ueg3GNeRr/ZElD8ZCeX6uy8G//P1V+zE3ji5bdTeTE2\nle9ppU77FGw3gWCgMAhmx2BA11F9PQDMBYCHAeAYFGmqXgeA+gBQBwBmA8DVAPAD8Oi/SgCQCQDP\nAcA4AGgDANPgH0T/mSZU1plcSUtxRNWGZkdZnQFZOMKrcxlex2QhSvi6D6ujk/1dBzqRY8HEsbnx\n7NqCxtNQ2XQhojkVJdMRbafjVZxx3iSRa7ARbMd5PzWSxcCg77XfFh4xubE5Zh730uysGh8AwJA/\nscP9zyM4tUnpL9Upi3T6MjHL67ZNsfY49iUc3LADq0P9DaUI1+pT8aG6MIX76rpL/zjjWIIR/Vc2\npbZbf9zt6ooa+C396bPCUf0aKKJE2AQAJaCIIuE613WzASDbcZx7AGAS/B9PVfrfWi3Xdfc6jpMO\nAOMBYCQU8VTdZSpQAQA4kZEQWRE7ghfswdF2ovMtSTRMkwwDAPz8Bv6oqwm+WeOS66NyZ42P6nhH\nvjhsOIHz+tkSoCToCFE69AQ6C0indEzxMGvmB6wO/X+oAAUAkF6f5m/kFmPazvYB3CyUPDhwrYYk\nQIVj+H2wT8SdL+xIrvzpWV/BhDQ3OsZhF4XD03k0l066GYk1u9SOCFSOeZrPcfqOjnfkXHClq2Wf\n8R4J3ga04EN+aeAClMlcoEKNBNEKQLSLEqmpmVmXj0fH4b2AlPOfoe7KAN80DL1vxYV/D/nnWZP7\nj8JLNfbRLnixLDU98JOTTt+n698rRNIIput4lKXEmk3hp9nBpB2bPE3Zz5KoHg3iSAl7exKB9l3j\nMwdCsE2N4eizozNmnVyjtkCZ4gEAEnGUPMz9dAqrQ8f91VZ+aDMJSNDBmyQRPADAHRrJ4DeOIuTL\nj/LvgJuC7XwrEiaR5+hjKaF9xmSeGzG1tzq1j87czPmwKSpTn9JgaKrKpNRxU8dyYlkTrOjyVEhr\nqsJSqLqoaSn3lzmYRdzPxXrTSPxRxz3OP+qC9tjpMfK73zwdkxcINZJI0/Hsm5mMyvsX87BxHcJJ\nP4Vea2aYb2J42w2mn/keoe2LhvEIq2nDx6CytGnaEj4op9DisTxnn8l/QbXXAFyD7aeGcsZhrlGm\nmnEAAGiOU0pFruOpdGauW4TKV2VSrSHAsXaBaw5H53CSyocSJJ/IM0N6r5QqQ8dUP/swJzt+MVkK\ntw4cXh0Kgqn1LhaqvEVY5v7TgekGrHNf01/UH+z8998KuK/WK7uxOj80+QKV2/e+k9UpOUedU8sE\nOj4YOqA+aAB8o6CnTwB+Au3cvDOrk79lK7tGseQ8QsKYbva/21r0xmzkG8WQeCw0mJphdEwIJg7T\nEZREB7gQpeOo3qAE50qqN1ItaDFixrHKW8TxNJiA+1/bjyfj9QpUqwnA/x9pzOOEtjLuxr4+qb3V\npnEd06vOZn9eNBdibDmqU66xW9dzriZb2sZPtuD1pcuAgUJL6nVh22B8cKj9gno+1/+BRwrRXKum\npvtQMPdJCEP9jRHCUlMlmf+Oz4tD5ZJX8JPbjntIdvPH+IK64Aj2VXjiPi5dR88KPOLN1kRv9ju1\nqgMsPQ+H6HvpbNp4GX4/qy4043ahsCUI6jxDVDx37szfuFk5HlMhPOkTfPqmWeRP17aqr86tr2F1\n8rM3qsejEYyhAz8FUdrXfVu5ZiSzGTdXe9E3AMDvx3BfJpqa07VN4aV2pHPLq1CZfgfSfaZRsM1+\nw0z+VbpksDp+wtZzte6PU86U/dy7dDOZU7DZMKUXNxke6o7nIh1PsDRVyS9whYAJ/rjqyZDWVIWl\nUCWZ/3Rg64RD1d+PNOGRHJSgzsvTA3VktbVpm1MI2BHgQt05ORThVbQdFaYB9ATqnI+aoHLCjd6l\nGqLw08SSOJcfvqQNT9WOBC8DCbzq39Y33/niLqzOjJ+ns2smfekgHH0CVSgWqrxFWJr/MlaWUU4u\nyqcEAFCvC55HkoO5nkBAT6U8TYKfYcjUhNBsBfd/WZpHyFE11Mblv+fcX58lzVe2o2pXgpQvyxZZ\nYjgIZxufJA66w7xLDG3iuC+2o8UYHni7tjZknTo67Uqmafpc2Xlv8joaZlY/Dy5eCpmRDb0hOr1u\nnjoISHqGzFfwGp1ynz/JigEAZm7l/rORDj6UmAq4TX7De9jKC7hSJBTXO9f990T/haVQJYFOpJaD\neBhyuTXYp0BwEzGakIdmJ7JrZTtmCzXPDOmjon5NjZfwDPF1AeewqjJZ2JBHBTwcONDmL3ZNZ6Mw\neYc04ahOu7pt24KX/a+/gwi9w7zbkHXasWWO1YHJfJHyMLb9A6fJ0aEryHidpy+hxMIZvQQW+KF4\njLa0SRJsHVw6JXO6ESm03wQ0n6QEk//5w/pcOvsQ1BKbiRCl81/Q7AgAAEP79kXldM6coQW9ORS4\nZWnPbXgPKfjavxRPp+LfkvsvLM1/5SvFuOe3GYCulV2LI3Yk3xLKYVRznFnEF4WtjTVzHPfLSBmA\nFwdbGztNSgrgr8ky1EghTfvS4fbSwR0ZWAC4vhznn6FjkvzrnqqBif90niP3Mb7Zxj5lhyKAmXMM\ngw1C8fR9KiLKlmXXCg8dQmXTtcS07bZ3481eIs2k97W5tx+rU2aqNwKKBFv0JxufIprfx8xywZo8\nh5c+cB2J795sIRJT9Q6bp+XCryuO+irhlE6u4yY+31ddUQNrrhkR0ua/sBSqJEd1ncnfikTXlRO0\nSRGNcVRa4SoeuUaR+TIXhrK7T0DlYPsnUeQIkUgJGhxLXm1uVRdXZtd2tdoj1AwedN49TVkBoJe2\nwqR/6d1TM4yOBiHYoM913rM8QvD3h9VRepQstmC/Or2oxN3U9mF8YNPhDLP1Xf55Pxdwa73EBVwT\nYcPWGCUCzJyOOK2T6XpHozPrjfCO/8sE0pgTpuNMGFLqLqcEjtZ0T3D2dlvjuWcr8bElgSjB8Kkq\nnVzHTfifHaFqbddioco6TMk/dWC0EEUICXILuRZBhWCbtyhsmY5M63RavReVB1beqByPBJN3SCPk\nAMyj5PwE1V5RzRUAfx+SP1t+RRw2H7mA+4kcS8d+i4erc2+CX57BpjMdShAJR67BZjopHx9F5DnJ\n7FrB+ixUDvY3Z3pI8VPTa9JOZE3OBVewfYfyvmOd8Jxa8OYkVqdjPbyfuvnckcOW0JnwFRYEqGk4\n2DB5zmAJVfFjuBbUBOu6PRHSQtVZ41NFYWuRkersvh1reaq8xU+yJpuA1FfBpZhEdMNt/FswYeJt\nfzvPM1hyNj5hPbbjXFZn0Xa8UZUG7rdy8UPYUX7n2zzUXceRlQpROv/Xkau5jwxNdaGzkeoKUNR0\npmM2k/iKTJjYJa3G0vNw/5IPHH3+OzaXY3W2tDio7D96Jp4vnL0IIO1t3H9JUAtQOnxXUkJjHY4u\nHUTVroXKM5bNZnVyTuD3k1CCv0Odw5eXpiKvoPP9zFw+V1lHAqWrkdfxX5V1TPq+YCQP8Ml5nPjT\nXcWqhJwpOtTG82/DWaup0sGBG7mz6zkDscN0Xgse2ecn6AIm5bAaGC85oAbWrgRTHwMqsFFhzSb2\nzEhB5V/O/5TV8TIk3CufC1salK5reH7LuyqpfZisRYVVqojKBXu5r5hX8DbiVt0OdRCu/LaZX48O\ndObh+L2chuarhlVROWMSj5rO6Yy1Rba00yuP84NLk5JYQ0wPaADcHCs9O+WGSx5o5pwdTDOrKWj/\nFz6B3+H6z1+EwztzfdVUlUqu68Y/Z0dTtb778GJNVaii/Ef8Q5v8AlkcNE76fp42TQQoCWIY8ktY\nyEwB9UIkaby+ewsvwquPcxb2wfFcW0Oh856pEGVLYNEVoKjG4q44O7nBbGlapzbkaVhqZWLB5rUU\nbiazBR0hSue5tj1AWKufV2sE29wnOF2D2umaOddf8h+hzteoLM5NYvqkWjvpPlNhXqcOFaDk/nj/\nLYZgAaWixrogwWSdPPAY3/t/1nh2yswugfqGpd7Otajnj8I+XssfVfv2mf5f1Cohmdx3fnUOKv92\n0cfK8VSbiIXQDe6h09T0FuGnvjHDv0pTpcPxEZUYj8pSFGGoRSI5F+Hs87O/es+oHZPniKzMHcwL\n9gTPwTx3mBDJ9mTgzq4RTXi+tcKV6qAFU9iaU1Rzd1Us96n6vgnWBnip0bny2ttQ2flxBatDcfA6\nHvhR7lMiDAk5DeHyLcq2vYLOgeivAr6ZVYvEkX1i8EFyAru2oTc2UUqJhymkMVJmelus9H6Sf350\ngK9Bk8+JY9dUfUnjo8TKkUe4kFd3IfbpoofK07VtMh4bCIZPVankum6cJU1VRrGmKnRAhajs0Vxb\nktkzcJJMP2kX3s1dzK71JFp905NSnSWYZmHVhMasDuXAkgQorxaHwnbns2sRC5ejso4AJZoLvu2N\nysm3LGd1dNuioM+f8Sr3+9Lx/6GcSjlXTWR1OnXEwuCeyWWEljATurFWjPgISXUcUAtROtqStE/J\nN9eAs2qb5DTUGw+HiWaTClAAAOdMJqaZPIETS5gbJ8rVVI6RosWDd7FrFd/DGh1bAvaInQ3ZNdr2\nngLuypBWBx+K5uSp2dN1BChTULOh+H4eUc8FHZjcF1WXT478rXlG/XuKECD/dBxnNAB0AYBYADgI\nADMA4CHXdU8bnu04Tg0AGHPyvhIAkA0A6a7rnvYlh6WmSkpT8/pezLgmmT10QLPW04z1AN5F3hS0\nv4Bd00nMrOpb975gwtbJ1tZz6nBASfDyPVPunRIHhFPz6NDiXrMFkzFL/mSm6wJFzBLsmK7j2K+D\n6IW12LVj7ewkQpZABXXT6DZbnE+Jn2NtRkp/bq6t+AM2Y95Sk2vpxqeksmsU55Fz0+/8zGYNXu0Z\nOu+05WAsTK+aMxYO7vLZpyqprltvNBfqTZB53eNGmirHcZ4GgE8BYBUAVAKAdwDghOu6QvgBgOM4\npQBgKQAsAYBHAGA3ADQAgFzXdU/L1xKWmqrMjMqQfvl16FrB2kxUljQ6NYSTIoVJJElULDdF6GSf\np+1QAUoXNLRdOul3WIUd7odU2aAcjy3oPLsUeQPkUvXX+OLp1Zi/+LQNu7Z0lECdQdGcR0yO+GgK\nKg9PvJDVeXXTD6h8j+Cbtf52tRaVIrIq582i8HKB17lv151YWKz6hvp/pk7gAACVAd9nKkDR57g5\npz2rs6VF4CbuyAYp7NrMb7BPYJ/cVqzOfCHlVvwX9Ip6c5WgI0Tl/Rdrj/4YzP2KGv2EMz2sznuf\n1dHhEcvOI/x+/fn82dd6FyqPBy5A5U3FmrI6XdewOqNrkjnuo6ZTQuKnWOjQ8Wlt9hhfN2k0ennS\nTkSQfKosItJxnFP/9F2u6+46be2TcF136CnFnY7jvAQAn5zhltugSPi6x3XdEyevKVN/hKWmql7j\nCu4Dn+IT1vRG2K6udbKN4ZvbnC2YnkDaFNxW+Jqz2OwjYn1bIv/cdwuPaqRqftPxqPo2ha0Tupe8\nWRKOzY1HZed5ni/xu8lqYsQdX2Kz3fJmH7E6fkaumVBFDMpay67dMwObVVPu5/NQ593rCF4U0mEn\nPxf7XUnv57JemEsr5wbedk6nN/hFBWzNTQkFLk9uTfPN6cCaqb41byfih8DXSdP5G1EGm70LD6vT\n8RzrzIXX6BmBRy7biqzWidY0eT9B8alKquvGPiscnA2Qdf2wbQBQ+5RLI1zXfSLQdhzHGQMALVzX\n5Sfoot8/AoAaALANADoCwE4AmOC67otnajcsNVW78yrCRyM6oWvliDSutzhwE4/OfVSIoizWAAAz\n52MB+JdjJ1idGfvt2OIpJAHKFkcXbUdaiBZM4o6aJn1RHLqWOzDTE7qkwdDRGlJIOeEkHybe9jSh\njvrZalyNneDTK7UTanlDR7C9vzpNjc7i3bEMd3JuMCYXlaV8m7QduiEC6AlRJjxV0n9TgnBppXLK\nJQANtxXWtsP3sU4pVDPFtQh+knbagokABWBvzDpCFIWJAAVgppnSuUcvWlPddqiY8i3qb7YDwKWn\nlJVaKgrHcboDwF0AIC20f6MaALQHgIEA0BsAmgDAbMdxdriuy1Wxf7cdjpoqKfovMgUnNS7I5Clo\nqKPzvA8nszqJc+9A5ZRenFjTFnfJ5WuwKTeqw2Zlu1I7Ha+6BZXdX1cp27GFz7dwAa57DNeUUbgt\nm6Ly3M/eZnWCaY4MRYQai7afHEt+aulo2inJryfYG5ctfjSvnmPLI1xQX90fmw29pKL5/GAFVJ6Y\nypPeN16GNXnP1+YUBmN2J6Hy/MY8ZyoF5WYDAGj0LTZ1SpHnZ3X0X1JdN+YZO5qqDTcM+0fRf47j\nXAcAEwCgu+u6352h3lQAaOa6bswp18YCQB3Xda8/7X1ni1BlgvLfc1PNZ0nzUTkcNlu0SjtoAAAg\nAElEQVQd7OpDzCeTzIgId/cmbPKTeTvUVCNBR/NAsfNu3q7kZ0UxdQv2G+kaw7VQFE/ncF+ToQn8\nvgbLsLJ3bG3OdWNrDrVYgbWdM3N5epkqXXCuP2nDOf8pwr3zGPeRCbV5b+sgo7rHFJLv2sw/vvWk\nLwB7ZkOqQW8eXYLVseVeYOv/yL8Mu21EfavOKGFrPNI9zBdKMHHr9G2LRFQ1N4IhVEUn1XVjnuY5\nPU2QfeNjxkKV4zi9AeB5APiP67rc8RrXHQ4Ad7quG3vKtbEAUNt1XcEpoAhhaf6zhQNt/mLXbDkr\n2sLGUSTbugYfjQRJiFJByp12orz6W6QC0457+Kn1cFesDSgzVa0NSO/AzazUgCsvRGohimJUbmfh\nKo8mW3shNmiZksVe9gc2+zxUNZPVofdVAXWyZJq7DACgwfztuN1XA1+opfHo3OdnuLmX7VAU7OJR\n2bQvnVyEEo7P45QBJoEwOtARNEz8MwEALu2DiYJLfyf5/KrNdjpClFfuDlId6lAeUYrnDZ2VbeKe\noobO/0UPlW07BcFR3QWA4FMqDACA4QCQ5rqujq13CgA85DjOvQDwOgA0BoAeAHDfGfs5WzVVOglx\nM4Soms7nr0TlV+qqGZi9/EB0Ig0pGZ41Nb8QyQa/qGkFbG2kR+Zg0sNF505ldRLn347KKbdyFT7F\n1oe5kHcoDgtHOVdz/ykJoabRofDT1CmZfGKeCZx4VULZRTiS71BbLuDaQta72E0g4U2+Gcz/IHCq\nE5ozFEDOGxqO+HMg/u9XPKhmHk95j5uDMm/BEa7nC9qNGq+o51RkI8w8XrB6PatDvw1qMgTgZkM/\nvyevtFlB0VQl1nVjnr7XSlvZNz1qSqngQpFbJ3L+dF233Mnfe0CRI3q5U+65FABeBIBUKPKkHOu6\n7vgz9hOOQpXEU+Wnz4VOOzrtOiVKorJ74ri1tlUQ1djzsICSfQWneAhHPycTIY8KdAAApTsJPm+F\nPNjBBLbMOTrPtmkE3gDjhtsRfCTQMV/0ON9Ifx0ZOFUEfQYAgLhZhCtqyUpWx09fMVW7uvCSzoIK\nQxF8CRLNwyZ96eCBLKy9ej6Zm7h1YPIf6pr8VaD+vQAA29JwdPOSR15idaIdbnqlsPGegyVU1R1l\nR6jKudlMqPIL/2rzn60F1XSiS0KUCWwxQKcA0fJIEU6ERVsSKm5ah298ZwDnVvt2Cg5Jl8xUqWBG\nREhh8v+UTsth17wU/GzNM535S4WotFWcL2hOY35qtwGRg+oN9em7YwI2F0uCYMR5mJuIkwxwRNXm\nVB5eCVEXjuACZbUJak0V9dsD4L57pmOuNTbwKE+TCDQJ0pivLIN9vJ5XtmIurFKYCFASpCCpGuRa\n9FC175oOwiroJvz0N0YIS02VqaM6dbLuOuhbVmdhk9LKdvbNxL4RFdO5X0Qwo4PGbOQ+DzT7u5d8\nTvt6YEfWJWNeZ3VMT98qBFur0PZuLhyW/tKOcEgxfSv3LelSl3OvBRN+fgd+apjCUWPrZf/Uj4j6\nEEnQaXfK5h/YtdpRmM3ez6jTv77mfp3V/oN9G7d+wbVrdbspOSM9wyMbsMb27qs2wfo/jvqvqXrK\nkqaqR2hrqsJSqNIx/20bzM0DtV9Qmzmc6GhUdo9x7p1wXLxtRbosO4a1axdGl2R1kt/HJ/KsHlI+\ns3/uGyDdl1aX55pwvsFeve5lW5Xt6oJq5T6sr0GOJMBkTu24l8/xGuPxHJfS7Sw9T80Mv+F5LBhn\n3aQWjD2NtiMaUkrSa7UvDXi1BmwYw/2ukoaY+V1lTMA+o6n91L65B6/nkX3lPjFzTFch822elivl\nNrVPpA42fYL9QeOf4/ucCfXMhcu5/nPZ+WqS1Zc34UCz1BI8u4dXgR8HbsT/aTDS1EQnxrh1nrQj\nVG28ZWixUGUbOpqqYJ/4dEDHeO2GDqyOFKGoaseWWdPLsF+dvtIb4fQgM1dzSpFQ+09DDbb8RGzB\nFtu0VOeqNZgDUCJP1BmPrTn1aDZuuy2PnfGV2NPLCE5bJrjFR7HQMjKRC146fSd9gmkOaGJkU9Ag\nBgCADZdjvsOWg3iOu/IfqxMzU+j8N3SOAfB51vSXm1A5a/AbcCQrz3+haqQloapnaAtVYelT5ZSK\nhsgkrIYtWINVsMF2QKVt77xL4m7C9+kIUKYYur2JlXacZjQi0My/gr6f9LZdWZ2Zq3G0n/R/0Rxf\n1crxcOHvGn2pbMd0btD7kj/gC+rb3bCjr+lGwUwRffmcqjYRazUkTaKfBKHUXCKxnN+dqaYVUPV9\nuv5V93W4+XZWZ9/tWFu99Cm1plXCqERcZ5RQJ/tZ/B8mPmwvGlBn485+Dvef8hyn6TCZH70388wf\neS1w/tGoOJ6GJX8TZuDXeQaaVggAIHmuWogxeS4qQAEANHoFRyiuflHgffsY92Vr79ER1FfkfYjK\nzcty+o9i2ENYaqp0zH86H2N60yvYtZkr5p2xXaltLwU4rwTBdiuPsGuLr8b552Ys/pLVMek/4w1+\nqGg4Auf1oznZALhvwqoWPDNAMCME/8l9fkEiYqXO4rY2nBc2coFgcDzuPxw0yBQ0oTAAwOE6WKOS\nPNiOJoT6fQIALB3FhTod2PJbDPX/Rwe2Ii+91Myb/F/1f+jJ6sRdf2bam6BE/yXEuLVHnpHeSRub\nbn2kWFMVKqCTdlcfTsYHME+4duZ2dOrofNTnPcM5WRosxpqhehA4T5Q0nqHVOG9LWo7aSZ+C+i4A\n8I869U7OMk5zwMnvxz+TZeIX/VA5BdRkpP9kTCbtmLQraRJptJ0tUAEKACB/fj3ct5nLmRa8oqWo\n8z/ui8n6GmznnUoZCtImq9tuuUIdSVz4DdcM+fmNeeUz5GU7FLbauWiYQC2Sp6YWodfihP2AkSZf\ngcm/nSzu/F8MewhLTZXkU1XvZ+z4t/libgb683584qz1ktpx3c+T9dH/cF+XUl8HHjkmjZlmPL+3\nUi6rQ0HTmQAA1HhVHYJNEWon3a5rOHHkXZWw87qppkpKnD0sATsMmzoj+7nhZLyJD4Kpd3DB2CuN\n7YkOPIKxxHzsmG66sVN/lx9f5A746Q1xjtWCvXYSWZuOucXv17JrZUtiIUrKG2rr2wzHbzzUx+yl\n5qz+JLxuU/qRoGmqRljSVN1WrKnyBVSIkjQoZecHLkA2f4SfKCq1wqazuZ9OYXXo5JfU+vll8Lym\nkVsAAIWtcTtS9nfqryVpA0wWmRqgFjrT23Vj1ySeFhXez+VpmHrEtlLep/N+6LMP3Ma/x7SG1dk1\nHaS+g+dH9WU8Oqgc0XqZCFAA9jaBpqPxorsiT8r9Z2c8JmPO68u1LnE4JaexAFeepBShvi5F7SxU\ntqPqW4LOmLtkdGJ1lpz3mbptIT2SLc2QTjtR8VgjOePHr5T3SO1mvoL5yO67lFsOBlfB64ufUZ4S\nbGnprryuFyo7i83m1A+5Y1C5x3D1OuoPgpumxi+EpaaqSZMS7vSZOBnyHfVao7KUb44yA4fa6UpC\nqPvseIlt0xqgcu1r1hq1E+qnVgCAjElYm5XTeZLyHj+DMWxBjPK8tDsq73yBUz7ULo8JSo+1+5PV\n2dsTHy7i+nGn608Sv0Fl6f0UXIoDCSIXqMP8TZN9h5ovn6lAQOk9pAMixe7pnPNp6QWfBNy3qQaQ\nRhcX7NnjWV9e+V2Z1Gmelgu/rvCZpyohxq09or+Vtjbd9nBIa6rCUqiyRalANzIAvpl17NyD1Yn8\nC5sDJCfrUCM99Go8e2/lm0mld9SO0BRv7uPM1h/1xaf2EiO3szoF7TFPlM7/LplZD8Tgjfy3Ydw5\n+KMDldm1KU3wxiDxmlFEVuBs5QX7sdBA04cAmLFfSzAxPXxzhAs6zyUJuSE9wrG58ai8oPE0VsdP\nATLUhBrJX2peg68DbscWgu1TZTKeUPOZ1EFYCVVPWBKqehULVdYhRf9RvLyHZ3af3ohvihTBFFCi\nF3LBQjqR24BXpyAJXvr+6PQ/4zCOOx6XXJ/VoeZiKYLGT56fUDNp6JBCRiXGszr52Rs9Gc/GUVyY\nj3808KjGLUOFJNBPq7Usfw7C9+1PoaEXAKn3eMOkD2BvTtniu6II9vylCLVn91PjRRE0n6rhloSq\n3qEtVJ01PlU6E3I6qIWqYKppbQlQOmzyOs+Zfvl17NqcvE+V7dCkqFkv8g05eZCdNBY6kIQoim4p\nK1B5xsDWrI6Or9o539/K6iTMwY7XVftw7igdvi8T2BKMdVi1dQQoU+QQPqcEDT4nnfmjI0DJ7xCX\n+XHIu2hEXQQzIo+uAQDmyZEpdPqnmQ5Mnz1zPPbx0ole1enLT61hh1WYH2zt9XaSwBdDxlkjVPl5\n0jf5qL3UTvB2eJ3s0YRk8CG+Kem0ozNGungmA9+QTZ697CLuTE7vK2jPiTUjSaJonUVPdN5+ibMp\n0/viYSWrw3JFTuJkl2mTAt8At/fnwvPvjwTuNxhs7QQlb6TJtgH0hCg6xnNf5NGrhSSPrY5QpYP8\ny6Wci4G/M+k9Z7zOzdWX9sGuC9GgTkGjA63DX2fuNrFgktoHkCZHpvkCAXjOQGlOUV8s6oclQWrn\n0LVYYCr7GadRye46AZUb5/I5VfdZPIcufkgIboLAXSJs7RlDqmxA5U8j1S4K1uECgPvvcFQ/a4Qq\nr05cppNfJwecn5sZFaKOXMMXaq84hGhEj9SXzmL+RTKPBLroDryAVX3THiM1g4ap/KutfHO7qq4X\ngwEov5WfOL0yIXhr0gi8Lx3UGaPBL/W0uq/zn+Yb6XImdHv3nlNBbUbMG8IF7D8GqQVsE1Naqbkr\n2DWTZ5WSLuu0Q4Wo1cc5kTHjTPsmhtUpezkXolTjqStEROscRlXtSu3o3qdC0je9UTnvwPiA27CB\nMPQ0MkJY+lRFx8W4tYbej66l3m2Hz8krHxkJJh9IVK2a7Fr+n9yBmyLzJWyCqyEcbJc8xzl7KILp\nbKqFCCFZcKFa3e2V1lCCLQHFdDw67VAyyR+bSibLfy+8CrXXFXI6dbwRlWfN/kjrPlX/EmgwCg1E\nMUWw/TGpWezL4Tz3atnP1YJXqPlMqvoOiqN6fIxb6/EBVtrafMdDxT5VthG9+bCREEUhTezqP1ZC\n5Z0t9yrvk9ThXml9dAQoHW2AhLT37GzaFPt6cJ+qiu/jU+qBG3gdnSSkbFPasozV0UGfXMrlwslj\nrflKOHw9m7N1ecDt2DIh6N7H0JxE//2iZvvXgZdOvCeuxGtxibmc1NRkPDow3UgPF3LeLief86GZ\n9Kez2VMhSspjWv31wAUtLwWLlHexBrvEMP7NzW+MtU4/5E1gdeBlXJTGbPIcOlHTWS8IvqgkHVLm\nFG52zr7yTVRuPQBni1iX+5L2OK0i/PQ3RghLTZVO9F+wNQ1etSu1c8kDmCW6wod28pCZbm6X97wD\nlaO+4YKOnxFEOhvH4W7YRFnmC/UJ1UuMyObvrEUpQQtH4JX5L9iRoDoINZqDbQ9gk1zt57npiP7P\nI7vcxOrQZPESwlFD6mWdc8dik22d58x852xZJdrciwWbMlPN1hdqqdA5ZFMEJfovPsat9dj96ooa\n2NznwWJNlR/w0zRisnh7qXmoAIFrdP7qy09Ky55QJ249nkbnMu+LClGmC6OtjUKnjo4QlTGZnwo/\nuxS/s6EJ3FfN5DkkAcor7Yjo3P+dmvBSp6/4X2g+Se7/YsvX0VczswYkIYpieCKdU2oBSoKtd3bP\nVq4dmZOndh43GY9OndYrecaGsqDO2ECFKJ1nd1tJWihcNl3LTISovAe5nxx9LonP7kQ5XI4fj0mT\nnX3qw1kxzKHUVDmOsxoATiV9igSAUgBwIQCsAICnAeBmAKgEABsBYITrup+dcv9FAPAqADQGgG0A\nMNx13ff+yaBtkX/aQjA5R3RBzR4bO3N5OuV+tYZLZwOMaIIpDApXrtMZIsPmT0ky6evU3FGm/gyH\nZieictmOfOF+YSM3cUhJhE1gIlhElC/PrhUeOCDU9Gc8EiIbpKDyzG8+ZXWCqfn1E9KYKent593b\nsjo6miovEW4+Q1L/Nv3ZKCbuw5LX5w1qGLVDcVbxVMXHuLUftaOp2tQ3zDVVruui+HjHcUYBwDWu\n6/7mOM4AAOgJAO2h6Ih1NQB84jjOKtd11zmOUxEAZgHA/wCgDQC0BYCpjuNscF3X2NsxtclhmDPH\nm4+YJrvVydOWOPcOdi07D9u1g73A0zB1L6O5qPbK9NklIUo1HtM6VIiSn92OACWhw823ozKlgQDg\nqZdo2iUA/qxRsTzqqbAiPsrOmsudnO2Zatglz2AyzyIb8lQpM+fj6LKOV93C6ri/rlK2bSZo6AlQ\nO+4jaWFesUMNYQqTd7/lEYF49Rn8HFExPHR2Uw9M7CxSv6zaT+p4Z02wJUSZoLAdp3kpHLYLlb9p\niPMwNk877OmYRLjwr/GpCsj85zhOFADcDgDPnLyUDAALXdddf7I8zXGcXVCklVoHAN0A4DAAPOcW\nqcTmOY4zFQD6AkBAQpXjOFUBoCoAQDmoqPwAjIUYR/3Pa/E5CQlOTWDrlGjL/8WrqCdTmIznyJwE\nVmfRuVON+t93CzaX7G7MD4AdO2Bn6PUXnWB1dPLLffwQTpSaVkedKFVKoQS5uJjesB2rQpMKm4L+\nPw1f4/QEsWAn/Y4O3JZNUbngRx16AC5A0TFedis/WDUdg4WGWhoJynWffflQQpfwitn72TQCj3Fd\nH7WgbgtUgJKQv2Uru1Z3NL6mswbMsbQeB/twTBGxcDm7ltULm5TTOuAxZ7hY6CqGXQTqU3UNAFQE\ngHdOlicBwPuO4zQEgPUA0PVkm4tO/t4UAJa72Mb4GxRptwJFfwAYDgBwHMzIy3SEj6T/esP0/fKm\nxexa/zi8KXppRqT3XXntbazO3M/eVrZj0refC5FOX6XTcvhFzNWqPWZKQyHdN47OO2GB15mbdL5I\noO00++16Vofy/LQcfBer8/4BLEj0KK9eiKUxZ72HT9LJT6o3UlvzRcqxmNuyLCrXsaTg+fadN5V1\n0l40+9+lb545PoPaZ6fLap4wuH9lO0nm/aSZ8aodL335TMYstbv/ZnyIq/AB369Se5/ZpzUomipw\nisk/T4N+APCx67p7T5azAeB7KDrKFQLAMQDo6brujpO/lweAfaSNvQDAVzs1XgaADwAASkL0ekVd\nrcmfMVFIqNxFzQxs9sHyDbHEgtqkjrqdzfkHlX0fS1dTPDigPqFnTPCOKoI+V8L0PqyOzn+hgxYr\nsGZoSdMSp6n5f9BdPHXmQsf/4KTcG5+Spj/ur+ZPvM72S/aza6rxVBHMSVSoKy8w3r/zEY6ufQfO\nHG17OlSby1mzTVDvZywM6bz3mesWsWtpdfA79NMfR8tZ+pKmQh3e1rdbsTDUZSoPotAS1PM2obKp\nn55X5jVbFAY647FGmaLRl/Q/z83Dh1oxKEkQoigiawbPHHlGFJv/MBzHSQKAywHgVMeSVwEgBQAS\noMio0AKKTIAHXdedCwAHACCeNFUJANS7A4HrursAYBcAQAWnCvvd5NSR2pczYNINR/rQIsriBb7w\nEOc00un/xKXblH2ZLUTKW7SQ2k+d+sJ0zLROqpBmQ8eEqrOZrd5fm1z5Szke3WhEnWed/fX7yjoU\nO9qoT5OSP4VkDlDB1EFX59kp947OOzxyNY+g3HyxneTEtszp07cuI3XMhBqKuZ/raYtpf5nv8AhO\nM2ZvO4EOUkRp79e/RGVJ+2lLYAo1ihQK5yd+qNWBzpwq2L6DXSuGfwhEU9UPAFa4rnvq7LwQAF5x\nXffv486PjuN8DwDpADAXiqIDryHtXHDyulU0+R/21ait4b9gCipESWGtKx7EJ8mrMjuyOjSBspc+\nTKp7/Eb2cyQX4YPcxW53b1ynymReR+c5DrTBQtSuPtzhvOokOwl6daDzP8/ezEkp6X06ApSXJhdb\nJg2KCoNy2bUTXwoVA+zb5n0lHByW7nd0b9XFJDl8K7VPnpTY/JKLcWTukhzub5jUQz3PdtxLHOfH\n8/WXClH13+A58qIHYhNR5Uzufxg9Q33YK/sVFnp1lCR+rolJS800uHSMR7vwA0ip6fgAwiwQwfKp\n+pdoqrTIPx3HKQkAWwBgmOu6E065PgEAGgLAja7rbnUc52IAmAkAA13XfddxnEoAkAkAzwHAOCiK\nAJwGAFf8k+g/ifxT54PIeRpvphm9OC/T8J04GbCOqcgUftr0aW4wmhdMakenr6jEeFYnP3ujcjwU\noSYISuM5WHiUXSsXoV4c6bidZueyOnvq44i8/Qnc/+BoHGbWTr3DDhu4zsKsAy+JIy/tg83DUgLf\nYAY/HO/ITeXfvYXHaPp9d764C7tGAxD85Nzzsh0d3JuJTdrjU3gEpwmOdeL/YZmNe1G5YG0mq+OV\nP5lXhLtBoVSIi3VrP2SJUuHeIeFNqXAS3aCIm4raMYZAkcD0i+M4FQBgOwA877ruuwAAruvudRwn\nHQDGA8BIKOKpuuufCFT/BAlDcbfn7uaRSHX+542Gy3TRi6yMT6SmHyz12Xlou5nZg2LGD9PYNZMF\n1U+BaesXjdi1ut1Wo7LueIzMSd2asDqV3sVzs5JOX5YimiQBymQuXHldL3bNEchhVX1JoNoJ0/ny\neDbW6IxMlMxmgbdNBSjTdiRIEZymJlsKr747L8f34Ae9UDnOUlTlgjfN/kPqM3m4azlW55L/qh3M\ndUB53/ykLCmGHsIyTY0O+Wfv9ZvYtcnnYH4TP7UjoUZGaoqsd0k0V8/AfXjCARmvce1NztUTlfd5\nqW2kyHidjzH1Liwg+TnHm/3OE1c/VQNzjUl9RdXFO8OGfnGszro7sVZZ4oZL6aVm8tdBsE3jJgi2\npoqa/5Y/aqYJbzwOH3TrPssFps2P477qjQwuR5cJNo7iLgjxj6p1DSb/V2QyNun+tPkd2Hf0T381\nVfVi3doPDbTS1qb7/hvSmqqzVqiiEj2ArLr1C7Y2N572A2BCDP4Yg70p+BleTaFDKLhtMK9T+wXv\ncoPtno7NE1W62GHI9tLcprMBnv8U3gB1yEhNx0P9b+IeN1N26/xfUzb/gMq1o7jmwc/QfwkHSQaA\nckIGAJ3xBNOkLvVN02dVm+ifUUN6Pw1ex3PclgAn9TV2Tzwqz2ok6asDbzskzH/1Yt06D9oRqjb2\nLxaqrEMSqtqtxDnFFjbhwkfmeBwRkt1VyEpOYGvRSVkazcfTzIxvi4KSWUpElm3/6IrKElfT4a74\n/Xw/nr8fW+9Dxwnd5FR2d2YWu/ZaSvIZ2wUAaDEEczVVfJ+r54/NjWfXoq/cqBwTRebb3OS07LJX\nULlyZBlWx+Td77ybn4h/eBRnqe8awzVeJqC0BwAAmy/mkbEqlF5Yk1070g4njpWE59X9uVBHYctv\nRee/iCiF/e0Kj3KfPArdvmg9uiEDAHywEfsIVe6sPlROIgIlAECfeq2V99kC5RYr2K8OFKfR2AA8\nmMhUwI2Kw767+Zt4EAWFcUQ0YYGf09iEeahYqAo2zpqEypIQRVE+S51IUmfyO+djnxx3+erT1Pw/\nSALUhvexKe3Htq+wOjfegZ37Sszlzslta2JBQnqG0oCFKJ2UImlTeTv7ZyWhcoVOG1gdHSwdhc05\nneemK8ejs1hRAUqC9H6W5GESz45rerA60Veq/2cJdNydL6zF6lRexoUoG6j+GhdWuwqmTRswEaAk\nUAFKgsTGnfaMHe0RRf1J3PeS+vGIDuaX/AeVC4UNed9MPF91fWR01qnqtfAmPUPj+6knaOUojIVM\nDSoaHSGKYlYmJ1bWiTqlzyE9V9PRWHiP+byQ1ZFY31WQ+qJEvRLHnE47l9+CTePRqXtR2dnIBWdf\nEH76GyOcNZqqUIdXkRzSfV769ZiMUeckqdOXzvg+yuWb7Y2xXKthAilqL2If5pMqyDATMk1wogPn\nRqLM3l6ad2zNu8ZLsABbsKIiq7O2nx0tVHoHvHFJyYr330Scij9UOxXv6cU1gpWn+Ge6ognTAfTy\nfX6yBY/x+hj+HCaCaHr7a9m1md99FnA7fvoo6rRta/01RdlF1VH5i+R5rA7tP3s0/k+3vPQiHNuS\n67+maoglTdWAYk2VL/hqK44OysvnmqGEEvgUZit8WAJt+/Ke3LE2Cpaxa6p2dOp4uciYtKNzkpSQ\n/AE2ySUJzN8UOgKU9H6m7McsxB/W5yoDdylP8DxTY0HNHIfNqikDzIgIdUhevZoLpk7fkvM6BY28\nFIGzshh9FwAAc/I+EWpSkPf8obovSYDSCeqg7zV1CuduolHLEv46t6SyjvwfqjX8ZmsHN8O3uQ//\nibUH8zr7WgfOoaQzPlOh13SeUdgSvA613YnKHaMvZnXm5OH1ha4TO107GuViyAhLTVXF6Jpuyzr4\ndEtt3U/mcIK4YQmch4TC5GTSqeONrE7hSkyqt2EM/6jrLMYbTulpdlijJZgIgjRvGwBA8i3eRPuF\nGk+VLrzin5E2gV+exiZTPyNTg60NsNGuzbaDDVtaQhMEmy/OKyEmKqYuu7anFfap+vHF11mdUHP2\np5yEdcZg7X2wfKrq/teOpirn/mJNlX24LsCx42esoiNASdD5QJoPxafJyivVJ56kIQJjOIkKW/Sq\ndwsIUwk/xzftRMBj3HDZZN6ZRuLhLZ8THqhfuTnnppu+VbbDnNnBO3PKgCwsBI9Lrm/UTurbXNMQ\n9Rhdv/j/zDcPs7nQcgX+Lh6rtorVSa/LHeVVEPtujs2hR2pzrUfpL9UUD16RHupApy9bOUJtCnmh\nzgXnJeh7bDie+7zR72fHl/x7rnE1/uYl36h911dCZS/Nf04U3o7d/HxWR6dtRuw8CBeDk1AZ/jUJ\nlcNSU6XlUxXBndK3PIRVpZKz69mAcDih++mHoOrbZv+2NG4RTfgmMGv2RwG3IyEctYKFrYmf3g9q\nwVR6Bp30SBRSLkIqLL66iTv/3hOHo+Ykze93bV9GZd1Iu8hqVVG54C/vUo+4LYyc7uwAACAASURB\nVHHyX+dHdZaxYGs2deoUXIoPF5ELeKofk3VKh4PKTzoUiqBpqh4YpK6ogZyBD4S0pursFaoswUsC\nwePzMMlh5KiqrI70oYcSNn/KnbfrXcd9jyiCKVRJ+OtrrDWs9h/uwKyzgEU25CkzqDN03tSGrE6d\nrmu0xukFbM1xHeFjzwzOH1e9P87vZpLmCIBrSGO6c1+tUHM8NgXVnknJ4YNpVqUJjQF4UmOpnYRZ\nd6JyTqc3WB0/NZu2BB36XDoppiRs+B8OoqiYwWUjyu1FuQ2n3ToDdq7Z5a9QFWtRqBoU2kJVWJr/\nUpschjlzzrxg2DoJeLmglryCsr5zFngKncWhU/rN7Frh7+pNm/mKpbTi7ZCovfjbeLQbDzo2wyFC\ncFjWkOCQIr1tV3aNClGU5RtAL9xdJ5rsiPoxrGmTdL6Dtnf3ZXWoMKSD7c25djieJEKWuJLWEGb4\n1Ls2sjo6AsLqS0gWrTxWxeh7Pp7G1+/ob/B4JFONCXTXLWp+vLAvNzs3+aUBKp/3Ezdvbb8kcAoD\nnXdIBSgAwSl/0a2sTmwM1rjZchTXqZPzDNcwZeQF7se4p4Cb10yFKIqk/+JgnQuX89V22cQIVN7Y\nHHM4HguWIiX89DdGOGs0VX0z8E41MRVvyDYxcyvWHqV8cyerU2URJvv8dSRP3hxMZ2AJXhEjRpTh\nHEyFh/HC46VJSidsXAeU7RkAYNkT6kX3qjV4o/iqIddIUuy+nfdV5S07PmU0iKN5tDppuC1To5cO\n1aHuOK/TV3r9tqyOCXeThIjzuIZ01swPUFl6Vkpiuv75pqxOyr1mEa1nI/w0r5v0FRTzX2ysW3ew\nJU3V4NDWVIWlUHVR01LuL3NwVIZf9mgvMShrLbv2YjI+bdpiraZOkQBmp22dj5rm8wKQc3qp2g4H\nvys/o5UkbH6C5EV7wju/wbwHcV9/DORcUosIifg9E4S5MFpNpGnyPpr8xveNlRcEvt5lvsJNWSn3\nBVeI8NO0RxFq3GcSaPYDKfOBiSlYglf8fjoIG5+q2Fg3ZpAdoSr7gWKhyjoq16/uXv5Wd3Ttk8Rv\nUFlngha051FQkd/558NE+Yuyr1WnhfFy09apQ7VOVOOki1DzbaF90bx2AAA1XjUTUN7NxTxdPWO5\nWZUiqjZnXZ+xbDYqeynkHeuEfXaiZ3GfHR34+R9Sk23+Vm7/ezQbj6dtKVbFM58d0zlu+h9SHzcT\nk26w4af2nkZ1AwDsuRKbzhJv5uOJbHQOKhesXh9w3wAAcw9jjfHzyY1YHZ12QlaoGmhJqPpvsVBl\nHZL5b3t/fGqu+XJoRfZ5uTDr9EUh+TMk3LhSeV/jZdhe/83bLVidmuNC6917CVtCg1cboK05JfGs\nZfUI3N/E1nhsscmHmrb6r378PVeb4B8zuw685DVzLmqMyu6vnBJEB8F00pfqfH4Q5/HrXo6bdL2a\nd4euxYf3lfNfgoO7fWZU/xcJVWHpqC7BlhDFPsYYvnhDoZolmqZmkT4YyikkwZZzPX2uE7uFI7oG\nZn+Ghaj2PTkrfOa4M/cNADBiJ/bv+LGpmhFawoEb8HjKf6xmXbcJnQW1UyIeo5RYd9FrE/EF7oKn\n1RdlrdZxrh+Rzf/DkZ0xoS0VoKTx6MDUxEKxrTVPUG4CmrYGgLOu64z51k3cF+qduEUBtyP9XzoR\ntsYayXSikZyp1kjqPMeV3W9jdQ7MOojKUt7QzPuxtmbD5fy5UhfithNu4hQPdIxSku51C3Ae07jh\nfA8xEc506kxU1rCHsp9hU3VEsBjVw09/Y4SzRlNFQbOLA3DWdS+5Qtr3xs7r301WhwZL0OFS0QFN\n3pzVnhN72jptRlbH+akKdu48Tc3/w58DeXqZCBxpDzXGB+6HBWDvubYM5WNcfR/2I/JSy5E5BQv4\nKb3UaY6obwkAQO5qbFrccIOaJbqwDedY+qspDtUuFPzda70Y+GGnxYoT7NqSprjxBzdw2o7nkrjw\nYYLcR/H/HDtK/QzHOnOC0OgZZiZTWwg1agg6nlb392N1yn1qx1fNVoCEn/6QfrUTDPNfqZhYN+Z+\nO5qqDQ8Wa6p8Qc6zWG2e8LBaZd6p003CVe4sboKSc3AIrURzAIBpDiLPSeZVDISoNzdzIsKYKPyh\nLTgSwerY+qh1hCiKFQ9yJ2cvI8VM2k2cz33wbC26GYxWgJv/qBAljXFfIfYBuT6Gj2dD3rTTjvVv\n7OqDv6eqk/j3VON7ZTNGGFGd80ulAX5npgIU850bxX3n1tyL5+IlOXexOhU+wBpRvwUokywKErZN\nw4Ewta/h65+JyTYqIU6ohdtZ/BL3IYWXztyuBBrdW3Qfnr86ApOX681N67B/n5RbVAc6mnn2X8Ti\nRcD5Ux3tWwxznDWaKhOHz4wTXA2aWkJttlO1q3ufrXZSlmJTSGYznkyaQgqvPlYDO6GXmGuHW8VL\n2DqRJr+PnVSdukdYHclJlYKSiALIRKI2IGmPIr7HuRmlZ60/CQsSsa1zWZ15Db5G5TG7k1id177t\ngMo6iaJ1mMdtwUt/qTEb8WaWm1+J1aGpjuosKc/qTK6HJdO293DOsPYjeEJyqrmTYPJtvC78P3d5\n9P/owBa9hq25QLXwAAAzV8z7x+0C6P1fGz9ugsplFpVjdVQa/aBpqgYMttLWhocGF2uqQgW2WHa5\naVHdjtTXJwd5TjwT6AhRh7tiZ0WX8zQy2/u+W7gTesX38GZi+g4bTMQbuxT6n/Ea1t7kXM09EWz5\n9WTlCU5MBAmT72DXUntj7ZGpAGWyAc77WG3CldqJAw2THAmcm9+YCwTZeVjTkDaA90UFv6QSfL54\nFQlq2k7GW3i9Tr2dHy6GxONvI+NNvsanAr5v1YTGrE7a5AOovCjPbI7bMntLAlQwI3WldnbejbVQ\n1V+z48if9S4/pBQewsJrzlV2/p/0hu2U7cj/l7KrYgQZZ62mSkLrAdiGT4UIAICD12HhQ7Lxa1EP\nEE2QxGhOhYbUu70LedYZc4dVeIGXNlLWTl2+ED2+AQsaIxO52czEpNBuJdceDa2mDl+m7djiLwo2\nQi1yzRg0T6cQCBJM8loJoe6vBGBPW26jXV1Qmhkd7acO/KRm0GnXvYQTqG5rja0kdcZ4E3zVPC0X\nfl1x1H9NVX9LmqqHQ1tTddYIVU40NoG5x7j2xmTBoL4uALK/i6qvodubsDq/9cUf1uwv31WOx0t4\n5dy5417u4E1V1DSnFQBPyaDbvw3YfO9P5+D5MjSBzykdHO+InaFLzjbz49HRxFCEmgAnjYeykZsy\nkUeUx4eJWeu589jZQrbpJx7ZgClbnknia6It2PJhCjXorNE0t+gfF2PW/GAJVbH32RGqsh4JbaEq\nLM1/Uu4/qk4tEIQqCp3FShKgtg/AQsLvD5s5WQPgCKbEL3g0TAr4x9zsVYi8jso6+RHukD/bwBk3\n1HwwALgQZdp2Xmv8ucbPPk1FBXI64khU6gQOYE9Ypbxmqy7kucpoXw9t5+P5nShE5feFhShbz+Cl\nuUvnvogm9dm1t2dgTq4akTzTgklfpsiYQBI89+MCv4kQJf2HFy7DNBiSyf2n/dgHMLIC90HTEbpp\nMuIJMZJTvJ33+vIm7DvXP46TBNPAihqCKZ8lZxdyYBbDO4SlULX6UBU492ccTVdnrzphMM+rxT+q\nAVnrULlzGc4pRIWEtHH8o9LJReg0wxFM2d2EaJhutG/1Bywm2Twfb25+Otf7eRpv9AqP5jKhPbDl\nbCq11WogjyZbnMdpDXg73oyny+o9rE7DH29B5dhr1SSMtsxtYh1B8FNB+g//vB8fiGq9pOYmMoUt\nX6TClevYNR1Wfh3Q//6LPN4/T/zOQYUo6R1uzsc8VX3qqR3gpfdRDdR+izSJMAB3HaCQEipDcyxE\nTVzLP0Jb/zMVomz5VDHri7vrNDU9RvgZxYwQluY/ndx/92byD298Co/MorCVniOY2PIIN7fFPKO2\nz0dWrYLKBbt2G/VvwvOjA1uC4Ee5fDwXv/cAKmfcZkZ2GVm5Mrs2c/V3AbfjJeh7bPtHV1andFoO\nKu/4kmtLalyNN3vJhJt1MxYWg/3sFDoC1GM7OH3D0vOwH1hha/5cUXvxgaxwFReOvERkzRqoXLB9\nB6uT+xl2npeEZx2BgKZVOtKoLqtTYr6aV81EoLV5ADJpm7az9jhP3TUwHq+JXvr7qRCU6L+6sW69\ne+2Y/zIfDW3zX1gKVTrknxJC3bn02g0dWJ0Dbf4KuF2anw8AYFZW4IKNl6HBlB+n+st8zFHfqBfh\nPwcRzYMB2aQubC3CV63hJ8WvGlY1GlMoIXcYF+ZjnwztxNk62PABH0/WpVOU9/lJqyKBkqia0DBI\n/et8BzRjAoB51gS/cLYELahQLFR5i7AUqpLPLeP+b1oKuqajhaKQPqJWK7G9rVzHbFYn1GDro6Zh\n4al32OGpikzlHEcFGTxFhVfYeytW61d6h/tFmKjwT1fPK+y+HT9Hlbf4c1DBxkSoAeDPlfnKxaxO\n8ofYb9FZ7E3QgE34uQFSTqHju3hqqNR7sM+mrqZGZ9ybn8BzQaIt0YFOJPOJK/HaocNxZ+t7Ojib\nu1borNsm33zzR3jS5cpv4+9Qei6TZMk0Eh0AIOoo3q9Lfc19flVzKCiO6nVj3Xr3WBKqHisWqqxD\nMv9ReBmd42eo8sHrsUml3Cc8Is7WRqFDJ2ELm4fjBX9tP+7sT2HLYdhv4Yj217n1NazOpV/hoAWJ\nzsJG3wDefRvLjvFcliaRjqbm62BG0gVb4JbglSnNy2fNexD/93WeMxMEbVFwqO4x7VsHpusd1VDS\nDAVBE6rutiRUDQttoSosHdUl+GWPluBlX5IQZQOZb3PuqOwrsKP8FX/2ZnUoY7cp6o3Ai2XaCLP3\nZStikcIrqgYAgCOJ3NQ3pArW3A0RInZM5riXG7ut95j8HZ5nST3MNtJOKdjRd1YmZyK3dQAx8TOa\nsYyHa/p5+LM1pxu+JqT2yVMHg2gJLd2wdk9rjq9SR/HZIos1Fbz8jBalQlTCTJyH9s99Lxv1XQw9\nhKVQlbm2InRulk6u4l1oQB5PcArAE7WqYOtjFAlCG1PnXzNHVpMPNPuKt5TtlKzFd/YZPrIrm2wC\nV3a/jV1zfuJZ7FV9SWOWnNAL9vDIOQq6uX677E1Wx+QdFbg8ytMrmD67znMlgVpQ1/l/Sswsr6xD\nEdG0AbtWuEKd/1OnbSpE6dyjk7RbasvLiFaq+ZhTXT0e6ds9/2lCB/CKJDxjLqs9Bdzpm2JO4wr8\nGokWlfzikjTSTumAPruUxJxm3XhhIzfdD44Xog8tIPVObIrd46rfqRdwws8oZoSwFKrcEycgfyve\n8Kn/AFzEP9iNo/CkjX/UTnoD0xMgjQYKZkSI1LbU7kWPY5+CqsDfYcPxePF0HuF9UXNOzZ/4wpj8\nAaYe0CED3fkl5ydb3kz9XDrvMOOxc9i1pAfUY9LZXE1OwOl1ubbRBE/m8AjXYQnkUBLJE3DHLMF5\nx7a0OMjqmAjYNAFs0X24TP2VAADi261k11TQEaBMtRP0mpT49/oYvCZVzOaCspfaNB1/Q+bgLmhR\nuXDK35ksRGFsG4zX8cqRdgQfSYDSeT/pl3ZHZckXVIeXj1KCSHPqgSysYbqyDFcCeCk8F8MOzhqf\nKj85lkLdjKjTDnUsBTBLoLz1C+5wWbfbaqGmNwh2CDbjgJFywBGHfz9NCLbm1JubeaLdmCgsVKV3\nuJ7VKSiHMx3kXsl9xWKfshOxGVkJ59KcuWYhq0OffeddXDtQ/fXAD1terhOUogSA05R4Gbm28yt8\nmKh+lTo1lA5svTNKCwHAqSFsmUdTF3JNeMJNWBNOGc0BOCHnppF83sU9rnZ4t7EfBMunKu4uOz5V\nGY+Htk9VWApVOrn/vPRVuPAJrK1Z9oQZp5FOXzrQ6YsmVC4z1cwJ3c/37GdI+p8DCTXDWL2N3hbx\nnwlMn5VmBKg5zj9n4EmCcEZJIIMd2m6rncyXcJBJ9nWc4DWYhzipPy8Fda8cwU3fz96eWLD5ebTh\nOq6Ru9IrmPwXwaJUiOtnSagaHtpCVVia/ySkt78WlefkfcbqmHx8U/bXYNeqTcQnirSJ6o006RPO\nop08EJuObG3IkvmEClFaC9w1Pfk1DUZfkzHbWsw3nOAmKB1QIUqXmyiY6njzdxZ4X6YbqdsK1+lT\nT912/Td42Pq6PLzhtRzMvyf6XJJvy6Yt1VD54/bSRir5YwaOlPuJafg69T1+ClCm/XkpQNkS8nT6\n2kUsyAlf9mV1UkGd5/WyFdhR/ttz1SmDbEF6rvOIiyJN8RQUuP8en6qzRlNFnb5nzf2I3UcnoJem\nK1PeIxPYWogpkeaKIaY5DdXIfhafEhMfNvNvi2yI+clmzv9EeY+X5j/d+2yNKZT6Nn0/ZRdVR+VD\nbXdqta3qa//NnOG9wgdY0NFpd/hOvk7oEGlSSH2164s38lLT9XiH/PSj9HM8Jgi18ZjCLwqMoJj/\n6sS68ZY0VeufCG1NVVgKVbZ8qmxh592CX8Zr3jjB+7mJ5zzNnythqJ3nMsHu3nw8VSarx0NNnyUO\ncfX8t1NwkuH2q69mdXRyoPkJLzeTqLpY7UMDQ0wRDj6KJt8cdTIG4ASPJRbUZnVOXLpN2bYEP4Wh\nrPewqmPDZZNZHcq9lp+9kdWxlZyY+sGZ+MAB2OOyCrf5GxTzX51YN76vJaFqRLFQZR1lasa6KTfg\nP2jeQ2NQuYeQcNSrk0BkIx4VVrAaO3NKJrn83C0Bj0eCyeKQ9SI/xScPCvwUr9OXl9oSr/yVdPry\nsj/Td7+I5P9uy0m8fR1zp443orKUHFinHVtzyoRMV6dt08APHbZyHYSDtkbLEfxtbPpNeEQtMBmb\npi9piso61Cu6/ZuMxy+fwKAJVX0sCVUji4Uq69DJ/SfxvcQ8Hdp5yHI+bMqu0cgSLx26bbQrtd1q\nIPd/oZtZvZ+5H8KkWEze+PpenqR13Jr2qGyaEFYHXmo+/Jx3TjSOyHOPcRoKW6DPtfgopwwYmaim\nhtCZr0kf43lGDwlSO9J7jvwOa+kK2qu1dH4HWng1XwZlcYqJjmXU8yPYDvcUh67F2ulK921mdaan\nzkLlYH+Xqr4BAC69sw8qR8/kdCiqdoJm/vuXCFVh6ah+LKE0ZD2JVdJxb2MeHRMBCgCgxYN4Ya4I\nah4iqZ2kbzFLdPItaoLDal+WVtY55/tb2bUy9+HQdh0+GC81Q/Ta4jwe9ZTalYQmXyycEsleNrVh\ndVYlFrAQJeUZ9NIxe9ed2BRR9Q1+sk6YhRmNU8FOTkXjEzoRojJf5jnGUvp7k6KoVSnOd2UypyQ4\nY/A+sec2iUxRLZxRIUp6zx1uvp2Mj7dD79uSz4Mo7iCRj7rfpYkQo1NHEqB02qGUG2l1WrM6FFI7\nq48fQWVTQswfxuHsENJ7bXkjXuvLC2t9MLV96U2vYNeid6qFKApG++LyhO5ew4HgO6o7jjMaALoA\nQCwAHASAGQDwkOu6uzXuvRsAXgWAYa7rPnWmumEpVEXnHIHknoGnS9FZvHWEKIrOl/yHXasPf6Hy\n2nf4afyBi+ah8jvPqg8P69u8w66l3eCfatkEUl8JYKZqp6DavYx2bxuNx6QOABeipI2ifW9vDlU0\n4rWofxz1KgnhVaaVQeXs7kKof387mgev5tnxjjxCr8w2/P1UfpsfLtLetvNc8z/AGQl0BEGpL1sB\nLTpjPn8UTy+zXCO9jElfpqBCVOZ4QeC/Fwv8lPEdQG+MP76A533aR/wenVyEJv9h4uf9WB16kCnY\nyQM2dKCaL83TgsOoDsE3ihUAwC0AsAoAKgHAOwAwBQCuOtNNjuPEAcADAPDHmer9jbAUqkyR1o1u\nMIEzMEu4fAZ3UqWpE1JuzWV1vgKcA+7nPB7eDc+q+6dkc5RoDgCgzb34Iy4DXBOR8wxe0CR/Bi8j\nxUxAzaOUuVi3b1Pzxa3rc5V1Nr6OtTOpc/iYzMyIvM7NOdgcqiOEp31ox+xhKqDkDsMb15q71VGn\nJWfzE/uBa3DyZu4WziGN71h6M1JHoyHDvrxsa1cf/D3XGM8FgitW9ELlCA1Nng4ia3IqmoLtOwJu\nJ+Iw12xSmERi6uKPgWQuDlTfo7O2ZXefwC9i8nat/zjjLenAduZvNxiaKsuIdBzn1LDvXa6rfijX\ndYeeUtzpOM5LAKAOFwd4EwAeBQDO9SIgLH2qpOg/ClP7uJ91VPdI9/kZ1q/TV9a7nARlw+U4Osh0\nM6FcUaY8URSUhgEAYN8L+ahcrmM2qyO9j/OXYkdsmFuF1SnVZTsqV+jEU11kTMIbeWofLjTo0FD4\n6b+l0072c2TMD9qJHpXS1JQrg730l13I10s/HYZpRCCNBtRF5jhBWzNAzTsXan5Oha1xX3sacHeH\nijdsReVvGn7F6tAxb/rkXFZnXet3z3iPLu7IyEHl68vtU47HS9D/UMqNeGMsPqRQP7n7r94AmX8c\n8dWnqnTtWDfhDjs+VWtHDd4G+Mw0wnXdJwJtx3GcMQDQwnXdNmeo0w8A0l3XvdpxnAUAMF9l/lMK\nVY7jrAaAuFMuRQJAKQC40HXd3xzHSQKA/wHAZSd/XwsAbVzXPXHy/ougyBbZGAC2AcBw13XfO2On\nCkiO6jQCb+a8j9l9tiKIgslCLN2z5RH8EdG8ehJe3rSYXZt+AC9OUqJS1fgA+BijatVkdfL/xIIG\nDbcG4CHXwXYStSW8StA6lZIUODT9jd+gm2TED+pnP1s4l4J5QJPg57O2up+brirMxtrxwgMHtPq3\nMR6ddsKBr00H1Gd05oLPWZ2xe+JReVajSqgcjOi/0rVj3YTbLQlVTw/+HQBuOOWSlqbqVDiO0x2K\nTH/tXNf97TR16gHAYigSvLZaE6qEjkYBwDWu6zZyHKc6AKwAgIkA8CIUOX+dDwC/ua5b6DhORQDI\ngiKhaywAtAWAqQBwheu6xkdWneg/Hfh5cjvWifuARM8K3OlQgs6CQZnG74lTO5LagpfUDFq8NoRH\n7LdhgpnVoF1pTMEW/CjG7OaO+/Mb8/x7wQR9jqa/3MTq1LpGnfjYFkw24MxXBG3SfVibJJGRpvTH\nwsje42VYnWPt/mTXDtyA2yr/sdoXtMMqLugMqYK1pqFGw2AK5yKcD9D9VR0VLPk5VVuGzY+Vp6i3\nrWa/cx68pedFCjXPDJ0AicgFojxwRpwFQtU/iv5zHOc6AJgAAN1d1/3uDPXmAsDnrutOOFleALaF\nKsdxogAgFwCecV13nOM4zwBAe9d1+WpRVL83ADwBAPHuyY4cx3kXAPJd1+0t3aMDHaHKdAM2MVf4\neQoyxcYn8XPFD/OO/8VWO6FGRWALpvNl6hbMtt01pjmrY9L/039xnrWFTdSRqLQdMb3MnViANf1/\nqDPyr53jWZ0Zv8xQtmMrak51jwRPTXQtuDkUlmCfUVua+c4XpLE6VPPsJeh4zpnM5138o94kJ9YZ\nj5fmdBt9BU2o6m1JqHrGXKg6KZM8DwD/cV2Xm2twXRcAdsP/udhXBIDjUKQ0Oq3JMFBH9WtONvy3\n92t7AMh1HGcGAFwCAFsAYLTruu+f/L0pACx3seT2GwDwpHIKOI5TFaDIs7tpo5IwZ/4/V/VL91Ah\nqvJi7iPzUcK3ynZ0FjA/SeNOVOL8QDb6lkD9EEwXB5P+9/Xg8v2SMTjKJ71hO1anYC/3lfAKpvPl\nwW34O56Tp6Y9kDYc6sgqCVBVF1dG5V2t9ij7ogIUgL2Nizojz8njApRXwpCxT+D/8FyUHN4jypQh\ndUw1pLwOdQvQoX2QwMfknQBlotVOaskzHVBdka15eKg710j6mUuTHlziIHgZLgJFCFAqDACA4QCQ\n5rqujpmIOm5/CgDfQ5FQdvp+AtRUzQOALX9rmRzHyQKABCiyb06DIiHrawDo4LruD47jvAkAUa7r\n3nZKG70B4FHXdZO1Oy667wkoeiFQEkpBW6dLILdrI9S0Tn4KXn6CmkuoqcRLRFaryq4V/IVN8jZP\ntu1WYu4dHS2QLUjPsfI4dui+7v1BrE7ymzh9yp5mtVgdHZOTznhszd/CdjhoImIhp13xU6ugusfr\n+ygdAaUiCAdIz978ESxYVH5bLVjQxN4AAHM/nYLKwfaZpG136sTN4IUrsBk8ohRPmVB49Ci7diqC\npalK7GVHU7XmWTNN1UnNUz4AIDI213XLnfy9BwBM+Lss3L8AbJr/TjqkZwLAJa7r/nzy2nIAOOS6\nbutT6k0DgAzXdR90HGcsFJn+rjnl90EA0NN1XTWNMu7//2uqykdVW9+q+g3o9xm/4Th1PxdLP2G6\nwO6+HZv/Dsbwb6reSDPCVJPxmMCW+cSmwEQ3rtoL+XuVUqFQdFmNNUEvLu3A6qT0WqZs53A3PJ7v\nX+Gh2179Pxlv8HUu9c7gOtOrQNnlAcwY5m2ZESX4SWMi9RWZnIDKMxdNZXWooPPLM2qtZcwSvndt\naYF9Px/cwKmBnkvi0X4msCUYU3i5Z4Sz+S/xNktC1eizh1G9HwCs+FugOonfAUDSOP0tqa2AIpPh\nqbjg5PWAcNK7fxcAQAWnCrPht78d0/d/lzeJtWGi6t/wPDcn1ZuF/Tu+fedNo75MbOhT9nP+Fx0s\nfUrt2xJZAUf7Fezfz+oEU0vnpamGovRCHrF4pB03e2R3JczN95qZOvtXxiaM6RoClJRvbueNOMTa\n1PS6+QlsOlrbV80dFWoClI6gMzuHa29onZYrjrM6PzYtGfB4dP6LloN5SieJ6Vvr2/iG5hs1O0wU\nZKnN+ZWJGYqSrEp4s94P/CLJoiCZ6gHUpnqd93PJf/G7/knI/EDv03lf+2fx4BCJRkUFrw6RQSH/\ndCEUyD99gZZQ5ThOSQDoBQDDyE8TAOB7x3GuAYCvAKAdAFwJAKNP/j4VAJ5zHGcIAIwDgDYA0BUA\nOP/+PwQlA7SnqdKp453PkE6dvhmYU6l7OTNhiApRh2YnsjplCX+TlxwxhBw42wAAIABJREFUFH5q\noSQBSoJO/5c8EPjirfMcUsLeuLmnH+vp2pFQ7wmstUx7gt+TNwQLXn8MUgtePdbxJOLv149R1rm1\nAs5QID3D3ZlZ7BqFibZIR4A6dyxnK68D+B1Sct0i4PGU/0jPpLr2uHpjnNNgurLOnhkpqHzwJ54K\nas09+H/tGMcDJNwTWPCkiasBuMZW77u04+uYf/mF7FqFD8h4PrCzTkkCFJ13Fw3nvo6/jlBHJeuA\n9tVvC553m04os7IU4x9Ay/znOM6NUESbUMd13YPkt+sA4CkAiAGAHCgi4vr0lN+bAcB4ADgXiniq\nHveEp0ojCWqohb/rbKQsF+F7gfuxmOLof/jiuXDCRFS29g4dro2esxX7xOgIr6mLeFoWJwsna45/\nTO2DYZpY9vI1PONBVAeczNXPXHsimmNB+M+WnGJhxYPq9CVe+SdJCKYpTaevFkO4hqni+/hbrfkT\n5317J24RKlMBHACgwod2vnkvo3lT38ZCwmNdP2V1dARjk/69nHeUiiapBDdZhpqLCAXXVPmfULl0\nrVg36VY75r/VY0Lb/BeWjOrRcTFurUfvR9dS7/rlNLX/Gfy0oW8ayU+ycY/7F90R6v5kOvDy//KS\nENREaOh41S3sWn55rFWZ//5brI6q73AApQgBMKMJETXIq7DGVocEVwc0ohKAR1WaCosSvPpfqY8V\nADcRegmv1ik/NeGmfSV9g5mITHLgBsWnqlasm9TTklD1v2KhyjokTZWf0TgmaLCMW1rH1lb7oHjp\nZK2Cjimr8gquSp45H6cH0Rnf0S5cK3bvC5gV/9yS21idgfEt2TUbMH3PlNkfAKBg9fqA2/ZSgLvs\n1jtQ+Uh1njuNakck38KkB/zTmlKMyOY+Z8MTuYnHBMfT8Hp9tAr/dm1pjyj8FNwlUBoIAICk/6qf\n1dbBwStfVC8PDjQd0ZVlzBI8U9h6P82XX4fKawdMhkOZ24qFKo8QlgmVU5schjlzAj/RBVMTs/bC\nfH6RWCgvGMnt7NWpA6iPkSXpl1/H6vz0DcnsruErprM4lJrONY1vTqcnYn5CNoFNbZaOD55p2ybQ\nefcl5mOBRCcdbTAFKAktSnGG6gFZ61B5XHJ9o7ZLzsGHne+k+SskoaaYvhW/5y51udC3tyfWuF30\nONfAVRW4iG5ax90bTPDCRtx2o5LCs/438PnqZ1CJLe2ezjolvXcqROk8l04gjE47j2arn71NLezj\nlVsi8OhWGwg2T5VfCEuhKmNlGaMPcsERdcZzP1XLFNVf947lfMeXeIOpcfU6VuebI3ijKlibyeqk\nLOiF64znIek0Io76Jehi93Sc+LhKlwyjdih03tfeW/nmVukd/v80mIgdlOuBmpZCwvu5mNw3rU4r\nVsfkhN57Myf+7bAKbww6aWv8NHvowEvBNGkp5v7R6kvwCaRClPzsoKwDI9XdS6DjlrTljUpizrRQ\n0/Dr4JaNl7Jr78UvCLgdnWf4sD4/NX0I6pOUyb7yV1++BlWbiNegtpymSmgbEz8fCZZw8y8Rqs4a\n8x+F9OEnf4ft0VntJ7M6wVwcMl8ScoPdH7jqXXqG/MvwAh/1rTpk3xa83JB12qUcXVXeUguvl/1x\niF379tyy7FruY9j8GPsUF6oyx2HH9OxrOXdUwpd9UTn1bm98BAE44/1bPbhz/ewvcQQnzTkGwPOO\nmRARAoS+6d4WJJ+qDxJw6jHpGaJiKTUCQH4uj5A0gck3RRN7A/Dk3rnDuFk+9kmzA4cK0jN0y8IB\n5ofa7mR1sp8lKcke5uuCLbPmMRdrs+7Jbc/qUI4urxAsn6rkHnbMf6teCG3zX1gKVRc1LeX+Mgcz\nyJuYnCjhIgDA9EZ84TMB9UHx03zip3N9sAUmHezqQ4hPafIBMA8IMNEeSWZVSSsYTNAxTzvEo56u\nKWtnE/DTn8yk3W2DuYBQ+wVvBAQJOs91wuVJfK9KwVrKwsNB4Cf6h5CenT7r1Rd0YnUKtu9QtkOR\nOoW7XyQMDZ80MH9DFRG95ZHX4eiGrf4KVTUtClUvFgtV1qGjqaLmFACAHrHYpKKzeEu5ng7WxWay\nmuPMmMhpX5T3BwCgzhjc9rFOzVidh19+B5VfTG6gHI8pdISII1djp/NFr01kdWwJdU4JHO1G+XIA\nzDQhGW8Jp/Hbzcgtaf5ImjtSd0yR52Ce3YL1al4mW6BM7QAAZb7whgYi1EyNtvrKeu98Vif5lsCj\nt2zCK3oCqZ3IVEyKWZCh5nOS0Ln1Naicn71RY4Qcx9LxWho9UycdHIfOs2/5vBEqr77kfVaH3ifx\nmqWMx/Qs+Vu2Bjy+YFAqlLEoVP1RLFTZh6SpajUQR6UteHE8u09yFDWByUJU72duOtp8MTcx2ejL\nFE4zzF9ETUAAAL+TFB4PJfDN1isE2+QT7BQVh67F7/poJe4jWHMGNu3lb/uT1fFzTvkaqUX9miyt\nbV7OO1Mna+rKkNQjuMJZMHHVml3s2lcNcX5PHdN07qOCyXIUPtRK/9eV3W9D5chV2axO4YEDuI5G\nlLBXCIb5798kVJ01jurlSCqHEmN5dBCFzmIZmcJZxXWcS2k7k2K55iwNcJ2dd/GTiUlfEpgJ6tLu\nrE7BUp5ni2LIrVh4jQA7SWvHbuTaPkqXoLMh7yjggmrPWO70rWpHQrAFuC4ZtVF5euosfiNxag72\nmH2NAtMgizWB1A5NEfTtlDeU99mk0sjKw/6g76/nScInDe6GygsmmaXu0kFUQhwqz1j8pbIvLykV\nyi7CzPCSTxVtp1N6Q1ankF3hcH7CWdd07snqWYVdy7jVm8MO11QFyQwcfvobI4SlUCVRKuhMQJrG\nQuce54BamyS1E72wlvK+qNq4jk70X+I87jCcnYcJHvVoDj5X9iW1IwlR6r7Ui2eDkmWU7drSGETF\n1xOummkMdISxpqNxhGCtl9TmYvm5ME8XFcolBJsTK7IBToMi+Y4FU3NGHZoBAL5Inqdshx52pDFv\n/vRcUkc9Ht1n1/kP35lhZs4yARWixMwCgE1Xpv+zzn1UiJLyZNL/I+N17jeYygnuldhxD9d4LX8M\nZyhIP5/ncH06nWuvKEwOfyzQwOWavWLYQ1ia/ySfqm3TsB/RyuYfsvtsLdY6/DPB1HwUthaEoR/M\nhAaKlzdhjVv/ODMtkM6z0/xhNHcYADeJlf2M+/nY2rQP3MijM398gefxo2gwgdAujLDjgydhd28S\n6ThZHdGUMOcOVqdmTZxzrWK6mf8WNXOYmjiCSXViarK0tQZI7WzLx0ECveq1VrajA50wfgkm/3Nh\nO+5jFrHQwIzZogm/tmQlKoaD68Dq40dQeXA8/y902llEAm5HJeLnDJb5L+UmO+a/lS+FtvnvrBGq\nwhFebRQRjTnp4ay5Hyn7CjWm4nDoK5iRlmL4fRz2NczflOtZX17B1julZKAAeoSgx+bGo3L0lRtZ\nnSPX4GCM0tPUFBjSc1G264qlOAVFxOX8P/RTyNTRirXriylBJDJfW32p7pFw4AZ+ICr/MT6kdV+7\ng9X5vAHWKO26kws6De/AjOo0n6PuGCkyXuVZJhqOxtrqGT99HXBfQROqbrQkVI0rFqqsQ4dSwU/o\nZGQPtYgm6YNNvcc7biSvEMzNX7d/nTrVf6yEyjtb7jVqh0KKXi21G3PmRH73G6tzNqDNSi6gfN9E\nYEtUYNLmH9i1PkQzJH2XHePwNyZFpoYDvNLKOVHc+8TNFzJPEERWw/5jBX9xc5bJtyIlkB/0wgeo\n/FpKMqujA+bTWr8tq1Owfz+7psLGj7mWLv6GM2vpghX9928RqsLSp0qCyUe95zZ+6qj8NlZ167Wr\nHg9V10swPZVFlMH+SDp8NDoClK2TpIS0bpg7ZeMgXmd9G0wV0SWD89HopIUxgduKv2dnsfpZTYVe\nSYhStSP11XA8NjXS6CVdeEXImTmeC3n1HyNM+QWcc4luODqM95IAZfKN1Yvivjaqe4r6Un9jtnzX\nvDxMeBVsIAlQzkWNUXn9vTxjw4hLsP/W+/U5OarJeEp9zf+vEbF4nVqe9yqrY9KXiQAlIf6m1co6\nIeNTFX76GyOEpabK1PynszgN3Y4l/2Xn87B1kw1Hcl6s8WrwCAS95KNhJ6OhnFSv8hS18KozxqwX\nsZYweRD3uzJ59pSlfDHPbKbOmRUOZKiU/ybjtteM2vZK8MqYxLnYUvtgp2vTkHTa/zlv8rkZPyxw\nwkfpuWji6o3/4VkWs69T59LU6U/kRhqK15yYp+2sN14GP9C5mfAI/y8oPcKfd1zA6tQY79/aSpHx\nmmAF8DBDAsX+m/Ca+NPzeI4FRVNVI9ZNvcGOpmrFK6GtqTprhSpbDqg67NdeLjI6oKR6MxfwyD6T\nvqTkoVLuKxOY/D/GWjHSztEufNGjPiA5HzZldRJuWsGu+QkTIca9hD8HDQH3UiOZ8HUfVE7t511E\nms77oe8j62auzUrpT4IdNByhdUBJcQEASn+J592mT85ldeKuV1Od+AkvHfCD6caRNZa7cSQPtJMJ\nI7JCBVSWNFXH52FaipJXbDLqS/UdBMWn6l8kVJ015j8Ke+G66vQhttTj0iKT3uF6VC5Yw5MKU2Zi\nKUwcAIcYR8XUZTUGL5yNys8l8QWews+FMfGzfuxaygA1qzcd4y/H+MbefCLVIgjPJVAYPJCF1e/P\nJzdidVTjkSC9w4Y/3oLKa/LeU95HBSgJV1zfi10ru3Abr2gAEyFKdITuRxyhBVONTjuJX2DzY8p9\nGqzwBgKU1P9lt6qjhHVcCSRYO6BV5mm6CvbwdF6q/qmzPwB3+E95j2sJM/Ow1lR6rtILa6LytJQ5\nyvHQ/J8APAeojgBlut7NXIed10Xus9cxxU5JUAtVoSaYnhHhp78xwlkrVEkItYgmFZ9IEbAQpbPA\nnvvzzexaHSJUSekN7pyLzRWpYMcnxPS+0Tl4w3sowagrhubR3Axj+hxjL6CLtdpXwvwUj8tDfuMh\n6btvx6dtneTR8z6ZoqwjCbQ0MbSXJuVSGnORQmqn5AgzUmBV2zrf9+7+3KTslb+SBJ0xzlz9nbKO\nznikiEmKxAeFuYnPDXrrpgZfW415PIJS7RJvBlNBp+zneL3T4vdb3JPVWZuHM2GEipDlFAtVZx90\nJpdzIdY0zP6a52hqcx/eYL5/ZQKro7MQmQh5OnXq1d7NrtEFRGfT9tKsuf9mvPlX+ICfEs+L5puQ\nCWyZsiRQNb6pVoEm7dVxwB9c7Xt2beVb6pXLZIwpwDU6iRH9lHVoX63u58KZDvFqZE0c2k4T5gIA\nNHoFO+nHAPeriRseOPHqgxvsmN9qvsz7rroYa4Z2tVJrhQC8OyBK7VDncffXVcrxvLwnjtV5Kwsf\nQGpczSkvdMZjghk/T7fSts46njifEzSnAI6wNT9kY9S7js9NHSGzGN4hLIUqJ7okRNbDaouCrJzT\n1P4/aPlcLFNHU7BEsq8ob/EVUr43CunZqYOjzmZnyhfUuQz5Lz7g7WSc8C83oq12TO+r/ULgjrU6\nhI+mgjGNjK32KxfU64/AOc5mCu20+P1aVK74KRe80j615TsX+D1SXzSX2+WleZ3nAu9KxAcJWDOk\nuyHaCiTIm4pTszStyf0od7bEQpTpnJp+NTctmrRD67yfy1OA3ZndjV2jYMLQXE6CG/sZ1mzq8G+l\n3MopSjImY9OvTXb9sMG/RFP1r3ZUlzBiJ15kfmxa0qgdCp3FYevDPEJw1QAewquC9DFO3YIXg64x\n3GnW5J0F24RKF8KUXstYHZ12wmEB88pBWLpnw/NYwE56QO1vIvnjHDsf586M+pb/PzrP9dB2PMbf\nueXTV+z4EpOILm/20Wlq/h+8nGPSO7xkBc7v+VNTOwEsOt/Pvlu403fF9+w4fevATyLjjDewz3RO\nOs8DSWHa14778B5R45XAD2PBclSv392Oo/ry10PbUf2sFap0UNCeh+Ier4iVd4tenahsx/QD2fA/\nsnH9N3iLDkDwBSSKUBN0vHxnSUtxFNqGZpy40qvx2GqHPgMAwKt11XPaliB4LB1TMUTP5E7yXmk2\nJQR7/no1RlvzZeMo7jwe/6jaBzAcNTq2Dqw2/tNiocpbhKVQpcOo/lc//sEuG875eCiCSca3t6dA\nRvoRPtmbsjLrLESFbfDxP+J7gzxcmn35eZL8f+xdd3gWxdY/m4Tee0sgIQXpIEVAERQ0FAuKYkcR\nBa9evSr2jg27FEEUEESxoBQLJYBSVESKSIeEFFoAqVIFksz3R3K/m3POkJl3nN193/D+nodHZ3N2\nZnbf3dkzp/yOyVgt3r6Xyawdwq2GSUswOWDqxZOZjJ+LvuxZTZyMs65qL89jMnNGjkDtvtHc8hBs\nHzed+dC0eVGFv0+JtwfOMC9TELYMwOtNp4d5dd7KKZhbSydQHACg3JIaqE0LCOuCxvLpuKGtKVUS\nNnBK+CuDzliVfsas639dpGZdNx0r2BT11I+wvtFoEO53WU4KHMnzWKmqYVGp+iCsVFmHzFJl8mDf\nsnknO9a/4v6A+5HBS6WBIiqGMwzn7ODXagI65x5X8+wTsUId2Ev7SVx0B5NJ6zoJtb28h35b8mSg\nc+qZyItZ5x23E4eWNgpTD2T0VSdjmI6lAy8tQ25xqJlu2Jq/yxX8k61x1YT4m83CHXRA55SwcACT\nib8l8A2Y3++Yl5Y8G/2aIrJaVdT+9fB0+OvMPu+VqmstKVUfBrdSFZqB6iVLQlS9+uRo4IuKrLzB\nFODHVJC9RJdtuhK152cHXvhS1rfsHFoIdFpjZbfGoKn1Gd/wj+2hXLzg3xjDY8VYv7KPAo+ZPafR\n/RacVRR5XG1R2fE0v/c6Ad2MALMvl9F5Nv38KOl8tGXWYbqWmGbl6lyHjsy6h+yURjEFHSupMS+5\ntZtUjLj8bm7x0omDM1HCbSlnsnN2PIuvK+alwLNHZfCSMHr2uh9Ru33y0YD7CEMfIalUidOnISdr\ne5Ey2Y/xj0ndNwIP6pM92C3fwDtH2UcqAggviosKAq2kbitIVHbtP5zEViidlzx9Cl9NeyaWI2Px\nDB63LA82uYG8dFEumPKRsp9L7sQM5rLafyZKi63fYs9/+HtZewSeo62Pko6i07sT3ZzZAx1fRoh5\n0VocyP9zi+nKfgB4qZbLVnKKiZRmmMXbVFmlCQi0ogQAQE1y7A+N/BpTRZSiV/NLJUdxtqosHERn\nc6GjRFGm/CXv8zhck/dJ+ls0SULt2QumBjyWH7X/HDh3eKqKjftPB0+mY2bkrmV4LImXgZvJ6zHH\n0cNVM84iqejH0g4n2GKhVP0CAHR4FMepVJriXrC/bHzKch5zHefwMenbb2oIE2S8zj9cF3fBSvjC\nzbxmn2nGpgncuh9+z8/LpAW/3XZeIqoBjt3N2cZJRClozUUAvbqLu4fg807U5t/m+EfVNVMp6G/j\nR6B6uRox4rw+dtx/v48Pu//sw3HAIcSQ4hQudpsu4T3qWsadD45OP/TlBAB4uCp2CfoZJC8778ic\neImMup8LnsCB0JUh8Iwe2Xxk11UJAi8t0f1mTs4XuUjtSpONHwNqDh+dfk6JM1hmPWdm17E8eKk0\n0LEaPs5/ZxrJlwhqBUoGt9yIpkqEDrykUHDTTRZsCQlRDWNRe9bPM5mMzhzTRpKSRZKSVzpKFEXp\njvuVMvJnKvANaxjBh5BUqpySJSGiAY59ovXvpIGbxAW37x6+s64xNvAK9To41qKOUkb2wrR+Re1q\ndGvRq9gznR2jY3XbeBWTqdz9n++mdGES1xMJagUqqnYtdixnz94AZ3f2OVFcVQ/TAcjuWQohhtRZ\ndC/tzwkNf5w8IeB+kibzOm2pGnXa3MK+b7nFq8ZVOJNO57ru3sGD/akr2vi6SCHmlOn2MkOZa7F3\nOyazaNw45Vg0A0+2vlA2+5TseUymVwvsOcjdr3Yxma4LORlZShkdUCVKNp+mowhL/zC1xan6lbw+\nqy18+Bf+gWjoBwDAVRu9d+/pwAlBr5gJQtP9F1FNdCjRAx0zpRqgODQrEbVTWnzMZHQCr/1054SC\ned5PN6IMGcSySTMPdceX3XvK0K1T5NgUwWZV0EFEM0ykmbeeM/BnP0oChj/iMjQgV+faa/1akR2b\n3EBd/FYHpRbjArmnukgqHbQnRcuX88xZKentDFIi6D51YWh6nwEAMq/HmWE6ZXyKC0zeFUr0CaBH\n9kmt41FHTzEZWs3j0B18019t9WHULjOKW8WmJ8xH7SajsWKYNeEd+Dt7h7fuv+oxovHVD1npa9VH\nQ8LuP+sQQqlEmSoWVXrjgMv2bwxhMpt3jUbtSCdC2a8MdI4X3c/rotGd4+kefEdaci4nOQx07Pyx\n8P3ZNb0pk1nfAddCdJXCILoNOZJrZSwZKv1QBrWvqtdDIqVR/qceD8p3hFqJYnQJCVxxzztxgh1j\n45PfQ/YhpUqLjFpElhlrAr0gXnU/dd/EH3udJ0H2TA3Y3hm1J9ZfwmRsxRBJlSgKokRF1al9FkGM\nWj/jb2LeDzy8IKIbdl3JlNXN84hi8by9mC4KnXtGS2VV/Dxw977p2DLQxIqku7jS2fYubMVd+SLn\nQ7xmDFZ03vviSiZTn3jGl7/K+6HXMT2BX3uP+ljfiMnBc84WatqVMMwRmkqVBkz90fS8tFtlDzZn\nYjcZi4JWKQfgBZ51FChbVp/y0yvwgySxUIcTyzhuJc89JYqi1PXYtaf1QZTB0PJLCw0ffCSSyfTr\nuxi1v9hMlU6A2BtwMobsQ0phqkDpsMCXnYVdrbTcjE0kfIaTFmQVClKycRFqWYHn8qQwtJdW1Fmr\n5rJjsr4r0ljCz3lftGj5r2+N/Udz8wI6SpQObGX40sxU+VpG2uPV/daXFPvW+WZEVMBrsuwajt6I\nlaoKX3hXqaMonCvZf8VGqdr6Ll5AEh7iD5LOh/zoDbgfnV20m+42ahI2zjQ0CkiV9PMp7UdNKnpZ\nvzvYsewnyyrHsgWdD2D5Hjjz0uZvqqdgq+e47MUSqB0La5mMydimSoNOKR2Rk4Par9fi8xm1oQFq\nf99UXXhXdl1tn+uolKHWz/J5areZ05pbbOnzGlGuHJPRIWLVAQ3MBuBxRTof+3aleFxc1Yl2Ykh7\ntb4ctXP3cooHHdAMOFkVg2Yj1HGmFLasWbYUbNONZt5RzDH1UibfZLcvRebzRZCEAJwjSlVIxlSV\nrhcjGgzG6Zn1XzArr0DR48pbUHvud1POIvk/uOoCs9T331dgN4xOtfVQyBZyayyaGQQAUH4btx7V\neRs/d09n8Ht2MSmJpzNHWoYEAGDtcpyNaVorMqIVLhqe98dGJmMS86YDKcHi181QW0ZLcex6/Hv8\nMoKTzuqM5Sf8ziKUja8TYE7Pa/d7PyZT9Qo7wdmnk7GVpWTKSqN+bClR25/HSl79oWYWJpOx3YIv\nlArVY0STK+3EVK2cFI6pso6S2ceZEpU6BisNSfdypUHnQd75ZKWAz9GBNNh0AU3tN1t0daCjRFHY\nykzSUc7+vrI9kyn9HZ5z6jgeT0Z3qbZS5GW7353TuMUiZQjua+bx8pK+EgKeo6yWWzyY1Xej2Hl5\nZdSuK7kdLDarbFkupDhHBp1UcjlRrh3l2cvSJCaEj6Z9y2SuSsNxgfLxsRKlc39kChQ974Fs/q5u\naYtpQ7SeBQm85M0qrWZHYGPRDQAAwPg330VtN3nFKP69C89nzW2e6lP/j3PF/ReSlipT8k+TBVXr\n4acZPACQMvMT5Vi0sG3DJ8xM8Sz9nRT5BQCIu1HtKqJw2vHrmvsNvi6/rQEHBmKXz8qX1MGdtBYW\nAEDugYPsmA5oSjqNaZJB5zncn8tdR7fE4PR/NwN0TWDL1agDv3mZUseSTYDki5E0GLtmZPPp2fMm\n1M5bs0k5P6/hZaYu7UdWE5SWtPLyPaBxagAAFT9TW4xzFmDm/h+afMtkhh+KRe05TSszGR2ofgu/\nLFVNe9uxVK2YHNyWqrBSRRBmIf4fZHPu0Ru7R0804LEkS8bgDC+dosu27qGt39imq4b2Zet+HLiL\np1yX6ItjWfZmVGcyY5In4fmU5endqrGLM0x+e0qbAQAwbxqmY7F5DyMT4lA7d2um8hw316B9/8LP\nYo333eH7A/CXZoaGUQCYeQFkcC2UYTS2VO1+bQSc2uY9pcK5olSFpPtPhge24iynkQk8lTxuzl2o\nndlTzS/itzWApsTPmfcFk+l5+Y2oLcv4Mnlh5TI4cL6MrDg9iS2l1i39sdQyBwd0JDLKblx11chA\nlSiqQAHwOCed66g2nn+4Ul4kv3NPfh3fr8DH3k1QK1Vuwsv4LZPzpu3kloi+0dhi4YB73GMyzF4y\nQylDr6PrwLuZTClQZxPr/D6/P0uIYN83s2YFO2O4LQVKB53WcNqgpS1LBtxP/FTcz8GDvDyb6xBh\n919Qo1y1GNG014PomJs131Rw0z/upcXL1qJny8Viogj++Q1XpmteraYVMIXJHCMrV2LHcg//5cpY\nMtBivHl/8yw+k7F2Psm5tf6ugRfwhIfNeIce3I03psPr8ABmnTlS7rV61244i2TR8zEZ2/TdjWjZ\nmB2bM0fCoWDQN4VsjuevvAG1KXP92c6jiJ+KKS8SHjRbs/c8hJ+z2u+6R1jqZxC6rLTZrF+/k0gG\nNr4v7r9qMaJZLzuWquWfBrelKiSVKqn7j5SEgGXq2JYdz/CPQMzLLr2gETxzjPIwuRmT0u02XK4k\n6gdeg82WWV0Hbln3TvXiAbKlZtvZjVOXC4Ce24X1I4npMmED14EtJXxoBn9enm/IebIoaBHzYfEt\nziJpH7ICz7Q+YVRsfSYzaymOd2n/FKciqDIp8HqWsvu+/7sk1F7VZiqTsfUeuvlM6Yz15314va05\n2j1laP8g/NtX/9A7d2Sbofx5OV4X6zA6zPWRiQ3Zsdy0DIlk0fMJipiqsFIV3GjbsrRYnsK1+MKQ\nvdSUOO14N74DLDNTbd491g+b/n8Zzkn1vLQe2ejXZt/FATJKA1pOjhhoAAAgAElEQVT+ASD475kO\n07aXcPPj72XAu04/dZfh9ebDmEVMpoSDN1u6166zLlCLTvlkTmhL+dlswfSeRVbBHGWzNyxU9kNp\ncAAAvvwGh3b0i+YKdnGAiXejffIOWLnmb0+VqvLVYkSznnaUqt+mhJUq67AVqO7mBzGnG97FH3yA\nZ3Otbofjo/z+QNvKjoz7Dsdu0Cwo0/mE4v2xiW934ftIizC7CfqxAwDIPXQItcdt/5nJZOfg8j93\nj72fd06WIFqSxiZCkUMt2DZAsvn0SUtG7ZmJKcp+ZNdwzUZMG3JP5V1M5rKbBqD2/M8navWtgpvZ\norHL8XvwQTS3nHnFAeiHpap8tRjRrMeDakEN/PbZI2GlyjZkSpVJNowMthQLiitSe7JjZ7ruVvbj\n1uIpG2vTaVxb7sHYwAtHAwTfgu+7de8HXAYmpfH3yn7cXOD9Vg4pDt2OrQhVPnbPVaMDuiGSucp1\n0H09Zr9e0IyXfdL5LboMHsSO7eqK643GD/EuplTn2dz9MF876ryjLvmi6lcXoUbI6SaCxlJ1jihV\nyuw/x3E2AEDhOhKRAFAaANoIIX4vJPc6ADwGALcJIT4tdLwt5OeDNQOA3QDwfOG/myCpxQlISaEf\nD/V5Wi8xLeKrUX9O9jJu/wpzPNW/nmd86fTjFnQ+trL7NelITWU/qn51z3OrH8YxBABJ92C3r+6i\nrLVz7IZL+by+LpGJ7JmJXdGy59mtVHKda7V17w9+n8SOVb3COyXKlPjVBDIlio+lvoeLs2VFqNW/\n4S9/4ySBl/vczGTy1qqTOEwUFKGRV+7metfrkutQO3fLVtfGorC1ITLlG1StE6mCs+Z7gXD239lO\ncJxXAKCPEKJpoWPtAWA8AFQHgMf+qzQ5jlMJALYCwFsAMBwALgaAGQBwmRDCeCWVWapMPjgn+/CP\na7On8UO7ZEc8k9HJGNKByZwzh/HYgLgn8a2UvdSJnxKi0cfsEI3qzPmvWzlhXt1B6agtYxDXGosS\nry5XK68yZL6K72vqHWoSURlMA+XTP8N9x98c+IdMhogWPBvy6i9wUeEZTXj8mJcwsa4lfsKDgaPP\nx1TsC5t+w2S8tPy66c7xk6vJFoJtPqaw5d1o/SquaVjzPTtu8KCwVFWNEc2T7Viqln0R3JaqgJQq\nx3GiAGAHAAwTQowsOFYKAFYCwCDIr5X+TCGlagAAvAAAsaJgIMdxPgGAHCHEAD6CHtyMqbIls/cB\nbP6uNdK9OJGtw7HSkt5PXY2+13kXs2O5R44oz/OTXVlnrJ6NOjMZWoRUB86P9dgxcSmP7zCBl5a7\nvpt4YdtBlbDy0fL1e5lM7RFqV42fVB62xv7zXu6mqjkm8Hc1/U2+2Yl/FG9csh/hY9V9y50PJ0Dx\nUSBt9OPlnL2k4DC5Ll9iqs4hpSpQ8s8+AFAJACYXOvYCAPwohPjVcdjv1BIAVgusuf0OAJxSWgHH\ncaoBQDUAgPLAeX50YPISd1hzhh2j/ZxM4an2fzTHDJjJI9178akSpffCLlHK2CJPlCGyejXUlhVy\n1emHLzI/nUUysH7nnjeLHbv08rvYsRLz1AVfIxtjd5+Oa08GOm+d65jWuCY7NrMpVjxrb1B/2N20\nIHhpnaBp6iYKlAxbb+GWTSBJabZcuv/kPBvofcEV7Nh9aZgSZHQid/PamqNOP8fm4t/ZlkvXa+Jg\nFaRZ7oQwus2n2LOy/iZ//HCOD5yjfiBQpWowAHwphDgM8P/xUtcDwNmeogoAQFkNDwNAxQDHBQC4\nHwCeBwCoUOsYpPxR9KJy8E6+cxz97EjUfjaOu2ru3UWsPu04MSJFmWQeFJ981lvyP9hiDzZ5iZuN\n5NaJ0vvwy7Yym38oWg3D532YOYLJ0Pua/ahkh/6mO0GrpoHZOh+pEqBWoOSLrvI0rWvb8TS+jzf0\nW8Rknq+xUdnv7PlfonaPBtwNLs5wNmcKnXpmJjvyFm/xZ5MW2k1/m7uUdYK1Zy+erpQxsQa4yekm\ng8kcdWQiyvGyU3sGtERtmVvqDAmi0hmr/m98rO0X8CxpFeT3lbzPkvVY553v2YNUq9CIQbMFU+WM\nVtRY0QrTdhwX/hRUplm+xRXa7j/HceIBIA0AOgohfnMcpyQArAKAR4QQKQUyWYDdf8Mh3/XXp1A/\nD0F+MPv5AU0UW6q2dHAuC+R0z6FTXsYkYNj0RTs1Lxa1S12eZdQPhZumbp1+bLmOdDLQ3HTbJXyG\n2abjH/GvQoAMwe7SAACWZUkTBM7Wt9FYGv36HR8U5rj7H6r9wilBDlx4SCLpDnR+izez8Dv/aCzf\nOKj6PVvfheGX+69Fdzvuv1+/Kj7uv8EAsEYI8VtBuy4ANAWAKYXcflUA4H3HcXoKIW4BgDWQ7zIs\njPMLjgcEIcQBADgAAFDR4YzUFDoPm5vM1nS34KaVReccai2psbQyk/k0dpGyb50dui3LEOuHsuaD\nPSuQThp/j6tulRxdrzxP535svZm4cB9xT0G5tD9m1/9x8gRlP7J7uOsJbDmrB9yCQalObP1eMlCq\nCpl1QqfvT3b8gtqbz3CLyisNvVMinHbN2TGdAtwUfsdCMVAlGABSs2qjdvyn3GcUufB3dozCZH1p\ntoyTiNKkJNN7SGWOz+Vs6Y/GFj0/3bGCFeHsv8JC+VapnQDwrBDig4JjkQBQh4j+CgBvAMBnQogD\njuNUhnzr1hsAMBIAOgPATPiH2X8yRnW3Foe0EXy3kPgfvKPwOwjSS4uXW8H+MmjFDJFit+UjSjMZ\nN+8PLd8ycf9FTCar/UnU3vpJayaT3o0TGJrM6VRP7HpdNGGcUT860Ck7MnYbJgS9pwG/PzpIXFEK\ntdPa2SkCfWAgDxOoNsEOxYPOe5BzKeHE+tGME0tnfBkaf4hdrfVfMIsxiyhbFrXzTpw4i6Q3oNfe\nq/XlTGb26nnKfnTelZ3TcD3J6L52ssNNUetXHF2ztyNOQPLFUlUlRrTs9h8rfS2d9mixsFRdC/nc\nVFP+e0AIkQv5itb/w3GcXAA4VGBVAiHEYcdxegHAaAB4EfJ5qu75JwoVAEDq2rLsYacxFltvUpeO\nOX7dBUym3Ne/oTZVoACAWUya/tqUiUSDOy+WLYuXrR2XmzI66BuNf3fZdVFeqna/8yDag2nYapkA\n/HeX3zNa/+4kk+mylhxrsZrJAE7IM74/kacDjwY1VTJ1arfFlSivlBmYimMSJyTxxI/KJehHmtfS\n3PkUVvKiX+Xzo4knQ2tIqDMmeOf+++FTbCXs8Ng9TKbSp+pnUTaWzvjO1+qMXx3M2Yrvtc4adCyP\nx6vSTZFOPz3q8+8rP49nwercn4MDsNK94hUZ1UrR89Mdi37DdGIEtd5djfjeMOwhJBnVdSxVpkGh\nwW5elaVlr3t4jESyaJheZ+qH2BKSNCjwYsX/ZHyTsXTG9jQLS+L2kMX/BDq29vgG/chkqDtUrJJs\nJMj64mXs3BJJjsn4vZhKhO7iTeEl5YTNvinpbOlpPCyg8ifqPXBkRWwdMaFnAdB77rqu74PaOvGh\nUXVqs2OzVs1FbWq1A9Cz3Ok8m1lf4o147A2cxNOrxCW/LFWtLrVjqfplevGwVAU9bLmcTB5+Wwtc\nuz84e/ucMdhdIuO1SX4Lj08XSgCA2n02obbpQk2VKFk/H/5lKX+ZILIyp9KYvXExatuigYhqwAsR\nz/r1O2U/Ovf16DiuVFUAtVJl6xmn0LlnTUbzD07MSvwspo3ilt/E+7HlV2fOWS/Lit+qrysuBceK\nJQ3grjRKJSLbxZsoCDJE1cPvQc6u7LNIFg2bmwCK02fwJ6C2hgIlg8496rxWnUlNIbuuUpCF2qkf\n8e9r0p04UzdnNy8mzbIRJTGBFKbrpuw7ooJpOIifdBthFCOlisL04W/YKge1Zc4Ua9lKBF/O4/Em\nDT8MfJGjCpQMOvM7chOPJ6v4OTZJa8U9AedKMinjk3uYsnO4t2DoKFC64/NFzmhKRpDG8dDadqCO\n4yl1WD1WRt8P2LH9fXCK/C0xFzIZOsctEioPXjtzN5OhSpTsvezVvR9q511UlsmkTJ3EjlEk18Nx\ncfLnACtROgpv2+c4U3y18e6V8dF57+i8L7p/MJMpN+03dozimeqBJ+/ooPGbfF1QFxczg3TOEdgV\nnbKTv0+2QiIoqbRJebb2yT7Fu4WeU8wIIalUyWKqbCHvj41KGVreRufBzu3KGSQWfPaRsh+dXcee\nB/GLtuYxtTtQ1k9kFZx2TBUoU5hyN/nJwGzz+fJyp0hrM8qgUyCY/2aS33A0vi5b1/nMnzzbjRYf\nz/y8JZOJuwknFXcdeDeTKbURW1ojmISuoozj4mxZk2TccMnj7dzX/lt2sGO3VMCkuzpz1FGg3HRN\nU6Sf+Zkdu5ckREgV7K59UXv2omnKsaTXQOrD2noW5Fxs2JomK1s28IoFRY7lR+0/B8LZf0GNsjVj\nRNJ1D6FjNcaqd3O0vlvcU/yc0/MboHbJy7YxmVA0r0YuxFrM7Eazled4qcS42Y+tsdyMbTmdjF0Y\nB//FSRDXtP9c2Y9b98iUfsTPZ0FGLvlobZzxdX8DbjnTGWvv/aQM1Sgz11Gvy25A7c2DOJ/Sea9m\nsGO5e3ngNUVULCZnzcnarpyTzn3d+i7/2Cc8FPgGbNuLXCHYfBdWKq09L9E0oYRblGy9OzRTFQBg\n1iq8CaAF3K1CUQ/Vj5iqClViRKuudmKqfp4Z3DFVIalUmdb+o3BK8YdfnFKnapt8gJ/fxzMEl7Us\noRxL1a9sfJriK4Ms7VdnV0itCJStVxfbpuJ+olZVYDLr/0NK/ViinJAVGbbFlEzL7wDIS/BQNF6F\njcab2uScRfJ/kF3reT/jClAN+nH3jpekkBS2fkOd82Tn0EzMp6pvUfZren90NnEUVhV3yuu2LPC4\nHhlszVG2/l6y8iBq/9icK8YmKG6cT0WBKqtUUfWjoHKFytH2lKpvHgsrVbYhU6pC0XpE57w75xiT\nuaO+2oytlTpdoiRqy8qQ6HwUe194NWrnZJpZ8qhMm1X9mEz1K1OV8/GbNbrUYpxVdKoLD4i1Bb+v\n1c+xTJ6p3m16MBma8RX3zSAmk/QvO1aEg99j6o6qV6if5+zHJNm9D3J3vlu/vanSqwOdvqNq10Lt\nnD17leO7af3087syaTt3a9LvgQl8sVRVjhatu9hRqn76NriVqpCMqTIFdQfo1JmSfgRIkCpNG9ft\nh0L2wtA4CJ2XOu09noUVcRJHj8Q/ynfNiYvuQO2GN8vmzJUoE9DrqA78g7P1U3yfE26V8Du5BN3F\n89tE/JGmfFMAAE3G4My5SElZPfrh1OEdsqUMefmhSFp8OzsWRwosUEVVBr1rV2d8VXiYL4G2PqQ6\nSpROEkPyG5LxNaxQtO+mo3gGpw7Hkg507tFukpW8VuLOdusZl8EktlI2n8uvvwO1nV/M7iF/FswU\nKEq4S7nifAtUP0cQkpYqGU9V22dx1owpK3LaJOx7T7xDHdS74xm+u4wkXsR1D6l3m24yoesgshYO\ncp7x+ywmc1U9XoTaK9jicZEhFCybthDsO/3i6qrRua5DsxKZTIVSPCQhqjuPj/ITGW9gl1PDx9S1\nM938TZ02OARCyqGmARqLmnsJ3zV5eV3xKzA5ano7TlMR1TAWtXMyslDbN0vVxZYsVd+FLVWewFZp\nCapE6X3IuUzjsXhX6GbGmVsfrlKOOuYrrwsvuTL/c1xypVeXa5nM7MXTixxbhlD4IJsqxme6Y2W+\nxAKzciVTSN06HQoDGUwYu03JHJuNpO+Kej5dBnO3Xenv7Ljt3PpI6imd/DwZcaU64g6UAcvy8c2u\nVaZEuYXUifhdkfGR6ShROtdOlShb68vpHnxzuvAjXlLKZKxZP89E7ebv4vfrzMf+FGsPZ/8FMUxj\nqkwWkL6beJbNtMbYomOLJVrnvH6buEtjYCV1HA9Lq50gIcwbiAnzaBwWAI/F0ulHB0fmxLNjFXum\no7bpfaZ1yW5fzXm8JjZqwI65BVsWyYhyPIg377japU0hI1WVcYKZwC2rmAy2lB+TepIyuHntJn1l\nfsELkqdePFl5Hh2LkpoCmBGb6lzXvnt4hqBOpjdF6pj27Fhmnw+LHFsGN59DWi1DVinDpG9q3Zp2\n22zYt/GA55aq8zvbsVQt+T64LVXFRqmiJs/T4zj92/zGakJHLwN0dcb2030iTQEnhUl1Urt1cOZy\n/o6UmBe4ckbr/AEAZF4V+OIpg5tB1ibju/ksDM/CFAGNS3KSTL8/Qm6NHZmEFfzc1HQmozOWm+79\nrJewslG+Fc8wpYkewZaQ4OY6ZeveRzZthNqz539p1A9DhCRrOs8OZalqnfDF/VcpWpx/0QNW+loy\n+3EjpcpxnNcB4AoAiAGAYwAwCwAeF0IcPIt8LwB4BABaQH6x0fUA8JQQ4qeixglJ91+tZifhoW+w\ntWHIBFJMtZuknItBYUlbC6GXLihbH1tpcde9gZuOqUsKAODWq7D75sdJ45Xz0fstJAevUp6mlanl\nd1yPtx9AHieoOk82v5bLb0JtGdu/W8qirJ+oGFwiKK9zDd73l9h97eb7bXqtbV7AStWqgVN532S9\ni5vFyVCTIPDanbbuRyisiU1HUQZzM4/Dm1l43WxR0sz6qQPVunkOM6rnAsCtkK8cVQaAyQAwCc7+\nhagCAKMAYCHkK2F3A8Acx3EaCyE4k24Bio2lygSyWmXnt8K70qOd9zMZHQZzW/EmbqWbUz87gDyY\nXgXZWK9nYsblx+P4fdZBsNFkyH6fno06o3be0aOujaVz/XTxfjSWEzXSvmUxb3+1xi7u8lO5Mm0r\nccBLax9FZA2uVOXu2xdwP25aS7w+z0Y/Mndb0r045u3vK7hM6e/txMVRV2fcjWqOLluZjzuf5BuS\nDfcHzrkng8kcg8ZSdaElS9Wcx/8AgMKsuQeECJwm3nGcHgAwVQhRUSn8v3P2AMC9QojpZ5UpLkrV\nX7fgj0eVafzhy/s78IKeOpA96L07XonaOdvOqthah6wgbewzOA7BSwWuZ8+bmMyBV3GobZXeacqx\n3cTh/vieVfuWlysyjTOypRDQOda4M4vJ0HIu1E0EABD7rBkJJYVbnEZ+fnBk/dhS4NykKzAdz++N\nCoXOvaexnnO3cUUs2F3TMth67mgZtTIz8f3xS6lq08mOUrV47uO7AaBOoUNDhRAvBNqP4zhvAkAH\nIURnpXC+fHMAWA0AjYUQZ/1gFRulylagup9p4k9ncJmLiZU4/ocBTCa9W+DuClvY/hzfldV/MfCS\nHX4v7pEJcaiduzXT0/FNFnga+wOgF/9jC6kf4AymRuNOMhmxcr1X0zGCm3FGXn60RUdeC9H5dY1E\nEsPPmE36/AAAJA1WuyO9hFvrVEQFXkHClpWbgrv/fGBUrxQt2nS830pfi1Oe+MeWKsdx+kK+66+L\nEOJ3DfmaAPAzAEwXQjxRlGxIxlTJoGNq737znagdCfxe2ooFOH4ddXmpF1iqQMnGSgBOgJn4Oubo\nagjeWSJ0FCgdeB3oS5GbnqWUcdN6c/l1mBTTWar+IMoUKNr3zOPlmUyfcpi5X2fOJ1Pi2LGkZPwB\n1Nmeya6dbhQSblOTvM7Yya0TZSOwBcP0WaDkuYn/5gWE3YozyruIy0Qd5TxVc+ZQ4kwzRcffRAuz\nsUosqoPa1Dor66fh9MFMhv6ulJz0bHOkcFoTTqzVajoHtxQoAHf5/IIEuUIINbPuWeA4zvUA8AEA\nXKWpUNUFgPkAMA8AnlTKFxdLlS1ENcCkojuvjWEy9eZhpTh3g7p+mJfZMH7DLWufDH/NTkDtSr22\nGvWT+Rqp0/aEXtr20AzMkdOhNM/qccutOmT3+UxmfZs85ViqfmXju+kuphuQcl9zJYZij+QDKAuC\nN5kPhYzcd+O96vhD2ncria74ei3iKm/IY+BkYQtpk/Fvn9iffxtoXBONaTLFVRu5UeDbJrzmpVcw\nfTafTMdxVsPiOeUEhem1e2kRjGjVBLXz/sChDH65/9p2sGOpWjTvCWNKBcdxBgDA2wBwpRCCZ1Bx\n+VgA+AEAZgghHtEaIxSVqjJ1YkTsnQ+jY9HDsMXkeF8eHF02Gy9OOuZxW0gdz5+BzF44481UsaCF\nSWVFoXVe6lcz8aL75K2cYNG0BIMKbiqUtMixToFjm7s9PykDZGiy9FbUjh3MOYZyD0izjIscX+c6\nKWcOAMCYejgI3tYHRxYwTNcJGahrZs4WnkHtZ6yN1+P/eS++jzXH8HuYOg678pLu5m48LxULt2L5\nZCWUbNX79Mpd7ItSVdGiUjXfTKlyHOcBAHgeAHoIIZR+ZsdxzgOABQAwSQjxjPY4oahU2bJUbf+q\nOTtW/3rMOqz1oF/bnx8ktbjarOYWhFWtI9gxG5DtiP/gxOdKeMmtZQo/Y+AAeAapKMl/57oL8O9c\n/iu1JUZcyMea99Uk5XwYLPHh5HWWMOcbUA+YItifKRl05rjtRWwh3XzX+8pzdMfSuY5av+LEp/R3\nmzCZCjOwFUxWjN0WdOoDUth6FrYO51bChAftsI/TmM3ZS2YwGa8U5XNYqRKQX4wAWR2EEOUL/n4L\nAHxQqD0RAO4AAMqoPFgIMeWs4xQXperAXXhxWvkiX5x0HlonCoeZiRxeEKLMYlxJ/WQX9yqp51yK\nSzJE/chLMvitWJjAz6QBHXRfz2MeFjTjwaUUex/g1pFaIwOPO/OSaDRnQX12zFZtObficWQINld5\n+md4Plu7TlKe07sTp8zJyVL/FjWWVmbH9nfBfEQ6yhC1VgMAPBXHqQ9U0Hl+KWEzAK9T5+Z7sG0o\nflcbPM/fU5qI42YMKYXOdUbF8neXPi/9t+DM8+euXQ+Z6455qlRVrBgt2l7wbyt9LVzwZFAzqodk\noLoTFQWRVTG/TLXxJAbmRX4ejZup8zPfsVOeFJ2XOv0tvsOhgaOUoRoA4MFY/MLKx5J0TdAnLZkc\n4Upej6tuJUfUWVlx33D3XxLg+zNkKw/KfLfvdaidt4bHuph8AEUnnuGkc38odH5TmQL1xQ7+G94Y\ng39DEwUKACCyWtUi56MLet7BAZxSoepE/K7oKFC5l/D4rciF2IKR25XLuPX7hALibyYfdg3y4ZTs\nb9kx081E+tt4Xdp601gm0/plzFfXppQdt7eWMk8UKN1+bCnqm+8mcXGcG5U9v6Yud7qWyt4LGrJS\nDrhFm1q8sq6vw2Sih+H3+ZYKONxhRIRW5Uj7CDzcMyQRkpaqti1Li+UpOIBch4TRS/4ZLz8Cu4fg\nD3udt80+7Cb3xzQtesfXzVA75jqz1Hs650sG3MVkDjTDWWGy+3OsH/4A/TKcf4BksLVrThtJMs4e\nULsIUz+U3PtB+N5TBnEAgJwdO5V9uwW/EzZ0Poq92/dG7VnLZynn0+4PvkFb0Uriei0G8NuCTWFK\ntqkzFt2U0A0JAI85q5At8W7MDDxJwC3rrB/uv4oVo0XbdpYsVT8Gt6UqJJUq05gqP5UqHRlaKgUA\nYMX5uPxE73a9mAwtZuq3kkfh94c02ODltZouzCYubtmzOWvFbNRu8RZn8q/zDlZyZfUbk+4J3ILs\nJdwMqLZHYcD7oUH5WR/FMplNF36i7IeOdf5L/2IyNd5XZ9RSa+eCzz5iMm5l0yZ+wuecWwcn/WR0\n5/Pp1e161E4bUJ3JNHwMX3tEi/OYTN7azeyYG/BLqWrX9j4rff248KmgVqpC0v3nJqgbZva6H5kM\nfUHbP8VfxqptsaVMj5OFy3CXAc/U6rwWZzVOPsJfap1FZtz2n1H77voX8QlpgI7V7mnJ/SFcWg2n\nSXhkJOZvCmqlWzvETskgGUw/gDS2RsYpROsj3hJzIZOJTGyI2rMX80oJdPxDubzOV5VIXhyZYmZi\nCu5X4rqiTPl5u9Ru3rXZEioCkqjcsyHPEKSeg1avceWsFmDlzFSZn3IUZ4tObsRpVVT9yvqWyTy1\nF6fxv1pLXU7FFDIXrrMUu+9pog6AntuSQkeBkoEqUR0e5fVHT92LEz9WP6N+5/cP5m5wut6mZfM4\nXFoZI7m/7Hf+qsixAXjBeFmx+Gq/VEHtAxceYjJ87ODaXJwVAoKh9p8nKDaWKltBzVFxDVA7J3Ob\n6TQRYpeXYcey2nMGahO4ZYHb+inP+Eq4FacWnp7fgMnMbPwFaleK4NdO4eZunGLfPXyBrTHW7CNA\ny8DolIAxhc616vB20V3ynLlfMBmd+6hDkukWTGNb6HX128TT4QdWwsfu3SWpn/gT7ue893g/OjFD\nrF/Nj6St9U6Hn02HUPb9xAR2TAVbCoGsfuPsNfOV/VKLKLWGBiNs/O6+WKoqWLRULQpbqnyB7IW9\n7CbM3BwhYSfPq1TOyviUG+mD6B+4EDE6mS6Mbu1M0i+dyI51ugHvHCtcxlOOK2WrlajL+2IG8XnZ\nHzMZt65LpkDR+/zhX9xsOK1xTXaMKlFu7hz1LG64LVOMq6dgS5DpczfzihGo/ei/ZQkbathiJ9fp\nx2mD2a+ncg5RmAqUi4iTbyYAfu5lob/MvTSZW2wbEiVGl77B9B5RlEw6YmUsE7QZyu9HdY1qEBSy\nAth0ztKEmj54c6ETR02zsQF4RvbOaU2ZTHRfNcs6OFjPSdmlriwgQ1BaqkAAhKABxwQhaamSBaqb\nPEim7oEm72PXQ8xLPPCZ8q3UkbA924qn8JLDxwRpI/jHNuN6HAhuK8uHmtAB9MzopjidjDdMJVO4\nWd8WTO6HrJzLNdHqFPldT2C3ar3XzJIf6i7DMTvZHdQJJDrw8hnPeI1bNtP6Y1eRThmUkHHVWMDu\nh3nwOI2d04EtV/2JPE4nQd8DankFMLO+yua86CR2WcrY272K+fWj9l/FCvVE+/PtWKp+WPJ02FJl\nG6lry3q2GMnGiQH14kBJ62RxCbRvaYAuoTDIfowvViZp62kf8/iKjMtwPEPLN3jcSu3hgS+MVIGy\nCVsL0dEbsOK39F0+Z1nfCyeOZ8dU58lIBtP7qe+RSWyYjnt3U0EAACAASURBVAIlV2rIfX1NfV8z\nP+eUF9Ah8KoFpmSbOjDpZ8B2Tq9B53jewh1MZrbBWH5nPtra3Kx9RBLn9A4+L6oeX7ho0o0Wt2Ab\nbhkyWRMzrv2AH7yW9svn81j6OqUMvYfDJOPrvN9dB2Leh0UTxin7Yd+ZwGoPhxEgQtJSVSo2WtR+\n9gF0rMQBrB/q1m6zAVsLYShkyf19Jf5Il/7OvTgEk4+ArXuoS0Vgy9pIY6GWtfpaeY7pWDo4eCdJ\nJf/IrEi3rQQAk351YI2EsXYtdixnD8+YpDgyJx61K/bkRbL9Br1HbZ/lbruVL2HLnenvHuyWO1kV\njuqf48SPstO5dYvG7k1tzMvdUJhuJNqs6ofaq9rgDHLfLFWt+SbdBD/89ExQW6pCUqmSuf8oTF/O\ntEnYZ554B2cw15HRgVts025+cJqOwi8G5YPRHd/LUiB+w9bvE9k4EbVzN6W5Np9gU3TccoPLxmr7\nHFYaTKsz0L47runLZKgSJZtPj6tvY8fECmwdoUo5AFfM/X7HvFynKPymz7E1nx1PY0/FxvsCz3b2\nRakqX09c0MqOUrXgl+BWqkLS/bf+WDVo9BOutxd7Q+CpyKYM5iZKVN4PMiVQ/fJFlMOB83nHaRki\nvRd0AqFLGCihS9BZ9KKJ67PDDp7yvCzbHXdfMCpQJh+KzFd5jE7CFFzAOHfDFiZDlShT5ePuHZiu\nISWbF2t3y9J66HZ+7cuHBW7lkIGeJ+MCopmOsrGq0WBpSXUGk/lUrvAnn4+WgvsJO8bHkhwkiTC2\nLEMnruWxR2X2Yj6nrTeUYjJ0jrJKFPGP4AQAnTkn9+FKJyxX13A1uXZbCQKy+TScfydqJ408xWRi\nXsHrb/IrfCynFL73NAY4a987yvmFYY6QtFTZKqgsA+UT+XESj5mJm41ZuzN7cZn+2y5G7b0djzAZ\nioiWPBVpzhwcmzX1WCUmMyEpjh1TwdYiI6OK+CBandGkA1uWB6pEbL+AK6Y6/cjGj6yFMwJz9/IP\npy0Eu+WOFpcGAMjoi+NUOj7ClfCKnwX+IbUVH2TrfTKFqdXQT+uRm2EK9LzWr3LrRs33sGJRYhEv\n1fJ90pyAx5bh6Qw8n1ca2lnL/IRvlqqW3G1sggVLnw1qS1VIKlWVStQQHatgU3rufnXwXbBnydla\nPGlxaQBJbUQXYXKfaaA4AECFL+1UiA82ZD/Kkw3qvhk4caWbMCGCzRzGn7u4J+08dybKR/yPA5gM\npQnxO/aH1nv7eRQPlqYElAAAs379TjkfP91ttiCbs63MVBMcn9uQHSvXI8Oz8be9iN+xMnu5brT6\naQnBbiH4plS1sKRU/RrcSlVIuv9ETq6WEkVhstsdfZi77e6rzDN9TMZyb7epPufENdyqUHaGO+SN\nOteuo0Dp9NNhzRkmM7QG5oiR3XeaDZl4++9MxhbWPSSJg3gTz6nXFl7yJSUbl3xpPJbv4uu/aOcD\n03URTgRJBPX9kClQtABs7tbMfzaxIkB/1/RszrPmZfyLjlJTbhp+55KncZnUsdwSQxFRlrPkuxWH\nJpOhpMmzfvlGed7AVP4sTOh/NZnfZEk/QGS8i8HzUoEyDU9JHh34Mx6GPYSkpUqHUV2GxEV3oHbD\nm8+dh43en7iUgUwmaUDgsWK2XAE0qxBAL7OQ9t0jjiuLlIiVpm3r9Hs26CzEO54lwaX/MgvuDzb4\nafn10hUq/fj76CIEcE85tLXZsrWJpBZTAICxB/D7tKp1BJOhdVRpDVXZfLzMvqYxrgDyOFcb6Lnh\nMGq/e/1vsGP9Ec8tVR2ac9e/CeYvey6oLVXFRqmiiF/B64elt+PMyF7hz/u4y6fslTjN9pcW6lpu\nXrqFaDwBgHlMgQrt/shlx1a0ikRtv1P23bz3qe9jpbLReB73JVZpsDITRDbhRbpzN6ai9tEbuet1\n6TtqclYTmH64aCzWr2+pecRk/Vz4IO7nl+F6fGQmCIUMVy8VYzrWxeuuYTJLms9A7Vf3N2Iyi1uo\nKzaY3HtbLlRK/AwgJ382gY3fy5cyNeXriQ7NOEGuCeb/9nxYqbKNMgl1Rdxbg9CxetfiD47O4q1T\n204HsrGSJmH/ceod6rRsWx9t0ZGTMM6bxsvAmMxHdY7sPJkMzSCScbt4ueAfvg3HKlT+hLuyoupw\nbpmc3bzmmwl07nWv5peidukZkUzm+MW8ZIcJqDsp7wQvzEyx71v+AbwvcTFqy/h5TH7nv27limCl\nT+3E4OlYP+dmEredz5ZGnbXDacc5lig1gw7Sp/B1M/4WO+smhd/31QQygua6b9iJmdR5V+hm+GJi\nX/ArpupcUapCMqaqRPrfTIkygY4CpcPVJPNzx5G07DZZ6jpX9viCZMfUL+yRm/CHSsd/Ly7k/erF\nPKj7piR21SH1LJKqsdTXTpUoWT+9unKeIdiNm7QsCwDAxPo/BTwfuQymXTh+sUREAzoLs44SpRPL\nR+vo0dgb2XmnerZjMqXmrEBtmQJFEwBy2vOSOPWvVysR/H7w1HaKAwN5kL4tQkzKmwVglnhiokDJ\noKNAmb6HwaZEneqFn8VSs1ecRfJ/WPcgd+/3noJjJE0Y33VBvQmvkL/7wqguQK+4YjFASFqqTCkV\nbFk+KA+IOKVedHXgpWvPtEaeicm83dP8o1B1Iv4o6FgebN0f035krNnb7sCM2DqZSE7bZuyYWLke\ntYNtF7/3Ab77rt8XB+1+mziXyfjpvvYbOr9hwwWYmyixv16CRJvV+Asliyui5VPeiOeWKh2YJBtI\nSUyvvAW1Ze5sukmb99UkJmPyvOwfzJXe6h+YVQlQzcfLdUpH5lRvrBiu/mkkHD2801NLVaVydUWH\nJnYsVfNWvhC2VHkBnY+9zoNNK4xv6DhF2Y/swW73O7ayVL1CbWXRUVA6PcyD/Sp8Ebjbw7TIsMlL\nXVVSef7IzViJOtiEv+OUQchWFpaOTLfbeCD/1I/fY8cqReD4Dp0aeVSBkqHhPD6+KXM/hS3r56mR\nuD1hE3ft5XXGriKdHbqWMvIVfw8S/+OO+8+W0ifrRyerUgaqRNn6kEc1jGXHZi3BcU7msUfqEI2E\nKVj5cdN6T/vpmcA3DjQLN/cSnuRyzcbAXe5ekpGWmoWta45QW6HDMEdIKlVJLU5ASgp+KFu8jV1y\na7PVGVaZkurzcX2xAtD4K87Wu4kwHMse7KrEVWW660hafDtqp74jCaz9ws5Oya3ATRko4WNFo170\nYPRxAa7A9Ivmz4tbyLh8AjtGi3JHJnLOnNw0OynfNCaQurMB9J6FCMCuIlsfE5kCpfVsOkR5l1jq\nG03E1x4ruXYT2Mwui6xcSSljMv6FM3lAtZeWxPhH1ffaZD5DtnKrWNISXJUj7oSkKsclWAGR9fPM\nlj6oPaO3unyUqStU5xmnrui/SKjjqRE+8f+FoFfMBMXW/Sdz1cz6PQW1H93DAy7Xnq++H8HmmqHo\nsvYkO6aTMWMCWUwVNdnbUs5k953GXVUszV2xC5tyzhwKnfEPDuBKFXVj2vpwymSajcAbh3qv2+Gk\nksUDVZvgjiIxeCcfizLw9+x5E5PJWxN49pTOe9onLZkdm5mI1wk3CUIZ1cm3g5jMb73fZcdui6Gl\nhsyeKdU5Mhy6g/+GVSYF7krzO6tRRyYyCbv3Zy+axmS+PY6TOkYn8oxbk/nEzbmLySQNXMmOBQo/\nsv8qlasrOjTmz7YJ5q0aGtruP8dxNgBA4ejSSAAoDQBtAKAZANwDAI0BIBcAVgDAY0KIdYXObwsA\nYwpkdwPA80KIT//JpGWWKvqQxn+Pg3plMinZPOCSWgNsIXUM52FKuhfzMLlJ0ja3D36gl4z5kMmY\nLHK2Yh5MQSuwy8a+dWlX1P40dpHRWCtekWRwTnTHZC+TqQdqJSptMiYxzej+kbLv4z2OMZlqxFBm\n+mzy6+AKP3/n7KSf68wndTwn903uov59aGFbU7cmnU8ScG62mtnl2DFVP7owUfhNFCg3Ictq1CLJ\n1LhnVImiSUoAANHD1O+lye9jQ4EKKoSgAccEAVuqHMd5BQD6CCGaOo5zHwCkAsBSAMgBgOcA4E4A\niBdCnHAcpxIAbAWAtwBgOABcDAAzAOAyIYTxVliH/NNLThjTfnc/jBfmtY/YIYXUWRijl5VnMjs7\n8I+rCby05Nna/fpJZOkm3Aya7Xr33ahNYzd0+6Fw0+0cWaMGah/8mNf+q9Rra5Fjy8Z30+Wuc54M\nXj7DW9/BMZIJD9upkKADnX4iF3Iti8ZH2ZqPl/x+sjlfsgGz0r+bgDeet165BzauPe2tpapsXdGh\n0d1qQQ3M++PF0LZUFYbjOFGQrzQNAwAQQowmf38JAJ4CgPMA4HcAuBYATgDAGyJfe5vvOM4MABgE\nEFigguM41QCgGgBAeRbCbLbIRcXWl4y0PZBpSfs92/gUdd4hFcffcU8hoDIdh0gK24J6IdTJfKSE\nfaauRx3XiK3UZHrPdAn8/FTGZPQEFG7dHwCARdnjlDJUidHpW8vKEcE5ulJ24jg42XxyEvANqdRr\nDe/H4Ddt/tvN7Fhd2Kg8r/N9OCMqYRk/J7sDp4bQmZMOF5wJ+m/hZbomc4oyJaxtgK7tz2T2fYvX\npeNLqzKZ+CZ4Y2n6rtgKZaDQ6afNUAlVD8lqXLu5HmqfzONenDDsIdBA9T6Qn5TFCzLloxvkK1H/\njdRrCQCrBTaH/Q4APPpbjfsB4HkAgNMavDFaisWaeCZTsad6In/eiy1Md/37OyZz4dprUbs82Akg\ntrVr/jWbB7zD27h52Q28IO38L9UFaZ+qvgW1F2u4VE1dI24F1+syILsVtyKDDi+UzrVmvI5jYho+\nbmY01rmO3H04M0rr99l0Be+o207aMxP5gyj4MqZ4nUxZk9/00T184y8Je2agJWAmjpa8B4YhCSZK\nVOp4bgBIugu7oSY34i5TisiKPPUk98gR5XlGm5Rl/E7XuIq0ZedV5ptz1XxkGLqvScD9mK4B2Y/g\nb0/dt7jrMfNV/H5POQ+/3wcEXp+9gnOOuP8CVaoGA8CXQojD9A+O4yQBwEQAGCKE+O/WqgIA/EVE\nD4NZstcoAPgMAKBExSpb/u6KY5R06sRRRadiz3TlOf02ccbsgZWKrgIOADBuLK4sb6pU0RpRyXV5\nfShbLyw9b75GQVoZetSnC3MOk9n+FY6D0FEQZEj8FO/UGkoMoF5aj2wpTM3f4bEbAIErbDrEq7um\nN2UylFzXtJSNzrO56CShB2j8PZOJG4ddB0l3c1fj44T5vIKG5VUHOtf1Zm2z+Eyd+5P1Eg8MX38n\npve4ol4b5VgyZL2M+87sJYkbhMCVzLGH67FjM5pg1cZNglCd+zp742KljM5YB+7C97CaZA2ixc83\naWSny3CyNY5JvGojJ/L8tgkef+dTWBE7MyGc/ecmtGOqHMeJh3wLVEchxG/kb00AYD4AjBBCvFHo\n+HAAiBVC9Cl07CEAuE0IgSNqA4BpQWX60OZ04wvRD5/gCN3e7XoxGZ2CvNT0/tN7Hyjn4zdpXOJk\noqA8obZgpL/JF3yaFj08i++mHozlnDAUL2XiD+ezcZxp2wTd13N3yoJmmAld97fYNhUrh5sv+oTJ\n6PTjFmQuwpzMbZ6NX1xB72vG7VyJqP+COoCZlkfa151b4Z1IvkbTahBSzidSQH5r10nK+cTN4nEv\nVIHVeTeyXuHrwpYBaoZ5W640nfNoPdaao/nv5WesrlvwJfuvbF3RMZFz75kgZe3LQR1TFYhS9Qbk\nB5i3JsfPB4C5APCSEGIU+dsAyM/2iy107BMAyBFCcN+SJio2qiU6fIDTrsWluwLup9RiTlZ4qoud\nWm5uwZbiRWu7AeiVJqHsvIvGjWMyOgrckN1Yp17fhtcwODUvFo/VbKZyfjKYLMx0fgDyOVJQ1xoA\nQNptgZcr8Rv0fjT8mrMhZ1zHNwoUbl2rbEMU9YMdctS8LphqJWJx4HXtAPylEJCNV1zZ7LcN5Ru0\nJXe+idqUgkIX9J61eo1bkGuNVCvP1igeiFtVx6VK4Y9SVUd0TLCkVK17JfSVKsdxSgLATgB4Vgjx\nQaHjFwLA95BPo8C+ro7jVIZ869YbADASADoDwExwIftPB24tcm5m/ohOuDiys5QH1urMp/vNuBzG\ngs/UqfamoOM3WXork4m5Ts0qrgNavFRWd8uE3d5N2Pq4pb/FXXLxj2DTvk7x24Pfc16d6s/gyIC8\nP9RB16bX1e4PHB+1ohUPQo9qgON4crbxYGkK6mIGANh0oZq41wS21oDRh3m80rdNqinP0xlrz4Nc\n+ag93A7XmQ4OzUpE7eWtv2IyfiqCfiumtqxiFLQfX5SqMnVEx4Q71YIaSFn/arFQqm4EgA8BoK4Q\n4lih4wsBoAvkB6cXRk8hxE8FMu0AYDQANId8nqrn/ilPlY5SNTSD71qfb6iOO9ApoGmyoB3rxz+A\nvwxXx6TowE8Kg5szL2Ey2S8noPaiCdyaReHljrn+b5z3J/MJnL4UudCsfIitRTeqHg8yO3whzlYt\nP9UsbX1/7nHU7vn8I0ym6kdqUlMKN101OtBJ6//zm/NQu+bVm43GsnU/KN9VzCtqF5QuaFzeqWp8\nrU+9XW1F/Ws2fp8p5YRN0Gu9Nasrk9nXCYf06jxTz2Xw9/mhofehdpWP+T4/bQR+pmRM/pRoOmfP\nXibj1oY+silPu8zdUHQgelipchdagepCiC8A4AvJcf5F5TIrAIAzX1oGf7EkKdcaD3bZpdiKMdvS\nR6DSvzhVw4m80wH3I2MwpwHMpi9sROnSqD0nQ/3RltUQLAVYEZXNJ3UsfiRi5/OFaO8iHKey8T6z\n4E6d331BNrfc6cDW4ni4P3YbVp7MF/hfhs/GY081G/sW4gqR1WakkF3n/kHE1Smpl0rTu91UnnW4\nkU7n4HVByvNzJ44rOtCkBJOhwf6y99LRSCyQKVE66PgIpkSptInHCdZdrUFK+aT699BRov6+giQO\nfW+WqUuP/X0lt6KWlmQBU9Daoi/yik6wPJsE5Q/jMjo0CzIlSgVb5KimGcC+QB09USwQkmVq2rYs\nLZanqNN6KeK+JxlEg9RkhX7DT3JL2Yu/4TTOPnk41r16eF4Gier006P3LeyYWI2z5GTcZzlZWKHW\nIiuszl0+uft5po9XyL2Ex5jpWPP2/AdbYqqv54HYJrFQtixeo7b9wo4llcCWzKD5KP1DyO7Zg7vx\nhn94Hc7ifd54nMCy+S6eIXjRA1ij/nkkj7fr8Md1qL2s1ddMxq3EHDeRPQNTKtS9hrvKvSSeVrks\n2yfvgJVr/vbcUtUpzjiMGmHupmGhb6kKRcge0CRiQfl2F1eqrqpnJ8PMFvxc0Lvfws21Jm4x2Yuv\nU/1dJ55hwPbOqN2lspqDJaoOT1DQuc+RjbllkbIlUQVKBi1+J4kCte8erMDWGGtW5NhkgV8wxSwG\nr/YIOzE7JpuCDmvOsGPLWmKr0/0NzAKY6y7D2aIT6//EZNyMx0kbibOLEx9Qc1LJxyJ0J5LE5gbP\nkeeMl6SDcl+T8UdyGWrxslUSzJbb2fT3KfONmu/KpF8Z6Bwv/A83D5cH/FvQsVKFf5uzcwEhaaky\nLVOjA7fIJGUvbPyPWHNPv1TNCyWzGNAPns58tj/Hg1brv4g/gFJlqDsO+k6/mVtUYp8JPAfBVqBv\nr6bcI/3ntTiORlYsOO8iPFbEz2bmeS0mf4lSl7M78KxTmo4PAHC6It6AnulGaeIA1neYEvBYSUs4\na3XcjTr0lhhO22bsmFhpJ2lh9xD8TNd52yxFXgdlFuM4mpNd1C4gW8+47DxTGZ350PNkYQvXRAce\n4UE5+AAABtbnPHwUe+/Hv/Pix99mMpUicBWHHoTDDEBeDYLCS4oH175hfTDX9m/rP4Ajx3Z5b6mK\nvcNKX3M3vxbUlqqQVKpk7j+dB5C6ZmRWhfgVOK4ovd3fTMaW4qVjNrYFkwXVTd6s9k9hl4KsSOtN\nm/G2ecSo65iMjFtGNb7fqe22+vb6Oij8zMKy1XePq3lxB7FiHTsWaL8ymK4TOvcjt6vEPbsIW5WP\nXc8Vi19GYDedrU2k33BLQZHBS4XJBEHh/itdR3RqcLuVvuamvh7USlVIuv9S15ZVKgCyh/Zwuzqo\nXV6iVFElynSBn3YM84mkjuNuxfOG4iwsWRxf7HK848pqf1IipYbOnPtu+lN5js59bkVofWQfrior\nsBIlOrZkMp9jAxOslrEQj/Y3BsPLnSx1mR7vy+MKy01Tu4ESV+D6jWnt1Dt2U9hIAbcJvm7YIWs1\nnXPPy29E7TPdeWaqXjCyeiyqQNmEW7/zjJ08KL3LH5iiRUaRYkvRMbH2yeCW1dDk2Qy7/9xFSCpV\nSS1OQEpK0Q+X/MMV+FimD/aEq5NRO2kTj99KIxxC8TwOGrY+ga1ZUcCDem3tggZVwpahaVCTyej0\n/QehRpJ9uGg/JbK4+2QWua6ud3G2Z1rUVwadOUcvw8VVd3Y4xmT8NutvO1gFtaMlCpTOWDpKlI5r\nmuLJdO4OZAv6BL7BzOw5HrX//Dd3Tdd8D1skI1qcx2Ty1mJ6hHES99Kg+EtRO2kyL0hbiYTlObP2\nM5kqvdPYMQqd3yJvPZ5zCU1PaI8G1N3GXXLbX6D30ez5NXlebSnGMrdiVVDzzNlSmIKNg+qyfneg\ndoRGhmlwQITL1AQzdLL/TF+GWzbjwq1TzotmMl6ahE12RgO387gEmZJAQeOKnDz+bMz7+uOA5+Ol\nqXvrJ5zsMioLu3RjnzUL8M7rzPuO+MmMbdtkfNU5Msj62fcvEvD+vhkPb7VfsJL3WdxCrfHdAuN8\nGiax2uXxQswq6HxsT6bEMZklzWcUeQ4AwKBUXBP0wyRJ7r/GnKzxHlWryo7lHjiI2nk/8LU3ohsm\nY7Vl0dFB6keSItB38ixGE9DroETCAGZkwl4qcBT+uP9qi04xPC7TBHO3vhnU7r+QVKq8ZFQ/ncx/\nu5Ipgb+wOoHqtJ4XAMCRmzDfyq9vj2Uy9DqyvmzBZGJvCDyoWAZawPO+ypzZusOjmEOn5DHu2Czz\njZprxkuYfqT8jHMafiiWycxpWtmVsfyOtcn4DPfd8Gb1R9vLuLCtwzm5b3o/O+S+UrQnbPHLeRyY\nW9d//Doem8Wy/yzBzQB8E9iiOtk9szE7VqfPJqM5BQpfyD/PIaUqJN1/TokoiKpOWGz34nggW6bG\nMk/wHOPZE9UfE6dNUyLD+07Pxi4VWYpxxc8JoSFPdGHQUaBkCxGN76CuCQCACVuxNeDbqziFQSVQ\nkzBufx73s2mwGbGnLdBSOlX6lWcyMgZzkzl2XsuTHypF4li575tWYTIUOgqUjMlfh4ndLbfQkK0b\n2LEXnsY1wZa+yzcOTUepC3BTmFp+TZTFhAclz8aDgbuX9C08WK53+96SvjW7ChA6CpSpJYYWqta5\nBlsWfhnGbMMu5HsbqLMTZdCJgaMyr+7nbOmLW5Rhx9RjebeOFokQNOCYICSVqsTGR2BWSkqRMjo+\ndB1I+ZM0+FXEKv7xoJhylO96VLC1gMj7+UIpU0OiRFE4P2ImdFmx6yhS2Mg4zmgq3rE36Bd45haA\nvVqEOnimuro0ynedurJjOh8YSmZ5f4OzCBaCLVfE2G08huke8hG6ZzbnPqtJViHZ2NFgJ8uTHqPK\nfT7cUbxo2RgAgLoa1yXrm5WO2clZz03WBVvuLdP3OSdzm1JG595f3hdnms3L5mELOnOML4E3V7JC\n9HO24t/Q9NtDZR7ayi1Xi4FbuEzG8hwCACThJMUR55T7j8JNvza1ENA6f7qwFUwZtLuXInC6B86Y\nLDlXXYdRB9LMUI0yMabI64JjseZ/ruYj04HpszBgC/5wTWzENS8/KRXOJei8l5nDOB9Z3JPucMGZ\nyvTsga3cc+ayqmY8yNqQC45mF6/vG8tkcjKyUPuBrXwjMzIBJzu8mslDEtqUKqmcj1Ec2HhJHNhd\nOKxE57fIeI0/GzVX4XCL8l9hy6Iv7r9StUWnereqBTUwN/PtsPvPC9hINbUJk2LJspfoig24tp6p\npSoUOYUWfqTO7KNov/p6dmx566+U55kqUTrPnUyJCrRfAICeiWr27wN340V25VBeUoRiInClSuc3\npAHL8xt/pzxHhmDLwjKBzkdSB6ZZy6kTebH4zOQJqN10FLeU6VgAaQyVfD6biQy/r7uewVaeGG7Y\nZJDdj94XXIHaOTuylOfp/M5PxfFMQ521dcfXmNB2Y6dPledIraHEKaIz57T+/P1OfiIYNzsCQJwb\nxf/OKUuVSfBth8fuYTKVPlXHpPhpGcp+jLs01j2IY5Z0MpHGX9eLydAdqLUA0EYJ7FjuFnUhV4oz\n3fnHpcQCTEMR1TCWycz6eSZqdx0ooW+YwJW8YLPWBLuFKacb/31Mav+FIg4O4FaFqhPVyrxNJnaT\nfkzgZYB5uSU12LHjF+9DbR3XtCkiWmKXXN4abwLOAcyeDX8sVbVEpzo3W+lr7rbhYUtVKENHgZLB\nq/RY2VhUgdKdzyOLbkDtpLV2Ck7rvPizF5oVVz3VE7sIy27lmTisPh9xDcggU6B0IGO2Tu8fgdqZ\nPcYzGXqtOoV+ZfDyI2kytkyBcq08h4/voAwrXpFYDV9Rj296HX6GBcj6GZqBf/umo+5nMtHDsOWM\nZn0C8MzP6Qnz+fgk7jWuBE880QHlOrtbUkaHKlGy5yXhc7w5jx9i9l0JxTCOcw3ntFLllCqllCmx\nqA47dqbrbjemYw3mLkKzvm1Ay9Q9mqdyX3Q+XtD2djzi3nxoGjtwYlPZPWxQFit+y7qquZJMC/0G\nu4JiiszPMeN+3E1rmAydY2TFikwm94j6+XDLwmPLumQKN/vWwfMNsZVSx/Uoo84wuY4vjvJsWhp0\nTgPOAQCS6wZuzZJlYsY0zZFIFo1MSbxUw/l405YIgRe49wXhQPXghmlBZZ26fjqgY9F0fADuV+/V\n/FImM3vdj6its+hGlC7Njs3JwLseNxfvYNv92+rXAfqg9wAAIABJREFUlIh11CEcj/RJFo/LoOzb\nMuUw4xp1DTZbsMVBlbMA19L8ocm3yrHdvK5av2IlKv0dnilFg3ZNQe/P2MP1mMzMFnhDJnLUH1ab\nrj4vkx9M+rYVH2orAD8UsP05HNpR/0W1Ykrhi/uvZC3RqdaNakENzN05Mqjdf8VGqbIFkxd/wPbO\nTCa7w9F/PLZs/K3vct6hhIewUiXboc/evKTIfmXY9iLfKTV4DseAeLlYhcKHwxb8/rh5OR/K2/VT\nC75xMIGx4u7g702ExKKd97d6QxYVjRWtnJ2cWkQHbmb8mjwLsvhH6r4PtvfJFnR+C1kWIQ2Cl1mh\n4p5Qr60UiZIySzR4nc4vrFS5i5BUqmyVqXGr3IxuPy1+x8/12vPd+y20Fk/yMTEla3PLdZT2nsTC\nc63awmPr47L3AZ4AUGukeqdIi0U7v3LXlVv37MzlfO0pMS/wrLRDt/OPQJWP3Unr1z3PpB8v4ZYr\nVgbTvhuvwhEgm9pwa5qXLuXIppjwMusazuUX83Lg1hn4gZcbg247+TGXEEwVCnxTqmreoBbUwNxd\no4JaqQrJmKrUtWWNMkkomg+XkPG9EfgLa2rGpkqUzu5FB/u/S2LHtNiVDZQoWSq5Dnni1J34uvpF\n82unoAoUgD3qjB5X34basiLQLd5Ws3qXWVyLHTvZhStRFCaKxVN7eTmi7z7HMSA6z7OOomOiQOmC\njt9js5odXDZnWx+uRitLoPaWtmeYjKrfs/VtAjdd7m5Rz5iOlbsBkwvHqDmUpUgbhTdgGY0la4cG\nibMO6LUmLeHlWHSe365344xjW8XigwPhgspBjXLVY0TjKx9Cx+iib7q7+/tKbKYt/R035VLelp9H\nmn3sdUDjbxLvsxMTQvmvAADur4JJIf3eWXsZLE3HoozMAHILk0nfph/7ndNw6aO8dZWYTP0XAlei\npEzfb+F+dH7TXpdcx46Z0GKEAmhWWlrXSUzG5Bk/lsfdiuUjuDu04YzBeD7XmK1BwZaQQKGjnMms\nqMuHFe0CM8XsXTwwvFc9nvFLwRQvidsuVeG2AwA41QsnvZSaHXiGtj+WqpqiUw1Llqrs98KWKtuI\nPHBcuXPW+XDJPxRkkfmO91PpF6x80Jp5+VCXIqEwJf7T+eA1moBf4vurSEjjXNqRuhkUb+ujQM/7\n835OXzB2CqcD6FA60sr4Xe/Cu9RSwBfLDR2n4AMS417yC4Hf+3UPSyg43lJfxwWP42eq8hY71iw3\n3V06z4tTArNoizOnmUy9T7E1K/lm9+LSqDINwDdXyffZee5l+PMbzDx+OieSyUT3VZuUDt9GqhZ8\non5eZPM7MicetZe3VBPcmmLnU9g63YvnIzCkjuXJKvS7IvVAaNQbPngefu7WjnfPQmoVAgDywuSf\nQQtbger0hQEAiMJ1baH2u3znb7Lo6xS2dTPGy+S8U4K7PUo5JdgxG2P5nfqfewnebS6Y8hGTabH8\nJnYs71ecqr3+P1xBiZt9F2pf2YpbvKiLSfYb9qiPN2c62WQH7+Sa14qXA9/Fe5kt2mENf+6WtVQ/\ndxS2XHIDUzPZsX7l/wq439T3+cc26V/cEk7htOZK1dxZUySSGH4Gs3uZDHLoDkm83yQ7CTW2rl1n\nbHrey/vPYzI2kjh8sVSVqCk6VeOWbBPM3ft+UFuqio1SRVmydQgepSRtCweg9tZL1CVGTF+0GzMx\nzcKhCw8q+zkwkC8gVz6wGLWXtuT1qvw088uuvdkI7HKq97pB8Kmk7/PGcVfW5ruxonPhfwYzGZpq\nr6tE0Pv4dAY/77VWF6M2zcSU9eM35YWXSJtMuHf6q7l3jDcgEcTKkqfmDHMzZV/nOi7ZcDU7VvIy\nO4WHbSEyCVuPZi+apjxHxuc0a/ks1G7/FHeTUYVJhmCjb6CldWb99r2VsUwQVqrcRUgqVbLsPy8/\nJvsHY8Wm+gf8Ja/wU3XUPtp5P5PxMiPErX5SzxxnMqbElW4hsgYuY3GsUxyTKfON2mKgA52Fumcj\nTsExZ8tPyvN0frPu6zGVx6NV05Xn6IxFP5oAALmp6r6DPWZHB7YsD6bwMlNMNufn92FLmYnV8Gx9\nUwQ7HQutrQkAUG2cO0kcMjb5hLsx513ecb7+XrURV5X4tgnOoPRNqara10pfc/8cG9RKVUjGVMmy\n/3RwMgV/TMskc7N+6gT8W2X2lJUUwW1ZLbmjnbNQ22/Lg61+aE28UnPslLJxE7n7cB2wMt/sO4tk\n0bDnnuUKlK3fhypR1gJ0JZaHix7AFr9yX9tJopBh66etUTv9Um5BptdKs/gAzDP5VGOZypgqR1SO\n0rMA6FG0ZLCMY37tVImyFUfp5QbRVDFN+5hYUW/nCpTOtb5+IBG1p0y6jMnUeRtb62Vs8nM0xroq\nrQc5skd5jvsQ5wyjekgqVaZY0nwGastSaqkSJc3A6I0zMGCWWrEIhR06y1D5mJve4550L7VeheNz\nG7JjFR7Drk5a8BlA7947P+II1LnnzWIyfiu4r2dipaWVhJQyfiquMZYAZjXG6EdaNueK1XFmn8yR\nZnKtf97HYx0TbsUfHNm7S5/f81/iz+/v2YHHk8lk8jpjJS/ip9VMpu+mP1F7UKVsrb4p3FRQGpKA\n6eQn7Fjc3FzvbLnknvmzuVKmdzu8g55l6beoo1GiRxbzSzf0NBsQgGcEUqqe0yPN1oQw9BCS7j/T\nMjUmqPJLVXZMJ/ZJB27NOetlbqLecqfGx4QS5GmQ40kDqgnPkLiUM0nT2KOLJfGXdI5pI3iwf8b1\nY4s8R4YBW3g8youf4CD0jfeaFaXWgWyxPFkXqySmnFxews+PrSzo+9LWG1F7Z4djyn68dElF1anN\njuXsxlYEXTcVlVt+ilvg2pdyJ6lEhqajcCwjLYwMwLP/fntdnYGscz9otiaAPGNThd0zeVmjes/j\n9pw5nwfcL4C3XF+qfton74CVa/721v0XVUN0rHyNlb5SDowLavdfWKnyETqL1RJCW/NKQzvXldOt\nDTsW9QOnDFDBS7emmxk8OjIR5TjNwpy0X5TjuxXv4uUzfvQGrtAufVet0A5KzUDtD5O4tZHCy8yx\nMDCi4hqwYzmZ7gTF24pV8zLmTHZ/bpiD14D+FXn8LB1/1+N8Y0WTddxKkPAlpiqqhuhYsY+VvlIO\njQ9qpSok3X9JLU5ASkrRL42tHWhUbH12LCdru/I8ityunCBOh4PqdDJ+dkqCusSI7NpN4l+kL+wm\nnMWixdTuIWTp1TpzbL0Cc43VlPCMyRQoNwOEbYxlq98KX3KXQfKX+LxDsxKZzJjt+P2JAvW7E2wf\nUlPYyi7TqfwgO++yG3Am8/wvdTKZ+TEanC0LzKbXceRmroRX/EztdrKVAcesWW04LYVYhbm1IipU\nYDJ5R3Hih0zBlClRKuhkO9uK2wvDW4SkUmUaqK4DvjCb9UMXlT3dOKdQ0iJ1PwsnqmO8KGQyP2eT\nGnlfG8ZOGLgETX+r1InYmqbzW+ikW8tQ82qsRNm0lujcj7hvB6F20j08G9FWgC5FiUV12LEzXXcX\nObZ8LKWIFDrX5VW6OQBARAvMDySL09MZ25a1RlZqSOc8WZwXBZsjrf8JetltOuumiVW700P3sGN7\n3sPelcR/qzeITg4nnrxbw4qq82zGf0niGB9SK4+2nl+drFzu/jsR8DhWEIJeMRMUG/cf5W+qNsE7\ndmcZkvuQWnIzeS05L3cZES1xvIAsNoDOp+4yvnPL7nCUHVOBZtAAACTejrmIvCTnM0Xy+iPs2MNV\nMySSin4spd+Hwi6VFnQ+XovH+VBmbTfjnGiJKZnFVueZyp7RBLXrXrORyaj6lUH3uqhVhVpUZOP5\n/byYXH9krZpMJnfvn+xYsMPL2L3IJrj26+wFU1Hbt5iqCpxvzQQphyeE3X9eQEeJoi+o7OU0WYje\nzJLsTJavC7gfHZi+nHlrNtnpW6MIqYm1z9b9GZ7Fd/UPxqoLIWu5l5pV5Mc07kfWS1jhjwW1+yQy\nke+ac9PUCpxbH1KqlAPoPVMl5mF3dWUrszEHVaJMlfl1F3yGz9F4Di58kFtdjt6MmdnrgPqeAujx\nmunAHk2IO1ZUNxUoWgw+6S51aIUO0t80C0EwIcGVIXdjqtF5rkKIc6ZMTbFRqmi9pa6t+OKU3UH9\ngpq4GVqU5KlrnlpQDPpuNUwSp/EJjjHIPfwXk6Fwk21aZywKHQVKBjd/n9hnA7fEyPiC6Byjl5VX\n9rJ1OI9tSXgQbwJkLgT4C1s+tvWqwkSiNepLm3y03fwtdN7LXdNx/E29a3ldO5Nn/ETNCCaztj22\nGOtQRQAA9LgaW8LnfmPHEm5672298/Er8Fqa3o4XmLZl1c3shUMrOt3Ild4KX6hdebuewGtO/KOB\nFzUH0FO8Dn6PrVArzp/KZOi10njazTtGqAdyAyHoFTNBsVGqaAwKZ4RxT9HRcee8msljZJ6Kw4rg\nzie5QiBLTTaBjvXoli07cLvCASaj8wG0xSSd1wVzAcnmvOdBfM9qa/C/2GTI9vLDRTGh/s/KvmU8\nVToVASiih5lZdXU+tsG+AdH53fUC5yXzec9UGVFbwr1kXacwHatDBcx9lg7RTMat50OmQOncw5q/\nq+kbem44rOxHB1WvwFYoHQsptc5GCM7CHoY9hGRMlaxMzb278I5ctsPRQbDHIbg5H5O4Kx34nSL/\n95VYeS39nZ2SNDJse5Gb/hs8p1ZaKLFpuR6Bu/oAAOJ/wBlfCbepg5VtQTaf69K7o7asXJNOPxSy\n54e6frWslu2bs0M7H8duiui+3FLlFqRcVg14XBEsWxtw336WiXETsutqMhpb4rv24a40k2+E32sZ\nzWKkGYwAAFG1a6H2gW64ksiG2cPh+IEd3sZURVYXHcrwWo8mmHd8slFMleM4rwPAFQAQAwDHAGAW\nADwuhDgr8aTjOD0A4G0AaAgA6QDwsBBiXpHjFBelyksuIFq1nlasl53n5oJGAxNt+dT3f5fEjlW/\nMvC+U8dwosbMPh+itq3fb9+/uFJT432s1OjEB7VZzf3/q1pz9w2Fl4uu3wu8zjN9RmBS0yvqcX40\nt2DLNe3mfXZz00RZ33fczzOQY2/Gz73I4TJ+xl35/fuYINjmQ+ELT1VkNdGhtCWl6sQnpkrVqwDw\nFQCsh/zwzskAcEYIcdVZ5BsWyA4CgKkAcD0AfAgATYUQWWcdJxSVqrKJdUXiOwPRMZoSLzq1ZOc5\nSzWCQAh0XhAZQ3b0q2o3FC2YKav1RFmIaaaUbI6yFzhtJM56Om8kd+fkbsXKouzaO67BRTEr9jQr\n2Oula8JLt4cMJgp2t9sGsmM65Kx+WiNkYzf8GsdzVF3LFdNq470rfRRslmgKnTABm3DrfkgTLdIJ\nx1OerLBR4NB55intAYAZ9YHs/nRZexK1F7coo+xHBrcU/qBgVA8CpYqiwAo1VQjBM5Dy/z4UAC4V\nQnQudOwnAFgghBh6tn5DMqYqauvfTImiMFGgZNBZZHQUKJ3ARB2ZyGq8bI7WHBthJYoqULqgShSt\nmQfAy9J4uXOzxSVlinZP83pzVTpSXhj1/YiCwNntZbDFlWSazZUIgRdZdvN5sXU/KHp1uZYd08nW\npNBVoNKnYCtU/C1mbl63rD57utVix26YjuPAPljdmcmcH4fJYWXuYpPn1bQGps7YwbaWqfpJFTxW\n1nUIsFlQOdJxnMJulANCGF1UNwAoSlFoCcAW4t8Ljp8VIalUFVfIXqK/ryDxQN+r44Gu2HCIHbu/\nCtlxaQQ4ykAXlY5DeHbZr9m8GLENmH78dQKz6Xnf7+JKzaX384zJstOx0lBVQpegM0dbO1mdflu/\niq9DFkAtLsRjORJFkO2AV1/PZKr0Tgt4jqZB1zQb0rT2H6O3qMg3srM3L8HtxdOV/ZzuwYvflpyL\ni9/qlo8yVaIoLl2Hg5Ztfch/f05d1y8ReJzTiSY05EBd8sXWhsjUMkRBC58DACTXw+tkyi6z32/I\nVhxDZbJJ8I/80xqlQi0A2FKoPRQAXgikA8dx+gLAPQDQpQixCgBAY3sOAwCn5y/cdyi6/9yMqdJB\nsMcY6MBLsk1bi5UMblEzyPo9PZ/X/Sp5WXDXRbMF2VhnumMF4GDjUkym1504Q/HVWjzAevBOrPQu\nTOexfKldPkbtfhndmMyRrnj9m7ud8w7p3PtTvbHys2jcOGU/Ulf5EOxyqvi5RpkWCcGsjB9NB16u\nL1H1sGaes0uWf20HdI4Npw9mMon3483n3vt5rGWtkdjD0J9kPwMATCbPpqyihC0XqsnmQgbV+L7E\nVEVUEx1K9rDS17xTn/0BADcUOhSQpcpxnOsB4AMA6CuEWFiE3EwAyBJCPFjo2AgAiBFCcNN0AULS\nUqVTpsZNpUGnn2k78QLaN5pbdExAa9QByOvUqUCrygMAnBiHK90n3b2CybilvNJsHQCAmFcCd6u6\nqVwvbPoNO6Zj8Uv6GLsEK9/OZZYP4zt7FWwp2DKXcu6BsybE/D8yr4tE7aR7+O/16pNYiZLPD8ek\npGZ/LJHBSPu8ETu2evsY5Vh6HyWlCMO8E5wp/te3ScHpz80scDLQ8y6+dxCT0bmORivxvE3fHx0l\nis65VxNuJKDceDrPeAYpwQUA0ONjzOP1xxNjmEzySNzP5EYxTAYAK1GZr5kRe1I4UfzT27PnTeQI\n51rU+X0im+J3I3fDlrNIegcBAMKe+y9XCGGUjeU4zgDIz+a7UgjBi7lirAGAS8ix8wFgQZFjhKKl\nSlamxhbcskIlLrqDydDAdOrqA9Bz90EE/rjJAkBtuZd6d8KJEibFpU2hs8Bmfs7d3XE3qePrdO7P\nBY/zeKnfXsfKkMmuHoB/lGTz6TIIfzgvfIlbPqglyO9A7L0P4CSOI+efYjKRe0uidtptagVT57pk\nRXTnfjdFeZ7OWCZWhd053B1ZJwq7LE2VqtYv801JzTHqossUOuNTclQAOUGqCl5ay037yXidhA78\nwb+XOhbI9Lfxpjp+iFmMF6WHWfzBh0wmGAPVKzpVRYeoy630NT/nS9PsvwcA4HkA6CGE4BYDLh8P\n+YRwAwFgGtjK/nMcZwMAFPZ7RAJAaQBoI4T43XGc/gUTrVMwgXuFEKsKnd8WAMYAQDMA2A0Azwsh\nPlVdUFFwU6kyYfSVvYzbhuKPSYPn7ZB4RsXWZ8dmLf1WOZ9QBM1YLLc9ksnUfUt9X/f8hxCEjrDz\nW8jg94dCZz7USikjmA024khaMSHzKvXH5FQvHsO0aDx35emMT0Gvo/GHXKnZNIhbR2yMbRPbv8I8\nXfWvX3cWyaIR7FmVbgaY06oFtGKBbHxr94duqAEgeS2OqaXuYz/cf0GiVAkAyAEAtLMTQpQv+Pst\nAPDBf9sFxwrzVGUAwEPWeaocx3kFAPoIIZo6jnMRAKQAwDUAsBgA/gMAQwAgUQhxxHGcSgCwFQDe\nAoDhAHAxAMwAgMuEEMZ51KYxVWmTcAxIxuUTmIyX/FIUblnJZOf9+W9OA1HzPbfY24NrgXUTtuLH\n3LxnOuP3TLwQH4jjrpG89Wq3s1txItSCAMAtXDr3MPcSXuz7mtHzUfu+yjzWpuE8THkhW0uajMGK\nVszLZu+Xrfg6Uxmd+eicd+JavEmiSR662DYVK4IN+pkpgrQo9e4BnAj2ZE38fYx9Rv3ZGprBEws6\nlMbKj879araK04+sb4ODvU1+C7+UqgsiLrPS14K8qUFdUDkgpcpxnCgA2AEAw4QQIx3H+RgAIoQQ\ntxX83QGALAB4TgjxcYH/8gUAiBUFAzmO8wkA5AghBsjGKGLsagBQDQCgPFTa0sHBPxB9uLh/Wq8A\nLMWemZwosnafwPsxha2FkcrEzb2LySTdiQN7TRdPWksuN5VzWXm5mNsaK/4LCdfNw3ZStRl+4OU5\nUhp/j9pav8VC7mrMvUTtanQrmF52DuXk0uHj0oEt5fXY9RewY+W/skMV0foVrHjVHK2neAWbJdGk\nH8r+D8ArANCNMABXYP3etHm5iRyUimk6+pbniQ1Bq1RZ8i4tEF8XK6XqOshnIa0rhDjsOM4fADBJ\nCDG8kMw3AJAuhHjYcZzhkK9Q9Sn094cA4DYhBN8iFj32C5DvZgQAOAGyKL7gQyTkp3/uBQA7THfB\nhfD1hT6K+zWGry/0Udyv0evrayCEqOHBOP8Px3HmAkB1S93tF0LYSSV0AYFm/w0GgC+FEIcL2mfj\ncaio+fdAMAoAPiv4f1OyL09RQFC2BQC6mmYrBDPC1xf6KO7XGL6+0Edxv8bifn0AAMGsBNmGtlJV\nEAnfDQAKBzMcBYBKRLQy5Bce/O/fYyV/5zZLBQqUqKBXpMIII4wwwggjjHMT6gqx/8NgAFgjhCgc\nTLAG8nkbAOD/Y6paw/+o39cAMCKf86FoavgwwggjjDDCCCOMkIOWUuU4TkkAuAMAxpI/jQOAax3H\n6eY4TikAeBQASkF+hh8U/Lec4ziPOo5TynGc7pCfKcjzoYsnDkA+hX5xtbCFry/0UdyvMXx9oY/i\nfo3F/frOKWgFqjuOcyPkK0J1hRDHyN/6Q36G3395qv5FeKraAcBoAGgO+TxVz/1TnqowwggjjDDC\nCCOMYENIMqqHEUYYYYQRRhhhBBsCiakKI4wwwggjjDDCCOMsCCtVYYQRRhhhhBFGGBYQVqrCCCOM\nMMIII4wwLCCsVIURRhhhhBFGGGFYQFipCiOMMMIII4wwwrCAsFIVRhhhhBFGGGGEYQFhpSqMMMII\nI4wwwgjDAsJK1T+A4zgRjuMsdRxHOI4TXeh4f8dx0h3HOeE4zm+O47Qh57V1HGd5wd/THce51fvZ\nFw3Hcbo7jrPMcZxjjuPsdxxnTKG/FYfrq+04zpeO4+xzHOeQ4zg/Oo7TstDfQ+YaHce50XGcnxzH\nOeI4To7k7//oWhzHqek4znTHcY4W3K/XHcfxdO0o6hoLrm9pwe+433GcOY7jNCcyQX2Nqt+wkNzr\nBesNnX9IX5/jOPGO48xwHOevgn/LHMcpUejvQX19BXMo6hmNLJjTjoI5rnMc5zoiE/TXGIYGhBDh\nf4b/AGAIACwAAAEA0QXHLgKA4wBwOeSX7HkMAPYCQMWCv1cCgH0A8HjB3y8DgGMA0NHv6yl0XV0B\n4DAAXFcwx9IAcH5xub6CeU4HgPkAUAUASgLAGwCwAwCcULtGAEgGgJsA4E4AyCF/+8fXUnCfphfI\nNgSAVAB4PIiu8b6CeZcruIZXIL96Q9lQucairq+QTHsAWAsA2QBwa6HjIX19AFCj4JpeKJhfJAC0\nBYCI/2vv3mPkrMo4jn9/tEC5tF0BMQokRYFSiLa0EEBaIwFUSKBQIWJALmJFEEEjKMGoiDGUSyAF\n5eIaiyLRKBdNBVEIbYBSvFBoKUaCBaqoXNbaC4KU0sc/njP0ZdhtZ7sDu+/090netPM+Z2bPszs7\n+8w5551Tl/xayPHskuNY8jXmaGA1sGedcvTRwvNgsDtQ1wPYA1hCbhhdLap+BNxYaSdgKXByuX1q\nua1KmxuBWYOdU6U/84EZfcRqn1/p0yLg9MrtseXnuENdcySL4eYX8wHlAuxavi/vq8RPA54aKjn2\n0mZE6XPjjUBtcuwrv/KH9lHgQOBp3lhU1To/4GLgwfXcpzb5rSfHq4CfNp37F3BsHXP00ffhocON\nUIZcfwicS47oVI0HXt/7MPLZ/0g534g/XM43LKjEB5Wkbch3xMMlLSjTKXMl7Vua1Dq/isvIzcDf\nKWkE8Fng/ojooXNyhIHnMh5YERFLmuJjJI16y3o9MIcALwFPlNudkOOFwD0RMb+XWN3zOxj4u6Tb\nJS2TtEjSCZV43fMD6Ab2lrRXmQo8FhgO3FvinZCjkT9U679zgGcj4jZJY5piI4EVTeeWA6NajA+2\nd5Br7T4JHA78hSwe75C0B/XPr2EecDLwPPAaOfV3eIl1So4w8Fz6ilParGxPN9ujPEdnAV+OiFXl\ndK1zLG9ojiNHxXtT6/zI0eH9gE8AU8kia7akpRFxP/XPD+BJ4D5gMbAWeAX4VEQ8X+KdkKPhher9\nJmk3ci3VWX00WUXOeVd1se5Jv6H4YGv8IZoVEYsiYjU5PL858EHqn19jpPFuciRjNLA1uQ7nPknv\nogNyrBhoLn3FG7EhQ9JewBzg8oi4rhKqbY6StiCLxM9HxIt9NKttfsUqYH5E3BwRayLiLuBO4KhK\nvM75AVwD7ENO421Brpm6TtJHSrwTcjRcVG2MyeTCysWSesghWIBFks4EFgITG40lifxlWlhOLeTN\n7zgnVuKDKiJWkGs2ojlUjlrnV2xHvrjNjIiVEbE6In5A/j4cSGfk2DDQXBYCoyW9tyn+dHmuDAmS\nJgJzybWAlzaF65zje4C9gZvKVHwPsAtwraSbSps65wc5Hd38ekPlXN3zA5gE/DgilkbE2oh4gBy5\nOqLEOyFHAy9U7+9BjmrsXDkOIH/59wW2JYuuF8l1Hb1dbdVFXuVxXokfyhC7Oq707RlgL3KK+Cvk\nosrRnZBf6efjwNXkFWPDySt2VpNX1dQqR/JqqRHkFX5ryv9HsO5KxgHlQl51dDM5zdC46uj8IZTj\nQcB/gOl93HfI57ie/Ibxxtebncmp6i8A23dAfiJfQ18lr4jbjJz+e6nR/zrk10KO15NF1E6l7f7A\nv8kpwNrk6KOF58Fgd6DuBzCGytV/5dxJ5Bz6y8AfgElN99mvnH+5tDvx7exzCzkJuAh4lpy3nwNM\n6JT8Sh/HAbcDPeRahYeAqXXMETiFdSOJ1WNMO3IBdiQv5V5Vvl+XUi53Hwo5lufn2vJHqHpMqUuO\nG/oZNrV9upf+1zo/cs3Y4+THfywGjqtTfi08R0cB1wH/KH38K3BB3XL0seFD5YdlZmZmZgPgNVVm\nZmZmbeCiyszMzKwNXFSZmZmZtYGLKjMzM7M2cFFlZmZm1gYuqszMzMzawEWVmZlt0iRtI2mJpDUt\ntD2ptH1J0u8lTWqKTyubQr8o6XFJxzXF95c/QCT5AAAD3klEQVR0r6Tlkp6TdKOk7SvxSyQ9Jmml\npH9K6pa0XT/zObf0cZWkJ8puH/Y2cFFlZmYdS9IYSRv6QMYZwFMtPNZk4FrgDHLz+VvIzeZHlfgB\nwE+AL5If+HkuucXQ/iU+DPg18AC53dk4ciuiqypf5jXgRGB7YDz5Kfo3tJBqo49HAd8CToiIkeSH\n/14m6bBWH8M2nosqMzPbZEn6EDAFuKSF5tOBWyPidxHxCnAZ8D/gmBKfBvw2Iu6J3ONvNjAPOL3E\nRwM7kBvWvxoRy4Cfk8UTABFxQUQ8XOIvADOBDzf1ebqkxZJWSHq4sjEzwG7Aooh4sDzefGBR9WvY\nW8dFlZmZbZIkbQ10A58h9x/ckPHkllYARG5J8gjrChaVo2ozymbJpYi6HjhN0paSdgSOB25bz9c8\nhMpm7ZKmA18FTiBHy74G3Cppt9LkZ8BISQdJ2kzSFGAP4M4W8rMBclFlZmabqouB2RHxpxbbjyT3\nCq1aTk71Qe4n+jFJh0kaLukYcsPvUZX2vyBHtP5Lbm6+tvTjTSR9HPgccE7l9DnARRGxsIyG3UHu\nf3l8iT9Pbrw8h9wkfg7wzYhY3GKONgAuqszMrKNIuqYsBF9OTn3RuF2O88v6qMOBb/TjoVeRU3hV\nXcBKgIiYSxZBV5DFzSnkyFFP6cPuwG+A7wBblfsuoZdRpLLAvRs4KiIWVEK7At+r5gMcDOxU4l8n\nR7EmAJuTo2hfknRaP/K0jeSiyszMOkpEnBkRXRHRBXygnOuqHDOAQ4FdgL9J6gF+BQyT1CPpyD4e\neiEwsXFDkoB9qEzPRcQNEfH+iNguIqYCY4G5JTweWBYRjTVVK4CrgSmSuiqPeyo5TXhkRMxp6sNS\n4NNN+WwbEWeU+CTgloj4c6THgF8CfeVkbeSiyszMNkVXALuTIzoTyHVVr5X/393HfbqBaZIOkbQl\ncB6wJWVNVJnymyhpmKTRkr5NFm5Xlvs/BHRJOrG0GQmcBTwZEcvLY5wNXA58NCLm9dKHK4ELJU1Q\n2krSZEl7lvg84JgyKoakccDRVNaC2Vtn+GB3wMzM7O0WESsp03YAkl4o55+pnLuA/GiCvUvs/vKZ\nT93Au4FHgSPKYwEMA75Pjk4FuZ5pckQ8V+7/VFkndSHwXbKI+yMwtdK1mcAaYE4OhL3e323Lv92S\nVgOzyKnAV4EF5Mc3QF6ROBq4S9IOwDJyHdeMjfxWWT8oL14wMzMzs4Hw9J+ZmZlZG7ioMjMzM2sD\nF1VmZmZmbeCiyszMzKwNXFSZmZmZtYGLKjMzM7M2cFFlZmZm1gYuqszMzMzawEWVmZmZWRv8H85F\nHcv3sqrlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)\n", + "\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower left\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The dynamical powerspectrun has 65535 frequency bins and 104 time bins\n" + ] + } + ], + "source": [ + "print(\"The dynamical powerspectrun has {} frequency bins and {} time bins\".format(len(dynspec.freq), len(dynspec.time)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 0.0625\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 2 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dynspec.rebin_frequency(df_new=2.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 2.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1000)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHBCAYAAABTzg6OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXd4VcX29jvnpBOSUEIagYQUmiKKehW7qCj2fu299+61\nXMu1e+1d7AUVC3bBilcQrr0rKRAgCTWUBBJCcs58f4Dfz1V0D+ceAoR5n8cH986cXWdmr1nvWu8y\n1lp4eHh4eHh4eHisXYTW9QV4eHh4eHh4eGwM8EaXh4eHh4eHh0cHwBtdHh4eHh4eHh4dAG90eXh4\neHh4eHh0ALzR5eHh4eHh4eHRAfBGl4eHh4eHh4dHB8AbXR4eHh4eHh4eHQAno8sY83djzGfGmEZj\nTLvy92ONMdXGmGZjzH+NMcPY37c0xnyx+u/Vxpij2d97GWNeM8Y0GWMWGGNuNcZ4g9DDw8PDw8Oj\nQ2CMudEYM2O1rTPfGPOKMabPX7Tf0xjzszGmxRjzkzFmj6BzuBo2iwE8COB85aTbA3gIwBkAugF4\nFcC7xpiM1X/PBPDe6v3dAJwO4GFjzLZ/OMzzq//tDeBvAA4EcInjtXl4eHh4eHh4/K94FsBQa20G\ngCIAswC8qDU0xvQD8BqAmwFkrv53nDGm6K9O4GR0WWsnWGtfADBd+fMpAF6z1r5vrW0FcDuAFVhl\nOAHAQQCaAdxmrW211n4AYByAU1dfeDGA3QBcYq1daq2dDuBWrDLOPDw8PDw8PDzWOqy1v1lrl67e\nNACiAPr/SfPjAHxtrX3OWrvSWvs8gG9W7/9TJMThOjcD8NTvG9Zaa4z5bvX+3//+raX1hr4BcMwf\n/r7UWlvN/l5kjMmw1ja6XIQxpgeAHqs3G6y1DWt8Jx4eHh4eHh4bNJg9AKyBTWCMORKr2LsMAO0A\nLvyTppsB+Jrt+wb/Z/uoiIfR1RXAUrZvCVZd8P/yd6xu42R0ATgHwDUAEEIYGaa748/+HCYkHYEr\neqeQ7eRZzYHHacvtIo8tIuMkEhYup79JTRFtbMsKsr2yX6pok9hg6G9CRrQJLabnQhd5nGgi/V1o\nibx3k5hIz9XWJtognR7brJQPI1RMa4JGpgU/MO05R+nlIHmJUmu0Kfgd2vIkst2+JFG06ZEtu+qS\n+gyyHW5aIdrYJHoss2KlvADD3lk4LI+zkv7OJMg2iNL7t9GoaNKezZ6j7C5ImE/7S2tv+eyTa2mb\n1IHyOMvnpJFtrU8FXh+AxIYWsq3dVyywXdPEPsP6i0mQ02h7EX324arWuFyPBvV5LKb9rDVbzh1J\nc9j8ovWpSIS2SUqSbVYq/TUOCPWXzzXK54E0eV+tvei8nVwT3Kc0tPekz9UqX8vEufQZanMQbxM3\npMk5ui2D3rvLuXn/bYk0YWW0RRn1aw8jd+liGxZFghu6oxpAyR+2rwNwrcsPrbVjAIwxxuQCOAnA\nj3/S9M9sl8F/dfx4GF1NWMVn/hFZWHXTv/+9SPl74x/+rv3+97+54j4AYwAgDenT/mZGrMFPdYTS\nu4p9v11BvxzlZ3wReJzaE4eLfakLgwuN9xg9hV7PgEGiTfS7X8j2jJuHiDZ5z9OJqT1VGpPpY6fS\nHZtsKtq05NFBnvoWN/KBhJwceq66etEmuvlQsp00Wy5AUh+nH9GmHRaKNhx1J8jn3JxHP779xskP\nRHjiN4HHbn+IxlIufKu3aHP0KRPEvjeu2Y1sZ3xaJdpEi/LItvlFsviGG2bdskSb9hkzyXa4Ww/R\nxrbS+482ySG24NBtaZsEOf/m3Pc52a66aBvRpvRC2qcGPi+nm2+u34Jsp74RPJ7mHybfc+6zdF7U\n7isWtG89TOxL+Jj2+3D3bNFm4b30/XTbuzIu16NBex55L/1GtmtOHiDaFN5A32E4s5toE1m8mGwn\nFMiY4vaaWXQHXyAAgA2e7zhSR+eIfS07zaOnGryJaFNxdjLZLjtezlMuWHgwHQcresr76n0TfYba\nHFRwy+diXzxglDl69m70m9X75uBzh3v2IttTFr78v11YDGhYFMEXE/40Xn2NEc6rbAKlBdeY+bLW\nzjXGjAYw3RjTx1q7iDX5M9vlLx1F8TC6vgfw/2dOY4wBsDlWBZj9/vcD2G+2WL3/979nGmP6rY7n\n+v3vNX/gVgOx2nXYAABpZfmYfyedZHKupas4++3PgcfUJu4+77pe0f8hc7pcdXd9iX6Q2kfIyT2c\nRd/nkv4Zok3X79i5JihetShdHVqXNcwX0rgPjdqKbC84dWvRJvvhKWIfR9359HqKzpJeABcjq3Vv\nej3a5BZKo56KLhOk56JpB7od7iY/PvYa6jnNsXIF+eE90kjPKJ1PtiMLlbHP9tmQ9DjMP5Eaqr3u\nl/dafQc1fEoumiraiN/8WxpLJRcHv8MFZ9APUv+bpTFZfQNtg2HyuKmgRtaMF6RnvviI78l2zuiv\nRBvTt4Bsh5OlR4Y/+8jOW4g23ADnBhYAmM3pQjaizCXd9l5Athcfv61s81Twc3ZBymI5v3CPc8rW\nst+FutC5ghtYGubeJz1LPfdlO2IwsDSsPFWOp1BX6rWKfvWTaFN2PN2eda00hIofov21bUCBaJO0\njN5Hz0eD31esBhbviy4LwXlbyefT9zFq3M++VN57cgO9rx6P0/uy1oGGiTMsgCji451ejYi1tiIO\nx0kA0AVAPgBudH0PYBe2bwsAHwYdMBDGmDCARABJq7d/H3mtAEYDGG+MeRrAJADnAUjGqmB5rP73\nNmPMJQDuBbADVgXZ7w4A1toZxpgPV7c5EUBPAJcBeMTl2tSbqlqBXvvTlV4s04AZJr2EKW8Fr8Q5\nuIEFAAl9C+mOj+Tk3rInNSq044R7UGOg+5PBE0NaT+kBaRzfj2x3GTVTtEkeTyeC7GiwO3jJMfJj\nU3gIvUbtKCv2oQbdp48+KtqMzA88PUwyXfUu+adcTYVBDTzt42Mm032aYTbt2c3FPttIP/4DrpGL\noLqjaZzmnsfJifung6nHUJsWhZG1jfR6YuoPZDOaFNsHMvsh+g7bth8q2hRdRdssO0waeNzDyg0s\nAGjbjS5IkhXKJPITHe8VD8sFQf/zlpFt7cNW8aD8HUf5mXQOOLVCeiYfLafjySjfk66f9STb094o\nF23yplAjY+4lcoGSd4CcF2quoB/bglslxRZdTp/jwlPlWOWGRt9MOTZqmAHO+wYAJBTRcSe8Ywoi\n06QhH9qMcdTf/yra2O1oX+xzrRxP0+5mC5SxLaJNxpjgRQvvm/O2ThZt+txD+3QoiztHgPotqTGb\nP1Gea9Y19J32+EnOnJEF1Ng3kTLRptcUtviQp1oHsIjYuBpda4zVMlVnAhhrrZ1vjOmNVQxaDYDf\nlJ88A+ASY8wRWKXOcChWGV3HKG3/P1wlI44B0AJgAoDw6v9vAdDXWjtp9YWOxio+8xAAo34PgLfW\nLgEwavUFLQHwKIDTrbV/HJlHrb6WOgBfAHgdwG2O1+bh4eHh4eHh8b9iFICfjDHLAfwXq5QXdrPW\nthtjjjLG/P+V2+rkv4MAXIVVsV1XADjQWlvzVycwNk6u4PUJmck5dnj+UWRfpBeNsbBfSvqs8hnq\n4i07NtjF23CKXB3yWCxt9cxXy1ow7oo9qOekpadsk/VMfCgKF3CKRKNHZl9JV2OFNwa72+efKV3g\n4ZW0Xx53geR139uVeogi8+aLNgm5NC6k/qAS0abXg/QaEwplvFb77FqyXXmP9NqUnRe8Ml7XyP6c\njoPniiaKNiPzpdcqFsy5kL7XvDsV+pdRXNz7AgDhgXS1Hvk1tvio+nE0JjL/wF/+pOVfI1xaTLaX\nD5AxXaVX0WPXbrNMtOHgtCXgFgahHutjSpfZXetEm0Un0vHc/Qk5ns2WNGbKKnTerH/S99zn+uAx\n37K/nBPnb0Hnt77XKMfZmsYxhXkCEIBIpaZstOaY9TI9V59D5Tdj8Tu0b7rE7jUeIeeOjBfiM3fw\ncIGSi9f8uP+1H6HRLurQQPotNku2k8c7UBeOSMuv+dpau2XcDhhHxCOma/2DCcGymA5uZC08TRpL\nA66fS7Y1tyt3k3MDCwASCmjn4QaWBtsuCaPkd78k2+FdZdxXvLD4OGZQPSMHa4+x1E2uOYOLn6fG\niUt0ADd6NDxQuLfY16+FfgDqlfgFniWqffj5vWdPkJP2Skb1hpSkTA08Li+yRIYpVo+hRk7Jkd+J\nNpxWiTrQKmayPM7igymNEfkq2KWfkJcr9lXeRYNvS/8pP365Uxwyp/LocWyOpF5M7Zqrv0y/RY7v\nfgfSsTr/DRlczsMSNNg51LhPqZoh2tS+TbcXnC6vJ3dcNdnWYsN4PFKf6/8r2oSUrObpU+g8VVIq\nY9w0I4tDM7I4uJGlPfu+4yktml4hacr/PEQDuLfZ6hDRJnMUnccrb1Pe86V0/IaVcAo1tpIh7YP0\nwDbcyJp7vpLkcTd9PpqBVXc5/V3OF5JGXsLeoRZjxo2syvv+JtqUnSP70PqAOMd0rbfwpXY8PDw8\nPDw8PDoAnZJezDDdbTwkIzTwVZPLikkDp6cGDJGBpa3/olICWiYVX1nxVZWGlSOl13XOcLqKKnpd\nemQ41dG2hzxO4vtfBbaZuSd1sJaNkdRLaCZNDecBoq6YcxF9Pt1/ky6q5He+FPvWGhyC27Vsq/zP\n6Mq3fjsZsMuzZFceJr0J2ftNc7lKgpljZWp638OYRIMSSB+aJD1t8UBoqJROmb0npU37Pi29lb/e\nQj3Q+TlLRJv0JPqcNVqudS/q9UybKgO+l+xBqe+MKpkJHZpOkyO0bGnuAZ93ruwbOffGljEX3YGG\nL0w/WPapwvepv5973wFg2aHUm5L+svSk1NxIPVKlj0kpGZ71qAXb81CNARf+INqYdJaVqczRzQfS\na04bF5v3h2dQu8wlWkJJlCUsu9CNz8+eLPYdVbgd2VYTSkZTD/T0Q2hWfO19d2FF7ewOpRc33yzJ\nfvqe9KjHisyC2Z5eXN+gTdwrcqicQNIEmZoeq5HF0f0H2qfNLdK1mlAYLDrIjSwukQAAiw+kH3pN\nd+nYAz8i259eI4X3uMGZ8MNs0YbTiVxQFZD6TS37yokhfYGkTGJB3h0OHyQWJ6LJZVQ8QifX8tPc\nDLXpjDrsp1CHs69iFJKSbcUpUJe4mYRJMlPT9i8l21qGWOJEauz33Vk+j0UnsHggh6xZDTwmsmFz\nSeoPvI8aj5HvZCxWAXusdrCs3FHwOpVRSBsnDTO+BF16lPxAZj5P++9vz0jpibJjaRttaRtL1lis\nBlbl/ZJmsmF6VeVnyA89N6brL1YWBP8OvqaiK1kmqzLmU8cHG+nFr9N5ctptUmKk7NxgA2pFFiV5\njBJj1vUbahhWnFMo2vS7lMktDJfXY6ZSinbuvpI6LD3m2z+/2NVI6E3j9LiBpcG0SjLLfk0Xz8WJ\n9Pswf8m6ofmiMWkMbHjw9KKHh4eHh4eHRwegU9KLyX0Kbd5l55F9A++idJVdrAQ0X0QDa7vWyGP3\neCx4RW8SWRB/W7DHKpzTS+w7YCJdIb06ULZpPoi5yV+LzU1e8xJd7fS5Xwp0hj5zWI2xJAJNkT6h\nXxFtM70m8Lg8gw2ILYut6XDpuTBsCERkhR8sKafrk5KHqkWbX26UK+Hyk6S3NB6o/Yf0OPT4hfoZ\nNXV3/hxn7S8z71wEHnlg+NIBch4ZcBel5qpOllmhRVfT8VT1nNQ6Kz2a9juhcQcAEbo6b6+VtGAs\n0OiZgfdQz9uvF8rqAJk/0k7UtLXUgeL3Nftq+U4L/8U82VynCnpShQvC5TSTN1Ih+7RL9qL4zVaS\njh7/xrNk2yVDdkK99Hzx37lkGrsglCI969EVsmQXB88AzX5FJkMMnkhp418OVK55pmQNOJYeTeeu\ntLkyVCLxw9jU9/+IdZG9OHSzJPvRe/L7Fit6FtR5etHDw8PDw8PDQ8PGQi92Sk+XFkjP45FWbtJX\n/M6wZxH6VHp2uL6M5k1oPJKuSDRlY75at8uU9Pocqljd1l3GayFMFyQJ3yi1/WKoQ1f5lJSnSKyj\nHrzSx+eINi5eq7WF6uell6TgBVYO5W35vvhqPlQtvSRcpX7m9TJVPaKEobVnUy9n2WgpomE+lyrs\n8UDNv5R0+leph9cmKkWOmbyKFrx9/pmvkO0XBkiNHR7/k/8fpR8q8XNrC/POodez1dHyudcfRCUr\nbJYstRL5mSYj2G1lHE9TMY2JdFE317xq5afT/qp5OHO+lDFCzz9xD9k+vs/2geevfECRFzhr/ZQX\n+B0uVQ408EoZWc9KBoPHszXnywGe+RGrNKOU8Hr3+w/ItouX76Iq6TG7o5TquPGyXwCQw15X1mc1\nok37HCqNxKtrTFk6DkvbF3S4p+uD96TXPVb0Kqhfbz1dG43RxcvKpFwgaa/IDdS9Gf4kWBxVEzXl\nGUcubbjgIgBEuP6PUkh23tl08uCFiDVUPC774sCLmWaQUgqHi5jmTAnOcIyX+18DD1pdea28npS9\n6XvWqF6exaXRqOEMVvcyT7rC23sodS8dDKpwNp1sYs3UFNej6Lol8D4dp/GvZamaCD12glLqSnyk\nlNJSPNhe08bj4AYWAOROoSWYXKiy6E7SkA8vo32IByYDst9rfZ6X8Io08NJuEo3vSXHfjL0kLcgR\n2UWpM8n6gkbbRhfQxKFosywnxNFwsiIY7RKW4UJlOvQXlzqGfC5LbJbjoOdr9L1GGv+yjvH/hHAZ\nLRvlIvBa8ZBipJ+x5mXqONYFvbjZZkl2wrs9gxs6Iq/3nPXW6PL0ooeHh4eHh8c6xcYhjdpZja6u\naYhsRVc7yQ3MBT9CrjyTsij94ZLSrSnJVzxJPQzlJwQHNwqvloKE/Dy5M4b1iBbcze+VK7ADQN4n\nrJjqYrny40/jl6vlNZefSp+9pvGUVEc9bTZJRrdHmBcpeQ/RREQJuJRt0sBXuaZEegXmbCc9XQmb\n0xV1eIVcUWdNp31z5shS0absVqqU3rSLLI7c7TxapDx8iNQ5ijDPlkYplV9IA5htq6SveEJCUx+Z\nCJ1/O/W68qBjAEivpz0mabyU4nB5PxwFb0uKuH0GfT68ZBUAtHelz6f4cnlu8QYVSmn6iVSuo891\ncr5ZtgN9z6mvSy8FL6icsZecSzT5myiT1XDx2mvB3DxhYkUPOeG0b0p19iJzZB+XmvAS9huHhADF\ns8WxuD/VG0vsLWm4pQPocTSZCZf5n1c26flIbNIpdraiWxYAzau18C06L/S6SvbNWBMvPOKDzkkv\ndsm32ww4lezjtJeL/o4GXsuvfe482YjRgJp2llZjbn2CSZZCieNn0InJJTah9gr5Yes6i65pVnSX\nH2wXPSJew6zbe3Iy0crucPAPS/bDcuLkHzb+UVvb4BS1Zuy7YG3dB6fvAWDhpvSae98c/E45NQQA\nNsTiFjUDIoZ5zIX218q6fH/pg2R7p1NPFW202MFAcL04wCnmjceQAsC8kSyW8DiHUAkl61CrUdtR\n4HMt8CfzLQMPF0iqlAZN7eGUps29R/ZNHvKxdHMZUsCFYBOKZaywXUYpWS18QMxBj8r+E9qEZh5H\nfwguWeUCTsVXvXgnmud1rDjqkM0S7TtxpBf79J7r6UUPDw8PDw8PDwELRDqf/0dFp/R0ZSbn2uEF\nR5F9WkkJDpfixKFNqJbXrH27izZ8RR/uL+ki7k6ObiIDZMNL6ArJpknvU0d7XP4IrVzNYQd+Sran\nbqaIXjG4qFxXPCrpzvJTg1XhzTCa8aMFPfMg46RaWR5mwQ501T3y3EmizaQrpcehy9es36VJpX+e\n8cl13gAlAUChtGbcSL1Nxf+IjeqY9TL1ePS7VNLIkZ40sSCaKL2VPIlAC0rXMoRjwaxrWGC0rCzl\nVp2AwSnBRYHw8CrTrIvnjwdYm2apHRVVAvC5xtT8s+UY63V/bOr2HHzeTHlT9t/lOzLvjtJ/E3Jo\nQgnPsgOAMKs0wDNJtWPXXiYp9LR59IX0fEmWE+JsBK9KAbhVplh+CD1/l1fikxGqJSzkfES/K79c\nKr2FnJasupvOW/X/vhutszrY0zUk0b4ZR09XceH66+nqlEbX2qy9yFGplADpm0czfpJ2nynauIBn\nnyUtlJQkdzGnfioH2Y/f0A9H6QXBNKpLnMj8s5SJ/IHgibzhJJaN9nhsxoE4rhKvtTyPzh1Fd8hs\nQj65rvxAUgT8HXIJEgBYNFIKuC4aTM9ffEV87tUF4U+kjENkFzopax/jJZtTA6//g1LYc8XN9Jkl\n71ETwxVKtExQjJzHKK0z+Z5HRJvdDzuebK+tuo+u4LVVS8dKY8lMjs818pR/QGYfz3hBylr0eIsu\nAEJtSrwhkxxwofc0OIVlMFQ8Ib+ZuR9Qcqb750rsnoPQKAeXAgKA5mxqvDXnSTukJY/S0eVnxpY9\n6CJy7RJiwDO6IymSzJq9BzWKk5bQ+5rx5J1omdOxRtemQxLtG3E0ukrWY6PL04seHh4eHh4e6xAG\nkViywjZAdEqjK9qtC5bvRlcODYPpqqX4LqkBU3UFpaK0zCWOsmODA1Q18NWppouV8DHNVNJSanng\ncdV7UsCvbAKlSRuVUjjhlXSVmzZOrrR4qaLEUYqe1APKRTJkP08ppVhThRPyaFV6LcuN+6NCmhYR\n83RpnkkXMcW2LjKj0MWzNeNmemyNFuS0dnNRhmgz4J806PnbB6THrhuop6tF0SPk2a0rd5N6X8l7\nSJo2Hki9RoqRYirti8V7niyalE8KLrfEvbdmpfQUtBTS56oVvXdBLnP4al6txcfT997tKfneuT7c\nnKM3EW16PSi9y3Muoh7M4iNioxJnvMKEg7+SYRAuZaNi8ZBl/CBpynnb0Nni8KtkoP8ENr9d9eYY\n0eb6fnTe7HWx1MVacBuldns8FuzFCnWRGcx8fmndW9KULuXbIttR2l+j5itPpOEc5SfL/lv88V+f\np9au30leGzo6pdEVXtKMrm9TGmlpER1kmtBd1qYLA4/NBenUtN1TWRrxo3Iy1YysWMCF/womyjbj\nWQ0zLeuw+nZ6zSXj5HHqD6OxaTl7B0+2PKUaAHr8SGPVEpZI+so00TYNO0mR1YXsNiKZSu3DU2jM\nhUY9iLiZFVJAVTOyOLT3zAUfU+5QDFWH7+HKHDqZp46Xxn5FO42Z6jY++Jq7TQs2eV3qufF6mgCw\nopiavKo4KsOc7dLFvvaL6TNM+1p+jDmq7pQLi9ILg2n1JBYiyYVrAcCk0YWN1qe6vkTPVXe5pHFd\njJW6E+m9594tf6NlCEfZzF7xoCKk6UCFFR4SLCAbL8z6J72PFbnSKC4ZS/e98p+Rok2Xn6gBww0s\nDU07yLl/7r9ouEDRW/J3vApGyVHSEBLC3LFktkIaWU/NknGlx/cRuzYIWADRzhfppKJTGl0eHh4e\nHh4eGw48vbghIykJpk8B2VX4Ll3JaMJ33fauJNucvgLcyixoHg+O0BBKFy0dlCXadH2RrpY1t3Tt\nzvQVllwiz809W1rAOf9dzhRJX2FblpWZI3Vrooto5l9zjhxIvaZST1LklwrRhiPzOSkumdDCsoJe\nDc4kUsFKndic2GqAaRo97ayUSctO8nfFoNTL9Fvl+ykdQ59rSAnkn785pRZ6j1cukmV2dftI0iou\nopCzr2J1FSfJQPHmHHo9yy7V6gbS3zXnyuVu7ydowPesPeUV8r7Y7zV5PVwvTytpw+tM5r8nM+hW\n5tNsvfDc+aINF5R18Wpp6PU19QJr9Rl7TZbPzLJk0j7Xx+ZdeZx5U/Z84FLRJm0uPf/ikdJz3e/I\n4KSBPtcHP6PlB9Mxn/m5DAVwUbDjQfrlJ0oarq17sBeYe7Z4diXg5tlyYUfmXEj7pubVcqGsOeZe\nQI/b5qBX6RE7OqfR5eHh4eHh4bFBwGLj8XRtNJIRPBW9tkp6acrOorEAdluZZm2m0Fix8EApE9Ca\nT71EWiwLj7Fwia9o3Ut6uvr8k+rUzNs2uCjr9FukJ6UfSxrg5UcAGdvjoui9cqTM2k2dTnWFtOKu\nvDTQ/GFS1b/gQ+qhMsuk54LH22jeqHkjqLRCRo2M6XKJa3JBaLOBYl+8ynJwfa+Fx8t3GEtJHU1n\nLjKtimxrhc2XDaXPNdwiPVT8uVY9J7W8So9ecy0vu52MW1xaQj1mESU0zDDnRrdpSryhg9QDr+hQ\nc4V8F32vcdDpYh7NyMKGP2kZcD1bygD8xhIaP5f1vtS8sivpWNAqacwcy3TdzpLewViKuLeOkvNd\n8rvUm63pqM3Zk5Yey39Lxty15zBmwUH5XwOfT3ipKUBWP3GpfLI2EVSmbl0UvB48JMmOeVvKHcWK\noX1r11vJiI3G6NoQwYN4Z5wlDbx+z9BsNC60CciPsRDadMTSo+nksXiAHJd9tqU0YGiEnPC4QZXw\nbaVswyZ3rSwRp3C4yCkga86pJZkUmikWmM0Hi33RNEqxuXywwz2k4G6ECWDy7DQgNvHPWMGN8n3u\n/kS0mbAJXXzweo2ADDhvHyGNk3ALNeS56Kr2u9YsuSDo8mp8RCnD5TSDT1s0HPEr1Y96YYDUTFux\nLwuwfksuvPhCa2WmFBXlYQgatFAA20QVZF3GAadfAaCxPzWm+74pjWueBeqyoHVpEy8kTpQ1Ytt2\nnkO2J9TLsctDN7TFR92BlAfUSpzVM+o9/zZlLG8zhG5PlYKuLhjNKOOdxl9AtufecC9aa2q90bWW\n4OlFDw8PDw8Pj3WGjYle3GiMrpV70hVj0ngZdJ1QRFckLqWDtCKx4blUDqJ9tgwCd8HMh+nqNOMN\n6ZWccQRdQRfeWCPaNBxNvQDdn1SkDZgniXuRACDzObqiTlEC+xfNoiu9lMMKRJv0sfQ4zUqx5NZM\nGgl84lVvijavDmS6YYskFSRCYcskvRjNoBIAoc+C6axlh8rSIo1HNol9fS6kfaH6OukpEDSTQ+50\n4fPVYt90lnKvBSZzapnTyq5InkR1up6/T6bu9wQ99vJ8WSqIq3JZh3mXFzoHgIxq6hnVKP3oR1RS\nRPPC7vMzfV/3vzZKtCm6mt7X4uMkXf/gzXS7G+RzbulBvVZSYQ9I+5J60ZIVepGrmQPANldRr9kv\nh0gPb2SrL9S2AAAgAElEQVSeTAAQYEW4NS9NXgxF1Fvy5N12YSW7QsvlHBSLph+XogCAfo/XkO2f\nf5MeqnJQT5cmtcOhzfVLB9I5WvPn9Pqa3uvc8+Q186Lcmudtj0OPJ9uaZ/2UPtvTHY8qF9TBsDCI\nQM4PnREbjdGVvJB+kLXPGjeyuPsfkBSA/VLGAtSfSQfMkqHSde1SN/DtLWm5k9MP3l606cliCpoO\nkNfMjSxtElrJMnVKz5eUBa9/OPCyKtEmmemPLX5HUqIYSze7VMgPyacTXyXbLhMeKoPLLWnxU3bn\nYB0fjqypsvxI+stywl3APshaHI9L3M4MZixpwr1d6vuJfRyxGlkcvLbfomEyZ4wX9Sh4V37kf2Pl\ncvq+J6mp9195mmxrfUHEVrJ6gAAAZmRpJbzeHkzp6CLFWOJ0/YJt5DX3+EbSgBxLmJauLObjFsOl\nCWv+8i2PNaoJPE50BxlPN3t3ahz1VUJPXYwsbiCMlGyrmJNNijTMXGqpcvS5QXk+j9M+VH6CvLHa\nf9B5UquVmdCbLioX7CZTCsvPoH2o8l5pJJedS6/RDJJzNEf/J84Q+4om03PxkBBALp75t2ixjU+4\nhYeOjcbo8vDw8PDw8Fg/EXVxc3cCdM5A+v45dquHjyL7qmZQp27CIhrgDACF79MAc5eMtbmvy2y0\n3AOoN4UHjgNA4jTqKam6SGaIlT7JMn4WLRVtmran3g2tfE90J7qC1cpHcPACtUBspTxcgk81hNgq\nt2WEpHEfeOBesn1hkaR5BIwc2OFMGvAdWSKfc81LNIi18CG5XplxkhxLpcfQZ81pbkBmczaXykD6\npMW0b9ZdLD1LzQsphTTwqhrRZv4BtJ+lLJKEDad2s9+QWW0zT6M6c71vUrwArOSSSyFi7kUCZOJH\n9udS027B8CViXxC49xBwK/3F4eJNqHhMxvQOuoYlwdTVizY8kD75vRi16ELS8xbZkQaq8+oWAFB/\nMfW4tPaQfZxnfJY+rGQLMtpNDZLngeExfpvCzMupjWeueZg2VdL17/5I6+U4edsVzGQhBZq3m1fu\nSDpAeoUTH6Ee8dTXgzPeEwqkS9E2U9bHJNMx9/nCsVi6cn6HWkADhiTbJ96SoSixYruiGT6QviMR\nMhapCW1kn1aDioO7k/vWy1p6XMiTG1jq9UyShgcnJIovlynVEZatsmg7KdrZ/QnmTj5K+QCwFGVO\nZwFA89bUeGtvlR/jBGZ08bpwAPDrrfRjXPy6pDuzzqLdrtcDSqZOf5oKnvyO/Ni8chONVXOSG1Am\n8ooraUyKJjBbdDj9IGiZkoVj5HDiWWPtaTJuIVJBJ/zkCvkB4DF3vUYPEW2aetPza2n6jSXU6Oox\nWhrpvHpcuyK/0HX74HggFyOLwyWz9oxcWTzueqw5RVzygjTUeK/XxEjLT6cfu9QFwXKcAy+TGY7t\nLCNVQ9LS2DKNxeIiqmQU/lhDtitVKZk1z4jVnkb7rnSs8rqyAFB3GZ1/86bKGE2XBePl33xKtm8s\nVWqHsvlEEwR2MbKenz2ZbB9VuJ1o0+9FOg61cxm2M2MvOQcAdN/8s5W4ryfot6ZlsDS6WnrQeWLR\nYNpXWh+QmeIe8UOnNLo8PDw8PDw8NhQYRHgZhU6KzkkvdqBOF/eOAUBbV/pMe09sE20SP6Qrtqqn\npeeCU1PxgovwqYtWlIZlh1FPW2ORHEiFb1AvCRfaBGSB4H57KZ6Cw6hfonkLmZnI6Zhl42Ww+dJm\nKpqZ9L704GU/Qr2FoXRZmDnaJLMXY8FQ5bV/J514MWE+S/Lo9WBs2l48ezP9Zekx40WwVQ05Jtpp\nvwousKxR3xUX0Pfa77L4JAxoumFJX1Bvt8t7X3Si9CKt6E49DPn/Vihah2eoeTx63b/m79V8LOkd\nu6tMGIkF1bfT+y+7VmpMcW2+EMuKBIDKY+jYLLkoPkKjWhhE+dM0UL3iuIdEm1goR54MAABJd9KE\nifbTeV4vsN+r9J2+ub8MyG/vSX8Xi67ZuhBH7T8kxT76Zvyqde9cXOnpxXWNhW9RqrDn/tJ9u/xd\n+tEOP8Dzr2RsjdlKxgsUHxScUcM5/HB85jaENhkg9i0ZQmNg5u4kHdxFl9F7T7xGxs2Yz6nRpdWC\nDLVRg1MT+XOp7dd1JjWo2kbJDxufpGt3LZFtRtGJqf+l8n2l/0Dfl2pw8sVJP5liDgdl+XCZNPq4\nuOaPuyiZd6DXrVHE066kGXylF8gPUuYBLG7owT+50AB0fZN+pCqelvRe2XE0Rmj2ldI46HNbMO3P\nqbLmzQpFk15fr/niseouScXzZxZJkYsGE6b7XEQ8eRgAAIS6MCJXMTIWDaRGRoZidOU8LGN7Gt6m\n813zZGUuY8Ur8s6RmZJRJvgbunOxaBPZhfapzEmyb+beTcdzl/Gpok3LcTR8Iqo4BLiRVfGInIP6\nn0VXLbxKhgbNeCpmmasj/6EYWExSQ1O2r72CZUEq8Y+LWui80OVXKRj9xG37ke1ulUpmLfuZi/SE\nR8diozG6PDw8PDw8PNZPeHHUDRhtuV1QexK18Jtn09VOTyWwdOEXlLYo+S44CyczT7p4efmeutFy\nlZl7AF2lyBYSWqmKpfdSl2xTgcxSevzCu8n2yXecL9qk3sGCsB9S9IEYY6sFt3M0nCJplewxlFrQ\n6rm1p5jANlwjRwuA516I6A+/iTYt+9Ng6fTPZ4g23CuxIk/Siw27BZfm0UrGcCw4SHo8IgdQL+M3\nW74k2ozMp++s5l/y2RftEUy7cbHPbk8rv3mP9tg+7ZJ65hmfRYfLFfY8F7qTeTx4SRkAUMooBmLA\nvXPEvl5TKT1T+W8lziSPJke4UDha4oX5nHpYraJ3lRFcNUr15Nhx1NuU1SQTYxZsTsdY5GeZpTrr\nZerJSVsm+z2fu5YdL+n59BoavvD1CPk8yqcHZ+M1vke92flPyvnOxbPFoQnc9nyDvg8tC3JpGZ0X\nui+StSDDK8QugS570nlB82RnT6R0iMtdbiheLWs3npiujeMuPTw8PDw8PDzWMTplIH1690K76R7U\nm8NLz1TfIeM5yq6ky0quut3R4HIDLmU7XHSOXMBjzgCg5yPBXhKXckKxgKecA0DCMnZfSjzF9DE0\nDiP1K1kOpfClGrLdMlB6FHmiQaz6Y7zUFABE6uaS7blnyPhPrfwKBw+Sz/tQ6qpxeQqXwtlaXEi3\nCpocoulHib64iaxOYL8Njn8Ml1LvQaRK8UQyXTeXsbvgDMUL+9CaB+DPvF4ep+8/1/w4TX+Xc1KX\nOjp+tBJVWjFrrKTvZ+nu/UUTPice9utc0WbswFz1Wv8KWqxc/9HUEzrjOilL0OdQOX6DMOsaJU7w\nOtp/q+5UYvcuXPMAfFH1AMCyclpHIP2XhaJNWw71/CX+IL3dkcZGsS8WJBTzSgTBVTo41kUgffmm\nqfa+N6WXMFbs2e/X9TaQvlMaXZkpeXbbouPIPv6xcQGnrwCg9n46gDSdLj7IYxngAFDxIKW9ys+U\n7neubbO8vzSwyk+kdMzCUxWD6tHgjwTPGotFLBWQE8P0Y+Rz5nUDW5TyRl2n0gmlcdsi0UYTiw2C\nS7C7ix6aKxqPpMfKGCOPw4PQC2+URhj/AEWT5NguunLNjYGDf5XGPq97uSEi1FVmiJne1MiIpstS\nNHO3pb/TDOLHZ00i26eOPEG0mb03DUMo+EjSV5s+TimuH7aI33w97xzaX3LuCzbsXeaOJcfKNo37\nLiPbsRhYsWLmWCmsXHJRcH1cF3HfaraoKztRhi/0+Jj2oUX7Klp9DpnhHHv9LHXmJhxJn33dbrK4\nFF9UcXija+2iU8Z0eXh4eHh4eGwYsMBGU/C6c3q6knrZ4dmHk33tc6TrnGP21cyb8C9lRcBU4sFL\nV8SIsbXSA3HASeeQbS2AmCMhT9IB0cV0RbRyuNSJmT+Muvvzbw9e9Wo6OtMPoXIHSUuUsjuMcXRZ\nYScUSomGpVtTD1n69GWizfJiGvibtESGn3J1bI2u4dTu23VSUXufAkmBhrvRlWZksUy5X1uYcbNS\n5uYftJ81Ha5QWvXBlFb181Q4rOSotaMpFyvqL5G0k0ufjgWaZyfrmWCP4pwLGR18Z4yaaYfJd8ip\nw4rRUlqh/JTgRBiuU5bwkez33MMaUqIZeLFoF5kNrQA374tCdgPA7GeLyHaBg4TPCdMkDffUYBq0\n33iIdJx0fZE+58p75LsYcDULyFeoRJei9y5jLrQZK0tXNUu04UlJ02+l/bf2nrvQWju7Qz1dZZum\n2TvfkKXwYsV+JT96T1dHIpqWhOVbMC2fKN3WYlD6vMu0kJgwIQC0x8nIqv43HZyZIRkjlPoVpbQ0\nfStOc2kUF58Iys6TbbqnSfouCNE75ORRNEJmYAXBhbKIKEZzxg80ZkjLDDzqeVqCY9wgWUqJo61c\n0p3zWN2zQc8rBs3wZrEv2kazxuYOV2p1sgyjUyvkfTxw9mFkO/H9YAOcG1iArMPZpU7GPvGyVbyW\nHSAn/HC51EjjsSya8RYLrFKWyEym11zwsaTqnJaXTBOs8QiZnTx3dxovVfSiFD/m0BYNBR9RA1zm\nF0rqOes1OU9wAwsAmg+k192lSmb5cWgxS2BGlhbfx2OohHaVgoTpMnOUz2/Vf5fxqWWfsd9sJj/U\nBQetuSDok/2lsDLPD+QGlobMCoU6dIjXEkbWR7K/lIwIHj9RB61ADi4kvMDKTHGP+KFTGl0eHh4e\nHh4eGwYsgOhGQi92SqPLLG0WGlKpn9Ig8Jb35O/s19QNHVEyAcW5WBkTAAjX0QwWjdosuZiumkZe\nrGW+0eDKhpOkd6W9C12Za1rmSUuDPcUpbwdr5Cw/hK2eRwQHqT84c5LYd+6OR5Dt7G8lLci9Epr2\njovmFfdsaddzZt/tyfbMvWXwdPGBzMPgSMuHWTJGaoOkQzju+OeRYl/WVEZRKL+bez71QhQ8IUvq\nLBhE7+2bq2Vpk7JnafkTl5I6i7ZWirF/Sz05LpUINIiMrMnB4lV8LAMy43TUtFGiTdu1dJ7Qkhoy\nxgSeXkAL1AaLy+Z0IwD0nkA9IIsOlvOE5t3mCSQyZ1di5g1yvkuZQOccTffJKSyDQcvE5iWPys6S\n80u4P/VsRT6XXi1emo1TmwAQSqNPJNosvdQuqLyfzollZwffu5ZhHs6n/S56oVJmjB9nK+lRtF/S\nBIVh30r/6SvjaVHu0idoQpSZydyJHYSI9eKoGyxMOIxwJo2lqV5E6aGUE2WGGi/VUXe+pIR7v08/\nJGUPS0HBj1+m8RMZM4tEGxdXNY/P6vF4bPXk2tKpgaBRQVuMpfXkvhwq6Ygus9Z8YtprypliXxno\nM+QTRTzBZQHO2VOhUEBrZxRfHttz5hM5ALTXUkHDzOeC6z2lzpd01bJdaXmn9GkyNiz3bhY3M0SW\nhEpk9u0W158h2iTtvubp65nPyf68Yg86fhKDQ2vUeDobDl4Bc1mJ5QOkETgyn++pF20Su7WQ7fkn\ny4VOj8do/1i5p4yXGvwvGoZQvZNC70XpBzGpURryXLA00+EZAm7ZrlyGpffBMl6LZzhqsVguRtaK\nfWn4QspbcpHXOJQaHmlKySOtTiuHZmRx2JU08EyT6+BztCag2v9hOg5b9pJ9gYeyhIokddjOF5CK\n0gOP3VuRJY2Unixq5qszZVxc8RQWusH+bu2aSwx5uKNTGl0eHh4eHh4eGwYsjM9e3JCRYbrbvxla\ns0a4pZUVE9eCSn09mHLTIIpr71sh2oQH0TaRX2Qb7ulq7S+W6ghP/Ebs6yjwewAA1FNXtVY6o+Ix\n6gEpeV66wMOfBN8XzxrrMUXqhkXTaWHd+mvkufKY1hoPNgeA0H8oNbX8IJl40OXVNdcEAyACj02b\nvEYuIqoFt/NnbRLkmqp5H1p+RevjXMC1vUZmQLXtRr0kXDwWAMwwmiWrUX6LWGHmpKelrlD6y8HP\nlWtuLd5fZuiWnkk1lBYMlzpHHNHtJZ237EpafD1jr2ANQI1SWnwEfYbzt5MUevlpwRmGLtCC5CNK\nUWUOp5JQDCHFw9o4IItsa8H/saD+YknJtjOHM9f808DFdQEpsKvNC0lVdM5pr5PeUxfwsepSyii0\niXzOrfmUlkz5VrrMIgtochEXkK694kG0Tq/rUK6vZNMu9qZxMhs+Vvy97CufvdiRMCnJCJdSBWbu\npufxL4CkZ2IVwMw9nXI42vCZtwOlO3sqSX+//Iu6octPlhlryw9mcVbjlKw2VmdSmxQXbE0/douG\nyg//9IMeIdujBssP5ML96cDpebwc9OW7BGfeuYCn5VfeKt3/XLKi9wFyAhZ1zj4NzhJaMFSuyrq8\nKtvxrDU1tocp6bssg27/brzYd2ERvf+mg+Sc4/Kx04wsDm5kVT0nP0ilRwc/x+770MWGpvS/eQ6l\nqHvdL99htKlJ7ONwMbLCg+m8EV4kKXVuZGn04uzdKJ0YbpXfMC5Um/WMvB4e59X7SZmdpsmQ8GtK\nGi+NN36vc3foLtpkP0yvsXWUQp+9S4+t1TftGmYGuGgRW5zV8iIZKZj5G3v2LgZnYqI8OK9qEJFX\nvf+HtL/e9eIBoo3I7lRQfRN9rv0uDTZuoz/J55wyl85lJjVVtOFG1qa9achDQ1JwNq5H7OiURpeH\nh4eHh4fHhgEvjrqBQ6MXXeBSjoVnK9qvZIbYkmOox2HFwXKFzcsH8ZI/ADDoVqplU3NkoWjjEjTK\naR4N0SRqf3OhQkCKoc7aK0u0cbkeroUUzpLHmXME1bPKGysTFrhLPtayREJXSKnhyKEFza/cVmpw\naWKS8YAQQYSbRs/SdynNvqBBlsIpPSbYQxXOpoHqnLLQoNZwrKKr6vAF8h0mXUwpk+h30i3MM7ka\n+8ks0YzpVH9obSZwVN9O54CSS6Tngie01I3KEW24912DpgEWZWVlNK+Ri9hm3eUsI/aW+AjM8oxU\nAGgYTmueaqwCn8tm7yFp9vYu9JtW8B/puUloovvaMqSny0WM2gV2OE0+MErG5YxbaH9xSeaZfov0\n7PdjvwtnZIg2XDeMz+tTfxuNpc31HUovFm+abq9/TSoBxIpjy/+73tKLG4dp6eHh4eHh4eGxjtEp\n6UWbkYbW7SlHrinQc2ieLY6K4+gKOr9IKlb3eI/GqUSelSUdOLRi1ksOpcd28iIpmHEQXe1oRY/5\nskbEOQGIMAX63g7q83MvkN6NECsDlDBqoWiTfRP1SmhlMczmdNU7/2AphdHCFAj6XqusIB08Wxya\n5yDcHBz8GiuaD6J9obFQShDkOghxTx36Ctke2VspXcQ8MFqx+KYdqORK47E9RZvvt36BbI/aWb4f\nfuzmJDmeEr4LDqTnXqtofxmPKQpVxydGHXNfl17H3o/QvqAFPUdYTE7S9lIugydMaIkpkZ7S2xNm\nchRaf+3yhYz34Si4dc3lUxpOUSpMfEtj7toVhiBzBo3/1JIP6kbQe01eIpmavKl0gnFJyglWZHQD\nZzkAIGkZfReaZhr3bPFYXUAm6uRNcVC+y5Hj0g6m8ipRxmpYK6tUdAS8OOoGDBO1SFxGJz0hjLjj\ngeJ3M46i7m0tALLsnOAPwIIT6MDr/qScuJYeTT8KK7sqmivfr7kuVtfP5CAr2oHV23PQpNGMHKw5\nY4vcu4INxfAY+dGIllIqNVQmddXMImoEdq2TlFLy3pRmcRU15Zh1LTUe+1wr70ujZDm0j2/NwTSA\nOatCJjFkvEDfj4vYpYaR+TwbT07cmpHFUbs7fY7lB0hqc5eRJ5PtpIpguoaLegIyi1cTG+bZi93H\ny8y81iFFgefnqL9UKXvzMg08bpwvhSxTz6HB7amHB1PfvT6YLfa1K0YWB89sBWTyTsXDMnyh/HSH\nRRwbL63vF4kmyXvUkO3IPjKw3z4mwwMCEZJzYn+WCV75isygnnUavfviT+Sh+XvNvy0+tGn3H+X7\n+u1cOlrLxwUfxyUTOvUNuVCfeT399mQo+tHdnopNh3BtwlogYjcOo2vjuEsPDw8PDw8Pj3WMTunp\nwrIWUVx3rz3/TrajVTLdNm+KpNQ4eOV7rYgv92zxshRAbFRh0+GKh+ol6gFp2kFSdVzle2WX+MRI\nai7w+p3odtm5wSs2jTJJWETlKJb3lwrjyRMobZA6U3oKUl+n25qiNvdQhbpIjxn3bLkGsrtov+X0\nZVT4O8G8l1YSaiVTqM67Q1Eh/5BqcCXsJuUh+HsNr5TewfIzgjXsUr+jx66+QV5z0VV0rGjFvh9V\n5OA4uGTEip2kZ4eXunIZl5oHZM7p9D7KTw32HCw7SI6Vz+6nEixSMd+tWL0LisZp5bTXHI2v5Yl9\nuT3ps2+qlIkxvZjHjGv1AcCga2niEK/mAABVL1M6PPde+X7afg2On3bxbM07l/aPHOVcAu3yOfd5\nLdi3ceAvNBHliVv3E224RppGZfb95/rnxXKDQVQEuXROdE6jS0FzHxrXlPKDbJMyk2YZaoy5iaz5\n5FX0rNSqiiX6hxtYrmgZSj+0sZYTCjOK76pbnxJt7iqlxoimdbaQ6nOi7EmZ3dnO4l3CRYpBzPTH\n1Dg0RpO6UIDNu8hsT/7BdskUBNwEdrmR9a8Z0ui6upgaZto75JlKWv9teINmuuVAGl0xi7wy8Pp6\niU2lf9Ly//DYoXuLfeFSGmMSqZoReByj0Mhcm+/Aw2WNuW/eZAKNrbIkimFTQNWdso+XXsjo4Nfk\nM906g5Zgys6T99VvHD0/F3kGANOsxOBwcc0YM/G4cVR+sux3vJ8lL+ov2vBs38zvZRTVghF0nsqs\nkTFuuQ/S8aQFCyS+v+b32j5CxjZGkoN/J0qqReSo43OHVk5o3CD6XLsheI5euIW8+6xnA38mwMNN\nohPiI1y7JrDw9KKHh4eHh4eHh0cc0Sl1utKyC+2Agy4g+7r9nSqBh0ZIKoqDlzoBgKTFdFU54wCp\ng1J0NV2luJSYiBUVj1APiEvZEE31e9Ruh9Edc6TukqZ8zcFXjCkzZEB+u1LIdq2BaXAl1C8STdoK\nafKBTZJrkZCDSr0GoXM0cZlsNFVxuzJwXSxkyuBtFw8QB88ABYDqS6hmUd/R8nm4ZITFgkUnSC9A\n9uvU66n1w8jO1H2qlcdaeCo9ds9H40PFtO6tqLQ7UMQc4h0DaNyRepfj5YV0Rf5UmqBQv41U/udZ\nhtGtJPWuaVMFQZt/tXJTsaDuMjYub5XUIQ8ziC5fLtpwLDpR9t/uT7AC6SMl/RlJpWOsywz5nF29\n6/8r/ms/QqNd1KFcX99NutrLXo2frNZZAyautzpdnZJeTFi4HD1G044+pysdZLnbSSrKTKbGiDbA\nuYmato1S+8shbsYFC1jsiFHs4/LT1vzDsVepvOZos6z9yOHyYeNioBqNymPMVmwqRV9Tvquh51ay\nKV1EB7kcRNtwGdNlWZbUzD2lkVz8qTw0h5aZmDqPvTQHA0sDFx9dOlLKL2Qyo0ujTJK/pjVHpx8o\nFw3lF7HjKNmCawtRJXefG1nTlXJP/S4LHge9nqGGc4jVmASASA9qZCzvK41bThUmNEtKiWe7JjaK\nJmgaTKnD8pMkLZY5lRrArmEJVc/S2NPsCZIry3yO0kiakVN3AZO+SJQf/pU70YVNvAyjWI/D62WG\nJslFJjeymg+UMXddJ7H4QsXo4oYyN7AAoP4SVsppglz48dJJVVofd7BbeYiFbW6R52LyIVzWp82h\n1F28YWEQtRtHTJenFz08PDw8PDw8OgCdkl6MtQyQ3Y6ukLjnK1Ykf5or9lVPoLRB75uCM2Mqn95C\n7Cs7bs1pnmOnSWr1mf7S2yTAyvdomlfRnegKO2GJpFG5m1wrops2hXpkmnaRKWxp41iQukNfdiqd\n4VIgV4FJlt6EZfvQPrU26aEZLw4h2/2OkRm6tk0GhgehfVfpAUn4ONgLER5E31nkF+lN5cHtWtkb\nlzYuWcUcC9+SfSr7EJr0YltbRRuXcbCuEe5Btd8iDdK74gJeNqrlAxncnv0tHeP120tPcZg9xvzb\n46OLpYHTvS5Ur0sSjpatHWJFsGt3ld6a8qdpSEFTiSy9NX8Y/Z2L59YFyw6TSR5BRe/XBb3YZ5MM\ne9ErMuM4Vpw/8CNPL24I4EaWJh1gBxSR7eZC2YZnrM15uli02fxkqua+4Kbg6xtwaa3Yx4kNXhsS\nkPUhNQOLT66Zo6pEm4qH6GQ28F6ZdQgW+2SU2l8udcYMq83W3FM6ZVtOohNKVrX8QPLYI1sYHEvn\nYmAtOENRnm6UH9+FQ9lkOpeLkwIJP1M6b9nOMvsrfSIVlzRd5cQN5p6fdZmcc/q+zmry/SQNM45I\nsnz2fOLQpDjwc3CMWYiVxVuxj5x4uZEVGiJpXDgYWRw5l8l9kTYHAs/ByOJZhhWnKsrg7LGWXhAb\nrcNrkALSyOLK9oAu1cLR/Vw6w0Sqgo2lliPkIsol1pTXkGyfLec7DpE9CNlftZqf+Z+yTHWlnidH\nxkQ5L1RdTMdq2blyLmvfhS6WkxfJWpDlD9JMXyjUd3vNmoepaAZW9b/pvGna6bzReu+6yV6M+uxF\nDw8PDw8PDw+PeKFT0ovp3XrboTufR/bxkgkt+8sV9bytaT07tUYh8yRxL1Ks0MQ2bQK1ie3XstwH\nL3/CRSLXJjRxvi7z6CrORTOH00cAkF5PxZCCXOL/C3gA/HvvvyjaDL/wdLLNyyYBwLJDJf2Q/nLH\nZpvFA+HBdPXeniVr9MVCvfP6kQDQ9VPqPWjcWVK7Qy+n55o+QtK4VY9Qb3LFTk+LNrIEkkT1GNqm\n5Eh5nxVPUro1PUsGK+cfSD0nbXtIr6PL2Gg8gnol2hRh416fyhJDkUql/gtDyZeUBvz8GRm+YFmJ\nT7uzzBzNU0pAcST0LiDbDTtLb3vb4dQ7l3mP9Oa6BNdzL+PsW2R2Ru8j6POJVza5lr3Y4xnq5au8\nXfYFFy+nC13Pwb1aAND9J9qHeFmgdUEvFm6Sac97WV5rrLhk0PueXvTw8PDw8PDw4NiY6MVO6enS\nAuqPDcEAACAASURBVOl5cKWW5s3jfzTPRdZnNWS79nAZU8DjVHo9GBwHsehtGdTbfZ/glQxCdCk6\n+0p5zWAK2oU3Bl8PX80DQLiBpq8nLZaDJG8qjaviEhKATE3XVq+JE2m5keW39BZtksbTFSRfTQN6\nKZFYwOU7bILicbhfPlcep7L8cbnOSTuH7otMk/F0CQW0Rkx7Xf2fX+waYMg38j5+2CK4ZEtKLfUe\naAXAOcwwqQnGvbfLD5H9t8sra8dbyJM+gNj12ILAqwUAQKRR0ZFgaDiF9jsuheMKF82rYd/Kahtf\nnk9/pz0fHqOZN0nOrY1FtI9nVcqEjqQYVfM5hDbeLcF9s+o52RcGXE7jrNSyRKwaQeo8OSdmf0fv\nVbvP+otZAe5/O+iGbSq/PVySRpOx4XGcvKD85wtewtKV8zvU09V7k0x77ljJeMSKywaP956udY2F\nm1KDoeAWGdjJhSI1aoiH2SY19RNtFm1KP1oy3wdIyM2h11cnA127iz0S3MgqfkZmJrazmoS8phgA\n5H5OPwDlJ0hDqPJeeq5kRStVM7I4XCiCuc8Wke2lx0oKp994uq1Niq3v0+Mk71ETeG4NS7alxuTA\naxXRV+V3tYfQgNjcPZQPQCmlxrRsQThkC8YCbmABwIyb6Ed00A3yuVafII1gDj6Ztyv0OEfMBtY2\nNHPTRQ9NMyDMVlRzqv5K+VZd6DSOWWfIBJfE4ZRO65slB1SPnYKNLJearC5jbtJ18jipnwaXsao4\n9iGyvfOnp4g22oIkCLzsGAAsG0wTErQyWy5GFkfRk9JYmn0YTeZJ203S7P1upvPC/GGyTco8qoul\nFZIrfI/OJ1VKljVPOKrdRWrI9WYspUuizPLNKdUbnaSI5XUAIr72ooeHh4eHh4fH2oW1xtOLGzIy\n0gvs1kNpMdlN76PK5D8NCy5crVF+2ZfQ56XJC6zYlwbpp7wVvFrUwBXgc2+SwbENZ1AaTisV4VLO\novYfTDX5ZoUqY/RdJCdLtJl+CKVRiv8RGx3ScBJd6S3eWQa6Zkylq0pNzTzcQt9X3htSxoArrnN6\nApCr5+Xj5Sq8ZVyO2NfzkeD75yn/lhcrBlB1NytKmyz774BL6btfq0kVrLxS/U4y6NlFi4mXpNKC\n3XmxZK6oDcSmSzX7Fel9Kj6feptc6GlNkiD3HnrvsWq/ce3A0BdS2sBFe02T9ODF3zkVDgDRbtSb\nwpXTXcHps5QG+d3p/iTTyxsspVMiPzPpFOaZBIDrxz5BtnmxeA2x0r8uqL+U3nvhW7LE2uDnaUiB\n5oHmWmJalQ4XTL+Nzq29htBEjB/PfhrLKuZ2qNupYHCWPXPs9nE73lWbvLPG9KIx5lYA+wAoBLAM\nwDsALrPW/ulkYoy5GMAZWEVozQVwl7X2wb88T6c0umIUR+X0ov02mA7h2YOA/Nhp9eT4BKMJa9ay\neIrlfeXHOGMa/WDzyV6DWntxCHtePbqJNlqsEQfPRGzJlf1L0+UKQs2/5DPMn0yfB4/xcgUXZ01c\nLp8zp6J4LAcAlF4YnIG08DR5Hzmv0tg9bTLlzzX7O2mEamWZOCpG03vtf6asLTLnbDpX5d4VbIDb\nDKlX55JdxRcWTX3kOMh6hn2MWXYa4NY3Y0Gf/8r7mvW34Bp8fDyrIqsO4O+9TV6OGqPJdblcNLk0\nOs8lC1IcRzGWoilsYeFANfNyYQCAlTRg1qUerIbQ0EFke9oJ0ugqO88ho5AZa06G2tbSUKw6gr7Y\nAffImE2u01XxuLQpZuz1GNnee7v95XFmUAFgrtH487lPYXnFnA43uk57ace4He+aTd+Kxei6CcDL\nAH4CkAXgGQBt1tr9/qT9fgBeADDCWjvVGLMtgA8BHGCt/eDPzhMXf54xpocx5mljzFxjzFJjzBhj\nTLc//P1YY0y1MabZGPNfY8ww9vstjTFfrP57tTHm6Hhcl4eHh4eHh8f6DQsgChO3/2K6BmuvsNZ+\na61ts9YuAHAPgJ3/4ielAH6w1k5d/fspAH4AoChF/x/iFdP1DIAVAMoAJGKV9fcsgH2MMdsDeAjA\ngQA+BXAegHeNMWXW2kZjTCaA9wD8G8AOAHYEMM4YU736JtYKKh+QWVJlZ9Eg3qVHS28GLxIbUpSe\nV7xGqY7sg+Wqjuf3aCvh/M/oijrhcUWhuRtb0coWonzFyHzZZvptlErtd6l89Jwi0egRrURLPFB0\ndWxdoWUCDVJPHSnpxeR3qYdMzSRlBa9DbXJgu9CSGt0YZfSipq1TcjE9Tu0V8ly9J9LtlSPlQq9g\nPF1nmcHSa5Qxk/YiF09trODeOUlYS6heLZbFi6g2EigqnpDPZ+CltH/M+lswhaMVFndJKOEeIU6d\nAcBK9kDULFHFcxJhhd5dYFrkHMTLK7WnhUUbno1XfYRMAcpit5blkBcSmTdf7Jt5Hcvy+0xec+LH\nzJOv9IUoU6Cffqj0/o88j1K7WhkgXtbLZQ6oPCZNtCk7h35XXAqbawXSR4Jec+W9sgRd2bnU07V8\nIvUoRps6Rah32Bjzx4m8wVq7pnzsCAB/VWb8RQAnGmO2AzAFwHYAygGM/4vf/O9GlzGmC4C9AGxu\nrW1ave8mABONMX0AnALgNWvt+6v/djuAs7DKCHsawEEAmgHcZldxnR8YY8YBOHX1jbheRw8APQAg\nHdIQ4nQIN7AAoOnv9GPHDSwNWqmKtgh10ycpLmc+4ZefKAeQ+Zy+b/UzwqgoTeqh/AR6r+FSWZao\nW3AVDGFk8TgaQMbSzPqnnIR6/ELvxCVjjU/+AJDwHf34ajFMrc/TSaf2fklZlJ1Nz9/zSvlhCbFM\nvK5KhZvsh2OT4uCZotZhVHJZEkA+o7qdEkWb4ivokJqjZLJGWGyclr7uUrJFZC+y2DkgfnEq4XQW\nt6jEfVXdwsecMr6VGnxBcDGwhn8v464+30waWRzhIZQW1MZc/d9kiEOOQxhpQr8ish1NkzUT27rS\nztjlB4X2YtuFHyrluCYGy/HwbPFwdrZo0/eaNV/U7faTnBdeu3F3sq0tRDnq95ODLjuNLkj6PjdT\ntLGMth1wvaRsF7EFfka1zNbmMXguKDs3eG5N2mEhPc+rLiZfvGEQiW8gfQ6APw6w6wBc63w1xhwM\n4HQAO/1Fs/kAXgHwCf6PNTzfWvuXiunxMGnNH/77Hb9fwFCscrU99fsfrLXWGPMd/s8FtxmAby0N\nLvsGwDFreB3nALgGAFYitvgJDw8PDw8Pj47FKnHUuIaRzQOlBp1Xc8aYQwE8AmA/a+1fBcpeDeBI\nrLJzfgUwCMCbxpgWa+3jf/aj/9nostYuM8ZMBHCtMeZ4rKIXr1j95wwAXQHwKM4lq/8Gh7+74j4A\nYwAgMb3btLZtmUeB6dTwDENAlnZJYEWXAQAtNIC5fa4swdFlT7qSWbmnzJ4ZdM0csm2VoNFl2xaR\n7fTPJK0y6xQqfpeYuky0OaOS/u6GW5VSFY+teZbdyiFFos3sXSllUnS1g2imkkTA6daQUtC4jRWS\nXVokj5OyhGb5ca8WIL1xbf3lKrP0TuoByX7YzQnLkzM0/TNe6iW5Qa74eAZqn5elZ4kH2oZ2l+95\n9tUsk+pfsdHB3LOlJWfwTER+bgBo7UbfT+mFwXOj5u2JLqNUfN2FcnxzilZFd8bnxeh54/hif0nj\nAvR9zb1AoaYOotfcpJRSOv+sV8S+mSdTPavPN5OpvdEF9N5WbCeFNDn17uIDSZgsF/qhT6graXL/\nR0Sb4SFaaivrG0kvhjNpNmWkKrio+oebSE9gBoJZDJ51WHackrDAKOIFu8lC1en1vDSa9HRlPicz\nGoOgFfuuH0kzqHPuC+7zPfelCS/VtlM4LSLWWgd1cQpjzAkA7gCwr7V2ckDzYQBetdb+zhP9bIx5\nHcC+ANae0bUaRwO4E6usvRVYddG7AVgIoAkQfF8WgOrV/98EoEj5+xrl667maxsAIDM5B6nTqDEU\nZVmGCcuDYz54lkes0LLqwp9S6qV1JznBpLPvupYGz+MFlh0m44GmDaayEpqBxTNhtHgBLmXAFfwB\noOgTur30KCUu7nk64S04XtZ8c5Fa4Ofv1VfWc2ufRY0DLf4m50s6KSZfLw28WHN8XTJgu71Dud0M\nhY7mAhEzLhsi2rR1pR+2fq9K4zG8gr5Dl/vSxFoTmFjr3luMFG0iu1BKXzPwZtzMDEMlPqnxOkoV\nZuxVLdpw5N+mfCDZwsakSSHL9orgY/NYOU1hnEs0zLhIzjep79N77z5Kkae4i26mvSYXDS+8Jrmx\nynvouBtYKI30hp0oRayFU1TfQY9TcpFss/g4eh/dnpZjd/Y7RWR7u9aDRJvGIrrYyD1L0oLLd6TG\niZPUA4/3A0ScV8PJcoGStJSOjvAnCgd5Nt3kdQzjiSN+o9Tuc6fLedPFyHIJbVkXiMQnry9mGGPO\nxSq2bKS11iUVfjKA440xj1trK40xAwEcgD8wexriYnRZa+sAHP77tjFmb6wyvqZiVSDaFn/4mwGw\nOYDXVu/6fvWF/hFb4K8D2Dw8PDw8PDw6ASxMvOnFWHAPVjlzP1llpqyCtTYdAIwxRwF45PdtALdj\nlUPpA2NMTwCLsEpy4pa/OklcdLqMMf0BLMAqWnAYVtF8z1lrr1udvTgewP4AJmFV9uJFAH7PXswC\nUAngNgD3YlUG4+sAdo81ezGloNAWnnUB2Vd0FT0UL3UCyCBjLkgJAKXnMwpSERSMzKVeKxfxQhch\nwHhB84aljw12t4dSaKBtdIXUiopuTymlD8Y+Jdr0e5nSCC56OBpKvqTXU72VvB6nYG6m+xRPzSeX\ngHMXhIZQ6sdFpJIHqQNugeqcyqy4UXqf+DhQtd9GHEq25+wiA6N5XVLNc9E+mCZ+aAHFjUeyQOQx\nsk+59IV4wUX0lcOlnI+rltaCM+j8lv1Q8FRqhysCqiyZR9OZy5gZH708Dj6XAEBokuxn4ncsoUQL\nTeC1eOu3V/wPzAaIRV8QkJp+XWdIj86wo2jZqjn7ywzHWcfTeargVunV4jVitTCIICHh/9qP0GgX\ndagFlDu4uz12zJpra/4Zbh/6SqevvbgjgOuxyuqrA3C/tfYeALDWTjLGnAlgNIA8AD8CGGWtbVz9\n9yXGmFEAHlh9jDkATl+bchEeHh4eHh4e6w+i65he7ChsNIr0PIhXy07tc10wH966F10hzdpLHoin\n6XLPAQD8du9Asp0ySwa6ptBMXvR6QEndZ2nftlHGQSwZQfW1VnSXi5gEFv7DZQMAoNcXNN9heV9Z\ncHXhJtSO7/2xUnJoV/o8NEXtWKDJSjQMpt6w3FelFyuyID5BrBGHeKBh38ryPV9vTvsQL/0CAPO3\noCvfrrUyRqjrf6ikhxYDGNqEeszmD5eVB3o+Stc7XBUdkHpsmgwJD3J28eby6wOAmoPoynxFgUzd\n73829ci4eJddYtVcoHmosj5i78LBw7jkGOlFWlZIx2qvb+S9p86Qquwu3louyRDLOACABBZLaRtl\nMg9C9D6adpRlkdLGBcsbzDuH9kWXGCYVhl7PhDrpDXPxTq4tJOTKkmI8aUtLQFp8OI3zSq+T4yBI\n4mRdebqOHrN7cENH3DF0bKf3dK33KPgPtSp4WRdXJLTQj13ZucGudK3WoRaoHgRtkLVPryHbWo01\nTlHIXB6J+W/Ij1/jYpoPkfGuzFJqGEzPr1FBhcyHySdtAKLchwsVlPjrLLEv+zP6sdPSJzjttGR7\nmbWa9QUNYtUCrrXsPB48zg0sQAZ4RyZLCiWH5dG4BBA3K5luXT+jVFTPRyVNOetlSidmdpFJHriX\nBie3FUhZ0w/+wyk2eRiO6E/yevom0wzQhZvLe3cxsnhAdeJnUkCUL0EXnagIwz5BOzAfXwBglYVW\n0PVYJd6760xqpGvUXXBKkA5uZGmLlsZiumhpyZbf4sKxdNxppXkSimhWX9obcv6bfRUdP0WvSiMw\nbzRNntEq6LbtRo1po/gVuOGhGVh8Lp07XL7TggfY9SghF1xsufs+wUl1WlY8N+61fnfBlS+S7ac2\nkcbtwlNon+4xet2TStYCkXUf09Uh2GiMLg8PDw8PD4/1E+tBIH2HYKMxulp6Ur4sk9FyAFB1IpVW\nKHpTuskTv2RV7rUyQFvT1UXi+3JVJ9Tv35Krbu4hcyma66JazAucAkDW/nS1mvcPuYasH8E8BTsN\nEm36vhHsWeIyElxCIlbMP0CW73HRH+NetMxvFSmBmbPpjm2kZEP6rNioeq3cSeBvFFkJvsLX5AVc\nvCJnD55Itt8cJAPyuRdgKfOIAPGjZ+p2oWNMU8g/7Ff6Dm977UDR5t2jbyfbZx10mjwZK8ScVS09\nF217UNZCG9+ad5tjxg1USyyhRX50+t5NvclG0fNrL5UuRMO8pfPPlF5YnsSgBZxnfca2RQtgOQu5\nSFaSRSLZbJ6skV7pwhvo9fDyWABQczV9ZppCfSLTZDSJMlaCj9SWA6SuW/pkSo/nt8uSOnNOoXRe\nzv1yvuGeLZ6QBOgeMg7h2TKyv6SF6Ddi+T7Se5k9hXkimVfWNG8csVXrChtNTBdHt8lSYLHpGEpb\n2KXyw8bjZLT6dkK3Rxkc4ZIisr14a8nhZ71FPwBVV28i2mg1EjlcsrZW7EMnnbQaRStKoX44zJb0\nGudsJ6mg3HvoRKnRpsv2pR9srVRQ6yg62afWKmWAcmnc2eUPPi3a3FE6WOzj6PoZFZtsYqUzXBHq\nKsnd+UfSZ7Z0J6mvVXJkcNbWJl/TyfKnYdJwjsXg5SW0AKBxK5qV2fUT2Tfe+pmKto0qkLpCvL/Y\nryRlLZ79RXmiTeVZtOTRgNuCjR4tO5jruLmU+NEo/ZZc+mFV45WY4X7Rcy+IJrxvLj5e0p3x0obS\nDLP0OdRM1+6DU7BRWX0K2V/Q+aTiZBkPWjiefouSGmX8Gg8L0WIATYRec90eMmuWz0EumH6LfPb9\nWEajS3aplpVZdSQ1DMvPdKjjFC+wfvjfHx5G47K6DnU79RrUwx7+3J5xO979w8b4mC4PDw8PDw8P\nDw0RrtHRSbHRGl2/viJXSG1H0u3CG2pEm6IvKPVUs7WkFnjZn+QPpdueZ3ZlaOUsmBta82qFu9Hs\ns/YBsgxF1fl0BVl0uPR0pc6lqt8uXq3IztJzkbiIHqdbpVKZmR9nG0lTcs8Wp2MBWbZJC6pN6EK9\nEJpXi2dxRZVA4O8nU8q4H6SnK7qTdOXzlblWlDvndRqU3/ORYLqRl2QCgJ+GUb2khW9JujVhLJ3Y\nuK4PABx0JvVQfX6EkqU6hFLNm18pC0zvdhKl79LyZos20Xb61hYdJ68HO/B+L599GXMMuNCos66V\nnp0+17KszG4yu/PXWyk9X36qkkxzoExi4LDMA671zdb3i8j2EqUSXI/NBop90e9/DTw/B6cbXcET\nCyoekw6G5lxKL5adpZyLVSOoOE16wMs/ZTtmShV/k03pcK04fCzo95qSlckQ6SHHSmsZ/R4YZaIq\nfp3u3Oo72YO/HErHnIveotZ/eaJDxYn0ObfesHEYP+sKndLoas/uggWH0sk7kbENuXfJQd9wEv0N\nl2MAgC+eofET2dtKGuOTJ0aTbS22JcQmyoqLJc9fegz9YGs0T3stnXRa8uSHtvAhOuu4ZGRx4xIA\nPn+ZGhX5t8tnyOeTlGQprBniE0GrnGA45cgNLA2V98kPXdk51Hjj8TgAMGsb6trP/l5WmOM0QsUj\nsp5m6bOxze48psslM5GXZAKACKtFmXOxQo9PC6aiPv2V9o9wqryv4vupUf5ONym/UDqevrOIVmOT\nUd3hgfJDEhMUSn/2FfS+uIEFKNSPIsapGlni/A5NWPwlF9EEgNI96DMsRo1o08IMMwBI3iP4/PEC\nl08ZcK80TriY78G/yoXF6wdQWr38JBnnytE2TGbnCZmYSXIRxeephafKOZFLpzQVy+zFhDwaltGa\nKVNQl/WmnaFbhZzv+CLzy/eVVFaGyXc/LPYNGHwm2S55KFjGZtBNNFNyyRyXCpvxxVooeL3eolMa\nXR4eHh4eHh4bCgyimnhmJ0SnDKTvmtnbDtv2HLJPyzDi4FkuLto/XH8GANryqSfnqudk8PYFt55B\ntjUXeMNQuh7rf7mS4dhMaR3u7QCAlGvm0OvbeY5ow6FpPGnZcBxmK+rZsl/Ka571T0rrFI+R18Pp\nV/Vcm1M6JrxgiWjDPYGxgj/XFT1ktLAW7M9FQ2ccJYPAXUR5xXFjLPETL3BtNZHdCSA8kHohIr9W\nijaVT9PnWnac5M/6f0Wf9cezpDe3z6VsHCj9J5bSPGElO7n+WNrvcu5VRIsLqEfcKtlp9UfREIeC\nsYpXgnnsWjaVZccSmuTkMXMUFdMtulp6OF3eoQvqx9HwgB//Nka0cXnWJ1XQd/Z4uRTc5cLBc7eR\n5XLy7ggeTzzgveJ0mRWqFffm4MW+QxH5PeWFxHkCEAAkv0u9p1oB7rRDqVc4daTs4/wb1raDZBqC\nBIDXhThq9qCe9sBn9o7b8UZv9cx6G0jfKY0ul+zFjgSnLQGgx+PBNM/8s6hxoinSc2jU1K+30sl9\nwCOK+/+7XwKP7QIe16SJ0FY9R9uUHi3b1L5KP2y9D1Guj/VdLpkAyPRxnskJANMuLiLbZ+85XrR5\nb7CWLE8Ra604cRyH2LDpt8o+lf0tfR4ulKyLoKuGyvupUZ5XKoUs2yKUIum2tzS6OOouU+KsnqLq\n6iZF0pQN21PqPVYZkniptNdfQu+jz6v1og0XNtbAa27O3ktmXef/R4Y4uEjHNB5B6cy5O8hgI5cs\nOq7sr33U+aIlcbFSt5XNQZrUQ9uO1IjQskvFHNSi0GVfBFOX3DDTalzmTKHz7bxtJaXvAp7VHOoh\nY7HamcyGJmYbbqEGuJYNHIR1ZXTt/8w+cTve41s9vd4aXZ5e9PDw8PDw8Fhn8Ir0GzhMSjLCRTTD\nyKUWWUIxK/8SlSu/WFzwIYdUqiXHSs9FzqOUEtV8kpyeGXC+dDln/5d6HJpKpFZUtD9d9Y69/d+i\nzUl9tifbvA4lACS/R93kcy+QnoveLwUHavY++OfANjxLtC1dxgRwEnBlifR05X9G3/N7F0mv1gym\n0VN8uULXNEnxWt6DeMkfAKg7kvbVjBrZYcJcgHKxnKC6vhjsPd3me0ZFbaZQY6zum1aSpOzsYKq5\n2SGDj0Pz2izdkdJM9SPkSCg/PdizxQUwk5Yq/fATJT0wBogkEz63OIIHoL/79iTRZt/WS+X5m2mi\nzm/nySDw9F/peCk/M/gZanUmuWinplUVbafvrKlUzkFdmFN4zpnSUZH9fbCIKPcK85AHAGhlc4da\nXknxbHF88T7Vmdv1S9l/ao6n717Th+NZzVqWM4cmZhtmyV8rFW9Y0nQ6notfp2EJ3x+zcRg/6wqd\n0ujy8PDw8PDw2HCwsQTSd0qjq7VHAqqOp7EZqQOpz6PgMhl8WnU0/Y0WfMox8zrpyeGlKVwUo4ec\n9YPY93VacOHWvLepL0UrNtvajaUsPyW9FNy7sdd9cvXcO4Wu4pbly+7Do20yp0tvQspbNE5E8/5w\nGQUefA8Afa6nz7nmYVnKo/wVuj3+pSdEG66UrsWGcc9W1V1Kev8FwZ4Co0gZaPIlHNLTFpum0tTN\n6Dhw0fpZeJqSTv9IcJ9WVdgDoMUipbHVevnpsRWrT32d9rvaK2SfKqqhXomG7WTiQ/cJNOBdi/vi\nRY4bv5WJD/1uo9UtbH/pDeMxOacwbzMAND4hE35y76Y6XeUniibARywo/3bZhHuTtSLLA7+m88D4\nd2R1jbzJdL7NnCpLBfGZQlONr76D9le7nzIOL2SB6z2kHA/3bIX7y9JoLuxIv7uoR776GumJq7mR\nxuEVXRl42JgTmXicYEiJG+TPeUg6nWvfCTkUj48zLIyXjNigkRxFuJQGi+cewMQClQ99nwlS2I7D\nDqdimyWPyRpisaiczPqbpFVSDqdW1twdpdVVdhYdiDxDCwD+dpkiOMnAKaT82yWltMChOn39pfRD\nlrmrFGLFPFp2wn5XIdswFL8iBTE5CZdaG9ydx7fIbCceXD/sdkk1jJ9N6ZrS/eTHZ/pt8jmH2Rzc\n7wV5HxdN+phsn/bpcaJN+UlrXuqFZ1YBQLen6XHm7C0n2MRN6e/ypig9OsR0hLaUArcuwcqzrmEB\n50omp0ajcHCNNq7PpiF1vhxPkdk02zXzuZmizWIWgJ7QKum07vvQ83dXjO0oT2JSgp6jH9EMw9AI\nGd5QfqLMzObUP6f9AQAjpOHDwY2TpUdLI+eni2kfKpkps5G5MaDNkdX/pscuuViOsbKr6eK0fVh/\n5UgUqbMVvTq+rRhYnErtNknO9QtHUEM56xk5Tvu+I4WDg5DxnZx/Xb4rPExFux6OcVtS+n5Jc3Bo\nh0fs6JxGl4eHh4eHh8cGg+hGUgaoU0pGZKbk2uG9jyH7nNKzmUp8LKU0NGhaP5ElS+m2UlInPDE4\nqNdFC4ljxb6Shgu30LUfl1oAZKLBvBH5os3iwbQ/lf9Det5CeZR++OUSSUcgidKmxS/KftranVJl\nnBZzRcv+9HmkvhFjsVnFm8FlLVz0tbRgZR7ukPFCbPfKoUlGZFXSZ5/1wyLRZkU+DYSOpEgF7ZS3\ng58jVwLnVDgA9HmIeoDmHyrL5bhIsPCSRz1/kB6I5b1pJYZ5+8vkiJKj1pzedJET0TT/uEyABl4q\nCACS96gh25r8gosOoSg3NVSWT+MUqCbL0j5H8XivJfCqEy4ajS7QSmZlPxzc7/j8/+st0jvX5x26\n3XTKUtEmez8agM+14ACgvY5Kk3A6FgC6zKaTSe7d1Lu8LiQjug/MtiOfPDBux3tx29HrrWRE5zS6\nErLttpn0BVZfRCeLoqvWnK5xRXgQjeeYs3NP0YbXOdMmqgUjqdu352TpcnbJsHFBj8lUF2budSWi\nzRxWLue5E+4Wba4olgYdB6fhyu+TlEn7bEp9zBwrM5DyH6XXoxmKPIOuNVMGa7rE3HFwYUkAG0ZN\ntAAAIABJREFUWL6JfIfJ7ziUjIkTrpxOP+K3bCtrwfBYOQ08pk17rtW303dYcol8hitH0jnPJsh5\nvCOfDwdfsABui5Z4Ye551OD9/rIHRZstr6YiyqmLZUb10mJp8PZ+mn6gXYRzudgwANhv40M1xSLE\nWvsPJfP5ZgetQlZmrGFfaShy2s0Mk/eOnyjl2LL7ZqIJX1hw8VYASJxODc6KO+Q8UXoajRN0yV6M\nFVzLcdZT9N3MuPhRtFTVe6NrLcHTix4eHh4eHh7rFBtL9mKn9HRl9M+xf3v4SLrTIWjUBVxZOaFR\n0g/2a7o6FPpfAGwazajRtFtWfkB/l7S7DOp1AS/crVGtnEbQCirzDJ+KU6UHj5fOqLtcrlYLbokt\n8y4IfIUL6NmcQdAC0Lv/TFeerkrPnFqovEIGnJf+k+kKlcj+ovUPjpnXM6quUNJHfcfSiU0NsI4B\nmmZbqI16ZTSPWc0N9Jo1DzT3HpjJa67yr6HyAaVAOktMOeo3OW9c8/kBZFsLZI8XuOq4llSQUChL\nA1WcwzxL3WW2dvnJ7Lq3lt5kngyhqaDXnEG/If2OjO398CzmqvOkt734Cto/Rv4kg+Q/HC6fB0f7\nYMoiuCj4azBbUp2uyvNkebDSY+g74+rzANDwIvV+adUbeHUCruEGABWPUeeOeMeQCQv9XqOFxr/4\n7iE0LqvrWE/XgF52xBMHx+14r2z3sPd0dShqwzCXMYHLREqrtO5KM+gAIGlC8OS5YCirYH9XcNxV\n+wxpLNW9Rt3ZBQfJ39XMohIWXS4rEG3CzOZrHCCNpUHXBhtrpVMoRfHVPf+Pve8Mr6Lqot5zb3oF\n0kglgSSA8gqKKAo2UEFEEbECotgVFQX7a2/YEEUUu1ixYadYQLELFsQCKZBAICQkkN4g9873A7/v\nc++1dQ73DcVk1vP4+Mzl5JaZM2f2WXvttXG+yh5iuU9iwL5Z9AzTAiwZHE394QsYM30Ep5pr+6AW\nKnIef0BqAdb6N/mDJONUrKiTaRVZ4UdE5NmX6zAM/G6JiKj8NB5kJS7H9JBf9uUzCLA0hFXydXJb\nJ7y9yw7hQVe3hfg+Vig3/qicgHrDpnj+WVrap3UoT1PKdCMRUdoSHhia6GY0m4vgOn5FtGCyeSRP\nfcsAS0OvUKzEk0GWZjew6ipuE9DrGtSHyhSSNw5b/FRn8vWm05f4HVcp60K3D3iQZbK2mVSbakFf\n7sZMduzvhxsL2eJHSjCIiHx/8CrmyFI8rzLI+mDqEBizdSKXHaR+ghXDgQZZEnLzlX3W3wz8C7TU\nYefjxVzIxYAz+Sm+Adh0QgKMCa7EoE9CVoXKdnOt+R2DcdpTaJ9BlwsXLly4cOHiXwGbOk71YrsM\nuiy/TZ5GvoP2iUodbecnBd7dr0XGI2kZr3iSKR0iom638L/TqtFST3auPguL4TRW+uPIgJSez5mc\n7LmYRig7kfsIxT+FgvyCAfyzYgm/X8sI4f2zANmEuPw18JqEZKTu76GkNYiLWDdehSxA7jx+7N1X\nqQpSmC2J+u7cny2mBFm18sH883/8BFMow1JQRBv/lBDsamJl6XnlN+XROJJmcrZJqQlFKCmlfWfz\n9PhnT+OfmQiatWbETvB0x/vJE8bZHq1Kteoc/nfYEtusmlLeq7fui75ulRdyQXXSEqzMO3kAX19+\nq0OGM/95zgTmTsTzFbmJr1uaD99xOdjixwrmS7ulSBwkAy+F/UREcav454cVYSVrawDFPJLV0pA4\nC+fYR7O4CDyEcB3vQpxR1T5LVu1mPoHpPJNm51I+IKvSiQg97ZT7W/o/+r5BJu7bD4UH4jE4p7T2\nZBKlV/P3iVnHv48nEKPJNoBrjvovht3cYnRTS6Qt5gGL6lIs9CTdvnZ+35B6pZdeNtcU+AqxZ6IM\nGPAWI0p9lQcnjQfg4iof/K1D0HE9aAlf8D1KiiByFU/Ravem1ENVDkXNW84E55Ss1KF1e1/RHorF\nbPOhGJjZg4VNgOKkHvM5X3Crj8bUR8KzPMAc9iQGWCbWIBSkUPcBBFkNp6AeKfIt53QZmm1iULpq\nOE9bJFTgOZOpMLsJnbg9Sfx9pPEoEWoJ457Bz9LmvYSsQDWxX5BBDxFR4hK+8FspGLomPMfnQtFN\nWLHr68/v54KZeL16PSL67cEIotAKvsnTAnvy4Lm39+Nao+ITMHjMfk5YBygO8FvO4/dPeB5u6qRr\nvdbHUOrntNSuXHNkSpLIzCJHbqg1vWH0Or6eaAGW7CGpVYrL+1vTsHoG8k2m91PUnmoBpkSoiHer\ns3EtiRHHst8oEVH681wL5tvC39hjo1G3i7ZDuwy6XLhw4cKFCxf/DtjkMl0dEraXX3ST3lvq+4hq\nK82LCNpQaOaoX3CK2RuFaQTpuxS60NmHydvkzB97atE4UisIkKhP4+cw9wL0+TGpl90yi0/N2BHO\nVXaJb2E1j0n1otzpaf3lTL7ztn4ofl1zFt+N7nMbpqLKLnJm4yQ0Vsv7GTdL9B1VCmNkG5n1t+HO\nPGs2n/fSk4tI9+WS8Iv5ohnDbu8lmLevnCvf1F6QT/FrppmKyiq/nhciyycNQ004yJvOfB1ee/E2\n/rt6PYpMionH3roTOSuSrum/FaZUCsWzC1F0bZI+23o4Z6oTluMaFJHH15zE77A6zzuBi9kH/IKM\n2Xd9ObNVMAvZweAEXmmX/CKyWHK91YoqZPpZY/9JsP+al5esVA+0Mlumja/chEUnRR/xVUhWcmrY\ncDQGMjnvYop4b0BHCbrcMgUXLly4cOHChYvdgHbp0xXrjbcHRoxkr20byD1OtuyDUtukR/kuRStx\nD/+RazVWP4QaKqlZqj8Vd2xRbzo3qpb6jZpxKMgfOIXrF1b1RxZLlu5rAueyd3kLJGgQrkBr8KwV\nH0jI0n1V4Cxa6jSMQW1CzOeckTFx3Q4URg2EA4R9CBfRBlrOLvUuqy9GZilnMmeErAEopLeXOxcf\nmPgBSU1k8anYZD79rl3j2aaJwtNe50Ue83/6CMaMOIJ7txScj5quHm/Vs2PvFrQAMGk7JmHiwK4V\n5WjMrET+43j/5F7K7zupYSIyY+OkPnXzUei4Hvf0znd9qF2IzHH0nbzopeIAZN6kPko2VSciynyA\nr7f+RmT2pXWK3YL61Izv+eevP3jX6aFke6OwtbjeadpgJ+Q/yde2srtnUkvxht1KO8X2SrIHP3V6\nm73fgiMe3Wt9utpl0BVjdbEPtoay16SJndWMwUlzGtLiEhG/8ZRN6wYUBwcCzaPHt1WkxgK8Vt4E\nIWhW0gp1Z/DFPPo154V8wzyk29PG7L4O9fLB2pyA5yeQdk9aK4+2MuQMFBuv47819b5dE6xo0DYE\nt1bwa79wxuEwJpD2SoFCVhF3HoBp9pjjeNA1YAWm5X44mAvOtQetCQJpe2OCwpfRnDR7PHpnyV6L\nG6bg80fOoc3vYbsc7/s8vWnS41KDNATdOroPjKk4mJcSmPioadW3pUfwz+qyGtf6sA94wCmfD0To\nwaX1rC0dzIt5En7CNUgGxZsvwyAwdg1Pt2qbOk8kD/D6fImB4tf38Q1+pyVYTV5yNt+cpTy453sv\nxvZKsg996ow2e79FR8zca4MuN73owoULFy5cuHCxG9Auma7IhHS716ir2GtdnmubXbd0OO/yBpZi\ny9Sh9GAhItrcn+9akucoKZ3uXPjr/8U55ddWkC05iMyaJbcVZEq0fACmg7d1EsJSA4+akv/iLjN6\nPX+f2LVNMEYyXVqD8tZNKJKXqJ6AKVnZfNckhWTSXkmmjImI0qbw36alwQJJd1ZeqLROyuNWBp6l\nyMjIe6MhLRzGlB7LmQotlWkCmZ4JWaoI6QWzJVNMRESbz+VFLwmzldZF4hyWH4RpsNRXud2BxkDL\n77z5gBAYs6vaaplCNkjXOiHIwg/5N0R6m6i2gOZ+T62c5bRq62GI3ZkbMOzOZuhp30XBa6tmcDbO\nJK1cfCfel5k3//M6uUeYrp5J9sCnzmyz9/v4yEf2WqarXVYv9k6poGV3zWavDftjAh/03Ur4O5lG\nUT1xfuXUddSbuODJSkRPi2KGJ/3ytK7yIsjSNBdUzf/OV4ktLwJJSwYaYAXywNZaXvj8/DunLEWt\nhMl7v7GBLzCnKW3Z5PXSUokyJZD8ilkALNNB2eOdA0OTxVR70FZ+wB8uXU/A71gv9XRK0BVcwueQ\nVusqr5n0gjOFJUwg8VFDFN6Tn/v+P6Oj1cJnBrPjxMfw/AR/zIO1CiVQjH+Gp5209KIWZEnIudlV\n+RO5Kqy7HQPpbrfy35H6Mb6P9LQjIsq7lG8KZOsXIkxBbroUn1Gad5dEZV8emCZPd/4bNcAyMBGV\naduGp70wxv8Y3zCGv+dsilvwqNKH83KD9GYAUKsgf+aV1xsOxY1ftN95XZC9gSkX103pYadV+u5u\ndCTLCDe96MKFCxcuXLhwsRvQLtOLmpDeBGVX8p1m14eVNhQGbJhssyCFim0JKbD+bfLjMKbnc5ew\nY1VcPlA0AFeYQClc7/qoshMUu9OGMbiD9LTyORe9ApsK+0p5q6Kyi3EXnrKQ/92+bxTDmJUHGMzv\nAHbYpsJoeX0y3lf8mlbzKkyPktKSTbGl5xQRUVNvzm6Efo1MV/+vecPghbMHwxgTn7DdCVkFGah/\nnoTmA2XFcp8ufz02EM5YwI+lKJsIi0xCFmO3gsTHd35dkB0fiPQG7SZ/19iVMwsmxRnVZynp8Zf4\n52uMvL8TT682J4bBGM3PED5fpOdlap4IBe/a9QkEjScrXSCKeFqyZDhe57T7xDoZYJsvCROJgSan\nSL+bj5Ep7B+/fZTqanZv9WJMzyR7wBPj2uz9lgyZsdemFztM0AUPvyexyk7tmyUgtTyajkdWv9ke\nnL/B5fzht+p6bA2Re25g2hWJrefyhaqt9G0ajOwgHP5G+7vi1/eDMd2n8cSXp0op3RfB0bo3sNqp\n22nOFglV83nFT+fjUd/h6YsaKk8Np/ebstGk0kTL4tmPV5b5V6IRbPDnyXzMiZha8NXWwmsSlxTw\noGZ2DrbDMkrFBwCTVkqbpuKDxCSlVXExvw8SnsD7oOV4Xj6/YRyaePYY61zJKnVEWlsymeaxlfVH\n/natynn7PmhbE1IgqqzLsN8qfB8lkG/O4ZYZsl0YEVaBLu+HKT/QiMZipbhP9G0NtIpYzqEtJ2JL\ns6Z4viYnP7TrNsZr7xM9fa/DeVd0Lx8TlI1rWfopvJpSpoeJ0NxXswrZZxqfG825/Br/8P0sqqvd\nvUFXdM+u9oGz2y7o+nzoQ3tt0OWmF124cOHChQsXLnYD2qWQniLDifpwRiPjXS4Mt7vxlilERGTA\ndElmy6h5tGJAKXd1uefiZ22dKBiq550ZKq1SJ+EL/p01cls2HrZbUT7t3bcnO17wCbY/GXwFUvBO\nCC9DvxnJv2aejulOj9iZt5ZsgDGl13JWpNtpuKNtGcHZDUvpPFz9Kz8/LZORsdquqMDT7+YpvmBF\ntCpZAK2IQTJbngismi36iJtUptXibw3qyne1q27IgjFP9OHpzW3DcP4eIKqiusYgc7z6Ls785b6k\nXGdhxGqFYdrJOpCndk1YLQ0aswXfR5jymrBamych80aCJ0hUmK5ABMyyZRURkedLfK1epNgiFiNz\n4m/mRQLa/RMkXvMo12d5v2bHMevO42xp2j3O1zBQbzzJDmopyE7iWKv0NTGILr6L3wf9j0IGmgY5\nz7vcgcXsePXyTMe/kawWEVaFpi5GwkpeZ3mNLRvv090Bu4MI6dtl0GU1tZBnVTF7zZ/LqXxveTX8\nXZ6oYEn6FidBzKu8gkSj2yXWjsancZaBoblJkCVR2xvTlJHznKtw1tzDA4+gRvztg4/jFVk1fqyw\n0XoCOkGaEBIRBaXyoLh1I/YRlIuHfzCmI1Lu54t78d2oSQlq4L+1qVczjMmZ0DYO9PnPIeOd8wxP\nYQUpAW/jQbxasKonao2ke/m8DVjtNCaN21HkTMa0kwx4Qz7CNHeSCPpWT8P0rx3Jf4eJ031TH0xx\nlR3Mg8B0g6y7TMcSEbXG8GCgqjfaU2yP4nNh0HIMIH58lFekapWSbQWZxh1x1CkwRtO4Ra7mFagR\nH2GQXj+EX59tQ/D+8bbwHUhZfzxnUvsq9YdERF1W8a2eNPokIvI3OLu5S3lH+UjcNEitWuajzlKS\niNcxrS07BCQtx0rW2P35ef75YwzeMsh5fmw/kutTuw/CTggSUmdKRERCqoCrxN4Lv9yptFO46UUX\nLly4cOHChYvdgA4jpN+T0ATWJkan0nPF+9lPMKbyIs7caJVnskVKt1twTOk1ouLygcB2752/5kLf\nqkHOHe0bTlGqggRjFpSWin8YwvdxJv3uGkfjZ0W848zOyXSe1qtNg6T7TUTzx/2OLOwbdwxnx52/\nxupJnxBLe7vibjmQtlVqiyolzSVR8CKfv3GfY1Vm4hL+fUxSbpsvxXReWBVnZGLmOnsamcDEzFaD\nZDTbqigGKm2JqOgeFEuHbuGsgdH9rLx3IJV2WtGLlAfIijki9FGTqXAiovoBvGgg0MpEaXq7+c1M\nGFNTw+/57inogegZyu/D/KcHwJjEL3lCyWT+SHNoIqLQX4r5Z12fA2O6v82zD55teP2svHXsWHpE\n7glz1Kjcrna/xyc4DzTE18c84ArpXbhw4cKFCxcuOjI6DNMlO6kHV6GczaSNjImXl2xtUjAed/j7\n3Ml39Jr1hGwH03mZ4mdVwpmCvNnYEDf3Amc9kv8I/ndayxaJ0KXYCqe2hWtgQo8thjHeGN5eg8JR\nNyPF5J5+WPbtX/GH43eULJqR5szCTd62YaKFzCI8p1suQFYk7uk953ml7bpN5oK0TQj/HM+zlcJZ\nCF/BWsf31Yo8pJXCFYUoRJ61H2fMTFjGoCy0UcibxC01NJf2QDzBJNtMRJS0mN/PReOSYcxvF85i\nxyNSD4AxUlckdXt/B9lgWut4EQi7rWnlPBWcmTVph6VZgzQN5PNj3ZnI0oSu5WtFxu3K+iu6Yqw5\nDXVo2VP5fRCUitdHKyyQWH8bP4dZj2AGw1fDbVr8h2JhStDP3ILGCkE7CF9VleP3kbD219zvucZN\nPq+WrZhNtfUbdzvT1fexs9vs/b459v69lunqMEFXyU385ki/K7D0WSAPcemfRITCSUupcFxzKhfg\nZ7+K1ZVrb+DBo1blFwhMWpJokLR40OLA+qlJU7+Ub1CcG7wsj7/QA4Wlmp9VIGir9GugkOc1uBYr\nl0yE6tKvrturmM4zedisfZWLrrsbVPkFCpONTvnlQvT8KI6RD6CywfjgD2rk62HcswG2NxLpK62d\nkKcPD2DsPAxcZYVaxSVK66JfMAiV7ZWG/Yb+bC89zlPWmlmriXxB3qtZr2IK+4/reYVu7+sxmJVB\nhZZeNPEbM4E0FtXaahXN5cFI1pkGLc0MNhZtBa2CmbrzgjFfLG5og9fyoLjyGF6M8MeHM6ihsmQ3\nB13J9n9mtV3Q9d2w+/baoMtNL7pw4cKFCxcuXOwGdBimC3AQMku0jDMFJgJibzaWLBeex9NuWTcE\ntltO+pan4coPcXYTz38KU0q9ruC/y5OEHlPUwnfU2o5S+lmFLsBUVexXcey4ZvAWGCPbr/R8Chm8\nQBgqrf1I2VC+WzbxalKxWFgZDEU2aNxqfO3Jm8ew46AmvN+a4rmAufMcAz82Zd5tGs4Z1YQfnZuE\nbzlfSYk+s/PnqOkkFHOHv8tFztIRnogotJafD2nJQoSl8aumosdezhW7pjmxBpNWNFKUvvVsPD/S\nEqbkZmSXOw/irETUcGTDNJ+w5Lc4k+Sfi+YBJZ/wFGziz+i+H7FCyCAMmKayq5Tv8xVPb5qwshq8\nvbl43LcKO0NIaKnm1qJ1ysg9B3n/lPfHoobMm3f+vtQscjL/y99HyiJWvz2DGit2P9PV59Fz2uz9\nvh9+717LdLVLny4N8oF4x4cDYUxyKg8GKpR2FjLF1pKBgZlJkCUpedkPiwiDLJMgMPdCDISseB4I\nmfYNlAhuQP8oic4hPNVRqDxog0VxnhZgSV2RSV82TVdUf6f0SMPv0/cc7hNWOhD1L1d0+5QdzyTU\ntjy3HvsYxv7OUyYbh8XDmK4znFOVhS9zzd3h2Up6ZmCR4/tIJC3Eh4/zVcbUjwywiDAVbxLw5j+B\nwUnuxfy9c65wnr+FD+P9nX2lc0WjSaWvDLL8h6GO0vMl10QmLsJrs170aE38AYOe0Dv5nPaKe5mI\naNbUWfDaZfZl/L2H4BxLI54G1Nru+NJF+x4l6JK6s8hS3FgEGmRJvPPpq+z4xFTcZMJn19U7jgkU\nNQu4BjDuAkz1rr5GtHvy4vnJuZxvGjLfbYMvRxhgEeG923kVr3gMalbcoXcxbCLydxBzVDe96MKF\nCxcuXLhwsRvQYdKL0ttHE42aQLJNml+RpPvDtuLOQfoImQgwNX+ilLdFk9hodHqWDJDqVbVJuMt/\nh4J8+buC63HudH6B76zUhqv385RJ6Uh0IU+c5Xx95I7NJPVRu7AHvLZlBd/Nd5uPTvtBdVwIbeKz\nRkS05kHOuPjikM3InciLDTSxdOxa/nfhPyJz4qvEVG4gkO2efL/n/c3I/49NU5SUUgBNhCVrQoQV\ne5pnm/Qf00TGsuqx5eNMGFNSzjs6+FtxX9prBk/bBlqsYfXnwn7Pg1id5jsKOzFIaFWqngbO0qss\nn6jS1Srmqk/hLF7l8VjQIlsl+RdjQYv0s9JYtbJr+D1Wvz4GxgQl8M9PnIdC8djlotl3gMx+4UP8\n3o3/GZmYTi85s7cyPa59H5MG8tL/zLMKO51k3Pa/F/jsCZ+uyJxke5+ZE9vs/X4YMW2vTS92mKDL\nBLKayP8bLqay12LoRtQj1T7Cg6zwaVgltWUfvlgkzMabV+qztNShhDcB9Vq+igrHvwsy6GPYVpC9\n2ZqPRH2dZskgEZTJaXvNWNOkigwqUt9GI8v8Wfy6xxRgZj7tXazayr+bP8SzZuH9VnwFfy3rDAx4\n687gD4CRN34GY5buh6XxEs0jeRAc9iGmBa1g/vD1JmJKVLZlkteCCK/H1nMV/diL/DrnPYq2Cd5Y\nrjc06YcYMKRdiLI+yp6o1ZhppsgN/H20asr1t/AAM6oEP6vqaB5k9BiHVi4yFU9klo7fndg2nH/H\nA+7GquZld/MxEW+jTk+uv1obNpNepg1j+D1fk4VSkiCRKdQ26jJ4NOkXKdckIlyXZJqbiKjbAqHR\nVDbGErVjMc3e+UNuAeOT5qj+T/dI0NVrptKAOED8NOKevTboctOLLly4cOHChQsXuwEdRkgvqxVr\ne2Aarsv3PO211aAFiNYko36BEJYuxR2S7wBMo0hIZmtiHoqeH7/uVHasCZqNEMyngqxUJCLaMJ6n\nuEwYh+K78Bwmf8ul2mEf4e5d7vnTvkMqfUODSNsq5KbcQWrVeglz+Y7Rr7Q+Ca7mO+GUZ1AYvOox\nbMsR+w1n9axvcC5EHOg8F/wTeAsSE1ZLmusSEUUX8d2yZjqbfw5P68T/pKRVXuRMV82B6EUXtZHf\nT12exxRXwUucKcgdj/O3/jT8HU6QzAoRsqfS2JLILD0TuZnP34Y0rAz0bHfOIEjBudbgvsvzjm9j\nxGpplZHbo/nn95iL1dHSSNPkvEqmSRvz2yL8jpvv4hzAthOwFY5MxWvQmC2JtCnCjPRBvHe3RziT\nPSbMloTdF6UkLfF8nYjWamIks2VQgV/bDXmVmFp+naUf2bYbv1Y+fNfCJiK7gwjpO0x60cTUVKZw\nQquwjisij9/QJr3iNAxYwR/sy5VKyfxnRf+28wLr31b5Ab/J409Asz5pzmr/8BuMaR3CUz+a8amJ\n6aDEmun4UO0+j+uqpNmjKaTzdeETWD6eM5UHNHYz6lbWX8BzSCa/yxTyIVV/SCaMMQmmZa/DnAnY\nq1PqVLKnYCBkkpKVaD5BsYwo5QGe/ePvMMYEJr/LBFI+sHEYVgOnzeGSApMek0HJ2JlBurKbpP3z\nZ+M5DKnk64KpbQB0UPiojXo/thEC1QAGojeU151Il47AZwkLmvp9MM0e/p7zfWkF8Q2t3WpSH+wM\nudYSma1LTj1994SmKyInxc59+Lw2e79fRt7lphdduHDhwoULFy46MtpletEKDqKgeF7Z5g9yDtyj\nX+O7/pzlKHg8KpZXrT2Vi4acJgJvyWytvRfTXrnnOe9qpejZP6A3jEmawoWSWkrUxEdHMluaZ1BE\nmTNzKnt99Zjq7J+kQYphy8cgIyPb02gidbnvlOatREQ5l7UNsyWrlIiwUin8Xef0iIbkRG6ApvVd\ny32BF35YJm1LDNIYkWuqYcjW/TmTZPVERlMzQ5UwYbZqxvH33haN93urSBclT8dr2l3c8wWKDZR1\nYB/+vgorDH8ThmuJRO+HFVatkr+m3bsaNk7kxQdZHzn/jWRAiJAFaViE613UTaJS9Bdk0mU7I43V\nklWYXT9D9l/OF20NklW8Gqsl+zNK02AirPoON+gvKt+XiIjEe0vTayIz42vZCsyE1Sp4DNeyjPlc\nloFnec+gHSbdVLTLoMuFCxcuXLhw8e9BR9F0tc+gy2+DLkeyWCYoGIDMyZpIvutvOKUPjDnh1iXs\neMl/ULQv0f16xTm4eyY7bl1bDGPkDlLTPsndscaA5J8TzY5zJhucr85ohXH0ZC7C/HEOZrDld9S8\nmVqj+LZHc1Zu6Mr3aFrTZdleI2optg2RjXZzLkO9n9TklD/XGcZoWjkJzX/HBFIDozEFskWMtnEs\nmMEZoURFktJpHZ+veZNQKN55f87Mdv0Y/aQqhvP7p8fjzk7XjScrHnLCOkArKHmeS32MLCxMWEcN\nmt7RCSYWLIVno+4re464iorGTHXxP8NZa5T/DJe8hBehT1d6E/eGihyOTPGWDzlb2roIpTTSd08r\njKGBoiDAgxyMbH/lK9z5LgxEREEVnFnKm4EsbJJYBrRnyBrR+L3bs/idQ4Vms/yQwJgt7qSFAAAg\nAElEQVTs0HXOrKfsXJEzfve1x3JhhnYZdG2PC6PSM3hgEVrNF6/59zwIfzfhwNHseNWtmTAmYZlz\nn7wlb/GHltYnb9UUvsD2fgQX0/Un8ps17WOsWDM16fwrZEUSEVFOsJJCcoDWdueX42QVGxqWSrNA\naX5JRFR+uXNFX8o8bgy7SWk51PVNLrSVARaRYaohi4ul408wa2tSM54v5rEvB5ZKTf2Uz4+tZ+Fv\n/f6+2ex4yDnnw5jsq/jnS4NOIqLVM3hFY6dlGHSFbeVLvtbLLvss5/52/iP4Q2JrT3xoSZvT2147\nE8Z4b+DH6Q+icLzyIn7OhmELR0DV2XiepQGwlsLJfZ4XETSmoVlrZBFP+6cuRePc5oxO7Di8EY1h\ne7yGwmwpV9A2dbnn77y4vuQmvC/TR/L7t3E0bkikv9aGgc5ViKRUEVMoBoYS8nrkTMLAo7YvX1vl\nfaHBWoLnPv1+fm8ELcZK0haRFgxSqitlv8rep2BKtO40vomRaW4iIn89/z7asyfQQHVXwrZdpsuF\nCxcuXLhw4WK3oKP0XmyXlhGx4cn2Id15S4GGHnz3pTlxT8jj7Rle3IC73PVf8LRFxu3I0sgWJB6l\nUXVrKn+toh+mIGWDYK0sP+yDnfflMilxD0pFGqB0dCY7Tn4Ny7WliFXucIl0F2kJE+d0E8hzFsj5\nIiKqFp5t0q+NCO0YiIgy53P2QrPZMIEsGoic55w2OGwlWl98exIvny8fgv5aCd9xNlATIstdth2E\naeT8c7j3kGxcTYSN6Gc8ehqMCa3macnYVwJjCwFK+kqyK7VnKo7eSzjDa4VjKxqZyuz/M6ZWFz7L\nG6SbtL4KFNI2hgjT4dJmQoOJ9YTG/PW6QTDywbjfL5rE52bGHbvufMg1WraI0v/Ieb6YrK2BQvrV\nRb2B94EJay9RKhqvr33xIWoqK9mtEVB4dordffqFbfZ+f5x0+15rGdEumS67uYV8q7h2p/5w/tCs\nnYQ0+ct9RZVUM+owMoi/VvoOmkumnsHTXqqeQ7yWoDxH/ruWa06uvwEfALjcO6O1HNsCydRL/JMY\nVCTO4rqdYi3VcJfok6cEWNJf5vjTcXH99VTxHT/DIFD2pZNeY0RmQZbvSF61FfJrMYwJr3T21tE8\nryS8udj70deFB9yHPokPtm8P4nNB2ypViPTql/tp1a/F/LPewNZFa+bzijBNiSV1TTIoJCLKvZgH\nhtrD+BVhoZTSDfvSmfTOM+ld59lPtPlSeiZKTyevYnK6bR/eMqvkaKxMTFvM5QM/7o/3QSLxea9p\nzI4/YBg7buiPWrWI7zHNLzc/CaNxjPxl4cvWwJjWXvzzTPpepn4KQ8gnDDm14EQGWZUX4qY3/inn\nim5pgNypUPGZ+5yv9XKTR6Rs9JR0p0zPrx+COteQWp7i09ZWqBBehvKFqhy+senUDXtc2jXc31DT\nfUlNb9gWPhM8bWMjttNoh/yPinYZdLlw4cKFCxcu/j1wNV3tDHJ3IatOiIiSPxG7uHzc+Uk0bIyG\n10wcvGV1VV1f3PndNZ5TxdHfIJMi3cwt2bCXiAqu5N46WYqoNvEF3oonT2EluvzMd1pZr2LFmk/4\nhsnqSiKilC+4yPi+K5QqskJ+/H4uClRPTj6Bf1YRfp+twr/Ji1ploOm13WHoAi5kH/0HsoUv3n4C\nvBbULJqfGzhYf3LHYfBaxS383McUwhBIR5s0Qm7x4xIg0yEmKWKTdKcmaH6gmJ/7q89EnyNPgmAP\nViBDNWIob4fVOhS9kCRK7kEmJetGfg4jlUJFyRT0eKgYByVytlCbU0FZvDvCoCuRyY4q4+cndD4W\nptSpFZ+c6Sq8FzMtPa4W814pMrG+5a9pJMiaB/n39qRhqq77BsHkVDr7UlXvg9QHesIjOufxtHrQ\nciw2kuxtoPIF2WUhRVEPyPSdhvxzeZFUrvJ1Mt/ma87WQxXWMZyv/13+gCHkKebr5JbJPF/SuqSD\nUE57CO1T0xWcYB/SeQx7rfEgHniELnDuV7Z1Ii7KWn80RyiBUCBcqrSQIEIbie3H4uIa/LGzDkN2\no9dMK4tf5+Xjmadj+XjVOfychdRjcmrjEP7bcy/FFaZsMl+obpn0MozRjGklikQVlxZwSng7Y/VV\nyXNc+5QyWlnNAsVinq6ioc72Ak2jMB3SkMQ1J1oqRqZDvFvrYYxWiSghLTSa98f2SnLeBaWnwZjG\nffl5lT36iLDC0bMUe3VKbP0QNUy1v/BAKP1T3ByFlPGKQqu+Ccb8cQc3Xu59FUbAvuoaeE3C25v3\n+7MaUYMnU6ubL8UHeNIyDGC8G3lrK01XJIMBS1mSNANZ+CxhUCpTm0T4W6X8g4ioWlTkdnopgLWW\niLxCQ2vSyknOMSKcZ0+v/wrGZARx6wsTyxEZbBMR2XX8PtTOocQVhbj5mJmNLY92FnuiDVBYdqqd\nef9FbfZ+eWNudTVdLly4cOHChQsXGtof/aOjXQZdvqhQqh/MBcuyYXDZlbhjTHuPC0I1VmvTu7zN\njvdjZEUSHxe7wzZiE1Vz1EF8ZxVWjCkCk9YhQc3O3zF2IRd8t36Kot6o+3n+LrgW04u5l3KGTBqY\nEhF1fYSfwxuSx8GYoJv4ZkyK+ImIUr7gCRH/YbijLRzLvW1yL0HmLWU0P6+eSKw2rThjP3gtaRFn\njVpLN8GYNT9xQWwPcma6tDQlurghZDrERDOrtTbxiaqo4I8x3SqxdTAyXTFznYsPCs/g1+f4B1G4\nLo2Mu4xEo9pEwbSpBS6CkWnOSYIhvWbw9LjGakmhuMY0aWyPhDeGp0mb8OuQdxMyOU378tRTsPL5\noTX8nk98E9lbn2DpfQojtLkPT09pVZjyt5a9i+3Kasv5bIw6G9eXoKN5Vahm9OwTPoRaVWboYi5p\nMGFPj3znanjN28LPT+ZgZEa93/EctdYWTlaLy4wBEVH895y9fLQ3epZtP5avQWE/oSeXCYvmYteh\nXQZdnupGCLI8YXxh6PqwQpsrFTUS9jc8yIIAi3ChpBA0l5QT36v0wCsezRUMwQ0wBH6HSYAVulT5\nnUdwvY3m6A1GsHPwbaxgvrhrmi6JiBL8YTIEzJ6B+jqfYjIoEdzAF3LPl7i45n7p+DYAf4NyMRS0\nbuT6CS3A7HENP69aCknOsw3z8GGTNkY8bD7BNMa6fH7tNZ0VdEIwKDtvGaHox0QK3yTAkpVnRERh\n5fzB9tstGNyGkrNcYNB8/uB//bmhMEbeTyFFWB9cfxwPQiMwy05/3MkDvNzznW0DZHUlEZHvN/6d\nu92K640WOIdF8hBcWxd8wfy8buuHlbVeUeUXvBxtYhI/d74XrCD+qOl6Euqs5KokN5Q7wAMWzehZ\nSiUspfw2pJWfNe2eO/YC4aLfggK/DQN5WjD/SbwPcr9y3trIClBfCK6/MnDV+k7KlL523eXf5V/H\nnz0tD7eRJcvOYC8wR7Us6z4iGklE6URUT0Tzieg627b/Nj9tWVYiET3w598FE9FaIhph2zYKjP8E\nmuu4cOHChQsXLlzsTtht+F9g8BHReCKKI6K+RJRGKrWwA5ZlhRHRYiLaRkQ9iagTEY2jHQHb36Jd\nCuljrC72wRbuYp1QfyqvAop6E1mAhG94W46KQ6sd31cT5Mf/zFMS/hVI7Uvq3BeJjJnnK6z8k5DV\nRbnTMPWy+naeVuk1sxLGWC2ctTLxT9LSeRX9+C486VHcvZfczHeeJ52MIta3Fg1ix0GNuFNKv5O/\nt5bW0HbdEtJMcWEhfmdVRCsMFb3ZmY6f5dOqZsX7tAw7AIZsGM931D3GOadMdieK78T7oPv9nD3w\n19XBGAlNJC/TietvReZCMzKWkC2qiseiF5LWtkpCriXBjUi3yErSXYnSa/F8pNy/8+ajWiVrcxxn\nsWIW4VoWvZCnwqqvxVRzwbkizf8MsuRBm3iav7lHIo4RlbWyKIcI5Qu7EpJFS1mEJIiUjmgslsyO\naM+Vzqt55ahmjipbRNnC83XjwzOopWT3mqOG9Ui1M+67uM3er+DUW1YQ0el/eWmLbds7lVe1LGs4\nEb1h27ZaCm1Z1kVEdBMRdbdtW6mL19EmTJdlWV0ty3rdsqwKy7KqLMtaYllW37/8+wTLstZYltVo\nWdb3lmX1F39/oGVZy/789zWWZY1vi+/lwoULFy5cuNj7YdtWm/1HRElElPeX/y4P4CsNJaJ/0lYc\nRUQFRDTHsqwtlmWttizrKqc3bROmy7Kst4komohOI6IGIrqLiM4kogwiGkREHxHRaCJaSkSTiWgq\nEeXYtl1rWVYsERUS0YNE9DARHU5E7xDRMbZtB1QzbMJ0ae7YPZ/mu+wNx3SCMSkP7PwOqXG04qPz\nDmfRZJkzkVLqrFhPeOO57stXoQiaB3INjDcPGSrp0SOZHSLDVhkCG25QChYEU6CJRrVG4k7wRKNn\nmglzIjUgnRcq7Y3E+ZFWFESGdhTCaoGIqGBqNj+eMBvGmJSiw2floKVG1YGcGajJxn1X5htcK+fL\nU0zB2ggmdgOtomHw5v4opG+O4+tY9+vwWpReIxgH5V6WbX9MdGiBQtoo2F5sMyNbMGkdMII+wXXK\nJ6RoyQ85r1saK61pIHEQ/95bJqJuMWkx1yxpYvK2gom1jQlqhMefSfup+4owO3L6K1eyY28zruNB\nQn9vYtWhoeS/fI6n363McQd7oD1iGdEj1U6bdkmbvd+a02/+n5guy7LG0I7U4hG2bf/0N2M+pR2B\n2ZVENJuI9iOiRUQ02bbtV/72vdso6FpJRI/Ztv3kn8c9iWg1ESUQ0XQi8ti2fdaf/2bRjl4kt9i2\n/YJlWROJ6DYiyrT//DKWZb1ERK22bU+Un/UP3yGOduRiKSqia97B+09i/+6t5dVNm4ZgkJP6Pq9m\nspvQN0eKtzVhdFSBSB2GYL2CFIDWnY7GiNGv85uhZkE2jIkdsfMPxIr3e8Jrx6TzQEMzzVzVv236\nQ0gReFNpFIzJuZwvXnVn4PlZOv0xdjzqiFNgjK+QV+9svA6DwMhN/B7Q+iqaYLPSWirxsZ1fPKEQ\ng7CNSsEsDORzLnM2KJUBOH3n/EAqvhsDzMz/GgSYMuhT1hqrngfyrWVo/rltOBcnt3TC4CT6NX6v\nBLppkFVkshCCiKj8chG8LcG13Pc7Bu4SUlxut+L9JdPsT0+cBWPu6I6p5raCbFulpr4NIIOBzHdQ\nvtDvFR5g/rg/bghkq6+K/XHtMGkVJH+X1YBVh9q1d3zfJEx3mhT8SGyagmuJDJy1QoNNh/B5L1v8\nEDl7TbaToCtgny7Lsk4loieJaIxt25/9w7h3iGiAbdtpf3ntYSJKsW0bm8j+ibYS0j9ARCdblpXw\np7jsQiL6yrbtStohSPt/SfY/A6sVf75Of/7/Z5tHfz/95d9NcTn9SSVu225WWebChQsXLly42LOw\nqc3TiwHhTxLoSSI64Z8Crj+xgnTZ/j8yWW1lGfE1EZ1NRJtpRwVACREd9+e/RRORNLKpJqIYw383\nxaNE9CoRUVi3kLyoe/kupeVsvgNI/hyrQIHy1rrKC0hrCiIz2waJjCtQ3F71Oj+OuwiZtwZRqq85\n7VedzZmKhBNxpyPl+L4jsSzfSyrLyiBdx8uHKULkMfzztUa/h3/KO85HleBvH9VvODtuzcEpYwki\nsNMavDoxv3KmQrt+0hIhdBGeCxNWS0uBrn6Ai/t7XobvLS08ek9HC4LNQlir7Whru/P7IMYge6ax\nWg2LOIsV/DAKf6W7vMYCrHqAz5ecCch0yfdBdyJEIKlwImQ36hdhijZpOL/O/iXYjoWGOH+WJ4tf\nU18BNqWWhSB33GnGao38nafDP9wX/QTlXNRS8ZLZ0ph9bQ2U2B7Ln0OrrsTG0D6F2ZKwl/NG0Ak/\n4yOs8AF+H+S8gN6F2+N4MY9nqTODd08R/s4bs/j50Fgt31H8mnk/w/tbMm/bD8FrIWUYmgQjfTXP\n4Gw6HW1IJENmfe1cjLXLYRPRnreMuIKIbiWiYbZtm1S5zCGi6yzLmkRETxBRH9pRvXjZP/3R/xx0\nWZblIaJPaYdu62QiaiaiCUT0pWVZfYiojojkHdaJiP7vLK8jokzl352bc/0Ff+ZrtxARxQYnUPNo\n/uj0beEmlZKm1lB5Pi4w0lAwuAGrkrzN/LMrL8MHQLKomKsahEGg9NPa8hhW/Mi+gRo6v8BvTs0s\nMOQj7u8i/XmIiAoe4Sm+nMn42dJwMu4ZNKCUWolhKTCEvMP5edYWBhkcWYqezdOHLzqRb2EKziRI\ntnxi8+I3C629+/JUrrUFq127duNBn5ZmKjqLX3v5MCYi6iLa9/iOxAe01G9o7U/WH80FQf2HYLsR\n79ni+rRisCR/hfZAypnAX2sYg2nT7RH8YRxWjec+7APnB79JkCF1Te/si+m8s4hXzVojML1oiXm3\n8VhFzvCxc3sakwfkhfkYrN1/JzcT7kT4gF7z3z7s2ESTGPkxelVZwmOwfDAG4N2vdX7v6gmiDZCS\n5vcP5ucjeDXqUxN+5nOzcDwGnFnv8TVZrhNEqKe7adQEGBOUJuaQT1kXlCBLonp/rvW0VmIA2nmO\nuOelVICIKnpz0+akb9G4V0pbHl/HK8NPPt5ZB9tO8QjtWLY++2sPY9u2o4iILMsaR0RP/t9j27bX\nWZY1gohmENH9RFRKRLfZtv26fOO/oi2Yri5ElEVEj9i2/X8DpWf+NBo7hHao///f6v+npmt/Inr7\nz5d+IaKTxHseQP9cNeDChQsXLly4aCfY0+5VtkNe8k9x/Cvitc9pRzxjjP856LJtu9KyrHwimmRZ\n1vVE1EI7mK5oIlpJRJVEtMiyrBeI6CvaUb0YSjsqFOnP/99vWdY1RDSTiA6jHZWOxwT8nUKCyZ/F\n6ZP1k/hOJuMO51SQiSCzYCbuzHOv4bvBzuE7K0/bgZYjeArp69JFMGawjzcJbYnFHVKX5/jvkKwW\nEVHzSM7qXTh9Hox5eX+emrJ6orBfVrpZoVhp9t0DT7DjYa8olXltdAfK3apJlWjFxSgcb04Q7T5+\nMKg2JaLa3ryyLHQrCn+7XMCvs1auIJmtkrf64JhT+Lxbq5Sh5HzOj7X2JxF9uIi3+kRci3xbeIHC\nuttR+NtjNi9esRtRrLxxIv8ddbnIFORM4vM3/1lkanM/4Mdaexi/dC9XqoFltd5Zp2riXl58UPgc\nsiTZ9/J0eHM8zmc5NzXmwvszlx0o5upq4/fmK51TNSbMlqy8llXXRET0B/+O8UoveCk72PoUrgtB\nz/Nz1HwCZhoko6nxzZ0/FsfLlMIUUWDjOxTXaK9o9eVfiYzv1gCadEv2mwiLpmKUdVPOoKDNmAxK\nLOaMs1aYIuUml4rGFevsxfA3uwXtzzJURVtVL/amHZYPB9MOK/xCIrrDtu33/vz3CbSjQjGZiH4l\nokts2/7xL38/gIgeI6L/ENEm2lHZ+HKg38fEMmLtq/ig7z6WU/eaEWB9GleUhNTjMhi9mmsIbKV6\ncd3x/GGslfYWvMjTQ3YzasxyL9x5g0VZgk9EFJbHH/zrxmMLmYyn+aKjBRmBQEuDyfSmrH4iIiLx\nXNF6L5qkRD39eBl+6W14T0gDVc2Y0Kkq6O8QvpQ31Gs6AhfKxpPFw+9tfPidl88fJA/ffKbjZ8es\nVVowCd2MFjjbLTygMmkDZIJAbT8ktCBQttAJSkMtlmzHokHOqZdOeBzG3DH2HP6CUiUq7TJW3YVt\neHIvdk6bmiBQixNpoRFegR6Q4at4P1Gt6k9WhRadmwljtJS5hHUgD9LXjcSAKuM25zSct4ivd1rq\nu2kUD/q0fqcSstKWCDWJWt/WuuH8d8X8itWdFYO4JtJkven9o3MVujyn3/3+JNU2lO5WgVVo91Q7\n9a5JzgMNUTTuvwFXL+5qtImQ3rbtVUR0/D/8+4tE9OI//PtyIsJtjQsXLly4cOGineN/qzr8N6HD\ntAGSDa8rxmEaNnoD38WFfIKpF28MTw9tPR7bysSs5WkUrRWDRNX8HHit8/GiwWknrPipHMVZGima\nJzITEEshqR2qVG7+xlOHku3QYCLa17DlAr4zj3s6MBbp2fVcJHpexuCA3ke2zuiusASlVytGsIs4\nGwgpJQVa+sHE92n9bcIY8RMs4Fg7mt8HPa5G5i+oK2fetBSFTBfJAgoNssUOkVkrqUBQNBfTRTnX\ncPbAbsDzk38TP/c9H0XWZuOJ/LcnzUSGRv5Wk9+ptS5qTuNrUsJXuE/W7nkTyGKimjvwfIQ8xtm4\nsA+R7fF25kL18hfRADj0FZ6Ol75qRMg8tqZgCp+WcRZWKwTRUuZO0EyLVaPpACDX3/qj0eBWTdsK\nyBZmXWYjY2aytsp5Jttj7QmfrtDuaXbKHW3HdBWfdWP7Zrr2NljBQRSUwCv/WjdxOjnuWVyopAFn\niFKhVvQ0L/POOBUXD6mPCoMRuMDIAIuIKKh7JjuW/bmIiOKX8QeJpaRMCi8S3/kj1NaQQQ9HE9iH\n8IdddQ4W+Cd+5Pw+JkGWXHC1xfb8UVzzVnExpiMSf+T9SWV6jUgPsiRi1mOqOfZJnraoPQf1N1Jb\ntOpK/I65Fzh+PKZVFHTuyYPH/KcwHdL1Mx5wx8xVDEu78U4IFyz+EsY8m5vFjjcPxerboFP5/Gho\nwfkiK309fXGj4/+Fj0l7Fpc2mToseg3TTiRiR188XotOa5zbrNnNfEMSlIXp+lZRbWrSG1JW+P0d\nZO/H0Bpcy9YN5+co+zic9/+/yPzvIbs1BHuxelELsuD7zOSSi26XYspP6h0DCbA0aAGWNNgtPxsD\n+YTZfF0wkR0E16FqUwbA2hpk0iPWBHKeyd9pNbWVfacLDe0y6HLhwoULFy5c/EtgU4dJL7bLoGtb\nl1BaP54zChlvcTGwrxTNJaVIVKOcVw16iR0PIxTkR2zgzEnjSJSrRX7Hd5BF9+AOKaoPT00lnAhD\niPzCk+aSDBiSN5H38jvqq/NhjOdTYdQ4PQnGhG/kaUmtmkemUhMVgkhWENYfhlWQUfncz8r3B5rH\nmuxypSdNgvInMsGu9SzUjCslNM+06iKxgy3AHaxMP6R/iExBWxkaykrWxE+QfYJU4UHoaecRzOjz\np6Gk09uZC6zlZxMRrcvk877bLc6MYt7UcHgtfomzcaT8HdmXoWjeCufvvekxTOEknIheVfA+wcHs\nuCkH15Ky8ZyVlj0viYjIy1mHKiT5CDsvEkW9KXq7KpXG/hj+l7InHxEyZKHzsThCFsLEjkBfqsKX\nOSudk4K/NXUIv1e3H4LMkiVS3SYtqk5bhWv9G727wmsS0mBXsloaOq92NuUtH4CFKWnTflRG7jyk\neW3EBvw+9g98/trCW6w9So72JrTLoMuFCxcuXLhw8S9CB4n12mXQFbK5kdIe5but1mbum6O1nhk0\nmbMJa6ehDmNYCh+jlp2v5KLnqiHo5VW5Hxfs5p+DZecD/ss9gtY8iDvReMHcRBfDEJpTy0uNI1aj\nRqf0HS78nTzjLRgztxcv+95yPu4y457hu0GpLdnxHfnuq6IvTsOSE7mWJvMN1B6VHMO1R51WIT2d\n+DXXvPlWoXZOWiJorFb+k/zzcy/CHb8UlxMRtSraDIDYaWql6aDvc35XI2wdjN85Zi5numpykO2J\nFV+xNVaxlejHNV31KVggQL3q8TUB2aBd02uFv+fMQuSfz9WVuReik7y0D0k4EU2nNk3lQuTk6ajF\nkvqxYMWKIr2Wa8qkx52G7DmKN57jX+nvnYuEd0DwNjpr3LLH84WqcZTSToj4OTIpQJIsPhHRgDV8\n3TwvFsfM2+dwdlx6dDyMkdq98HVKBwPpA/gLri/ll/B1ctq5c2DMY9Ny4TUneLOz4DXZkmmLpjET\nWnsoiNpjTJebXvzXwrZt8jsEWfvMvhT+bttBfLJdOvBTGPPGh9zjavtHeLPGlPBALGEEVnYFHc37\nPM6ZgH3pWk/iAtUeozCdt/Z+UVWntNuYs3EUO/7826dhzLBUTv+/8clhMMYbw8WmMsDSUDEGRftR\nY/mDbMQTeJMfFsPTibPPxYeN9zBR4ah8H3ggKYaYctGRnkJEGGSp/SIvwQdJtId/nlbFJtMY0ryQ\niChMpHnClaKKQFCXgaJZKR2vHY2B0eZhPKWUM8G51Uknxe8rdi4PH7VAPvop/tu1CjoTSE87WaVJ\nRGQ3OlfkakFWIPAW8HWhVUunicBj3T14DqPfwc1Y7MvOwvW60/nfSYNODSU3YYVl1rN8k2L3xkps\nudmpzVACZ3EsNzpERNFJfC6OOArXhS55fB0Y9pxivkx8felaUAwj7O3b2LGlyE1k2lYLbj1ih/Tw\nJeifV/Q430Dmvoi9ZqXXm29NMQyRVbNxv+G9K1dbKf73vWfQkNVFwGiXQZcLFy5cuHDh4l+EDpJe\nbJc+XbERKfbAnpw7z5/IPa5yXkCquHg03+NbrciKfHje/ez40m7o+ySbstZlomnEzbfNYcdXLT8d\nxmSdufPtJ9coTvvPHMx9aa+/9UIYE13Cd/ivvIyNfg9//mp23P0hTL30XszP68rJWJYvRdiBov40\nvlPXhOxlk/nOvOsjbcNSSGsMIj0d0vQRTwFYs3C3HHs1Zz1l+6c9Da2gpHg2Z4lkC6K9EdKrr3UA\nqtJlGyATh3wt7S/9z+oXYXFG7Jmic0W3ZPysFUpPHQEpUici6nU19xfLmY+pVOlMHii8MXzd9NVi\nexoJuUYSBbYuaIzziP8MYcetvbC4qGwgt0lI/BGZJdkVw7Of0hRbKSaSkJYMngQslKntz9n16mz0\nSUz8ga/RoRuxmbVJitoJe8SnKyvNTr718jZ7v3UTr3d9unYnWpItWnsjrx7at2sxO952HV/wiIiC\nhonUYTQGpOP/OJt/1sWYFkx4gtPbERF47Wdm8xs44TSsyCIPv/E8+yBtLzUFwfkRMGbaWB74dInB\nhVwulBMHnwFjEvuJZF0y/vbpyUvZ8bCv0Ltq8yQeCJ176XwYkxDEv8/zPVFfF1vZ4/UAACAASURB\nVHYhf7C8PwN1Vr3e5ym/zsdhyqJyPz5XUu9zDsw07YaVhOcjfBhvzRPUDR90reeLa+bBBTd/Nk/n\n9b4Oqzl91XwR1tIzvWbztj92MH6W9AjSPIzST3E2jjTq22cAWdkb1IjPg8yZPOjTHvwbL+XnMP3N\n9TBGVsxZNZgez7+K37u9LscHv09Um0YNV8bIF6pwTTKBDLCIiErG8pZCrf1RxymhBTBSw6oBzrUy\nf0l4HmoB1uZL+boQvhXXjnIR3x5/KAZUdgOvjNQqfZO/5scycCQiKrpFmIga9OvdfBmmXxNn8b8r\nG4nnNPExPqb2KnyfbbH8cX3NUx/AmBnZSnmrQPGdomJ4oahwXNE2G1MXOtpl0OXChQsXLly4+JfA\nJqIO4tPVLtOL4UnpdvbYKey1rt9zQWFzAqb8wjdwFmDdKGy7M+usJ9nxQ0NGwBhJFWvNiSVKbsad\njWwAK6u4iIgSTnRuDxMIpN8LEVbGaA3BQ5ZzBqbkBdyJ+lbw85p1VDGM2fwKZ7aiSpEhiviWU+lS\nkE6EIvnqs1Co3eklzkwethJTDREeLqpdOOkIGGPiGyabyxIR0S/8nEkBrwYTVkLbvUtWwgpGB3iP\ncJLXWhD5D+MpLW8zXh9fGN/TydQdEc6hoCVt41ekpX+D8nkRgz8D03nS161hDFbfRs4LjLGT8OZy\nNmrjcSjs71zAK+hMm4jLtl5a+ynpbt8pH5ufV/XklavxCzB91VbtctoKm6bwtTTtJWSlTb6ziUje\nxEleIigT10T/Zl5lra1lzSeIBtybcMxb7z7Djg+ZOQXGpNzPnyuyE8tvHz1M9VtKdm96MTPN7nrL\nFW32fuvPu85NL+5OBG9uAO2OSZm3DD8zlGfo/bdJo0isRovZxhfKDVdiQNX1YdGKQau6FjR9glK5\nJBeG9aMxxZX2EU87yQeLhi8efwpeO+BcrjtLugkX6bxZPAXqWYsP9R6Cpl9wMQYQA5svZsflEzEQ\nyljgnI5Zex9/sJw+7CsYU34ZD07en46BWfhWUUG31KyCbuP1/Np3e6kYxrQaBFmZy3j6ue8DWH3b\nlfh51VJsnkj+EPU34DWUQVbsV6hBKb+Pp2TDF+LD5pP1vDb9+MEnwRgyCLJM2j1JhExD883tR3Kz\n4bpjsEw/Wry1FmDJaq/aHjCEYsXzWTNrtcQ6EbUJ02kmQVblhThf45/inyd7mRIRBTfwFW/N5ZgW\n7DGOv0+/n/E7/jyI96PVAgbZg1XrESj1qLMOmgtj5m3h77P+YJy/XVbx89q8P0oTxjzMg9APTxsE\nY3wGfVK3deZrcphB5WZrMaa1pT41cgOmtcM+4GtO3uO4MT5t6Hh2nBa8FcZsF2a2nlbx5Gt/PMxe\nhXYZdLlw4cKFCxcu/kXoIMFeu0wvxlhd7IOtof84pkwRKqYu4pSzZqQpIUWJRERZd/Ddu5YuKnjR\n2edIUte+UNyJBudxQ8G6w7BKyiS9KbHlPPxdiR/y1kW+cqVtiYBMoRAR2eGc/dq6HzYyiV/CmwGv\nvgYp+dkjn2XHdxSegJ8/i/uojboXvdeeeW04O37u3EdhzPWXc+atx83YfHb5G1ipKXfdVbnBMCb+\nN+ETtrhtUmzFr+P3ifycM10mrU20e6XrDM6q5T+Nov3cC8xSYXsTZGoq+SFkxKUhsjRCJcKqR1nx\naApp3AtGlqS3+GmLKrZAIb8zEVH5BTyNHKs0Da/O4fdG0szABN3y809dsQ7GmLQBktD880LrOPM3\n8vYlMObDW3g15ZePPQljDpt0ETuOVNr3SJPibx98Asbst4x7gDXl4drafZ7w7lrGWeo9Ur2YmWZ3\nvWlym73f+guuddOLexqyMuaKC9+GMW+/g3StRMsI/nDJvAVtCkwC2dBCrimT5exERH6hD9B6v8sK\nqKh8TAXJhEDNeGczxbhnlT55N/BzGNSMi718GPvy18AYiabbseKm9SVekZV9JVZoTb9yX3bc/dtK\nGPPlSB50rW/pAmOSjuAPzcvvvAzGeDvxa9rix1tHfUAL/UZIdWcYI60mAn2ISp3XMPR4heAoZBzO\nhbiv+PkIrcL5nC9SG7kXYLpVppSa4vGcxS0pZsfbu+PDsDmBB+lRqzBlsuAz3kFh30cx/Zo2zfkh\nrl1Dibr+POiKrKr+m5H/H5rthomuaNPFPFjRLE+2HIzv3UnMl0D7iQYCextuModM5OvLDYlfwpjT\nJjpreo5YydNuizbtA2NK1vDzcV4sbjrn5fJ04vZk1D96buHXp/NQXBPlpvLVZ4+BMQ2D+Ap8yNUX\nw5ioSh5MX//aKzDmtsvOg9ck0q7jwezG4Rg7rT2Zp4O7B+Y17CJAdJigy4ULFy5cuHCxd8Jqf0k3\nFR0m6EpezFNhbzyOO+qacZwa6NwpCsasP0O0Y+mHlHPaPXw3Klv1EBGFC9sc2bYoUGhVShKxrzqn\nfbydkZExYQokZBUVEZElmMDmVUiBS8iWJUREsXlcKF5+CPqP5ZIQnyoGh5EzeaFB2M9oOlg2iH/H\n317DHXYS4fmRolkrEStiJTRWyys8wKwgvHUls1UwCyvvci/gu/6gZCXN4uGcqioC9/M5nfE99mdc\nfzAXS2NJBVGB8OB68NQXYMxjOVzwrvUa7PE6Zw96PqdUmon2Tq0bkT2Vpp2an5QtWjvVjsCK1E5f\nFrPjyV9h2uneS7nn37NPPwxjJh0oWCyFBTWBxmp5hejbvxYF3met5Ofx5k9PgTG9buCp9gWrv4Ax\n2XP59fnyV5ybPqFEiGvECtR3p3NPu2XTsK/i8ODj2bHmNVazgF/DylWYEh0azQ1li2EE0boxvOL0\nw4vvhzFjr+em0q/f9yCMuSCDm2xffc9FMOaHZ/lv7fXVWfiFxvK0drdbcU0asILfQR+U85Zv21/Z\nA22AbOowmi4tY+XChQsXLly4cOGijdFhmC7JHuQ/gxq73PN5hI/F0US9ruKaIN8W1JfIhslaE2qp\nBdB27yYo+S/XWaXfreiKsnjJdGsRCkulpswXoDu2ROkxqKGSui8iZAIltGa88vqYeHBJFoeIaN0C\n7kuVojgyH/AEZz03DMRGspqPWsgbnDH87n4Uv15RynVWhXWo0bkt8z12fFAoCvIf2MrnlPc0vIZy\nnrVuCqzl0FZB9Gml+1cUctb1hsfPhTFZN/Jz/cSc42CMdx9eQOL7A934s6/i88NSvJD+uJ6zer2m\nKFoswWxJqxkiopmX8ms46VnU6FTszzVU07PRET6YOBM45hfU7CRUcPsOOzcVxnx/L7I9A/38O2nz\njoj/1t5Pog7ulgXcriPnKrwPK+dzxuyIi7DNWM9fOat48kIUEp0Xy+di7ouXwJjtnfgM/s8M/M53\nXsjbns0mZAe3fcDvsR5KQcmTQiPZYwZe5+yr+Pwd0g19sYqm83M/LAVbx8nuEaFKA4HhJ3I7iIgD\nMROz6L8PsOOBWdhap2wOX+t/ufZxdnzQp3vCd81yzVH/zYjulGb3O5xXQoR9yG9yWRlIROSp4g/S\nVTeiKD33XL5QbjkfH/RxzzhXhEmTzNZoTL54P+MVjVo12tm9ebropTwsBoh9l6d+wrdgiBeyyDnl\n6OnLBe/+X7CCz5vNA5javugbJr2PZJqDCCtHvXEYvGkBrxO0VG/KF/x8RK7Fh/GqqVxoGxyJYmF7\nHabYwjfzhSR1Mb63p4ynMfIfQtPO7mOd+9KVvcuvT9eTlOsTz+e0rxJ78knR9/rz8Prcci4X+o6O\nxGuRO58/pHKfUfrbiTY7JffifZB+7iZ2vHkMpohDa3gIHvWmc8Vu4UvYs7DnFcXseMHvn8GYPjP5\ngz71fvysAT/x+fHKckyPLx/O04nj0tErSl6LBb98AmOOOe0ceM0O4psL2UeQiCh0KQ9Ct1+BkgJ5\nj69VersmzeOpuciN6DFF363k30dpmQXV0JbyEBbPq+K78X72ZfHPLzxyDow58BYe0M26EXvN3nko\nN75ePx4rsSPK+ffp8i72IM2/nRf85N60Esa09ucbts0HYls4uVmtPxVTtCbzXm6wtx3Kv98Py2ZR\nXe2G3Vu92C3dTr6h7aoX111yzV5bveimF124cOHChQsXLnYD2mV60appBGar9FqeJqjPRaYi93xu\n0ZC0GNtySDQlBrYhsH/gOyKlRSyVTebfuccFuIt6bxT3gEkrwl1m8BbOZpj4j2mQu16r/74wxvcj\nd7vffC4KtbPm8WOrDj1pSq/mvz3lQUz5Fb7MmYrs8c5O5dl34jnccDFnPSOL8Jqmv8/3J+Hv4W7V\nCIo1SOt+nEnSWK2ie/mOPn8CppT6fMevR/DnyJjll3HmpMuHyGK1xPLfGr8SPZUemDaWHc9oRsY8\nsht/n8OeQZuAl1ZxZjbmA2QLfVW8QMKESdYKL2SKOvcibG/kU9zUJVq68N/adCK2w8oN45Y0Wa+j\nWGHk51PZcesFOO+GT+IdFDRR+Celc+C1447lDesXKm2jjh7L073eX5ANkzYkvZ/AdKtMWq+bgnOh\n22niLzSPv4GcyS8djOmzjLd5mjLzvzgXpPv+sLFKg+ne3F7mnJfRJiZxIP9d8b/iMyO4jt8bmh9b\nt0W8RZbm2O/9lj974oOxiKB2LJ/TNd2RMxnwI3+kr+qP7blk0VboRl445NkeqNjlf0T7S7qpaJfp\nRRNzVBNo1V+J3/GFcd/LlIe40PtMLcS2O9Oz+QOyZgHqDiq28EoUbwk+sLOn8wdH8/5ZMCb407Yx\n25TwHXUAvCZTorINDxFR/C98znVaiSk3kypM2f4kaR4+RC/8jgffs3MCq/6SWH+LYq77BabPgpfz\n76S13Wk8mc+zjSfiQtn7Vv6Q2pYRD2MKx3Gd12F98Rz++hJPa3cajcaet/fg+rGJX0+EMcN68QB8\nzQDn6tugrriJqRmcyY6/monGkSP24/fy5lHYvkf6yllLUPtU8gnXNiZ/h995wyX8IRq8PBrGnDCW\nB0I/7u+cMNB8umzx8NXmRtMoHpRGf496zNYyFADJ3qnhl2OlpncsDyJMzI5LbsJ535TBz1nuhShV\nWHc7/7tOBRiEBjfydUEzdd4wj6+b6WOxSlUzkJWQMghfYRF+lvAl1Kq3tx/LM1jbonH7XHYyP889\nxjlvDqUBLxGa8Gqb3ooDuQyiFh8H1P36f9607BFz1G7pdvJ1bZhenOSmF124cOHChQsXLjo0OizT\nVX457thiSjjDEP4uVth4Y/hOovBG3G1kiZ2EbAlCRLTmRs44RBfjd4x/kr+PSTsWrUCAWvmu0qTh\ndcUlSiWgaN3RmIjZaelsr0G6tNtBuDvccghPS1YegPO05908TWqFo/jUt5lX4pjsggPGQXjui4T7\n89Wj3oMxb5/FU8S0Ahmqxvnp7LhpO1Yv0ttcJB/3Mza8bo0VfkTKftbTwtML22NQ3F46iF/7sC34\nRilPiZSWH9kNuf54MnCHLz2mZAstIqKsOfzzwwqQ/Wkt2cCOJUtBRLRtCi8IiBmPnm1a8QF81qd8\njlt3IzNZn8rPq8m9s/1oTGVWXobpqmSliEJi64ecMazKw2KVHlP5d2odgp9ffCKfi70eQL8v6Ymm\n+cyVXMPZOa2hvVa8IyGrmKGCWYHaEcTAO1E+D1oGYLq+Kodf565fYtGJbDIvm7wTYaN37XnQKn5G\nIN6Ke4Tpyki3k6+7ss3eb91lV++1TFe71HSZwD8Ub+ioG/nDxuqWDmNa15Ww467fYf5b2kHU/gcX\n3Kwb+EIwIa8ExtwXeTo7Dmp0DpBt0TqIiOieIh483pjl3O6oan9McSXM5pWbzjafRAWPYYo2bBMP\nstLvwoWh6UG+emQrD5FdpTwwqQrS+rB1fgEX9ywRt09vHQVjfFfxxb3HODz39e/wIDTuN9Tueb7i\nn6/Nlu0jRdqpHN9HzqGtk5XFPZIHUHUZGMyuvYHrUiI24Tqe+LhoG2XQmiZ7Nl759cO5Fqzbkg0w\nRiL44x+U1/hx+YV4nZuS+O9IvxPn76kpPKU/JxX7gpoEWRLhBZgCTD4J146W44QFwUJM+cU+yDcE\nTQdj4sMkxdb1Wm6PoZnONp/A513YB7ihle+94Volhe/hm1xtA1nXjV+f2ENQHyVbb/n3w2BpzWT+\neLTL0UA1ewq/hlrf1KQKXm0rAywiohrRjitWMSgtfJiPyb4ysN6UEi3H87lif+kcpO4KdBRHeje9\n6MKFCxcuXLhwsRvQYZkujX43YU6C0tPYsZaC3CSaa4dv1WxWOV44ZyS8lvytSB0eiO1GTDYHF93F\nBYpx5LyT6f2gQoHLzx6EVUGDHhfnoy+KYaWgGnkdotQzuLDV+QzqABNapQF38Z2czci8Gc9P42jO\nflVhFyBClyNE5k2B7SIlsxW8EhmhzcIzTqvyk1W9JvPHjxt82OGXX4GshOwtLlktIiwgibsEGbP1\np3LGWatkbT2Z/3ZNtK8Jzp0Q9zsygZZIm8rKUiKi+z/jMzZHYbW8+3JvppLj0BdQNhvXGtFrKUfJ\nbJkUvaR+DkPU6yoRNZzPRfm7iIi2R/D9PSbziG5YwyuCp6EtltF8zXqVM22ta4thjJR8WAXIjPYY\nt/MG0dqaSPXOkgbJbElPRCKiIwfyoi2Ny5WykKqDsOJyn1vEfTCfzxXLdq7g3SXoIExXhw26pGs8\nEdLiZVcqGqqH+YIv3d6J8OGy9Vxnx/WC81GjkyvWV2kzYYqkRbziSQtyJLTgROoMpMaAiOibvly/\nIKuEiIhalUoh+Cyhpyh9B6Oc9Bu5xkyzwpC/o+RmvKaxhc53e2MCf2jkPItpHi1oz3+KU/daZZeE\nVrm0+hT+mFrzBva3G5bCNVxF03DeybS2hvW38XOUcZtzGiNpJo6RRqz5D6KNg3+z0AmeghFe5wLn\nGZvzAn9AagHW1on8fHR53jmAmTDrAxgztxdfO6SGU4NWveiL5r9VCyYlGsZg6luaDauf/xnaQVRe\nxM+H1JAS6dfVCXYxhgPRSkpNYloPbhmhBR4LF85lx0f+dhK+0bHF7FD+TiKi+KfF5tCPd6+JJY3s\nbJJ7Pqas5YZRky/EruQ6wdrsGBjzgzDH7qr0ek0QzvpJX6KRsNQ2So2ttVHrkuqireCmF124cOHC\nhQsXLnYDOkz1IqS0Akg1ECF7oDEH+c+J3c+5uPsJBAnfdILXto7iDJmvwrlvlsY+SZ8aU6G442eZ\ntPtQYO0vBLOhin3sdwEalDrAExEBr7UO4CmT+hRkZEKrcbcc+TOv5DKZd1ol1Zrb+K7bhF0JtE3I\nnoTW1kUaYHp7otfaxvv4faC1QApfyteApiOVeSjWQ63CUQrwPf2QhfWv4IauWvupgvHc4FYzPpUI\ntO1YW0FLpYaXc+E69lY1g7znfZHI/jek8XsjrBKNe6UvoWc/ZHv8K519ACWCktHouWYQz3REvoX3\nl/The+Khh2HMlEznbIisNk28GH3dwMsrGFkrezumHP+KPVW9mHp121UvFk12qxdduHDhwoULFy50\ndJCG1+0y6LJjI6hlMNfSNITzTGrkPGQcTDRLktmyD8VyZBNm674iviM6/RWM8qXoetkXqHFIOZDr\nXUIXItO15gG+i+pxDe6MJRNowmr5F6OlhmeoKF/3OzOpmo+ZX5aCD8Rm37sKG19FnV5dGd91x/6B\nmfmYuSiWbh7KNUJBGtMlfptfYfBMmC2JiDLc0fqO5ILqkBWo3fNVc2+qTVNQB9fYnwvMc6egs70J\noykRie4H+L6K3jB2Dr/fW4eiuLz5anE+bLwWIMBXbCUkWuLRH05yNN2vxes37FpnZqv4LlHkoRRi\n5M9GC5jcF7gmsjEFv2NrGH/IxbzqbGGhzUOpa7U7Y0mJr0qI0pX72Rbz3uNBdjta0V45ItAqHIFN\no5QMQSg/h80XIGO19T/8C5iwWhrqfuIayS4b8h3/RmO1pL9XoMyki8DQLoMuzzY/hW/gPbAknSwp\nXyKl7YRidknLuIeR9c0vMESm7zYfgbT0DaN5SiLWef01evDaiieNFmRJbD6Oe+0kLMNUZnUfvphG\n3qqZB/Kn5sax6H+T/AVPObZGIQXubeJpA7kgE6FQu/Gg7jCmdDCf4pnzsRqtfABPJ6ZPKoYxeVO4\nK5kmMNaofOnbowUDcoxJ38CBv2Ba5YdRvNyr6Eh80KZ9ylMSMsDSEFqNgXPCczzo1AIsb29+7bVC\nh9JrRI/Npdi7TmLtNDw/Tq1NiIg2ys9Sahr+uI0HELmXVsKYoEThu6e02ZIVfKuuxj6CWXP5A1vz\nDZPmtetvxQC4cyqatXqLeJAT8d3OB8Aa7izCk3aziEVMTJzzz1NKYs8TRScX4GcVPMKvfc5k50Cx\n7Ag0fU0UNUnNIzFwlZW+VQcr/Xon8muvFerkPs/bwnliUCS//lJemW4raututzgHR2tF+le7L/bK\nIMsmt3rRhQsXLly4cOFit6CDBF3tUkgfG9rVPjRtPHuttYjbJmyaijuS5Om7Zgeg2iYk8N2OdEgm\nQuZEo4qDhGu+HYnsBm3nKUjN9btlBN9l1mZgPJ7whDOb0HAKZxA1YancVcodJRH+LtkJgAhLyk1a\nhHgiI+G1snM4O9j1+RUwxt/o7F2jtTbZNIn/1q6PBDbH5A6/9yNlMGb9ydzKwKvoZVPfEcL+Emfn\ndg0ypSTvLw1ak/CMO5zPhzeOMxW+LeghRyIVBWwUYRGDUVNhxRuv+R7OXDTMTYYxcSu5fYf9Izqn\nS5f28E04x/yhfE5ZX+PclK1oiIiaB3LRtcqiCeQ/jmxP70c5Y6axlXFfcwa84FkUrnd5zrmlWfKX\n/JzVZeG9GkghiJw/REQNh/BiDG0NkjYfdh2ysJ4EPs8a+uBc0LoBOGGLkqaMe3rnJQaS+SIiSljB\nn/nRr3G2cI8I6dPT7dQpV7XZ+xVNmeoK6XcntncKpo0n8AU1aSZ/KOyqAIuIKP8JvnjlXow3tFXI\nj01SShpkMFI7Ft8nbIvoKWnh/RS6gC8M6CpENG41f0C/0isNxtSn8IcfLptEUb/zh5/mwqQFWTCm\nE69kMvE/yX8yF17LHi/mghKYSXhNdCtEREfx1zxLnSvdNKR/ynUhmuFj2uM8hbT1FEw1BxJkbRs+\nAF9cxOeLFsDYEfz6aAFWzXjR/kQxEVWDLDnmcPFbP0dfKvlZnd/BllnSm6nnVNSqhR7Lz3MoFcMY\nk61sQxK/V6pyMHhKfoifMxPvQCKirDu4nGLDxzCEqifwB3LupfhQrxMyjMgolFxsGcTPYxcD82Xt\nBEkfwiiDom9pbExEFL+S3ytR6zCYre7BH32pSmBmhXBl3qqHUYcWuplfQ1spsvYN5fOux9WKUa5Y\nT7QAS96HEb/i3LQbuHzAH4YnWgZZH5XyQP6gYXvGHLWjtAFql0GXCxcuXLhw4eJfhA4SdLXL9KLm\n0+XN4SJrk8a6Grz7cKakNRbTeVqqcFfBpLGtRFD3THitti+v2op4B2n8lo/5361bjykczZFZovAl\nzib4GxQ3foUd3JOQon3y4pZWE5NboVwwbLcoLUFEJZf1AzJf8vPXPor+ZxmnInMjIYW+WrNm2fol\nZa7i9G/gBxeI6Fm22SIiqjyKp5pDa7CCLfy93TdfKj/ga0D8CVhFJtPj62Ygi5V6MqYc4X1kZeAW\nZFNXTce2O5mZfC6GHOOc/g0U0tG88nBkPb+/19mTTLJ4GoMnEagPoMwsVPZD9n97Ai9W0da21iG8\nMKY5Hteyu6c9xY6l874G/2H7w2shRfx3yVQ4EXoMWpl4P1m1nA2T77On0otpV7ZdenHt1XtverFd\nBl1RndPtvkN5v8HID7j9g6aPkpYRa07BarScy9vGXHLbMD4fQj4KzEDVxOZC3sDlB2GgGNTA54Gm\nB9oWLUwQFX2S1Ez5G9DAzwSBtKJpK9QuxKZvMcdxmwLNcLG6D1Z81nbjSc/tMXi/SRsSzRxVtkVq\nK9SfhunoTSNE5WgjBpgJ3/PXAjHODRRaX8X6ATw4WX8yBmay0kxLm8r7MCgDH1omqW8JTx/FoPM3\nUVE9WqmoFpsfk/ZlGppOQr2W1jfWCaVXY3pTti/Sfkf9ObxKNnGUszmp1sdQ07RJyDWo+TBM6W/t\nLcx098aKPgFZ6Zv2STWMkVIFk+u1YR43pS2+5ilqKizd/UHX5DYMuq7Ze4MuN73owoULFy5cuNhj\nsGxX0/Wvhqe6ATy3TK6nZIlyluKYfoJIWoEsMDTNlW0piHBHrbUSWXMG94aK/1kRRb7pnE60g4QJ\n4jqlXY1SZSghvc3yn0amIO57PqUS5+GOFgTnirD/ujPeYsdzb8Mdvmxzsy0KpfRb9uei2pwrnH+n\nZLU05F0QC6/1fmgTvterO5/W0dhnk6pQE8i0ilaskRQkBOcfYfrMRNy+q6C1UopcxdMqnmpkwySD\nGLLI+d4xYbXWTEe2MPc5McdbkDqWKWMtpS+xrTv+rpBgXMbLhvEUn9bMeo1oQN75d7wPEz/jqaeG\nDGdz0tBq9JCLEMyWZiotPQ/LD8R2XPZAztxoBVEm7HrkJr4uVJ2Dgvxl9zinRGUa2V+OaXfJUhc8\nhkxg6mJ+vHEIDKGcy/hvNfF8NWminjaGp7k32ruGVXexA+0y6DJB0Vy86bPOdNZifX+j0FARLtwy\nyCq/HCnepEf5zRD6CBocZl8i6vo2oE1Apy+5VqT6AqXusIEvgpGfYWWXCUoH80VZMy+U0Jboygv5\nAhf/FD4Q5vbCIEsi9g9Or/siFZPV7c6ViDJ4i/0NAwpZKq+mmZXUTyDQdF+toTvP9vsH40Miovyf\n+64RoTN5AB7gKjZeh/dB+iIenPjDURNj0mPTF8+7GmRfhcHkarFJ2GcaPiDtUP75pcfg/ZTyCf+7\nHlPxsyrOFXP8NVxbTGxIZL+/wmMx9Zx8MG424o/l95TUhhHpVXQSDcJKRttY2MIEtzIHjU/jP+PH\nmqm0TPea2KtI2xgiIquJz/GWWEyPNybwc1azHwaKEGQtxlTz/N4fsOPhlEOKYQAAIABJREFUJ46H\nMXYI//ycSbh2SFPrzPfxPvDmctlDTT+cm1FvOF/TvRYdpA2QSZW9CxcuXLhw4cKFi/8RHYbpsvrv\nK14ILIFsUh0oW71EVDgTwU1HYMrECuLsl92KjlbVo3iKwp+psD1VovWL47chqj4L6fbQKuedSOm1\nnM0IrsPznPQtF9Wa0OTS+4yIqNsH/L1D5+O1iTXQCscs4uJT24/fSAqhpQiayEzQ3HI8pmSru/Nd\nbdIsZP5iX+E7WFlFS0Tk+4OnAT1foei4YQxn9TyjFIG1qASUzCSRwk4qffJI9MlLvU9JBYnjiovx\ns6omivYwFyn3oGDDZAUmEVHvm7g5XqtBlVuSYgYq7x/tmkozUG2OS/apMVdhqYUMIbIUjZZL/sA2\nYyEiHZ/+CbJqloGhrfTvy39VSbEF8zOScWpgRRUy3Sv7hBIRhfzO070tcZiCDFrCTZLLJmOVdcYC\nzmzFFuPaJtPGPYYiizSM+PloGoXfJ2I+zyxYWlGFqHhX+F6Yd1vGYaoZm005Qxqxtr69h9gyV9Pl\nwoULFy5cuHCx69FRhPTt0jJC8+mSKLlJaRybx/cS0e+i/ULLUJ5718S4BbM4m5BzGebw687gu6iI\nMkVoq7hqO0HT8WiMB3yWEPX6KlFjVvE+9wNq+jEOxmS9ynVngfqhmbQBkjApudcQiM1FzTgUT0s2\nyhRl73JdSteTnNsZyYbKRESrruK6JhPPNBNo7Xt8+/BWOFlnoO6qaBrfQad+jroZE6sUKboOXoda\nLBOWUTpvD0vD5uPWAfxaLHr/ZRijCaolwHNqJs5D+VnSkZ2IyNtJFGyEol7KrxQ1aKy4hCyM2XAc\n8nEmus3i17nvVObpzho8DWvvE82ar3NmzDQrjINv4d955QH4jKu8iH9W0uc4p3x5nBmVaxIRrks1\nC7JhTOwI/j5VZyObuzstVySkb+M3G16imuay3SqwCktLt9Mvm9Jm71d4w5S91jKiXQZdGX1i7Klv\n8pvxw32xbUsgKH2HVxl2nY7pPBnkbD8Wr73shaaZ/BU+zPt4aUJ/Ka705WPlXZNIIWlGkjJdJVNV\nRGaeYCaQfjPpLxbCGBODQ9k/M20Opvz8WTzNoj3YAoE8F0SBn4+2gkllojWAt3GxlzsbqrYVZMEC\nEfbS0wTfsq+j1svUV1jk+PmBzF+tR2DKk/z+bhmstHYK5s+syN9RPuAv43Nc82KT90rcbxi4rhuF\nz8dAzIXX3YHBQLdbeDCg+T7FFvPNam0GppplOyMTaH5s687h613G00p1tAhCZbsjIqJJN77JjrWW\nZtb+XJLiqcMUrcm8CwSB9ik1AZhjb+Nz6puyuVSzrXz3B12T2jDounHvDbrc9KILFy5cuHDhYs/B\n9en6d6MmL5QWHi5dxfnuR2s3IpsBF8zB9EPOaPTccoJktYiIil7jlHz36YpTuYGFhcZsSdR055cZ\n/egVEbbW9NmAGTBx2u9UyHfGJqyWbG9BhB49aoGA2PWasCSyEIKIKKiOp38DZbXk+SEyS7HVnslZ\nLI/yY2Urk9g8ZGB8wbxguVZJk5YP4mmm3EuRNZGeV81H9IEx8ndJVktD7f4oCo8QTNfGkckwJvUl\nXpyh+YjJaybTa0RE0V/ydLjmVC6TcMGf4Jrg7cS7E7QqzdClN5+3vgnGJP7E7UOCFuNn5S6ElwAa\n2xP3LvdnaklBFk2iOR7XqSDRsSCyDNOUgbSE0vzYUu/lr/kOwgbc8p7v9CKm7l55Edd/CSu/mB0H\nmhWSth+tm9D6R6LLajyHsn1a8nuYZZH+fVonhFalCOivsG3neeAicLTLoMtu9cGiawXxn2rX1Dq+\nT845uMANWMGfdsv7IZUutSOHX3IhjMk6gz/ISm5AOjnNWU4B3en99ahHkg8OmYYiwlSUpmvKf5yn\nKXtNQe2GSQAhdVYy/UmEKdCC29FXrcc1BpoP8d5Rq1CrJlNIWsVl3DM7H2wToUebpxXfW9asyT6h\nREQxc/n1yX8eA8PYn7jeR7YEISKSOYNYJWPRFI9zUSLvCZ56yTnH+bqbeONNve8VGPPE+/zBEVKL\n59DErNU6kAeG3hZ8sJn0lJQISsEgkDzCjUcJuhoyea1Z+Lt4vYLaKH0V/wm+T2stXwM1DaDUvuZM\nx2rOwpk8hZ+obBb9Xgz6nNA8EteFyLxKduxbhulxqYPzVdfAGBP4+nH/MZMWRBpMgizZf/WtBx+E\nIedkDGbH2gZy/fX8eqXeize4TBFnzOMGuNYGDOZ2C1ymy4ULFy5cuHDhYjfADbr+vfDFRVL18Xxn\nFbuGiyCrsjFd1SrMnjWn9B/O57v1hlMwDTfiSJ7aDM93FrWmTcMdiWTMBl5zMYwJpGKu7DClmqcv\nP1+nHPc1jNnwJp8uJk2YtQIBmU7UhP1y52fCasmKUCKi6Nec3dXvWTCfHT888UwYs+YBfn6i1qPO\nVHYZ0F6TaUIiPEcmFZ+55ym7buGLpaWIrUyeVvH9ngdjYoudK99kpkUyyURE9DEXQnefiu9b8DJP\nmczOgSFExP8u7iVkHU3Wa1lEUTUZGb0wkYbr8g4WXvjr6vi3UyonpceUV0gXiIi2R3A2LFqRPDT1\n5qkpTaqgwaSoQmLYb8j+z1oqpAAKE5h1Jn9NY2DqRvFz1tIJz730M+z0C7LS8t7Q0mdSGF4zEl3r\nY192Ph8lV/Lf3m0ZMkD2ducOD7KQSr2Gwmfu/ENOgyEtI3hrJ+mhRkSUeq8zMypbA/llC7pNrmf6\nrkS7rF48sG+YvewjXt4ry7xlSTcRkbeZn4uEJwwe9EqqzhYZx7Ij8FEvDR5bRqDBYtjHXIOilYGv\nvZc/JKxMTAsmvslVXPWpmBJNmrnzlTGWUr6utbBpC3iio/8Pe18dX9WVfb9uXoQYMYLFiQAV6u1M\njbpQdxfqMnV3mbrL1I16S91LvUO9pUKFkgQIJGgIhAAhIXm5vz/o/L7svfb0Ht48Ag13fT799HMf\nJ0/uPffcfdZee21+LV0GzpYGRPdUyxvNqQ9/bRkkWxV9iarFT+1JXGU36AZOt3oF8qHposGzoO0X\nyi7iubnVeBkEjx3GLWNigWWPsaSvXJgLnuTgTQdiTdvzw5hMX3O4ynjhNrKydmkmPxQs3Y7GtCvl\nPZ+4iMfoB9KcU3mdWFimNG/XB/emdNkQLH2f51Tyjiveu9MZytC24QLWuFmbQXobpbd0aW9kQVeu\nFj7PWs+GfXPFcWfDdBqjjbATFvLmsGWYNEwdcfknNObhf28jji3rn8hgZRHRzIGri2ZVm0r/fOa9\ngX9jWZdUP6BaXV3N52fCtTIdPuS8aeL4y3kvYkHHnO6tXiwo8ktOil/1YvXlq2/1YhjShggRIkSI\nECFCdAN6ZHrx5+Y+KHtNiterIFNY/e/gHVxENW71CgtojN5ZZY9nCnzC2bJyKXF+8Gm2qOJDf5cp\nCdNLRmmBKy9gwW7nVMnAtJwTLJR2wcpitSws2ZLTCNOPkGmEmm3G0JjtjpSCc2sXPmdTyaL1NQoY\ndAqp9DJOKSUM4Mq7zhiZLY2yS+T8tZqoP/ucPO51IrPY6bMk65rxMVcyzT5EMgV9P+c5laUqoJYa\nLVu0uW/OKwtpjJayL3oum8ak7SwZhsVGqyDNqtVez8xx+Xnynm+4OPg+6HsPrxPNqiWVi4hfs1oW\nLFZLe9FZyP+R70Nd5di2B4vSe70h51SvJqMysbRYHHfWTaMx+p4iHygAtSMlu1J6WTAzWb8Hs9vR\n2czcaDRu3Fsc93ngVxqTru7L9xZvTWNSNzBaWynM2laWweTfz56DLhh4k5xnI/fdisY0nCsZ+ZzP\n2DC69J/yGlprdOIsmSadcJO8xm1XriIh/RqCHple7O3l+ptFdhKvRbeWWiwXt/fa2zglUHG2XDyt\nHm8Fb8iFofrkgTRm0Ply0VlwOH9W7reqUmdi8A0dq3Gk1kZ4jYbLdassadfaFgteEt/ADWdL1tfq\nyac1VFWPGfoOw8BVQz8AotNn0hi9MFk93yYdJdn2qpGsK0oYZpRnZ8nUbsJYtpqI9JYPCa9PLo3p\nnFxHr8WC+kuUMe21wemjVxpYc7dPoXyIJ6zHupmlfWTaafLh/N7WedTQ1gpWVaYGObmDq9h0hwUA\nyN+T06RBcDF9taBta976+k0a4+J+b763ck9fWsTdI7SJc+PJHMxGVGYu97HgYKnmHj4flacGnw8X\nxGK/YPVtjcU81oLL3NTp+Vg7V2iJg0sXhljwtf8hWvx53Z9ePDGO6cUrVt/0Yo9kukKECBEiRIgQ\nfxGE5qh/bfiZaejcVO4QEz+SO+r8LziN0bh5szjuNTdY8pY1mcXtum3JoPODxbCpjfw+mtmafoHh\n5XWbrISp35c9gwrvUe1GDA+uLpUu0jtKAGjZWe7qtBGfhaN/YV+fxwbLih+dwgC4WtEzUhYurYv8\nRJkicEmJpkxlVq1qZPA19NrYVDBh/J8bEQLAxKvlea04k3fCmkXrcnjfRQcye6qZLevca1Zkn2Af\nSbzzzrP02vZHHCs/+7XgdI0FzR7o9iwA4P8gU0g1F7Ix7KAL5Zxq+4bZn84P5PlI3IHTaRrZ3zJ7\nGlz/yWbMFrQo3B/HqTKrQlj3BExw6F2afx+zWJF8mT5rNgoCEjrk09KF1bKMadNeDv47zWzp7wdw\nheXQK+p4jDru2IF975I+kM8MKx09eBe5vhlZSsxbW5kW8xDU3K369Z7G50IzW1aBix+Rn2UVmGi/\nRcv8OMTKQ48MukKECBEiRIgQfyGsIUxXz9V0eduL1/wtJPNluQvX3KV2G6fzbkPvSIZczZ5Ksbha\ndyesLvd93pXC0q55zTQmUqQ0BYbOyMXaoH1XKXJOeYeV69rSY6mxPSweI2v+u1KYSaF2PR8ybZNw\nthTsLinMoDG9Zks9m9U422oYXHaDtKhwKae3NDG9J8rf9uOFXFI+YvsDxHFHHvt0aR1PrNBaPcuv\nSNt15IziuaCtFCzBedeW8t5NamKmdnG5tJpY70rWzk3c2KHNjXJBj7Sx3cv8KmmV0vde1sVNUVYu\nZRfyb3dhL13eR59ngM/1Rj+w+/64DSSTv+uvfM+/szZnBOIBq5m1tnxZ3+i09SP3mY8Jk56Wb1R+\nWGxtvfRzZUlfttFJWih5z5lb8pjiK1fcsmfeSL7uLpo7zTJqhnGVaLoGFvmlx8dP0zXx6lDTtcqR\nWC3F7RMMcWXlE0o1msAP8crTJRU77QKe+CVPKfF4Ep9mPzlJHFsieb0wWT5UjaqSK5Hbt6F1gLx/\nil8yxKeZ8gHtG94yOm1qofDj4AebDrKqH+JKs6rj5SJkpZTqd5WRWOF1RkVqH5VCOjGJxnQp36eU\ntzgIdNmalFzOC55+1CU6VMQOuYODdm0KuU3N8TRmxpFynm28NT/Ex7+u2oQYRQwakY+5EMQ7VP6y\nt8a9S2N25j8jZH8og33LvFYHipv8xHPs5cmyUMYKsBbvLx82Vnq815vy/p53DN/fOsiyDDqt4EhD\nB1l5n7NHmbeNTHFZ8zBjBv9W3T903AZcsEAC87WD00zasBlgsb8uggFYLjB/Gy74yXxOrm8/78Sp\nQ0DeGy6pZgt93ubAJwhz36ii1/L3nyCOx07hOaXPT9kMfp/GN+VrC8f1oTGl10gpSd549gTT86P+\nRe6JWrR/fIoaQsSG0KcrRIgQIUKECLHK4GGZkD5e/8X0HTzvRs/zfvU8r8XzvBme5z3keR6Xktt/\ne7Lneb7neZcGjl1T0ovdiQVvS5firBGxebdod+EhZxk7uIhk41xsHJqP5J2oFlw2Hctj8h4J3r27\nQJfKz9mxiMYktcp5md7ArtIuqTItFK87hNOLLq7b9NlGix2rQMEFsZTBa8E3ACReLJm/uj05TVp6\nqbyGLsybdgoH3FjPGedJVm3gzXyedZoyYthl1B0tG4Bb16vmX5LFKn+OCyb0fLlkMs+fawdJVsKy\ncnFpIeMCzWw178ssrJckX2sbzAUu2pMLYN+y+Ycym9ylCPjcR+N0fxtFL1MOkbSni1VJrHCxRdFN\n5a3WW9ptfsZOXLCg23wt3YXPc/K7kjl/ZNpnNGar988Ux1XHurV70mg6XnXgeGjFr+mqSC+mDizy\nS4+NX3rx92tWPL3oed51AF4A8AuAbABPAOjwfX/PgL8rAfAhgFYAo33fv+bPxq8x6UUX6DTBO+89\nR2MOnrKdOJ51TTmNyRphuGtqbLquPP6GW8/oVkE1DrQ9taUA4KfIy2xVtPiby/RMv/e42mmxalVk\nGbrWXSu/Y+klho5nI7kA547itIZu8RMdxufZBdrMMXsS57wiVfK9vcWco+0sknS/38kamUg9p2SX\nrC+Do+QxvJi6BFm1t8uHf8ZbTFL3/0Y+AEqNbJFuN1W/IT/oC8aqh8vE2PyABo6VmjuXSjPrXPT7\nlgNDDd2ipf5SrjQr/kreBzrAsmAFWN4m8t6dshcHtxWPyHNmBalNW7DpbBCi6/L8tRZx3TLMuuet\n1kQaek38/ZTeNEZXvy2p4NRY0fvBm0Gd/rVyqW3Zct5nTWEtIQVZqo8rAERVr0NrI5r3lvRsyx/P\nZq3FX8vNV/2pvHZMvk6+97G8X0IVVjzIqr3DuH5d8qTdOImfK7duOlwcu5j7/gUR8Txv+Zxtk+/7\nXJa+HHzfv3i5w0bP8+4EMNrhsx4BcAmAk12+WJheDBEiRIgQIUKsOsQxtfhHerEfgInL/XdaDN9q\newDcrHc5eJ53IoDFvu8/7/qmcWG6PM/7FcDyOYgIgF4ANvJ9/3vP844EcAWAAQB+BnCK7/vjlvv7\njQHcC2AdADMBXOH7/lMxf5/kJCT2l2kkF08c7VVlNhS9XzJJVe8YLI1y545msGjTqp7U0Cmk8h2C\nqWJLkL94PyUg5r7MSFQVYdMO4u1Y8VNS9Gx5EfX7xpJCS7QUyWmX2sV/887EseJ454HBO2WrO4Bu\n5L35hSwiffkTeX56T+K9yMCX1G83ihom3MvFGb0nyt/auh3vqAddoDzJNmbxa8EnkllLfS22FJdm\nJ4veDv4b6zrrzgdm1wPFJsBoZu3iT5S8QLIZ2Z9zCnL+FnK3XnQNp5Rmq+bVKc3MVrZnyWtvVSYm\nTJEsVuYUFkYvWkcWwfQymK5+X0rWaPbfWRg97QXJqhUfwOyy1QlBi/S1px3g1ppIr4lVpxiDPJmJ\nSnqPWZvotrLLg+XY1nu86sBhtNDKKgpe16dfqIpFbjDmgmqjtWAdLkbwuuQ5W1TI60LS4fI6+zVc\n1VymToeu8AaArbaVjNSPj65LY7Jr5X1g+flp3HQ2v0+kn1yTEjIlg+ctWkVcTHyVTrMBbLPc8Z+y\nXBqe5+0H4CQAw/9kTDGASwEEU8bLIS5Bl+/7ooTE87xrAez9R8C1JYD7AOwD4FMAZwB42/O8St/3\nWzzPywLwDoBbAGwFYGsAr3ieN8n3/ZhEBv7SDroZH1J59OOLt6S/a99Npl6W5PLpqTpJGSzubvQ0\nUxVQ/lZc5+ySMJ+l7A0KE4y+YypgsXryad0BVfSBg7WimZwqm3i/1EGUH8qBR+prwRVQ+vtY2GVP\n3TOGFzON/O/ZjmHGuep8bMifPXiovB+jE9jQtV71wCt6jh8bJW/xqpHylvo8L/jKW3YUqTFIPJbs\nzXPTUxGUnqsAUPdPlSI2+uTpIGvuCYYNyUPyoRCdz+k0HWRZLZgSF8sHog6wXGH1UQyCbqcDAJNH\nytdiKfcH7CBLo/gA+TC22i1N3YOD2bJ5MiXb6dAyy4Je36z5AqULtuZd6quq6vtKI/2rzuPSnVmS\n06LW5N7PctCV/wOnHDWSW+R3zv+S1/qsp+S8t0xNZ58o530fQxumUXknj2m4SKbi+yA++jod7AJA\n4gT5HPEHKZ3rxB7RezHq+35Mk97zvAMAPABgT9/3/6xf4MMArvF9P7gh6HKIe0jreV4igGOw7EsD\nwPEAXvZ9/z3f99sB3AygDcuCMADYF8sEaDf5vt/u+/77AF4BIDtWhwgRIkSIECF6Jvw4/hcjPM8b\niWWxyx6+738cMHxHANd5njfX87y5ALYAcJHneWP/7I9WhpB+byzbFDzxx/F6AEb95x993/c9z/vx\nj9f/8+8/+LKM8nsAR6zIh3qelwcgDwAy0voD60nx5G7jZFuQ4d8ydf3xK1JUXPo0i8l1qsXc+Sk0\nbpBKr/X708uyDLFU1R19EueL3rlbGhxG5zLTqhu3/n4si0YrD5WshOWRE02X59CqMNSNW/02rkzs\n+lGmNaxqQd3Sx/qsAiWetu7H2VtL4W8fg+kacKu8Fv7QShpj+XtpNJ7ETLTVfkUjlgrHjLGcatai\nWctgMbNOHrv4LmU2cBIyIU0WQ8w4fj0a0/8OxcJexgxrwoGSwQxOYNuGoYlL5NWfsxfPu/JD5Rzy\nF3FFauEH8vu4pLUtnF4r5/hdFZwm1JixHbNaVirVpQ2RZid9I+c3fz15tqu4JzemXSF/f/HW3Dop\n8Ws5f13YwSX5/HjK+1y2XJp7hFGJ/aScm3NPNFjYB+LDJGnGzIL2Iaw63qHQyoD2ZMy/P/g3pExg\nEibaJBlnX0klfJ/vi+7Aqu696Hne6Vgmg9rZ932Xi6Rp8BcAjAVw65/90coIuk4E8Lzv+/+xN84E\nsECNaQbQ2/HfXXEalp0wdCxpQaRG0s4D95EPm09e5oAhsqmcjFMinFoo+mdwDzOtyXFZgHUFHWBr\nGoLw/LW70GstF0lCs7WEl+SSN1T/NENbU/2YNFysOpaDnARDn6VRf48yNb0gjcb4KjjQ1VgmjNSd\n/jvL3HG3DZUJbfAnmSlIF3Skx1aJrYMs7dgPcAAz7Xh+iBe/KB9a1oM272G5mHMymmFVsmrF1ICx\n+jYHGtUDMfcKw923acVd9HN+52ApsU4+XGbuxPe3TqelT+HvrIP79AHcQUCj60P+rKuuUY79RkpJ\nB679vnK0JXGojtYaoZZSTitVnRS8qSy+Knh9a6TuBMGbhtnb8Z2Y9ZTUxi3dNbiyNV4BloXcsfJ5\nEE1h/a4OsvSmE+C+ii4yERdY2lMNbQnjNfSI9GIsuBPLlv+PveWeJb7vZwCA53mHAXjgP8e+74sg\nw/O8dgAtvu//6UmPa9DleV45lin+l7/DFoLT4dkAJi3376XGvwcLHiTuBvAMACQnpE4MGBsiRIgQ\nIUKEWF2wipku3/f/dEfs+/7TAJ7+k3/fxuVz4s10nQjgJ9/3l6dJfgLw/9V83rIQcgMALy/373ur\n99kQAaWaGn94cDQBQG8vF9H5vENdHvkPMrvS63NJ93ctnEBjnL6LIYTW0GJ2i9WadYbc7Qz4N/+m\nzmy5s2quYJle8dXBO6QZr8j04sC3eEzvn9QuzmC1NJO0a+UWNGbA3vK8WtyYNu3syuV0p67Qsqq4\n/GQ5xe3WNMG7wXhh4C3xMYXUrJaF3N+ZKZhy+ABxbKV5Gi6S8+76Y0bRmAd23EEcaz80gJnRtGpm\nAUqfUUxBPsuVq1UvyspTmYWdfkFwe6PoRpLdLnmZ19iUtySz4xmshPYby3iBv4/2vUs6hRmqnInB\nDIy/lixe8b7kZVEbYgJA6ZGSiV20HbMXvWrkvO81kas5J6l+ooOe5hZVDbtLXzedigeA9uxghrd1\nH3mdh15giNLVubeqS3UP1HRD5hwL+6V7gAKAX7PiHnaa1bLQ/z5mGF1iEhfTV/o+qrLW94MLEeKO\n/1GL9VdC3IT0nuclAzgawP3qnx4CsK/nedt7npcC4DwAKVgmlscf/0/3PO88z/NSPM/bActE9g/G\n67uFCBEiRIgQIUKsasStDZDneQdjWaA00Pf9RerfjgRwJf7Pp+tk5dO1CYB7AKyLZT5dl/8vPl2x\ntgHSDU377Mm6nXlvSAF17u5clRrJlrv1aDMzVFrE2ufB2HQHhV9JN+yGvy36LyNXDJrtAICSh+X5\n8DKYLdS7Jm8j1s5NOkDK9QY5NAeefxTv5nUbk1jbFLXuK3fYmT/zbv7Ytz4Qxw9WDaIxVjcAbcXh\nGZoPXRBgQc+XeRszi1V1gmok/gC3JOn/qRRxNe7Gn33G+h+J47cOZ3uVyCxZjGEJ++uel8UshQ+y\n+73VwobGqCKCrr4sJu/6SbKnutUUAPx2hXyfojd5z6mtDSxE8qRPWFcL33N+h2QL9BwDgF6Nckzi\nfNazaZ+siFHAAcPeRa85ut0SAET6ygISFwYmXrC+jz5nFrTGbclwXl/a8uQct7oK+FtI1qphO17L\nit+V3oD+t6yL08j6jBWQC7ZcIYsoAMCiA3i+WIxqLAh6Pq2SNkD9i/zyI+PXBujXm1e8DVB3oUf2\nXkzPK/LX2UX2sur9rLzx9MIJAFD9yqKzeTHT0FQ2AJRcHtyaZ7PRv4njUd/z+2T8Jh/QfcbzoqTb\nylgeXLoPm4u40oLuY2illFzQdJz8rf3eYeNIlweA7rHWq4nnsq7wifTj/mn6OutWRgC3M+rYYSMa\nk/QBBxCRj2V6yhvJGX2X86gfUlOu4M8fdKNMa1t9OCffpNJF58cWqOpUrj+RzVF1MNm+KweB806U\nAUtrTTaNqT3sPnFc9hq7yVSdLIOllkO5SjT3KxkYdk6uozEpn8rArH1bDsB1Wt2lCKb6UV7/h14n\nH8atg7l9jktFrJVe1D33dNoJcEs9xYI9f+Mg49nLRojj9JfiE0C0HMLXWa/1Cb160ZguVTFNLYgA\npL8Y/B1djFhXFnQKGwC8L1ZIlQMAaLhY/oa6R27Dkpn13R90HRHHoOuW1TfoCtsAhQgRIkSIECFC\ndAN6JNOV2r/IrzhMRs0FT8nUWM25zD7pdiyxQqfCcp/m3aqTBYLCjPM45afFh5ZQW6e0rHSWZiFS\n3onNS6ZZ+eZozxyAUy1pL/OOcspzMjVVdjD3LtI+YTrlBQCTT5Q7fEs4rjsRRM5iJnDGWJmuKh7D\nKaX2q7ngNu1Uua9xYRcivdktxS9ThQWpnKrrSpSfZfmWxQuDv5OCgj1wAAAgAElEQVSf/93NzLxl\nPi8ZB6tBb8nb8j6YawjOdeGFBe3UrtONADDzbFWYcpvR4kcxeF0/G4XQDmumTl9d8MSTNOb8myRj\nZ4m7qUl4FjfXrt9nAL0WUbe4i22NhQWHy2tmpepcoBtDT9vM0foiAC4pfYuJ7JqsxOMO67ElpHe5\nx3Saf/DD7IMVTZMM+KICliH0fkZla1QrLoA7RZR/yyzfpFNlijpxulw3v5j9HBYsnd3tTFfF4fFj\nun65dfVlunpk0BWrpqv+UtXqxTAdbDxZBhW95vP5a1OVOn3H8QPa+1npo1LZQFW3TbFaZwx6TFZ/\nzd6JtSw61YC/DaMxvvK4mnQQfx+XXl+xwFo8vKispNJaMfN91h5Mr3XkSq1G4rf8MJ54s6TpLY+y\nWKFb6qQ081qWNlv+1iV5TED3vzP4oanbpqT9ZJj7qtRy5/YcLM3aTC74hdfF9sDW/j/NG/enMS46\nFT0/6g7mIMO6V+n7OBjMUlWxYSSsffhcqpUtaN1kNJXXkv33lO3LXhm9FY3pyOC/K7t4xTeQS/Yy\n2vc4tPXSUo1JZ/J9WP4vmW61pBs6qLECGp3OK77/VxqjNUpaBwYAXa3S4NZKR2dNkOn5jps5Xd/4\njlxvrcrNKTfINaDvt1wlmtgqX4t10xsL9H3xRePzWLB0TvcHXYfFMei6bfUNusL0YogQIUKECBEi\nRDdgjWG6tHhbu24D3G3dEiJrp+doGqd5Ip/8WY/MZVh4kKLtJ3JqqutHKbanVAMA5MtKrqjR2Fb7\n38wbYjRrvl95ZxnNiTUsZ+WaUyW7Uf4Mv8/MbeXO2HJa1uJXLXy1UHM3i2HLXpVpgwWDuGoqda7c\nZaa9YrAvmh38itOdLtBFDYBbaqP6YblpqzouuAO23sECbu2DVjc0H6lS1k8YaTiVko22BHsruziD\nx4oaB28xDf/vLIxO6FAudj9zRbUlF5jyrHyvskNYYK3TbpZXoGaJNEMExNaiykSCWpccultY0FKJ\nqQfwM67qmOD7J5Y16NQaXn8f2GYbcVx9MxfzVF4rK1dnbM8FUS4pYpd7JQirpHqxX5yZrttXX6Zr\nZbQBWuXwkpOQOFC23bCCLA0dZJlVL6qdhtFFxQlZb0ta3AzwFN7+6X16bbeNZNsfnf4EuLff0iN5\njA6yOnbi+Zo8Ty46nUZapexi9dAyqP2ssuAOT/66UnewuITfR1cXuaQF8z7k13Sahz8JSFjSIY45\nQeAGK8DSaZW2fKOVyHGq76VhxTFlH3lekxfwurnXYdIp8tv1g2dw7e1G6qVavndnKn9WwUfN4thb\nwtW3Xoc8H1ZFodODI2nFl7KmbYrptayn5fy1rA26NpH6MatibMiVUrtnhQ+6AtaqftXhgk4hA8C8\nk1kfVbZ3cBWbDrJ0D0UAGPSkPB9zduTUbvNQ+S2H3MrXou5wea4LbzTuVRVk6TQuALTnyTW5I5Pn\nr14XBr9vbHT40/nrqCDLstEp/pd8HtxTWUVjAHkOBx3Kgf2cY+Wa3P9zthnS31lrFAFg4Fj5HLl6\nCqcpT/3n6eI49zElG1kFPIz3x39rAsL0YogQIUKECBEiRDegR6YXM7ML/fWHnyFem7613BGVnxdb\npaKuTMx5nN9HGzN21jfQGA0r7RRRtP2k47lp7k4jJE3+86VcYZP87oqLMl3M+SwRtt4lpdRzejFe\n/kC6VVB7ZT8ak/SlTNG6pAhcKqJi/bv2EexVlfalHGOlducdoypiH+V5V3ubZKQqzubCB6f5G0O6\naMnehghbGY3qSjgAyPlFpgF1Sr270XiSPD/a582Ci09W4qBSGqNZPV2NCwD+D5IR13MeANoreN67\nSByOrZaVbt8uYi+v8RvKG3rem8zkWAbRsUDPIRej2mmXM9tT9uJccRzNYOZ43jqyCjT/RUOQ75Ci\n1unXaWfy+lt4g1w3/c2YwUuaJv3grDS3rl5PbuFndyztjRL7y/nzxdzR3S6kT+tX5FccGr/04s93\nrL7pxR4ZdMVaveiicdAP1glnsclq1UnBi0XQZwMA5qjFw3C2b1K0tOXKnlgig7XOqVzV1p3QaVuv\nkFMWuvTZgn5ADjqM9S4Lt5LncP7R/IDMGbXiC9WsM3mxt8xZLcsMgtKyzDiXA96BN0k9h2UroR8S\nTg75m6xLY6bsKR9I5c/MpTHefPlZsRruxgKXDcF1U/gePOp+aZhs9WfU1aYV98dm3OtSiTf5GTlm\n0KGxWXxYUoCk9+Rm7LDfeeP39BC5ObSqiBcPUX0mv+PzUTdSrl2F18dW7dr1oVynEraPzzplpSmn\n7CX1uwkdHGO49Kx1sePRlZGekWvW9irW+qL7rc4+jcd4O8wTx333+p3GaGjD5IY7b0d7ffeao65J\nQVeP1HSFCBEiRIgQIf468Hoe/2NijQm6NHWvaXsAmLeJ3NU1HcdVJr1Vlil9SvCGIGGdIfTapMNk\n1WH5VT/QGJdUWP7XMhVlCbw1szXpGabAi0fJqTD8Zt7lfbGeEhVvyiwJvgnuT0a/y2C1Jt8od1+V\nj3I7lua15a/VrJYFk9VSHmUtBzOT0jRMjim7KH7tPhKLZcpIs1oAF0i0bc+FF2Wnyd/faaREdUrY\n6n1YqrLRLjVkVjuWJflSMmpVX0W32VAcW2mxBYfJ9859g1OQc1Xa9GImbZB1oJwvmgEGgNLLVNHJ\nVhvQmATFdOm5CrDRcmQtTsvFxGwZ95xmtSxoVgtgYbjFUKVmqfTZkczID/yCe0YGQV93AIhsL6/9\n6Aa+Vw8s5HOtsdV4ub6MHcYFP/37q1TmbP4NM16VBRP9b+Y0Zf1ZshCkaH/+rOxfZYZizmbc6ipT\nHRc+zxIMXYIz8Blmseqy5bPGEv/r61z0nixwmbNgFUU/a0jQFQrpQ4QIESJEiBAhugE9kunq7JuO\n2YfICF/vsq2S+7ZcGYMOOj8+bMac65l/KttD7uIshkozUqUPGTHyx3J3qJtSA9xQefAlLNT+7VLJ\n8iVpVgusM9AaA4Ab+ybNYR+zsguDdU4H7PS5OP7hmiwaU3lasLh98X6StTIb7Spdo26Yu+y1wI+K\nGROvVZ48M1gsHVFuC12T9d4Y6JwZ7Iw+dVd5PcoNC425J0g2oc9DfD4WHijPq3XOZv9LjllwP4vt\nXfSPWU/L97aYN6sgQGPm1vI6Z4xmzZBmBpYMZbY5cTelJXRoH7akiDV4ybHUDBhM8tSrmM3oSpa/\ntewi/o5L12XPLQ1/nMwIDGRilGDpDeftsZY4bjRqcCo+kccH7X08v88xct73HcMaszFXSgYzDXzP\n93pTzTujiEG3n5p+AZ/nov3lGjhLsWMAsG2R1JrWfsDFNLrVec1tXBxRdogsaIk2zaMxxTdI1tPv\nYJsWfX0iM2XHFPKG6y6sIUxXjwy6EucsDgyy9GICAAUzZNXW709yamHQg/I4YSynBTXyruOWOhpW\nsFSu0g8mVfyxPNYBFsDtPTLHTacxabUyyOoazr9dB1laxA8Ag0+QuamEUk7h0C3tcYp23AYywJx3\nDIthmzaQoWr6VPbs0b0ore+siw909SngVoFqQbdIqTuZU815Y+RqY/lSzTpLBby3c8CrBbu6VxsA\npM2Q5/WOOn6fczaS3zlqFNto4a+Fyn8E+6bNG6mqMh+L0bRYwTIa1d/H2ni5iMDnnGr0QFWoGSWj\niuLRK0+XnDuBt2yZz8nrc+REDjAfP0Zu6nQPUgBIeSu48lkbci7YnduelV8wUxzPW5uNaXUVneUD\nmKsyqXNG8v1szaEgWHITXcWb4NAut7/RJ1S/UrINi+31+m+a2Tq0qLKCLA1dcDNppAyI225fBWGB\nv+ZousL0YogQIUKECBEiRDegR1pGpOcV+evsIsvDExS90vt1FrG6CNddhL+d2ymx8kcOnLyFOLWe\n0dBCUwD49BTJklgl7rWK+au8g3dVDTvINOBFxzxPY54YzOxXEMbM4O+z80AuCAiCZc1hWYMEff6G\n3x1EY7w32T6kz4NKUF3JXkhHvinpytuuO5jGuKTPXFDzhJy/eR+zOPi5K28Wx0efeQ6NWVgoWUWr\nlVMkW84Fy/LEBYsOlHMzYzSzbLrVldnKScES0sdip6JbNAHcpimSk0NjtB+bZdlQe4xkW1wbWWum\nLame5QIl78j0ouWsr6FZR4CZR6v9lN8l2Tir4bWGiy3KyoT2X9PeaxZ00QcApI+UhRe9jjP+ULH9\nfjLLMqJZMmNSe0g6jal6THaBqL+S2f+CfSWrpz0iv+ocg5au7m0DlNa3yK86MH6WET/ds/paRvTI\noMvy6dKmgp0NnGKLBdNe4Gqig6tkkDX2DL4RFxbLh10sPbIsaIoeAPwsuVBWH68VBED5ucHpIu2v\nVf0w6xcqDpfpVisVk9IsF2Ct2QEAf3OZHpq6GzfnKb1EnrPqx1goUva0PLZarVQ/ovoaHsvVYF2q\nis1KK2u/GwAYdL78ji6tTdrymN7P+VBWM7Wtx+loXcVWf6mhQbkmPjpFHbyhhR8SlM4zfntkrvL7\nMtLjkbUHi+PorxNdv6aADgbmb11KY1IbZbunut35d1mms4EwUujkn2f89inPyY1Xn1f5PsgczSnA\n6gflfC1/mlOQLSVyDepI5+/Y957g+aKDo4bj+DoXPiGvmZUa02nKuTvy5nDtYpmmbB8en16iuiUT\nADRuIM/PQKOi28UDUW+0XMyh9YYF4E2L1aJKpxfT/839ehdvLSvB9Xn/7c3bsXhuN/t09S3yBx8Q\nv6Drx3tX36ArTC+GCBEiRIgQIUJ0A9YYpssF9ZdJZqDon0bKRKUJOocy4+BC07vghGq5I3qwilNT\nscBq5L14Z7mjTp/KYliXFi0u6dfVDbpAoa0vswJp0+X+pNPoim05WMeSarbSTC4O/S5wEa67QDde\nTh5jsIMOruyxIJLPu/eWreW9YVWpanF9R29msazfoaGrBUuuiI099LeQ58f7PD7nB+D2NF2twZWK\nFha8LbsaZI0Irhi24FIIoq9rtJG9+Vww7Ur5WWV3s5+VrvxzacFkofpeWaRUdQpX4+qOAZavWtNx\nKpX5cPB9abFzmsm35AxBTNvX/odo8bs/vTh4/zgyXfetvkxXj6xetOBiCklBlmFEGFUl202G8eni\nXeQNdOy+79GYD9ZhbYRGvIKsGlW6X/EsV8/U7y6D76Hnz6QxCevLKpeE+UYVWQxB1uQbjLScspWw\nqtFqjpcPzapjgh+YVtl36lz520tH1dEYl/6DFnpNUYalCayxaBsh5yaVswPI/0IaKjZu3kxjNv9J\npha+GVFKY1pUZ6A8o+fnwb/INNcDV+9LY6zKSA0dZCWkswYlobe8D1zOs/0wlvdKtYM9BSdnGFZ/\n0QFfBFeI6WA7ZTZvYqpPlcfln9MQamd0cRn/LguzRsqAzilNaBi4Zo0I7quobVmyxvHaUficfNBb\nhYD6uupNMMBrtLWBLL5SjnExQHAJsHRvUwCoOiX4PtBBlg6IAQ6yFu/PBs2ZY+SmN7mJ06+aQolX\nn9vuQFi9GCJEiBAhQoQIESJuWGOYroSllv2ohG6G7NIIecFgDs/Lz5G7n/fe24q/D1Y8lWClnZaU\nS++WeUN5/56hNjtWGsM7VO6sdGUVAMw6SgrnC1/l3bsLdIWPZrUsJM3myreqY+rE8bxjmDHr84wU\nvFtNjjVmvj6YXsvfUzIwupITACqOYHF96hOLxfHCrXjfbTFbGjMul1WXqWXc8uiL9aRRZPMRJfwd\n75VjOjuZc7j29f3E8aBnjCbqqjBl2t0s/O31unwtpYXvQZ0GtATEXWXSN81iJdpHyvna56U8GhML\nLEY8YZhkt62VZWmWXFrnbMTfp/zQ4Ll4yuVniONee/D8SZ/IovR+30gW2iIRZp2hUn53xpYm1dfQ\nwc7KCZa8Q8OqONdVh99ddR+NiaXyOWNqfDgKK9UbGVopjnuP5/s7qv3pjPtAZwS8L+MjdVnp8BGa\no/6V4SUkICFNpTIcXHabFbvORd5ApJ/sx6gDLABYsrfq6/Vq8EPVosn1gmLpepLVa21bc+BR/ozU\nL/hG2XflqXLhnHMKU/uLNpL9yX4bypWSVSdyBZZGYru8u+qu5e+8tJ+sItMl+BZyH+XgoFqlBEre\n5UfC9K2VS/sxnFKZ+Zp80FbsFWyKCwAz75LBUtPoATSm/Cz50OxUvf0A1mpYDzatS8l+ks+H/rtJ\nt3DKZPCtck5Zn6Wrf5PGsLYxp1rOFxfNkt/BnxZpVsH9oFIak/SktOvIfJ5/e90/5TzTfRYBoOEl\neQ5LRnI1WnS81AhpfRvAlhUzb+Xz7ILso9Xnb88mvb/fxamoytODLTOWDOi+p5yupC17rI7G6Hlv\nafegNgnW5nCRcgKJJcACWHOXOZ2fIdqwdN33OQD+Ue3PdFAIsB2FNlUG3PSysQRZc9+QD77OMz9b\n4feIC9aQoCtML4YIESJEiBAhQnQDeiTT1V6WjKk3yVRc6Ylyh9huCGRdjAejZdLrp3knNtu0GAYN\nnZ7pKOFdXWSRFLxPOoi70+vvrL2rADchqUbaXE6a9DXSZ0GIDK6g1+ZXSTF56SWxpTU0ozh9G95D\nJDfL16w0c8UDkk14azw3JHTaLX/I7YMytpeMQ8YL/Gcu6RhdAGClSRNuk7v+iT8wuzLkJsliWf5s\nsaSH8u+Pj89c1+LF9FpngUy9RHtxMUJG/RJ6TUObgVpoq5cs8Iyj2HMqY4a8o1LnBgvrKx/nwoeE\nAtkKx2I4NbNlMSBZE/l8aLw+nb28djpR3j8WsxRLBWFiGae1S/8lU2GdDka51mdrr7fExgwaU3L5\nis/Fs2q5fc9tR8hUXfrLzLZnj5UeZeOP4sKq1n1kyjzvJ5ZlNB8h2S/rGZI8Xa7/1rreeLJ8n74P\nGW2c1pXyiT57yGszyedCq5UND2uOkL5HBl0hQoQIESJEiL8QwqDrr4vI/AiyXpY7oKYRMrpvy2Ub\nkpb9lefKyazFmrS/LPeteoh3Yy7MktbEeIZDvuZkOk4Pth2JbrshvXbWQ8+I43OfOobGDHpC7rI/\nv+N+GrPz6BXXRkw5uC+9NuDLYGZA7+hrz2Fxu2b5Kl7l95n5qhT/R67kHa1mdkastyONadtdMqeW\n+D1hT9aXBJdvMLS/FQDk/Sq/pdV5oPUGyZxUjGEWa9YJcic87soxNGb7w4+Vn+XgLTb1atapDPhC\nfufkd4ObJ1sWDVrM7qKJmHkOaxIH3CrZQcsioeLMFXeb15YJAKDNMbrGs1eUnhtWd4viA6RFDQzN\nm2UHof0E9yzgZtYNt8szWTmd79Ulm8t5n/oaz/sZ58lzbTm3U5HS43yetZWCvxZb5vjfyvPRth3P\nl5RFki2NlhfQmITxNeL49gruruEhWB/11fdyDlWOZy1dmkP3tuxg2S/ZP2h/QQBorZBra/59Bm/t\nYI8RYuWhZ5qjZhT4m65/snhNG5YmGmLczsl1K/xZrfvygpv2crCIVaPmHkMMe+qKv48F7a/lYnJq\nYekucuFOXNRBYzqvkIFH0hWcEo2XeeySvVTBgvFAiAWWJ1i8qoCsdGvjFjKtYxUE1F8iF9gIn3oM\nvEk+7CzBbt8vZFFFzC111P1j3TtZn0mR8bc/cyre2tjQZxXJtO1vFw2kMdqUUleDAcCUA+R5tsxs\nNRIMH76uXziAigdc+ou2HMopYxfPNOt8JNwn01y//sa9KPV5tVptDS6Rlb3+dryBdGnlpKuac7/j\nCr7FVXIz1uuN4PnTcohxzp6NoZWTAd1CJ/dFXiemnyyvYcTIhPuK/mip5K17ZpFsmbVkgiE3uUiu\nHQnrcTDZ9ZPceOp19MdP7sSi+Q3dao6anl/kD93rrLi937hHzgnNUUOECBEiRIgQIQihZcRfHIuX\nMJuinMBdWC0tbgSAxh2lyLDyyNjYKO3OffDmzG6Mi1NxaUe2tKMIlt3a0OmhGecyvV2wu9xFzTmG\nWYkBM6S9gNXoV6erSq7kHa0Ls6XTcJ2zZtMYTdMXXs8MSOZY2SR84Va8C6++z3BBV0zOrO2MggkH\n3WrRtfI76ebNAKdJ8x7m3XzUgdnW875pF/ZCKj8suKhiwZayfD77VE4Ra3gbcTuWznEyHVJ1Ctsm\naEQn1NBrxVfzaxra2qDkdmYuZpwvx3Sw0T5Kr1Eu5FYDYyUU3/ysk2hMJuQ1XFjMa0JveoVhnY9J\nn8nrXHWp4cemRPG9x6fQGH+kZLZmncnrwsAHg+1CdOP7+vP4fejBfMxaNGTgPpLJt1itaVfI9y6+\niu/5hQdLhizr9xYeUyQJoWzDg6tgjGSXW9Zihmr23vIeG3IGs4Xt68p1M/Ejvl46rb7dobxGTlBk\npV5HE/zYWkaFcEOPTC9mZhX6G25+mnhtYaH0Yur7OvcQc6nU0b2surK4pYP/3S/yOMZ0VSx9+yzo\nlMQco5OI1rJojxqAfZasLveRPpL+d2nr0j6C9SYpbwfrfzTa9uAf5pJ+0L918t6pNKb8vPhU57ng\nxikcyF9QJtPPVpop50Op+YjOnhPT52utU/Q39i3TlaMpTZzvrN9RBvtWVdns0+VDIu9XjkAtg1KN\n6kdkJqHq2GBfN93vDjB63nmcZWlVv117cllwSR2m/5sD8sVbyzXJ9G8yNEvTt5VVmAlGOjpjhlSV\n5XzF1ZN6Q6TXJIDXpekvc+BcsG98dETai84yytXrkt/hUF36LQeTH74pf6sVmBGM1nFdyXKb6ydy\n4JywVKYTXSQYlr/hoGvl30XX47Ry5AeZ2p00St7vDRfdj7ZJ07s3vdinyF9rz/ilF797LEwvhggR\nIkSIECFC2Oh5/I+JHhl0eS2tSB4jd7odquWFxWqtM07uQH7ZiGvPdAVJ40m820gaKl9rz+FNQz+1\nobZSmdqrRXvUAMyqeUYD49a+8nflf8e/S4uVOw33cN2ENW0msxKRqSvu6xMLqwWwi3/aNG7ArX+p\n5SGkf2uvrYy0htMXMhK3XXIHa13njgNk+uEC7vZEsMTTsfixNR1riO3fnBT4dw37yGRm4StJNMbF\nL6mL/4ygxcp5XzB7utbVMm1seY2dUC3v3dsv4uIVDW9DTl+5MFva/X5nzrITNKtlIdo0j180XhsY\nkex6YguniLWY3cWfrbU/XzCd3rRYLRf2afqFyovuBmaWJh4vc7mJLQbbo9qKaXYMcGtwXfhRsPcb\n4Zuf6aWIWpN9o/VWLLA8GWerFmb9DuGMTucmUlyfMk4y+97i0DN9ZaJHBl0WXPqK6SCrfTcj7fWW\nDBAsU8gFh8vUT+9pwY9DywwvpnZCZdyOpe84uXgkzufFpLNApi0Wb8opizkbypvRK+fgrfQgqUWY\nN5IXxdzHVjxVp81kAaDmVPlbdeUOwKmy385lBUzmL/K9l2bFtuWqu4rTm7rVjGmc++SKf5ZVLm5p\n0YJgBT3zHpPnKO8Y3jRM3vFRcbxO5mE0pkBZeER687lP30EGSwlfc4uq7CfkOYsluASAB6ukNGD+\nRRwkZ6pKX6+NH5D6870UTk3p6641nAAQXV+mflzaJLkiskTmE61qwQTVDmz+Xhyc9D2+Thz3Hh5c\n9WfJKaDkFFZVqBVkaehqyjmnBm+QJv6D5QJDz5JzccpBnLaN5MjA0FoVdIVw3495QxCdLFO0iw7g\nYH/WFvIec7EumfUqVyYWnCM3wlHDbDhpjtycDrxZ6jPrff6b7kBojhoiRIgQIUKECNEdWEOCrh4r\npN/o71JI/+aj94rjfQoNNbmCKVqdr9pXdMW6715xWDvqpcOlcDPpPRYQRypkvmrqAdx0uehmuYNs\n23kDGhNNlkyXS5rFMqDUwuyIVdnl0CYkXtAVc/644NRD6z68W838mP2bvFS5y3YpLLCgq60GPVxH\nY8w2MjFgkmrObDV113BJfRd+xS1bvnt2mDju4ilO/mM6zQ0A0STJFFgVa1OvkuewapvJNGbmKHmv\nWLvvzn1lOi9/T2aRdv1Vtv15bzh7lP1+S6k4rjyaCwbmHyWZlEV7cAq9aP9f6DWCJfBOlXvuyOec\nGuvaVN4bLgJvl7lgwd9cMmTx8vOzoOdCqpHZ7fsvOe+qH+DMx9CbZRVztHYKjUlU7Z6QxFzH4qGy\nyjr9l5k0prM+uGpXI1LF865r8lRx/O40+czYdOd6fPdTW7cL6dfeLX5C+m+fCIX03Yql2cCUfWWA\noIOsSD92X649S07QQS9xj6z2PnJMyjvBeqQ5rzGV3ncv+YCufYqDHDTKJ1BCB98HZa86lPcukL+j\ni4sOkVBeKo7TJrIlgl5QIn3yaMySjWUKx3IhTxgmz0fUcOtOLJFGjZ1T62mMXlCi1cFaJEvfsahM\nBgPpRrGcNhlMWszBtpfJqbFYFkqrQuyxo+4Wx4fmn0JjIoulXm3QBbFVXLoEWdOuVCX3Vwanhhr+\nxvdTx2XyOMEoNNNBcfqLsdm0tA+UKbelZ/L8zf3B4ZyNkodW6nDM3+RcWLppKY0Zcm6dHLMNd5PI\n/6heHfPX6VLaRgCY/7LUaDb+zt+x4mx5nSOG3nFelazOTs3jzaoXlZGppdHUFcppk7h7Q1QFWVHj\nfDRXyDUxs4HTvw3byMdaZh0NQe4EKY3oSAuOMapO5N+lV4HJN7CcIpoqz09/Y4plPievRZexlpDu\n1mFtsdZEHQTutuXe4rimIQa9w/8KP0wvhggRIkSIECFCdA/CoOuvi5Rprag66c9F55aH0RMHviOO\nz/zlVP67ZLkjMrIhtCMZeDoLE/X+rOLwYLNJS4DZ1ld+A5aMAtV3SqF4+aHMSjSpCrH5I/g7lx0s\nj5u3Zw+Y2btLIefgbzlF6zVJk0GrP6HfJt9HMysAsyKF1xm7OrV77zSqltLVqdcpHQDw1Je0BPEx\n1ySpqse2PL4trxgk2a9KxMb2xOJhZKH0VpmKWud7ZgrGbyhXUc1wAkDvyfLEaoNMAGjQVW0GE9mx\ngzw//a/i1GHp1fL7LKxkNiFDzQWrfY42Gp36OJebRr6SQukjZhgAACAASURBVO2Bt/A916kE5ymT\neE1auKFkJVr7svg/7yFmPFq+kEx+xTXBTGTnlKn0Wo56zTYADmb7O9Jl5sGFlY588j29lvdJ4J+h\npE0yZJFPeW31kuV9MO1cZpevrJUM/Jkvj6Qxg86X60Dezxw56DmtTVctdC00KrHVay5mzBa0DEEX\nPvizYrXPDuGCHhl0hQgRIkSIECH+GvAQphfXSGg2IQuxNUWN9s8Rx97vdTSm/kUpNu2dxj46WSOk\nx0rKfOZSkj+VjMPEh1jsWXWo3IlaO628b6WGK/sJbhtSc6f8u8oz+PxkNEiXbX8pW2Frr6FZZzGL\n1e8rybT1MszV+94rd++WaL9TifatYgS/XbJqOY8zi9W+K5/XuEEVY2S8wCyWtt7I+Z21fEv6K98y\no9DBhdnSDv1Td2X+tFS1jPl1+xwaA0jdTkcud2+wmC0NFyuBlEZ5Ppq2YM3Q0G+lmPunmwxrA4XO\nXNZCaU4v8Qu2wih8Wt67tYbWp0z5SVlMaarS7aSvz75hTUfze5c+J4XYDYa9QNHZ0jrGpTWaxaRo\nf60Bn7MljTWn6X0ukO+TXcu6yfSXHIp3FEOmC4kA1qe2DeDPuqtCMrPlG3EbIE9ZXzRXscfVUuXl\naNkM5X0u7x9r/mqkTg9+fOsOKgB7TVJ3FD8Gf7J4oAcW9VlYY4Kurq2kUD1hLFPOun2FZfKn+4ol\n78CCc7wshdkt5/JNX3ynpHATxgZX93RmMO2bFJWLxeB/jKcxCw+UwZIWbQJAo3qo589tpjF9fggW\nm/oJcoxFk/Pf8Gvzh8gHdJ9feSHo2EkWpyT+xhU/kcEV4jg6kc0CXdBcIQ2tCnRFEoCuluCUQNeW\n3F5pST8ZCFoPFhdvMw5pgjHD6m+nUHppcNDTMayUXvMT5LyPfMzpolnKtNjFT89Ce74SfKtCDACY\ntIkUpWcYKVot2p9+Dm8atr5DCdc3Mb6zetAnLeB7R3/W5PP4/i69U91PRvuwHMveS31+1uMcGE46\nSj7oS66oozE1/5KShsEP8xzvTFNpZGNtdUHfcXLzM2Mr3iClvySPFx3IG8is92T/V6uiUKPyHzwX\nnHwS1Sau5AouCtJYugtv4Jq2kBtjbxOuNk1YLM9PkZEyTlBBed3u3Oex6BpOvYfoPqwxQVeIECFC\nhAgRYvVEmF7sYdC7L0sgq5mtyNqDeczjchfVWl1BY1LelqxE7qM0hGC1Y2ntL3e5eb8ZnmAqNeW3\n85iM0ao03Phdmkmx3MdyRgW3KZk7TKai+o4N/BP0/4pTZS7u3DMulixJ4XvTaUzLIao7gMF01V8q\n38faQfa7W762ZAcW3iZ9EOyTlfAZ/66ug+R3rLvGaAmlek5rl3aArQu6DDdqjYE3BzNL1q7b/1am\ntVuK2bZAFxtYrEQszFbrvlxQkvayZCqsVJ1Oj2dOYYq1PVeu/Dkv8JNg0rNSCmDZBOjCi8oHWez+\n2wX9xXHVwcEi6AWHGcyOkaKdcF4f+fmjWL7g+Zw61ah6TNnN/PgbjSlxMNKn9mQRg7X/QFZIlHzA\n76OvYdH7Rqs2B48/3R1hzgGGG/9YqWnQxUYA0LiJ/PzK04LTn9N25t9erCyldBs7AGhTa04SXwq0\n9ZOMb9rM4EhGM6747fPAv4k7fITViz0NC9WDLfP5YC2J1TpDG0cmFfODrfhteRzJz6cxJ3whH0jX\nXs83dNG1K/5AslpwJFbLtMqM7difqH+ySqtsz4alugJrynWGTuXiFf/OLgGW9skCgOH7yHTVlNe5\nOq4zVQautMAAKH1BLq4udrf6AeEKS3em52Lm8zG9NQVZXcPZ+y3rGjkXWvfnwMNfpN7nWzbN1Eg7\nkgNO7zdlrNkVvKq6tDfSARYAJPaX5pLTDmdTyMozVnxuzjf0Ujq41b3+AKD6fpma6qybRmN6zZZV\nzvo3AEDnLNkmyUUDBwD9xsoHO+l2ABQ7WJLN3FquA/0dpr3lr6V1Vgnr8H3gq4DOSn0PfkzKHjpy\nONh3gpJBdPTm9K8/TW7iWvfk66ODrLkn8Hzp86A80RVn8TXURtyXTOZU/Cl3q1S8EZQuLJYyiLyH\ngi8ymUH7HKCHiB/WmKArRIgQIUKECLF6QrPDPRVrTNCl2QQtiAeAgmdVxdEZvFse9KJMhXlfMgug\nm7l2pXJX4fsqZVoyF7G5h+uGqwms+0XOl7JaMO/XdhrjK/+qPn2DOyiUXczfec4p8rzqCkNX1F+i\nUn4G6/f5M2rn9wuPyW+X1TtdWSw3dxHXJ5bK5toWczHlWWYZyw5RLtuqmhIAmlXaYmEx77qTFKHa\n//bg81p7EM+7qq2Mwo8YoFm05B1ZPK15rdQMo+uCgtW0Wzc772zgNLJmhAbeMpvGuLyPRkIHs3MJ\nqm2VlcYN8gkEgIyp8r1r/8GVZqWXyt/hml7Mekq+1nSckbKulevAnA2ZNSp6RZ4jFy+6uevy+/T7\nRB5bacqau2TauOoxThPqv0s0OkzMP0L+1ohxDXUxUaSNx3S1ScbH8lrT0KwWwIL8eUP4sasrdK8e\nxGxhYaH0TKs/m59hAz6ThQ61t/N8GXK3bEXW+ZC6qifxutEtCNOLf11UDWvFmDEyZbX+9bJtSsu6\nXDqftrM0S0xfymW73iWcctTo+iW4gqXhJblYFO7HlZJk7GmYF2r6WLfbsJDyHdtBTFX6qKKbWVOg\n29xoA1PALcgaM0Nem533PZLGlN4tqznbjdY4OvDQVgcAgEa5CCVM4getTifq8w7wuddBIQAMuokf\nEtPUuPahXIVZcbi8hmnv8+d3PCD1P1bKOtooNXf37fQ4jbkdnKaNBQnKcLL6XjZqTGyRKS4rDdeg\n5l3p43U0RgdH7bvxHE95S1Z/NR9hBBlKYzbvGB6T+6gckzmN57g2lzR7tCpbFAu9p8k1KPcxzt1p\nWYQVYFn99WZvK81R+73MGws9XxYexue1emNZ4Vg+knuHtuwtg2mtfwS49YzVJ7TkLaVPNYyMNRaX\ncj/PvNfk30WH8P2k0e8JrvrWxIvV9qzXyzI9X/csa3zz75NzqtjqNauOtcE2AEw7WG78XPSYZ49q\notdeP0v+jvqP5T24dKHRJy5E3NAjg64QIUKECBEixF8Ha0r1ouf3QEOy3l6uv5m3/Up576U7y7Rb\nylxmLuZuICtj8h7mHf7JNXLn+dA2W9MYvRvUu14ASJ8hd+KTDuJdyqAXZc7Raq/hgqlXS2ag/5ec\nbJh/oqx2KriYZelWik1DC6qttNPs0xTbZNiI9f9csk/Zd7GX19xLS8XxogI+hzpdY8FKWff7Wqae\nZm7FFWMDb1rxFKz24wE49TLjfP4+mVPl/t0qKNEpid61LLbve4/8zlb1bd9PJSti+SVplshiiOqe\nHyaOSw9iViIWZH3GzMWCLZkZCIJLdacF3cbFpYVLrJj/Fldr558opRJWulWnM7NfNDy41pLsjsVQ\nEbs90GClHTDtCjmn+33DeoqUdyTredjvXDn69BDJJM14he+n4rPkWuYv5IbtLoxmLLAqfXUVuoXW\nfWSK1jJIDsLX/odo8ecFmzLGERk5Rf56258Rt/f74qXzxvm+H6yRWQXokUFXVkp/f/OCw8RrWoNj\nGdQlN6tUwle8uOsquq6fJtAYDZd01Tm1vFDdWsF6hSC4pExihYvOysWE1kVboxf79FnG4jpeXlOd\nLnGFSz/CmiekxqL4eS771ikuwC2toi0rit/iNGXCNBksuiz2/uasMfO+kBozz9DERDPk+Zg+3HCk\nf0huGqxephGVRpl4Jac2ExfLtb30kuC5OvkmY44rb+G8r/j73PH+E+L4jN2OpTG1R8h0WtGHPO+S\n3uPUu4Y27nX5GxckZHK/SMuAWLu7F9wYm7ayc3uZ1k/8MLaqXY3Gk/gaRtTy62IIHGvAq6GDOQAo\nvmrFz5k2+wWAnGo5h9KmsbP99B3lBsDSmKU1yg2Tizu/C7Q0YNb1d6J9akMYdK0khOnFECFChAgR\nIsQqRZhe/AvDSi+6pKviBe3t02U0bc97JD7skwu2+1mmuD74x5Y0RgujXTyDXGD5YlUfKXfrVg/H\nRNXGpXNqPY0ZOk7uGT56hsXc/b+Uv10zPQDQtntwdVHSYnmfaHEswFWIALCkj9wwpjTz/aaZSM0Q\nAW6Gjy6sxLDv5fcZv2Hw/V/zOFdSVR4lU9S6ihYAMhpk+jl9PDOafqpso+LSsiVW6J6jVjsszYCn\nXsDfufZryVwnLmRSwMVjz4XxnXOqaju2kK9X46Zca6/b2lj3oTbSTHmbmVqdFhz2zSE0ZsDeku1f\nvB+b18bCylgtsxK/k0VKusIQ4LVr0cacaej15oqncl2qk11gFTvpcz//KL6fqCesx/NuwaHy3Lv4\nuuk5VvP8bWidU9/tTNf628WP6fr85ZDpChEiRIgQIUKEsNHz+B8TawzTFS/Eoum6eyq3Vdjl49PF\nceXRhlZC72TidK0sV3QtbrfKo6NzpchY+5EBbJdhOYy35cudecXZbi7bGomDSsVxZx2zYbpN0spE\nyqf96bX24VJMPussPh9RpdvXnlwA0OdHKXq22glpWFYGs0fJ9jBLOw3PoAOlXsvSuMULtXdI9snP\n5c+qPDK48CMWAXHbHsyMVl0qtZX1W7BlxORrJFNR8g6zLXUjpFfVoAuCmW2rNVl0Atu7xALNCgPA\nhI2CXbd0hwvL2V6z0m99+QaN0cJ53c4HAIY8KC16rI4gLthvgtTzvTS0L43Rlgyd9Sy2rxklmeOq\nE3+hMX67nB8Wozj5AFlYVXEjWwp5GbLAxvo+WntVdUowW6evDQB0Ncp1vOHpUnE8+ZyHsKR2Rrcy\nXZk5Rf7628SP6frs1dWX6Vpjgi79sCt4l0XXeoGbeQ4/IBdWyoXKMkH0VOd5fWPGE9qvyUVMHsnJ\nodc6hpWKY51udEXN3fLhV/ARj3F5ICYOkAFM50z2B4oXXNI8Cb3kQ9Tv5AdW9O8s6tWFBPp3Afzb\n5r7BQXG/Y+QDqWkX9gN64Oo7xPEFZZzmcXnY6EA5dQ6vEfnfyu/zzrvP0ZidC2RRRc0oNkctfk7m\n3nXlmSt0cLD4ChaXZ+wyOab31tDB7JR/8OZDi7Cth3HrdTKQbpjN9+Wgx+TxvMEpNCb/fg7opqi2\nYgM/4/lqFX7EAzX/4nmn050WdJpr4Fs8N3VBVPWj/FxNaJYBprWpc/FA/CsiUlEmjq10vd5s9HpD\nPsNWRfXimhR0henFECFChAgRIsSqg+/HLZOzuqNHBl1+Zho6N5PUsHYvd0k6WTv8gg/kDtpqF7Vg\nX7mj7/0s77TmjZQ7Uas82kVMrpktyyZg0snSZ6niCGaxEj5l9336rG2loDryMad9dANYEw5p05XF\nbHXswM72UM2rteAaALK/k0UEk6/l0v3Sg4LZQet31f1TzoXSPXgu6PnaUsapqIuGDlevcNpLM1va\nLgMASkcpRiiRlwn9Ppbv0sxz5O/KNLKEaao7QqzJYJ32ytgltvfR7Y0sxnfSmYPFcellLJrXLvFR\n3VQYwMLXJbPj/Y09/yaPlPdK3zFuD6Zoobz2TUPZ9qNtuLw+WYZ9nuUxqKHZFYvV0i1+Kk/nMf2+\nkWur1WpLn9ecPsxodv7K0giNuoMlu51dywx02Vkyvdm4eTON0WL/pBq2hEGmTB3Gwj4BzLYn5GTT\nmE713roQYhnkazvNO1r988orMvszhNWLf2G4aLoWHcAUeFKrDKEs+l0HNfPW4l5+bapirfgxbsEx\n9G3ZA++XjTh8m36hSoneENvNoFOQbesV05gkFXjoFCkARDeRerbIV6xxqL5TBjWF7/H8Sn1NLihL\n9mJtjR6j/a6WvShTU1ZQqo0+raaqSQtkUFr2QnDq2aouyvuBA9eu8VK/of2bgPh5OCFBlcmuRD2b\nTs9MPbCAxpSMVn37Ykzh6HvOqkDVPkv5P3I6Le1d+XcJ1hxvkR5Kkd69A8d0Gi2qEj+S95M2VQaA\n5DHB112nJf0IG9Um/Mpp07rz5Dnr/xX7jSW/G5xe1Onoxu1YI0RVdQ7QekwA8BfLdKvl/aZhaUaL\nb5fR/cLdeCMaSzWlS/spa9ObuEAGwJZWLRZJitn2TI9J4Cxhcp1c3/QGapWkF7ML/Q2Gxy+9OPb1\n88P0YogQIUKECBEihImex/+Y6JFMV1ZKf3/zwsPFa4vWkd4tJn0bQ2WiBZeWF1qM66UxYzbwRcmc\nTNuMy9p0pc6r26xDY1x2jN7G8u8mnsosQMkLcpdt+frEC5q2nzuMz49urq3Tn4CdAqXPUi7669/J\nlLz2s7J22Euz+V5yqVrTiG5j/A7VusnyUetSXl6dm7ADfNJsydJEqyfRGL2jtxjfKddJpq/sYv6d\nkcFS7B+dyIyvhpXudKme1JVda13NrJr2mbN81bKfkL8jIZ3bNnmpMs3jJSXxZzmkx/Ucd6pINTzc\nOtcqpdeS6mWFmlUw4SJxSFDrUldrK43RsFpC9ftQsp5dvfl+1qywBZfCId3sXDc6t2D6mPVXPmZx\nKjxY9O4gek0XeVjfR2tZXBqCN57M1+L7y+4Tx/r5tKqYrg23ih/T9e83V1+mq0cGXSmDCvyC604R\nrw26W/5OKy3oYlhKNgWT61b4+wHAyInyofDEHtvRmP1ek1YTL+/GWiOXz9c3nmXs6QLdyy+WnoEA\ngL/JXnpWuyV8KNMaW+XzA3vssF70WjwQ+ZhTmdFtlVbDMCY0y7PnyDSy9dCafKN6SBiV8tpAte4a\nXkxLL5VjDpzAD/7RQ6V2xbISGDNZBmtLp3PgUXFmbDYfGrNPV7307uI5pXsvltzB556sDPQcA+x5\nFgcsGVNGr7UpK46c3YKtH6xgxWVNqn6Yny1Vx8UpZR0n6OrSpFmsj9LpZ+t+6ihQNijGfZiwVKbV\nY2kLZMG659Jmyc/PrOe0dsMOcoype42TNCBSqQK6FqNfpLKM0J8VBl0rFywQCBEiRIgQIUKE6C74\nALr8+P0XAzzPu9HzvF89z2vxPG+G53kPeZ7HZof/N36E53kfeZ431/O8+Z7njfU8b6ugz+mRmq5e\nM6KoulymWnTFSJ/vjDSGfmFTo5nqJPZw0tA+S3324LKgJ7dTu6aFTJPfd9s+4jg/LbjC0PLgioXZ\n0g1zAW6aazWttTyDNCafLmP9QQZp0vy43OWOfYLTIy5YdKBkBzNGBzM0E2pZFJ55Tqk4HnArMzJz\nt+a/y6qR16PpYq5QK7tBvraoMJjBG3SNUSmpUkGa1QKYPZiwERcfpJ2YIY6LH+BruuBweV6znoqN\n+Rr4tmrkbYwpPWjFGapoKi9tEReGNQak7szVaLpWcObZRjpaZQrbB7DYPe8ReVx9v2HoehxLJaZd\nrpqoXx0bK60LRizRvEuaUjORv9/BrH3FmZLpsgpjItlybnbkclWm93lwmlbLKZoHZ9CY3O8kS62Z\nZAvENAEYUivTz9Ycn3e0vK6a2QbYk6zqGGYzozXx8aJbJVj1SbcogMMB/AIgG8ATAEYB2PO/jM8B\ncDeAjwEsAnA8gHc8zxvq+77h1L0MPTLoiqYnoXljqXnJVEGXk8v2N0xLe6Wq8q9pHo1pniSD436W\nDmO6UVqskPeQvPEsewqNulNYx1P4keo/aLhKa6Q28h2wZG+5MGTM4uVD64HSvuC04KBD5aKodSOA\noa0x3O+9dnkNZ2/LOqe8XznICcLQ8zhIrr1greA/NBaNlnL5UOizR/C5ZzMKLpVHEwfgUWMualgP\nMo1+nygbEkPXlPu11Am6JEM8w3rCpdeiDu5dAnsXLZ8F3RfPRbeo08MAa/kG3BZj5bHqDJFaz+fQ\nqsTO/0mmuXSQAQBzN5AzTa83ANDaX2aZeEsHzN1SBou5jxmDFFzS094GrGvqUjomo60tVRAmNrKt\nRHtvqVlNMCZw/Q1yYz5wHx6jEWvQo4Msq89j1SHxSRnrjiS6G0kPQcTzvOV/aJPv+03/dTQA3/cv\nXu6w0fO8OwGM/pPxT6uX7vM87woAmwD4rwttmF4MESJEiBAhQqxSeH78/gPQD8DE5f47LYavtD0A\n547mnuetC6APgD8VEfZIIX3B2tn+yc9vKV579zJpHKl9oCy49CiMFywPmGNufUUcPz2kkMbEAqsV\nTdciyYZ1LeTdYSzQ7BgApL4qz/2cUzj1oisTuxNWZWB0gOxZ2GWkr2ZuyYyQLjawxNJZdZKxS/zQ\n6MOpoNNHQOwppJUF3bvO7C8aAyyPp8atB4jjnFGxFYvEAl05CXBfPCvt1LCnvA+tlLXGk/Xcx/WI\noi3otcX7SfbLxZfKMtLcab+jxPEpT7xEY+6rlFWqumoVACacL408q44NZm102hIACo6WTNKS4bNp\njAv0PT75bu7P2OdZycA3rse8WskV8pq5+LpZqH5Qrv9VJwQzrJaXYs3DkpG3jLA1NJNc/eLtaJ1T\n371C+qxCf6O/xxIX2fh0zIU/AjhouZcCma7l4XnefliWWhzu+34gbe55Xl8AnwF42ff9C/9sbI9M\nL4YIESJEiBAh1lhEfd+PiSHxPO8AAA8A2NMx4BoI4H0A7wG4KHB8vJguz/N2AHANgHWwrP/IaN/3\nT/nj344EcAWAAVhGvZ3i+/645f52YwD3/vG3MwFc4fv+U7F+F8uRXrd2yfmKNVVdWZKpsHy6ap+S\nnk6DT2Gfo1h2NkhixVZyg9QUDPiKy5Fn/l3GzZbYs/4SyYqUPcPFALpc+96pn9GYU0oke2jtaBcN\nkXo2i1F0sZ5Yuos8P288fDeN2a9QXlPr+7h4Q9H3e4X1WwP3+S3w77TvEsDeS9pXDQBeGsq77HjA\nKnGPqs1x+XnBjJBuUQIAczaS8y6rhudv1tNSt9NyKIunc76RTIWLxsvySGvPletYxaW8VsbSeN5y\n/dZCbe3vBwDz1pPMjtYoumLeMUqkbgisZ5/G56Pf3cGsmfanW1TEzEnvZxy0Vw5u6vp+dnHDt+ZL\nygIpvrK8sxIylSoyyoKtrnWkRtJPZKWN7nzQtnvwfTDoEfaH6yiSLLllV5Q5Xa7tszZj77eCf0tn\n+6Rv2Ftm8kWyWKT8Fl63WkdLZV7KTnXieJVYRmQV+hv/LX5M1yfvXRiTZYTneSMB3ApgD9/3mVbm\n8aUAPgTwiu/75zp9RjyCLs/ztgHwKoDjALwBwAOwlu/733uetyWAMQD2AfApgDMAnAOg0vf9Fs/z\nsgDUArgFwB0AtgbwCoAdfd+PaaUaNizJf/1tOdGPL97yv4z+76i5mwWqLr0FtcGji2jf28SolFT+\nMi5mjrp3HMD943TqAeD0gyVudzFGrPxWLsCTRxh0u2FoGAuajlO9/Ro4KJ26u1xMrb5wsWDuiYan\n0ng+P0l1MqjonG389pXVrsfwMGofIdch66HlIrTV1YsdafxZfR7svhSfngsWXPoIzvmHDGCuOfNR\nGnNXBRd1BMFKiWqPvURdpANgaaHcxLgYqK5M6PZPAFB3iKza3WB3ftBPGCUD00X8Nqh4UFYod2k/\nKQD+UrmWRvL70JiufBnwWqarLYfI+Zv9Gley+ipYs4JJ3aqt3w5cZd15p0wjW8bcsSBhGM9DF4NZ\nHchH2mUM8Ovbd2BxUzenF3vHOeh6f8WDLs/zTscycmgX3/cDdwWe5w0B8AGAUb7vX+r6OfES0l8P\n4H7f91/0fb/d9/225Wi547Esz/me7/vtAG7GMibsP7Ug+wJoBXDTH3/7PpYFXSesyBfwPC/P87wq\nz/OqOldey7kQIUKECBEiRM/DnQB6A/jY87xF//nvP//oed5hyx8DuABAAYAzlx/ved5hf/Yh/zPT\n5XleOoAWALcD2A5AMZb5XJzr+/53nuf9iGWR4B3L/c1rACb5vn+253l3ACj1fX/v5f79LABH+L7P\n/VD++/e4EsuiVCSjF7b2dv+fftd/g96NdtZNC/wby6NHl5BbbR8is6Vrc2dDsEeYBS3SnzOSbRQy\n3pSUfO5THOgvOEBuHHo/y6mHOafK39r3nuA0h25WDADFVyvLCEM02tWmGska7XPqd5B/V/IO//ba\ng+SYytPjw4YBxm40gfc5XT8Gpy7jhdZ9JMuZ9gr/Vp2m9RYxg6d3/fOfzKYxKXdJliblnZXXNkpj\nxrk8p4pUk3mXohgXVrg7QbIEAEPvWECv9X5I/tb5WwTbibikUl3QsQM3AJ8+XLL/pZc5OO0/ajjt\nG95UGjrTkJDLc7P2TJleLHuNW6xpHzerGEJbREy+wbAPuXDFGV/LbzE6X9rEdOzE5yfpveDzo5uY\nrw4Nr3v3LvQ33uwfcXu/jz+4aLV1pI+HkD4HyxizQwDsCuB3AOcCePsPn4xMAHpVaMayiBIO/+6K\nuwE8AwDJSDEaqagPOMJI1akeXVoLBQBF1wYHEdrAsOok/pum41XrlxqmrqftIjn4oms56HLRSugU\nUtFbNIRgheJWkKUxYLRsd2KRjomFMh1RfJWD/kQFWBZ0f0IAKP1EjTF0X0Oulfo+8zurhSpq9daL\ncHWTC92vYVUl6SBHexEBQOtAaaqaWcsVqFYaUGPmDlJjZgXOkaGV4nhWAz/YqlSQZfl0+Z2cEg6C\nVX2rex0WP8+bIf1wsbyr/O9+EcdWgFV3rbx3Sy/pvjSqVdXWacwFlyBLo3UAz7vE90rF8W4DuRr+\ng3Xkhi2lkYP0XnP5vTWqH5HPyJKXgueqS59SfwCnICvvkfNj5u6c2u2dI9fWqXvy96k6WQZdVoCl\n++y6+OnpAAsAOreTwWxrX76ftCNkZO3B/D6/Bj4eVw1cjCh7AOKRXvzPyv6Y7/vjfd9fimXpxiQA\nm//x73ouZGMZOwaHf3eC7/tNvu9X+75f7YX2YyFChAgRIkSI1Qz/M9Pl+/4Cz/PqwOSI/8d/PwH4\n/9sRz/M8ABsAePmPl34CsLf62w2xAqZkGp356WjcX+5G0+bKMNrqPK/FrlaV30yH5tGDz5Bf3WKN\ntPvzlOuZeTtkxKfi+NsHeIfvUgXk0vA6sUA2eXZxUWzuAwAAIABJREFUzLfgIpKPNU0aC3Qlk1XN\nOOlmeX7Kz+MKw7e+flMcj1hvRxpj/fZY2rG07MPFEJnPSZZRV1YBgHYJ+91ohFz+tBQiW+mzvvfK\n+WGlnaIq7bTXhryU6NrfjuHMyLh4kiUoR/z2wdyQPKKYLs1qAez7tKiYmYtiB9NvzWzFy89v1plG\nqyDF93f0NugAgxAaPF22e3LpRJBRxyk2X1W2fWD2S5DY5ik+iR+tK6+hZm0AN+8uDYvd1lgykP3z\n0urkGrR4W/7t+ar9VMpILnbSxSqewXZrZsvyZOxMlURB+ovMsCZ+JO+VNCO9qO9VfZ8CXMnfe6Ji\nxH8PLNpbKfB6oGeohXj5dN0L4AzP854FUA3gbADtAL7AMibrXc/zHscy87AzAKRgmVgef/z/Js/z\nzgNwF4CtsExkz081R/gRoD1H3Qy+mtTG3+lqIt2CAwBS95LVaFO25gdJ+Q3yweZFeTJ1KYq3/1ec\n1Pr2Jpnmic539nYT0EGW1V6jU7fX6Mc2Bm3rSQo+5TPWIrlUOLr0Q9Tl7Alj2eRPp4fqd+SMdOkz\n8mHTtB+nlLRtwqyz+OH30iKZRrACrJonONVReWRwkKU1KNnf83u/rYwrdx7IgZBG1Ql8zrq2kCXl\nVvpMV3Zl1RoPY3X808X8fZIhH6LJX3Gq1VfX8NYXH6IxZ5eqaiuHB62lB5qyy33i2OUcrm94S47f\nWgXyRoBl6X80tB6o/x3Bc2XOa1yxlvA263/8+azz0tD6o1i0RwA/xOd28Jyqv1R+VtE1sRn5ao2k\nS/reauWkV9vsN/mJ0Lqv3JCUHsEBjNZEL9yHg8mMF+T5mDfEsIP4QKYTXTJtln6r4SW5tpc0ltMY\nHWT5au2HHyzliDv+Q9GsAYhX0HULlmmzPgLQC8APAHb1fX8BgM88zzsFwEP4P5+uEb7vtwCA7/vN\nnueNAHAPgKuxzKfrpFjtIkKECBEiRIgQIVZH9Mg2QJnZhf4GW50uXpu2i/Jrepqr2CIL5GtVT7FR\n44SNpPBXi8IBI322KdPSk/eTXe11g9xYYXn9TD1IisALbgzeZbpU6ph/p9pgWEaxuoKuPYs1eCkL\n5F5vaSaPyf1e7Q5/4V2vFnxHJ9TQGIJxvazm5xqaIQK4+MC6Pi4VsHqezd6Z36ctX7K7rUXMnlae\nKnfdi/c3qvOM1IaGTmPEUuXmigWHKebtaWZGXeadbhpe8Qyf94kbd9BrGjX/kucsXt5vlsmqNmiu\nv4xZ2N9OvpdeK3tVOu7otkQWrMKh0rtlYYGL8bP1OxIWyrVVZxUAoPoxyRJVjQxOPVvehX0+ktc1\nanjjbf+DzBp8OJJ/u/ZJtKDZ9q5kTi9qKYD/d86ORFVbsXlnMLvcOVZVA8/nZ3feI//7c2SVVC9m\nFvibbHRq3N7vo08vWW2rF3tk0GU50seCSLbW9wOdQ0vlmJ+Mh3iXDBg2+JJTbuM2kEGEVWWyeJD8\nfBdTPU2JA0Day/KhMMUoa668XwaKViAwdbQMRvJeYAPVRYfJRbn/3uzqrxd3l4rQrM841fvr2/Kc\nFV7nEEw6lGJbmHyjPGeVo+byoLnN9JKTEawO8owAT1f+xaqP0uafabM5MEubJdPj9Tuk0pjyh6Tz\ndnRALo1xeWgRjIB39t9kOq/fXXyd9bzXc96CDsgBIJopK0Ajk1nbGJ0rH9jWvVt3lUwhFd/IzzB9\nfuYfxffl3G3ltag68Rca4+K0r1P6AJD1i9QaxdpXtvF19fvf5rmQf39wMKAryv2D+R7L2S1406RT\nwnPaWYc2cyt5zmafwM9nXbVr9abUKWqr12zDdvLaV53DOWttoG1t4BaUy2dGyetcBRlLtfT8t+R9\nMOH0x7C4Zma3B12bbhi/oOvDf6++QVdY5hciRIgQIUKECNEN6JFMV6/CIr/w9LPEa2VKJLrnbyxK\nf30tZlOCMOkZFuOWHyp3RJanklV9RmOUYaof4Rg5sljukKJx8mCxDA470yV1bvVV1AJmy8xQ70R/\n5GI9TL9AMjIuKdFFBzDLp0WsLnBppVR7B+9EK84M9jGzoKvzWrflQofEJZKRqtudxbgVZ8X2+Ro1\no+S1T57KHksFn0qmIPmLX2mMi7eahmmUq3zcpl7NjFDJ5fL+1q1OAKCzV/Dmve+98rP0PASAgpvV\nnHJo42T9rrJ75L3aMZRTxlYBiUYkP59ei5ZxpbNG03pS4tDvHWa3/TTJ/M3YuR+Nya6VKVnLBFf3\nJbXaGUW3lYUokY+DCyZ0wQ3gds46P5DnOnGH4BS/C6x512u+zHxkTOIih7YB8lpMHcFy66G3yIrc\nGXvyfMmulc+D9hx+H10JXfukPIczLrsH7ZOndz/TtcEpcXu/D8deutoyXfES0ocIESJEiBAhQqw4\nfMBbQ8xRe2TQlZu1EIfs+m/x2tcvymj+9bVYG6EZDs1uWKg6izUfk56XZfmlBwWzWi2HMnOS86PK\n2c9kfZCLHikWJH3A+qAko4GyhkubDs1sWZqY1rWDWZKl70vH/owdYxM0ax1G6qvB2rn0Ut6tuuy6\ntSgcANY+Tc7F6cN5vmjdTmWL0SBdHbePYD8gq3xeo/LoYG2YRqzrpRa3lz09k8bsPUH6pr1wQvDc\nyH3U8KJTXQXq72atT0et3Bz3+YWF9d5Ga4ljS7vWvqs891bXhSalYbK8A12waPMyei2jVs5PiwHP\nyJffsWsBi+S7VFHQggtZE9nvbnnPW3YzcGjUndgs53j9RcwOFl4vz2PtIcz4lkcUY3YZ++5N/1wW\npuTvM4DG6BZZJqOoNJt9P+bngZ8sv2PXZGbVlg6Wa4efzHdUzanSe63swmD2v+kcPod61ifXSM2m\n1xaqjlYmemTQtaguDV8fLels/wcOsjR2u/djcfz4fSNoTPpMmUqYvRlP0AHPyDFNxzHlnPewXGCz\nf2ERdsOusn1F4ZvGo00FXbqKC+CKI6t6xvtSPuhjrV6k9zV6SvrjZCrKeiAkzOZzppG8oxRzW4Hr\nl7fcL44tbyYdZOkHJgAkLZQP3wF780PEai2V2F+mPNtyeb40/G0Rvaahf1vvZziV6G0iA7GWEr69\n6bERY6WmrkCdMdwwGn1HVvrWH2lUU54kzWrP+IED3n98c4g4LjfSR0H95ACuKl5SzfMl6T15X46a\n9hmN2fq588TxICOOTZkfLG7XQVasRR5Ji/i8dlXLymvrftbtwVwCZ2tTpasVl6hUGQAkv8uBj8b8\ndeXapQMs8/s4VGW2X1xKr+l0tCVc17CKYnSBS/MmHLxZPoQaqXPl+jL00joa8/utHFxr6MCw6CXj\nPlDHZc/LazNr/oq35ooLeqDUyUKPDLpChAgRIkSIEH8hrBkxV88U0rtYRuidOgAs7idZiL5fM92u\n3XsTy0p4TKv0pInODt7luaD+UqMBd4zOzisNKgU563Rmf5aq3sguDa8taI+er2+4j8a4uI5rWEL6\nxf2lmDzzed69upSUW9DeXS6+XRYaT1JtboazVUn5tYqBiTBDRd5QMc67uSfK7zNvM07VuaSjVzfo\nwhirKOZvP8nf+tV6nAbrTlgC7/zXJMPs0og5Xpj7BrdOyrxPWuRM25VZ4crTZMrPulc1ZWcJ63X2\nQWceAKs9GI/RbvzZ382mMc0by+KDeUP5d5VcseJrYMPFhq/a43XiuO7IUhoTxCCuEp+ujAJ/s2En\nx+39PvjystVWSL/GBF0zzpMTdODNPPFqb5M3UMXZ/GCtvk/qf0re5POnaXsX6ModwK16h/7GSCM0\nbyg1FlbAoKGrjQBg+nDpy1VyK38/XbFm6SDaNpCBqtXOYtKt8lqUnxP8na3f3tFPpiysqqlYYJ2f\neL23hZo71dwczbomF4PSnM+lh9L8LfhBq80/+3zLD4mcx1dcf2T5w5W8KTcoLudQV3sCQNdiaSYZ\nq55NQ593AKg8Q/XBdEihW9D9Vssuik3Tpa8XED/DVt1X0mx5pNKi9cezOWr/r9V1dtDLzjjfqBzd\nRUoKvDNZlzdrSznHdUWqBb1BAIB+o6XnlZXq9VJUZe86FTSmtUjO1/kVnGAaeEvwd3QxCXbB7NPl\ned15pPzsJw/9ELN+7f6g62/rnhS393v/q8tX26ArTC+GCBEiRIgQIVYteiABZGGNYbpiQf4X2fRa\n4+YseA+CrtACgGj1pBV+n1ln8s6v1zx5/XJ+W0hj2vJldcqsv3Gqo+wWKZ72h5TSGK9DCna7fuSG\n1xpWJZNOt3Zux55giR+teAWd5Ye2uED6DKXNWUpjXHbdmrFzcpqPI7RYWacAASAhU+76E9K5Y0Dj\nLpINzBnF7IpmpKqPjE/a1oJu/dL3o2Qa0+cDKQrvnDmLxuh5Vn0es57l50pmYMpzw2hM2cHj/197\n5x3fVXX+8c/JgITsQEJYIUASQVpUkCKi1o1VKS7q3opVq7Za62rrqnuPqpVarHsUrXWBC7fYioO6\nCCuAhJGEACEJmef3x/fLr3kG3MuXkJDwvF8vXnrvPbnfe+6959znPHPTFxtlcgkNKHm4OLi4NX82\nANBSTcfqVQullu+GwfQ+a+4MTYsWi328ndYmFnjAAqAHLXBW/JO+v1qlCk78TlJrtGI/Og5zH5Hz\nBM/uXv9GgWjT/eBSsr1hgswkX7Y3zUuYP0POHWGqQHDifiSLlq+6idpEe01QNIohSl3Nu5dqPYfe\nL7P6r7yD9ov/VkeZF/f40Tltdr43P73aNF2dAa7Onr9A1mcsRPAHmqMJWIuvpb+l2fR5CoKMUhlV\nwiPvNBE6pV9f+luvy7DmpZfT64lXovLz7qbXqPkU8FI8mj8b96doTJPje8AfaRRQ474ylUBcEhWo\nWhTfmuR9qdm2Nld+1HmsVZiEt/E9ZakT5MrkunUDqeDebXoIE5cSUdjCIgr7z5IRYst+RT+0Nb1l\n+R5NyOLkT6d+X4fdJ6N4y39JfytjkfTX6jGPTvhavT1XTaego373lmgzLf5Asp31qBS6lh1HP9DF\nN8lyKDzGL4yAtfp0aXZ6mLkjae8C94/iApYGF7A0wgpPYdrx63ap0mzbtHgp2W7sL99xx4Sukoek\nAFN8BJ2nNPP8kkPo+9qjTM4LOV9QM/LaSdItg0f2cgFLQyuxlrAbnd+ak6SZPZYPaFyFNFP2miB9\nwThcyFqupIPIn0HHYeUYuejtNYHOAQns++BWdoD/oUfseWc6GSZ0GYZhGIbRYTh4uC5oddMw8+IW\nEsaZ0Y+jqzjNwTmMqrjqNLrKDqOl0BKNzjuFrmiHPCd/i68yeJQmACCOqqWb91HyfTXT90mLHOJm\n0v7PSE1g3QiaCDB5vlSTr/op1YalrJSaQO48vfxiuTrMWER1IM3d5Ao7TPBBrMT3otqDmrHSHB2m\n2HkYfmAJJ8PkQtqWxBfS3EPN8xdtouWWoZnhyvehK3otGIAHY6i56dg4CFMGqK3gxeKBcAXjVXiy\n4xDfgtI/KdHI2bT/O10k5ztu8guD5nYw5g46nmfvJrVPPIgivl6qUMKYBfm7UDFOlkAafDaNAP3s\nYzn/9n+Hzksrxiqledhrnz01tqAKrrXyqdLFoHnufLGvNR1hXsxI6ev32LntzItvfHbNdmteNKGr\nFWtPogLVyr3kYC3+Zdt8/Lj/0YqxUrXf547gybTpADoxxVqTLyGPTihNK6S6O5baaPWHKVFkMUR3\nah+bQY/R1Aqab0mY6CtO3URpHqnJox/a9FJpTjv3vufFvgdK9yPbmqmDC6HcjAsAR7Os7JMzpImY\n+1nxVBRA7OkoOpKao6mfSso0GZlXyqpA9JsixwGvsqAJEAW/px+7kofl+1s8mb6/fN4AgIwSagbT\nEs5yX89Y/Dy3hsaD6TcpaZYcG9pikMOFI80fkycO1rLv8zmo7Gi5+KgeROdk7qenwVOpAEDOQ8zE\npqX+qWRmQB6pCGDVRGrW1lJPhCGWtDFafdzaPPreZzwh70+Qv1+HCV3DJrfZ+d6Yfe12K3RZvn/D\nMAzDMIx2YIfRdC1+jjonD7iXmQgALD2IqmIH3yVNbM1rWM09bmoAYjI3hIpw1GofsueXMHCAaMKd\nYddPknl9Up+n2oPKs5XV4VPU8dg3SXNeyZ3MQTZVaoSKTqUashUXSS1W9W7UmTtHiWrLfIyuKlf8\nRsnr88Q8sq1FHW44nGq2UkoqRRv+LFyivJ41v5BOvVnTqKmF5zEDgIQ+eWRbi86LBV6iBJDPTLtn\nNf2oNqHwGVmmyDXQ8zTkSE1tGBPOql/R32/cX9a0HHAqXfU3jJaJNbtV0kSwa4dliDbp86gze3xV\njWjTkk7ngLJ9ZQQz10RqGoekL0vJdnOFfKdS3qeReLUXSadnbuYPGwnN3Qy0UlvbCi06r+VrGdjA\nCaNt52i1TLnLh5ZrrfBZGiTVmCY1o41pdG5P+Udw7jMtCpK7BmguINvq+fC5BQB8Nh0b/Lc7TNM1\n9Ow2O98bn1+33Wq6zJHeMAzDMIyOw6IXOzeNeSlYdhpdQfd6lmqf4j6Uq5aBrLZty2ilGPB/qG/G\nwhvlyiZhA10k5F8T7Jvl1gUXPQ7j6Mq1WoB0LOVaLUBqyJJWB48AXy+L+hadT8897z6pVePk3SPv\nD1+fLbxVat6yWe6jvLvkeerfor4SCQeKJkhZSHOvhfGtqTpOajc0P5XVrFRR9j9kWguu2frNfJnD\n6Mo7ziDb638qtTQ8BYKmieQkl8vnnHcX1RTEDSsSbZq/oxrEWCeS3PvZM7tftim5i2XjV3wUeS/S\n5G0W6VS0u8P9nGpGy7QxHO4rBsj0FFoW/frjqXbljJmviDZ/328c2fYJimZdoXIkDZ7JVOJiuCbU\n7SzzYrXMCdZQ8Yz8LUo2fl6uR8uNxzVbCf37yTasaPmaiXIcrBtE5/5hdy8TbdYPp1q1pFekr67U\nZUtWnUd/K0z2+/bUOqpa8zbSpBux0SXNi6nZA/yIAy4i+zTn2yC0yvMv3HI72T4tfy/RJkzUIa9n\nl75IfvzClHngSSG1vFg835drkc980QSaIyfv3/J6erxA76EWCdj/VZb4tKf82Gi16oLQynT0+kts\nTqtBaA7ovoZ+fFccIz9QzUlKHUP2jawZIc2LRadsebmnWOFm0ViiygCgbgaNOkweL6MO+XunRbJy\nJ/nqfClU1I2hCxI3X75TSRX03k+e/LJo89oBVDhoKzPutuTFH6gwsOtjF4k2/d+RzzC+kY5fXjsU\nACqPoibZgmOD85Z1NDxwqCVRuiWHyYVXfSwLmjpcLiAzMuj9yfl5+wlLGrzWbM9Zcq4vG0+FyeRK\nOY/zPGbJ79G/ef/s57Dm+1Xta17s0dePLT6rzc4346vrzbxoGIZhGIah0gUVQBpdUuiKa2hBytLa\nzbbh+YEAmSMo/WmpaTrtaanZ4qSsoIYLnhsJABp2pteXtp90tMWTgT+larY4iZVUBT/3bJlBe6c/\n01X/ES9LzeC0F6hW7fbzpog2d9xJtQnacmndCXSVyVdeABC3685kW9NqhcnqH89MY9wsphEmXDvn\nwdjKAFWeKTV2nDDOwXzVCwCJtXRVW7aPPHfRhcEa3zC56Nx91Am8+3vSDDfvHao9zf9A/hbXQA/7\nVGqxfjiTmr5dgzQp8Qn7X3fLzOlA22i24kZQR/G49VJ7ybPvl94gn1efj+g8UX6mnLOOPpT+VuFK\nafr+7gapmS0+i2oVZREiIPNzmodqyWVynuoziz5X1yg1Jy3dqXYyTCqZMGiZ/st2oxq7Hqvkhzo5\nxJivGko1ZIUnB+cTDBOYosHzfc09VwZMdK+i1/Pvc+4UbY5mFZi0cK2+ifQaw5gy635KzbotPrhP\nRux0SfOiFr3I63g15slpKEwNPu6/MPKvMv/O05/Sj9aA6fI8vHzP+l/ID21tLzoQ8z6S5SO0Gnwc\nHl2l+aDwfi2+XKrt8yfJvgahCZxhEnJyX7CiC6SwwAWYno9IwYxHUtUOShdtUr9hJtFe8t248Cma\ng+veQhmh5ccqyWI/2XJTas0x0g8u/V2a0FCLhuORbWtG5og2ac9smySvaR/0Evuq96YJbWOJpIqV\nMDm4whCm1JXG/DvpeM6cK5cfvY+j+ZHcybIN92HiEX5AuCg/jRllNLJWq6e58gLa/973xZaItfxc\n+jySKxR3ii/oOAyTKFerz7hqH/re93xEya3YRgltq06l/ar4iewX93PV4HkbE6qkAB5mwcjRoqwX\n/Il+DwqfphHDs76fgrW1Sg2mbUhGjz5+bOGZbXa+Gf+9wcyLhmEYhmEYAo8dxry4w2i6OFoh2zCl\nF7jZy62XZpXl42l5mtw/t1+pFW1lvtvh35LtigtkVJBXIo44vMB03f4yupOX3dEomUpXWqmZ8h72\nTKErvTBFa8OgmeV4vq+2hK+EtdIzPLJNKzwMphFqypLlPXiAQsKA/qKNlrU/iLg0qfkLU8C5mRUb\n/2F/6cydWE0X1H1vi22srDqfRZGFGHPcmRoAMt+gmrbG4TJTedyHrPg5Mx8BwPKDqVYvY6KsINBW\n73QY4rOyxL7R71LN0qxdggsda+ZxrmHmEX1AuKg+bk5cdYTMZ5X7PJ2nwmTMb1dC5FIMAw9CAYBu\ni5griWLajEnryXJNftr8Rvvn6Uru48cWnhHcMCQzvr7RNF3tSVNOClYdSwf+2NOYn8Ho2D60LV9+\nG9gml6nFS6bIUiJX7/0S2X56aF/RJhYGPrdc7JuVTU1hQ2ZLExMXQjUBlCf2DCNgxWfKJJXFp1Pz\nJq9DCcjJtOEQeQ95lBJPjaFdY+qy2KL1ODwEHtDN09nfUOFEm35baqiPUkK6FHIWHU1NJn0+ltFW\nfDC3ZCuePDKjSCBhBKyEwQVin/uEfiAHfyffBe6TWP8z5Rm+Tp9h7ZHS/MqFLM1EW1VEPy793ldM\nOFXUhB/3oTTpc2p2kqZVfj1LekpBJB+lgeeOpT4iIEvz1GTLqX7WLrRvLXtJ8yIXMDUTPieMgHXj\nImnyu3IQTb+j/RY3CmqLzH4z6XhKXCR9+Wp2o35w/B0DZOJgLSVNw5tUKO9+hRxz0//1BNnWzLgl\nD9G+a+Xmwnha8fMklcnnnn8d7ce8u+iYq7/toxC/tA2wPF2GYRiGYRjbHtcFrW4aXVLoSiivESvN\nuNOkaSMWeL6oMLmiis+Wq6hn07jqXGoTfjqHmt3eG5Es2iy4nZpIip6Q6vaUH4JLbHZbT5cZKy+U\nK8je9wavYKtepZFDWYcFO3+GMRFouXfKLmXXuOca0abva3Q76XupCQyzguQamPKzpJYkv0opf/LZ\n14Hn5qVD4hrkkm/An7bc7Lb0Z9KklL+IahW1e8/NkmFMkj5Zji+RPFdJpsvRNA6cHi8qjsnMRNJt\njXyq+fdTLXUYDV4YVu2uaBNYnlOuXQCAZZfT97ffzcozZh8i7qAPAINfkve1+wrat+7/lRo7rjXS\n8vfxqMuCqxTtEzMjJ1bIsdHyLZ0Hfn3JBaJND2x5LsWBL8mAkmUH0cjVxJ2l+TeMxi77O1nCjNOD\n1Wiu2Ftqug77yWH8CkUbTbMVC2HOw11kii6ilo/VXokONtqMLil01Q9KxsIbmQp39Jd641b4cfRv\nmlLk7YklIadmGkv+lEaj8fQHAPDeiOAPbfGfaPSiqA0JIHF0cJqCtEV0oKUujs2kH0bI4r5hWj1C\nnhk8aansVxyzFOYdKU2/bjcalelLpW8NjxzySsJFLgz0f100iVk7zmuzNe8nazjG9aA+XC21m0+J\nAugf8TAxWxum0v5rWfzXnkQ//ntfLD+Yc1g3tHeTvwvf3yv9BIsnBwtiCX1ZZKQSoRvL8+EfKACY\nezb9sA58OfjjXH2cFJaaegSv7F13KswWXhwu+pQ/Z91sS9OeaEmLC0LI+ksOodfYb6YcP6t+Ts29\nWt8LXqDbYlEF6fOnRbvmBbuniudRmyuvufe/aVLe+XfJZ7jT1XTOyZ5WIdo0MfeBhvHS1ajbjM82\nfbFbATczA0DiR8ELwQ7BNF2GYRiGYRjbGA9A0bR2Rbpk9GJaRn+/214Xkn1NKXQlE6ZifBi03ENh\nyovwumLlB8oEh1r5oPaCJxUFYssTozk9q+ahALTadXHZ1Hzm02REX/O3JcHnZlqkJb+Wjq4tLN3N\noHtkfjTuhA0A5f+iZuQwpUQS3+0j9jXuS82iWuRd2rPbJgeXBtcK+wSpGQ2T946jafmWjKealEGX\ny3ERylQX5veZqazblzIZqaax4/B8WmpUWYxO8m0FN2tXFck1eJ87t03kdcXLxWJfzpELyXaYxKOx\n5i3j+ftW3ST1oLlX0G/G6t2kuZ7XW607Qtbi5TkZtWvmeffC9F0jjEM+t7xw141P/dvtH72Y1Mfv\nOfDUNjvf9JJbLHrRMAzDMAxD4s282Jlx1bVIepOusufdToXewn8En2fhLdIXavBldGUTRqu14Cmp\nORlyAvUxy3pUOldywuTIqZgs2+T8nabLWPR7qU0ofICmuWhStFp9Z1FflrI9gh2RU2fILPbLLqFa\niQHPLhZtqsbR0i/1GXLhVTWcDlLuEAoACf1oKo6mZdKnq+rIEWQ7bXFw8fGK0+R91jSTsRTJXf2Q\nzA21/C/UuT1OpjZDj5X0uca/K8uxzL+basiG3i3vR8kvqRY2Q1Fw8vcurrviSC//LBCthEzyRcMC\n/y51KX1mWm4x14MGojQNlhpFfs++v19qan0c7VnxeUp4fwhti0ugebHiCuVzD6NdXne81HryEmbx\nvWRZJO5L2KKUAeJ+TIW/CdamxveWZW4W3U+1O/kT5LxQxXLo9Xpbzgt1w1lqnTekL9S8e1hwkTIv\ntHz9Pf2tCaKJ8AHsXii1WJyK4fKT2jOOvkMpi9eLNj6G/Fpu9x+JfVyzpeXqQ4iC4B2CCV2dGC/V\nszkh/BT55FX02GrRhjuo1h4lJ+WEGtpqyAnBP85L9QCyXI8WcZNQQM2SvR5Wkm/y5I2K4pgLj0v/\nICdg7BFsauBm08Z8mcOozx30PJoiPe1ZKoR7M8C/AAAgAElEQVRqteP4mbXJXhOyOFyg0kqLzGUf\nn+I/SmfUWB3pubo/c4YU1NKeCc4XxVlzshQMiy6jQkWTElE4+HJae1Iz+fF71Dx3vmgTJvdbGPqd\nTZ2Tq5Uxl/kPushq2Et+kBLepuPJKXVLeaLTol8Fl5/SCCPs+0YaCaIJWNzhWyvjlP2pXPjxMeWS\nZeQzp9ta+dHrd0uwkBXGlJr9HK11u/BmJTk1i4Mpf1i6FGTcFGx2G3ojNVOGCR7R3BcWX0wDbHK+\nCP5tHy/3rRpJzZSDXpbPOW4XurCYd4rMaTfwNRqwkTRXPvdvWU5ILXKeJ8rV3CKMbUfXFLoMwzAM\nw+g8mKar89LQLwWl59OVFC83ItcRQNUw2ib96WDTUI8X2sYhXytCXTeRqrOTX5JmjENepWHerwyX\nzp7N8+jKr+D3C0WbZcy0kDU3Nr0NL9DrfpBmU27q0Io3L72KmSBvCNayucTgMiY8rxkADPkty1Mz\nWmrnuFlleYx5zLSi2NyRdf5NiobqHvrMVkyUuYfWDKWTVp8P5TNcfAXVqIYJCNBMfpXMFLT6TFlc\ne/DvtlyzpWkredb6S26R5/3N4ceR7eIzpHaZp02oz5JqifSngjU7jal0nuCFowHgsNFU05X1UbZo\nUzVOatI5yw+m2pW0Z2Sb5iyppXHvUI1z0/7BudZyHpL3tekA+r5wbSEAfH8b7WvhyVLTlfo8nSfj\nGxSHcza/JXxYINpsKKDPLLFwkGgTplD2kqvp+M2/Vo7dAdcHj2defkrLx1Z6PR0rXMMJAP4rOg6H\nXCJ/i8/R/d6Wc+s9+84k2w90lylY+Pheztw9Gh9vv4Cc/8eiFzs3SX0H+IKzLyb7+ADS8u+sK6aJ\nI1Ofi+3l44MjbqxU347pQ004S8YEJ6QrP1fx1/qC/d2sOfIP2yhKKozJpK2Y/zgts1N4soyEiyVi\njeeFAoDag6hPF/d1CXs97YlW769yD2rmSayTQheP2p33d2k6LDpVClkc/iEp+IPywWY5ghIU4a2Z\nlVOq+LF8Pr3v2/IIujA5nuJGyGS2c8+iy7GiC9tmUcUjBQHANdFxmFwmfX1a2MdYK5nVUiwjnz1L\nyusSu8k2ysc/iDB1OHkEHSB9jXjEMBAu95xLoHqC+gOVGoVsEfPDtOGizcAzqRA670r5PQizaKg8\nm46DnKfk/MvLfIVBq5XpMumzb1okfd442nyn5UVsTYdEL3bP83v2O6nNzjd90R0WvWgYhmEYhiHx\ngN8xii92SU1Xusv2Y9wBZF/Zb+nKt+/t2yb/DCBzKGV+Lh12ucmvrZh3n3QyLn6UrqD9bJmyecEd\nzFH8Vnl93MyjwQMCqobKqLYmtvjSnkXN0bQfGbNkpeZYNG08wzcgy9WM+Fwu8uaMjG2c8FX/wH/J\n89T0pmufOMVfty6XXlO/N6VpqmXO92JfEAmDZMTc0qOoaapmNxkqWXgS1fTF7yzzLnGNaix53gBg\nETO3Ft4hc6/NvZtqe/j1AVI7qI3Bta/RAIGe58pAg2//yCLxXpTZzJNeYZqdNtKshzG/amjP2a+n\nmiWvaJq4lmahEond/zFq1k/+WLplNO9cQLbLd1VMomxoaNU/Sv5GlReaGZnnTtQizPk8IEpWAfjh\nCvrNKHhcapa4O0X9YUrm/1eDowXXMHN9z3/J6hqXzP6QbN96/AnyRP+WUaFbSsdounr7Pfso/YmR\n6Yvv3m41XTuM0NVWlP+SDo4+06Vdval0idjHWXcCFXLC+JJgjxFiV302nTzSL5PCSf1P6aSjlRxq\nKKAq53NGfiDavHQDvaeNPeS4zP7blvvxJAwuEPuaFpaSbc2cFkZwjR9Ok5NqZUP4R71F0f/mzqbj\npGKE7HvhE9I3jSdnDZOGRBMM44bQj2aYpK9hqAqZ+iKIWJNUthX8nc79XEqumk8kp/Is9vH7a/C9\n0Er8vHX7vWT7mAPkB4VHfJY8EJySQEtPEStcUF41TqaVyPmEukbwVAtAOEEoDNxknfOl1Hw0JdFx\nl/2FEmEew9jQIpabeqWSbfdRcCk5jVXnsXfzgW234I8FXipt1vcPY11NmQld2wgzLxqGYRiG0XHs\nQI70O6zQFT+zr9jXvF+wuYpH+MRWrAHIOItqpMr6SO0Tz2dVnyU1IMvH0keY/LN1oo0bRVcyQ6bK\nSCaunXsHUv2fhi0PLNAcOZtHUQfmJmUFueA2uurt+6GSbWc4jTLk5TYAYC2L5kxViuFmf0MHe/ar\nUhvGnYXTnpFPfv1EqalILadRff3fkcWRl71An0/S69JZuucU+t7FamaK70mj6LKflNFotTNoRNjS\nJTKaM/1ralLKu0eu3stepCa1vkpBcs6jSz4U+w6543eBvzX4Kdr3xjwts1swXLOlaWF9d9p3LXfW\nkc/wd0HmMRNIK6VaxoXDIwwBGWXI3SsAIJ750WvRt1zXtFKJ2i0+g/5dmNJfWhDDkNvo4HRpqaIN\ndynQcnCJKL9bgjVLWp65BFDtV4sSjBA/gH5Hvr1Ujsvic+nv81yGgDRTiuAnQJjrNZN+LFo+/wWb\nFP3mHe23GV3Q6qaxwwpdmoBV8jC1x+98c7los25XakZpSJUzZdazwRngez1EX7D+7yh+EGy7++vS\nN6DxUDrBaRFA8bV0dtXMn7zyvVb1nkccab8VJsIxjJo+qZJOOhUj5Kua/wqtgde4v/z4hPGTSaqi\nd3rDKGnK1FJ6cDTz1Qbm41aXI/sR9yGNmEtbKgUz/vH3NcGRXry+HAA0K+YhTvJ4GnI/rJcU5LU0\nH5xeqcFRWzzC8ZQTpM9Q33XUhDT3z/Kj3j2X3o/8SdKni9fFq0+TKSOOv/x1sv368FLRhieL7Ra3\nk2yjmLGD6LFYvhu8woSW/Hi14jeZ+zbdrhkgTXU8U/uK30iBKu8uKjCogtneNIJQq60aVO9Po2WE\nHIfDXqJz8tzd5Vjp/w5dINWPl1YmbX7jNOZSwT1uroz25G4QxeeWijachWdK/7r8a6nQlTBwgGjD\n5+3Vu8k0JIlD6dgIk9KIC6mNj3ZAyogdiB1W6DIMwzAMYzthB9F0dUlH+ozEXD82+xiyb90+dNXU\nY7lUocZ/TlenWj4TXq6B59EBgHmPsRp4y+VKlDtPa+p2t5Q6Iocp18CdwgFg8As0erG5h6JteY9q\nBo7/Xmqonh5KtViLn5OJ9wb+gkbPaE77A6+OwZE0hLpdU9s3DKLq/rgPYsuvFUrLp0SINeZlku03\npv1dtBn71dFkO/1nC2K5RFFXsfDX227FyhONalpYzoInZU6lISd2XL6zVS/JMVc7h5qjB98gr69h\nHDUHawlD6w9l9+e14PsTJrI21ug4DV5CzCdIzZ9jEY5tFhzxEzl3rBxDNUtafjaep6x5ndTChqHq\nVKZBfEWxNFRSDeuip2Vi40HH0+TUo76QGsU37xtHttf3l3PZoHupia95zVrRhs8vWp4unuiUu6gA\nMpJ21U+opn3utLtQW760fR3pu+X6PXOObbPzTS+7f7t1pFe8CAzDMAzDMIy2pkuaF31TE5rLqe0/\nZRrd5qs8ACi9mGqo6vpKN80hz1K7via19p/GnNtfkn4YPA9VyrTYMl/z1BOFt0qfHa4hCyNpc60W\nINMCcK0WAKw9kV6PptUKU1qE+4ksPlQ65Od+RleV2j0sO4WuDuvOCs7AXvGydFDtNSHYQbUlXWbZ\nrtiV7hvfV/osrfgL9c3IKpLa5zDpMbaVZouHvAPA2qF0bBS9LpoINK0WDwjQggH482iZIR37c+9n\nzsosVxMg8zVVl8is35lMeaBpuxOvoufxb4smQrPFNRAAkFRBn/O6wVK5EEYr3HiwXNCvGUyd/dUS\nPyFS24jzniI16ZmP0XNrGvBB11HfqxYln1Tvz5Rq0Qyu2dKcyV0tfWZe0Rplz6Hn4VotDbdQGd/n\n0Psxezd5n5Mn0rGS/Tfp++nY3BqXJPOGhclAz3Mgcj9lAMjpt4Zs9zqMXvMCv+UZ9LcaD6Blx0iO\n2iWFrjD4HvIj7tgz5wIWAFQPpCaAWc9Kp/Cix+lAHPyS/H0uIPByEoCMWNNU8jy/V1mMNQHjc2iU\nHRdagXCmhdUTqDki40nZZuHx9ONSrHy0uBlwxI3yQ1t9RUXg9aQtpg914P0ySomL1ll3yqgpjlZD\nseR8Kc72mkG3uVkDAIrPoc9Zi8iKBc3UPORPtEyJi5cfOv5h++yq+0WboU+ev8XXo0ayhoi4THmE\nmmh9nLxD3HQZxmw55FIlB1dc8Iff70+dnhcoCUOHnEDnhZwv5Ec04R262JAioPyoawlDNafrxDdo\ndHTzvnKxkVhBx2rVrpmiTcYTdH7hApaGthgL9Tltoc+15hgZMLHv7+lc9p9d5WKI11ftP0KOy6Xf\nUFNmYQgrd8FVwX1feKscc3mzgnvfVmZbXqO29AYlD99kmqSYu8y4uR+1ybVsMV3Q1UnDzIuGYRiG\nYRjtQBd1pM/xY7Ooc3JLQR+yzQvCavAK8gDQ9wVq5tFKTHB4kVYAWPQkdWYsOFYWSg3jFBkGnsah\n/CDp8M2zkGsFaauOohnx+SoYkCkAavokijYZT265GYxnqwZkkeUZZVLrqJnz2gTFsb/yLJmZ3LNm\nXJsKhMt6zishPHPF7aLNsbddSrbzpn4l2tSPo6vaxDdk6DwP7y/fVT7DmkHUXFR8TrAz9/7/lWaL\nd34s88GJ62Eh/1lXSTNLzT5SM8tpYcW1efAIILVGTYtlhYcwLP0DHbsDru/YLOSTS6R5+rcfTSLb\nxacraVGY5i/jfakNW7sXTR/CXScAqdnnbhGAzDbffZ0cLNX96PXw0kGA1OzPe1Smkik6LTgFDC9p\npqWNWfI8tT7kT4qtDA9PQxKvFIfnuQvz35TpMrqvpGOsUtFeZv198xUwZtW/jnUtle3rSJ+Y6/fM\nPjq4YUimr3pou3Wk75LmxYaeSVh6Ks2d0/szaudPVKIF1w+hURy9P5WRMWGELB7Z1ZwsFYoFxwb7\ncIURsirPZGVLHlHqld1G/WayZogmwNv9yWbFk9JkkfvucrKtJYYtv5CaLPocIaM7ObzGGQDkMhNO\n43fBKvrDRh+q7A1OeMsnnbn3yXJLiw6fQrY1YS7nP9J3pHx3+k6FEbA00pfQu33BwHGiTS7o+9Ko\nmZQUIYtTehTdPnAXKbwtGUMnd83ENX8yfafe+XFsfe/xLR1z9afKBQFHK+uC94Pzw3EhKz4zQ7TZ\nsDs9921THhRtrhwkdsnfYguUpHnSxLTqIHpfYymzBQCXTj9e7Cu+MIQfKTP5cQELAMp+x+ra3irn\nraVXMSH0BtmmZjqNMM84U/rT5T1DXT7mviR9utZPokJf/vNy7ghTmmfV7nRe6PeWaBJKyOIL2KUX\nyLmjha1rBi2U40k1h/PzsO0sOXRFlLdPSSbbrlQmgd32+B0mI72ZFw3DMAzDMNqBLqnpakkE6vKo\nzL98D+rE2/8mqb5dvw9d/aS9L7UklSx6Z/XOogkGX05XJJrzNF+ra9nDteKynJpDaA6unlOlI/AN\nu79Ith+95kDRZt4wurLKUPyJefZljfWLqWYgvlAu+Zvn04zn/W9SNHo30c2h6TJHGXen9hmKA7ys\nRy7guZCKJ0tT2XjQ1anWr6ZkaYYLpdlipkqvFDYPk+eJs2qUdFzvN5s6EM97SGqEik+kvzVfy+gN\nqjHTzHAFe7CyJUrpIp9DIze1d37pL2ikcRgN8PID5G/lslIv8+6TZrCiC6j2Z+Uv5ADnWeGvHBRc\nqFqDO9JrmuPsv9GSXdxsCYQzXSYvlwM6lLaHtelWLbURmmaLwzVbq8+Qc2L2IWysKCWYqvemc3Jf\nBAfTaNRfJe8jp3tVsOYlLoWZxxV3HZ7TTytL5MfR+WXQP2SAyew7qUl2XYHUmfS/hWkvW2TQSd1Q\nGtnb8juqvWw5rwM0Th7w3qIXOy8OaEmkL05SJfsApMv6djzsfP7NcmIYxAQqaTGX6ltuQ9dYeKyM\nXRqyjO774Yxhos3gS+mk3DjmR6LNI8WszM2EnvK3rqZCKBdEwsJLi2iReGFKgvT8iPZ98d3SjJD6\nPJ1gtLpjVa8Wke2aD3NEm4LHqY/QutH9RRte2oQLjgDgFsToBsEmaveJtAnwdB1atBOPqIyTwbei\nhmT3r5NlI0aYkimaELpmCr3mtJWKL1+I6MVua7f8IxBGgBh6rUyIuYL5zjUdska0wcPBv8/f8bpe\nUujRfCKDyFgQ7sO06le0r9rChqdl0eB+VWGuWatXyRdsmpl0wR1UqGhOk7PH0AfocrW+l3x/w5Ts\n0sybHB4pyn0CAQDML1BLkNzCUj1okc+8NNo8mekB6az27fQf5D38hRKxzBH3h5lNnVcmjvbAzIuG\nYRiGYRhGW9EloxfT0/v73UfTPEI8GkRb5c0/na5Gh90mHaObv5sn9sVCfE9qVtGS88WSQDW+l9Ri\n8eLEWs6e+Hfp/eGlIgCg5ctvyfbKEDnBVp+umBGm0hVa+bnK6oy9ljl/UVbYMby72mpVi2Lj8KSv\nWgRm3URpZkqbTe2bTT9Ieyc3UbTUyCi/+OIhZLu5JLZSQRwtP1zW99SBWSudxMtWtcwJNoUv/b1i\nGvsTfV+0ZJdcg6lF1nITjnae8j3o2Fir+NoPujJYK83PnfqwdC4v/SttU50vtaA88k4zEyYMoFrX\nsgkyqXPfF2Vkok9lZavSpUaoejA1x5cdLLVofd6mc2LaM/K9X3MyfYcyH1cSsbKggdIz5G8VntQ2\nJaH4HKgWZ+cm/FkyejwujZriuZZYQ8tFpyXYDUTJyQgloSyn8iz6LNbsJ3+ba7f7flxHtv/z2Z+x\nrnpZ+0YvJuT4sWkT2+x8M9Y8YtGL7Ul9FrDgF7RrxTNpm8T/yomq+AwqZMVqGnO70dpsyw6SEVDp\npXTSSX1OTmZcyNKSBab8g5m9lAmGTwTzjpa+R0Xv0m0uYAEQE0HeJ3IS4mLQ6h9LwSibbec8qGTs\nZ5FMZalSOOh7+5aH4a/4ifz49H2PbmuCWZg0F6kzpeDRxBKN8shWIFzdwjBCFn/O6w+VZoz1efQj\nmvv5etGmaicqBGZ9IH8rjJD1s2+oae714cHPa9ExMgluQh3d1/e24PNopuZs9kpn7SnvD8eNVj5+\n6+mHTIvoyx5N72vWo/KDyRc2ThEUm1g/ktZI07cWUT3+a/rezfiRdKdIZVam/Dq5aEh6Jfi914Ss\nIDQBi1cRaHpC+TwdQN0puFAKAE1LfxD7OO4LalrecKgyLkP4UXLBzHWXkX9Vx9H5pC5HyjP5T7BU\nRIqAtfxilkLoTjkOavvQc2tJgnm6DrHo9FQIM9qWLil0GYZhGIbRSfB+hykD1DXNiy7bj3EHkH3c\nuXPhybK24KBnqFNv81xZMqateG0ZNecd2k+a/Djxw4rEPm7uXPFP6Wzf5xjapvZw5bfYa5D8kqwP\nxiMs46qUPGbLaHSRV7QJ7mPqKK4loV03lq622sr0oKntN+RS7VfSK7LvscLN2HEfSTNGyZ+p6WXo\ng/K+zj2LakuLlBxL3EFXc8h3o6gW1n0jNWhNu9PnXDFCmvN6lFM98IBfS7P7uol01a1pYfk7Xd9X\namS6fUJzva0fL59h9yqaKHLJ+O6iTeHj9PeXHia1akLjECIvX6zwqGYt4IYnNubjC9BdCpYfS/MU\n5v5ZakVKHqSareJzg997HuACAJXjZGRxEFq5nNzP6CSkaf9LHmLX/MvYxmqY81SdRq+xLlfRUD1F\nneQ194EwrLyAzoG975PPa8VFtE3ePW2TcJdH8S6/5R7UL1navubF+F5+bMqENjvfjOpHt1vzojnS\nG4ZhGIZhtANdUtM14EcZ/qLnqN1a82ngNL1FnVRXvC39BdScUozF19EV0pCpcnXawrIAh8nJFYaE\nAulou24kLYGUsrRWtIlbS/ctP7i3aDP1krvI9mWDpI8ZRyu4OvBV+ltc8wVIXxr/H+njUDKVaojU\nMiZdhPksR0+PFXK9FCZfEqf2KPkMe7xAtWg8Yz8A1O9HHZE130auGQ3zjq/4tdR65t0d3C/upJ/7\nuVIihfnouETpfxPHxiVylMCUedIfNOh6eMBA5LeCAyg4fI4CgBXvKPPUjVv+LhT9Rz7neaODU8fw\nVA/zj39ItNn/lDPJdpi0Dhph7hm/nj4fym8cTwGjjYOm7lTZk/5026TL0Lhk/jdk+7xPTxJtwhRx\n52gl6MbMplaEx9/bi2wvv7VjNF17JB/WZud7o+axLdZ0OeduAXA4gAEA1gN4FcBl3nsZ5fa/vzkE\nwB0ABgNYAOBi7/0bm/2drih0aeZFjhadV3UjzU/S8wzpKL5wMo0i6/eBjA7R6mZxeDK8NYXSwZub\nG3i5DQB46Jf3k+3rBgebKWOGC6EHSIdV7uxZXSxTPsZiEuB5qgCg8kCaG6ryUPksBp9A89/wemqA\n/ADEZ0kTyupDqblGc6yf93d574tODX4XBEpyVIESbdVWbJhATS9JLwc/r3XHy1p6cSwSRTMX8bxG\nTYtkXcUw8PHE8x6FpekA+n4kvC2FA2EyVqI7O5o1LIlz5mPSdBmmFiVH+4gv+BN1QufJoQFgyR/p\nvJB/XbBQyJ8pAKwaRU3dmfOlcL30BDrnaK4JPJqy+1cy757fQAVOTcDjgnvJIzJPYtEpMcwBIeCl\nlQCgIZN+z8OUDuJ86t/GOr+6nYWunn6PpDYUumofj0XouhHA8wC+RiQF52MAGr33P99E+8HRtpMB\nPAdgEiJZ/IZ770s39TtmXjQMwzAMY4fGe3+l9/4L732j974cwD0A9t3Mn5wKYLb3/gnvfYP3/kkA\nn0f3b5IdJnqRr2A39FRKtpxZSv9Gyfqdfx3dp2Ug1sp5cPhKvOd66QDPYzk089F1twZrtuJ2oef2\nd0lHbc8KTA+bLV+N70ZRzdaS56VDc/4v6Mpq/b2xlUjhaM8i4wm6L/NZxVzEgw9CmDVq9pIBC1yz\npZkRVK0WK/Gz+Bol9cVHVMPafZU0/6opPBijvqBvzOxR8h3XyoJwuGZr2QvDRZt+R1FzSBjTy7LL\n5MpcK4kSBK/4AADNG6jGQ9Xfs2dR8qBME7DzDdQVQBvLXLOlvQt1g6lZcsUYaboLkxVd/DYvOwNd\nA5NQFxwJFkazVTGZvq/Vg2UbTbPFiWdJzsMEBdXmyXu2djh9zr3vlWbtwtcCL0eUYFoS4h2PH76T\naFM5iibAGXqzDBbhI+7ahXIOunqw1MBzcj5m9U/2lO8P/87xgAEAGHZ7Ob0+pbpGu+PR1hnp451z\nrXOwVHrvlYRtm+UAAErJ8P9nFwD8YX4e3b9JuqTQ1dAvBYsuoJPFoCtY+R7FXBXG1MpzZaVMk6aX\nskvpx8Ur+sS0pXRSrNpJNkobRfuQ++5y0aZkMvXXyn9DKeHAFMUJ+38n2zC+GxUsOuZPCk7W1221\nUsQxBLxOX7NSLmbE57Rjc0bKvvOJvHk/KaQmVNO/C2NOC+OnAQCuGxUEs7+TH8PEN2iZnVgDp9+4\nfxzZ7jZJvs9pzwYLR/GZNFKyz11SmI2FATNkSR3eV75AAIB5p9DrGXKJ7EPtT6jpu4cmW7Px3bdA\n1u3jOZ60cmHNLPfa6jF5og0XQge8HWytmVwifcUeOYzVSdXmKOWjuWIs/b2hH8prXLsnXTBqyZd5\nnUkZ7xmOfjdTAcErSUT5vKnlYyueFuMFMHhUdU2VXKCIuUJxG6k7hF7z8v3lHao+nQrg1+8v/fJW\nn0EXElqZpPI9lZJUDG4O71kgF3muXppktwvatvZibwCtk7FdC+CasH/snDsawC8B/HQzzdIA8Azq\nawBICb4VXVLoMgzDMAxjh2UlqGkwtJbLOTcJwF8A/Nx7vzmHvGoAPPN5JgBpSmpFlxS6ulc2ofBR\nqkJtZE6jTYpqnZda0YrxLh9HV5D966WJgq/QNJOAK6Ar8/SnZPFd7ujanCXPw1X78TvJ2iY831iY\niDUNHonY52OpDev+KlX3NyfJlXmY/ETfXUdX4cXnyGfx2RVUld4NIQozK6tVfoXz7pFO4TtdQR3X\nedmZTbHkUnqNN576mGjz4DNKPZoAtNxmWi6mIOJzZAHw5nI6duafKLUAxSxL/fzHZRb/wlPZPVNM\npKJky1dSC5s/I9gfNsz7y6n7p9R2175EtXq5E2XE5eozmAZ6hnT+T3yPnrvup9I8znnkUBn845qp\ncSpsoEHx1dQ01qSUsEn/igbvBBueZQZ2ANiwJzW7VQ9QXDf+ysZ4YYFoE6bSQFuRWEZziw09X84v\nC/9A3+mCmaIJ+r1NtU/+O5n3LreeOuTXKFUpuGZLM6H7eqqRrzpoiGjTdAINtMs9TVZmqP8RnVu7\nNdDzuor2Fws8AN+25sVm773sfADOudMRiUac4L3/KKD5VwD2Y/tGQpQQZ7/RFaMXk/sM8INOu5js\nG/jUErIdplSExqKbNm+2BGRkzNrB0jwjJiEFXk7If/GNaMOj8ZYcIie8Ib8NNinxNBfxG6Q5JEwY\nOq9RmDlXlpnxn30deJ4wVB9Lfyv3PGlmKZtKnVB6PqPUEcyjpsym0iWyDTOHaPXUGsZL4aDbDCoI\nagL4monUN67yR/LeD36R3kcthUaYFA08CvS7PxSINkXnb7kAoxFLvcj106XT0B8KXyXb9x04XrTh\nz4ybqgBgwGN08aGZrEv+Qj+IhU/IhUXVTvRd0MYyT2o66W25IHh6qEzQzOGRtM1V4RKRhlnY8IjC\n/jNl+ReezDehjxRUecJWTTD7/g76bs4Yf7doc8jMC8l20WnSRhwmspaXaktcq7gdXE/vY8KBcsyH\ngQvgVQfKezjkhC2PpNWirFfsQX3cuiuJDOrY4xl4dfCczSOPv55+N2oq2zdlRLrL9nskHNxm53uz\n6dlYohcvBHA1gEO894E1oJxzQwD8F8CZAKahvaIXnXOPOucanXPrW/07j7U5xTm3wDlX65z71Dk3\nih3f3Tn37+jxBc45maTEMAzDMAxj2zPYQCcAABA+SURBVHAPgHQAM1vLMxsPOudObL3tvV8A4CgA\nv0fEt+tKAEduTuAC2kDT5Zx7FECT9/6sTRzfC8AMAEcCeA/ARQAuAVDkvV/nnMsAMB/A7QDuBrAP\ngBcBHOS93/IkIwDyds72Jz5FHVDnjAzu54bD6Soq+U0ZuNA0lmqf4t+NLQcLX4k3S79SDLierlK0\niJ+GPLqqDJMjrK0Q5lgAyw+iSy3N5BVfRLUZWrJJnpMslsSfYeH9qB4unWFTF1HzTOUusoi5pk3g\neXxqD5W5h3qU0dWxpsXi92OnCVJzXvmnArLNtWyA1J6uHCv7kfsAvdc80ScAFEwJoTVikVMppdJs\nkf8Q1d4u+rX0Qe3GlDta+ROugS459UHR5pB8uvD1TVKLVfYizd/X8I28PwW/p8959SuyUHXWTTSf\nVJi8YVp+uJYh1MykaYnrjpARasn/pBqgkr/KRX/R35hDtZPKjVjznXGqXqVzV9ZhsmxUGEqvp885\nZRep7sn5uXTV4MRSAilW1r1O55fsM2S0aSzlpubdK91ECv5F3+nSiXLMFf+Nac2ZBaUj8nSlu2w/\nJu6gNjvfWy3PbbdlgNrDeHs2gBc2Zml1zt0G4HxEhLC/IyIp1gK41UckwDedcy8iknAstNDlnOsJ\noCcApCIjUMji0XGArLkX30dG/KCGTlR1h8sJr2xvGrHX7305uU88kTrF/GfX4Cg/HokHALW7UNVw\n/cvyA9BL+UAHEqdcD0s3UDZemhrWD6QRKD0myYmhIY0qWLMVoSuMkBVGMOMZ+jXTYcVY+i445dXh\n/kgto2VU0KpfSeGkz0zqv9mQKpXL6/9AzR/dnpM+Zbxv1bfKa0wezvyjZBPMP5EK6UN+GywUpy2W\nN6TmJwVkO+llKXTF19C+8gg2AChjNefyr5FtSp+lyWLjn5FjN4O94nv/6hzRJiWeCRCK0NX/GtbX\nZsWcx0zN2YfL8cUjQMP4S2mmw/re1N9PJlEAuq0JjjTu/a6c6huy6HeV+2MCMl1I/mlLRZu6aVRY\nTD5XvuOxClmcvH/TO7kkRwrF3EtxwW1yrGZ8FyxTxBfS5MsLb0wVbQpuofPdfo9K4e2dH1OzeosS\nucnh/rwAULYn9cErulCOFZ6cuugC2Wa7dShq2+jF7Za20nRNRORZVgB4CcC13vv10eNfAnjUe393\nq795CcAC7/3Fzrm7ARR4749odfw3AE723odOr+6cuwYReywQEeKC8yJ0PPGIhLauRLh5ubNh/ev8\ndPU+Wv86P129j+3dv4Heexlhsw1xzk1H7BlJNCq894e04fnajLbQdN0H4DIA5QCGAZgKYAqA46PH\nN5XLIj3k8S25jqei/x9LIrR2J5q8bS6AfWOJtNjesf51frp6H61/nZ+u3seu3j8A2F4FpG3BVjvS\ne+9ne+9Xeu9bvPffAPg1gGOccxs14UG5LGLKdaFcR6X3viT6b7sXuAzDMAzD2LHYFrUXN9orNxrN\nv0Ikd0Vkp3MOwG74X3r9rwBw7+KR2Hz6fcMwDMMwjE5FW6SMOM45lxn9/yJEEov9y3u/MZHRFABH\nOecOiGq/LkXEH/TF6PEXAaQ45y51znV3zh2IiJP9w1t7bZ2ASkTKE3RVzZz1r/PT1fto/ev8dPU+\ndvX+7VC0hSP9uwBGICJIrUJEiLrGe7+uVZtTEKl71AeRZGLneu9ntzo+GsCfAfwYwHIAf/TeP7FV\nF2YYhmEYhrEd0SUz0huGYRiGYWxvbAufLsMwDMMwDINhQpdhGIZhGEY7YEKXYRiGYRhGO2BCl2EY\nhmEYRjtgQpdhGIZhGEY7YEKXYRiGYRhGO2BCl2EYhmEYRjtgQtc2xDkX55z72DnnnXP9W+0/xTm3\nwDlX65z71Dk3iv3d7s65f0ePL3DOndT+Vx+Mc+5A59ws59x651yFc+6BVsc6dR+dc3nOuWedc+XO\nuSrn3DvOuV1aHe9U/YtWjvjAObfOOdekHN+q/jjncp1zLzjnqqP37BbnXLvNL5vrX7RvH0efY4Vz\n7nXn3I9Zm07bP9buluh8w69/u+5f9BqC3tEhzrkXnXNro/9mOecSWx3frvsY8I7GR69nafT6/uuc\nO4a12a77Z4TEe2//ttE/AJcAeAuRepT9o/v2AlAD4GBEsvj/DsBKAOnR4xkAygFcFj1+EID1AMZ2\ndH9Y3/YFsAbAMdHrTAIwsqv0EcALAN4EkAWgG4BbASxFpKZop+sfgPEAjgdwBoAmdmyr+xO9Vy9E\n2w4GUALgsu2kf+dHrzklev03IFL5okdX6F+rNj8BMAdAGYCTWu3f7vsX4hnmRPt1TfQa4wHsDiCu\ns/QxoH8XRvu3EyJzzBEAGgAM7Sz9s38h34OOvoCu+g9AMYAFiBTzbi10/R3A463aOQCLAZwa3T49\nuu1atXkcwNSO7hPr3ycAbt7EsU7fx+jH65xW2ztFn2Ovztw/RIRlPuFvVX8ADIremyGtjp8JYNH2\n0D+lTVL0ejcuEjp9/6If4v8CGAugFFTo6jT928w7ehOAWZv5m07Tx030714AT7N9ywEc09n6Z/82\n/89Uj9uAqEr3bwB+i4g2qDW7APj/upM+Mjq+jO7fePyL6P6NfN7qeIfjnEtBZFWd4Jz7PGqyedc5\nt3u0SafvI4DbECnUnuOcSwIwGcCH3vsKdI3+tWZr+7MLgLXe+wXseIFzLn2bXXXsHACgFsC86HZX\n6N81AN7x3n+iHOsK/dsPwFLn3KvOudXOuTnOuRNbHe/sfZwCYLhzbueoqfEYAAkA3o8e7+z9M6Ik\ndPQFdFEuArDCe/+ic66AHUsDsJbtWwMgPeTx7YEsRPwBjwfwMwDfIyJgvuacK0bX6ONHAE5FpIh7\nMyKmxZ9Fj3WF/rVma/uzqeOItlnXNpe59UTfz6kALvHeV0d3d+r+RRc7kxDRqmt06v5F6QVgNIBj\nAUxERAh72Tm32Hv/ITp/HxcC+ADA1wBaANQDONl7vyp6vLP3z4himq42xjlXiIgv16820aQaEZt7\nazLxv0ERdHx7YOPHaqr3fo73vgER9X8igD3RyfsY1VS+hYgmJANAD0T8gD5wzvVGJ++fwtb2Z1PH\nNx7bLnDO7QxgJoDbvfcPtTrUafvnnOuGiBB5vvd+/Saaddr+taIawCfe+39475u8928CmA7g562O\nd+Y+PgBgN0TMhN0Q8dl6yDl3cPR4Z++fEcWErrZnL0ScPr92zlUgouIFgDnOufMAfAVg5MbGzjmH\nyGD7KrrrK8gV68hWxzsc7/1aRPxGPD8U/dfZ+5iNyOR3j/d+nfe+wXv/V0TGy1h0/v5xtrY/XwHI\ncM4NZsdLo+9Kh+OcGwngXUT8EG9lhztz//oCGA7gyaiZvwLAAAAPOueejLbpzP3byJeQ8w1a7evs\nfRwF4DHv/WLvfYv3/mNENF+HRo939v4ZG+lop7Ku9g8RrUj/Vv/2QGRi2B1AKiJC2XpE/Eq0SLFM\nRKJULo0ePxDbWWRf9DovBfADgJ0RMVP/DhHHz4yu0EcAcwHch0jEWwIiEUcNiEQFdbr+IRLtlYRI\nhGJT9P+T8L9ozK3qDyKRU/9AxJSxMXLq8u2kf+MAVAE4exN/25n7Fw863/RHxBR+AYCenaV/IZ7h\nHgAaEYnqi0PEvFi7sQ+doY8B/fsLIkJWv2jbMQAqETExdor+2b+Q70FHX0BX/wegAK2iF6P7TkHE\nhl8H4N8ARrG/GR3dXxdtd1J7XnPIfjkA1wFYgYjvwEwAu3aVPgIYBuBVABWI+ErMBjCxs/YPwGn4\nnyay9b+CtugPgFxEwtWro/fsVkTD+Tu6f9F3syX6kWr9b++u0D+lbaly/dt1/0K+o5MQWQzVIOL7\nNKkz9THgHU0H8BCAZdHrmw/gys7UP/sX7p+LPizDMAzDMAxjG2I+XYZhGIZhGO2ACV2GYRiGYRjt\ngAldhmEYhmEY7YAJXYZhGIZhGO2ACV2GYRiGYRjtgAldhmEYhmEY7YAJXYZhGIaxGZxzKc65Bc65\nphBtT4m2rXXOfeqcG8WOHxUt2L3eOTfXOTeJHR/jnHvfObfGObfSOfe4c65nq+O3OOe+cc6tc86V\nOeemOOeyt7A/v41eY7Vzbl60WorRDpjQZRiGYeywOOcKnHNBCStvBrAoxLn2AvAggHMBZAGYBuA1\n51x69PgeAJ4A8GtEEqL+FpESTmOix+MBvALgY0TKyQ1DpNTTva1+phnASQB6AtgFkSoEj4bo6sZr\n/DmAawGc6L1PQyQx8m3OuYPCnsOIHRO6DMMwDGMTOOf2AbA3gFtCND8bwAve+ze89/UAbgOwAcCR\n0eNHAZjhvX/HR2osvgzgIwDnRI9nAOgFYKr3vtF7vxrAc4gIVwAA7/2V3vsvosfLAdwDYF92zWc7\n5752zq11zn3RqnA2ABQCmOO9nxU93ycA5rT+DWPbYUKXYRiGYSg453oAmALgLERqPwaxCyIlwwAA\nPlLy5Uv8T6Bx0X+tiUO0mHVUyPoLgDOdc92dc7kAjgPw4mZ+8wD8r/A1nHNnA7gMwImIaNuuAvCC\nc64w2uQZAGnOuXHOuTjn3N4AigFMD9E/YysxocswDMMwdG4C8LL3/rOQ7dMQqdXamjWImBKBSD3X\nQ5xzBznnEpxzRyJSkD29VfvnEdGI1SBSeL4leh0C59zRAH4J4KJWuy8CcJ33/quoNu01ROqPHhc9\nvgqRwtgzATRE/3u19/7rkH00tgITugzDMIwdCufcA1FH9TWImNawcTv67/Kof9bPAPxxC05djYiJ\nsDWZANYBgPf+XUSEpDsREX5OQ0TzVBG9hiIArwO4AUBy9G8XQNFCRR3wpwD4uff+81aHBgH4c+v+\nANgPQL/o8T8gogXbFUAiIlq43zjnztyCfhoxYkKXYRiGsUPhvT/Pe5/pvc8EMCK6L7PVv5sBHAhg\nAIAlzrkKAC8BiHfOVTjnJmzi1F8BGLlxwznnAOyGVuY/7/2j3vsfe++zvfcTAewE4N3o4V0ArPbe\nb/TpWgvgPgB7O+cyW533dETMkBO89zPZNSwGcAbrT6r3/tzo8VEApnnvv/URvgHwTwCb6pPRhpjQ\nZRiGYRiSOwEUIaIR2hURv67m6P+/tYm/mQLgKOfcAc657gAuBdAdUZ+sqElxpHMu3jmX4Zy7HhHB\n7q7o388GkOmcOynaJg3ArwAs9N6viZ7jQgC3Axjvvf9IuYa7AFzjnNvVRUh2zu3lnBsaPf4RgCOj\nWjU454YBOAKtfNGMbUdCR1+AYRiGYWxveO/XIWoWBADnXHl0/w+t9l2JSOqF4dFjH0ZzXk0B0AfA\nfwEcGj0XAMQDeBgR7ZZHxJ9qL+/9yujfL4r6aV0D4H5EhLz/AJjY6tLuAdAEYGZEkfb/15sa/e8U\n51wDgKmImBobAXyOSHoKIBJRmQHgTedcLwCrEfEjuznGW2VsAS4SXGEYhmEYhmFsS8y8aBiGYRiG\n0Q6Y0GUYhmEYhtEOmNBlGIZhGIbRDpjQZRiGYRiG0Q6Y0GUYhmEYhtEOmNBlGIZhGIbRDpjQZRiG\nYRiG0Q6Y0GUYhmEYhtEOmNBlGIZhGIbRDvwfpc+j0tl9V14AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(500, 1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(700, 850)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4VdXVxt+dezNASAKEQJgDJAFUBMEBwRkrilZxwAnH\nOlGtYx2qta3VOqHWea6tRRyraOuAOFsnRBlUBDIwQ4AAgQQSSHLv3d8fiV9Zex04N9d7ISHv73ny\n8KzNOvM+Ozv7vGstY60FIYQQQgj5eSTt6hMghBBCCNkd4KSKEEIIISQOcFJFCCGEEBIHOKkihBBC\nCIkDnFQRQgghhMQBTqoIIYQQQuIAJ1WEEEIIIXGAkypCCCGE7PYYY243xiw2xlQZY8qNMa8aY3rt\nwP9oY8yPxpgtxpi5xpij/I7BSRUhhBBCWgPPARhirc0EkAdgGYCXvByNMX0BTAFwJ4Csxn9fN8bk\n7egAnFQRQgghZLfHWrvAWlvZaBoAEQD9t+N+LoCZ1trJ1to6a+3zAGY1tm+XYNzOlhBCCCEkgRhj\nsgFkb9O03lq7vgnbnwngcQCZAEIArtmO62AAM522WY3t26VFTqo6dQzYvJ7Joq24tKN0qtmqtivc\nu0Zu831b5VPXNV3YKauq9Qm0ayPtiK6fGGoXEHaw3GM/DiYlRTeGQ8K04YjvfhJK2zRpe9xnF6/r\nsiny/njdw2j23W/vzcJe+H077ZTuPK/qLcollCOfe/J67WMj+t7X9pF9KHVxjfKJF6F8ee+Dpfr+\n2Ex5PqZKn48JytfehkLax3lmtq4u6vNsKvW58t5nddTvStVa6RNc6/8+hTulq7bAOv/tEoU7tgDb\nGV8cTHKyatvaWT6f1JX++wl11sePZlyqd7ZLjmKbWDHJsm+G8/THFFMufUyl/ztX21Nfe+ryxFyH\naZOm2uwW/7EsKpzfPXWdtUvqcud3Rn29sLeiGnW21sTnhKJj9OHpdn1FOF67Wwig3zb2nwHcEu3G\n1toXALxgjMkFcAGAH7bjmgGg0mnbCGDPHe2/RU6q8nomY8a0nqLt6GPHC9vO/lFtN23aHGGP7jZE\n+Sy/YISwe97+pfKxQ+R2SbX6l9Ka4ZnC7vyI3o9LsLvWy9mKjcIOV1X57ieRmD1kf7Iz9X12Cfbo\nrdrquncQdmCrvof227m++35l6lfCPrXHgXo/Q+QfFubL75TP2lPkdl2e+175RKr1IFxy61BhF5wz\na/sn+zMp/+sAYXc+YYHyqRu5n7BT3v1G+QQ65gg7vHat8nGfWWjx0qjPs6mscN6548bpd+X9J+Xz\nyXniK+XjUnGC7gsd/+6/XaJYdvEI1dbr1ijGhdzuqq34cjlW9L3B/7rKT9PHj2ZcWn2m3C73Qf9t\nYiWYkyvsykf0H77Bh7KFnfqO7uMuJdcNV20FV05v4tlFR1L+ANUWmavf1ViI7CN/9yy9TP8xWnCt\nfJ9DK8uE/bX9MC7n0hTWV4QxY9p29eBNItC1ZBPkJ7uoV6m2xVq72hjzNIBFxphe1toKx2UTGrRU\n29IewA5/CbfISRUhhBBCWgYWQARx+8oSttYWx2lfQQDpALoBcCdV3wE43GkbCuCDHe3QWOvx2aWZ\nk2k62gPMqCZvt+Zy+RdXl4f1X1zTyvxXs1Zf7fzldn/i/nIru1Ye64drHlM+A56+VNi9/6TPx+zj\nrDB5rOSV/0YeK5q/YrecsL9qS6qXfSp99nLlE1q1Wh77Uv1XdLc3lwl7wBtlymfusPi8qMGu8i9k\n9/y2h/t8ek3R5xhatEQ2GI+Vd+c9DOZ2US61A+WKRfAzvZo29Bv5me69R0Yqn+xndt1qjRfBvnnC\nVvcrRkoe1KsTaO98xtykP631elv2qdSpeiVk2b8GCbvtB/qzc6cnm36fK8frc8563n9FpfIsvV11\nrvx01u1e//e56ky9n8wX5PGDvXsqn0iHDGFv7aJXmFKmfdvk47vHBoDaY+RqrNfziYWtv9RjWdvF\nclFi+bEdlU/3uxMz/pdd5zEm3iOPteJG7dPjTukTPlyupn/7zaOoqlqxUz//DRucar98V6+4xkJa\nt8UzrbX7NnU7Y0wSgEsBvGKtLTfG9ADwMIAhAAqstSHHvx8aPg1eAOA1AOMAPAVgT2vtku0dh9F/\nhBBCCGkNjAEw1xhTDeBrADUAjrTWhowx440x/y/StdYuBHASgJvRoK26CcCJO5pQAfz8RwghhJAE\n0vD5b9d+FbPWRtAwqdre/z8P4Hmn7V0A7zblOJxUEUIIISShxFFT1azh5z9CCCGEkDiw2wjVXcFw\nj0d0aHtkq3+ukEC2FCKG17sBAQD2lyJVG9Bz0+TVMhXCvJt0QpHCi+IjsNxwrgwd7/DPxAmR6472\nD9n328Zru8Uv6nxq+bfJXFGmwk0ZAoRWr5H7eWlv5dPndC3odln3ZqGwO/1SB5cEBhaoNlMl0yzU\nFuQqn8An/mkW3H2H55don4+7CTtytI4ktrW1vse6uHiRsJ8q7Kt8ognYiIWkNJ3Dx30vV1+lxbe5\nD/iLgddfJN+D7Kf1e1A3Wupbl52tc+fknzXb91iB/D7CDpcuVj7B7s7z8hhL3GtPStf5lMJ75+t9\nL5BBHOENG7Z/sj9t4xH8UFcgzzHpM33tw2bLFYaZ++jxLtBBpkgx7TOVj0rL4YyjAIAZ20sZtM05\nOn1o40m6b9bkyHNMZBqIxXfKftfnRt3vltwufUzBZuXT+1T/a3cpeeQA1TbgNtkX6wdIgfg33z6K\nqk0rd6pQfZ/BKfbTqXpsjIWs7stjEqrvLPj5jxBCCCEJZVdrqnYW/PxHCCGEEBIHuFJFCCGEkIRh\nAYRbyUoVJ1WEEEIISSit5fNfyxSqp3ezwwdcLNoCG6Xwz7ZJVduF5zU9s33k4H1UmyvmTBqyh95u\nzjzffW88W4oX2z/nLzAPFGhRsdkqs0SHlq/w3U80+37n0ynK55BL5X1v88YM3/0mDR6o2iLfzffd\nzhXWuqJ0AFh1jRQ1d/2rFqTWHyU1jSas+/yKI2SB2rartI6zLkM1qezFXrgi3mhExUgKqKaV10lR\nqlcmZ/dYRX/or3zyr5FZqkNHDFM+lf3k/eg0SYvtS+6W70bhs7oklvseuOcHALaXFLBG0zdiJZZs\n3Gsn6BqCcLpHzuM7N0u9uo5pHsEQkRgK2EaR7d/LZ+UN8h51vytxwvBYKHtdj9HdTvQfo5f+WY4v\nQ47UNfw2jPQIZnJwg0xKvtb1UPv+zr8PhQ+T2dHrsvS6SJt/73hM/tp+iCpbsVOF6kMGp9j3p+b4\nO0ZB5+5lFKoTQgghpHViAYRb4AJOLHBSRQghhJCE0jpSfzL6jxBCCCEkLnClihBCCCEJw8Iy+q9Z\ns6UWmCszTkf6S5G1WaOzTZc8OFzYXb/Qu273ihTxemUYdll0SpZqy5vj4egQjTDdZfMenVSbnzAR\nABbdJYWkydVap3jAsTKjb2Vki/KJRpju4iU8DuRI0WJ47Vrlo4TpHhmYXWH6ktu0qNi91ur+Out4\n4fnxERoX/03rJ/s/KY+XNK9O+dQeOEDYFQN1oIUrTH9txXTlc3IP2cddUboXwY9mqrbsT6RQvuRe\nnRU/ki6F0NEEZ9QN7qPaVh0oM2T3+M53N57Z7cNZbYRdsYfOTl7fTvaFA/7cRvl8/4DM7p/zROJE\n6G7m+mMPGqt8QouWqLb0eauFnfpJR+VTfYh8p1yRMwAk1cpnWL6vvmddHnZE5x7amOy5IWGboP7V\nYkMh1eYS6JQt7LXHFyqfmlz5DHv91b96RuaLOsP7yhukCD33a11xI33oOmF/P3WA8ukJf1F++PAy\nYffdP3s7nv/DKwM+nOoMuvc2UyzgER+0W8LPf4QQQgghcaBlrlQRQgghpEVg0XqE6pxUEUIIISSB\nGITd5G67KVF9/jPG5BpjXjbGrDXGbDDGfGSMGezhd7cxxhpjznLa9zXGzDDG1BhjFrr/TwghhBDS\n0okqo7oxZgqADACnAqgG8BcAZwDoZRt3YIzZH8DfAHQCcL21dnJjexaAUgD3AngAwCEAXgfwC2tt\nTArQTNPRHmBGxbJpQgjsocWU0WRvjxw0RNhJn2t1+/oLpfA6+2/6li27RQoue92ihZPRZB6PhqzP\npcCy8iAdEOCyZez+qs0VvLvCdQAwaVKsHU2m+K3H6WOlvRWFuN7NYB5lNmpX/Bv4xCOztcPouTrz\n+JQ//ULYmf9dpI/liPkDXTprnzXlvsd3SUrX4uRIdbXvdiXPykzsnT5OUT45HywVdmhlmfJxWXex\nDjZI2yjHKTegJFYqxw9XbVnP++/bDUgovPDbuJyPF4vv8Lgf6+Rf/bG+z7Gw+EX19zT6nCGjC8KH\na1F84GP5bgSytbi+5oB+wk59xz/jfTSsfkNXddi0sa2we3dfp3xSfiH7b/GTOmAj91M5dmS+4N9/\nIofqSh3BWaXCLr15L+XT71+bhG3qtPjfzpdjh62XgTG7IqP6Xnun2Nfe1kFWsTCg16pmnVE9WqF6\nPoBXrbUbrLV1AJ4B0ANANgAYY1Ib2y4B4IY2nQSgBsBEa22ttfZ9NEyqLkYTMMZkG2MKjTGFttV8\nnSWEEEJaPuHGT4A/96e5E+2k6h4AJxljcowxaWiYEH1urf1pan8LgI+2s/I0GMBsK5fEZjW2N4XL\nARQBKKqDDoknhBBCCNmVRCtU/wLAuQDKAYQBLAdwDNCglwIwDsCQ7WybAaDSadsIQCcO2TEPA3gB\nAFKQWtTEbQkhhBCyC7BAi1hlige+K1XGmCQAHwAoAZAFoC2A2wF8ZozpAuAfAC6z1m7ezi42NW63\nLe0BaGHJDrDWrrfWFltriw3TaxFCCCEthog1cflp7kQzO+kIoA+AB621VdbaOmvt3xq3PQPAngCe\nN8asM8asA9ATwOPGmOcbt/8OehVraGM7IYQQQshuQbTRf0UA3gPwOwC1AM4B8ASAgY32tnwFYCKA\nF6y1640x7dGwyjURwEMADgbwBuIc/Vf8hIz6Sq5workA9LnJ/3BrLpdRcqpEAwCznyyXUnxuW+Uz\n4BYZyRFep6Pkqk85QNhZ03V0W2jFSnmsJ3R0W+EE/+g2O0JK2MyX/nPawMfdVFtVrSwpkn60jlJL\nSpM+bhQfAIQ3yi/CgT37a58f/b/yupGFsZTRAYDQKBnJFvxQl26p+JWOwur498SVMPHDKxKp8BL/\naKm60TJwJvVDHXUa6N5V2KGly333Gyjoq9rCJbJ/XFaio2If7e9EZkUReRnsrvtm8RW9hd33Bv1s\ngn3zhO1VAsbFjcAFgC7vy3d18dk9lc8Pv35E2GO664i4suvleNNtYnRRfCZZRlq6EV5AbBG/XuV/\nUC7HrvD6Ct/9uGMAANSN3FPYizwS67RZKMeKnn/xGH/3lVFxpae3Uz79rpUReLFGyi7/g7yHve/T\n70qkpkY2eJTTMrNkqS6TqsfEaCJuXaIZN93fV9PnPomq6pU7dclnj71T7OS3cuOyr2G9lzfr6L9o\nNVVj0ZASYSmAZDSkSBhnrV3oOhpjwgA2WGvXA4C1dqMxZgyARwHcCmAVgAmxTqgIIYQQ0nKwMAi3\nEtlOVJMqa+18AMdG6Zvn0fYNAL3EQgghhBCym8AyNYQQQghJKC1BZB4POKkihBBCSMJoTSkVohKq\nNze8hOorbpSCwh53xla2IRbhs/mou2qzR0iBedKQPZTPwtNlpon8SVrMXvqHNsJ2y0HEyrI/jlBt\nvW71v2dueYWkT2fHdHz3eXX7rEb5BKbPlcfql6d8wkWlqi0WVl8tzyf3/p1X9gPQ9zVYqRPcRubM\n891P2bVOyaLJSvaI0Oo1vvtZ+Lw8n37jY3vO0RBNcEj5pdKn82PaJ2mvAcJefYgug5JcLce7Dv9M\nnLQz0D9f2NH01fUXaVF8pzk6W4395gdhHzl3k/J56aGj5H6e0te6/gKnDNYz2sd9V/MmLVE+827u\nIewBv52rfFxBd6BDB+UT3rBBtcVC2XXO+HKP7i8LX5BB6f3O1CJ0l2iCMeKGWzoLQKCgjzx2Vhvt\ns0iWgtpwlAw+mDv1AVSvX75TZzgD9k61f39T/56MhZF5i3cLoTohhBBCSAwYhC2F6oQQQgghPwsL\nINJKov9ax1USQgghhCQYrlQRQgghJKFQqN6M8RKqu3gJw12hb1J6uvZxstoGe+tMyaUXS1Fm3u9j\nE7vmfNle2GtHbPTdxjOj+q9lFu2gR/ZgWyszLnsJQuuPktq/5Pe+VT4Zn3US9qaD1ymfkodkpvgB\nj+sMzOH5JarNj2BeL9W25kgpfsz+W2zPIvSB3HfwyGXKZ/wCnfH+6ZtOltvVRJRPTY7826X9c/7n\n6NXvVh0j+13nb7U42X4rBcIV53tkgf9H0+/R1uN0v0t7SwZxeImsUyvl+NLulenKJ5jbRdgLftdH\n+eRfpbdLFFVnDhd25gv+x954tr529zmvuEkHh2QcJLN6Z43RYva1E/S+c1+SY1n9a7o+/ar3ZB/q\n8q0Ofkids1jY0WRLX3OFvo6u/5VjVzRBFV4E8h0hduni7Xj+D6/s+qGVZR6eu47aY2X1gzX7JSuf\nXrc0PThm6a26b/T+o+x37hiw4N/3o3rdzhWqFw5qYx/9T15c9nVU3wXNWqjOz3+EEEIIIXGAn/8I\nIYQQklAireTzH1eqCCGEEELiAFeqCCGEEJIwGjKqt441nN1mUuWKiG/7txbwdespxbbl++jLd7OK\n1/XqpHyiEaZHk+HdFaZHI5wvnKAzvAcypUg1mozZXgQ31fv6dEjZIuwlHuLklA1ymddLlF43WuoM\nU6ZpUbxLaIkWj1ce4WTNNvp89vjVj8Jec2CV8rmy9wfCfhSFyuepJYeotszvpdC47JiuyscrQ7hL\nyaShwh6Rr7M0h0bIfhdNiEnOW1r4HI5iOzfbtStKB3T1geyn/d+L4sc8Ai0ulfvOv8q//5b+dbhq\ny7/GX1C+7BYn47yHONgVptsDBysf85WsbJA9tVj5rHSy9HeZoYXiyXfI55OUkaF8Hrj+cdV2tf21\nsDuN0ve+O5bLhv0HKR/bM1c2eAjVV94gr6PdCh2MEasw3eX1T18R9vHd99uO5zbHrtIBG/Fiw9sy\nG3mnc/X9Kb5R+kQ8fqsWXCn7VK+3f/65AVqUDuh3t+N8+TsksFU/v8TTepJ/to6rJIQQQghJMLvN\nShUhhBBCmh+tKaM6J1WEEEIISShhy+g/QgghhBASJbtNRvV1F0uBcqenYsus7YrFXaE4AKy7RB4r\nrUIL/9r962thu5mCAZ0t2N0vAHR5tUjYJqOd8nEF3F7Zr9usktdhZ/6ofNzjJ2/WfSPreSm4LHn4\nAOUz8C4pkF11fG/lk/O4//NxBZdeWeBdXGEpAFTOlsEGeW/pZxqolAL8aDO+L7pb3rNQJy32L7xA\nivDdvgoA7UtlxvuUb7TwObIpPoLcQGE/YYeLF/pu45VFu8tDTc8A7YqeAaD73XI/gZwc5RNeu1Y2\nJAX0ziNSgl/9bl/lUrZGVjGw9frvyoH3Vcpjx5D9HwCS9hogT+/BzdpplM7S7+JVRSFQLc+7329j\nyzi/6TQp+F/zSy2mzz9rtrDd6gOARwUCD1H8yt/JcXLLMi3KNzny+F1fTVE+mdOXyvNZtVr5RMPC\ne+R7mDNLj3eZL/rfV7cigFeg0LSyOcIe3W2I8ln8ogyICM7TgUs9b2v6O+fytf0QVbZipy4b9RuU\nbu96Y4C/YxScmj+rWWdU5+c/QgghhCSUCKP/CCGEEEJItHClihBCCCEJg8k/CSGEEELigIVpNdF/\nu41QPRoC/fOFHS7S2aYjB+8j7JSVWhxd8agUyWbcqsXj6we1FbaXcN4VoHplS3dxs6cDQLhKZwhX\n23XpLLdZU74dzzhg5MsTOmKocgl+ONN3N8GuMttzrIJUN/N3mzf0fS55RAruM4u0ELr7lCWqrWii\nFKnmPxBSPguvlvvqe+Yc5bN5nDz+MX/4VPl8tneaanOpO1pmoE559xvfbQKdslVbeN16YbvPAtDP\nY+M5HgL8SbLfu/cZAEx7KdJ3hdE7G/c6NuyhfdpJrbRn4MXy30tRfsZyPdau+8VWYeefra/dfaZA\ndM91ZxIaNUzYgyZ+p3xm3yLHgbQ39Xvojr9Jn+n7EWifJezwxkrl477zlX30+kGwRj6PTk96BM+4\ngvsZP2ifGFj2Jx2w0fs/8jrsbB1M5LL5VF1ZIOPf8p7ZWin+3xVC9T6D2tlbp+wVl32dU/g1heqE\nEEIIab0w+SchhBBCyM/EWrD2HyGEEEIIiR6uVBFCCCEkgRhE0DqE6pxUEUIIISRhWLSez3+7zaQq\naYgM0akq0CUQ2n8lS0JUnakjJzJfkGUJdCwXsPUtGbmR+ZUuHRDeT0d3uLjRfucULVc+T/32ZGGn\nveUfIeiFSZHlHuqP0sETS8+RZT6iicJa+md9nV2/dEquTPtW+bh0m66f17LN8pyDR/ruBhvO0xFo\nHSfLSCmveNfkDfKFz31Cn/P8p3XpjfafyXO03+gIonZf+PeFunNllGk0kX7Vp+hIuoxSWcrG7Nlf\n+RRdIMv/dPZ4PJkvyOi/quG61FDb12X0nxvpBwAl/5QRXwXnfq18ak7S1+GHG20G6IjS5X/Q9z2a\nMh9t18hSQ5t76FIpSfX+UdPtVkofr/vTfpLvbqKK9Ftxk77W+kx5/H6TdSRzZO4CYUdzX93oOwCA\n4zNf7wZr/ix/3dSO1WOQW9LJC69oP5fca2XpJXNXP+VTnx7FL/kYov3MPnuqtrqcNsLOXKz7jxvt\n5/5OA4DInHnCruyjr6GdE+238AVZEqf2pp9f6oZsn91mUkUIIYSQ5gmTfxJCCCGE/EwsDCKtJPln\n65g6EkIIIYQkGK5UEUIIISSh8PNfC6M6T5aKafcvLYitdIS9bVfXK59oSqN0ftRf6Dfm/M+FPfMh\n3aGKn5blJyZpTTHS4C9ML//3AHl+JyxQPpFsWd4m+T0tCO1bu49qcym7Tgpie//J/14smqjF4/1e\nkYLqsuFzlU8Qm1SbS1KaFHRvOGqL8un0lhTW2i1blU9KlVyatvV1yqfgPP/SOl50fV4KUGuO1WVH\nOh7nL0YueVaqfwvO03285B55r/tdp8XR+df4HkoR2BpRbUl7yX7nip4BoODcWb77Xnm8DAcpmOJ/\nPl5ljgKFUoyc7FG9KSk9XdiR6mrl4wZW9P62o/IJr6+Qx/YoH9XhWadEz6NakJ+6VpYw6nVLdCLi\n0BGyL/S4w387/QQ10ZSPikYovvpKjzIsUYwV7jMMFy/cjuf2twGAyoPkdmlYr3za9e4p7Oox+r1M\nfafp5YC8ysskO3b7KPaz4hfaq5tT4ar73fqeRg6SwvR+TlmsdVaPkYnGAoi0kui/1nGVhBBCCCEJ\nZrdZqSKEEEJIc8QgzOSfhBBCCCE/D37+I4QQQgghTcJY658ZuLmRFcyxB2adKNqqRhUKO/1VLeJ1\n6feNzlp9WNZ8YT9T2Ef5RCNmd1l8hxZr97lJi4j9MPvprN6B8o3yfJbqzOyxkJShs5xXjN1L2O2f\n09fgnqP9pulZiQFgy9j9hV02TgcW9Bvvn/XdpeQhLRguuMK/v0TDtLI5qm10tyEenk2naqoU5Ha4\n1mOh2X2f6/Q9C5cuFnY0mZsD+fo92Disi7CNx1DS7pXpujEGNp0uqx/UZehPCfVtZVvug1rE677z\nC/fTQQtJgwcKO/LdfOXjEujSWbWF15QLO9hHZ6WPlK+Ttodw3otFTpbsvmfqfqeOdZDuh0mfy+3c\nPgYA7X8nM8pHcz+8KH5SCsG7fhRQPhkvy/7iNQZFNvkHsJh95Thlv9WBMLFghuls6XamFKZnf9FB\n+awfqbPZu0QOloFCSZ/5j21eY1neW7IyhhuU9LX9EFW2Yqd+i+uxV5a97JWRcdnXTXtOnWmt1en4\nmwn8/EcIIYSQhGGt4ec/QgghhBASPVypIoQQQkhCCXOl6n8YY3KNMS8bY9YaYzYYYz4yxgxu/L9z\njDFfNravM8ZMNcYMcrbf1xgzwxhTY4xZaIw5KxEXQwghhJDmhQUQgYnLT6wYY+42xvxojKkyxpQZ\nY542xujMvnKbaxvnLJuMMSXGmEv9jhPtStVjADIAFAKoBvAXAG8ZY3o1tv8JwJcAQgD+COA9Y0w/\na22NMSYLwFQA9wI4GMAhAF43xiy01jZdqQ0AkQjsFpkVNhphuouXSHVRsEDYW8YOVT5H3/qpsD/d\nu43vsbxE6cEe3YUdWrHSdz9eou+QY7uZrgGg+AKZnTf/an8BcVJHndH3sGvkdcx5zv8cy67X2ZXr\n20lVc+8/6vuzOVcKWfuN19nltx4nxextP9KC1EhNjbC9ROmB9jLr+qp/dlU+XpnqXWIVpbsZqL1E\n1pnHyCzRYeUBLLxPCrq7eLwWGUtkIMOCK3X/zf5cBlZ0eXep8lk9RmadL3xYZ6F3tetbTthf+bT5\nt3yu5xTpQAu32kCwezflE1pZJuxYgwZiEWK7onQvSn+lzzn/GXmHvITqxY/re1Z4pn+lheKnpDC8\n7WI3rzfQc4sUXmceo7OBr/mPc/On6qCbnMfl+9vlK51hHgf6ZycPOlnOYw26CayVWd+L7h2ufHKn\ny3vv9TukdLIUj/d9Wh8r2Rk7ohGle5GyTAYtuOM6AJRMkr+PCs6JT4BNKyEM4CwAc9GQ1H4SgGcB\nHO/lbIw5HsCfAYyy1k43xhwI4ANjTIm19v3tHSTa9bh8AK9aazdYa+sAPAOgB4Bsa+2j1tr3rbXV\n1tpaALcByAXw02/2kwDUAJhora1tPJnXAVwc5bF/usBsY0yhMaYwooZqQgghhDRPDMI2KS4/AAI/\nzQUaf7KjOQNr7U3W2tnW2npr7VoADwI4bAeb5AP43lo7vXH7rwB8D2Dwjo4T7aTqHgAnGWNyjDFp\naJgQfW6tXefhOwoNk6iSRnswgNlW5m6Y5XdiHlwOoAhAUZ3VK0yEEEIIaX40JP80cfkB0AWNc4HG\nn8tjPK1RAL7bwf+/BCDDGDPSGJNkjDkYDV/r3t3RTqP9/PcFgHMBlKNhCW05gGNcJ2NMIYB/APit\ntfanZCIbJIDcAAAgAElEQVQZANwKnBsBeKwP75CHAbwAACkmraiJ2xJCCCGk5bMGcoVJV8v2wRhz\nMoAJAA7dgVs5gFcBfIz/LUBdZa3dYdIz30mVMSYJwAcApqHhU95WAOcA+MwYs5e1dk2j3x4A3gdw\nr7X2iW12sQlAnrPb9gA8ashvH2vtejTevKykqFb7CCGEENIMCMcvg1PYWlsc68bGmHEAngRwvLV2\n1g5c/wDgTABDAMwHsAeA/xhjtlhrn9neRtGsVHUE0AfAg9banyZCfzPG3A3gQABvGGOGomFJ7DZr\n7cPO9t8BGOu0DcWOl912SH2ntlgzTgoIUyulzurNu+9T250zaIywF9ymBd05M+SD98oY/ukbUtgb\n7NlD+cy/QYrQB96ns64vP1H69JjaVvmE55eoNj8ic7WgumCSFKRGo0rzEon+cISbLViLMoO5MtN2\nt4ladF1+qRavu+S+LK+j/EIPgezL8o8GV5QORJddOdJHPsPOJ2jBrhdVZ0gBbOaLsWUQ7/6uFDpv\nOEMLa7+67wlhHzn+V8qn32+djNR76z6+4BEpdu3wtc5s3aYiImxXBA4ABefKNq8+ZUfIr/wb+ush\nx5XJ/+X505RP8Hppe/Wp9RfI/jFa68IVleP1fc56Xt7Dkod11ur+T8vF9y09debvtoulT4+PtZC/\nNq+TsFOqtyifgsl6O7dCg1cgTOHF/sJw95mtuFG/lz2Ol/d66y+1cN7NBr7mwKZXOgAAm5ri6+M+\nj4LLtVh70xAZaNLv2ijeyw/1OJ53h/x9kPTpTOVTH0Um9DVXyPuaP07PCWpOlGOX17uLTTLYwBX2\nA/GrqBFPLP7/090uxRhzPoD7APzSWvuFj/swAK9Za38qL/GjMeYNAL9Eg67cE9+pY6NuqhjAZcaY\ndGNM0BjzKzR81vveGDMSwIcAfu8xoQIaROnpxpjrjDGpxpgjAZwI4Cm/YxNCCCGE/FyMMVegIQvB\n6CgmVECD7OlEY0xB4/YD0bBApGfW2xDtetxYAH0BLEXDJ7jLAIyz1i5CQ3qFLAD3G2M2b/NzMABY\nazcCGANgHBq0VE8BmBBzOgVCCCGEtCgiSIrLz8/gQTRouT/edq7y038aY8Zva6MhQO91AO83tk8D\n8AaAu3Z0kKiE6tba+QCO3c7/HR7F9t8A0GvGhBBCCCEJxtodf3+01j4P4Plt7BCA3zX+RA3L1BBC\nCCEkYVgLhJuBpmpnwEkVIYQQQhJKcxCq7wyMzMnZMshKy7Ujepwt2moKc4Sd8q6OfHHLX/x9+Ujl\ns+oTGQHS8y86yghJMloqkKNTPER6yPNZN1Sn5cp+WsrKao/ZT/mkTvWP4HEJZOtyRuH1FdKnkz7n\n1eMKhd1lskeU3KZN0nYiXwDv6BeXuqPltXo9r2hw71ks9wvQUWBuBBgALPQoddHnzVphJ30aW9ST\nW77FLd3ixYjvdFTYjOP6CnvtKB0d1OmrtcIOF5Uqn6TBA4Vtg1rLUHRBurALL9XnPH7BCmE/8MA4\n5ZO2QY5BGS/HFkEZC5tP9Yj+e0+WqTFtdBmf0CoZzTvE47G//5SM0HNLucST8n/rSDG3rFLoiGG+\n+wl+tEMNLgDvaMjCa2VJIBPUf68vvUpGgva83WNsjRfOGI2IV1GnphPN2BorNSfJ+9p2io5qjCaS\n2WX11TLysPT5v2LL6uU7dYbTZY+O9vTnR8dlXw8NfWmmtXbfuOwsAXClihBCCCEJoyGlQtzyVDVr\nOKkihBBCSEIJo3V8/msdU0dCCCGEkATDlSpCCCGEJIyfCiq3BlrkpMrW1iG0aIlo23SELEsQmaBL\nmkwaIB9q0C5TPj0h21a8tqfy6XGyLGESXlOufOC0ZXvoP29c+L2wb75eC0BT9Wa+eAkn1zslXrL/\npkWzrpB2mVfJijuluNRLlF52ndzu6DP0seadsErYIY8SERglRc6ueBqITphuRw4RdmCOLv3Tdm3I\ndz/RlLoI5vVSbeFsWcLkwL/re/blYH9h+vqL5DP8crCX8Fnes30vW6c8lrypyyG5RL6TYm1XSA9o\nYbqXgPl5Rz/dNXeR8gmtXuN7PtPKpBB6dLchyicwsEDYXiWeAv3zpV0XUT71e/UR9vKjtFC95/ty\nvJmzj36mOZDPx70GABgz6Ahhb9m3r/JJ+1LXj3cDRlxRuhcpX2sfO1Bea1KXzsrHHd96TtPBTbbW\nCdhol658XGG6W1YIALKf8RfzV5wvt+tQrEv7mC/kvXYDY4DogmOS9pIdeMVRWqie4pRI87oGs49T\nJmy2LoNV0V+K6zOdcl8AYDdWC9tLfu+ec9o6eX5J/kNdAmg9mqrWcZWEEEIIIQmmRa5UEUIIIaTl\nEGklQnVOqgghhBCSMFpTRnV+/iOEEEIIiQO7zUqVK7wunawzfXedJkXEocVLffe7ZWW7mM4n2DVX\n2NVDdWbru04fJOz0b3QG3UD7LNlg9Dx44bVSmJj3ey2UzH5GiqxLHtKi4uzZct95k7WQPxqNY/dP\npIj2nqu1iHf0cime/M8ALRo9MVtm4LWLViifTafJjNiBei2idTMTa2kykPzet/LY89Yqn8l/OE61\nBbc6e3vbQ/y6RJof/ukg5VJ+qxSpZmmNtcrAXzdaJxVOmSavoz4SUD5uIEM0WfGjyfBecLnuv/cs\nkf3u+lMu1MfqIsW/rkgeAI49aKz0ObSD8nGf67LxWgidd7O8h220BlwJffvcrR+G6SoF3V6C4WD3\nbsI+6HL9zqWvl/csZZoOMqn5pQ4SSHtTPo9FE/W19r1eXmukulr5wMnI7XUdat89tDA8f8UewjZr\nN3rsSbJhT/2u6joPmg4LauSxpn+/Hc//EWvFhshcKe7v6pHA3M1Y7kXxhfL3SMFl2ifv5TJhbzyk\nj/KpbyNXezqULtY7WiTH7fKr5bFDn+6aKiqtRai+20yqCCGEENL8aMiozs9/hBBCCCEkSrhSRQgh\nhJCEwug/QgghhJCfSWvKqG6s3TWitZ9DVqCTHd7ueNG2dUR/YbuCXS82nq3Fne2f88/omyiCPXVW\n8dByKc4OHz5U+QQ+nuW7782nSkF3u1d0dvDFLw4Wdp8zvlM+7j1L2axl3ytlkmhPAXP5b6S48+Yr\nJiufpwp1dmmXJbfL8/ES6bsktdUZxZc9J0Whbtb8n0PoAxkgETxSBwC41I7RGaCrc+XfQB3/rq81\naW8psk5aX6XPZ2WZanMJZGYKu25YvvZx+l3QIwP01j1lnw5+qEsL2BGy35kvdb9zWfuf/qqtZo4U\nvPd8Twuqk1dXyoZNWrw9/3b5vAb8RquTI1u3+p5jIF/2KbO5Rvm42eTXXaLHpM7TtejbrJRZzsPr\n1isfJaD2GOpzH/hSNzokZciKAG42d0Bfa9hDQF11hhyDMl/0r1AQ6/m4uH0M0P3s6WWfK59eQSny\n9srk7xLs0V21RSrlexjNOV9RqjPgP5Q/wMOzaXxtP0SVrdipM5yOA3Ps6H+cGJd9vXTg0zOttTpK\np5nAlSpCCCGEJBRG/xFCCCGE/Fwso/8IIYQQQkgT4EoVIYQQQhKGBaP/mjWRjDRsOVgK9lKdTNZr\nLtdZbru/LjOoe4nSV07ZU+53Wqby6fRkYsTsrigdALC/zLqeukQLUqPJch6o9cojLunwjhRw176X\np3wy7qwVdrCqVvkUXC5F3rXHatF150ekQPamruOVT/BG+RL2uFOLart/Wi9se6AWpJaelSbP7zIt\nnHeF6SaoX42Ks/R1dHq7VNjhtToT+7KZUrjaF/5C9dR3dAboVN+tgMj3Utzq/9QBs+9eqi3sZNqO\nJhhi48F5qq3dv/S9dik9Uz6fox9MUz4L95PC8JzjdSr0QBcny/macuVj+spzrCvUouKB90kxe9hD\nlB7IlqJ4N0s94C3WVueTKp9qTRf9i8cVpQNA3V695fl8oseFlI1Smd7pRV3ZwO0fdqQWYq/Zu42w\ncx7X4597raveGKh8Nq2WR0s9P0/5pB61RNhudntAZzkPHTFM+QQ/kgER0QQ/HP7ataotUCufR5/h\nHlnpnYzuoRUr9X5ycoS9cax+57K/Wi3sh3RsCMKHyUCl5Jk62380IvhdAT//EUIIIYSQqGmRK1WE\nEEIIaRm0pjxVnFQRQgghJKG0lkkVP/8RQgghhMSBFrlSZSprlDAdRs6CuzysRc3WEZd6kfRFlrA7\nPan344pLTUqK8nHFgm7GYQBYOq6rsJM36/NxryMaUXryJ11142EzhBnsmqtclHD/Oa+9LxFWNPn4\n2yzXwklXINvvnnnKJ7yxUrW5BDdLobr5SgtSC2KIK7AhjzvtcbGuMN1LlN/3BnkCXlmz3eCHZf8a\npHx6jftBHssjkGBZkcxq7pXN3s34HPpWZwx3qT9KJzBOfk9WLYhGlL7hPH3taWvku7vgxj2VTzJ0\nJnaXEe/LAIDXnjpC+bgBEkmLlyqf6uPkM0ybr481/85+wi68WAvVXQIDC1RbeL4UGve6VY83YY99\npS6Vmb69xoWIMyyFh2nRt/lijrCTvtZ9IeeLaEYdSdex+qa5o5LZT/dx9xVzRemArg4Bj6og7Rzb\n65074hKZ0b1bna6iUDZcjl3FT+yvfAqjSAzvjhPhFK1Cd8X+buZ4AMAnMmDEKxDF3a7091IUX/tQ\nbJnsfw4WrSdPVYucVBFCCCGk5dBaUirw8x8hhBBCSBzgShUhhBBCEodtPUJ1TqoIIYQQkjBaU0oF\nfv4jhBBCCIkDxnpETjR3Mk1He4AZ1eTtak46QNhtp+hopQ5fyAjBDSP9o3o2nq0jS7JnyrIR4XnF\nyiewZ3/pk+FRiMQpgeDForvl8fNv1dsU3SkjQAb+dZXe0VZZcia0eo3vsTF8b9VUPlTG3nR+TEc0\nrbhJlhE6bpz2eeNteV3BGv2XTo875HZlr++hfLqdqCMLFUkBYU5boaPNRnfTJTxcgn1660bnHQst\n8S9TU3+kLr2x9FwZ65N/ti47sitZdosuDdX7dhkhaOvrfPez9j/9VZtblmb5zfpYPf+i+5BLMFdG\nRy49t5/y6X63/35qTpRjSbBGx+ilTPtWtSWKVb/V96Prff7X4RI5eB/VtjVHhhGmv6n7XdsPZdR0\nzW91dHHRhbL8UP8napRPYLUcN+vydSRz0mfy+OW/0dfuRnkmEjeyMPed5crHLUHmFdnnRox7/V7p\nMF/6WI/I3cV3yO2ss3Sy4qH7Ubti+U5dNsrs38Xu94QuRRYLHx1x/0xrrQ5Hbibw8x8hhBBCEkZr\nSqnAz3+EEEIIIXGAK1WEEEIISSi2laxUcVJFCCGEkITSWpJ/7rZC9ZKHDlBtA57cKOwVo7OVT9e/\nNl3guPU4Xbog7S1ZFiYpPV35RKqrffcdyMwUdriqSvmYfWRZD1O0WPlEaqQo1AT1fNqzNIsPZddr\nkWi3ifIeVp41XPlkTW56qQSTrMsBRSN83nSaPH7Wm1rI796fJbdrkWje7/3r3bjPCwBKnbIrxec+\nrnyiEcG7BHv3VG0b9+8m7YKA8sl7qUzYoUVLmnzsaHEFua4YFwAih0px9Jp92yifrZ3kONXnRv0s\nVl0j+6LXu7x5nBwXoimtEyvBvnnCtsn6nQsXlQp7xWu6RE/ae7pPhdLkL6jcB/3HLXvgYNXmVdbJ\nD69SQznT5JgTWrW6yfuNlsUvyuvoc0bTrwEANp0ux4WMl/zHpDsWz1Bt4yddJezAVr1dcIu0cx+I\nTUi/4kbZx3vc6dHHnTI+7V6R1/W1/RBVtmKnznAy+ufafR47Oy77+uzIeylUJ4QQQkjrxLai5J8U\nqhNCCCGExAGuVBFCCCEkobQWoXpUK1XGmFxjzMvGmLXGmA3GmI+MMYO3+f9zjDELjTE1xpivjTHD\nnO33NcbMaPz/hcaYs+J9IYQQQghpjjTkqYrHT3MnKqG6MWYKgAwApwKoBvAXAGcA6AVgJIBpAE4E\n8CmAKwH8FkCBtbbKGJMFoBTAvQAeAHAIgNcB/MJa66/89SAzvbsdvtcloi2pUgqNV/1CZk4GgG5T\nFgnbbtmifMIbK4Vde+x+yqdtscz6a1O1gDoyd4Gwq0/Wwvn016RItuKtQuXT8Tidid2P1W8MVG1H\n9ZLnUxvRi5RF+9Y3+VheLPvXIHmsMi3SL7hSiierT9H35+MHHxP22OEnKB83U3HZtVo4365MZiLP\nfKHpInkAWDvBQ6D7RNO7sEnVmfNtrcxm7xVoUXCFv6jaDJNCZzvzR99tlt6qr6v3H/2vy0so72Kr\nNgs7vGGD8gmNktnjazvovpn+qnPtSVqAj4jOau4S6CSDU8Lr1iuf8ksdwfv7WnQdLlmk2mLBrSzw\n+IWPKZ/b+zY9iCFagnm9hB1Ntn8vXAF171f1PRv0irxnc3TydiQNkRUR1g7LUj7Zz0TRN53KBnbT\nZuXj9ez9CLTX5+P+zoiGNVfocarLQ47ofP9Bymf1SBn4kbZO//5u/9yO78+uEKq3K+xqBz1yblz2\nNX303c1aqB6tpiofwKvW2g3W2joAzwDoASAbwEUAplhr37PW1gK4B8BWNEyyAOAkADUAJlpra621\n76NhUnVxU07UGJNtjCk0xhRaG/HfgBBCCCHNAmtNXH6aO9FOqu4BcJIxJscYk4aGCdHn1tp1AAYD\n+P9CabZh6WtOYzsa/51t5ZLYrG3+P1ouB1AEoKgupP/qIIQQQkjzwwKt5vNftJOqLwAEAJQD2IyG\n1aeLGv8vA4C7/rkRQGaU/x8tDwPoD6B/SrCdny8hhBBCyE7Fd1JljEkC8AGAEgBZANoCuB3AZ8aY\nLgA2NbZvS3sAP2Wp9Pv/qLDWrrfWFltrixtOiRBCCCHNHtuQqyoeP80dX6G6MaYTgLUABlprF2zT\nvh7ABWjQThlr7TmN7QbAUgB/sNb+0xhzPoA/WWvzttn2OQAha+35sZx0+wGd7SFPnyra6s+UwlWb\nqcXR4fklsRwuLmR9rrO3Vx4khZKBLp2Vz9bBUkia/N63ej/jnYzhz/sLse1ILX41X8zx3S6YKwMA\n1h7dV/l0eFYKJaeV6f0eduFFwk5bq9MQJ5VI0WykoJfysd/8IOwtY3V2+4zvy4XtlUG8/iipe/S6\nz9HglfW96EF5rwsv1VmZg11zZUOS/sNh3RFSfOslSPXLphwtm9+VzzXtng7KJ/jhTGF7iXgXPJAv\n7ILzZiqfXUnlO/mqLWuMzHKOD3voDUet0G0O8RKBe3HMj7I6xNQ92ysfNyDCDYbwwiswJ/Xtb3y3\nW3SXDHYItddBA4UTdL+PBfdYBf9Yq3xC2XL8N1/6Z12/bbG+zj/00ffDJXKQfL+TPtfjnSucL71L\nvysd3mwrbK+qE25ljvKz9lY+ObOkPMYdI3eFUD29oKsd8NCv4rKvWWPuaNlC9UbdVDGAy4wx6caY\noDHmV2j4rPc9gKfRoLcaZYxJBXAdgFQ0iNHR+G+6MeY6Y0yqMeZINEzEnkrA9RBCCCGE7BKiTf45\nFg0pEZYCSEZDioRx1tpFABYZYy5Fw+SqK4AfAIyx1lYBgLV2ozFmDIBHAdwKYBWACbGmUyCEEEJI\ny8Gi9ST/jGpSZa2dD+DYHfz/JACTdvD/3wDQ32UIIYQQspvTMiL34gEV34QQQgghcaBF1v6zJRHU\njpFivEh1tbCTcmRmXi/WX6AzSadtlIlFk6t1otHglpCwV11Zp3y6nyQzWbuidAAIfNxN2Jse1hmq\n207xz6LtCtNDRwxTPsGPpEDYS5Reer8UOedfrYWSodVrhN3h2TXKZ9Npcj+juykXBEbJ++qKKQFA\nSV09fAL9pdC4zRtaDBtSLRoTii2sJFDgCPXX6YzhOb11m8uS8+V+etzxpfJp/1yZsO0InerNFaZ7\n+Sw/SopdBx1ZpHyCZzh9OrRS+bj31SuztCtM9wokqG8j/7ZL3ahFzqlT/cXSbpCArdfvpT1Q3o//\nDNIZzM/GSNlwpL52t9+tPFoHmXR/t1y1Kdys2TN0H7+geLFqu/+WM4SdCf2uLv7jUGHn/d5fcZE6\ndZZqC+T3EXb5obnKp+/v/PcdVUDNcCm8TvpRX3vnWfJdLT03R5/PazK4PKmwn/IJFy8U9i1jzlQ+\ngS5Onw57ZO33EKa7VA6V9yz4na4IkDVZvvNudQQAqNhTZiLq8nmF8gn/KN/nx5Z+LuyTjt2045NN\nEC0hci8etMhJFSGEEEJaDq1FU8XPf4QQQgghcYArVYQQQghJGA2JO1vHShUnVYQQQghJKIz+I4QQ\nQgghUdMyV6pSU4B8WQJi+XGyjEbP23X0lEv2M/4RK25EHADkXy0jkTq19S9l4EX4cBnN9VnZO8rn\nkPDFwq7N0lEj7SfJ63Aj/QCg9hh5jhc9MEX5TBoo9x3sm6d8vEq8uHx5/xPCHv2yLomDOEWChItk\nSZGkjAzlE9kko13WX6ijPrd0ln9F9fpalzlyI0wBYNNeMvIobZ0uP9HpPFnSxCN+SEX7LfvXIOXT\na5yMDCu5SL++hU639yrP0XaQvP5Nx+goucgmGa267I8jlE+fh2XZk0hNjfJZc6GMRK0coK++4HIZ\nBVb8tH6fCqdKO7Bnf+XjRj15Yb6S9+OcsRd7eMnI3YWTdf8t/IuMPt7aSXdot2+afXQ0l/123vZO\n9f95prCPattyufx72Ks6fTTRfluPk9GYaW/p6NlwqYzAyy7VEXluia11f9fvQeoz8h65YxKgozx1\n7DWQ9a68Z+2/1scKLV0u97Offp9MUL4/XmXMqs6U43/mC/5lnwIekYbpr8kobj26eOxnzUbVlr1k\nlbDD63X0nxtleamskIOl9sMojh5/GP1HCCGEEBIHWoumip//CCGEEELiAFeqCCGEEJIwLEyrWani\npIoQQgghCaWVSKpgbAtUj2WajvYAM2qHPqWT91Ft+WfNFnbkYO2zuWeqsFM2aalk+oJ1siFZz02X\nntBJ2D3u1ML5kmeliNdu1SL0wglaOOpH5FB9XcnzpFh6+XkFyqfHY1LE6yXMjgU7Ugt93TI5K27U\nQmgXr3tY+lentM41Wkga2KNQ2Mtv18+r24lS/LrxbC1mb/+cv/DXi9RPZYmK2kNXK58tJ0jBcJt/\n6+d+ftFSYT9y06n6YM4fgxklVcol8t387Z3qdqk/al/Vlvzet03ej1tKBvAuJ+OHl3C+162yfwRy\ndPmS8Nq1vvt2g1P+ccITyueOk8cL287+Ufm4QRNFd+nSWQWX+ZehioYlt+v+Go1QffO4A4TdZm29\n8kmZK/tdeJ1Hya1O2cJeerEOJPAqveSSNHig3M/xHZRPz9v8y7kkLXSCQzxKKNWOkUL51Hf8SyGF\nRnmUAPvQKQEW1ONLzbGyZFDGd3oMWHdwd2FHM970/zZZtRXtK5+he0+nF/0NlTVlO3XZKC2/u+09\n8ZK47Kv45D/NtNbqAamZwJUqQgghhCQOJv8khBBCCIkTLe+jWEww+o8QQgghJA5wUkUIIYSQhGKt\nictPrBhj7jbG/GiMqTLGlBljnjbGdPTZprMx5p/GmPWN280xxnTb0Ta7z+c/I2929vtpyiV0hBQZ\nemUeb58mt6scq0XWkay2wrbfzlU+PeYVC7virULlU3CcPH5Smj7nDU523KzntRDbpEpxfdKns5UP\nnCy/PabqTLyxCNPdewro++qK0gGg4nwprPUSoUfDx6fcK+yLrjlI+YSdZ9HtRL2fxXfK8+lzoxaJ\nrr5ai6O7v71GHqt4ofJxheleGZe9hOkut04+Q9g9l29SPotObifs9Fe1KD3QQYp/wxs2aB8nQzai\nEKUHc7uottBqeX9iEaV7UT9AZ293henWoz8vvEc+5/5/1dnBM0vk35q399VjQLCrFGuHPM7RzeSf\ntkoHohQ/IQMUunyu/87NmuyfxdtLlJ40RArj19+uRejpD8tAnMAns5SPbSvHu/J/D9D7eU5mNfcS\npavn010HEkTmyICRHumDlY86v5k6SMDN2x/I1DnnoxGmu7iidEAHX2w5WvcX9/326i8198t3t91K\n/7HVFaUDwPKb5TjV8y/yWVi71ePoiacZxMSFAZwFYC6A9gAmAXgWwPFezsaYNAAfApgOoD+ACgAD\nAWz28v+J3WdSRQghhJDdnYAxZttVivXWWh2S6mCtvWkbc60x5kEAr+xgk3PRMPm61Fr70+xVz+Ad\n+PmPEEIIIQnDIq6f/7oAKNrm5/IYT2sUAF0c9X8cDqAEwLONn/8WGGOu9tspV6oIIYQQkjgsgPil\nVFgD4LBtbN9VKhdjzMkAJgA4dAdundAwsboKwPkA9gbwrjGm3Fr7/PY24qSKEEIIIS2FsLW22N/N\nG2PMOABPAjjeWqtFhP9jE4CV1toHG+1vjTGTAZwAYPeaVJlgAIH2UrQfXi+F1x3+qYWb1afI7MFe\nF7/on1JQnneaFonWHi0z8eoc0Vro2/E43QeCPWQG3dCKlcqn49dS6AuPLNGLL5PZ0Xu9q3V04enf\ne5xl0zH77iXsDf311ed85L+fjv/wzxZsR0iRqvlSr9ROOOYCYa+/SAdz5Hwjsym7YljAW5jukrnU\nlb8CbZ+R+95yVk+9YZL8yj7vmmzlUjhBC9xd3EzSXnQYKIXYrhAaALp9JM+n3Su6j4f7yCzw5/9X\ni3r/0b+3sNeO7qt8kk6TWcU3b01VPt1PkjKFwECd7T88v0TYeU9p5YKbLX3RCx6Z/GWibUQ664zd\n7Rf6i+nt1lphu+8yoN9nVzDsRaUTmLI9ak6SY1nqBi1YXjhG3ut+x8ZWESBSI4MCggGPKhOv+meG\nX/K4DGTIu6TMdxuvdz4WwlW6sgCSZODAugv1u9LpKXnPNp7jUWlhkvRJ3qRl6G5Wc6+qBm5Vh1hR\n/cy5TqXi30k0A6E6jDHnA7gPwC+ttV/4uM8B4JW5fYdXQk0VIYQQQhKLjdNPjBhjrgBwL4DRUUyo\ngIbIwGxjzGXGmIAxZjCA8QCm7GgjTqoIIYQQsrvzIIBMAB8bYzb/9PPTfxpjxm9rW2uXAhgD4EIA\nVfVuPe0AACAASURBVABeBXCLtfblHR2kRX7+I4QQQkhL4ecl7owH1ucEGsXnzzttnwDYpynH4aSK\nEEIIIYmlGWiqdgYtclJVl52GFWfJrL49X14i7NBKLYJss1YKUL2y7BYdPEnYo+GRHXe5FD1ucYTr\nAJD2xQJhL7lNCxzb7i0zWXc+QbnAhKUodOHl+cpnwYWPCXvUfy9QPuH38oSdNFGLpdNWyutyxcGA\nzh6f45FoOyk9XdhbDttD+bQtWiePVaozW0cjUg3/WCTsbI/UbK6sNthbi8lDS5f7HqvtFC3GrV4k\nry2yVItN3YzLvd/srHyw/yBpz/jB93y8cAM0Or2rjxVeUy7Pb589lY91AhsmnfgL5ZPUVqq+vYJD\nluXJ7M69/uwv1l5wg34vO3/gVBbwyDLuZhDPv0SL/5PSZXbwFU/owIbcsf7Z4xGUQ2dtgc4mv+oc\nKeTPe0mPSTZJ/vG8YQ/9x3SWatF9Mdint/IJZ8lnv/lULYJPqZSi6pRp+trtSDkGdjxOV0gomTRU\n2P26r1U+PUfJsSMyTPc7OAFHS2/V42bvP8p+dvL8cuXz2kCPd8wlIhXbrijdiw7zdBUDd66wZn9d\nGaPbxB0FmUVP7bHyd02bFTooSYngI7tImd5KaZGTKkIIIYS0ECx2+ee/nQWF6oQQQgghcYArVYQQ\nQghJLNRUEUIIIYTEg9bx+a9FTqqS11Sj6/1SVBhy0rVOK9NiyoMvk1mIS+/tr3xGd5Ni7YBHBnNX\nHF1x5AjtM0QKj4sueEz5HPC7Xwt70UQtysyZKa8rY4lywbNVUpSZNm+F8lk1RWa7vuKR15TPiwO6\nCbvifH0+bib0mhMPUD7tFksxZ/k+ycpny4lSKN/3RS0YXjZaCrw7eCQczvnvKmGHFi3RTg5eovTi\nx2U25cJfz1A+bpZ8AAh7ZGd3sWEpFE19W2cnV9n1ffcaHZWH9FFt7f4lhb1VhRnKJ2O2tEPt2ygf\nO1RWH6juoQW64YFaSOtS/m8ZdNLrSa1KSH1HC9NdFkxoJ+zCCVpUbHp2FXbuWJ3ZevVV8n3OfUCL\n693s7YGPPYTZVVKIHU3fzH9G/zkfTV8ILV6q2gov1m2xkFQjs7V7LTgUnCOF2K6gGgBSId87O9Mj\nqsRhwYWPq7b9F8px8+Is7fNGvhyXVo3uqnzal8rApTaLNyifcLEMdrCzdH9Zf5EcJ2+7aJLyeXyi\nDjDyI9izh250xo4Krwzv8UlCT2KkRU6qCCGEENKC4Oc/QgghhJA40EomVYz+I4QQQgiJA1ypIoQQ\nQkjisABaSZ4qTqoIIYQQklBsK/n813InVT7Rfns+cqnapO4Auc2lIz5QPi+9OUzYkamdlE/W0jxh\ndzhWl59IPWqJsJ89T0eObTlpo7D7ekQiLbpLRnf0/Z0upTBpxfHC/mjW35TP6G6y1MS/3tUlK0zq\nGmG7kX5erB5Xq9r6nikj4o56RnezgzOKhf3UhX2VT+BQee0dntXnE0uUXKCTLtHjRvt5RY8eduFF\nqi19lvzrK7R6jfJxy0RUjtf3Pm2jEyG4YqXeTwxU9Q6otnaOXXFytfJZfYx8DwrOm6l83L87dQwh\nkPGStDec5xGt9LhTKuVdHR0ZDYUT5DMMdOigfMwW3V9dvKL9YsEUL5MN++6lfNyyT4vu1nexw2u6\nv2S85B8NWX2yjIBLf02XWXJZcaOOZO79lCy5ZfrmKR83srGyt474dUfA4if2Vz7pnWVfPHakLr/T\nYbEcB0b/U5cSA2TZq84eZbAUHmXL3PI/XlGWxhmEHrnoVOWz6BF5Pwqf0VGxdraMhgwt11Hcwa65\nwu743Ubl45bl2ni2fOfCb/v3HRI7LXdSRQghhJCWAVeqCCGEEELiQCvRVDH6jxBCCCEkDvhOqowx\nPxpjNm/zs8UYY40xQ40xAWPM3caY5caYTcaYH4wxpzjb72uMmWGMqTHGLDTGnJW4yyGEEEJIc8PY\n+Pw0d4xtoiTfGHM7gLHW2j2NMVcA+B2AwwEUAzgBwCsA9rbWLjDGZAEoBXAvgAcAHALgdQC/sNb6\nq6C3Q1abrvbAfr8SbUUXyjIn/Z/RJQcWj5MCZVOvXPDmxROFfWnvg7TT8L2FWdWnrXK5+bZnhX3l\njNOVT78ztRjaj9LJ+6i2pw6UZRFuvlkLqjOWbhH25Jd12ZxDn7lO2Hl3zVI+/b+Qqsz5l+2hT3L6\n97otBmpOkkLbtlO00Lb8Mims7fxonETGUYiKAaD6XSmwDz6oRfDtbpCC0/rDVimfXUnAQ6C76G9S\noNv71B921unEjpGfF6zzngKA+UrW8DDJKcrH1svyJYvu1uL6vjfI4avyHV2GpMMpMoDF9OmpfNyS\nV16UTBqq2gZcKYXX+e9r4XPRvh4DXAyY1FRh21p/sb87RgKIaVzwChg5pmCkPJ89dJDLqhFS8N/l\nGx2MYb6UfSEwsED5hOeX+J9kkgwGCXbWwU2b95Pv04ZCrbzpMkOO0SkrKpSPl1C+qXxtP0SVrdip\n3+JSe/ewXX9/ZVz2tfSS62daa/eNy84SQJM+/xljggB+BeDJxqZ8AJ9aa4tsA28AWA/gp99IJwGo\nATDRWltrrX0fDZOqi5t6osaYbGNMoTGm0Fo3voEQQgghZNfSVE3VWABZAH5aGnkawJ7GmD0aPwWe\nggbx+38b/38wgNlWLofNamxvKpcDKAJQVBeuiWFzQgghhOx8TINQPR4/zZymRv9dAuBla+1PyTEW\nAfgMwFw0pMeoBXC2tba88f8zAFQ6+9gIQH9v8OdhAC8AQEqgrf+aOSGEEEKaBy1ADxUPop5UGWP6\nARgFYFuBwWMACgD0AbAcwHAAbxhjNltr3wOwCUCes6v2AKqaeqLW2vVo+LSIrDZdm7o5IYQQQkhC\nacpK1SUAvrPWbqsWHgbgEWvtT+q5L40xnwEYA+A9AN+h4ZPhtgxtbI+Z2m5JKP1DG9HWP1dmLw7/\nqLOcB8dIUXN9hp46nzH3fGFHLtKiw+ynpUg1vY0Wkj6UP0DYXU9KVT4ugcJ+qi1cvFDYKcVtlM/E\nswYJu32aFndGtm4V9vn7naR8ugyVwlbTQ09eH+j6urBHT9c5zddOkMLecy6fqnxygpuEPam/FvEG\nf71a2P95WGfaHviGFLN3OHKY8lk3WN77rvf5i9ntLJ3dPtA+S7WlH71I2MFcLYi152oxtIubXXrA\nVVrU6z5Dr4zUAx+WC8M2WWdUj8yRGe/DVfpvnGiE6VuPk8dPe2vGdjx3zJLbZH8J1ugl/p5/lRnd\nvcTSq6+Q++nx8kLlEx62p7CTKrWUYP518p0vnOCRgXp/+c5ljdH3Syk/oxCle+GK0gFg5TkDhR3e\n179Pe4m+3UoLXkQlTHfxEKWvu0Q+nzbrtTZ29YHy2R87LFf5RLaslQ3f6Huf6wwVrtgeAJb9Xv4+\n6Hm7/z1c+2sdtJDzuPx9sGqsFs7nPCF9ki7XmevrsmTW9d/+413lc3/+QNXmsuwWue/eb8uxFnPj\nE8zTZFrJSlVUmipjTAqA8wA84fzXFwDGG2O6N/odAOAwAD+NgK8DSDfGXGeMSTXGHAngRABP/fxT\nJ4QQQkiLwMbpp5kTrVD9JABpAJ532q8D8COAGcaYTY3/f5+19jkAaNRejQEwDg1aqqcATPg56RQI\nIYQQQpojUX3+s9a+BOAlj/YqABMaf7a37TcA9HcKQgghhOz+WLSIyL14wNp/hBBCCEkoLSEbejxo\nckb15kDbLj1twWnXiLYuX0mB7tbOOst522VSkLvkJJ39+uHznhT2X0ceqXzc7Lhpb/oLdFfcpIWJ\nPe6QgsHVb2gRYu5YLZiOB7XH7qfaUt+W6s7IwTp7e2D6j8Je9mKh3vlsmTGj1yidBbhiUi9hp6/S\n2Z/TPpOC6kiNf36yqjOGq7bMF6XQeMR3dcqnbUCKcd+/WGfSdzMwe5G09wDVFvl+ge92LtGIir3E\nt9GIigMFUkgbLlmknZyM2ElbdUBCuI0U1rrZygHdh5I+m+17ftHglfHezHcE3R4ZzCNz5bPYMlYv\nord5IzbBvUswT/bxsuN6KJ8OxbIvJr/3bVT7DvSXGdzDRaXKp+pM+S5kFW1SPhsHyMzjHd+cp3y8\nAhl2JWuukGNpt2d1pYNozjnYN0/YoUVLlE/SEFkxwg3y8NxvVy2uD61xxPWRsPKpPUaOyW1W6uf1\nr3eeFfaI+69RPm4gTvUpMpjn+w8exOaK5Ts3o3qvnrbb9VfFZV9LLr+2WWdU50oVIYQQQhJLy1u/\niYmmZlQnhBBCCCEecFJFCCGEEBIH+PmPEEIIIQmltQjVW+SkKlhejc6PSDHeqiuleDH3QZ011pUG\n9vxRuWDibYOcljXKJ/1LKaou88iO2+VhefwkrcNWdP2zXjgMOGLKZSd3Uz49plYI2xXjevHJ00+r\ntsEzzhB29xu0UHL+k1LAHFyYrHz6OpmJ371Mi65HbJVZOMp+pcXjedP8hemL75QZjk85+gvls+ZK\nKZyfOlGLnNMqZO9I/VJnb/ei7DonK/M/Ysua3evrdGEPuetS5dMF8r56idJNUL7SNuQhMHeE6Rmf\n6aoB6+6QIvjUqTpD9nuOmP7Y/Y9VPqEohOl2hKyvHlVAwD0Vqi18uMxmv3mgzoDfztE0e4nSN54j\n+1RlP63pbV8is4FnTfbIul4r+3S7Mi1OjkaYXvErncW7499lqr+K87VPSrX8LVZylc7sn3+2PO9B\nHo9rzjAnK7+HyDp0hKxkEPxopvIpfU4GLTx04IvKZ8o6qT9eMXyz8uk4T/b7umH5yueERz4U9tQT\nta45VKwz7rvUd0gTdkp+H+UTLpUBEqFVq5VPzUlSLJ6+XI9tqVPlmFP08AHK57RDThd2j+Ry5RMa\nKQNakkLObGZXBae1kpQK/PxHCCGEEBIHWuRKFSGEEEJaCC2kxEw84KSKEEIIIYmllUyq+PmPEEII\nISQOcKWKEEIIIQmltUT/tcgyNZmmoz3AjNqhj1vKAAC6v1UmbK+yBC7LbtH76XWLjix0KXlWRsMU\nnKejYVQJhDQ9xw3MWyLs6kN1GZRoyuS4bDhPRwt1ekOWYAhvrFQ+Lm4pDgCwbWXEzIbBHZVPh/dL\nhF10U4Hyefz4Z4T9p5LjlU/ag3LfY+79SPk8+/xoYT9z0cPK58ZfXyLsnrcUK5/vXtJRg9k/ykik\nDQN06ZhOP2wRdtKn8SnVsvjFwaot42NZnqnTU18pHxevd6XLQ7KPFz+hy7kUTohPOZedyeooooQD\nOTnCDq9dq3xMsoyks/U6ejVeuOVUgOjGrp3J2l/L8aR9ib4fGwrlu9H5Mf9xNBpOna+j7V4ZqEvF\n+FE5Xpe4Sq2SUZ6jb/9U+Uy76VBhf/rUU8rn0IsvFnbbFTqqsapQRil/8cATymev6eOFXVeUqXz6\nviJL9NjZMsz9a/shqmzFzi1T07On7XHV1XHZ16Jrf9usy9Tw8x8hhBBCSBzg5z9CCCGEJJaW91Es\nJjipIoQQQkjCMLb1aKr4+Y8QQgghJA7sNitV6y6RQsnLfz1F+Ux5bajvfuqPkvq3aETpXqSVOIJl\no3WBkTnzVJuLWxAivWi9r0/VGVpwmfmiLEfR4VktYF5+vRTxBrbq83EFzKEly7STw6a/7OlxPvI6\n8q/R13XfNXK7fl9qny+Ozxb28q1aFJ992CphX/mn3yifQHv5Z1QoElA+XqLmYFcpiE3ZqEu+2G9l\nbZRYhcfTnLIwo3XFIiUoTz1N94UOn8qyGqkb9J+QJY/IEhmFE75WPm5pki05umRR+w+k4D/cr7vy\nqc2RgQ3p87Uw/O3P3xD2oAd0GZ9uE/3fVa9n6FKzX56w097b4LtNIFMLhsNVVR6ekvLfyHfOLb8F\nABXDteg60+kvXgEj0byb8eKQC2WJlZs7a0H36Wdf7rufg7+Xg87Usj2Uz6pSGUhwQdaTymdKnnwP\n6rt1UD72NlnqKGuULjXk3tdXntYBUtWHyPdn5FUTlE/6ehmscsNrLymfWy85X7W59L5WlmIqG6NL\nMS0aJ/tin/jExfx8WKaGEEIIIYREy26zUkUIIYSQZkor0VRxUkUIIYSQhEKhOiGEEEIIiZrdZqUq\n930pRn7lSS3u3HS6FB22/76d8ik5U06n2w71yMx+lxSTLrpLZydv6yb5jVPm+nDxQl8fV5TuRVJ6\numqLRujrEuifrxsjMgtx/Twt4nWpPuUA1ZY5TwqE147QWc4LIbN6lw7UmdnbPSbFne1mVSif1QdL\ngfv8FwYqn87Q9ye0Sj5ok5utfNQ2HqL0QHtHcBrUr+bobkOEXfKQvmeuoDzQSZ+P2xPbP6eDFkxE\nCty7Tc9QPmXDZZUA7QEsvE2+G3ef/pzyebxA9qGQx37yX5Di38Kn52sn51rD63RgA/YfJO0ZPygX\nG5CC2urjhymfjI9lX7zqm8+Vz8SLzhb2k88+pHwuHyyfu+nTW59PFPpeL1F6IL+PsMOli5XP+AUr\nhH3Leycrn8LrZIDEu4t10ELB5F8L+6sf9lM+4X7S7rRZVyh46245Jk+/R2cV/0XyL4XtvhcAUPGW\nU9Vhflvlc3i7UmF7yfqXntZD2G9eOlH5nHXdtcJ+8d57lc9FvQ4S9vW3XaJ8Zkx6XNiF/z1H+QTO\nkven1616TBo2W46/76yWxw5F8fshIbSSlardZlJFCCGEkGYI81QRQgghhJCmwJUqQgghhCSWVrJS\nxUkVIYQQQhLL/7V33uFVVVkbf1duQiCQAoEAoYUWUFSkqFj41EEHe0H51BEdO/Y69rHO2FBnLGPF\nGcvYGzo6Kjb0sxeqKELovZcAoSQ3+/vjXmay9jpwbsIN5Cbv73nuo2ufdco+Z5+TzTnvWouTqtTC\nF/9Oe9IKJYvP0wI9PxM5APS4SAu4K9evNz6++LfLdVbom+4JToPEt4kw/3otlG9/V0BW7/Y6S3XF\n/AV2Q15G96B+1YSFgwtMm591HWgdup2mr1vxq8kU/7uATPEveqLLNPtFe/47Rcpu+7M9h73/rmXW\nCwesNT5L3+5p2pq8lKfsr/9ihbUXL9CC8pLSVsbn5s5vK3tAY5vR/Z4VWoQfOX6p8fHPWaBYOwFW\n9tLjJeh8XDr9V2Xf8PBZxqfoJn2uR/7DZqSOdNd9jZbMND5d/6Cvs7S1gSi/3KQDUYovXm18fGH6\n4sttIMqDl+hrePFImyF7aV89Fu7vZrOuRzBO2SdOOMf4FKzW5xDFNjN6kFh7v6g+pqBxB2iB+a6P\n2iz0t7+rRc3d/2BFzCveLVb2QWfvYXyKJ2gR/LGfTjI+5+UuVHaPpy8wPptb6BG8x332mG85/3ll\nP4kuxse9rZ/RXUfaZ/RIr0JBt/vtde56lR6/gzpeZXxmPqDP/eDCA4zPtMd0hvfGi230weGHnazs\nnH1sMNF7N9+r7H06X2p8lv5dV/OYcMOjyt57jK1YQJJHvZlUEUIIIaRuQqE6IYQQQghJGE6qCCGE\nEEKSAD//EUIIIaR2aSCf/8QlKdP3jiQ7t73rc4AW6GW+/4Oy0/bc1ayXtqJU2b/cYsWuxef8qOxV\nZ9hs6c2fsaJHs6/eOiN3RXam9flSCyVnvdTb+JzeSwu4/zllb+OTP0pnC26yrNz4pH8y1rT5RLxs\n5NEpJXY7HXSG4bV9C41Pk7d1lnM/szNgszsHZXiviZh+VkB2+8LPdZhAVsly4zPlmpbKTm9mz6HM\naWLamizRgtN2HwUIwxdqQfm0vxUZl66njrfr+ZsZpcd04fG/GJ+0bC24r1xrBeaRHJ3hft5wm9n6\nxnNeUvYJzew5K35HC417Pr7OHs8afQ1n32erGHQ8TY+FFf9r74PMNVpQnTXKBjb4lDzb17T1uEAL\nw9+fboMWdv+rFkcX3huetfql7212+x+OeEDZp3bY3/j41+K9X//P+AweYjNru4j+yCBfTTA+GZ+1\nVXblhTbnffQXnRl+xgt9jE/hqxnKzppr70s3/mdlmwoBAKKr15i2MGb/yd7PFZ03KnvGb542Pnvf\noMfmX29+xPjc0U8HTSz4va2ikLVUX+fc18YZn+l36oz7Xa/93vhg717KXLKXvQ9aP6zHWdnxdkwl\nMu5NUNIBOuP8D+MeQenaBQnk6U8ejQs7uKLhVyZlW1NvvXKsc65/UjZWC/DzHyGEEEJIEuDnP0II\nIYTULqn3UaxGcFJFCCGEkNqlgUyq+PmPEEIIISQJ8E0VIYQQQmoNQcNJ/pmSkyopLTPRfouu1OUm\n1va00VvF5+loqbYftTc+PmVtbJBE8wSOsXLiFGUHvRJcerE+5i5n2Ai9f59wkLKLpgeUzVm5RNl+\nZF2i+NF+aXvYsiwVk3T01JLzOhifore9hrX2mBdfofve5q82wqrkOR291f10G3nj0+Umew4XXqID\nRbJm2KvR6S1tZ75no6kSISp2vIgXiRoU6Tf7Dh3lNPXMx4zPrl/rKD35tJ3xmb5Yl8Bp9a/Gxmdj\nnj7GVhM3G5+/3qFLZjy80T4Rm3XS53HAs/acvfCLLhfV/O0s41NZVqZ9EoiuXX+CjYxq+oaOjOp+\n5kS7r8qg4lSaTfm6r5uODCh51UQP8q4v2e0e86kuaVJ+lh0bh17ylbIHF+5pfEYvfM60HXHwicp+\nb6E99789UUdRyi/2fIz21tv1EVu2xy+yNfNaW0Kpsx4ugZF+0kdHwC06yEYItn9tjrKLbrJjYeVZ\n+l4ZPMyes5bdFiv7nOcuNj6t99N/I1pO2mR8Mkp1myu390rRe956QWPsW122p1WGjbJce5Iuw7Wm\ni31O9flRR2JO7W//zsGL6G80f6WyZXP4PVArNJBJFT//EUIIIYQkgZR8U0UIIYSQFME1nM9/oW+q\nRORnEVlX5bdBRJyI9I0v7yoio0RkTfz3rYhkVFm/v4h8LyJlIjJDRIbVZocIIYQQUsdwSfrVEBG5\nJz6fKRWRhSIyUkRaJLjuBfF5zx/DfEMnVc65Xs65Zlt+AP4C4Bfn3DgRaQXgCwATAXQE0ALAxQCi\n8QPJBfA+gDcQkyKdD+BxEbFpcgkhhBBCaocogGEA8gH0BtAewDNhK4lIJwBXAfgpkZ1Uq0yNiKQD\nmAfgLufcQyJyF4CDnXMDtuJ/JoBbARS5+I5E5J8AKpxzZya8Y48caeH2kUHhjiGUPGgPu/W32u55\n2c/GZ+EAXfrjqunW5/5uWpS58t1i47NihS5VkDHXlrLpMmKyssv7dTc+kc/CBdw1wS9vAASU1gko\nC9NyvB5TeeOXGZ/otBmh+19xtt52q5cnGZ/hE7T49rHu3UK3mwjzbrSC3faflZm2tO/09XEVFcZn\n49G6tNDc4yuNz643zFN2eWdbQmn6MC0636/PVOMz5VldaqPpkMXG58/dRyn7jC/OMj6Deuptz90n\nvGRQpLkN4Vh3oB6v//fok8bn8B4Dlb1iiC2b0/xZLViu/MQGSCz6ULe1/cperzkX63Pf+HtbLuTw\n03TQxASrKTYElWWpXKfPWdDY8EXwWV9PNz7RVatC14tcscT4ZA7Vz6mg7fjMv96O+7JO+riLz7dl\nWOberNdrPs2O8Yz13rl/J2A7r+2u7I5DE/o7ZkjvpMdCxZx5xmfBtfqY291jg2WiB+tgmc05VjEz\n/wR9fhIJqIm0amXaosv0czIoUGjZ3voeK+1qt935+m0HenznPkGpW7lDy9Q0advBdT4zOWVqptyV\nnDI1InIYgFedczkhfh8DGAngAgAfO+f+vC3/6grVjwOQC2BLOMrBAOaJyL9FZKWITBKRU6v49wYw\n3umZ27h4e7UQkXwRKRaRYgd7wxJCCCGkbiIuOT8AkS1zgfgvv4aHNAixr2xbP2aR4QDWO+deSXSj\n1RWqDwfwinNuddxuCWAvACcBOBaxSdY7IjLHOfclgGwAfmztagDbnBluhUsA3AIAm2FDXwkhhBBS\n72kNoOqr9NsQ+yKWMCJyAmJypAO34dMRwB8BBH6J2xoJT6pEpCtiM7uq32TWAvjGOfd63P5IRD4A\ncAyAL+PLi7xN5QEorc5BxnkYwIsA0AiZ9rsHIYQQQuomyYv+WwLgoCr2iuqsLCJDATwB4Bjn3La+\n1T4F4M/OuQXV2X513lQNBzDROVc1w94EAEEili2nbyJinwyr0hchr9yCcM6tQPzk5SQm2CeEEELI\nzmY7I/c8os65aTVZMa7zvh/A0c65r0LcDwXQT0TuiNu5APYSkcHOuYFbWykhobqINAIwH8BNzrkn\nqrQPQCz6byiAfyH2Ku3fAAY5574RkTwAJQBGAHgIwEAAbwE41DkXnjZ5KyQiVF96oRVc5s7R2Wcz\n//2D8UlrrMXAM262KtXON+hDl4xGxmfWLf2UnT3bHmP+U3o7Sy61x9z6IS2eTPOycwMAKrTGrHLy\nr9bHY8W5VmCeN11/Vi1rbfuV/fK3ps0nva0nsk63c/eVB+hs9ssCZIfdb9UBAGlNbTbuisVWoFtb\n+BmhAWDmUP0l+8rj/mV83j5Z33+Vk+z1WfdBF2Vv2JxhfNLf0P+YaPnjSuNTkdfEtPmkeRmVy3Ps\ndV44UAdNZAb8W7D1IzqDOVyA1tF7vqQXdTQuFbPnKrvkmX7Gp+tT+pgzShYan+iSpdr2RMYAsOHa\n1crOGWqDKCrXrjVtPps+LNLHc3ue8VnfXj9LErl3ogfZY158qZU7tBtig2N8lv2rh7JLp9p/jHa9\n2gsAGGifd7OO02Oh+K4S4xNdHv6ywBeGd/xXQADLFLttn9JT9NeYnJfCzysCKh34YzNwtUzd9+je\n9vm7qqe+zgWfLzU+fmCO28/KiuVr/a4h6O9B1CuQUDjCiuvD2ClC9TYdXJffJ0eo/suImgnVReRS\nxCREhznn7B9/6++XXHkNsfnO/c65rf7hSVSoPgRAYwAvVG10zn0L4HcA7kHsU9/DAH6/ZcIU114d\ngdikazWAJwGcvz0TKkIIIYSkFkkUqteUBxHTc4+pmnvzP8cncmpV2zk3v+oPwCYApduaUAEJHbjF\nwgAAIABJREFUfv5zzr0M4OWtLHsNsRnc1tb9AcDeW1tOCCGEkHrOTs6o7pzb5ts559wL8F4cecsP\nSmQ/rP1HCCGEEJIEWPuPEEIIIbVKQ6n9V28nVRWHrjZtWddsVLb4gmoAFYt0BurCr2wW5PTOnZS9\ntndr41P0Ry0bO/XX+cbn/qb/q+yMsvBRVznhF9N25yydmfiGzuFfW1f0i5q2/JE6ujQ7dCtAycP7\nmLYmCyPKbn+XFVOuHaozUHcNEN76sudEBMSJUHa8PeasUVp0vWaYTU2S+7wVxHYer+0Hyo81PuVX\nb1B2t9PsMW16XY+hVpMDMph/q8eUvYJA+WE603bjReuMT+XEKcpeebEVxJY31WNxY6fNxmfTzfo8\nZi2y47flE/qYfVF6EMV/s8LsOUfogICOX1oxsE9kjI2WbjZG28vOtgEbG1rrrwTt77Tjd2j7scp+\nof2RxicRYbpP5q82ervdECvhKD9Ei/kzPh5rfFrerVXN5fvZrx8Lr9HXPkj43PJ6HeAdJErfdLge\nd5nvWx2wn7F8/lUBVQvS9MeT6M82e05pkfbJ7WcDSNxY/TyRgACfkit1gIYsbmx8fCF/2hfjjU/B\nUu/8BFSLWHuSfp5kv2LHxoz7tU/Xq6ovQg9i82Ct6XZf7yRJcwOZVPHzHyGEEEJIEqi3b6oIIYQQ\nUgdIbp6qOg0nVYQQQgipNST+awjw8x8hhBBCSBKot2+qCo+3gu4gYa9PpHWBsoOyri8+T4tbm6wM\nyCTt8eKpg01bm7FetvTeuxif8C0DF9x6mbKbI1yIuOs9VvxqJPl77258BnhidvT+zvhEmjdXdtB5\nb3eCvT41wQ8aqJg1x/jMvdXL5HyrFYBuPEqL+1f2sv+uyjUtlk631Excmu8J02W8FeiuPEOPu+bP\n2Ovc6AM9XhMZP9FM2+YLdJdeZEXFm7wE3b4oHQBWvlus7IJzbdnP+SfrbPJt/mrPYcVQ3Xd/jAFA\ndNUq0xZG/k9WyI+//6TM2XdYMfv9H+sz2z1AlB7prvu14CgbGJO5Un8Taf6sPYdBWdZ9YXrlAXsa\nn7QvJyi7MGBoBl1Xn9wjpivb7xcAVGTpf58HDClcM0Of1xFdrU8iz+ii53WwQ8U8GwTkV7mQqbOM\nT7fTyhLYm0fAMxFrN9o2D1+YHtmlu/EZuL8W19uaAcBy72/Pyr3Ljc8uN+rz02j0j8oWV4N+J4MG\n8vmPb6oIIYQQQpJAvX1TRQghhJC6AfNUEUIIIYQkgwYyqeLnP0IIIYSQJCDOpd70MUdauH1k0DZ9\nIi3zTZufCXjJJVak2fphreZMb1dofCoWaAnhqt9bIasvOJ02ci/jU3yuFcHXBL+vQRmPE8Ht11vZ\n8vXE0HXSO3UwbRVz5lV73/PfsFmRO12rBZXR6VZsarZzg72m2XO1qDgoM/oKL7N260+tTDRIBD/t\ncS1wLz7/e+PjE2nVyrRNvV6rdmec/LjxGVyoxciz/2zHnZ/JP4h5N+lz1OFPNRPXR3J0lvOSG+01\nrGiphbQ5kxoZn+Yl2ifzPXtfRHp4WaunTjc+q0/X5yPvuXDR9ymPvWd8Xt3FCsrDiOTZMIbKzu2V\n7cbbqgE+G4611RCavB0+poJYcY4+H/lPJSeTtqTbDxyuwlaeCCNIrP3eJ68p+4BJQ4xP08NmKtu/\ndwEg/+/hfS15To+F7qfbDPzTntTP7eLzwp/ZZUNsxYac8bpSx9o9bBWO0k76vLZ+KPy+jBRbtb+f\n0d3/G/b1kpexZvOSHZrhIKt1B9f9pCuTsq1JD1851jnXP9xz58DPf4QQQgipPVzD0VTx8x8hhBBC\nSBLgmypCCCGE1C4N5E0VJ1WEEEIIqVX4+Y8QQgghhCRMvYn+M6VRalCyArARVUHRVNOe0oEHxef8\naHxqQv5XtvTG6sN14YZoqS3z4ZNIRN6aUwcYn9wXbFRcGEFRT9HVa8LX69VD2ZWNAiKKEoiWqhFp\nEbuvAbspe337JsYnc6UtCdF4rI5ESmjciQ28mf1nfT2KbgyPXio73kYZZY2yZYPqEnNut5FanW7W\nfU3vUmR85t6fpeygMlSZn+uovU0HLjY+PkElYCKf6SiwyK7Fxif6yzRlz7zb9qvk9MeU7UdvBrHy\nTLudFk8nJ2ovEYJK8jTxAsUSiUoLIm23nsqubGYjQdd10Pddk2X2njPXx4sMBYKjQ8OI5LcwbesG\n6m03ectGYm48WkdsPvrwg8bnyiJ7Xn2W/Us/E9ucvdL4RJctC91OGN+5T1DqVu7Y6L+CDq7HicmJ\n/pvwGKP/CCGEENKA4ec/QgghhBCSMHxTRQghhJDaw4HRf4QQQgghSYGTqrqLy8lC+b5ap7ahif6S\nGVTaIZEyLL4wXfba3fgkIky/Z5YWDJ/83BXGp9MtWvD54+c9jU/7vTcrO+PjscbHF8l2uc4KW30h\nfyKi9M0fdTJtjQ71SrVUht8pkmEFqdGfp2qffrbESW2x8I0epm3dokxl5022X8abvWrPffmBfZSd\n9rkVqksf3bcgAX4iwnSfJos3mjZ/jEfGTTU+lRv1eksutaV91u61Qdk9Lp1tfGoSDNIsgQpGFTPt\nvvKf0uVCKr3zDgDll23yWqxQ3b8P8JktTeKzuaCZ3Y6nkw+65wZfFy5Mn3ObPvf+MwEASh6xAQnF\n/1in7A2FTY1PhfdMbPZq+D0fNA7T27dTdmVWlvGpLNMlpYLu58qx4YEnzaofK5M0lg6xz4VoptZz\nbwgIJFjZWz8DExGlB7FhrFdubJm9dxPBL7/ml14jtUtKTqoIIYQQkhoIGo5QnZMqQgghhNQuDWRS\nxeg/QgghhJAkwDdVhBBCCKlVJAUTjdeElJxUpW2OovE8nbU7OqVE2RuO1VluASte9wXEgBURux9+\nMj5+xvJlB7c3PjccpUWPeX0qjY9P5xvCxcrSfzfTFiSS9VlxtBbB53+71PiU7t5S2U1v2mB8fBad\nbo+n7ZgVyq7IaWx8ImVagB8kYk3Lzlb2pn2tkHTBwAxld/7XOuOzeIDeTodzrQC05BqdGb7g0cTE\nnWmfj1d2kIDa91l/ohUeN31dBzbsNSFqfMYfqcfdrN9YcXLH0Trjvi9KD6LRGvuw6/KUtoNE6X7m\n8yCB+aIrtWi2cIzNtu/vfdadVuibyL2xwNtX2wnWZ8qd3ZVdfIENaElEzB4p7qq3e62thtD1eX3P\nR8bY7bg03ft5f7RBA9nt7LlPm7FQ2Y3HhlcxSIQ/zfrBtN3UWdtBgQ1+lvWp51kxO6CDDYqH231N\n/4uuLNDtynDl+uKDW5m2Vl5G9c2H7WV8Gn2g979igM3eXny2Dkqaf4Pte/FT3vVpbJ938y/Rmfsr\nA/7ydrwt/Jkz6y59b3S+3t4XdVKY3oBSKvDzHyGEEEJIEkjJN1WEEEIISR0Y/UcIIYQQkgwayKSK\nn/8IIYQQQpKAuBRU5Oc2au32a3OKaquYv0DZiy+3gsI2D9SOgC+9gxWqR1vnKdv9OLlm227bRm+n\naRPjI+UVyq6YY9NWl/9WZ6Av7ZRhfPJHhouBy47XIuusUd8ZH18U6gtCAduvikUB2a93LVZ29Jdp\noccn6fbl69Jz9PG0etKKk1FpheGJsPRiPc4K/lazMeYLdHv+xV7D+UN1hvu0zcYFhW/MUHbF4iU1\nOp70doV6OwsWbsXzv8y70d5zHe4IPx9pTbXgvnL9+tB1jJgcVkwfaV1gfZboAI203rsYn/UjtLh/\n0/NtjE+LiXpflZN+NT6bDtfjrsmCtcansrF3H35vA2MkM9O0Veyng2yCRPA+JX+zARK7/EWPj6Bg\ng+ZftVD2zCdtwEjzZ/WzI0jM3tarNrCuS47xCXqehOGPHwDYOHBXZQc9gyI5ev/Rtfb6RAq0CH5j\n747GJ+PD8AobPivPssEYLf5R/aoKvnAdAArG6gAJPwjmO/cJSt1KnSq+lmnasoPrdZStKlITfnj2\nqrHOuf7hnjsHfv4jhBBCSO2Seu9vagQ//xFCCCGEJAG+qSKEEEJI7eEY/UcIIYQQkhw4qaq7lOc1\nwsJjtGi34FEtVK8tUToATHtMZ2sPysqMefOVuf6EgCzab4SLMn0B97r/HWB8Gi/XmYAbS4AG0RNT\n5gfs65RftRj5pZ6FxmddYUTZQXmTsybr7VQE+AQJ041PnhblJ6KsnPaPPUxb99O1ADRIzO68hPdB\n4tcgAXXFoNXKjoyxIt7ozzaDu0+Hj7RQ3g+8AIA2D+pztuYUmyW6JsL0ikH9bOMnY5UZJPqWJjpz\ndJAovfQUPV5zXrIZshMRprv991R29CubLn3tyd6+XrcC4pLndGbrnpfOMD5NBuvs5E0wy/iE10cA\nylrrcbaquIXxafOgPmdLLgnIVh6QIbvwTp0xfInVK2PNqfp8dL/Ynvt1R+tnWVa2DYRZtf8UZTdH\nAoLqgD+glRP1drImhm9m7q32fLScqO+VprNtFYXV3XQAQJuA+xmNtM+0R+z91HiJvoaV6bZjlYfo\nk9/lGnt+0rL0kzJIlO7fh5kTZxsft07fK5WN7PH4wvTRC/W9svfgMrMOSR4pOakihBBCSGog4Oc/\nQgghhJDkkILpm2oCo/8IIYQQQpJA6KRKRH4WkXVVfhtExIlIX8/vnnj7MK+9v4h8LyJlIjLDX04I\nIYSQ+o245PzqOqGTKudcL+dcsy0/AH8B8Itz7j8pfEVkbwCHA1hUdV0RyQXwPoA3ADQHcD6Ax0Uk\nQFZJCCGEkHqHS+KvjlOtMjUikg5gHoC7nHMPxdsyAfwI4DwALwH4o3Pu+fiyMwHcCqDIxXckIv8E\nUOGcO7OmB50jLdw+Mki1pXfqoOygUi2JEOnWWdmVeTZqpKYlZ2pC+SE6IiTj47Fb8fwv6e3bmbZ1\nfXRb43dsxOL6D7ooe8EcGyNYPNyWe/ApeVZHWLn1VrpXfGFAxOROJC07W9kSsf/eiK5eY9oSQfrp\nkiJu7M/Gxy+7MuPxDsan6KRJofuaf4OOlmp/p40cW3qh9mn7vB3P0dLS0H35pXW6XWmjy3zS27Q2\nbSsG6Xuu8SpbMijzvfBxlyyWvt1T2QXH2hI0fj9m/a2V8elwYvhzwr9Xo8uWG5+pD9mI1k6dlyk7\n87ezQ/dVU/ySRSsPtKVavrnvcWUPLtzT+PiRjUFRjT6RvFzTlsh9uP5EHW29bE97P29upeOSg55t\nlQP7KHtDQSPjc9uIp5Q9ouvuocfn9u1t2tKn66jp6LJlxgdpOvo60rWT9SnV0ZB+aaadUaamWYsO\nbvfBlydlW9++/Id6VabmOAC5AJ6r0nYrgE+dc9+IDeXvDWC80zO3cQBOq+Z+ISL5iGcCaAZ7oxFC\nCCGkbiKJ5CGpB1R3UjUcwCvOudVATC8FYCgA+8+SGNkA/H9WrAZgK2mGcwmAWwBgMzbVYHVCCCGE\n7BRS4NNdMkg4+k9EugIYBODxuN0IwNMALnLO2exrMdYC5rVSHoDwbwuWhwH0ANCjEWzVdkIIIYSQ\nnUl13lQNBzDRObclXWshgF4AXqjy2a85gMdE5HDn3KkAJiL2ybAqfePt1cI5twLACgDIEZuZmBBC\nCCF1k1SI3EsGCQnV42+l5gO4yTn3RLwtAqCt5/oNgBEAXnTOrRCRPAAl8baHAAwE8BaAQ51zCdQ6\nCCY7r73b88DLVFuQ8NrH7afFgdNPsiUZul8WLrZNhIrfaIF5+qfhAvMg/GOWrwPmowO0kHXxgGbG\nJWOdvs5p5cYF5c20Jq7gESsk9Uu8uIqgIjThzLtJi1Y7/Kn2ygr5rPp3d9PW/MgSZUd6dDM+q/ds\nadrWdtIvezfn2Pup6I/eUA8qI1RLifHKhtjySPOP0kJwWR8xPgXf6WPMfT4590Ui+KJ9ACgboK/H\nnBPt+So+W5el8YM8ABvoESScr0mpn6DxEp2qS8ls9ErCAPa5FWlpg0Oiy1eE7n/TkbbESua/qy/u\nX3yFLQvT5q/63tx4lO3HqnPWKrvtcVOMj2HvAEH39z+FruY/g8oPtKLvFbvqrxmJiOJ3Nouu9IJM\nRtvr7pe8SuR6zX1Nn+c51zyBjTMW7FihevMOrvegy8IdE+DrN66uF0L1IQAaA3hhS4NzLorYROs/\niEgUwKr4WyU451aLyBEAHgFwO2IpF87fngkVIYQQQkhdJKFJlXPuZQAvJ+BXFND2AwD7TxtCCCGE\nNAgayuc/lqkhhBBCCEkCLKhMCCGEkNqlgbypSslJlawpS0iYbtbzRN7dA7SLe4zT+r1Jfe1IiB6k\nM4ZHPhtnfHxhemTXYuMzfZgWpRaMs9nRmr7+nWnzqUzXLxxzZ1vxeJO3ws+XL6Sd9oQVv7b8Vg+Z\nlq9Y4XxlWVnovq763ZvKfvVPbYxP2fFaZL25mX2xuty7Pt2uCBdU+6L0IKZeYEXpPe+da9qyX1lo\n2kIJEKVvOE6f+0SuVxDrT9DnrOkbdvy0zdCZ0HPfteLgyvXra7T/ZBBdtcq0Nf1lsbIjq2zVAD8A\nIJHqA4mI0meOsFW1uj+ls1TLps3Gx8/Sn8gzq6J7e9OWkZFh2pYcqbPQ5z9lZaoz79HH3cIm8kfL\nj2Ype13H8AyNmatsX31huuxlRejuBz3Olu6dbXwq99PC6zYP2Id0IsExzRbpYIw1wwYYn29HhGeB\n9wMZKrzs5LED0vdzycM2OKTDh9pn3qFWJ979Ut1XW1fA4ovSg+g4VJ/3RW5DAltOLgJ+/iOEEEII\nIdUgJd9UEUIIISRFcK7W0sbUNTipIoQQQkitws9/hBBCCCEkYertm6oZL1rRYdffTQhdb+w1WoSe\nASt29YXpSy+0WW0LHtUCwrRH1xqfbudqwWXl3AXGJ+dLLWZfd4atRS3rdXr0Jl+G9zOIBQfqOXbx\n8HDRd5CsdcXZWiCb/3cron11FytM98mevEzvq5nNgJ9WYcWuPr7gPfsnKzaNTteC3W6X2767Vq1C\n91VTKjJr8O8bL5M+AGQt2hi6WvYrum/JKh6/6Cp7H7R/f7neVxMrunZjAxTUHtEWetx3/YO9PtMe\n12L/Xf9s7yc00vtfeHihcWk7epGyu1xjx++K0/UYb/6izV6eiKDaz6A+a3BT45M/IMu2HaaPKb29\nFe53uTY8x/KG3+rE1D3vs8EY6FKkzCU97X2Y/5W2fVE6AFQM0hnuC/4WLrIOCvCRDZuUvb65/TO2\nvkBXCVi9h70WvjC94uOOxmf0rv9S9uGHnWx8XKYeU90vscEh0n83ZXcZ1cj4pBfp/Zf29QuWAFlv\nhgcu1VkayJuqejupIoQQQkjdgJ//CCGEEEJIwvBNFSGEEEJqDwegsmG8quKkihBCCCG1S8OYU9Wf\nSVXabj2VbfPVJkYiWZgrD+yj7Kxl4blvyw9aFOoTxNrDPUFj50zjE1lZquxweSxQeorNMJy5Mvxr\nsC9GblRq75SCr1cqO5HMwNMeszW3i97SEupGo380Pjnjw7fd9F3tVOmsNDtS3FXZ0WkzjE902TLT\n5rN5cH/TtrqrvoZ+EANgxeOR7l3s/ktm6oZvJxmfjcfq85h2hM2Kn/meFlWvPMtmDG/xj3CRs0/b\n+22//Gu/4ly7rxXn6mMuPt9mHnfjtZh96UVWFL/L9Tqrd0VAZnafgkdmmzb/mIOuad5z+vwE/b1I\nb6dF8Bt7WOExvMoLWQvtlhb9UmDaMm/SgR4dRttAGMwPEOp7ZHyo76lfn+9jfNIz9BkpOqn6YwMA\n0j/RfXX7B2Qw/0mP8fIWVqSf9uU0ZS+80ga9dHpXZ33PnWX/IviZ8rscYvs1GPoYNx1hA2P8+ynS\no5vxif44WfsYD/vcXn66za7f8U3TFIp/f0ffDg9AIjWn3kyqCCGEEFI3aShCdU6qCCGEEFK7NJCM\n6oz+I4QQQghJApxUEUIIIaRWEZecX433L3KPiPwsIqUislBERopIi234HyEin4rIchFZJSJfiMjA\n8H6m4Cu5HGnh9pFB2/SZf70VsraYqgWXQdlp/ay/vrgSAEoe1CLv7pdZ4d/6E3UW76xFm4yPfFWD\nzOcBWbSDBMs+adlaYFm51gpbl76txf6bfrDjrfM/5ym7Ys4845MI6W1a6+0sXhK6zsajrZi98TtW\n1Owj6fordyKZrteebIX82S/XTOC5cNSuyi48/pfQdYKE6lOu1tm3i8+zWbxrwrwb7b1S3qtM2V0C\nqhHM/rMWwLb/dLPxSf80PPBD9tpd2WmzFhqf6PIVodsZvVAfo58xGwDS9tBj/P0PXjY+Qev5LLlE\nn7PWD1uRvr+vykm/Wp/GjZUtTWy28mgCgvsg/Ptl7pHWJygowGfWS72V3fmUiTU6nll36fHS+fpw\nwfumI22gRb/b9Zia3M8GnvhVHVqPsYFCFTNnKzu9rRW8VyxarOyV79oM7y2O0sL5NafaZ0fuCztP\nHO5n2/968UtYs3lJTWO5akR2TnvXf8AlSdnWZx9dN9Y5Z6NHQhCROwG8BmAygDwAzwEod84dsxX/\nUwGUARgDYB2AcwHcC2AX59xW//BRU0UIIYSQVCEiIlVntyucc6H/6nLO3VDFXCYiDwJ4dRv+L3hN\nj4nILQD2ArDVSRU//xFCCCGk1hAA4lxSfgBaA5ha5VfTV2CDACT82lVEdgfQEoAtbFkFvqkihBBC\nSO2SrMrtwBIAB1Wxw7UBHiJyAoDzARyYoH8BgDcA3OecK9mWLydVhBBCCEkVos65aeFuwYjIUABP\nADjGOTcuAf9CAB8B+BDA9WH+nFQRQgghpFaROhAUJyJnArgfwNHOua8S8C8C8AmAUc65PyS0j1SM\n/uuwW4674jUdXfd+r7ykbHv+G72U3f7egIICXrRd9OC+xiUyRk+AI3m5xmfao52V3TUgwiq9qKOy\nK2bPNT6bvFIkftkEwEaTmZInANx+OspHvq5ZlM/iK3RkVLunfzY+0dVrwrdzud5O4ciA4+naQZlB\nEVY1wT8XQM3PR7LwI0qbvm6jV9N676LsyolTjE9tUTZkH9PmR9j6kUgAUOGVU0nvYMtzVMybH7r/\nmozfJZfayMfWf9PHHD3QjoVoIy1HzZpsIxYrFnoRZwHP2kVX6v23nGSjhGedYJ9BxReER+35zL3F\n9rXjbTpq0b/nACB3to6WXdPJ/lu8zYM2+jGMSL6NLp53lo6YbP+4la/4kculv7PRdsNv1vVcXupZ\naHz80mZpa9cbn5pGN4cRFHHb4Y7qn8Mg/PvHbdRj6puVr2NN+dIdGv2Xk93e7dX/oqRs69PPbqhp\n9N+lAG4BcJhzLjR0WkR6AvgYwDPOuT8muh8K1QkhhBBS33kQQA6AMSKybstvy0IRObWqDeBaAO0A\nXF7VP55qYavw8x8hhBBCahG308vUOOe2+XYunkLhhSr2mQDOrO5+OKkihBBCSK3SUAoq8/MfIYQQ\nQkgSSEmhem6kpRuQdZRqq1yvRYaR1gVmveiSpcqe9g+rdSs+68ckHCEw80Vd6qLbCFvCo3JCeLmS\nRPDFtq0fChc8+qVbgMTKt1T8xivjE1CGZONRujxG43cTENWmBQQEVEZtWwiJiJwrD+xj11ujxZw1\nvTb++QESK9Wy7n+12Datwt6XS/vpfwN1fXGl8alskqHs0q7NjM/igXrb3S+2gneIflNeERCMkUi/\nfBIpNeSXgAGAtv/QonP/fk90X00/14EM0dLS0O0EkZaVpY+nrMz4RHr1ULaU2mPe3KWV3u7n42t0\nPEFi7dw39LamPmRLXBUP13rdWXfua3yy52g7c7Udm0u8GIVuVyanLIv06WXa3Hgb+FKjbfvlqyoD\n/hYm8AyKtNTloxIpqRQU1LHg2HJlt3srw/hkjdL3aqRHN+MTnTp9m/v+zn2CUrdyBwvV27m9+1yY\nlG198sUfayRU31Hw8x8hhBBCag8HSPKSf9Zp+PmPEEIIISQJ8E0VIYQQQmqXFJQa1QROqgghhBBS\nuzSMOVVqTqpcZWWoULUygYzdQaL0fuP1h9+xfewX0tELdebzg8491/h0+Z0WgM6/xopvC20CdUMi\nglhfmL7+BCuCbPqGFjgGidJLHtbrdb/UCswTESf7wnQ/4ztgs77PvNOKirtc903ovvxtp/+yxPj4\nQv6MtfbubvF0zQTCSy/U2w4SmLf8VNt+lnwAaPaqFvZOe8rqMJuP1WMx+vPU0OPLDoi72NDKjkWf\naU9pwX3x2eEBHDO84AzAVgm49P6Xjc+T7+hs/5lr7DlMRJjuZ5NP22xFHDURpvtC5FijF1gRcF+W\nFeUoO/Pf9nqlJZApPhGaf2hrvEY36eALX5QOAPOv12Oh292Tjc+0x/X1Car84NKsUD6MzYfZ50LW\nlMXKrggQpac1bqzsyo0bq71vAHB99XjB9zZ7eyIkIkz3BfevPnC/8Tmj4wHKTu/UwfjMvdqrMnGv\nDUryK1q0f3W2PpYlVgBPkkdKTqoIIYQQkjrUhdp/OwJOqgghhBBSuzSQSRWj/wghhBBCkgDfVBFC\nCCGk9nAAGkieqpScVEVbNEXpYVoYmVuyTtlrim0m6fImOols/t+tEHr8GVpQuOG4bONz5P6dlJ05\nywpAfQpHWEGhL3jf78rzjU/2y9XPTLzwQNuW0UdnSj7uSNv3Ba944tsEXtdGmjc3bdFVq5Tti9IB\nQPrp85yIKH3dUCvAb/aaFuAH5YS//ZKPlf2304can5n36PPTbI5NOFzwqL2GflvQMfrnqGL23ICj\n1BSfEy4MD8qKn9ZFj83otBnGJ3dmuWmrEZ/o7PXdL7OC4anP6UzsTxaHbzbvufCxEETlxCnKXj3Q\nCvIzW+rnRt6r44yPK9fVD4KEyG5/LcoXr1oDAJQ31fdTVkCVh8276nMYGWOPJ4j1J+px1vT1gKz4\nHodMXmvaHhujM4YHCfl9YXpQ1YJVx+tAgo3N7bnPWqb3lTvenrOKOfOUHZQxXDbr8btmn7bGJ5Hn\n5uyr9D1edFLoKoFEvWoDQdfQzwJ/dt9jjU/5bzvrhg/tM6Dw3nmmzafNX/UzyXmZ/bFhutS1AAAg\nAElEQVR8x3+gErgGo6ni5z9CCCGEkCSQkm+qCCGEEJJC8E0VIYQQQghJlNBJlYj8LCLrqvw2iIgT\nkb4icrqIfC0iq0RkuYi8LyK7e+v3F5HvRaRMRGaIyLDa6w4hhBBC6hzOJedXxxFXzYMUkTsAHOec\n6yUiFwGYBuBrxDTCNwM4C0BX51yZiOQCmA7gPgAPAPgfAKMAHOqcq5kaFUD/3o3d96N1ttnBhVo4\nuvRiK5SMbNR9zX8q/BCCspO7iBY4LvyNDWsoPl9nFS//rc2QnREgRPSZdacWULuiDcan7SuNlL22\nvf2qW/CIFVnXJSSjkWlLy9HBBtEVK43PmmFewMKLVhSftocWalZO+MX4+FmzZ13cw/h0usNer0i7\nNspORIQexOw/6+tc9Ec7NvebqAXUX/e256wmrD3JZsMuK9D/3ip81mba9rOKrx5sz5kvGPYrBABA\n2W92U/bmHPtvvZwXw4XH827yMuevsz6+iHfZ+fsan7U6gTi63TbJ+PgZ3n3hOGDF4xtGdzY+TQbP\nsgdZSyy41j4T292TwHMhzQtgqYwG+4WQ3q5Q2W3esKL4RUc3UXZ02TJ7OHv01HapzWZf2keL1wff\n9rnx+cdnOqKn+6VW7J/epUjZbuUq4xNNoHrHoqv0uZ901aOh6/h/0wBg2uO68sQuf7SBKFNG6HG2\ny+XTlP3NurexpmK5jcSpRXKzCt2AHrbySE34cMLtY51z9g9qHaFan/9EJB2xSdMTAOCce8Q595Fz\nbr1zbhOAPwFoA2DLqB8CoAzACOfcJufcR4hNqs6r7oGKSL6IFItIcUW07s9WCSGEENKwqK6m6jgA\nuQCe28ryQYhNorYUouoNYLzTr8PGxduryyUApgKYunR5zf6lRAghhJAdjziXlF9dp7qTquEAXnHO\nrfYXiEgxgKcBXOWc25IQJRuA/250NYAcVJ+HAfQA0KOgZSTMlxBCCCF1hQaiqUp4UiUiXRF7E/V4\nwLJdAYwBcJ9zrurytYi92apKHoBql4p3zq1wzk1zzk1Lj+zQz8GEEEIIIaFU503VcAATnXNKzSci\nfQF8BuBu59wIb52JAHy1Xd94OyGEEELqPUl6S5UCb6oSSv4pIo0AnAHgJq99fwDvArjGOTcyYNVR\nAEaIyNUAHgIwEMDxAA7djmPGT6tbocubw1Vbd+jIjYK/2aiWSDcv+iagbETUKzeRM9GWUphydUtl\np68KP41BkX6n/LpQ2S/1LDQ+4snHul+12PhULNJtay63UT51nc0H72Ha5v5ed376wZ8an0N+p0tE\nBEUmLd1HvyxtOcG4mFIkHW+14yctv4Vpq2m0n48f7bf0QnsNX3tJ243PsQ+YZgt1oZ4mn/5kfJYN\n66Psgi9shFX21OnKrtjfRiLJV/pEZr8aXq6p9M02pq3ZYTpSdv05NiLPZ+bd1qfLdfqaLbgu/D5o\n9biNslz1qI6w8iP9gkikTExQpN/iBO7VgvE24jft8/HK3nT4XsYn8319PRovt+Mlva0XvbrIPl/8\neyq9fTvjMvMcXR4p6P7xWXR4hmmLrrJj0WfZ3rrsU/5TvxqfLO++/HTt/tanf7iMZMlvdBRh/lOz\nQ9cJou39+nycfuL/2H1dUaTs7C8WGp8ut+hr4TZtNj6NFunzOuUvujbUxtsbb/NYawWHlJgQJYNE\n31QNAdAYwAte+58R+7z3Vy+X1UAAiGuvjgAwFDEt1ZMAzt+edAqEEEIIIXWRhN5UOedeBvByQPvB\nCaz7A4C9w/wIIYQQUk+x6RzrJaz9RwghhJBaJRXSISQD1v4jhBBCCEkC1S5TUxfIkRZuHxmk2tx+\nOp+ofB0eYDjjXit27Xp1uGC48O3Zyi65pJPx6Xyd3k7pKbYUSIvvtCi0YuZs4+OT3qmDaauYMy90\nvUhxV92wdLnxqVyvBbGu3IogE2HhH/Q5K7zPilZ9oXH3p6xANjo9vIRHeof2yq6YNz90HRcgui45\nU7+0LT4noCTNLt1NWzRXl9XAt7akSVpjLQxN80riAEDF/AWBx1pd5l+vz337u8IFw6Pmf2/ajm+v\nv9gH9b28QJcRmn66Ff4Wnx1eiinSS5e3if48NXQd/5wCQOXGjcpe/NYuxqfNcVNCt+1TNsSWoMl6\nM1yYHvECYd4b/6HxCSpFkghGYN7JBt34Y3HFufZ5F9mk7bznwuWuJQ/Z8xFU4qUmRLxgkKDSVD7T\nHrXqkuIL7Ziu0fEkMDb9Mk/Zr4SXVArcl/dc8INnksV37hOUupU7tkxNk7Zuv6IzkrKtD369u06X\nqeHnP0IIIYTUHg5AZeq9wKkJ/PxHCCGEEJIE+KaKEEIIIbVIaiTuTAacVBFCCCGkduGkqg7TrAkq\n++qs0Glf6AzDzb+y2a9X7a9Fj41XhGv18maWm7aKBTrTbefrbOZbn6wlAdvxhOm+wBuwIu95J1qh\neuGDi5TtKiqMT3TaDGX7glAAWH+UPqdZo8LFp2dOnWPantbaTiOqBYAunpBfArI0+xnwA4Xrkep/\nwc6YY7M2F58TLhSXjQHC/SkloeuV3KHFyF2vskJWXwgeTWC760+wgmFfmB507suLWiv7+PbGxfDe\nJ6+ZtkNPOVPZHUfVTE3gi3/TdutpfCon66zZM27uY3w636DHVMV3zY3P5o90UEmjQ+349cn5xvrY\nO8ziV2cIwu+r308AiOT55VMDMp8HZUL3yB9pReiRHF3bvvREO6bSyvUfw0RE6RuPtuLxxu+Ei8d9\nYXpQ36Or1yh7lxvtveLXVYge1Nf4RD4bp+ygDPzdDtfPzQ0HGhes2E3/Hcl+xfqUPKjF7N0vs88A\nX5juC+ABwHmxIDkv2u2UPKyvYfdLkhNEQBIjNSdVhBBCCEkd+KaKEEIIIWQ7YfQfIYQQQgipDnxT\nRQghhJBaxAGuYRT/qzcZ1bH37tr+/iez3vQHtPCv2+VW5Of79Lj5F+MTLS1N8Eh3DmtODcje/p4W\nA0dXrTI+6Z5YPCjL9+w7dFbmohut+LX8kH7Kzvh4rPFZcokWhW62elR0/LcWpFY2sf8G8DPnV35i\nhfwZF+vs2xs62p01XrROb2eSFQzPvcUKWTv+yROBVvoSWYsvJAWA3F+1AnX8jY8anyMPOE7ZFQU5\nxicoo3ttsWaYHme5z9v7ad1Q3ddmrwWIZgfsocz0pfb+Kitupexef7L9LNlrk2nz2XzYXsqObLTX\na1VxprJbPmnHeCL3QSLBB7Pu1NvxxfaAPc+APdd7jjcumOBp+QdPtud19G4BYygJRJrbIAH/mbPH\nOBsoNKlvcv4eTf+n7ny30wJOUCJ4f1c2FjQxLhnrdNjCgv+x2f473h5e2cBn9Wk2A37eP8Mz3m84\nVgcJNHlbBwjslIzqma3dfm1/l5RtfTDngTqdUZ2f/wghhBBCkgA//xFCCCGk9mhAQnVOqgghhBBS\nu6Sg1Kgm8PMfIYQQQkgSqDdCdT8z8JS7bVbmHk9vULb7wYrZfRZebcXJHZ7RglNplGFX9NoqZtms\nzL6YM0g8vuIcLVZM32Cv1/pCPTfu+Oo8ezzeq9eKefOtTwJED9aZiSNjxm3F879Me2Iv01Y8/Ae9\nnV49jM/co/OV3e5uK/ZMy87Wdos841OZ3VTbAVmrk0WkVSvTFl2mM7inF3U0PhWz5yrbF/sDwIKD\nGym7z0FTjc/Po/S49zPyByGf2mz2af+7UdnvTfrE+Awu3NO0+fj3ZSJBHntNsOLxt2ZqMXu7IT8b\nnw3HeQLdt8IzeK8+PUAM/JwWA0d6dDM+0anTQ7ftk0iVhyD8ew4AxLuf0z63QuySR7zM2heFZ9Ye\nvXCCafOv88x77Dnrcq0+Z36AAmCDFPyxAdjxEfRc8DPwB7H2ZC3uz37ZBlH4LPuX3VerY/S+Ejk/\nke5djM/i+/Xfgw0/5hsfX8yetkdAZQEvgGbOq7sbn07/u+2/aztFqN6otduv4KSkbOuDBQ/XaaE6\nP/8RQgghpBZpOAWV+fmPEEIIISQJ8E0VIYQQQmoPB6CyYST/5KSKEEIIIbVLA/n8V2+E6juSle8W\nK7vFUdNqtJ1pj2lhbfFFNvO4ZOh5r9sUnjW69Hc2A3POi1qoueoMKzZt/kx4tt5EiLQuUPbyw7oa\nn0br9b9ams7fYHwSyQ6e3raNsuecbkWi7e6pfjZjSbf/3nAVFQGe4UTytUA5uiJcnLzpwyLT1uSa\nLGXPOt6K8jvdovuakHC+vRWqB2XT91l0pQ7iaPuX8PPsnwsAmHe2J64fYbdT8pAnun6+zG7cq6Jw\n40wrKr6jixYV+4JmIDFRcyL4wvTSowKetV5AS3nPgKCBABG6T9A9X5mutci+AL+mBI2X2ad1Unb7\nu6p/zyXK/Ov1uAvaV3onXVmhYo4N3knvUqTshYcVGp+CR/W2KwbZAJL0T/Rz++9zvzQ+A0dfoezi\nc38wPomw8kz93G7xdPWv6U4RqmcUuP3yT0zKtj5Y8hiF6oQQQghpwKTgC5yawEkVIYQQQmoR12Ay\nqjP6jxBCCCEkCfBNFSGEEEJqDwc4x+g/QgghhJDtp4F8/mtQkyq/3MR7Y143PifOOETZK2/rZHxa\nHGWj9HykTy9lu/G2rEbxBbqMxsy7A8o/XKejO9I72+NxXgSRH+kHANJ/N2W3fH+G8dn4Wx1QkfHh\nj8Znzu36GDvdbKNPyvrrY2z+rPWRDF1yxfWxJSISoWLRYmXnTbfnxz9nbp2NHKvsqCMWpcL+qypt\nzkLTtqmvHlPpn9qxkUi034z7dPRWs3ftl/nMCToSqZMNbkO5dw3n929kfNp9pqOc3JS5xicRCj9f\no+y0BMqOBJ2L1t9vNG0+3S/VJU78CDAAaO9VpfEj/YIIivRL672LsmcNaW58uj45W9kVC+zYSKQE\njU909w6mLRGNRtA9v/5EWyrGJ1KsI3N/vaSl8el+iT73m7q3Nj4dPtBjIejPZ9nx+nj8UjsAsLF5\nRNm5M+zY8KP9/GctAFR4z9ug6Mi8d7RPqwm5dl/fNlP2wuH22THzT/qZeLatQoViVD/ab8b99ph9\nsffdM2xJmvv20OtVrl9f7X2TmtOgJlWEEEII2Qk0kOg/CtUJIYQQQpIA31QRQgghpPZwjmVqCCGE\nEEKSQgP5/JeSZWpyMwrcvi2HqrbokqVJ2fa0R73SMRd+b3wiu3TX+85ubDf0vRUQ+mz+SAuoGx06\nJ4EjtGw4Vh9zk7ftMfti7fnH2VIT7Z6ZouzoqlXGZ9MReyk78z0rwFx6oRYR+6UeAGD0Qq2yHlwY\nLir2txu07d3G2i/ab4/R5ydnuq3Q0Oa1qcoOElSXPGyFv7lTtbB2fTt7P3W+Xgv1fSE0AGxopwWx\nQed1R5Leob2yK+bND10nLSvLtE27cw9ld7s8QBi+567Kzv7bEuOz5oAVoftfPlwLhjPX2GuxKVdf\n+5ZP2CCKiCe4X368FUJnLdMli4KuV6uvdRmhZfutNj6zX9Hnp+gkW5rJf94AQHRKifbp1tn6TJ9l\n2mqLygP0/Zv2pY2i8J9BFbPs884vcRX0XF94tX4OFN5rny/+s2L1HrbEVJvP9bNiXXv77Oj4qi5v\nE1Tuxmf2n23A0X6HTFb2TyN3Mz7Np2lRftoX4eWJgojkacF95XpdAuzb8g9QWrlix5apibR0+zY9\nOinbGr32GZapIYQQQkjDxfHzHyGEEELI9uIazOc/Rv8RQgghhCQBvqkihBBCSO3h0GAyqqekUD1H\nWrh9ZJBqGzn3S2Wf2/EAs97mwVrbtjHfzin9zMSbDt/L+GS+r0Wpbt/exke+mWjafBZe4wkuR1jB\npc+yC6wIstVjWmzrC20Bm9laMjONT8nftWC427CaCSUTIW2PnsqunPRr+EoD9jBNi/fVAu82f7Xn\n0BfxBgl4F1+ur0W7F0qMz4a+Nlt7o9E26/yOYtORdmxKVNuNPrAC6rm36r52vDV83K08y467Fv+w\nIu8w3P42ICGyfrOyKyf8Uu3t1pT0NjY7+KxzdZbxDn8KPz/JIrJrsWmbc6zNct7pKT0+o8uW1Wh/\nmw/TYyhovPgEjbvMf+v15t1kg0r881jxm37GZ2NLXR2i2as2sMFfL6iKwZphAdnIPXKft9v2WXG2\nHvf5fw8f85H8FqYtkaoKNcEPEACADL9CQkG+Mr+Z+TTWbFi0Y4XqafluQKPDkrKtDze9WKeF6vz8\nRwghhBCSBPj5jxBCCCG1hgPgGsjnP06qCCGEEFJ7OAe4hpFSIfTzn4j8LCLrqvw2iIgTkb7x5aeL\nyAwRKROR70Skn7d+fxH5Pr58hogMq63OEEIIIYT4iMg98flMqYgsFJGRImIFcHqdw+LrbBCRySLy\n27D9hL6pcs6pdMIicgeA45xz40TkAACPATgewOcALgPwnoh0d86VikgugPcB3AdgIID/ATBKRGY4\n56qvct1CVmNIT53l+PAftH3gDzPMav/3RiNld3p2pvHx8+76ovQglvVtatoKEuhdIsJ0n2EXjTZt\nox/TwnRflA4AkV49lD313ObGp9swLdxM262n8alsps8hvg3IAN2qlbJdWZndjidMl3Q7FF2FdzUC\n9tUmXGuKpQe1UXZ+gFC9zQPetQjIUJ2IKH35eVbQ3fLJ6otbExG2NvnMCror169X9urT7PFkz9Kv\n4WfebX26XKePOXt+ufHxr9niC/Y2Pq0f1uc1epvtV+TY8GzpPkFC5PQNul+LjttsfLqdpoMvKtfb\nsdnho3XKXnpRQCb/R8Lv3Uun6zH+UDd7P/ksHGRF6e3vsvuKmhaLL7IO+if0yj3124PuH1ifeX/U\n/W97kM2uH/lOi6ETEfeXtc4wbS2+0BnLV55ir3POS/qmN/1EYoLyRMhcG/7JatoTWrhfPLxm1RBW\nnOuJ4keG9yHjZ5uV3lTC8J4lzm2q/sElgTrw+S8KYBiAyQDyADwH4BkAxwQ5i0gXAG8COA/AqwCG\nIjZ/6eWcm721nVRLqC4i6QDOAvBEvOlcAG865z50sSt1L4CNiE2yAGAIgDIAI5xzm5xzHwEYFT/I\naiEi+SJSLCLFroG8RiSEEELqBa4yOT8gsmUuEP/lh+0aAJxzNzjnxjvnyp1zywA8COCgbazyewBj\nnXPPO+c2O+deADAu3r5VqpVSQURORGx2V+icWy0iEwA845x7oIrP2wBmOOeuFJEHABQ5546rsvwK\nAKc55/omvOPYercCuCVulgGYsnXvOkMEQGsAS5DYPy5TDfYv9anvfWT/Up/63scd3b9OzrlW4W7J\nQ0Q+AGBfw9aMPABV857c5py7tQbHdC+AAc65gVtZ/haA2c65y6u0PQigg3NuyNa2W12h+nAArzjn\ntlQGzQawxvNZDSAnweXV4WEAL8b/f4VzrvrfDHYwIlIMYCqAg5xz03b28SQb9i/1qe99ZP9Sn/re\nx/rePwBwziUnSRViX60AVH07Ve25gIicAOB8AAduw21r8xdbYb0KCU+qRKQrgEEAqn74XQsg13PN\nAzCjyvKigOVW9BNCfBJV5ydShBBCCKkdtncuICJDEZMwHeOcG7cN163Nb7Y5f6mOpmo4gInOue+q\ntE0E8J/PeCIiAPrE27cs91O+9q2ynBBCCCGk1hGRMxGbUB3tnBsT4q7mN3FC5y8JTapEpBGAMwA8\n7i0aCWCIiAwSkUwAVwPIREyMjvh/m4rI1SKSKSKHICZifzKR/dYDVgC4DfX3DRv7l/rU9z6yf6lP\nfe9jfe9fnUBELkUsE8Fg59xXCazyHID+InKKiDQSkVMRm1Q9u839JCJUF5GTEZsIFTrn1nnLTgdw\nK4C2AH4CcIFzbmyV5XsBeATA7gAWAbjZOfd8Ah0ihBBCCNluRMQhljVJ5ZRwzjWLLz8VwBNb7Hjb\nYQDuB9AFwEwAVzjnPtzmflKxoDIhhBBCSF2DBZUJIYQQQpIAJ1WEEEIIIUmAkypCCCGEkCTASRUh\nhBBCSBLgpIoQQgghJAlwUkUIIYQQkgQ4qSKEEEIISQKcVG0HIpImIl+LiBOR9lXaTxeRGSJSJiLf\niUg/b73+IvJ9fPkMERm2449+24jIISLyrYisE5HlIvJolWX1oX9tROQVEVkmIqtE5FMR6V1lecr0\nUUROFpEvRKRURCoClm9XX0SkQETeFJG18fN1j4js0GfHtvoY79/X8eu4XETeF5HdPZ863cewa1jF\n757488Y//pTun4h0FZFRIrIm/vtWRDKqLK/T/Ysfw7bGaCR+TPPix/iTiJzo+dT5PpIEcM7xV8Mf\ngKsAfAzAAWgfbzsAwHoAv0WsZM81AJYAyIkvzwWwDMC18eWHAlgHYN+d3Z8q/ToIsWrcJ8aPsTGA\nvvWlf/HjfBPARwCaA2gEYASAeQAk1foIYDCAUwCcBaDCW7bdfYmfpzfjvl0ATANwbR3q40Xx424a\n78MdiFVvyEqVPm6rf1V89gYwCcBCAMOqtKd0/wC0ivfp1vjxRQD0B5CWKv1LoI+XxvvYA7FnzHEA\nNgPomUp95C+BcbCzDyBVfwCKAcxArGB01UnVswD+WcVPAMwB8Pu4fWbclio+/wTw9M7uU5Xj+QbA\n3VtZlvL9ix/TJADDq9g94texZar2EbHJsP8w366+AOgcPy9dqyw/G8CsutLHAJ/G8WPe8g+BlOnj\n1voX/0P7E4B9AcyGnlSldP8A3AXg222skzL920YfHwLwkte2CMCJqdhH/rb+46vDGhB/5foPAH9A\n7I1OVXoD+E/tQxcb/RPi7VuWj4+3b2FcleU7FRFpiti/iNNFZFz8c8pnItI/7pLS/avCvYgVA28l\nIo0BnAfgS+fcctSfPgLb35feANY452Z4y4tEJKfWjnr7GASgDEBJ3K4PfbwVwKfOuW8ClqV6/w4G\nME9E/i0iK0VkksTqsG0h1fsHACMB9BKRXeOfAk8EkA7g/+LL60MfCWIXlVSfywAsds6NEpEib1k2\ngDVe22oAOQku39k0R0xrdwqAwwH8itjk8T0RKUbq928LXwH4PYClAKKIffo7PL6svvQR2P6+bG05\n4j6lyTnM5BAfo08DuMo5tzbenNJ9jP+DZihib8WDSOn+IfZ2eC8AJwE4FrFJ1jsiMsc59yVSv39A\nrBjvFwAmA6hErKjvac65pfHl9aGPBBSqVxsR6YaYlurirbisReybd1Xy8N9BH7Z8Z7PlD9HTzrlJ\nzrnNiL2ezwCwH1K/f1veNH6M2JuMXABZiOlwvhCR1qgHfazC9vZla8u3LKsziMiuAMYAuM8593iV\nRSnbRxFphNgk8SLn3LqtuKVs/+KsBfCNc+5151yFc+4jAB8AOKbK8lTuHwA8CqAPYp/xGiGmmXpc\nRH4bX14f+kjASVVNOAAxYeVkEVmO2CtYAJgkIhcCmAig7xZnERHEbqaJ8aaJsP/i7Ftl+U7FObcG\nMc2G8xfFfyndvzgtEHu4PeicK3XObXbOPYXY/bAv6kcft7C9fZkIIFdEunjLZ8fHSp1ARPoC+Awx\nLeAIb3Eq97EQQC8AL8Q/xS8H0AHAYyLyQtwnlfsHxD5H+88bVGlL9f4BQD8Azznn5jjnKp1zXyP2\n5uqI+PL60EcCUKhe3R9ibzXaV/kNQOzm7w+gGWKTrnWI6TqCoq3yEIvyuDq+/BDUsei4+LHNB7Ar\nYp+Ir0FMVJlbH/oXP86pAB5GLGIsHbGInc2IRdWkVB8Ri5ZqjFiEX0X8/xvjv5GM29UXxKKOXkfs\nM8OWqKPr6lAf9wewCsC5W1m3zvdxG/2LQD9v2iP2qfoSAPn1oH+C2DO0HLGIuDTEPv+VbTn+VOhf\nAn18ArFJVLu47z4AViD2CTBl+shfAuNgZx9Aqv8AFKFK9F+87XTEvqFvAPA9gH7eOnvF2zfE/Ybt\nyGNOoE8C4HYAixH7bj8GwJ71pX/xY9wFwL8BLEdMqzAWwLGp2EcAZ+C/bxKr/oqS0RcABYiFcq+N\nn68RiIe714U+xsdnZfyPUNXfwFTpY9g19HxnBxx/SvcPMc3YVMTSf0wGMDSV+pfAGM0B8DiABfFj\nnA7ghlTrI3/hP4lfLEIIIYQQsh1QU0UIIYQQkgQ4qSKEEEIISQKcVBFCCCGEJAFOqgghhBBCkgAn\nVYQQQgghSYCTKkIIIYSQJMBJFSGEkAaNiDQVkRkiUpGA7+lx3zIR+U5E+nnLh8SLQq8TkakiMtRb\nvo+I/J+IrBaRJSLyTxHJr7L8HhH5WURKRWShiIwUkRbV7M8f4se4VkRK4tU+yA6AkypCCCH1FhEp\nEpGwhIx3A5iVwLYOAPAYgAsQKz7/BmLF5nPiywcAeB7A5Ygl/PwDYiWG9okvjwB4F8DXiJU72wWx\nUkQPVdlNFMAwAPkAeiOWRf+ZBLq65RiPAXAbgFOdc9mIJf+9V0QOTXQbpOZwUkUIIaTBIiL/A2Ag\ngHsScD8XwJvOuQ+dc5sA3AtgI4Dj48uHABjtnPvUxWr8vQPgKwDD48tzAbRErGB9uXNuJYBXEZs8\nAQCcczc458bHly8D8CCAg7xjPldEJovIGhEZX6UwMwB0AzDJOfdtfHvfAJhUdR+k9uCkihBCSINE\nRLIAjARwDmL1B8PojVhJKwCAi5UkmYD/Tlgk/qtKGuLFkuOTqCcAnC0imSJSAOBkAKO2sc9BqFKs\nXUTOBXAtgFMRe1t2I4A3RaRb3OVlANkisr+IpInIQADFAD5IoH9kO+GkihBCSEPlLgDvOOd+TNA/\nG7FaoVVZjdinPiBWT/QwETlURNJF5HjECn7nVPF/DbE3WusRK25eGT8Og4icAOB8AJdVab4MwO3O\nuYnxt2HvIVb/8uT48qWIFV4eg1iR+DEAbnHOTU6wj2Q74KSKEEJIvUJEHo0LwVcj9ukLW+z477q4\nPupwADdXY9NrEfuEV5U8AKUA4Jz7DLFJ0F8Qm9ycgdibo+XxY+gO4H0AdwBoEl93BgLeIsUF7iMB\nHOOcG1dlUWcAj1TtD4CDAbSLL78JsbdYewLIQOwt2hUicnY1+klqCCdVhBBC6iSTI4UAAAHqSURB\nVBXOuQudc3nOuTwAe8Tb8qr87gZwCIAOAOaKyHIAbwOIiMhyETl6K5ueCKDvFkNEBEAfVPk855x7\nxjm3u3OuhXPuWAA9AHwWX9wbwErn3BZN1RoADwMYKCJ5VbZ7JmKfCY92zo3xjmEOgLO8/jRzzl0Q\nX94PwBvOuV9cjJ8BvAVga30iSYSTKkIIIQ2RvwDojtgbnT0R01VF4///8VbWGQlgiIgMEpFMAFcD\nyERcExX/5NdXRCIikisif0Js4vbX+PpjAeSJyLC4TzaAiwHMdM6tjm/jUgD3ARjsnPsq4Bj+CuBW\nEdlTYjQRkQNEpGd8+VcAjo+/FYOI7ALgOFTRgpHaI31nHwAhhBCyo3HOlSL+2Q4ARGRZvH1+lbYb\nEEtN0Cu+7Mt4zqeRANoC+AnAEfFtAUAEwJOIvZ1yiOmZDnDOLYmvPyuuk7oVwN8Qm8T9AODYKof2\nIIAKAGNiL8L+c7zN4v8dKSKbATyN2KfAcgDjEEvfAMQiEnMBfCQiLQGsREzHdXcNTxWpBhILXiCE\nEEIIIdsDP/8RQgghhCQBTqoIIYQQQpIAJ1WEEEIIIUmAkypCCCGEkCTASRUhhBBCSBLgpIoQQggh\nJAlwUkUIIYQQkgQ4qSKEEEIISQKcVBFCCCGEJIH/B+0rP3LvNV/wAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try to improve the visualization by rebinnin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 16.0\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 64 s" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "dynspec.rebin_time(dt_new=64.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 64.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(700, 850)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xmc3FWd7//Xp6p6STpJZ9+BkI0lSCAEBBSBAVFxQxxm\nA9f7G2HGwTuLzJ3rLDqO3hkQx4uMI+B4RxlRYNA4Iw7IqoNsgawQIAkhCSH73p100klVfX5/VAU7\nbdJd1d9Ppau63s/Hox7QVfV916leT875nHPM3RERERGRZFL93QARERGRgUCdKhEREZEA6lSJiIiI\nBFCnSkRERCSAOlUiIiIiAdSpEhEREQmgTpWIiIhIAHWqREREZMAzsy+b2WozazOzLWZ2n5kd38Pz\n321my8xsn5m9aGaX9fYa6lSJiIhIPfg34Ax3HwZMAV4H7j7SE81sKvAj4O+B1uJ/55nZlJ5eQJ0q\nERERGfDc/RV331380IA8cNJRnv4xYIG7f8/dD7j7XcDC4v1HlQlrrYiIiEgFmdkoYFSXu7a7+/Yy\nrv894JvAMCAL/OlRnjobWNDtvoXF+4+qJjtV6aEtnhk9InFO09p9Aa0BS1lIjufyITnVxJoaQ3Jy\ngxpCclK79obkyNF56+CQHNvdEZIzUFkqZqLB89X1e8eamxJn+P7OgJYMTPvZywHvjPmjVaJ3Xdzi\n23fkouJWAdO6fPy3wBdKvdjdvw9838zGA/8DeOEoTx0K7O523y5gVk/5NdmpyowewfjPX58456Rr\nlwa0BlKDmkNycm1tITnVJDN5SkhO2+xxITmD5z0bkiNH1/n2s0Nymv7ruZCcgSo1uCUkJ7+3uv6h\nkZ46I3FG7uWVAS0ZmJ71R4/5a27fkWP+z45aD16W9ISV7Rw+ZVfyKFVX7r7JzL4FvGZmx7v7jm5P\naadQS9XVcKDHP9Q12akSERGR2uBAnrAR0Zy7rwjKygAtwESge6dqCXBxt/vmAI/0FlhzmtZ0MPOT\nzyfO2f7J85I3Bhj5/54Oydl2bUx7Rt8e054IPij5UD7A0Be2hOREDUCnT0n+r2mA/MrVITkHLupx\nmr9kDY90LyEoX7WNMLX/9rkhOcMfifk9ntve/Xd336SGDgnJsQljQ3Lya9aF5GiUaSByct6/08xm\nlgL+ELjX3beY2WTgVmAN8MoRLrkTuMHMfhf4IXAVhU7VR3p6Ha3+ExERkXpwOfCime0FngU6gEvd\nPWtmV5vZnkNPdPdVwJXAX1Gorfoc8CF3X9PTC9TkSJWIiIjUhsL0n/dvG9zzFDpVR3v8LuCubvc9\nCDxYzuuoUyUiIiIVFVhTVdU0/SciIiISoCZHqiyTIT1yTOKcqALz1Oknh+RUU4F5lNzQmEL1zJ7q\n2rMoqpg2dcapITkRBeYABy+bmzij4aHki0giDb3nmZCcsEUOI5LvsQeQ3bQ5JCczeVJIjmezITmZ\nE09InJFdvTagJZAZH7OVS9TXqlY5Ts77d/rvWKnJTpWIiIjUjv6uqTpWNP0nIiIiEkAjVSIiIlIx\nDuTqZKRKnSoRERGpqHqZ/qvJTpXnsuR37uzvZrwpv/RIm7HWttzFc0Jy0o8vDMnxUSNDcrb80fkh\nOWP/6amQnPzil2JyLjwzJOdgSzpxRszR1wNXrop+dwFk31jf3004TESRedSJB+0zYxYVDPqP+i5U\nryc12akSERGR2uCg1X8iIiIiEepj60+t/hMREREJoZEqERERqRjHtfqvqrUMIn/GaYlj7MnFAY2p\nPlv/4LzEGWNui9mFOsre86eH5Iy7PWa379TMaSE5W98+NiQn6nSAYRPGJ86I2Vcb0ifFfM33zohZ\n5NB8//yQnF0fSf7zCZDpjPkjNeTe6vpZt7NmJc5448LWgJbAhH+MWZBS9xxy9dGn0vSfiIiISITa\nHKkSERGRmuDUT6G6OlUiIiJSQUYO6+9GHBMlTf+Z2Xgzu8fMtprZTjN7zMxmH+F5N5qZm9k13e6f\na2bzzazDzFZ1f1xERESk1pU6UvXPwFBgJrAX+BJwv5kd717Y0cvMzgHeA2zseqGZtQIPADcDFwDv\nAOaZ2Sp371t17Z59A7LIPHX6ySE5Y74ZU7RcTZp/ElMkHFUraXv3heSMfXxDSE5UcfiB6RMSZ6Q2\nbgpoCeSWvxqS07w8JCbMsNUx3zupX1bX78D06FEhObkFyxJnpM+LOTkBixldOXDZWSE5jT+LWWhz\nrDmQV6H6YaYD97n7Tnc/AHwbmAyMAjCzpuJ91wIHul17JdAB3OTune7+MDAP+FQ5DTWzUWY208xm\net3MzoqIiNS+XHEKMOmt2pXaqfoKcKWZjTGzZgodol+6+7bi418AHjvKyNNsYNGhEa2ihcX7y3E9\nsBxYfoDOMi8VERERqaxSp/+eBD4GbAFywDoKU32Y2VzgKuCMo1w7FNjd7b5dwLAy23or8H2ARpqq\nbEBfREREjsShJkaZIvQ6UmVmKeARYCXQCgwGvgw8YWbjgH8FPu3ue44S0V68rqvhQFs5DXX37e6+\nwt1XmLbXEhERqRl5t5BbtSuldzISOBG4xd3b3P2Au/9L8drfBWYBd5nZNjPbBhwHfNPM7ipev4Rf\nH8WaU7xfREREZEDodfrP3beZ2Qrg02b2F0An8FEK03o/Ae7rdsnTwE0Up+ooFKXfZGY3AF+nsALw\nQ8A7+9poS6dIDyl39vDX5drKGiw7qvzbjzbzWZ5Ue/XUim29LuYojTG3VddKxKgVStn1Mav2qk3q\niUWJM9JjxgS0BGgdEhKTX7MuJGfjp88JyZl0d8yqxlxISpxt750ZkjPmv5P/bI39p5jjZdIjRoTk\n1OqqvSj1NP1Xak3VFRS2RFgLNACvAle5+6ruTzSzHLDT3bcDuPsuM7sc+AbwRQpbLlzX5+0URERE\npGY4Rq5OynZK6lS5+8vAe0t87pQj3PccEPPPPBEREZEqpGNqREREpKJqocg8gjpVIiIiUjGqqapy\nnsuHFZlHyA2O+TQ2rtkakhOx33xUgbmdOSskxxclP7oCILdte0hOtUmPGxuSk9u8JXnG1pjv49ys\n40JyGjZsDskZf0tM8XNUgXn2kpijTw4OTYfkjPhuzO+MqCOXIuR27uzvJkiNqclOlYiIiNQKI+cq\nVBcRERFJxIF8naz+q493KSIiIlJhGqkSERGRilKheh1Iz5wWE/RQzG65+ebmkBxrakqcEbbzeFCB\neZS9H35rSM6wV3aF5LB+U0hMRIE5QGbK8Ykz9k+N2VE989iCkJyIhRsANve0kJzs0MaQnF3TY3JG\n3659mKWy3Ounpqo+3qWIiIhIhdX1SJWIiIhUXr5Opv80UiUiIiISQCNVIiIiUjGFHdXrYwynJjtV\n3jqYzgvOTpzTsuD1gNbEye/f399NeNMbV00JyRn/fzeE5Gy79ryQnIY9HpKTW7Y8JCeqcL7lh8+G\n5OTeSP71yqyprp+rKKkVMe/rwG+cHJJTbQXm6RlTQ3JyK18LyYlw4N3J/84AND74XEhO7VKhuoiI\niIiUoSZHqkRERKQ21NOO6upUiYiISEXlXKv/RERERKRENTlSZbs7aPppQOHfpInJMwJlxo8LyfEh\ngxNnjJu/N6AlcYasz4XkNN8/PyRn10diCueH/1t1FRt7NtvfTQi366MxX6vRD8UUUA/6ccz3YJTs\nJWeF5Kx+Z8wO7yf+RfLPc+r0mMUAzRvaQ3IIak9+6SshOceaY1r9JyIiIhIhr9V/IiIiIlIqjVSJ\niIhIxWjzTxEREZEAjtXN6r+67lTlxwwPyUmNGBaSk32xeooQ7dX+bsHhogrM97/vnJCcxr35kBxr\niCnu9ezBkBw8+Y7zfv7sgIaAPbUkJGf4nTGLAfZdNjckp3Hb9pCcqEUFmUcXhORMbI7ZfTxC59iW\nkJyGR2I+N1I/6rpTJSIiIpWnzT9FREREEnJHZ/+JiIiISOk0UiUiIiIVZORRobqIiIhIIk79TP/V\nZKfKmhrJTJ6SPGjrruQZQHb9hpCc1BmnhuTkWpKvKGtYuzWgJbDpvceH5Iz7wbKQnIa9MSumGp9Z\nG5LDoOaQmLbLzgzJabnv2cQZmZfWJG8IkA9aGUkq5l/IDQ89H5KTfH1lQdTxMlGr/wY/G3OMT8SB\nVNW2ai8TdCRa1N8aqZya7FSJiIhI7dDmnyIiIiIJOUa+Tjb/rI+uo4iIiEiFaaRKREREKkrTf1XM\nOw+QfW1NfzfjTVFHnwx6cGFITjqT/Mua3b8/oCUw+o6gwsqZ00JiMk/FFLznOjtDcqJEFJgDpIYO\nTZyR27U7oCWQHhZz/FOurS0kJ0pU0TJBBeZRckHH70RIjxgRkpPbuTMkp94LzB3I18nqv/p4lyIi\nIiIVVpMjVSIiIlIrjJw2/xQRERFJRtN/IiIiIlKWmhypsnSK9JDkRayv/8FpAa2BSTc+FZITtdOy\nZ5PvGp458YSAlkB2dczO47nlr4bkRMlfGLODeeOKjSE52Y2bQnJ8f/UU4NuI1pigKitUz7e193cT\nDhNWON8Q8+cku+b1xBlRBebVVvBeyzT9JyIiIpKQu2n6T0RERERKp5EqERERqaicRqp+xczGm9k9\nZrbVzHaa2WNmNrv42EfN7Kni/dvM7AEze0u36+ea2Xwz6zCzVWZ2TSXejIiIiFQXB/JYyK2vzOxG\nM1tmZm1mtsHMvmVmI3u55rPFPku7ma00sz/s7XVKHan6Z2AoMBPYC3wJuN/Mji/e/3ngKSAL/A3w\nkJlNc/cOM2sFHgBuBi4A3gHMM7NV7v50ia9/GM/lQ3ZJHv3iwcQZA5bFFBXu+a1zQ3KG3PtMSE6U\n1C8WheQkX1JQsO3a80JyGtuSL5cYumZfQEtgz+imkJzmtetCcqLk22MK1f1tZ4TkZJ9cHJKTmTol\nJCdC2+/F/N4Z9v3q+r0jieSAa4AXgeHAncB3gA8c6clm9gHgb4FL3P0ZMzsPeMTMVrr7w0d7kVLH\n46YD97n7Tnc/AHwbmAyMcvdvuPvD7r7X3TuBvwPGAycXr70S6ABucvfOYmPmAZ8q8bUPvcFRZjbT\nzGY6+XIuFRERkX5j5DwVcgPSh/oCxduoUlrg7p9z90XuftDdtwK3ABf1cMl0YKm7P1O8/mlgKTC7\np9cptVP1FeBKMxtjZs0UOkS/dPdtR3juJRQ6USuLH88GFrl7138CL+ytYUdwPbAcWH6A6ln2LSIi\nIkdX2PzTQm7AOIp9geLt+j426xJgSQ+P3w0MNbO3mVnKzC6gMFv3YE+hpU7/PQl8DNhCYQhtHfCe\n7k8ys5nAvwJ/5u6HxriHAt1PWN0FlLvR1K3A9wEaaVpe5rUiIiJS+zZz+AhT2Sd5m9mHgeuAC3t4\n2hbgPuBxfjUA9cfu/mJP2b12qswsBTwC/IzCVN5+4KPAE2Z2mrtvLj7vVOBh4GZ3v61LRDswpVvs\ncKCsoih3307xkzes59oyERERqSK5uB2ccu6+oq8Xm9lVwO3AB9x9YQ9P/Wvg94AzgJeBU4H/NLN9\n7v7to11UykjVSOBE4BZ3P9QR+hczuxE4D/ixmc2hMCT2d+5+a7frlwBXdLtvDj0Pu/Xo4PgW3vjk\n+X29/E3HPdh9AK1v2gdgMXb2tTUhOUPXbQjJidptvtq8+rWY753Jj+ZCcprvn584I3fxnICWwODV\nMTuhR1Vg+vnlViwc2YHWxpCcpgeeC8mxs2aF5GQXLAvJSQ0enDhj+I9iiu+jvnc2X5/87xXAuFtj\nTu841pw3p+76lZl9Avgq8H53f7KXp58F/NDdXyp+vMzMfgy8n0Jd+RH12nUs1k2tAD5tZi1mljGz\nT1KY1ltqZm8DHgX+8ggdKigUpbeY2Q1m1mRmlwIfAu7o7bVFREREkjKzz1DYheBdJXSooFD29CEz\nm1G8/hQKA0QLerqo1PG4K4CpwFoKU3CfBq5y99cobK/QCnzNzPZ0uV0A4O67gMuBqyjUUt0BXNfX\n7RRERESktuRJhdwSuIVCLffjXfsqhx40s6u7fkxhgd484OHi/T8Dfgz8Q08vUlKhuru/DLz3KI9d\nXML1zwHnlPJaIiIiIpHce55/dPe7gLu6fJwF/qJ4K5mOqREREZGKcYdcFdRUHQvqVImIiEhFVUOh\n+rFQk52qTIczdlHyI2bsYMyKqdaHY7bNimkNpEeXtMFsj3Lbyt7644j84IGQnCiZE08IycmuXhuS\nc/LNr4fkZNfHrLLk3NMTR+yaGnO8zKjHe1rtXLrMpIkhOdlszFqwqFV7By+bG5Iz6OVNITlRRy7l\nOzqCkqpHra7ak/LVZKdKREREakNhS4WwfaqqmjpVIiIiUlE56mP6rz66jiIiIiIVppEqERERqZhD\nByrXg5rsVKX2Zxn8yubEObn1MQWafvqMkBwW7AyJiSgyt6aYYuOtH4s5smT0HTF7xWbXxBSG7/tg\nzLZrg/4j+bEwkdKrNibOGPXM1oCWQOqMU0Ny2qcMCcnJNcYM7LeuHBGSw0PPh8REFZgPROnpJ8YE\npWK+d3IrVoXkHHv1U1NVH+9SREREpMJqcqRKREREake+TgrV1akSERGRiqmnHdU1/SciIiISoDZH\nqvI5vH1P78/rRdhu34teCYlJzzopJKdzXPLC3MxjCwJaAruDavjHR+2EPmZYSE5UgXnUrtgNQUXL\nua3Ji8x3ffS8gJbAoO0xJdSDfhzztbJMzK/LXLa6SsM733t2SE7zQ0tCcqrpFAbb1xmSE3VCRS2r\nl0L12uxUiYiISE0o7Kiu6T8RERERKZFGqkRERKSitPpPREREJCHtqF7lPJsjt31HfzfjV/K5kJjc\nSytCchobTkmcse89McWrk/475nOTXb02JCe9K2Y365h3Bc2rY76Po9qTam5OnDHqP18KaAnkp00O\nycldeGZITuoXi0JyrKExJCeqoLvpp8+F5HhISoxVX4lZLDHthpiTHKIWIeWWLQ/JkcqpyU6ViIiI\n1A6t/hMRERFJyrX6T0RERETKoJEqERERqRhHq/+q2+Bm7ORZiWNSHUG75S5/NSQHDyr1XJm8qNsn\nJ//8Agxe3RaSkw0qNiao2Dh9SsxW8bmXV4bkRMnv3584IzN+bEBLwBcsC8mptuH4/NnJF5IA2FMx\nO5hHWfvFmOLwKV9emDjjpFteD2gJ+KiRITn5xtr8UxtJ038iIiIiUjJ1n0VERKRitE+ViIiISJB6\n6VRp+k9EREQkQG2OVHXsxxcFFLEGFSFGFS2zcUtMzphRiSOa758f0BDIh6RUYe9/07aQmAPvmhuS\n0/iz50NyInjLoJCcfVecE5Iz6Mcx38uZCeNDcrJVVmAe5YS/idl9PGK5zoYPnhCQAmO/8VRITtpi\nRmmiTk441pz62aeqNjtVIiIiUjPqZUuFqhsAEBEREalFGqkSERGRyvH6KVRXp0pEREQqpp62VND0\nn4iIiEiA+h6pClqR4el0SE5q5IiQnINjhyXOyGxOngGw+92nhuQM/+/VITlRsptjVmoOXrYxJCcb\nkhIjt2x5SM6gmFNqwmQ3burvJlTE7mvODclp3hmzNq3lxeSf56hVe6mhQ0NyyEWtg65d9TJSVd+d\nKhEREamoetpSQdN/IiIiIgE0UiUiIiIV5XUyUqVOlYiIiFRUvWz+Wdedqty27TFBQTlRpYz2WvKM\nqOMQhtz7TEhONRViAxy89KyYoEcWhMRkxo8Lyclu2pw4I3PCcQEtAd+zNyQnt31HSE6Ujg+9NSRn\n8LxnQ3JavxfzMxqlmn7WX/nKKSE5M6+LOSpJql9dd6pERESksryONv9UobqIiIhIAI1UiYiISEXV\nS6F6SSNVZjbezO4xs61mttPMHjOz2V0e/6iZrTKzDjN71szO6nb9XDObX3x8lZldE/1GREREpBoV\n9qmKuFW7Ukeq/hkYCswE9gJfAu43s+OBtwHfBD4E/AL4n8B/mdkMd28zs1bgAeBm4ALgHcA8M1vl\n7k/3qdUtg/AzZvf+vF6k5sds2ezZaiqthFU3J98heeY/rAxoCey6dEZIztA1HSE5PLM0JKYhqMA8\nSm77zv5uwptyG5IXuwP4wQMhOZaJGZCP+jnPNVX/H4a+qLYC/AhRBeZRC1uq7feO/LpSa6qmA/e5\n+053PwB8G5gMjAJ+H/iRuz/k7p3AV4D9FDpZAFcCHcBN7t7p7g8D84BPldNQMxtlZjPNbKa7tvwX\nERGpFe4Wcqt2pXaqvgJcaWZjzKyZQofol+6+DZgNvNl9dncHFhfvp/jfRcX7D1nY5fFSXQ8sB5Yf\nOBiz1FpEREQqy6Fupv9K7VQ9CaSBLcAeCqNPv198bCiwu9vzdwHDSny8VLcCJwEnNTa0lHmpiIiI\nSGX12qkysxTwCLASaAUGA18GnjCzcUB78f6uhgNtxf/v7fGSuPt2d1/h7isKTRIREZGq54W9qiJu\n1a6UCs6RwInALe5+qCP0L2Z2I3AesASYc+jJZmbAmcCPinctAa7oljmneH+feMrIDk5efNpQZQXm\nmSnHh+RM+2zyHZKjdlTfN/qkkJwR88vqgx9V1Fc8M3VKSI7vjSnAz23eEpJz4F1zE2c0/uz5gJbE\nOXhh8kUtAJlHY4qEh95dXTuYp4eVO2lwZFEF5vkLz0yc0bB+V0BLIPfq6pCczL6o36i1q16Oqel1\nyKdYN7UC+LSZtZhZxsw+SWFabynwLQr1VpeYWRNwA9BEoRid4n9bzOwGM2sys0spFLHfUYH3IyIi\nItIvSh3uuYLClghrgQbgVeAqd38NeM3M/pBC52oC8AJw+aFRLXffZWaXA98AvghsBK7r83YKIiIi\nUjOc+tn8s6ROlbu/DLy3h8fvBO7s4fHngHPKbp2IiIjUuNpYuRdBFd8iIiIiAWry7D9r7wjZWXbf\nFTGDZ81bY3Z+zj65OCQnc+IJiTOyq9cGtATG/tNTITnVtaQAfNuO/m7CYXZfk3wXfYDW7yUvos5M\nnhTQEsi+sT4kp2lDzCIHggq6D545LSQn9YtFITm5tqDPT5CDQwIWIe3eE9ASsKamkJzU7v0hObW8\n7XUtrNyLUJOdKhEREakd9VJTpek/ERERkQAaqRIREZGKKWzcWR8jVepUiYiISEVp9Z+IiIiIlKyu\nR6oG/Xh+fzfhMBv/7PyQnAlPJl/5sm92zMrIavscp0+ZEZJjHTGrebLjhofkRKzai7LnjJjVf81B\nq//YFnNkiY2M+VpFrdqrNhFHHAE0/fS5xBkWtALVOztjcl5aGZJTy7T6T0RERCRAvdRUafpPRERE\nJIBGqkRERKRiHKubkSp1qkRERKSi6qSkqjY7VdaQITN6XOKc/bMmB7QGOofHfBonfDXmSBc/b3bi\njKgCcz8/eVsAMi+/HpJje/aF5OQ2borJmTomJKdx3NiQnNzmLYkzmu+P+d5JBx0Ls29O8mObAAat\n2h6SEyU1dGhIjqVjqkCaHlsakpMOKDKPOuIoc1zM34jsujdCcqT61WSnSkRERGqENv8UERERCVIn\n839a/SciIiISQJ0qERERqSh3C7n1lZndaGbLzKzNzDaY2bfMbGQv14w1s++a2fbidYvNbGJP19Tm\n9J87ns0mjmlaF7PTcubRVSE5qcGDQ3J48bXEEfmAZgDYU0tCcnIhKZA6YUJIjgcVnqYfXxiSw4gR\nMTlVJD/tuJCczN7kvysAcq+uDslJB32t9lwYczpAy6ttITn+4ishOVFF5hFUYB6nCnZUzwHXAC8C\nw4E7ge8AHzjSk82sGXgUeAY4CdgBnAL0eGRJbXaqREREpB6lzWxml4+3u3uvS3Pd/XNdPtxqZrcA\n9/ZwyccodL7+0N0PFu9b1tvraPpPREREKsYJnf4bByzvcru+j826BOhpKuViYCXwneL03ytm9ie9\nhWqkSkRERCrHgbgtFTYDF3X5uOwN5Mzsw8B1wIU9PG00hY7VHwOfAE4HHjSzLe5+19EuUqdKRERE\nakXO3Vf09WIzuwq4HfiAu/dU1NoOrHf3W4ofP29m3wM+CAysTpVnc+S2Jd/dOJOpsrc/9fiQmHxA\nwWhmfPId6wGymzaH5KTOODUkJ7/4pZCczZ85PyRn3NdjdtHff/a0kJz2yQ2JM0a80hHQEiBokUPq\nnLeE5ETJ79kbkhN16kHYopSmppAc7+wMyYmQOSFmsUR27bqQnFpWBYXqmNkngK8C73f3J3t5+mJg\n7hHu7/GdqKZKREREKsuDbn1kZp8BbgbeVUKHCgorA0eZ2afNLG1ms4GrgR/1dJE6VSIiIjLQ3QIM\nAx43sz2HboceNLOru37s7muBy4H/D2gD7gO+4O739PQiVTb/JSIiIgNLso07I3gvDSgWn9/V7b6f\nA2eW8zrqVImIiEhlVUFN1bFQm52qlkFwWvLi0+0zWgIaAweHTA3J6Rwe05NvmXNe4ozhdz4d0JI4\nUQXmUaIKzKM0PPR8SE6PZzaUKDN1SkAK+PDWmJxlyU8YADh40ZyQnPTPY3bRb/vdc0Nyhv/H0pCc\n1KiI7x7YPzP5IpnMowsCWgIcONj7c0S6qM1OlYiIiNQGp9+n/44VFaqLiIiIBNBIlYiIiFSWaqpE\nREREItTH9F9Ndqpyg1LsOG1I4pyxD6wOaA28/FcnhOSk98bMxra+lnyP5PRJ0wNaAms/PDYkZ8oP\n1ofkZFevDcmpNukxY0JyfMKoxBmbzh0R0BIYfceakJwoUQXmUYb94JmQnKgd1fMdMTvpb/q/yRco\nHLdrVkBLoO2E5H9nAAb/aFNIjlS/muxUiYiISA3R9J+IiIhIgDrpVGn1n4iIiEgAjVSJiIhI5ThQ\nJ/tUqVMlIiIiFeV1Mv1Xk52q7CDYcXryr9D2M2JW7UXNFc/4+1dCcjZfdXLijCHLXw1oCewLWE0G\ncav2dl8Tc7THiPsWh+Tk9+8PybFMOiQntzT59+D49pifq2xISvWJWqmZ27o1JCc9bFhIzqarY1bc\nTf5w8iOyov5+D9s5JSQnP3RoTE57e0iOVE5NdqpERESkhmikSkRERCRAndRUafWfiIiISIBeO1Vm\ntszM9nS57TMzN7M5ZpY2sxvNbJ2ZtZvZC2b2m92un2tm882sw8xWmdk1lXs7IiIiUm3MY27Vrtfp\nP3c/rPrjFMEsAAAgAElEQVTQzL4MXOHuC83sM8BHgIuBFcAHgXvN7EV3f8XMWoEHgJuBC4B3APPM\nbJW797kaMbMXxjzf16t/5WBLdQ3UdZwXczRM+5TkGa2XnpU8BJhx/bMhOVFavxdztMeWa88LyRl9\ne/KiXIDsxphjMDKTJibOqLajgFJBRcIHz5oRkkOVHXeTa2sLyRnzzZjv5Q2fPT9xxsSbnwpoCeRe\nfyMkJz1pQkhOzRaqO3VTU1VWr8LMMsAngduLd00HfuHuy73gx8B24LTi41cCHcBN7t7p7g8D84BP\nldtQMxtlZjPNbKZ71GlVIiIiIjHKHaq5AmgF7ix+/C1glpmdWpwK/E0Ko1//XXx8NrDI/bAdKhYW\n7y/X9cByYHl2f4321kVEROqOFQrVI25VrtzVf9cC97j7ruLHrwFPAC9SOOy8E/iIu28pPj4U2N0t\nYxfQl41RbgW+D5BpHrq8D9eLiIhIf6iT6b+SO1VmNg24BOhaTPLPwAzgRGAdcC7wYzPb4+4PAe3A\nlG5Rw4GyJ/HdfTuFqUVaRh1X7uUiIiIiFVXOSNW1wBJ371p5fBbwT+5+qDL1KTN7ArgceAhYQmHK\nsKs5xfv7LNcEbScmLzIfszhmz+ZBDyV6O29KDW8NyZmxMPkQ6eb3TQ1oCez8x5gdzL0p5p85Mz4d\nUzgfVmD+GzELAjKPLQjJya7fEJITITN1SkjO/ikxu/pHfY4Hqr0ffmtITkSReWb8uICWQL59T0jO\nzvMmheQMXbsuJKdf1MlIVUk9EzNrBD4O3NbtoSeBq81sUvF5bwUuAg799pkHtJjZDWbWZGaXAh8C\n7kjedBEREakJHnSrcqUO91wJNAN3dbv/BmAZMN/M2ouPf9Xd/w2gWHt1OXAVhVqqO4DrkmynICIi\nIlKNSpr+c/e7gbuPcH8bcF3xdrRrnwPO6WsDRUREpIY5NbFyL4LO/hMREZGKqoXd0CPUZKeqYa8z\n/tkDiXM2n9UY0BqY/JPOkBw6Y3Kyu7rvYlG+VDamUH3kCzH/Ohn53edCcjb9SfLdmgHGfy1mx+ZU\nrro2sk1PPzFxRu7V1QEtgexra0JyMkE5pNIxOflcSEw6aGFLLuD3BUDLD2MWgaRHJ19YkN20OaAl\ncRr2VNfPuVROTXaqREREpIbUyUhVdR1+JyIiIlKj1KkSERERCaDpPxEREakoFapXMWvroOGh5xPn\nTH4ooDFA5sQTQnI6T4jZ+blh577EGU1tMYWVu6fEFPe+9n9iduWY+c2YHYlj9uKHxlVben9SCTyg\nwBxg47snJM4Y+08xheqp00+Oydm9NySHdMz3clQBftulMZ+fxl0x382bz24KyRm76GDijMYHtwe0\nJM7gNWWfzHZENV3uXidbKmj6T0RERCRATY5UiYiISI2okSNmIqhTJSIiIpVVJ50qTf+JiIiIBNBI\nlYiIiFSUVv/VgcyE8SE52dVrQ3IaNsYcrZDfvz9xxuAlAQ0Btv1NzLEw2daYoz1e+ptxITkz/l/M\nSs3sk4tDcqJErdyLkF/6SkxOSEr1abkv5liYKMc9EbP6Lz12TPKQSROTZwD7vxvzJ3L1SzFHCs34\nTEhM/6iTTpWm/0REREQC1PVIlYiIiBwDdTJSpU6ViIiIVIx5/dRUafpPREREJEBNjlTlRrbQ9p5z\nE+cM+/4zAa2JE1FgDpAaPDhxRr6jI6AlcPwXnwrJ2fezmGNYct+OKVS3J5MfkwSQOi3mqJGdZwwP\nyRn+cnviDDsYs6hgz7SY4t7B86qroLvaRC3Yee33p4bk5E5JfqzQjL/YEdAS2P2DSSE5wz8Y056a\npmNqRERERKRUNTlSJSIiIjWkTmqq1KkSERGRilKhuoiIiIiUrCZHqtI79oYUmWcvOSugNdDQdiAk\nx597ISQnqsg8xDlvCYkZ8kfJi1cBciNicqKk9u4LyWn9Xszu49mL5yTOyKdjClKHvNYWkmPTYxY5\nvPLHY0NyTvnSmpCcA9MnhOS88dnOkJyRd8UsUNg4tjlxxhtXHBfQEmg7KRuSk94zKCQnYK/5/lMn\nI1U12akSERGRGqF9qkRERESkHBqpEhERkcqqk5EqdapERESkstSpqnKWvBg28+iCgIbUzfdK38yP\nKb4/cFHyAmqAbEs6JGfYL2J2ob58TMzO7PNOjSlh3faW5EXC474es4s+p8fsNr/xXTEF3ZMfiSla\nXvOJaSE57/utmM/zgj+J+dma+ZUlITlt9yZvT1j9TtAm4Km1MYXq6eHJTxmwtpjfgXJktdupEhER\nkZqgQnURERERKZk6VSIiIiIBNP0nIiIilVUn03+12akysHTyYjs7eXpAYyD/Ysxu1iu/G1MwOuNj\nC0NyqknTyk0hOev/x5SQnM7bYnLm/SDmfWVOiNlBOnfxrsQZeza+NaAlMGxle0jO7pNidvpumx4z\nsN+8NSSGpR+LKeRvSO0PyVl1dkzOoJ8m/wR1PBGzcGPGnTG7zaeXrAzJyQWcluEe8/NQ3ouqpkpE\nREREylCbI1UiIiJSO+pkpEqdKhEREamsOulUafpPREREJIBGqkRERKRijPopVK/NTtWQwWTPPj1x\nTOOGtoDGxDnpazGrZ/IBGanBgwNSIHvWSTE5TywKyTn+ixtCcqLMeK4pJOfJ78as/ju4NHnG8OfX\nJw8B8lu2heQ0tCX/XQGQ2RtzZsnBYTF/XV75w2EhOeP/O2bCYkRHzPE7I96bfKVc05UjA1oC9nTM\n0Tuv/+/zQ3Im/33QEVD9oU46VZr+ExEREQlQmyNVIiIiUhu0T9WvmNkyM9vT5bbPzNzM5hQfn2Zm\n88xsd/H2jJk1dLl+rpnNN7MOM1tlZtdU8g2JiIhIlfGgWx+Z2Y3F/kybmW0ws2+ZWUnzxGb2B8V+\nz1/19txeO1XuPsvdhxy6Af8IvOTuC81sDPAEsAQ4HhgJ/BGQKzakFXgA+CEwArgOuM3MzivljYiI\niIgEyAHXAKOA2cBk4Du9XWRmJwB/BrxQyouUNf1nZhngk8DfF+/6U+B1d/9Cl6c93+X/rwQ6gJvc\n3YGHzWwe8Cng6XJe+zDtHaQfT34Uy/o/jike9PeNDcmZ9GjyI0KidJ5/SkhOwyMLQnIyE8aH5GQ3\nxhwLw7kxxc9PfH9ISE724t0hOVO+lDxj1ccnJQ8BWl+dGJKT3hdTYB5VJJyeMTUkh1RMSey2c2OO\ndLF9MUe6RBj6i5hjYWzK8SE5U/51VUhONiSln/Tz9J+7f67Lh1vN7Bbg3hIu/Tbwl8AflPI65f5U\nXgG0AncWP74YWGdmPzWzHWa21Myu7vL82cCiYofqkIXF+8tiZqPMbKaZzfSQ9W0iIiJyLJjH3ID0\nob5A8Taqj026hMIs29HbbHYtsNfd7yk1tNxC9WuBe9z90JDKaOBs4LeBD1LoZP3EzNa6+y+BoUD3\nf0LvAvqyFvh64PMAB6iefxGJiIjIMTMOWN7l478FvlBOgJl9mEI50oU9POd44K+Ac8vJLrlTZWbT\nKPTsutZDtQNPu/t9xY8fNrMHgQ8Avyw+PqVb1HCgLxtE3Qp8H6CRpuW9PFdERESqRdz032bgoi4f\nby/nYjO7Crgd+IC791RH9C/Al9y9rI33yhmpuhZY4u7PdrlvMTD9CM899OlbQmHKsKs59DLkdiTu\nvp3iJ29YaQX7IiIi0t8SrtzrJufuK/pyoZl9Avgq8H53f7KXp78TOMvMvlz8uBU428ze5e4XHO2i\nkjpVZtYIfBz4624P3Q48YWZXAP9JYSjtMuDG4uPzgJvM7Abg68AFwIeKje0zS6VIDUq+4/fEOxYn\nzgBgakwxI+mYgtoIUQXmne85OySHB56LyQmyZW5MgfmB1pAYJn+tofcnleDgyHTijGm3vRbQkrhF\nBSObm0Ny2j/81pCcoT+N2aU7NS6mwHz08ztCcnxozCkMEXLbY95TprExJKfz5JjFG+lNm0Ny6pGZ\nfYZCCdG73L2UPyjdj6n4dwq7HXy1p4tKLVS/EmgG7up6p7s/A/wehU5UO4Upuo+5+9PFx3cBlwNX\nUailugO47tDjIiIiMvAFFqr31S0U6rkf77r35pvtM7u668fu/kbXG9AJtLl7jz3bkkaq3P1u4O6j\nPPbvFHpwR7v2OeCcUl5HREREBqD+31Khx6kgd7+LbgNH3R6/qJTX0dl/IiIiIgF09p+IiIhUVL2c\n/VebnarGBmzK5MQx1t6RvC3A9jOGh+SMfDimwDdC/oIzQ3KaqqzAPBVUtDz2+T29P6kEmTfKWg18\nVD6oKSRn1cfHJc6Y8mjQrvVBrLUv2+L9usEb94fk5PfH5OQm93XPw8Oll8bs9p0aXT2rsg9eNjcm\n6KHne39OCdJRJznUsjrpVGn6T0RERCRAbY5UiYiISG2I3aeqqqlTJSIiIhVjxVs90PSfiIiISICa\nHKny/Z3kXurTLvUV0fq9N0JyciEpMdIdB0Jyqm3ENzUqppg2/8zSkByOS77gAiC3MmaRw5S/TJ6z\n56qYnceH/PuzvT+pBBa0K3Zm176QHIK+B3NPxpwIkQ9JgXx7e1BScg1BBeZRDl56VkhO1EkX/aLa\n/hhUiEaqRERERALU5EiViIiI1A7tUyUiIiISoU46VZr+ExEREQmgkaoI554ekxNV/BzAFyzr7yZU\nRHb9hv5uwmFe/+3jQ3Im3hyzWCJCY1s1LbkAH9YSkpNbtjwkZ8BKpWNiTp2ROCM7PObkhNSTS0Jy\nmtfuDMmprp+sMtXJSJU6VSIiIlI5Xj81VZr+ExEREQmgkSoRERGprDoZqVKnSkRERCpK038iIiIi\nUrK6HqlKzT4lJCfsyBKpvCpbqTnx5qdCcqrJ4Fc2h+Ts+N1zQ3KGz4s5zqX9d2LaM/TuZ0JyoqSG\nDg3J8QMxR1vlX3wlcUbUaIGdOSsmZ9vukJyaVicjVXXdqRIREZHK0/SfiIiIiJRMI1UiIiJSOY6m\n/0RERERCqFNVvaypkczkKYlzskteTt4YwN92RkjOgeENITlNP30uJGcg2jtpUEhOzMEncdLTT4wJ\nat+bOCK7dl1AQ2BYUE7eLCQnqsA8d9GckJz0zxeG5OTb20NyBqSXXg2JyXZ2huRI9avJTpWIiIjU\nBqN+CtXVqRIREZHKqpNOlVb/iYiIiATQSJWIiIhUlHl9DFXVZKfKOw+QfW1NfzfjTek9MUWITU/G\n7PycmXJ84gzftz+gJZDbvCUkZ/c1MbtZt36vunaz3nfFOSE5gx9YEpLjAQW1dlbMLtQsXRkSYw0x\nv+YOnnNySM7ms5tDcib+PCQGm3taSM622TE7s4/69tOJM9LDhgW0BPZeGPM1b/7J/JCcmlVHWypo\n+k9EREQkQE2OVImIiEjt0Oo/ERERkQh10qnS9J+IiIhIAI1UBbC1G0Jy0qNHheTkt2xLntHREdCS\nONVWYB6lY3Q6JGdQFe3Y7AuW9XcTDtN5yeyQnKZHFoXkTPxFLiQnSufomFMGxv7HipCciM9Orq0t\nIEUF5pE0/SciIiISoU46VZr+ExEREQmgkSoRERGpHNf0n4iIiEgMdaqkVLldu/u7CYc75y2JI9Kr\nNwU0BHJbt4bkVJvMhPEhOWN/siokp7pKn2NkTjguJujB50Ji0ieeEJKTb20JyWHFmpCYxqDPT9T3\n4K6PnJc4o2FfPqAl0Lz9YEhO+vGFITlS/dSpEhERkYoxNP0nIiIiEqNODlTW6j8RERGRAL12qsxs\nmZnt6XLbZ2ZuZnO6Pe/G4v3XdLt/rpnNN7MOM1vV/XEREREZ2MxjbtWu106Vu89y9yGHbsA/Ai+5\n+5uVd2Z2DvAeYGPXa82sFXgA+CEwArgOuM3MklciioiISPXzwFuVK6umyswywCeBv+9yXxPwbeBT\nwA+6XXIl0AHc5O4OPGxm84rPfTpBu6UHucENiTN8+sSAloAN0NV/2Y0xqyMz48eF5KRnTgvJya1I\nvhoxdfrJAS2B7NJXQnKijn/Krl4bkrPtUzH/phy9OOYoqY1/en5IzoR/fCokZ/i/BfxpOPf05BlA\nquNASE4+FXMcFfmBuM53YCm3UP0KoBW4s8t9XwAec/enzaz782cDi4odqkMWAh8p83Uxs1HAKIAh\ntJZ7uYiIiPQTi9nlouqV26m6FrjH3XdBoV4KuAo44yjPHwp038RpFzCszNcFuB74PMABqufwWBER\nEelFDUzdRSh59Z+ZTQMuAW4rftwI/CvwaXffc5TL2uHXhpWGA305QvxW4CTgpEaa+nC5iIiISOWU\nM1J1LbDE3Z8tfjwRmAXc1WXabwTwTTN7j7tfDSyhMGXY1Zzi/WVx9+3AdoBhNrLcy0VERKSf1MLK\nvQgldaqKo1IfB/66y93rgOO7PfVp4Cbg+8WP5wE3mdkNwNeBC4APAe/se5PBMmnSw5N3rHLbdyTO\nqEY7Tk4+kjfmtoG5jiB7yVkhOanOmILR7C8Xh+TseufUkJzhAYXq+aAC89zFc3p/Uimq7IiQ0XdU\n18/W+Kf39ncTDhOx6CL3zNKAlkBYGdCv1xvXF6duNv8sdaTqSqAZuOvQHe6eA97o+iQzywE7i6NK\nuPsuM7sc+AbwRQpbLlzn7tX1W0VEREQkoZI6Ve5+N3B3Cc+bcoT7ngPOKbtlIiIiMiDUy/SfjqkR\nERERCaADlUVERKSy6mSkqiY7VZ7NhRSZ25mzAloDvmhZSE5m8qSQnIgi8+xvBBV0H4gp6G5Y+lpI\nDo8uiMmpMiG7UFeZxhdidjCvtj2o0ydND8nJD20OyeHpshdjH9GBd80NyWn82fOJM9p/59yAlsDw\nx2N+7+Q2bwnJqVWGpv9EREREpAw1OVIlIiIiNcJdWyqIiIiIRND0n4iIiIiUrDZHqgwsk7zpUQXm\nnHt6SEzbhEEhOYPfWJ84I/NYdRV023GTY4La+nLspPQHaxkckpMaPyYkJ/9izE7xHdNGhOQ0/ddz\nITnWFHOWakSBOcDBS5MvktkctDPi0LtjCsxTp50ckhP1Pdgv6mSkqjY7VSIiIlIzNP0nIiIiIiXT\nSJWIiIhUjgP5+hiqUqdKREREKqs++lQ12qly8Gy2v1vxK88sDYmJKcsFa2hMnJF9+2kBLYHGpWtC\ncrLr3gjJCWMWkxO0d4u/7YyQHHtyceKM1BmnBrQEsotfCsmpNunOfH834TC5s08JyUn9Mvn3DkDz\nxj2JM6b/6fKAlkCqpSUkp6YLzKUstdmpEhERkZpRL4Xq6lSJiIhIZdXJjupa/SciIiISQJ0qERER\nqSjzmFufX9/sRjNbZmZtZrbBzL5lZiN7eP7lZvaYmW0zs51m9oSZXdDb69T19F8maJdu37cvJCe3\nbXtITmpK8veVeSKm+D5XTQsKIgUNZaeGDg3JyQcUmAN0vvfsxBlNP43Z6TszflxIzsETx4fkZHbs\nDcnh0ZjTCtKjjvr3oDxBBeZRds9KvuP8kKDDMlJjRoXk5PcGfe/UKqcaVv/lgGuAF4HhwJ3Ad4AP\nHOX5I4BbgceBPcDvAw+Y2Snuvu5oL1LXnSoRERGpKWkzm9nl4+3u3uuIhLt/rsuHW83sFuDeHp5/\nV7e7vmlmnwfOBo7aqdL0n4iIiFSMAeYecgPGAcu73K7vY7MuAZaU/B7M3gKMBl7o6XkaqRIREZHK\nituebTNwUZePy66bMbMPA9cBF5b4/LHAD4Gb3X1lT89Vp0pERERqRc7dV/T1YjO7Crgd+IC7Lyzh\n+ROBh4GHgP/d2/PVqRIREZGKsirYp8rMPgF8FXi/uz9ZwvOnAI8C89z9s6W8Rm12qloGwWlvSRyT\nnd/j1GjJUqefHJLD9h0hMbmVr4XkSOXl29v7uwmHiVq5FyG7aXNITsPgQSE53hbztWr/7XNDcobe\n80xIzv73nROS03z//JCclnXJV1NbJuZPW3bN6yE5da8KVv+Z2WeAzwPvcvdef9GZ2cnAI8B33P2v\nSn0dFaqLiIjIQHcLMAx43Mz2HLodetDMru76MfC/gEnAH3d9vpld3dOL1OZIlYiIiNQI7/djatzd\nenn8LuCuLh9/AvhEua+jTpWIiIhUVL0cqKzpPxEREZEAtTlStXcfBBWZR0i1dYTk5KtgdcRAZw2N\nITl+8EBITvvvxBQtt7yxPyQnVWVHlkTIvramv5twmKH3xBxHlZ5+YkjOjlNi/gxMvD8kBnu65P0Y\nj6rafpPmLp4TkpN+vNcdAKpXnfx9q81OlYiIiNQGB4vb/LOqafpPREREJIBGqkRERKSyNP0nIiIi\nEqA++lT13ana8Ofnh+RMvOmpkJyBKD1jan834TBRu82nT50ZktOyvjMkJ6rA/OBlcxNnZAfHVBW0\nPPRiSE6+I2YhSbXJvbo6JGfiL4aE5MjR7TipKSRnzOMhMVJBdd2pEhERkcqrhrP/jgV1qkRERKSy\n6qRTpdV/IiIiIgE0UiUiIiKV40Cd7FNVk52q/IgW9l761sQ5E7/ydEBrIDNhfEhOduOmkJwVt52T\nOGPmdfMDWhJXGH7w0rNCcjgxeSE2QHpBzPtKvbQiJCfKrmkNiTPGfTf5jthQhQXmqXRMTj4XEpOZ\nPCkkhw07QmI8aIf3CFFF/FHG3Bbzt6ZWGV43NVWa/hMREREJUJMjVSIiIlJDNFIlIiIiIqXqtVNl\nZsvMbE+X2z4zczObY2YfNbOnzGynmW0zswfM7C3drp9rZvPNrMPMVpnZNZV7OyIiIlJ13GNuVa7X\n6T93n9X1YzP7MnCFuy80s/OAzwNPAVngb4CHzGyau3eYWSvwAHAzcAHwDmCema1y9z5X7uXTsL81\n+SDbsOHDE2cA5MaPCsnZ8e6YQs+Z1w28osjmRTGFp9bYGJKT3R5T3Lvnt84NyRly7zMhOaNe2Jc4\nIzVuTEBLIL96bUhO7qI5ITlNq7aE5GTXvRGT88b6kJwoUacnRCxu2fHJ8wJaAqPvWRqS0/bDcSE5\nQ94ds0DmmKuj1X9l9UzMLAN8ErgdwN2/4e4Pu/ted+8E/g4YD5xcvORKoAO4yd073f1hYB7wqXIb\namajzGymmc0kXydfHREREakZ5Q73XAG0Ance5fFLKHSiVhY/ng0scj9szG5h8f5yXQ8sB5Yf3Len\nD5eLiIhIfzD3kFu1K7dTdS1wj7vv6v6Amc0E/hX4M3dvL949FNjd7am7gGHlNhS4FTgJOKlhkA4A\nFRERqRmqqTqcmU2jMBL1a5PVZnYq8DBws7vf1uWhdmBKt6cPB9rKbai7bwe2Awwec1y5l4uIiIhU\nVDkjVdcCS9z92a53mtkc4OfAP7j7Td2uWQKc0e2+OcX7RUREZMALGqUaKCNVZtYIfBz46273vw24\nH/hzd//WES6dB9xkZjcAX6ewAvBDwDsTtJmG3QcY92DylUH5fclXOgHsnzA4JGfsQzGrnbIhKTHS\np84MyVn5sZgVllP/V5WtjAz6JeHn96VM8delfrk4cUbUcSWZKceH5PDzhSExUT9X+bd3/3dm3zSu\n2RqS480xK2KjjqSK0LIp5quV37s3JGfbgqDVf1TP57gsTk10iCKUOlJ1JdAM3NXt/i9RKFz/Wre9\nrC4AKNZeXQ5cRaGW6g7guiTbKYiIiIhUo5JGqtz9buDuI9x/cQnXPgckP+FXREREalOd7ISks/9E\nRESkomphO4QIOvtPREREJIB5DfYeh9lIf6tdkjgnf8GZAa0hrGua+sWimKAqkh7Wly3Jfl2urexd\nOI4oqqDbnqquBax21qzen1RSkCWO8OdfDGhIFUqlY3LyuZCYzITxITnZjZtCcqQ2POuP0uY7kv+g\nl6F10AQ/f8rHQ7IefOUfFrj73JCwCtD0n4iIiFSOA/naG8DpC03/iYiIiATQSJWIiIhUUG1s3BlB\nnSoRERGpLHWqqljLIDj99MQxja9vC2gMZNeuC8nJXTwnJCf9eMwO0hGiCsyjVFuBeRRfsCwkZ8Of\nn584Y+LzAQ0hbufxiF3igbAC8ygqMD+63VefG5IzctGOkJzcSytCcqT61WanSkRERGqHRqpERERE\nEtLqPxEREREph0aqREREpIIcvD4O/6vJTpUdzJLZuDNxTlSBeZSoAvP09BOThzQ2JM8A9k+O2VHd\ncjFDx+mObEzOouUhOSv+T0wx9vQ/fSYk57g7khe826SJAS2BA+mYTZ/To0aG5OS2xxQtWybm1+62\nT5wdkjPqW0+H5ERJNTcnzmi9K+bngVNnxuRI3dRUafpPREREJEBNjlSJiIhIjaijQnV1qkRERKSy\nNP0nIiIiIqWqyZEqz2TIjR2eOCcdVIztGzaH5Ox/+ykhOc1PvJQ4I9/REdASyE07JySn+SfzQ3Ki\nRK1jGR9UT7vvipjPc9O2A4kzGrbvDWgJNGyNyYkqMI9iTU0hOVEF5nt+K2b38SH//mxITn7//sQZ\nmRNPCGgJbHnrqJCcMdvHhuTkNm8JyekXdTJSVZOdKhEREakV9XOgsqb/RERERAJopEpEREQqx4G8\nNv8UERERSa5Opv9qs1PVsQ9/7oXEMbmApkRq/NnzITmpqVMSZ+RfW5M4A2DI86+H5MTsg159Dg6O\n2TV8yL3VU8ifb2gMydl/2eyQnKbk6zZC5ffGFOBb0Oc5qsA86o9mesyYxBm5desDWgJ7J00KyRlZ\nywXmUpba7FSJiIhI7dBIlYiIiEhSXjc7qmv1n4iIiEgAjVSJiIhI5Ti4a/WfiIiISHJ1Mv1X152q\n1f9wXkjOiX8Rc1yEZWK+HPmt20NyImQ3burvJhwmE7AyEiAbtDpy1OLdITmdl80NyWl4KPkKVD+Y\n/KgbgKafPheSM1BFfZ7trFkhOemdMasaI362dn485nf7cV+O+d2emTQxJCe7fkNIjlROXXeqRERE\n5Biok9V/KlQXERERCaCRKhEREakcdx1TIyIiIhKiTqb/6rpTNfXzC0Ny0iccF5KTXbsuJCc1Pvkx\nD7S3J88A0qfODMlZ977RITljFgcVUQ9uDsnJL445Q6UhJCXG3t98a0hOy30xx6dkphwfkpMfMjgm\n508SZaoAAA7BSURBVMVXQnKi+IJlITlRR0llJoxPnJEP+suWCfrdTq4+RmmkzjtVIiIiUnmu6T8R\nERGRpLxupv+0+k9EREQkgEaqREREpHIc7ahezWxQM6mZJyfOSe3cE9CauALzKPnWmILaCLmXVoTk\nHL875muFWUhM9o31ITlRMuPHheRkN21OnBFVYB4l90bMLtSejSnFzkyeFJIT9j2YSofE+LmnheRk\nn1qSOGP0v+0MaAlkOztDcgSok7P/NP0nIiIiEqAmR6pERESkNjjgmv4TERERSchd03+HmNkyM9vT\n5bbPzNzM5hQf/6iZrTKzDjN71szO6nb9XDObX3x8lZldU6k3IyIiItKdmd1Y7M+0mdkGM/uWmY3s\n5Zp3F6/ZZ2Yvmtllvb1OryNV7j6r24t8GbjC3Rea2duBbwIfAn4B/E/gv8xshru3mVkr8ABwM3AB\n8A5gnpmtcvene3vto9k/Ks3Kj4zo6+VvmnZDde1sHMWffzFxRmpw0O7R+2MKPbPrY4qNB6q9c2J2\nDR/0REfijFRLzPfOnrknhOQ03z8/JCdKVIH5/vefE5KTb4hZvNHy08UhORGTRK4C86pTBdN/OeAa\n4EVgOHAn8B3gA0d6splNBX4EfAq4F7iKQv9llruvOdqLlFWobmYZ4JPA7cW7fh/4kbs/5O6dwFeA\n/RQ6WQBXAh3ATe7e6e4PA/OKjSyLmY0ys5lmNrNeDmYUEREZEDwfc4P0ob5A8TaqpJd3/5y7L3L3\ng+6+FbgFuKiHSz4GLHD377n7AXe/C1hYvP+oyq2pugJopdDDA5hNoad3qNFuZouL9x96fJH7YVup\nLgQ+UubrAlwPfB7gwIYNHas/+2cv9yHjMKuTBvxKGhgHbKbQG659e49478B7n0dWe+/zp/f15arK\nvM+2oJyfBOXU4tezFP/5a1/zgfk+f53eZzIxQ8BlaGfnzx7x+2IOcC2MMi3v8vHfAl/oQ84lQE/7\nd8wGFnS7byG/6t8cUbmdqmuBe9x9V/HjocDubs/ZBQwr8fFy3Ap8v/j/2919ex8yKsLMZlL4Il/k\n7jEbM1Uhvc+BRe9zYNH7HFgG0vt093dHZRVHprqOTpXdFzCzDwPXARf28LSj9V9mHeG5byq5U2Vm\n0yj07M7rcnc7hZGrroYDq7o8PuUIj5f9b9liJ6pqOlIiIiJybCXtC5jZVRRKmD7g7gt7eOrR+jc9\n9l/Kqam6Flji7l23S14CzOnSWAPO5FdDakuAM7rlzKHnITcRERGRUGb2CQodqve7++O9PP2w/k1R\nr/2XkjpVZtYIfBy4rdtD3wKuNLNLzKwJuAFoolCMTvG/LWZ2g5k1mdmlFIrY7yjldWvIdgrzugN9\nJE3vc2DR+xxY9D4Hlnp5n8eEmX2Gwk4E73L3J0u45E5grpn9rpk1mtnVFDpV3+3xdQ6vIT9qY36H\nQkdoorvv6fbYRykUiU0AXgD+wN0XdHn8bOAbwFuAjcDfuPv3SnhDIiIiIomZmQNZ4LD9Ntx9SPHx\nq4HbD31cvO/dwFeBqcBrwJ+4+0M9vk4pnSoRERER6ZkOVBYREREJoE6ViIiISAB1qkREREQCqFMl\nIiIiEkCdKhEREZEA6lSJiIiIBFCnSkRERCSAOlUlMLOUmT1lZm5mk7vc/1EzW2VmHWb2rJmd1e26\nuWY2v/j4KjO75ti3vjRmdqmZPWNme8xsm5n9c5fHBsT7NLPxZnaPmW01s51m9piZze7yeE2+TzP7\nHTN7wszazCx7hMcTvS8zG2tmPzKz9uLn7kYzO+a/O3p6n8X3+FTx67rN/v/27jzGzqoO4/j3aQuU\npZ1hNQokZd+CLS0ISGsgUBASKGCJECqrFVkEDWswasUQyhIIoCzWWBSJRqFokEUhtAFKcaHQUoyI\nBSqILGPtBmgp/fnH7wx9uczQKXOhd955Psmb9r7n3Dvnmblz59xzznuPdK+k3Rvq9PmcDfUuL69J\njTlqkVPSdpLulLS4HI9JWqdS3udzShpY2vViaedTksY31OkTOa2ICB+rOYBzgQeAALYq50YDbwAH\nk1vzXAC8Cgwt5W3A68CFpXwssAzYd23n6SLf/uTu2+NLWwcDI2uYcxpwP7AxsC5wBfAioL6cEzgE\nOA44BVjRUNbrXOV7Nq3U3Rb4G3Bhi+U8s7R9w5LjUnIHhw3qlLNS5zPAXOBlYELlfC1yApuXbJNK\nOwcCewIDapbz7JJzJ/J16EhgObBzX8vpo/w81nYDWv0AdgTmkxtDVztVPwFurdQTsAA4sdw+udxW\npc6twNS1namLjLOAyd2U1SnnXOC0yu2dys90szrkJDvHjS/avcoFbFO+R9tVyk8Fnm+lnF3UGVza\n3fnmoDY5yx/Xp4B9gRd4b6eqFjmBy4DHPuA+dcl5HfDzhnP/Asb31Zz9/fAQ4QcoQ6g/Bs4jR3Kq\nhgPv7nEY+Wx+spzvLH+inO80u1LeEiRtSL7rHSRpdpk6mSFpz1KlFjmLK8kNwDeXNBj4CvBIRHRQ\nr5xVvc01HFgcEfMbyodJGvqRtbr3DgTeBJ4tt+uUcxLwYETM6qKsLjkPAF6UdLekhZLmKvdm61SX\nnFOA3STtWqYCxwODgIdKeV1y9huD1nYDWtw5wCsRcaekYQ1lQ4DFDecWAUN7WN4qNibX1h0HHAr8\nlexE3iNpR+qTE2AmcCLwGvAOOfV3aCmrU86q3ubqrpxSZ0lzmtk85Xk7FTg3IpaW07XIWd7sHEOO\nnHelFjnJ0eO9gC8C48hO1l2SFkTEI9Qn53PAw8A8YCW52e+XIuK1Ul6XnP2GR6q6IWl7ci3VWd1U\nWUrOYVe1s+pJvLryVtH5R2dqRMyNiOXk0Ps6wGepSc4y6vgAOXLRBmxArrt5WNInqEnOLvQ2V3fl\nnWUtRdKuwHTgqoi4qVLU53NKWpfsLJ4ZEcu6qdbncxZLgVkRcXtErIiI+4H7gCMq5XXIeQOwBzmN\nty65ZuomSQeX8rrk7DfcqereaHKx5DxJHeSQKsBcSWcAc4CRnZUlifzlmFNOzeH97yZHVspbQkQs\nJtdlRGNROWqRE9iEfOG6NiKWRMTyiPgR+TuwL/XJ2ai3ueYAbZK2bSh/oTx3WoakkcAMcn3gFQ3F\ndcj5KWA34LYyTd8BbA3cKOm2UqcOOSGnqBtfk6icq0vOUcBPI2JBRKyMiEfJkavDSnldcvYfa3tR\nV6se5EjGVpVjH/IXek9gI7LTtYxcu9HVVVXt5FUb55fyg2iRq8W6yHo+8BKwKzklfAG5WLKtZjmf\nAa4nrxAbRF6Ns5y8YqbP5iSvjBpMXuG3ovx/MKuuauxVLvLqotvJ6YTOq4suarGc+wH/ASZ2c986\n5BzIe1+TtiKnsL8GbFqjnCJfb98mr4YbQE7/vdmZo0Y5byY7UVuWunsD/yanAPtUTh/l57G2G9BX\nDmAYlav/yrkTyDnxt4A/AqMa7rNXOf9WqTfh42zzGmQTcAnwCjkfPx0YUcOcuwB3Ax3kOoTHgXF9\nPSdwEqtGFqvHsGbkArYgL9leWr53V1AubW+VnOU5u7L8wakeY+qUs4u6L3SRoxY5ybVjz5AfCTIP\nOKZuOcmO0E3AP0s7/w5c3Bdz+shD5YdiZmZmZr3gNVVmZmZmTeBOlZmZmVkTuFNlZmZm1gTuVJmZ\nmZk1gTtVZmZmZk3gTpWZmZlZE7hTZWZm/ZqkDSXNl7SiB3VPKHXflPQHSaMayo8uG0Avk/SMpGMa\nyveW9JCkRZJelXSrpE0r5ZdLelrSEkkvS5oiaZM1zHNeaeNSSc+WXUDsY+BOlZmZ1ZakYZJW94GM\nk4Hne/BYo4EbgdPJzejvIDefH1rK9wF+Bnyd/GDP88hthfYu5QOB3wKPktug7UJuP3Rd5cu8A0wA\nNgWGk5+cf0sPona28Qjgu8DxETGE/PDfKyWN7elj2IfnTpWZmfVbkj4HjAEu70H1icC0iPh9RPwP\nuBL4L3BUKT8a+F1EPBi5l99dwEzgtFLeBmxGbmD/dkQsBH5Jdp4AiIiLI+KJUv46cC2wf0ObJ0qa\nJ2mxpCcqGzADbA/MjYjHyuPNAuZWv4Z9dNypMjOzfknSBsAU4MvkXoOrM5zc3gqAyC1JnmRVh0Xl\nqBpA2RS5dKJuBk6VtJ6kLYBjgTs/4GseSGXjdkkTgQuB48nRsm8C0yRtX6r8AhgiaT9JAySNAXYE\n7utBPusld6rMzKy/ugy4KyL+3MP6Q8h9Q6sWkVN9kHuLfl7SWEmDJB1FbvY9tFL/V+SI1hvk5uYr\nSzveR9IXgK8C51ROnwNcEhFzymjYPeTel8eW8tfIDZankxvGTwe+ExHzepjResGdKjMzqxVJN5SF\n4IvIqS86b5fjorI+6lDg22vw0EvJKbyqdmAJQETMIDtBV5Odm5PIkaOO0oYdgHuBS4H1y33n08Uo\nUlngPgU4IiJmV4q2AX5QzQMcAGxZyr9FjmKNANYhR9G+IenUNchpH5I7VWZmVisRcUZEtEdEO/Dp\ncq69ckwGDgK2Bv4hqQP4DTBQUoekw7t56DnAyM4bkgTsQWV6LiJuiYjdI2KTiBgH7ATMKMXDgYUR\n0bmmajFwPTBGUnvlcU8mpwkPj4jpDW1YAJzSkGejiDi9lI8C7oiIv0R6Gvg10F0mayJ3qszMrD+6\nGtiBHNEZQa6reqf8/4Fu7jMFOFrSgZLWA84H1qOsiSpTfiMlDZTUJul7ZMftmnL/x4F2SRNKnSHA\nWcBzEbGoPMbZwFXAIRExs4s2XANMkjRCaX1JoyXtXMpnAkeVUTEk7QIcSWUtmH10Bq3tBpiZmX3c\nImIJZdoOQNLr5fxLlXMXkx9NsFspe6R85tMU4JPAU8Bh5bEABgI/JEenglzPNDoiXi33f76sk5oE\nfJ/sxP0JGFdp2rXACmB6DoS9296Nyr9TJC0HppJTgW8Ds8mPb4C8IrENuF/SZsBCch3X5A/5rbI1\noLx4wczMzMx6w9N/ZmZmZk3gTpWZmZlZE7hTZWZmZtYE7lSZmZmZNYE7VWZmZmZN4E6VmZmZWRO4\nU2VmZmbWBO5UmZmZmTWBO1VmZmZmTfB/wLDVl3YO+B4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Trace maximun" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use the method `trace_maximum()` to find the index of the maximum on each powerspectrum in a certain frequency range. For example, between 755 and 782Hz)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "tracing = dynspec.trace_maximum(min_freq=755, max_freq=782)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is how the trace function looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAHACAYAAADa0a68AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xec1dW97//XGobepQiCChZQsSsoUY819gbqTfOcRBKF\nq6YczTE5N8n5xRyTk54Yk9gSvTcnplwLii22WCOgiB3FrggIIr0zw7p/fGb9vnvGGWbvme/e3/Z+\nPh7zmDW7rr0ZZt6zPqs47z0iIiIikk91SXdARERERKpHYU9EREQkxxT2RERERHJMYU9EREQkxxT2\nRERERHJMYU9EREQkxxT2RERERHJMYU9EREQkxxT2RERERHJMYU9EREQkx+qT7kBHDB482I8aNSrp\nboiIiIgk5plnnlnmvR/S3u0yGfZGjRrFnDlzku6GiIiISGKcc++WczuVcUVERERyTGFPREREJMcU\n9kRERERyTGFPREREJMcU9kRERERyTGFPREREJMcU9kRERERyTGFPREREJMcU9kRERERyTGFPRERE\nJMcU9kRERERyTGFPREREJMcU9kRERERyTGFPREREJMfqk+5AKs2ZA8cck3Qvyjd2LPz979C3b9I9\nyb777oOLLoL/+i8455ykeyMiItJpCnut2boV1qxJuhflmzMHHn0UTj016Z5k3/e/D2++Cb/7ncKe\niIjkgsJea3bbDf7v/026F+U5/3xYtQo++ijpnmTf4sXwxBPWfv/9ZPsiIiISE4W91my3XXZGdb7z\nHYW9uEyfDt5bW2FPRERyQgs0sm7QIPu8fHmy/ciDW26J2qtX24eIiEjGKexl3Xbb2WeN7HXO0qU2\n77HUwoXJ9EVERCRGCntZF0b2FPY65/bbbWFOz57RZSrliohIDijsZZ3KuPG4+Wb7fMopMGSItRX2\nREQkBxT2sk5l3M5btgweftjaZ58NI0daW2FPRERyQGEv61TG7bw77oDGRujRA04+WWFPRERyRWEv\n61TG7bywCvfEE+0Ukh13tK8V9kREJAcU9rIulHHXrYNNm5LtSxatWAEPPmjtsLeiRvZERCRHFPay\nLozsgUq5HTFjBjQ0QLdu0XFzCnsiIpIjCntZVxr2VMqtXCjhnnAC9Otn7RD2li+H9euT6ZeIiEhM\n2g17zrmXnXNrSz42OOe8c+5A51wX59yPnHMLnHNrnHMvOufObnH/g51zTznn1jvn3nTOnVu9l1NA\nGtnruFWr4P77rX12ybdtCHugjZVFRCTz2g173vtx3vs+4QP4OTDPez8XuAj4Z+A4oB/wHeBPzrk9\nAJxz/YF7gVuBgcA04Brn3MSqvJoi6tkTune3tsJeZe66CzZvhq5d4bTTostHjIjaKuWKiEjGVVTG\ndc7VA1OAa5su2g141Hs/35vbgY+AvZuunwysB37svd/kvX8AmA5cEEvvBZzTityOCiXc446DgQOj\ny3v1iha+KOyJiEjGVTpn70ygP/CHpq+vB8Y55/ZqKumeDdQDjzVdvx/wrPfelzzG3KbLK+KcG+Sc\nG+OcG9PQ0FDp3fNNe+1Vbs0auPdea5999sev1yINERHJiUrD3lTgr977lU1fvwU8DrwEbAL+DzDV\ne7+06fq+wKoWj7ESK/lW6svAfGD+0qVL27ttsegUjcrdc49tVdOlC5xxxsevV9gTEZGcKDvsOed2\nBY4Frim5+LfAAcBooBvwSWxO3vFN16/BRgJLDQBWd6CvVwFjgbFDhw7twN1zTGXcyoUS7jHHNF/k\nEijsiYhITlQysjcVeN57P7vksoOAP3jv3/Xeb/XeP4mN9J3cdP3zwP4tHufApssr4r3/yHv/mvf+\ntfr6+krvnm8q41Zm3Tq4+25rt1bCBYU9ERHJjbLCnnOuG/AFmo/qAfwD+JxzbkTT7Q4BjgKeabp+\nOtDbOfdvzrnuzrnjgEnAdZ3vuvz/VMatzL33woYNUFcHZ57Z+m0U9kREJCfKHdmbDPQAbmpx+b8B\nLwNPOefWNF3/M+/9fwM0ze07GTgHm6t3HTDNez8zhr5LoDJuZUIJ98gjoa0pASHsLV2qY+hERCTT\nyqqHeu//AvyllctXY3vnTdvGfZ8GJnS0g1IGlXHLt2GD7a8H0Vm4rSndWHnRIhg9urr9EhERqRId\nl5YHpWXcZrvcyMfcd5/N2XMOJk1q+3alYU+lXBERyTCFvTwII3tbtsDatcn2Je1CCfeII2DYsLZv\n17dvdFauwp6IiGSYwl4elG4donl7bdu0CWbMsHZbq3BLaZGGiIjkgMJeHpSGPc3ba9sDD9jJGQCT\nJ7d/e4U9ERHJAYW9PCg911Vhr22hhPuJT8CIEe3fXmFPRERyQGEvD7p1szlmoDJuWzZvhjvusHY5\nJVxQ2BMRkVxQ2MsLbb+ybX//O6xsOtL5rLPKu4/CnoiI5IDCXl7oFI1tCyXcCRNgp53Ku08Ie4sX\n20pnERGRDFLYy4u0n6Jx661w6qnw2mu1f+4tW2D6dGuXW8KFKOx5Dx98EH+/REREaqCsEzQkA9Je\nxv3P/4Tnn7fTKGbPhq5da/fcjzwSheByS7jQfGPlBQtgxx1j7ZaIiEgtaGQvL9Jexg0jY88+Cz/5\nSW2fO5RwDzwQdtml/PsNGAC9ellb8/ZERCSjFPbyIs1l3K1bYdmy6OvLL4d582rz3A0NHSvhgh2p\npkUaIiKScQp7eZHmMu7KldDYaO3u3W0blClTosuq6fHH4cMPrV1p2AOFPRERyTyFvbxIcxk3hC2A\nX/zCPs+eDVdeWf3nDiXc/faD3Xev/P4KeyIiknEKe3kRRvZWrLCyaZqUhr3PfQ7OO8/a3/oWvP56\n9Z63sRFuu83aHRnVA4U9ERHJPIW9vAhhz/to8+C0CGEvnPTxs5/B8OGwcSN88YvVC6dPPhktDFHY\nExGRglLYy4tQxoX0lXJD2BsyxBY9DBwI11xjlz3+OFx9dXWeN5Rwx42DPfbo2GOEsLdoUW3mGIqI\niMRMYS8vwsgepG9FbmnYC04/HT77WWt/4xvwzjvxPufWrbaRM3R8VA+isNfYCEuWdL5fIiIiNaaw\nlxcDBkBd0z9nmkf2Sl15pV22bh2cf76VoOMyezYsXGjtOMIeqJQrIiKZpLCXF3V1Vh6F7IS9wYPh\nN7+x9oMPwu9/H99zhhLu2LFWxu2owYNtuxhQ2BMRkUxS2MuTtG6/0lbYAxt1mzzZ2pdeGk+g8j4K\ne2efbfMEO0obK4uISMYp7OVJWk/R2FbYc85G9wYOhNWrYerUzpdzn34a3nvP2p0p4QYKeyIikmEK\ne3mS1lM0thX2AIYNizZYvuceuOmmzj1fGNXbdVfbTLmzFPZERCTDFPbyJI1lXO/bD3sA554LJ59s\n7a98JdofryPPF1cJN1DYExGRDFPYy5M0lnHXrLGzcGHbYc85uPZa6NfPTgG56KKOlXOffRbeftva\ncZRwQWFPREQyTWEvT9JYxi09Km1bYQ8sVP3sZ9a+7bZohK4S4T6jRsFBB1V+/7b6BbaVS9qOohMR\nEWmHwl6epLGMW0nYAzs+7dhjrX3RRbBsWfnP5T3cfLO14yrhQhT2Nm+urD8iIiIpoLCXJ2ks44aw\n16WLbfzcHufg+uuhd2+771e/Wv5zvfgivPGGteMq4YI2VhYRkUxT2MuTEPZK58klLYS9wYOjEz7a\nM3o0/PCH1v7Tn2DGjPLuF0q4O+4IEyZU1s9tGToU6uutrbAnIiIZo7CXJ6GMC+kZ3StnJW5rLrwQ\nDj/c2tOm2aKN9oSwd9ZZ8ZVwwULqiBHWVtgTEZGMUdjLkzCyB9kPe3V1cMMN0KMHLF5sp2tsy7x5\n8Mor1o6zhBtoRa6IiGSUwl6elIa9tCzS6GjYA9h9d7jiCmvfeCPcd1/btw2jesOHw8SJlT9XexT2\nREQkoxT28qR3b+ja1dp5CHsAX/taNP/u/PPtSLXWlJZwy50bWAmFPRERySiFvTxxLn0rcjsb9rp0\nsXJut26wYAF885sfv838+bYSF6pTwgWFPRERySyFvbxJ28bKnQ17AOPGwX/8h7Wvvhoefrj59WFU\nb+jQaFFH3ErDXkdO9hAREUmIwl7e5DHsAVx2Gey/v7W/9CVYty66LoS9yZNtJLAaQtjbsKG8lcEi\nIiIpobCXN2H7lTSUcdevtw/ofNjr2tUWadTXw1tvwbe/bZe/8QY895y1q1XCBW2sLCIimaWwlzdp\nGtmr9Ki09uy/fzRn78or4ckn4dZb7evBg+HIIzv/HG0ZNixa+KGwJyIiGaKwlzd5DntgI3rjxtm8\nuSlT4M9/tssnTYpOuaiG+nrb1gUU9kREJFMU9vImlHHTEPaWLrXPpauEO6t7d1udW1dnq3Cff94u\nr2YJN9CKXBERySCFvbxJ09YrYWRvu+3iXTgxYULzEzUGDoSjj47v8duisCciIhmksJc3pWXcpLcI\niWslbmsuv9xO2ABbhRs2k64mhT0REcmgKk5ykkSEMu6mTbYStnfv5PpSzbDXs6cdn/bHP8KFF8b/\n+K1R2BMRkQxS2Mub0rlxy5enI+wNHVqdxx89Gr7zneo8dmtC2FuwwEZNnavdc4uIiHSQyrh5Uxr2\nkl6kUc2RvSSEsLd2bdtn9IqIiKSMwl7ehDIuKOzFTRsri4hIBins5U337lHpNukVuXkLezvsELUV\n9kREJCMU9vIoLRsr5y3sdesG229vbYU9ERHJCIW9PErDxsqbNsGaNdbOS9gDrcgVEZHMUdjLozRs\nrFyNo9LSQGFPREQyRmEvj9JQxlXYExERSQWFvTxKW9gbPDi5fsRtxx3ts8KeiIhkhMJeHoU5e2ko\n4w4YUJujzGpFI3siIpIxCnt5lKaRvTyVcCEKeytX2ubKIiIiKaewl0cKe9VTurHywoXJ9UNERKRM\nCnt5VFrG3bo1mT7kNeyNGBG1VcoVEZEMUNjLozCyt3Vrcme45jXs9egRLThR2BMRkQxQ2MujEPYg\nuVJuXsMeaJGGiIhkisJeHoUyLiS3IldhT0REJBUU9vJo4EBwztoa2Yufwp6IiGSIwl4edeli+9tB\nMmFvyxZYscLaCnsiIiKJUtjLq1DKTSLslT6nwp6IiEiiFPbyKizSSGLOXl7PxQ1C2Fu2DDZuTLYv\nIiIi7VDYy6skN1YuStgDbawsIiKpp7CXV2kIe3362L50eaONlUVEJEMU9vKq9BSNWsvzSlywEBsW\nwCjsiYhIyins5VUaRvbyGvZAizRERCQzFPbySmGvuhT2REQkIxT28kpl3OpS2BMRkYxQ2MurMLK3\nahU0NNT2uRX2REREUqPdsOece9k5t7bkY4NzzjvnDnTOXdPiurVN113SdN9RTV+vK7levx1rIYQ9\nqP3onsKeiIhIarQb9rz347z3fcIH8HNgnvd+rvd+WovrJgENwF9aPMzYktuNbPkcUgWhjAsKe9UQ\nwt6SJbB5c7J9ERER2YaKyrjOuXpgCnBtGzeZCtzpvV/U2Y5JJ5WO7NVykcbWrdHzFSHseQ+LFyfb\nFxERkW2odM7emUB/4A8tr3DODQPOAK5p5X6znXMfOucecc4dVXEv7fEHOefGOOfGNNR6DloW9e0L\n9fXWrmXYW77cAh8UI+yBSrkiIpJqlYa9qcBfvfcrW7nui8B7wAMlly0DJgKjgVHArcC9zrl9K+8q\nXwbmA/OXLl3agbsXjHPJrMjN+1FpQb9+trkyKOyJiEiqlR32nHO7AsfSysidc64OOB+4znvvw+Xe\n+7Xe+1ne+83e+3Xe+6uAx4FzOtDXq4CxwNihQ4d24O4FlMRee0UJe85pkYaIiGRCJSN7U4Hnvfez\nW7nuRGA4cEMZj+MBV8Hz2p28/8h7/5r3/rX6UJ6UbUsy7PXoAb171+55k6CwJyIiGVBW2HPOdQO+\nQOvz8cCC4G3e+w9LL3TOHeqc29s5V++c6+GcuwA4EpjeiT5LuZIs4w4ZYqNfeRbC3oIFyfZDRERk\nG8odIpsM9ABuanmFc24EcApW4m1pNPCf2KjfRmAecJr3/pkO9VYqk+TIXp5LuIFG9kREJAPKCnve\n+7/w8b3zwnUL23oc7/2fgT93uHfSOQp71aWwJyIiGaDj0vJMYa+6QthbvLj2R9KJiIiUSWEvz5Ke\ns5d3Iext3QoffJBsX0RERNqgsJdnGtmrLm2sLCIiGaCwl2ch7G3YYB+1EDa8LkLY22476NnT2gp7\nIiKSUgp7eRbKuFCbUq73sGyZtYsQ9rSxsoiIZIDCXp6FkT2oTSl35cpooUIRwh4o7ImISOop7OVZ\n6cheLcJeUY5KK6WwJyIiKaewl2c9e0ZzympRxlXYExERSR2Fvbyr5YrcEPa6doX+/av/fGmgsCci\nIimnsJd3SYS9IpyLG4Swt3Ch7bcnIiKSMgp7eVfLjZWLtMdeEMJeQ0O07YyIiEiKKOzlXVIje0Wh\njZVFRCTlFPbyTmGvugYPhm7drK2wJyIiKaSwl3cq41ZXXR2MGGFthT0REUkhhb2808he9WlFroiI\npJjCXt4p7FWfwp6IiKSYwl7ehbC3fLmdXVst3ivsKeyJiEgKKezlXZiz19AAa9ZU73nWroVNm6yt\nsCciIpIaCnt5F0b2oLql3CIelRaUhr1qjp6KiIh0gMJe3insVV8Ie5s21WZupIiISAUU9vJu4MCo\nXc3tV0LY69Kl+XMWgTZWFhGRFFPYy7v6eujf39q1GNkbNMj2niuS7be3kAsKeyIikjoF+61cULXY\nfqWoK3HBgt4OO1hbYU9ERFJGYa8IanGKRpHDHmhFroiIpJbCXhFoZK/6FPZERCSlFPaKQGGv+hT2\nREQkpRT2ikBl3OpT2BMRkZRS2CsCjexVnzZWFhGRlFLYKwKFveoLYW/dOli1Ktm+iIiIlFDYK4Jq\nl3E3bLCQAwp7oFKuiIikisJeEYSRvZUrobEx/scv8lFpwfDh4Jy1FfZERCRFFPaKIIQ972HFivgf\nX2EPunaFYcOsvWBBsn0REREpobBXBCHsQXVKuaVhr/S5ikYrckVEJIUU9oogzNmD6izSCGFvu+3s\nLN6iUtgTEZEUUtgrgv797fxWqG7YK2oJN1DYExGRFFLYKwLnqrsiV2HPKOyJiEgKKewVRQh7Gtmr\nnh13tM8KeyIikiIKe0VRzY2VFfZMGNlbvdo+REREUkBhryhC2FMZt3pKN1ZeuDC5foiIiJRQ2CsK\nlXGrb4cdorZKuSIikhIKe0WhMm71de8OQ4daW2FPRERSQmGvKKoV9jZvhlWrrF30sAdakSsiIqmj\nsFcU1dp6ZdmyqK2wp7AnIiKpo7BXFNUa2dO5uM0p7ImISMoo7BVFCHvr1sGmTfE9bmnYGzw4vsfN\nKoU9ERFJGYW9oig9HzfOUm4Ie/362QKFolPYExGRlFHYK4owsgfxlnK1Ere5EPaWL4f165Pti4iI\nCAp7xVGtsLd0qX1W2DPaWFlERFJGYa8oevWCHj2sXY0yrsKeGTEiaquUKyIiKaCwVyTVOEVDYa+5\nXr2i91lhT0REUkBhr0iqsf2Kwt7HaZGGiIikiMJekYSwpzJudSnsiYhIiijsFYnKuLWhsCciIimi\nsFckcZdxGxqiUcKhQ+N5zDxQ2BMRkRRR2CuSuMu4paFRI3sRhT0REUkRhb0iibuMq3NxWxfC3tKl\n8R5NJyIi0gEKe0USdxlXYa91pRsrL1pUveeZMweWLave44uIpMXy5fD000n3IrMU9oqktIzrfecf\nL4S93r2hZ8/OP15elIa9apVyr7kGxo+H00+vzuOLiKTJpz4FEybAL36RdE8ySWGvSEIZd/NmWLeu\n84+nlbit69sX+vWzdjXC3jvvwNe/bu2ZM+PdSkdEJG0aGuCxx6z9v/4XvP56sv3JIIW9Ion7fFyF\nvbZVa5GG93D++c3D+lNPxfscIiJp8tZbNkgBsHEjfPGLsHVrsn3KGIW9IlHYq51qhb3f/x4efNDa\nvXrZ51mz4n0OEZE0mTev+dePPw6//W0yfckohb0iCWVciKf0p7DXtmqEvfffh0svtfbkyfDpT1tb\nYU9E8iyEvb32gs98xtrf/Ca8/XZyfcoYhb0i6drV5pOBRvaqLe6w5z1MnQqrV8PAgfCb38DEiXbd\nrFkqaYhIfpWGvV/9yn7nrFtnU1riWGxYAAp7RRPn9isKe22LO+zddBPcc4+1r7wShg2DQw+1r1et\ngvnz43keEZG0KQ17gwfbH7sADz1kU1ukXQp7RRPnKRoKe20LYW/xYtiypXOP9cEH8JWvWPvkk+Hc\nc629557RSK1KuSKSR42N8Mor1t5rL/t89tk2lQVsaotOK2qXwl7RxHWKxtat0WMo7H1cCHveW+Dr\njIsvhhUrbDuXa68F5+zyLl1s3ylQ2BORfHr3XVuBC1HYc85G9wYOtKktU6eqnNsOhb2iiauMu2KF\n/cUFCnutiWtj5VtugVtvtfbPftb8caH5vD0RkbwJJdwuXWDMmOjyYcNsSgvYFJebbqp93zJEYa9o\n4irj6qi0bRswINoapaNhb9kyuPBCax97rO0t1VKYt/fSS7BmTceeR0QkrULY22036N69+XXnngun\nnGLtr3zFprxIqxT2iiauMq7C3rY5BzvuaO2Ohr2vftXe59694frro/JtqUMOsc9bt9pZuSIieVK6\nOKMl5+zoyH79rNp04YUq57ZBYa9o4irjhrDXvTv06dO5x8qrzqzInTED/vQna//whzB6dOu3GzzY\n/uIFlXJFJH+2FfbAfs7+7GfWnj7dpr7IxyjsFU3cZdwhQ1ofcZKOh72VK2HaNGsffnhUym1LKOUq\n7IlInnjfftgDm+Jy7LHWvugimwIjzbQb9pxzLzvn1pZ8bHDOeefcgc65a1pct7bpuktK7n+wc+4p\n59x659ybzrlzq/uSZJtCGXfFis5txKttV9rX0bB36aW2grdHD7jhBqhr579padhTCUNE8mLBgugc\n8G2FPedsqkvv3va76atfrU3/MqTdsOe9H+e97xM+gJ8D87z3c73301pcNwloAP4C4JzrD9wL3AoM\nBKYB1zjnJlbrBUk7wsje1q02gtRRCnvt60jYu/9+C3gAV1wBu+/e/n1C2Fu6FN55p6IuioikVhjV\ncw7Gjt32bUePtikvYFNgZsyobt8ypqIyrnOuHpgCXNvGTaYCd3rvFzV9PRlYD/zYe7/Je/8AMB24\noNKOOucGOefGOOfGNDQ0VHp3CULYg86VchX22hfC3qJF0TY127JmjR3/A7Z/3te+Vt7z7LuvjQKC\nSrkikh8h7O2yC/Ts2f7tL7wQjjjC2tOmWQVLgMrn7J0J9Af+0PIK59ww4AzgmpKL9wOe9b5ZbWlu\n0+WV+jIwH5i/dOnSDtxdgKiMC51bpKGw174Q9hobYcmS9m//jW/Ae+9Bt242utelS3nP07UrHHyw\ntRX2RCQvypmvV6quzo5P69HDpsJcemn1+pYxlYa9qcBfvfet1f++CLwHPFByWV9gVYvbrQT6Vfi8\nAFcBY4GxQ4cO7cDdBbD938IcMIW96qpkY+VHHoGrr7b2f/wHjBtX2XNpkYaI5E2lYQ9s6ssVV1j7\nxhvhvvvi71cGlR32nHO7AsfSfOQuXFcHnA9c12IUbw02ElhqALC60o567z/y3r/mvX+tvr6+0rtL\nUFdnR8yAyrjVNmhQtAnotsLeunXRhsn77w+XXVb5c4Ww9+yz0dFCIiJZVe5K3NZ87WvRUZLnn29H\nqhVcJSN7U4HnvfezW7nuRGA4cEOLy58H9m9x2YFNl0tSOrvXnvcKe+VwrrxFGt/5Drz1FtTX21+i\nXbtW/lwh7G3ZYoFPRCTLFi+GVU2FwUrDXpcuNhWmWzdb0fvNb8bfv4wpK+w557oBX6CVUb0mU4Hb\nvPcftrh8OtDbOfdvzrnuzrnjsBW713WwvxKHzp6isXq1hQpQ2GtPe2Fv5kz45S+t/e//biN7HTFi\nRPRcKuWKSNa9/HLU3mOPyu8/bpxNiQGbIvPII7F0K6vKHdmbDPQAPnbSsHNuBHAKrQTBprl9JwPn\nYHP1rgOmee9ndrTDEoPOjuzpqLTybSvsbdwIU6bYSOm4cfCtb3XuucLo3kz99xKRjAsl3J137vgp\nTZddBgccYO0vfjHas6+Aygp73vu/eO/7ee/XtnLdQu99vff+0Tbu+7T3foL3vqf3fhfv/R8722np\npM6eoqGwV75thb3vfQ9efdXmUd5ww8cP+a6UFmmISF50dL5eqa5d7Wdrfb1Nlfn2t+PpWwbpuLQi\n6mwZN4S9+npb3SttayvsPfMM/PjH1r700mgycWeEsLdgASxc2PnHExFJShxhD2xqzL//u7WvvBKe\nfLJzj5dRCntFFFcZd/BgnYvbnhD2Fi6MjqfbvBnOO8/239t9d7j88nie68ADLYADzG5tHZWISAZ4\nH83Z62zYA5siM26cPe6UKYXcsUBhr4jiKuOqhNu+EPY2b44O5/6v/4IXX7SgfMMN5e0MX46ePaMF\nHirlikhWLV0anX4RR9jr3t12Oqirg/nz4/sDO0MU9ooorjKuwl77Wm6s/MIL0YafX/4yHH54vM83\nsenYaYU9EcmqUMIF2HPPeB5z/Hj4+tet/ZOfwJw58TxuRijsFVEY2VuzxkacKqWwV76hQ6PS6jvv\nWAmhocEO7f7BD+J/vjBvb86caHscEZEsCWFvxAjo3/Jchk747ndhzBibQjNlSsd+/2WUwl4RhbAH\nHTsoWmGvfHV19gMLbCXYM89Y+/rroXfv+J8vhL0NG6xULCKSNXEtzmipZ0+bOuOc/Xysxh/cKaWw\nV0ShjAsdK+Uq7FUmlHJfecU+X3ABHHtsdZ5r9Ojo30WlXBHJomqFPYDDDrMpNADf/75NrSkAhb0i\nKh3ZU9irvtJ5eyNHRluuVINz2m9PRLKtmmEPbERv9GibUnPeefY55xT2iqh3bzszEDq2IldhrzKl\nYe+66+Kdg9IahT0Ryaply2w1LlQv7PXuDb/7nbXnzrWfyzmnsFdEznV8Re66dTYfDBT2yjVpEvTt\nayvBTjqp+s8Xwt7rr3d8xbWISBLCdBeoXtgDOOYY+PSnrf3H/B/spbBXVB3dWDn8xQUKe+U67DBY\nudKW+9fxGRrSAAAgAElEQVTC+PHRZtfaXFlEsiSUcIcNaz6/vBrOPdc+z5zZ+pGWOaKwV1Qd3VhZ\n5+J2TF0N/6v17Qt7721tlXJFJEuqPV+v1HHHQb9+1r7ttuo/X4IU9oqqoyN7IeyVloIlfTRvT0Sy\nqJZhr3t3OP10a99yS/WfL0EKe0XV0Tl7IewNGgRdusTbJ4lPCHuzZ0dn8oqIpF0twx7A2Wfb5yee\ngMWLa/OcCVDYK6rOlnFVwk23EPZWr4ZXX022LyIi5Vi5EhYtsnatwt7xx0OfPuA9TJ9em+dMgMJe\nUXW2jKuwl2577BHNRZk5M9m+iIiUo1YrcUv17AmnnWbtHJdyFfaKqrNlXIW9dKurg0MOsbbm7YlI\nFoQS7uDBtf0dE0q5jz7afMeJHFHYK6rOlnGHDo23PxI/LdIQkSyp9Xy94MQToVcvm998++21fe4a\nUdgrqhD2Nm6E9evLv59G9rIjhL2XX7a5eyIiaZZU2OvVC045xdo331zb564Rhb2iKt02pZJSrsJe\ndoQyrvfw9NPJ9kVEpD1JhT2ISrkPP2xHtuWMwl5RhZE9UNjLq0GDYMwYa6uUKyJptmYNvPeetZMI\neyefDD16QGMj3HFH7Z+/yhT2iqp0ZK/ceXsbN8LatdZW2MsGzdsTkSxIYiVuqT59orPLc7gqV2Gv\nqLp3h969rV3uyJ6OSsue0rDnfbJ9ERFpSyjhDhhg5+ImIZRyH3wQVqxIpg9VorBXZJXutaewlz0h\n7C1bBm+9lWxfRETaUjpfz7lk+nDqqdCtGzQ0wIwZyfShShT2iqzS7VdKw17pnD9Jr332sU1DQaVc\nEUmvJBdnBP36wQknWDtnpVyFvSKrdGPlEPYGDoSuXavTJ4lXfT2MH29thT0RSas0hD2ISrn33w+r\nViXblxgp7BVZR8u4KuFmixZpiEiarVsH77xj7aTD3umn22DG5s1w113J9iVGCntF1tEyrsJetoSw\n99xzsGFDsn0REWlp/vxoAVnSYW/AAPjkJ62do1Kuwl6RaWSvGMLmyg0NMHdusn0REWkplHD79IGR\nI5PtC0Sl3Hvvtf3/ckBhr8g6OmdPYS9bdtgBdtrJ2irlikjapGElbqkzzrD5zps2wT33JN2bWCjs\nFZnKuMWheXsiklZpWZwRbLcdHHOMtXNyVq7CXpGVhr1yNtxV2MsuhT0RSau0hT2ISrn33GMLSDJO\nYa/IQhm3sbG8JeYKe9kVwt7779uHiEgabNwIb75p7TSFvTPPhLo6W9R2771J96bTFPaKrHRj5PZK\nuVu2wMqV1lbYy54DDoj2RtTonoikxWuvwdat1h43Ltm+lBoyBI46yto5WJWrsFdkpWGvvUUay5ZF\nbYW97OnRwwIfKOyJSHqEEm6vXtFCsrQIpdy77sr8tlUKe0U2YEC08qm9sKdzcbNP8/ZEJG1C2Ntz\nTyubpsmkSfY7ct06uO++pHvTKSl7Z6WmunSxwAftl3EV9rIvhL1nnrHd4UVEkpbGxRnBsGFwxBHW\nzngpV2Gv6MrdWDmEvb59oXv36vZJqiOEvY0b4YUXku2LiAikO+wBnHOOfZ4xw/bdyyiFvaIrd2Nl\nrcTNvlGjYPvtra1SrogkbfNmeP11a6c17E2ebJ/XrIEHHki2L52gsFd0lY7sKexll3Oatye1Vc7+\nnXm1ZYttayVte+MNO8YR0hv2dtgBDjvM2hku5SrsFV25p2go7OWDwp7UyvTp0K0b/OIXSfek9l59\n1ULCoYdmfhVnVYUSbvfuMHp0sn3ZlrAq9447MjvfWWGv6DSyVywh7L35ZvNFNyJx+9GPbNTmd79L\nuie11dgI551n21XNmQPf/W7SPUqvEPb22MMWDKZVKOWuXAkPPZRsXzpIYa/oNGevWA4+ONreYPbs\nZPsi+fXee9H317x50YbsRfCrXzUfOf/pT+Hpp5PrT5qlfXFGsNNOcMgh1s5oKVdhr+hUxi2WPn1g\nn32srVKuVMtttzX/uihh54034FvfsvZnPwtjx9rpEOedl+mVnFWTlbAHUSn39tttPmbGKOwVncq4\nxaN5e1JtLUc/ivC9tnUrfOlLNkdv2DD49a/h97+3hVEvvww/+EHSPUyXhgaYP9/aWQh7Z51ln5cv\nh0ceSbQrHaGwV3ShjLtqVbQqqqXGxigMKuxlXwh7Tz2l1YISv4UL4R//sPaIEfa5CGHvmmvg0Uej\n9sCBtorzK1+xy37wA3juueT6lzZvvhktdshC2Bs9Gg46yNoZLOUq7BVd6fm4K1a0fpvly6MtFBT2\nsi+EvTVr4JVXku2L5M/06fa5b1/4+tetPWtWvrdheecduOwya3/603DGGdF13/8+7LKL/TE9ZUom\nS4BVEUq4XbvCrrsm25dyhVLu9OltD46klMJe0ZWGvbZKuToqLV/GjImOySvCiIvUVhj1OO00OOoo\nay9fbvPZ8sh7uOACOz91yBBboFGqd+9oRfKzz8JPflL7PqZRCHtjxljgy4IQ9j78EB5/PNm+VEhh\nr+hCGRcU9oqiri5aWaawJ3FasgQee8za55wDe+9tYQfy+712443RyQq//nXrPyOPPhqmTbP25ZdH\nQafIsrQ4I9htN9h/f2tnrJSrsFd0fftCfb2121qRG8Jez57RD27JNi3SkGqYPt1Gunr3hhNOsJ8t\n48fbdXn8Xlu4EC65xNqTJkXnqLbmRz+CHXe0eWpTpmi+bBbDHkSje7fdlql/Q4W9onOu/RW5Womb\nPyHszZtni3NE4hBGO0491f44hPz+YeG9jdatWmWLMX7zG/t52pZ+/eC666w9ezZceWVt+plGjY12\nyghkN+x98AE8+WSyfamAwp60v7Gywl7+TJhgn723VbkinfXhh9GWFOEXIkRh7/nnYf36mnerav70\nJ7jrLmv/8pcwfHj79znxRPjCF6z9rW/B669XrXup9s47sHGjtbMW9saOtekJkKlSrsKetL+xssJe\n/my3nf3QgvyNuEgybr/dRmx69oSTToouD/NDGxvhmWeS6VvcliyJtlQ56ST4538u/74//7kFw40b\n4YtftP35iiaUcLt0gd13T7YvHRH+mLnllsz8+ynsSftl3KVL7bPCXr7ktbwmyQijHCef3Hxu77Bh\nMGqUtfPyvXbxxfbHcd++cO212y7ftjRwoO3DB7ai8+qrq9PHNAthb7fdoHv3ZPvSESHsLVqUme9p\nhT1RGbeoSsNenvdAk+r76KPogPjSEm6Qpz8sbrklCrY/+5ktuqjU6afDZz5j7W98w8qaRZLVxRnB\nXnvBHntYOyOlXIU9URm3qMIv4DzvgSa1MWOGlWm7d4dTTvn49eF7bebMbP9h8dFHcNFF1j72WDse\nraN+9Sv7mbpuHZx/frbfl0plPew517yUm4F/O4U90WrcoirCHmhSG2F048QTrbTZUgh7ixfDggW1\n61fcvvpVm9bSqxdcf31l5duWBg+2ffkAHnzQztEtgq1bo5N7xo1Lti+dEcLeggXw9NPJ9qUMCnuy\n7bC3dSssW2Zthb18yfseaFIbK1dGmwq3VsIF24i2WzdrZ/V77c474aabrP3DH9pZqZ11zjm2Px/A\npZfC++93/jHTbsECG82E7I7sAey7r805hEyUchX2ZNtz9laujDaOVNjLnzzNpZJk3Hmnnffatasd\nkdaa7t3hwAOtncXvtZUroxMwDjssKuV2lnPw29/aoo3Vq2Hq1EyUBDsllHDr6uyotKzKWClXYU+i\nkb0NG+yjlI5Ky7e87oEmtRNGNY4/Hvr3b/t2Wf7D4utft5WXPXrADTdYUInLsGHRBsv33BONHuZV\nCHu77BJtvJ1V4cSUt9+2c49TTGFPorAHH1+kobCXb3ncA01qZ/VquO8+a2/rqDCIwt7cubBpU3X7\nFacHHojm0/3nf1ZnNOrcc23LGrD9+z74IP7nSIusL84odcABUTk/5aVchT2Jyrjw8VJuCHtdu9px\nP5IvedwDTWrn7rstuNXX23Yi2xLC3qZNNpKcBWvW2EpZsFNn/vVfq/M8ztl+ff36wYoVto9fXuUp\n7JWWcm++OdWlXIU9KW9kb+jQzq08k/TKcnlNkhVGM447zuadbctOO9kfF5Cd77VvfhPefdf+2L3h\nBjvxoVpGjoSf/tTat95q4SFvvM9X2IMo7L3xBrz4YrJ92QaFPbF5KL16WbutkT2VcPMrL3ugSW2t\nXWtzzKDtVbilnMvWHxaPPmqLJwD+4z9qs03Il75k+/eBLQIJOyHkxaJFVvqH/IS98eOjjbVTXMpV\n2BPT1opchb38K90DrQhbP0g87rnHznft0gXOOKO8+2Ql7K1fb+fWgm0b841v1OZ5nbP9+3r3tp+9\nX/1qbZ63VsKoHkQnUGRdRkq5Cnti2jpFQ2Ev//KwB5rUXhjFOPpo2yC4HBMn2ue334YlS6rTrzh8\n5zvw5ps2F/GGG6yMWyujR9s+fgB/+pOdTpIXIeyNGtX8/OSsC2Hv1VebB9oUUdgT09bGygp7+Zf1\nPdCk9tavt8UZUF4JNzjooGje2+zZ8fcrDrNmwS9+Ye1vftNWXNbahRfC4Ydbe9o02+cvD/I2Xy84\n9FDYYQdrp7SUq7AnRmXcYiudtyfSnr/9zQJfXR2ceWb59+vd204egHT+YbFxI0yZYqW4vfaCb387\nmX7U1dl2Lz162PSKSy9Nph9xe/ll+5y3sFdXB2edZW2FPUk1lXGLLat7oEkywi+0f/on2H77yu6b\n5nl73/uendtaV2fl2+7dk+vLmDG2rx9YX8J+hlmVx5W4pcII90svWTk3ZRT2xLRWxvVeYa8osrgH\nmiRj40Y7Ig0qK+EG4XvtqaeioxjT4Jln4Mc/tvYll0QbjifpX//V9vcD2+8vrGTNoiVLbA9ByGfY\nO+yw6A+fW29Nti+taDfsOededs6tLfnY4JzzzrkDm67f1Tk33Tm3quljlnOua9N1o5puu67k/lru\nl0atlXHXrIHNm62tsJdvWdwDTZJx//227YpzMGlS5fcPYW/duqisl7TNm61829gIu+9uI3xp0KWL\njep16wYLFtgcwqwqXbiw557J9aNaunRJdSm33bDnvR/nve8TPoCfA/O893Odc0OAx4HngZ2A7YCL\ngZZ/ro0teYyRMb8GiUNrZVwdlVYcWdsDTZITfpEddlg0Kb0Su+8ebcCclu+1H/4QXnjB/h/8/vfp\nOrN13Djb5w/g6qvhkUcS7U6HhbA3cmR+T2MKI93PPWebLKdIRWVc51w9MAW4tumiS4D3vPff9d6v\n8t43eu/neO+3xt1RqbLSMm7YJ0hhr1hC2Pvzn21ieJwfJ5+crpKddMymTdFWIO2dhduW0j8s0rAg\n6NVX4YorrH3xxXDEEcn2pzWXXWZbJIHt/7duXbL96Yg8z9cLjjgi+l2ZslJupXP2zgT6A39o+vpo\nYIFz7m7n3HLn3AvOuc+1cr/ZzrkPnXOPOOeO6khHnXODnHNjnHNjGhoaOvIQsi0h7DU0WPkWorDX\npQsMGJBMv6R2TjwxOhJv06Z4P+6910ZOJNseeghWrbL25Mkdf5w0jSLfeCNs2QIjRsAPfpB0b1rX\ntav1s74e3noruVXCnVGEsFdfH01tuP32ZPvSQn2Ft58K/NV7Hzb9GQyMBz4FnIGFvzudc+96758A\nlgETgblAV2xU8F7n3CHe+0p/8n8Z+P8Ali5dWuFdpV1hzh5YKbdfvyjsDR5sq9Mk3/bbzxZnvP12\nvI87ZYqNGM+alcyeZRKfUMKdONHKcR0Vwt6rr9qk/fbO1a0W76PXdO650KdPMv0ox/7725y9K66A\nK6+0kdVPfCLpXpWvCGEPYOpUG+E79dSke9JM2WHPObcrcCwW3oI1wEzvfZiN+IBz7m/A6cAT3vu1\nQPjTbTNwlXPuNOAcoNKwdxXwJ4ChQ4fOr/C+0p4wsgf2i3nUKK3ELaJ99rGPOB16qG3AO2sW/M//\nGe9jS+1s2RKNVnRkFW6psMIUbFXuCSd07vE66tlnbaQMOv+aauHb34bp021hy5QpNjesR4+ke9W+\nDz+Mfp/kPewdeGC0SX2KVDJcMxV43ntfuu35c0BrB8Ft63A4D7gKntfu5P1H3vvXvPev1ddXOiAp\n7Sr9yzqsyFXYkziEI7LSULKTjvv736OtM8Kqw44aMCBakZnk90UY1dt5ZzvdI+26d7fVuXV1MH8+\nXH550j0qzyuvRO08rsTNgLLCnnOuG/AF4JoWV10LHOqcO9M5V+ecOxo4Hri96X6HOuf2ds7VO+d6\nOOcuAI4Epsf2CiQe9fXQv7+1w4pchT2JQyjZvfbax09okewIwWj8eAtHnZX0vD3v7eB6sFE9V/EY\nRDImTIhO1PjJT2DOnGT7U45Qwh02rPmUIamZckf2JgM9gJtKL/TezwI+C/wIK+leBXzeex+WWI3G\ngt8qYCHwz8Bp3vtnOt91iV3LjZUV9iQO48dHv0ifeirZvkjHNDRY+RDiK3eGsDd7NmxNYAOHF1+M\ntsfIQgm31OWX2xY2jY1Wzg37oaZVUebrpVhZYc97/xfvfb+mOXgtr7vZez/We9/be7+39/7mkuv+\n7L3frem6Qd77I7z3D8T5AiRGCntSDf362V5hoFJuVj36aPRzobMl3CCEvRUr4PXX43nMSoSRypEj\nm88hzIKePa2c65yF1rSuIg5C2As/B6TmtMRSIi1P0VDYk7gkXbKTzgnB6IADYNdd43nMceOgd29r\nJ/F9EV7TWWdlc7eBww+HL3/Z2t//frq3NtLIXuIy+B0uVdPyFA2FPYlL0iU76bjGRrjtNmvHWe7s\n0iUaUat12Js3L1o0kLUSbqkf/ABGj7Yy+3nn2ee0WbECFi+2tsJeYhT2JFJaxl2/3j5AYU86L4S9\nVatsFaFkxxNPQNjbNO5glNRK7TCqN3x4tvaqa6l3b7j+emvPnQs//Wmy/WlN6Upchb3EKOxJpLSM\nq6PSJE577hmdh6lSbraEYLTPPjBmTLyPHf4IeOGF2h4BlvUSbqljj4ULLrD2d7/bPFylQSjhDhli\nG/RLIjL+XS6xKi3jKuxJnOrqkivZScdt3Rqd8dnRs3C35ZBDouep1RYi8+fbogbIdgm31I9/bAtN\nNm2ys3PTdA615uulgsKeRErLuCHsOdf8dA2RjtIijeyZOTOab1WNYDR0KOyyi7Vr9X0RwuvQobbI\nIQ/694frrrP2zJnwq18l259SCnupoLAnkVDGXbkSPvgguqxLl+T6JPkRwt5LL8GaNcn2RcoTyp17\n7VW9kw9q/UdAeE2TJ+frZ9tJJ8HnP2/tb30r2kMwaQp7qaCwJ5Ewgud9tO+VSrgSl9KS3dNPJ9sX\nad/WrVEwqma5szTs+W2dtBmDN9+083AhPyXcUj//uZ1SsWEDfOlLya98X70aFiywtsJeohT2JFJa\nrg0rJhX2JC6DB8Nuu1lbpdz0e+opeP99a9ci7H3wAbz3XvWeB6LwOmgQHHlkdZ8rCdttB1dfbe1H\nH4Vrr022P6++GrUV9hKlsCeR0rAX/pMq7EmcNG8vO0IwGjMG9t67es+z337Qvbu1Z87c9m07K7ym\nSZPsPPA8OvNM+NSnrH3ZZfDuu8n1JZRwBw6E7bdPrh+isCcl+vWL5rCojCvVUMuSnXSc981LuOFs\n42ro1g0OOsja1fwj4J13ohW/eSzhlrrqKhtJX7sWzj8/uf9rL79sn/faq7rfQ9IuhT2JOBct0tiy\nxT4r7EmcQtj78EN4++1k+yJte+aZaESoFsGoFiO+YRXuwIFwzDHVe540GDIEfv1raz/wANx4YzL9\n0OKM1FDYk+ZabrOisCdx2ndfO8QdVMpNszCqt8susP/+1X++EPaefdb2iquG8JrOOAO6dq3Oc6TJ\n//gfVtIFuOQSWLiw9n1Q2EsNhT1pLozsBQp7EqeuXeHgg62tsJdOtSzhBiHsbd4crZaN04IF0fdb\n3ku4gXPw29/CgAF2TOG0abUt565bZ6VzUNhLAYU9aU4je1JtWqSRbs8/b1uUQO2C0ciRsMMO1q7G\n98Vtt9nnfv3guOPif/y0Gj4cfvlLa991F/z5z7V7bq3ETRWFPWlOYU+qrbRkt2FDsn2Rjwujejvv\nHI3CVptz1f0joLSEG1b+FsW//IttuAzw5S/DkiW1ed5Qwu3bF0aMqM1zSpsU9qQ5lXGl2sIv9YaG\n6pTspOO8h5tvtnatSrhBtcLeokXwj39Yuygl3FLO2X57ffvauecXX1yb5y2dr6eVuIlT2JPmWo7s\nDR6cTD8kv3bYAXbc0doq5abLyy/Da69Zu9bBKIS9d9+NzuONw/TpFmL79IHjj4/vcbNkxx3hpz+1\n9i23RCOd1aTFGamisCfNlYa9/v1tDyyRuGneXjqFUb2RI2HChNo+90EHRft8zp4d3+OGYHPaadCj\nR3yPmzXnnx9tOXPRRfDRR9V9PoW9VFHYk+ZKy7gq4Uq1KOylUwhGZ50FdTX+9dCrl52mAfF9XyxZ\nAo89Zu0ilnBLOQe/+529z0uXwte+Vr3n2rAB3nrL2gp7qaCwJ82Vjuwp7Em1hLC3YEEy+3/Jx82b\nF43GJBWMJk60z3GFvenTYetWCzgnnhjPY2bZ6NHwwx9a+49/tBW61fDaa/a+g8JeSijsSXMKe1IL\nBxwQbWwbZ8lOOi6cMDF8OHziE8n0IfwR8PTTtoCns8JI5SmnWOATK+Eedpi1p06FlSvjf47wR0Ov\nXrDTTvE/vlRMYU+aUxlXaqFnz+hkBpVy0yEEo8mTa1/CDULYW78eXnqpc4/14YfwyCPWLnoJt1Rd\nHdxwg81fXLQIvv71+J8jhL0990zue0ma0b+CNKeRPamV8It95sxk+yFWdnvhBWsnGYx23TX6GdTZ\nPwLuuAMaGy3UnHxy5/uWJ2PGwPe+Z+3f/97Oz41TCHvjxsX7uNJh9Ul3QFKmVy/74bhxo8KeVNeh\nh8JVV8GcObBlS/LnlV5xBTz3nB0a37dvsn2ptVDCHTIEjjgiuX6EzZXvvtvC3rRpHX+sMFJ50km2\n7Yo0d8kl9h499ZSN5oYTTOLw7rv2WfP1UkNhTz5u7Fg7MmnPPZPuieRZGNnbuNFGlQ46KLm+vPce\nfOc71j7qqNptPJsWIRhNmhRtf5KU0rDXUcuXw0MPWVsl3NZ16WLl3AMPhLVro/0V43TIIfE/pnSI\nwp583PTpNl/mhBOS7onk2ejRNpL04Yf2iz3JsBfOTgULPkUKe2+9BXPnWvucc5LtC0R/BMyfb6Gt\n5ak+5ZgxwxZ4dO8Op54ab//yZNw4eOKJ6sybHTUKjjwy/seVDlHYk48bPdo+RKoplOzuvNN+2Vx0\nUXJ9KT1R4LHHbH+27bdPrj+1FEq4gwbZqGbSxo+37w3vbaV2ONe1EuHf84QToF+/ePuXN+PH24fk\nmhZoiEhy0rC58sKF0dmpYCFj+vTk+lNrpSXc+hT8/d+/fzTXqyPfF6tWwf33W1slXBFAYU9EkhTC\n3htvwLJlyfQhlHD79oUzzrB2ODYs79591yboQ7qCUWf+CLjzzmjBz2mnxdsvkYxS2BOR5IwfH+3D\nldTmyqVnp557rrUfecTmEuZdKOEOHBidm5oGIezNnh2dxFCu8O/5yU/CgAHx9kskoxT2RCQ5ffvC\n3ntbO4lS7gcfwOOPW/vss21+WM+eFjBuv732/am1EIzOOCP5rW9KhbC3apUt1CjX6tXwt79ZO00j\nlSIJU9gTkWQlOW9v+nSbo9e7t52d2rt3tAFv6aKNPHr//WhD67QFoz33jPY6rOT74u67YdMmm3sY\nSvIiorAnIgkrLdk1Ntb2uUvPTu3Z09oh+Dz0EHz0UW37U0thrmK/fnDcccn2paUuXWDCBGtXEvbC\nv+cxx3RsyxaRnFLYE5FkhbC3Zg28+mrtnrf07NTS/eVOOcX2Z2tstP3a8ioEo9NPt9ebNpWO+K5d\nC/fcY+20jVSKJExhT0SSNXasbbcBtS3l3n67zc3r2bP5Xm59+0Zf57WUu3ixbaYL6Q1GIey99JL9\nIdCee++101jq6uDMM6vbN5GMUdgTkWTV1UXHKtUy7IUgd/LJNlevVAhADzwAK1fWrk+1EuYq9ukD\nxx+fdG9aF74ntm6185PbE/49jzpK53qLtKCwJyLJq/UijY8+2vbZqaeeCt262X5td95Zmz7VUghG\np54azVVMmyFDYLfdrN3e98X69bY4A9I7UimSIIU9EUleCHsvv2zbZ1TbjBk2J697d5uj11L//tGI\nV95KuUuXwqOPWjvtwajcPwLuuw/WrbNj1iZPrn6/RDJGYU9EkhdWXnofnehQTSHAnXhitMVHSyEI\n3XdfbQJorUyfbqXRXr06du5sLZWGPe/bvl349/ynfyrOmcYiFVDYE5HkDRoEY8ZYu9ql3JUrbS4e\nbHtk6/TTbb+2TZvgrruq26daKt1uplevZPvSnhD2li6Fd95p/TYbN0al9rSPVIokRGFPRNKhVvP2\nZswo7+zUgQOj/efyUspdtgweftjaWQhG++4LPXpYu63viwceiFbrqoQr0iqFPRFJh3JLdp0Vgtvx\nx0dbvrQlBKJ777V93LLujjtsrmKPHtFJIWnWtSscfLC12wp74d/zsMNghx1q0y+RjFHYE5F0CGHv\no4/gzTer8xyrV9scPChvZOuMM+w0h40bow17sywEo5NOsm1XsiB8X4Sj3Upt2mQBFrIxUimSEIU9\nEUmHffaJtgGpVin3rrtg8+byz04dPBiOPtraWS/lrlgBDz5o7SwFoxD2nn0WNmxoft1DD8GqVdZW\nCVekTQp7IpIO9fUwfry1qxX2QmA77jibk1eOEIzuvtv2c8uqGTOgocH2Dzz11KR7U74Q9hoaLPCV\nCv+ehxwCO+1U236JZIjCnoikRzUXaaxda3PvoLKRrUmT7JSP9evhb3+Lv1+1EoLRCSdAv37J9qUS\nI0bAyJHWLv2+2LLFjryDbI1UiiRAYU9E0iOEveefj38U7Z57bO5dly7llXCDoUPhyCOtndVS7qpV\ncLVO2hkAABWHSURBVP/91s5iMGrtj4CHH7bSNMBZZ9W+TyIZorAnIulRWrKbOzfexw5B7eijbS5e\nJUJAuvNOC4xZE+YqtrfdTFq1FvbCv+dBB8Ho0bXvk0iGKOyJSHoMHw4772ztOEu5nT07ddIkO4pr\n7dpoNW+W3Hyzfa5krmKahLC3YAEsXGh/DEyfbpdlcaRSpMYU9kQkXaoxb+9vf7PAV1cHZ55Z+f2H\nD4fDD7d21kq5a9ZEcw3POSfZvnTUgQfaAh6A2bPhscdsg2hQ2BMpg8KeiKRLNcJeHGenhlAxY4bt\n75YVd99t/S13u5k06tkT9t/f2rNmRf+e++8Pu+2WXL9EMkJhT0TSJYS9hQvh/fc7/3hxnZ0a9nFb\nvTrary4LQjA65hjYbrtk+9IZ4fviH/+A226ztkb1RMqisCci6XLAAbYXHMQzunfffTbXzrnObbw7\nciRMnGjtrJRy162LTv7IejAKYe/JJ2HJEmtn/TWJ1IjCnoikS/fuFvggnrAXgtnhh9vcu84I4eL2\n2211a9rde6+dOtHRuYppEoJ2sPfeMHZsMn0RyRiFPRFJn7jm7W3aZHPsIJ5RoLCf28qVts9b2oWg\ne9RRMGRIol3ptNGjm78GjeqJlE1hT0TSJ4S9OXM6N4L24IM2xw7iOTt1552jI93SXsrdsMH214N8\nBCPnou8LyMdrEqkRhT0RSZ/wS33TJjtNo6NCIJs4MTpyq7NCyJg+3fZ7S6v77rM5e87ZPoF5cNRR\n9nnvvWGvvRLtikiWKOyJSPrsvHO0RUpHS7mbN1fn7NTwWB99BI8+Gt/jxi0E3SOOgGHDku1LXC6+\nGK66Cm691UKsiJRFYU9E0qe0ZNfRsPfwwza3DuI9O3WXXWyTX4hOpkibjRvjnauYFt26WeAbMybp\nnohkisKeiKRTZ8NeGNkaPz46gi0uIUDddhs0Nsb72HF44AE7OQPimasoIpmmsCci6RTC3ltvwdKl\nld232menhpHCDz+Exx+P//E7KwTdT3wCRoxIti8ikjiFPRFJp4MPtv3hwM5DrcSjj9qcOoi3hBuM\nGQP77mvttK3K3bwZ7rjD2lk9C1dEYqWwJyLp1KcP7LOPtSst5YYAdsABsOuu8fYrCCOGt94KW7dW\n5zk64qGHYNUqa6uEKyIo7IlImnVk3l5jY23OTg2P/cEHdoRXWoSge8ghsNNOyfZFRFJBYU9E0isc\nkfXUU+UvhHj88WiOXzXD3p57Rnu9paWUu2VLdbabEZFMU9gTkfQKI3tr18K8eeXdJwSvffet/hYd\naSvlPvIILF9u7WrMVRSRTFLYE5H02n13GDjQ2uWUcrduteAFtRnZCs/x/vs2+pi0EHQPOsjOkhUR\nQWFPRNKsrs7mnkF5Ye/JJ20OHdQm7O29dzR6mHQpt9rbzYhIZinsiUi6VbJIIwSuvfayOXXV5lwU\nrG65Bbyv/nO25bHHbN8/UAlXRJppN+w55152zq0t+djgnPPOuQObrt/VOTfdObeq6WOWc65ryf0P\nds495Zxb75x70zl3bjVfkIjkTAh78+ZFx5+1ptYl3CA817vvwpw5tXvelkLQ3W8/K3+LiDRpN+x5\n78d57/uED+DnwDzv/Vzn3BDgceB5YCdgO+BioBHAOdcfuBe4FRgITAOucc5NrMqrEZH8mTAhaj/9\ndNu3e+opmzsHtQ17++9v5+VCcqXcWm03IyKZVFEZ1zlXD0wBrm266BLgPe/9d733q7z3jd77Od77\nsCxtMrAe+LH3fpP3/gFgOnBBTP0XkbwbOBD22MPaM2e2fbsQtMaMsbl0teJcdFJFUqXcf/wDliyx\ntsKeiLRQ6Zy9M4H+wB+avj4aWOCcu9s5t9w594Jz7nMlt98PeNb7Zj/95jZdXhHn3CDn3Bjn3JiG\nhoZK7y4iWdbevD3vo7B39tkWwGopBKy33oLnnqvtc0P02vfeOwrGIiJNKg17U4G/eu/DxJnB2Ojd\njcBQ4FLg9865w5uu7wusavEYK4F+Hejrl4H5wPyllR6KLiLZVhr2Whs5e+YZmzMHyYxsHXQQ7Lyz\ntWtdyk1qrqKIZEbZYc85tytwLHBNycVrgJne+1u89w1NZdq/AaeXXN+/xUMNAFZ3oK9XAWOBsUOH\nDu3A3UUks0LYW7ECXn/949eHgLXrrjaHrtZKV+XefHNtS7mzZsGiRdZW2BORVlQysjcVeN57P7vk\nsueA1n6qhcueB1r+5D2w6fKKeO8/8t6/5r1/rb6+vtK7i0iWjRsHvXtbu2UpN+kSbhCC1uuvw0sv\n1e55w2vfY4/o+DYRkRJlhT3nXDfgCzQf1QNbqHGoc+5M51ydc+5o4Hig6XBGpgO9nXP/5pzr7pw7\nDpgEXBdL70WkGOrrYfx4a7cMe889B2++ae0kR7YmTICRI61dq1JuWoKuiKRauSN7k4EewE2lF3rv\nZwGfBX6ElWyvAj7vvZ/ZdP1K4GTgHGyu3nXAtHC9iEjZ2lqkEcLOzjvb3Lmk1NVFmxnXKuw9/TQs\nWGBtlXBFpA1lhT3v/V+89/2892tbue5m7/1Y731v7/3e3vubW1z/tPd+gve+p/d+F+/9H+PqvIgU\nSAh7L7wA69ZZ23ubIwfpGNkKgWvePPuotvDad9sN9t23+s8nIpmk49JEJBvCGbmNjbb6FmxuXFiw\nkYaRrU98AoYPt3a1R/dUwhWRMinsiUg2DBsGo0ZZO5RyQ9gZObL5SRtJqauDyZOtXe2wN3cuvPOO\ntdMQdEUktRT2RCQ7JjadtNgy7J11lgWtNAjB68UXYf786j1PeO2jRsGBB1bveUQk81Ly01FEpAxh\n3t7Mmc3nxaVpZOuIIyDsBRo2O46bSrgiUgGFPRHJjhD2PvgAfvELaw8fbnPl0qJLl+qXcl94Ad54\nw9ppCroikkoKeyKSHfvvD927W/uGG+xzmkq4QQhgzz4b7QEYpxAid9wxHXMVRSTVUvYTUkRkG7p1\ni+anbd1qn9M4snXkkTBokLXjLuWmbbsZEUk9hT0RyZZQygWbG3f44cn1pS319TBpkrXjLuXOmxct\n/Ehj0BWR1NEhsyKSLaVhb/JkmyOXRmefDb/7nZ1yMWVKfP185RX7vMMOzd8LEZE2KOyJSLZMnGil\nS+/TPbJ1zDEwcCCsWAE33hj/46dxrqKIpJLCnohky4472uKMlSstUKVV167wxz/C//7f0fzCuAwc\nCN/6VryPKSK55bz3SfehYgcffLCfM2dO0t0QERERSYxz7hnv/cHt3U41ABEREZEcU9gTERERyTGF\nPREREZEcU9gTERERyTGFPREREZEcU9gTERERyTGFPREREZEcU9gTERERyTGFPREREZEcU9gTERER\nyTGFPREREZEcU9gTERERyTGFPREREZEcU9gTERERyTGFPREREZEcc977pPtQMefch8D7wPbAEqAx\n2R4lqgt6H0DvQ6D3weh9MHofjN4Ho/fB5Ol92Nl7P6S9G2Uy7AE458YA84Gx3vvXku5PUvQ+GL0P\nRu+D0ftg9D4YvQ9G74Mp4vugMq6IiIhIjinsiYiIiORYlsPeR8DlTZ+LTO+D0ftg9D4YvQ9G74PR\n+2D0PpjCvQ+ZnbMnIiIiIu3L8sieiIiIiLRDYU9EREQkxxT2RERERHJMYU9EREQkxxT2RERERHJM\nYU9EREQkxxT2RERERHJMYU9EREQkx1IX9pxzP3LOveycW+2cW+Scu945t12L2/yLc+5N59x659xs\n59xBLa4/2Dn3VNP1bzrnzq3tq4iXc67OOfekc84750aWXF6Y98E5d5xzbpZzbq1zbplz7rcl1xXi\nfXDODXPO/dU596FzboVz7u/Ouf1Krs/d++Cc+7Rz7vGmnwcNrVzfqdfsnBvqnLvNObem6X39kXMu\njT8X23wfmt6DJ5u+J5Y55+51zu3T4ja5fx9a3O5HTT8vW77OQrwPzrldnXPTnXOrmj5mOee6llyf\n+/fBOdelqd8Lml7Hi865s1vcJhfvQ1m896n6AH4AHAB0BYYA9wIzSq4/HFgHHA90By4DlgD9mq7v\nD3wIfKPp+k8Ca4GJSb+2TrwnlwIPAh4YWbT3ATgKWAmc3fRaegAHFvB9uA14ABgIdAN+DCwAXF7f\nB+AE4DPAFKChxXWdfs1N7+dtTbfdBXgN+EbSr7vC9+GiptfWu+l1fh9YDPQq0vtQcpsJwAvAIuDc\nkssL8T5gvzcXAd9teh1dgIOBuoK9D19peh/GYj8jzwQ2A3vk7X0o671KugNl/GOeCKwu+fr/AP9d\n8rUD3gU+3/T1eU1fu5Lb/DdwY9KvpYOvfwzwJrA/zcNeYd4HYCbwwzauK9L78AIwteTrsU3fE4Pz\n/j5ggb/lD/NOvWZgdNP7t2vJ9V8E3k769VbyPrRymx5Nryv8QVSY9wH7pf0iMBF4h+ZhrxDvA/Bf\nwKxt3Kco78OvgD+3uGwxcHZe34dtfWRhOPJY4PmSr/cDnglfePsXeK7p8nD9s02XB3NLrs+MpuHi\nG4CvYyNbpQrxPjjnemN/qdc75+Y2lakecc4d3HSTQrwPTX4CTHbODXHO9QAuAJ7w3i+jWO9D0NnX\nvB+wynv/ZovrRznn+lWt19V3LLAeeL3p6yK9D98F/u69n9nKdUV5H44GFjjn7nbOLXfOveCc+1zJ\n9UV5H64Hxjnn9moq6Z4N1AOPNV1flPcBsBeeWs65s4BpwJElF/cFVrW46UqgX5nXZ8lXgQ+899Od\nc6NaXFeU92EgNrf0M8BJwKtY+L3HOTeG4rwPAP8APg8sBRqxEu5JTdcV6X0IOvua27qeptusjqeb\ntdP0f+JG4FLv/ZqmiwvxPjT9AXgOVgVpTSHeB2ykfzzwKeAMLPzd6Zx713v/BMV5H94CHgdeArYC\nm4B/9t4vbbq+KO8DkMIFGoFz7hwsmZ/uvZ9bctUarH5eagDRG9/e9ZngnNsNm6t3cRs3KcT7gL0O\nsKH1F7z3m7EyRVfgExTkfWga5X0QG63pD/TC5mY97pzbnoK8Dy109jW3dX24LlOcc3sBDwM/9d5f\nU3JV7t8H51w3LORe5L1f28bNcv8+NFkDzPTe3+K9b/DePwD8DTi95PoivA+/xeb/j8bmOH8SuMY5\nd3zT9UV5H4CUhj33/9q79xi7qiqO499fp6Y8WmZoCYkCSSW8KoGOU0kxnRpNAZWklNaQkFAJDxuE\nqGhChdSogDEUMJAKijgmJTwSwtugCGpoQygveTi1mDSKgAFiZSh9IGhbWPyx9tjTmztwJ6CdOef3\nSU5m5u59zz17zdzb1f04WzoTuB6YHxGrWooHgb5KXZG/0MFKeev/7PrYdSh4POgnJ9qukzREdh8D\nrJV0Hg2JQ0RsJufeRGtRORoRB2Aq+aG1IiK2RMS2iPgF+R7+NM2JQ9UHbfMg0C3p4JbyF8rf3bgh\nqQ9YTc5tvaKluAlx+BhwJHBLmeoxBBwEXCfpllKnCXGAnMrQ+nlJ5bGmxGEWcGNEvBgR70TEI2RP\n34mlvClxSLt70mDrQa6geQ04ZoTyfnLFzDzar8DrIVfYLC3lxzEOVh22aedewIGV41jyzfopYHJT\n4lDashR4CfgEOfXg2+RE2+6GxWE9cA256nIiuQJtG7lKrJZxIFcS7kGuuN1Rvt+DnSuQP1CbydV2\nd5DDMsOr7S7a3e0eZRzmAK8DS0Z4bhPi0MWun5cHktMcvg5Ma1AcRP5bsZ1cfTqBHMZ9c7idDYrD\n9WRyd0CpO5vMLb5ctzh0FKvdfQFtfnlR/lDfqB4tdU4nx+PfAp4AZrWUH1Mef6vUW/z/uv7/YVym\nU1mN26Q4lDfupcA/yDkTq4DeBsZhBvBrYIicS/IUsKDOcQDOYGcvbvWY/mG0GdifvLXC1hLXKyi3\nqBhLx3vFobwf3mn9zATmNikObeq+0KadjYgDOXdxPXlronXAKU2LA5mg/Qx4ubTjr8CyOsahk0Ol\nQWZmZmZWQ2Nyzp6ZmZmZfTic7JmZmZnVmJM9MzMzsxpzsmdmZmZWY072zMzMzGrMyZ6ZmZlZjTnZ\nMzMzs9qQtLek5yTt6KDu6aXum5IelzSrpXyRpLWS3pC0vmzlWi2fLekhSZskbZB0k6RplfLLJT0r\naYukVyQNSJo6yvZcUK5xq6S/lF20RsXJnpmZmY0LkqZLer8bBC8Hnu/gXP3AdcC5wL7AncB9kvYp\n5ccCNwPfJG/SfAG5Jd/sUt4F/Ap4hNzedAa5dd+PKy/zNrAYmAbMJHd3uaGDpg5f40nAJcBpETGF\nvJH8lZKO7/Qc4GTPzMzMakLSZ4C5wOUdVF8C3BURv42I/wBXAv8GFpbyRcADEfFg5P669wJrgHNK\neTewH7AyIrZHxEbgNjKpAyAilkXEM6X8VWAF8NmWa14iaZ2kzZKekXRCpfgQYG1EPFbO9yiwtvoa\nnXCyZ2ZmZuOepL2AAeAr5Lar72cmue0kAJFbiv2RnYmUylE1Aegt9TeSe/CeLWmSpP2BU4G73+M1\n5wGDlWteAlwInEb2Ln4HuEvSIaXKrcAUSXMkTZA0FzgMuL+D9u1y0WZmZmbj3WXAvRHxZIf1p5D7\njFdtIodsIfci/4Kk4yVNlLQQmFMpB7id7AH8F7CB3Kf6snYvJulLwFeB8ysPnw9cGhGDpffwPnK/\n61NL+T+BO8pj28rX70fEug7bCDjZMzMzszFM0k/LAohN5BAmwz+X46Iy/+6LwPdGceqt5FBsVQ+w\nBSAiVpPJ2VVk0nUG2dM2VK7hUOA3wA+BPctzn6NNr1tZ2DEAnBQRT1eKPg78pNoe4HPAAaX8u2Sv\nXy/wEbLX8VuSzh5FO53smZmZ2dgVEedFRE9E9ABHl8d6Ksdy4DjgIODvkoaAXwJdkoYkzR/h1INA\n3/APkgR8ksowa0TcEBFHRcTUiFgAHA6sLsUzgY0RMTxnbzNwDTBXUk/lvGeSw73zI2JVyzW8CJzV\n0p7JEXFuKZ8F3BkRf470LHAPMFKb2nKyZ2ZmZuPdVcChZA9YLzlv7+3y/e9HeM4AsEjSPEmTgKXA\nJMqcuzJ02yepS1K3pB+QCeXV5flPAT2SFpc6U4CvAX+LiE3lHN8AfgR8PiLWtLmGq4GLJfUq7Smp\nX9IRpXwNsLD0IiJpBnAylbmGnZg4mspmZmZmY01EbKEMvwJIerU8/lLlsWXkLUyOLGUPl3vWDQAf\nBf4EnFjOBdAF/JzszQtyvlx/RGwoz3++zMO7GLiWTC7/ACyoXNoKYAewKjsO/3u9k8vXAUnbgJXk\nkO524GnyNi+QK4S7gd9J2g/YSM4TXD6a+CgXn5iZmZlZHXkY18zMzKzGnOyZmZmZ1ZiTPTMzM7Ma\nc7JnZmZmVmNO9szMzMxqzMmemZmZWY052TMzMzOrMSd7ZmZmZjXmZM/MzMysxt4FJQwW3KcU3HEA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=1)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot it on top of the dynamic spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecnFW5wPHfmdnZ3nv6pvdeKCGk0EtCCCBeREWkWVD0\n6vWq14t6r4qIKHJVEEQFwQQCCTWEQAqk996z2fRs32yb3Wnn/jGT3dlks23O7MzsPt/PZz+Z9533\nfebsZssz5zlFaa0RQgghhBCBsYS6AUIIIYQQXYEkVUIIIYQQBkhSJYQQQghhgCRVQgghhBAGSFIl\nhBBCCGGAJFVCCCGEEAZIUiWEEEIIYUCbkiqlVK5SaoFSqlgpVa6UWq6UGuv3/JeUUkeUUrVKqQ1K\nqYkX3D9JKbXR9/wRpdS9pj8RIYQQQohLUUr9Qil1VClVqZQqUkotVEr1beH6G5VSe5RSdqXUbqXU\n9a29Rlt7qv4EpANDgBxgM/Ce8roK+DPwNSANeBP4QCmV7GtUCrDEdz4NeAR4Til1RRtfWwghhBAi\nUK8A47TWyUAecByY39yFSqkBwFvAr4AU37+LlFJ5Lb1AW5OqQcBCrXW51toB/BXoDWQADwJvaa0/\n0lrXA78B6oDbfffOA2qBJ7XW9VrrZcAi4KE2vrYQQgghREC01vu11ud8hwrwAEMvcfmXgS1a639q\nrR1a61eBrb7zl9TWpOo3wDylVJZSKhZvQrRaa10CjAW2+DVaA9t95/H9u0033Q9nq9/zbaKUylBK\nDfF9ZLTnXiGEEEJEvgtygXbnA0qpe5RS54Bq4NvATy9xaZPcxqfV3CWqje1Ygzc7KwLcwAngJt9z\nScC5C66vAJLb+HxbPQo8DhAVFU3P3IHtvL0Z9fWBxwAIs+0TnZmxAcewlTsNtAQ88TYjcSxOj5E4\n1DnMxAk3SpmJY2Iv0HBqC3jfj5pgqDmepMB/PgEsVXVG4pjiSTT0eVWH1+dlgo6PMRJH1Qb+N6vo\nXKHDpZ1mGtRGN1zTR5eWGft/PQL4JwA/49KJ0UW01q8BrymlcoGvArsucemlcpeRLcVvNalSSlmA\nj4GleEt5dcCXgM+UUqOAKrz1Rn+peD9xfM/nNfN8ZWuvfYFngdcAMtJ7HPjql3/Zztsvpg4eDzgG\ngPa4jcQx5exXLtWb2XY93zxjoCVQM7aHkThxRYYS4AMFZuKEGWU1k7xqd+DJdDi1BUBZrEbimPo5\nt08L/OcTIO6zA0bimFJ/uZnPK2Z9eH1eJrjHDjISx7rjcMAxnn7nF3YDTWmX0tJyNnw0ykisqJyS\nKpqW7Eo7EkdrfVYp9QKQr5Tqq7Uuu+CSS+U2LeYubSn/pQP9gWe01pW+2uKLvnuvAHYAE85frJRS\nwHjfeXz/jrsg5gS/59tEa12qtT6otT5oUWZ+SQohhBAiuLTWeAx9AO7zuYDvo0NJlU8UkAD0bOa5\nJrmNT6u5S6s9VVrrEqXUQeAbSqn/BOrx9lQlATuBEuBDpdQ/gNV4a5QxeAej4/v3SaXU94E/ANPw\nDmK/rrXXFkIIIUSEU/FgG20o2MaONcFbdfs68LrWukgp1RtvBawA2N/MLS8D31dK/Rve1QvuwptU\nfbGl12nrmKq5wFPAMcAGHAbu0lrn4+06+zrwAtADb33yZq11JYDWukIpdTPwR+DnwBngEa31uja+\nthBCCCEila7F42xXcSpYbgb+WymVgHd81ErgWq21Syn1BeB5rXUigNb6iFJqHvBb4CUgH7hda13Q\n0gu0KanSWu8Dbmnh+ZfxZnWXen4TMKUtryWEEEKIrkMDnhDP6NJae/AmVZd6/lXg1QvOfQh82J7X\naWtPlRBCCCFEuykVh7KNMRTtwlUOwoskVUIIIYQIGq1rcTu2h7oZnSIikyptAXdM4DMArWG2FII1\nO8tInNy/BT4l2dCqUDiSexmJk3jQzCxgU//j1pwcI3G0obXSPBUVRuK4xg8OOEbUtkMGWmKOe1R/\nI3EsOwOfzg7htxSCJS7eSBxTSyHoUYGvQWgtrTbQEvCcKTQSx+ow9Rs1MmnM/e4NdxGZVAkhhBAi\nMigVj8XWrk1UWrDNUJzgkKRKCCGEEEGjdS0up5T/hBBCCCECEg6z/zqLJFVCCCGECBql4rEaK/+F\nxXpXlyRJlRBCCCGCRutanFL+E0IIIYQIjAbcWsp/QgghhBABUSqOqOhxhqLtMhQnOCSpEkIIIUTQ\naG3HIYt/CiGEEEIERqNxy+w/IYQQQojAKBWPzTbeULTdhuIEhyRVQgghhAgarWupd4T3SuimSFIl\nhBBCiKDqLrsfRmRSpWrrse4IfHNTx2VDDLQGoitdRuK49+UbiWPNyQ44hruwyEBLIOX9fUbihNtm\nnLqyKtRNaKJ2xlAjceJXBr4prjUjw0BLwF1aaiROVFmtkTgY2njYPbCHkThq9xEjcTx2Q18fQ1yx\nloBjWGvqDLQElM1mJk6Nw0icSE1MlIonOlrKf0IIIYQQAfFoO3aZ/SeEEEIIEThP95j8J0mVEEII\nIYJHqXhijJX/ZPFPIYQQQnRTHl1LrZT/hBBCCCEC50GFugmdQpIqIYQQQgSNUvHEGVv8c4ehOMEh\nSZUQQgghgsbjqaVGyn9CCCGEEIFzS/lPCCGEECIwyhJPnLHZf+G93Y0kVUIIIYQIGo/HTo0jvMdC\nmSJJlRBCCCGCyqOl/CeEEEIIERCLJZ74mLGGom02FCc4unVSFb3hYKib0ET53OFG4qTtswccw5Fn\naLPpMPsaW3r3NBJH1TuNxHGnJhiJY2IjZFPqBpjZUNlmaENlKmuMhFFJZv6vTG2EHG5c4wcbiWPb\nfCjgGMrQpt6eSjM/5/rEGSNxIpXbU0tV/c5QN6NTdOukSgghhBDBpnBrS6gb0SkkqRJCCCFE0FhU\nHInGyn8bDMUJDkmqhBBCCBE0bm2nUsp/QgghhBCBsRrtqVpvKE5wSFIlhBBCiKDRKFlSQQghhBAi\nUG5dy7n6XaFuRqeQpEoIIYQQQWNV8STHjDEUbY2hOMEhSZUQQgghgsat7VRIT5UQQgghRGA04EbW\nqRJCCCGECIhVxZESM9pQtE8NxQkOSaqEEEIIETRubae8bk+om9EpJKkSQgghRNBoFB5kSYXwFWXF\nmpoacBhn30wDjQFngtVInLTF+4zEYWj/gEMY2wh5WOBtAbCcLDYSR9U5jMTxlJWbiZObbCROlIGf\nBwBPRUXAMWybzHzvWOLijcRxDMw2Eif6bKWROKaY+vpgMfPHzrazwEgci4HNkN2GNuO2Zpr5G+Eu\nKTESJ1KZLf+tMBQnOCIzqRJCCCFERHB77JTV7Q51MzqFJFVCCCGECBoNeGT2nxBCCCFEYKIscaTF\njDIU7WNDcYJDkiohhBBCBI3LU0dJ3d5QN6NTSFIlhBBCiKDxlv9k9p8QQgghRECiLHGkxY40FG2p\noTjBIUmVEEIIIYLG5bFTUmdoyaAwJ0mVEEIIIYJGAx4t5T8hhBBCiIBEWeLIMFb++8BQnOCQpEoI\nIYQQQePy1FEs5T8hhBBCiMBJ+U8IIYQQIkBWFUdG7AhD0d41FCc4IjOp0qA9noDDRJXUGGgMWHae\nMRMnJsZIHI4XBhwi8K+uz/6jRsKYao8lK91IHG1og1TLriNG4pCYaCZOGNE9zGxma61zG4njORP4\nzxWAxdD/Vd3InkbixJ6pNRJHHz9pJI6pzZBN6O4bIZvi0naK6vaHuhmdotXNeJRSe5RS1X4fdqWU\nVkpNUEpZlVI/UUod9T33mVJqzAX3T1JKbVRK1Sqljiil7g3epyOEEEKIcKJRuLXFyEe4a7WnSmvd\nZMi+UuoXwFyt9Val1PeBe4FrgJPAT4GlSqkhWusqpVQKsAR4CpgGXA0sUkod0VqvM/upCCGEECLc\n2FQs2bHDQt2MTtGu8p9SKgq4H/iV79RdwJ+01vm+5x8HvgfcDrwMzANqgSe11hpYppRaBDwEtCup\nUkplABkAOWm92nOrEEIIIULEqes4W3cg1M3oFO3tS5sLpOBNmACU78OfAsb5Ho8FtvkSqvO2+s63\n16PAAeBATV1VB24XQgghRGfTKDxYjHyEu/YOVH8YWKC1rvAdvwd8Qyn1PnAC+BlgBZJ9zycB5y6I\nUeH3fHs8C7wGkBCb1D1SXiGEECLCSfmvGUqpgXjHTl3hd/oJIAH4yPfvS8A+4PyUiSog74JQqUBl\nexuqtS4FSgF6ZvRr7+1CCCGECAGnp46z9u7RF9KevrSHgR1a6w3nT2it67XW/6G17q+1zsY7IH0A\nsNJ3yQ4aS4HnTfCdF0IIIUQXpwE3yshHuGtTT5VSKhq4D/jJBedzgVitdYFSqg/wZ7wD0Jf6LlkE\nPOmbJfgHvDMAbweuM9J6IYQQQoQ1myWWXCn/NTEPiAVeveB8b+BfSqleeEt9bwD/eX5guta6Qil1\nM/BH4OfAGeARWU5BCCGE6B6cnjpO2w+Guhmdok1JldZ6PjC/mfObgcGt3LsJmNKh1gkhhBAiwik8\nEVC6MyEyt6kRQgghRESwWWLIjR0a6mZ0CkmqhBBCCBE0Dk89p+2HQt2MThGZSZXbjaey3asyXMRq\nCbOFxHKyjITxGNjY1JqaaqAl4K6oaP2iNrD072skjufocSNxKm4dbiRO6nv7jMRxDuphJI490xpw\njMST9QZaAtrQZtxqcJ6ROKZou5mvT/QGM2NUTG1Wrmw2I3G002kkjgnWLDO/k93FxUbiRLJI2LfP\nhMhMqoQQQggREWyWWHrGDwlpG5RSvwZuBfoA1cD7wA+01mUt3PM94GtANnAW+J3W+k8tvY4kVUII\nIYQIGoennpO1IS//uYF7gd14FyF/Gfg7MKe5i5VSc/DuEnON1nq9UuoK4GOl1CGt9bJLvYgkVUII\nIYQIKo82NvvPqpTy7/Yq9e240iKt9Y/8DouVUs8Ar7dwyyBgp9Z6ve/+dUqpnXj3LpakSgghhBCd\nz6Zi6BlnrPyXA/jvefMz4KcdiHMNLe/uMh+4Xyk1Fe+i5lOBIcCHLQWVpEoIIYQQQWO4/FcIzPA7\nbrWX6kJKqTuAR4DpLVxWBCwEVtC4pd9jWuvdLcWWpEoIIYQQQeVu11bDLYfSWnd46qtS6i7geWCO\n1nprC5f+BLgH7/7F+4ARwDtKKbvW+q+XukmSKiGEEEIEjc0SS+/4Fjdf6RRKqa8AvwVma63XtHL5\nROBNrfVe3/EepdRiYDYgSZUQQgghOp/DU8/x2sMhbYNS6lvA48ANvu3zWrMGuE8p9Vet9SGl1HBg\nLt4Zg5ckSZUQQgghgibaEhMOPVXPAC5ghVKNMxG11okASqkvAM+fPwZ+A6QAy5RSmUAZ8AbwREsv\nIkmVEEIIIYLG4anneM2RkLZB65bXdNBavwq86nfsAv7T99FmklQJIYQQIqgMrlMV1iSpEkIIIUTQ\n2Cwx9IkfFOpmdIrITKpio8HAJqlVPWMCbwvgis01EyfRTCYfM3BYwDESVuw30BJzTG2EbIqpjZBN\nsW43swZMYuuXtMqak2MgCuiEBCNxOH7WSBjXqIFG4lh2mymD2K8eaiROwoYCI3FUUpKROM6egW/m\nbtlpaFC0y2UmTjfn8NRzLMTlv84SmUmVEEIIISKEwoOU/4QQQgghAhIt5T8hhBBCiMDVe+opqJXy\nnxBCCCFEwFpZ0aDLkKRKCCGEEEETbYmhn5T/hBBCCCEC43DXc7QmP9TN6BSSVAkhhBAiaLTM/hNC\nCCGECFy0JZp+8QNC3YxOIUmVEEIIIYLG4XGQX3M01M3oFJJUCSGEECJoNODRllA3o1NIUiWEEEKI\noImxxNA/oX+om9EpJKkSQgghRNDUe+rJry4IdTM6RUQmVe5oC9X9YgOOk7Kl0EBr4OTnso3EsdQb\nCUP8WR1wDEuvngZaAsVXphiJk/1pqZE47sIiI3HCjSXZzNeZ9MA3xS0famJbZkheaubn0xRTGyGb\nEvfpASNxPEaiAPVmfoGVPxAfcIzMmr4GWgK12XFG4sSsKzcSJ3LJ7D8hhBBCiIBFW6IZIOU/IYQQ\nQojA1HscHJbynxBCCCFEgDR4ZO8/IYQQQojAxFhjGJgo5T8hhBBCiIDUues5JOU/IYQQQojASflP\nCCGEECJAMdYYBiXmhboZnUKSKiGEEEIETb3bwaGqY6FuRqeQpEoIIYQQQaNBFv8UQgghhAhUrCVa\nyn9CCCGEEIGq8zg4KOU/IYQQQojAyey/MOaJgaq8wDcNrupvZiNkU3osPGkkTsXU3gHHiD112kBL\nwJEW+Aa9YG4j5NoZQ43ESVxz1Egcj9NhJI6yWozEcRcE/j2YZjfzc+U2EiX8mNr82lN5zkgcS1zg\nGxgDVMwws4lxxhP7A44R+F8Hr/jqHCNxtKGvscdeayROZ4uxRDM4qV+om9EpIjKpEkIIIURkqPM4\nOFB1PNTN6BSSVAkhhBAieDRoU92HYU6SKiGEEEIETaw1hiFS/hNCCCGECEyd28H+Sin/CSGEEEIE\nRCOz/4QQQgghAhZrjWaolP+EEEIIIQJT53awT8p/4cvqcpFSVhZ4IEO9kW6bleoUM2vPdGVWlwu3\n1Qqqe3QDCyGE8Jb/tJT/wlfvgmP89r4HQt2MJnZPGMczP/svtMXMIoxdTf8DB/n6L55EWxS/eupX\nlGdmhrpJQgghOkGcNZphKWYWh33bSJTgicikKhyN2rqd/gcPkT/MzIrdXUl8dTWPPPEUab7exVnv\nfsCbX/lSiFslhBCiM9jdDvaeOxHqZnSKiEyq3FYrFclmtj8JVFxNLTEO71YjPY6flKTqQlrzxT8+\nR0ZxScOpwXv2hbBBQgghOlOsJZphyWZ6qt41EiV4IjKpOtMjj//57m8CjuOKCbzGe+P787npgwUA\n9N19ku1DOh6zfmiPgNsDYGLrtYSxgwIPAtz8k9eYvH1tk3N5Bw7T90+7cEZFG3mN9ohfecBInIob\nhhmJk7w08H3OANzl5UbiWNMzAo5hap9GU0ztbecaaObnk91HzMQxxNR+cslLzHwvl80dHnCM9MVm\n3rh5/N4MBsKSkW4kDhG691+d28m+btJTJQOAAlSY27h5cW6hmQ2Ru4qM0jPcsuvi9xVR2k3viu7x\nAyaEEMI7UN3ER7hrtadKKbUH8F9gwgrEAhOBHcAvgXuAVKAA+JnWeqHf/ZOAPwGjgDPA41rrfxpq\nf8j5J1U5ZyWpOs/qdnL3omeIcXtLo8WJWZxK7c24k9sA6FdawNHMgaFsohBCiE4Qa41mWHIfI7He\nNxIleFpNqrTWI/2PlVK/AOZqrbcqpb4FfBGYCRwEbgNeV0rt1lrvV0qlAEuAp4BpwNXAIqXUEa31\nOsOfS0gUZffEoyxYtIf00iKinA5cts4va4Wba1a+Tu8z3jKHS1l5Y+LnyaoqbJJUCSGE6Pq8A9W7\nR6dDu8p/Sqko4H7ged+pQcAqrfUB7bUYKMXbKwUwD6gFntRa12utlwGLgIfa21ClVIZSaohSaojH\n427v7UHjskVTmuEdxGTRmuyi0yFuUegNKNjN1WsbJ74uG34DZ1J6ciy9f8O5PuXHsYTR/6MQQojg\nkfJf8+YCKcDLvuMXgFeVUiOAA8Dtvpif+p4fC2zTWmu/GFvx9m6116PA4wC11ec6cHvwFOX2Iqvk\nLOAtAZ7ulRfaBoVQXG0Vdy1+Fgve//LDWYNYN3AqAOfiU6mISyXVXkGM20GPc6c5lWamS1gIIUR4\nirVGMzzFzO/6D41ECZ72JlUPAwu01hW+43zgM2A34AHqgS9qrc9P/0kCLsyAKoDkDrT1WeA1gPjE\nFDNTuAw5m9Obkbu3AN18XJXWzHvvOVKqvOtR1cQn8eb4u9CqsUP0WHoeqae2A9CvrECSKiGE6OLq\n3A72dJPJSW0u/ymlBgLXAM/5nf4TMB7oD0QD1wHPKaWu9z1fhbdny18qUNnehmqtS7XWB7XWBy0W\na3tvD6omg9ULT4WwJaE1adsnjDywseH4zdlfpzq2af5ckNFYAsyTcVVCCNHlaYMf4a49PVUPAzu0\n1hv8zk0E/k9rfcx3vFYp9RlwM/AR3tmBcy+IM8F3vsuQGYCQVXKKW5f+reF4/aQb2D9kEtYdh5tc\ndywjr+Fx37IClPY06ckSQgjRtcRZoxlhqPy3zEiU4GlTUqWUigbuA35ywVNrgC8opd7VWp9SSl0G\nzAAe8z2/CHhSKfV94A94ZwDejrdHq8vwT6qyC0+hPG50iHvTYux2HDExnbIXodXl5HOLniHa5V0+\noTCzNx9c2/ywueLELGqiE0hw1JDgqCWzupjipJygt1EIIURo2N0Odsvsvybm4V2b6tULzn8f2ANs\nVEpV+Z7/rdb6FQDf2KubgbvwjqX6C/BIV1lO4Tx7fCKVSakA2FxO0ktDu6L06C2bePqrX+bXjzzA\n2E0bWr8hQNev+Be9zh4FwGm1sWDeY7hsMc1frBTH0huXPZOlFYQQooszNPOvy8z+01rPB+Y3c74S\neMT3cal7NwFTOtrASFGY25vkKu/4/ZzCU5RmGdrSogNmLlmCzekktbycbzz5BJ/NupbX77uf+rg4\n4681KH8H09Y3rpr+4bX3cjanXwt3eEuAI87uBbzjqjbnXWa8XUIIIcJDnDWakYbKf8uNRAmeiNz7\nLxwV5vZm8KHdgHdc1d5Rk0LWlt7HC5ocT1v+McP27OKvjz5G/lAze9YBJNSc4863/6/h+MCg8ayb\nfFOr9x1Lz2t43K+swFh7hBBChB+728Huiu5R/ovIpMpjg9qcwMcKpeSbWXwyevtRzlXGNhz32baP\nFMvodsdRCQkBtyW+rorUZjbXzSos5D9+8iNWj7qBlWNvxdPKmK+Kybktv5DW3LPoeZKrvb1zVUkp\nvPKVb1GbbGtyWfVXh150a6F7EHWbXiK2ro5UewX1s9Moy25lF2hD36k9njezGoepjZA9Y8xsXG3Z\nebj1i9rAXVZqJI4J1hwzY+2cOUlG4pj6GndV9Vdc/LPeESY2Q7amphpoCWh7nZE41cPMbKgcV1xs\nJE5n04COhKl7BkRkUhWOSpIak4KsysKQtSOnvHFJh1MZ/Vg/fBa3bJhPrNOORWuu3vUhg07v5a2p\n91GS2vES5dTPPmTU7k0Nx6994VGqk9v2i8xjtXJk2FBGbvdOAh2ydx/rW0uqhBBCRKQ4azQjU3u3\nfmEbrDQSJXgkqTKk2D+pqirypuWq8wfV+SdVhWm92DVgCsezBzF37T/of/YgAD1Lj/Pw+79i2cR5\nbBw6vd3tzD1znNsW/73heNWMW9k3cmK7YhwaMbwhqRq8dy/rZ0xv1/1CCCEig93tYHd591jDURYI\nMqQyLoW6KO+MtzinnYT66pC048KkCuBcYjovX/dtlk66A5fFm0fb3E5u3riAez9+lqTaimZjNSfK\n6eBLf3+aaKd3+YRTPfN4d077dx06NGJEw+PBewLv7hdCCBG+ZPafaB+lKEnKpne5dyn+rKpCamLN\njOVoj5yKxg2dzydVAFpZWDfiWo70GM681X8j15d8DTqzj6+987+8d8U97O03odX4s995hZ6nvWu9\nOmzRvHLfd3DZotvdzvwhg3FFRRHlctHz5EkSKyupTu7I7kVCCCHCmcny36etXxJSklQZ1CSpqiyi\nIMvMIOS2Uh4P2X5JVVFqr4uuKUrrxQs3/4BZ29/lyj0fo9DEO2r43KoX2D7gMpZMuZv66OaXXhi+\nZwvTV77XcPz23Ps426Nvh9rqjImhYOBABh3wDhwftHcf2y+XpRWEEKKrsbsc7JLyn2ivi8ZVdbL0\nqiJsbifgLUfWxiY2e53bamPZxHn8/frHqEhonJUyLn8DX3v3f+lXeOiiexIrK7jn1WcbjnePmsya\naTcG1N5DI4c3PB6yd29AsYQQQoSn87P/THyEO+mpMsh/u5XMECRVzY2nasmx3CH8efZ/cfPGBYzN\n9668nlpTxn1Lf8dyVz4f3HIPbpvNu3zCq8+SVHUOgHPJafzrnm8EPBD/0IgR3PTWYgAG75GkSggh\nuqL4qGhGp5kp/60xEiV4JKkyqDjZv6eq85dVyG2SVLXtG7g+Oo5FV93Hgd6jmb3+NeIctSg013yy\nmGH7t/PKlx5jyMFdjNi7teGeV7/4LWqSUgJu7+Hhw/AohUVr+uYfJcZuD8qq70IIIUKn1uVkZ1n3\nKP9JUmVQeUIGLmUlSrtJsZ8j2lmHwxbb+o2GtLenyt/evImcyB7IbWteZtAZ72y8XqcK+N5vvtfk\nuuWzbuPgsHGBNxaoTUzkVL++9Ck4htXjYeCBA+wdZya2EEKIcBL+M/dMkKTKII/FSlliBtm+0l9m\nVRGn0zs2kLsjcioak6qitJ7tvr8qPpVXr/0mk/ev4trti4l2OohyuRqeP9F7AO/f+gUjbT3v0IgR\n9CnwziYcvGefJFVCCNHFxFltjO7A36TmrDUSJXgkqTKsOCmnIanKqirutKQqxmEnrdq7xYhbWShJ\nbmWbmUvQysLG4TPZcf1V3Pvy7+lzIh/wLZ/w5e94x1gZdGjEcGZ9sASAwXtlvSohhOhq7G4nO8tO\nt35hFyBJlWElydng+97pzHFV/ksplKT0wG0N7L+2MLcPv//uE8xY/g4DjuxjxbVzKco1M9DQ30G/\nRUAHHDyI1ek0nrgJIYQILS3lv/BlrdOkHXC1fmErKgaZ+fQzNjkbHhfFZzQ8zjx3Fu10NndLs1Q7\nrr1QTsnxhsdnE7JwV7R9lfRm2+LJxWOxsfzaO1h+7flz7Y+TVNDyD5KHDEoycsgsLSTa4WDE6nwK\n+g+76LrE5Rcv89ARFXOGt35RG6S+Y6ZXTXnCa46wpUfgmxh7zph5M+EuNBPHYigOquVNyNtMm9nI\n3WJgA3YAT02NkTgx68xsVm4xsAhwoL//TIuqC6+f884WZ7UxxlD5b72RKMETkUlVOCtJ9JsBWN15\nO4r7r6R+toOlv1DJHziCzFLvH74BR/Y2m1QJIYSITN2p/CeLfxpWnJjV8Di9phSrJ/AetbZoklSl\nRFZSdWSgXwnwiKxXJYQQXYoO/d5/SqlfK6X2KKUqlVKnlVIvKKXSW7knWyn1D6VUqe++7UqpFrvc\npKfKMGcAxoPaAAAgAElEQVRUNBVxqaTaK7BqD+k1ZU1WWg8KrZvM/CtM7hHc1zMsf0BjUtX/6H6U\nx4O2SL4vhBBdQVxUtLHZfxs6fqsbuBfYDaQCLwN/B+Y0d7FSKhb4BG/FcShQBgwHqlt6EUmqgqA4\nMYtUu7emn1VVFPSkKrWmjFhXPQC10fFUxXT+Rs6BKMnqQWVSKslVFcTba8g9c5wzvfJC3SwhhBAG\n1LocJst/VqXUEL/jUq11aWs3aa1/5HdYrJR6Bni9hVu+jDf5+rrW+vyA5z2tvY50BwRBkz0AO2Fc\nlX/przC1Z8Dbx3Q6pcgf2DiAfEC+lACFEKIrMVj+ywEO+H082sEmXQPsaOH5mcAh4O++8t9+pdR3\nWgsqPVVB4D+uqjM2Vs45559UtW8l9XCRP2AE47avA2DAkX2smXZziFskhBDChPioaMammyn/bYJC\nYIbfqVZ7qS6klLoDeASY3sJlmXgTq8eArwBjgA+VUkVa61cvdZMkVUHg31OVGYqeqgiU7zdYfeCR\nPd7tyCOtx00IIcRFal0OdpQaK/+5tdYHO3qzUuou4HlgjtZ6awuXVgGntNbP+I43K6X+CdwGXDKp\nkvJfEPj3VGVWF6N0BxZ4aocmM/8iNKk63bMf9th4AFIqy8koPRviFgkhhDBFazMfgVBKfQVvQjVb\na72ilcu3A829YoutkJ6qIKiNSaQmOp4ERy0xbgfJ9krOxacG5bWiXA4yfCVGD4rilB5Q3/FFRENF\nW6wc7T+MEfu8bxwGHNlHaWZkzWIUQghxsXirufLf5g7ep5T6FvA4cIPWelMbbvk78AOl1DeA54BR\nwBeAb7Z0kyRVQVKSmEVCmXej4KzqoqAlVVmVZ7H40veypCycUdERmVSBtwTYmFTtZdNls0LcIiGE\nEIGqdTnZUXom1M14BnABK5Tf0BKtdSKAUuoLwPPnj7XWx5RSNwO/A57EuwHdT7XWC1p6EUmqgqQ4\nMZt+vqQqs7qYw9lDWrmjY5qOp4rsnp38ATIDUAghuqJAS3eBv37LK4f6Bp+/esG5lcD49ryOJFVB\nUpzUOTMAc7vAIPXzjvcbjDPKhs3lJLv4DEmV5VQlp4W6WUIIIQIQF2VjbIaZv09bjEQJnohMqlRt\nPdbtgW+wm7HdQGMAa87Fi3uWOobAng8AyK6vaPaaCzmz2r9oZ/bakobHp4eMxNU/l6hqR7vjXMhW\na+ZtRW122+dCOInmWP/BDDrk7aXqd2of23pOBaDwi4ONtKfnkpLWL2oDM1viQtQZMxu/agMbIQOU\nT2hx14Y2SXnf0EbIeb2NxFE19UbiYGiVf1MbRdvHmvn6RNWY+W6uGGwzEiclP/CtvaK2VhpoiTkx\nhbVG4gR3ylPw2F1OdpR0j73/IjKpigQlfvvvZVUEqZasNblFxxoOz2b3C87rdKIjQ0Y0JFUDD+1l\n2+SpIW6REEKIQEhPlQjYuaQMnNZobG4HCXVVxNVVY49NNPoaiTXnSLBXAVAfHUtFalYrd4S/w0NG\ncsP7CwEYeFDGVQkhRKSzh8dA9U4h61QFiVYWSlIbSzKZQeitatJLldUXrSL/v/PowKF4fJ9Hr5MF\nxNbWhLhFQgghAqYNfYQ56akKopLUnvQoPQF4S4Ancs2MCzrPP6kqzO5rNHao1MXFc7JvHn2P5WPR\nmgFH9rN39MRQN0sIIUQHxUXZGJsp5T8RoGK/JQ6C01N1vOFxVxhPdd6RwSPoeywf8JYAJakSQojI\n5R2oLuU/EaCS1OAOVr+w/NdVHBnstw/gIRlXJYQQEU/KfyJQJUHsqbK4XWSVnGw47irlP2iaVPU7\neogopwMHZqZrCyGE6FxxVhtjM8wsTi3lv26sNCUHj1JYtCa1qpQolwNXVLSR2JllZ4jyeNeXKU/O\npC42wUjccFCVkkphTk9yCk9jc7nol3+IfZkjWr9RCCFE2JHynzDCbbVRnuRd9FOhyTx31ljsrjhI\n3d/hISMbHg+SEqAQQkQ0rZWRj3AnPVVBVpKaS0aldwXlzPIznM0wkwB11UHq5x0ZMoKpny0DZFyV\nEEJEMu/sPzPlv61GogSPJFVBVpzag6HHdwCQec5c92dXW0n9Qv7jqvof3o9yu9FWawhbJIQQoiPs\nLic7iqX8JwwoSWvMzrPKzX1T5TTpqep65b/SzGzK0zIAiKuz0+dYQWgbJIQQouNk9l/XZ01LMxLH\nXVh0yecKPbENjzNLTrR4bVRZ2zbXjXPUklpVCoDTEsW5YhdRvkVGATzOwDdUjikIOAQAlXcP7+Cd\nisPDRjB53WcADDy8h6Oj+wfcnhOfTw04BkDPj9u/+XVz3PvyjcQxxdRmyCZ4Ck62flE3FrP2QKib\n0ETmXjMzdC0pKYEHSc8IPAbg/I6Zfoczx81MJOrxgpEwnS4uKtrY4p9S/uvmihOzGx5n1JRg8bjx\nWAIrY2X7lRGLk3MCjheuDg8d3pBUDdmzl49vvzXELRJCCNFedpdDyn/CjHpbLJUx3l6NKI+b1Nry\ngGPmnjvd8Lgwxczgv3B0aFjjDMDBu/eBjoC+XyGEEE1pUIY+wp30VHWC4qRskuurAMiqLqYsMTOg\neNl+SzMUJpvpUg1HZ3r1oSYhkYSaapLPVZJz6jSFvXuFullCCCHaIc4WzdgsWfxTGFKcmMXAkiMA\nZFUVcSC3o+OMvHIqu0dPlbZYODx0OGO3bgJgyO59klQJIUSEsTsd7CiS8p8wpDipcVxVVnVxQLGU\n9pDj31PVhZMqgMNDG5dWGLx7XwhbIoQQomMUaEMfYU56qjpBSWJWw+Os6kvP/muLtJoyot3e2X1V\nMUnUxJqZhRau/JOqIbtlEVAhhIg0cVE2xmbnGokl5T/RpKcqs6rYO+BadSzjzukmg9TPO95/AI7o\naKIdDrIKi0grLqU8y8x0aSGEEMFndznZUWhum7ZwJuW/TlAVk0RdVAwAca46En2D1jsix285haJu\nkFS5o2zkDxracDx4j/RWCSFERDG18KfM/hMAKEVxUjZ9yr0LdGZVFVMdm9yhUP5J1dlukFQBHB42\ngmF7dwHeweobZ0wzFjvzTCHx1TUcHzzAWEwhRPdmcbrovfsoxQN6YE9JDHVzQi7OJuU/YVhxol9S\nVV3E0ayBHYrT3cp/AIf8B6vvMTNY3ep0ctvLr3PTgsVYtOZv3/0aq2+6xkhsIUT3NvuJfzFl4Srq\nEmJ594f3sHTMLR0e8tEV2J1OdhRJ+U8Y1GSwelXHBqtHu+pJqykDwK0slCTlGGlbuDs6aCgu32bK\nvQuOk1DV8fIpQM+CE/zXoz/klvmLsPgWFL397/OJcgS+vY8QonuLO1fNhMWrAYitqeOu/3qJR574\nDQmVgf3eingy+0+YVJzkPwOwY8sqZFWexeIrKpcmZuGymtlrK9w5YmM5PmgAAw4cAmDQnv3suHxy\nu+Moj4dr3vqAO1/8Jzans8lzqWXlTP1oJatuvd5Im4UQ3dOoj7YQ5XI3OTdp7XoG7T/A3779TfZM\nGB+iloWOlP/CnCcpFvvVQ1u/sBVxn3behqRFia2vVdXaRsjZZY2bJp9Nzrnk9ZaYmA608IK21NcH\nHAMga4GZct3JKY1J1dj87Zy6bUi77k8pLOOun7/E4A2NA92dUTbyB4xk6MHtANzyytvsyb0Oj7UN\neynuO9Su178US9/eRuJUDzCzYWvCCXvAMZTbY6AlYM818znFrA+vjYfDjamN5c9eb+aPpqdPXcAx\nev6j2kBLoObT9s80Hv3a5obHp3rl0etUAeB94/adx/+HT++6jncevRtnbOC/pyOF3Smz/4RhFfFp\nuHwbHyfXVRLjbP8vjtxK/+1pusd4qvOOjm9MovpvO9iue8cs3chjn/vvJgnV6R55PPOtJ3n5i9+n\nJt47kDSjrJBxO1ababAQottJLy1iYL73jaTbYuHP33icvzz8I6rSGycmXf3GMr73pf+m976joWpm\naMjsPy+l1B6gn98pKxALTAQeAu694JYE4N+11k/77p8E/AkYBZwBHtda/zPwpkcWj8VKaUImOVWF\ngHew+sm0vu2KkeOXVJ3tJuOpzisYN7jhca/9x7DZ63HGtfxOL7aqlrlP/JPxS9Y3nPMoxcrpc/no\n+s/jjvKWT1dPvZUbls0HYOaKt9g2bhraIu83hBDtM2Hzpw2P9w8bT3VSKntHTeaJ23/J53/5EqM/\n3QpAbsFpvnv/z/jwgbl8/OXZeKLa0DseweJsNsbmSPkPAK31SP9jpdQvgLla663AI76P889dB3wA\nzPcdpwBLgKeAacDVwCKl1BGt9TpTn0SkKE7MakiqMquK25dUaU1uZeNyCt2tp6o2NZGzA3uRe+QU\nVpebvrvyOTLl0nsoDty4j889/iKpheUN58p6ZDB/7nc42n9Ek2vXTL2J6asWE+uoI7fwBCP2bmLP\nqMuC9rkIIbogrZm8aWXD4ZbJVzc8rk5P4cXfPMbl76xi3tP/JMZej9Xt5pbn32TE2h288rNHKO3d\ndd8o251Odkr572JKqSjgfuD5S1zyMPCu1vr8vP95QC3wpNa6Xmu9DFiEt4erXZRSGUqpIUqpIR6P\nu/UbwlAgewAm150jzlcytEfFci4uxWjbIsHR8Y29VZcqAUbVO7nl6fk89MhvmiRUm2dP5fcLfn5R\nQgVgj09i3ZU3Nhxfs3yhd9V7IYRoo94n88kpPAVAfXQsu0dPaXqBUqy/bQa/fvUX5I/x+1226zA/\n+MKPuXzxyq79e0fKf82aC6QAL1/4hFIqF7gNuMXv9Fhgm9ZNvlO2Al9s5+sCPAo8DlBbda4Dt4de\ncQB7AOY0GU+V2y3XPCkYP4QrFq4EIK+ZpKrHwePc/V8v0OPwqYZzNamJvPXjL7H7mkktxv5s2myu\nWv0+NpeTPiePMPjQDg4NGWe0/UKIrmvipsbS386xl+OIiW32utLeOTz73I+55uX3uOmFRVjdbmLs\n9fzbL//KqNXbmP+j+6lO71pvmuOjbIzNMVNd2dz6JSHV3qTqYWCB1rqimee+ChwHlvmdSwIuzIAq\ngI4sJ/4s8BpAfFJKRE7nadJT1c61qvwHqZ9NNlObjjT+g9X77TyCxenCY4tCuT1M++dSbvjTIqKc\nroZr9k8dzcL//gpVWamtxq5KSmPT5Gu4ct2HAMxa/pYkVUKINlEeNxO2fNZw7F/6a44nysqy+29j\n3xVj+OLjz5Fb4C3ujP50K3m7D/OvH3+VPdMmBLXNnanW6WTHWSn/NaGUGghcAzzXzHMW4EHgLxf0\nSlXh7dnylwpUtrehWutSrfVBrfVBiyUyB/WVJmTiwdvDlFZbjtXtauWORt155t9553LTKevhneIc\nXeeg1/5jpJ4u4aGHn+SWZ95oSKgcsdEs+uEX+dsfHmtTQnXeihlzcfu+twbl76ZfwX7zn4QQossZ\nfHAXKZXe4QaVSakcHDKmTfedHN6fp17+Oas+d13DuaSySh76999x9y//SnRt4MtLhA0p/13kYWCH\n1npDM8/dCPQAXrrg/A68JUN/E3znux1nVDTn4lO9CZX2kFFTSlFy2wYn5khPFeAtAaaf8c5xuPYv\n75C34zCx1Y1rK50Y2Z/5//MAJXntTzwr0rLZNv5qJm1ZAcCs5W/yt/t/bKbhQogua9KmVQ2Pt06c\n1ra17nycsTG89b0vsXfqOO75nxdIKfEWgq5cvJLBW/bxyk8f4djoQcbb3JniDc7+6xLlP6VUNHAf\n8JNLXPIw8JbW+sLR14uAJ5VS3wf+gHcG4O3AdXRTxYlZpNV639FkVRe1Kamyul1k+g1sb2si1hUd\nHT+YCR94k6pha3Y1nHdbLay4/1Y+eeBWPLaOr2m7fObtTNi6EovWjNi/hZ6nj3K6Z/+A2y2E6Jps\njnrG7GhctmXz5OkdirP/ijE88dov+dyv/874TzYCkHWikMce/DkffeU2ln71wv6JyFHrdLJTyn9N\nzMO7NtWrFz6hlOqFd3D6RWVB39irm4G78I6l+gvwSHdcTuG84sT2j6vKqi7Cqr2rVJfFp+OI6j4r\n8V7o6ISLV9Iv6ZPNc3/9Icu+NjeghAqgOLs3u0Zd3nA8c8VbAcUTQnRto3ZtJLbeW6YrzO7FyT4D\nOhyrNjWJv//ym7zy04exJ8QBYPFobvzrYu7+1YWFoAgj5b9GWuv5+Naeaua5Uy3F0VpvAqZc6vnu\npiN7AMog9UbFebmU9s4i46T3a7dh3nTe++7dOOKbn2nTEStmzmPsLm/eP2bnWpZe/2+UZPU0Fl8I\n0XX4l/42T54e+Mxspdh881UcGT+ML/zseQZv9Y7tvPzdTzk2sRe7e7VtvFY4ibfZGJtr5m/XJiNR\ngici9/6LZP49VZltTKouWk6hO1OKV576BhPfXcuBqaM5dPnI1u9pp1O9B7J/6HiGHdiGRWtmrlzE\nG3d9w/jrCCEiW0LVOYbt29ZwvHXSNGOxy3tk8sc//pB7f/ock5Z63+TN2bGIE2l9OBdvZr/GzlLr\ndLLjTPco/0VkUmWpqjOyGbJnjJnBf1Z722fxlfTOgDXex5k1JVgG9UUrbxVWHypo9p6mg9RbH4Bt\najNkIwbnGQkT+3zjLJhy+vFxYj/YAbHtnPLgSWzb1+azcXMYdsD7y3LilpV8Om4u55Iz2/dibaDq\nW95Eu63iV540Esc9emDAMbTFzBpqcWdrjcShh5kxiKfmtH0maUt6Lyg0EsfVI91InNLbnUbiJK0y\ns5F2eWp0wDFKLzfzs1rbq+WFpie9uxqrx/t5HxoxjILLsoGLvw4We8c/p398+yH67TxC1pki4lx1\n3Ln1dV6a+mDD3w0RXiIyqYpk9rgkquOSSbRXEu1ykFJZSkVKVov3SPmv8x3vPYyCXsPIO7Ufq8fN\n1M3v8cGs+0LdLCFEGLliReOCn+tnmuul8leXEM+LP3mU/3j0caxuD3llBUw/uIKVQ68JyusFg5T/\nRFCVpPck8ZR3qa6sslMtJlUJ9dUk1VcB4LDaKE8w8+5UtG7VZbeR95Z3PMOkXctZdfnt1MR3rZWO\nhRAdk336DAP3e3d2cFmtbJo2NWivlT9yCO9++U7mvvQ6ADMOLudI1iBOpPcL2muaVOtwslPKfyJY\nijN6kXfK+8c6s+w0h/pfeuXuJuOpknKky7cTHc4by6ns/vQqOorN5eSKLUv4eNrnQ90sIUQYuGxl\n4wrquyZPoCY5Kaiv98G9tzNu8Ubyygqwag93bl3An6Z/i3qbuUk6wRJvszHGUE/VRiNRgkeSqhAo\nSW+cSZZVeqqFK2WQekgpxaeX3ca/vft7AC7b/hGrJ8+mLjYhxA0TQoSU1ly+3K/0NyM4pb8mL2m1\nsHDC3Xxj5TPEuepIry3n1l1v8+aEu4P+2oGqdXafnirp9giB4oxeDY+zylpOqnIlqQqpfYMnU+xL\ngmMddi7b/lGIWySECLX+Bw+Te/oMAPa4OHZc1vKG7aaci0/lnbG3NxyPO7mdMSe3tXBHGJF1qkSw\nFKc3JlWZrfZUnWl43JaZf8IsrSx8OuU27vjwzwBcsXUJayfehJn5UkKISHS53wD1LVddgTOm8xZk\n3t1rDIOLDjLhxBYAZu98mxNp/cJ6vK3JgepS/hMXqUzyrooe7aonoa6a+NpKauOTL7rO4nGT7bfq\nemE33p4mlHYOu5JZa98grbKEBHsVk3YuZ13yiFA3SwgRAlaXiymrVjccr5t5dae34f3Rs+lXVkBG\nTSmxrnru3LqAv059CI+l7XsOdia7lP9EMGllaTququx0s9el15Ri83jXwDoXm4w9WsbyhILHGsXq\nybMbjqdufh+ru+1rkwkhuo7h23aSfM47e7s8I50Dozv/DZYjKoY3JtyN2zdxqW/5cWYcXN7p7WgX\nKf+JYCrO6EnPoqMAZJad4ljvYRddI+OpwsfWUTOYse4tkmrPkVJdxriT29jSb3KomyXCjNXlYvSm\nrRwfmEdZdnbrN0SYtLMl9Nubz/4po6hLjA91c0LCf22qDTOuQltD0zt0Kq0Pnwy7juv3LQVg+sEV\nHMkaxLGM8NsAPs5mY2wPM3/DNhiJEjySVIWI/7iqS80AbO9K6iJ4XFHRrJl0Czd++hoA0w6tZFuf\nCWHb3S46n3K7+dZPf8HIbTuoTE3hp//3OyrTzKzCHmrK42Hawo+57Y//IrreSXlWGq/+5GEOTBkV\n6qZ1qhi7nfHrGkf1rJs5PYStgdWDrmZQ0SEGlOZjQXPn1tf544xvUWeLC2m7LmR3ONl5Wsp/Ioia\nlv+aT6qkpyq8bBp7LbW+5RQyassYeXpXiFskwsmNb77NyG3efZOSK85x7dvvhbhFZiQXl/O17/yG\nu55+meh67xSNtOJyvvmtJ5j3u1ew1ZnZaikSjF+3kRjfNmCn+vXhZP/QLr6plYU3J3yOWl8SlWqv\nYM6OxaDDsE4m5T8RTP7LKmReYkyV/8w/SapCzxEdx/rxNzJr3ZsATD+0kt29xsiCrIK8g4e47Z//\nanJu5ntL+PCOudQmJYaoVYEbt3wjn3/iJRIqqxvOeZTC4vujPXPBUoZt3M3LP/0aJXT9yRv+s/7W\nzbwalJl9LgNRGZfC22Pn8W+bXwVg9OmdHMwewva+E0PcskZx0TbG9DTzN2y9kSjBE8FJVeDfzJad\nhw20o2PJc6nHhVtZsGoPaZUlRO07iDOqcdPNGGcdafYKAFzKSkmi+c18O8UlNoluL9eowDf6BXDH\nBpYArZ5+K1O3vE+Mo46cqkJGXH+SgzPHdjjepBQz34PrvnHx7NGOqOwX+Ga2qe/tM9ASIK+3kTDl\n481MNc/Y3vzmutH1dh754++Icjd9Ps5u55YXl7B85p1Nzhdda6aUP/kqM1/nwy9e/LMVU1fL7I9e\nYvzuxiTCg2L15bNZP/FG5ix9kWGHtwLQ4+gp/v0rj7Ppuzew/YGZaGtgP2O1qw38rJvq0fD7M5Nc\nVs7IbTsbjjfMnNbmP0OqOPCfKwBLQvOTlfYPvozN5UeZdGQtALfufoeTvYdTltTMFmiWzn8TaHc4\n2XlKyn8iiNyWKMoSMhqOM6uLmzzvP56qJCkLtyWC898upDY+iQ2Trms4nvaXJeHZ1S46zZz3XiKz\n1PvzWhcTx7JZjStcX7X2PWyOulA1rUPyju3l0Re/1yShKk/O5K9feJyls+7lXEomr9z1Axbf9BAO\nm3d9piiPmyue+oDb7v0TSSdKQ9X0oJqyag0WjweA/aNHUpZ96T1bQ+HDCbdTnOSdHBHjcnDH2n9g\n8TT/RiAUlKGPcCd/qUOoODGLLF8ylVVdxJnUxpJg00HqUvoLJ59NncOVm5YQ5XTRa1cBeRsPUHDZ\nxbM3Rdc3ZtcaJm9tnMq+eM6D7Bg9lYnbVpBeXkRCbRWXbVrG6qmzW4gSHqwuJ9d+uoCr1r+Lxa+r\nZ+voq3nvuvupj/Wb7acUm8ZfS36/kdz5zv/R9/QhAHpuPsrds3/LZz+Zy4F5k8OiPGaKf+lvw8zg\nb0vTXs6oGN688ss8sOxpojxuepcdZ+auD/hkbOi/9+Js5sp/64xECR5JqkKoJLHxnU7WBT1VuTLz\nL2xVJaWx/fYrmfS695fstL8skaSqG0otL2Le4ucajreNnca2cd7ZYKum3cbt77wAwNWfvcO6y27E\nHWULSTvbIqfoOHe98yw9io41nKuNS2TxjQ+xZ/jll7yvNL0HL3zp50xfs4hZaxdicXuIrqnnmv9c\nQP9P9rLyf++kLj1yx5Sdl3viJP0PHQHAGRXF5quuCHGLmncmvQ+fjLmVG7a/DcBVez/mSO4wCnIG\nh7RddqeU/0QnON9VC5BVdenynwxSDz9rv3IdHt/Ykf4bDtBrR36IWyQ6k/K4uXvhH4irqwWgLC2b\nxXMebHh+84RZVCZ6l1NIqSpj4raVoWhm6zwepm54j6//7T+bJFQHB4zlDw881WJC1RDCYmXFtDt5\na8GjVOQ1jv0csGwXn7/lKfquNDTGLoQuX/FZw+Odl00M68kH64bN5EjOUAAsaOate5m4+poQt6r7\nkJ6qECpu0lPVuB2N0h5yqqT8F84q+mSx+6bJjHnPuxTdVS9+yIJnvx7iVonOMnPVIgYUeJMFt8XC\n/Lu+TV1s4yBily2az66awy0fvgzA9E8Xs3nCLDwhWiiyOQmnKpj2H2/QY13jGwJnlI0PZ32R9RNv\naHfprmhsX15/+7tc+ev3GPWad8B0fEkVtz74IrvvuZK1P7gVV3zn7ZFnjNYXzPoL7dpUrdHKwqLL\n7+VrS54gwVFDiv0cczbOZ8FV94esHCvlP9Ep/Huq0qtLsXjceCxWUmoriHV510KpiY6nOiYpVE0U\nLVj94A0NSdXQFTvJPniKoiG9WrlLRLq+xw9y7fIFDcefzLyLY/0uLv+un3I9M1e9Rby9msyys4zZ\nvZbtY8NgLI7WDHh7O5c//g4xVY2D6E/lDuD1OY9Sktnx72FXfAyf/uwOCmaNYOYPF5BQXAXAqNfW\n0mvdIT75zT0Uje0b8KfQmQbuO0DWWe+b3prEBHZNnhDiFrWuKj6Fty+7h3s+85agR5zcwYT8dWwd\neGVI2mN3Otkl5T8RbI6oGM7FeqfCR2k3abVlQDOLfnahwZ5dScnAnuy7ZlzD8dQXPwxha0RniKmr\n5fOv/w6rbxbY0X7DWDH9jmavdcTEseaKWxqOZ6x6C+W7L1SiK2qZ/u35TP/u6w0JlUcpVlw5j+e/\n/L8BJVT+jk8fzoL3vkf+daMbzqUdLWbe3c8y6dmPUK7wmZXWmiuWN/ZSbb7qClzR4Ts2zt+B3qPZ\nOOiqhuObtrxFRmVhaBpjauHPCJhoLT1VIVacmE1KnXdzzqyqYkoTs8j1W/RTSn/hbfWDNzH8k+0A\njPxwMyu/OZvyvl1vzzfhddu7L5JR7u21qIuJZ8Fd326xpLfmipu4evXbxDjq6FF4nGEHtrCxX+vj\nlIKhx+rDTPuPN0g4W9lwrrJvOv+a8R2O9x5q/PXq0hP58I9fZuhbm5j2P4uJrqnH4vYw5Q9L6btq\nH6iuQlAAACAASURBVJ88dQ/n8sJrWYILWZ1OJn+6puF4/ayrQ9ia9vto/Fzyig6RXVlItNvBnWv/\nwQ9D0I64aBujDZX/1hqJEjySVIVYcVIWg0q8C0BmVRexnxEXDFKXmX/h7Myofhy5cgQD1+7F4tHc\n/L/zOXLl8Dbf3ye2vNnzjvQ4ztw6HE9cZLwr7g7G7fiMidtXNRy/NfdhytNaTqDt8Umsn3I901e/\nA8CslW+y8brLOrX32VLvYtKvlzDy703/HB24ezIbf3wLx+ebT6gaKMWBO6ZwespArv3+a/TYUgBA\n7o7jfG7O06z54Rz2fv7ysO2NH7VlO4lV3tXkS7MyOTSy7T/b4cAZFc3CK+/joY+eIsrjpmf5SbCY\nWSi4PeyO7lP+k6QqxIoT/WcAet8B51Q1dtFKT1X4W/3gjQxcuxeAgWv3NjwOVMa64+x8+lYjsURg\n0ksKuf3tvzQcbxk/gx1jrmrhjkafTZ3DleuXYHM56XvyEEP37uTAyI6vwt9eU3/4JoMWb284tmck\nsPaX8zh+XedtK1PVJ4PFr36DcS+uYMozS7E63djsDmb890LyVuxlxS8/hz0z/MaO+g9QXz9zGjoE\nq5EHqjCtF8vGzuGmbYtC2g4VAaU7EySpCrEmyypUF2NzOcioLgG820L4J10iPB2bNJiCSYPJ23zI\naNxeb+7m8KNXUtvfzDYromMsbjdffulpYuu9yyeUpuewePYDbb6/KjmNzRNmccXGpQDc8O7CTkuq\nBize1iShOj5rGGt+NY+6rM5PYLTVwraHr+HEVUO59t9fI/2I981j3oq93H3LU6z85V0UXDOq09t1\nKbG1NYxbv7nhONJKf/42DJ3OoLP7GXwmNMtbxEfbGN3LTAfBmtYvCSlJqkLMfwHQzOpisqsKG1Yz\nLk3MbLIfoAhTSrHwtw8yceFqYitr23VrTnTlRecyVxeQvK8I5dEM+PN6dj95s6mWig644YPX6Z9/\nAPAun/Cvzz2GIyauXTFWTbuNKZuXYfV4GLZ3F3mHD1AwKIhlNyDxeBlX/PfbDceH7pjA6ifvDHmp\nrWRkb95Y/B0uf+p9xv7Du/5TfFk1Nz/yN/beNYXDM79DfVz7vr7BMHbbeqIdDgCOD+jP6X6RNWvR\nn1YWFl32BR5c9jTYXZ3++rUOJ7tOSvkvfClQBrphVW8z45U8x092+N7qmETstljinHXEuurJHVQC\nvnXmjk0YyJnH2r+5aI/fH+lwe8KV7XSFkTil15np+XN92DROJdm8329Qu+PEfXrgonP90o/yAN5S\nU8/5u1lQciOVcaktxrFmmRnw6xkT+CKBdeVmkoX403YjcWp7dXzG3aA9+7hhyRsNx2/f83m239T+\nz6+UXDZsmcaVK71jsm58dyHPfffHHW4XQMHvL73htMXt4v43/0p0tXdpltKUHF7P+hqOZ2IvujZK\nOQNqx3ln/t3RrusXcjPbLh/MvO0LSfZN1hnxxkZ+tPZbvPrzhykY2/FVwB17Ujp873mTNjWOn9vb\n50p6Lu/418lScDrg9gB46us7fG8VVp6Z+R1479dG2tIeCin/ic6ivCW+vuXHAZi8onFps5MDI/ed\nkei4Yxn9KUjPI6+sgCjtZuqRz1gyKvT7d3U3cdU1PPD07xs20T0waiRL5t3e4XhL7ryDy1d9ikVr\nxmzbRK/jBZzqm2eotU1N3/Q2fc56J8C4LVYW3vh1HNEXJ1ShdiR7MP8349vM3vk2o0/vBCDzVDGP\nPvgLPr7vVpY+NJf/b+++46Sq7v+Pvz7bd+ldqkhHRJQioqAoYkFFRE0saERjsJtoetPkm/wSjSlq\nbDGWYK9oUFFAULGgKEqX3psU6VuG3fP7495dxg1smzO7s7Pv5+MxD7jtM+csu8Nn7+fcc4rSqv+/\nqUbbt9Ft0TwgGIYxt+eJ1d6GeChMqZn/8rPT/ZX/PqjidWZ2J3AO0B7YA7wB/Mw5t70C114HPAD8\nxjn3h7LOVVKVALY0OJBUtV21tmT/uk6H11STpIa933UoHT95AoD+q2fxXtdT2JeZuEtjJB3nGPPg\nwzT/Olg+am+9evz7h7fgYpgRfWP7dnxx/ED6fTwTgNMnvszjN9zmpbnROqxfzEmzDpT9ph1/ARta\ndfL+Pr7kZuTwQr+L+eqwnpwz9zWy9+eRUuQ4/bGJ9Px4Hk/9fhxfH9GmWtvUf+YMUlxwa2Vlh17s\nbqBxjbHITYzyXyEwBpgPNAbGA08AI8u6yMwOB24D5lXkTWrfowxJKHq5mmhKququpS27saFR8B9J\nRmGEQSsSfXaW5DJo+rsMfP/A78Tjb7qOb1o0L+OKinnzwgMThfb75ENabPJTFiqWlb+XCyY/eCAh\naNuTD/ueXc5VCcCMue2O4f6ht7C0/4FpC9ovWsVtY37L4OengKu++tFxH79b8vc5vSr2lKeUo4Yn\n/3TO/dI594VzLuKc2wLcAwytwKWPAr8Cyr2jBbpTlRAOllTl5mSzrVXsH+JSS5nxftehXPzZMwAM\nXPkxH3Q5ifz0xCvhJJsWGzdx2UOPlGzPGD6Mz088ATxMhr66S2cW9D6WXvO+IMUVMfyNCTxz9Q2x\nBwZwjnOnPU7j3dsA2JdZj1dOv7ZWTQOwM6cxD/6/n3LSM5M55/4XSYvsJyM/wgV/eYpeM77k2du/\nz64WTeLahtbrVtNuzSogWAtxYdfj4vp+dUF2Rjq923kr/6WaWbeoXducc9uqEGoYMKesE8xsHLDX\nOfd8WAIsl5KqBBA9rUKx9Ud0qFUfhuLfwta92FK/BS32bCF7fx4DV83k/a5Da7pZSS11/36uufvv\nZOUGS7hsatOa5665yut7vD3yQnrN+wKA42dMZ9Ko7/BNs9gfNDhm0QyOWvpJyfZ/h13NrlpYtnIp\nKbw35kyWHN+Ly37zMG2XBkMiesycz08v/hUv/mIsc04bELf3H/DRgbmpvurcj/zMnLi9V12RWxBh\n3lpv5b9WQPQTPr8D7qhMADO7ALgWOOTq2GbWAfg1UKklEPS/dgLYkdOESKkBhOs6aZB6XecshRld\nDvzMD1r+Aen7K/eElVTOuc++QKclwXxj+1NTeeTH/h/vX9b9SJZ1C0pcaYX7GTbptXKuKF/THZsZ\n8d74ku3Peg1lUZf4JR7VYWOX9vz9P7cz7fIRFIXTQNTbuZcrf/5PLr39X2Ttqdz0JRVhRUUM+PjA\nU39zjkyABbCThb/y32age9Trvso0w8wuAh4BRjrnZpdx6r+BPzjn1lcmvu5UJQBnKWyr3/xbCylr\nPJUAzGl3DKcunkrj3B3UL9hLvzWzmNkpOZ5ESjTd5i1gxIsvl2y/evmlrO5a+WkyymXGWyMv5Ma7\n/w+AwdMn89bIi9jTsGrTAKQU7ueCtx8gMxI8br+lSWveOukyb82tSYUZ6Uy85bssHNyHS2//F003\nBVWeAW98SOfZi3n6d9ewom8Pb+/Xeckimm4PJl/eU68By46ovpnvk1l2Rjq923sr/xU655ZU5Voz\nGwv8FTjXOVfePKLDgX5m9sdwuxEwwMzOcM4dMttWUpUgttRvUSqp0p0qgaKUVGZ0OYlz5wVrxw1e\nNoNZHQfW2KPRySpnz55g+oRwMPSio3vz9vnnxe39Fh7dl7WHH0H71SvJKCjg1Lcn8t+LxlQp1imf\nvEK7zSsA2J+SystnXE8kycbeLe/Xg7889wdG3/UkA94MHtpounErN4z7M++OOYs3rxtNYUbs62QO\n+Ojdkr/PHngihan6OfMhtyDC/DU1+/Sfmd0M3A6c4ZybVYFL2pfafpFgFsm/lnWRvmMSROnlaNYf\noaRKArM79OeUxdOoX7CHRnk76bPuS2Z36F+tbWi5egPdZy3g8+GD2NcoyaZ2cI4r/vkgTbcGd0H2\nNKjPo7feHN8xjWa8de6FXPPPvwBw8pQ3mXz2+eTl1KtUmI5rFzL4s9dLtt854SI2tuzos6UJI69+\nDs/8fhwLTjqWi/70BPV27iXFOU598k26z5zH3FMP/EwUfl21pLLvrAM3Lz49YShUfa5NiRbjk3ue\n3APsB6Zb1KoCzrn6AGZ2GfBw8bZz7luzeptZPrDLObeZMiipShDRg9W3tmpBbn0NjpTA/tR0Puo8\nmNMXvQXAkKXv8kX7vjirniGRLdZs4qdjf0P2vjxOfmkydz7xByJZmdXy3tXhxKnT6P/hgUl3n7jp\nBnY0axb39/1ywPFsat2WwzauJzt3HydPncTbIy+s8PXZeXsYPfmhkmWtlrfvxcfHnhWv5iaMOacd\nx8o+Xbnkd/+mx8z5ALRdurZkQLsPW1u0YmWX7jRdoKzKB5/lvxlVvM45V+b6TM65p4Gnyzg+tCLv\no6QqQaxu1pGCjHQyCiLMP+6Ymm6OJJhPOw5kyLJ3yY7k0XzvNnptmM/8tkfH/X1TI/sZe/v9ZO8L\nnoZrvWoDF9zzFM/97Oq4v3d1aLV+A5c+/O+S7ffOGM6XgwZWy3u7lFQmnzOaKx4Jxtme+tZEpp1x\nLpHMCiSszjHynUdptPcbAPZm1WfC8HHVlmjXtF0tmvDwfT9m8AtTOffe58nI97PUTrEPTjmjxtdI\nTCaJUP6rLkqqEsTurIbc9Y/f0X7ZKj49VQOR5dvy07OYecQJnLJkGgAnL53O/Da94/7Bf/YjL3H4\nohXf2jdkwjQWHt+HuSdXbwnSt9RIhGvu/juZ4XpqG9u15fnv+50+oTyfnnAyZ7/yHM22baHB7p2c\n+O4U3j3jnHKvO+G9qRy5/LOS7ddOu4bd9eM7f1PCMeOD7w5n0YlH02fqZ2TkHbirVLil6ndStzVv\nxSeDh3pooNRFtTKpclmZFPbqGHOctO1+Fmz1JbL4cFZwOM2nAFT9Ny8PcxSSUpHfliugsPOhF32t\nVJyFfhaJbvF8VeaIi582f6344NpV208mMnQG6bkRDtu1iUHnLGP1qUcCsGian4liC1ce+Hu3BfMY\n/uSB8Trbmreg2dZg2ZbL/u/frKx/FDua/m+ZrN4yP19jt2OXlzipuR0Pun/0U8/RcVnwfRVJS+PR\nm26l0GWReoiPhdQ8Pwns/pzowSWpvD1qFJc+Gkw2etqkCUw/+3QK0w/9fdFq/XoueurA3bXpZ5/B\nOzdUfdbvJgv89Ktevp8F6uv/vnKzzOcDn3Lst/cNim1R75xNAEWweGV5p1bIlgt7ln9SBTR7aZGX\nONXNZ/nv/fJPqVG1MqkSqYvymtZjwSWDOOax4GOl74PvsPqUnnG5W1Vv9y7GPhD1NNxRffj3zbfx\nq1/cStNtW6m/Zzffe/Ae7v3FHbVyktru8+cyfOKrJduvXjqGtUfUzPp4H546jHNeeoGGO3fSdNs2\njn//PT4cdtpBz02NRPj+PX8rubu2oX07Xvj+96qzuSKVllsQYV4dKf/Vvk9DkTps7tiTKUwPFvU9\n7MvVtPnUzx28b3GOy/79AE22h0/D1W/AE9fdwt4GDXn8+h+WTMTYc/5cTnsj9okrq1u93bsYe989\nJQnjgj7H8M6Ic2usPZHMTKacc2BN1zMnvIIVFh703FHPPcPhK4JybCQtjYd//iMKkuihAUliNbz2\nX3XRnSqRWmTvYY34avQAej0/E4C+D7zDhoF+J6gcPG0KfT+dWbI9ftxN7GwaLHey9MijePu8Czjr\n1ZcAGPX8Uyzu1Zs1neIwSWY8OMflDz1Ak2+CtVF3N2jIE9ffVON3294740zOfPUV6u3dS6tNG+k3\n82M+O/HbJb2ec+dwxmsH7q69dNXlrOvUsZpbKlJ52Rnp9O6g8p+IJKAvfnAKPV/8hJQiR/uPltJy\nzhoW4SepabV+HRc9+WjJ9nunncnc/t9eUHbiBRfTY94cjli+lNTCQq6+72/8vz/9lfwsv8u5xMOQ\nd6Zw7KwD6+P95/ob2dWk5tfHy8vJYfpZIzjnpRcBOOuVl/nshBNLSrv1dwV314rNP+ZY3jlvRI20\nVaSy9PSfiCSs3R2aseycY+n232DZqmMfnsZ7F54ac9y0SISr/xk1Xqdte14aM/Z/zisKB3X/+uc/\nIisvj1abNnDR+Ed56gc3xtyGeDps3Vq+88SBhHH6GWcxr1/irI83bcQ5DJ/4XzLz82m/ehW9P/+M\nef0HBJOTPvBPGn8TTJ+wq2FDHr8xzpOTiniUnZHOUZ4Gqr9X/ik1SkmVSC30xbhTSpKqTlPmc9gJ\na9jUJrZZ+M9+7Wk6rDowXufRm2475JxJW1u15tmx4xj7YHD3ZPD0qSzs05fZA0+IqQ3xkhaJcPW9\nfyejIFiQen379rx8eWIN8N7TsCHvDz+d4a9PBGDEKy8xr19/Tpr8Nsd8dmBVjf/ccBO7GzfGz3O+\nIvFXl+5U6VcdkVpoe7fWrBh+VMn28Ekvl3F2+bov/JJhUw6M15lwyRWsP7xjmdd8MmQoswYdWFf0\nskfup8m2LTG1I15GPfsUHVYFj8dH0tN59OZbiWQk3gDvKeeeRyQt+F2385IlDH1rEt/5z+Mlx985\n62zm9avd84NJHeTAPL0Sne5UidRSX4w7lU5TgmU6+s2awZsjL2Fbi8rfYq+/eydjnogar9OnL9PP\nLH8CSsx45upxdFr6Fc22bqHe3r2Mvf8fPHvCDxOqNNVzzpcMf/2/JdsvX1Z+wlhTdjRrxsennMpJ\nUyYDlMxfBbC+QwdevvyKmmqaSJVlZ6RzlKeB6u96iRI/SqpEaqmv+3Rg7Qldaf/RUlJcEcMmT+CF\ny66rXBDnuGT8P2m0s3i8TiP+c23Fx+vk1qvPYzfeym2/+xUprohuixYwuN4kZhx7dmW7Exc5+XsY\ne/+9Jdvzju3L9LMSo22H8vZ5oxj8zlRSig6U9yLp6Tzyw1vZn5FRgy0TqZrcggjzV6v8JyIJbvZ1\nw0r+fvxH79Dom8rNZj74/bfoPffAeJ3x1xaP16m45d178ub5F5Vsn/L5q7T9ekUZV1QT5xg161ka\n7QgTxkaN+M/1NyX8mm5bDmvNp6WmU3jpiivZ0OHwGmqRiAeap0pEEt2GgZ3ZdOzhHPbFatL27+eU\nqa/x6kUVW7/usA1rGPXigfE6751yNvOPrdp4nTdHf4ee876k89LFpLgiLpj2Lx4afTsFGTU3zcJx\nyz+k+8aFJdtP3HAzuxtVLmGsKZNGX0jfT2aSUVDAnP4DmH7mWTXdJJEqy8lIp/fhKv+JSKIzY/a1\nwxgx7jEATnz/bSafdSH76jcs87K0SAHfe/RvZESCp+E2tOnAaxdU/Wm4otRUHrsxmGYhO3cfTXdv\nYcRHz/Dq0KurHDMWLXdu5PQ5B8ZRvTPiHBYc07dG2lIVG9u3589//DOt169j9vGDEv7umkhZcgsi\nzF9VN8p/tTKpstx8UubFvjzH9pF+Frl0Axp5idNszl4vcXyI9GjvJU7qnGV+4jRp4iVOYTjXT8y6\nd/QSZuF7sd/JWZjSmaO7TKXdsjVkFuRz0vwJvH7NhWVec949T9J23SoAIhnpPHrn9eR1jtDyhaov\n5A31ef3kK7norQcAOGbpR3x25iA+O2FIOdcdXM7Gqk3KmRYpYPTf/056UdCXde078uoFV5CSH1ti\n4msx25TWFfuNvZAmrKMJLafvOUQgP6M3dnUvOwGvKCuI5XvHr+z5lVuU+VCsZQsvcVpO3eglzsEX\nL6olakHpzodykyozWwBEF/NTgSygn3Nutpl1Bu4GimcfXAQMcc5Fwuv7Aw8ARwEbgdudc0/564JI\nHWfG21eM5Orf/hOAoS+9zdRLR5BXL+egpx85cw7Dnn+rZPvlmy5lY2c/SfS8HifSfs8Cjv8gmKLv\n0kcfZGXXbmxr0cpL/Io45/XxtN60BoBIWgaP3nCbBniL1KBsj+W/6V6ixE+5SZVzrlf0tpn9ERgV\nJlQtgBnAv4ArgT3AsYQJtZk1AiYRJF1DgJOACWa23Dn3scd+iNRps08ZyLntXqTlus3k7N7HkAnv\nMGXM/y4S3GD7Tq74v4dKtuedeCzvjx7utS3PjR1H5yVf0eLrzeTs28fY+//B337zB4pSU72+z8H0\nXPg5J814o2T7tfOuZFNbPwmjiFRNbn7dKf9V6v6xmaUBVwEPh7tuBdY45+5wzu10zhU65z5zzhU/\nCzwa2Afc5ZzLd85NASYAP/DUfhEBXGoKky8fWbJ96nOTSM8vKHWS4/I//ouG3+wCYGezxjz5yx94\nH6+Tl5PDYzfeSmFYnuqyeBFnhgswx1P93Tu4+Ln7Srbn9xrARyecGff3FREpVtkxVaOARsD4cPsU\nYK2ZvQEMAtYBdzrnng6P9wG+cM5FV1NnA5dXtqFm1gxoBtCqYevKXi6S9D45czBnP/oyTb7eTqPt\nOxn0+ru8f8HpJceHvjSZoz7+smR7/K/HsaeJn/E0pa3s2p03LvguI198FoCzX3mer3r3YUW3HnF5\nPysq4pJn76XBnp0A7GrQhOe/e4MGeIskgOzMdI7yVP6b5iVK/FQ2qRoHPO+c2xFuNwcGAN8FziNI\nsiaa2Wrn3AdAA2BnqRg7gKp8kt8E3A6wN/8QAzdF6rDC9DSmXHo23/nHkwAMf+p1PjjvVIrS0miz\nfA3n3/9syblTLz6LRQOPjmt7Jo26kJ7z5tD1q4WkFhVx1T//xh/+/Hfycup5f6/BH7xBz6++KNl+\n5tKb2VvfzwMkIhKb3PwIC1T++7ZwQPow4KGo3buBj51zLznn9oflvbeAkVHHS3+yNQZ2VaGt9wHd\nge71MutX4XKR5PfhyFPY3bgBAM02b+O4tz8kPb+Aq357P+nh01lrux7Of6/9btzb4lJSeeyGH7Ev\nJxgw33zL11zy2L+8v0/rDas4d+L4ku3pQ89jSfdjvL+PiMRAk3/+j3HAHOfcJ1H7vgS6HOTc4q7P\nISgZRusb7q8U59w2YBtAm8btKnu5SJ0Qycpk2nfP4ryHXwDg9Ccn0nHhCtqsXAdAQWYGj//uBvZn\npFdLe75p3oKnv38919x7NwADP3yPBX2O5dMhQ73ETy/I5/In/0Za4X4A1rXtxJsjLvMSW0T8yM5I\np5en8t87XqLET4WSKjPLIHi67zelDj0MzDCzUcB/gZOB04E7w+MTgLvM7CfAvQRPAJ4P+H3cSERK\nvHfBcE5/aiLZe3M5bM1GDltzYI6cl24Zw6aObau1PZ8PGkyvObM54b1gNMQljz/Mim492Noq9g/Z\ncyc+wWGb1wJQkJ7BU2N+RGFa9SSMIlIxuQV1p/xX0TtVownmpno6eqdzbqaZXUqQRD0NrAS+Vzxd\ngnNuh5mNAO4Hfk8wT9W1mk5BJH7y6ufw3gWnc+b41761/8uT+vPBeace4qr4ev5719Bl8SJabtpI\ndm4u1939/1jas1eZ16TtK/tef0ZBPsfNOjBrzaujrubrVrqLLZKIrBaU7nyoUFLlnHsOeO4Qx14E\nXizj2lnAcVVqnYhUybTvnsmpz08iI5xWYUfzJjz9i+/X2NNw+dnZPHrjrfz09p+TWlhI23VraLtu\njbf4c3sPZObxugEukoiyM9Lp1dFP+W+qlyjxUyuXqRGRsu1p0pCpl4xgxBOvsj8tlf/89lr2NmpQ\no21a3bkrr33nMkY/O778kyvhm8bNeeE712v6BJEElZsfYcFKlf9EpBZ7/ZoLWXlUV7a3auZtGZpY\nTT73fNZ16EiLr8v/gM3YWX69oDA1jQW9+rOvXnzm2xIRP1T+S2QpRkpmZsxhmr69wkNjgFZ+Ft0k\nJXF+0/a1EHKkb1cvcZi91E8cT3Z2iX0hZICIpymbmr928B/ljfSHLdB0fsXiFNaPfZHew94qO2Ha\nThu206b8tuyvwOLX+4HZX1OPrw95SoN0P+v+5Q7q7iVO9mcrvcSxxn7m4Wq4zM+8fy479s9kX4p2\n7/YSJzXNz3+RkXbNvMRJ2bGj/JMSUHZmOr2O8FP+m+IlSvzUzqRKREREaoXc/AgLVqj8JyIiIhI7\nlf9EREREYpOdofKfiIiISMzyCiIsrCPlv9hHpYqIiIiI7lSJiIhI/GR5LP9N9hIlfpRUiYiISNzk\n5ded8p+SKhEREYkvPf0nIiIiEhufk3++7SVK/CipEhERkbjR5J8iIiIinpirG/U/JVUiIiISN9mZ\n6RzZyU/57y0vUeKndiZVaWnQsnnMYSw330NjYHcnP6vi1v9ys5c4PrgjO3uJk55gCyGneFpct9Gy\nXC9xUrf6WfjVZaR7ibNpWOOYY7ScW4GFkKtTvRwvYTK/KfASpyjiJw7NG3gJk7LKT1nGGtb3EseH\nwmM8LeT+pZ/Pr5RvEuxnoprl5kdYuFzlPxEREZHYOLC6Uf1TUiUiIiLxk52ZzpGd/ZT/JnmJEj9K\nqkRERCRucvMjLFym8p+IiIhIzKyopltQPZRUiYiISNz4LP+96SVK/CipEhERkbhR+U9ERETEA3Oa\n/FNEREQkZllZ6RzZxU/57w0vUeJHSZWIiIjETV5ehIVLVf4TERERiUlWpu5UiYiIiMQsLz/CIg1U\nFxEREfGgboxTr6VJVUGEorXra7oVJXLe3eolTiLNjZaSH/ESJ9F+jqyBn0VoWbzKT5zmsS8MDlC0\n0c9vgS2fij1O3ondPbQEsj5c7CWOpfn5mEvZ62khZE/fg0WLVviJ4yUKkLvPV6SYpXpaCNmXwj5d\nvMRJnbPMS5zq5rP897qXKPFTO5MqERERqRXy8iMs0kB1ERERkVg50DxVIiIiIrHJzszgyK6tvcSa\n6CVK/CipEhERkbjJzStg0ZKNNd2MaqGkSkREROKrblT/lFSJiIhI/GRnZdDTU/nvv16ixI+SKhER\nEYmb3LwCvlL5T0RERMSDorpR/1NSJSIiInGTnZlOj25+yn+veYkSP0qqREREJG5y8yJ8tVjlPxER\nEZGYWPiqC5RUiYiISNxkZaXTo5uftf8SnZIqH7p39BPH1yK9Hrjla2q6CXFRuH1bTTfhW7YMbuEl\nTtNX/Szq7UPavkRaGhxcTpaXOEVr1nmJk7Qs1UuYlPaxj70prJfhoSVgi1Z6iZP+9R4vcRLrjMSa\nvgAAFt1JREFUJ6vi8upQ+S+lphsgIiIiyc2cn1eV39/sTjNbYGa7zGyDmT1iZk3LOH+EmU0zs61m\n9o2ZzTCzIeW9j+5UiYiISNwE5T8/T//FoBAYA8wHGgPjgSeAkYc4vwlwHzAd2ANcA0wys57OubWH\nehMlVSIiIhI3nst/qWbWLWp7m3Ou3HEdzrlfRm1uMbN7gBfKOP/pUrseNLPbgQHAIZMqlf9EREQk\nvpzz84JWwOKo101VbNEwYE5FTzaz3kBzYF5Z5+lOlYiIiMRNlsfJP4HNwNCo7Uo/fWRmFwDXAidX\n8PyWwMvA3c65pWWdq6RKRERE4iYvL8Lir7yV/wqdc0uqerGZXQQ8DIx0zs2uwPltgCnAZOAX5Z2v\npEpERETiy9X82n9mNhb4K3Cuc+7DCpzfEXgHmOCc+3FF3kNJlYiIiMRNVlY6PXq0qdE2mNnNwO3A\nGc65WRU4vwcwFXjCOffrir6PkioRERGJm7y8CF8t2lDTzbgH2A9MNzuwaI5zrj6AmV0GPFy8DfwM\naAv80Mx+GBVn3EGeDCyhpEpERETixzmshst/zrkylx8ME6Wno7bHAmMr+z5KqkRERCRusrIz/JX/\nXvMTJl6UVImIiEjc5OUW8NVXNV7+qxZ1OqlK6djeS5yiBFoIWcqRYItfN311kZc4iSRz3Q4vcfac\n1N1LnHof+1kUN3eIn/Zkz1jsJY4vKdk5XuK4/REvcXwsXF1mnacycTp18BNn1z4vcWorA6yo5p/+\nqw7lJlVmtgA4PGpXKpAF9AOOBh4Dor9jJjrnLom6vj/wAHAUsBG43Tn3VOxNFxERkUSXleWx/DfR\nT5h4KTepcs71it42sz8Co5xzs83saGCFc67Lwa41s0bAJOBuYAhwEjDBzJY75z6OufUiIiKS0PLy\nChLh6b9qUam1/8wsDbiKYDbSihhNcBfrLudcvnNuCjAB+EGlWhm8dzMz62Zm3YpcUWUvFxERkZri\nPL0SXGXHVI0CGgHjo/a1N7NNQAT4EPiFc654EEMf4AvnvvUs5Wzg8iq09SaCibvYm7+nCpeLiIhI\ndcvKyqBHT0/lvzf8hImXyiZV44DnnXPFI1HfB3oDy4CWwJ+BKWbWxzm3F2gA7CwVYwfQsAptvQ94\nBqBeZv3EGukpIiIiB5WXW8BXC9fXdDOqRYWTKjPrDAwDBhXvc86tiDplk5ldQ5A0HU+wXs5uoGOp\nUI2BXZVtqHNuG+Fq1G0at6vs5SIiIlJDanryz+pSmTtV44A5zrlPyjin+KtW/ETrHIKSYbS+4X4R\nERFJclnZ6XT3Vf6b5CdMvFQoqTKzDOBK4Del9p9NkCCtB5oQlP+2AjPDUyYAd5nZT4B7CZ4APB8Y\n7qHtIiIikuDyciMsXqin/6KNJpibqvQigkOBT4E9wAKgKTDcObcHIBx7NQK4iKAs+C/gWk2nICIi\nUocUeXoluArdqXLOPQc8d5D9PwF+Us61s4DjqtQ6ERERqdWystLpcaSn8t9kP2HipU4vUyMiIiLx\nlZcbYfECPf0nIiIiEpOs7HS69/J0p2qKnzDxUjuTqvQ0Ulu1ijlM4aq1HhoD9OzkJUykXqqXOOmf\nLfUSJxnlN830EsdPFH9SWsf+8wBAbn7MIQq3bPHQEMj2FKfI0/K6vhZCLjqqs5c4KfOXe4lTlFu3\nF/st09qNXsIURvwsNl1b5eUWsHi+7lSJiIiIxE7zVImIiIjEJis7g+692voJ9o6fMPGipEpERETi\nRuU/EREREU+0TI2IiIhIjLKyPJb/pvsJEy9KqkRERCRugvLfuppuRrVQUiUiIiLxpfKfiIiISGyy\nstPpfpSn8t97fsLEi5IqERERiZu83AIWz1P5T0RERCR2RTXdgOqhpEpERETiJis7g+692/kJ9oGf\nMPGipEpERETiJm9fAUvmelprN8HVzqQqsp/CzZtruhUlUnL9LJaZvmiFlzipLVvEHMMV+OlT0Y4d\nXuLsG9rdS5ycd/0siutLwcBuXuJkzl7pJY7zsPCrde7goSXAKj+L2Vpaipc4+7v6+U17R9cML3Ga\nzvcSButyuJc4u47I9hKnwZSvYo6Rkp3joSWQf5Sff/P0WUu8xKnV9PSfiIiISGyysjPo5qv895Gf\nMPGipEpERETiJi9X5T8RERERP1T+ExEREYlNVnY63Xq39xNspp8w8aKkSkREROImKP+tqelmVAsl\nVSIiIhI/DpX/RERERGKVlZPhr/z3qZ8w8aKkSkREROImb18BS+ao/CciIiISO5X/RERERGKTlZ1B\ntz6eyn+f+wkTL0qqREREJG7ycgtY8qXKfyIiIiKxcU7lP6mELdu9hElp2NBLHLdzV8wxivLzPbTE\nn0RbCNmX/IZ+FvvN8LAQsi9ueWL9Rhrp09VLnPQv/Sx43nR+kZc4vkQa+lngudEnG7zE8fHVKcrd\n5yGKFkL2JSsng259PC20/oWfMPGipEpERETiJm9fAUu+XF3TzagWSqpEREQkvlT+ExEREYlNUP47\n3E+wOX7CxIuSKhEREYmboPy3qqabUS2UVImIiEj8OAdFifWARrwoqRIREZG4ycrJpNsxnsp/8/2E\niRclVSIiIhI3efvyWfKFnv4TERERiZ2e/hMRERGJTVZOhr/y30I/YeJFSZWIiIjETd6+ApbMXlXT\nzagWSqpEREQkfhw4p6f/RERERGKSlZNB92M7+gmW4MvAKqnyoGjv3ppuwrd17RhziJTN38TeDqBo\n104vcRJNapMmXuI0mrXJS5xk/B0wtUULP4FmL/USJqVVSy9xXE6Wlzhs2OwlTJqnr4+v78G9Q3vE\nHCOtwM+g6PTd+73ESZm33Euc2ipvXz6LP19Z082oFkqqREREJG6ycjLp3rejn2B+fgeIGyVVIiIi\nEje6UyUiIiLiiwaqi4iIiMQmKyeD7n2P8BMswYenKakSERGRuMnbW8Diz1fUdDOqhZIqERERiSOH\nK9IyNSIiIiIxycrJpHs/T+W/VX7CxIuSKhEREYmbvH35LP5M5T8RERGR2DhA5T8RERGR2GTVy6R7\nf0/lv7V+wsSLkioRERGJm7y9+SyeleBzIXiipEpERETiyOGcyn9SSxVlpsYepHXT2GMAJOmCyoXf\n+FlwOrVxYy9xUtq09hKnaMPGmGOkdGznoSVQuGqdlzgpDRt6iVO4+WsvcXadEfuCwQANV+Z7ifPN\neT29xGny2iIvceq9+1XsQbp3jD0GkJLvZ0HlIvPwmQzgCv3EqWZZOZl079/JT7D1fsLES7lJlZkt\nAA6P2pUKZAH9nHOzo867E/gpcLlz7qmo/f2BB4CjgI3A7dHHRUREJHnl7ctn8afLarQNYY5yDtAe\n2AO8AfzMObe9jGvOBP4KdCKYy/1W59zkst4npbyGOOd6OefqF7+AvwELSyVUxwFnESRN0Q1qBEwC\nXgaaANcCD5nZoPLeV0RERJKAA+ecl1cMCoExQDOgD9AOeOJQJ5tZJ+AV4E9Ao/DPCWbWsaw3qVT5\nz8zSgKvC4MX7MoFHgR8Az5a6ZDSwD7jLBV+NKWY2ITz340q+dzOCLwatGvopdYiIiEh8ZdXLpMeA\nzn6CTSTVzLpF7dnmnNtW3mXOuV9GbW4xs3uAF8q45HvA51GVtafN7Npw/+8OdZFVJvMzswuB8UAb\n59yOcN+fgBzn3C1mtgr4dXEjzOwfQEfn3KioGD8iKBH2rfAbB9fdAdwebu4D/BTw/UgFWgGbCbLh\nZKV+Jhf1M7mon8klXv083DnXwmO8cpnZW0BzT+EaA9EZ2u+cc3dUoU1/AY53zg05xPFXgVXOuR9G\n7bsHaO+cG32ouJUdqD4OeD4qoeoPXAQcc4jzGwClRyrvAKoycvQ+4Jnw7xXKTKtLmDUvBoY655bU\ndHviRf1MLupnclE/k0sy9dM5d6avWNFVq1ClcwEzu4BgONLJZZx2qPylV1mxK5xUmVlnYBgwKNzO\nAB4HbnDO7TnEZbuBjqX2NQZ2VfR9i4VJVMIkUiIiIlK9Ys0FzOwi4GFgZPTY8IPYTTCWKlq5+Uu5\nA9WjjAPmOOc+CbfbEGRsT5vZVjPbSjCq/kEzezo8Zw7/exerb7hfREREpFqY2ViChOpc59z0ck6f\nQ5CvRCs3f6lQUhXelboSeChq91qgA0HSVPzaAPwSuDk8ZwJQz8x+YmaZZnYacD7wr4q8by2yjWDg\nWrLfSVM/k4v6mVzUz+RSV/pZLczsZuBu4Azn3IcVuGQ80N/MLjGzDDO7jCCp+k+Z71ORgepmdjFB\nItSmjFIfpQeqh/sGAPcDvQmmXPit5qkSERGR6mJmDtgPfGvW3HCqKMKk6eHi7XBf9DxVK4AflTdP\nVaWe/hMRERGRg6vMmCoREREROQQlVSIiIiIeKKkSERER8UBJlYiIiIgHSqpEREREPFBSJSIiIuKB\nkioRERERD5RUVYCZpZjZR2bmzKxd1P4rzGy5me0zs0/MrF+p6/qb2afh8eVmNqb6W18xZnaamc00\nsz3hskMPRB1Lin6a2WFm9ryZbTGzb8xsmpn1iTpeK/tpZheb2Qwz22Vm+w9yPKZ+mVlLM3vFzHaH\nX7s7zazaPzvK6mfYx4/Cf9etZjbJzHqXOqfW97PUeXeGn0ml+5EU/TSzzmY2wcx2hq+ZZpYedbzW\n99PMUsN2rQ3bOc/MLix1Tq3op4Scc3qV8wJuA6YCDmgX7hsM7AVOBzKBnwKbgYbh8UbAFuBn4fHh\nwB5gUE335yD9G0qw+vaFYVuzgL5J2M9XgClAEyADuItguSWrzf0EzgAuAa4C9pc6FnO/wq/ZK+G5\nnYAlwM8SrJ83hG2vF/bjjwQrOOQkUz+jzjkOmEuwNNiYqP1J0U+gRdi3O8J2pgL9gZQk6+fNYT+7\nE3wOjQIKgB61rZ96hf8eNd2ARH8B3YDlBGsbRidV/wGejDrPgNXA98LtseG2RZ3zJPB4TffpIH38\nGPjzIY4lUz/nAuOitruH/6bNk6GfBMlx6Q/tmPoFHBF+jTpHHb8aWJlI/TzIOVlhu4t/OUiafob/\nuc4DBgGr+HZSlRT9BP4EzCzjmmTp573As6X2bQQurK39rOsv3SIsQ3gL9THgxwR3cqL1AT4v3nDB\nd/OX4f7i41+E+4vNjjqeEMysHsFvvWlmNjssnbxrZv3DU5Kin6G/AKPNrIWZZQE/AD5wzm0lufoZ\nLdZ+9QF2OueWlzre0cwaxq3VsRsG7AOWhtvJ1M87gGnOuY8PcixZ+nkKsNbM3jCz7WY214K12Yol\nSz8fAXqZ2ZFhKfBCIA14PzyeLP2sM9JqugEJ7hZgk3Nugpl1LHWsAbCz1L4dQMMKHk8UTQjG1l0C\nnAV8RZBEvmlm3UiefgJ8CHwP+BooJCj9nRUeS6Z+Rou1X4c6TnjOLj/N9Cf8vn0cuM05tzvcnRT9\nDH/ZuYjgzvnBJEU/Ce4eDwC+C5xHkGRNNLPVzrkPSJ5+rgBmAPOBIoLFfi93zn0dHk+WftYZulN1\nCGbWhWAs1Y2HOGU3QQ07WmMOfBOXdzxRFP+n87hzbq5zroDg1ns6cAJJ0s/wruNUgjsXjYAcgnE3\nM8ysFUnSz4OItV+HOl58LKGY2ZHAdOBu59xDUYdqfT/NLIMgWbzBObfnEKfV+n6GdgMfO+decs7t\nd85NAd4CRkYdT4Z+PgAcS1DGyyAYM/WQmZ0eHk+WftYZSqoObTDBYMn5ZraV4JYqwFwzux6YA/Qt\nPtnMjOCHY064aw7/+9tk36jjCcE5t5NgXIYrfSh8JUU/gaYEH1z3OOd2OecKnHP/JvgZGETy9LO0\nWPs1B2hkZp1KHV8Vfu8kDDPrC7xLMD7wrlKHk6GfbYBewNNhmX4r0B540MyeDs9Jhn5CUKIu/ZlE\n1L5k6Wc/YLxzbrVzrsg59xHBnasR4fFk6WfdUdODuhL1RXAno13U63iCH+j+QH2CpGsPwdiNgz1V\n1ZjgqY2fhMdPI0GeFjtIX38CrAOOJCgJ/5RgsGSjJOvnYuA+gifE0giexikgeGKm1vaT4MmoLIIn\n/PaHf8/iwFONMfWL4OmilwjKCcVPF/08wfp5IvANcM0hrk2Gfqby7c+kdgQl7JuAZknUTyP4vI0Q\nPA2XQlD+21fcjyTq58MESVTb8NyBwDaCEmCt6qde4b9HTTegtryAjkQ9/Rfuu4KgJp4LfAr0K3XN\ngHB/bnjemOpscyX6ZsDvgU0E9fjpwDFJ2M+ewBvAVoJxCJ8D59X2fgJXcuDOYvSro49+AS0JHtne\nHX7t7iJ8tD1R+hl+zxaF/+FEv4YkUz8Pcu6qg/QjKfpJMHZsMcGUIPOBi5KtnwSJ0EPA+rCdy4Bf\n1sZ+6hW8LPxHEREREZEYaEyViIiIiAdKqkREREQ8UFIlIiIi4oGSKhEREREPlFSJiIiIeKCkSkRE\nRMQDJVUiIlKnmVk9M1tuZvsrcO4V4bn7zOwTM+tX6vjocAHoPWa22MwuKnV8oJm9b2Y7zGyzmT1p\nZs2ijt9pZgvMbJeZbTCzR8ysaSX78+OwjbvNbGm4CohUAyVVIiKStMyso5mVNyHjn4GVFYg1GHgQ\nuI5gMfqXCRafbxgePx54CvghwcSePyZYVmhgeDwVeB34iGAZtJ4Eyw/dG/U2hcAYoBnQh2Dm/Ccq\n0NXiNo4Efgdc5pxrQDD571/MbHhFY0jVKakSEZE6y8xOAoYAd1bg9GuAV5xzk51z+cBfgDzg/PD4\naOBt59w0F6zlNxH4EBgXHm8ENCdYwD7inNsOvECQPAHgnPulc+6L8PgW4B5gaKk2X2Nm881sp5l9\nEbUAM0AXYK5zbmYY72NgbvR7SPwoqRIRkTrJzHKAR4DvE6w1WJ4+BMtbAeCCJUm+5EDCYuErWgrh\noshhEvUwcLWZZZpZS+BiYEIZ7zmMqIXbzewa4GfAZQR3y34FvGJmXcJTngMamNmJZpZiZkOAbsBb\nFeifxEhJlYiI1FV/AiY65z6r4PkNCNYNjbaDoNQHwdqiZ5rZcDNLM7PzCRb7bhh1/osEd7T2Eixu\nXhS243+Y2QXAtcAtUbtvAX7vnJsT3g17k2Dty4vD418TLLA8nWDB+OnA7c65+RXso8RASZWIiCQV\nM3sgHAi+g6D0RfF2+Pp5OD7qLOC3lQi9m6CEF60xsAvAOfcuQRL0N4Lk5kqCO0dbwzZ0BSYBfwSy\nw2uXc5C7SOEA90eAkc652VGHjgDuj+4PcArQNjz+G4K7WMcA6QR30X5kZldXop9SRUqqREQkqTjn\nrnfONXbONQaODvc1jnr9GTgNaA+sMbOtwGtAqpltNbNzDxF6DtC3eMPMDDiWqPKcc+4J51xv51xT\n59x5QHfg3fBwH2C7c654TNVO4D5giJk1joo7lqBMeK5zbnqpNqwGrirVn/rOuevC4/2Al51zC11g\nAfAqcKg+iUdKqkREpC76G9CV4I7OMQTjqgrDv089xDWPAKPNbJiZZQI/ATIJx0SFJb++ZpZqZo3M\n7P8IEre/h9d/DjQ2szHhOQ2AG4EVzrkdYYybgbuBM5xzHx6kDX8H7jCzYyyQbWaDzaxHePxD4Pzw\nrhhm1hMYRdRYMImftJpugIiISHVzzu0iLNsBmNmWcP+6qH2/JJiaoFd47INwzqdHgNbAPGBEGAsg\nFfgXwd0pRzCeabBzbnN4/cpwnNQdwD8JkrhZwHlRTbsH2A9MD26ElbS3fvjnI2ZWADxOUAqMALMJ\npm+A4InERsAUM2sObCcYx/XnKn6ppBIseHhBRERERGKh8p+IiIiIB0qqRERERDxQUiUiIiLigZIq\nEREREQ+UVImIiIh4oKRKRERExAMlVSIiIiIeKKkSERER8UBJlYiIiIgH/x/dhQzluCKFiQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent, alpha=0.7)\n", + "plt.colorbar()\n", + "plt.ylim(740,800)\n", + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', lw=3, alpha=1)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "The spike at 400 Hz is probably a statistical fluctutations, tracing by the maximum power can be dangerous!\n", + "\n", + "We will implement better methods in the future, stay tunned ;)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/EventList/EventList Tutorial.ipynb.txt b/_sources/notebooks/EventList/EventList Tutorial.ipynb.txt new file mode 100644 index 000000000..1a5f3488a --- /dev/null +++ b/_sources/notebooks/EventList/EventList Tutorial.ipynb.txt @@ -0,0 +1,2007 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating an event list object and carrying out various operations such as simulating time and energies, joining, storing and retrieving event lists." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some relevant stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import EventList, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating EventList from Photon Arrival Times" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given photon arrival times, an eventlist object can be created. Times are assumed to be seconds from a reference MJD, that can optionally be specified with the `mjdref` keyword and attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "times = [0.5, 1.1, 2.2, 3.7]\n", + "mjdref=58000." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create event list object by passing arrival times as argument." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.5, 1.1, 2.2, 3.7])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList(times, mjdref=mjdref)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One can add all sorts of data to the `EventList` object, it is very flexible. In general, we suggest to stick with easily interpretable attributes, like `energy` or `pi`.\n", + "\n", + "```\n", + "ev.energy = [0., 3., 4., 20.]\n", + "```\n", + "\n", + "is the same as " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "energy = [0., 3., 4., 20.]\n", + "ev = EventList(times, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is always recommended to specify the good time intervals (GTIs) of the event list, as the time intervals where the instrument was fully operational. If not specified, GTIs are defined automatically as the first and the last event time." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [[0, 4]]\n", + "ev = EventList(times, gti=gti, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "`EventList` has the following methods that allow an easy roundtrip to Astropy objects: `to_astropy_table`, `to_astropy_timeseries`, `from_astropy_table`, `from_astropy_timeseries`\n", + "\n", + "This allows a better interoperability with the Astropy ecosystem. \n", + "\n", + "In this roundtrip, a `Table` or `Timeseries` object is created, having as columns `time` and all other attributes of the same size (e.g. `pi`, `energy`), and the rest of the attributes (e.g. `gti`, `mjdref`) in the table's metadata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Table length=4\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
energytime
float64float64
0.00.5
3.01.1
4.02.2
20.03.7
" + ], + "text/plain": [ + "\n", + " energy time \n", + "float64 float64\n", + "------- -------\n", + " 0.0 0.5\n", + " 3.0 1.1\n", + " 4.0 2.2\n", + " 20.0 3.7" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table = ev.to_astropy_table()\n", + "table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When converting to `Timeseries`, times are transformed into `astropy.time.TimeDelta` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
TimeSeries length=4\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timeenergy
objectfloat64
5.787037037037037e-060.0
1.2731481481481482e-053.0
2.5462962962962965e-054.0
4.282407407407408e-0520.0
" + ], + "text/plain": [ + "\n", + " time energy\n", + " object float64\n", + "---------------------- -------\n", + " 5.787037037037037e-06 0.0\n", + "1.2731481481481482e-05 3.0\n", + "2.5462962962962965e-05 4.0\n", + " 4.282407407407408e-05 20.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "timeseries = ev.to_astropy_timeseries()\n", + "timeseries" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('dt', 0),\n", + " ('gti', array([[0, 4]])),\n", + " ('mjdref', 58000.0),\n", + " ('ncounts', 4),\n", + " ('notes', '')])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table.meta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, these objects can be converted back to event lists. The user should be careful in defining the proper column names and metadata so that the final object is a valid `EventList`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "table_ev = EventList.from_astropy_table(table)\n", + "table_ts = EventList.from_astropy_timeseries(timeseries)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0.5, 1.1, 2.2, 3.7]), array([0.5, 1.1, 2.2, 3.7]))" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table_ev.time, table_ts.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Loading and writing EventList objects\n", + "\n", + "We made it possible to save and load data in a number of different formats.\n", + "\n", + "The general syntax is\n", + "\n", + "```\n", + "ev = EventList.read(filename, format)\n", + "\n", + "ev.write(filename, format)\n", + "\n", + "```\n", + "\n", + "There are three main blocks of formats that might be useful:\n", + "\n", + "1. (read-only) HEASoft-compatible formats -> read event data from HEASOFT-supported missions\n", + "\n", + "2. `pickle`: reading and saving EventLists from/to Python pickle objects\n", + "\n", + "3. Any format compatible with `astropy.table.Table` objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading an EventList from an X-ray observation in HEASoft-compatible format\n", + "\n", + "Loading event data from HEASoft-supported missions in FITS format is easy. It's sufficient to use the `read` method with `hea` or, equivalently, `ogip`, as format. \n", + "\n", + "Beware: please use `hea` or `ogip`, not `fits`! It would make the roundrip to Astropy tables more complicated, as Astropy supports a generic FITS writer which is not necessarily compatible with HEASoft." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList.read('events.fits', 'ogip')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Times are saved to the `time` attribute, GTIs to the `gti` attribute, MJDREF to the `mjdref` attribute, etc. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "55197.00076601852" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.mjdref" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[80000000., 80001025.]], dtype=float128)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to pickle objects\n", + "\n", + "It is possible to save and load eventlist objects using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(True, True)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.p\", \"pickle\")\n", + "ev2 = EventList.read(\"events.p\", \"pickle\")\n", + "\n", + "np.allclose(ev2.time, ev.time), np.allclose(ev2.gti, ev.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "If the `read` and `write` methods receive a format which is not `hea`, `ogip`, or `pickle`, the event list is transformed into an `Astropy` `Table` object with the methods described above, and the readers and writers from the `Table` class are used instead. This allows to extend the save/load operations to a large number of formats, including `hdf5` and enhanced CSV (`ascii.ecsv`).\n", + "\n", + "Note that columns coming from the `EVENTS` (or equivalent) fits extension, those having the same length as `time`, when converting to `astropy` tables they become columns of the table. All the others, including `gti`, are treated as metadata.\n", + "\n", + "Care should be used in selecting formats that preserve metadata. For example, simple CSV format loses all metadata, including MJDREF, GTIs etc." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.hdf5\", \"hdf5\")\n", + "ev3 = EventList.read(\"events.hdf5\", \"hdf5\")\n", + "ev3.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# %ECSV 1.0\r\n", + "# ---\r\n", + "# datatype:\r\n", + "# - {name: energy, datatype: float32}\r\n", + "# - {name: pi, datatype: float32}\r\n", + "# - {name: time, datatype: float128}\r\n", + "# meta: !!omap\r\n", + "# - {dt: 0}\r\n", + "# - gti: !numpy.ndarray\r\n", + "# buffer: !!binary |\r\n", + "# QUFBQUFBQ0FscGdaUURHRnBuOEFBQUFBQUFBZ0FKZVlHVUF4aGFaL0FBQT0=\r\n", + "# dtype: float128\r\n", + "# order: C\r\n", + "# shape: !!python/tuple [1, 2]\r\n", + "# - {header: 'XTENSION= ''BINTABLE'' / binary table extension BITPIX = 8 / array\r\n", + "# data type NAXIS = 2 / number of array dimensions NAXIS1 = 12\r\n", + "# / length of dimension 1 NAXIS2 = 1000 / length of dimension 2 PCOUNT = 0\r\n", + "# / number of group parameters GCOUNT = 1 / number of groups TFIELDS\r\n", + "# = 2 / number of table fields TTYPE1 = ''TIME '' TFORM1 =\r\n", + "# ''1D '' TTYPE2 = ''PI '' TFORM2 =\r\n", + "# ''1J '' EXTNAME = ''EVENTS '' / extension name OBSERVER=\r\n", + "# ''Edwige Bubble'' TELESCOP= ''NuSTAR '' / Telescope (mission) name INSTRUME=\r\n", + "# ''FPMA '' / Instrument name OBS_ID = ''00000000001'' / Observation ID TARG_ID\r\n", + "# = 0 / Target ID OBJECT = ''Fake X-1'' / Name of observed object RA_OBJ = 0.0\r\n", + "# / [deg] R.A. Object DEC_OBJ = 0.0 / [deg] Dec Object RA_NOM = 0.0\r\n", + "# / Right Ascension used for barycenter correctionsDEC_NOM = 0.0 / Declination used for barycenter corrections RA_PNT = 0.0\r\n", + "# / [deg] RA pointing DEC_PNT = 0.0 / [deg] Dec pointing PA_PNT = 0.0\r\n", + "# / [deg] Position angle (roll) EQUINOX = 2000.0 / Equinox of celestial coord system RADECSYS=\r\n", + "# ''FK5 '' / Coordinate Reference System TASSIGN = ''SATELLITE'' / Time assigned by onboard\r\n", + "# clock TIMESYS = ''TDB '' / All times in this file are TDB MJDREFI = 55197\r\n", + "# / TDB time reference; Modified Julian Day (int) MJDREFF = 0.00076601852 / TDB time reference; Modified Julian Day (frac)\r\n", + "# TIMEREF = ''SOLARSYSTEM'' / Times are pathlength-corrected to barycenter CLOCKAPP= F / TRUE if timestamps\r\n", + "# corrected by gnd sware TIMEUNIT= ''s '' / unit for time keywords TSTART = 80000000.0\r\n", + "# / Elapsed seconds since MJDREF at start of file TSTOP = 80001025.0 / Elapsed seconds since MJDREF at end of file LIVETIME= 1025.0\r\n", + "# / On-source time TIMEZERO= 0.0 / Time Zero COMMENT\r\n", + "# FITS (Flexible Image Transport System) format is defined in ''Astronomy aCOMMENT nd Astrophysics'', volume 376, page 359; bibcode:\r\n", + "# 2001A&A...376..359H COMMENT MJDREFI+MJDREFF = epoch of Jan 1, 2010, in TT time system. HISTORY File modified by\r\n", + "# user ''meo'' with fv on 2015-08-17T14:10:02 HISTORY File modified by user ''meo'' with fv on 2015-08-17T14:48:52 END '}\r\n", + "# - {instr: fpma}\r\n", + "# - {mission: nustar}\r\n", + "# - {mjdref: 55197.00076601852}\r\n", + "# - {ncounts: 1000}\r\n", + "# - {notes: ''}\r\n", + "# - {timeref: solarsystem}\r\n", + "# - {timesys: tdb}\r\n", + "# schema: astropy-2.0\r\n", + "energy pi time\r\n", + "8.56 174.0 80000000.23635569215\r\n", + "33.039997 786.0 80000001.47479322553\r\n", + "7.9999995 160.0 80000001.78458866477\r\n", + "27.84 656.0 80000002.789436236024\r\n", + "8.84 181.0 80000003.428599357605\r\n", + "13.92 308.0 80000004.079430028796\r\n", + "37.839996 906.0 80000006.09310323\r\n", + "40.559998 974.0 80000007.180418133736\r\n", + "5.8799996 107.0 80000008.176021426916\r\n", + "41.239998 991.0 80000008.204034894705\r\n", + "33.64 801.0 80000009.69214613736\r\n", + "8.72 178.0 80000010.36281684041\r\n", + "17.32 393.0 80000010.78324916959\r\n", + "6.56 124.0 80000011.8733625412\r\n", + "21.28 492.0 80000013.92633379996\r\n", + "10.24 216.0 80000014.204483643174\r\n", + "10.68 227.0 80000014.26073910296\r\n", + "26.68 627.0 80000015.256171390414\r\n", + "3.96 59.0 80000018.08373501897\r\n", + "13.96 309.0 80000018.83911728859\r\n", + "28.32 668.0 80000019.98157013953\r\n", + "38.319996 918.0 80000020.76013682783\r\n", + "17.76 404.0 80000021.14855520427\r\n", + "12.64 276.0 80000022.02460347116\r\n", + "29.76 704.0 80000023.50157275796\r\n", + "24.08 562.0 80000023.61806283891\r\n", + "10.400001 220.0 80000024.97833034396\r\n", + "41.519997 998.0 80000025.95996727049\r\n", + "4.24 66.0 80000026.16019311547\r\n", + "23.32 543.0 80000027.089139238\r\n", + "41.399998 995.0 80000028.596908301115\r\n", + "19.72 453.0 80000031.065731182694\r\n", + "36.559998 874.0 80000031.10555113852\r\n", + "38.399998 920.0 80000032.516511276364\r\n", + "24.28 567.0 80000032.808356150985\r\n", + "29.48 697.0 80000033.18797942996\r\n", + "36.76 879.0 80000033.85146795213\r\n", + "10.6 225.0 80000034.861510172486\r\n", + "20.0 460.0 80000038.22435864806\r\n", + "3.3600001 44.0 80000038.39090189338\r\n", + "15.08 337.0 80000042.41919325292\r\n", + "22.48 522.0 80000043.69195660949\r\n", + "4.24 66.0 80000045.52997684479\r\n", + "21.88 507.0 80000052.78282105923\r\n", + "39.6 950.0 80000052.919592529535\r\n", + "3.24 41.0 80000054.28180256486\r\n", + "14.32 318.0 80000056.48970986903\r\n", + "7.4399996 146.0 80000057.49698485434\r\n", + "7.9599996 159.0 80000058.55781446397\r\n", + "21.36 494.0 80000059.284333616495\r\n", + "35.159996 839.0 80000060.359298199415\r\n", + "21.64 501.0 80000063.666031733155\r\n", + "36.44 871.0 80000064.78927731514\r\n", + "35.319996 843.0 80000067.341705307364\r\n", + "26.08 612.0 80000068.267971634865\r\n", + "12.12 263.0 80000070.24889309704\r\n", + "11.400001 245.0 80000072.99266758561\r\n", + "35.839996 856.0 80000073.4422865361\r\n", + "6.68 127.0 80000073.81521306932\r\n", + "28.4 670.0 80000074.7710172981\r\n", + "22.08 512.0 80000076.15446573496\r\n", + "29.64 701.0 80000076.61943152547\r\n", + "34.319996 818.0 80000078.37191092968\r\n", + "9.04 186.0 80000079.364117503166\r\n", + "42.399998 1020.0 80000080.12182110548\r\n", + "14.08 312.0 80000080.4114151746\r\n", + "12.64 276.0 80000083.704568862915\r\n", + "26.16 614.0 80000084.38392549753\r\n", + "21.12 488.0 80000084.49645087123\r\n", + "7.7599998 154.0 80000084.73323458433\r\n", + "5.64 101.0 80000085.518022567034\r\n", + "4.2799997 67.0 80000086.06328216195\r\n", + "39.039997 936.0 80000087.00356020033\r\n", + "14.88 332.0 80000087.108956605196\r\n", + "11.24 241.0 80000087.3983823657\r\n", + "42.199997 1015.0 80000088.44739763439\r\n", + "28.16 664.0 80000088.72279639542\r\n", + "2.48 22.0 80000089.15565529466\r\n", + "42.28 1017.0 80000090.20357654989\r\n", + "5.32 93.0 80000090.7642698288\r\n", + "14.28 317.0 80000090.80305439234\r\n", + "40.319996 968.0 80000091.500082850456\r\n", + "18.44 421.0 80000092.158643990755\r\n", + "32.239998 766.0 80000092.89413803816\r\n", + "4.4 70.0 80000094.805209457874\r\n", + "38.879997 932.0 80000095.04941494763\r\n", + "32.199997 765.0 80000096.56686630845\r\n", + "30.4 720.0 80000096.91533789039\r\n", + "35.719997 853.0 80000098.67825654149\r\n", + "29.32 693.0 80000098.92884159088\r\n", + "17.199999 390.0 80000099.199268594384\r\n", + "37.92 908.0 80000100.14995288849\r\n", + "1.96 9.0 80000100.935947969556\r\n", + "13.12 288.0 80000102.76762147248\r\n", + "30.6 725.0 80000103.05724072456\r\n", + "34.239998 816.0 80000104.193173110485\r\n", + "8.88 182.0 80000107.33343601227\r\n", + "29.6 700.0 80000107.40127386153\r\n", + "8.24 166.0 80000107.56737007201\r\n", + "39.76 954.0 80000109.40503971279\r\n", + "41.399998 995.0 80000109.51361806691\r\n", + "32.399998 770.0 80000111.27798360586\r\n", + "20.2 465.0 80000112.93057106435\r\n", + "22.36 519.0 80000113.545409321785\r\n", + "41.559998 999.0 80000113.71510283649\r\n", + "36.64 876.0 80000115.363516911864\r\n", + "5.12 88.0 80000116.62624913454\r\n", + "24.32 568.0 80000117.5390470773\r\n", + "11.4800005 247.0 80000118.313546299934\r\n", + "10.0 210.0 80000118.64352825284\r\n", + "13.36 294.0 80000119.64161340892\r\n", + "4.48 72.0 80000119.70217871666\r\n", + "5.68 102.0 80000119.87085522711\r\n", + "25.76 604.0 80000120.67677563429\r\n", + "1.9200001 8.0 80000121.80093438923\r\n", + "2.92 33.0 80000122.09129279852\r\n", + "5.12 88.0 80000122.545517489314\r\n", + "33.32 793.0 80000122.93073017895\r\n", + "13.76 304.0 80000123.276563555\r\n", + "37.159996 889.0 80000125.506356075406\r\n", + "30.56 724.0 80000125.6568851918\r\n", + "37.079998 887.0 80000127.336458325386\r\n", + "6.4399996 121.0 80000127.45361994207\r\n", + "11.96 259.0 80000128.36573840678\r\n", + "14.08 312.0 80000129.43040788174\r\n", + "14.36 319.0 80000130.30537183583\r\n", + "34.239998 816.0 80000131.993975520134\r\n", + "29.92 708.0 80000132.51598034799\r\n", + "21.8 505.0 80000132.877141192555\r\n", + "10.84 231.0 80000134.958766937256\r\n", + "15.72 353.0 80000136.26415735483\r\n", + "9.32 193.0 80000136.271308645606\r\n", + "38.44 921.0 80000136.491618439555\r\n", + "34.559998 824.0 80000136.59682570398\r\n", + "29.64 701.0 80000136.81391918659\r\n", + "13.6 300.0 80000137.111403808\r\n", + "15.0 335.0 80000137.99286413193\r\n", + "8.2 165.0 80000140.02283409238\r\n", + "31.0 735.0 80000141.585879951715\r\n", + "18.12 413.0 80000141.88128243387\r\n", + "27.64 651.0 80000142.301297202706\r\n", + "29.44 696.0 80000144.258596763015\r\n", + "4.32 68.0 80000146.35952179134\r\n", + "9.92 208.0 80000146.431891173124\r\n", + "26.6 625.0 80000146.93531550467\r\n", + "32.719997 778.0 80000147.86272408068\r\n", + "4.4 70.0 80000148.20213320851\r\n", + "14.04 311.0 80000148.998638793826\r\n", + "10.76 229.0 80000150.13331639767\r\n", + "8.12 163.0 80000150.40001221001\r\n", + "31.96 759.0 80000150.51030369103\r\n", + "41.6 1000.0 80000158.27798460424\r\n", + "2.96 34.0 80000158.565826013684\r\n", + "19.76 454.0 80000160.18738743663\r\n", + "14.440001 321.0 80000162.67192919552\r\n", + "11.72 253.0 80000163.52692268789\r\n", + "37.44 896.0 80000164.03886182606\r\n", + "32.84 781.0 80000164.495729878545\r\n", + "17.24 391.0 80000165.17495532334\r\n", + "3.44 46.0 80000166.38718263805\r\n", + "25.76 604.0 80000168.38902553916\r\n", + "25.44 596.0 80000169.68685694039\r\n", + "23.56 549.0 80000169.713349059224\r\n", + "19.08 437.0 80000170.805011570454\r\n", + "41.039997 986.0 80000172.42077590525\r\n", + "2.16 14.0 80000172.43760578334\r\n", + "2.16 14.0 80000174.10814335942\r\n", + "37.28 892.0 80000174.15144339204\r\n", + "30.76 729.0 80000174.80246704817\r\n", + "28.24 666.0 80000174.83830589056\r\n", + "23.52 548.0 80000176.110384613276\r\n", + "33.399998 795.0 80000176.43801294267\r\n", + "7.08 137.0 80000177.71353569627\r\n", + "39.12 938.0 80000178.329968214035\r\n", + "9.44 196.0 80000180.91684667766\r\n", + "6.56 124.0 80000181.358734831214\r\n", + "24.96 584.0 80000182.17984089255\r\n", + "14.08 312.0 80000182.2385392189\r\n", + "29.92 708.0 80000183.21093174815\r\n", + "8.52 173.0 80000183.68284714222\r\n", + "23.92 558.0 80000184.32184153795\r\n", + "33.96 809.0 80000187.16848820448\r\n", + "13.0 285.0 80000188.89809964597\r\n", + "2.56 24.0 80000189.59268042445\r\n", + "8.52 173.0 80000190.39239893854\r\n", + "29.6 700.0 80000190.987773641944\r\n", + "8.04 161.0 80000191.39765946567\r\n", + "9.84 206.0 80000191.63218219578\r\n", + "37.399998 895.0 80000191.7998701334\r\n", + "37.48 897.0 80000194.591946706176\r\n", + "2.44 21.0 80000195.17524069548\r\n", + "22.72 528.0 80000195.27073279023\r", + "\r\n", + "33.039997 786.0 80000195.60482543707\r\n", + "15.4 345.0 80000197.01553657651\r\n", + "20.56 474.0 80000198.18857589364\r\n", + "12.8 280.0 80000199.30817961693\r\n", + "20.16 464.0 80000200.066078454256\r\n", + "1.6800001 2.0 80000201.68090777099\r\n", + "12.04 261.0 80000202.814891934395\r\n", + "18.32 418.0 80000203.25650832057\r\n", + "40.359997 969.0 80000203.48255087435\r\n", + "34.28 817.0 80000204.7061804533\r\n", + "34.64 826.0 80000207.248482748866\r\n", + "30.4 720.0 80000208.40996426344\r\n", + "28.76 679.0 80000208.54558329284\r\n", + "3.6 50.0 80000212.2733836025\r\n", + "39.399998 945.0 80000213.37501113117\r\n", + "23.64 551.0 80000214.05003093183\r\n", + "10.24 216.0 80000214.76189556718\r\n", + "15.440001 346.0 80000214.94751133025\r\n", + "33.839996 806.0 80000215.30322690308\r\n", + "2.88 32.0 80000215.606552898884\r\n", + "17.56 399.0 80000216.67295819521\r\n", + "17.199999 390.0 80000216.721879810095\r\n", + "22.0 510.0 80000217.02722400427\r\n", + "7.3199997 143.0 80000218.21801964939\r\n", + "6.3199997 118.0 80000223.690936505795\r\n", + "40.519997 973.0 80000224.71057784557\r\n", + "10.6 225.0 80000224.88408643007\r\n", + "31.08 737.0 80000225.81306296587\r\n", + "21.0 485.0 80000228.288003221154\r\n", + "15.64 351.0 80000229.47965101898\r\n", + "34.719997 828.0 80000229.982017084956\r\n", + "25.88 607.0 80000230.13939705491\r\n", + "16.52 373.0 80000230.207446575165\r\n", + "1.8 5.0 80000233.628895014524\r\n", + "33.0 785.0 80000233.858214601874\r\n", + "36.879997 882.0 80000235.58721217513\r\n", + "1.76 4.0 80000236.03008031845\r\n", + "42.239998 1016.0 80000239.206377997994\r\n", + "31.119999 738.0 80000240.66440632939\r\n", + "34.159996 814.0 80000241.05537928641\r\n", + "13.56 299.0 80000242.91226673126\r\n", + "18.92 433.0 80000243.34091578424\r\n", + "22.44 521.0 80000246.23444570601\r\n", + "40.8 980.0 80000246.39591316879\r\n", + "21.28 492.0 80000248.63243843615\r\n", + "24.28 567.0 80000249.259784281254\r\n", + "9.56 199.0 80000249.85402186215\r\n", + "5.04 86.0 80000250.17666938901\r\n", + "3.0 35.0 80000251.49163559079\r\n", + "25.44 596.0 80000251.50295473635\r\n", + "24.4 570.0 80000252.06601053476\r\n", + "30.56 724.0 80000252.272911697626\r\n", + "38.12 913.0 80000252.985514968634\r\n", + "38.8 930.0 80000253.836741268635\r\n", + "30.76 729.0 80000255.06581965089\r\n", + "41.719997 1003.0 80000255.60727831721\r\n", + "41.64 1001.0 80000256.902037888765\r\n", + "19.8 455.0 80000258.60432396829\r\n", + "42.359997 1019.0 80000260.50080451369\r\n", + "25.6 600.0 80000260.75552198291\r\n", + "11.56 249.0 80000260.88460493088\r\n", + "33.839996 806.0 80000261.36898006499\r\n", + "37.48 897.0 80000262.92271217704\r\n", + "18.2 415.0 80000262.99845524132\r\n", + "23.36 544.0 80000263.33590015769\r\n", + "40.96 984.0 80000264.96524555981\r\n", + "9.28 192.0 80000265.84508921206\r\n", + "10.84 231.0 80000266.91673760116\r\n", + "4.44 71.0 80000268.235334053636\r\n", + "22.76 529.0 80000271.489329367876\r\n", + "23.96 559.0 80000271.64101035893\r\n", + "35.879997 857.0 80000271.98798702657\r\n", + "11.16 239.0 80000273.71523039043\r\n", + "36.199997 865.0 80000275.30799421668\r\n", + "32.76 779.0 80000275.81958813965\r\n", + "27.32 643.0 80000276.46777294576\r\n", + "27.0 635.0 80000277.24329108\r\n", + "11.360001 244.0 80000277.80254943669\r\n", + "3.08 37.0 80000278.42643971741\r\n", + "18.68 427.0 80000278.52543953061\r\n", + "5.8399997 106.0 80000278.78952820599\r\n", + "25.24 591.0 80000279.13904826343\r\n", + "11.400001 245.0 80000279.32166413963\r\n", + "6.72 128.0 80000279.47431126237\r\n", + "34.6 825.0 80000281.05502511561\r\n", + "14.2 315.0 80000281.66787202656\r\n", + "18.08 412.0 80000281.735276550055\r\n", + "14.16 314.0 80000283.60641156137\r\n", + "12.4800005 272.0 80000284.68940325081\r\n", + "22.72 528.0 80000284.771769434214\r\n", + "7.2 140.0 80000285.59601339698\r\n", + "37.519997 898.0 80000287.934347867966\r\n", + "37.559998 899.0 80000288.457227408886\r\n", + "25.36 594.0 80000288.84559759498\r\n", + "37.039997 886.0 80000289.283936053514\r\n", + "32.48 772.0 80000289.74665103853\r\n", + "21.36 494.0 80000290.772457659245\r\n", + "1.64 1.0 80000290.879882499576\r\n", + "19.32 443.0 80000291.225027650595\r\n", + "21.84 506.0 80000291.23198154569\r\n", + "2.8 30.0 80000293.356203347445\r\n", + "31.92 758.0 80000296.29710520804\r\n", + "32.52 773.0 80000297.10793355107\r\n", + "37.159996 889.0 80000298.52665117383\r\n", + "12.64 276.0 80000298.93143287301\r\n", + "7.4399996 146.0 80000299.927507817745\r\n", + "17.199999 390.0 80000300.818491622806\r\n", + "2.52 23.0 80000302.07161732018\r\n", + "2.56 24.0 80000302.72473844886\r\n", + "36.319996 868.0 80000305.32900521159\r\n", + "4.52 73.0 80000305.93047915399\r\n", + "3.24 41.0 80000306.89711469412\r\n", + "16.64 376.0 80000309.568026304245\r\n", + "4.4 70.0 80000310.67230030894\r\n", + "18.36 419.0 80000311.17736788094\r\n", + "8.24 166.0 80000311.37703952193\r\n", + "20.12 463.0 80000313.92710117996\r\n", + "36.76 879.0 80000316.52630840242\r\n", + "3.6399999 51.0 80000316.576121881604\r\n", + "2.56 24.0 80000316.61531569064\r\n", + "4.68 77.0 80000316.991498693824\r\n", + "30.92 733.0 80000318.496204048395\r\n", + "4.44 71.0 80000318.759574487805\r\n", + "25.72 603.0 80000318.99812464416\r\n", + "24.16 564.0 80000323.19316992164\r\n", + "39.64 951.0 80000323.76615965366\r\n", + "2.6799998 27.0 80000324.23196092248\r\n", + "30.8 730.0 80000325.30946139991\r\n", + "13.68 302.0 80000325.49627235532\r\n", + "40.64 976.0 80000325.76096495986\r\n", + "9.04 186.0 80000326.018922537565\r\n", + "23.56 549.0 80000328.51117782295\r\n", + "32.12 763.0 80000330.33366891742\r\n", + "21.16 489.0 80000331.37347571552\r\n", + "38.8 930.0 80000332.161390304565\r\n", + "6.2 115.0 80000332.54631538689\r\n", + "37.319996 893.0 80000333.515790537\r\n", + "2.6799998 27.0 80000335.46171656251\r\n", + "27.8 655.0 80000336.63410934806\r\n", + "38.92 933.0 80000339.03143580258\r\n", + "5.7599998 104.0 80000339.16872346401\r\n", + "18.32 418.0 80000340.030776798725\r\n", + "5.8399997 106.0 80000340.41478018463\r\n", + "17.48 397.0 80000340.533760264516\r\n", + "33.32 793.0 80000341.72407652438\r\n", + "11.360001 244.0 80000344.206543818116\r\n", + "24.88 582.0 80000344.78012427688\r\n", + "32.96 784.0 80000345.00482337177\r\n", + "2.52 23.0 80000345.26880034804\r\n", + "13.2 290.0 80000345.654379203916\r\n", + "34.359997 819.0 80000345.975308820605\r\n", + "42.359997 1019.0 80000346.41354955733\r\n", + "7.8799996 157.0 80000346.86677853763\r\n", + "39.6 950.0 80000347.32460169494\r\n", + "9.32 193.0 80000347.35750260949\r\n", + "16.0 360.0 80000349.31582227349\r\n", + "37.879997 907.0 80000351.124539494514\r\n", + "19.44 446.0 80000352.37143753469\r\n", + "36.76 879.0 80000353.196565657854\r\n", + "2.24 16.0 80000354.17744512856\r\n", + "30.88 732.0 80000355.20202793181\r\n", + "39.8 955.0 80000355.60426925123\r\n", + "40.12 963.0 80000355.82318587601\r\n", + "16.4 370.0 80000356.5162641108\r\n", + "10.360001 219.0 80000357.642409190536\r\n", + "4.12 63.0 80000359.16175606847\r\n", + "7.68 152.0 80000359.8546615839\r\n", + "4.12 63.0 80000362.5537327677\r\n", + "20.8 480.0 80000362.92154058814\r\n", + "17.199999 390.0 80000363.773983463645\r\n", + "39.999996 960.0 80000365.48620200157\r\n", + "36.319996 868.0 80000368.489620789886\r\n", + "19.6 450.0 80000369.631684705615\r\n", + "41.679996 1002.0 80000370.6534255296\r\n", + "39.159996 939.0 80000371.82940942049\r\n", + "34.399998 820.0 80000373.43823419511\r\n", + "29.28 692.0 80000373.8585408777\r\n", + "39.039997 936.0 80000374.209455892444\r\n", + "34.44 821.0 80000374.64683301747\r\n", + "2.96 34.0 80000375.620239943266\r\n", + "32.36 769.0 80000378.87894229591\r\n", + "35.999996 860.0 80000378.97707155347\r\n", + "14.28 317.0 80000379.42757484317\r\n", + "37.839996 906.0 80000379.917373120785\r\n", + "8.92 183.0 80000381.10625052452\r\n", + "37.239998 891.0 80000382.077453806996\r\n", + "31.039999 736.0 80000382.17598539591\r\n", + "34.079998 812.0 80000382.22633959353\r\n", + "25.84 606.0 80000382.22792515159\r\n", + "27.6 650.0 80000382.55412106216\r\n", + "2.8 30.0 80000383.94620233774\r\n", + "37.12 888.0 80000384.37110866606\r\n", + "28.16 664.0 80000387.30780394375\r\n", + "20.44 471.0 80000387.87746040523\r\n", + "25.119999 588.0 80000388.37795352936\r\n", + "2.6799998 27.0 80000389.268874913454\r\n", + "37.199997 890.0 80000392.62231977284\r\n", + "28.16 664.0 80000393.17818275094\r\n", + "11.52 248.0 80000393.43643279374\r\n", + "2.6 25.0 80000395.12563699484\r\n", + "15.6 350.0 80000395.77989049256\r\n", + "6.48 122.0 80000396.31284117699\r\n", + "32.039997 761.0 80000399.1847140342\r\n", + "37.92 908.0 80000399.54459910095\r\n", + "16.84 381.0 80000400.72491231561\r\n", + "20.64 476.0 80000403.17735889554\r\n", + "8.88 182.0 80000403.54358610511\r\n", + "20.72 478.0 80000404.22769507766\r\n", + "5.4 95.0 80000404.47602318227\r\n", + "42.479996 1022.0 80000404.67004515231\r\n", + "16.64 376.0 80000408.95574080944\r\n", + "7.16 139.0 80000410.03962627053\r\n", + "16.72 378.0 80000410.75551979244\r\n", + "8.52 173.0 80000412.09823872149\r\n", + "31.8 755.0 80000412.219870209694\r\n", + "1.9200001 8.0 80000412.81054663658\r\n", + "21.96 509.0 80000414.8682410419\r\n", + "24.44 571.0 80000415.37962676585\r\n", + "27.92 658.0 80000416.70795631409\r\n", + "24.56 574.0 80000417.1444568038\r\n", + "37.039997 886.0 80000418.38563929498\r\n", + "1.96 9.0 80000420.47344271839\r\n", + "8.88 182.0 80000420.53409618139\r\n", + "26.48 622.0 80000420.80564555526\r\n", + "41.719997 1003.0 80000420.863403081894\r\n", + "5.96 109.0 80000420.942480519414\r\n", + "35.8 855.0 80000422.02582614124\r\n", + "8.44 171.0 80000422.79813404381\r\n", + "12.76 279.0 80000424.42955330014\r\n", + "7.8399997 156.0 80000424.81564453244\r\n", + "7.4799995 147.0 80000425.28199738264\r\n", + "40.319996 968.0 80000425.867245197296\r\n", + "33.719997 803.0 80000426.62731541693\r\n", + "40.12 963.0 80000427.133511930704\r\n", + "14.52 323.0 80000427.36044855416\r\n", + "7.0 135.0 80000428.54412809014\r\n", + "15.56 349.0 80000428.88726851344\r\n", + "30.6 725.0 80000429.38063727319\r\n", + "19.6 450.0 80000432.95051422715\r\n", + "3.08 37.0 80000434.64868846536\r\n", + "2.4 20.0 80000435.51728320122\r\n", + "39.76 954.0 80000436.24377171695\r\n", + "23.64 551.0 80000437.577606111765\r\n", + "9.48 197.0 80000438.05216662586\r\n", + "34.039997 811.0 80000438.70308248699\r\n", + "2.3600001 19.0 80000442.052734196186\r\n", + "27.36 644.0 80000442.764658123255\r\n", + "14.4800005 322.0 80000443.238895997405\r\n", + "12.76 279.0 80000445.098355308175\r\n", + "14.6 325.0 80000446.023702159524\r\n", + "32.879997 782.0 80000446.16962249577\r\n", + "10.92 233.0 80000448.83636845648\r\n", + "7.7999997 155.0 80000450.061449572444\r\n", + "9.12 188.0 80000450.52947856486\r\n", + "32.079998 762.0 80000450.55909974873\r\n", + "28.32 668.0 80000451.879113674164\r\n", + "22.28 517.0 80000452.064453706145\r\n", + "10.08 212.0 80000452.13652163744\r\n", + "26.32 618.0 80000452.9472001791\r\n", + "35.399998 845.0 80000453.03071194887\r\n", + "9.48 197.0 80000454.07206726074\r\n", + "3.32 43.0 80000456.48143340647\r\n", + "34.399998 820.0 80000458.18602730334\r\n", + "11.56 249.0 80000459.0324331224\r\n", + "4.2799997 67.0 80000459.4572635144\r\n", + "32.36 769.0 80000459.920432657\r\n", + "41.239998 991.0 80000464.06256014109\r\n", + "10.76 229.0 80000464.33307418227\r\n", + "34.079998 812.0 80000466.34134361148\r\n", + "26.84 631.0 80000467.24169912934\r\n", + "16.119999 363.0 80000467.884447038174\r\n", + "40.319996 968.0 80000468.7550342083\r\n", + "10.72 228.0 80000469.84887549281\r\n", + "22.52 523.0 80000469.8745007813\r\n", + "39.92 958.0 80000472.20344258845\r\n", + "27.4 645.0 80000472.30986727774\r\n", + "31.84 756.0 80000473.21885484457\r\n", + "15.440001 346.0 80000473.694500654936\r\n", + "17.24 391.0 80000476.0327218622\r\n", + "32.84 781.0 80000476.96122226119\r\n", + "39.28 942.0 80000480.92292739451\r\n", + "35.319996 843.0 80000481.06054444611\r\n", + "4.4 70.0 80000481.37218731642\r\n", + "24.36 569.0 80000481.933602169156\r\n", + "26.16 614.0 80000481.98567260802\r\n", + "40.879997 982.0 80000482.9210729748\r\n", + "40.479996 972.0 80000483.857440814376\r\n", + "4.64 76.0 80000484.32165810466\r\n", + "39.8 955.0 80000484.80663745105\r\n", + "29.16 689.0 80000486.771085351706\r\n", + "11.84 256.0 80000487.217004179955\r\n", + "14.16 314.0 80000487.990593642\r\n", + "28.92 683.0 80000491.276099190116\r\n", + "37.999996 910.0 80000491.747016862035\r\n", + "6.4399996 121.0 80000493.35879443586\r\n", + "25.2 590.0 80000494.31928488612\r\n", + "12.16 264.0 80000495.14925374091\r\n", + "14.6 325.0 80000495.4605127275\r\n", + "20.64 476.0 80000496.37845928967\r\n", + "5.16 89.0 80000496.85824956\r\n", + "19.88 457.0 80000497.20662690699\r\n", + "35.92 858.0 80000502.43506611884\r\n", + "25.8 605.0 80000502.71769653261\r\n", + "17.119999 388.0 80000502.80815401673\r\n", + "36.159996 864.0 80000504.42526854575\r\n", + "21.4 495.0 80000505.48890078068\r\n", + "12.4800005 272.0 80000506.024649724364\r\n", + "21.92 508.0 80000506.17142087221\r\n", + "4.56 74.0 80000508.07841642201\r\n", + "4.72 78.0 80000508.71263246238\r\n", + "31.56 749.0 80000509.140583753586\r\n", + "28.119999 663.0 80000509.95569059253\r\n", + "27.28 642.0 80000510.86728909612\r\n", + "12.04 261.0 80000512.479585409164\r\n", + "30.199999 715.0 80000516.56570722163\r\n", + "33.36 794.0 80000516.99862577021\r\n", + "5.16 89.0 80000517.344923987985\r\n", + "11.12 238.0 80000519.38823206723\r\n", + "11.32 243.0 80000519.57560668886\r\n", + "5.0 85.0 80000519.58020955324\r\n", + "33.239998 791.0 80000520.51779472828\r\n", + "6.3999996 120.0 80000520.546872377396\r\n", + "9.72 203.0 80000521.153368234634\r\n", + "30.64 726.0 80000521.42145887017\r\n", + "21.96 509.0 80000521.63308496773\r\n", + "12.6 275.0 80000523.057834371924\r\n", + "8.36 169.0 80000525.05073848367\r\n", + "10.56 224.0 80000527.819232299924\r\n", + "29.24 691.0 80000531.12523216009\r\n", + "24.6 575.0 80000532.10568276048\r\n", + "40.8 980.0 80000533.20108996332\r\n", + "17.0 385.0 80000534.29738210142\r\n", + "23.48 547.0 80000534.340845018625\r\n", + "18.28 417.0 80000534.83431440592\r\n", + "2.08 12.0 80000534.87653042376\r\n", + "41.92 1008.0 80000534.895185917616\r\n", + "8.52 173.0 80000535.94042633474\r\n", + "19.84 456.0 80000537.48509004712\r\n", + "10.400001 220.0 80000538.26394830644\r\n", + "23.92 558.0 80000540.002261936665\r\n", + "37.719997 903.0 80000540.1134250015\r\n", + "13.84 306.0 80000546.718622386456\r\n", + "4.32 68.0 80000546.84028501809\r\n", + "18.56 424.0 80000547.30754908919\r\n", + "3.08 37.0 80000549.5327937603\r\n", + "27.88 657.0 80000550.56298401952\r\n", + "29.0 685.0 80000550.60222132504\r\n", + "35.159996 839.0 80000552.734096348286\r\n", + "38.519997 923.0 80000553.922179594636\r\n", + "5.52 98.0 80000555.44246518612\r\n", + "18.56 424.0 80000558.82404534519\r\n", + "39.319996 943.0 80000558.947059229016\r\n", + "32.399998 770.0 80000559.282619684935\r\n", + "33.0 785.0 80000560.58969677985\r\n", + "29.72 703.0 80000560.70387540758\r\n", + "10.24 216.0 80000561.323437169194\r\n", + "17.88 407.0 80000562.679025664926\r\n", + "27.44 646.0 80000563.71705073118\r\n", + "14.4800005 322.0 80000563.95132599771\r\n", + "25.24 591.0 80000564.861919119954\r\n", + "23.24 541.0 80000565.76752875745\r\n", + "37.92 908.0 80000565.78528097272\r\n", + "24.92 583.0 80000566.29958720505\r\n", + "31.88 757.0 80000567.06900238991\r\n", + "42.359997 1019.0 80000569.15245625377\r\n", + "11.68 252.0 80000570.583770141006\r\n", + "11.56 249.0 80000571.260604158044\r\n", + "22.48 522.0 80000572.77767854929\r\n", + "24.64 576.0 80000574.140301436186\r\n", + "28.119999 663.0 80000574.51526069641\r\n", + "3.28 42.0 80000577.082364201546\r\n", + "35.559998 849.0 80000578.60487310588\r\n", + "5.72 103.0 80000579.25371134281\r\n", + "3.4 45.0 80000579.63681046665\r\n", + "6.3199997 118.0 80000581.21821717918\r\n", + "6.3199997 118.0 80000582.04014620185\r\n", + "22.12 513.0 80000583.46193483472\r\n", + "9.5199995 198.0 80000586.03360375762\r\n", + "3.48 47.0 80000589.798507750034\r\n", + "31.72 753.0 80000591.46542161703\r\n", + "2.88 32.0 80000591.97941620648\r\n", + "10.8 230.0 80000593.13316428661\r\n", + "15.84 356.0 80000594.042805209756\r\n", + "15.56 349.0 80000594.91821274161\r\n", + "37.159996 889.0 80000595.397889867425\r\n", + "28.16 664.0 80000595.763835296035\r\n", + "6.8399997 131.0 80000596.830532982945\r\n", + "37.559998 899.0 80000598.901824980974\r\n", + "31.16 739.0 80000599.64194495976\r\n", + "28.88 682.0 80000600.793473765254\r\n", + "31.56 749.0 80000602.10744164884\r\n", + "7.8399997 156.0 80000602.55246156454\r\n", + "17.24 391.0 80000603.4955958724\r\n", + "7.12 138.0 80000606.650620505214\r\n", + "2.16 14.0 80000608.090855017304\r\n", + "37.879997 907.0 80000609.993093535304\r\n", + "4.7999997 80.0 80000610.186307400465\r\n", + "15.56 349.0 80000611.37006236613\r\n", + "30.48 722.0 80000611.83906060457\r\n", + "19.96 459.0 80000611.8572294265\r\n", + "34.64 826.0 80000611.95349282026\r\n", + "41.839996 1006.0 80000613.84575891495\r\n", + "23.2 540.0 80000617.17802332342\r\n", + "17.56 399.0 80000617.24794691801\r\n", + "34.559998 824.0 80000617.35718101263\r\n", + "28.16 664.0 80000617.732587218285\r\n", + "20.64 476.0 80000618.9578525275\r\n", + "28.84 681.0 80000619.30346444249\r\n", + "39.239998 941.0 80000621.2265856415\r\n", + "18.16 414.0 80000621.38765838742\r\n", + "7.9999995 160.0 80000621.735619053245\r\n", + "33.079998 787.0 80000623.792137786746\r\n", + "37.64 901.0 80000623.85770910978\r\n", + "2.6 25.0 80000626.21549396217\r\n", + "31.039999 736.0 80000627.16449086368\r\n", + "33.12 788.0 80000628.88948699832\r\n", + "39.319996 943.0 80000630.68285809457\r\n", + "11.32 243.0 80000630.789920687675\r\n", + "30.48 722.0 80000632.821838498116\r\n", + "27.199999 640.0 80000632.881889894605\r\n", + "24.84 581.0 80000634.78217072785\r\n", + "20.28 467.0 80000635.002951964736\r\n", + "33.679996 802.0 80000635.41563603282\r\n", + "36.199997 865.0 80000635.88681785762\r\n", + "8.56 174.0 80000637.371477141976\r\n", + "35.519997 848.0 80000642.38429802656\r\n", + "30.4 720.0 80000643.78843893111\r\n", + "25.44 596.0 80000644.600917607546\r\n", + "11.68 252.0 80000644.882760211825\r\n", + "10.28 217.0 80000645.594902947545\r\n", + "9.2 190.0 80000645.93502403796\r\n", + "16.439999 371.0 80000646.383003011346\r\n", + "2.6399999 26.0 80000646.53795617819\r\n", + "34.64 826.0 80000647.63100332022\r\n", + "22.84 531.0 80000648.47574129701\r\n", + "5.12 88.0 80000649.00771085918\r\n", + "42.079998 1012.0 80000649.114930674434\r\n", + "24.92 583.0 80000650.1061706841\r\n", + "22.88 532.0 80000655.68533721566\r\n", + "24.68 577.0 80000657.16480255127\r\n", + "26.68 627.0 80000657.258827999234\r\n", + "19.8 455.0 80000657.33367057145\r\n", + "35.64 851.0 80000658.74945259094\r\n", + "2.08 12.0 80000660.18671748042\r\n", + "17.439999 396.0 80000660.63745248318\r\n", + "33.999996 810.0 80000661.82945792377\r\n", + "6.48 122.0 80000661.90170559287\r\n", + "17.16 389.0 80000662.26141363382\r\n", + "33.32 793.0 80000662.64840815961\r\n", + "41.64 1001.0 80000663.12676268816\r\n", + "14.56 324.0 80000663.227578774095\r\n", + "24.44 571.0 80000664.475006356835\r\n", + "3.3600001 44.0 80000664.552283763885\r\n", + "17.24 391.0 80000665.17621576786\r\n", + "27.4 645.0 80000666.08528217673\r\n", + "39.079998 937.0 80000670.71755500138\r\n", + "7.72 153.0 80000671.198174357414\r\n", + "6.8799996 132.0 80000673.345912232995\r\n", + "34.199997 815.0 80000674.87888632715\r\n", + "35.28 842.0 80000676.18293096125\r\n", + "11.64 251.0 80000676.64919489622\r\n", + "40.359997 969.0 80000676.80372226238\r\n", + "31.44 746.0 80000678.275382354856\r\n", + "11.8 255.0 80000680.48982979357\r\n", + "19.28 442.0 80000682.686058193445\r", + "\r\n", + "26.24 616.0 80000684.38221885264\r\n", + "2.8 30.0 80000685.43452076614\r\n", + "22.0 510.0 80000686.74407067895\r\n", + "31.199999 740.0 80000686.81872756779\r\n", + "30.84 731.0 80000688.30932036042\r\n", + "42.319996 1018.0 80000688.81981065869\r\n", + "20.16 464.0 80000691.197261437774\r\n", + "16.4 370.0 80000692.15807239711\r\n", + "27.92 658.0 80000693.03427194059\r\n", + "10.360001 219.0 80000694.3066085726\r\n", + "36.8 880.0 80000694.962600558996\r\n", + "40.44 971.0 80000697.02309130132\r\n", + "38.48 922.0 80000698.11148573458\r\n", + "21.56 499.0 80000698.516439035535\r\n", + "40.28 967.0 80000699.06620439887\r\n", + "42.44 1021.0 80000701.39014860988\r\n", + "27.76 654.0 80000701.87561401725\r\n", + "11.8 255.0 80000702.62369687855\r\n", + "27.88 657.0 80000702.988359063864\r\n", + "39.159996 939.0 80000705.296378955245\r\n", + "23.96 559.0 80000705.433091163635\r\n", + "11.440001 246.0 80000705.599841311574\r\n", + "2.8400002 31.0 80000709.3684746474\r\n", + "12.2 265.0 80000709.77955941856\r\n", + "3.7199998 53.0 80000709.794584959745\r\n", + "11.2 240.0 80000709.846471622586\r\n", + "27.0 635.0 80000711.9785169363\r\n", + "19.4 445.0 80000712.899810910225\r\n", + "1.9200001 8.0 80000713.0795609951\r\n", + "21.96 509.0 80000713.76596863568\r\n", + "36.48 872.0 80000716.780457377434\r\n", + "22.039999 511.0 80000717.29924210906\r\n", + "17.32 393.0 80000720.5562723279\r\n", + "12.68 277.0 80000720.58715964854\r\n", + "41.239998 991.0 80000722.03180555999\r\n", + "29.32 693.0 80000722.03699606657\r\n", + "7.9599996 159.0 80000722.478862181306\r\n", + "29.96 709.0 80000723.87889204919\r\n", + "5.52 98.0 80000724.7961999625\r\n", + "37.44 896.0 80000726.34677195549\r\n", + "40.28 967.0 80000727.47035036981\r\n", + "26.84 631.0 80000728.90236452222\r\n", + "41.92 1008.0 80000729.3514444083\r\n", + "26.16 614.0 80000730.33039654791\r\n", + "4.2 65.0 80000730.81428743899\r\n", + "4.4 70.0 80000731.42920610309\r\n", + "16.359999 369.0 80000732.61377693713\r\n", + "14.04 311.0 80000733.754086226225\r\n", + "17.08 387.0 80000733.79874679446\r\n", + "3.52 48.0 80000733.991308033466\r\n", + "38.28 917.0 80000734.417156770825\r\n", + "1.96 9.0 80000738.45621095598\r\n", + "11.08 237.0 80000739.78259626031\r\n", + "39.319996 943.0 80000739.904296547174\r\n", + "29.36 694.0 80000742.26487219334\r\n", + "20.8 480.0 80000742.58448088169\r\n", + "18.0 410.0 80000743.84713715315\r\n", + "7.0 135.0 80000745.445721656084\r\n", + "33.32 793.0 80000745.704266637564\r\n", + "4.96 84.0 80000746.49740232527\r\n", + "2.88 32.0 80000748.3739194572\r\n", + "40.76 979.0 80000749.18420062959\r\n", + "39.559998 949.0 80000749.238480210304\r\n", + "40.8 980.0 80000749.36030867696\r\n", + "15.36 344.0 80000751.06558699906\r\n", + "35.64 851.0 80000751.55830208957\r\n", + "39.479996 947.0 80000752.70824530721\r\n", + "9.12 188.0 80000752.72337460518\r\n", + "20.64 476.0 80000752.881983697414\r\n", + "29.52 698.0 80000753.15865902603\r\n", + "35.28 842.0 80000753.76198838651\r\n", + "27.92 658.0 80000754.23456764221\r\n", + "18.08 412.0 80000754.3275937736\r\n", + "35.76 854.0 80000755.37613813579\r\n", + "26.56 624.0 80000756.66476659477\r\n", + "6.7599998 129.0 80000758.372802481055\r\n", + "23.48 547.0 80000759.07206888497\r\n", + "29.16 689.0 80000759.892510056496\r\n", + "36.48 872.0 80000761.603752076626\r\n", + "17.16 389.0 80000762.42036630213\r\n", + "11.0 235.0 80000765.06811144948\r\n", + "31.76 754.0 80000765.382397055626\r\n", + "35.44 846.0 80000765.4667224288\r\n", + "41.28 992.0 80000765.93857854605\r\n", + "37.039997 886.0 80000767.26963350177\r\n", + "25.72 603.0 80000767.7786257714\r\n", + "20.28 467.0 80000770.32975102961\r\n", + "7.3999996 145.0 80000771.69804634154\r\n", + "3.32 43.0 80000773.945546999574\r\n", + "37.399998 895.0 80000774.221253693104\r\n", + "10.92 233.0 80000775.89942243695\r\n", + "24.6 575.0 80000777.312041819096\r\n", + "12.4800005 272.0 80000777.77507701516\r\n", + "31.72 753.0 80000777.79259891808\r\n", + "12.360001 269.0 80000779.33480271697\r\n", + "22.64 526.0 80000779.554390221834\r\n", + "36.999996 885.0 80000780.81437155604\r\n", + "29.28 692.0 80000780.933462917805\r\n", + "35.159996 839.0 80000781.15924490988\r\n", + "24.64 576.0 80000781.26206161082\r\n", + "25.119999 588.0 80000781.72611118853\r\n", + "4.7599998 79.0 80000782.172751545906\r\n", + "20.28 467.0 80000783.125701248646\r\n", + "38.64 926.0 80000785.342386975884\r\n", + "4.92 83.0 80000785.36341136694\r\n", + "34.6 825.0 80000785.92007930577\r\n", + "20.56 474.0 80000786.1086602211\r\n", + "17.279999 392.0 80000786.253573834896\r\n", + "33.6 800.0 80000787.553292140365\r\n", + "32.32 768.0 80000787.658161982894\r\n", + "4.68 77.0 80000790.072870031\r\n", + "24.64 576.0 80000792.274298503995\r\n", + "9.44 196.0 80000792.443054273725\r\n", + "17.52 398.0 80000792.46565423906\r\n", + "14.4800005 322.0 80000792.808876529336\r\n", + "33.879997 807.0 80000795.87703709304\r\n", + "32.719997 778.0 80000795.91278010607\r\n", + "5.44 96.0 80000797.14426906407\r\n", + "11.04 236.0 80000797.26987493038\r\n", + "34.719997 828.0 80000798.51847578585\r\n", + "2.2 15.0 80000799.48481544852\r\n", + "31.72 753.0 80000799.881970733404\r\n", + "31.039999 736.0 80000803.51909430325\r\n", + "18.52 423.0 80000803.731096595526\r\n", + "32.16 764.0 80000803.883781552315\r\n", + "40.92 983.0 80000805.29773187637\r\n", + "18.0 410.0 80000805.306009307504\r\n", + "17.32 393.0 80000807.21232941747\r\n", + "11.88 257.0 80000808.28512185812\r\n", + "21.36 494.0 80000808.454649567604\r\n", + "2.48 22.0 80000808.523783952\r\n", + "41.76 1004.0 80000809.73774009943\r\n", + "39.92 958.0 80000810.001270249486\r\n", + "13.12 288.0 80000810.86777666211\r\n", + "41.319996 993.0 80000811.438306853175\r\n", + "6.16 114.0 80000812.21489995718\r\n", + "28.199999 665.0 80000815.07969661057\r\n", + "29.56 699.0 80000815.974775359035\r\n", + "19.44 446.0 80000816.16485761106\r\n", + "3.32 43.0 80000816.704811513424\r\n", + "33.679996 802.0 80000816.80518731475\r\n", + "6.68 127.0 80000816.81600318849\r\n", + "3.1599998 39.0 80000819.00975045562\r\n", + "19.32 443.0 80000819.48453132808\r\n", + "34.079998 812.0 80000821.329228281975\r\n", + "8.8 180.0 80000821.52698163688\r\n", + "36.319996 868.0 80000822.00912617147\r\n", + "34.199997 815.0 80000824.46000294387\r\n", + "10.52 223.0 80000824.66023361683\r\n", + "11.28 242.0 80000825.05113039911\r\n", + "25.0 585.0 80000827.12451052666\r\n", + "3.96 59.0 80000827.4073446542\r\n", + "24.68 577.0 80000828.5048404783\r\n", + "38.159996 914.0 80000828.622610628605\r\n", + "31.88 757.0 80000828.63124883175\r\n", + "24.0 560.0 80000829.2215629518\r\n", + "20.6 475.0 80000829.66059269011\r\n", + "5.32 93.0 80000830.33870181441\r\n", + "13.76 304.0 80000831.20006233454\r\n", + "11.88 257.0 80000831.21613633633\r\n", + "15.16 339.0 80000832.059845909476\r\n", + "21.84 506.0 80000832.423598602414\r\n", + "13.6 300.0 80000833.69929590821\r\n", + "34.999996 835.0 80000834.46965831518\r\n", + "41.159996 989.0 80000836.12533031404\r\n", + "8.12 163.0 80000836.71061439812\r\n", + "28.4 670.0 80000836.78514607251\r\n", + "19.56 449.0 80000837.03853216767\r\n", + "12.88 282.0 80000839.699784219265\r\n", + "5.2799997 92.0 80000841.037233412266\r\n", + "31.76 754.0 80000843.41804847121\r\n", + "35.48 847.0 80000844.98050430417\r\n", + "31.199999 740.0 80000845.57550364733\r\n", + "28.76 679.0 80000850.37028862536\r\n", + "24.039999 561.0 80000850.423752725124\r\n", + "41.839996 1006.0 80000851.28334981203\r\n", + "36.76 879.0 80000851.615449771285\r\n", + "17.4 395.0 80000851.654990166426\r\n", + "38.999996 935.0 80000851.67317868769\r\n", + "12.32 268.0 80000852.59776712954\r\n", + "11.2 240.0 80000854.87065626681\r\n", + "7.4399996 146.0 80000855.74864292145\r\n", + "14.76 329.0 80000855.829678565264\r\n", + "7.2799997 142.0 80000856.83493223786\r\n", + "21.36 494.0 80000858.589912459254\r\n", + "26.28 617.0 80000859.1553748399\r\n", + "37.44 896.0 80000859.18091611564\r\n", + "5.56 99.0 80000859.44560496509\r\n", + "21.44 496.0 80000859.509354412556\r\n", + "25.28 592.0 80000860.59416265786\r\n", + "24.96 584.0 80000861.303189352155\r\n", + "19.4 445.0 80000861.96652762592\r\n", + "10.92 233.0 80000863.23499922454\r\n", + "20.24 466.0 80000864.197188302875\r\n", + "7.04 136.0 80000865.590956673026\r\n", + "42.319996 1018.0 80000865.72700405121\r\n", + "33.6 800.0 80000866.084478631616\r\n", + "31.8 755.0 80000866.50517678261\r\n", + "32.8 780.0 80000866.850857138634\r\n", + "41.239998 991.0 80000867.7263391763\r\n", + "22.0 510.0 80000868.06848114729\r\n", + "14.4800005 322.0 80000869.2763479501\r\n", + "34.44 821.0 80000870.65760450065\r\n", + "19.72 453.0 80000871.05340576172\r\n", + "23.28 542.0 80000873.14886234701\r\n", + "38.239998 916.0 80000874.297571882606\r\n", + "36.039997 861.0 80000874.73376466334\r\n", + "22.28 517.0 80000879.41517931223\r\n", + "33.999996 810.0 80000881.185400635004\r\n", + "15.6 350.0 80000882.22257082164\r\n", + "21.56 499.0 80000884.97935457528\r\n", + "27.84 656.0 80000885.29664757848\r\n", + "11.72 253.0 80000886.4507638216\r\n", + "37.8 905.0 80000888.94126729667\r\n", + "23.28 542.0 80000889.59991361201\r\n", + "33.079998 787.0 80000890.74508482218\r\n", + "32.719997 778.0 80000893.32567283511\r\n", + "13.32 293.0 80000893.43082770705\r\n", + "35.48 847.0 80000893.56059738994\r\n", + "4.68 77.0 80000894.35489681363\r\n", + "39.64 951.0 80000897.77023650706\r\n", + "23.039999 536.0 80000899.03790041804\r\n", + "14.4 320.0 80000899.37754881382\r\n", + "18.4 420.0 80000900.8128515929\r\n", + "10.84 231.0 80000901.414481043816\r\n", + "20.32 468.0 80000901.48123975098\r\n", + "42.359997 1019.0 80000901.93236474693\r\n", + "25.2 590.0 80000901.972453475\r\n", + "23.64 551.0 80000902.81782488525\r\n", + "38.399998 920.0 80000903.59163464606\r\n", + "30.199999 715.0 80000903.92151616514\r\n", + "13.4800005 297.0 80000904.27971172333\r\n", + "11.76 254.0 80000904.998699590564\r\n", + "16.76 379.0 80000905.63441582024\r\n", + "13.2 290.0 80000905.648124307394\r\n", + "2.04 11.0 80000906.234885290265\r\n", + "12.64 276.0 80000907.07798694074\r\n", + "9.16 189.0 80000908.87027671933\r\n", + "25.52 598.0 80000909.368400886655\r\n", + "4.56 74.0 80000909.811767444015\r\n", + "27.24 641.0 80000910.33445057273\r\n", + "17.199999 390.0 80000910.60975474119\r\n", + "2.16 14.0 80000911.29370170832\r\n", + "34.519997 823.0 80000913.69095006585\r\n", + "12.2 265.0 80000914.1802495867\r\n", + "26.88 632.0 80000914.66017211974\r\n", + "28.199999 665.0 80000916.50571863353\r\n", + "42.399998 1020.0 80000916.718121901155\r\n", + "37.44 896.0 80000919.645673155785\r\n", + "27.6 650.0 80000920.63476088643\r\n", + "18.88 432.0 80000922.45012420416\r\n", + "8.48 172.0 80000925.23763982952\r\n", + "12.28 267.0 80000926.283655911684\r\n", + "28.32 668.0 80000926.6409278512\r\n", + "30.96 734.0 80000928.05741724372\r\n", + "32.079998 762.0 80000933.627166330814\r\n", + "39.44 946.0 80000933.76277536154\r\n", + "30.24 716.0 80000934.16055440903\r\n", + "6.7599998 129.0 80000935.81169986725\r\n", + "24.48 572.0 80000936.16736589372\r\n", + "14.6 325.0 80000936.44196587801\r\n", + "25.68 602.0 80000936.549025550485\r\n", + "11.4800005 247.0 80000938.685712620616\r\n", + "6.2 115.0 80000939.08911083639\r\n", + "36.239998 866.0 80000940.29467050731\r\n", + "27.28 642.0 80000941.77238176763\r\n", + "4.2799997 67.0 80000942.128024578094\r\n", + "12.92 283.0 80000942.38229085505\r\n", + "20.96 484.0 80000944.63000917435\r\n", + "9.64 201.0 80000945.404179006815\r\n", + "14.32 318.0 80000945.718157589436\r\n", + "8.32 168.0 80000945.91892364621\r\n", + "42.28 1017.0 80000948.791864678264\r\n", + "29.32 693.0 80000948.85667587817\r\n", + "2.32 18.0 80000949.93122699857\r\n", + "2.6399999 26.0 80000950.1588781476\r\n", + "8.44 171.0 80000950.502268999815\r\n", + "39.8 955.0 80000951.22832208872\r\n", + "21.08 487.0 80000951.838016077876\r\n", + "20.32 468.0 80000952.52954874933\r\n", + "33.96 809.0 80000952.626723498106\r\n", + "21.68 502.0 80000956.18126910925\r\n", + "33.079998 787.0 80000956.38345962763\r\n", + "23.76 554.0 80000957.466738790274\r\n", + "8.32 168.0 80000959.38979135454\r\n", + "14.28 317.0 80000960.34404800832\r\n", + "29.92 708.0 80000962.452562466264\r\n", + "11.64 251.0 80000964.24332383275\r\n", + "25.6 600.0 80000966.99032564461\r\n", + "28.36 669.0 80000967.36089865863\r\n", + "15.4 345.0 80000968.338882282376\r\n", + "25.48 597.0 80000968.875151097775\r\n", + "16.72 378.0 80000969.143758147955\r\n", + "14.76 329.0 80000971.409240707755\r\n", + "19.6 450.0 80000974.77004908025\r\n", + "28.76 679.0 80000974.80595380068\r\n", + "38.359997 919.0 80000975.64050154388\r\n", + "40.6 975.0 80000975.95903091133\r\n", + "4.2 65.0 80000980.43536031246\r\n", + "3.1599998 39.0 80000980.572394132614\r\n", + "41.679996 1002.0 80000981.61112074554\r\n", + "17.439999 396.0 80000981.74807231128\r\n", + "40.239998 966.0 80000983.25735516846\r\n", + "36.359997 869.0 80000985.01507012546\r\n", + "18.12 413.0 80000985.20637777448\r\n", + "38.28 917.0 80000986.77888666093\r\n", + "40.479996 972.0 80000988.17710210383\r\n", + "29.72 703.0 80000988.92275629938\r\n", + "16.96 384.0 80000990.097374781966\r\n", + "30.8 730.0 80000990.79127365351\r\n", + "21.72 503.0 80000991.06344228983\r\n", + "42.28 1017.0 80000991.80377283692\r\n", + "28.24 666.0 80000993.049590453506\r\n", + "7.04 136.0 80000994.441833391786\r\n", + "36.28 867.0 80000994.527631640434\r\n", + "24.4 570.0 80000995.25695282221\r\n", + "21.76 504.0 80000995.29652753472\r\n", + "11.52 248.0 80000995.99297225475\r\n", + "41.319996 993.0 80000996.40901064873\r\n", + "35.239998 841.0 80000996.557712092996\r\n", + "10.52 223.0 80000997.22821688652\r\n", + "33.96 809.0 80000997.405183792114\r\n", + "11.96 259.0 80000997.93263950944\r\n", + "15.440001 346.0 80000998.813208565116\r\n", + "30.92 733.0 80000999.3882278502\r\n", + "3.96 59.0 80000999.59336720407\r\n", + "18.36 419.0 80001000.09518702328\r\n", + "32.039997 761.0 80001001.49414373934\r\n", + "28.48 672.0 80001002.54425382614\r\n", + "39.8 955.0 80001003.1178855896\r\n", + "18.72 428.0 80001003.56476637721\r\n", + "7.52 148.0 80001005.884933292866\r\n", + "9.68 202.0 80001007.618157073855\r\n", + "3.6799998 52.0 80001009.596397176385\r\n", + "13.56 299.0 80001015.068401411176\r\n", + "40.519997 973.0 80001015.44013249874\r\n", + "24.0 560.0 80001017.39824913442\r\n", + "34.12 813.0 80001017.49642172456\r\n", + "25.88 607.0 80001017.91779854894\r\n", + "7.3199997 143.0 80001017.95813263953\r\n", + "12.84 281.0 80001018.01935687661\r\n", + "6.56 124.0 80001023.587887212634\r\n", + "30.64 726.0 80001023.69297429919\r\n" + ] + }, + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Try the round trip again to verify that everything works\n", + "\n", + "ev.write(\"events.ecsv\", \"ascii.ecsv\")\n", + "ev4 = EventList.read(\"events.ecsv\", \"ascii.ecsv\")\n", + "!cat events.ecsv\n", + "ev4.time[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Transforming a Lightcurve into an EventList." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Event lists can be obtained from light curves, where the standard followed is as follows: as many events are created as the counts in the lightcurve at the time specified by time bins.\n", + "\n", + "To demonstrate this, let us define a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(3)\n", + "counts = np.floor(np.random.rand(3)*5)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0, 1, 2]), array([1., 4., 3.]))" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.time, lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, eventlist can be loaded by calling static `from_lc()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 1, 1, 1, 2, 2, 2])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList.from_lc(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating EventList from Lightcurve" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An arguably better way is having proper random events, reproducing the initial light curve within the errors. Stingray does this by using the inverse CDF method, using the light curve as a binned probability distribution.\n", + "Please note that in this case we will have to create the EventList object before (in technical terms, `simulate_times` is not a static method.). See simulation tutorial for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.60459939, 0.8644437 , 1.47100837, 1.54281243, 1.80725171,\n", + " 2.47032653])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList()\n", + "ev.simulate_times(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve from an EventList object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After simulating event list, the original light curve can be recovered. Let's demonstrate by creating a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1.\n", + "times = np.arange(50)\n", + "counts = np.floor(np.random.rand(50)*50000)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulate an event list." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList()\n", + "ev = ev.from_lc(lc)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.5, 49.5]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recover original light curve curve using `to_lc()` method. Here, `dt` defines time resolution, `tstart` the starting time, and `tseg` the total time duration." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = ev.to_lc(dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us verify that this has worked properly, by comparing the input and output light curves" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYs0lEQVR4nO3dfbBlVXnn8e9PfOuKypsdiqFhGiMzGXwZlA5CtKYIlojaESaliGhgLGLXlDixy0wiJFOFb0zMVEpRY8j0CGUTRGSMBEKBpINgYtWANNIRAR062hTdxUtHoIkjwYDP/HHWlUP3vbdv777nnHvO+X6qbt191t77nLWqT99nP2utvXaqCkmSunjWqCsgSRpfBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwMNIkm2JLkjyaYkG1vZAUk2JLmn/d6/lSfJZ5JsTvKdJK/ue58z2/H3JDmzr/zo9v6b27kZZHskSc80jEzk16rqqKpa1V6fA9xQVUcAN7TXAG8Cjmg/a4ALoRd0gPOA1wDHAOfNBJ52zHv7zjtp8M2RJM0YRXfWycD6tr0eOKWv/JLquRnYL8nBwBuBDVX1cFU9AmwATmr7XlRVN1fvjslL+t5LkjQEzx7w+xfw10kK+J9VtQ44qKrub/sfAA5q24cA9/Wdu7WVzVe+dZbyeb34xS+ulStX7nlLJGlK3Xbbbf9YVctn2zfoIPK6qtqW5BeBDUm+17+zqqoFmIFKsoZeFxmHHXYYGzduHPRHStLESHLvXPsG2p1VVdva74eAK+mNaTzYuqJovx9qh28DDu07fUUrm698xSzls9VjXVWtqqpVy5fPGkwlSR0MLIgk+YUkL5zZBk4EvgtcDczMsDoTuKptXw2c0WZpHQvsaN1e1wMnJtm/DaifCFzf9j2W5Ng2K+uMvveSJA3BILuzDgKubLNunw1cVlVfS3IrcEWSs4B7gVPb8dcCbwY2Az8B3gNQVQ8n+Rhwazvuo1X1cNt+H/AFYBlwXfuRJA1Jpm0p+FWrVpVjIpK0cElu67tN4xm8Y12S1JlBRJLUmUFEktTZoO8TUUfrLng3l225ZtZ9p69czZq1lw65RpK0KzORJeqyLdewadmOXco3LdsxZ3CRpGEzE1nCjnp8X2664NFnlB2/dr+R1EWSZmMmIknqzEykA8crJKnHINLBzHjFUY/v+4zyTct2wJZreis9Supsvgs18GJtKTGIdOR4hTQ4c12ogRdrS41BRHvN7j0NwmwXauDF2kLt/P/yqGWHc8Ef3r7on2MQ0V6ze09dzXUBMlcWooWbL5tbTAYRLQq799TFXH/ojnp8X05fuXpEtZocc2Vzi8kgImmkhvGHToPjfSKSpM4MIpKkzuzOmhDOkJI0CgaRCeEMKc3wgkLDZBCZIM6QGq6lele1FxQaJoOI1NFSvqvaCwoNi0FE2gveVa1p5+wsSVJnBhFJUmd2Zw3BUh2A1fia7zvlulMaJjORIZjreengM9PVzXzfKded0jCZiQyJA7BabK45paXAICJp7GxatmPWCzC7hofP7ixJY+X0lavnvDfHruHhMxORNFbWrL101ps47RoeDTMRSVJnBhFJUmcGEUlSZwYRSVJnAx9YT7IPsBHYVlWrkxwOXA4cCNwG/GZV/TTJ84BLgKOBHwHvqKot7T3OBc4CngJ+u6qub+UnAZ8G9gE+X1WfGHR7JGkpmWv1gmGtXDCMTOQDwN19r/8I+FRVvRR4hF5woP1+pJV/qh1HkiOB04CXAScBf5pknxacPge8CTgSeGc7VpKmxlyrFwxr5YKBZiJJVgBvAc4HPpgkwAnA6e2Q9cCHgQuBk9s2wFeAP2nHnwxcXlVPAD9Mshk4ph23uap+0D7r8nbsXYNskyQtNaNcvWDQmcgFwO8BP2uvDwQeraon2+utwCFt+xDgPoC2f0c7/uflO50zV7kkaUgGFkSSrAYeqqrbBvUZe1CXNUk2Jtm4ffv2UVdHkibGIDOR1wJvTbKF3kD6CfQGwfdLMtONtgLY1ra3AYcCtP370htg/3n5TufMVb6LqlpXVauqatXy5cv3vmWSJGCAQaSqzq2qFVW1kt7A+Ner6l3AjcDb2mFnAle17avba9r+r1dVtfLTkjyvzew6AvgWcCtwRJLDkzy3fcbVg2qPJGlXo1g760PA5Uk+DtwOXNTKLwL+vA2cP0wvKFBVdya5gt6A+ZPA2VX1FECS9wPX05vie3FV3TnUlkjSlBtKEKmqm4Cb2vYPeHp2Vf8x/wy8fY7zz6c3w2vn8muBaxexqpKkPeAd65KkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzkaxdpb20qZlOzh+7X67lA3jUZgab7N9dwBOX7maNWsvHX6FNPbMRMbM6StXzxoshvUoTI2vub47m5btmPUZ3dJCmImMmTVrL2XNqCuhsTTXd2e2zERaKDMRSVJnBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwYRSVJn3iciSX3WXfDueW++9O7+ZzITkaQ+l225hk3Ldsy6z7v7d2UmImng5rq6X6prvh31+L7cdMGju5R7d/+uzEQkDdxcV/eu+Tb+zEQkDcVcV/cab2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTOvE9EkvbSfOttTfpaWwPLRJI8P8m3kvx9kjuTfKSVH57kliSbk3w5yXNb+fPa681t/8q+9zq3lX8/yRv7yk9qZZuTnDOotkjSfOa6I38a1toaZCbyBHBCVf04yXOAbya5Dvgg8KmqujzJnwFnARe2349U1UuTnAb8EfCOJEcCpwEvA/4V8DdJ/k37jM8BbwC2Arcmubqq7hpgmyRpVrPdkT8Na20NLBOpnh+3l89pPwWcAHylla8HTmnbJ7fXtP2vT5JWfnlVPVFVPwQ2A8e0n81V9YOq+ilweTtWkjQkAx1YT7JPkk3AQ8AG4B+AR6vqyXbIVuCQtn0IcB9A278DOLC/fKdz5iqfrR5rkmxMsnH79u2L0DJJEgw4iFTVU1V1FLCCXubwy4P8vHnqsa6qVlXVquXLl4+iCpI0kYYyxbeqHgVuBI4D9ksyMxazAtjWtrcBhwK0/fsCP+ov3+mcucolSUMyyNlZy5Ps17aX0RsAv5teMHlbO+xM4Kq2fXV7Tdv/9aqqVn5am711OHAE8C3gVuCINtvrufQG368eVHskSbsa5Oysg4H1SfahF6yuqKprktwFXJ7k48DtwEXt+IuAP0+yGXiYXlCgqu5McgVwF/AkcHZVPQWQ5P3A9cA+wMVVdecA2yNJ2snAgkhVfQd41SzlP6A3PrJz+T8Db5/jvc4Hzp+l/Frg2r2urCSpE5c9kSR1ZhCRJHXm2llSM83rH0ldmYlIzTSvfyR1tceZSJL9gUPbwLk0dubKODYt2zG16x9JXS0oE0lyU5IXJTkA+Dbwv5J8crBVkwZjrozjqMf35fSVq0dQI2l8LTQT2beqHkvyW8AlVXVeEjMRja3ZMg5Je26hYyLPTnIwcCpg57AkCVh4JvIReneGf7Oqbk3yEuCewVVLeiZnTo2H3Y03afIsNBO5v6peWVXvg5/fde6YiIbGmVPjwfGm6bPQTOSzwKsXUCYNjDOnxoPjTdNl3iCS5DjgV4HlST7Yt+tF9BY9lCRNsd1lIs8FXtCOe2Ff+WM8vZy7JGlKzRtEquobwDeSfKGq7h1SnSRJY2KhYyLPS7IOWNl/TlWdMIhKSZLGw0KDyP8G/gz4PPDU4KojaalwWrUWYqFB5MmqunCgNZG0pMxM1935/o5Ny3bAlmtYM6J67SmD4WAtNIj8VZL3AVcCT8wUVtXDA6mVpCVhEqZVT0owXKoWGkTObL9/t6+sgJcsbnU07bzjWYMwCcFwqVpQEKmqwwddEQnmvmr0jmdpaVpQEElyxmzlVXXJ4lZHWpw7nufrBzerkRbPQruzfqVv+/nA6+k9V8QgoiVprowGzGqkxbTQ7qz/0v86yX7A5YOokLRYXMNJGryuz1j/f4DjJJI05RY6JvJX9GZjQW/hxX8HXDGoSkmSxsNCx0T+uG/7SeDeqto6gPpIksbIgrqz2kKM36O3ku/+wE8HWSlJ0nhYUBBJcirwLeDt9J6zfksSl4KXpCm30O6sPwB+paoeAkiyHPgb4CuDqti42rRsxy53wu7uvoQu52jpm+3fFVyvSZNlobOznjUTQJof7cG5U+P0lav3+L6ELudo6Zvr39VnwmvSLDQT+VqS64EvtdfvAK4dTJXG15q1l+7xYm5dztlTc10Rg1fFgzLXv6vrNWnS7O4Z6y8FDqqq303yG8Dr2q7/A3xx0JXT3jt95WqYZ/kPVzGVtDd2l4lcAJwLUFVfBb4KkOQVbd+vz3VikkPpLYtyEL17TNZV1aeTHAB8md5TErcAp1bVI0kCfBp4M/AT4D9V1bfbe50J/Lf21h+vqvWt/GjgC8AyepnRB6pq5n4WMX+mMylXxZMwpuQzLzSudjeucVBV3bFzYStbuZtznwR+p6qOBI4Fzk5yJHAOcENVHQHc0F4DvAk4ov2sAS4EaEHnPOA1wDHAeUn2b+dcCLy377yTdlMnTZhJGVOaWetrZ46haKnbXSay3zz7ls13YlXdD9zftv8pyd3AIcDJwPHtsPXATcCHWvklLZO4Ocl+SQ5ux26YeQBWkg3ASUluAl5UVTe38kuAU4DrdtMmTZBhjCkNyzg982KucbZxywC193aXiWxM8t6dC5P8FnDbQj8kyUrgVcAt9LKb+9uuB+h1d0EvwNzXd9rWVjZf+dZZyiUN0FzZH4xfBqi9t7tMZC1wZZJ38XTQWAU8F/iPC/mAJC8A/gJYW1WP9YY+eqqqkgx8DCPJGnpdZBx22GGD/jj1cWbY5Jmk7E97b95MpKoerKpfBT5CbxB8C/CRqjquqh7Y3ZsneQ69APLFNjAP8GDrpqL9nrn/ZBtwaN/pK1rZfOUrZimfrR3rqmpVVa1avnz57qqtRTLfFat9/dJkWOjzRG4EbtyTN26zrS4C7q6qT/btupreM9s/0X5f1Vf+/iSX0xtE31FV97f7U/5732D6icC5VfVwkseSHEuvm+wM4LN7UkcN1jTMDJOm3UJvNuzitcBvAnck2dTKfp9e8LgiyVnAvfTW4oLeFN03A5vpTfF9D0ALFh8Dbm3HfXRmkB14H09P8b0OB9UlaagGFkSq6ptA5tj9+lmOL+DsOd7rYuDiWco3Ai/fi2pKkvaC619JkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6G+SyJ9K8JuGJhNK0MxPRSEzKEwmlaWcmopHwmRTSZDATkSR1ZiYy5eZ68qBPHZS0EGYiU2yucQmfOihpocxEpthc4xI+dVDSQpmJSJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI68z4RLdi6C949602IrryrpcKVoYfPTEQLdtmWa9i0bMcu5a68q6XAlaFHw0xEe+Sox/flpgseHXU1hs4r3KXPlaFHw0xE2g2vcKW5mYlIu+EVrjQ3MxFJUmcGEUlSZwYRSVJnBhFJUmcOrC/Q2nNfxabHfwg4tVOSZgwsE0lycZKHkny3r+yAJBuS3NN+79/Kk+QzSTYn+U6SV/edc2Y7/p4kZ/aVH53kjnbOZ5JkUG3ZmVM7JalnkJnIF4A/AS7pKzsHuKGqPpHknPb6Q8CbgCPaz2uAC4HXJDkAOA9YBRRwW5Krq+qRdsx7gVuAa4GTgOsG1ZgL/vD2Qb21JI2tgWUiVfW3wMM7FZ8MrG/b64FT+sovqZ6bgf2SHAy8EdhQVQ+3wLEBOKnte1FV3VxVRS9QnYIkaaiGPSZyUFXd37YfAA5q24cA9/Udt7WVzVe+dZZySVry5lrMFHorJKxZe+mQa9TdyGZntQyihvFZSdYk2Zhk4/bt24fxkZI0p7kWM920bMecwWWpGnYm8mCSg6vq/tYl9VAr3wYc2nfcila2DTh+p/KbWvmKWY6fVVWtA9YBrFq1aiiBS5LmM9tipjsv8jkOhp2JXA3MzLA6E7iqr/yMNkvrWGBH6/a6Hjgxyf5tJteJwPVt32NJjm2zss7oey9J0pAMLBNJ8iV6WcSLk2ylN8vqE8AVSc4C7gVObYdfC7wZ2Az8BHgPQFU9nORjwK3tuI9W1cxg/fvozQBbRm9W1sBmZkmSZjewIFJV75xj1+tnObaAs+d4n4uBi2cp3wi8fG/qKEnaOy57IknqzCAiSerMICJJ6swFGCVpDMx1g+KoF4Q1iEjSHti0bMcu93MM4w/5zA2KO3/OqBeENYhI0gKdvnI1zJINDOsP+Ww3KI6aQUSSFmjN2ktZM+pKLDEOrEuSOjMTkYZsVH3qGg+zfT9mypfid8RMRBqi01eunvUPwagHR7U0zPX9gKX7HTETkYbIPnXNZxy/H2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzrxjXZLreakzg4g05Ub9jIxRMnjuPYOINOXGcb2mxTDNwXMxGUQkTaVpDZ6LzSAiLXF2uWgpc3aWtIT5/BEtdWYi0hJml4uWOjMRSVJnBhFJUmd2Z0nSAE36xAgzEUkakGmYGGEmIkkDMg0TI8xEJEmdjX0QSXJSku8n2ZzknFHXR5KmyVh3ZyXZB/gc8AZgK3Brkqur6q7R1mz8TfpgoKTFMe6ZyDHA5qr6QVX9FLgcOHnEdRp70zAYKGlxjHUmAhwC3Nf3eivwmhHVZWJMw2CgpMUx7pnIgiRZk2Rjko3bt28fdXUkaWKMexDZBhza93pFK3uGqlpXVauqatXy5cuHVjlJmnTjHkRuBY5IcniS5wKnAVePuE6SNDXGekykqp5M8n7gemAf4OKqunPE1ZKkqTHWQQSgqq4Frh11PSRpGo17d5YkaYQMIpKkzgwikqTOUlWjrsNQJdkO3Nvx9BcD/7iI1RkXtnu62O7pspB2/+uqmvX+iKkLInsjycaqWjXqegyb7Z4utnu67G277c6SJHVmEJEkdWYQ2TPrRl2BEbHd08V2T5e9ardjIpKkzsxEJEmdGUQWYJoewZvk4iQPJfluX9kBSTYkuaf93n+UdVxsSQ5NcmOSu5LcmeQDrXyi2w2Q5PlJvpXk71vbP9LKD09yS/vOf7ktcDpRkuyT5PYk17TXE99mgCRbktyRZFOSja2s83fdILIbfY/gfRNwJPDOJEeOtlYD9QXgpJ3KzgFuqKojgBva60nyJPA7VXUkcCxwdvs3nvR2AzwBnFBV/x44CjgpybHAHwGfqqqXAo8AZ42uigPzAeDuvtfT0OYZv1ZVR/VN7e38XTeI7N5UPYK3qv4WeHin4pOB9W17PXDKMOs0aFV1f1V9u23/E70/LIcw4e0GqJ4ft5fPaT8FnAB8pZVPXNuTrADeAny+vQ4T3ubd6PxdN4js3myP4D1kRHUZlYOq6v62/QBw0CgrM0hJVgKvAm5hStrdunU2AQ8BG4B/AB6tqifbIZP4nb8A+D3gZ+31gUx+m2cU8NdJbksy8yTszt/1sV8KXsNVVZVkIqf0JXkB8BfA2qp6rHdx2jPJ7a6qp4CjkuwHXAn88mhrNFhJVgMPVdVtSY4fcXVG4XVVtS3JLwIbknyvf+eeftfNRHZvQY/gnXAPJjkYoP1+aMT1WXRJnkMvgHyxqr7aiie+3f2q6lHgRuA4YL8kMxeZk/adfy3w1iRb6HVPnwB8mslu889V1bb2+yF6Fw3HsBffdYPI7vkI3l57z2zbZwJXjbAui671h18E3F1Vn+zbNdHtBkiyvGUgJFkGvIHemNCNwNvaYRPV9qo6t6pWVNVKev+fv15V72KC2zwjyS8keeHMNnAi8F324rvuzYYLkOTN9PpQZx7Be/5oazQ4Sb4EHE9vZc8HgfOAvwSuAA6jtwLyqVW18+D72EryOuDvgDt4uo/89+mNi0xsuwGSvJLeQOo+9C4qr6iqjyZ5Cb2r9AOA24F3V9UTo6vpYLTurP9aVaunoc2tjVe2l88GLquq85McSMfvukFEktSZ3VmSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwi0iJKcmBbHXVTkgeSbGvbP07yp6Oun7TYnOIrDUiSDwM/rqo/HnVdpEExE5GGIMnxfc+t+HCS9Un+Lsm9SX4jyf9oz3j4WluChSRHJ/lGWyjv+r5lKX67PfvkO0kuH2W7JIOINBq/RG/NprcClwI3VtUrgMeBt7RA8lngbVV1NHAxMLNSwjnAq6rqlcB/HnrNpT6u4iuNxnVV9S9J7qC35MjXWvkdwErg3wIvp7fKKu2YmaW6vwN8Mclf0luSRhoZg4g0Gk8AVNXPkvxLPT04+TN6/y8D3FlVx81y7luA/wD8OvAHSV7R9xwMaajszpKWpu8Dy5McB72l6pO8LMmzgEOr6kbgQ8C+wAtGWE9NOTMRaQmqqp8meRvwmST70vu/egHwf4FLW1mAz7TngEgj4RRfSVJndmdJkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOvv/L9ch5gJVw5IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts,'r-', lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "... and their difference" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR20lEQVR4nO3df7BcZX3H8ffHRNAW5WdEJKRBYWqjWBxXEKUdRMBQxVBKLWjH/IHNdCqt1GqNZaYg6ow6VqiKdlJgjD+BUtGoFRr5YZ0ORW6QiqiYiDIk5ZeAWmoLRr79Y09kvd4kN8/N3s299/2aubPnec6zu99nsjefe86zezZVhSRJO+oJoy5AkjQzGSCSpCYGiCSpiQEiSWpigEiSmswfdQHTab/99qvFixePugxJmlHWrVv3w6paML5/TgXI4sWLGRsbG3UZkjSjJLlzon5PYUmSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmow0QJIsTXJ7kg1JVk6wf/ckl3X7b0yyeNz+RUkeTvLmaStakgSMMECSzAMuBE4ElgCnJ1kybtgZwENVdQhwPvCecfvfD3xp2LVKkn7VKI9AjgA2VNUdVfUocCmwbNyYZcDqbvsK4GVJApDkZOD7wG3TU64kadAoA+RA4K6B9saub8IxVbUZ+DGwb5I9gLcCb9/ekyRZkWQsydj999+/UwqXJM3cRfRzgfOr6uHtDayqVVXVq6reggULhl+ZJM0R80f43JuAgwbaC7u+icZsTDIf2BN4ADgSODXJe4G9gMeS/F9VfWjoVUuSgNEGyE3AoUkOph8UpwGvGTdmDbAcuAE4Fbi2qgr4nS0DkpwLPGx4SNL0GlmAVNXmJGcCVwPzgEuq6rYk5wFjVbUGuBj4eJINwIP0Q0aStAtI/w/6uaHX69XY2Nioy5CkGSXJuqrqje+fqYvokqQRM0AkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNRhogSZYmuT3JhiQrJ9i/e5LLuv03Jlnc9R+fZF2SW7vbY6e9eEma40YWIEnmARcCJwJLgNOTLBk37Azgoao6BDgfeE/X/0PgpKo6DFgOfHx6qpYkbTHKI5AjgA1VdUdVPQpcCiwbN2YZsLrbvgJ4WZJU1der6r+6/tuAJyfZfVqqliQBow2QA4G7Btobu74Jx1TVZuDHwL7jxvwBcHNVPTKkOiVJE5g/6gKmIslz6J/WOmEbY1YAKwAWLVo0TZVJ0uw3yiOQTcBBA+2FXd+EY5LMB/YEHujaC4ErgddV1fe29iRVtaqqelXVW7BgwU4sX5LmtlEGyE3AoUkOTrIbcBqwZtyYNfQXyQFOBa6tqkqyF/BFYGVV/ft0FSxJetzIAqRb0zgTuBr4NnB5Vd2W5Lwkr+qGXQzsm2QD8CZgy1t9zwQOAf42yS3dz9OmeQqSNKelqkZdw7Tp9Xo1NjY26jIkaUZJsq6qeuP7/SS6JKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmuxwgCTZO8nzhlGMJGnmmFSAJLk+yVOT7APcDPxjkvcPtzRJ0q5sskcge1bVT4BTgI9V1ZHAccMrS5K0q5tsgMxPcgDwauALQ6xHkjRDTDZA3g5cDWyoqpuSPBNYP7yyJEm7uvmTHHd3Vf1i4byq7nANRJLmtskegXxwkn2SpDlim0cgSY4CXgwsSPKmgV1PBeYNszBJ0q5te6ewdgP26MY9ZaD/J8CpwypKkrTr22aAVNVXgK8k+WhV3TlNNUmSZoDJLqLvnmQVsHjwPlV17DCKkiTt+iYbIP8E/ANwEfDz4ZUjSZopJvsurM1V9ZGq+lpVrdvyM9UnT7I0ye1JNiRZOcH+3ZNc1u2/McnigX1v6/pvT/LyqdYiSdoxkw2Qzyf5syQHJNlny89UnjjJPOBC4ERgCXB6kiXjhp0BPFRVhwDnA+/p7rsEOA14DrAU+HD3eJKkaTLZU1jLu9u3DPQV8MwpPPcR9D/ZfgdAkkuBZcC3BsYsA87ttq8APpQkXf+lVfUI8P0kG7rHu2EK9WzVWVedxS333DKMh5akoTv86YdzwdILdvrjTipAqurgnf7McCBw10B7I3Dk1sZU1eYkPwb27fr/Y9x9D5zoSZKsAFYALFq0aKcULkmaZIAked1E/VX1sZ1bzs5XVauAVQC9Xq9aHmMYyS1JM91kT2G9cGD7ScDL6H8vyFQCZBNw0EB7Ydc30ZiNSeYDewIPTPK+kqQhmuwprD8fbCfZC7h0is99E3BokoPp/+d/GvCacWPW0F9/uYH+J9+vrapKsgb4VHdBx2cAhwJfm2I9kqQdMNkjkPH+B5jSuki3pnEm/cvEzwMuqarbkpwHjFXVGuBi4OPdIvmD9EOGbtzl9BfcNwNvqCo/nyJJ0yhV218WSPJ5+u+6gv5/9r8FXF5Vv/LZjV1Zr9ersbGxUZchSTNKknVV1RvfP9kjkPcNbG8G7qyqjTulMknSjDSpDxJ2F1X8Dv0r8u4NPDrMoiRJu75JBUiSV9NfpP5D+t+LfmMSL+cuSXPYZE9hnQ28sKruA0iyAPgy/U+HS5LmoMleC+sJW8Kj88AO3FeSNAtN9gjkqiRXA5/u2n8E/MtwSpIkzQTb+070Q4D9q+otSU4Bju523QB8ctjFSZJ2Xds7ArkAeBtAVX0G+AxAksO6fScNsTZJ0i5se+sY+1fVreM7u77FQ6lIkjQjbC9A9trGvifvxDokSTPM9gJkLMmfjO9M8npgyl9pK0mauba3BnIWcGWS1/J4YPSA3YDfH2JdkqRd3DYDpKruBV6c5KXAc7vuL1bVtUOvTJK0S5vs94FcB1w35FokSTOInyaXJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1GQkAZJknyRrk6zvbvfeyrjl3Zj1SZZ3fb+W5ItJvpPktiTvnt7qJUkwuiOQlcA1VXUocE3X/iVJ9gHOAY4EjgDOGQia91XVs4HnAy9JcuL0lC1J2mJUAbIMWN1trwZOnmDMy4G1VfVgVT0ErAWWVtVPu6/YpaoeBW4GFg6/ZEnSoFEFyP5VdXe3fQ+w/wRjDgTuGmhv7Pp+IclewEn0j2IkSdNo/rAeOMmXgadPsOvswUZVVZJqePz5wKeBD1TVHdsYtwJYAbBo0aIdfRpJ0lYMLUCq6rit7Utyb5IDquruJAcA900wbBNwzEB7IXD9QHsVsL6qLthOHau6sfR6vR0OKknSxEZ1CmsNsLzbXg58boIxVwMnJNm7Wzw/oesjyTuBPYGzhl+qJGkiowqQdwPHJ1kPHNe1SdJLchFAVT0IvAO4qfs5r6oeTLKQ/mmwJcDNSW5J8vpRTEKS5rJUzZ2zOr1er8bGxkZdhiTNKEnWVVVvfL+fRJckNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVKTkQRIkn2SrE2yvrvdeyvjlndj1idZPsH+NUm+OfyKJUnjjeoIZCVwTVUdClzTtX9Jkn2Ac4AjgSOAcwaDJskpwMPTU64kabxRBcgyYHW3vRo4eYIxLwfWVtWDVfUQsBZYCpBkD+BNwDuHX6okaSKjCpD9q+rubvseYP8JxhwI3DXQ3tj1AbwD+Dvgp9t7oiQrkowlGbv//vunULIkadD8YT1wki8DT59g19mDjaqqJLUDj3s48Kyq+sski7c3vqpWAasAer3epJ9HkrRtQwuQqjpua/uS3JvkgKq6O8kBwH0TDNsEHDPQXghcDxwF9JL8gH79T0tyfVUdgyRp2ozqFNYaYMu7qpYDn5tgzNXACUn27hbPTwCurqqPVNUzqmoxcDTwXcNDkqbfqALk3cDxSdYDx3VtkvSSXARQVQ/SX+u4qfs5r+uTJO0CUjV3lgV6vV6NjY2NugxJmlGSrKuq3vh+P4kuSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpSapq1DVMmyT3A3c23n0/4Ic7sZyZwnnPLc57bpnsvH+jqhaM75xTATIVScaqqjfqOqab855bnPfcMtV5ewpLktTEAJEkNTFAJm/VqAsYEec9tzjvuWVK83YNRJLUxCMQSVITA0SS1MQA2Y4kS5PcnmRDkpWjrmeYklyS5L4k3xzo2yfJ2iTru9u9R1njMCQ5KMl1Sb6V5LYkb+z6Z/XckzwpydeS/Gc377d3/QcnubF7zV+WZLdR1zoMSeYl+XqSL3TtWT/vJD9IcmuSW5KMdX3Nr3MDZBuSzAMuBE4ElgCnJ1ky2qqG6qPA0nF9K4FrqupQ4JquPdtsBv6qqpYALwLe0P07z/a5PwIcW1W/DRwOLE3yIuA9wPlVdQjwEHDG6EocqjcC3x5oz5V5v7SqDh/4/Efz69wA2bYjgA1VdUdVPQpcCiwbcU1DU1X/Bjw4rnsZsLrbXg2cPJ01TYequruqbu62/5v+fyoHMsvnXn0Pd80ndj8FHAtc0fXPunkDJFkIvAK4qGuHOTDvrWh+nRsg23YgcNdAe2PXN5fsX1V3d9v3APuPsphhS7IYeD5wI3Ng7t1pnFuA+4C1wPeAH1XV5m7IbH3NXwD8NfBY196XuTHvAv41ybokK7q+5tf5/J1dnWavqqoks/Z930n2AP4ZOKuqftL/o7Rvts69qn4OHJ5kL+BK4NmjrWj4krwSuK+q1iU5ZsTlTLejq2pTkqcBa5N8Z3Dnjr7OPQLZtk3AQQPthV3fXHJvkgMAutv7RlzPUCR5Iv3w+GRVfabrnhNzB6iqHwHXAUcBeyXZ8sflbHzNvwR4VZIf0D8tfSzw98z+eVNVm7rb++j/wXAEU3idGyDbdhNwaPfujN2A04A1I65puq0Blnfby4HPjbCWoejOf18MfLuq3j+wa1bPPcmC7siDJE8Gjqe//nMdcGo3bNbNu6reVlULq2ox/d/pa6vqtczyeSf59SRP2bINnAB8kym8zv0k+nYk+T3650vnAZdU1btGW9HwJPk0cAz9SzzfC5wDfBa4HFhE/1L4r66q8QvtM1qSo4GvArfy+Dnxv6G/DjJr557kefQXTefR/2Py8qo6L8kz6f9lvg/wdeCPq+qR0VU6PN0prDdX1Stn+7y7+V3ZNecDn6qqdyXZl8bXuQEiSWriKSxJUhMDRJLUxACRJDUxQCRJTQwQSVITA0TaSZLs213l9JYk9yTZ1G0/nOTDo65P2tl8G680BEnOBR6uqveNuhZpWDwCkYYsyTED3zlxbpLVSb6a5M4kpyR5b/cdDVd1l1QhyQuSfKW76N3VA5ea+Ivue0u+keTSUc5LMkCk6fcs+tdfehXwCeC6qjoM+F/gFV2IfBA4tapeAFwCbLkCwkrg+VX1POBPp71yaYBX45Wm35eq6mdJbqV/GZGruv5bgcXAbwLPpX+1VLoxWy63/Q3gk0k+S/8yM9LIGCDS9HsEoKoeS/Kzenwh8jH6v5MBbquqoya47yuA3wVOAs5OctjAd1hI08pTWNKu53ZgQZKjoH+p+STPSfIE4KCqug54K7AnsMcI69Qc5xGItIupqkeTnAp8IMme9H9PLwC+C3yi6wvwge57PKSR8G28kqQmnsKSJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSk/8HiGXKaLOVk7kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts - lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen from the figure above, the recovered light curve is aligned with the original light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Energies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to simulate photon energies, a spectral distribution needs to be passed.\n", + "The `spectrum` input is a two-dimensional array, with the energies in keV in the first dimension and the number of counts in the second. The count array will be normalized before the simulation: the raw counts do not matter, but only the ratio of the counts in each bin to the total.\n", + "Again, the energies are simulated using an inverse CDF method." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[1000, 2040, 1000, 3000, 4020, 2070]]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList(time=np.sort(np.random.uniform(0, 1000, 12)))\n", + "ev.simulate_energies(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.84164641, 3.62741142, 3.68169619, 4.70867585, 4.92065534,\n", + " 4.93644725, 2.26749277, 5.45959615, 3.01137686, 4.86366818,\n", + " 0.63048041, 6.26300006])" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Joining EventLists" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two event lists can also be joined together. If the GTI do not overlap, the event times and GTIs are appended. Otherwise, the GTIs are crossed (i.e., only the overlapping parts are saved) and the events merged together." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1, 2, 3, 4, 5]), array([[0.5, 5.5]]))" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[4,5], gti=[[3.5, 5.5]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1. , 1.2, 2. , 3. , 3.3, 5.6]), array([[0.6, 3.5]]))" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[1.2, 3.3, 5.6], gti=[[0.6, 7.8]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb.txt b/_sources/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb.txt new file mode 100644 index 000000000..fb3c8ab12 --- /dev/null +++ b/_sources/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb.txt @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline \n", + "import matplotlib as mpl\n", + "import seaborn\n", + "mpl.rcParams['figure.figsize']=(15.0,8.0) \n", + "mpl.rcParams['font.size']=12 #10 \n", + "mpl.rcParams['savefig.dpi']=100 #72 \n", + "from matplotlib import pyplot as plt\n", + "\n", + "import stingray as sr\n", + "\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum, Crossspectrum, AveragedCrossspectrum\n", + "from stingray import events\n", + "from stingray.events import EventList\n", + "import glob\n", + "import numpy as np\n", + "from astropy.modeling import models, fitting\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# R.m.s. - intensity diagram\n", + "\n", + "This diagram is used to characterize the variability of black hole binaries and AGN (see e.g. Plant et al., arXiv:1404.7498; McHardy 2010 2010LNP...794..203M for a review).\n", + "\n", + "In Stingray it is very easy to calculate.\n", + "\n", + "## Setup: simulate a light curve with a variable rms and rate\n", + "We simulate a light curve with powerlaw variability, and then we rescale\n", + "it so that it has increasing flux and r.m.s. variability." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.simulator import Simulator\n", + "from scipy.ndimage.filters import gaussian_filter1d\n", + "from stingray.utils import baseline_als\n", + "from scipy.interpolate import interp1d\n", + "\n", + "\n", + "np.random.seed(1034232)\n", + "# Simulate a light curve with increasing variability and flux\n", + "length = 10000\n", + "dt = 0.1\n", + "times = np.arange(0, length, dt)\n", + "\n", + "# Create a light curve with powerlaw variability (index 1), \n", + "# and smooth it to eliminate some Gaussian noise. We will simulate proper\n", + "# noise with the `np.random.poisson` function.\n", + "# Both should not be used together, because they alter the noise properties.\n", + "sim = Simulator(dt=dt, N=int(length/dt), mean=50, rms=0.4)\n", + "counts_cont = sim.simulate(1).counts\n", + "counts_cont_init = gaussian_filter1d(counts_cont, 200)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[52.83292539 52.83104461 52.82542772 ... 64.26625716 64.25516327\n", + " 64.24864925]\n" + ] + } + ], + "source": [ + "# ---------------------\n", + "# Renormalize so that the light curve has increasing flux and r.m.s. \n", + "# variability.\n", + "# ---------------------\n", + "\n", + "\n", + "# The baseline function cannot be used with too large arrays. \n", + "# Since it's just an approximation, we will just use one every\n", + "# ten array elements to calculate the baseline\n", + "mask = np.zeros_like(times, dtype=bool)\n", + "mask[::10] = True\n", + "print (counts_cont_init[mask])\n", + "\n", + "baseline = baseline_als(times[mask], counts_cont_init[mask], 1e10, 0.001)\n", + "base_func = interp1d(times[mask], baseline, bounds_error=False, fill_value='extrapolate')\n", + "\n", + "counts_cont = counts_cont_init - base_func(times)\n", + "\n", + "counts_cont -= np.min(counts_cont)\n", + "counts_cont += 1\n", + "counts_cont *= times * 0.003\n", + "# counts_cont += 500\n", + "counts_cont += 500\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD3CAYAAADi8sSvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8HNW1x7+zTb1XS5Ys2bLHvWAbAzZgCD3UhJZHSEJ/hJaEkNBCNS2hQwKBUMILIS8BXgKEGqqNccO9jWVbzeqSZXVtm3l/jCRLturuzDbd7+fDh907M/eesXbP3rn3nN+RNE1DIBAIBJGBJdgGCAQCgcA4hFMXCASCCEI4dYFAIIgghFMXCASCCEI4dYFAIIggbMEcvL6+1efQm5SUWJqaOow0J+QR9zw2EPc8NvDnnjMyEqTBjoXtTN1mswbbhIAj7nlsIO55bGDWPYetUxcIBALB4QinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBAFkTc161tdtNq3/oGaUhip79+7hueeepquri87OTo4+ejGXX341kjRoEteAfPnl58yYMRNJknjllT/xy1/eapLFw/PSS38kLS2NGTNmsWLFV1x22VUDnvf+++9SVlbKtdfe0K9948b1xMcnUFQ0ORDmCgQRy5+3/w2AU2csNqV/MVM/hNbWVu6553ZuvPFmnnnmj/zxj6+wZ89u/vWvt0bd1z/+8Qbt7e2kpaUH1aH3ZfJkeVCHPhT//vc7NDTUm2CRQDB2aHa2mD5GSM/U//7ZbtburBvwmNUq4fWOXjpm4dRMLjyxaNDjK1Z8yRFHLCQvL797HCt33nkvdrsdgGeeeYLNmzcCcPLJp3HhhT/ggQfuwW63U1NTTWNjA7fffg+NjQ3s3r2LZcvu4je/uZ9ly+7mhRde5cc/vpi5c49gz57dADz88OPs2rWTf/3rLe699yEAzj77VN555yOqq6t46KH78Hq9SJLEvffeTVpabu9xgLvvvo1zzvk+6ekZPPTQvVitNlRV5e67l5GVlX3Y/a1fv653rPfe+ydvvfV3EhOTsNnsfOc7JwOwbdsWfv7z6zhwoIlzzz0fWZ7G6tXfsGvXTgoKJpKdrferaRpPPPFbduzYhtvt4YorriYuLn7Ae3nggXtobm6mpaWZ/PwJzJs3n9NPP5PGxgZuueVnvPzyX3j++WfZtGkDqqpy0UWXcOKJJ4367ysQhDJK027TxxAz9UNoaKgnJye3X1tsbCx2u52vv15OdXUVL7zwKs899xKffPJhr3POzh7H448/y/e/fxHvvPM2xxyzhKKiKdx55329PwgA7e3tnHTSqTz77AtkZGSyatXXg9ry+98/yQUXXMzvf/8iN910M7fffvug565du5pp02bw5JN/4IorrqG9vW3I+zxw4AB/+ctrPPfcyzz++LN0dXX2HrPZbDz++LM8+OCj/OMfbzB16jQWLTqaa6+9sdehA3z11Rc0Nx/gxRdf4+mnn2fnzh1Djjl//gKef/5lfvCDS/ngg/cA+Oij9/nud8/im2++prq6kueee4mnn36e1157mdbW1iH7EwjCjQ5P5/An+UlIz9QvPLFo0Fl1RkYC9fXGf+mzssaxa9fOfm1VVZXU1dVSVlbCnDlzkSQJm83GjBmzKC3dC+jLGgCZmVls2bJpyDGmTDl4rsvlOux4T93Y0tJS5sw5orf/mpqaAc7V/3/mmefw+ut/5uabbyAuLp5rrrluSBv27augsLCQ6OhoAGbOnN3HvqlIkkRqahpdXV2D9lFeXsaMGfp1iYmJXHXVtaxfv27AewHIz58AQGHhRLxeLzU11Xz66Sc8+eQfeOedt1GUnVx//dUAeDweamqqmDgxZ8j7EAjChQ53J//Y9S/TxxEz9UNYvHgJq1evpLJyH6A7l2eeeYK9e/cwYUJh79KLx+Nh69bNjB+vL9MMtIlqsVhQVXWAUfqf63BE0djYCEBNTTUtLc0AFBQUsHnzBgCKixXS09N7x+7o6MDtdlNSsgfQl43mzJnHU089xwknfIfXX//zkPc5fnweZWWlOJ1dqKrKjh3bDlo3wL1IkoSm9b+XgoICdu7cDkBbWxu/+MX1g96L3sfBj9uZZ57DH/7wNAUFhSQkJDBhQgHz5i3g2Wdf4Omnn+fEE08iN3f8kPcgEIQTyyu/Ccg4IT1TDwZxcfHccce9PPLIMlRVpaOjg8WLj+W8885HkiQ2bPiWa665DLfbzYknnoQsTx20r5kzZ7Ns2d386ld3DDnm1KnTiI+P56qrfkxBQSHjxunLP9dd9zMeeWQZb7zxFzweDw888AAAF174A6655ifk5OSSnT2uu4/pLFt2N3/+80uoqsoNN/xiyDGTk5O55JIf89OfXkViYiJOpxObzYbH4xnw/OnTZ/L8888yblwuBQWFACxZcjzr1q3h2muvwOv1ctllVw16L4dywgkn8dRTj/Lww48DsHjxcWzY8C0//emVdHZ2cNxxJxAbGzfkPQgE4YSGz+UjRoXU9/E40PhTJMOs5ZdQxsh79ng8vP76n/nxj69A0zSuu+4qrr76p8yde4Qh/RuF+DuPDSL5njVN48PSzyhtKWNr48Gl3b9f9JzP9zxUkYxhZ+qyLEcBrwATgRbgOkADXu3+/1bgOkVRVFmWrwKuATzAMkVR3vPJYoHp2Gw2urq6uPzyS7DZ7EyfPpM5c+YF2yyBIOKo6ajjvZKPDmt3eg7fTzOCkSy/XAW0KYpylCzLMvAs4ATuVBTlC1mWnwfOkWX5G+BGYAEQDayQZfkTRVGcplgu8Jtrrrlu2A1VgUDgH26ve8D2leXrmJkwy/DxRrJROh34AEBRFAWYBswHvuw+/gFwEnAk8LWiKE5FUZqB3cDsw7sTCAQCgVlr7COZqW8EzpRl+Z/AIiAXqFMUpceiViAJSASa+1zX0z4oKSmxftXpy8hI8PnacEXc89hA3HPk0GodeMNf1TRT7nkkTv1l9Nn5cuBr4Fugb/BwAnAAfb09YYD2QfGnengkb6wMhrjnsYG458iiqaV9wPYX1r3OnMQ5PvU51I/BSJZfFgKfKoqyBPgHsBfYIMvy0u7jp6M7/DXAsbIsR8uynIT+Q7DVJ4sFAoEgQghUKGMPI3HqxcDPujdC7wd+AdwM3Nvd5gDeVBSlBnga3cF/BtyhKMrg6YghSnV1FaeccjzXX39173+vvPIixcUKr7zy4qj7u/76qykrKx2w7f3332XFii8HvhB44IF7WLVq5WHt//rX24PGkwsEguDS7GzlyfXPU9pSDoDLa06Uy2AMu/yiKEoD+kbooRw/wLkvAqP3fCFGQUEhzz77wmHtPVIARnHGGWf5dN3//M8rnHbad7HZRO6YQBBqfFT2GcUH9vKHTS+z7Jg7eHLDHwM6fkh7hbd3v8eGui0DHrNaJLzq6B9r5mXO4ntFZ476ur7qhhdffB6zZs2hvLyM1NRUli37LV1dnTz88DLa2lppaKjne9+7kPPOO3/IPns0zs855/s89tgjKMp2UlPTqK6u4pFHngD0Wflf//oabW1tPPDA/Xz77Sb272/knntu56GHHuvtq6mpiQceuJu2tjY0TePOO+/l448/IC0tjXPPPZ+yslJ+97sHefbZF7j00gvJy5uA3W5j3759LFv2COPG5fD55/9h06aNXHnlf/Pww/fR3Kzve//sZ7cwadLgypYCgaAvWu//Hv322YCPHtJOPViUlpb0CksB3H33sn7Hq6oqeeqp58jKyubaay9nx47t2O12TjrpFI4//kQaGuq5/vqrh3XqPaxY8SUtLc28+OJrNDU18YMfnNd7TJan8pOfXMn777/L22+/zXXX3cyrr77EPfc82K+PP//5JZYsOY5zzz2fLVs29dNyOZTOzk5+8pMrmDJlKv/3f2/y4Yf/5rLLruL999/l2mtv4LXXXmb+/CM577zzqago58EH7+W5514a0b0IBGOZVlcbLa6DCqmVbdUBtyGknfr3is4cdFZt5m75QMsvFRXlva+TkpJ7tcp1pUUnWVlZ/P3vf+XLLz8nNjZuVGvepaWlzJypJyGkpKSQn1/Qe0yWpwGQmprGjh1DKyZ+97tnAzBr1hxmzZrDSy8dfOw7VA6iZ4yTTz6N6667krPOOpf29nYmTixi797drF+/jk8//RiA1lbzhf0Fgkjg1hX39b5u9/ge3ecPIe3UQ5WBVAz/9re/MHPmbM4773zWr1/HN9+sGHF/EydO4qOP3ufCC6GlpaXfD8jAiomWw5x0j2Li5MlT2LhxPStXriAhIbFXMfFQOeGefuPj45HlaTz99OO9a/wTJhRwyinTOeWU02hq2s+77/5zxPciEAiCi3DqBrF48XE88cRv+fTTj4mPj8dqtQ6olT4QxxyzhFWrVvLf/305qalpREdHD7kJOmfOXH75yxt55pk/9jrnSy+9nIceuo+PPnofSZK49dbfIEkSd911Gxs2fNs74x+Is846l5tvvpHbbrsLgB/96HIefvh+3nnnbTo62rn88qsHvVYgEIQWQqUxBCgrK6W4WOGkk06lufkAl156EW+++S4Oh6PfeZF0zyNF3PPYIBzvuaa9lhVVqzln0hnYLfok7LrPfjWqPn5/4m99GtsvlUaB+WRmZvHcc0/z97+/gaqqXHvtDYc5dIFAEFo8/u1ztHs6yIrNoL6jEYsUGjWHhFMPAWJiYnqLRQgEgvCgZyO03d3BpxVfBdmag4TGT4tAIBCEKe/uPVwrPZgIpy4QCAQRhHDqghHzPzv+zselnwfbDIFAMARiTV0wYlZVrwPglIITgmyJQCAYDDFTFwgEgghCOHWBT7i9bmraa4NthkAgOATh1AU+8ftNL3H/6seoaqsZ9tz/lH/Jy1tfP6ztpa1/AUDVVFRNHbUNjZ37eXjNk5S1VIz6WoEgUhFOXeATxQf2AlDTUTfsuf+3+998W7fpsLb1dZsB+OVXd3H/6kdHbcPfd/2TirYqfrvumVFfKxBEKsKpCwKKV/Ue1ub0uqjraACgw93Jyqq1lLfsY2vDjsPOre2oZ2O3xn7PNQKB4CAi+kUQMD4o+ZT3Sj7iqlk/GvB4TXstbxW/x/b9Sm/b0qkL+51z36rfAfDwkrvMM1QgMBlNtYA0+iXHkSBm6gLDcHldrKxaQ5dnYN3390r0zLsXt7zW29Z35n7/6sf6OfRD6bvu7vSh7qNX9R4mWSwQBBq1I56ub7+DtyHXlP6FUxcYxnt7P+b1nW/yVvF7I77mxi9uG9F5+1qruOHzW3vf/8+O/6Wu8+DyS0Vr1YBLOz2omsqNX9zGMxvDvoSuIIjsatrNv/Z84NfkwFNTAJoVyW5OQWrh1AWDsrF+K9XDhC1KHFQArWitBKCy3bgSXt9UfEt1ey2PrHu6X/vuAyX93j+89kn+prw96JfNreqVqJSm3YbZJhh7PLXhBT4u+5zd3YECo0Vz2/E2jkOKaseSVG+wdTpiTV0wIB3uzt5lkpFoPq+oXMWuA3sAqGytQtO0Aas2jZYnvxl5bdSV1Wvp9Dq5cuYP/R5XIAD4vGIF8fY4FmbP69f+WcXIK5v1xVM/HjQrtqxyDPh6DIhw6oIBcavuEZ3X87l8Q3m7t82jedlUvxWbxcZzm18xwbrB2VC3mS6Pk6/2rcRutXNc7tFYLdaA2iCIHN4sfgfgMKc+2L7RUGiahLcuHywerOmVhtg3EMKpC0xhb0sZn5YHR2P6reJ3WFm9FtBrsS4dvzgodggil56n0tGgNmWguWKwZpYj2UZemH60iDV1wbA0O1t5aM2TAx+UJNbVbAisQcPQ49BB37wVES+CUMBTOwEAW2b5MGf6h5ipC4bl9q/vH/RYfUcD/9zz/mHtJc3mfnBHSqenk0/KviA9Ni3YpgjCnDZ3u8/Xqh3xqK1pWBIbscS2GWjV4QinLvCLwR5D9zaXBtaQIfjX3g+GPO5VvUiSFDI1JgWhyb/3fuzztZ7afABsWWVGmTMowqkL/GJ74+DJQqFKTXst2XFZve9vWX43Tq+LK2b+kNLmcs4r+q4hkTuCyKLD0+nTdZrHhrcxB8nRiSV5eK0kfxFTE8GY4/7Vj9Hlcfa+78lOfWnrX/i04iuq2odXnhQIRoqnfjyoNqwmhjH2RTh1wZhkU/1WQJfvPRSvNnhmqmBsomqqTxLPmoYexih5saXvM8GywxFOXTAg/mwKhQNratYD8Or2vwXZEkE4cMPnt1Lf2Tjq69QDGWjOWKzpVUj2keV++ItYUxf0Y3nlKjRN48vKlYOe8/qOfwTQInPokTJod3cE2RJBJNMbxpgVuGiwYZ26LMt24M9AAeAFrgI8wKuABmwFrlMURZVl+Srgmu7jyxRFGbmykyAk+FufzNDB6BsHHq60utpo7GxioCXO/Z1N5CeMD7hNgshC7YxDbUnHkrAfS2xrwMYdyfLLGYBNUZRjgPuAB4DHgTsVRTkWPVP8HFmWs4EbgcXAqcBDsixHmWO2wEgqWqt8SnsOd5qcB/AMsH7e5GwG9Dqsf935JhWtVYE2TRABBDKMsS8jceq7AJssyxYgEXAD84Evu49/AJwEHAl8rSiKU1GUZmA3MNt4kwVGUt/RyMNrn+Tmr+4ac0sRmqYO+WO2quZbvq5aw6OiXJ5glGheq66Xbu8KSBhjX0aypt6GvvSyE0gHzgSOUxSlJ/e6FUhCd/jNfa7raR+UlJRYbDbfxZYyMhJ8vjZcMfqea2oPCgu9uP3PhvYd6jy54Y9YB0g4io+PIiMjAcd+/ZhH8wb8syY+2+GNtz4XVBu2nL1IlsFlKsy455E49Z8DHymKcpssy3nAZ4Cjz/EE4ADQ0v360PZBaWryfWaYkZFAfX3g1qlCASPvubq9ln2tVSQ44nvbihtLhrgiMvFqh5cUa2tzUl/fSnvbwVl8ID9r4rMd3mgaeOomgKRiyxg6jNHXex7qx2Akyy9NHJyB7wfswAZZlpd2t50OLAfWAMfKshwty3ISMA19E1UQgixb/Rivbn+DFldkfJFMQWSVCnxAbU5H64rDmlptWnWjoRjJTP0J4GVZlpejz9BvB9YBL8qy7AB2AG8qiuKVZflpdAdvAe5QFGXs7b6FGf8p/3L4kwQCwYjpDWPMDuwGaQ/DOnVFUdqACwc4dPwA574IiCKQIU7fWp6VbcaVnosUxNOLAKCqbfRyEWpnHGpzhh7GGNdiglXDIzJKxyDCaQ3Nx2WfA/3rrwrGFpqm8cCax0d9naemAABbdqmxBo0C4dTHGCXN5dy58sFgmxHyPLruWb7c93Xv+7d3v0eLq3XYQtyCyOD6z3896ms0tx1vQw5SVEfAwxj7ImQCIhS3102Hp4sNdZtZnLsIu8XG+rrNvLT1L8E2LSwoaemf1v1p+Ve95flGUohbEL70qHaOFk9dXndR6bKg7rELpx6h/OzLO3pfu1U3i8bNFw5dIBiGL/et5O+7/jnq6zRVwlOXD1Y31mHCGM1GLL+MAfZ3NXHbisFL0glGj6+zOUFooWoqv137DP8u+QTAJ4cO4G3MAXc0tox9SNbgSjcLpy4QjJJ39nzIL768k/V1m4NtisBPujxOyloreL/kk35RYaNB03o2SFWso9B5SYoyJ4NWOPUwpm/1nqEo9UHcXzA4H5V9BsCq6nVBtkRgJNsad/p0ndqShtaZgDW1BkvUyFNzbjr6cp/GGw7h1MOUDXVbuPmr37Cyqr8M7seln7Oyak2/tvLW4K7xRSoiNDSyGEixc0TXVRcCYBtXOuJrMmPSmZk11afxhkNslIYpq7o1zZdXruSIzFlEWaOQJIl/7f0gyJaNHSpaD4qhdXmcRFkdomB1GNPhg0qp2hF/UDN9FMlGdqt91GONFOHUw5wDzhZu/uouFmTN5bIZ/xVsc0aM5rajdsWhdcWiOWPRPHZQraB1PzxaPUg2F5KjCym6HUtsK5LNE1yjB6HD3cEty+9hZto0rp1zWbDNEfjIGyMoEHMoB5ONQkcMTzj1MKdnCWBd7caQduqa2463OR21OR21LRnNGTfqPqToNqwpdbpQUmxrSOht3bbifo7LPRqArY07gmyNIJBorii8jTn6pCO5flTXWkzMVhZOPYIItepFmteKd3823sZxqC1p0PNBtrqxJNVjiWlFiu5AiurQ1ewsXiSLiqZJ4LWhuaPQXNFoXXGo7Ymobcl4qifiqZ6oO/jUGqxp1Vhiglcku8XVynslHwdtfIF/+KN95KmdAJoFW3bJqCcY0gA6/kYhnHoE8YdNLwfbBADUzlg8tRP0yi+q/hGzxDdhSa7DmtyAFDP0LPvgobZ+7ZpqQT2Qof9QNGXiqSrCU1WEFNuCLWMf1vR9SNbD9dEDyaflX7Eoez7xjtE/iQgCT6en06frNK9VzyC1ObGmh1a5Q+HUI4g9zaVBHV/tjMNTWYR3fzYggb0L27gSrOlVWKJ8+/L0RbKoWFNrsabW6k8BTZl4949DbU7HXTYdd+Uk7Dl7sGZWDFltxkze3v0eO/cXc93cK4IyvmB4vKqXvc2l5Mbn+Pyd8dTlgdeObfwuJIsvEwnzPp/CqYchFa1VbPUxptYMNLcD977JeOvHAxJSbLPuzFNrkSRzPryS1YstvRpbejWa24GnZgKe2gm4y6fjqZ2APX8nluT6oKy7C9Gv0Objsi94r+Qjn6/XVAlv7QSweLBlhl4OiHDqYUCXx8kbyltcOOcM4kjm4bVPBtskQF8O8VQX4KmeCKoNKboNe54ScGcq2V3Y84qxZZfirirCW5uHq3g+lqR67AXbRpUQYhSVbdXE2WNJjhqyTK8gwLS52v1y6KBLAmiuGKxZpUg2t0GWGYdIPgoDlld+w7rajdz9+ej1nc3C25yGc8sSPJVTwOLFXrCNqFlfY00JzuwYQLK7cUzYQdSsr7EkNqA2Z+g21o1HC/BqzINrnuCOrx8AoLhpLxvrtgTWAMGAvF/6H7+u1zT0SYykYh8XOmGMfREz9TDApeqzgU538KNbNFXCs28KnppCQMWWXYItd3fQRYz6YolpxyGvw9uQi7t8Ku7SmXgPZOIo3IJkN39m1eQ8WG+9rqOeJzc8DwjJ3mBT2lLeTyPfF9SmTL3+aPo+JMfIZDoCjXDqghGjdsXg2jMHrT0ZKbodx6RNQSvZNRySBLaMSiyJjbhLZqIeyKRr62IcRRuxJhwYvgODuHfV7wI2lmBwmp0t/G7ds37349o9DwCbn7N0Mx8cxfJLCLO+bjNvFb/bTz2uw+1/FIkvePdn4dx2DFp7Mta0SqJmrAxZh94XS1QXDnkdtvEKuB24dh6Jp258UGz5ump1UMYVQKurbfiThsHbkgJIWOL3BzU3YjjETD2EGaioxWPf/j6gNmiqBXf5VLx1+WDxYC/cjC0jtOJyh0OSwJ5TgiW+GdfuubhLZ6K5Hdhy9gZ0/f+vO99icc6iwA0oMBRP1SQAbLl7fO5jXsYsNtRvwW4xz/UKpx5m1HQErvah2hmHa/cctM5EpJhWHEUbQ3qGMhzWxP1ETVuNS1mAp3IKmjsK+4QdISE3IDAXf4XW1LbEbuGuRqxJjT71EWOL5vuTz8KrqZxXdIZf9gyFWH4RDIinMRvntqPROhOxZpQTNeObsHboPVhi2omavgopphVv3QTce+agqcKrRyJv7HyLR9Y+ZUhf7uqJANhy9vrVT0p0MtfM/jGZsRlGmDUgwqkLDsNdXYB7z1wA7JM24ijc7mPWXGgiOZxETVuNJWE/3v3jcO2aj+a1BtssgQHUddRT064/za6oWk15H3lkX1E741CbspDimrEkjm6WfvWsH/V5F5jJg3Dqgl40DdwVU/BUTAV7F1HTV2FLqwm2WaYg2Tw45HVYkmtRW9Jx7jgSze0ItlkCP7l31e+4f/Wj/dq8qpf/lH/pc596EQwJ+7jR78HMSp/O4pwjAXBYzNNQ74tYUxcA3Q69dAbe+jykqHYcU9cGJRMzkEgWFcfkjbhLp+Otz8O5fZHu6KODE2EkMIc1tRtYU7Pep2tVZ0y3vG4blpTRyz9YJAtnTzqdNncH3y082ScbRj1mQEYRhDSaKuHaPVd36LHNRE1fHfEOvQdJ0rAXbMOWsxvNGYdzxyLUTvMUFjs9XT4XOBYMza6mgaNSWv0oO+ipLtTldX2IlDpm3EIA4u1xXD3rR+TGj/PZjtEgnPoYR/Nace2aj9qUjSVhP1FT1+ra5mMISQL7+N3Y83eAOxrnzoWoXTGmjPXLr+7ixi9uM6Xvsc7bu98bsP2z8uU+9ae5ovDWj0eK6sCaNnrd9UumXeDTuP4inHqQaHd3oGrB3XzU3HbdgbWkY0muxSGvC9mScYHAll3W69hdykI0V5RpY1W0hlesfzjT6vYt8cjdM0sft3fUaqPj43N8GtMIhFMPAgeczfxq+T28sOW1fu1ur5sdjbvY1bSbzytWmGqD5orCuWNRb4aoY/LGiIpw8RVbdhm23GI0ZyxOZQGax5xtp5VVa+jyhKZ2iECXk/bW5SE5OrGmjz6CJikq0QSrRobYKA0CPXrbWxq292t/s/gdVgQglVztjO2eieryofb8nSIBpw+2nD1oHjve2gJcxUfoTzAG/+B9VbmSxq79/HTO5Yb2KzAGfS3dqs/SfSi4snT8YhOsGhliph5C7GzabfoYamcczp2L0Fwx2MbvEg59ACQJ7Pk7saZWo7am6klYJigwbQuhQieRgFEfY80Vhac2X5+lZ+zzqY/cIC6/DDtTl2X5J8BPut9GA3OBJcCT6GJjW4HrFEVRZVm+CrgG8ADLFEUZeOdCMCBm+1bVGY1LWQDuKOz527Fll5s8YvgiSWCfuBnNFY3aloKnQsaerxg+zoeln3H0uIUkRSUY3vdYw6jfXXfPLD1nj89lEYP59xx2pq4oyquKoixVFGUp8C1wI3AXcKeiKMei+6JzZFnO7j62GDgVeEiWZfN2miIQf/UphkJz23EpC7pn6Ipw6CNAsmg4Jq8HqxtPTaEp6o7v7v2QV7a9bni/YxEjQkU1V5Rfa+nnTz6bO478hd92+MOI19RlWV4AzFAU5TpZlu8GelK0PgBOAbzA14qiOAGnLMu7gdnA2sH6TEmJxWbzPT0QZyjhAAAgAElEQVQ7IyM8ZzfV3tje14kpUUTZ9ExGq9Wc1TDNa9U3/brisWXv9VsLeiwh2d1ETV+Fc8uxuEtnIkV3YE3cb+gYDc7Gwz7L4frZ9gd/77mvL/G1L3fVRL9m6Rcecfqozjfj7zyajdLbgXu7X0uKovTccSuQBCQCzX3O72kflKamjlEM35+MjATq631PKggmB5oP3velb93UWxHH6zU++kRTLbq2SUcS1owKbHm7xBr6KLHEtOOYuhqXshBX8Vxd3MzArFPVq1Ff30qXp4uS5nKOlY+gocF//e9wwojvs8dzcKZeVjX67E89Lj1Pj0v3YZYOjOoe/LnnoX4MRuTUZVlOBmRFUT7vburrfRKAA0BL9+tD2wWHIA2yei4ZvG+taRKu3XNQW1OxpNRgL9gmHLqPWBObsE/Yjrt0Jq7iI3SlR4NK+DW7Wvig5NPegshR8VczMarIkL7HElXtB3WKbll+z6iv12fpFp9n6SlRyaO+xgxG6kWOAz7t836DLMtLu1+fDiwH1gDHyrIcLctyEjANfRNVcAjaIVs6H5V+xidlX9DmY5LEgGNo4N47E/VAFpbEBhyTNgmH7ie2zH1YM8vROhNwl8wwNCKmb4X7iubRZy+OVfa1VlHbUe93P6ozulf3yJruW2LYrUfe5LcdRjDS5RcZ6CskfDPwoizLDmAH8KaiKF5Zlp9Gd/AW4A5FUcaGgMgouOebR6jv7C/f+c7eDw0dQ9PQqxU15iLFHcAxeYPPu/iC/tjzd6B1JODdn4MlvhlbdpnhY7Q4w3NZMRg8tPZJwP+i3p6eWXrunlFnj/YQbzdPM2g0jMipK4ryu0Pe7wKOH+C8F4EXjTEtMjnUoZuBp2oS3toCpJhWoqZ8a9gyga/E2mLo8Pi+Bp0Tl93v0TqYSBYNR9FGurYdjbtcRoprwZrQZOgYqys2cGL2UirbqhgXl02CI97Q/gX9UZ0xeBvG67N0HzReQg2RfGQSmqbR0q0O1+xs4f2ST3B6zRfK8tTm46mcjOToIEpeh2R3mz6mmZw2eSk3z/8pNhNrOo4WyeHEUbQJQC/3Z7AOe1NXM7euuI+nNrzAwwZV7olEXN6Dn+31dZt97ufgLH23z7P0UEI4dZN4r+RjbltxP9sad/LKtr/y75JP+KTs8+Ev9ANPYzbusulgd+KYug7JETraIncfdYtP150/47tE26J5aumDTEudYrBVvmNNaMKWt0sX/9ozx/CM0x6xtwPO5mHOHLvcuuLe3tcDFWkfCWpXDN6GXKTotoiYpYNw6qaxfN83gJ4KXtfRAMC+NvM+NN7WZNx7Z4HFQ5S8Dku07+GiRnPJtAtGXJNxUfb8fu+jrKFbjciWXdpdOSmtt9K8IHAY8eTrqZrUZy3dAKNCAOHUA0CzqwU4XMDLKFRnNK7ieaBZcBRtxBIbWhtt04eYYR9aDaavE//x9It7E7NCEUkCx8StSI5OPJVFeFtSgm3SmKDZ2crzm1/xux+1KxZvg17VyJoaGbN0EE497OkpcoEnCvuEHViTGwI6ft4wwkU5cdnYh6jNeMYQJb7yE/qn5Q8W3x9MJJsb+6RNgKYvw7iNr0O5qX6b4X2GI62uNryql3+XfMSWhh1+9+epnAT0rKX7b1+oIJx6GKNp3Rt1nQlYM8uwZQVezyV+iMiM84q+yx2LftGraXPWxFO5YPI5gTItYFgTDmAbX6yvr5fMMnx9/R+7/mVsh2FIq6ute/P4j3gM0HhRO+L12qMxrVhTQyOyyiiEUzcJb/dGV3HT3mHO9B1PhYzanIklsQH7hODIuA61eXlSfv+o19MKvsPi3EW97xPs+g/CY8fdP+pxM2PTB2y//cifU5iYP+r+/MU2rgRLYgPqgUy8dYEfP9LZ36WHje5pLjWkP3flZEDCPj7yZDOEUzcI7ZDpWZdXz7syK77aUzceT00hUnQbjqKNQQvF8uf7YLXoAkzRtijOLDyFS6YOU9Oxe7AJCXncfdSvDjt81sRTyY0fx09m/OCwpRuz0dfXt4DNhbtcRu0QseVmUdHqmy5LD2pbEmpTFpb4JizJvmejXjDlHK6dfRkAcbbYYc4OHMKpG8C/9nzA9Z//ujfKxWy8Lal66KLVhWPK+qDWFc05pEL65OSJQ55v6fMzEGOL7n19euFJHJOzcERj9sgsTEudwtHjDl5zWsF3AEiPSePXC29kfuac3mOByPaTHE4chVtBs+LaMxtNjbApYIjgz0RJ08BdIQNgy1P8mqUnOhKYkTaVCyafw68W3uh7RwYjnPooOXRGDvBxd/z50xteGPQco1C7YnEVzwXAMXlD0EMXp6ZO5udHXNv7fmH2vCHPt1qs3Dj3auSUIq6aeemQ5yYfUufx0I3S6+deyQ+nXcCyY24fUMO6x/lnxWbwyLF3DzmWUVhT6rBmlKN1JuLZZ0xcfZPzAG3udpxeF5vrtxmiGz5WUZvTdYG7pDqsCf7pDc5Jn4EkSSzNW0x6TKpBFvpP6KTphQG17XXct/pRfjTtIhaNm3/Y8VZ3Gy6vm1u+usuU8TWPTY908TqwF27BmmhserqvFCUXjup8ObUIOXVoFUK7xUZ0n5n8UKREJzNQMOGkpELW121meqo8Kvv8xZ6v6LHrNQVYkusN0V//9fJ7SXDE0+pq44Ip5wS1Bma4omng3jcZ0LDn7fKrrwkJeb3Lh6GGmKmPglU13wLw151v9rYdOiuv72zAoxk/k9JUCdfueWhdcXqhiwz/1hXNIis2E4Apyf4l40RZhyqaNbInoePGH83Pj7iWc4vOAPS490AgWb04Jm0GNNx7Z6F5jJk7tbp0Fc/K1siJqR4JH5Z+xvsln/jdj3f/OL2uQFo1llj/FFGX5B7ltz1mIWbqfrC3uYzHvv19vzYzYqk1Ddxl01Bb0rAk1+rp6UHkkqkX8PrOf/Rru+uoWyhu2kNRciGPHXc/Dqvx8dqj/Ze1SJZ+TxGOAGanWuKbseXsxVNVhLtsereTN4rw1ycZDe8aoGKqqRKeiikgqdhyi/3qyyJZRrz/EwyEU/eRhs79hzl0j+rhT1v/x/CxvLUT8NbnI8W24Ji0OSghWHaLDbeqb8hG2w6fRWfFZpDVLQUw0HEj8dWl9WyW2i123Kr5Qme2nD14m9PxNubgTanFmjr6ajwCY/DW5aO5YrBmVPhdteqswlMNssocxPKLD3g0L+Wt+wY8ZoRgf1+8B9Jxl08FexeOyesDKqN7esFJA7ZnxOgx4vkJuQGzRce/X7NJSQVcLJ/Xb1P10ePu44HFd/hr2IBIFk0Pc5S8uEqnG5ZtOrbm6f6jeey4KyeB1Y19vO9PuTaLjceOu59TCk4w0DrjETN1H/FVFW40qB3xuHbPBUklavIGLFGBrTli6fNIcFrBd3h3r16dJy8hh1sWXE929/p5uCBJEsfmHg3A5TMuoaqtmhhbNFbJvLmNJaYd2/hiPBVT9WWYbsleQeBwV04CrwNb3k6/pajNfgo1AjFTD1E0twPXriNAtWGfuAVLfOAlWPvOCHtiwHsoSMwfcXTKaCjozgadlT79sGNnTzqN5KgkLpxyrt/jzM+aw1mTTgP0tfbLpv+AhVlH+N3vQNiyS7HEN+HdPw5PY7bf/a2r3chnFcsNsCw0cXndvLvnw94sUn9Qu2Lx1uUjOTqwZflXpSpcsg6EUw9BNNWCq3gemisWW24xtrTQ0KYIRNbcwux53Dz/p1wkn3fYsdz4cTyw+A4mJk0wfNwF2fP4yQxzomMkCeyFW8DixV023e+iGm7VzVvF71LWUmGQhaFBTyTZ5xXL+bDsM/64+c+0udv96tNdMUWX1s3b5XNJx0lJBX7ZEGiEUw8xNA3cJTNQ21KwplZhy9lj6njPnvDIiM99aMlveHLpgyZao0cWTEwqwB5ClY6MwBLToa/nehz6+roBC+O/XfcMzc5W3N0VgFRNpanLv4SaYLGpZjvXf/5rNtVv663Z29C5n2c2+F4d09uagtqUjRR3wC/RrsLeSUR4zNWFUw8xPNUTewtG2yduNTXS5fuTz+pVUOwh1hZz8M0hnsdqsUacsx0MM54GrFllWBL2ozZl420cN/wFI+D2r+/nvtWPAvDytr9y58oHqTSxGItZPPDlMwC8uu2vvW1d3i72tVX51F9PGDCAY8IOv75HWphtTQunHkJ4mzLx7JuC5OgkavJ6JItq6ngDZVqeXvAdFuccybzM2aaOHaokRyUBcMXMH/L48csM7fvgMowHd9k0NJcxm277u5po7NzPhu46neUtA0dmhQMug0JNvfV5aB2JWNMr/dqP+s2im3tfh8c8XUS/hAxqRzyuPbPB4tFDFx3mF6keiKy4TE7MPw6AspYK3i/9z5CFLCKNO478BY1dTb3O3Wgs0Z3Y8xTcZTNwlc7Q/9YGeIu7vnm49/Wmhq0cHcLJMWajeey6HIDF41cI41HZC8iOywq7GFIxUx8At9cd0IK/mtveG+nimLgFS1xgytH1+JLbj/x5b1ta9EFhogmJeTxx/LLDSs5FMrH2GPISBq7m9NM5lxsyhjWzAktio6693jh05Shf2NKwY9A8ilBD1VQaO43VMHLvKwKPQ69o5Efx9RPzj+3fECbC62KmPgAPrHmc+s5GChLzmZw8kdMKTiTaFm1KtEGvposrFlvO7qBkHebGj+Ox4+6jrrOB7Lj+seeBTK0PRVKikmly6puPFoPi2fVlmK04tyzGXTYNa2KjX85nIJqdLZBgaJejpiea5dB9mx7+V/k/vqr8xtAx1Y54vHV5SFHtfocwhitipj4A9Z2NAJS2lPNJ+Rf8YdPL/HP3+yhNuw0dR9/Mma5LgabUYMs1tv/hSI9J630dbYsOeGGJcODm+T81pV9LVCf2/J3gteMqmWl4CbxQ4HfrnuX+1Y8Netxoh35wc9SCfcIOn0MYe+hJrhMbpWHI8spVvL7jH4Me39NcyiflXxg+rrcuH299nq7pMnGLaU93PZosfbl8xn+FrHRoKJESndzvvVUy7t/MmrFPL4HXnIG3IdCSC+D0unh245/YZfBkpYey1gpqO+pM6Xsg1KYs1NY0XSvdzwLsJ+cvPez7ER6LL8KpA/A35W1WVq9F1cyNNumLtzkNd9lUsDlN13S566hbOH/y2f3aMsMsxT9UMGpdHQ4uw2B14y6fiuo0LkN3JFW41tSsZ8f+XTzVXdwlnNG8Fl0jSVL1JyAD6YlTn5cRHhFhwqn3QUIytWpRD2pnbLemS3f1IhM1XXpEt7Q+P1gn5C1hfLwxcdJjDaM/H5aort5lGLeByzBv736vV1VzMALxWQ8UnsrJaK4YXZIhxthqYPMyZnHLguu5eOr3DO3XLIRTP4Q7vn7A1P41jw1X8Xzw2rEXbPW7pNZwZHYvvdi79c3tFhvnTz570M0rweH8cNqF5MaPY1JSIaoJ66vW9EosSfWoLel4643b1/j9xj/x913/NKw/I2jqOsA/d79Pl8e4iYzaEY+nRtfNNyoDO6pPgIAkSRQk5odN4l14WBkgNDSaXS3m9a9KuHbP7VO9yLdsuZGQFp1CY1cTi7L1sntHZS+gorWK47pVCgUj5+hxCzh63AIAxscbH4IoSeAo3ErXliW4y6diSWrEEuWf5jdA8YG9FB/Yy4y0acxIOzzRLBi/6y9ve529zcZFpWgaOLcuAcCev8OQZcxjxh3JCXlL/O4nWAin3oc7TZylaxq4y6ehtqRjSa4zvXrRz4+4lnh73MEZutXOf039vqljjgWSosyJE5QcTuwTduDeOxt3yUwc8lrDnO7eAyXMSJPZub+Yqrbq3uQys2hxtfJp+Ve97/+8/W9cNOVc2t0d1HfokWVruktD+ounpgAAKbYZqwEhjNfPuZJpacYUDA8WY9apFzft4cPSz7hy1g9725pd5iX9eGvzdQnQmBYckzaZPkuKd8SHzeNiuJEanWKILOyhWNOq8O7P1pOS6vKwZRmTF/Fh2WfMypjOMxt1caxJyYW4vC76xnOUt+4zLKT1jZ1vs7lhW+/7NTXr8apevq07qCVvxHdNc9vxVEwF8Ct6bF7GLM4oPJmU6CRi+mofhSkj+tbLsnwbcDbgAP4AfAm8ip5AuxW4TlEUVZblq4BrAA+wTFGU98ww2gie3PBHAFZWrTV9LL160TSwO3FMCWz1IoHxHDNuIe+VfMyS3KOYmDiB13b8ryH9ShI4CrbRtSUZd4WMJanB79JrPfxu3bO9r3+7ThfPulg+uPFX0VJpmFMfKBt7T3OpIX33xV2uO3Rb3k6/CklPSZlETrz/OvehwrAbpbIsLwWOARYDxwN5wOPAnYqiHIv+c3+OLMvZwI3d550KPCTLckiUCRkqVNHsxIL+1YvWB6x6kdgGNY9TC07kVwtu4KIp57Jo3HxD++5ZhkG14S6ZZWpS0qGfEVVT2dKwvfcpZKDvjaqpvLjlNdbUrOft4vd4v+STw87pcB8efWK07Ib3QLquZhrbjC3b92WXn827hiW5RxloWfAZyUz9VGAL8H9AInALcBX6bB3gA+AUwAt8rSiKE3DKsrwbmA0MOhVOSYnFZvM9mSMjIwFVValtb2BcwsBx139a9wYf7/mK1773BNH2w+OAuyRjw5/6orkcuHbN16sXTdoY0OpFGRmJ2CIkuSgjI8j57gOQlXlQ8Ov8GWfw5rb3AfjvhZfy/Fr/io9b06rxNmXpEr21E/xyWkMRF38wwuMfu9/hr8pb+viShVe/9wSXvnUT35m4hGsWXtJ7XmVLDRvrt7Kxfmtv24+P7B/q1+I2V7tI81pxl84ASe1edvH9l++YKXMNtGz0mPHZHolTTwcmAGcChcA7gEVRlJ5/yVYgCd3h9/VaPe2D0tTku0PNyEigvr6VN3a+xYqq1fx0zhUD7vB/vEffsNleUUpeQi6vbf9fJiTm9R7/oPhzn20YCs1rwVl8hB47O36XqdWLjh9/DF/uW9mvraG+NSIyRnv+zqFMtu1gRMyshFl+96cvw2ynqzUVd8UULImNfi0vDEbDgYORXj2FNgC8msrOCv2H5NO9K/hewcHEtf3th1ciqq1r7qeLY3b4u7tC1r9XObv9/ncJ5mfLn8/2UD8GI4lTbwQ+UhTFpSiKAnTR31knAAeAFvpLCPW0m8rKav1BYM+BkiHP09BQNZXVNd+aHruraeDaOxutPRlreiW2cXtNHc+Imp2C0EKyu3AUbgXNqn+W1MAuqH1Q+p8Rn3vD57fybe1G1tVuZFX1OhOtAm9LanfAQavpVcHClZHM1FcAN8my/DgwDogDPpVleamiKF8ApwOfA2uAB2RZjgaigGnom6gB4aOyzyhMyu9XsFjf4ddpd3ewrnZjQGzxVMioTdlYEvZjLzC3etFgiOSi8MeaUoc1owJvfR6eysnYDQ6D3VC3ZdBj67sLbvRF1VRaBsnjeLlPxSK7xe6/cQOgea24984CVByFW/0W7IpUhnXqiqK8J8vycehO2wJcB5QAL8qy7AB2AG8qiuKVZflpYHn3eXcoihKYXcFunt/8Kr8/8be97/uu+z2/+VU8w6RNG4GnZgKemkKk6DZd08XkD96Ppl0EwHG5xwAaS3KPorFzv2EysYLgYs/fidqSiqe6EEtSPdZE40Ipy1pHFjJZ3LSX32/6E27Vw5mFpwx7vlczJ7qra+Px4HXoyy4B3J8KN0YU0qgoyq8GaD5+gPNeBHyvFOsD0gBxHqqmIiH1270PhEP37s/Sw6zsXTjkdUg2c8Z85Ni7+fXyewF6oy8ukg8uweQKXZeAMr67qMbinEX92i+Wv8fflLf96luyenFM2oxz+yLce2djmfm1aZ+rwXhyw/O9r3c2FQ97vhnCeJ7aPPA6dJ10sewyJBGZnXLXyod7CxsECm9LCq49c8DiJWrKtwELXRQEnwRHPE8tfRDbIclex+YexdHjFnDTF7f71b8lvhlbzl48VUW4y6bhmDT4sonZ7B5m78oMNJcD9z49y9NeuM3vp99Lpl7A6zsHl9oOdyLyGT3QDl3tiMdVfATQrbpoYjm6Bxf/hhirHpo5UOFoQXA41KH3bTeiHKAtZw9S3AG8jbl4GiMnUWY4eoIO8Nqx5+/Amrjf7z7TY1IMsCx0iciZeiDRXFF6LLrXjn3iZqxJjaaNZbfae7VHnlr6oKEFGwTmEWeP87sPyaLpyzBbj8FdOgNLfLMhol+hjqe6UNdLSqo3RNsFzA+5DDYR59QDWehC89hwKvMPxqKnm6e6CHD5vAt7Xw82MxQEnwcX32lKprIlukMX/SqZhWv3HKKmrY7oCBBvazKefZP1PaqJm8Ol7nPQCVvPsK+lmveKPz9sp/2Gz28NyPia14Jr1xFonYlYM8tNjUW/ad41NHbu54TCY2hsPDz5QxBaJEUl9nufl2CcXK81vRK1JVVfhtk3BXu+YljfoYTmtuvyGoCjaBOS3T3MFaPoO8xqjo6WsF1T/82nj/JZxfKgjK3ros9DbUvFmlqNfcJ2U2cR8fY4js5ZiMUStn+uMc3EpALuOPIXhvQlSWAv2I4U3Y6nphBv0+H1Z8MdTUMPOnBHYxu/G2uC/2Gc3598lgGWhQdh6yXaXeZptgyFpoF772zU5gwsSfXYxWOhYAQYqQIoWb04ijaC5MW1dzZqV6xhfYcCnn1TuusO1Br2BHzC+CXMSJvKBVPOMaS/UCZsnXow0DRwl87Au38clvj9OIo2mLqmuTBrHqDrdwvCnytnXsr3i840pC9LbCv2wm3gtevLgN7I2DT3NGbjqZ6IFNXul0b6oUiSxE/nXM7S8Yt7q1cdG6FVwMJ2TT0YePZNwVufhxTb0q2Lbu6m7E9m/IBLp10YEcJcApiXqYt9vbXbmDIDtvQq1PZEvLUFuPbM0TOYw/ip0duagnvPXLB49O+XSUlW8Y44nl76UMR+r8Jyph6MKujuqon6DCK6nSgTs0V76NHPiNQPnsAY7PkKlsQG1AOZeCqLgm2Oz6jtCbh26Bm5jolbsMSYGxAQyd+rsHTqjV3+JyCMBk/NBDz7piA5OvXakXbX8Bf5wKz0ab2vr519mSljCCILSdL08ohRHXiqivDuzwq2SaNG89hwblsM6FWMrKm1QbYovAlLp97pcQZsLE/NhO5SdF04pq41Nf1/cc4iFmXrWi59Nd8FgqGQ7G4ck9eDxaNvnLYNWcYgpOiJJOvBll0aPGMihLB06lsbdgRkHE9tfq9Dj5q6Fku0+RE3P5p+EU8vfYhoW0hUAhSYwN1HDaSP5x+W2DYcRZtAlXDumo/a6X8Wq9lomoRrzxzUljQsKbVEL/zQ0D2BQwXWxgph6dTfK/nI9DE8Nfm4y6aD3ak7dJPX+PoSyet9AsiMTWdKivHr39bkeuwF28HjwLnt6JAOddQ0cO+Z1Vt3wDFpk+GbvOdOOsPYDsOEsHTqZuOuLsRdPr17hr4moA5dMPa4/cifYzNIx8eWuQ9bbjGoNpybj0NzO4a/KMBomoR772y8+3OwxDfhmPItksX4SLJYe4zhfYYDwqn3QdPAva8IT4WM5Ogkappw6AJzGN9H8z4nLtvQoia2nD1YEhsA6NqyGM0TOpHLmirh3jMbb2O3Q5fXIVmNL6oxL3O24X2GC6Hz1w4ymqaXofPUFOqJDyZvigrGNmdNPI3x8TnMy5yFJEkcOW4+KypXGdK3JIFDXqc7z/05OLcdo4t/OQIXYDAQmteKq3ieni2asF+foZvg0PvGoF8/90qSHInDXBFZiJk6PZmi03WHHtOqz9CFQxeYiMNqZ9G4+Tis+vLIhZPP4TeLbjasf0kC+6TNSFHtaM5YnNsXBXXzVO2Koevbk3vT/82aoUP/PalpqVMMlWgIB8a8U9dUC+49c/DW5yPFNhM1dY3hM5qT85ca2p8g8rBarGTHGRtjLkkQNXs5ttxiNJfu2L0tqYaOMRI8jdk4tx0DgCWlBsfkjYavoZ+Yd6yh/YUzY9qpax4bLmWBruWSsJ+oqWsNlfjs4aT847loynkDHpufOcfw8QThy9yMWYb2J0lgz92DvXALqDZcOxfgqc0PSKEIzWvFtXemnvqvSdgnbiZq8kYkyf/BJyT0z+MYSyqMwzFmnbrqjMa5YxFqa6o+ezAx9T/eEUd23OESqc+c8DCXz7zElDEF4clVsy41pV9bRiWOqWvB5sZdNh3X7rlobrspY4Ge9u/cdjTehvH6E/DMlaYXkRHojEmnrnbE49x+FFpnAtasUhxFxj8OjgQjIx4EkcPzZz1kSr/WhCaiZ67EkrAftSmbri1L8DRmGzpr17xW3JWTcG4/Gq0rHlt2CVHTV5mSuBepKov+MuaiX7wH0vWKKqoNW95ObNmlpirb5SXkmte5ICJJjU02rW/J4cQxdQ2emgI8+ybj3jMXT0UntvHFfs2kNVcUnvrxeGongMehy2oUbsWa3GCg9QeZlzmLCYnjWV75jSn9hzNjxqlrGvoHuUIGScU+aSO2tBrTx7114U3DnnNy/lI+Kf+CgsR80+0RhAfZcVnUtJsjbCVJYB9XijWlFnfZNNTmTD0ZqH481sxyrMn1I4pM0TRQ25Lx1ubjbcoGzQJWN7ac3djGlZgW3QJ6EfYeXfQTxi8BdL36drfIKxkTTl1TLbhLZuBtzNWzRCevxxLfYtp4iY4EWlyt/drslsEz+84tOoOzJ50mlmMEAcUS3UmUvF4vTFE5GbU1FbU1FbekYolrxpLQhBTThuToQrJ40DQLuB2ozlg81YXgOahPJMW0Yssqx5pWZaoz70usPZZnTni493vTo1c/1ol4p665onAWz0NrT0aKO0DU5A2mJ2E8tOQ3XPdZf9GmgsQ8Ti/4DrPSp/Pbdc8cdo1w6IK+FCTkUdNey3cLT6a+s5E1NetNG8uWVoMtrQa1Mw5vYw7eA+mobcmobSOruOWYugZLwv6AFuiQ0AcT35vDiWin7m1J6S1ga02rxF64LWAbojfMvYrkPlXlJUnizJWXdM8AAAwUSURBVImnBmRsQfhzwZRzmJY6mTmZs/hq30rWYJ5T78ES045lfDH28cVoXitqWxKaMxbNFQOqBSQVbG4sUZ1IMa1I0R1BqbQ0JaWIRdlHBH7gMCEinbqmgae6EM++KSBpAdkQvXn+dTz27e97309NnWzeYIKIJ9oWxYJsXWd8dvoM3jaoBN5IkaxerEn7gcAWpBkJN827OtgmhDQR9+yieey4io/As08Gu77Tbx9nrkMHSBPFoQUmkRGbxjMnPBxsMwRhQkTN1L0tqbj2zAZ3NJbEBl2j2YQMUYEg0Ii1Y50Y29iU0x0NEeHUNVXCU1mEp3oioGHL3YUtZ29A1/sSHQnMz5zDtDQ5cIMKBBHKXUfdwtdVq/m0/Kvetstm/BdHjGFJ3ZES9k5dbU/AVTILrSMRKaoDx6RNWOKbA26HJEki5V8gMIis2Aympkzu59QXZM0NokXhw4icuizL64GewO4S4AHgVUADtgLXKYqiyrJ8FXAN4AGWKYpi2u6Opkp4qibps3PNgjWjAnv+zoDFyPbl1oU/G9X53ys6k4bORpOsEUQqtx/5cx5c8wQAC7OOYG2t+RExocKvFtwQbBPChmGduizL0YCkKMrSPm3vAHcqivKFLMvPA+fIsvwNcCOwAIgGVsiy/ImiKIYHhavOGFzF8/TZuaMTe8E209KRh6IouZCLppw3ar3m7+QfZ5JFgkgmIyYN0DXCfzLj4jHl1Cck5g1/kgAY2Ux9DhAry/LH3effDswHvuw+/gFwCuAFvu524k5ZlncDs4G1g3WckhKLzTb62ozexnFoHYn67DxPMU1dcSiunH8xpxQdH/BxMzISAj5msBH3fJD/vfAPSMEIDg8wGRkJJHli+72PRMy4r5E49Q7gUeBPwGR0Jy4pitKj7dYKJAGJQN/F7J72QWlq8k25zTauBGtqNZboTp+u95UfyN/jDeVtANrbXNTXtw5zhbFkZCQEfMxgI+55cB497j5aXa3cu+p3AbAqsNTXt9Lc3NHvfaThz2d7qB+DkcRJ7QL+oiiKpijKLqAR6FuiJQE4gL7mnjBAu+FIkhZwhw6wJPeo3tcLRUabIMjE2KLJjM1ATikKtimmkBWr1yCYnDwxyJaEFyNx6pcDjwHIspyDPiP/WJblpd3HTweWA2uAY2VZjpZlOQmYhr6JGlFcNOU8rptzBVHWwQW6BIJAct2cK4JtgqFcM+vHAKTFpLLsmNu5Ye5VQbYovBjJ8stLwKuyLK9Aj3a5HGgAXpRl2QHsAN5UFMUry/LT6A7eAtyhKErEVG+++6hbADhuvBDmF4QWfQstRwKzM2b0vk6JNk9bPlIZ1qkriuIC/muAQ4ftEiqK8iLwogF2hRRXzPwhmbGHl6MTCEKFo7IXsKpmXbDNEIQAIvd4BMxOnx5sEwSCIbl0+oVcP+fKYJsxYn6z6OYB26elTgmwJZFH2GeUmsElU8/HbrHz6vY3uHXhTdgs4p9JEPpMS5vCfUffxl3fmFPj1Eiy4w7GWvx4+sWcPuNYVu/ZSlFyYRCtigyEt+pDkiORS6ZdwIxu/ZYFWXPHREywIHJIiwl9tdBoa3S/90dmH4HFYhEO3SDG/PJLX/W7pKjEXocOCIcuiAgulr8XbBOIt8f1vrZF2MZuqDHmnbqIgRVEKifkLeH8yWdzbJ/8imBx68Kb+uV5CMxjzDv1H0+/uPd1T91DgSASOH/y2ZyQtyTg454y4YQhj/d8z66e9aN+3z+BMYx5p54Ulcj0VKGBLhAYxTmTTh+wfUb39+zonIUAzMmYyZEiM9twxEYpMCFxPNv3K0xMmhBsUwQCv/ndsfcgBalS0qSkgTc7JUlidsYMlh1zO8lRQ0pCCfxEOHXgtILvkJeQyzQxYxdEALH22EGP/XrBjTS7Wnh+86umjP3fs38y5HGRIWo+Y2755WL5vMPabBYbczJm4rDag2CRQBBYJiYVjOi8x467b9R9x9pFDdFgM6ac+pTkSRybe1C7Jc42+IxGIIhU4uyxPHvCI/3a+i6JPHvCIzx7wiNE2w7Gkw+2rCIIPcaUU79x3tUATOqeqeQm5ATRGoEgCHQHeB2ag3FMzpEHT5Gkw47/7Ihrhu36nIkDb5Dqw4rIskAxptbUez6oC7Lmsqe5VFQmF4wZrp71I9bXbWZ8/MGJzLJjbqeitRJJkkiLTuX9kk986nth1jzW1m5gRvrUQc+JsUUPekxgLGPKqfdw3PhjmJ0xQ+zCC8YMczJmMidjZr+2lOjk3o3LZqdeV94mDZzt2XemneCIp9XV1vv+R9Mv4ryi75IUldjbdnL+Uj6vWM7Dx96FR/XiEPUHAsaYdOqAcOgCQR+SohK5ad7VI5KYfmjxb9jWuJNVNd9y2fQfYJEs/Rw6wLlFZ3DOpNOF1EYQiNg19Qsmn9Pv/fzMOUGyRCAID6akFI1osiNJEjPTp3HlzB8OWaBDOPTgEHEz9QVZczkic44oNycQCMYkEefUL5uhF2nSNI1zJp7OeyUf49W8QhNdIBCMCSLW00mSxCkFJzA7Yzr/3PM+Z086LdgmCQT/3969hVhVxXEc/57Jy5TNGBReIkHI/CGBVlbec4JE68EikkCkUrLMoKiHrgYVZnQlI6IwRLsRlPiQYApRUUJEUWCU/1CiHiIYrJwRarxND2sfO+Go0xz1nL36fZ5mr7Mf1u+cff577bX27GN20mU7p141athIlk1c7IVRswGYNvoyhg9pP/6O1jRKWdQ7zpsBwL2XLG9wT8zytmjCAlbNXHF40XPYMZ4rY82hlNMvN1wwn4WT57O/26vrZqfKM7MeZXCLn4/U7EpZ1CuVCme1ttHZ3c3ySUvY09PNT10/M86/YmR20hzr6Y/WPEpZ1GtdeHb61+TpxYP3zcz+z0o5p25mZn1zUTczy4iLuplZRlzUzcwy4qJuZpYRF3Uzs4y4qJuZZcRF3cwsI5Xe3t5G98HMzE4Qj9TNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjLupmZhlxUTczy0jpfiRDUgvwMjAJ6AFujYidje3VwEkaDKwFxgJDgZXAd8A6oBf4FrgzIg5JWgrcDhwAVkbEJkmnA28CI4Bu4OaI6DzVOQZC0gjgK2AOKdM6Ms4s6UFgPjCEdAx/QsaZi2N7PenYPggsJePPWdIU4KmI6JA0jjpzSpoKrC723RoRj/WnH2UcqV8HtEbENOAB4LkG96dei4DdETELmAe8BDwPrCjaKsC1kkYBdwEzgLnAk5KGAncA24t9XwdWNCDDf1Z84V8F/iyass4sqQOYTsoyGxhD5pmBa4BBETEdeBx4gkwzS7oPeA1oLZpORM5XgIXATGCKpIv705cyFvWZwAcAEfE5cGlju1O3d4FHir8rpLPyZNIoDmAzcBVwObAtInoiYg+wE5hIzftRs28ZPEs6aH8ptnPPPBfYDmwE3gc2kX/mH4BBxdV1O7CffDPvAq6v2a4rp6R2YGhE7IqIXmAL/cxfxqLeDuyp2T4oqXTTSFURsTciuiW1Ae+RztKV4oOEdDk2nCNz99VebWtqkm4BOiNiS01z1pmBc0gDkAXAMuAtoCXzzHtJUy87gDXAi2T6OUfEBtJJq6renO1AVx/7HlcZi3oX0Faz3RIRBxrVmRNB0hjgI+CNiHgbOFTzchvwB0fm7qu92tbslgBzJH0MXES65BxR83qOmXcDWyJiX0QE8Bf//pLmmPkeUubxpDWw9aT1hKocM1fV+x0+2r7HVcaivo00V0exkLC9sd2pj6SRwFbg/ohYWzR/XczBAlwNfAp8AcyS1CppODCBtABz+P2o2bepRcQVETE7IjqAb4CbgM05ZwY+A+ZJqkg6FxgGfJh55t/5ZwT6GzCYzI/tGnXljIguYJ+k8yVVSNN3/cpfuqc01tz9MpE0B704InY0tlcDJ2k1cCPpErXqbtKl6hDge2BpRBwsVs5vI52MV0XEBklnkEZAo4F9wMKI+PVUZqhHMVpfRhrZrCHjzJKeBq4kZXkI+JGMM0s6k3Rn12hSxtXAl2SaWdJY4J2ImCppPHXmLAatLwCnke5+ebg//ShdUTczs6Mr4/SLmZkdhYu6mVlGXNTNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjfwMRw/XZmKvm+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Finally, Poissonize it!\n", + "counts = np.random.poisson(counts_cont)\n", + "plt.plot(times, counts_cont, zorder=10, label='Continuous light curve')\n", + "plt.plot(times, counts, label='Final light curve')\n", + "\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## R.m.s. - intensity diagram\n", + "\n", + "We use the `analyze_lc_chunks` method in `Lightcurve` to calculate two quantities: the rate and the excess variance, normalized as $F_{\\rm var}$ (Vaughan et al. 2010).\n", + "`analyze_lc_chunks()` requires an input function that just accepts a light curve. Therefore, we create the two functions `rate` and `excvar` that wrap the existing functionality in Stingray.\n", + "\n", + "Then, we plot the results.\n", + "\n", + "Done!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# This function can be found in stingray.utils\n", + "def excess_variance(lc, normalization='fvar'):\n", + " \"\"\"Calculate the excess variance.\n", + "\n", + " Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source\n", + " intrinsic variance: the *excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{XS} = S^2 - \\overline{\\sigma_{err}^2}\n", + " \n", + " the *normalized excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{NXS} = \\sigma_{XS} / \\overline{x^2}\n", + " \n", + " and the *fractional mean square variability amplitude*, or \n", + " :math:`F_{var}`, defined as\n", + " \n", + " .. math:: F_{var} = \\sqrt{\\dfrac{\\sigma_{XS}}{\\overline{x^2}}}\n", + " \n", + "\n", + " Parameters\n", + " ----------\n", + " lc : a :class:`Lightcurve` object\n", + " normalization : str\n", + " if 'fvar', return the fractional mean square variability :math:`F_{var}`. \n", + " If 'none', return the unnormalized excess variance variance \n", + " :math:`\\sigma_{XS}`. If 'norm_xs', return the normalized excess variance\n", + " :math:`\\sigma_{XS}`\n", + "\n", + " Returns\n", + " -------\n", + " var_xs : float\n", + " var_xs_err : float\n", + " \"\"\"\n", + " lc_mean_var = np.mean(lc.counts_err ** 2)\n", + " lc_actual_var = np.var(lc.counts)\n", + " var_xs = lc_actual_var - lc_mean_var\n", + " mean_lc = np.mean(lc.counts)\n", + " mean_ctvar = mean_lc ** 2\n", + " var_nxs = var_xs / mean_lc ** 2\n", + "\n", + " fvar = np.sqrt(var_xs / mean_ctvar)\n", + "\n", + " N = len(lc.counts)\n", + " var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc ** 2\n", + " var_nxs_err_B = np.sqrt(mean_lc ** 2 / N) * 2 * fvar / mean_lc\n", + " var_nxs_err = np.sqrt(var_nxs_err_A ** 2 + var_nxs_err_B ** 2)\n", + "\n", + " fvar_err = var_nxs_err / (2 * fvar)\n", + "\n", + " if normalization == 'fvar':\n", + " return fvar, fvar_err\n", + " elif normalization == 'norm_xs':\n", + " return var_nxs, var_nxs_err\n", + " elif normalization == 'none' or normalization is None:\n", + " return var_xs, var_nxs_err * mean_lc **2" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAADdxJREFUeJzt3X+MZfVZx/H37C52WVjStWxSja0YSZ/EmvBDGuiKFAVausaytsGitg20SOqqTbUuTbEpxdiSslaI1K2xglB/xtBCAqGI/YFCV1oICtSmzwLaJiZVSF3YFVja3R3/OHfY6zj77Pw4954zd96vZLNzz73n3u+c78x8zvM953zP1PT0NJIkHc6qrhsgSeo3g0KSVDIoJEklg0KSVDIoJEklg0KSVFrTdQNG4amn9nrOryQt0MaN66fmWm5FIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSNIdtO3aybcfOrpvRCwaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUGjF83x5qWZQSJJKBoUkqWRQSJJKa7pugKTJtZyP/ezeuw9YXt/D9q2bRvK+VhSSpJIVhaSRGdUe7jjMVBLL+XtoixWFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSp4eq1Ytp4uTZiynC6s8VVNdsKKQJJWsKNSq5bjHO6kXVk3q96Xxs6KQJJUMCklSyaCQJJUMCs2btwyVViYPZkvSHDwJ4BArCq1o23bsfPE6CklzMygkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWn8NCKt2H92kVP19Dnua/6euc+p8ZYfqwoJEklKwppCfq8d+wd7tQWKwpJUsmg6DnvASGpaw499czsUOjTAck+tWU2h1ek0bGikCSVrCh6ZvaecZ8OSPapLZLGx6DQWPRxuAr6OZxmEKtvHHqSJJWsKDQWfd1LdjitfW7TyWNFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJKTAkoTykn51BYrCklSyaCQJJUcepqlT3c6g37egU3SymJFIUkqWVHM0rcDgH26W5hVjbQyGRSatz6ElaTxc+hJklQyKCRJJYNCklTyGIVWtEk87tL1SQddn9I9iX3aNSsKSVLJikKaMF3vUffplG61w4pCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNC0oqzbcfOzqdjX04MCklSyaCQJJUWFBQRMRURp4+qMZKk/llQUGTmNPDBEbVFktRDi7nD3f6I+CzwEHAQIDM/2mqrJEm9sZiguK71VkiSemvBB7Mz8x+AncAu4LHBP43Q7r37PJVPUmcWXFFExO8APw38GPA48F3g3JbbJUnqicWcHvuzmXkusCszzwJ2t9wmDdm+dRMb1q/tuhmSVrDFBMULETEF7ImIC4FouU2SpB5ZTFBcSTNk9avAK4GL22yQJKlfFhMUbwRuB34L+EpmPtRukyRJfbKYs54+kJnnA38KvCUi/qP9ZkmS+mIxZz29EthCc6bT08B7226UJKk/jhgUEbE5M+8cWvRB4LPAJzPzeyNrmSSpF+ZTUfwecCdARFyQmZeNtkmSpD6ZzzGKqaGvrxxVQyRJ/TSfoJge+nrqsK+SJE2k+Qw9nRgRNwAPAEdHxJrM3D/idkmSemI+QbEZOBU4g2Zep2ci4gngYeCRzNw+wvZJWma2b93UdRPUsiMGRWbeB9w38zgiXgKcRBMep46uaZKkPljwdRSZ+QLw1cE/SdKEW8wUHpKkFcSgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVFnzjIkkalW07do7lc3bv3TeWz5uU28JaUUiSSlYUknpjXHvgM5XEpOzxj5oVhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSp5JXZCzSuuWiGjWtemtm8alUSWFFIko7AimKButjLdl4aSV2yopAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVJpTdcNmI+IOAe4CFgHXJOZD3fcJElaMZZFUNAExGXAycDrAYNCksakl0EREe8Fzh08/KfM/EhEHAO8B3h/dy2TpJWnl0GRmdcB1808jojjgWuAD2Xmk501TJJWoLEHRUScDnwsM8+OiFXADuAk4AXg0sx8fI7V/gDYCFwdEbdl5i3ja7EkrWxjDYqIuBx4O/DsYNEWYG1mvjYizgA+Dlwwe73MfMf4WilJGjbuiuIJ4M3Anw8enwncBZCZ90fEaW18yIYN61izZnUbb9ULq1dPAbBx4/qOWyJNBn+nFmasQZGZn4mIE4YWHQc8M/T4QESsycz9S/mc3bufW8rqvXPgwDQATz21t+OWSJPB36m5HS44u77gbg8w3LJVSw0JSVK7ug6KLwObAQbHKB7ttjmSpNm6Pj32VuC8iNgJTAGXdNweSdIsYw+KzPwmcMbg64PAu8fdBknS/HU99CRJ6jmDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSaWub1wkSQu2bcfOJa2/e+++Vt5nsbZv3dTJ5y6WFYUkqWRFIWnZWeoe+Uwlsdz27LtiRSFJKhkUkqSSQSFJKhkUkqSSQSFJKhkUkqSSQSFJKnkdhaQVx+snFmZqenq66zZIknrMoSdJUsmgkCSVDApJUsmgkCSVPOtpCSLiHOAiYB1wTWY+3HGTtAT2Z/fsg/a1sU0NiqVZB1wGnAy8HvCHenmzP7tnH7RvydvUoaclyMzbaTrhPcDNHTdHS2R/ds8+aF8b29SgWIKIOB64HvhQZj7ZdXu0NPZn9+yD9rWxTSf2gruIeAjYM3j475l5yQLWPR34WGaePXi8CtgBnAS8AFyamY9HxKeBjcB3gNsy85YWvwUNiYgPAG8Cvg/YkZk3LGBd+3OJIuJi4OLBw7U0wxgvz8yn57m+fTBLRBxFs4d/AnAA+JXM/MYC1h/bNp3IYxQRsRaYmtmAczz/w5n5rdlfDx5fDrwdeHZolS3A2sx8bUScAXwcuCAz3zGq70GHRMTZwCbgJ2lK6N+e9bz9OWKZeRNwE0BE/BFw43BI2AeLshlYk5mbIuI84CPAW2ae7NM2ndShp5OAdRFxd0R8cbDRAIiIo4G/jYgtEfE+4NpZ6z4BvHnWsjOBuwAy837gtNE1XXN4A/AocCtwO3DHzBP253hFxGnAqzPzT4aW2QeLswtYM6gEjgO+N/NE37bppAbFc8Dv0/yBeTfwlxGxBiAznx8svx64EHjr8IqZ+RmGOmzgOOCZoccHZt5PY3E8zQ/9hRzqzymwPztwBXDV8AL7YNH+h2bY6RvAp4A/nHmib9t0UoNiF/AXmTmdmbtoxuZ+AGDwB+Yq4G5gL/CuebzfHmD90ONVmbm/3Sar8B3g7zLzu5mZwD6aMVf7c4wi4qVAZOaXZi23DxbnN2l+rl9FMwpy82DYvHfbdFKD4p0043NExA/SJO23B88dDTyWme8Cfo7m4OiRfJlmPJHBMNajbTdYpfuA8yNiatCfx9CEB9if43QW8IU5ltsHi7ObQxXAfwNHAasHj3u1TSe11LsBuCki7gOmgXfOJGtmPgd8YvD1PobKvcKtwHkRsROYAuZ9BpWWLjPviIizgK/S7Nz8WmYeGDxnf45PAP82e6F9sGjXAjdGxL00QXBFZj4L/dumE3t6rCSpHZM69CRJaolBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNKkXnAnLVhEHAdcDbwO2E9z5ez7MvOhlj/nKuDzmXlvF+tLC2VFIfHiXP530kylcHJmngz8LvC5iHhZyx/3Og5N1dDF+tKCeGW2xIs3oP8UcGJmHhxavhl4MDOfjIgrgLfR3GTmbuBy4BXAPZl5wuD1HwbIzA9HxLeBW2imf94P/ALwUzQ3l/lP4Ocz89Ghz7qHJqheTTNb6Jk09xw4Bjg4WPaa4fWB54FPAi+jmTX5NzLzn1vdOFrxrCikxinAA8MhAZCZdw5CYjPNHfZ+YvDaE2mmPK+8HPhCZp4C/CPw65n5aeBBmruPzTVp2yOZOTOn0hbg7Mz8ceA2YOsc698MXJ6ZpwKXAX+zmG9eqhgUUuMgzURqh/MzwF9n5vODCSZvBM6Zx/veNfj/a8D3z+P1XwHIzD3ALwEXRcTVNDOIHjv8wog4lqbC+LOI+Bfgr4BjRzBUphXOg9lS40Fga0RMZeaL47ER8VHg7/n/O1VTNL8/0/zfgDmKoRvKDGb+ZI7XHc7zg899BXAPzQyin6MZajpl1mtXA/sGx1Nm2vtDNMNXUmusKKTGvcCTwJURsRogIt5AM1Xz14EvAr8YEUcP7hp2CfAl4GlgQ0RsjIiXAOfP47P2c+SdtNcAj2fmtTRVxhs5dAB7P829lp8BHouItw3aex7NEJfUKoNCAgZVxJuAHwW+FhGPAO8HNmfmf2XmHTT36n4Q+FfgW8D1gz/W24EHgM/T3DPjSO4C/jgiNhWvuRtYFRFfB+4Hvgn8yBzr/zJw6aC9VwNvHa6IpDZ41pMkqWRFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNL/Al/GVmTFouw4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def fvar_fun(lc):\n", + " return excess_variance(lc, normalization='fvar')\n", + "\n", + "def norm_exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='norm_xs')\n", + "\n", + "def exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='none')\n", + "\n", + "def rate_fun(lc):\n", + " return lc.meancounts, np.std(lc.counts)\n", + "\n", + "lc = Lightcurve(times, counts, gti=[[-0.5*dt, length - 0.5*dt]], dt=dt)\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, np.var)\n", + "var = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, rate_fun)\n", + "rate, rate_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, fvar_fun)\n", + "fvar, fvar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, exc_var_fun)\n", + "evar, evar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, norm_exc_var_fun)\n", + "nvar, nvar_err = res\n", + "\n", + "plt.errorbar(rate, fvar, xerr=rate_err, yerr=fvar_err, fmt='none')\n", + "plt.loglog()\n", + "plt.xlabel('Count rate')\n", + "plt.ylabel(r'$F_{\\rm var}$')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "tmean = (start + stop)/2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAARdCAYAAADrBJcrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6B/DvTHonDRIILZRL7x2pFhZlEXVXXcvaK6uLnZ+6rnUVuwgiIoi9YEFEQBEJEHoJhJJcUkhCQkjvdSYzvz+mZMqdySSZnu/neXicuffcO8dkMnPfe855X5larQYRERERERF1LXJXd4CIiIiIiIicj8EgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUG+ru6AI5WU1Lhl3YzIyGBUVNS7uhvkpfj+Ikfje4wcie8vciS+v8iR3PX9FRsbJrO0jyODLuDr6+PqLpAX4/uLHI3vMXIkvr/Ikfj+IkfyxPcXg0EiIiIiIqIuiMEgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUB5dSM+/PkUSisbXN2VDvHqOoNERERERESO8tJnR1BV24zaBgWWDeru6u60G0cGiYiIiIiI2qm2QYGq2mYAQFNzi4t70zEMBomIiIiIiNqpvlGhf6x2YT86g8EgERERERGRjdJzK7D9yHmjbWoPjQa5ZpCIiIiIiMhGr3+dAgAY0ifSxT3pPI4MEhERERERtZNKZTgc6JlDgy4fGRQEIQDAJwASAVQDWAzNT3O99r+nACwWRVElCMI9AO4DoATwsiiKm13SaSIiIiIi8noXy+ux7tc0/G32AAxKiIBMJtPvO5hWpH9cU6+QOtztucPI4D0AakVRnALgIQArALwN4FlRFGcAkAG4WhCEOAAPA5gOYB6AV7WBJBERERERkd19+buIzIIqvPblMXyyNR0NTUr9vm0H8/SPS6sakXG+whVd7BR3CAaHAdgKAKIoigCGAhgPYJd2/1YAlwGYBGCvKIpNoihWAcgEMMr53SUiIiIioq7AcPJncmohFr+z22Lbk5llju+Qnbl8miiA4wAWCIKwEcBkAL0AFIuiqPvZ1wCIABAOoMrgON12iyIjg+Hr62P/HttBbGyYq7tAXozvL3I0vsfIkfj+Ikfi+4vaw9/P9nDpQmktYmMHOrA39ucOweA6aEYD9wDYC+AogJ4G+8MAVEKznjBMYrtFFRX1du2ovcTGhqGkpMbV3SAvxfcXORrfY+RIfH+RI/H9Re3VrFC23UjrtwO5uGH2AAf2pmOs3QBxh2miEwHsEEXxEgAbAGQDSBEEYbZ2/3xoAsVDAGYIghAoCEIENAHkKRf0l4iIiIiIPJharYbahuKAFTVNTuiN67jDyGAGgJcEQXgGmpG+uwCEAlgjCII/gDQA34ui2CIIwnJoAkM5gGdEUWx0VaeJiIiIiMgzLfsqBXUNCrx092Sr7QrL3HOmob24PBgURbEUmgQxpmZJtF0DYI3DO0VERERERF7r7Hnp1WYKpQobk7MxdVgcnlt3yMm9cj6XB4NERERERETu4LPf0rH35EVsPZDXdmMv4A5rBomIiIiIiBzm+6QsvPPdCbPttQ3GxeL3nrzorC65BQaDRERERETk1bYcyMXJbPM6gA+/tweAJih8+7vjzu6WyzEYJCIiIiKiLm3dr2k4lV3u6m44HYNBIiIiIiLyKPkltXj72+OSpR+ULSoolCqbz1VUUY/jmaX27J7HYDBIREREREQe5cOfT+PUuXL8sCvLbN+jK/bivjeTLB6rbDEOFNf+mma3ftlSu9CdMJsoERERERF5FF1A16JqDb7OF9diy4Fcs6QwhkqrGvDkqv1G2zLzqxzTSQ/AYJCIiIiIiDyKTCYDYDwS98bXKVYDQcByfUF7Ubao4Ofr49DXsCdOEyUiMpFfXIsvfhfbtd6AiIiInEem/a/hrMyGJqVRm+/+zDSbtinTH+kYDc0tDj2/vTEYJCIy8crnR/HnsQLsPVXo6q4QERGRBO3AIKyt0Nt2KA/ZF6qNtq3ZfMZxnWqrQ26IwSARkYkmheauXrOH3d0jIiLqctpI2MJZPtYxGCQi6oA/jpxHzsXqthvaQUVNExqblW031GpRqVBcUe/AHtlXdV0z6hutr/EgIiIypF8zaLTNvJ2HDdQ5HYNBIqJ2KqlswFd/ZODF9Ucc/lotKhUeW7kXT3ywz+ZjPtmSjqWrD0DMqzDbV9ugwNaDue0KLh1tyfvJ+Ne7e1Df6D59IiIi96aP+9qK9jys1IOzMRgkImqnZoXzpo+m5WgCurp2BEr7Tl0EAGRdMB+5XL81HRt2ZuHn5HMWj1e2qFBnMFKnVqtRXd9s8+ubsvXYDUmZHX4NIiLqYiTXDJoPDTIUtI7BIBGRG0vLNR7da2xWQqVWQ61WY9XGU9ivDfxsdbFcM320rKpRv61Z0WJUgPf5Tw7joXf36Ld9n5SFJcuTJUca23LwTBGWLE/G9sPn22xbUtnQ7vMTEVHX1JpN1Hq49+Y3x/HoimTHd8hDMRgkInKSU+fKUFhW1+HjaxsUePDt3Vj25TGUVDXicHox1mw+g/LqRqvHqdVqq6OZ97+1C/e+kYRf9uUAAC6UavrYrGhBs6IFWw/maftfbnNfda93KK0IALAnte3MrM6aydPWz4OIiDyB8ShgRn6l0Y1NQ5W1HZ/d4u0YDBIROUGLSoW3vz2BZ9Yc7PA5Hn5vDwAgI7/KKHJ6/IN92LgnW/IYZYsK732fivvf2mVWf8nUT7uzsU0b+AGASg1s2pvTrj5u2JmJjXuycf9bu/DVH2eN9hVX1OODn06ioqYJKRklVqePni+uxblCxyToef+Hkzb9PIiIyHVqGxRY+dNJ5BXVSO7XJYtJySjF8u9T8eoXx5zYO8s8bVoqg0Ei6jIOpxfjh11ZTn3N2gYFTmWXmU337KwTmWVGz6WCNpVKjXvfSEJqlqZtUkpBmyNi3+00XreXX1Krf6wbGayobsRHm06jqLweJzJLoVC2nnPrwTx9X/44km90ro9/TcMRsQQvrD+M9384ide/SrHYj/+uO4SXPj0ClVqNwrI65F6UvhjoiOOZpZr/j5omu52TiIhso1vq0JZtB/NwVCzB858cltxvOC6o+1yn9vN1dQeIiJxl1cZTAIBFM/rDR+6ce2G60TxD+04VorZegSsm9THbp1arUV7dhPomJXp3D7V43q93ZEhuNxxNKzOZProhqTUQPiKWtNl3lUoNuUGe7tyLNRDzKrDvTDEOnCnCgTOaKaCXjkvATZcP0qf5liKTtdZtrK7TjAheKK3D+q1p+jZSFwd3L9upf7xu6Vyz/Wq1ujW9uMFjIiJyTw+9uxu9u4dh6c3jrLazVh9QrVZL5YqhDmAwSERdjsxJ3yCWpiF+vFkTAJkGg8UV9Vi6+oD+uVTwY01dowIvfdpa7mLX8QttHmMtKcyS980X3OeX1GHP8QKjbTuO5WPHsXwLwZrxsaZ2n2h7LaElyhYVHnhrF2aO6YmSygYUlddj2f3TOnw+IiJyvIamFpw9X9nh43/cnYXN+3LRPTLIjr3qujhNlIgIQGZBFTZrE6h0Rnl1o3764S/tPN87G1KNnm/YmYlmK3dGTb3xteVpl1L+OHIey6xM1ZTy5fazbTcyoJu6c764Fqo2pgUVVVjPJvrehhNY/M4uNGmnulbUNKFFpcbOYwU4lV2OkspGKFtUyL1YY9MUJA4iEhF5ns37cgEAxW18Z5BtODJIRF1SfaMSz6w5gKtn9MfsMb3wv8+PAgAmDu2ub2Mx+5iVKOLxdhSHBzRrJy6W1SM+OhhF2rIPOlsNkrnYIq+otu1GBr76Q3qqaUfd+dqfnTq+oqYJG/dkY8G0fpL7T2jXPuYV1SA0yA++Pub3Mz/Zko79py/iX9eORFxUMOKigiGXa35fVXXN+PNovtkxRETkXvafvojULK4DdAYGg0TUJZ3OKUdVXTM+2yZi9phe+u1Kg5G4bYfycP3cgTafs73ZKY+kF+MD7TrG2/4itOtYb7Vpbw585NaH7N7/4SRqGxQY2jfSbN/+05q6i19uP4uKmiZcMioePSKDMHdcAtZvSdMHlB2lVqtRWtWImIhArk8kInKQNb+cMXreolI5ba1/pzmrTpKdeMhPlYjIviwFbu39CH9x/WF9iYT2BoO6QBAAPt0mtvOVvddPe85Z3V/boAAAqxladVN1k1ML8cOubGzccw6lEvUYG5qU+P1Qns2/u90nLuCpD/fjt0PnsfvEBX1Nxq0Hc7Hyp5M2nYOIiNrnoXf3IOVs24nPqP0YDBJRl7R+a7pdzpNzsQbbDrRvOic53/Yj5yUz0337Zwa++TMTT65qe3qvSqXG3lOakceNydlYvzUdz36sqRu5YWcWjtqQoZWIiNqvsbkF7/94En8e41R/e2MwSERdgkpl25hfnXbUyZrDaUVGzw9qn3vYzJAuxzTZgEKpwsVyzba6RmWbo4NvfJ2CzPwqAECzwvbEPkREZF3K2RIkpxbine9OWP0s/uL39iUxo7YxGCQir5JfUiuZsnrp6v36x2ork0GX/2A81e/9H1JR12gcIJoWeNdNSeQdS89iWshY2aKCssVykCd2IhU6ERFJq65vxvs/nsS6LWk4mV2GJJPyRZ7G0+4LuzyBjCAIfgA+BdAPQAuAewAoAayH5ud5CsBiURRVgiDcA+A+7f6XRVHc7Io+E5H7em7tIQDmNfpKq8zXi+ms3nRa/9j0jmRKRil+3J0NH5kMC6b1Q3iIv+Q5ftl7DtsOcbqopzG8cfD2tyeQW1SDj56YLZmp1BYKpQp+vrzPSkRkqyXLjWvacpaNc7nDN9aVAHxFUZwG4EUArwB4G8CzoijOACADcLUgCHEAHgYwHcA8AK8KghDgoj4TkYvkFdWguNK+tYUOnimyun/nsQL8cTQfS95PRkGpeeF0QJP0hF9gni23qAaAZm1KR5mOIks5lV2Gb3Zk2FQLkYioq+Fno3O5fGQQwFkAvoIgyAGEA1AAmAJgl3b/VgBXQDNquFcUxSYATYIgZAIYBeCw+Sk1IiOD4evr48i+d1hsbJiru0BezJvfX7padov/Nhq+PjJcNqmvfl+jwahebGwYUjNL8OmvZzBmcHejc4SEBXX49f+jTRhC3quqUYmoqBBEhNp2v9Hw7y06OhRR4YFW27+tfQ9fd9lg9IwJ7XhHvZg3f4aR6/H95R4s/R5CQjx7rMeW7wF34g7BYC00U0TTAcQAWABgpiiKutsCNQAioAkUqwyO0223qKKi3tpul4mNDUNJSY2ru0Feqqu8v1Z+fwIAMLp/lH7blgO5+sfvf3MMvx8+DwA4m2e81mv1Dyec0EPyVP9ZvR++PjLcceVQDOkTiciwADQpLI8WGv69lZXVoqWp7dFBACgtrYUf74Cb6SqfYeQafH+5D0u/h7q6Jif3xL7Ky+ts/h5wFms3QNxhmugjAH4TRXEwgNHQrB80XJQTBqASQLX2sel2IvIyeUU1uP/NJJw613aB8G92ZGD7EU3QZ7jeTxcIStl1/ELnO0leTdmixppfzuCxlXsBAJuSrdc+JCIi+/hhV7aru9ApERZyC7grdwgGK9A64lcOwA9AiiAIs7Xb5gPYA+AQgBmCIAQKghABYCg0yWWIyMtsO5iHZqVKn0K6oqYJjc3SqaZ/P3weX/+RgaZOrPMiasvWg5aTA53ILHViT4iIiOzHHaaJvgNgnSAIe6AZEXwawBEAawRB8AeQBuB7URRbBEFYDk1gKAfwjCiKltMDEpFHqmtU4IA2oUtxRQM2JZ/DxuRzCA7wxYpHZlo8btO+c8g4X2VxP1FHtbVO9L3vU/WPq2qbERbsBx+5O9xrJSJyH43NSuxMaS0bUdugwJ5UztRxNZcHg6Io1gK4XmLXLIm2awCscXiniMjpquubERbkh/2nLhpt36idnlffpMQFC5k8AWDrAZZ1IMewlEFWygvrNTnN3lo8HZFh1pMgcLkgEXUF1fXNOJFRit2pF5BVUK3f/tm2dBwRS1zYMwLcY5ooEXVxR8USLFmejJ/2nINMJrPYjmv9yFO8/e1xAMChtCKs/PEkyqsbkZxaKJky/afd2fhxd5bRtpSzJcgvqXVKX4mIHCU1qwxLlifjk63pRoEgAAaCbsLlI4NE5PlOnytHZFgAesaEoLZBgbWbz+DqGf3RLy5csv3xzFIcOH0R9/51OPaeKsQnW9IBADuOnse1MwdYfB1dohgid1dQWodmRQs+/Pk0AODoWc1FT0Roa2KB1Kwy/LArCykZmjWHuve+QqnC+z+eBACsWzrXmd0mIuqUi+X1KK5owKgB0QCAI2Kxi3tEbWEwSESdolKr8ZZ2FGTd0rn4/XAeTmSVISO/ymyNX2FZHVZvOo28Is2Ix9xxCdhtMNrX0NQCKwODRB7l/rd2mW2rrG1Nmf7dzkzJ41Qqzh8lIvdTWtmA4soGDOsXZbHN0x8dAAB88OhMBPr7Ijm10Fndow7iNFEi6hyT69aWFs0GRYvKrOnqn1sDQZ3aBuNaPFxHRd5s4x7rJSoKSmqxZvMZo20q7R+FWq3G57+JOJ1T7rD+ERFZ8uSH+/HmN8dR32ie3bu+UYE3vk7RP1e28MvcUzAYJOrCpNYvtfscBtHgqewyfQp+w3OXVzcir6gGjRKFu4sqGoyef7n9bKf7ROSuKmosF1M+X1yL/6w9hGNnW9fR3Pnan7h72U4oW1TIuViDnSkFeOub487oKhGRpGal+Xf5OxtOIC23wmibUuKmsLfz9/W80IrTRIm6qN0nLmD91nT8794piIsKtvm47UfOIzI0ABOGdDfb9/Z3J/SPDe8KPv7BPgBA98ggo/bLDVLyE3V1r3x+xOK++iYlWgymjzY0KREUwK9wInI+qfvIpslhPt2arl8r3VX857YJEBJj0NzQ7OqutIvnha9EZBfrt2qSthzU1vTTKa6oN5u6aejrPzLwwcZT+ufWBhdN7wqaLgesb5IuJE/UFTUrLN9FT8+twG+HWsunvPrFUavnUqnUyL1Yw/WHRORwUp8zXS0QnD+5D/rHhyMi1HpJIXfEYJCIjCxdfQAPv7fH5vbZF6ot7vvid5Mpn8wOQ9QhH/58GkcN0rDnl7TWPqxtUBglpgGA3w7l4YX1h7H1YK7T+khEXU91XTOe/+Swq7vheh58ecNgkKiLU6vVSDpegOfWHoJCafv8/oqaJiiULXjty2MW2xxOL7K4j4g6R9miQnl1Ix5+bw8eXbFXv726vhkbkjR1C09mM9kMETnOp9vSWRMVgMyDo0EuOCAifLZNBADkXLQ8ync6pxw/7motjP3Yyr2Ij7a+1tB02ltReX0neklEhpZ9dcxsnQ4ArPs1TbJ9Q5MSMhkQ6M+vfiLqOMMEcWVVjS7sCdkDvxGISM/a+iKpDIaFZdaDuxaVuktmEyNyBtNAsKKmCQfPFOFCaesUUsN71Yvf2Q2AheyJSFpDkxIBfj6Qy1s/OeoaFQgJ9DNqV17dhNWbTuO6WQOMpqx3ZZ68CobBIFEXkllQBZVKjcG9u0nu33/a/tM6730jye7nJCJzj63c23YjIiIJCqUKi9/ZjT49QvH8HZMAAJuSz2Fj8jk8duMYxEW2zgR69YujUANWl4mQ5+CaQSIvse9UIb40Tdhi4n+fH7X64V1e3Trdo4BrAIi6hBOZpZzqRdRFFVfU4/0fUlFQqvnOzytq/e7//fB5AMCJjFJ8uzNTv505ir0Lg0EiL/Hx5jTsOJYPhUQxWFMpBimfN+3N0T82/IBf8eNJ/bTRxmaWgCDyROL5SjyyIhlvfJ0iub+0qgHvfZ+KJ1ftk9yvUquxbksaTucwEQ2Rt1Gp1Fi3JR0pGaX4anuGxXYtajVauOTDzKIZ/T16eqgOp4kSeRlrdf903v/xpOR2w7VGDU1K3P36TgBARKi/XfpGRM5XVduMqtrWIsgVNU34cXcWrpmRiLoGzY0eNYD6RgW+2ZGJK6f2RVyUZkpYZn4VklMLkZxayLWGRF4g6XgBFAoVLp/YG/9evgd1jZrPAGvZxHceK3BW9zxCZFgAoiMCsXB6f2xKzoEaao8OChkMEnmYwrI6+PnKERMRZPdzV9S01iqrrm8tPG94IUlEnu2L30WkZJSirkGJqy/pr9++eX8ukk8WIutCFV65ZwoATRIonfziWoQE+SEyzPOKKhORhi57+OUTe+sDQVMqtRq7UgpQ39Q1ZwVdPqE3th85b3H/W4un6x+rvWDSLINBIg/zzJqDAIwzAtY3Kiw1R7OiBQ+9tweXT+jt8L4Rkfurrtfc3DmTW24U7DU2a6aY1zVIf548t+4QAGYjJfJGhkFNxvlKfN5GDgJvFhrsJ7n9wUUjjGZQGfPcoUEGg0ReICO/Sv/Y8B7VhdI6bNiZCYVShS0Hcp3fMSJyO7qSFM0KFU5ml5nt9/z73ETUGblFXTuBnNxCXDdhSHezbX+fPRDf7czE+MGxDu6V4zCBDJGXKiipxbMfH8SJLPOLPSIiW9RbmEZGRO6lRaXCc2sP4tf9OZ0+1zc7LCeT8WaXTUgAAIweGINLxyfYdMxfJvfBR0/MRt+4MEd2zaEYDBJ5mXJtivgLbRSEJyIylJSiSRJhmIRq5U/SyaaIyPnOnq/EoTTpesDl1U3IL6nDD7uybTpXUbnxNUJeFx8NBICbLhuMVY/NQkJsKG6+fDAmD+th03G+Pp4dTnl274kIgPG0ruQTBTgqFkNtS1pRIiITtRbWDBKRa7325TF8+PPpdh+363gBVvx40ui6QLcGmDRevHMSACDAz0e/7d6/DsOKJTNc1SWnsfuaQUEQ4kVRLBQEYQaAUQDWi6JoabUlEXWSQqnCnhMX9M8/25IGALj/6uGu6hIRERHZ0YHTFzt87KfaDKJFFQ36bdZKSXQ19y0cjoTuoWbbZTIZggP98NRNY/UJtryRXYNBQRBWAVAJgrASwFcAfgcwF8B19nwdImr1++E8pGSUmm0/k1Phgt4QkTdY++sZhARKZ9TTKa5swHNrD+LOK4di4pDukHlyoS0iN5ZfXIuPfjnToWObFa1BzNMfHbBXlzxefHQwquuaMW9SH0yUSAxjSOgT6aReuYa9RwYnAZgA4L8A1oqi+LwgCIft/BpEbk/ZonL4HPLCsjrER4fgTwvFYHcbjBYSEbXH3pNtj0Is/XA/AODDn0/jiFiCBxeNcHS3iLqkmg5O3f50Wzp2Hee1gBRdLVWy/5pBH+05rwawVRCEYAAhdn4NIreWlFKAe99IQqZBuQdbncouQ522ZmD2hWoUV2qmdBSU1mH1ptNG00R09QYNC8UTEbnCkfRiAEBpVQMyC9r/2UdElnV0zJ2BINnC3sHgZwAKAeSIongQwFEAq+38GkRu7cfdmkxe+8+0b35/Wm4F3v7uBN785jgA4OXPjujvvL/73XEcPFNkNk1k/dY0O/SYiMh2d772J4oqpLMVP7lqP/73+VG0qLgeicheTGdgM0Ec2ZO9p4n+BuA9URR1E5RnABho7QBBEG4HcLv2aSCAMQAuAfAuNEkSTwFYLIqiShCEewDcB0AJ4GVRFDfbuf9ELlOsvbjKvVhjtq/WQq2v3ScKHdonIiIpK360XnJCpQI8PNs6kdtSq80DREOlVQ1QqRgwWnLtzERXd8Gt2CUYFARhOjRTRD8GcJcgCLq3qC+ADwEMtnSsKIrrAazXnmclgHUAngPwrCiKSYIgfAjgakEQ9gN4GJo1iYEAkgVB2C6KIufIkXtq5+cwky8Qkaeoqbd9DdPrXx2DXC7D4zeOdWCPiLoOlVoNuZXJo0+u2u/E3ri3l+6ejNSsUmzYmQUAiAwLwIJp/VzbKTdjr5HBywHMAhAP4EWD7UrYOE1UEIQJAIaLorhYEIT/Atil3bUVwBUAWgDs1QZ/TYIgZEJTuoIJasit2COme/4T1v8hIvdVXddstm3LgVz94/veTMLr909FTLcgpOdVOrNrRF7HlpvFvJ0srVdMCHrFhOCKib0hg4w/KAl2CQZFUXweAARBuFUUxc87eJqnAbygfSwTRVE3rlIDIAJAOADDVem67RZFRgbD19fHWhOXiY0Nc3UXyEHkcs0nTWCQH+qUavzvk0N4/JbxGNxGauKI8ED947yiWv3j9dtENHlxfRtyHwtnJmKTds0rUXt9n5Rl9PzJD/fj5zcW6p9b+95Tq9UoKq9Hj6jgNtsSdZanvb+Ka4xvvkRHh8Lfz/j6duXGU87skkcY3KebS37Xnvb+sveawd2CILwBIAoGsbcoindaO0gQhG4ABFEUd2o3Ga48DwNQCaBa+9h0u0UVFha4u1psbBhKSszXhZF30M3T37ovB7uP5aOuUYnl36bgv7dPtHpcjYWsoLuPS5eOIGrLjFHx2JNq+7rSxg6mLyeyxPC7rqi4GjV1zYBMhoNnijBnbC/4+crx+6E8fPNnJgDglisG44Z5Q/kdSQ7jaddg9Y0KLF2ZbLTtXF45Vm08BWWLGk/fOg55RbU4qs3oS8DYQTFIySjFkN7dnP67dtf3l7UA1d7B4HcA9mj/tWfF1EwAOwyepwiCMFsUxSQA8wHsBHAIwCuCIAQCCAAwFJrkMkQuV9eo0Bdolhlt1yZ+MfhrKK1qwIofT+KO+UPRNy5Mf3xBaS2I7GXK8B64Ye7AdgWD8g7Mce4VG4KCkrp2H0ddz93Ldho9V6vVmDepjz4QBIBjZ0tww7yhzu4akUudzC5DkL8vBiaYT3iTqvm59tc0ZF2oBgCczqnAp1vTHd5Hd9IrJgQFpZa/d+68aigOninCjFHxTuyV57J3MOgniuLjHThOAGA4N+kxAGsEQfAHkAbge1EUWwRBWA5NoCkH8Iwoio2d7jFRJ72w/jByL9bgH5cOwuUTe0u2UWujwabmFnyzIxN5RbV4Yf1h3LNgGNZsPiN5DFF8dDCG94vCVVP7QqUGHlu5V7Kd1AjgvX8dDrVajZGJ0ejdPdRoPZcltsaC0RGBePmuyahvUqKxWamveQkA8yf3wdaDebadiLxek8LyFPfyauZ/IwKAd747AQBYt3SuTe3Tciv0j5c1q1oxAAAgAElEQVR/n+qQPrmru64aiukj4/Hr/hz8sKs1dOgfH45zhZoAOSTQD3PHJbioh57H3sFgsiAIfwXwmyiK5qvLLRBF8Q2T52ehSUhj2m4NgDWd7iVRByiUKvj5mudK15WC+HpHBrpHBkleUecV1eJwejFWmczpZyBI1rxyzxTJ7eHBfqjWZnMc0qcbbps/RHIEUCaT4ZHrRwOAjcGgbdHg+ufmoaSkBgH+PgAC8PLdk/Hsx5qAMDTYD+OFWPj7yrH/dJFN59O5ff4QrG/jDnegvw8auYbWYyx+Z7fFfYfSi7BoRn+z7Wq1Gp9sScPIxGhMGNJdv31DUiZiIoIwZ2wvh/SVyN0UlNTi7HkmYJLiI2+9Hps2Ig7zp/TFfz4+aOUIssTeVYD+BuBnAI2CIKi0//itTR4hObVQXzDe1PniWtz3ZhJ+2Zdj9RzvfZ+qKQAkwTQQJGqv6SPjzKYRTRsR36HpnT5y82P6x4dLtk2IDdUfc9dV5lP4esaE4PUHpmLBtH64dFwCFl8zEv+cN6TdfZoxKh73LRxutc2oAdHtPi+5p6raZnwscUOsqLwee1IL8YHJZ+bWA3n4/DfRWd0jciiVWo31W9Nw6lyZftuxsyX6vAN5RTX4z9pDOHq2xFVd9Bh/mdzH1V3waHYNBkVR7CmKotzkn3um8yQysW5LGjZbCPaOZ5YCAH7anQ21hWCPyNHuumoYnr5lvP55TEQgpo+M69C5Hr1hjNF57v3rMIwXYvH32QO0I36twkM062GnjojD9JHSazBiIoJw7cxEfYY7H5/WYLNfnPHC9R5Rwbh9vnmwKJPJ0CsmxGq/b7p8MOZN6o23Fk+32g4Alt48rs025FoZ+VVGz+salJL30/i5S97mXGE1dp8oxNvfntBvW/HjSdz9+k6UVjXg+U9YOc1WCbGhFm/EU9vsOk1UEITnpLaLovii1HYiT7HjaL7+8V3LduLvcwZg/uS+khco1e0oxkze4Z2HLsH2w+dtmopp6qW7J0tObVl2/9Q2jx2RGG3z1M6gAF8M6xspeZf59Qem6R/Pn9IXGflV+hsgAHDnlUOx5UAurr7EfEqfJb4+rfcan7t9Iu5ethMqtRpXTe2L62YNMLob3h7hwf64Ye4gm9oO7t2tQ69BrpNbZJyFT61Wo6ZegSXvJ1s4gshz7DyWD38/H0wfGa8fAZRi6cY0ta7EUbcrTyVZY+9pojKDf/4AFgLoYefXIHI60wLLG3Zq6mmdK3S/9MHkXGufmoOIEH9cOysRM0e3jprNGdsLl45vXcA+f4r0NBbDkbD/u2UcAvx9MKBXOGK7BVl8zSBt5lp/iTWslqxYMgOLrx1pc3tDUeGBuOUKAWHB/h06XhK/x8kGGflVEE3WTL306WG88XWKi3pEZF1pVQPKqqTzG37++1ms/TUNADQF0C3YfcL2LNCkwa+UjrP3NNEXDP49C2A6gBH2fA0iZ1IoVRbTFxeW1eH7pEzJfeR5+vQIldx+7cxEq8fpRubkMhmG9I3Ub791noDEnq1r8BZdkmhxpOqeBcOwYFo/DErohpWPzDSaCirl4etGYsqwHlgwrZ/VdlL91AWsCbHWp2PaW6B26qnhiKGhoQY/O0sG9DJe0zgiMard/Rg3OLbdx5DjKFpUVve/9uUx1NQb34w7V1hjlE2RyJ08uWo/nli1r+2G7V/qTWgNon3lJt8ljAY7zN7ZRE2FAuCqTnJ7lqZrrPzpJFKzpKezvfzZETQ0MT+St+gXF4a8IvNajwum9bOYWMiWqZw6fr5yjB4YLZkZbuqI1nV/tiSDiY8Owb1tJFqx5Pb5Q3HLFYLFoMxRnvjHWGzen4PLJ2jKr/Tu3hp8TxsRJ5mYBtAUIa+qbcZfp/czS3qzcHp/nMouR3iIv370fubonth94oLFfvzr2pG487U/zbbbksmU7K9JIjNsSWW90fMvfj/rrO4QkYeYObonMvIrMY/JYzrN3msGz6E1NpcD6AbgDctHEDlGRU0Tth7Mxd9nD5QsB2HqcHqx/rFarUZFTROiwgMtBoIAGAh6kVEDorFoRmK7p+aYTuW0Nu0HAIb1jQKQhSsm9sbvh8+3t5t2owsEH71hNLqFBjjlNfvGhWHxNa3TVCNCAzC0byTScisQHx3cuvbR4Ec4f3Ifq7WiBvaKwP1XD8eghG5obFaiuKIBowfGGAWDz/5zApQtKrz25TH9tlfvnYL/++iA/vnIxGiMF2IZDLqJZ2wZVSHyIJkFVWaF4Tkw2EHaH1yAvw8eNPhOiQoPBGDbLBMyZu+RwdkGj9UAKkVRrLbzaxC1SVecOzm1EB88alay0kxtQ2vSl98Oncd3OzNxjUT9K/JOS/4+2i7nGTsoBiP6R+Ey7eiXqb5xYVixZAaCAnztHgzet3A4DqUVISWjtO3GWiP6S5dpcFbmxgcWjcARsRjTR7SutewZE4Kxg2IwcWh3TBnWdqbUSUN1y9IDEB9tPvVVN1X3sRvHIMBXM1W1R1QwYiICUapd1yP06YYAbRbUiBB/VNXZXCaXXOjs+Uo0NCkxemCM5P7q+maEBfnZnGSJyFE+/PkUyqub9M837snGsH7tn+ZO5tmpdYIDfbHykZlm2bCpbfYOBvMA3A/gUu25/xQEYYUoitYXBRBZsP3weRSW1+Of84QOHW+tOPUv+3LQ0KjE9XMHGm3fd+oiAOCnPec69JrkvW6dJ+jrnN10mXlGS38/H6OSDVKCtclf7G3ysB6YPKwHGpuVbY5QtsdDHUw6Y4vQID/MHmNcQFwuk+Gh60bZ/bWGm1x4xUeH6INBQDNauvzfMxDo74N730iy++uT/elGe9c+NQcfbz4DoU8kZo7uCUAzEvO/z4/i8gm98Q+Jv1UiZzL9TN60N4f1AyWsenQWmpQt8JXL8a93dxvtu2ZmImaN7onwEMuJzIICHL36zTvZe9HI6wDmAfgMwCcA5gJ4286vQV3I1zsykJRS0GY7tVoNhbJ90zZ/2p2NbYfyoFCq0GxwLG8iez7D9WjtMW2E9ZGoOWN7Wd1vKlj7xSRV4N1RAv197XZntG+PMIz1wIQrDywagSdutB6U37XAfI1iaJCf09dSUuc1NLVg/+kio2m+Z3LKAQDbj7huOjZ5v9oGBd7dcAKZBVVW25nmOgGAghLp5HRdWYC/D8KD/REc2BrU6b6XB/WKsBoIUsfZO4S+AsBY3UigIAi/Ajhp59cg0hPzKhARGoAvfxdxOqcCqx+fBT9f6xfCLSqVUZKO+95McnAvydmeuXU8vtx+FntSjdcAhgT6oq5RqX/eMyYE4w2CnbsXDNOPDBt67+FLOpSobOSAaFw7MxHjBfOAasWSGWhScNKEI0wc0r3NNuFWymT4yGVoUakRGuSHQQkRRlNvw4P9WEuUiAAAvx3KQ2pWGVKzyrD2qTloMUhGdzyzFGO0U5g5VbnVtBFxkt+zltxx5RAsmNYPcVHBDuxV12bvYNBX+6/Z4DmzbJDDLPvKuNbUuxtS8cAi82omp86VISWjFLdcPhj3vJ5klqLeUIuVQrDkGfz9fBBjkNzlzQenobSqEQmxoahvUuDJVfsBAM/fMdGmkaCO1teTy2QWyz8EB/ohOLBDpyU7GTsoBikZpehjYSR51pieuG7WAJzMLsM7350AANw2fwgC/X3x9R9nkc87+26BxafJVVpaWt97dy3babRv+fepAIArp/RFcUWDU/vlzkYNiLYpGJwgxKKipgk+cjkDQQezdzD4JYAkQRC+1j7/B4Cv7Pwa1EVl5FficFoxbrxskMX0+2m5Fdi8L8ds+9vfai7kdOuTsgos5zW6YKGuIHmuqPBAfaYxw+knHblZe/Plg/Hl9rMYO8jzpk+SsfsWDkd+SR36xxsnJBg7KAZHxBL06aHZPjIxGuuWzjVqc9mE3vppiX17hCG3qMY5nSYzD727x9VdILJoy4FcV3fBrST2DMd/bpuAlz49YrWdYaZQciy7LY4QBCESwBoAL0FTW/B2AKtEUfyfvV6DurZXvziGP47mQ8ytwDc7MpB7UfriS6G0PPXu6z9Yr8pTxUc7587g3QuGIjrccrmFS8cnYO1TcxAd4b3DerpF+EEB3p2Vzd/PB4k9w82mcN21YBieumksJkhM79UZ0b81Ic2D14xw6rpQsiznovSNPpVajcz8KijbKHJPZKi8uhFF5fVtNySbRYQEoH986+ysF++c5MLeEGCnkUFBEMYC2ALgDlEUtwLYKgjC/wC8JgjCCVEUU+3xOkQAcPRsCf48VmAxNX+zSSKZNG0iAQBIzzMv+E3u7+On5uB8US1eWH8Yf5nUB9sO5dnlvFJZN6eNiEeQvy/e//EkBiZESB/n5es/bpg7EHK5DIs6WV7lP7dNQFiQY7KnOlKAnw+EPtZrVUWFB+Ljp+boZym88eA0FFc0GNUzlBIS6AuZTGZUzobs58X1R/DW4unIL67Vb1O2qJCcWojPtJmAn7t9AvrFWV4qQKTz+AeampemMwMAoKiiHrWN/DtuL13t59vnD0F9oxIJHUz4RvZjr2mibwL4hyiKSboNoig+LQjCLmiyiV5mp9chQpPC+jLUvSeN56K/8c1xR3aHHOjluyejoVkJuUyGvnFhWPPkbPjI5fpgcNSAaKRmlQEAIkL9seRvoyFvzwiNhaZjBsXgoWtHYnCfbp39X/BIEaEBuHvBsE6fx/DurzcynK7eLTQA3UIDcMmoeCSnFsJHLsOVU/ril305eOIfY/HG15r1ze8vmYmPNp3GgTNFruq219PVmdV54K1dCDTIsPvi+iNmF/eFZXWI7RZkcQ2xskWFksoGyVqW5Ll2n7iAH3dn45V7JiPEoOzPa18cxdl8yxlC1Wo1/m/1AWd00WvpysCQ69lrmmikYSCoI4ribwCkq8EStUMd7755pY+emC25vW9cGJ6/YyJ6xoRgQM/W0Tkfk/zcc8cl6B8/e+sE9I0L05eV6MysPZlMhrGDY40uDohsEWGQ+vyamYlY/fgsDNKOMCf21ATHt3awbip1TItKbZRFWKe8uhFLV+/Hxj3ZeGbNQaz55YzFc6z7NQ3PrDkIMa/CkV0lJ/pxdxbWb01HdV0zTmWXo6m5BVV1mvyHlgLBi+X12HYwjymLyKvYa2TQTxAEuWlxeUEQ5ABYFIQ67XBasf6xPQtqk2v5+sjRvVsQiiuNM6399/aJ7T5XlMk6vzljeyE9rxILp/frTBeJ2mVkYjR+3Z+LKyb2BgB9qZtVj86Cn5/mZkZ7CiP3jAlhUisHSMspx1d/ZKC4ogGb9uYAAA6nF2NBcS16dw9F0vECCL276UcCdSO52YXVbU4hJs+weV9rYhc11Hh05V40NCnx1E1jzdpW1jbh7PlKfPjzaQBoV2kE0njixjHtm7lDTmOvYHAXgP9q/xl6FoD1dEFENsgzyNSXfLLQSktyZ4uvGYE9qYX6qZ0AMGN0PH7Yld3pc5uu4wsO9MNjN0gXHr/pskHILqy2mJWWqKMG9+6G5f+egZBA46/XAH/jZDwJsSFmpSkeum4kBvfuhpYWNT7YeArXzUrE5n25DAYdwNLygfVb0xEW7Kf/jDKdTnpMLEF6biVmjIrHBBvqWZJnqKxpRkOTZvRYKtB7dIXx1OP8klqzNiTt+TsmoqiiAUP7RbXdmFzCXsHg/wHYIgjCzQAOQ7MSZxyAYgAL7fQa5IF+2ZcDhVKFa2cmQtmiwoHTRRg3OAb+fpoLI2s13pqaW9cGJh2/4PC+kv2Fh/ijuq5Z/zwuKhhThvcwCgY7YuUjMwEAvj4yDOgZjkvHJ7RxhLHLJvTu1OsTWRNqQ9KcR64fY7a2LSosUD81eenN47RbmZbeudRWP5+yLmiylZ7MLpNMKkLuo7K2CWk5FZgyvAdkMhk+/11Er5gQ3DBvqFnb73Zm6h/vSeUNZ3vq0yNMX6aH3JNdgkFRFGsEQZgJYA6AsQBUAFaKosjiP13cT7s1Iz7XzkzEH0fy8d3OTKRkxODUuXK0tKjx8VNz9G2PisUY2CsCEaEB2JlSgM+1md/IvY0ZGIPjmaWS+2aO7ilZ97GzDKfZPfPPCXY/P5GjRYYFQOjdDQMTIvDrfk3AJzVQzcFr11IoVfrsh+RY9Y0KrNuSjgXT+tol2+trXxxDcWUDQoP9MDIxGjuPFQAA5k7q1+lzk7TVj8/GfW8mubob1E52KzoviqIawJ/af+Tlvk/KQq+YEEwdEWdTe2WLSn/n7VxhtVktwBU/nsSxsyUAgKdvGW+xbAS5n9EDo3HXgqGShZ8H9orAmw9Ow++Hz+OIWIzukcE4X2x5es2l4xIwzkptNyJv8pR29E8XDEoZ1i+q0yPpZDu1SWaQI+nFmDK8h2s6o3XqXBkOpxXjtvlDvHpq+/Yj+Th2tgRpueVY+cisTp9Ptxa9rLrRaPvaX07hrvlDOn3+rmpYv0icyTFPpLTs/qlGN07eXzIDjU3Ws7+Te7BbMEhdy5YDmosXW4PBU9nlVvfrAkEA+N8XRzveMXK6+OgQs6ybIYG+ePzGsejTIxQymQw3XjoIN146CADMsrAF+vvqj7n5isHO6DKRx7hsQgIGJUTgpU+5/N4Zci7WGD1fs/kM1myWzjK642g+hvePQlxUsEP79Pa3JwBoZloM6CVd+9QbKFs0N4mbFao2WrbPZ9tEjBvcepOxoUmJpz7cZ9fX6OrkMhliuwUZbQsJ9GNGbg/BYJDsrqC0DkH+PogKD9RvO3u+tdi7aTBwJsd6oEju6+lbx2OgycXJ4mtGQOgTadO6KQCYOToeF8vqMXtcL0d0kchj+Ehk2pPLZBbrNa5bOhd3vqaZjCOVlZcc68vtZwFofg9qtRoymUz/X0d4/esUrH58tkPO7ena+rnnFFbrHx9LL7bYjtpmOnoOdH46+5sPTmuzhjQ5DifCk9395+ODePwD47tuuiLhAFBV25pQ5HROOd5kUXi389p9U2xqZxoIAppC49YCwdgIzd3DnjGalO1+vj64+YrB6BXDYs7UNT1+4xhcMbG3/m+iI26bP8Ri3U6dmy8fjBvmDuzwa5C0b//MwF3LduJ8cS2WvJ+MO1/7U5+Z0p5Ml1eQxvqtafj38mSopKIUrcMMAO0mwM+n7UbtFBUeqC/jQs7HYJA6JbOgCtsO5rXd0IK3GAi6pe6Rwfj4yTltNzTw8HWjcNn4BESGBVhtNzAhAo9cP9ogWyJR1zasXxRuvHSQ1ZGN+GjrUxF7xoTA10dutd2l4xNY58sBfjukWeP+33WHUFOvAABs3p9j9Zjy6kZU1zdbbdMVFJbVGWUOB4AWlRq1DQrUNSpQYsNo9+4ThahtUEBhZXrp3pOsC2gvt0gs5xjSt7X25iv3TO5QrWByHbeYJioIwv9BU4LCH8AH0NQtXA/NjMJTABaLoqgSBOEeAPcBUAJ4WRTFza7pcddw8EwRggN9MTIx2mKb/32uWd83cUh3REcEWmxHnsf0onFIn25Iz2ud7juiv3HNoDGDYjBmUIxN57b2niIicy/cOQnPrT2Ei+X1AICocOmbLpeMjMeGpCyjbT5yWevfs+XBE7KjmjpNUJhXVIPQID+jZRMA9LNnDMtTlFU1IjTYz+rIy4akTPx9tneM7pZXN+KZNQfRKzYEL9012Wjfw+/tgVwmg0qtNivh8eoXRzGgZwSuNxnl/u8nhzCsbyRLUTmIbuaBr48c7/xrOr74/SwWzeiPwrJ6DOvXGgxyhM/zuHxkUBCE2QCmAZgOYBaA3gDeBvCsKIozoKlZeLUgCHEAHta2mwfgVUEQrA9BUKes3nQa73x3wqa2yhYV1Go1yg2ydj3/ySFHdY2cbNVjs/DI9aONtvWK5Qc+kbP4+sixxOBv8PX7pwEA7vnrMEwfGYfwYM3UbKnRxVWPzdLX5iTnOJRehPpGBZ7/5DAe/2Af3ttwAkdFy1MVG5qUeGLVPjy39qDV82490PGZOO5Gl+WzoKQOaokpnpamfWbkVxktPdEprmhgIOggIYG+8PWR62tDR4QGYPG1I9ErNhQThnRHMBPFeDR3GBmcB+AkgJ8AhAN4AsA90IwOAsBWAFcAaAGwVxTFJgBNgiBkAhgFTZF7sqC6vhlhQX4OW9Bu6M9jBfoF9QCQV2S5hAB5FkesESCi9uneLQj3LhyG/nHh+pG+qcPjMHV4a1bnbmH+RsdMGd5DfwFHztOsUOFfBuV2TmSV4USWdKH6Mznl+Px3zXdnSWWj2f62KJQqKJQqyGTA3pOFmD4y3qgWa2ufWtCiUkvua8umvedQWduMf84T9NsKSmrx6TYRd101FD06mVFVl6HcEt21THpua0kDtVqNmgZFp16XpE0d3gMTh/RAZFgA8ktqMaRPZNsHkcdyh2AwBkBfAAsA9AewCYBcW7cQAGoAREATKFYZHKfbblFkZDB8fd3zIjY2Nkxy+5lzZVC2qDBqYOdrrZ3OLsPSlclYNGsA7lo4wmK7+kYFggJ8LQaMhn39NTkb2Reqzdo0qmAUCJJnM31/Sr1fg4MDLL6Pyfvxd+8af51l/ed+5YxQyHx8sPqnkwCAmMhgo9/V1XMG4XhWGeoaFcgzKaNAjvdHygVcPTNR/9wnwM8siVpbf1uxsWFY/m0KBvSKwFWXJOK2F7ahvLoJ86b0xW8HclFep8Div402O27RE5vQolLjl7eubne/N+45BwB47JYJSBGLERLkhy+2ZyCzoAobdmfjhXumtvucJQbJ5H7YlW2xXV5ZPZ5fcwBR4YFGs4/+vTwZtQwG7eaxm8fjrS81S39CggNw+bT+AIAJruyUh/K070d3CAbLAKSLotgMQBQEoRGaqaI6YQAqAVRrH5tut6iiot7OXbWP2NgwlJRIfwk/tSIZACTvHrZXcko+AODn3VlYOLWvZJvK2iY8umIvJgixuHfhcBxOK8bw/lEIC24d8v/k55PILKjCTZcNwofaCwxTL3x8oNP9JfuYP7Uftu7PadcxKx+ZiRaVGntPFmLsoBiz96fueVCArz5LXkN9s8X3MXk3a59h5HqThVh8HuCL+iYlGhsUZr+rJ24cg292ZCDvYg0C/X3Q2MyU7s7y1W/p+Oq3dP3zT342/05t62/rQmElth/Kw3YAk4RYlFc3AQDO5mrKNOUUVKKkpAYqtRotLWp9IfAWldqm81tTUlKD5z7aDwDoH6+5JCurbEBJSQ1qGxQ4mV2GyUN7mK05b1a0wN9khkllpW3XaLuOahL0lJsUj2cgaD8+chmG9Gq9xG5sNP/cINu46/ejtQDVHYLBZAD/FgThbQDxAEIA7BAEYbYoikkA5gPYCeAQgFcEQQgEEABgKDTJZbxWXaMC6bkVGDc4tt3TPKvrm3E8o1Ryn0qlBmSa+lUFJXUAgCNiCfoeytPfnRtqkBnqx92abbrEBeTeHrhuFE5nl1qcpjsiMQqnso1rO+qmDc2b1MfquZ+7bQL+7yMG/kRE9mCtHALQWojd0H1v7pJoCZwrNL4AfX7dIeSX1OGluyY5JODXvV7uxRrkF9fii+1ncfZ8JQ6eKcK/rh2pn558rrAaL316BNfMTMRfp/Vr9+vsPFZgz26TiaF9I/Gva0ca1w9k0uEuxeULCbQZQVOgCfZ+AbAYwGMAXhAEYT80GUa/F0XxIoDlAPYA+BPAM6Iotn9yvQd57/tUrPzpFI6KJe0+9tXPjyK/RDoYeOi9PXh6tfkF/YXSOv3jNIN5+TrFFSxo7Amkbhzcs2CY/vGIflFm+23VIyoYDy4aAV8fGWaO6dnh8xCR+3j2nxNw7cxE/OOyQUbbRw9g1l/Hs37Vfe8bSR0+c772Zu9/1h7CK9rM31IKy+qQV6QJ7DYkZeJIB2ryPbfuEM6e10zWSs0qw71vJCE1qxQqtRop2hvTG3dntxn8kvPFdgs0W0fKWLBrcYeRQYii+KTE5lkS7dYAWOP4HrmHzHzNEsliK3V21Gq1/uLf8HGRYeBm8tnb0KREQ5PSLHvX/tNFdug1uQXtr3bMwBg8/LdRADQjgtX1CqTltI4KvnrfFPhbWVf71uLpaFYY31GeMKQ7Jgzpbv8+E5HdjB4Yg/2nL6JvnPTUIMOP/8Se4UjsGQ4AiI0IwvIfUvWfHVsP5JqVqiD72X/avP6d4Xd5W84Vmq/hT8+rlMzOqd+fW4Hq+maMF2LhI5fjmTWaDKarH5+tz1Zqj6Uq725IBQD9aKAawN3LduLqS/pj4fR+nT4/2YcuEPRhDdIuyy2CQeoYMa8Cy75KwZK/j0K/uHAseT8Z181KxFVT+9l0/F3LduLKKdJrCcmzDe7TDXnFtfoLPAAIC/ZHWLC/UTDYI9J6Bri2CsgTkXu6fb6AGaPiMbhPN6vtTGOO0QOj8dRNY9EvTvPZMW1EnFEwOHtsLySlcNqevSiU5tNAH1mxF9V1thWkf+nTI5Lb71q20+Ixr3+dAgC4fs5A/GWy4dKA1gDywbd3Yf6UvqiubcbCS/rpt5/KLrOpX4ZM32M/J59D1oUqo+Uo5BqThnbHAm2wLpPJEBHqj6raZrPfGXk3BoNuqq6x7YXRWw9q7uBt3HMOV0zS5Nz5YVe2zcEg0HY6Z/JMf589ECP6RxsVgtUZOSAa+CMDi2b0d0HPiMgZ/Hx9MKQDF9symQyCQRr5iNAALL15HF778hgAoFcM64s6mq2BYGdlFlQZPTccjWxsbsFP2nwBO47l67e/bWPtYUNinnmuv1PZ5WZr18m5Hr1+NEYkmkwF198PYDTYlbh8zSBJe+T9vR0+1jTDFmfoe7Z1S+fixbsmYaLE1Mx+cWGYNLS7WQF4P185Rg2Ilqwv1iMyGGuenI2F0xkMEnVVE4dqPk9s+RwY3Lt1dLFfvGelTCfLjp0twafb0ttu2EnieauJ38mB7r96uOWdVuI9jgx2LRwZdKGa+mb4+sglC8BKZRBrbFZix9F8zBjdE+HBxoWFZQZ/1Q+/t8f0UJRXN+LxD/bZodfkCgmxoZ8Wo20AACAASURBVHhg0Qgcfu1P/bYVS2YiOFDz3jmUVoQPfz6NO68catP5fOS8D0TUlQ3sFYHVj8+CXwdq8V41tS9+3W95VklkWAAqapo60z1ykl3HL+gfl1V5dU6+Lkkmk8FHLoNabZ65ViYRDXLwoGviFaEL/Xt5Mha/s9vm9r/szcEPu7Kx7tc0o+1qAM1K62mjdxzNt7qfPI8uEASASUN7YOUjM3HJqHgX9oiIPEl7AsEHF43A+MGx6B8XjvFCrNn+vj1aRwz7WUhaQ+6NZYM812wr2b0/eHQWVj02C927BRltDwyQ+PvXBowcGOxaGAx6kDJtwdWL5fXYdbwAqVmahdy5F2vwyRbrUz1OdmDRNzmXv58cM9oI5j56YrbFfVIjzERE9jBhSHcsvnakWTFxAPjPbROw5PrR+uc3XDrIrA0ROY6/n+UbO36+cvj5yvHyPZOxYslM/fbesaGWT8h5ol0Krx7dRHVdMz7efEZy3/dJWZg/uQ+aFZqpo8UVDfh0m9iu8+vqDZF7MkzjHejvi+1Hzku28/WRQyYzTgtPRORMvbuHYnDvbhgzMAZzxvZCgL/xhajpCAQROc/IxGj9AECCQT4BXx85fH3k+OiJ2ahvUkoGkNNHxmPrwTwMl0g+R96LwaCLGKaTziqosloQFrCeJpq8S1s35FYsmYlmiXTkRETO4COXY+nN41zdDSKS8LfZA/TBYHy0efZfXx+5Wd4JnetmD8Cssb14Q6eL4TRRF8jKr8R9bybpn7cVCJJ3iwq3XMtv/GDztTlBAb6ICJH+ICciIiLvddn4BIv7TEfp20sukzEQ7IIYDLrAf9fsd3UXyE307h6KJ24ca7Qt2GDt370LraSFJiIioi5Fat3uLG0CmTvmD4Ga60ionRgMukBVrXMKypL7ePT60fjLpD5m2/8+ZwB6RAUbbbtiUm9cOi4Br947BX6+/BMlIs8wtG8kosMDJfddP2eg2bawYD9Hd4nI6/TpYZ74JT46BOuWzsWkoT1c0CPydLzSdLLdJy603Yi8TmR4oFlheEC6zk+gvy9uvmKwWZBIROTOnvjHWLz+wFTJfZeOT8Dssb2Mtj38t1HO6BaR13jsxjGYMjzOaNt1sxJd1BvyFkwg42Trt1ovAUHeIyo8AOXVmsLLPaODER8djLUmNSKJiLyJzEoGrH/OE3DL5YNR26hA3sUaDOgZ4cSeEXmGyyYk4I8j0rWhh/eLMnr+8ZNzzKaNcpYotRdHBolsMKJ/VNuNTMgNLopkMhnkMhkeum4kLhlpUEuQpXyIyAvFR2tmNowXYnHp+AT9lHe5XIbwYH+MSIw2at+XheqJMHV4HEIC254+rSsZIbV+MCSQ4zzUPnzHELXhziuHYuKQ7njg7V2dPtfYQbEYOygWyScL7dAzIiL39ORN45CWU47Jw3pYHS0MDvBFfZMSz9w6HofSivDdzixU13FdPZE1z985CS0t0iWmYroF4V/XjkTv7laKyhMZ4MggkRXXzxmIS0bFt91QQs8Y8zWCpjgwSETeKCLEH1OGx1kNBAHg3YcvwarHZsHXR45pI+JZNoe6hIEJ0lOkxw2OxTCTgu83zjVPviSXyeDna7mMxLjBsYhliQiyEUcGiSxYt3Su/rG/nxzjhVgIvbuhV0wI3vjmuNVj/3HZIEwdHoeH39vj6G4SEXksXx85DK9pe0QG4Xxxres6ROQgN8wdCJVajWnD4xARGoD84lpsTD6HY2dLAACjBkRjvKCpLfzOQ5cgJNAXjc0tOJNT7spuUxfAYJDIBjKZDIuvGWm2ffm/Z0ChVOGJD/ZBZbBq+/IJvQEAS28eh7LqRsvntX9XiYg81j//MgTDB8YiK6+C0+nJq8wzKS+V0D0UU4fH6YNBw1IruhHy0CBO4CPH47uMujRLC637x4fbdHxokB8iwwLwyr2TMX5wrNn+wb27YapJGmgiIpIWGuSHv80dhH9cNggLp/fDXVcNNWtjWKJiynDWVSPPpUu0BEiXmiJyBgaD1KU9fet4s20+chn+PntAu87TIzIYC6b1a38H2lhPQ0TUFQUF+GLRjERMHRGHhdP76bffs2AYbr1isP75+MHdXdA7Ivswyi1g4XLA38/y2kAie2AwSF3KUzeN1T/uHx+G+OgQPLhohH7ba/dPxZon52BI30ipw+1Gd3HTj+nUiYgskstkWDSjtah27+6hRklpxg2Owf/dMs4VXSOy6v6rh9vUbvE1mmuQueN6Se4flRiNv0zug//ePtFufSMyxDWD1KUM6BWBF++ahI83n8FD140CAESGB+j3d+9E9i01bK/0umhGIq6+pH+bmfaIiMjcdbMSERcVDJlMhkEJ3VzdHSIzk4b2QHREIF757KjVduOF7lj71ByL1wNyuQzXzzHPKEpkLxwZJK/12n1TJLcnxIbi+TsmoVuoJgiMj9JM05jRjhISz98xEa9aOL+tGAgSEdlm2gjN2uuYboEAgKum9sN4wXyK6LxJveHrw89Wcg8DekqXkDDF6wFyJY4Mktd5a/F0hIf4wUcux6XjExAS6ItNe3MASC/RCw70xZonZ8NHbvu9kT49zKd3qm0fGCQiona4e8Ew3HHlkDY/p/8yuS9yCmsgnq90Us+oK3nqprFY9lWK5L41T87GPa8nmW1/+pbxCDXIFErkbhgMkteJDGud9nnz5ZpEA/pg0MIK7fYEgkRE5HzWPqeX3T8VF0rrEBHij0B/JtygzgsL9kNNvcJoWz8rmcYtvT8tFZgnche8Aiav8v6SGVb3t2ddHxEReYbYbkEYPTDG5vZrnpyNv0zu03ZD6rKumNjbbFuAhcyefzPJQB7AGxLkQTgySF4lJFB6KsbNlw9G1oUqjgASERF85HIM7t0N2w7mubor5IaW/3sGQoP8MHdcApoVLTh6tgQzRvUEoAn0mppbJI/7v1vGoaq2uV03JohczS2CQUEQjgGo1j49B+AVAOsBqAGcArBYFEWVIAj3ALgPgBLAy6IobnZBd8lNPHbDGLz17XGb2l46PgGXjk9waH8s3TEkIiLnuX7uQJTXNKGhSYnSqkb9dt16r5GJ0S7sHXmC0CDNjeWgAF8EBfhi7jjr1w+6BHTMbEueyOXBoCAIgQBkoijONti2CcCzoigmCYLwIYCrBUHYD+BhABMABAJIFgRhuyiKTa7oN9nffQuHY/Wm0za37909FADQIyoY04b3wIBerp2X///s3XucXXV97//X3DKTy8wwSSYkGEggYT5yC8RgCJeQAFFucrGUYqMWRAEpFa0tooL1cvBYrXAUW2gboGitv0OL5Rwbi6DiBbBCxXh+UPQbo2jLUWQIk8yEmEmYzPlj7xkmyZ5JJrNvM+v1fDx4OOu71t77M5OPe+/3Wt+11kEzp7J61eF0HOyHgSRVypwZU/no5Uv5hwfX880fPgvAogUziEPa+NQ7T+SAgfPKC5w1cP7J8wfPMZcKGbjywPJFc5h5wGRWHncQzVMmVbQmaSwqHgaBY4EpEfEguXo+CCwBvpNffz/weqAPeDQf/nojYgOwCPj38pesUmiZOolPXLWMA6Y2cvUt3ym4zR3Xn8ba7/2CJR3tu2xfLfPzVx2/5zkGkqTye+OphzG5qZ4zlsyldWruy/rMIfeSbWzY87SBN5xkGMyqE448kMee/s0+b980qZ7zTppfuoKkMqmGMLgV+DRwB3A4ufBXk1Ia2GfXA7QCLcDmIY8bGB9WW9sU6uurIyRo79rapnD0gtw8+0/90XLe95cPs2LxXL6z7tnBbQ6c1cLbL1w0uNzevuctHuTfRaVnj6mUitVfVx3cNuy6GTOm8csXtnLiMXPoeWk7v3yuhzmzvfJjVt349mWc9yf/Gxi5/2prc8cGJ09p8H1QBY23vqiGMLge2JAPf+sjYiO5I4MDmoFN5M4pbC4wPqyurq1FLlWjdcf7TuPBf/8v/vFbG/a6bffm39LZ2QPAzGkN3PX+03m2c8tgGDw+2gfXa3jt7c3+nVRS9phKqZz9ddbxuXPBWhsnM3f6ZDo7ezhg2iQ2bdk+7GPOWDKXbz7x7LDrVR2mtzTyYnfhM4mWHjGLI+a18fmvpcGxoT03Uv8dfeh0Hv/x87Q3N/o+qD1U6+fjiDs4yljHcC4HbgaIiIPIHQF8MCJW5tefDTwMPA4sj4imiGgFjiB3cRlVsdraGs464RCuvvDoguvramsGT9RunbbnnPtXzZzK6197MH/ypuP4wzceU9JaJUn66OVL+cBbXjO4fOD0KbusH7h/rarbcBeNm9pUzzsvOJoVx71qj3UXrTiMq84/asTnfds5R/AnbzqOE4+eXZQ6pUqrhjB4J3BARDwC3EMuHL4b+Gj+ojGTgHtTSs8Bt5ILhg8BN6SUtg3znKoyr331rILjF61YwH97xwn86ZuO48C2KXusr6mp4U1nHM5R86eXukRJkmieMmmXq0LOnTmVO9532i7bHL7bjcSvcWdlVbju9xfvdZs3n3XEHmNHzs9NJz73xPmccOSBIz6+saGOo+ZPp7amZsTtpPGi4tNEU0rbgdUFVq0osO0aYE3Ji1JZfPiy1zJvdu6wdetUw54kqXr8+VXL+Mdv/YzfX3X44HlihTRPaWCE1SqTy85+NUfMa2POjCksO/LAgleL/dvrVjJnduse0/heNXNamaqUqk/Fw6DGh7raGvp2FnhnHcbrX3sw0wcu372bT//hSfz8V92DQVCSpGozq20Kf/Q7rxzxe/PrOvhNgWsRfPiy1/KL514JF2efcAjnn3IoP312E7fc83/KUut49bHLl/Jndz0+7PpXzZzK/33hpRGf46rzj2Lnzv7BI3ofv2IZAPd//5eD2xw4fQq/eXEr9XW7Togb+G7zuysP299fQRr3DIPaJx97+1JuWPPY4PINf7CEj3/hCQCueMORLDvqQO5/7D9Z/1+beOcFR9E0ac/W+vBlr6VrSy/TW5qY3tJUttolSRqrQuegHTGvjektTTzz61fCYGNDHY0NdRx96Aze/LoO/uHr68tZ5rhz+NxWfvrs5oLr6ur2fsh16RGzqCkwZXPo7uub3rGUHS/v3GObNbtN/5WyqBrOGVQVO3ROM5+4chlzZkzlr//klZm7UxpfCXsnHj2bmpoazlk2j/dcfGzBIAgwb3Yzxy2cWfKaJUkqp7mzpr6yMCSXnLFkLh+69PjyFzSOLHzV8LfzmNRQx2Vnv5r3v/k1HDqnBYDjFs7kjNe8EswLBcHd1dXWDvvdRMo6/5+hEX3o0tcO/jyp4ZV7NjbUux9BkiSAA9umcNnZr+b+7/+SFccetMu6Q+e08Ikrl/GBv/1+haqrHqctfhXfWvd/B5cLXUV8qBrg1Pzf8wNveQ09W3fQlj8F5Zs/HPn2HgNXKp/eUviUFUk5hkGNyo1/cDzP/LqbA6b55ipJ0oBTjz1oMLjsbvfbU3zkbbnzDO++/ycAHHXodP7jmRcH15930nx+8VwPT/58Y+kKLrO3nf1qlkQ7LVMnsXzRHHbu7Kd5yithsKG+lj9903HcufbHPL/pt3s8vr6udjAI7ouTjp7Npi29LDvKW0BII/HwjgB4+7l7Xmq5kMMOahn23j2SJGXBRSsWUFdbw4XLD93nx1xwyivbHnJgMycOCSnv+p1db01RUwMLDmoZ9rkuXrlgFNXum7eeGXuMvf61Bxft+ZcfexBTmhq44JRDmd7SxMwDJu+xzeFzD+DjV56wT8+3aMEMjpjXNuz6+rpazj/5UGYVeB1JrzAMitMWv4qTj5nDeSfN3+fHDNws/iRvuipJypiOgw9gzftO2+V+hKPVUF/Lxact4L2/dyyTGuq46/2n77L+9UuHD2J1Be5l0TJ15CmXd73/dG6+5mSuPP/IgutPW7zrTdjPPXEebzrj8D3qGs7ZJxwy7LrVqw7fp+eA3Pl9rz5k73/X91x87D7dV1DSyAyDE8hn3nXKPm133e8v5rb3ngrk9qwN7A3c9xtH5E7Y/uy1p/CONxT+UJEkSSM7+4R5HH3YjMHlRQtyPx80c+ouFzy58/pXrnp57onzmD1j12mnAJ+4clnBWT6rVx3OFfnP6rbmRpYduetO3AuXH8od1+95Vc3Z0/d8jZFcfNpC5rZP3WP8TWcczqrj9+8Io7dvlErPcwbHkcZJdfRu7xt2/b5cghkYnFZxx/WnUTvkKlyvffUs1n7vF4PLF54y8vSXfbmClyRJ2jfvvOAoNjy7maMOnb7L+NDP24tWLGDnzn5WHHcQxxw2g7/85ycBmNxYz4lHz6Zl6iQ65h7Ar198iSlNDXudJnnGkrm7fBfYHwfPyt20/fo3v4Z3febhXdbNanOaplTNPDI4jtz+3hUjrt+Xt/Khl7je/c3/4FnT+PgVr8zVP38vYVCSJO2bgamdu9/4fKimSfUcfdiMve5sra2t4dKzXs1rOtp3Ha+p4ZjDZtA4qY75s1v2GgTPPuEQpjY1DC4P/Q4wGgPTNYc+16olc3nXRcdw7IIZwz1s79zpLJWcRwbHsbbmRrp6evd5+zuvP22vHzDTm3M3gx/ppGxJkjQ6ZyyZyzO/7uYNozg//0OXHs/O/txJHDe8dQm1Bc4VHIvdn2/OjD2neQ7V2FBH46Q6ul/avsv4wG0cIHcl1H/53i9YdtRsDhvhIji71zD0PMhTjz2In/znpj1u0yGp+AyDZTa3fSrPdr406sctO/JAIHf0rx+Igw/g+je/hrvv/wnf/T+/ym+165v6Ocvm8a/f/+Xg8r5M62ycVMdt7z11l3sKSpKksZncWM+7Llo0qscM3GgdYMEwN2evq62hb+dozvofvXdddAyP/P+/5g/feDQbnt3MJ7+0jsmN9Rxz2HSOXThzl23feOphnHXCIUxu3LevmGcuPYRfPtfDhcsPGxxbdtRsjl04c5+fQ9L+8/9lZTZ0CsWAmhro38v7+EUrcpeRXji3lZ8+u3lw5sQFpxzKcxtf4k2rDt9jNsXQPX5vHMXlr4eetC5JkqrXbe89lZ07S/saiw9vZ/HhuSmpHQcfwGVnv5oj57UVvD0EMKoQN21yA++95LgxPYek/ec5g2XWn09982Y3Dxnc++NmtOambx4fswBYkv/ftuZG3v+WJcyfvedUjDj4lUsze9NVSZImnob63NTNcqmpqeHUYw8aNghKGl/c7VJmA7lvf2f9rzp+LscunEF7gTfhpkl1LHxVK0fOb+OkY+Z4o1VJkiRJwzIMltlAGGwashev/YDJPL/pt4PLk+pr2f5y4TkfNTU1zGorfO+fmpoaPvjWJbuMnX/yfL731HO0NTeOrXBJkiRJE4rTRMstnwZramr42NuXcs6yeXzosuM5a+khg5scNHPkq3mNxoXLD+NTV5804qWsJUlSdlx5Xu4m9KccM6fClUiqNBNCmZ1/8nwAzj1xHnPbp/G7KxcwtamB3zt94eA2HQcfwAffuoTfO23hMM8iSZK0f5YdNZu73n86B07fc6bRxStzF6w7cv70PdZJmnicJlpmRx82g698+nxeeGHLsNuceNRs5s1upnd7HwCHzmkedltJkqRiOXvZPM464ZB9uh2VpPHPMFgBw73B3nn9aezs76euNnfA9sj5bbzn4mNZ8Kq937RVkiSpGAyCUnYYBqtITU0NdUPegGtqali0YEYFK5IkSZI0UXnOoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpg2r6+/srXYMkSZIkqcw8MihJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlUH2lC8iSiKgFbgOOBXqBd6SUNlS2Ko0XEdEA3AXMBxqBm4CngbuBfuAp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOcv8eqm4RMQt4Angduf65G/tLRRARHwDOByaR+yz8DvaXiiD/+fh5cp+PfcAV+P6lIoiIE4BPppRWRsRCxthTEbEM+Gx+2wdTSh8t/2+1K48MlteFQFNK6UTg/cDNFa5H48tbgI0ppeXAWcBfArcAN+bHaoALImI2cC1wMnAm8ImIaASuBp7Mb/sF4MYK/A6qYvkvVH8D/DY/ZH+pKCJiJXASub5ZARyM/aXiOQeoTymdBHwM+Dj2l8YoIt4H3AE05YeK0VN/DawGTgFOiIjF5fp9hmMYLK9TgK8BpJS+Dxxf2XI0zvwT8KH8zzXk9iotIbd3HeB+YBWwFHg0pdSbUtoMbAAWMaT/hmwrDfVpch9Uv8ov218qljOBJ4H7gH8B1mJ/qXjWA/X5GVgtwA7sL43dz4DfGbI8pp6KiBagMaX0s5RSP/AAVdBrhsHyagE2D1nuiwin6mqfpJS2pJR6IqIZuJfcXqaa/BsK5KYhtLJnnxUaHxiTAIiIy4DOlNIDQ4btLxXLTHI7QC8G3gn8A1Brf6lItpCbIvoTYA1wK75/aYxSSl8mt2NhwFh7qgXoLrBtRRkGy6sbaB6yXJtSerlSxWj8iYiDgW8Bf59S+hKwc8jqZmATe/ZZofGBMWnA5cDrIuLbwHHkprXMGrLe/tJYbAQeSCltTyklYBu7fgmyvzQWf0yuvzrIXZfh8+TOTR1gf6kYxvqda7htK8owWF6PkpvXTv4E0icrW47Gk4g4EHgQuD6ldFd+eF3+XByAs4GHgceB5RHRFBGtwBHkTnQe7L8h20oApJROTSmtSCmtBH4E/AFwv/2lInkEOCsiaiLiIGAq8E37S0XSxStHYV4EGvDzUcU3pp5KKXUD2yNiQUTUkJs+X/Feq+nv79/7ViqKIVcTXUTunK+3pZR+UtmqNF5ExGeBS8hNgxnwbnLTYSYBPwauSCn15a9sdSW5HT7/PaX05YiYQm5v6RxgO7A6pfRcOX8HjQ/5o4PvJLcXdA32l4ogIj4FnEaubz4IPIP9pSKIiGnkrrY9h1w/fRb4AfaXxigi5gP/M6W0LCI6GGNP5Q8GfQaoI3c10RvK/1vtyjAoSZIkSRnkNFFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgbVV7qAUurs7OmvdA2FtLVNoatra6XL0ARlf6nU7DGVkv2lUrK/VErV2l/t7c01w63zyGAF1NfXVboETWD2l0rNHlMp2V8qJftLpTQe+8swKEmSJEkZZBiUJEmSpAwyDEqSJEkaF3p39PF811Z6d/RVupQJYUJfQEaSxqveHX1s3tJL67RGGhvG3zkIkiQVU9/Ondzz0AbWre/kxe5eprc0srijnUtOX0hdrce39pdhUJKqiB92kiTt6Z6HNvCNHzw7uLyxu3dwefWqjkqVNe75zUKSqsjAh93G7l76eeXD7p6HNlS6NEmSKqJ3Rx/r1ncWXLdu/QtOGR2Dih8ZjIjLgMvyi03AccCJwFrgp/nx21NK90TEFcBVwMvATSmlteWtVpJKZ28fdhetWOCUUUlS5mze0suL3b0F13X1bGPzll5mtU0pc1UTQ8XDYErpbuBugIj4K+AuYAlwS0rp5oHtImI2cC1wPLnQ+EhEfD2lVLgzJGmc8cNOkqQ9tU5rZHpLIxsLfEa2NTfROq2xAlVNDFUzTTQijgeOSin9LbkweG5EfDci7oyIZmAp8GhKqTeltBnYACyqYMmSVFQDH3aF+GEnScqqxoY6Fne0F1y3uGOms2bGoOJHBof4IPDR/M+PA3eklJ6IiBuADwM/AjYP2b4HaB3pCdvaplBfX53N0d7eXOkSNIHZX+PXyce+iq88/PMC4wcx96ADKlBRYfaYSsn+UinZX+PTH/3eYqZMnsT3n/o1L2z6LTMPmMyyo+dw+XlHUVdXNce3xl1/VUUYjIgDgEgpfSs/dF9KadPAz8DngO8CQ/+6zcAmRtDVtbXYpRZFe3sznZ09lS5DE5T9Nb6dd+IhbP3tdtatf4Gunm20NTexuGMm5514SNX8u1Zjj3krjomjGvtLE4f9Nb5dePJ8zl568C7v9y+++FKlyxpUrf01UkCtijAInAp8c8jyAxHxrpTS48AZwBPkjhZ+PCKagEbgCOCpslcqSSVUV1vL6lUdXLRigeFmH3grDknKlsaGOs+fL6JqCYMBDJ0XdTXwuYjYATwHXJlS6o6IW4GHyZ3reENKaVv5S5Wk0vPDbt943ylJkvZfVYTBlNJf7Lb8Q+DkAtutAdaUqy5JUvXyVhySJI2Nc2gkSePSvtyKQ5IkDc8wKEkal7wVhyRJY2MYlCSNS953SpKksamKcwYlSdofl5y+EGCPW3EMjEuSpOEZBiVJ45a34pAkaf8ZBiVJ45634pAkafQ8Z1CSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGVQfaULiIjLgMvyi03AccApwGeAfuAp4JqU0s6IuAK4CngZuCmltLbsBUuSJEnSBFDxI4MppbtTSitTSiuBJ4BrgT8DbkwpLQdqgAsiYnZ+3cnAmcAnIqKxQmVLkiRJ0rhW8TA4ICKOB45KKf0tsAT4Tn7V/cAqYCnwaEqpN6W0GdgALKpIsZJGrXdHH893baV3R1+lS5EkSRJVF/EP/QAAIABJREFUME10iA8CH83/XJNS6s//3AO0Ai3A5iHbD4wPq61tCvX1dcWusyja25srXYImsGrqr76+ndz1L//B95/6NZ2bfkv7AZNZdvQcLj/vKOrqqmZ/lEapmnpME4/9pVKyv1RK462/qiIMRsQBQKSUvpUf2jlkdTOwCejO/7z7+LC6urYWs8yiaW9vprOzp9JlaIKqtv760jfW840fPDu4/HzXb/nKwz9n62+3s3pVRwUr0/6qth7TxGJ/qZTsL5VStfbXSAG1WnbLnwp8c8jyuohYmf/5bOBh4HFgeUQ0RUQrcAS5i8tIqlK9O/pYt76z4Lp1619wyqgkSVIFVUsYDODnQ5b/BPhoRPwbMAm4N6X0HHAruWD4EHBDSmlb2SuVtM82b+nlxe7eguu6eraxeUvhdZIkSSq9qpgmmlL6i92W1wMrCmy3BlhTrrokjU3rtEamtzSysUAgbGtuonWaFwSWJEmqlGo5MihpAmpsqGNxR3vBdYs7ZtLYUJ0XeJIkScqCqjgyKGniuuT0hUDuHMGunm20NTexuGPm4LgkSZIqwzAoqaTqamtZvaqDi1YsYPOWXlqnNXpEUJIkqQoYBiWVRWNDHbPaplS6DEmSJOV5zqAkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkZUzvjj6e79pK746+SpciSaqg+koXIEmSyqNv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtb9w5KUNYZBSZIy4p6HNvCNHzw7uLyxu3dwefWqjkqVJUmqEHcDSpKUAb07+li3vrPgunXrX3DKqCRlkGFQkqQM2Lyllxe7ewuu6+rZxuYthddJkiYuw6AkSRnQOq2R6S2NBde1NTfROq3wOknSxFX0MBgRc/L/uzwiromIqcV+DUmSNDqNDXUs7mgvuG5xx0waG+rKXJEkqdKKegGZiLgd2BkRfwV8CXgQOB24qJivI0mSRu+S0xcCuXMEu3q20dbcxOKOmYPjkqRsKfbVRJcCxwMfBu5MKX0kIv69yK8hSZL2Q11tLatXdXDRigVs3tJL67RGjwhKUoYVe5poXf45LwDuj4gpgNNEJUmqIo0Ndcxqm2IQlKSMK3YY/ALwa+AXKaXHgCeAvynya0iSJEmSxqjY00QfAD6bUhq4WdFywBMRJEmSJKnKFCUMRsTJ5KaI3gG8PSJqhjz/XwMde3n8B4DzgUnAbcAPgbXAT/Ob3J5SuicirgCuAl4GbkoprS1G/ZIkSZKUNcU6Mvg6YAUwB/jYkPGX2cs00YhYCZwEnAxMAf4UqAFuSSndPGS72cC15C5Q0wQ8EhFfTyl5l1xJkiRJGqWihMGU0kcAIuKtKaW/H+XDzwSeBO4DWoDrgLfnni4uIHd08D3krlT6aD789UbEBmAR4NVKJUmSJGmUin3O4Hcj4i+A6eSO7gGQUrp8hMfMBOYBbwAOBb4C/DlwR0rpiYi4gdytKn4EbB7yuB6gdaRi2tqmUF9fnVdKa29vrnQJmsDsL5WaPaZSsr9USvaXSmm89Vexw+A/Ag/n/+vfx8dsBH6SUtoOpIjYBnw1pfR8fv19wOeA7wJD/7rNwKaRnrira+soSi+f9vZmOjt7Kl2GJij7S6Vmj6mU7C+Vkv2lUqrW/hopoBY7DDaklP50lI95BHh3RNxC7pzDqcBXI+KalNLjwBnkblHxOPDxiGgCGoEjgKeKV7okSZIkZUexw+AjEXEe8ED+SN9epZTWRsSp5MJeLXAN0Al8LiJ2AM8BV6aUuiPiVnJHHWuBG1JK24pcvyRJkiRlQrHD4O8CfwQQEQNj/SmlEU/cSym9r8DwyQW2WwOsGWONkiRJkpR5RQ2DKaWDivl8kiRJkqTSKGoYjIg/KzSeUvpYoXFJkiRJUmXUFvn5aob8Nwk4HziwyK8hSZIkSRqjYk8T/ejQ5Yj4b8CDxXwNSZIkSdLYFfvI4O6mAYeU+DUkSZIkSaNU7HMGn+GVm83XAgcAf1HM15AkSZIkjV2xby2xcsjP/cCmlFJ3kV9DkiRJkjRGxZ4m+p/AOcDNwK3AZRFR6qmokiRJkqRRKvaRwU8BhwN3kbui6NuAw4D3FPl1JEmSJEljUOww+HpgcUppJ0BEfBV4ssivIUmSJEkao2JP4axn14BZD/QV+TUkSZIkSWNU7COD/wB8OyL+v/zy7wNfKvJrSJIkSZLGqGhhMCLagDXAOuD0/H+fSSn9fbFeQ5IkSZJUHEWZJhoRi4GngSUppftTStcBDwB/HhGLivEakiRJkqTiKdY5g58Gfj+l9LWBgZTSB4HLgVuK9BqSJEmSpCIpVhhsSyl9e/fBlNIDwMwivYYkSZIkqUiKFQYbCt1cPj82qUivIUmSJEkqkmKFwe8AHy4wfiPwgyK9hiRJkiSpSIp1NdEPAP8aEW8G/h2oAV4DPA+cX6TXkCRJkiQVSVHCYEqpJyJOBU4DFgM7gb9KKT1cjOeXJEmSJBVX0e4zmFLqBx7K/ydJkiRJqmLFOmdQkiRJkjSOGAal/dC7o4/nu7bSu6Ov0qVIkqRxzO8UqqSiTROVsqBv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtZ9K5Ikad/4nULVwDAojcI9D23gGz94dnB5Y3fv4PLqVR2VKkuSJI0zfqdQNXC3g7SPenf0sW59Z8F169a/4PQOSZK0T/xOoWphGJT20eYtvbzY3VtwXVfPNjZvKbxOkiRpKL9TqFoYBqV91DqtkektjQXXtTU30Tqt8DpJkqSh/E6hamEYlPZRY0MdizvaC65b3DGTxoa6MlckSZLGI79TqFp4ARlpFC45fSGQm8/f1bONtuYmFnfMHByXJEnaF36nUDWoijAYER8AzgcmAbcB3wHuBvqBp4BrUko7I+IK4CrgZeCmlNLaylSsrKqrrWX1qg4uWrGAzVt6aZ3W6N47SZI0an6nUDWo+DTRiFgJnAScDKwADgZuAW5MKS0HaoALImI2cG1+uzOBT0SEE6pVEY0Ndcxqm+KbtiRJGhO/U6iSKh4GyQW7J4H7gH8B1gJLyB0dBLgfWAUsBR5NKfWmlDYDG4BF5S9XkiRJksa/apgmOhOYB7wBOBT4ClCbUurPr+8BWoEWYPOQxw2MD6utbQr19dW5l6W9vbnSJWgCs79UavaYSsn+UinZXyql8dZf1RAGNwI/SSltB1JEbCM3VXRAM7AJ6M7/vPv4sLq6tha51OJob2+ms7On0mVogrK/VGr2mErJ/lIp2V8qpWrtr5ECajVME30EOCsiaiLiIGAq8M38uYQAZwMPA48DyyOiKSJagSPIXVxGkiRJkjRKFT8ymFJaGxGnkgt7tcA1wDPAmoiYBPwYuDel1BcRt5ILhrXADSmlbZWqW5IkSZLGs4qHQYCU0vsKDK8osN0aYE3pK5IkSZKkia0apolKkiRJksrMMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJI+jd0cfzXVvp3dFX6VIkqajqK12AJElSNerbuZN7HtrAuvWdvNjdy/SWRhZ3tHPJ6Qupq3V/uqTxzzAoSZJUwD0PbeAbP3h2cHljd+/g8upVHZUqS5KKxt1akiRJu+nd0ce69Z0F161b/4JTRiVNCIZBSZKk3Wze0suL3b0F13X1bGPzlsLrJGk8MQxKkiTtpnVaI9NbGguua2tuonVa4XWSNJ4YBiVJknbT2FDH4o72gusWd8yksaGuzBVJUvF5ARlJkqQCLjl9IZA7R7CrZxttzU0s7pg5OC5J451hUJIkqYC62lpWr+rgohUL2Lyll9ZpjR4RlDShVEUYjIgfAt35xWeAW4G1wE/zY7enlO6JiCuAq4CXgZtSSmvLXqwkScqUxoY6ZrVNqXQZklR0FQ+DEdEE1KSUVg4ZewdwS0rp5iFjs4FrgeOBJuCRiPh6SsnLeUmSJEnSKFU8DALHAlMi4kFy9XwQWAJERFxA7ujge4ClwKP58NcbERuARcC/V6ZsSZIkSRq/qiEMbgU+DdwBHA7cD/w5cEdK6YmIuAH4MPAjYPOQx/UArSM9cVvbFOrrq3Nuf3t7c6VL0ARmf6nU7DGVkv2lUrK/VErjrb+qIQyuBzaklPqB9RGxEfhaSum/8uvvAz4HfBcY+tdtBjaN9MRdXVtLUO7Ytbc309nZU+kyNEHZXyo1e0ylZH+plOwvlVK19tdIAbUa7jN4OXAzQEQcBLQA/ysilubXnwE8ATwOLI+IpohoBY4AnqpAvZIkSZI07lXDkcE7gbsj4hGgn1w43AZ8LiJ2AM8BV6aUuiPiVuBhciH2hpTStkoVLUmSJEnjWcXDYEppO7C6wKqTC2y7BlhT8qIkSZIkaYKrhmmikiRJkqQyMwxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkoqmd0cfz3dtpXdHX6VLkbQXFb+1hKpD744+Nm/ppXVaI40NdZUuR5IkjTN9O3dyz0MbWLe+kxe7e5ne0sjijnYuOX0hdbUef5CqkWEw43zjliRJxXDPQxv4xg+eHVze2N07uLx6VUelypI0Ar/tZ9zAG/fG7l76eeWN+56HNlS6NEmSNE707uhj3frOguvWrX/BKaNSlTIMZphv3JIkqRg2b+nlxe7eguu6eraxeUvhdZIqyzCYYb5xS5KkYmid1sj0lsaC69qam2idVnidpMoyDGaYb9ySJKkYGhvqWNzRXnDd4o6ZXpxOqlKGwQzzjVuSJBXLJacvZNXxc5nR0kRtDcxoaWLV8XO55PSFlS5N0jC8mmjGDbxBr1v/Al0922hrbmJxx0zfuCVJ0qjU1dayelUHF61Y4O2qpHHCMJhxvnFLkqRiamyoY1bblEqXIWkfGAYF+MYtSZIkZY3nDEqSJElSBhkGJUmSJCmDDIOSJEmSlEE1/f39la5BkiRJklRmHhmUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMqi+0gVkSUTUArcBxwK9wDtSShsqW5XGi4hoAO4C5gONwE3A08DdQD/wFHBNSmlnRFwBXAW8DNyUUlobEZOBLwKzgB7g0pRSZ7l/D1W3iJgFPAG8jlz/3I39pSKIiA8A5wOTyH0Wfgf7S0WQ/3z8PLnPxz7gCnz/UhFExAnAJ1NKKyNiIWPsqYhYBnw2v+2DKaWPlv+32pVHBsvrQqAppXQi8H7g5grXo/HlLcDGlNJy4CzgL4FbgBvzYzXABRExG7gWOBk4E/hERDQCVwNP5rf9AnBjBX4HVbH8F6q/AX6bH7K/VBQRsRI4iVzfrAAOxv5S8ZwD1KeUTgI+Bnwc+0tjFBHvA+4AmvJDxeipvwZWA6cAJ0TE4nL9PsMxDJbXKcDXAFJK3weOr2w5Gmf+CfhQ/ucacnuVlpDbuw5wP7AKWAo8mlLqTSltBjYAixjSf0O2lYb6NLkPql/ll+0vFcuZwJPAfcC/AGuxv1Q864H6/AysFmAH9pfG7mfA7wxZHlNPRUQL0JhS+llKqR94gCroNcNgebUAm4cs90WEU3W1T1JKW1JKPRHRDNxLbi9TTf4NBXLTEFrZs88KjQ+MSQBExGVAZ0rpgSHD9peKZSa5HaAXA+8E/gGotb9UJFvITRH9CbAGuBXfvzRGKaUvk9uxMGCsPdUCdBfYtqIMg+XVDTQPWa5NKb1cqWI0/kTEwcC3gL9PKX0J2DlkdTOwiT37rND4wJg04HLgdRHxbeA4ctNaZg1Zb39pLDYCD6SUtqeUErCNXb8E2V8aiz8m118d5K7L8Hly56YOsL9UDGP9zjXcthVlGCyvR8nNayd/AumTlS1H40lEHAg8CFyfUrorP7wufy4OwNnAw8DjwPKIaIqIVuAIcic6D/bfkG0lAFJKp6aUVqSUVgI/Av4AuN/+UpE8ApwVETURcRAwFfim/aUi6eKVozAvAg34+ajiG1NPpZS6ge0RsSAiashNn694r9X09/fvfSsVxZCriS4id87X21JKP6lsVRovIuKzwCXkpsEMeDe56TCTgB8DV6SU+vJXtrqS3A6f/55S+nJETCG3t3QOsB1YnVJ6rpy/g8aH/NHBd5LbC7oG+0tFEBGfAk4j1zcfBJ7B/lIRRMQ0clfbnkOunz4L/AD7S2MUEfOB/5lSWhYRHYyxp/IHgz4D1JG7mugN5f+tdmUYlCRJkqQMcpqoJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBtVXuoBS6uzs6a90DYW0tU2hq2trpcvQBGV/qdTsMZWS/aVSsr9UStXaX+3tzTXDrStbGIyIOmANEEA/8E5gG3B3fvkp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOctVfTPX1dZUuQROY/aVSs8dUSvaXSsn+UimNx/4q5zTR8wBSSicDNwIfB24BbkwpLQdqgAsiYjZwLXAycCbwiYhoBK4Gnsxv+4X8c0iSJEmS9kPZwmBK6X8BV+YX5wGbgCXAd/Jj9wOrgKXAoyml3pTSZmADsAg4BfjabttKkiRJkvZDWc8ZTCm9HBGfB94I/C7wupTSwHl9PUAr0AJsHvKwQuMDYyNqa5tStYdr29ubK12CJjD7S6Vmj6mU7C+Vkv2lUhpv/VX2C8iklC6NiOuBx4DJQ1Y1kzta2J3/eaTxgbERVeMJnJBrks7OnkqXoQnK/lKp2WMqJftLpWR/qZSqtb9GCqhlmyYaEW+NiA/kF7cCO4EfRMTK/NjZwMPA48DyiGiKiFbgCHIXl3kUOGe3bSVJkiRJ+6GcRwb/Gfi7iPgu0AC8B/gxsCYiJuV/vjel1BcRt5ILe7XADSmlbRFxO/D5iHgE2A6sLmPtkiRJkjSh1PT3V+Wt+IqiWu8zWK2HkDUx2F8qNXtMpWR/qZTsL5VStfbXSPcZLOetJSRJkiRpv1132/e47rbvVbqMCcMwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmD6sv1QhHRANwFzAcagZuA/wLWAj/Nb3Z7SumeiLgCuAp4GbgppbQ2IiYDXwRmAT3ApSmlznLVL0mSJEkTSdnCIPAWYGNK6a0RMR34EfAx4JaU0s0DG0XEbOBa4HigCXgkIr4OXA08mVL6SES8CbgReHcZ65ckSZKkCaOcYfCfgHvzP9eQO+q3BIiIuIDc0cH3AEuBR1NKvUBvRGwAFgGnAJ/KP/5+4ENlrF2SJEmSJpSyhcGU0haAiGgmFwpvJDdd9I6U0hMRcQPwYXJHDDcPeWgP0Aq0DBkfGBtRW9sU6uvrivY7FFN7e3OlS9AEZn+p1OwxlZL9pVKyv8a3uroaoHr/Hau1ruGU88ggEXEwcB9wW0rpSxFxQEppU371fcDngO8CQ/+KzcAmoHvI+MDYiLq6thar9KJqb2+ms7On0mVogrK/VGr2mErJ/lIp2V/jX19fP0BV/jtWa3+NFFDLdjXRiDgQeBC4PqV0V374gYhYmv/5DOAJ4HFgeUQ0RUQrcATwFPAocE5+27OBh8tVuyRJkiRNNOU8MvhBoA34UEQMnO/3XuB/RMQO4DngypRSd0TcSi7s1QI3pJS2RcTtwOcj4hFgO7C6jLVLkiRJ0oRSznMG303hq3+eXGDbNcCa3ca2AheXpjpJkiRJyhZvOi9JkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJklT1Hnv6N2za0svG7m382Z2P8djTv6l0SeNefaULkCRJkqSRPPb0b/ibr/zH4PKznS8NLp9w5IGVKmvc88igJEmSpKr21X/7xTDjvyxrHRONYVCSJElSVfvVC1sLjv9640tlrmRiMQxKkiRJqmoHzZxScHzOjKllrmRiMQxKkiRJqmrnnjh/mPF55S1kgvECMpIkSZKq2sBFYu5Y+zR9O/uZ2z6Nc0+c58VjxsgwKEmSJKnqnXDkgdz77Z8B8LG3L61wNROD00QlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZVDZLiATEQ3AXcB8oBG4CXgauBvoB54Crkkp7YyIK4CrgJeBm1JKayNiMvBFYBbQA1yaUuosV/2SJEmSNJGU88jgW4CNKaXlwFnAXwK3ADfmx2qACyJiNnAtcDJwJvCJiGgErgaezG/7BeDGMtYuSZIkSRNKOcPgPwEfyv9cQ+6o3xLgO/mx+4FVwFLg0ZRSb0ppM7ABWAScAnxtt20lSZIkSfuhbNNEU0pbACKiGbiX3JG9T6eU+vOb9ACtQAuwechDC40PjI2orW0K9fV1Ram/2NrbmytdgiYw+0ulZo+plOwvlZL9Nb7V1dUA1fvvWK11DaesN52PiIOB+4DbUkpfiohPDVndDGwCuvM/jzQ+MDairq6txSi76Nrbm+ns7Kl0GZqg7C+Vmj2mUrK/VEr21/jX15c7jlSN/47V2l8jBdSyTRONiAOBB4HrU0p35YfXRcTK/M9nAw8DjwPLI6IpIlqBI8hdXOZR4JzdtpUkSZIk7YdyHhn8INAGfCgiBs4dfDdwa0RMAn4M3JtS6ouIW8mFvVrghpTStoi4Hfh8RDwCbAdWl7F2SZIkSZpQynnO4LvJhb/drSiw7RpgzW5jW4GLS1OdJEmSJGWLN52XJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSpAq57rbvcd1t36t0Gcoow6AkSZIkZVD9aDaOiOuB21NK3RFRD5wMPJNS+s9RPMcJwCdTSisjYjGwFvhpfvXtKaV7IuIK4CrgZeCmlNLaiJgMfBGYBfQAl6aUOkdTvyRJkiQpZ1RhELgwpfTJ/M9/D0wCpkTEP6aU/m5vD46I9wFvBV7KDy0Bbkkp3Txkm9nAtcDxQBPwSER8HbgaeDKl9JGIeBNwI/DuUdYvSZIkSWL000R7ASKiHXhtSuki4Fzgbfv4+J8BvzNkeQlwbkR8NyLujIhmYCnwaEqpN6W0GdgALAJOAb6Wf9z9wKpR1i5JkiRJyhvtkcG7I+KrwGTg7wBSSjvzU0b3KqX05YiYP2ToceCOlNITEXED8GHgR8DmIdv0AK1Ay5DxgbERtbVNob6+bl9KK7v29uZKl6AJzP5SqdljKiX7S6VUbf1VV1cDVF9d1eruD59Z6RJGNN7+HUcVBlNKd0fEg8DclNLjABFxGPDsfr7+fSmlTQM/A58DvgsM/Ss2A5uA7iHjA2Mj6uraup9llVZ7ezOdnT2VLkMTlP2lUrPHVEr2l0qpGvurr68foOrq0uhVY3/ByAF1tBeQWZBS+hnwq4GxlNLPgd/bz9oeiIh35YPlGcAT5I4WfjwimoBG4AjgKeBR4Jz8+rOBh/fzNSVJkiQp80Z7zuBtEXHl0IGIqI+I393P178a+B8R8W1yVya9KaX0HHArubD3EHBDSmkbcDtwVEQ8AlwJfHQ/X1OSJEmSMm+05wyeDbwvIr4MfAa4CDia3BTPfZJS+gWwLP/zD8mFwN23WQOs2W1sK3DxKOuVJEmSJBUw2jA4jdxFXA4ldwGZL6aUvKqnJEmSJI0zo50m+s/kwuBJwDHA9Ij464iYUvTKJEmSJEklM9oweBrwDXJHBrenlK4lN0X0/mIXJkmSJEkqndGGwRrgGeBfgV9FxHUppQeANxa9MkmSJElSyYw2DPYAh6WUDgWOBU6IiD9OKb1Y/NIkSZIkSaUy2jD485TSbwDyt4B4M7C66FVJkqSSue6273Hdbd+rdBmSpAobbRh8JiLeMWR5J9BSxHokSZIkSWUw2ltL/BHwzxFxDbAOOA54tOhVSZIkSZJKalRhMKX0K2BZRJxI7pzBfwX+dykKkyRJkiSVzmiPDAKQUvo34N+KXIskSZIkqUxGe86gJEmSJGkCMAxKkiRJFfDY079h05ZeNnZv48/ufIzHnv5NpUtSxuzXNFFJkiRJ+++xp3/D33zlPwaXn+18aXD5hCMPrFRZyhiPDEqSJEll9tV/+8Uw478sax3KNsOgJEmSVGa/emFrwfFfb3ypzJUoywyDkiRJUpkdNHNKwfE5M6aWuRJlmWFQkiRJKrNzT5w/zPi88haiTPMCMpIkSVKZDVwk5o61T9O3s5+57dM498R5XjxGZWVJHZxhAAAgAElEQVQYlCRJkirghCMP5N5v/wyAj719aYWrURY5TVSSJEmSMsgwKEmSJEkZVPZpohFxAvDJlNLKiFgI3A30A08B16SUdkbEFcBVwMvATSmltRExGfgiMAv+H3v3HmVXed55/luqAhShkhCiLMMiLeWCn0ieMXYbIwpjIB1jx8jYTDLuTDOZ2ASMMZ52YhLFTuJWt1nOpRtj4iRTMTc1uXVuOKwREIMnFxIjiXLiXIZQ8DjChgkXqwu1bggjoqqaP84p+SCqiirq7LP3Ofv7WUtr1X732aqnznlUql+9734PB4H3Z+Z4p+uXJEmSpF7Q0ZnBiPgZ4FZgaXPos8AnM/NtQB/w3oh4LfBR4K3AO4FfiogTgA8DDzUf+1vAJztZuyRJkiT1kk4vE30M+KGW4zcDf9n8+IvA24Gzge2ZeTgz9wO7gDcA5wH3HvNYSZIkSdKr0NFlopn5hYhY1zLUl5lTzY8PAiuBFcD+lsfMND49NqdVq5YxMNC/2LILMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d+jFqbbXsey31pisuXjQWAfcKD58Vzj02Nz2rv3+fZU2WZDQ4OMjx8suwz1KPtLRbPHutvo2G727H+BickpPvzLf8qm4XWVel8z+0tFqmJ/TUw05kWqVpcWror9BXMH1LJ3E/27iLiw+fG7gC8DXwHeFhFLI2IlsJ7G5jLbgYuPeaxUis0jO9g8sqPsMiRpQUbHdnPTtoeZmGz88Pnk+CFu2vYwo2O7S65MklSGssPgTwGfioidwPHAHZn5TeBXaYS9Pwd+PjNfAH4DeH1EPABcBXyqpJolSepK9+x8fJbxJzpahySpGjq+TDQzHwfOaX78NeCCGR5zC3DLMWPPA+/rQImSJPWkp5+d+faJZ/Yc6nAlkqQqKHtmUJIkdchppyybcfzU1Sd2uBJJUhUYBiVJqolNw+tmGV/b2UIkSZVQ9m6ikiSpQ6Z3Db317jEmJqc4fWg5m4bXVmo3UUlS5xgGJUmqkY0b1nDH/Y8BcN0VZ5dcTXeY3j36+mvOLbkSSWovl4lKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJHbF5ZMfR+24kSZJUPsOgJEmSJNWQu4lKkiRJJXGXWpXJmUFJkiRJqiHDoCRJkiTVkGFQWqDRsd3se+4wew68wJbbRhkd2112SZIkSdKCec+gtACjY7u5advDR4+fHD909HjjhjVllSVJkiQtmDOD0gLcs/PxWcaf6GgdkiRJ0mIZBqUFePrZ52ccf2bPoQ5XIknqBG8NkNTLDIPSApx2yrIZx09dfWKHK5EkFW361oCJySng27cGGAgl9QrDoLQAm4bXzTK+trOFSJIK560BknqdG8hICzC9Scytd48xMTnF6UPL2TS81s1jJKkHeWuApF7nzKC0QBs3rOGk5SewesVSrrvibIOgJPUobw2Q1OsMg5IkSTPw1gBJva4Sy0Qj4m+BA83DbwC/ANwOTAH/CHwkMycj4oPAh4AjwKcz8+4SypUkSTXgrQGSel3pM4MRsRToy8wLm38uBz4LfDIz3wb0Ae+NiNcCHwXeCrwT+KWIOKG0wnvM5pEdbB7ZUXYZ6lFuzS6pW3lrgKReVoWZwTOBZRHxJRr1/BzwZuAvm+e/CLwDmAC2Z+Zh4HBE7ALeAPx150uWNF/TW7NPm96aHfCHKqkk119zbtklSJIqoAph8HngM8CtwBk0wl9fZk41zx8EVgIrgP0t102Pz2rVqmUMDPS3veB2GBoaLLuEl+jv7wOqV1dVVf35qlJd9/3138wy/s+8+4Lv7XA1apcq9Zh6T9X6q+rf87Uwvo4qUrf1VxXC4NeAXc3w97WI2ENjZnDaILCPxj2FgzOMz2rv3pm3hC7b0NAg4+MHyy7jJSYmGtm7anVVVZWfr6r11//3zZlr+efdBytVp+avaj2m3lLF/qry93wtTBX7S72jqv01V0At/Z5B4MeBGwAi4jQaM4BfiogLm+ffBXwZ+ArwtohYGhErgfU0NpeRVGFuzS5JklRNVQiDtwEnRcQDwB/QCIc/AXwqInYCxwN3ZOY3gV+lEQz/HPj5zHyhpJolzZNbs0uSJFVT6ctEM/NF4LIZTl0ww2NvAW4pvChJbePW7JIkSdVUehiU1Ps2bljDHfc/BsB1V5xdcjWSJEmCaiwTVcl8DzhJkiSpfpwZrDnfA06SJEmqJ2cGa+6enY/PMv5ER+uQpMXYPLKDzSM7yi5DkqSu4sxgzT397MzvxfjMnkMdrqS7XH/NuWWXIEmSJC2KYbDmTjtlGU+Ovzz4+R5wkiQ1+AtASb3KZaI153vASZIkSfXkzGDN+R5wkiRJUj0ZBuV7wEmSJEk15DJRSZIkSaohw6AkSZIk1ZBhUJLU1UbHdrPvucPsOfACW24bZXRsd9klSZLUFbxnUJLUtUbHdnPTtoePHj85fujosRthSZI0N8OgpI7wfbpUhHt2Pj7L+BOGQUmSXoHLRCVJXevpZ5+fcfyZPYc6XIkkSd3HmUEBztpI6k6nnbKMJ8dfHvxOXX1iCdVIAtg8sgPwZwupGzgzKEkVtHlkx9EfqDS7TcPrZhlf29lCJEnqQoZBSVLX2rhhDR96z+vpX9IHwOlDy/nQe17v/YJSSdzdV+ouhkFJqhh/mFqYjRvWcNLyE1i9YinXXXG2QVAqyfTuvhOTU8C3d/f1e5hUXYZBSaoQf5iS1K3m2t1XUjV11QYyEbEEGAHOBA4DV2bmrnKrkqT28a0SJHUrd/eVuk+3zQxeCizNzGHgE8ANJdcjSW3lD1OSutVppyybcdzdfaXq6rYweB5wL0BmPgicVW45ktRe/jAlqVu5u6/UfbpqmSiwAtjfcjwREQOZeWSmB69atYyBgf7OVLZAQ0ODZZegHmZ/da9/987v4/rf+eoM41Gp17VKtQD09zd2E61aXXp1fB2707svGGTFiqXc+Ht/y5GJKdaduoL3/cAZnP+m08su7SXsLxWp2/qr28LgAaD1GV4yWxAE2Lt35uVWZRsaGmR8/GDZZahH2V/dbf3pK/nQe17PrXePMTE5xelDy9k0vJb1p6+szOtaxR6bmGhsuFO1urRwVewvzd/601ey8sQTANjy/sYCriq9nvaXilTV/poroHZbGNwOXAL8YUScAzxUcj2S1HYbN6zhjvsfA+C6K84uuZrucP0155ZdgqQm/z1K3aPbwuCdwEURsQPoAy4vuR5JKoQ/TEmSpKJ1VRjMzEng6rLrkCRJkqRu1227iUqSJEmS2sAwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqob6pqamya5AkSZIkdZgzg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINDZRdQJ1ExBJgBDgTOAxcmZm7yq1K3SIijgO2AuuAE4BPA2PA7cAU8I/ARzJzMiI+CHwIOAJ8OjPvjojvAH4HeA1wEHh/Zo53+utQtUXEa4CvAhfR6J/bsb/UBhHxs8B7gONp/F/4l9hfaoPm/4+/SeP/xwngg/j9S20QERuB/5yZF0bE97LInoqIc4DPNR/7pcz8VOe/qpdyZrCzLgWWZuYw8AnghpLrUXf5UWBPZr4N+EHg14HPAp9sjvUB742I1wIfBd4KvBP4pYg4Afgw8FDzsb8FfLKEr0EV1vyB6ibgW80h+0ttEREXAufS6JsLgO/E/lL7XAwMZOa5wHXAL2B/aZEi4meAW4GlzaF29NTngcuA84CNEfGmTn09szEMdtZ5wL0AmfkgcFa55ajL/BHwH5of99H4rdKbafx2HeCLwNuBs4HtmXk4M/cDu4A30NJ/LY+VWn2Gxn9UTzeP7S+1yzuBh4A7gbuAu7G/1D5fAwaaK7BWAP+C/aXFewz4oZbjRfVURKwATsjMxzJzCriPCvSaYbCzVgD7W44nIsKlupqXzHwuMw9GxCBwB43fMvU1v6FAYxnCSl7eZzONT49JAETEB4DxzLyvZdj+UrucQuMXoO8DrgZ+F1hif6lNnqOxRPRR4BbgV/H7lxYpM79A4xcL0xbbUyuAAzM8tlSGwc46AAy2HC/JzCNlFaPuExHfCfwF8NuZ+d+AyZbTg8A+Xt5nM41Pj0nTfhy4KCLuB95IY1nLa1rO219ajD3AfZn5YmYm8AIv/SHI/tJifIxGf72Oxr4Mv0nj3tRp9pfaYbE/c8322FIZBjtrO4117TRvIH2o3HLUTSJiDfAl4OOZubU5/HfNe3EA3gV8GfgK8LaIWBoRK4H1NG50Ptp/LY+VAMjM8zPzgsy8EPh74MeAL9pfapMHgB+MiL6IOA04Efgz+0ttspdvz8L8D+A4/P9R7beonsrMA8CLEfE9EdFHY/l86b3WNzU19cqPUlu07Cb6Bhr3fF2emY+WW5W6RUR8DvgRGstgpv0EjeUwxwOPAB/MzInmzlZX0fiFzy9m5hciYhmN35aeCrwIXJaZ3+zk16Du0JwdvJrGb0Fvwf5SG0TEfwG+n0bf/BzwDewvtUFELKex2/apNPrpc8DfYH9pkSJiHfD7mXlORLyORfZUczLoV4B+GruJ/nznv6qXMgxKkiRJUg25TFSSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGBsouoEjj4wenyq5hJqtWLWPv3ufLLkM9yv5S0ewxFcn+UpHsLxWpqv01NDTYN9s5ZwZLMDDQX3YJ6mH2l4pmj6lI9peKZH+pSN3YX4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZK6wuaRHWwe2VF2GT1joMi/PCKWACPAmcBh4MrM3NVy/hJgC3AE2JqZt8x2TUS8Cbgb+Kfm5b+RmX9QZP2SJEmS1KsKDYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNgGvHWWa94MfDYzbyi4ZkmSJEnqeUUvEz0PuBcgMx8Ezmo5tx7YlZl7M/NF4AHg/DmueTOwKSL+KiJui4jBgmuXJEmSpJ5V9MzgCmB/y/FERAxk5pEZzh0EVs52DfAV4NbM/GpE/DzwH4GfnuuTr1q1jIGB/jZ8Ge03NGSWVXHsLxXNHlOR7C8Vyf7qbv39fUB1X8eq1jWbosPgAaD1GVnSDIIznRsE9s12TUTcmZn7mmN3Ar/2Sp98797nX3XhRRoaGmR8/GDZZahH2V8qmj2mItlfKpL91f0mJqYAKvk6VrW/5gqoRS8T3Q5cDNC8/++hlnOPAGdExMkRcTyNJaI757jmvog4u/nxDwBfLbh2SZIkSepZRc8M3glcFBE7gD7g8oi4DFiemTdHxLXAfTRC6dbMfCoiXnZN8+/6MPBrEfEvwDeBqwquXZIkSZJ6VqFhMDMngauPGX605fxdwF3zuIbM/FsaO41KkiRJkhbJN52XJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJElSSTaP7GDzyI6yy1BNGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqaKDIvzwilgAjwJnAYeDKzNzVcv4SYAtwBNiambfM45rLgH+fmcNF1i5JkiRJvazomcFLgaXN4PYJ4IbpExFxHHAj8A7gAuCqiFjzCte8CbgC6Cu4bkmSJEnqaUWHwfOAewEy80HgrJZz64Fdmbk3M18EHgDOn+2aiFgN/CLwkwXXLEmSJEk9r9BlosAKYH/L8UREDGTmkRnOHQRWznLNCcBtwLXAt+b7yVetWsbAQP+rrb1QQ0ODZZegHmZ/qWj2mIpkf6lIVeuv/v7Ggreq1VVVVX++qlrXbIoOgweA1mdkSTMIznRuENg30zU07h88A/gNYCmwISJ+JTPnnCXcu/f5xVVfkKGhQcbHD5ZdhnqU/aWi2WMqkv2lIlWxvyYmpgAqV1cVjY7tZs/+F5iYnOLDv/ynbBpex8YNa8ou66gq9hfMHVCLDoPbgUuAP4yIc4CHWs49ApwREScDz9FYIvoZYOrYazLzK8DrASJiHfD7rxQEJUmSJPWG0bHd3LTt4aPHT44fOnpcpUDYbYq+Z/BO4IWI2EFjs5iPRcRlEXFVZv4LjWWf9wE7aewm+tRM1xRcoyRJkqQKu2fn47OMP9HROnpNoTODmTkJXH3M8KMt5+8C7prHNa3nHwfOaV+VkiRJkqrs6Wdnvv3rmT2HOlxJb/FN5yVJkiRV2mmnLJtx/NTVJ3a4kt5iGJQkSZJUaZuG180yvrazhfSYojeQkSRJkqRFmd4k5ta7x5iYnOL0oeVsGl7r5jGLZBiUJEmSVHkbN6zhjvsfA+C6K84uuZre4DJRSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSVIJRsd2s++5w+w58AJbbhtldGx32SWpZgbKLkCSJEmqm9Gx3dy07eGjx0+OHzp6vHHDmrLKUs04MyhJkiR12D07H59l/ImO1qF6MwxKkiRJHfb0s8/POP7MnkMdrkR1ZhiUJEmSOuy0U5bNOH7q6hM7XInqzDAoSZIkddim4XWzjK/tbCGqtUI3kImIJcAIcCZwGLgyM3e1nL8E2AIcAbZm5i2zXRMRG4CbgT7gn5rjR4qsX5IkSSrC9CYxt949xsTkFKcPLWfT8Fo3j1FHFT0zeCmwNDOHgU8AN0yfiIjjgBuBdwAXAFdFxJo5rvlF4Ocy863N40sKrl2SJEkqzMYNazhp+QmsXrGU66442yCojis6DJ4H3AuQmQ8CZ7WcWw/sysy9mfki8ABw/hzX/HBm/lVEHA+8FthfcO2SJPWkzSM72Dyyo+wyJEklK/p9Blfw0tA2EREDzeWdx547CKyc65qIWAv8afP8P7zSJ1+1ahkDA/2L/RoKMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d9j1VT9+apqXbMpOgweAFqfkSUt9/kde24Q2DfXNZn5BHBGRFwJfBZ4/1yffO/embfsLdvQ0CDj4wfLLkM9yv5S0eyx7jcxMQVQydfR/lKRqthfVf73WEVVfr6q2F8wd0AtepnoduBigIg4B3io5dwjNILdyc2ln+cDO2e7JiK2RcQZzWsPApMF1y5JkiRJPavomcE7gYsiYgeNXUAvj4jLgOWZeXNEXAvcRyOUbs3MpyLiZdc0/65fBm6PiBeB54ErC65dkiRJknpWoWEwMyeBq48ZfrTl/F3AXfO4hszcAbz12HFJkiRJ0sK94jLRiPh4RKxofjwQERdExL8qvjRJkiRJUlHmc8/gpZl5oPnxbwMfBW6KiMvnuEaSJEmSVGHzCYOHASJiCHhLZv4wsIlv38snSZIkSeoy8wmDt0fEPcAfAP8Vjt7XV/TmM5IkSaXbPLKDzSM7yi5DktruFQNdZt4eEV8CTs/MrwBExHcDTxZdnCRJkiSpGK8YBiPiezLzMeDp6bHM/Drwb4ssTJIkSZJUnPks9RyJiC9k5s3TAxExQGNjmTuKK02SJEmSvu36a84tu4SeMp8w+C7gZyLiC8CvAD8M/E803lBeqqXpe0f8hiRJkqRuNZ8wuBzYD3wXjQ1kficz315oVZIkSZKkQs1nN9HfoxEGzwX+Z+DkiPh8RCwrtDJJkiRJUmHms5vopmOGPhoR7wS+CFxQSFWSJEmSpELNZzfRTwGPAI8CmZnfysz7IuKvC69OkiRJklSI+dwz+CXg+4D/HTgjIk4EXgC+BvxUgbVJkiRJkgoyn2Wi24HtEXE8jfsG/w2wEfhXBdcmSZIkSSrIfJaJfhw4C5gAHgTuyMwtRRcmSZIkSSrOfHYT/WlgTfPjk4Dvi4g3RMQJxZUlSZIkSSrSfO4ZXA28D3hd83g98IHm8buLKUuSJEmSVKT5hEGArwP/HVgG3JCZ1xZXkiRJkiSpaPNZJnoQ+O7M/C7gTODsiPhYsWVJkiRJkoo0nzD49czcDZCZ36TxFhOXFVqVJEmSJKlQ8wmD34iIK1uOJ4EVBdUjSZIkSeqA+dwz+H8CfxwRHwH+DngjsL3QqiRJUiFGx3az77nDTExOseW2UTYNr2PjhjWvfKEkqefM503nnwbOiYhhGvcM/gnwfxddmCRJaq/Rsd3ctO3ho8dPjh86emwglKT6me9uomTmTmBngbVIkqQC3bPz8VnGnzAMSlINzTsMvhoRsQQYoTGjeBi4MjN3tZy/BNgCHAG2ZuYts10TEW8Efg2YaI7/2PTGNpIk6ZU9/ezzM44/s+dQhyuRJFXBfDaQWYxLgaWZOQx8Arhh+kREHAfcCLwDuAC4KiLWzHHN54B/n5kXAn8MfLzg2iVJ6imnnbJsxvFTV5/Y4UokSVVQdBg8D7gXIDMfBM5qObce2JWZezPzReAB4Pw5rvnfMvPvmx8PAC8UXLskST1l0/C6WcbXdrYQSUddf825XH/NuWWXoZoqdJkojbeg2N9yPBERA5l5ZIZzB4GVc1zzDEBEnEtjh9PzX+mTr1q1jIGB/kV+CcUYGhosuwQtQn9/H1Dd17Gqdal32GPd6d0XDLJixVJu/L2/5cjEFOtOXcH7fuAMzn/T6WWX9hJV66+qf8/Xwvg6qkjd1l9Fh8EDQOszsqQZBGc6Nwjsm+uaiPgR4OeBTZk5/kqffO/eme+NKNvQ0CDj4wfLLkOLMDExBVDJ19H+UtHsse62/vSVrDzxBAC2vL+x+KZKr2fV+mt0bDd79r/AxOQUH/7lP/WtOLpc1fpLvaWq/TVXQC16meh24GKAiDgHeKjl3CPAGRFxckQcT2Omb+ds10TEj9KYEbwwM79ecN2SJKnmpt+KY2Ky8QvA6bfiGB1z/zpJvaHoMHgn8EJE7KCxWczHIuKyiLgqM/8FuBa4j0YI3JqZT81yTT/wqzRmDP84Iu6PiE8VXLskSaqxud6KQ5J6QaHLRDNzErj6mOFHW87fBdw1j2sATm57gdKrMDq2m33PHWZicoott426ZEiSepRvxSGp1xU9M6gusXlkB5tHdpRdRuW5ZEiS6sO34pDU6wyD0gK4ZEiS6sO34pDU64reTVTqKS4ZkqT6mL4F4Na7x5iYnOL0oeVsGl7rrQGSeoYzg9ICuGRIkupl44Y1nLT8BFavWMp1V5xtEJTUUwyD0gK4ZEiSJEm9wmWi0gK4ZEiSJEm9wjAoLdDGDWu44/7HALjuirNLrkaSJEl6dVwmKqkjfPsSSZKkajEMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBMTq2m33PHWbPgRfYctsoo2O7yy5JkiRJUsEGyi5A5Rod281N2x4+evzk+KGjxxs3rCmrLEmSJEkFc2aw5u7Z+fgs4090tA5JkiRJneXMYM09/ezzM44/s+dQhyuRJHXK9decW3YJkqQKcGaw5k47ZdmM46euPrHDlUiSJEnqJMNgzW0aXjfL+NrOFiJJkiSpowpdJhoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFvmcc2NQGbm54usvS6mN4m59e4xJianOH1oOZuG17p5jNpqesfaickpttw2yqbhdfaYJElSyYqeGbwUWJqZw8AngBumT0TEccCNwDuAC4CrImLNbNdExFBEfBF4T8E1187GDWs4afkJrF6xlOuuONsf0tVW0zvWTkxOAd/esda3MJEkSSpX0WHwPOBegMx8EDir5dx6YFdm7s3MF4EHgPPnuGY58J+A3y64Zklt5I61krrd9dec66Y7knpS0buJrgD2txxPRMRAZh6Z4dxBYOUc13wD+EZEvGu+n3zVqmUMDPS/+uoLNDQ0WHYJL9Hf3wdUr66qqvrzVaW6nt4z+461VapTC+NrpyLZXyqS/aUidVt/FR0GDwCtz8iSZhCc6dwgsO8VrlmQvXtn/iG0bENDg4yPHyy7jJeYmGgs4ataXVVV5eerav112uplPDn+8rcqOXX1iZWqU/NXtR5Tb7G/VCT7S0Wqan/NFVCLXia6HbgYICLOAR5qOfcIcEZEnBwRx9NYIrrzFa6RKsElQ/PnjrWSJEnVVPTM4J3ARRGxA+gDLo+Iy4DlmXlzRFwL3EcjlG7NzKci4mXXFFyjpAK5Y60kSVI1FRoGM3MSuPqY4Udbzt8F3DWPa1rP/6c2liipAzZuWMMd9z8GwHVXnF1yNZIkSQLfdF6SJEmSaskwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJKnrbR7ZweaRHWWXIUlSVzEMSpIkSVINGQYlSZIkqYYMg5IkSWobl21L3WOg7AJUDddfc27ZJUiSJEnqIGcGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIe8ZlNQR3peqoirsALsAACAASURBVIyO7Wbfc4eZmJxiy22jbBpex8YNa8ouS5KkyjMMSpK61ujYbm7a9vDR4yfHDx09NhBKkjQ3l4lKkrrWPTsfn2X8iY7WIalheqZ+z4EX2HLbKKNju8suSdIcnBmUJHWtp599fsbxZ/Yc6nAlkpypl7qPM4OSpK512inLZhw/dfWJHa5EkjP1UvcxDEpSBW0e2cHmkR1ll1F5m4bXzTK+trOFSHKmXupCLhOVJHWt6aVnt949xsTkFKcPLWfT8FqXpEklOO2UZTw5/vLg50y9VF3ODEpSxbgBw8Js3LCGk5afwOoVS7nuirMNglJJnKmXuo8zg5JUIW7AIKlbOVMvdZ9Cw2BELAFGgDOBw8CVmbmr5fwlwBbgCLA1M2+Z7ZqI+F7gdmAK+EfgI5k5WWT9ktRpc23A4A9Ukqpu44Y13HH/YwBcd8XZJVcj6ZUUvUz0UmBpZg4DnwBumD4REccBNwLvAC4AroqINXNc81ngk5n5NqAPeG/BtUtSx7kBgyRJ6pSiw+B5wL0AmfkgcFbLufXArszcm5kvAg8A589xzZuBv2x+/EXg7QXXLkkd51slSJKkTin6nsEVwP6W44mIGMjMIzOcOwisnO0aoC8zp4557JxWrVrGwED/YuovzNDQYNklqIfZX93r373z+7j+d746w3hU6nWtUi0A/f19QPXq0qvj69jdqv7vsap1qTd0W38VHQYPAK3PyJJmEJzp3CCwb7ZrImJyhsfOae/emZdblW1oaJDx8YNll6EeZX91t/Wnr+RD73n9yzZgWH/6ysq8rlXssYmJxu8Kq1aXFq6K/aWFqfK/R/tLRapqf80VUIsOg9uBS4A/jIhzgIdazj0CnBERJwPP0Vgi+hkaG8TMdM3fRcSFmXk/8C7gLwquXZJK4QYMC3f9NeeWXYIkSV2n6DB4J3BRROygsenL5RFxGbA8M2+OiGuB+2jcu7g1M5+KiJdd0/y7fgq4JSKOpxEk7yi4dkkqjeFGUrfy+5fUPfqmpqZe+VFdanz8YCW/uKpOIas32F8qmj2mItlfKpL9pSJVtb+Ghgb7ZjtX9G6ikiRJkqQKMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmqop99nUJIkSZI0M2cGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1NFB2AXUSEUuAEeBM4DBwZWbuKrcqdYuIOA7YCqwDTgA+DYwBtwNTwD8CH8nMyYj4IPAh4Ajw6cy8OyK+A/gd4DXAQeD9mTne6a9D1RYRrwG+ClxEo39ux/5SG0TEzwLvAY6n8X/hX2J/qQ2a/z/+Jo3/HyeAD+L3L7VBRGwE/nNmXhgR38sieyoizgE+13zslzLzU53/ql7KmcHOuhRYmpnDwCeAG0quR93lR4E9mfk24AeBXwc+C3yyOdYHvDciXgt8FHgr8E7glyLiBODDwEPNx/4W8MkSvgZVWPMHqpuAbzWH7C+1RURcCJxLo28uAL4T+0vtczEwkJnnAtcBv4D9pUWKiJ8BbgWWNofa0VOfBy4DzgM2RsSbOvX1zMYw2FnnAfcCZOaDwFnllqMu80fAf2h+3Efjt0pvpvHbdYAvAm8Hzga2Z+bhzNwP7ALeQEv/tTxWavUZGv9RPd08tr/ULu8EHgLuBO4C7sb+Uvt8DRhorsBaAfwL9pcW7zHgh1qOF9VTEbECOCEzH8vMKeA+KtBrhsHOWgHsbzmeiAiX6mpeMvO5zDwYEYPAHTR+y9TX/IYCjWUIK3l5n800Pj0mARARHwDGM/O+lmH7S+1yCo1fgL4PuBr4XWCJ/aU2eY7GEtFHgVuAX8XvX1qkzPwCjV8sTFtsT60ADszw2FIZBjvrADDYcrwkM4+UVYy6T0R8J/AXwG9n5n8DJltODwL7eHmfzTQ+PSZN+3Hgooi4H3gjjWUtr2k5b39pMfYA92Xmi5mZwAu89Icg+0uL8TEa/fU6Gvsy/CaNe1On2V9qh8X+zDXbY0tlGOys7TTWtdO8gfShcstRN4mINcCXgI9n5tbm8N8178UBeBfwZeArwNsiYmlErATW07jR+Wj/tTxWAiAzz8/MCzLzQuDvgR8Dvmh/qU0eAH4wIvoi4jTgRODP7C+1yV6+PQvzP4Dj8P9Htd+ieiozDwAvRsT3REQfjeXzpfda39TU1Cs/Sm3RspvoG2jc83V5Zj5ablXqFhHxOeBHaCyDmfYTNJbDHA88AnwwMyeaO1tdReMXPr+YmV+IiGU0flt6KvAicFlmfrOTX4O6Q3N28GoavwW9BftLbRAR/wX4fhp983PAN7C/1AYRsZzGbtun0uinzwF/g/2lRYqIdcDvZ+Y5EfE6FtlTzcmgXwH6aewm+vOd/6peyjAoSZIkSTXkMlFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0NlF1AkcbHD06VXcNMVq1axt69z5ddhnqU/aWi2WMqkv2lItlfKlJV+2toaLBvtnPODJZgYKC/7BLUw+wvFc0eU5HsLxXJ/lKRurG/DIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJHWFzSM72Dyyo+wyeoZhUJIkSZJqaKCMTxoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFsi4gPAB5oPWQq8EXhtZu7rYOmSJEmS1BNKCYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNiWmbcDtzcf83/RCIkGQUmSJEl6FcpaJnoecC9AZj4InNVybj2wKzP3ZuaLwAPA+dMnI+Is4PWZeXMH65UkSZKknlLWzOAKYH/L8UREDGTmkRnOHQRWthz/HPCp+XySVauWMTDQv9haCzE0NFh2Ceph9peKZo+pSPaXimR/dbf+/j6guq9jVeuaTVlh8ADQ+kwtaQbBmc4NAvsAIuIkIDLzL+bzSfbufb4Npbbf0NAg4+MHyy5DPcr+UtHsMRXJ/lKR7K/uNzExBVDJ17Gq/TVXQC1rmeh24GKA5j2DD7WcewQ4IyJOjojjaSwR3dk8dz7wZ50sVJIkSZJ6UVkzg3cCF0XEDqAPuDwiLgOWZ+bNEXEtcB+NsLo1M59qXhfA10upWJIkSZJ6SClhMDMngauPGX605fxdwF0zXHd9waVJkiRJUi34pvOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJJVk88gONo/sKLsM1ZRhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZIqb3RsN/ueO8yeAy+w5bZRRsd2l11S1xsouwBJkiRJmsvo2G5u2vbw0eMnxw8dPd64YU1ZZXU9ZwYlSZIkVdo9Ox+fZfyJjtbRawyDkiRJkirt6Wefn3H8mT2HOlxJbzEMSpIkSaq0005ZNuP4qatP7HAlvaWUewYjYgkwApwJHAauzMxdLecvAbYAR4CtmXlLc/xngfcAxwMjmXlbp2uXJEmS1Fmbhte95J7Bb4+vLaGa3lHWBjKXAkszczgizgFuAN4LEBHHATcCbwEOAdsjYhuwHjgXeCuwDPjpMgqXJEmS1FnTm8TcevcYE5NTnD60nE3Da908ZpHKWiZ6HnAvQGY+CJzVcm49sCsz92bmi8ADwPnAO4GHgDuBu4C7O1qxJEmSpNJs3LCGk5afwOoVS7nuirMNgm1Q1szgCmB/y/FERAxk5pEZzh0EVgKnAGuBdwPfBWyLiO/LzKnZPsmqVcsYGOhve/HtMDQ0WHYJ6mH2l4pmj6lI9peKVLX+6u/vA6pXV1VV/fmqal2zKSsMHgBan6klzSA407lBYB+wB3i0OVuYEfECMAT899k+yd69M+86VLahoUHGxw+WXYZ6lP2lotljKpL9pSJVsb8mJhrzGlWrq6qq/HxVsb9g7oBa1jLR7cDFAM17Bh9qOfcIcEZEnBwRx9NYIrqTxnLRH4yIvog4DTiRRkCUJEmSJC1QWTODdwIXRcQOoA+4PCIuA5Zn5s0RcS1wH42wujUznwKeiojzga80xz+SmRMl1S9JkiRJXa2UMJiZk8DVxww/2nL+LhqbxBx73c8UXJokSZIk1YJvOi9JkiRJNWQYlCRJkkowOrabfc8dZs+BF9hy2yijY7vLLkk1U9Y9g5IkSVJtjY7t5qZtDx89fnL80NFj3z9PneLMoCRJktRh9+x8fJbxJzpah+rNMChJkiR12NPPzvx+2M/sOdThSlRnhkFJkmpm88gONo/sKLsMqdZOO2XZjOOnrj6xw5WozgyDkiRJUodtGl43y/jazhaiWnMDGUmSJKnDpjeJufXuMSYmpzh9aDmbhte6eYw6yjAoSZIklWDjhjXccf9jAFx3xdklV6M6cpmoJEmSJNWQYVCSJGkObrgjqVcZBiVJkiSphrxnUJIkSVJXuP6ac8suoac4Myi9Ci4ZkiRJUrczDEqSJElSDZWyTDQilgAjwJnAYeDKzNzVcv4SYAtwBNiambc0x/8WONB82Dcy8/KOFi5JkiRJPaKsewYvBZZm5nBEnAPcALwXICKOA24E3gIcArZHxDZgP9CXmReWU7IkSZIk9Y6ylomeB9wLkJkPAme1nFsP7MrMvZn5IvAAcD6NWcRlEfGliPjzZoiUJEmSJL0KZc0MrqAx0zdtIiIGMvPIDOcOAiuB54HPALcCZwBfjIhoXjOjVauWMTDQ3/bi22FoaLDsErQI/f19QHVfx6rWpd5hj3U3v4ctTNWfLy1M1V5H+6u3dNvrWFYYPAC0PlNLWkLdsecGgX3A12jMGE4BX4uIPcCpwD/P9kn27n2+rUW3y9DQIOPjB8suQ4swMTEFUMnX0f5S0eyx7uf3sIWp8vOlhbG/VKQq9hfMHVDLWia6HbgYoLnc86GWc48AZ0TEyRFxPI0lojuBH6dxbyERcRqNGcRnOlm0JEmSJPWKsmYG7wQuiogdQB9weURcBizPzJsj4lrgPhphdWtmPhURtwG3R8QDwBTw43MtEZUkSZIkza6UMJiZk8DVxww/2nL+LuCuY655Ebis+OokSZIkqff5pvOSJEmSVEOGQUmSJEmqIcOgJEk1Mjq2m33PHWbPgRfYctsoo2O7yy5JklSSsjaQkSRJHTY6tpubtj189PjJ8UNHjzduWFNWWZKkkhgGJUmqiXt2Pj7L+BOGQakk119zbtklqMZcJipJUk08/ezzM44/s+dQhyuRJFWBYVCSpJo47ZRlM46fuvrEDlciSaoCw6AkSTWxaXjdLONrO1tIF3HDHUm9zHsGBcDmkR2A69YlqZdN3xd4691jTExOcfrQcjYNr/V+wVm44Y6kXufMoCRJNbJxwxpOWn4Cq1cs5borzjbUzGGuDXckqRcYBqUFcsmQJNWDG+5I6nWGQWkBppcMTUxOAd9eMmQglKTe44Y7knqdYVBaAJcMSVJ9uOGOpF7nBjLSArhkSJLqww13JPU6ZwalBXDJ0Ku3eWTH0V1rJalbuOGOpF5WysxgRCwBRoAzgcPAlZm5q+X8JcAW4AiwNTNvaTn3GuCrwEWZ+WhHC1ftbRpe95Jtxr897pIhSZIkdZeyZgYvBZZm5jDwCeCG6RMRcRxwI/AO4ALgqohY03LuJuBbHa9YovEb4g+95/X0L+kD4PSh5XzoPa/3N8WSJEnqOmWFwfOAewEy80HgrJZz64Fdmbk3M18EHgDOb577DPB54OkO1iq9hEuGJEmS1AvK2kBmBbC/5XgiIgYy88gM5w4CKyPiA8B4Zt4XET87n0+yatUyBgb621VzWw0NDZZdwkv09zdmuqpWV1VV/fmqYl1Vf860ML6O3a3q/x6rVlfVny8tjK+jitRt/VVWGDwAtD5TS5pBcKZzg8A+4KPAVES8HXgj8FsR8Z7M/OZsn2Tv3pl3fizb0NAg4+MHyy7jJSYmGu+bV7W6qqrKz1cV+wuq/ZxpYaraY5q/Kv97rGJ/Vfn50sJUsb/UO6raX3MF1LLC4HbgEuAPI+Ic4KGWc48AZ0TEycBzNJaIfiYz75h+QETcD1w9VxCUJEmSJM1uUWEwIvqAD2Xm5xd46Z3ARRGxA+gDLo+Iy4DlmXlzRFwL3EfjnsatmfnUYuqUJEmSJL3UosJgZk5FxHkRcXNmTi7gukng6mOGH205fxdw1xzXX7jQWiVJkiRJ39aOZaLfDXw5In4L+Hvg4cx8rg1/ryRJkiSpIO14a4m3Aj9G4+0evh/49Tb8nZIkSZKkArVjZvB44CTgb5rLOyVJkiRJFdeOmcH/B3g3sDMitkfEF9vwd0qSJEmSCtSOmcElmfmpiLgQuBi4rg1/pyRJKsj115xbdgmSpApox8zgP0TEMuC/09hM5sI2/J3qoNGx3ex77jB7DrzAlttGGR3bXXZJkiRJkgrWjjC4C5gEfhr4GPAbbfg71SGjY7u5advDTExOAfDk+CFu2vawgVCSJEnqce1YJvpPwO8DDwI/6dtKdJd7dj4+y/gTbNywpqO1SJIkSeqcRc8MZubdmXkpsBO4JSK2LL4sdcrTzz4/4/gzew51uBJJkiRJnbTomcGI+FHgdc0/gzTed1Bd4rRTlvHk+MuD36mrTyyhGkmSJEmdsuAwGBEXZ+aftAxNAduAzMyDbatMHbFpeB03bXt4hvG1JVQjSVL1uPuqpF71amYGPw38CUBEvDczf7e9JamTpu8LvPXuMSYmpzh9aDmbhtd6v6DaanrH2onJKbbcNsqm4XX2mCRJUslezT2DfS0f/8d2FaLybNywhpOWn8DqFUu57oqz/SFdbeWOtZIkSdX0amYGp1o+7pv1UVIPc8nQ/LljrSRJUjW9mjD4vRFxG/DXwHdExEBmHmlzXZJ6hDvWSpIkVdOrCYMXA/8aOAd4EdgfEY8B/wD8v5l5/Sv9BRGxBBgBzgQOA1dm5q6W85cAW4AjwNbMvCUi+oFbgKAxO3l1Zv7jq6hfUge5Y60kSVI1LTgMZuYDwAPTxxFxAo1Q96+bf+bjUmBpZg5HxDnADcB7m3/fccCNwFuAQ8D2iNgGDDc//1sj4kLgF6avkVRd7lgrSZJUTYt+n8HMPAx8pflnvs4D7m1e/2BEnNVybj2wKzP3AkTEA8D5mflHEXF38zFrgX2LrV1S8dyxVpIkqZoWHQZfpRXA/pbjiZZ7D489dxBYCZCZRyLiN4H/BfhfX+mTrFq1jIGB/vZV3UZDQ4Nll/AS/f2NvYCqVpdenaq9ju++YJA7v/x1AH7jEz9QcjVqh6r1mHqL/aUi2V8qUrf1V1lh8ADQ+kwtadmE5thzg7TMAmbm+yPi48BoRGzIzFl3odi7d+aNK8o2NDTI+PjBsst4iYmJxiaxVatLC1fF/gJ7rJdUtcfUG+wvFcn+UpGq2l9zBdRX8z6D7bCdxkY0NO8ZfKjl3CPAGRFxckQcD5wP7IyI/yMifrb5mOeByeYfSZIkSdIClTUzeCdwUUTsoPFehZdHxGXA8sy8OSKuBe6jEVa3ZuZTEfHHwH+NiL8CjgN+MjO/VVL9kiRJktTVSgmDmTkJXH3M8KMt5+8C7jrmmkPAvy2+OkmSJEnqfWUtE9X/397dxshVnncYv/bF2DVeuwaWLSgISy25hT+EVEXY6xpMpZoQLFoUqapkRWkJL3FoFBQkUtqCpSLaKiWUUkVWwbBK0jaqGpAlTBSMFIWq2LBRq1ZysviubJVIgcTauOs3CHa93n44s2Yway/2zs6ZM+f6fdrzPHO098zcuzP/Oec8I0mSJEklMgxKkirv/i27uH/LrrLLkCSpUgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkqSWcUEnqToMg5IkSZJUQ6V86bw6z6P3rCm7BEmSJElt5JFBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGiplNdGI6AW2ANcAx4A7M3Nv0/ytwGbgBDCSmVsjYgEwAqwAFgKPZObz7a5d0vlxxVpJkqTOUtaRwduARZk5DDwAPDY90Qh9jwM3AeuAuyNiCPg0cCAzrwduBr7W9qolSZIkqUuUFQbXAi8CZOZrwLVNc1cDezNzIjOPA68ANwDfBh5q3KaH4qihJEmSJOk8lPWl80uBQ03bkxHRn5knZpg7AizLzKMAETEAPAs8ONsvWb58Mf39fa2ruoUGBwfKLkFdzP7SfOu0Huvr6wE6ry6dH5/Hauv0v8dOrUvdoWr9VVYYPAw0P1K9jSA409wAcBAgIq4AtgFbMvNbs/2SiYl3WlNtiw0ODjA+fqTsMtSl7C/Nt07sscnJKYCOq0vnrhP7S+emk/8e7S/Np07tr7MF1LLC4E7gVuBfImI1sLtp7nXgqoi4CDhKcYroVxvXDb4EfCEzv9fugiVJkiSpm5QVBrcB6yNiF8X1f7dHxEZgSWY+FRH3ATsormkcycw3I+IJYDnwUERMXzv4ycz8RRl3QJIkSZKqrJQwmJkngU2nDe9pmt8ObD9tn3uBe+e/OklSlYyO7efg0WNMnpxi8zOjbBhewaqVQ2WXJUlSxyvryKAk6Szu37IL8PsZZzM6tp8nn//Rqe2fjL99attAKEnS2ZX11RKSJM3Zd1594wzjP25rHZIkVZFhUJJUWW/9fOZVo3964O02VyJJUvUYBiVJlXX5JYtnHL/s4gvbXIkkSdVjGJQkVdaG4RVnGL+yvYVIAt5b0OnA4XfZ/Mwoo2P7yy5J0lm4gIwkqbKmF4l5+oUxJk9O8ZHBJWwYvtLFY6QSuKCTVD0eGZQkVdqqlUP88pKFXLx0EQ/fcZ1vOqWSuKCTVD2GQUmSJM2ZCzpJ1WMYlCRJ0py5oJNUPYZBSZIkzZkLOknV4wIykiRJmjMXdJKqxzAoSZKklli1cohnX94HwMN3XFdyNZJm42mikiRJklRDhkFJkiRJqiHDoCRJkiTVUCnXDEZEL7AFuAY4BtyZmXub5m8FNgMngJHM3No0twr4Smbe2NaiJUmSJKmLlHVk8DZgUWYOAw8Aj01PRMQC4HHgJmAdcHdEDDXmvgw8DSxqe8WSJEmS1EXKCoNrgRcBMvM14NqmuauBvZk5kZnHgVeAGxpz+4BPtbNQSZIkSepGZX21xFLgUNP2ZET0Z+aJGeaOAMsAMvO5iFjxYX/J8uWL6e/va0G5rTc4OFB2Cepi9lf19fX1AJ37XHZaXZ3+eOnc+DxWW6f/PXZqXeoOVeuvssLgYaD5keptBMGZ5gaAg+fzSyYm3jm/6ubZ4OAA4+NHyi5DXcr+6g6Tk1MAHflcdmKPdfLjpXPTif2lc9PJf4/2l+ZTp/bX2QJqWaeJ7gRuAYiI1cDuprnXgasi4qKIuIDiFNFX21+iJJVjdGw/B48e48Dhd9n8zCijY/vLLkmSJHWhso4MbgPWR8QuoAe4PSI2Aksy86mIuA/YQRFWRzLzzZLqlKS2Gh3bz5PP/+jU9k/G3z61vWrlUFllSZKkLlRKGMzMk8Cm04b3NM1vB7afYd83gNXzVpwkleg7r75xhvEfGwYlSVJL+aXzktRB3vr5zNc6//TA222uRJIkdTvDoCR1kMsvWTzj+GUXX9jmSiRJUrcr65pBSdIMNgyveN81g++NX1lCNdXx6D1ryi5BkqTKMQxKUgeZvi7w6RfGmDw5xUcGl7Bh+EqvF5QkSS1nGJSkDrNq5RDPvrwPgIfvuK7kaiRJUrfymkFJkiRJqiHDoCRJkiTVkKeJSpIkqWVc0EmqDo8MSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVUyvcMRkQvsAW4BjgG3JmZe5vmbwU2AyeAkczcOts+kiRJkqQPr6wjg7cBizJzGHgAeGx6IiIWAI8DNwHrgLsjYuhs+0iSJEmSzk1ZYXAt8CJAZr4GXNs0dzWwNzMnMvM48Apwwyz7SJIkSZLOQSmniQJLgUNN25MR0Z+ZJ2aYOwIsm2WfGS1fvpj+/r4Wlt06g4MDZZegLmZ/VV9fXw/Quc9lp9al7mB/aT7ZX5pPVeuvssLgYaD5keptCnWnzw0AB2fZZ0YTE++0oNTWGxwcYHz8SNllqEvZX91hcnIKoCOfS3tM88n+0nyyvzSfOrW/zhZQyzpNdCdwC0BErAZ2N829DlwVERdFxAUUp4i+Oss+kiRJkqRzUNaRwW3A+ojYBfQAt0fERmBJZj4VEfcBOyjC6khmvhkRH9inpNolSZIkqfJKCYOZeRLYdNrwnqb57cD2D7GPJEmSJOk8lHVkUJJ0Fo/es6bsEiRJUpcr65pBSZIkSVKJDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDfVMTU2VXYMkSZIkqc08MihJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqqH+sguok4joBbYA1wDHgDszc2+5VakqImIBMAKsABYCjwBjwNeBKeCHwB9l5smIuAv4HHACeCQzX4iIXwL+EbgUOAL8QWaOt/t+qLNFxKXAfwDrKfrn69hfaoGI+BPgd4ALKF4L/xX7Sy3QeH38BsXr4yRwF/7/UgtExCrgK5l5Y0T8GnPsqYhYDTzRuO1Lmfnn7b9X7+eRwfa6DViUmcPAA8BjJdejHHwWgQAAAxlJREFUavk0cCAzrwduBr4G/A3wYGOsB/jdiPgV4IvAbwKfAP4qIhYCnwd2N277TeDBEu6DOljjDdWTwC8aQ/aXWiIibgTWUPTNOuAK7C+1zi1Af2auAR4G/gL7S3MUEV8GngYWNYZa0VN/D2wE1gKrIuLX23V/zsQw2F5rgRcBMvM14Npyy1HFfBt4qPFzD8WnSr9B8ek6wHeB3wauA3Zm5rHMPATsBT5GU/813VZq9lWKF6q3Gtv2l1rlE8BuYBuwHXgB+0ut899Af+MMrKXA/2F/ae72AZ9q2p5TT0XEUmBhZu7LzClgBx3Qa4bB9loKHGranowIT9XVh5KZRzPzSEQMAM9SfMrU0/iHAsVpCMv4YJ/NND49JgEQEX8IjGfmjqZh+0utcgnFB6C/B2wC/gnotb/UIkcpThHdA2wF/g7/f2mOMvM5ig8Wps21p5YCh2e4bakMg+11GBho2u7NzBNlFaPqiYgrgO8D/5CZ3wJONk0PAAf5YJ/NND49Jk37LLA+Il4GPk5xWsulTfP2l+biALAjM49nZgLv8v43QfaX5uJLFP31UYp1Gb5BcW3qNPtLrTDX91xnum2pDIPttZPivHYaF5DuLrccVUlEDAEvAX+cmSON4f9sXIsD8Eng34AfANdHxKKIWAZcTXGh86n+a7qtBEBm3pCZ6zLzRuC/gM8A37W/1CKvADdHRE9EXA5cCHzP/lKLTPDeUZj/BRbg66Nab049lZmHgeMR8asR0UNx+nzpvdYzNTU1+63UEk2riX6M4pqv2zNzT7lVqSoi4gng9ylOg5l2L8XpMBcArwN3ZeZkY2Wruyk+8PnLzHwuIhZTfFp6GXAc2JiZP2vnfVA1NI4ObqL4FHQr9pdaICL+Gvgtir75U+B/sL/UAhGxhGK17cso+ukJ4N+xvzRHEbEC+OfMXB0RH2WOPdU4GPS3QB/FaqJ/1v579X6GQUmSJEmqIU8TlSRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNfT/RHyrlUNUVfcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib.gridspec import GridSpec\n", + "plt.figure(figsize=(15, 20))\n", + "gs = GridSpec(5, 1)\n", + "ax_lc = plt.subplot(gs[0])\n", + "ax_mean = plt.subplot(gs[1], sharex=ax_lc)\n", + "ax_evar = plt.subplot(gs[2], sharex=ax_lc)\n", + "ax_nvar = plt.subplot(gs[3], sharex=ax_lc)\n", + "ax_fvar = plt.subplot(gs[4], sharex=ax_lc)\n", + "\n", + "ax_lc.plot(lc.time, lc.counts)\n", + "ax_lc.set_ylabel('Counts')\n", + "ax_mean.scatter(tmean, rate)\n", + "ax_mean.set_ylabel('Counts')\n", + "\n", + "ax_evar.errorbar(tmean, evar, yerr=evar_err, fmt='o')\n", + "ax_evar.set_ylabel(r'$\\sigma_{XS}$')\n", + "\n", + "ax_fvar.errorbar(tmean, fvar, yerr=fvar_err, fmt='o')\n", + "ax_fvar.set_ylabel(r'$F_{var}$')\n", + "\n", + "ax_nvar.errorbar(tmean, nvar, yerr=nvar_err, fmt='o')\n", + "ax_nvar.set_ylabel(r'$\\sigma_{NXS}$')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Lightcurve/Lightcurve tutorial.ipynb.txt b/_sources/notebooks/Lightcurve/Lightcurve tutorial.ipynb.txt new file mode 100644 index 000000000..ba1c60b99 --- /dev/null +++ b/_sources/notebooks/Lightcurve/Lightcurve tutorial.ipynb.txt @@ -0,0 +1,2161 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start here to begin with Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "%matplotlib inline\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Lightcurve` object is usually created in one of the following two ways:\n", + "\n", + "1. From an array of time stamps and an array of counts.\n", + " \n", + " lc = Lightcurve(times, counts, **opts)\n", + "\n", + " where `**opts` are any (optional) keyword arguments (e.g. `dt=0.1`, `mjdref=55000`, etc.)\n", + "\n", + "2. From photon arrival times.\n", + "\n", + " lc = Lightcurve.make_lightcurve(event_arrival_times, dt=1, **opts)\n", + "\n", + "as will be described in the next sections.\n", + "\n", + "An additional possibility is creating an empty `Lightcurve` object, whose attributes will be filled in later:\n", + "\n", + " lc = Lightcurve()\n", + "\n", + "or, if one wants to specify any keyword arguments:\n", + "\n", + " lc = Lightcurve(**opts)\n", + "\n", + " This option is usually only relevant to advanced users, but we mention it here for reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Array of time stamps and counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 time stamps" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1000)\n", + "times[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 random Poisson-distributed counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 91, 98, 98, 98, 108, 86, 101, 114, 93, 95])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "counts = np.random.poisson(100, size=len(times))\n", + "counts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a Lightcurve object with the times and counts array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = Lightcurve(times, counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points can be counted with the `len` function." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note the warnings thrown by the syntax above. By default, `stingray` does a number of checks on the data that is put into the `Lightcurve` class. For example, it checks whether it's evenly sampled. It also computes the time resolution `dt`. All of these checks take time. If you know the time resolution, it's a good idea to put it in manually. If you know that your light curve is well-behaved (for example, because you know the data really well, or because you've generated it yourself, as we've done above), you can skip those checks and save a bit of time:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1 \n", + "lc = Lightcurve(times, counts, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Photon Arrival Times\n", + "\n", + "Often, you might have unbinned photon arrival times, rather than a light curve with time stamps and associated measurements. If this is the case, you can use the `make_lightcurve` method to turn these photon arrival times into a regularly binned light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 2., 2., 2., 3., 3., 3., 3., 3.])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arrivals = np.loadtxt(\"photon_arrivals.txt\")\n", + "arrivals[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time bins and respective counts can be seen with `lc.counts` and `lc.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3, 5, 1, 4, 1, 3, 1, 1])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One useful feature is that you can explicitly pass in the start time and the duration of the observation. This can be helpful because the chance that a photon will arrive exactly at the start of the observation and the end of the observation is very small. In practice, when making multiple light curves from the same observation (e.g. individual light curves of multiple detectors, of for different energy ranges) this can lead to the creation of light curves with time bins that are *slightly* offset from one another. Here, passing in the total duration of the observation and the start time can be helpful." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1.0, tstart=1.0, tseg=9.0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve object has the following properties :\n", + "\n", + "1. `time` : numpy array of time values\n", + "2. `counts` : numpy array of counts per bin values\n", + "3. `counts_err`: numpy array with the uncertainties on the values in `counts`\n", + "4. `countrate` : numpy array of counts per second\n", + "5. `countrate_err`: numpy array of the uncertainties on the values in `countrate`\n", + "4. `n` : Number of data points in the lightcurve\n", + "5. `dt` : Time resolution of the light curve\n", + "6. `tseg` : Total duration of the light curve\n", + "7. `tstart` : Start time of the light curve\n", + "8. `meancounts`: The mean counts of the light curve\n", + "9. `meanrate`: The mean count rate of the light curve\n", + "10. `mjdref`: MJD reference date (``tstart`` / 86400 gives the date in MJD at the start of the observation)\n", + "11. `gti`:Good Time Intervals. They indicate the \"safe\" time intervals to be used during the analysis of the light curve. \n", + "12. `err_dist`: Statistic of the Lightcurve, it is used to calculate the uncertainties and other statistical values appropriately. It propagates to Spectrum classes\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n == len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that by default, `stingray` assumes that the user is passing a light curve in **counts per bin**. That is, the counts in bin $i$ will be the number of photons that arrived in the interval $t_i - 0.5\\Delta t$ and $t_i + 0.5\\Delta t$. Sometimes, data is given in **count rate**, i.e. the number of events that arrive within an interval of a *second*. The two will only be the same if the time resolution of the light curve is exactly 1 second.\n", + "\n", + "Whether the input data is in counts per bin or in count rate can be toggled via the boolean `input_counts` keyword argument. By default, this argument is set to `True`, and the code assumes the light curve passed into the object is in counts/bin. By setting it to `False`, the user can pass in count rates:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# times with a resolution of 0.1\n", + "dt = 0.1\n", + "times = np.arange(0, 100, dt)\n", + "times[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "mean_countrate = 100.0\n", + "countrate = np.random.poisson(mean_countrate, size=len(times))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts=countrate, dt=dt, skip_checks=True, input_counts=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Internally, both `counts` and `countrate` attribute will be defined no matter what the user passes in, since they're trivially converted between each other through a multiplication/division with `dt:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0\n", + "[113 92 110 97 101 102 103 101 124 89]\n" + ] + } + ], + "source": [ + "print(mean_countrate)\n", + "print(lc.countrate[:10])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.0\n", + "[11.3 9.2 11. 9.7 10.1 10.2 10.3 10.1 12.4 8.9]\n" + ] + } + ], + "source": [ + "mean_counts = mean_countrate * dt\n", + "print(mean_counts)\n", + "print(lc.counts[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Error Distributions in `stingray.Lightcurve`\n", + "\n", + "The instruments that record our data impose measurement noise on our measurements. Depending on the type of instrument, the statistical distribution of that noise can be different. `stingray` was originally developed with X-ray data in mind, where most data comes in the form of _photon arrival times_, which generate measurements distributed according to a Poisson distribution. By default, `err_dist` is assumed to Poisson, and this is the only statistical distribution currently fully supported. But you *can* put in your own errors (via `counts_err` or `countrate_err`). It'll produce a warning, and be aware that some of the statistical assumptions made about downstream products (e.g. the normalization of periodograms) may not be correct:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "\n", + "mean_flux = 100.0 # mean flux\n", + "std_flux = 2.0 # standard deviation on the flux\n", + "\n", + "# generate fluxes with a Gaussian distribution and \n", + "# an array of associated uncertainties\n", + "flux = np.random.normal(loc=mean_flux, scale=std_flux, size=len(times)) \n", + "flux_err = np.ones_like(flux) * std_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, flux, err=flux_err, err_dist=\"gauss\", dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Good Time Intervals\n", + "\n", + "`Lightcurve` (and most other core `stingray` classes) support the use of *Good Time Intervals* (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don't apply to the data within a `Lightcurve` object, but become relevant in a number of circumstances, such as when generating `Powerspectrum` objects. \n", + "\n", + "If no GTIs are given at instantiation of the `Lightcurve` class, an artificial GTI will be created spanning the entire length of the data set being passed in:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(times))\n", + "\n", + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-5.000e-01, 9.995e+02]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "999\n", + "[[-5.000e-01 9.995e+02]]\n" + ] + } + ], + "source": [ + "print(times[0]) # first time stamp in the light curve\n", + "print(times[-1]) # last time stamp in the light curve\n", + "print(lc.gti) # the GTIs generated within Lightcurve" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "GTIs are defined as a list of tuples:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0, 500), (600, 1000)]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(lc.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll get back to these when we talk more about some of the methods that apply GTIs to the data.\n", + "\n", + "# Operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Addition/Subtraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be summed up or subtracted from each other if they have same time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)\n", + "lc_rand = Lightcurve(np.arange(1000), [500]*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_rand" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counts in light curve 1: [103 99 102 109 104]\n", + "Counts in light curve 2: [500 500 500 500 500]\n", + "Counts in summed light curve: [603 599 602 609 604]\n" + ] + } + ], + "source": [ + "print(\"Counts in light curve 1: \" + str(lc.counts[:5]))\n", + "print(\"Counts in light curve 2: \" + str(lc_rand.counts[:5]))\n", + "print(\"Counts in summed light curve: \" + str(lc_sum.counts[:5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Negation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A negation operation on the lightcurve object inverts the count array from positive to negative values." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "lc_neg = -lc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_neg" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.all(lc_sum.counts == 0) # All the points on lc and lc_neg cancel each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count value at a particular time can be obtained using indexing." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "113" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc[120]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve can also be sliced to generate a new object." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sliced = lc[100:200]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_sliced.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Concatenation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be combined into a single object using the `join` method. Note that both of them must not have overlapping time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lc_1 = lc" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "lc_2 = Lightcurve(np.arange(1000, 2000), np.random.rand(1000)*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "lc_long = lc_1.join(lc_2, skip_checks=True) # Or vice-versa" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2000\n" + ] + } + ], + "source": [ + "print(len(lc_long))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Truncation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A light curve can also be truncated." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=0, stop=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_cut)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : By default, the `start` and `stop` parameters are assumed to be given as **indices** of the time array. However, the `start` and `stop` values can also be given as time values in the same value as the time array." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=500, stop=1500, method='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1499)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_cut.time[0], lc_cut.time[-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Re-binning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution (`dt`) can also be changed to a larger value.\n", + "\n", + "**Note** : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "lc_rebinned = lc_long.rebin(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Old time resolution = 1\n", + "Number of data points = 2000\n", + "New time resolution = 2\n", + "Number of data points = 1000\n" + ] + } + ], + "source": [ + "print(\"Old time resolution = \" + str(lc_long.dt))\n", + "print(\"Number of data points = \" + str(lc_long.n))\n", + "print(\"New time resolution = \" + str(lc_rebinned.dt))\n", + "print(\"Number of data points = \" + str(lc_rebinned.n))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sorting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A lightcurve can be sorted using the `sort` method. This function sorts `time` array and the `counts` array is changed accordingly." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = lc_long[:] # Copying into a new object" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = new_lc_long.sort(reverse=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc_long.time[0] == max(lc_long.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can sort by the `counts` array using `sort_counts` method which changes `time` array accordingly:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc = lc_long[:]\n", + "new_lc = new_lc.sort_counts()\n", + "new_lc.counts[-1] == max(lc_long.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A curve can be plotted with the `plot` method." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABPqElEQVR4nO2dd7wVxdnHf88tXHqTK0oTFASxYEHsih3BFhMTjcYWNcW8pvlGNFFjjIrG9FheY01iiRqNGOyKgkZBUHoXUDqX3m+d94+ze87s7MzsbDltme/ncz/3nD2zM7Ozs88+88wzzxBjDBaLxWJJFxXFroDFYrFYkscKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqqKXQEA6NatG+vbt2+xq2GxWCxlxdSpU9cxxmplv5WEcO/bty+mTJlS7GpYLBZLWUFEX6h+s2YZi8ViSSFWuFssFksKscLdYrFYUogV7haLxZJCrHC3WCyWFGKFu8VisaQQK9wtFoslhVjhbrFYPCxauw0ffb6+2NWwxCRQuBPRY0S0lohmccfuIKIZRDSNiN4koh7cbzcR0SIimk9EZ+ar4haLJT+c9rv3cfFfPy52NSwxMdHcnwAwQjj2G8bYIYyxQwH8B8CtAEBEgwFcBOBA55wHiKgysdpaLBaLxYhA4c4YmwBgg3BsC/e1HQB3O6fzADzLGKtnjC0BsAjAsITqarFYLBZDIseWIaI7AVwGYDOAk53DPQHw47nlzjHZ+dcCuBYA+vTpE7UaFovFYpEQeUKVMfZzxlhvAE8B+IFzmGRJFec/zBgbyhgbWlsrDWpmsVgslogk4S3zNICvOp+XA+jN/dYLwMoEyrBYLBZLCCIJdyIawH09F8A85/NYABcRUQ0R9QMwAMDkeFW0WCwWS1gCbe5E9AyA4QC6EdFyALcBGElEAwG0APgCwHcBgDE2m4ieAzAHQBOA6xhjzXmqu8VisVgUBAp3xtjFksOPatLfCeDOOJWyWCwWSzzsClWLxWJJIVa4WywWSwqxwt1isVhSiBXuFovFkkKscLdYLJYUYoW7xWKxpBAr3C0WiyWFWOFusVgsKcQK9yKxevMufOvRSdi8s7HYVUklG7Y34NJHJqFua31R6/H4h0vw4HufF7UOlt0TK9yLxJ/fXYiJC9dh7LQVxa5KKnl60hf4YNE6PP7hkqLW4/ZX5uCe1+cFJ7RYEsYK9yLR4gRCJpJFSbbExW1Xabxpi2U3wAr3IsFYRuxUVljhnk+Yle6W3RQr3ItEs6O6W9meH9wBEbO6u2U3xQr3IuGaZSqsWSYvELLS3WLZLbHCvUi4Zhkr3OWc8fv38dJnyyOfTwnJ9ssfm4y/vLswZi6WNLB03XYMuf1NLNuwo9hVMcIK9yLR7Ap3ewd8MMawYM02/Pif0yPn4b4yWUyj+/sL6nDfmwti5WFJB89PXYbNOxvx78/Kw8PNipYiYc0yapKYBM1q7tYsY0mIrKmvTLDCvUi0tFizjIok5LH7IIbN6+sPfYRb/j0rgRqULovWbkPf0eOwaO22vJc1dvpK7P+L11DfVF67bV739Ke45m9Til2NWFjhXiRcbxnrCumnJQF1O+o7c/LSDfj7x1/ELr+UGTt9JQDgPzNW5r2su1+di4amFqzf1pD3spJk3IxVeGvOmmJXIxZWuBeJFmZdIVUkaUqxZhnL7ooV7kVid1qh+sjExeg7elzWFBVEkr7pury27GpE39Hjsppsmrjn9XkYdMtrxa6GpYgECncieoyI1hLRLO7Yb4hoHhHNIKKXiKgz99tNRLSIiOYT0Zl5qnfZk12huhsI9zGvZWKrNBuq0clMqFJgXl+sy7i0PTwhfYG9Hnzvc+xqbCl2NbKkaQBVLtdiork/AWCEcOwtAAcxxg4BsADATQBARIMBXATgQOecB4ioMrHapojdyRUy7MOQiHA3KcepWbl5QZQTaWrZctPDAkULY2wCgA3CsTcZY03O148B9HI+nwfgWcZYPWNsCYBFAIYlWN+8cd3Tn6L/za8CAPrf/Cp+8PSneS0va5ZJVfdPhiTMMjlXyFxelz02GYf96s1cOcybtpR57IMl6Dt6HHY2FN/rZOP2BvQdPQ7PT1lW7KpYNCShN14FwDXu9QTA3/HlzjEfRHQtEU0hoil1dXUJVCMe42asQpMjcZtaGP4zY1Vey3OFzu4U+8RUIzc0zWvJLmLijk1YUIeNO3Lx88up5R+ZuBgAsGFHOK+TuIu4ZCxdvx0A8I9JXyaetyU5Ygl3Ivo5gCYAT7mHJMmkvYsx9jBjbChjbGhtbW2capQlTc2ZZmnJk1mUMZaXBzsOpi8yk3oHXZ9rc28xaIekVrNGxeReVVZmatnU3GJ8DoCswlIsZKWXYt+Mi3tNpXRdkYU7EV0O4GwAl7DcFS0H0JtL1gtA+lwRYjJ31RZ8tHg9gPxpj7/49yz0u+nVPOUeDdN+b5Lsd28tQL+bXlUujnFNLf/4+Evc+8Z8RX1yJe1saC5ae33/qU8Dy652JmdcYX3QbW/gtN+9H5h3c5GFu4x+N72Kbz06udjVSJSfPj8d/W56FT99PnrIjKSJJNyJaASAGwGcyxjjo+iMBXAREdUQUT8AAwCk6y4mwJQvNmY/J7FgR8ZTZTxkZgajmSf/uxQAsKtBnpgfQj7x4VJ9ZkRF3e7wtVmrA9NUOAsiXGG9vaEZn9dtDzyvsTmPHjMGfVc1nfHBonXJ1qWAyC77xU9XeP6XAiaukM8A+AjAQCJaTkTfBvAXAB0AvEVE04joIQBgjM0G8ByAOQBeB3AdY6z4M0ASmlsYdjUWp2p8hy+hUZyHHQ1NwYlC5mOuuRuYZYISGMyS8nlEmVTd1dicNZPkg50NzdnRRVWFa5YJ12FKUXPPB0k8z3x7yyiDeXcPJt4yFzPG9maMVTPGejHGHmWM9WeM9WaMHer8fZdLfydjbD/G2EDGWMmuorjqiU8w6JbXi10NlOK03puzV2PwrW9g+rJNsfIZO30lBt/6RlbAmNvcQxQS44nLestEzGbQLa/jaw99FL0CGtZu3YUDbn0dD0/ITKRWCpq7KXm1ucd0M5rkmCaT4PpnP4v1PK/fVo8Dbn0dD6RoM/PdwMtazvsLiuehwz8TpahYTViYaZvpyzfFymf8vLWe7+beMiEaRZHUTOw4fu5RpTuAaTFfgCpWbdoFABg3M+O1VVXp2tzNRgpuWIuwmn4h+WTphuBEhoyL6d22Zks9AOCVFK1W3m2FezHhfdt5ObazoRnb65MxhwRR39SMLbvya2eOqtiZiKOgrMWy12+r1+YVdr3Bhu35DYTltoFbqyqN5t7cwrBRqI+r6eteBibv0Pqm5kTmI2TmDveQrC/Krmnrrsa8mVI3Oi6maQoHYoV7keG11MPveAsH3vZGovmrbIhff+gjHPLLN6W/JYUoME11yGRWqObK3tnYjCN+/ba2nDDP9IbtDTj8jrfiVC+Q7H1zKpYT1v7GufvVuTjsjrc8QtgNJS3T3MOIr0v+OglDblf0E5MJVU0YCPdSLpT0xXvfmIfD7njLI+AP/uWbGPnHiWYVDwFjDJc8MilTX5P0JWhKlWGFexHgBQnfTXbmQStRPX/Tl28OPDeuDiMKTFMfYCM/95BlBxEmeaFGVzw6zd31ttnKab9VmpdBGHjPLpco2q3slrpCcoakL77hXNMmYdSweF2wh1BYStE0mgRWuAuYRi4UWbFpp7HnhNdbJr89K2zuyzfuQFQHkAVrtqJua878IYoAY809TKEKORNG/BBRKIFVU52fx2blpp1Z10WxDXSau9uH1m1ryIYniDIBuzJEHxbZsL0B2zQvve0NTVgnmMZKRaiaPoPLN+6MlP+yDTvAGMPmnY1Yu3UXVm/eFSmfsFjhLmAauZBn3bZ6HDfmXdz16jyj9B7NPc8dPMzL48v1O3D8PePxzOTwPvJTv9iIM34/AUfemTN/+DV3s7ySaBOTHa74YkK9ZPN0z44d8y5+9coczzHR5q4Tvuff/yG++uB/M+mdCVhTP/cN2xtw7Jh3ccd/5gSmlbXV4Xe8hZPuHa9MO+pPEzFUNI0ZrkQOQxRlycQldubyzXgxwt6pc1dtwQn3jsejHyzBkNvfxLA738HRd78TOp8oWOEuEMUv2B2mvzPPbOcWz4Rqnu13YXJftTmaZgIAi+sMtmxL0M89ME8DRZx3hQzTTvm8Y+PnZzyMRBlVWWEmrOes2gIg93Iz7c+bnAnFUF5kgiRcr5lkllVDV7Wsrd68Npn0EW6OydzL4nXRtiT8Yn1mjeekJV7PoEKEKUidcF+2YYd2eBgEP8FZt7XeY2ZQ0aoq04z1pvGzeVfIPIfcjqWQhjBVyLYL9E+oZkpYvXmXzxOCh3/olwTYWFUvApOaL3XyDmtCFtt01orNie1Hmsubc9NETnNvlEyQylrAUdyNXSddQtnTQ0yoytC5vEad74kiMk1cb6N60ag2ai/E4sXUCfcT7h2Pr8dYWMILliPvfNtjZlDhakkNEeyV+b7HYbRgscOF6c5S4a4wyxx99zsYdpe6XXmt5uT73pO7v8VsuKbmFvzsXzMy9QSFfAl6E5/95w9w2u/e17pbRsVtwmzgMENhXeXGojH0cw+1biwhd8F82NzjhvNQucRGXVXOj9F58hV2hCd1wh3IDU2jEMUsk/XXNfR2KeiEagyhFQYT4c4j00Cz9RB+0nl8RG0+Mcs4L0GXLbvie9Go2ixnZgmXj2l35k1UhSIfJskoQjOfj6DKFbQQc8mpFO5xiOIt43ZSU82d13yS6ljb65swZ2X0l1pcqqTC3czPffOORixauzWXLqbJfUdDE2YHtIVHsIQ0uquSrttWj/Hz1ga+sL9Yvx11W+tR39SMmQqXVJ/N3WnKZonmLitOtllJWILMm4vrtktHK8s27MCaLcEeISZVC1t9Vfp12+qxuG4bZizflI0kOmvF5kw8Ge6OJr2GSbavgK6eSVKV/yLKiyjeMu77QKeN8ng094Te4d/9x1RMXLgOC359VnYOAAjZiWJURead4nOFVFTmnL98gC837MDSMaOcanjT6QSU7Lcf/3Ma3pitn9w2EyzyRKrjN74wA4vXbcdrPzwBB+zdUZnvSb95DxUEXHB4L7wwdbm8DOe/+4IMrbnDjWdvlj5bInfTvv3EJ/KUzvVvrW/CifeOx+xfeXfhPMHxmnHvp7JE3U2IKGRVmvvIP07EWmf+7JtH9cGNZw7C2X/+AGcdtBfuu3BI3GKVqF4WhVgIZTV3gUiae4zXcFJ2xylLNwLwe1OEMjcI38NoMUY2d8W5X27Y4U1nUmVXM5X89OmXmwJP54WASnFX3RtV/dwFNlsMluu3MHlcGtW8hyvkTZUP93aEVVb4WzaZi/2i6uPbY2z7lx+bu/z4Ws4xYvaKzdjlaO9TvthoFu4iptQX289OqCYIYwzvL6gLFMRRNHf+lFWbd2L+6q3qxPD7uX+4aF3suNtVla43hTefoAfI1Byyo6EJkxavx9qtuzB7pd+UYOQtY9i0ovY1c0WmvE07GnICUZOXzETEs72+ydMu05Ztkq+g9D2QDBMW1AXadXc1md1L/YjE+z0rrIX7O2FBnfQF7mr6pjZoWTJ+NMa3V1ITqmKZcsUq3PMoXu+SdduzXlEuFRXenmnkLRNRp3fbsBhmmd1GuL/46Qpc/thk/PMT/aa+cSZUAeCYu9/FmX+YoE3PPxtTv9iISx6ZhPsUuwWZ4go00e4f9DI77Xf6urr84qVZ+MbDH2PYne9g1J8+8P1uprlH89z45l8zcT8ueWQSzr//Q29aSZayuvBc/8xnnge6vqlF+nIVs35j9mpc9thkPK7Y/MMt13Ri3QS3DbNmGaFSlz02ORvR0Hti5l/YUSUvuCs9wj0ZacTXR8xTVkbYx1Hc6OXk+97D8PveQ5vqyuyxSmHOy1NsyMVvgahcIa1ZJjm+cDb1XR0w0RPF7zzOjXIXj8xfo9f2g3AXuTQ0iWYZc3TX8XmAv7lcc/cVYFYPRTp3kpTX8GR1DtLcZ67Y7BMCsu36xHq4y8ZVvvduucaau1GqDM7tNTYbui1g2p9luVZw0iEp4a6rPj9qztY/ZLmq9HyXqKwgrnMyz8Wrek5ss4z43WruydHo9KrqSv0lxzXLuMxbrfbW4Id4KnOKjqXrtvu8LLKauyjcnbpNW7YJywTbtog4auHr2ZbTfGRUJqjxBGmbHht9BM29qYX5hEBDk0xrzB1bu3WXZ9NtGW7fkvnl75TZpiXZqLxcwtvcM+nDxpvnW86jubdk1gY8O/lLrNzkXckcZp7qnbm5iW6f5i55BBqbGF6buco86JxBvSorcusaGPMrCEFhhWeE2Ocg6y1jMEpJmt1GuLsxOYK0uihmGdmNGvEHdWhSXg5mY4BIhIuK4fe9h3P+4jWNVKpWMDpfz7//w6wXgwrdtbdtpRfuMnyukKaau+K4e43D73tPm7aqQt+tm5pbfPcs6OU66k8f5OzeinbKrVT2C4df/HuWNn+XrNBxvrsv2KCyRVzh/pfxi0KVK8sDyPTx6cs3YfSLM3Hry7M96cIoRNf+faqyTNlz9OD7i/C9pz7F6wb7zIp5bOXWHXjMTRWUTcck9Rjzmj5G1Hvz42/0UwDFPV3CXfd2d4VeVYDmHmkRROgzcqhs5WGprlRo7iFqp1ss1CZAuMvOjLxZh6IaHlup5vwgzb25hfnMA/USUwpfj7qt9YGae9YsIwlD8eWGiKFqRZu7qVnGoO2Z5zPznVdR4RXu7nWJ0R2j7tMqtqPsJeFGYlxnuDkKn6cqhHZlBeW2fmTeJ4TIOzJ0ZUpUq4wqgJ01y4Rg3bZ6vDFb/XZ3l227QlBF3AnVsOQ07ujCfcuuRix1AhSJtvswdfOZZbimCtLcpQtpFLFlglDaTbne6j50sqRB97ixhfnqIr4Ut+5qxNjp3iiAWQ8Uxa1yzTKTlmzArBXyxUk8YWKThxXuScC/I1ta1C//qDHjxbNkZhQ31rvqfb29vgkvT8vdpzv+MxeffbkRgNq8UknkGSHJvKKydXI+RlVU1LFlSsAsQ0SPEdFaIprFHbuQiGYTUQsRDRXS30REi4hoPhGdmY9Ky7jqiU/w3X98qvzdjbEhDtnFRo4m3MOdww8RqxIQ7jf9a2b28w3PT/fWLUQ+umvv0Lra8118EGWCO+mQv7zm7vpXS90ADTR3sQxxQvWG56fjRq5dgWDfcbdrvT13Dc7+s9dsFnelpdvHwpplAH/fkgkqtzz+hUyCWUYVbrg54j6tfjs0X0dvJVWuiLe8PAs/fHZa9vsr01fiKw9kwh7zozH+7ApOc/eVC8Fun5SXkG9hXiLZajHR3J8AMEI4NgvABQA8fnRENBjARQAOdM55gIjCG2sjIPqyiuTMMno7sPu2r6kyH9TEuU9u+aarW2Ws3ar2AArz4tEJji5tvcLdJ+CkmntgEikqDV8mtGWXZzKv4p9Q9QquLzf4wx/n4rXI65dkhM+smST7PYOpfZuXjWF2juLP8wpAptTQo5oUxUuJoljpNr7Qae4t3MjPG37A23eSCkRm8LgkTqAEY4xNALBBODaXMSZzzD4PwLOMsXrG2BIAiwAMS6SmIXluitef3TXLtBJs7mIj/+2jLwAArSXeIf/85Ev88e2FPs8H3f1/ZfpKLN/o9VLhu88Hi9YB8AsXU+av3opPnNWpMmRVU3nNhBleuw/ivNVbMH7+Wq/91rVT+jR3s/xlyV76bLlngiybFsC/P1vheciDbO4AMG7GKs93UUDJYrhkbe6KdhKFU5yh9yvTVzplZr67QsbUM4XX3N0YMZt3NCo3YpFVlb+eZsaUESZ1wl1nzjDxcw/KR2XT3lbfhIcnLJb+9vrs1djhPMMtGenuga9G7rP6QnT3WVXvBTFdn01I2ubeEwAvVZc7x3wQ0bVENIWIptTVxZ99FvnZCzOyvu0AZ5bxae7eGzPWeahaCZr753XbcOO/ZuL3by/AmNfmen7Tdcr/eeaz7DAxWyb3eZUjlKKaZcQFUz07twms23nCQiAXUaB5V/GJaTMHRvxhIq58/BPPA5GzU0b0lpGk+/E/p/sPAtjZ0IQf/XMavvnIx6HK+fU47z0UY/HLtMjcQiKFcBeOyyZpTahvasYzk73KiZu16QuYb3pXGbnhhem46cWZmLXCLMAc3waMqcMNN0a8ThNvGZew/uf3vDYP42ZyL3Ah3b3cokG+VJVZRveS0m1wknOF9B6/6OGPfWmTJmnhLmsC6R1jjD3MGBvKGBtaW1ubcDUy8A+CKzxFf2xVdxLNMrxmvWGHN3aIqk+6Lw5xww/Zmz7uRsYuh/TqJFTCn2aDwvNA934RHzyxvvzQNq6HQRgPH7cavOZuuoiIp96nuUvmENwyFdn75iEi3lL+vOywXlMvGeSxuWfOceOryFfj+vP1mWWa5YIuqllGpTAA5iY9VSgEVR93cRcPggntTfIJVR1av/gAU14+SVq4LwfQm/veC8DKhMvwsLOhGfePX6TUtDZub8BfJyxWasaqNpeZZVxMJhN1eb89d63vmGiWeX7KMiyu24aGphbcP36RtAN9LtnazmcakFdBiswU4aJ7EAFhKOt+MJhQlZkZwrzn+JWMbl8IY2N2EX3TZS/b7CpRQ8096splWfbuMVMhwTe9q3G7QktmtcpOqHLCslkQcm4+4um6Xah01V29ZScue2xyrgzNO0KWz5yVWzBBoTWL/VNm0gMcbxnNfTJpb91+vVFj0iRB0iF/xwJ4moh+B6AHgAEAJutPiccf3lmA/3tfblurIOB/X5iBt+euQYeazKWabtIgau78/RNvuOr+qzqGa0/lEYe8//vCDLSursANZwzEb96YDyLg+8P7e9KMkMSw8V1fCPkiTup6A5yJmrs6zEEYLeXNOTn3VcYYiCiUrdpN2cKAB95bhD+/uyiS25p47VqzjMrmLuQRdTAmjy+eORbFLONem1tv2ZxEkM29pYVl86ngJiQBYHqIFZs8Hy5a7/mu6zey30b+Sb1Q0HTimTG/55Tnd6eb67qUyRxP4fV2A+FORM8AGA6gGxEtB3AbMhOsfwZQC2AcEU1jjJ3JGJtNRM8BmAOgCcB1jLHkoihJ0GlpFUTYsD0zFHUb19QlySfc+Q2zDAWo7LA6Rrj/2K7GFmxyTEAydzOZh43vxRNqEZNOcxcEl5CUvy73o6jRyOrCLzRhzBkWm1aYqxdzNHcg9N4bAPyjFpkAd6/L1OYedUJVNBMAufZuaWFG+cpcId1rkmmaWduyIr8WxrLni6e75pr2NX5xEuZFGyX0h4qgiWfeC8kb/tm75WLO5q6+EJ3rLfEFFZhA4c4Yu1jx00uK9HcCuDNOpcKgGxIBOQHoLmwR7/nbc9dIF+jUVHmPuV4tmTzMBKhM21BtxaaafHP9r8UJXhU6c0kQOndMsd10mruLz26qMTfweYQRilmhx3Krj6NozPe9ucDzXSbc3fu5uE7udrtD8KKS1SOywEdO+za5Pl7euMLXLZrvy7n89bSw3EsiI+hyZ8QNV52tAy9kY1ozzDV3mZti7sA9r8/DLWcP1uahi6uUk+3++sxfvRUD9+pgVM8olP0K1WDh7kykOgZT8eH6wdOf4aonpvjOqxaE6R3/mZP9LD5cYTZ1MNnIgccV+qZ+9/4Xjzm6h9S3VNxv3/KlNd2sQzwvjPzjhV7QytQwyMwfof2wpS+uUKfljnGjhrDxxxudN6Ar8MSXECC/Zyfun3N0aG7J+bmLimpSwl2XTdiXoum98gld4dqe/WQZ/vTuQm0eWpu7Yg9VwO/pljRlL9x1ZNy3vJq7KbrUuuXKQZh0Oj4/10WvJiAqo4t/PiCEWUa0uWtMUXpvGf/5JnVxfw7zGPNZBgUMC4N8ojecgJF6oITMQ+YtY5QFb3N3FASdqUK2NqFTm2rP7yqzjquAxF1Sr3s2wuYceK8U+xgT/H29vrFFKw9Mul0RrDLlL9yDFkm4WkXonWk0v5lqx3w698Eyebj5JK6bmau5//3jL7TnxjLL6GzuQr7id/7F4H4K0tx/OXa2x0vIFYZhQsh6hHuCmvtWyVxOWMVdlt6k//FC8pOlG3DXq3Oze63KVtfK8HrLMDzx4RJtLBs3S36BHn8fPGYZ4VzXnBfXm9f02fzUiR2jQ7XgymW6EwqZMbN5OJ2c0ZllChFDRkXZC3fdkIj3zdUFmgqL3yNFnil/+LNlmQ5pIrj4FK7N3Z0DuCUgdKxMPpt2MF3YYb/NnSm/qybnxGo88d+leHnaSt/vYW4RLxCSNMvICGuWkbV7WLNMfVOLZ6VlS4B3h4s4ofrLV+ZoUufu7+fcfALfts0tuWdJVFDckYFsQj6M7Vyc2OThi7xAWBQYlJcO0eaemdAPd591E6o5c1zhhXwKhLv6N17bYNwxE3Q3I4orZJCnheo81yxjPKEqerUYCgMgnLeMKOh4u2s2qe/JNjN1hHkO+POTNMvICPuARtfc9b8Z+V5zTRGkxWby1d8bPraM2E3ce9/YbObJo66DWf2CYgcB4V7EupdKUlizTAR0LkqM65BZrTCBN+jEheuwdVduYlSV428k+6KaPGgfct4Mrj3zmr9NwZP/XRp47tQvNmKKZ9d6czuv3ltGLcwB7yKsxuYW3PTiDKze7A2+JavGpCW5uuY2UAhhluE+r9rsD/aVJKE1d8mqXXerQBUrNu3U9tGMGSEYz4SqwYSn/EXkLdeNCimuSOW/xzEL6l5a/C9d27XCzS/NVKaV1UNXppjy48UbfOlEMfPZlxvxmzcym3rIqj1xYR3uH7+IkztG1UmUFAh39W8tjJtMStAsA8CzSbLK1OIGIfPWKbgCVzz+SfYzr03fNna2LLmPrz30UfYzMywTgC+kK9/t/UGevOfyL4YJC+rwzORleG7KcqNys+VFeBB4QfjXiUtClReWsIE7ZddxibPZtw4xXIUnTxja3PkJVSNToERzN40Kyb3Y44TR0J3KX/LarfV4epI8AJpLmOiZUWTCVx74L+4f/zkA+fP1rUcn4zdvzM+2q9XcI6AbRrUwlp0kzNq+DJs56IZ7JwLN4TWK8w7tEeLMaAStwOMRNTz+PP+DJ9rcudjZilsSVI2cfTIgIUdCIXmMCDvqCzsx5xIk5MTNvWXwI1pVHHYxX389OJs7Y0qznSyGUxQS9XM3rIbos68qN0jOKInSqROi7IW73uaemwRytSFTYcDvcC97qPnNHUzu29V/m4JlG3Z4hLvRptIx+4RMc1cVK2p43mG5ueauehCCrsUtg19TEEQYz5q4iPuRBpl+ZQ+9yVL1IPNEkOb+2AdLPDFXTASuXLjzv2tC/npMcrk0t78yO5SQ/s7fpypDX/PXbLTc31RzR7xnrKVFbydzf3K3CywkZS/cdZ1HZm82vZEruB3eZfY7mQufjk07GnHXq3M9eQXtGJTJOx6ZCTjvMVWpWrOML9yA97uRAAm4GvdXcatAk3MKwSYhGmjQAjom+WzyQtf6exvY3H8lvBxNtFjZC8M7oaqek+EVHb4P8aZLE9Zvb8DcVfI5Cb5NxD0ZgtIHwadU3h7F8RZmtmJ4veEesElS9sJd94AFDTVNkdnv+HABplm2MObJy2TWPz7M09Ebm1uUk9Diw+s1y4iau2CWiagden6PMKIvxkSVS5Bw50cVbj2NXujaazKzuXvqEdJDS1aP5hamjBrKxwcyse/rUHmFhbXlmwr3JtNFYapymP5+FLV/Fq/o/CPtsFHykfTphqYWrN9Wj1F/mqjc2chXNvN2OpPhZVzVNOPHm8tEF2jNZ3PnPgdFm2wwmG2ct3oLzldsFJIpL/zFFnORSJASftYfc1ELpy3bhP99fnqgKQfQTwaaukJ68gu5tsKFj0Fz68uzlIJ7F7fRyR/e8sboWSbZrlDHbS/Plk6WhjW/mW4+3tzCMIqLLilGqgQyz8WVnJMDT9BIKqhPX/jQf5WjlbiUvXDXdVyZj3cUYSCbSKpvasHL01Zi9sot+OtEechhf3289TXR3KPGBM+d7xXM2+qblGYZMWa8N9KjqNV7vzcbTKje/socTHNWBkrrGuFSCzmhKhKkuW8TXqTPT11u9ELXxdVnkCsbOsKuipWxYM025ehsF7eq9fmp4TykRCYv3YCbX5rpi6XEv/DiPhMiQaOCL9arlbeWmJr7J0s34raXzbzgwlL+wl3TevKofOHLkD1M9U3NWS3MXMAwYWIouPljT6gKmt72+mal8N1Wr94bNijkgoldd0e9PvpzpFFVETX3KFY1VVRQHt1aCMZYaI8Uo1XRBs2oUqR2NSUf1buNEKk1yubZSaF7hzcHhGA2qfW67WrX1ziUtXCftWKzcqMOQK6N3DZ2dihvDED+AtnVmLNdLzEcAr49dy2u+dvU7HeDeaHYiJrFtvpGpTfLtnrvhOGmHY0YdufbmLF8k+8Fdskjk/DuvDWecoII2o5t5B8n4o3Zq7VpRIor3MNLd5ON0IMCaIUVdCpt+k/vLMTPncVAJlmqJlR1i9+iIobcTmobyijo7vPOxmZfVNn123LC+vLHgvcqWr8tP5OtZS3cg1D1h0c/WBIqH5lZprmFRfLF9drcDTT3EHnv1bG1/3zmHXnoHsTtgmb938/XYe3Wevzl3UVSIXrLv3PDSU/gsIjP4eotu/CDpz8NdU4RrTKxfbFV6CYlGdOHiZCxittfVuQpx75tYq4MW24cxNrIJqdLgUVr/FsMLgvp9jisX9ekquOhrIV7ULyVpLQ6WZ9uZix2FAojm7vhNXRrX4Oj9vV3EnFFI2NQunWJNmL3NJNVfHwZcbSssFpgoSdUTx6Yi3Fu4vkSBZ3nEYN5+w7aq0OIfQBM6lW4tvbP6RRPouvK3q6JjW/Kt47eJ3SdTChv4R5g10hKuMvMMoyx2Kpbsnsvyl82v31zAY6/593s94v/+rHPNPCT56ahsbnFd9xtvzdmr8G4mat8efNrAZ7g4t4UcmFRAZVJAN77EcUsY4JOeE9YUIfZK8y8Kxgz62N9R4/DrBWbA9PxcYDyzcSF3t2iimmWke1c5SLzPgurcCQZqpqnrIW7uFuSj4T6g0xYNbfE19yNXCENaWHyIGrvzlsbqJW9+OkK6SRd1JdjIR/EYo7Qowj3QQbbqgVpyP/8ZJlxeaZ1/Mck/T4BxWZHQ06IlpBVxjfaBcJ7cOUrmmlZC/dgzT2ZcqRbrsVX3A2XUZvl1RLTTKS6xijoXPmSptATqnxxUd7NQZPKQLBt2yQPIGOSM61jIU0upnTgNtzeauBlVAz4l45L2JGr1dwlFMwsI7lZjLHYsZ/N/NzNiGuTlHXIqPbsQtpHv/P3qcGJEiSuWUa1uTZPUPuZukKammXC5FlIunfKOQh4hHsJvYdE92EgiuZeJOFORI8R0VoimsUd60pEbxHRQud/F+63m4hoERHNJ6Iz81Jrh4JNqCribhRCcw/lGhCjPjKBUg5mmULDv/DyFT0iqP3CCGLTF1AxJyxVtON83b37J5ROXesb/cI9tM29iGaZJwCMEI6NBvAOY2wAgHec7yCiwQAuAnCgc84DRGS2s3MEgoR7FNnEe0O4yIasJv7KQSRpcwfi7SLjThrzWkRU60qpCIrj+u+R1/x1G8XEIchEEsajyNSjpxRfyHz7lqpZpl4iB0Jr7sUyyzDGJgAQp8nPA/Ck8/lJAOdzx59ljNUzxpYAWARgWDJV9RMkHKNonuLiCVU+C9Zsw00vyneDMRXaSZplgHiapGve4F+YUTV3040S8k0+tkzz2NzzZNQM2mUojGJhEoWyVOGrLtuwvBQQQ3YAwKWPBm/IwpO0kucStXt2Z4ytAgDn/57O8Z4A+Kn85c4xH0R0LRFNIaIpdXV1siSxiaKM1FT7mySsJtqm2mywknT4gTjP8WdfbgIAVFcmINxLZHIuH3KNNwnkyxUyCGObO/JnOnI5tHdnAMCZB3ZPPG9xk2+XEtEdAHgjYkaluky8ZWRdSXorGGMPM8aGMsaG1tb6TSFJEE1z9zdJ2CFre26WX4dJ+AHja0iow/PCPepDVCpD/HyZTVyKJdyNvWUYy9tCK5dqx6RwUI9OiefNjzpKRWEQ2bKzMThRAJUl5i2zhoj2BgDn/1rn+HIAvbl0vQCsjF69eETx9pDZ8a/52xRJSjXtasw0dxPhE7Shsie/BMwQ1VxHi2peKRWbez4emf617bOfTWMKJY24aYiOQu0AFLjmJALlYJYZPz++1aG6xMwyYwFc7ny+HMDL3PGLiKiGiPoBGAAgOHJODMZdfzw6t62W/hZFNslmrjeE3EWlfWt5fXj+ee3RiWt+SWTHT+5E1dxLxuaeh2fm5lEHJJ9pnijEXXAViuo8RMFTPR+l0buSo2g2dyJ6BsBHAAYS0XIi+jaAMQBOJ6KFAE53voMxNhvAcwDmAHgdwHWMseTjgXIc2KOTNGAWEM0eloRAaG+guR+xT5fEo0ImItwr4tvcZZNMxSDpl+dx/feQTriXLIWR7gCAVnkwLahuXzEjgeaDfLlCBhqHGWMXK346VZH+TgB3xqlUWFQP8U+em55YXmFo1yrY5l5ZQXmw2cbPj9cioj5EYffOzBfJt275ep7km4Jq7umS7XaFqo4kX3xJjJDEjv7bC4f40hDlQ7jHJwk/91Ih3xOqpU6+ZeArPzg++1m35qSDoYOByO5y+0y968KSDuGeYC9IIi8xizatKrFfbbu8lKUrNwq8FlHuw9/dRTgUiz071mTHMjrNvUfnNpHy311ezvnyaEqFcJ+xPDhcqSlJdChRaLcwJnUPTPKeJuXTzNv/kliFW0wSN8uUmazJd6z7CqJsm1TnybRgiU4qhLtL/z3bo0/XtqHOGeIswnBJQkCKeTAmX1Ke9Bs7aVfI9YKXUIfW0YbXxSJpYRwkKz+48eRkC4xJPkX7becMRm2Hmux33ShUFwsm7D3qv2fOFfXgnsn71qeJVAn3mqoKo3jZPIP39qZXddJ9u/nNKirEPDK75/i14FK0uevcskx39SkVCj0B2qtLOMWiHFBFXh24l9lzE4T2pSB5m/bdI9fG+0pMnZYc5fW0BtA6wsSEaCtUadOLQyxYEU07jDHpwp5Sd4UUKZG1ScYk7WFWgu/ivKPy5HCFsvsCjeqrHfYs/tkqReWolEiVcK/kbICmiMIsCUuJWAfG5JH8otj3dUPRJLq6zi2r0PuVxqWUXRfzHbESiO4y+PWhvbKfVcHtxLyjmhiJgPE3DDdOzxdTCNn+nZP2zWv+d37loLzlnSrhHiXOsyjMktAGxEh8DEy66XHYslpVVqDPHuqhfxKTwbpIleWmuZewbEfvAphwosY9784tClS5OLqeVG6Xi6MU8bZ7HtnLiT+W74iXPTu3yfvooHObVnnLO1XCPQricDKRCVWhVRmTB9MK3TkJqMnDYhEe3fC6lDX31pJonif071bwenRrn7+HtVDwAk3l4iiaGXWjJF23yaz3UJwneTm9PXdN9nO+lu176pDnLp/PS0iVcI9yI0QBy2u/ndqoY8Q8c83Ryt/8Nnd5MK2wN5ag1qSSErxVmpeHSQkPXXp4IvUIy28vPNR37BtH9vYnzDMTf3YKnrr6qMB0hXhPMgY8fY2/LqpYTC680OQ/D+ndGSftn4ngmlT8IEK4laj8Y5QGP/h8XkOqhDsQ3s7q19xz33UmCt1Mvc8VEnLNPYqdUrcSMJkJ1WgamEuXtsXRXGVzBUSUqPumyYPYplWlUcjnQmwVxxjQURLErmvAPeK7AP981LavyfYPNwSv2yRRr4coer/N8yAWQP7vk9XcDYlyG0Rhxn/VrdDUuQX6XCEV+USx5w2XbAMYJz8RnXA2GR1E8VhKglLS4UzuQ6HmL6KYLnilg7+Wyorcb67mPuKgvQEAffeI5pZIUIfhENegAMCwfl1z9SmE5p7n+2Q19wAeuCS6KUAMlE8e4a4+TzdCkPm5y9MF1c7PKYO649whPRR1Mqdb+1Y47YA9PcdqO9Rgr07yCJs/Om2AkUDKVxCkIFQPSSkJfRPOGBx/R6MfnNw/+zlKbP1Kj0AnXHNCv+xn97cWJ99Lj+qD2befid4hFw/yKIV7r06YffuZ2d2eAOBpzuSVpGAcd/3xwYkUXHhEL1x2zD7aNA9/64js50N7d8ZBPTsCyK/mXl5LDhW4Cy2i2J39mnvuuza2iuam+F0hFZp7xDtruhmIjurKCrQRolfu0a6V8rJqqiqNYs3kK3xpVIphl21oDg55rGrKmgRGPm1a5fKobwofftmjrRNl+wkRodLJujnrLUNoFzEwWKYsvYBrV1Pl+Z2fE0rSk6W7Imy4Ce1qqtBRMz/npnGprCB0bpvxEMqnN05pPYkRceVJlBHU0ft6/Y35xtbP8quHvH6zjDyPYgYOY8z/8pq3eqsyD2ZofdyjSN4iBO8+nqcM2lOdWEPXdvHrX28Qk0fVmsmEv8hkwhiLtGrWY5apyHmzVBDhnEMyZpgD9u4Yv6LIvByCXsAXDpVPjJvY3C8e1seoHnGexepKwgkD9J5ZfO6MsewoOJ+6RyqEO2U7c/hzD+nV2fOdf7h87l7EpyMs/PVZUhc82YSqDH74+8eLDjWorZOfzP8X4bRUBiatmMrcxJjZyKh9TRUW3zUSS+4eicV3jTSuj8vxEvfFTm2qMThAmBABD116BBbfNRKzbj8zOwxWCcvhA2ul9buLW1Qiu7cmGAVcUzRlEnHR3dEoQ0YjvemsQZHzqqzI9QlCxsa++K6R2I/bbtBl8V0jcVifzgCAO843W5zj3h75QqbMrxcpvJ5MRr53GS4SUuVkIlIqKypwZN+uOFkzHyZbtQ7kV3NPhVmGb6C4bcV3GFGzJeRuNjlp5S6OZpq7+LIwRZmfcQ5yzV2sk2m5Im4bkjPkDmP2VdnsdV5CblnkrFDmvVV0tniZcCDNyM20fU2Eu6pJkoiuKF5XHAHCr/rOavCqESt3XOd1JUOXXnUPTa7LVOGR5WVq5nXrrpu8Fn8TF4Hlg1Ro7m67JTGxzXeGa07wLj2WvURMwgoM69eFywPo5wQh4/MLJdwVV3rGgeaTcQwq4a6uh4nNXTw9SCiLyDR3omBhEdYFVjXU53PhJyYBf/867QB5ew/uEWyyUAkOE++Wnlx8dJnXVuD7IeB3vm7fOqZv9vkyEZTuqfyoVNdrdFm6k44qkvSWIUU3NRHwrkKiax/xtl50ZMZcNLB7uECHYUiJcHelu/5GnO3YC/V55T5fdXw/z2/8vdN7y+Q+X3bMPui/Z+4GvvI/x2eHoPyDnISt9Yh9uuKO8w40SssYkzaXWI2OnJ+4iQYutovMzFBdSfjoplOk58tsuTVVFcFCT/Gz7LQnrjwSIw+W9wX+Af2fUwd4Hr4WoQHuvuBgLB0zypdHry5tMfUXp2mrq9bcgx/J5797DPbvnjGL8JOnLm5bRV1n1OCEyrj06D742hG9sm1i0kWzI1susSz0BrLpcqM8nsk/PzVwviDJkNlxcnIVD111xLqeM6QHlo4ZhT1jTOQGkQrhnuTIxqOdi+UYmn90WrhXW+fzNq6i9qEN0+Flwlo8PawNWLwOmWbZtlWV8uUoO1pTVRnoYqkZ1GvPE/HPl+QaSQzbHMWUkM03hs2dKDdp21biXeP2AbfuvqoECP3GpkwCdzPw7PkhmpLv57IFfC4qvcxkJJakG2Es05Xj0RHGPboQxBLuRPRDIppFRLOJ6EfOsa5E9BYRLXT+dwnIJjZJurvpBO6NIwYpf1Pl4f+Nf0HIPwehezZNh6qqCVKxHq5QZYxhtMHEnFi6LB74z0YMVLeR5HhNVUXgw5FUH9BlI4bkF9dIePIJKEc5yW4gsQiE+sZMZVrLNPeYbeGa39wXc25C1SBf51zPRuuOcK/tUOObGHdTiSY/E8GdpMCUZcVgNvoxmV8oQBgcf5lRTySigwBcA2AYgCEAziaiAQBGA3iHMTYAwDvO97xianM3EQAegSt05m9zZhptR9eUo1LMVB2VX6DlXl8SmnsLk1vuxWpUZ9cQAN89ab9ADxixjV2bO7/45JKj9gmlBdYYeK0o3xUhHyrdfRXjqVRrfPqDBI/KllttKChc//W2EuFeEWSWCSjCFbTuamNxQlV/LjznADnN/fErjsSrPzzBWxUnod8zLbgw95wk7NamL4pj9/OHajZ5IZeb5n4AgI8ZYzsYY00A3gfwFQDnAXjSSfMkgPNj1dCAwM4cAo/WE01+awm7ktL0je9eu6mXgnJCVfgu5hd03T7N3RHujaZRBCX3sFVlReTNumWlaAWHaJbhihXNC9qHOqCdVFejC9zG5+2aZdpIzDJuH476OLh5u5p7bkLVPA9emLlCWDa5TkIa8biORseWv6OxybxiISD421DWDU08nMpNuM8CcCIR7UFEbQGMBNAbQHfG2CoAcP5LV5MQ0bVENIWIptTV1cWoBq+567vzFcfqlwgDwHGctwYRcMWxfaXpxFt1y9mDpb99XfDKULltqpXAXKLbz81Mluqukxc4Zx20l3LbwYwrpP/4yc7iH9cjIzs5l62zupN2aF3lEwA3nDEQlRWEfYTl6erFUsD3h++HAdxemTVVlZ6Har/adj6hpsov6Jk6YUA3nMOFcxAfwsu5+98cyuauL/dKRb8ymfQnEG47ZzA61FThR6ft7/s9Tijcsw/ZG7saM6OCKGYZt2/ydXBfim57/fT0/bFXx9aoqarAz0cdAADo2aWNpz1NhKHrcprEXqpSV0hJOl7JcKNrnmywYK4YC7cjF8kYmwvgHgBvAXgdwHQAxq9QxtjDjLGhjLGhtbVq538TTO2tR+zTFf/63rHK35eOGeWJrVJBhKtP6CdNK5Z56dHylXAHCR1P9dwpNXrucHa1HdfrxPCt7iQYANxw5kC8/qMTpflmvGX83bdXl7ZYOmYUDuzhxr4wFxQzf3mm7zrOOHAvfH7XSN8SdVWujAE/GzEIb/3kpOyxmmqv5v7OT4fjr5cNFfJTjYgyxx9UxB/6+7ePwu++PkRZr0uP3gdjf3AcAEB0+tCZwIJabWhfeV/ct7Z9YHyZCgK+cWQfzLz9TBzXvxsm3Xyqcb2C+Ms3D8/Z80WzjIG0cG+TbDGga+L7n1MH4OObT8X8X5+FCw7P7PrUtlUVFvEmP4NLcL16undsjVm3nxl8ggalssHU3w/q0QlLx4wyWgVcbpo7GGOPMsYOZ4ydCGADgIUA1hDR3gDg/F8bv5p6csutk10UQNAtoPB+V20k7D+Pt+lD+lmV3oVpfue9U3RNETRZ5P7Et20cxPYKMwFaU1XhK9+3wCxAc9d5oQQtgnPj5YiukDriTPAGmr6EBOK1Vca8Z649353ryJVnoLlnhTuvuWeEcJigcibvJ3eNSauqitgec6bCN2oI4LKaUAUAItrT+d8HwAUAngEwFsDlTpLLAbwcpwwTsmYZZ9Kvg2Ego6AhMJFuok60RZvdPeXqPsOXSNDvHuEeUCdRQP6aWzKeXR4tuNVFRby+MLvvXHdyf99R2ephGe5x3aSs9yXrz8m1qYqukDpMHmaVyUzkrIP28mjzqnkNl5ysN79nVx3XL2ueuvqEfdG1XSucOKDWU55JF7955AHYq2Nr9OfMaqLmboLJ8+Ta3GuqKqV1+9mIgQCAn488IDCvsHNbgP6Z8N/bMtPcAfyLiOYAeAXAdYyxjQDGADidiBYCON35nld4wXFIr86YdtsZyrR8J/j+8P7KdAC0saZlXH9Kf18ZIqpOJJbj7ngjgzenqLxTAH13qq70asPnDumBS4/OzUm4SmpSGyKI16eLYSNySK/OPjnlSxZg7uJHVmLSoFvsvuDChFEwsU+roimK59488gA8zJmhxLYUJ/SimABGnzUIf774MAAZU+Knt5yOPdq7kQvdegVz/IBu+PjmUz3X5trcdd5FIiZlNXATv3ybtamuxNIxo7LP98VHBQcPM1XOTCf2/QEJjU5LlFixZRhjJ0iOrQdwqiR5wTBtx+DhbzQzj+liBt2iKF25XrOM9zePcNfkUVlBno4qeitkY18kpHH4lncrNXfVcb10D6pntXYHK/25rpkjTGz0OObBwIVgASbB3NoE8zK1jj9OhcK8NPiUWU+uUGaZMJp7hba94/Rgsd+ZdgFxPqsYoadTsULVRbb0WYfbgf508WHKELFBed19wcE479AenvJ18PnxMUL447wvbaBWmXV7864q5H+TUVVBnvr+8LQBnt/dTsybvOLg09xD9nW3Pqc690l86FT5ucqi6ZyIbKjten5E2fgiCqq1BqrfRcHhb2tx1ORH11dcQRXmnsmEWTizTHCaq47vh4HdO+C8Q3vqhXsMuSr2+xvOGBgpnyIo7ukQ7pQVQG4nNLR/O8nOHdIDj11xpOR3CtQILx7WB3+86DBpfeRl5n5sVVWRHVK75XRqU42nuc23ZeXzHU6c8DQN1FVZQdn2eu47x2B/YSGI3+YeD9+EKve5Z+c22XjYqsU97vHvDd8PgH+1qAq3/XTbInrL8R+LItxjae7CPRfvaZBWm3vhhyjTYKQY5pJk+SUR8ZKnd5e2eOPHJ6K2Q01iI0weWV8YtHcH7e/Z34TvRVDcUyLcI97YpM0yJtqtaml4hfCCMkU0Y5oKsaoK0m4YIPN6iINOm8y0s76cXF1d+3e4RS9xfL9d/2tdjBSRWO0WpLkHnJ6N5x6iL+nan7HgNCKy6497vj8Nn7c6HS8f4nZn09PFpi87V8hyJ6izEaLdFN0ZqolF0YvGVCsQ8+vesTV6dm6D7h1r0IMz+4hUVVbgrq8cjFMG7YlDevkXgbjCM/syklSoR6fWOK6/fzm2DJ8pQbgG97va5u7Nx68Z6V+aAHBYn84g8m6ybEK39jUYdfDe+D9uH8wgdH3gVm7Bm8m5osZrOgEs49j99sAfvpEbaf7928NwwWE9tfmFNXcC3mt48qph+NoRvcxPlpR144hBnoWCYiF88sev9I7CSZEuKia7fF13cn9P+Op2NVXo4ayhKYxxLyWbdWjkjxaTYFRhOoOJu6AqbrSyHKlWnStHvIbKCsKHo+XhdHmqKggD9+ogNUcBZpsJPH7lMAzcqwP6jh4XWJ7YkqJvOQVKd+Y5zxdFUFFPXui/9P3jAuspK76ignB/yE3Y+XIrhU1dxFDSunNl34P6rWqUcsWxffHLc70hoU8YUIsTBugXEbIIk+t8HU/av1br/RV0PpAzx/F4NfLcZ9FTxXMOUawJJCLCVcf1w7vz9Mt39urUGv+4+ij0v/lVNLUwVBDw528ejq8++N/IZYclFZp7TpsLd9OCumpkzd3Q5s5XwrcNlyZ//reoo70gM4VolpHVJ0zZ/kVM3Ge+XMWVZ80yXEpPfgHlm/aMKJusy+DrE3YiNq52Kd6zuPnlzDLm56iUGOPzTdJwiUytbnFdEglh+z055xXeLJMOzT2g4e756sHZVYY8wZo7Qj0Z1564H1Zu2oXLj+2L+95cIE2j9nPP/PeZGwLKNJk8u+srB6Ntq0osrtuGdjVVuPu1eYEBxu67cAjuH78IN44YhF/9Zw6uFnal4utsgq6tTUZIYmzykwftia8d0QsvTF3uOe7P2zk/wbHwX755GDZub8h+/+2FQ3wLnPj6vPT9Y/H6rNX4vwmLfXn9+7rj8OrMVTisd2es2bILAPCLsw/A2OkrleXLrvW2cwbj9lfmAMi9uKsSmgzfWp+JKtJOEoFSWceYZeoezXu+ejA+XLQeXdq24tLr+lfu87++dyxenbkaz37yJRgDNu9sVJ7HIA/Rkf3dyD3Om2MhSYVwd1E19jeOlC9iCJ5QpVBv6U5tqvH7bxyqTaMScqH8YD3eMsHJv8kt4piydAOAYM29d9e2GPPVQwBAc03mdfa778lzUd3DrPaY9X6pxH0XDskKd1VdVJq+yIn712LCArMAdmcf0sPz/asSezJ/Pw/r0wWH9ekiFe6H9u6MQ3t39hzbs4N+dx5ZH7ryuH454e787ovnE1Hi1m3NvHRqQ+waFHcCUfc8fOPIPspnWpoX1wsO6dUZh/TqjNFnDcJxY97VCnd5vUIlzz2fCdv9jcouUDl5JWo/Mjkv6Vlu/4Sqe9ybTqsxcIIq7E5JroWgtSRUbFji+D2T0NuDriPINBBUlyAtyySOeqlgWtO2rZLR3bbuymjue4UQ7sVw/VMRy89dzCukaM5G1CxCe6RCuLvInt9nOJ9xEaPd02PUR15muLrINBheUI254JBQ5R+xTxdcdVw//JaLhBiVOC8+UXP/9VcOwhXH9lVOvAV5bKhq4rZf0ID47gsOxhXH9sXx/bvhF6MOwPPfPSbgjMIg89AJGuXtdEL2imaUqKapn486AFce1xfDB5pPihbD9U9FUE1+Mcobe+ber+aeKV+bUTiZ4DZDMVojFWYZXcMdI9k5xcVIuCd8VwLLdDqT6YPYvWNNqPIrKwi3nqN3xTMlTtPw5xIR9uzQ2ufJwRPFY4MvJ6g99+yYK182v1AszjxwL9+xoBbY3pDRtNs6Zpm4XXjvTm1w2zlmG6+XI2I89uMGdFOk9GLiwFHMl1y6NPeQqkkxzDIq23OYcjyXWUQFKZ7mnjvXJJes947KlVRRl6yAKx1FMjZB19LoBNTqIsT6LyQlpbknWJewWbnJCxS5wkM6NHeFp4npeWF45QfHY8aKTeFPzJapMr8o0mvy+urhvYriYuUStv1uP/dAHNk3s4CosoJw4RG98PzU5Ub5BAUyU2Xx4CWH4/kpyz07OxWLp64+Chs4L5uoBAmrUwbtie8N3w/fObF4I5ASku1GLs8A8NClh6N1daU2vWfEafLsZYeOwUmTJhXCPduCBg3I3w6zJc7eNAf36oSDJSs64yJWRXT9k/12+uA9czb8InSesFwubC131fH9MsLd4CEJtLkrjvfo3MYXFK1Y8Fs45pOqygrcOGJQQcpSUVqae9DvmQQjDsrs77Bq804AmdGiP0Ad739lsGgxRNqkSYVZxl2e3aFN8DC0WhPXW0a++6i4P6XJ7HzOLEOJDjnDEmc7NyDnh93J4L5lA5kpRzilI0wsxYlfHhWxqkF9yQ3k1r4muN92bdfKKM98kArNfZ892uHWswdjlMHmwu7eoEBxvGWU5WgK+v03huCAvXP1LhGTe+yy++/ZHr8YdQDOHdIjMG3umsOZtSzytnnp+8di9eZdeSyzdG5IYAwpzc++MBfIeJzddNYgXDi0d2DZ/7j6KIyftxadijD/kQrhDgTH63AhIlRVkBPvIbxZJl+IpfCd6iuHqYMuFfMZSmKhirFnSoQl8BY1h/XpUuwqlAyiVq3rY0SZfvudk/yxbmT06tIW3zqmb4zaRScVZpnImMyH5NssQ97/rvnBHc61luz9yS/oKacJ1Tjs0T7THqpNN0pV6CdZrzDL/y3mqO6RNJ5SGZn/UqO5R8HELpjU8HL8DcMxb9UWXUmeb3ddcDCO2ncPHLGPTMNiuTOK2NfyXfSz1x6dnSN58NIj8O7ctejdtW2eS02OBy453GNOi8urPzwBM1dsTiy/UuTdn56E+au3FrsaWcrAT0HJbincc54XhZOM/bq1Q79u7ZS/i1Xp2Loa3+I2rJafEy72TdLku/340K3d2tfg60eqbZylqFGNPDh4DigM++zRDvvsoe5DQSQV8TKf7FvbHvvWFtZtNYwbcqmOEGXs1maZUprRd4M9mWim0m32iqBjlFJHL6W6lBqdncm8ru3CrWZOsuxCERTtNAwMyUYT5fMtBLE0dyL6MYCrkanvTABXAmgL4J8A+gJYCuDrjLGNsWqZMDm3uvxJhOe/eww6tDZv3ratKvHQpUcozDByCMX1lnHbb9z1x6O+yXBT0zxhhbua84b0RGMTw1cO1++4lDSPXTEUA/dKziwVxBNXHon9EtD6dV0pnrAvbCeNLNyJqCeA6wEMZoztJKLnAFwEYDCAdxhjY4hoNIDRAG5MpLZlhLsS0xgCRhzkjyMig1/QU1SzjPP/wB7JL+oKSymaZUqFigrSmrTyxSmDuhe0vOEDg7e/4zEzUzHhW+mbtlzimmWqALQhoipkNPaVAM4D8KTz+5MAzo9ZRuK4t0elucs8VPJFFJGUDaK1G3nLBFFKdbGUF0lv3F0qRNbcGWMriOg+AF8C2AngTcbYm0TUnTG2ykmzioikr1MiuhbAtQDQp4954P0kUZnn3v3pcCzfuLOgdQkjpJPYZi8JSmmhispFcndi4s9Oxtqt+VuYtLvBK/b/e+ZAHNyzk9E+CNef0j+PtTIn8hNBRF2Q0dL7AegBoB0RXWp6PmPsYcbYUMbY0NracJvnJoVKOPXo3AbD+oU0q8SuS4RzimyKKCHZnsjmI+VO765tccQ+he23qUTSr7u0bYUTDTf5TtL9NQ5x1J3TACxhjNUxxhoBvAjgWABriGhvAHD+67cJLwIH98zYiEtBNkXRfrMaBWdzL4aXWym0n0shTWmWlMM9S673msm+Cf1qM26q7gJEkU5tMoaSQkUojeMt8yWAo4moLTJmmVMBTAGwHcDlAMY4/1+OW8mk+dtVw/B53bbYga+SJExN+F3ti6m9l5L9sabKau6W5PnOifth8N4djSZrf3L6/jhm3z1w1L7yDYL679kBT119VCiPuDjEsblPIqIXAHwKoAnAZwAeBtAewHNE9G1kXgAXJlHRJOnctlXJDV/DaPD8LH9xbe7FK1ukpspq7paE4Pp1ZQUZe+FUV1YEmm4KFfYZiOnnzhi7DcBtwuF6ZLR4iwFR5OPgHh0xceE61HaoyWrPhdIGeEpJcy+lUZjFUgrsluEHSpEwoumGMwbijMF7Zf3Lx11/fKxl6RaLJX1Y4V4ihFGCqysrPJp6sRYRlZDibrGEJtgHoXwWLMmwhkpDdEG/YlHGArIUzDKFjl1iSR9hd2IqF6zmbsDEn52c951UyrFDlUKN37thOLY3NBe7GpYUUU4hBnRY4W5AOcUQLySlobm3Qmd7eywWH9YsU2SKLx6jUwKy3WKJzPCBGbfFdjVeHbddqyrn93CByEoNq7lbIlNKsWUslrD86ryDcN3J/dGpjdfk2q6mCh+OPgW17Qsf/z5JrHC3WCy7JdWVFejVRW7T69m5TYFrkzzWLGOxWHYLhoXdY6HMsZq7xWJJPdNvPQOtW+1euqwV7iVCWtyvLJZSJN+uzKVIql9l5WA3s5OSFoslH6RWc593x4iS8MO2WCyWYpBa4V5uO/MUY7MNi8WSXlJtlikHLjtmHwBAm1bl9TKyWCylTWo193LhJ6fvjx+ftr+NR26xWBLFCvciQ0R2Gb/FYkkca5axWCyWFGKFu8VisaQQK9wtFoslhUQW7kQ0kIimcX9biOhHRNSViN4iooXO/8Lv3GyxWCy7OZGFO2NsPmPsUMbYoQCOALADwEsARgN4hzE2AMA7zneLxWKxFJCkzDKnAvicMfYFgPMAPOkcfxLA+QmVYbFYLBZDkhLuFwF4xvncnTG2CgCc/9LtTIjoWiKaQkRT6urqEqqGxWKxWIAEhDsRtQJwLoDnw5zHGHuYMTaUMTa0trY2bjUsFovFwpGE5n4WgE8ZY2uc72uIaG8AcP6vTaAMi8VisYQgCeF+MXImGQAYC+By5/PlAF5OoAyLxWKxhCCWcCeitgBOB/Aid3gMgNOJaKHz25g4ZVgsFoslPLFiyzDGdgDYQzi2HhnvGYvFYrEUCbtC1WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkECvcLRaLJYVY4W6xWCwpxAp3i8ViSSFWuFssFksKscLdYrFYUkisFaqW3ZNHLx+Kuq31xa6GxWLRYIW7JTSnHtC92FWwWCwBWLOMxWKxpBCruVssJcjjVx6JnQ3Nxa6GpYyxwt1iKUFOHijdndJiMcaaZSwWiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkEGKMFbsOIKI6AF/EyKIbgHUJVacc2N2uF7DXvLtgrzkc+zDGamU/lIRwjwsRTWGMDS12PQrF7na9gL3m3QV7zclhzTIWi8WSQqxwt1gslhSSFuH+cLErUGB2t+sF7DXvLthrTohU2NwtFovF4iUtmrvFYrFYOKxwt1gslhRS1sKdiEYQ0XwiWkREo4tdn6Qgot5ENJ6I5hLRbCL6oXO8KxG9RUQLnf9duHNuctphPhGdWbzaR4eIKonoMyL6j/M91dcLAETUmYheIKJ5zv0+Js3XTUQ/dvr0LCJ6hohap/F6iegxIlpLRLO4Y6Gvk4iOIKKZzm9/IiIyrgRjrCz/AFQC+BzAvgBaAZgOYHCx65XQte0N4HDncwcACwAMBnAvgNHO8dEA7nE+D3auvwZAP6ddKot9HRGu+ycAngbwH+d7qq/XuZYnAVztfG4FoHNarxtATwBLALRxvj8H4Io0Xi+AEwEcDmAWdyz0dQKYDOAYAATgNQBnmdahnDX3YQAWMcYWM8YaADwL4Lwi1ykRGGOrGGOfOp+3ApiLzINxHjLCAM7/853P5wF4ljFWzxhbAmARMu1TNhBRLwCjADzCHU7t9QIAEXVERgg8CgCMsQbG2Cak+7qrALQhoioAbQGsRAqvlzE2AcAG4XCo6ySivQF0ZIx9xDKS/m/cOYGUs3DvCWAZ9325cyxVEFFfAIcBmASgO2NsFZB5AQBwN9pMQ1v8AcDPALRwx9J8vUBm1FkH4HHHHPUIEbVDSq+bMbYCwH0AvgSwCsBmxtibSOn1Sgh7nT2dz+JxI8pZuMtsT6ny6ySi9gD+BeBHjLEtuqSSY2XTFkR0NoC1jLGppqdIjpXN9XJUITN0f5AxdhiA7cgM11WU9XU7NubzkDE99ADQjogu1Z0iOVY21xsC1XXGuv5yFu7LAfTmvvdCZoiXCoioGhnB/hRj7EXn8BpnqAbn/1rneLm3xXEAziWipciY104hon8gvdfrshzAcsbYJOf7C8gI+7Re92kAljDG6hhjjQBeBHAs0nu9ImGvc7nzWTxuRDkL908ADCCifkTUCsBFAMYWuU6J4MyIPwpgLmPsd9xPYwFc7ny+HMDL3PGLiKiGiPoBGIDMRExZwBi7iTHWizHWF5n7+C5j7FKk9HpdGGOrASwjooHOoVMBzEF6r/tLAEcTUVunj5+KzHxSWq9XJNR1OqabrUR0tNNel3HnBFPsWeWYM9IjkfEk+RzAz4tdnwSv63hkhl8zAExz/kYC2APAOwAWOv+7cuf83GmH+Qgxo15qfwCGI+ctsztc76EApjj3+t8AuqT5ugHcDmAegFkA/o6Mh0jqrhfAM8jMKzQio4F/O8p1AhjqtNXnAP4CJ6qAyZ8NP2CxWCwppJzNMhaLxWJRYIW7xWKxpBAr3C0WiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFLI/wM30V3xVHIPEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A plot can also be customized using several keyword arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACQS0lEQVR4nOydd3hb1d2A36NlyXvvvUecvaeBsgulbErZlNKWVSilQJktq2WPlr3KaCkUyt5x9k6c5diO996WLVuy5vn+0NX9ZMcJCSQEqN7nyRNLV7r36I7zO78tpJQECBAgQIAA3xTN4R5AgAABAgT4YRAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAQIECBDgoBAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAb41hBC3CyFeOdzj+CEhhLhQCLFyL9syhRBSCKFTXn8khLhgP/dbLoS49GCONcAPn4BA+R9HCNEohLAJIYaFEJ1CiBeFEKGHe1z/K3ybE7eU8ngp5UvfdD/jBVWAAD4CAiUAwElSylBgKjANuPHwDueHQWDCPXAC5+z7TUCgBFCRUnYCn+AVLAAIIf4ghKgTQliEEJVCiJ/6bbtQCLFSCHG/EGJACNEghDjeb3uWEGKZ8t3PgFj/4wkhThZC7BRCmJWVepHftkYhxPVCiG1CiBEhxHNCiATFbGMRQnwuhIja228RQvxeCNEhhGgXQlyqrKhzlW1BypibhRBdQognhRAmZVuZEKJVCHGdEKJb2cdFfvvdn+/eIIToBF4QQkQJId4XQvQo5+h9IUSq8vm7gEXA44qG+LjyfqEQ4jMhRL8QoloIcabf8WOEEO8KIYaEEOuBnP29vv7akBBCK4R4QAjRq1y3KybQOjKEEKuU8/2pEMJ3/ZYr/5uVcc9T9vkLIcQuv3tluvK+eu6V1y8KIf68j3O2SwjxY7/P65Rx+vY3VwixWrlvtgohyvb3HAQ4xEgpA//+h/8BjcCPlL9Tge3AI37bzwCS8S4+zgJGgCRl24WAE/gFoAV+BbQDQtm+BngQCAIWAxbgFWVbvrKvowE98HugFjD4jWstkACkAN3AZrwaVBDwJXDbXn7TcUAnUAIEA/8AJJCrbH8YeBeIBsKA94B7lG1lgAu4UxnXCYAViDqA796njNEExACnKeMIA/4NvOM31nLgUr/XIUALcBGgA6YDvUCJsv2fwBvK5yYBbcDKvZyHTOV368YfC7gcqFSueRTw+QSfrVOuk0l5fe9E+/W7T9qAWYAAcoEMZZt67pXXLwJ/3sc5uxV41e/zJwJVyt8pQJ9yXTR4758+IO5wP0uBfzIgUP7X/+GduIfxTvYS+AKI3MfnK4CfKH9fCNT6bQtW9pEIpCsTRYjf9tf4f4FyC/CG3zaNMiGV+Y3rXL/tbwF/93t9pf/EPG6Mz6NM8srrXN+kpkx2I0CO3/Z5QIPydxlgGzdZdgNz9/O7DsC4j/M3FRjwe13OWIFyFrBi3HeeAm7DK7SdQKHftrv5egLlS+CXfp/90QSf/aPf9l8DH0+0X+W9T4Cr9zKOrxIoY86Zcp0sQLDy+lXgVuXvG4B/jNv/J8AFh/tZCvyTBOyVAQBOkVJ+LoRYgnfSjwXMAEKI84Fr8U4iAKGMNV11+v6QUlqFEP6fGZBSjvh9tglIU/5OVl77vusRQrTgXYH66PL72zbB670FDyQDG/1et/j9HYdX8G1SxgpeQaH1+0yflNLl99qqHGt/vtsjpRxVNwoRDDyEV2vymejChBBaKaV7grFnAHOEEGa/93R4taw45W//39PE1yN53H5aJvhMp9/fvnOwN9LwajRfhzHnTEpZK4TYBZwkhHgPOBmvZgre83OGEOIkv+/rgaVf89gBDiIBgRJARUq5TAjxInA/cIoQIgN4BjgKWCOldAshKvBOol9FBxAlhAjxEyrpeFer4DWNlfo+LLwzdBpeLeWb0oHXlOMjze/vXrzCqERKeaDH2p/vji/ffR1QAMyRUnYKIaYCW/j/czj+8y3AMinl0eN3LITQ4tX60oAq5e30A/wNPvZ1jr6KiUqUt7B3f44VryD2kQi0fsX+XgfOwau5Vkopa/2O8w8p5S8OYLwBviUCTvkA43kYOFqZ+ELwPuw9AIpzetL+7ERK2YRXS7hDCGEQQiwE/FeVbwAnCiGOEkLo8U68dmD1QfgNbwAXCSGKFA3hVr9xefAKyYeEEPHK70oRQhy7H7/p63w3DK8QMgshovGarvzpArL9Xr8P5AshzhNC6JV/s4QQRYpG8x/gdiFEsBCiGNivvJIJeAO4Whl/JF5T0v7SA3jGjftZ4HdCiBnCS66yIAGvmfRnSiDAccCS/TjGP4Fj8PrlXvN7/xW8msuxyv6MimM/dcK9BPhWCQiUAGOQUvYALwO3SCkrgQfwOte78GoUqw5gdz8D5gD9eCfSl/2OUw38HHgM78r/JLzhy46D8Bs+Ah7FawapVcYPXoEF3smzFlgrhBjC65Au2M/dH+h3H8braO7FG2Tw8bjtjwCnKxFgj0opLXgn0rPxanGd/L/DGuAKvKanTry+iBf2c9zjeQb4FNiGV2P6EK/2M5EZbgxSSitwF7BKibSaK6X8t/Lea3j9H+/gDVwAuBrv9TUD5yrbvuoYHXiv23zgX37vtwA/AW7CK9hagOsJzGXfCXzROAEC/GAR3nDkHUDQON9IAAXhDfd+UkqZ8ZUfDhBgLwSkeoAfJEKInyqmtii8K/z3AsLk/xFCmIQQJyg5Hil4Nci3D/e4Any/OeQCRQjxvPAmiO3we+92IUSbEKJC+XeC37YbhRC1wpvQ9ZV27QAB9sIv8ZpE6vCacX51eIfznUMAdwADeE1eu/DzNQUI8HU45CYvIcRivHkOL0spJynv3Q4MSynvH/fZYrzRHbPxhjV+DuTvJbwyQIAAAQJ8hzjkGoqUcjlep+z+8BPgn1JKu5SyAa/zc/YhG1yAAAECBDhoHM48lCuUpLmNwHVSygG8SW1r/T7TythENxUhxGXAZQAhISEzCgsLD/FwAwQIEOCHxaZNm3qllHEHa3+HS6D8HfgT3hyHP+ENTb2YiRPmJrTJSSmfBp4GmDlzpty4ceNEHwsQIECAAHtBCPF1Ky1MyGGJ8pJSdkkp3X6JYj6zVitjM3ZT8cbiBwgQIECA7ziHRaAIIZL8Xv4Ub44AeKu4ni28JcKzgDxg/bc9vgABAgQIcOAccpOXEOJ1vBVFY4UQrXjj3cuU0h4Sb1XZXwJIKXcKId7AW1bbBfwmEOEVIECAAN8PfhCZ8gEfSoAAAQIcOEKITVLKmQdrf4FM+QABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECfCv8s6uLlzs7D/cwAhxCDldP+QABAvyPcc6uXQCcn5h4mEcS4FARECgBAgT4VpBlZYd7CAEOMQGTV4AAAQIEOCgccoEihHheCNEthNjh995fhRBVQohtQoi3hRCRyvuZQgibEKJC+ffkoR5fgAABvh1EeTmivPxwDyPAIeTb0FBeBI4b995nwCQp5WSgBrjRb1udlHKq8u/yb2F8AQIECBDgIHDIfShSyuVCiMxx733q93ItcPqhHsf3BbPTSZBGg0mrPdxD+Z+l2+EgVq9HI8ThHsoPioAP5YfPd8GHcjHwkd/rLCHEFiHEMiHEosM1qMNF1KpVzN68+XAP43+WltFRElav5u6mpsM9FJUeh4NP+/sZdLkO91C+MVLKwz2EAIeQwypQhBA3Ay7gVeWtDiBdSjkNuBZ4TQgRvpfvXiaE2CiE2NjT0/PtDPhb4LaMDK5PSzvcw/ifJVSr5TfJyRwVFXW4h6KywWLh2G3bqLZaD/dQvhGivBzNsmWHexgBDiGHTaAIIS4AfgycK5Vli5TSLqXsU/7eBNQB+RN9X0r5tJRyppRyZlxc3Lc17EPO7VlZgTj9r8GtDQ0HxeEbpdfzeH4+8yIivvG+XB4PorycvzY3f6P9TA4J4cn8fNKDgr7xmAJ8v3i1qwtRXk6f03m4h7JfHBaBIoQ4DrgBOFlKafV7P04IoVX+zgbygPrDMcbDgZSSR1pb+biv73AP5XtHkEZDnF7/jU0qo243dzc1sW5o6IC/+0l/P7rycszKwy+BaJ0O7Tf0xdTabFxeU8Ou77CG4pGSHocDq9u918/IsrKD7ke5raGB47ZuPaj7PByMut10Oxy4x92/UkqidTpGPZ7DNLID49sIG34dWAMUCCFahRCXAI8DYcBn48KDFwPbhBBbgTeBy6WU/Yd6jN8VrB4P19TWcvz27Yd7KIeN1tFRitavp3V09IC+d3NGBt0LFiC+4eRdY7Nxc0MDl1ZX7/NzUkpsbveYCWC31Yob6Fd8HXqNhr6FC7n2G5owY/R6LkxMJN1o/Eb7OZR0OxzEr169z9IqLo8Hx0GeGHfbbNQf4L3yXeSlri4SVq+m2+EY8/7PExPpW7iQlO+JdnrIBYqU8hwpZZKUUi+lTJVSPielzJVSpo0PD5ZSviWlLJFSTpFSTpdSvneoxzfBeLly927WDA5+24fGIAR3Z2Xx3qRJ3/qxvyust1ioslpZb7Ec0PeqRkZYYTZ/4+OnBQVxQ1oaLxUWqu+5peSiqip2joyo7/U5nQSvWMHf29rU965ITUWWlZFtMgFgc7t5sKWFigP8LeOpsdl4sbOTkX2s/g8Eq9vNzyorabfb9/s7do+H7cPDqvY1nnCdjsdyc1m4D1OhfvlygpYv3+dxGm02flZZiX0/Bc9fc3L4oLR0vz77XWZhRARP5OURNi66s3JkhOc7Ohg9SNf+UPNdiPL6TiGBx9vauL2xESklzaOjDH9L0TV6jYYbMzL4cWzst3K87yKnxsUhy8o49QD9YosrKlhcUUHbAUySExGl13NvTg7Tw8LU99rsdl7s7OTf3d3qeyatlnuyssb4WpweDwNOp6q1DLvdXFdXx2927/5GY5oTFsbf8/KI0+v3+Tmr2801u3d/5f26yWLh9e5ulh+AAK6xWpm8cSNX19ZOuL3X6eSxtjbqvqG28H5fH693d9Ngs+3X55eZzTzb0bHHe0+3t3+jcXzbbLRYeKS1lfFi9OaGBi6prqZqL+bOTrud39fV7WEqO1wEBMo4NEIgy8r4ZMoUrB4PGWvXclZl5bdy7DN37iRjzRo++BZ8KLtGRtgxPHzIj7O/2D0e7m5q+tomkb9kZ5NnMqH7hiavUbebOxobCV6+nFN3eIs7JBoMrJ42jcuTk9XP6YSg3GymTpn4Lti1C8Py5USvWsVmRSOJ0evJNhoPWDiOp8Ph4Fe7d7PpKzSdjRYLj7S1seIrtOvJoaF8MnkyRx5AJFuaYnKJ0k2cuqYXggSDAf0+zv/++FBOiY3l3UmT9tu892BLC39paRnz3r3Nzfyypma/vn+guKXk3qYmLN9wkSml5OGWFtXEFabVEm8w4BknGC5MTCQ9KIjwCc67R0pO37mTv7a0sO078iwHBMo++KaT04Hy2cAAzXY7Px7nQ1lmNo8xtxwMjt22jWO3bfva33d6PJy1cyfvHKSQ7Wc7Ori5oYHSDRsQ5eU8PG6S+CouTEqiZs4cEgyGvX5mw9AQorycOxob9/qZrSMj3N7YiM3jYbGifQi8Ji6rn7DzSEmT3c6wYoqYGRZGvKJBpCqTr0YI6ubO5bq9+FA+7utjxsaNNH7Fatyo0XBBQgKFwcH7/FyW0cjtmZnkj/vcoMvFMrOZAcVcFabV0u90qiavz/r7EeXlPNLautd9R+r1yLIyHs7Lm3B7mFbLisHBfd6no263arYbcrn4xwT+Fg/ec72/TuhEg4HpoaFj3rs5PZ1/Fhd/5XfdUvJcRweuA1jErBoc5MaGBl76hmX4q6xWfltXxx/qvTFHWiFYOThIwzgN7yexsTTNm6eaUcePf9XQEFNDQ8mbYPvh4H9eoDzc0oIoL1cl/IjbjSgvZ86mTQRpNFgXLeK/35JP4+SYGGL1elZMnTrm/bKKCiZt2HBQj9Vit2P7mtrAMrOZXqeTbSMjdB+kcMbfpKQgy8q4LzsbYMIHaF9UWCws+woTjm8y29dklW00cndWFlenpJCsCIZep5OTduzgMT9/SavdTpXVSpDG+wiFaLXcnZ2NLCsjSfme2enknqamvWqCQRoNSQaDuo+9sW1khJe6uvgqo4ZLSpINBkY9njFRatuHhymrqGCjouEMulycs2sXTyumIt/Z6N3HtbS63WyyWPbqQzFqNDyVn88x0dF73YdpxQpCV6wA4JaGBs6vqlI1PB8f9vVxUXU1u/3eb7DZ2LqXc/hMQQHvTJpE8+ioqhmatFrOrqzkJ34LM6fHs8fqf83gIJdWV/PFAZj+poaG8kFpKad/A63TIyWJBgPd8+fzN0VATw0N5en8fHUx4mOLxcLf29pwTnDP+hJdU4OCvvIe+rb4boziINNmt9Oyn7bcLcqN6lM9fTpJgsGA3eOhzW7H/jXsk1fU1PDPrq4D/t55CQksjIwc817bvHl0z59/wPvaF0unTOH9fTgzB5xORHk5943LofBIyXHbtvFSZyfHRUfvUyPYGx/39fHsXmzcpyg+lJMP0I90RmUlZRUV+/QLLI6MxLJwIXdmZu71M3EGAzdmZLDUbOa1ri6K169n1qZNACT5/dZWu527s7KYoayOX+nq4rmODrocDvXh73U6uamhYUIfymXV1Ry5dSuTQ0O/ssTLkZGRPJmfT/BXlOPZaLFwWU0NpRs2MNev2oLPnevzL/nu+eOUyf/oqCisixZxu3Je/lhfjygvHzOJ1VitzNy0idN37pzw2LttNu5uaqJzXJRSh93O2sFBdV8hysR3Q3o6H0+evEduzZAi9FP8znXeunVM3bhxwuOuHBzkrqYmpm3cyAzlOl2pnO/3/UzHwStWqO/7SDAYODs+nkS/Y600mxHl5bzf2zvh8cK0Wo6JiiLua9z3PppHR4letYrXursxKtf0w74+7m5uHuOUH3S5OHfXLn69ezc7JtD8grVaUgwG3u/r20Oz8afRZuOFjg5VQz2U/CAFypxNm/a7fMlLRUXIsjJ+pDxcwVotsqyMd0tLqbJayVu/nmtraykfGODtAzDvfGE2U72fjkUfDaOjvN3bu8dxkoOCvtENPBHxX7Ey9tnCP+kfG7WtEYKS4GAidTr+1d1Nxdew3b7S1cUvamq416+8yYd9fYjy8j2EcMvoKPc1N9Pk98DY3G46xjnf/5aXx8ywMJ5sb5/QlOIbe6hOh34fv3vY5eLWhga2j4zQ73Kxy2qlzeFg44wZXKwknPY4HBy5dSs3NTSwRtEEioODWTM0ROLq1epqOsdkYk5YGCfFxOxxnJWKn+Oe5mbuaWrinqYmnB4PFpeLLeN8JWaXi8travaIYuu028fkfeQoWt1vU1N5q6REfT/fZOKm9HRmh3uLTkwLDWXplCmqSU8jBCatVs2XeVUJPjhu2zYuU8Kns5R9G/Zy7oK1WtKNxj0mlDd6epi3ZQsWtxtZVsbw4sW4pcQpJcdGR+9xLc6Jj+eTyZOJ97vf10yfzhdTpgBe34O/w/6R1lae6uigfOpUliuafYTibxhYuFD9nEtK3hz3XMXq9fw2NZVcP214k3Ltlu/FD7XLakW/fDkP7odJts/pnLBcTpRiGr2mtpbbGxoAr3BLDQoaoz2/1tXFLquVOL0e0wTnPVirJVPxNU2kXUasWMHN9fVssFi4uLqa6FWreOAATckHyg9SoPw6JYUrUlIm3CalZGg/HWppfiaPv7W3c7Ny8feH/5SU7DOEciJWDA7SODrKqeNWgZlr1nBERcUB7eur+PH27SzZsmWv20N1Op7Oz+e2zMwxpoJRt5tnCwo4LjqaOeHhzAufsDLOPjknIQFgzPmsVyaJ3+zejSgv5yHlxq+z2fhDfb26HeDE7dtJXrNmzD6Pjo5mw4wZ7LJa+aS/X3Xuu6VUo542WSyI8nL+UFc34bg2Wywcv307f2pqQgI/jY1l1bRpLJ86lcbRUXqUhzZCp+O1oiL0QqgP8uzwcCK0WjSgOpSFEKydMYPfpaerxxh2uXBLyc5Zs7gtI4Nkg4FuRZPJWbeOmxoauLG+fsxE5JSSCxISmDXuXCetWcOv/JzPGUYj92RlcWlS0phAAJ0QlEVGqrkMUXo9Q243axVh+K/ubkR5Oc8oWuPSKVNYOW0aX5rNPKOYxSJ0OmRZGR9OnjzhucswGlkxOLhHQECkTkeoVovd42HE7abf6eTPTU1krl2LKC9n+7gFiVYI6m02Vg8OqivqWeHhagDBk+3tZK9bxwZl7FohWBIRQWloKIsUzf7OzEz+VVw8xpH9dH4+zxYUjDnW8sFB5mzePKakzdWpqXiWLFFNr+NpVhY2+7JZNNhs3FBXR/Lq1Zy2Y8ce2yN0On6tBHjUKvd1SlAQKwcH1QWK/zHWTJ9OYUjIHvtxejysGhqiODiYSeO2Oz0ehhQzZXFIiGqi+91e7v2DxQ9SoNyUkcHNGRkTbltqNpO2Zg39ys16f3MzorxcXRV2ORyI8nJmbtxItF6Pa8kS3iwp4ZKkJK5OTd3vMdzf0sL5u3bR7XDwbm+verx9cVlSEiEaDZtmzBjzfpPdTvk3yLHosNs5bceOMSvchtHRMar+RPw8IYGyigr+7KdJ1I+OMm3TJt7t66POZttv4eyPbxKpmTNHfc+Xw/Gikv9RoDiWZ4SF8VFpKUV+juYb09O5KytrzD7XDA6yzGzmv5Mm8Wp3Nycq9vO/t7WRuXYtUkr1GuytkvNmi4WVg4P8IT2dK1JSSAsKYn5EhPeB3LmT3ynhmQaNhmyTCaeU/L6+nja7HYvbzQO5ubjLytTVdYfdzh2NjeqEJaUkbvVqHmltRQhBSUgIc8LDuSsri/SgIFrsdmaGhXmFk99kuMFi4aWuLgzjTGMnRkczOzyc9UNDxK9axWtdXYRqtbzS1UXW2rXq59YODXGMXy2wboeDn+zYwR3KdY1WjrVmaIjP+/vJMBpZEBHBiqlTqZg5EwCLy8WawcG9+lAAXios5NRxpspwrZbUoCDcUhK6YgUxq1Zxit9nxms8n/b386vduzli61ZVmF21ezczFZPXEZGR3JaRoS72/l1Swr9KSjinspLjlSCTEbebsyor+ZHfIuyc+HjVxOcjWblO4/0zQoi9JsjODQ/ns8mTuSQpaa/nocvh4IGWFjygLgIebGkhefVqXB4PLo+HWzMzGViwgBeU+z3HaOSlwkJK/QRDrhK1+Pe2tgkrQPiE0fSwMILHnUcBXJ6czNWpqfQ7nbzZ08PzBQUMLFiw13EfDH6QLYBvbWhgmdnMsmnT9tjWbrczpKyUovV6apSL4stu9j20mUYjQy4XrXY72UYjb/b08EFfH7/0Cx3dF7usVi5KTGSzxcJPduxgzbRpzP0KjSVCp+OchASmh4Wxc2SEzRYL58TH0z1//j7DMf3xSLmHTX7U4+E/vb002+1sUIRV+dSphPtNrKft2IFbSt5R/CrNo6NkKJNShl8IZ0pQEBFaLTVWK8dERe3hX9pksfDv7m6i9XpWDQ7y3wn8NKlBQTyYk0P2BKGhJ8XGjgktbRwd5fjt2/l3cTGnx8cDXm3k6HGTw1W1tarTGWCK8mB2OZ30uVxsGR7mR1FR2Bcv3msplLPj4zkjPp5wrZb89esZdLk4r6pKnXg+VCr+aoXgGiUfY05YGAYh+Fd3NyaNhqOjoojX6zFqtbTZ7dze2MjtjY3cmpHBHVlZCLwa7x/q6rivpQWDEFQMD9Nst3N6XBwXKGY1KaU6qf04JoYn8/P3WBW/r2gLb/f00ON08n5fH58ODOzxu2IVE0vF8DCzw8NZrWgRf1aE8o+ionAvWcJfmps5ets2rklN5eHWVgYXLlRX+TtGRpivaLRfTJmyR8jxhqEhbqyv5/Vx0VXTQkN5Kj9f1Y6SDQamhIZSPXs2FrdbXTj4aFQ0gNNiY+lS/DH+wRCFISHc7reYWDM0xBvd3fxTMdNN3rCB7Yq/weds90hJ2MqVXJuaygO5uep3s4xGzktIINdkQpSXc2ZcHJcnJ3Pk1q38d9KkCf14ETod8yMiJryHlmzZQqxezytFRfQuWECETqdewz6nkw6Hg36Xi06HgykbN/JSYaFat+/lri4eaGmhZd48dX8zwsJIDQrigdZWHmxtxTMu5DrRYCBer+eVri7vosTvedJpNPw9Px8pJTU2G0/m53NaXNyE4ccHkx+UhvKGorr/qalprzbQ0+Li6J4/X7UJP11QgCwrU6vLRinhkW9OmsRnAwOUbNjAX1pamBkWtt8aikdKuh0O4gwG5kVE8EZxMXYp9xm7LhUb75cDA7zR3U1ZRQXnV1XRarcTZzAQ+RVJbT7y163jF35lQ0bdblrtdk6IjubHMTFqAlSMTqeGvAL0OJ2qQxRQnYOzwsLUSQ68D9Sx0dHE6vV8MjCwR/z7zE2buK+lhVsaGnh3L/k0T7a3c21d3RiH/xcDA4jy8j0S0lxSsiQigjy/ieftnh7+WF8/ZtX2QkEBRyomj8uSkrhfmThuVTTVGZs28cXAAAaNZq83/QOtrUSuXMkdjY3U2mxsHxlh1OOhfnSUp/PzOSU2FqeUtNntqrno5wkJxBkMLIqI4NOBATLWrmWdxYKUkqmhoRyj3Fe+6J3hRYu4OztbPfcOKdELwaywMF4oKMAjJXGrVnF7Y6MaTuzweLi8poZbxplcf1ZZiX7ZMs6srCQ1KIjfKGbeXyQl8aGfIM8PDuaOzEzVPLk4MpJV06YxV3kthEAjBCfExPBmSYk6OZdVVPAzJQerKDhYTaycKJouUqcjz2TaI5Lqhc5Oliiagiwro23+fNYODvJkeztZfhPgFouFq3bv5oSYGJZOmUK44qMDWD51KluUhdBmi4Vra2tVYfNwayuvdXdTNXs2H5SWqsLEd67h/01HD48Li3ZJyS+Tk5kdHs788HCKgoPVgIW95fx0ORyErFjBH8ddi1qrlVqbjelhYdzb3EzUqlVcXlPDucr5mxMeTrbRiMXtVhcoF1RVcXN9PX1OJ9fV1dHucIwxdb7c2akK2NgJnv8ovZ7JSlBI7QT+2tTVq7mspoY1g4NcXlNDxMqV37hQ6VfxgxIoviiWq1JSeHwv8fLX1tVRVlGxXwX7fA/gbpuNN3t6eHcvkR/j0QjBf0tLyTEaaR4d5UwlAunLfZitPHjNUPWjo/x81y5eLSrigoQEInU6MtesoXQ/w4YXRUaqjjrwmssWV1Rgdrm4vbFRtfmfunMni/1MAh9PnjwmPDpKr+ep/Hx6nE6+8Fv19jmdXJeWxtnx8aQFBe3hcL4zM5Mb09M5Iy6O4/20iF0jIySuWkWb3a5OfH/zEx4+2/TVtbVjfCgtdjvLBgdx+U1Up+7cyV3NzWOyiieFhvLF1KmUhoTwdEeHWhLlY7+ggo+UfIvf7iXb26fV+ExBP09IYNOMGayaNo0tw8O809tLWUUFD7e2quU+XujspNfhYHZ4OCaNhmSDgXyTiZ/u2MHMTZv4ZMoUZFkZv0hOpsvhoHD9ev7d3c3j+flcl5rKjNBQToiJYYPFQtjKlfx0xw56nU52jIyQtW4dTaOjqvb8sl/Agt3j4fXublxSMikkhJZ58zgqKooHcnK4IiWF45Xr0jo6SuyqVQRrNOoEHq3XY/N4eEtxUv+9rQ1RXs5RW7dyaXU1a6ZNY9OMGWwZHuZ1ZVKP1OvpXrCAbTNnjmmv8F5vL/nr1pFpNLJpeHiPRUR+cDBhWi0tdjtDLheddjuPtbXxUGsrMatW8alyfaZv2sRjbW3YPB42K9rk2unTAe89PVWpXPBgSwsPtbaq3xt0ufhxTAwFwcEcFx1N/Zw5fDFlCm+WlBCiLIq0QvBWSckeuSnv9/WxcMsW7m1u5u1Jk7g9K4tr09KQZWXcMc6kanW7+ay/nw+V424YGuKDvj4+U15vHh6m3eHgp7GxzFcsEU93dPBadzd3NjZycmwsdXPnkmMyEWswcJXyDIx33L/tN8f4zJ47Zs2iewJT1W9ra/l8YIBck4kZfpUdwGuibHM4aB4d5cioKOYo22/bRw7WweAHZfL6bVoa2SYTw243R0dFkb12LfdmZ3NmfDyPtLZi93hICwqi3eGg024nMSiIe5uauLGhgQ3TpzMzPJxaJbILvAlSPvPL5/39Y6K23u3t5ee7dhGt09Hop6b6eLGzk/v9IipCtVpmhIaybmiIn1VW8mpR0RgT2Ed+D2J6UBBpQUG8WFQEeIUCE5QUubWhgWyjkQv97LnVViutdjs3Z2RQNTJCldXKAzk53NbYyO/S0ghVHrLdNhuz/W7Cp9rbWTE4yH8mTWLU7Wbhli2cER9P4+goD7S0qBrc5wMDnF1ZyTuTJtHjdOIYtyK9ZS8huRstFrqcTuptNn4SG8vdWVn8zm9iuigpiYuSkviwr48Tt2+nRJncj4mK4uPJk9WkwX6nE6NGw6+Tk/FfEnwxMIBOCP47aRLZ69bx6927ebu3V51UfhQVxVFRUTzY2qrml4yn2M9+/evkZLKNRqaHhdHndPJ3Rfi12u2809vLTxVzyObhYZ5Xosoez8vjYuVanBkfz7bhYW6ur2deeDhJQUFkBAWx22bj7d5ezoiPJ1fxw1ySmMj7fX3U2mycGBPDUVFRnKz8b9JoeF/Rtv39SG4pOS46mlNjY4nT64lYsYLLk5NJDgri3d5ejqyooHXePNWke319PSfGxFCk09EyOsqZO3eiEYLzExPVRMi0oCCyjUY0QlAcHMyqadNU/8qA08lzHR38taWFdyZNUkvOLB8cZLfNht3j4YWCAjXSzEe8Xk+W0YjD4yFi5UoAOufP5zVFUPkmzftzcojW6eiw27lOcRy/WFjIvPBwztu1C4vbzepp07g7O5vpYWGqyc0X/TVv82YyjUY67HZa7HbqR0eZExbGu6WlXFxVxQO5uWMWWgBlikZ7e2MjSwcGuD49nRMniMgDKDebOXH7ds6Jj+ezyZM5ets2lm3fToJeT82cOcwOC2Nw4UIE7FFZY+vwMNfs3s2nAwNUzp6N3ePh+rQ07snOxqjRqAJlbni4Oibf9dYCkzZs4Mb0dO4eFyjg07iOi44eY74GbyDGVSkpqla90WLhV8nJROl03kKeBzlqVD3uIdnrt4zd4+GR1lZOjI7mlHFRFb48ietqa3EDH5SWYna5aFYESqsyUQ8qJohQvwtzV3Oz+sB92N/PMx0d6ur6qt27sbjdE2ZBW91uVg0OcnZ8vGo+qJk9m6SgIIbcbuZHRIxxugKq4zter6fP5WLl4CArlX30L1ig+lB6HA5cUpIUFMQb3d3E6vWqQHFLyd1ZWZi0Wv7V3c3Zyo2dbTQy7Hbzs/h4dYJdNnXqmNpQT7W3qwJTKwSNo6NqFu9P/WzJiyMiKAoO5t/d3RwZGUmN1bqHPf262lo6HQ6qrVY+nzKFSL2e8xITOU8xnb3S2UmcXj9h+O4JMTFjfCgDLhfHbdvGk/n5/DI5mTVDQ4x6PMwICxvjK7q1oYHVfhEyRyhj8/l4BpxOFkREeMt/SKna2jvmzWPU4+GD/n62DQ9zaVISt2RksGjLFiRebSjfb5LsXbCAC6uqOL+qilCtlrLISE6IjuaymhqSDQYWR0SQFBTEzQ0NCBiTHyDLyiiLjMTidvPrmhpG3G7yg4MpVRzOFyUmcpniozt+2zZGPR5+nZLC2fHx6ITgaL/zHKzV8tHkybza1cWZlZU4peTzgQE2+5kgPcCRUVFUzJzJ1I0b+dJspigkhC/NZvpdLjX446ioKGRZGf/t7eWUHTt4S1klX52SwkOK6XDL8DDXK/fDR/39qkD5a04Ok0JC+F1dHW/29PDxuCiw1KAgHsnNJVcRWgUmEwkGA9tmziRCp1Pt/r7n6HpFmFydksLqwUFCNBq1UKhTStKNxjHVm9cODfF8Zydrh4ZUM6SPdRYLszZtotlu54P16/eYlDONRqaFhrJleJhlg4Ms276dTyZP5tht23i7pIRTlMioLoeDaJ0OAZyr+Dh93J+Tw+QNG2iy2/lRVBRbLBb6XC7+kp3N9enpbLJYCBKC//b1sctqZbPFgtXtZlFFBf8qLubM+HgidTruysri0dbWMQm9WUYj8QYDHQ4H9zQ37yFQOubNo2TDBh5va+OPGRljcsJMWi0P5ubilpJqq5WHcnMZdru5qaGBY6OjD5lA+UGYvAZcLq6preWYCUqJ+BLdXEodoaOjohhcuFBVER/Pz0eWlREkBBfu2oVWqeW1QDF3Faxfzxvd3WQbjWpC3BcDA16tAW8phvE4pcTscqmru0uTkqgYHqbX4UAvBK90de2R7PbplClEaLUMulyYXS4uq6nhspoa5m/ZQtbatYQq+4pfvVoNmX2qoEB94MEbenvE1q3U22xjIoLsHg8XJiYSrNViUwRntE6nClPw2pN/pji9+xRHNngngF/4BSIkKWaucJ2OdUNDVI4rWnfM1q08qNi1Nw0Pq6Yqu8fDmsFBOu12XlbyUB7y0+DKFR/KeBtvq93OkogIQrVanmlv55ioKB7MyWHt0NCYgnivFhVxrjL+y5OT+WLKFDodDjV0e9PwML+qqcHh8eCWUjXVGTQa7mpu5ordu3m6o4NnOzp4q6eHZrud/ygmoRqbjf+UlPDr5GTuaGzkn93d9DqdDLvdTAoJ4bbGRkK1Wt7q7SVv/Xp+sn07x0ZFcVdWlnqcR5Xr9OesLNrtdnaMjNBmt/PHhgaSlfIhf8zIYMjlImvtWj7u72dBeDijbjca4PKaGm6oH9sa6Fc1Nfx81y6cynnwTUZnxsWxbOpUNREySwkn9p2LH8fEsGH6dFULdEuJW0oKTCb+6Bcd+UhbGycrC7RpoaEsUr7/SlcXUkr+1NjIebt2cWFVFU91dDA5NHSP6gtPtLWpyZCyrIyqOXMoHxjg04GBMU7kaquVy6urOS46mrXTp5MSFMTTHR0crywwZFkZcQYDK81mLquupkfxoTzY2sqbPT1Uzpql7muq4lcYXrQIi9vNz5Uw9XsmuLfuz8lhZNEi5oSF8VxBgeoT9C/GmLh6NfO2bMFTVsaM0FBiVq3iwsREZFkZP09MZLGiVdTbbFyfnk6m0cjv6+u5oa6OmZs28YXZzE9jYykwmTC7XGrey1mVlfy+ro6m0VFubmig3+Xi/d5edQzPd3bSofzO/AkqRzSMjmJUFmUT+XymbdzI2ZWVLB8c5KraWm5S/D7/7uk54PYQ+8sPQqD4Hqhz4uMJEkK9gYA98iSO2baNM3bu3MOH0u5wsNRsVk04j+flqXHrXw4M8FJXF58rvoQUg4GfxcdzZlyc1yQxzrcSodPxZkkJ2SYTlyUl8WxHByds384FVVVqqZKl4/wpEq+W5FtRv11SwhUpKVyenMyg203S6tXqZ1ODghh0uVhhNhOi1fK3tjZqrFaO2roVgxBIvPkbGUFBvFJURJvDwbTQUArXr1dDJE/fuXOMAK6cPZvnlN8botVyX3Y2v0lOZsDlGiM0a6xWTlWiYfQaDReN6y65JDKSx/PyOC46ml8kJRGrrITe6e1l/pYtPNvRwadTpnBidDTb/ByoPufj75UsbV/iWI3NxorBQd7o7uaymhpe6eri2ro6HmtrGxOynGky8UpxMcXBwTzZ3s7znZ08VVDAlSkpaox+gsFA0PLlXFVby11KmZRovV69R5YoE+a1vlVyaio7Z81i7fTpWD0eXujsVCel1xRz5GOtrSwzm8k3mTBpNKQGBfGF2cxTHR38vr6ed0tLkWVlXJmayiaLhYVbtrB5eJgQrZZPp0zBvngxlycns3l4mJx164hYuZLG0VGuTU3lruZmVvjVd3qzp0ct694yOsqTihnu5vR0fpeWxtKBAR7Py+OG9HR1knustZWIlSt5pasLnRA0j45yf0sLO0ZG+JviZ/pLczO6ZcuYtmkTb3R30zR3rnpdfdnmUXo9y6dNo2f+fNZPn06l1cqtjY28ovh11k+fTpXVOsbPA94AAIm3vcCA00mjzcZH/f38rq6OrLVrebGjA4fHQ+H69TzV0YHV7eaT/n5i9Hq658/fIxz2qY4OnunoUH0ZjaOj6IQgSKl3dm92Nv8oLOS/kyahxbvYDNdq+Wdx8ZiWBACvd3dzlBKe/OXUqVyclMTv0tNpmTuXbqdTDW/31Qp7tLWVJGUxV2+z8UZ3NyvNZl4uKuLa1FS6nU7OT0hQs/99RSuvqa3lqt27eb24mCOjokgMCuK3SoCPBD5R5hWnlJy0YwdHKw3DfD6vDdOnU+0XYu9j/pYttDscZAQFMX/cPNflcLB9ZASrIlD9Kw883tamzmUHmx+EySter+e1KVM4KiqKxYqpQ4u3aU20Xo9HSrRKL+tbMjJ4rauLBpuNLJOJu5qa+GNDAx+VlqIXgrN27mSVojpflJiIZ8kShBAsM5vVXJVNw8OsGRoiTq9nvcXCu319e1RRfaunh1v9HGAFJhMf9verGdK+CclHpGJf/ndxMbPCw8kwGjklLk7NpPWVtPAdZ9fICLc0NnKLcowz4uKYEhrK+319/K2tjevS0jBqNARrNPwxI4PH29qYFx7OaTt3cldWFtU2G8f6mVDe6+vjr83NfDJlChE6HW/39pJnMtHtdHJvczPvKU7oR1tbeb27m8+mTMHqdu8RyurL//nNXhJLfb4YX8hrv9NJudnMcdHR3irP/f0ct20bU5SH+Oz4eKJ0OrYpDt+LlQi2ySEh6gq8w27nLy0tnBIbyzuTJpG/fj2XVldTFhnJkZGR7BgZQQNqUEXRuFDVn8XHk2QwEKvXs8xs5vXubmaGhVEUHExRcDBdDgdzN28eM7n5WrKOeDyMeDw80d7O/Tk5XJeWhsvj4e3eXsrNZn5XW8sx0dEYNRoSDAYuSEig2W4nIygIjRAYFFPW693dakfG55XEUd/xfWZT/0njM2VCeL2oiMLgYKYpZUdG3G4+6u9nxqZNNM6dq2ohO61WpmzYwP/H8Xn5bVqa6kSeERpKjslEt8PBVSkpJBoMXOhXHeDmhgbe6umhYuZMck0m1k2fzo319XxpNhOl0/FsQcEeuU2pQUHkmEz8tq5ODZBwLl7M79LSuK6ujuSgIDxSes2MERG02e2q4/ij0lJcUnJ3czMa4OHcXB7KyWFRRAQeKem029k8YwbhK1eSs24d4M3n8Jlq800mzoqL42/t7VQMD/O54m/x8fOEBG5qaOCa2lrWDA7yk9hYzklIYMDl4tmODhZERDDgcvH2pEm02+3MU8KmT4+L482eHpYPDhKh1dI0bx6XJSdzd3Y2Gy2WPSJMj4uO5mPlvu5asACr282VKSnck51NkEZDwqpVgNeHsnZoSF10+q7drM2b+XVyMhckJvJsRwd/zsoi3mAgRqejz+XinIQENQr0pvp6am02ni0o4Pq0NH4aG0uQEAy4XPwkJoY1yv6njiuoebD4QWgoOiHYYrGw3GzmuG3buKq2lpeUlVKETqeu6oqCgzk+Opq60dH/zz9RLp4QgnkREaowAW8Ej8+ks3RggN/W1SGlZLWyalxvsbA4IoLnx2XgdjscfNjfz3l+mlLVnDnclJ5OjsnEzxMSWODnkPcooaOZRiPHRUcz6vHwcV8fj7S28mxHBxckJDC6eDG/rqlBlJdTbbVSGBzMLMVs9/OEBK8tNySEFwoKeDA3F50QVNtsnLpzJ//o7GS3zcZlSUnEGwxcVF1NSXAwf8/PV8fw1+Zm1UTllpIaq5V/KOfQP1rr6tRUFkREcEN9PWWRkROudG6oq+MX1dVM2bBBXeWdFR+PLCtjXkQET7W387yStFZns3Hazp1qyYtjFcHiEzxuKTlx+3Y+GxjgR1FRnKOYtf6Sk6OWjnmyvZ2HW1spq6ggXwmoKA0JoXF0VO2V4cErlH3awqItWxDl5Yjyci6oquKE7duZvXkzZ8THs2nmTN7p7eWPDQ1oli1Te4BYPR7WKZFHV9bWohOCy/wCIt7t7WXnyAjrLBbOrKyk3GzmgdZWjt22jSUVFRQEB/NiUREXJCbyVEcHv6qp4baGBuZt2cIuq5ULExPpW7CACxMTmb9lCysGB0k1GrksOZkn8/N5vrBQ/c0tdjuRSp6DT5iAN+fIF9J69e7dHBkVRdXs2QB7ZFM3KKveJZGRyLIyXigs5OWuLmZt3sy0TZvodTpVh/16i4VnOjroVyZb8K7cP1Um6bz16zm7snKPcj5GjYb7srNV36RRo0Gn0RBnMPBsQQHBGg1GrZY7s7Kotdm4yC/k/d2+Plb4ZY/bpWSn1covkpK4uLqarHXr9qhe4d+PpcZmU0sDrR4aomj9eh5QSr13OxykGY1qIua/enr42a5dvN/by+SNG7G43ZRFRrKkooJHW1vVMO/JISH8xi8g5KWiIjLXrqVw/XpO8qs+cWtGBu4lS1g/fTpPK89Zt9PJp/39LDObyV63jg8V7e+OzEySDAYaR0fZMmMGa6ZNY9TtZpfVqprN/9beTpvdznt9fapmvmXmTCK0Wu5tblYjXMO0WqJ0OsJ1Ou7MzGRyaCjbR0a4MyuLKaGhdDudXJ+WRpbJNCZ682DxgxAoI24319fXq/Hu/vy5qQmTUp9rUkgIV9fWYl20SHVwPpCbi3PxYoaVdq6LIyIoCQ4mRrmQkzZs4JzKSu5oalJrOfmvvn3+CfDWmOpxOOh2ONhttaor4dPj4nizu5tOh4Mtw8O80tVFhlJ6YqXZjEYIGufOJVav50uzmcL16zl++3auqa3FA/yzuxu3lGqoZOH69QgheDwvj3Pj45kZFkbT6Ch3NzdzUXU1gy7XmEKCEvhJTAxBGg2XJiXxUWkp9+fkjMkQ3jYywm9TU4nR66m12dRQ1WSDgV/7/d48RShvsVi4u7l5j/j34vXr+UtLC892dLBN8RP4qvyuMJupsVp5rauLS6qruaOxkVa7HQ3e8FNRXs6N9fW4PB41x2SjxcKSiAgsbjdbLBbuzMzkvuxs3uvtVQsOphuN5JpM3KH4uH6TnMy2WbOI1OmYEhrKp4o2ZPV4aFAikk7zCzR4w6/GU+batTzR1ka308lOZTHxVk8P702axKVJSWNCx12KwzNSuVeWDw4yacMGFiqTir9/6bmCAm6qr8e4bBkXVlUB3vv2zqYmonU65oSF8avkZGweD1M2bqRxdJTSkBB6HQ6CNBour6nhOr9w59SgIMwulxp4AfDLpCTuampSc1+WDw4ipSQ9KIgHcnJ4obCQ9dOnk2M08khurpobY3O71UXXHX5Res90dLBoyxZe6+ri7MpKNTfpzqYmlg4MoF++HJ2i+YM316LH4aDKz5T515YWjty6lff7+micOxfrokW809Pj7WPS3MyiigrqbDaaR0f5teJXPDkmhuvT0vh7ezs/VnwoK6dP5/OBAcoqKshet45ds2ZxQ1qamvS42i+J2T8Tv9pmY05YGFE6HU12O2/29HDCtm280NnJrpERfpmczD8UU9hHpaXqNQdvS2fw5icdvW0bH5WWsm1khCO2buVEZVxzwsLUOlt9Tid/Uqoe3NnUxF+am5m9eTMvdXaqZrAXOjvVIINTd+7kipoaTFotHQ4HHinZMjxMmE7HA62tnF1ZqT6Hc8PDCdJouDAxkRyTiV6Hg3KzWa1svXJwEJfHw6jHwxUpKdRarZRVVDB5wwZmb97M7+rquFMJ/GkeHeX2xkZ+pJjWDiZiopT+7xuioEAmvfACp8XFoQFMGg33KfbL9yZNUjsgivJywJuF+6ZfzsUTbW1csXs3EVot16enY3W7OTUujiqrlYurqlS/SqLBQMf8+XQ7HNza0ECT3a6q8ZaFC/l0YIDTdu7khOhoPuzv54GcHPqdTu7ycwZmGY1jIn9+n5bGfTk5tNnt/KyykpszMuhzOonQ6Vg1OEi60cjlSr2m6tmzKVi/nmyjkaVTp/J8Rwf3t7Qw4vFwVUoKL3Z2MuR280ZxMRssFj7q7+dn8fHc1NCgRvoAuJYsYdrGjWwfGVFNaFJKPHgjvPqdTl7u7KTN4eCp9nbeKinhiMhIdBoN/+3tZXJICD/dsYOtIyPsnj2bHJMJl5T0u1w81tpKSUgIj7a1cVx0tNekmJHBrLAwTti+nYsSE7k3O5vf1dXhUKKYHmhp2SN/4baMDL4wmxn1eNhosXjNWeN8VV9MmcKkkBCG3W6GXC6mhoVRuG4d1TYbrxQVEa3TEazVMikkhFjFrADeIIlnFK1yxO3mPz09jHo8dDocY8yUlyYl8Yf0dAacTnZZrZyvCALw1rv6RU3NHgJ1ckjIGN/QO5Mm8ZPYWD7o6xvT5+bPWVncpNT4+lt7O1eMC9K4JSODPykTgM9k4rsHI3U6IrRa1ikT02O5uQy53dzX3MyDublMDglhl9VKqFbLbqUWWmFwMJ9Nnkynw8Hr3d3MDg+nYniYm9LTubmhQZ2YF0VE8GpREc90dKjHj9LpGHC5eHfSJI6KisLu8RDtdz4BVk6bxkVVVWrZ+b4FC4jW63m3t5efKI79j0pLvdWBxznHXy4sVM/tAsXcOzs8nAsTE3F6PETqdOg0GnocDuZs3kzD6CgP5uRwdny8GqDycmEhm4eHSTQYOD0ujmqrVS2/89fsbNKNRr4cGCDLZOKlzk6uSU2lymrlodZWioOD6XY62TFrFgkGA4MuFzfX1zM1NJRVQ0Pe0kkuF3/Ly1OF3pKICK5MTfX60JRozC0WCx9MnszFVVV7mL3mh4dzRGSk+tt/mZTEUx0dZAQFqQE+PvJNJt4sKeGymhrWDg2xdMoUyqKiuKWhgSfa2uhfuFCdy8A7p2yaMYOdIyMcu20blyUn75HEOZ4LEhI4Mz6eE2NjN0kpZ+7zwwfAIRcoQojngR8D3VLKScp70cC/gEygEThTSjmgbLsRuARv1e2rpJSffOUxCgrkGytWcEZ8PCvMZr5QIkji9HpOio2l025XnWl/SE/nrZ4eInQ6b/mQ6Og9qpD6OCMujtPi4ji7spI5YWGcEhvLdWlp3N/SwjMdHSyJjORFJQfh8ylT0AvBkooK8kymMf0cwNsz2uc/0QnBO5MmUTkyQrOS8OVzZm6eMYNpYWG4PB4qrVbO2LlTNc+B12Z+dkICK8zmMYmJPvv3Gz09TA8N5dq0NO5pauJPWVkkBwVRHBzMVbW16njBayr7h+LLsbrdzN28mSmhoVyalMSfm5owu1xqOZNbMjK4JSODoOXLuTUjgyG3m4daW6mbM4fb/JyzG2fMGJNklbFmDVekpJBkMHBeVRUfT57MI62tPJCTQ1FICC6Phzd7ethosXBybKyqZd6TlcWNDQ1E63TEGwx7tEAtDg5ml9XKxYmJCCF4tqODldOmEaLRqCageeHhnBgTo5qAioODqbRaebaggAsSEtBNELb8YkcHj7e1MSkkhFPj4jg5NpaW0VHSlTI00Tod/S4X5oULub2xccyD+6fMTP6YmYnV7ebzgQH+3dNDhFbLKbGxHK0EQNySkcHVqamEa7XoNRrsHg9rh4a4ub5eNbdenZLCL5OTWTc0NMYE5CMtKIg3iouZt2ULH5SW8uXAAA8o43g0N5dBl4tbGhvZNnMmPU4nR+1jJZpiMPBCYSHHbNvGEZGR5JlMnBIbS3JQEO/39XFWXBwhWi31o6P0O50siYwkXKfjta4u6mw2fhQVxeqhIY6KjGTA5aLWZqPT4eDq1FQMQlCj9IhvHB1lxC8CrHP+fO5sbGRueLgqTHbOmsV6v99cPnUqZcr9sDAignPj4zlf8SNcXVvLLRkZXJeWpvofPywt5e3eXrUGmD8xOh0/T0jgb+3tVM+ezc6RETRCqEJnckgIv0pO5vKUFHocDorWr+evOTlqUzOL2602pDsqMnJMD5X0oCCv7y44mI/6+jhjLx1e/1NSwl9bWigJCeHoqChmhoWpvh/w5sVstlgYcrtpV8LZs5XtP09I4Ob0dO5tbuaG9HTaHQ6Wmc3kmUyEabVqiPMVNTW83NXF5JAQIpUF1WcDA5hdLtVHA15zZ6bJhBDieydQFgPDwMt+AuUvQL+U8l4hxB+AKCnlDUKIYuB1YDaQDHwO5Espx/sSxzBz5kx5+ltvMSs8nHVDQ9zc0ECoVssXU6YwNTSUQZeL+NWrmRUWxj+KiihU7OzjmR8ePiaXIV/xd9za2MjJMTG829fH4MKFnFNZqUaZnBMfz+ywMM5JSMAjJT/evp0z4uL4V08Ps8LCeKajA5NGg3XxYm6sr+deZYVSGhLCAzk5YyKtjo2K4sXCQtYMDY2pOHxbRgYXJiaSpdxca6ZNY3Z4OMdt28ZnAwNckZLCJYmJvNzVxaKICNKCgrC43RypTCTlU6eyJDKSypERflZZydaREUI0GmrmzGGTxcIvqqu9/qPBQXqcThZFRLDLah1TEvu/kyZxYkwMW4eH+XJgQM1JuDk9nS/N5jFVUm9KT6fL4WDV0BBP5efjkpKzKiv5sLSUUY+HxRUV/Co5mb/l5+PweAhavlydjF/r6iJSp6MsMpJqq5Uck0lNiDs2KopovV7N3gbvhDhRgmWywYBJo8EpJc3KCnB6aCibZs7kloaGMQUvwVuuZX5EBLPDwsg1mUhYvZoBlwujRsNlSUk8qqzgfavpxRERPF9YyId9fVylmKKmh4byWF4eH/f3q6t7f1ZPm8a8iAhe7+riZ7t2cW1qKp0OB691d2MQgmtSU/ljRgarBgc5fvt2lk+dykOtrcwJDydKp2NGWBjpQUHeFbsQ7BwZoWF0VA3tBW8r5N8r1+asuDj+WVJC6+goaWvX7rHQ+W1qKqUhIVyk+IGklGj8TFg/i4/nVSW7/M3ubs6orOTtkhJ222xckJhIqFLyPmzFCpxSYhCC6tmzyTSZOGn7dtrtdh7JzcUpJS90dqo+uevT0vhLTg6f9vdzXV0dCXo916WlsW5oSK1SAP/v/Aavlhap01FltXJTejpnTjBp356ZycOtrZj9ov/8J1GAp/LzubupiSa7ndlhYbxfWkq8EkGZbzLxs4QEble0VFlWxpxNm+h0OHgiL4+Tduxgemgoj+flcdTWrdg8njEaabbRSL1iffhtaip3ZWXxpdnM/S0t/DY1lSfb2zk1NpZfKBaHqaGhqo8nTTFhvj1pEj/aupUUgwGNEHQ5HOq9vW76dM7YuZNXi4rUnkkX7NrFy11d1M+ZQ5bJxN/a2thgsfBCYSHDLhdOKdkxMsKKwUEsbjf3NjdzV1YW00NDWWo285fc3O+XQAEQQmQC7/sJlGqgTErZIYRIAsqllAWKdoKU8h7lc58At0sp1+xl1wDkTJ0q6x9+GPCu7h7xKybnb946c+dO1gwN0W6348G7mpN4TRvPdXRQMTxMpdWq3oA3p6ez1GxWhcwpsbG8VVKCxe1WV0UpBgP1c+di0GgwO52MeDws2rKFhtFRXios5IKqKv6UmclP4+L4dU3NHqrwWyUlnLZzJwKvkHk4N1cVBP50z5/PkooKNRLItmgRNTYbj7W1kWIwUBAczM927QKgYuZMHB4PJ+/YQafDwZlxcbxeXMxT7e04pWRySAg2jwezy8XF1dVqD4aHcnI4Njqad/v61EgZgddEVmW1kmgwEK3X835vL7c3NqITgvzgYAZcLoI1GtKNxjHVAeaEhalmGfDW23JJyZ1NTbTY7VyjTGiXjFuFL4mIoFyxiX/e36+u7ouDg3mzpIT/KA7z8TxXUMAl1dWcEx/PiTEx/KmxkaSgIH6dnKxOQB+WltIwOjph0ysfdXPmqCvHICHw4E2I/aCvD4vbrWbGzw8PZ1ZYGMdGR/NiZ+cYX8x4/llcjAZvNv4b3d3c2dTEDWlp3NfSQpxeT3FwMO8qkYb569fTardTPnUqGUFBpAYFoV++nCMjI/li6lSura3lodZWgoQYU5zzV8nJvK7kTPkSHF1LlmD3eHi+o4P5ERHE6PX8ePt2LkxM5NrUVIQQDDidtDscXFNbS4xOx78m+B1JBgOXJCUxKSSEsysrKQwO3kNrBG/ia5fDQbXNxtFRUQhQC1aunjaNOeHhvNDZicXl4oP+fj4fGGDnrFnE6vWkr1mDXamB9mxBAY+2tpJoMHBfTg4AP6qo4AuzmWSDgS+mTPEWRVQWaFtnzmSKYtK9NjWVBxWN7dKkJM6Ii+P6uroxpkgt3pyqdydNQi8EfS4XC5RF2hdmM1rgg8mTOc5vwfdUfr7aq/6IyEi+nDqVboeDzLVrsXk8JClJiD5kWRl/b2ujcXSUWzIyCFPmDN/iFLxBCrdnZqrPG3j9nRLGmIGPj47mhOhoXFJyYWIitzc2Uj86SrfDwTqLhWcLCojV6/l7Wxv/Kinh9J079xoafExUFC4pWTM0hG3Jkh+EQDFLKSP9tg9IKaOEEI8Da6WUryjvPwd8JKV8c4J9XgZcBkB+/oxL/vtfDBoNsXo9TilVTeCtkhK1N4S/3fHSpCQsLhcVw8PMDAvj1e5ujoiMZFFEBHohOCk2loygIH66c6daOr44OJhts2Zhdbu5vbGR9Uq5c/BOPOcmJPB8Z6dqH70qJQWPcqyLqqrYohzrjsxMVdU+LyGBiuFhFkZE0OFwcGN6uqoZXLF79xh/S67J5C1AFxrKC4WFvN7dzatdXbTY7ZQEB6sOxf8ok26dzcYRkZHc19yMdfFigpYvB7z+nrKKCjYpNvR0o5FfJicjpeSOxkbuaGri0dxcup1O7mtuZnJICJuGh7k1I4PSkBDmRUSo1WMBXB4PO0ZG1M5x8QYDy8xmni8ooGiCGmQ3p6czojjIL05K4vq6ujFmPfAWONxts9Fgs9HmcHC+cm79SQsK4vG8PF7t6uJXycksjowkfc0a2pSHOtto5IXCQoqCg5m6cSPtfg/7rlmzKAwJweZ282F/P+FaLZssFlKCgsg0GllcUcGJ0dE8npfHl2Yz3Q4HNypC7LaMDE6JjeWK3bvRazQcHx3Nvc3NPJmfv0fZDZ92uNxsZklFBWfExfGGX/Mrm9vNGz093NXUxOdTpqgVnv01DX9i9fq9tuqN1um4LzubyaGhDLhcdDkcPK6sWIuDg3lfEab/6enh+JgYrty9mySDYYxWDt4Ooa93d+/RO+OfxcWcGhuLQylF/1WURUZyU3q6qoU/k5/PsNvNb8ftN0Gvp8vpJEyrpSg4mGyTid8kJzM3PJwht5twRRMKX7lSjba6NjXVG3ar3NOeJUu4q6kJnRCcl5jICrOZc5QF1nuTJjHgcrF1eJhH2toI02oZULSY36Wl8VdFYD3Q0sJzHR3smDWLX9bUkB4URLXVSrXNxhZl0vaZ446MjOSq1FSeam/no/5+poWGEqPX81BODr/avVudF06NjeU/iu/vpJgY3lOExFUpKTza1jbmPX8+Ki3l8bY2PujvVysfn+5XxcCfFIOBM+PjeaytjRmhoUTr9Xw0rjHeRDTNnUuGyfSDFihPAGvGCZQPpZRv7Wv/GVOmyI0bNhBnMNA8OsoTioZybHQ0R0ZFUTkyQokysd2RmclLnZ3EKjkkeyPTaKRh7lzVfu6zv5+fkKD6O25KT+duPwejT+WdFx4+xgT0TH4+k0JC1Dj2CK2Wlnnz+KCvj3ubmykIDqZhdJQXCwspDglhx/Awf21pIUij2cMefE1qKg/l5qIrLx+TU6DBG7e+fWSEouBgfqdEwNyZmUlaUBBTQkO5u7l5j5W9f1n90g0bqFbCMpvtdj4fGBjTQe6N4mLOrKzkzZISNHidtWVRUWopdvCW/+9dsIAwnY5hl4upGzfyh/R0bB4PV9XW8ru0NMrNZp7Iy2O2UqdpxO0mNSiI0+LiVJu5j2idjtszM1Wzko9wrZYht5vfpaVRZbXyfl8fq6dNw+7xcISfhnd3VpaaITw9NFRduZ8dH88/CgsRQuyR5Gp1u7li925Oi4sjPSiIyX7tZx/NzeXM+HgSDAYuqarik/5+zC4XIx4PN6Wnc1d2Nmank7VDQzzW1kacXs9vUlLUDqJNc+eOyRBfsmULywcHOTIykuKQEDVf6LWiIj7q71edwOPRAo4lS7C43ZSsX68K0WcLCmhVyuY/mpu7x3nz4ZvE/ZkVFsYJ0dFkmUxMDglh+eAgx0ZFea+l282OkRGOjYpSo6XCtVp+EhtLudnMNbW1WNxuPp48ma3DwxwRGUmcXo9LSs6srFSr+PpomjuXFzo7aR4dVRcKvQsW8EFfHxdUVXFLRgbnxMdTvGED/ywu5pWuLt7v6+PqlBRi9Xpua2zk+rQ07srOJnfdOhpHR71dG83mMYEVc8PDmREayhPt7erzumH6dPpcLmqsVs6Mj2f6xo2EabVq6SHPkiWkrlnDtWlpHB0VRcPoKA6PR9VyZ4aFjWmVMC88nL9kZzMlNJQTt28f02TsiylTVB/Wv4qLebmzk2yTiWyjkZ/GxZHp17fGl1cC3grL+cHBJCrmuJNiYnimoEDNJXoiL48Bl4sIrRaTVssTbW18NjAwxsR3R2YmXw4MEKTR8KlSRNI/iOTLKVM4Mjr6oAqUw5XY2CWESPIzefmM4q2Af3GsVGDi5uN+xOn1vNbdTaLBwJSQEDVDdVFEBJdXV1MUEkKEVsu0sDAuT07mNkVd9CffZEIjhKrGN46OYnO7VRNVjslEpdWqZnQD3N3czHkJCUwLDWW3zcYHfX38KCqKEI2GkuBgWu12Bt1u7mlupm7uXO7IzOS2xkYG3W6CNBrOTkjgnF272Kqo4r56XW/29IzJOP67UnQwaPlyHm5tZaPFgk4ItfTInZmZzA0P562eHh7NzaXP5WLt0BAVw8OcvGMHH5aWMlUIrkxJ4Y3u7jGq/0OtrbyxZQvpQUGqdjfq8bBeqZnlQ4s3NHHbzJnUj46qNdN+nZysJtmBtxz7lbt3oxWCcrOZe7OzyTQaOWrrVt4vLaXAZOL+lhYebGnhnyUlfNDXx4DLxamxsSyKiOCdSZN4t7fXa3MvKuL0uDhqbTbmK9V8I3Q6/tPby5LISN7r6+P1ri51Mp3v14HSqNGQERSkFnUEb9OuL6dOJXLlSv7p10MDvFE3k5SGV3kmE+/39fFCZ+eY2m4AV6amckNdHS12Ow/m5HBjejpnV1ayaXiY9RYLJ2zbxkf9/YRptViU1bQvJ6pi5kzSjUbVH3F7ZqZ6fzWOjnJ0VBS2RYu4rbGRrHXrcC1Z4rWHd3ZyelwcrxUVYfV46HI4MLtcCLz5UW1+mpcGVB+Ary7Wx4rpJlMp0tjucNDldPLX7Gxi9HqOiY5WNU5/Lf4nMTHU2mz8JCaGDoeD86uqWDltmhoWPbBgAXqNhmsVYQJeoT0zLIwLq6p4v6+P/5SU8GhuLs91dqoBIQ/k5JBuNFIWGcn5u3ZxWmwsFyYmcmtDg1qB+ryEBPXz00NDWTowwKKICL40mzkiMhIPcF9LCy2KL6RxdJRVg4OqqcvH43l5akLy3c3NvFlSwkXV1eSaTLytmMJ9muu58fFohECzbBkRWi3XpaVx3q5d/Lu7m3eUz84ND+fp/HyWVFQw4HKRbDCwZmiIRRUVfDllilpV4pLERJ4tLKTaauUnMTHcmJHBzfX1XJSUxM8VzclfyBYpQSZ/zsrijw0NLK6oUNMRwJt4/HBrK1oh+Ftenmp1OXPnTv7d06OmOfhaYz+am8slSUlcmJhIldXKoogIep1OHmlr466sLNxSTljy/ptyuDSUvwJ9fk75aCnl74UQJcBr/L9T/gsgb3+c8r2PPUaT3c4NaWlclpzMTfX1vNPbi11KrkxJ4dG8PM7auZNP+vvVQpBPKk7hnyUkEKIkWJVu2MAOZcLtXbCAo7duHXPhz09I4JrUVEwajWrOGVm0iGCtlg67HaeUqtnCh2+1NXPTJqwej2p/bbPb2aQ04PJpRACJq1apq0ffjebTDvz5V3GxegNH6XSqQ/PoqCg+Gxgg0WCg0+HghOhoPpg8mfuamxF47dxml4sup1PNiQCvml0YHMxLXV3qpARgXriQM3fu5Iy4OC5NTmaLxaIKDZ+m56sL9uesLG5taMDDWHU/z2TimtRULG43D7e20ulwEKPTUaKshMezc9YsMo1GPhsY4LP+fsrNZuINBh7JzeXlri7ub2khUqcb44D12biPiIzk/IQEXuvupt/p5PLkZH5RU8MFCQlqjahep5M0pUvieLrnz1cdtT6ts3zqVD7q66PL6VQnupNiYojT6zk2OpqVg4PeAn1+JXL8+aC0lOOio9EIwcMtLfy2ro6HcnJU88+ssDDenTSJxKAgsteupWF0lHXTpxOs0dBst5NsMKi9Lx5ra+Oa2lr1+oI3WKDcbPZmdvf2qk2yzoqL45mCAl5Tsv/zTSaO3baNn8bGcn16OhUWCw+3tnJiTAyfDQxQGBysVvv1J8do5JTYWM6Mj2eOom2NJ99kYlC5r8BrkgzSaOhzOnksL49zExJwKzXAEg0GnunoYPPwMCunTWNySAhzNm9ml9WqFgJ9r7eX9/v6eCIvD51Gw4yNG9k8PEySwcC7kyaxcnCQRIOBs5UEYp8wfDAnh2vr6vh8yhTVt3fCtm3qQipWrydEo6EwOFj1zywzmzleKS475HbzXEEB/U4n5+zaRZbRyNTQUIqCg1WLxNzwcNZMn06vw0Gccs3vzc7m8uRkCtevV5Non2lvZ5PFwhP5+WrOztFRUVycmMg5u3aRbDBwfmKiaqIXwOvFxTzR1qZqOtelpqpRfOA1uVrcbhpHR7G43Xw2MMBVKSlssljodjqpmTOHX1RXqwmovjQGk0aDzeNRQ5UvSEjgpeLi75fJSwjxOlAGxAJdwG3AO8AbQDrQDJwhpexXPn8zcDHgAq6RUn70VceYOXOmTHrhBd7v6+O61FTuz80lePlyPFJil5K/5+VxeUrKmNXXQzk5VFqtPNPRgQb4mRJCe1N9PdE6HT+OiSEvOJhTduxQ6xkdGRnJl2YzOUYjVbNnc2tj45iCc2fFxbFpeJib09MZdLu5praWOL2ejydP5vmODp5Qihu+V1qKQaNh2saNGITA7vFwS2YmpymrjpVmM4NuN212u+oE9KcoOJipoaGEabWsGxpi68gI3fPnc1ZlJUvNZtU5eHRUFMXBwbzQ2cngokXq718/fTq/qK5m68gIP09I4Ky4ODVXZ9jlImzlSvJNJs5LSOCWxka1Iut92dmkBgVxfHQ0UX6Vin2RWgCNc+eyenCQp9rb+VdJiaqy55tMqp/kr9nZROn1PN/RsYf9fjxGjQaTktD10LjVZ4HJxD3Z2XzQ18e5CQnMCQ8nc+1atff79NBQHsrNpTA4mDqbjQVKBWFAvU+sbjcbLRZCtVqWms2kBwUxW9nP7LAw3iop4UuzmV1Wq/rQv1JUxIzQUC6vqcGD10H7enc3O2bNUs+Dj5XTprEgIoKP+/qI0OnUKr0+3u7p4dLqakwaDaunTyfdaOT93l7aHA41/wi85YW6nU5CtVrVj7AoIgKDELxeXMwbPT3c0tDAP4qK8EjJSbGx2JUaWY2joxQGB/N2SQnViib984QETt+5Uz1XPtrnzSMpKIh/d3ePWcDkmkzcnJ7O+YmJtNntahi1j8khITikHOOoPysujitSUlikmDE758/ns/5+zvNbxPjQC8HCiAgWR0SoHRltbjeDLhexej0bLRbVZAzeSfnTcaVUnmhrY8Tt5sLERHbbbKom1Tl/vhqYcEdTk7pIA28awT1KFV/f8zGyaBE31NfjVipYzI+I4K6mJn6flqaO/bjoaK5MSeG5jg7+09uLSaPhrPh4fpmUxNW1tao53T+f6CcxMfxXmUtkWRl/rK/HpNWqZugkg4FrUlP5vZKf5Ivgejwvb488JX/i9HquTk1V9zM+sm1vjCxaRIhO9/0yeUkpz9nLpqP28vm7gLsO9DhNiinqNiXT97G8PHKMRnqdTmwej3qz/EVJclo7NKT6Jzx4b+i/t7Xx15YWjo2KYtngIO+VlvJeaSnHbN3KpJAQdUKrGx2l2W7ngsREVaAcHRXFeouFhtFRqm02ZiiryR6nk4bRUa5NS+OJ9nY+HRggdtUqhhYt4tKkJO5pamJOeDi3NjRwjGKv9gCvdnWN6ZTo47KkJJ4qKCBixYoxHRZHlYz9pWazGmnS53RyfEwMlyvVgn0RZbP9Vphxer0qTJJXr1YFUa7JpNYJ2zI8TKhWi14Izt21ix2zZvFuXx+5JhMLIiLG+Hle6uzk1sxMzklIoN1upyg4mD9lZdE8Osq9zc38Li2Nf/X0cEdmJrkmE6uHhvhpbCyxej0nxcSMCYH1/a7bMjJUh7iPIKW0TKXVypqhIZ7r7GTD9OneVqdKyPVmpebaUVu3EqPUmvJFlP05Kwub202wVqsWUvQvSy7LyrAohTEv8JsAnysoUKstxxsM7BgZ4dmODtodDm6or0eWldFpt1NltXJDfT1PtrejF4Ljt2/nxOhotYaZj+vq6jg+Oppup5PnOzq4PSuLH8fG4pGSGJ1OzWnodjrRgipMtMDyadMYcDp5sLVVDYMecrnYMTLCyTt28JvkZNVEW2W1jgmQ2G2zjRG8m4eHuSEtjZ0jI6wcHOSoqCieLyhgQUSEqgluslgY9XhwSMnvld5DJ8fEsH1khBlhYaqWumFoiESDgdLQUKSUzAsP58qUFF5TCntGaLWsmzGDLwYGeKKtjUqlnfQzBQVjKkh/3N/PqTt3UjFzplpiZffs2Tzf2clfmpv5Q10d9+bkkL5mDS12O5tmzGB6WBhrBgc5oqJC9f9E6nQEaTRqr5a/5uQQJAQtdjsnxMQQu3IlP/brg6LBW6U83mDg9aIiYpVkR58wyTOZ+Li/X002PTMujkuSkpgeGsrPdu0a45v9UVSUKlDOio8nTOlseXdTExclJZHrl4dybkICv09P58uBAVKVgJOXu7pUYfJ2SYm3fH9tLZckJWHUaHBLSahWO6ZZnU+Y/DIpiUqrlZNiYripoYErUlLQCcH9LS28UFCgZvgfTH4QxSHBGzY47HYTptNRbbXym5oansjPp91up9JqVXsfXJOaypmVlXtkXf8oKopMo5HfpaWxY2SEemU1/XpXF3aPRy3LfVFiIiUhIYRptdzX3MzpcXH8KTOTGL2eGZs2EaH0Ev9DeroaR39/Swtrpk9Xk/V89ua54eG0ORyqWcigXOB3e3t5vbubiuFhso1G7s7O5vS4OHTLlvF0RwfLBweZGRamdoB8Ii+PNKOR8xMTidDpVP/G5uFhjtu2jTeKiylUEvVmhYWxwWIhPSiIeeHhjPoJ2xOio+no7+eCxETVFptsMNDucFAaEsJH/f1UzZ6NR8oxpjJ/ioODuaepiVqbjU/6+/lDejolwcGcW1nJ3/PzOT0ujt/X1/NoaysvFxVxfVoatzc28sXAAH/Ly6Nt3jwea2vj3uZm6ubMoXD9em5saCBBr6csMhKnlPynt5dfp6TwUGvrmCCDuZs3q4EK/y4u5vbGRjUcMykoiPMSEjhNuSamFSsI1WqxLFrE6Tt2YFIaoE0NDaUsKopRt5vwlSv3aFx0sRKx5/B4eCIvj1GPh6tra3m7t5cdIyPkr1vHbpuNUiVAYr3FoiZ93qQUznyvt5eTd+zg7qwsr+lPr8eo1LfyoRGC0+PjuWZoiIdbWzkiMpLPpkzB6fHQYrdjUUoF/be3d0xOjU4I1SzzgTLhVc2eTeH69aQFBZEeFMSqoSHKzWaeyc/HqNFwWlwcJuV3+mvxRcHBrBsa4lcpKawbGuKXNTW0zpvHy52d/KWlhe7589EJwWaLhRCtVq1Pl2k08lBLCyft2MEliYk8kpvLrPBw6mw2bm9s5In8fAqCg3FJyT3NzbxSVMQ58fGcvnMnu202tiul6BMMBgTe6gBHRkVRGBzME+3tLDebceP1oTikZGFEhLdg6cAAS81mFkZEUBgcrDbjAlg/NMTtjY2UT53qLYGj0fDF1KmAt3dIlF7PGXFx/Lunh88GBni9uJiSDRv4wmzmrPh44vV6joqM5NmCAhxSsmjLFrWI4xs9PbzR08ObJSU4lHnizLg4/lVSwmaLhTPi4rg7K4tf1NRwTnw8KwYH+XJgYEwE5/kJCfy7u5u/5uSoTvw3S0owCKHmoVQMD3NKXJwaUg9w8vbtY6LEfEmXX0yZovYp+m9vL7dlZPDHzEzsHg8DTueYpnwHkx+MQLF5POSsW8flyclcqXQqu3r3bkY8HgxCMLhwITfU1xO+ciXnJSTwo6goTlW6mV3l1yv+oqoqamw2IpQH7M9NTVRarfyjqIhMpZLp6Yoq77NrPldQQLhOR/O8eey2Wslfv54so5H1ykphcUQEO0dG1FW2r/d5nF7P0ilTOGLrVhYotXoAdYWzy2rl38XFnFFZyUelpWjwalNVioBsmDOHZzo6WD04qNbb+klsLJcnJ/Nke7sayfNEWxtnxMdza0MDJ8bE8GxBARE6Hc+0t3NPc7Nqi/9RVBQxej27Rka4q7mZbTNnUqokhhavX48H72Rhdrk4OiqKIyMjx2gOLxcWcnp8vDopXZyYyJVKlNGC8HB6nU7+pNSumhIaSrzBQLzBwNMFBQi85b7f6O7m0ylTOC8hgWyTiQ9LS9FrNByzdSsFwcGqlviQ0lDtA7/wyMeU0hhXp6Rweny86gswCEHF8DAPt7ayYnBQLTDpa2W7YnCQCJ2OV7q6ODMujrKoKDUoIjkoiCGrlaVTprDUbOb0HTtYZ7GgF4LLamrQCcEJ0dFkGo3e5mZKOO2gy8U/Cgv5RU0NTo+H8qlT1WKevrDfeCX5st3hYNTjGVP9GeD8Xbs4OiqKVdOmEaTR4JISrRBUW62ctGMH58THc0VKCkdGRnJBYiKfDQyo4apVs2dzfV0dIUoo/T8KCykKCaEkOJhzdu1iQXg4lyYnU2+zcd6uXSQHBeGSkleKiri3uZkdIyPsslrZZbXy07g4nu3o4NfJySTo9VyclESIVqv6mcAbBjvgdHJeVRV/SE9X/XnPdXZSbjZzV3Y2Z8XH07dgAWdVVhKi0TBV6bFSoATEZBiNY3rSz4+IwKOUBro5I0P1VxyjNAS7t6mJ6WFhHBMdzWvFxep995+SErYr4+9zOjlayd+oHx2lrKKCeeHhbLBY+FFFBQ/l5tKidFwdcDrZMjzMgMtFhtHISTExnF1ZSaxez7MdHTyal0e/y8WMTZuYHBJC14IFtNntpK5Zw1lxcSyMiOCkmBgy1q5VJ/ltw8PohSA3OJjNFgvlZjO/TEqibf58DMuWkRoURMu8ebzX26veH3/KzGSdxaL2kdkyYwbTNm3iDiUsOlqvJ8lg4KdxcTyam8t7fX2cGhtL/egoDimRZWVcX1fHubt20TJ3rhra3ON08kBODpNDQ7lq924e3Uub9G/CD0agfDEwQI/TSZ/TSaSSnBWr1zOiqOjPdnTwfGcnox4PMXo9TxcUcN6uXbzS1cXOkRGeUmo7nRQTQ47JpFbYnRIayrTQUNKNRnxr1ZbRUfRC8MeMDP7c1MQ5lZV8oJgyYvR6niso8PaesNvJM5k4Iy5Ora57XHQ0HymfvbCqCqdyA/jzWF4ebXY700ND1QiU4/3qQF2UmMiJMTE80NrKjpERys1mni4oIFjJpXhJcRr7Wsj6YtLvaW4mTKtlQXg4W4eH+U1KCj+OiVHDhh9rbWXV4CD/GB0lUqcjTYn8uaiqSh3HI62t/D49XbVf/0FZdYvyci6truY8ZUW6bmiIWzMz1ZBQh5RqXsXT+fljmnZFK/6YEK2WrSMjYxzbvlpnzxQUjDE9ARSFhPCMsmIM02oRwO/q6nikrY1T4+L4d0kJqwYHOSEmhmG3m4uqqtg+MsJ749oNdCn9uq1ut9qwaFFEBE/m53NcdDSbLBZe6+5m7dAQ2xV/VZzBwBEVFd4CkTYba4eGMGq1atLa+6WllIaG8nPFbPlGdzdbhoeZHR6utjsGuCQpidWDg1ypLH78+UdXl5pd/uOYGN7v60MvhNr/B7yT7hdTp/JUezvv9/XxWlERx0RHk2008s6kSWSvXUvsqlXkKfWh3lTKwRwVFcX0jRv5VXLymNyGv+Xnc25CAjVWKwVKRYljo6P5W1sbpSEh6DQaMoxG7h5XCWBBRAR3KOV6csa12q0bHeXsykqWRESwbWSE//T2kh8czClxcfwqOZm1Q0PMDA8f0yxuImINBnKMRrWV7x/8moGBtyVEq91OWWQk66dPV027sqyM+RERaoSaXggsbjdfmM10OhyUKt//QGnDPC88nBCtlhvS0ykMDvZqYcPDDLlcqh8nw2jki4EB9bm+OCmJBIOBz/v7SVIWaKK8nL9mZ/NadzevdXer98azHR08WVDA7UpIP3hba/taNvxRMdvf1tDAnU1NYyoq/729nXaHw1t9Iy6ODKNRDULwZ8TtptPhYPngoGpdebStjftzcni1q4v1FktAoOyLaaGhvFRYyAlKJM3zBQXkBwez22rloupqdaVcN2cOdo+H39fVqaaIpzs6eKqggI1DQzzY2kqcXs8/u7tZNm0arymlJ+D/+1+vs1gYcLm4MiWFPyurBh93NzV5QyyViWS3kph3TWoqD7W2qnZXgBNjYni4tZWm0VEy/B7CepuNV7q6OLKoCI0QhCuT5aDbzeDChYTrdFxSVbVHoh/AtbW16g3U4XBwe2am2oXPsnAhphUr1MzzeeHhROp0fKgIuLd7ezkiMpLHlPyLSL1+jAkE8BaUlJJHlXyJ2UqPDv/YfJ/GV2O1MjU0lPtzcthksXirQqel8UxHBwaNZg8f0Uxlheaf7PWXlhbuy8lRe8rPDw9nvcXC7LAw7m9pIS0oiLPj43m6vZ0TY2K4LzubK2tridbpmBQayif9/czbvJlBl4vH/Yr7WVwuJBDu14rZv0JzUUgIcXo9b/T0qFn1ekXT9X0nSAisbjcf9fWx02rlVzU1/Le0FH+sbjfbhoc5q7KSU2NjecuvKKmP+Uoy7Xu9veqk4rteszZvVvNs4P+byZk0Gl4rLqbBZuPJ9nY1VN4hJSNuN3U2G1+YzWrhwd02G1M2bkSAGpiwZXiYZWYz5oULOXXHDqaEhrJ2cJANFgtXpqYyuHChWmH4nuxsbyi5241Rq+XjyZOpttk4WSnHUxISwrTQUKweD1NCQ7HHxtLpcGD3ePhVTQ2/SE7mzqYm/t7ezpP5+fxCEajvKv17rvCzEuyLWiUS8v3eXt7s6eG5wkJCV6xg1OOhbd48koOC+LS/n2O3bVNbJ6vnU4kIPF9Z9GSbTGOu//SwMO7LziZar1e7WP4mJYUMoxGdEJxVWckFCQl8MjDAe3196j16U3o6s5V797G2tjFRof4tfU+PiyPdaOQvShDAaXFxFK5fz/lVVUwJCVFL4n/e30+8wcAdWVmsHhpSyzy9XlTE4shILq2uVs+fEEKt5u1DlJfzt7w8HszJIc9k8lbq2LmTs+Li0Gs0rJw2Te2kerD5wQiUVMWHAN5uZRdXV3N3VhYGjYYZoaG4pGRWeDhxej0PtbbyV78SIT6HXJrRyB8zMhh2u9U+BE+1t/NSZyerp0/nF8nJzAkPZ7nZTIhGg8Trv1jsF7ljl5IBl4uyyEg1Y/5vbW18MmUKH5aWqslTACXK6sc27ob40mzmP729nF9VxatFRTTMnatm997Z2MhjbW08U1BAjc3GysFBXi0qUifDP6Sns1zRZpaazSytqOC5ggIuNpkwarUcHx3NR/395BiNXJCYiEmjUYXG7ZmZJCgdDDsdDpwejxqd1TBnDlnr1nFkZCQuKbmmtlYtrTIpJIRPJk9Wm06Bty7U4i1buDQpicLgYI7eupW7s7K4MCmJi6qrKQ4J2UOgzAkLo2f+fMJ0OtxS0qWUbgdYFBnJv4qLmRkWhktK3u7tZfXQEMXBwdTabNzY0MAXZrNabmJSaCjv9vaqSW63ZGRweXIyP09I4NOBAcJXrlR9KBMx6nYTt3o1c/wc9b4+Ez5eLS7GLSV3Njay02qleYK2qqfu2KF25POVVX+xo4OLqqvV8FjwJqX6Vx8ACNXpOCsujjuampgaGsqWmTNxS0nj6CjDbjcjbjeVVqsqTHzn/dxdu7gtI0MNj+9fsIDoVatIMhgoUyLSPurvp3zqVLKMRiJ0OtWfcNL27byv1CeL0Go5NS6OG9PT+WxggGtqazk5NhajVsvciAgyjUaG3G6WDQ5i0mqZoywuRtxuVg8Okh8czOcDAzyUm0tpaChxSvXh2WFhaISgZXSUf3R28vBXaCY+PFJyxe7dnBgTw3qLhZe6uigJCeH46Gje7u0lRHkGso1Gbs3I4NKkJNL8FmrHREfjWrKEk7dv58n2djbMmDFm/+FaLeVmM3PCw5kbHs6SigruysripowMXiwsZMDl4rS4OLU7qi8I4e7mZuaEh3NybKy3f0xfH8dHR/Ph5MmsMJs5Nz6eB3NzOaeykhNjYlR/lX9ofpHio3wY1AXfWyUlnBIby/HR0VxXV8dum42zExLUBaAP/7yyy5KSeLqjgymhoWrjtFWDg1ydkqJqPnqNBj2Hhh+MQLG53QSvWMEdmZlcl5bGLRkZ/L29Xc0zmKX0LVg5OMhN6eneRls2Gx0OB79VbOkJBgOPtbXxu7Q0tfPg/S0tYxKA7mxsJD84GKNyU5wSGzumk1+sXs/jbW1ogCcLCni6o4PC4GC2Dw/zUlfXmH4ThcHBfFhaSuG4xkc+AfPvnh4uTkzk+O3beaukxGsDVXwI/+np4Z/FxQy5XBT5ff/4mBi1lpEvCODp9nYuVlY0H06ezG6rlSAlPh+8/cptHg/ROp3X9tzYyKNtbTTPnUv1nDl0ORxUjoywS8kN0Ws0bJs5k1Ctlux16wjTaul1OseYYoQQnBYXx13NzdzV3Kz6qy7ctYulStHO8eg0GrVlMECW3+rOpNEwPTSUnHXriNbpuDIlhVeLipgVHk6ETsfa6dPxSMnnAwNcq6x2r/Ur2ninEorqL/RuSPPPoR3LMsUXcXpcHKunT1f7fPsTo2hNOSaTWvDwpvp67mluZvvMmUxSalJtHRmhJDhY7V3hSxiNVb7f5XDQareTNK7bIcDtWVmcGheHw+PB4nKhE4IIrZbcdevIN5momj2bNYqP5d7mZnVyOTIqiskhIZwdH8+I282bJSVkKvkUd2RmEqnTjQkC8PF6UREVw8Msqqhg0O3mhc5Ofp2czFs9PVykBH0AamdNHza3mxqlxL8vZ8oXlHJ1SgoP5+VxZFQUrfPnj7mmx8fE7NFBc28IvCYfgTc5MkSrZUlkJNcrYbY+coODuUO53v5oFG1lUUQEbyjtlP0bgo16POy22Rh2uzEIQVlkJDc3NPCT2FjubW7mT8o+fVYJWVZGu93OdXV16gL0L9nZvNrVxTrFf9pstzPgchGvhPJfV1fHJouFV4uLebunh2SDgbb583m/t5cfKT60P2dlsX14WI1WfF2pCK4ujvzmEPBGw80KC+O2zEyOiIzkqYIC7mpqYsGWLYwuXuxtcayY9x73a6p3KPjBCJTtyoPUMDpKiNIBLkKnU+sRTQsN5bmODuL1eo6PiWFWeDj3t7TwRk8P6UYjp8XFIaXkosREtYc0eOsRzfJbpeo1GobdbrUBVMqaNZyu2OvBW4wy12RCr9yozxUUUBISwqtdXfyzu5spISGq7fd3dXVUWa3sUDrq+fBFiM0OD1dXvb6b66XCQhINBuYoE+n4Ve0mi0XNFh50uzk7Pp7N40rMVAwPI0EVKNbFiwG4sb6e3TabWjYmTpnwHmlt5Z7mZipmzlQFaalyjny+iNDlyxnxeMb4Jn6VnKyGM64eGlKj2X4cE6O2LN0bR1RUUG42qy2Y3+ntVc9Bv8vFqqEhlkRGqo2h5oSH02m3s0DpOwHwvtJ/4yS/hktZ69ah8Rv33igNCeH5ggJOiImhaXSUO5qaODkmhql+94KP+tFRNTx3fKJkqtFIqtHIs+3tzAgL81ZrSEnhcr+mZVq8TvzxFZPBW1/qd3V1atkQ/1pepSEhCCGYGxHBCrOZbSMjXJSYyCeTJzM9NJRQnY6zN22icXSUMK2W8qlTEXibpG0bHmbBli08U1DAEuV8gVcrWujr4NjRwTKzmZnh4eSYTEwJDVXL1JwzLsm2IDhYLXnkaziWbzLx6eTJzB3X79xHrMHAKbGx7LJa1eq5+0IIwYqpUylUFnQ3jBMk+0uIEok5nma7nVqbjVCtFiEEt2ZkMD88HKfHw3KzmUHFZLY4IoJuhwOb201yUBCv+5nFhRC8V1rKzE2bEOXlPJWfz4f9/Yjyck6KiWGXn/nyXsW8Bt6Wzr7umL7F7OyWFiJ0ujHdXd/s6dlDoLxUWMipO3diEEK1VPg60a4fGlIXAU+0twcEyv6SazLxelERi/xuzEuTkrB7PLzW1cXCiAie7uhQJ8Jeh0OtDpuvrISFEDw4Tv32NWLyURIczC2NjTygZNgCaktO8JpaJvkJpAGXi16nk2tSU5kSGqqG8oHX4b98cJBBl0u96OBdYeUqN9eI202sXs/v09K8vSqU5EeAD/v6OFEpc+773Vf6JUCdEB1NcUiIGsoI/2/S0AnBmUq0E3hNJTtHRjBqNHxUWkqIVotRq1XNYS8WFjJ5nCblT5bJpFYY8OGQkllhYfwtL4/7W1pICgpibng4R4yLZpoIX0FOoUxgPlv4CdHRXJKUhFUpz/9cQYGqfUXqdLxeXKwKwsKQkD20P/AmS/oeuOi9CLZEg4FjoqMJ1Wq5raGBd3p7WWE2q850fzYMDbHOYuH8Xbv4R1GR2mPGh8vj4Rc1NWMae/kTazBgdrmoslo5edw2X7azLxTYJ0AjtNoxTeKCNBo6lHBiq1JJOlSnU30gFrebGZs24VmyBICdIyPsttl4sbNzjEDxIaXk3IQE9fdenZLCeosFp8eDXqNh6dSp3iZWig8l12Ti6Kgo+l0uJoeG4lmyBMn/awV749WuLnaMjIwJ0tgXPsHzaX8/f29v58XCQrXy91ctEnwcFRXFrLCwPdoV55tMPJSTQ7ay0NIJwTnx8ZSEhPB4Xp56nkY8Hj4ZGCB4xQp1weNPlxLAIpR/Pk6NjWVqaKiaK1cWGcm0TZu4oKqKuUoIv++3Rep0XOunQVfMnEmnw8HCcYmxABuUBWO7w8F1tbU82NrK8wUFPJGXR57JxB8zMtg+MqIutA4lPxiBEq3XqyUYfLilJEavpygkhCMiI7kzM3OM8ABvrH3pBOYXH39pbubDvj419vvEmBjiDQa0QiDwFn6cMcGq1cfNDQ2cGRfHCTExnDNufNkmE1E6HeOrFbg8HvTLl/OTmBjeKClh+8yZROn1BGk0tNvtzN+8mb/m5Kh9Qfxrbt2Qnq7moSQYDFxTW8vMsDCuVsxAvvIk1/g5QX1Cw2fLjjcYVMftsqlTGXG7Od4v8cuH0+PBsHw5iyIi+HTy5D2cg6fs2MHP4uOZGR7OP/0q7O4Po4sXY/XbX1lkJO9MmsTMsDBSgoL4QFnlhfg50lcNDfGjrVtVAftCRwd3Nzezdvp01Tw1smgRqwcHiVm1imCNhhFFOxvPgMtF6po13JqRwa2ZmbQ7HFzlp1X4c1x0tBqoMRE6jYYn8/PVttO3NzRwR1MTn06ezNFKNOECxScxnl8kJfHFwAAXJiZyRnw8bilptdsJGjeJxer1XJiYSL/LxeU1NfyruJgzjUa2KK0MglesIE6vV+/70+LiWOMXMTUeX1+Uc+Pj+UtODh/393NjQwPnJSSgx7sY8gUQzPeb5Hx3lVCej31hdjpZajarQSMHwucDA7zT2+uNWJo+Xe15sz/8uamJjRYLNXPmjHk/1WjkGr9J/KzKSi5LSmJSaCiX+gm8E6KjCc7P9wqMCQTmidu3szAighXTpvFpfz8XJybyRF4eJ+/YwcKICFXLu8GvmnSSUhMMUBt5vVxYiN3j4dLkZO/53svv8S3k1g4NcW92NvEGAxckJqrCPDEoiN3jfushQ0r5vf83Y8YMOeBwSJYulXc1NkofP6+slCxdKpNWrZJ9DocczxtdXfKh5mbpcLv32OYjbfVqydKl6utzd+6Ul1dXq6/rrdYJ9+3j0ZYWucpsllstFnni1q1yu8Uy5rubhob2+I7b45EsXSpZulQuHxiQLF0qP+vrk1JK+X5vr2TpUnnGjh2y226XNSMje3z/xro6ydKl8oX2dsnSpXLK+vV7HZ+UUr7V3S3/1dWlvi5at27Mb94Xf25slNv8ftP4cfynu1t9vXxgQJ64datsHR3dr3374/J45NL+fsnSpfK1zk7ZbbfLN7q6ZJfdrn5m7eCgZOlS+Y+ODimllImrVkmWLpXt445XYbFI7bh7ZTxbLRbJ0qXyhtraAxrn9bW1kqVLZcVezomUUnbb7fK3u3fv877z4fJ4pMfj2e/jj7hc8qqaGjnkdEoppfR4PNLqcsn/9vRMeK/tDd+9w9KlssFqlSdv2yZP2rZNHcs7PT3ypG3bpEU5jpRSPtzSIlm6dL+vr9XlkpdVVcnP+/v3e1w+eux2+VBzs6ya4P7/Ku5saPjKZ0JKKR9obpZNNtse7/+mulrGrFix1+8lrVolU1ev3uP9BZs2SZYulb9T7qmQZctk3MqVUkrvc/1KZ6eUUsp7Ghvlr6qr1fMvpZTDLpdk6VJ5e0PDHvvNXbtWTlq/Xnb4nfcnWlvVayellK90dsoramr2+C6wUR7EufgHo6H4iuRt9XOeTlLMHa8VFU1o2ni1q4v/9vWRaTSOMSX5c2psrJoRC96sWn8TUva6dWNa6Y7nSkUTuK2hgQ/6+5kVHq6axO5ubuaDvj7a/RyV4DUTDC9ahJT/XxHUV2ZlcUQEq6ZNoyg4mCi9fg/H6iaLRS0HszAigh/HxND+Fau3U8f99t+npe2RE7E3bt7H6vLHMTHc0tBASUgI+YqN/YP+fpabzXtoa+M5qqKCL81m1YzxaX8/JyjRa7U2G+ckJHCGn8kOvKu8IyIjSVb8SmumTaPL6VSd4T6mhIbi+grzSJbRyD8KCyc0MeyLXyYn0263U7wPR3OcwbCHaXVv/L6ujqc7OsZEo4ny8jH5TP4Ea7U84pdfYFe0kxyjUQ25BW/C3bHbtvFSYSHHKFqSPxcqpT0+7u8n02Qiy2gkOShIXZFfWl1Nr9PJsNtNqGKu9XVXdO7nvWPSatX8rwMl1mAYo00cCHoh1BI2++Lavex/amgoVVYrLo9nwjbSH5SWThiWm6rch5cqZsSHcnNVs9un/f2qP9TnY50eGqpWz/D5b97q6VFNZj7+VVzMjE2b+GxggPOUyElfBFrj6CiZJpNa4fixQ5B74s8PRqCkG428VVIyxvz0y6Qk5oSFjYnt92F1u9VCbZP24Rt4eNwFiNLpeKytjecKCwFvJ7XjJnggx3NlSgqzwsLGOCijdTrVJj4enyknVKsl2WDAd9uG6XSqieHm+nrubm7GsnCh+lBfptSqapw7lwyjkVeKig445vxglWXwSDnG0fxQbi4/T0jYr0n65wkJY/xK00JDSTQYuDsrSw2/HU+CwcAzBQUkKkI202Qi0y9SzJ9Oux2NEMRPEOkE3vP88wlqqX0VOSYTr/g5ab8p7/f17TH5nRwTs8ciYG/4fE9140Katw0P0+lw8FZPz4QCBeDshATVjDz+OVg1bRrVVuuY8/efkhJ6nc4x/V4OFUsHBrinuZnnCwpIPcDjnRQbq+ZPfR26nE6+MJvZm9hstdvVe9CfY6KjmR4WRoGy2PD3G20dHlYrZ3/c14dJqx1jZkswGGiZO3dMUVYfvurX/lGWlyUlkW00qub8K1NSxvh6DxkHU905XP9mzJixhyonpVct3jU8POE2p9stw5Yvly+0t0+43cfNdXXyqC1b1Ncbh4ZUk8o35ZGWFjljw4YJt7F0qTxyyxZpd7tlo80mR1wuKaWUNSMjMnrFCvmf7m75UkeHjFmxQrr8TCJvdHXJvLVrZZui/l64a5f80wRq8rdB7tq18pdVVd/a8TYODUmWLpXv9vRIKaW8r6lpj/MjpdfkxdKl0rhs2bc2tq/LM21t8g91dd9oH063W46OM69ZXS65aWhon+baD3p75Rk7dqjms+8SV9bUSJYulS99jWfxl1VVMkExNX0daq1W+Vlf315NkSxdKqdO8FwfW1GhmrvGc8LWrXLmxo3q91m6VD7Z1iYfbWn5yvEcW1EhWbr0a90nHGST18EvN/kd4uaGBoo2bFDVRX90Gg0blcQm6z7U3xc6O/lCiTgCeLK9fUyv5/1l6/AwZVu2jAnhvSo1lY0z9145+kuzmZ0jI2SuXcunSrZskEZDv8uFQaPh/MREehcuHNNx8Iz4eGrmzFHNPq93dfGqXyOpb5OLEhM5yi+ia+3gIGVbtlA1LhrsYJFsMBAkhPrb7R4PfS7XHjd5iEZDsEbDbV/DGfxtc2lyslpe/esgpRwT5u7DpNUyPSxsr1Fu4H1+/j1Bf3nwlpIp27Jln8/OoeT6tDSeyMtTAx0OhN+np6ulkr4Oz3V0cML27RM65MFrep3ovOQHB6ulVsbzm5QU/qCEQd+Xnc1N6elcXlOz146b/ox4PMTodHsNGgF4ur2da/ZRAv9g8YMxeU2ET/WutdkmjMS6praWj5QyBydMEMUEcEFi4piqoMEaDXtvHLx3hpWM4v1VO0cXL0ZK6RUefpNkutG4z/DITRYL64eG+GVyMhohmBcRMaYk+LfJ9NBQ7mpuZr7Sg77P5WLZ4CDW/bSxHyhJQUGMKmGx4E0AGx+zD96w7L1Fd/0QiVq1Si1CeCDclpHBu319e3StBG/e17IJGqN9W6QZjWpB1AMley9m0P3lkqQkjtmHIPt4L8Kq3mZj+8jImGK0PnyhwqfFxan9UCbvI/rUn7dLSohbvZpXurr2SPL04eurNN50ebD5QQuUXyUnUxYZScFebqBbMzKI1+uZto8Ld/e41aHd42Gpn8ayvyyIiMC+eLHqZPsqfM66ZKU8yP5+78KqKnaMjHBmfDwxej3vTZrE4REn3uACgxBqUc0TY2IO6BwcSqqtVuL1+glt0j8kfKvo1gMIq/VxSlzcXoNV7szM5NaMDDWB93+JHJNJ7a0yEfU2mxqm7s8psbHY97K422W1qtrie0oC8Fnjgk72hi95+9h9+HL/mJFBwyFo+TueH7RA8TWfCZ5ghQUwNyJCrbS7v1ySlLTPC7cvDmQiFeXlzAwLY8OMGQf0vT+kp/NgS4uap3BtXR0ROh1/9UvE/La4traWkpAQEv3U/O+CMNlttar9QZoPcNX+fUSWle1h8vqmCCHQf0XS4v8qP925k1yTaY/cj3d6e9VIr/G4paRFsYT4msztb6KmU3oTiPel0fxpglI0h4IftED5c1MTj7a10Tl/Pgl7ieY5UP6hZPb+dD+jbL4JGy0Hblw7NyGBc/1CctcMDak1o75tfpmcvNcoqsNJsFZLiEaj9kP5odOjlDsP1f2gH/fvDAl6/R6N2cBrworby7N4fXq6Go3ZOS6N4Kt4JDd3wrI9h4PDdocJIQqAf/m9lQ3cCkQCvwB83sCbpJQffp1j+GoK9TqdB02gFAUHH5LWmeNxK6Urvilvl5SMKeH9bRKn1/NASwvHRUePCQE+3KQEBTH8P+RDiV+9mji9nm6l70uAQ8sXU6cykU1kudlMiFarFqP15+P+fnRCcGJMzAHPVbHfoUXbYXvKpZTVwFQAIYQWaAPeBi4CHpJS3v9Nj3F1aqq3YdZBjIv/1dd0BB4oX1UDaX/J3c9KrocCg0ZDpE532ARagP9n9BAFQgTYkxqrlVCtdo86cucnJmLYy7Ng93hw/wCek+/KsvEooE5K2bS3ULyvg1tKJIwJq/2+IMrLKQwOZte4SsTfJ+5tbiZGrx9TbyvAt8/+2uIDHBzO2LmTopAQto/ztV62jwKYfzvEVYC/LQ6/h9TL2cDrfq+vEEJsE0I8L4SYMD5PCHGZEGKjEGJjz15i5R9qbWX25s17lBT/vlBltR7uIXwjLk9O5vyvKLES4NDTbrdj9isfFODQ8s/i4v1uGvZDQxzs6I8DHoAQBqAdKJFSdgkhEoBevJ1K/wQkSSkv3tc+Zs6cKTdu3LjH+/U2Gw+1tvJwbu73Ukv5vvNkWxtPtrezeebMg2bCC3DgiPJywrVaBvfSnTLA/y5CiE1Syr1nVx8g3wUN5Xhgs5SyC0BK2SWldEspPcAzwNe2+WSbTDyWlxcQJocJk1ZLgsEQECbfAcK/Q0ERAX64fBfusnPwM3cJIZKklB3Ky58COw7LqAJ8Y17u7Nxr8csA3x4BH0qAb4vDKlCEEMHA0cAv/d7+ixBiKl6TV+O4bQG+R1yWnHzYyr4E+H8abTZCtNoJe8gHCHAwOawCRUppBWLGvXfeYRpOgINMnc3GO729/CzgmD+sZK1bh1GjwfY/lHsT4PDwXfChBPiBEqnT7bW6aoBvl+xvoUdJgADfBR9KgB8on/b3j6nUHODwEPChBPi2CAiUAIeMS5KS1NbFAQ4ftVYrIVrtHq2QAwQ42ARMXgEOGcvMZp5qbz/cw/ifJ2/9etLWrDncwwjwP0BAQwlwyMgPDt5r3+0A3y6zvkEP9QAB9peAQAlwyNhX7aIA3x4BH0qAb4sDNnkJIaKEEF+/IXOAAAECBPhBsl8CRQhRLoQIF0JEA1uBF4QQDx7aoQUIECBAgO8T+6uhREgph4BTgReklDOAHx26YQUIECBAgO8b+ytQdEKIJOBM4P1DOJ4AAQIECPA9ZX8Fyh3AJ0CtlHKDECIb2H3ohhUgQIAAAb5v7G+UV4eUUnXESynrAz6UAAECBAjgz/5qKI/t53sBAgQIEOB/lH1qKEKIecB8IE4Ica3fpnAg0Cg8QIAAAQKofJXJywCEKp8L83t/CDj9UA0qQIAAAQJ8/9inQJFSLgOWCSFelFI2fUtjChAgQIAA30P21ykfJIR4Gsj0/46U8shDMagAAQIECPD9Y38Fyr+BJ4FngUA98gABAgQIsAf7K1BcUsq/H+yDCyEaAQteIeWSUs5Uyrv8C6821AicKaUcONjHDhAgQIAAB5f9DRt+TwjxayFEkhAi2vfvII3hCCnlVCnlTOX1H4AvpJR5wBfK6wABAgQI8B1nfzWUC5T/r/d7TwLZB3c4APwEKFP+fgkoB244BMcJECBAgAAHkf0SKFLKrEN0fAl8KoSQwFNSyqeBBCllh3LcDiFE/ERfFEJcBlwGkJ6efoiGFyBAgAAB9pf9EihCiPMnel9K+fI3PP4CKWW7IjQ+E0JU7e8XFeHzNMDMmTPlNxxHgAABAgT4huyvyWuW399G4ChgM/CNBIqUsl35v1sI8TYwG+gSQiQp2kkS0P1NjhEgQIAAAb4d9tfkdaX/ayFEBPCPb3JgIUQIoJFSWpS/jwHuBN7F67O5V/n/v9/kOAECBAgQ4Nvh6/aUtwJ53/DYCcDbQgjfOF6TUn4shNgAvCGEuARoBs74hscJECBAgADfAvvrQ3kPrwMdvEUhi4A3vsmB/6+9+4+9q67vOP58rRXEXwFdN5FCWhRNCtv40RFBZ9wgGaKxwxiHmZPFbdVkJKJmG6z/sC37Q4ZKNjeWKixuMogBpoTxexKXJYIUrYWuoOXHRrFKh9vAzQCF9/44p36v9dtvv1/43J7v/d7nI7n5nvO599y+z5t+++Kce+7nVNWDwC/MMv443Sk1SdIEme8RysUjy7uBf6+qHWOoR5I0oeb1xcZ+ksj76GYcPgx4epxFSZImz7wCJcl7gK/RfZ7xHuDOJE5fL0n6kfme8toA/GJVPQaQZAVwG3D1uAqTJE2W+c7l9VN7wqT3+AK2lSRNgfkeodyU5Gbgyn7914EbxlOSJGkS7e+e8q+jm1vr95O8C3gzEOCrwBUHoD5J0oTY32mrS+juV0JVXVtVH62qj9AdnVwy3tIkSZNkf4Gyqqq27D1YVZvoboAlSRKw/0B58RzPHdKyEEnSZNtfoNyV5Hf3Huzn2bp7PCVJkibR/q7yOo9uAsffYCZA1gIHAWeNsS5J0oSZM1Cq6nvAqUl+GTiuH/6nqvry2CuTJE2U+d4P5Xbg9jHXIkmaYH7bXZLUhIEiSWrCQJEkNWGgSJKaGCxQkhyZ5PYk25JsTfLhfvzCJI8m2dw/zhyqRknS/M13tuFx2A18rKq+nuTlwN1Jbu2f+1RVXTzHtpKkRWawQKmqncDOfvnJJNuAI4aqR5L0wiyKz1CSrAJOAO7sh85NsiXJ5UkO28c265NsSrJp165dB6pUSdI+DB4oSV4GXAOcV1VPAJcCrwWOpzuC+cRs21XVxqpaW1VrV6xYcaDKlSTtw6CBkuRFdGFyRVVdC910L1X1bFU9B3wGOHnIGiVJ8zPkVV4BLgO2VdUnR8YPH3nZWcC9B7o2SdLCDXmV15uA3wTuSbK5H/sj4L1JjgcKeBj44BDFSZIWZsirvP6V7v70e7vhQNciSXrhBv9QXpK0NBgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmFm2gJDkjyf1Jtic5f+h6JElzW5SBkmQZ8FfA24A1wHuTrBm2KknSXBZloAAnA9ur6sGqehq4Clg3cE2SpDks1kA5AnhkZH1HP/YjSdYn2ZRk065duw5ocZKkn7RYAyWzjNWPrVRtrKq1VbV2xYoVB6gsSdK+LNZA2QEcObK+EvjOQLVIkuZhsQbKXcAxSVYnOQg4G7hu4JokSXNYPnQBs6mq3UnOBW4GlgGXV9XWgcuSJM1hUQYKQFXdANwwdB2SpPlZrKe8JEkTxkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDUxSKAk+fMk9yXZkuQfkxzaj69K8sMkm/vH3wxRnyRp4YY6QrkVOK6qfh74FnDByHMPVNXx/eNDw5QnSVqoQQKlqm6pqt396h3AyiHqkCS1sxg+Q/kAcOPI+uok30jylSS/NFRRkqSFWT6uN05yG/DqWZ7aUFVf6l+zAdgNXNE/txM4qqoeT3IS8MUkx1bVE7O8/3pgPcBRRx01jl2QJC3A2AKlqk6f6/kk5wDvAE6rquq3eQp4ql++O8kDwOuBTbO8/0ZgI8DatWurbfWSpIUa6iqvM4A/BN5ZVf83Mr4iybJ++WjgGODBIWqUJC3M2I5Q9uPTwMHArUkA7uiv6HoL8CdJdgPPAh+qqu8PVKMkaQEGCZSqet0+xq8BrjnA5UiSGlgMV3lJkpYAA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqYpBASXJhkkeTbO4fZ448d0GS7UnuT/KrQ9QnSVq45QP+2Z+qqotHB5KsAc4GjgVeA9yW5PVV9ewQBUqS5m+xnfJaB1xVVU9V1UPAduDkgWuSJM3DkEco5yZ5P7AJ+FhV/RdwBHDHyGt29GM/Icl6YH2/+lSSe8dZ7AT5aeA/hy5ikbAXM+zFDHsx4w0t32xsgZLkNuDVszy1AbgU+FOg+p+fAD4AZJbX12zvX1UbgY39n7WpqtY2KHvi2YsZ9mKGvZhhL2Yk2dTy/cYWKFV1+nxel+QzwPX96g7gyJGnVwLfaVyaJGkMhrrK6/CR1bOAPaerrgPOTnJwktXAMcDXDnR9kqSFG+ozlIuSHE93Outh4IMAVbU1yReAfwN2A783zyu8No6pzklkL2bYixn2Yoa9mNG0F6ma9SMKSZIWZLFdNixJmlAGiiSpiYkPlCRn9NO0bE9y/tD1jFOSI5PcnmRbkq1JPtyPvzLJrUm+3f88bGSbJT2VTZJlSb6R5Pp+fSp7keTQJFcnua//+3HKFPfiI/3vx71Jrkzy4mnqRZLLkzw2+t2857P/SU5Kck//3F8kme1rHT+uqib2ASwDHgCOBg4CvgmsGbquMe7v4cCJ/fLLgW8Ba4CLgPP78fOBj/fLa/qeHAys7nu1bOj9aNyTjwL/AFzfr09lL4DPAb/TLx8EHDqNvaD7IvRDwCH9+heA35qmXgBvAU4E7h0ZW/D+011hewrd9wNvBN62vz970o9QTga2V9WDVfU0cBXd9C1LUlXtrKqv98tPAtvofoHW0f2DQv/z1/rlJT2VTZKVwNuBz44MT10vkryC7h+RywCq6umq+m+msBe95cAhSZYDL6H7LtvU9KKq/gX4/l7DC9r//qsdr6iqr1aXLn83ss0+TXqgHAE8MrK+z6lalpokq4ATgDuBn62qndCFDvAz/cuWen8uAf4AeG5kbBp7cTSwC/jb/vTfZ5O8lCnsRVU9ClwM/AewE/ifqrqFKezFXha6/0f0y3uPz2nSA2XeU7UsJUleBlwDnFdVT8z10lnGlkR/krwDeKyq7p7vJrOMLYle0P0f+YnApVV1AvC/dKc19mXJ9qL/bGAd3emb1wAvTfK+uTaZZWxJ9GKe9rX/z6svkx4oUzdVS5IX0YXJFVV1bT/8vT2zD/Q/H+vHl3J/3gS8M8nDdKc6fyXJ55nOXuwAdlTVnf361XQBM429OB14qKp2VdUzwLXAqUxnL0YtdP939Mt7j89p0gPlLuCYJKuTHER3L5XrBq5pbPqrLC4DtlXVJ0eeug44p18+B/jSyPiSnMqmqi6oqpVVtYruv/uXq+p9TGcvvgs8kmTPzLGn0c02MXW9oDvV9cYkL+l/X06j+6xxGnsxakH7358WezLJG/s+vn9km30b+oqEBlc0nEl3tdMDwIah6xnzvr6Z7rBzC7C5f5wJvAr4Z+Db/c9Xjmyzoe/N/czjKo1JfABvZeYqr6nsBXA83a0gtgBfBA6b4l78MXAf3RyBf093BdPU9AK4ku7zo2fojjR++/nsP7C27+EDwKfpZ1aZ6+HUK5KkJib9lJckaZEwUCRJTRgokqQmDBRJUhMGiiSpCQNFWoAkr0qyuX98N8mj/fIPkvz10PVJQ/KyYel5SnIh8IOqunjoWqTFwCMUqYEkbx25J8uFST6X5JYkDyd5V5KL+ntL3NRPn7PnfhNfSXJ3kpv3TI0hTSoDRRqP19JNrb8O+Dxwe1X9HPBD4O19qPwl8O6qOgm4HPizoYqVWlg+dAHSEnVjVT2T5B66G8Hd1I/fA6wC3gAcB9za3whvGd10GdLEMlCk8XgKoKqeS/JMzXxY+Rzd712ArVV1ylAFSq15yksaxv3AiiSnQHdbgiTHDlyT9IIYKNIAqrtl9buBjyf5Jt3M0acOWpT0AnnZsCSpCY9QJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDXx/7jtGO2v5bZtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=('Time', \"Counts\"), # (xlabel, ylabel)\n", + " axis=(0, 1000, -50, 150), # (xmin, xmax, ymin, ymax)\n", + " title=\"Random generated lightcurve\",\n", + " marker='c:') # c is for cyan and : is the marker style" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The figure drawn can also be saved in a file using keywords arguments in the plot method itself." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABF1UlEQVR4nO2deZwUxdnHf88uK7cIch8CGiAajAtZwaDihSBiBKMG9I0CEhVFAV8/EFBMjK8oKmrQKAExiBcIogER5VLjrQFRBJVDUVnkFBS5YbfeP3ZqrOmp7q6+pmdmn+/ns5+d6aO6qrr6N08/9VQVCSHAMAzD5BcFcWeAYRiGCR8Wd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8pAqcWcAAOrXry9atWoVdzYYhmFyimXLlm0XQjTQ7csKcW/VqhWWLl0adzYYhmFyCiL6xm4fu2UYhmHyEBZ3hmGYPITFnWEYJg9hcWcYhslDWNwZhmHyEBZ3hmGYPITFnWEYJg9hcWcYJoUvvvgCb7zxRtzZYALiKu5E9C8i2kpEK5Vt/0dEK4joYyJaSERNlX2jiWgdEa0moh5RZZxhmGg4/vjjcdZZZ8WdDSYgJpb7EwDOs2y7TwjxayFEMYB5AP4CAER0AoB+AH6VOOdRIioMLbcMwzCMEa7iLoR4E8AOy7ZdyteaAORyTr0BzBBCHBBCrAewDkCnkPLKMAzDGOJ7bhkiGgvgSgA/ApDvcM0AvK8cVprYpjv/GgDXAMAxxxzjNxsMwzCMBt8dqkKIW4UQLQA8A+CGxGbSHWpz/mQhRIkQoqRBA+2kZgzDMIxPwoiWeRbAxYnPpQBaKPuaA/guhGswDMMwHvAl7kTURvl6IYAvEp/nAuhHRFWJqDWANgA+DJZFhmEYxiuuPncimg7gTAD1iagUwF8BnE9E7QCUA/gGwGAAEEKsIqKZAD4DcBjAECFEWUR5ZxiGYWwgIbQu8YxSUlIieLEOhskOiCq6zrJBGxhniGiZEKJEt49HqDIMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuDMMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuMfExo0b0b17d/zwww9xZyUv2b59O84991xs2bIl1nw89NBDuOeee2LNA1M5YXGPiTvvvBOLFi3Cs88+G3dW8pJJkyZh8eLFmDBhQqz5GDZsGEaNGhVrHpjKCYt7TJSXlwMACgr4FkQBD6FnKjusLDEhxb2wkFchjAIWd6ayw+IeE2VlFZNlsuUeDSzuTGWHlSUm2HKPFhZ3prLD4h4T7HN3pn379nj66ad9nx+WuPfs2RNjx44NlAaTH6xbtw716tXD+vXr486KEawsMcFuGXuEEFi1ahWuuOIK32mEJe6vvvoqxowZEygNJj+YOnUqdu7ciWeeeSburBjByhIT7JaxJwxXCrtlmLCRbSpXYHGPCbbc7YlT3Lt27YohQ4YEvn4288UXX4CI8MUXX7gfHJAZM2agWrVqOHDgQOTXCpO+ffuiT58+cWcjEKwsMSHFnS33dORbTRD8WllvvfUWHn300cDXz2amT58OAHjuueciv9aIESNw4MABbN26NfJrhcnMmTMxZ86cuLMRCBb3mOAOVXvCdKWwW4aprLCyxERlEvcHH3wQRGRskWfKLfPjjz+CiDBjxozA18s2Ro8ejRo1asSdDSZGXJWFiP5FRFuJaKWy7T4i+oKIVhDRi0R0lLJvNBGtI6LVRNQjonznPJWpQ3XkyJEAfnZFuRGmW8ZJ3NetWwcAuO+++wJfL9sYN24c9u3bF3c2kuTTG1SulMXEbHwCwHmWbYsAtBdC/BrAGgCjAYCITgDQD8CvEuc8SkT5r14+qEwdql4fhkxZ7nJfrkVB5BL5VLe5VhZXZRFCvAlgh2XbQiHE4cTX9wE0T3zuDWCGEOKAEGI9gHUAOoWY38jo27cvioqKAABFRUXo169fpNeT1mmuNZhMEJW4n3feeahfv37adXLhHkyYMAFEhL1798adFXz//fcgIjzxxBNxZ4VxIAyz8SoAryQ+NwOwQdlXmtiWBhFdQ0RLiWjptm3bQshGMGbOnInDhyt+rw4fPhx5JIEU91x5xQsD07JG5ZZZsGABvv/+e8/5yQbuv/9+ABXz1HshijJKd9bEiRNDT5sJj0DiTkS3AjgMQA7Z0plA2tYlhJgshCgRQpQ0aNAgSDZyEvlDEoaQ6RBCZJ14mebH5Di38klxLy8vd00v7gFPJveqSpUqAIBDhw4ZnwP83M7iQpfHbGybQZFlyqZy+RZ3IuoP4AIA/yN+LlEpgBbKYc0BfOc/e/nJihUr8PrrrwOITlCuv/76rPPnhynuf/nLX1BQUGA7OEYK9sSJE3HLLbe4Xmfv3r2x1dell17qem3pMpRifeSRR+KEE05wTTtucddRUFCA7t27x52NUBkwYAAKCgowYMCAuLOSxFdrJqLzAPwZwIVCCNUJOBdAPyKqSkStAbQB8GHwbOYX77zzTvJzVJb7P//5z0jSDUKYbpl//OMfAGDrg1b96A899JBjWkSEnTt3GuUtCmbPnu16jIyqkmK9e/duoxGm0tKPApP7adefsXjx4rCzkzF05X7yySdT/mcDJqGQ0wG8B6AdEZUS0SAA/wBQG8AiIvqYiP4JAEKIVQBmAvgMwKsAhgghzOLfMkxZWRn2798fy7XVBp9Nr3Eqe/bsCT2dsN0yTph0kqpp+OlU3b9/f6SW8d69e5N5lG4Zr9fLRss9CsrKygKHfqr1rSMXOt5VTKJlLhNCNBFCFAkhmgshHhdC/EII0UIIUZz4G6wcP1YIcZwQop0Q4hWntOPkggsuQPXq1ePORlaK+5w5c1CrVi3897//DZTOjBkzUKtWrWTYZ5jiLgnywKnRMn7SqV69Ok477TTf13di8+bNqFmzJsaPHw8gO8U9qNi9+eabIeUEuPzyywMN2tq2bRtq1qyJcePGhZanuMkup2wGefXVV2O7tvpQROWWCcKCBQsAAB9+GMyj9vLLL6d8jyJaxi5NL5a7X3EHgA8++MDXeW5s2FARdDZz5kwA6T53N6QPP0q3TFDeeuut0NKS9eSX776r6BrMp9HKlVbc48TOLbN3717s3r07I3k4cOAAfvzxx0iv4beDMogv126/U7itH3H3GpLoFWsMvpPlXlZWlhLiCaT76J2u4cSBAwfwww8/GOXZCbuoGXkNa1vUlWnXrl2RuVLl/cw114sTLO4xo1qpDRo0QO3atUNN3+4BPv3003HUUUeFei0r1gclCreMybX37t2Lhg0bOl7Hy0O9fft2RB2+60XcR44cifr166eIsBR3neXupaznnHMO6tat65hHJ9SQVCty22mnnZbWFm+55RbUr18/ReDr1KmDk046yTTrxggh0K1bt5T8uh2fC7C4x4CT5R42dg3RxJ8e1IrxK+4mbpkwOlT9Hp+ptysVJ3F//vnnASDF+vXro7eiRnZJ/LQLJ8t96dKlafteeOEFAMCOHSmD47FmzRrP13YjG12jYcDibsHvjf7222+NH6RMRst4Tf+bb74xnuDLyqpVq7Bly5bk90xY7nZC40WAvLplqlWrZnysFzZs2JAySEnFSazlsVu2bEkaCH7EfcOGDb5/DLZv346ffvrJdv/u3bvT5nTPFlE1bW9ff/21r/TXr18PIQR++OEHbN68GRs3bvSVjldY3C34EbatW7eiZcuWGDFihNHxmexQ9SKUX331FVq1aoXJkyd7vs57772H9u3bo3HjxsltcbplTPz96nW8XDOqH+RjjjkGw4cPT9lmdcs4dZB27twZp556qvHxKtu3b8cxxxyDm266yfVYXfkbNGiA4447zvbYDh06oFGjRq7pmFwrzOOt59j9yC9btgxPPfWU57RXrFiBY489Fg8++CDq1q2LJk2aoHnz5u4nhgCLuwU/4i4tlpdeesno+Gy13EtLS31fZ/Xq1aHlJQyh9Rotkw3iDgDz58/XXkOK9cGDBx3P//jjjwGYdaiqSPeHlygyL53WTj53p7SzRdz9uoO+/PJLAOlhn5nw2+eduK9fv97x9dANVdy3bNmS4mawo2rVqgBg3JOfrZa79VgvrgrdvPR2lvvGjRvTIiFU1DpZu3at43WDiLtM26sP2XrN5cuXh7YeqUzbrkNVZ4nr6sCpQ9UJL3URNKrJRNy94kc0TZ5Bv/mx+5HKhLhXifwKGebYY49FcXExli9f7ut89UZLF4PbjZAuAD+LAGeT5R5E3KX4OJ0v02/evDmKiopsrVA1H23btsW+ffvS/NxB6+3w4cMYNGhQMp9B6qljx44AKtxzYUfReHHLqHj1uWdq4JhKFIZNeXm55wVwTCx3v2/bduJeXl4e+VxGeWe5Az+/mvrBj1tG3jg/lns2i7sXTCx3FSeRsubDy7GmWIUljHoKIx7crs6kEJi2T3m816UNMxnnHUXb9/ODEeUzGKflnpfiHoQg4m5quUfhltm9ezc++eQT27xFjc5yt1omdnnZuXMnPv/88+T3oCNU9+zZ4/rmZrXWwhD3LVu2YP78+a5pffnll9iyZQsOHDiAZcuWGV3DyYeuu55TfLkpbu7N1atXa/3sX3/9dXLEpxNhhLyaprl161asWbMGS5cuTT6ny5cvT5tPJuwfNxb3LMKPuMsGZfrKHIXlfvHFF6O4uDjN1ZFNlrtd+iUlJSnT13p5EHT7rrjiCteZIIMIi932QYMGoVevXvj0008d0/3FL36Bpk2bYvDgwSgpKXG8hqxDr5a7V3HXWe6/+93vHI/dtWsXjj322LT9rVu3RrNm2jV6tOno8CuyduUtLi5Gu3btcPLJJ2PYsGHYuXMnOnbsiCuvvDIj4m6FxT0GgljufgjLcn/77bcBpEdTZGOHqpWvvvrK6Dhd2rpj33vvPdfz1Xq3s9zt7o1d/mREhYl7pry8XDsvjd098OuW8dqe1XumRnjYldltQJffDlW/2KW5adOm5OePPvooOYPkO++8E7hj2ASdzz1qKo24CyGwYMEC1xsZVNxLS0uxcuVKx+OtlvuSJUsCT/AkJ5ayirtbI1LdIU51s2fPHrz55pvYvHmztk/DS4eqG9Y8S9fFjh07kpOZOaWly4vK7t27U67xwQcfOI6gVL8vXLjQtY2YTj3r5Y1EirXVLbNw4UJtOn597ro0rOmEZd2aCF5Qt8zatWuTywJKCgsLPbtG/ZZZ1iG7ZSLkqaeewnnnnYfHH3/c8bggbhkAaNGiBU488UTH49WG8u6776Jbt2649dZbPV9XxS4O2q0RmazmAwDXXXcdzjjjDDRp0gQdOnRI2x/EcrdiPe7ss88GAHTr1g2dO3d2TdNN3C+77LKUe7Z//35t5I417RdffBE9evTAhAkTtOnKOghzcis3y71Hjx5a/7Zfn7t6z9R7GpalqdapNU2vsfA6rMe3bdsWbdq0SZkOWC2XEKlL44U9twz73DOA/PV2G/qbabeMjPd2s/bdkIJm7dQNy+fuNkgpTMvd7jjZSao+wH7EfdmyZWkioBNka9qy7djF3su3pzAsdyuZ8rmrhCHuTta5dZ9aNr8/TnbHq28hVapUSRFdr6GQfmBxjxDp9pAPoB1hibtTp5raUOzcKU6sW7cuLcrCTdw//PBDrF+/3jFda9nVfNasWdPxXJPYYr9uGSuqj96PuB86dCjtGrr6V4/ZvHlzsj7s2oiTuOsmhXOKcrFzy3j1uXudb97Oci8rK8Phw4cxZcoUfPvttynneBHgefPm2Z6nK9vBgwcxe/ZsX4aBXb4KCwuT+6ziDri/eXlZxMYpzj1qWNwtBHXLSH7961/bHh9U3Nu0aZMWZeHmluncubM2skHFacCLm7jrCNtyl2LTpk0bx2PdxP3w4cNG4q6m3aFDB1eBlSOVdeJ+/fXXO+bJek27aBmvi3WMHTvW03V1aQAVbfzDDz/E1VdfjRtuuCHlOKdnxtoG+vTpY3tN3XM0btw4XHLJJclZIt1Q01BnybT+aDmJ+8iRIx2v8corwReYY8vdI04VlmnL3RTTOUPckOUK4pYJIu5u4uAFN3F3OgbwJ+5ubpnNmze7dlI6We5yjhGvBA2FdEItny4U0uqWkeWyTsnhdyZJE8tdzsRonVHSJE27KbSrVKmSsvSj1S2jezPkDtUY2bp1K1588UXb/dkk7mpDCUPcf/zxx2SfgtV3H0TcvbhlnFwMXvPi9DptTUuXpts9PnToUNp51h/FXbt2Yfr06Snb3AT2iCOOAFARQmgy/YWXyaiiEHfTa8rr2om4X3F38rlL5FzvdobC7t27U+7TTTfdlHRF2fV9uFnuOtdO2HPLZIVbhoj+RURbiWilsu1SIlpFROVEVGI5fjQRrSOi1UTUI4pM6+jVqxcuvvhi2/124m6tdD8NNUhEQhjifvXVVyc/DxgwIGWfF3F3Eo46deqkfDcZvh+VWwb4Ob7arSNQh4nlPmDAAPzpT39K2eYmsHL/3Llzk/PNSLwaAHaC49UtA6QPrtMJlc5CtYYL2oXrhmW5O4Vb2onrkCFDcPnllye/z5gxA6eccgqA1HtqfSNR76HTmIcoooR036PAxHJ/AsB5lm0rAfweQMo8lkR0AoB+AH6VOOdRIvI2i49PrLGsVkzFXf7ae1mQIciNkucGEXd1gIZd+iY4PaRHH310ynerwGVa3J2OdXPLlJWVpT20VsvdOrAKcI/g8LvIiQ6r2Mrvfix3L7OkqudZBdCuffhtuyaWuxtO01T7sdytbTaouGd1KKQQ4k0AOyzbPhdC6GLjegOYIYQ4IIRYD2AdgE6h5NQjU6dOTfkuxV2+OkuslfzII48AAKpXr56W5uOPP4477rgjzZfndKOee+45fPPNNynb1Aa0aNEiAP4fkJUrVyZHp+rQ5c1uRRkvFph8ED/99FO88sorrv5bu7zo0D1QTz/9tHZBbyEEnnnmmZQQVzdxB4CZM2emfLeKu64u3Cx3kx88U6SrwfqD4jVaBvhZ3Hfu3InHHntMe7wur2odlJWV2VruTnMqeRmh6qVjVmLnrvnpp59w3333afe98MIL2LNnTzIPQd0yTvfZ7rxVq1bZnhMWYU/52wzA+8r30sS2NIjoGgDXABUr0ITNVVddha5duyZXhzG13OVDJSMfJKtXr06+pm/btg0PP/xwcp/Tr3u/fv3QuHHjFOtavaa0PPyKu3XAlLUudXk7+eSTtWk5+dyt6chjZVSQ/JGSx1pHAQLBLPcrrrhCe+yePXvwxz/+Ee3atUvOqW5ynZtvvjnlu9UtoxMar+LuZwpoeZ5VhL26ZdS6l0I2cOBAzJkzBxdeeKHReVbL3U7cw7Lc/czvbifuo0aNwqxZs2zPHz16tDYfdm4ZJ3FfsGCBa76tZT3zzDMjt97D7lDV1YC2BEKIyUKIEiFESVQryasPgmyY1ld7uwq2umXUB3X79u1GacjtmzdvTtmua8RBpx+QWIVblzdr/iVOlpOduOuuE9Ry99LoZb7U13PTQUQqJpa7V7eM31d6ne/Zq1tG53OXBobJaFwgtQ5Ut4z1vvr9EXOy3E3bjp3oOq0KBfw8eFDnlvHqc3da2D6M2Tn9Era4lwJooXxvDsB97s8A7N27F3fffbfta/T333+P+++/32hhCBWdW0Zi+vptt123HJ/1AXniiSewZs0aHDx4EHfddZc2VE83ajSIa8DJKoxK3IMOOVcfHtkW/KzEZa3fON0yuvOC+NyluMt61Vm7OgvVznK33ld1fiK7fOsoLS3Feef93J3nVDZdOp988omt1WxNS+fSk+k65dGkLTp14GdyfnwrYbtl5gJ4logeANAUQBsAH4Z8jRT+9re/4d5779XuKygowFVXXYW5c+fiyCOPBGC+SIPVcndyUdg1ALvtM2bMSNtmFZOBAweievXquPPOO3HrrbeioKAAo0aNSjlGN4dNkEUonKIqvIi7F3H+97//nZKG37nVy8vLcffdd+POO+/09UBZf/z9iLv1nDCG7Fstdz9uGXlfZb5NO6bVcqo+94KCgpSyeRmxqbJkyZKU7071pdtXXFxse7zpj2AYoZBhjs4OE1dxJ6LpAM4EUJ+ISgH8FRUdrA8DaADgZSL6WAjRQwixiohmAvgMwGEAQ4QQ4YUQaHCy0goKCpKvZ3Zx0X7E3TQNJwvMZPu+ffuSCxfrHmqdKyeI9ejkGnLr/NJZ7iaLdaivtH7EXeZLWu6A98U3gPT61YmDm/UchuVuF72hdqiapKvWvfzhchJ3NxFzcsvIdlO7du2087z80IYZbeSWlvqjaRIK6VfcnaamjhpXcRdCXGazSztiSAgxFoDZmOcQcBoFSUTJhi2jZKwiNXfuXO0AHau4L168OPnZ1DrWWRt2r4d281nI7dYOXjsyJe5huWV053mxeFVxl53lfizmMWPGpHzX/ZjKdO0mUZMdl9bjVYK6anRhnDp0Pnd5ntr5bZov1S1jfeaCjq5WryEJ6s4Iy3IfNWoUHnzwQcc0/Ir7ypUr0b59e6N8+iHnF8h2G+IuG6QMj7NWct++fbXnWUMmb7rppuRnU7eM7oZ6XWdTirtp3H0QcXd6SP24Zbx2qMooGz9umbKyMteRqV7QibtXy1L3w+VWNru3Dq/i7uSWsf4IAfp71qNHj6RP2+qWUQlL3L106LvhZWFw3ZuSZMqUKahXrx5OPfVU2zTcDEx5HSsnnnhipBZ9zk8/4BZHaw2BNK1ML/G5XlwtJo1OPc+ruGeDz91vtIypANqlGaa464QmiLj7TUPnczepH7XurW4ZHTpxr1u3bsp+ec+tYiaDAYIKldcOVSfcfgzs3Ky6H9f9+/fnpM8978VdNuwwVqZR0zU5Vj3OyyAUNT354EhxnzhxouO5cfncVbE3Ffdhw4alRAkFccsA4Yr7rl27HK9lgt9IILWe3n77bYwYMQJPPPEEAP+W+8MPP+w4l428ptoHYhotI5+xoOF+pue///77rse4GVHqil4mfWh+xT0OUZfkvLg7vRKpDdKPVeiUrtN3iXot2SC9irvVcnebOlYn7qZlDuKWUX8YTN0yDz30EJ599tm0/X46VIFwxV1HGJa7m4BZ79f+/fsxfvz4lDz48bkPHTrU8XiZphwIZs2r6pax1oNsNzrjwG+HqlPb+e1vf+spLSesI1T9dMY7aVCYuuOVSifucVnuXuKU1fOCdqjqhlfbEaRDVf1h8OKW0dVRtop7HJa7bp/fDlWv17S+ecp77iTuQUTMrdwSk+klvPwQh9mRaweLuw9Mfe5ehcPpuIULF6a8ttsde8stt6RtM/G5q/G/Utx79+6Nf/zjH67nvvvuu3jnnXdS8mba0J1EwJqG9VhV3A8ePIhrrrkmbVInXT395z//SX5WJ3MyRT12w4YNxuf5IYwOVbepgL/99ltH8TZ9E9P53J1w+yFSnyVreqprLYhb0K3ckgYNGmDw4MGOaZl2qOqMnzfeeCPtOKvOfPDBB8l1j3VlXLRoEe6+++5YLfe8jpZRfe5qyFwYTJgwAbfddptjmnISMhUTgejZs2fys9pIb7zxRqO8nXbaacnPppYekC7YuggYu+/qA79gwQLbCaqcCOpzv//++z1f0wtexV1XjnPOOcf1POt0FSqm91MXLeOEW+evKu5W1HsfZBoNU3HftGkTJk2a5JiWl5G8foRXTis8duxYbb67d+8OAHjttdcAsOXuizgsdwDajkAT1EanzkMdFV7E3W6JPsDdFaU+1Hb3JIpomUzO2eH1WrpymKxO5SZyUbhl3Cx3p8U61PTDEvdMxbkXFBQ4hkICPw+us8PkR4nF3QemPndpDZk+oOoK97obow46MrlxF154IdavX5/ygGQihEonBnYN1fpg6qJ97L6HKe7qmAI3Minu1vVI3YRalzeTex5U3CdMmJAy54qJW8bE524y5a96reHDh3sS6Ysuuih5vtO86kHrUMWv5a5ex6SvwG6a7SjJeXF3m2fZrw9QnYNdZwV4tdx37NiBESNGpKSV7eLuxXL3KyC6/dalAoOkGSZyKgiJm7jrfO4m99wt3tutzMOHDzdOT+LF525FNXTUYyZMmOB6XZVt27bhk08+0e5TjSKT4AIvLjQ3y52IHKdlMPkhcZulMgpyXtzdLHeTbW7oGoraoE3TLC8vT0nLpNc/KNYfuEOHDtk2VC9uGSfL3SkvTvi5N7HGEXuw3L2IexhuGZUwxN3JLaPGxgedutpOuL0u5Wd6fNAIH7fQVI5zjwhdpfupbDvLfdu2bejYsSPWr19vlI4QIqXRmYh72Ja700RrUVvuK1asSHZE2eXVK5l0y1hxE3e5kAlQEV1x1VVXGfnc3Sz3KMRdV/fqfEpDhgyxFW51/vzbb789ZZ/psyG54YYbMHny5LTtXjuzTRcfLysrQ4cOHZLfrTNVAhVt+/zzz9eeb+qWseP000/HihUrjPLqlZwXd7ch1dbK9SMGOitg//79ePbZZ7F8+XLjKA0/lnsU4m5nuVsXHfDic1fryC79YcOGJVemt8urV7JZ3K0/pFOnTjWy3J2sTi+hrRKTOnI7ZtWqVbbirrYb6/KWXnnrrbdw7bXXplnwapnDtobdrHyn9Znd3DJueX377bdxww03OGfQJ3kv7lbCstz379/vOr+37trZLO5WMfJiuZvUwe7du13z6pVsFncddrOCqriJu1fXh1/L3TRffla+csM6U6tXt0yYON3nMNwyW7du9ZUvN3I6zv2jjz6yXagD0D/4N954o3Zleyd0D8e+ffuSIqlG1jjx0ksvYf78+cnvJlZcUKyWxa5du2zF3Tqfyo4dO9C0aVPMnTs3rS67deuGefPmJb+bCIib66a4uNhooJZKrom7yZJ0buLuVejsrOk77rgDW7duxcSJE43q0e5HJawlIlWsE+Vlq7jv3bsXF1xwQco2tfNUXWnKjqjEPectdyfsGqzb/MxW7KZ/9ROLG6Xl3qxZ+lrkug5VO6yW+2uvvYZNmzbZDtQYMmRI8rNu4jCvbNy4EX/4wx88nZPNHap+cbpHfix360hhlX/+85/JdIPkK2yc3gzjvOdWPvvss7RtXvsZunbtGlZ2UshpcXcLiQrLqrOb/jXoQIswxb1Ro0Y444wztOdbozZM3TLqBGBudanWURAry6uAZNpyVzvW4hJ30/o98cQTfU8VrSOT1rMft19UOJVb52r02ibdJgP0C4u7AbqGVV5enlXibifaY8aMQatWrZLfzzrrrDTXQP/+/XHo0KG07bL+XnzxRcyaNSstbXUswMMPP5z8nMkHMdPirt6PqMTdSUwWLFjgOj+NRAhh5PojIixbtsz1OHUeoKhZuHBhyvc43TJq1JAVXfSZ1zYZ1YR3OS3u1tWSrIT1+haV5R6mz93ux+bll192bWxPPvmk1h/uVzjjtPAyiZ/7p1vU3Irb28uUKVOMr2f6A+S2TkDcqBZyNrllwhD3qMa75LS4Z8pyD9PnrhKm5R70TSKMZeWc0oqKXLPcTcYDuNWf6bJ2ppY7kFl/uilHHnlk8rNJlFEchOGWYctdg5vlXpncMkFdIXZlDCutqLjooosydi0guLjbLa6twuJegRogoIo7W+5muLZOIvoXEW0lopXKtnpEtIiI1ib+11X2jSaidUS0moh6RJLrBLnucw97bpkg+QlT3OP0j0ZN3D53wNuC1KZ5zMZ7VqtWreTnbBV3XYx/LlnuTwCwBmuOArBECNEGwJLEdxDRCQD6AfhV4pxHiSiyYO4oxF03zFjX8E3ild0I+xc7DHFX85Tr4m4yd7pXMiHubla0F3E3tdyz5Z6pqPWbrW4ZdY4pSc5Y7kKINwHssGzuDWBa4vM0AH2U7TOEEAeEEOsBrAPQKZyspuPWcP2Iky50TGfVrlq1Ctdcc42vfEnCjnMPIjbSvaH+YPp1r8QZtqYSxZJpmRD3a6+91nF/FOKejaj3T7dgeTags9zPPfdcT2lkW4dqIyHEJgBI/G+Y2N4MgLrWWWliWxpEdA0RLSWipVFNhxmluDtRo0YNo+PCFvcgYiYX8Fb7MXLdcs9VcXfDi8896jx27twZQDR9H2redWv0ZgPW+Zj8kCsdqrqnSXsnhBCThRAlQoiSBg0ahJyNCsISd69ipfbyOxHmogNhNXhV3P2mmS3iHrWwxSXupi5BLx2qfpHC1LFjx9DTVvOeLW3Kyg8//BA4jWyz3LcQURMASPyXkyOUAmihHNccwHf+sxcMP+Ku8+NfeOGFntKoXbu20XEm4mA6YAUIx1JVrYhcCIV0IgrL/fjjj09+Np1TKGysi4Y4kakVgNwi1/ygPh/Z6pZR54ryS7ZZ7nMB9E987g9gjrK9HxFVJaLWANoA+DBYFp1Zvnw56tWrp93nx/LU/Ypu377dUxomlvt//vOf0C2/sMU9F0IhnYhC3MePHx96mlGRCfeFrOOoxV0lm9wyYRBnKOR0AO8BaEdEpUQ0CMA4AOcS0VoA5ya+QwixCsBMAJ8BeBXAECFEpE96cXGxdsIswJ8/LAzBNbHcu3TpEvorcxhiFka0TBRTwPoh7B/Pc845x2iJt2wh18XdaWm7fCIqcXdNVQhxmc0ubZyZEGIsgLG6fVFhJ5JXXnml57QyJe6FhYVZabmHIe5e186MirAt9yjeBPIFttz9k21umawiTJEMIy3rzZo2bVraMUSUlWFqYfjcs4W4OjyzhahFcOnSpcnPTm80pgEGVirL/TONrvNKXtRetom7NY0aNWrgl7/8ZSTXUskWyz1bYEs7Wpo0aWLkljnmmGN8pV9Z7l9UP2J5Ie6qBRGUKMS9vLxcO+owzJsaVkyzarmHMQo3Tiq7WyZqy72wsDBZJ1G5Fhj/5IW4S44//ngce+yxns7p1Cl1AG0U4m63wEI2dqiqD6l1cFmdOnUCp59JwhZjN7HMVNihKVGK+4QJE9CoUaPkd6e27JQPr/dIDUX9zW9+4+ncykZeiXu1atXw61//2tM5J510Usp3O3Fv27atcZo6cY/acg8Lp577XIoUATJvabds2TKj18sEdu4W67z0ftuy03m6H4Vf/OIXyc/t2rXzdc3KQvapSwCqV6/u+Rxr47WzQNasWWOcps4tkyuWu5O455oPPhv7NHINO3eLrFtZJ37bslOd6sRdvafZaBxlE3lVO6oP0BRr4w2jwVjzEKbl7vQqGrZbxkquhaBlsxhHMWOlFb/366qrrkp+tmsP1rSDiLtfwykT4j5y5MhI05cLlEdBXol7GCNSw2gw1oYelrgfccQROO6442z3s+WeSjZ3qLZu3Tq0tOzwK+5NmzZNfrZzy8gwWVknQZ6bxo0ba7fr8q9uizqUuGXLlpH/gNiNrg+DvBJ3P0Qh7lF1qBKRo987anHPZstd55LzOvVqGDRs2ND9oCxHbZdu4i7x6l6RFBQUeBqsNHfuXG0+oyLqNh/lj0deibufG2FtIGpl161b13p4ktdff912n6m4e72xTuIeViMM6paZPXt2KPnwim6g2KBBgzKej/Xr12Px4sWux2Xih1IIgddeey1tu5u1qD4T6o99p06dcN55Fev2hDXAjYg8ibv69pgPPncWdw94tV6dLHcnK9YpeibKUMg4LXcTt0z9+vUD58EPuh8lIgo1fNOkfmvUqGE0IjNT4q4rv9s9Utuv2kYbN26cbB+yPcs68VseJ3F3gy13l7QjSzkGwva5O4mZbt53XRpO+fJzY3v27Gl8XT84Pfgm9esnYikMsqnz1OQ+ZKr/ws+kVKpoWoVe7pOW+8UXXwwgNUTRC07ibh2DAgBdu3bV5jMKhBCRi3uU7TYvxH3WrFm+z7U2frWynR5Ap5sSpbj36tULl12mn8vNS0Np2LAhfve736Vsa9y4se0Mm7fffruRIMU1UtGu7Nkk+ib06dMncBq33norAPs3Rjesbpmbb745ud0q7oMHD8ZPP/0UqIPY7jk4+eST8dNPPyVXewKAJUuWuJ7nBy/rJlgZOHAghgwZ4njMv//97+Tnzp07Jxc3idJyj2auyQwjXRWZtNy9iLtdOn4tD3VVeL8cccQRqFmzZsq2hg0b2parWrVqRuIe1fSlfolD3E2mbbBrq05vhKaoE1HpFnB2w2qty3aidn6q0TJB2qNThypQ0dbtXKVhCqMaIeSV2rVr46ijjnI8Rq2jwsLCZL8Hu2VckBXkR9zPPPPMlO+q4LqJu504R2m5O+FFyIQQaeVbsWKFbRqmr6hxRYsQUco6nr169fKVThh9BkHEPcxQXCEEWrVq5ft8+VnmqaCgAH379gWQPrLbL0Tk2m4HDhzomk877BaxtxKk3ouKilwjs9Qyqs8ei7sLQcS9pKREmxbgHO5VUFCAgwcPan3MpuKuNs5nnnnGOM928b9exV2XjpO4m1jutWvXRllZGcrLy31FVHTr1i1tW926dVFcXOx4HhFh9uzZKCsrw65du5KvwXYPT8+ePbX5mzRpUvKz3/6DIOIexrzo0roVQqBp06a49957faelDgwkIvz+979HWVmZduh/WVkZTjnlFADAo48+apS+TFs3kEnu+9Of/mSbNzdMBwk5tXs3qlSpgtNOOw3nn3++7TF2b/PslnFBraCgr+FObhkiSt5s2RFkEuJoYqV5cdHYpRfUcrfmyfS61jyoQ9MLCgo8dR7a+ezd5rWRFiARpSyW4uSL15VV3WYtr2n9BhH3MPosnMJ7/aRlHahkl55ppJkOp+Pt6t2kXKb3TJeWqbEo8+70DFv3yWeCO1RdCGK526UFINmRpNsnb4rJyNPTTz89ZV+bNm3SjvPyANqV00tnnJ24B7Xcred7nWxM93pLRK5i4fUhsXvVV9ORHZMSa73bLZzu9pahS0tiIorq/Og6H72boeBWV+p9HjJkSNo8Mk7Icql5cBvEZJe27HS0I8xomSCrPskfZKdn2Lrv6quvBgC0b9/eNIueqVTiLv2FJmkBwPDhw1P2qQ3QtEN1yJAhKdOULlu2LPkKahdy5pcuXbrgkUceMTq2vLzcyC2jdhT5EXedm6GoqAgbNmzQnq+b1bNatWq+xV1Xr6+88gouueQS13TGjBmT8vBZ3TiTJ0/W1mHLli2xdetWx/wGccu8/fbb+NWvfgVAv4qP6nP3w8GDBwEA1113Hfr375/ilnFDXlOtd50BJLFLe9OmTa6zbIYp7kEsaNk2nZ5ha1779u0LIQSaNGni+7pu5IW4h/lq4+TiMXX/mP6C+3UnOT20Xhq8iVvGq5vAxHKvVauWp9DFIOLutW04udSsLjg/rgRduiom9U1EySgYa8QTkC7uuonsnJDiLt8KvFjuErUencIx7QZBmVwrW1Zgk+3AryZERaArEtEwIlpJRKuIaHhiWz0iWkREaxP/7cfwh0RUN9l6s8aNG2d0TT/iHoZbBjAXd1O3jBQbIQTuuece13RNxP3uu++2La+duAd1NZjilI7Vco9C3E3cMqq4O1nufpHtQoq7H8tdzYOst8aNG6e5rGSa1ro1eR7CfO51ZTONEDO5Zzkl7kTUHsDVADoBOAnABUTUBsAoAEuEEG0ALEl8jxRTt4xXa8B6vOqmcUrLaZ9p+KREHaAlyxeGuJu6ZaSbQAiBkSNHukbA2Im7Ovjk2muv9STG1apV831vvYq+F3F3srLdHuYglntBQYEny92KW53IcspoIS8zP+qiQKTlPn/+/LTBQnbibnLf5Dlh+K1Nxffss89O25Z34g7geADvCyH2CiEOA/gPgIsA9AYgZ3GaBqBPoBwaEGaHqiqOfgXcCS8Wq9PxVmTZTaMUTC13pxG8OuzE3ep39RJ6VrVqVd/D9XXX8XJfs90tE4XPXaYdtltG158g07TWrcm1pPtoz549xvmyw66dWOtQV6cm9ywT8+BYCSLuKwF0JaKjiagGgPMBtADQSAixCQAS/7WjWojoGiJaSkRLrWt1esVU3G+88UbXtNRFFIgIQ4cO1R5nbQwPPvigdp+68IGaV+txJqL/8MMPA3Aupyo4F198cdpyaBI7cZeDf2Rnlhozbc2PlTp16qTtHzt2LAoLC9PmoXcS99GjR+OEE05IbrNa7r/85S/TRM2v5d69e3f069cv+d16H9Q2E6a427Urk05/IsKECRNw5JFH4vbbb0/bH0RI+vbti3379gEIzy0j602K4P/93/+hWbNmqFatGu6//34AFe3N6+hTGXIaxlqqpqGQ6jMjR5maDJjLKctdCPE5gHsALALwKoBPABhPZCGEmCyEKBFClDRo0MBvNgCYV1yXLl3w7rvvOuUpZW6VgoIC/O///q/2WGtDv+6667THWcO5TGKE7a4jw6fURmedvlUNjRs7dixWrFihTdfOn9iyZUsIIdChQwfHfOn44Ycf0uqld+/eOHz4cErsOeAs7nfddRdWrVqV3Gad+uDzzz/HnDlzjNKT259//nnt/gULFuDJJ5+0TWfw4MH473//C8CbX9hNCE899VRtW2zbtq1rSGtBQQEGDRqEH3/8Eeeccw42btyYst8q7l4s7hkzZiQtdz9uGV20jFXcx4wZg9LSUuzbtw9XXHEFgAr3kvp2Z5JnKe7NmjXDrl27XI93wvRNUm2HHTt2hBDCaO3cnBJ3ABBCPC6E6CiE6ApgB4C1ALYQURMASPx3jgkLAdVyDzNyhsh+aLT1ZpmOLLSz3L24ZdQGZ92vdmA61YVb3Lr1IQ3q8rLmM6jPXTfATIfc7nR/3KKWpCh5GXEbpB16dX3ZrQMch1vGxHI3wUQM5Y9B1apVAz/3Xt2fUaUfJkGjZRom/h8D4PcApgOYC6B/4pD+AObozw4PVYD+/Oc/G82nDbi/AjuJu3W7aePy2qHq1iis+1XL3S1PVoGcOHFi2r6gQmGXTy+DRm655ZbA4u40IZfbj6wUJS8zLJo8zHYuMysXX3xxijXvFpHk554NHz486Z66+eabUb9+ffTo0SPleiZt/L777kOzZs1SxnY4+dzt8OJzr1atmvb4u+++GwAwfvx417T8iLtT/VrHa4RpdJoS9OdkNhF9BuAlAEOEEDsBjANwLhGtBXBu4nukqDempKQEO3bssD1WreTRo0c7pkvkbSGB2267Le0aVkxFXK54oyMMy72oqCglncsuuwyDBw9OfreKe1BMLXfdA1NSUuLaseUm7k714vbgWae5NcHkYbabTdF67vjx4/Hiiy8mv7u9Nfq5Z/fccw+mT58OAOjQoQO2bdsG6S71Yrl369YNpaWlKWXzY7l7cctYxb1GjRoQQmDUqIpAPZPJw0zF17Rj/4wzzkj5HoflHmhuGSHE6Zpt3wOIfml3Bb9WtMnrr59fXFNxd7IY3VwquvQAc3GvUqVKSkO1WqVhz30RRNx1272Ku5PVGJe4m55rtczd3DLWTnATTPoPvAiUmkeZj7DdMtJyr1q1aqD+Dyfc3hhNz8tFyz2rMInoUJENYvr06doebxPLffLkybj88stTrm9yTQApHTHqdjWW1q0sVp+46n5wynuVKlVS8vvXv/41Zb81XjlOn7uanwsuuECbH7c+C9M5bnTllGIZl7hbxdvNEHDrUNXlzamteH2u7NIL2y0zfPhwtG/fHv/zP/8TSdgykN4e7rzzTl/psLj7RFacX3Hv168f5s2bp93vltbVV1+dNl2vqeV+xBFHJK0ZeU7dunVTBvzo0lIbnNW/6sdyf/PNN5NzlUii9rmreWvZsiW6d+/ueB25Xb5qm1pQOreME7rryzrw4nOP0nI37Yfxcs9M3hS9lMmp7yJofiStW7fGp59+ikaNGkUinrr6U33pTvXLlntI+K24sN0yJg+TW4eqVxF16lB1QhV3px+QsHyFTuJuUs/WNwnTDlVJkBWirItCmxCk3rxa7lb8uGVMxN1LmXTHBrX8nY4xtdy9aoVfkbael3PRMtlGUGG04rVDVT3P9Jp2/kxTq8B6XtOmTdGyZUs0bdoULVq0sE2jqKgIkyZNQq9evXDyySen7Tex3Fu0aJEy6MsJJ3FX35DcLHe740xCSU855RQQUcoUzCY0atQIl156aUqnphtObeDvf/+7p3OtFq9pH4GOs88+G08//XTy+8KFC5Ox5nYEtdxfffVVDBgwwPhc3bXGjRuXMlDQeoz6ef78+UbH+cVk0NItt9ySsvBM7dq1k89jGCPpTciLxTrchMEOE3EP23L3Ov2Am1vGml5hYSG+/vpr13xUqVIF7du317qjALOVYubPn4/27dsb1ZH1GKvVZSrudm84JvX33nvvueZTd/2CggLMnDnT9Vy76xYWFqb464cNG2Z8ru67W7u1E/ehQ4diwoQJKdvOPfdc1yXigvrce/TokQyr9HM+APz5z39OO8ZOtK2RKmGKOxFh+PDhePnllx2Pa9asGRYtWoSioiIcPnwYBQUFeO6559ClS5dA1/dCXljufsXdxC2Ta5a7KW5uCpNBTEFes+0eOLtyW11IXl+XTdtGWFaVmh+vyw2atEsn3Kb89YqfyKmgbgivBoPp9cLIl596iMPnnleWux1TpkzRduaEbbmPGDEC3377LW688UaMGTNGe4xbnLtX0TLx1U+aNAk1a9bE6tWrUbt2bYwcOdJV3KdOnYq77roL48aNw/Dhw9NWpXIqi1M+JV597lah6tWrFwYMGIAnnngiLT3ddcN8FX7uueewffv25Pdp06Y5Toz2/vvvY/bs2bjvvvvS0vrggw8wa9YsnHLKKfjuu+8AAA888EAy5lyHrqwTJkxIvhFIcffje9chh/bbxeWb5tELTudPmTIFS5YswdFHH210vLrv3XffxfPPP4/HHnsMQgjs3LnT9jy7KTrU/W6YGC5RkRfiLrGrvEGDBmm3hy3uRx11FJ566inHY+xemf26f0wEVh3E8c477wBwt9xbt26Nxx57DABsyxQkesKr5W4V96pVq2Lq1Kmu4m76VtejRw8sWLDA8RjJH/7wh5TvV155pe11AaBz587o3LmzVtw7deqETp06pWxr3Lix4/V193zo0KFp4m46n48bmzZtAgBPqwZFabkPGjTI9pl2S6ukpAQlJSUYN24cWrZs6SjuXvOlQ2e5Z8qKzyu3TBTnhd3LHbZbxkvsMPDzK7acFCoIYYq7WzncXAxB3TJhLEydKUzr3Yul7YS03NVJ9dyIww1hR5C8BA1plMdzKGRAdA/w66+/bnu8iXCHfVNMpx9wEjO1nNK6NqVLly4YPnw4pk2b5uk8HWGF+xERJk6ciKFDh9pOu+AWjhfUcp88eTKGDh2Kbt264YEHHsBbb73lWoZMoIvQcWuTe/fuBZAu7n7dAuPHj8ewYcPQs2dP43PiCP2zw62+5LTDkscffzz5WSfufowa9rn7xKnizjzzTNt92STuVhEyfRCbNm3q6fqFhYVpIWV+CVI3VnFv3LhxWiSHit/pEEzFvUmTJsnr33TTTZ6uESW66X/d6mD37t0Afhb3oG24efPmruGbVrLJcnfDGtqohjA6ESQ6LhNkz89rCIQdLQOEf3Ps3BNerqOWM86HKEzL3Q2/lntYApdNuJVFzrmidjhmmlyy3KNMSx7vdyWxIOSV5R52nLuatmTp0qVYunSpp+s4ped3OwD0798/VtHyeu2HH344OYCosLAQAwcOxNSpU43ScbPc7bY///zzmDp1asrKTnGxePHilCgbv7jVV69evTBq1CiMGDEi8LX8kk0/pm5tRv6fPXs2atSoYRx54yVcM9ORMkAlFHevsbHWY37zm9+EsqyXU74AM5/7hRdeGEmonyleH+Abbrgh5fvw4cONxd1vh2qLFi3wl7/8xVM+o8J0NG9QqlSpkpzLPC5yyXKX+3//+98DAEpLSwHoQyG9hjbGKe7ZcwcCICMdjjrqKONjAe8DJaLAaj2Y9M6rQperbhng53DMunXruh7r1y3D/EwmBSabxN0OO4PBrS3JidxMFgWqX7++UZpRkBeW+3HHHYe///3vuPTSS12PlWuDAvF0qPq5zlNPPYWTTjop+T1bfO5Br3388cfjgQceSFmg2o6goZCVGV3dvP/++0kLNVPXjAtTy12Hztjq0qUL7r33XgwcOND12osXL8bLL79sZMCETV6IO+A+X4eEiFClSpXkfA9uZMoCsXPLAMAf//hH4/MySRgDVUwjU1jcw0UOrGK8We7ybdm0P6Nly5a4/vrrA+XPL9n/7hQh2eyWkUuc6QYbZYtbJpPXbtiwIQD7edmzVdzDzFdYg5KYVOzuUdD5lOImbyx3P2TSLbNmzRqsWLHC+DqTJk3CGWecoZ1FrrKI+xtvvJEcuTp79mzMmzcPrVq1ivSaYTJr1qwUd1pQPv74Yyxbtiy09LKR1atX49NPP83oNb24ZXKJSinuYc2W54U2bdqgTZs2tvutealTpw6uu+46xzTjFveoXVbq1K0NGzbEVVddZXtsNlpUl1xySajpHXfccTjuuON8n58LQtW2bVu0bds2o9f04urLxnZmR6V2y2RTj76c7Kl169aux+omDsuFUMgoyaa8ZBv16tUD8LOrL45rZ4ogK25ZcZsVMki6mSBQTRDRTQD+BEAA+BTAQAA1ADwHoBWArwH8QQjhbeq1iAl7CTkdb731FurUqWN8fM2aNfHCCy94msw/Wyz35cuXY//+/bHlA2Bxd+Lyyy/HwYMHXVdcCpt58+bhxBNPzNj1XnnlFbRr1y5wOlG5aTLdRn2LOxE1AzAUwAlCiH1ENBNAPwAnAFgihBhHRKMAjAKQvoxKFhBlZZ922mmejiciXHTRRUbHZpvPvbi4OLY8SFjc7SkoKHB0aUWFyXJ0YWI36ZwdJkJtPSYXXFuSoKZrFQDViagKKiz27wD0BjAtsX8agD4BrxE6bpZ7GNPhmuJHlLJN3LOBbMoLk1t4aTvZ5Mp1w7flLoTYSETjAXwLYB+AhUKIhUTUSAixKXHMJiJqqDufiK4BcA0AHHPMMX6zEQi7G7V69WqjdUjDxEsDy5ZBTNnU0O1CJCsT69evT67mxARHfc7Gjh2LkpISI8PvtttuizJbxgRxy9RFhZXeGsAPAGYRkf1oGwtCiMkAJgNASUlJLO86TvORyJXK486L2zlsuVeQybetbKVVq1Y5FSqarejadf369dG9e3ej88MMfw1CENOrG4D1QohtQohDAF4A0AXAFiJqAgCJ/1uDZzNc5MRf2SBOYbllKnu0DIs7Exbqs3TssccCMFs3QYZw2kUlybmvMjVDaZBomW8BnEJENVDhljkHwFIAewD0BzAu8X9O0EyGzYIFC/DFF19klVvBj1smbss9m+qvWrVqcWeByUNGjBiB4uJio87aO+64A2eddRa6du2q3X/88cdj8eLFniLighDE5/4BET0P4CMAhwEsR4WbpRaAmUQ0CBU/AO6zeWWYevXqZayCTclFn3s2We4s7kxYqO26sLDQOAqnqKjI1XWTqWmfgYBx7kKIvwL4q2XzAVRY8YwBfgSyuLgYCxcuROPGjZPW86mnnhp21lzJJss9m/LCMNlApZx+IBvxIvJ33nkn+vTpk4wvX758eaBh6X7JJsudYZhUWNyzBC9CWVRUhN/+9rfJ73ENImJxZ3IZtyCEXBqwpIPfZQ1xmvQrCLkskNngCsn03CVM/uF1JaZcgS13A7766qvIRSQXG1Q25Hnt2rXYvXt33Nlg8ohct9glLO4GmMzUWBnJFsudrXeGSSf+p7OSkw3Wr19yOe8M07NnTwBA7dq1U7bLFa/OP//8jOcpTFjcGd+wuDO5zCOPPIKvv/46OXJUUqtWLXzzzTeYNGlSPBkLCXbLMAxTKSkqKkLLli21++KazDBM2HJnGKZScPrpp8edhYzCljvDMHnPjh07UKNGjbizkVFY3LOEfAm/YphspG7dunFnIePktVsmF/xm3CnJMEwU5K3lvm/fvqyIw2YYhomDvBX3XJsClt0yDMOECZu2MTNkyBAAQM2aNWPOCcMw+QSLe8zccccdKCsry7k3DYZhspu8dcvkCnEvlccwTH7CljvDMEwewuLOMAyTh7C4MwzD5CG+xZ2I2hHRx8rfLiIaTkT1iGgREa1N/K98Q8MYhmFixre4CyFWCyGKhRDFAH4DYC+AFwGMArBECNEGwJLEd4ZhGCaDhOWWOQfAl0KIbwD0BjAtsX0agD4hXYNhGIYxJCxx7wdgeuJzIyHEJgBI/G+oO4GIriGipUS0dNu2bSFlg2EYhgFCEHciOgLAhQBmeTlPCDFZCFEihChp0KBB0GwwDMMwCmFY7j0BfCSE2JL4voWImgBA4v/WEK7BMAzDeCAMcb8MP7tkAGAugP6Jz/0BzAnhGgzDMIwHAok7EdUAcC6AF5TN4wCcS0RrE/vGBbkGwzAM451Ac8sIIfYCONqy7XtURM8wDMMwMcEjVBmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfKQQCNUmcrJSy+9hM2bN8edDYZhHGBxZzxzwQUXxJ0FhmFcYLcMwzBMHsKWO8NkIfPnz8eePXvizgaTw7C4M0wW0rNnz7izwOQ47JZhGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPISFE3HkAEW0D8E2AJOoD2B5SdnKBylZegMtcWeAye6OlEKKBbkdWiHtQiGipEKIk7nxkispWXoDLXFngMocHu2UYhmHyEBZ3hmGYPCRfxH1y3BnIMJWtvACXubLAZQ6JvPC5MwzDMKnki+XOMAzDKLC4MwzD5CE5Le5EdB4RrSaidUQ0Ku78hAURtSCi14nocyJaRUTDEtvrEdEiIlqb+F9XOWd0oh5WE1GP+HLvHyIqJKLlRDQv8T2vywsARHQUET1PRF8k7vdv87ncRHRTok2vJKLpRFQtH8tLRP8ioq1EtFLZ5rmcRPQbIvo0se8hIiLjTAghcvIPQCGALwEcC+AIAJ8AOCHufIVUtiYAOiY+1wawBsAJAO4FMCqxfRSAexKfT0iUvyqA1ol6KYy7HD7K/b8AngUwL/E9r8ubKMs0AH9KfD4CwFH5Wm4AzQCsB1A98X0mgAH5WF4AXQF0BLBS2ea5nAA+BPBbAATgFQA9TfOQy5Z7JwDrhBBfCSEOApgBoHfMeQoFIcQmIcRHic8/AfgcFQ9Gb1SIARL/+yQ+9wYwQwhxQAixHsA6VNRPzkBEzQH0AjBF2Zy35QUAIjoSFSLwOAAIIQ4KIX5Afpe7CoDqRFQFQA0A3yEPyyuEeBPADstmT+UkoiYAjhRCvCcqlP5J5RxXclncmwHYoHwvTWzLK4ioFYAOAD4A0EgIsQmo+AEA0DBxWD7Uxd8BjARQrmzL5/ICFW+d2wBMTbijphBRTeRpuYUQGwGMB/AtgE0AfhRCLESelleD13I2S3y2bjcil8Vd53vKq7hOIqoFYDaA4UKIXU6HarblTF0Q0QUAtgohlpmeotmWM+VVqIKKV/eJQogOAPag4nXdjpwud8LH3BsVroemAGoS0R+dTtFsy5nyesCunIHKn8viXgqghfK9OSpe8fICIipChbA/I4R4IbF5S+JVDYn/WxPbc70uTgVwIRF9jQr32tlE9DTyt7ySUgClQogPEt+fR4XY52u5uwFYL4TYJoQ4BOAFAF2Qv+W14rWcpYnP1u1G5LK4/xdAGyJqTURHAOgHYG7MeQqFRI/44wA+F0I8oOyaC6B/4nN/AHOU7f2IqCoRtQbQBhUdMTmBEGK0EKK5EKIVKu7ja0KIPyJPyysRQmwGsIGI2iU2nQPgM+Rvub8FcAoR1Ui08XNQ0Z+Ur+W14qmcCdfNT0R0SqK+rlTOcSfuXuWAPdLnoyKS5EsAt8adnxDLdRoqXr9WAPg48Xc+gKMBLAGwNvG/nnLOrYl6WA0PPerZ9gfgTPwcLVMZylsMYGniXv8bQN18LjeAvwH4AsBKAE+hIkIk78oLYDoq+hUOocICH+SnnABKEnX1JYB/IDGrgMkfTz/AMAyTh+SyW4ZhGIaxgcWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUP+H2kbkaeDVWTyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(marker = 'k', save=True, filename=\"lightcurve.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : See `utils.savefig` function for more options on saving a file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sample Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray also has a sample `Lightcurve` data which can be imported from within the library." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import sampledata" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = sampledata.sample_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABiL0lEQVR4nO19d7xVxbX/d9174VIuvQlc4FJVFAFBgt2IBTUJauILMVE0yTPPmPLSMdHEFKMvVf0ZTXjGp0ajIbGRKBaIBQVBROlK7733cmF+f5y9z5k9e9ou595T5usH7z6zp+29Z9asWbMKMcbg4ODg4FAeqGjsDjg4ODg4NBwc0XdwcHAoIzii7+Dg4FBGcETfwcHBoYzgiL6Dg4NDGaGqsTtgQseOHVldXV1jd8PBwcGhaNCxY0e8/PLLLzPGRov3Cp7o19XVYfbs2Y3dDQcHB4eiAhF1lKU78Y6Dg4NDGcERfQcHB4cygiP6Dg4ODmUER/QdHBwcygiO6Ds4ODiUERzRd3BwcCgjOKLv4ODgUEZwRL+IcaT+OCbOXgvnHtvBwcEWBW+c5aDGH15bhnunLkV1VQXGDOne2N1xcHAoAjhOv4ixbd9hAMCeQ/WN3BMHB4digSP6pQAn3nFwcLCEI/pFDKLG7oGDg0OxwRF9BwcHhzKCI/oODg4OZQRH9EsATqLv4OBgC0f0ixgEJ9QvN3ywdhfqjx1v7G44FDEc0XdwKBIs2rAHV/7hbfz6lY8auysORQxH9B0cigRbPbuMRRv2NHJPHIoZVkSfiNoS0T+I6EMiWkxEZxJReyJ6lYiWen/bcflvJaJlRPQREV3KpQ8jovnevfuInNJhGnBq+uUB527DIQ3Ycvr3AniJMXYSgMEAFgMYD2AqY6w/gKnebxDRQABjAZwCYDSAB4io0qvnQQA3Aejv/QsF7XWwh1syHRwcosJI9ImoNYDzAPwZABhjRxhjuwCMAfCol+1RAFd612MAPMUYO8wYWwlgGYARRNQVQGvG2AyWYVke48o4JIDjAMsDbmPskAZsOP0+ALYC+D8iep+IHiKilgC6MMY2AoD3t7OXvzuAtVz5dV5ad+9aTA+BiG4iotlENHvr1q2RHsjBoVixaMMeHDxyTHnfZnFfvHEPfvniYscIOChhQ/SrAJwO4EHG2FAA++GJchSQsSNMkx5OZGwCY2w4Y2x4p06dLLro4FDc2HvoKC6/bxq++dT7ier57J9mYMKbK7DnoHPC5yCHDdFfB2AdY2ym9/sfyCwCmz2RDby/W7j8PbjytQA2eOm1knQHS/z7w82oG/8C1u44AEC+ipYSjh1nOFJfHjrph45mnnPOmp2J6sky+KU+OBxiw0j0GWObAKwlohO9pFEAFgGYBGCclzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XBkHCzz93noAGQOdcsCNj7yLAbdNbuxuFBx0sn2f5lc4ou+ggG0Qla8DeIKImgJYAeBGZBaMiUT0JQBrAFwDAIyxhUQ0EZmFoR7ALYwxX1B5M4BHADQHMNn752CJCm8mHy8xee26nQfw1Sfm4JEbR6B9y6bZ9DeXlM95DovgTEMnr/fvuUNfBxWsiD5j7AMAwyW3Riny3wngTkn6bACnRuifAwefeysxmo8Jb67AvHW78c+5GzDurLrG7k5Rw0l3HExwFrlFhAqPezt2PEj1i30NKLVFLA6i+FHScfHHs5x+4i45lCgc0S9C+BPabeFLB1HEO9p6vGqcMz4HFRzRLyKUuu61W8OApIKZrHjHvUsHBRzRL0KU2oT2udwSe6zGQWnzBQ4pwBH9IoJqPhf7BoA59jQ1+AtoRQrv8o0lW3HgiDPyKjU4ou/Q6CjyNaugkJXpJ6T5K7ftx7iHZ2H80/OTd8qhoOCIvkODY9PuQ9J0x+cHUX/sOCbP35g9y7FZHNNS2dx3KMPhL9+6L2FNDoUGR/SLEMWsmTF9+TaMvGsq/jUv54EjLe60qCGh6BOmrcDNT8zBi/M3WVdzPCXjrLL+FiUOR/SLCCrZfSGJR77x5PsY9JOXlff9qE9zVu/iUv2DXEdpeGzcldkRbd+fiZhl83aK/XzHIf9wRL8IkdPTb7g231u9E3XjX8CyLXu1+SbN3YC9h6Md/jlCBSlFF3X3o7ymtIaG+zalB0f0SwANob//z7kZccybS7blrY00F7EvPzobD01bkV6F+YYjrg4NBEf0yxgvzt+IjzbpOXcR+aBN+VizpizejF+8sDj9ivMMfuFz4i6HfMDWy6ZDASBt2vjVJ+YAAFbdfYUxbz5FSc44Sw6Vawab95TW93IbkNKD4/SLGI3BCeZDlFQs2jvPf7Ae45+e1+Dtiq+lIQhxoX8Lh/hwRL+IIBJcf2IW42GbjIstdHHGN5/6AE+9mwv/vG7nAUxZtLkRe6RGWs74St3fUznCEX2HRkexkpXL7p2GLz82u8HbtSHnovvt6G0U9gLsEB+O6DtYIW0iIK2vyOjM3kNh1dSjx46j/lj0uL5pL3zb9x1OuUaHUkHZE/0DR+ox8d21RbWN9bfuPo1Myxd7YyHnA96M+mPHsXmP3I1DIaD/jybjot+90djdcHBQouyJ/s//tRjff3oepi/f3thdMUIk7cUo05cd2ma1dyzk0D/71yJ87JdTsfvA0Xx0D3+ZsQprdxxIVMeq7dHLW21yInznpEOi0A9y648dx+3PLVD6cXJQo+yJ/ta9mW3wvohWpI0Jfz6WTOSsCBRq6uItAIC9h9Mn+vsO1+P25xdi7IR3Uq/bBNkrKKbFvKHx1rJt+Ms7qzH+mYbXpip2lD3RLyq62Yi+d9LaVfiO1nbuP5JNq/cOHY83MpXz299zMD+7CBtIh2PW70ZD9iSDQl14/G4Vav8KGWVP9IsZWZl+EQ38uet2AwBWbt+fTZvkuXj468w1xvINcfZScK/Tf+Yo4p2ED1EszFDBfasigCP6xQyf+05h6O87XI9fvfQhjsbQPIkDWWSnxuSwixkHjxxzEa4crOGIvodi4pZzu/302LHfvbIED7y+HE+/t07eZmotaeqzaCStc4xHp68qWMOqEAzPPOiOlzHwx2p31kkQhaH47J9moO8PX8xLPxzSg/O946EYtrOqCZjGgnW4/hgANCqnb+cvPp3V+SeTFgII+h0qgiEAIDxW6yWGWEl3fz5DEeV1z1y5I1GbUVAs36oQ4Tj9IoQ/IdNcqBp60SvERbYxN3tRiGsx7UrzjWKyrykUOKLvoRjGzhpBfzwfdNP0GtIyBJNy+hYrQcmoqTo4NBKsiD4RrSKi+UT0ARHN9tLaE9GrRLTU+9uOy38rES0joo+I6FIufZhXzzIiuo8KYAY3egciYMH6TKjBfYKOehrcjslXS9qGYBWSkdeQ4h0ZGnMsyGaC6kkbYtZkv7f3e9/hepx111TMXtVwIpykmLVyB/4+e605Y5khCqf/ccbYEMbYcO/3eABTGWP9AUz1foOIBgIYC+AUAKMBPEBElV6ZBwHcBKC/92908kdIC43L6q/fdRAvLdgYqUyak//JWZnJ8cHaXelVqoHsEDrK8+STX2gMkUGh7TTFtztv3S5s2H0Iv3nlo0bpjwib7/8ff5qB7/3DbLx1/DjDPVOWYFuZ+CtKIt4ZA+BR7/pRAFdy6U8xxg4zxlYCWAZgBBF1BdCaMTaDZWbVY1yZsseY+9/Cfz0+xyqvSDB5grFt32H84bVlsQnXtn1HzJlSgGzORtFGKlVZbmrBT7jX89C0Ffj0g9PTqTgmNu0+hD2HClMld9aqHbhnylL8wGKBMGHn/iOY20CMU1zYau8wAK8QEQPwJ8bYBABdGGMbAYAxtpGIOnt5uwPg7djXeWlHvWsxPQQiugmZHQF69uxp2cXiRhRiu+fQUbw4f2NOw4K7N/wXUwAAZ/friCE92kbuh4qYNoQkrrGFff6TF4DUMYCkvUkSNtIfD/6wOFIfT7tr5F1T0bVNM8y4dVTsvuQLvsbaIU+DLQk+/cfpWLF1v1U0usaCLad/NmPsdACXAbiFiM7T5JWNUaZJDycyNoExNpwxNrxTp06WXYyHApvfVvjFC4vx1SfmYMW2fQDkogFfRr95zyHUjX8B05elE9A8Lf76rYT9KTTCnA/MXJFxAng4JqFNAvH1Pvf+egDAnDW7Yte5sUCdo+W8vCYfUyu27jdnamRYEX3G2Abv7xYAzwIYAWCzJ7KB93eLl30dgB5c8VoAG7z0Wkl6QSCf0oK68S/gnilLUq93l8bTZJPKzACevWonAODxmasTtSWbDrsOHMGKrfti1VcZU3unnLDcIyCrt0cnJFGH89Fjx3Hz4+9ht8Iqen+BWfymOVJyO7wUKy1gGIk+EbUkolb+NYBLACwAMAnAOC/bOADPe9eTAIwlomoi6o3Mge0sTxS0l4hGelo713NlSh73TFmaep05DYvwFK+sUMv9k4Cv55Lfv4kLfxvPd3xFhYTox+1USijUY4KGiJvwu1eXYPKCTRj801cC6VmC2OhfJ38o1fMhFWxk+l0APOtxYVUA/soYe4mI3gUwkYi+BGANgGsAgDG2kIgmAlgEoB7ALYwxX1h2M4BHADQHMNn75xATvq67bMxWeTqRqXEvkgVmy9742g4Sml/WaOxAOFtD31LQ2Szh71WoZzn5gpHoM8ZWABgsSd8OQHoqwxi7E8CdkvTZAE6N3s38oRQ4GBm5qKq0f6668S/k6lLQnrTfU5VEUd9mztmQxqTxYQsNhcBtby4AefxHm/Ziz6GjOKOufTYtFSZdErmt/thx/OG15fjyub3Rsrq0vNU4i1wPxUgmdJxJdZX+09psaf1D4PfX7OTK2fdPB1nXZVa6yvKae7H98jfiINAR9JxnZfsORhVZmN787NU7DTnyj0vveRPX/HEGgHTl77nIbbm0SXM34PdTluDXLxeGXUKaKHui31g7uhfmbcxqZ8RFml0f2SfDPV1ySpds2tuehs1jM1an/p5kBH5/hOhlOpIm0ru9h45i1G9fx4L1u63rb2joCHqcdx913RPbEC1ySxmyGM2+amopuqwuO6LPGMPT763DwSPJdXKT4Ja/zsFnE4bly8rFLWa4KcsJrZsBAJo3qQzdy8dBV5VEqL9iWzrqbiIBfXfVDizfuh+/NViTNqRcvW78C/jaX8PGeKUgbixW8Dtn3XlZsaPsiP6MFdvxnb/Pxc/+taixu5IYOz2VTd24VJEQcTCbDrPSJkUy7Z0o0JVWTVTT/G3oeMn/mhd2uyFbeDbvOYRDR3NMip2Pomh9KdbFJo2FWsbpi+fYpYSSJvoy68H9hzOTZ+vexj+YSgrfT44fgjANmLj6tLj+pNo7UXphS9DeKwC5tQwvL9yMcQ/Pyv62efbk/vQLG7JvunbHAfzvmysi1+WfAfH8jmwTvW3fYYmWU/GhZIn+2h0HMOC2ybhvqlw/PsTpFvGSXh8j8In4uLJJ7ivBMKR/9iEzzkoLcQ9yC3kIRA1QkkSmX3/sOA4ebVzxZxxc9+eZuPPFxQkcp+VeAmXFO7kXOfwXU3DGnVOSdLEgULJEf8nmvQAyRic8Cp2DiQPZBA+LbwwcvCTt4bdWAsgFLle1FQdEhMUb98Qvr7kXt4+xtX5SQJRIVXmJo8C1O3bCO7jivre89EJeCoPYeygjlovaZZlFbinSCR8lS/ST4NHpq7A8pnsBEQ0xaeJofoj9knWT9+0jc+6WBOt3HcRl907Li0aNqo+mT9GY9C3tQ+Sotc3h1HIbSz2TMYbfv7ok0tyTfbOom0h/LvDFSll7qWSJvnGCe3/FAcIYw08mLcSV97+dTTt+nDUYxxOnHb6IST8/Cg4dzYmN8iWNWb39gDmTBLq3FOLYLfteCBPcRhX1tY+2muuJOI5UHiYb8p3sPHAU905dimv/N55WW9y+Zg9yeU7fu27M3V++ULJEX4VcBCiB0xWGzF5Pg2PT7kPo88MX8bd340XgaYgxwxTXeWkr5Qb2xvSxng/xTiEc7KTmIyli/iiGcfmCT2CPHjP3XkeMoz6JzOI5TmD4NHHJ79/IWwyEkiX69QpTfHFsb/f82Pscp/iRfRHHcx+sj9T+nkNHC8odgEpFU/VbRL5IwrF8zKqYKpuN+bVsXkM+g6c3PsnPwaYvD3nnTdOX5wwc4+7GdZx+Y42JJZv35U2brGSJ/lGDRov/MX2tiIemKVS9Ynz1fYfrcdodr+CuF6MHr4g1bjWs/ksLNgHIyNDTQOqy57zQ/GCltgTteEEs0uo+ROtdOs/SkJxulLbW7VSLBaM6TvPHC9++f+3EO0UE1XdX6WwrD/8M5WTY52kR/HPehgbhFHSE+LkPMpo3oqZMWGXV0NM8bf+jTiqbQBwq2m20QYjUk/xA18UonGx0lc3C4fXjdiXKI7+9bBumL8+4GdnkjamXFm7K3v/rzDUAMu5SSg0lS/R5yKJGiaKXnFMrOQpoToQQ4FAUT2Ca1LJSvmsGVVtpIK4ITH/gmbu7bEtYE2TnfnloSttnm7NmZ+q7grQXnEJYwKIi0i4y4QN+/qGZuPZ/ZwLIWDyL2CRJKxWULNHnNU+ufWhm9nrXwcyEn7Y0uBBE5TgPHjmG91abDWYKRc9ZtICNKqbJBfJIF/k49+BrfPD15VlOzsfR43LRn21Prn5gOq7O0yGbdjGLUk9KMv3G8fNPYCy6xpzUnUKEcoEeJGTypi3dirrxLzS6jy8ZSpbof/fvc6XpyhCDSpGAPP0HT8/Dpx+cgY271bJypQ8YzWBOLNJXVCCKpw4diWbFm6+dTlytKFvXyk/PWYfxz8wXyiZ/GN8FRhzs0WgsacdGHulvIexk/e+ybd9h9L71RfS+9cVIYUaz+vYpPEtSbabr/pxxmzFpbjQFkIZAyRJ9FdQcjfdXMbPEMbBgQ8aoKIo74GxbKU9evs+qqo8IB9tvLxdEXpKCUi4v5c7LttY20PbC0EUV99pQu7KjEp9QabcdeSdXAFRf5o/pnilLpdyy7umiLuqyutJ6G9sVosTGRNkRfRVUk848edTDg0g+oNImLXwUKlviYeOmgZe85MsLYz7IrKlOFRfXUJI4vpmVgjvptI6aUxPvNKT2TiOVlz5jSsNd5QDutQ+3YPL8xjkkLmuiX3/sONo0bwIAqG3XQponJydMj+jpt/DRh+7wunaSegx9sJgiUp8+tp2yxPBe4b4nhel8ppkkZgDQcPJrvn+X3vMmnn1/Xa4PWu0d+zaSBlGJW08SRGlL2t0U+5rWbFcdWd34yLu4+Yk52LT7EA4rrKHzhbIm+qf99BVcOaQbAOCzZ/QAEGHcWGSM69c9KuIYONm5P8jV+9S7ayK3YYN8WIKqz1L8vyrxTupdUXQkd3mk/ji+9be52bOm3Qc18v5ITRSGAkEUqDXPZInR64mCtMaliQEZeddUnHjbS6m0ZYuyJvoHjhzLuVCNWNaP8qQbG1v2HrbygJkUvPqgbdWrt0eLUuXrx6fd962x3eCqEXubn2ov1JBxf1MWbzaWy69FbnqL79odB4zGkVJEUKaQEeX43z1cMi1epDAM/oIoO6IvHliJvnjqOb8fuw8cVTpm8xHLQRo3yES5XpwhonI5oYNYRPYYsmrT5iDnpRgAxkdSc/x8oxC5cNX43hHjIPLcX72GHz+/MGGP9JB1N27EM6nKZkqLYAHS/PIj+isEt63ix32V47iu/79ZMMH0UWUTnB9kNz8RjpMaFTLzcRNU286g+mcBjlgP2zQRjGw9rIrg30lcR3A2iPtaoywWaX26uMFU3lxi9gQqIq3Rlsazp8Xp58W3VEKUHdF/UtALz3H6mb+7D+Q4m4XrdxsJXyE5VYsCKwdfMcs1BMb84W3lPfVZin3nr3/YvODn2ov2UmJH9jIUm7liu/b+tKXRCXFDolDGFpCeCqssZGtjo+yIvghfN9gnCHPW7Mres1mlZRPYNF7EInwgkViyUAk2aIzGgHC/bc8eGmNeimqNJpiIu1o9MVfufW4cpI244oRn39cb+nx2Qs4Pvewd+AZDDQ1bxijKopwWJ143/oWsU8JA/elUX5Aoe6Lvr+i+D++AoZPFGJQeKBnELeLgfo6bzBNiBHaWcZpjJ7yDXQfU8libZ5MtaI3BjV1275uR8ptFbor0hpLpxzwr+feHWxK10ZDgfdfEtR3JpssOWjVkOeqjy/zsfLgpfijPQoc10SeiSiJ6n4j+5f1uT0SvEtFS7287Lu+tRLSMiD4ioku59GFENN+7dx8VgBmg34Ffv/yR9H7uIFfe1Q41TSO3KQ5ufkehcgamg4rI+TFD5WXi6ZM2xiEk70fJBrEPcmOVysHWz0pDuOuNc7ifJo4dZ5GNj/LV4zh68A39+h6bsarB2orC6X8TAO8gfjyAqYyx/gCmer9BRAMBjAVwCoDRAB4gIt8a5kEANwHo7/0bnaj3MSCSbvHbqr61cnWKMTjESV/JLShpjrXEhj5SoX7c3jQconDyAXXXuAesXrmdmp1VIL8kLW2L57juLdLE+55/oqRDJqlDtMZ2enbrM/OMefKt7cTDiugTUS2AKwA8xCWPAfCod/0ogCu59KcYY4cZYysBLAMwgoi6AmjNGJvBMqzYY1yZvEPF/f1z7gZDweht8QPyC5yHT1WVlZzTkTiER8U5zlu/K3IZHkVA36UwPdoCTk30lUU5eW7cXYz/Lm1Ly8aijZ5+FNRUV6VaXxz4MRwaWtRUaFpnT86K51QwX7Dl9O8B8H0A/D67C2NsIwB4fzt76d0B8E+5zkvr7l2L6SEQ0U1ENJuIZm/dmq7Ggeh4TAzKoRovMwyaEao6ZktCnoltHOZO+OMQHlWJlVvVB6BqlU2e85XI9GVlCmySmfpzgOP8eNFR3Md4+O2VVu1m25GkzV+frr1CIUR8Wro5HMtAB7X/q2RYvjVaP0odRqJPRJ8AsIUx9p5lnbKNF9OkhxMZm8AYG84YG96pUyfLZvXImeAb8inSVapXcglItEYemb4qdyvGCFeVWb1D7WpBHV2Ku5beb3xiYoKqh75mlFL8E7M936WFtZZKA7zDQvhK/gGpLSOjdp+RTKHgD68tt8rXoWX087lihA2nfzaATxHRKgBPAbiQiB4HsNkT2cD766sWrAPQgytfC2CDl14rSc8LZtx6Ibq0rs5X9YmgmwRxJquKiMxZE95l+Ojetnngt0xGmsSFxMIN6Vva2kLVx3dX7fTu5zIEnjshMbY9/ItzSNipVcSxXAhU30ODi3eE37ZWxQO7tU6/MwUII9FnjN3KGKtljNUhc0D7b8bYFwBMAjDOyzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XJnU0bVNc4zo3SH3HDHriSNuMaoMag9Yo7dX2665NP3igV2UZYb2bCtvP3BtJ945865/h3ZCT7/XeMEjYhs/xWzP30HYni3G6Z7qGyvbiPg0hbCBs1UoW7F1XzTr5ITtlxqS6OnfDeBiIloK4GLvNxhjCwFMBLAIwEsAbmGM+ULUm5E5DF4GYDmAyQnaNyKOPkTcEG08XpYYewTKRKyvsWDL6W/acwizhdCRccz3ddzsbknEM1XUMtU7HNClRtt+3MVi4uzMUZWtRkkcRqJSqFwXfQsAFBEhCxrq4DbB3xf+9o1o88T6rKWAJl8eEYnoM8ZeZ4x9wrvezhgbxRjr7/3dweW7kzHWlzF2ImNsMpc+mzF2qnfvayzPwk1+njSkLPrAEb3jp7RD4inLxFDZNMr0FZUePRZMf3KWnSvmS7jdyFaNP505a8OiqkUb5AY0qj5WV8n96GfLJRwifHmd75k47YgLikkNUdXEdoVX03wSvHxMPZ21/K3PzA/o5tuK0wqJ4conStoiNw6n37Qq2iuRTZYKWdy3QJlo9Zn7kJ92oiyU63ba+OcP43TLICoyIqcKRRflsN60yEUBv7vR+e5JQ7PG5K5D9e0OFaAvGB9RmJcVGs20VxdtxgvzcoZhKlGmbftzE8RDLkSUNtGPYfB7Xv+gttCGXXojF5nGRpWJ6AtFBte2yV7HOeSLQ0TEIr6vGdNisGl3ukY/tl1fJfH/38MQ7SyULj2jyKUlpcXW4p0UdnMmR15K+pnCghPXhTEATJyt1llPk9Hm52XP9vJxIkI1j3TO/YoRpU30uWvbAfWiYDp+39Slkds1Rd0RiU87TlVMbN8GUVTdfEwSjNKy6nVckbFn9AyV275Pzl3HjTRku7ORuWJQqUiaZMP8M85ckTuLSCriaFJpN51s6W63Ns2U90RxWrgN+f00ZP0/enZ+7LLf/4faOjV+nOow/vDasuz1/729yqrMzJU7zJkAHIrpbrpQUNJEP458R8ZR6nDz42F/+MZJLdxv1axJ9vpADJPxOKRqyx5zxKq2LZqE0pQh7WL0AUhGACcvkC+Q5vOKXIanOFfbacr0dbDdmTHFNWDB6SuaeO4DuVZVlGeP6uIh6WIa57ts4c6H0o7Odm8MRrCQUNJEn/dnEndCm8QtMktK0yAX60zqdSVOzFcrNwySLI3lx6uLhOh3VXDCjWWNaq+9Y5lPk1G0LLdtQyWaMfWJf9f5iHam60Ocr8lrO6Xt036XRJOsmFDaRD8GNRUnWhwZaIumer8n4qLQPaIOdqg+S/1mq7qMbSk4/QQr1zXDao15ZO0O6NJKnldVR7Yuy45FhO0rsOf0+fOGYBnzQa6ibcWqbep7n04ts9dxdqM2iCOmVGFvgnMHEwox7m0UlDbR565N3PdnPMITCi4So10z4Qz+7ttJrz9uQhzOVu1amSM0kiepqkh3yDDGUNPM7BxMJotW+g+K+Dr8SdxQkzmNRcdI9FXnGor8aw3aV0nGaNLnTfuzyGw+ouBvmsPoYkBJE/04SIPTN41y8W5SjQq1poa6jM1EktGVob3aSvPqVOh0sH10WTa1/yDVYsCkdR0x+OSxhb22mCWnr1Enjc3pq1Q5I8YsyA/SO8jVYe/h4hbPJEVJE/2gcZY+b1azQ0jfGYMriCoiiTqkRZVQ1bPpaJDNQvPHN8KOqlR+33cdOBpr8WKwI/wyYhU3PrFYlRgnOS7sxTt2+QIHuUKZI/XRGIukSPJurMVZaQr1HZQobaIf4SDX5ybiEC5xu2iqInSwFLHJ5k2DlqWqPusMzXi/RFG6ol9IDIUBnNOvYyjNGNMA8mdUPZ+pG+t3yUUZSTnKtPX0Ex3kpiT68pHkcHyOZbxhVQtFLkKPjCWb9+a1/tIm+twkNA5aBadvg/0GtwsidO4GbGCK/qUC71f8/AFml9WfsThgzfXBjmSKuRhTW9aK+USotHdMxxUPvL5cmp6c07ej+vYElEmuMqg3EP1sOaEtVds92uuVCeK8mqtPz4TLsD0riWJUlwSF7m5h/U65T6m04Ii+h3xrdvDoUBN0LBZ1UIuyY1uubk3Av765TCuLA1YecdRArX2tW9RlrsMwBhKfrSQUY0TI58fANX178Xbcw+84r8b3T2//jeX50ub0KxUW882b6H0zlQpKmujzPLFp3Pjy4TPq2kduZeqHWwK/0/DUqYMoRlBNitbNg0Sbt5pNUz0OADq3amb1HOGDcrv6rSPwQP0MSgveBLs8Hn+ZsdoqXyzOVXgm/1mUh9mKNlQbhG5tcpy+3FeNvs86K9Wki1zazhKbKYj7IM4dSimjpIl+4CDXUjlhUHd1IAWVkccOwTWBBb8bMX8QIfGOooL+nYN67KJ7XhniTq+z+nWwc+IWs4V2kqhGNsTgrL65s4vlnoZRWDzmc825tDh2BxstLVWTaCz5MHH6j05fLa3jmMIPw1n9cu/pU4O72XWQg0xkmZbYrBDEMXEWHp0bDW1beT65Lm2iz12bRA9VlZnculwqNTmRQETdKkcdT6KfG/WWPZjO72ptmvz77HWhNCUtZHbPERbvxIeNske3tmFZdVg8lvk7bWnOHXKNwcAuCew5X7VM/5hBzfQDzzNkWKYvz3/PlJxrAemuiivX2TKKFxP+xkXaRH/LXsXirGknzT6Y1G3zZfzmo6SJPh/M3CjTt+BKoh+/2eZPJtO37QdZiHd4RPGmGPvdJFDns7Avg8HhaaBPq7YfCKXlA3F874jIcfrR6qipjreY8e3IxD9puL6IalsQF9OXbZemH9YQ4zT7cNjgFsK0KCRFSRN93mDIdBj07PsZR1S6bKotnupgSFlPqN5IxUM7i7eXbZO3I9TLR1uyiVLUsqn9wVYMhRQQJSWu5tI2GjXywNvRe7brgF0s1jh662KRLNE3vIOdgmbUJaeoQ2j6kDEVfDujTg7XoVuUbd9lVCviuFC9f53f/DQPk02u1/Md9aykiT4P64Gnyae606Qy+BGjWksmlekv3bJPmk8EH8bR5nV8akj3cNuK8crA7MQ73NOSZT/Ectk0i0NMWX/FOZfWfH5bwUGKsF4fA+KdYClfZbOh5N18OzIVTFk3smclMdrg0VgO9HikGdzIxOnLnDimibIh+kctl2rdAFPdEv3R/Pmtldb9igP7Q0ZRnquWEcvTw7n8w+CQVTEDdh80Wy8HD0vVDxJafGWcpLKwXRuyPhnrTgFpaKPYineqRB//ivyf/1gudoLslfGuimWhCmXzRqk2ajEXu3NnMXFel87GxBQYSYY4fdioCDi0YZdeDz+J80IblA3Rf/q98KGkDB1rNIdUig/fXtAsMRG/ENcQcUSpApmE2mHARdxWnNeAMfmnUdbp/RXnLYM+LqxYPvc7PgG0eW2yuCahg7II5wVpgK/7vs8NVefT9McnnMpDSQ+i1bLqsbq01muavMF9Wymnr31hwXuq+La8+DFoIxL9Y+hCJC7barcz5tGQmw1bI7+4KBuib3sibnKLLINozdiltV67Ial4p97WwhHBgBdxo1sF6lTIaY8zO5tcvpwo3gloF1m8I3WkJb7O8DOL+vqmMIppg2+/WuJKwlcN1hGaZt55Cx+ARwbZjkyeL3dtGiWy8ReFKKrsJW5/bkGuD9x3O86i7454NeoThAUtzk6rEERMaaFsiL79JFbn26k4qBPHw2dO72HZlrx8WmAsKB/UEVVV+VCa935C89ZaNp+DeJAb9bDMJruM6A+ubRusx4LTTxIXVgRfl6x/h+rDDIrYn5F9Mnr1y2NwrTJEWeRkRFv27bJeTcVdimLw7eAOnU/tlrOXYSz6HPmI81/Tr3PQLXTUunp1aJFnzfkgnJ5+WrAlSpp8qlCK4oD/5zy9A7Gwnn5+PrI4eHjRVdyB5Xc1HHfAcvcR4ChJ+S5Ca0oEEczfOX/nMqIq+u+X7iKE30dTjL7Ei+dkXLWfplUq8G7tO6RfjGzFaYGmuHdWKwnwIyPa2rMw4beK0+eT+R1MHC570YY9yvJR6+vWpnmDcvpOvJMS0tCNVt0TJ+cygzZNyOmYRb/iQHzkASfkLHQ37ZY7fYuq982X23fYLEILlJeMbX/ih91P24tgePmzTDvu3zZuMxKK4HRYtDFHkHwdAJkMmimuAykR6YNavCO/ITNukymn6V5h+DxC3gd+joq70qjvf8U2Xl1bOFOIuKW01UxLCxE1wKPXn9/qiw+6j9u2uVx+GnU8vDAvGNA7b+Id4Xdrjnv6n5c+VJTRd8bva0guzoAtNm4IDMQ80oRUZOWrqLCYQTYtprkb821CgJzsWla97hyKGWj+uDN7SetVLtrctemN2XL6qlemOsjlk/lzg+OMJXr/YtGZK3dkr21sbOKcKSSBzZhNVH9eay8g2H6zCdNWKO+pNBw+0Bh1yLB6e9Cfe/44/ZiC92x5SVpWph9vtxIiLgp5r5V4R9EG3zeb6aN7zlydFhXFQIVEBVZqHKV43yqV1Cae2lL4INdMcANVSrLLFmaZGM1/h6Ldilq8w6R5pi3dlmiO6Hb5Nv6owErLp7+R6BNRMyKaRURziWghEf3US29PRK8S0VLvbzuuzK1EtIyIPiKiS7n0YUQ037t3H9nHl0sM1TcTF1WdVZ6qjrsnf4iXF+YMnzrWhJ2D8Ygb8Skp4h7eyu6HVDaZpT99gbiIZfwJum1fUPwU5Y1FZcpsDL90nF5dhxbRGuTgD7/Ih9iW0p1XF222qy/CG5a9irYt1FpEd08O7irVHkBz6TwHPm3p1rzthvlgNCp17Yx4p3Sovg2nfxjAhYyxwQCGABhNRCMBjAcwlTHWH8BU7zeIaCCAsQBOATAawANE5NvzPwjgJgD9vX+j03sUPVQuBXq0jz9heXzlL+9lr7cZ9OjF7W1DDSgromy67/VV1NVmsHPEFbTIlXG0mb/vrAhbt9qrH+Zu6KKHcZ0yJumIsqgdEgU+h8wTvI82ySMn8YFv/GdUW0hnIGodqXdHuetAxDnbA3pZmpe4ydb7KHctugFXvROrei2nVwsFjTgucPoj+5jdr3/l/D52jcrayzNTaJwRLAP/ZLKJ948BGAPgUS/9UQBXetdjADzFGDvMGFsJYBmAEUTUFUBrxtgMlhmxj3Fl8o7zT5RHivI5y76dWobundw16GY5LeKs+6hNZdZEljARxTS6n5XpSyoz+RQBwod4KrHFwvV7tPkyeRWiCu7aZjOpUzf0oZJDZ/Iam1DCf2W8COKwxDc9YzmRDcCJdwy8fkjsolwojV3lqpDtjGTfJ4MQw6Vqi0sPeoRlOGpwSKP1568taUZmFxutlmZVar9VpiG516CRlRRWFIaIKonoAwBbALzKGJsJoAtjbCMAeH87e9m7A1jLFV/npXX3rsX0BoL8Ta/dkTGJln1ScbCmxZCHOf3cdXeJipwMsoETtpKN3mG+Lyu2hbWQ/NshTp9Fn1xEajHK32avDeW3XcRMMn3x8E6uGRSEzIhKlTcK/EUp0OcIriOUnL533/ZQUOWvyFZVNopKrXq3kbvD99tm3tkaLOqgepeZg9zc76R0wFReNvbThBXRZ4wdY4wNAVCLDNd+qia7KsiRdfAjIrqJiGYT0eytW82m/XaIQQAV6Ull8mLxvSkZ/pg5fXO/+cn/7qqdkjYyf+NaZQa4cITfsf9bpnWiyisiIKqQjDqbIDSRON8EVICynH4uTUanw2q+nnjHVL+hnmx6ihKFT59eG5CPq+IXiFAt1jZd061tuu9j42qaQSD6Fv0pZESSJTDGdgF4HRlZ/GZPZAPvr6/8vA4Ab5JaC2CDl14rSZe1M4ExNpwxNrxTJ3MA71RgscX3scMikLcOIpd8mLPATKSaJv6WEE5jHYZMPtFoEhJD2R7kBjlaFfce0rhgskVNRcB44hGmBpYSjwCiGB/FAV+/TDceCPabNz7SwTQmcun2BFeaxiX+90X9vb6yUN06BKZFYLfBEpkr6VrnPeQqNXkYC35/i8dpOBWV6LDR3ulERG296+YALgLwIYBJAMZ52cYBeN67ngRgLBFVE1FvZA5sZ3kioL1ENNLT2rmeK1NUSCrbF3cKvPzatma+C+f06wjArEaZpkxfdCfNBKLcXUG4Ato70gyZP7LdlC2nr1Q/zLYr9j3iFiUPMB3eMRbUxOnbyTs81ri6zha0gM1iYMzsoVWzKq3bbBv2wBTPWdSYijK2eSeEOw/knLypRGGZg9xcA/l2k6A6UE4LNt7FugJ41NPAqQAwkTH2LyKaAWAiEX0JwBoA1wAAY2whEU0EsAhAPYBbGGM+K3szgEcANAcw2fvXIDBzsOY0v45DR5OZ5Isy/enL5UFQbCGL8Zr5XfgbUZXYQvQ5Lp1oEWXGyj5oCF5O5h69vA18MhOI2mVRn38uYTrIteb0+T7F4FKDZwIUPBew7AMP025D1AjSVSm2d8GJnTBlcViVVfXYaVvkNva0NBJ9xtg8ACH/r4yx7QBGKcrcCeBOSfpsALrzgEZDFHn3YYlDrCgQuTr+Z6qDK/Q7eeUqJ1pRa66prgKkB7m6tsU25ZmNxlmWRI2xHAHUvTvZHStVUWV95l2Oj06t9DYhtt9JtIvQ5TeJd7LvLMFwW7cz53P+OLf4+vAZr64WwcfFbpjsaELlmSDTTziNbEO35gtlY5EbB6qXn1RTQKv+l4Awy+TgPGwNdXTwqxTrCk8M+XPwc9e/7MD7+Ve1yyS7AiWHLm9PbNdYD3et5/TtdyFxoXqfby3Vh8q09Tn1/Ae54zXj7kFS5VPv5jROyKsjrfCHKlEh35e4u1p+AVDVcFwYezYt6d6hrKu8SMd52UwJptdo85r9j2XS3rlIEkOUR+8OYZsAsY0oyA18IV14KlVA6GBddlwIH/BC1Z6uPMD5nbFon7GwR0krMYGN+qNSo4VJr22Q7+AwfpblW+WeX33ILKfT7gsAPD0np43ti3cinRMI4NVqPzOsFnsUgYmsQjIK7b2yMMewnGCzU2AMKzkHbjb91w072djg43jk22C/bIi+jwsURloqZm30KSeE0k3ck4nOnNO/oz5DTJgXtmhEWVeHSGwYWFBMZWiHdx+c2b6by4lh7uLOjVaia2UbImuR55uj+sfskdCWZRqgd38AhAmU1TuTjN/BtW24OgzjX6giigjPB8/5EpFUBm9bl5jlGc7hHW/zpSPmD01bqawvar9kRN3k7yhNlB3RbxklMhZjATe9/rcwcfqmgfje6p2xy+rK2Lop0NZl2daTs9Yo7wHqhZEPbuH73tl14Gi8g/aYHNctH+9nrFtMtzlrqIxoUJTpn9m5mrzNTJ6z+qbPQBzg7Eb8nsxdt5trW9af3LW4gMfxRS9qsIhO28T+xZWD28SNPs5YYM7b7GBmrFArZzR2FK6yIfpZwqiUM8rTDx4N69CbD2L095+YGSaYJtgQAlncWh5jhpgNoOMQX79c8ADVsN2hDDcY8g2jaT+Ofv3qbQdCadVVoqW1WqSUa0vdmkx7Ksm0lpZVERpDSyE1XouO3fHPRdr7qhnkg0ABG4ykJI4xFjhziNApr7xtQ+ryNoR68cYcQ7Nsi1rsJhtvQUY/v4tC2RB9HwYXHgGoXr2C6chCG1w9JqzkfIZt9ElcEBV1FblCsvy6Q8/6Y9zEt9CQISIcPmqhmomcGMimLzxsTNrVnH7ujs37b0gOzm/pNSEgTPa+QssqMgm2fCbt4XkM8Y4IVWwBEzNnumfD6TPLfHu5cy6VNhSgFiX70PntSQNlR/RVHv+iHZ7pI2OpLCptoOI6N+w6KE0H+MMsUX4bfXbxzcv9zajrvO/fS6X1qEDZ/5mrZwDeWiZumeWZfWM1EUN6tPVKiYuHBaev07iSiNdsD0zbSWTyUZSB/peTNcuQ1HpcBtv++e+5f5caaboOUxbLFzO7loUcmiy2i3kgn6JCnVZelDZbWriGSIKyIfr+JFQFPDHJKfnffOQjaV1JNDcU6dstJq/pwCzqoRcvxzXVwUS5p8VhH//XBrbPE14cMujkuX6O815sjLMCdMFcJQCgjTQaW7h0aBGxbOBPbwaDAkXlsnXEXAUij9v3sp03ILorFV5bRgeV5potjtss1CzI6OlEnFHbNN0/kmJsZh9lQ/TThI3JvA5fvaBv5LJa3y9MnkcsYTUmIwzIJPDV+ngjHEA/oWJpogh1SNMt8tdr5II+ETx4hD//seyUzLlaCq9YJ6owgbebiIOMTD/X1oOvLw/2waITVwzqmsuvyeffm75crY4stheom9/NadrYxblrUPXf1hEjP4dO6ZZx386/850HjkjzpgVH9DUIczSZ3+LhY6ic4UPZxOUUYRNYISy+TX/A2FZpl4+w60BwB2OjJRO1L6F6DPXK8PfZ65T3/PIPvaUXtcggDSQD8wJnu5s8o66dOZOAz4/slWtHzuqHk7iMFWQwTlKk88xQr4jRyPYfUc9JsT0+CIqNVo4t4bUm0Fy2Oz51CgbXtkFrbsd39Bj/LtP33FY2RN/0OaIYrZgMfmQ1BSzudIRN0dONu83Rh8R61+wQYvHaqAIa8tpubW3eJlEUQxTZEhyP6j82fZVVPXy6LkhHEqiGEh9+MwlE99g2w9zEk5jWgVywd8V7VaQ/wO0IbMeFKpKbDnxWn9MGct9b/NbhsS1vi/cXpQsoFHDyRoTmTSuVEyYf3jrLhujHgYqzbNNcf9BiOh94STOhVZNyocaVropQr99lJzqRta/aqibh9HcK5xLyAAvqdpNz+pkCS7cED+LFem44qy5S/eqFMN6ixFh4kRe/h6lqtSgrWp+swyVy2Qjy+Md5adf7q49sFrzH25jIPGuaNMpUTf365Y+y1+MvO0nZn+//Y26ufdK7rMiHh2ZH9D1IuRcF91pTbbCClB3EcWnLtui1f2QQrUjl7Qq/Y8w6v5+qSRTVzoHHIc5RXS54iD0xC2snpQOxzW5tm4Xqf1txOJy0I7YLn3j2kU+YFxTJ+ObSiPTEyup1RWQuogQ2+pCLtyt14Sx0PhziU17vWm5nrZuv+7mzn8oK0nLzNm5EoqKkiX5/LmB1muJtlUm4D3nMVbu6Vdlstq8mAmqlvcMMeVUcZChd35jPDdpuyxmCdgCZNtP5qCKR9eXRfP3Nmqh1p5NEo5Jb5OblOCZbtzGPIb+pjpx4J50+2CwAcaPZ6dxFqGAj4jQaJ3ro3bGltu0Yx39GlDTR/84lA6zz2ugeJxFt2A5JpWaAngUGAPxZ0NmOc/Lvl1CVtalR52yLR/0xhiPHxK20ol8MmDBtheKuHWyJkMwPEM8dWrdnkUfK6TPg3VU79HWbuHHljswCKaw4RKRpy1y/7YLu59MRfV1VUi+souV3iJmSV8jP0fMVPr5ENK2q0IrCHKcfEVUV4cfjuX8eskmyP2bs2ihy0/CBj7ysyOXKwPu1AWS6zjaTLfNXNYdsDJlULYncz/b9R7Btn6i9o+6jr7N81dDu0jZFLPzppfoMBiTVVErijXHygmQHuXHp9n8Mr9Vy+i2bVhoPcgEv/nGCxSMq1z1PYlNigyCnL2/UdhPBM0pdWpu9d2baz/zXkAGPSpvocyH9fEIsHuLpENJ+sSTm05ZI5L8WHLxuK6fz4e/3a5rgW910YKmr6xP3TVPcV5XLQTXheQI3yuB+WtUvIBfM2sZISNXHQHqI04/GXSWZrnKVTYvFOeZ9E3H51WcGa3eIsrjG0ga5x7p6aNDnU2TxjgU2abTbdO9zl8Rlc5gNs911BH9//mM9jWWyhmwNiJIm+uf064iBXVubMyKavNuERRvDmjY2ct/LB3VVttFcI1NOFV77fPi+wO0EFI4/6PrlVYNi1+8vjmkxR8pJbc3pJxCl5Ms4S6jjpvP6GMs0axImB1IOXqqoIOmD9/d9wQre9HjL7rzM/h14+WZpxGG6uvZLPIqaytv2rXMrM7efdTFuV2UqKGmiX1VZgR9/cqBVXoZour5RYXuop8rWpCo5O+DXvUZB0Pk8Ue9v5nwaNW8iFwG8xIksooYTzOfuN8Tp++kR1QZN9coQ9wDSLA4I3h99ajguBI9+nWtw4UmdY/UFCBssEtcFUcxo6npVZYV1IHLTW2hSaT9v/CbF8xT+E3Vv2zzCuDDnqzAceucDJU30A7B4qaJMPFRFgg9jU1Sn/1/bTm2hGLVfR46pDY3MkbPk93kd5fMGdJL2ycZiVSw3Zki3TDqXtsMzbon63GqZbTA9jRivtpBZZ+eD029aWaGtmzGWFTX1bN8ikL7C8zvTr3ONNK4xjy+f0xtAfg4gZTCN14wOvK48d+3lXB9Sj81l6ta2WarjIiPeaVj5TskTfdvXmU81uUz9Fod6mgOdHu1ynjtHxeTI0hBh2byiLq2bpXYwJRNLZN0GG8qKfvNVYADmrNmZ/R11y60kpBY1yD2ZWrQZMb8uwPvug0exfOt+7DqYOVQXTf/vnZrxnrpsy75oDvIS2HSogqZEBunn3mwuoFFOTz/4lHFUMW0hCxmab5Q80Y8C02CMY/Z/19WDcFbfDvaqjsq2c+hQ01R5Twe//29bxMrVVJJXiO84t/2VyJENC4vIRevEMEs28RG91G3edsXJkj6r69VBea4h1Cj3xKlHWGSlJlaPv7MaQG5cDOuV8dfji+ACQdMtuVLy+iDzU5Wm2CvN4ejXJW6++J1g6+ZV1m0O6t7GKl8Dn+OWD9E3fyhmYYkYvd3PjeiJ4b3a2cn0NW2kyW08MXO18p5ZUhzMwXssjFKPCF91VXx+mfhDxx1F2WGM6O073mJYsCGn8qejayP7dJA1Gvj5/dEnWrV/7cd6StsSH2G3RMMkqp6+TmQlcvZ9OtVg1d1X4OMnysV0unfsV+Xbajw7J+yozsqGw8IRmk1dFTHcQYjziy9fXVVpPcZGndwFw3u1yxpgaeFUNtMDz5nc9eJiZT7G7LiLWI63bLkjTb5n389NnhMtImDJ4I8rGRER89jer5IclPG+1G2hUknVWiRKCZImu3Dva16sXMaAx9+RxPyV1CF7XiCoBBBlUVZ52YyKiwcGVWDFZ9UdGFYqqICsbyafOv4Y9ss+9a45cpkM5/ZPJ/ZvZQQnQP67Eccc71YZEReRbm2bKxeJ+z43NFOlU9nMH8SAEiJE61AZXpi3MXK7WRmxxWquyuMTpRvPrsONZ9dl0zvWVIfKjKhrDxn8XHxghinfPl/IYzrIDf6WuX41HZ5p6xd++/W/v2ZXNq1rG983TjLuSGZ5C/DfK1ymUuY2AXLXvnYaW+G0OOchYrCN0DNpCMuGXfY67ib6FDB2ApMaONp8tzFDuuOv//kxYz5TXdWRVJ0zdemi1PFaSTbQvfc+3A7AyfTzAJsDyt9wGihxIdsJqLbWP5Gok5o+fr/ONYEdgczv+CcHy0UuAHD/v5cGXLvWtguGdtS9p4wr5GCGCyTm5kk4l0wQ7FxkMv9ZJy/ILba+jFsqehB+84feYeKu4H6z4qNwA+JurKoiY6zEB8XWHZqKiO8vnQUWB5nfpXoJEyPr0d5DcstzVde0c0kQ7/BeLO8dO8RcnkONRdhAU13DerVTfoVnv3qWtK77/r0sm/aFkUEDK717CT+P0EdFPv9sTjUCVGE/k6Lkib5q4PJ+tIEMsTF5v2TMTJQf5Xy1f8yTGWeJi5D3xrN7W/VVhxYSs/gBXeTiH8YYfvPKktht1lSHD7E6SYLAHzhyzBhoBgBO7Z77Bt3a5AxZ/vDaslBeXvqT4/TDELlkncjMv7Vxd5Czy5aQyr+Dv8/t3xEMDF9/ck64vAVkeQ8dtdNc4R91YLewEeJBjgHxtYRku4hqiVGWrA3AJ3oamT73RAzBnVGDGRhyqKSgRtxC7uxmaM92gbyypxI1wGy+Le9aRZe/a5scwyVbvB7/snmnEwdGok9EPYjoNSJaTEQLieibXnp7InqViJZ6f9txZW4lomVE9BERXcqlDyOi+d69+6gBFVQPCNtvseXdB48a49DacG68Y66/feXMQFuMMfPW3XBbJmfdf7geC9bvDqTZeucTOU1d/2rbtQiffUja4f2V68A/S1cvmDwT+uTrTG/dezibdlptW6+v4TrFpGOCX9yAC2Dvr8jpqsQ+QFiTpsJzS7B5z+FQ3rjinakGL65+3c9xO6KQ1ShY4D3qdhRNFUJ9qTMyY8/8spmcvHgn7nTnn23FLy8P3otY1+GIMWdlPTbN4fCcMrRhWEjThg2nXw/gO4yxkwGMBHALEQ0EMB7AVMZYfwBTvd/w7o0FcAqA0QAeICJ/uXwQwE0A+nv/Rqf4LFr8v3+HuUcecQwj/ypZiXni5IPX+9YNOhtZuGzeLNm8D5/4f29lfw/t2S7wPCcqOH9AMkAleebcfjHe+N4F2f3KOytyKp9JNIn4pn0XAIwFiUPbFmp1Rak7ACGJfw+ZRZfvgF+P0C+V2AdAB8nORoRu0QjnDb+/tzXxXnl8e+Lc7DW/ENe2aw6woO2BD1mfdFar8t2Uuk/84zAGbJD4xLEV7/jf4bF3ctpmoaAnRoIazKL3xhm+J7Zncy7Mz3Hx+4qBjYDgwpKafYIGRqLPGNvIGJvjXe8FsBhAdwBjADzqZXsUwJXe9RgATzHGDjPGVgJYBmAEEXUF0JoxNoNl3u5jXJm8wX+hBzVaN7bxOBkLci5nSWRuJpn+Sbe/pO4rxTvEEyG6OLjw5M7Z9kWE5pAkT/uWTdGrQ8usnJaXHyfx980XbZbdRrNAhK1OraoDfwG9+uGMFUGCKepK84f5Mr/5fP0+9hxSazvJ3Eir6k0D1wyrzdQtpg+vDfYJwHV/nhVIkxaE2iVGLO2dwF/5IXBUrvbNJVu19/nvk1PDzaCyIugg7un3NLGOJWniGyDYL1q5enMFRt/zpjyPl0XcsecDkWT6RFQHYCiAmQC6MMY2ApmFAYB/YtYdAK+ntc5L6+5di+mydm4iotlENHvrVv0Ht8XBI0FifID7bfsRGYCfTFqozcNb+PmIYtBiQthlgLlUH42esFhepXGRySvTColP9edy7nB5ufImzo9PVu+bbzPb1zDESSN2739e+jB0z2RR+5cZq+UZvN4ozoHzgjN6yzWzeHm5zLJb952Oatx2HwiNBf3DjfNCTdr4qeex64BetKoCA8Npd7yS/X37FUHliCaC6Cqyzr/QZxtRzCcHdwsU5+uVHZrz7+WqB6Zr604D1kSfiGoAPA3gvxlj6oCtCjGYJj2cyNgExthwxtjwTp3sghGo4G+nxG3Viq05J1Cmj9jKQovABnFd5vK7h5cXBuW9izSxc2O1L2Thn90nJjwHWGe5SzLhlG5tpO37bfETo0XTKnlnEXaad0xj5JNdPEQCKeTXiuRI7ahPlqpzAZzrZ67kVwQ3FP7ziM/C2znoLbvDdyaoVJnJLgrcDm5n1q5Fzlp86z45IZcR1ydm2p0DmeoSrdWB4DMfFWMfBuqSiHeElcpmPe/ZntOIs2QAGtA2y47oE1ETZAj+E4yxZ7zkzZ7IBt7fLV76OgA9uOK1ADZ46bWS9Lxi/2GzMZU4DkQ9935dMoFXkm7XT7xNLdoB5KKCfYfrAyKhg96B9PkDMovhtn3hM4QkOHjkWIDA/vzKU4P9AwIqlTYybhv4GjkX/z64/fXFRzzx8Q2kZF9jn3Bgz5d7S4hz68trf/qvRdm0IT3ahmTyr2gC2RPUjvpkw+WXGgNBH7wywPcuDVr3qmTSxwLGYfJ+qvqkg8idZ34HK/lgbW536xNYImCu4FJZd9Yh213G2TF1bRN0Zyxy2s/MWQ8deO0ev7wI2TvkJQlRD3Kj6Xslh432DgH4M4DFjLHfcbcmARjnXY8D8DyXPpaIqomoNzIHtrM8EdBeIhrp1Xk9VyZvsONug3lOFeTAMoMcGUQNIR+2g1e2Bf/j68sDv/2uPnzDGVj0s2iRofYp9LF5PPP++oAsmHfJ60+gv2vkogAw7sxekfoFZNzpyuC/E/6AXEfA/vRGkGvVBQSRWak+fMMZIZm8aPhkgk6UMmluND5HfC9+wG1xXJvsLeIQ0BfmbcRGYWcik2lPWbwFIqTnARHPOmzCfRrFjRGemwG44r63Ammh9yZhzABg0cbcYsETfVtFhwZk9GEjtzgbwHUA5hPRB17aDwHcDWAiEX0JwBoA1wAAY2whEU0EsAgZzZ9bGGP+MngzgEcANAcw2fvX6BBf+CPTVwZ+Z4mDoZ7XPpSfP0TRcBEnsxgb1+dOKysoJ+awxO3P688jfLzHnUsEBr3EMEX2ZG1bhLfYPGQRhVQLq+ygWOcQTYQuRoLMr0+LppU5rR6vqM5SW0tM8zCTTzpBHhSIHwtEJAmVmbxLnVpVS593Bqdt5H9H6XvRvCvZZ9JFi/NhZ+VuzIIRde2xWBL8KCzeCT/E7oNHA7YV3drahUrM1pmSAoctjFSDMfYW1J9rlKLMnQDulKTPBnBquET+YBMYZVD3NgGOZnhde8xamQukcE7/jpi1agdeNLhguOWvc6Tp1pw+1HJnH7+8KvrrSzKcglyLWdPlBu8gD15en0Cv25kL3HJW37DWk+odyTlGr351t7MYoPFTJFtoKijc4rqQf/Uc5nDuIcL9S38i+11+dZFal58AzBcPtDVqqLY4sUsrvLVsW0ibhlcz9HcmOi0UWRe27AmfdaQh9LBluLq3ax6KeDeirn1Ye0dCoAf/9JXAb57psZn7/rcUg7fkCyVvkbv/iFmm307gTEXXAoN7tAVgFwREBpthd27/jrBx5tS7ozywuw68umNU8ITxg7W7QnF4RQzs1jqgFfPi/I2oG/8C7ufsJC4fFI7ipHpHJBmhJq0bHpcIjsh4VEjqrqCgiMCkNy21y4jQv6jwe8a7O1Zm4pMUL3ivRh1VxINfOB1AWPdetijKeC2dWO6Z98OydpNmWM/2LSLZtazdEY4Y99nhmePH9i2bhoj5PWOHSHe2pjZVBo8mBvSaP84w1JwOSp7oy4ZNx5qmmW28BzEUYXx/KIo+WFTXpLJCypWIJvkykYQJ/TpFXyh8mPouTsyTTmgVeI7HZqwCEPS2GEXNUy4lsBO3AXrCWy9RVeS/PWPAFx9516KVHE7t3jqvx3KyV9dOMGDTS5yCzzzojlcUOcMQ1R910LnEFr/clr1yjSbTGdTQnm2tFlaf6Mq0lP7nM6dh1d1XSN9Zk8qKkFGnzdDt0pqzKeHSP3n/W+HMjYCSJ/oyAj68V3sM8bh3wOxfI+kkttliZg/ihEH8z3l5V3DSIqoe/mm1bTFxdobAH64/br29VjUjfr9vXNiPk7nHU4H1IfOMSRQUz5h2NiJO7JKTuUdl9K84Te0oT4ebL+gb+C37ZnG1d4L12ueVaRmpin/9r+9L03cadPcnL1BrVfFt+j0xHciHD4UV+QzvkDcI3HuoHht2H8Ka7QewMIJ6dT5R8kRfhp9deQrO4NQyJ88PyuqjzAuVG2MemyXyShEfP6mzpxIZbF0mPkgLviXm7NsuwpzbL06tXt8m4uQfvxSykFVBNZHEiVdVWRGJ+OgWBhnnSkTZ+kUVTxt0b9tMedCs0u7yITvgDiP88Cd3DR7uSg9xLd7ZFwUHgCKS7ID5oOviJ5m5Mp4s20aryu/y8eMMf5ut9u1PFDTYVOaD2TiLX3Rf8tR9L7nnDWPdDYWyJPotmlbhG6P6Z3/L/IPw0I31if91pjT9yiE5q7xXNIduvsz54yd2BkFvHRkXyv57TXWsqUb7lnqNm3xDJe6U++vPwCcec9bsxB9eWyZ1gdG8qdqzY5VCVOY3+aNnFyjLqnD5aV2V79toMxLz04u7KZ1/mdueUz+TiabLFkmZxosMXVo3i+STyKY/tmDMrCr7nOSMRCb+k9nS2MDWc2pDoOSJvmxVrqmu0srGVVahUfDti3NGNWskB0g+7r/2dLzvcdn/8rSDXvtwi9eP6KMrEhfcoNrBetjoZAMIOGTz+3/1A9Px65c/wsd/83o230PXDweQWeDf+sHHpXVVyU5yYf7eOl9NvHM7/onqjx3HGXdO0dZro3Qg+77+UJ5920WYPv5CYx0qqBZBFaYv24bL7p1mlfe6kb2kGkS63Y84JE5orVeFlDkW9DnzHQYPurIdtTg/Lj2li5XDtUJH6RN9wxcSjVqAzMdN3K7l0GhaVYF2HpftLw43PvIu/vLOarwZUZ4MBIOG+FDJ5VUudW3Rulk67ikA+UTq07FlWE+a1PJpXu2WX9Rr24WJ9A1n1SlDHz7OeXWU4SSNGihxKp98/34/ZYk0Pw9Z0BMreA12rKlGt7bh8QyErc4BYNrS+H6t/t/UpXhWonGjApF8wRr445eVZcSdhWidLOKM3u1CafXHGTbvOYyfcVbXgJ1rFd7fPeCLv4IPUTf+BWM9hYb0Zm2BQvR/zmP2bReheZNKnPKT4MDrI2i7xOGITYvN41/SB0i4XbMN1+Gik8MLlop/+9EV4chdUXDuALlfpGs/1hN/jehLRbar6dSqOmScVcERD90rNu0cats1V3K2Mqd5PFqaCIawEwGAx6brFxLALlynrMcje0uCtQuQvY+3l2035lHht6+aFzEefNW2O1iRqfBFkFO/cz72HDxq5ZzsaUlgdgBZRisK6jzHhYxl/GHpPOYmRVKGTIfS5/Q19zrWVJsnMOTyZt4ISYYaAxcs40rSQJTBfK3VwaEav71msDR9cG0baboOKoIj7lIynHROTCDTvc7UZ25T5frBBN853GBOAyzQR0naXsG3TLc2YVGF6mDSJwAj+8iVBkI+5iUQX8e6nQfwxzeCLj7ivg8bVDepiGRUJ83nVdC3U00o6pUMoptlHj8YfZJlL4QuUKZnw37+aqzytrjxnLq81V3yRN/Wb46Ir328X/ZaxplcfbrUK3QWHQ2OyEQ1URuYdgcAUNch6EZ59m0X5c3VbzNF+Ls47pZl4odWzZqEOH1RTKCSKbcyLLqn92oXORbA+MuChGKoguhnwTJeNb//j7mhW5/kDvp9qDj9Z7xYrjdf0C/Wu51920Uhw6Bz/ue1UD6dIVtS9O1Uk41Mp1qoRSQ1bvvM6bXKe3yoTlswlrOatzl/SYK0bYUCdeet5gLBlUP1xFmFEzhOTDb4WjdTi43yBV0sUx8nevLmeXdcgg9+fDE61lTHOohOgqgL7WNfHCHl9M/t3zFE5ALGU2DKWLxDDAT59J7tIhOVT3l+0k1P52vI3DX5Q4y8ayomzg6LGMZLOE0Vp39q9zZYdfcVWc+qUdGxpjrwrCo5dL4IzZ+uGwYgp0Hz8NurcPDIMXwgeOE0IWrvemoO3Ht1UMeY4MGr0basrmywg9wkwYlMKHmZvioqkAk+d9+rQwspQWqhUQXMF0zj4FaOE22MRen+a4cC0FsNyw7OmzWpxKrtYd3y6yXeOvmadUS7OuZ3BzILhowgqQ5+VdAddMo49nyGyrPpe76ImT8W/R4s3rgHJ//4JfTpFCa8d109iOtPsh5F1UaSgfe426pZE2mAmnygpjp/87fkOf2o8CMQ+bvh8/p3ksqHOxvUx3gM6BLfDUIUqHTt8xnJiccnTstwwjoZM38OMLxXTi47S2KgIyOMw+vaZ5/n1y9/pGwnjhjk3P4dvbLy+y09T5ane/0+b0DYcVwSiDYacRkWGVRaPbZ4+Ibhscv671PcSfCBjHzw4smwe2i7b+ofAJvO1WwgMjCmLkzwdjVJ8aVz9IZySVDynL4InbodADz+5REAcpx+BQGrJVxoFKRl+GSyGDyzr1mLoyGgE+/w89gnAscZCy2sqoDo7Vo0yZu46nMj9Afb/qH/kB5t8eHPRyvPNOJCFO/0loggdIZXSaHjYC88ySzvFwOY+PC/lsIsIpiX+7RRn3SYtxhPv3UUpi3ZqnRDnRQ7D6id1F1seS7yuRE9tPfTXPBFlB2n/9wtZ2vvD+uVOfH35xYRoYuBq+e3pDKIRkBxD8xk3gyvG5kTgcj00QG5WKhDHi1wdUogvKjM167o1Ko6RMyuUpzF8G4S8gWb6tMk+K2bVUlFWZ1bh5UB8kn0TcoHAHB2PzVj8Zlh8oNTX7QUdffVXvB+axKrjBmcGTM11VW4bFA8P0Yq+LtS0xOIz9hREr4RAAZ2U2u4nVGXH80+H2VH9GWTVXRYBeSIU4UFkTFNFrH8hOvjbZVlGgdfGBkmFuEOhJMmff2cWH2wgY0PEwD41sUDMOXb56Nvp5pIXF1Smv9Vyffm640b7F2nIqjDvDsuxc/GnIqTuwZ3ob+8KsxM1GtivMrww8vtVBO/c/EA9GhvjnescyVx2alyQuvv6C46OWw4KIKfn4Miqv7aqK5GxeWDuuK8AZ1w7+cy51Umly0iWinO1r6gUZf+j+H6XUBSlB3Rl+HTEvVLn6mQjSNxC5fPk3YeMrFG3La7J5Tx6rBF5ySOo+6VFYR+neXnHSoRDiEeUe7LHRr6ctooC42N7cHEr8j9MNkj+FwyIhyR5ltHVztFwlD86tOnhdJ0Gjd1HeWLhv++RcdwMujes2ho+eR/jsxev3fbRca6o2Da9zOuO2qqq/DYF0dk54sueI0MKoWPuIxFGnBEH/IP0MWTT/Zo3yJEgOoEVTCxeL4WAdk4sRk8MsdR+cRRjfdDVU+OCdTsE4PlXGP3ds1jcfpP3pQjECbLU5mvJFsVv3wjKqefhLa01lizS9tSfBmf019k4VpYN55Fgyz+DKuDhWjKFs/dcrbVrscGKjGlDvnU0QfKkOjL5IKyl/zJ07rikRvPwHUje4VU6cQDInGwiz5D8qnhZTM+xOZbWqqb/vNrQREQr2LHi5q+cl4f9Gif2zkc1cidVQS3GWesdsNZdThdYnE56WtnZ4LNxJgTTbhzFZNYXKY62UxhI/F3iZfVuKqCNs8VVaZvHZhbUm3U92yKidCAYWATwWTjEQU2O+oLBX9ZNvY4SVB2RF82aWQfhohwwYmdUVFBIX/fZ2kOs/IJqf93i3LiQmcj+/zh5SeFZKp9OZ9EfLCQWy8/GdO+n/PuuF4TU1YVuvGsfjn1x8sVh3D+t4uzNeaf+XNnyOWpvm8VWe0/ulzup4hXO/VhCugtE5sAdpaqUV1vN6IUIQt/vc03MUsCG2v3ODhPYlC39M7LAr9rBFcw+V4cy0pl82sf7yf1L2JSjxKJpsni9NJTwjFgfdzz2SHasip866IBUn1/GwJoE8RFhGz3E3CapZGIi6IaHjZqdKoD0SgOwUTw3LfKUtOXOcveaRuFCmmcBUg13pZs3mssyzd34UmdcXrPtqE8Z9S1w7urMk7jbHsn80EV1emX6lX48yVKuEURNl4xbfH0zeHdmUpFOClk71V8D+K4zrd4p6yI/rcuHhCr3Ok92wVivIYWDu4bXT20O+4WODmeQOrcQrRqVoW9irig37yovzTdxvJUdBF762UnS/M1qaQsJymjr025WMJxvAC+8b0LlPdsVEiTGKy2rK7Cty8egNGn5hbkJgor1S6tmxn9r/N443sXBIK1VJBehKRaMK8bWZd12aDSdOEJwsM3nCHNw6sIn2RxeAoA3dqEd7vnD+iEL57dWxrIXgalTN9bcG1UQlX4xVWnxi4rwlfLbgzIoqOJi0C+FUMKd79VQOADp//iylO1xlbnn9gpvmFFDEbWxtKSz/Nf5/dVetf8ynk5VUaZCIuftEMlHKYPmXijY01T7WGojeppEk4fAL4xqj8GcIE2eLuGb3MMwe1XyBdFFXp1aInOrXK2HCa7DhmBBTIqiu/cOgqPfXEEHhonJ+jDJOIkEf66cO/YIVby6Ve+dZ5091NRQfjxJwdiuEVIUL5dEb7rDdUi6+OBz5+uvDe4tq1VH0z4ynl9pOlpMNfLBLGNDJ+W2DKINhptW+Q3il1ZEf24PjN89wJ9OrY0EieTWESHuDuRKNAx6OefmJM/DpBEIfIxsk/7yLrE944dauiXetZlXWPk0TCJV60TLZujcl6mMfKxPuozoRPaNJPKgX3o3pOIDi3tOOv+CrXZJJj0tbPxjVH9seruK7IeZVWRynyoznKA3HlLEiz/5eUhT6k+0rDytnFNLVNQ4NVqJ1w3LO+W9WVF9OPSjCaVFVh19xX493cvkN7nh4tsUv7qM/KDOxFfVPjb+MRp6VkX6ga33/WhPdtK5a/+4nXZqV21suyPSWTySewCfO72mOXqKbNujQLx2aIOm7jeMNNCLsiMXc/zoTN+Wm3bwO4JiO6wDsh4i537k0uU96d9/+OYcas6ROTv/iPn66mygpTP2pgH3vxZ3SWa88C0UBYy/aaVFThy7Hhi8YAK/ECS+d6obdcCS++8LNap/IAuNbj/WvW2F8iInFQBNkTYxAY2m5rr7199ei1uf35hIK29whzdBr5M2FZd0UYEEgVRv5vJv1O+cULrzAJra5iVBu66epDxoFZ3DrT4Z6Ol6SZvsSZ9et5Lpg6dPa0ycaGyxSvfOi9WOaDhDbWMnD4RPUxEW4hoAZfWnoheJaKl3t923L1biWgZEX1ERJdy6cOIaL537z5qwCfNcj55kg7wYiPVwG9SWWEl6xctVF/51vnGMl8Y2Qv9OtsRGl34SD/qlu1EUUHUWHjjexckcvXcw5MJi6ptMvzmmsFZv/dp4W+cYZcNoohg8oGfjTkFv//sYKvFT+UkTQXZju2Gs+qMzuoAfUD55nlyVW77KTrUVGPBTy8NBE+S4S9fGiFN14lDffzacsefb9iwAo8AuB/AY1zaeABTGWN3E9F47/cPiGgggLEATgHQDcAUIhrAGDsG4EEANwF4B8CLAEYDmJzWg2gf4MYReHzmaqWBTVKkuX75C8jDNwzHwK7JiG9U9O1Ug+duORsDFRof3754AA4cOaZ0rCXD/dcOTWzNevsnBuLsfh2tDhTP7tch1vdQucquqiCtDF4GWftn9umAb108wDpqVBK0rK7CVUPtvlFU9cBPDemGB18Phlm8/RN2sZYbw/VApY1rTw82TMW5/cOiu39Z+rG6Js8+dWxhfErG2JtEVCckjwFwgXf9KIDXAfzAS3+KMXYYwEoiWgZgBBGtAtCaMTYDAIjoMQBXooGI/pl9O+T1cOScfun5Vff3DD3btwhE72oo6LQ92rVsit9yMlIb+IfgSdCsSaX2kA/IGNdUVlBIPdUWZynGB2+QlgS+G4i4TtnSxkkntMKHm/ZGlmXLOOfG3tno4NtniK5T0oSKSfLRs32LgvnuQHyZfhfG2EYAYIxtJCJfqbg7Mpy8j3Ve2lHvWkyXgohuQmZXgJ49kwXvbgjkZ9DnZyLJIlcVCqZ8+/zIu7E+nVpiw66DGF7XLpa74w9/Phqbdh9S6pCnYbSz4KeXmjNFQPuWTSPZEchw/7VDcdHv3oxM9McM6Y4/vLbcnLFAUNuuOf77ov642nLnEwcmC/c3PedthYK0T3pkT8806VIwxiYAmAAAw4cPbxCPHc2bVOLro/TyPB0uH3QCRljqMzcGvjCyJx5/Z02DaAfEhcrjpgwjerfHrJU78MurBmFkRPELj2ZNKqXqgL6hmknV1AY2YoMoeO27F2C/IjawLZpWZhbIlhEPe7t49gj/eW5vDOvVXhnMPQpGnWR2uRwXRIT/vij/qtBJ8ZtrBudN0URE3NG4mYi6elx+VwBbvPR1AHjBVS2ADV56rSS9YLD453LtAVs88Pl0wqTlK1DpL64chF9cqQ/24hBGu5bJOH1T0J44aNO8ifZAXoXLB52AF+dvAgD0aN8c37l4AK6SuBXXtt2iCd677SK0bdE01g53UPc2mL9+d/b3Ny7sh29fcmLkegoFaUW4inJOlhRxezwJwDjvehyA57n0sURUTUS9AfQHMMsTBe0lopGe1s71XBkHDj7NLwRHWeUM3zrZZFBkQpoeG5Pi2hE5+wUiwtdH9VdGW9OhQ011bJHmQ+OCAYQawiAxX5j8zXPxVoGJbmxg5PSJ6ElkDm07EtE6AD8BcDeAiUT0JQBrAFwDAIyxhUQ0EcAiAPUAbvE0dwDgZmQ0gZojc4DbIIe4xQZfe6fYaf7Er5ypDCBRDPjupSfiu5cWLwcqg89IqA6tGwLiGUljBhNJCpugMIUIG+2dzylujVLkvxPAnZL02QDS85pU4ijmyQAUjpZKY+G5W862cobXGGhMv/bVVZVY8cvL0eeHL2r19gsZnz69VukivBhQFha5xYT/Or8vxj8zP2sh6CCHP+nSDFCeJgpJrOOjUNiIigrCn64bVpDvyAZR1ZYLDY7oFxjGjuiJsRbWjeWOu64ehPP7dypawtEY8OXwaR0+JoEu5oRDfuGIvkNRonWzJviPMwrDwrFYcEZde3z9wn64LqFDOofihiP6Dg5lgooKwneKWD3SIR00/j7PwcHBwaHB4Ii+g4ODQxnBEX0HBweHMoIj+g4ODg5lBEf0HRwcHMoIjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGINaY3pcsQERbAay2zN4RwLY8dqexUKrPBbhnK1a4ZytsbAMAxlgoUEjBE/0oIKLZjLHh5pzFhVJ9LsA9W7HCPVvxwol3HBwcHMoIjug7ODg4lBFKjehPaOwO5Aml+lyAe7ZihXu2IkVJyfQdHBwcHPQoNU7fwcHBwUEDR/QdHBwcyggFTfSJ6GEi2kJEC7i09kT0KhEt9f624+7dSkTLiOgjIrqUSx9GRPO9e/dRAUQdVzzbHUS0nog+8P5dzt0rimcjoh5E9BoRLSaihUT0TS+96L+b5tlK4bs1I6JZRDTXe7afeuml8N1Uz1b03y0WGGMF+w/AeQBOB7CAS/sVgPHe9XgA/+NdDwQwF0A1gN4AlgOo9O7NAnAmMrGhJwO4rECf7Q4A35XkLZpnA9AVwOnedSsAS7z+F/130zxbKXw3AlDjXTcBMBPAyBL5bqpnK/rvFudfQXP6jLE3AewQkscAeNS7fhTAlVz6U4yxw4yxlQCWARhBRF0BtGaMzWCZr/YYV6bRoHg2FYrm2RhjGxljc7zrvQAWA+iOEvhummdToZiejTHG9nk/m3j/GErju6meTYWiebY4KGiir0AXxthGIDMJAXT20rsDWMvlW+eldfeuxfRCxdeIaJ4n/vG30kX5bERUB2AoMpxVSX034dmAEvhuRFRJRB8A2ALgVcZYyXw3xbMBJfDdoqIYib4KMtka06QXIh4E0BfAEAAbAfzWSy+6ZyOiGgBPA/hvxtgeXVZJWrE9W0l8N8bYMcbYEAC1yHC2p2qyl8KzlcR3i4piJPqbvW0WvL9bvPR1AHpw+WoBbPDSayXpBQfG2GZvcB4H8L8ARni3iurZiKgJMkTxCcbYM15ySXw32bOVynfzwRjbBeB1AKNRIt/NB/9spfbdbFGMRH8SgHHe9TgAz3PpY4momoh6A+gPYJa3Jd1LRCO9k/bruTIFBX9yebgKgK/ZUzTP5vXjzwAWM8Z+x90q+u+merYS+W6diKitd90cwEUAPkRpfDfps5XCd4uFxj5J1v0D8CQy266jyKyyXwLQAcBUAEu9v+25/D9C5qT9I3Cn6gCGI/NBlwO4H54lcgE+218AzAcwD5mB17XYng3AOchseecB+MD7d3kpfDfNs5XCdzsNwPveMywA8GMvvRS+m+rZiv67xfnn3DA4ODg4lBGKUbzj4ODg4BATjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGcETfwcHBQQIiusZz0HaciJQxc0niPNFLlzqrI6KmRPR/nuO2uUR0AVfmTiJaS0T7YAEiakNE/+Scyd1oKuOIvoODQ9mDiC4gokeE5AUArgbwpqH4I8gYsokYD2AqY6w/Muqu4730/wQAxtggABcD+C0R+bT4n8gZidngFgCLGGODAVzg1dVUV8ARfQcHBwcJGGOLGWMfWeRTOU9UOasbiMwiAMbYFgC7kNH/B2PsHeb5OuLhGZg9TUTvev/O9psH0MozFqvx+lGv668j+g4ODg75gcpZ3VwAY4ioyrP4HYag2wcZ7gXwe8bYGQA+DeAhL/1+ACcj4w5iPoBvsoxbCSWq4jyJg4ODQymAiGYi4ze/BkB7zxMnAPyAMfZynpp9GBlCPRvAagDTYeDOkXEdMZCL2dKaiFoBuBQZy/ALkXEe9yoRTWMaJ4eO6Ds4OJQtGGMfAzIyfQA3MMZuSLH6zUTUlTG2kXdWxxirB/AtPxMRTUfGzYUOFQDOZIwd5BO9g9u7Wca1wjIiWgngJGSCvSgrcnBwcHBIH1JndUTUgohaetcXA6hnjC0y1PUKgK/5P4hoiHe5BsAoL60LgBMBrNBV5Ii+g4ODgwREdBURrUMmPOILRPSyl96NiF7k8j0JYAaAE4loHRF9ybt1N4CLiWgpMlo6d3vpnQHMIaLFAH4A4Dqurl95bbbw6rrDu/UNAMMpE/BlEYD/8tJ/DuAsIpqPzOHwDxhj27TP5RyuOTg4OJQPHKfv4ODgUEZwRN/BwcGhjOCIvoODg0MZwRF9BwcHhzKCI/oODg4OZQRH9B0cHBzKCI7oOzg4OJQR/j+RSFFPhdmq7wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Checking the Light Curve for Irregularities\n", + "\n", + "You can perform checks on the behaviour of the light curve, similar to what's done when instantiating a `Lightcurve` object when `skip_checks=False`, by calling the relevant method:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "time = np.hstack([np.arange(0, 10, 0.1), np.arange(10, 20, 0.3)]) # uneven time resolution\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's add some badly formatted GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(10, 100), (20, 30, 40), ((1, 2), (3, 4, (5, 6)))] # not a well-behaved GTI\n", + "lc = Lightcurve(time, counts, dt=0.1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_lightcurve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/lightcurve.py\u001b[0m in \u001b[0;36mcheck_lightcurve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[0;31m# i.e. the bin sizes aren't equal throughout.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 419\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 420\u001b[0;31m \u001b[0mcheck_gtis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 421\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[0midxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearchsorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/gti.py\u001b[0m in \u001b[0;36mcheck_gtis\u001b[0;34m(gti)\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;32mor\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 227\u001b[0;31m raise TypeError(\"Please check formatting of GTIs. They need to be\"\n\u001b[0m\u001b[1;32m 228\u001b[0m \" provided as [[gti00, gti01], [gti10, gti11], ...]\")\n\u001b[1;32m 229\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]" + ] + } + ], + "source": [ + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## MJDREF and Shifting Times\n", + "\n", + "The `mjdref` keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don't become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time. \n", + "\n", + "`mjdref` is generally passed into the `Lightcurve` object at instantiation, but it can be changed later:" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91254\n" + ] + } + ], + "source": [ + "mjdref = 91254\n", + "time = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, mjdref=mjdref)\n", + "print(lc.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91274\n" + ] + } + ], + "source": [ + "mjdref_new = 91254 + 20\n", + "lc_new = lc.change_mjdref(mjdref_new)\n", + "print(lc_new.mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This change only affects the *reference time*, not the values given in the `time` attribute. However, it is also possible to shift the *entire light curve*, along with its GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0,500), (600, 1000)]\n", + "lc.gti = gti" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first three time bins: [0 1 2]\n", + "GTIs: [[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(\"first three time bins: \" + str(lc.time[:3]))\n", + "print(\"GTIs: \" + str(lc.gti))" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "time_shift = 10.0\n", + "lc_shifted = lc.shift(time_shift)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shifted first three time bins: [10. 11. 12.]\n", + "Shifted GTIs: [[ 10. 510.]\n", + " [ 610. 1010.]]\n" + ] + } + ], + "source": [ + "print(\"Shifted first three time bins: \" + str(lc_shifted.time[:3]))\n", + "print(\"Shifted GTIs: \" + str(lc_shifted.gti))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating a baseline\n", + "\n", + "**TODO**: Need to document this method" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Working with GTIs and Splitting Light Curves\n", + "\n", + "It is possible to split light curves into multiple segments. In particular, it can be useful to split light curves with large gaps into individual contiguous segments without gaps. " + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.array([1, 2, 3, 10, 11, 12, 13, 14, 17, 18, 19, 20])\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.5, 20.5]])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This light curve has uneven bins. It has a large gap between 3 and 10, and a smaller gap between 14 and 17. We can use the `split` method to split it into three contiguous segments:" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=2*lc.dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14]\n", + "[17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This has split the light curve into three contiguous segments. You can adjust the tolerance for the size of gap that's acceptable via the `min_gap` attribute. You can also require a minimum number of data points in the output light curves. This is helpful when you're only interested in contiguous segments of a certain length:" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What if we only want the long segment?" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0, min_points=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split_by_gti()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6 7]\n", + "[13 14 15 16 17 18 19]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because I'd passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.\n", + "\n", + "You can also apply the GTIs *directly* to the original light curve, which will filter `time`, `counts`, `countrate`, `counts_err` and `countrate_err` to only fall within the bounds of the GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Caution**: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array before applying GTIs:\n", + "lc.time" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "lc.apply_gtis()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array after applying GTIs\n", + "lc.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs. \n", + "\n", + "## Analyzing Light Curve Segments\n", + "\n", + "There's some functionality in `stingray` aimed at making analysis of individual light curve segments (or chunks, as they're called throughout the code) efficient. \n", + "\n", + "One helpful function tells you the length that segments should have to satisfy two conditions: (1) the minimum number of time bins in the segment, and (2) the minimum total number of counts (or flux) in each segment.\n", + "\n", + "Let's give this a try with an example:" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The estimated length of each segment in seconds to satisfy both conditions is: 4.0\n" + ] + } + ], + "source": [ + "min_total_counts = 300\n", + "min_total_bins = 2\n", + "estimated_chunk_length = lc.estimate_chunk_length(min_total_counts, min_total_bins)\n", + "\n", + "print(\"The estimated length of each segment in seconds to satisfy both conditions is: \" + str(estimated_chunk_length))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we have time bins of 1 second time resolution, each with an average of 100 counts/bin. We require at least 2 time bins in each segment, and also a minimum number of total counts in the segment of 300. In theory, you'd expect to need 3 time bins (so 3-second segments) to satisfy the condition above. However, the Poisson distribution is quite variable, so we cannot guarantee that all bins will have a total number of counts above 300. Hence, our segments need to be 4 seconds long. \n", + "\n", + "We can now use these segments to do some analysis, using the `analyze_by_chunks` method. In the simplest, case we can use a standard `numpy` operation to learn something about the properties of each segment:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "start_times, stop_times, lc_sums = lc.analyze_lc_chunks(chunk_length = 10.0, func=np.median)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([102. , 110. , 92. , 96.5, 99.5, 100. , 95. , 96.5, 100. ,\n", + " 108. ])" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_sums" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This splits the light curve into 10-second segments, and then finds the median number of counts/bin in each segment. For a flat light curve like the one we generated above, this isn't super interesting, but this method can be helpful for more complex analyses. Instead of `np.median`, you can also pass in your own function:" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "def myfunc(lc):\n", + " \"\"\"\n", + " Not a very interesting function\n", + " \"\"\"\n", + " return np.sum(lc.counts) * 10.0" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "start_times, stop_times, lc_result = lc.analyze_lc_chunks(chunk_length=10.0, func=myfunc)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([10090., 10830., 9370., 10120., 10180., 10190., 9910., 9610.,\n", + " 9880., 10600.])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compatibility with `Lightkurve`\n", + "\n", + "The [`Lightkurve` package](https://docs.lightkurve.org) provides a large amount of complementary functionality to stingray, in particular for data observed with Kepler and TESS, stars and exoplanets, and unevenly sampled data. We have implemented a conversion method that converts to/from `stingray`'s native `Lightcurve` object and `Lightkurve`'s native `LightCurve` object. Equivalent functionality exists in `Lightkurve`, too. " + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "import lightkurve" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = lc.to_lightkurve()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "lightkurve.lightcurve.LightCurve" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(lc_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110, 82, 94, 126, 102, 80, 102, 105, 106, 102, 119, 98, 112,\n", + " 98, 119, 112, 119, 99, 99, 108, 91, 85, 93, 109, 97, 82,\n", + " 87, 89, 96, 108, 120, 88, 97, 88, 109, 120, 94, 106, 94,\n", + " 96, 120, 122, 92, 87, 113, 94, 100, 99, 105, 86, 107, 101,\n", + " 94, 102, 96, 112, 93, 117, 99, 98, 91, 101, 94, 120, 105,\n", + " 91, 91, 96, 85, 117, 104, 102, 91, 94, 100, 115, 98, 74,\n", + " 95, 88, 100, 107, 102, 109, 109, 94, 86, 84, 97, 100, 110,\n", + " 109, 117, 96, 108, 108, 110, 108, 97, 97])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.flux" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's do the rountrip to stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc_back = lc_new.to_stingray()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.time" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110., 82., 94., 126., 102., 80., 102., 105., 106., 102., 119.,\n", + " 98., 112., 98., 119., 112., 119., 99., 99., 108., 91., 85.,\n", + " 93., 109., 97., 82., 87., 89., 96., 108., 120., 88., 97.,\n", + " 88., 109., 120., 94., 106., 94., 96., 120., 122., 92., 87.,\n", + " 113., 94., 100., 99., 105., 86., 107., 101., 94., 102., 96.,\n", + " 112., 93., 117., 99., 98., 91., 101., 94., 120., 105., 91.,\n", + " 91., 96., 85., 117., 104., 102., 91., 94., 100., 115., 98.,\n", + " 74., 95., 88., 100., 107., 102., 109., 109., 94., 86., 84.,\n", + " 97., 100., 110., 109., 117., 96., 108., 108., 110., 108., 97.,\n", + " 97.])" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, we can transform `Lightcurve` objects to and from `astropy.TimeSeries` objects:" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n", + "\n", + "# convet to astropy.TimeSeries object\n", + "ts = lc.to_astropy_timeseries()" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.timeseries.sampled.TimeSeries" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts)" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "TimeSeries length=10\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timecounts
objectint64
0.0100
1.1574074074074073e-0592
2.3148148148148147e-0598
3.472222222222222e-0585
4.6296296296296294e-05113
5.787037037037037e-0594
6.944444444444444e-0599
8.101851851851852e-05108
9.259259259259259e-05101
0.00010416666666666667117
" + ], + "text/plain": [ + "\n", + " time counts\n", + " object int64 \n", + "---------------------- ------\n", + " 0.0 100\n", + "1.1574074074074073e-05 92\n", + "2.3148148148148147e-05 98\n", + " 3.472222222222222e-05 85\n", + "4.6296296296296294e-05 113\n", + " 5.787037037037037e-05 94\n", + " 6.944444444444444e-05 99\n", + " 8.101851851851852e-05 108\n", + " 9.259259259259259e-05 101\n", + "0.00010416666666666667 117" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "lc_back = Lightcurve.from_astropy_timeseries(ts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading/Writing Lightcurves to/from files\n", + "\n", + "The `Lightcurve` class has some rudimentary reading/writing capabilities via the `read` and `write` methods. For more information `stingray` inputs and outputs, please refer to the I/O tutorial." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb.txt b/_sources/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..afd694ec5 --- /dev/null +++ b/_sources/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb.txt @@ -0,0 +1,307 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScargleCrossspectrum, LombScarglePowerspectrum\n", + "from scipy.interpolate import make_interp_spline\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "plt.style.use('seaborn-talk')\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create two light curves\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make two signals in units of counts. The first is a sine wave with random normal noise, frequency of 3 and at random times, and the second is another sine wave with frequency of 3, phase shift of 0.01/2pi and make their counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "y2 = np.sin(2 * np.pi * 3.0 * (t+0.3)) + 0.1 * rand.standard_normal(n)\n", + "sub = min(np.min(y), np.min(y2))\n", + "y -= sub\n", + "y2 -= sub" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(t, y)\n", + "lc2 = Lightcurve(t, y2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAPzCAYAAADPqV/6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7xdVXkujj9zrbX3zn3nvgMhIGi4qFhA8GhRqh57t4rSc/y2QbxgiD3fc/SnqIVfo1IpWJVab60CjaIST21FLdRL8Y7UegW8IRAlwA6EhGQne+/s+1prfv+Ya645xpjj9o4xZrJXMh4+fDKz1pjvHJlrzjHe6/MmaZqmiIiIiIiIiIiIiIiIiJi3qB3pCUREREREREREREREREToEQ23iIiIiIiIiIiIiIiIeY5ouEVERERERERERERERMxzRMMtIiIiIiIiIiIiIiJiniMabhEREREREREREREREfMc0XCLiIiIiIiIiIiIiIiY54iGW0RERERERERERERExDxH40hP4FhDu93GY489hqVLlyJJkiM9nYiIiIiIiIiIiIiII4Q0TTE+Po7jjz8etZo+phYNt8OMxx57DBs2bDjS04iIiIiIiIiIiIiImCcYHh7GCSecoB0TDbfDjKVLlwLIfpxly5Yd4dlERERERERERERERBwpjI2NYcOGDV0bQYdouB1m5OmRy5Yti4ZbRERERERERERERIRVCVUkJ4mIiIiIiIiIiIiIiJjniIZbRERERERERERERETEPMe8NNzm5ubwjW98A29961tx3nnnYfny5ejr68O6devwkpe8BF/60pfIMq+66iokSaL9/7777qvgXxMREREREREREREREeGHeVnj9p3vfAe/+7u/CwBYt24dnvvc52Lx4sW49957cdttt+G2227DZZddho997GNkSv3f+q3fwllnnSX9bnBw0HfqERERERERERERERERwTEvDbdarYaLLroIb3zjG/G85z2P++6zn/0sNm3ahBtuuAHnn38+LrnkEpLsCy+8EFdddVXA2UZERERERERERERERFSLeZkq+cIXvhCf+9znSkYbALziFa/Aq1/9agDApz71qcM8s4iIiIiIiIiIiIiIiMOPeWm4mXD22WcDyHqhRUREREREREREREREHO2Yl6mSJuzYsQMAcNxxx5HPveuuu3DFFVdgZGQEg4ODOPvss/Enf/InVk3vTJiYmAgyJiIiIiIiIiIiIiIigkXPGW6PP/44brrpJgDARRddRD4/JzdhMTg4iA996EPkejkRS5Ys8To/IiIiIiIiIiIiIiJChp5KlWw2m7j44osxOjqKM888E1u2bLE+98lPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27RXOPiIiIiIiIiIiIiIiwg1JmqbpkZ6ELV73utdh27ZtWLVqFb73ve/h1FNPDSL3DW94Az784Q9jzZo12LVrF/r7+53k2KRBjo2N4fjjj8fo6CiWLVvmdJ2IiIiIiIiIiIiIiN7H2NgYBgcHrWyDnjHc3vjGN+JDH/oQVqxYgW984xtdgpIQGBkZwdq1a9FqtXDHHXdI2SxDgfLjREREREREREREREQcvaDYBj2RKnn55ZfjQx/6EJYvX47bb789qNEGACtXrsTatWsBALt27QoqOyIiIiIiIiIiIiIiwhfz3nB729vehve///0YHBzE7bffjnPPPTf4NVqtFkZHRwEgCLtkRERERERERERERERESMxrw+2KK67A+973PgwODuJrX/sazjvvvEquc+utt2JychJJklRiGEZEHO1I0xRTc60jPY2IiIiIiIiIiKMW89Zw27p1K97znvdg+fLl1kbbRz7yEZx++uklWv9HHnkEN998M6anp0vnfPGLX8TrXvc6AMCmTZuwbt26MP+AiIhjCHfuGsFXHtyL3xyIfQojzGg2gR07gJ/8JPuz2TzSM4qIiIiIiJj/mJd93G699VZcc801AICnPOUp+Id/+AfpuNWrV+O6667r/n3fvn24//77S8bXyMgIXvnKV+Iv/uIvcPbZZ2P9+vWYmprCvffe223m/YIXvAAf/ehHK/oXRUQcvZhutvDE5CwA4Kd7x/DkFYuP8Iwi5iuGh4HrrwduvBHYu7f4fO1aYPNmYMsWYMOGIze/iIiIiIiI+Yx5abiNjIx0j3/84x/jxz/+sXTcSSedxBluKmzYsAF/+Zd/iR/96Ef49a9/jbvuuguzs7NYvXo1XvziF+PP//zP8YpXvAK12rwNQEZEzFv0BC1txBHH9u3ApZcCMzPl7/buBa65BrjuOmDbNmDTpsM/v4iIiIiIiPmOnmkHcLQgtgOIONow3Wzhy78pwicvP+24IzibiPmI7duBiy+2H3/zzdF4i4iIiIg4NnDUtQOIiIiYv4ienwgdhoezSBsFl16anRcRERERERFRIBpuERERXogx+wgdrr9enh6pw8wMcMMN1cwnIiIiIiKiVxENt4iICC/EbOsIFZrNjIjEBTfeGNkmI3hMzDbRasf1JiIi4thFNNwiIiK80D7SE4iYt9i5k2ePpGDPnuz8iAgAeGh0Ev+x8wl88+F90VkUERFxzCIabhEREV6ISlSECmNjfuePj4eZR0Tv467HRwEA47NNjEzPHeHZRERERBwZRMMtIiLCC9Fsi1DBlzh36dIw84jgMdtq93TKYTs6iyIiIo5RRMMtIiLCC1GHilDh5JOz5touGBrKzo8Ii5GpWXz5N3vw1Qf3Yq4dE50jIiIiegnRcIuIiPBC9H5HqNBoAJs3u527eXN2fkRY/OCxA2inwEyrjV+PTBzp6TghLjkRERHHKqLhFnFUotVOo0FxmBDvcoQOW7YAAwO0cwYGgMsuq2Y+xzL2TMxgqllE2eZ6OF0yIiIi4lhENNwijjocmm3iK51UoNlWTAWqGtE+jtBhwwZg2zbaOdu2ZedFhMV/7ho50lMIgrjkRETMb+yZmMEvnxjDdLN1pKdy1CEabhFHHX7y+EHMtlNMN9u4b/+hIz2dox6poEZFlskIEZs2ATffbI68DQxk4zZtOjzzOtaRHOkJOEJccyIijhQOTs/h53vHMDYTmU5zzLXa+M9dI7h/ZAJ37xk90tM56hANt4ijDuOzhYdnJnp7Kodop8XsqwgZNm0CduwAtm7NiEdYDA1ln+/YEY22qnBUOVSOon9KRG/jmw/vw44DE7hj+OiIZofAxFyhd+0+NHMEZ3J0IpZ+Rxx1YGvbkqRXfcq9g7agRbXTFPWe9eVHVIkNG4Crrwbe+c6sufb4eEb5f/LJvUdE0mqnqNd65zlvHUWG29HzL4k4WhDLMiIOF3psq4yIMIM13GrRcKscMeIWQUWjAWzceKRn4Y6HRydx955RnLB0Ic49bvmRno4VmkfRi3kU2aAREUcdquwRmaYpRqbmsKBRw+L+Y9OEiamSESW00xT37hvHr/aN92R6Dbtm9JBDvGdRMtyiPzziKMdPHh9FOwUeGZvqGYOoV+Zpg8gYHDEfEJ9DOZppdXXvj45P4zvD+/G1h57ATPPYjHJGwy2ihIcOTuK+/Yfwq/2H8NDo1JGejhdixK16RHKSiGMZvaK8yQy3Xl0ej011LWK+oVfefR3SNMXEbDOozGabf0NDth354e6DADIH/a7x3tZPXRENt4gSWGPt4dHJIzgTf8SIW/WIqZIRxzJ6RXk7miJu0TkUMR/QOgoewx88dhD/sfMJ/PKJ8WAyxbWmqshYL9UYh0Q03CJKYL2wvb4uxYhb9RCX5F5RZCMiQqBX7KFmevTEqXrlnkcc3Tga9rrHDk0DAO4fCdc6Saxxm6mIuKXvGDXcjs3KvggtjqZX4Rh9rw8rRO93VKoijmaMTM1yfw+pvKVpih/uPoiD03N41vErsGJBXzDZVRIGHG4cDQpzRO+jfRS9UyEh1rjNtKppy3SsLgMx4hZRAhdxq+jNaDaznk0/+Un2ZzNsinUXyVFlhs5PiE9IVKoi5gMen5jG3Y+P4lDA+o2ZZgt3DO/nPgv5vO8+NINHx6cxMdcK3rj26EqVrEJmivHZ5lFl4EZUi15vsVGZfie8Q6Fq3MS1ttfvvyui4RZRAmvshH4thoezRrvr1wOnngqce2725/r12efDw37yd3fC/jlE4oyI8BDXznjHDz/mWm0cnJ6LtT8dpGmK7+06gJ2jk/iuYGj54LFDM6WIcsg6l5HpIpp3cHounGAcXYZbFcy1vzkwia/tfALfenhffI8irNDrNW5VLQmi8yPU6yTWyh1FSxoJ0XCLKIGPuIWTu3171rvpmmuAvXv57/buzT7fuDEb54I0TfFfjx4QPnOcrOE6EQVEL1iMuBVottu4d984HqqQ5Kedpvj6Q/vwzYf39TwLbCiwCtVUwMJ4WZPdkM/75FyRUtQIXJ8rM9x6VfEJvca02il+9sQYAGBstompZjWpXRFHF3p9r6uqdY+41oS6T+J72ev33xXRcIsogVUXQr0W27cDr3p1imf/wSSe9qwZ5biZGeDii92Mt0fGykpr6JLY3xyYwL//eg92BCzk7XWUUyWPyDTmJR4YmcB9+w/hrsdHg0dQcuyZmOluaKHT63oVYqR9OpAiLiuyr8pwW9RXDyYXKNedAOEVn0OzTTyw/xD376gCodeYvZP8nhSSvvxowNRcCwcqWr96Gb2eVluV3VPq4xZKbkUGYa8hGm4RHJpNYHKyMN1CvBjDw8CllwIveNkU3vCeUbzzEyM48VT9JnDppbS0ySlFTUjo6NhP945hrp3i5wGpc3sdZXKSY3MxleG+/YWBL6bxhoIsCnSsQ3wEx2bC1LnJDJKQuhvrUe6rh424yZTM0K/qd4dH8It94/jerpGwggWEXtdFT36zx3Lgmu02fvjYAfxk98Hg6++DByfw1Qf34lsP78POg73VHmh0Zg7ffOiJyhxavb7XVTX/ltDHLdT7GmvcMkTDLQIAX3v27W8Xn+/c6V97dv31WSTtxZdMAADqdeCSt+oNn5kZ4IYb7K8xNtuUKlDH6Ht9WCHe4njP5aiqM0WvRQcOBzGRqCiMByIomZgrywmpPLA/ZeiaNLEpLhA+VSo3gMYCN/QVEfqRF+XNSe5VCMy12pWk2v/yiXHsGp/Gw2NTeCRwuvTP9o51n5J9AqPqfMf3do3g4EwTOw9OlthgQ6DXDYfKIm4V1biJ72mPbX3BEA23iFLtGdvuZ+0JLfzte1Ln2rNmE7jxxux498NF6s/Zz1OnS+a48UZ7pU7lOQr5XsfaNjnKDbjjfZKhisDYgwcn8LO9Y+EFd9Bst3H//kPdXj8+qJqYiIV4q0MZQVWnSrKyQiuFR5NjK7TBKUYjqyByeWR0Ev/+6z34nlCHHQJsbWto44q9Fb22trP1rVWk7/a64XDYatwCyRXn22vPYyhEw+0Yx/btWU3ZDGNH1YXufq+5csy59mznzoKIZHSE9rjt2ZOdbwPVAhrS2Op171pVKJGTHKF5zDeIz9504F42eydmcM+e6ow2APjVvkP45b5xfP/RA3jw4ITz+1Q1MZGIMtNpmHdXlm4YspcTu8aErp+RKTmhe9CxqLL+J/RSLN6HKqLYP358FCmymtRQNZc52OdmQaM6te5YVZRVEHWCXnPuHr6IW6BUSUHusaqTRcPtGEZeeyaif4B/Gf5wU5HXTq09G2P0ykY/dYbAuGUpmWphCPlaV5mSlqYp7tt/CD/bO1YZbfdsq41fPDGGR8fDptKUyUmOzcVUhPi8iFTGvnhQUm9SD5yPuePARPf4nj1j0muaIDqHli5v4723PIFr/3kfjj+5ifWnZPWuPsREIkRDLdQjWSUzY5qmnKzQho9MWshLiKJCphtWXUcrKoBVpUrmqHKJ7KtVabhVJron0evkJFXt1aKTMtRVxLey4td03iIabscw8tozEY1+9WtGrT1btqw47uujv75Ll9qNU6ZKBlyXquyDtGdiBvfuG8evD0zgvv3VEJ/85PGDeGBkAj947GBQI0JUqqLdlkFMzZkObLiNzZYJfkITWoj4KTEtU+YcuuRtY3jy05o47aw5fPgrT+BDX97HMc1SnUMylNJ3/cRlMlJ53C6U11eUImOB9IFsjXzs0HSw+j9RfEjSnMkSDXgw0VJ5odd6UcGv0rlVZe/S6JTjId6PXrs7Vfyc7TTFbKua512MuB2rz2M03I5RsLVnIvo0hhtAqz07+WRg7drsuFEy3PTXGRrKzreBSkUImcM9VyF73+MTheK6Y2RCM9Iduw8V15CRLLgiRtzkEL32oVMlD82W5VXpbXeBzDn05KeXDc43v/9g95jqHJKhtNIEeCZVynwwpaQUVQqbeqUS9f1ANVdVpRumaYpvP7y/9FlIlOcedq0X19uQ0kXSmSpJZifmWj2XDphj96Hp4AQlIvlor90a8VEJ8dvKHJTByEnEv/faDQ+E+bXLRxw2sLVnIvoNKY2U2rNGA9i8uXMsyK0Z2hRt3pydbwP2BV6zqLhQlRG3kBsYm+JWxVI0U2FD2V4mJ0nTFI+Nh9/QAQlT3WGg7W/Uqo24UaB0DkkejwWL+A8pziEZqogCqwy3vfvCMGPKGOhDRt1UkkJF3MT3PlTEbXKuVSKFCf0miVHT3xyYxERAZsyJueoaB4sN5kPW/Yjv0eRcC/9ZcauHqjA8Po1vP7I/6O/a+xG38DOW1W8GS5UU1uDh8Wk8MWkmujvaEA23YxRjmownXapkDtvaMwDYsgUYGCinStY1htvAAHDZZfbXYNefVQsZw81ehBGiBzmk7KoVbrF5ashMIDGqGbIF0kOjk/jpntHKDM/h8Wl8/7ED+PYj+zEZMAoJyCMoxxJUziGbYAbFOSSDeK9D3HqVQvzBD6VBmDFlynzIGpqqHSrizxrKUZFI6jZD/1tkBDNsfacvxLTpkGuBeJ/DspyWP9s7ORvMKD8crUFE/Drg7yq+n1WmqVaBKuj1Zcy7wchJJPe3Vx0JPoiG2zEKtvZMhEhOIoNt7RkAbNgAbNtWjrjVG+rrbNuWnWcLdrNqsNGrgJuYmJISUneoV2y4VeuV5f8eSnEYm5nDXY+P4jcHJ3FPRZT3P959sHvsQryhQ5XeWCUZzzyKdqqcQ6mlzkdxDpWuIfw9xDN527/LZfT1p0GYMWXGQ0jDrepH43AwMxbXql5eyCi8aOiEfE/F+3w4jH3f9+lwtgapEqX7MH+WXyuU96hqUiVDRchlTuFjzSEKRMPtmAVbeybCxP5IqT3LsWkTcMYZ/Bsmq3UZGABuvjkbTwH78rJGUKWpkoFW6WYT2LcviCglRMUhLA04//dQisPIVPF8PDru30fMhARhjWfZJhPM86gQM5/2MJVzqJ2W77PstlCcQ2V5YVMlt28Hrr6mEPLAPX3d4z5mvfRhxpQpNyFTJSuPuAniQ0VlZOtsaAeFzJG1fEGfZKQbyutvMNGliFtIp5xKls81DndrkCpRagdwhObhCnG+IR4daapkKAKneeSYPJKIhtsxCrb2TIQ84lZ8Rqk9Y7FiFS/3XZ8awQlPzpTzoaHM07ZjB91oA3ilpMbVi1Xn2fTdfFmv4wc+yAv7wKcmgnodKzXcKmqKebiX6APTs0E3BnnfrDCyVc/1fPI+qpxDNhE3F+dQjp/vHcO3HxHILDyeppwZk63DOzRabJ1l0iU3ZszKI27BJMlRHTmJ7FpBRDPyqntXgWrX31LEreJUScD9uZT1jZUhZGuQEgL65+YE71xouyJN00qNlSp6sMpqgUP9E1TP9uFIsZ1PiIbbMYy89kyETBHJvcrU2jMWsnfu+lvH8MADwK5dwNVX09IjOdnMMRtxC7n5llIlPWSJXsc+wVg+8b+NBfU6innnIevQxHvcq00x907OBmX0lCnioRwJh6PhvC9UziEbw83VOTQ6PSetTfJZB3JmzIGFxcTHR4s1RsbC68KMKXtvwirh1T4bVaVMV904HFClYIW7xkxF9OiAJOIWkLlFtZ64PJeqvrE6hGgNUiUOzPBZQ0Edxa02vvXwPnzjoX3BG7bnKGV6BnguZc/GyPRcENljivT5Xkux9UU03I5h5LVnLJIk5VJ/cuTKCbX2jIXshV68JMXGjW5KGgt2I2RbWYXc3sXeJK4Lkczr2C8xoEN6HUse3wo9+fMp6kPFL/aF66En059C3Rtl38Iw4nFgeg7fecQ/f1fmHJLdA/af4+McEtn7uvLdxHHMmAsWKiJuitRyKjOm7L6E7Cd2uGvcQl1Pn/8RBrL3KeS9F9sLBE2VFGSPBMwcCBlxU/WNBYBlK+XvbYjWIFVhutkqkc6EfC7vHzmEgzNNjM028bOKarxFso8Q85fpeeOzTfziCb+9dft24F/+VT7DXkux9UU03I5xbNqU1ZTlypXMaAOAxUtTp9ozFrK1PlTkh6txq4icZKrpv0irvI4yr32eshrC6ygablVSRvdqxC00pBG3UMqsQk4ohfDO4f3YP1WuQaX295Y5h2QRN/bf4+McUvVtdF0HWGbMAYXhJrLl5qAyY0pZJQ9DO4BQKDHUBbqiPFUy7L+m6qheiZykwhT+ZjvFvfsPBZGtTE0j3htd39hL3jaGT3xvL159hdw48W0NIiJULbPI1AyEdY6wbTpGJNcKgXLEzV+myqj3YWnNnd2mNqWVptjOI0TDLQKbNmW1ZVu3AsefIH/pvvdffkYboNgcAzZpzcGRkwSRDkzMNrFngncXuixyKq+jmCoJAIsHs80+hNex1AepQoUwZF1OL0Om9IRSZpUGSgD5aZoq65NqEmp2E0TnUNqWy3AlJmKheqxd7wrLjDmgqHGTOV1yUJgxq1wfVfJDoqqIW9X1Z0DxrrJOv5ARt8NJTgIA9wcy3FTPDHWN1/WNfelrM4X+T14tV+x9W4NUhUMB+8HJwBqYVb275XfW/zqh58o6u6Vp6VPlc+Z7iq0vouEWASDzcF99NfDzX8hfunXHVfNCh/IoqyNuQcTjPx8t9wqhLnI6r6OMEGbJYLEh+3odyxE3d1kixPvQSw24q4QpJdAHSgMlgHwxsszCxXADeOdQn4Ssb8GAOzERC9V64qqQsMyYXKrkQbbGTX0+hRlT9k4GfU/DiZJCdCZUSVIUOqqfZxs2aoW6HG5vKjtCgkbzKnSUqaZJNdx0fWNt4NMaRESoaKcsLTtkhg/bIaiqLbVUlxpAZsg1C+Cd3TL+henJshkzn1NsQyAabhEckprCwxbEE1ONXIBXGuqBWSXTNMWhWckiTZSj8zrKPElLGcPNx+tYteJQJicJJrpSVB0ZlN3jcLUnYQ0UFrIUoBx1R8MNKJxDz352+bsFC9zTI1mo+065yWOZMdlUybED9e7xgsVydYfKjCn77XqJnKSKZr6A4r4Efnfz+1xLkm7GRqj7JWuLUHXELRRUKZHUVEld31gb+LQGERHqNZAabmFEA+CdZJVF3MQatxDkJAEfbtHZLasnrtXl1wudYjufEA23CA6qBTnEu1hlHQE7v1pgVkk1gx9Njs7rKCMnWTLIX8DV6yhXHKpLleyViJtY1J/jF0+EKQSXPu9BJKufyRDyRRIeFqYaAxuEkKFC6P52LDNm/wI2VTLBxHi2zgyukt91KjOmlFWyAnKShQ3+B/Axxnn5ghJYIYNqVTVu9aS4H5I+wk6QpR2HZNwUCTJCodlu4z93lTNNAPpzqWoNUm+IcspyfVqDyBDKGTIhSZUMa7gVx1X5GCupcQv4borObh3juYj5mmIbAtFwi+Cgyuv33WjSVL6Nh3IWskpDLSlatYRYQ5RefOIyrfM6ymrc2FRJwN3rKDPcKiUnCVW3WHFyl+pZf2BkIogyJE+VrPbehBCvm2MtcJPy7jUDyVH9pj73PWfGrBdBNrRaCUb3Z9vn8tXl98uFGbPKjASgeGbEdFe2JtgHlUXcJJ8FT5WsMOImtpEJKXv3oRlMVxRxe+igpHioA+r9V7UGEUsEGpI0atfWIGJNeo4QdaNpmsoZbAM+locl4iaWOQSQGdLZJDq72cykB+/NHgqZ7pQjZIrtfEI03CI4qF4634VDSStcQepYDQnyNS+E8q9OS6PJUXkdAd6bn2PJ8mIZ9fE6isQkALDn0ExAI4JHr0fcAPk9o0JKThLo1qgjSwGUEsfvbCE1UALdGJmSDPjNO2fGrDGGW7sFHHwi+2Dx0rSkgLowY1bNbJjfYtFOC2WKV0F0oJLTTsPKz4PM9VrCRNzCyBebNAPh1oGRqdkwgiTQrY8u76usNQibfgyUDTnX1iDtNFVHCwPc+9m2fKUN6WyscSUf1aAccQuQKtmR0QgQyRed3blh324DM1OZ/HpdnS4ZMsV2PiEabhEc2M2K3eB9FavDWV+RRdyyyYeJuMk/p4pWeR0BeY3b8U8qUjFcvY6APOJ2aK6FR8bUHlUKxHvcK+0AdLZZVexaoe6Man5BIm4O16VAdV98ZDebGbnJ7sdVjidn0QAy0pQXvrAQkqbAwX3F9jm4OvO++zBjSsmbKkiVTJDgOetXBJObQyS1CeakUHweap1hpdSSIgLZStMgz3uVqZJVrrW6SKyL8SNrDSIabmL0xLU1iM7oDnHPmorNI+SvId79R0YnA0rPSgLEvqUh5t813AJE8kVnd54q2ZwDZqcL+TJyt9AptvMJ0XCL4MDWuPXXi8fDdxOumiGelZ8khyviFsbrCMgXnudfOIVFS9teDYkBdc3STx4fdRfKoJRuESpFqgJvICev4lTMKlMldc4E32vozg8TcZNLcVGohoczpsr164FTTwX+7d/Dvasinvzk4njFcuDg/mJ9POXUNrZu9WPGlLNKhoy4ZbKSBDhuyQIs6atzn/tgcq6Fe/fxFPTBWCVVz0ugDEH2HteTRCC38ocsChzOgaP7zu8quoiJazRSbA2iirj5tgbRzS/Ec6lqlxJyixLn+eNA+zWQOVkeGCm3Xwji6O7cmxAp2KKzO3dwz80mmJvTM/v6OLvnO6LhFsGB3WT6a6zhNr8jbqwSXkuS7oM9nyJugNzrCAB9nY3swBM1PHRfJ3e7HzjjmbNeDYmBMGl/Ooj3oQpPOAB8/7EDQeTm0OkeVdVGhotCVGdc6c4PMX/VvaU+ptu3Axs3AtdcUxSwL1ikUKhooo0yvv2tBK95ZbE+/usX2rj6ar/3tOp+ZbmoPAUr6fwZ4hL37S8Xk1RtnPzgsQNhIsDMc1dLEq7JfIh0SZmMkOQkOc5ZN8h957sOayNumjRKE9jWIMcdz89x3fHwdoBk89NE3AL8pqo00pBaTpXO7vEZOd1iCGemrCeiD1hnd54q2ZxLMDfDGm78vH2d3fMd0XCL4MAuamzEzXcT0G1UodOvakmhlIQwWUJTr2/aBPzFX/Cf9TOepDu/vLD7+R//sX9vK1mqJAD0BSIlqKqPmyh396EZ/OeuEfz6gLxRKxW6eYZpf1GWESrKp/e0+wrXfVVdBJtyz7dvBy6+uNzMfuFiuYz9+/3nzT6PjQZw/Nqi6G0uDUFmU55jMKIfRnb+1uevf5i6lvJnwYwTxef7pmbxuIKAgiRf2DtYgyXEOiBT8qtII129sB/rFhfpHL7+Ot0cfe9L3hrkC//Gy/nWt1NvBwigr88LEnFTZLGEzAqhkp9RoGoe7vtcivWiIcA6u3MDrTkLzDKvfqgU215BNNwiOIwynpigqZKa71RpByT5jIgELKtkANkqBj9Hedu3Ax/9KP9ZvvDMzWT52zlu/3qK7dsdL9SBKuLG/r4+EO9DOwV2H5r2lit7LPZMzOBne8cwrWkS7SM/R1V9C1VMZ3TZuoib39x1ZweJRCo+H51R949jMTwMXHqp/LsFi+TSdz2anecD9p+eAOhjQjMhDKxK+1wyYroRN811qZB510PpsLo1XMrsRwRvuPGpkkGiM1JykvARt9LcK3S2hiJugdg3tpbivv2H8Msnxr3uve7fHoKchDUMq+HZra7pNgCMzykibgFJ6EJF3IAixTbv4yZG3EKl2PYKouEW0cWeiRmOsKKfUUy8UyU1i3CIBqLd+g2INW7+UDnvXPYVldKZG26zMwnazeK+NxrZeFelc67dxmPjciNqIJThJrkP//Wof1qjzgBRRRFJ8nWbewDFRKY8PDAyEYQJTvc6entNtWmY1UXcfrbXrn/e9deXI205VKmSSQLccIOVeCU4wy3hWyNU1ecyXNoxE3FL8j/DpUrKiAjCRd411w2gHLIrCdsOAAhEZCFNlfQWC0CIpCZ8D1PfuVe5xuQYmeadNffvP4R7943j/pFDXs4/nTM4xHPZVGQmhU2VrM5yG5+ROzx8r9gSHAkhsWkTsHJlJj9tZ9lJOYaOC5Ni2yuIhltEF3fv4Ytfg6ZK6pTwIH1Vsj9L9RtBIgTh0iLkSmeKgQXZ0dxMghazptbrKWZm3JXOR8enu7/dsn6+UjdUxK2qlA5tDVoQ+Yc/VRJAicQhpGzA/5mvNA0T6t/VxovfbAI33qj+fsFCuYxaI8WNN2bnu4L/txfOISCMkiV75kI4tQAxI4GPuAH+nnZZVlSwZvOatz1EOlYpVTJ0xK3CPm5iJJWtz/PtV6abY4j5T8w1cf9+fi1kU1/3TrpnJ2hr3AKnv7KR9yrJSUJhttXGvilFjzvPS3JEPxVYF/lacNrGBK/cVNz3L305TIptryAabhFdiIoTnyrpG3FTfxcielI0UM3+HjRVUkjDzEGVrFI6+xmWydmZBC0m4lbr2FquSudss7i3pyxfxH0Xgq4XqC6lQyc3SGqa5ruqUiUBuZJLlq35br6nSqreSZs1ZufOgohEBlkDXyDr9bNnT3a+K8SoVeg+S7Jn+uBME8MB2naknIKf/1ltn6hwfdbU3wV5l1j5aYJDo8W+NzHrvzfJoj+HZptB0g35/qUImyqpeSpCrI8Pj+qf66X97pSA2hq3APd9jC0pqbERt3BvUlXkJI+NT2tkh8usCpkqCWTPei69UU+waiXzZVJhXuk8RDTcIrpYILhIwta4VZv2lkvIlZFu4b23ZNGL5O5dUymd/UyUYHoqQYsx0Ood/gNXpZO97wv76tx34WpQwsgpydX8elWlpuUIU7OkTtvzRaWpkjrZgVMll/TXsbQ/p6U3nztmyKbM+/yIyN+j8TL5oRMS8EZD6PQrFj/afdBbdluaKsl87+tprzQdUP1d6HXgn25M8M4ri3XyzW9rYetWv/pIWTuAkek5fG3n3gD9UYvj0GmeVbPumhR7D+JKQ8TNXS6QNT3fxZQf9LGpkj0QcRtTEJNk1/STrdKVQqAlGIWs46lq1vL5hmi4RXQx0OAfh76g7QDU34WMuHWVkk5sLAx9udyLRPWuqZRONr1rdqqcKpnDRenk+9sBp61c3P17MIZDiZwQ9XNVk4dUrRCq5pgEKGevlpxEIztwquTvnLga9aTW+dwsfNky/fcNSSN7IEuVBIClS+3mKAM7vaTzX44qn5cQ4CJuFaRKyuYerGeh1oHjf43bb2fW2FFgZG9huPUtbOOaa7K2E64kUSoGwqlm25vESUzzrIWMuAnnr1hQhLNDPKsmvf7qq+FsNOtq3Hwbqz8iRMBDlRyIqCripiP2CrkOyAmL3OU3BaOQjy47i+1JRMMtogsxdY4nJ/GTrVvowxBNZH8WNW6dz4NECIpjn4ibSukcWFAImplO0GqVUyUBN6WTXShrSPDkFazhFgb5/VnUqAcjPAEM5CEV1qCFkq8SEcIRWXUdmlK27/lMusvKBX0YqNe46LhpYz/5ZGDtWvX3ulTJoaHsfFewM8tSJZnvQtS4aRbZkE3VRXISIAQpQfmzUDVu7D99iKG7F79zwfbtwN++t/h7cy7ByN5iDVs5lCm5MzNZ+wkX4222EzqqS9577/eJOU5KjJh+stnHceOKxXjBSau763sIo8KUKjoxCWejea6pl+2TpioaJP21cO8RC2k7mQDrzHRT/WD4Shd7IoaUz66PjSThiHhkUe2jGdFwi+hCXOjrAUPRugVnNsBL161x6/w994aHUGJZJb7hoeyolE4uVXIyQZvJZGh0IgWuSiefSsMra8FSmTp/JknRGy7EBqOTEKJOQRvR85SfpqlyM0kC5EpqG3B73hrT+T6/rYyWvkZ4JhsNYPNm9fdiI9Yc9UaKzZuz810h9kIL/S7l64zMsJ/SKFs2EJkTxev4ru/yVMnqIvohrpEz/LLptXNzwMieIuKWG245XBh+c4KZgUa99J2vE0es7WYdi/5ZMsX565dm7Fm5ThDit/3ZL/UyOoF4ktE8PJxF6W76tF62j7NYdHDzqZLhTDfZDEOsM3nErZEk+K21vDc5pINe9mz73B7W2K7XaljMlH6MKhqKH62IhltEF+xifMaqJXzxuvcLrf5OlUpCQf5OlyNuIXqT8CF62ec2UCmdXKrkNJ8qWeusTa5Kp+iRZV/4cDVumaBMmc0+q7LxOTC/I26zrTb+48EnlM98iMx/3QbrW4fGnv2kwYU4Y9USLB/ok35PBTu3giSD+d7ivm/ZkvXrEZEkqTbidtlllJmWoYu4haj9y40fWYrRpGe/MmnEjXkS/SNusuiAp9AO2GddlOmzzuQMv+wz05xLcGg0wUwng3HlGv4KVIbfVrtoSCzWkAP+lOnivheSnIQntOGNfV/DbXgYuPN7+l+vJvR4MxnN27dn0blrrgHSRC/bx1nMzurcdYN85N1ZquQ6knscYp2Z7hitCxo1PHnFYpwasHyCX99lETd3+ZwDvZZg1cL+7t/3B2ix00uIhltEF2wO8emrlgT1yOrO91VKss2xo/TUyvUbvmCnXvdML5IpnQMlcpLiGvVGNt5V6WTvO2tYAQFr3DpikiQJGunUskpWHNHzkX///kOY1NQRhEmVrDLiVgh40uAinLF6aTDKa77mUhZxMwvfsAHYtq38eV3j2Fi4yJ8qWqxxY/u4hXje8/VXxvaqe55sIG0HwKV6eonnfrfBgeyHCOE0A8S58fJc9yWW4ZeNuDXnEgAJDu7LPGaDq8sKPoXhl43siDXkQAjDjY+4sY+OP/GJzMkSpnb8459q4QUv17NK1oTbpTOat2/PonJ5q52Fi8sT/Nq/LOwef/VrPlkDxbkLGnUgoANEdZ2ufM8LNNvtbuRqQScCzLYJ8l8HimOp4eYhXyQn6a/XusyjB6fnghCK9Qqi4RbRRf7gN5Iki86wCpWnbN0Gu29qFqNCI04KJuaKXXRJJ3wekuo6FKskIFc6BxYWd3emxCqZYts2d6VT9JomgZVNoDAAs1RM/jM/uWqEZpMTtxifTWDKoGQHSZXUTC9kO4AiOsNc20O+ThnMvreTs2kTcPPNvBNElSYJZKmSvhDvS/A+bkzE7fwTVnLf+fZzY2cntkwBApASKGjAQywx7PO8QEg3dH1NWYbfPs5wy/6c6xgAMpZSCsMvG9npr9dK0VTvdzV3mnV+zbCskuXoSWG4uctuNoHp5QZ6WBSpkixkRnOe8spiQOjnePmFq7HrN4WBcsO2tjNTaHlPlX/nC9mz7bvOsPVtCzqOhJC1rqlkfWfhs4rxqZKZ8DxdMoVf3WKvIRpuEV2IUauwETf992zjTSrGGXrbJR0PTEiqa46chEsfdRMsKp0cOckUT05y0Z9m410hpqZVEXFrd5WHsLWF1dP1F8fiJuOj9IgRk4agrIVYdKtkfuQMlG50JozBn0qVweJ7yjqzaROwY0dW0zI0pCYmyeSSp1qCWOMWMpUc4NffocUD+G/HLy995wpZqmRIxxxbnxeyziqTURyfNLiQ+851DWYZfsVUSQDdrIeGwuC3ZfjlIm71Ghe5BsJFOmX1ot6ymWNZmx3Xe79zJ3Dei8xsmmLEDZAbzXnKK4t+Zk997flr8dB9fVx/vgWL26SUVxY6B07ImJvs3fFdx9jnMWfDDEmypNKVQsgXUyUBerbG0YJ5abjNzc3hG9/4Bt761rfivPPOw/Lly9HX14d169bhJS95Cb70pS85y/7617+OP/qjP8Lq1auxcOFCnH766firv/orHDp0KOC/oDch1lgkAV8K0/k+RsSh2SLCkYfOQ3qT25IFA/Bbolmlc80QY7hNJxhk6oWf9vQwHlkgT2WUf+d1DVZ+wNrCqlMluYibsMn4bJANQePoE2pbQkfczjtuOU4eXCT9zgV8SiD/p/g9FZyxnP/pQfKxYUNGG75rF/D9HxjWmMAbO+cc8q0NSdPuv70uUcJDOs4qaQfA7B1cdDawwVxPEjyXiUa63heW4bchibjlUR1V+q0twy+rKPfValyLHcDv/jSbRX14q5n9nZUecs/2iY6LMPVi7F6zJr8AazSzKa8s+geyc+dmgdH9WVRm/GBxd5YMtkkpryxKJEXcd3R5Ksjur/eeyhx3+QACtjXh91T99aloSqL6oXtp9grmpeH2ne98By960Ytw3XXXYdeuXXjuc5+Ll7/85VizZg1uu+02vPjFL8aWLVvID/Hf//3f43d/93fx1a9+FU972tPwJ3/yJxgdHcW1116Lc889F/v27avoX9QbKDy+2d9D1nAYDTcP+fKIW7jwfzstLxiA/z3Jlc5r3l0Ies+7E/zrv1Rz32sIe18AWRQigNAOqu7fJDNQcvhE9HRtNUKB/fcv7qvzNWgh+7jlaXWBIrW69CvxewoaDeCkJ5mcQ37gPe18jVvIBtZyb7KffPY3kzXg9n2diohbIkR9ArynzHEphd9RPMvwK424df7MvuMvQmH4nWUYivrrtdLa4PIu5cyJ69cDYx0j5je/TrB+PfDJT4bc94rjRKIouzrPZG1xHn6ggVYT+LdtBVGGLFUS4I1mNuWVRZ7FMjtdTJiNuC0ZTEkpryzESGRIkh/uOlJyknAya4HXdkBklQxc42aMuLnL7jXMS8OtVqvhoosuwh133IHdu3fj3//93/HZz34WP//5z/HP//zPqNfruOGGG/DpT3/aWubdd9+Nyy+/HPV6HV/60pfwne98B//yL/+C3/zmN/jv//2/4/7778frX//6Cv9V8x9ixO1wpkr6SJ9rS/K2Wdkhw/+1cApyV05SyDnh+IRjj6xi883/BVUoVSG9d4cz4iZuMiFTJcUGraGNzuC1i9KIWxj58nYAzPc+RqHh+1CkLfl0Q6YYyepoq1p/u+tA0FTJ7M96LREikf4Qo7QhnheW4VcXcQPKUTcKw+8cl5qWdNul5KD+rCxz4t69xdybc9nfb2ZUopC9/+QRNzf5J58MTI7z9+EtL1uNVz9nCD/+VlG0KkuVFI1mVfSuvyOGM9yYiNvS5dnvYpvyykJMO+YNn3CoJOKm0QfE733lB2eVlEbcYqrkvMELX/hCfO5zn8Pznve80neveMUr8OpXvxoA8KlPfcpa5rvf/W6kaYrXvOY1+MM//MPu54sWLcK2bdtQq9Vwyy234L777vOefy+inRavVL0Cb0aVL5VMGQypPKgibqE8PE3B2x5SYWMXStHDFibiVhyHrqET7+8ipm9LgJ7t3HMh7jE+970mxO/6BQ0kSP2fpnYxZDuARPI+hYu45X8y75TH72rq7ReKtEVaIxYw4iZXSvzkc0q48Kf4vQvajNMvfMRNVJTD3Jec4bfMKln8CfCGG5Xhd1qoKaqXDDf7f4DInAgUBmRek9dmeJF+8Uv7ecogS68Nsf81GkDSLNbyQ6MJ2q0Ek+M1rr5bFnETjWZZ9A4oeqPOzjCG21hxvHhZ9rvYpryy4BlaBQTSc56YnJE6D0PqYd2etxXpedX2cQsXAe5FzEvDzYSzzz4bADBsSQs0OzvbrYv78z//89L3J510Es4//3wAwBe+8IVAs+wtyBWH4vvKI24e8qWewYrSPPmIWxi0BMMwZPREHnFLgsgGeCMhdL6/qGg3AnvXeFZJP084J1eYdyniFoJxU/hd+eiPr2z+NwXE2hkf2cVxyIjb8DDwD/+oPzcUSVHazupT2X6LvkZhU7LGsAaQN0MgcyyLuPk+kd00+yQJ9qzk0D3rPutAzvDbKNpBYW62kyrJtGRhCUqoDL9sq5tFjXppnbH1U8iYE5Mk7RqVeaSQNXxu/xq9WTg3N6mTRf49FSsZ0tS//V/FX7j1QdBOZUYzm/LKIq9xYyNuXJudOi3llQX7r64lSfCIW5qm+K9dB6TfBa117UyczRBppn4eUVH+GauWcN/7zF6WKlmFI70X0JOG244dOwAAxx13nNX4Bx54AJOTkwCAc889Vzom//zuu+92ntfExITV//MRslSdkKk0ZnISH9nFsSziFjLyU+cU5DArRUvwJIWcu9TT3o24hTcgwlIL838PSXWdyVd7B32ki1MLzSSXpimemCwajtYQLpURECJu+Z+Bfte2ED0B/CNLefrYp27Wj/vXz9FlA0VN0f33Z3+fnExw6qnAhhOKMUFr3JJcKWHlh18HQjlZ+GyNsKRWoowsVTLcs75pE/Cyl7MRt+zPlpAqOTCQMQFTGX7zVjUJgIV99fI6Yzl/GXMiGwlsNnODk5PuzJwIFM90AveeiyrkdYVTEwl+9ZPCcmbtBpGcRGY0symvBdIuq+QME3Fj702tnpJSXjnpYqpk4Bq3vZOznCOHu7anbFmtK5sRMtfyu4Jo7J+2akm3fAXw05nYuT06nKDZDN+SpVfQc4bb448/jptuugkAcNFFF1mds7NTgbp8+XIsVcTGN3RWhJ0u1aodLFmyxPj/8ccf7yy/Sqj68HSVfG9PT3UvlawfV8jIT+URN0FpC0l6IDVqO38P8ZPoyElCM5HWAyuEM63yJpbDKwIsRtxKqZJ+c39icpbrFddXr4U19pljeR2Eu3x5jZu7Qc6mj+n6uAHA//7fKbZvJ4nnaoryf3eejrZ3b4K5jv28f7/fPZfXuFW0DnQdc8VnIWtPQkZ/ARkpTIEQa8ySE4pG0MuW5qmSxZjL35pixw63tix5xC0z2sR4m938VcyJDeZ5l0XcanVas3ARYnPv7DjMM5m/SwsG+F6MbKp0nippMprzlNccjb4sogYAs0zXAVZ2o4+W8srPnZkjwjM1H5ieVX5XRcSNdSzO+eSqQ3SyZGnT6xYXP47L9HPH2b98rpjbH/xeRsbz7W+F1Ql6BT1luDWbTVx88cUYHR3FmWeeiS1btlidN96pQF28eLFyzJIlWUh3zJar9iiDmK6Xo2i46SffnCrpIzs7mfUMhooQzDTb2DVerP4NztsbZqEQ06R4tjdfJbxsnOT3JghxAHOceR/Za/tBPJ+LuHk+kLsPTWP/FBu1ckthkkH8yUr1cx6yAWCCSb9au6gf/fVaUGNf9siFSgeSpV+5RrHF9DFdHzcgU2QvvdQ+fUysKcrtb1a3ydOvhh8F2ShkIae6DqeUyGpbQinhojLIyv3urhGMzcxJzrJHmQwi3LM+PDaFGaYO7bZbEzzwAPDCFxbXeOtbU1J6ZI7ZVhtznQnmjYLFViA201cxJ7LRopwFs80YaY0+d+ZEoIiO1zh9gPnex4HT+XPBQML1Ymy3iwssWZJ9bjKa85TXHHmaJMDXuLGpkmc8lZbyys+dX8NCOs0A/d4W0gmdrwN9QSNuxXEtgC7GOc6Yz2emEuzdC3zz6zFVct7j9a9/Pb7xjW9g1apV+NznPof+/n7zSYcRhw4dMv7/2GOPHelpSjEyXWyurIKcH1bfx81HdvYnu8GEMn52T/CNQtl6pVDrBLtYiuQkvteQFVKHjbgVxzUIqZIBNxmAdyh47i/4r0cPcH8PG3HjUSYkcBYNgL8vJ3b6t4VNGVEb+0AYJwugirjZyxLTx1iSCRnqjRQzM7BKH5PWFHUNt3L6VaORkoxCEcbav5Ce9jzixl3fJ4rK/6bsszjbauN7wrtGl18cl1glPe/LXY+Pcn/va2SK4qoV8utTwNW3dQ03fozNfVf5kmVsmGzdZa0TdXJhTgTk+2ooZ0KXoTXhezF+8QvFmFdekn1uY2Bt2pRF5QYG+Obbs1PMfBmHy9q1PnMvjkPWRudocfLBRayqYJetMzpH0IhbvncovjdBdJyxGRWzs+XI+B3fPXYst54x3N74xjdi27ZtWLFiBb72ta/h1FNPtT43T4/U1ZflDbiXqWiKLLB48WKr/+cjHjxQ3JvBgcJ1nS9MVbNKejHVdT2DxWehan5Y79e6xQOcdypUZH6ms9s2kgSNWq2Shph8NDL7LkiNm8j4xn7nXZfD/z1kzY+IoOQkQvro8oE+5fcu4KPj+Z8BI27MsSz12MvTLhj6gJsyKEsfaxhSJfP0qY99zJw+JqspyhVhlrkvry2qN2BtFMogY3+titU3hCdcLbscvWYNGBdwz2MSpo9bDpGeX3ZvXJ93Noqap0uLadM281epJNL+c0yqZP68uzAnArxxlSN0lJZ9VhoN4KSTijFJQrvApk1ZdO7Nl5cjbkNDwP//yvL1XcA/j+Uoqi9YneMFJ63GyoVFgMI3W0NV153rNbOedM0mvgFbyBxnfUwkda6zNudkQgBw47bUi4ynl9AThtvll1+OD33oQ1i+fDluv/32LqukLZ70pCcBAA4ePNhNmxSRM1TmY4815OlXtQQ4aXBh9/MiVTKcpycHq2z6aA5yzyDzvbtoIbqxMCjteo7pZjbDgbwHXcDUi1Ryb/KNJnTELTg5iSAhSZLuM+ObKimi5AkPJPe5G1aW7rOv7KoZYGUeZVlPHhdwRm3XQJF/r4MsfYxVZG//7CJ87ysLujVoQBZxA4B9+4APflAtW1VTlJMl8KmS+bWz71xriqSe8KpSJfP7rrg+WTZzXBNq3EJATJWsBVwfGwLjq0jglF3fTbYsTf3UlYuVY1RQMSfWGbbL/JlrN/nvXZkTAfO+6kMQJTMKAf9U+w0bgDe+qTjzD34vS33dtQu4+upqHBW+cxYh1ruG7Bcpvqs5+jsewDnPfVW+ztCd6DLHGRtJnesY5KzhliTujrNew7w33N72trfh/e9/PwYHB3H77bcrWSF1OO2007BoUZZS9OMf/1g6Jv/8nHPOcZ9sDyN/oRb3NaQLdUhykrOHBnHK8kU47/jlxfUDyGY3gXBpQMVxlgrIynUW20WrnXYXywWNch2E7zVyxUB2b4KzSiJcZCY7v/xZHmEK3bPlrKFB4drhnpllAzx1WchmzbJ0Q//efwW6qZLMZyHrodg/KbJl6WNsKs2D9zbwd29agW9/sXBCsSx8b3mLuiZNVVMki7jltUW5bNeaImkLBlZJ9lSoWpL7HspBxPbPqyVAQ9Y52QPi+xTyWW8IloP0mXSULTq1AGCgUcd5xy0vZFtMX86cqOg/J1DeuzInZnPL5LO/ZihnQn5PRYdQiEwZ9llfuybBxo3FPQihz+jJSfz3pRLZT9D65bIzASgibs126rn3ySL7zPcW64zKcdbfWd/nZot0dTZV8uK3jOGmT6XOZDy9hHltuF1xxRV43/veh8HBQXzta1/Deeed5ySnv78ff/zHfwwA+MxnPlP6/uGHH8b3vvc9AMDLXvYy9wn3MLoKvvB5N+LmKZ9dcE5cthBnDQ1iUaNowumz3umiSkBo71o4owoAppmihJw2NyxrWvYnl0ba3by8RGcyBK9yyPq8EskHivqc0KmSKxb04QUnrSqu7SFLvCd99RqeewLTq8hDNsC/S1UwEMqMiGBKvswj6xBxk6WPmRopi+Qlqpo0VU1R8d4UMptCxA1wqymSNYNPGBbCkKmS9a5CFWYt48kaklL6oS906di+96VRSpUsrtO9vuPNEXtc5hio09PtReZEQCAnydsBME6FRn/qzJwIlCNuzSawf3/52XdBN+ImfhHg0VExZGfi/bNNxLTmUMRNAPDI2BQePVTU1deTsGRlslR1INujcvhE3WQRPd6wNctQOc76Os8/G2Vjj5etSPGsP5xwJuPpJcxbw23r1q14z3veg+XLl1sbbR/5yEdw+umn45JLLil9d8UVVyBJEnziE5/AV7/61e7nk5OTuPTSS9FqtXDRRRfh9NNPD/rv6BXk75OYulAFOYmsaDWEccXXuMmvTZbNHIuF976FvEDGWpljQV2WKumHohcPY9Tmm5enbFY+0IlIBjJs0zQtR9WSYiP2JSeRYcWCfizrb3Sv7wre0579uXoRU6dQScSt+L6aiFug35U59om4ydLHuJqfbvE6a7jxwlU1aaqaImnEraO8stE8l5oikeSnexwsVd2w/vqskWzvrSThlMAQEAmWeIPW776Ic+0+kwGiHDzhTHHs4gQRmRMBeTsANlXymc90Z04EinvbnMvYHdevB/76ncX3b/j/pdi61Y2QR+ZQBMI8k9z6KFygqO92R/l5CLdh/3j3Qe7vWaqkf/S3e76yxo0xhjzq3KTrDNGJrnKc5WyhcwxTKLu+A8CLL5lwJuPpJTgG0avFrbfeimuuuQYA8JSnPAX/8A//IB23evVqXHfddd2/79u3D/fffz/WrVtXGnvOOefg7/7u7/DmN78Zf/RHf4Tf+Z3fwdq1a/Hd734Xu3fvxmmnnYaPfexj1fyDegD5+yY6vLrU8Z4LUovxsCWJRHPw8uJnf7KbLbs5fnd4BH9wyhos6qM/7mJqweK+OupJglaa4tHxaUzOtbqMYS6YYgy3gU4EMmSD2VRi1IZKfwXkSn7xnbv8PRMzHE03kD0uVdW4da/RdVS4y5DViFG9jjq0OY9y9mfIiBuL7vwD6SbyiBs9/SpPH+tsEwD4VMm5jiLbZGrcZKyTN94IvPOdfPQiNwpFr6+8xi2be15v5FpTpEphqiWZk6KK/k2hFEKRHl2MYvkif9frSbF31DprsO+7JE41pCNEtg4A7kZhTol/6aWZ04FrwC0hJzl+PW2+LNK0WL1/ek/Sfc9YRXlyKnv/rrsuMypt+9yxskVijxDOXH3ErZiDK1hdiXUiAOFqo3PUhYie9zrAHLP3no+4+RhuxbE84maev8pxlhtus9OM4Sa0vJuZTrB0jdVUexrz0nAbGRnpHv/4xz9W1qWddNJJnOFmwpve9CaceeaZ+Lu/+zv88Ic/xMTEBE488URceeWVuPLKK5XNuY8FqBZS1h+Zpqkzg1L+vrILaaURN2Gedz0+iuduWAUqxIWoUavh5OWL8OsDE0iRNctc1LdQeb4JM2yqZB5x467vs8GkmO4YPzJyiRCbjErhzL5zl/v4xEzps4Spb6mq2WYu30e6qnde0pHr6zWV9VwMWuMmOT1YBDtgtHDLFuC97y2MNHPErSwjr0nbuLH4TGYUAvKI21xHfm74udYUySKRxXFaEauk/HsqxAhwX+Aat1w+3180vEGbywXCpNrL1gHxmGpAbNoEXHBBFin+9g+Lc1tzmdNgy1+4y2bBnsmnphWf546SmZmMtj2fH0V2KeIWwOZnn0exhjHpvE8h1vdibS9/FwK5YcjrYH4yVayS7H3ySSSSR9yY61vIUDnOclbJWeYZZJ9NIKs5diXj6SXMy1TJV7/61ZlXxvD/Qw89xJ131VVXIU1TfPvb31bKftGLXoSvfOUr2L9/P6anp/HAAw/g2muvPbaNNklNS45Qnvx8MQ1N2c967ziFRxg3NuuWkC9TeBYzETZv0gDm/EY9V6j8lQYA+PkTRc4ArziEiaICZa+yC4OUDNL7mgC5YzCFjydcfV6IVB1Z7zyArZHyfGYkqUBhUyXLCmct0DMZipwEAO64ozDaAHlfK9X3LGSpNbKaotweSSV93OoNYGDAvaZIbCHRvWY3NdjXQCkrVKFaSIi/aegat67hxvUX7axhnrLFd6WI6KnH2CJVrgN+kc6879ln/7X4bMtlCXbtAt7x9jDv6SPD5XcpO2YcIUL7Dds+hqpIZP6JbBwF/Poolx6ylUGobArxOZPpNUEj74oMJR+2bKmDiPibqsh4+ixSJZctTZzJeHoJ89Jwizi8YN8lVY0bEIZpj920QnjXVJ5qUbbrpbiFqPNnyEbQsugJECal49dMbz6uboYZ491rTVOo7bMByM7cuGJxkE2sKezaJy9f1D0O2c4AEJ7JAIXxgEBO4mn8yCBTOEMYtEA4chJpnx+u5scu4gYA3/pW+TNZTZE0VZKRv+3j7jVFsrpIoEiFrSJVkjWEfBxQKbeGAX31AAs7gyJVko+4AWFr/9YvXVDIh/86o6JeD7X+JrXi3NWrM4WVj6I6i8YnbiqO2XeIZa0UFWTbPoaqOisgTEq2NlUyd5757E152UfA6CxQ3pdy8BFajwtAnSETqoZZ5rR0iUiWHWcpBjqv5yxjuM0JqZLr1oRde+YrouEWofWAhWu4Wd58+Tm4Rjfkm4D47yh79mzlF8dShcc3esLs7nLFxEu8FFWQnwAotQPwIrFgTv6ttcvw/BNXYUl/gzeaHW9Ok5G9pL+Os9YWSfUh+jepoyed7z3vurGPm2/vP+a4G4GohVkHZGuNy28q6/PDGmZzFuQkOf7qr+SRgk2bgJtvLhSIPFWyxTXgLo5f8f94GLTMccKtA2Gi423BuAL49CiV0mgDsdVA6HYAsohbqF6U7D/7WQxNfwhlWZXJEkoRl/2mIRwszSaw/TPyiFtL6BMnwqaPoepZB8TyCbf5c6mSImtoEFbJDLKykSoMN74WNbwDBwhfw5w5cd0jkqLjrK/g9uIMNzHitmhhNNwijhGocvGBcAqhifnRVbKscW12LAx0fJ9lHqpaAOOhe74q4uZZayVu2k1OiQjjXQPKSn4o7yN77rolA1i5MFu5Q0Q72Q1y5YJ+/rlhxrk+7zLDhz32VzZlUStmc/d8Jtnie/E64vWpkM2dWhiv7PMzUMguDLfi+z6F4aaLFGzaBOzYkbHq5fZI3kNoaAh40knFjblv/yHj3FXgak+Yz0NFllrcOhbWASWmR8lSJV2NiDQt6vtkjq1QKaSsopn93T/iploHQqUds3tPUbfoL3vnTuDgaPF3NsrGOUIkKWk2fQxVdVblccapSsGu73XhAkXEzR1FqmRHJvOdTwS1qVj7QkVRgTKRkOw4RGZViNZMrOOsj13bNRE3VWDgaEM03CKUufiA8NIFf6GZOTjLVUXceLi+zjIPVSNkxE1SrwQUL6az11RY4dlNPmTETfQqh9rEVFFgPvLjf2/KG7u/Uausben8GYqhlVU2Q1JGy5q28waz/zoAFHNmySxsegip+/wU5852WiHZpEoC+khBXlOUs/g99QzggQeAXbuAJz+luOYDIxNyARYwKfkpwqy/QPFbhoheZ7L5NThkJEIVPWHZZX3ui4z4BBBTvt3QZCKze/cWzxfnHAr8LmXHfrLHxuT1ooAQcSPUjLJoK9Z2QP7sUMHVjSe8iptL9yNu4dfHULaCMuLGOVrDOOUAwakYLFXS4KAnCs8dZ2/7S9Zwy/4cGspqO1mEZrSdr4iGW4SwqQqpBYFTJfn3yt+CUG9e6hQMknyJh4ot4fCNuMmo3QGGQMRRrhi5YL15oYwroJz24lt4n0MVBQ5x71vMvSixjrFzcPa0y+febcPgmyopUTZDkpPIEHodyGRmf9aT4r7PWvQQUvX5GVjAGm7liJsqVRIwRwrYZ2HJ4oyFstEARmc8uhAzUDmgKr3vwSJuxbGMvdZHflMSVQIKYz+F730pyxb/Tp368HAWob3yyuLEv3xb1gdt61bg8d1hlOSW4pnxraVdtkzezF48ritIIEw8b7qIG7f+GmcqB/vMiIq8byYLwGQkOJJvqKB6R9j31Kc5NiCv2Qfc6tB08lUOelcynre8rZjTC56fdB1nl79Z7XA5mhENtwhlYTzAPyA+LH75mZVG3JjPS++v4wttYsELGXGrS+6Nq/EwJ+QRtrjf2D+dJsdehra/BrHw3l0uF4FgjkNEfnQbe81zkwHU0cJgqZKdiakcFaHISbhIZ6joDHPMpnf1d9IlbRQTU58fAJi1bAfAQhcp4CNixbGNoWkDZYQ5QMqeeG63VjdQjZuObKI7xtXJooi4sceqFDMb5PMq9XNjxxDu+/btmVF/zTXAxGTxeauVYO/e7PPf/m1GdiAGP+ne4Sj75JOBtUPF39l3iI24NSQ1bjZ9DFWkLUAYxxm3p4qGm6ds9lxpqqSzVPU7yLJYH3Jkx86hKi0JxQYtc4SEkM3uOatWJl3HmciDVIHPcl4iGm4RfIRA+C6EQqgsiFXMgSabjW6UleTiWm6WW5WeavF8Ng3Q12uqqxUKFXGbarbw4MFCO0mScJ67KhVZ7cYeIFWS3xyZ486fc80UO3aYi/hVqDLi1mwCM526gTQt5lgPJF+l5Od1UXMWhlDe50dEH8NCRo24AfpIgep5XLd4QDKaDpVhyJT/BYuK5eJDpXzLjMKzhwa5Ma71qCqGQN5wCxshEP9ue2u2b8/6meWkOfV6cSLb+29qMqySDMhZK8dnW07re6MB/OmfFuexxhpb7yaLuNn0MdS1HwoRMWEN+VLErfNnqw3nNTiXLiNu8nFqqZ7jgXoN/Z1ruLY1yiGyQOcIkRrcTtOu3iFzJIjXp8kujvl9j/99fTOIegXRcIvQtgPoZzSHSTZpnwAbj2yIeqIq2gHIFLZQtSHZ+cWxlFXSUa4uchGqxm2v0CS7RE4SKuLGKbKssukmW5faFcao5Z/3PHXq1zsy6YcmgFNPLVKnbHofsegqm8zq7WvQ5nNcvx54cGd2/thoMcf9+8Ir+eyz0sdE3Ez3XdXnp1+aKslG3NRybSIFMpy5pgj/+RTGK5lIOVp6Z/FSEo5wNW7Fcf4cnrx8EU5g6PVDO1kagdLH8jWktA5wiqxZvqw9Rb0IlHCGG2sITU7ZzrQMbl9l1gL2vbp7z6iT7AtfXhyrIm4iq+TAAKz6GKqiPp1PukeuvyqXUdGRn69vP/1p9vdW230N7rYD6Py9n/FqzXpEf9XtABIsHcis4elm28q5pYIVq6Tjuzo+0+zKHxworHd+T3USrVwHxPc2TP7D/Ec03CK07QCWMS/g2MwcXKBeLPzdayqWpFCevKojbsp0l86f7qmSuohbGGVQ/LcnCElOwir4xechlE29x9dfcWCn9dl/TrqpUzMdwozcE5+nTm3cmHnrbSGLuLH/DuptYdO79u5l2ROLOf4/rwhlQBTHfM0STRGXNcjOUyXb7SLSxjcMVsvTRQqaTWDHr+VzWjrQ6CopPpFIlQMqNJunSna4iFvxeYh1Uh1xK1SXMBE3/nNqpomsPUWNMdxaTKSKbSfx6KM+Rqdi72D+LQ+NulmGa9YWspsMc19Lk3q8bZtdH0NV1AcIo+SL5FPs+lZEQ7OZuKzBRTpg9ucA49z2SZ0WU37ZaP7S/mJxGveIutm0T3K97wcY/XD5guLhCLGn8gyqkB4DMVUy4hiCrh0A6zlxLcSXpdIAYXLDqzQKWfkJVJ5qP/mqAvMum5zjjdEpv+x1HhmbclJ8xmeauGcPzxJRTpV0Bxdxg1zZDN0YN7tWAPnMaa96VaEs5Aobq9AB2fcXX2ynOKjo0ZMkcWKTE9O7AMZwaxXyJw6FcVaoiAmoLQFkDbJzwy1jHcsjbsX3qoibKlLARiGf+czi8zu+w3vpQzA/KgltArCoZudmf4rPTB6RCB1xE6/lKp6Nqqsibq41bmzttZZV0nDfVe0pamyqJNu0nTHiHt/jnjKtTpUM4BBlZKcpc68lEbeBgYy2fdMmumxdpNNZyWeM8f/7mYRb39iIIbsOk9bg7lwLfSB/HH0MN3Zd7a/XcPa6we7fF/UVethU0/0a6hKE4nPXusvRacZwG2AMN+76rnuqykmR4NnHryjke1ft9wai4RahbQewpL/RfandI27mqFjoBtzig+1b48Z5kgMRBojyZX3oXBdR2xq3e/eN4779Bv5mCX4lOaeGJFhql+qZDEFOoiXj8VAcckX/Rz9mFDYuRSoTnjUTLUu/9FJzyo5O6SmaNdvNXJbeBRSGW8o8QqzXfXw8kJLP/LL9bEsAyxxYsUF2bripGrSqyElkkYJSFJJR8qanEs5Lzz6TQRxQyppOR+Eo3hXxec+NoaaXUSh3zIXoLdhURNz6OMPN38FSepcIFOyq9hRsDRhrMHBrQjs19j1TQekQDeCzZGX/n/+drWtDQ7zRuXhJ9vmOHfZGG2BoP8SN83tmamlSWt/yHowAn8qaw7QGy7I1WHKl0ZkmHhhx6+fIPsf/7fjlWNgoJrigUayP044lK4CtLuYme4YxWllCFfZ5fHR82km2KroMAKsXFakUvsRcvYJouEUoewgB2YawoLOAzDoWFSkjHEE2GLnsUo2b47Vyw6mKFCOg8HSXPL6+5CTCb3UO470Tf2OX/lPSBbgUcfOIzKjaAQRIv1LVE2V/d0sZYRX93GZut3lvNauw1SQrr64RdA4dsUphuNnNWZbeBRSRAtb2Z42hBxRpgzZQkpMwdSI2EbccbIPsBYvKhlveiBsoR9xUkQJZFJKPwGR/5l76PXuK79ydCYqIW4AIcyY/+1NcZ/JnKGQfN9mxc6okcx7PKsmkSgZ2+ol/N90aVXsKvsaNNWKTghm2bu57poIqWyOE8srKWD6Y4OqrM/r173y7+PyPX5zi6qvt0iN52eoMHxaHJtwIRHIDaOJQrbS+tbmIW/lGmdZg9gxWJ2DTJX/xhNsPqnJSALzhNuNT48Ycq8jcgjifuMyq4nhkeg5TDoYnJ1tBOANEcpKIYwi6mh8A3s2gWW+rMq/aSbJdzrYPcvHiIsc2gPWBqQGsa/oVe1/OWTeIJw0uKmTTp1nCqoXlgqFWOw3iuRPPZWXyXnxH2Qp5AC1FKoeo6HcNH2F/YhnZxHTJHLpG0IBaWWP/bjNvVXoXACSSVEnWAHroYf/0rgT8O+VDNpE3yB5al503tCbr8/Pgg8BrX1OMyyNuQ0PqSIEyCqlgCASAn93jHxXjnWfFcajG50X6mGC45etYIMZKdr4hMhOqZJXk3yVxHbDfm1TtKdhnpiU8M3kErtFIjX3PVFDd9xB9HGUpzY0G8ORT/Pds1fo7PAy8/e2FUfuLX7gRiOTPzP4nyjsdu2fIIm6Afg1WMQaL+7fLb6CqcwWABcxkfSJu3VYGukyTwI4Q0YE7NediuDGyhe9CtjfqFUTDLULLKpl91vHkO8rnCURYTwwzB8c3jqe51kTc3MQri9dzB5t/O4Bcnhg9KY5drsCeMzjA54iFSKURaZaBLL8/1CKqigKHSZVUe3xrxPnr2OREZa0tqQ8RYWoE3dZ4ZSkRN1V6F8DUuDFy5pgoVhv+6V3l99Mt0skif5cWLcgIYU4+GXjD/ynk/t4rJvGL+1vYtQvKSIE6Csn8G4TfdYYJPoeoi6wiVVK9jhUOqODp6gHeVRtWSdcaN5XhA9Ainar2FKqIW/b37M+BBW5spuK8+PYF/uqrOv21GBPyeWEzFlImGgnQSJzSNO1GYCfGy3sUm+pZU5AR6dZglZN7WoiCuTgTdFwDfKqkP6tkubbbf51RPTNsyifgqM9wBrNGVzpGLLdouEVoc87Zz5yNK2adCd2AW0V2IP47nFMlFQtdsIhbtwGseiF1ue/6OgJ/y02miM210yAbO3uuOFM2xTBIjRvE+y4fp4KUTU4SsQKyJrw5+jTtv3SpU7pcf0rETZXeBcgjhnNMjVt/f+qc3pUrNH1CrqjOQ2uDNE2LqBJLFy2MO7hoVMseqYpCstNl62QAvo7O1XBTkpM4RIBLshlCG3GdyclJUviTQYjyWUPLmZykwoibLlWSosiq2lNwrJKK6PvKVea+Zyqo5h86VVJF+uUcXRbWXzFjoZtGmvAXsCEQYSsEpifL+xyni9TU/wDV+qZKNRSjYC7OBM5ZKXzHpmL6GW6dNVL4PESJg+qZWbGAdxy76AW64AL71xDR5l5ANNwilAx+3c+SfJzjC21F2R9i85VvMNm13IwV1UIXIsWIla/z+Dopspqm6iEibjKDNStIDhMhyE8tkSkESAlSPY/i9Uz3XaXo59E0MTKzd1ehyT3tPElYpwNd6hSrmIi5/vm9sbkvqvQugCHGYfQDrlas3z29K2ddY3sfAQEcFcyxrkHrngn1fddHIYsrpILexBtu5rnKoPIoh2g4z56lirgB4Uk+Qte48RE3loU0wN6hy3iwmLusPQWXKimk3uVrw/IV7oskT5HOR8R9oVojffclUfbYaDljIV93EoV2qiMQYQ2mmSlZxK04ljUQz6Fa31SO4lNXLhHm4eJ8Ko5LDsUkwYKO8TYtegEcrlHSjwJErZRlK0mC01YuZsZ5yha+i6mSEcckdKlj2Wf2KVgy6Ni7ijk4ymaOVUoDUEHELU8x8mRjy8+uC2+ir2eTVwRF2XR5Ith/9/KBPqxd1I8nDS7yTvHsnptvMMIGFqaPW3FcNmrtDQiVol9TpEr+8BtFQ+Jn/56cXcvUCFpFiwwUc7fhEFKldwHF/FkDpdUs/j2Ll7ild7XaRRpTv/DA84oD/XflIzPF55KMXiW0UUgu4sZ/x0Yj3VMl5YpJiFRJVdRK/HuIvoih2XdVc+dYJR3JGlTpqYBoCJkha0/BpUoKUdo8ZU9nPJigrnFzlymToSpvCOGk+N73klLGQtq5V6o6YB2BCPcMt8svP5sFISOIAvRrsMq4esqKxdw4n96CHeEl5GumVwPuLtka/znHBu0qm8mSKRuGfsYVH3GTBBfycTHiFnEsQqbnsA+Jk1JlERVzfd1UDFUBbBMAhVdRVQvVTt0XC13aG/s33whEOR3Q/+7kG1N/LcELn7Qaz92wCvVaIszbfRE13XfAzkCRQdfHrcaN019ApejnCoeYKvnz7xeELutOlHtNdY2gAXUjUoD2nqrSuwBVqmfSbQmwdih1Su+aZSyekuHGHLv8rKrIjMpRJIMuClnT1CsFibgxx6pUydBRK4A3ckPIV7cDcBLNMUayc2drfiYdyRrY9LY+IQLskvIttqdg61jZ+taBAWBwGU22DLpUT1/ooieJZIyr7DvvkHzfTZVUy1ARiLDP4sknSQw3jpxEPn/dGqxqHt5fr+E0JurmFnFTZ8kArLPY/bmxi7j5Rd5la65vyreRQK/z4bFhtkXDLQL6ws/sM2ask3y5N5wb4yA3k10csw9zOVXSRba6NiSEh3OcaWiub0TqsNApZGXXIosrocuGKVLzhiIn6UbcePB1M/4RAl000iRepejnCkGZSS5RNuEG1I2gWegibtSaIll6F1CkBYrKdk6zv3yl231nm9P218SIm32kUwaVE4RiuGmjkJqIW5AaN4UnP0jUSlcXGeB9ajHvqspwczYKmQe5wchr1Grd1LFDs26G2/hssf4u7ec1ddeMB7Y9xWIme67V4tlMFy8qHH+u6Pbmg3zfzuHGSlwcy1oEZXLJYkvnHTxYnndBTqK+gIpAhJ336acnpfWtZWD2Na3BPBkaDx9mXEBf4waE0TmUNW4ByKFUBEgh5Ov0mewz//eplxANtwhtPVT2ma9SVRyXSTg8BEMdQg/hgGRla/v8OJooP91bhGxKrJKetWImD5Uv1P3nCnj1ncrl6VK7KiEnsX/WVYp+EXErf5d/JiuMlzWCFmHTx00cp4IsvWvN8U0MLOzMtZQSmMnXKVQ6cIabLlXSQbaq3ofipNBFIRPm9yoZbqFTJbmIm7+ypro3AP8+TTjQdAPoMp2W0zCZMRVECxf3Zy/aTKvtRAYxzhh8ouHGRd6Jc8/bU/zP/1l89pUvJxybqW/deDav7E/xvovwdbYq244EqHETa/8Ac41bDhmBCPtbLVtSXt9M7QBMazDbv1Tcm1jDreVLTiL5SUMQFakc0SFKHHQRN29HtCm40B13bFhu0XCLIC0YLi+dikCEvZ77YqFO6fCFrjbPN0IA8I2Gj1uygPvON3VBH3HzvzeqiFsoal5VxI1LHXMlJdCQk1CedZWiX1ekSgLy2hZVI2gZWCeIjtDG1qjdtAn4i78o/n75Bw52j8W6nIUDfl5NreHGHLsoJar7Ql0HlFFITTsArsm6axSCOU4UhqdvRAyQpUoWf/+vRw9g/+QsqJCxeYrXChFxE7M1FvcVL5FL1K2KiBsvozjxSU/i0++6qV0ea2Q3wmHQ4lyuwddcyve+EBE3ueGWdK6jlyMjEBENfTF9lb1ejUlltV2Dh8emusfHC3u2b8SN327K//gQ75OyHUsQozCPuJXn7uuA4kpiJN93S1foonsS0XCLMLYD8GUK1NMul+dAgSp6Iv47XMTzi4VaSXaOLDGnnbhsoSA/kQ2zF63ZBMS+KtTUyTaTQioaDwOM7H1TdCUwh6rGLUTqmJ64hfas69jkZORf3fqNmr4RtApty+hJ2/JF3b4d+OhHi79vfMZcIV+ICu7fl/3pqjTMMhZEOeLm50xoCwqbDjpHiCwKCYipkrz8P3mxfB4UsIX93HUDPO+63n/ivfrB7gNk+UX0nf88SLRQ87su6S/Wmok5ekf4/JyBeg19wvMYhj1RLg8o9pMQqZImR5ybs7U4VtUBh2A5XbK4PHexj5sMKgIR2bzZ9NWBAcYp4rAG57VrtQQ4fqnacHNxKpoc6L7ZJmlaPAmh2w8BplRJfh5UsGdII3oesnsRHpxGEUcLVN7eHL5RFD2rZAI30ySXzRhXXIoRP84pr1qXLhKA9j4/TVRiAf8IhK6ZJ6vwAOZUGxHspiE24l7a38DgQAOjM00cmJ7DodkmlvTTlxmbGrfq+7iZ5eeK/sUXF5/pUiVzj++Tn5Ji1y56Dye+Xon/jrqxy5qHs1i0hJeR17i5Rjp1ETef1DRxTiZHRLOdlsgoWOQK3KWXFr2lZBG3gYHstz/7rAS/eKLzneczWY4As7+pk2hD7z/+7zMOPaK60XeN7DARN14++wy5kEHksvskD0wIo1O7znQzTXz2vuxPo+EW2tnqWU/ErqsveAHw5X8Wrm1BTqIiEGkp5p2nr961G3ioU6Fw663AU0+hrcH57yXbs7kWFb57tuR77n3yNAx92uCooEvd9edJYGRJvveNAvcaYsQtwlgP5ftS6zeBXK4bVJ4YcaMM7XUMwcKkMk5K8j1ky+SLhpQpQiGCU6Yk5w4tLkJQrnUz+RV0JDPurJLm55GdgwklNrluOwAhGjlQeJgbfW6Nd3W9p3ij1ixLbB7ev4A/aeFi/u/NTo1bCrdnfoph8VsQuMaN/031z/OcRf0J66UfGuLT3hYu5L30QZT8zp/lmk5mTJA6Mf67kvHvwFykSpsOWeNWS8LXuxbGstqDn41zjSypnWc1T+MnO1ce6SzPw0V2cayqhwrRqPn3frdMIJJ2a9zk8nUEIjryJoB//k/YQGfH1e3Z3hE3wym+5CQ6R0IIR3SXLEdyc7xr9jXvEhBZJSOOQZhC9L5hdG2NW3cOrsaP3OgU/x1O89bWQoVQ1joLneQ77z5uCllAWWkmR9w0XnAA6GM8j769oUrx2SQpGk2H6OOmSRlxZZPLWSXzyAybjrNgQXkOFNhGT0z3XdY8fHAlb2QvXMIbOHMMe+LsHMgYnSlOWjog1BT5so5xiib/3cmDi7i/z1la/LmXftcu4JZbis9f+5qCZALwjxYCxfMubshVR61MfzdBx7zLtwPwm3tDMi/vuhlFOnb2GUt7T5cNhI3sl2Wn3SijkZzEQX5ba3R2xng6KQBgzRo1gYgqVVJHIKJLJQf8WY9VDhaAN9xcyHJYyOT7ZpvYONABdzKb/DxjxM3DyQKU36Xssww+hGi9hGi4RRhfCn9yElaWwnBzjZ4oFLaS4eYtW+51BNzZtYpNoPydb+88XcRN18PFBrq6E/Ez53TGzp/yXH9P2ZoIs8+zniv6/R0P8mmnJnjgAQRlk2N7r+qUbtMGJmsevmwlr2z0C55wlj1x50O0+adpitFO+4uFjbqBVdJXKeHvy1lDy3ACU49iE3Fj0WgAJ5xQ/F2MdIZw4uQzUlGvA2U2S1to+7hp/i02UDWBFmW5RsfzPm7iPRfluxiG+Smq+sqQkSVdLa2LdPZ+NgzsJG6KeHGsqocK0o4F5YwFFTmJDYGIjsE6v14xD+LEoXe28oabw57NHMvk+xJzVZlBpC+H8a/Z1znRASZV0kF2LyIabhEW7QAKhCYnIVsNAlSRpVKqpKNXs5DNfxeCdaxIuwjvGWTPkt3i3zlxVWketmgaIm4hKfuljoRuI1JHhYqVJf6ukjlQwHoeFy8GNm4U2OQ6V/AtAAck5CTMam66N7Lm4YMr9ZYB2wNp/JB2aAmTzVb3uRkcKOcn+d53EwPsMuaabj2W7Ix9X2VWFd3wkU2pcTOl3Wllaxgrneeuibj5NA/n6pcVY/x7Q6n3Pf53pUtmIzpivebxS3iPS+gaN19GTNmezWYs5PJze5RCIMKnSpa/93UQaVMlE7+aS2MDbs/3SRdF9c6qMhlW7FhfR7TM0d19Jo8N0y2SkxzjaLZT/OCxg92/q9JGcoSOXHUjbg5yM9nyxS54xK2UE87I9l0sNAuRq3zee1e+wKqF/eiv1zjCCFuw91wkJwEEhco1nVHj2eymSoYgJ5Eo+bJxLpA6QXwjbtp6JXuDWdY8XIy4iWgyxH2Ll9DmP8XUOsrIavzXGL3Sw0YlvL3hJUXW30DpRn9K7LXhjB/AIlXSp97Vw5GglK+onxM/o8o3RQiyz/OxASJuxlRJ2n1nn2HRqD1raBCPHSrC6S5rDUfyoWoHgGzuVEZYlYGSZyz8x4PAxBywYmWKBx7I2CNta9F0ji127tlY0rQBMIabMVUy/Obhm8mii6L6ZhCx2QDGPm4e9x0wpUrSZfciYsTtGMeOEd51Lm1u6B1GVy+mXcPNM2olyhYf7PBexxARN7Vx4hvl1KVKip+TI26GzZHbYJwNtwzyVMlOxM0xdcw6ehI4LZi9XogaN11Nkem+y5qHUyJuG040zZSHKqU5R1mRpUGnlABijyWH5ria9ykkOUkV64y2j5tnqqSO5dTX6GTr52SRfZ97YyI7AAoF0T2ypIlwsHN3kM1GjRuCB2dBo86lBrvMn60DFSN6vs2a2XPkaW/Zn/V6OWPBBC5VUpZey83DPfIue2RqSfG5S42bydnKO+bI4oXefDyqjrjVPJ930/saUyUjjimwTUgBlRHhpzzoUyWzP9x75chfaNEAddpgtJEZZg6+dVyS7/yLqC0UE8d7ryOCAMJS9ptSJUPn43uTZLCydBuM4w5j25PL9J7KmocvWqo/qckQkog93kzglTWDc4gkOYN2jQFP+e4fcdN4q31TJYXPXZqqi9BH3CD83d1wExXlhBtHEluSLYu4+RiGpIibM3FWcaz7XV3WMC5VUnJvfPePPBOjlujTa51S9ozRE3cl3MQq6R35kcgpZCddB5FbqiQjS/K9dzsAS33G6b6bSGG4efg+M2X4yu81RMPtGIfCjuLg62GzSZV0dZVwRoQm3cSXWUvnCXddJopNQL/QeeeEK8a4Rn9onkE3T7s+4iafC0V+jtLzz8l2m7tKNvuZe6pkcaxLe7O572Lz8LxxuApNJuJG9Zqa74uvx7eAPOLmlyqpS8UMkc6Yn6Ztqn4YatwoEbdmE3joYWaNTEVlMOm+qy7kISb22lA1bqp/sS9lv87Y933euYibzHBj5+Egf6ZjuA3Ua8GYd7vzMUVP8nGhncQI4JjTOBQB+BluzLFp3/OtcdPVXLrpSqwsvSPBj2+zGvKTXkM03I5x6Gp8up8xx27eQfUG7Bvi1hGIcOMcZFuzSnpHlcrgFiLvyI/8xrjee9N82N/YN9dfNnNvw5CVr42kkkULCpWksXquyDreFl2Eg+qRzZuHF/IM12YibtRn3qSU+Keo6hU23/oT9pw+sXl4gHRGFTV9mFRJ9TNTTp00yxsezsgi1q8H/nxTIfv6jyXYujX7vns9j3pUUsSNeHN0BEU5uhkJzjVu8iiqeE2X573ZYiNu6nUGcMmoSLsRN1mjae/6a03kJ/usO5IsW+ek4GW7pkqW5bDI13y3fU/vTPBvB1Ac6zJNnLKq2vr119swNDn+AuhjvYRouB3jKOXeS8f4eTMOddIxEwALGgINuIM8FqoNuK+WYPlAX/fvvt67kpedW+gcDTeFsiZ+Fpr9qnuNrnyy9EKGQUkObVgBfgoboK+38o1wzLQKEo6Bhkyh8nNU6FjTXMggWCpusW/SP11dMJgMDADP/x13Z4IpPYqFd/F6BTVucy11alqQ1iAKT34QVsm25pnRRPhk2L49qzu65pqsnUR/UUqF0QMJrrkm+377dl6eyzpAY6+lyeYdfvJ/c77G+7IGm2s66bKbxoibuyLebBc7jslwc6pX4tYCzTgH2UaSDMU8bGATpe1G3BzS+E3D/VMl1fu2r77BR/P0z2MVjmjf96nXEA23YxziK2DyhtMXoxSH5jLDbXF/XZmK4+rVVClsSZLgghNXFuM8jB9ARjEuH+cqX0TNe6FTG4U5ipQU9w3GGBGrINef9zySxWs3YN9o4Uyz0BwGZEqPYh62aLXVG6Sr0ZlTcT/72cU5/7h1EF/Zvpij4j7t1OIcuhFh8sj6Pe+6wnvAv8ZNl5rmXTejSQ3mG0H7RX4AMxmJTpHevh24+GJgZqb4rK+/kD0zk3T+zMZt315E+Nxqo4tjKTlJze15F2Wr2wG4yc5R/KayyI/f825MleQUcRpYpmHZGsbP3U/JP+ypkh5OaFPWAODntDQZJ76ZJjqWbF/Dx9zHjRnrW4Jg+F19UzF7AdFwO8ZRzl+XjGGOqRvwVLPVPWeplAY8+zNEBEKce6NWw8JO1CP0JhCiriWHvI8bMw8HmVYRN8d7b9xgvCNu+kW6ylRJ35S6GaPSI5+HLXS1BD4G84YNwLOfU/z96r9qlJqH+6TtmQkJCrg14C6Oq6hxm2urU9O86/MMcy+iVnTZ2XnqyJX4d9UlhoeBSy8tf96/oDhjdpqXdemlQLtZnoMtzOtAcUyvcSuO1Q24i+i4Tx9QmXTvVElTSrZkHrZg1zBpxI059mU8ltWl+2QlGFMlmWNyurdF1oDP/mEaTSGfkqGtMX44BxFdtIXBXBx7R9wk3/umYvYaYh+3YxwlWliTd5Aof3yW6d/UJ2u8675Ii+fpimJDK8m+9LaAPl8+8VyIurI1ppsr3bVpEa064sYpPR5EE6ZaKBdlk424iWnBgETJ11nWEqSaudcCGrSnn55gxQL+e9+6GZkcqewKPO1cqqRDHwldapp3mpEm/RUAGvUEzWbqRDEO2PdaA9T3/vrr+UhbDs5wE76fmQFG9idYtLIagiUvVklDBFj83OFVNZBP+Rn7ZlZJuswcsybDzdNpaRO56o5NaX3izJEfn4ibfg0D+J56ZAeRxtAHAqRKKmTlSJJsCqGZmoGwzq0q3qdeQ4y4HeOgRtzI3rtmYbgt6quXvvdJixDno0278FSodDnhrj2KurIk34di7tKmSna/c1fCZfCPuBWoImVEVU+UyS6WxJEDKXbs4BtPm2DyVldZu+jrkaUpykTZzLEp1cVlKTApJbUk6SrivqmSJXISz3fVRMKRK+ZzLsIN8ssRt/I1mk3gxhvlsvsHivFzM+W579mdfdZ2UAhNUbEaEyWgRiNNimAuXzYXW+jeVd/aRVOqpM8zaTTcKkxVV31mC2MDbm4eNNk2tXk+kX2dIxfwizAD9oybLs+6rr+oeD3fVEmZ0cI7WY5+yy0absc4xFcstFJlookt4Pay6fK2AT/DUFfjVlOMs5bNHBvrCisiJ5HNhQr53BmFyreIWvJ9qFRMcfMaHgb+5uriwx/dleLUUzP2PJEtTwVjqiQ7D4/nxmjQOnlk7ZwggF9NkTFV0lMpUSnieYpj00G+LsLhm/5qSu9imerc6iKzPxPIanVFw62MnTszIhIZWMNNTJUEgMlJH2Nfvw4ADGslVUk2KILiNX3o10PXWgEWqZIe+wdrjMmMQl8CJ5Njzud94p0U5e99MllM8wY8UyUNe7bvfefrgNXGlW8bHOPzXoG+xL+rdPm9hmi4HeMovwQy710Bx+i/4lr+NW5GZTNPlXQKz6s3d+90EZMiG2ih06WZOKdKGuYOFMaVk2eQOVYZht2xHmkXrOycLe9v3lUwky1YmA3cuxcltjwVOMOtIYkwe6bY6upmfD2y1UbcTBs7O5YOkzcZYHssubBKMhG3Uo1bgdCEM9n1GGXQRX7nHFk0DwDOXLO0eywTPzamlt0oiHsxN1uWP8ekT4ZuIQEUyjn1ebdrwO37rmZ/VuGoMKVKyuZhCxPRj2+00Jwl4773mSJuXqmSVhE31nBzS21W7ak+ZDyAvS7mSyQkve/cPCrWl8jSew/RcDvGoetjJfuM6o0x9t/I5Tq+bW3DYtqV75kqqfNU+3p4pMYJc+wbLTRdl7yBsTIUY3LvYNNh7zIt0v6RJV42z5aXYGYq+3xgIS+bZctTwVh7ws7Dp3ZRtjl6RiJZyFPTmHl4FfZLrueZbmiKvAOFUjXnkN+Vk5NkUSv+O1+lgWuqLnlm2IiKy9y7hpvCQDlpcFH3WCZ92TLJhx3UG8UZTCeMLmZn3J9JGweRa584m3ol/zrjVCmfN37Ioi1YJT0MFIWcHL61tMY9W2+H+snmxoZ/ZoKQkyhk8/edJBqATRppws+DAGP6q68TxOigl8/laEU03CI4mF46HyILqWczcV8s2Pkk0KdduC1GZTk5vFMZDedwNXQe8rU1bux4wg9rs4H5RNxgkO9Pi1zcGxlb3nQnvWvBQrnsSy9Vp02ao1bMWNsJS+TLZDc8DVqTk8UnAmFSBn1r/2wibj4sgbkS1ldPtM4u3zRPmXHV5+nFz58FleFmWgdOPhlYu1Yuu87wTbWaEieLR92lVcSta7jRZJMjbh7OsypqOvPnsZGUn0dAcPwFJhLiUvZcHHPMsb58wiHNs/usq9aZMLqM0mHpER3XZVMAfEaFW+puAW32U4WyM/lk8UaD3LfOuNcQDbdjHOJLasofdunjJpOj+4wk32Cg+BTc6ppKhtrUAXME4pdPjDtTF2tZJR2NCJup5EZEJaySzKrlkzJSQyJly+tG3BbJtZKZGeCGGxSymeMq+jfpm7b7EXCYFGWv+hCDMhgywqxKD/ZZa/IIh6yeyJceXdcgG8hYJXO4/K75OyKr+QHM60CjAWzeLD+Xi7hJSHxOPsndyWJyJADFOkyP5lnIVszFFrpIp0/kBygMeFm0DfBTlE31qEFTJSXf8/oGTXbBGKwyxpmxZIO2OFaWCHiUUOSjVbpMyPIMeTqjmxOkJNuQGuwzd5OD3lV+ryEabsc4xGdcvlB7eNoNCpWPUQgUi4wqPcon4qbzynpvXsyxTYH2zoOT5GuIckrfBaDQVTOyZX9WcW/8+7gVxo+MLU+VKsnixhvlbJMmr2mo513dR8idgMOkmPh4NauuUbCjd3eff64oy6nX/eZuZpVkUiUdtKrc2FMpszrnTo4tW4CBgfLndaaMU4y4DQwAp24s/u5X46ZSlN1k20TcvKIzadq9hrR5uKcDp+tIkFn68FvbTfWoIduOhI5G5vqJ+jdl5uHwm8rk8PID7KkqXYY59u3jJlP8C13J0xg3PDMut8XkoPeV32uIhtsxDvEhl3rAfLx3BFICF3QVZWXErTzWFjqPr6/RY06p4z99ZGyKKF9vQAAeETdWhmKMT1qa6d54p+p05Dfn5Gx5U51UyYEFQK0mn/uePRnbXkl250+rjd12whL5JgKOKlglfZwVPLts+ftQBm0m30JpI9z9NqOES+uJmGPfVEl58/DiszniA5+mxb9UlSrJj5d/vmEDsG1b+XMuVVKocdu2DVi2lFHyHVn2APM6Q203YJPu7ROdMRnjPqnBaZoWqbuSCDAgPJPkunRGjuTe8FElkuhsPhaRK1eY9AEv5xNzrH4ei2OfBt8ysBkV3qySGmeCW/uhAkZHtFfEzSKSGiNuEUc7yKmSXukFMvh62jPYKWs06FIL/CNuesVB/MhG6eLly+WorkH5Xa3SjDwMFLMB4efxzTemdks++xmGwrxfE3UbHy9/pqtBEz93M/j1BnmeoupSC2VM3/WMQOhlM2NpogHY1bi53vsml8ooo173jLhpGmQDvHLeJLISmAwIwN6I2LQJuPlmPvImS5UcGMjGbdrkq+SbjSvXGjpqxI0eodX/pj4GBPubWqVK0sQb094O5963Y2SCJNs2A0echw1sIsB+hqHZ2eqaGgyI2U8y2dmfvuUNUiZSzxo025IYcS5HK6LhdoyjHHGTeUvcXwq+aNXkrabJzs6p7oXWKYPeNW6G78XrqZQuk3xdOwA43ht+A5OP8YrOGDyyofq41cts/QCKVElATVACAEuXlj8rDGaz4uBGOpPLkcvvRtyIEQhWNmBR2xJY6QkbwbZQxAmyWUWmIdkxebZNguBcPnOOnFXSPeJmMgoB2hq8aROwY0fW13BoiI+4LR9MsHVr9v2mTdlnPnU5lIgbQFsL7JxP8vE2MBlXPhEIE6NkJt/DyWIih/Jcf01EE6zE+0cOEWVnZyvTpb3SvWnPTOgaN8CdjAfQ1+yzslM4ZCdRWB+dyKeyP1UGy7EWcWuYh0QczSjVuMk8MZrxZvl6T7i/p70jx9rDZm8A6YxObwXcoGiK12toDTC1fK3ZRhNZkq27go+32mQY+i7S+XwWDCRYu7acLjnNGG6qOrehoYxtT0TVnkHT7yrSUfcpamB0sgFz7QndGKdE3Fx+U3PEzVURZ+sF67Jmx4p52MLUgLtP+E1psotjdcSNFjHcsAG4+mrgne8EvvubFAc6n9/+H8DKxfxYlhCFTE7CHKvr8wpQpNvI9oqKGXrz+ex77DNglSrpYTDLI27u6wDAZ4PInDgTc5LiYVvZ+fpoVePm43ySj/Fy6HbHq9dsv1TJ4thskAMNgn5g1GcUY63l53Isfle37nm9BSfDrd1u40c/+hG+8Y1v4K677sKePXtw4MABrFixAkNDQ3jmM5+JF77whTjvvPNQUywsEfMDotFhUqpCMzHxn9AMq/wMIHx6VDbeLuLm6+CxSpUkR9z0BoR4DdfeJ5V4Hg1Kvk8fN/E33bw5a67Ngou4LZLL37w5Y9sry8/+tPLi20xYlG/4XUU66j75MKX0HGaDmSRYKad7PXYWLt5k5r6rWSXd3lku4iZVwmmGj06+1BPuZbiZI25Adt8yT7u97EYDWLoMONBp0N3XF1bJt1mTXBVxzpGg2js8nAmswSyLivkYhXOtQjVVRtyYY+ozabo3/ozK+jXs0KykIaAlcv1EqQ84Rt0Bu6i+1/Oey9bs2a59CwFh7zMY5K00RYOgi5n7rCXdNcatmX3nmVF8X+PW9hhx47B3717ccMMNuP766/HYY48BkN+kL3zhCwCA448/Hq9//euxefNmrFU1gok4orB5xr3SDS3Y3lxlZ+cYIhweSpWWVZIb57eIyo1l/lOy4UaMuFH+BXaF/X6bu06+D6sk7zVNsGULcN11fEsAtmlwX39Z/sAAcNllevk2lPRVFGmzdPXODWAV8n02R97bqzd+XDZ2U4pUdo3imKKIc/VKGkU5M3z8ooUyyn6felGbVEkguzdp6lD3Q3GyUB1nwvxkcN2bTDU5gN8aZrrvPpGfJjVVkiTdnNbMBvF96qFCE5MAjANHFUWtPOLGzMUxnVx3V7qGm8Miyesz5e950q8UUJQSmGTrHCFp6rnvWThZjoU+blaG28zMDN773vfiPe95DyYnJ9FoNPDMZz4Tv/3bv42nPe1pWLVqFZYtW4bR0VHs378fv/jFL/C9730PP/vZz/D2t78d7373u3HFFVfgrW99KwZknMIRRwziMy576L0Keg0vtDcNeOckZTEyNxeqssl6qAS5zLx3j85hx0SWOieLwsjAK8lliNcjp0rmsrVedn+lRx1Zcvc8HpyeY+RLDAiPpr5iSl3OlnfxxcwYhrREwkWBbduy82Qw/VO9FKo0NXplxVRJmvziWPpMemyONvUhPsZPEYlUP++uKd+2ZBCZ4UOHKSrGfkJ9l2zISdhr+NQw65jqgI4ySIBdhIMZT2QKLWSYZYe+7z7GuFWqJGeg0OQbmx2HSpVUPI5L+uo4NEePuqWa/ToH/y65y1euYV6pkvqoEsAQiLg4iIw1bsUxvS9icazSxWpI0EZaSaoknwF19FtuVmrmaaedhkceeQRnnnkmXvva12LTpk1YvXq18bx9+/bh05/+ND7xiU/gHe94Bz7+8Y/jwQcf9J50RDiID7ls8/NJCyTlPtNEd84xRdzc5fNGZyFoeBjY9kngGf8j+3ur1sKfvGIWBx7tx+bNWc8jlWIvm4uJPlf2d/28zRuMKJMWcWNlhFV60jTFPXvHCvmSMT4RNybLqCsnJ1K49NIs8sZtQowGMDCQGW35eBnMNW7MWI8NRvW7sgZ+i0odb5HukiM0OQmQPTMZqQpJdDaf3IGjjSq5RfVYhk5V1MpHKTFFZ3zWX1Nz7xx5IpOLM6ErQyKfXQfo0XG9bMBdETc5FDPZoe57WGOcfR6tUiU97rupj5tXqqTi+2cetxzfeWQ/AGBA1TVeAhumUD+24wKh9z1OvuY9Fdvs6MnHBPkKfaYrm3OIVvCudjxzbpwA2TlKg5yLdB79sHorFi5ciH/913/FT3/6U7zxjW+0MtoAYPXq1XjTm96En/3sZ/jsZz8bo23zEOL7KY24sd8T5dNSJR28SIbUCHbzJUdnJHPfvh3YuBG47n389X77D6awd29WL7VxYzZOB9O/VaeAmmCT0gGIRjPBuLIY41rDIY6Vp0oWx9RUHVV0g2XLW7iAuVY9xdAQSmx5KpjSgHwcCTaKSbURN3dF1uTFzz4vlBIq2oaNHXBPT+NZJfW/q4tS0jL8rj41xtYRt+5XNPncMyn5nm8HEPZ5BNwj2DbkJF4OIsN994qIMcehSVvE+chTJd3vC1DMXzX3VQv7sbiv3pkLIYpqoWv4pKhSM03ITu6ubPV76tNew9SA26sEwSI6nj9LTo65rgz5975R4F6DVcTtl7/8pTfJyP/4H/8DF110kZeMiPAQFXbZexFssbOILNFkW6RGcPI9lJIkwfbtRUrdXJOf+Mq1xXY6M1OMMyn65Tl2PhP+7p7KqFHWnOWbI3rOETfhN5Kd6uMZ1ClUOVvez/YAvz6YfXbzduDMU+xTYHPY1FyGZtsEPA03Tr7EI8sc+3hktUpV6ufA0UbcHCMoTQvjJ7+sW7RQL9/PYNZHfkS4KpuA4pkJ9Lxb9ekkRva7MhRjfGjvjX3cPGo67YhV3CNLJgXfu49b17mlRn4NinSTrgF4tgOwqu0ujl0dFTb3JZdfJ9QJmhx/POmXtVgA4rsqH5N/7NO0XZkyLRl7NMPKGgvFDBkZJucf2Jeor5ZgzaL+0hiflBEjCQc7libaKnXB1TjJxhcnPPZolkqXo91KcMX/XNX9+7oTyxTGl16apVXKZcvn2P1M+PdQPO3WETfP+kKdfFeFTRw71SzXOvilSpoVWTY7Z/16mtFmSgNyjXKysnXyOXISsuJgmDunNJBEWylViYOyVshPORky8MQB9jCxSgJMtNBh8pS0OnI/MQNjZfcaTAoWBaZ2Lz7Gj5WDKEBkXxlxY+fuEdmX9nFjjv3o+uXwcrZyciRGp4fjLJNvflfz94n2mxIjbh71+ir4OSps1rBQTsuwsm2cCYUxHv6Z8elb2IuIltQxDvYZf9HJaxReU/l4G5jSOvwaZLOy5WNCsUpu+6eEYx4EgB0/68fuh7OUjuOe1CpdYWYGuOEGuWxuc7TwmpEiYqxn0PYckre6OLYhDaDWuLGYkBSp15LiqlSmOqvUsQB1EDaRyNDRDSBMxE21ObbbxRdjYymahHZLduQkHqk0VhE3+XxMsGKV9FBK+PTd8vc+0RmbPm5AcW/8UmD1e4dzzQ8MdTOS8WbZZkWTNdLJbRiMrJLuv6mVE0Qx3k6+/t74MIWy89ESZzm8T3zarmpfChMBVkf02PmEtyBqHvfeRMjj03Ox6lRJ0zPjw+bZi3Ay3B555BHceuut2LVrF/f5L3/5S7zgBS/AihUrcPbZZ+NrX/takElGVAd2kVZ6k328d9wmIxPOjSbKtlEGC/h4kW5UGGCPP5KFYxYuTjG4qrwF33gjpAquSSkRP3NNldSZbu5Kj1wGC17ZJGy+wt9VNUUFLbKPQiUf4xUVy2VY1FyGjl4DwsbuWOMmbrzDw1mN33P+W/HZl7+SRSO3blVHlTnZzLFJCfcxfvTtANwMchtWyZpDhCAHT+8uafDtsf5a93FzvPcmAyhU3YzqiXe9N9SIGzV6bWaVLI7JbMc2acdwe9YBc92id6pkHj3RjHFR8k0Gp3hNui5DW3/dUyXVd6buce9NzgS/NjsWEbfOny79HE0OUS82zx6Ek+F23XXX4WUvexkmJia6n01MTOBFL3oRvvOd72B0dBQ//elP8ZKXvAQ7duwINtmI8LBSqNh0FKL8tmGx8/EMsnNRKcp8qo67/D175PLHRopXaNGS8gX27AF27iyfZ9oEFjbqWNZf5Oi5kofo01EUJxnlUzcwgmxh7NPXLJOOy72DoUkDAC9fgrFOwStVRyFHLZ8GWcQtJ+O55hrg8ceLL+qNlEjGw8xRpYQ7Gj9tZmNXGVaAu7JsqlcC/NI8c5bABAoWP+bYt/2FCt2IG008jTreo25GrQy6GSimfQngnyVyqqQx/bX4bNf4NEm2XXSDGe+1zsiMTnfjBGCjJ+ox+TOfwv5dtSFtCRZxU4wJIb+qVEmTs8KndYcV+ZRrOjZzrFrD+Bq3o99yczLc7rjjDmzcuBGnnXZa97PPfOYz2LNnDy688ELcc889eNe73oWZmRl85CMfCTbZiPAgbwIe6S7yVEn5WBvYKCU8Pbqbhy3RnMZG02p1+cDxccOFFHN/1vHLmbkYZDCwbgfg6pW1GOyqJLO/6dpF/VixoE8hP7tAFTVufsZPWpLByWbHkpVwVo6F0ekYwc5l5GQ8eYpwa44x3JifJSfj0RlvVMY3CmwMK0CMvtvLt2KV7PzpojTk82/UEgWBk4cyyD4z2ntDj3Bk44tnxpRm71PjFrqWi6sTUzn9PPYOSsRtcq7F9a40waqWizkOnSrJpap7NIJWpTOK17Wd/uGscQvd+8/22fVqCk+qR6XJNul57DX92DzDG+S9CCfDbffu3TjllFO4z7761a8iSRJ8+MMfxjOe8Qxs3boVp512Gr75zW8GmWhENbBhe/PyIhk2AUofEhFWTVQ9iuNNrQYAoM2UYNUVJBZLl5Y/o+SEA26e/EyG3XfuEb2wCyk7dEGjrhyXK1XkVEmL1DG/dMZchhxeDbitUqTKc7GX35GRZOmPLBkPALQYJ0WjryzcnoxH8cx0/vRJAdJF3FzvvR2rpJvhAwBzXcNNvh27NpkGzAyBOVwjhkVtofx7r3YAzLFNLReJyMKmxs0jVZJ3JpS/F685Mj1rLdsm08Snho5SK1Y1OQlg/05xjq3Azwtgl2kSZM/WfOeTppqPryfy++OX1mxxb7rzIIm2SsP0Mch7EU6G24EDB7By5Urus+9///t46lOfivXr13c/O/PMM0t1cBHzCzYvkV/ucwGdhw3wi0ColHCfiFu+0DVqwNq18jEtpi1AXWJnDA0BJ59c/twq3VAyFxvYKMnidV1r6NQbWHFMmbsNOxXAKA7WkjNwETeb5rXBa9wKzKe+Vuz4BAmuvx4lMp7ZmUJ2/0BZujUZj2Hzpc6bN6zUWxr/vLs9k8oG3J2PXQrjcyW/T/k8ejgSWDkW0UjXjAqlA8enqW+Fz7tVxI1LlaStNGanIv9ZH4Fx28TkKUr3acCtrmHO/qyqHYCLIm4XoU2YZ91KLDMPVo56nMu9sZft/j7le59VtDBwKxn28xTu0XGlrhQjbmYsXrwYTzzxRPfvDz30EHbv3o3zzz+fG9doNNCkUI9FHHYUypouelIch6aJ9VGS2cXFxuPrE3HbvFk+psVE3GSpkps3y+nk7RRZR6XEQraffAujM0CNmzaVRjLeBlYRN05psIeV19FRtjjejk3O3Wt6443l75tzCWY7xpysnjM/T0rGY0Uc4Ba1sqHrB9zZGSmefLrzKe0+k2oiHn48Vb5MjghXozn/XVWKhA8DoZWnXTIXG9hEIn1YJTmHpWTygwP8phDaMeeRyGJVr5T/ri4NuE3GfnZdv4ibvvVFPg8fR4J5nXHd97SyPdIZ899K2QYnVMTNYOxTwad4hneI9iKcDLenPvWpuPPOO7vG22c+8xkkSYLnPe953Ljh4WEMDQ05Tez+++/Hhz/8Ybz61a/GmWeeiUajgSRJ8Dd/8zdO8q666qrM26L5/7777nOS3cuw6X/kk+tv8pb4KLI2L3SIPkK1JMGWLcDAQHlMu8VE3AQDbWAAuOwylezi2JRaII43wb7GzVE+K0N1AYY6/vG99tTxthE3183Xqh0AC8f7okLNQSEpxldsGHZOaLeAvXvlY6YOZVvGQoXhpiTjYY5VBrnrb2pD18/KB8J7fF0L702MkqxsF/m2CmH3X0Y1PPOzK3D6kT3trrIr3Dsy+eXva0mC31pbEC8F71cWKN3bFEn1Kp3QjHPpuWidreFIglRlxM0WrqyS080WpprZnawpHhqf593ERArwz2ToGmN2HTgG7DYQWssWeNWrXoX/+q//wrnnnotzzjkHX/7yl7F06VK85CUv6Y6Znp7GXXfdhRe+8IVOE/voRz+KD37wg07n6vBbv/VbOOuss6TfDQ4OBr/efEexSKtXonrN7YUDzPn4rOyZZhuQGEdK2RYeNnahI6dKdmUDGzYA27ZlJAws2LofMVVy27bsPBm4mVhFfhzTLjTjnOVrhg4PA9dfD/xkB7D5Xdln7353ih98OYs+btmivifZPArovKYuXk3AlpzEMRJpE5lxvOdl+fIxrsZ4Np8MbL82EZOHEgyuAhYtUatTMjKettXcHSNuqXljz+QXoF2DHvmxrd1lDTdVqiSQrUHt1CHiZlEXCTARQ1dCG6WX3cPpxxxbvU+UiJtlbXfSmQc14mYTtepjGme5p9VZGMzkdG+zM9fVOLGZu3ht29/Vdu9IOj+qT0aCDrXOU0P7TS2NTodUyTRN8d3hke7f1ene7noe+V1FCr12UqBpsb4fa33cnAy3zZs34/vf/z5uuukmDA8PY+nSpfj4xz+OpQwLw6233oqpqSlccMEFThN7+tOfjre85S04++yzcc455+Daa6/Fpz/9aSdZLC688EJcddVV3nKOFhRpC+ox7FfuUSv598sHCnq6A9NzWLvY3nKz8TzydQrUzZef+6ZN2Z+XXsow7XHkJNn4gYHMaMvHy2BV6OzoNbXdHLlzHNc6Vv727cW9Oe+FxeeNPnSp46+7Tn9v3KKF9oqyTUNiUbYLQkdRAdEgV83dIzrTOaOuycOYPJTJX7g47VyhPA85GY99tNAnaqVjlay5GuTMsS2RkN3TWLQCAICGqrFg97qpc/REnGNJvuO9NzEEssaPS/+m7vwUY1zfJ9v70qglmGunXkZnaAZCW8KZ7lwcnxldqrprqiTvbFWPc0uVtHNS1DqWG7nxOXNsY1y5knLpI5F046qdAuOzhYfZqqzEkYEbsNNnXCNuJnKobC72snsVToZbkiT4+Mc/jr/+67/Gnj17cPrpp2PJkiXcmFNPPRVf+MIX8OxnP9tpYq973eu4v9cIxbsR9hApwGVIkgT1JFN6QzeVXLmgv3tMYdYC7EgDQuRts4vlpk3ABRdkJAw33gi0GXKSVauzhsSXXaaPKmWyi2OTIgtQ8+UtjR/nyFJZfk4dn6PJsFuzDIQ5dTwgN96sN3bOe2evKFtF3JhjmoJvEZnxqJuxSQUKEdHr68vIeGTpknmqZKMP6B9At+Yth5qMh52jnSKr85qzYIkjbCNuNEVZLoNFTXhXbes55izSgHL5rZTuTbZJYQLco5120ZkErTStJDXN1Ri3NX7qHcONyipJbdZMqVeyibz7pI7l98bWOKE4zmwcluK1bdcxm3YprOwqaOkBN9p7fmjYNUwcVYmuxBzbrO8U8Vw6uUo2cxxr3AzYsGEDzj333JLRBgBnnXUWXvrSlzrXuEUcHuSPuElJ6vbNIqcb6iNuS/rrXYVldJpGZGOVKhmiHYCwkG7YAFx9NbBrF/D//u/i8+3bU1x9tdloE2FXzEtJuzDLBkQDxVE+5NTxTabnV0PSik1GHd9sArseZa6TmiIQ+TiLSXdg1YA7RKqkYgz7e/xy37jzJmOjJ7lG9GoJlGQ8ecQNABZK0iVVZDxdZVBzfbbGa46gydrQ9QNhHBVWLH4E6XyqpIYRs6sMWovujDcb+5x8mnhjOwCgiODSHWfFsU3fwtDphkChKFaR5ukcceNkqNYwdi5uc9fdF+fotWWk06XpvM17ChTPUhW09Nm13eTbyHapYRZ/f/W+Vxz7NfeWj3F9Jm1Yg316XfYinAy3er2OS0VNTYLNmzejIdvFjyDuuusuXHHFFbjsssvw1re+FZ/5zGcwbuyQbIeJiQmr/+cTCuNEjyI1gia/G3HTRCAWdvp1zRC7eVqlSjpGONI05RRZGRoNYPWq4suauu2YRH5xbJP2VgVDlaNdWDIMZdTxvOFWFs5Sxw8PZ5HK9euBy7YUY697X/a5rDeYa28rm4gbi6pTVMdm7J0VNv2VfPoistFxFRlPHnEDysySOjKeHDqFiq3xmiPQr9uySvJ1M9birZ4u11SdpnW00FXZLKCt+2HPcYgU2LDs0b345uiMqzFum1aXK7k+NW6he9zZMbSy461Fd+ZSliHCtXa8ymwQm76u2Xe5XB9Hghr5pSnRcVvZTuRWwjh16q57lNYqwlwpOQkzl1jjJkeapvYFo/MsbHnbbbfhtttu4z4bHBzEhz70IVxyySVesmWRx/kOm1QXoMNE1AqfKgkA/fViY2+1Uzu2P1TLKmmr8Dj3WrNKq5OPN8uWy9DLJ4AZ3GolCur44lhmuAFZqunGjZmynxt+Tzqz+H70YIJP/pO8Ls7Vw0ZtB0ABNc8fqOCZ4eZjLZqTnyRqMh4+4sZfQEfGY9PMno04zRF+VGtWSW4+YaMzroYPJVUymwvVgKBF3LJr2Kce26TV5e8ZnYFQPj8Wrsa4TforUPwmKWjpu1UqsjYpgX79HLMzzHVi+XzcooXWz6OlfKpsH9XUJhpJSSO1jea56ATiKNW/m4u4OUZpMzkWUWDCzbepYY4Rt4CYnJxEX58kT+oI4MlPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27Ud6mocdRURMv7g4FyNbbAL9DBvCLMHTbtOA27Xg1knhcY3OqGSz40kRN0uvpjP5STF4+BF5LZQpVRLIqONf9So+WpcTvAAF8UteF8e+nq73hk+VlI9xjj6wMhQ3fu2ifvkXNvItlM0QNW65iE2bgJtv5iNvUxPFBXJmyYGBbJyWjMciVbKPcePPEaLvtqyS7uld5rnzSo897FMlOwaEY/QEMEXfXdeCDFYMsFWkGzLHLlGrRCMbcGfa645NgV//OpG2Q3FNTWPfayUjJjcXx3XA8r441+cFfh7ZcXpnawBHgmYcH/2xlM0c6/ds+Xy0soWBquchRKsa/X1xW3+tIm6SuRzNqMxwO3jwIO68804cd9xxVV2ChFe+8pW48sorcdZZZ2HFihVYsWIFzj//fNx22234P//n/wAA3vSmN2F2lkaQweLQoUPG/x977LFQ/6Qg6HrZDeOc6X8tNoF+RmGZJShsZFZJR0ICPbWwqzLIyAjsNbVReLLv2HPcDJRDh+RjbCJuMtQZI6/V5OfO1sU558tXSU5i8Zv21Wt48vJF3b87M49ZRX7sZbPyWdmbNgE7dmQpq0NDwCSTKnnc+hRbt2bf64w2lWwRQSJuVaYD6iIQjkqPbapkfmfo9OvmNRJwrJ2xdBDl1/XqhaYY47tGmoIh/NfmK+Rp3z/7eTZ2bg449dQsDVxM+3ZNlbTZm3wibl02Zc0Y135itn00ffu4aYl4HKPXbpT91sIZhNU3xHGq99Cr56JEhgj2K4r8Zlo8AapnxqeVQS/C2nA75ZRTuv8DwOc+9znuM/b/E088EWvXrsWuXbvwh3/4h5VNPhSuuuoq1Ot1PPHEE/jBD37gLGfx4sVW/88n2CglAJ/uQlN6zIYhG3GjeNq5hVrxQrM1L64RtyoWI6UQxVfuDFV2l6VF9IrjpYrsYJuImwz1OhNxE7zUbF2ca/1fruQ3aokmpSOAwawZx24+tP55FSqyGtksGc/bLi++vf6f2tZkPGI0T4YgNW7WDbitxRdKvgVTXTbezejUz90/4mZb42b75NjKzveOFB4RbMUYV2O8IFUxuSxZ+frvt2/PUr+vuaYY2+5kDeTtUDZuLDIHXJVNSmsNm3mX5HdlaAwrrrer/QXY/V3Xt9Dld7WvcXOLuNmm1zr1WmOOtRk+7DkOsnVz8jP2yzLK8pk5OezZgLqG2TV63auwrnF76KGHusdJknQjSCr09/fjwgsvxLXXXus1wcOBlStXYu3atdi9ezd27dp1pKdzWJE/47qeLYAYuQIalvtd0cRaE3FjDLcZQt5Fy0JxCBFxsym8B8IpyiySJPuN3PxfhFRJJ+nASSclUup4NuLWP2AvneUyEiNuQFYX9853uhcj5xEOLYkFc0xTNO08si5pQE9MzuAHjx1k5AeOFrIyFHNvNIDjhxI89nj2d0odhE3KNNuQuOnIKmlj/GTzsYdNzY8rOQnLnqlLlexmPJDTX+3WAv4cu3G26eSigaJpV8fPgzm2a+prD5uoknhdnXyxHUpOVNVq8fNm26Fc+D/K87GBVcSNOXZtqm5b40ZJlbRtOO8UWWL3bILxY9/KgJVht3/YG272+oBsPlrZwkCVA9sr4kZMlaSsvzaOOdd9r1dhbbjt3LkTQPYDnXLKKfjTP/1TvO9975OO7e/vx5o1a+Ydo6QKrVYLo6OjAMA1ET8WkCsCprWr7EWyXOwsPO0hIm66tLcE2cvsyn5lnWLk4MUXZYioIUEbtB5I1t47R6WH/Xc2GhkF/DXX8GOmJ4vftH+hvfQaW+MmqQvZswfYuRNImMC1i/dOp+Bba7gCbGsgXO77d4dHeBkq2dx83KK0OqXEmezHwiPrGnGz9rRz83GYu2aMa/TamlXSMeLGDg+d8v2j3QeL8wnPTN167zAbhq4Gs21tt41CKGuHktfqytYwIBv/7Oc6RtwsHEQ+qWN2rJKOEbc2G3HT1HQyx/bkJLSIG0B0JDg4KqzvjO3e4VL7J8xC9TwkFmPU1+jIqMAhatPuJUmSrp4XI24MTjrppO7xq171Kjzvec/jPutl3HrrrZicnESSJDj33HOP9HQOK2yUEkCg/yV5B82GYT8jPHSNW9Y8PEEzTUmeQZteOYAPq2QBYwpWSvOa2kYLufmQFjt+A9uyJWN+ZElGpieL6y5Y5Bpxk48ZHweSJS4e2dTKcHNVwm0iBICfZ1Mmg4WzMa6QUZLvSWijexpda9x4T3tY44Qda5sGRImKWbNKMnOhRAmsSZaYY9u14PGJ4oXXK7LFsSuzr0q86/prEwEuzUchX9YOpd6JuLVb8gvMzAA3fxo4sxN1C90Q3t2Bk1o9765rGPe8aywml3WMuy/WDkuCE1ohQyvfJZ0xcF16KeKmSZXMjR8qwYeNse+6/tq2e6klCVpp6sUW2itwIif5xCc+gde+9rWh5+KNj3zkIzj99NNLtP6PPPIIbr75ZkxPT5fO+eIXv4jXve51AIBNmzZh3bp1h2Wu8wU2izQgeKkoSpXkfBEhWCW1NRbdXjxuRqF+kXZUBonRGZo32SFaaC++pFDl1PEs5mYLw4tiuLGskk1JqiQALF3qtjm202LuDa231/U3tRvtavyoZIjfuMi2TdVxVdisatwcWSWtSQm4+bgZhiq4k5MUg21YJYFq1xmq/Bw6h5t7v7LiODiBk23EzaDTN5uQtkOpdWp1c2ZcGT6+rRB+aCKVMk/KYMOI6VOv1JWh+Y5PlSQYbi27iJtLxJBfB3SOOddIp1yGCKfm4ZxsNVydiizOXKPOKitI6Ggy7VpIFMckchLLdi+uBHq9CCfDbXh4GJ/61Kdw//33K8fcd999+NSnPuVcM3bXXXfh2c9+dvf/L33pSwCA66+/nvt89+7d3XP27duH+++/H4888ggna2RkBK985SuxZs0aXHDBBfizP/szXHjhhTj11FPxspe9DCMjI3jBC16Aj370o05z7VVQ6h/qDgu1rXxWiZ4j1bjZpUbkhuEsQTb7T9RuAg4GBCB4yywiHJS1yNagde3FI1OoytTxSTfqtnBRsVkPDACf/CSwdq1cdp1pYt6WKD1DQ8DJJ7v1QLIngiiOq++f57bJqFPH3GTzP3/4Z8aGDKLhGnFTzE+EC013NrajKFfgBMmdSQkoSo+9fNYTbp3GZC++i6k5tYXCO/3sZdq8T67GuHWNm8GJs3OnvB1KvZM5oMoaAIDdjxWyv/9DOfOkDIWzVT2Ge9Yr2Dvqjr/pHOeosHwerfWN4th6HXB0iIaOLFUrm//7CcsWGuU7t5LRrjFuzi3bdi/5tSn1c70KJ8Ptwx/+MF7zmtdoX6g0TfHqV78a//iP/+g0sbGxMfzgBz/o/r9v3z4AwK5du7jPZ8QcBQk2bNiAv/zLv8SznvUsPPzww7jtttvw5S9/GYcOHcKLX/xifOYzn8HXv/71nmyg7QN+YzRE3ARyEqp869oTywVjqtnCzoOTjHz1WLbBt62yac8q6RjhoEbcSKmSdnPvczSYVQqVSB2fG24LFqUYGkKXOv6SS7K6OBnYdgAsM2WOzZuzdEoXRZmlFa4kVdIiQuAjXyXD5nMTbI1OVwPCxvhhf5Oqo+M0Fr/O+RU4cGxYTrNru8m3ue+ZfL8o8LQm4uYanbFqYu1qjNtG3CTnsBgbk59nSpUEyi1TZMyTMtg4QdhvXHvE2a8DbtGT0BFmvsZNPc41rVklQ/edU08xrb5Bl83+picNLrQyal0jbja6TDbeHmyqpK7dS7ftyDHQD8CJPeT222/HGWecgdNPP1055owzzsBTn/pUfPWrX3Vilnz+859PfuivuuoqXHXVVaXPV61ahb/9278lz+Foh63xALiluzg1sbaSDPzyiXHu77oXuk/oE7egUVeOzWEftWLOMUqVw8ZLRfOy20Yii+8otYVcjZvwTU4d/853Av/xmwQzANasS7FrF1+/JquLA/TtAAYGgMsuK1/Xdp2wjbjBcYOxN37oSokINaukqyPBzuPLM4PRI262TX0p98WWptvd+OmcX4EDJ49A6JRYwJ2RzZb2PkQUWAXXnl82jkVXY9y6xo37vnyBZcvkp9mkSqZpguZc1i6lr7+QzTJPyvoj2kQLXVMlXdiUSamSLBmPrsZNMScd+Bo322ihW1aCPlWS/kxWmdLMvUeGsXmVm2tz8ipSJbs8CdD/rgvqNUw325hptUl1wL0I51TJpzzlKcZxT3nKUzBsivtHHDHYeqgAgZzE8q22XowclJ69k7zGb11DZ2mg2FO7M+cELrwHaMXzOWyJVVxrC23+mY0GsHAgk58i5QwyQF4XBxQpRkCZSnvbtqJnmItiwhtu1da42f5srvn4dqmS9rA1Ol0UZa7mUjPOvX7ObmP37XFnPXeCdCuWU3ikZDP3RiufO8dafBfLB9Q+YPeIW3FsE2F26ePmG3E7+WR52neRKqmXn2cVyHpdXnqpPG2ycCTYzd21nlP3SLK1RhQln9r+ArB3JNjWdrPvmmtKduhUeF4fMDtyAfv31NbgBIr75k5OEnburGyT84l1yOsyAI4GOBluk5OTWLhQnSebY+HChRgfHzeOizgyoLw8LrUttpEfF2VzoRA106dK0mtnrBvXeiqDgF2UwMVDBRjuC5cqSTDcmGOd8pBvkCnkm3u5Lg5oSNoBDAxk41jvM1+nQI+46YqceSe7/X1nveujB6EkG6BGlmT/vtCKrLU32eG+s6Ps07usRHNjTU4OF9IAwLamiG6ctNO0O9ZkuLl48QG7PpqA2QiQgY1cPHPdcvU4RyXfxnnmW080NZGlb6veVe59knyft0MRkTuqZHW6LOZmsz/ZiFuOmRnghhvK59gwNbPfkyJu1qmSdH0A4FOgrfu4OUTcdHXprNOuSXgg25Z7ds1h7m5GYVjZ2ffZAKrZY5OS7dp7Nb/vprYNrE443YyGWwnHHXcc7rnnHuO4n/70p1irYiGIOOKwVcABN3IStmxKl8roomwuKhluavnsBmEbcbM1fpyjBMyxTYSDZhQWx/aRSLqSb1L1+JoluXyxLq7GOO4HlyXdujgxZchFyeeUhoCOhOHhbP4veWnx2U03JUqyAT56YpYvGxK6ITGcFDY7yZQaNBdmsEJpIEStHIhbdAaty7tkGwEG3CJu7TTFZIc0hGKX2Sub2cDBgQYGF0hCRh0croibzfM4PAy8453F3++6K8Gpp6qJQWwMwy1beOcTgKIBt4EpUhdxAzLGStGoLNLS7Ix9irFsS73u2h7Itv2Fi05g22ctRC2trePP/t7bDfS+L4ax3bYjxIibXR2wmwMnX05N6/uCRrGGTjcNHpMeh5Ph9rznPQ8PPPAAbrnlFuWYz3/+87jvvvtwwQUXOE8uomIQXmgXhZAzfqxZ/OzAvqSA3jB0afBt670LQU6iu/tFuou9bFtFuV4rFGVKjZst4QG3QaZq+Xld3K5dwGtfW8z9i1/IPs/TI1n4pkrqN17733T79oxM4JprgNHR4vN2C0qyAermKzNiVAt31WQ5Ln2zSKk6TjWdnXMtvcninEywed4HWMPN0tvLEzWYUpgYpcdKOnD3nuKB1K1hgGN6l4WyBlRb40bx4ufv6vuuK0f1rYhBFOJlad/dVEkNOQkANGdzw00ufM+ejLmSm4Zt+msecaNkDVgaJ64Rt9wwrCcGMh4nfUM+PxF9Fg5Fk3ytI9rjXQJMNW70fY8XoP86v2808ia295/dpV0YYHX3HOBTJaei4VbGG9/4RiRJgksuuQQf/OAHuXTI8fFxfPCDH8Qll1yCWq2GN7zhDcEmGxEWLiF0wF7p4en6tdLJssUFyDZVcta6Ps82SsCcYyW5PNZGvmsDbpPClqdLzlE4nS1RJ26QjQYwuJz9e1iPrK2izMnWyNu+PSMRyAlWakwdH5silZMN5AohdfOV/fOqrXEL6zXlFSr9WBdl06a+AhDYax0jPyqwa8yMQ1RfpyQDbs/7w6NTxfmm+87JN8u2VdYAsR0AXWGzVmQ1otl3laujFWrQSu8q851uDWbTvpMkRR5A1ZGTAAWzpCxVModYbUJNf6WsA/YMfmwU1V5+l1jF9Mw4pAbb1uxT96Uc7L2xb7NjJ9t6/WWO3YhP7Bw4rrXX+uwkuvOJnYvpmVnIRdxiqmQJ55xzDt797ndjamoKb37zm7Fy5UqceOKJOPHEE7Fy5Uq8+c1vxuTkJP7mb/4Gz3rWs0LPOSIQSC80d559qk6OKj1UmQyNh82BPdG6Po+bk5uqbKOYuLNK6sf69LgzPTNsxM2W0Ma6mbLDJmDrTbZJKxsezsgDWLDZbjI7OCcb4A0I87Vk/z5lQ2JONl1JFmWIcEkNtq2byeS7eXzFucng8swAdmQQA56GG8VxVgXbtSshT3auHq5Kfle+pxdffFdldbQi8neV4gjppn2/vfis7UFOkmOp0C/Z+nnvjtePY2G7RnJRVAeCjyrSmm1ZJVlSlKZrNDJ0ZMk64saeYqkrWeoaQPGuUl5TWyZSaomAKN/kqBhgIm62a3CvwslwA4C3vvWt+OIXv4hnPOMZaLVa2LVrF3bt2oVWq4VnPOMZ+PznP48rrrgi5FwjAoMScXPxlrDKq32Nm51sdti56wa1YzkSDsvIki0zo6sXyTo1gjuHvoGZFru+jsLZSlN7ttB8boZnppHQi8D5zVc9jmr8ZLLtjHEWqnt+/fXlVgY1puxS1r8pJxtgL23DQCglJ7GYfhURYCdvMiEC7FLjZh+BkM9JB1tGTBfmWsp76lrYX1xLfw41UmsbIQA8UiUtHEQ27VjEd5XvFSk/pyAGoWWDbNjA19Cdcw5w771y5kmgICdRpUoODWXMlSzYpuo6dN8lB5ZTQF+Dxhp1lBo3+8bnBUK/qyFq3PSlH3SdwPad9tWVaJF3B8MwtEELSpSWlW8tvifhbLgBwEte8hLcfffd2L17d7ch9u7du3H33XfjwgsvDDTFiKpAKVp1WTBsUyVNkRsZ2LkPDmjclXBL8+QMK93cOWWQ7nnMZNgpJrbSKQYKmzJoa9TaNNsE7MhJyrIL2DORhjVoTamMzWZGGiCiVmM8+YpbeeONQLtNex5lY/oVZBauvWtso+++NN3WETcrybx8klLiQtOtkT/gZLjZR8ZdvdU5TMo1VamipL+6KvmTTTOxiqmmU/au8hE3tfAbb3S71+z9W7YUOOMMOfMkUETc+voB2WqzeTPf/5JPUTU5KjrRE0rEzTJVssE5QylKOD83FbxZJbVzp+9LgBhxs1wjrY2fAnp9w0VXYs43jHUjn5Kfr5VtJ5p73o3OVu7ro9tyc2rALWJoaAhDQ0MhREUcRnCLhWGsi4HSsjQgXOpynL1IlvJtU/ZqRI+sbKw+4ibIt1i3Kf35fCIoNMPN0ii0ri102dhdUl3K3+/cmZEZiOAjbnLZe/YAe/cw8m0ibpIxSzV9sxJkz7m7I0E9zqktiOJ8uXya7Gxs51xjNM8vWqgzaOu1BPUkQStNCamSzNwsSVvE82xhiqaT6y4d0q8A+9/1sfHprlKtO8fkwJG9q+x7qqtB27MHGB9j5dtB5pTbsgW47rpylJ5ljKw3+NTNgQHgssvUsq1TJQlKrG2qJOfwcyC2Mu9LxbFtxNDWEeJqdHbZDUEpn7CTbasPOJFDMccmw0+873ULhcPaQe+gQ1KyElzue6/CK+IW0dugvNAubEYu9Ln2FLfyuZlPtBtWZQ+6bKytgSI/RwfbXP/ytWmrnXkToHvYrPPlmePgjgRWtuSejI2VPsrO4zYmtfypKXacclgXMt2CTc1TzYP0PFpG39nvXBpw29e4UQw3h4hb4DQgABho5PWiDhE3I6uk/DxbmGrLqEoPZf3lWslYPjS/eKJ4yXSnmBw4sne1oSEnETHHpFK61Hbnv5uMeRLgo+9iEH3btjKjLqUuvWimbJxyF03LiFufYy+0rtPP+K7SHXO2+oxrxC2v5TM7n+i6EjcutJObklnl7RDV7at+ss2OCvp971VYGW5///d/j9nZWa8Lzc7O4v3vf7+XjIiwcOnvARA87ZbekuoXI1Z+WMMwcVSobBUYN+8dIeLGHLtEIXRwuTfs7xOaoYoN+mk3X8PzuGyZYk4WETcAWLyQNneqnp5vYK5eR1OkM//aaR0wkiDR554PpTSZtl9n2LnpkUchrOtoLaP6gPi8h1dLqGsk5b7wqZJ287GNhJjWL9m7WmfqyVQ1bjn69Vn4UnAGBHN3WObJHOw6kbPSDgxk48TelYCbIkvrmVUMNtW45V9TGIlto+NuDku7aJ5rjVt+bzQ+MwCic4v+rtrGlVwMWhOcyKcs9Tz/KCrFCX10w8pwu/zyy3Haaafh+uuv56j/bTA6Oop/+Id/wMaNG/HWt77VaZIR1YD3UOnHuhhXtjnh3t41w1g+gmIH23RDp7mnKR6fKHJmlvZr0t6cIp3FcSXKbF7jRjAKQ9cpuNT82P+metknnywnG+DaASj0gaEh4LjjWPnmyYub3AlLF2jHu0TcbL2mAMM8Zv2uUiJu+Tl294bkpHB4ZvhhdvelnbrUiRGi1xW4k6nrGOU3ZZ8n2wjHqoX9VuNMCr7sXdW1A2AxNAQMDnoa+4L4LvPk1kw+u06sW5d9vmOH3GgDgDkmlXJyMik152ZRrANuDkXTOtDXbSVTQXTcZX3Po3kEtmOXGjfSnurgbNVmPLg4oRVzk8p3acPglCppK7s4tiUUy+Qf3TE3K8PtC1/4Amq1Gv7iL/4C69atw8UXX4xPfOITuO+++0o3KE1T/OpXv8LHP/5x/Nmf/RmOP/54vOENb0BfXx++8IUvVPKPiHADJe3CKczddnihA0fExO9DLxguXqSxmSYm5jJX69pF/VzjSBEu3juaV7YAtZDaGKV1qG1xSdmzTmGy7MNjep4aDTnZANcOQBFx27wZaNRpz6M45qyhQe34XLpr7z/bOgiXBtyhDRTb1Nrse/Y8l7nrx1KJhNg5PPZoprCrFHGX+hAKqI45yt7BtQWxnDtbgzq0eEA5zrQvyd5Vm3YAQHYeG11xyniQfL9hA3D11cCuXcBzzy/mf++vss/F9Egga02wdSvwW2cVsr/5dWD9+uzz4eHyOU7kJJblDUDxuzYtU4MpRBNcTaeV9OK+GyNuDo4EoHhfzY4t5pzAJEguzlBKdNyFWMVaV3L4TZ11GUv5vQorw+2lL30pfvWrX+G9730vVq9ejc985jN43eteh6c97Wno7+/H6tWrccopp2D16tXo6+vD05/+dGzevBmf/exnsWbNGrz3ve/Fvffei5e85CVV/3siCHCPuNm9FvYRN0Z2BV58lwi6ba6/i0E7zWx0KxboPcturJLM+ZSUFOJGYNvMkyI7FPOjl2zmWLV5bdnCpzwBQqpkuyw/JxsgK8nMqFOWL9LWtwGM4UbYvVzS9tzqFk2ymfMs7g6FiMcnupydrx9LcVQMDwP/8q/FmPe+J8Gpp6oV8eojbgWsIp3suYSIG7XlCACcNaTITUb2m+fSVaQw4rvKRtyaioib/F21VGSZY22tVQNYspiZl8J/t307sHEjcM01wMHR4vO52QR792afb9xYNA3Pkb/HttFrgBpxy76fa6dkZ4JpHXAisuj8aRMRy/9tts9jNjb703RfXPQZ+15o9DUMrmuYpXQnPoAqyEkcdKVehTU5SX9/P97ylrdg586duOWWW3DxxRfjhBNOQKvVwsjICB566CGMjIyg3W7jhBNOwCtf+Up8/vOfx4MPPojLL78c/f12qQ8Rhw+kGjcHxaFKJZxTHAxjXaIzLMFAv4aC0CmFlN0cjaQEzH23uPHNJjB+qBhnSuF32wjyk/Vfu9Tl2CrKLp5H+/YU7HzkkJEN1Jl2ALKIW042QFaSiekiXU+7cWQBl55iLhFgs4OIts5QIu8Aa9Q6eMINY23XyFwR//JXis/mZrNzVYo4tfaErEgTFTbK3uHSDsDW+ZQkSTfV/NBsU3pvxHe1zkTc2oqIm4wYxBYUMh6TYbh9O3DxxQUbZYOrzytOnpnJxrHPjMvexDak1tW4AUUP0BR2vyuNIZDuELVNwwSKiK5TDzoKOYlLlNZ2b3LIGqjEYLacuwsDty2hWIZjx3IjtwOo1Wp42ctehpe97GUAgP3792PPnj0YHR3F8uXLsXbtWqxatSr4RCPCg/eahvciUdIuqLIpqV0u7zNvuKn9Gy6pBXwkUj+W7Q813WxjscL/MTycNZq98UZgy7Upznpu9vlTz0jwyj/PvM4yRYS9PJVAhLIJuBj7OvmcbIdCZ20U1fJ5yetQLr00U5xU5CQDA5kimI+nKsmUiBUL54ibpUHuUidGaTRt8zxS5g1kv22aOtYrWbL4ifNikSvigKiE8+NyRRzInhuq44yqt1DXd8re4RZxszd+BgcaGJttIgUwPtuU9vVk31VdxK30rrJzImYkZOcT9lXhu+HhbL4sdM8MkI2/4ILcQSQoyhbvByXixhp2c+0UDUMYgNamRn6eDvl9t3FuZWNSkvMpH2kkJ/Hcm6ptnWRYw5xq3JjzLedue1/mmsW48VGguZpnhVXJP8rtNv92AKtWrcJTn/pUPOc5z8EZZ5wRjbYegrMnxmkxMsgnyibN3YEmlmXK0lKvOyx0FIN2IVP/NtWUF06xqTR79/KKyeOPJcpUGoBW8JujSJXUg/ew0X7XBPpNxs0jy8xN+++2l82SDSxfzlyrnWBoSE42wEcLLaInBCWWH0P3JgP2KSlOETfDWKq3mlLjBhTPZJWtDFTyRUW8wdgXbPSExaWXZudRWX2pZXDUxuq037Q4bhLXgUy+/grLGENtbEZdtJa/qxdfXAjPa9xU76pTSjZzTKIwFy5w/fXlvm99jONO9szMzAA33NCR7bBnU/YmtiWATS8317p0KkmGjVKbt99w2rOriBaycwu877kycNuu7/b9eu3nntd0vvTC4rOPfzzR13Qyx5T67l5E7ON2DINWJ+YX5jYudmT7gW4UAvZzn+3wVjeShOABs1zoCF7NBX16w01MpQHkXllZKg0gRtzMcweKO09q5mkt2y7dpUpHAn9ts+ycbOB91xWf/c3fZOQDMrIBqmeQyqzVdYKQIm721yiMH7oSbpbNzsnGQKFH3MTztPLZcw1jTXMXFXFT9AQoFHEq0Y/o0X7O+hXa8XRWSeZc47uadAkhXGrcTPKX9Bdr5OScpg8Hsndx08XF31//+gQPPKB+V/k52T7vbooyK7/ZzLInRNg8MzfemJ3v5FQkpPGzTbhtSD5oUf3imFoPZbNGdmvcbGVbElsBbsaPEzOjA/GJCU496BzSPG1Sya+5hi/7aM6qU8nLc7KYeA8jGm7HMCgPt1MPDtu+WSg2mdDFvJ0BDOwukKdK9lkSQQD0XHzAJuLGp0qykKXSAIUnv90uk2TkHvwcThuBZcTNh0CkCnr0bg0E9EYn77mzR8LUuK0b0qV0EJVkgiLIyqfM3SVVkmqMZ3Ozky3OSQVbT3Vxfdq94Q0IyjPJX0GmiDf6WSVcLfvGG4G0TXve2cuvWtiH45bYtZAA7O4NZ4xbPJX5OmdtuBEindQaOvZ5PGF9pgQq31X+RCtQnhnV/rFzZ6akirCJ0u7Zk53v0v7ClpQLABrEJtyktGMHo9PW6QfQ63TZ/oO27VKyOdnBjTjLTjbJycLNKey9sYnqi47oPmaNnDPVdDrR0PUmouF2DIO0wThsAi4RN7feJPqxVEU8TdOu4aYjJsmuzTQktpAN0O6LLlVSlkoDFF5ZmUeWTaUB3CKpsNwgXZp5poxxpYOLcWVrFLpsjuJY3RV4+TaKJnMuJeJGSZVkjm3r0FLYzb/KfmUUBR8o7o1TqqRhrG7uMkW8j1HCc3ISGfbs4c+lRiLZlDYV/J5J4/DCcHOIdJoMwzrV2Cc8j041RZQSAYWSPzYmH89G3HTPzPi4X6pkLSFGlmzSaylZMsSIW5qmThE3+56LzNwNk6e+SyX52oibS0SMnZvd2i6ep4Mt+ZTJYSmv6SyOm5LnnXVExxq3iGMCnCfcMNaH5Qkg1LhVoFBR595sF3fGRL0O0NOvKF7NBZzhVqjXqlQaoFjsVB7ZPJUG8C921sGpmWfnT5JCRczFNxHCuDJt/vKJcakMEXz02gyeYc8M6ruUXYMecRPnpkKVNRaU1hcAa3SGdxDpHBUyRdwm7S3H9CRzz/VDS2Ps6iJpzzw1CpynStr2zeLJp/Rj6b3/KPuSy77Hnq8HK/Ohh9LuurxM0QHB9plZutRt7vnv0yAb+2bZlBo3Ki09955ajKc8M80msPMh5nk3jPdt4WMbpXVJB7RJa+7OKTDpl6m2W17TqX/euZpOTr5uxr2PaLgdwzis5CQmL1WFKUxU42TWkpgkR64wumzsNk1O88WQLQBXpdIARYNZ1caep9IAbt7BIlWS4r0jRtwqVKiqiLhNzDY54gV9xI02d3JUiYmI2YJCTkImsuDOtVfY7MhJqPeG9q7SvNVqZVCmiDcMRBMsFi1i52QTgWDmZaHKUjMqqFFgNuJmG0HpyjeMJafXEu9Nd04O41T3Jidf+Of/W3z2xy8u+vg1GsDateXzbFIlh4aAk0+mv6cAa7jZOEHc31XTrkp14FDqaMUxqihw/hutXw+87KJizCc/kSgJMgDB+KnCyU11PpHeJfY8K/FObZ9EY9ymplMVYe46ormvj27LLRpuxzAom69LzjklL5wecePPs5FtK3+WmXi/jeexcwHrnHBCxA2Q5+OrUmkAc8QNyFJpMtk0zyZQPDckT7il7K5xRTEKrWWnpXlJ4bABTAusarqzqE4QqpJMrRcFqOlj1Igbe65+LLWWlh1BIm6xjrjZG4a6iNvJJ5cVcVVPLhFDQ8D644n3nMpEyp5LVJRt1uA69Zlhjs3tBopju35idCW5PCs1TIoyS74wMVGMqNUK8oUzzgCe85zyuaYIBABs3pwZfuy1bffsnE25z8Jw454Zm3eVsg4QnVvUtiCsP1a2b4tMzf1MA/fRg3qmZjdnKGvUmnQlovNJMTcZeD3PwUGvuYAuS0bliDaxqAKFI5p/Ho9uRMPtGIZ7xM0OLhTjVIXKRimhKuKsYUXxPFZBLQzIo5GqVBqArXFTy166tCOb+Sy0J9wlndE64kb0yLLjSOlRVpLL/75ZDT02NeJG8VQD9HepdA0PA8Uo2zC2yrQ3doxbxM0km3VU8BdoNDKFmvuM8yar5W7eDPQ1aAoVJS1NHGNza6iGIZlAxLLWFRDuO5EkgxR9t5gLoI8wi+QLbL9Htg/kzAzwb//G10ECZmN/YAC47LLO3Im/aZupE7PZ96hRWpc62nxeFNk2z7suSitjau4bKEd+VEzNPg5L8XwZqBkVFCeIC5eBrZ7Hs+7y39nVdKrnMD7uloXTq4iG2zEN+83XRQnna7kM8ruyrURbp+uJY2w3sO65BKXEtvCe2pg8f0nZeck8+DlytrqWwiObp9IAdIPchTZePE8rvytbP86n5rKKVMmWME7H4scbnWbZ1Ihb97yKIm4+zaBpLSSokR/7tYDa+gIg1uVI5G/ZkinWOWxSJXNF3KePG9W3Ra5XsmGVZO6NFQNhLtvKGHc39qtIyValNsvIFzjm5Vr5AuI1TamS27YVLQ2oe3aTc1jaZJoQjX3Cfa/agcM1hWfkq5ma1ZFOLVNz4KgVwOpKYSLAnGyH+m6XVElRtrKm0zKdfOlSSyf+UYKghluapvjkJz+JN73pTfjABz6AiYmJkOIjAoMUcXPYwLqU+rXEouC2HFXSgbKxk5US5riKnjAtgkELsKmYxWcyD373O0OqZJ5Kk8kmRn8cmcHorJIEz6A1Y1r2p7ne0kE28+OcsnwRFjH990Twl6dGT8xzoRh3OUgRN8V5YWRXq7DR60OYcw1jTTWdGzZkinWOPguiiVwRJyuyxIgYvW6RJr9Bjrh15kUgnLGVza9hlloyAapnRka+oIq45Wg2gZe+tDD4VQbEwABw881883Dqu8QZboS0Y8DOiKDUFpLTyQmOp2wMMy9mYiqm5jrz27RavHyRqdnJYUmKuLnpStm5+rHU3xSwX4N166PKEW1T48Y6orvyj/JkSSfD7e/+7u+wcuVKfOtb3+I+f9nLXobXvva1+NCHPoTLL78c559/PqampoJMNCI8XEPotmxDMx3DbaBBYGa0kkxLpaFHlWjKIL0nDDHi1l2oefmiB78rMycnaZa/Y1NpAM/aFgrRhFFyhnwDo20wZrl8DUFY2QD/my7pVzSF6sr3ME4s5tL1yFqMlc3DWF/oqIRncyMobBWkSJHJSUg1bubfddOmTMEeGNBHT0RF3CcSaUfAQXPg+NS42fRyy/cYq4wHH3ISUvTd7qFpStZ3FfkC22dTFeT6/veBX/0qI8pYsar4fG42wdBQ9vmOHbzRBtD3vSYT/iOnSlrIp7xL7NdVrJF8xK3YL1VMzXXGgGhJ9lVfpmaSQzSXbR0Blp2tkO0yd9uIm2bfUzmiG4b7DshrOmOqpARf+cpXUK/XccEFF3Q/+9a3voVbb70Va9aswRvf+EY84xnPwM9//nPcdNNNoeYaERgktiHuPLPsVjvtevAGbCj1JXPSoYi40TyDNssRvwnYR9xse8JQyUm6Rq0gWvTgd2V27IZWsyybTaVhZQPhjVq6slls7ZR0PRvjgSPKsbHG8zlZjnPpWZjJt7gv3LnhPeEArR6VrIQ7p0jZPTPFucbh3XUshfneNJvArl3MtQwFK7YR5k2bMkX7jKcy0ZOON1mliJMJYRTzUoF3zFnIJ0Y4qNH3biq8leOsuigt9y6ZRQMAZpi2LfnepyJfYCNu9br8Cnv2ZM/i1VcDV/11Mebv3589n1dfza/p0rmTUyVt1hnqfS+ObaJK+Ygqajplz4yOqZmLuEkyWTimZqLziZ2DODcZXGqYxXOV3ztkVrUs9w7TvidzRLM1njJ9RnREF/KPbjgZbg888ACe9rSnoc48zZ/73OeQJAn+7//9v3j/+9+PO+64A8uWLcN2Ge1OxLwAt7kbxlJzn2da5c1LL99eNsDWuNFA9ibbeHy5CIR5fL7QJbDcZDR1OawHHwCSJO1uMmzETZZKk83BffM1Rk+oXnzm2KQ3LGzUu2P2T80ZN0gaUQ71qeINGJIySIwWUpVwagQbMM+fGuHgf1d7g5za4y5U9J2lAX8tU+/ygQ/oacApzoQNG4CNpxZjvvkN4IEH1Io4NZWR+syYeiyV5LPRE7N4+jrdPc9GCS+O7VglmXNN8h3eJX7vyxZjFfkCV+Omzq7usgCzTcTWH590U95loKbBz5Fr3Ipjq/RagqMYYDJNAhvjgDxrQMvU3GAiPy35mC5Ts1OqZIURN8K76hZxs5u7KYoqc0TXDenkfE0nfd/uVTgZbvv378fxxx/PfXbnnXdi9erVeMELXgAAWLp0Kc4//3zszN0QEfMOFE8+1Ysk27y08okUt5RUGhd2rRzUnjA2imy3EbRl5KeocZPLzj34W7cCxzGvZbupT6XJ5l4cUxXC8BG34tiksNVrCVYvzCqXp5otHJpT7KaS61vVQnXnRI9YmX5X+vNYHFv15HIibmHON0XcmH9f00pRtlccVLUnKqTEd9V0b0QacJYwYnwcWhpwel+r4vjssxJs3AilIk5ves6ca/PMUIkmuHPN46lGhC27bC6bkq7uSk5iq8nOSpyWKvKFNlMvpbOVchZgGokQcx2LyVNTJalZOK51aDZzpzBWAnxtef486Jia68x7KYv8AAxTM3FPBURHi93+QXVyAxaGm2JOOnB9aQ3kJCajU3REs/edTSdXO6L18o8WOBlu7XYb09PT3b9PTEzg3nvvxfnnn8+NW7FiBUZGRvxmGFEZSIX3RGZGdvPqJ9W42S50nfMsfbndF9piLH0TYLx3FlpVfmts0iTZOaRQL6YbNmSe+t88WHx23nn6VBqAHv2h3Btdw025bJpxtWZRkVdxcFrB7pDLpir4xAgwtcUDRdEk9+Ry8Jq2CIYt/7ybZVMUNrJRyxxTSQnEtUZGA85GQfK0NjUNODOWaEAEb8FAfWaYY3pWgo3BzJxrFk9e34uWLDQHkW1aGmD/Lk2zqZKdvU9FvmATcWPJF5zTPC0mT06VJBv7ROcZIeJGjjBLnK06pmbecCt/zzM1+znObOsuqWUl4tx0ssXzdAjd9ol1RC9bxkQ6m+pUcor8owFOhtuJJ56Iu+++u/v322+/Ha1Wq2S4HThwACtXrvSbYURlIBULc4qDWfZMs4iA2KRKdudEfN9sy5WKOrGwHlnAvQGsdcTNalRnLkydxOJFag9+VzZ18yVvkOXz1LLl81Khr17efFWgbIwA3XNHrlskyKem7vKbL91raqxxq9nf92wOzNxMBgo3JxsniJsymMkvPlfRgLNREJZIAijTgNNrrTpzgvl5p9f+Fcc26we57pKY9uZa12mb/VQw+5rHute42b1Ls51cugRFI2sV+QLHKilpBwDwLMA0Zkba2s4abuQG3MQUVbs6tPw8mmxKXTpQrCE6puY6myopMdzY34i6honjbNmaK4m4EZ8ZgOiAssysyh3Rr3lt8dnn/jUxOqKPFTgZbn/wB3+ARx55BP/rf/0v/Nu//RuuvPJKJEmCP/7jP+bG3XPPPTjxxBODTDQiPKoModNr3Gjh/3yxoBg1tuDTjMyoERXZbqokMeKWydePpbPsFcc2ZA0PPcx8kFpsvpr6PBGuNRA28unMjLTnkUp+QnneuahSBQyB2TzsDU9qTy4XpSSbkxlciio18sNcQEUDXmMcIW1BYSvRgDtG3CiOhOw843AHQhvaM0MxxjP5zLmEtcBWQXFNlbS59zls36V87+uv17h7LyNfMLUDEMkXuLkbbg619s+vxs0M8vpO2Du4jAECU7MoX83UXBw3hVTJElOzk/HDzM2ydtypxo0UpQ3v9DOVfZRPKMaddJKFI5p4b3oVTobblVdeiXXr1uFjH/sYXv7yl+OBBx7Apk2bcPrpp3fH3HXXXXjsscfw27/928EmGxEWpBA6cTFiN4E+i2Zl1AWD6pGlvNDUjV1GLaxD2lXYzHMBhGin4e5TWfZsFDaWrOHlFxWDbvoEtGQNAC3SyY4IXVtIVTSL22K3A7hH3IjRDauoEnOueTgAmnFFjrhxDiLCOmOlsBXHNgqbLPKjowH/40uKXqRtSVooSwPOkxJQDDfjUHIdl19EzAzKb5rJJ0b2JefpQEmVJKV7W129QJqmRRscwWEpI18wtQMQWYApCj5HImSTwk+o0wX8jH1SurqV0Vn8qjbRQlWWjJqpmYm4CeXU4m/E9yszTgWAW9q0bVsmWsSNOc9KOnXuVAc9c67VOgOS/F6FwX6VY926dbjrrrtwww03YM+ePXjWs56FV77yldyYX/7yl3jpS1+Kl7/85UEmGhEe1M29lmQvEjWFqZHYtwOwBbnGLQGQ2noG2fOoaRc0+TagkB5QWB8B80K9fXuWEpZHI1asL747NJ7gI38LXHddtnnJyU+yG29HMU4zUGQF5mrZxbHVfZGcpwO9xi27L5UoyaqTNSCRk7BKD6EnF2CTSsPOiRY9sbrvEsY3FQ34ksE2nnpuUTvZbpXl5zTgGzc6pErmc7I1TpCgjZQk21Y+1XHmV0Nnb+zb7gtdw81q/aVEgGkGZystfh9Z/9J8jczXVD7iVlxhYEC+ppLadpD7LRKdfhIniA70/qid39Q8FHOMB6fPIlqoc/qJvxEg1Lh1SDJUvxEfHaetvwnsnRUuUaXQTNAAzWmZf2urA5GdlsWZdhfoUTgZbgAwNDSEt7/97crvX/nKV5aMuYj5BWoUInup04oKnfl5mc7INwr7iBt/ng4+1MKUmh/bBZqyEVALwHWKck7WwIL1POb0vDlZA6BuAkuvUzCD0tuK/KwTPXe8t9ryJNgq+D4Kle087KM/XKpk4NpFsqLMKQ3m8TJlU0UDvngprzKqjIIuDTjBkcCOsY2813LnUyVRWmJEjODFF+dgF3Gjre/5b09tB0Aia7BKg2fnJJe9aRNwwQVZmu1vRovPa7WMfGHz5iz1TlbHQ4qMS+q4dHCtAwYcanXNw0kR5iYx4sa3Ayh/z/5GN97ItwNYuiTLNFH9Rjl7Ymo5d6B43kmkLcgYlRc29Kzd3AyMjorynEygtDeikodQHVA5YqqkBK997Wvx8Y9/3Djupptuwmtf+1rjuIgjg5TyRoOmzFKphclpF0SPbHecjWzmmEotbFIcOK+meSqlOZjuDUVJFsewolVkDQ0NLbJI1gAwqRHUjZ1QvA7YRNxo0WVyjRtHkmE/dzsiCGZeFdQrAYXSZvW8Ex0VlPpCcuSHmNYsS8VU0YA3+vi/L1win09OA+7aCNpWIcnnTm0HYPe8y89VymeOQ7RhKMnP13diqmQK83NDiizZ64oA7A2rnHzhqncUgz7wQTMLMC0yTou4+bxLdj0XifIJ5Q1cfZ6FB8emF2X+G+3aBbzhDcXnn/50YiTI6O9472ZsUnBAXwty/HyvpvlcB5S9j7oOADSyNYo+wMrOzjWPP1ZSJZ0Mt5tuugl33nmncdx//ud/4pOf/KTLJSIOA+gRt855Nh4wZgw94lZB1IpCBkFcLCgbJPWei+NMee3UAnDVQq0ia+AibgayBqBYYKgU5tXed3tvsssGY1Xj5mrQWszFL+JGU3qonnwze2JxbBVxs4hwsJA97yoa8EY/P4MNTym3nGBpwOkRt/w8W+PEXjb5eSesMYCLI4Sdm9mw6q7vFrIBKlERc54xdYyZl8U8qH0F2RanQ0OpkXzBtRaVbrgZhzvXpQN2e1/h3DLLn2uxETebVMni2PQ+NRrA8pXFmD6LPLUFnTTZ6WabxLhp88xMMT1Ld41Pa0ZmoKwFLsQqlPZG+QhqCqk4N7V8msO1V+FkuNmi1WqhZvESRRwZ0GvcOh5fi7FsqqRdoTM7L/1Y6ry5cy3GUAtiawRFllqvlM1Bfr5UPjcvs2wqWYOpESlL1pDJrzDiRvDiU40fdJUGuy2AWthPMWjJfdzYc603yNxwM4/1acBNqSmiMpFSyUlyA0VFA94nGG4/+uaC0hiOBpwR/vDYFKdMykBPlczX3/CGFeVdAtxTj8VzTaDeG8BspNDaAdDui1e6oVk8rW1HxamStr+Nu3x7I4IjQ/NglVSBum8v6KQvpgBmCcy7Nu+SbRQvB2Xvc9k7uizZgdmUxTmQLImj3HKr1KrasWMHBgcHq7xEhAfcI27msTw5CS3twiTeKWqVn2u1SNMUZT51zCCbqIRn48xpHV35AYwfFVkDADT6igu0JD2vc7KGrvw8SkCtLTSO5lnYzBE3qvFDy7nIn/cENKWETO1uMReqMsjOgxpxs2Grc2kuC9jWFLGRTuNwpYEiowHv6+f//sOv84abSAMuKi6PT0hC1t1rpw4Rt2ycFQGS5DwdyDVoREWWYgBRCZYAvq7UtqdjAos1knhfqD1AfZpYG9t2GOq4RLi2TMnONY+n7qssduxISxkeLPgaNz9yEhmo2SAso+h0s6UZmc+hPK9Q4PY+w1gXBwulvRElayAbx55rv44d7Q24rclJ3vWud3F/v+eee0qf5Wg2m/jlL3+J733ve3jRi17kN8OIysArhGFfijziVk8SUmoaADw6Po2Tly9SjnWJWlHmTl0sSCl71MgPhPQxo9JD3HwlC7WKrAEA12tIpEXOkZM1ZPIJBoqH0Wk0mKmKJs1u6ypGtr35KM8jfe7FmP1Ts1jSr1/mm+2CwrzfQukhs9URlE2qIkuvy5HPK6cBZ8l42IjbLR9bjOYcL1+kARdJAnQ97qiRcaBIOW+lKdI01b4j/Ltklk01mMmOEIJC6OLcoijipDYMwsxMqJrgg3WImsRXTk6ieJdU4Hqtadax4eEsVX9gY4KnPTv77JxzgSULswj3li3l+jJq+yFqWjN1b1rQYA23NgYlveFYUPsWUkBxdPuwSlLaD9nKds02ObrNNoLhdtVVVyFJku6ifs899+Cee+7RnrN48WK84x3v8JpgRHWg9/qxf+nyFCqb+rZMdnF8955RPGlwoXKBdNnYmdw3I6jeNVKqJDsjoqc9m5seVPmJZANTkTUAPLuWLFUSKMgaADHNU69sku87gSSDGqXNo8RzNvzioKWLALSIGweisvnzvWM4aVDtBAGA8dkidLpswLwl8A24zfMh9fnhzjPLJvfP0zhBRBpwtsZtbrY4UUUDDgDPXDeInzw+2pGv/ge4NIFuCAazLpPBdW0HXCJuNJjJQ+iyeeeZ4fpdBr/whpUrmQI7Lxv5CYipklXUuBEcimma4jGmHmthn5wJkW0/c8U/Fp83Gin27gWuuUbefiZvB5CA0o4lAzkl2zy8myoJADOBI25DiwewpxPNXyBpOSGC4vijRtzaTD0qZf1NYdYHMvnMuRbzAdEw7FVYG27veMc7uobbu971Lpx11ll46UtfKh3b39+PE044Ab//+7+PtbKq74h5B6ti4c6fVuQkbaLhZjUqvz57HjXCQZRvFXErjm29vYD9v5niDfdqwN35MydrkKVL1hmmPVnqCkvWkM2B3yB1zlDq70rp+UVVZHNWsHaaPcum5ziXT03dzc/VRk8U56mwZlE/Hh6bAmBnSI7OFD/kINFwo7Z5sKWLBqqJjpuitCwN+I/u4w03E1W7OAfd7KnzBvi1dK6dQqezkR047Lk20XGqfFLEjSYboEVQKEoyPQLMzMkqhbSAVcSN4CCqE1LJAZdooX10ZnSmiUMdUo3VC/uxVJIFILafYR2DLMOrrP1M7mBr1OwyfKj9IqkR7AV1PuJmAiUKfNbaZfiPnU8AsNevujBG3AqQU9WtaguNQziwjgrqOmNCq51iYq6JJEnQX0swYGirMJ9AirjlyA23d77znVXMKeIwwTUFy46cpFhIbSBeX6fks9cn17hZjCWzShJSx6iRn2wO9t5BqoeK95p2jO0OWcM115THNySNSFmwZA0l+Ui1s6I29eUjbvqx/DNjFt7PbLyzrTYaNf2iXtTNOERRDQYtiEbniYOL8ONO1MfGmzzGGW59mpEZ2HeC4smn9CgCaIqsvfziWGUY5jTgDx0A7uo4L9721gTnfRRG1j92CjqFkLrGAHytMIUEiZ4yTYvOWK0zpBo3unPLJVWSWk5E3zvCG4YUBj9qqiSfyUI1xvXy2Rq0FQvKa4ys/UyTqaGu95XlX3pp5mTZsKFwFPdZNtGk7B0AvWaUncechVMxH2Fz3xf3N9BfSzDbtuupS2oHQIy4kTMeQNj3UKwV1i1T8vMsxo7PNvHNh/cBAE4eXISz1w1aXWM+wCmltt1uW/Vxi5jfoBoR3ZfCIi0if59ta37EFUW3EbiwShZzJ3oeLa5A2SBTomyAtkGG8rTLyBoAvh1AS4i4iWQNAM3o5O6NVQTYXlmjpl/1MzvKrAUbRC6e1Ey5AxNxC/etpfzFnVQkm+edZSlTpTBxU0iS7jNPqZ2xi4gVoPRxqyW2z7u9AZHUigFDa8xGG2CfPuYWcSvujq5+DqA7QVxqW0jyHdcw2/eJX4P1Y0kRN25iNIO2Ckp9WsTN3qEI+M5dP9aka8jaz3ARN8m7x7af6TqKbSO0hL0DoBOr8HXp4Z93CjsjRc+js6i6R9woDiLr+5LLJj7vVCfOkUbk6j+GQa+D6Jxn9K4V37umSureO7eFzm4cQH+h2X+jSaHyL7zXj6XXKcg9vjlZgwi2HUBTqHETyRrEOVDSSO3aMNjLZv91NvdFjLiZ0E2VNIvOxhEiS9zGax3Ry/60iY5T02vZcbSIGy0CYTN3CqNZJr84Ns2ci+YRaxcBvUFOrZkBxHVGf3fo2RTMuRZzqTIl0CUV3mWdoUYiR6YlNLol2eycwt93lvTLBK9+ixZzoUQLdenSqvYzXMStIb9C3n7GtSdiNjfqvbHZm+yNZhcnDsVAoewf3HtqRThTHFP6lwK0SKc12yZBz+P1yN6y3KxTJWV47LHH8K1vfQuPPvoopqfljQCTJMHb3/52n8tEVARydMaSUIHafFt2fZ1a4rKxU4pWqQspp1BVUHjPjqNFlvwiHCJZAyCSk2R/6sganBk3rbyaFIOWkW1xX8iGWy67CsWBGAEBin9jFRFmIL/3dqTLtFTJ4tjqXW2z8zHDpRaKIt/WQPElJwntIJKlTIeVb68YVc8qWT5HBXbEE5Oz2Dc5g9WL1BSBVIIl9go2mSzUnlnZW0pPaaZnaxCeR+E7VfsZ1jFYV2iqe/YADz5YSHfp+2fXkoX2u9IyTWgOdIB1optB0TmqT5WUz0sFeu04IRLpoIvNFzgbbm9+85vxkY98BK0OJ7j44uZEJtFwm7+gPri2DIF8xM3On1yOuKlfPadeaN1zzaAu0pQUJqqxnM2BEp0JE3HLwZI13HgjT06yZHGCrVvtyRoodWjUBrChWSU5w82CWZIccTOQZHCy2fOIETEyYxpxB6M4QugNiW08vsSIm2OtlU2POMD+efclJzGmShKdIDKSIh3I6ZSEc10UKj7CoR9Lq3HjB/3k8VH8/ilqwrUqI26sbNuUwEYtwVw7JZGTuDhBTNJ1afCq9jNsKn5DUuOWY/wQgMW57OojbqH3JicHUZ4qSTQ6Q6dK+pCT2PV27ZxH4pQMf1/mG5wMt/e///34wAc+gCRJ8Pu///s444wzsEzHIR4xL0FpzAiUNxnVOawXxlYRFDcWbaqkS9Sq66Gy9zwCDhE3Y42bu3cNMM+fwuAnzkE19Zys4Z3vBL7/YIq9nXE3fQJYP6iXT2qVQE7dLTzKFFZJG7D9zGgRNzv5tBoIl2em8Dwa2zAQn5lsXHluavkdT76FXFeabkv/EPFdokfFbOU7kZNQHESsMkhMO6YqbDZZFaQaN4fn0ZbplCWCoBpWNiA34BbmpkPL4XnMI+NWTduJ9USgOJ+4PZu/gEp1bFlE3ABg8ZK0uwBTasSKvcM8nro31QnrGLUelZ0DvQ+oQS5hXwLouh6VfIocceuOC2+Mzyc4GW7btm1Do9HA7bffjuc///mBpxRxuED15IvpKKqH3SWqJG62WnISB/kUTww117/GbAKk2pPAXvxMvo8xrhfeaAArVgB7R7K/9zXMV6C1SmDnZa+YtNLUfF+Ec0zgUyWr8FYzv6nVGTSI3nDdrKhRWoBNxTSPdY642SgOxIhbjeBRbjls7Lbyq464uTauzeZGU9is0vbYuRnfVboiyxruWsONPYf4PALm58yvIbwevLFsFA2g89u0aO0AqiHNUv+mqvYzzdniWBVxGxoCTjwJuPehXLa9Al7sHUc24pY6rAW0yBJ7ol4+955azIOLuFWwvpNr3HLZNmMcnOjzBU7kJL/5zW/w3Oc+NxptPQ5yPZRlOorLCyHqITq9xOmFo9RYMGlvthtBrlSRGnATw/+AhfHDHJPpqK02AZpSRWqV4BCFyA3DI8kq6cNyKp4vl8+e52AYmjy+LgZKN+JmhnM7AMNYlr3Wdt7svXzscXkvwhxth8wBdhrB2wFwtbRhyUm4cy3GsIYjlQbcJJ9ajwrYk0H4pAUD5jWPqoRTUtOo9UTsODtykvw9tXVSFPBJf83bz4iYZZre9w/IL7B5M1Cru/2mNcu9A3BwhJBqLh32DyajwoQqa9zorJI0h6U7q6SFbPa8Hou4ORluS5cuxXHHHRd6LhGHGdSIGxf+t8kvsJQLyCJuarhErbovtNVcsj8pXp5cqTLXnjh4kyk1bsR7Q/Ww0T2PBAOCnRcx198ccaPddzYtjWSMWyv4hCiqi3z2fILBTDU8bWTnI6ieanMNWnFsUmSHh4GtW4Erryg++8u/TLF+ffb58LBMPl1RtjU8qycnYedklp2njonnqlBpqiRz7NIOIGRtobgO0SJuRvEkenRqPRE7zibillKVZIqTRXFeDln7mdlpxnBbUJaZt59xIVcCit/fzoAojm2uQEmV9Iu4WZluxXkG8eQaN6oDh1vfbZ7J/Dza+kuNuLk4cY4knAy35z3vefjpT38aei4Rhxn0vO3iWLcRuHh7S4abZbqLS9TKtGDkOeeUl7meZK/STDPFjh16T353Ti5efEpdjoVsSq2VKN9m+hRaZH4TsBAOxqMcOOLmzhRKi1gBdh5fKii0+kXzcJcaNzvZAD01jdQ+QiN7+3Zg48asofzBg8W4eiNLz7rmmuz77dv95g7w75w+4kaXTatxc/Hil89VgR5xY+emH+syd9v3yadXWXaOyXBjxlrMnnJf3CJurHzT+5T96cag6vc8ytrPzHCGW1l+3n7GVQEnRdyIWTgkchKXGjfL9Te7PjMvwzNJcbAAQjsAq5RpihOacfoZJdNB1QnmE5zuxzve8Q78+te/xj/90z+Fnk/EYQTVK8v2MtLXEdA3XjEbTZsq6bHQZefrQfHy5J78n/+0MCBOPVXtyXeiXpfMTQWTZ1OED5uczQbP1bgZlE1qvnw2h3xelAiEWfbh7M1nfh79FFmzwkZ3VNjWuFHp0Sle/JaFwrZ9O3DxxUU7i3ar+K7OpFjNzGTjWOPNRr4I3qOsHkenja824gbQ6hZzI6KeWK4zAaMzMtiSIPkYVtl19OPphqHb824bcSOxbXZmUMmeqjiPxaZNwM03F5E3NuI2wBhuAwPZuLz9jGvKWzfiZvG8F0YtTXZ2rr3jz76+0P5dpTyTFEcCQN+zeVZJPfzbsdivkccEOcnY2Bje/OY3Y8uWLbj99tvx4he/GCeeeCJqCmqvCy64wGuSEdWAf65tlHC7TYBKRZ2dI0TcNGPdUgvsX0xbRXb79qLH2Ts/kQ2u1YCBhSn27k1wzTXAddfxPc7cjE7KJkCTz9fkmMdTFU5afyV3xcSklFCNH2fCmQrqFrnzbBUHCuNbV2Gzf0cKj6+dF58iP7/vlBYPssdleDh7P1k055iIWx9KuPTSrP3Fhg1u6Yy2NRx8/Rw9emKMMHN/I0RRU1qqZN2h3QutptMOtqlp1PVRnIDpGfYjJzE4thwibnzbkRSqO+pSL0prrSE/TwTbfuaenXzEbWgoq2kT28+41i0WhptFxC2fu4MBYa4xdnAQMfMysgYz55jmT3GwAA6Rd4JDMYSDXneaS23hfIGT4fb85z8feZ+2W265BbfccotybJIkaNrkjUUcdlBfDFslnPOuVZAqSc03F6HZvzj5Ou9X7snPMT1ZjF2wKMXMVHace/KBbFNyUUpc637oqToWGxhREbc19gE3xcQ23cUlAtHtgWSqW5TMxwTKb+qshHfl2xlXFK9jV3GoQCmpJdmzQqrnlNyX668vIm05uN5QjfIFZmYypfHqqx09vpb3nUoiBBDrTxzWmeI3Na8DzW7EzeG+GMZW2YDbJ3UXMKdw+1CMG1MlnWrcimN7tk0r0cFYJUXk7WceOQj8eE/22da3p3jWJzIiExGu95ySKklpaQJke2MtyeZGIs5yMAxNoFDqU/WBOSZVqs+ivoHC6usWcbO/My73fb7AyXC74IILeu4fGlEG1YhgF3SdMuuy8YridC+1vydGb7mZGrTKPPmi4Ta6n/8+9+T3r2TnZKv02HnxAfq9oXrYyDV0lum1gGuqZDbO5Hl0iYrVO4abucbNM4pqUnqcjH37Z6ZwVNjDtgg8dfhNkyQBUnOFhe5ZbzazhvEimha9oW68MetZ6NKA27axupOXnRlndlS4PpM2lS3F+m9DTAJ4RGeIDpzsfJ3BTLvv4vXNNW7u8k333cmx5fQ8ho8q8emAduhn2s2sWJlKjbZMNv1ZB/hUSVPUilI+wcpvp+ZWNS5p02KqvT6yVD5HBYqDBQDmmGyUPovoO7eGEer1K3HQO9z3+QInw+3b3/524GlEHAnwUQha9ETf5JSRazkXMfVH91J75z5bzkW1Oco8+dOTxaK1YJHak////iV9MeJr3OyiJwDFW23nGSzLt3lmimMSOYlDDUc7VSvYLopslS0eqA2Pu/JdHBWWKaqkVEnmWKf0+LyrPil1O3eW+0IBfMStLom4AcCePdn57QXsxu7wuwZew0h1kcwxPeJmkJ0Wzgzb95Sy/nJ9Ba2k25Mg+UbcSOQkRPmm+846kOzXR3ZugfdU1+fRNjXYspWMO6tkcWw0foj1f6z8KvqXiiUOuseB1I6FyCo5x0y+38K7RSMnKY6dMh4MY1301PmCKshaInoE1AfXNu3NZZEup0pq5Dt4Ymz7lbG5/rLNUeXJZyNuCxfLL3DjjUCTIUdwSwPSj3UpdM5/V2o/m9A1bk4Njy09eC6LdKMzh2Y71bOcuhjLpdoTNexiIDr5+rG5fBI5ieUG6dP+whxdZufDCx8bk5/TYiJuDUmNW47xcbfn0bbNg2/ErYref7l8St1iw0WhIqWOWYnn1urQkSUWplPoEb3imFLjZnvf7VNI3aIP1uRQDns2p29oCWdc507fV2mpmHb7KseKaSmbd4TYva826wA54taiRdxs92vxe2rtH2CTvsuc12MZhNFwO6ZBU6qsWSVdlGThzdQq4cxx6BfO1BtK5cmfmSrGqpqF7tkDPL6n+DtVoQLC1hLk6BJ8WDS0OTSbWZ4JgP66efngN1/9WF/WNB2HiAvzWE6/nsKe8MC+BoI9Xz/W5X2ipNW51bjZOUKqjbipn/Vly+TnNOeKY1XEDQCWLnWsz1PMT4QT8QnBGOdgrfTkiqZ+nMt7ysI0dT5FKnRkyd2wys45chE3zpHgmJGggmvUyjpKy57jYIxrI26gv0uAmNZst9ZQFGZb1kq3iBslcpU75qjPo3mRYSNu5H6OFUTceAH6r10N/vkAp1TJO+64gzTehVXy/vvvx+23346f/OQn+MlPfoJf/epXaLVauPrqq7F161ayvBxf//rX8f73vx8//OEPMTExgZNOOgkXXXQRrrzySixZssRZbi+CW0wtFmuuxk371tGNh/OOW4E7hovCMGtl0E689YJkUkpUnvw5JnWyT2G4AcDUVAp0mom6RWf0Y1024HotAVrmVMa5dhvjs1mu2eCCPqvFlBRxcyInYeRrI24OHl+hl1tdxcjGHLvQl1fRx82l3YB7xC2F6q66RZaSzrz043QG7cknA2vXlp0sXMRNsfsNDWXnP7KruC9OCpVmnDfxibEukv68d6MnBtlNh8gPRdGkNFbPYZsqSSUkEPfF4O0ACAqpK9GP7HwRrr3Qcu5d8xojnmOGfcSNkU24n7bELUDh+KPVuNnJpmaxADSD36UvbTYvM/KIW18tsbo37Htqamnikq1BSt91eCbnC7xYJW3gyir50Y9+FB/84AfJ5+nw93//93jzm9+MJEnwvOc9D0NDQ/jud7+La6+9FrfccgvuvPNOrF69Oug15zN8UiV1PblcIgSrF/XjSYML8dDoVElGWb7LC82crxlnagKt8uTPzhaDdYbbgoXFBOx7thTHPlEIFWybWI9OF+GKFQOaPDMG9sa+SE5iJZ5XTCzDENQaN6DzXNTl41yKqPkibT3cDENGvmXEjbJ52SoOTn0LuwaEHrr70mhk1OHXXMOf02L7uCkibps3Z+cXtSF0ZQ2oIFWSO18/lnfK2WFho46JuRZmWykm51pY1Cd/4F1qUbnnhUBKYHtvbNsBUMmVRJjeEV7ZDBvh4OdeXcSN3BYktdiXHJy51qUZrqmSJIco3fjJ5VNq3Jx0AstUydBkOUARcbNJkwSApf2FyTE6M4cNWKgc60JWxq8zerg8k/MFQVkl2+02Hn74YQx3ug4/5znPQV+fnYIn4ulPfzre8pa34Oyzz8Y555yDa6+9Fp/+9KedZAHA3Xffjcsvvxz1eh233XYb/vAP/xAAMDk5iZe85CX4xje+gde//vX43Oc+53yNXsMJSxdgxYI+pLB7qfmFVGO4MceUTWAJ81LrFiMX+bYvtGmxUHnym4zh1t8vv8LQELBmDTDcObeKGjeXlMD8tzeRcIzPFlrv4IDd0sHXntgpJpQIh3XfLJdIJOcdbENlufHPo5VoPiJmqYRT9hZbwypNizeNFnGzjSyxShXtXaX0/ZNJ3rIl66PIEgnx5CTlcwYGsj5RQKEsurRJAPTKrFsNWtFbsIr2F2sW9WPf1CwAYO/kDJ40uEg6zoUkg1I7wzU+d0oJtIvOUFn2AFr9X2gWP5fUMbcUUqLhhmqIIJzISZydLCaHaPYnZQ3On11Sj1FrJ47d+vvDxw50I1uU9TeF2RgHClZJm1YAADDIOHwPTusDOrPMjbMpyyiBYjD3mOVWCavkz372M7z61a/G4sWL8eUvf9nlEnjd617H/V3V3NsW7373u5GmKV7zmtd0jTYAWLRoEbZt24ZTTjkFt9xyC+677z6cfvrpXtfqFZyyYjFpvK0B4ZKmA9h7wFy8prY1OSalQeXJn51hIm79ctmbNwNJzS4qxIKPzthH3Kje6nyxVjMEFrJtacBtPeFAYTjaetcA+4ibD6skoE/rcFHC2efWmCrpkEpp226A/aYKA8UrVdJ6NvK5b9gAbNvG91tkG3A3+spX2LataO7r4mW3bd3B33d7+bY97vibZ3eBNYsG8Kv9hwAAI1OzSsPNhSTD1pEAuClUHHttQCKL0hCCEh6axc8tVdLSoHWkRu+mSlbgUHQhJyE5tyzvDevcIqVKCjKU+yp7jkvatGLqB6bnsGt8ujiHEM1LLdaYVrsgcrONuC1s1NBfr2G21cbozJx27AxTFG9ruNEcIW7PzXxAJeQkz3jGM/D5z38ed955J973vvdVcQkSZmdn8aUvfQkA8Od//uel70866SScf/75AIAvfOELh3VuvQT23bSPuNnLt00JdIroccPUsm3qrLZsyTzzLEw1brkn30VRdm1aGdqz6XLfbWtP2O8phAf2NW7WIrtoWN8XB4+pS8SNqODbyHepIxDHWkc6iVECUusLxZhNm4Cbby7eV1XEbWAgG7dpEyuf7kgA7Obvft9zo9YUcaPLX9AoFnhdlMCFnMS1lsu6f15SqKVapx9z7NIOwLSMUCP7pJQ37jyXSKRGtmP0oYi42TsUbaXbptm7R9zsnYo5KCsBv6+qxznVcjHHqnVmTmADs0/JtnOccT3cLF/UJEmwtD/LXJlptbUG86yL4WYZiRS/77GAW3Wskk960pNw3nnn4VOf+lRVl7DGAw88gMnJSQDAueeeKx2Tf3733Xc7X2diYsLq/16FWx83+iYA6F86vsDcUrbifBE2edW5J5/FnKHGLffku6SMkGrcmGN7bzXr2dTIdthgbJu2A+b+eXL5zDOpnbv8HB1cIm6h2xiwcI9eh1d6rFklPQrvbdsYAPrncdMmYMcOYOtWYPlgMbBez9KXt27NvmeNNqB4nqhpNF3FR5uVUB5vg3zDrqLGzXadmWsW3x0YSWBTwm4boQXc0/Zs6NfJSrIwSDfzZhOYnCpGtFuawbl4S9lAAHISS8cWKWplyUSqmpNWdpJ0DXfd3uFa48baGlWvkbb6kj0rsb2B0pVNjOaZjHGWUdI24ibOQ7cUsIbbgLXhVqCKyP58QaXtANasWYOHHnqoyktYYefOnQCA5cuXY+nSpdIxGzr5MflYFyxZssT4//HHH+8s/0jDrcbNXj6/0KnHuaVKFtC9z7beZNGTzxluTKqk6Ml3M37YqJIePuQkAOF3tRNtbewDhdHonCqpTQmke3xt74tLlNO23xfAbkCOThBbb6+1dPHZCqv02KZKUpTNDRuAq68G/vPO4rOXvDTFrl3Z53l6JIv8N6eysXXZ5GyfR5eIm/UzQ3gmDcb48HBm5L5uc/Hle98DrF+ffd4pbZfLtnTKAW7987Kx+fl2hptLxE02+fy+rF8P/PRnneu0gRNOSMz3hZBN4eYgYh1bVTyPduP4NdL+AjbEWS6phoBrpom1eKf6QqeafYVoUZS1vmGQm4M1pl3T7HVrpEuqJGUTi6mSEszOzuJHP/oRFi2S58kfToyPjwMAFi9W13TlrQDGVHzvEdbRDVdlkEvvCk1OYumhYiNOJgOC9eQvXlSM7e9PlZ58X084haHKmnbZdgPjIp0OioM2ApF6p0qG3nytm7Y7KD22/b4y+TTZgH1ti4syCNh7Nl02R9vojMs60Ncoxi1eom4JwJO2ECNuFsaVi7GfzaVzvjFVkpsQSbZM/vbtwMaNWW3vxFTxeXMuwd692ecbN2bjZCDVcnEKodXUO2PNETfq8y6OEPcl9r7s3QvU69n3rSbs7gtzgTndpgo3h6UTeZNDHVcVrJIAS/Bha4zby2ajRHOaXEZXBd+2vpt/Ju1kU1JsC9lhHWeu9912X+VTJV0MWvs1stcacDuRk+gwMTGBX/3qV/jrv/5rDA8P4+Uvf3noS8xbHDp0yDhmbGysZ6NuthEIFjQvvqWi7LhgFALUX3H1FRbC/z/2zjw8burc/1+Nx/uW3SGJAwFC0iWXEgjQsm+9bG2hQFsIFGggUC4UugFtQwlbL1sXKFAgpYWW8IMLl7VwKfsSKGugbC0JJCFOIHtiO7Zje2b0+0PW6OjoSDo658gex+/nefJkPCO9OqORjs67u5b81e3AS586733/v2z89TfiRaGS8hOyvwiVnjA+5UfWKisnWjpPgU2iTuJxU3k4qlg1TYcGJ8n9cy9YVY9YlHTVogSyC0JdZd9G+PdWUgqlreDe68Q5bgIZkdsnyimS87j59lHYjpU/f76/wEs5U9Ql1+O9393tbceHnSbK5ZIIVxfh5RbKyZZRfnhR7N/8eQG8vEm2X2DUeSnPWKjOZtCVK2B9Vy/ae3K+kun+sXuvTbcFUVVO3GHER4IE95Gh6HGTLQ6VQHg5c3KilGbVBb60x82n1Mo+m+LXSvwpS9zHLc7AojhHyhr9tEMlY7bVbQ0ykCgpbmVlIQ2NGGzbxrBhw3D55ZerHMIobnhkVH6Zq3Q1hDXqkiDKo+eSz0sEvpco8g8B77V6Fabw7VS8SrILB5Um0IDfkt84zA635GsWspAPq5M/97KNSFXD3iygr2Jl+HYLV7UWX8saBZxxsOMzuzCRbWKt5s3zXi/a0IGpI+uQDckTSLJId5Gv0Mrso2h1lPeKycnzK1fhCw4V2bK/qao1mR2LdHGSBLI9pTDGmqyk1AbPTUsLMGuWf7ss0+GHrdLpMmsWsO++/vDTZAsq77VKjlv075pMdjn/4/ftLzovgNcbUPSYF54Xy8L2w2rx/jonKmhNR3eE4qZnlJMt2pKoj5tEPif/uUqopHQrA2nJQHmZnMdNPYJIIepBUrZvjgzZhn+OJl0rpdFvkZUfdwxXcctYCfq4Jbh2VY0JpYCSomnbdui/bDaLbbfdFqeddhoWLlyIKVOmmB5zYrbbbjsAwKZNm4phkzxu7zl3WyJIRjomXC0swj8ZmZUvu3BQaQLtbMuem/DtVJRO2RBSR37yh1iaOW6A3IOAPe7GLdFlglmkQzHZ8UjKlvXO6CqFAPDp5u6QLdVCJdltl27qDJetkBPJbyurAKl5fkx7OsVj4/G1BUnqcZNQIFSt+NL5f759ZGUz+/d9/1tu8ffBA/xtFHKCW7W7G7j1Vk52ymXvnWME99eVbVkWvjJ+ePFvd2/ReQGcgjeAuDCJ6LwAQF2FZwiPLILEvDbdx81WeG4AjMetb/0XKl81VLIoP3wbVUWfVcp7JD1uylEJhscvM0fyv3fiqpKJ7tMkBnq58+IqbuWZjFIoY5I5ckgUJykUCqH/uru7sWTJEtx6660lowRNmTKlmGv3xhtvCLdx358+fXq/jWuwoRSWlkC+dKU6BUuJSh+3RLlWko2mlRZUkhNdUL6kx002VFJ1kS/5IHDZtrFaWra0VZMdj+EQVaU+PNzfMs1OE1UfZMaxqbsXG7f0CLdTaUzObxud/yceUxSy+ahqBpzkc0zyqpKuDPP3kreQlXfDyvcW9J/3XA6YNy+4nV9xE8ueNw++apOyij6gX1XS9L1ax3nAws4LAGT6NpU9L0CSRtO6HjdJI0iC69ENYbMB9EQ8O9jc8eWfBM9BGKyhQkZBSZTjxnjcpPt0phAqqRaFE78NX4xGpUdcpHzFOdK/adT17vyvHoYpb+QeXGrb4AvtVKKiogJHHHEEAOCuu+4KfP7JJ5/g5ZdfBgAcffTR/Tq2wYT8ROSh3g5ANrQg+WQU6XFTDJX0NYA1bNn09+SKm4zE+0Uh7XFT8HAAch63aqaH1OQEjeGVQiWlH46SyomSbP/fUQ8++SU6K8//92chHj0z4S7h6PZvkg8xMuuBUOkl5pJmcRKV0DRp2b5zAyxd6hTY4IkLlQSA1aud/YuyfWOLHpxqVUkv38q8wszuH3ZeAK84SVgrAP68APKVd9V6IkoaW0P2iaM663kLt+SCX9qtuHnvvd57//mfllQlUn4sYcNXHbvP4xbRB0c9/0/OAKX0u0oYc1Vz3NzNkrXtkJPNyndkhG/nHj/RfZrAQKRizC0VtirF7YYbbsDUqVPx3e9+N/DZhRdeCMuy8Oc//xmPP/548f3Ozk7MmjUL+XwexxxzDKZOndqfQx5UyFqr1cMiZB8y+g/fMJQ9bil6fnw5bjHbqjxkZBuFqngLAbliDe5H1dkMGirLwzfkZacYKinfaiC57GHcd5QJCVT1XgPhyd2q1mTZhbiuhzlywaMiW/JeUvX6ONu78uXOi1rD47jzruKNZPa3bYQVWI4LlXRhsxJUPW5JlOakCrNSWBoQel4ApjhJPlw2n62hFPEQPgQfSiXpJWUDQBWjuHVxihtbcbOn15NfyMtV3JQdv0o5fYDLcZMOlTTvcVMKJ5cwcgdy3BJ63NLyjEsrtCqyE2huKo3PSwWtqpLr16/HvHnz8Oyzz2LlypUAgPHjx+PAAw/EaaedhpEjRyrLXrhwIc4666zi3x9//DEA4JZbbsHf/va34vsPPPAAttlmGwDAunXr8OGHH2Ls2LEBedOnT8evf/1r/OhHP8Lhhx+O/fbbD2PGjMGLL76Izz77DFOmTMHNN9+sPN6hgFJxkgTy/QuH8O2UPG6SY5BpwC3CX5kxfDvVc5OxnEVHGiVupXv9aFkeo7PzisqJ4iIZMF/5UdpQoaD8WJaFLzU14O3VziowWiFPrrnxwwhT3FSrSkqHM6qcd0kPs0x4qQiZe0nV6wPIecVU76UMty4J21dlnuF/07A6XTIeNwBgW6aq57glmINd+XDOr+heVJHNbxZVv6xYnCRCoeVbybKGs5zEAt+C4twubZRL4nHz5pUtvd4sxlfcZOsusd7IqIqbgNz4lYuTSLYDUO51ybyWXs+o5HJJnBd+PFHIevV1PePOMeSud2nZzOtYj5tvHTm4UFbcnnjiCRx//PHYtGmT7+R/8MEHeOqpp3DNNdfgrrvuwle/+lUl+W1tbXj11VcD769YsQIrVqwo/t0tyhAO4Yc//CGmTZuGX//613jttdfQ0dGBiRMn4mc/+xl+9rOfhTbnJhxkrdWqDwHZUMmCijVZcqHJKl2JmnlKe9zUrDxubca4HDf32EkW4dJhnux4VLwEEovwpBOorKdTKS9SWilUXYQn89KqygbCv7NyngLz2rT3nb0G0gjvkrmXfIvBhBdlsSw9whUI5XuJV4BCdlWX74170iRgzJhgWKCMx62pCZg0iR0DO7boScxE7kzYqVEL7/I/O8LOC+AVJwkrHs2fF4B7dkRclO5H6gUyJJWTBPKryoMeN1HFzTJmpSnyRooqbgJ8WF2Yx817neyZ7V3v8u0ApMVz6yWz6xmZEFLZdiQ8ruTUqkomNIimEcLPfz7YQiWVFLfFixfjm9/8Jjo7O/Ef//EfOPXUU7HDDjsAAJYsWYLbb78db7/9Nr75zW/irbfewuTJkxMfY//9909sUZ07dy7mzp0buc3BBx+Mgw8+OPF4CAcZa7XyQjZND0fI/jxJ+7i5pOn5ceXnZTxuRedMggeYSgNuaelyFjz3sZnc4yZnUUZKD0f+M5UQUkDuek96vYhkBGWrelEZGRIJ5vw+0bIlFVrF61HmXlLtJQbIKRA6Y3cp2DbKDKfVF88NnD6Up5/uhLSxsIpbb4jH7fTT/X0sZedfgK/oKTlwBOcC0b4qxXj4sYedFyA+VJI/L0CC4iRwjXLpPpeS2Cl8HrecM4uLKm5mMt4BoipuXnYZt5/E/K5eGddCRVkG3fkCemWLkyjOwaY9bv5rMkyh9b8vu5xWCZVU6bcIhDsAbNt7qqgqVZERFQUbqzu8i1SpH/AAouQhvPLKK9HZ2Ym5c+fi7bffxrnnnosjjzwSRx55JH7wgx9g4cKFuOSSS9DZ2YmrrrrK9JiJAUQqDIjdXtFaEmmhUlj0+Mcht2BLVhbZKt788l4refnuhB6b41Z8uCeXDUTnWKiH1bljC0clj4sfh+mCOTLWXuczZjyKlR+lqgQmODl8lTQZq2w6HjdGvnQBETllXDeXNjrHTTyeJPJ5OX75qveSpDFBIcyIle+O+4wzgMpK/zZxoZKVlcDs2WK5gPyCMGMl9xYWjyGxmJU+74Jnh+i8ANGhkqLzAsi3klEJJ087VLKS6enbnS+EVtxkPW5hhVtEFTdlCnOpVAp1yfYdIBdVnEQrSsZB2rsvK1vCsxRQ3CTLXLnjjo/u8V6rPzvEB/E9NxKdczk+2ujv6ZxEIS8FlBS3p59+GlOmTMEvf/nL0G0uuugiTJkyBU899ZTy4IjSQyrxXtFCJV3FT1GB8PYPx+8hUFuwpRFWJxNu6Bzbv70Mam0eEiweivtHKVZ9C82Ev6dar5zksk2HA/LbyiyqkpwaXnELDTNKPcdNxdPJ7C89z8jjjkO+j1sC4Ui+MElCUkNF0vvJ3dw9783NwG23+beJC5W87bZgyJtPtuSCMHFuoUQov3a0Rt//ovMCAJliqGRQdth5kS1OohIGr9THTVG+jfCKm74ct4L4AKKKmxmp31Rt/mXlRxlxehllsnWTJd3KQLYatNo1Gf9s4i+lpB43Zx9JI7fhZ4d6uLTcc8lteO/tJ32IkkBJcVu1apVUv7Pp06dj1apVKocgShSZyl3KHjdWhqwCYXCiA/SUQvcBHNmAmx1TosR7OSuYSlidbNibuidV3sOh590wqzDLxsurXI8AH4oZf8EnOTNj6/zugDDpqonxMsoJL1++SXa6XgL3XpINmdZRIOLOu4VkY5e14qt6sEXz+8yZwJ13eh6mMI9bZaWznajIhCO7b2ySuTOq1TyBKO9M8vk97LnEnxfLsoU5bnHnhR1HdB+3vu1T8OoXFO5TflvbDq+4mcl6B8hHKD58xU2ZPGPfPBAuWkiUMcFtZXDUUd57f7oN0q0M5KsnKlyTEs9s/lqSNRbJnkPlqpLMa+Mh/D4hivsNApQUt9raWqwJa2TCsGbNGtTWyvdkIkofr7S7ea+SdPn1lEILAN0QqT4Z0vHy8kh73DRDJWX6qgBqk6npSRqQX/SoeDjUwjCTyE+ooCQQXp7J4HMj6zwZoVZZfW9hpFIbsk8UafbmY7eNXMgq9nME5Mav7mEOyogiaQhQ2L06cyaweLGzYK2r93vcmpqc9xcvDldOomTz5O3kc5gjP/5+UprfI7Zjz8s247z38zlL/rxYlmf0M+xxY6/dXFS1Y0NRA2EVN/0et3B5fH04uRw3ZjxJr/cQYwLbyqCt3fssUSsD5rXp/nwyyk8wx03uKZj2WklG6dSJfPJkyzMkipN86UtfwgsvvIB3330X06ZNE27zzjvv4Pnnn8c+++yjNUCitPAUiPBtdD0zcfJVvFZpV9cCWI9b1CJfzaPnhahGo5IHwW5pugeds627v4TFVMPjJnNNJvFwyFe/UgwZYV7LVZVMdm6qmYpvMg/IJJZ8lXMj7elUKVIkKRvwrpm0DDgy43ffT3LOgSTh5MXBJCIqFL652Ske8fIKG6v6UkSee8bCTtsHC26IcKt5xi2o3HOvozCHX++aHjfB5+55+cVFwGNLnfd2nwH8bIXceQGAsozjpZMpDpWoVxnbaiBCY1IpIhTcNrwSacabipDPiQ8gqrjpL+Aks8iPHbIPkYeZb2VQxo6dCYGNa2VgSSidgL/5d7nkRZk03DBqu4Bsfv4KGZKRUMmw+VEzn56XsbWh5HE7/fTT0dvbi4MPPhg33XQTNm/eXPxs8+bNuOGGG3DIIYcgn89jtigblxi0yMSEK+e4+WSYtbRLl7xXXMgCsjlu3muVkJT4qpJ9VllpyQmUH2UPh3tewuSyY5GXC/h/VxnvTJJxy3uAvdfJqo7JnXf30EltgkmtsuoetwhDiG8fWSMLs3+UkUVBNis/rRw3mevGfV81Bw2QvN6TiZcKhWfZYQdLWjlJO1RSZkGYlncDAMrKvA9ra+SVNgByHjeFaArLsooFOCJL3is+99htC7ZXcZOHPTdhwxBV3JSLSlA3tvK9/0StDHxKp6CwyqxZ4rBJWe94d5/iVlFmKVbJjjdSONtJifYXK4ucI8X7xMpnXofOj8oGRY+o7zu4/GtBlBS373znOzjppJOwdu1anHPOOWhsbMSYMWMwZswYNDY24txzz8XatWtx0kkn4dvf/rbpMRMDiEzInnq1N1ZGOP6bWlY28wCQCEfhxyODtzAJR1X58Rab0duplNWXVlCY14k8HKwMwXXj62OTQC7g/55S1mpF2fIeYHn5Kuc9CTLtDNj3U6kqqXuvGvbmOdvGKyfGctxijBVaoZIyHmZFxTC6xYOehzluAekW1tEpChPe80vhmuG8SmHoVDeUidZQzQN2G033RCRfmwiVdCWIKm6yyo+oqmRYxc3kOW5J71X/38JWBozSKcrPc1sZBGXLPT96ioqb/HJcJpwxmOMm9ySpZKyhPRHVNtU9bsyYQudHRWVccuPysoSTS4mh3DD8jjvuwE033YRJkybBtm2sW7cO69atg23b2H777fGHP/wBt99+u8GhEqWATJEM5Twu2cR7dh/JG1W25LKqFR9gPW6S8hPILlrCIeeNTEVB8YWkJFjkxzxkbEW5QIKKmK58hWqYjmxJD7C09CRhb/reGaPl0SEXquN8lvwBLOvNU1U6+QbZIthrKXEfN5+c6MVm0oWmTJU9HfkyofDK1nCJENWV7V2ebJ1QyRgPswX5ucZ3H0Vsp1Pd0O3lFqa46eQBV5Sl53ETzTGiipv+oi1B+WEVN6WMTz7PT+yQfbD3R09YKwOf0ik+gLCVAfM6bB7IF+yioaIyieKWMJ8TAMol5bMKpKzilmSOlKqIybxWNihGbJfNKKs+JYFSjpvLmWeeiTPPPBMrV67EypUrAQDjx4/H+PHjjQyOKD1kwl1UFCtWdqx8hQdkJsNOdPGyVdoM8A8x0XffkvPMjZVZ+cmD90aGDc+zykqLTqCgiPeJIy5m3lRxEtOhkvLKiXifOGTPuyoyVllVpVlGKVSVL+9xE48nDv53Fe2r43mXiRxQuR4B+fOu6qZNXnEz+TGiZH/S6iluo6orEslN0g4g2WJQblvVyoyAt/At2OJnh07OpetxK9iOolAm+NEKCgYWZ1vxHOnmfM2a5Xik3AbcvLetstJR2mQqbhr1orrbMzssW2pjzZqghDK2ImZIDzq3lcHkyWLZYdc8qxipe9zkzssXRtULt+Nhx9Edqbh5r80XJ1G8HpnXUfOjbC5hqaKluLmQsjZ0iMtXAsx4IKR7ckkeQTbHTaXksgu/UBZJ6Oh1Zv7Kskwiq49MwrBte9NgMoVZ1mtlIpwmOHi/50RerrO95DUj2D4OmTAdQOd6Z+WHb+eFeSZelgRk8Kg3nGdkRGyncm6kDQkGQrILti28Jvw5bkm9VvLWcNU82ijZgIaXtm/7qNDdYq9IqBnmZMMwpzJVUWWQK2Shbphz5EZ8plhQAYBPmcrbNrIBxU1dNhsW1lsooIyNW+xDJ+rBguu99r8/cyaw775OGGFllfOeq7g1NTk5bbNniz1tLjJFxXRMXuyc2tYu3iYuzNOFb2Xg946LR8kqRsk8bh4yc/sROzZJK4YqHjfVolxxoeRAUq8+IyNiu6Rzeqkhrbi9/vrr+Oyzz/C5z30Ok1mzgoBFixbh3//+N8aNG4fddttNe5BE6cA/HEWTvM8DkUB2mcQk7chX8LixoZKR5frVFjxAvHKVL9jY0leTuaY8+PCMgl9slsWc2STDV2t4bC40Qqf0L7t11DXjVlTLJnjC+K/18O1UFU9/cZJ4D7bqIpyVwaNsNZWt/BgynkjZSh43tbHLhBklrm7IvI5rwK33m0pcM8nEJ8r/SxzKKCWb2T6F3EJdA06k511jHvM/nwA+GMOExw0AevM2qgSrPr+3MBmW5Xx30fXoVtx8cgnQ3gtUVVlYtMipHilTvIUvfiKCvdYTPz+YzetCHFKZkKqSPHwrAxkFRdXjJhNCyqaEJPEwVSopbgmeqxJjV/W4+a8XOQPRYERKcVu3bh0OOugg1NfX4+23347dfvjw4TjrrLPQ2dmJJUuWYNiwYZrDJEoF3uIryvH0L9bk7zqfV8xwLzRZpVDlwe4SVID8MjqZMMnahIqbTBiQ6sM9qRXfGY+0eK4IR4xcebF947CQsZxxRytuzmdJFDclBUIh1wqI9lqpIqdAKFpNJRUIlfAxpf55itejVO5fwnQIueIkfQaiZKITX5Pqfa3CUaluyG6fhheVH094tbrkY/dvKrcYTPq7sh42UUSIaigj4F+0h+W56XgLi20eJJ4d2TJ/OGGsbIl7VcfYyn7XiRNtp7X2+AABAABJREFUYSsDX0XMkObhwlYGEvdqjxGPW8i1zhT5SfJcSjtU0i8j3ouaaC2TSTY/AsD+E0dKyy8VpK6UO++8E5s3b8Yll1yC0aNHx24/evRoXHrppdi0aRPuvPNO7UESpYPMgk0n98S972TCGZNY2GSLWBQ0HgJxi6rOXk9x0/G4ySzClUMZZfOV5MXHytexVAPxRWEKtl38LJHHTVY5UVQ8/Qv86EVJUtkB+SHbqHo75b2Ret7xaA+H2rnxK4bibXSqSsooEJ7Hzbw3z0fiRXi8fNXqhjLFm1TnGGd7CY+b4tjj5AKaId8xOdi2xvXIFqXoCVPcNOZgmRBYVQ9zkgbcKr8oe81kQlsZeK/DPG6iVgYyayUzOW5i3LknacRA2qGSST1uKv1ueRlh8sszFkYkzKUtBaSulMceewy1tbU4+eSTpQWfdNJJqKurw9/+9jflwRGlh0yYkY7V1LU85kKEr+/qwabu3sSy2QejTNl4lQd7XGhEN+Nxq84m9LglDO9K1ldF1uPGjMdgWJ3OYg2It+Sz11KZpZFXGIKyx415HdfmwZEtLdrZnnktleOWSNmXVa681/LtALzXaTSEZ3NLczHKiTOehAtZietGtQiSjOcdYHLckolPtKhSzUdNozcfP55QS76CYU7lWtdRyEVjV2mB4+LzuIWUVPYphgnlu9Kj5hg3tzt5FVVGjmEjiLMPI8cWtzIoYxQyUXGSsFYGMs9V1ZBsuTmmb9uE50U2VNJdRyUxoDvjCY6RRzUMXrYHnU5kVSkgdY++99572GOPPVBeXi4tuLy8HLvvvjveffdd5cERpYdMyWWdhXhcWeQ3PttUfC2z2C3KZQYS7c3rW5TIiy4SZ2GzQ7aVQcrjZsQDEaXUqi0G484L+0BWKRoQtyBkFTdVj5tsvLyq8hOXv9G3h7xwyFl8VSvhyXhmnOOy45GTr1KkKMmZyfoWsuKFCTtHJG35w37NuAazyRUr73XUPOD27NK5V+M8HKqeSBvxc5hSVV8ZL0Rxfje/YFMt9APEe5Z0PMC+HLcQj5uJNjhh53zxho7i61xES4Io2UDU9ah2rfP72LYtbGXA9nETFScJa2UgE8nCzjOq4YxdOXHFFNU5xu9xM2/klvPqqz1TpdsDaURWlQJS88uGDRswduzYxMKbmpqwfv36xPsRpYvMokTVEg4wjUhD7rqO3oiyThHINuBWtVIB8RY21f5H/HhCc9x826vJjrQoK8gG4sPqVK1rRfkxIVjsYkE1xy3qvKjnFnqvTYcd89vHeX748cTKllgk8/JlxcuGA6p69tlrIMyzbypUMvS89/2vU4wnTParn270ttfy0kafG73KieJtVHPzALnCBO7PvaXLwuLFwd5bYcR5lQC9516ckUingBMbbSIzD6guZsPm3/fXeeUWo3qoipBLEXBQy3ELzvEzZwJ33ul53vweN2/7ykpnu7BWBuzvtHothNebvxea/LjrKryInc094jWROz/qtDOJMli6Smdyw1b8c1X1XpI3trrbD07NTUpxq6ysREdHR/yGHJ2dnajk/c7EoMZfCU+8jU5eTpzHTfU2k2/AbcriK/K4qT8cpQpNKCoQzvbO/zJ93EwrnTrnBUgWKplEcQO8603mAQYke4jJFoUpjiWFB6R6o9P4eYA/rloft/jrEUh2TbIeiHDFTTweGeLCmvX6FrLzmHjsn27uFo5FBrm8SHeOVPPMsDJ4dBbhUSFYLS3AnDneTPPOO8BOOwHjxwNz5jify8iW7S9quq2Jqb6CcQotoO4Fjjo3qsilZgS3VYE9NTNnOorWnDlAYyPjccs5hUjmzHE+D1PaWlqAG2/w/n7gAVt4vanOv047IWf7jl6x9UHVCC0djq0oXyY/WtV7Lfvs0ImsKgWkxj127Fi88847iYW/8847Sp46onSRscj6F2vJ5PONSHn4oh6yFlP5G9r5Xy1ePnoxq+U9SRAyoiRfplS3mzeTWIHwXscVJ1Gq5gn3mjGvuBXDgKLOi6J3Ru5eUl8MpRmSIhOG6cj3XsvKlyke4hxXPJ44fKGSYaFjpjxusSHTyWTLeAt1kLtm3G3NepXYY6osqDIhC875851Khldd7b2XzznbrlkDXHGF8/n8+QoHZdAtqe/Jib5mVNswOLLF2+jIj3t2NFaqtwtOK29RKJ+7V91WBr/8pffeddcBK1Y474f1n3Ovt5v/4L3neu34642N/kkaZl/Xtxbq6M2HeGl17iXn/6iIB1Ujt1TUls/DLC+bvXY/WLcZW0LCSHUiq0oBqd/0K1/5CpYtW4aXX35ZWvBLL72EpUuX4itf+Yry4IjSI+zhyKIT+sY3InVxLKbAm6/4FTdZiylbsCnMUq2ToA3EhzGZCqUJzVfybZ+ex810kQydBQ/ghQKFh0qyiluyX1bG0q7cC83y7g6Zssg6i8HQkBTFHIu431QoX1a2dDEINUNFuYTyw4Zqa4UCxRhwki56siHzoyfb/55OLq3QO257d4KeVyl6DlMynDGv3fMwfz5w4olAdzeQrfCOmevx79vd7WwXprzJGLb05nf2uRq+CHe2TSQ6kfIDqBvmwk4NW4graRuc/qwqGfbbsvWsxo2zIvvPsdebaxwAgLKsX7h7vf3r3+oGoroKbyCiFBKttI+Y9AMd+XLVX9XOCz9Xv7W6VSxfI7KqFJBaxcycORO2bWP27NlobRWfCJZNmzZh9uzZsCwLxx9/vPYgidIhzjII6IW+sSGN7qLKtWBdcQXQ1el93t0lbzGVWjRoen7iLEl6pd0Z2TIeN8VFVZgyvrJ9i3JlsLiFuHaoJCNbZCFkKwcm97g5/8u0kAAUmjXHyfe9n8YDkhlLkuIkCfMikyAdKhkynjiyCUIlrYSyAcRXCFRsHwH4DVuisfPv6Hj2441PyWQnKjShMA/wUQktLcCsWd7nWaa2Wq5XfIBZs8RGQJnh6ClX0edGK8dN5ryz2yeeZ/pkSBifdh3bmEi2VB6wOw7NZ3Z4ASe5+5W/3vJMNFCYsvfc895rnTYPorlARzmRM+T23asJZUud85Dt4+DP4WdM2LhP/lDwuB188ME46KCD8MEHH2DXXXfFww8/HBLyZOOhhx7Cbrvthn//+9/Yf//98dWvftX4oImBIyOxGNQJCWQX1gXb9lmwACBb7gm/7DSvcWKcxTTDeDfCKtzqNDkF4s+NzqJHpoG4aoVAdjxhD1+dggdxC1lbY1EC+BezooWJanESQM7SnlcMdwG87xu3KHG2TSjbJ0fGWKEoW8ZLiwQ5bsxr2Ry3tEIl1Qw48h63xKGSjPlfVMApcLzE1nBWVsy9qhEqGR71oCabl2/Dxi23eM8NAMgyXo9cr1hGdzdw662CD2K8SoC5cxO2tipum0iybI6bjsfNncPEsGNvrJSvTA7IKp1qCgQQnRfpyRePh4e/3vwet5DjZzSUfXaMEfeqyr0klzrRNw6d55LEGjJZwa/4bXUjq0oB6eDju+++G3vttRcWLVqEo48+GsOGDcP06dMxZswYAMCaNWuwcOFCbNq0CbZtY8cdd8Q999yT2sCJgUHO48Zur24dXPGp7bNgAf6Qg0X/DD4EZs0C9t1XHH+esSzkbTsiXEQ8DlniLElaIaRsUYKQJ5j/AZNIPJMnlmw/GeK8M752ACrymXOZt22UcedWL8ctOEaeYtN2qIfAyljCtSybMYseZ/skHjdWRjjFRZWi1XRDV8gKG9zY5cWjnImniasqqWOtBsx73uM8bvzxtDxugs9NRVPEXe9qxaGYc5MH5s3zf8563NhFNc+8ecDFF/u9JEWvUlRxEnYeS9HjplUUJsXqtTKKj6pSCESFearJBswZonO54PXG5t/zoZIubPiuXrEf/2dsSLNO7p9U6kSKBZCApMVJ4rfRjawqBaTPyciRI/Haa6/hxBNPRCaTwcaNG/H000/j7rvvxt13342nn34aGzduhGVZmDlzJl577TWMGjUqzbETA4BMg1admHN2YX3v//otWID/YZoXFCYJtZjCy3MLs/bKhkSEEbdQ1lr0SDQQN5KnEGVi6yNqMhfKZl7HeyASiQYQb1H2KW5JPRCuNTnK8mi741C3bIaHSqpr0okfkIk8bvELHvazRD3imE3benL4tH1LpOyk8mVCJfNav6mHMKeT3Tah+Pgct/CxyBA7di2vUvwinDWCJIVdzKxfb2PNGv/nbLRGb7g9AKtXA0uX+t8rjkdiHgDUDTiOnGiFXKtpe8j4dfq4xeUBm/JExvYVVPEsxRhZALnn9tKlCFxvBaZ1QFlIah/bGjlxUZiIa0bHiMuOJaqqZPFeTWyk8F7/e/3m2GI8Sa5HmVQF3b6xpUCicj8NDQ34y1/+gksuuQR/+9vf8MYbb2Dt2rUAgNGjR2PXXXfFkUceie233z6VwRIDj//BHj3RqSzC2Rvvsf8Lyncfvr09/Gg8RBZTwJ2M7AjFjd82GbGhkhoKiij3j0enT5zMRO0SFmoaRpqeSCDekp/3edyS+fSK+XMR2kmxn42CuzCuepeWtZqVIxVem0C2xIIH8H7vJA9I/t57/bON+Eb9NoHtCor3U5JQyaQ5i85Y5OeBpPdp3DxgtjhJ9IIqlSIZff/r5it1CXR9VnELy3FzaW/n3uh7dkR6lzUMf+l63Fg50UY/HU+nnFc/mWyZ3nw66404QwX/ftj92tYWfE/K48ZckzpeWl667jNVyuMmGIcM/NYfb+zA5BF1vvdUDYpyoZLMWAapx02pTuukSZNwzjnnmB4LMQhIYgFTuSVYz1LnluAByvosVFGhLq7FdPJkbl9XOQkdt54lJm4x61uEJzw7cZZ2R77GA1JionZJ7HGLLXigd95jPW7Me2UJD2BJKLQ6+VBxCrP/mkmGb1ESJl8xzNOnLEecnILCXMD/RPFLh2TXu0xVyVRDJTXu07h2APxPkTiMKdb4pDPHSMxhBhQIAKisCn7ua6Qc8fwAgPp6TrY7voh9tKr6snJictx0znuccqKWD9UnA844+XnERI84QM74lBS5Xpfx576hQbAfm+MWktqXrfBem1TIdb1KXhuc6PsU0AvHBoAlmzoDipuq4ilzDnWKCJUKgzU3jxgg4ia6XA7o7iu1bNuWdJ81F3ZBWFEp8Lj1Wa5EYZIsAYspI7sQtlhjXquVo45+QOpMGDI5bjqhOjLJyC5Jn5O+RUmcx01D+QHEix6d0u5S/WzcUB0NL0GofN/bakpnQAyD6thlrPjscZPlz/m3rQjxkvq8PwnODXsv9cYqbubnAZ3r3W/ACWrMGpG1feNhZBn2jvvu07ACURrjZ6+SYcNs9KXfF/F73MLlNDUBkyaFfBgxPp2Iirg5LHWPm4EKhGEU5wCohGFGeyJ98rXDmsOUFHY8YjmTJiFwvfk8bmUyHjd1I0swx43ZLoUQfr/nXc/jJtpb3eMWv41OuHepQIobkYiwh4DbZ238eGDJEuf99jb5PmsurEekolqguPVZruJCXXiLKTv21Pq4+RY9MdsmlJ00x0218phrNTVJXO6fT2FWkB8fZsQqbmoPmbwNbNoiXu0VQyVVFj0JHpCqeYtAhLVaccHmMyREJrB7Hj1Z+Gu3PCQGVTVU0rKsWCNOMcdNYSUbt1DWKQTBVseVCZVM2sA9SZ5u8mvGex0XKqlbzRMZ4PTT/Z/LtAMAnP34MPu4PC7AnBcibg5LPrfHKz9eefSEwhGtQADMHKAgO26e0X9mM2MP2UbGWJHNBq+3AtNaLayqZHmF+v0U5Y3UzdePWw+YqELqvRHcxv/cM+tx042sKgVIcSMSIZqk2T5ra9YAroG8UJDvs+bCTtSjxwQnDDdWPMqTF2YxLbr/ETYZBbdNQmyCuYalJ2lVSR3Lplm1Ld3wKyD+vLMP/KShkmxj0/fWChIZmGPqeNzCvVYai0GhFE66ssctfjHIyk8inh9LRYhGrJdT5Pwf1+xYRRlPUkVV5Xp3vW7CdgD8sRLezJmYRbhe2Fu0V0nn93Tk+2WdcQZQWem9J+Nxq6wEZs8Ovu+KjjqdWqGSsc8Odc+MTHsNrVDJGIOljmzW2R5fxCKxeK6kvngb2dBm/noDrOJ1FpbjVsFsrzcH8wYbdbn8PlG/KaD3XArbP1WPm2/7wam5keJGJILvlcP3WQOATF8FJbaqUlyfNRd2obTvfiLFzfk/KkdBZDF1xh6zoNJUIGIVFEO5LfmQB4yeVVYsxwRJwq9UKoPFKRH+UMlk8tlQujWdPUGPhm1rhUrGGRN0fgq5Btxq1vCMhAcYUAtj4h++5RKhkqptR2K9GykYcHSvd9f4kItZ4KsQe6/6tjWr7OvIBoLXe3MzcNtt3ue+dgAhHrfbbhO3kikuLyNOb56ZmFevijYu8vhL9gdJMwzTOaaa5x2IDzc0VaxM9NzTLcIRd70D8kW/+OsN8FI6whpwT9pe47yz8wz3ma4x1IqZw0xUIWXeCWyj+rvKjEV3nVcKkOJGJIK9MdatQ6DPGgBk+uK52VABl1mzosMmWfl77c1bsDyraVKLqSPbex1nvUu9j1tC8TJVJXXkx4W76BBXbVO78XlcjhvzVlKP28SGat/f7T3+1Zi+ZVMsS/ReYstmjGyAyXFL7AFmZUQobgqhkvzDN6z3nk4BkShPp67nPd6AExxHEtyWFjIet6Rhz+kWJ/Fex7UyMFWkaOZM4M47nedCVDuAykpnu5kzxbK9UMkgbprAr/7be++s71uJ0gTiinD4i02Y947redzkvDNqPTo92jfbWLzYrxDr3ktxhbMAYH1Xj/Qx2OsNAPJ9xmve4+Zeb43D3DlM0yvGjd2vbCYn1siiEW7IP2tMetxk0DWclQKkuBGJYC+YZ561A33WAMYrJlDcovqsAf6JcdgwO2DBcq2myS2myXKh9C2Pwc91rINSOW7Ma51QnTRz3GKtyQryk4RKJpU/bUwDKpkcq41cnptO4RNnPPELh+K2GkngcdXB0rDiA97vrfPwDVc69Rc9QkOC5jwQq4xrWnyLHjdhjhv3d0LZsmFvgF64d1yvMrV5QDy/z5wJLF4MfOd47003x62pyVGuFi8OV9qixsOmCWQqvNmtbWMmUZrAQLcD0DKCMK+jcpiTzl8tLcBFF1no6WvtsGixjZ128ufN64bXxs2RG7p6fOHyMsdwr7c5czzjtdvHjb/eXKOiStuRqBBYvxHXfNSATtqHzHB0C8VFyqYcN2Kowd5E7y8WaGbwFLewBPB588LDSHjPD2/BCstxi7OYAkmLBuhZwIQKioZnyae4xVTCA9RzfoDwJG1V4kNpmG01LY/CRU/fm2WWlVh+ZVkGO4/xaj33cE3sUg+rSyzRQ67UtTsOdSt+WOguoGfJ92REhzDpnPe4fCK1Pm5iWS66Fl/XA2kL5Ect4GRgRxMXIqXTd0psxWfGoXDe2TYPfH++5mbgO9/x/j73BxYWLQJWrAAuuyzc2BcYI3Mn8WkCDSO852HbRm9pJZMmEF9VUn2xKVOAo9i3UGElGx9pktw4xCrEPd3Ojm4hD1Yh/p972XHojj3I6g6/ZVr2GM3NznU1coSz/YSJEF5vqqHqQPQ1ox3FEldwRqNIkczmrFGq3LB2pTvPlAKkuBGJYO+hI07Z7KuK5BJXst/tsxYn350cWAsWX1VS1mIKyCTem/S4xSmGyZCp4qdjlbUiHgK6Hrj4hsTmPBxRHjeVBtlA9MM9r3HO+X3E3kh1ZTzOEg7oWdrjKjMC6vktXxk/vPg6THxeY+xR1Tx1f9PYtiCai6oyy7uQea8bf7ikVSXjen6ZKAgDpFOchK0+yhtY+GNObHYW/mG5RzzueFwRLS3BNIHGEYzHbUNwsolKE0jfqOjKEZ/3YhXVNEKDi8YbOXiFuNdV3Li0ie5u4PvfZ8eRnLg1AR+mnbwPqPN/eYUtvN7cc6NrIAp42jWNQ37ZZtcyvLIkWs+w929YVWFVdHvclQKkuBFajNom6HUretwiCoiI+qwB4ZNRczNw6aV2scrUF78gtmBFEev+941DZbKL9nDoeJayEh43neqJUdW1dHPe4qyaun1V4nPcPI+bClELE/0KhN7rWAU5saWdkR2ygC8uqgx7rQLyEw5+RLXXmTbUW6gTZiTpcUulAbfGogfwGyDijCyJPW5x3hPftjpeWrPePMBvme8RNSfXMmz5/77lFgTSBBr6FLdcL9DRFpQflSYQ541kFfSVK5IVPmHlxxWFSSW3u7hdvOyWFuDUU/3v9fYZacvLg7IzTH803SIcorGz56s6m/GFzctQNG6F3Ihaxief0S/c867tzRN8ruO14jcXhXz3MopbhaZ2FWyV4L2mqpLEkKCh0m8yEhV8c8MZ8xFNTkV91gDOAsZ9xt5w9XVWIospkL7nJ8oCxstX8Z64+6zr6kFO0MGWVeiMetw0GwTElaPWCSEF4sP28kyopBIRiqd+qGRcSIpwGFLEedxs2zvzKg8C93xG9RX0Fm3JZCfLy1E/7zZED3a93zR2ngnZVpYo73ugEW9C2bEhUloetzjZ3mtVw5m7yOuN8bgln9+96yWXc8L9eVyPmxMmKT5AWJpA2BzpFj654w7v86OPSlb4BGAVt3DDFqDai9Ij6rknM8ecc06wcExvn4JcXhkU7uaOAYqFVZjXorGz52b62GGJ5WeL16Md2Q9NV2GOuu9TaW1kMFRSpLi5HrfyTPL0Bp6oZ/bgVNtIcSMSMryqAjXl3mzJWrwcbJT3GcvDPG5hfdaAaA+EUUt4TMKt0mTnk+WXn8sBbYyXUVRxMwrLsnwT0IcbOgLb+D1uyeRnoh4C2h63GE+kb8GWXL58qKSqx82Dvya1QyUjZDvvseNQV8bjPJ1KY8+EW/EDY0koO0krA21rNSefXUiEVbSMlM28TqdfWfjYA7OxhsfNdN+stEMlAS+sShgq6RtLwnup73/bdsL816zht7CLHjdRmKRLWJqA6Df15Xn1eucml0veH9UdkfC5p2HwA+Jz6GSLkyxdCjz0UPD93p4+j5tAccswipuKfTF+jtRbc1T0XY82gkYW7VYyPiNLULaLyr0U1xDe1HMJcM4L/+xzPeYVBsIkI8NIyeNGDBXG1HjB5rzHjZ1Iw3LcwvqsATFhaex22vlEAvc848VSWbCJHgKuxXT8eOD/Hve2nTHDSmQx5flw/ebAe6zHLZvw/Ph73EVb8ZMSpfg4x2PGodLXKiY/T+fhCEQ/+HyhkprXTOx5VvECF2UHhec0x+5a59PIuZRZ5JsoTgIE54Jen+KW/BEZ34CbHYfePMaHTQdCJROuZstirked3zSuqqSulwDwFnq9heBiUC8iwX1lo60t+Pn4SfmiwbJ1ffQ1I0oT4K93Ps+L7UHHFv2S7Y8aFSrpa5eilOPmEWV8ipN8zTXi973iJAB/R2Uy3t8dQVtmLHGh6n5vZPJz4yuYk+fvTQ9d41NUeoN2ZdyYcPKkp0W0OXuebdv2PG4Kitu+zSN9f0dFEA1SvY0UNyI57MVe5W9z5W9yKvC4RfVZA/jiJH70i1hEL0p0FB8g+BBgLaZr1gBljHdyzepkFlM+vEZkicrb6guTaCu+/43dtxmWSDY7lO6YECa1PIXwsRc0FyW8/Kiwi1TyodhxJBcfeT5zbAK4imcpJn9D5wGZJF/UdDij7nmJ9VppWsOjeugFGvEmlJ2mV4xt2h5XHEoVtll7L3cQ1jCnWqnOBtDQEHz/3Gs3Fl+zFSVFiNIE2Gu4sytY+ITtQSdKQYjrj5pmTmdcDrNMgaJcDrj77pDP+jxumYx/fQF4+fSODBWlM+aaZG4olXnGfz2mWJGYO/N+z7iuNy/4uc78W1GWwbaN/oUje6+yr1Xy20bVVKCp1nMuREUQDVK9jRQ3Ijnsxf7Li/13RZZpNCmK5Y/qswZEL3q0Q7tiFiW6IVLsQ2DhW36LKeD3RrqhknEWU9Zj9+4rXsGG9xdmAx47reIkkud9dE0FJnBNqeNgHxyLNnQE8vN0wi6A6IWszjnxxuRhOtE5PiRFM+TFzc0RyGYLOKhYNlkrvtgqy44jOVHeQu28nIhrpldzHojP+fFeq9gSono66hYn8StXMYaEhGNP0vpCtR5BBXMx8OGSeY3f1d3atp0w/zFj/J83DPeO9drTVaFywtIE2Hlg5afB/qhhHjeXuP6o0R43RoHQfO5FXe9RCsTSpcDGjeLPerz+18hyVaxZh3hFgnz34v4xSqfu84OdV3lDQprPDt08rrTDmncdOwwT6r37hL03fYVJFEMl01RqSwFS3IjEsNf6oYfyfda8z9gHjEyfNUC+gp/KhRu3SPYrbioLWe/1/ff7P9tlny2YcaD3NC4U/BOGyGLKe+yuO39Y8TOrzA547PzNoNU9boHFIDPVJa2qBQA12TLf363dfo3e7ylMLD6yqqTuAh+Itihre9yY16arSgLe2EUhc72anqW4sLrWbs81UFOefFUV2SRb0xIum+NWrhkqGVtwxvDYA/kcGrJFhX50KsDGVZXUNeAA/oUer7hpKeTM2LNZ4Mtf9n/Mhv6//H/hhq2wNAF2OKvXBM9NWYxBFIjpjyrpcdMuS899JlsASRR+6uJ63ACgglfcmCiWsIJnUUQZ5QD954c/VDLK45ZcdlQ4o24elz9vMcYop/hc9adnePQUTChu4etIE7m0Aw0pbkRiMpxyxfZZG7uNP6QjSZ81ILo8r99SrWsJT8Pjxsjnxj5nnt+cyOf/8RZTPscBADauKUPnZucoVdWF4n6ux07HOuhbhHPxVrrnfVhVORqZaqRRTaxVrJpRC1kdZdbF/3D3f+Y3Jpgde3cuj38zuYw6VdNEyo8/dEzPUCFaEK7v8kzlI6vLA5/HEaV0aocZhcgC9HNdRb0oWfRDJaOMLOHHkiHeK6a+2IwLVdcNmQaiPRw6hrnifQRnruWLaJT1hTKuWu43UrFEpQn4nx1B4jxuQFx/VKsoOxA1oGkEiVJ+ZD20ovBTFzfHDQCyFf7P2CgWJW9houIkKXrcVJ4dEeGMJis1C72oIdsmIey66WEsRirPJSB6fteJGigVSHEjEuMLZ+y7DZqbnX5qb7zpffbVQ6xEfdaA6MlI30IV53EzV5ykLPz57RxfUH7LtZiKmru6dHc6x6is9n+BWbOAjk7v7+QeN2ZsgXBAfQvVdo01xddBxY0dh95CmV/I6oYBAZwXmPtMN+wtylCxcHUrVnV4mrtayEtfiJTgM3YhUa5gTo4K2QOADV2ex21kdUXg8zi8vJzgZ2bngvAFvsp5iW/ALR6HLL57NbAYjFbk4ogtIKJhxIkKaQbMLAajjsF6PJYvtRL1QmNHM2uWwCPWN9+HFeQCotMELMsq/q5ZQb8y1uMWdYyw/qhh3g1A36sUpfzIelFF4acuvUyoZAVXWdKnuKmMnXktDMnWNPyl6XGLKqySdlqJCa9VmKeWvR5V1mGO7CiPG7PdIPW5keJGaMHfFGzoQkN9sj5rQExYGnscw8m8gL/Knq7HLZONXjKJCre4FlNRc1eXLV19Hrcav/zubmDlZ+oPmaiFrH9BlUhskagQJt2FQ9RiUzcMCEDkkynNPm6fbQ65CBQQNW33NzlVz3EDxMoVW4imtjzGkiEgKj9PpxAPvw8/dt2qkvGLHu+1rjU8mOMWfqykstPt4xZzXhLK9vYLLtjcPOFXXvcO8IXPJ++F5sLmXLm4KQJhBTK+8Y34iBP3/JRXBM9NNiQFgSe0P2rENal7L0V73OQ8P9msE0YqopfxuPHnhq0qqWbYiv5cVwGKKpajHUHkC2f0k2bLEf49dY+bWLnyjV1xIpDPcVOTP9CQ4kYkRtrCphsvH5F4r7vgic9x01MMVTxugJOgLWru6tLdp7hVVAW/wPoN6ha8qNwW3d8U4BS3CC+BTj8xR5b/M1ZHNBMqafYhEGfx9W2rYZXtzhewsr3L95lPQVHxuMXkLLF91tQWJn1yYnIsTFuUc5rVB+P6WmmHSkZc78FFSjLNLVa5Yl4nPe3+az34ueky3Tb8ecJuYYvuLqCQtxL1QmPHYwlWTa5HTFTxEQBeeSU8/6woo+8g1TXBz3xVJUPkRPVHjXr2pZvjxmwXc7WfcYaXK8/Sy+S4lXOfVzCOfKX1Rkz1RN38a9ZjH6gqqRF2zO8TVV02jeeSiXs1LNrEiAEnMg9Y31s40JDiRiQmKldMdzKSL06i94CJqyqp9gDz9snEKW4hDbhbW0XNXT26tzjHqKzyWxudYzp/l1mW0TAm3aIwQHS1tzQbnxupKhnlBWbHrpnjltQ7IsOWnHeuX/10k+8zfY+b9zqq6IGyRTaqOInJ8C7e48ZYLlQ8bs6YHPl8KCOgX5wkMsdN2+PmvRYr495rlca7UWXpTRiI2N1eeNH25QlX1zoH6Orw/6YyvdDY7xq8JOxiD7cwj1tU/pmLOz81DA+eGzeHzgkbFB8jqj+qbNVg7TyxgCGB3S5aTnOzE07K41PcOI/bRb9k5McNVECUoXjjlh5s3OJo4mWKxiefxy0fft7VjNxRyon3WjciQZjjZsQ7LpanG1kFRK9RffOvkvSBhxQ3IjGyC1kdKzsQtB7rN5WMnoxcxS2bSa74AP5JgO3ZFr+1Q1NTdJI24OW4AUAFl+fmeuH0C3xEeZUUPW6ZiFBJTYU5qoS5bh4BIG9MUPMCM7JivCOm4/F9OW6aoZKiUEx3naLq6XRHJFYKxeOQlh1x3l2PmwX1SqTuPRhXPVHlARy1CA94PBLKjqsUqlOchJUvVApZ2clFA/DPqjff7P+sutb5Xbs6xAOP64VWPAa3O3vrhBnkgPD8Mxe3d2hllR3wPLnFSUQh9oBEf9QIz5Juk2mf4SxQUCzZ9TJzpr9KNeDPcXMVN7dK9cGH6M2/UdFDC1o2FF8r51xKtu5QmgdCZAH6eemxRjnftnqGOcB/7k14xKL70orHMJggxY1ITNRCVncyilwk+9zzZj0zgLdgU2m+zY8pzuMm4vTTgREjordxc9wAoCpMcdNUaoOhkvoTKRsqab4scvjYdcMwgehqoexfaVg2feMw/IzxVZXUDJWMKiCirDBLetzSynErVzTgAN49KFJoC5phRlEKc9IqkkHZ3us08tCi+onp5v45+zG/Kxen6uYFhyluUb3Q2PHUNvoFyzaBjitX7y7yC7Bx223+E+T2Rw0Lk4zrjxpp3Crozb9+r5X/M793Q044W6W6qcmf4zamyfZVqda9HsO8PoDfsKXaHF7a02l4DjP5XIoN91Y2iIrlmfa8B4xbFCpJDEXCYpMB/clIOixNe6ITKW6ex00F9maqEMTqR+FaTKOqawFejhsQrCzpKnIqVtOySK+V91p1ks5mvMd2d0hxEguqoWPea9MPx+LA+ghek+YWPaqLA1X0czqj7yd3Qagc7tK3m8gTuaazO7CdimwgvKqkapgkEO1Z0q1qFl2MJ7E4H8ly3NQ9ncIQUs3z4uzHvGb+yJZ74YxbOsJ/17BeaKzc215cgy/s7l1/ZWz+WUiOW1T+WVEOM+DvHO95nmrqCxi/vePK4wuTyPZHla28q5QiEGnIZbZLINqtUr1iBXDeud6Ot9/hr1Ktez365t8I/7Sop6EM0cqVwWgN4/UAxLK843mvle/VkOeqbrqNs1+4J9V/zajJH2hIcSMSE2WlMho6FhVaoBkWEVWcRL0Erfd6v/2SzfSuxTSquhYAbGFCJXmPm2tRVguV9F5HV5VU90a6XrewWH/lkLrIhazZ8KvIhYnhXjxR4zBBmm0YnPec/9WLwog9bt25AhZt6GDGYVbpdP9W7P3at2+E4qa5YPPnuIXLViFJVUkd77jpHnHCYzHh6lW13uswjxsgl4sGAOf/fmPxNZtXFhbKGJV/5sLO2znbLnqerprnXeuuFzFpf1RZZV/f2GrWu5HNAmNGM3tmzMrne9Kaxj+/mz7v4cqJbu51XNEWE/dqeFVJdhtV2R7BdaR4DIMJUtyIxERWlWReq5UWDp9I06wkly94U1GZoqWdPS/jts0HYvVFiCymYdW1AM7jxrQEqKq2i+GZSnkKEQs2E33c2GPwi9liSJ1ynzVWlv8zI2WLI/bTNVREJcdHbatCJaeJmK1uKLLKuh43BeHwvq8N/1jXdvrbJKR1vSt7aJkxFWxR/on3Wsm4FXHe+Z+hKptsLov1ouoaKopzQPAz3fxoZz/mWEy4upvfBkQrboA4F40fT10j46Vie6wJctzi8s9c2BD9fMFGS4vTGmblOs8FuHJJFiNGAN/7niNTtj+qT9nnYt/8vS7l5LFEGnKZ17qedyAu/1pBNvN9RUYWXdLujxpW7CdNbx6QQjhjWFVJI8Zc/2emq9cOBKS4EYnxT9QRHg7dhWwgDNOMtRcIxm2baPrI3kxrOntw1HG5Yqw+T5TFNKy6FsApbkxLgD8yORG6xUmiKtXpLGbZhThLXnuBH16tzkxxEo+oClVp5BKEjyQ5/CLev+gxq/zYtnf3mliwseIrOAXUdONd97voWGMjixIwr1Ws4WxocMAIwm2757jh6rKFFTHNLAhTa+rLVn9khLBl493KvGHE5aLxsK1fRB63uPyzohxmwA8+ZBfbGJRXeb/qtecOx4YNwH//t1wbAxdZBUK3mnLAkGtCOYnw/uh6T6KqPpogeo4Ub5eEsKgEbeOQZP4yYD6SxUyoJCs7yuM2OCHFjUiMbB6aykSapvck6mY2scDnx7SuqwfNzcCllwZnvhUr/LH6PKLqWgCwpcu7ZSur7aLH7tjjvG2UctwirZpmLFTurmEeCOUG2QjPKTJfnMSPvjGBkR1j8VUpmjOp0WsKxZ9f93iqZz2qLH2aDVp5VDy1YQsTv8KZWGwRv4cjIrxLd1EVIXvP8cMxoroCSYgLJ9dd9Ljnhfeiuu9541AQzu3HetyyTBn5qAbWYblooj3cuZnNccv1+j+XyT9zYa+ZOb+0i20Mahsc+YUC0NHmbSPTxsAlyjDH/s5qOW4eafym0R43vXuJ7dPI91kzQXSvNXMKSmRaiWbrJFH4tZl7VazwmwhljGxOHjKGwQQpbkRipKtKKnncLGaB7/9M18qTZhNSAKgu95eSdI8hWgDF5TsAwepagN/jdvxMu+ixY5sGaxeaCCwGme00bFTusMKUHx1vXli1OtOhkkGLMrOdZi7Bu2vb0Z0LXzzUViQvVbpzk9dfIjD2vv9NWDX5ayZvQGEOW/SYKOISLpvdxpTHzf+Zdl5kVI4b87dKbz7AM+KkU5wkag5mZBspTsJEUYQoVzxhuWj8Vy2zrMDcDDget6T5Z0WZzDVTwURT1DU4c0Jnu4VCIXheZNoYROW4sYYF3Ry3wCLZ9CLcsPfEsqzi8zINxY1dz0SeG82QwGjlRF0uIGPAMWAQZY1nppt7k8eNIGI8bsxr9YWyK9us9yQyx83Qgm3XsY2BY+gsNNnqWosWAT/5sffZscfaRY8dW7pYpRpeZEl95rWex00c1uEuHHQ8HO6+nb15tPd4OSEmPKkskcYETY8bAHywLrzZU32FhLYfkM8aQsSWdtUHL7sY/KTFMSK4Ffl8hhDFp0yYwsxfn3xfQBnC2jCYul4im2T7xqEnOx0rvmsECc5bJq/3KO+JibBmtrKv2wcNCPe4yeaiAY5xzJ2bX3jRG/dR34iPpgiDVdzYisFu+4GONvGNFNXGwMWfF+n/TPc39Ycbhrd6MeKZ4Q0VIdslwR1/VKjkmJpknmuW4v1U4OdfPUM04J3TyMInSsYhVpb5eQAI9+qZMJ5FhtdSjhsxFIkKjTAxUWdCFvjaVZiimpBqNoEWjcuVqFuiG3CswJMnAxMneu+xj0i2tHu5kseNkRsRdqGluAkUcjY0zdR5/8cKr3GqGY+b9zpgTPBtp2Kt9u+zqTvcHVBTrtAcEOG5hcVQSYXT0tIC/L//5+34+xuAnXYCxo93vA0rVvafxy2ncIOFNeA25nGLCJXU9RiWRRRU8Fvx1eRL91rT9haGLzbVCx54+8080Xu/3BcqKd43KheN/67s78vayRob5aIpRGRsRnEretxs1NY7rze3hZ+TsDYGRdnMrlGGBJXzzubOLm/rwietncVr3G+kMDAPGK5aCQAVZWKPG/scnT52mKJ0JpwxonWSssctdK2k98yOqoYJmFGYwyp6mmnA7b027aUtBUhxIxIjGzqmGlZnhU506Vl7TVnaRceI6g+TWH7IZNerGSoZZsXP5YBVq73tbEGoTlL8Hg7vtamF8uZer7Sb6Rw3Hv3y6P6/2d+O/0x3/GHW6qQP3vnzHSPCXXd675VXOtLWrHEKKhz8Ve8z3XYAQLhXDAC2Y/L4ZAkLvzLhsQJiipNoXvPyoWOqC2VnP3ErA0a+trfQ/xmr4Krkc/LstquXJxzlcZPJReNHwyrPJqJMAGDTxqDHrbrWLjb47mgNX67FtTHwnfeIvEiVBSFbrba1O4c3V7Xik9auPtneduqL8PBrplfTYOnslynKZq9B91V9RVbZaAaEG0J0nx1AeHSS7hzjC38VLF9MVMQMi9zSnWMAbv7lr3dW/iBV3UhxIxLj97j5PzMZGhEdlqa34InyFKpUZXQRLTbjik4kks9OdqyCxT7AFGLT+IdjS4vjORk/HvjlLz3ZP/qh835cToWI4u/KvGciF4qXw2JiIS7bokJFPG/c8Ctu3usdh9cqSHcohqhy77vfJcm45893CiJ0d/sXwKxHA9zRjOTQhXjFJg+vVVpUsef2g3Wbsa6zBwC/mNIxJHivgwsHvTmS3SUQ9mbgvEfmuGku2GQanwPqczDvHXfzhE+YyXrcnI0S5aJxwwn1EGisA30Vg/sUt7pGTy3cHBIq6SJqY+ASpTDrhsJXZYP339urWwGYCUuLumbYMGm+2qws7JzLGkBV5kcRoRWPmdfqOW7O/4HnkuY8ELVW4o9nJgUhJOpBNYyf64noOxaFShJDkajQMV1LDxDuIdCvKsk8vLjPTOW4WYKHjIlQSU++2Nup63Fjd1mz1itFvWYNihZfANi4wcIVVyQrRe3iV/jdc8Mu1hIPu0hYuJz5UEk/ugt9fpes74Hpvf/F0QlrlAuOETBW9H0b2culpcUphODS080qbv5t2Sp+nTF9s8IIy21hr5nGSrW4NP47v9Cyvk+2+PhJkfW4qRwhqoCT0YIHIks7Nw5V2Y58/wFMtGTxzTF9/zc3+xW3s89y8oWT5KLxo8kbXmgCQG11UHFzK0oC/oqSIqLaGMi2e1G5IsszQb9FsXqoQQ8wELwmuw0obux+vT6Pm/Nad3GfEZwL5289TyfgnVPzFbjD10qAmVDJUI+bAUMI3xORxaAdfcAgxY1ITKQHwmSJ2xRDJfmb2ZTnR5zjZm6mYG9YX0ijZsgI2wtt2XKvFDUgbjCbpBS1i6gvl6lQyVxIRbC0+7j5w6SSy+a/M9v83V04NFZm9YwJRXl+PIuynOxbboHvuuhlFLeKSr90VpF79x39RXhYjpuJ5HWW/i9OorfoCRrO9Dxizpic//O2Hcj78YfCq8hmz4v/M19lXOPhtd7ric0WJk9OlovGhl8D/t/UlAV/bBOjuFUJPG4RoZJhbQxcohpNa3uALQuVXI/IjOWE2bO5rqqPQVmPW6Wi4uZrCcDIKxZv0tTcwnuMeq91lZ/IeUDpN/Vei3Le13X1FP9WDVENzXHzjUPf42Y6p7MUIMWNSIzvpuY+M5lgbtrjxla/4j00/nYAiUUz4wrKNOtx8177PW6stVrxtu5Ljue9J2yD2YJ//SJVitpFtKjK+867+okPKwjWnx43NQ+E/2/W0+COXUdpA8Qhqs7f8hblXM4pgMDS6z27fR42wB86+dab0YUTwvD3uPNem/5NvWPYxrwnPgUlYq5RVq5CLO1+pVBNNivjvbXt3Gd6C0J2auKNIOZDJT10Q/g3bfFXNGGLJ5oyPlVkg4pbTR3jcWsPn9fD2hi4RFUi1VXGAaCqzB8u2bHZwvjxwOlMlc5rr1ELs4+qEGgiVLJc4HEz4Q0r7h+SM2qyd2ykx02ziBAve1N3b/F+aKzMKlU7BqKqSuqf++g+mswYFOUPNCWvuN17773Yf//9MXz4cNTW1mLnnXfG1Vdfjd7eiGYsAm6//XYnxCTi3+OPP57St9i6iPJAmHH/98ky7HEry3heJd6SzCZs63k3gsqJKY9bLges+oyZkBglKsc8wFQtYN1bnP1470mGmZfzOb9smVLULqJF1T/7ciEAM7HyPGaKk0R4mDUXPbyy5+Us6C/uecLC6mROy9KlTtgsS7THzft700YrsnBCGL5m0Mz7Pu+44iQjuhbytjmPWzZli29o+KvvulGTzXoueIVFNxQzyhNpIlSSJTRvRmHcdVweZd62heHeOqNmz43bx62CaQvA5sCxyLQxiFqIm7geeY/bxo2WE2bPnLa2NrUw+6jwWjdU0oL6NSNqwu0/J0pii4QWJxFsk5SwtZh+VUmxXADYwvQaHVdXpT6H+Y4hfq0cKhk5/5rxkA8kioVr+4fzzjsP1113HbLZLA488EDU1dXhmWeewQUXXIBHHnkETzzxBKqrqxPJ3GGHHbD33nsLPxs/fryJYW/1RHkgjPTgKC5KeNn6i/DyTAbd+QJ68vyiwXutV5bee10siaypt7W0OGFq8+YBEz4H/OIW5/2rrrYxoRI44wygN6u36MnlgM1twPCqoPekrMz7O5/n93TGdfHF8aFHvokaNgALazo9t41KWfc4TPdxC8r3Xit53Li/iwVtmPd0Hy7h4TTuGOIP0NYWfK+3x9uP99KWM4pcb48VWTghjLDFg98iqzfHsOQLhX5pB2BiYeKMjf9FzXitpo6sw5pOp6VGVF6OivQoBaK/PG4qv+vOTY14ZeVGLkTSOQcm8roB/9gzfQpPJdOIO0xxi2pjIBpXMMdNX/HkjYVuywU2zL7Q53V3w+wBuQblvt80JFSyoiyjndPpyPf/D+hXHsxw47eKipz+eedz3t2/jOa4cfepr/qrTiE3QVoJ/1o5VJLZj19XbA0et5JV3B588EFcd911qKurw/PPP4/p06cDANatW4cDDzwQCxYswEUXXYRrr702kdy9994bt99+ewojHjqExSYDhqpKhiXcsmNQVdzKLHTnBR43nxXfzGRUKP6vrpDMn++EI7q5ReN28uRv6QauuBa49lrgr8/ZKBvuvK8SKrl0qedx4ysElkV43ACvFPXkyXFHCb9ugLQUN+91Gn3cdJsG8w8mV5rJhYOo8Xku5y3genqcv6MU74aG4Hs9PsWN97h5r3u7rcjCCaHjDlk8sK9VjSxij5ttri2Iz+Lr/8xn8VWU7y3QzHutRtVUOgoJAPBRD8xr3ZzOle1daKr1umSbaAcgulfyBRtLN3UyY0gut6m2El+b3ISXV2woGpvyBRuZMstYCwl218MOs/H/futvxO3Ozy6VlY7SJqP8sOH/gXYA7BgUx7+l07+ja9TJMB433ug3axaw777JlM6wUEnV/DZAnM9l0ivDj9/9LUwo/H5DMWP01q4qycoNn2NM5F4DUYY5NaJy3HxjGKQut5INlfzVr34FALjwwguLShsAjBo1CjfddBMA4IYbbkBra+uAjG8oE72Q9TCdeG9iUeXmueUKtm+y8Odaqcnmx+WF0qjJYkuvu+SZXCHXE9bdDbz3gV6oZFub97At4xbwrNWXzWtikfGo+C2nwc+3VejH5TKiqtz3tyiMyUxxEk/+stZOrGU8hiaqStqChYOup5A9BtvmwY02f/99r3F2WP7JpEnAmDH+93LMtRBU3Ly/q6uiCyeEkQmZZ/xGluRyHdnBk5or2NwiXP3ER1U1M2lM4O8j1/hhachmxxXsPcWMQUHtbKr1NPrlbV0+Y437uszSCCFlXrv30pJNHWjr8SZOdS+tJVwQ6oaPivadPMVpU3DY4Z7wnj6PW6I2BszYXdLo/ffBe2KPG6t4sqHVgHyYfVhbkFzBLhpFVPPbAP93LhTnd/Hn+vJD5jEjzyZWtve+2nMpaIB28a2VtIzc3us0PW7BiAd9w9lAU5KK28qVK/H6668DAE444YTA53vvvTeam5vR3d2Nxx57rL+HN+QRLWRdTLr/TRcnAfwFStiCHibCMAFxIrVKjhtfet2FtVqy1sz6YXrtABoavIctvwhvGOHJbtsgnjJkPCr8Qtz2KcsWxtdXyQ+YY9dthvn+diWbWSQHQzpWtm/BwlV+o5GKdP5sFr20hhaDgDeuLd3+Ng9uU+J8zio2zg7LP8lmnQIILL52AFyOGxtu+5UvW4kq+LmEWdpTC5XkipNotQNIOTStWGKce99dpOjmiIVVwtP1RAyvqije5wUbaGVy6Nx+S2Wq2jjEi8F3uQIrxqqFFoLGIZ2z7g8NdjxRBxzsyf7Nr63EbQxc/Nej/zPd3zSXA9583f+bub3y6hq8Z0e7oCrmvHnxhYvC5gEThUkc+d5r91zo9rYLk+9T3HzH0H82sfJMVpfdtKUX/1rXXqy4yQYr6aSVhPW83cBUrFSO2rKsogE+OsdYTf5AU5KK21tvvQUAGDFiBCaFmGp3220337ayfPTRR5gzZw5mz56NH/3oR/jTn/6EdevW6Q24j46ODql/g52w2GTAX05XdfHgXpQ2IlzoijdcBeNOY8eaNzUZGfK48aXXXdhQRdczli23MWFH5+m3pbVM6SEwaZI3kToLem/QjYzi1ro+2Gw1rhS1i0/hh//aGcZ5zJJSX5HFqGrPmi8qDKMzR7v7uuI+3LA5uI3Cea/Mlvl6kRU9bj6Lrx7usDo7vWvKspj7ijEGRLV5OOMMJzzL288qGhICOW7M3wfsbyIMKMSarDrHhHjcbANzDMCHSvrnMDavUz2c3JPH4ik/uopbn8eNe99EHtqYGu8i2rDFOxdFpdNY+JV4G1PtXkQeN1M5bq4CwXoLpkxO3sagOC5ftdooj1tyli4F1q/17+lGb9Q1esI7BA3E3TD7KMLmAROtABz5YgVCdHxd+ezcZaKQmyjCxzmO53k3kfv3r/Wb8cE6xwBiqhK06HpftKEDXUzxEx0FxZ2fonPcBqfmVpI5bkv77uSJEyeGbtPcZ25amrBc2UsvvYSXXnrJ915VVRXmzp2LCy64IOFI/dTV1WntP1gIc88D/n43teUmysSKFykl63ETWMD4c7T9sOiQQFHp9aJMZpHthko275hDRd9a6J1Xy/Gt6ckf7tksMGqk8zqTcbx57rEaRjrfJJ8HNrcGz01cKWoX3sLmX/AkG6+IoOXUKv6uGctMPHuwHETw2EmZsc0wPLXMMR55xUn0rOAsrvWb9dD68hbzwQOI8k+am52cGrewAOCEP5XV2AGPG+u1HT1Kbdxh4V1mymgH38sXbCMeWsAfbs0uvhdv8BvuVBcOYVEJJpQfINzjZiIPbThjpGGrVhZDJXXCr9g5JmQbrd9VkLtoLMdNoEDkDSjKAHc9Rnogkh+jrS2Y4+ZGb9QyHjfRswOID7MPU3xMNN8G/OsZL8eN/dzMvcTKd14zx1A24ASvGVa2lvGJ+/vjTZ3YuanRXKgk89oV+f46/8WgH/Vgb5VVJUvS49bedyfX1taGbuMqSW2icmcCxo4di1/84hd49dVXsXbtWrS1teH111/Hd7/7XXR3d+PCCy8s5tUR0YTGJts2NvflEtRky9Qrg0k0UVW938pZjxvj8/dPRorCIU50ZifrEVXl+OLo6LhCUen14jiZRba7EN/hi97i5703KpRKrwPANmM92VnGAdY4wtHg2jZkYNv+My9TitqFt7CxCx4T86eomIW5XmjRn5vq+eWeEf+1rjf2jRv6jpNhFpgRvfmA8PyTmTOBO+/0PG9uziMfXsvmRaon3osXbKZbPLiYLE4SVo6aX5joKp584SP3WMY8bpz24+WhWcqLqlqmtL67+LZtb4GlFeYpsavpUElT3nGRQdRXbMaUQTEkdFdVekMDsIWreJkretziG4jHhdmLFCvAnMdNpDD78xaVRQOQ9LiZKE7CzAVej04dj5h4X9aYYMpQwXv2vW3U5btzYCDHjZWvLn5AKUnFLQ0OPfRQXH755dh9990xatQo1NfXY7fddsMdd9xRrEx56aWXYvXq1crH2Lx5c+y/Tz/91NRXGjDCFKuevF30YtVVBEPqZIkrSqDjPWE9buzEby7HzaMYrse8t21jTWzVxyhbhK84SZ/XZNRYb+W9ckmZUul1AKipZhU393zYxRw3UX6bTClqF97CZiqpP0w+4L9m9GQ7Ajo7naIAvKdDZ/hii6+Zh2MuB6xb2yeH9bjFtHgAwvNPZs50zsGcOV7orqu4uYUTfvgjb3vV4Yct2NgcHRMLHpecQY9bVANuE4gqhRaYHD2dECYg3OOWM6BciRaypnq4iZQfXpqpNg8iw5y5UEkHUx43//Xo/8w9gurQJ00CKrP+nYs5bjGhkjJh9pblrTjCFLcKjYpiIuXHZAGL0MiBkDEkQfTMc46jJzdqX2OhksxrPiqpOAaNs+8aOrbGUMmSVNzq+0wwUflgmzc7OSYNojrVCTn33HMxatQodHd344knnlCWU1tbK/VvsCOKTQaAzb3eKq+2Qj0Kl13Es2WcTXhPWI/bhi7PU2Wqj5sV+2CPlxF1SbPeEdeDwoapdXdllEqv82OrrXNkVtXaqOyrGdLKKG6VlY7nRbaqGRDMjTRd3Ul0XRavGcUjuFUY+6YbLFkK7LQT8MEH/u30FmxBj5spK/7SpUC3W5qbme19HjdBiwcgOv+kudkpkDCuz0s7elwB73+YLxZOqGeuYRM5FmEeN9X1mmhMTqgkc6+qiQbgX2RHFSfSbsANxjtjqL8SwHrcOI+eiXBGwX3qy50zfC/xYzW1mPUW+ezx1WWLqhvmDC2SAS+ccAtnqXEPobqIzWaBA/bz7+t64t1QyUIB6GwPypcNsy8W42HOtbFQSfZ6FBhbdaM1Qr1i7PPPROEsgeKmo5iEfe80qkrqbBOGOzYb/nnM53EbnHpbaSpu2223HQCgJaw2NfOZu60OZWVlmNzXhGrFihXa8rZ2wqw87ERanVW/tNiiIWxFMBPekzF9PYoAp0x0sTKYz/1vxnonCnuTkS0qve7Chkq6HjdWcauvUyu9DviVm5f/4SgsO+zkryipUopahG3bRiyOLFEVPVV+0/nzUazC6Ho6M32eKt4TpbVg8y0cXI8b+7m68LY2T9ln89pkPG5AfP4J+xDvamgvLsJMJPdLFScx+OTNBUIlzXhmovoIqSKaZ3KGFlRAeA5dri+83FQBEZHHzXTeDP87GvOK2Y4iu7ZLryWIty8jW1CcRFcZr+8zpm7JFXzeKi+sTl32kYf7d3bPvRsq2dluoVDwb5MkzF7kATZWVVLYDiAtjxuEr00UJykIo5PMXI8sBVNGlpi+rs426oS1BKB2ACmxyy67AADWr18fWnzkjTfeAABfjzcd1q9fD8Dz9hHhhHa891mr1W+JDUzCOktxMtKQXVeRxZi+pq9527M+muvjFv0QkHn2ikqvu7Chkq4SUcEobl//mlrpdX5sY7excdllwLMveA/HbxyRUSpFLZLveAq8v42ESgo9bmrKPt9Dz02HDIty7ezQeEAyr4ULB41T09DgL9/sVpPM+Jqqh+8fNx3WM551tqediXCUsGpv69ly0UqSxZgsTpJhwrvSaCwvWvSYKBwCOEaJni19sgH09nrhY25kglY4I3Nuih4OYyXGPdw5gB+qXtNg//z+0ooNWN3RzXyujkjpzBswgLg0MPdqO9PXzvO4qbPNWP/E6M6TruImCpNMEmYvqnJqLsfNe+1eMya9MnLFSRQ9biHKT9i1ryqbxUSoOsDVAwgpJaRVnIT58qxRizxuKTFhwgTMmDEDAHDXXXcFPl+wYAFaWlpQWVmJww8/XPt4CxcuxKJFiwAAu+++u7a8rR3/A4a1ZDDbaNwQNeXi/Lhi2JvmE6yK8Qa6iypjeQrMa1E7ANlFLF963cVfVdL5ny29/q1jzYRGFM8HU9Bi5Ah1pRAQVZU0E5bmyffwctz65Cf4TUU99Ow+a3GY4rZ6FfDqq9KH8CEyhPitseq/6aRJQFYQIlnGhkoWxPJl8k92HuPFRHb25r1ePwZy9EQLnmWtXb5tTCj8LnxxEl3R7sJBpY9jHCJLu79Uf/I7im3O/tqr3gG22955/+UlnvtV1/vjhXr2eZYMzb/srVIMlQx43NTF816xdYwRwflcT6H1ZDsUQ1M1isG4NDBtR9q6GcVNcPyk8NeDc/nZqK13pLM93FTC7FP1uAmNrd7n+lUlxR43E3nMcUqh3rUe3DmXA9o2s25Ds95xk7D3feg6dZD63EpScQOAn//85wCAK6+8EgsXLiy+v379epx11lkAgLPPPhuNjY3Fzx544AFMnToVBx10kE9WZ2cnbrzxxmK1SpYXXngBxxxzDACnsTcpbvGIkqgBc3Hh07iqi3yjU92L1lfxrSjb+1z34evuLWrALTuRuqXXeUR93FiP2/hxphQ3///85yrw142JBqR++UHro4rHTdRDz1WYw9bDuV4Le+0l7n8WR3yoZHKZLtks0NTkCXDHz4ZKiqpKAnL5J41V5ZjU6LW3aO1bEJow4vhbazgC310rV0VYhVyBD9/VuybdhQNfDMIEwtLxGgU+2LDgNWu8cu4AsHGjjRtvyWN1zss5N1210kTeItAfoZLMNSnwpJoOmTZVJRRwok1cOph8dC8fSh3+evvc54GJ29nFZ1Rnm6UVZi+qcsq28zFd0MakASfNkO+46Ce9HLfge+PHA/94xTvSTpMtzJnjGH2SEtUP2ASiKtPOscz9tgNFySpuRx11FH7wgx9g8+bN2HPPPXHYYYfh2GOPxY477oh3330Xe+21Fy677DLfPq2trfjwww/x8ccf+97v6enB2WefjdGjR+PLX/4yvv3tb+OYY47BtGnTsN9++2HZsmWYNm0a/ud//qc/v+KghZ0MVrRvKVrZTcUOj6+vxpgaz43U0xdHY6q0e1bQy81UGXAgaE1WnaD50uuAPx/JXXxX1bCLHjMTtWphlSj4B6SpcECRjAIc+e4RZM97WA+94uImI37E5HPObxPWvDoK1qPmSjcZhz9uHHOsvmuGLU6SFxQnSZJ/wlry3QWh6VBJExbkOPIGG3ADTDlqVxk3aFZmh+beo6oFPviwYMCrCgg4rUEquD59un3i3L1FC2VTipULrwia6jaQF/ycpsIwXdFs+wVdykNaVJjIceOvh89/wcb7//KOsddXLCNh9qJ+jro9OkW9V8M+15bv8/zoz/EipdM5TvDYiWUL9l2zBqhgWr18usIx9kyenPy5l7bHLUy+qcJfA0nJKm4AcN111+Gee+7Bl7/8Zbz88st47LHHMGHCBFx55ZV45plnUF1dLSWnpqYGF110EQ488ECsXr0a//d//4eHH34Yq1evxsEHH4xbbrkFb7zxBrbZZpuUv9HWAX8/f7De8WSazFmqynory2L4lYHiJID/IcOHSlrQH3uUNTnp2NnS601N/uIk1TXO+/sfwIZI6Y/bGbP7v6EQJoiqSjKfGZhCfQqQraYwh/XQK3rc+i5LXlyOUX5mzUpmgfQpnKJQHc3zXl3lvfY8bt57ouIkSfJP/BUUgY6eHJa2etVgTYYBDa+qCNlaH6c4CXt8Ux63YDigLqLiJCqFLERhwQCnuFUEx/3qPzJKVnYXPmfJlzdj2Hti0uMW1Q+NP35y2d5rvmiLRq0vRj6juPmKNTj/68zBvEfQtj0jEQA01OuF2YuqnBa9kSYjQYTpDXrEFSfRWXOIrhm/wVJJbOS+rhGntwfFvq7d3cmNlqLcQpOE97hjxzA4VTeNW6l/+Na3voVvfetbUtuecsopOOWUUwLvV1RU4NJLLzU8sqELf6l/vLETO49pNJLX4sLGrPfk1bwnInI5YON6b/+enFlvHuBZQ7yeXMxnCvLd0usXXwx8tAT4oE/ggQcB+5wKPL/cBrrU5bv4FQg9b6FQPvPatv3h8SY8KcFQzOTXY1gPvUJMjhtb4MNtXs0FBIQiDNUxeC+xD6fqaqCrA8hkxaGSlZWO0paozQPzumDbeHHFhtDjJ0FU7Y31GjRWmn18BdoBmFLcBB4xXfyhkkHFUDa0ThQWDPhDJbPlts9DCwBvLQR+MjP5teJSjEoQeNyMhUpyxxJtk1g+s7NIETfd1ypv0OPmbwovOL7WIt9CbXkZOnq9ySRvqOAMIK5yauqZLawqaTCcLixU0oSnU9hKJuTzpPRs8e/rGvhcjxv/OeAYgfbdV87ol7rHTRBOzr4enCqbQ0l73IjSJGwyMOmCZhdovYWCtgLBJt7/7AJv//MvsDFnDtDda8abBwQfMv54efUDZLPAjjuyB3IXbH1/wqA1WVg0QFk0gKCFLdU+borek7AeenbfIsQKmTF7e/zyw5pXi0izjxu//+tvOvcB224inzeTfwI44+/s9bvwVMcfZ0jYY9xwRcli+OIk+qGSzv82nPGbVNxElUiThkqGhQUDQC8XKskrblW1tpKV3cVdLJv27Ivyr/lFoVZYHfNa1Fhdr6+V/z4qMMZKEzluYR43NtpEh32aRxRf2zDXqBnwzrsTqdE3FxTMPLOFOcYGo0HCPG4mPIa80Yz93zm2smh88on/b9fAV9EX9CBS3FyjpQz8c8M0vnuVSc0woTAPNKS4EYkJu95NWqv9HrcCVzEtmWw+8X5LJ6MU5m1ccQXgtu8z4nHrE+EqP2bzxIJWJO8BZsZDAIQVDTDrcTMZDgiIQiWTn/ewHnpeOwDxIybnLy4X2bxaBJ/DYTKcg9193DinzcPjj3tHOP470Mo/ES18WFSvS2G1N+bM6FY25MkZbAcABPsIpeZxY47hInNuwsKCAf/1nC23fcVsABSrBQLJQ4MBQVVJQ72hIJofNaQFpMeESpqKSrBt2+A5cfB73IKhY7q3UzkTjuC0jlB/ZvNEhfGbbZDt4J9/tcRzRhZWYXaPb8bY6hmKxZ8nIZcDlnzs37fAe9y6xbJljZYiD7NJ2Hv1+eXr8dzy9Y4xhDxuxFBENBe8vGKDr1m27mRXXuYvIJK3vcdvkgWbKPG+q8OTXVXbZ/Uqd/7v6oQ2QY+b95nJhwxfSlsnvy0gO41QSd6ibDAc0JHvvS5ALewtrIcen+PGw3vcgPjm1SyuQu4O2aQ30veA7Puf/R7Dh8dXj4xCFGrkO77iFxCFGJnOi2TJF2z0FtTmGRFl3EJZ5KFRReSNzDFzpMxCOSwsGAgWJ+FDhGvqvGMlsbK7uMMzPUf6d3WvGYOeTka+KNzQVL6VDbMN1YGohsR9x9a8n3hvp1/x1BItnAvc828qDBMIiZLRkh6eF5k3YHAV5YmZGPvSpUDHZv97bn59nOIma7QUecdNwt8yG7f0oqWtywuhHsSqGyluRGJEfaVWdfgTJXRvigrmrgt43CQnurDEe9bjVt2nuGX7FLc1qy2tpHsgmOPmUyD0RPswb3lkF5p+2c7nWuIFVSXZz/QnUd4bqboYFPXQi+vjJlLc4ppXs7ALNsBcaw0geF7Wd/Xg1U83evKNLtiCj2BV6X5rssgTqSg4hLxtozvnHWH5kox0uKuIgMeNUyD2ax6pLJv3LrvHcJGp+lhTE/6ZX3EL5rjde1Od7+8kocGAd03yRTgAvXlGZKRgT/teE0ZAB38D7uC1rm08Yww4phqqF2X7lE7W42YmdIyfw/vP46YlWhhuaCs+O0SEFyfpM7hqiBfm5xkYe1ubfw4APONleV+xol5BbqyLjNEyrHm4KURrii25AoVKEkMTmQteu/Ijs0Lmw4xkLeFhifdbOrz9q2qcJXK23Pm7t9tKbD3mcS14aVQIZPvEFRdsxiyP3mtxvLxZi6zpRXigOIniYlDUQy8QKsnJ6+VCJWWaV7MUcziKCweDHjdOsXp++Xp05QrCz1UIW5iIPteVa7JcP8+mNhvvfuCcl+4twNQpFsaPh3KfIp/iZtvIMd68L46ux8ga9QqZYo9b8jkyDLY4SXm57asQuGFNBh+84R970tBgPlTSVEi2MJS87xjlGQtNtZWi3eTlhyg/LqbmyALMhho6sq1ApVMgnWINtm04x42LpjBVrIzfv6jsp1ic5KMNHfi/j1cXWxEZ87j1ne+PN3n9FlUvm4YGYNM6v3rgTF92ca3EK3YsMkbLOIOfLqLTaoOKkxBDFJkLXr+kvvc6z8XLyyxKohLvWY+b2wPN9bj19ia3HvNk+EVJSiGBfH6I/sMxaE02W1WS94gZPi/M64JicRIXt4eeWzbfrajlFifhpeU4j5tM82qWorLf97df2ZeXI5TNvBZZNrUVQ+a1yRLponLO/jLdZh+9vXkbldXOL9DR5vzQa9ao9ymKCpU0ea8+t3w9PtrYkVh+Z0RYONvbjy9O8vL/VUH0qyYJDQ62TAl+pkJUcRIjebTsHCmwUphS3HiPm4kcN8DzCIpy3Ezm0trwX+9GlSvNuZ0nvjiJHrwB6p21bT7DmV5BG++1DaC1uxeLNrCKm5rsSZOALe1+N7tdsIpKGxC+RpI1WvLPJdN5bqLTyir8g7UVAECKG5ESpprXAs5iMOlDLCrxviuguPmtSEmtxzy8x83kQwbwh9M48s2ESpb5Ho5+2Y58LfGCqpLMZyb6uHHj1/UWzpwJvPSSo7y5omRCJZM0r3bxFmyikEB9L62L6NFo1MhicDEbV5zE9HO3stpGbYMj31XcXFQqKPpDJf3hryaVcQB4Z01b4gJOYRVUAb/HrSxr+677QkEsO1FoMPPaZCELXq7zf/AzE/JN9uXz5PfN7YBWQa4weI9barm0vMdNc/wWNxeYrHYsbgcgPraS/JAcN9HniWVzY1+y0W+NUZWczQIzvuRX3DJlNsqYNjJhHjdZo2Wgr6vSSCPkh3z7NMIy+xtS3IjEyExkugtxf5hR8jCgqMT7LZ1McZIaJ3/DXZi4C5Yk1mMe9qZyrIPpeNzcAhyudJPFSUQeN9NVJT/c4GU/mw+VNHPe99gDuOMOoNCXmJ0pc8Jr2QcY4FfckjSvdmEXbIDZBRWLyKqpvWBjTjyfx+V8riY3vjiJWcrKvJzXjjax9CQVFHmPm8m8GdHuSaMSwiqoAsHiJGxVybzA0p44NJhbiBubIwX7ut5aE3NvXHESXVgDjslQQ15OXmgg0pMdbGcQPK4q/FxgMoRfVPDLbHES73VBoJ5o9S3kvIXdeX8rlp6Cek3VbxzuV9yy5UAZo5CxXnmXJEZL3sjCK7Ujqsqhg9DjBmoHQBChGM2bKXAeN01rcs8WL/Stutb2u//7FixJrMc8wUWJ+DNV2KqVZnPQ/Mqy878t/FxXfkt7FzZu8cz6ugUygKBiaOq8z5wJ7LB9n5wMcNuCNRi/vf8Bmet1Hlp33qnWkDhQZc/3mblFvmitabKxusjjpiqdt1SzYS5AuqEum9vEj8YkFRT54iRpVapjj1E8tsQcGVZBFYhuwC1aCyYPDfZeO0YW72+tUEk2HNv932CoZFw7AG35YcVJTHncMpziZjjqwZVgw2yoJ+9ZMqkUsog8bkaLfhkOr+Xz83jxfE/NJGzf7FfcyrI2sozBUmTASWK0DOak+z/fXbNPp+h+t2GuiupAQoobkQraoZI+yyZXnERioouyJgNWMc+tqqZQzG8DHMUtqfU4IJ1blBhvNO3Ktp0QLBfTVk32f0e+lnjfd/9sM1eF1Ig1nH+ImfN0jhrlvXbzIln23MNSal7t4v2mggWV9nlnzotgrWlSiRCFj6kumNm91nf14omla9Hdd8Hr/p5xOawdreGPRtkc2IDHjfnMpLLsknSOBMQVVAFBOwBWccv7ZSuFBnMLcVPeJd544/xvBz4zId9kewcXLz/abKhhUQ4Txu8YQtIJPd60pRftPd5Nol9V0nsd9LhpieYKfpn37LPjE/Vy1DNUePDnBQC6cuqKWzmXF5AtB8p8Rm7vtYrRkn8usUMfW1uJmvKQ3jvS8gXYdvEZQh43guDQtWZkonLcNK3JABjFzeYUt+TWY56wMCALphLk+2TzlccMWjX/vX4zevMFw8VJwlm7Vq8gDC8/UJxEu+R99P4HHajWvJqX7xUnMaPs53JAW6v3d09OpFhpHIDb33STaXZoHb35ogVZd35ZuhRo3xQuo6M9/DPZHFi+qqTvNzUYkcAew/lMfp4RVVAFOMWtwvY1nueisZRCg/09I/2FPrTaAXBGM8C7p4zkFzMyNvdoTlgCXOkFzlhprjgJf00Gj60DO8zlbV3ecQ1e74HQWgNKrSuioxNYvBjI5dO5V0Xzo7lQyaDXqkZnIQNg17GNxdeZDHDK+V4OST7nGLnnzIGS0TLgdWeMCK2tfb+DVpG44In9mMkBHMR6GyluRDroTnaBUtoK1scwazLAK27e+3beSmw95glaB933zUwVoaGSug2DufEtb+tKLRSTZ87P9Uqv8/KDHrf0lE4T8k2HSra0OOdy/HjHEupy7HHmPGIucaFApmSz6N5KbW3AFbNHhCpvUR43QC4H1hc1UDBtSAi+5y4Kk/b8ciuosnMlHyrJ5ra4/Zx0QoPZIbq5ui7mPW7Bz5TlM0J6UvC4Fed2JM9ZlKGMUyJMhx6HGVRM5qEVbNuXX6gj250nN/cZapYus7HTTsAv5njbmCzeJPS4aVWVZBRa+J95WcvCl5oickYk2LaxBqOqvdYfex/pKeNHHG5hxQrgssvUjJbst97SDVx9tff3009a2GknaK0JhHMkc3625NTz/wYaUtwIJQ7YdlTk50bzZvh4f0vusg2zJgN+xc1tKAkAu+6q5zkBBNZBg8nxAJtHYKOn1xv75jY9CxX/kxkPSYn4LJ/XK70OiKyP5qymcfubKtzCt3hQkT1/vnMOr7jCOacFxkPS1W0uB020v+lKe2HXnO6YGxqAxe9U4LR9mvDwn2sDn7dvip5jZHJgg6GSBq9HwXvFtiAKN+rMmY6Fe84cp9BIL+NxK6/wV1OtrbGUrewufAVYUwtxFldkMeLBgNi0rfTFecA2myNWlMNFshgP4w8RYrSqpCFFn50ne/sMFW77F7ZVxssLlMQXsThlmUfnt40qhHb4jmMwolq9V2TxGCHDa2zQi0xiz8s77wB/+EPQq6+zJohbJaZRFba/IMWNUGJ4VTlqI2KQtReDltcstFBQ87gBYmsy4FWWzJZ7leQAYPtJBsIumNdpeNzcr9/ZBRx+pDf2O/+q57XiLYsb12V8YVG643/llfDP2ApVKqXXgfDzDpitiCk8tiFvpDtm1et9/nzn3LGN59ny7V/coyewj8nke5OhkrxsmfdlcXNgc70WujuDstZ+Gj63yebABouTeJ+ZPOcu7jWjukhubnas5ytWAL/9tff+1dfYuIlZVP3sQnUru0t05V0zHgib+990qGQauOLtFBpwA3EeN335YSLM9hjVz1/m50n3+bPNdnmMGZ/zVQ2+7no1Q6KL/5wHvTwmr3d3jimzLGTDetdoHEPm/STYfadjhy/2YtQ4b7GR4ypWqqwJBnOftjhIcSOUiZpwTDzg3FAjvnlt0rAR3poMAF0dnowzz2aaYZp4uIdYNU3NI6194V29vYCd9ca+aV2ZsoWqpQW44Tr/AOdcBLz4kpkFVUtLeEN0IJg3AyQrvQ7EhUrKywmRHvmpSW+krXi9t7Q454yH9bh97ZSOwOcbN8qOUgx7WZgPlQw5pqZcNgd2S1dQ2uoV4YqbbA5sMJ/InHfDZKgkTzYLbDfB+/55q4CxY73Py/RqBgCIDvHSbWtSlNyPHiVTsAactD1ueS4nymRVyajjquDPidQzgojmSVbEudds8l3jhZyV+FnE4guVFHh5dHLcwoq2mIruiZKle4yWFoANnvrP73huznyvYAckWxOYPAelBiluhDJRN4aJ54yrAJlI1GatyYsWAfvu7cmY+V1P+THT60f8cDShzM6fDyxb5rwuy9oY2eStyjeu8W7nJBYqN2Tklxdm0brBkzF55x5Mme55aO75f+rjvuUWoKc7/PsXBIpbktLrQFD5MZufF/25yfw/G1C63m+5xe9pc4lr5fP8c1LiQ2EfIuZDJcOsvfqy3RxYtgefy5oQxS1JBUU+T9e/2Ew01ABRi+wyA5b2yqwnoydfMJ8LxS3E8yncqzbMlnUH0i8hzv5yql73KFil3vH+mAvfdWSIhZj2uOlcL6J5srbBmySnTu8NFONJ+ixiiYtIMNb+wjZbiMclzBane4xbbvH/vdfhW4qv83mx7CS/w2Au9x8HKW6EMlE3rolbxmsWai5RO5t1lJTRIz0ZPXlWcTMRTuO9tg1awVxLoVuOu6ISOP48r0rC+tXBxWachYoPGfnjpV4y80HHeInI+Txw4omWUshILud420TKWVG+oJknIF96HYiusKXdgy7mc93flq+yl2e0LZnr3T3HIvjy7TzPv6CbGxm9MNEhbMFnQnlwc2BznHW3fZOFrg7xozFJBUV/qCTf7NicB4LHRCGLSsbttSVXMO65iurLpe2NZHqhmcxzBdK34rNjVGnvEEdFGauQm68qGUaaDbiTeKzC5slyLhUsIyjGk+RZxMIOz3iOG/vcAFLxuIVFUegcQ/Q7LF/knXRRjzgX2d9hK46UJMWNSAeT+QSBBtwGZLOLm16DpX+BcEu7biU511LIhhXW1ntjZz1uLlEWKlHICFsG3Pd+n+NNJWRk6dK+IhkRnh9RqCQgX3odiAm/0vVwpO1xY14XkDyn0z3HIuI8bnUjctLnWAS/eDDJyJDkelMPrpkzgVNO9p/fNSuDBhCVCop8qKTJBtxRip+JRVt5xrNXd+fz5nOhfNeMd27KLHNGFhtm+3EB6efNsF6C9V1etIMpjxuruPXmC77qtWaqSgbJZix9wxav6PvaR8gLj5onWSoqPfmuRz7Js4gl7rzqVZX0XrcwVaBNetzCoih0PFru7/C3O2qK72WZInFhhlxA/ndIOx91ICHFjVCGb/bIYkYBcv7nFz0mnmFsZUrzHjfemqxvBWMtVGHWqA1rxOFdYRYqUcgI731wcR9eKiEjbW3O/1Gen6jPZEqvA4KCB+xn2ovB6P21i5/wVfYSWtvdcywiytMJAK8+WSV9jkWkGZIydWSd+JgGD/nlPf1/sxUldfoU8W0S2OlSuzhJxGdGcpUsq+h1684XOAXI/BzpeiJMKChsgQ/TiknaCyZ2iGy5clM5bhWMBaunYN6TKqImW2bUwxzo0ZlAdtQ8ycIaRDvavV9dZ54MQ+eSr2SS8brzBfTkU1DcUvC4ub/Do3/xKvpWVrOKW/T+Mr/D1qu2keJGaBCVz6LrXQK8yYfN+UnSXDYK1uOWZqhkwfYqd+mMm7UUipSc7i6go00sX2ShCgsZCfW4Me8nDRlp6Iu+DPOqOfLDP5MpvQ4IipMYauoL9ENVSeY1n/Mjs5htiGjXE6a4bVyTwfUXNOKjd8ulz7GINMPHqsvLMGVEsFy/SWWR/+322cvCm286ubA6fYoCHjeT7QAi9jf1e7h5bt25gtGxA/z1zhZWMbgksf2N7E2cl6g5vNyE0hnyvqmFeHnGb7Bc0LLBO7aBQ4hWBDUR1adl8Sv6fE6kvJyoeZKFzXnrZJ6rOvNkGDpKeU15Gb44Ojgoo6GSYR43jXG7vwPbdqQqgeIm8zvEnQPdHncDCSluhDJR6SxGPG5sOGNfvJcpy6NPcSukV5wkpxjSwcNaCkVKU+uGMkSpF7yFKixkJNzj5r1OGjLS3OxcD1Gen7DPMhn5RTOv/LCLzfSLk2iJ9yv78BsqZMbulrcXwbYDYHnkjlo8/1ANmposqfL2YaQdPjZcEC5p8pC8rLo6YPp0JxdWp09RlltsmvS4lUcUIDG1yHc9bja4cHIDstkhFpgqqiby89gm1uY9heGf7Tl+uLb8sHvJ1EKcDZXs6s1jC2O0TMtzbkJxY89LnstdTHK9R82TLPXDvPOyuc05Z7JtQJKie79OHl6Lhgr/RGXS4xaWt6xzTbq/A1sYqrbBOw7fDoBF9neIei6Nq6vC9sOCBsHBAiluhDKFCM3NxLTBTj69xYVsCopb3twCn5eRM+T1YS2FmwXNgXu2BN7ywVuowkJGekM8bjxJQkZaWvoKBYQoEEB4FalCQa38r5Oo7f2dfnESc6GSLa1daO12tHNZQwVb3j7wWYX4Ps31PTRly9tHkabqJpJtUlnkowNM91sE+npmGQxLi1oMmzoz/gIlnmXFSMihLx/V1u5Bx+JKsPtke8fUFh16bncaUYvRNZUhn8ojGqOpKBPAr7h15/3Jr2Y8bsG5pjprwuPmvf5gXTveXdvOfCY/8Kh5kmVEk3duujabmydFmAizH1vnv/ZMetzCUmJ0oqrc3yEXbCsKINrjJvs7RI2uKju4VZ/BPXpiQIkKlTTxoOGbhfLv6eAvTmLa4+a9zhvyuLGWwk3rgretqKS5i8hCFRYyEhYq+coT1b6/k4SMeDlu4dtETdSySqKvOAlnldUvTpKuV4n1oLy3zvvCSRaybnl7HjYEhaW3J1l5+yjSTAQXiTb54OJPsanvYlleUYaC4ZzLSMXNVFgds8j/eJPXY8mIx415nWMMZ0Y8bn3/d/bm+604SX2FmRW96JFq6pkH+HPc1nT6V80mjiIav+lQSZ6kc3vYPMkyoq/NTke7hULBMjZPijDRJ3tElT8qoV+Kk2ge4owzwscZVpwkye8QdQ5MzDMDCSluhDJRxUlMIJqQTUxyAGDZnvDOnvSKk+RsM0ohaynctC74IIxS3EQWqrCQEVGo5CO31+Kv13qaWtKQEVdJjK4qGT5+6Rw35rVuk1ae8pjVge5lw4e6uCRpaO2Wt+epDFXcrETl7aNIU68VWXbNhkryHjdzsostTXiPm+Yxoq5nU+MPyzczHU7eWzCruLGXyxJW4UzBkyo4pBaiRbLJRXiZFV7h0cRxRDONCe+GyfYXonnyzl/7HzJucZLOvjBJU/OkCBP1AIZXl/v+Nhn2Ora2Svi+7vXS3Azceot4XRBmyE3yO0QNz6QxZCAgxY1QJp+u3iYsk6t7w7W0OFXivv0tT07bZu+LLPrQ0uppBYg9hYD+BO1aCkUet1yI4hZmoQoLGeE9bm88V4nbr2zwWcCShoy4SmJ0VUnx+0mURH/jc7OVSCtiLAa6j4H6SvEJ7U2guAFO5cM77/RblKtqxDJmn24lrpQYRpoGTNEtb7Y4Cfe3QdmuxzTHGxKMHSGI7prEnSN/dZlY0Pp1BrxijAi2OJSJfmVsNcaPNnYUX5u6RkXXnimlUGSoMam4WZYVmh9pmzDEijyGtgnFLcLjpvDD8vPkA/Pq8P7rwVzajnYrcRuQpJhQItiwZsDsfLxzSBEPE8eYOVNuJldpx0IeN4KIIcxjoINoQtN5iM2f7xQcuOIKYO0aT05Nnfe0ueRiYORIZ+GStF+ZN0bvNau46c7PrqVQHCop3ifKQiUKGeE9bj1d/kGrhIy4SmKUx60s5PJJoiSyYUC9ea5vlubJryiLnip18zhMhVoBzsNt8WLnGm5qCve47bO3wQVhilluIskmDab8nJKGx61gm23ADQAjqsqF7+sonuwcufpT8TV/5pnOdjr4PW5M2XtTIRUCTF2jQo+boWtG5HHTDfPmCZurcpqKW0sL0C2I2NhjRkbreQpE35Oqig8/T370bvB+mvb5TKpKG2CqMTw/h5m7aKqzZdh/4sjA+8byLrNBOfXDnTlBpx1L1OiyKc4z/cHgHj0xoLDljws9+nHsPKIJWXWSnj8fOPFEr29ZmCt+VUsWbW3OwmXyZLUFShpVJV1mzgR+cp4gVLI3qGDFWahEISO8x617i/9v1ZCRM84AonSfsmxw0ZBUSWQtyb2FQuJeaFFEKW5fGT/clw+kQnU2Y6ScuEtzs1PGfsUK4KuHihdkJheEqXrcRB4Og4oiL8l0aBrgFHIy3Yty93HDhe+rDp+fIzvaxYK6tzjb6ShvrORewzluocc05XFL0QOctscNAEbWiBX+sOqBMrgKfy4XlLHso4zW8xSINkboFLRh58nTvxeUU1eTvmcmjfxg07eR6L40pTyIvv/J3ytot2MxGV5bapDiRiTGDaW5+pzhyOeB1g0Z/PRU86VV6wReCJX7raUFmDXL/56oCMe6zzJY8r53zO5utQWKX3HzrMkb1juWI91QzKO/LvC4dTvHTGqh4kNG+JDL7j6Pm0qoAktzM/CLX4T/eCIDWFIl0d/iIXkvtCjCFLcdhtVgbJ04ByAJlmVhpKDsvS7ZLNBYL/7upkOw0kJYnCRFj1sa3rw81w7AxEK/prwMOwyrCbyv8luI5siONvE171aHnTVLJypB7HFLc0FlrOiM4LczNWyhx83gOcnlgO5NZhU3VuEXzePus1b1eQrEFSfRPz/ZLDBmdFBO28aMkWf2HuOGhX6WxiW/cYNlZNwuoisjjeq7LiNH6rdjCZsHq7MZjK4x/6ztT0hxIxLBhtIs+HslzjxgDL5/0Gi0bsgEttOlQZD3o/IQu+UWz4rsIirC8d6rlRA52JMuUNghfviRN+Xdc7eFnXYCxo/XC8Xk49kB4OCD1BsGsyEjIzgjfjZjKYcq8Bx+mPj9NSvLsPgdbzGhqiRaloWKvpPfm/c8bhb0HzIVIe4pk8qP6GEydWSdttwvjqoXPhxNJmj394PErHLF/23Q49Z3YmxAuWlwFKLFicpvIZojQxW3vnzU7m7g1lsVDoaIHLc0PW6G5PR/cRJ9ua6xdfx4YP/pYkNTLiqWPUIuq/DL3DoqCn9/eE9E8+Hd8zNGntnj66ux0wixcdvEfNPSAjB10PDgAzAybpe68uBazNQ0Kfr+Uww893ip2zVWY9exjTh4u9GoMtCiYiAhxY2Qhg+lAYANa8rQ3ZUJVDXUDaUBxHk/SSe5XA6YNy/4vqjcbE93SGhQwgUKO8a1G7zZ1PVerVmjH4q594QRvvdGjbC0LFRuyMiH//afg7O+bymHKvCEPWB//I1RKOQtrXh2FzdksbdQKC6CTFisw4qTmFQghlcFFbewh30SaiuyOGyHpkBopKj4jyrpetzSDZVMMz8kLGza1PkSSUkqO2yO7GgTy8kzhYTmzVOz6rN3U6/BkOYozIVKCq5HY8VJgu/pGlhYY+uaNUBXRwa3XREsOLF2fXKPG6/wZyTWwyoKf9T5NWWAev3VoJzW9c6VqvvMBsKff7rzjfv7bmHy0V2RJsYNOM/Q/bg8N1PzJP/7TRlRJ4y2Sgo/vjE1ldi2sUY7raEUGPzfgOgXRKE0LL3dwfd0QmkAcXha0kl66VJn8uIRedyieoklWaD8/XFvjPWN3sOwmyv0oRM6wntnTE2iFVwUTVwZ/CSETZgvPp/RjmcvHqPocbON9v4LC5U0ucjnc9zG1VUaS6KuLMsErIyDJ8dN8F6qHjdzskUVZk2eKhNhpGFz5OZQj5t3gNWrnf2Twi7E2T6aJsMCeUx5ZkRnJc1QSd2CXLyxFQDWrAhqWKvX2omeRSKFX3a6Sqrwh7cwMKM0z58P/O43QTmb1vu/kOozu6UF+Pv/iU/O1Verr5PY35ctUFbO2QB11houfDEkU9c8L6e2wow3jL8s4gqMDSa2nm9CpIoolIZF5K3SCaVxmTba318l6WThNn/m4Yt5ANGKm+wCpaUF+OVF3t+1jUGPG4+KghvoPWWqvx0n1+RCKqz4xvTp+vHsxWP0Tc42gO6+BaGJBVuYDJPhhvwxOjbrt6Zg4cdqMiwtRb0t9QbcwT5uaXncCsbli72RyQibI7s2iyXxEXXt7cLNImEvPeN93EIwZQRJ2wPMo3q9RBlbRc+6xe+UJ3oWhSn8MiRV+MPOgYn51z1P3V3B66N1vfiaSXKeXI/Yww+Ix/rray0ljxj/+/Yya7DySrH3VMeYzl/35qq0cmsOU7lz3PgqDfQTLBW2nm9CpEZYKA1Lb0iYoWoojcukBn+sc9LJokHcggR5keIW0WcMkFug3HIL0MkseNhWA1tCFDcTCm5aDSWN5kH1Q9NLtrKkux408R0sy0JtedASaGqd2dICXHOVX9j991nGchSAoBLeH8VJTBzBRDhgFPxDcN1ac0n9rFez6HEz6S0UvZfwAGFzpG2HhEpy56a+XrhZJOw87s9xS29JYqpqa5oe4KbaysB7qp7xKGOrKFXgjqsbEj2LwhR+ll9+d0ToZ0kU/rCfzoRh0T1PXR3hoZI8sueJ9YitXx3ShqFXzSPG/76s8bwiRHEzsdZwMedxS+e5xIsR1QYYrGw934RIDRnLWlh+mGooDZtMzXLLH6xEC1m3+TNP0lBJIH6B4iq4fL6fC98TjUVXwU1LKRpsZXNFRURMeQ2/PH44tmus9r1n4ry7Ftn/vsI/Hfd0W8ZyFIB0PW68qIqMUyhmn+Zg/5+kiHOKtMUCcOaRK67wC5vzc3MKM5tH6C6lTN5SwtL0CeWHzZEAcOdvgpOeW1UScKrYTpqU7HiAf4zsEtPENRnWE9GUUigao6mfdJemxmB7CoVzEmds5Z81995Yh01rHcVC9lkUpvC7PPznWrz/WlARdUmi8IfNs7o5kex5EkXEbFoXHrYXd554j9i7r4grGbJGZFmPmOj3ZStCl1eE5yvqrjVczFWV5D1uRsQG7iMKlSSGFDKWNVYRWr/af1klDaXhk6l5WUkWsm7z5+B4RaGS4TOGzALFVXBFSiEQ7nED1BVcl7T0q7Q8eWlRLlicmfoODZXl+NxI/2pDVzRrke3hrOOsMcREjgJ/jZj8bXlP+P7bjsLhOzZhlIGyy0IPh4GlsjvPXHWlX1au12BSf8phdcLS9Anlh82RAPDArXWYM9OvfBeY4iSnn64W4hy26DPhFdtz/PDUZAMQet5NeYBryssCRSBU7tM4Yyv//GMX8rLPoiiFH/DnXPEkVfgtiOcBXaMce562dAZltW0IXyLHnSfeI1bIW7j6nGGB7ViDsaxHTPT79kTkuLHorjVcTD0+eH3KlKE1zRD4gYYUNyKWOMuag4VLTh2Bv/+/Glxyiv/Bk8SyFpZM7eJOSEkWsmec4fUpcxF519hqaTwyCxRXwQ3zuIXluLmo5Iq4pDUppVksIA1ExVRMfgf+NOsoP8EcFL+sni1B2To5Cvx5MBpuyInKZqzUQl5Ex0sKO8/wcwGb/6qrMIuuD7M96ILvqZx20Rzpwi/A3XmyshKYPTv5sYBwD5XI8JKU+oosJtQHS96bKrRUIyiNbnIhxXv0VO6jOGMrf83zRkuZZ1GUwg8AdiF83EkVfsuyhJ5OXeMTe554w2pHmxX6LHcJO09hHs9Xn6zGQ7f5KwUXuPMk4xET/b4yOW4uOmsNl/Q8boNrzTEQkOJGxBJnWXN55x+VuPWSRqxc6s3ISSxrYcnU7MKBj92WWcg2NzvNnFkKBSugqIV53GQXKK6CG664Rd9uKrkiLoMhx60/SNPjBpi14sUV/BFVatXJUUjzt+TPi4kFeFG2YJmv8034eYZfxIq88aoKs+j6MKkwC/u4KcgXzZEu/Hzmetxuu029AmyY8mpKuRIZa0xdkzVCj5sR0QBEuajJZcQZW/lrnH8Wyj6LohR+O6QtnKrCL/pNdY1y7HniPW5R3jaXsPMU5fHsEnj2WGQ8YqLf94M3PDfborfFTdZddNYaRdT6tQdIsx3L9sNqYCFY5G6wQ4obEUucZS2KJJa1sIUsu3DgLUmyC9mZM52mzuxDhg9pDMtxk12guAquSqikaq6Iy2D1uIXlo6giimM3msvF/60oWqbgT1jeqHLvrBQVNz4MLf08LpMKczBUkkdVYRalVRitiCn5ngyiORIIno9s1sKdd6r3WgTCq2GaMi6IpJiaB+oE5cpNKuNVZXzbjuSy44ytAY8bo8gleRZFKfyFkIW9qsIvymfTvV7Y88TnoLdtir5To85TlMezEBHZ4xLnERP9vvfeVI+3F1TgvVcrcPfvwxUV3bWGS8GQ5pZmCP+XmhrxtclNmDxCv6F3KUGKGyFFlGUtjCSWtaiFLBsyVlkVnCxkF7IzZzrNnefMcSxWvIeNn1ArK5FogeIquIW8hU3rgrdWVHES1VwRl7T0qzQb4gJOwQ+TiPJY0qyeqLpgG4iCP2kq4Y2VfguvUa+S5HsyyCjMIo8boKYwp+9xE72nLp+dI5uanPdynMftySf0lDYgXLEydW5ESoMpj9vI6go0cAYnk3cWf5+qLGTjjK38s4+9rpM+i8IUft7jlvR5yiO+l9RkubDniQ9Z3ByjuEWdpyiPZyGmejUQ7xET/b49WyxcdtpIXHzySHS2h49dZ63BXvd8X1BVAh43w1pJmpVqB4qt7xsRqRBlWQsjiWUtaiG7fJE3WWxcK2gcmmAh29zsNHlevx6orfF/lut7mDU1OQuXxYuTP2RcBXfpv4KhCmEeN51cEZfB4nEbVe2Fc0wbXY86wx43UZPvNKsnqloHZQr+RKGSo5BmqOSwqujQHB1MVpWUUZjDPO8qCnPqOW6i4iSa8t05csUKYNEi4OGH/QLHj9OTD4jnK9G9q4qokbWpuSxjWThg21G+9wxFjQlR9WxEGVt5A4SrTKg+i1yF3yezT3HTeZ6yiO759m798ohh56k9QnGLO09RHs+oXHpA3iOWtjFdxJfHD8fEhmrM2GaYsfL6/Bw52NIzBgJS3AhpwixrPCqWtaiF7E0XNaJto4X1qzK472axyzvpQjabBSrL/RPE+T91FiorVjgLF5VwDlfBXfavoELSLSg2AejliqSNqdK8Lrtu04ja8jIMryrH9sNq43dIiMjjZvI78KJU14IyBX/KInRalRyFNKNeGyvNKuAsomGrGirkKuSGy046zwi9BCarSgo9bmZkZ7NOVc2dpwWOoC1bNEZTVR8BoCBQ3EwSUAJTPNyWXEiyWAxRxla+j6mryOk8i/j9zjrL0n6esojupQkN1YItkxF2nja3hl+PcecpyuMZFyop6xFL25guorYii922GYZmA+fdhX8+b03VH9MivactsVUycyaw775Ovse8eY4V2qWpyZl0Zs9OPjlELWTXrszi9H2bYNvhBUSUmsByE8S2Ey1MGpZcDs/MmUDZ8KAHoptLSq6sdCZS3bCjNFHpIRRFbXkWX5002mi4GIsox81sVUkurENxEetaZKO8P2Vl4tWgcu8sowFdfqqyZRhdU4G1nT2YYjifQKicKMqSUZjDclSB5POMyGhg8tIXFicx/DsHiweYlwmYLWiTV9N1lDEdjVVbXoaOXmeFL/IeyuI+W2bN8ud18h43C3phjCLGjwMm67dxLMJfd1NG1GLH4WaMf6LvLfK4JXlmn3EGcO21wbz9fESoZFKPWNjvK5JbqmsNPs+dPG7xkMeNSAwfSvPmm/qeqrhk6lyvFaq0qS5k+QeBSR3lwP38t1Y+71XHNBU6kha7jm1ExgImNlQbXUy5pKW0AelXleRRPT0yBX8yISkE6jkK6Xoh9powAodsNxqfH2VYcRNVlVT8SWUq5PI5XS4q84zIaGA2VDKI6cudV7JMiBfJMFVREgBqyv1nRtR7TZc9xw1HmWVhQn0VagUtAnSYsc2w4uudhuvdT6K8Rf5Z+utrLePPojSvw4aKLL4wusFoU2X++3e0ebJVntlhHrEoj5uKR0z0+7qU+loDAEZU+5vODbIORAMCedwIZdxQGlOyTj/daXqbFFNNYE3OF3xeVXmZhTfftFBf7yz+dAqRiDA59m0bazChvnrQ9XADnIVyxvIXJ0jze+h4N0QW2c7NFmrqnMF3bQ7K1slRSFdtc+6n+hRCJk2GSsrMM2GhkirzjGicJqP4hD3ujHvc+GPqy0/b4/b5UfVYtbkbW/IFjK+vwudHmS8HPq6+Cl+ra0oltGtEdQUO2m4UMjBzT7nG1osvdvI0W9uB5czno0eF7qqM6bPCyrNTn82Ai39p4fIfQeuZLfKIiYqT6HrE+N+3vV1v3P0Jb1RJ07C7tUAeN6Jk6O9k26DHzdyEIVLcpk93FN1Sn0iBwdd4m4VfAIr6LplC55oRWWSvmD0CPd3A6hVlePaBmsA+pZwPmRaiU6xTcCZunhGFSqrOM6Lrw2SVM5PeyNBjpOFxM/yb8lRly3DoDmNw1E5jsce44cbbjrikmY/TWFlu3BDiGlt3+RL3mw6CxTJ7rsNaDZhkmyYYeWbzHjHe42bSI+b+voNprWFZFib3hbyOr68a4NEMDkhxI0qG/k62DXjcDD67eMXH5KJEhMmKbIOdCi7kKq1FG6Af1sEX/Pn3wgqctk8Tzjl0tK9/oW4p7cGM6BTrKD9x80yvwOOmOs/YnHvNAtDcYG5xYrodgOoxkyL69UzPkRnLokIHIQSMlikcw/R1yI457eIzgFnjJZtecsWv/J+ZKNwy2Pni6Hr856TR2J0JESbCodUeUVKkWbmSh5+WTRZvyFr+W8tkxTSXfZpHIJuxMKq6AmNqKuJ3GCJUc2bGGkP9ZkSYWBjyFtmOtkwxB2Uw5CikjWgBqLvIj5pn2HYAuvNMnltfHrljE7ZtDHpSVRFdf2k7y03Mk+LflJYj/YWpfpSRxzAtrx88bjuPcaoXVWQsNNUmDP+RIJuNz7EdiliWhdqK7KDw/JYCg8CRSgw10qpcyZNGtTSXYKik+UXJ6JpKHLljEywMjlCX/mJcfSXWdHqJY2meG1PXTH/kKLDX+2CLhLXgz9EzYQhh5xkWu2BunqljwnQbK7PG5wHRWUj7pzXicUs5VJJIxmA49ez8xXuyTbH9sBrUVWRRX1GWmiGhP/LziK0bUtyIkqR/FrL+v00u8HnZaS1KKBQoyIT6ary/th29BRs7DDPn3RBh+vybLPjDs8OwWize0IG8bePL40ekc5CUsCx/UQ9T95M7z9z/offeq69Y2HF7M/NMY1U5po6sw8YtvfjSGIleBAkRFidJO1TSiAyBx43msgEjjVYhpn/O6qynSFWnlLdsWel42lj6IcqT2MohxY0oadJcyKZZVZJXAtMoq0+IqSjLYN/mkdiwpRcTDOYTiRhMinNlNoP/3H40evIFNFQG+wyWMhbnczNtDZ+xzTAsXNWK5oYqTB1rVnYaFQ1dRBUk074kzVSVDL5HHreBw9Spnz62EQtXtSJrWWiuN9ekGQB2GlGHT1q7kCvY2HXsMKOyCWIwQYobMWRJs6okDy1K+pfGqnI0VqWvnAy2n7UqW4aqFHP+0sLiYiVN30/NDdUYX181qBRxoH/aAfQXg7mS7WDHVLTJtg3VqMmWoaa8zHhYcEVZBoduPwYF2x7UxbjI4UboMnivfoLQJM2qkjxpFCchBh7KLewf+LOchiFksCltgPj6S+NrbNvoeE9GGDKGWFYwOI+MWwOHqYWgZVkYU1uJupQq+ZZlrEGttAEgzY3QhjxuxJAljf5EYVCo5NZDmWUhT4kK/YrFudwoH8qhTORxS+Hc7DymEePqqjCy2lz12ozlr7pZRr/pgEGnvv+g4iSELqS4EUOW/gyVpDCgrYf9J47Ex5s6MMFwDgcRDnv3ZC2LPJ19iHL90jg12YyFberM5otaXMUZ8rgNHIPR2zxYIbWN0IUUN2LIwueCpPnsosfi1kNjVTmmU3J8v8Lem7TA9xCdi8GS48arnNTHbeAgva0fIc2N0IRmSmLIEvC4pbjgIQ8BQajj87iR4lZEdC4Gy1TDz4kUlTBwDBZlf2tgXL3nuf7cyLoBHAkxWCGPGzFk4Rc9g2XBQxBDDXaRT54Zj4xlIWMBBcaKP1imMX6+pbzFgYNOff9RV5HFXhNGoKMnh20b0+0zSmyd0BOQGLLwC0DTBt/xjGVtRPXg6ptFEKVEoUC5UGGwCk/ZIMr/Y/OqLAy+1hpbE3Tq+5em2kpsP7yWvMyEEuRxI4YsAY+b4cfXzmMaUJHJoLEqi8ZB1vCYIEqJHFPEolxUSnEIk81k0FPIA3B6XQ0W+PDXwaJwEgRBDCSDZ5YnCMOkHSpZlS3DLmMbsf2wWrOCCWKIkWM8btRaww9rta8YREot63Ejz0P/M2WEk1/VUJEdVAo/QQx1Sv5uvffee7H//vtj+PDhqK2txc4774yrr74avb29SvLefPNNHHfccWhqakJVVRUmTZqEc845B2vWrDE8cqLU4RU3KolMEKUPedzCGUwLcL7FA9G/fH5UHfZtHoH9Jo4kbydBDCJKepY/77zz8K1vfQsvvfQSdt99dxx66KFYvnw5LrjgAhx44IHo6upKJO++++7Dnnvuifvuuw/bbrstvvGNbyCTyeCGG27Af/zHf+Cjjz5K6ZsQpQif40bPLoIofcjj5qfAhJEOJuMTO9TyQaRwbi1YloVRNZV07glikFGyd+yDDz6I6667DnV1dXj11Vfx97//Hf/7v/+LxYsXY9q0aViwYAEuuugiaXmffvopTj75ZORyOdxyyy147bXXcM8992DRokU48cQTsXr1apxwwgmwbWqyMVQIeNwoRZsgSp5yCqvz4VfcBnAgCWHDXweTp5AgCGIgKdnZ8le/+hUA4MILL8T06dOL748aNQo33XQTAOCGG25Aa2urlLzf/e536OzsxMEHH4zZs2cX3y8rK8Mf/vAHNDY24vXXX8cTTzxh8FsQpQy1AyCIwQd5CPywrQDKBtEk1ssqboNJ4yQIghhASvIJuHLlSrz++usAgBNOOCHw+d57743m5mZ0d3fjsccek5L5wAMPhMqrq6vD17/+dQDA/fffrzpsYpARrCpJEESpQx43P4M1VLI3Xyi+zpIyThAEIUVJzpZvvfUWAGDEiBGYNGmScJvddtvNt20U7e3txfw1dz8deWF0dHRI/SNKg2CO2+BZ9BDEUIUacPvJD9JQSTYpgZRxgiAIOUqyj9vSpUsBABMnTgzdprm52bdtFMuWLSu+DpOZRF4YdXV1yvsS/Q8tFghi8EEVCP00N1Tjk1anUNeomsoBHo0aVHCGIAhCjpJU3Nrb2wEAtbXh/a9cJamtrU1aXpTMJPKIrYPBFFZEEIQDH+I81PniqAb05guozJahub5qoIejBBnRCIIg5ChJxW2wsnnz5tht2traMG7cuH4YDUEQxNZHlvq4+ajMZrDn+BEDPQwtqOAMQRCEHCWpuNXX1wNAZD6YqyQ1NDRIy3NlNjY2askLI8pD6JLP55XlEwRBDEV2HtOAf65pw8jqCtRkywZ6OIRhyONGEAQhR0maubbbbjsAQEtLS+g27mfutlFsu+22xdfLly/XlkdsPXxxVD0yFjB1JOUnEkSpssPwWhy6/Rjs2zyCightJUwb7RhUq8oyGD1Ic/MIgiD6m5JU3HbZZRcAwPr160OLhbzxxhsA4OvxFkZDQwN23HFH33468oith51G1uHrk8fi86Pq4zcmCGLAqCkvI6VtK2LH4bXYe8IIHLDdKJSRx40gCEKKklTcJkyYgBkzZgAA7rrrrsDnCxYsQEtLCyorK3H44YdLyTz66KND5W3evBmPPPIIAOCb3/ym6rCJQQoVKSEIguhfLMvCmNpKVFPoK0EQhDQlqbgBwM9//nMAwJVXXomFCxcW31+/fj3OOussAMDZZ5/ty1d74IEHMHXqVBx00EEBeeeddx5qamrw1FNPYd68ecX38/k8zjrrLGzatAkzZszAV7/61bS+EkEQBEEQBEEQhBKWbdt2/GYDw7nnnovrr78e5eXlOOigg1BbW4unn34amzZtwl577YUnn3wS1dXVxe1vv/12nHrqqdh22219vdtc7r33Xhx//PHI5/PYY489sN122+H111/HkiVL0NTUhAULFhRDKtOira0NjY2NaG1t1SqEQhAEQRAEQRDE4CaJblCyHjcAuO6663DPPffgy1/+Ml5++WU89thjmDBhAq688ko888wzPqVNhuOOOw6vvvoqvvnNb2LJkiV44IEHkM/n8V//9V/45z//mbrSRhAEQRAEQRAEoUJJe9y2RsjjRhAEQRAEQRAEsBV53AiCIAiCIAiCIAhS3AiCIAiCIAiCIEoeUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEqc7EAPYKhh2zYAoK2tbYBHQhAEQRAEQRDEQOLqBK6OEAUpbv1Me3s7AKC5uXmAR0IQBEEQBEEQRCnQ3t6OxsbGyG0sW0a9I4xRKBTw6aefor6+HpZlDehYOjo6MG7cOADAp59+itra2gEdD1H60DVDJIGuFyIpdM0QSaFrhkhKqV0ztm2jvb0d48aNQyYTncVGHrd+JpPJYMKECQM9DABAWVlZ8XVDQ8OAX7hE6UPXDJEEul6IpNA1QySFrhkiKaV4zcR52lyoOAlBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQw24CYIgCIIgCIIgShzyuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuA1R7r33Xuy///4YPnw4amtrsfPOO+Pqq69Gb2/vQA+NKCF6e3vx9NNP46c//SlmzJiBYcOGoby8HGPHjsXXv/51PProowM9RGIQcP7558OyLFiWhcsvv3ygh0OUMD09Pbj++uux9957Y8SIEaiqqsKECRNw2GGH4Z577hno4RElxvLly3H22WdjypQpqK6uRlVVFSZNmoSTTz4Z//znPwd6eEQ/8+GHH+L3v/89TjnlFEybNg3ZbFb6ufPUU0/h8MMPx6hRo1BdXY2pU6fiF7/4BTZv3twPI5fHsm3bHuhBEP3Leeedh+uuuw7ZbBYHHngg6urq8Mwzz2DTpk3Ye++98cQTT6C6unqgh0mUAE899RQOOeQQAMDYsWOx6667ora2Fh988AHee+89AMDs2bNx8803w7KsgRwqUaK8/PLL2GeffWDbNmzbxmWXXYY5c+YM9LCIEmTFihX4z//8T3zwwQcYNWoU9txzT9TW1qKlpQVvv/02DjvsMNx3330DPUyiRHj11VdxyCGHoL29HePHj8euu+6KsrIyvP3221i6dCmy2SzuuusuHHfccQM9VKKfcNe3PHHPnd/+9rf40Y9+BMuysM8++6CpqQkvvvgiVq1ahSlTpmDBggUYNWpUmkOXxyaGFA888IANwK6rq7PffPPN4vtr1661p02bZgOwf/zjHw/gCIlS4umnn7aPOeYY+4UXXgh8dvfdd9tlZWU2APuOO+4YgNERpU5HR4c9efJke/z48fZRRx1lA7Avu+yygR4WUYJ0dnbaU6dOtQHYc+fOtXt6enyfd3R02G+99dbADI4oSf7jP/7DBmDPnj3bd73k83l7zpw5NgB72LBhdldX1wCOkuhP5s2bZ//kJz+x58+fb//rX/+yTzrppNjnzsKFC23LsuyysjL7scceK77f0dFhH3TQQTYA+5hjjumP4UtBitsQY8aMGTYA+/LLLw989uKLL9oA7MrKSnvTpk0DMDpisDFr1iwbgH3QQQcN9FCIEuQHP/iBDcB+9NFH7ZNPPpkUNyKUiy66qLgIJ4g41q1bZwOwAdhr1qwJfJ7L5ezq6mobgL1w4cIBGCFRCsg8d4477jgbgH3aaacFPlu2bJmdyWRsAPa//vWvNIcqDeW4DSFWrlyJ119/HQBwwgknBD7fe++90dzcjO7ubjz22GP9PTxiELLLLrsAAFpaWgZ4JESp8dxzz+H3v/89vvvd7+Lwww8f6OEQJUxvby/+8Ic/AAB++tOfDvBoiMFAZWWl9LYlE+JGlBw9PT3FXH3RunjbbbfFXnvtBQB44IEH+nVsYZDiNoR46623AAAjRozApEmThNvstttuvm0JIorFixcDALbZZpsBHglRSmzevBnf+9730NTUhN/97ncDPRyixFm4cCHWrVuHcePGYccdd8S7776LSy65BGeccQYuvPBCPProoygUCgM9TKKEqKurwz777AMAmDNnjq+wWqFQwNy5c9HV1YXDDjsMzc3NAzVMosRZtGgROjs7AXjrX55SWxdnB3oARP+xdOlSAMDEiRNDt3EnOHdbgghj1apVuP322wEAxxxzzMAOhigpfvKTn2Dp0qV44IEHMHz48IEeDlHivPPOOwCACRMm4MILL8TVV18Nm6mbdtVVV2GXXXbBgw8+GPn8IoYW8+bNw+GHH45bb70Vjz76KHbbbTeUlZXhrbfewsqVK3HSSSfhhhtuGOhhEiWMu9YdNmwY6uvrhduU2rqYPG5DiPb2dgBAbW1t6DZ1dXUAgLa2tn4ZEzE4yeVyOPHEE9Ha2opp06bhjDPOGOghESXCE088gVtuuQXf+c53cNRRRw30cIhBwPr16wE4Fu2rrroKZ511Fj788EO0trbiySefxE477YS33noLRxxxBLWsIYpMmTIF//jHP/DVr34VK1euxEMPPYT7778fS5cuxY477oj9998fDQ0NAz1MooQZjOtiUtwIgkjMmWeeiaeffhojR47Efffdh4qKioEeElECtLa2YtasWRg9ejR+//vfD/RwiEGC613r7e3F8ccfjxtuuAE77bQTGhoacPDBB+PJJ59EVVUV3nvvPdx9990DPFqiVHjppZcwbdo0vPfee7jrrruwatUqbNiwAY888gh6e3sxa9YszJo1a6CHSRBGIcVtCOG6gTs6OkK3cRsNkpWKCOPcc8/FbbfdhuHDhxet4QQBOD10VqxYgRtuuIEKAhDSsCFKIu/9xIkTccQRRwBweksSxKZNm3D00Udj7dq1uP/++3H88cejqakJw4cPx5FHHonHH38cNTU1+NOf/oRnn312oIdLlCiDcV1MOW5DiO222w5AdAVA9zN3W4Jg+fGPf4zrr78ew4YNwxNPPFGsKkkQgFN1K5vN4qabbsJNN93k++zf//43AOC2227DU089hbFjx5L3hAAAbL/99sLXom0+++yzfhkTUdo8+uijWLt2LXbYYQfssccegc+333577LHHHnj22Wfx1FNP4YADDhiAURKljrvW3bRpE9rb24V5bqW2LibFbQjhLrLXr1+PpUuXCitLvvHGGwCA6dOn9+vYiNLn/PPPx29+8xs0NjbiiSeeCK3ARAxtcrkcnn/++dDPly1bhmXLlmHbbbftx1ERpcz06dNhWRZs28a6deuEVQDXrVsHwMs3IYY2y5cvBxDtBWlsbAQAbNiwoV/GRAw+pkyZgpqaGnR2duKNN94QKvilti6mUMkhxIQJEzBjxgwAwF133RX4fMGCBWhpaUFlZSX1XSJ8XHjhhbjmmmvQ2NiIJ598sngdEQTLpk2bYNu28N/JJ58MALjssstg2zaWLVs2sIMlSoaxY8di7733BiAOhezt7S0aA3bfffd+HRtRmowfPx6A48lvbW0NfN7b24uFCxcCQGj7I4KoqKgohmGL1sWffPIJXn75ZQDA0Ucf3a9jC4MUtyHGz3/+cwDAlVdeWZzUAMcLd9ZZZwEAzj777KKliiDmzJmDq666CsOGDSOljSCIVLj44osBAP/93/+NV155pfh+LpfDj3/8YyxZsgT19fU49dRTB2qIRAlx2GGHoba2Fl1dXTj99NOLeUiA01T5hz/8IZYvX47y8nIce+yxAzhSotS58MILYVkW/vznP+Pxxx8vvt/Z2YlZs2Yhn8/jmGOOwdSpUwdwlB6WzTZLIYYE5557Lq6//nqUl5fjoIMOQm1tLZ5++mls2rQJe+21F5588klUV1cP9DCJEuDhhx/GN77xDQBOE8ovfOELwu1GjRqFa6+9tj+HRgwyTjnlFNxxxx247LLLMGfOnIEeDlGCXH755bjooouQzWax++67Y+zYsVi4cCGWLVuG6upq3HvvvUXrOEHceeedOPXUU5HL5TB69GjMmDED5eXleOONN7By5UpkMhnceOONOPPMMwd6qEQ/sXDhwqITAgA+/vhjrFu3DhMmTCh6aQEnH3ubbbYp/v3b3/4WP/rRj2BZFvbbbz+MGTMGL774Ij777DNMmTIFCxYsKJmCW6S4DVH+53/+BzfeeCPefvtt9Pb2YocddsCJJ56IH/7wh1TanShy++23S1m4t912Wwp9IyIhxY2Q4YknnsDvfvc7vPrqq2hvb8fYsWNx0EEH4YILLigZizdROvzzn//E7373O7zwwgtYuXIlbNvGNttsg7333hs/+MEPKLR2iPHcc89JFaJZunRpoNjIU089hV//+td47bXX0NHRgYkTJ+LYY4/Fz372s9Dm3AMBKW4EQRAEQRAEQRAlDuW4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEFsFlmUl/rf//vsDAPbff39YloXnnntuQL+DCa677jpYloX//d//VZbR2tqKkSNHYo899oBt2wZHRxAEQaiSHegBEARBEIQJTj755MB7q1atwt///vfQz6dOnZr6uPqTtWvXYu7cuZgxYwaOOeYYZTmNjY342c9+hp/+9Kf4y1/+Ijx3BEEQRP9i2WRKIwiCILZSnnvuORxwwAEAEOk5Wr58OTo7OzFx4kTU1NT01/CMc/bZZ+PGG2/Eo48+isMPP1xL1pYtWzBx4kRks1ksXboUlZWVhkZJEARBqEChkgRBEMSQZ+LEiZg6deqgVto2bdqE22+/HePHj8ehhx6qLa+qqgonnHACPvvsM9xzzz0GRkgQBEHoQIobQRAEMeQJy3E75ZRTYFkWbr/9dnz44Yf49re/jTFjxqC2thYzZszAQw89VNz21Vdfxde//nWMHj0a1dXV+PKXv4ynn3469JhdXV349a9/jT333BPDhg1DVVUVpkyZgvPPPx/r169P/B3+/Oc/o6OjAyeddBIymeDjvbu7G9dccw123XVX1NfXo6KiAmPHjsWMGTNw/vnnY8OGDYF9TjnlFADAjTfemHg8BEEQhFlIcSMIgiCIGBYuXIhdd90V//znP3HQQQdh5513xhtvvIGjjz4a9913Hx588EHss88+WLFiBQ466CBMmTIFr7zyCg499FAsWLAgIO/TTz/FHnvsgZ/85CdYvHgxZsyYgcMPP7yoXO2222745JNPEo3xwQcfBAAcfPDBgc8KhQKOOOIInH/++fjoo4+wzz774Nhjj8W0adOwdu1aXHPNNVi+fHlgvy996UsYPXo0XnvtNXz22WeJxkMQBEEYxiYIgiCIrZRnn33WBmDHPe72228/G4D97LPP+t4/+eSTi/tffvnldqFQKH52/fXX2wDsCRMm2MOHD7f/8pe/+PY977zzbAD2wQcf7Hu/UCjYe+21lw3AnjVrlt3W1lb8rLe31/7xj39sA7APOOAA6e/Z2dlpV1RU2JlMxifP5fnnn7cB2Lvssovw89dff91et26dUPbXv/51G4D917/+VXo8BEEQhHnI40YQBEEQMey+++74+c9/Dsuyiu99//vfx4gRI7BixQocfPDBOOmkk3z7zJkzBwDwwgsvoLe3t/j+3//+d7z00kv40pe+hJtvvhn19fXFz7LZLK6++mp88YtfxLPPPov33ntPanzvv/8+enp6MGHCBJ88l9WrVwMA9tlnH+Hnu+22G0aOHCmU/YUvfAGA43UkCIIgBg5S3AiCIAgihsMOO8yntAGOkjVp0iQAEFZwHDlyJEaMGIGenh5fztqjjz4KADjmmGOQzQa78mQyGey7774AgJdffllqfK5iFqZ8TZ8+HWVlZfjTn/6EG2+8MVHYoyvTPQZBEAQxMJDiRhAEQRAxTJw4Ufh+XV1d5Oeud2vLli3F95YsWQIAuOiii0Ibg990000AnL5sMrS2tgIAGhoahJ/vsMMO+O1vf4ve3l6cffbZGDduHLbbbjscf/zxmD9/Pnp6ekJluzI3btwoNRaCIAgiHagBN0EQBEHEIKrSmORzlkKhAADYe++9scMOO0Ru64YpxjFs2DAAQFtbW+g255xzDr71rW/h4YcfxoIFC7BgwQLcfffduPvuu3HxxRfjxRdfxDbbbBPYz1UKhw8fLjUWgiAIIh1IcSMIgiCIfqS5uRkA8I1vfAM/+clPjMgcM2YMAMS2EWhqasLpp5+O008/HQDw73//G9/73vfwj3/8AxdeeCHuuOOOwD6uzKamJiNjJQiCINSgUEmCIAiC6EcOO+wwAMC9994L27aNyPzCF76AiooKrFixAu3t7dL7TZ06FRdccAEA4O233xZu4xZI2XXXXbXHSRAEQahDihtBEARB9CPf+MY3MGPGDLz22ms49dRThXlsGzduxM0334xcLicls7q6GnvuuScKhQJeffXVwOfPPPMMHnvsMV91SwCwbRt/+9vfAADbbrutUPY//vEPAMCBBx4oNRaCIAgiHShUkiAIgiD6kUwmgwcffBBHHHEE7rjjDtx3333YeeedMXHiRPT09GDJkiV49913kc/nccoppwgrT4o46qij8MILL+DJJ58MNOF+55138MMf/hANDQ2YPn06xo0bh66uLixcuBCffPIJGhsbcemllwZkvvXWW1i/fj123313Yf4bQRAE0X+Qx40gCIIg+plx48bhlVdewc0334zdd98dH374Ie677z4sWLAAAHDmmWfi73//O6qqqqRlnnrqqaitrcWdd96JfD7v++xrX/sa5s6dixkzZmDJkiW4//778dxzz6GxsREXXngh3nvvPXzpS18KyLz99tsBAP/1X/+l/F0JgiAIM1i2qQB7giAIgiAGlLPPPhs33ngjHn74YXzta1/TkrVlyxY0NzejvLwcS5cuRWVlpaFREgRBECqQx40gCIIgthIuvvhiDBs2TBj2mJTf//73WLduHf77v/+blDaCIIgSgDxuBEEQBLEVcd111+G8887Dvffei2OPPVZJRmtrK7bffnvsuOOOeOWVV2BZluFREgRBEEkhxY0gCIIgCIIgCKLEoVBJgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBInO9ADGGoUCgV8+umnqK+vh2VZAz0cgiAIgiAIgiAGCNu20d7ejnHjxiGTifapkeLWz3z66adobm4e6GEQBEEQBEEQBFEitLS0YMKECZHbkOLWz9TX1wNwfpyGhoYBHg1BEARBEARBEANFW1sbmpubizpCFKS49TNueGRDQwMpbgRBEARBEARBSKVQUXESgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgSh9oBEARBEEJ6enqwadMm2LYtVaaYIEoF27YBAJWVlWhoaEAmQ3ZqgiAGPyWpuPX29uKFF17A448/jueeew6LFy9GR0cHRo4cid133x1nnHEGjjjiiEQy586di0suuSRym3/961+YOnWqztAJgiC2CgqFAtatW4exY8fSopcYlNi2jS1btmD16tVoamqi65ggiEFPSSpuzz//PA455BAAwNixY7H33nujtrYWH3zwAR555BE88sgjmD17Nm6++ebEVuCdd94ZX/rSl4SfNTY26g6dIAhiq2Djxo0YOXIkLXaJQYtlWaiurgYAtLW1YdiwYQM7IIIgCE1KUnHLZDI45phjcO6552KfffbxfXbPPfdg5syZuPXWW7HXXnvhu9/9biLZRx11FObOnWtwtARBEFsfuVwOlZWVAz0MgtCmqqoKbW1tAz0MgiAIbUrSlHrggQfivvvuCyhtAPDtb38bp5xyCgDgL3/5Sz+PjCAIgiCIwQTlZxIEsbVQkopbHLvssgsAoKWlZYBHQhAEsXVCi11ia4KuZ4IgtgZKMlQyjsWLFwMAttlmm8T7Lly4EBdeeCE2bNiAxsZG7LLLLvja176G+vp67XF1dHQY2YYgCIIgCIIgCIJl0Cluq1atwu233w4AOOaYYxLv7xY3YWlsbMT111+fOF+Op66uTmt/giAIgiAIgiAIEYMqVDKXy+HEE09Ea2srpk2bhjPOOEN63x122AG/+tWv8NZbb2HDhg3YsGEDFixYgCOPPBKtra04+eSTMX/+/BRHTxAEQZQizz33HCzLKhoFCYIgErFlLZDrGuhREEOAQeVxO/PMM/H0009j5MiRuO+++1BRUSG970knnRR4b6+99sIjjzyCH/zgB/j973+PH/7whzjuuOMSyWXZvHlz7DZtbW0YN26cknyCIIitglwOWLoUaGsDGhqASZOA7KB6HAEAFi1ahDvvvBNPPPEEPv74Y2zZsgU77LADjjvuOJx33nmora0d6CESBJE2a18Gnt4fqBgBfO0joJyir4j0GDQet3PPPRe33XYbhg8fjieffBI77bSTMdlz585FWVkZ1q5di1dffVVZTm1trdQ/giCIIUlLCzBnDjB+PLDTTsBuuzn/jx/vvD/ICk796U9/wm9/+1vssMMO+OUvf4lrrrkGU6ZMwZw5c/CVr3wFXV1kgSeIrZ4Xvg4UeoEtq4FF1w/0aIitnEGhuP34xz/G9ddfj2HDhuGJJ54oVpU0xYgRIzBmzBgAwIoVK4zKJgiCIADMnw9MngxccQWwZo3/szVrnPcnT3a2GyQce+yxWLFiBebPn49zzjkHZ555Ju655x784he/wDvvvIPbbrttoIdIEETadK/3Xve0Dtw4iCFByStu559/Pn7zm9+gsbERTzzxBHbbbTfjx8jn82htdW42E9UlCYIgCIb584ETTwS6u6O36+52tisB5c22bcybNw977LEH6urqUFdXh2nTpuGXv/xlcZvddtsNjY2NgX2//e1vAwDee++9fhsvQRClgD3QAyC2ckpacbvwwgtxzTXXoLGxEU8++SRmzJiRynEefvhhdHZ2wrKsVBRDgiCIIUtLCzBrVrJ9Zs0a8LDJk046CbNnz4ZlWfjFL36Ba665BgceeCDuu+++2H3dyI2mpqa0h0kQRElBihuRLiWbDT5nzhxcddVVxfBIGaXthhtuwA033IDdd98df/nLX4rvL1++HC+88AKOPfZYVFVV+fZ58MEHcdpppwEAZs6cibFjx5r9IgRBEEOZW26J97TxdHcDt94KXHZZOmOK4X/+538wf/58nHjiibjjjjuQyXg2zkKhELlvPp/HZZddhmw2ixNOOCHtoRIEUUrY0fMDQehSkorbww8/jCuuuAIAsOOOO+LGG28Ubjdq1Chce+21xb/XrVuHDz/8MKB8bdiwASeddBK+//3vY5dddsH48ePR1dWFDz74oNjM+4ADDsAf/vCHlL4RQRDEECSXA+bNU9t33jzg4osHpNqk2xrm2muv9SltAAJ/85x33nn4xz/+gV/96leYMmVKamMkCKIEscnjRqRLSSpuGzZsKL5+44038MYbbwi323bbbX2KWxjNzc244IIL8Prrr+Ojjz7CwoUL0dPTg1GjRuHII4/ECSecgG9/+9uxD2SCIAgiAUuXBguRyLJ6tbP/5MlmxyTB4sWLsc022yQOdbzoootwww03YPbs2fjZz36W0ugIgihdSHEj0qUkFbdTTjkFp5xySuL95s6di7lz5wbeHzlyJK688kr9gREEQRDytLXp7d/ebmYc/cDcuXNx+eWX49RTT8XNN9880MMhCKLfsFBU2ChUkkgZcjERxFDCtoGXvwv833Sg7cOBHg2xtdPQoLf/AFX53WmnnfDZZ59h9erVUtvPnTsXl1xyCU4++WT88Y9/hGVZKY+QIIjShDxuRLqQ4kYQQ4lPHwOW/RXY+Bbw4jEDPRpia2fSJKCvR2Zimpqc/QeAmTNnAnDa0fDFSGwuh+XSSy/FJZdcgpNOOgl/+tOfKOSe2DrJ5YDFi4E333T+z+UGekSlg8Xe86S4EelSkqGSBEGkRPtH3uvW9wduHMTQIJsFTj/daa6dlNNPH5DCJABw3HHH4dvf/jb+8pe/YPHixfj617+O4cOHY9GiRfj73/9e7M9244034uKLL8bEiRNx8MEH46677vLJaWpqwiGHHDIQX4EgzNDS4lSGnTfPyVfNAsjBMcicfjpwxhlAc/NAj3KAYTzsVJyESBlS3AhCla7PgPWvAdscCpRVDvRoJKH4e6KfOeMM4Nprk7UEqKwEZs9Ob0wS3HXXXdhnn31w22234dJLL0VZWRkmTZqE4447rrjN66+/DsBpOXPyyScHZOy3336kuBGDl/nznZ6K7r17BoA9AcwD8PIaxyBz7bXAbbcBfV7qIYllMY42UtyIdLFsPu6DSJW2tjY0NjaitbUVDbr5H8TAYReAh3cEOpYCnzsf2OWqgR6RHP/6DfDWj72/T6DbnxCzZs0ajFENc+SZPx848UT57e+8c2gvBAnjGL2ehwL8PVsDR2Fz4W/PoXzP3l0FFPqU2x3PBHan1lJEMpLoBhSMTxAqdK50lDYA+NfVAzuWRJCiRgwAM2c6C7vKGM90ZeXQXgASRCnQ0uJ42lgqYvaZNcvZbyjiK0ZEz1giXUhxIwglBmnIIZUqJgaKmTOdogZz5jiFR1iampz3Fy8mpY0gBppbbgmGNpfF7NPdDdx6a2pDGjyQ4kakCyluxMBTyA/0CJJjD8IxA0hV4Wz/yKlU+e/r0jsGMbhpbgYuuwxYsQJYtMipULdokfP3ZZdRkQOCGGhyOacQCY9MRYR584ZotUlmKU3ZR0TKUHESYmDI5YClS4HVLwKf/gQYuRtw4N+5kIMSZrB6rtJ8qLx4LLDpn0DL/cD4I4D6HdM7FjG4yWaByZMHehREmtg2kGsHYAHlA9OPj1Bg6VKneiRPucS+q1c7+w+1e5tCJYl+hDxuRP/S0uKERI0fD+y0E/DRLCC3EVj9JHDlCYMnRn6wKm5pPlQ2/dN73b44veMQBFH65DYDbYuAtg+BXMdAj4aQpa1N/L6smb+93dhQBg/Ux43oP0hxI/qP+fMdS9wVV3gWPTbh+dG7nc/nzx+Q4SXCTjEcpPNT4Mm9nbDDguHj9JfCaXrcBEEMLjqXM69XDNw4iGSEVbSLK07iUj8Evausx23QGnUHMZ/+H7B0/uBMu1GAQiWJ/kG2HHh3t7ddKRcpKPSkJ/v1M4G1LzmvP54HTP6+Odn99VAZtDmABEEYwReWPUhC4Alg0iSnuTYfLikTKtnU5Ow/5GCubzJa9i8bFgLPHe68tnuB7U8Z0OH0B+RxI9JHVFpYBPucL/XSwoXe9GSvetJ7vfGf4dsp0U9hHGl6JAmCIIh0yGaB008Pvi+juJ1+urP/kIP1uKW4NiCCLLrRe/3muQM3jn6EFDcifUSlheMo9dLCaSpuvgpVpj1k/aS4kdWRIIY45HEbtJxxRrDnYpw+VlkJzJ6d2pBKGjZUMtW1ARFk6OUUkuJGpEtYaWEZSrm0cJqTs8U0zDEdckihkgRB9Dektw0umpuB227zvxeX43bbbUO4nQfrcSvRNctWy9AzEJHiRqRLWGlhGdzSwqVImuEQFntbGla0tgbF7eM/Ae/8EujdnN4xiK0D26a+SgPG0FtQbVXMnAnceafneQsLlaysdLYr5Zz0tGGf2eRxG0CGxjwzFIORif4krLSwLKVaWri/PG7GqyQN8hy3tf8AXu3Ll8x3A7tclc5xCD+2DcDmjAolTiEPtP3bMSI0TAHKKuP3IcxB+nL/s/IxYMX9QMVIYOVDwBfmAJMkioKFMXMmsO++TtrC+9cBYJ7HTU1OTtvs2UPY0+ZCoZIDxhA0zA2ipzAxKAkrLSxLqZYW7i/FzbTHrd9y3FKqurnyYe/1v65O5xiEH9sG2j8ENr4N9GgaYvqT7jVAvsu5FjtK1HMfhW0DW9YAXatKdnFy3333Yeedd0Z1dTUsy8Jzzz3HfMqM2S7glFNOgWUNDYv4gGAXgOePAD6+zZkb2z4E/nGSvtzmZuCyy4DLLvK/v2KF8/6QV9pAOW4DSmnOjWlCihuRLm5pYRVKubRwqoobW5zEdI5bP+We5bekIzfth2Kuy/HqUS8ej9xmJyzVLgDtiwZ6NPKw18pgDKvt2Qh0LHd6oHWvH+jRBFi0aBGOP/54NDY24oYbbsBf//pXfO5znxNvrHk/Pfzwwzj11FMxdepU1NbWYty4cTj44IPx+OOPa8ndqkizRQ0AgIuiGJLVI8Ngn9mkuA0YQ8QwRHcekS5uaeErrki+bymXFk7zIZlmcZL+sgYWElYRlZab8vifOxxY8xww5Txg19+me6zBwmBVYn2e60FI91rm9RqgapRZ+V2fAj2tQO1EIFubePfnnnsOuVwOv/vd7zB9+vTgBr65S28emz17NhoaGvCNb3wDU6ZMwYYNG/DnP/8Zhx12GC6//HL84he/0JK/VZB2Jd+0jHFbBYzXhzxuYmy7HxSroaG4kceNSB9RaWER7D1X6qWF+83jZnjR3F9l+tN6yLPWzIxMY6EEFPKO0gYAH/7OrOzBTJp5bbYN9GxK53oZ5IpbV2cncsWquoYXJPkeoPNTINfhhNQpsGrVKgDAiBEjgh/atn/u0pzH7rrrLixatAjXXHMNTjvtNJx//vl48803sdNOO+GSSy7Bxo0bteRvFaTt6eHv0cFq0EkD1khBipuffA/w1P7A36YCm5eYl1+iYeRpQoobkT6i0sIi2HVWqZcWTrWqZJrtAPrpodIfoZKWYcUtV6KFcAacFK2Y3WuB9o+A1g/MGxUSKJxbtmzB3LlzMWXKFNTU1GDYsGGYNm0afvrTnwa2/eMf/4jp06ejuroajY2N+OpXv4oFCxb4tlm2bBksy8LcuXMD+8+dOxeWZWHZsmXF99z8r7Vr1+J73/sempqaUDtuV6z41KnI29begV/84hf43Oc+h6qqKowcORJ777037r77bp/szz77DN///vcxceJEVFRUYNy4cZg9ezbW8JV92XmAW4C/8MILOOSQQ9DY2Ijq6mpMnz4dt3Hzt2VZuPjiiwEAkyZNgmVZ2G677RiZ3LwVMY+tWrUKP/jBD7D99tujsrISY8aMwSGHHIInn3yyuM2BBx4Y2K+mpgZHHnkkent78eGHasrngLDkDuCDq8zPkf3tcTOtoORywOLFwJtvOv+XaisgEez1Te0A/Hz8R2DN806Y/csGci4DMIobhUoShEHcUsGzZoU3487A8bTddlvplxburwbca54HVj0DNB1gZlLqL2tgPqVQSfahaNrj1juICm/wFHLAohuBbA2ww2mGH2ApWjQ7lvcdouB43kyHA0ryX//1X/jTn/6E7373u/jRj36EXC6HxYsX45lnnvFtd8EFF+Dqq6/G7rvvjl/96ldob2/HrbfeigMOOAAPPfQQDj/8cK1xHHLIIRg7diwuuugidKxbgrraGmxqbcfeR56B9/+1GMceeyy+//3vI5/P46233sLf/vY3fOc73wEALF++HF/+8pfR09ODWbNmYYcddsBHH32EP/zhD3j22WfxxhtvoLGx0TlQiJX6kUcewdFHH42xY8fixz/+Merr63H33XfjtNNOw5IlS3BFX8j7X//6V9x///144IEH8Nvf/hajRo1CXV2dJ4j3xoR4Z5YtW4a99toLq1evxne/+13stttu6OjowCuvvIKnnnoKhxxySOT5WrFiBQCgqakp7tSWBmteBF45xXm9eSkw8VtA0/5mvNphCoOpEDU+/N3OATBQqbWlBbjlFqdvK2tgGDPGSZc444zSNuICfqWZPG5+OpZ5r9e9nPLBSHEjCLOwpYXnzXP6tLEceRjwl1vMTNKFHLD2RWD4l4CK4fryAvL7yePWsxF45iDg4BeBMXvry+63HLd+8LiR4ubx8R+Bhec5r6u3AcYfmd6xHt/NqXRoAp8HtUxvAVs9Fjj0De/vBCE0DzzwAA477DDccccdodt8+OGHuOaaa7DXXnvhmWeeQUWF05H4tNNOw+c//3mcddZZ+Pjjj1FWph6i+cUvfhF33nmn88em94D8Fpz10yvx/r8W45ZbbsFsLny8UPAUonPOOQe9vb146623MGHChOL7xx13HPbcc0/89re/ZTyAwXOTz+dx9tlno66uDq+99hrGjRsHwFFqDzjgAFx55ZU45ZRTMHnyZJx44on46KOP8MADD+Coo47ye9tE8kMUt7POOguffvopHn/8cfznf/5n6HcT8c9//hP3338/9tlnH0wq1SJWPJ/8P+/1R7c4/2bcDEw+Q192mMfNzpmJTgh43Ax4lubPDzfmrlnj5MZfe23pG3NtUtxCyaTdhoVCJQnCTyEHrHgEaP2XGXluaeEVK4BFXIW6Iw83Z1l75yLg6QOBJ/dOJxY/1eIkgtvyzXPMyPZZZVO0TvVLqKRhu9NgVtw+YPrZfTTPsHDuwdi1CuhaaeZf9xrv35bPNOXxyqSc8gAAjY2NeP/99/Hee++FbvPQQw/Btm2cf/75jtLWtQpo/RfGjW7Aqaeeik8++QRvvfVWwnPr5yc/+QnzVwGFQgF3P/AkPjdlh4DSBgCZjDNXtLa24m9/+xu+/vWvo6qqCuvWrSv+22677bDjjjviiSeeiDz2m2++ieXLl+N73/teUWkDgIqKCpx//vkoFAp46KGHJL+JYDHFKdIbNmzA448/jkMPPTSgtLHfTcTatWvxzW9+E9XV1fjjH/8oOaYSYMva4Huvn2lGdlgYvKlnVSDHTVNxmz8fOPHE8Agcl+5uZ7v58/WOlyaDOcdt2d3AwzsAd1nAK7PM5YzZNvDp407UEGEU8rgR0Xz8R+D17wOZCuCbq8x5r7JZYPJk4HXmPZP5Vx9c6fzf+oGzwKoZF719EjYvA976SexmyoiKKphSUnyKzyBX3DKkuHmk+FvyD/LqseZkm/a4+eAVt3yo/N/97nc46aSTMG3aNGy//fY44IAD8LWvfQ1f+9rXigrE0qVOL7gvfOELzrg7nTA9dCxx3gOwZMkS7LbbbspfYaeddmLGa2Pd+k3YuKkNhx68X+R+H374IQqFAm677bZAPprL9ttvz8gOKrG+78fBfj8phIs//3sfffQRbNvGLrvsIiezjw0bNuCQgw/Cp5+u/P/svXm4XEW1Pvx2nz7nZJ7JCYQTBgkBBGTWC4KioBcHRr1eDZPGEPVe9ecM1ygoRmVwBMUQI4PE6YoIovIhKCBymecxAQKcMARC5ulM3d8fu6v32tVVtVdNnT5Jr+fJk+7du6vr7F27qtZ63/Uu/Pnaq7PXrJntmcuAnt/Ha1+HgA32OqmG1rcfMMetpydB2mxs1qyEsdOMtEnqxMbIIx/YBDz9M2DkLkD38eHarVSAOz6cvn/2F8COxwI7Huff9qu3ALcc499OnmXmmhZVsmUtS5w2IInavfB7YLfZ8X4rVnL15sCO290BaC0ma5TjFhNwb0Q5gNDiJEPZccs44aGpI1J77/q/cDTV1wm1ccSOYZ1C2XkoD2j7fdxxx+G5557DX/7yF9x666246aabsHDhQhx++OG46aabarTImg1sTF8P1iMapkLTAwbRhREjRtA/gDSo/UpyZvVvPfnkk3Haaacpzxk+fDh5F1sRMA59aeXKlTjqqKPw5FNP4dpfXoh3HDhEctsA4K6PxW1fh4A1I+I2f34+0iZbb2+SZnHuue6/G8NkBdUYiNvTlwL3fz55/d4ngLF7hGl3YEP9sdfvCeO4PVAv7BTdWuIkLWuZZCFlwSsVYM1j0rFAjltZUjDb9HKYdoW9fnfY9mRTXedQG2W6qFQGgIfPBnb/L2CYY5F0nYVG3CrlRI3tpevTY60cN2JkwQouj6xArhD42qt+J3R7m5YlEWsNUjthwgScfPLJOPnkk1GpVHDmmWfi/PPPx7XXXosPfvCDNcTqsccewxu2z6Jqjz+WzGXiHCGRv3Llyrrf4aNWZUyaOA7jx43BQ488aTx1t912Q6FQQF9fH4466ihW27LRv0+2xx9/PHMO4wdyzxB9fvDBB1ktCqft8ccfxzVXnI93v+PfmH3ZRkwX+AzluA1IRexdA60DA0mOu4stWACcfXZz1XeVFVNjOG4ifxkAnvsl8CaHurgq63tdcWx1mLYbVo6llePWspYZLGA044kLgL/skz0WCnHrlfIINr0Upt1GmWrCC+WkyM7xo98E7oqAooZ23F69rT5iPdQct0oZWHE30B+h7EDG2Q+MpsiOYOgSFbV2Q6NAUr/71qT0RmKDg4NYvXp15lihUKhR+ITzdeyxx6JQKOCCCy5A/+Y1tXNffmUFLrv8cuy0006174wePRpTpkzB3//+9xoaBiRO2x//+Ed2/4vFIj584rvw+JNLlBRI0fbEiRPxnve8B3/4wx9w5513Ks977bXX6IG6cw444ABMmzYNl112Wa1GGwD09/fjggsuQKFQwHHHMSPxDKrkhAkTcMwxx+Cvf/0rbrrpJu3fBgCrVq3C0UcfjcceewxXX301jjnqsJzf2gYtNuK24XmpXUcHZenSrHqkjS1fnnzf1Ta8EH6eka977HIAIfPrexWOW/+a+mMuNsTraDazNVHYomVNbyERtwe/Un8s1IQnO2qPnAOM2weY9JYw7ceO8DQKcRP24nVh2kYBtWsT2nFbphBFCO64BVqwdPb4d4GHvgqM2RN476OBC1s3GnGLYMHbVVyH3hXAqJ0zh9atW4ftt98exx57LPbff39MnjwZS5cuxSWXXILx48fj/e9/PwBgxowZ+NKXvoTzzz8fR/z7h/Gh496Bdes34tIrr8H69euxaNGijKLkf//3f2Pu3Lk45phjcPzxx+Oll17Cz372M+y999645557kGvV+/it//kk/n77A/j4xz+OG2+8EW9961tRqVTwwAMPYGBgAL/85S8BAJdccgne+ta34ogjjsCpp56K/fffH+VyGc8++yyuvfZanHrqqURVsn7z2tbWhosvvhgnnHACDj74YJxxxhkYPXo0fvvb3+LOO+/E//zP/2D69On5/U46zzrr4osvxqGHHopjjjkGp512Gg488EBs2rQJd911F3beeWecd14iunP00Ufj/vvvx4c//GGsWrUKV/3uvrSRUY/j0MPeaoEGNpnFnNuBMBv9wc3Axhezx1zX67WeAbJ1joGvR+cBD88FJh4CHHlDuHx9OeAcU7gMSOawmG0NacStRZVsWcski/xQxHLcNr0E3HwkcMIrQMfYML8R1RQb+lA5bo0qwL3iDuDv7wLe/pcwIiKjFJuy0AtDbMTtoa8m/699Ion8Sg6ElzUyxy2GSmuMdpmXYcSIEfh//+//4eabb8ZNN92E9evX1xy5s846K6OweN5552G33XbDTy/6Ps489yfoaG/Hmw98I351xQIcflS2httXvvIVrFmzBr/85S9xyy23YK+99sLChQtx33338Ry3qo0fNwb/9/c/4Ns/uqpWO2306NHYa6+98OlPp2qz3d3duO+++3Deeefh2muvxVVXXYVhw4ahu7sb73//+/Ef//Ef5Nqor/X73/9+3HzzzfjWt76FCy64AH19fdhzzz3x85//HLOsxCR4F3+XXXbBvffei3PPPRd/+ctfcOWVV2L8+PF405velFHRvO++xFH79a9/jV//+td17Vx22WVD13FrCyAcAujXzxA1NTc8j/p5wHG9HjPGry+jR7t9r+fq5P/X7wYeORc48Pt+/RCmokpWyuECc3Igbj2Tas0xFeLW64iGyrZFELeW49aybdmU0bvID0UoqqQqp21wczJhb28u6OpsoYqcAmrkIXZU1tcqZdQt7K/8DVj+d2D7dwVoX3FNQv8tjcxxW7oE2HPHMLkag33A2qfIgcCOWx1VMpbj1gDETWEdHR34zne+w2519uzZmP0fb80m9o/Yse68UqmE888/H+eff37m+Pvf/36CfCV2+eWX4/LLL9f+5rixY5RtyTZp0iRccMEFuOCCC8x/hOEevu1tb8Pb3mZWsQSAc845p+7vSNuvv/aX/2IBLr/il3XHp06dip/97GfG36K0SVQGgZWk7MK4fYG2jvovDRULofgIxM1xUzkLrvPvLrskxbVd6JJdXcn3XWz1Q+nrlffqz7M1lQM72AuUhtcfd7G+Vdn3654J0y6gdtwUdHIn0zluIfdKor1tzFo5bi2rt40vAX+cBly7c/Z4qAiSLgIYaiPeVy8IAABod4zUcSzkZla1EARTlYzEv9fdu3VLArWv2HwMFcetpweYOzd77P3vAqZOTY739Pi1f7dU3yv6QrZ1OW5B2t64TK3QFuv3vC22qqTCgtWHkvu+Bf6WkFYakX8Ox2LmuK1X5JW5riWlEjDbMa969mz7YNeL1wN/f3d23IQULFMGFQOqKr96W/b95lfCPUsqcZLe18K0r3PcQl2bSqWq6EvVd7cNxK3luLWs3u77TDI5yJTDUM7JZk2kLRRVsn+9+nis2mIAgm4eVNchmDhJLMRNc+9CRe9Uzn5ox21wY/45trZoUVKvcJ6kAjYcScR53rzkc5/iskuvkA7EpkrGcogii6rEtjVPRGw8NIq6JcoBRHLcQt7ngQFgyRLgvvuS/w2lG4JZsTNMOzFz3FT5vz7r9Zw5QKfi7z4ZwEUA9lV8p7MTUBShz7Vb3w+8IhWf3xzQcVM5sCH3Go99O/u+MhguH1uV41bur1cQdTFdoD+EOFelAvzjXcD/jgaWXePf3hCzluPWsnpTRdeAcJt+HYc6lOOmm3QGN4VpX7UBCYkWKCOZgTYnsaiSuuirbixZt6/YfIR2QkM79osWASefnNQfkvco9H1vb3Kej/OWschUyVAOVnS1ygYibsGbj91+ZMctZv/lvm96yf/3BCo+dSqw++7AQQcl/4dCxU0Wat2LibipAmc+/e7uBmSV1OEAjgEwAYBCuwznnx+u+PbAhnDqvqrrEBJxW/No/TEVxdHFdO2EaF/HEgrhFG5YCrxyUzK2M3uaFuLWspZlLdSmf9NyTftDxHFTbXpCbYTKA8C6xYrjgZSqouW4kXs35SjUJtANER234IhbQMetpwegYg6jpM9V6Q+zZoXZIEZXlYyFnEQuB9CIpoNRkSOiSqr2g1sDEbe+VfV5QDZGUfFXXwXeBODtANoQDhU3Wah5TDf2QoiTlBVzo2+/Z84ErroqRd6GSZ/Le/AvfznsPdj0Sv45HFMFnEKuJarrHEpZUkfvDtG+jioZwmGOSktvfms5bi3jWyjnYbPGcYuNuA0EcNwqFTWlLhRa8H+nqI8PBrr2sWrM0E1DaSQwvKrEFxNxi+24+WyW589PkDRhcnqlih3V2wtceqn7b9YssuMWbNMvtRM6/zIqaqVpe/UjYf6OOic2MlUytrOvOeRmivGnytXhGEXFAWAqgC8DmA2A1jEPjooTC7WuNhpxCzHOZ85MkDQAkPVltpPeh74HoeiSSqpkwDwu1X0NhbjpkMEgiJvGcQvh1Gr3ci3ErWUty1qojbJOBCIY4qaJxoRA3AY3ahC3QI7b879RHx9KiFuhBHROSF4PBKKjqBaY0H+LHFV2RYAGBoAFC7LHOIgbkHzPO69mqCJug4FRty3guFUGk+R+X6ubC4dYjhujALd724HmWhkVB4C3ktenKr4TChWnFmxuj+m4KTbbIYKAPT0JkgYAe0uf7aT5Tqh7EEqgJCZVUrfGuQYqZNM5USHa14qThBiPEfLRh5C1HLeW8S1YZFAzGcVA3Hb6SPo6RKRHB/NH3wiFotM0yHETk3aoTdaWyHFz7fvSpfVS17LjJtOChC1fnnzfxwKNxZoEe6wcN9VGPuj43EIy0SGuvzwXRkfEGoC4xaJKcr8mX0MZFQeAvCUoGCpOLPa6GqL9GFRJIL0H+wD4mPTZBM13Qt2DmI5bKKqk7p6GokrqkMGYiFsQx00ThG+pSrasZZIFiwxq2gmG6AnHrQB0n5AeD4G4vfZP9fHgwgqShbr2sZQ1abS3GMFxo1RRUfcoOlXSse9rFYjy9tJ7neMGAOt8UcohIpyh2oCHvKdbgioZrPnIaoZbgioZrGl7x63OaVOh4kC+4wYEQsWJDQnELbA4CZC9B/+l+Ny0B+feA9O43hwgx+3V24G/KCQwoyBu5IIMBaqkLsAXYo4faCFuLWsZz0JtqnT5WqERt9IooI3UyAnhuD35Q/Xx2I5biBy38kA4GWHZ6hC3qqJUpRxmU0gXmIY5bo7jccyY+mOHSO9NjtvoiPUGLaxUKqG3txfR0Bkl5Tikw7IFxElCWcOpkkMIcXNAfDdv3oxOKj+vQsUBgDONh0DFqYWax6LmuKkQN89nld4DlQChBrABwL8HJic/BOL2zxPUx0MFSOm9G06if7EdtxBUyZjlKXR7uW2kGHfLcWsZ36IjboEdt/ZRQIkkE4Vw3HQqiSHoUWXDriHEte9bhWg7Th3iBgS6NhRxE7zDivma2VooxG2XXYDJk9P3kwBMk87ROW5dXcn3fSzQ4jV+/Hi8/vrrGByMpf4YGXEb0uUA5LEXW1UydgmJQD9RKQMbXrDoRgWbNm3C6tWrMYYGVFSoOMBD3IAAqDixcl+YZ1bnuAVRlYyAuNF7oPrzTY4bwLsHpj6GcNx0lMVQ4iR0PhzWlb72UVGlRvu5zzfT170r/duO6rhpELfYTIUmMcsS9C3bpi1YZDB2jltVnKRtJNAW2HETm/vR04FxbwJ6fp+8D4G4mSa0EJNdqCidyug9LciO2yDyV+EcKyuokuJ4Uaf0YWGVikKcxPGelkrA7Nlp0W2VH6Zz3GbPTr7PNaUTFcaxKhaLmDRpEl5/6o+obHoZBUHVGTENmDzS/GWObXwJePUO6eAdwKQ3A6M8nVcAePl+9cZqUPaiHaznLn1UfdzewLh2v/ZXPgysfTJ93zkR2F6X9ONgy+7MKrPtODH7XPnamqeAVQ9lj00uASN28Gt386vAK/KYATBsMjBlbOaQoEd2dnaiq6sLxSKJU6tQcYCHuAHhUfHKAFDwHDNRN8oRctzoPXBx3Dj3wDSHh8pxU1kwxI1c43by9wYLolcdt+HbA7t/Cnjk68n7/tUB2o44HnVUydjMpyaxluPWMr4Fy7NqEFWyfVQEx63aRttwyTkJ4NTK13fY5KpK3euBHLdACc0qK8tUSdlx8zQaGWwjG8xKP/QSjRZWGVCrHLranDnAhRcmifRcx62zEzjjDLvfUaHUAekiHR0dmLz5FuDpS9KDOx4P7H28f+M9/wKe/mz98acBfHgQKHgSQu7/AbDy3vrjh3zGr10A+OdX9c/T3mcDk9/h1/7S3wHPkALFEw4C3jTTr01qt345uznb633AqMna063t1UuBp7+WPTb1emDyfn7tLrtTPWbG7w/s+5/8dgQqLtMlOdoGLqh4Hkpd7gOKvo5bRKpkDMRNdw+EmR5/7j0w9TFEjpvOguW4kXtH171gaSvVfhY7gXYS+Ohb7d92TLEc3V4udEmZJrUWVbJlfBsKVMnBvrT9kuS4+dZxq1TSSFrbsOzG8q8H+lPI5Mm+3A8Uq8VtglAlYyJuJqpkYDSynUg0BlvAVHLXHv3u7gYWVjfeqv3FCMWxhQuT79mYcnEMTHuTn8tQ0WQTnSjEeI9JmzGNjRDKZjI6HjqSLG98gpfWUAUUAvwNulIvtrm7AhWvO874ri0qDuSvbTHHe7OWA9DdA2EmxI17D0zXvXeFf+54+zj18RiIm8w0CdJ+dQ5u60zWbZGGMGQRt5bj1rKWZW0oUCUHycIuO26+iBt1rNqGZZ2T/tXAqxrFSXb7ffXvQzpuJsTNN1csk+PWHtZx61uTVfOkgjPN6rgBSXHZq64CJlc38hsBiLQMyvLp7EzOm+mAqKg2JroC9y5WqQArJGpasGhyZMctVukLIGdsxHDcQqoYDqqDRCFNNccHcdzWq4+7iC7NmZM8e9RkX+B7AHYl711QcSD//oW4/g0vwB2gz+Ie2FAlbe5B3nX3ZaEMk6uEVy3UHEmfo0zAMhT7SSBuVQpIx7jk/xCI2xYRJ2k5bi1rWdZiUyVDIG79ZGEvBc5xo5t7mSoJ6DcV7PYjI26mHDdfqqeujhvgv2G7j1Dbiu1ZSlFMxy3EeJw5E9ixSkHZ2AaI/eUYJHSfuXOBJUvcnDZA/fevfxZ46sdu7cm29JfAmseyx0Il3pui0kEEFbaU4xYA8dz0UvZ9SApQrJpcmfZiIW46x22tPUWYouLCZGdhCoAzyXsXVBzIv75BAhURxUmU82OAPot7oLp1ut2pzT1QXZPM+uF5bTo0eafB5kgdVTIEQlvJIm5AiiBGddwCzDVacZJtI8et5bi1jG+hFnfdpBMiT4w+0G0jEmSs9llIx21YfQ6O76RRh7hRxy3AtTEibk3suC29MtsWXXiDFSZX5XAEWAQqZWCg6q1N3w/Y883J62EAnnsKOPdct41grX3NZu0+RR6Qi915Wv2xoYK4bSmqpG/fKxVg4zLpWMC/RUUZD+64RULc+jWOW7nfjZ4mUHGBvKnYdyPhh4oDDMQtIsIcqwB3qFpaM2cCo0bVH5edaJd7oLruRSKK0qeh3vJ/QH04RgHuts50zxF6vBSr418gboMb/WmkrRy3aNZy3FrGt6GQ40Yno7aOwIgb+X5xWD3i5ru5qrsulcYhbr4bN7kcQDFwjlutrXJWfS0m4vboQwka5lNst38Naot750Rg/E7pZwMBcg5jOif9Gsn0huS4RUTcQpQzMLXh+6z2vq6gMga8z6podagASK29BiButK4V4D5mZs5MnvO5c4ExquRT+KHiQP48FaJOZ6Opkrp8Qxcb1ll/TOxOfZgJqmuylMy773hb0nZPj127wui1PeRScjxCOYBiR9j9QCb1Q0LcAP+ar1sixw2VgOVqmtdajlvL+BbMcYuY4yYjP8W2FKEJibiVFFRJ342JanGkE7WvWqCx3EATI26yNYoq+V8nAbvvDkyd6r6403o4nROytXg2a9TUbCwmHfB1hSIjEIYG1LcGWGygc0bdyIbIJzKMad/rs+nF+mMblgJ3nAJsfs2vbUA9DwbPcWuA4/a264HtjyHte2zYursT9HvOLP3nPpa3toVwnBstThLScVM97x84AVi8GFi2zJ2ZoAp4UH9k7cqkbMv06cCiRQ7tV+9baRQwdu/0eAxxkmJ7WMeNzlMy4gb40yVjqpya9nLbAF2y5bi1jG/RqZKBETexwReom+9kSr9fVFAlvVErxXUREzXgf31M3/fdOBgLcId23Mg1CTUmb7iu/tgXAYxCIlfturj3EcetY2JS4kFYEMctIuI2oClwGyKa/MAX6umAoX8jRo5FT0/ixMekSuquy3NXZfM9Xa0RjlssqiR13EqjkrkmZPvsCtyWtiVz3EKiM5nUg0COW6Wizl2cOC6Zc20VPKn96Y/1xyiRQDTd2wucfLL9/C6ubbE9e21ilAMoBHbcVIgbddx8lSVjUiX7DWNvG6BLthy3ltWbTs56qFElBaVORJN8I+F0wyOrSsqfu5hqss84KZ7X33R9QyNuFTK1LH3aj24oW2jEbdEi4Dvnqj87irx2WdzrEDfquAVQf4xJldQFOkJEk2mNMpXFzPnpc8zNWbQo2Uh+e575vCVPuLUvzOTQPv8bv7YBNc1oKCJupZHZ4FkIilSoNa6u3ZznNATCrLuHvutepZxeFyrGocs3tLXBzVDmivmOyZ4e4Oy59ccp4ib7hLNm2TErRB+LHanzAwwNxK2sQNwoVdIbcdONR4++i8DZXQYF721AWbLluLWMb96I0iDQ80dgxf/FaV9uQ0Rja4u758KeqyrpmaytRNzazZ/bmGlCC5nj9tf/D7jmj+n7o97pRzeULaQ4SU9Pslh3aD7vUhyzWdwziNsEoJM4br0BaG8xqZK6zUeoaLLJgtBpNNdm3zfaj8VFixKnvbc3f9W84zY32pUwX4nyPFMFmELnuDVCnKQ0KjyyH8KBUlne9W3mOm70+50T09ehqJI6pVDfDfj8+cCA4rrT4S87br29wKWXgm06xC2UqiQdNzTHbeMy4MW/+LU9qELcSBHuWDlurnONCJzNmwcUDG387tdu7Q8hazluLeOb7wKw9ArgnyekG79CETjmwfTz0Dx/scEXjptvRFZWlZQfH51ELdee/239MYq4+W4qTFFfbxomuXc3/A3YSKN58KMbyhYScZs/P1ms2zWfq8r02CzusuOWWRg14h82ZnTGfXMudYhbAxw3399YtAjo1TyPq1fYjUXh3AvLWzVLsI/cU4sdMW4E4taIcgClkVLwLIToTKRAyFAuwE3nAYq4haJK6hxAHwbOwACwYIG6FhxtVsXCXLCAzxChiFuROm6BFDfpmk8RNwC49b1+wWIV4hZS+CukOAkNnAH69RoAPjHHf4/R5NZy3FpWbzoRDN8F4C4p8bvQDox/EzCqWuE0NOImJiGxuHs7bhJVshgQcVt5f+LYyhaSKhkTcbuDUBcGkd1D0VnGNZeAWqjFRSzugJ3jBvAXd5kqWSKy1yGoRqbNje/mwYS4LV4clv5a9xseY10s8roCvuI4dywK514Yx3GzjdxTi51c3xBxEkV7voEEIHXc2oZVGRWUKhmg/VhUyVzELcTaF8txI2O/fWy6njYz4rZ0aRIsVD2r9FKrHLfly5Pvc6yGuHUA7aTMQIigHCAhbpLjBgB9q9zbrgtEQ6Ieez5PoXLc5MAZoJ/bxWc+gbMhYC3HrWV8W/MosHZxuPbEJCQQlOBUSbEbj0SVDIm4PfML9fGQyfexHLeeHuCKy9L3g8imLKhmGZ+JNRTiJhZ3QE+V1NRXZS/um19JX3dOAkqj0/c68Q8bM20IfTdWqtpNwvaZEZb+WvfbjoibWOQLSMfd0wCWkHNs8lqocy+MjudHANwifUe0bxO5pxY7ub4h4iSRETcRABkqVMlcxM0TYX7+d+rAHxCAKilt8EvVQtChHDc69rreSY57PAdrq46TaoNPh4lO92Qdc26mVEmKAPvSDGvta6iStWMm6CnHVKqSIZ+nUDlucuAMMHsubfALnA0BazluLas3nTgJACy+ONzvtAnHLWDCbYYqKeW4+SJu8gIWMseNRuuEjdtHmkh968RFctzmz8+2bULchPlMrKFy3NaSqKiL2jdncd/wQvp6xDSgnThu/QEcty2BuAHAWISlv8rmOheIRZ5uyAYAUL/MJq+FOvfC6PRYBvBC9uNa+zaRe2rRETcVVTKgwzLYB7yoUGmN4rgNFXGSvDpuHo5b3yrgjo9kj9H1JCTiVuwM67gNDADPP5O+HzYlfe2z3o2p/v0uVEkAGD1a84FklCpZKCSIJJCUOwlhOnESYT7PlEpVMrPf8N0vVfs+4WDgODJJ2oxHVeAMMCNuYkpwDZwNAWs5bi2zs6d/Fq4tMQkVIiFuNaqkcNw8Nw4DeaqSgR23t/5votAozDcSH6McgCqXoIys46aLA7hMrMOmhEPcxOJ+EoB3a84xrV2cxX1j1WMolJIabpQqGR1x83TcHtbUcQMAolEQhP4qm8tGli7y9NasQ3azplr0dWNxrYLyRFdN1figQXBu5J5abMdtQIG4rX4oXPtLr1QfD+K4VZ0F4TyERtyiUSXzEDcPFcLNK+r/9vc+kToRvmgevSZtHUCbcNw8qN5CHXDqVOBDH0yP/+bq9LWP47bLLsDkyeodbp7j1tWVfD/PKpW0j2KvIa55MMRNKgfQFtBxi4m4lQntRnY4bZ4xVeAMMHsu4jPXwNkQsJbj1jI763pHuLZqcv3V/ysDAYpMG6iSQRG34fV13EIibof+GhgzIyxVkjp+2/+79JmjA6TKJeAgbgB/YqUJ8Uf+Vcpx89hoicX9RMM5uuHIXdyF4zZixyQnspE5bj4R8Z4e4Ka/6j9XUUhD5hW43Fe6yNPHaS3yN2u6sThGEVCRHTc5MEEdQ27knhp9zgs6SMDDVFTJ5f8I1/49n1AfD+lY1YJ+LcRNeV2LpfQa+dI/5VIvwmnuWwU89m175gBVB3z11ezzsoassS8rCtFzrVQCZs+uD9K8hPy5YPZsXu04ek+FQyXEp/pX++9lVL8hI24+wdxcxM3jeZVz86jDabPXUAXOgHyqpDCXwNkQsKZ03Pr7+3HzzTfjS1/6Eg4++GCMGzcO7e3tmDJlCo499lj8+c9/dm77pptuwnve8x5MmjQJw4cPxx577IGvfvWrWL8+UE2SrdGmvCt97YNwyHzsokSV9G0fqJ8wgHiqkiEdt9KI7Hsx0YWkStaig8XEAdr77PQz1+uuyiXgOm4Ab2IVC8jo3YHx+4VD3MTibjIdWshZ3Ac2pKqSI6pczGIb0Fa910EQt0hUyfnzgaJh4VY5bl70V3lD4rDZpIs8Ee/EGrjntQjnnhoXceM697LRe0olxkOZalysecy/bpMwKhlPzTtHt0KoaZLwVIj2gS2HuPnU/VL93QXiuHnnuElrajsJPj30VeDx8/htyeqAQHbtoNP5U0/4ofhz5gCd0sP+fZjFSTo7gTPO4LUvo2EAQTn7w9Ryq0gMopBUyaiIm4HiaTMeVYEzgEeVBNwCZ0PAmtJxu/XWW3HUUUfhwgsvxLJly/DWt74VJ554Irbbbjv86U9/wvve9z7MmTMHFcuIxg9+8AMcffTRuOGGG/DGN74R73//+7FmzRp8+9vfxkEHHYQVKyLXzxmqNoUkDPtE8QuS41bLcQtYl6ssRQcBMhkFVpWUo10+G2XZqaxNpBRxC+W4VdsM4QCpcglkqqRpluFMrGIBEfcxZDmAOXPMn6s2+dzFfQNBn0ZOS1+LPLcgOW4RqJKCcmjKex+vOe6aV1BHO3ZAIOgib0LcdIu+aiyqnHs6niuod+7FmOFG7mWjGyZa1DeELbsuQUmEiYACEI7eRfOUqHk7buT7clAOGNqImw+dUXVd24alYyek41ZoT6mSwh7LKUgvTKUOCGSfJ9mp8kHxu7uBz/xX+v7XAF6GOYizcGHyPY7JNdaA1HEDwjxPpnIAgKdzpVKVjOC40SACYDceVYEzwOy4iXvqGjgbAtaUjluxWMRJJ52E2267DS+//DKuv/56/Pa3v8UjjzyC3/zmN2hra8Oll16KX/7yl+w2H3jgAXzhC19AW1sb/vznP+PWW2/F7373OzzzzDN45zvfiaeeegqf+ISG4rGtmewQFzurKorwc9yK0iwpUyWBIYS4Da93pHwQN3mSrFGBaI5bIKqkynFzdZhVuQRcxI2dS1D9u4sB+y1sxx3zz5H7z13caYFtupkVdEmfHBFhJmfe9VkVlEPquC0DQIRDoQFV3PMKJO/HZbO5yy6p80YdtzUAaHMqX8g0FufMSZx1YXlUyRLsIveyZRwUndypo912XPZ9B/HAVblvLtY5SX08pEqdXOolRPvyb4S0RiJu+3wzYXDEQtxKI/XnmkylDgjUszXEpSrCXx3w8MOybQNqqmRnJ3DVVcDMmfy2ZacKCO+41TmH0mTjM+blYvZAPMQts4+xGI86Vgwnx801cDYErCkdt3e84x34/e9/j8MPP7zusw996EM4/fTTAQBXXqlJglbYd77zHVQqFXz0ox/FMcccUzs+YsQILFy4EMViEVdffTWefPJJ7/4PeatzIkphlKTkfA0lVTLwIgOEc9yoY9Y2rP46+RQklRf2oowWKs5x/Q2VA+S6YVHlEnARN+7EKiNuIYuEcpwn8bfZLu4ZhVMyxgXiFoIqacpxWGkQFzGZoBxSx20egNvIe4nZm7EQeQUuCMRvf5v2nVIl1wKgPomq76ax2N2dOOvCZFVJeQiVYBe5l43e02IEqiQ1mj/qI5BBTXfvQtaFGmpUydwct0CO2/T/Avb5WvK65rh5ipPISs1UGReoR8tVplMHBPQ0e3HcRx2QBjuPelcSoKFNjR2ZiKQsWWLntAFqxK1jXHoshLKkvJ+R9wA+ewK6/oh7Wgz0PMnPaqFAyj5ZPmNy4AzIr+PmEzgbAtaUjlue7b///gCAHiaE3tfXV8uL+8hHPlL3+U477YTDDksiM9dcc02gXg5hkx9YmpDs45zIOW4qqqTvRlxFlayJk/iqSpKJrjRGQZX0WCBlNE04iTHESWoU0kDXfc4coIPMpBzEzWZirVE8I1AlOYVSp2zntriXpQ2PMFHLrdzvN2ZEGzp74gI3OqZArejj2o8sxci0cIbIK/At0iojbtRxGy59lzMWZ85MnPbOznrE7V/IlhsYP9p+E0gtjyoZQvRAWCdx3ELk5ADZMTd6evo6JOJWV6MTTU6VJHPB7v8NTDoUGL8/+TwQVZI6UTEQt0I7MHyH7OclxvOuUwcE6h038eeEUAekjs37jgOWLQOuJHlz/z0HOPdctyBLOQ9xW23fZt1vSGNenu+9EDe6nxH3MFAB7sy1qc5hruNRDpwB+eIkPoGzIWBD0nFbsiSpprr99tuzzl+8eDE2bkw2wgcddJDyHHH8gQcecO7Xhg0bWP+a3lToTw1x86AD6sRJQiIoJqqkb45bvxShqot++USoZPSuep0bhrh5LO7d3cB7iUolB3HjTqyVSrohi+K4MaKiTz7utrjLamzCMiUBPOmSeWNiw/P2bQr6q8lx0wGlofIKbB1amYYl57jRaUtG3LhjcebMxHn/L0KpLyO5Lj+cDPQrHF4Xy1AlFY5bSOeCUiXv/TQvkJFnYp4sdgKHEJQlhuPWKMTNl6ZO16WxbwTe9S/gzeTahELcVI5bpezXf/m603xdICtWojOdOiCgp9mHUAeU0cJSCZi2m/pzW5OLYwOpqiQQhiqZcYA6wu45MohbYKrkoEKx0ieQQANnBZg9l6+d5Rc4GwI25By3V155BZdffjkA4KSTTmJ9Z2k1WjNu3DiM1kSDu6sL91KPug+jRo3K/bfDDjvkN7SlTUaSCiVSu2WDe8RXFiep5bgNEaok3dS0jwnsuEltbV8tLBa0jpugHFbbpIp1vnSaPXZPX5sQN2u6IWloSyFuRcfxrkPcQhbhzvv7XTYmgv5K06tEM2KI6xC3UHkFvkVa6VTTB73jNno08KEP8X+ruxv49H+n799/HLB4MdDzIrBd1WENSU2j1CthKjl/V6NUyZX3Ao98079NsSEcvkNYx8pUozM5wa99QD/uYohmVchzsupVdzpgxtEn15uitT7rqhwMHbFT9nMO4qZTBwTqafYy4ga4o/iq694WaL8hO1VAtqxPiCBIHeImjRGfPYEKcQtVgFt1bWqOm+OzJAJnXz3LfN6Rb3NrfwjZkHLcBgYGcPLJJ2PNmjXYZ599MCdPEa5q66rRmpEj9Um1o0YlEYe1psjQtmJKqqTY7VTco4OyOEkxBlXSkMDuneO2Lm2vbXh9fZxQiNub5qULQEiqpKwq2UY4Y77Fmulm87SPASNIFLaIBIlxoRuqosk0AOC7oeLkIbhGZXWIG3XcfPPcVH3bnTgWrgv7nDlAZzWZiw5zk+PmlVcgOce+RVrpVDMAPVVy3TrgM5+xVK4j88ikyUlNqlLJf2MijI754VPrP/d9Vql1SPKgT37Pv02xIWwfHW4jCGzZHLeQTJDVa5O58AhSE/WPv0+KUc+da6+imIe4AZ4OijSPyYgbZRDoTKcOCOipkuK4D4qfmYNF4I9eF5/0BsV4pGtqjHIA0RA3leMWuNRACOpudzdw9lzzOb57giFgQ8px+8QnPoGbb74ZEydOxO9//3t0dARW3PK09evX5/576aWXtnQ3862OKikpSbkKlMjiJDHKAcjUiOSF+NAvP0RE0NpGAV/7GvBrqcbMSy+6LbxAdpIcu3f6OiRVUizA4rrQ2nG+UXzat0/+N3Dm/6TvL7k4yS1wohsqNiUhHf0BKVAz8ZD6c1ydH53jRgUnvHPcFH3LoLSO16e7G9ixK3lNmzA5bjZ5BXINRNlsNlSqYButAFJBFnGTc9wuuSRxvrg1o7QbZTEuK37UNNr+CIXj5vqsquY+WSHQV8Wy3J/eO9lxe+qHfiiEiU0BBHAMDUFJXyYIDfJ94StJ8elXVqbH2pEEH+bNsxuLANNxC+igyI6bHHRRmalmZp44iQ+Kr0Lcgjm0ClQp47gFQMY3LiO/0V7vTIXOcQumKhmYKkktbx/ky0waAjZkHLfPfvazWLhwIcaPH4+//e1v2H333fO/VDVBjzTll4kC3GNMkH6OjRw5kvWv6c2kKgm4C5Q0ogB33uLOWWR0JjYdr6xJFtg+eZEvuy28gLTAkMkzKFXSgLj5LjIyLbBE7vWULveFN7bjRhG3fb4J7Hyyog+Ov6GjSoakBqv6lkFpPcbMyGo/6U+I5uhmy4b+2tOTBDf6ySb7TgCbpPEno9kmU83Z4hKI/uapSvb2JoWBOc9tZkySuYXeV58AVB7i5uy4KRwbucC3r+MmbwaLkof/UE603GSxc9z6Vunb8F6XyEZ2Y3VQ0ibp0mgzFoH4iJuMdLZLzxsXWVKpAwL1OW40OOSrDqgK5AZz3HIQN9/yGmueBF65OXndPhYYsWP9HsALcaPlAKqTYihVSSNV0jcdJmdN++cJwKqH/H6jyW1IOG5f+MIX8OMf/xjjxo3DjTfeWFOV5NrOO+8MAFi9enWNNimbUKgU527TJm/2CqUwiJvsuIn8ilAiGUB+HoTPZLRpdfX/6nsZdRDvbRdeuV+ZxTeCqmQxMlWyUAq3ocpcF9XCGzDHbcwMtaMTHHEL6HiqELsMldQn+b66IZvSnThbXV3ppqoEe/rrokVJUGPevKyk/kLUx1NsEAIVDUsMP9HfPMdNGKfgb1n3rAaax+h4G6GoM+jsuCnGglxuwNdxk+lXslT84ovd245dx23zK+nrXU4DdiQ173zXpVWEyitug85xE8YtPt1oqiQAHErWNq7jplIHBLK0ZipsVYS/OqBqDi4Gyv2LjbitvAe1iXH6JxLkKmQ5ABFkKY1K90hRqZKO5QBk4/zNt7zX7zea3Jrecfvyl7+M73//+xg7dixuvPFGrSqkyWbMmIERI5LV+t571bWNxPEDDjjAvbNbi5nESYBwVMnO7ZL/gxbgVkTYQtBpXlgKFKqTkZiP5adHfs9deAEpwZxcpxiqkuI+hKRKyot7FMdNgbj5UmvrBGcUfXW97rERt8HNwMMKBKMYCKUVG7KOUQnNddkyYLtqIfHtJ9vRXxctSoIZQvlRDI8lyNIYhT3/DL+fKhqWaJ+Kqoj9pUyVpMYp+JtLlYTfPBaNKqkY2zLipio/YGMy4lZX48uD8RCbKrmJOG7DurJrnu+6dO+d6et+6X9A7bhxi0/rxiO9lzYIdl37iuu+80dSNNim/h9VB6y1ST4fQBpsGTXcXx1QNQdTcRKf66JE3CgN3jPHja4No6pKmPJa5EPJFkEWmnM9FKiSnDVt04t+v9Hk1tSO25lnnokLLrgAY8eOxd/+9jccfPDBTu10dHTgve9NPPBf/epXdZ8///zzuOOOOwAAJ5xwgnuHtxbLo0o6O27SIj5MOG6RqZIhav38nESKuY4bd+EF1EnUQNbZjSlOEjLHrdhAxy0khaltmHpRcP0NLeIWyHFbdl39sSnvksZMAMdNLLylEtBRHTPFMp/+KtdY4wgBPvKAXa6oTMOSETcgfW5NiBuQX/A3OjUtT5wkIOLWJnmxqvIDNpYJhKgcNw+LLU5CEbfhU8KpDw4MJONZ2CD5X4x/3aPEKT7NGY8+ZUeUayrSecHWQRHqgALFp0NkzFhgYhU9LxWUX7cyJeIWKvcvMuKmVK0cmz0nRI5bKYbjZqBK+pan8A1gbwXWtI7b3Llzcd5552HcuHFsp+3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYI+jfMSRNSZUkux1Xx02OtgrErRCIYtS3Gnh6fvpeRadxkYweGAB+e0X6XkeVVK0znIUX4FElfXPc6qiS9J4OAaqk4N+HrPuXVycHCK8qGQyZkfo1dm/g364IN2ZE3+hGp0Z3sei3XGNNzmlRWaHMD3oA9TQscQlo+2KI5zlueQV/oyNu5J7RAtnCYiJuvlTJ3tfS153bIegWo6GI25Rw88zSpUAfmV9pU+K1rvYfp/g0x3G7mShY2prWcauOHRdkqbs7RfG/+Ln0+MLLge2rwYoQG/So4iR5qpKejhtFA0X7B/8se47r2lqppHXmKOIWqgC3SVUS8MwBbjluAQruhLfrrrsO8+bNAwDstttu+MlPfqI8b9KkSbjwwgtr71esWIGnnnoKU6ZMqTv3gAMOwPe+9z18/vOfx3ve8x687W1vw+TJk/HPf/4TL7/8MmbMmIGf/exndd/b5mxgABhUqEoOIzkk6x1r3ckTQQ1xC7RAyonvoRb3pUuBja+n78V8/P8BOJD+nuK7YuGdPt38G6oFBghHlawIeT3EQdwyi1hIx00l5xzRcVMibk1KlZRtv+8mSEEGcXNFCxXjBbB33FQ11jhxlDYk3zv7bD6yJ2hVs2YBbdWNAx16It40HMlG2fQnmAr+NhJxK5SAA34I3P//0mOuz6pqHId23GS6YUjELXqO2/L09fAp4e7n2rVZx2xAet0Jc9H2vOLTuvFIXw+sSzbrBQcUK08d1we1KpWACWMBwWwrdZI6dwE26KoUhIzglw9VnTjjYi2NRZUUY3HcG4EZnwWe+lHy3vUaPfz19DUt5xCsjpuBKgkkf5s897DbbjluTem4rVyZyuTee++92ry0nXbaKeO45dnnPvc57LPPPvje976Hu+++Gxs2bMC0adNw1lln4ayzztIW594mrKcniYwvWABc0JsdGQsWAieQYucr73H7DXlhreW4BYrELJEcfGWOm8PivnYtQOcYsW96DMBFAD4tfk/z/byFV+5XDKqkyokoUcfNE3EbqjluWwRxC0XBku5Z58T63wrudFavPfeaqGqsqRA3OfWpBH7Qg9rMmcARRwD/mA6gN7tJXgFAiBFPBPBK3bdTM64FiqLwQJwct0IbsMdnk2f17mrdUtdnVUmVDJzjRp2fYV31qpI+lkeD9y3AvVlC3ELdzzFjsuspbaoPwEiYHbe8fYlOLGfNY9nzKmU3RzoPcSv3J31wvdeZuaY9nW8q5WqfPVBb1RxcKFSDdH1+5VhUcvqxqZJAVrDIdW1d9sf0deck8jsNoEoCCZpoGvMmayFuzUmVPP3001GpVHL/Pffcc5nvnXPOOahUKrjlllu0bR911FH461//itdffx2bN2/G4sWL8e1vf3vbdtqo2turr9a787+4AjjkA0Cl+lC/frfb79QhblUUjy4GPsnCshUUi7tLFGnMmKygAQ2k3Qng6eprXRiEM7Zii5OoFrBQ0sXLbwFeuj5939AcN99EZ9lxU/TVddOW5/z4tA1kKculUcDEN9e3H8TppIEES8TNVGMNMCNuAC/oIVt3N9BZbYDeTgKaYxL0llfwV6sqGUPFr9p+iGeVRZUM6LgNn9LYHLfnfuWXO9NL6qp1Tgx3P3fZBRhFrquqvIZu7eAUn9YF/WTZfmeRJQXSCWTHjg/qVkezj5DXDWTnYJEm4ONcqQpYl2KxWMhYDLG2UuR1j8+HbRtQUyVD5Yy2ELfmdNxa1kCT1d5UTIpBABv6gOeqD/Lap9weHvk7HVWEICSCQi0UVXKXXYCJJClY7iJtUr5+nIUX4ImT+ExYNPekQJBIMan6LDI3H5l9X2jP/g0+mynVJjlkjhsNFLRpHLdmRdxoPcVDr0oX4xA5brn5ecwi06oaayqQ5PfSOeInXQNqYh6RETdhEw3fzSv4q6vjFmpcivYLxfSehojkK6mSsjiJJ1Vyc4Ookqq5vedq4Pl68TG2USSzNDLculQqAdPJGkAfG9Gs7rJzik/rHLe9zpLOCzAXZAJQVLXSgxaYcQxL2d+457+S3HXntjXzmMjZ92Ga9CscN1peIyTiRp2eIIyK6jVvHwtsdyhpO4KqpJhTQmkZtBC3luO2TZus9gaoR4SgMW0iB1w2JnQiGL17CsuHVJWkRh2U9Afs2ymVgH8/St8EfS9fP87CC/DESZwTkcvAjYep2xQbN1+qJLVoiJtILo+Y49Z9ouKcAHTD2FRJqvoaQlVSdd0B+82sqsaaiip5I4BfkuNt4Ac9ZKuQ+alMIinUcdMhbpyCv43KcctIuwdw3DhUSV9HK0OVnKxuz5VVkZfjBgD3fdatbSCLYLcND7su7UzUQVXiJKolglt8WjceJx6UovCA/yYfUFMlAT/HLeMYtmfnm2cWAM/8PFDb1HGrzpfOQmuQqJLVPLFie7rfeO12YNmf3Nuncwh1ekKsraJtubZuDMRNl+Pmai3EreW4bdMmq70BZseNOiguDzX9zjtuJL8ZkPpGTSkZ7ZgHcfQ709fyn65z3LgLL6DfKIegSm54PlvXRBl59IwOUmtkjltox23SW4C3XJF1hEKUA4hNlaQKoZmI7BameZpqrAHpszMI4AYA68k53KCHbPS670ry4ziOG6fgb6PquBUUARYgnKrkTh9BXQFuX8bDpqrj1j4u2dirHDehZmdrSsRNat8nH0oEr9qGV9kI5H4+co57uwDQQfpFp3GTqiS3+LRuPAJp3isQmSrpg7jJc42U8Lrh+TBtZ56n6nzpo6ZMqZIix03kzwm77Vj39nU5bkEcN4VicKi2AanvKqpkS1XSx1qO27ZqKrU3oF7inhp1UPodOO1iIuicCIzcKT0ekvpGLaRk9IRx6Wsu4sZdeAF1XgsQhu+//pnsexXi5lsOgFqhbeiKkwDArqcCe3+N/EazUiU1iFsxBOKWk+MG8J9VucaaqRyA+Nl28IMestF+TZmaFvyl6XajpO90dibncQr+RkfcRL1F0jYtxxKKKnngj+oRN9/5V1CyhWKwynFzpb4pc9ykLYwPYigCIeJaC/EsIMnr9hGyUFHHgHS8F5GuvTZjETA7biHWDxbi5pPjJlEl1y3R/75125p5TNzjcq87lV9FlQT81SSF0b+bOj0hWDixETfVeA89P27D1nLctlVTqb0BfMTt+WcUJ+aYXABaWKhIjGzKAtyudEPNJhyod9xsF165X6HruK1dnH0fHXErxHXcQiBKte/ropoBBD5ilwPQIm7UuQpN83Rw3OQaayZxEnG7J47nBz1kkxECUfD3/32xvg9dXUkh4CVL/DfKwRG3iFTJ3c4Ahk1SOG6emyIRTBCBBJUjRZEKG+Mgbj5bGhG8aqv2faf/yH7uQyen9NDHSfFperm3n2w/FgGz4xY63zUT9AtElZRVJWWEzadt+qzQZ6gtQCCEFjXP1EILZCzEzRNFjYW4taiSUa3luG2rplJ7A8wjgm6y1mm+bzLVhgQIl7QqW6gcNyA7WXzjW+nCKzf5pS/YL7xAXFXJdQbHrZbjtinJDQplUR23Qvo3xHLcigGcw9gFuHU5bkEQN814dEU7Z85MkS/6+Otox8M8KtWo7ml3N/C1c9Lj/3YwsHhxUgD43HPtnEQO4uaDBJdzHLcQqpK1fFHpOvv2W4xn0V+V4xYi16rQAMStfQyw4/Hp517OSXUjW+wApk1Li0//21vTc/76p6RuoW3Ago24BaZKhhInMQVFAT/FyswcOUL92tUhz1AlZQg/gG2RHLdABbhVVMkYiFv3B4Bp/wHs/hn39oagtRy3bdVUam+AmSpJn+ORw7WnaU3nuNHJ4+G57otA3SJeqD/uSpWkG5qJk9OFd/Fi4K1HpJ+d9RU3pICjKuk6kcrUExVVEghH8QACOm6a62JbCFpntQWkoL/uTStOQssBhBYnieB0CuTrE4QCKR5HgXxNe4Nb29R01C66+Rk5LCmB4pRDx0HcAmxMtM+p40ZTR8emtGCf665CN1SOVEjKXqgct0qlHi0EAqJKxHEDEmGwc84B/o+U1jn0zcDUqclz0NPDb7uRjpuWKunB2Mi0XwLeODf7uc91182R9LWrQImgShY76x2gEKZVlWxUjlugAtyhqZJ0Hhu3D/DW3wK7nu7e3hC0luO2rZpK7Q2oHxHrAbxcfU0Bme6psDaO4wYAL1zt0HZFjxiFmIyUBaxLyeZv3ATSvisVU7P4ZmT1HRdeSumQ2wxBGVFZTMQNSMdMqBy3YgcytW1C54nFoErScgA0ghyCHqWjefrmo3Z3A5/6RPr+xA9kka+O6obfy/HRbDSDOVZkDqEFa0OpEEajSmoEkPb9ZiILDjS346a8r3KwznFLU+5L+0XnxFCOm6COtXVm66ZupJtzJOkL8+Ylny9axGs7g47HoErqnieCuAXLQ2sH9voKsO+30mNe150EOXRUSdf8buG4xaBJAgaqZIj5vdp2QUbcYlIlI5QDEOM7huPcxNZy3LZVU6m9AfX5J3ORIm3U52lTFXzLMa3jJkV9BhxomIObUKdGlf4A6YMr4magcwSJgOkQjhARU+l7tI+hoqay0Q2EV+FwzaYkNOJWF3kMQGdsFFWy2C4hS6FpnrqcywBtT94+i3yFcMi1hWsJqhrCsUp+gLwMtTFRzJMhCvtmNjya4FlDHLeAyE8dwuRIldQK/QRG3DaXs3VT6VCiy0pvb3Iex3mLjrjplBkjICjFEtA+KlsUOgRVUp4jQ1IlS7Ect0gFuMuDqO2VoomT5FElQzn6LcetZduayWpvQNZxuwMAqdvsXQ5ATNByXkWdhLFOq9tgJrpDCN62DoEAwkx2WsQtsCoYkN2ARKuhF7GOG5A6VqEKcLdJjltohzmmOAmNHsu/FZMq6epc6Sh7tP1yv3vOZWbTIC3oIRzD6OIkChGnIDluhuBT7bp4BFmo4yY2xrGokro6bq5bmgylLgLiJsbkilXS75LXKp9z1qx82qTRcQvA2Fj/bPo6g7hFyFkS47ItUP6cYCW0jcweH3KIW8AcNx2SF6Lt2m80iCrZctxats2ZrPYGwCjVTR03l0VAh7jJmxyXTY/suO17bvo6hDhJRbFpqL0PgC7FpErKfdJJUwcVhmkQVTIU4lZ3TwOrscWQjVfl5AAIooiZ5zADHoibRvgEkAQ+AsuXA2Ec/i1RgLtQTCPXoamSQJjrokTcCsCOJ+j7YWObXk5fa8sBuDpulFKnyXHzQX4EdUweFjrETVhvL3Dppea2uaqSLnPBi38GVt1P2ovguCmRVFJHzyvHTcyRUnDLF3Er96fjQXbc9vwy+R0P0ZJYddx01NcQbQuLqSqpokqqRG22Yms5btu6UbU3QC/V3dkJHHZ4+t6nALe8uGx3aPa9y0aZOm67ng7sTRKcQ4iTcBE315ow2nyowMnlgDSpNgBxc70m8ndj57hRKwZwfkJK6quspoInOW4xc9xC9J2D/ADui7tOBY+2H8NxC1WPUqUqCWQVYJ3aZSCdPs/TgMJxA4DDrwbeQGj5LmNyw/PAM6TuaGiqZHTErTrnyn96nuMGJPVWBwzXLGYdt9s/oG8vJuIGpDTVEDluMivBV5xEV2YAAPb5evrax6HQqUr67gkGG4G4RVSVbCFuLcetZUjV3ubOBbYjQhuDyNY52m339LOQjluxHTjoJ+Q8F8SNCHDUcc4j57iFKIgZkyopT+5aqqTDZKpzymIjbu3jkv/7VrlTxwBDjlvgXK7QVMlKJaXq1CFuTaoqmdc2EMb5MVGBxPsYjluonB/RvhwgKnk6brrxCMTLcQMS1G3kTqQfDvPB4+dn34dG3LQ5bgEoe5VKGiyTH8c8qiQALF+e1F3Vts903FwcZvlvjoK46erEVa+9V46bVOKh1rYnVdIUHCqNBMa+MXntQz0Wv1Foy+akDgXELcPqqf5GVMSt5bi1bFu07u5E1e2G69NjHzk5W+fIe8IQjpsiCkUXel/ErW4jq4MRLayhOW6B67iZctx8a+jpnOzYjtv4faufl4E1j7q3L/7mGDluWucnwALWvzZtX84JDSEgokNnGpXjBnj03bAxiZnjFgpxq+W46RA3x5wcI1UyQF1EEwoRau0QFhNxC60qWRlATQxCvrz0zzJ1fd06/WcxqZJygfYoOW4aJ6jNE3GrlNPvynuCEFRJYSq0RzxPXo6bLqgYM8ctUB03cd2pWjP9rcEAgS2ghbi1rGUAACoWOX5Sts6Rz4RRqegRN8CfmpaJwpiKSg4FVcnIiFtZR5V0Qdy2kOM2br/09aoH3dvX1rOhm/AmpEr2rkhfy45baMQtZDkAU9uAlOPm2j7DcfNxUJb/nbTXoBw3gGxkHREIriiMq2VQK8lx83UgRki1MbUFuAPkuOnquJUdHQg6FkyIm4lVN9oggBFTVbJjor69KNQ3qtLq6bhlAgkRETeV0yDGu+vaARDHzZB/7eS4NQBx61uZ/N9BGFwhgn6Aei8mryNbubUct5ZlzegAeQhlUIdJ5bj5UtOMi1cIVUnuZOcrBlFApp5YCHES+XtacRKH665bsKMjbvulr18nRWyt2q4Yctzo4tiEVEmT41YM4HTq0JkgVEkD8hMix82Uw+HroPStAl78E2mPUOmCqUpqHDdfARGjKAxRlXRV89TluAH+84Es8qBD3JpRVZI62i6IW1dXUndVZ1zEzWUu6JQdN1rrMjD1rVDKtu9LldTdU/m9C+KWCQ511H9OETdfdVwT4uZyT9mqkh4FuHtfT/6n4ycmtbZFlWzZNm2xkCXT4gIEQNxM7Tc54jYwAGzemLY9oNnwOzuFBnES7xy32IibBiWYcGC6OXzhf92iphVaz8aU4xYacSO/tfxmYNl19m3HRtxiooUm2nEQxzCiquTGZdn3k48gvxUod1FHKa/l57m2zRSFcX1eo1Il5fslNvgy4uZax03T9xB13Kjj4ZLjNnt2lvlS135MxG2C/rNQ1Lca60F6Vn2pkjoUFfAvaM9F3AD3PYeWDeJLlTTNjwGC3AMb02uqc9y8qJItcZKW49ayrBlzuTwg+lzHrVGIWxPluPX0JMIvU6cCTzyWHOvtT97PnZt8HqSOm7RgZ5CgZnfcdOIko4Cd/jN53b8GeOVm+7aNIhYhJPUZyowAcNtxwKqH7No2Im6BSxmoCp/L57i2bUTcIua4OStWku/tNgfoGKf+LWen08BMqLVf0YsCmcxElQxBgTU6bp5jUu6TQEzkQuKuVEmVCh4QHnErS/3LU5Xs7ATOOMPcfsw6bh3j9Z8FE+MhiFum/eq1rww6CqvQEg9yrUvP8c7NcQM8gmdbIMeNtu+6bgu0DchSbWMVbAeySG1ywL39IWAtx61lWcuoJYVE3AyOD+CfU8R13JzruJkQNwfnatEiYPp0YN484NVX0yexjOT9vHnJ53+8Nv2OM/IjLUxv/kX62pea1kiqpDxuJhyUvu5fbd+2kTISWFUyIzhTqB9Dz15m13Yjc9xC13Ez5loFKE+hk9EG/CmBNFIsOydB8vNMtDfPHBEOVdK1bSAu4kbHwrh9gZHT6ttVvWe3r5kLgjhu5HuHHCZ9Rl6rur5wYSIMZrKY4iQmC019qxuTnjX0TFRJ33nMpCoJBHbc5DnMs+3cvns6bn3EcaNrU+zyEdmT/KieTW4tx61lWTM5WFGpkp45Rdyooy9tAfB3aBctAk4+OSmuKkw8ifTrvb3Apz5N2g6wCT/6dqDrSPK7QxRxAyTqhcPCbkTcItINVb8nyhtwjeu4hc5DC53jVjfHBK7jVqcW6kvJNuS2hMjP4wq3OCnAmhC3AGOmUY7b/heSDwKJk9Dr2aZx3FxzraioyfQ3Zuum6sRJOjuT82bOzG8/pjgJbXvs3tnPQhfgrqNKepZiMFElYyNuQZR9G4C4yfMjbT8E4hY7x81UJ89HGKbJreW4tSxrmcU9oOJQnuPmTaWJLE7CFW3Ja7+nB5g1q/64aEL2K2lzvsIq4w8AtjvMkGDu4jBrvhMq0msaN3Rh90ULY+S4ZZ4laaqVx5CJkqQyLlUyhNOpo3mGEG2JTZWsm8N8N2x0zMiR8ABoIRdxc3pWudfdccxQx01GOHzHpC5v0ciusLBGIW5tw7J1U0cQtcgSsnVTOU4bwHfcXOi19F4dcU32s2Ab8ep3dVRJwO3ac6mSLvOYaR4AAuVIx3LcIiNusR23PPaW6rytzLYtDc2W5Rs7l8tWVdJGnCQw4hZCnIR7XV66IYtoyTZ/fhZpk7sod4++d6KQVtJ7pZrkQiNu/3ZV8n9GbtmjQDYXcXOJhnMKNbu2DaT3S1ZLU/0ezZXiWN9q/XeDqEpGFCcZINfz1deBnQdS8YUgjiEjxw0IEGmPgLj1/CF9HdpxK2tQVLlt1+seU1VSh3DUlQMITJUMUYBbdtyAtG7q4m7g3jnJse+cCxxyplmIRGUxqZJ0/ujcTmo70Ea8f23yf/tYqX1PtLNvTfq6XSqn4B0EsREncVy3o4mTRM5xY1ElXdfUfuDRb6bvTYjbVuy4tRC3lmXNRAnMTEY+iJsqx80zQrVFc9zI7z1xPrB2ibqNgQFgwQL1Z9EcN9KAcoHxddwksYZdqlFiKt89sN6+XWHGTYkn4jZooIy0k/73G4rfmszkMFO0EKjf6Oa2Ta+Lqc5PCJpnoFplQoznrC+nx75yVlaMJwRqNRgRFTMibgGc2jtPT1+b6LXeiFuEwudRqZK6nMtA5QA4iJtrHTeV4yasnVynSRPsnTYgMlWSm4/qSmseAAaq86scgPKlSva+lr6Wnc7oOW4x69IGFPpRooXVZ8gFoQX04iTUMe9b5db26/dm32cUYKU11ackS5Nby3FrWdZi5biZBAmAALknkVUluY4bADz/a3UbS5cmwiMq0zlu9DJvcnCAKgZHHAggTkLabx+Tvm4bll53H8fNRIGNmeNWIhHaAU/HTXXdh+8on2zZdsTNmvw9Og/QXJF+i/tKxXg2kO/JYjyPPkE+c63jRkUJDLktLsjSZvL8ho6Ey2ZUfvTMcTPmFjpueFY/kr6uq//lG5jjIm6OWxpd7b8YVElqIXI6Y9ZxMwraBHDc+gkqJtPFfa89fVaHTc5+1tAcNxfnysQGaRDi5hrkpus9RTop+raZONU2Rud2AJhIBMr+XXLqWjluLdtmbEvluMUsBxCEKkknankBM0Svqa1dq2+fg7gNuDgnOYm83giEbkNVSFE3V8cHaFyOmzzWSwEQt7LBcRu1a/a97bjMyMbL+XMRxUkyDi3TcZPFeHQAeG8v8DtCFXTtO71fpYAUqVduBu4m0ux1m54A8wy1AWmT4k3vMlElPcfMhheAlfckr8fvBwyfkv08GlVyiKlKFiXHLbjYT0zELYLjRinfskCTbw29Xqbj5pTjxizADThSVLlFsgPXcaPtO9dz1AQqSsPTQFqvo+NG+77POdn+j9sb6D4xfd+iSrZsm7EY9crk85XiJDERtxCqkkzqguq9sDFj1FaqaKgAAQAASURBVMeBVJxEvqy0u0WH2iS5XPyAVEmd82ODzMjGpuo4OLWmSHixLV1kfBE3FVVypCTxbe24RazdJH+PjmdKIeVcF5UYj4m5TMe/s+NGAiRybosPsvSPd2Xf+4gUcaxvpfR7nuUGjGUYPOff1+9KX089tv7zWIIKQ0GcpGyaZyKXkPCdC7ilO1wLKtMyLnVUSc+1iSJunYERN5scN5frnskXlVFaz9quJmVcIIDjRtZiue+CsursuOUEon33kUPEWo5by7LGpQTa8p+bpgB3AFXJPKqkDnHbZRdg8mT1ZzrEjR7rcIgmWyFunlRJOU+shrgFynGrQzppDoRLjpthcQRStMY5x63ad9V1r1ORDEmVLKZjPjhVkjhCHIdcJcZD4w/yeKfdjY64WY4Z2bkOTWGSTc4D8aU1s8swOFx36tTI6Ib8e761pxoqThKaKinl4dC/xdX5aUSOW6GtXmApREFlk8iSr7Ofcdxk5d0mL8CdcfZN+aK+aF4ExI32Xc47qzluK91y6Kwc5laOW8u2FWPXK7NVlcyRcPVVwmsWcRJA77iVSsDs2erPTI7bYN0LvuVy8X1rQxmStKnj5lLsGMihSoZE3BTiIO2ejpuusCwAjJiWfW+NBBuokkB6L4IU4CbX3UZ0RifGQ7srDws6xF3VSCkS2C6h3CGoaaq2AP+NpvyMGB23wOIkJTL+qYw617j0KyAAShAZccvUcQusKmmiSkYp2h5IVVIZbI1MlfTNixSoTvu4+qBiSHGSGI6bEXHzCKADDJpnRMRtmBCJqWTVJ7lmYj4B/mNmiFjLcWtZ1owFYEOpSubUcQtegLuB5QAAveMGAHPmpMVXM98Rv6P6bUUfuJbrMHvSXUwKfoJWVxl03/REVZVkIm4D69wcT5M4SfcJ0oGAVEkgvdfBqZIWoi06MR4uVfLVl3M6qTHqaJtkwF03yrW2AueeyBs8Ktwg/57TZtMQfCoRB7ffkIurbZtZGwoInJcTaAujQ9wKxfS9q4S5kZIdom6hwSH3ptUZWAMhhFVocKIOcfPsu0DclAhwwBw31Xj3RX7YiJuvOEnkHDcd4ga4CZSYgAXAP1AxRKzluLUsa8Zcrpg5biHLAcjDOrA4SR7ipprIhXV3AwsX1h83OW4d1ZpovkpyygXGt36eIXpH0ZmbjrBvGzBvNn1VJbmIm6vjaXLc2oYBB15Ezg3suInfdEbcNLQ6G1VJnRiPyXGj3d3kiHRSh1JWlQyhnigspmiA8vciUiU7qFS35DByzAaB8JUwN+W4uSL7JjEI4WzFUJUMgVpFVZU01QBtS3/PWVVydfq6rh6lB8OnPJAGPmSFU0Aaj01YgNtUEzEo7diAuLmWAyhzEDe45bnlUSVbOW4t2yaNSwkMrioZUjEtIlVSxfW3pevMnAlcdVUWeRNfoZe1szM5b3jVAfLNQYtdgFueSKnjtvJetwibaaL2VZU01Z0C/EsCmKiSQHZRC6kqSX/TWalOVzeryBdt0YnxmB5HytIrOVIlBeJWGlV/bWJSJX0DRHlj2NfpNFElaY0lGeljtR2ZKsnNcXMOzJnk16vzzNongBf/7NB2ZMQtZo6bSRkXIGhkZKqkteNGc68VbIpiG2rJtrHLAbhcdxMbZCghbnJOJ801pPXeuJabs9/KcWvZtmjsHDfbOm45Bbh9J7rYqpIm9ETemHOuzcyZwJIlSeHhrsmpqmQFQFdXcnzJkuQ8n8WxkeIkJscNCEyRAqKqSgJZmp1LnptpzADSpjOgOAn9zRj0K67ojE6MxyROQoUUOx1yrYDUoZRpkkBgxy0y4rb/Bdn3bRGpkjQX0MVxa5YcN9fAHAdxA4Bb3wdsesWubXYdt8g5bqERNyCA4xaJKmkKQAsT4yiGqqSvw2xig8RSaK0dE8JWARA3mSrpGwy1ue6tHLeWbTMWqwC3KdoLBIgmR1aVNKEndXQd5oTR3Q2cey7wwgvpsf0OAJYtS453VyXjxeTnKx6imujaPHPcjJFq6fd8FbDkRSajKuniuOUgbjb5XCrLQ9x8ci+N1GCk98JZ8MAwD3DVNnViPCZ/lTpumz1z3GRFScAvTywvl9V3npGf793/W2o/IlXSF3GzyfkJqiopz72RHTcAWPWQXdtbkirprSopctw0ap2+jttm4gTLuWg+pQxMNQuFiXEUJcfNU2ytUYibLNqSad/xWRLjvdCmmGcsVYlli410DhFrOW4tyxo3x81nIpWLhAJxEbcQOW5iclcmaUu/Z3tt2ggEMWJUsuGl1ijEzbsQqTRe5DpUoSkpvpuePMStFBlxM3IG89qunq+j5fpEkwHzxqedibgBajEe05+9Fmme26YX89uXrVLhI262470uMCEjbgW/aDW9Vzv9Z3hanSl4RnPcfMVJYlMlZeouNdf5vRa0KtRfG/k+yPSv3LYbWIDbyDbxKQcQCXHbRIIzw6Si7T57ApOYmLCCxxwZuwA3F3ELmS8qt++rKpm3pvoEQ4F8wZyW49aybcaMOW4e1IXcySJmAe6AqpIhETfV+SbZ5dBURsA/im+KVMs5bb6LjGnj7ESVtEDcbB23SsWsyAaEQdxyI+EhqJIy4kZyLvNQWpUYj8lxqwBoq4oJbFzG7CyxwU3ptVQibh4b5TzHDfDb9JjQZfn3vJV3DYibizhJBtnPmSN9HLdCKZtjHJoqWeyoz2Guc7YU991kXFXJKAW4fUVhGuS4dUyod4ibmSppg/x4I26y41ZEjW/uneMWoxxAdbzLNEkgQPpBq44b0HLcWiabacPmleOWN1mQoehLlZQRvaDiJDnRZMCT1hHYccsrB+BLlaQ1n9pGZD8bvZvUl8C5BL6qZrmIG1EktK1tZaKlCYvquIlNiSv9ikGVBHiomyzGo3schRjPpOnJ+97X7CmwplIAgB8lO48KDHg6boZi9vLvhVbC86ZK5qjXeqsGV/9eEz0V8KdKqtYmE72R1XaTqEr6IG5agaVq/13WjkolddyGb1//uRfDJycYCjR5jltOqZpQ84xxDivDSaW13CDELTfHreW4tWxbMVPkNJTjpuRVF8hEOtQRt8DRQXG9KmVYS/TmlgPw3DgMEIemJDlu+5yTfe+NuKn6X3UGYuS4+Ww2ORFfqtLhrCqpmcJ9aECAeeMjqJIAf/GlYjwjybUuo16MZ8QO6eeiFhPXqCMpi+MAkvNjOd5NVN30YPJfFMTNEx0fMARZml2cpKxz3ALnuKnWJnkDavsbseu41a5noR4t9K2FxkbcHObf/tXp91SOW2yqZC3HLcK6FJMqCaR/k2/euAlxA9yep5iIW14dN995bIiYbkfRsm3VGoK4aXIECiUA/QFoQCaevyP8b+T6S1Ep60WGibgByXUsKiZybduRywEMbEhfy5vBEVOB3c4Anr40eR86hw5I+j+40RFxy4tqxs6xCKAqmUeVrAwkUVN5Q5dnHKokkL3/eSbEeO5+HXj6kuTY1VcDex+bzeukGxXbDWEGtVIVuvdB3GSnISdabWu5eTOem/xBQ5ClrTOZl8u9zV0OIA9xC0GVlK3OcbPsv9Fx61SfZ2OmucBbVTJnnil4OD80v234DvWfx6ZKhspxyy3APUQRt1r7mnuvbV8gbjmOWwxVSVqzz6XcwBCxFuLWstQqFWDFv9L3xgLcthvZnCgPkE6wTgsMrWsVQZyE5ljoPqu9t+z/ANmcbtwMDEjf93GurChMgTeDQDY/JEYitVgcvMsBGKKagGfe4hakSgIBqMdS/6mDPmBJIU0aT19O20UhxuPR90pORJZugjg0z0y/ZLXBiDlueQqwLvfUhLgBqUBJDHGSUKqS8hwQGnGL7bjVyaPTZ8kiCFLrSwVY9UDy2lQWBIhDlSx6rNkZxy0wVdIGcYtegNtlXc1Zm4LNM3mIm0P7ou9KqiQJ+jkhbjnrakfLcWvZtmYvXgeseTx9Lz8YRY8IGMdx8+KcN6gAt2qSlvvLXSB7ehKK2AFvSo/deDMwdWpyvKen+pseIhy5ogEFQndxiPhmqJIj6z/3zsthIG5AAMQthyppPd45VMkGqEoCjgi2CXHzyP0D8nM6fZClvOs+cpf09fpn7NrmiJMUY26oPKmSeVF8kedGiyJzjatUB7hdG12Om7yFieG4yc6Wq+OmEj4pFNO5x8Vx6/l9+lq1NnjnFubVohTHK/bXPpOPOq7+89iBs1DlAKIX4A7suOUKfHjMM5UKeZYUiJu345aHuE1IX8uq1luRtRy3lqX2zw9k38fKcdM6bh687S2Z4yZPbpz+L1oETJ8OzJsHrCSRoTKAV19Njk+fnpxHJ0AvxE2XYF7dxDnlieVE8b2T42PmuOWIk/jQXfJEYYDIiJtvYXWTOIkvSpBHDfZQmM277mN2T1+vXWzXdp38f0RxktwNlQc63jZcTZ3tqG56+tfY59JuLTluSsTN03ET1FOaf0NNBEJcnqXX/mX+3Mv5Ic6Y1vnxmCOpo5lLVR9iqpLRxUk8kM7BnL2YT55Y3j0tlkigwqGOW95+oIW4tWybM3mCCZnjljdZAH6cc3Ydtwg5bvLGOG8yXbQIOPlkoLe3rnsZ4KW3NznvhZf0v5VneQsMQBw3F8SNbDZUVEnfvJy8/reFQtwC57hFFyeJTZU0iJNQxM2JKklpzari4R597ydjeM36etrxsClp1Hedp+MWlSqpQn48ywGIe6V6ToHUcQMS4Qgbs1HZ86FM1zlukgPqOr+bHDdf8am+Vcn/HePVn4vnyQW9pnPY1GPrP/dJb2Ap43rMkZnAmQKdid739vRcW/XE2OM9JlUy1/kZl762ddxoAFWnZSDy3GLUcaM5bn0tx61l26I1UlWS/l5MxO2+z9qjM5WKXY6bqf89PcCsWdljeYy5f92ZvraVXWZFHqtOixdVsqCeqEPltgCaJPAAOW6FkoZG6hNNjixOgjyqpGc+lGnctHkibnliPC75IYJ2fALZvC68vJ52XCgAo6uo24alds9TbMQtJoUJSDf5qo0gkKUZ9VrSjBqFuMnXvNghzTsOiBud31WOm9xfm3msPJhufvMcN6dniYyD/b5T/3kwZVydOEkgx02ulSe37TP/5iFugAMlO0dIyIc1AEQWJ8lD3DxqOuaxWIC0JECMOm7tY1ELiNrOYUPInFQly+Uy7rnnHtx88824//77sXz5cqxatQrjx49HV1cXDjzwQLzjHe/AwQcfjGKx5RsOWTMlgltTaSwQt+COm/T+6UuBGZ+2aHsAtY21KjJo6ots8+enSJuwPMetlxy05pzn1D0B/BC3QRLFV9GvYtaeAkiOWz+s1RPzNrJbjTiJwyZ/Qw9pS3peKWITI8fNNj9v0aIkGNLbC+xFjg8ipR1feGFSCHzmTGDkNGDV/ck1730tUT/lmFU5ABcZ7TzEzfNZEkEWFaUZyDoWtvkhWyrHrVAE3vMQcP0e1fMiqHnKbdr0nyIWOsetjThu1nMYg5omzEcZNzpVMi/o50GVzBMnAarjy6I+X3RVyZjiJBznp2peVMnIiJtyP9CWPGd9K7dqxM3KcXv11Vdx6aWXYv78+XjppYS+VVFAzNdccw0AYIcddsAnPvEJzJ49G5MnTw7Q3ZY11IyIm8cknZfjFlWcBMCml2BleVGkXT8K3P+59L1uoh4YABYsqD9Ou6eah2lzXlTJvBw3D8RNJUwC+HP9a5H2NvWGpk3K/+M41sJM6leAX985iJuP2mkt9yRHphuwf55WPgCsvCd5PfaNQOek7Oe+VEkbxy2v74J2XPsu+Yw+S4J2DAA70Q2bzcZHGn9FFVoYE3HzRFEHLaiSPo5baLGGDCKmaHvMjOQZHtzs6LjlOMw+jpugSQL5iBsqyd9Qsij3YlKsBPzGDCtPNxRV0oAqubRdZqCFwRC3yDluqvEQqo6bshaah+OWh6ICaQ5duR8Y2GQ33vPquAEJXbJv5Vad48Zy3Hp7e3H++efjvPPOw8aNG1EqlXDggQfi0EMPxRvf+EZMnDgRY8aMwZo1a/D666/j0UcfxR133IGHH34YX/va1/Cd73wHZ555Jr70pS+hs9NiY9WyLWtbTFXSZTKycNx0yJPO8njbHWOBt/8VuOWY5L1uMl26NEEAZKPdVe076KX2QdxUkUEg67hZR3yr9B5dFN8718pAYZKPWztuOYibjxy1LeJmrSopEDcNo6FNui42tvLe9PUbPl4/HnypkqFUJVW047xnadYs4E//Tvpic18Z9yhqjpsHiloeTL+jRdyo47ZKfY7O8pB9H8Qtk6+km7vFcxDDcZOpkrEcNyTPk9VGNg9xC1VKJgLilreuBqN55uS4AQ5ObQMdNyWNNADiVmzXiBRFRtxoILD3NaA0jd9+3nUH0uesf439fmaIGMtxmzFjBl544QXss88++NjHPoaZM2di0qRJud9bsWIFfvnLX+Kyyy7D17/+dfziF7/As88+693pljXIGq0qKSa70AW45VROnQOjszKDtz2im/RFM1Gv1dRHytu/NwpxQzWyrctBVFme4EEsUYJa+wHGZB4CDAw9qqSXpD4ZYzLaBviXAwglTpJHO1YNh95e4OlnALE3saF8c+6RVzmAvM2gxz3NkxcHwuW4qca713OaQ0sD0nHkRFGl10ax2YyOuFHq8QYA+Xur9HwbxM026JcTYAE8WQkWqr4xyrHERNxo323z0gFSQqI9PLKft+7FznHrJOy73tcS6jrXWPeVijgN2O/3hoCxEtCGDx+O//3f/8VDDz2Ez372syynDQAmTZqEz33uc3j44Yfx29/+toW2NbOpFjxTjlsUVclQVEnZUYuMuAG8yOMYjRx0nuNGL0eUqCktkm1Bl6xUiMQ4A3HzqZcTw3HLKy4bW5zES1UyhyoZc1MSG3HjJPbraMd5iBsAPPW0ui95xrlHjVKVtHbcaL3FCDluVgiET75SBMetd0X6WhWokAeSjbOfcdwmqM/xoR7nSuq3oTbPeOVHx6BK5iFuPqqSLjluFpahG6rmSBIccRH9EsEEHd3QpxyATuhHmFeOW851AYBhxHHbrGAgGdtnIG6+weIhYCzE7bHHHvMWGfngBz+Ik046yauNlkW0fgUaVOcARUbcMvSuAcOGV2E2OW427QK8KBJnkdllF2Dy5Hq6pA3iZq2IyZBFpn/T4GZ9vSHZyr3pRik24qaNtPvQaQRqxaABxUbcbFUl86iSXhSpnMXRV5wkhKqkjnach7gBwAbyPLtSJYfvoD4lpmhApn6eZQ0k6hCwqJI+iJsBIQAcgiCMtcOHKkk3j53b1X8emyrZRh03y0CIWA8KRfX8Xigk16zc60mzj0GVzMtxi0yVDBLcKqgRMeq4DWyq/zzPxLXR0WZDzDM6Zo0XVZIRZKHPmK3jxgni1DnkFtTjIWIsbyyUMmRLYbKJrW91/TGZGxy9AHckWkddHR7LTTKHt81ZZEolYPbs+uMxqZIcSWfZceMaZzPoi7jp1OSEeY1JUZsvBg1oSxfg9rjulRxqWjOIk+hoxxzEjR53RdyOulVzkgfykzdH+tQoYiFu49LX1hu2nLyZzFi3fE7zakXS9p0Qt9fS18MUjtsbPp59HzvHzcZqlDpNQBFIx1IMtsZQoEpyEDdXx02r1EychUEXx42Zf+2D7HMQN1uqJMexGiZRJW2MI06yDSBuLU+qZYlxktG9qGNb0HGTh7ltzS+OUhIXnZkzB5Apw7S7qnk4E62OkKfg6rhlNoMMVclmy3HLzROjffegd2kLcPuIk+RRJT1odbGpkpkcN8dyADracd6zJP28s+M2ejf1OaEQNyX9alh67W0V0zg5biHGjBYZL7hfG4ouiuLpde17OG6byeaR5t8Im3I0MPHN6XurcgAkwEA3xNR8HDexlplEmQSyYl0DlMHWiCpOEogqGVOcRLcu+bISao5bDsPHq7SGLsdtXPraB3HTXXcfqiRHnMS3ht4QMCfH7YUXXsB1112HZcuWZY4/9thjOPLIIzF+/Hjsv//++Nvf/hakky1rgMkLxtH/qj8negFuSdrdxmyokrZ0Q1vEzXRturuTelLU8vbvHz6VfB7DcaPRwYiIm1Mdty2Y4zYUxEl0U7iXAmEeZc9TnMSUjyr/pm7MCNqxbBzHbRjNP7G4rzVn2bBshspx082RAnWzddwGGIibFzUt5zkFyLWxbDuDuOkCRD6IG9k8qhC3QgHYjTAlbPrPQSAyz5Mj4qbb4APuiFsjC3DnUSWt5186x3Dmd1fETZf24Yu4ifuaV2O0Yj/mhQOvG4+izhpgX2st41jp5Po9qJIcKmYmmOCw5xgC5uS4XXjhhTjhhBOwYUM6yWzYsAFHHXUUbr31VqxZswYPPfQQjj32WCxZsiRYZ1sW0eikvtdZwHaH1p8zZKmSMuJmmSzMESex2fTMnAlcdVWKvOkct87O5Ly3vJV83kSIG53UdRsqH+dnQ08a8dNG8h3HZCUH9QHiUyW9xElsCnCHRtxo/kYEqiQnEu5KOwaAvfZR9yXXRIMMxw0VB0o2Qz1ROG59r9u1zwqy+FDTbBw3H6qkZp7xynGjVElNvVnXeYaDQLgibgMDQF/1vg62Je9V1iiqZOgC3PRWrlml//uUbXOokgEQZg7iZi04Q0p3aMVJfAKWFiV2bFFaW8TNmSpZ0AfQfEsxDAFzctxuu+02TJ8+HTNmzKgd+9WvfoXly5fj+OOPx4MPPohvfvOb6O3txcUXXxyssy2LaJnNmk71sYGOm48IR91mUMq5sG2bI05i66DMnAksWQLMnQtMHJceLwPo6kqOL1mSnBe7Fk/GcbOIDlIaUIeGBuRDR/nnCenr0Ihb7BpFMcVJKpX0fBZV0gNxUzkQxbY0gLHiDmCjZUH73By3iLTjzk5g3/157cuW5ywDWaGCGHOkEBAp99sJlFBklFO30DpQwXHcRLmXJqNK0s2jSpwE8AgQMRwI25zRnp5kfZg6FVhbRV6XLkvez52bfE4tBOIWg5WgW1fF33fY4emxP12r//tUxkELaRDWmoWTQw32QdyoQ5snTgK4zzPaNbWQfuY1ZjjXxnafx5hnfFk+Q8CcHLeXX34Zu+66a+bYDTfcgEKhgIsuugj77rsv5s6dixkzZuDvf/97kI62LLJxaDoNVZUMiCzJOW02qJL8fRZVkrmAdXcD554LXHFZeuyznwOWLUuOd1drw8WuxVN0RNwy+Ru6UgceC/vK+0g7DFqE1YYqdo2iiOIkGbRQF3WMWFwWyC6+zyhk+Y3tBxAnAdS04zxxkoULgbHj1H3JMxuqpG3bQD7SCWQFSmzokpn5PUdiHHBAT3I2skB6bWzbjk2V3PRK+jqm48apO5U3vy9aBEyfDsybl6iqiiYHkLyfNy/5fNGi+vabTpxEwWTJ/H1kfBeh//tUxrnurkwTIN+BKHaiFjC2ddw4+aiu5TUqFV6QJeqYCSEoZlAGb4mTqG3VqlWYMCFbk+TOO+/EXnvthalTp9aO7bPPPnV5cC1rUmMVyB6iVEl54vQRJ+EgbraTBQUEt+tKaGDU2iLl/tXad6zjRhWndIn3oaJfrEXANfckAg2IE/GFq+PGccYjUiUBYPon0te2xZrzaKo2TqeJdkxvmaAdz5zpT681OW6ZexoDcXNUlmTNvz45RZzNYBNSJQc2AaseSF6PmBY+aGmtbmiY3xctAk4+OVt0XnSXPia9vcl5wrlxRtws88R8ygEUO+r/PnqZ6SMn/30q41x313UPYOReF1Kny5YqmXHcGFRJqzxdel10pTXgMWYYOW5BaJ5MxM1FyXoImJPjNnLkSLz2WkoveO655/Dyyy/jsMMOy5xXKpUwYMNLbtmWs9gLO6cAdyzHTZ44fRA3bY5bKAUsFQLhwTmPmePGQdxC8c11UUvnTTjH+fGhjtlSJW02nAzELWYdNwDoJjU5XdU8ASil422dTko7HkuodCraMeDhkNvkuMEe/eEg+yEQN21gLoD8emyqZFtgxG3FHel1n3KU/rwg84xHrlVPDzBrVvYYbU71tVmzku/RTbhNXmRmkx9DnKR63YudCctE/vvorVT9vPj7VBYbccujGwIpzdEacaOB4sBUSc7cDqT7HNsgd6MQN848I/dnKzInx22vvfbC7bffXnPefvWrX6FQKODwww/PnNfT04Ouri7/XrYsvrEcN58ovpikNXV+AERTlZSV72Igbj4FZnOpY3Rht+WEW0YercRJOFTJQIibLp8nZo6bl6pZRFXJRiJuoUVh6Pkha9AJ2vFZX0mP/fRn9bRj+XebiSrJEUHKOG4WSKe14+ZKlTRRmAKoSrYHznF7/a70ddc79OfFpEpyEOb587NIGwDQR1P1td5e4NJLs/fblZUQRZyEKGKq/j56K1WPnPj7lG1HXPcAHjVYiAB5USUDi5OwitkDYfIidWuHDyuBMc+0ygGo7bTTTsOmTZtw0EEH4YQTTsA3vvENjB49Gscee2ztnM2bN+P+++/HnnvuGayzLYtoLMfNUcSCts+ZLOT+cMwkMb79v2ff207SLFXJItk8+CAQigkp49CGFG2pmusCxqFKhop+6dTWMg5zxBw3H6pkaFVJluNGN2sRctwa5bjZOp0Fch2nTqunHQPuzIHoOW4MxI0qQtrMwRzGg1fwyUKcxPaexqZKCtMpSgKBqJKc8a5Y9wYGgAWKPNI8xw1IvlfIaV9nmQCOru8BxEmKneq/T0eVpLZggVptkpVbGMBxM413Z6okA3Fzve6coBzgkePGKZBd8NgrWcwzcn+2InNy3GbPno3TTz8dPT09uPbaazFs2DD84he/wOjRaf2H6667Dps2bcIRRxzh1LGnnnoKF110EU4//XTss88+KJVKKBQK+Na3vuXU3jnnnINCoWD89+STTzq1vVUYy3EjanLWEreWjpurqmShWI/ojZwGHHGde9scxG1gADU+x+YN7tLFqgXSK4l6S4uTBOKbh0bcYiumWVMlbShMHKpkqDpunGsTs/B5DKRzCCNumbwci3mMVUfT1aFlCh7UqGOWc1hMqmReMfjaZ45j0lacRDVHLl2aCHPIxnHcli8HekkfbOaCfsvAnCtVslJS/315VEkg+fuWLq0/HpMqWR5Ebb7mOG5RxEkCIG66eYB+Zp2awQlYAjXXI4Y4ic+6PUTMdGW1VigU8Itf/ALf+MY3sHz5cuyxxx4YNSpLYdh9991xzTXX4C1veYtTxy655BL86Ec/cvquyd70pjdhv/32U342dqxmctoWjAuhtw1PNgwxELcQqpK6xXfqe9PXIVUle3oSmseCBcB3+oFhAJ58HJgzNakzNWdOlqZl6jugcdw8ZItjipNkHLfYiFtox60JELethippe22EAxSQKimMpebp6lwxcty8ygEwELeMhLnNZpM6hTrErYgEBa5YOifk7zRuZAV1zDLoF1NVMq8YfO2zmKqSOc/q2rX1x4Ds7s10uwZJINNmI05zKDsnqc8JIU5S0VyXPKqksHXr6o9R9oWWKkmcIpt1L8NIMOxnRC23cm8yLo2iRsQGYlIluYhbgBy3vJqOlQF3quQ2Xg7AyXET1t3djW7NpnS//fbTOkgc23vvvfHFL34R+++/Pw444AB8+9vfxi9/+Uvn9oQdf/zxOOecc7zb2eqM67iVRgD9q+0X30ZRJbWb8GLyQJf7/XLcKDq1aFGSIC24+WKhaUMqXXzhhYkEuRBGMPUdUC8yPpQOTnK8szgJjcgGRtzkJHrdhsy5HIBlHTdbyeXFP8lvn1UtWtW+JVUyhjhJEKokBy20pXlGzMvh1HELRZWMibgZ5+BScs1jbAbFRrncn1x3Y0SeWMwcNw56Dbg75NaqkorxPkYzt9LbaHpM2gm91mYu6F2Rvqa5ldRClAPQ1SrjUCUBgDC9lH0JjrgxBT7kWm5amq/cfkxxEocct0pFr0sgG+e6AyTf1XbtEOIk23Y5ACfHra2tDaeffjoWyjV0JJs9ezYuu+wyJ2XJj3/845n3xaITq7NlXOPkQABp1DQKVTKAOImxOG6nm+OmioQL6WJqYg5SSRcDeuctT1XSS7aYIUvfKFVJq00ycwPmivyULRE3m7Zf+guw5lF1O5n2I9Zx83J+tnCOm08NupiqZtblACydCIGmF4oGlMAVcWPO74USgH5LqiRzI1siDsTgJqCo2HCrjEOVdM1x4wRB5M+iIm6KdW+XXYDJk+vphHmqkkCiqjp6HLDK0L7OYiJulUo6foeNUv99HKpkV1dyferaj7jusQMVZLwPWDhuLMTN8bqzVSUlQRvT36lrn+W42T6vHKpkqxyA0iqVCipMWVnueS3bwsblPvtK3MZA3NY+Bax5PHltWnzFJGgtTiLluKmkmYEs4iabUbo4jyoZCHHTJcf7Om7FTgO1y3ETzt0chaBKcuq42Wxkn/l59v2WECfxcn6GsDgJp45Qs4uT6NA2+TMb2jQ3MOei/OiKQHAtKlWSyceLOc/klQMolRLavWycHLfZs4ESDfy5Im4ax811jiz3opYn1j5S/fcB+ezk2bPVAkQxVSW5473kON45iJszAmyJuMnfyTNujpsr4tYqwA3A0XHj2saNG9HezvTUG2T3338/zjzzTJxxxhn40pe+hF/96ldYp+JIO9iGDRtY/5rS2DluROKWu0gObEwXX90CIP+uzabk9g+mr/s1+QBAuumxFieRKEwq6WLAvMhwpYtVE5JrlB2wz3FzcdzaDZFz502yNKF3Hak+L0gknKGYZrMAyFHS4OIkDaRKanPcIoqThMpxC15HyLaOm6M4iclxc95s2iBuiBPFzyAQFoyNjOM2Qn1OkBy3CIgbZzxyAhVz5qRF5oXl5bh1dgJnnOE+F8SkStJ72jZS/fcBahZLrU/Vv09lMamSXIQ5E6iwGO9RxUm4fXcMEHFz3IqOjps43+QUbgPlALxy3Ey2evVq3H777dh+++1j/YST/elPf8Kf/vSnzLGxY8fixz/+MU499VSvtmWBliFldEI3weIZustm/UJKbdPL6evhhvHgusCsfoR3npioremG5PxKSS1dDKSLjG79X7AAOPvs+ghhbh03x7yWurYZssg214ZDf3VFfuQJ982/0LQfsTAuFWuwWQDkjXdwcRIGSpAR+rGlBov7VNCjtF6IWw5yFV0UpklVJcV90qHX8mfOqpImRK96zWJIjLsiEFQ2XnvtXamSzBy3mAGiAiNQ0d2d5EpTej5tTtWlhQuT7y13ddyqVMlCEWgfpz7HNbhFHffSSPXfB5hZLOLvUxnLYfZc9wB+oMIKYbakSjYr4hY6x61SRi3AyUbctk6qJNtx23XXXTPvf//73+OWW25RnjswMIBXXnkFg4ODmDNnjlcHQ9kb3vAGfPvb38YxxxyDnXbaCQDw+OOP47vf/S6uv/56nHbaaWhra8NMk4jE1mxsmVg54dbWcdvB0LYHSsCxtgCI24vL1dLFQH5AXkgXT5+ePZ7ruLWj5kBYI24Ruf415IQpzfvidcCGHmBkjsombRsAtn83MGpn9XkxN1RAKtYQG3ELripJ76mts8+plROg4HwMxM1WnCQ0VdJHVZKDuLkKFdkibs6lNbgbWQcEQoc+AM2LuIXIcRMm9iZCEIsOQ9qlzs6sIJYv4tYxwRDACYC4iT2E/PcBasdN/vtUxgngRM9xc0WtGOWHXHO7uWih65ixznFzRa9z1mxh2zri9txzz9VeFwoFrF+/HuvXayS6AXR0dOD444/Ht7/9ba8OhrJTTjml7thhhx2GP/3pT/jMZz6Diy66CJ/73OfwwQ9+EB0dhoXNYKbrIWzt2rXYYQeD87KlzJYqCSRRMx2FgtrmyIgb12pUSY8ct/WGfploHcJUtNy8RaZQSCbwwU0OpQwiUiVZgjDS4vDEhcBBjDIfHERM/sxqEbBp31KsQV5stbSOiKqSrsgMkC6+HKqL3B+Oxcxx41B1XIu2x6ZKNgpxy1OVBCJRJYnjZUOVFHOSbhMLuDtu4CJurmIQdLOpExLKyXGjNnMmcMQRCe3+josAVJV9y0iEOmbPTuiDFIlyXVf7qoibaY13RdwGNXmL9O9bsAAYXF79Hej/PpU1g6qk63XP5KNq5gLXOYyb69qMOW6cfFHAb/0YIsZ23JZWixxWKhXsuuuu+MAHPoALLrhAeW5HRwe22247lFRJo01o55xzDn7605/itddew1133YXDDz/cqZ2RI/NVgwYHLRfzRplNHTdhXPh/40vpaxPi5qMqyTGXaDKQ3SCNNSxiJlqHMKV0MQdB6XRz3Kxz3CwoHSx5dGkOWHUfr21udC024uYi1iAvtltEVdIjL1IsdqZoctOKk9gibg5USR36kHzo1jbQJDluEcVJZFVJrnEQt9p1r8BOvrxBiFuhpO+T7Xjv7gbOPRd4bl/gjv9Ijn3hy8Ch89RCHZnccYt1Vah5lgw5zEEQN2nfJP6+s88G/jAZGFgF7NwNLHtW/feprBnESWwc8kz7jGfVeTw2SY6bk+PGpWG2ELeaCXohAJx22mk4/PDDM8eGsk2YMAGTJ0/Gyy+/jGXLlm3p7mwZs6njJoxLd2kaxE0M9wqsCmLSSX3XGWrpYiA/x00rXcxAf9qGJcphzSROUksUtkDcJhxk1zbA31DZRB650TsXsQb5+dEuMhFVJds8qJIcxG0olAPQqvi50owYkHrmuliiPxzEzVVV0poq6Ui/Mm2oXMVJbBC3pEPIPFsmi53jJsZjDISgQASNJk/ROzUuKQiVMglUmOYBV8eN3H9diYdSCSh1JsIrbQW+0yb3JSriZkKtmBTYuvYZz6orHXBI57hxqZJbP+LmpCp52WWX4WMf+1jovmwxGxwcxJo1CeVgtAoR2RbMlSrJsU2vpK+5jpvtZpNjzouviIR3AO3teuliMa/o5iuOdHHeRtxanISzkXVEZ1wQNzp+OG0DPMoFYLnZtOTLu7ZN25AtpqqkK6VuYADoqyIc5ULyXmVeqpI5uWKZTUkMxM1yHhgYAJYsIdcixgZ/kARCmIibs6BCE1AlQyNuQdDryIibtm3HDT57DnPYhLPVAV3FSRhKoUB63fo2Sc9gjnFZLMJiqEo654kxhIRiq0rGznETc2i09Abxna0TcXNy3Hp6enDllVfiqaee0p7z5JNP4sorrxwSCNZ1112HjRs3olAo4KCDmIjA1mZc7rOLMhg9r2RQ3oyNuLk+0FTVDNBLF4sm21Af8DVKF1sgKDEQt0LBLf+P5bgVgF1PJ9/hLrzcTUlEVUn6mdVGVhq7oamSnLwc201JTw8wdy4wdSrwWjXQ8tKryfu5c+trEEZF3DwWXlY5AGa0ml6T3XcHNlUDVU8+qb4mgH9wCGgSxM1xM8hWJGYG/coD6T3iIm6u6HXMOm5GAae2tP9WlDomuuGyrlaY9zQGVRJIn70Xq2kWK15LnkHdfCQbB3mn655VEKSBjltoqmSz1HFzKQfAbnvrLwfg5LhddNFF+OhHP2osrl2pVHD66afjpz/9qXPnbO3iiy/GHnvsUSfr/8ILL+Cqq67C5s31D+cf//hHfPzjHwcAzJw5E1OmTGlIX5vOYiJuXPg8tqqk62QnNkhi4yCki2Wjc4T8Z5qki1lFWh2FVbiUQ5dSCRzHDQB2naXuD6ftvPaD1FfiIG6OiyNto75x+iV++0KmGzBEk0vpZ3mI26JFidLpvHkJBVg0OYjk/bx5yeeLFql/N7SqZKFAHGaLjWz/euCl69P3nHIAOnqtfE2A9Hb1D6qvidy2q+NWNDgoNYVZRFaVjC1Owgz6ZRxaTo4bYCf0Q841Ur59qZI5c6RwjmwQZvZG1gVx4zongcVJgOyz11e9P+Ly6eYj2dh7juqYiqEq2ZSOG/e+uoog2ea42TyrDjluWylV0kk95MYbb8See+6JPfbYQ3vOnnvuib322gs33HCDk7Lk/fffj0996lO198888wwAYP78+bj++nRxvuaaa2q14lasWIGnnnqqzvlauXIlTjnlFHzyk5/E/vvvj6lTp2LTpk14/PHHsWTJEgDAkUceiUsuucS6n1uNxcxx40S/5N+1megKRd4EkKFgOWyqaCRcJV0sO279yJcuLg8AT5yfvudQJWMk37cNB/rXhEfcALfrzkbEAiBunBw31zyC5Ac0bTugBJUy8PejSBumzWZn8oyakJlFi+prJ4nLQS9nb2963syZ1fEnatwFRtyAZNEfHLDbyD75g+x7V6qk6poAKYoubpV8TQD3Df4gE3ErFJLPBzfbbagEo6JQNDsRNWc/gsS4y9rBqWkFNDHixqBKAsl1K/fGySfKrKvMMcOWdQ+Q40YdN/nZ0wm5qp49amzHzSF3nO38OOZasRw3V5VTbn6eo6BNzBy3VjmAmjk5bj09PSzlxd122w3/+te/XH4Ca9euxV133VV3fNmyZRn6ZW9v/kTU3d2Nr3zlK7jnnnvw9NNP4/7770dfXx8mTZqE973vffjIRz6CD33oQygWnQDIrcNiqkpynQdXVcniMN5GwDUfqkaVlDYOsnTxwPL0s+23Az4yJ1+6eOmV+j5Sy+S29Jo3MdRqk13BnHzvQsXkOm4u6AxbVdJVIdCyfR/HTbtZchAnWb9UasJ0T4XjprmnPT1J4KHue9X/VX/yrFnJmO/uTq5bZcAjxy0nL2dwk9088MjXpTZ06LVhYdddEyC9XTLRhF4TV1XJDOJmcNyA6nxn6biJ62ia2wG3nM6YOW6ZmlYRctzY5QAa4LgBkaiSDg4E9566OhCUKilYPKpnTzSp60Lm2SPGDRa7rHvcAtxNibiRto016Jqwjhs72Lr1i5M4OW4bN27E8OEm2kJiw4cPxzpV3SqGvf3tbzdSMVV2zjnn4Jxzzqk7PnHiRHz3u9916sc2Y2VmRDZDldygP4+aU2TQJspDHs43flV/nnPNL4PaG5Uu/tt7gVU3JscfuAcYw1Bd5aIEskog13HjOle2Cxg3qR9wu+7RZbqZiJ6LWIMcodRRil3ESeSNAov+qtngz5+fosWZ71X/V13O3t4kUHHuuW6OW3mQzAc5Tmc/7PK42oZnHQIXxE13TQBQxfmMydek1raFA8FF3MTn1igB03HLPKtM5V224+ZAs+cibjFrIgLuyBJHVRJI74vNRpNdM8vBuWILcATMcVM9e2L72AFgOADZ36fPHjU24iZSEGzK4AzlHDfS9zYm4tY0ddy4+8itH3Fzgpi23357PPjgg7nnPfTQQ5g8ebLLT7Ss0caOyLokOnMRNwdVyUo5nYyGTQbe9C39ua55ORw56lIJGDMhfV9kbh7kNoMrYEVy3LiImPw5W5zERVUyAu0iBOI28WBN2y4ogeQ1cBBsleM2MJCgxCozOW5AFV0ecMv/u/e/0tecucBm0zCsK/ueI35C76vpmgDpaqm6VeKaBMlxy3PcxLMaEXEDLDb59FniIm5cmn1kxM2lHIBV2ZEmQ9y41GMXxM3HcdM9e2vI6zGatsSzR42dniHmSFdUKXIBbp1zFaIcALvvTVLHjU2V3PoRNyfH7fDDD8fixYtx9dVXa8/5wx/+gCeffBJHHHGEc+da1kBzWdi5Dx2btuDgnNCJaIw+5xKA26aqTBCFXAqTA9WT67i5yoCz89CkHDpuu5y2Xa67bYFswDIvhxtM8FSVfMfNerlrl82m3I88qiSgfpaWLlXXIqSXQnerli9Pvu+y+D49P31t6rvJ6dTZMClIqMsD1W3CddcEyLBaleCofE2AODlugJtQUW1+z2nbJcjCLsBNHTdm3xuZ4xZTBCkPcROb6CgKfi5UycjlAKjjXhqpf/ao4zZW05Z49qjZsnxcHbcoiBsN4jSDOIkj+4mdm858XgfIdVm3gVeqplUOILXPfvazKBQKOPXUU/GjH/0oQ4dct24dfvSjH+HUU09FsVjEZz7zmWCdbVlEY1NpXDbhzMWRJikPMmmYgxaRapcoVUbVLIee6DJRy33WLcDORbKZGwc5hy63XSbVUP7tpqFKWtKMXKOaE/Y3nOhA75I3Xkan04DMrF2r/g69FKY/ed064rg5Lo4m1EU8SzaJ8Z1MdoduzOiuCZB13HS3il4Tue08s0LcHJxaJ6pkYMfNKXDGRNzos7T5Ff1psmU2jTFz3PICZw6IG1sIgjpuDlTJRpQD0D17HMcNSJ49avQ6PrNUv8kXz1JlkI+kOhXgDi1O0qTlALgosE3/RWmIdxNRrl/9Vl8aolUOQG0HHHAAvvOd72DTpk34/Oc/jwkTJmDatGmYNm0aJkyYgM9//vPYuHEjvvWtb+GQQw4J3eeWxTAxsURx3CwgbvH73Pw5mw2PS9+tHEMHqqcL4haTKslt3xVxcxIniawqyXEMK4M8JBLgL45OqpIy4mbKcSMbfLnvYzS8Iw7iBgCjR7shbtT61ug/c3FOOsbxztMFcHTXBMhH3IDkmsRWlQSIQ77Zfkya8loAt2h1TMfNBXH714d5bcv94Khtyt/htp8b3KreFxsVVTZVko73ZhEnIUGbtuH6Z49OEeMM7Y0enfwvNvn33p1+NmNPwybfgRLYyBw3V2Vcnbn03VVVMsRcQEtDrF6VHi/DUKpm6y8H4Cyj+KUvfQl//OMfse+++2JwcLCm9jg4OIh9990Xf/jDH3DmmWeG7GvLYpoL4saOUDGVDYEUdetfz2vbZsPjsshQJyYG4sZ13Kis1nNL9BFE2ZrNcQuNuDmXeHDZ9HDHO9Nxc1GVrIsgGspCmOguu+wCqPKPOY5bV1fyfV/Hrd/guNHcE65zwu2HbjzqrgmQXSlV3RHXpBGqkrV5rmKBikWkwjvRowIjbnRdWf2whXBWoxC3CDluUamSzHtKf/e5XwL9TDG6zBzZqX/2ODlu4tmjm/zB6rURt0q3yXehBDaqAHexw0D3dqWoctXDA+S4+TJlRGkIIVhDH09VqRpxX1viJGY79thj8cADD+Dll1/GXXfdhbvuugsvv/wyHnjgARx//PGButiyhlhtsjBMRIDfJjyPrgekjhuXKhkbcStbOIZtDouA3Gd5kRQRxPmXpcdO/qA+gihbUzhuzUiV5LZPNz0OC7txI+ugKilvvEyLamY8SueVSsDs2fXf4VAlZ89Ovl+jkcZw3OjGgbnZpP3Y9aP683TjUXdNgHyqZO2auKpKctUT4Ya+D1WqJBdxk9tbeR+v/WbJcas5bhaBCjYroUHlAADgxevV58kmIz+6Z49DlZw9G/jtb7ObfJ3AkrzJz+TVO9S4i4FacZ7V6IibZ45boU3vdAIS20TRf1VpCPp4qqbWWbOS720D5QCCFC7r6urCwQcfjIMPPhhdXV35X2hZ8xmntpL8uS1VMq9tACiNSv7nRkytKEYODkRsxE3uB71GNIK4klBLOqGPIOraz4v4+jhuJooR4CZ4YCsrLPcpVPtOtacYEVMgjDjJgKFPtO6galMyZ05SIJ4aHeKqYdDZmdQmBPwRN9P3TE6ntj1ybfY9V3+eaTyqrglgpkqqrglgd11U8ug6sw0mUOVdK0aFg+NmzIeKiLjJQYAV9TVgNT+Qvgxdx61SRm2wcBE3q/YdEDf2/Mvc4A/bLvt+gMmUUTk/qmePAnijFe10dgLve59+k6+bVsUm32XN5o5311pogxEdt0bluOWN97z+q0pD5LFBRGmIFuLWsm3Gahv8nCHh8lBwnQcg3bQMbOBFHp0RNwdxkhg5brJCpLi+Mk2ANke7IUcQ69rnJsfTTT7DQbFB3JpSnIQrmEMUIV0cN6M5iJPIOSqmPuU5P93dwMKF2WN0b6xqeuHCtNitr+NmMpeIL1cwx0T3Vl0TwEyVVF0TuT95RnN+8hy3DPWNMY9xEQIg+6w+/ACwhEHLjom4cQNnfauz7zcsVZ5WZ9x6lJkgi0OeLreOG+Cm/MilM4ZG3NqGATP+X/qe7ZArWAmqZ4/OQarld+FC4E9/qt/ki9ul605tk+8QIOIW4HZha9BzTYHo6KqSnnXcrJhb0tqnKw3BWS4XLADKJMq2LSNuP/jBD9DXZ3HzFNbX14fvf//7Xm20LKI1BHGzcNwqg7yJ1DXHrVkQNxndKrSpaQL0NNWfKSKIsrHLAVhy2mOLkzg5bg6FcQHzuKRRfhO6lWmbS0sLgLiZHDdO7b+ZM4Grrkoj3dRxy4y5zuS8mTPTY+Lax5BcdgqCcEWQcoJP8jUB1FRJ0zUB3BE3WqhaZbZ1uQaZqFVPD/DQo+n7E44Ddt89n5bNRWecHDdKlbRA3JwCRCbErWAfqOCqPgJum3wnVUmXHLecTfiEA0ifLB03mVInP3u6gKV49j70IfUmPw9xA5LvZXLFIua4WYnOMNaPEHXcuIibTb1I7l7PNBfoSkNwHLfly4FlL9X3ZyszluP2hS98ATNmzMD8+fMz0v8cW7NmDX7yk59g+vTp+NKXvuTUyZY1wGoPT86QcKK7iBw3BlWyjUSbOXRJV8SNLU7iIhoAC8dNMSmqaAL0rcp/FBFE2diOm6VTG1ucpFlUJZ2KBnMdNwdxEnnjZUTccqiSwmbOTJCVuXOB7UkiySYkif9z5yafUwcFSJ/nGIibL1XSl15Lr0lXV3ZabO/IvyamtlUm17Uyma3YBMf5EbRs6riJvzmPlu2CuHGFrTJOp2H+lRE3doCIibjRz0OrKQNuAiJOVEmXtmPkvRuQGfrsTepKc22HoX4+ytvkm7qzfDmwnqzTXAeFG6hoa8IcNzaS6pjjVqNkezhuutIQXMXjDeQ+bst13K655hoUi0V88pOfxJQpU3DyySfjsssuw5NPPomKRGerVCp44okn8Itf/AIf/vCHscMOO+Azn/kM2tvbcc0110T5I1oWwLgb/NiIW/uo9DXHcbNC3CJSdYAwiBs61RFEXeSR2oIF9bSmCtNptr02zShOwt0Myu2bFpmoVEkghXK4yokWiJuN89PdDZx7LnDJD9JjX/46sGxZclxQAalZb2SZfyPgny9qdPaZ41Fck2XLgLvuTI8f/S79NWkfl77evDy3yzXL5LjlIG62CEreHEZp2TR+ID92Olp21DpuzJpZdYibA7JvUmgF7Mc7N/gEuDlXbKqkQx03G3qtz33VoXn02eusBpNm7Fw/H+Vt8vPiYfRysKmSTDQyhKqkzrbmHDddaQhuZsHoceQ8P6ZgsxpjJw0cd9xxOOaYY/DjH/8YF110EX71q1/h17/+NQCgWCxi7NixGDNmDNauXYvVq1fXnLlKpYJp06bh05/+ND796U+jo4OzkWnZljFBlYyAuHGdQiAbbeYkOlvloPkW4LbIcWMvAmRT9db/BXpeVUcQ86iSQBJBXLo0iYwLC0FdUJkz4haaKulYDoAbDfcSJ8nZ8ADJ81YZ5CNuNo4bhyopG1VznbpbovamM1tVSbnvb/i4/txM3wNTJW3HY6kE7LIz8KDom6HtUW9IX69/Jr9tYRmqZB7iZpmzZELcZFq2yXETNmsWcMQR6eY58ywFdtxs5hlq1ohbwSwkRH/fpe8xctzYCLNnjlvotYO2nzdHlkpA52hg4xqg2Fs/H+Vt8vO600meNSeqpMm58sxxM7btWA4gttPplOMm3SRRGkLeB+nKAVDr6gJ22R14oPreppTBEDK2OElHRwe++MUvYunSpbj66qtx8sknY8cdd8Tg4CBWrlyJ5557DitXrkS5XMaOO+6IU045BX/4wx/w7LPP4gtf+ELLaWtmq1SaJ8fNhyoZG3ErWiBuXGqEaL99DDDtA/oIIgdxAwCZysxGUi0XAu4mGXAUJ+HSgEJQJbk5bkyqJEcVrPbb1SnYlSppyruj6Ap3ARsg46ekknEjZo1ASH3f/3z9uS5UHe5G2QmlJfdn9Vq9aMdo4rits3DcMlRJmxw3xrNqKjUg07Lp5dDtDmRadkzEjfuc1n0vcJ1Lek6MHLeiwybfBXELXYAbcMxhZjpugFlpOq8epWla7eoCJpDvhi4H4KIqWanwHDeXkiByP9qYiFujc9x0pSHoI6q7r7NnAx1kD2nT9yFk1qqSxWIRJ5xwAq644go8//zzeO211/Doo4/iX//6Fx577DG89tpreP7553H55Zfj+OOPR7HYEq5sfiMUptAbfHqeNeJmSZXMzXFzKabsirhZ5riJiVgXQczLcRM2Wtpsx6LANqU4iYXj9vKNvPajUyXF/OgoTrL9u/TntpOxsPIB/XnUaAHd9oiO25R3AR3j9ee6oNdcFNUWee/pAc77Tvr+7//Qi3Z0TADaq9QuV8TNqhyAhziJSr2N3krTY01p2VEdN4sAke57RmMyTYB03Niue/S72rYblOPGbtvGcXNZV10ct/X1dGvdJp+DuM2eDZRocIvrXLkoM7rcU8P6Ia4JwC/BIPfDWMqggTluquCZqjREHuImyrIU24hwVstxU9rEiROx11574d/+7d+w5557YuLEiSH61bJGGldZC/CLmrIKcFvmuLkibmxxEoq4RRAnEVRJgebpIogcqmRXV/J9ak7iJIxrYxMJzyu2KVt5EPi/U8n3Aztuqx8FVtyRvg9Zx40bMRVmi7jJEfO9vqw/d+px6evFF/PapyIPL682S8FTx42Tv8bdaAJuVMna/S+Y5zGbMSNEOy66KD0mbpVKtKNQAEbvlrze+AIfeadoro2qpDVVkmxUVcIOdBialgJBy5b7EBVxM8wDB/xQ/z1O+xynUDzPToEEG1VJh03+kM1xs1GaLqvRJdUmPw9xq23yXcoBRJTU5+agtbs6bpFz3MRcbVWaSTFmVKUh8nLcaFkW8fstxK1lW63FVgi0KsBtmeNmg7i5UPYy1IIIOW5iIRIbKl0EkYO4zZ6dzQHIUGC3YI4b/X1O20uvVH9X2a5D/txTP9K3IZstVbIyiBqCbaKipD9e/Z4D4nbwz8zozLg3AuP3T15veM7cbk9Pgh79+rL02Hs/YJaCN9XiUZnNZtApCMKcZ7hjnYp2mOq4yaIdY/aonlcGVj/M6bkd4haqHICKls2hSgoTtOwKM4rvqy5rcvZ3/xRwyHz190xWsUHcLDeDVuIkDtLxbOVduiZEKAcQWlVStrxgrmmTr+uO2OQ7lR3hBiocSg1k9jNMxI2yJPKs1veCOVc3prAKwBszcmkIHVVSVZZFrB8txK1lW61lJJFjipNYRNeAuOUA2OIkzAiV/LmtqiTdqKoiiHmIm4ggUsvk/ARWfrR23AQ6w7juK+9Rf9fUrtwnk3VMkNowIW6WVElu4nrtt8Xz5qAqydr0iP5X9PlcAlWaNw+ZgbYJZil420CIzWbQhyqZS9NhoMuyaIeqjptsopbipEPTY6/dbu6LMJrjZqpXBtiLTegQNxUtmyNOIkzQsjNj3uRAWCLv8nlG+ms7MO1D5HsRctxsN4OZZzWP8UCeBy5KG5UqaTHPuOQZu1AlAX0wV7fJl59VeZPvFCAi5xkDFYX073Np2xT4o/nHLoib1V6GO97L6bjJZT8x5wJaGmIc+ZsHkVOqpoW4tWxrN5tNuNMkzdxQARI1jZF0G7scQEzHrVJJJ0UqfKKKIPYhXYRUiBulCdTaj5iHZuu4FS0QN3njGlpVcth2/PZLllRJ7qJeO8dDnIQTCMlzUiiqBOgLcKuk4K1RWuYGH5AoTJbiJCEQN1m0gzpuOh9biHZs99b0GNdxE0GqtmF2m3zOs6pD3FS0bC5VktKy2QgEobDGUJXMqG3aqkpGQNxcxUmCI26WYjYA3xkHPKmSHMeNycKhm3wZcdNt8mNSJQFCr20SqiRXFMZJaM01iJ4zZkRpiO9+Oz323fPMpWpaiFvLtnpzKUIKxMkjsG3fCnFzEVaxQFAyeTkcx20gvfay2pscQQRSuiT9M1U0gVr7ESmwNmgebZ+zcZAdN99iyrLJaolBc9wsETFbcRLb9k3RdhlVArKOm2rNE6gS4PCsMmXjATcKk4uimQqFVIl2cGsILVgAjJyROijrl5r7UvtN4bjl5LcBDlRJDeKmomVzqZKUlu1Cq4uhzMhBUuvar95MzhxWJJtBVk6nRR5wzHIAxTbUIg9O5QBiUCVdEbccFk53N/DNb6Rjd583AYsX6zf5Lg6Kk+PGve5Mx61tOGr31IYqyVU8dkILHYPo3LWvQJ657Xc0l6ppIW4t2+qtwl2t4UY3tCkHYLsINBPiZiv/m1cYl0YQu7rSjfQwmGkCwqwivj7iJBaOG0d+Xb4WoamS8t8XMsfNRkkO8EPcWO0b7quMKgGA2If0QY0sUSl4a8fNNceNGwlniiBlkB/FWFeJdnAQNyAR7Xj+hXTclBmsASClSubltwEO4iQaxA2op2VzqJIyLdtKgdDWcYudfy3OY2yFMmOScd2dVSUdqJLc+d3FcQstTlIpE4eZ4bjZokv0uo8em9C8dZt8l3nGZrzHQtwKxXSuiIG40d8PnZ8H5AfPVGYz3luIW8u2erNC3GxzoSzaBuwdiOgFuF2pkowJg6NYKWgCy5YBXdOSY13jzDQBYY1C3EKLk9RRJQMjbvLmxYS+2pYDsFlcANSK/roU4GZRMTUoswpVAtLNuunxEFLwtkEcqw2PC1XSQgSpNh4V/VaJdpjESWRbty4dw6Y6e9QEkpBXww2AfTkAQx03mZbNieHJtGyXTX5sx41dlJhZvxSwp9U513ELTJUE0jETpRyARwDHOu+d4aRYXXcX5UcbFo647hFomKJcS4wcN3oOu+90rxQjiO6gStxy3Fq21ZprOQBOpMQagWgyxG0wYo5bhlqQU9y7VAKGVSOPhX4zTaDWvs2mp4nESaxy3EI4bobJ3YcqaSrUXDNLcRJbxE1Hq1OhSgAgmjRdSiEF70WVtNhQ2ZYD4GwGTdFklWgHF3EDEtEOMW64tf8EmtvGQdxsxUkMiBuQpWXT2yjvG3W07MwcH9hxs1k/CgW7eYb2g6MqSdcXzpjMbGRjlAOgdHWmY+iU4xYacbOke9NngiNYZlP7z6XsiJXIUnVd5xbJ3riM3zatb8c1G1GYmvMTmSoZI4gjfr9StgjiDB1rOW4ti4zMWBZQbVSOm1M5gMCOWx5VUjbrqOlQFSdxpEqyKRfS9Zv4FkNfLKiSPT3Aheen7//6N32hZmHWVElLRE8n2KBClQAe4gYkqJLt8xS7HIAN4tZmyIFQiXZwVCWBVLSj5rgxNmzlgbTvnHkg44xzxEkMiJswQcs+6r3pMXEL8mjZ3HIAQFzEDTAjqcr2IyJumaBijlKoV45bTt1CgCA/TZDjZjMPANkxy3GubHILnSjZTEl9gNAZGQ7ni38Gbn1f+j7PGReOW/86Xs4lQBw3G8RtC4uT1M6zCfw53NchZEEdt0qlgiuuuAKf+9zn8MMf/hAbNjAGa8uawCKKk9hMonL7nI24M+IWgyrpo/ZmsWGLEZGNTpW03LBRy028F33i3lNy3hHXmhdfbjkAIak//6fkd6r/myT1rQtwW0arCxrETYUqAanjlnebRo92GDOOVMkoiJuBSqMS7eBSJYVoh3ieo5SQ8KFKGhyI7m7gpJPT91/9glnYQRilg3JlwGNs1gCSyxUZcQtFha997pDjZqPWLK5djHIAXlRJS4EljhiPFaXOgSppJawyMm07b0xSpw3IH+/CcasM2OfQ2eS4sZFIxxw3F/Q9BmNjCJmT4/a9730PEyZMwD/+8Y/M8RNOOAEf+9jH8OMf/xhf+MIXcNhhh2HTJiZVpGVbzlypkkMZceOiMzaOm62qmc3Cnvl9Q00ualaUEdvcQsf7ysqFkpyY0OUA6MYhLxLOKQegK9Qsd0clqW+rKmmbH6JD3FSoEpBSJU23SaBKMXNb2izzRYH072OhJznRZFm0g4O4UdGOmjhJb75TbuPQyudYF+DOo2QTWtqUcWZhB2H9a6rfHc1fP6IhbrbtOyJuLKqkxXV3KQdgI/pVo0q6iJMEDvrZIm62yo8uIhaAPVXSxnEDeKgbtbzrLnLcAD5d0gZxa7NE3DLspMhUyTyk0wVJHULm5Lj99a9/RVtbG4444ojasX/84x+47rrrsN122+Gzn/0s9t13XzzyyCO4/PLLQ/W1ZbEsZjmATJ5VhBw3Z151DMTNMvfEJscNsF/cm1GchOUw2zhuHlLUACOanINuyJL6HJXjjKR+ZMRNJ3qgQpUAXo6bQJV8ctxyqZKWap5Aem36BvJzC01USaBetIOT40ZFOzK5kTkbB+uNbCTEDZAU/Jgbzf4q7bZdg+JSazqqpKuqpCXiZuO42aJiNo6bSxmc0FRJm3qOgEPueGTETZxnW4NukDmPCePmuAFM0ZYKGTOxVSWbiCrZQtwSW7x4Md74xjeirS29+L///e9RKBTw61//Gt///vdx2223YcyYMVgkU4Na1nxmg7hZy8bTSTSCqqTNZOFUPJw6bnkLmAfiZuu4cRZ3K8fNssadKwXWttRAXvtOznjAxHtZUt+EuAmjkvqwVJUMWYBbRpWA/Bw3iipZ50XaKKaNS18LREdnPT1JDtb6dcn7Z57Lzy3kqI5R0Q5THTeVaIeNqI3NHCOfYy1Okoe4WW4GgbiOm624lTVVUiBuFgW4Ad5mcNAiMOeS42ZDlfTJcbOZI1mCZZZUyQq5N6+9nCP2hPi5UM2CuNFnlVPLzTpARMRJODl00cVJWjluwpwct9dffx077LBD5tjtt9+OSZMm4cgjjwQAjB49GocddhiWLmUWIG3ZlrOGITNbGnGLXQ4gco6bbW6LlVx0ZMTNRpzEhipZ7EDN+eEqd1mpghnGjEpSn3bV9KfWJPUtVSW5RXeFmca8jCoB+VRJiirZBkJsNg4d49LX/av154ncwnnzUCvQyskt5EaThWjHx05Pj4lbZRLtyAgq5DlulhtZ6wCRBeJmLb1eBgaqm0Yrx42LMDcIcbMRtAGaI8fNqj6quC7NUA6AibyLgMxHP54e+8GF5oCM3H6MXKhGOW5Wwiqc/YDFXkY+hxUgskHciOvBDuI4qErK/dpKzMlxK5fL2Lw5nZQ2bNiAxx9/HIcddljmvPHjx2PlypV+PWxZfLOiSlo+cNZ1rTzKAUSpHdJMOW62jlvECFjM3BN5U2f6TqFgp9wFWOZvGMa7SlKfQ5UEiKS+TwHuAOgMRZUKSFcE+ZKrUCXrEhIWcwF13PpWq8+huYWAvu+q3EIbuejubmA22TyefHK+aIcV4mYpTtIwxI3xPFHnLgpV0jaX1tJxQ0TEzSbHzaUcQDMibqFEimhA5nWCuLfBHJAB7IJbTuq1Fo6bbSkDarlrk2VqhnUurUd5oxjiJDb3tYW41du0adPwwAMP1N7feOONGBwcrHPcVq1ahQkTJvj1sGXxzYYqCdgtvq4iFuz2qw9loWg50TkIWdhMRhzEzSfHjVVuIGJxcptEYcCPKpmHpNUcNya1y1qZUUO/yivUnDfE1q0jX3ApwO0hTkJNoEpzz0yPiVNNqFJMUYK2EWn7KsdNzi0EUrSQk1toXUyZNNq1fb5oR0bUJmf82jrj1si7RWHcDP2K8Tz1kU11+9j8871y3Gwo2ZbtxygH0E9ympavNFP8Yue4iTHjQidvdDkAOSBDu0z/VKXYExpIlWQEWWIibtYiRT6IW85+ozwI3POJ9L1VoDjC2tdC3Ort3//93/HCCy/gU5/6FK699lqcddZZKBQKeO9735s578EHH8S0adOCdLRlEc0GcaPn2CIzMQtwcxCr2OIkmQKwgSPhgP1E3VSIm4iEl/P58vJEnreg2hYitZaj1tA8VZL6XMQNqErqe9Rx8ykHIFt3N/C1s9L3B705H1WK6bgVCinqpqJKyrmFHNVHmltoG03OzJEcdMaCKumjKmntuAUWPOgnwYtmECeJmePG3QwKit/3z0uPfWxOTs6liyy9i6pkmTfX2KAbIcsBqAIyOsdNGA3IAHbBYidxEhuqJCknE9pxs85Lt62fZ4FGPncV0Ps6aT8G+6mFuAlzctzOOussTJkyBT/72c9w4oknYvHixZg5cyb22GOP2jn3338/XnrpJRx66KHBOtuySJZ5cAIjbq5UF277ZQvHrWjZNkAmrIJd/6PUcbPknDuXSrAVJwmNpEobCzbi5kKV5Dg/GrRQJanPRdxqkvqRxUk4iJuq7XET81GlmOUAgFSgRBYnUeUWmsRDqIncQuuILG2UMUdyykjUmo5cDqCmgteW76C0daT3phkcN2vGhm2OW+AC3JTi10cQt37k5Fw6lAOwokraKh7HzHEzUNXlgAyQnUdVtykj9gR3qqRtjputqqQ1VTIv/9pxHgAcELeca7M8WxosejmAVo6bvU2ZMgX3338/vvGNb+CTn/wkLr/8clxxxRWZcx577DEcd9xxOPHEE4N0tGURzVnaPaL6ILd98VDmTRRy27aIW7Ej3WSbrBbZbIIct5j5f66RcE778uc7HGM+X6AEg5t5FFjbyGNBg7ipJPW5iJuQ1IePOElgWp3twm6tKmnZd4G49a3OorR5uYWmISByC32okiwhC0eqpK04CYuSTeYwjtUQbMZGs6GIGwfptEXcbMoBUBRVMWZkih+9lfTRU1H8GkWVpN8zWcPKAZC2VQEZIB9xA9KAjNwHK9QqQo5bgYyZl5fmK2JSs0r9sLyn1vXzcubIjvH676qspSrpZYwnXm1dXV342te+pv38lFNOwSmnnOLafMsaabY0oGbMcWNRJT0QN+6mxybia5O8DjjktjQTVdKifToe9zs/W2hUZZlaORuAYs4G0hVxUy2Oc+YAF16YbtY4DkRGUt9DnMQWccsbk9YLuy06bumgiJypymDiRIgaY3m5hXmXct06aVMSgSrZTOUAbOew9lEJPZWFuNEct4iOW6GNFzizmX8rFdQCJr6qkiqKn85xEzZrFnDEEQkN2UmcRNxXC6okt32b4Ja1uizdE5C2VQEZIOu46W6TCMhMn25HqSsUkr1DuZe3wS8PpnNBniLm/PnAvRcBp1aPnfs14P6LkqDdnDlq+nmmbxY5blFUJS2cfSomBTBy6iNTJVuIW7197GMfwy9+8Yvc8y6//HJ87GMfc/mJljXSrNGTJsxxs0XcuBFZsalrY256bCK+NnV+gLiIm484ibXjlleHh7Q9ds/8tm0FFWzkogF9jhtQL6nPcdyopL5XAW7LDVuu4+aBuIXOcQP0JQFUuYU2jtvo0fbS7qsfSl9zHBT6PA9EVJW0ESVgI24WYj/RETcLVCnTPmcOs81bNGwGVRS/PMeNUvzabHMuK3b53dabfBpksSkR5IH8qAIyQHYeNQ2Ddevq+8AZN2Iu4GzwbRUxXyV/UyfyFTGp5Tpulmt2aEViajLiFoMquXl5+rqUE8zdyhE3J8ft8ssvx+2335573r/+9a86CmXLmtFiipM0E+LmUQ7AFnELLdMNbB3iJJz2K7b5RJZ5BNZUyZzNoE+hZltVSWu00CK3xUvdkLPZtCjDAGSLcFNlyV12qXfebHMLbRf2pb9MX089Nv9853IAERC3GrXLgSqZJyREHbe8zRRAniWGSBGQRdw4ZiOCZLvu6Zx9HcUvz3EDSD1H23s6gBpayApaWlICqQBHHtJpXRZEM95VARmAR5UEkoAMYO+4cWs6AvmsAZkuS6cWept0ipiZfuWhhZERN5v220Zk3wdPzagAq6pK9sOmAMO2y+lPy3FztsHBQRSLUX+iZSEsZjkA2xw3a9qFBeJmG6EC7B23GjoTO8ctcDkAa768h0Oel4dmm09kq4Tn6vyYxqOQ1D/xuPSYON0oqV993gY3MzeytnURbcRJLBd2GmXtY9Tr1FGkdEbl5Skl7+WXgQ2Sg26bW2hLlVzzWPL/2DcCY6bnn08dt3JOjpt1ICEyVVIEQiqD+Zse+jkVZNGZrQy4GDNcx801l9YHcdNR/DiOWy3n0odNwQj6UTS0X4NsUbMR4AiFvKvEnoB8cRIgDcgAdpQ6IL2vLKqk4VlV0WV1jpswWRGT2hZH3Gzal57l0DluG5ela8z4/fPPt625OMQsqle1ZMkSjB3LqO3Ssi1rMYspu6qCcdovDxC+eZMhbs2W4xZ6Im0UVZKzobJF3KzFIJj0q+5u4KTj0/dfOStfUp/+rY9+K78vtuUAbFBa2+vSOTF9TaWgOe2z5Kg1Kqrz5wOD0hjlUCXb2tLcQpuIbKWS3icaJDCZM1Uy9IYKhCrJaBuAXf0m20CC4zzD2YDLfcidZwIhbjqKH8dxA6o5lxHZFADQQerpcoIs4trFSG/Q5emqxJ4AHuJWE3tC4xA3+XlS0WXzHDdZETPTLwtVydg5bnnty0GY0AwfSlUfv1/++Vs54sYWJ/nmN7+Zef/ggw/WHRM2MDCAxx57DHfccQeOOuoovx62LL5Zi5PYJIBbRr9sNvi2i1cjxEnEZBclx82yHMCgxfXxctxsRTIsygGwEDfquG0hxK3WNrnvO+0K7JaDzqx+OH39yNeBffSCT0n7FrknAOzKAVgu7J2T0te9K/LPt6VKqsakjpbGQdxGjgS23776+xaKabYbfMCdKsmqKxgZcbMJELnSjgG7ecYFcSsP6BEa+fdtETe69ugoflzHbfRoO2cZsGNTAO5BFtt7ylH1Nc2/stgTkO+4UbEnwB5xc85xI/dMNy9xKi0tWACcfXb9cRtFzNBKofI5ufOAdN/z2CO2egM0v23Uzvnnb+WIG9txO+ecc1AoFFCp3pAHH3wQDz74oPE7I0eOxNe//nWvDrasARYTcfMpB5DXvu3i5SJOEhNxi10OwKaOW1OJk1gGEjJUSYscN65SnaDvWkveO4v2GtqnfecEWRwRN86GzdZxs6VKquYCHS2N3kbdtLF2bao8l9mE52yUbcc6kA3E5KJWlqqSsamSNvNMdMTNkirpOs9wyEc6eq2g+Mnjkt5KXVcExW+AoGChFYMBoNMScbOiShaQPIAVu3sK1I93IfZ08snpsTyqJBV7kttnBbcE4uZBldTNS3SI5Sli1vUroqokR2zNZk8gI26DOeswzYkb3Kg/Txhd1zmsB5v5fQgae2fx9a9/vea4ffOb38R+++2H4447TnluR0cHdtxxR7z73e/GZBVnuWXNZbYR5Zo8euRyAHntW6ux2SZRV9xz3Fh5YpHFSRqGuIUWJ/GhSlqoSrKV6hwRN277wjhjzCYSDkRG3GgUn+O4BUBndLQ0bo6bUJ6zoko6OG5WdMOI4iSVCqG9RXDcvBgVNoibC1XSZp7xEM4SFL9587Lni8touv2C4leOqBgMAB2WiJtNrTIguTaVAQeqpKJ9kQc8a1aCvOkQt87OxGmT84atVYNFjpuHOIluXuLGBsS8RM2qBl2TIW4T32w+n5b46Vf87bLRdZ2u9zprUSUTO+ecc2qvheN2tgrebdnQs8xDF1GcJPTCHhP1kdtnL2Bikx9ZVTI04ma7CGSuTTOJk1ggbjabEsCeGszZNIzfD1j1YPJ67N755/ugJ6HruGUQN4vNILd91Vygo6VxyjAAqfKcFVUysuOmo19p23ZEUdklTSLmRVrnQ3mIk+TNY671S4H6vqsofuJy6C5hpp6jx9xui7iFpkoCdo5bBj0ZoT5n5sykxt2llyZUwvLyZGvShgSlnD07uXZ5ecM25QAq5WTMmPYpFB2iYjy6eYm7tRo9uv6YDeLGyotsUI7bG/+HUXuVfM4JtvogblshVdJJnKRcLrPquLVsiBh96Gw24Vu8HIAtUkgmwsEcpTfAfqKjv9Fsddy2OOIWkcLkmuNm7Yzb0oAYm4Y3k3mU0x/XvtPvatu2HO/tY9P7aou4udLqdMpzHHESqjwXmypp4xh6lXgIjKICkhOR96w2CnGzLAcg901lz/9a3S9t24a+y/UcgXzHjVL8rHPcLGn2tuIkLo4bwHTcCMJiqv3X3Z2IOi1blq5fe88wiz0B9mPS5trTsiS0XIluXuIsZXReohYTcQstgkTv+/gD8ttup8FWDuJGHbcW4tbS6m+ZO+I2uBFY/xy/7dAiFtbJ5aTtZX8ENi3XngrAbdNTmxAr9bxv2TKLb+C6KoAl4uaBRtqKZIS+r9Tp5UTXXDcltmUSOO1P2N8O0XPNueS0b42IFVK6JEucxPLaqDbKOuU5juNGleealSppK06Si4j5zGFgOPu2tLQmUpW87zPke56IG5Ct5wjoHTdVPUcfNgULcXMUJ7EufM64p7a1/0oloCSuaTF9hnXW+xrplwVVEsifC2hZkg6imK6blziOG52XMv2yUJWMgbhZ7TdsWTK2VElLx20rR9y8sudfeukl/OMf/8CLL76IzZvVCEahUMDXvpajlNayLWs+6MltxwLveVh/rk+Om5VsPKPtzsnAsMnA5moS8UvXA2+YpT/fadMjq5oZvidy3IodTMfTso6bzeJunf8Xk6YaSKZb27xF4j1Ark3VGTfdK1uqpDivMmgXNWX33WLxHXQY7x0Tk+epL0I5AJ2YkIqWlleAW1aeayaqpNd1sXHcHMZM3oYwuqpkRKqkrl+cc3R9pxS/jnkAKqnjZqL4FQpVuuEgbxNOna8YiFstLzIC4kY36ibEjVpNrTnnWRrsAx74EvkehyppUdNRh7gB6nkpT5xEnpeohUbcbJ9VK6qkZbC1lePmZc6O2+c//3lcfPHFGKzW06lI8p9CyKTluA0FcxQnAYDVj5jPjUmVLNuiPm3APt8A7vlk8j4PJaCRQSrvbbK6iK9hAyw2jDEi4bR9wBJx29LiJJa5JzYRU4BsSiyjyUDSd1OfXMRJiqWk3zEQN6ucH8uFHUjRTuvEfg6tTjNmVMpzeeIksvKcK1WSO2babBw3W1XJQnJeuT88/VXuwxZXlbQVJ7FsP/1iuLYFxe+3Fyasil2mA4v/nNDhTGhRsT2pT5g3Xja+CPzzxPQ9h2ZfGlUNEA0Afavyz7cOEDkibnm5ULX2mbXW1j2Vfc+Zl1wRt3apRrFqXspD3OR5KdOvwKqStoE5V1VJ67x0S8StrYW4OTlu3//+9/HDH/4QhUIB7373u7HnnntijC45s2XNb2XLaAknIlhrmybHBy6S7RIJH717+ppGz1S24bn09chpvPZtcopsNyV0sg1dpNVHnCS0WqhPfSUbqiR3U1LnQBi+51IOwKpouy3NMzKtzianMwRVUpisPKejSuqU56JTJS0cQ1vEDaje10iOm5Wa3BDOcaPGyXm2oXlWKmmbo8YnJShy2+9IvpM3Xh6WAuGsUjiFxMEbWJ8/3suDAKqB+CiIG3XcmPtGMSbzxuPm17Lvh++Q37bN+kH3DB3j6j+X5yVdFopuXqKWty+wLuFji45HRNyKpWQ8Dm62Fyeh+XE6ayFu9bZw4UKUSiXceOONePvb3x64Sy1rvFlGS/oZD1qtaVteNXnorcRJmOmadLLNizyuJ7VVRimSh1VmFaWyRH6aCXHzknYPHL2jkzRLdMYxxw1AflFfR8RNtJ1nMRE3FwfChkZqnRzPyCkStLS//wRA9XkuI195zkr1sclUJYHkug+C4Yy7tO2IuMWgSsZUlaTGifpbsUFozSwGIgYkrI7+tflzGEV9AF5AFEjvfx4d0AV5dxUn4eS4AXzErVdy3KYcld+2DTqeoUqOVZ9D56XLLwVQTc0oIn9eopZLlbTNi/RQr7VRleQ+q6XRyVi3pUpy2E9bOeLmJE7yzDPP4K1vfWvLadtazDZawomQCPOJ4sdA3DrGp69tHLeRXMfNRpHNNpocMYHdVpwkc185xcMdxUlYhXFtqZIetdBMfR8YAF4nG4eK/tSMiftqEzV1QdyioDOOjmEo6XhBS/vdb9JjZ8zJV56zWdht6d5A3Bw3el4MVUnXHLeYVMkY4iTUOJtHK8eNBs0sHDcAGNxkPk+WQ+fMvwDf+XFCgB0Qt2Inv0SFOM8GcXvLFUy1ZldxknH688S89Mxz6bE3H5Q/L2X6FRhxs6Vk25SSsd1DAilN1oYq2TaC1/5Wjrg5OW6jR4/G9ttvH7ovLdtSZusARXfcmItAbMdtgwPiZqXiZ+m4xUTcbMVJMm1zkNSIZR7aHKmSLoib6p729ABz5wJTpwKXE3n/95+QHO/pMbfPRdzKg2lk0wVxC13Hzav9wJv8AvGSJ3blK8/ZLOy2ubQArMRPbB1aet7WnONWKaMW/XChSm5JxC1To5PpWAknYyDPcZNyfGwRt9Aqp4Cb48alSdJ+2CBuw7bjtW0TZOlfnb42OW7C2sm9GdaRPy9l+mWhKmmNuNmWHYmBuFUDEDaqkhxhEsBu/h2C5uS4HX744XjooYdC96VlW8psHzpOkWNhPo4bF7Gi38mz9jGoJaLnIm7Ppa9H7sRrv1GOm22OW961t6YwWcpRW12XiOIklQq57q45bsQWLUryV+bNA159NUujXLEqOT59enJeXvuh5frl83IdK0/EjUsNlvulbdtmk2/ZdjNRJX0QN6u8xQhKpFHvqcN1dxUnCY24ZRy3ZkHcuGPGMsACuFElbRw3F6pkJ9Nxswn89RnESVRWKKK237BBgAEGVdIHcbOkSuYi75YsGSBF3Mp9+fTdmuPGyG8DkuteYyW0HDcAwNe//nU8/fTT+PnPfx66Py3bEmYNc3M5YIiMuDlEeQrFNFKW57gNCnh+OH/xLdpEqTwct7yJDsiqVhZyVNPoAmOTayXaz7OY4iQ2C6+TeIhGln7RokRBjMo/q9QNe3uT83TOG9dxc8lXsirA7RJp38JUydrntvXEbMaMi+PWlo5dqxw3W6rkFhYniYmi2tYAlftgep7kGpvBETcPqmRlwPwsyZvX4Dluls44YLFmVwjixsxvAwilsmJeP0SpH8ARccujSq5O/i8ULZwIC6c2873AqpI+9SJz9wSOOW7C8lhc4nMu4gakc/xW6Lg5iZOsXbsWn//85zFnzhzceOONeN/73odp06ahWFRvso444givTrYssrk4QFxrGFXSIgbRMT5x2vIcN3FdbNq22siKxHuuA+GIuHEjsoW2ZNG2pkraqoUGFiexQdxsJekBNY20pydRDqs7l7yWL+OsWUnSupzfwKZKOqAnVuPREkUF7Ci2MTf5tm3HVpUEknE5uImBuHnc1xi1+VwRNxZV0kJ8yrYGqNwHo+Mm/TaHRWI1Hl2okkR0YXAzUNQ4BvLmNWaOW2iqZLk3bd+FKgkk/S9qBCpcEDcbBViBuJXG5AdDa+2XgMEcZ1z3PZPZ0oIzgjmcYKtN0M8jxw1IAiedE9TnVcopCm3juLV1Jg7fVkiVdHLc3v72t9fqtF199dW4+uqrtecWCgUMDFgO2JY11lxgbq455VhEzHED0jy3/tUwKuHZImKAW0Jvkdl+Rv2K47hVrz1341Bz3GLQLiLWcaNoqM0m3CfHbf78LNJW6wt5LdcT6+1NlMbOPVdq3wVxi1BM2dYZB9yokoUi777qkE6V2eZaxaZKit9gOW4eyo9W9NoI4iQ+qpI2yDtbeZe5mbVFP4DGUSWBZNzoZM/lZydmjltoxI1SUksOVEmg2n+d4/Z68n/bcKA0gte2DWOjtqYy7ynAuzYyAgzYIW6sQK4H4pbbvgviRpwwU+BkYKP6O3nWQtyydsQRR6DAjTa0rPnNdWPCMZeIb0xVSSB13CrlJCKji/y5OG4xc9xsVSUHLRG3WiFoyxy30OIk1qqSpWQzUylbKgS6KNUNJuqRCxZo+kJeq/7MBQuAs8/OJqk7IW4xygF4Im5cqqRtFB+IkOMWmSoJxN0oR6VKutJrLes55tETXdQ8XRE3VtuxHTdyninPTf5t2xw3QTfUBQxjlgMYpJtwpmMl98N0X10cq8xckFOKwVbVFyDXxnI8xkTcrMsBRFCVbGM6bvRZ4JQCECbuawtxS+yWW24J3I2WbVGzRThszBaeB+LmuAFZbvrAhrCOm81GNraqpNiI2yButF/GtvvS73AQQ6tEaof7WqOl5UVMXTaDEvKzdGkiRKIyE+IGAMuXJ9+nBXldEDdb9UGAgbg5bDatAhW2ap42KK2lQ94QqqTIKdqCqpKNokq6oKh/Pwr4iCFf2lecxAZx2+MLdm3HLAcA2Dlu7PxrCbXS0Q19ELfBzcCyPwE7vl/TtkP+HMDPHXdJb6AOZJ4wTC34ZLF15gSiVWM1by7wQdyaQlWS6bhlAooWDnnb1ou4Bd6lt2xIWkzEzSvHLUKUh7Yvt1HXvm+OW0RxEs5EbYu4FZjIj1PbNhQph0ACN7rmIk4i0zzXrtWfS2+l7s9cJyENdGGvGDayLkEQm0CCL1WSjbg5iMKEznFrFFWS074XBTZHrKFRqpIuKCpgFsrwFicxze3SZ/t8Pb9tG+puH9mIrl6foPR5VpJy3HQm0+rYDjlzzLsEEkAYWLcdC6xdoj7NhfEg94MjOmPznGYc5o3684D0vjshbqbxqPibmglxs1GV5K7ZXMeNPgvcdYmeuxUibi3HrWWwRjj2/172PXez2Qx13ORzOYu7K+K2peu4NQJxs72nQByHnBtdc9kMyn0fY8jNyKNKAsBoSU2Nu9l02VBZlQPwFSdh5qE55RY2iaokNx8VIEWDI6pKyt+XzVdVkisd76LQCvBRiNBUSers7vBenlAGZzyKmo4fPzU9dv4PkxqPeTUdXRE3rsx8kZkj7VIOgBamBoAeje5B2SFwJp9rRNzEtbHY2nKvO+BGleRQ4VXjKW/ts90P2M4zVlTJiIjboMO6RM8t95r3qEPQnKiSt912m9X5LVXJJjfbjfKMzwIPEGpJpax/WLc1x40dGaT1xJiPYZlENdetTqK4uoKelQpxrmwdN070ztIpdBYnsaBKAvk5Ci4bB5myt8suwOTJarpkHlWyqyv5vrb9AWin5dj5Si6RzahUSRvEzTbHrS1pvzIYnyoZU1USSP52XbdiF+CuIW7MZ0mW/ebm/YQuwO3UdgEJslRRj8dFixLl2N5e4DByvB/JXDFvHnDhhcDChcDMmfXfd81xY6ORkjKjtn2HQIIQBRGmQ66cETcuuuTAkmkjVMm84udOVEnGfsZWcRKwC5oB9rTpzNweoY5bbKpkRi20n89SGQLmpSrJMVdVyaeeego33ngj7rvvPtx333144oknMDg4iHPPPRdz5861bk/YTTfdhO9///u4++67sWHDBuy000446aSTcNZZZ2HUKGZdjq3NbBexYhuw3eHAa/8k3w/ouNUiVA1w3Ey/UXMgLBYBtqqZhXPS05OoGC6aD8yrHrv1ZuCjU4HZs4E5c+ol5jO0Okvnygpxc6BKxijz0OZAlXRB3MpVZ3n27GQjJlse4jZ7dr2zLY8Z7SbcJffEBhFzWCCdxEm4G82IiBsAtuqjTzkAwI4q6YSkctGTCFRJWxR144vZ91zHzYnWHNhxE+eqSqaImo7CaHfpJRQ1HYF6540iPyYHQqZKjts3r9eJ0fX34fuAiRuSIJI8H2WQTuZ9FfXNan3UPK+ujhuXOeBClSxZUCUrluMd4OUwO4nlNBJx24Kqki4UfqA+j3lbd9x0qpLlchnPP/88eqp0gH/7t39De7vFACd2ySWX4Ec/+pHTd3X2gx/8AJ///OdRKBRw+OGHo6urC//85z/x7W9/G1dffTVuv/12TJo0KehvDglzySnibsSdigZHFieJirgF3jjQKC6ds9pgjuKWXfKVqv2wUqx0QH5s6rhxnWau9K83/ap63+bMSa67XBLAhLh1dgJnnJHTPkMxDbAPggAMxK1B5QCiIG4O9C4haBNbVbIyCKOKX0znypeGyVWV5G7CN70kfZ+Z9+MiThLDcRM1uej3VTUd6eOp6oaqpiN13MqmHDfy20feCFY9sZ4e4OHHgXHV9yccC7yChDkgB/9cxqOpj9RcqZJc5kBtzY5AlayU07WpETlueWaLuMVUlXSp40Ydt0ET4uZQExHI/o2DvXYF35vcnHLcbrnlFvzjH/+o+3frrbfiueeewwMPPIA3velNGDlyJG666Sanju2999744he/iEWLFuGJJ57AKaec4tSOsAceeABf+MIX0NbWhj//+c+49dZb8bvf/Q7PPPMM3vnOd+Kpp57CJz7xCa/fGLLmq95ldNyasAA3twist6okh4tvaF9EcYVzQLtKvyKiuIsWpcdcNuHDplTbew3Y9LL5XNf8OYARXXRwyF1y3NgbfMVmsLs7cZbrziWv5T9z4cJ6ZBSwoHe5IG5E7S9XnIRSJWMU+I5IlXSJ5DvlRTo4bgAPFSuUeJtwwMJxc+i7lSiBcMaZ15wWSKbfV7btSZXkipO4BP3o91U1HekQVwGuoqYjNRfEjXPdFy1KVGwfeIT8VvV/EfybPj1dP1zmmbo+bmHEzSrHjakq6erQuua45Vlmbo+sKhmjjhu7HICDQisgUSW3LoGSKOIk++67L/7whz/g9ttvxwUXXODUxsc//nFccMEF+MhHPoI99tgDxaJfV7/zne+gUqngox/9KI455pja8REjRmDhwoUoFou4+uqr8eSTT3r9zpA0p5wiF5TAtiaMjYiFI+KmTESS2rcRJAiFuKmiuDrHTdisWWnyu4vQxJSj09cv3WA+10ecxIoCa4m4Vco5C2SAOm7CZs4ErroqQdKEqVQlOzuT81R5LQD/WXKRdgdSSk2u0IRwxodZOBAWojMxHTcXmXFuDloIx82E6jnVhmI6braFyW3aBkiOG7PvdcJWprXDhf4aMceNniu+r6vpqKNKUluwIKs26SROkjM/0uAf/Zp8OWnwLwTippvjYyNu8KRKDhioks75eZEQN9oPG8St0MZbV61yXX1VJQ3X3WUvI5/bctx4tvPOO+Pggw/GlVdeGesn2NbX14c///nPAICPfOQjdZ/vtNNOOOywJJv4mmuuaWjfmsJcHjonxC1wMc/o4iQuOW5MekFe31VR3ApSP1P159Iorgvitv2709cr/k9/XqVMNuExKHUu0TsSiTNN0r45bnLfZ84ElixJFOO6urL3ZfLk5PiSJXqnTe6H0dmPGPEF0utmk0dglUPnUQ6Ai+bZtM8uIRHAcePIr7vWtQqeJ2ZDkbJUldzxWAuEOaKqZCjHTVfTkd5KXTdETUdhLuIkpr7LwT/aD93tmjULeI2wLWwcFGpbCnETDmMMqqSrQ8sJROcFM3Um+mGDuDlRpptEVdKlHIDcxlZgUcsBbLfddnjuuedi/gTLFi9ejI0bE4/+oIMOUp4jjj/wwAPOv7NhwwbWv6Yzl4fO1nErlOydwq06x80QedRFcYF08dWteSKK6xKlGrZd+tqkzkgXCXY9MRvam0cdN8A8SfvmuKkW2O5u4NxzgWXLgH33Tr+z7MXkuIoeSY2LErjkiwIEccujSlrSXwELalrFIcfNRonUIZIfmyrZxnXcBHpt47hxqZIO492GKinGK9sZLwI7fYi0Hzo/2gFxs2JUSGuTrqYj7a7pEtKajja5VnJ/VCYH/ziOW28vcPON6XvumKwrp6BhsrgEWACLXF0XVUkHx41d3w4EFbNA3A6Zb9m2BeLmlJfeJHXcWogbAEdxEo719fXhnnvuwYgRI/JPjmxLq1GtcePGYbRcQ6lq3dXN1VIaAbO0IatK6SLlauu4WW006YRR1k8ELv0G+LS9LZXjpoviAindRdclEcWd6CFOIvdPNifhExvEzeG+cidplw0+V/CgVAI62oCN1bZ1pRrq2o9IOwYI4sYsB2AV1XTZKDdJjlt0qiQdkwzEzWoz6JLj5oK4cXPcHDay9PsqcxJtiSxOIjtuupqOeTluwuh+JONAMMVJdGujKvhHL4fpT77tH8CHq6+51/3tNwB/O1TdR2ou8y9gERB1KcBNywGYKHsOAki0L9zx+IaPA7spRKxU1jDELW8e8ETcjOIkAcoBtBA3s23YsAH33nsvTjrpJPT09ODII48M/RPWtq4a1Ro5cqT2HOF0rdVF0LZma4Q4iZXjZomIAW5R07z2XaJ33CKnpmtuGoPia6Z1Y906yblyKZJtuC4uuVZWm/CIiJvTRtYB+XGOJgfeyNJzueUAbBZHl024E0U1Ro6bQNz6USexnmm7UVRJizmSXQ7ABWGOqCop9yO4GE+DxUlETUfZODluck3HEhdxY/RdFfwz5bhR20DWH+6Y3O7fgGMeVPeRmkveImCfgmC1Zren5xuvu8McAxBUrAxtIWgXZBxI57DeFfnOiTXixqSnAm7B1kaXA9iKzAlxa2vLH1iVSgXjxo3Dt771LZefGJK2fv363HPWrl2LHXbYoQG9sbCYVEmxybepoVHXtmaSjJ7j5oK4MTdrpr7rorhAPuIGJFHcQSK7HVr50YWGaSNOUqPZFMAWyeBO0k4FuC0EOFwct5jlAGj73HIAURA3l024jePm4Bi2SYiYzmGNnePmIk7ioirplONmaLu/Px2vfQMJysNBmdnCVhHrFoZy3HQ1HTk5bnJNxyIzx42j4KcK/nGokgBASVLtYw0nSsZ5XkMgbsbx7pCXXigkaOfAhjhUSTlNQDU/uQQUAWDy4cDzvwH61wIv/C+wy8n6c22Rfer8xkbcjAW4XcsBtBC3jFUqFe2/UqmEnXbaCR//+Mdx//33Y8aMGaH7bG2CHmnKLxNO1xjTpjnHRo4cyfrXdNYIcRJXxC1UEWtd+9oFpuJGuwjhuOmiuEC6+Oq6JKK4PnXc5P7J5lTiwYEqaRU1pZO0iWbkK3jARH5i0IC8cyzyELfqdXPOceMqBEamSrIdlADPqrF96gAFFieJKfCRh+b19CSiO91T02P3PwxMnZocF8q2OuM+T06FyRusKgkkNdA6pWcmL8dNVdPRCXHTzJGqfUwzOG4hEDfjPOawZgMpXZJNlXSlBnOui0Xf3/Dx9PVr/zKfa424FfhUTCcl6Pa0/djiJFsZ4ubkuJXLZe2/3t5ePPvss7j00kux8847B+6um4l+rF69ukablE0UDW+WPjfMKhXghd+m750EGxgoQWyqZHDHzdEp5G7WTH0XUVyV5SFuIoo76ImKGVFUh4nURZzEKk/BRZzEAXF7ZnGiEjmgGfPeVEkT7c3BYR4YSMdMf6++3+WB9Lq7UiVD0zyj57i50Gtd5xkTFdMTcWNTJQMgbqIm2Lx5wEpSk20Q6ppgKos6ZhqMuAHqmo55OW6qmo5OOW6avquCf/QRMv3Jk0g/OsYZTpSMw6pwltS3RNxsgn5Aeu3ZVElHarB2v+GAjAPAcMLeynNOnAJETJq9Sx03IHWYjUinY44bd08wBC2qqmSz2IwZM2oiKffee6/yHHH8gAMOaFi/msJW3gdsXp6+Z0dLmizHzVWcRNu+Q54VYJHXkrOAqaK4gFlVkkZxoyJuvk5hZMTNKE5iuUD29AB//mv6/mtzgd1316MLvohbqI2sQEWmTgWergourV9j6LdrVNOllAHXgYic48YWtHHd5JPxy0GWrOhXEQtw63LcaE0wIDvlUr+U1gRTts8VEPF09mMibrJjItd01OW4mWo6hlSVVAX/uIjbPm9IXzcLVdK2/IWt4ybQzkEm4ubCeAD0fXfOcWPuN+jnVrm0TJq9C+IGqAMhsrUQtzrbJhy3jo4OvPe97wUA/OpXv6r7/Pnnn8cdd9wBADjhhBMa2rctbs9enn3fDOIkXDGIIBsqTSQ8el5LjrCKKooLmBE3GsWNibh5UyW54iQ2ks4OqpJ5EV+BLvz1/yO/U/1fhy74Im4hVCUpKvLqq9kxo+u36+LYLFRJpzpukamSbEq2izKjQzkAnxw3uSYYoC42T23WLDVtMmaOW/S1w7DRpDUdR5L+DiChsOfVdKSO24AnVRKoD/5xHLfOTmCXrvS9K+IWVZxEM94zwh+2iBsH+fGs4wZEuC4WjptPLm2MOm5AOn5NjIQQ5QBaiFtqr7/+Or773e/i3e9+N/bee2/svffeePe7343zzjsPr7/+eqg+su3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYo5Fd3vI2atfs+2Zw3JqCKhnCcfOMhMtRXEDtuKmiuN6Im2ki9WybK07iKr1upL0xI5sUXTABuzK64KSy5+K4aa67jIoAaf9p3+V+ZxZHG8nlRlElmaIwcp9Mxl3YY1IlXWvzxUTcVDRMuSYYkO+49fYCl15af9wlx62ZqZLURE3HQ/ZPjz36VFLj8dxzzTUdQxfgloN/HFXJhQuBNjLPNAvixkKtyDNmozINpE5zuV8/jznTPBkocOxAcXkwvT5OVMktiLiFKAfQQtwSu/HGG7H77rvjq1/9Kv72t7/h8ccfx+OPP46//e1v+J//+R/MmDEDN954Y35DGrv//vvxlre8pfbvz3/+MwBg/vz5meMvv/xy7TsrVqzAU089hRdeeKGuvQMOOADf+973MDg4iPe85z048sgj8aEPfQi77bYbbr75ZsyYMQM/+9nPnPs7ZE2OqIUUJykPpp85O25McZLQ5QBcJOmB8FF8GsXt6so6bl2T9VFcbzrjEBMnoRM6V1VSt/jK6ALdc+u6JNCFGnoSgSqZ51ypUBHAXEJC9NtlvAAWG2UHqqRrAW6XHDc2ShuYKulCBwQsUCuH6yI7EKqaYEC+4wYk35PzKl2cfTZKuwXESZTti4BlZ0Kt5qhtUsStbMpxs0A3aPCPXg75azT417+6es4wy7mgUYgbw/mxRtwY+YXO5VgY85irQ0vVugdN+w3XAJELVTIw4uZK49+KETencgBLlizBiSeeiI0bN2LffffFRz/6UbzhDQkv+tlnn8Xll1+OBx98ECeeeCIeeOABTJ8+3fo31q5di7vuuqvu+LJly7Bs2bLa+145Cmiwz33uc9hnn33wve99D3fffTc2bNiAadOm4ayzzsJZZ52lLc69VZu86JtUlaixnB/HyaJzYvp67WJgxI6a9psRcQsgTiKbiOKefTbwlzcD6+9P1qUXngc6NBEoX1SMGwHj3tfY4iQuQhO6BVJGF+iaouuSQBf2jkmVzHGuVKgIUI8YyvlIl14KfJE4/q5UyeCbcAuU1qmOG3fTE3GecaZfRS4H0DYs2cD2r1XXBAOye2Pd7Vm+PPk+3QPEzHFjP0uRHbdBB4XWYil5nioDYaiSwmbOBI44Avj15wH8PjkmLlNXV5ILd8YZKRrYtzr53wZtq+uLLgXB4TkFwBMncQy2AryA6zMkeOFMlTSIQ6nOzzPbWpFAHHGSCie6qWrfMsfNtRzAVoa4OTlu3/3ud7Fx40acc845+PrXv173+Wc+8xmce+65OPvss3Heeefh5z//ufVvvP3tb0dFV6xQY+eccw7OOecc4zlHHXUUjjrqKOv+bLUmb7bG7sX7HmtTwszJkW27I4CnqxSbV24CprxDfV5McZLo1AWHibpUAkaMAUS5wKLh+YiKuJFFgFufz4r25qAMFirHTYUucNekBQuAHzYIcZOdKx0qAtQ7nvKeasEC4DPHkXNiiJM4bNgaWseN6+xHpEpGESdx3BC2j03GW98adU0wIBvEMATMISs5N0yJdAsibjXHzYLaBVTria0LQ5Wk1t0NzDwNuLXquH36k8D3P5eoT8poYP+a5H+b/Da5L6FVJTnlAFzzrIDsOqZat1fcBTxHcoKdqfCBg9zs/YZjDdCY5QCSH6j+z8xxayFuABypkoJaqHLahH3ta1/DjBkzcNNNNzl3rmUNMPpA7nMOUBqhPTVjnMWXRg257QLAlHemr5ffrD+vKRE3F6qk6wJmmEyjIm6eFKZcxM1TVZJdDkBxX1XoAjc+sHx52n50xE3aEOpQESBfBnz5cmDZc6Q/rlTJ0PlKNiitiwhHZFVJMKiSzvQr5jzgMs8MDACVKnWsdzUwQjN3c6iSACAzWbgCIt45bjHzoyuAKbAsNptFW8etej5XVdJmC0fXpimTEhRUdtrKgwnKCjggbpZUydAFuJ2dB+Sv28uulc53RNx0e6UQNeJiIG5sqqQYkwWgUOC3XwuEMKmSrRw3AI6O2yuvvMKSzT/ggAPwyiuvuPxEyxpldMPDRdsA3iQ9SIoqtlk4bsOnAGP3Tl6vvDelbsgWtQB3iBy3wKIBAD/S7oS4WcqXy/0xth2ZKumCuKk2Dip0Ic/xEVYAUmGVCOIkJsqIDhUBeI7nBvL9GLlWmUBCs9Rxc6FKBq7f5MpKiIG40RISjz+XHOtfC7ztCGDkyPrzOY5bV1eC6lCLWXA+dgFudhmc6nh3QdyA8IgbwBszAwQdbR/Hb1vuCyeXK3Rwy9WhBfIdN/k+hs5xcy41UEj7HgNxY1MlRbDVEums5bgxqZKuiFvLcQNGjhyJV3XRXWKvvvoqRqom/JY1j2Um0sAStzRfrmQ5DgTqVikDy29Rn7PVIG4RHDcnxK3Am0id6isxN1TJCaJxXtuAW46bauMwZkz9Ma7jRrsbnSopbSRU/a59j7zWdWs4GbfOEV9D33tJsebOScy2baiSEeu4ueZDZTb5gVUl2XRDptMpl5AQfkMRwNoVwIYN9d+hl1k3Fc2eXY/qcGutNbOqpNyGbC45bgCpJ+ZZgFtlnLUps2ZbBFvlvoQWJ2HldHpQJXMdt+HZ98Fz3BwRMYDpuHlSsvMQNzikNwAOiJtjjpspMDcEzclx22+//XDbbbfhkUce0Z7z8MMP49Zbb8V+++3n2reWNcKcqQscx80RcQOAyW9PX6+8V32OKzWCEzVtVseNK0rgqsTEkud1qZllg564qErSSdqw6cnbOOyyCzB5cvYY13Hbnnyv0eIkqn4Ly0PcurqAKdul751RJUPfN6Xqvxi2vUPbNjluzOfJydkPTJV0VpXkUiXp/K7pu6qEBAV8dFN3nuPW2ZmIXsjmpETaJIgbtzafM1WSg7hFVDx2FQ8B7BG30AW4y477AcDecYua4xbDcSOfcfPSgbTvlUEzNTgm4lbre8HuurcQt6zNnj0b/f39OOqoo/DTn/4U69evr322fv16XHzxxTj66KMxODiIM1QTd8uax1w24QCTKumBuFFlSd1DF2RDpVO/cs0jIJNuDKU6lxw3F0nnoUaVdJF2V21kS6UEJaDGddw+dhppOwJqZUJRVf2ufY+8VvV/9mygQEtrONKATH3fTCjzw6fw2nahShaK/E1bMxTgDpHjxqZKKuZ3XQkJKi48vP5jAADd/6ku38KF6rplMQtwN0qcxNR+uR9AdZPrSpUs9xkEPiIGFV2pjHJfglMlGeUAQqlKqtbtUiDELXSOG9AYxA3IeZ5iIm6itEa7Xf5cK8cta//5n/+JU045Ba+99ho+/elPY+zYsZg8eTImT56MsWPH4rOf/Sxee+01nHLKKfjQhz4Uus8tC2nOBTEtETdr2gVjQzikqZKukUemYxgTcXNSCLSp47YFVSUBYM4cddFzQO+4dXYCp52S37bKuIsjre2k2hDK/RZm6r9ARZwpTMz7uok6blzEjZlzSX87RkQ2xDyjU01zzm0JRAnUlZDwQdxoTTCVsQVtyPzmJIK0hRA3VzEF+XxtLTdHSiDH2XehHKv6ElOcRBew9FGVpOu2qn0ZOXWmSgbOcQPSvhtFuTxVJQFezn5MxM2m30BLVVJlV1xxBX76059il112QaVSwYoVK7BixQpUKhXsuuuuuOSSS3D55ZcH7GrLophrjhuH+uaT48aKysYUJ2lSqmSjELdNG5LC3nLxXMBRVdKBKrklctyABCVYuJC0Rz7T3aqFC4EdCJIUWjENSP+uQlHdvtzv2vfIa7n/AhVxpepQf2Tla+rxAkhUSS7iViCBhBxnX2wIrVArGmWP4biR8atDT5zV5BjS64DZITeVkMhD3EaOBLYjqoP9SCi3c+cm84bOaQMal+Nmui4hSjzo2neVLwd4haCdUwRiI24canCDCnDHqONGzZkKH1ikCLBH3ILXzwNxmh0RN1M5APG7to5bC3FT2yc+8Qk8/fTT6OnpwZ133ok777wTPT09WLJkCebMmROqjy2LaUEiYLpyAB45bpyorG8RVVPbrgu7bYRK7k9u+0zVSlvETSjKra6qij3/HLD77onC3Ny5yeeq340hTiIWAZvrnolUM8sBmMb7zJkJatDZmY9YCXTBdVPSToRF+lbqz6vlzRjuJ+23MFUBcRkVsUXcxHg57sT02GUL1eMFSKmShVKWBp1n4tlYeV9OjkU/v+/CMgv7FqJKujrMIWTvTSUkKOKmctw2bADO/p/0/ZlfA5YtA849V02PpBaTKsmuKxjxng7mIOMmyzhumjy3mEHFzDW3ddwKAKpUti1SDiCQqqSKySL/PVHFSWyRpYiqkmyqZPX62KzZyRey31cZpUpaNd1C3Iw2depUHHLIITjkkEMwderUEE22rFHWrDlunNwZ1wibbTkAq+LeBaLEtAXFSWwQN6ooV65ujsWf/OqryfHp05PzAEfRABuhCdH3GIibhTz6zJkJevDRj6fHxFdU6ILrpmQEmTM3vqg/jysxLvo9d27ST3q5t5ugRkVsNsl0vKxYRb4H9XgBUsdtWJfds0rHyuKf6M+rIW5NSpXUjfl+sjlfvU6PWMpWZGwG5c/k624qIZHnuAFAL5GOnzKtXj1SZ9wgjq96rem6DJC5+dUV/OsenSpJLvaAznFzpUoygn4+iBvtjzZ3PGI5AB9VybwC3PJvhg6yeOW4Vecx434jdi6tK+ImHDdOjpsHVXJbRdzuueceXHfddViyZEnuuYsXL8Z1112He+/VqAG2rHksRI6bjjISKsdNW7fFYUM1MAAsJ1FmXZ6Ys/AJUudqS5YD4CJusqKcbv7t7U3OW7QorjjJC/+bRppj5LjZIkvd3cB/fyZ9f9LxwOLFanTBdVMynDhumwyOm3BIOQhqd3fSv2XLgI+Q3LsbrlejItx5QDdegCwaSccLAPRXN/kdlkV96Vi579OG81wKnzeQKilTgQRi+RGSA37xz/SIZV3bzOeplntSqk/sN5WQ4DhuHaQ9q8K4DgW4XSjZKqdQXPczv5weO+urYa97BnGzpUqS68hC3ByFs7SIWyjHLTBVkhOwjEmVlP8e1yC3NggdSJxEx0oYdETc2FRJ1xw3jhiao+O2rSNuK1aswDvf+U588pOfxLhx43LPHz9+PD71qU/hXe96F1avXu3ZxZZFtah13ChV0hJxY0VlLSJstLjsZz+fHv/GOeoF28dxY3HOI+e4cWqfqBTl8gJns2YBq19X98dk3Ej47f+Rvt7wAq9twC3HjRuooM/FhLEJmqRCF1w3PcO60jFgRNxEbSiLTXKpBIwnddN0olyceUA1XvLy/2bNSr5HHYgY5pTjlkOVHBhIkMlXibCKaz4UHXcUsVy/hvwe9Iglt23ZxHVRzTGmEhJ0alFd0q4uYNyo9L3NmHQpwB2CKkmv+waCFpZhcd0ZTqep3mKeWVMlm6gcAJC/EXdlJdgW4G4mx822ALer4wYYrk2IsiMmVNpBCRqQ8iI1TqdzjhvpO92LbgXGGt1XXXUV1q9fj2984xvYbrvtcs/fbrvt8M1vfhOrV6/GVVdd5d3JlkW0mHXcMlRJS8SNQwXiOldycVka/N64XrNgeywCHM55iCTtV27Wn1dzXgy1T1SKcnmOW28v8ABB0mOIkwgbWJd/jrCQqpKysXn+rpuStlSwg4O42UbxOf3n5Laoxgu9laox09sLXHqpe0SWay45broxQ4M8u+8OXP2/6Wc/uSQflRGmGvMyYkkvB72WMmJZ17ZlvTLVPTWVkKBNqh7x2bORqQEg17kyGVeyPySyL193HRiae90bmeOmEydx3CSzctwc5zBhsRA3ljhJxALc8t9jCprKZpvj5qoqCejvK6Xd2jyr1qqSruIkMDi1jjluhUL6t666H1j/nN33m9hYV/kvf/kLRo4cidNOOy3/5KqdcsopGDVqFK6//nrnzrWsAeZMXbBE3Gxz3KypkpqhrCouSwM7AoGQF2xXRAwgiBtTnMQqik8mr8fm6X+jTDb5qtonOkU5DlX90YfS1zHESVyMi7hlUDHmdc/kW3rUzDKZyHPb/Gr+PbVVquP0P3NdFPc0b7wA+jGzYAGhMkZy3GrIkidVUg7yANm/a8HCfFRGWCaaXFYjljrHTZhALOva5lIlc667roQEHSYqQZ4zzsgiQq6IW/AcN1LHT7Stuu50SlSl1/hcd58cN06QxXWTzNmEB8tx29LlACIjbjbUu+g5bgzHzTWIbqsq6YW46UqmOFIlAaDrnenrpVfaf79JjTW6H330Ubz5zW9Gezt/QLW3t+OQQw7BI4884ty5ljXAXFWkWI4bmSx8VCVd67jpisuaNpsytUvXtsk4VEnX9uVFi15jann5UDpFOY7j1kt+k7u429TkcrEMeqKrfwQ3VIwrCOMTra7luVWAzcvrP69U0gi87WawwNkM5swDuvHCKZWwfDlZ2CNRJcXfZYV0SlRJVZAHqN/k56Eyte9Jc6QKsaTdVT0WArHMa1tneQ6troSECXETJSRckSWXHDeXvBwxJlTX3ZB+CEB/3TkiSz7lAFjqia75RMX0OxxVSZdntZjjuDWqHICPqiTLcTOsMbKxCnB7lAOgwiq6nH3XvZitqmRoxK08mK4dLo7b7v+VvrZh8DS5sa7yypUrMWUKs/YOsa6uLrz++uv5J7Zsy1lMlScfcRJrTrtiEdMVlzU5brUF24d2EVGcZO1iqR3dQpBDq9MpynEcNzpM2JHwAljFNl2tUEJth+1bx002OhaXXQOseVJ9XqZgsOWmhyLSqk1BZhMbGXFT3dO88QJkxwU16vhYy0UTM204xN/lSpVct1Id5AH0m3wdKiOMPtcDfWrEkl4O3b5owYJ61UOu88PZ5KtKSNCfEz8ll5Bwddxi5rgBBPUZ0CPFeY4boL7usamSLMTNEd0A8oOKrnRvYbmIm6uKNQf5iYi4yQ4Xp9ZbrW1GXnrFMUghn69F3Bz3YraqktZjMudB9LkuANAxjjRvQW9tcmON7s7OTmzYYJ/ct3HjRnSqaBgtax7L27DpLHY5AF/EzVRcNo/etWBBVi7adRGI4bjtLBW2zYvg6Tb5OkU5juNGP3ORRTZt1trH8dvLtF1IN+Ixc9wA4KYj6s8pDwI3vsW+bdVvKDcOHkp1LNpxzoZKN16oj6nrFh0vPlRJughTG+xNaXs2qpV0I7DkCXWQBzDnQ6lQGdUXX1+hRizzEDcgQSyXLs0e4+aJcZFIuYQEbXL0cHUJiYyD4pjjxi3AbSWcVUrb1iHFHMct97ozqJLWm3ALxM2lmlPe2tRIVcmo4iSRc9x2eI9b2zpELDZVMoO4WezFrFUlQyNuHkgkED9FYwsZ6ypPmTIFDz/8sHXjDz/8sBNS17IGWqNy3GypkqyJ2rG4bJ7jtnw58NIyfdt5FtNxkxcM3bXJo0rqFOXEtdGpDwLAKBJFdoqEGxCCTqKA2H0Sv20g/VtD57jJm8be1+rPWS4JxdhGq/NqLNG/yVapjhM1zQvg6MYLvdQ6x2178r0Yjhu9H5354lk1o8/G888YziOv5U2+CpWpfY/8rZs1lGYO4gYA6ySaj3U5AMZ1pyUk/vTX9PhHPqguIeGa48Yuku2qhCcCRIN6pJjjuAFu1901GAowac0eQj95+deNVJV0LQfgk/OuM5sC3DM+B4zsrj+H0zar8HkT5bixqZKRctz6SL839fPrLQpjq2IOLWON7kMPPRTPPfcc7rjjDnbD//rXv7B06VIceuihzp1rWQMsZo6bTRHouvY9xUlMxWWpOInuCdi4nrTt6LhVBtWTEeC+gBXbgGlEMt+VKqlTlOMgbru/gfTHBXFjbDQB4KCL+G0D9ogbd7xzzpPpjcERt0DPkhahzUHcdONlEKm4oA50+RgRtfLJcWvXoGmbHR03eh1Nzr5pk69CZYTReaNT85zQy2HaV4werW+bJU5icd1LJWDX3evbkM1V9p4j1gBIY9JGwIkg+zqkmOu4uVx3H7ohC3ETm2QXxC2Hxu+LuIkLGxNxy7sutB9cyy3ATf6eKUfZtW3ruEVRlQzguLHE1gIhbkLZd7+902M33cKvt1hrn4kYDjFjXeWZM2eiUqngjDPOwJo1a3LPX716Nc444wwUCgV8+MMf9u5kyyJaTMStdrxgv8j4UiVNxWU58/twshHx4stzioXaRqkY14ZTrFmlKJfnuHV2Am/YifTFAXHjKMkN3wEYvj2/bdoXI/3KYbxz/kYZcQiOuIXKm/GItOsUCEXXVN3q7AROPzV974O46e4XRdyGaeqSqYxec9Mtztvky6iMMPq3jh+nRiw5jltXV4J4Ztq2LAfgRR3TOLUhxEk4VMliO5TKuHntlwf0SDHHcVNed0vHzXYTbrPuRclxcwzkCqshbpqLGrUAd4OoklHKMDQQcbNhP7Edn4CIG1X2pTVjB8CvtyiMi+4PMWPtSI866ii8853vxOOPP44DDzwQ1113HSqKYnmVSgXXXnstDjroIDz55JN4+9vfjne9613BO92ygBYzx81rgfHktJuKy+Y5bl1dQBeJ3MeYqL0WgpyIdaWcXjMTOqNSlMtz3BYuBIaRcWJFYWJQJelmzdaKJNKuM6cC3IxpUnaQQyNuGaqkjziJI+IG6BUITY7bwoXADsQBtx3rh/6adlJ9jiviRq+j6XbRLqu6IKMy6Q+kLwsVNWJJh7luXzR7dn3Bd1tVSetAQk5xckDKu4xYx83a+SHiJDqkmOO4uV53H3VZVpAlgOOmzbVqYDkAW6aJ4O+zgqERVSVtBZby0DzAnRYMMBG3AOIkjVCVDFXnUhhHjXQIGvsq/+Y3v8Huu++OZ599FieccAImTZqEo48+GjNnzsTMmTNx9NFHY9KkSTjxxBPx7LPP4g1veAN++9vfxux7y0JYVMTNcdMAVCcAMVE7IG6m4rJ0oVYFcmfP9hNUoJOFjoIVCnFTTaaDFsnxsqKciMfIMwNVlHNWe2M4Vq6bNfodbpFsNuLGiPbL54RG3LyokjlOIcCnMKkUCFWOW2a8OOQVCtvpQ+nrsmaeySBuNo4buS7DDX8z9Uk2SZ+pUBlh8hypQizzxElEzbS8tnVW21B5jEfdHJYp6msxJrmqkhXHII48z6iue57j5nPdfWqhsZBUH6qkoPFzkPfY5QBCi37FrOPmMYexEDcPEY6Y4iSxVSXpfXpRUb4pj5GQq+xL55ptjCoJABMnTsTdd9+Nk08+GcViEatWrcLNN9+M3/zmN/jNb36Dm2++GatWrUKhUMDMmTNx9913Y9KkSfkNt2zLmuumKjalA8hHUPIibDpqlwlxEwu2F+2CEa0Ohbiprn3ZEp2hinJtZKIuINmYyopy3jLdkRE3bq21kMWg5ftgvWHLy3HzyIGgNDYd7c3mnsoKhMJx60QiRCKPFxeUU1ihgFp0RTduNhMRIhvErVBINz2TJ+rPE/ucfqT5fMJUqEytfbrJL6sRS/pV1bAVNdNkY5cDEDlutiiBBeJW7LDbKNvmuDk7btW2Vdc9z3HTXXcW4uZBN2QVyfZB3HJy3HxonrRPeYibLf0VYNA8G0WV9AnKRc5x0yGpIQpwmxwfV8SNPohX/dJc51K1DcxT9t1KVSWtRuCYMWNw5ZVX4hvf+Aauv/563HvvvXjttSTaud122+HAAw/E+973Puy6665ROtuyCCYexkKb3URqRZV0FCQolAD0Mx03xUQtFuyTT84eNzluYsHuuZe0bZvozCgG7RPBy6MauYjCCEW5G28BVtyeHHviUeANM+o3pq6LTI2mY1J97Muea2O1TQkTcXOJKHPaBTypkooF0qffHBEOW5RAjJezzwZuOBJYWx0zTz8GjJACdj5BCvGdyoB+nnHNcQOSwEa5D5gwGuhcrS4JIBy39dJxHSojTFV0Xjizs2Ylv6XbmHR2JnMRld/PtM2lGzqIkwB2OW42NEnALcfNpX3atnzddY5b3nXPsCk4zo8H4hZbVbJSqV/zfWietE95iJtL39s6kmckBlWyQs5fvSJRL6TrXtljDoud48ahYmYQN5t8VE7hc5I25bOX+c2v6j/n1rk8+2x1AG0rVZV02rnssssu+PSnPx26Ly3bEua8sFtw/V2RjYJiAabGibDJCzagdtzkBdsLEeNslH1QiMCIGzXalzfsqp4MXRPYRS0/Gv3Tte1Ts4UTGaTnhzD5PnhRJXMQN+uNLFmoVcW9fdovlYCxXUBNxFVqv9wP3PWx9H0Mx61vVfq6Y4Jd222dwMA6oK2sDvIAqeMmD1sdKiNMF9yaORM44ogkUrzme6jxLweQIJizZycOoUvbsrlu8gvF5PmoDBgED4TjZimWw3U6Rfu2c5iOkk2v+wpy3cvgX3eqbNqvEWrzyRNjIW4BqJKi/TYpQObjdAIMxM0nMGeBuHHJZD09wPz5wO9/Bny9euxPfwROnZqMhzlzkvHQKHGSQskdiTS1L9bctuF248YGAQYcctzI+Stfr/88j0oOpMq+06fXf8ZRIx2C5vDkt2yrsloemmMCOBBHnASwpEoafkOmdlFdnZGa4rI+EzWHmhYsx0269gMDwLNPkXMj3FeOkIXKhJrVwMZslK72e+V08fVx3NhFfUMibvKiYJtjYYG42fY7Mx51jptH+6VR6et+SWFx8U+AV24ibTs6boB+PFJn1IYGBKSbnvXPAie+oz5/rw1pjptA3Gj+HqffAOr4eAKx/NBJ6bHrb0hqqKlqppna1s6/ZdQmO6d8pRyEXNRxs3bcmIibEFQQAR92+wb1WnHdTyclKq7+A/+6d4xPX9OAATWfWmg29Ut9EDdAHeDyoXnSPuWVCLJ1xgHLHDfGtaHqhcuJ01BCvXphKMdNi9L6pAgw0HHnZ4lBlfShqNLzVUsmR3UXMCj7bsOqki3bis2lzg9gl6TtSknLq/tlM5nS4rLX/yU9/p//oV6wfWrC2CJuXqqS1Wss6p5MnQq8hyi5/u4ay7onNkiqZXSwtmhU1MiPD6qU+U4FWjnqQUfKSJ7Jm0RTLTmVxUTc2hiIm4+qWTtRVZQdN+q0AXGi+K6FoGV7/Pz6IA/d5wx0qIM8OlNRJeuMjJtdFbRkbdsWOcaAJ60uMOLGyc+rlNNn1XazWQv4GSLsBRI42mkX/nWnReB1jpsP3ZAlex8gxw1giHDEQNxy6osa286rQWeB/MjqhfQRon+2UC9c/CRpOyLi5u245VAlbUoByP3hzDPWddyo8q7icw5VEtAr+27rqpIt20qtNmEEFlMAwiFurI0JcyiXSsDOJAezoEB+6tr2SezXRastlB9lk6NINHL46qvZhWfdZru6JyyH3HGRoRswKk8sjI4jl8R4Di2CLmC2lBSTydE8nYOkszwZcNeyHQAvx80LcSOL5oCcCCZd49iIm20kf8KB6WshckKDPP/8a/r5ezRBHp3Rv1WniOk6D9jK0rtswmsF7fMcN8scN04UPIOi2jpuQjmxrL/urvO7LeJmTZXkIG6BqJIq9CdUOQBAHTzzoUq22SBuhmvTo1AvpMNE9Wff9g/S9hB03GpBEEvHjRVI8AlUkGs5SUFz51Aljcq+27iqZMu2UnPNcSuRxfqVZUkUekBaaHwdtzz5eFeI3qp4OGBdt4WDuNENbrsmWqRtn9yrm/6/bOQQyNaGEpeOW/fEhipp7biRRUOV55ZBlRwWdrrIaDeEm+r74mLypkQOLlg7bjkbKrroWG8GGVRJH3pXO6FKDkiIm7yBckIJmI5boWS/cTjo4vS1vOkplYDtSU7TMEuVZBNVUvWbVpL6lnOYF+KmmMMqlfR40SPHTRtgIYEdW5SAOpLa8d6sjltsxM1C9t6Jrq4oqEwtJlWSux+YP79ehEiHuKnaDp2/DJAcN0/HTUfFdEbcGI5PJvhkOxeQ8fIfH6j/nEOV/P/bO/M4KYq7/39md3aXZbmv5VoOAcEYonKpERXF5BGNV1ATRaOGR0l8UDFexAd/+kRNjJooXvGIBhMxXvFKNIpnFE8UTWJUvEAWVE6XY4E9+/dHb01XV1f1UVW9M8N+368XL2a6Z2p6+6iqT32vuJl9yeJG7DToxLjV1gI33uq9f/wvwK67um56vFuerhsmI1K4aQbFxo4PkXw+Dj4Lh2LiwAs3PkYoDvzxXP+b4P6wor5RdU9iJZ1Jy+Jm6ioZw+LWojmAiYjnRrxHVRNGFala3BImJzGxuImukuKzk4bFrVXTZU/8jmxS1bjRe81P2uMQx1WyVdPiFsvd0LQmV4jFjb+Pkp53vr9rrJN/xlcwOKHFjT8evtYcj69uVgIREUe4mcSJRVkjm5s9K2Jjc3CxNIrIGDdLWSUB+X1p4irJCzdpjHSM+UBzs5uFMLCdey37s03qusbJ+pizRKZgcWvlMnNnE1rH47ga8mNd4hqj3Lk8bnqwfFOUq2RkZt+Meh65cSnw9hzg638lOODCgIRbRyepuGJueTfe5m1jz7YY0NtqaHELc5V0HGDbKve1ifCJs1ptEuOmcpVsMhFu3LVqkZwb3oAn6qPIuicJhFviemKcWJIJN5M4KyBe3A9beUw6gImI50YUiqoJo4okMW4myUmUMW4mwpA7l2L7poXJgfiukjrCLarmoknGyljPkqaA8InClGLc2IRT5jXQaiDcSsu9sg3bV8k/YyTcYljcfOnRE/QFvHBrqpN/xlpWSa4dPoa5qe2e+c8HwcXSJO1LLfs2XSXFxS3HTlZJWdtAvLj05cvdeUrgu/CM4rJHxUS4xbG45cIPDM9L5CKLgauk0uJm0BfwJ7a6X3idS1k3F5XZF+DmkcLxPzUeWDbf/b/IIOHW0UkS48YH9PLPgDjPY255jSydcwoWt62fAdtXu6/77Juw3Qg/fMBejFscV8mkwo0/n7InmK9BvF6y/4471Cu1UZPNxq+BbSvbftvA4hbpKmmSnAQhrpKWLG6iMAxY3JImJ4nKKmlSDiCGBdioaHDYxMGCq2Sqwi1i0sMLiDKTBSJVshze4qaZATatGLfYFjeNRZDKQe7/27+Ux6HZEm6qBRTdgsTZrp5ojpVV0qTUS9szKcYws0eqFcHF0ijSXCACwscPXx9jYHEDFAIohpfM5s3y7YAnDGxb3NKOcSuNWHwyEVaxvFgM2hfvlxkz/Jl9VTFucTP7Ap74VC5wFZ8LJQm3jk7cGDcxoJd/hlWLREy4pWFxW/ui97p6SrJ2044PiVMOgAm3TIlZOm3ZofGhODLhxuqeSNuOODf/usx7HVaPTUaUxc00OYls0uNrv8nbbhzjJk5KhHv0G3OTtRc5obJVDiBOAe6kwjDk2EWLW5rCLWl8BSAcu8yypFlsHojpKslZIJImy4ksdmwxq6Tomma0yg6g82D3f6cF2LEmuN8nrAyEW4tCuPksbgn6gkwGKOvhvo4V45b0WRIWn8Tsh4BfuDHixjBHuUqauteGCjfubzBxlQQU8XkxkpN066Zuv12Em0L8pJmcxEi4xXCV9CWHMohxY9ePz+zbk098BTcRSZLMvkB0krsihIRbRydujJsY0BtmcWOwuyuN5CT1K73XPfZM2G7SGLcUXCWZcMt20ZiwRVjcooQbEFL3JOLcfHSD97pBUjAzDF+MW4TFTSwMG4coi5svbXyKMW67nQ90HZGsvTQtbklj3JJO2EJjOGxa3FRWKxOLW6n3fEclhUmj1mUuwYdOMp6orLumMW4hE07TEgxMuAGeyzuPLzmJQYybSrix7ZmS5NeVuUumUg6A+/yWumD2Q36okCVEjoxh5l0lZQsVpslJQu55k0zK4vFIhVuMGLfhw4F+/eT7CsHiZpqcJEq4JRZWKbtKqu4Xltn3isu8bdf8Nn69Rd9vKFwlixgSbh2dODFusoDeOMKtNPAiGWHCzTfJt9RZ8BjVWUvgKpnUTRLwTwbCLG5NADYp2lDVPYlzbnTJRlncDKwbQLTFrVnTPUqGeE/y73vvk7y9NC1uJVnvuiqFG+sHSgwXKqIsbpZj3BzHLDkJEJ6tzijRRBxXybbf1KprFWVxs1QOAAguQNmyuAGeyzuPz1XSIKuk6n7nXaaTLpzlhFud/Lrayiq57P1g9kP+0ZTdUlExzJELRCnGuOnGc+a+k8DippraZrNuFkIZYcKNH2cTzweiBKejlyQu137U2JGyq6TPkmrB4uaDu4cGDY1fb5GHndMidIlUQcKto8MmbGGTElVAL+sjoixujZoPDL/SHki/zg8CSeugxXBh8g1gKWSVbDIQbvzxhAm3DZCvyobWPYk4N2Xdg9viknqMW0RGthZN9ygZofEbOhOeiAmV8blpuydl96PjABuXtB2HqWWmnWPcnGavb0hDuJm4vSGOq6SJxS3KhdQgfk48JvHcGMe4DfReb/8yuN9WjFuUq6TOAk4uQYkDNElipoziRbnPf/qRZD//O4o2wmKYo7LXpirc2tNVMqSfmTUrmL0QCBduWb5QdNIFnBLO6pNCvCh/XjYutevWzD97myX3o2n7kVlIDcMngHADQJFCwq0j09qC3Mw+rDNSBfSyfl825+AXMVUDTBRhKa9NJrKRnUUz8M758s/HIcpV0nG8eldawo07L+JicRkA1vfXKb4ft+6J7Nx02817XZGwrlWSGDfT5CQy9zGbFjexfeNix0nqK+m03zagyu7HT7lMXjruJKExbjaEW1sbsvvR1PIDJLC4JY1XSpBVUssCwSYkirb52LFOCvew0PZDLKmm591XWzAiKYxJOQClq6RBkqKokgAm4oefnDZJntU4wi00hjlqgSjFGDdjV8mIWLG45YFqaoLZC4Fw4fatb3LHYRgvKmJiEePbBoB1LwMf/ta/3+RZ7f5NL5HQl08C2yTWcZ8rZtJyABEWN9PargCkWSUDhgDL3kUpQ8KtIxN3MqgK6GXPgWw+w/dtWc0HLiy9e5qxJ188KXw+4WMSlVWytcH73aSZ6gD/taoQrhvvASnT25F1TyLODf/bkx8MO8ogUTFujmEn7auBFOEqmWaMm1ZsSAKLm87KIxuwZRa3N3nXIZmJNgJfAVjhfrci3EIsS6ar1UA7uUpGWMWMLG6KlWTektVpQPL2w64rL4i0ksJEWcfTtrhtD342Lj7hVhfcb+rWzIhKSx/2qKpimKNcJVPNKpmyqyQSxKWL2QsBzyuPP+8se+GAaq5ty8LNeBFE6Dv4RWfT9kuywNAfuq+dVqDuveBnbJUDkNYV5M6XTtw74N3z/HMZdm8WASTcOjJxO2lVQG+YcOPvrMqEA2+ujZDBPU2Lm/hbti1uvhpuilizMPhr9SMhsxKvsWVjd1TdkzjWSEa/A8OOMojPVTKFAtxRddx0U4DLCBNu1t0NYS4Mw4SbKWHWQnECZbuOm1WLm+WskoiK34B3vtKIcdvxlfe6sn/y9sMybpqed98ii6wcAL/IknD84Gs0vjoD2LHOv99xvL5Ay1Wyh/c6yuKWeGyKEG5xPVlUMcyRVitTi1vIPV8orpIMPnthdbXf4iZmL7RWE1Em3AwT/UQJGtNnlb/fbVsM+XP5/HeC45NJSEzuNySukuK9T8KNKBriroCpAnrjCjediSYgDO6icDOJcYsQJ6KYMikHILO4mdRwA/znZfxe/pVD/tB54Ra37klUQgV2vjIlyYP6fa6SETFuWtm1IlaTrVrcQlwltTL4JYlxM6jJlYZwC51QpVwOwCRjGoNNIqMKEhdcVsm29retkvczvMWtUsfiFuJ6bGrp5M+N1K3ZwOIm3gf//j//+9Ym73qk4Spp0hfw57xSck/EcZUMi2FOlJykgLNKSp/VmK6SPCx74apVwDf3dLdlAdSu9GcvtFlaQ8RmjJuMVsM+Miou0ijGTbhOvNs+YD4nAORZJcPmk0UACbeOTJIVMFlAb1zhZloOAJDEFNmyuEX4Vas+E0ZYNjbAL9y0XCX542/2rxwO5kxum5G87klca6TONc1GuDClnpyE+82kK+099/K/D4u5TNviZuIq2SoTbgkFuEjqMW4hws00PgRIL8Yt0nrd4m3XcR3j77PXfhTc73OV1LG4hUzYjONyIp5Vk6ySWWHyu+Vj/3tTy3uqMW7c52sGBvfzt4kiYXFoDHPYNW1pBFY9xn22yFwl42SVVJHNAlXc2Fki+KGaJCsD2tdVUqTZ0KIX5cZvKzkJECwxZNNV0mdxE+eTqoepMCHh1pFJYrWSBfSGJSexIdziukomLoybQW6yGpXJCJCnqw7DVw5AMlG2aXFj54WtHF57qbfvst8kr3sSW7hZHtQB8+QkvpozUVklE65sivF8gZhLU1fJlC1uOeHWFFyI4F1hdGgvixsQPPb2TE6ik02OIV0gMnQD4s/LygeC+32ukhoWt7CFM+PJYERfwAsiXijFQXy2K3r53/tc00xj3GQWN4N7hu8HBlYHF0v520RmJIiKYQ7rZz7/s/99sWWVREJXySTtt7aTxU3LIpbA4qYlDKPGJt6SamhxE8+tVVfJFi/jJlnciKLF57oQoyMVA3r5e52fZ1dUALfexLWtMQAA6SUnAbxOYMsa1xrFp08WVyKTrlZHWtwMBATgPy9f/8u/r2mj93roN5PXPYkUbsxVUmdQj4hBa+YGmA116pTWKqJqzpi4SnYdAYz8iffednKSyFo8lpKTAP7n3nH81o0hxyVvO7SOmzgw285UZ1G48aUFcr+XpsWNX03WmchGTCC3twm30k56ZTzCJmymk8GovqCR68fKewX3hyH2qeL3TV2mk1jcTApwl5cGF0ujLG6RMcwh11RMalHQWSVlfaSGq2Tc9nN/S8asbalw4z1BUnCVNLbotaPFLUy46bpKygwAAddvEm5EsaBjhubd8vgOowx+t7xjjvb2pWFxa9FciamtdY9xeVtH3Pg5MH5XYNAgd3ttbbBzGnREwuOOyCpp3JFy5+Xze4G1i733DVwgfkXf5G3HTU6iteqouJ7smpwz29t22RX+axKHJMlJTONyAqvJFmPcouormcS4Af5Jd8sOfz+wz90abfPZByMsbjqptNtLuAESgZJijJtNixuAQEprJn7KeyePRwUi+l/TuJyI5CTMZSpTCpQpshqrEO+Dit7+9zZdJZvqgvtz94zGJL+kFLlnprUpuFiqEm5xY5jDJuFVQlxcmhY3HVfJ0pDn1N3IHUdKwk17LpOmxS2iX7Ip3CJj3AzKAQDBsY2/zqaukoD3bAZcv0m4EcWCbkfK3PIOPtTbtuQVv1ueL5jXgsUtYOHQWAlfuBAYNQq48krg39xEZDe4BcavvNLd/8o/vH0Tf5d8shllcTMdwMTz+fop3usGbqVanLDEajumxU1rNVZyPflrso3LptIM/zVZuDC6/cgBhnfVsRyX4xi4RwHJLG4mWSUB/0DLTzwHH6W34pskq6Sxq2Tawk10kTKxuEVkkjDtBwJuo0Km1qZN7v/lGtY2INw6Y5xVUojTFcmJzl4aSZCEe1h0R29O2VWS/T26nia5+nxt7fCLpf17eJ9rQPIY5rA+sutI//s0ywEUQlbJJO3bEm5OS3CBxfhZipjGmwrDJDFuiV0lE1jcTF0lAbXFjWLciKJB12rF4Cd5Qwb63fJMg3kBwfXNMDnJwoXASScBDW0P6EfcvsHc64YG4M7bk7UtwndeUoubqa9/yKqUbxDQWE32ZXuznJxE7EDFa8L/WfxPNzS4n4sSb1EWN5sWjjCLm+mEJzLbm2kMHdcWX4eqrEfydoGICZVt4SamGLeQVTKsXpmJII9aBDGNExPPdRO38NHa5LnAal/XkJhR0xTmUc8qs7iJ8WlxEMVYQOAaWtz4flWWZCnXR+pmwWN1p7h7jy2WLuDGpnMuSB7DHGZxE4u0axWaDvE2SRqaIeITEJaySvKEeQ6YCreKPt7r7av8+0yfpSgK2VUyanywLdzY8VOMG1G0mAYLq1bxAfNgXkC+UpJrP0HMT20tMHOmfxs/3orzMf69TmfhK8AtSU7Samj5Ec+nqm6cjmsB3/baF4L7jWLcuLbrtwSvCX8ZZZ4wM2eGu02GTTQB8/s91AJsWv8oEz9JhmmNO16M8MJNN0mJb0IlCh/hPBVyjBtg2eIWIdxMikwD4cKtabP3Wie+DZBPeBh8XKRtV8nWJqC57W8p1/AaEJ9tsX3TGLfIBSLLFjceh7vf+w/ViGEOmYSrSlYkgRfCvEAGBAuzzriaYlZJIMLiZrBgCQDdd/Neb3rfv8/U7TiKQhZuiSxuujFuknlBwBBAwo0oFkxXwPiHVEwzzg8CNpKTqFZIMiXRK4O33eZZdRj8GCV+nX+vVcumxOuA+QySDNuukj7XTMOUy3zH+f6vg1Y3WzFun38WvCb8WC7zXGhoAG6/XbJD0r40+5VFi1ug4zdMTsIfk1Tsm1r0FJNN3lVS2zJT6p0bZVA/O44idpVMnL02ouwILyBsCLdmXrht8l7rukqGLYSYZH0Ewl0lGwwSk4htAxKLm6GFI24tNN0QAda+NIGToegMTTjD/d7Yy5K3DfiFm1irM21XyTSzSppa3Lrxwu0D/z4bfVgYNrNKykIQjApwR1nc+IUz3Rg3ydgnK4VRRJBw68iYTmTDLG7t5SoZNZlqbgbuuCO4Pa5wC+yMCQuo51e+c79tWbipXL10BESg5pEQN2Mrxm21xHLGnwpVP3rHHepsk2FCH7Bw3kMEhKkrI+BZRvhJd6590yyqikk4b6UpEwrPJ2pfYS0sBuGmWvgAzLKF+soByFwleauVxiRcnGzw19KKC2zIQoixcAt5VvmMkjqukp2H+N+HWsd1shtG9DPsXJkuWMomySaFyYHwSTj/t9R8P3nbgP8+FoWbaf+bKMYtpeQkuteUF26bRYtbgbtKRsW4bXhTv/32yCop8zahGDeiaLHqKin4+jspu0qyBzBqMrV8uZvkQoQfy8WngO+b122EFqHCzSALExAcPGTp2EvK9AavXuP97wMxP5Ysbs2SgZc/FbI60QCwZo17TaXtR9WbMSzmGbuuoObgzibA/KQ7175puQHFIohpGYPcd9suXpRws55ivD1dJU3quEUIt0K0uPkmbCqLWyZ51kcg/JryRXh1XCUzGWDKU+r2TZ/VqIlsmhY30/i8sD7SRkKxNF0lw7K/AuYxbmFZK40tbrt6r7eu8O8rZlfJNS8C9Z/rtx+wuAnvc55VpXoxl4AiqyS5ShLFiqnFjc/W1SS4BNqwQISt+LbGFG6bJcIJ8Cd5Ew+P7x+2y4KtYsAmM82bkSv6mPvtNF0l29rWdSsYcrz/fSB20aQAN/cdWc8TVaOIsWWLfHs+k5OYxrgBXoxZy/agYDaebCpEp6kLJoNNelRB/bnf0LG4hQgg04xpQHqukoD398pcJU0n4WExbj6Lm66rpCIuEvCEW3kPvUly2LPKu+/qWPMAwbJk+VmNtLgZCrc0LW5hotNGXxDX4mbsKikZIAo5qyS/uCGGT5i6MkZhs9yAeM9seMP/PqnnQMCtWbHIYrKoGCurJAk3olgwdV3ghVugM7JgcQutr9QY/IyMborVYP65DbO4VWmsJgNAts3tzGkNWiNN09KHJSdhbetcTwCorAaGncS1p4hdNLWcyG6JuMKtq8KlLyo5SZqukjYmPb4043X+faaWMVWiCRuCE8ifq6SNSU9YVknjpDBtnUsaFjfxHlda3HokbxuQr1QzcsJNV1hFJCdh6NZuSjUDbIl3XcMsbqbJFNo7xs1GXxBmcePvz6yiDw8jqj5qqslJDIVbpsR7xsW5kml22SjStLjxbY843cwrAVALKt2FaEBuACCLG1G0mFog+JiYZsEKYqWOW0j637grMcOHA/36BbfzfXxYjNtAIV4iLvwKm+guaeqiKnaOshgdk44uNOmMSTkA7jsVknsiToxbdbV7TaXtp52cJMRKYMPlkI9FEgv7mlrcVFYCG5ZxIES4CZamQoxxi5tNTqeIdc7iFhXjpiHcRHwWN0646VrcWrm/96tVXmyp0+rdn7rCLSw5iY17MqyGno1nNWcVSyGrJGtbmsGvnWLc0rC4mWawjaqParMcgG3hBngL3e1tcTNtPxNyz/D977ATk7ctShBV7T+T+UxGsqCrMgQUCSTcOjKmAiKuq6Sub3KYz3nc5CTZLHD66cHt/HgbJtzKNH3Ow4Sb9eQkkgFN53oyVElnmps9S2pDszpJiIpMxhv4qvsE98exuJ1+ujoFdqQLk2k5gJSTk/CTGbGwr83kJLzotOUqGdviZlrjLk8xbtoCou3Y6/7lF1aAYHHTsJ6I8BNCX7bQhMKtttYt6nzued62//t/wKBB7vYVH3iCXFu4hSWesrHoF3LP2IhHDbOKmca4sb5JJk5MM5HGzSqZhsXNVLhFWdyQYnISk2zKDJVwsxHjNvoc7o2wwORzldTJZRAyDzNOfBLlKmnb4qaIcZPeT4ULCbeOjHGMW1yLm657gQWLGwDMmgVUCB1WmMXNV8dN13pSxBY3cYBkE7lBA5HL6vKv97yJXFhtNRE2menTO3hNoixuFRXAGWeEtJ0gOYlxNrmwyaBmtxrmKukTWBaKn8teF6OrZOoWN8MYC16cffAb/74Ww0m4iLKOWwJ374ULgVGjgCuvBDZy7ZXATfJ05ZXA5HHe9jRcJW1kJE47HjUsDs1U7LM4pNbGoMXaNBNpaB03C4s4/H0sWtyaDK3AUfVR2yPGzaSPZMJNXOS2kVVyr2u5N45/sYKdq5IyvUX0sHvGWLhFWdwsx7ix9ijGjShaTC0/ZSExbjZcJW3EuAFATQ1w553+bWHlAHzCTVMAhbmRmgYLi+eTH6RMY9wAfwf8zBPeRG7dOu534E3kRo1yJ3xxYANfNhO8JuyQdwAQ8rkAcD9fUxPdNqCwuFmscRfwkedW2XVc6oBwixs/GdRy2VO4kVq3uEUV4C5A4eZbUVbEuJlMHBjv/Z//vWmMmwgvBH0ZVGOel4ULgZNO8uorqha3yri203aV1BZWKcejsuMKs7jpHrvPVV2YUJqK/bQtbqUhFjdmBS7tZJ7FuihdJduuV2uD/1xbSbCUBfod4L13JO1rtx12z1iMGwfUsWe2LG6OwuJGwo0oGmxa3EQ3IFMLASB0GIYr4TNmAPfc41l5VMKtogKYMll+DElI0+ImTjb4Act2jNtvrvImcvx54id1DQ3uhC+OeMvF/DQHrwk7FWIfWlHhfm7GjPC2w5IpAMJCRUpZJU0m+PwkWIxxM50MxolxM1lNZvex0+pf7W3P5CS6E5NO1d7r9a8L7Vu4ripMrSci/P2dtG+vrQVmzhTa417zl43XCztslHoRnyUb3hppx7gxV0nRauVwk3xDV0kgaFny3TMabnVpx7iFFeBmXgTadQUjXCV9Nb904oAVwq252esHGluShwgwfMncuOvIz51MFnBksVyAdw9peyTEjHFLxeJmI8ZNMn5QjBtRtNiMcQu1uFnIKsl3GI6jtxI+Ywbw8ceue1+vvt72UrhJL+bNc/cP46w6ugN7Ns0YN4VfuNPqddi2Ytz4P5/vLSS5FjBzZrTbZEZYqeavSWXbD7DTw1+TKNHGtw0oXJhYTZgSTZeRGMlJTKxW/IQm4CoZM6ZTherYbScnAfyDoO06buIk3IbFbeD3vL/98z/DV77D4SydtjGNVxLh+/Ok2TBvu81boGHEEW5LlyU4QA5fDJrCeg3YiXFL0+IWsBa2BD+TFFWMMeCNs6WVen1Y7DpuunHpvHCr9+9jfZpultOo5CR8/b8Kjfp/vuyyjVyIwCCgoe06fLBML0QAUHsoNbR5spSU6dVEZKjKJ7VaFG5px7ip4lFtCzeKcSOKlhZD17GyEIubjZV8lcXNNzgmnMjW1ACXXw588JG3bf99gVWr3O01NcKkR9dVsh1j3NhExNSCmvsu1wHzP8X3sTJXxoYG4PbbI9qWTHjYNenZNugP2gX46CP/NYlDZB03QzfSOJNBE6tVaHISU4ubYjXWtqskEC7cxMD5OPDn/R9HARuXeu9tCLdOfYB+B7qvt60Cdqzx9tl0lRQxzRAYaE9hcYsS+83NwB13SNrjXquE24tL9CwQYW7NVixuYdZxg6LqufZVFrfm4GeSUhIi3Ng4y4+9idpOO8ZN4SrZ2uKFDFixuEli3JgAAoCKvsH9UfAu02+95oUIbF7rLWDugF6IAKBe6N6xtu2Y++m72QNCLJpFi5sqxq15O7D6Me+9VvvCRMLnDeJwFjeTGDeZxY1cJYlixScgDAtwp21x860gWRAo5ZybSadyf6bCJJMeFbxwa9jo32c7qyTr7EzbzcG1n8TiBrgTwLCJXC6oX5xMOd4KbZfe7qCoyh6pIsy1lt+me8+ECjcLlpnQ5CSGAiKOxc3IVZKbsPFunoHrLClEHQV/3retBBbt6703zZjG6Dbae711uffa1NIpwlvzbGeVVFncovr25cvdyahIHOH25Rb3+0kJdZUsohi3QKyMBVEYx+LGj71JCI0btxHjxo2rvEW5mVu81La4hcS4Lb8H+PJp93WmVO83+Gf8/ns9C3R/7jNfca+ThAgA8vmS0+oJzk6SskVJ8C2GcNfWpqskf8+8fpq/P9fpf0ULG/+sOi3ICTsji1uMrJIk3Ozy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTk8QVKoQFCxYgk8mE/nvqqadS+isKFNPA0mxn5FbQAxY3G8lJFBNxXwY/GxNZRakBQL8AbLddvddfL/XvM66rovALt2Vx47PJ8c3EEW5r1oRP5FT1j1q4jCS6k9gwKyfgCVtdN1J+YFz7JfD2264bZ3OznZXBOBY304km4B/UbVncuuzivd7yMfdbolCTmWojCLjTcPe5acY0RheuNmD9Cu+1jdhFHj6znnEdNzHtt0K4RfWRmyXPChBPuNUD2CL0/XEIc5W0UgOUF24pxLjlygEIYwe/gKlrRQ0TKGyc1SlgDSC0JlfuvGT0M+NmSrzj5y1upqUAgPAYt9dO9l5X9DZPTsLfdrxw44zxOeKECADy8kmNdd79bircpALFsZuchL9nVt4vfE5jXA2zttuaz8RxlSwy4ZaC47495syZg/nz5yObzeLggw9Gly5d8Pzzz+Oiiy7CX//6VyxatAiVlckCdEeMGIHJkydL9w0aNMjGYRcPLYYPRqbEHZyat0qKStpITqKyuBnWtALaJnkZAI6k87AgDLuNcV1CmuqAda+4HShzg2CDTqZEb2VTFHs5V0lDF0xGAzfR4f/8kFAjH2ETOXYviJM1Gxn2+BTT/ASZYWpx28iJqSuvAJ66wn3drx9w7Wb3/Ji4vIUlJzEVhmlb3HiL1eZlQP9D2toXFb6GcAsTZK2GkxJG1TDvdb3E4qZ7bg5aBLzwXe/9jnXexJVZJErK9UTn1OeBF6d5E7NWhatk1P3eTRFXE1e4ddUQEZk2ccDH5TJsjB38xD0Ni5tqAcqXaELXnVHhEtja5F3jMl2LW4yskib9AOBa31t2+C1uvHDTdpXkj5271x2hT9EuUcG1z992Kosbg4UIXH55ePsyi9sOztJdYWpxkwis1ibk+tw0YtwYmVK9Piwso6yNeR4QnZxk1JnAbhfot58HCla4Pfroo5g/fz66dOmCf/zjHxg3zq0ds379ehx88MFYvHgxLrnkElx77bURLfmZPHkyFixYkMIRFyE2JvplXduEWwp13JQxbpYe6JJs22AYkmFIe6JcAvT9NvDFk64rRP1yzyphHGtVAnz3Nc9ljHV2tlaoqnp4r1WukmHCLWwip3IxslHTqpwTbqKrIWAm3BYuBG6ZA/xP23v+ll671p3klgLYbBDknO3iTWbF42eLLLr3TNoxbqJwy/2WxCU2KWH9h6kbEIO3uG1d4b02dZUc8B23OO6y+e77hvUARrmvWf0m3YyS1VOAY+uABzq794zK4hbVhw0f7i4+iO6S/KXjn33+8azs7X5fh0wWcBrDs0qm4SppI8ZNaXHjxkHdODSVq6TPmqdrccu458ZpUce4mSbiyXYGGjf6YzhtnJdMxj03LTv85yXgTrodWjjcPcOfAi7prFS4AW6IwKWXhrv3y5KTNHDPXBoWN1PvHkAd48YTWKCLSSDWrJ0sbvzv9p0MdBmm334eKFhXyV/+8pcAgLlz5+ZEGwD06dMHt9xyCwDgpptuwqZNkpV1Ih42HoxcUckQ4aY9OKYY4wZ4HVJonIKBMKziJjS865uNWms9vuW9Zue6xZLFbcBQ77Wvph33WiXcqqvDJ3JiVkmGjdTopZ28wUm0WAH65z1X34q3TnH7M/BcSj9emSxgnSdT4lkNA3XcDN084xTgNpmwdY0p3EIVv4L2EG6duXu+/nP3f4ezxhu5wHIZ7hq5zHc2jr20wruf+Ulakj4ymwVOPz24nb90/K3BC7dDjop5oBL40iA8aRfgtmpxa/EvRtiwuKmEG1+4WTfGDVCLTlvCLXc/8in1uYU5k9IXuba5sU6sF9coxJTH5SsuuQl/2/Gnuk7x3agQASDa4mYc4yYRWDaSN+W8k6AWbroUgqukqYU5DxSkcFu9ejWWLFkCADjxxBMD+ydPnoyamho0NDTgySefbO/D23mwkcyCBSMHCu+mWMfNlrDKFVFVWNwypfq+/oD/2Hi3VNNJOCCfiNvq6Mq5gTVpjNvpp4evOpZwEx4eW8WIc8LHkqskX9+K1xz8ueAvYwPixzzIYG4+AVdJQ7FfIlmNBewNYJ36ec85P3EqFosbvxrOBJCNxSdAXVDZNE03g90TfH+e1Cth1iyvniIjyuLWCuCmu/TTo6sSFVkvB5BijJvYXpNlixsvxm1YrQBuwTIlV0nWftMOLwa4hbOCZTXqzzFKJfe6WC9ODNuIy3bu2eRPAX+LhOmWqFhPWYybr4RBn4gDjECWqdWGcAO8+11WZscEVVkdwN58JqoAt63EU+1IQQq3d955BwDQq1cvDFes3k+YMMH32bh88sknmDdvHs444wz87Gc/w1133YX169ebHXCxYuPByK3epZDSOc0YN/67AXO9hdoh4vd9CRWYcDPoSGXB/baySvLxQkli3CoqgDPOCG9bmZzEUk0rFj8UKGDt6Almvr4V/zfz54K/TRoRryyCChb/0VjniZzWFm/yqZ0RU1Xjx5LFLZORr+SLk/KuozQaDxmmbAm3qDgIk8FdZf2xdeylMisE628y8frfmhrgzjv926Ji3LbBDZ/RTY+uine1XYA7LGulqcUN8B9/s22LG3dNC93ixuqeffiJ+35HPbDrrq6w//Pd3ud0CoczcosUvKukINz2+JVe2116eK/5244/HWG6JSrWk/+7mSD3JUIz7cMiLG4mccCqe8aUUItbO8W4FaHFrSCPeHmbyXnIkCHKz9S01XZanjAV8SuvvIJXXnnFt61Tp0647LLLcNFFFyU8Uj/19fVWPtNu2Ihx4yfifAIOG4OjyuLGZ60zmlCxY1dklTTNJKcqIJ7L8mRicZNMTGytUMUpwC0TbnfeGV1zTSXcrFncerj/N21xxQ47T75V9pjnRqxvxf/NfEI/0eIGxIt5kMEsbk6Lu3Jc1tXOc6qqm2XTZSRTBmCH/17nB+J9FgBVMWvy+dpVTN4dx15yEt9CCHOnSWHi0JqCcAuzuJWUIXZtKFbkfuZMd/EhSriJQxlLj863FXrcir4g9XIAFmPcgLZz3TYpt2FxUyUnsWVxy03ChUx67DzpiOWFC737huXoYM2sXQs8+RjA1vRMhBt7VlpDLG67ztZru2YY8J+21yqLm6rSTVSIAOB/zlkcng3PJEaaFjexbqGO54SM2K6SKdZxM3UNzgMFaXHb0mZyrqpST+C6dHFXnDarUhkL9O/fH//7v/+LN954A+vWrcPmzZuxZMkS/OhHP0JDQwPmzp2bi6vTpUuXLpH/Bg4caPQbVhk9Bxh3HbDnVZbSjPMPXYoWt6Xnea+trDwqUsMaCzeJq6TjeEHbJrWbMpmgCLKVVZLv4A+a7LlQqYRbRQVwzz3xJmu5uJZWvwuTjRg3gMss6fhLAvgGgZjnRqxvpXKV5HUguwRxYh5k+EoC1LX9rgVB7ksDnkJyEkDuesz6hNLOwC6naLYr6T9Y/Bm7h4xXq2ULIWms+DJXnVaun0nB4qbbh82Y4bq3zZsH9OJct/hLwObdwnw5R1xXYWVNx5QLcNuMcRPbs52cxOcqmbLFTddVMhcD3Hb/sdPBhUb5FrfeEMrjJEG2SMFb3Mb8TD/jZhk37vC3HXuEwjLGR4UIAH7B2iITbqb9b0oxbnzbOeGmmYxEpOde/vf8+TAul9IGxbgVL4ceeiiuuOIKTJo0CX369EHXrl0xYcIE3H333bnMlL/4xS+wZo2sUMdOypDpwJg5wDcuir8qK6JMemCjFo/C4sanetedDAIxLG4WXSXZb7Rs99rXTVvMEF2NrFncuFF26EBvIte3l7e9Be4q47x57v44og1QC31bFjeZ8AEEN9KY50ZcFFJZIPhJCT+469S3ktVys+ECm3aMG6BwlWwTViarybLvtjbam5SIvyN1lTQ4N7J7nr+mJjE/gHwya9KH1dS4qc2XcBNsmeuYyvoQ11VY5SppPcYtrMB3ijFu1pOTWGgbCFpPGDquknwMMEPWT/K34S2/148Bli1SWEt8wl1T/hRE3e9xQgQAQbgxV0mbHg+yuPeUYtxsuUz2nwrUHOu95xf8rcV0Rgg3srjZoWubr3CYW+HWre7qUzdVDZoEnHPOOejTpw8aGhqwaNEi7Xa2bt0a+e+LL74wPt6CwrfKo5oQak7aShUWN/bwVQ0Deu6h1zYgt7ht/xLYttJ9bRq0KnP15LMF6tazybUvWNzSiHFr2eFN5P7+N2/7jJOBVavc7VHukTwZhXCzHeMG+AU+L2rjFlUX+xZVjJvMVRLQq2/F3xPs+LdzfYaNrJK+Z8niACabEJq4X+XalXy3ZYc/4YEV4SZYgHz3jIlbs8xVx1LsCaCwuFlw95bVtYpbEuSOO1xX49D241jcdIUbb0ENSU5iw9OEnevmZmAdJ0hKNAV5nHIAulYlwPP0aN7id3nTEW58DDAjSrjVN+vHALNxzWnhYrv5scNEuCkKcLPHQKVV4oQIAMJ1ZRY3C/c6QzYXS83iZjHWbc+rvNf8+eA9ZoyEm6xMgoXFmzxSkMJt2LBhAIDakFUZto991oTS0lKMGuUGza9atUq7naqqqlj/dip8E3FFbIu2u4uqjlvbQ2fsHiW4dtXXAo9xfuo2Y9zYb/DCzdjiFjLRtBXjxk+OeaNsz97J47cA/4TnLS4WwXZWScBvcWvVELWsvhWDH6v4W0NMTgLEi3mQ4XOTanDTRT/llUPRTyKksIxbdZWUZB5j96bu4g2gsLg12LtnxN/JWcV4YWhgFZMJN5vWQt9kVugLTPqBlau91zLhFuYtFcdVOE45AN37RmVx2/AWsOoxrn0L3iCrV7qeB4MGAX/+g7f90O/rZdv0LZzxyUksWdw6D25re4c/q2FSV0kxBji3nXvNmuL7y0bEE/YyxP4RSMfitguXXyHM4vbTn8b3Nol0lTSMcZMtzqUV42YzSYlqbLJmYY5KPEUWNyvstZfr97phwwZl8pG33noLAHw13kzYsMHtwLrqrJJ3ZFS+/razSsomg8bBvEIdt2XX+yf4VuuqSCxu1l0lbcW4cd/1CWYbhXG57316J7dabSvGjbOS8a4WLRqiVqxvxcf08PN4mcUtTsyDDP7YWhqB/wgZ0rSLtitcu1JxlZT0A2lY3GzF/Ii/Y1tcpS3cfM8ry4BqWDgcALbywlX4Hwi3uAHRrsKsL2hYD6x5wdtuxeKmEG7PTJYfQ1L4Z2XqFDer5tq1AH8pv9iol23Tdz1VMW4GCxWdOVHCvEuA5BY3MQaYIbO49eC2NUI/BtiXuKXtXk/D4raaOy9hFrff/S7+tc2m7CrJf/+TD90QhiZuXLWZVdKmcFM9qzYS/ajapxg3+wwePBgTJ04EANx7772B/YsXL0ZtbS0qKipw2GGHGf/e0qVL8dFHHwEAJk2aZNxeh0K5km+x1AAAfL3OqwljS7iJFjfRwtZZndU0FlKLW523zVS4ia6StguTi23aLowLeKultqwnKjcjn6hNMIDx9a24eSz4+YEo3OLGPMjw3TMNwZpENixurc2uG8riHwKr/+ptt2Vxs+0qKVttbSlSi5ttFybAP5nNCbe25zauW7CMblz/lNRVEoh2FebvyecO9l6nWYBbrDdqI8btO1wfyd8m7PZh2TbjTvCVrpL8/W6wUFHFjWv1nEBJanFTJYYTLW7jABzAbWOnSycGWLZIkYbFTZacRKVV4ibjKZG5SlryeKitBRY9572/4Dy3FMPsWd62QoxxA9TPqo3SGoDfak8xbuly8cUXAwCuuuoqLF3qBUlv2LABZ555JgBg9uzZ6N7dc4165JFHMGbMGEydOtXX1rZt23DzzTfnslXyvPTSS5g+fToAt7A3CbeEqGLcTDOy1dYCV3C+z6+/6tWEaWYFsm25drWVMugs+KlXmQq3KItbD7P2A66SturblXLWPIXFzcZKNeCtlvKDr5Fwk7ijAEI9mwRWK76+FS/c+Ama6CoZN+ZBhmjtFCeuNmLcnGbg3YuBlff7P2MrON62dbyiV3Bb6w77wq0kLeEmS06SksWtxaLFbReu5l5S4RbLVViREMt2cpJ1i4H1rys+p9n+Nu76TQXAdBR/KQWNGHuCn3aMGz/OmVjcVPkFRIvbecJ+NqToeDfJzo0tixv/rCRJThI3GU9W5ippYUxduNC16i563tvGbv/t3Jx3ybt67QOeIG7Z4XqCiDFuQ0/Ub1sV956mxc03HzBMQpcHCla4HX300Tj77LOxdetW7LPPPpg2bRqOPfZYjBw5Ev/+97+x33774fLLL/d9Z9OmTVi2bBk+/fRT3/bGxkbMnj0bffv2xb777osf/OAHmD59OsaOHYsDDzwQK1aswNixY/HAAw+055+4c6CKcTOx/rCO6KprvG3sZ9au9YLNN9Yla1dEzPYmTv6sWtzScJUULW6WCgYDnrjhr2OrjZVwYXBigq2Fn4QbDL5xhFvSifKMGW65g5IKb9VVZXGbdVb8mAcZPlfJhuB5tmJxawJq/xL8TKFa3Molwq2lwZ7rGCMtV0nZiq+twrhAuMXNZFJSVg44beJK5ioZFuMWx1WYPweAJzptuNmLonDRvvKP6S5WvP+R/z3rdtjpbkXQQhN3gi8mh2LYcg2WWdwch3tWY54TMQaYIYtx42mCfgywzFXSlsWt1fEWI9htl4H3N4QZmWIl45FcV9MxlS/FEJnN845kLrs8nQd5r7d/4Q89AIDx8/XaBeQeCYA9i5ss22bDRm+bbHwpcApWuAHA/Pnzcf/992PffffFq6++iieffBKDBw/GVVddheeffx6VlfFWQTt37oxLLrkEBx98MNasWYO///3vePzxx7FmzRoccsghuO222/DWW29hwIABKf9FOyGqGDddERHVEWXg3bWffKbfEQHBB1rMbtbZsOaerK5KqjFulgpWAt6Ez1fU10bsiSjc6v3/Aym5ShpOwll9q0zbxIDvenpxxzvl0ORt85REWNy0Y9z4+IfbgMaN4Z/R+g1mwW7xstXl7hmDoUYq3ASLm0mdH0Z7JiexlaYbCE5mWY07wEI/0PZ9dvniWNziugrzlhLATcQD2Ik/yWT8mSWVn9O4L5ubgfc+8G9j54JNlEVrGyPOBD+Wq6TB/V7JTcJ3fOX+z2fejJsQRowBZvDDqOzyNUA/BpjvCza+1fZ7lixuy5d7ojML13rKh0SGXbY4MXslpd7zJHOVTHqvi6UYZFmP+du7GfGtviI+K22tf5F+xEygU5/kbTJixbgZZI/3CcO29hu5pDwyj44Cp+CdO48//ngcf/zxsT576qmn4tRTTw1sLy8vxy9+8QvLR0YA8E8MVDFuceMsxI7IgTsIlMK7U8WsZjNnAgccoOeaJgorUbiZrsTILG5NdVz7lmLcGta52cFsuUoC7jVrgjrGzUa2N0DuKmkyCU/D4saoqQF6DAC2fgoM6AG8/Zzr7rPlDuDDNuuwycQBCN4z4sRS11VSvB9aGyWfsVwAtrTcTh03qaukEONm4jrGEIVbs6VyA7IC3GkmJ7FRpwxw++MWx+1zZf2vSrjFdRXmrx8A7FgDVNVYsrgBAaubrbic5cv9iVsA77ywS6Eq1swm+KNGKT4AeRwXYM/ixos+1u/qxvzMmgVce62/JAAvcGSXL1OuHwNc831g2XXu68/uAoafJLjZG/S/mzd7ojML4DT4hVvU7RMnZq+00r0P6792FwJ5y1XShTOxFIPsvIvJhJjVV/BWi0QUbvw9ZOzdo3KVtFUOQCIMWTbVsm5UDoDogKgK++pY3MJqwqhiLOK6n8jgO8rVTwTN/32FDGSJ25dY3LZ87G0zrePGH/+rJwvCzbR4uMRV0kZAr+gbb93ixgk3fuLNWw5NJsps5a91C7DXXu4EzGc9MRRu4qTNlqtk5PWKaaEIQ7aIY6McgGyBoz0sbr7rWgTlAFi7NpIUMXf17SxxE/z/A0FXyYoK16U4rqtws2hxa7P+2CpRIS7E8RNBE/gJPoOdlyiLGxA9wZct+AFAEyfcTPoZXtyYJsngY4AZoqukKPBvNYgB7rsf0Knafb3pfff/Fkuukt26ecdeCr9oA6KFW1jMXm2tWxpiY9u1X7XCjdn/093eZ5IsnMlKMcgsnTLXZp1SDFWCcLO5SCxb2ALSLcDdsN79v8LAUphHSLgRZtiKcYuqCRO24qtbE4bvcF49Afj4Ju/9Pn8wt0CUCgPwpg+AL/7uvi/rAXQZZtY+3yF9+Xf/+bflKslfx6VclLnuhEqMawlklcyYTWR9dX6439JNTiLC6sQ5Ld6kx9YAA0Rb3HSPPepetpESWeYabCPGTXY/iBk304hxa7blKilLTmKxeLiYnMR0UsW7q7Om2G0pKwfQvbs7Kf3442TxnWL9th1r2rZbKDsigxW0N6Vbt6AYYeeFXYqwSX5ktk1JHBfgxQGXVpothPi8Etr6X5O09CwGmGXfFUMctoqfPylZ+zyZjLeQk+t/eeFm8JwOHw44bf2t7BSETTHCYvbYIsiVVwI72lzI2fPUyI1LT/w9/rHKSjHw6yBMv8qEm04phsrB3uv6NIWbwlXSxMIstt/a4oWslPfWbzePkHAjzJDFuK17BVjOryTFeLCjasKEZTXTrQkjio/Ny7zXNjINieUA1r8O1/8TwK7/Y6GAuDB42+xMxRi37V8C9SvUvx2XFmEpmgk2NoEorXQHZ11UFjdbMUXlXIFvNhFs5CaEJr74QHDS1irMFnTTu0cJbRspkWUFYG2V7hARLW5pCDdb90x7WtxaG8wsbqK7OjvF7PTK+t/t213XN10rCmM7i7eyWJSYx5bFbfhwoJsgEMRkECqLW5ykHFEWN9OahSUVyLmRNhta3BgsBnjePKCCexazAHZYfvaZVS2X2Ip7lkxcJbNZoFPbuZUdcpgYV8Xs8YsggOdCyy4x/zydf1H8mH1ZKQZeuMmeV15QJy3F0JkTbju+tLtIHFUOIFtl5g0ilqxqqkNuHlZBwo3oiMjco8Qip3EmD1E1YaJiLHRqwoR1ODYmDGI9NH7i0P0b5u2Ly75Ws0oKFjfeQgDor4SLdZRyK77MJctQMKcZ4wYAWU6Ysevp88XvDiNEK61oodS2uEXcDzaEm68vSFu4tUMdN2sWtyjhZtA2YNfiJrqrs1PcGe5kVtb/Njbqu6vzsFVwG0mQpO1bsrhls8AeY/zbSuCeH3apVTFucZJyiLUcGcziZnqvZzKewLFhcWPU1LixU+f8zNu24PfAbhP02lPBjt1pdu91m4sg3driaZNY3FTJeMRFEMATf+yxFC1icZOHyEox8CGj7BaRWciB5KUY+HuuZYfdsIxMCXILCfx9aGuhQux/WXwbQMKN6KCIacaln4nxYEfVhImqI6RTEyZsUmBjolkqWNxspbdlNAtiympyEi7GzXGClh8xsUBcVBY3G7FQgDojm60YN97ixiaCzPKWKTGfVAWsJ2LBYAtZJaW/W8CukjJad9hL1sAo2gLcXD/jNOlb3GTu6vxjzsQbg1/B13VX52H3jI2yIzJsuUoCwJhh/vel8Kdel1nc4mbb5Oto8v2WrYks4N3PtgtBA0AZdz/372uesEmEj2Nr3ua3jJuW1ihvOy+qMgYyVMl4ZDH77NEsgz9DNuAageLG7MtKMYjPKiB/XnVKMYhlamwuEgPBvhfwxj6bnkkB4UYxbkRHREypLxu844iIqJowqqySAFBVpZdaONTiZuHRCLO4mbrUAf4BC0gnxg2Ot7LJs/lDvXZVFjdbE3x+gr32RS8tva3BnRfcTIiz65rtZubmCQgDZGMwgYOuq2SUMLPiKpmicJv4O//79rC42RJXUeUAjOu4ced98zJgMZeFOcmkSuauzscnzYV/QssvnOm6q/PkEtpYsP7IsCncKoTnvAT+eo4yi1vcbJtAMDmU0+r1lTbuddHd0KaVU+wH+LZHzzFrGxCSq2zjntOMvXGvk6QdUbiFJeNRxezzbZRDP3mIrBSDzOImmy/plGLwJc1qtLtIDHjPuU+4WahFCQT7X74UThHWcANIuBGm8J38H+4EBg0KfuaKq6LN/6qaMGGuBW1zctTXA7vtlrymW9ikwMZKr7hKtX4Vt8/QPQqQFLDlLATWhBvarG7CqNV7ol67geQkzOLWNlCZThp44batFnj/18Hf1U2pL343V+KhbUJYbugmCfjP+8r7gJX3C/uLyOLG14YyfZ5G/cQv3tojxs2WxU2W7tqmxY2fKL97kVffCkjWD8jc1XnhNgwA7/UmJujQcVfnEcU+YNfixjLJ2UD0OBAtbrxwS5ptE+A8HiRFpm1Y3LLM4iYpB2BcFkQYO3gL6l7XmrUN+C1uLdu9Z6m0k4WFM1a3UFJdng2B1dXRyXhUMfv8fVEGubCKuwgya5aXEAZwrbzsVMtcJVsQ3+or4otfbrS7SAxwfa+kpJRt4dZi+VnKAyTcCDP4h/bB++Sd1VXXuFmVooSV2BEBnsuJLJiXnzg0NLhBwEnEW9hqtBXhxrX/yEPAI3/23k+Z5nb+OsUwGSoRBNiLcQPaYq2EJeThp+i1K1rcxBVfY4ubMAn+58/d/21NlKW1+domvDasqLww3CF5lnTPT3skJxHjXW0KNwCoGuq9TlO45dwZ04xxs5hVMmzilGTSExU3AwDV3GtRuOm4q/M4KbtK2opxA4LC7ZSTgIHc6n0j4k3wVYgxxrxbsI2ahUz8sPvQVgkGQLKAwwtxC1POrOAqyQs3U9h5d8SbG8B/zwI++ghYtcqN5Quznqpi9sMsbklj9mWlGPiYVEjaT2L15clkuHvSQubaQPsyV0lLce9iAj1+LlOENdwAEm6EKf/8t/daDF5ntCCesJJ1ROwZK4HnF863KxI3uBdI3+L22N+81y0NAD/3W7XRTQ8cR9CqEIUbX+fHVowb4HZ0/Arb6HP14xbEGLc0XSVVv2vimhZYTW7yJj+miUnE9mWIKdRjt5uHrJK2J2y+Ug98OYCMeYIPgLv3HNfFNk1XSf5ZNc4SGCbcEvQDMnd1MZU7r1f4/lcnbqbfgf73AffaEjv3DYNfaTel5lj/+1N/BDz1uPf+Bz+KN8FXwSzrrN/ihZuNmoXseWltciezNjN5Brw1+OtpaBEDgjFuVoVbyPMyeLg7XsdxM1TF7IdZ3HRi9sVSDOwWl1ncfnlV8gUEHt5917pwazunmz90Fywdh7O4Wc5a6bMWWsgengdIuBH61NYCDzzkvWfiSsThXkcJK7Ej4uf5FVCvUDGSFOQOnTAZPhoLFwI/Pct7Xwq/cGNzQh1LIUOcxPODu3EBbiGzma2OOmBxa5sJtlpylVQlN7GV2l2MQbMdtxjlCikmiYlL1AQ4FVdJyy5vYqFp3tJpY0IYcKlJw+LWdv181sI0hVuCfiAqbgbwuwPy/a9O3My+dwPVB3PtMeHG+gLLCW10EyrJGPVT/3unGb5ZeZ+BenHXjIDFjTt2GxY3sQi3jaySue8L2WVtJyjKcs9iC5ecxDRWFAh/XpK4qUfF7ANuvKjMVTLpIghfiqGx7dpVwV3kruLOyRFHx29TBouvTiM5CcsoCwDvXCC47lp2lWwlixvRkbntNqCBm5zx6ZBVxBFWM2YAH3zgJh3hV6jKoV6h4omb4SysWLJJdkOWBljspNl404Jg8HoSS6GKZosWN5llyUbbXXbxvxddJU2zSqpIy1WST3jQLhY3mZnZAmmUA/AN7jaytIoWtzZ3IhuCGZAIN74+lGVXSZuub2ETp6TPquiuLn6df3RY/6sbN1M1FNj3T977XHISNtG3mJgEsCvcSsuBPa703rc2C+UjDDMpBmLcUrK4AW4fbDOrpGoBx5Zwy5fFLUn7qph9cU4gW4jWWQRhpRj25hZC/rMEmH60997WnCCNGDd+dX/5H81qUYoEhBtZ3IiOCsuaxM8jSyG3uInEEVbNzW7SEdHiFke4xQ3uDUvJbzLIsDTA4rlh/f4OyXeSWApVbONWrQpVuO3zB/97sRyA7VV2wLWM2UpOEhBuli1uUcfW2aDI8e4Xq/elYXFb/VfvfacB5u2LpR5sxhYCwSQivmQ/Jq6SkuQkvlIGhhPxsEyjSZPZiO7qnwv7ef3K+jfduBkA0nIyxWBxA4IZlX1JDwyFW8BV0rLFTUzw0VjH7TN0Ow64SlrypmCoskrajHGT7kv4LMli9vlpjxhaYpI8hMEnyBrSF75JkrEgT9FVUsSmcCsJs7iRcCM6Eixrko5wiyOsWHCvaHGLcpVkxAnuDZvw6U4a+DTAKoubUH4tR5JaSDLr3JcrvNdfrInXjgpfPTGLK2zdvwEcy6XjFbOa2V5lB4DGDX7hZjPGrbEdLW4jZwF999Vve8zP1PvSKAew4l7v/UjJ6nNS+HuyeZs3mU3N4tb2oGZKzO55Xx03iXAztaCEWdx0JrO8u/oKAMu4ffycvqQ0ebZEkdDafwVscQMkpXA44WZL/DjN7nHbrlkouhtu4S5y11FmbberxW2rNxFP3eJmuAgChLtKmiQPYfjGJ9HrwVK2UNFVMhXhZrPAN/d3b/kE2MrNPclVkuhQMGHFi6epAIbKPiwhSlix4F5fWmWEZzXjiRPcG+Yqqfto8GmA+ePjLW4q4RbXUrhwoRskLcKPW9/aSz/pCSDEcokdtWFHWtbDi7la+482n/YULW4NG/yxdSYDvFhU3ecqmXKM26RbzdoOO7dWXCWFiSxfL6fvZPP2+evWsM57nZZwY5PlbBezGDrfii+LcWtru7TS3D3Y5mSTwcfNPNvT287rkXPPMxNtgLz2H4u3su023SIItxGGiwk+a6Flixt/3Z4aDzRx46XNOm6Au0CxiavL2X03s7YD3hq2Y9y4Y+djowrN4gYEY/Z54VYGbyG6FeaLIIAgmhuRSpmH1ka/1cpGjJuIzTg0/r7buAT46EaubbK4ER0JJqx4i9sIACGL+j6ihBUL7uVdJQcAOId7rwr3iRvcm4bFTUwDzPROOcJdJRlRgnbhQjeZSUNDcB8/bm1r1E96AggCRXCNMO2oMxn/xOGDa7320xJuacW48ROH8p7BzyduP6UYPyBcnKXhKpm7plk7yUP4iVN7CDdbrpjSGLc2EWFjEm4rLkeExc088oS3bSiXcKFHb/22GWJcJJCixY0TVqPnAON+a9ZeqMXN1FWS62c2LwPq/uW9t2FxE2PcNnPCrdsYs7ZVFrdWAG+/7S4IxPUskVGqEG42kpOEPY82FkE6ce1nAVS03UOl5eaiDZBY3HjhZinTdLG5SobNKcjiRnQomLDSyZUQR1ix4F7e4naC8BmVxS1ucG8aMW5iGmDWb/JzepXFDQgXtCzpiQpZ/J9u0pO0YtwYqgHShnDbdbb/fcBV0mAgyAgrmraFW5qElr9IwVWSTcRtDY68COFr3KUm3NqsqaYusGHJSWxMwkOzShrEczLKufPrcJ2X7YQ2bJLZHjFuu5xqHiuWpsVNvG7buD7chtgXs0oyV8myHkBFX7O2+f5103rg6w3u63UbgQkTgF13BQYN0q9jyh97A2fVt2Fxq56q3mdjEeSCn3vbbr8F2L1NJNtYOAMkfbDNpDOc+y7vwZKG+Hmdm+ekKtzI4kZ0JJiw0hFucYXVrFlAC/fQieOVTLglCe5NI6ukmAaYnR/+p1YqvhslaFnSE8Zjis/xi5m6SU/SinFjqFakbQxg464Dhp7ovW/Y6Am3kgoz649oiSwm4ZYvi5s14aawuIUtwCTBF4vWaC+GTpacpMmicLMd4ybiK3jMeQTYuGcyJcgV5xRdJdOMcbNZewpwJ7NNXPtfbTS0KgkTyg1vea+tWNyEzIxsIaGij7l1nL8f7/o9sFUSVrF2rX4dU5/FzbJwG3S4Oj7RxiJIljvG/n2QOym2FilEV8k0YtwA+8+SyNoX5b+rAwk3guCYNQsoTdgZJBFWNTXACad678W7VSbckgT3hk7INB8NMQ2wbOz+SPHdMEHLJz1hPAZgo+yzwvskSU8YoTFuBW5xK8m6AzCjZZu3Qmg6uKftKpkmaQ9ggXIAlgqoMjJZLzbS4R7+NCxufJY9266STqtnnSkGi5tqImt7sim6StqyQjD4GDfbBecfexi4db73/oenmFmVxOtWz8U+WxFufIZWro6bjXPOi85MizeUququJnXpz6Yo3LJVQOVA+T4bz5JYB9TmeRfbFy1uxjFufHIo/lmy0L8f8Lh6n3FWybAFS3KVJDoaNTXA/5wT/TmepFmT9jtYvY8fCCoqkgf3plUOgE8DLLNILpNsixK0fNITRgOAv0s+K/5m3KQnPGGukqYddW2tuyItY/nn5vXsAP9ks2W7F69k6maUL+H2rSvM28hk1Pe1lUmJKsbNlnDLyI8zFeHG3Z82XSVbhVioQo5xY6jc/mxZxNjxp14OgDvvzzzv1go1sYrxE8JFT/nruDXC0KoU8jxaSU7Ce1RYzvy4dgP3OwgXbowkLv3lXGzl2pe537JwrwPq592kjIysjTRKJQQWz1JwlQT8yXJsLPoNPsLvJeP7XYvJSQJtk8WN6IgcdEi8z+kIKyA8yLsVrnvhvHlu8G/StsNWLk0GMD4NcJOwbxWAreIXEC1oxaQnDNm8Q7YtTnkEHnGAsWVxYxkxP/tCvv+zz/UmOiKiKxCzoJiKq3wJt2/+r512VPe1jUkJPzFIw1USkE/OUhFu3HW1bXGzWXwbCJ98WJlspmxxy4jCLaXkJHxdvjN+CnzjG0CPHsDZZ+stFr3ymve6BG7WYwafO0rHquQ46n1WrLRirTWLwu2Bh73XcYVbEpf+riOBykHuaz6u0EZyEsBfC43HtsWtNQ2LG9fXtjT6F0FMXWB5S2ojJ85Ds3MnQXGDUHKSACTcCDPidDi6wgoID/KefTawapUb9KtT+yQsjs10AGNpgFuEzlK0tsUVtGLSE4ZMpMmsfHHKI/AEBnYLwo3PiNmo+Ewr9CY6InydoqZN3gCfqnDrYda2ik79oj8TF9Vk2LbFzWm2n5wEaD+LW0NKFjdRuKXuKmmptpXsN6xNNtvaYZPM1pQsbjys36yvB268ERgxIll/U1sL3MyV5yiFmzmYIevfkliVeJEpYsPiJiZZsmX5aW4G7nvQe8/XKgsTbkB8l/5MBhg4Lbg9dYub5XID21baL4PDt9+4EdjYFhtpJZEQ1/fu4LP6WqhfCvhrovp+l2LcREi4EWbEcYPSFVZAuMWtb3W8JCc6ZCw8GjNmALvu7t/G4tuSWgrFpCeMOMItbnkEHp9AsRDjJmbEDBNuDN2MmIDfSrCds+7ZFG4tnHDLVtkTKPv+yf/e5gRWNdlOI6tke1nc0khOYtPi5qtv187CzYbFDZBb3WzHuIkWN9sxbjyiiGhqSrZYdNttQAPX+ZZCbXHLbUtgVWoJqRlj20pr0+K2fDmwlo87Q3zhlsSlv/vuwW22+hnV827jWeLP+39+CWxf7b5Ow1Xy9VO57TaEG3fsaZRjaSLhFhcSboQZaQ6uQLjFzcbEofs302sbADoJg+yVNwIffZTcUigmPWGIrphAULjFzeLJI2aQMo1xEzNiquCPXTcjJuAX/GkJt9ZGoKnOTrs8Q47zv7cp3BxFl/+n+/UTKTCUWSUtDo6yyZMNCwQQItxsWtya/YH9pvW+gPSzSgLy47Q12Qy4SlqwuEXdx6psyHEWi1iiKL6NErgFlRmyfhmIb1VqDekrP15pFpsHCNlxG7xkP6bj+ebN/sXEJBY3IL5Lv8y7ge/nTVA977ZdJXlsP0uAJ8bF7brIhFumxF7/2/0bit81jXELkTnkKkl0SGzHIYiETWxsTGinPCHfbmuyLE40R491Y7h0LIV80hNGlMUtSRZPni4jvNdfv2tmcZNlxFS524uDu05GTMDvKlnPTcTKeiRvi4cfvJwmb4JvU7gF7j1L3fTChcCGOvm+Ldv1EykwAoHxlpOTAHLXP9OaWQxlchLLMW4t3KTcivtVylklAfk5TiOrZEuDnRi3224L36/qUuIsFrFEUXxfxVvcWqEWbnGtSmGukruPNYvNAwSXujrvtek17dbNP/4ksbgB8V36ZeJqm8GiU1TbgH2Lm2+7rflGiu2LCW0AINvNPHaO8a3L5dvTtIqRxY3okKRtcQubNNkQjVVDgH5TJG3bmpQInb1pEU+W9IQRlZwkaRZPRq+9PPeoda+YxbjJMmKqeh5xcNfJiAn4Xbu2cYXzbFrcmrd7Lk223PWA4L1n415k8YWqnAfs8prEF6oC4626SubD4mYq3Lib3WmxX1oj7aySgHwBzXZChdYm4MPfeNurhui119wcLb7CRETUYhFLFCVa3FjXoHIDZ8SxKq1ZHb5fNzaPwfdj71/lvTbta4YPB3r28d4nsbglcemXWdzG/CzedyPb3kksbjythhZaQH7sqnOlQ2V/4GjJfZ+qcCOLG9ERsbmaLqOit3pfGkUrc21bejTEiabpRIolPWGWN9lg2AL9LJ6MkjKg9yT3df0KYNsq/74kyDJixrW4AckzYgJqS62xcOP+dt4nX5V5T4dMxn//md7nfHyh6rYWx3Wd+EJ+YuPL9pZyjJsNd0NAbXGzMTlhEzOnxX4x+3YRbpJJq7XJZls7rc3AF09523e/WK+95cuBdevCP6NylQSiF4tYoiiVxS3KIzzKqrRwIbDyU/k+8bCSxuYx0hIQ2SxwChfLnES4JXHpFz0nqg8C+sfMcB1GbS3wxAvyff/vMvNSNSqrXRoxbjytKhNwkrZTTAzF6NQ3uE1lRbQBWdyIDknaFrfSinSLNQMK4VaAFjfGjBluUpN584B+kkll/0H6WTx5uo70XvPxA0knm51lq/WKz8oG90oNUaQSUqaZH321bDhBamuCzODvP1M3Fz6+MK5w04kv9FkjuQQcaWeVtOEq2dwMbOIWCPisklkLkxN2PRs3eYXJATsTh7DFM1uukrLjTMNVkrm7lfcEeu6p156qdAojjvEhbLHotbYyAKJLYByLW5RVqbYW+PGPgecV+29QbE+60KIUbhau6ek/8V7zPxMm3JK69Iv9+Kifmi+2slI1Dz0p32/qSg6EuEqmUICbx7Eh3CRt28oomfuNsuB1TFNcpW14SAkSboQZYfVmAKDmWPPfKO8l355G7RNGWjFutib4NTVucpObfxPcN3QX/SyePHzGO18chIXOLonFTQfZAACYZ/HzCbeULG6A//4zuRfF+ELVeZeN60njC/l7vYkTbjYHR9sWt9padwFk0CBgwR+97cuWeq+tWNzaruHWT4APr/e2F4vFTSrcUnCVZFn2Ohv0X6rSKYwwaxtDZRWrrfUEBt9OGYAeba/DhFuUVem224DGRuAFAA8J+74GsFbyHSD5QkuaAmLIMMBp62j4WzPsvCd16ReFm6mA4EvVbAv5nGmpmjQFM5CuxU1m+bJtcQOC/Uqa4spWbGE7Q8KNMCMsiLrnOGDiLea/oXKXtFYAVjJYpWVxs1UklFFzlOQ3La1Q8ZbOrdyMIelkc5tkJJQVIQfkwm17yD2mIpORiynTiUlJqScI28viZnIvivGFqh5fNqlKGl/I3+tpWdyk5QA0hRtbYb/yymCyiU7cCfnrM3rt8/Cuo+te9l5bWQRph3TXsnZsTXrEbKSAmXAbPhzo2xe4UbHfJNaKt17z7XyHe60SblFWJT42rwXAIwBe5fZHne4kCy1pCwg2ya/gVopk513XpV+0gpsIN7FUTb36ozl0S9WkHeOWZsyW1FXSssUNCP4NabpKFikk3AgzOg9S75t4i9xnOSnlKQu3YopxE+nUB/j2n/3bbHTetbXAC9ysYctX3uvrb0w2aMlWwO+HPBbERvFwhswSM+BQvbZ42OCbqsWNG8hN7nPRbSyJxQ1IFl+YD1fJ0k56zyq/ws7gJ5b8Lffjs8zco8KwMSkJy+pmK+NbmhY3WTsmwi2bdQXS6wB+JdkfpW1UVjHReq2yIKm23357uFVJFpsnumOGkWShJXXLT1v7Nf29bbxzTtI6poH2heM0ERBiqZo4Q5tuqZp8uUqm1XaZxaRcDLE/KNI4tDQh4UaYUTkAmHQ7MPSHwX22ir8qLW4pZmIq5Bg3keoDhd80nCgzS8RTL3rbeF1y0++S+frLiodvBHAWgAeFz4qrsjrFwxmimDro6fRSOheqxU0UzXFj3BhJRDN/bvlaZWla3HTcJMUVdoYq0U8jzIrBh1EsMRbtEePGU2Xo6j1rFlBe7roXioS57IVZxUTrtcpy10Oxfd99Q34Y8ti897nXb4R/HUD8hRbVgoFty0+GMz9O3h94+229OqZR6Lozy0rVNMEdn6LQKVVT1BY3ybHbzKYMuOdTrDVKwi0ACTfCnJGnA/v9ORg/ZCswXhXjZm3ikKKrpCgUPv3cvHhq4DcEgWKSOZG3RKiyozUjma+/qnh4PYD1wjZxMqRTPDz3u+J5UdxHSZEKtxRj3Ey6aVE0q5qSWdySimaVq6TVGDdBqOm4SaqKwUvddNv+NykGH0axpKNO1eImOQeVA83arKkB7rpLfl+HuUqGxVqJwkolAPsotkeJKplnwstw493ehuulEEXchZb2srixcikAUNUNGDdOv45pGLqxVrJSNQBwRYzv6pSqSfu8p7kQJOtr+x0Y3KYDH2u8TlhtufuedBbNihgSboQ9xE7J1kpJ2jFushonNtqurQX+8Yp/2+jRbuc0b569zkgUDRWa7qmiJWKH4nP8hCWuJUJWPBwIxoPwkyrd4uEMcZJvy60jTYtbc7PrPtTMnQiTe1EUzUksbklFs8pV0maMgjh5SGpxk62wM2QTej48U7cYfBjFsprc3hY3GwshM2YAv5WkYZRdwrKy6FgrUVjFSXLCEyWqWGwejwPg9wB+C3VcMCPJQkvqLntt15SPgbedgXrIce7/lQP0ExSpMpCuAXBRjO8nLVWTejmAFPsTcWG+oi8w6Hvm7YqxxuJz9cd7zbN57mSQcCPsEYjnsuUqqVjCtDUQyBKs2Eot/Pzi4L61a+2kFmaInbVuXKFoiVBZ3PiONa4lQlY8HAgXbrrFwxni5M+WW0caFjd+xXHXXYH1G7h9q8xEPi+a4wo3HdGscpVM1eKWsPi2aoUdCLe4AfrF4MMoFoubTHynmdXX1nmZfkJwG99/VVUBZ58NfPppdKyVaL1WWe5elGyLI6pYbJ4uSRZa2svi5lhagJIx8XduHP3UF/VjOcMykEYkzAaQPP66vQRzGojCrf8h5jG0UbHGQHIPnw4ACTfCHgGLmyXh1v0b8u22BgKpcDNom++MwhbobXVGYuepY3GTWSLiCDcgviVCLB4OyIWbafFwhiimCtXiJq44iny+ykzkq0Qzj+hSpiOa2yOrpOj+mtRVMqzGV5RwA/SKwYdRLMKtvZOT2BL7sudyYA3wyCPA++8DdXXA/Pnx7nXReq2yuIlxu0B8UcVi85KSdKElH7FWtoVbRW+3flu3XfXbkMVfM6Jmxzrx18Uc4yaOn0kXzURUscbiVIJ/n1ascZFBwo2wRyARhyXh1nOcfHuqwk3z0RA7ozjlU2x3RjrCTWaJCItx40liieCLh1dXB4XbvvvZKR4OBCf1pgMNw6Zrl2zFUaQV5iKfiWYV7JqaiGb+vKSWnMTQVTJshT2OcNPNcKoiDdemgd9zz/n4+fbabG9XSVvnRSbcuvcEjj4a2G235LFWvPVadr88C6BO2JZEVLHYvKQkXWhpL4tbGm3bRBV/Dagz8DJ04q9V56AYskqKFjfTmqhxY435+YZurPGBfwN67wPs+evk3y1ASLgR9kgrxq1TH6DzkOB2W6tUYbXokiJ2RnFCYmwnPlC5loYhs0TEiXFjJLFEsOLhq1YBDz3q3zflYHuZxjr197+3VuJBIhZ0LG6qFUcRfiAzEfmh8Ts9zdJzA67lV1rvy6bFzTA5SdgKe1SMm0mGUxVprJDvfTtw3GZg9Nn22pRe1yJwlSzJBp97k7Z567WsH5T1mUlFFVtkiSMK4sTmyciUQqpMUi2xU4DCDVDHX/PrmEuEfbrx1yrXwq6jk7cloz1dJU2EW1issfhciXMonVjjQYcD//UaMCLGeFsEkHAj7CFa2Gyu/vSeFNxmayBolhSI1mpHkVo4DjYTH+jEuMksESFGoAA6lohsFhgmDFg2B3fZPWMDWeppHYubasVRhBcUaWU3/NvTdtJzy9yj04xxS2pxC1thj7K4mWQ4VZHGCnm2yn55ina3uNms/SecC9P7MSesJOeEv19MrNczZgCffQacdZYbhyeSJDZPhnKRJUXLj2OppqBtVK7kOwBcDtf19ffCPtP4a5EB37XTTrsKNwMPlrBYY1G4ie9NYo2LJRlUBCTcCHvwD0Wm1J6FA5B3bKaBsSwhxEfvBffpZH2UdUZxtZjNxAc6rpIyS4RMU8j+HqNaa+KkyqJw67OPvbZ4ynoEtyWdKIetOAL+wHhRUKSR3bDckhupNIlFmhY3jeNWrbCHCTfTDKcq0kjfrZthL4w0LSiyc2DVvVZcULQgTmbMAN79d3D7DpgXl2bU1AA33ODG4b3/vhuXpxObpyItMV5bC3y+Orj9/ofsZlO2iSz+GgA+BPAovIyeNuKvh50c3GZrrEpTmARi3AwsbmGxxlEWN0A/1jjbBeg82H29y4/12igASLgR9vCttlteXRtwaHCbo0rrFQM+IUSJxOdFJ+tjWGcUB5PEB92/6b3WqWkjs0TIhJvMRdzEEhEQbhYtGt128173/469dm1Y3MJWHEXE7GapZDe0NODLLG5pxrjpZApVrbCHuUraXmFn2Do332jLXV59kP2064DCgpI0H76qbcnxplm03VbbNcOC2y65wn5x6WzWjcc7+mj92DwZskUW0/6XjavLVwb3bdthN5uybcT4ax5bYhwA9r0b6L67976it717Ms06bmIfYGJxC4s1jiPcdGONMxngO4uBff8EjL9er40CgIQbYY80V3uqaoDdL/Zv0504iAkhnlF8LmlCiLDOKA4miQ/2fxgYPQc45GV9S6RoiWhEcDL7sfDeuNZaiha3klK3kx59DjDhRnvtlsmEW0KLWxKRLxMU1rMbWkoklLZwEy1uqhqPUchW2GVz1qasnQynKmz1mXv8Cpj2DjDlKTvticiOs1XMLKTbdorJSQD7rpK5diU3zKCR9t1p08K2xS0qmzLrxwo5tTsff/3RR8Dbb7v/2xTjmQxQOch7X9bTvE2Gqq/tu5952+K8oszA4hYWaxwl3ExjjauGAsNPspdlOg+QcCPsYSuLpIo9rvS/1xFusoQQT0OdiAOInxBC1hnF1VCmnVG3UcD464B+k/XbkFkieKtbK+ykjedJU7gB7oA1/nqgm6Xgb0Ah3BJa3JKIfJlws57d0NJkU9YH2JyEixY3XeEGBFfYZd3XL65JT7QBFlfaM0DPPe0WO+eRXcMqS4laZC5XVuMiU3CVBBShAAUaxyVDdo51+19xXJUNzWI/Vsip3bNZ1zI4bpz7v20x3vi197qil712Zc/psJOBb6cgkk1cJZPEGovCLY1Y4yKDhBthD1+MWzsMYDqukrKEEE0A/hzynbgJIWSdUdzTUCidkWiJ4IPteXFrq9aaaKFJw83LNjYsbmErjoDfPVJ0lUwju2GqacAL0OLG4FfY5/w0uL+/5fMsUqx13A5dGqypp0u5ZOJaDK6SADDkOP97vgxGoWMzOUmcbMricJ1WoqVigBdu5Sla3HqOA779R9fKZBvT8jqqWGPx3uEXAdKKNS4ySLgR9uAn4Y4420yBpBa3JCloReImhFB1RmEUWmfEWyK2cQN5A+z6+gNBgV+oKaN5bMS4ha04RpGGyJeJUR3aO8at3FC4MbJZoJvs2A1rFTH2ula+vViynInH2Wsve22nLdzEe3LzR/ba3u9+YJfTvPcDLMbSpo00xk2j/5WNq3EsbkA6iZaKgSZeuFm0uInXL2m5lCSYCre4scb8+7RijYsMEm6EPdJy01GR1OIWlhAiauyImxBC7IyWcfueVXynEDsjZokYf5C3rW8f+4H3IsUg3KQiR2OhIt8if+QsYNfZwEFP23NzlrpKFrDFjVFbC7z+YnD7EcfZyYS323nA0auAibf4txerxc0mMouDVeEmHPvmD+y1nckAE24Cxl3nxheyjHXFgNQ6rrEgFDebsmy4TiPRUjHQsNF7bVW4CQuhaWSYzf2WhbFaFmssE/22PHx2Eki4EfbgVzbTcpXsd6D3ms/MFIewhBBxFv3iJoTgO6MNAK4F8ACA+4TPFUNnVMm582Ua03fntJlVMi1E4VZaCXTWELKqFUcR/lGyKfK7jnKTttiqIQSkm30QsBvjxmCZ8N57N7hv9df2MuF1HgSUCqvUxSLc0lyUk8X42BSKLUKdTpaB0xbZzsCYOcDA/7LbbtrYSk4iG1dlM0vVOqvtREvFwJBjvdf9Dkjvd9K0uIl9mS5irLE4XNj08NlJIOFG2KM9rCXfvgcY/iN3lbP7mGTfTZKCVkaShBB8Z/RFNfAYvHgx2+6GacKnW2/Zrv6cLYrB4ibGzHz3NX2Llap+kGjAS0PkpzGoy1wld6yx2L4gdExdJflMeI9J9rM5v61MeOI5L1ZXSZukbXFr3OR/v9uF9touZmzFuMnGVVl3qBJuthMtFQPjfuuWqBl5RjBO0hQ+Y6WtzK+MAx535wRDjnMTotmCjzX+3pH+fWl6+BQpRbC8TRAcnQe7dVB0YAkhZO6SURY3nYQQrDO69FLXHWTLFneQGj68MBKRxIEXKa1iSskUKAbhJloFe+5h1t6MGcABB7iB+nfc4boP8YwZA3y8yM7gdcDjwEtHukXah59i3p6ITMA21tlrX7TkmyTIEDPhfQngcgCXcJ8R1ypmznSvle61EC2GadZdskmqwk1icbN5Xpo5i9DQH9rN4lfMyBZZdPpf2bgqy9UkE25pJFoqBjoPBg5elE7bVUOB7W0F0Os/t9v24COAYzeml0QsmwW693I9lQglZHEjLNIOCUlMCEsIEWVxM0kIkXZq4TRJ09VCRjFklew1Dugywn097jo7bYr1g/r39/bt/g17K46DjwCO+AQ48pOULG6SCf6on9j/HRvIMswuEz4jLuiYZsIThWaxuEqmKtx6SH4vJYubrSQ8OwMyAasj3GTjalyLW6FkU96ZqBrmva5fYb/9tMfoYlnMyiMk3IiUKNB6NnFT0PIUWtbH9iRptkRjiqBLKskC05YCh77lFve2CRP55dxE2XaG1q4jgDLDYvEqxFX8ff4AdB1p9zf2/j3QZSSwzwL9NlQZZuOcapNMeAGLW4H2kyJpCreSMr9LNmDX8t5FFopnAAAf7klEQVTKifO07vtipEJSjkQ3xlgcV2XCTVwc7cjjapoM5lwNh56Yv+PQpRgWb/NMEcySCMIiqoQQYfOwQsz62F70muC9HtAOwfdOkaSGLusG9Bqf3sS7WCb0IqKrZPVB8s+ZMGImcOTHwC4Grp5hGWajMMmE194WbFukbRnkrT8l5end/yTcPDrJhJumYBbH1TgWt448rqbJkOOB0XOAQUcAYy/L99EkhyxukZBwIzoelII2PgP+C9j1LKB6KjDx1vR/rz3i6Ij0ECfGheqaFpZh9gYAHwK4JuT7upnw0kzPnSopTxXKenA/ZXniNolZVjP+mmsdnU7VwW0m1g5+XJUJN3ZZaVxNl0wGGH8dcODjQOeB+T6a5JDFLRI6Q4Q92qPoti3EhBDNQkKIefNcN46OviKYyQATbmi/3ysWixshp/ck/3vRBa5QCMsw+0bbvzB0M+EVq8Utbcr4QueWrW27nOrG0VUNc0syEC42LW4MNq7eex7Q80H/viGdgHnn07hKhFMMJYHyDFnciJQoAlcvPiHEo3/176MUtPmBLG4SimhBpO9+/vclBZollGXC08EkE16xWtzSdt3NcsKttUH9OR1Ksm7drN4Toj/bkUhDuAHuuHnhfcC37wcGnoXcXOD8v9C4SkSTIVkSBZ0hgshmgeEWa5IQ+pBwa4OfKBeRcOs82HvNZzcrNMIyzEZhlGG2SIVb2gtxPuFGfUC7UNE3uM2WtSNTAgw7HphyAzD1BWDK34FB0+y0TezkFNF4lydIuBEEUDxpuXd2yFWyjSKwWKv47mtujbhv35PvIwlHlWE2DNNMeMXaz/DWGVn9L1N44Ua0D51kwi0FC3n1gcDAQ4s34RLRvjiqSu0Eg4QbYZEiXikhv+rCgFbbi58++wD7Lgi6TRYaqgyzYXTUTHhVQ4BvXgr0mgh852X77ZNwa3/Ke7oZWnkoMQSRd4p4HtlOkHAj7DGScz0ab6kwcXuRxkojEY89fuW9HnJc/o6jUCmmpD/FhizDrAybmfC+/Weg34HAlKfM22pPvnUZcOibQO+J9tsuI+GWF/b+vf89jYNEviGLWyS0vELYo9d44IDHgIZ1wPAf5ftokkEDVv4Ycy5Q0QfoMswtDk0Q7YmYYXYNl2G2utqNabOZCW/YD91/hAdZ3AoDGgeJfEMLlZGQcCPsMvjIfB+BHtmqfB9Bx6W0Ahj53/k+isKC4kHaF5Zh9tJL3eLaW7a4Kf+HD9dPRELEh4RbgUD9DhFCc7PbP27e7JZUSaV/JOEWRcG7Sj744IOYMmUKevbsiaqqKuyxxx64+uqr0dSkFwvz9ttv47jjjkN1dTU6deqE4cOH46yzzsLatWstHzlRVJR1Bfb4JdDjW8DU5/N9NARB5INsFhg1Chg3zv2fRFv7UFqZ7yMgANCkmZBSW+vWth00CNh1V2DCBPf/QYPc7bW1Fn+MvwdpIUFGQQu3OXPm4Pjjj8crr7yCSZMm4dBDD8XKlStx0UUX4eCDD8b27dsTtffQQw9hn332wUMPPYShQ4fiqKOOQklJCW666SZ861vfwieffJLSX0IUBbv/HDjsn0D1Qfk+EoLgoMkUsZNTmkKmSoIgzFm40F3EuvJKQDRwrF3rbh81yv2cDfgYN/I8kVKwwu3RRx/F/Pnz0aVLF7zxxht4+umn8Ze//AUff/wxxo4di8WLF+OSSy6J3d4XX3yBU045Bc3Nzbjtttvw5ptv4v7778dHH32Ek046CWvWrMGJJ54Ih/xrCYLIO9yARX0SsbOTRokBIjnU1xA8CxcCJ50ENDSEf66hwf2cFfFGFrcoCla4/fKXvwQAzJ07F+PGjctt79OnD2655RYAwE033YRNmzbFau/666/Htm3bcMghh+AMrg5PaWkpfve736F79+5YsmQJFi1aZPGvIAiC0IEGLKIDQRY3gigsamuBmTOjP8czc6a526RDwi2KghRuq1evxpIlSwAAJ554YmD/5MmTUVNTg4aGBjz55JOx2nzkkUeU7XXp0gVHHukm1Xj44Yd1D5sgCIIgiKSQxa1AIIsb0cZtt0Vb2kQaGtzsvEZw92CmICVK3inIs/LOO+8AAHr16oXhw4dLPzNhwgTfZ8PYsmVLLn6Nfc+kPRX19fWx/hEEQcSHJlPETk5Jeb6PgABAfQ0BwM0eeccdet+94w73+7rwJSlKO+m3sxNTkCmzli9fDgAYMmSI8jM1bTV12GfDWLFiRe61qs0k7ano0oVSGhMEQRBEIvii3qPOzN9xdHQoxo0A3JT/upnW16xxvz9qlN73vzEX+ORWoLUJ2P8vem3s5BSkcNuyZQsAoKpKXVuLiaTNmzfHbi+szSTtEQRBpApl0yI6EuU9gO++Bmx4E9jl1HwfTQeGhBsBt06bCdycOzGdBwLf+whoqgN67ml2HDspBSncipWtW7dGfmbz5s0YOHBgOxwNQRAEQRQJffZx/xH5o6J3vo+AKAS6dTP7fteuZt/vMszs+zs5BSncurZd9LB4MCaSusW4wbpyN1F9fT26d+9u1J6KMAsho6WlRbt9giA6CLyfP2XWIggiLQ55CXj5+0CffYG+++f7aIhCYPhwoF8/PXfJ6mr3+0RqFGRykmHDhgEAakPSirJ97LNhDB06NPd65cqVxu0RBEGkyj4LvNfjrs3bYRAEsZPTb3/gmK+AAx8nF23CJZsFTj9d77unn+5+n0iNghRue+21FwBgw4YNymQhb731FgD4aryp6NatG0aOHOn7nkl7BEEQqdJnb+DQpcDh/wG6jc730RAEsTNTUhr9GaJjMWsWUJGwTEdFBcDVSSbSoSCF2+DBgzFxoptl6t577w3sX7x4MWpra1FRUYHDDjssVpvHHHOMsr2tW7fir3/9KwDg+9//vu5hEwRB2KPXXkD3b+T7KAiCIIiORk0NcOedyb5z553u94hUKUjhBgAXX3wxAOCqq67C0qVLc9s3bNiAM8900wXPnj3bF6/2yCOPYMyYMZg6dWqgvTlz5qBz58549tlncQdXn6KlpQVnnnkm6urqMHHiRHz3u99N608iCIIgCIIgiMJnxgzgnnuiLW8VFe7nZsxon+Pq4GQcp3ALd5xzzjm44YYbUFZWhqlTp6KqqgrPPfcc6urqsN9+++GZZ55BZWVl7vMLFizAaaedhqFDh/pqtzEefPBBnHDCCWhpacHee++NYcOGYcmSJfjss89QXV2NxYsX51wq02Lz5s3o3r07Nm3aZJQIhSAIgiAIgiBSpbYWuP12t7j2mjXe9upqN6btjDPI0mZIEm1Q0MINAB544AHcfPPNePfdd9HU1IQRI0bgpJNOwrnnnovy8nLfZ6OEGwC8/fbb+OUvf4mXX34ZmzZtwoABA/C9730Pl1xyCaqrq1P/e0i4EQRBEARBEEVFc7NbXHvLFjfl//DhlIjEEjuVcNvZIOFGEARBEARBEASQTBsUbIwbQRAEQRAEQRAE4ULCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgCIIgCIIocEi4EQRBEARBEARBFDgk3AiCIAiCIAiCIAocEm4EQRAEQRAEQRAFDgk3giAIgiAIgiCIAoeEG0EQBEEQBEEQRIFDwo0gCIIgCIIgCKLAIeFGEARBEARBEARR4GTzfQAdDcdxAACbN2/O85EQBEEQBEEQBJFPmCZgGiEMEm7tzJYtWwAANTU1eT4SgiAIgiAIgiAKgS1btqB79+6hn8k4ceQdYY3W1lZ88cUX6Nq1KzKZTF6Ppb6+HgMHDgQAfPHFF6iqqsrr8RCFD90zRBLofiGSQvcMkRS6Z4ikFNo94zgOtmzZgoEDB6KkJDyKjSxu7UxJSQkGDx6c78MAAJSWluZed+vWLe83LlH40D1DJIHuFyIpdM8QSaF7hkhKId4zUZY2BiUnIQiCIAiCIAiCKHBIuBEEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwKEC3ARBEARBEARBEAUOWdwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCrYPy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTU1O+D40oIJqamvDcc8/hggsuwMSJE9GjRw+UlZWhf//+OPLII/HEE0/k+xCJIuDCCy9EJpNBJpPBFVdcke/DIQqYxsZG3HDDDZg8eTJ69eqFTp06YfDgwZg2bRruv//+fB8eUWCsXLkSs2fPxujRo1FZWYlOnTph+PDhOOWUU/DPf/4z34dHtDPLli3DjTfeiFNPPRVjx45FNpuNPe48++yzOOyww9CnTx9UVlZizJgx+N///V9s3bq1HY48PhnHcZx8HwTRvsyZMwfz589HNpvFwQcfjC5duuD5559HXV0dJk+ejEWLFqGysjLfh0kUAM8++yy+853vAAD69++P8ePHo6qqCu+//z7ee+89AMAZZ5yBW2+9FZlMJp+HShQor776Kvbff384jgPHcXD55Zdj3rx5+T4sogBZtWoV/uu//gvvv/8++vTpg3322QdVVVWora3Fu+++i2nTpuGhhx7K92ESBcIbb7yB73znO9iyZQsGDRqE8ePHo7S0FO+++y6WL1+ObDaLe++9F8cdd1y+D5VoJ9j8ViRq3Lnuuuvws5/9DJlMBvvvvz+qq6vx8ssv46uvvsLo0aOxePFi9OnTJ81Dj49DdCgeeeQRB4DTpUsX5+23385tX7dunTN27FgHgHPeeefl8QiJQuK5555zpk+f7rz00kuBfffdd59TWlrqAHDuvvvuPBwdUejU19c7o0aNcgYNGuQcffTRDgDn8ssvz/dhEQXItm3bnDFjxjgAnMsuu8xpbGz07a+vr3feeeed/BwcUZB861vfcgA4Z5xxhu9+aWlpcebNm+cAcHr06OFs3749j0dJtCd33HGHc/755zsLFy50PvjgA+fkk0+OHHeWLl3qZDIZp7S01HnyySdz2+vr652pU6c6AJzp06e3x+HHgoRbB2PixIkOAOeKK64I7Hv55ZcdAE5FRYVTV1eXh6Mjio2ZM2c6AJypU6fm+1CIAuTss892ADhPPPGEc8opp5BwI5RccskluUk4QUSxfv16B4ADwFm7dm1gf3Nzs1NZWekAcJYuXZqHIyQKgTjjznHHHecAcP77v/87sG/FihVOSUmJA8D54IMP0jzU2FCMWwdi9erVWLJkCQDgxBNPDOyfPHkyampq0NDQgCeffLK9D48oQvbaay8AQG1tbZ6PhCg0XnzxRdx444340Y9+hMMOOyzfh0MUME1NTfjd734HALjgggvyfDREMVBRURH7swXj4kYUHI2NjblYfdm8eOjQodhvv/0AAI888ki7HpsKEm4diHfeeQcA0KtXLwwfPlz6mQkTJvg+SxBhfPzxxwCAAQMG5PlIiEJi69at+PGPf4zq6mpcf/31+T4cosBZunQp1q9fj4EDB2LkyJH497//jf/7v//DrFmzMHfuXDzxxBNobW3N92ESBUSXLl2w//77AwDmzZvnS6zW2tqKyy67DNu3b8e0adNQU1OTr8MkCpyPPvoI27ZtA+DNf0UKbV6czfcBEO3H8uXLAQBDhgxRfoZ1cOyzBKHiq6++woIFCwAA06dPz+/BEAXF+eefj+XLl+ORRx5Bz5498304RIHzr3/9CwAwePBgzJ07F1dffTUcLm/ar3/9a+y111549NFHQ8cvomNxxx134LDDDsPtt9+OJ554AhMmTEBpaSneeecdrF69GieffDJuuummfB8mUcCwuW6PHj3QtWtX6WcKbV5MFrcOxJYtWwAAVVVVys906dIFALB58+Z2OSaiOGlubsZJJ52ETZs2YezYsZg1a1a+D4koEBYtWoTbbrsNP/zhD3H00Ufn+3CIImDDhg0A3BXtX//61zjzzDOxbNkybNq0Cc888wx23XVXvPPOOzj88MOpZA2RY/To0Xjttdfw3e9+F6tXr8Zjjz2Ghx9+GMuXL8fIkSMxZcoUdOvWLd+HSRQwxTgvJuFGEERifvKTn+C5555D79698dBDD6G8vDzfh0QUAJs2bcLMmTPRt29f3Hjjjfk+HKJIYNa1pqYmnHDCCbjpppuw6667olu3bjjkkEPwzDPPoFOnTnjvvfdw33335floiULhlVdewdixY/Hee+/h3nvvxVdffYWNGzfir3/9K5qamjBz5kzMnDkz34dJEFYh4daBYGbg+vp65WdYoUFapSJUnHPOObjzzjvRs2fP3Go4QQBuDZ1Vq1bhpptuooQARGx4FyWZ9X7IkCE4/PDDAbi1JQmirq4OxxxzDNatW4eHH34YJ5xwAqqrq9GzZ09873vfw1NPPYXOnTvjrrvuwgsvvJDvwyUKlGKcF1OMWwdi2LBhAMIzALJ97LMEwXPeeefhhhtuQI8ePbBo0aJcVkmCANysW9lsFrfccgtuueUW374PP/wQAHDnnXfi2WefRf/+/cl6QgAAdtllF+lr2We+/PLLdjkmorB54oknsG7dOowYMQJ77713YP8uu+yCvffeGy+88AKeffZZHHTQQXk4SqLQYXPduro6bNmyRRrnVmjzYhJuHQg2yd6wYQOWL18uzSz51ltvAQDGjRvXrsdGFD4XXnghfvvb36J79+5YtGiRMgMT0bFpbm7GP/7xD+X+FStWYMWKFRg6dGg7HhVRyIwbNw6ZTAaO42D9+vXSLIDr168H4MWbEB2blStXAgi3gnTv3h0AsHHjxnY5JqL4GD16NDp37oxt27bhrbfekgr8QpsXk6tkB2Lw4MGYOHEiAODee+8N7F+8eDFqa2tRUVFBdZcIH3PnzsU111yD7t2745lnnsndRwTBU1dXB8dxpP9OOeUUAMDll18Ox3GwYsWK/B4sUTD0798fkydPBiB3hWxqasotBkyaNKldj40oTAYNGgTAteRv2rQpsL+pqQlLly4FAGX5I4IoLy/PuWHL5sWff/45Xn31VQDAMccc067HpoKEWwfj4osvBgBcddVVuU4NcK1wZ555JgBg9uzZuZUqgpg3bx5+/etfo0ePHiTaCIJIhUsvvRQA8Ktf/Qqvv/56bntzczPOO+88fPbZZ+jatStOO+20fB0iUUBMmzYNVVVV2L59O04//fRcHBLgFlU+99xzsXLlSpSVleHYY4/N45EShc7cuXORyWTwhz/8AU899VRu+7Zt2zBz5ky0tLRg+vTpGDNmTB6P0iPj8MVSiA7BOeecgxtuuAFlZWWYOnUqqqqq8Nxzz6Gurg777bcfnnnmGVRWVub7MIkC4PHHH8dRRx0FwC1Cufvuu0s/16dPH1x77bXteWhEkXHqqafi7rvvxuWXX4558+bl+3CIAuSKK67AJZdcgmw2i0mTJqF///5YunQpVqxYgcrKSjz44IO51XGCuOeee3DaaaehubkZffv2xcSJE1FWVoa33noLq1evRklJCW6++Wb85Cc/yfehEu3E0qVLc0YIAPj000+xfv16DB48OGelBdx47AEDBuTeX3fddfjZz36GTCaDAw88EP369cPLL7+ML7/8EqNHj8bixYsLJuEWCbcOygMPPICbb74Z7777LpqamjBixAicdNJJOPfccym1O5FjwYIFsVa4hw4dSq5vRCgk3Ig4LFq0CNdffz3eeOMNbNmyBf3798fUqVNx0UUXFcyKN1E4/POf/8T111+Pl156CatXr4bjOBgwYAAmT56Ms88+m1xrOxgvvvhirEQ0y5cvDyQbefbZZ/Gb3/wGb775Jurr6zFkyBAce+yx+PnPf64szp0PSLgRBEEQBEEQBEEUOBTjRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgdgoymUzif1OmTAEATJkyBZlMBi+++GJe/wYbzJ8/H5lMBn/5y1+029i0aRN69+6NvffeG47jWDw6giAIQpdsvg+AIAiCIGxwyimnBLZ99dVXePrpp5X7x4wZk/pxtSfr1q3DZZddhokTJ2L69Ona7XTv3h0///nPccEFF+CPf/yj9NwRBEEQ7UvGoaU0giAIYiflxRdfxEEHHQQAoZajlStXYtu2bRgyZAg6d+7cXodnndmzZ+Pmm2/GE088gcMOO8yorR07dmDIkCHIZrNYvnw5KioqLB0lQRAEoQO5ShIEQRAdniFDhmDMmDFFLdrq6uqwYMECDBo0CIceeqhxe506dcKJJ56IL7/8Evfff7+FIyQIgiBMIOFGEARBdHhUMW6nnnoqMpkMFixYgGXLluEHP/gB+vXrh6qqKkycOBGPPfZY7rNvvPEGjjzySPTt2xeVlZXYd9998dxzzyl/c/v27fjNb36DffbZBz169ECnTp0wevRoXHjhhdiwYUPiv+EPf/gD6uvrcfLJJ6OkJDi8NzQ04JprrsH48ePRtWtXlJeXo3///pg4cSIuvPBCbNy4MfCdU089FQBw8803Jz4egiAIwi4k3AiCIAgigqVLl2L8+PH45z//ialTp2KPPfbAW2+9hWOOOQYPPfQQHn30Uey///5YtWoVpk6ditGjR+P111/HoYceisWLFwfa++KLL7D33nvj/PPPx8cff4yJEyfisMMOy4mrCRMm4PPPP090jI8++igA4JBDDgnsa21txeGHH44LL7wQn3zyCfbff38ce+yxGDt2LNatW4drrrkGK1euDHxvzz33RN++ffHmm2/iyy+/THQ8BEEQhGUcgiAIgthJeeGFFxwATtRwd+CBBzoAnBdeeMG3/ZRTTsl9/4orrnBaW1tz+2644QYHgDN48GCnZ8+ezh//+Effd+fMmeMAcA455BDf9tbWVme//fZzADgzZ850Nm/enNvX1NTknHfeeQ4A56CDDor9d27bts0pLy93SkpKfO0x/vGPfzgAnL322ku6f8mSJc769eulbR955JEOAOdPf/pT7OMhCIIg7EMWN4IgCIKIYNKkSbj44ouRyWRy237605+iV69eWLVqFQ455BCcfPLJvu/MmzcPAPDSSy+hqakpt/3pp5/GK6+8gj333BO33norunbtmtuXzWZx9dVX45vf/CZeeOEFvPfee7GO7z//+Q8aGxsxePBgX3uMNWvWAAD2339/6f4JEyagd+/e0rZ33313AK7VkSAIgsgfJNwIgiAIIoJp06b5RBvgiqzhw4cDgDSDY+/evdGrVy80Njb6YtaeeOIJAMD06dORzQar8pSUlOCAAw4AALz66quxjo8JM5X4GjduHEpLS3HXXXfh5ptvTuT2yNpkv0EQBEHkBxJuBEEQBBHBkCFDpNu7dOkSup9Zt3bs2JHb9tlnnwEALrnkEmVh8FtuuQWAW5ctDps2bQIAdOvWTbp/xIgRuO6669DU1ITZs2dj4MCBGDZsGE444QQsXLgQjY2NyrZZm19//XWsYyEIgiDSgQpwEwRBEEQEsiyNSfbztLa2AgAmT56MESNGhH6WuSlG0aNHDwDA5s2blZ8566yzcPzxx+Pxxx/H4sWLsXjxYtx333247777cOmll+Lll1/GgAEDAt9jorBnz56xjoUgCIJIBxJuBEEQBNGO1NTUAACOOuoonH/++Vba7NevHwBElhGorq7G6aefjtNPPx0A8OGHH+LHP/4xXnvtNcydOxd333134DuszerqaivHShAEQehBrpIEQRAE0Y5MmzYNAPDggw/CcRwrbe6+++4oLy/HqlWrsGXLltjfGzNmDC666CIAwLvvviv9DEuQMn78eOPjJAiCIPQh4UYQBEEQ7chRRx2FiRMn4s0338Rpp50mjWP7+uuvceutt6K5uTlWm5WVldhnn33Q2tqKN954I7D/+eefx5NPPunLbgkAjuPgb3/7GwBg6NCh0rZfe+01AMDBBx8c61gIgiCIdCBXSYIgCIJoR0pKSvDoo4/i8MMPx913342HHnoIe+yxB4YMGYLGxkZ89tln+Pe//42Wlhaceuqp0syTMo4++mi89NJLeOaZZwJFuP/1r3/h3HPPRbdu3TBu3DgMHDgQ27dvx9KlS/H555+je/fu+MUvfhFo85133sGGDRswadIkafwbQRAE0X6QxY0gCIIg2pmBAwfi9ddfx6233opJkyZh2bJleOihh7B48WIAwE9+8hM8/fTT6NSpU+w2TzvtNFRVVeGee+5BS0uLb98RRxyByy67DBMnTsRnn32Ghx9+GC+++CK6d++OuXPn4r333sOee+4ZaHPBggUAgP/5n//R/lsJgiAIO2QcWw72BEEQBEHkldmzZ+Pmm2/G448/jiOOOMKorR07dqCmpgZlZWVYvnw5KioqLB0lQRAEoQNZ3AiCIAhiJ+HSSy9Fjx49pG6PSbnxxhuxfv16/OpXvyLRRhAEUQCQxY0gCIIgdiLmz5+POXPm4MEHH8Sxxx6r1camTZuwyy67YOTIkXj99deRyWQsHyVBEASRFBJuBEEQBEEQBEEQBQ65ShIEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOP8f3beiewtLONcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t0 = np.linspace(0,10,1000)\n", + "y01 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "y01 -= sub\n", + "y02 = np.sin(2 * np.pi * 3.0 * (t0+0.3)) + 0.1 * rand.standard_normal(t0.size)\n", + "y02 -= sub\n", + "\n", + "spline1 = make_interp_spline(t0, y01)\n", + "spline2 = make_interp_spline(t0, y02)\n", + "t01 = np.linspace(0,10,1000)\n", + "\n", + "fig, ax = plt.subplots(2,1,figsize=(10,12))\n", + "ax[0].scatter(lc1.time, lc1.counts, lw=2, color='blue',label='lc1')\n", + "ax[0].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[0].tick_params(axis='x', labelsize=16)\n", + "ax[0].tick_params(axis='y', labelsize=16)\n", + "ax[0].tick_params(which='major', width=1.5, length=7)\n", + "ax[0].tick_params(which='minor', width=1.5, length=4)\n", + "ax[0].plot(t01,spline1(t01),lw=2,color='lightblue',label='source of lc1')\n", + "\n", + "ax[1].scatter(lc1.time, lc2.counts, lw=2, color='red',label='lc2')\n", + "ax[1].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[1].tick_params(axis='x', labelsize=16)\n", + "ax[1].tick_params(axis='y', labelsize=16)\n", + "ax[1].tick_params(which='major', width=1.5, length=7)\n", + "ax[1].tick_params(which='minor', width=1.5, length=4)\n", + "ax[1].plot(t01,spline2(t01),lw=2,color='orange',label='source of lc2')\n", + "\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `LombScargleCrossspectrum` class to create a `LombScargleCrossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lcs = LombScargleCrossspectrum(\n", + " lc1,\n", + " lc2,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 6.31032111 +4.52192914j 63.18701964+17.6050907j\n", + " 118.96655765-28.2054288j 84.8747486 -42.95292067j\n", + " -5.16601064+18.1110093j ]\n" + ] + } + ], + "source": [ + "print(lcs.freq[0:5])\n", + "print(lcs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Properties\n", + "\n", + "### Parameters\n", + "\n", + "- `data1`: This parameter allows you to provide the dataset for the first channel or band of interest. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `data2`: Similar to `data1`, this parameter represents the dataset for the second channel or \"reference\" band. It follows the same format as `data1` and is also optional with a default value of `None`.\n", + "\n", + "- `norm`: This parameter defines the normalization of the cross spectrum. It takes string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: This parameter allows you to specify the type of cross spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the cross spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "### Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the cross spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the complex numbers representing the cross spectra.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged cross-spectra amplitudes in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points or time bins in one segment of the light curves.\n", + "\n", + "- `k`: The `k` attribute is an array of integers indicating the rebinning scheme. If the object has been rebinned, the attribute holds the rebinning scheme; otherwise, it is set to 1.\n", + "\n", + "- `nphots1`: The `nphots1` attribute is a float representing the total number of photons in light curve 1.\n", + "\n", + "- `nphots2`: The `nphots2` attribute is a float representing the total number of photons in light curve 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the cross spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQUAAAIfCAYAAADJ6rpzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iTVRsG8Pvt3oMORgcte4uMMmRPWZ/IEAUBGUVENoooUxRFlD2U0YKAiIACyh6yZ1myoaWU0bK698z7/fGS1aRt2qRNx/27rmry5iR5WtqMO885RxBFUQQRERERERERERGVGSbGLoCIiIiIiIiIiIiKFkNBIiIiIiIiIiKiMoahIBERERERERERURnDUJCIiIiIiIiIiKiMYShIRERERERERERUxjAUJCIiIiIiIiIiKmMYChIREREREREREZUxDAWJiIiIiIiIiIjKGDNjF0CaZDIZIiIiYG9vD0EQjF0OEVGJJ4oiEhISUKlSJZiY8PMwgM81RESGxucadXyeISIyrMJ4nmEoWAxFRETAy8vL2GUQEZU6T548gaenp7HLKBb4XENEVDj4XCPh8wwRUeEw5PMMQ8FiyN7eHoD0D+3g4GDkaoiISr74+Hh4eXkpHl+JzzVERIbG5xp1fJ4hIjKswnieYShYDMnb6x0cHPgESkRkQJy+pMTnGiKiwsHnGgmfZ4iICochn2e42AUREREREREREVEZw1CQiIiIiIiIiIiojGEoSEREREREREREVMYwFCQiIiIiIiIiIipjGAoSERERERERERGVMQwFiYiIiIiIiIiIyhgzYxdARAWTnp6O2NhYiKJo0C3JiUoK+e++k5MTLCwsjF0OERERERFRicJQkKgEkslkiIyMRIUKFWBiwoZfKrtkMhmeP3/OvwUiIiIiIqJ84jsoohIoJiYGLi4uDEGozDMxMYGLiwtiY2ONXQoREREREVGJwkSBqATKzMyEpaWlscsgKhYsLS2RkZFh7DKIiIiIiIhKFIaCREREREREREREZQxDQaISiBuLEKnj3wQREREREVH+MBQkIiIiIiIiIiIqYxgKEhHpycfHB+3atVM71q5dO/j4+BSLWoiIiIiIiIiyYyhIRCVGTEwMrK2tIQgCNm3aZOxy8m3Dhg1YsmSJscsgIiIiIiIiYihIRCXHb7/9hrS0NPj6+iIwMNDY5eTq0KFDuHfvntoxhoJERERERERUXDAUJCoESUnAjz8CK1cCGRnGrqb0CAgIQPv27TFx4kScOHECoaGhxi4pRxYWFrC0tDR2GURERERERERaMRQkKgSrVgFTpwJjxwLbthm7mtLhypUruHbtGoYOHYqBAwfCzMxMa7egIAj46KOP8O+//6JFixawsbGBp6cnfvjhBwDSFOQRI0bA3d0dNjY26NmzJyIiItRuY86cORAEAbdu3cL48eNRoUIFWFtbo1mzZjh69KhO9WZfU9DHxwcnTpzAo0ePIAiC4uv48eOKy7WtBXj8+HEIgoANGzaoHX/y5Anee+89ODo6wsHBAb169cKDBw9yrOfIkSPo0qULnJycYGVlhQYNGuCXX37R6XshIiIiIiKi0oehIFEhuHhRefq//4xXR2kSEBAAOzs79O3bF66urujZsyd+/fVXyGQyjbFXr15F//790a5dOyxcuBDVq1fHtGnTsHTpUnTs2BExMTGYM2cORo8ejQMHDmDIkCFa73PIkCE4f/48vvjiC3z55Zd4+vQp3n77bRw5ciTf9S9ZsgS1atWCq6srNm3apPiqXbt2vm8rNjYWbdq0wV9//YXBgwdj/vz5sLGxQfv27ZGUlKQxfs2aNejSpQsSExMxffp0LFq0CFWrVsUnn3yCzz//PN/3T0RERERERCWfmbELICqNYmOVp4tq+rBMBkRHF819FUS5coBJAT+GSE1NxZYtW9C3b1/Y2toCAIYOHYqdO3fi4MGD6Natm9r4Gzdu4Ny5c2jWrBkAYMSIEahcuTImTZqEsWPHYtmyZWrjFy9ejHv37qFmzZpqx83MzHDq1ClYWFgAAIYPH45atWph3LhxuHPnTr6+h969e2PJkiVISUnBhx9+mK/rZrdgwQKEhYUhMDAQw4YNAwCMGTMGEydOxNKlS9XGPnv2DOPHj8f777+PLVu2KI6PGTMGEyZMwKJFi/DJJ5+gSpUqetVEREREREREJQs7BYkKQVyc8nRmZtHcZ3Q04OZWfL/0CSz/+usvxMbGYujQoYpj3bt3h5ubm9YpxC1atFAEgoC0vp+fnx9EUcT48ePVxrZu3RoAEBwcrHE7kyZNUgSCAODp6YlBgwbh7t27+Q4FDWnXrl0oX768RofjF198oTF2x44dSEtLw4gRIxAZGan21atXL8hksgJ1PhIREREREVHJxk5BokKg2ilYVKFgaRYQEAA3Nzd4enoiJCREcbxLly7Yvn07IiMj4erqqjiurevN2dkZAODr66v1eFRUlMZ1tE3trVOnDgAgNDS0QFN/DSE0NBRNmzaFqamp2vGKFSvCyclJ7Zg8vOzUqVOOt/fixQuD10hERERERETFG0NBokJgjOnDpdXDhw9x7NgxiKKIGjVqaB2zefNmTJw4UXE+e1imKqfLRFHUq059CYKg9Ximnqmy/PvauHEjKlasqHUMpw4TERERERGVPQwFiQxMFI3TKViuHPDqVdHcV0GUK1ew661fvx6iKGLt2rUaXXAAMGPGDAQGBqqFgoZy584dvPHGG2rHbt++DaBgQVpOwR8AlCtXDtFa5liHhoZqHKtSpQqCg4ORlZWlFnI+e/YMsaq/fACqV68OAHB1dc21W5CIiIiIiIjKFoaCRAaWmqreHVhUnYImJoDKDNpSQSaTYcOGDahfvz5GjhypdcytW7cwZ84cBAUFoWnTpga9/8WLF6NPnz6KdQWfPn2KLVu2oGbNmgWaOmxnZ4eYmBiIoqgRENaoUQN//vknwsPD4eHhAQBIS0vDypUrNW7nnXfewfz587Fx40bFRiMA8MMPP2iMfe+99/DVV19h9uzZaNeuHaytrdUuj4uLg5WVFSwtLfP9/RAREREREVHJxVCQyMCyNWpxTUE9HDp0CE+ePMGIESNyHNO3b1/MmTMHAQEBBg8FMzMz0bp1a3zwwQdISEjAL7/8gpSUFI3di3XVvHlz7NmzB2PHjkXLli1hamqKDh06wN3dHWPHjsXWrVvRqVMnjB49Gunp6di0aRNsbGw0bmfq1KnYsmUL/P39cfnyZdStWxfHjx/HuXPn1NZWBKTNUX7++WeMHDkStWvXxuDBg1G5cmW8evUKN27cwK5du3D79m34+PgU6HsiIiIiIiKikqnE7D78/fffo3///qhSpQoEQcjzDeyFCxfQqVMn2Nvbw8HBAW+//TauXbumdWxERASGDBkCNzc3WFtbo0mTJti+fbvWsWlpaZg1axZ8fX1haWmJqlWr4ttvv0UGF46j1xgKGk5AQAAAoE+fPjmOqVevHmrUqIGtW7ciJSXFoPe/ceNG+Pn5Yf78+Zg3bx48PDywf/9+dOnSpUC3N2nSJAwfPhw7duzAkCFD8MEHHyimI7/11lvYsGEDZDIZPv/8c6xatQoffvghvvvuO43bcXZ2xqlTp9C7d29s3LgRX3zxBZKTk3Hs2DHY2tpqjB82bBhOnjyJN998E6tXr8aYMWOwfPlyPHv2DN988w0qVKhQoO+HiIiIiIiISi5BNPbq+joSBAHlypVDo0aNcPnyZTg4OCAsLEzr2PPnz6Ndu3bw8PDA2LFjAQArVqzAy5cvcfbsWdSvX18xNjo6Gk2aNMHLly8xefJkeHp6YsuWLThx4gQCAwPVpuYBQO/evbF7924MHz4cLVq0wLlz5xAYGIihQ4diw4YNBvle4+Pj4ejoiLi4ODg4OBjkNqnonD8PtGihPN+rF/D334a9j5cvX8Ld3d2wN0oKc+bMwddff42HDx+yg66EyOtvgo+rmvgzISIyLD6uquPPg4jIsArjcbXETB9+8OCBYmH/evXqITExMcex48ePh4WFBU6ePKlYm+u9995D7dq1MWXKFBw6dEgxdv78+Xj48CH+/vtv9OrVCwAwYsQItGjRAp999hn69+8POzs7AMC+ffuwe/duTJ48GQsXLgQAjBw5Ek5OTli0aBFGjRqFli1bFsr3TyUHOwWJiIiIiIiIqLgrMdOHdd3pMyQkBEFBQejfv78iEAQADw8P9O/fH0eOHMHz588Vx7ds2YKqVasqAkEAMDU1xbhx4xAdHY19+/apjQWgscup/PzmzZvz+21RKcRQkIiIiIiIiIiKuxITCuoqKCgIANBCdf7ma82bN4coirh8+TIA4NmzZwgPD0fz5s21jlW9PflpDw8PeHl5qY318vJCpUqV1MZS2ZU9FORyk0RERERERERU3JSY6cO6ioiIAAC1LkE5+bHw8PB8j5WPr1Onjtb79fDwwNOnTwtUc8WKFdXOy2SyAt0OFQ9xcern2SlY8syZMwdz5swxdhlEBsXnGiIiKkx8niEiKnlKXadgcnIyAMDS0lLjMisrK7Ux+RkrP61trHy86lgqu9gpSERERERERETFXanrFLSxsQEApKWlaVyWmpqqNiY/Y+WntY2Vj1cdmx/Pnj1TOy/fUYZKJq4pSETFEZ9riIioMPF5hoio5Cl1nYKVKlUCoD7tV05+TD41OD9j5eO1jZWP1zYNmcoehoJEREREREREVNyVulCwadOmAIBz585pXHb+/HkIgoDGjRsDkNa98PDwwPnz57WOBYAmTZqo3XZ4eDiePHmiNvbJkyeIiIhQG0tlV/Y1BTl9mIiIiIiIiIiKm1IXClarVg1NmjTB9u3bFRuJANImIdu3b0eHDh1QoUIFxfEPPvgADx48wD///KM4lpWVheXLl8PJyQndu3dXGwsAS5YsUbtP+flBgwYVwndEJQ07BYmIiIiIiIiouCsxawpu2rQJjx49AgC8evUK6enp+PbbbwEAlStXxuDBgxVjly5divbt26N169YYN24cAGD58uWQyWRYuHCh2u1OmzYN27dvx8CBAzF58mR4eHjg999/R1BQENatWwd7e3vF2B49eqBnz55YtGgR4uLi0KJFC5w7dw4BAQH48MMP0apVq8L+MVAJwFCQiIiIiIiIiIo7QRRF0dhF6KJdu3Y4ceKE1svatm2L48ePqx07d+4cZsyYgQsXLkAQBLRs2RLff/89GjVqpHH98PBwTJs2Dfv370diYiLq1KmDL774AgMGDNAYm5qaim+//RabN2/Gs2fP4OHhgWHDhmHatGkwNzc3yPcqX5Q3Li4ODg4OBrlNKjoeHoBKkyq8vIDHjw17Hy9fvoS7u7thb5SoBMvrb4KPq5r4MyEiMiw+rqrjz4OIyLAK43G1xISCZQmfQEs2W1sgOVl5vmJF9ZDQEBgKEqljKJh//JkQERkWH1fV8edBRGRYhfG4WurWFCQypvR09UAQ4EYjpcXx48chCAI2bNhg7FKIiIiIiIiI9MZQkMiAsu88DHBNQX3JwzjVLzs7OzRq1AiLFy9GZjH8AW/YsEGtXhMTEzg6OqJVq1bYuHFjod1n9k2QiIiIiIiIiHJSYjYaISoJGAoWng8++ADdu3eHKIp4/vw5Nm7ciMmTJ+POnTtYs2aNscvTavz48WjatClkMhnCwsKwdu1aDB06FE+fPsVXX31l0PvasGEDwsLCMHHiRIPeLhEREREREZVODAWJDCj7zsMApw8bSqNGjfDhhx8qzo8ZMwa1atXCunXrMG/ePLi5uRmxOu1at26Nfv36Kc4PGzYMNWvWxA8//ICpU6fCzEy/h2BRFJGUlAQ7Ozt9SyUiIiIiIqIyhtOHiQxIWyjITsHCYWtri+bNm0MURTx48EDtsmfPnuGTTz6Bt7c3LCwsUKlSJYwaNQovX75UGxcREYEpU6agYcOGcHZ2hpWVFerUqYMffvgBWVlZBq/Zy8sLderUQXx8PF69eoWEhATMmDEDzZo1g6urKywtLVGtWjVMmzYNydkWp1Rd03DlypWoU6cOrKys8NNPP8HHxwcnTpzAo0eP1KYtZ9+VnYiIiIiIiEiOnYJEBqQtFMzKAkQREIQiL6fUk4eB5cqVUxx7/PgxWrRogfT0dIwYMQJVq1ZFSEgIfv75Zxw7dgyXLl2Co6MjAOD69ev466+/8O6776Jq1arIyMjAgQMHMG3aNISGhmL16tUGrTctLQ2PHz+GmZkZnJyc8OjRI6xbtw59+/bFwIEDYWZmhhMnTmDBggW4evUqDh48qHEbS5YsQVRUFPz9/VGhQgV4eXmhYcOG+PLLLxEZGYnFixcrxtauXdug9RMREREREVHpwVCQyIC0rSkISN2C5uaFfOeiCKSkFPKd6MHaWq9kNDk5GZGRkYo1BX/55RdcvXoVfn5+qFGjhmLcuHHjkJGRgatXr8LT01NxvH///mjevDkWL16MOXPmAADatm2L0NBQCCp1TZw4EYMHD8a6deswZ84cVKxYscA1JyQkIDIyEjKZDI8ePcK8efPw6tUrvP/++7C2tkaVKlXw5MkTmKv8cnz66aeYOXMmvv32W1y8eBF+fn5qt/n48WPcvXsX7u7uaseXLFmClJQUtSnWRERERERERDlhKEhkQNo6BYEiCgVTUoAFCwr5TvQwdSpgY1Pgq8+ePRuzZ89WO9anTx+sXLlScT4uLg579uzBsGHDYGVlhcjISMVlPj4+qFatGg4dOqQIBa2trRWXp6enIzExETKZDF27dsXmzZtx6dIl9OrVq8A1Dx8+XO28ubk5hg4dihUrVgAALCwsFJdlZmYiISEBWVlZ6NSpE7799ltcuHBBIxQcMmSIRiBIRERERERElF8MBYkMKKdQMCNDapSjghs1ahT69++PjIwM3LhxAz/88AOePn0KKysrxZh79+5BJpMhICAAAQEBWm+nSpUqitOZmZmYP38+Nm7ciJCQEIiiqDY2JiZGr5pnzZqF1q1bw8TEBPb29qhVqxbs7e3VxqxatQq//PILbt26BZlMluf9q3ZFEhERERERERUUQ0EiA8pt+jDpp3r16ujUqRMAoFu3bmjVqhVatWqF0aNHY+vWrQCgCPU+/PBDDB06VOvtqHYHTp48GcuXL8eAAQMwffp0uLu7w9zcHFeuXMEXX3yhEdLlV/369RU1a7No0SJMmTIFXbp0wfjx41GpUiVYWFggPDwcH330kdb7t9Gj25KIiIiIiIhIjqEgkQHlNn240FlbS1N0iysDt0q2bNkSgwcPxsaNGzF+/Hi0bNkS1apVgyAISE9PzzWMk9u0aRPatGmjCBXlQkJCDFprbvfv4+OD/fv3w8REuRn8gQMH8n1bAneyISIiIiIionxgKEhkQLlNHy50gqDXmn0l0cyZM/Hbb79h1qxZOHLkCFxcXNC9e3f89ddfOH/+PJo3b642XhRFREZGws3NDQBgamqqMWU4KSlJbQffwmRqagpBENRqkE9pzi87OzvExMRAFEUGhERERERERJQnhoJEBmTUTsEyqFq1anj//ffx22+/4dSpU2jdujV+/vlntGrVCm3atMGQIUPw5ptvQiaTITQ0FLt378aQIUMUG43069cPq1evxoABA9CpUye8ePECgYGBcHFxKZL6+/Xrhy+//BLdunVDnz59EB8fjy1btqjtRqyr5s2bY8+ePRg7dixatmwJU1NTdOjQgZuSEBERERERkVYMBYkMiGsKFr3p06fj999/x6xZs3Ds2DF4eXnh8uXL+OGHH7B7925s3rwZVlZW8PLyQq9evfDee+8prrto0SLY29tj27Zt2L17N7y8vDBq1Cg0bdpUp+nH+vr8888hiiICAgIwYcIEVKhQAQMGDMCwYcNQp06dfN3WpEmTEBoaih07duCXX36BTCbDsWPHGAoSERERERGRVoKYfe4cGV18fDwcHR0RFxcHBwcHY5dD+VC5MvD4sebxO3eAWrUMdz8vX75k2EOkIq+/CT6uauLPhIjIsPi4qo4/DyIiwyqMx1WTvIcQka44fZiIiIiIiIiISgKGgkQGkpUFxMdrv6xINhohIiIiIiIiItIRQ0EiA0lIyPkydgoSERERERERUXHCUJDIQLJPHTZT2caHoSARERERERERFScMBYkMRDUUNDMDVNf95PRhIiIiIiIiIipOzPIeQkS6iItTnnZyAkxNlefZKUhERERERERExQk7BYkMRLVT0MkJMDdXnmcoSERERERERETFCUNBIgNRDQUdHdXXFOT0YSIiIiIiIiIqThgKEhlI9k5BbjRCRERERERERMUV1xQkMpDsawpGRCjPs1OQiIiIiIqbxMREvHjxAjExMXB2dkb58uVhZ2dn7LKIiKiIMBQkMpDcpg+zU5CIiIiIioODBw9i165dOHr0KB48eKBxebVq1dChQwf07t0bXbt2NUKFRERUVBgKEhkINxohIiIiouIoKysLP//8M5YtW4YHDx5AFEXFZXZ2dnBwcEBcXBySkpIQHByM4OBgrFmzBtWqVcP48eMxevRomJqaGvE7ICKiwsA1BYkMJLc1BTl9uOwRBAEfffSRscsgIiKiMu7AgQOoV68exo8fj0ePHuF///sfVqxYgStXriAtLQ3x8fF4+vQpEhISkJqaikuXLmHZsmXo2bMnwsLCMH78eNSvXx8HDx409rdCREQGxlCQyEBU1xTk9GHDOX78OARBwE8//WTsUsqsOXPmQBAExZeJiQnKlSuHzp07Y8+ePYVyn0uWLMGGDRsK5baJiIjKku7duyM2NhY//fQTwsPDsXPnTowZMwYNGzaEuerUFgAWFhZo1KgRxo4di927dyM8PBwLFixAVFQUunfvbqTvgIiICgunDxMZSG7Th9kpWPakpKSUumk2c+fOha+vLzIzM3H//n2sXr0avXr1wm+//YaBAwca9L6WLFkCHx8fdlsSERHp6ZtvvsGkSZNgY2OT7+u6urpiypQp+OSTT7B48eJCqI6IiIyJoSCRgeQ2fZidgmWPlZWVUe8/IyMDWVlZBq2jW7duaNKkieJ837590aRJE8ybN88goWBWVhbS0tIK9KaFiIiItJs+fbret2FjY2OQ2yEiouKF04eJDITTh4tOWFgYBEHAnDlzsG3bNjRs2BDW1taoVq0a1q9fDwB4/Pgx+vXrh3LlysHe3h4ffvghEhIS1G7n7t27GDNmDOrWrQt7e3vY2NigcePGWLdundb7vX79Orp06QJbW1u4uLhg6NChiIyM1Lp+YG7Hzp07h7Zt2ypuZ+TIkUhMTCxwbfLpvbdu3cLkyZPh6ekJKysrnDx5Em5ubnjrrbe0fj8//vgjBEHAyZMnc/tx56hx48ZwcXFBSEgIACAiIgJTpkxBw4YN4ezsDCsrK9SpUwc//PADsrKy1K67YcMGCIKAI0eO4JtvvkHVqlVhZWWFbdu2QRAEPHr0CCdOnFCbthwWFlagOomIiIiIiEgTOwWJDEAUOX3YGPbs2YNffvkFY8aMQbly5RAQEIDhw4fDwsICX331FTp06IDvvvsOQUFBCAwMhJWVlVqodvz4cZw8eRI9e/aEr68vkpKSsH37dvj7++PVq1f48ssvFWODg4PRunVryGQyjB8/Hh4eHti3bx/efvvtfNV87do19OzZE8OGDcPAgQNx/PhxBAQEwMTEBGvWrClQbXKDBg2CtbU1pkyZAkEQULlyZQwdOhQLFy7EvXv3ULNmTbXxgYGBqFGjBtq0aZOv70EuMjISMTExqFChAgApNP3rr7/w7rvvomrVqsjIyMCBAwcwbdo0hIaGYvXq1Rq38dlnnyEjIwP+/v5wcHBAzZo1sWnTJkyaNAmurq5qXQlubm4FqpOIiIiUTE1N8dFHHyEgICDXcf7+/li/fj0y+ek2EVGpxVCQyAAyMgDVRigbm6LvFBRFESmZKYV/RwVkbWYNQRAMept37tzB7du3UblyZQDAgAED4OXlhcGDB+Onn37C5MmTAQCjR49GTEwMNm7ciCVLlsDOzg4AMHjwYIwePVrtNidNmoQOHTpg/vz5+OyzzxQLcE+fPh3x8fE4ffq0ovNu7NixGDBgAC5fvqxzzdevX8e5c+fQrFkzAMDHH3+M+Ph4rF+/HosWLSpQbXJOTk44cuQIzFR++UaNGoWFCxciICAACxYsUBw/c+YM7t69ix9++EHn2uPi4hAZGalYU/Crr76CTCbDkCFDAABt27ZFaGio2r/zxIkTMXjwYKxbtw5z5sxBxYoV1W4zJSUFV69eVZsy3KJFC8yYMQPly5fHhx9+qHN9RERElDdRFCGKos5jiYio9GIoSGQA2TsBzc3VOwWLIhRMyUzBgjML8h5oJFPfmgobc8OuFde7d29FIAhInWQ1a9bErVu38Omnn6qNbd26NXbu3ImwsDDUq1cPAGBra6u4PDU1FUlJSRBFEV26dMGJEydw9+5d1K9fH1lZWdi3bx/8/Pw0puJOmTIF27Zt07nmFi1aKAJBuQ4dOmDfvn0Fqk3VxIkT1QJBAKhRowbatm2LjRs34rvvvlNcHhAQADMzMwwdOlTn2jt16qR23sbGBpMnT8Y333wDALC2tlZclp6ejsTERMhkMnTt2hWbN2/GpUuX0KtXL7Xb+OSTT7iGIBERUTGUnJys8QEkERGVLgwFiQxAWyioms1w+nDhqFKlisYxZ2dnVKxYEZaWlhrHASAqKkpxLDExUbEu4ZMnTzRuKyYmBgDw6tUrJCUlaUy/BaD1WH5rdnFxKXBtqmrUqKH1PkeNGoVBgwZhz5496N27NxISErBt2zb07NkT5cuX17n2lStXokaNGjAxMYGTkxNq166tFgRmZmZi/vz52LhxI0JCQjS6C/JTMxERERlPbGwsTp8+rdHhT0REpQtDQSIDyCsU5FIshcPU1DRfxwH1aTADBw7Enj17MGrUKLRp0wYuLi4wNTXFvn37sHjxYshksiKr2RC15dRx17dvX4wfPx4BAQHo3bs3/vjjDyQlJWHkyJH5qt3Pz09t9+HsJk+ejOXLl2PAgAGYPn063N3dYW5ujitXruCLL77IV81ERERkONk/lNyxYweOHz+udWxmZiaeP3+OrKwsfPzxx0VQHRERGQtDQSIDyGv6cFF0ClqbWWPqW1ML/44KyNrMOu9BRSg2NhZ79uzB4MGD8csvv6hdduTIEbXzbm5usLW1xb179zRuR9uxoqxNF5aWlhgyZAiWLVuGiIgIBAQEwMPDI9+bpORl06ZNaNOmDbZu3ap2XL47cX4Yev1JIiKisiwsLExxWhAEJCYmIjExMcfxFhYW6N27N7777rsiqI6IiIyFoSCRARSHTkFBEAy+Zl9pJu/Yyz7F9dmzZ2o7FMvHduvWDTt27MCZM2fU1hVcuHChUWvTlb+/PxYvXowvvvgC58+fx/Tp03PtWiwIU1NTjZqTkpKwePHifN+WnZ0doqOjDVUaERFRmfbw4UMA0muLKlWqoF+/fvjxxx+1jrWwsICbm5vGOsVERFT68JGeyACyh37G2GiE8sfe3h5dunTB5s2bYW1tjaZNm+LRo0dYvXo1fH191db3A4Bvv/0WBw8exNtvv42xY8fC09MTe/fuxatXrwAYtrMtv7Xponbt2mjVqhU2b94MQRAwfPhwg9Ur169fP6xevRoDBgxAp06d8OLFCwQGBirWTMyP5s2bIyAgADNnzkTt2rVhYmKCXr16qW3AQkRERLpR3Zht6NChaN26tdoxIiIqmxgKEhmARqdgehIahR1ET5jjELogI8NS+xXJqDZv3oxp06bhn3/+wa+//orq1atj3rx5MDc3x7Bhw9TG1qxZEydPnsRnn32GpUuXwsrKCj179sTKlStRpUoVtQ03iro2XY0aNQqnT59G+/bttW54oq9FixbB3t4e27Ztw+7du+Hl5YVRo0ahadOmGjsX52XevHmIjo7GypUrERsbC1EU8fDhQ4aCRKr27wcuXgTGjQPKlTN2NURUQqxfv97YJRARUTEhiNnnepHRxcfHw9HREXFxcXBwcDB2OaSDGzeABg2k0yYmQNb+Qzg05yzOngP2oTvqDfNDYKDh7u/ly5dwd3c33A1SgV2+fBlNmjTB999/j2nTphm7nFxt27YNAwYMwJYtW/DBBx8YuxyDyutvgo+rmvgzKeFevQK8vIC0NOCrr4B584xdEVGZx8dVdfx5EBEZVmE8rrJTkMgAVDsFzc0BPHsGExPpvDNiOH24lEhJSVHrCBRFEQsWLAAAdO7c2Vhl6WzlypVwdXVFnz59jF0KEenr5k0pEASA0FDj1kJEJU5CQgJWrVqFI0eOIDw8HKmpqVrHCYKABw8eFHF1RERUVBgKEhmARigYE6MIBU2RVSS7D1Pha9iwITp06ID69esjKSkJ//zzD06dOoUBAwagcePGxi5Pq5cvX+Lo0aM4deoUTp48ie+//x6WlpzOTlTivd40AACQnm68OoioxImIiECrVq3w6NEjjQ3CsjPkmslERFT8MBQkMgDV0M/CTAbEx6uFguwULB3eeecd/PPPP9i0aRMyMzPh6+uLb775Bl988YWxS8vR7du3MXDgQDg5OWH06NGYMmWKsUsiIkNQDQXlHYNERDr46quvEBYWhoYNG2LatGmoXbs2p/cSEZVRDAWJDEA1FHQxiwNkMpiaSufZKVh6LFiwQDFduKRo165dnl0ARFQCsVOQiAro4MGDKF++PI4dOwZHR0djl0NEREZkYuwCDG3OnDkQBCHHL3Nzc53G/vTTTxq3LZPJsHjxYtSqVQtWVlbw8vLClClTkJSUVJTfIhVDqqFfOZNYAGCnIBERFR6GgkRUQDExMWjRogUDQSIiKn2dgn369EG1atU0jl+/fh0//vgjevXqpXHZ4sWL4erqqnZM2/pgkyZNwrJly/Duu+9iypQpuHPnDpYtW4arV6/iyJEjMDEpdRkr6UitU9AkBoAyFDRDJpIYChIRkSFx+jARFZCXlxdkMpmxyyAiomKg1IWCDRo0QIMGDTSOf/zxxwCAESNGaFzWu3dv+Pj45Hq7t27dwvLly9GnTx/8+eefiuO+vr4YP348tm7dioEDB+pXPJVYeXUKcvowEREZTEoK8OyZ8jw7BYkoH/r164c1a9YgKSkJtra2xi6HiIiMqEy0tiUlJWHr1q3w9PTE22+/rXVMfHw8MnOZ4/n7779DFEVMnDhR7bi/vz9sbGywefNmQ5ZMJYxq6OcsxAIo3OnDXCOOSB3/JqhMefRI/Tw7BYkoH2bOnAkvLy+89957ePnypbHLISIiIyp1nYLabN++HfHx8Rg/fjxM5bs/qGjQoAESEhJgamoKPz8/zJw5E926dVMbExQUBBMTE/j5+akdt7KyQsOGDREUFFSo3wMVb2qdgoI0fVh1o5HCWFNQJpNxyjoRwClQVPaoTh0G2ClIRPkyduxYVK1aFTt37kS1atXQpEkTeHt7a31dKQgCAgICjFAlEREVhTIRCgYEBEAQBAwfPlztuJOTE0aNGoWWLVvC2dkZ9+7dw5IlS9CjRw8EBgbio48+UoyNiIiAq6srLC0tNW7fw8MDZ8+eRXp6OiwsLPJdX8WKFdXO8w1uyaMaCjoiFoD6moKGnj7s7OyMFy9eoHz58gwGqUyTyWR48eIFXFxcjF1KscfnmlIkeyjITkEiyocNGzZAEAQAQGJiIo4fP57j2PyEgnyeISIqeUp9KHjv3j2cPn0aHTt2hK+vr9pl2acCA8Dw4cNRr149TJo0Cf369YOdnR0AIDk5WWsgCEjdgvIxBQkFqeSTh35myIC9mACgcKcPW1hYwMXFBa9evQIAxQs7orJEPmXYxcWFj71UtrBTkIj0sH79emOXQERExUSpDwXln2yNHDlSp/EuLi4YPXo05syZg7Nnz6JLly4AABsbmxzX3EhNTVWMKYhnqouFQ1rf0NHRsUC3RcYhDwUdEaeYNlzYG41YWFigfPnyhr9hIiqV+FxTijAUJCI9DB06tFBul88zREQlT6med5iZmYmNGzfCxcUF7777rs7Xk+9EHBkZqThWqVIlREZGIk3LFJ3w8HC4urqyU6UMk3cCOiNGEQYWZqcgERGVYWFh6uc5fZiIiIiICqBUh4L//PMPXrx4gQ8//DDHqb/aBAcHA4BaF1bTpk0hk8lw8eJFtbGpqam4du0amjRpYpiiqUSSdwI6IVa5wUghbzRCRERlFDsFichAbt++jXXr1uH777/H33//rTguk8mQzscWIqJSr1SHgvKpwyNGjNC4LDMzE3FxcRrHnzx5gp9//hkuLi5o2bKl4viAAQMgCAKWLFmiNn7t2rVITk7GoEGDDFs8lSjyUFBbp2BhbDRCRKWTTCbDhQsX8N1336Ffv35o3bo16tWrh9atW6Nfv374/vvvceHCBS7eXpbFxwPR0erHMjIA/k4QUT48efIEnTp1Qv369fHxxx9jxowZ2LVrl+LytWvXwtraGkePHjVekUREVOhK7ZqCEREROHDgAPz8/FC/fn2NyxMTE+Hr64vevXujdu3ait2H161bh8TERPz++++wtrZWjK9fvz4+/fRTrFixAn369EH37t1x584dLFu2DG3btsXAgQOL8tujYkZbpyCnDxORrl6+fIk1a9Zg9erViIiIAKDcSEXVzp07AUhLWowePRr+/v5wd3cv0lrJyLJ3CcplZAD5mBVBRGVXdHQ02rZti7CwMNSrVw9t2rTBqlWr1Ma89957GDt2LP7++2907NjRSJUSEVFhK7Wh4IYNG5CVlZXjBiPW1tbo27cvLly4gF27diExMRGurq7o1KkTpk6dCj8/P43rLFmyBD4+PlizZg327t0LV1dXjBs3DnPnzoWJSaluuqQ85NYpyFCQiHKSlpaGBQsW4IcffkBycjLMzMzQuHFjtGzZEnXr1oWLiwscHBwQFxeHqKgo3Lx5E2fPnsX169cxc+ZMfP/995g2bRo+//zzfC2TQSVYTqFgWhpDQSLSyQ8//ICwsDB89tln+OGHHyAIgkYo6OzsjPr16+P06dNGqpKIiIpCqQ0Fv/rqK3z11Vc5Xm5paYl169bl6zZNTU0xZcoUTJkyRd/yqJTJq1OQ04eJSJuaNWvi8ePHqF+/PoYPH45BgwbB1dU1z+tFRkZi06ZNWL9+PWbNmoXAwECEhoYWQcVkdDmFglz7i4h0tHv3bvj4+GD+/PkQBCHHcVWqVMGZM2eKsDIiIipqbG8jMoCMDMASqbBGijIMVN1oJENzGiARkbW1NbZv347//vsPEyZM0CkQBABXV1dMmjQJ169fxx9//MEuwbJENRRU2RCNoSAR6erRo0do1KhRnjOdLCwsEJ19DVMiIipVSm2nIFFRysiQugQBaHQKAoAsIwv8cyOi7G7duqX38hP9+/dH3759DVQRFXuqoWDNmsCLF9LptDTj1ENEJY6VlRUSEhLyHPf48WM4OjoWQUVERGQs7BQkMoCMDGk9QeB1GGhqqhYKiplZximMiIo1Q61Hy3VtyxB5KGhpCVSurDzOTkEi0lGtWrVw5coVJCUl5TgmMjIS//33Hxo0aFCElRERUVHjuwgiA1DtFDQxAVCuHENBIsq34cOHIzAwMM9xGzZswPDhw4ugIipWRFEZClauDFhZKS9jpyAR6ahfv36IiorC5MmTIZPJtI75/PPPkZycjAEDBhRxdUREVJQYChIZgGqnoKkpAFdXtVDQBFnIYi5IRHnYsGGDTjs9njlzBr/++msRVETFyqtXQHKydNrXV323YXYKEpGOPv30U9SrVw/r1q2Dn58fvvvuOwDAgwcPsGjRIrRo0QIbN25Ew4YN8dFHHxm3WCIiKlRc5IzIADQ6BbOFgmbIRGamcr1BIiJ9ZGVlccpwWaS6nqCvL2BhoTzPTkEi0pGVlRUOHjyI/v374+zZs7h69SoA4PTp0zh9+jREUUTTpk2xa9cumJubG7laIiIqTAwFiQwgIwNwVe0UdHFRCwBNkSXtUMwNQonIAIKDg7n4e1mUPRSMjVWeZ6cgEeVDxYoVcfr0aRw8eBB79+5FaGgoZDIZvLy80K1bN7zzzjsQBMHYZRIRUSFjKEhkABnposaagoKpAEAEIIWCmZlGK4+IirG5c+eqnb927ZrGMbnMzEzcunULZ8+eRadOnYqiPCpOwsKUp319gVu3lOcZChJRAXTt2hVdu3Y1dhlERGQkDAWJDCArQwZzZAB43SloZwdTCzNAfoyhIBHlYM6cORAEAaIofYhw7do1XLt2Ldfr2NraYtasWUVQHRUr0dHK0+7uQEiI8jynDxMRERFRPjEUJDKArHTlLiImJgBMTSGYm0I1FMzIME5tRFS8zZo1SxEKzp07Fw0bNsQ777yjdayFhQU8PT3RtWtXuLu7F3GlZHSq3YCWluprCrJTkIgKICsrC1FRUUhNTc1xjLe3dxFWRERERYmhIJEByDKUoaCpqfQfE3PlooLyjUaIiLKbM2eO4rQ8FJw9e7bxCqLiS/XTJQsLbjRCRAUWFBSEWbNm4cSJE0jL5fFDEARk8kUsEVGpxVCQyABUQ0F5p6CpSijI6cNEpAuZTGbsEqg4U+0GtLBQ372KnYJEpKPz58+jQ4cOiu5AZ2dnODg4GLkqIiIyBoaCRAagOn1YW6cgpw8TEZHesoeC7BQkogKYPXs2UlNTMXz4cMybNw/ly5c3dklERGQkDAWJDEBbp6CJhfLPi52CRJQfEREROHbsGMLDw3Nc50kQBMycObOIKyOjUg0Fzc3ZKUhEBXLhwgXUrFkTa9euhSAIxi6HiIiMiKEgkQForCloYgLBzBQmAiATpTUF2SlIRLqYPHkyVqxYgaws6XFFviuxnHxTEoaCZVBunYIMBYlIR5mZmWjYsCEDQSIiYihIZAiqoaBgZgoIgtQtaALIstgpSES6WbRoEZYsWQJBENC1a1fUrl2b6zyRUm5rCnL6MBHpqFatWoiMjDR2GUREVAwwFCQyALXpw/K1BE1NYWoKZDIUJCIdBQQEwMzMDIcOHUK7du2MXQ4VN+wUJCIDGDVqFMaPH48HDx6gatWqxi6HiIiMyMTYBRCVBmqdgvJQ0MxMWl8Q3GiEiHTz4MEDtGrVioEgaceNRojIAEaNGoUPPvgAnTt3xr59+xTLVRARUdnDTkEiA1DrFDRTdgqqhoLsFCSivNjb26NixYrGLoOKq9ymD7NTkIh0VKVKFQBAWFgYevXqBTMzM1SsWBEmJpr9IoIg4MGDB0VdIhERFRGGgkQGkNP0YflrKzNkMhQkojy1bt0a//33n7HLoOJKHvyZmEi7WrFTkIgKICwsTHFaFEVkZGTg8ePHWsdyMxIiotKNoSCRAYiZuYeCnD5MRLqYNWsWmjdvjnXr1mHkyJHGLoeKG3koKA8D2SlIRAXw8OFDY5dARETFBENBIgOQ5RAKmspPcvowEekgPj4ekydPxscff4xDhw6hZ8+e8Pb21jqlCwDatGlTxBWSUWUPBbnRCBEVQOXKlY1dAhERFRMMBYkMQNQ2fZgbjRBRPrVr1w6CIEAURfz555/4888/cxwrCAIy+WlD2ZJbpyCnDxMRERFRPjEUJDIA1enDphbcaISICqZNmzZcv4lyxk5BIjKw8+fP49ixYwgPDwcAeHh4oH379mjevLmRKyMioqLAUJBITzIZIIjcaISI9Hf8+HFjl0DFWW6hIDsFiSgfHj9+jEGDBuHs2bMApA1HAOXGIm+99RY2b94Mb29vo9VIRESFj6EgkZ4yM6VOQLmcOgU5fZiIiPTCjUaIyABiY2PRvn17PHz4EFZWVujatSuqVq0KAAgNDcWBAwdw+vRpdOzYEZcuXYKjo6ORKyYiosLCUJBITxkZOYSCZmbcaISI9JKeno6oqChYWlqiXLlyxi6HjE3+6RI7BYlIDwsXLsTDhw/RvXt3rFmzBpUqVVK7/Pnz5/D398e+ffuwcOFCzJ0710iVEhFRYdO+nSER6SwjAzCBTHHe1FzeHsg1BYmoYDZv3gw/Pz/Y2trC09MTn332meKynTt3YuDAgXj48KERKySjyN4paG6ueRkRUR527twJNzc3bNu2TSMQBIAKFSrgjz/+gKurK/766y8jVEhEREWFoSCRnnLsFMy2piCnDxORLkaOHImhQ4fi0qVLsLa2VqzzJFejRg1s3bo1152JqRQSRc1OQUFQnmanIBHp6OHDh2jbti1sbGxyHGNjY4O2bdvyAygiolKOoSCRnnQJBdkpSES6+O233xAYGIh69eohKCgIcXFxGmPq1q0LT09P7N+/3wgVktGofrKkOm1Yvq4gOwWJSEempqbI0OHT6szMTJiY8O0iEVFpxkd5Ij3pGgqyU5CI8rJmzRrY2dlhz549aNy4sWIXyOzq16/P7o2yRjX0Uw0F5acZChKRjqpXr47jx48jNjY2xzHR0dE4duwYatSoUXSFERFRkWMoSKSn3DYaYacgEeXHf//9h2bNmsHLyyvXceXKlcOLFy+KqCoqFlRDP9W1BDl9mIjyqX///oiLi0OPHj1w69Ytjctv3LiBnj17Ij4+HgMGDDBChUREVFS4+zCRnrKHgmaWyk5B7j5MRPmRlpYGR0fHPMe9evUKpvIHGCobcuoU5PRhIsqnCRMm4I8//sC5c+fwxhtv4M0334Svry8AIDQ0FNeuXYNMJkPDhg0xfvx4I1dLRESFiaEgkZ5UQ0ETARDMuNEIERWMh4cH7ty5k+sYURRx+/ZtxRs4KiPymj7MTkEi0pG1tTX+/fdffPLJJ9ixYwcuX76My5cvKy43MTHBgAEDsHLlSlhZWRmxUiIiKmwMBYn0pBYKmgDK9kBuNEJE+dOxY0esW7cOu3fvxjvvvKN1zKZNm/D06VO89957RVwdGRU7BYnIgJydnbF161Y8efIEJ0+eRHh4OADpw6k2bdrkuYwFERGVDgwFifTEUJCIDOWzzz7Dpk2bMHDgQMybN08t+IuOjsa2bdvw2WefwdbWllO6yhp2ChJRIfDy8sKgQYOMXQYRERkJNxoh0pNqKGhqCmUomG2jEU4fJqK8VK9eHb/++itkMhmmTJkCLy8vCIKAX3/9FW5ubvj000+RmZmJDRs2wNvb29jlUlHKq1MwK0v6IiIiIiLSEUNBIj3l1inIjUaIKL/69++PoKAg9O/fH/b29hBFEaIowsrKCr169cK5c+fQt29fY5dJRS2vTkEA/PSJiPLj9u3bGD16NGrVqgU7OzvY2tqiZs2aGD16NG7evGns8oiIqAhw+jCRnnLsFORGI0RUQPXq1cPWrVshiiKioqIgk8ng6uoKExN+lldm6RIKpqUB3BSAiHSwcuVKTJ48GZmZmRBFUXE8ODgYwcHBWL9+PX788UcuVUFEVMrx3QWRnrimIBEVFkEQ4OrqCnd3dwaCZV1e04ezjyEiysH+/fsxbtw4ZGZmok+fPvj7779x48YN3LhxA//88w/69euHrKwsTJo0Cfv37zd2uUREVIjYKUikp8zMvNcUNIEMmRkiAMEoNRIRUQmna6cgEVEeFixYAEEQsHXrVvTv31/tsrp166JHjx7YsWMH3nvvPSxYsADdunUzUqVERFTYGAoS6UmXTkEAyErPAv/kiCgvWVlZ2LFjB44cOYLw8HCkpqZqHScIAo4ePVrE1ZHRsFOQiAzk8uXL8PPz0wgEVfXr1w/NmjXD5cuXi7AyIiIqakwoiPSU25qC8pMAIGZkgn9yRJSbuLg4dO3aFUFBQWprPGkjCOw8LlNUF6ZlpyAR6UEQBFStWjXPcVWrVsXt27eLoCIiIjIWJhREespfpyARUc5mzpyJixcvwsPDA+PGjUPt2rXh4OBg7LKoOGCnIBEZSIMGDRAcHJznuODgYNSvX78IKiIiImNhKEikJ112HwYAWQZDQSLK3a5du+Dk5ITz58/Dw8PD2OVQcaLLmoIMBYlIB5MnT0bfvn2xdetWvP/++1rH/PHHHwgKCsL27duLuDoiIipKpXIrQ0EQtH7Z2dlpjL137x569+4NZ2dn2NraonXr1vj333+13m5cXBzGjRsHDw8PWFlZoW7duvj555/znOJFpVuOnYIqG40AgJjJUJCIcvfixQu89dZbDARJEzcaISIDady4MSZNmoQPP/wQ/fr1U9t9+O+//0b//v0xaNAgTJo0CU2bNsXjx4/VvoiIqPQotZ2CrVu3xqhRo9SOmZubq51/8OABWrZsCTMzM0ydOhWOjo5Yu3Ytunbtiv3796NTp06Ksenp6ejcuTOuXr2qmNK1f/9+jBkzBi9evMCcOXOK4tuiYkjXTkFOHyaivJQvXx5WVlbGLoOKI04fJiID8fX1BQCIooidO3di586dGmNEUcSSJUuwZMkSteOCICAzM7MoyiQioiJQakPBKlWq4MMPP8x1zJdffonY2FhcvnwZDRs2BAAMGTIEdevWxaeffoq7d+8qFnJft24dgoKCsGzZMowbNw4A4O/vj759++K7777DsGHDULly5UL9nqh4yrFTUBBgYmYCQAZAvtEIEVHOevXqhZ07dyIjI0Pjgywq49gpSEQG4uXlxc2qiIgIQCmdPiyXnp6OxMRErZclJSXh77//Rrt27RSBIADY2dlh5MiRuH//PoKCghTHt2zZAhsbG/j7+6vdzsSJE5GRkYE//vijUL4HKv5y7BQEIJgpT3P6MBHl5euvv4aZmRk++eQTpKamGrscKk7YKUhEBhIWFoaHDx8W+IuIiEqPUtspuGPHDmzevBlZWVlwc3PDgAED8O2338LR0REAcP36daSlpaFFixYa123evDkAICgoCH5+fpDJZLhy5QoaNWqkMa3Lz88PgiCoBYhUtuTYKQgAZmYAMgBwoxEiytuqVavQpUsXrF+/HocPH0bHjh3h7e0NExPNz/AEQcDMmTONUCUZhWrgp9pFyk5BIiIiIiqgUhkK+vn5oX///qhWrRri4+Oxb98+rFixAidOnMDZs2dhZ2eHiIgIANC6mLv8WHh4OAAgJiYGKSkpWsdaWlrC1dVVMbYgKlasqHZeJpMV+Lao6GWkizl2CpqYs1OQiHQ3Z84cCIIAURTx5MkTbNiwQWOM/PL8hoJ8rinh2ClIRMUcn2eIiEqeUhkKXrhwQe38kCFD0KBBA0yfPh1Lly7F9OnTkZycDEAK9bKTdwPKx+Q2Vj5ePobKnsx0GeRvz7J3CqpNH+aagkSUh9mzZxu7BCqudFlTkKEgEeXT06dPERERkeuSFW3atCnCioiIqCiVylBQm88//xxff/019u7di+nTp8PGxgYAkKZlqo38SVE+Jrex8vHyMQXx7NkztfPx8fGKac5U/KnuKpxrKMhOQSLKQ2GGgnyuKeF06RTk9GEi0tH27dsxY8YMhISE5DouP7sN83mGiKjkKTOhoLm5OSpVqoTIyEgAQKVKlQBA67Rf+TH5dGFnZ2dYW1trHZuWlobIyEi0bdu2sEqnYk41FOT0YSIiKhTsFCQiA9m2bRs++OADiKKIcuXKwcfHB/b29sYui4iIjKDMhIKpqal4+vSpYhOR+vXrw9LSEufOndMYe/78eQBAkyZNAAAmJiZo1KgRrl69irS0NLVpxBcvXoQoioqxVPbk2ilorvwTYyhIRPn1/PlzPH36FID0QVX29ZqoDNElFGSnIBHp4LvvvgMALF26FGPGjIGp6iZ5RERUpmhuZ1jCRUVFaT0+c+ZMZGZmolevXgAAOzs79OrVC8ePH8d///2nGJeYmIh169ahevXq8PPzUxz/4IMPkJycjDVr1qjd7pIlS2BmZoYBAwYUwndDJYHqrsLsFCQiQwgICECtWrXg4eGBZs2aoVmzZvD09ETt2rURGBho7PLIGLjRCBEZyL1799CiRQuMGzeOgSARURlX6joFv/32W5w/fx7t27eHt7c3EhMTsW/fPhw7dgzNmjXDuHHjFGO///57HD16FF26dMGkSZPg4OCAtWvXIjw8HHv37oUgCIqx/v7+WL9+PSZPnoywsDDUrl0b+/btw86dOzFjxgz4+PgY4bul4iC3TkHVUBA6rsdCRGWbv78/AgMDIYoiAKBcuXIAgOjoaNy7dw/+/v44d+4c1q5da8wyqaixU5CIDMTJyQmVK1c2dhlERFQMlLpOwXbt2sHBwQG//vorJk6ciNmzZyM6Ohrz5s3D8ePHYW1trRhbrVo1nDlzBs2bN8f8+fPx2WefwdbWFgcOHEDXrl3VbtfCwgJHjhzBxx9/jN9//x2ffvop7t69i+XLl2Pu3LlF/W1SMaKxpqCJ8s+KnYJElB/bt29HQEAAnJyc8NNPPyEmJgaRkZGIjIxEbGwsFi5cCGdnZwQGBmLHjh3GLpeKEjsFichA2rdvj6tXrxq7DCIiKgZKXafgO++8g3feeUfn8bVr18bu3bt1Guvk5IQVK1ZgxYoVBS2PSqGsDJnitGBmCqh0mJpYqPyJZTEUJKLcrV69GmZmZjh8+DAaNWqkdpmDgwMmTZqEdu3aoVmzZli9ejX69etnpEqpyGVkKE9zoxEi0sOsWbPQrFkzzJ8/H9OmTTN2OUREZESlLhQkKmqqnYKCqXrzLTsFiSg/rl69irZt22oEgqrefPNNtG3bFleuXCnCysjodOkU5PRhItJBrVq1cOjQIbz//vvYvXs3unXrBm9vb5iYaJ9ENmTIkCKukIiIigpDQSI9qW40IpirL9ZsaqFynp2CRJSHpKQkuLu75znO3d0dSUlJRVARFRu6rCnITkEi0tHZs2cRHR2Nx48f4+LFi7mOZShIRFR6MRQk0pNqKGhiph4KqnYKClncaISIclehQgWd1nm6evUqypcvXwQVUbHBjUaIyEACAwMxZcoUAECDBg1QvXp12NnZGbkqIiIyBoaCRHpSmz6cSygIWRZEUW3JQSIiNe3bt8fGjRtzXefp+++/x7179zB06NAiro6MSh4Kmpio7XLPjUaIKL8WL14MMzMz/PXXX+jZs6exyyEiIiNiKEikJ7VOwezThy2Vf2KmyEJmJmBuXmSlEVEJM23aNPzxxx+YPn06du7ciSFDhsDX1xcAEBoail9//RVXrlyBlZUVvvjiCyNXS0VKHvipdgZmP89OQSLSwYMHD9CmTRsGgkRExFCQSF+yzJzXFFQNCRkKElFeatasie3bt2PQoEEICgrCpUuX1C4XRREODg747bffULNmTSNVSUaRUyjITkEiyidnZ2e4ubkZuwwiIioGGAoS6UnMZU1B1Y1GzJCJjAzA2rrISiOiEqhHjx64f/8+1qxZgxMnTiA8PBwA4OHhgXbt2sHf31+nzUiolNGlU5ChIBHpoFu3bjh69ChkMlmOOw4TEVHZwFCQSE+5Th+20OwUJCLKi7u7O2bMmIEZM2YYuxQqLnTpFOT0YSLSwTfffIN9+/Zh/PjxWLRoESyyP64QEVGZwVCQSE+qoWD26cPZQ8GMjCIri4iIShN5KJh9DQpTU2kHK1FkpyAR6WTt2rXo1q0bfv75Z+zduxft27eHt7e31q5BQRAwc+ZMI1RJRERFgaEgkZ5ElTUFTbOFgmZWmhuNEBHp4vz58zh+/DiePn0KURTh6emJdu3aoUWLFsYujYwhp05BQZCOpaWxU5CIdDJnzhwIggBRFPHo0SNs2LBBY4z8coaCRESlG0NBIj2phoKcPkxE+nrw4AGGDBmC8+fPA5A2FwGkN2gA0KxZM2zcuBHVqlUzWo1kBDmFgoA0hTgtjZ2CRKSTWbNmKZ5TiIiobGMoSKQnXUNB+UYjREQ5iYiIQOvWrfH8+XPY2Njg7bffhq+vLwAgLCwMBw4cwPnz59GmTRsEBQXBw8PDyBVTkcktFJQfY6cgEelgzpw5xi6BiIiKCYaCRHpSmz5swU5BIiq4WbNm4fnz5+jbty9WrVoFNzc3tcsjIyMxZswY7NixA7Nnz8a6deuMVCkVKVGE4lOlnDoFAXYKEhEREVG+MBQk0lNunYImFmYQAIhgKEhEedu/fz8qVaqE3377TetukK6urti8eTPOnj2Lffv2GaFCMgrVNnN2ChKRgT1//hxPnz4FAHh4eKBixYpGroiIiIqK5hZTRJQvuXUKwtQUpq8PcfdhIspLdHQ0WrVqpTUQlLOwsECrVq0QExNThJWRUal2ALJTkIgMJCAgALVq1YKHhweaNWuGZs2awdPTE7Vr10ZgYKCxyyMioiLAUJBIT2JW7qGgyeu/MnYKElFePD09kZSUlOe45ORkridYlujaKchQkIh05O/vj1GjRuH+/fsQRRHOzs5wdnaGKIq4d+8e/P394e/vb+wyiYiokDEUJNJXHp2C8lCQG40QUV769++P48ePIzw8PMcx4eHh+Pfff9GvX78irIyMKq9OQU4fJqJ82L59OwICAuDk5ISffvoJMTExiIyMRGRkJGJjY7Fw4UI4OzsjMDAQO3bsMHa5RERUiBgKEulBJgMEkZ2CRGQYM2fORP369dGhQwfs2bNH4/K9e/eiY8eOaNCgAWbPnm2ECskodJ0+LJMBKt3rRETarF69GmZmZjh8+DAmT54MR0dHxWUODg6YNGkSDh8+DFNTU6xevdqIlRIRUWHjRiNEesjIkMI+OY1Q0MyMoSAR6axHjx4wMTFBcHAw3nnnHTg5OcHHxwcAEBYWhtjYWABAixYt0KNHD7XrCoKAo0ePFnHFVCR07RQEpG5BG5vCr4mISqyrV6+ibdu2aNSoUY5j3nzzTbRt2xZXrlwpwsqIiKioMRQk0kOeoWC2TkFOHyai3Bw/flxxWhRFxMTEaN1Q5OzZsxrHBEEozNLImHTtFJSPZShIRLlISkqCu7t7nuPc3d11WueWiIhKLoaCRHrIHgqaWea8+7AZMtkpSES5OnbsmLFLoOIov52CRES5qFChAq5evZrnuKtXr6J8+fJFUBERERkLQ0EiPeSnU1CAiMx0GbiUJxHlpG3btsYugYqj/HYKEhHlon379ti4cSPmz5+PadOmaR3z/fff4969exg6dGgRV0dEREWJoSCRHvLsFFRZUxAAMtOywFCQiIjyJT+dggwFiSgP06ZNwx9//IHp06dj586dGDJkCHx9fQEAoaGh+PXXX3HlyhVYWVnhiy++MHK1RERUmBgKEulBl+nDqqFgVnoWAPOiKY6IiEoHTh8mIgOqWbMmtm/fjkGDBiEoKAiXLl1Su1wURTg4OOC3335DzZo1jVQlEREVBYaCRHrIz/RhQB4KEhHlLC4uDqtWrcLRo0cRERGB1NRUreMEQcCDBw+KuDoyCk4fJiID69GjB+7fv481a9bgxIkTCA8PBwB4eHigXbt28Pf312kzEiIiKtkYChLpIT8bjQBAVhp3GiGinIWGhqJt27aIiIiAKIq5juVuw2UIOwWJqBC4u7tjxowZmDFjhrFLISIiI2EoSKSHzExlKGgiAIJZ7p2Csgx2ChJRzj7//HOEh4ejZcuWmDJlCqpXrw57e3tjl0XGphoKmmtZgoKdgkRERERUAAwFifSg2iloYgKotQUCGqGgtNEIEZF2//77L7y9vXHkyBFYWVkZuxwqLtgpSER6mjZtGu7fv48pU6bgrbfeynXsmTNnsHDhQtSuXRvz5s0rogqJiMgYuA0qkR5UQ0FTU2iGgoKgdoydgkSUm6ysLDRr1oyBIKnjmoJEpIdLly5hwYIFSEhIyDMQBIC33noLiYmJmD9/Pv77778iqJCIiIyFoSCRHvLsFIT6Ma4pSES5qVevHqKjo41dBhU3+ekUZChIRNls3rwZgiDkq+vv+++/hyiK2LhxYyFWRkRExsZQkEgPeXYKAoAZOwWJSDdjx47FyZMncfPmTWOXQsUJpw8TkR5OnTqFypUrw8/PT+frNG7cGD4+Pjhx4kQhVkZERMbGUJBIDxkZgAlkAHLrFFQu3clQkIhyM3DgQEyYMAEdOnTA6tWr8fjxY2OXRMVBRobyNKcPE1E+hYaGon79+vm+XoMGDRAaGloIFRERUXHBjUaI9KBTp6Dq9OF0hoJElLvRo0fjwIEDGDNmTK7jBEFAZiaXJCgT2ClIRHpISkoq0E72dnZ2SEpKKoSKiIiouGAoSKQHjTUFTTSbbwVOHyYiHd28eRNt27ZFbGwsRFHMdWxel1Mpwo1GiEgPTk5OePnyZb6v9/LlSzg6OhZCRUREVFxw+jCRHjLSxXx1CooZ7Oohopx9+eWXiImJQb9+/XDlyhUkJCRAJpPl+EVlBDsFiUgPVatWxYULF5ChuhRBHtLT03HhwgVUqVKlECsjIiJjYyhIpIeMdBECpG6dnNYUFMxVpg+zU5CIcnHmzBnUrFkTW7duRcOGDWFra2vskqg4YKcgEemhY8eOSExMxMqVK3W+zsqVK5GQkIBOnToVYmVERGRsDAWJ9JCZpgz5ct59WDlLX2QoSES5kMlkaNiwIQRBMHYpVJzkp1OQoSARZTN69GiYm5tj2rRp+Pvvv/Mcv3v3bnz55ZewsLDAxx9/XAQVEhGRsTAUJNKD6sYhOXYKmnJNQSLSzZtvvonw8HBjl0HFDacPE5EePD09MXfuXKSnp+Pdd99Fnz59sGvXLoSHhyMjIwMZGRkIDw/Hrl27FJdnZGRgzpw58PLyMnb5RERUiLjRCJEedOkUNDFnKEhEupk6dSp69uyJ48ePo127dsYuh4oLTh8mIj1NnToV0dHRWLBgAXbv3o3du3drHSffxOqzzz7DtGnTirJEIiIyAr1CwZMnT8LU1BRvvfWWoeohKlF06RSEyu7DyORGI0SUs7p16+KLL75A9+7dMWHCBHTr1g3e3t4w0bKzOQB4e3sXcYVkFOwUJCIDmD9/Pjp37oxvv/0Wp06d0tiwysTEBG3atMH06dO5liARURmhVyjYrl07tGvXDv/++6+h6iEqUVQ7BXOcPqyypiA7BYkoNz4+PhAEAaIoYsGCBViwYEGOYwVBQCY/aCgb2ClIRAbSsWNHdOzYEXFxcbhy5QpevXoFAHBzc8Obb74JJycn4xZIRERFSq9Q0NnZGZUqVTJULUQljmrIp8v0YTGToSAR5czb25ubjJAmdgoSkYE5Ojqiffv2xi6DiIiMTK9QsGHDhggODjZULUQljur0YcHUBNDyZl4wYyhIRLoJCwszdglUHLFTkIiIiIgKgV67D48fPx5BQUHYu3evoeohKlFUQ0G1tQNVqHUKZnCqHxER5VN+OgUZChIRERGRjvTqFHzzzTcxduxYvPvuu/joo4/Qt29f+Pj4wNraWut4LohOpY16p6D2UJCdgkREpBfVoM/cXPNyTh8mIiIiogLQKxT09fUFIG1dHxAQgICAgBzHckF0Ko3UQsEcOgUFC+WfGUNBItJFVFQU1q5di2PHjiE8PBwA4OHhgQ4dOmDkyJFwcXExcoVUpDh9mIiIiIgKgV7Th728vODt7Y3KlSvD29s71y8vLy9D1Zyr+/fvY9asWWjevDnc3Nxgb2+Phg0bYt68eUhKSlIbO2fOHAiCoPXrp59+0rhtmUyGxYsXo1atWrCysoKXlxemTJmicbtUdugSCppyoxEiyodDhw6hRo0amD59Og4fPozbt2/j9u3bOHz4ML766ivUrFkThw4dMnaZVJTkQZ8gaN3Qip2CRERERFQQenUKFscF0QMDA7Fy5Ur873//w6BBg2Bubo5jx45hxowZ2LZtG86fP68xvXnx4sVwdXVVO9a4cWON2540aRKWLVuGd999F1OmTMGdO3ewbNkyXL16FUeOHIGJiV4ZK5VAqrsP5xQKqq4piCyGgkSUs+DgYPTp0wfJyclo0KABhg0bhqpVqwIAQkNDsWHDBly7dg19+vTB1atXUb16dSNXTEUiI0P6v4WF1g2t2ClIRERERAWhVyhYHPXr1w9ffvklHB0dFcdGjx6N6tWrY968eQgICMDYsWPVrtO7d2/4+Pjkeru3bt3C8uXL0adPH/z555+K476+vhg/fjy2bt2KgQMHGvR7oeIvKz0L8shPp1CQU+iJKBfz589HcnIy5syZg1mzZmlcPn78eHzzzTeYPXs2fvjhB6xbt84IVVKRkwd92qYOA1L3oIkJIJOxU5CIiIiIdFbqWtuaNGmiFgjKDRgwAABw8+ZNrdeLj4/Pdc3D33//HaIoYuLEiWrH/f39YWNjg82bNxe8aCqx8tspyOnDRJSbo0ePombNmloDQbmZM2eiZs2aOHLkSBFWRkaVVygIKLsF2SlIRHn45ZdfkJycbOwyiIioGDBIKHjq1Cm899578PT0hKWlJUaMGKG4TL4G0vPnzw1xVwX29OlTAED58uU1LmvQoAEcHR1hZWWFli1bYv/+/RpjgoKCYGJiAj8/P7XjVlZWaNiwIYKCggqncCrWVENBtY5AFSYqG41w+jAR5eb58+do1KhRnuMaNWpk9OdVKkK6hILyyxgKElEexowZA09PT0yaNAnBwcHGLoeIiIxI7+nD3377LWbPng1RFBXHVE87Ojrihx9+gKenJ8aMGaPv3RVIVlYWvvnmG5iZmalN8XVycsKoUaPQsmVLODs74969e1iyZAl69OiBwMBAfPTRR4qxERERcHV1haXquj2veXh44OzZs0hPT4dFbi/Yc1CxYkW18zKZLN+3QcahS6egqYVKpyBDQSLKha2tLV6+fJnnuJcvX8LW1jZft83nmhIsP6Egpw8TUR7efvttHDx4EEuXLsXy5cvRuXNnjB07Fj169NDrdvk8Q0RU8ujVKbh//37MmjULHh4e2LZtG168eKExxs/PD25ubtizZ48+d6WXiRMn4ty5c5g7dy5q1qypdnz16tUYOnQo/ve//+Hzzz/H9evXUb58eUyaNAmJiYmKscnJyVoDQUDqFpSPobJFp05BleMCQ0EiykXDhg1x8uRJ3LhxI8cx169fx4kTJ9CwYcOiK4yMi9OHiciA9u3bh+DgYEyePBmOjo44ePAg/ve//6Fq1apYuHAhYmJijF0iEREVEb1CwaVLl8LS0hL79+9Hv3794ObmpnXcG2+8YbTW9JkzZ2LFihUYNWoUvvzyyzzHu7i4YPTo0YiNjcXZs2cVx21sbJCWw6fvqampijEF8ezZM7UvtvGXHGqdgjqEgtxohIhy4+/vj4yMDHTq1AmrVq1S+3AqMTERK1asQOfOnZGVlYVRo0bl67b5XFOCsVOQiAysSpUq+OmnnxAeHo61a9fijTfewMOHDzF16lR4enrC398f165dy9dt8nmGiKjk0SsUDAoKgp+fH+rWrZvrODc3N6OsfTRnzhx8++23GDZsGH755RedryffiTgyMlJxrFKlSoiMjNQaDIaHh8PV1bVAU4epZFPrFMxp+rAl1xQkIt28//77GDx4MF69eoVx48bB0dER7u7ucHd3h6OjIyZMmIBXr15h8ODBig20qAxgpyARFRIrKyuMGDECV65cwZkzZ/D+++8jKysLgYGBaNy4MVq3bo1t27Yhi69hiYhKJb1CwaSkJFSoUCHPcXFxcUW+psScOXPw9ddfY+jQoVi3bh0EQdD5uvJPtVQ3JWnatClkMhkuXryoNjY1NRXXrl1DkyZNDFM4lSiquwnnNH1YdU1BQcYXVESUu19//RWrVq2Cr68vRFFEZGQkIiMjIYoiqlSpgp9//hkbNmwwdplUVESRnYJEVCRatGiB5cuXY+zYsRBFEaIo4syZM/jggw9QvXp17Nixw9glEhGRgekVCpYvXx4hISF5jrt37x68vLz0uat8mTt3Lr7++msMHjwYgYGBMDHR/DYzMzMRFxencfzJkyf4+eef4eLigpYtWyqODxgwAIIgYMmSJWrj165di+TkZAwaNMjg3wcVf7qsKWhpozyenpIFlX14iIi0Gj16NEJCQvDkyROcP38e58+fx5MnTxAcHIyPP/7Y2OVRUVJddkLXTkE+0RBRPl29ehUjRoyAl5cXFi9eDBMTE/Tu3Rs///wzWrRogbCwMAwYMAABAQHGLpWIiAxIr92HW7Vqha1bt+LMmTN46623tI7Zs2cPQkJCiuxNzMqVKzF79mx4e3ujU6dO2LJli9rl5cuXR+fOnZGYmAhfX1/07t0btWvXVuw+vG7dOiQmJuL333+HtbW14nr169fHp59+ihUrVqBPnz7o3r077ty5g2XLlqFt27ZquxpTGZKVdyjoVU25QY1pejKehctQyVOvPJ6IyggPDw94eHgYuwwyJtXpwLmFgo6O0v9FEYiMBHJY55mISC4jIwPbt2/HihUrcOHCBYiiCCcnJ4wZMwZjx45F5cqVAQAff/wx9u/fj759++Knn37CiBEjjFw5EREZil6h4JQpU/DHH3+gT58+WL16NXr27Kl2+YEDBzBy5EiYm5tj3LhxehWqq6CgIADA48ePMXToUI3L27Zti86dO8Pa2hp9+/bFhQsXsGvXLiQmJsLV1RWdOnXC1KlT4efnp3HdJUuWwMfHB2vWrMHevXvh6uqKcePGYe7cuVq7Ean006VT0L2OKywtgLR0wAyZCA6KRSXPckVVIhEVc0FBQXj27Blq166N6tWr5zr2/v37uHv3LipVqsRlK8oKXUPBWrWAw4el03fuMBQkohyFh4fjl19+wbp16/Dy5UuIoojatWtj3LhxGDJkiNbNE7t164bu3bvjn3/+MULFRERUWPQKBRs1aoSFCxdi8uTJ6Nu3L6ytrSEIAv7880/89ddfSEhIgCiKWLZsGerUqWOomnO1YcMGndZasrS0xLp16/J126amppgyZQqmTJlSwOqotFFdU1B17UBVgrUVbCvYI+1xAgDg6dVXwLsMBYlI2tCqY8eOsLe312mXR2dnZ4wZMwbJyckIDQ2Fk5NToddIRqZrKKj6OuvOHaBNm8KriYhKNF9fX8XGId26dcOECRPQuXPnPK/n5OSEjIyMwi6PiIiKkN7tbRMmTMC+ffvQtGlTpKSkQBRFJCQkID4+HvXr18fff/+NsWPHGqJWomJHl41GAMDKW9mx8eLmq0KtiYhKjs2bNyMxMRFff/013HTo7HJzc8PcuXMRGxuLzZs3F0GFZHS6hoK1aytP375dePUQUYlnZWWFsWPH4t69e9izZ49OgSAALFiwAA8fPizk6oiIqCjp1Sko17VrV3Tt2hVRUVF4+PAhZDIZvLy8ULFiRUPcPFGxpUunIAA4V3dDxOlQAEBcCENBIpLs27cPtra2Wpe7yMngwYMxceJE7Nmzhx+6lQUF6RRkKEhEuYiIiICdnV2+r1euXDmUK8fZLkREpYlBQkE5FxcXuLi4GPImiYo1WZZMcTq3UNC9rhtuvT6d8pihIBFJbt68iWbNmsHc3Fzn65ibm8PPzw83btwoxMqo2FANBXP7PXFzA1xdpU1GGAoSUS4cHR3xxhtv4MqVK8YuhYiIjEyv6cMbNmzA06dPDVULUcmjY6egVyPltEDzuFeIjxMLtSwiKhmio6NRoUKFfF+vfPnyiIqKKoSKqNhRXb8rt05BQNktGBEBxMYWWklEVLLZ2NgU2XrvRERUvOkVCg4fPhyVK1dGrVq1MHbsWOzatQvx8fGGqo2o2NN1+rB3YzeYvv5rM0cGgi/FFXZpRFQCWFpaIikpKd/XS05OhqWlZSFURMWOrtOHAc3NRoiItKhevTpevnxp7DKIiKgY0CsU/Oijj+Dl5YX79+9j1apV6Nu3L1xcXNC8eXPMmDEDx48f5w5VVLplqYSC5jn/OZk52MDG1UZx/vFlTiEmIqBChQq4fv16vq93/fr1AnUYUglU0FCQU4iJKAcffvghTp06hQcPHhi7FCIiMjK9QsHAwECEhYXh3r17WLlyJd555x3Y29vj4sWL+O6779CxY0c4Ozvj7bffxsKFCw1VM1GxoWunIABYeiqnED+/wVCQiICWLVsiLCwMZ8+e1fk6Z86cwcOHD9GyZctCrIyKjfyEgtyBmIh0MHHiRHTt2hUdOnTAli1bkJqaauySiIjISPQKBeWqV6+OTz75BH/99ReioqJw4cIFzJs3D+3atUNmZiYOHTqEL774whB3RVS8qHYKWuYeCjpWU4aCscEMBYkIGDRoEERRxKhRoxAXl/eyArGxsRg1ahQEQcAHH3xQBBWS0bFTkIgMrFq1avjvv//w5MkTDB48GLa2tqhYsSKqVKmi8VW1alVjl0tERIXIIKGgqoyMDCQkJCAhIQHx8fHIzMwEAIgiN1agUkglFDTLo1PQrY4yFEwKYyhIxUtSEnD3rrGrKHs6deqEjh074vbt22jcuDH+/vtvrc+Xoihi9+7daNKkCe7evYt27dqhS5cuRqiYilx+QsGKFQFHR+k01xQkohyEhYXh0aNHAKTnF1EU8eLFC4SFhWn9IiKi0svMEDdy7do1HD58GEeOHMHp06eRmpoKURTh4OCAHj16oFOnTujUqZMh7oqo2MjKAkygEgrm0Sno0VAZCoovXyE9TYSFpVBo9RHpKi4OqF4dePVKxNy5AmbONHZFZcvWrVvx1ltv4f79+3j33Xfh5OSERo0awd3dHQDw8uVLXLlyBbGxsRBFEdWqVcMff/xh5KqpyOQnFBQEqVvw3Dng0SMgMRGwsyvc+oioxHn48KGxSyAiomJCr1Dw/fffx7///ouoqCiIoghzc3M0b95cEQL6+fnB1DT3oISopMrIAEyh+5qCvn7KUNBcTMPD6wmo2dSh0Ooj0tWBvVno+moLKuIZjq/qiZkz6+R9JTIYFxcXXLx4EWPHjsXvv/+OmJgYHD16FIIgfWgg7xw0MTHBwIEDsXz5cjg5ORmxYipS+QkFAWUoCEjtv02aFE5dRPl18CAwbx7wyScAlz8wqsqVKxu7BCIiKib0CgW3bdsGQRDQoEEDzJ49G126dIGNjU3eVyQqBbKHgnl1CtpVsIOVoxVS46TFnMOCXjEUpGIh9dYDVIW0A2Ht58eQmloHVlZGLqqMcXBwwMaNG/H1119jz549uHTpEl69kpYZcHNzQ+PGjdGzZ09UqVLFyJVSkStIKCh3+zZDQSo+pk0Drl0Dbt0C3n9f6mwlIiIio9IrFLS3t0dCQgL+++8/DBo0CK1bt0bnzp3RqVMnvPHGG4aqkahYyszMX6cgBAEWHm5IjXsCAHh2/RUALt5MxpccEas4XQ5RCA2RoU49gy85Szrw9fXFuHHjjF0GFSf6hoJExYV8bbroaOD5c2kNTCIiIjIqvULB6OhoXLx4EUeOHMGRI0dw7NgxHDp0CIIgwNXVFR07dkTnzp3RuXNneHp6GqpmomIhv52CAGBfxQ3xt6VQMOpeZKHVRpQfSS+TFKdNIMOj/2JRp145I1ZERAr5DQVr11aeZihIxUV6OhAbqzwfHMxQsBj4888/sX37dty7dw/x8fFaN7oSBAEPHjwwQnVERFQU9AoFTU1N0aJFC7Ro0QIzZ85EcnIyjh8/jiNHjuDo0aP4448/FIuh16hRA3e4Ex6VIgUJBV1ruyF8j3SaOxBTcZHyKlHt/LObUQAYChIVC/kNBb28AFtbaUtxhoJUXLx8qX7+/n2gTRvj1EIQRRHvvfce/vrrL61BICCFgaIoKta3JSKi0smg88NsbGzQvXt3LFq0CBs3bsSUKVNgaWkJURRx//59Q94VkdFlDwXNrfIOBSu9odxsJDPiJUSZ9hdiREUpLSZJ7XzkvSgjVUJEGvIbCpqYKLsFQ0OBlJTCqYsoP168UD/P9wVGtXbtWvz5559o0KABDh48iD59+kAQBNy7dw979uzBgAEDAAAzZsxAaGiokaslIqLCpFenoKqnT5/i8OHDii5B+QLp8l2JW7RoYai7IioWCtIpqLoDsUl6CiJCkuFRw7ZQ6iPSVWZsktqTQfxDhoJExUZ+Q0FAWlfw0iVAFIF794CGDQulNCKdZQ8Fg4ONUwcBADZt2gRLS0vs378fFSpUwJYtWwAA1atXR/Xq1dG9e3e0b98eY8aMQbt27bhbMRFRKaZXp+CuXbswduxY1KpVC5UrV8bIkSPx+++/49WrV6hXrx4mTpyIvXv3IiYmBsePHzdQyUTFQ0FCQbeqDjC1Ur6pC73AKcS6Or7pCZb0Oor/jnItRkOTxatPH055ylCQqNgoaCgoxynEuktLA3btUm6IQYbDTsFi5ebNm2jRogUqVKgAAIopwqpTiUeNGoUaNWrgxx9/NEqNRERUNPTqFOzTp4/itJeXFzp16oROnTqhY8eOcHd317s4ouIsI00GAdKLJxMBEMzyDgUFEwEWlVyQEvoMAPD0ehQAn0KssnSICk/FsRGbIWSkYef5u2jwYgwEE65xYwhJSYBZuvr0YTEqCunpuucPRFSIChIK1qypPM3wRXfz5gHffANUqiRNvba0NHZFpUf2NQVDQoCsLMA079dOZHgpKSmoqLLRi+Xr3/X4+Hg4Ojoqjjds2BCHDx8u8vqIiKjo6BUK9u7dG507d0anTp1QvXp1Q9VEVCJkpim7BE1NofMLW/vKylDw1R12ZOki5OxLCBlp0pnIV3gRloIKVWyMW1Qp8fJpOiyQrnbMQYxDWHAGatQ1N1JVRKSQkaE8rWsoqPqajNM0dXfqlPT/iAjp51avnnHrKU2ydwqmpwOPHwO+vsapp4wrX768YqknAIpmjpCQEDRu3FhxPDo6GqmpqUVeHxERFR29pg//9ddf+OSTTxgIlhDx8cC6dUBQkLErKR0yUpWhoIkJdA4FXWood3WNDY02dFmlUmRYgtr5xzfijFRJ6RP1OEnr8cfX+LtJVCyodgqa6xjUV60KyHcMZSiou/Bw5WlOITas7KEgwN9NI6pWrZraBiJNmzaFKIr45ZdfFMfu3LmD48ePo2rVqsYokYiIiohBdx+m4m3i4Cjs9v8HY1tewZUrxq6m5Ctop2DFui6K08lP2Cmoi9hH8WrnI27HGqeQUijmqfZQ8NkthoJUQH/+CWzbJm1yQforyPRhKyvAy0s6HRzMfwtdiKJ6KPjokfFqKY20hYKc2m40Xbp0wcOHD3H79ZqjXbp0gZeXFwIDA9G0aVP07dsXLVq0QEZGBoYMGWLkaomIqDAZZPfhO3fuYOnSpTh27BjCX7+g8vDwQIcOHTB+/HjUrl3bEHdDekhJAcz27kZjPAYyL2PZRCdsOFnF2GWVaKqhYH46BSu/qewUNEuMQXSUiHIuXB8vN/Hh6p2Cr4JjjVNIKRQXnqj1eNR9BtZFoUOHDgW+riAIOHr0qAGrMYCjR4F+/aTTMhnw/vvGrac0KEgoCEhTiB8/BmJjgagowNXV4KWVKvHxQHKy8jw7BQ2LoWCx8sEHHyAzMxMpKSkAAAsLC/zxxx/o3bs3Ll++jMuXLwMA3nnnHUyYMMGYpRIRUSHTOxTcsGEDRo8ejYyMDLUdq4KDgxEcHIz169dj9erVGDp0qL53RXq4eCIFFbOeKM6nnbqAEyeqoG1bIxZVwhW0U9DzDReYmQKZWYAZMnE/KA7N33YqnCKLkaQkwNa2YNdNfq7eKRgdGqt/QQQASHiuvVMw/iFDwaJw/PjxAl9XvltksbJ7t/L0kiUMBQ1Bn1BQHhoHBzMUzItqlyDATkFDk280YmsrvSAAGAoakbe3N6ZPn652rHnz5nj48CFOnjyJ6Oho1K5dGw0bNjROgUREVGT0CgUvX74Mf39/ZGVloWfPnhgxYoRi3YnQ0FAEBATgn3/+gb+/P+rWrYsmTZoYpGjKv+t/hyl2ygWAGriP77+IRZtzTiiO7ytLgqz0bJ2CJrrNxje1s4a9mxVinksLNz+6Gl3qQ8FPPwV+/hkYOhRYvz7/1099pd4pmPCUawoaSuJzZaegpQWQ9jp/SHnKULAoHDt2zNglGNa//ypPX7gAXL4MqCxaTwWgTygoFxwMtGhhuJpKo+yhIDsFDScrC4iMlE7XqQPcvQskJHBNwWLI2toaXbt2NXYZRERUhPQKBX/88UfIZDIEBARg2LBhapfVq1cP//vf/7BhwwYMHz4cCxcuxO+//65XsVRwT06FQXWvVgEiMi9cwv79ndC9u9HKKtFUOwUFUxOdQ0EIAmy8XBDzXHoD8uxmFIDSO5U7KgpYtUo6vWEDMHMmUCWf3256VAJUs+uUZ7EGqo5SIpWdgs4+jnh+XwpcZZFRyMwEzAyyyATlpG1patd++RK4dUv92KpVQECAceopLQwVClLuGAoWnshIaTkBAChfXjp9+bL0M05LAywtjVoeERFRWabX271Tp06hYcOGGoGgqo8++ggrVqzAyZMn9bkr0kNKCpB656EiFLS1AZKSgUa4gtnT2+Htt810zrNISTUU1HXqsJxjlXIID5LegLy6V7o3dHjwAPDAU7yB/3AT9XDtWuV8hYKyLBFifLxaKGieHIuYGMDZ2eDlljlpUcpOQec3vPH8/g0AgLUsCY/vp6JKHStjlUYljbap0Fu2AD/+CJQrp3kZ6YahoG7S04EdO6Tvu2nT/F8/IkL9/KtX0hqDNjbax5PuVNcTdHcH7O2lUFAmA0JDAa49bjRpaWm4dOkSwsPDkZqamuM4bjZCRFR66RUKRkZGon379nmOq1WrFm7cuKHPXZEeLh5LQrksaS0XUxOgTx9g02bABslIu3Ybf/7ZAP37G7nIEkiWUfBQ0L2WC26/Pp3wyLDTNEVRWle+uARmD0Oy8D62wg6JqIebuHl5Ivr00b0r4OXjVJjIMtWOWSEVobdT0fgtBlb6So9Jgvy316muByz33kZasvS7/fhqFKrU8TBecVSyqE6Frl8fuHEDSE2VWoQnTzZaWSVeQUPBKlWkDnaZrGyEgr/8AkyYIO28HBICeOTzsSt7pyAgrSvIwEp/qqFg+fKAubnyfHAwf8ZGsmzZMsyZMwdxcXkvycJQkIio9NIrFHRycsLjx4/zHPf48WM4Ojrqc1ekhxv/hClOu1W2RtV3qqL6+ZsIDgH8cBGbNjEULIiYyIKHgh71lV0zsshovTbhUJWRAXToAJw5A8yeLX2pio8HTp4Ezp/JQtL+k7B7ehc1BjXF4KWFt97ns1vRsIPUjWaNFDy9GAHAV+frPw9O0Hr86c1YNH6rgiFKLNOy4pWhoIOHPSzcnZEWJq399OxWNACGgsbw7Nkz7N69G/fu3UN8fLzaRl5ygiAgoDhNzZWHgqam0uKh8nWEV60CJk7UfYkFUlfQUNDCAqhcGXj4UApeRBFFvohwSIjUKdqkCeDvX7j3deKE9P/UVOl38cMP83d9hoKFR77JCCCFgqqb3nCzEaPYtGkTJk6cCEBq3qhduzYcHByMWxQRERmFXqFg06ZNceDAAfz777/o0KGD1jH//vsvzpw5g+5cuM5onpwKg/Xr0+Ua+QB+fnjzTSkU9MRTXL30DEBFxfiMDGDvHhEVKwlo1swYFRd/d+8CyxZnoffr844u+QsFvd90gQBABOCMGNy7I0OjJvq/YT58GLhwOh0V8QoL5lfEjBkmirzywQOgeXMgOTIJ/bEdPggDAIQs34/IKXXg6l04U6Si7kdB9acTe/Mp8hMKRobGaz0ecScOAENBfWRlAWKicvqwk6cdrDxckPA6FIy6z81GjGH58uX4/PPPkZGRoTgmDwXlOw6Loli8QsGICODePem0n5+0uUinTsCRI9KDz+HDABevLxh5KCgI+f4ACtWrS6FgQoIUzJQvb7i68ppau3cvMGgQEBcHrFkDtGunPqXZ0FS7IS9cMEwoyHUFDSN7p+DrTQkBMBQ0kiVLlkAQBKxfv55dgEREZZxeKcS4ceMgk8nQq1cvTJ06Fbdu3UJycjKSk5Nx8+ZNfPbZZ+jVq5diLBW9lBQg7e5DxfkqHXwBLy+41lOGKRWeXUGUynv/ldOe4HifpVjTPBBn/815fZGyKjYWeOcdIDlR6hQ0MwU6dMrfGzXLiuUUS2yZIgsPrhhmN90Th9MxBqvgj7XokrobISHKy379FbCIDMfHWK0IBAFAELNw49Azg9y/NnGh6sGSyfNwxMbqfv3oR9o7BaMe5ONGSKvol5mwFJV/4y7etnDwdVGcTwhjKFjUjh49igkTJsDKygrTpk1Di9c7xq5evRpTpkyBj48PAGDixIkIDAw0YqXZqK4nKF9WZMwY5bE1a9THiyLwxRdA797qgQFpkoeCFhb57/SrUUN52pBTiNetAxwcgL59pX9LVTIZ8M03QK9eUiAod/as4e4/u+xTpC9ezP9t5NQpSPrLHgqqhsMMBY3izp07aN68OQNBIiLSLxTs2rUrpk+fjpSUFCxcuBANGjSAvb097O3t8cYbb2Dx4sVISUnBjBkz0KVLF0PVTPkQ9G8CnLKkrh9TE6BuDx9AEODa8Q1YvF7SpRIi8N9/yutEbD0JJ8TCC49xenFQ0RddjGVlAQMHSq9hTSGFgv/7H+Dlk8/uDWtr2JdXdlg8uWaY8OXBoQdwQiwAoD5u4MZV5Vp8989H4yNsgAPiUd4dKKey5mDo6WwLrBtQcrj6RioeCMf1/zSnQuYk7on2TsGYsFh9yiIAkY+UOw8LAMp52cK1pjIUTAnP+/dSy6xW0sPSpUshCAIOHjyIefPmofrrN8/+/v748ccfcfv2bQwdOhSBgYFo3bq1katVobqeoDwU7NULkC8dEpTtuSQoCFiwANi9G/juu6KpsaRSDQXzq7A2G1m8WHpC/Osv4OlT9csmTABmzdJ8cLh0yXD3n114uDRtWO7aNWlXW11lZiqDKycn5XF2ChpG9o1GnJwANzfpfFlY77IYsrKyUnzIREREZZve8xW/+eYb7N+/H+3bt4elpSVEUYQoirCwsECHDh2wb98+fP3114aolQpAdT1B18q2sPaWXoSZVKqgmEXkikhcuyq9eI+LA7IilC/eXpwPLdCb/pePU7H+k4s4Gli8P2UXRWn9venv3MRsp6VY1HY3ZFk5f8Pz5wP790unTZGFt1oCDRog/1O6ANhVVoYvL+7ovwNxbCyQfEf58zaBDKHnVF6IX7kCc0jTEdu2E+DbVLmmz4urhRMKZmQAspfqwZI9EnD7gvbuP20SninHuqhsYJocHqtveWVe9BNlKGhhYwozOytUqKv8vZS9ikJWZs5/D4f+iMEwl78xvtkFtWXPqOAuXryIRo0aoVkOazdYWlri559/hpWVFebOnVvE1eVCHgqamwMtW0qnzcyAOnWk00+eACpT1XHtmvL0oUMFv9/gYGlDk5IgKUnacOXLL6XONl0Vt1AwKgq4fVt5/vJl5en4eGDlSum0IADTpysvK8xQMPv3lp4OtU878/LihfLfRPVvj6GgYWTvFASUXawREeqPDdr8/bc03SE/fzeUqyZNmiCYgSwREaGAoWBISAgWLFiAMWPGYNKkSXj+/Dn++ecfJCQk4Pnz53j+/DkSExNx+PBhvP3224aumfLh6ekwxWmXxj7KqUeurqjwegaxJdJw95L0guzSmTTYQ9mZZRP5GA/uKte10tWvA/bh0S/7cHLEr7h6oHhODfvtN6BePeCdVpEQ/t4FIS4G8Sev4sI27UFmUhLw00+ACyLRBEEYVv8yOnZ8fWEBQkGX6sqEK/aB/p2CJ08CnqL6xj/ysO/VK8AySjk1yqlnK9j3aqc4nxwcXigdX0+eAE6iZuAZfuGpltHapbxQhoJuNZTtjVkxcUhO1q++si42XBkKmtrbAoIA7zeVoaBZVhqe3kvSdlUAwLHP98En5grKXdyPvSvDCrPUMiMmJgZVVdbbMn+9S2dKSorimKWlJVq3bo2jR48WeX1aPXkirRsISAuXqq4zp7pJg3zNQUA9VLp7V7PbTBd37kihY4MGyk0mirPJk6UOu/nzgT//zH2sKEot6Rs2SA/gQPEJBc+cUT9/5Yry9OXLyg5Bf3/g22+VNVy7Jn1SVBi0fW/5mUKsOnW4ShWg4ut1ljl92DDkG42YmkKxdoquU9svXJDWbPnoI2D79kIrsaz58ssvcfnyZeyXf9JNRERlVr5DwSVLlqBOnTr48ssvsXr1aixbtgzDhw9HzZo1cefOHbi7u8Pd3R2mBQhJyLCyrydYtZPK5g52dnDztFScfXpNmmJ883ik2m2YIivHkCwnGWkyJF66CwAQIMO5dbd0vu6NG1JYl9eHxvq6elVag/z2bRH/w98wg3KabcgJLesKQaqrZux5jMUKvGO6F6O7PlRupvn6jXt+qHZkpYRH6/1e6eSRdFTAc7Vj8fektQKvXZGhEqSA0NICqNDcB3U7V1KMM0uJR8g1w//Qw+6nwwGa03+jb2j/GWuTHqm8foWmXpCvqOWEWISG6luhJCsLmDcPmDZN+f67LIiPUP6bmzraAQDKedvBzFoZPtw9+VLjegCQECeD6ZMwxfnHJ8O0jqP8KVeuHJKSlEGss7MUhD9+rB74Z2VlISqqmKz5qG3qsFytWsrTd+5oPw0ABQk4d+6Upn0CwObN+b9+UTp2TH1dxdzW14uLA958E6hZExg2TLkuX0G2qPfxkTo2AcOFgqdPq59X7RRUDeJer4ep2IU6NRW4pfvrgXzRti5dQUNBDw9p12YAePZMfVoyFYy8U9DdXbkLuWooePNmztdV7ST+91/D11ZGVa1aFTNmzMC7776LqVOn4uTJkwgLC8Pjx4+1fhERUemVr1Dw9OnTmDJlCjIzM2FjY4M333wTVatWhSAIePr0Kfr27QsZW/uLjaCj8XDIkrq0TE2AOt19lBcKAtxqK6ePxgRHIi0NeHBeMxEJOZS/5OX28ZcQMpVzCcNP63b90FCgXdMkTPvwCT75WPffo/iXqfh9wnkcXxeS9+DXduyQ/t8UQfDGY1gp81G8/E9zKq0oAquWpKMtpG6U+vVV3p+ZmEhv4PLJu6GyU9BJFqVotCmoO4efwgTqPzeTl88QFwfcOxMJS0jrK1WoAJh4VoJbDWdYO1kpxt46bPgpxBE3lV2CpiqPNukPwxXv5fOSGaPsFHSq7wUHB+m0DZIRetcwc1YXLQJmzAB++EGaOabaxFTSpacDOWVHiS9Upg87S7/QgokA+xrK3cjvH9Me4N44+hJmUCbZL28Uz47gksbb2xtPnjxRnK9Xrx5EUcSePXsUxxITE3Hq1Cl4enoao0RNuoaCd+8qT2cPBQ8fzv/9njunfv38tDsn6L6EgUJoaMGmKiclASNHqh9TDdKy++UXzamvFhZSp2F+mZkBvq8/EAwJMcwioKdOqZ9X7Q68cEF5XD4NVx4KAoU3hVjfTsEIlee/SpWkMFVO5e+RCkAUlZ2CqrtfN26sPJ19zVFVqpepLjtAevHx8cG3336L9PR0LFy4EO3bt0fVqlXh6+ur8VWlShVjl0tERIUoX6HgihUrIIoihg4diufPn+PSpUu4f/8+rly5gqpVqyIkJAQHDhworFopn27tDVOcLudjD2tPF7XLKzVwVXZdZUXi9m3g2XXNUDD2SqjOAQ4A3Dui/gLa7EU4Qm7m/Un7rs2JGJm2AiMQgJg/Dun8nm3tu/twb9kBHPffjPUzdQsg9+wBHBGLTjiCtm2A7t2VlyXe19yJ9/hxwOzOdVhDmsLn19JMekHbuzcwfjzQsKFuxaqw9XaBg7102gmxuHMzK9+3IRcVBSTf1ezodMdL3LyWifCLymDH3tcFsLYGBAF2NZTdgo/OGT4UfHVPGQr6qjSqumVG4P7dvIPf+JgsmKUrg6tyDTwVM48A4OnNWL1rzMoC1q5IQx/8iSH4Fe4Pz6Nji2QcOaL3TRtd6AMR77qewrAK+/HLAs2OzeSXyk5BK1c7xelKTT0UpyOCtIeC2TtqU8Oec11BA2jbti1u3bqFF687a3r06AFbW1t89dVX+Pzzz7F8+XK0a9cO0dHR6Nq1q5GrfU2+87ClpTR9WJXq9GF5KJiQoBm0HDmSv8BKFIHz55XnHz2Czp+sfPONtHPuiBG6319wsDRNuWFDYNcu3a8HSJtuZG9rvnpV+/poGRnAihXSaUEA5s6Vfr7R0cAnn+TvfuXk03eTkqTON30kJ2sGmi9eKEM1eRBnby91OgJFGwpaWQFNm0qn790DYmJ0u372TkHVUNCQ6woeOgR8+imwdWvp6kAMDgaWL9e+k3hMjHLauLu78rj83wlQD5NViaJ6uHvjhvSkTXrz9vaGt7c3KleurDid05eXl5exyyUiokKUr1Dw3Llz8PT0xOrVq2GrMo2lQYMGWLp0KURRxHnVF+lkVGrrCTbyUa4n+JqlpxtcXueEbniFnTsB8zjNUNAx9TmunFIGM3m98Q8/r/5mT4CIM7+FaR+s4tGeG4rQrUHWFfx7OO8XfuGPMhFzTtlxcubbY/jrz9zfWD56BFy/LqIn9sAC6ahdG6joqZzuLkZHIzpC/cX6sqUimkF60VrZG6jYtYG0s2bDhuo7FeZHuXKKzfdMIEPYtdiC3Q6k5bS8IU3vsLIEKrz+MN4UWQg5+xKxt5RveMrVUwY+FRopQ8FXWjok9RUXqmxRs6nuAafXG5FaIB13T0fmcC2lZ8GJEKD89yxfyxk25e0V51/ej9W7xkOHgOqPj6A+bsAXD/E2DmBk/EKs67INmxbnXaOhBQUBDx/mPU4Xv0+/iaYJR9Eo8wLufhGIjcti1S5PjVL+Xdu4KR/Ta3VU/o5kPnqKuFjNv6lnl9V/X+yzYnDzUil6k2sk/fv3R7t27XDtdUdMuXLlsGjRImRmZmLRokWYOHEirly5gsqVKxePTbzCwpShScuWUiijysdHuRaevDtQtWNQ7sWL/E0tDQkBIrP9feqS5GdmSq3BALB+ve7rBfz+uxSqyWTSRiG6BhMXLgBLlkinLS2BRo2k04mJ2qe87typXF+xZ09g5kygbduCTR2WM+S6ghcval8X8MoVKViTh2tNmyqnib75pvL1R2GEgllZykC4WjX1YFrX+8tp+jBguFDw6VPpdcOqVcAHH0jrFo4dK/0ul2SiCPToIX1A2rSpZjivbZMRQHrtJA+Oc9ot+ulT9eunpHC3YgMJCwvDw4cPdf4iIqLSK1+h4IsXL9CkSRNYaFnsulWrVgCAly+1rz9FRSstDUi9G6Y4X6WDj+Yglc1GXBGJgADp/wDgYA94KPMiXPnzIUQRWOAfjE+s1uPzVudyfE8Uf1tzwfj7B3Lv4EtLAxKvKV8YWyAdF//Me8rO3ysfw0xUvkHxxBN8NTAs1+Wa9u4FvPAE1RACRwfpNWq5gW9DUFkX8PZRZTdFWBhw8+9QuEF689isGdR3JywoS0vYV1J2Z4Vc1H0H4uPHpSbFVauk1+PHj2bBE9LP3ccHKF9R+acdejoC4lPlGx7PZsrAp0pr5emMRxFITdEMf+bPl96PmppK7+0t3R+h7lthCA3Nu6sn8bH0PWWZZiG2hgksfBwUlz09n/fGAi8fKNtFLWzMYelgCTtPJ8WxyAdxed5GXJz0PiInv65IwJu4CgAo5yxNczZFFmqJt3FzcgBWfReb530YyrRpgJ8fULeu/rOkMjPV/+6cEIurEzZg5/pYxbG0GGUoaOuuEgp28oTF6z8HWzERF49odhnG39HsILx9jFOI9dW0aVMcPnxYrQvQ398fQUFBmDp1KkaOHIlFixbh6tWrKKfaNmssqht8tG2rebmZmTKUCg6WfjFV5+erdmTJQ73kZODrr6UHuJxoe5DXJRQ8f17aqh2QHjx1nbZ88KDy9N27eW8UIjd9urIj8OuvgXffVV6mukGH3NKlytMTJ+p2H3kxZCioup5gjx7K05cvq3d0+fkpT9vbKztGr1/XHv7o49EjZVBZvbr6fes6hTi3TkFDbTby00/qn6rGxko7NTdqpDmdviR59Ej5e/XkCdCunXowqPq+QDUUBJSvpXLaLVrbtGJOISYiAwkPR75mwwHSw1VBViAhKs7yFQqmp6fDKYeuKIfXC32lc/5YsXDlWBzsM6VAxkQA6vbw0RykEgo6IB6xEUlwhjTVxtMTqFBPuebgo2OhCJgbjoR1W+ElPoLtmYM4ue25xk2+CE2CGK0ZbiVeD831AfT8yXRUyghTO/bwSEius8lEEbi4RXO6WPP0E/jf/4B9+7TPzvrnH6AKQhBcLRghnS4h1N0Mps2awLJyBcWYsHPKUHDVKsBPlDpgHeyBmm/7ar6wLaBKdZVv6q8fi9JofNEmPR3o3x/YvVuahTR0KHD90HOYv17fzcdXgEX9morxwf8+gTuksMbUBPB5SxkE1upQCSavGzisZYm4fkb9H2nlSmDJl8/RIfkf1JTdRobrZaTXXY/bFhvgP/O62tjEmAxs++oaLvylfHOV/iwKIkT898Z/OFfpHC43vwtRkP5RddlsJDJUGUaZOdsDggAnXyfFsfjHsTleNzUV+OrzDHRxvYx2brdw5bLmL9OTJ0Ds/nOKjWY69rDEh6OsYWP9+meCFFybvg3fzc3nK4YC2LtXWtMQ1lFIyUjBTz/pd3snTwLWcepTBR0RizMj1+PwNunvPCtWOX3YQSWgNndxgJuv8vzNg+r/Vq8iMmAarfkBUNh5zccEQJpZOGiQ1BTDF1IF06hRI3z//fdYvXo1Jk6cCEdHR2OXJJFPHQakMEAbeSCUkSG1waoGIJ9+qjwtn0I8YgQwZ450WU6hnep6gnL//pt3B1/2nTZVNzHISUyM+lRlQNpVN681lJOTpT9EQAqZpkxRX0ct+zTcoCBl2Fmvnub6jAVlyFBQdT3BCROUp3MLBQHlFOKMjJzXZdy1S/33KSfPnqlPP1f9nmrUUL/vnKalZief/mxjAzg65r9T8MULaUp4Tl6+VG40Y20tPSBav36iSUgA+vYt/B3WCkv23+OnT6UPCOQdkDl1CgJ5/1sxFCTKU2IiMG6c9BrSEMvGlhVTp0rvd/v10/06kZHSBvVubro/vZRl+Q1cyXjyvfswlQw39yo/2Xb2toetl5aOEmdntY6yGrivmKrp4SnAo7dyvZeMOyG49fUOmEL5huvGds0pYNf3Kbu/LKxNFd1GzrJIHNuVc1fX1Z1harcNAPYvH+T64fm5c4BVuLK78O2uUgDqgzDYRD1Gjx7SGvdLlypfaycmSu8bXZ0uIdwzHCYeifjbIQIiAOc6ys0VXlyTwpSUFOCvNZGoDulNR9OmgOlb2dbM0kPDji6wfj3bziEzSqcNNP/9V33W3KZNQHqI8t/bs0kFuPv5KM77pt5WbEDi4m4KC29l+Gld3gGOlZQdYneOKqeE7twJjBsr4j1sQ2NcxjsWm2FfVdkdc+zOFbVpris778Tt73dhX78A3DjyAvHxgGVSFBIcEhDvEA87N2tkeYmIc5B+D1JC8g4FY5+odAq6Sh88uFd3UhxLexmrdSbb2bNAzzqhSPppFbpl/oNuSduxdNAFjbxg4y/JaCRK08vs7YCaw9+C7/IpGLC2E+xfZ2KVEIFzs/fjq68K78XW8+fSJqOodAlothxosQh/7otSbDpaENt/z4Q7pODOzVXadRoA7GRxOPzRb4iPyUJWvLJT0MlDZXqiIMD1DWV4/Ois+r/VjcPPNTa1AYCXNzRDwYwM4J3/iTi75SH+XPkM77/PJaFKFXmnoKVlzh3U2XcgVu0U7NcPik+njh8Hfv5ZWm9N7q+/tN+mPBQ0MQHefls6HROjvftOlbZQMK8/7KNHNQPAGzeAv//O/Xpnzyo72Dp3lrom5dOHAc0wRbVLcMIEjSU/Ckw1FNQ2ZVlXmZnK0LJiRaBTJ+XyGVeuqIeC2X8X8lpXcNs2qYuyQ4fcOz7/+08KmatWVf4OqIaC1atLX/K6Ll7U7YFb3ino4SH93FVDwdw6BdPTpTUqvb2lf9vvv9c+bulSZcv6qFHSbtnh4dKuZYD0dzFyZMl8R6/6eyzfCSw8HOjYUQo8cwsFVX9PdA0FtXUUyhli3UyiEmbFCulr2rSC7dlVFp07B/z4o3R6927dV3H4/Xfp4S0tTWqcoJxNmCB9zrZwobErIV3kOxQMCQnBxo0btX7pcjkVjSenwhSnnd/00f7mwtQU7rWUYWFtKBO4CrWdUa9PDUWoZyfGw1FUX7D7+cn7Gq9fH55UfnpvUbMKKtZQrv92eUfOa5I8PabZvVARz3BkV86fnG9ZnYDyrzvgPD2A5p3t0bOndJl8l+DgYGkGVtOmUpB25AggS8+AtdNdmJgAzk5AnL0Fnic+h0cTZSiYeF8Kx3bvBmrESW90zEyBNzs4q7/B0pOFhxsaNJBO18JdBK7NyvM9wc6dmsfk6wnaWAOVWlRGlVbKud/mKjvE2viWl96YygkCHGsrxz65IH3fp09LSx654hXKIRp2tkCVEaEY3uUeHF43KIkOT7BomfQm5/TmMKRclt7oC6IMp5dfRdi9NNgiCZEuUoJp524DJ297RLtInaSW8S/xMlxLoqciPkIZClq7S79LFWoqO6QcZLHYskV6z751K/DZFBG9WkZhwVu70erhRkXnKwB43juKTctjFeczM4Frqy/AAlJ38xt+ljBr4QeYmaHywLcw6MeGijUQG+My9n9/FRs25FpugchkUrfnq1ci4P26C8c0A6nlLmHbtpyvl5Qk7T2gTWYmcGrHC0Vw59fCBD1+bAez10tn2qRE4q/v7sI0PVlxnXLedmq3oTq1PPHeUyQrhyL0lDIktLVRHs94/BxJypwRAPD9dyLKX96LofgVH2M1Xuy7hKlTc/6+SPLgwQNMnToVrVq1Qs2aNTFV5Yd24cIFrFmzBnH6pMaG8OiRcgHMFi001xOUy74DsfzTHhsbKUzp1Ek6n5QktZOq2rNHMyiJjwdu3pRON2ggraUgl1ug9Py5ZjfXs2d57yisOnV43Djl6blzcw9xtO3KXL68FDwB6puNRERA8Qfv4iJ1khmKtzdg9/rv+8iRgrfrXr+u/IStVSvpdYU85IyIAM6ckU57eEg7+KpSDQW1BT3yIFgUpXUUtf1cRVHqtoyLk8LWZcuk49lDQUFQdqC9eJH37sGJidLvFKCs28YGikV/c+oUPHdO+v5nzVJOC549W3NtzNhY5eYx5ubAZ59Jp52dpWno8iDtjz+kzTpKGtUg/tgxZdD5+LEUfqqGgqobjQDS36+lpXQ6+1RvmUz5u1KxIhS7jOXUKRgSIgXGnp4l8+dYyExNTWFmZob7rz8YMDU11fnLTPV1IxU7qqt47N5tvDpKiqws7S81dKH6892/P+8JA2VVRIT0MJyRAcybx47BkiDfoeCZM2cwbNgwrV+CIOR4+fDhwwujftIiIwNIuROmOK91PcHXHKq4Kt7UV4U0FddEADzfdINFeWe4VHNWG2+iki1aREXg/mX1NxdR15Qvvt0be8GrbRXF+ScnQrU+eCbEi5DdV35Eo7qW4Y3d2tciTEoCru5QTh2u19wO6NEDjRoBQwYDnX0foA1OoDruwwkxuHtXRO/ewI4d0nqCSQ6xcHYGTMxMAAcHBEcHo3pb5R2LUVGIeZ6GrRtS0RDXAEjrYdt1bKZcPN0Q6tbFm42lH6o9EpBx+36uSyBlZUkzrFrgLKbiB4xz3QJXvFKEgpUrAyY+3nCpUx62dppBsHN9T41jFZsov++oGxFYvlzajTktTfqdsDAH2g2OQ7j7czhlRaHVG6//zQUZAneHIDZGxLGv1D+afHHsNp5ckzYZiXKNgqWVAFNbKzhWskOsuxTUmUCGe8dz/0Q/+Zly+rBdRSkUtPVwgt3rpjZHxOGjj0RM7HQDf36wHVi0EI3PLUdDKN/4O75+v2WODJybuQ/RUdKbzX0701A1St6ZIAIfOuN85DVkyjIBQUCFET0wZGoFuLx+H9IDezF33CuDLS8lFzjnMUwP7UNzh21wswpGebtEqR6X+1i/Xvt1jh6WoZvLRbzncgTdyl+Bf5dH+OnrJEUH6b//Alax0s/WRABqtXJDg/HtUKGtclr5ndUn1TZxcfFW38igVidPRYhYPisC588q/3hfXFV2lFZpUR6mr/8kXMRXuHpJ2QZ4+TJweu6/aAJlZ1AP7MU/i+4jIEDnH1GZ8+uvv6JevXr46aefcPbsWYSEhCBSpT04OTkZn3zyCXZq+4SgKKm+E8lp6jCgvgPxtWvKnXhr15YeT+WhIKAMg+RrvD59KoVRqi5eVL4Sb9FC/fq5hYIHDihPV1B2TKuFftmJovJyS0tpkVV5EHb1qvSqNyRE+yte1VBQ9ecjn0IcH69ce+3nn5VdhR9/rJxaagimpsDAgdLpxETo1JIOSJuw9O4ttTGHhamvJ9i6tfR/1enQ8rUCs08dBoA33pDqADQ7BTMzpQctufPntbe7HDokfQIk988/0hRt1e5H+Yd2eXWgqcq+nqCcfF3B8HAp9IuJkaYAf/ihFLS2bKkZAGZkSJ2Aqi92Vq5Uho5Dh0qhlWq9qp82TZmi+zqI+ZGZKbW4/PabFOJl//QmJ2FhUmB76pQU7mUPa0VR2Sno6iptKrNpk/Lyn3/OvVPQwkK6DiCFu6qfdAUHK39ufn7Sxm6AFO5n3+U4IkLqxn3yRPrZT5ggveAjBVEUIVP5vRRFUecvGZOPYksmU3+I27u3ZDYcF6W1azUnFfzzT97Xi41Vf9kTGVk4e2fpKzVVCjmN2TS9fbvy9zAmRvuKL1S85CvdyGvLem5nXzz8dyoetunSCysB+D979x3fVPm2Afw66d6LFjqAFmgpZZTVsveUJYIsAUGWioAKuEFQ0deFIIL+XICCCwRxoQIiIEuGDNkt0EIps6UDupvz/vFwcpIm6YC2aZPr64ePbXKSPjkZT8597vu50XRgqNltJX91XUGlfLdmTcApWKwnWKt9PYPtu4ypDVd/NaPon6/UYF5ediFyzqvBggZdQxD9gHp73/RzOHjAeKba80sKPLUiUORgD7R9UP3CnHbwrMmkhvXrgcCseN1tmg6uL6J2NWuiXj3g4YeB76f+hTebfo0n8T5G4Dvs2iXjq6+AUJxDhmcGavhBnKHXaHAm5QwatPOHxkE9G7pjzRWkbj6oyyRr0lLvy2t58fJCrc4NdYHQWOzDZ5+Jn7VakXihv173nj1A3rWb6IktcEU2Fow9gy/bfAhXiDSu1q0hDlYcHeESUgNF6TcZUYR31ssqvJGMGTNk3T4P15zDsBEyDtZUMzGivRJ0x+tZzmfwVO8TKLxYpBQ4MwP/Lj+MbJds3Ha7DY2rMyBJkOw0yA4CcpxEl9ptz/2Gq+fMH5zkXFeffK/ad6J73t6616w7bmEsVmEo1qExjsMdamaptxcwcnoARr7fThfcCrx1Bh9OO4Hvvy3A91O3whliHHZtb2Bn8AX8Hv87diTeWQPMwQG+jw3HQxOd4egA2KMAnW9vxMQJcpnODMqyOA6/csX4jOKFk7dx4Y3ViMU+1Av4CR18TmBUgwOIwX64uF7EnsMpRo1a09KAZaN2onvuRnTETrS59hOCN69A5vx38XjUdpw9KxJOgiDei2FhgEeEyIJt/6S6JIBLpnpQZWcvwd3fMAjhFBakOz52QD4O/n5dfTxn1Ofbr1dL1KwlAtD2KMCx7SIYnJMDLHxwD9prRfajuxtQw090Ix+GtXj10UsGX65MWbtWJEzpxyKs3d69ezFp0iQ4Ojri7bffxj///AO5yDf8Ll26wMvLCz+X5ltsRSrNeoKA2mEUMDy1rgQLe/Qw3L55c8MyzF9/Nbxe/9tlu3ailDQsTPy+cycM0lr16ZcOv/66+nNx6wqeOqVmmnXuLDLI5sxRr3/ySRHYcXUVpdBKxtitW2qWU2SkyHRSFF1XMCtLBE8Akck9dar58dytxx9Xf1Y6VJXkxRdFWsTKleK5UrooAyJTEDAsh1aYCgq6uooOSoAIpOk/RwcOwGithPnzDcdYWAijFOPbt8VzqmQKururwV79MbzxhmGzi6LMBQWVEmJZBj7+WOyDRx8VgTX97MOWLcVrUglI7t4tjjoBEaxS9ptGAzz3nPHff+AB9bEVFIjnqrzXWHj5ZREYHjNGvP7c3UUJhZJxa0p6ugiujholXvu1aomy7Pnz1W0uXlTXM2nVSmRpRkeL9yUgsnA3blS3N7Ues34AVz+LVP/nmBhxvwr9EuLUVKBPH8OMTlkWj9WWJo8SaLVaaLVaREREGPxe2n9UNcXFiaCLIjHR+FwFqVJSRP8vhbI8844dxtNQUb/9Znz+T//jraqYNUs0uu/QwbC3VWX67jvD30ubiUmWU6agYFnb17OdvWX893OC7mevEA941C2mQ6W/v0HCBHDnJPadspnOk8LheacCOLazC7p88CD826vls+f/UM/Qn/jrKqSCO5kOkoRm9wXDv009BN05FnLHLXz7wXWjY5GTP6uBRd9wPzQcE6MrW65beBZb/zS8gSwDKz7Xoh5EtkmjRoBbdAPxZVRvYXZ/f/Fdu0ljUZrbAOLvBLoeQ4F9AXz9oFt36FLGJeTI2XCqo35hXf1mElprxek3VxcgfERLtcylPMXE6I6rwnAem7++jiNHxNJKPTtmo1lUgW5t9x9+ADpgFzTQIiRExDTv6ytj6uPAtCeA+jG+ujIxj4ZBRn8qvKtxUDC0fRCc7zwsV2TBC2JW9HAtxOxhCUivfxmX9YJtsRkOaNNYBOskv9PwOGj6gDp377+60mF7DzXg5NMwAKm+d7oSX7qMj9uuwIX/TM/EBalqpqBPnTsvRC8v9OoF1K8nugW38DwHdzcRBGwUCfToDox8zAdT1/VA5KJHETiuNxr3q6O7n4xvf8XeUYtR74Z6ajXnPgeRsQDg38v/Qivf+QLs6wu/sf3Ru7f4NQzncXnrCXz0kUjmeGXYMbwUtALLxuxBQb76Os2+rcXSIVvxtNdydHPYCV+PPAQGimOalBT18a1++iA0hXmQJRnpQdcRGQl4egF+Llloiv/g6HfUqGR59kwtwlKMy+8kyIi8vgO9OuWIoDnEKcLGjaEriYsaWB+eJj4PNO5ukOyKTAfOzvCPUgPL8dvFeqEXzuTA6Zb6IBr2DYNPPTWj+Pwesa7g0ilHEJEgMqy0Gi1CxmcgenwKXJxFkHF44dcYPyjV7JfX774Dhg8Hvv4a6N27+GWkrMnbb78NWZbx66+/Yvbs2YiJiTHaRqPRoHnz5jihvzafJShBweLWEwRE+/I6d96DSudfQA0KhoSoJ1zc3UUZ7dCh6nZFv03qBwXbtxf/V7IF8/LUMlZ9BQVq8M/bW5w5UoI+f/9tPpCon0WodIS+/34RpNCXny9KQb/5Rvy+c6d69FC0YUjRdQVXrVI/GEaMMAxMlZfmzdV9dexYycGSpCTgiy/U33Ny1FJxDw/o1r3QD3AqTAUFAbWEuLDQ8A2tnxWoZBPu2WOY9bl6tZox6udneLkSDFJKhwGxz5VS4MOHRWajuTTvZPVkpslMQQCYMcMwO83FRQSzly0TaTpt2wL/+596/XPPieBuvXpq0GzkSKBBA9NjeP11Nej1779qUBEQ2XJvvy0+DIt+gTpzRtTBff65+aO/W7dML3514IAoC7hiukEUvv7aOJiakSG6aCv7XD/dRv+1oB+E1t+/Skm2PnPNRooGBZVMQUAtIb59GxgwQA1uhoaK9xAgMlfvvx84fdr4bxJZiaI9sADj82ikeuklNSF59GiRvA2I6bq4ogHA9DLCVS0omJWlTt3nz5f8mCpCYqJxZqA1BQWzssR7zNIr+JQ3NhopI61Wi0WLFiEyMhLOzs6oXbs2Zs2ahdulLcWoBPrrCSLWHbsu7kZmrpk1hO50IE7zSsOphqdwMvIkzjY6gz9yj+Ng8kE4tayNad92xLRF9dHvm7GAlxeiBkfobp5/6izSbogDn9Nb1DPnDkEBcPdzAjw8ENxCXUPmxOqDGD6kwCD779ouNQstoH0DOEbW0yV9uOMWdq1Xv4inporve6e3X9ZlxzVvIYkv3oDIyBg+XBx01a0LycUZgwcDtUOAttgLB+TBzfM0PNzvNF7wEcEMGTLiUuPgHaUG0kIv74YnRFCqSVMJ9h3Lr8GIgXr1ENXZD0qSYqOsA2jeXIa8fTuewTt4LO99zH74GrKygE3rMnXlzI0aQbc+YECAqNzRHXgDCIgONPgzrr7O8AzzQ1EaLw/UCFPXfgxBktjHWy6iaWQetiNBHGi5uKARaqAP6qNNzUTYIx8h9nGw81IOtCQE9FEPdu1RgJQa4kDXydsVGkl83DTqGQJtD0/ddtrrN7Ci03K89OgNzJkr47WFKTh7vgB5uTJkvRdKjXpKHbADatZ3x9ix4jjt6afFEk1PvR+GEWsfRKcfZiLyoyfh2KOTOMCUJPRZMgDunuJg0xVZuoxCCUBUbw3s26hBy1t5t5CQlqDuoCZN0GpoKOrfeYn1wR94eloeprXZB/n77+FwORHXv/oDL3Xfg+xsID1Nxry2f+DGDzvglXEBXQu34CksRnvswuljeZgyRRzXHTtSiNQ/xEFPulc6ajSxh5OXCySIhAwXZCPG7yus/qJQF1vYtAnYsSIeHhD7pU0bCQMn1UKLVmLf2qEQbpfjkJkmmoxopDvLuSlZSpKERmP11vZSnisvN6PLAKB2WzVrN+XIJeTlAcc3qwd4Th6OCGxaA/5N1TML145ewQ9fpCNtlchikyUZN+8/i1MDHPFnWxnNxl6FnQZww20MyPgKD/S+bbTk1/79wPjx6u/Z2cCQIYZnw63Vrl27EBsbi45KJpYZtWrVwmVL1oZcuKAGidq2Nb+eoEJ/XUFFVJT68+rV4s28bZsI7oSGig68gDjquS4yVaHVqkdB/v7qZ79+CfHatcaZVnv3qgHJ3r3FZ6cS7c/Nhdm0Vf1v1EpDE41GBLK+/FJk091/v7rNokXiDW5qPUGFfvDkwAFxG8XMmabHUR70Oz1/+KH4/6VLIqWgVSvDtdree08tZ27Z0nAt2vbt1eBd/frqmniAmCtaG3/GADAMpOqXyOoH//QzRJVswexssc6g4ttv70x4EJmMynOtv96vm5soNVZKdc+cEdmNprqXlVQ+rK9/f5EJmJYmxj11qrpvundXP7jS00X2p1JSXaOGYYZdUfb26rqDgDhyTUkRH3q9eokg4+jRoqmJIjFRdPldtkw0KYmIEMHEosHBVavUMtxOncQYlcd28aIoEc/JMR6TUrYAABMmGFZKKA2A9JuM6Ae7hw0zDN4C4ndTa9OZK/XWf420bm06KPjSS+rRZ0CAeF+uWiX2GSC+NPbty+YjVuLAAcM+VeZs3Sri6B98ACxfLs7X6DfosyamgoLWFIApTxcuqE3g3d3Fa2TgQPX64vZbXp4aAPT2Vr++7N9vvJqBvsou5d640XB1iK+/rty/D8DkeugnTqgrx1RnaWniPNaAAWKasyYMCpbR008/jZkzZyIqKgoffPABhg0bhiVLlmDgwIFVIr2+sBC4dSwBAHAp6BKOtv4Xm89txprjZjoW+PnBu2YBjjU5hiuBV3C11lUk1UrGnsyT+PnMz3h3z0J8X/sakkdF44a3I7SyFi0frAd7J3FAYC/nYedXIiiUvE/tPOzTTC0XbzEmCGfaHMG+mH2I9NqEuhsWY2rTv7FrYzqSE/MhXVTP3kcODBeBxJYiY08raXHylzNYuFB8v27aVBzvKesfBvgDoe0CxQGAIioKGDRIrIM0dCjs7cUJ+tbeZ9EaB3DLMx01/CEO7DzUYFhcSpxBsxE3qJ+q4YOj1G6G5aBQq3fAKklw6dgaTZoAGZ4Z8Kq3Fn3dV6Ab/oIGWnggE20SvsWYB3NQK3Ev7CEiRA1buIouKh06iAO0Itk6ddsZZgq61Asy282y65hgyPVT4NEwE2ue/xfffgsEZp/DNdxGJvLEQV9YGHqjPlzggMY5+Rjktwv1cB4pfiLw59etGYZ80A0i1AbkO+Qj3UucRnH2dUFssMgGkDQSwib7IGSUGmSV09OR/8ln+HjdJ3j5lw/QcOxSLPskWVe6DQC1wtXnSndACAAODjjUoT62dgpBTmQDwwPUO1xDA9D6qQ4Gl4XV02Dc+y0R9F4MpCIZoEev6q1hJkmQ+t2HQYM1cHYCPJGBh/El+sHw9KDLzk14rOMxTI/ZC9djhmtYuSILvbAZj+MjbFqfiRUrgI+eOgX3O8G926E3ULtfM6BNG7iEhaPWnYRVB++zaHZjA5Z+IOPwYWDyZKAlRGaGfw2g5+PhaPXpY7j/hcbocye+0QgnEYBrsEMh/COz8L3bEfwv+SdczhQHRd2ebg5HF8MDM3tvwyYjiohuwdBIQJ5jHrykszhwAEjYpR5AO4T7YWfSbhS2VJ+nwuQr+G7KVt3r9GLzRHiMDRJBoxo1cKmvry6G4ocUdEn+GgP75OkCfklJIsZS9Bj13DlRDVYFPmYrVFpaGuroBffNyc7ORp6l6kKA0q8nqDAVFNRfazAqSgSi9ANmSucoWVZLf0+fVqPD7dqpn2ndu6s/f/qpuO+PP1YzAPVLh++7T/xfyfwDTJcQZ2erjzM42DCI6eUFjB0rMrx++EENeB05IgKb5tYTBESQXgnUb9umZjJ17Wq6HLe8DB2qZmqtWycCKG3biiOhf/8V8+a1a+Lo+eOPxXYuLmItxiNHREAsLEwEQhUajeGYGzUy+RkMQPwtxYoV6toKSlCnQQNR96Ts5927RdDRz08t1+3fXwSAlUxS/SOuok3AIiNF1uidckkkJYn5smgA2FxQUP/5dncXr6uffxavuzuZ5UbefddwfnJ1BZ55RmSyldSkrGNH8SEHiGDWjBkiG1E/ODZvnth3N2+K17F+ll9ioljPsEkTNZNPlg2DjUuWiNvv2aMGTP/5x7jz8aFDahZgTIzIRNQ/uly3TvzfXKags7MIJOozVToMiMC+EkBUukXn56uBvwYNRJORyEh1rdEjR8RankoGpIuLCOA3aCC2+f57NYiYkCD2lbWlddgQWRZxcSVhtLiq90OHxEfEc8+Jt9DEiWJlh8BAMaV8/bVhwnpZxcWJ+9NvFm9JSlBQo1GT33fvNt+IrjIdPGg6cb+iabXiPFDRc4ObNqkfc089JZLJO3dWDwU3bjS/csOOHeq5lf79xXSpMJWNd+uWOJldp07ZAnNarZiSS9sNuSilZ5fixx/vvrfY3dIvHdafBu41g/Xff8VqFkpg926ZC9RevSr2vXI+tKiCApF3pFQ4bd5sXaX6DAqWwfHjx/HBBx9gyJAhWL9+PSZPnoz33nsP7733Hv766y98W/SdaAH/7cqAS24KEuomIC4iDgF3OrVezLiIlKwU4xs4OyMntBAuvuIA3ssTcPF20p3N1cpanEk5g/Un12PpvqV4fcfr+PTk57jWLQdajTg6P/WTKCHOPKGm+9RpL75syrKMHSGXEdozDQ5BWTjW5BjsnW6gfuKf2Nx/EZbUW6wLHji62KNRXzGjRfRrgMQ6idjRZQdu1lmF2c/lYepUtQqlAeIREiw+HDTh9c3vkAYNgBo14OYmqsVmRP0Jr8YZqB0CwMsLdX3CdJvGp8ajXqcAo7vw8wUajGlX0q4vtQPJB/B/O/8PKw6tEE0tAKB5c0TGAkebHcWVOudQEP0N7FwLEBYqrvZFKtx+W4sYiMyymgGAX7824kClVy/g+efFwZTeulX1O9SCpNcZxqeJ6ZI0WZZxtO0NSGP+w62RB+HudEjs6LNncR5pd27sA/+6UfCpIYK9EfDTHU+k+KUA9vZ44IPuqBXuAeeGIqCR4psCWRKfvH4BPuhStwvsJBFMztfmo/uyCEQ8rmb3XK5/HI1qfosAXEGhQxrmfPsJbrmJjD5HB8AzWC8o2K2byAqIiMDpET3wo8NZ7LjwN9afXG92v3eZ0xkxjzRFWLQX+s1tjYcPzEDojEE4lm1cUnby+knkF+rNCjVrwqtXrC6WEAIRAA8KBOroLZda89i3CElQZ72waE88OtUeTz0pslV9cBNDsQ5PPK5F9jYROJQlGQ69ADs3kWnVpfsEeNYOhK+vuC7U5098M3MfWrRPxTXNr6jptQ8SRODMIfZO5kajRmjXDuh3HxCOONTBBaT4puBkp39xzjUPV7Kv4/sT36NQWwhnX1cE9Wps8HidfE1nCro0CIZdZAr2tN2Dc21/xpgn9+PUn+IAutCuECfaH8eWc1uw3esf3AgRQcfauIiGeSKoerXuJbiPt4ejj3r/Sb4OCJzSFL3vJHIE4xIan1yL8HqFaBYto/V9x3FZPgxAhkajxoUA8YVtwQKTQ7Uafn5+SCxFN5v4+HjUKrr2Q2Uq7XqCCv0AICAO3OsX89kNiG/eCuUUvqnSYUAEYpRmGoA4cnvsMRFs6N5dZPUplIy/Hj3UjDdT3+r//lsEBgERQDRzUgWSJLIcFa++qmZQNWliumTSVPCvIrMEAXHiaNIk8XN+vsiUTFJP5uHiRXEG7b331GDqpEli/FFR4jk4d04cRenTfyzmSocBUR6rXH/kiNjn27er38B79RJHti+/rN7m/Hn1OZAk0egFEN/MizIVdKtTRzyPSpabknmn3wxDPyio3zW5a1fghRdEVOHIEbEvzL0GFH5+osasXz+RxZaQINJRzAXEinr7bbVT9Ndfq92y9U98Tp4sxqZkPUZEqIFuQLz2hw8XWYp//aWmVnXsqAbKatUS43S902nuq68MszT1O0FNnCj+HxlpGLBNTlZf576+akRC8eijhr+b2wf63aJv3BDP+bFj6pkhJeDu6KiuS3nqlHjPKWn0s2cbZhJ6eoojUGVMR46II3Qlc5NQr169Uv2LjIxEx44d8fTTT+NQ0e7tlaCgQLzk335b/J6fb/hxXpSphvXK/fz6q0i49fER8f/evcVb3FwFfVE5OSIYtG6dCCoVXd7FHK1WVNQ3b266+frdun1bXVWhSRMRrFT+nn5frYo0Z444H1C0n9PBg+I8UMeOIpmjsmRniym/YUPjDsP6far69RP/d3RUzw+mpJjOvAQMS4fvv1+9PWBcQlxYKL6O/PCDmGJHjzZcXaI4b7whshdbtza/4oU5GRnGgbfs7MrtSB0fr04LrVqJ94lCPxPz9GnxGi1tJuWXX4qvfN9+K6aWHTvubnzLlolzVg8/bLg+5MWL4v05cKBIni8aHJZlcZKhaA80cw0hAXEf27YZLhtVlTEoWAbffPMNZFnGU/qvcACTJ0+Gq6srVpe2o18FOvJzAuIbxCMhLAFO7o5w9lHLIk/dOGXyNkmeMlo0F9+Zu0a7oI1fUzQNaAoXe+Puh4VyIa7dvoYbsVexv/V+pHmn4ebe03ir62/Q3kzTbRfVR0RK/rv2H04VXoVju9aI7lUTAaEFOBF1AlpJBBSdtWo2nlvTMGicxFlg99hauBmdAADQ+MTDq476aRylOYWxXZMwYcKd6l9za/QA4svmnewEHx9gyLA81Gp2SzQQ9vZGl9AuurLW3MJcODbOgcbBzuAuwjrXhlTbuGvv3dDKWvx57k8UaAuQmJ6IY9funO50cUF2V2/UCCmAJAFegflo/UQSRk5w1XXPrY+zusy5iCaOhgdfDg5GmQtOHo5w1lsjsUF309lH2xO346jmOuDmBhnAASSLsqjkZJzDnYwcHx/U860vDqY1GkTADz7eImmkMFCLFu90RnCUJ1KzUxEySJTzKaXDANAioilcHFxQ11s9aIhLicNDH3bE4BWD4dv3MgpiL6KWv4zG0inURzw8HK/icPPDyPDIgL2XGyR7veelbl1RtvXQQ/g3W12v9EzKGcPSXz2Sgz36Lx+KcYefRuyrAyD5eONG1g1cuaV+G5TuZDnmFuYiLjXO8A66dkV0ezeMHCHWLXzsUWDiLHdEr26OzN5nsbftXuxrvxN72+9GUkgSmrRzx5itExH4fzPg3a0FhgwRJeuhSMCAvHW6jtH2DW7Cv10N3d9vUrMpGnQYBP8wcWCY4peCjq7r4dPyLfiHrsPR5ocQ0SUTIQ3d1AyYO9kRsbHA8Afy0KTJalzt/h+8axXoDjBTslOwN0l82+ky23A9NFd/00HBHD8vXGgVB1kjQ9ZoIbstQ1bhv5Ah41TkKUihYkbVeLojuWUcMt0z4YB8SJBFsHhIEnybGK9tebiBB9o93hxt7yS2hiMOA9JWQXtrMXJrfIwakZ+iXZ238eeg9/Fj7Ot4o/FXCIE46TB/vmHSl7Vp27YtDhw4gOPFnH7ctWsXjh8/XmKJcYXSX09QPwPMnKKZghERpksJ9bVtK4INgAgg7dtnmJ7RrsjJmlWrxLdz/XLdnBwRGFGCXy1aqM0ovL3V7OqTJw3LZ3NyRO2ZQj+r0JQHH1Qzr7ZtU1Nai5YOK4quxRcRYRgErSiPPmoc2GrdWt0nf/2lBofs7UWwpST6r8OiAUN9kiROYCnefNPwG7ZS8vngg2pNl6enCCj36iVKzJWS8s6dxYkhfeYy8QICxHOiBIPz88URwYsviqMo/TXv9BvCSJI4QvvsM7VMvTTatRNHZgsWmA4IFycw0LjMODBQ1E3OmCF+LyxUIwH+/uIDceNGcTSrjHP/fpGhqP8aLnqE3KKFYSfql14SR77Z2erlrq7i7KtCf63PDz9U6+ZatjR+XdWvb/i+KS4wql9CvH69OJpW6H/XUQJ/SjoNIJ7fZ54xvs+gIPG5oWQhbt0qxv/996KD282b4u88/rj4rHnkkdLVplqJhIQEJCQkIDExUfdz0X+JiYk4c+YMdu/ejffffx8xMTFYUIln5nJyRHxbP0YNFB/k0F8udelSkfQ8e7Zh029AvO03bxYfQ40aibd5SQGKefNg0Pxt6lTRS6ckW7aIoNCRI+LtZKpa/24cOKBONW3bGk4hlbGu4OnTIln+33+Np4qVK9Wgy0svGTfoqAharXgbK8ngy5erCcKyrDa59/AwXM1C/+Szqf5tsqy+5hwcxMdau3ZqAdkffxg+vpkzje/n8ceBhQuLH39hobqyR3q6WL61LH76SX1t6X/FKG2mYk6OeE+8+KJ4fB4e4lzYrVsl31ahnyU4YoSYspXil23bRNbili1iWeL77jPs22ZKfr7o5zZunOE5nenTy/6aOn5cnEvKyxNfF6dOFc9tVpYIBConBzZuFOd29X3wgdoPzsFBTVpftcp0ZqFWK77KdOsmVvmojNf/vWJQsAz2798PjUaD2CJnwp2dndG8eXPsL8/TP3ehUFuIP858g0sh4qy3cy1vSJL6FJsLCl5wyYNGI7IEm2sC0K9ODwyNGorZ7WdjVJNRaBLQBF5OXga3CW7qh2zXbBxufhin6v2NQ1e+wOmI0zhb/yxuBRcirJUvMnMz8VvcnaN3NzdoGjdC+Ni28B3ohWttr6Do+fbw+9XspcOOKWjUTEJYKBBUU0b36I8wOHIznmuzDX888i26ddGKwJ6rq/FMX1SzZqK0BEAyMqHM+fa+NVDXqy7qeKnBsviMeGRGSTjV8BRONzyNAvsCtHiivYk7vTvJmcnILsjW/X78mnrgfyrECZENgc6dRHOUo3XzgJmPoftk44ORsOExusdUnPuW3AefJiFo8FAbtBltHDz97+p/2JawTXyZv/OpfQYpKDwXj0K5EAlIEweGnp4I8wkTwaennkKNSU/Ct1s/1B3bBe2eaovULmexaO8iLPlnCQ63/QP7Yw4gxVcEBSWNhNZRzQEA4b7qQVtcahwKtYVw7O+Im4+6oGGUPaKigDaNHVFHSkIkTqHAoQBHoo8gva7pb1DZ+dmITzXMsd9ybotRt1ZzdEFZAH4ufoisoQYu/rta5JueszPQuzciI8WyTDUaemBlG0f8rD0Mt0d94VtfzFZajRZ5vc4j/y135Hk4ioPaQYPg07ah7sxiY4jnXZZkeA7IgeQt3l9hPmFwd3RHRM0o1OrZBHUaOKKgXgrOxBxGI4eDCMIleHjJSOl0CoXRTdUsJ0dHoEEDFEKLs81OIWToMUQ1BjQSDErktyduR0ZuBsI6BsO3kZpl5h/ubXL/bE7YCr8mjrpquLpSAs41PoDTkadx3f86atTz0P19Zx87HG9yHLmOuTgXdg63BvyHmu3qARoN3B3dEROkfgM7cu0o5IH90fuJcLS6k2TkVmM/atT5EdE4isY4jog2W9CxWQo0hfl4sl8cZnp+jofxBerK5/H2W3Klr9NSWZ544gkUFhZi6NChOKwfpLrj5MmTmDBhAiRJwtSK6FJbGhcuqIvDlGY9QcA4KKhfmmmOvb2aAZWRIQIHSjDE3d147TpJEttv3SqOliZNUrsSK/QDHIBh0KJ9e1EievGieJMrQQc3N8M1C01xcDAOugClDwo+/bTIkqtodesaHgENGiS+qX//vXGQdswYg3Vqzbr/fnH08sILoqS6pG2VbtTbt6sroms06r6ysxNHN7m54sjoxAlR96WfCWpvbxigAtSTJKZ4eoqjNP0GGP/3fyJwpLzPAgLMlwVXphkz1OBnSIjYT5GRIoNzyBB1OxcX8ZiUQGCbNuJ5VJbD+OAD9Ug2KMjwtooHHjDsxK2sW6gcSQ8fblgOrn8f+t2oTTWcAQz3d9FMQn36QcFnnjFcO1H/6F2/A7Hi1VcN5jkDDRuK97HyfenXX8VCUEpJ8pAhIlrzzz8iiqGkW1kgI66ynT9/Hs8++ywkScKDDz6IH374AYcOHcLhw4exYcMGDBs2DBqNBrNnz8aOHTswf/58ODo6Yt68edhcNF2mAmRmiiCXEh92cABq36nMOHPGMDinKCxUk8kDA8VB/5QpwDvviKyr7dtFMKFTJ/V8EyDKiSdPFh9BS5aIbKKPPxYfjcp3jb17xeoA+rKzxctFKSs1R7/c8exZMZ7yoJ/VpmTlKW9XpVPu33+L8xMHDpTP39Snn424c6eadK3VGsb14+KMy1orwvz5hkEp/XUAjx1T+yZ16WI43fXrp57TWL9efKQ0bSq+2rRrJ5bjvSDO46N7d7GP7e3Vrw9paepzsWSJ+AeIbZS+R4AInM6da34ZnO3bDZc//eKLsp2n0N/H772nTt+bNqnLMptz+bL4eO3dW0yNe/eKYODnn4uvWspXr5Lo7//hw8V+Vb5y5OWJIPzgwerSt2++aT57NjNTfKVT9iegBmKPHlVXOSkNrVa8x/UDeJ9+Kp7rCRMMV8IAxOW//CIChtOni8Ck4rPP1POW166Zzsp9801gwwbx8/Hj1WOdTwYFyyA5ORk1atSAk4kOtMHBwbhx48ZdrfEUGBho8C+8pHVnzCjQFsDNLVE00AAQFlYPD0Y9qLs+KSMJt/IMw/2F2kIkOahBqjrw0p3ZttPYoWGNhngw6kE83e5pvNDxBUxqOQmtg1rDrYYLHL1E2UlKjRRcCbyCy0GXcanhNaS/kImvjn2F9SfX6wJg9hp71PepDzg5IbRbfdR6PRBhf4VC+5YjEiemIvsZV3SbJcrLZFnGv9eOwimyHurWFd+Fm0UXYsiID/F/ff9SY4AODsDgwciHFgeTDyIxzUyetaOj7gtr0p3GIbCzQ1BQQ9hp7BDhpx5I7E3ai1NtTojHE3gZSZ0vIrh7w7I/GWYUDWCdvXkW2fnZyCvMQ7ycIpqjODsBdesiOyoc/9w4jOhXH0RYjAfO1TuHY02OQROYizC99fiKE9TDDXXW+CH8LV+DUmIAuJh+ERtObVAvCAgQ5eQowHmkIRmZyEMh4C2Cy6HeoWI7T09IISGICG6mm0UT0xORkSv2rbuvI3Lr2kNrJ2Y9Oxc3hNcQ+zjcT31t38i6gTf+fgNrjq+B7O0NtGwJNxcvPOvXAk/VjdR9OBXaF+Jo48PYc3GPUbDvxPUTKJQNc7yTMpJwOqXkboOyLBsEBZsENEGzms10v59JOYOcgiLByOhoMZt16oTNPUJxsUAs2qLx9UHEoEZoHatBbDs71BvQGKcLr+Djgx8jOTNZ7KfBg9GsszcaNdYiKSQJh5ofwvEBO5HaGrr92CRAHAg28G0AjbML6g1ojKaxhWjVNRc9OhWgW7tctGgB3LC7jZ01DcugChqGYy1O4CjUFY+94ISHosfAyU58ZuUV5mHz2c2AJKHXJ52R3zENzr2AHk82Mdo/iWmJOHj5IBz9vdGkMRDTWiR6yHZaXKl1BW41XODi7YwarjUASYJ/qBtynHPwT9t/kN3qAuo09QRq1IC9xh4jm4xE57qddZmYt/JuIT79PDQjhmHg4yEY+2QWXEadQqNI0VW6USRQt1E+TkliZXBXV/HFqoHmPBY2/QK/P/pDiVV81VWPHj0wc+ZMnDlzBq1atUJERAQkScIff/yBZs2aoWnTpoiLi8MzzzyDtqXJ0NNTXnMNzpxRSxxLUzoMiBeP/rqsRcuJzdEPYCkiIsQ3LKX00ZRWrcQ3vnPnRAnnF1+I7KeiJbozZqgByuxscQQZEaEeQbm6itvpH0GaM2WK4ZgkSRx9mBufws9PZK5VlqVLxZHs66+LIyA3N7HWnn6QR5LEolyloZT8vvFGydmfGo3h/SqLe8XGGq/bW1KATv9oy9vbuLFFUfb24mj/vffUI8Dbt9XUioro+nw3HBxEndsXX4jglPI+tbMTr8UhQ0R05Pvvjbt+t2hh+Dwqc+Zjj6mpDUW98IK6L2/dMiwjVkqHFdHRahBSfzV7c0HBgQPFkXD//iJCY05srOmTC/7+huXp+iXCgPgcKTrGotq2FfWL+iXY5siyqA1t2VKkHFmx48eP45133sF3332HNWvW4P7770d0dDSaNWuGQYMG4bvvvsN3332HhQsXIi0tDS+//DK+/fZbyLKMD5V0JhPKa55JS1OXW3VzE/Fc/UItU9mC//2nrp/WoYNh8qpGIxKMlywRpYc3bohAj/55jO3bxcH/tGniLdOtm3hp/vCD6M+jBHPmzVNXJDhzRpxrevdd4NlnxZSiv+bhlSvGY33jDbVPV1G3bokAm7m17fQVDQoqWWyASIQNCxOPee5cMVWXd7+dosEQZanR/fsNV2UARGBSeUw3b4rpp6xlrUePio9wU709V682PJegUIKT+qXDPXoYbuPvrxY8xMWJ5/fYMXFeau9eNUMMMFxLUL+EeNIk0b9JP3j0ySfAN98YLnuzYIEIlpnKviua0afVlpxJp0hNVVdBCQkRAWLlPFphoenmH4rCQnEO8MwZw8uV6fz0afE+MLWWX06OCM6NHi2mKiVztm1b9TyQ/te4N94wfP60WhGUK7qyQ2qqOBerPG8ODuLv62fAzpmjBjtv3BDPlbkVIj76yLAnlUI/kOzubngea8wY8T7XX5b3xRfF1zX96aFoCfGWLYa90YDSl49bEoOCZZCVlWUyIAiIbEFlG0txsnfC4s//h/5Pd8PAkW3w0kNPopF/I7g5iC9CMmScSTF8x1+9fRX5LuKLtwQgBJ5my12c7J0Q4hmCARED8EjzRxAaoWae2TtqENi2Ljo8FYvgxt6IT43H+TR1xusR1gPDGw+Hn8udL+2ShHNIgCY2D3XH+MKlXxa2JIiF3s+nnUdqdqr4VGvcWPepdBY3cRJ32od5ewMTJ6KgQT18eeRL/HzmZ6w8vBLnb5qZZWNjAY1GDQp6eSHEW5xC0Q8KAkC99rVg7yBBowEcB7nhQmZS0Xu7a0WDglpZi1M3TuFs6lmxvmBYmDgtFRYGSBL2XNyDNE0eMuZJSGuejIygG8ialgt4mG4MoU+WZaw9vhZHrh7Bb/G/IS5FLYfNL8zHmuNrdAE1Jzsn1PII1J2GPYnrBqXDQR5BcLY3/MJedL/pq9FYLRMK8YyAk7143/i5+MHH2Ud3nX5Az97dE6MeeRc+XfpiUOMGmFWnMRztJNhpgLpRrvjj7B/YcGqDug4jijQE0fPnuT+hlQ1PxeUW5GLr+a1YfXQ1/k78Gyeun8CNLLUdXZOAJgj3C9c9zkK5ECeumzhF17w5TkeH4J9UNZMw1DsUgzpNwlOzPkGjB0boAghpOWn48siXokTZxQUY9iC0D5zB7U7xcGyQjvBoCdKdkip7jb0uU9HN0Q0hniGimcGd7BeNBghyFN2J4eWFHWlHce22OO2ZV5iHrwsO4ZSklmzXhiemSK0R0bA9uoWp2Ur/XfsPKw6twJqCtXB4zRs5L8i4IBm2/y3QFuDnM3dqH2rXhl/NMIwP7oCoWE/E9vFBw8410WJ0FLxdfPBI80fQpW4X+IS4o2ULoFFTLaIaA1KD+vBy9saYZmMQ4hkCDycPNPBVPzMOXzkMODoi/+Ex2NTNEe7NAlEzwgu1w+xRM9gekn8NHIj2160QHhCkRa0nj6H1A+lwahhq8nm3Fu+++y4+/vhj1KpVC/Hx8ZBlGZcvX8axY8fg6+uLDz74AG8qa6tZQs+e4lv9P/8YtokujiQZZguWJlMQEEc4ShaQ0i7wv//MB9tMqVtXfIsbPVrNrlV4e4sjmMceUy9TgkRhYeJb5ODBpfs7Pj6G+yM62nwwMfjOorj29uKUcnEBzvJWp44Ikrz4ouH+mDpVZCxKkgjkmGoOUx5GjzYOwJWUiWlKx45qgEq/6UxxlPUfjx4Vz7l+oKi0gerKEBAgXrP6TUsAMY+sWyeiGfpHpPoefVSsDalwcBApEuZIkkgHKRpwa9hQRFaKbmsq49BcgxyNRqRF/fJL8Vmnvr7iqHX0aBHke/ppkX3611+GVRFFMwXfeqvkQDQggpLnz4sIwcsvi2BlmzbiCP6XX0TkZuFCtYweKD7z1Aq8/fbbiImJwdCiGbd6hgwZgpiYGLxzJ7Vt0KBBaNiwIfbpN7+pILVriwyniAgRGOjVy7DRu5KFo0+/qUVJq2tIkvgbX34pgilFk8oVBw6Il7wSoIyNFcGItWvFVzRAZKM984x4qX/wgci2Us536JfRKsGInBzDAKfi2jXxNuzUybBZvCmyrAYFvbzUBGz9EmL9JWNv3y57OWpx9PtwKZTAk36WoDK1nT4tgi+JieJjZc4ckahc2qTc1FQx7U+bpi6Nqzh92vDcwDvvqOeINm4UY9Vvcl80KAgYBvsUSmaqwtHRcDtlRQplDPprAL70kggcSZL4efFidYpat07sA6UfFCCCWd9/L352d1dXsvjhB+P1GgHx+nrzTfGxdfq0OL+nvM5GjBAfvfrJ9cWVEL/1llpaHRQkApmXL4ssRWVayM0VU8uiRertbt8WU/djj4n712+OMnq0+nO3bsZfcTp3VgPrx46JYKHiyhURxFY+Znx8xFQwebIo6FDOoaaliYDigw+KcbdrZ9zfChDvgxdeUH9fs8Y461eSxNK6y5apRQjp6Wqg1NlZrF6jBHj79lWni59/VoOTSUniq51yAkGZnv74w7D78vXrIshZlaqeJLm0dXaEpk2b4tq1a7hqovf48OHDsXbtWuTm5sLxHstPMjIy4OXlhfT0dHia6+JX3O1zM+Bs7wxHOzGOH0/9iENXxKduhF8EHmqqfkrsTdqL34//COzZg1pwx2NSjJjZSnGAkns7CyteW440bToaDW0IJz93nL95HldvG+6fOl51ML75eGgkDa7euopP//3UILCjb1z0OBxIPoDj10V5Zah3KOSs20jctxlIS4MnnDAtdDgch4+C7OKCDac24MjVI7rbB3sEY1LLSZBMHBzI69dj4dH/4RbygPBwDO/9NKL8oyDLMj468JEuwCJBgiZHi9yCHNi7u6COVx080vwRk/dZFln5WXhn1zuQYfiWa+DbAK4OrroAVx2vOkjOTNbtIweNA/K1+SLnOS8PcHXFIy0mGKzPZ0piWiJWHFZPX4T7hmN0M/EpfejyIfx4Wpyi00gajG46GjdzbuKXkz8Ce/fCPV+CH1yQiHQgNhadIvugRz3DWVSWZXx77FucTjmNEM8QNPZvjEb+jZBTkIOzKWexeuHvyE3NxXPPz0DDJmqJ947EHdh6fqvBfdV0q4k+Dfqgns+dA7zCQuDUKcTv3orvc/5BTkRtXUlUPZ96GN10NG7l3cKivers1KteL2w+p5a0DIgYgFaBInvh5I2T+D3+d102Y1E13Wri8Rhxekj//RLsEYxxzcfp3ksAkJ6Tjv8d+J8uC7aGaw1MaTVFt41W1mJ7wnbsSNyhe67dHd0xocUE7L64Gwf2/yhORQLitGJoKPxd/dEltIsuUxAA/k78G3+ev3OKLC4OHS5p0AF1sAz7cDuyPlCrFvxc/ODp5Imrt68iKz9LHOimpqI+fDACTeBYoyYwbRoKtYX4+ODHutd4UfV96mNstHq6/K/zf2F7ovptb3zz8Qj1DsWB5AP45YzIgXfQOGBiy4mo5V4LWlmLr7csQvyuO4FEf3807zEafRv0NQgmH792HGtPiBWn7SQ79I/oj32X9hms69gysCX+vazm8U+LnQY/Z1/8tP1jHDr0G+xy8zHw4QVoHmwmM8WMe/1ctQRZlnHo0CGcO3cOWq0WtWvXRkxMDOxLcxBcCpW+Tx59VD3VfOJE6YMw+/aJo72RIw3XfCtvGzaIIwvlFPW335acfVbUmTOi7igvTwQfSjoKy8urGiWr+goKShdouReLFhlmbW7fXvx6hOacOSOCOiNHGjYJKa30dJFiEhcnxlOacunqIDNTHHX+958IfOlnD5pz4YKoE1OObt55x/Saknv3Gq7n6e0t3jOVlb7dvbs4QuzXTzz35fl3s7PFQmSffCLqLu/mO3g1mWu8vb0xYMCAEtdDHzNmDH755Rek3YlyDR48GL///jtySrkw3r3uj6IfR02biiCCJIl1AfXjuKNGqSWU+/cbrzBRnKws8bJKTxdfQW/dEi8D/VU8HB1FEEs5p/XDD6Zj5ICYSj75RAQ1z54Vlx06JF62SsbeL7+oQbycHBGs2r1b/C5J4u2r9NYpKjFRfIUERBBSyRK7fl1cruSodO0qGj9kZopzQMePqwHEe7Fpk+mldi9eFEGg+HgRmPrmGzUROSxMPE79jMXx44tv1qBYuFD9ONJoxONXKscef1zNxJoyRfw8aZJ4KwMiCDdunHhOAwJE0Knox8bt22IsqaninMHQoSIoeOmSCJgpXa2LnosZOlQE5AARzIuOFisUTJ9uvCLIr7+KQJ1Sbl6jhpj6oqIMX0tjx4qPb+VcZdeuYgySJIJI33wjpiv9cISjo1qSq//aV94vgDhEaNrUcEy7dolga2GhuP+tWw0LQHJyxH5XGr0D4vkaNUoESDdtUi93dhbnh3r1EoFQ/eT0++9Xm7VER4vHnZAgxqm8x19+WZy72bxZDWjXrCl+1x/3lSvifWWqq7IkifvVn8r1//akSaKIRJbFPlSmxgULxJgBcb+xseoSBbGx4uRB0ffNs8+qSwEsXCjed3PnqiXf990nAvwvvqhu/9Zb4nnq2VNMMRMmiHUkzeScmVUR8wyDgmXQp08fbNmyxWTGYIcOHXDmzBlcL6lovxTK+4k+feM0vjn2DQCRjfRsh2d1AYw1x9eIbKhz5xB7WYN+7ceZXwOpFGRZxqkbp7A9cTuu3LoCTydPjIseBz9X9cDqQvoFHLlyBA52DnBzcMPhK4eRki0ynLydvZGZm6nLIBvaaCgC3ALw8YH/QXvjOiDL8K0dgfvC++Hq7avYcm6L0RhGNRmFhjWMZ7y0tCtYvHaWmBVDQzGzw2x4Oon9e/XWVexJ2gMfZx9E14rG9dvX8dV/X5V4n2Vx7NoxfH/ie6PLNZIGDhoH5BaKnOchjYYgOTNZ1xTClCj/KAxvbKL7op61x9fqgquACHZObzMdPs4++Pjgx7pATPNazTE4cjBu5d3Cwt0LIScmqHUNzs5AmzYY13y8WFPQBK2s1TVrKQ2trMWJ6yeQnZ+NWu61EOAWoMskNCUjNwPfHfsOlzLVWoQ2wW3g6eSpCwJ6Onni6bZPY83xNTh546RuOweNAzycPETmaTF6hPVAp7qdAADnbp7Dl0fU1nZ+Ln54MOpB1HKvhYsZF7Hp7CYkZYjZyl5jj0ktJ6GWey2j+/zv6n9Yf3K9LjDoaOeIvMI7M/bNm6jtWAPd2j2EIM9goyxMAMjMzcT/DvwPt/Nvo3WtFuh/KAvS6dM44S9jTaTWOOMJAC5fRuTpFDyIKNhDI9bTvPMt4/zN8/jiyBcmH78ECU+3exqeTp7Iys/Coj2LRCAaIkg3qKF6avTo1aOIS4lDbHAsanupp1Gz87Lw29aPkZF5A207jkRkYFOjv1OgLcDC3QsN1tXU1zqoNfqH98fSfUt1nwltQ9rCy8kLf5z9Q8zieXloUrsVhjYaWqZAfXU5UCuttLQ0vPPOO3hdfz2wMqr0fRIfL9IfYmNN1/lUBenpIkDUsuXdr/G3c6c4mhs3rnIzAKuTW7fEt/abN0Um6I0bVS84Wt3l5IgGOs2amZ4vTNm9WxzR1qwpjg6LlnQDIgWiTh21PrB7d8PavIqWmirSt7p2rbjXjCzfdbCxusw1np6eaNKkCXYrUSgz2rdvj2PHjiHjTiRj2LBh2Lx5sy5IWJLy3h9z5qjLYH7yiWESbJ06Iijl5iayiO713IYsi2DCggUimLZ0qXEm0o4dIuji76/25VGCFS+8oFbj9+wpghvffKNmcHl5icfy6KPifvWbogPi65tSklvUd9+pCcFFzz/t3Sv+DRggls98/XW1DLW4+yyLmTPVrLHoaNFEBRDBUKUxjBLM6tzZsAGMPicn8ZwV15NJqzUMrgIi+PLqq2IKCQkRQVA3N/Gx5OUlAq7Kum9RUWqgZuRI8RyUl+xsETAMCBCJ6yV9bTh1SgSplAy08HBx3nPyZDVT8Pffxcdq48ZqDkFYmPg9PV0Ek8ypX1/cRvn4evNNNUvOw0OU0SpZfEePin2krJdY3HnMV18VZdWAeIxt2qjluJ6e4jXVpYv5VSr27hVB5IYNxXtKCebPm2fc1ENRp47I8DS1AsF77wGzZqm/6wdF9QN8O3eKwBwg/uaJE3ealEK8rr7+Wl37Uf8j/8IF8d5t3FgEZ019lpw8ab7opW5dsU5hQYF4febniyBwUpL4Gqy8RwIDRdC+rOe7GRS0sDlz5uD111/Hjh070El5hQHIycmBn58fOnfujN/KoS1meT/R+YX5eHvX27qD/BGNR6CRfyPIsoyFexbq1hkcGjkETWs1K+6uSk2WZdzMuQlXB1eTAQ99F9IvYMWhFUYZdK4OrpjZbibsNfb4I/4P7EnaU6q/XdOtJh5r/ZhRwEA/O87TyRMz2800dXPd+L848oWuk62/qz8ej3m8TMGvojac2iBKJgE0qtEICWkJRsERjaTBsx2eRX5hPt7/532DjMpQ71DdeDSSBk+2eRJezoYNYBSZuZlYtHeRUQlth9odEOEXYZBBOKXVFAR5iAyL5YeW40LqeXFAe+sWEBEB+1pBeL7j87DXVHDmSDEKtAVYe3ytwVqBzvbOujX/OtTugF71e+H67ev4cP+HRq8lhUbSIMo/CtduX9Nlzbk6uOKx1o/pAsRaWYvVR1fj3E01z9tOsoObo5tRpmH/8P6ICTbs5Ktv36V92Bi30ejyWu61ML75+BLfG7kFubiVd0sE1WVZ9LX39sba0z8YBHwVrXwbo/8Px6CR77z2lRZpd+y+uBv/Xv4XAW4BaFGrBX46/RMy88S31571eqJjnY4GmZzO9s54ss2TcHEoualNaW2M24h9l4xLjxr6NcSwxsNgr7HHnot7RBAQIpiaX5ive06DPILwSPNH4GBn5puHGdXlQK0kGRkZWLhwId5//31kZmaisDQLDxVzX9awT6ia2rJF1AxNnSrqf6hqKE1AbPp0daGl2bPLr3OCFagun6udOnXC7t278cMPP2CQqdpJAD/99BMGDx6Mjh07YseOHQCAtm3bIiUlBXFKtKIE5b0/9u9XG1L3768u4H/hgrqGWUXEqUsbJ/7f/wzXJVOsWSPi7bIsMqn0xxcSomZGubiIjDMlx+TAAdNLdj79tJrltHGj2pPLlNu3RXBQ6a66Z4+6ht7diooSQRGNRgRe2pvoybhkifio2LJFbS4PiK+ljRqpmXyvv65mU5nyxx+GpbqACPAkJoqPISU49MQT6sdSTo4INBZdu+/TT43LjytbWpoImCqBVCVrLDdXBBcvXRJBqDVrDJfOLWrwYJFR+PPP4jnQao0fX1qaeK5Pq4dPGDBA5H4c1zuM6NRJBHDNBdJlWZS86zf9AMTrddOmksv1AZGNqNEYvo/y8kS2oH4Xb0kS41m1ynzyfkGBOLecmCgC3VFRavAwPFw8XkkSJerKUgMrVpR+xZvSatvWuLy7aVMRbFT6helnMPfpo2b1OjuLjMki/WtLpSLmGa4pWAYjRoyAJElYXKQM49NPP0VWVhZG6xfQVyEOdg6o71tf97sSWEnLSTNoPFKnhHLUspAkCb4uviUGPQBRLhsbbPyOiK4ZrQtE9azXEzFBMbpGBfq8nLwworH6qXn19lXdWnCXMi7h1zO/Ysk/S3QBQQBivbYSxt+rnjqDXc+6rgvo3Q1Zlg3WE4zwi0Ajf+PSuTDvMDjbO8PDyQMdaou1fCRIuK/BfRjbbCw8HMXaWlpZiwPJaisxWZYNmnD8e/lfo4Cgcvmui+qiK3W86ugCgoAIVsLOTiwi0aEDEBCAOl51LBoQBERG3pBGQxDgpq4Oq98EpGlNkZXm7+aP/hH94e5ovOZibc/aeLTVo3gw6kFMjZmKGW1mYETjEZjUcpIuIAiIwOFDTR9Cm2B1AfdCudAoIBjlH4XWQcXXpsQGx6JbqGHmbQ3XGhjbbGyp3htO9k5qlq0kidNM9va4P/J+tAtph2Y1m6FHWA881PQhPN32aQxsNgyayDunrTQa8S1QT/va7TEtdhqGNx6OcL9wg8YqR64cQYG2wCBg1yqwVbkGBAGRDagE1yVIiPKPwsQWEzGq6Sjd6yy6lvrezyvMMyjDHtlkZJkDgtXBwYMHMX/+fDz++OOYP38+/i3SCi0nJwdvvPEGQkNDsWDBAmRkZKBRVVoDjaisevYURyEMCFYtpYl8TJyoHj3qL/RG1cbs2bMhyzIefPBBjB07Fr/99htOnjyJU6dO4ffff8fDDz+MBx98EJIkYdadqEtaWhoOHTpU5iZX5alVK3VJ0i1b1KCP/nqCRZfCLA+lTRydMsV4yVt/f/VtIkkiI0w/OKG/9t+qVWpGFiCytxRHjohMrg4dxNqFipKCCm5uoqGC4tln720ts8REERAERFCkXTvjslRAXY63Rw/15wcfFAHRl15S9+lHH6nr4Zmi39dGee6vXBHZafpNIKZNU392djZcX1Fhaj3ByubtLQJVyuokW7aoDTJGjFA/WocNEwHT2Fi1txsgylR//lmUHM+eLQJL16+LwHjRgKeybPK4ceplv/xiGBAMChLr6RWXWStJIjNUvzGPg4MonS5NQBAQh5dF30eOjiKD9q23RJB43z6Rabt9e/Gredjbi/fCypWijLlBA7XsOS5OZCbGx6vNbIKCDNdYLC/PPac+pl69RJbnkSNqQBAwXLJaCQgC4vHeTUCwolj2SL+aadq0KZ544gksXboUQ4YMQb9+/XDy5EksWbIEXbp0wUMV8WorJ5E1InHqhiiOP33jNLSyFhfSL+iu93LyMpt1Vhl61OuB0ymnkZaTprusZaC6cLWdRqw/1rxWc/wa96vo6AqRRTSq6SjUcq+FcN9wxKWKM5dbzm3B/uT9usy6osK8zaworCfYMxhR/lG6AONvcb9BK2vRKrBVmdcXvHr7qkEAtoFvA3g6eRqsnQbAIFDYNbQrwnzC4O7oLjq8QgRU/kr4CwBw8PJBdK7bGUevHsW2hG3QSBr0bdAXDWs0xMHLB3X30yqwFQ5fOYxCuRDZBdkGzWaKBmMja0TqMrSUT7nS7KvK4GTvhJFNRuKTg58YBAT9Xf1R001tbNI6qDVaB7VGVn4Wrt2+hpSsFHg7e6OeTz2D583XxRe+LqabANhr7HFf+H2o71sfG05tEOv13VHHqw6a1WyGloEtS/U66Fy3Mwq0Bdh5YSf83fwxuulouDmWogtiMRztHNGngYnFXAAxO9atK06jFlePAVE6rgSJr2ddx6azm3SvU42kQZuQNsXd/K4EuAVgXPQ4JGcmo2GNhiafA1cHVzT2b2ywXqjSxVg/gGstZs+ejUX6qzcDeO211zB37lzMnz8f+/fvx4gRI5CYmAhZllGnTh3Mnz8fD1dmx1oiIkXz5qL2LC/PuPkHVQv3338/3nzzTbz00kv4+uuv8XWRTgSyLEOj0eD111/H/XciWjdu3MCLL76IvkXTtiqRRiO+5nz0kQik/PGHWNdNvzy1tEGKihrfZ5+JIJmy7OL48YaV7t7eImtp0iSRKH30Ts+8BQvEY8nNFT21LlwQWYCLF4tAjqnsx1atSrf07YQJouTyzBmRlfb44+L3u1nhQj+wobwUhg83zPaKiVEbdUiSCOBdu6aWjdarJzLWfv5ZBEU3bBBZXcuWiSyrgQNFwOXSJTUbNCREBFJ69xa/T58uCmgAkYFVtDfWAw+onWWVv2muoUxlCw0VmYC9ext2mtYPJUiSyKB88UURxL14Uay00bix8Rp0vr7m+5p5eIjgWe/eIkCl36F71CjxN5WS2uJoNKLs1ckJ2LZNNOsoj4+CmjVFoPpejRsnxgUAX3whAodK8Hv69IpZbeKBB8Tr3snJKA9Dp3Nn8dpU1igExHM6alT5j+desHy4jAoLC7F48WJ88sknSEhIQI0aNTBixAi8+uqrcHc3zk66GxWRElq0yUXX0K7IzM3UBY+aBjTF0CjzHcgqw9nUs1h9dDVkyAZNMYrSylocvXoUSRlJaBXYCoEeohD/cuZlfHzw42L/hrezN5oENEHX0K6lyn5LyUrBh/s/NOiSG1kjEoMaDoKrQ+ln0p0XdurWP1SaWhRqC/Hu7nd1JcQSJMxqP8tklpviVt4tLNqzSDceb2dvg0AqYFhmLEHCU22fwp/n/zTq1Ovh6IGn2j4FO43hWkP/O/A/g8YPk1tORrBnkU6RFhSfGo+vjn6ley13D+uOznXvYoH6UsrMzcSB5ANwtndGlH/UXQfPcwty4WDncE8l6BXhk4Of6ILs+prVbIYhjcysoF0JLqZfxOeHPtf9PqTREIPMxrKqqiVdv/76KwbeWfjG09MT4eHhyMjI0DUXWb16NR5//HFkZGTA19cXc+bMwdSpU++5oRVQdfcJEVF1Vd0+Vw8fPowPPvgAO3bsQNKdlLXg4GB07twZ06ZNQ0tznaVLqSL2h345aUyMSDju2FFk6Gg0Yp05S+/6Dz4AZswQ4zh0SG2UXlRBgchmcnAQgTDlXPPy5YYddYtq1EgEeZ56Sm04UhIl8KaIjBQBOKULbGkNGaJ2GN63TzwHp08bBuX+7/+A558v/n70y4pbtBBBG/1SzA4dxFqCSiOS114TGYZRUYYBFsCwaYsiM1MU2ChrzU2erPY6qyref1/tRB0WJtZNrMieTUlJIguvUyfr6aulyMwUQeesLLGuZH6+utbkxYulC3xWlCVLRM8vQGQNr19/98tWA1xT0GZU1BeKr45+pcukA/S62gLoF97PZAlvZUtMS8SVW1cQXSu6VOWVRekap+gJdA9Ei8AWqO9TH74uvmXO8jt14xQ2nNpgkJ3m6eRpVHZanJWHV+oCdcr6dwDw0+mfdNmCdbzqYEILE73Ui/jh5A8GGVTFiawRiZFNRhoFWADzwbTtCdt12YjO9s54tsOzVS6QdSD5AH6P/x2+Lr54pPkj5V7iakv+SfoHv8Ubr4X6aKtHdQF3S/nr/F84fv042gS3KXbtxtKoqgdqgwcPxk8//YTp06fj7bff1jWxOnnyJIYOHYr4+HgUFBSgW7du+O6771CjRo1y+9tVdZ8QEVVX/Fw1VBH7Iy9PZOVcvCh+79hRlA/LskhiPXSoXP7MPdu/X2TxmQsIFqegQAT+4tWVh9CggQgs3H+/moVXVp99JoKV2XeWNHdwECXLxa1dp09pmJCRIf5/9aoa3GjeXF0n79Spkrscy7LIelNKkYtjby+e71q11ICron59kQFpKsgyYIDo+guIdd1K+zgriyyLRhtr1ojMu+LWhqSSPfywccOe6dON10KsbPn5IjtQWQvxXvPIuKYg3ZOBDQfCx1kNkysBQUAEpKqCut510SakzV0FBAGgV71e8HISmVz1ferj4eiHMaXVFMQGx8LP1a/MAUFABNYea/0Y6nqpay5m5Gbgz3OlW8U4tyDXoFS7ga+aX9yhdge4OrjCXmOPLnW7mLq5EVPB2wa+DeDvalwqGhMkAikhniEGHXLtNfZoFWhi5WKIklJl/7cMbFnlAoKAKBF+vuPzmBozlQHBe9S0ZlPYSYbZoqHeoRYPCAJAt7BumBY77Z4DglXZwYMHERoaikWLFhl0tW/UqBEWL16MgoICeHp6YsOGDeUaECQiIqqOHB1F2anSHHvnTrVMsCLWE7xbMTF3FxAERBBsxQqRPda+PbB2rQi0TZt29wFBQJQs//svoCSA5ueLktLU1NLdfu9eERAERKaifiDurbfEeGfOLDkgCIiMOP11AAFxu88+M85+HDpULT1++GHDsufp081nXc2eLQKf4eGm1xi0NEkSa0geP86AYHnQXzsREPtXydCzJAcH0Y9r0aJ7DwhWlKp3tE8VxtPJE+OajzPKbnOyczJo4FCd+bj4YFrsNLzQ8QWMjR5rtI7c3fJ29sa45uPQvrbaXuvo1aMGZbbmXLl1Rdf0w0HjgNpe6mzu5+qHWe1m4dkOzxo0gylOsGcwImuIHH1XB1cMaTQEo5uOxpRWUwwCfTXdaqKej/g2IkkS2oWoXWija0abXdfOy9kLT8Q8gYktJho0W6lqLN38xFq4Orgi3C/c4DL91zlVrOvXr6NFixbQmPhGqyzm3qlTJ3h4eFT20IiIiKqk6GhRRlx0arTkeoLlrWNH4Nw5kQX54IOiUUN5iIwUHYiH3FkhJi1NlPuWxt696s+9ihwi9OkjxrtwYenHMm6cKB12dgbmzAEOHxZl04cOiXUKAfG4Z85Ub+PlJToNA6KBRHEdZbt2FesOnjhRdYMxVH66dhVrTyoeeEBkklLJeFRtY7ydvTEuehxWHF6hayhQ26t2lcwGu1sV1ZlUI2nQI6wHTl4/iZs5NyFDxpZzWzCm2Zhib1egVVtquTi4GAWz7DR2sEPZZvphUcNw5dYV+Lv5w9FOrC3mYOeAgQ0HonFAY1xMv4joWtEGAdFmNZtBK2txK+9WiQ0kPJw84OHEIIStaBnYUteIyN/VH+G+4SXcgspLXl4evLxMr1OplAT4l9AwhoiI6G4cOHAA33//PU6fPo2MjAyYWlVKkiT8aarLhYXFxopGHH36iLXDAOsKClYkR0fRwGTjRtEQ5YMPRMZdSevMKfsZEA0i7pWbG3DwoCgJ12+e4e0tyn2nTRPbFF3a8s03ge7dRfmxma9QOjynajvs7MTakfPmiSzBZ56x9IiqDwYFbZCfqx8ejn4YP5z8Abfzb6NbaDdLD6nasNPYoUe9Hvj+xPcARNOLczfP6TLyTNFvUlK0TPNexmGu+Uc9n3omxyNJEloElnE1YbIJ4b7h6FmvJ5Izk9E1tGu5ZNcSERFR1aV0vlcCgZIkGQQFld+r8neCjh2B338H5s8H+vUzzBKi4tWuLdbme/tt0fF47lzRtbU4StMOoPy6uUqScTdd5fJOnUzfRqMpn863ZH1eekl0Yq5fH7hTcEOlwKCgjQpwC8CUVlMAoEpP9lVRY//G2O2xW9exdfPZzZjSaorZ/VioVYOC1pSRSdZDkiR0rMPT65YSHx+PL7/88q6uf/jhhytqWEREZKXWrl2L9957DyEhIZg7dy7WrVuHzZs3448//kBcXBy++uor7NmzB88//zz69Olj6eEWq1MnoAomMlYLL7wg1vBLTRUNGmbOFKXZ5uSry9HDoWIKs4juiZ2d8VqVVDIGBW0Yg4F3R5Ik9KrXC18cEafTLt+6jGPXjqFpzaYmtzfIFNSU04IgRGQ1du3ahV27dpm8TpIks9dLksSgIBERldknn3wCOzs7/PnnnwgPD8fu3bsBAL169UKvXr0wdepUzJ07F++88w6GK4u7kdXx9haZVbNmiWYtzz0nMi/NqYhMQSKyPAYFie5CmE8Ywn3DEZcaBwA4fOWw2aCg0mQEKL/yYSKyDnXq1OEJGiIiqlSHDh1CmzZtEB5ufg3hV155BatXr8aCBQvw/fffV+LoqDI98QSwZAmQmCiat1y4YH5tQWYKElknBgWJ7lKTgCa6oGBWfpbZ7fTLh5kpSET6EhISLD0EIiKyMZmZmaijF/lxvJP2devWLbjfadOq0WjQpk0bbN++3SJjpMrh5AT07w98+KH4/fp180FBZgoSWScucEZ0l/S7HOt3GC5Kv3yYawoSERERkSX5+/sjLS1N93uNGjUAGJ+oun37NjIyMipxZGQJLi7qzzk55rdjpiCRdWKEgugu2WvURNt8bb7Z7QwyBVk+TEREREQWFBoaisTERN3vLVq0gCzL+Prrr3WXXblyBdu3b0fdunUtMUSqRPpBwexs89vpBwWZKUhkPRgUJLpLDprSZQoarCnI8mEi0pNd3LdvC9wPERFZvx49euDUqVO6zMD77rsPvr6+eOuttzBs2DDMmjULbdq0we3btzF06FDLDpYqXGmDgvrlw8wUJLIeDAoS3SWDTMHCYjIFWT5MRGbUr18f//vf/1BYWFjyxiYUFBRg2bJlqF+/fjmPjIiIrNXIkSMxYcIEXLx4EQDg5uaGFStWwNnZGevWrcOiRYtw8eJFtGzZEi+88IKFR0sVzdlZ/ZmZgkS2h41GiO5SqdcUZPkwEZkRFBSEqVOn4vXXX8e4ceMwbty4YrtBKk6fPo2VK1di1apVSE5ORqtWrSphtEREZA0aNWqETz/91OCygQMHIi4uDj///DNSU1PRqFEjDBw4EHZ2/O5q7ZgpSGTbGBQkukv6mYKFciG0stZkJiDLh4nInP379+Ozzz7DnDlz8MYbb+D//u//EBISgnbt2qFRo0bw8/ODp6cnMjIykJKSghMnTmDPnj24dOkSZFmGv78/PvnkE0ycONHSD4WIiKq5oKAgPProo5YeBlUyrilIZNsYFCS6S/pBQUBkCzraGc+Q+uXDzBQkIn2SJGHy5MkYO3YsVq1ahaVLl+K///7DxYsXIUmS0fayLAMAmjVrhmnTpmH06NFw0f82T0RERFQGzBQksm0MChLdJf1GI0AxQUEt1xQkouI5Oztj8uTJmDx5MhISErB161YcOnQIV69eRXp6Ory9vREQEICWLVuiW7duCA0NtfSQiYjICiQlJSE5ORk5OTlmt+ncuXMljogqm35QsJiXgUGmIIOCRNaDQUGiu1Q0UzC/MB8wMUEaZAqyfJiIShAaGooJEyZYehhERGTF1q5dizlz5iA+Pr7Y7SRJQkGB+bWzqfora6agnR2gYZ4DkdVgUJDoLuk3GgHMNxsxWFOQ5cNEVIwdO3bAzs4OHTp0sPRQiIjISq1ZswajRo2CLMvw9fVFaGgoPDw8LD0sspCydh9mliCRdWFQkOguaSQNNJJGF/TL1+ab3M6g+zAzBYmoGF27dkXXrl2xdetWSw+FiIis1BtvvAEAeP/99zF16lR2GLZxZc0UZJMRIuvCxF+ie6C/rqC5TEH98mGuKUhExfHx8UFQUJClh0FERFbs9OnTaNeuHaZPn86AIJW5+zAzBYmsCyMURPdAf13B/MJSZAqyfJiIitG8eXPExcVZehhERGTFvL29UbduXUsPg6oIZgoS2TYGBYnugX5QsFRrCrJ8mIiKMWPGDOzfvx+//vqrpYdCRERWqlu3bjh06JClh0FVRFm7DzNTkMi6MChIdA/0m42UpnyYmYJEVJwWLVpg2rRpeOCBBzBlyhT88ccfOH36NC5cuGDyHxERUVm9/PLLuHTpEt58801LD4WqgLKWDzNTkMi6sNEI0T0wKB8uRaMRrilIRMUJCwsDAMiyjM8//xyff/652W0lSUJBgemTEUREROZERkZi06ZNGDlyJH788Ufcd999qFOnDjQa099TH3744UoeIVWm0nYfVsqHmSlIZF0YFCS6B6VpNMLyYSIqrdq1a0OSJEsPg4iIrNzu3buRmpqKCxcuYN++fcVuy6CgdXNyAiQJkGVmChLZIgYFie5BqRqNsHyYiEopISHB0kMgIiIrt3z5csyaNQsA0KxZM4SHh8Pd3d3CoyJLkSSRLZidzUxBIlvEoCDRPShNoxGWDxMRERFRVbFo0SLY29tj/fr1GDBggKWHQ1WAi0vxQcHCQkB7p/iJQUEi68IIBdE9KHOjEZYPExEREZEFnT17Fp07d2ZAkHSUZiPmgoL5egVRLB8msi4MChLdg9I0GjFYU5Dlw0RUCn///TeGDx+OkJAQODk5YeLEibrrNm/ejBdffBFXrlyx4AiJiKi68vHxgb+/v6WHQVWIEhTMyTF9vX5QkJmCRNaFQUGie1CaRiP65cPMFCSikixYsABdu3bF999/j+TkZOTn50OWZd31Xl5eeOutt7B+/XoLjpKIiKqr++67D3v37oVWqy15Y7IJJWUKKusJAswUJLI2DAoS3YOyNhrhmoJEVJzffvsNL7/8MoKDg7FmzRpcvXrVaJvY2Fj4+/vjl19+scAIiYiounvttdeQm5uLGTNmIE8/2kM2y9lZ/D87W3QhLoqZgkTWi41GiO5BqdYU1LL7MBGVzvvvvw8nJyf89ttvaNy4sdntoqOjERcXV4kjIyIia/Hpp5/ivvvuw0cffYRff/0V3bp1Q506daDRGJ+8liQJc+fOtcAoqTIpmYKyLLICnZwMr2emIJH1YlCQ6B6UeU1Blg8TUTH279+P2NjYYgOCAODv74/du3dX0qiIiMiazJ8/H5IkQZZlJCYmYuXKlUbbKNczKGgblKAgILIFiwYFmSlIZL0YFCS6B/pBwVJ1H2amIBEV4/bt26hVq1aJ26Wnp3MtKCIiuisvv/wyJEmy9DCoCikaFPT2Nrye3YeJrBeDgkT3oKyNRrimIBEVp2bNmoiPjy9xu9OnT6N27dqVMCIiIrI28+fPt/QQqIrRDwqa6kCsXz7MTEEi68IIBdE9KE2jEZYPE1FpdezYEYcPH8auXbvMbvPLL78gPj4e3bp1q8SRERERkbUqmilYFDMFiawXg4JE96CkRiOyLLN8mIhKbdasWZAkCUOGDMGGDRtQUGD4ufL7779j0qRJcHBwwPTp0y00SiIiIrImSvdhwHRQkJmCRNaL5cNE96CkRiP6WYIAy4eJqHgtW7bEwoULMXPmTAwdOhQuLi6QJAnr1q3D+vXrkZmZCVmWsWTJEkRFRVl6uEREVA18+eWX93T7hx9+uJxGQlUVMwWJbBeDgkT3oKRGI/pZggDLh4moZE8++SQiIyMxb9487N+/H7IsIzMzEwDQrFkzLFiwAAMGDLDwKImIqLoYP378XTcWkSSJQUEbUFJQkJmCRNaLQUGie1BSo5GimYIsHyai0ujTpw/69OmDlJQUnD9/HlqtFrVr10ZgYKClh0ZERNVMnTp12G2YilWWTEEGBYmsC4OCRPegpEYj+p2HAWYKElHZ+Pn5wc/Pz9LDICKiaiwhIcHSQ6AqriyZgiwfJrIuXOCM6B6U1GikaPkw1xQkouKsXLkSSUlJlh4GERER2RD9oGBOjvH1zBQksl7MFCS6B/qZgoVyIbSy1iDwZ5QpyPJhIirGhAkTIEkSwsPD0bNnT/Ts2RPdu3eHp6enpYdGREREVoqZgkS2i0FBonugv6YgILIFHe3UmdJoTUGWDxNRMcaPH4+tW7fizJkzOHPmDD766CNoNBq0atVKFyTs0KEDHHianoiISik7Oxsu+lEfC98PVT3OzurPXFOQyLawlpHoHuhnCgLG6wrqlw9Ld/4jIjJn+fLlSEhIwOnTp7Fs2TLcf//98PDwwL59+/DGG2+gR48e8PHxQd++fbFw4UJLD5eIiKqB+vXr43//+x8KCwtL3tiEgoICLFu2DPXr1y/nkVFVUZZGI8wUJLIuDAoS3YOiQcGi6wrqlw9rJA07vxFRqYSHh+Pxxx/H+vXrkZKSgn/++Qevv/46unbtioKCAmzatAnPPfecpYdJRETVQFBQEKZOnYrQ0FDMmTMHcXFxpbrd6dOn8cILLyA0NBTTp09HcHBwBY+ULKUs5cPMFCSyLlYVFLx06RL+7//+D126dEFgYCDc3NzQuHFjPPPMM0hJSTHafuXKlZAkyeS/adOmmfwbX375JVq0aAEXFxfUrFkTkyZNwvXr1yv6oVEVpd9oBDARFNTLFGTpMBHdjfz8fGRmZiIzMxMZGRkoKBCfM7IsW3hkRERUHezfvx8ff/wx8vLy8MYbbyAyMhJ169bFyJEj8corr2Dp0qX48ssvsXTpUrzyyisYMWIE6tSpg6ioKLz11lvIz8/HJ598gn379ln6oVAFYaYgke2yqjUFf/75Z8yfPx/9+/fHM888oyu5Wrx4Mb799lvs378ftWrVMrrdiy++iEaNGhlc1rBhQ6PtFi1ahJkzZ6JLly54//33kZSUhPfeew979uzBvn374ObmVmGPjaomjaSBRtLo1g7M1xqWD+uvKcgmI0RUWocPH8bmzZuxZcsW7Ny5Ezk5OZBlGZ6enujfv79ufUEiIqKSSJKEyZMnY+zYsVi1ahWWLl2K//77DxcvXjRZxaKcdGrWrBmmTZuG0aNHcy1BK8dMQSLbZVVBwU6dOiExMdEg8Dd58mS0adMGkydPxrvvvot3333X6Ha9evVC165di73vGzduYM6cOYiJicGff/4JOzsR4ImJicGgQYPw/vvv48UXXyzXx0PVg4PGAbmFuQBKLh8mIirOyJEjsXXrVqSkpECWZTg4OKBt27a6IGBsbKxu/iEiIioLZ2dnTJ48GZMnT0ZCQgK2bt2KQ4cO4erVq0hPT4e3tzcCAgLQsmVLdOvWDaGhoZYeMlUS/aBgTo7x9cwUJLJeVhUUbNy4scnLR4wYgcmTJ+PYsWNmb5uZmQknJyc4mvmU27BhA7KysjB9+nSDA7KBAweiXr16WL16NYOCNspeY68LChbXaITlw0RUkjVr1kCSJDRr1gzz5s1D79694erqaulhERGRlQkNDcWECRMsPQyqIkrqPsxMQSLrZROpS0lJSQCAmjVrmrx+0KBB8PT0hLOzM6Kjo7F69Wqjbfbv3w8AaNeundF1bdu2xalTp3Dr1q1yHDVVF/rrChbNFGT5MBGVhYeHB2RZxpEjRzB69GgMGTIECxcuxJEjRyw9NCIishI7duzArl27LD0MqkK4piCR7bKqTEFz5s2bBwAYN26cweWurq546KGH0L17dwQEBOD8+fNYtmwZxo4di7Nnz+puBwDJyckAYLLrVnBwMGRZRnJyMiIiIso8vsDAQIPftVqtmS2pKtLvQFx0TUH98mFmChJRSVJTU7Fv3z5s2bIFW7ZswV9//YVNmzZBkiTUqFEDPXr0QK9evdCrVy+EhISU6b451xAREQB07doVXbt2xdatW8v1fjnPVF9cU5DIdlXJoGBaWhoWL15c6u1nzJgBX19fk9ctXLgQa9euxZQpU9C9e3eD64YPH47hw4cbXPboo4+idevWWLBgAcaNG6dbSyMrKwsA4OTkZPQ3nO/kWyvbkG3RDwoW132YawoSUUns7OzQrl07tGvXDnPnzkVWVha2bduGLVu24M8//8R3332H7777DgAQERGBkydPWnjERERU3fj4+CAoKMjSw6AqpCyZggwKElmXKhsUfOWVV0q9/ZgxY0wGBT/77DM888wz6N+/P5YuXVqq+3JycsLs2bMxfvx4bNq0CVOmTAEA3ZpOubm5Rt23cu6sxnq36z5dvnzZ4PeMjAx4eXnd1X1R5XPQmC8fNsgUZPkwEZWRq6sr+vXrh379+uHIkSP46quvsHTpUuTk5ODMmTNlui/ONUREBADNmzdHXFxcud8v55nqy9ERkCRAlkvOFGT5MJF1qZJBwdDQUMiyfE/3sXz5ckyZMgW9e/fGunXr4FCGUxpKduCNGzd0lyln0y5duoQGDRoYbH/p0iVIksQzbjbKoHy4SKMRgzUFWT5MRGWQlJSEzZs367IEr1+/DgC6rsSm1rglIiIqyYwZM/DAAw/g119/Rf/+/S09HKoCJElkC2Zlldx9mJmCRNalSgYF79Xy5csxadIk9OzZExs2bDBZ8lsc5cyZfmOSmJgYfPLJJ9izZ49RUHDv3r1o2LAh3N3d733wVO0U12jEoPswMwWJqAQbNmzQrSeozEWyLEOSJDRp0gQ9e/ZEz5490aVLF3YlJiKiu9KiRQtMmzYNDzzwAMaPH4+hQ4ciNDTUqBpKUadOnUoeIVmCEhRkoxEi22J1QcGVK1di8uTJ6N69O3788Ufden+mpKSkwM/Pz+Cy9PR0vPXWW3B0dESfPn10l99///2YMWMGli5dioceegh2diLA8/PPP+PcuXN47bXXKuYBUZVX2kYjXFOQiEoyZMgQ3c+1a9fWBQF79OiBgIAAC46MiIisRVhYGABx0unzzz/H559/bnZbSZJQUFBg9nqyHsphMxuNENkWqwoK/vTTT5g4cSI8PT0xYsQIrFu3zuB6d3d3DB48WPd706ZN0aVLFzRt2hQBAQFISEjA8uXLcfnyZSxcuNCgs6O/vz9ee+01zJ49Gz179sSoUaNw6dIlLFy4EJGRkXjqqacq6VFSVVPaRiMsHyaikgwePBi9evVCz549ER4ebunhEBGRFapduzYkSbL0MKiKURJFmSlIZFusKij477//QqvVIi0tTdcgRF/dunUNgoKjRo3Ctm3bsGnTJt1CuLGxsVixYoVBlqBi1qxZ8PPzw6JFizBjxgx4enpi+PDhePPNN1k6bMOKazRisKYgy4eJqATr16+39BCIiMjKJSQkWHoIVAUVFxRkpiCR9bKqoOD8+fMxf/78Um+/cOHCMv+N8ePHY/z48WW+HVmv4hqNGHQfZqYgERERERFVQfpBQVkWzUcUzBQksl5c5IzoHpW20QjXFCSi0jp58iQee+wxXRMrd3d3NGzYEI8//jhOnjxp6eERERGRldHvM5Oba3gdMwWJrBejFET3qLhGIywfJqKyWrlyJVq0aIFPP/0UcXFxyMrKQlZWFuLi4vDxxx+jRYsW+OKLLyw9TCIiqub+/vtvDB8+HCEhIXBycsLEiRN1123evBkvvvgirly5YsERUmXSDwrm5Bhex0xBIuvFoCDRPSpuTUGWDxNRWRw8eBCTJ09GXl4e+vfvjx9++AFHjx7F0aNHsWHDBgwcOBB5eXmYPHkyDhw4YOnhEhFRNbVgwQJ07doV33//PZKTk5Gfnw9ZlnXXe3l54a233uJatzZE6T4MGK8ryExBIuvFoCDRPSp2TUGWDxNRGbzzzjvQarX4/PPP8dNPP+H+++9HkyZN0KRJEwwaNAg//vgjli9fjoKCgrtaF5eIiOi3337Dyy+/jODgYKxZswZXr1412iY2Nhb+/v745ZdfLDBCsgT9TMGiQUElU9De3nCtQSKq/qyq0QiRJegHBYvNFGT5MBGV4O+//0bz5s3xyCOPmN1m/PjxWLp0KXbs2FGJIyMiImvx/vvvw8nJCb/99hsaN25sdrvo6GjExcVV4sjIkooLCiqZgswSJLI+TF0iukfFNRoxWFOQ5cNEVIIbN26gUaNGJW4XGRmJGzduVMKIiIjI2uzfvx+xsbHFBgQBwN/fn2sK2pDSZAoyKEhkfRgUJLpHxTUa0S8fZqYgEZXE29sbFy5cKHG7CxcuwMvLqxJGRERE1ub27duoVatWidulp6dDq9WWuB1Zh9IEBdlkhMj6MChIdI9K22iEawoSUUliYmKwe/dubN261ew2W7duxa5du9CmTZtKHBkREVmLmjVrIj4+vsTtTp8+jdq1a1fCiKgqYPkwkW1ilILoHpW20QjLh4moJNOnT4dWq8XAgQPx7LPP4vjx48jKykJWVhaOHTuG2bNnY+DAgbptiYiIyqpjx444fPgwdu3aZXabX375BfHx8ejWrVsljowsST8omJNjeB0zBYmsF4OCRPeouEYjBmsKsnyYiErQp08fvPTSS8jOzsbChQvRrFkzeHh4wMPDA9HR0Vi0aBGys7MxZ84c9O7d29LDJSKiamjWrFmQJAlDhgzBhg0bUFBg+P31999/x6RJk+Dg4MATUDbE2Vn9mZmCRLaDQUGie1RcoxGD7sPMFCSiUnjttdewceNGdOvWDU5OTpBlGbIsw9HREd27d8fGjRvxyiuvWHqYRERUTbVs2RILFy7EjRs3MHToUHh7e0OSJKxbtw7e3t7o378/rl27hoULFyIqKsrSw6VKwjUFiWyTfcmbEFFx9DMFC+VCaGWtbv1A/fJhrilIRKXVt29f9O3bF4WFhUhJSQEA+Pn5wc6OJxeIiOjePfnkk4iMjMS8efOwf/9+yLKMzMxMAECzZs2wYMECDBgwwMKjpMrENQWJbBODgkT3SL/RCCCyBR3txGk0lg8TUWnEx8dj/fr1SEhIgJOTE5o3b47hw4fDxcUFAQEBlh4eERFZoT59+qBPnz5ISUnB+fPnodVqUbt2bQQGBlp6aGQBzBQksk0MChLdI/1MQUA0G1GCgiwfJqKSLF68GM8++ywKCwsNLp87dy42btyIJk2aWGhkRERkC/z8/ODn52fpYZCFmQsKFhYC2jt5DswUJLI+rGckukf6awoChusKsnyYiIqzc+dOzJo1CwUFBXB1dUWLFi1Qv359SJKEpKQkDB06FFqttuQ7IiIiKqWVK1ciKSnJ0sOgKsZc92ElSxBgpiCRNWKUgugeGWUKatWZ0yBTkOXDRFTE0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MIiKyIhMmTEDdunURGRmJadOmYcOGDcjIyLD0sMjCzHUfVtYTBJgpSGSNGBQkukcaSWOQBaifKWiwpiDLh4moiD179iAkJAQff/wx3NzcdJc3a9YM77//PmRZxt69ey04QiIisjbjx49H7dq1cebMGXz44YcYOnQo/Pz80LZtW8yZMwfbtm1Dvn56GNkEc+XD+i8FBgWJrA+DgkTlQL/ZiLnyYWYKElFRV69eRevWreFooh6nY8eOAIBr165V9rCIiMiKLV++HAkJCTh9+jSWLVuG+++/Hx4eHti3bx/eeOMN9OjRAz4+Pujbty8WLlxo6eFSJSlNUJDlw0TWh0FBonKgX0KcX2i6fJhrChJRUXl5efD29jZ5naenp24bIiKi8hYeHo7HH38c69evR0pKCv755x+8/vrr6Nq1KwoKCrBp0yY899xzlh4mVRJzQUGWDxNZN0YpiMqBfrMRs5mCLB8mIiIioiooPz8fmZmZyMzMREZGBgoKxPdZWZYtPDKqLMwUJLJN9iVvQkQlMcgU1Gs0YrCmIMuHiciE+Ph4fPnll3d1/cMPP1xRwyIiIit3+PBhbN68GVu2bMHOnTuRk5MDWZbh6emJ/v37o2fPnujZs6elh0mVhJmCRLaJQUGicmB2TUEtMwWJqHi7du3Crl27TF4nSZLZ6yVJYlCQiIjKbOTIkdi6dStSUlIgyzIcHBzQtm1bXRAwNjYWdnb83mpr9LsP5+SoPzNTkMi6MShIVA7Mrikoc01BIjKvTp06kCTJ0sMgIiIbsmbNGkiShGbNmmHevHno3bs3XF1dLT0ssjBHR0CSAFlmpiCRLWFQkKgc6AcFlUxBWZZZPkxExUpISLD0EIiIyMZ4eHggMzMTR44cwejRo9GpUyf06tULPXv2RHR0tKWHRxYiSaKEOCuLawoS2RIGBYnKgalGI/oBQYDlw0RERERkeampqdi3bx+2bNmCLVu24K+//sKmTZsgSRJq1KiBHj16oFevXujVqxdCQkIsPVyqRKaCgswUJLJuDAoSlQNTjUb0S4cBZgoSERERkeXZ2dmhXbt2aNeuHebOnYusrCxs27YNW7ZswZ9//onvvvsO3333HQAgIiICJ0+etPCIqbIozUaYKUhkOxgUJCoHphqN6DcZAbimIBERERFVPa6urujXrx/69euHI0eO4KuvvsLSpUuRk5ODM2fOWHp4VIlMBQWZKUhk3RgUJCoHphqNsHyYiIiIiKqypKQkbN68WZcleP36dQDQdSVu166dhUdIlUkJCrL7MJHtYFCQqByYajTC8mEiIiIiqmo2bNigW08wLi4OgAgCSpKEJk2aoGfPnujZsye6dOnCrsQ2xtlZ/D87W3QhliRmChJZOwYFicqBqUYjLB8mIiIioqpmyJAhup9r166tCwL26NEDAQEBFhwZWZqSKQgAubkiSKifKcigIJH1YVCQqByUqtEIy4eJiIiIyMIGDx6MXr16oWfPnggPD7f0cKgK0Q8KZmcbBwVZPkxkfRgUJCoHphqN6K8pKEFipiARERERWdz69estPQSqoooGBX18WD5MZO0YpSAqB6YajeiXDzNLkIiIiIiIqrKiQUGAmYJE1o5BQaJyYHJNQb3yYWYJEhEREVFVcvLkSTz22GNo2LAh3N3d4e7ujoYNG+Lxxx/HyZMnLT08sgBTQUFmChJZN5YPE5UDk2sK6mcKsvMwEREREVURK1euxGOPPYb8/HzIsqy7PC4uDnFxcVixYgU+/vhjjBs3zoKjpMqmdB8GgJwc8X9mChJZN6YvEZUD/aCgqTUFWT5MRERERFXBwYMHMXnyZOTl5aF///744YcfcPToURw9ehQbNmzAwIEDkZeXh8mTJ+PAgQOWHi5VImYKEtkeZgoSlQNTjUb0y4eZKUhEREREVcE777wDrVaLzz//HI888ojBdU2aNMGgQYOwcuVKTJgwAQsXLsQ333xjoZFSZeOagkS2h5mCROWgpEYjXFOQiIiIiKqCv//+G82bNzcKCOobP348WrZsiR07dlTiyMjSmClIZHsYqSAqB6YajbB8mIiIiIiqmhs3bqBRo0YlbhcZGYkbN25UwoioqmCmIJHtYVCQqByYbDTC8mEiIiIiqmK8vb1x4cKFEre7cOECvLy8KmFEVFUwU5DI9jAoSFQO9IOCWlkLraxl+TARERERVTkxMTHYvXs3tm7danabrVu3YteuXWjTpk0ljowsjZmCRLaHkQqicqDfaAQQJcQGmYIsHyYiIiKiKmD69OnQarUYOHAgnn32WRw/fhxZWVnIysrCsWPHMHv2bAwcOFC3LdkOZ2f155wc8X/9oCAzBYmsD7sPE5UD/UxBQDQbMVhTkOXDRERERFQF9OnTBy+99BJef/11LFy4EAsXLjTaRpZlzJ07F71797bACMlSWD5MZHuYKUhUDvQbjQB3MgW1zBQkIiIioqrntddew8aNG9GtWzc4OTlBlmXIsgxHR0d0794dGzduxCuvvGLpYVIlY/kwke1hpiBROSiaKZhXmGdQPsw1BYmIiIioKunbty/69u2LwsJCpKSkAAD8/PxgZ8eT2bbK1VX9OStL/J+ZgkTWzSojFaGhoZAkyeS/GzduGG2fnJyMhx9+GP7+/nBxcUHr1q2xdu1ak/edm5uLl19+GWFhYXByckL9+vWxYMEC5OufQiGbo5E0cLRTT53lFuYaZgqyfJiIiIiILCg+Ph5vv/02pk6diqeffhpffPEFsrOzYWdnh4CAAAQEBDAgaOP0m02np4v/M1OQyLpZbaZgZGQkXnrpJaPLPTw8DH5PTU1Fx44dce3aNcycORMhISH4+uuvMXz4cCxfvhyPPPKIwfYjRozAjz/+iAkTJqBdu3bYs2cP5s6di/j4eKxcubIiHxJVcc72zsgrFKfScgpyDNcUZPkwEREREVnI4sWL8eyzz6KwsNDg8rlz52Ljxo1o0qSJhUZGVYl+UDAtTfyfmYJE1s1qg4I1a9bEmDFjStzuzTffxPnz5/HTTz/pumxNnDgR7dq1w+zZszFs2DC4u7sDADZu3Igff/wRM2fO1C3IO2nSJHh7e+O9997DlClT0L59+4p7UFSlOds7IyM3AwCQW5Br2H2YmYJEREREZAE7d+7ErFmzIMsy3Nzc0LBhOeSaAwAAKN1JREFUQ2RkZODcuXNISkrC0KFDcfLkSWg0VllERmXg7a3+zExBIttg1Z/8BQUFyMjIKHabr7/+GvXr19cFBAHAzs4O06dPR2pqKjZu3GiwLQA89dRTBveh/L569eryGThVS052TrqfcwpyDMqHuaYgEREREVnC0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MqgLc3AClgpyZgkS2wWojFf/88w9cXV3h5eUFb29vjBs3DsnJyQbbXL58GZcuXULbtm2Nbq9ctn//ft1l+/fvR3BwMGrXrm2wbe3atREUFGSwLdkeZ3tn3c8sHyYiIiKiqmDPnj0ICQnBxx9/DDc3N93lzZo1w/vvvw9ZlrF3714LjpCqCklSS4hNZQoyKEhkfayyfLhx48aYNGkSGjVqhPz8fGzbtg2fffYZ/vzzT+zbtw9BQUEAoAsSBgcHG92HctmlS5d0lyUnJyMqKsrk3wwODkZSUtJdjTcwMNDgd61Wa2ZLqsqKBgVZPkxEVQnnGiIi23T16lX069cPjiZqPzt27AgAuHbt2j3/Hc4z1sHLC0hNNc4UtLcXQUMisi5VNiiYlpaGxYsXl3r7GTNmwNfXFwDw66+/Glw3cuRIdO7cGaNHj8a8efPw6aefAgCy7vRZd3JyQlHOzs4G2yg/m9pW2V5/W7I9zBQkIiIioqomLy8P3vqLxenx9PTUbUMEqOsKpqUBsqxmCnI9QSLrVKWDgq+88kqptx8zZowuKGjKQw89hJdeeskgYOjq6goAyM3NNdo+JyfHYBvlZ1PbKtvrb1sWly9fNvg9IyMDXvqtn6haKBoU1A8Eck1BIrI0zjVERFSROM9YByUoWFAAZGerQUGWDhNZpyobFAwNDYUsy+V+n7t27dL9rpQR65cIK5TL9EuLg4KCTG6rbG+qDJlsh5O9mkWaW5gLZ0kNErJ8mIiIiIgsJT4+Hl9++eVdXf/www9X1LCoCtKP46alqeXDDAoSWacqGxSsCPHx8ahZs6bu98DAQAQHB5tcWFe5rHXr1rrLYmJi8NVXX+HixYsGzUYuXryI5ORkDBo0qAJHT1Vd0UxBB406c7J8mIiIiIgsZdeuXQbJEfokSTJ7vSRJDAraGP1K8/R0lg8TWTurCwqmpqaaLCNetmwZkpKS8PjjjxtcPmrUKLz77rv4+eefMXDgQABAYWEhPvjgA3h7e6Nfv34G23711VdYvHgxFi5cqLtcWftw9OjRFfCIqLooGhR0dVDLyVk+TERERESWUKdOHUjsEEGlxExBIttidUHBL7/8Ep9//jn69u2L0NBQFBQUYNu2bdiwYQPq169vtE7h888/j7Vr1+Khhx7CzJkzERwcjG+++Qb79+/HZ599Bg8PD922/fv3x4ABA/Dee+8hPT0d7dq1w549e/D5559jzJgxuu5dZJuMug9r2X2YiIiIiCwrISHB0kOgakQ/UzAtjZmCRNbO6oKCMTEx2Lp1K7777jtcv34dsiwjLCwMzz33HJ5//nmjzlt+fn7YtWsXnn/+eSxbtgy3bt1CVFQUvv32W4wYMcLo/teuXYsFCxZg9erVWLVqFYKDg/Hqq6/i+eefr6RHSFUVuw8TEREREVF1VrR8mJmCRNbN6oKCHTp0wE8//VSm2wQHB2PVqlWl2tbZ2RkLFizAggUL7mZ4ZMWc7NRGI3mFecjX5ut+Z6YgERERERFVdUXLh5kpSGTduNAZUTnRzxQEgKz8LN3PXFOQiIiIiIiqOmYKEtkWRiqIyklxQUGWDxMRERERUVWnnymYkgLIsviZmYJE1olBQaJyYq+xNygTzs7P1v3M8mEiIiIiIqrq9DMFr19Xf2amIJF1YlCQqJxIkmSQLShD1v3MTEEiIiIiIqrq9DMF9YOCzBQksk4MChKVIyd7J5OXc01BIiIiIiKq6pgpSGRbGKkgKkdF1xVUsHyYiIiIiIiqOmYKEtkWBgWJypHZoCDLh4mIiIiIqIqztwfc3MTPzBQksn4MChKVI3NBQZYPExERERFRdaCUEN+6pV7GoCCRdWKkgqgcsXyYiIiIiIiqM/0SYgXLh4msE4OCROXIyc50oxGWDxMRERERUXWg32xEwUxBIuvEoCBROWKmIBERERERVWemgoLMFCSyTgwKEpUjrilIRERERETVmanyYWYKElknRiqIyhG7DxMRERERUXXGTEEi28GgIFE5YvkwERERERFVZ8wUJLIdDAoSlSMnezYaISIiIiKi6ouZgkS2g0FBonLENQWJiIiIiKg6Y6Ygke1gpIKoHLF8mIiIiIiIqjNmChLZDgYFicoRG40QEREREVF1ZiooyExBIuvEoCBROXKyc4IEyehylg8TEREREVF1YKp8mJmCRNaJkQqiciRJEhztDGdMCRKDgkREREREVC0wU5DIdjBSQVTOipYQs3SYiIiIiIiqCzYaIbIdDAoSlTOjoCCbjBARERERUTXBRiNEtoNBQaJyVjQoyNJhIiIiIiKqLlxcjDMDmSlIZJ0YrSAqZywfJiIiIiKi6kqSjEuImSlIZJ0YFCQqZ072Tga/s3yYiIiIiIiqk6IlxMwUJLJODAoSlTNmChIRERERUXXGTEEi28CgIFE545qCRERERERUnTFTkMg2MFpBVM7YfZiIiIiIiKozZgoS2QYGBYnKGcuHiYiIiIioOmOmIJFtYFCQqJw52bHRCBERERERVV9Fg4LMFCSyTgwKEpUzrilIRERERETVWdHyYWYKElknRiuIyhnLh4mIiIiIqDpjpiCRbWBQkKicsdEIERERERFVZ8wUJLINDAoSlTOWDxMRERERUXXGRiNEtoHRCqJy5mRfpNEIy4eJiIiIiKgaYfkwkW1gUJConNlr7GGvsdf9zvJhIiIiIiKqTlg+TGQbGBQkqgD6JcTMFCQiIiIiouqEmYJEtoFBQaIKoB8U5JqCRERERERUnRTNFLS3N70dEVVvjFYQVQCDTEGWDxMRERERUTXi6an+7OAASJLlxkJEFYdBQaIK4GSnNhth+TAREREREVUndnaAh4f4mesJElkvBgWJKgDLh4mIiIiIqDpT1hVkUJDIejFaQVQBQr1DdT/X9apruYEQERERERHdhe7dxf87dbLsOIio4nC5UKIK0DKwJVwcXOCgcUCEX4Slh0NERERERFQmn34KTJoExMRYeiREVFEYFCSqAHYaOzQJaGLpYRAREREREd0VBwegY0dLj4KIKhLLh4mIiIiIiIiIiGwMg4JEREREREREREQ2xqqCgitXroQkScX+u3TpUqm2nzZtmsm/8eWXX6JFixZwcXFBzZo1MWnSJFy/fr2yHiIREREREREREdE9s6o1BTt37oxVq1YZXX758mU8++yzaNGiBYKDg42uf/HFF9GoUSODyxo2bGi03aJFizBz5kx06dIF77//PpKSkvDee+9hz5492LdvH9zc3MrvwRAREREREREREVUQqwoK1qtXD/Xq1TO6/P/+7/8AABMnTjR5u169eqFr167F3veNGzcwZ84cxMTE4M8//4SdnR0AICYmBoMGDcL777+PF1988d4eABERERERERERUSWwqvJhU2RZxvLly+Hi4oLRo0eb3S4zMxN5eXlmr9+wYQOysrIwffp0XUAQAAYOHIh69eph9erV5TpuIiIiIiIiIiKiimL1QcHt27cjPj4eQ4cOhbe3t8ltBg0aBE9PTzg7OyM6OtpkgG///v0AgHbt2hld17ZtW5w6dQq3bt0q17ETERERERERERFVBKsqHzbl888/BwBMmjTJ6DpXV1c89NBD6N69OwICAnD+/HksW7YMY8eOxdmzZzFv3jzdtsnJyQBgck3C4OBgyLKM5ORkRERElHmMgYGBBr9rtdoy3wcREVFxONcQEVFF4jxDRFT9VMmgYFpaGhYvXlzq7WfMmAFfX1+T97Nu3To0aNAAXbp0Mbp++PDhGD58uMFljz76KFq3bo0FCxZg3LhxCA0NBQBkZWUBAJycnIzux9nZ2WAbIiIiIiIiIiKiqqzKBgVfeeWVUm8/ZswYk0HBr7/+GtnZ2WYbjJji5OSE2bNnY/z48di0aROmTJkCQGQVAkBubi5cXFwMbpOTk2OwTVldvnzZ4PeMjAx4eXnd1X0RERGZwrmGiIgqEucZIqLqp0oGBUNDQyHL8j3fz+effw57e3uMHz++zH8fEB2HFUFBQQCAS5cuoUGDBgbbX7p0CZIk6bYhIiIiIiIiIiKqyqy20cjhw4fx77//on///qhVq1aZbhsXFwcAqFmzpu6ymJgYAMCePXuMtt+7dy8aNmwId3f3exgxERERERERERFR5bDaoOBnn30GAMWWDqekpBhdlp6ejrfeeguOjo7o06eP7vL7778fLi4uWLp0KQoLC3WX//zzzzh37hxGjx5djqMnIiIiIiIiIiKqOFWyfPhe5eTk4KuvvkJQUBD69etndrumTZuiS5cuaNq0KQICApCQkIDly5fj8uXLWLhwIUJCQnTb+vv747XXXsPs2bPRs2dPjBo1CpcuXcLChQsRGRmJp556qhIeGRERERERERER0b2zyqDg+vXrkZaWhqlTp8LOzs7sdqNGjcK2bduwadMm3UK4sbGxWLFihUGWoGLWrFnw8/PDokWLMGPGDHh6emL48OF48803WTpMRERERERERETVhiSXR0cPKldKgDI9PR2enp6WHg4RUbXHz1Vj3CdEROWLn6uGuD+IiMpXRXyuWu2agkRERERERERERGSaVZYPV3dK8mZGRoaFR0JEZB2Uz1Mmx6s41xARlS/ONYY4zxARla+KmGcYFKyCMjMzAQC1a9e28EiIiKxLZmYmvLy8LD2MKoFzDRFRxeBcI3CeISKqGOU5z3BNwSpIq9UiOTkZHh4ekCSp1LcLDw8HAMTFxVXU0KoF7gfuAwX3A/cBIPaBLMv4999/ERQUBI2GK2cAnGvuBfcB94GC+4H7QMG5xhjnmbvHfSBwP3AfKLgfKm6eYaZgFaTRaBASEnJXtwNg8wv5cj9wHyi4H7gPAHUf3M3nqjXjXHP3uA+4DxTcD9wHCs41xjjP3D3uA4H7gftAwf1QcfMMT2ERERERERERERHZGAYFiYiIiIiIiIiIbAzXFCQiIiIiIiIiIrIxzBQkIiIiIiIiIiKyMQwKEhERERERERER2RgGBYmIiIiIiIiIiGwMg4JEREREREREREQ2hkFBIiIiIiIiIiIiG8OgIBERERERERERkY1hUJCIiIiIiIiIiMjGMChIRERERERERERkYxgUJCIiIiIiIiIisjEMChIREREREREREdkYBgWJiIiIiIiIiIhsDIOCRERERERERERENoZBQSIiIiIiIiIiIhvDoKAV0Gq1WLRoESIjI+Hs7IzatWtj1qxZuH37tqWHVinOnDmDl19+GW3btoW/vz88PDzQvHlzvP766zazD0zJyspCvXr1IEkSpk2bZunhVKrU1FTMnj0bDRo0gLOzM/z9/dGtWzf8/ffflh5apbl16xbeeOMNNG3aFB4eHqhRowbat2+PlStXQpZlSw+vXP3f//0fhg0bpnu9h4aGFrv9P//8g549e8LDwwOenp7o27cvDh8+XCljra5sfZ4BONeYY6tzDecZzjPF4TxTdpxnOM+YY6vzDMC5xpbmGcByc4393Q2XqpKnn34aS5YswQMPPIBZs2bh5MmTWLJkCQ4dOoQtW7ZAo7Hu2O/y5cuxbNkyDBo0CKNHj4aDgwP++usvzJkzB2vWrMHevXvh4uJi6WFWupdffhnXr1+39DAqXWJiIrp27Ypbt25h4sSJiIiIQHp6Oo4ePYpLly5ZeniVQqvV4r777sPu3bsxbtw4TJ8+HVlZWfjmm2/wyCOP4OTJk3jrrbcsPcxy8+KLL8LX1xctW7ZEWlpasdvu3bsXXbt2RXBwMF599VUAwNKlS9GpUyfs3r0bTZs2rYQRVz+2Ps8AnGvMscW5hvMM55nicJ65O5xnOM+YY4vzDMC5xtbmGcCCc41M1dqxY8dkSZLkIUOGGFy+ZMkSGYD81VdfWWhklWf//v1yWlqa0eUvvfSSDED+4IMPLDAqyzp48KBsZ2cnL1y4UAYgP/HEE5YeUqXp2LGjHBISIicnJ1t6KBaze/duGYD81FNPGVyem5srh4WFyV5eXpYZWAU5e/as7ufGjRvLdevWNbttTEyM7OHhISclJekuS0pKkj08PORevXpV5DCrLc4zAucaY7Y613Ce4TzDeaZ8cZ4ROM8Ys9V5RpY519jaPCPLlptrrP+Ui5X75ptvIMsynnrqKYPLJ0+eDFdXV6xevdoyA6tErVu3hpeXl9HlI0aMAAAcO3assodkUYWFhZg8eTL69u2LIUOGWHo4lWrHjh3YuXMnnn32WQQGBiI/Px9ZWVmWHlaly8jIAAAEBQUZXO7o6IgaNWrAzc3NEsOqMPXq1SvVdvHx8di/fz+GDRuG4OBg3eXBwcEYNmwYtmzZgitXrlTUMKstzjMC5xpDtjrXcJ4ROM+Yxnnm7nCeETjPGLLVeQbgXAPY3jwDWG6uYVCwmtu/fz80Gg1iY2MNLnd2dkbz5s2xf/9+C43M8pKSkgAANWvWtPBIKteiRYtw6tQpLF261NJDqXQbN24EANSpUwcDBw6Ei4sL3NzcEBERYTNfKAEgNjYW3t7eePvtt7F27VpcuHABp06dwgsvvICDBw9i/vz5lh6iRSifh+3atTO6rm3btpBlGQcPHqzsYVV5nGeKx7nGtuYazjMC5xnTOM/cHc4zxeM8Y1vzDMC5BuA8U5zynmsYFKzmkpOTUaNGDTg5ORldFxwcjBs3biAvL88CI7OswsJCvPbaa7C3t8dDDz1k6eFUmvPnz2PevHl4+eWXS1yY1BqdPn0agDiznJqaii+++ALLly+Ho6Mjxo4dixUrVlh4hJXDx8cHP/30E3x9fTF8+HDUrVsXjRo1wrJly7Bu3TpMnjzZ0kO0iOTkZAAwOKOmUC6zhTVayorzjHmca2xvruE8I3CeMY3zzN3hPGMe5xnbm2cAzjUA55nilPdcw0Yj1VxWVpbJCRQQZ9eUbRwdHStzWBb31FNPYc+ePXjjjTfQsGFDSw+n0jz22GOoV68eZs6caemhWERmZiYAwMPDA3/99ZfudT948GDUq1cPL774IsaNG2cTi1W7u7ujSZMmGDRoENq3b4/U1FQsW7YMDz30EH788Uf06tXL0kOsdErZhanPTP3PSzLEecY8zjW2N9dwnlFxnjHGeebucJ4xj/OM7c0zAOcaBecZ08p7rrHuV5ENcHV1RW5ursnrcnJydNvYkrlz52Lp0qWYMmUKXnjhBUsPp9KsXr0amzdvxkcffQQHBwdLD8cilI5so0aNMvji6OPjg0GDBuHKlSu6M2/W7L///kP79u3Rq1cvvPPOO3jggQcwceJE7Ny5E7Vq1cLkyZNRWFho6WFWOuWz0NRnpq1+XpYG5xnTONfY5lzDeUbgPGMa55m7w3nGNM4ztjnPAJxrAM4zxSnvuYZBwWouKCgIN27cMPmCuHTpEmrUqGFTZ9Xmz5+PBQsW4JFHHsH//vc/Sw+n0uTm5mLmzJno168fatWqhfj4eMTHxyMxMREAkJ6ejvj4+BJbm1d3ISEhAIBatWoZXRcYGAgAuHnzZqWOyRIWLVqEnJwcDBs2zOByV1dX9O/fH4mJiUhISLDM4CxIWajYVDq9cpmpNHxbx3nGGOca251rOM8InGdM4zxzdzjPGOM8Y7vzDMC5BuA8U5zynmsYFKzmYmJioNVqsW/fPoPLc3JycPjwYbRu3dpCI6t88+fPxyuvvIJx48bhs88+gyRJlh5SpcnOzsb169fx66+/Ijw8XPeva9euAMQZt/DwcHz22WeWHWgFUxaoVhZk1qdcFhAQUKljsgRlMjB19qygoMDg/7YkJiYGALBnzx6j6/bu3QtJktCqVavKHlaVx3nGEOca255rOM8InGdM4zxzdzjPGOI8Y9vzDMC5BuA8U5xyn2tkqtaOHj0qS5IkDxkyxODyJUuWyADkVatWWWhkleuVV16RAchjx46VCwsLLT2cSpeXlyevXbvW6N+HH34oA5D79u0rr127Vj59+rSlh1qhUlNTZQ8PDzk4OFjOzMzUXZ6cnCy7ubnJERERFhxd5XnqqadkAPJbb71lcPnNmzflwMBA2cfHRy4oKLDQ6CpW48aN5bp165q9vnXr1rKHh4d86dIl3WWXLl2SPTw85B49elTCCKsfzjMqzjWcazjPCJxn6pq9nvNM2XGeUXGe4Twjy5xrZNm25xlZrty5RpJlWb6XKCVZ3vTp07F06VI88MAD6NevH06ePIklS5agQ4cO2Lp1q9UvQLps2TJMmzYNderUwWuvvWb0eGvWrGmzi5AmJCQgLCwMTzzxBJYuXWrp4VSKTz75BI8++igaN26MCRMmIC8vDx999BEuX76MX375Bb1797b0ECtcYmIiWrZsiZs3b2L06NHo0KEDUlNT8emnnyIhIQHLli3D1KlTLT3McrNq1SpdWckHH3yAvLw8zJo1CwBQt25djB07Vrft7t270a1bN4SEhGD69Om621y9ehW7du1CdHR05T+AasDW5xmAc01xbG2u4TzDeYbzTPnjPMN5pji2Ns8AnGtsbZ4BLDjX3F3ckqqSgoIC+d1335UjIiJkR0dHOSgoSH766acNzipYs3HjxskAzP7r0qWLpYdoMefPn5cByE888YSlh1Kp1q1bJ7dp00Z2dXWV3d3d5V69esk7d+609LAqVXx8vPzwww/LwcHBsr29vezh4SF36tRJXrdunaWHVu66dOlSpvf/7t275e7du8tubm6yu7u73Lt3b/ngwYOVP/BqxNbnGVnmXFMcW5xrOM9wnuE8U744z3CeKY4tzjOyzLnGluYZWbbcXMNMQSIiIiIiIiIiIhtj/XnYREREREREREREZIBBQSIiIiIiIiIiIhvDoCAREREREREREZGNYVCQiIiIiIiIiIjIxjAoSEREREREREREZGMYFCQiIiIiIiIiIrIxDAoSERERERERERHZGAYFiYiIiIiIiIiIbAyDgmTTQkNDIUlSsf8WL15s6WFSOTl06BDs7Owwffp0g8u3bdume76Lk5CQoNsuISHhrseRnp4OPz8/tGnTBrIs3/X9EFHVx3nGtnCeIaLKxnnGtnCeofJmb+kBEFUFHTp0QIMGDUxeFxUVVcmjoYoyffp0uLi4YO7cuRYdh5eXF1544QU888wz+PLLLzFu3DiLjoeIKh7nGdvAeYaILIXzjG3gPEPljUFBIgCTJk3C+PHjLT0MqkDff/89du3ahWeeeQYBAQGWHg6mTZuGt99+Gy+88AJGjhwJJycnSw+JiCoQ5xnrx3mGiCyJ84z14zxDFYHlw0RkExYtWgQAmDhxooVHIjg7O+Ohhx7C5cuX8d1331l6OEREdI84zxARUUXiPEMVgUFBolJS1utISEjAjz/+iO7du8PX1xeSJGHbtm267W7evIl58+ahefPm8PDwgKurK5o2bYoFCxYgKyvL5H0XFBRg8eLFaNq0KZydneHv74+hQ4fiv//+w8qVKyFJktGZv/nz50OSJMyfP9/kfSrrSnTt2tXk9cnJyZg5cyYaNWoEV1dXeHh4ICYmBkuXLkVBQYHR9uPHj4ckSVi5ciXOnz+PsWPHolatWnByckL9+vUxZ84c5Obmmt1/Bw8exLhx4xAWFgZnZ2f4+voiOjoazzzzDBITEwEAK1asgCRJ6NOnj9n7SU5OhoODA1xcXJCSkmJ2O32HDh3C7t270bZtWzRs2LBUtykL5bko6V9RynO6bNmych8TEVU/nGc4z5jDeYaIygPnGc4z5nCesV0sHyYqo4ULF2Lp0qVo3bo1+vbti+TkZNjZ2QEATpw4gb59++LixYsIDAxEx44d4eDggH379mHu3LlYt24dtm3bBi8vL939abVaDBs2DBs2bICjoyO6du0KHx8f/PPPP4iNjcWECRPK/THs2LEDgwcPxs2bNxEaGopevXohNzcX+/btw/Tp0/Hzzz/jl19+gYODg9FtDx8+jCeffBI+Pj7o0qULUlNTsWvXLrz++us4fvw4fvjhB6PbvPPOO3j++eeh1WoRERGB+++/H9nZ2YiPj8e7776Lxo0bY/z48XjooYfw3HPPYfPmzThz5gwiIiKM7uvjjz9GQUEBxo4dCz8/v1I93g0bNgAAevbsWbYdVUrNmzc3u47G6dOnsXfvXmg0xudgmjdvDn9/f+zbtw+XL19GYGBghYyPiKoXzjOcZ4riPENE5YnzDOeZojjP2DCZyIbVrVtXBiCvWLGi1Nva2dnJP/74o9H1WVlZcv369WUA8pw5c+Tc3Fzddbdv35ZHjRolA5AfeeQRg9stXbpUBiDXrFlTPnHihO7y/Px8+fHHH5cByADkcePGGdxu3rx5MgB53rx5Jsf7119/yQDkLl26GFx++fJl2c/PT5YkSf7www/lwsJC3XU3btyQu3fvLgOQX3nlFYPbjRs3TjeWl156SS4oKNBd999//8lubm4yAHn37t0Gt/vxxx9lALKzs7P83XffGY3z+PHjBo/7pZdekgHIM2bMMNo2Ly9PrlWrlgxAPnjwoMnHbUrHjh1lAPKvv/5q8nplX5X0kXj+/HnddufPny/x7yYmJsqBgYEyAHnp0qUmtxk0aJAMQF61alWJ90dE1Q/nGc4zssx5hogqDucZzjOyzHmG7h6DgmTTlInR3D/9CUjZdsKECSbv66OPPpIByAMGDDB5fWZmphwQECDb29vLqampussbNGggA5A/+ugjo9tkZ2frJo3ymkSfe+45GYA8bdo0k7dLSkqSHRwcZH9/f1mr1eouVybRVq1aGVyueOyxx2QA8quvvmpwefPmzWUA8sKFC03+vaIuXbokOzg4yF5eXvKtW7cMrvvmm29kAHK7du1KdV8KZYI/d+6cyev1J9HS/itpEr1586YcFRUlA5CfeeYZs9u98MILMgD56aefLtNjIqLqgfOMMc4znGeIqPxwnjHGeYbzDJUey4eJAHTo0AENGjQwujwyMtLosgcffNDkffz6668AgBEjRpi83t3dHa1bt8bGjRuxf/9+9O7dG5cuXUJ8fDwAYMyYMUa3cXZ2xvDhw7FkyZJSP5aSlDTO4OBghIeH48SJE4iLizNKeR8wYIDJ9SQaNWoEALh06ZLusitXruDw4cPQaDSlXhA3KCgIDz74IL755husWrUKjz32mO46Za2KadOmleq+AOD27du4ffs2AJQqPd9c2jwA3Lp1C+vWrSvxPvLy8jB48GCcOHECI0eOxFtvvWV2W2VMV69eLfF+iaj64jyj4jzDeYaIyh/nGRXnGc4zVHoMChIBmDRpktHCt+aEhoaavPzcuXMAgLFjx2Ls2LHF3sf169cBAElJSQCAGjVqwN3d3eS2YWFhpRpXaSnj7NSpU4nbXr9+3WgSrVOnjsltPT09AQA5OTm6yy5cuAAACAwMNFh3pCQzZszAN998g2XLlukm0aNHj2Lnzp2oWbOm2S8ypqSnp+t+9vDwKHH7lStXmr0uISGhxElUlmWMHz8e27dvR5cuXXQLK5uj7LebN2+WODYiqr44z5jGecYQ5xkiulucZ0zjPGOI8wwVxaAgURm5uLiYvFyr1QIA+vbti5o1axZ7H3Xr1i33cZkbj7nLH3zwQbi5uRV7H6bORJlaYLa8tW3bFrGxsdi3b59uMlLOqk2ZMgWOjo6lvi9vb2/dz5mZmbpJq6I8//zz+OabbxAVFYUNGzbAycmp2O2VSd7Hx6dCx0VE1QfnGc4zxeE8Q0T3ivMM55nicJ6xLQwKEpWT2rVr49SpU5g4cWKpz/wEBwcDAG7cuIFbt26ZPLuWkJBg8rbKRJKZmWny+sTERLPjjIuLw3PPPYfWrVuXapx3SzkLd/nyZaSnp5f57NqYMWOwdOlSREdH46uvvoK9vb1B+n1puLq6ws3NDbdv30ZKSkqFTqIffvgh3n77bQQFBeG3334zmMDNSUlJAYASv3gREXGeMcZ5xrvE23CeIaLS4jxjjPOMd4m34TxTvVV8iJzIRtx3330AgDVr1pT6NiEhIahXrx4A4Ouvvza6Pjc3F2vXrjV5W2UCPnnypMnrlbU2ymOcd6tWrVqIjo6GVqvF8uXLy3Tb4cOHIzAwEBs2bMDrr7+O27dv44EHHkBQUFCZx9GyZUsAwIkTJ8p829L66aefMGPGDHh4eODXX381W5ZQ1LFjxwAArVq1qrCxEZF14DxjjPNMyTjPEFFpcZ4xxnmmZJxnqjcGBYnKyZQpU1C3bl2sXbsWzz33nMkzXleuXMGnn35qcNlTTz0FAJg/fz5OnTqlu7ywsBCzZ89GcnKyyb/XvXt3aDQa/PHHH9i+fbvuclmWsWTJErNrRTzzzDPw9vbGe++9h/9v735Cmv7jOI6/ZqxCJnqQ2UFN8aIFohcLFdMRdNEoS8qUhnQaHQIREYM8iLhDKjjBgkoPXgxRCDz356BUoCD+AS87dRDyoBdNlPfvEEn9nH9aG1O/zwfsMPb5fL7vjbHXeI99Pj09Pdra2tozJhwOa2Rk5NDnfBQdHR2SpKdPn0asaXFxMeIXAbfbrUAgoO3tbT1//lzS323I+7uqqipJ0vT0dFTzD/PlyxfV19crKSlJY2NjKioqOvLcXzX5fL641Abg9CBnIiNnDkbOADgqciYycuZg5MwJl8ijj4FEu3jxokmyoaGhI4896Oj2+fl5y8nJMUmWlpZmFRUV9uDBA7t165ZdunTJXC6XZWRk/DFnZ2fHampqTJKdPXvWbty4Yffv37fc3Fw7f/68BQIBk2R+v3/P9Z48eWKS7MyZM1ZZWWm1tbWWl5dnbrfb2traTJJdu3Ztz7yPHz9aenq6STKv12s+n88aGhqsurra8vLyTJJduXLljzl+v//A12poaGjfOru6uszlcpkky8/Pt3v37tnNmzd3j7jfb82VlRU7d+6cSbLCwsKIY45iZmbGJFlJSUnEx9+/f2+S7LCPxHA4vDvu9/eBz+czSZabm2t+v3/f29/WBeDkI2fIGTNyBkD8kDPkjBk5g+ixpyAQQ5cvX9bc3JxevHihiYkJzc3NaXp6Wunp6crMzFRLS4tu3779x5ykpCSNj4+rv79fr1+/1ocPH+TxeFReXq6JiQnNzs5qcHAw4vX6+vqUnZ2tV69eaWpqSh6PR2VlZXr79q3W19cVDAYjzquoqNDCwoIGBgY0OTmpr1+/6sePH/J6vcrOzlZjY6Pu3LkTs9elvb1dPp9P/f39+vTpk8bHx5WSkqKsrCy1trbu+6uS1+tVUVGRPn/+rMePH0d9/eLiYpWWlmpqakpLS0sqKCiIeq1IdnZ2JP38RTIcDu877v8ngf26/y/PDYCzkDORkTM/kTMA/hU5Exk58xM5c/q4zMwSXQSA/Q0PD6upqUl+v//A4+VPo+XlZeXn5ys1NVXfvn1TcnJy1GuNjY2prq5Ozc3N6unpiWGV0dnc3FRWVpbcbrfC4fChp3oBQLyQM+QMAMQTOUPO4PhiT0EAx9azZ89kZgoEAv8UoJJ09+5dlZWV6eXLl1pZWYlRhdELhUL6/v27uru7CVAASBByBgAQT+QMjjuaggCOlXfv3unRo0e6evWqRkdHdeHCBbW2tsZk7VAopI2NDXV2dsZkvWitra0pGAyqpKREDx8+TGgtAOA05AwAIJ7IGZwk7CkI4FiZmZnRmzdvlJKSouvXr6u3t1dpaWkxWbu4uHh3v4xESk1N1erqaqLLAABHImcAAPFEzuAkYU9BAAAAAAAAwGH4+zAAAAAAAADgMDQFAQAAAAAAAIehKQgAAAAAAAA4DE1BAAAAAAAAwGFoCgIAAAAAAAAOQ1MQAAAAAAAAcBiaggAAAAAAAIDD0BQEAAAAAAAAHIamIAAAAAAAAOAw/wGlvKgWpm0YBQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lcs.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lcs.freq, lcs.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lcs.freq, lcs.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb.txt b/_sources/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..8f731c73d --- /dev/null +++ b/_sources/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb.txt @@ -0,0 +1,278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Power Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScarglePowerspectrum\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.interpolate import make_interp_spline\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "plt.style.use('seaborn-talk')\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create a light curve\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make one with signals in units of counts. It is a sine wave with random normal noise, frequency of 3 and at random times and make its counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "sub = np.min(y)\n", + "y -= sub\n", + "t0 = np.linspace(0, 10, 1000)\n", + "y0 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "sub = np.min(y0)\n", + "y0 -= sub\n", + "spline = make_interp_spline(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAIlCAYAAACtuat8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3wcxfn+c9JJcu+2XJDBgG2aKaaExOAAgYTeCQmywcHYBhIgQEggGHAAU00JkBCbmC5KvpRQkhA6hF9CQjEdbAM2lsG49yLpyu+P1Whn97bMzM67tyvN8/n447vT3tzc3u7MPPM87/tmisViEQYGBgYGBgYGBgYGBgaJRUW5O2BgYGBgYGBgYGBgYGAQDEPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSDkPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSjmy5O9DRUCgU8M0336B79+7IZDLl7o6BgYGBgYGBgYGBQZlQLBaxfv16DB48GBUVwZqaIW4x45tvvkFdXV25u2FgYGBgYGBgYGBgkBA0NjZiq622CjzGELeY0b17dwDWj9OjR48y98bAwMDAwMDAwMDAoFxYt24d6urq2jhCEAxxixnMHtmjRw9D3AwMDAwMDAwMDAwMhEKoTHISAwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEwxA3AwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEw5QDMDAwMDAwMDAwSDWam5uxZs0aFItFobTqBgaUYNdhr169UF1dra3dRBK3lpYWvP7663juuefw6quvYv78+di4cSP69u2LffbZB1OmTMERRxwh1ea0adPwu9/9LvCYTz/9FDvssEOUrhsYGBgYGBgYGMSIQqGAFStWYODAgaioMGYyg2SgUCjg22+/1XpdJpK4vfbaazjkkEMAAAMHDsR+++2Hrl274pNPPsEzzzyDZ555BpMnT8af/vQn6V2V3XbbDbvvvrvn33r27Bm16wYGBgYGBgYGBjFi9erV6Nu3ryFtBolCRUUF+vbtizVr1qBPnz5a2kwkcauoqMAJJ5yA8847D/vvv7/jb48++ijq6+sxa9YsjBkzBqeeeqpU28ceeyymTZumsbcGBgYGBgYGBgblQi6XQ01NTbm7YWBQgpqaGqxZs0Zbe4ncmjjooIPw2GOPlZA2ADj55JMxYcIEAMD9998fc88MDAwMDAwMDAwMDAziRyKJWxj22GMPAEBjY2OZe2JgYGBgYGBgYFBOmGQkBkmGzuszkVbJMMyfPx8AMGjQIOn3vvvuu7j44ouxatUq9OzZE3vssQeOOuoodO/ePXK/Nm7cqOUYAwMDAwMDAwMDAwMDHqkjbt9++y3uvfdeAMAJJ5wg/X6W3IRHz549cdttt0nHy7nRrVu3SO83MDAwMDAwMDAwMDDwQqqskrlcDuPGjcPatWsxatQoTJkyRfi92223Ha655hrMmTMHq1atwqpVq/DGG2/gyCOPxNq1a3HaaaehoaGBsPcGBgYGBgYGBgYG6nj11VeRyWTaRAyDjoVUKW5nnnkmXnrpJfTt2xePPfaYVEG78ePHl7w2ZswYPPPMMzj33HNx++234/zzz8dJJ52kXChvw4YNocesW7cOgwcPVmrfwMDAwMDAwMAgPuRywIIFwLp1QI8ewLBhQDZVq2eD9oTUKG7nnXceZs+ejd69e+OFF17AiBEjtLU9bdo0VFZWYvny5fjvf/+r3E7Xrl2F/hkYGHQgfPYZsGJFuXthYGBgYCCBxkZg6lRgyBBgxAhgr72s/4cMsV43+fEMyoFUELcLL7wQt912G3r16oXnn3++LaukLvTp0wcDBgwAACxevFhr2wYGBh0Y//gHsOOOwLbbAmvXlrs3BgYGBgYCaGgAhg8Hpk8Hli1z/m3ZMuv14cOt4wwM4kTiiduvf/1r3HzzzejZsyeef/557LXXXto/I5/PY23rokpHdkkDAwMDAMDhh1v/r18P/OEP5e2LgYGBgUEoGhqAceOApqbg45qarOOSQN6KxSLuuusufOc730G3bt3QrVs3jBo1Cpdffnm5u2agGYkmbhdffDFuvPFG9OzZEy+88AL23ntvks95+umnsWnTJmQyGRJiaGBgYBC6CjAwMDAwKCsaG4GJE+XeM3Fi+W2T48ePx+TJk5HJZHDppZfixhtvxEEHHYTHHnusvB0z0I7EhldOnToV119/fZs9UoS03XHHHbjjjjuwzz774P777297fdGiRXj99ddx4oknolOnTo73/PWvf8UZZ5wBAKivr8fAgQP1fhEDAwMDACgUyt0DAwMDA4MAzJwpv8fW1ATMmgVcdRVNn8Lwl7/8BQ0NDRg3bhzuu+8+VFTYmkzBzDvtDokkbk8//TSmT58OANh+++3xBx+LUb9+/TBjxoy25ytWrMDcuXNLyNeqVaswfvx4nHXWWdhjjz0wZMgQbN68GZ988klbMe8DDzwQd955J9E3MjAw6PAoFsvdAwMDAwMDH+RywF13qb33rruAK64oT7ZJVspqxowZDtIGoOS5QfqRSOK2atWqtsdvv/023n77bc/jtt56awdx80NdXR1+85vf4K233sLnn3+Od999F83NzejXrx+OPPJInHLKKTj55JPNBd4e8N//ArffbnkXDjyw3L0xMLBhdj4NDAwMEosFC0oTkYhi6VLr/cOH6+2TCObPn49BgwahtrY2/g83iB2JJG4TJkzAhAkTpN83bdo0TJs2reT1vn374rrrroveMYPkY999rf8bGozCYZAsmOvRwMCACsUikMmUuxepxrp10d6/fr2efhgYBMFITAbtF2ahbJAkGMXNwMCAAuPHA1ttBbzxRrl7kmr06BHt/eVKSj5ixAgsWbIES5cuLU8HDGKFIW4G7RdbtpS7BwYGNsxGgoGBgW7MmQM8+CDwzTfA/vuXuzepxrBhQGtJX2nU1lrvLwfq6+sBWOWz3MlIimbeaXdIpFXSwEAL1q4FOncudy8MDCwYxc3AwEA3Vq4sdw/aDbJZYNIkq7i2LCZNKk9iEgA46aSTcPLJJ+P+++/H/PnzcfTRR6N3796YN28e/vnPf+Kjjz4qT8cMSGCIm0H7xdq1gCnvYJAUmJ1PAwMD3TBxbVoxZQowY4ZcSYCaGmDyZLo+ieChhx7C/vvvj9mzZ+PKK69EZWUlhg0bhpNOOqm8HTPQDkPcDNovokYaGxjohCFuBgbJxiuvAI88ApxzDrDLLuXujRhMNmytqKsDZs8Gxo0Tf8/s2db74sIBBxxQYoGsqKjAz3/+c/z85z+PryMGZYEhbgbtF2vXlrsHBgY2jFXSwCC5WLECOOgg6/Ejj6Rn/jCKm3a0hoxh4sRg5a2mxiJt7HgDgzhgtmoM2i/SMvEatF/wiyqjuBkYJBNffgkMGWI/T5NbwxA3EtTXA/PnA1OnWolHeNTWWq/Pn29Im0H8MIqbQfuBe2GcpsnXoH2iogLI563HRnEzMEgmfv5zoLm53L1Qg7FKkqGuDrjqKuCKK6zi2uvXWyn/hw0rXyISAwNz6Rm0H7gXxkZxK8WcOcBDDwE/+xmw007l7k37h1HcDAySjzTXvzKKGzmyWWD48HL3wsDAgiFuBu0HLS3O54a4lWL0aOv/P/8ZWL26vH3pCOB3w43iZmCQTKRVbQNsRd/AIEkoFoE1a6yNhZ49zQaDRhiN3aD9IJdzPjfEzR9r1pS7Bx0DRnEzMEg+DHEzMNCLtWuBL74APv/c8pgaaIMhbgbtB0ZxM0gajOJm0NGQz6dvoZZm4ubesDQwSAK+/tp+vGRJ+frRDmGIm0H7gXsC27KlPP1IKswEHz8McTPoSGhqsmJna2uBN94od2/EkWbiZhQ3gySCd5gYm6RWGOJm0H7gVtwoJuNly6zCLWncQdq8udw96HjgJyz39Wlg0N5w333AvHnWWHPkkeXujTjSTNzMhpxBEmGIGxlMchKD9gP3BBZUOVMVJ50EvP46sOeewNtv62+fEoa4xQ9ecTPEzaC9Y/ly+3GarOppJm5GcTNIIgxxI4NR3AzaD+JQ3F5/3fr/nXf0t00NQ9zih1HcDDoS0qr+pJm4pfWcG7RvGOJGBkPcDNoP3BNYmidjChjiFj+M4mbQkcAnJNCNQgF46y0aJS/N96ZR3AySCEPcyGCIm0H7QRyKG4+0pXc3xC1+8BOW2Rk3aM945BHgrrvo2r/9dmCffYDdd9d/L3klDkpLMiFD3AySiAQSt8ceewy77bYbOnfujEwmg1dffdX32AkTJiCTkH67YWLcDNoP4lbcmpqATp1oP0MnDHGLH0ZxM+go+OlPadv/5S+t/xcuBObOBXbemfbzWlqAmhraz9ABsyFkkEQkjLjNmzcPP/3pT/Hd734Xd9xxB2pqarDjjjuWu1tKMMTNoP2AWnFzK2ybN6eLuL3ySrl70PFgYtwMkobGRuDkk4EhQ4CHHwayKVgGuMfeONwOuVw6iBu14lYoAGefDfzvf8Ddd1uKp4FBGBJG3F599VXkcjnceuutGD16dLm7EwnGKmnQfkBN3Nztbdqkt31K/Oc/wNSpztfSZvVMI4zi5o9iEVi5sty96Hi49FJrPHjsMeDOO/W06WUr1LlYW7rU+TwO90Ba7le34qZ7XP/DH4CZM4E5c/RdLwbtDps3b0aOvxYTRty+/fZbAECfPn3K3JPoMMTNoP2A2irpLi+gc/Fw553AmDF21kqd+M9/gO99r/R1ip1aQwb9kZaFYFw4+WSgXz/gllvoPqNYtBJarFhB9xlpAx/X8fzzetr0SkpSWamnbQD46CPnc51jr988oduCuGYNsH693jaB0nFcd7+vu85+/Le/6W3bQAlbtmzBtGnTMHLkSHTp0gW9evXCqFGjcNFFF5Uc++c//xmjR49G586d0bNnT/zwhz/EG2+84Thm4cKFyGQymDZtWsn7p02bhkwmg4ULF7a9xuK/li9fjtNPPx21tbXo2rUrFi9eDABYt24dLv3jH7HjSSeh05gx6Lvbbthvv/3wyCOPONpesmQJzjrrLAwdOhTV1dUYPHgwJk+ejGXLlgmfi9dffx2HHHIIevbsic6dO2P06NGYPXu245hMJoMrrrgCADBs2DBkMhlss802wp/B49tvv8W5556LbbfdFjU1NRgwYAAOOeQQvPDCC0rtqSAFHgkDA0FQK25UxC2ft6woAPD97+snP9de6/+5umxSGzYAP/iBpUK+8AIwcKCedtMOflFliJuNjRuB//s/6/EFFwDnn0/zObNnA5MmAQMGAIsWpcP6Ro1ttrHskoAVL6YDX3xR+ppOC2brgrANOonbxo3er+u8Xz//HNhtN0uB/+QToK5OX9tuotbSAlRV6Wt/wwb7MXVcYZqQzwNffWWtMwYMAGJUcn7+85/j7rvvxqmnnooLLrgAuVwO8+fPx8svv+w47je/+Q1uuOEG7LPPPrjmmmuwfv16zJo1CwceeCCeeuQRHP6971mbZ4o45JBDMHDgQFx22WXYuHEjunXrhjVr1mC//fbDxx9/jBN/8AOcdcIJyHftijkLFuDZZ5/FT37yEwDAokWL8N3vfhfNzc2YOHEitttuO3z++ee488478corr+Dtt99Gz549Az//mWeewXHHHYeBAwfiwgsvRPfu3fHII4/gjDPOwJdffonp06cDAB544AE88cQTePLJJ3HLLbegX79+6Natm/T3XbhwIcaMGYOlS5fi1FNPxV577YWNGzfizTffxIsvvohDDjlE/iQqwBA3g/aDtCpu7n5u3Ah07aqnbcDa6fWCTsVt2jQrBgIALroIeOABfW2nGYa4eYMRB2pMmmT9v2yZFeN56KHxfG6Ssc02wL/+ZT1esEBPm9SKG6VNfcsW79d1Klfnn2/3+bzzgCee0Nc2teLGk0CexKUFu+8OLFliXY8VGk1mxaLzXMuS5YEDgbffVvroJ598Eocddhjuu+8+32Pmzp2LG2+8EWPGjMHLL7+M6upqAMAZZ5yBnXbaCWefcw6+ePJJVG7cqLzJsssuu+DBBx90vHb22Wfj448/xsxLLsHk44+3Xhw0CBgyBAXOUn3OOeegpaUFc+bMwVZbbdX2+kknnYR9990Xt9xyi6cCyJDP5/GLX/wC3bp1w//+9z8MHjwYgEVqDzzwQFx33XWYMGEChg8fjnHjxuHzzz/Hk08+iWOPPVZZbTv77LPxzTff4LnnnsOPfvQjx98KMWahNcTNoP0grYqbu99vv20pb7rgRxh0TvB8QfIPPtDXbtrBn2ND3GzERdx4dO4c/2cmEX372o/91CZZeBEpnYqbeyzXqbj5jYM6x8dVq+zHuq99L8WNqn0Kqyc1liyxNm7aEXr27ImPP/4YH330EXbZZRfPY5566ikUi0X8+te/biNtADB48GD8bPx43HrHHZgzdy722mknZdXtV7/6leN5oVDAI488gh133NEmbUBbjFtFK3Feu3Ytnn32WfzsZz9Dp06dsIKzsm+zzTbYfvvt8fzzzwcSt3feeQeLFi3C+eef30baAKC6uhq//vWvceyxx+Kpp54q6aMqVq1aheeeew6HHnpoCWnjv1scMMTNoP3APYG5iVZUxKW4vfNOPMRNp+LGL9y6dNHXbtphFDdvuK1vulXmv/8dmDLF+ZrO9imh2+rmBkVsKzVxo4wv9iNoOu9XfkzUnVjF/XvqHmf4c0+luF1wgeXYuOsuQGeK9nzeuVGh874qFJznPpuVS8IRIZzg1ltvxfjx4zFq1Chsu+22OPDAA3HUUUfhqKOOaiMQC1rV9J097K07t57jL7/+2iJuihgxYoTj+YoVK7B69Woc6nY2uMI/5s6di0KhgNmzZ5fEozFsu+22gZ8d+P1aX/vyyy8D25DB559/jmKxiD322ENbm6owxM2g/SCtiht1tkpD3MoHo7h5w606rFihl1gdcUTpa7qtLDfdZMXp3XSTlVhIB669FrjySuDyy4FLLtHTphvu+75YjJ71zUu5M4qbDV7t1T2+UxK3YpGeuL38sp2g6Oyz9ZataW4G7r/ffr7XXvraXrbMiptl2HHH2DaHjjnmGCxcuBB///vf8dprr+HFF1/E7Nmzsf/+++PFF190KGwiCCo0nQu4D7oozvXFViI3btw4nHbaaZ7HdDYOCV8Y4mbQfuAeYHI5a7GmS8J2E7fjj7cmhqi7eO5Fie4YhTiskpTE7ZlngAsvBCZOBH7zG71tU8Mobp4ofNXoSGmcW7Ic2a231tN4HFkC168HmAVnv/30JRT67W/t/6mIm/s8FArR49G8yIjOFOCUm1txKG5UxG3pUvuaYdB5nedyzmubwirJZzjkM57qgO7NWx7lqC3IoU+fPhg3bhzGjRuHYrGIiy++GDfccAOeeuopnHTSSW2K1ccff4ztttvO8d5PPvsMALDtkCFtbQGWHdANGdWqX79+6N27N95//33nH1znZvvtt0cmk0FzczMOPvhg4fZ58N/PjU8++cRxjA6wPr/33nva2lSFKQdg0H7gNdHqnHy9rJc6knC4JxfdVqa4FTfdO2VHHw3Mnw9cfDFdsdnrrgMOOMCqVaQLxaIhbi40NlrlBF96cInj9XGHrsDUqZrCf9yp4xl0XjtuxcfvM6Pghhto4kXd50HHefEiI5Rjb9oUNyqr5Flnlb5Ged63bNG/sfjVV/ZjSaUoFO7+6yRX7rZiSk6Rz+exxpVwLJPJtFn4GPk6+uijkclkcOONN6KFuyaWLFmCex54AFsPGoQ9Ro4EAHTv3h0DBw7Eyy+/3KaGARZp++tf/yrct4qKCvz0pz/FJ598gtlPPVXyd9Z23759cfjhh+OJJ57Am2++6Xnc8uXLAz9r9OjRGDp0KO655562Gm0A0NLSghtvvBGZTAbHHHOMcN/D0KdPHxx22GH4xz/+gRdffNGzz3HBKG4G7QdeE0pzs74U4F7EzWO3RxrlUtyoFrKUVsm1a/WnXf7oI1vd+PWvrXIGOuCeyDs4cWtosETTpibgADgz+VWtXY7p04EZM6wM/vX1ET7Ij3zrvK/c987uu1vZWxVSTPviN7+x/hUKetUrL2dC1AWzF3HTqXaUwyqZhhi3J58sfY16s3LDBqBXL32fwRO3oUP1tQuUXjc6bMF8W0HPibB+/XoMGjQIRx99NPbYYw8MGDAACxYswJ133onevXvjqKOOAgCMHDkSF110EW644QaMHTsWJ598cls5gA0bNqBh2jRUckr7L37xC0ydOhWHHXYYjj32WHzzzTf405/+hF122QVvvfWWcP+uvvpqvPzyyzjj6qvx/JtvYr/dd0exWzfMWbgQuVwOD7Rudt95553Yb7/9MHbsWJx66qnYY489UCgU8OWXX+Kpp57CqaeeGpicpLKyEnfccQeOO+447L333pg8eTK6d++ORx99FG+++SZ++9vfYvjw4Won2Qd33HEHvve97+Gwww7Daaedhj333BObN2/Gf//7X2yzzTa4/vrrtX6eHwxxM2g/8JqwdC4evCax2tro7bYH4hZXjNuaNfqJ27PP2o89dtKUQZntbelS4NZbgf33Bw4/XF+7PL74wiKxJ54YqdYPYJG2cePs5zVw3kv9Ye2uNjXZxymTtzjKX7h/y3weePNNQNH2E/pZOpUICsXNK8Yt7cTtxz+2SIWOhT5vp6fewEkbcePjxHTZpRnc54JScYuJuHXp0gW//OUv8dJLL+HFF1/Ehg0b2ojcJZdc4siweP3112P77bfHH//4R1x88cWorq7Gd77zHTz05z9jfz5pC6yab2vXrsUDDzyAV199FTvttBNmz56Nd955R4q49e7dG//5z39wzbnn4olXXsGTr76K7t26YadddsE555zTdlxdXR3eeecdXH/99Xjqqafw4IMPolOnTqirq8NRRx2FH//4x6GfddRRR+Gll17C1VdfjRtvvBHNzc3Ycccd8ec//xkTJ04U7rMohg0bhrfffhtXXXUV/v73v+P+++9H7969sdtuu2Hy5MnaP88PhrgZtB/4KW664NWWjgksLqvkttsCvXvbqft1EkR+gqQMKl69Wn+bfIxF9+762nX/jjqvxQkTgOeesyyeK1Y4M6fpwtixwDffAM8/H6nuVGOjpbTxqIbzXHSFc+E/caL18Up1iuOI6fT6LamKe2/ZQkvcdJwXP8VNl8LhJhBxxLg1NgL//Kee2n9xqu06r3Mv4vbppwBXdysy+BqAnTrpaxcovdZ1xHMyuIlaY6OluOtMyuOB6upqXHvttcLHT5o0CZNYPUuG9euBuXPt5wsWIFtbixtuuAE33HCD49CjjjqqRPm69957ce+99/p+Zq+ePXHDuefihnPPtV4YMMBTTe3Xrx9uvPFG3HjjjcLfx43vf//7+L5AFu5p06YFKnhu+H3HIUOG4E9/+pNED/XDxLgZtB+UQ3HTMSHHpbhVVQF8zReqeDHKeiZ+akoUfP65/XjUKH3teiluuuIgnnvOfsxPwLrQ3GyRNsDbjiWBmTNLbx03ccvCea6amoBZsxQ/MI6YJQri5rdj71cgWhXu80AV4+YuUBwFlIpb0BjuLltB8Rm6Qa24/fCHeuO5+GtH93nyyqCqC+5z0NTkXYg+iXCfh5UrgdaEJSTtG2iFIW4G7QflIG462o+TuPG7jVTETXf/eVAobjwZpIyDAmiynOmMf2JYu1ZLM7mcVZrJDbdV0k3cAOt9Sj9HHNZgr98xanZZvy+ri7g1NQEPPwy4s6LpuOZ5qyRfGkHX9V4OqySgzz3QnogboK8sgPvapiZuOgmnFzkJSaiRGHj1nfrcGGiDIW4G7QfUVkmvSUxHke+4rJJVVU4bBxXBoiKEgH7FrVi0dhsZdBZt9zq/uovCAzTEbd06Lc0sWGCVO3IjTHEDrDC+1hqrciiXVTLqwsev37qumRtvBE45xcrQykOn4lZZ6UzQomv8LUdWSUCfdc/921KMA36fFQV+/dS1meDeiEs7cUsLqPvuPs9pPlcJhCFuBu0HXoO+zgkyLsVt1qxIMUUOFIvxK24623UP+DqThwCW159fuOm8XrzOg27bG5Boxc2P/7mJWyW8rxmlslF+C3FqxS1q+35jia5r5rLLvF/XGePWpYvTMkqluMUR4wboI27u/lPUQ2Og3qAA9F2T7rphuh0JlFbJNJMR6r5TK8zFonUNpvk3iABD3AzaD9qL4gYAJ5wQvV3AmrjY4EZF3CgVQ/dv+uijwH/+o699Xm0D9F4vcSluFHATt+uuU2qmRw/v10WskoBirhhqxe2ii6xsnrrb9+s3BdnnoVNx69LFmUgl7VZJXfG67t9W18LWq39xKG66zr+buOnsu1eMpVHcLFD33b0xofvzFi+2yvhIFAdvTzDEzaD9oL3EuOkEf06orJIrVjif6yRuXovWe+7R176buFErbmkhbm6p7JJLgLfflm5m2DAroZgbIlbJ2lrr/dKgJG6vv24Vm/NC1Ou+XMRNZ4xb165OxU3X9V4uq6Suscz92+oae70yJKbJKklJ3LxIGmVyEgo0N9PMGdTETVcMpB+WLrX+p4h5TwEMcTNoPyiH4pY24qZbcWtqAljKXwbqdNQ6U/a7SWcaY9wo4GWV/OAD6WayWcCdiRoQI26TJilm1qa0SgYVZ0+6VdIPaVTcdJ6ToPFK11hGpbh53SAdlLgV3WTE67pOk+LW1AR8+KH1T6c1GKDvu7u/lJ+XEuWz5PqMAEPcDEpB6b+nQrEI/Pvfpa+nwSrpN1np6Ds1cfu//wMef9z5GrXiprP99qC4Uez8ehE3xQx7U6aUZsoPs0rW1ADK9UwpFbeg0gtUihs12Y96XorF+Ikb9QYLA5WdXBchjJO48TexLsXTPf7q7LvXb/fFF/oW+tSEobHR/oyvvtLbtl/fdXynYpF2M9qNOJTPhMEQNwMnbr7ZKio9ZUq5eyKHjz4qD3GjVNw2bvR+XQZBVkkdixKvQqA6iZXXOdeUOANA+4hxo8gO6pVVRJG41dUBs2fbzyuQR9aVjMRN3GbPViy+DdCWA/j4Y/+/ddQYN75/VMTNfd8Yxc2Cl1WSKiFXz5724wQqbtlsFk18f72u62Kx9DNVUCjonYf8PsPrsQ5QErfm5tJ2KEluCohbU1MTqqKWi+FgiJuBExdeaN0Is2bRZR1ctQr47neBAw7QQ04AZ+HLrl3txzonMa9dRqrkJAANceMneh2Lkp12Kn2NWnHTWRLAS3HTNcnEpbhR3Kdei5IIBabr64EHH7SaqELp4owRt5oa67j6euWPoi3AHRS7kVarZNTzwve7utpJ3HRd7+WySqYxxk3nueF/v1699H+GO0YpAtHv3bs3Vq5ciTz7zSjvJ12F2YNQDnuhjs+MOxwg4cQtn89j1apV6MXfPxGhEkFg0FGwcqV3ZoGoOO884M03rce33gpcemn0NvmJsUcPm/TotF54ESlKxU1HgC+1VXKbbUpf06kAeU2yOnc63TFugHXO+MWnKtqb4hbxeqmvB8aOBe67rQlw5ffoVpPD1Isse6Sy0sZAaZUMWiSkNTlJ1H7z56SiwqnM6orNiYu49erl3BhKo+JGRdx4xU2XVdI9zkQ4LxUVFejXrx9WrlyJYrGIzMsvexfE3n13ay6Mgr/+1f9vQ4dGa5vh3Xft/vfqBfTvr6fdfB549lnv33DAgOglMD7/vDSRVV2ds75jVPDuqp49nddmglAsFpHJZNC3b19U6MpQC0PcDIKwbBkNcXvmGfvxJ5/oaZOf2HnFjZq4pU1x022V9GqD2ipJqbixz9RB3OJS3CiImxc51vA5dXXA1F83lxC3o4/I4dirIjdvgTI5SRBxS7JVMui7R+0333ZlJdC3r/1chy0NKL1vmB1LRw1D/vtvtRUNcYszxi0O4qbrMzQSNwCorq7GgAEDrPN9yineB82aZe0gRcF55/n/zZ2sSxV//CPwxhvW49GjgVNP1dPujBlWSRMvHHdc9DXf738PXHON87UTT7Ta1gX+/I8ZAwwfrq/tFMBYJQ38wVKu6sTttzsXhX366Gm3XMQtzYqbjsUDRSFiHnFbJQF9cTlxKW4UVkmva/2ii7wVSll4nIOKvEbySam4BZ3rJFslg5Qv3Ypbv372cx3XC+B9bnTdS/x14b5Gkm6VjJO4UVgl3YnQdM3XQWM4VQiIbvD91KjW+JI2QM895bXpR2ln1J1xMwUwxM3AHxTEzb0bpYu48QN+ly7er0dFe1DcdFslvc5vmpKTeC0sdS0I06y4eV2Tn38O/OIXNG3r/A6UyUnKYZXUcc0EjSW6FTeeuHlZ1VTgdc3oIg9BxE3Hdfnss8C8ec7X0p6cJIFWSd923KQn6dZjBn6s8fqdKaDj2iGw2Qe2ZYibgQGHZcvoP0OXN5mf2Hkvtc4sgWzxw/vj06y46RhMy6G4rV2rL3DbzyqpA2kmbn4LqEcfjd42NXGjTE5CqbhRWiUpk6rEobhRlWIBnNfFuHHOv+kYy446Kvgzo6BcMW5UVsl8Xo86w48x7vaok2foOjdpJW7Uipt7nNRlx04RDHEz8AeF4uaGrgV4HFZJtrPTo4c9kKa5HACVVZK6AHc+ry8bqRdxu/hiPW3HZZX8/e/17yLrvG/c8DoHcShu1MlJdGZn5KHjty2X4qaDuPnVhaJQ3EaPBk4+2ftvOpGW5CT8eacgbl41Y3Wcm6A2qBU3XWqke0MkDlApbjqJm3ssOOWUeNaqCYIhbgb+iONmoLBGUFslu3a1k1dQWiWN4uY/yb71VvS2N2/2tln85S96rv24FLd//cuqv6gTlMQtzVZJo7iVwr3A5LPf6SBu+bz3Bh8FcctmrUQK/GdTgIoQAnTEjY9xo7JKAvqJ26GHOv+WFuLm3hCJA2kgbl7Xx/XX62s/BTDEzcAfuq2SlAs2asVt8WLg22/t9hlxM1bJ0teoiBufCezGG6O3HRR/o2MCi0txA/SU1OCRZuJGaZVMazmAoLFEt+LWpYudUpwomU3g67JwEzfdCZy8oOv+8urf/fcDX3yhp33+Xu3e3X6s45psbvZuRzdx698fuOce+7khbv7QaZXUncGawev68CKL7RiGuBk4wRfZ1a24edl1KLJI8cRNV4zbYYc522fnKW3JSXQPptTEjT+/kybZC8JFi6K3fdpp0dsIQlyKG4Ou0hpA+7RKJr0cgN84oOOaiSurZGWllaKf2SV1EDfqwuRu4ka14PT7TIp2dKVe5899jx72Yx3n3ssmCegnblVVwK672s+pY9x0ELeNG4EPP4zejix0Km69e9uvUVolAZqyVQmGIW4GTvCWFN2KmxcRoShwqltxy+WAjz5ytt8eFLc0xLjxCwSeMOv4DH5iHDTI+TcdCzavPur4Tf2w887A3XfraSvNiltaywFQKm5BCzKdihuLxWGLttWro7UN+C+EqYhbmhQ3v2tO16Kf7ydP3HSQkziJG19UOg2K24UXOp9Tk00GHeeGKW68tZbaKqmrOHlKYIibgRP8RLV0qb7kIYD3ovWaa7D2J1OQWxVR6qa0SroHsy5d4lHcdMj/aS8HwJ/7mhp7N1y3WviTnzj/RhUPddNNtNlaJ07U007cxO2dd4DPPtPTfrkKcFPVcXvxxei/R9AGU1Ry4pX9jm1s6SA+fmqhrsUsf251K26Utl2d7fiBUnHzm98McQNmznQ+Z9e6zvWYF6LeU3fdZV8zvOJGbZWMy0qaEBjiZmCjUHBOwk1Ner3DPta/no/Owt1bXY6pU4HGRsW2KYmbeyBuatKruPn1UUe9sjitkuyc6Byk+XPfpYvdfx0LFtbGqFGl51pn+27Mnh2tXcpipgxxWyUBYP/99bTf3hS31auBZ56J1jZlQWIvxY2VTMnloi8206y4+fWRMsZNJ/h+6s4q6be20O1icRM3avWKov2mJuC226xSR5ddpr99/nOiYPJk+zGV4uZ1fVDOVwmEIW4GNrwmcI3qwAtP+tvETtp8H6ZPB4YPBxoaFBr3s0rqmATcC4c1a+JR3HTYjOKySlZX223rJG78bnuXLvZn6Og7OzdVVdZvyoMyA2HUa4Z6sQbEr7gB+mp+URG3YjGYhERt391vnsguXhyt7bgVN51lR/wUt//9L1q7DEExblTELe2Km4746zgVNz52PyrpDJsbdNaOZfjwQ+C886x74eqr1dsJ20TRSTr5OHRqq2Qcc2KCYIibgY1f/rL0NU0JShoagFum+w/2hdZLsanJqoEqTd7iVNxWr3YqblF3lP0GejeZUEFcWSV5NY+SuOlS3IpFu41stpQkU8W4AcCQITTtAs7i81FQDuKmC1RWybDFh06rZEMDcO653n+L2rYblIoboJe48ZkNr74aWLIkWttAsOIW9dz4qYW6FbeddtLTnhvuOm5MuQrKyCsKv41J3cStulqvVTKsf0lWf8KImU7ixpN7auKW5HNOAEPcDCy89BLwxz+Wvv7NN5Gbbmy0Qm96wN92WXBdihMnStom4yRua9bYxE3HZ1ASN7dlhIq48Yqbzt0vKuLGTyRVVaUZJikVt6h9D3r/4MHR2magmgg3bAAefpimbQYqxY2auPH97tPHOcZEJW5Bvye14hb1WuLHXz5uBgAeeSRa20D7UNz4PuuEmwDV1lqPdThxeOLG2zDHjwfmz4/WNqXixt+LBx8MPPig/99VQElCwpJj6SRul19uZZgF9G7mUie3SgEMcTOw8MEH3q+ffDJwyy2RBruZM4FCUzMewU99j8nDGVza1ATMmiXxIZQFuN3E7bDDnDvKSSZuQTFuabNKdu6sT9VzJySor3f+nVJxo4qFApyKBNVnRMGZZwIvvEDTNgNVOYAw4qbTKlldrZe4tRfFzU3cdIBScaOOcWP9oyJu/HWTzdpp11esiP67rlplP2aEELAyOB91VLS2veY9do6ikhP3fVpfD9x5p/1a1HvVL9sm/5mqCLO4RiW1FRylOP10+7lR3LTCEDcDAMDqNQF/vOACrPqD2i55LmclGvoBXgo8zq24Adb7hOcGfrDk7WIUMW433BAPcVu7NvqAxw/UNTXxKG6UyUl0qXr8+9nEzlvTdCtuhx6qr+2g706RaU/m88OgFMAqCapMfmG/m06rZFVVPKo+QKO46Rwf+TGgTx/n33RsbnmNBV5/U0HaFTd+fM9kbIJVLEaPSeUVN3cdrrlzo7XtJm6ArbrptEqytnVuskyYEPz3KGuCMMUtSuxisWj3bd99LdJGQdyM4maIm4G1lrpmevAxyy+6XmnNtWCBmKvCrbgBVnjdggWCHxSXVfJ3v7NilOJYVBUK0et+8ZaTYcPoygFUV6crxs2tuAH6zw3fR96qQ2mV1E3c+H5H/AzljLGyiMMqueuu1gbOTTfZr+lUUquqnOQnbYobVXISt9qgwcpPWoCbnztGjbIf65iXCgU7vpraKsmuRV4Zixr/7qe46YAXuWJxbjqtkqxtXffqnDnhGWSjXJNhxCzKRgjfL/ecahQ3rTDErYOjocFKBtKSzzheb0aV4/n7xV2VkoawxFFexIyHl+IGhLsG2kBpleQH+s6drf/jUNyA6DvK/M7liBF05QCoY9yyWeduuG7FDdBP3Pg2+AVn0hW3fN5eEPL3EoPCwqehwcoYK3JcZFBZVPn3DxwIXHQRsOee+tovl1Uy6YobT9zcZTsoiBtVOQDexqy73Egcihugl7gFKW5RQUnc3Pcp/z8Q7V4VySQdlt02CF7f/frr7cdR1hte1yPbyKGu42YUN4OOApY0xAv/xXccz7/EtgDkk4awDMKVCL5x/YibcMiOn+Km2yqZVuI2eLB1MtNaDoARCKoYNyA+xY2SuOmor+S3CaL4GWxzSIRTjh9XiEbeeNLphk6CwhYkOu+nclklqRU3nVZJdyxq0hU3P+KmY0OR7zdVAWK34sYTrKgJSnjFbeDAaG254aWKMeKmM8ZNt1WSX7sEQZW48ffST35iXUNnnWW/RkXcTB03rTDErQNj5kz/MWwhtnE8r4B148kmDRk2zBrrs7Bv6jcwpuQ4L+JWW2u9Xwh+MW66rZJxE7cotdxWrrT+AcDIkdb/lOUA4iBuvPUiymTgNclQKm5pskry1zO73nlIELegzSEvVCIvn1GWR9C9qJOgsGtF5zVTLqskteKm0yq5ww7A88/bz43iZsFNOHXBrbjxxC1qSQA2t3Xtqj/pjJcqpivGzYsU6iJuoteF6tzHf/fddrOu9W7dbIKli7i5x0dTx00rDHHroGBJQ/zQgiocCdtrzStmMklDsllg0iTn+1/BgSXHeVkpJ02SmIv4wbJTJzsNbdqJ21//qt4uvyNaV2f9r3M3OZ+3B2SqGDd27tl519V/r11To7hZ0Ki4BW0OeSGLnHxGWR7uc/PTn/r/TRZhiluSrZJxEVpqxa1LF+CQQ4BddrGe6ygEHVeMm27FzR1T9Prr/n9XBb8xBzjHsajXJFPcevfWlw2XIa1WSWrixl+P7HxkMkCvXtbjtFoljeJm0BEQljQkhyxWoF/bc554SSUNATBlCtA5a9/UW9Cp5Bi34lZTA0yeLP4ZbTduRYW1mGKDddqJ2913q7fL94tNuFTWrritkkC0/ocpbjp28PwUN+oYt6gF4fnrxsu6I8jEwjaHvMCUeamMsjz4vh96KDB7trNDURBWr4zSKmkUNwts/GXnRocVPi7FjXeCUChu3/0u8P3v26/pLGTNzreu37VYtBW3Pn3iIW7s/1wu2hgZZpWMct5FS73oUNx4N4UO4uaVnMRklSSBIW4dFCxpCEMGzoEsh6xDBXPHqAknDYEl9vz8TPv9m1Fqv3IrbrNn2yKRENyWDjagJj3GLZ8PXsivW6c+yXhZOnQqBH7ETdcgWiwGE7co/fdKTqI7cUs5skoCetWZCFZJ0YyyPBhxk90cakNQ3UKNylIhU4H584FP5hJaJU2MmwV3ZlnAPjctLdE3KsoR40aVnETnhiLgP69GbX/VKnsDaMAAJ6nVAS9ypet3jdMq+eijwNixwBVXAHvvbb+uU3EDnMRN9X6KK8aNt0ozGMXNoCOAJQ1hcBOzMOImu0G23772Td2CKhTgzGLJFLeaGuDBB0tj0EPhtnTwE3tUUBI3kfeqDnrUdkC3ZUS34sarR7oVtziSk5QjqySgN/g+glXSvTkkAj4WVmZzqA1uQq5TPeHuw2f+XokRI4Afn2K3//Z/89FKHrjvJxPjZsFr/NVJat2xOXHEuOlOTkJN3LzIT5Rzs3Bh28O1fYbhs69jUNwobPa6rZJ82wccAPz4x8BrrwHTpjmLW+tQ3HjixmIM83l1+3GQi0UXcfvPf7zDR4ziZtARwJKGMFTDOdgEETeppCEM3EB5yGFZtLjKDVRkKzB1qlV2TJq0Af6WjqQTN5FBXgdxY+eFytpFQdy8dtp1LariKAcQp+K2++7244QQN/fmkAh44qbknvriC66xrLXYYfGuEX/Tvz7OuQaarKkzB/t++vD9PIYPj1DSoFxWSQrFjaocgFtxA/QpzOxa0TlG+sW46VbcKMowFIv2Z2hW3Fa8vbDt8fV/2QYnTYyBuOmaOyizSvL9OvRQ59944qZ6z3qtZQBbcQPU7ZJe16PuGLef/cz7daO4lR8tLS146aWXcNFFF2HvvfdGr169UFVVhYEDB+Loo4/G3/72N+W2X3zxRRx++OHo168fOnfujB122AGXXnopNkQtdJwysKQhDDLETSppSFuD9k199LGVqO7ibGCnXSpx1VWS9kgefpaOpBO3NCtu7sK4fHKSqPYlwPu8p1Vxo45x41lS1OB7fiyMYJV0bw6JgBE3pc0hADj3XPsxGws0WHgbGoALzrfvQ+YQ4MdIllhFpd4lgPJZJalj/3QmJ/FS3HRtVHjFAUe9V/m+8fGiaVDcHn7YfuylWim239AAzPi57YNegGFYj1LiFqksiJedUdfcQVmA22tDkYFScdNB3OKIcfvqK+/XDXErP1577TUcfPDBmDFjBhYvXoz99tsPxx9/PPr3749nnnkGRx55JKZMmYKi5OLwlltuwSGHHILnnnsOO++8M4466iisXbsW11xzDfbaay+sWLGC6BslE1Om2HOVKHGTThrC4LqpM65BKVMZ8VJ0WzpSEOPW2AhcdyWh4kYd4/aTn9iPecUN0DNQe+20UyQniUNxo7ZK8rv5URayhYKzqHSn0kRCoufdvTkkAjbOKG0OAc4CzSecYHcEUD7vrKQBv3nFxka/zS2lkgblKgdArbjpVK3Y9ahTcWP3C7UrgSduaYhx460vmpKTsJqOW+UXtr22ENt4EjflDRCgfVgl3QOgjvnVT3Hj5w8VjztAb5UsFn03DQstxipZdlRUVOCEE07A66+/jiVLluDZZ5/Fo48+ig8//BCPPPIIKisrMWvWLDzwwAPCbc6ZMwcXXnghKisr8be//Q2vvfYa/vKXv+CLL77AD37wA8ydOxdnnnkm4bdKHurq7KRrosRNOmlIW4MuGd29mxS1gKjbKqkrxm3jRufsoYm4NTQAw4cDd94Wk1WSIgHHZ5/Zj3v10k98eK89ZTmA9lDHjQ/uj6K4ffqp87n7PvX7fB/wm0MiyCKnvjkE2N+9uho49ljrcUTFjZU0YLUsAW/FjSduSiUN2IKPZcatrLRtnpTlAJKuuLH+sfMC0NhIvYibzgROuhU3L4VDF3FzzzkarJJ8Tcc62LsaizDUk7gBihsg7r65lXcgHVbJOBU3Hdc8dTmAgPP6n9dbMHVqhPqfKUMiidtBBx2Exx57DPvvv3/J304++WRMmDABAHD//fcLt3nttdeiWCziZz/7GQ477LC217t06YLZs2ejoqICjz/+OD7jF6MdAPX1VjKQTpXOQdhN3Kor8mpJQxjck4x7N6lCk+Km2yrpDoTt29f5OfxnC4LtOjY1lRJmLzz6sMYYN52B9/yK/Mwz9RMfXgHv11qagiLGjYq4xVnHjbdKRlHc3C4GL+Im0X9+cwiuzLUX4YaS47PIqW8OAfZ3HzqUa7T191W4XviSBjxxY2MjH+PGx+cBCiUN2P3Kznkmoy/tfZoVN/Z+fs7QWU/MPXdQlUzh40WTrri536vBbsjXdKyBPUZtRFe0oNrzPco1HcM2LXVbJSmIW9AaSbfipmPuC4px06C4/eW+zY7nc7B72+NiSw7TpyNajHGKkEjiFoY99tgDANAoSK+bm5vb4uJOOeWUkr9vvfXWGDNmDADgySef1NTL9KC+Hpjw02DF7egj8uqkDQhX3KIQN15C103ceNvAz35m71IpTpD8riMgRtzO+Xkh+q4jhR2QLfK33x7YcUf96fS//dZ+XFtr/U8R40ZllYwzxk2X4uZ+b0TFDbA3hzpXOyfvm3FBybEzrs1FG2dY/712kxXOO1/SgFfUwhQ3QKGkgds1wD/uyDFuXsSNQnFj96iOJBDutoF0xbi5z2nE5Cfumo5etmM/KNV0bI9WSUrFTTdx0xzj1tAAnDfFJm5P4yiMxrttz6tgnbdIMcYpQiqJ2/z58wEAgwYNEjp+3rx52NQaL7PXXnt5HsNenzNnjnK/Nm7cKPQviehW7Rxsfn5uFq+8Zt/MXWo07srqVtzWrLEHPJYNgd+pjpIog+/3QQfZjxUnMH7XERAjbrnmvNquY1iAtq5yAFTEhyduAwda/8dVgDttWSX53dMoipt7fIqouDHU1wNzP7b7/RrGouCxYDvy0Ijnpm1Lnzvf7HdVWMjy+zZeilsQcQMkSxq443T5x0ZxoydurM1MRl9NSj/F7YUXgEsvjdY2ZVZJ9xjC4o0VCbm7piOvTvOqtReUajqWM6tklPNObZUUUdxUz42XdVdDjBvb7O4Ke27aiK4AMmhpvXbcbgdli21KkDri9u233+Lee+8FAJzAgs9DsKD1ru/Vqxe6++SYrmv15ixQqvpqoVu3bqH/Bg8erNw+KVyT35Ctsxi2vcaFLGWM2zff2I/Z+eXbj9J3/r18HxUmSPeuI+BP3Pg6dxUoRN91pLABuRUCnW0D1ozN4EXcdBfgTrPixrevk7h5ZQhR/G3rBtvfe+99K/HOOx4HRSXj7Nzyu8kRVCvegeqluPGLTi/iJlXSwL0RAui3Sg4YAPzpT8ARR9h/o67jpktx4+9PSuIGRE5oU9I2UFpa45prgP/+V73tOBU3lmlWkZC7813IKG6AQk3HtFoly6W4JTjGbeZMoEvTKnyO4W2vbYZFOllZKaa4MShbbFOCVBG3XC6HcePGYe3atRg1ahSmTJki9L71rXd9V96q4EK3VqvROtWMOmmHe7Dhdx0BvbuyuhU3nrgxFVZXRjaNxM296wg4idub+A7WoCdew1j8HYe3vV6BAs2uY5oUN2aVpNg19VLcdMeg6Mwq6XW98ZNwFKukm7jxmT0ZVPvPva9Lt0qMHu1xTJTz7rcoiUDc+JIGYYqbe9dXuqRBkFVSJzmZMsUibww6x/Y0WiXdWSUBesWNYe5c9bYpFTcR4ibRvrumo4ziBijUdIzbKqkrkZBojJuOOm4psEqyze5pmOZ4nRG3nI/iBihabFOCVBG3M888Ey+99BL69u2Lxx57DNX8QJsAbNiwIfTfNzzJSBLcg02hoNfrH7fipmti99pNBpQmMK89AZ64vYiDMQDLcABedUxmbMGoZddRF7kqFOxzQ0XcwhS3pJcDoMoq+cYbpa9RKW5eF51OK81WW+lpG3B+b/58RLAb8iUNZGPcpEsaBFkldcW4Uajj/BhJYZVk1w0Fccvn7f5TK241NaV1Eb2syKLgr/eIsdeBbQM2cVMcf901Hfl7pdh6Lx2Kfzjek2md95RqOoaVwtFtldSVSKhcWSWpkpNEtEqyze7t8bnj9TDFDVC02KYEqSFu5513HmbPno3evXvjhRdewIgRI4Tfy+yRQfFlrAB3D/fWkAS6du0q9C+RcA82+Tyt4qYzOYkXcdO1kPWK3wCUJkivS4snbs2obs2ulWlbGAI2cZPedaQsQkpdagCwFbeaGqBnz9LP0K246e4/hVVyyxag1SruAN++TsVt/Xrgnnucr+mc2J99Vk/bQLjiprigYiUNZMoBKJU0oFTc3G3rtDKmWXHj30utuFVXlw7iUTafeTVcY31RANoVN3dNR3av5Lj75584FK9j/5JjlGo6eqlilFZJ/nPSUMetqsrZHrXiptgm2+wuuKiKiOIGKGx2pwSpIG4XXnghbrvtNvTq1QvPP/98W1ZJUWyzzTYAgDVr1rTZJt1gGSrZsR0OXoqbTuLmXrQFDUqyiIu4RVTc3LuOgJO4sd0jACXETWnXMSzGTZddRPeOJgMrB9C/v21D0UGumpqA00+3n8dRgFsXcVu3zvt65omKbsVtwgTg8cft13Qobuxc77abM0kDheIWMTMjK2kgUw5AqaRBHDFuFMSNWnGLi7jx10yEEhK+7XsRtyiKm1eiCWriFoGQ8zUd2b3itkm67yflmo5xWyX5z0mD4uZWfnWQWi9HRUSrJNvsdsdBboE13wUpboDCZndKkHji9utf/xo333wzevbsieeff943K2QQRo4ciS6t/vK3337b8xj2+mjPwIsOAGriRqm4eWUf1FXnRyNxc+86AqWKG4ObuEXeddRNTrza5icDHSmd2MKEjw3RMcH84Q/O52kqwO3XL0rFDdCz6PG7l3TthPspbuz6zOWUFxD19cC0qeFWyZoaqNe79LJK6i4H4JW+3ChupW2y76HLKslixt0rySjnhpK4uTd/evcubV/yXuVrOjI1zb0gd8eMKtd09NrEobRKAvSKm86skvz4CCQ2xo1tdqsobkqb3SlBoonbxRdfjBtvvBE9e/bECy+8gL333lupnerqahzRmkXroYceKvn7V199hX//+98AgOOOO069w2lGuRW3KOAtI2xi1KW4aYxxA5y7joAYcetcXVDbdQzz+Uf5Tb3aPuAA+7W//EW9bQavmlw6Jl93Jrc0FeD2ey+V4nblldb/Os67X+C9BuKWywGL5tnErVDtYZUEIi1mf3iwPRZ06sLOR6YtA2zd4Dzmz1ckbcWi/d29dvELhWiEmb2XtacreRPrGwOl4uaXVTLK9e5H3HQrbtXVFnlzE7cofY9TcWOFsSK2z2o6ZjPexI1X3O6eGaGmI2WYAKVVkroAt9ecCtARt4gxbmyz232diMS4KW12pwSJJW5Tp07F9ddfj169egmTtjvuuAM77LADTj311JK/XXzxxchkMrjnnnvw3HPPtb2+adMmTJw4Efl8HieccAJ22GEHrd8jNSi34hal1prXTnsCY9wA564jIEbcbriuoLbr6GXpqKiwbYf/+Y/TAhe17eOOs8/LK6+otcvAF1X3S1usK2VUHMlJdGWV9HrvySfru96ZJQqwSNuYMdZj3VYaTYpbYyMwdSowZAhw8nH2977r/hpMndoq/OpSl7j+//ycCsybB7zzDpCpsvq/1cC82n0K+FukdChLXuSEz4LXkRU3R1FNQsWNtZ0W4sb3a8IEYOxY6zE/ByqOA/X1wPbbWO/NZ5wr68pq+/lJx0c493ymUJ02e8DfKpmG5CRsY86da4EqOYmGPk+ZghJHVpjipmyxTQkSyUeffvppTJ8+HQCw/fbb4w9ua1Mr+vXrhxkzZrQ9X7FiBebOnYuBzC7HYfTo0bjppptwwQUX4PDDD8f3v/99DBgwAP/617+wZMkSjBw5En/iUyR3NIQRtwgFFAGU3tTuCSxK+zxxYwvYBMa4MbBdxNNPB6qbw4nbMUcpnhs/S0dlpf17nHiiGmn2artHD8tSs2xZqXIjC/561F1vJpNxPk9TAW6+XwcfbM1Ohx4KvPWW/bouq+TJJ9vnSse50UzcGhqsQqvs9t4J9vdetbkTpk8HZswAvtihCkPYHzRlmK2oqsRwVlaostK6Hyh38dkx7tgUEfDjH3t/JmN9TnMzveKmixjGaZXUXficmrgxOzmF4rb99vZjdt20tERqv6pVcevVtxLz/m05srt3B7a7KAs81XqQjnhXLzIete0wq2SU805plSwW4yNubqskUJqpXBB1dUBxzwLATXFhipuyxTYlSCRxW7VqVdvjt99+2zcubeutt3YQtzCcf/75GDVqFG666Sb873//w8aNGzF06FBccskluOSSS3yLc3cIUJcDcCtuLEsg/3mqYAtVvj4cNXHTsIufyTgHHD/ipnxu/CaYbFZf8W1322xhGIU8AN6proH0Km4UVsmBA4GTTiptX5dVkp/cE6a4NTQA48Y5X6uB/b2bYJ2Ppibgrfer9RA3P/VdhzoTlvDAfYwMgmL/mptpFLc0Jifh29Q1jrmJm7uWW5S+x2WVdGe+zGYjEzf2m2ayWXsDBACqNNsZvRLOAPrju/nHUcZfUcVNpf9NTfYmrZu4USUn0bT5P7SvcyOYJSdxK241NRZpU7bYpgSJJG4TJkzAhAkTpN83bdo0TJs2LfCYgw8+GAcffLBax9ozvMoBZDLWYBElvoLBrbj16lX6earwstQlWHHjF50iVslnnirgqIukPqK1QZ9d/CgZPBn8Ji/2G0Rd8IjUm9FF3NKkuHmpG+72dSlu/OROtSPrfixwbhobLaXNjU6c4sYmdsB5X0VabPqdex2p48N28QH1RX5QmYSNG2kUN11WyWLRW3HTlXwqjLht3mz1wa3Sy7bPW9V5pMEq6SZuVVXWZ+twDrjnIl0bc6z/fsRNlzrutcmiq76obsWNH9vdGwhxKW6q4PMYAOjUqzOwxlbcqtGCqZcWMXlKpl0rbQyJjXEziBl+g7wur38cipsfcXv+efUYOr/FmuIE6V50ihC3yy4tqCVp9NvFd0+WKuc+jLjxiwoV+C02dUy+7vfFobhls/biT5fixveXIjlJXIqb5HmfOdP7K3opboCzzIYuq6TnJo4uhYO/n3QQcv5e9Mq2mWTFzWsXH6AvB8BbUqNshLiJm5sAJpW4+Z0X/jN0xItSETf3eXd/FsUmC59ISIdLRncdN7+x3d02FXGLMu+5Qi8anuyMefOAnXezz9FVv1PMBZBCGOJmYIGfQKqqgHPPtR7rIm5hihslcbv5ZuCll9TaFlHcJBYO7kWnCHHLtRQwa5bwR9gIinHjofLbhhE33pahAkrixqp6utvUqeZ9+qmV/AWwlWsd95Lf9ahLcWM7m+4EQgkpB5DLAXfd5f03EcUtt4nAKsnOva404PxikxUyAkqvW1EQFSZvQ5ji9qc/qY/vfgpEXFZJINomFCVx8yrATX1eAD0ZN73sr+7nlIobhVVS96ai7uQkcRI3jclJAJQQt2znagwfDnTrpTGWNkUwxM3ASibBih0DwMcfW0UwABrils3GS9wAZ8FlGWi0SnotOkXruN11l8JcIDLBADTEDYi2KBEhbqrXpHsBTKG4HXus/ZgRWB2WOmrFjfXNvWjQQWo1ELcFC6zhygsixO3rhZqskl6kOcp597ufKIlbXIpbSwvw2mv62gbIskrmcsD8+cDqphQQNy/FjSecLnuZFMKskkCyFbdyWiUB9XNDmZyEvx6CiFsCY9xKkp15EX9doRMpgCFuBsAbb9iPL7oIjmhhCqtkZWW8VkmgdPIRhUbi5rXo9CNufN2SChSwdKn1fimEFZdt+zCF39bP2sX/BlGUH0rFbe1a53PWpq4dWQCYN6/0NdZ+khU3kZ3wMsa4BXEXEavk5rWEipuuemL8/cSPk1SKW1TiFqa4AcAjj6i1HaPi9sJr1RgyBBgxAvj7KzYBunn6ZjWrerEYP3Hr1s1+LUpm3yCrJPsdNCQnCbQDptUqGaX9csW4UY3vRFbJtmuS/x6q42MKYYibgZO4sXotDElX3PzqfbknG5U02u5+RYxx8xpXRBU3wEqZLIW4rJJ+FiNdxI3/LXVMvu4fwmv3N8r1/te/er8el1VSh+JGsaDSoLjxApQbIopb1yqCGDfdipufVdK94SCKMMUtqlUyTHEDgJEj1dqOkbg9/1p128YaSzcOAPfcuRnDh9s1qIXB9531d/Ro38+Xhhdx45UUviajLIKskjqScHiMubkcsGaD/RvntkQgP+xeLZdVUpXUtherJCVx239/YM89rcdbb22/Lr2znV4Y4mbglIHcBcjjUtyiDBZsEAsibvzfZKBRcfNadPLEjVcGvIibdLWKclsl06K4sUlBx+TV1GQVIvdCGqySXhn83M/LGOM2bBgwYID33/wUN564DeqvpwC3r+KmGtfpdz+lVXFzZ090X0+iICZub7zsvXHGE7fO2IymJisTsBR58yI/p58O7LST/XpSFbcYrZKNjcDUqcCQIcC9DfZvfPThOUydCnm1kzvv65qqMX9+62XU0a2S5Yhx4xUx1esxn7evx1GjLNs1U6633dY+7ssv1dpPIQxxMwje5Um64ha2KPH6mww0EjevRaeo4lZba71fCuVMTgJEiw2hinHL50snEDa56Ji81qzx/xulVZK/3imskjoUN6+J3f1ZIW1ns8CkSd5/81Pc+A2RbF6T4uZXikF1weZnlYwrxi1KIiGva5LfCQfUyRUhcWtsBO6dZb+XJ/tu4sYwcaIEkfBa4GezwNNP26/rIG41Nfb1yC/Iqa2SGpKTrFxn1XGbPt3aP85xFarWrs5j+nRIqZ2NjcDVl9nn9P+9XYMRIyxS+NdnCKySEcqaeIJScRONcdOpuPXubb+2erVau/x1XFvrtBvzxO2LL9TaTyEMcTMI9lUnvRyA36KEWnHr3t0+V99+K9SU16JTlLhNmqSwaS0a40ZRDgBIpuLmXigdeijw3e9aj3VMXkFkldIqmcnosexRxrj5pXaX/E2nTCm9vQHBOm4U5QD4e0v13PtZJflxksoqCeivLVhRATz6qP06JXFTPOczZwKZnJjixn+UcIZfv/FXl62ZjTW8PT1Oq6QGxe3zBZWOU8ATN1ZUWVTtbGiwSN4dN5cq78uWAU/9nbt+zjhD/X5i35sv8QLEq7ipjMGiMW46k5PoIG5elmMGo7gZdFj4LagAunIAbt9gUomb32Itm7UHjXnzhPvvXnSKELdOVQVMnizXbQD+5MqNNFkloyo//Hc94ADgH/+wJ9+4iBtFAW7AvrCSqrhpquNWVwfMnl36uohVUou9C/BX3HQQt7gUN11xYn6/K9931fNOlFWSZfjlrxkR4gZAPMOvSG0+SuJGZZXknQMqSi03hvFEzf2cETeGILWzocEid01N/nOq+7Nw+eWyPW9t1CPxCUCfnCSNddx0ELegOY8nbibGzaBDwc/CxD/XrbhVVgIvvGC/llTi5rdYA6z0Y4BlQfj6a6Hm3ItOEeL224sVC0uyxVJlpXNn0D3Zpom4Rd0Z5L+r+xqhJm6UVknAWUNPFeycUqTp1hDjxlBfDzz4oPMn9FLcamqAH59CXICb74Rq++W0SgLRCK1IAqeEWSVZhl+/8TeIuAln+PVTrXQotIA3cctm7etRl+LmV4AbUBsLuPfw2ZOBYOLmp3Y2Nlqkrq27Phs47s9qeuN/Ut1uA7tX3JuhupOTpDnGLS7i1rWrHfzvVyemHcIQN4N4rJJe5PDgg+0BRLX9clklAWemNK/07z7gF50ixO2HByuSWr8Jxj3op7UcgEq/gyYB/vd9+GGn1UsU5bJKAvEpbmUsB8Cjvt6quTV1qhX6wC/YuvetwdSp1t/3/C6BsqRbceNTxvKLKt1WSX6RT6246WifiLgxDqxC3ADBDL8iVkkdWSXdGZNZghJdMW5BypICQck12deLDHEDvNXOmTOdt52fiupW3L5ZoVgiyG9e1WmVdG+2AumKcWPt8cRt0qTgGHA/BM3ZANC/v/X/8uXybacUhrgZlCfGjYHdiNSKm+46boCtuAHA559LNcsWnTsMK1041NYC3/2ehjS6fpYOHcQtznIAVIqbn7rM8JOfSBFyAMFFbymzSgLxxbglQHFjqKsDrroKWLwYOPZQ+5r511udcNVV1t8d16cuZUl3KYZVq+zHffvaj9OsuOk470TEjZ1WVeImlOGXUnErFu2xxk3c2KI8iuImYpUElMaChZ/b75GxSgKlaiezvPLgf1NecXN/1lff1qgNZX7zqs7kJF6hDZR13Kg25vr0cR5zxx3y7YYRN5bxbfXq6BlyUwJD3AziV9z4m4+1T03cVNv3W6wBzsyYQQt2H9TVAdsPtSeZ1/5djXnzrEXo2AMiDtKA/yJcN3GLM6ukzhi3MOIGAP/6l1z77cUqSaG4ERA3vonuVfb3znbzIShJVdz8iFunTnb/dScn0UVoRTLv6lbcIqpWLMOvX0KbIOImnOHXj7hVVNjnRvV6aW62Le/UiluQVVLhutmwVl1xA5xqJ7O88hC1Sm5orlYLi6JU3PzGX0Cv4laO5CSAJY9GaTdIcQOAFSvk208hDHEziFdxc1sA4lLcdAxGQdY61fPDDfB77FOF4cNbf4KogzTftnuCSUOMG7+g0am4iVolGWQLt/PErUsX6/233eZsP8lWSZE6bglS3BzwK9quyxIoUg5AB3Hjd6kzmeiEXERxozgvOs67n1ODn0cU2mYZflWIm3CG3yC7YVR1nBtn1rZ0tmuVAbbitnGjepmHb76xH7tL90QkKN272L+pWwXjyZUfcePVTi8RWjQ5STOqxSyvbogQN9VxjM9Y6UbUNYHDT0oQ3x0W4wYA220n366o4gZ0mDg3Q9wM4klO4pf0IC7ipjurGaBnwckm98pKZ/s6iJvf7l3SiVux6NyZK5dVEohG3GbMsFYW55xjPddR/0hEccvn1T6jWKQtwK05xq0E5VKWdBC3lSvtx257UdQxWIS4nXiiWtuAWIybbqtkJmO3r0gKp0wBulbIEbeaGohn+PU776whQOl6aWwErrvC7tMrb3Zuq1U2dSqwpapVcSsW1V0Pc+da/w8Z4izqDUS+X7ceopacBChVO93JqQF/xc2LuAlZXt0QsUpGvd4prJJBKqoO4sZf737Ebaut5NsVjXEDOkycmyFuBk5S5Q6I1a24+WVKSoPiFrTQ1x2HRknc3O0lrY7bnDnOhazuAtwMQUScIari5lYJ3H2QhYjiBqgRCJGyIID+e4k/x1F2TLnv/M4HVbYKoUtZ4n9bP2VJt+IG0BE3vt8ffmgF3arAz06u2yrpvt4jEre6OuDgMfZvypM1P+I2ezbEM/wGETfWd8nrhdUqm3Vbab+XLbMKWb/0ZsSSACtW2NfjDjuU/j2i4pbNqFsl3Wons7zy8EtO4v6syk7VYpZXN+JKTuJG1DpulIrbmjXAffeVtudmxir3alC4CmCIm0EHhR+pAuJT3CgXJfznyyJo0NCpuMVJ3JKuuC1a5HzO79LptEqKKG6ySW34xb2b9PH3kqqFSURxA9QIhGgNId0xbsOH21vnr7+udG4aG4ElC63rbTM6Ya+9M20qxP2PaLDsrV0LXHyx/ZwyOYl7lzrqGMxfk36KG6AeE+VnJ6fMKsm3H4GMbzdETHGrqbEyAdfXSzTul80TsK8Zib7ztcp4MrkJznil9YWIRbg/+8x+zGdOZog6BnPvCUpOUgnn9e6ldjLLKw/R5CTDdqgRs7y6IVIOIOrmlpfiFrWOWxBxi9r3V15xPmdzdkWFtZvAoDLGGKtkCQxxM/AnVfxrxaL6YhOIX3Hr1g34wQ/s50mNcWMTt3ug1kncKMoB+BE3HVkl+f58//vOgVlnchKRGDfZcx9E3PhrX0eyHL8C3IDauQ9SNzIZ+/MoYtzGjrUeL1sGfPKJVLNMhVi7zFqY8AvwZcuA+x/VQCB+/3vH0yVLK+zToCO9OyNu3buX3q9Rs5GKbm6p3q9+myGUVkm+fU0q6pm/7Iza2taXOeL2nVGbMX++JGkDtFol3bXKeOLG9xUA1sNWOb6dq5DQ5ssv7cd85mSGqMpSXk1x81M7p0xx3oKiVsmRu7nIiwjyeft6p0xOEqa4RSVu7ns/6lqGn/cmTnTaay+4wH5MQdz4GEzVzLspgyFuBsGZjHSQE/4z/FQO3cQNAB5/vPTzZRFXjFs5rZJUddxU4yv4/h19tPNvcce4yZ57PnOXn+Lm7ocMKK2SQYtk/jXdMW4AsM8+9uMvvhBuklchWKIJfrEGAC2wr8+P35dfUDU2Av/76zeO1846p7Itpmj1Jo2Km9smCei1SvLXiHvhqbro8dsMocwqCSjbDR3gzs1vruiExYutCiCPP2uPY7vv2CRuj+Thp3QC0sTNXassiLh9jSFtj1+4d7FYX3nwYxhfR5BBI3Hb93uVjkvSi7iFqZ11dRapYxC1Snbvo1AiyK8MDqAnOQmfxM2NJMe48e/ZYw/n32pq7L5HJG5rN1TgnXfgTMYT1WmSQhjiZhAPcYtbcXN/lolxs6HbKsn3XceuY5AqRhnj5jVZyn6GiFUSoLkeKa2S/OdR9J1fSAiec7cKwYgbr7gBzsXbS/9oRmOjWHcBW837aI6TeBRQ0RZTdPk1EYlboRBM3KISZr8Fmy7iJqK46c4qybcfRXFzzR/ZrPV777KXhsWgqOIW4mTxqlUWRNwWYWjb40/+/pX87Sq6geM+VqH9YcOzmD/f2gCprXUSt97dc5g6FUJqZ329Re5qasStkp52xDD4OU0APclJgsJWdClu2ax+91BQCEIm48x0KoklX9tt/9/jFdhrLziS8SxdE9FpkkIY4mYgXjtEdeGwYQPw1VfW47iySgJ6iJtoTFRHU9z8JjAdxI0yrjDIduFlw6CySlIrblGtkhSKm+ZNELcKwXba3YobT9yy+SbMmiXWXV7N4xeDgHP3fmMuInFbsMA+917STlTFze9edSviSrnRIRbjlgKrpNNvp2ExKELcisXQccyrVlkX2KqYm7h9ha3bHvdav0i+VlnYOKBRcUNlJerqgKuusuqX3vx7+/OuvCyHq64STwZTX2+RvKN/WKq41dYCPzsjZANTBH5OE/fzJFslveK2dSpuXvOoInFraACOPNz+rgWOsrCNs+NP0VSCKEUwxM2AXnG77jr7MR+EDySfuFGqPwAdcQtK7U5J3HST5aCdQd1WSXdGVffxInBnleSRdMUtSN3gP0+17yJlRwTb91Ih/BQ3/nkNmnDXXeEf4Vbz3MSNX0DwRHH1twrn/YMP7Me77Vb6d13ELZNxnmc3UdOtuPGPE5hVEoA9f3Tq5Lz/+Xvpww/VFuIiWSWB0P57/SyiitvW+EqejwepSoBWxY1vK5sFBtVxyUmK8m3X1QFHfN9OyHLlTd0wb55FCs8+x3X96HSaAHrXG5RWSbdNEqANQQBs4iaRLIdtnOVavIkbw7oWY5U06IigJm58ViH3Li9VVkm+bSC6dSGT8S+VACRPcQtahOsmbnz7cVolKSYYt0qmU3Hr29d+/Omncu0yJEFx00E6I2atLFUhir6KG0/cOmELli5FqArhVvO6wrlTzC8geEXvv69HJG677lr6d13Ezb0I10Xc/O5XDbXWhBS3lhb1xFnsfvXL+ghYxaj5RFeiEFHcgNDFpletsiDi1ghbohqKRfK1ymJW3BzQQX44crDdbt0wfHhrs+7vonPD0v08yVZJL+KmU3ELIm6Cihu/cVaBYOLGj/cbVxrFzaCjgJq4eUnn7r9RKG6ZTLTFZksL8NZb1mOvwSiq4lYo2P3STdyCJl/3IkdnHbc4rZJRvfhe12W/fs7nOmPc+MXfP/4h165Xf+JOThKVQIgu2ATad3OMKrSgAtZ17Vbc+ImdkbtHH/Vv20vN64uVjue8VZJvf86bTfJDzccf249HjSr9e9KJW9D9ypMrFYgQtyjt84obD550AsC//iVvJRUpBwCE3qtetcqCiFsTOmEZrNpWdRXfyNcqC1PcKImbjs1Q/nfiWav7s3Qm5XI/j+pKoKzjRm2VDCJuTU1C7fMbZ2HEjR/vF3xmFDeDjgKRcgCA+sJh7739/0aZVRKwB1OVgfScc+zHYedGlRgyBKXn1U3cdChufPu6iVs5FTe+mCegN6vkoYfaj//1L7l2GUStkklX3CLGuLlVCGaTBIKtkuy4yy6zrDhe8Iop6ocVjud+VsmWjU3yMUU8YRo4sPTvUS2qfsTNvfutW3HjP5NScYvSvh9x83rNy0ot0rZXWxLEzatWWRBxA+zabr06b5GvVRZjcpKS9jUrbo609DoUN/46C7JKqsx9xaI934StN3RbJSmTkwA2cQNCVTf3xpkMcfv6iy3Kl02aYIibgVgBbv44WfAL2Msvd/6NUnEDoi02Z860H3upM1HVn6BJgFJxS1OMm+4dWVniJntu+EWY+3ocPNg+V2sV6iu5+0OpuAUtHHSUA4j4u7pVCL/aTYA3cQMsK45Xhkkv/uImbn6KWzWa5WOKqJVOP+J2zTXO55SKG0VWSR318/yskkDp/RtFfY9A3IDSWmVBBbgB+5rsWqkwDviM7bmclfzj62UxWSVVr3dKxW3NGvuxu1RC1E1L/j5Ks1XSa63EE+gQ4ubeOOMLsYdZJTPNW+Q3zlIIQ9wM6K2S/KR6xRXOvyWZuPHw2m2NSiIoiZtfDBqgvxwApVVSt+IWZpWMStzCdh7ZAlFHjbu4ywEkKMbNrUKIKm4OgtcEzwyTXjFF3eFkY/xiwm3FlI4pCttMoCJu++wDPPKI/ZxCcYvLKhmH4iY7DmtS3IDSWmVhihu7Jitaoo8DjY1W2vUhQ6w07Lf+wf4dHnogJ1VeA0DwOKBj48+PuLnvH5X7iU+u5i7doVOJpMwqWc7kJEAocXMPQzKKWw2alJPjpgmGuBnQE7eg+iFpIW5e390obhbKZZWk8OKfcILzuey559v3IvvsGlVNWxx0bqiTkyQoxg1wqhBBilseWeRbpzqe4AHwzDBZGlNURCWc1wGfrISvD9Wjc04+pihswcbOTbGoloTDj7hlMsCxx9rPdRA33YqbSFZJ1fZzObt9L8XNvcCVve41ZZVk4GuVBRG3mhpgyDC5At8OcOf8ny9lMXy4lV+MqSB8QfunH2/B8OH+tuOw9qmTkziUHvd5VplXeeLGJ5sCaGP/gGhrgnzebr+cMW5AKHFzb5zxxM1dRB1wJofqhC3yG2cphCFuBvERN68BgzKrJKCPuHm9X6fi5l5UxZmcJGnEjbKOW9gEc8wxzjgjVcWtosKbuEVV3MpZgDvqvcQvqIKKkwue87o64PTTrcdBihv/mpu4eWWYdKt5FSi9/3gFjl/IjtqxRT6mSFRxcx8rCj/iBrRWLG4dl1WJG/tds1n/hA1JjHELmzsSpLgxsFplY0aXErfaWrQVrO47uMbus+z9yo3bl/6uqqR7/PVehRY0NVlp24XJG3VWSSa5dOrkbG/77f37IYqVXJIit+IWNTlJ2PgbZU3A3x/lzCoJhJYEcG+chSluQAZbmDU42yS/cZZCGOLW0VEo2IMAtVXSa8DQqbgFWQBUSQQDheL2zTf2Y/fuXVqJG3UdN2qrZCYD/O533sfLtO+XSZWSuEVV3MLquEUtwL2CixNzW1IVNkEaGoA777Qe84pbEHHjj2Pwstbwah5vi2TgFxD8Qnan4QrjDPu+mYz3dUNJ3ABblZAsjtsGdgJ79CjdrEiyVTKMuLk3GnUqbhHiUevqgH12scePhsc7t9UqaytYzfdddhOHO+e8muz1Whb2sX4xo0HtkyYncUsvVVXAP/9pP6e0SiZNceOvAa91El/uiCJbs4TiFrRx5k3c7PG9tqdCMp4UwhC3jg7RorvuY2UgkoY2KnHLZmlUgiBEVdzmzbMfjxzp/JtO4uZesLnb0xlDR22V5J9TKG7u12WveXa8H3HTaZUsVzkA1Xtp+XL7cRBxEzjn7gLZvJLmtkryr7kVN6B0fQc4Y4rcittCbI0ncVzbc564dauOsGDzW3HERdwkiuM6wJQ6rxNJmZwkCjkBgkt3ANE3uIiIm7vtnffsZNcq82pf9txz4zZ/bXu9VgX7WL+Y0RLEpbjxNkmG4cO9+yGKtFol+WvMax0GRFsrabRKAs6NMxHixsb33p1NHTeDjgDRxRpAq7gBavEbQcHlAC1xi6q48cSNn1CA9MS4ZbPOXXb+eqGwSrLPBOIhblSKW0uLfktKXOUAVMcBRtyqqkoDGSTvJXeBbF5J42MeGIIUt//8x/szWExRl2q7Px9hZ+yAz9DMkcPKak32XZHrMUrZEWri5pXVhX0mH2MjA34M0R3jFqa4Rd3gYu1XVcW/yRKh/UKzmuIGeMeMliCu5CReGwlR1zNBVknKMglAtDpuYVZJIFoMs2bi5rdxFqa4ZXOmjptBR4BoCnBAXRUTiXFTbT+MuEWp4xaGqAuq+fPtxyNGOP9GSdzc0LmLn8nYr1EobkA0AhFGCt2fqRrj5tc2v7OvYpdMguKWz6ttsjCrZL9+pZY6iQWVV4FsfgHppRL4xbgBwOTJ/hav+nrggzl2f77GEDQxW05rTNFLr0fcaQ+KMQaiLTaLRfs9IlZJ2bEml7Ov4yDFDVA7N0HlNaIStzDFLeoGF2vfa26Keq+GLZQjtL9hbTBx81PcAO+Y0RJoLAtS2rkW+/t6KW5RiVs5Fbcoa7EwqyTffgKIG2BvnHWqCiZuNTVA74ERnSwpgyFuHR1xWCVFFTcK4pZkxe3zz63/KyuBbbZx/i0txI3CnhqX4uanisWhuAHR49DKlZwEkD8vxaKtuLltkoDUgs2rQDYfh+aVeSzIKhlm8dpqkN32fmMr8c47cMQUDd5a04KNwrrrF4vKg1/gym4m8AGCXopbVOKmOTOjcNtA6blWVdzCiJtK3wmJW26zmlWSITQdO6VVkleNKRW3iorS6z1qcpJyxrjxn0mxISpRx41HfT1wz2xv4sYn4+nRP0IW1RTCELeODhnLhWrWMVHFTWXAKCdxi7o7yAaw7t2Ds0qqnJeg35UvLK7afpD9KqriFhboHCXWSsQqGeXci8a4AbSKW1SrZBBhBuR/2/Xr7QVqv36lf5dYUHkNQ2HEzbZKNgMoVQsDLV5cf7p2r8Do0XDGFOmySFEobrLETdYu6Vczy+szdZOruImbaoxbWOKThClu1Rl1qyTgfRk4GyBMTkJN3FgB7p49gxNnRVHe3W0x6Moq6Rfjpktxi5icxI3+fe3veu55FSUbZ3V1cMaOq7hBUgZD3Do6wgaLnXayH8+ZI99+oWAPYmFpaDua4haUlIBScTv9dOCQQ0r7odI+BXETtUomOcaNyipZzgLcUfoelFESkFpQeQk7osQN8I5zC7R4he0m67JI+V0zUcYZauLGs2ivhXLUhTglcZO1SkqOBcXWvm9BDebPd339BFslu1SrK261tQhPx665nqMD/EYChVUyaC2TluQkfopbXMlJZMcY7rv27e+xcQbY36lYjJ5BPAUwxK2jI2yxttde9uO335Zvn7+JdFsli0Vx4sbHeuhCVMUtaKedkrhls1bhHYYkK25Byg9F2mL361HquHlBp1Uy7gLcXbrYjzdtkmubJ25eipvEgq20QLZz599LJeAzTXrZJYEAi1fYoiTqgi3NihtP3LwYddSFeDkVN8UYt8ZGy8K1cY117r9orMaIEcCQIdbrjY1INHGryKsrbpMmhTvzSa2SYQpwVOIWdK9S1xhNslWSIMatDSJzdtRNy5TBELeOjrDF2qhR9gSpQtzC0tBGGYxyOfs9YcSNHa8TuuyMugdpvm2AJnYxiLhFVTmTpLil1SoZdTGom7jx35WfxBkkzrm7zg8QXXEDAixeYdeMrvpN1DFufhYpSqtk1M2tIHIV9V4KU9wUYtwaGiw1YPp0oLJofV+mUC1bZr0+fDjw2psa71WvsSbKWMD9TjKKW02NlehHpn1SqySF4hZE3HRt4Pi1T10OIKnETSQuPWpG5ZTBELeOjrDBoroa2Gor6zG/ay6KsDS0UQajsB1TgJa4ZTLR4q0oFTe/Omu62y+H4hZnjJtGq2QuB6zaYi8Q8xs0EzeN5QAWfZMttXdFIW6icYuufviBr/MDyBE3L8Ut0OIVtnCImpRARnGTbb/cilvUhXLQGB+l32FtA9KKW0ODZWRga2SmRrlVq6Ym4NpbIhK3sDEyCnHjrhmZrJKzZ7fGG4WhjIpbrmDfv5s2FuQ/Iii8IWoiHkrFjbocQNj1SK24Rd20TBkMcevoEMk+GCWlPqXixk+8foOR6qJKNMA1im2vXFZJgFZxo05OEkVxE5kEopwbD6sks04NGQLcdpdN3OpP2GJbp0RBpLg1NgJP/MU+n1dfny21d0UhbjKprgXOOV/nB4hO3IIsXrkmu+31mypLLzt+AyfJils5kpNQxrjxn0dB3CSSk7gLwgNFVPkQN8BVJD5hWSX53+nu+7IlU6vbKllTY6Vtr68XbD/ovBMRNzYGD9vePldvvZl3jm8iCJqzo1p3ZYhblDpuKUtOIlTCxyhuBh0KYZnkAHuQUlmUyChuFEUlVScCUbKUVMUtzcSNso4bdXISl1WSt04tWwZshk3cmtZubrNONTRItu/uJ6C8WGN9/MezpbEtvL3roy8JiZtCLBSr81NTIxfj5rZK+lm82GJvzHfta+Cvz1Z6L/aiXPPtOcYtLsUtNAe9B8KskoMGOZ8HjAXugvB80WCv69FRJD5hMW78NXPK+ErMn29d77W1rX/mFLfv7tWC+fMlSBsQfN4JrJL8GLxkuX2uKpF3jG9CYzAlcZOZs2XnJZFxIK7kJNQxboa4GbR7yChuUQuoeu30xDUYAXIDkuixRnEr/Vta6rgRFuBuKVTg6qud1inAqfx0hrWAaWqyjhNaOITZjNhrgpMXb+8KIj9NTcDDT8dklZQ45/X1Vh2fY45QV9y8LF78Ym/NKmfbnos9HddkGhU3fhHmFbuoKzlJRUXpOMYrbirELUxx4yVdwLf/YQXhwzYSCpsjELdMprSYPaBHcctmgUwGdXVW2vXFi6007A88ZH+ffffMidkjeVASN5fi5rav8mMDr9ILj8FJUdzSRtw6dbL7T0Hcop77lMEQt46OsIQEQDSrJGWMm4j8rzoRiC4ydMRbURM3r4E6agIOZiVNWzkAWaukxLlvbAQ2rLeOX/R1JS67rPQYXnFzE4iJEwUsO6I77QKLNbe9i19sepGfTYjJKin5u9bVAccdbbc/9fJKzJjhSrLpQdz8LF7uxZ6fDdOx2NOhuCWhHIDsoiqMuOlKTtKpUylBiWqVDFPcRo0CTjvNfu4zFngVhJchbutXRCBufteMDsXNdb1ks9ZmxY67RkzCEXTe+TE5ouK2bEt3l30VADIowLqO+PuaIXQMDrpXKyvta5RCRU0zcctk7PEhQjkAoRg3Q9wM2j1kFLdCQX82o7gGI/fxYRBdIHVExS0s8UmU64W9j6HcyUkEzw1TaJo2WccXfIZWnrgxxY2hqQmYNSvkg0R2NgEhxc1t7wpbbEYibkSKm9d7tt62EhdeCIfFi18oD+plxRZ6WbxKY5WcCzyv33XiRCBfGYG4BW3gAPSKW5QaS/x1wMdAMuhS3LwUMWrFDXDWHPTpv1dBeBniltuUMOIWZt2Nmj2Rv2bcxC2TQbH1O21clytNkBQG7jp48oVunl+dbb54EbfAMZgvKeR1bjIZe41DYZXUtVai2KAXIVdsnDGKW2QY4tbRIULcoqS7fucd+3GaFDfRY1VJRLGY3nIAYYvBqBM7ZXISghg3XqFhsS1+xM3LKsnjrrtCvpYmxU3F3sUTt/z68se4OeBxvfMWr7MvtPv+0J834aqrvDPgucksEJ74pKkJ2NgU4ZoMU9yi3Kv8GOlH3KJkxQwjbjoVNzeixriJEDeBcdizfJ0EcasupIy4RbUz+ihuLKa0KW+1P+/TfGmCpDBw18HDz3gky0EwcQMCxmARd1IU4kapuIU5cAD6eZX91rIxaLLEzWSVNGj3kFHcALmFeC4HnHWW/dwobjb476o7EBkoL3HTWYg0iLgVi8D/+39ybYtkqJJQ3NwKDSNuXgt8INgqCQBLl1rWK1+ETWKCipuXvYtfyIQRt1VflzerpEz72SzQb2tbVarc4r3j60VmAWeiCb/fde1GRcWtULBtx+UqBxDl3PPEjTLGLUxxo7BKAkLnJmpB+K7VERb5MVol2xB1Y87jvPMxpex8sXMolUCEuw6+WtXN85Aw4uY7BouslZJK3GTWSsWielIuwP+aVLWTG8WtBIa4dXTIEjeZhcOaNc7nurNKigxGqt5nasWN0hZB3X7Y7p1OxS1MndlvP7m2RYp5Sixk/bLJ+SlufjWQeASKB5oUNxV7F0/cWtaWt45bCTRkNfMis0C44gYAWwqKixLqgvCUCZyA8ipu1dX2gq2MiptXQfiwe4nPKlnR3LEVN3dMqZu4MQglEOGug/VQU9xczdigJm5xWSUpxgEZ4iZ7bgxxK4Ehbh0dlIqbe5HhtWCKoiyJWCVVJzBqxa3cxC3NVkm/iUEEGgtweyk0bDHgR9z4BVs1vCcYr3JYbRCNcQu51lXsXTxx61RIj+IGQKgGnReZBcSIW9v5ikLcyhXjFkUVK2eMG2DbJSnKAQDC595dEF5GcYuUyIKiIHGMitvilZ1LYkr9iBtDYAIRTnGLQtw8x+AkWSWTtoEjMq+yc2MUt8gwxK2jQ6aOGyBvleTx8celx1DvIql6n6mzSoZNAh2ZuMnEQ8lCxCopeG68FJowq2SY4lZba1mvPLFmDfDMM979ZOAVt4Ai8l72Lp5I8v1k4Ilbr6oIihsFcQsbxwQUNy8yC4QnJwG48xVFeS+X4hZFFaNU3PJ5u/9+xI2tsCkKcAPC47C7IDw5cWN9SWNyEo643fVg55LuhRG3wAQirQS+mM2iV3/vzdww4uY7BsdplQybs2fNUl+LUSipIuSKt0oGzE1KbZuskgYdCtQxbjwOPrj0GOrkJKoTGHUdt/asuEW10sSluEUsB+Cl0IRZJcMUt0mTAnjpjBn+/WQQnMC87F18shQ+Fo+BJ24VWyIobkFxi+5jVdr3OoECxM2LzAJiilsxq8EqmQTFTZW4VVaGjwWyfefHay+bPWATNyqrpMS55wvC85sybuJWUwPc92DWvg+iKG6UxI3iegHaiFsxk8Gf7i6dt8OIGxCQQKT13s507YpJkz3q28Eem/2Im+8YLLJWYuc9qlUyTHEDgMcfF287CYob/7kyY4HInG0UN4MOBZk6bkC0zIxnnFF6DLXiproTQ624tWfiplNx8xqoVevDuduOmJzES6EJs0oGKW41NcDkyb4fB9xzj+vDAqySQGiCEre9i0+Wwme/ZEhqHTeh9gWImxeZBcSSk/Sp5RQ3md1kWccDteKmapXs0sW7EHSUtkWIFbNKbtok3z5vldRA3AC7IPzPJ5cqbrW1cJahkKi5WII4irYTK27FTp2xbHnpNSNC3EITiFRVlYxvDOwe5u9rhsAxOEnJSQDgpZfE26ZM5AbIEzeZ82OySpbAELeODv4GFbnhVGPcTj3V2zgexbedhBg3ds6iKG4U5QDC6rYkmbiF2er4BZcsNJYD8FJoKiMobrNne6eob8OQIf79ZJC43t32LhnFLcl13EJj3ALqCHkt9sIUt5oaYMAgRXIlq7hRZJXUobh52SSBaH2XIW58X2Tbz2b9z73COFxXB5xzlv1djzkhi3nzrLIUjjIUUdSZMOIWhezHlJwkX+N9zbB7LIi4ASEJRLLZkvHN3b6X4hY4BssQN1k7ICAXPgFYaTZFkQTFjV+jyawLRMIbjOJm0KEgU98DoPVVyy7yZRW3KFbJ007zPk619olR3PwRtsh3L9Bkzo/I7p3gZkKpQmNP1DIxbjU1lsXKXQy6BCLETUJxA2x7V3V1MHGrrgZum8W9Rqm4Uce4BfTda7EXFuM2ezZQ002DnTwJWSVl22ck2KsUQNS2RYib6mIQsDeA/BKTAOrnnvtd+w/MYvhwj2GY9Z1acVMl+37XS0WFPUZGiXHzOe8iihvgk0DEZfPk7asMXsRNaAwWuVejXI+yVslevcTbpiZuIuRKdV1gkpOUwBC3jg6RG1qHVTLMEw7IT2BxKm633up9HBuk+HpMImjPxE1nHTevScBNSFQVDg0FuHmFRiqJBYDuNS1O61QYBg/27yeD4vWeyQRbJTMZoFgZYRFOXYBbQ4wbg3ux56e4ORZ7OlwJ5Ypx05GcpFyKW5SxJixjJaA+DsvMfRTETfW8iNQVBNRrcgFtxC3bvbNnTKkIcQtNIML1ndlXp0613scTtxL7ahBkFDdAnkBQznuUZZ/cfQlLTgIY4hYRhrh1dIgobjqSk/gNFvykqZq2GKDNKnnWWf67W6oLznITN12xhV5t87/Fc8/Jte3uj9dA7bZKykwyGmPcAKdCw8dMiFgljzm82WmdCoP7XAcV4AaErne+hlKQ4tbUBJw2MULpjhTUcePBL/b69XISN8/FnupCOWmKm0zfi8Vw4qar1IAfuYqy2BQhbhoUt1A3SJJi3ESuF0DdaQK0jd+Zzp09Y0oZcQtK1++bQMQnPq+uzrKpLl4MbLW1dW769sqX2leDQE3cwtrfbjv/48OQBKskZYxbB8sqqZRXu1Ao4K233sJLL72Ed999F0uXLsXq1avRu3dv1NbWYs8998RBBx2EvffeGxV+J9ogGQhbhAO0xE1HvRmAtgB30M6je4IUTVUfZzkAr3NDuRjkidVvfwtcfLF34gI/hO3euYmbTP9FJgGFhAQAcPbpBbCwNb9YqN/fXAX8vPXjcxGsNIB3//nrPcQq2dgIRw2lsOQkDjIqe02Wu44bb8sSIG6AvdjLjy4Ax1uv/fKCSky73uOWTarixt8rIqqYTPv89UWhuPEp/v2KG0ZZbLL5wC9jJdDxFDfReU9VcSsU7O/buTOmTLGS5fKnIExxE0og4tP3bBZAp1bFrZiXWwGXW3Hr3Bm49FJg+vTS48OQBOKmI8bNKG4AJInbsmXLMGvWLMycORPffPMNAKDoYQ978sknAQCDBw/GmWeeiUmTJmGAlyZuUH5QZhsS2U1Og1UyKP28e7ALWgTwiFNx071QDrtmBg50Pl+9GujTR7x92eQkuq2SCue+vh74/t4FYGTr2ziSU1tr7RBPngzUda9uI26RdmQvu8z7GInrfeZM5yFMccujwrOOm4O4yV4zYZNvlCRF7vf4Xe+dOllkQzI+j9/571db6T1r6iBuFIpbWJ01QH3BJtu2bN/57BMUxC0sCQegR3ErB3GjVAoB9b67ip4zx8K4cVwXQoibUAIRkd9UdwkfgJa4AcDuu3v3JwxJIG5xWSU7QFZJIeLW1NSEG264Addffz02bdqEbDaLPffcE9/73vew8847o2/fvujRowfWrl2LlStX4qOPPsK///1vfPDBB7jssstw7bXX4uKLL8ZFF12EGtGFrUE8oPQ+yypuxxwDvPcesNtuYu1TJicRJW5UE3tU4hZGaimJ209+Alx9tf18wQJ14iaSnES3VVLx3Gw1yD72u9+rwDu3W+vNYcO4n3hjhMQt/PE/+Yn3MYLJSXI5qxYSD0bcLJtkqULKE7divuBxRABEz3s+Hz05id9Y07WrdU4EFbc2iMRvUCZwinKv8t9VdwIREeKmS3Hjs0fy0JHcKmiRH4filstZbcu4k6gUNxEHDmD/3rJJilzEDbAdCxMnWlM0I24VKCKDAoqt405NjUXahBKIBJFOVeImoo5TWiXdrydJcePvDT93jYlx0wYh4jZy5EgsWrQIo0aNwumnn476+nr069cv9H0rVqzAAw88gHvuuQeXX3457r77bnz55ZeRO22gEbLJSXTbgNxE/ogjLCO6COIqwB00gVHFtkRVIPhz47VZEmUxGLYru/POlp3j0kut5wsXAnvuKd5+2CLfvYDSbZVUXaxxx3bpXonRoz2OoZ7YBa/3BQuAZcucrzGrpJdN0kIGBWRQgSKaNhd8j/KECHHLZtWJm0j7XbsCK1dGI24iu8m6NxJ0pOsH9JMrvm2/zIxGcRNf5AfF2rnB+iKykaC734A6ceM3k7hrpr4eGDsWmDULqLg+C1biMosc+tRW246FsFi0JClussqP7Kai7k10HYpb0CZ3XHXcOgBxE9ri6dy5M/7v//4P77//Ps477zwh0gYA/fr1w/nnn48PPvgAjz76qFHbkgjKlP2yC00A+Ppr8fbjSk6SRsWN/65xK26AM+XXwoVy7YsM1Dwos0rqJoVRFAIRG5Og4rZuXelrTsXNG0x1y7dotkoC9nmnSE4C2ItNauKWpHIAlFbJsM0hIFrfZRU3VeIWpM7EobgB8ot81hfdC3zR5CSMdG3eLJdNOaB9FlP6nf3s8/XJ+znxBCL5vFhGzDRbJeNS3FQLcAetlShj3ExyklJ8/PHHkZOMnHTSSTjhhBMitWFAgCSVA5CFrOImc0OrxriJIklWSYqivttsYz9esECu/TBr2sCBwLff2s8prZIy517EUpfJWOespaWsiluPHqWviRO3PCozmpOT8K9TKW6qKgFljSLq5CSyipvuTZAoxIoyOUmhYP+u5Y5xA+SIW7FoExTdC3xZxa1QsMYx0Xlc4HqvqLJf336bnHgmBtmEYkkjbrK26STGuIkqbsYqGQlCbExXZkiTYTKBKHc5gCjELa4C3OWY2HUSN69zTJ3Nk6855vbkhSFsodya/KgNqqqYhnIA0m0D6hnZNC4Ghw1DSQ2lcKuknS2zJhuhHAAFcZNxDujOiOn+zCSVA6BU3KgTq/BWST/FjXJTEVAfCyiJW1yWuiDFjb+WZDZCZK936t9UZ+1VoP0obkkibiIbooa4GXQolLscgIyv340kJCdRHUipywGEWSX5mJSQtPElkLWo6s5AuO++wHHHqbUvMgmoKm6iFk92bmQnGJF7VdAqmc3CVUOpiC4SVslMIUJgf5iNlEpxY5/LKxaybesuLps0xU1WtWIQsQYnSXFT2ZhLilUyrgW+iOIGqBM3kdCMmTPV2hZJTgKok3GRlPcUxI1ScYtSE5HdG0HzXlwxbh0gq6QScVu0aBGefvppLHYlkfj4449x4IEHonfv3thjjz3wwgsvaOmkASGSVA5AFkkrB6CT1FJbJfkFvju9fhhErpkoVkyRc88v5CjLAegmhUAiFDcAmDLFPrwG9rEixI1EtaKOcaO0BCY9xq2iwn+MzGTs6zUp8aKAmOJGGX8NxKe46bbxU6tW/MafzPwhslGxYoX9+Le/FW+73C4ZILlZJZOQnERHjBsFYU4hlIjbjBkzcNxxx2EjF+S9ceNGHHzwwXjttdewdu1avP/++zj66KMxf/58bZ01IECSygHIIglWSar2qa2SmYz9OgVx05VaWEQVU1UJypGcBNBD3ESu9xAlldVQAsKLb7c136X13MhekzK/KbXi5u6PjrZVd5OpFTc2R3fp4p+mm/9siXsp12T3ZfW6Su+3xlkOgMISmFbFjSfjFMlJKK2S//mPeHs8RNXCpBK3OBS3TIYmHtXEuMUKJeL2+uuvY/jw4Rg5cmTbaw899BCWLl2KY489Fu+99x6uvPJKNDU14Y477tDWWQMCUJYDSEJyEuqskjqIW1g5gKhWSb/fle2aRrFK6t4ZBOSJm25VTEM5AKGdxwTsyNbXAw8+CPSqtsm7l+JWU2MdV12joMy4jy9XjJsOQh5UaoBBJmulyEJWRzkAP5uk+7MFzktjIzB1KnDCsfaxd91TiSFDrNcbG7mDk1oOIGnqDGXGY8rkJIB+q+QvfiHenmzbQPshbioW2CAybohbaqBE3JYsWYJtt93W8dpzzz2HTCaD22+/HbvuuiumTp2KkSNH4uWXX9bSUQMiUCYnUanj5n5fEGQVN4qsklSKm+pOLwP7rlVV/jvtfEpnGcRplaQkbmlW3DSSk/p64N8v2+SdJ261tdZifP781sK3FYRWybhi3AD9ihuvCPFKkUzblDFuYcRNUHFraACGD7fKNK5bY/clj0osW2a9Pny4dVxJ36MobroTq4iqM6rXjEj7cdn4KZRISqvkRRfZjwcOFG+bOsZNdj1DvTGncr0nhbjpjnGrqLD7b4ibN1avXo0+ffo4XnvzzTex0047YciQIW2vjRo1qiQOThRz587F7bffjgkTJmDUqFHIZrPIZDK4+uqrldqbNm0aMplM4L/PPvtMqe1UQ1Y9iUNx43dag5CEAtxxWCVVYn5YX4IUTRbnllSrZBD5iZIGnIFygU+dnESzOjO4t30NHHFCJ7zzDjBvHkprKLHPpbRKJjnGza/vvCIkOn4B8cW4aSBuDQ3AuHH20FIJJ3FjaGqyjmtogPN6VK3j1q2b/uQnSVBnqImbiuIWZ3ISv74PHQpsv731WGaMTMJvGmcBbpW+UxE3kTmbso4b334HIG6iFTIc6Nq1K5YvX972fOHChViyZAmOOuooZ+PZLHIqkzCAO++8E7///e+V3huE3XbbDbvvvrvn33r27Kn98xKPJNZxW78e6NUrvP0kZJUUzOIX2L7XuenZ06739dVX4u0ysMHLj9ACeqySIsRN1VYnsiiRbZ9SzYurHEBlpb+Kqtp3jrz3rO2M0aN9jqNU3Khj3FRVbNlkOTLEjVJxKxa1WSUbG4GJE11v8SFuDBMnAoc8UIm2qhOyawF2Hv3i2wA9c1PaCnAnQXGjtEoCaovwJBC3KGV2KMuOsLkm6LyobtAD5bdKAtY1s2lTh8gqqUTcdtppJ7zxxhtYvnw5+vfvj4ceegiZTAb777+/47jGxkbU1tYqdWyXXXbBr371K+yxxx4YPXo0rrnmGjzwwANKbfE49thjMW3atMjttBvIJidJm+JWWWn9y+eTG+PmdW6qqoCddgLefx/47DOLXMmUTpAhbrKKm8jkHkUxFNm9o7RK6ohxE90ZLBaDk0bwoNw1FUkbD6hlHwSSUcdNR7ZQ3VZJSsWtudk+73wMnhdCFvkzZ5YOb2HErakJeOpvWbRVnVBV3Pzi2wD6rJJxLfJ1W8f4z02S4iayUQGoEbckJCfRVR9V9yZO0qySlIqbIW7eOO200/Cf//wHe+21F0aPHo2///3v6N69O44++ui2Y7Zs2YJ3330XBx10kFLHzjjjDMdzU7ybCOVOTuJFRkSJm2gGrOpqi5ykySoJALvuahG3fB749FNgjz3E25exSubz1rkMOoc8RM47y16VzyfLKimwCM/lgMqKCmQKBWzZmEc2F3wJeLYtWs8mnxdsHPb3pFiU8Ak1ghb5qlZJGaUzaYqbCOmkVNxUY0NEyTgQeO5zOeCuu0rfUgH7vBR8oi6efLpSjbgVi2KKW1Jj3GQzwFJaJZNUDkBkowKwF+EtLeKbW0kj47IEgjKLahKIm2oCEdmNCkWXX5qgxIYmTZqECRMmoLGxEU899RQ6deqEu+++G925yevpp5/G5s2bMXbsWG2dNSCAyASjI47A74aOoriJEjf2GdTJSWQshyKTwG672Y8//FC8bUBOcQPk+i563lUHUkqrZMAkwLLlDRkCtBSs9j/+qOCdLS+sbYoJTIS4qd6rosQtjuQkmzfLXe/ForySmqYYN75tGTWP/00jxLgtWAAsW1b6ljDFDQCWrVa8Hpub7eNFFbe0xbhRZ5WMqrglwSrpvrdF2xYlKJTETTYEYd06+3GPHt7HJFVxY/NBORW3KBt/KYOS4pbJZHD33Xfjd7/7HZYuXYoddtgB3Vw7BCNGjMCTTz6JfffdV0tHdeHdd9/FxRdfjFWrVqFnz57YY489cNRRRzlIZ4eCyM5j3FZJ0R08ftEbNAmoxBSpxLjpLAcAAFtvbT9eulS8bUCeuG3eHLxA4iE6uasOpGWwSjY0WDE57CdkCkIl8m3Z8mbMsOqe1deH9Dus76r3k0icgup5EdntBfRYJf3Ozfvv24+vuQZ4+OHwdtesAQ44wPne9hbjxrfNL+7CwI+jYTbrAOLm95EixM3xusw1I1J8G6Cv46ZK9v/xD/txuZOTUBDauKySgDWXibgSVMg45Ua0rOLGX/N+xC3q9R50ravGiwL270ox7xniVgIl4sZQV1eHurZ0Y07svvvuvklAyolnnnkGzzzzjOO1nj174rbbbsOpp54aqe2NAvV7RI6JFZRWSZFB2otYFIti7bOFSadOwVYKyno2lFZJPkHLmjXibfN9CbJKJl1xi4m4sWx5jsNaF5z84pRlywN8yJtsVkkgfYqbDquk36KHb/ORR8SI27RpTtJWUeE/FqQ1xo1fxMkQN/4+DdrA4T/b47z4bv4LELccFK9H0Y2EOBU30Wv+vfeAt94Kb7+9JCehsEq67cFhijEgbn+lVNxUN3IB+97OZv03WqIqbhRzB98XCsVNdF5VnZtSCCWrZGVlJSa6U0x5YNKkSciKxm8QY7vttsM111yDOXPmYNWqVVi1ahXeeOMNHHnkkVi7di1OO+00NLQVn1FDt27dQv8NHjxY0zfShHInJ/G6EUVvPLbTFxZ4r3JDlzs5CQD07m0/Xr1avO1CwW4/aMHGTw4yky81cROxXWiKcfPKlgfYihsfx8MwcaKPbZJacaOMceMXyhRWSREb6Ykn2o9FnRqffup8Tp2JlFJxEyFuqjbMsHk44F4dNgwYMKDkZSHi1ruvBsWtnFZJFbLvzoZdbsWNIjkJP3dQWiUB8c2tOBU3ihg3Rty6d/fffFIlnR0hxq0DKW5KxK1YLKIoqIqIHkeN8ePH45JLLsHuu++O3r17o3fv3hgzZgyeeeYZnHPOOQCA888/H80doAaEA5Q1uWQWDjxEF4VMJQjbjVOxd5W7HACgrrjxv6mo4kZB3JJolXT13StbHuCtuDE0NQGzZnm0LVsOwN2fMFBmleQVNwqrpMiu6R//aD8Oum55uDcmgs67jmyhfu136mT/TXeMW02N/ZurKm5hiYcC4qGyWWDSpJKXhYjb8T8mVtyi2o4B/Yqbm+XqzioZl+Imqs6oboiWi7glPcbNT+IG1EhnsZgM4masktpAmqpx06ZNqBLNVFdGTJs2DZWVlVi+fDn++9//KrezYcOG0H/ffPONxp5rALtBWRZAL0S1dgFyxE2U7LPFpqjiljarpKrixveDOjmJyASZpOQkXN9zxUrPbHlAsOIGWFn2Sr6WbNpiQL9VkjqrJGVyEn6jQrTvMsSNsvZfJmMTDBmrJN92UIZWtpiTIW6itjcgNB5qypRSLh1G3GpqgB//VIMCnDbFze2qSaviRl3fTlSdEV3ki17vqoqbCOnUEeMWRNxUSKfIGONumyITtA7ipvt6TynIiNuaNWvwxhtvYNCgQVQfoQ19+vTBgNZdssWLFyu307VrV6F/iYKI9zlu4iYyEfDFZcPOqcpiMwlWSb4gvIzi9uKL9uM0WyUpygFwSVsWLMx4ZssDghU3wMoVs2CB+00K5QB0WyVVz4uoVVI1jkCE1KosqNxsgiK1u+hYwAiGjOImugmiQtxE2+b/7nPe6+qsxDw8wojb7NnA4DrFRXJSkpOoKG7u+6fcWSWpCa3uwuRAfIqb7nOjGuPW0mLPwUEbFSpjpEq2TZl5qVi0N9uN4hYLhFfT2267reP5Y489hldffdXz2Fwuh2+//Rb5fB5TpkyJ1ME4kM/nsXbtWgDoeNklRSR0HcQt6Ib+5z+BH/3Ifi4yETQ32zdohBpFvkhCOYDKSmvBtm6dnOJ2wgne/XMjqVZJyuQk3PUetAZmC1E/xQ3wWJ+rlAOQndwBesWN2ioZlK4/k5FLAe6+/soV4waoETfRxSYjbqptiypuhYJv3SyWkIdlX+WJG1/HraaGy766WNGWlmbFzX2c7gyElIqbSrZNik0QlTVHEpKTqP6mIhkl3Z8r2neV8xIhbtwXqvUoDXErgTBxW7hwYdvjTCbTZv3zQ3V1NY499lhcc801kToYB55++mls2rQJmUwGe+21V7m7Ey9EdvEpVSUA+OEPgVtvBX75S+u5yETAB0SXMzkJZTkAwLKPyRI3Hmms4yaSnEQDcQuaH/lyAH4oWU+KTjBRayCVU3GjtEoCVv9bWuitkpRjAcUYyS62LVusRU9YlkhATXEDrO/rc3x9PTB2rBXjufn3BaB1vZlHJWprrVi4yZMthQ6A+n1KrbhRxri5v6ffDlFcWSXzefEi1nEWJhcp4QOkNzmJzJwqUsMNUOu77Hwt0zagRtw01V51wBC3Uixo9QUVi0Vsu+22OPHEE3HjjTd6HltdXY3+/fvHnlHyjjvuwB133IF99tkH999/f9vrixYtwuuvv44TTzwRnVxpVv/617/ijDPOAADU19dj4MCBsfa57IhLcQu7FmQnAtGYHL5tasWNYsHWuzewaJFllRSdfEWhapWUtV4kySrJXe8sW56XXTJMcauttbLtOd8kaJXkr1eZ8iAiyUmoY9worZKs/ZYW8d9UNTmJ6sJBZGHS0iJ+r4reS+7Mkn376msbKL2fAsakujrgqquAfG0esPJ64ZrrKjHrQo+36dhISEo5AJVC0ACw227ex6nOHaL3kjuBSNC1yxCn4pYEq6Sq4qZbRRVV3FSux6QQN9X2ZYkbs27qXCslDMLMamuuGPBpp52G/fff3/Gabrz77rs4++yz255/8cUXAICZM2fi2WefbXv9ySefbIujW7FiBebOnVtCvlatWoXx48fjrLPOwh577IEhQ4Zg8+bN+OSTTzB//nwAwIEHHog777yT7PskFiK7+KrETXSQBpw3pEhyEn6hmRSrpMxAzR8bZGdkCRuamy1yFfZd3ZPoihX+x6oqP3FZJSkUNy7GjWXLmz699LAwxW3SJI9LWnSBzxMj0fPOLGwAzaJENjkJhVUSCMxu6AmZGDcdipto7GIuF06W2HEMIlZJwNqdFyFuMoqbwv3E3xsDh1R6ryZ0KG6iVknVUjW6C3Dzx11xhf+YTZ1V0q3OiBC3OBU33VZJ6uQkInO26nqAV9yCrvdMxjr3fMmfMIieF9UC3CrqNSVxAwJdA+0BSt/snnvu0d2PEqxbt84zw+PixYsdCUSaBG6Ouro6/OY3v8Fbb72Fzz//HO+++y6am5vRr18/HHnkkTjllFNw8sknoyLoomivkFXcKFQlQH4ikLFKqti7RBfhqtYIUeLGZ5ZcsyacuLkXF37ZNwBn8pPWGE8hJCE5iQarJGBly5sxo/SyZopbFqV9r6mx7GAlULFKiipu1DYgpnDU1Igv2GR2NWUzgyVJcVOxArW00BI3EaiUA3D3KQgi54VacVNZbBaLljWfgdIqucsu/sfFZZUErHMjUmIjiclJVLJKUtjJ+TUHH2bAo6LCuiZbWmiIG2D1n4/xDwO14sZ/T7/C4VHaN8StBErfrLGxEa+88gq+853vYOTIkZ7HfPbZZ/jf//6Hgw46CFtttZX0ZxxwwAHSNeCmTZuGadOmlbzet29fXHfdddJ96BAQIW6Vlda/fD6ZVklqxS1osFCNcRMlbrITmAxxi1onrrIyeOEetRyA6CCtaJUE7Gx548Y5D1sPa/LsjvVwY/ZsLoaHB6VVkjrwXra0BiBuv3L3RWecgvv6K2eMG+Vik1/MiZYbkBl/VTZCRM6L6gYLv0gOGt9VFoP//Cfw1lvebbgRVXGjSFKkorjpXuQn0SpJPUby4QRB12RNjdUXmY1c/jsGkR9AfnOLOjkJ/z2TRNzaMZQkpttvvx0/+9nPAolVsVjEhAkT8Ee+qKpB8iBilQTsgZSKuPELsCQobkmxSsoORu5jgohBVOIWsTaUL0SSk6hOvpxVkqG+HnjwQefPsAa9AACd0IQaWBNTTY11HMuu59tvQD9xo1bcRIkbdTY5WbIvmsEPiF9xE4HooirqQjZtihv/HYPGR5X2H33Uvw03oipuFHMHZUxRnIobpVWSYozkiZuf4gbYv6uqO0n0XtVNxvm/UaxlVOdsQ9xKoETcnn/+eey4447YYYcdfI/ZcccdsdNOO+G5555T7pxBDBBdhEcdjMJ25imTk7hTXYtAYHLM5YD5i+yBqriFYLCTPS/uAWvWLP9jqYmbOzheFDFaJRnq64H584GpU63EI4y4AcDwfmswdar1d1/Sxvfb3T83ohI3UbuLzHlhu6Zh6rWOBB86FTf3wouiVIJschJAv+JG2bb77zqJW9RYVCA4g6ZKv92L7nIpbnGVA3C/JwiUsX/u9imzSlKMkaLETSW7rEo8qu6skiqx14BR3MoAJeLW2NiI7bffPvS47bffHo2NjSofYRAXkqK4xZGcBBAnEAGDRWOjtcAfMgQYsXMW+dbb6L3/bsHUqdbfQxGX4vbjH/sfq1rgW6SemPvvKlmqiMsBuMGy5S1eDBx4bK+21+e8sgZXXeVjj+ShoriJTpDUu8nsegxLM09tN5TdTVZV3KiTk6iQK9HdcArFLQ6rpGrCA91xOe75QncB7qRYJVXODXVykiRklVS9JkVi3IDom9yi86puMs7PS6J2bEBNcVPNWmmIGwBF4rZp0yZ0DrpwW9G5c2eslykYahA/RNWTOIkblVVStG3Ad3JsaACGD7cyEVrhYxk0wRqsKnNNmD7d+ntDQ0j7cRC3I44IHuiiEjeZxaDKDpvucgCsnhEQ2PdsFugxtJf9fMMa8fYZkpCcJKKF1BOqCzaq5CTu40RKGQDJsUqmWXET2ajIZOzrXWYtoKK4iZ6XpChumYzavBqX4tZerZJRFbfqajElVSbGTcYqGYfiJlOmxihusUOJuA0aNAjvvfde6HHvv/8+BgwYoPIRBnGgWLQvcFHiprozqDvGTVVxizD5NjRYSSzcp6AZ1rmphjXBNDVZxwWStziskmH21Opq+9xRWyVVrGm6B2nRxSCgZiOltErK7ISze0mG0LJzKEPcKJL9RNlNBoARI/yPpY7PSxpxS4LiBgB9+lj/r1ol1i5Aa5V0zxe6Y9xkCLOKOnP66fZjSsVNtxLp7ofurJLUaekZcQsTLVR+UxmrZJQYt7DzwohXkhQ32U0/wBA3L+y///6YN28eHn/8cd9jnnjiCXz22WcYO3ascucMiKEywXQUxc21y9PYCEyc6H1orjU5q7vm18SJAbZJfrDTWVBZhrgBNkGhJm5JsErKLGSjErdyJScB5OPE+PNSbqtkVMVtu+3C23b3JwwqxE23SkCZsdL9d50xboBdc27VKvEYY5WECmmLcQPkF/lr1gCrV4u1r7JxRq24JcEqGbUcQBhxY+SnpYWG7FMpboBdeoNCcYu7jls7hhJxO++885DJZHDqqafi97//vcMOuX79evz+97/HqaeeioqKCpx77rnaOmugGTK7PEmLcRPNOgZo2U2eOdN/bvWr+dXUFJAbhDVWUxOcUl92oZx24sb/9rqtktTEjbIcgErWMdHzIqNERrVKZjJi17uq4jZ0aHjbfH9EILpwoMwqSa24URI3prg1NYnHdFIqbu5zUa4YN0DeyeI+Luh9KgtlleQkSbRKUiYnCXP4qBRWT0JWScAmbhSKWyajlmnaELcSKBG30aNH49prr8XmzZtxwQUXoE+fPhg6dCiGDh2KPn364IILLsCmTZtw9dVXY5999tHdZwNd4G/oMPLDTzCiu6aUiluMNYpyxUrcdVdAV1oVN69izXfd5TNG8cQtCLI7vqrEbeNG+Z18CvvV/Pn2Y93xSkm0SupOTsJ/tsp5Cbgeczlgw2b7esw1KahWQRMvEL0cgE9d0ZLPVkloAwRfN5SqGHWMWxxWSUDcLkmZnMT9/dKkuLn78O67/seqEBTq5CRxZZVMglUSEI9zo8wqKUMK2dwkQ9xEFTfAEDdNUCJuAHDRRRfhr3/9K3bddVfk83ksXrwYixcvRj6fx6677oonnngCF198sc6+GuiGzEKWDUZ8XFwYkkLcIlolG7+uCKxjzRQ3t1USAJYuBRYs8HiTKHGLyyoJAGvXhh8P0CpuDz9sPz70UP/j0myV5Cd+CqukZsWNz6L64sv299p914J4FlWR2nz831XGmOHDge9+N7xtvj8i4M+PqG0vbVkl41DcAGDlSrG22XfMZoMV2qi1ytxtuEFJaIHoxO3ww/2PTaLiRmmVpCzAXSyKEzeevPAlBIJAmVVSRXHbtEn8dxVV3AD5uQkwxM0DIVdIMI4++mgcffTRWLp0KRYtWgQAGDp0KGpra7V0zoAY/A0XRtzcA2nY4AI4b86wnXbZ5CQx7iav3xQ8+QYpboBPMjW2SyWjuFFYJfnPF1lsFou0xO3NN+3HJ57of5zKokSVuPExJUGQSVvcqZN1DehOTsLad/cnCAHjQEODFavJDmGbFACwamUB06cDM2YAs2eH1LiTVdxUiNvLLwcv8qkVt6QlJ0mK4sZi3ABxxU00y6lKVklVxY3CKikbO+4e604+2f/YJJYDoLRKim5Eq8wdzc329wyzSnbvbj8WVa7iyioZNg643SCMyAVBRnFTIW6mHEAJIhE3htraWkPW0ggZxc1dcyZs8ALEa8QByVPcuBu/W08x4ualuAHOcbwNSVHcZM/Nhg32cT16BB+rMkHyRGbQIP/jotqAwiZHfldVdDdcdGcQsCZIGeJWBsWNZVHlUeBMGux6Z1lUgQDyJpJwhv97oWBtEgQRMUCdnCRRcWvvMW6AvFWSgri5v5/uJEiqipvI9c63XV8fPA8nvRwA5fWuOy5StPg24JzwRUtgUG7MqShugDU3iRA3asWNjb+VlYa4tULZKmnQDqBK3GR3B2WJm0gMHfVuMjcZDR1WiaCqFn7JSQCgthYYNszjTUkkbiLt87bB3r2Dj1UhV2z3LpPRm20TkLveI14zoeeeTf4UVpooMW6t58UviypP3CrgXLAFZlGVtUoC8te7zAaOiuIWtnBIGnFLQh03IJpVMmyhqZJV0v3biyb4oCRuvJNBV9tRbaTUVkndhFl0g0VlXpIhbvyG5rp1Yu1TbszJEDeVItwqipvK+EsRU59SCBG3W265Bc0y2QQ90NzcjJtvvjlSGwaaIZOZkf+7rB+/3IpbxMk3W12BSZMCuhKguE2a5NM9leQkFFZJ2fZ52yBvJ/SCysKBTQKdOoln26SYwCgXsvznUwSYa1Dc/LKo8lZJN3ELzKIqa5UExPpPPQ4AaiRCd1bJqHWtklDHDdBvlayosK8pVcUtaPOEUrUCnCRAZBNHZqMiahxwORU3yo05lbmDWnFTsUrm8/Kb3LKKmwioFTdR9d0QNycuvPBCjBw5EjNnznSk/hfB2rVr8Yc//AHDhw/HRRddpNRJAyIkVXFLmFUSlZWYMsV/TPJT3GpqgMmTPd5QKNj9L7fiJmsf44lbmOIWZYIMmxyprZJRF7KUxI04q2QuB98sql5WSR6+WVRlrZL8e4JAPQ4A4iSCMhMeZeIT92frtkrydj7ZLHth/eaPUY1xCxqDqRU3WeImGiMGJFNxUyFuou2rWCVFf1M++29YmIiK4qZSgBsQOzdJVNxUrJJGcWuDEHF78sknUVFRgbPOOgsDBw7EuHHjcM899+Czzz5D0cX4i8UiPv30U9x999346U9/isGDB+Pcc89FVVUVnnzySZIvYaCIKMlJRCBD3JKWnMRle6ursxIweHbFR3GbPRuoq/N4A3/eRdPnAsmIcRMkbrkcsGaD/bsIp47nFbcgpN0qya5ZStubouK2YAF8s6gGWSWBgCyq7NzIKG66iZvqxC5KIqKQK77Gka62VeJm+D6FQXSsiZJoIuw+5Y8Rbdv923//+/7H8nUHk0DcZNqOqrgF3auqtmPR/qu0L2qVTLripnsckxkHkqy4hY2/qtdkCiGUnOSYY47BYYcdhttuuw233347HnroITzcmra7oqICPXv2RI8ePbBu3TqsWbOmjcwVi0UMHToU55xzDs455xxUiwzCBvFBpRwAIG6VTEqMW9RaPK3vZ4kX+Cx7gK24VbUqbjU1IVn2ZAa6OK2SIucmhLg1Nlo2u7vuAn67LIvzWl8/8tAc9jobmDLFh8wyUBK3JFolKRfhilklgzaJg6ySDJ5rFRXFTdYqGdZ2nIqbLHEL+02jqnky17tugqJyXmSIm+y9xJ+XV18Nv1crK633UBA3Xr3RTdyiZJUMK8OQZqtk0mPcZOemsHukvShuxirZBuHkJNXV1fjVr36FBQsW4PHHH8e4ceOw1VZbIZ/PY9WqVVi4cCFWrVqFQqGArbbaCuPHj8cTTzyBL7/8EhdeeKEhbUlEXFZJCuWHOpuczwRZX2/ViJ461Uo8AtiKGwBcdmkB8+eHpEaXIW4pUtwaGqxSWtOnW4oNv8hftzqH6dOtvzc0BLSvYpWkiHGjtkrKTmAxKm5ByULDFDfAJ4uqaHIS2UUVtQIBiMdYRCnALUPcKMg+pVUySk0uaqukSPtRisLLKG68Hc8PMuNAz57246BCpDxU4oko6rhF3ZjTHePG/zZJySoJyLsSZLIpiybOSori1oGIm3Q5gIqKChx33HE47rjjAAArV67E0qVLsXbtWvTq1QsDBgxAX75ui0FyIZOcJM0xbpptb3V1wFVXAVdcYdnCBp5cCcyx/nbl5QI7YKrEjUJx0xTj5pU6nie0wqnjRRU3fhAXVYCpiZuMVZJ9Pgswl0l7LxO8LgIXcRs2DBgwwHutFxbj5plFtbkZWLzYeiyibjDIKG58kgqRtlUUN0qrJAVxU7lmAFrFTWTu4DMsUlglZVRa/pi0WSVHjLAfz50b3jYgvkiWDW1gED33KveqSlZJlTI1njtTHPidLwqrpGz/ZeY9FWeVjOImW4MOUCNuMtdkChG5jlvfvn0NUUsrkmSVlJ0IZHaooiYn8VkQZrOWgoRektYFVatkEhQ3j3IAfqnjeeLmTtwycSIwdqzLNsnbkcJ2Nfv1sx8vXx7ebyDeGDfZ7Ilhk1KMils2a2VDnT699NAwq6RnFtXrr7cfh1mHVHeTZTeHKBS3KKpYR1HcRPouqpwwRFHcRK6btBK3HXawH3/2WXjbgBxxy2Qskk1hlaSMcVOxSvK2wbDaZjyxo7BKyo4F1MQtrjpuxirZBlPHrSODOjlJOykHoN2C1V6skq3lAERSx7uJm1fq+Nx6e+GyqdApeGzv3t2OD1myJLzfQLwFiUVj3Nz98kOMWSUB+GZRDbJK+mZRvfxy+/HatcF9US0HQKEuM3Q0xU13TKfs3CFzn/Ltq5yXNCtuYdfMNtvY50a34gbYv3nSrJLZrHihZtFrnSdufByYF6itklEUt7C2qRU3Y5XUAkPcOjJUFTfRlM7tLDmJL2QH0jQnJ+EX3j17BqaO97JK8mCp4xsbrZjBXUfY19VL/+6EIUOs1z2LOmcywMCB1uNvvw3vN5Cculbuz5fdNRWd2EV3wz3GAb8sqkFWSd8sqiLXodexHUFxE+1/1DpuMovBcicnkZmX+PZVskqmTXGTLQew/fbW4/nzw9sG6ImbilVSdgOKIhGPjOJGXYC7PShuonNToWD/RkZxa4Mhbh0ZMhMkX2yZV12CkMQYN9FJRjR9ufvz27vixk8CNTWBqeODrJKAlTr+97+3E5psWGEvXDajM5YtQ3BCk0GDrP9XrxabZKiJG6WiR6kw+4wD9fXAgw86L1Evq2RNjXWcb0KevfcO7wODanISmQU4IGeZZsfKKG6y8VYUbcepMOtMTkJtlaRW3FQLcIskJ5Ed31kcclOT3Fggct6jEjfRcgOyMW4yC3wVxU3GKklRgDuKW4OCuMmsIynj8wxxM+gQkElOwscxrlwp1n4SiZvsrqmsBUtkMOIngbBinlEySFHYx1wDqWjqeC/iBgC/+pU9P3SCrbhtgW25YAlNSsgbU9wAMdVNNcaNIvMj5eQbRQF2nRd3FlVecevXu4CpUxGeRZXvzx13BPdFNTkJleImQyKSbJUsp508iuImY5XM5cTcGjEqbu++X4n58wMuZcpyAIDzmpXZ3KK2SoaVG4iycUaxSSFD3Cor7f6rbLKkLTkJ5QaRIW6eMMStI0NmIStL3IpFufgTygLcUZKTiPRdViXgzx+fZMMLcVolFYhbUOr4MMXNDT/ixjBxoss2yRQ3QIy4yUwCmYx9bjqo4sbAsqguXgxM+Jl9vTz9ZB5XXRVSlw+wrdWZDHD22cHHqhbgplLcZMbIpBG3tCpuqlZJQH/tP/4YgeuxsRFY+IV93L77VWLECPjbvqNYJUWuedmFeFxWSYrSHaKKm4pVks8qGUbcAFqVNi6rpKxrgJ8z/SB77qkTiqUUhrh1ZMgkJ+EJxooV4W3zgzml4iYyWETJEChilZRVCfjzF5aRNYpVkuK8u3YGWep4L4TFuLnRGU6rpBslCU14xU0kQYls0oMkTb6qxE3kehScHLNZoHdf+3rJVggu2Bhx69w5vOyBquJGEc8JyKk/SavjJkNQVBTmpFklRdsnUtxYHcuvG+3jmOvA1/ZNmVUSkF+IUxM3plzpdpoAajXoKJKT8J+h4tagzCpJkZxE1O7t/nyjuCnDELeODErFTXZnUDU5CZVFKimKG3UdN9lzwwbS1rpZLHW8Z1cErJI8whQ3wE5oAsBZYJbfEfWDzOQIyGfAissyojvRhIxlWkW14olbGFQ3KmQVt6RYJeMoBxBmS3N/flqtkqLtEyhurI5lU5Nzk6rgWmKV2L6piZuMVZJPBEFF3NimpW6nCZCc5CT8Z6iMM2mzSsqsxQxx0wJD3DoyKIkbtfJDbZGijHHjFTeZCSxJyUm4QdQvdXwL7GOqEL6g4ombl+IGWAlNFixofUJpNwSM4uYFlU0Q0aLqgPpvSjHGAHIkImlWScoFFSA+1lRW2sSR2iopcm5k56aQRbi7jiUjbnlUAPAmzG227zitkmHnXlbplCVuLS12VmKZDUvdVknq5CT8ZyRt7kgbcTNWSU9oJW7FYhH33Xcfzj//fNx6663YKLILblA+yOy019TYAxa14kZJ3CiskrI7eHFZJSmTk3ATgF/q+CbY11QNwicB3irpp7gBXKKupBE3md1BSuJGGUegQn7YglSEuFGWA0ia4sbHAYvEXLLvKKu4ydiCAfkxEggeJzMZucyPspZmWaukquLmM8a461jaxM2/7TbbN3VWSRnFTfa8y8YAr1plP6YgbqJWySiKWyYj5xxQIW6UpWQok5PIjsFGcVOGEnG76aab0KdPH7zyyiuO14877jicfvrpuO2223DhhRdizJgx2Cyyi2RQHsjubDKSQUHcVJOTUO20UypuSbVKypx31yDqlTqeJ19MTaupAWbM8G5axCoJcNmWKckPfwxFVskopFN3MWWZWNcoVklZxS1pyUl0k3HZOGDZemUyCypKxQ2wrysKxU3WKqkxxs2rjqUIcQMs4vbFNzYJKGwkjnGjIm6i9xLlhmWxKG6VjKK4desWbjvmP0OleLiMrbkjWSWN4tYGJeL2j3/8A5WVlRg7dmzba6+88gqefvpp9O/fH+eddx523XVXfPjhh7j33nt19dVAN2QWbICTuIXFoSUpxo26HIDsYMQmsGzWWfPFC3FaJWVi3DwmAHfqeJ589evW1JY6/rzzvBOahCUnAax2hw1rfRKF/FDUb+poihuFVTJpyUlUFTdZ5UeGuIkqbmx8D3NTANGTk4Q5E2T6Tm2V1DgOeNWxZPG8fHImLyxbBhxwhJ2k49nHNntnnuQhSzplEsOoJm9SIW66Y9z431R3LTHAJm4iiUkAdcVNZhwA9CcnkS0fAdAmJ5HZODPELRjz5s3DzjvvjEruRD322GPIZDJ4+OGHcfPNN+P1119Hjx490OBZOdcgEZCdIBnJyOfDJ4EkWSVVFmyqWSVlkpP06yeXZS+hMW48+NTxd8yyF4y/vXBLW+p4v4QmIorbpEncT540qySl4iYz+VLaUVTuU3b+KKyS1AW4ZRYOshn84iJuFEonf1xFRfg4JqO4UVslNSpuXnUsRRU3wLlBVdG02TvzJA9Z0pkkxY13muhW3GQ2WKKUAxCJbwPUs0rKXu9JsEqa5CSxQ4m4rVy5EoMHD3a89sYbb6Bfv3448MADAQDdu3fHmDFjsKAtk4BB4kC5syk7waQ5OYnsYMS8/n36hB9LXcdNQ4ybF7JZYMh29oKxsnmL4+9eCU2qYV+PfGIThpoaYPJk7oWkWSXTqrjJXDOy18sW7nfXnZyEjxGj2sCRWRDKJpqQIeMAreKmokKsWWP9LxNrlQSrpKriViiUuEG86ljKELdm2H1nCZxKMk/yoCwHQJ2cREZxi1KLktIqSaW4ydiaZesWypQyoI5xM8lJtECJuBUKBWzhJuSNGzfik08+wZgxYxzH9e7dG6v4gFSDZEF2guRvOhniVu4YtzitkmHtF4tyu3cpU9wcCJgEvBKa8Gm0vWxGs2e7ij2nWXGLUjQ4rO3eve3HX34Z3rbMNSN7vcgSN5nrXTZGjLoAN//9tmzxP44hzVbJV18FPv9c/HjV5CRJyCoZcN141bGUIW58uQB3rcu2zJM8KJOTyJZhSCpx06248fFzIvcS/xkUVkmZdRhgy8Jdu4rHogJGcUswlIjb0KFDMWfOnLbnzz//PPL5fAlxW716NfqIqAoG5YFMVklAbrGZVKuk6CRDVYCb34mXKeQJJIu4iZz3kIWsO6EJv3DhFz01NdZx9fWuBpJG3FTruOlO6cyPw6+9Ft62KnETOS/87y6SjU1mURVF1acowM2PobKp3WUsUqIZK1UVN5Fzw3udRWKSVRU36qySEa3wXrZvGeLGH+Mmbm2ZJ3lEKQdQbqsk7yvla3B6QXYjV3WBLztviGwk8J8hS9worJIsDXNYPD1gnXf2HQ1xSyyUiNuhhx6KRYsW4eyzz8ZTTz2FSy65BJlMBkcccYTjuPfeew9Dhw7V0lEDAlAqblHquKU5OUlY+3yJjC5d/I9joLZKakxOUgKeuPlMAnxCk57dnMStthZtCU1KSJu7D5RWScFrptBit//FV9ngeYmy71zSKLz+enjbSbJKyiyqVIk4IFd7iiFsjMxk7O9IUZNLJqtkLmePoxSK2xdfhB/DgzI5iWJWyWI2i3fescaXwK8cMn+4bd+6iBtgZax09C2K4qY7OYkscZPdKJYhP6qWOt3kwf0ZSbBKMsLs5ev1AvttqJOTUP6uhriV4pJLLsHAgQPxpz/9CccffzzmzZuH+vp67LDDDm3HvPvuu/jmm2/wve99T1tnDTRDNqtke1DcKIibzETAE7c0Km4yg7SjNoC/dYwlNLnk13bf//inSixejLaEJp6IS3ELabux0SKY/37VnuBH7VmFIUPgnyWOsu8DBgADB1qPv/46vO0kWSVlJvYom0MUihtgq4oiVknVGDeRvvNjO4XiNnx4+DE8VJOTaLZKNjYCSxqte6kpV4m99gJGjEDwvRoyBrtt36pWyQqU3k9Ll1qZKz0/P23JSVSzVupe4GcycjXoZMcAgDarpMwGerEop7gB6sTNKG6xQYm4DRw4EO+++y5+97vf4ayzzsK9996L++67z3HMxx9/jGOOOQbHH3+8lo4aECCu5CTlJm4qO+3sON2KG19kVZa4lTs5SbFot69JcXN0pWj3fXBdZfhPmwCrZEODtYadPt2puOWQxbJl8M8SR5nSGbDvZ9mYH91WSV55SpLiRpGcBLCJm2xyEpmFrMi1zhNHiuQk228ffgwPdu7y+fBxhsgqye7VFcus356Pow28VwXGd972rVNxA+x1d8nny1olk6S4idxLMuRHtu8yiadkxwAgOVbJzZvtPsgqbiKbLPyawBC32CBwpr1RW1uLyy67zPfv48ePx/jx41WbN4gDM2ZYAcNNTfpvuriSk8hMMIBaquswqCpuslbJcituspOjoOLWBtm+U1slQybfhgYr+1tbd2D3gV8UsixxAGf5pCadVMQtTqukjOImcp+qxLrKkgj2HUWud1WrOoXiJmsfE13AMrjv1aA+EVgl+XuV1VnzIlae96rgNVlfb7mUu43IAVvEiBuQQQEZVKDoS9wcQolsXKdqchKKrJKUxFC27zU11ntEVKUoVknZjMS667jxrJ9CcVMNP3C/1w/GKukJJcXt9NNPx9133x163L333ovTTz9d5SMM4sB3vgMccQRw/PHhdXiA+MoBhMW48WmZk1YOQCbGLW1WSdkJjDrLnuwkILtbHbAr29hoZX1zHN62IKxA0WNodWSJi0I6ZXZlZetaJckqGfab8p8vqy6nUXHjr8ewMZLaKslfV/ffH368aqyVBieI+15lBCmoQLbjXpUgtXV1QJdqq/2tt7Vi6D75pDTzJA9G8LyIW22tlbnSPjiCVbKjKG4ibctssKgQt7iySoaNkXxCGIoYN9l5iTK+0BC3YNx777144403Qo/7f//v/5VYKA1SDMpyADILwjgsUjJWSZnBSNYqmaTkJFGIm8gkINv3uKySHvWbZs4s/UpMcfOqQQe4ssRRlgPg2y+3VTKucgCyyrhKCnOR8h2UiptM//mLU7dFFXD2/bjjwo+X2aiIYpX0aNt9rwYpbgyOe1Vx86y6cyVGjwZ23LE08yQPFufmFeM2aZLrdqcsB9BeYtx0x6LK3qeA/FhDZZVMu+ImQ8gNcdODfD6PCpEJ1SAdSEpykihtU1glZQaj9qK4iQ7STMlNs1UScJybXM7K9uYGWxAG7eS3ZYmLUg4gKTFu5U5Own++iGNAZRz49FP78ciR4cezBWE+H37uVRU3IHycoVbcZBNbyShuUaySrra97lURxQ3g7lXVMZh7nzvzpONwH8WtpgaYPNl1cBLLAVAl+pFpX/Z6lMn+GsUqCYT3/+OP7WNEyJXMvMcrbrLErbk5XNmPQtx0lwbhz/nixeFtpxikrGr+/PnoGVavwyA9oCwHIBPjRp0GvFi0ByzdFizZGDdq4iZzbmQnMD49ehoVN5/2Fyywkhm4Eaa4AVyWOOrkJHwGwrDflTLGLUqslUjGNAYqxY0nblzWZF/w5DRsURilHEvYWBCFuMkqbiJjgUzKfo1WSa97VURxA7h7VQNxc2eedBzuQ9xmz/bIqJvmcgCyvyvveAgDf6+J1IuktkrKXDP33GM/FlGv47JKAnLXjMi81Lu3/Xj16vDjVa2Sd99t3cDtFMLJSa688krH8/fee6/kNYZcLoePP/4Y//73v3HwwQdH66FBctAeFLf588OPpyQQSbZKypx30QmsUydrUqVQ3OKySrr6xs+Fju4IKG5Aq3uFuu8yySAorZJRVFTdVknZvheLVoASAGy9tdj9yi8at2wJXiypWscA/YqbqlWyulo+PlpGcYtoHfO6V0UVN6D1XtVA3AA72cnEic6fhxE3ZpWsqbFIm2ftSspyAKrW3SRYJfn5RYS48VbJYjH4Go5qlQzrPxtjAOCEE8LbprZKuu21QeOH7LzEB3uKECtVxQ0A7r0X+M1vwj8jhRAmbtOmTUMmk0GxdZfzvffew3vvvRf4nq5du+Lyyy+P1EGDBCGucgC65Xn+hr75ZuDXv7aivv0guyBsL8lJdMe4AXJ++SRbJbm++a3FRRQ3oHX+pE5O4t5pFyVuYde7atkOQH+NIuoYtxUr7JW/iNoGOBeNlIpbUqySogtZ/rilS4HttvM/VqNV0uteFVXcgNZ7VWYMLhYD46NZ5slZsywr5tKldoxbdWUeUy+x7JG+tStNOQBvqCpugHUtB9m4oypuYfcq//1E1gSqVklRxU1GHZedl/h1l5dtJaj9sGvGPQeIEtUUQpi4XX755W3E7corr8Tuu++OY445xvPY6upqbLXVVvjRj36EAUHplAzShfaQnAQA/vAHwEctBhDNbqi7HAB1HTfKrJKAnCUlaYqbT/vDhlkbh34WrKCd/LYscfMiJCfRTWr5eM4w9YT6epRR9akVN34xKGr5l8mkGiXGTbdVMoriJgL++x1zDLB8uf+xsucl4Fr3uldFFbe2e1U1YY7P9V5XB1x1FXDFFZYVs/s+lcAaYNut87jqquDmScsBJC05iUyMm2y9SPd9qpu4ydyrqtmOgfB7VZbQAurETVZxEyFuMlZM9/0QtDmfckgpbgyMuF1xxRUUfTJIKlStkpSWPVlSKNKfKARCt+LG951CtaKMcQPsRaNsOQDdi3z3MREUt2zWyvY2fbqrOwKKW1uWONXkJJWVYtY0mclXpvQFtVUySYqbyvWeFMUtSgFumSx+Im0DltWUIcxRIXteAs65170qqri13asyxE1iDMtmrYLfqLGOywic90JLvi0xwaKvKzF495ChLI7kJEC43RCwf9dMRm5ukk2CJGOVBKxrplcv/2OprZKUm3IqY5iMrVk2xo0nUyJWSZXwDAbRDYUUQik5SaFQEKrjZtDOQKm4xZWcBAgf2KMsCHXHuPFtz54NfPBB8PFJVdxkSaduWx1g/zaZjPzv6pp8vbLEhSlujixxqslJRM6Lu/2wyZcnhWGgzoapqrjJZpV87LHwHV/ZRQmgrLgtWlKF+fNDvjJljJusei1rlTz/fLHjAPkkFvw4umFDyZ/d96qI4ua4VynVE0BIuWpsBKZOBRrut9s/8thKDBlivd5Wc86NOJKTAHIbIVVVYvdrXFZJ3co4IEfcKEMEVPouc83Iju/dutnnXrfitnKlf9/aGUyufgNxtIfkJED4wB6X4iZrlQSAH/84+PgklQMAnFbJsJ32uKySon0PaN8rS1yY4ubIEkfddxWrpMg55y2Da9aEH0+puMlmlXTbof7xj+DjVXZ7BRW3xkbgiUft73fVDdUYMQLBC/E0WyW7dLHjBMPal01OwhM3fnxthfteFVHcHPcq5SKcP86n7YYGS5mbPh1o2WKfuxyyWLbMen34cOu4EqgqbiK/qyxxY7+rLPmJwyoZhKQRN5m5Iypx0x3jlsnYqpus4hY2940d63zejmu5CVslvfDNN9/glVdewddff40tPhd/JpPBZZddFuVjDJKCuGLcKJOTAOEDO2WMm6ylw70gnTs38PBCc65tN+arxZUYsnPIKYorOQl7f9CCIK7kJKLkJ2TydWeJ81PcPLPEUfedyiopm845STFuffo4n3ss8h0gsko2NFjXzISmZhzPPqqV7LOF+IwZHteManIS3fXzAHmrJP8ZMsRNhEDwhdF9flP+Xq1s8lfcPO9VmUW4SkxRAEFpaADGjeMO5UoG8MSzqck+ztF3meQkqnXWADnFTZTsy8S4RbVKBoHaKimTHApIllVSdi0GWHFuX31lJX/K54PnBRli2KOHpezfcov13BC3UlxwwQW44447kG89OUXXYpslMjHErR1BZlElaxmJMzlJ2ABAmVUyCikMQGMjMHMmsMsjefyk9bVDj6zEqgFWrMaUKT6ZyuIoB8CwebNe4katWglMvnyWuKqrnYpbba117j2zxKn2nWLypSRuScoqCVgrYbayldmt1mSV5BfiTKEFgGY47wvPhXiSygHIWiUBceKm2SrJUF8PjN2/iMqtreuGJz6B96qqFV7EUcG37xp/Gxstouk41Ie4MUycaI1Hbd8hjuQkgLxVUgRx1HED6BU30bWSqEKrmt07CVZJwN5oKRat9oN+L9kxmM/+a4ibEzfffDNuvfVWZDIZ/OhHP8KOO+6IHqKpRg3Si7RmlXQv6mRIp27FLYqV0ec9bAe/qQm4n5vYeSuN5w6+uz2KGDf3zmZQdj7K884fo2KVDJgE6uqAq35XAK62zt+Oo7KY97iVkc73o6gVNyqrZJoVN9n2NStu7oV4NexFkZ+91rEQpywHwOI+CwWx886OoSBumq2SPOoG29fj7ntm8c4sK2t44L1Krbj5KEszZ5ZyrUrX+O5GU5O1idSWnTKu5CQyVklZ1aqjxLiJErckWSVVNrfcxDDg93I4iL6pwpBRIR8jc94//RQ48kjrvJxyCpCi0mVKxG327NnIZrN4/vnnccABB2jukkFiQVnHLc7kJKILWa/3ekFmII2quLkG38hWGurkJBKLKulzk8lY5z6Xo7dKSsR0dutVZWWLC4LMTjhgfz/RyV1m11Rm4cBnX6MgbqqKm0iyA9n2NQf2uxfiQYobg2MhThnjhtb2m5vlLNMqVsl8PjgLoaw1TVBxA+C4Tzt3q8To0eHNSy0GoyhuXNu5nFXnzQ1mxwb8Y/TuussqNVCSvTZJyUlEQBnjRm2VVHHhUChuSbRKCsxNbQ6ih1raHEQ/OjKL1WEOIpl7deNG4MsvrcciiVISBKXkJF988QX2228/Q9o6GuJKTqI7xk1WcYuSVZLaKskNeqpWGkfigyQRN9m0yID4Lj5/jEarZBtkdx5ldsL5Y0QWJQCd4pbN2oVNKaySMmOMbHIS2fZVbEY+14zXQlxEcQOs9+VykNtIUCFurH2ZtlUUNyD4fpIdZ6qr7ePCxhiBOmslKANxW7DAey0ZNr4DVs6HBQtan2Qy9u9PmZxkypTw42UVN8oYtzQrbnFmlSyDFZNPxpPjkvG0oCo8GQ/lnJ0gKBG37t27Y9CgQbr7YpB0qFoly13Hzb2zmybFzb0g5QbHMCuN18TOdvA926dITqKquMnaGctolSz5fJFzI0vc2OJClLipJCcRPS/MLpkkxU2UuKkqbhHJvtdCXERxA7iFOKVVEnAqYkFQUSD49oHgc8/ar6gQX8yycUaGuIleM3FZJbm+rVvn0xUB4gYA69dzT9hvRJmc5OGHw49XVdyKxfDN3DRbJWXKsQDxWiVjVtyYg4gNX7zCzFuDmYOohLyp1s+TrRFXZigRt/333x/vv/++7r4YJB1pLQfA74K63+8FynIAUdQ8oO038LPShMVAANwOvrsP5VbcVFJps36U2ypJrbjJEjeq5CSAk7jpLvGQ9hg3n4WD10JcVHEDWhfiqhsJste7TAyailUy7DNklRnATngQZpWkJm6aFDe/lAF+C1k3mCgOQE1xE7neRccLBtUYNyB8biK0Sua32Nf7kpXVYuXBVBQ3ivjlpBXgBnyJm5eDiN/c8rreSxxEqopbRyBul19+OT7//HP8+c9/1t0fgyQjrQW43YRB906+zHnRZJX0s9KIxEA4rDSqyUlEB2lq4pYUqySl4pbL2Z8vuotPZZUEbOLW0lK6KeJG0rJKUse4+VwzXgtxUcUNaF2Iy+y0qxA30XtJh1Uy6DNk08YDyVHcJIlbLgdsyVntF/P5ttMybJiVNb2kKwKKW22t9f42sLGGMsYtDMWifGZcGTcIgVWSFT2//ir7vEw5pyq86DnQMa2SEYmbl4OIX894bW6VOIgMcfPHunXrcMEFF2DKlCn48Y9/jPvvvx+vvvoqXn/9dc9/Bu0EKotBoPyKmyxxkyUQMotwTVZJPyuN6I5sm5WGuhyATOKANBM3SsVNdjcZoEtOAshlloxLcVNJThJjjJvXQlxUcWtbiFNmrwXitUqKKG4yiymeuAWpwLI1swA5pVOQuDFSMGQI8MHHrcQtl28jBUuWWEkY3BAhbpMmuYYg9htRZpUMg8Z7yRNsjKyuFusXT+58ynawOKumjfZ5EYqzcvdddzmAbNYe73STcfdxMlbJCO37OYjCFDfA5SDqIMRNKSLvgAMOaKvT9vjjj+Pxxx/3PTaTySAnpC0bJB6UO778wkt3cpKdd/Z/vxeSRNx8rJJ+VhoRqyTAWWlkiJtsDASQbqsk5SJfJqskv7Aod3ISwFnSwRFME9C2aPvUipuqVTIi2c9mrQX19OlcVwQVt7aFOGW9SP44Kquk6LmPorjlclb//PqVgBg3vnwLABRa988rUMSyZUVMn57BjBnADTdYX4MfHsI25mpqrFp0JS8CtMlJAL2ZQgE1q6To+OiuL8rBnamZ32Dh71PfTM0AbVbJTMbq/+bN4Rkxk664tbYv4iDy29xiDqLhw2GIWxDGjh2LjOgOp0H7AXU5gEzGGvx1K2777gsccADw6qvWc90LQhnipinGje3guwc7EcXNYaWhtKMAHccqKbvIz2SsCay5mYa4qSQnkU0EAchlCk1CVskyWSUBK/HejBlc7WoBxc2xEKdMgsS3L1NqICmKG4txA6xrUoS4lSGrpJsUAE7lrAIFFFCJpibgvPOAs84C7ryT60qI4jZ7tkea9DiSkwDBxI06wQcbI0XnJR+rZFicldd9WlL0HKC1SgI2caNIrFKG5CR+DiIRxQ3g9g8NcfPHq2wBbNCxQJmcBLAmgnxeP3EDrK3uMWOsx5RWybCBVJNV0msHHxAjbg4rjcyupgqB6IjETXQSqKmhI26UyUn4BWlYjFt7Udw0LDbr6qyFNVu4iyhujoV4XFbJsPMel1VSRXEDLEt2nz7ex5Uxxs2LFABOAlaJPArc87vvBn7/e+DXv7aGCT/iVlNjXSslyg/7I2A1oJNcudspFPzPqco1I7OpyJQnUeLms7HlFWcVRtxKip4D9MStc2fLpk6huJUhOYlIMp4gO3mbg6iDEDelGDeDDgrKcgCAPRFQEDfK3WoVqyRTGMMQUIB7ypTSjeWw5CQlVhoZq6QKgXDvhAeB/11kF+Iii3z2/SiumUWL7Mf9+om1L2phUkkxTmmVpCzxQJ1VUnUM06QS1NcDDz5o/fRBiltNjXWcYyGeFMWNOqtkFKskEHxNRiVuYec94F71IgVAqeLGo6kJWL4cmD/fin3rkrWv2QIqUFtrvT5/vg9pA+zfqFjUWz/PPV8EzR/UipusVdKDPPjFWflZJXk44qyAeBQ3gF5xiyk5iV8yHpFkaw4HkSFuBgYuUFolAXsi1R3jBqgnVhGZ3PnJQpS4iQ7S7s/nBj22g8+DDXQFZFD0uL1LrDTUxE1lkS9TDFNUcVOpESczCfDlUXbdVax9UeKWNKukjOImu4GTVMVN4zVTX28ttHcZWaq4BS7EqWPcRBW3JFoleQIZpBKUSXHzIwWAHeMGOBU1hrvuAgYNshSd3Xeyvluhugbz5mWweLH1eok9kodoPK3sQtZ9nQTNH9Qxbqx90Y0ED1XJL84qTHEDXJmagfZD3CiSk3i0zxxEbrBzn0MlAO+Nbl8HUTsmbkpWSdlMkWPHjlX5GIOkgTodtUchUm1tyyzYZL3+KoqbSnyFx3O2uGPB7mzid9skfa00SYxxk5nARIlblLpWfN/8wBO33XYTa5+SuInaXVRifijtr5WVdqwrdVbJEIKSb2pp2+NdsqIK/XMCl47gNVNXB2C7ZmCu9fyfL1WhS521c+z7GTLKT5QxUmZ8TIpVUrRtlaySGoibHykASq2SbvDJFzIt1rmp6FRjJWMQgXt+4u9fHrLJSdzjStCGK7XiJlvcWzHOKsiu58jTpHKvylolAXGrZEWF2uZWjAW43THAgL0RLRQDDNDGpScIkbJKisBklWxHiEtxo7ZKhvV9xQr7sYjtTSZDIPtuooOo+zgf+9XYsZbPvtN1OSBnE7faWmtHavJkn11ZGcVNJS29SjkAmQmMX2wGxW9Q22s//NDuzw47iLUfF3ELut5VlBlecdNtlWTHtbSE36dRk5P4/KaNjZatrfOtLbi09bUzz63Cm1db99KUKQEKh+LCYbe9q4HuAccK9t3zsylj3HRbJfN5+3eVWUyJbsyVSXHzIwVAOHEDOFLQltlGgtSKKiiUipssKQTENxV5G3wE4uYXZyWa/dVR9DwuxS2ft653v3tFltAC6lZJ0f77XI/uGGCAV9y8v1+Jg0iGML/7LvdBHUBx88sqWSgU8NVXX6GxtTLhd7/7XVSl7IQYBEB14SA6AVPGuMmQTn5rtH//8LYrKqz2W1r0K27u+8znvNfVWZaZ4hM54BOgpmsW8+aE7OC7+5EUq6SK4sbe7/dlqYnb2rXW//37yyUnAWhi3EQXayoLfP431W2VBOx7iSLGLWSBz6dqn+oKjGf1m2bMCEgEIbNgk1X2qa2SrA9sIex3Timtkny/ZdYOovcqdVZJn3vVjxQATqukO8aNoY0UqKiRoo4Q1jZTvcPgHldErZK6FTdNcVx+mZpFsr+WFD1XuVdlNir4eWDzZhdr5BCVuMVklWRwO4j8FDdfB5HoNXP//c44k5TxFJKskh988AEmTJiArl274u9//7vKRxgkEe1FcQtbEC5fbj/2ipj1Qk2NdU5Es0rKkBOv9/sg0/rdKquzYlaaJMa4qShuQPDOo8o1Q2mB5dtvaQleKLcXxU238qM5OYk7VbtfKurA+k2UMRZxKW6sfT9yoMMq6ffbqhB90baBsilufqQACFfcHKSAjUMySqes4ia6iFVV3FSIm+62PeyAfpmaRaySJUXP41LcAGt+CCNuqup1jIobA+8gqrk2B+QlHESi5/2005zPU0bcSJKT7LrrrnjiiSfwxhtv4MYbb6T4CINyII5yAED5k5Pws6sMcQNoFvg8RM+77DkH5IibqPLDHyeaOp5iwaYywfjU+vFEFOIGBC+oKJOTUCtuKsq7aKyVRsVNtX5Tq7nEhoriVlEhHv/HQEHcRMd3aqskg+o4oNsqKaOe+NyrfskXgHDi5iAFlIpbkombqOKmIc4qKFOzcNFz0b4Xi/Z6Jwpx8wO14hZlfA9onzmIth5s9b9X/yrMm4fwZDwy96pfn1IAsqyS22yzDfbee2/cf//9VB9hEDeoywHElZwkrO+84iZilQTsgVR3jJsbugOdVWrlAOIEghWaBsLPjUqQtuiCTeWakSFuKn0XXVBRJiehVtxUxgEVxS1icpIo9ZscoEyoEFdWSb5vXqC0Sqrcp0ByYtz4e83Vfy9SAASXAyghBbLZE93HihA30d/UfY0EbbiqWOpE5yaNmRO9MjXzZNqLuHkWPRe9ZlQ3KtxWST/EaZXUpLjxYA6i6s6Wg0hXcqgSGOJmo3///li4cKHSe+fOnYvbb78dEyZMwKhRo5DNZpHJZHD11VdH6tOLL76Iww8/HP369UPnzp2xww474NJLL8WGsMQJBh3HKpk0xa2hofT9Ye0TKG7FzTaBmN/YSajmNQBxUqvi9RddsFETt6iKmyhx013HLU7FTVb5iUlx80vVLlL8NVL9pijELSmKmwxxE2k/iYob/x2DsowAzt/UtZngRQqA4HIAJaQgjuQkotejTIwbZVZfzbXK+FqLgL/i5llrkUFUHVe93ikVN9XSSSpqZ1j7slZPQ9yiobm5GW+99Ra68LuzErjzzjtx7rnn4r777sNHH32EvMyP4INbbrkFhxxyCJ577jnsvPPOOOqoo7B27Vpcc8012GuvvbCCzyZoUArqNLFJSU7CFLeaGmcB6SBQErdTTgF69rQe67ZKCsQRNDZataXee9OaIArIYMQuVRgyxHq9xC7mBuW5UbFKUhI3GdIpStxUlE7K5CRxZJUEaLJK8t+xtX2R+k1+Wc201G9SuVcprOqi9xKlVVJVcRPtu0o5gFGj7MdvvBF8bIiV0U0KAG+rpCcpyOftMZoyOQmFVTIqcdNtwxSIs2orel7lJG5CRc+N4qa3fYoSEjw6OnHbuHEj3n77bZxwwglobGzEgQceqNTOLrvsgl/96ldoaGjAp59+ivHjx0fq15w5c3DhhReisrISf/vb3/Daa6/hL3/5C7744gv84Ac/wNy5c3HmmWdG+ox2D9XCu0lQ3GTi8xhx699f3IJFHeMmW69Mk+LW0GDVD5o+HajMWeRlCzoByLRl2Rs+3CkKliAu4tYeFbdi0enHS0JykjiySrrf6wUV9YSvZ9TaPln9prCFg6y9Nk6rZNC5jyurJLXiJtr+8OHA4MHW4zfeiKxa8aSgttZJ3Gr75v1JgSphNoqbd9tsbg+JsxrzHbvvH3xUKVb0XPReVU3Gk+YYN5n2jeLmCaWskpUCF1ixWESvXr2UrY1nnHGG43mFakxQK6699loUi0X87Gc/w2GHHdb2epcuXTB79mxsu+22ePzxx/HZZ59hB9E6TB0NlZXWhNHURLPTTpmcRCY+j63EmMolAjaRNjcH1xOLStxEF4MaiJs7y14nWBPEZjjteoFZ9gBa4tberZJz5jglnSQQtzRnlQSsc9PU1HZNiNRvCiJusdVvitMqKaq4URI3VcVNt1UykwHGjAH+7/+sjYqFC4ERI7yPFUwewkjBFVcAm06sAJ6yXn/j9QKyO/m8SZUwJyE5SZSNXECc/MgSlKam8DirvN3+8B2zYnIHteImOjfJKlbuY8uQVdKzfaO4OaDEhorFou+/bDaLrbfeGmeccQbeffddjBw5UnefpdHc3Iy//e1vAIBTTjml5O9bb701xowZAwB48sknY+1b6sB222WSEiRBceN32IIGo2LRth6IxhMB4pOjanISNiDFlJzEK8teZ1jnxVLcSuGZZQ/oGFZJquQkb7/t36cgxGWVTFtWSb4frvpNJYcJxLiV1G9KilVSxRIoSn7iskpSbOCoXjM8Ow8aZyTJTzYL9Ohtf89sJuCaUSXMotlr40pOort+noriBtjfU1RVymT0J7RJu1WSWnGLEvrRjombkuJWCFtYJwzz5s3DptYFxl577eV5zF577YV//etfmDNnjvLnbAwjM4LHJBpduwKrVqWPuAHWzdncHL4oYZ8fhbj5LbCTZpX0iSPwyrLHFDc/4say7F11lesP7NxQqFZJsEoWi/a5003cevVyPhddVFEqbhUV1rnZsiV9WSWBEmIoUr/JL8YtUv2mKFZJUeKmSn7KlVUyiYobIP67qqTrl20bULdK6lTc4rRK6o5xA+zzIqoqyVyPKsRNpn2RualYtNtPo+Km0n9V4iZz7hMA0qySScGCVqtRr1690N2nUGFdq2F5gSPSXA7dunUL/TeYeeXTCkrFTTQ5iUrdFv7YoMGI372SIW78QBo0OVJbJTVklfTLshdG3ACPLHuAvcjI5YJ/W8rFJiVx47+TanISvwnM/XvvuqtY25R13AD73gja7eXbz2TEyRVPrIJ28VWSkwCe44BXqvYwq6Rn/SaZ8hpRrJIURX1VFDfKcgBJKcDtbj/o3KgoHKKLTUqrZLGYXqukKnFjx+pWfQD6rJIiipvqeeHnPYqswaLEjTIu0o2UKW4dgritb41Z6soH1bvQrTV74LqwdL8dHTxxE7VGyCQOAGhi3AD75hQlbjIZUUWtkqrETcQqWSxqiXHzy7LnF+PGoyTLHiB+btJax0118hU5L3y/b75Za5FTAOp9Z+3r3khwHxvUfpQYN8Bxbr1StYcRt0j1m/i/U1olKTZB0hzjpmIhBeRtezILQdGSLKrnXWShrBInFqfiJkKWARqrZFyKm+4YN9Xzks3aa5+1a4OPjZooTsS6K9N2ByFukfTBlStX4q677sIrr7yCr7/+GgAwZMgQHHTQQTjjjDPQt29fLZ1MC0Rqwa1bty7dqhsjboVCsCWQX4SL7rRTWyVF7Iaqiht1jJtI31WUH49dTa+9i0rkUNUa8xOkuAGuLHtA6bnxO69RF/miC7a0EjeZjQRKqyQgb92NEq/k93tpinFjYIl1Jk60fg6/GLeaGou0hdZvKqdVknIThL9WVWPc/K7JOGPcZNoXJRGUVknV8y5yblQW+e55WjNxy/cb0JZvc9Ujz6PH98Z6vzUu4qZ6L6WNuAFWYrZNm8LrFsaluJnkJA4oK27PP/88RowYgUsvvRQvvPACPvnkE3zyySd44YUX8Nvf/hYjR47E888/r7OvymD2yKD4Mka6evilGBNA165dhf6lGnz/g+ySKrtUccS4AcELWd4aQEHcKK2SUe0orefd6xZgahsQTtxK3MiU5yYJVkkd9i6/31V1YqdMTgKIE7eolr333/c/Lipx8+g7n6q9a7Uzxk1r/Sb+75RWSZXxEUiG4paUAtzu9v3OvYrdEFCLcdN93vnfW7TtH/zA+TzIKSOxccbqho6eUY+WVm1h4533+dcN7eiKm26rJGBn1KZQ3IxVMjKUiNv8+fNx/PHHY/Xq1Rg1ahRuueUWPP3003j66adx6623YrfddsOqVatw/PHHY/78+br7LI1tttkGALBmzZo226Qbja2jATvWwAeixE1l4UBZgBsQy1anQ3ETUWcorJJRM3e1nnevLHuixK0kyx4gRtxUd8LTbJUU2cVXvdY9Ck17Ii7iptr3s87yPy5qcpLlyz0XmyxV+9h97fM258MqsfpNSSsHkOYYN1XlnSLGTfZeVVXcKKySssRNdBF7993O5xoUN75u6Acrh+Bj7AwAGIBl/nVDqZOTRB3DKOq4iWyyRCFubPd2/XqxuHRAv+KmWp/Pq29h6AjE7brrrsOmTZswbdo0vPfeezjvvPNw5JFH4sgjj8S5556Ld999F7/73e+wadMmXH/99br7LI2RI0eiS6vN6G13eu1WsNdHjx4dW79SiTQrbrLJSZIU4xaj4say7PHgiVsT/G06JVn2ALHELdQ77SrnJpu1z48ocdMdy6XadiYjpjBHPe+iWcdk2v7kE/txUJZfHerJZZf5HpbJ2d9t+x2rxE6/ilUybTFuOqyS7VFxU10oiybhoDzv/AJatO9DhwKnnWY/j0jcWN1Q/muyeOoaNKMC1rlhdUPbyJuO5CQi8foy4y+/dvARCwBEjzEGaIgbU9yKRSAoBIgyxs0obr5QIm4vvfQSRo4cicsvv9z3mMsuuwwjR47Eiy++qNw5XaiursYRRxwBAHjooYdK/v7VV1/h3//+NwDguOOOi7VvqUMcxC0pyUl0WyVVVSXASdz8zk+Uoueu/rmz7PGJGprhvdvrmWWP/YFBN3GjtEpmMjbpTILiJnvNiFiBkmiV9CwG6AHVrJK8OueuAcCDfbdMJpKC7YuOllVSJNZKh+JGXQ5AhPxQlwNIguIGiCdWCfldveqGAs5EWDVwzh1tdUOjKm582nkvqKxlBg60H3/7rf9xcRE32XT3fLxEkF1Spf9833VnCzXEzR/ffvutkDI1evRofBt00WrGHXfcgR122AGnnnpqyd8uvvhiZDIZ3HPPPXjuuefaXt+0aRMmTpyIfD6PE044ATvssENs/U0l0qy4iVglVWPcRBYlqosGQGxA0phy2Z1lj0/U4FfTyjPLHkBL3CgVN4CWuFEqbkA8ihuFVfKAA8SOU72f1qwRO46dNwqLlErtP2qrpGiCjyTGuIn2XTWrJKXiRl3HTcRGWmbi5lU3FHDa8jvDGcvF6oZGJm6AmPIjcz0OGmQ/XrLE/zhK4hZl7mCKGxBM3FSdLAy6N1tlN0MZOgJx69q1K5Z55Qt3YdmyZcrJON59913su+++bf/+9re/AQBmzpzpeH0Jd1OsWLECc+fOxaJFi0raGz16NG666Sbk83kcfvjhOPDAA3HyySdj++23b1MQ//SnPyn1tUNBlrjJDEZJs0rqJm6qgzQgtnDQZJVkqK8HHnzQWiMEpUavqbGO803YIJs9MW3ETbXvaVbcRDZB+L/LtD1jhv04KAOvKnFbtUrsOMpEEyoZYKmtkqILKnYPV1bqv1epywHoyCopQtxkCK0o+aEsfE7d94DxN5fzrhsKOBU33q7PcNddQH6LorIkWutSZRO6Z0977qAgbiJ9j7Le4BW3oMySKp+hMmfrVNy85kOZGOkEQJKGW9h9993x+uuv48MPP8SoUaM8j/nggw/w2muvYf/991fq2Lp16/Df//635PXFixdj8eLFbc+bguKJXDj//PMxatQo3HTTTfjf//6HjRs3YujQobjkkktwySWX+BbnNuBAqbhRJyeRLQcgE+NGuZvs1b7XjmvUHSqP815fD4wdCzx1VQ5onVwZcauttWLaJk8OSdggq7hRZMJLouImMsmkQXErFv0nPhUCseeeVoabBQtoEk2EFQ1noCRuKoScuhyArOIms8AH5JOTUJBOygLcKnFiAL1VkqocAOC870XrurrGMb+6oUCw4gZYdUNXLGlBLXtBJcYNENvckl3LDBwILFwobpXUPe9FWW9QKm7Mep7PB48zKlZPkXjRsCyiKYCS4jZp0iS0tLTg4IMPxh//+EdH/bINGzbgjjvuwCGHHIJ8Po/JnkEv4TjggANQLBZD//FZIKdNm4ZisYhXX33Vt92DDz4Y//jHP7By5Ups2bIF8+bNwzXXXGNImyjSHOPGBq+gODFVxY2auFGpMwI7pnV1wC+m2IPo8SdlMW8exLLsAR3LKqlbJYiiuMVB3ACxrGMUpFM1q6Qo2LmnWIRHjQ2hyIQnSn4oiVucipvuAtxpsEomMMYtSNAJU9wAoGlDTFZJ2TGM2SVXrvRvPy6rJBVxo7Ta85Z2mTJd/DrPCx2VuP3kJz/B+PHjsXz5cpxzzjno2bMnBgwYgAEDBqBnz54477zzsHz5cowfPx4nn3yy7j4blBNpjnETWWyqxriJLHqixLiVwSrp13b/wVUYPlzi1MeVnCQJxE234qbabyCe5CSA2HlXVZiD2lZNTiIKyhg3FYIiSqz49inuJXYPy5AHgHajQqUAN6XiRlEOgNIqqaoWaiBuQWvyMMUNADpnE07cAH/VLanETdQqSel+4i3tffrIt+03/kq49JIK5dnuvvvuwx//+EcMGzYMxWIRK1aswIoVK1AsFrHtttvizjvvxL333quxqwaJAD9Z67YXUBM3kUVVUhU3qt1q0VTUUTJUidS400EgKK2SuVx5UphHuWbiUtxE2qfoe5SNEBGoWCVF7ycVgiJKTvjPpvhNjeLmfQx1OYB2mlXSq24oQ5jiVlsL9OlBSNyKRfXNJ/5LLV/ufYyOjQpq4kZRzkAk34AqcesAiptSjBvDmWeeiTPPPBNff/01vv76awDAkCFDMGTIEC2dM0ggZGM4qGPcdCscqjFu1MlJZK2SmmLc2hClJkyarZLuIHCv91JejzoUN2riJnLeqa2SgovwXE5i0lMhboAdv5EEq2RSY9z8+k8d46Yjq2S5ygHwljVKqyR1chLX75rNWrHSXpU5eOLmpbhNmgRUFhSSWLiPFXHJqI6/AG0WVQrippKlVbdVkiduffuKt90BiJuWbcohQ4Zgn332wT777GNIW3sH5YJNVnGrqNC/a5oGxU3nIp+PDYpYQNUXIsSNV+J0B967/5aUIPC4ygEEFZilzuapqrix9gsF/+tSgrg1NgJTpwJDhgB/w+Ftr+dQialTfUrHqcS4AeELB/ffRH9XauImm1WSwipJvZEQV1ZJ3TFuhQJw3332cz4GKQxxKW6KyUmA0rqhDLxV0q24tdUNpSwHEGX8lU0+lSTiJprBlv0tk5Fbi4lkJV650n5sFDcHhM/0W2+9haeffhrz588PPXbevHl4+umn8fbbb0fqnEECIau46R6M+LZlB1KRCUwxxi2fsdte+nXOu/kkKm6AGGGmVty4TLGBKeDdoLZKUiqp1OUARAqdUi+Uo1olg9oXTE7S0AAMH27t6C9bBkzBzLa/rUIfTJ9u/b2hwfVGlRg3QIy4RbVKpl1x0z2GUVsly61affop8OWX1uNBgwCZbN0iY6SOrJIRNv7cdUMZgqySbXVDdRA3kTI1HZW4iWxAqa7FKGLcwsZf92/95JPibScEQiPXihUr8IMf/ABnnXUWevXqFXp87969cfbZZ+OHP/wh1ogWOzVIB0QmsELB3n2TuaH5xCc8gXJDlbiJDEa88tOpk/cxHNhO/rkX2H258vIWDBmC0p18XclJqFJpixIfCuLGn6jQNJUcqK2SIoseHXE5FIqbyI4y/3vIKCgii/xiMXpWSSBSsp+GBmDcOOfX/Bpb4XNsBwCohNW/pibrOAd5i2KVBPRbJWVS3rPxV7fiVizGF+OWpOQksvWhdCtuvBPkmGP0uxLKmJyEga8byuCVnKSkbqgqcevWzX7sF8cVhbjJju9JIm5JSD4VR4zbhRcCxx4r3nZCIDRyPfjgg9iwYQN+97vfoX///qHH9+/fH1deeSXWrFmDBx98MHInDRIEyrgcyoyVgPzkG7KQ5XfyV623+5JFDsuWoXQnP4lWScD+nkHZlqIkJ+EJsN9nLFpkP5Yhbmm2SsapuPn1nb/P+PsvDKIbOAwUC4eQrJKNjcDEid5vzcPqTwWci82JE7k9hLiIm4ytWWSThbo8BTvvslZJkXu1vShuuokb/zqFRbWMyUl41NcD8+dbm561tU7FbUD3LZg61fp7G2mL0neRlPdRxl+juPlDZByLwyopu/mUEAiNXH//+9/RtWtXnHbaacINjx8/Ht26dcOzzz6r3DmDBIKSQCSBuAlOAu6dfFaUGrCIG4NjJ5/aKqm6YBMhblEUN5EFmw7FjcIqGYfSCdDGuAHlIW66guMVFbeZMwNy4bQSN6a4MTQ1AbNmQd01ANBZJQHaTKEi5zzKoieuGDeKTKSym366k5NEIRApIm6ANfxfdZXlnr/2ZnvT77orNnvXDdVB3PxS3ndUq6TI3ASoK24iMW5McctmnepoGGSIm+wmSEIgNHJ99NFH+M53voMqiZuiqqoK++yzDz788EPlzhkkEJQEgs/i+P/bO/MwK4pz/3/PzDALw74N27AIKMYQlU2NoETUxCUu1+3qoGK4QGKIexQVfhoR45Yookb0kqgRrop7glEUNYq4sRhjjIJxkAER2YZlgFn790dPTdep03tV9ek+836ex8czZ6nT9Omuqm9933pfHcLNT2fkY/C1W8lv4HLV8cKNMWkSsGmD5tAF2ZT3brXKZBw3P9dMXEMlk+y4+QmV1CncZCY9Qfe4CZPwhgbgkUecm3cSboD5uYZ9Ens6dYVK8seSrUyhUQo3HY6bzqySOsWPqpA9nfvz3JKThPhdCwqAXgdYjlt+vcP4pNNxizI5SZD28/Ot/YXZTE6ic4/bjh3m/7t0cd3DnEGQPW657Lht374dPXv2DNx4WVkZtvF2J5F84hQqGXZCxbch4mNiYreS7yXcamuBp59UFDrmdN4rK+3f74Vux83PsX/zjfn/wkLARzi27bHo3uOmMzlJkh033Su+fhw3YWCvrDQTkTjhJtw2bwbWrY1QuIW5HrPluIXdEwlE517HYY+basdNph/QKTp1ZyXmw+z32RfgjixUUseCpYpQ+GyGSurc48YWkoNk9+aPxU9UVdDfNCb46rmKiopQ4zaRdmDv3r0oSqgVSTigc6Xdr3BjN56Ozshj5dFpJZ8Xbm1g35E+tyjkai/gPQg0NDTnRm4mTnvc/AxgfCcdZHUtyqySOpOTxMFxCxKOEqXjFiJU0inyieEm3ACgplqzcJMNlfTrKrUWxy1McpIklQPQHSoZg+QktvCTdqeIkCSHSvLZkOIk3II62Doct7BJkLz6X5lF6Jjga/bYs2dPfPLJJ4Eb/+STT0I5dUSM0TnI+BVubOUtSIFs8VhCZgZzWsn3ctwAYMc2jQ4Ec6zCtB9UuOlw3GQHACDZoZKq3Wsg+3vcZNwZv1krGYJw69DBvXkv4da+RMGELWmhknHY46bTcTMM4O23rb/jWIDbSfzE1XHTLdx0Om58J5GN5CTV1cDixeHbzwXHza1OZxTCLZcdtx/+8IdYt24dli9f7rvhd999F5WVlfjhD38Y+uCIGBJVchKncgCGAezZk/l+PwQRbnl5tp2R08KcU3KStK+HREfKD2Bue9FaDiKE41Zf72+PhY4QVZ31vsTX4uKK6XQgAL3CLWiKcZmwuhCO28CBQI8ezs1bWSUNAOl7c8rKgH69Yhoq6Ue46bwedYdKyuz5YTidm7ffBhYutP5WHSqpwnHT4bwnWbhF5bjpCJX0mitt2ZL+d5yEm9/kJCrKvXhdk6qFm8yYGhN89VwVFRUwDANTpkzBTqcLnKO6uhpTpkxBKpXC+eefL32QRIwIOsioDpWsrbUGiKDCLcgA5tBZOK3k+3HcpIQb7y7arTyKnbfT6qQdftL1y4RKBpmw6dgLJX5vUh23pCUnkdkELhkqWVAATJ7s3DwTbkCm6zZ5MlBg5EhyEtXXelwdt7w86xpwavuiizI/4xedCT50hmOL7/dTgFtHcpKoHLcgbWc7OYm4JcDH3DoNdt049e1RJCeRddyc2ufrRaruf1uL43b88cdj/Pjx+OyzzzBixAi89NJLMGxuUsMw8OKLL2LkyJH4/PPPMW7cOJx44onKD5rIIjrDu/xklQw70QSCOW4OnYXTSr4f4da9i0QBbn7l0Y9w4+uieeGnQLbu5CQqhFvSkpMEOS/i+/2Q7VBJVY5biKySADB1qvPXOgm3oqLmraIyocFJLQfgZ4KvSrjpEChe+//EibJOxy3IsftZYJFZwPEjauPquAVdVAxagJsdfzb2uInPffVVsPbjECqpa4sD/1xYx03H3uuY4Puon3zySRx99NFYs2YNzjzzTHTq1AnDhw9Hj+ZZ7HfffYdVq1ahuroahmFg8ODBeOqpp7QdOJElsp2cJGwyBSCYcHPoLNhK/uzZ6c/7SU5y5mmNwKM2x+IHL+EmDvhff+2/bT/CTXdyEhWhknFw3MKGd+nMOgZ4C7dUKlj2rrg5bjYJbcrLgfnzzTqKIk7Cbf785moUn0e4x011qGTYCZtXHwPIhUryk3xdIYG1tXqEm85xL6hwCzPZLCgw205aVkk//YDMsXfoYO41y0ZWSfG5Sy4J1n4cQiV1OW4yC0TkuFl07doVH374ISZMmIC8vDzs2LEDS5cuxZNPPoknn3wSS5cuxY4dO5BKpVBRUYEPP/wQ3bp103nsRDbIdnIS3Y6bj7hqu5V8L8etqAg4/VSJjjSo43bttf7b5v8xTvsIWqvj5mficM891uM4OW5BQiXbtg2fzVOH46agADcAVFQATzyR+fWicCsqMt9XUWHznUkOlQzSdvv21uPdu+3fIzOhSqW8s8mpmGw6nRvxGolL6Q7+POpwIvnPJC2rJH8sTn2YzL3K9j5kIzkJ/1y/fsDo0cHaj8px05lV0ql9mX6GubSGYZ8rIQeEW6Cj7tChAx5//HH85je/wV//+lesWLECW5o3WHbv3h0jRozAqaeeigMOOEDLwRIxwM9kkx/0+cmAF36EG0tMIr7fD0Emmy4DgN1KvldykvnzgbJuEQm3Ll2A447z37buPW65nJxk6VLg/fetv8NOBrNdDkDmXvJT80vHfiiXrJI8FRXAMccADz9slvLYvDlduE2/phEXXSbUfY97qKRhmO3bfVaFcOP7WR6ZCRVgHn9Dg54wJi9xEqXjFuS86w6VBLzPTZShkkHOux9RK7OoyLZn+FmwVB0qybd9yinBFs6AZDtuXgtzYfdcAsCAAcCyZebjykrgkEPSX29two0xcOBA/OpXv1J9LEQS8DPZ3L7dety5s/+24+C4+UxBy1bmJ01qjs5xcNyKikzRVlEB4E2JAty8cLNbReI7up/9LNjgmCt73HRk2vMaYP761/S/4+S4+fldw2ZoTYjjxigvB2bNAm66yRzLe1ySD7xrvnbj9Eagq/CBKB23sAsJ9fVqhVthodl+Q4Oz4yYTKglk13HTvcdNRVIYP4kmdDhuKpKT+BFuOvbpytyrXgk+otrjFkaMtxbHLehvOmiQ9fjLL3NSuAXMkEC0evwMYLxw69LFf9t+ygHERLgBphhbuxaYMQPo1DV9j1tZmfn82rVc+BX/nTqTkwTt6ILucdNRDkBXrLzdayodN/E6iavj5vS7qnDc4rDHzef9VFAADBkCdOzi0ReocJh1hkoC6sVPKmW5bj5CJas2F2LtWvfbLoMgwi3oeWd9pJN7Il4jih23pjrr+Q2b8v2fl1xx3PxklZQRbl6hkvn5wV0rdu51Z/P0Em5hBAQ7N0610HQnJ2lqsn7zOO1xGzzYevzll5mvk3AjWh1+Jmw7dliPwwq3bCUnYR24z8GLreQv/9A6Lz89qQEbNpjPp4VfyXSkUQk3HSEjOssB6A6V9BIQousQNjmJjnIA/LHZTXqamqxrKei9FGUdNz9ZJYNO2IKEMcksVPipi6jSARbbDnqvugi3qirgmYXWb3r7PYU48ECgTx9zkaqqykf7XgJC5npn44fT2KHJcauqMv/9f3jAev6/Lyzwf178CDdVk/xsJycJswjCficvxy3ofcp/pqHBXnhGFSoZRox7hZHqDpXUWRRelXD7z38yXyfhRrQ6dDpufsoB6NzjxtcOCdhZFBRbbbcvbrDvD3QKNxWbeQH9jlscQiXDCje7a0YUJKoLHvPnJag48XJSeZHO33t+SKjj1oLXNRnV9Q7ozXIa9H5iAl7Y47ZggelUvvKS9ZvWwry+vvvOzLI7ZIj5Pld0Om7sGt67134SrmGPGzsvs2cDdXut5xuR7/+8BN3HJeO4+SnzoHOPm4zo9HLcwgg3r3OfhFBJQL1w0x0NolO4DRxoPbZbNSHhRrQ6/KzE6BRuOkMlGxutAV9moqlj/0acQiV1Om4ybesQbl7tqwqV9HLcwgzsQYRbkFIAQLR73CSTk9gSJ+Gm2nGT6WeY41ZT0zIRX7DATMRUWwsUwvpN65B+7dfWmu9zFSk6HTc2fhiG/fWuOKskf16A9LIS/J5nz/MSVTkAsR2eqJKThDl2r3BGFY6bU/uqskranXdVLiqQPMfN69hlhBs/ltndTyTciFaHzuQkeXnWTZcN4SaTyShoaFfS9rjpTE5iGOFj5f1MegB9oZIywk2noAWCCTcdoYyqskpm23FTvdIO6A2VVCHcAGDPHlRVmQmYGG7CjTFpkkt4YBSOG2C/R1qh4yaeFyA9KRWftZTheF4oOYk7Oh03r3Mf51DJXHbcZOZiQcQ4CTeiVeBnJSbsHjfAe5+Czj1uMpmM/Ew0k+C4Oe1x05mcROa85OVZx++U0Eb83jgmJ8m248aHy/ohYVklM/CacKra46YzVNIpgYiKUEkA2LMH8+YJiSSRGSopUltrll6wJQrHDVAv3ITfVDwvgLPjxnA8L60hOYnMApROxy3IPjGdoZJxc9x09mHi+1VnlfSai5FwI1odQR23Tp2Cte8l3FTtcfMSbjoct7gKNz973FQlJ9ER68/Ojd15YehyOGTCr4KEo8hMeAC9wi1bddxyZY9b2Otx9Gj7ybIix61hx2488kj6y34cN8Csl2f7s3nttZKZDHolt1LkuDU1NGacF8DbcQMczkscCnDHOVTSK+19VKGSrclx8zM2xXWPGwk3ghAIkpykUyf1mcFUhUrqtOd1CDd+NTnbe9zi5LgBwYRb0CQfXr+r+FzYrJKqyyQA3lklc8lxU51VUrdwU7GQsH8/sHWre9ths0oC+OaL3fjuu/SX/Qq3zZvNenkZZNNxkykHwB3L3l0NGecF8HbcAIfzEgfHLazD4TOrpNH8vfsbC4KXkGDnJ9dCJeOcnIS/N3TMZ7zGVRnhlkq5LxCRcCNaHXl5VmftdEMzcRU0lBHwzgwmUwBWZ6ikn0l4k0QB7jZtrM+ozioZdI9b3Bw3ds34EW6qk5+Iv3WQ4+fvJR2Om85QST8LFbmSVTLoudeZ3l18r51glekLOOG2b8uejJf9hEoybCM5g+xxi1OoJHfeG2vt71U/jhtgc16iLgdgN65qctxYqYS9282+5quqNsFLSOh03IJklVTtWsU5VJI/Jj+LT6rHVZk+DHAvf0HCjWiVeBWYlelImYtmGPb7rXSuhMuu8rD2dawmA+7OUpz3uHmt3qk6L2573MIKoCChNED4vQS6Hbek7XHz077OrJIye9z8LISoCJUE1E96uMW29shUXn4dNyA9z0kLQRw31clJRELuRy1I2R8777i5CbeM88JHAeh23AB7Z4xdR3l5wRefHNplpRLuml2LUsNczN0Oc897oBIS2UxOonMxV2UdN7tjlxVuXmPTFVeEb19nchLAXeyTcCNaJV4rMSqEG2AfLilzQ+vMKgl479+QET+APuGme48b/xndoZJOG+RVOG5+QiXDDmBeq5pxc9z441m71v49ueK46c7SGnZfpNgOQ0Ywc/1vWfu96NEj/WW/wq2sLL2cUgvsXBqGvYDQ6bjJhEpy572ksDHjvADpjptTqKTjefEKB1TV/4ptMcKO2Q7JSfhSCV2xreX5beia9nFfJSSyWQ5A5l7SnZzEaw+zbsft+eetx//4R7i2AfWhknz7JNwIohmvlZiohJtMtiHVmYz49nWsJgP6hJufUB1Z0ek2CKgSbnwBdRH2vGrHTfz3hBUQOsoBRJWc5LHHgA0bMt8T56yS2RZuYSdt4r2vetLD/Vvzm+oxeXL6y35DJSdPdvhnBVkIiVNyEu56yWtsyDgvgD/HzfG8eIkTVZNwp+9QIdya70exVIKbcGO4lpBwC/Pka6/K9pF250Xn1gxZx81rD7Mqx81JuPEMHhysbd1zMXLcCELAb6hkmJtCp3DTGSrJH4/qzF0MNrlWLdz8TJJlj91NoKgSboDzPjcmUlQXmhafc6slZ4fXvZSEUEkAePbZzPdEmVVSZ3KSoP2YzlDJnTvT/1Yt3IRFnKlT0/85fhy3oiJgyhSH9r1+17jucROuF/G8AN6Om+t5ybbjxr43aN9uk5xELJXgR7i5lpBwE1ey45JXqKRO4SY77nn1M7pDJfmxdNq0YG3rTE7Ct0/CjSCa8ZtaOG6Om27hpivlsvgZnRkxvSYOqVRwdwOIxnEDnPe2MJEik4TDzx43p4m6E36TNciGSqrOKike77/+lfkemUlPth23uO5x27Ur/W+Njhvq61FeDsyfzzXnQ7jNnw+Ulzu0H0S4qd7jpiirJBoaMs4L4O24uZ4Xr31cqsoBAPpCJZua0NCAjFIJfoQb4FJCwm18kh1Ts+m4yf6muoWbV6gkE+0HHQSceGK4tgG9yUlIuBFEM24uQVOTFboQpiPlB9+ohZuqPW66QiXdOlKZ0AI/dYRkxDjg33ELc168SiXwzwd13HQLt7g4bkEnJYcdlv73Bx9kvkeVgMhGcpIo97gFueb9OG6K9xZWVABPPGH+s/hQSVG4FRWZ76uocGk/iIMdJ8fNJgMsf14AZ8fN13kJ4rjJhkq6Cbeg14sg3CorkVEqwa9wcywh4dYHyyywiJ+J2nFTGSqp03FzGpvYd9pmIfIgquQklFWSIJpxExCyK2C842Y3+CZhj1s2wg11h0qySX7QwYsRleNmJ9z4DKWqsyeK/564Om6qQyW7dUt32ewSlMhMevwU+NbpuKlaCNEdKql6tdphv2tFhfkTf3+gtZhWA7OvLiszU7uvXeshToDsOm6icAubSIg7bnZeZswwk5YwGpEf7Lx4CTfZxS3+/nYbVyWTk4iGMOBfuAEOJSSiCpX0cNz+XVkUrAad7nIAUTluTuKHtR9mTqA7OUmOO27JPGoiu+gSEIB3qCR/Q4dNvQ7oDZX85htzBBJXolQl+MiGcGO/RdCi54xs7nGrr7fcGd2hksOGBWtfp+OmMzkJAHzve8DhhwOrV2sP2bNFp3Dbw9UwC7qirDNU8txz0zO4RXjey8sB9NgNNLsib31YivadzCyJvuc/QRy3oL+pzuQkgPk71ddnXC/l5cCsWYDxdgPwtvncx/8swIChAc6LV3ISWXemUyfrcXV15utMzPHi1w+C49ahQ+ZbDsBXLY+9hJvtrZalUMmqKmDTO7UY3fz3BRML8TGAHj3MJDNTp7qEvgLe5QCSssfNrn/kvy/M2EFZJaUgx40IjtsNrVu48SuDOhMShOks1q+3Hs+alfm6yg3mYirtuAu3KMoBAPbCjX9OZ3KS//ovYPjwcO3bXY98yvQw10t+vnU+7QZ22cEXsCZudqndVe1x85OcRLVw460Du9moGzpDJfnaSWI7DJ3ZPJmgbdsWw0flY8iQgJeml5PKfgu+tplfvPa6ihkJg14zHu54qsm6jgYflB/svOhOTtK5s/VYFG6GEb5/F4TbwIFIK5XQC99gMv635W834eZZKgGILDkJq0H3r9WZWVR916DLlVBJr3DsMI5bkOQklFUyAxJuRHD8Oj9hbopu3azH77zj3H4YYaUzPApIn0j+8Y+Zr6sKlQQyz72q5CS6hVs2kpPIOEtBHLcbbwzWNqDXiQSsQVWH4wZYx2Un3GRWTYOGSqpexNEt3PjrNEhf0LYtcO211t+as0pmwGLZwuxrAfwvhOiYyIrfF1bse7nj/Hv9wicnsatFKdsX8I7bjh3pr/H1L7kC7L4QskoWFCCtVMIxzIJsZi2GODblWCpBp+Nm07/zNejcyl941qDL5eQkMvujgfR+hm+LoSpUsqkpc2wi4Ua0SnQ6bj/+MdCxo/n4z39OD1ni25cJNQT02PMHHWQ9PuSQzNdVhUoC7sJNdR23xkarc9URKsk7q7LCbc6czNdVCTcdG53dBkfZVU3+c6qzSjLY5NcwMiecul3gJDtun3xiPR7iPJm1RWc/5tdxCzrBZ/jd4xamH+CvYR3CzWsPMzv2MJl32e9kGN7ujGrHjR9jJR03AGmlEvgspLdgJuocav+5lkpwuyYVh0qKNej443eqW+hYgy5XHDcdYxO/8GO3MVKVcAPcE9qEXRDNMiTciOC4TTZlszx16GCllq2vB7ZuTX9dRrjpDpXkRQMTnzwqQyXF45dxC70ma7w7oNpx27sXOPJI6+8wHSm/L+OVV8w9hjyqQiW9CnDHLRyF/5wux81m4tYCO195eeEnyUB2skrySUCCihSvCZVhAKtWmY979QJ69gzWflTCLZuOm24HAgh+zbD2vfahyRaC9iqmHKZ9N8eNF25Br3Wb+58vlcBn2qyC84Yw11IJbudGcaikWIPOT8F5xxp0ueK4eY1NYcYOfn4kJlwC1P6u4vGzv/lMsQmDhBsRHLfJ5hdfWI/Dpo7nP+c0GdQh3GRDJUeOdG8/ro6bl3DjHTHVjtv//q/9+4IgijExp3RUoZI6SzyEWUgAoguVBDL/DTITWa/zfvvtwF//av2ty3Fr3z78BB+wn4SvW2e5HkH3RALe4kemHIDbfqK6Ouu5sI6bl4Mt47jx590u/Er8vqDfwc6NV8IZ2URCXv1MmPbdHDeZ/l3IKslgpRLaFlj/Fqei5J6lEnQ6btxnGvfXZ9Sg8yPcAIcadLlSgFtHqCQv3OwcN1XlAMS2ALlxKSaQcCOC4zTZ3LDBDHVkhBVu/GAgfkdUwk3HHjpZN9LvHrc4Cjena0bstMMMMOIKsij24yzcctlxY/8m1Wm6V68Grr/e+Tj84Fe4BQ2TBLwnVHwSo6FDg7evs3it23nnc7Un0XGTDZX0m7K/lTtujIoKYNZN9rXtQpVKALRmldz+bV1GDTq/ws22Bp3OmoVAspOTBHHcZKOTclC4JffIiezhdEOLmRRlizUD0Qo32VWeIO3LdkZJE25O14w4eQozwPTpk/63mKBEJlTSa0IlK9xYqEZ9PfDaa8AJJ9h/X1jHzc0lkF01BdJ/Lyd3XPW1ztePYwQNeXFbHAL0Cjf+dw2afh3QGyrpdr3LlEhgZHOPm6pQSa/Mj2GO3StEVaXjJgo3mf5dSE6S8bXtreO+8/dtcOWx5qUTqIRERI5b7Z7Msc+t4LxIRg26XAmV1LHHje9X7YSb7LhKjhtBCPCZ5Ph9Jtu3p78v7I3hNhlkg5ru5CS6haHs8TsJWkB9QgKdjptsUVwAOOus9L9F4SbjLBUUWMfotYovI9wA4N57019LmuMWVaik3bHKOG5iH9PYaIkUHcJNJpQRCJZKW5fjpjs5iew1o9Nx8wqVlHXcdPQzbnXcNDluANKOu1d5AYYPR/ASEhElJykucBZutSgE4L44lLGWEWWopJdLK+O4AZm/rewet3btrLFP9x43Em4EAWcBIWaApFDJdFSF1YltAXIdXV6e1bbdAKDSceNrk7HvtntfEIqLgblzrb9VCrdUyj1ESnbV9NRTrcdinI5K4dbUlHlNqmjfbXDXFSqpWriJ54Xvx3QLtzDnPcgClMo6blE4bjKuVSpl/Xv97HELK9waG9379zhOwvnQNJWOm5dwk40yASJLTtKltC6tBh1gCTcvt822Bp3u+UBUjhuQee/885/2x+GXvDyrbyXHLTAk3IjgOHVIqoSbn1BJ3XXcdIdKqnYM+WOXCdXR7bgB6ccuOm5hO1M+5ExlqCTg7lrJhjDdfLP1WJxQqUxOAmQev6zDDPhbZFEdKqlbuMmUAgCChUqG+V2zFSoZd8cNcL9XVYVKAu4ZZnXvzwt7P7H7RuwfVTludvXnZPd1i5/TGCqZ11ifVoMO4B03d3FiW4MuV5KTiG1t2gRcfbX9cQSBLSZkK6skCTeiVaHbcXNaxeeLKSZ9j5uuUMk2bcKluI1SuPHHrsJxA9yFm2xIoNveFhXFPAcNMv8vCjeVjpvYHpCerj/sedeVnIQ/HvGatLu+kyTconTcVIZKxt1xA6z720+oZNiskl7tx3ESzn9OvE91Om4q+ke/jpuCpDB8DTrAquPmJtwca9DFqY5b0P5RPCb+WMVM0GHHJta32mWVVFk6SezHZBeHYgAJNyI4Tje07lBJnY4VIO9ApFLWpDJboZKyq5q6k5MA7o6bCuHGHy8gL9zc9raomJiwxAE7dqRPfqJy3MK2DehLTpJKWdek04qp+P4g8Mf9yivpr8k4EED2HTf++m9Ne9wA/+44EPya8Zv5UecetzDFvRnsc26hwXEXbqqjBoTrna9BB/hz3Bxr0OlOTuJ1zagMleTbEu99Wcdt3z6tTiqFShIEkL1QSdmbWXeoJP8d2arjJpt9MBcdNz5UUsZx0yXcunQx/28Y6WEjKhw3t8Fd9poB9CUn4T/ntGLqdBx+4K+z554zS5kwZJ33KB038dwsXgx8+KH5OJWSc5VEccLfV2GyYQL+E4iE7QeC7HGzu47c8JthVqd7IjPZZPeIm+MWVJB7ZJVUsseND2/n+3IAuPRS67GiCT6rQVdU5C7cPGvQuS20AskNlezaNf19YRNbuZUEoD1urpBwI4LjJCDEfLiqQyV1CzfZCRv/HdkMlQwD+5xXcpKwE7YoHTe3UMkwe9x0JicBLOEGpIdL6g6VlMnQytCVnIT/nNPAyyMj3ACzFAND94RKp+PGJ7ux23Pkhd/9RGH7R36SZyeuZMoBAIH2uP3n6wLbS8mzba/2de5xC3te+M+K92lUjlvYfoDv23nhtm1ben95yCHB23YQ4xUVZo25tvmZws13DbpUCkbz+anZ3Yi1a4XbNanJScRrRDZUEsgMl5S9bki4EYSAkwASQ9TC3hi6QiWDOG6yolNHqKSf5CQ6QiVVrLQ7iU7xPMV5j5uO5CRAeo0lvqSG6lBJUXiqCJXUlZyE/5wfp0QmVBIAunWzbz/Mb+oVwiQryL3KAcjgVk9Mtv8F0hdO3FyxsNeMwx63qiqgsc46Vw9hKgaP7IQ+fcxJeFWVj7az6bipmGw6hUry/aWMcPNKTqLCceOPle8r+/cHjjsueNsu13t5XwNtGs3fYugPirByJbBmjWnOz5rlEB7ZTFWVeV3VN5nXwhefNeLAA5F+venuZ1TucXMbs1UsKrr1NbJ1EUm4EQTsJ+F2q22qQyW5m3vHnjaZK1he6NzUz/DruMmGLkS5x01FvS+nYxe/L6z44SccukIl6+oyJyfs35KXFy4pDJA9x032mgGcHTfDkB8ggzhussKNX/3VvRKue4+bDKmUc4iqioUtt7A3w1DnuDU2tpybBQvM2mH5TebfKzACv8BDAMwKHLNnm68vWODRts49bn7dExnHzSlUUuZ6jKIcgJPjxofXnXJKuLZ9iofijkW+a9Cx6232bKAR5u+VD/P346+3yi8lF/34UjVu10zYscmvcAvbF7jdT/zYIZNsDSDhRhAA7CfhdkJFoXCrqgJ+d7t1A776ZpvMFawQ7aYRVahk2MyPUYRK2gk3FQLCabKpSri5OW6yjiG7FngxwlAxCPDCjV9Fli3UDOhPTuI0ceMfq74mxWs/TOZH8TrjjzfujptO4QY4n3fVoZKicON/A9nkJABQW4sFC4AJE4C6Wqttu/1KtbXm+1zFm1ettbg7bk6hkqqE2733Atdfn/66ilBJJ7HPCzd+v1QQ3M57iP6XXW/so6Jw45v+YLmCMHs/ocFhx1Snfkbsc8RIK7/4yRYqG60BUDkAggBgf1PYTSAU7XFjK1jzHrAmDqwgZqAVU6/NwlGFSurojGSFm1tyEtXCzSn8FdAj3Pi9l2HSmLtN2FQMAnyoJO+4yRRStvtclMlJVKy0O4VKin937x68bXHhhD92WcctL8+6D6N23GQcGYbTnk7doZIqUt5zwnDjV7WYNMl8XADrPLHJtB2TJrksAvoNTZN13FS7eQynUEmZ31W8j26/3azzxVARKunUt0cp3Hz0v1VVaLneGE7CLeM5nXs6ZctH8G2Jj4Hwws2PK6a69l9TkxU1Q8KNaFXY7bFQ6bhxk8E3XmtsWcFqA+sGrEd6275WTL32V0QVKqlC0KrOKsmvsovhgCoEhO5QSbdyALLp3d0mbComVE4rj7qzSupMTqJiwubXcQsj3Kqr0/9W6bgB7hMqnVkle/QI3p6IH8dNR6ikikQ/3Pn88//WtpxqXrg1wLnt2lrg4YcdXnRzCPgJoU7HTUdyElWOG4Pvf1XvcYvScQvoMM+bZzM8NAs3/vpjpD0ne727iX0Vjht/LsT+94wzwrWv03FzEm4qFhRjAAk3Ijh2G3o1OW733WN1Em7CjeG6YsrvgxJLFwDRhUrG0XFzS3ig2nG79lrrsSrhVlhoTSJ0Om7iyKxyQgUkr46bk+OmIkTK7x63MMJty5b0v51WlHUIN52OGx92Gxan864iIsEtq6SKRD/c9f7MAuvc8+6Gm3ADgEcecYhAdXPFZEWn332RKu5VlY6bnXBTmVAMyJ7jFuB6bGgwrxsRv45bgxHyenfb4iAbDcKPlfwYyp+X6dPTI0aC4GePm2rHTcW4FANIuBHBsbsp7IRK2A6D6yQbG6yJrB/h5rliyjoLO+EWVahk2Ladwg2bmqy/VXd0gBrhtnGj9fjFF52/K+w1k0pZA7wo3GTSXQP6QyWdQlJUJyfhj72x0XIIdDhuOkMlxXtr2LDgbffu7dymCpcgKsfN7dzcf3/wtgF/oZJhBUSEjtuebZYw9BsqCQCbNwOVca79aAAAZypJREFUlTYvuLnXsqLTS7ixPi1sVl9Af3ISBi/I4+645edbv5dTNAV7nwuVlea2DRG2SOAl3L7eILFgCdg7buz8hNkDLH6OP9f8eTn44HBtA/5Kj5DjZgsJNyI4dislmkIl+c7Nj3ADXFZMAWvi7ibc8vLk48KjDJVUsaqpW7iNGGH/vCrHDbAGeCfHrbQ0XFpkPxO2JAg3vj0Vbh4QjeO2fz/w/vv2bQPAddcFb/u889L/1uW42U2oZEOP3dxx1nbHjsAvfxm8bb59HaGSbslJVDhuXPuseDLgP1SSIZYkBeDuEOis/WcYaoSbU6ikaseN/13jvscNcF5kCfCbimXIWppwcdz4a3L3PsXh5IZh7ZcO64g5FchW0T8C/rNKhsGPcCPHjWhV2N0UdkpJwabYMMLNccUUsPY42W2oVRGOko1QSRWdEf9v1iHcLrvMetypk/N3hRFWDPZvF69FJtLD7G8Dsue4qQ6V/NvfLJdNhXsCOGeVVLGyyV/LRx1lPebP0WOPhVtRLigA7rjD+lv1/jy/jpvqUEl23sM4y4yo9ri5JSdR4Ljxwi1IqCTgEFHtpx8A1IdK1tVZ16cKx80pVDI/P3j/6+W4qegHnBw3Xi3pEG58n+Axl3Hqgtz2uPHXZLuOih23ffus58KGTzsJNxX9I+Bvj5uK6CQSbgQB/46b3XN+4DrJPFidZyGsm9tNuAEOK6aANXl32+OmS7jpCpVUMQnX7bj17Akccoj52C05iV0tIL+w8yOee/Zbh9nfBrhPqlQkJ4nKcVu40HKuVIQFA3qTkzh9jm877HkBnN3CKPe4qQ6VVLH4lK1QScV73Hp2snfcvEIly8qAgQNtXvCTpAhQ77jJljNheCUnCdMP2JW1cQqVlInAYedHp+MmkeV04ED7vEA7YR5XT2zGFbgHh+DTltf4a3LAYMWOG5+dWIXjxotkVY6bzlprfNuqw+BjAAk3Ijg+HbdNGxrDlRnyESrJygE44ThH54WbU/ZEFRPZXAyVzMuT6+zsCvt6ZQwMAjs/4kXHVHxYx01nSAeg13ETP8fCCpMUKimiauLgJ921CuEm9jM6HTcVwi2q5CSa97ideZL9Hjcvx23yZIev99MPAOodN1XCzctxC3PNRBEqCViCX/UeN0BJqGRBgXndiHwHS83dg6vwKYYh1bwYzc9tCookk5PwxeuB9HqgYYWbnz1uSXDcVM+VYgAJNyI4Njfcpg2ZE+4rL28MViCbIRkq6bhiCliTd8PInDjoDpXUVcdNtXATO1E2oMm4G/x38MfuNgEKil0yi7o66/zocNxUZ5XU6bgB1jlQNYBFkZxERNVk0Om8qwyVBNwFkOpyACqFW1MT8MEH9uG1OkIlFTtup55Y1/InP464OW5FRcCUKd5tK9/j5ubmqRZuKh23KJKTAPb7l3kXKOyiHKBEuAHA1KmZtzMv3Fq+rjmEV0kdNyfxo9pxcwqVjOseNxJuBCEguDMLFgAnjrfffBuoQDbDR6hkLZwnPI4rpoB7SQDdoZIqV5GcnBmdjpvMeQHSQxntJoPsNRXtM/iYWRWOW1TJSbZtA554wnpelXBjq6hROm5hz41dmKH4PTrKMKh03AD3wr5h7teoQiUB4MgjgXfeMR+r2kvLwuvcHDcFtae6d27A/Pnm42JYYmI/isVPtTB/PlBe7vCi36yScXXcvJKTqHLcnPa4yUyU2b+bv2bY4+Jiub3RioRbeTlarjfGZpRlvC8Fc+xrcYHz8uxDTv3gNG7zwk31HrcoQiXJcXOFhBsRHK6DX/ZGHSZMAJrq3QtM+iqQzeA64eICq5PwM/i6rpgC6ZN3MUGJzlBJPpQhjp2RW3ISdl5UOW6AdfxeNbqCYBcqyYtzFY5bVKGSfMkEQE1yEsASbqqSk/jZ4xb2mhQn9qx9Vav4OkWn3/p5YSZsTlklDUPN4pP4e1VUmP9Xcc2kUla4pJvjpmilvaLCXP/o1MYSP/tQkvGxoiLzfeyfaovPrJLbd+Zj7dqAXVk2QyVVO252oZKplJy4snPc2PeUZP6egXAKaw4hUNj1xpq0c9zy0ISiImDQAMkC2YCz+FERKulHuOkIleSL2at23GiPG9Fq4TqLPz1sdhZ26W7fwdiM51wLZDO4jmzSRKvdElgDgpNwc10xBdKFm+i46QyVVNFhRLXHTVeopF2Ilw7HjT83Khw33clJ7ASEmBZVlePGBmNVyUl0ZpUUyzqw3zVJe9wAZ8ctbD/jZwFHleMGWAJL1TVjt18JUO64sXNTUQE8v9D6rr2wxE9ZmRnKv3ath2gD0n/TV19teVhVBdxzl/U7LF5SgAMPRLBtAm7XC3+edIRKyoh9v8lJJPrHhgZgf57luDXUGy2PAagTboaRfj+FvB4rKszracYMYH+HTOE2/ddNWLsW6NpBQZh9LoZKqlj0I8eNIAS4Gy7VYN5wonA7G4vwFQZlfNS1QDaD6wyOHNXYsoLl5rj5WjEF3IWbylBJftWIbxuIZ1ZJfkIgOpGq97gBehw3u1BJFY6b0wBTV2cdb7Fz+JUndgJC3GzPl1AIgng9sHOQhOQkTlkHde9xi0q4hb2fnCYlqn5T8feyW2SRmfSwe0VHchKHPrJHO2sRYNK0tli5ElizBtiwAZg1y2Oxj8Gf07ffBv7zHyxYYG4DmPeHzD10gbYJRBkqaRjW2LRokRmWDejd4xai7aoqU/z06QO8/4klzg7oU4sZM4DGGsXCDUg/9xL9QHm5eV3d/VimcJtxfaN5vamozecnVDKscCsttYR5lFklVe+PJuFGEEi74FnCED4s8j78Cs/ibMePuxbIBjJW8dkK1inHZQq3QCumgLNwMwy1oZLNx96CauGmujNyWl0DkuO48W4nm5iwSQkQrt4X4Dyw82137RqubcD+muF/36eeCr8Hwuk305mc5L33gAsusJ5X5bixa0P3HjcVwtBtP5Sssx+1cLNbZFHhuOlITuJ0bjiR2LVvCYYPNwVVoJ9XOKdvzFuLCRPMn9ctcZavbQJRhkoC5vVeVwece671nM49bgHvIyaIZ882BTAf3rp7yz7Mng3s3xFf4dbysV42NQJYX1Ndbf5fJiOmH8ct7B63vDxrzIwyVFLFop/O6KQYQMKNCA53w7EBy2/WLsCjQDZguxJeXg78+FhrQLhzTnHwFVPAOTkJP9nX4UCoEBA6O6MohJsfx00Gu9X2f//bem7w4HDtOk3CdQg3dtz87yszWRN/M9auTsfthz9Mjw9THSqpe49ba3fcxM+KiyxhCjXz+AmVVL3SrkL8fO97aX/ef4/Vd5XCilLgQzF5XLcJRJFVUlyoEEPiVYVK2u1xC/B7LliAFkHc0gxXwsFcJDZatk5s3Rtf4WbrdrFoHDbOygg3nXvcAMsdT/sxNIdK6nTcaI9bNCxatAjjxo1D586dUVpaikMPPRR33nkn6gNO+B599FGkUinX/1555RVN/4ocg+ssWKbHIAVOAZcC2YBzCBO3kjf4+8XBV0wB5+QkOhwI/tjXrbMeDxgQrm0/EzbVwq2pyfou3Y5b27b2xXDCtM/O/WefWc+xAuBBidJxs3OVVK1q8u3qLgfAozpUUvcetyiTk4TBqRyAbsdNRUQCkB4qyYeTT51qPdbouIV2aDp3Tj/GBuvct4UlrmpQCjtctwnk5Vnn9dNP01/jhFvl5rbBE5/w38FobMyMbgjzu/bpAxx/fPpzEnvcqqpMgSvCzyny0YhC1CGvOTvjvytLgpUbEtEp3EptroXGRvMcsXtXh3BTESoJ2O8b1x0qSXvcPIm15LziiiswZ84cFBQU4LjjjkO7du3wxhtv4LrrrsNf/vIXLFmyBCUBO+FBgwZhzJgxtq/16dNHxWHnPjahkrzj5lXgFPDYbuSU8IAfEMLuKeLdLhaqAOjfN/P119bj/v3Dte1nj5tq4aailhjDy3Fbu1bNIMPaLyoC/vUv8+9UCjj44HDtOmXcjMpxk7kenZLk6HDcnIRb2ON3CqNN+h43lamuoxBu7HeVPW4GG7NZFszCQtMZ//hj6z1xdNwAYOjQlod8eRpeuDk5boC5TeCmmxz+eaWl5phUUwO89BJw2mmoqgI+fW4vTmp+yzU3tcVzNwE9ephrXFOnBog2Ee9VUf2FddyWLDHr/R11lPmcXaikz2tm3jz7KiCicOMTldUYJXj4YTPyJhRRC7empvQxNuz+ZcBfqKRM+3a1V3WHSqp23FTPlWJAbIXbCy+8gDlz5qBdu3b4+9//juHDhwMAtm7diuOOOw7Lli3DzJkzcffddwdqd8yYMXj00Uc1HHErgrvh2OAVJFTStUA24MtxCy3c+Ak2H06gexVfhXDzEyoZdsIWhXBzc9w6dgR695Zr3+78fP65+f8BA8JP2JwGmK1brcc6hZvM9ThISBBkJ5hVlQNw2p+oKiRFtePmJDp1CzddxWVVZX10uh5UCzfAdMIKC9PvJUC948YLN5k9UTaLlkB6qKST4wZY2wSGDLF58dxzLUvuiSewYPdpmDQJuLbWEm5MFLLEJ3ffbWZS9rW/W3THVThugCneunWz/g4ZKtnQAMyd6/CaECrJC7d9KHEXxF5kQ7jxyT50Om4dO8r1keyEOjlilFUyK8Q2VPK2224DAEyfPr1FtAFAt27d8OCDDwIA7r//fuwU9+MQ+vFITuIl3FwLZAN6hRu/UZd3TDQLt6av1rU8/jo1IFyoSzaSk/Adqk7HTUUnKq6yGYY1QHbvHr5dP45b2A3ggF7HLS8vLXV5S/u6ywHwhG3/Rz9K/zsqx013qKRsCYlUyjqnYpZThkrHjaEi6y6Q3nezPl3sc1WLWlUp9W0WLQH/jhvgsk3gwQdbjr/mjQ9a9nm5tR22PioaG9U4bgy73xQIJNyWL0/XMzxujtt+FHvvm3dDp3Czu5caG9PHWJ173GQiWIDshErSHjdPYincNm7ciI8++ggAcAGfnayZMWPGoLy8HLW1tXj55ZejPjyC6+BL8jMdN7dQSc8C2YDzvhl+QAi7ahqx48ZSGr/7pBWEP+yn/YPV+GEkPVTSzXFTLdwaGtLPi8yxO9W4S8IeNyB98I4iOYlI2OOfPz/971yo48bXilIRZhRFqKTYvmrHDcgUtwlz3IIIN8dtAvn5wNFHAwBKt61HT2zy3XbQ+qi2oZIy95KXcPNxzTz2mPNr/JxCFG4s46Trvnk3dAo3O8RQSdVZJQ3Dctx0CzfdWSWpHIAtsRRuq1evBgB06dIFAx1i6kaOHJn2Xr98+eWXmDFjBqZMmYKrrroKf/zjH7FVDNMISU1Nja//Eg93wZ98QjDHzbNANuA8GUyY4/bsoqaWlMYF9dbguxvtg9X4gdn3VH1jtd1UF5HjpmuPmw7hJoZKqjp2pwEmCXvcxM9nIzlJ2OMfOBC46CLr76jquOl03PhzJHPsOh033aGSfN/NhJuYQVRnchINjpvfUEnPbQKHH97y8ECsAYAMd8kOX/VRvfa4yZRisRPjgO9yAA0NwAsvOL/OzynsQiWB8GU6067HqIQbv79eteO2Z4917LLCzW6PW5RZJSlU0pZYeoWVzZ53v379HN9T3jz7rwzoj7/77rt49913054rLi7GzTffjOuuuy7gkabTjs9YmMtwN9zBB9ThiSeAFyY2gmk3O+FWVBQyFl+1cOM7Ms2O269+2Qg2DDBhW48CAFYKZRbqAtifm6oqc8P2I48AB3xXgPean3/kDw2oKmnenK4i7I1P2hKF4xZFqKQO4eaUuUtnqKTspMFu758ux43PEsiQ+W3tRGfS9rg5rSarCDOK0nFTFSrJT/JZny4Kt7gmJ5F03Ly2CTSVlLasprP2i2D1Y7Vw7sc893l5hUrKlGbhr3f2mzY1+RZulZXpw7GIW6jkPpSgWzcPQexG1I6bylBJO/GjalwCsp9Vkhw3W2LpuO1u9rxL7TZ2NsNE0i6noGiBnj174sYbb8QHH3yALVu2YNeuXfjoo49w0UUXoba2FtOnT2/ZV0d4INxwFRXAH+63D5UMXCAb8BcqGVa45edbWZY0O258+CgTbk5hpHahLmIRUv6z7fdtbnHs3n9H0QoVm9Ak1XETO2sV1wvgHCrJt6+qMG42HDdVyUnsVvHF75dpPyrHTUUokNNkUNWxs9+Mvx7feivzdZm2RXQlJwHSS7MA8SwHANg6boWoxaV4sOV5J+HmZ5vAjt1ivbJ0Z89NuAWqj2qXnESs6xaEggKr/dpaMxnXkCG+w2u9pnFiqGQxrL53H0pw+ukSt1O2QyVVZH0ErPtTVQ03wDqpTU3WXCzKrJKqHTfa45YsfvKTn+DWW2/F6NGj0a1bN7Rv3x4jR47EY4891pKZ8pZbbsHmzZtDf8eePXs8//vmm29U/ZOyh80N162TdUNcd30+Vq5EuALZgHOoJD/4yogIFtbGd3Br1liPsyDcxFAXryKkF+D/0BdVqK0FHpuvaBLOVv4++8xatVO1ig/od9yiDpVUdW5073HzctxUJiexE26qHLds1HFT4bhdc43996gIlWT3T21tej70OO9x8xMqGdb9yYLjNgUPowe2tDzvFCrpZ5vA/oZM4ebXcQM89nnpdNyAdHdm8mTgq68yX3OAD/iwwytUko+oDgz/5d99x31pAhw3O+HGh2HKiELA/n6KMqskOW62xFK4tW8OVnbbD7Znzx4AQAevO94Hl19+Obp164ba2losWbIkdDulpaW+/ks8dp0F18l171WA4cMRrkA24B0qWViYPggFhQm3HTvM9j/4ADjxRPvvD0hTKpxwA8xQl4YGf0VIAXPCAKSH7Eh1Rs37RgEAc+aY/1cp3KJ03HSFSkYl3HQ5bqpDJcVjt5v8yRy/nVuow3FTHSrJn9M9e4AVK8zHuhw3PjxKtm2nTHgBEk24YhcqKY71opDziw/HbfXnJaGLWH9Xnem4zcVlae+xc9zmzPEXcVJU6u641cH9Xg1UH1U8ATKOG5Au3PiafPxrDgwcaNamc8ItVNIoKsEPfxj0YDm42nz47DPuSzU6bvz1LTMntBub+HFPxl0G7DNBR5lVkva42RJL4TZgwAAAQJVLmiT2GnuvDPn5+RjSXFhlw4YN0u3lPHadhcpOzku4yYS9AVbct2GYq1Pnn+/8/QHZsy+8cGOhLk5FSMXPGs175ZQJt1//2nrMHEidjhufYU9HqKQq4eY0wLBzk0qpc36YgNC1x011chI/jpvqUEkde9xUJycR9zu//766toFMx00Me+MjCIJid5/zsWwq97g5OW4KhVtVFfD1v632Ro8rwYEHIlRm35f+Zr/HjcfOcduyxeaNNnTuEd5xC1Qf1e5eVem4ifelRx9TUGCadE641XE76rgSubWtQw6xHv/rX9ZjHf0MYJ57HWH87PfTHSWjOmoAiM5xo1BJfRzenFlp27ZtjslHVjSvYPI13mTY1rzfqX3o1EStCLvOQuVE0ylpgCrhxv/GNTWZ8SUSx1/XFF64AebC+SOP2L+Wh/SsfWwVkp9ANOZJTMIPPNB6zFbAVa5QideNikKbPNkKlSwsNMVbWHSHSup03ETxYzf5Ux0qGeUet7B9wdix6X+vWGEuVPzpT/JtA5mOmyjcvve98G3b/V58aJfKUEnNjhvbJ7xtg9lePQrQAPP4w2T2fX5xpuO2FekZZe0cNxZN4UV+obtwc3PcPOujiveqyj1uQLpwEw/Ex306dapzN+3muB19vKSr1L27VefTSbjJRPiI97nKaJAohZvquV5entU+FeAORCyFW9++fTFq1CgAwMKFCzNeX7ZsGaqqqlBUVISTTz5Z+vtWrVqFNc0rlKNHj5ZuL+fxctxU7snR4bjxK75792amMZfojNoUyQm3nTvTw+x5qpC+QaITqgGkh9J8u02iM+JdguZQZK2rd6o7UTGsTtWqph/hJkO2ywHoTk4iMzHRmVVSZ3KS0lLTTWKfX7HCLIQ+fbp820C648Y714xLLpFvm0elcIvIcVvzWUPLPmE20bcTVX6LWFdWApt3ZDpum1GWfug23+G7QDR3bsVQySakHMePUPVRo3TcfPS/5eWZpRsZbsKta19J4QZY4ZKbN1uLCDr6GUCt4+YVKqkjE7TK6Cqv7Lhh+xq7SA3xe0i4qeeGG24AANx+++1YtWpVy/Pbtm3DpZdeCgCYNm0aOnIbO59//nkMHToU48ePT2tr7969eOCBB1qyVfK8/fbbOOusswCYhb1JuPlAt+OmW7jxm9P37VMq3Np3sj57GD5uecwGYbcad2Vl7pu0d6EjfoX7Wv7uDHNfC59hq6ZJYhDjJ1RROG46hVuUoZJxF25RJiexm/ypEoY6HTe+D1DVlxUXm/F4ALB1K3Dffemvq8rIJronEybIZZOz+710OW5OWSUVCLd33rR+R5au3y1Vv1cR61270h0vJqhE4cbqion4KhDNHb9YDsD8bntnP1R9VJ3CTby2ffa/FRXAE09kvl0MlWyfryhLKIMfeNm1x/cJcRVuuh03uz1uKscmu+y4KsZtctyywxlnnIHLLrsMe/bswZFHHomTTjoJZ599NgYPHox//vOfOProozGLz6IFYOfOnfjiiy/wn//8J+35uro6TJs2Dd27d8dRRx2F8847D2eddRaGDRuGY489FuvWrcOwYcPw9NNPR/lPTC6697jpDpUUV3wVCre8NtZnn8CFKGwedP04bpMne5ddeQZntzxmjhtfQ6iki8QglpdnbZROuuMWdaikDLrruNm5VlEmJ5FpX+eKr9MeNx0ryqr3/on7Q1RGPNjdi3ymuijquPXvH65t7t+earLOOXNonEQV4F3EukMHoB6ZjtsWdBfeaS+ufO3C4I5/6qQGFBVZws1uf1tRkSl0fJXa8dqPmmXHjVFRYZYPmjHDXMwE0hc8Lzy/EVddqli42bnAuhw33dEgUe5xk+0foxZutMdNP3PmzMFTTz2Fo446CsuXL8fLL7+Mvn374vbbb8cbb7yBEp83bNu2bTFz5kwcd9xx2Lx5M/72t7/hpZdewubNm3H88cdj3rx5WLFiBXr16qX5X5QjeGSV1BIqaRj6hJtYNFhhJ90bZvkHL+HGQl28smtVo1PLYybc+LCRXoMkUl0DlnBLouMmXjdJFm66ywFEmZxElXDTmVVSdXIS8fOqhZtYFF6l0Le7Hr791nosm8nZK1SySxdg5sxwbRekOzMMP44b4L4XbeBAoH2XTMfNcBBqPJ6JQxjc8R85ogFr1wJlnczv4YWbkvqo4j/0t7/12ZADbsItYP9bXm5Wt9iwwcyzM/nn1nm5eEIjOrbhhJvsfADQK9zOOy/97yQ5bnZ73HSHSqoYt/PyrH3n/PHmiOMWe8l57rnn4txzz/X13okTJ2LixIkZzxcWFuKWW25RfGStmLw887+mJquT0B0qyXdGsnHbGve4iZ8diEpchMfRuVlkOQk3PtRl8mRz07wd+1GC/ShCMWptHbeCDpLCrV07c5Mdc9xUdnRJddzy881BwDCSv8ctG+UAVIdK6kgaoMtxcxNuqlJpq3bc7H4vlcLNK1Ty668zs3L6xVa4Gb4cN8Dai9acZDqj6XMuaAPcb/7NHDd+L/PjuNC2Xc/EITbHj4YGc0worQWqgc5lhVj5suncDRwY4md2S05ywAHABRcEbFCAHVBjo5TjJjY5ZAiAcqEfUFVQ3a4N1cLtjjvSM45FKdx07HFTOdfT5bgB5rGLi1o5Itxi7bgRMYbdcDpWYexCJVUlUwC0hkqKn12CE/Eb3Nzytyjc7EJd3LJrAZbrxva48cJNehATHTedddx0CzdVgyOQeb0D6oSbXcheLpUDUJWcRJw4MEEdFtGBqK0FTj8d+Nvf7L8/DHYryiradsvQqsNx27TJeixTMBjwDpWUKZBtI9wKUYf85oy8Xo4b4L4X7YKJmY4bL9ym4/aMz/hKHMJwWWRpU1qkrj6qeK9Onqx2kUI8QNn+V+zDkiTcOncGrrvO+psPlczPV+e82yUn0RkqybtaYfESbiqiNUi4EUQz7IZiN5nuUEmVDoTG5CTiZwu4QR2whJtbqItbdi3AEm52oZJSkx7AWunety/TQYm746YrVBKwH2BUCbdUyhJASXPcdCcnccsqqXKBqLEReOgh4KWX0t+jcjIrhmSrnLDp2HfCwws3naGSxcVyLqqNcOMXtrwcN8B9L1qfAZl73HjhZpd8ylfikJZGM5NBGM392L6mwtCFwwG4L7Ko2O+jMFTSsW1Av3BjokpXbVrecZMVtNlITqKq/+Xbr683f9MpU4Crr7ZeV7Hox467sjLd+aQ9bkSrg03wWUhdUhwCIFLHTeTg7xdgzRozdn/WLOcB3Sm7FgDsgJkxriN2oaSwESOGKlqtBizHDTAnUzodN1WZDRm6QiUB6/jYMRuGdU3KnhcgU7jpcrB1lgOwy1Snsn3RcVO9QMRlL7Z9TxjYMTY1ZfYzuhw3HclJ+FBJWcfNLlSSXY8KJ/hMuPELW16Om+deNO5aLk5lOm68cAuUOKTloK3jr95ajxkzgNpdZj/2xbqi0IXDAbhnlVQxCVeUnMQWsR9IkuMGZIrmpAg3tzpuKoQPvyB6++2ZRWxVCrcLhTBmctyIVgcbvFm2MZWOm1eoZIKFW2nHAt+hLnbZtQBgF6wV7zWr9qCsfbNwS6XkO2qxlluSHDedwk0MlVQZugtY143ouLH9pDKkUlb7SSsH4Baqo3qByG7RQ0cNPbvvD4pOx80rVFKl48YmsKomgx6Om5dw89yLxp2bo48whVXbwnThFipxiM3x3/e7BsyebbSEZLLkJEELh7fgFioZd8ctyaGSQKZoViXcsplVUoXY58fVRYsyX1cl3OrqgHffTX+dhBvR6ujUyfx/TY15YyTVcbNLTiIzUeY7TTsCDpBidq2VK4Gjx1udfd/utVaYUdu28jHnvOO2Z0+y9rhFGSqpS7ixa5Hfx6UCPnEAoC85SZRZJVU6bk1N9sJNZSkG8dyodNyiTE6i03FTKNxOxt+wDEe3ZPYF3EMlfe1F4857caoOs2YB446xzv2KVfme0RSupF3vDShAA/JghtjyNeQA/4XDW3BLTqJSuAGZ45CsQHHbv5wE4RZlqGRUBbhVhkoC6cfNUCXcvv7a/bsTBgk3IhxMuAFmcVZdnVwUoZIqywHwK4F2hBwgWXat4cOBdl24zmz/fus7ZcMkgXTHraYm2Y6bjuQkOlY1gXTH7YkngNWrzb9VxeGLjpuu5CR2jptsRk+G6omDOJEV7x8Vm++dircDySoHwF/vCXHcAOBoLMfvYO2ZcXPcfO1Fy8+3rpvm3zOvyRr7Bh2YL/VP+G57umPIargB9nXcAO/C4S1EtccNyBxTdSUnyctTM3ZEHSrJRIpK4aZjbHIrwK0yVBJIH68ZKh03p9cTCAk3Ihz8qmt1dbKTk7h9f1DEQrIiKjoLvrOv5Rw3FSuPbo5b3Ou4RbnHTadw42PxVQ0uYry/ot+V39Oz89MqND32eOabVIdK6trjJk6iVO77AdQKt6gLcPOozCrJ+l9Nwg0ARmGF9XU2jlvgvWjiIo7CCf5LL6cLNxYmCWQ6bgyvwuG2xyYKN9XXuijcdIVKlpTIL66wdhhJDZXUvcdNZ6gkoFe42S0okuNGtDpEx03lIBD1HjeRuAu3IsFx40MlZXFz3FQPAjpDJXXvcdMp3HhUO26ig11QECo0uKrK3Mfz3xdYn+246H+R99STzt8dBrfi5KqdfZV7XRm6QiV1Om5e17Os41ZQYB2jauHm8W/nHbfQe9HEEg+KJvgNDcDzf7X6Qb+OG+BeOLwFt+Qkqh03EdWhkrxwU0GUoZJ1dda5T2JyEl2hknbCTVU5ADvHTXZOkEWS6xUS2YUXbqLjlqRQSTuhFcNQyTREx03lICY4bk3761pWd9ZvaoPeNiV6fBOl46Z7j1tUwk1cuQ6Lk+MW4rwvWGCGZ9XWAj/SvfbnVspA9pqxq+Pm9N1hcXPcVBXgvvVW4LTT1LQrtm2HrOMGmH3Vnj2ZoZKyvykLb3W4b351bQnOOE+iiDXg7rhJ7I+urAS+22EdUBvU+xZuboXDW4gqOQkQreOmgigdt3nzrMeqxiXAfmzSWYA7SaGSYt97yy3pc52EQcKNCIco3FQOAlHvcXP7/qBE7bjxmR8VO27PPFaD/a/VY0Lz3yefWYgtPczMa1Onhth8n+Q9buz4mprMazIq4WYX4hEGp+QkAY99wQIzIQLDrm6VUuwmDqr2dIoOhLgqmxTHbelS8z8V7QLu92Iqle7Kh4UJN9WOG2vD4b7p3q8tug+XbN/NcZMQbrt2WXU+Af+hkgy3wuEZx6Y7OcmOHemvqXTcdAg3u4Q5uoTb66/bf28YvJKTxL2OG398YsQDoGZ/tDjXuO46YObM8O3GAAqVJMLBr7qqTk7iFSopO8gkXbjxnT0/QKoQbtwq1Bt/2YPG/dbEoR5twqeiBtwdNxXix024qVzZfPxxfcJNzDKgSrg5JScJIJirqkynjafJxxASuN4Uj7iIYxjqJm1uWUgB7wyxfuDPr8owWLffTbb/ddsz1LWrfHkKwOrDdAk3J1T0kU6Om2Qymw4dMoWbX8cNcC8c3nJ8DN2O25o16a+pdNz4UElZ4cOIMlSSJ0mhkrqzStqhIzmJivE6y5BwI8IRdagkP8jIujM6k5NEESrJd2a8cFOw+vj2Kms1vRQ1aANLOPArvoFTUQPRlwPYts36u3Nnubb53+1nP9Mn3ERi5LjNm5epbfw4br4SJzhh59Kyf4PsJNxLuHndy36IIjmJ23eGwe289u0r1zaD9VWqs0p6taHCoXFy3CTHvYEDgY5dwjlunoXDxePTnZxEoGpLsfcePDec9i8nMVSSJ+5ZJaMqwO2EjlDJBCclYZBwI8JBoZL2zJ7t/nqMHbeqKuCuP1iOWzvsSZs41CPzvPtORQ1kxuPrDpX87jvzcWmpfDz7xo3pf0cl3FTtcXNy3Hwee0ODmQBBxI/j5itxghPib8o72rKTNtGBUOGwiegSbm6/m+wks21b4MEHgWOOyXytTx+5thm842YYVj+fZMdN8rwXFABnnRfOcfMsHA5kNTnJT88tRp8+ZjKYUA483/aePdbjpAg3XY6bTXkK7XvcdIVK2qFCuIl9Owk3otXSpYv1eMuWaEMlVdQTYze16uQkP/4xcO65zq9LZh1buxZY/52D4yY5KZk3D9hR789xY/hORQ1EL9w2bzYf9+gh3/bnn6f/rVq4qQg/c0MyOUllpaWDefwIN5Y4IRROSQkAtY7bW2/Zb46XJYrkJG7fGZZf/AL4+98zz7Fqx622Vm0YvFcbKh03xcINAM6bEDyrpK/C4UCm46Zzj5tALYrkwuz5Y9ct3Fg/kATHDci8HpkbmUqpTVTEwl+jCpXMy5O7LvnP8uMGhUoSrRZ+5XXjRv113FRP8llHrdpxS6WA885zfj3EuWGp1/v0AQ48ELj1bquzf/8VTrhJDALMUalBuuPGCzc7xw0I4Kjwq2c6hBv/u+3fD2zfbj4uK5NvW3S+HnzQeqzTcVOFmPwkYKjkrl32z/tNTuKZOMEJnY6b2M/83//JtWcHf/yiMIyr48YjnmNVjhvfLj8RT4JwY/u7WUZfhRPZ3v3Ss0r6CZX0VTgc0L7H7ct1zm3shzU2hQqzj1K4JSlUEnAuVVNYKF/jjr8ubrsN2LTJum50O24q3UJ+nkeOG9Fq6dnTunE3blQbL+8l3FQM7rqEG+DeGQU89gULzBXK2bMtx4Nfef1y5U7rzRKDAHNU9iDdcfMKlQQCOCpROm7/+pf1WIXjNn58+t/PPGM9ToJwExw3o/nc761vg7VrvYW3U+kuP44b4CNxghNO2eQAtY6bHa651X3CH7/o7sd1j5vb96hy3Pi+ilf1uoWbinu1e3frMR9tonifWGGeu+MWuHC4xlDJqirgzXfcHTeRQGH2/PHx14sq4cb3Jew+jSJUUsWiorjnMmTGYFvE62LuXLVZrN2OUeX+PL7vJceNaLXk5wO9epmPN2zQtzr17rvAWWepj1FmnU6MhRtLvS7mTOBXLzvCEm6frg2/QsUcFTfHzW1zvC9HhT8vYoiUauH29NPWYxXCbe5c59cSJNyMxkbMuNFAqvl++ueaQhx4IDz3nwwcaH8a/ThuvhInOCEmJeAHYJXlAEROPhl49FG59gH7dNqMJDhu4n3J+nxZsuW4qWg/IuF2wrgGTDjTut5Z8fDQhcM1JieZNw+obfLnuDEChdnrdtyKi61rvbra/D/fGepy3FTcT041RnUIN36gV1HP0W3cJ8fNERJuRHhY2MzmzekTKtnBUezknnvO/I8R51BJQIlws0u9zuBXLzvAimF7/uWi0KnXmaMSxnEDfDoquh03nauaBx8MDHcoAJUE4dbcvlHfgNtvsxZZmBj32n9SUGAmQBDx47j5SpzghBgqyd+vspM2tzCiZ58FfvhDufYBfSLCzV3XKdx0hKbxk0HVCzhBXvNLRMKtpE0Dzj2lpuXvK29sizVrzHXSWbNC1NHU5LixMPsGl7LATot+vsPs+XNbY50TZeUAUikr8/D27cCyZea+V4bsHmSnz/fuLdcu4Oy4yQofvm0Gv4rsFIYRhKhCJclxI4hm+LAZlatTdm2sXWs9VincVCcnAZQIN7vU6wxeuPGOW01jUejU68xRcXLc6lEAwH6i69tRiTJUkoefaMng9LsmQLhtqTbPTR4MFMPaayWKcbf9J1OnZo6lfhw3X4kTnBBDJVU6bm6oGtzd7neZ39xNVOoMlVS1Wp2tUMkECTfRYe5/cCmGDJH4J4h73BTtS2dh9k7CrQp9W9xCEd9h9vzx8YJK5SScJVzbsQO44IL013SFSuoQbmzioMNxS6pwW77cekyOG9Gq4YXbV19Zj1XcGOIKFd/xqRRuYlFc8bvCICncnFKvM/iwE95xq0VR6NTrzFFpQj72NbfPO25ubptvR4XPEhWlcAu9wUrA6Rh1uoUKqKoC1nxptV8Cy7VyWgm3239SXm4mQuDx47gFdgZ43EIlVbk/IgUF6rJ86hIR3bqZyQLs0Om4qZr0UKikPWJoLe8uqdzTqTA5CQuzdxJuY7AMhks/4SvM3uncqnCVGMxx273bykjs9f1+0em4RRkqyddGVSHcdIZK8otDr73m7zsTAgk3Ijz8phd+gFExURY7Sj6tncrkJH6+OyiSiQOcUq8znBy3WhRJpV5njgpz3XjHzWmC7zsVNYMNJjr2uOke3J0GwqFD5dvWKNzmzQPqDC4EixNuToLcaf9JRYWZEIGdUr/JSULD3y81NcDZZ1t/63LcVK7i6xQR06fraZdHvC9VnZskO278uKfTcauvT1+okK1F6RYqKXHsbP7uJNzWo7/r531NF6IQbnyJI7Gmow7h1ratWvETRXKSTZusxyr2uOl03CZODP6dCYGEGxEevqNjtG+vZnAU007zSkZlchI7suy4OaVeZ7g5bkD41OvMUWH73Pw4br5TUTP41UHVwk1nKCNgf4yDB6vZC6VJuDH3lg9p9OO4Ac77TyoqzMjlGTOAzl0jyoYJmIqRR5fjpnIyqDP7YyoFHHVU5vOt3XFTmNXXFt5xW7vWFG+AmvPOT/BFx01WuGly3FiYvd/SIDy+w+ydjk+H42aHjlDJXr3k0/UD1j25d6+ZyI2JfRX7/8Tj5oWb7lBJ2XH7xz8GPvgg83ly3IhWTdeumc916qSm7QMOSP9b9QZ2nY6b5MTBqz/kHbc2aMh4XsbwrKgAOvXxdtwCp6LmPwjoEW7durl/pwQNDcCeepvf9ZVX1Ay+moSb3f4TP44b4L7/pLzcTJCw/H3NQ4jbedHluKmcDOp2f+zOTxL2uDklJ9Gx6Mejon2+n3n2Weuxins4lUov3aEri6pC4cbC7N2SkzjhO8ze6dzq2OMW5Pv9Yue42c2fwsCfAz6Jm4qFLX5RBVAv3Nz6ExW/7ahRmZk7yXEjWjV2HZ0q4eYW+51k4eZjku+Uep1hl1oZMIWbVOr1Zjr1MR23ttiLkjxzMzKb4IdORc3Q6bg5nTSJjpovfv7K0vRjfPzcv6KqcFDottPQJNzs9p/4FW6At3tbUORx3Kef7v66F26TVV2OW1ShkjqSOKlqlxFFchLVYfDioh+PivadxjhV550XbiodNzFUUlFyEsAMs0d+sDYChdkn3XGzE25u3xcEp3tSRf+4c6fza7odNxV9TSoFjBunvt0sQ8KNCI9O4TZ1qvNrSRZudslQBJxSrzPsipmy56VSrzOaJ8t5MNANWwEAPfsXyaWiZugUbk6hISEn4mLxc9F1fPjpjo7p8wOjSbixsZUPY2oHaxV1H9wHd0/31i0c58c/DlCoyYFevZwnrEl33JIo3FSJWp2hkgMGOL+man+0XX+lQ7ipdNz44/v5z9P7X8nzUl4OnHlOsDYChdlHvcfN7/f7xe7zqoSb0z2pQri5rQLrruOmSmCJCzkk3IhWjV1Hp+JmBsy9G06TvrgnJ5EUboB96nWGk+PW1KZILvU6g+vYUk1NAIDiEd+XS0XN0JmcxIkQg7td8XPRndqPYtf0+YFQlcVQgLm3vOjkE9q4CTdf7q3bQs1DD8kXP8/LA773PfvXVE7adLXrdsOoCLG1u25UhkqKbSUhVFJ3tEYqZX/dqxJu7Bh1Om6AGebNUHDsw0f7++1ChdlHmVUyyPf7JamO29ixmaURGCocN34OIKKqrxGPk0IliVaNzj1ugGk72QnBJCcn8Zmr3y71OsPJcbv810VyqdcZdud3zBgFDUOv4+b1nT5xKn4uOm686Ln4Yvt90L7R5Lgx93Y3LOusDFaqa6dFAMDn/pM2bZxtOVW/6SGH2D8fNguPF1GFShqGfPsaHLeGBjMUeuVKYE9dBKGSvOOmon2+TI2IKlFrNy4lyXEDoi3DAMkwe6e2Vd6rg1zC3pMo3FQkJ0mlgD/9yf41FcJN3EPHo6qvEccnctyIVk1paeZNoFK4AfadW46HSjLE1OuMfShBk00x7BNO1Zj2XkXmRCA9Ock+a6+VkkHGiYCDu1Pxc9Fx44VbYyNw9NESzpvTNXf//SEbtJg6FdiTb000eeHm5LgF2n/iFGKkalL1/e/bP69qMUEkqqySuoRbyEk4v5/zwAOBkSMz93Uqm/Tw55h3lVQIiOHDnROUqBJuOh03doz19da5yc+Xv5/cXH2Nwm3lSsiH2UfhuI0eHfz7/ZLUUEnWvs1v+9XWDqFqxqaRDeFGjhvRqkmlMidtqoWbXXtxF258J3fooemvBezp+NTrZWXmc40owJcYnPlmVYOY3fnlU2DLwDpNw0h3THQlmgACnRe34udujhtgirfQYZN219y55wKXXhqisXTKy4Fxp1mro36EW6D9J04TEFUDr7i5HADuvlt9X8NohY6buJ+TIS5W/N8zmh03VZk2V6xwfk0FUQg33nFr21Y+tDZLwm34cMiH2Uch3AoKgMMPt39NNpTd7vPt2sm1ydAZKtlMU9vMMN3vje2CPn3MuUlVVciGjzvO+TVy3Bwh4UbIoVu42dnxcRduqRTw4Ydmj/bii+mvhViiYqnXN2wwVy5XrgR6nzgs842qXCu786tqpZqfFPMZq1Qlmrj+evfv9MCt+Lmb48YzaVKIgczumjvySDX7oAD8YIw/xy3U/hMn4aZKAB1+ONCzZ/pzRxyhpm07VC4iuN03zftHpVDguNnt52SI1/wFE9vg8ccDNW+PTscNsA9lzMtTt5c0qlBJdm5k97cB7scXQaiklrZV73N9+mn752X7Ybtzr6qf0SzcFiwANu1Kv/72oBS1KMZ335mLPaGTdA0b5hyKScLNERJuhBzihFtVchK39nQnJ1ExuI8aZaqt/v3Tn5eILSgoMDvI4cOBdn07Zb5Bp+OmQ7hVV5v/T6XUTfJvvNH9Oz1wK34uOm6OZRlqQyRT1LTHrQVuAWREn29bHrN/g9T+E6f7RdUAmZcHjBiR/pyqRYpf/jLzOZVhu7qFm925D3AtOe3nZGSWi0jh4ouByy6TWGUH9DpuTu2oFBbZcNxkcbpP8/LUTPJ1Crco6rgBwODBehaF7M69ylBGOxS0zxZ1apAu3LYhPb+BVJKuiRPtrx0KlXSEhBshhzjJUbEyyKPYcWMb7//zrcbkJCJ8pyQdFN7MKadkPqdKuNl1bKoGZf4YmXBTEQbEKC0F7rzT+Ts9cNtvLU5inZLEAGa4ZaCf2i5sRsXEnsEtgJQXWpbiDbeUyO8/qauzf17lRE4cfFVd63PnArfckv5cVI6bW70xv0g6bk77ORlOdf7mzpVYZQfSfz8dwi3qwuRO3ynTtmrHzUm4tWunpv/NhnDTkVlW/G3ffVe+TZ3CTVNyEn5RRxRuW9HN5hMho00A+zkHOW6OkHAj5BA7TtVJJhRllRQ33l8+XWOopFt7AZKTuHL66ZnHmTTHjYVKqt7fJg4CAVbY3Iqfi44bbBLEMDZvNsMufWO3gq9iDxSDV6SbrVDJAQeXyO8/cUrprEqMA5kTV1X9TCoFHHaYnraBzHupY0fgnHNM5eNZa8EHEnvc3PZzMtwKtEutsut23PLyMq8/lcKCu4daULXQwo6TT+CkwnFzuk89izX6JBdCJYHMe1bsH8Jgd0+OHSvfLqDNceMXdbwcN0aoaBPA/t+gyhkjx40gBHQLNwWOm93G+2/gUutHtXA79VTrsYpBADCP8amn0p9LmnBjE4kYCTe34uduk1g7AmWrj1K48SnGVZx7J8dNJaIjqXLCJvZZOkMlDz3U3EczbZqa9iWEm9t+Toafaz7UKrvuPW52bals2+4aUbUox46Tt0JVJLJwigNPgnDLpuOm4t8lOm5vv60uH4CGPW7ios5epC8cOAk3IES0CQD06pX5HDlujpBwI+TQOekBpB03p433/8Qw1MBhFVO1cHvwQTN70jnnAP/zP+raFTv+pAk3hqrEJE7fEXCFzan4eabj5k6g+ZDdda5SuDntPVVxv06dKt+GF+LEVWU/I7alM1RSVSY5hkRIoNt+ToYf4RZqlZ0/5/wsLynCbebMzPZUCzceFeKKTwbFo+qazIU9boCe60YUbir30WkQbuKijt9QSSBEtAkA/P73mc+pElji9U3CjWj1ZMNx89mRum28b0AbfAj7ui2bvlMs3Hr0AJYuNVfadW6QVzWIRS3cdDtuAYW4U/HzII5bWVnASLgoHTceFef+kkvsk8KoRAyV1Oi4bd9bjJUrzb2w0ltSxftGlbvBkHDc/KyX+L3mA6+yO/1+KidV4nlQ2fcefDCwbl36Ta5TuKkodsw7mzyqrkmdE+KCArOwoEgUjpuKZGU6r0WncV9iLiYu6vgNlWQEijYBgJ/8JDPmWmVyKx6VIfxZgoQbIYfYOajuSJ3SOvvAa+P9ctgXlV74lOYMf6oQz42qDimq5CQM3Y5bCFjxc368DSLcJk8OeMp0Czcnx02FcGvTBrj1VuDyy+XbciJCx+33D5Vg5EhzL6x0nSLdjptdX6hwUuj3mg+8yu40TiTFcQPMi4Mv9K0q8ZTdhFWFuHJaxVQl3MQMyipJpYA33gC6CU5PFMJNBeJ9qqosBaBlj5u4ThBUuIW6pC64IP3vHHDGdEHCjZAjasdt1KjM2nE2+Nl47ybcVI3BWtFVgNiuw1Q10GTDcQtJRYWZUIyJN7+T2KIiYMqUgF+mW7iVltoL+6gyKMoiCh6FIVIvLkk/B3yZB+k6RTF23Pitjk4EWawItMruNE4kSbgBehJP6QqV7NkTeOklPW0DwKBBatpxon174KST0p/TESoZhXBTidPCp0TfLibpEoXbDjjU7kSIaBMnSLg5QsKNkEP3HjexvXfe8eUs+dl4/z6OtH3+2635wWO0s4HqmnkMHZuzGdnY4ybBEUcAjz1mPk7Bn5CaPz9EWn074WYXGhSWvDz76yWqmmWyiKGSitzlBQuAX16Tfg7sCquHzqAo3ksx2uPmJ/quAf5/00Dzf6dJmcprSGd4mt13xF24AfZ9iqoSPlFk69NVFoRH93WiGqc+RUK4iUm6ggi3wNEmTqgUbgsXmgsLc+eqazOLkHAj5NDtuImug8+O2s/G++3oiir0zXi+EfnBY7Szga4VqaiFW0wdNwYLmywucJ+YFRWZ7wtcwBrIFG7XXw8cf3yIhlzobDPYJtVxUwDbAysWUncqrA6EyKAo/q4xctzcSl8w/DpugVfZnYQ3OW56hZvd/a7S2dfNgAHpf+sYA5PmuDkJb8m+nU/SJQq3anSy/UyoaBMnVP4O558PfPmlumy+WYaEGyGHbuH2/e9bj3/6U98f87uX+wS8ht9ietpzjchXPr/SBpt5HXywujZ1Cje7Hybmwg0wxdjsW+wnZmVl5j6otWtDijYgc4J/223qN1HbhRi3YuHG9sAGEW6BMyj265f+dxSOm0/h5lb6guHXcVO2yk7CTa9ws4tucKrvFob/9//UtWWHWLReR6KJXBFuknMxPkmXX+EWKtrECQqVdISEGyGH7uQkvXub9couvzzQjMnPajIAfIGhuAG/TXuua/d8NTHaUbBsmbkJ569/VdemKHxUTngOPTTzuRiHSvJ06ZC+8XHlSmDNGmDDBmDWLMkBS4MwyUC345aNyUlI+D2wolCzC5XkCZRBUZxYVlf7/KBPJEIlAefSF0FQusqetFBJvs0kCDe7ybBK4Xb99cCxx6prT0QUbjrIhVDJdu3MuZMkLNqkrsBduElFmzhBws0REm6EHOKoryPm/NxzgXvvNTdX+8TParITEy7O12oeKGXIEOCGG9QOaDodt+HDM57avKtETep1hq69FsLEbPhw8/QrOT15eUDX5kxdxxyjoEEbROGWl6f2t9UZcqVY2PJ7YBsFV8nNcQNCZFAcO9Z6XFYW4IM+sBPLASaJTqUvgqB0lV2n46ZjIqjDcdOVVRKwd6hUCrfiYuAXv1DXnkgUwi3pjtvEiWaBb0ULohUVwOx709tiwk1JtIkTUeyZTCgk3Ag5RMctRoon7GryxInKDyVZ6BRunTqhfsDgtKceXtBWTep1hq6VOt2pRt97D/jd74D/+z9lTTY0mIPqypXAznwhVLKkRG2oUVOTurZEFAs3tz2wXo4bEDCD4sKFwNChwFFHZaa8lkUiVJLBVtWD9pWxX2WPOlRSVf+g03Gzg9+OoIJx46zHV1yhtm1NCbn4fnL7noQJN7FvvPRS4PDDlX5Ft37p4vCdFW3VRZs4sGlrm2Rk984CJNwIOXQ4bIoIu5rctzz5BRql0CjcFiwA3v06vZdnE2Xp1OsMXYPkCSdYjy+9VH37Q4YAV12lJMSlqsoUwX36mPXIRo4EHnxScNxUh2fqdNwUh0q67YH1ctyAgPPovn2Bf/8bWL5c/X5OUaTl54e6/isqzInrjBnepqDWVfakhUombY+byJFHmn2OSsrKTMdn7lxzVq+a3/3O3BN8zz3STdn1k3/4X83OrGrEvlGHUyV8x/ARKXXRJrB+B55Lr2ijbjE3xyDhRsihOhmJYvyuJv86//fmgxNO8J/ZJAbwK4XKwg017XFbsMBMqb7bSB8ERIcjdOp1hi4BMWwY8Oc/myPJb3/r/f4ssWCBqQFnz04viSGmcN5aKiTOkEWn46ZYuLntgfUSbsrqFKlAnBBKiPHycnOevWGDuXdz5Upg5oz0e0n3KrvShcBcSk6ickzi+/f33lN+bwEww4OnTdOzd/eqq4Dt26XdPKd+UkzII7WIyIgyVDIC4aYS/nfgqUcbdYu5OQYJN0KOGDtuDLfVZLZ6fFnllcDXXwOvvJKdgwyI3UqhinDDhgbgmy3qHTeWeh3IzFAl/s0InHo9CiZMMGetMRX3TBzX1ma+th3poZJLvxqodjDU6bi1aWMmJzr2WLOWoyRue2C9QiWVZVBUgSjcFEywCgrMidLw4UCP7umvqVxlz2DUKGDECHXtRSHcokpOolIALV8O/OxnpiuWVCRDvN36SbEEhtQiIiPK5CQ6hJvqBGLN+P0dpBdzcwwSboQcCRBugP1qcsbqcb9+elfGFOG0UgiEDzfkheAlU9MHri078qUFFEu9DmQKtd2wDwMKnHqdwadg15nhLGbw4tgO0XGrxEC14lin4waYiumtt4AxY5Q057QH1s1xU5pBUQUahFtWWLgQ+PBDtaGkuRQqqfJ3HTHC3EPAJ81pRXj1k3a1C6X7SZ3zCvGe0SHcNPTtWfkdcoT4z1KJeBPzUEkRfjVZ6+qxJtxWqHiCrFCJQlDsMDdvK5AKVeBTrwPAXqSv3u2B82pyoNTrjI4dgZdfBq65plUt0fHi2I6N6JP2dyUGhhfHdugWbopx2gPr5rgpzaCoAnFCGEVZCR2o3vsHJDdUUtxjnJdHGfYU4tVP2tUulO4ndQo30X3Uca0MGmQ9PuccJU16/Q52wk3peJVgSLgRciTEccsFvFao7PBaobITgmKH2YACqVAFPvU64N9xA0KkXmecdBJw112mhdgKEMWxHR9idNrf62E6k6HEsR0JE26AtQeWx27ipiWDogp0O246w195dIwjSRVu4nG2baun0HQrxE8/acD+XEv1k1H+fjqEW7t2Zmjt7NnAgw9KN+fnd7ATboDC8SrBkHAj5EiaZZVgvFao7HBboXISgnVI7/j5iWyYUAUx9boo3NwcNyBg6vVWiiiO7TCQh7OxCADwLcqwDGbIYWhxLJJA4QaYYmz/WCtj6E5YKce1ZlBUgcLkJL7aV8mRR1qPhw5V337UoZK6ygFo2l/UGvHXT9qLLKl+Msq+UZc7O3asWTO2Wzfppvz8Dk7CTdl4lWBIuBFEAvCzQuWE0wqVkxC0c9wYYUIVxDweQRw3QG8Jo1zBrS4Zz7M4GwNQiYPwBfZw512JOI7KndFA8dOPA7Nno2H5h/j3mgL7PbBxRLfjdtFF1g24cKHathcsAM4/H/jDH/Sk6cwVxy2p+xZjiN9+0onQ/WSUwi0BUVB+fge7yAdGa1/MJbuEIBKAnxUqJ9gK1ZAh1nNuQtBNuAHm5266yf88aOBAc+5RU2P+HWSPW2lpjFKvx5ggSS6/xoCM55SI44Q6bgCAnj2BG25AAYAhnm+OEbqFW4cOZg26DRuA0aO93x+EAw5QLwZ5ohBuZ54JPPCA+fiaa9S0SY6bNmSTAYfuJzt1sh73U1yGBTAH97Vrzcc6XXJF+Pkdmlx8pda+mEuOGyEHhUpGguqVQjch6CXcwoQq8GZMUMeN8MatLpkXyuqS8T9yArKz5gRRJCfp0wc44ojk7bOKIlRy/Hiz0PT112dWEA4LCTdt+OknnUIlpfrJtm2B554DLrkEeO21kI248Le/AVdfbZZKScB96ud3cBJusaqjmSVodCXkYAXEADPkhdCC6pVCNyHoJdyAYKEKlZXA3r3W337ruAGmS9fa49n94FaXzAtldcn697cejxqloEHCk1wpB6CDKBw3wCw0fdtt6kSzmFWShJsy/PSTTsJNup8880zgj3+05ksqGTQIuPtuZaVSdOPnd3ASbrGqo5klSLgRcuTnA6tXA//6F/Dzn2f7aHIW1Y6KmxB0S07CCBKq4JWcpAnuoR2tPZ7dL051ydxQWpfsl780nZkBAzJTNRJ60J2cJMmIJQaSMtsjx00rXv2knXCLXf3GHMDrd7ATbvQ7mJBwI+Rp2xb43veyfRQ5jWpHxU0IejluQUMVvJKTeNHa49n94lSXzA2ldcmKioD33wf+8x9g8GBFjRKukOPmjChiSbgRiEE/SQDw/h3EvfAA/Q4MEm5Eq6ShwdzLu3Kl+f8k1AVR6ai4CUFRuDUKjljQUAVRJNp1yE5QPHswWF0yr+tEa10y2t8WHRqFWxL7yDRIuBEO+O0ngZjWb8wRxN/hTDyH3WiHJ1CBDbAUWmzraGYJGmGJVkVVlbmHvE8fM9ScbdHr08d8PmiNsihRvVLoJATdHLcwoQqiSAziuFE8e3AqKsyJ9owZpvDliX1dMiIYGkIlk9xHpiGKWHHvWFxJuHBLiuB36ifFUEnqJ/XC/w7vlZ2JLtiOC2GG2tN4ZQ8JN6LVsGCBmTV39uzMjIrffWc+P2gQ8Pjj2Tk+P6h0VJyE4D6k7w3hhVvYUAVeJIp76JygePbwlJeb9cc2bDDrkSWmLhkRDNHdlHTc/PSRQ4aY74s9oohNQH0rAIkVbkkU/Hb95ExFyUEJ//C/w2dr2tB45QEJN6JVsGABMGGCfcFpnvp64OKLgTPOiOdAA6h1VOyEYION4yYbqsCLxGp0anm+xiVskuLZ5SkoMCfaw4eb/yf3MsdQ6Lj57SNra833xV68ieeCr6UVZxKYVTLpgp/vJ3uUxT+dfq5C45U/SLgRoUlKSERVFTBpUrDPvPhivAcalY6KmxAEgO8NK1ASqsBE4r6izrgMc/AGfoRj8HbG+yienSB8Igq3kHVDwvSRkybFd3ELQKb7mBThptFx0zFm55zgP+aYlofbTpoQ67mNSFLmZIQcJNyIwCQtJGLePO9BxQ5VA43OzlTVCpUoBHkOH1WgzPliIrHjjMtwQdkbWIURLa9RPDtBBEQUbiFTsIbpI2trgYcfDvV10SA6bp07Z+c4gqJBuOkas3NN8FdVATOe/gGuaD8fv8NVGPK3ObGe2zCSNicjJDGISNm5c6cBwNi5c2e2DyUUTzxhGEVFhgE4/1dUZL4vDtTXG0aPHu7H6/VfUZFhrF8f/LvXrzeMG2/M/P4ePcznw7QZGfwBT5mi5Svq6w1jzRrDWLnS/H99vZavIYjc5YUX0u/VqqrATcj0kWVlMb5vX301/WDfeivbR+SP559PP+6HH5ZqTueYfeON4a6bGTOk/klaSNrchpHU4ybSCaINyHEjfJPEkIjKysyY+6CEWVlOesx/2j4LTendKZ6dICRR4LjJ9JGbN5ufjyVJ3eOm0HHTOWY3NACPPBLuuB55JF5hfFHNbVRH3yRxTkbIQ8KN8EVSQyJ27VLTTpCBJic60+Ji63FdXfaOgyAIZ8RFlRDJSWT7yN275T6vDXGPW1JDJUMKTt1jdq4I/ijmNjpCGZM6JyPkIeFG+CKpeyBC7tXPwO9AkzOdKS/c9u/P3nG0MmhzOREI0XET//aBbB8ZcludfpLquIlZJUMKTt1jdq4Ift3nSVf0TVLnZIQ8JNwIT7IZEiE7kR04EOjRI/z38/gZaHKmMyXhFim0uTy7JFYwhxBqIjJ9ZFmZ+flYIgo3BcXJI0F03EIItyjG7FwQ/LrPk67om1wKUyWCE3vhtmjRIowbNw6dO3dGaWkpDj30UNx5552or68P1d7KlStxzjnnoKysDMXFxRg4cCB+9atf4TvZjVA5TDZCIlRNZAsKgMmTg3+/HV4DTU51prxw27cve8fRCkj8fsgEk3jBrEC4yfSRkyfHeG+qGCqpaa+uchQItyjG7FwQ/DrPk87om1wJUyXCEeue7IorrsC5556Ld999F6NHj8ZPfvITrF+/Htdddx2OO+447As4oXzmmWdw5JFH4plnnkH//v1x+umnIy8vD/fffz9+8IMf4Msvv9T0L0k2UYdEqJ7ITp2aXmA6DH4GmpzqTMlxi4Sc2A+ZUHJCMCsQbkC4PrKoCJgyRcnX6yEBhattUSDcohizc0Hw6zxPOqNvciVMlQhHbIXbCy+8gDlz5qBdu3b44IMP8Oqrr+LZZ5/F2rVrMWzYMCxbtgwzZ8703d4333yDiy++GA0NDZg3bx4+/PBDPPXUU1izZg0mTJiAzZs344ILLoBhGBr/VckkypAIHRPZ8nJg/nz/x2CHn4EmpzpTEm7ayZn9kAkkZwRzmAKVNoTpI+fPh7L6jlrgHbaDDsrecQRFHGhCrDpGNWYnXfDrOk+6o29yIUyVCE9shdttt90GAJg+fTqGDx/e8ny3bt3w4IMPAgDuv/9+7Ny501d79957L/bu3Yvjjz8eU7heIz8/H3/4wx/QsWNHfPTRR1iyZInCf0VuEFVIhM6JbEUF8MQTQGFhsPYB/wNNTnWmJSXWYxJuWsiZ/ZAJI6cEc02NsqZYH+k1ES8qMt9XUaHsq/WxYgVw/fXA4sXZPhL/KLCiohqzky74dZ0n3dE3uRCmSoQnlsJt48aN+OijjwAAF1xwQcbrY8aMQXl5OWpra/Hyyy/7avP55593bK9du3Y47bTTAADPPfdc2MPOWaIKidA9ka2oAL78Ejj99GDf4XegyanOlBw3reTUfsiEkVOCWaFwA8w+cu1ac39fWVn6a2Vl5vNr1yZEtAHAiBHAbbcBgwZl+0j8I2aVDEGUYYxJFvy6zpPu6JtcCFMlwhNL4bZ69WoAQJcuXTDQYTY7cuTItPe6sXv37pb9a+xzMu05UVNT4+u/JKI7JCKqiWx5OfDCC8Bjj3m7b0EHmpzqTHkFqqqmAtFCTu2HTBA5J5j797ceDx2qpMnycmDWLGDDBmDNGjPT5po15t+zZsXHLclZmpqUNBNlGGOSBb+O8xRF9E3Sw1SJ8MRSuFU2z0r69evn+J7y5tGj0scMZt26dS2PndoM0p4T7dq18/yvd+/eodvPJrpDIqKeyF50kem+qR5ocqYzveMOc3N/mzamRUEoJaf2QyaInBPMY8YAv/wl8MMfAi++qLTpggIzOcvw4eb/Y7WwlMvs2aOkmajDGJMq+HWcpyiib5IepkqEJ5Zd8e7mWUmpmM6Xo11zTZZdPmZAu7lZjlObQdprrTARM2mSe6hRUZHZQQQRPdmYyLKB5qabzAnZ7t3mStfAgeEnKawznTDB/2di2Zn27m2OuLW1QM+e2T6anCOn9kMmiJwUzPffn+0jIFRy2GFmsfDqanN/ngQ6x2wnmOBPEqrPE4u+mT07+LEEib7Jxu9LZJ9YOm5JZc+ePZ7/ffPNN9k+TCl0hURkcyKremU5yTH/aXTuTKJNEzm1HzJBkGAmYk9xMbB8uZnKNEDmbCeSHMYYJarPU1TRN/T7tj5i6bi1bx4d3faD7WkOJ+jgYyRuz422NTU16Nixo1R7Trg5hIzGxsbQ7ccFHU4Vm8iGCWOK40S2ogI45hgzocEjj5hhVoyyMnNVbcqUGDptRCREtSJLpJNr/QyRoxx8sPmfInSM2bmIyvMUZfQN/b6ti1j+pAMGDAAAVLnkX2avsfe60Z/bwL1+/XoMGzZMqj3CRGVIRC5OZKkzJdyYOhW4++5gGQ5juR8yQeRiP0MQfkliGGM2UHWeog5lpN+3dRDLUMnDDz8cALBt2zbHZCErVqwAgLQab0506NABgwcPTvucTHuEHnImsYcAbfIn7KDN5dkhV/sZgiDiB4UyEqqJpXDr27cvRo0aBQBYuHBhxuvLli1DVVUVioqKcPLJJ/tq88wzz3Rsb8+ePfjLX/4CAPiv//qvsIdNSEITWaK1kTP7IRME9TMEQURJUjNuEvEklsINAG644QYAwO23345Vq1a1PL9t2zZceumlAIBp06al7Vd7/vnnMXToUIwfPz6jvSuuuAJt27bF66+/jke4Qj6NjY249NJLUV1djVGjRuHEE0/U9U8ifEATWaK1QSuy0UP9DEEQUUPRN4QKUoZhGNk+CCcuv/xy3HfffWjTpg3Gjx+P0tJSLF26FNXV1Tj66KPx2muvoaSkpOX9jz76KC655BL0798/rXYbY9GiRTj//PPR2NiII444AgMGDMBHH32Er776CmVlZVi2bFlLSKUudu3ahY4dO2Lnzp1SiVBynaoqSuxBtD4aGmg/ZJRQP0MQBEFkmyDaINbCDQCefvppPPDAA/j4449RX1+PQYMGYcKECbjyyitRWFiY9l4v4QYAK1euxG233YZ33nkHO3fuRK9evXDqqadi5syZKBOXuzVAwi0YNJElCEI31M8QBEEQ2SKnhFuuQcKNIAiCIAiCIAggmDaI7R43giAIgiAIgiAIwoSEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwpyPYBtDYMwwAA7Nq1K8tHQhAEQRAEQRBENmGagGkEN0i4Rczu3bsBAOXl5Vk+EoIgCIIgCIIg4sDu3bvRsWNH1/ekDD/yjlBGU1MTvvnmG7Rv3x6pVCqrx1JTU4PevXsDAL755huUlpZm9XiI+EPXDBEEul6IoNA1QwSFrhkiKHG7ZgzDwO7du9G7d2/k5bnvYiPHLWLy8vLQt2/fbB8GACA/P7/lcYcOHbJ+4RLxh64ZIgh0vRBBoWuGCApdM0RQ4njNeDltDEpOQhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxh4QbQRAEQRAEQRBEzCHhRhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxhwpwEwRBEARBEARBxBxy3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3FopixYtwrhx49C5c2eUlpbi0EMPxZ133on6+vpsHxoRI+rr67F06VL8+te/xqhRo9CpUye0adMGPXv2xGmnnYbFixdn+xCJBHDttdcilUohlUrh1ltvzfbhEDGmrq4O9913H8aMGYMuXbqguLgYffv2xUknnYSnnnoq24dHxIz169dj2rRpOOigg1BSUoLi4mIMHDgQF198Mf7xj39k+/CIiPniiy8wd+5cTJw4EcOGDUNBQYHvcef111/HySefjG7duqGkpARDhw7FjTfeiD179kRw5P5JGYZhZPsgiGi54oorMGfOHBQUFOC4445Du3bt8MYbb6C6uhpjxozBkiVLUFJSku3DJGLA66+/jhNOOAEA0LNnT4wYMQKlpaX47LPP8OmnnwIApkyZgoceegipVCqbh0rElOXLl2Ps2LEwDAOGYWDWrFmYMWNGtg+LiCEbNmzAj3/8Y3z22Wfo1q0bjjzySJSWlqKqqgoff/wxTjrpJDzzzDPZPkwiJnzwwQc44YQTsHv3bvTp0wcjRoxAfn4+Pv74Y1RWVqKgoAALFy7EOeeck+1DJSKCzW9FvMade+65B1dddRVSqRTGjh2LsrIyvPPOO/j2229x0EEHYdmyZejWrZvOQ/ePQbQqnn/+eQOA0a5dO2PlypUtz2/ZssUYNmyYAcC4+uqrs3iERJxYunSpcdZZZxlvv/12xmtPPvmkkZ+fbwAwHnvssSwcHRF3ampqjCFDhhh9+vQxzjjjDAOAMWvWrGwfFhFD9u7dawwdOtQAYNx8881GXV1d2us1NTXG6tWrs3NwRCz5wQ9+YAAwpkyZkna9NDY2GjNmzDAAGJ06dTL27duXxaMkouSRRx4xrrnmGmPBggXGv//9b+PCCy/0HHdWrVplpFIpIz8/33j55Zdbnq+pqTHGjx9vADDOOuusKA7fFyTcWhmjRo0yABi33nprxmvvvPOOAcAoKioyqqurs3B0RNKYNGmSAcAYP358tg+FiCGXXXaZAcBYvHixcfHFF5NwIxyZOXNmyyScILzYunWrAcAAYHz33XcZrzc0NBglJSUGAGPVqlVZOEIiDvgZd8455xwDgPE///M/Ga+tW7fOyMvLMwAY//73v3Ueqm9oj1srYuPGjfjoo48AABdccEHG62PGjEF5eTlqa2vx8ssvR314RAI5/PDDAQBVVVVZPhIibrz11luYO3cuLrroIpx88snZPhwixtTX1+MPf/gDAODXv/51lo+GSAJFRUW+3xubEDcidtTV1bXs1bebF/fv3x9HH300AOD555+P9NicIOHWili9ejUAoEuXLhg4cKDte0aOHJn2XoJwY+3atQCAXr16ZflIiDixZ88e/OxnP0NZWRnuvffebB8OEXNWrVqFrVu3onfv3hg8eDD++c9/4je/+Q2mTp2K6dOnY/HixWhqasr2YRIxol27dhg7diwAYMaMGWmJ1ZqamnDzzTdj3759OOmkk1BeXp6twyRizpo1a7B3714A1vxXJG7z4oJsHwARHZWVlQCAfv36Ob6HdXDsvQThxLfffotHH30UAHDWWWdl92CIWHHNNdegsrISzz//PDp37pztwyFizieffAIA6Nu3L6ZPn44777wTBpc37Y477sDhhx+OF154wXX8IloXjzzyCE4++WQ8/PDDWLx4MUaOHIn8/HysXr0aGzduxIUXXoj7778/24dJxBg21+3UqRPat29v+564zYvJcWtF7N69GwBQWlrq+J527doBAHbt2hXJMRHJpKGhARMmTMDOnTsxbNgwTJ06NduHRMSEJUuWYN68efjv//5vnHHGGdk+HCIBbNu2DYC5on3HHXfg0ksvxRdffIGdO3fitddew4EHHojVq1fjlFNOoZI1RAsHHXQQ3nvvPZx44onYuHEjXnzxRTz33HOorKzE4MGDMW7cOHTo0CHbh0nEmCTOi0m4EQQRmJ///OdYunQpunbtimeeeQaFhYXZPiQiBuzcuROTJk1C9+7dMXfu3GwfDpEQmLtWX1+P888/H/fffz8OPPBAdOjQAccffzxee+01FBcX49NPP8WTTz6Z5aMl4sK7776LYcOG4dNPP8XChQvx7bffYvv27fjLX/6C+vp6TJo0CZMmTcr2YRKEUki4tSKYDVxTU+P4HlZokFapCCcuv/xyzJ8/H507d25ZDScIwKyhs2HDBtx///2UEIDwDR+iZOfe9+vXD6eccgoAs7YkQVRXV+PMM8/Eli1b8Nxzz+H8889HWVkZOnfujFNPPRWvvPIK2rZtiz/+8Y948803s324RExJ4ryY9ri1IgYMGADAPQMge429lyB4rr76atx3333o1KkTlixZ0pJVkiAAM+tWQUEBHnzwQTz44INpr33++ecAgPnz5+P1119Hz549yT0hAAAHHHCA7WO792zatCmSYyLizeLFi7FlyxYMGjQIRxxxRMbrBxxwAI444gi8+eabeP311/GjH/0oC0dJxB02162ursbu3btt97nFbV5Mwq0VwSbZ27ZtQ2VlpW1myRUrVgAAhg8fHumxEfHn2muvxe9//3t07NgRS5YscczARLRuGhoa8Pe//93x9XXr1mHdunXo379/hEdFxJnhw4cjlUrBMAxs3brVNgvg1q1bAVj7TYjWzfr16wG4uyAdO3YEAGzfvj2SYyKSx0EHHYS2bdti7969WLFiha3Aj9u8mEIlWxF9+/bFqFGjAAALFy7MeH3ZsmWoqqpCUVER1V0i0pg+fTruuusudOzYEa+99lrLdUQQPNXV1TAMw/a/iy++GAAwa9YsGIaBdevWZfdgidjQs2dPjBkzBoB9KGR9fX3LYsDo0aMjPTYinvTp0weA6eTv3Lkz4/X6+nqsWrUKABzLHxFEYWFhSxi23bz466+/xvLlywEAZ555ZqTH5gQJt1bGDTfcAAC4/fbbWzo1wHThLr30UgDAtGnTWlaqCGLGjBm444470KlTJxJtBEFo4aabbgIA/Pa3v8X777/f8nxDQwOuvvpqfPXVV2jfvj0uueSSbB0iESNOOukklJaWYt++fZg8eXLLPiTALKp85ZVXYv369WjTpg3OPvvsLB4pEXemT5+OVCqFP/3pT3jllVdant+7dy8mTZqExsZGnHXWWRg6dGgWj9IiZfDFUohWweWXX4777rsPbdq0wfjx41FaWoqlS5eiuroaRx99NF577TWUlJRk+zCJGPDSSy/h9NNPB2AWoTzkkENs39etWzfcfffdUR4akTAmTpyIxx57DLNmzcKMGTOyfThEDLn11lsxc+ZMFBQUYPTo0ejZsydWrVqFdevWoaSkBIsWLWpZHSeIJ554ApdccgkaGhrQvXt3jBo1Cm3atMGKFSuwceNG5OXl4YEHHsDPf/7zbB8qERGrVq1qMSEA4D//+Q+2bt2Kvn37tri0gLkfu1evXi1/33PPPbjqqquQSqVw7LHHokePHnjnnXewadMmHHTQQVi2bFlsEm6RcGulPP3003jggQfw8ccfo76+HoMGDcKECRNw5ZVXUmp3ooVHH33U1wp3//79KfSNcIWEG+GHJUuW4N5778UHH3yA3bt3o2fPnhg/fjyuu+662Kx4E/HhH//4B+699168/fbb2LhxIwzDQK9evTBmzBhcdtllFFrbynjrrbd8JaKprKzMSDby+uuv43e/+x0+/PBD1NTUoF+/fjj77LNx/fXXOxbnzgYk3AiCIAiCIAiCIGIO7XEjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgiJwglUoF/m/cuHEAgHHjxiGVSuGtt97K6r9BBXPmzEEqlcKzzz4buo2dO3eia9euOOKII2AYhsKjIwiCIMJSkO0DIAiCIAgVXHzxxRnPffvtt3j11VcdXx86dKj244qSLVu24Oabb8aoUaNw1llnhW6nY8eOuP766/HrX/8ajz/+uO25IwiCIKIlZdBSGkEQBJGjvPXWW/jRj34EAK7O0fr167F3717069cPbdu2jerwlDNt2jQ88MADWLx4MU4++WSptvbv349+/fqhoKAAlZWVKCoqUnSUBEEQRBgoVJIgCIJo9fTr1w9Dhw5NtGirrq7Go48+ij59+uAnP/mJdHvFxcW44IILsGnTJjz11FMKjpAgCIKQgYQbQRAE0epx2uM2ceJEpFIpPProo/jiiy9w3nnnoUePHigtLcWoUaPw4osvtrz3gw8+wGmnnYbu3bujpKQERx11FJYuXer4nfv27cPvfvc7HHnkkejUqROKi4tx0EEH4dprr8W2bdsC/xv+9Kc/oaamBhdeeCHy8jKH99raWtx1110YMWIE2rdvj8LCQvTs2ROjRo3Ctddei+3bt2d8ZuLEiQCABx54IPDxEARBEGoh4UYQBEEQHqxatQojRozAP/7xD4wfPx6HHnooVqxYgTPPPBPPPPMMXnjhBYwdOxYbNmzA+PHjcdBBB+H999/HT37yEyxbtiyjvW+++QZHHHEErrnmGqxduxajRo3CySef3CKuRo4cia+//jrQMb7wwgsAgOOPPz7jtaamJpxyyim49tpr8eWXX2Ls2LE4++yzMWzYMGzZsgV33XUX1q9fn/G5ww47DN27d8eHH36ITZs2BToegiAIQjEGQRAEQeQob775pgHA8Brujj32WAOA8eabb6Y9f/HFF7d8/tZbbzWamppaXrvvvvsMAEbfvn2Nzp07G48//njaZ6+44goDgHH88cenPd/U1GQcffTRBgBj0qRJxq5du1peq6+vN66++moDgPGjH/3I979z7969RmFhoZGXl5fWHuPvf/+7AcA4/PDDbV//6KOPjK1bt9q2fdpppxkAjD//+c++j4cgCIJQDzluBEEQBOHB6NGjccMNNyCVSrU894tf/AJdunTBhg0bcPzxx+PCCy9M+8yMGTMAAG+//Tbq6+tbnn/11Vfx7rvv4rDDDsNDDz2E9u3bt7xWUFCAO++8E9///vfx5ptv4tNPP/V1fP/6179QV1eHvn37prXH2Lx5MwBg7Nixtq+PHDkSXbt2tW37kEMOAWC6jgRBEET2IOFGEARBEB6cdNJJaaINMEXWwIEDAcA2g2PXrl3RpUsX1NXVpe1ZW7x4MQDgrLPOQkFBZlWevLw8HHPMMQCA5cuX+zo+JsycxNfw4cORn5+PP/7xj3jggQcChT2yNtl3EARBENmBhBtBEARBeNCvXz/b59u1a+f6OnO39u/f3/LcV199BQCYOXOmY2HwBx98EIBZl80PO3fuBAB06NDB9vVBgwbhnnvuQX19PaZNm4bevXtjwIABOP/887FgwQLU1dU5ts3a3LFjh69jIQiCIPRABbgJgiAIwgO7LI1BXudpamoCAIwZMwaDBg1yfS8LU/SiU6dOAIBdu3Y5vudXv/oVzj33XLz00ktYtmwZli1bhieffBJPPvkkbrrpJrzzzjvo1atXxueYKOzcubOvYyEIgiD0QMKNIAiCICKkvLwcAHD66afjmmuuUdJmjx49AMCzjEBZWRkmT56MyZMnAwA+//xz/OxnP8N7772H6dOn47HHHsv4DGuzrKxMybESBEEQ4aBQSYIgCIKIkJNOOgkAsGjRIhiGoaTNQw45BIWFhdiwYQN2797t+3NDhw7FddddBwD4+OOPbd/DEqSMGDFC+jgJgiCI8JBwIwiCIIgIOf300zFq1Ch8+OGHuOSSS2z3se3YsQMPPfQQGhoafLVZUlKCI488Ek1NTfjggw8yXn/jjTfw8ssvp2W3BADDMPDXv/4VANC/f3/btt977z0AwHHHHefrWAiCIAg9UKgkQRAEQURIXl4eXnjhBZxyyil47LHH8Mwzz+DQQw9Fv379UFdXh6+++gr//Oc/0djYiIkTJ9pmnrTjjDPOwNtvv43XXnstowj3J598giuvvBIdOnTA8OHD0bt3b+zbtw+rVq3C119/jY4dO+KWW27JaHP16tXYtm0bRo8ebbv/jSAIgogOctwIgiAIImJ69+6N999/Hw899BBGjx6NL774As888wyWLVsGAPj5z3+OV199FcXFxb7bvOSSS1BaWoonnngCjY2Naa/99Kc/xc0334xRo0bhq6++wnPPPYe33noLHTt2xPTp0/Hpp5/isMMOy2jz0UcfBQD88pe/DP1vJQiCINSQMlQF2BMEQRAEkVWmTZuGBx54AC+99BJ++tOfSrW1f/9+lJeXo02bNqisrERRUZGioyQIgiDCQI4bQRAEQeQIN910Ezp16mQb9hiUuXPnYuvWrfjtb39Loo0gCCIGkONGEARBEDnEnDlzcMUVV2DRokU4++yzQ7Wxc+dOHHDAARg8eDDef/99pFIpxUdJEARBBIWEG0EQBEEQBEEQRMyhUEmCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiY8/8BrlIMUgEQKCQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.scatter(lc.time, lc.counts, lw=2, color='blue',label='lc')\n", + "ax.plot(t0, y0, lw=2, color='red',label='source of lc')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `LombScarglePowerspectrum` class to create a `LombScarglePowerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the power spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lps = LombScarglePowerspectrum(\n", + " lc,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has only real component, and imaginary component is zero." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 15.49526224+0.j 120.05686691+0.j 96.589673 +0.j 127.2231466 +0.j\n", + " 30.42053746+0.j]\n" + ] + } + ], + "source": [ + "print(lps.freq[0:5])\n", + "print(lps.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters\n", + "\n", + "- `data`: This parameter allows you to provide the light curve data to be Fourier-transformed. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `norm`: The `norm` parameter defines the normalization of the power spectrum. It accepts string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: The `power_type` parameter allows you to specify the type of power spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the power spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "## Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the power spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the normalized squared absolute values of Fourier amplitudes.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged powers in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points in the light curve.\n", + "\n", + "- `nphots`: The `nphots` attribute is a float representing the total number of photons in the light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQEAAAIfCAYAAADAARoJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yT5frH8e/TQlt2y8YOygYZIrvIKFsQFJkuQMAicgAVOIgyj4oCylBBZRQREBUQQRGQLchQpgtkVwRk792R3x/8GpM2bZM2zRPK5/168TrNk7vpFY+S5pvrvi/DYrFYBAAAAAAAACDL8jG7AAAAAAAAAACZixAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOKymV0ApISEBJ04cUJ58uSRYRhmlwMAdz2LxaIrV67ovvvuk48Pn3fxOgMA7sXrTHK81gCAe2XGaw0hoBc4ceKEQkNDzS4DALKcv//+WyEhIWaXYTpeZwAgc/A68y9eawAgc7jztYYQ0AvkyZNH0p3/Y/PmzWtyNQBw97t8+bJCQ0Otf7/e63idAQD34nUmOV5rAMC9MuO1hhDQCyS2y+fNm5cXTABwI7Yj3cHrDABkDl5n/sVrDQBkDne+1nCABQAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWVw2swsA4Jzbt2/r4sWLslgsbh0RDtwNLBaLJMnf31958+aVjw+fYQEAAACAKwgBgbtAQkKCzp49q6JFixJ+4J5lsVh08+ZNnTp1SkWKFOG/BQAAAABwAe+ggLvAhQsXVKBAAUIP3NMMw1COHDkUGBioy5cvm10OAAAAANxVSBSAu0BcXJz8/f3NLgPwCgEBAbp165bZZQAAAADAXYUQEABwV+FMTAAAAABwHSEgcBcg9ADs8d8EAAAAALiGEBAAAAAAAADI4ggBAcAF4eHhioyMtLsWGRmp8PBwr6gFAAAAAABHCAEBeKULFy4oR44cMgxDc+bMMbscl82aNUuTJk0yuwwAAAAAACQRAgLwUp999plu3bqlEiVKaObMmWaXk6qVK1dq3759dtcIAQEAAAAA3oQQEHCDv3+/pGkdVmrV+3vNLiXLiI6OVqNGjfTSSy/phx9+0OHDh80uKUV+fn7y9/c3uwwAWd2GDdLGjWZXAQAAgLsUISDgBvM6LdaJrzZr04tf6vD282aXc9fbuXOndu/erW7duumpp55StmzZHHYDGoahZ599VmvXrlVERIRy5sypkJAQjR07VtKdLcU9e/ZU4cKFlTNnTrVu3VonTpywe4xRo0bJMAz98ccf6t+/v4oWLaocOXKodu3aWrNmjVP1Jj0TMDw8XD/88IP++usvGYZh/bN+/Xrr/Y7O8lu/fr0Mw9CsWbPsrv/999/q1KmT8uXLp7x586pNmzY6dOhQivWsXr1azZs3V2BgoAICAlSlShV9/PHHTj0XAF7qp5+khg2lBg2k7dvNrgYAAAB3IUJAwA1uHjtj/frv3edMrCRriI6OVu7cudW+fXsVLFhQrVu31qeffqqEhIRka3ft2qWOHTsqMjJS48ePV5kyZTRkyBC99957atKkiS5cuKBRo0apd+/eWrFihbp27erwZ3bt2lVbt27VK6+8oldffVXHjh3Tww8/rNWrV7tc/6RJk1S+fHkVLFhQc+bMsf6pUKGCy4918eJFNWjQQIsWLVKXLl00ZswY5cyZU40aNdK1a9eSrZ82bZqaN2+uq1evaujQoZowYYJKlSqlF154Qf/9739d/vkAvIRt8PfLL+bVAQAAgLtWNrMLALKE2DjrlwnxFo/8yIQE6bwXNx3mzy/5pONjhps3b2revHlq3769cuXKJUnq1q2bvv76a33//fdq2bKl3frffvtNW7ZsUe3atSVJPXv2VPHixfXyyy+rb9++ev/99+3WT5w4Ufv27VO5cuXsrmfLlk0bN26Un5+fJKlHjx4qX768+vXrp717Xdvm3bZtW02aNEk3btzQM88849L3JjVu3DjFxMRo5syZ6t69uySpT58+eumll/Tee+/Zrf3nn3/Uv39/PfHEE5o3b571ep8+ffTiiy9qwoQJeuGFF1SyZMkM1QTABDdv/vt1fLx5dQAAAOCuRScg4AaWOM+HgOfPS4UKee+f9AaUixYt0sWLF9WtWzfrtVatWqlQoUIOtwRHRERYA0Dpzvl8tWrVksViUf/+/e3W1q9fX5J04MCBZI/z8ssvWwNASQoJCdHTTz+tP//80+UQ0J0WL16sIkWKJOtgfOWVV5KtXbhwoW7duqWePXvq7Nmzdn/atGmjhISEdHU2AvACtiGgg65oAAAAIC10AgIZZEmwSDYhoCXBMyFgVhUdHa1ChQopJCREBw8etF5v3ry5FixYoLNnz6pgwYLW64662oKCgiRJJUqUcHj93LnkW7YdbdW9//77JUmHDx9O11Zedzh8+LBq1qwpX19fu+vFihVTYGCg3bXEsLJp06YpPt6pU6fcXiMADyAEBAAAQAYRAgIZdPuG/bashDjenKXXkSNHtG7dOlksFpUtW9bhmrlz5+qll16y3k4ajtlK6T6Lxdyg1jAMh9fjbMLk9Eh8XrNnz1axYsUcrmErMHCXYjswAAAAMogQEMigG1fsgxtPdQLmzy+dOZP2OrPkz+/693zyySeyWCyaPn16si43SRo2bJhmzpxpFwK6y969e/XAAw/YXduzZ4+k9AVnKQV9kpQ/f36dd7Bf+vDhw8mulSxZUgcOHFB8fLxdqPnPP//o4sWLdmvLlCkjSSpYsGCq3YAA7kI3bvz7NZ2AAAAASAdCQCCDbl2zDwE9dSagj49ksyv2rpeQkKBZs2apcuXKeu655xyu+eOPPzRq1Cht27ZNNWvWdOvPnzhxotq1a2c9F/DYsWOaN2+eypUrl66twLlz59aFCxdksViSBYJly5bVV199pePHjys4OFiSdOvWLU2ZMiXZ4zz22GMaM2aMZs+ebR0MIkljx45NtrZTp0567bXXNHLkSEVGRipHjhx291+6dEkBAQHy9/d3+fkAMBmdgAAAAMggQkAgg8wKAbOalStX6u+//1bPnj1TXNO+fXuNGjVK0dHRbg8B4+LiVL9+fT355JO6cuWKPv74Y924cSPZdGFn1alTR0uXLlXfvn1Vt25d+fr6qnHjxipcuLD69u2rL774Qk2bNlXv3r11+/ZtzZkzRzlz5kz2OIMHD9a8efMUFRWlHTt2qGLFilq/fr22bNlidzaidGeYyUcffaTnnntOFSpUUJcuXVS8eHGdOXNGv/32mxYvXqw9e/YoPDw8Xc8JgIk4ExAAAAAZRAgIZFDSENASz5uz9IiOjpYktWvXLsU1lSpVUtmyZfXFF19o4sSJbv35s2fP1scff6wxY8bo4sWLqlKlimbNmqVmzZql6/FefvllHT58WAsXLtTHH3+shIQErVu3ToULF9ZDDz2kWbNm6a233tJ///tfBQcH64UXXlCNGjXUpEkTu8cJCgrSxo0bNWDAAM2ePVuS1LBhQ61bty7ZWknq3r27ypYtq3fffVdTp07VxYsXVbBgQZUrV05vvPGGihYtmq7nA8BkdAICAAAggwgBgQyiE9A9FixY4NS6ffv2Wb9OacDHrFmzNGvWrGTXIyMjU/yeXLly6YMPPtAHH3yQ6s+PiYlJdm39+vXJruXMmdMabDrSrVs3devWLdl1R/WFhYVp4cKFTtUiSQ899JAeeuihFH82gLsQnYAAAADIIB+zCwDudreuxtrdJgQEALid7WAQOgEBAACQDoSAQAbdvm7OdGAAwD2ETkAAAABkECEgkEGEgACATEcICAAAgAwiBAQyKPZGkjMB43hzdjcZNWqULBYLE3MBeDcGgwAAACCDCAGBDEo2HZhOQACAu9meCUgnIAAAANKBEBDIoGSdgAwGAQC4G52AAAAAyCBCQCCD4m7SCQgAyGScCQgAAIAMIgQEMihpJ6AlnjdnAAA3oxMQAAAAGUQICGQQnYAAgExlsdAJCAAAgAwjBAQyKPZ6rN3tBEJAAIA73b59JwhMRAgIAACAdCAEBDIo/lbS7cCEgAAAN7LtApTYDgwAAIB0IQQEMojtwACATJU0BKQTEAAAAOlACAhkUNJOwIQ43pzd7davXy/DMDRr1iyzSwEAOgEBAADgFoSAQAYl2w5MJ2C6JYZvtn9y586tatWqaeLEiYqLi0v7QTxs1qxZdvX6+PgoX758qlevnmbPnp1pP3PSpEmZ8tgAvBCdgAAAAHCDbGYXANzt4ggB3e7JJ59Uq1atZLFYdPLkSc2ePVsDBgzQ3r17NW3aNLPLc6h///6qWbOmEhISFBMTo+nTp6tbt246duyYXnvtNbf+rFmzZikmJkYvvfSSWx8XgJe6ccP+Np2AAAAASAdCQCCDEggB3a5atWp65plnrLf79Omj8uXLa8aMGRo9erQKFSpkYnWO1a9fXx06dLDe7t69u8qVK6exY8dq8ODBypYtY3/dWiwWXbt2Tblz585oqQDuNnQCAgAAwA3YDgxkUMLtpNOBeXPmbrly5VKdOnVksVh06NAhu/v++ecfvfDCCwoLC5Ofn5/uu+8+9erVS6dPn7Zbd+LECQ0cOFBVq1ZVUFCQAgICdP/992vs2LGKz4SumtDQUN1///26fPmyzpw5oytXrmjYsGGqXbu2ChYsKH9/f5UuXVpDhgzR9evX7b7X9kzCKVOm6P7771dAQIDeffddhYeH64cfftBff/1ltw15/fr1bn8OALwEZwICAADADegEBDIoWQhIJ2CmSAz/8ufPb7129OhRRURE6Pbt2+rZs6dKlSqlgwcP6qOPPtK6deu0fft25cuXT5L066+/atGiRXr88cdVqlQpxcbGasWKFRoyZIgOHz6sqVOnurXeW7du6ejRo8qWLZsCAwP1119/acaMGWrfvr2eeuopZcuWTT/88IPGjRunXbt26fvvv0/2GJMmTdK5c+cUFRWlokWLKjQ0VFWrVtWrr76qs2fPauLEida1FSpUcGv9ALwInYAAAABwA0JAIIMSbsXa3fZYCGixJD8nypvkyCEZRrq+9fr16zp79qz1TMCPP/5Yu3btUq1atVS2bFnrun79+ik2Nla7du1SSEiI9XrHjh1Vp04dTZw4UaNGjZIkNWzYUIcPH5ZhU9NLL72kLl26aMaMGRo1apSKFSuWvucq6cqVKzp79qwSEhL0119/afTo0Tpz5oyeeOIJ5ciRQyVLltTff/+t7NmzW7/nP//5j4YPH64333xTP//8s2rVqmX3mEePHtWff/6pwoUL212fNGmSbty4YbdlGkAWRggIAAAAN/DaEPDtt9/Wzp07tWPHDh05ckTFixdXTExMiut/+uknDR06VD/99JMMw1DdunU1ZswYVa1aNdnaEydOaMiQIVq+fLmuXr2qihUr6pVXXlHHjh2Trb1165ZGjx6tOXPm6MSJEwoJCVH37t31yiuv2L2Zx73LEmvfCZgQ76EQ8MYNadw4z/ys9Bg8WMqZM13fOnLkSI0cOdLuWrt27TRlyhTr7UuXLmnp0qXq3r27AgICdPbsWet94eHhKl26tFauXGkNAXPkyGG9//bt27p69aoSEhLUokULzZ07V9u3b1ebNm3SVa8k9ejRw+529uzZ1a1bN02ePFmS5OfnZ70vLi5OV65cUXx8vJo2bao333xTP/30U7IQsGvXrskCQAD3IAaDAAAAwA28NgR87bXXlD9/flWrVk0XL15Mde3WrVsVGRmp4OBgvf7665KkyZMnq379+tq8ebMqV65sXXv+/HnVq1dPp0+f1oABAxQSEqJ58+apU6dOmjlzprp372732J07d9aSJUvUo0cPRUREaMuWLRo+fLgOHjyoWbNmuftp4y6UNARkO3DG9erVSx07dlRsbKx+++03jR07VseOHVNAQIB1zb59+5SQkKDo6GhFR0c7fJySJUtav46Li9OYMWM0e/ZsHTx4UBaL/f9PFy5cyFDNI0aMUP369eXj46M8efKofPnyypMnj92aDz/8UB9//LH++OMPJSTp5HH08227HgHcw+gEBAAAgBt4bQh46NAh6xv4SpUq6erVqymu7d+/v/z8/LRhwwYFBwdLkjp16qQKFSpo4MCBWrlypXXtmDFjdOTIEX3zzTfWrp+ePXsqIiJCgwYNUseOHa3TN5ctW6YlS5ZowIABGj9+vCTpueeeU2BgoCZMmKBevXqpbt26mfL8cfdIFgIyGCTDypQpo6ZNm0qSWrZsqXr16qlevXrq3bu3vvjiC0myhnjPPPOMunXr5vBxbLv/BgwYoA8++ECdO3fW0KFDVbhwYWXPnl07d+7UK6+8kiyUc1XlypWtNTsyYcIEDRw4UM2bN1f//v113333yc/PT8ePH9ezzz7r8OfnTGcnJYAshsEgAAAAcAOvDQFtO3hSc/DgQW3btk09evSwBoCSFBwcrI4dO+qTTz7RyZMnVbRoUUnSvHnzVKpUKbttf76+vurXr5+6du2qZcuWqVOnTta10p1zw2y99NJLmjBhgubOnUsIiOQhoMVDnYA5ctzZcuutbAK4jKpbt666dOmi2bNnq3///qpbt65Kly4twzB0+/btVMO3RHPmzFGDBg2sIWKigwcPuq3OtH5+eHi4li9fLh+ffwezr1ixwuXHMtJ51iKAuxSdgAAAAHADn7SXeLdt27ZJkiIiIpLdV6dOHVksFu3YsUOS9M8//+j48eOqU6eOw7W2j5f4dXBwsEJDQ+3WhoaG6r777rNbi3tX8k5AD4WAhnHnzD1v/ePmoGr48OHy9fXViBEjJEkFChRQq1attGjRIm3dujXZeovFojNnzlhv+/r6Jgtor127ZjdhNzP5+vrKMAy7GhK3KLsqd+7cunDhgucCZwDm4kxAAAAAuIHXdgI668SJE5Jk1wWYKPHa8ePHXV6buP7+++93+HODg4N17NixdNWcdAJpRrchwjyWBIsUx5mAnlC6dGk98cQT+uyzz7Rx40bVr19fH330kerVq6cGDRqoa9euevDBB5WQkKDDhw9ryZIl6tq1q3UwSIcOHTR16lR17txZTZs21alTpzRz5kwVKFDAI/V36NBBr776qlq2bKl27drp8uXLmjdvXroGDNWpU0dLly5V3759VbduXfn6+qpx48YMEYEVrzNZDJ2AALwQrzUAcPe560PA69evS5L8/f2T3Zc4RCBxjStrE792tDZxve1a3JtibyVIsg/9CAEzz9ChQ/X5559rxIgRWrdunUJDQ7Vjxw6NHTtWS5Ys0dy5cxUQEKDQ0FC1adPGurVfunMmX548eTR//nwtWbJEoaGh6tWrl2rWrOnUduKM+u9//yuLxaLo6Gi9+OKLKlq0qDp37qzu3bun+GFDSl5++WUdPnxYCxcu1Mcff6yEhAStW7eOEBDIqjgTEAAAAG5w14eAiQfn37p1K9l9N///l+bENa6sTfza0drE9ek9tP+ff/6xu3358mXly5cvXY8Fc928Gpf8Ip+CpltkZGSqW1wrVKig+CRvfgsWLKh33nlH77zzTqqPnTNnzhTXJf2ZadVh69lnn9Wzzz6b5jpfX1+9+uqrevXVVzP883PmzJniRGRA4nUmy6ETEIAX4rUGAO4+d/2ZgPfdd58k+228iRKvJW71dWVt4npHaxPXO9pWjHuLoxCQTkAAgFsRAgIAAMAN7voQsGbNmpKkLVu2JLtv69atMgxD1atXl3Tn3Irg4GCHQwQSr9WoUcPusY8fP66///7bbu3ff/+tEydO2K3Fvenmldhk1xIIAQEA7sRgEAAAALjBXR8Cli5dWjVq1NCCBQusgz+kO0M9FixYoMaNG6to0aLW608++aQOHTqkb7/91notPj5eH3zwgQIDA9WqVSu7tZI0adIku5+ZePvpp5/OhGeEu8nt6462AxMCAgDciE5AAAAAuIHXngk4Z84c/fXXX5KkM2fO6Pbt23rzzTclScWLF1eXLl2sa9977z01atRI9evXV79+/SRJH3zwgRISEjR+/Hi7xx0yZIgWLFigp556SgMGDFBwcLA+//xzbdu2TTNmzFCePHmsax955BG1bt1aEyZM0KVLlxQREaEtW7YoOjpazzzzjOrVq5fZ/xjg5W5dc7AdOJ43ZwAAN2IwCAAAANzAa0PA6Oho/fDDD3bXhg8fLklq2LChXQhYt25drV+/XsOGDdOwYcNkGIbq1q2rBQsW6IEHHrB7jAIFCmjTpk0aMmSIpkyZoqtXr+r+++/XF198oc6dOyerY8GCBXrzzTc1d+5czZkzR8HBwXr99dc1ZMiQTHjWuNs46gR0dqAEAABOoRMQAAAAbuC1IeD69etdWh8REaE1a9Y4tTY4OFhz5sxxam1AQIDefPNNaxciYMtxJyAhIADAjegEBAAAgBvc9WcCAmZyeCYgnYAAAHdKOhiETkAAAACkAyEgkAEOtwMzGAQA4E5sBwYAAIAbEAICGRB7w1EIyJszAIAbsR0YAAAAbuC1ZwICdwNHIaDoBAQAuBOdgADc4OrVqzp16pQuXLigoKAgFSlSRLlz5za7LACABxECAhlw+1pssmtsBwYAuFXSMwHpBATgpO+//16LFy/WmjVrdOjQoWT3ly5dWo0bN1bbtm3VokULEyoEAHgSISCQAXE3ORMQAJDJ6AQE4IL4+Hh99NFHev/993Xo0CFZbIbW5c6dW3nz5tWlS5d07do1HThwQAcOHNC0adNUunRp9e/fX71795avr6+JzwAAkFk4ExDIAMfbgXlzdq8xDEPPPvus2WUAyIosFs4EBOC0FStWqFKlSurfv7/++usvPfroo5o8ebJ27typW7du6fLlyzp27JiuXLmimzdvavv27Xr//ffVunVrxcTEqH///qpcubK+//57s58KACATEAICGUAnoHutX79ehmHo3XffNbuUe9aoUaNkGIb1j4+Pj/Lnz69mzZpp6dKlmfIzJ02apFmzZmXKYwN3vbi45B8u8WETgBS0atVKFy9e1Lvvvqvjx4/r66+/Vp8+fVS1alVlz57dbq2fn5+qVaumvn37asmSJTp+/LjGjRunc+fOqVWrViY9AwBAZmI7MJAB8bcIASHduHEjy22bef3111WiRAnFxcVp//79mjp1qtq0aaPPPvtMTz31lFt/1qRJkxQeHk43JeBI0i5AiU5AACl644039PLLLytnzpwuf2/BggU1cOBAvfDCC5o4cWImVAcAMBshIJABDrcDWwgB7zUBAQGm/vzY2FjFx8e7tY6WLVuqRo0a1tvt27dXjRo1NHr0aLeEgPHx8bp161a63qQA95SkQ0EkOgEBpGjo0KEZfoycOXO65XEAAN6H7cBABjjsBCQEdKuYmBgZhqFRo0Zp/vz5qlq1qnLkyKHSpUvrk08+kSQdPXpUHTp0UP78+ZUnTx4988wzunLlit3j/Pnnn+rTp48qVqyoPHnyKGfOnKpevbpmzJjh8Of++uuvat68uXLlyqUCBQqoW7duOnv2rMPz/1K7tmXLFjVs2ND6OM8995yuXr2a7toSt+v+8ccfGjBggEJCQhQQEKANGzaoUKFCeuihhxw+n3feeUeGYWjDhg2p/eNOUfXq1VWgQAEdPHhQknTixAkNHDhQVatWVVBQkAICAnT//fdr7Nixik/SpTRr1iwZhqHVq1frjTfeUKlSpRQQEKD58+fLMAz99ddf+uGHH+y2IcfExKSrTiDLcdQJSAgIAACAdKATEMgARyGg4nlzlhmWLl2qjz/+WH369FH+/PkVHR2tHj16yM/PT6+99poaN26st956S9u2bdPMmTMVEBBgF6KtX79eGzZsUOvWrVWiRAldu3ZNCxYsUFRUlM6cOaNXX33VuvbAgQOqX7++EhIS1L9/fwUHB2vZsmV6+OGHXap59+7dat26tbp3766nnnpK69evV3R0tHx8fDRt2rR01Zbo6aefVo4cOTRw4EAZhqHixYurW7duGj9+vPbt26dy5crZrZ85c6bKli2rBg0auPQcEp09e1YXLlxQ0aJFJd0JSRctWqTHH39cpUqVUmxsrFasWKEhQ4bo8OHDmjp1arLHGDRokGJjYxUVFaW8efOqXLlymjNnjl5++WUVLFjQruugUKFC6aoTyHLYDgwgA3x9ffXss88qOjo61XVRUVH65JNPFBfn4HdbAECWQQgIZIDDENBDnYAWi0U34hxsE/MSObLlkGEYbnu8vXv3as+ePSpevLgkqXPnzgoNDVWXLl307rvvasCAAZKk3r1768KFC5o9e7YmTZqk3LlzS5K6dOmi3r172z3myy+/rMaNG2vMmDEaNGiQ9cDsoUOH6vLly/rxxx+tnXV9+/ZV586dtWPHDqdr/vXXX7VlyxbVrl1bkvT888/r8uXL+uSTTzRhwoR01ZYoMDBQq1evVrZs//413qtXL40fP17R0dEaN26c9fqmTZv0559/auzYsU7XfunSJZ09e9Z6JuBrr72mhIQEde3aVZLUsGFDHT582O7/45deekldunTRjBkzNGrUKBUrVszuMW/cuKFdu3bZbQGOiIjQsGHDVKRIET3zzDNO1wfcM+gEBJABFovF6V0q7GYBgKyPEBDIgITb5g0GuRF3Q+M2jUt7oUkGPzRYObO777y3tm3bWgNA6U6nWLly5fTHH3/oP//5j93a+vXr6+uvv1ZMTIwqVaokScqVK5f1/ps3b+ratWuyWCxq3ry5fvjhB/3555+qXLmy4uPjtWzZMtWqVSvZ1tqBAwdq/vz5TtccERFhDQATNW7cWMuWLUtXbbZeeukluwBQksqWLauGDRtq9uzZeuutt6z3R0dHK1u2bOrWrZvTtTdt2tTuds6cOTVgwAC98cYbkqQcOXJY77t9+7auXr2qhIQEtWjRQnPnztX27dvVpk0bu8d44YUXOAMQcBWdgAA84Pr168k+cAQAZD2EgEAGxN+MTXaNT1EzR8mSJZNdCwoKUrFixeTv75/suiSdO3fOeu3q1avWcwX//vvvZI914cIFSdKZM2d07dq1ZNtpJTm85mrNBQoUSHdttsqWLevwZ/bq1UtPP/20li5dqrZt2+rKlSuaP3++WrdurSJFijhd+5QpU1S2bFn5+PgoMDBQFSpUsAv+4uLiNGbMGM2ePVsHDx5M9u+9KzUDSAWDQQBksosXL+rHH39M1sEPAMh6CAGBDHDUCcibs8zh6+vr0nXJPpB96qmntHTpUvXq1UsNGjRQgQIF5Ovrq2XLlmnixIlKyIT/3zKztpQ66tq3b6/+/fsrOjpabdu21Zdffqlr167pueeec6n2WrVq2U0HTmrAgAH64IMP1LlzZw0dOlSFCxdW9uzZtXPnTr3yyisu1QwgFXQCAnBR0g8hFy5cqPXr1ztcGxcXp5MnTyo+Pl7PP/+8B6oDAJiJEBDIAEusoxDQM52AObLl0OCHBnvkZ6VHjmw50l7kIRcvXtTSpUvVpUsXffzxx3b3rV692u52oUKFlCtXLu3bty/Z4zi65snanOHv76+uXbvq/fff14kTJxQdHa3g4GCXh5qkZc6cOWrQoIG++OILu+uJ04Nd4c6zI4EshzMBAbgoJibG+rVhGLp69aquXr2a4no/Pz+1bdtWb731lgeqAwCYiRAQyACHnYAe2g5sGIZbz9zLyhI78pJuWf3nn3/sJggnrm3ZsqUWLlyoTZs22Z0LOH78eFNrc1ZUVJQmTpyoV155RVu3btXQoUNT7UpMD19f32Q1X7t2TRMnTnT5sXLnzq3z58+7qzQga6ETEICLjhw5IunO7xYlS5ZUhw4d9M477zhc6+fnp0KFCiU7ZxgAkDXxtz2QAWYOBoHz8uTJo+bNm2vu3LnKkSOHatasqb/++ktTp05ViRIl7M7nk6Q333xT33//vR5++GH17dtXISEh+u6773TmzBlJ7u1cc7U2Z1SoUEH16tXT3LlzZRiGevTo4bZ6E3Xo0EFTp05V586d1bRpU506dUozZ860nnnoijp16ig6OlrDhw9XhQoV5OPjozZt2tgNTAHuWXQCAnCR7SC1bt26qX79+nbXAAD3LkJAIAMcbgdmMIhXmjt3roYMGaJvv/1Wn376qcqUKaPRo0cre/bs6t69u93acuXKacOGDRo0aJDee+89BQQEqHXr1poyZYpKlixpNyDD07U5q1evXvrxxx/VqFEjhwNKMmrChAnKkyeP5s+fryVLlig0NFS9evVSzZo1k00WTsvo0aN1/vx5TZkyRRcvXpTFYtGRI0cIAQGJwSAAMuSTTz4xuwQAgBcxLIwyNd3ly5eVL18+Xbp0SXnz5jW7HLjgf7nGyXL9ut01n3x5NeLiALf+nNOnT6tw4cJufUy4bseOHapRo4befvttDRkyxOxyUjV//nx17txZ8+bN05NPPml2OW6X1n8T/L1qj38ed7FJk6SXX7a/5uPDlmDAZPy9mhz/TADAvTLj71U6AYEMoBMw67px44Zdx5/FYtG4ceMkSc2aNTOrLKdNmTJFBQsWVLt27cwuBUBGsB0YQAZduXJFH374oVavXq3jx4/rpqO/V3TnuJNDhw55uDoAgCcRAgIZEceZgFlV1apV1bhxY1WuXFnXrl3Tt99+q40bN6pz586qXr262eU5dPr0aa1Zs0YbN27Uhg0b9Pbbb8vf39/ssgBkRApv1pWQcKcjEABSceLECdWrV09//fVXsoFeSbnzzGMAgHciBATSKfZmvGRx0I1BJ2CW8Nhjj+nbb7/VnDlzFBcXpxIlSuiNN97QK6+8YnZpKdqzZ4+eeuopBQYGqnfv3ho4cKDZJQHIKEdnAkqEgACc8tprrykmJkZVq1bVkCFDVKFCBbbqAsA9jBAQSKebVx1sBZbYppVFjBs3zrr9924RGRmZ5qf8AO4ytp2A/v7SrVt3vo6Pl7LxaxyA1H3//fcqUqSI1q1bp3z58pldDgDAZHyEDKRTiiEgIQwAwF1sQ0Dbidl84ATACRcuXFBERAQBIABAEiEgkG63rhECAgAymW0ImDPnv18TAgJwQmhoqBL4+wIA8P8IAYF0SikEZDAIAMBtUuoEjI/3fC0A7jodOnTQxo0bde3aNbNLAQB4AUJAIJ082QnIOW+APf6bwD3DdjAI24EBuGj48OEKDQ1Vp06ddPr0abPLAQCYjBOlgXRKOQTMnDdmCQkJ8mESJKD4+HgZhmF2GYBnpLQdmE5AAE7o27evSpUqpa+//lqlS5dWjRo1FBYW5vB3SsMwFB0dbUKVAABPIQQE0un2dc91AgYFBenUqVMqUqQIQSDuabdu3dK5c+dUsGBBs0sBPIPBIAAyYNasWdYPzq5evar169enuJYQEACyPkJAIJ1SDAEz4UxAPz8/FShQQGfOnJEkuqBwz0nc/ps9e3YVLVqUMBz3jsQQ0DCkgIB/r9MJCMAJn3zyidklAAC8CCEgkE4phoCyyJJgkeHj3qDOz89PRYoUcetjAgC8XGIImCOH5Ov773U6AQE4oVu3bmaXAADwIrRSAOkUez323xs+vnb3JcQztAAA4AaJg0ECAiTbDlg6AQEAAOAiOgGBdLLtBDT8ssty8983ZAnxFvlmN6MqAECWktgJGBBAJyCADNmzZ482b96sM2fOqGLFinr00Ucl3Rk+FxcXJz8/P5MrBABkNkJAIJ1ib9psB/bzszu8nU5AAM5ISEjQtm3btGbNGu3cuVOnTp3ShQsXFBQUpCJFiqh69epq3LixatasyTmI9yrbEND23wFCQABO+vvvv9W9e3etW7fOeq1bt27WEHD69Onq06ePVq5cqSZNmphVJgDAAwgBgXSKu/FvCOjjn122G7Pi4wgBAaTs9OnTmjZtmqZOnaoTJ05I+nf4ia2vv/5aknTfffepd+/eioqKUuHChT1aK0yWUgjIdmAATjh//rwaNmyomJgYVapUSQ0aNNCHH35ot6ZTp07q27evvvnmG0JAAMjiCAGBdIpNJQSkExCAI7du3dK4ceM0duxYXb9+XdmyZVP16tVVt25dVaxYUQUKFFDevHl16dIlnTt3Tr///rs2b96sX3/9VcOHD9fbb7+tIUOG6L///a/8/f3NfjrwhMQzARkMAiAdxo4dq5iYGA0aNEhjx46VYRjJQsCgoCBVrlxZP/74o0lVAgA8hRAQSKe4m/YhoK34WN6cAUiuXLlyOnr0qCpXrqwePXro6aefVsGCBdP8vrNnz2rOnDn65JNPNGLECM2cOVOHDx/2QMUwVVzcvx1/dAICSIclS5YoPDxcY8aMkWEYKa4rWbKkNm3a5MHKAABm4IAhIJ3sQsAA+4OU6QQE4EiOHDm0YMEC/fLLL3rxxRedCgAlqWDBgnr55Zf166+/6ssvv6QL8F5hc9Ysg0EApMdff/2latWqpXmurJ+fn86fP++hqgAAZqETEEgn2xAwW44knYCcCQjAgT/++CPDAz46duyo9u3bu6kieLWkISCdgABcFBAQoCtXrqS57ujRo8qXL58HKgIAmIlOQCCd4m/9GwL6BtiHgHQCAnDEXRN+mRR8j7ANATkTEEA6lC9fXjt37tS1a9dSXHP27Fn98ssvqlKligcrAwCYgXcRQDrF34y1fp0tp/12YEsCISCAtPXo0UMzZ85Mc92sWbPUo0cPD1QEr5I4FESiExBAunTo0EHnzp3TgAEDlJDChwf//e9/df36dXXu3NnD1QEAPI0QEEgn207A7DkZDALAdbNmzXJqGuOmTZv06aefeqAieBXOBASQQf/5z39UqVIlzZgxQ7Vq1dJbb70lSTp06JAmTJigiIgIzZ49W1WrVtWzzz5rbrEAgEzHmYBAOtmFgLkYDAIg88THx7MF+F6U2pmAhIAAnBAQEKDvv/9eHTt21ObNm7Vr1y5J0o8//qgff/xRFotFNWvW1OLFi5U9e/Y0Hg0AcLcjBATSKeF2yp2AhIAA3OnAgQMc2H4vShoC2m4BZjswACcVK1ZMP/74o77//nt99913Onz4sBISEhQaGqqWLVvqsccek2EYZpcJAPAAQkAgnWxDQL9chIAAnPP666/b3d69e3eya4ni4uL0xx9/aPPmzWratKknyoM3SToYxPaMQDoBAbioRYsWatGihdllAABMRAgIpFN8KiEgZwICSMmoUaNkGIYsljsfFuzevVu7d+9O9Xty5cqlESNGeKA6eJWkg0Fu3fr3Np2AAAAAcBEhIJBOFtsQMDfTgQE4Z8SIEdYQ8PXXX1fVqlX12GOPOVzr5+enkJAQtWjRQoULF/ZwpTBd0u3AV6/+e5tOQAAuio+P17lz53TT9u+WJMLCwjxYEQDA0wgBgXSyxP4bAvrnTtIJGEcICMCxUaNGWb9ODAFHjhxpXkHwXqkNBqETEICTtm3bphEjRuiHH37QLduO4iQMw1BcXFyK9wMA7n6EgEA6JdiGgLmySTIk3Qn/OBMQgDMS6OZCapKeCejr++9t/t0B4IStW7eqcePG1u6/oKAg5c2b1+SqAABmIQQE0ut2rPXL7DmyST6G9P/bgNkODADIsNQ6AQkBAThh5MiRunnzpnr06KHRo0erSJEiZpcEADARISCQXnFJOgENw3qbwSAAXHHixAmtW7dOx48fT/GsJsMwNHz4cA9XBlMlHQxi2wnIdmAATvjpp59Urlw5TZ8+XYbN76oAgHsTISCQThabENAvZzbJ8JF0500ZnYAAnDVgwABNnjxZ8f8f6iRODU6UOESEEPAeRCcggAyKi4tT1apVCQABAJIIAYF0ibudYPcGzD93dvtOQAaDAHDChAkTNGnSJBmGoRYtWqhChQqc1YR/MRgEQAaVL19eZ8+eNbsMAICXIAQE0uHWNfvJaUm3A9MJCMAZ0dHRypYtm1auXKnIyEizy4G3YTAIgAzq1auX+vfvr0OHDqlUqVJmlwMAMJlP2ksAJHXjSvIQ0PDhTEAArjl06JDq1atHAAjHkp4JSCcgABf16tVLTz75pJo1a6Zly5ZZj54AANyb6AQE0iFpJ2BAbjoBAbguT548KlasmNllwFsl3Q5MJyAAF5UsWVKSFBMTozZt2ihbtmwqVqyYfHyS94IYhqFDhw55ukQAgAcRAgLp4DAEtPllKiGeEBBA2urXr69ffvnF7DLgrTgTEEAGxcTEWL+2WCyKjY3V0aNHHa5leAgAZH2EgEA62IWAhqHs/j52nYCEgACcMWLECNWpU0czZszQc889Z3Y58DZ0AgLIoCNHjphdAgDAixACAulw+7pNCJjtznmAho+hxOiP7cAAnHH58mUNGDBAzz//vFauXKnWrVsrLCzM4TYtSWrQoIGHK4Spkg4Gsf33ghAQgBOKFy9udgkAAC9CCAikw62rsdavjWz//5+RbSdgHG/OAKQtMjJShmHIYrHoq6++0ldffZXiWsMwFBcXl+L9yIIYDAIAAAA3IgQE0iH2ps2br2z/vz2LMwEBuKhBgwacwYSU3br179d+fmwHBpAhW7du1bp163T8+HFJUnBwsBo1aqQ6deqYXBkAwFOyRAh49epVvf/++/r8888VExMjf39/lS1bVr169VK3bt3s3mD99NNPGjp0qH766ScZhqG6detqzJgxqlq1arLHPXHihIYMGaLly5fr6tWrqlixol555RV17NjRg88O3si2089IDP84ExCAi9avX292CfBmid1+Pv9/7iydgADS4ejRo3r66ae1efNmSXcGhEj/DgJ56KGHNHfuXIWFhZlWIwDAM+76EDAhIUEtW7bU5s2b1a1bN/Xr10/Xr1/X559/ru7du2vv3r0aO3aspDuffkVGRio4OFivv/66JGny5MmqX7++Nm/erMqVK1sf9/z586pXr55Onz6tAQMGKCQkRPPmzVOnTp00c+ZMde/e3ZTnC+8QH2cT8hECAgAyQ2LQl9gBSCcgABddvHhRjRo10pEjRxQQEKAWLVqoVKlSkqTDhw9rxYoV+vHHH9WkSRNt375d+fLlM7liAEBmuutDwJ9++kk//vijXnrpJU2cONF6vU+fPipfvrymTp1qDQH79+8vPz8/bdiwQcHBwZKkTp06qUKFCho4cKBWrlxp/f4xY8boyJEj+uabb9SmTRtJUs+ePRUREaFBgwapY8eOyp07twefKbyJfSegYfe/kmSJ580ZANfdvn1b586dk7+/v/Lnz292OTBb0hCQTkAALho/fryOHDmiVq1aadq0abrvvvvs7j958qSioqK0bNkyjR8/3tooAQDImhyPH7yLXL58WZKSvaD5+fmpYMGCypUrlyTp4MGD2rZtmzp27GgNAKU7Z2F07NhRq1ev1smTJ63X582bp1KlSlkDQEny9fVVv379dP78eS1btiwznxa8nF2nX2IHoA+dgADSZ+7cuapVq5Zy5cqlkJAQDRo0yHrf119/raeeekpHjhwxsUKYgk5AABn09ddfq1ChQpo/f36y90uSVLRoUX355ZcqWLCgFi1aZEKFAABPuutDwFq1aikwMFDjxo3TggULdPToUf3555969dVXtWPHDo0aNUqStG3bNklSREREsseoU6eOLBaLduzYIUn6559/dPz4cYeH5CZeS3w83Jvspv8mdmbYdGhYEggBATjnueeeU7du3bR9+3blyJHDelZTorJly+qLL75IdXIwsijbMwFt/9f2PgBIxZEjR9SwYUPlzJkzxTU5c+ZUw4YN+bAJAO4Bd/124KCgIH3zzTd67rnn1KlTJ+v1PHny6KuvvlLbtm0l3RnyIcmuCzBR4rXESVmurE2PYsWK2d1O4NP8u45tp591OzBnAgJw0WeffaaZM2eqcuXKmjlzpqpVqyZf224vSRUrVlRISIiWL19u1yGYGl5nsgg6AQFkkK+vr2JjY9NcFxcXJx8f1/pDeK0BgLvPXd8JKEm5c+dWpUqVNGjQIC1atEgzZsxQ6dKl9dRTT2nVqlWSpOvXr0uS/P39k31/QECA3RpX1uLe5KgT0GA7MAAXTZs2Tblz59bSpUtVvXp1uw8TbFWuXJkOjXtRamcC8mYbgBPKlCmj9evX6+LFiymuOX/+vNatW6eyZct6rjAAgCnu+k7A3377TXXr1tXEiRPVu3dv6/Unn3xSlSpVUlRUlA4dOmRtgb9161ayx7h586YkWde4sjY9/vnnH7vbly9fZhLXXcZRJ6DtdGAGgwBwxi+//KLatWsrNDQ01XX58+fXqVOnnH5cXmeyiMSgj8EgANKpY8eOeu211/TII49o2rRpqlixot39v/32m55//nldvnxZnTt3dumxea0BgLvPXR8CTpw4UTdv3lTHjh3trufMmVOPPPKIJk+erJiYGOtBuI628SZeS9zq68pa3JvszvxLfFPm+++bMzoBATjj1q1bTr1hOnPmTLJtwrgHsB0YQAa9+OKL+vLLL7VlyxY98MADevDBB1WiRAlJ0uHDh7V7924lJCSoatWq6t+/v8nVAgAy212/HTgxlIt38Il4XFyc9X9r1qwpSdqyZUuydVu3bpVhGKpevbqkO+dbBAcHa+vWrQ7XSlKNGjXc8wRwV7LdDsyZgADSKzg4WHv37k11jcVi0Z49e6xv2nAPSW07MJ2AAJyQI0cOrV271np2+o4dO7Rw4UItXLhQO3fulCR17txZq1evth57BADIuu76EPD++++XJM2aNcvu+sWLF7VkyRIFBQWpdOnSKl26tGrUqKEFCxZYB39Id4aALFiwQI0bN1bRokWt15988kkdOnRI3377rfVafHy8PvjgAwUGBqpVq1aZ+8Tg1exCvsQ3ZbbbgZkODMAJTZo00Z9//qklS5akuGbOnDk6duyYmjVr5sHK4BXoBATgBkFBQfriiy905MgRzZkzR2PGjNGYMWM0Z84cHTlyRJ9//rny589vdpkAAA+467cDv/TSS5o9e7aGDBmi3377TQ899JDOnz+v6dOn659//tGUKVOsW6jee+89NWrUSPXr11e/fv0kSR988IESEhI0fvx4u8cdMmSIFixYoKeeekoDBgxQcHCwPv/8c23btk0zZsxQnjx5PP5c4T0S4h10AtoNBuHNGYC0DRo0SHPmzNFTTz2l0aNH2025P3/+vObPn69BgwYpV65cbNO6F9EJCMCNQkND9fTTT5tdBgDARHd9J2Dx4sX1888/q0uXLlq3bp369eunMWPGKDQ0VF999ZX69OljXVu3bl2tX79e4eHhGjZsmIYPH67SpUtrw4YNeuCBB+wet0CBAtq0aZPatm2rKVOmqH///rp06ZK++OIL9ezZ09NPE17GYjsYxDf5dGAL24EBOKFMmTL69NNPlZCQoIEDByo0NFSGYejTTz9VoUKF9J///EdxcXGaNWuWwsLCzC4XnkYnIAAAANzoru8ElKRSpUrp008/dWptRESE1qxZ49Ta4OBgzZkzJyOlIYtydCagbYcG24EBOKtjx46qUKGC3nzzTa1YsUKXL1+WdOccp2bNmmnkyJF68MEHTa4SpkitE5AQEIAL9uzZo/fff1/r16/XsWPHZLFYFBISokaNGqlv376qVKmS2SUCADwgS4SAgKc5OhPQfjswISAA51WqVElffPGFLBaLzp07p4SEBBUsWFA+Pnd9wz4yIrVOQLYDA3DSlClTNGDAAMXFxcli+fd31AMHDujAgQP65JNP9M4773DsBADcA3h3AaSDxfZMQN/kZwLSCQggPQzDUMGCBVW4cGECQNAJCCDDli9frn79+ikuLk7t2rXTN998o99++02//fabvv32W3Xo0EHx8fF6+eWXtXz5crPLBQBkMjoBgXSw7fQzEt+U2Z0JyJszAEAGMRgEQAaNGzdOhmHoiy++UMeOHe3uq1ixoh555BEtXLhQnTp10rhx49SyZUuTKgUAeAIhIJAOjs4ENDgTEEA6xMfHa+HChVq9erWOHz+umzdvOlxnGIbTZ9oii2AwCIAM2rFjh2rVqpUsALTVoUMH1a5dWzt27PBgZQAAMxACAulgG/I5mg7MmYAAnHHp0iW1aNFC27ZtszunyRHDMFK9H1mMxfJv0EcnIIB0MgxDpUqVSnNdqVKltGfPHg9UBAAwEyEgkA4OpwMbnAkIwDXDhw/Xzz//rODgYPXr108VKlRQ3rx5zS4L3sC2049OQADpVKVKFR04cCDNdQcOHFDlypU9UBEAwEyEgEA6OOwE9LXpBIzjzRmAtC1evFiBgYHaunWrgoODzS4H3sS2049OQADpNGDAALVv315ffPGFnnjiCYdrvvzyS23btk0LFizwcHUAAE8jBATSweGZgHQCAnDRqVOn1Lx5cwJAJOcoBKQTEICLqlevrpdfflnPPPOMFi5cqK5du6pEiRKSpCNHjmjOnDn6+uuv9fLLL6tmzZo6evSo3feHhYWZUTYAIJMQAgLp4LgTkMEgAFxTpEgRBQQEmF0GvFFanYCEgACckBj4WSwWff311/r666+TrbFYLJo0aZImTZpkd90wDMXFxXmiTACAhxACAulgiXdwJqAPnYAAXNOmTRt9/fXXio2NVfbs2c0uB94krU5AtgMDcEJoaCiDpQAAVoSAQDrYTv9N7AD0IQQE4KL//e9/+vbbb/XCCy9o8uTJdAXiX3QCAnCDmJgYs0sAAHgRQkAgHWw7AX3+fyCIYRsCxvPmDEDaPvzwQzVv3lyffPKJVq1apSZNmigsLEw+tmHP/zMMQ8OHDzehSpiCwSAAAABwM0JAIB0cdQLavjmjExCAM0aNGiXDMGSxWPT3339r1qxZydYk3k8IeI9hMAgAAADcjBAQSAdLgoPpwDadgLYhIQCkZOTIkWaXAG9FJyAANzt27JhOnDihmzdvprimQYMGHqwIAOBphIBAOlgcdAIanAkIwEWEgEgRnYAA3GTBggUaNmyYDh48mOo6pgEDQNZHCAikg8MzAX0JAQEAbsJgEABuMH/+fD355JOyWCzKnz+/wsPDlSdPHrPLAgCYhBAQSAfbkM/aCWgwGARAxpw8eVLHjh2TJAUHB6tYsWImVwTTpNUJyHZgAE546623JEnvvfee+vTpI1/bv0cAAPec5OMHAaTJNuSzngnoazMYxEInIADnRUdHq3z58goODlbt2rVVu3ZthYSEqEKFCpo5c6bZ5cEMdAICcIN9+/YpIiJC/fr1IwAEABACAumRYNsJ6GAwiIXBIACcFBUVpV69emn//v2yWCwKCgpSUFCQLBaL9u3bp6ioKEVFRZldJjzNNgT0ST6Fnk5AAM4IDAxU8eLFzS4DAOAlCAGB9LA9EzDbnf+MfDgTEICLFixYoOjoaAUGBurdd9/VhQsXdPbsWZ09e1YXL17U+PHjFRQUpJkzZ2rhwoVmlwtPYjAIADdo1KiRdu3aZXYZAAAvQQgIpEPanYC8OQOQtqlTpypbtmxatWqVBgwYoHz58lnvy5s3r15++WWtWrVKvr6+mjp1qomVwuPS2g5MJyAAJ4wYMULHjx/XmDFjzC4FAOAFGAwCpIeDTkDbEFCcCQjACbt27VLDhg1VrVq1FNc8+OCDatiwoXbu3OnBymA6204/OgEBpFP58uW1cuVKPfHEE1qyZIlatmypsLAw+fg47gXp2rWrhysEAHgSISCQDhZHnYA2g0ESOBMQgBOuXbumwoULp7mucOHCunbtmgcqgtegExCAm2zevFnnz5/X0aNH9fPPP6e6lhAQALI2QkAgHWxDQEedgEwHBuCMokWLOnVW065du1SkSBEPVASvwZmAANxg5syZGjhwoCSpSpUqKlOmjHLnzm1yVQAAsxACAulgsXnzlTgQxG47MINBADihUaNGmj17tsaMGaMhQ4Y4XPP2229r37596tatm4erg6nS6gQkBATghIkTJypbtmxatGiRWrdubXY5AACTEQIC6WCx2e6buA2YwSAAXDVkyBB9+eWXGjp0qL7++mt17dpVJUqUkCQdPnxYn376qXbu3KmAgAC98sorJlcLj0qrE5DtwACccOjQITVo0IAAEAAgiRAQSB8HnYCJ24IltgMDcE65cuW0YMECPf3009q2bZu2b99ud7/FYlHevHn12WefqVy5ciZVCVM4CgEN245zPmwCkLagoCAVKlTI7DIAAF6CEBBIhzTPBGQwCAAnPfLII9q/f7+mTZumH374QcePH5ckBQcHKzIyUlFRUU4ND0EWk1IIaBh3JtDTCQjACS1bttSaNWuUkJCQ4kRgAMC9gxAQSAfb7b5G4pmAvjYdGnQCAnBB4cKFNWzYMA0bNszsUuAtHIWAiV/HxdEJCMApb7zxhpYtW6b+/ftrwoQJ8vPzM7skAICJCAGBdLDrBPz/MwF9OBMQAOAuKYWAiZ08dAICcML06dPVsmVLffTRR/ruu+/UqFEjhYWFOewKNAxDw4cPN6FKAICnEAIC6ZHGdGDOBATgqq1bt2r9+vU6duyYLBaLQkJCFBkZqYiICLNLgxlS6wSU6AQE4JRRo0bJMAxZLBb99ddfmjVrVrI1ifcTAgJA1kcICKSDwzMBfW0+UU0gBATgnEOHDqlr167aunWrpH8/RDD+fwhE7dq1NXv2bJUuXdq0GmECOgEBuMGIESOsrycAABACAumRVicgISAAJ5w4cUL169fXyZMnlTNnTj388MMqUaKEJCkmJkYrVqzQ1q1b1aBBA23btk3BwcEmVwyPoRMQgBuMGjXK7BIAAF6EEBBIB0edgD6+hIAAXDNixAidPHlS7du314cffqhChQrZ3X/27Fn16dNHCxcu1MiRIzVjxgyTKoXHpdUJSAgIAAAAFxECAumRRicgb84AOGP58uW677779Nlnnzmc2FiwYEHNnTtXmzdv1rJly0yoEKZJqxOQ7cAA0uHkyZM6duyYJCk4OFjFihUzuSIAgCclHwsFIE0OOwGz+Ti8HwBScv78edWrV89hAJjIz89P9erV04ULFzxYGUxHJyAAN4qOjlb58uUVHBys2rVrq3bt2goJCVGFChU0c+ZMs8sDAHgIISCQHpwJCMANQkJCdO3atTTXXb9+nfMA7zUMBgHgJlFRUerVq5f2798vi8WioKAgBQUFyWKxaN++fYqKilJUVJTZZQIAPIAQEEiHtM4ElIUQEEDaOnbsqPXr1+v48eMprjl+/LjWrl2rDh06eLAymI7BIADcYMGCBYqOjlZgYKDeffddXbhwQWfPntXZs2d18eJFjR8/XkFBQZo5c6YWLlxodrkAgExGCAikB2cCAnCD4cOHq3LlymrcuLGWLl2a7P7vvvtOTZo0UZUqVTRy5EgTKoRp6AQE4AZTp05VtmzZtGrVKg0YMED58uWz3pc3b169/PLLWrVqlXx9fTV16lQTKwUAeAKDQYB0YDowAHd45JFH5OPjowMHDuixxx5TYGCgwsPDJUkxMTG6ePGiJCkiIkKPPPKI3fcahqE1a9Z4uGJ4DJ2AANxg165datiwoapVq5bimgcffFANGzbUzp07PVgZAMAMhIBAelgcdAL62jTWsh0YgBPWr19v/dpisejChQsOB4Bs3rw52TXDMJJdQxbCYBAAbnDt2jUVLlw4zXWFCxd26oxaAMDdjRAQSA+bTj/f7HQCAkifdevWmV0CvFVanYBsBwbghKJFi2rXrl1prtu1a5eKFCnigYoAAGYiBATSw8GZgHYhIJ2AAJzQsGFDs0uAt6ITEIAbNGrUSLNnz9aYMWM0ZMgQh2vefvtt7du3T926dfNwdQAATyMEBNLB0ZmADAYBALgNg0EAuMGQIUP05ZdfaujQofr666/VtWtXlShRQpJ0+PBhffrpp9q5c6cCAgL0yiuvmFwtACCzEQIC6WBYEpQYA/pm+/9OwGw2ZwKyHRgAkBEMBgHgBuXKldOCBQv09NNPa9u2bdq+fbvd/RaLRXnz5tVnn32mcuXKmVQlAMBTCAGBdLDtBEzsALTtBORMQADOunTpkj788EOtWbNGJ06c0M2bNx2uMwxDhw4d8nB1MA2dgADc5JFHHtH+/fs1bdo0/fDDDzp+/LgkKTg4WJGRkYqKinJqeAgA4O5HCAikh+104P/vAEzsCLxzPyEggLQdPnxYDRs21IkTJ9I8S5RpwPcY25DPx6bTnE5AAOlQuHBhDRs2TMOGDTO7FACAiQgBgfSwnQ6cLXknIG/OADjjv//9r44fP666detq4MCBKlOmjPLkyWN2WfAGdAICAADAzQgBgfRw0AloOx2YTkAAzli7dq3CwsK0evVqBQQEmF0OvAlnAgJIpyFDhmj//v0aOHCgHnrooVTXbtq0SePHj1eFChU0evRoD1UIADCLT9pLANhKiLcP+BwOBiEEBOCE+Ph41a5dmwAQydmGfI46AQkBATiwfft2jRs3TleuXEkzAJSkhx56SFevXtWYMWP0yy+/eKBCAICZCAEBFyUNARPDPwaDAHBVpUqVdP78ebPLgDdKqxNQIggEkMzcuXNlGIZLXX1vv/22LBaLZs+enYmVAQC8ASEg4KL4WPs3XdZOQLYDA3BR3759tWHDBv3+++9mlwJvk9aZgBIhIIBkNm7cqOLFi6tWrVpOf0/16tUVHh6uH374IRMrAwB4A0JAwEXxcUm2A2d3cCYgb8wAOOGpp57Siy++qMaNG2vq1Kk6evSo2SXBWzgTAjIcBEAShw8fVuXKlV3+vipVqujw4cOZUBEAwJswGARwUdJOwMTwjzMBAaRH7969tWLFCvXp0yfVdYZhKC4uzkNVwXRsBwaQDteuXUvXlPncuXPr2rVrmVARAMCbEAICLnKmE5AzAQE44/fff1fDhg118eJFWdL48CCt+5HF0AkIIB0CAwN1+vRpl7/v9OnTypcvXyZUBADwJmwHBlzEmYAA3OXVV1/VhQsX1KFDB+3cuVNXrlxRQkJCin9wD6ETEEA6lCpVSj/99JNiY2Od/p7bt2/rp59+UsmSJTOxMgCANyAEBFyUtBMwcRswISAAV23atEnlypXTF198oapVqypXrlxmlwRvQScggHRo0qSJrl69qilTpjj9PVOmTNGVK1fUtGnTTKwMAOANCAEBFyXEOe4ENHxsQ0C6MwCkLSEhQVWrVpVhGGkvxr2FTkAA6dC7d29lz55dQ4YM0TfffJPm+iVLlujVV1+Vn5+fnn/+eQ9UCAAwEyEg4KKUzgRM/F9JdAICcMqDDz6o48ePm10GvJEznYCEgACSCAkJ0euvv67bt2/r8ccfV7t27bR48WIdP35csbGxio2N1fHjx7V48WLr/bGxsRo1apRCQ0PNLh8AkMkYDAK4KKUzAe06ARkMAsAJgwcPVuvWrbV+/XpFRkaaXQ68iTOdgGwHBuDA4MGDdf78eY0bN05LlizRkiVLHK5LHDg1aNAgDRkyxJMlAgBMkqEQcMOGDfL19dVDDz3krnoAr5cQn0InYDbb7XwWWRIs9sEgACRRsWJFvfLKK2rVqpVefPFFtWzZUmFhYfLxcdyoHxYW5uEKYRo6AQFkwJgxY9SsWTO9+eab2rhxY7LhUj4+PmrQoIGGDh3KWYAAcA/JUAgYGRmpyMhIrV271l31AF7PqenAuhMW+hICAkhFeHi4DMOQxWLRuHHjNG7cuBTXGoahuLg4D1YHUzEYBEAGNWnSRE2aNNGlS5e0c+dOnTlzRpJUqFAhPfjggwoMDDS3QACAx2UoBAwKCtJ9993nrlqAu0JKnYCJU4Jt1/lm91hZAO5CYWFhDAWBYwwGAeAm+fLlU6NGjcwuAwDgBTI0GKRq1ao6cOCAu2rJkPPnz2vQoEEqXbq0AgICVKhQITVq1EgbN260W/fTTz+padOmypMnj/LmzauHH35Yu3fvdviYJ06cUNeuXVWoUCHlyJFDNWrU0IIFCzzwbODNknYCJnYAJu0ETDpABACSiomJ0ZEjR5z+g3sInYAAAABwswx1Avbv31+PP/64vvvuOz3yyCPuqsllf/31lyIjI3X16lX17NlTZcuW1aVLl/Trr7/aTV3cunWrIiMjFRwcrNdff12SNHnyZNWvX1+bN29W5cqVrWvPnz+vevXq6fTp0xowYIBCQkI0b948derUSTNnzlT37t09/jzhHew6AY1/34w52g4MAEC60AkIAAAAN8tQCPjggw+qb9++evzxx/Xss8+qffv2Cg8PV44cORyuz6wDzZ955hnFxcXp119/VbFixVJc179/f/n5+WnDhg0KDg6WJHXq1EkVKlTQwIEDtXLlSuvaMWPG6MiRI/rmm2/Upk0bSVLPnj0VERGhQYMGqWPHjsqdO3emPB94N7tOQJsz/wgBAQBuw2AQAAAAuFmGQsASJUpIujNePjo6WtHR0SmuzawDzTds2KAff/xR77//vooVK6bY2FjFxsYqZ86cdusOHjyobdu2qUePHtYAUJKCg4PVsWNHffLJJzp58qSKFi0qSZo3b55KlSplDQAlydfXV/369VPXrl21bNkyderUye3PB97P2U7ApNuGASAl586d0/Tp07Vu3TprB3twcLAaN26s5557TgUKFDC5QnicM52AbAcGAACACzJ0JmBoaKjCwsJUvHhxhYWFpfonNDTUXTXbWbZsmaQ7XYZt2rRRjhw5lCtXLpUtW1Zz5861rtu2bZskKSIiItlj1KlTRxaLRTt27JAk/fPPPzp+/Ljq1KnjcK3t4+HekxD3b7hn2HQCJg4Isa6jExCAE1auXKmyZctq6NChWrVqlfbs2aM9e/Zo1apVeu2111SuXDm7TnXcI+gEBAAAgJtlqBMwJibGTWWk3759+yRJUVFRKlOmjD799FPdvn1b48ePV5cuXRQbG6vu3bvrxIkTkmTXBZgo8Vpi94Ura9Mj6ZblBH6Jv6vYDvyw2HQC2gaCSdcBgCMHDhxQu3btdP36dVWpUkXdu3dXqVKlJEmHDx/WrFmztHv3brVr1067du1SmTJlnHpcXmeyAAaDAPByvNYAwN0nQyGgN7hy5YokKU+ePFq3bp38/PwkSW3btlXJkiX12muvqVu3brp+/bokyd/fP9ljBAQESJJ1jStrce9JsRMwG2cCAnDNmDFjdP36dY0aNUojRoxIdn///v31xhtvaOTIkRo7dqxmzJhhQpUwBYNBAAAA4GZ3fQiYOITkySeftAaAkhQUFKRHH31Us2fP1r59+6xnBN66dSvZY9y8eVOSrGtcWZse//zzj93ty5cvK1++fOl+PHiWXbjnk8p04DjenAFI3Zo1a1SuXDmHAWCi4cOHa968eVq9erXTj8vrTBZAJyAAN/j444/VtWvXDL13SQmvNQBw98nQmYCJNm7cqE6dOikkJET+/v7q2bOn9b7EM41Onjzpjh+VTEhIiCRZB3rYSmxRv3Dhgu677z5Jjrfx2h7CLsmltbj3pDQdmDMBAbjq5MmTqlatWprrqlWrlmmvo/BSdAICcIM+ffooJCREL7/8sg4cOGB2OQAAk2U4BHzzzTcVGRmphQsX6sSJE4qNjZXF8m/4kS9fPo0dO1aLFi3K6I9yqFatWpKkY8eOJbsv8VrhwoVVs2ZNSdKWLVuSrdu6dasMw1D16tUl3QkPg4ODtXXrVodrJalGjRrueQK46zg9HZgzAQGkIVeuXDp9+nSa606fPq1cuXJ5oCJ4jcQQ0DDu/ElEJyAAFzz88MO6dOmS3nvvPVWoUEEtW7bUd999Z3ZZAACTZCgEXL58uUaMGKHg4GDNnz9fp06dSramVq1aKlSokJYuXZqRH5Witm3bKk+ePJo7d66uXr1qvf7PP/9o8eLFKlu2rEqXLq3SpUurRo0aWrBggXXwh3RnCMiCBQvUuHFju27CJ598UocOHdK3335rvRYfH68PPvhAgYGBatWqVaY8H3i/lM4ETBoCWhIIAQGkrmrVqtqwYYN+++23FNf8+uuv+uGHH1S1alXPFQbzJQZ8tp1/SW/TCQggDcuWLdOBAwc0YMAA5cuXT99//70effRRlSpVSuPHj9eFCxfMLhEA4EEZCgHfe+89+fv7a/ny5erQoYMKFSrkcN0DDzyQae3nQUFBevfdd3X8+HHVqVNHEyZM0JgxY1SnTh3dvn1bH3zwgV29t27dUv369TVp0iRNmjRJ9evXV0JCgsaPH2/3uEOGDFHx4sX11FNPaeTIkZo2bZqaNm2qbdu26d1331WePHky5fnA+9l3AjIYBED6RUVFKTY2Vk2bNtWHH35o92HW1atXNXnyZDVr1kzx8fHq1auXiZXC4xJDQJ8kv6rZ3iYEBOCEkiVLWt8vTZ8+XQ888ICOHDmiwYMHKyQkRFFRUdq9e7fZZQIAPCBDIeC2bdtUq1YtVaxYMdV1hQoVytSzjHr16qWvvvpKuXPn1vDhwzV69GiVK1dO69atU/Pmza3r6tatq/Xr1ys8PFzDhg3T8OHDVbp0aW3YsEEPPPCA3WMWKFBAmzZtUtu2bTVlyhT1799fly5d0hdffGF35iHuPXYDP1IZDGJ3diAAOPDEE0+oS5cuOnPmjPr166d8+fKpcOHCKly4sPLly6cXX3xRZ86cUZcuXdS5c2ezy4UnOdMJyHZgAC4ICAhQz549tXPnTm3atElPPPGE4uPjNXPmTFWvXl3169fX/PnzFc/fLQCQZWVoOvC1a9ccDuRI6tKlS0rI5E+r27Vrp3bt2qW5LiIiQmvWrHHqMYODgzVnzpyMloYsxrbDz0hlMAjbgQE449NPP1VERITeffddHT58WGfPnrXeV6pUKQ0aNEjPP/+8iRXCFCmFgHQCAnCDiIgIlStXTsWKFdOECRMkSZs2bdLmzZtVvHhxjRs3Th06dDC5SgCAu2UoBCxSpIgOHjyY5rp9+/YpNDQ0Iz8K8BopdQIa9o2ADAYB4LTevXurd+/eOn78uN0UeibR38MSA77UQkC6dQCkw65duzR58mR98cUXunnzpnx8fPToo4+qRYsWmjNnjjZv3qzOnTtr2rRp7IACgCwmQ9uB69Wrp927d2vTpk0prlm6dKkOHjyoRo0aZeRHAV7DtsPPthPQ8LGf4MiZgABcFRwcrFq1aqlWrVoEgPc6BoMAcKPY2FjNmzdPdevWVY0aNfTJJ5/I399fAwYM0KFDh7Ro0SI9//zz+vHHH/Xdd9/J399f7777rtllAwDcLEMh4MCBA2UYhtq1a6fFixcrLi7O7v4VK1boueeeU/bs2dWvX78MFQp4C7sOv6QHttuGgHG8OQOQ3LZt2/TNN984NTBr//79+uabb7R9+3YPVAav4sx2YDoBAaTh+PHjGj58uMLCwtSlSxdt3bpV5cuX14cffqhjx47pnXfeUfHixe2+p2XLlmrVqpUOHz5sUtUAgMySoe3A1apV0/jx4zVgwAC1b99eOXLkkGEY+uqrr7Ro0SJduXJFFotF77//vu6//3531QyYyhL/b7hn2wn4/xck3bmfTkAASZ09e1ZNmjRRnjx5nJrEGBQUpD59+uj69es6fPiwAgMDM71GeAk6AQG4QYkSJayDPlq2bKkXX3xRzZo1S/P7AgMDFRsbm9nlAQA8LEOdgJL04osvatmyZapZs6Zu3Lghi8WiK1eu6PLly6pcubK++eYb9e3b1x21Al7BLtzzTbkTkMEgAJKaO3eurl69qv/9738qVKhQmusLFSqk119/XRcvXtTcuXM9UCG8Bp2AANwgICBAffv21b59+7R06VKnAkBJGjdunI4cOZLJ1QEAPC1DnYCJWrRooRYtWujcuXM6cuSIEhISFBoaqmLFirnj4QGvYrvNN3kn4L+3GQwCIKlly5YpV65c6tatm9Pf06VLF7300ktaunQpH6rdS+gEBOAGJ06cUO7cuV3+vvz58yt//vyZUBEAwExuCQETFShQQAUKFHDnQwJex7YT0EhyJqDhYyjxXjoBAST1+++/q3bt2sqePbvT35M9e3bVqlVLv/32WyZWBq/jTCcgISCANOTLl08PPPCAdu7caXYpAAAvkKHtwLNmzdKxY8fcVQtwV3C6EzCWN2cA7J0/f15FixZ1+fuKFCmic+fOZUJF8FrOdAKyHRhAGnLmzMnZ7AAAqwx1Avbo0UOGYahMmTJq2rSpmjZtqsaNGytv3rzuqg/wOnZnAiadDmxzm05AAEn5+/vr2rVrLn/f9evX5e/vnwkVwWvRCQjADcqUKaPTp0+bXQYAwEtkqBPw2WefVWhoqPbv368PP/xQ7du3V4ECBVSnTh0NGzZM69evZ6oUspzUpwP/e5vpwACSKlq0qH799VeXv+/XX39NVwch7mIMBgHgBs8884w2btyoQ4cOmV0KAMALZCgEnDlzpmJiYrRv3z5NmTJFjz32mPLkyaOff/5Zb731lpo0aaKgoCA9/PDDGj9+vLtqBkxldyZg0unAPoSAAFJWt25dxcTEaPPmzU5/z6ZNm3TkyBHVrVs3EyuD12EwCAA3eOmll9SiRQs1btxY8+bN082bN80uCQBgogyFgInKlCmjF154QYsWLdK5c+f0008/afTo0YqMjFRcXJxWrlypV155xR0/CjBdap2Ahm0nYBxvzgDYe/rpp2WxWNSrVy9dunQpzfUXL15Ur169ZBiGnnzySQ9UCK9BJyAANyhdurR++eUX/f333+rSpYty5cqlYsWKqWTJksn+lCpVyuxyAQCZzK3TgSUpNjZWV65c0ZUrV3T58mXFxcVJkiwWuqKQNaTWCWjhTEAAqWjatKmaNGmiNWvWqHr16powYYLatGlj9wGCdOc185tvvtHAgQN15MgRRUZGqnnz5iZVDVPQCQjADWJiYqxfJ74fO3XqlMO1SV+LAABZj1tCwN27d2vVqlVavXq1fvzxR928eVMWi0V58+bVI488Yh0aAmQFqU0HNgxDidEf24EBOPLFF1/ooYce0v79+/X4448rMDBQ1apVU+HChSVJp0+f1s6dO3Xx4kVZLBaVLl1aX375pclVw+MYDALADY4cOWJ2CQAAL5KhEPCJJ57Q2rVrde7cOVksFmXPnl116tSxhn61atWSb9JfXoG7nF2HX9IzARkMAiANBQoU0M8//6y+ffvq888/14ULF7RmzRprB0Zip4aPj4+eeuopffDBBwoMDDSxYnicbbiXWicg24EBpKF48eJmlwAA8CIZCgHnz58vwzBUpUoVjRw5Us2bN1fOnDndVRvglWw7AX2SdgIyGASAE/LmzavZs2frf//7n5YuXart27frzJkzkqRChQqpevXqat26tUqWLGlypTCFbbhHJyAAAADcJEMhYJ48eXTlyhX98ssvevrpp1W/fn01a9ZMTZs21QMPPOCuGgGv4mwnoO0AEQBwpESJEurXr5/ZZcDbpBYC0gkIAACAdMpQCHj+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEh7qoZMFVCfMqdgLYdGnQCAgDShU5AAG721VdfacGCBdq3b58uX77scGijYRg6dOiQCdUBADwlQyGgr6+vIiIiFBERoeHDh+v69etav369Vq9erTVr1ujLL7+0HmZetmxZ7d271y1FA2aypDIdWGwHBgBklLMhIJ2AANJgsVjUqVMnLVq0yGHwJ/3/YDuLhenAAHAP8El7ifNy5sypVq1aacKECZo9e7YGDhwof39/WSwW7d+/350/CjCN7TbfZNOBbW7bbRsGAMBZzm4HphMQQBqmT5+ur776SlWqVNH333+vdu3ayTAM7du3T0uXLlXnzp0lScOGDdPhw4dNrhYAkNky1Alo69ixY1q1apW1CzDxgPPEqcERERHu+lGAqRJS6QS0/QTVdoAIAABOoxMQgJvMmTNH/v7+Wr58uYoWLap58+ZJksqUKaMyZcqoVatWatSokfr06aPIyEimCQNAFpehEHDx4sXW8wAPHDggSdZW8kqVKqlp06Zq2rSpGjZsyNRgZBl2nYC+KZ8JSCcgACBd6AQE4Ca///67IiIiVLRoUUn/fmBtu/23V69emjRpkt555x01btzYtFoBAJkvQyFgu3btrF+HhoZaQ78mTZqocOHCGS4O8Ea24Z7hw5mAAAA3YzAIADe5ceOGihUrZr3t7+8vSbp8+bLy5ctnvV61alWtWrXK4/UBADwrQyFg27Zt1axZMzVt2lRlypRxV02AV7PtBPRJ0glotx2YEBAAkB7OdgKyHRhAGooUKWI9pkmStVHj4MGDql69uvX6+fPndfPmTY/XBwDwrAyFgIsWLXJXHcBdI9UzARkMAgDIKDoBAbhJ6dKl7QZ+1KxZUxaLRR9//LGmT58uSdq7d6/Wr1+v8uXLm1UmAMBD3DodGLgXpDYdWHadgLw5AwCkg20ImOzYCQaDAHBe8+bNdeTIEe3Zs8d6OzQ0VDNnzlTNmjXVvn17RUREKDY2Vl27djW5WgBAZnPLdOC9e/fqvffe07p163T8+HFJUnBwsBo3bqz+/furQoUK7vgxgFew7fBLth3YpjPQwnZgAElk5MB1wzC0Zs0aN1YDr8VgEABu8uSTTyouLk43btyQJPn5+enLL79U27ZttWPHDu3YsUOS9Nhjj+nFF180s1QAgAdkOAScNWuWevfurdjYWFks/4YeBw4c0IEDB/TJJ59o6tSp6tatW0Z/FOAV7KcDJ+nQ4ExAAKlYv359ur/X9sxRZHHObgemExBAGsLCwjR06FC7a3Xq1NGRI0e0YcMGnT9/XhUqVFDVqlXNKRAA4FEZCgF37NihqKgoxcfHq3Xr1urZs6dKlSolSTp8+LCio6P17bffKioqShUrVlSNGjXcUjRgJvvpwEk6ATkTEEAq1q1bZ3YJuBvYdvjRCQggE+TIkUMtWrQwuwwAgIdlKAR85513lJCQoOjoaHXv3t3uvkqVKunRRx/VrFmz1KNHD40fP16ff/55hooFvIHddOBsDAYB4LyGDRuaXQLuBnQCAgAAIBNkKATcuHGjqlatmiwAtPXss89q8uTJ2rBhQ0Z+FOA1bLe9JxsMYhsCMhgEAJAenAkIwM1u3bql7du36/jx47p582aK6xgOAgBZW4ZCwLNnz6pRo0Zpritfvrx+++23jPwowGvYDvxI3gloMxiETkAAQHo42wlICAjACe+//75GjRqlS5cupbmWEBAAsrYMhYCBgYE6evRomuuOHj2qfPnyZeRHAd4jwXYwSMpnAjIYBICz/vnnHy1ZskT79u3T5cuX7TqOExmGoejoaBOqg8c52wnIdmAAaZgzZ45eeuklSXcaMypUqKC8efOaWxQAwDQZCgFr1qypFStWaO3atWrcuLHDNWvXrtWmTZvUqlWrjPwowGvYhns+vpwJCCBjPvjgA/33v/9VbGys9VpiCJg4EdhisRAC3kvoBATgJpMmTZJhGPrkk0/o8gMAyCftJSnr16+fEhIS1KZNGw0ePFh//PGHrl+/ruvXr+v333/XoEGD1KZNG+taIEuwedPl45vymYAJcbw5A5C6NWvW6MUXX1RAQICGDBmiiIgISdLUqVM1cOBAhYeHS5JeeuklzZw508RK4VEMBgHgJnv37lWdOnUIAAEAkjIYArZo0UJDhw7VjRs3NH78eFWpUkV58uRRnjx59MADD2jixIm6ceOGhg0bpubNm7urZsBUth1+RrJOQM4EBOC89957T4Zh6Pvvv9fo0aNVpkwZSVJUVJTeeecd7dmzR926ddPMmTNVv359k6uFxzAYBICbBAQEWD9QAgAgQyGgJL3xxhtavny5GjVqJH9/f1ksFlksFvn5+alx48ZatmyZ/ve//7mjVsAr2E79TdoJyHZgAK74+eefVa1aNdWuXdvh/f7+/vroo48UEBCg119/3cPVwTR0AgJwkxo1aujAgQNmlwEA8BLpOhPw4MGDWrRokWJiYuTv76+qVavq22+/lZ+fn86dOydJKlCggHyT/uIKZAG24V7y6cCEgACcd+HCBUVGRlpvZ8+eXZJ048YN5ciRQ9KdILB+/fpas2aNGSXCDHQCAnCTV199VU2bNtXy5cvVsmVLs8sBAJjM5RBw0qRJGjx4sOKTfPo8fPhwLVu2TJUqVXJbcYBXSuVMQEJAAK7Inz+/rl27Zr0dFBQkSTp69KjKlStnvR4fH2/9kA33AAaDAHCTUqVKadiwYXr88cfVv39/tW7dWmFhYfLxcbwhLCwszMMVAgA8yaUQ8Mcff9TAgQNlsViUK1culStXTpcvX9bhw4d17NgxtW/fXnv37k3xRQXIClI/E9AmBIznzRmA1IWFhenvv/+23q5UqZIsFouWLl1qDQGvXr2qjRs3KiQkxKwy4WnOdgKyHRhAGsLDw2UYhiwWi8aPH6/x48enuNYwDMXFxXmwOgCAp7kUAk6ePFkWi0XdunXT5MmTlStXLknSr7/+qvbt2+vgwYNasWKFWrVqlSnFAl4h1enADAYB4LyGDRtq4sSJOnXqlIoUKaJHHnlEuXLl0muvvaaTJ08qLCxMn376qc6fP68nnnjC7HLhKXQCAnCTsLAwGYaR9kIAwD3BpRBwy5YtCgkJ0dSpU+Xn52e9XqVKFb333ntq3bq1tm7dSgiILM3ZMwET4gkBAaSuY8eO2rVrl3bv3q0WLVoof/78mjBhgnr37q0JEyZIkiwWi8LDwxmydS+hExCAm8TExJhdAgDAi7gUAp46dUqtWrWyCwAT1atXT5J0+vRp91QGeClLKp2AtrfpBASQlpo1a2rVqlV216KiolS9enUtWLBA58+fV4UKFdS9e3fly5fPpCrhcXQCAgAAIBO4FALevn1bgYGBDu/LmzevdQ2QlaXWCSjOBATgBtWqVVO1atXMLgNmcTYEpBMQAAAALmCCB+CqVKcDcyYgACCDnN0OTCcgAAAAXOBSJ6AkHTx4ULNnz07X/V27dnX1xwHex8kzAS0WQkAAzjl06JCmTp2qzZs368yZM3rsscc0btw4SdJPP/2kX375RZ07d2ZL8L2CTkAA6eTr6yvDMLRnzx6VLVtWvkn/DkkF04EBIOtzOQTctGmTNm3a5PA+wzBSvN8wDEJAZA3OngnIYBAATvj000/Vu3dv3bp1S9Kd18uzZ89a779+/bpeeOEF+fn56dlnnzWpSngUnYAA0slisdh9EO3Kh9J8gA0AWZ9LISAj5gHnpwOzHRhAWrZu3arnnntOOXPm1BtvvKGGDRuqdu3admsaNmyofPny6dtvvyUEvFcwGARAOiUk+Xsh6W0AwL3NpRCQEfOA7N50+WZLeiYgg0EAOG/cuHGyWCz67rvvVK9ePYdrfHx8VLVqVe3Zs8fD1cE0znYCsh0YAAAALmAwCOCiVDsBfW1us6UCQBo2bdqkWrVqpRgAJipatKj++ecfD1UF09EJCAAAgExACAi4KtXpwP/eTuBMQABpuHjxosLCwtJcd+PGDd2+fdsDFcErMBgEAAAAmcDlwSDAPc/CdGAA7lGgQAH99ddfaa47ePCgihYt6oGK4BUYDALATUqWLOnUOj8/PxUsWFA1a9ZU165d9eCDD2ZyZQAAMxACAq5yshNQnAkIIA116tTRt99+qz/++EMVK1Z0uGbTpk36448/9Mwzz3i4OpiGTkAAbpJ4prthGCl+QJ143/79+7V582Z98MEHGjVqlIYNG+bBSgEAnsB2YMBFdmcCJgkBbTsDmQ4MIC3/+c9/FB8fr/bt22v37t3J7t+7d6969OghwzDUp08fzxcIc9iGez5JflWjExCAC44cOaLBgwfLMAx16NBBX3/9tXbt2qXdu3dr8eLF6tixo3x8fDRo0CBt2LBBo0aNkp+fn0aOHKlVq1aZXT4AwM3oBARcZbHpBGQ7MIAMaNKkiQYMGKAJEyaoevXqKlWqlAzD0Pfff68qVapoz549SkhI0ODBg1WnTh2zy4WnpNYJaBiO1wGAA3/88YfeeecdzZ8/X+3bt7e7r0qVKnr00Ue1aNEidezYUQ0aNNCIESNUtWpVtW3bVh9++KGaNWtmUuUAgMxAJyDgKpsOP99sKW8HtjAYBIAT3n33XU2dOlVFixbVwYMHZbFY9M8//+j3339X/vz59cEHH2jMmDFmlwlPSisETOwOpBMQQBrGjRunmjVrJgsAbbVr1041a9bUO++8I0l69NFHVa5cOf3888+eKhMA4CF0AgKuSq0T0HZ7MJ2AAJwUFRWl5557Trt27dLhw4eVkJCg0NBQ1axZU9my8VJ9z7EN95KGgNKdEDAhgRAQQJp2796t1q1bp7mudOnSWrp0qfV2uXLltGLFiswsDQBgAt5ZAK5KpRPQx64TkDdnAJxnGIaqVaumatWqJbvv4sWLeueddzR69GgTKoPHpdYJmHgtLo7twADSlJCQoMOHD6e5LvEDqETZs2dXQEBAZpYGADAB24EBF9wZ9mEzGCRZJ6DNYBA6AQFk0OXLlzVy5EiFh4ezJfheklYIyHZgAE564IEH9NNPP+mbb75Jcc0333yjrVu3qmrVqtZrf//9twoVKuSBCgEAnkQnIOCChCTn/HEmIID02LFjh7799ludOnVKRYoU0aOPPmrXAXjz5k1NmDBB7777ri5duiSLxaL777/fxIrhUc6GgHQCAkjDoEGD9Pjjj6tDhw7q3LmznnrqKYWHh8swDMXExGjevHn64osvZBiGBg4cKOlO9/muXbvUqVMnk6sHALgbISDggvg4+2AvaSegD2cCAkjDoEGDNHHiRLtrb7zxhoYPH65Ro0Zp27Zt6ty5s/766y9ZLBaFhYVp1KhR6tq1q0kVw+Oc2Q4s0QkIIE2PPfaYxowZo6FDh2revHmaN2+e3f0Wi0U+Pj4aPXq0HnvsMUnS2bNn9dprr+nhhx82o2QAQCYiBARcEB9r/4Yr9U5A3pwBsPfdd99pwoQJkqS8efOqTJkyunz5sg4fPqw33nhD5cqV0wsvvKDLly8rf/78GjZsmPr06SM/Pz+TK4dH0QkIwI0GDx6s5s2b64MPPtCGDRt07NgxSVJwcLAaNGigvn372nWjly5dWiNHjjSrXABAJiIEBFyQZieg7W06AQEkMX36dElSv379NG7cOPn7+0uS9u7dq/bt26tbt26Ki4tTo0aN9OWXX6pgwYJmlguz0AkIwM2qVq2q6Ohos8sAAJgsSw4GuX79ukqWLCnDMNS3b99k9+/bt09t27ZVUFCQcuXKpfr162vt2rUOH+vSpUvq16+fgoODFRAQoIoVK+qjjz5i6MM9yqVOwAT+HQFgb8eOHQoPD9fEiROtAaAkVahQQZMmTVJcXJzy5s2rxYsXEwDeyxgMAgAAgEyQJTsBR4wYoTNnzji879ChQ6pbt66yZcumwYMHK1++fJo+fbpatGih5cuXq2nTpta1t2/fVrNmzbRr1y7169dPFSpU0PLly9WnTx+dOnVKo0aN8tAzgrdI2gnomz3lMwEJAQEkdebMGT3yyCPy8Un+GVydOnUkSfXr11eePHk8XRq8ibOdgGwHBgAAgAuyXAi4c+dOTZo0SePGjbNOuLL16quv6uLFi9qxY4eqVq0qSeratasqVqyo//znP/rzzz9lGHeCnBkzZmjbtm16//331a9fP0lSVFSU2rdvr7feekvdu3dX8eLFPfbcYL6knYB2g0Bk3wnIdmAASd2+fVv58uVzeF/evHklSYUKFfJkSfBGdAICcLPt27dr4cKF2rdvny5fvuxwV5NhGFqzZo0J1QEAPCVLhYDx8fGKiorSww8/rHbt2iULAa9du6ZvvvlGkZGR1gBQknLnzq3nnntOI0aM0LZt21SrVi1J0rx585QzZ05FRUXZPc5LL72kRYsW6csvv9TgwYMz/XnBeyTEp94JaBcC8uYMAJAedAICcKPEqfSJwZ9hGHYhYOLtxEYIAEDWlaVCwIkTJ+rPP//UV1995fD+X3/9Vbdu3VJERESy+xK3YSWGgAkJCdq5c6eqVaumgIAAu7W1atWSYRjatm2b+58EvFpaZwLaDgZhOzAARw4ePKjZs2en6/6uXbtmVlnwJnQCAnCTBQsWaMKECQoJCdHw4cP11VdfadWqVfr+++914MABffbZZ9qyZYuGDBmiFi1amF0uACCTZZkQ8MiRIxo5cqRGjBih8PBwxcTEJFtz4sQJSVJwcHCy+xKvHT9+XJJ04cIF3bhxw+Faf39/FSxY0LrWVcWKFbO7ncAv8XeNtM4EZDAIgLRs2rRJmzZtcnifYRgp3m8YhtMhIK8zdzlnQ0A6AQGkYdq0afL19dWaNWtUpkwZbd68WZLUrFkzNWvWTH369NHw4cP1zjvvqFOnTi49Nq81AHD3yTIhYO/evVWyZEkNGDAgxTXXr1+XJLuJjIkSu/0S16S2NnF94hrcOxLiUu8EtLvNmYAAkggLC2O7FdLm7HZg3nADSMOuXbtUu3ZtlSlTJsU1//vf/zR37ly9+eabWrhwoQerAwB4WpYIAefOnatVq1Zpw4YNyp49e4rrcubMKUm6detWsvtu3rxptya1tYnrE9e46p9//rG7ffny5RQPiod3cakTkBAQQBKOutQzA68zdzk6AQG4yZUrVxQWFma97efnJ0m6evWqcufOLUny8fFR7dq19cMPP7j02LzWAMDdxyftJd7t1q1bGjBggFq1aqWiRYvq4MGDOnjwoP766y9J0qVLl3Tw4EFdvHhR9913nyQ53MabeC1x+29QUJBy5MjhcO2tW7d09uxZh1uFkbWl1QloeyYgHRoAgHShExCAmxQqVEgXL1603i5YsKCk5B9KXbt2TZcvX/ZgZQAAM9z1IeCNGzd05swZfffddypTpoz1T2RkpKQ7XYJlypTRjBkzVLlyZfn7+2vLli3JHmfr1q2SpBo1aki684lYtWrVtGvXrmTdgD///LMsFot1Le4dSTsBfXztQ0D76cB0AgIA0oHBIADcJDw83NocIUkPPvigLBaL5s2bZ7128uRJ/fDDDypevLgZJQIAPOiu3w6cK1cuLViwINn1M2fOqE+fPnr44YfVs2dPValSRblz51abNm20aNEi/fLLL3rggQck3WmHnzFjhsqUKaNatWpZH+PJJ5/Upk2bNG3aNPXr1896fdKkScqWLZs6d+6c+U8QXsWuE9Aw7EM/MRgEQOpu3LihHDlyeM3jwEs52wnIdmAAaWjSpInefPNNxcTEKDw8XC1btlT+/Pk1duxYHThwQGFhYVq4cKGuXbum9u3bm10uACCT3fUhYPbs2dWhQ4dk1xNb3EuVKmV3/9tvv601a9aoefPmevnll5U3b15Nnz5dx48f13fffWd3YHtUVJQ++eQTDRgwQDExMapQoYKWLVumr7/+WsOGDVN4eHhmPz14GbtOQCN5Iy2DQQCkplSpUhoxYoSioqLk6yjcSUNcXJymTp2q0aNHWyfeIwuiExCAmzzxxBM6ceKE/v77b4WHhytXrlz65JNP9MQTT+irr76yrqtevbpeffVVEysFAHjCXR8Cuqp06dLatGmThgwZojFjxuj27duqVq2aVqxYoaZNm9qt9fPz0+rVqzVs2DB9/vnnOnfunEqVKqUPPvhA//nPf0x6BjCTXSegT/IJn/bbgXlzBsDefffdpz59+mj06NHq1q2bunXrlurExkT79u3TrFmzNGfOHJ04cULVq1f3QLUwDYNBALhJhQoVNH36dLtrbdq00YEDB/Ttt9/q/PnzqlChgtq0aZOuD6cAAHeXLBsChoeHpzidtUKFClqyZIlTjxMYGKjJkydr8uTJ7iwPd6m0OgHtBoPQCQggiW3btmnGjBkaNmyY3nrrLb399tsKCQlRRESEKlSooAIFCihv3ry6fPmyzp07pz179mjLli06fvy4LBaLChUqpGnTpqlnz55mPxVkJgaDAMhk9913n55//nmzywAAeFiWDQGBzGDbCZj0PEDJflAIZwICSMowDEVFRalLly6aM2eOJk+erN9++01///233XEUiRI/zKpSpYr69u2rp59+mrMA7wWubAe2WCQH/+4AAAAASRECAi5IiP832LP4OOgE9OVMQABpCwgIUFRUlKKiohQTE6O1a9dq165dOnXqlC5duqTAwEAVLlxY1apVU6NGjTiD9l7jbCegRAgIwGnHjh3TiRMndPPmzRTXNGjQwIMVAQA8jRAQcEF8rE0noIM3XXbdgYSAAJwQHh6uHj16mF0GvImznYCJax18KAUAiRYsWKBhw4bp4MGDqa4zDENxcXEeqgoAYAZCQMAFtp2Ajt50+Wa3ucZZTQDSsGHDBvn6+uqhhx4yuxR4E1c6AXmtAZCK+fPn68knn5TFYlH+/PkVHh6uPHnymF0WAMAkhICAC+ymA9MJCCCDIiMjFRkZqbVr15pdCryJbQjoaKuvDx84AXDOW2+9JUl677331KdPHyYAA8A9jhAQcIFtJyCDQQBkVFBQkO677z6zy4C3SQwBfXwch4C2b+JtA0MASGLfvn2KiIhQv379zC4FAOAFOEQGcIFdJyCDQQBkUNWqVXXgwAGzy4C3SQz2UurYoRMQgJMCAwNVvHhxs8sAAHgJQkDABfFxzncCysIbMwCp69+/v7Zt26bvvvvO7FLgTRKDPWdCQDoBAaSiUaNG2rVrl9llAAC8BCEg4AJLfBqdgNlsrtEJCCANDz74oPr27avHH39cvXr10vfff699+/bp6NGjDv/gHpFWJyCDQQA4acSIETp+/LjGjBljdikAAC/AmYCAC+ynA6fRCciZgADSUKJECUmSxWJRdHS0oqOjU1xrGIbi4uI8VRrM5Mp2YDoBAaSifPnyWrlypZ544gktWbJELVu2VFhYmHwcfJgtSV27dvVwhQAATyIEBFxgHwJyJiCAjAkNDZXhaPAD7m10AgJwo82bN+v8+fM6evSofv7551TXEgICQNZGCAi4wHYwSJpnAsoiS4LF4ToAkKSYmBizS4A3YjAIADeZOXOmBg4cKEmqUqWKypQpo9y5c5tcFQDALISAgAtsOwGNtM4E/P/1voSAAABXuNIJyHZgAKmYOHGismXLpkWLFql169ZmlwMAMBmDQQAXuNYJmGT7MAAAzqATEICbHDp0SA0aNCAABABIIgQEXOLSmYCS4uMIAQGkbePGjerUqZNCQkLk7++vnj17Wu9btWqVXnvtNZ08edLECuFRdAICcJOgoCAVKlTI7DIAAF6CEBBwgSWeTkAA7vXmm28qMjJSCxcu1IkTJxQbGyuLzWChfPnyaezYsVq0aJGJVcKj6AQE4CYtW7bU1q1blcDfFQAAEQICLnG5EzCWX7gApGz58uUaMWKEgoODNX/+fJ06dSrZmlq1aqlQoUJaunSpCRXCFK6EgHQCAkjFG2+8oVu3bql///66ffu22eUAAEzGYBDABWmdCeibPflgEABIyXvvvSd/f38tX75cFStWTHHdAw88oAMHDniwMpjKle3AdPcASMX06dPVsmVLffTRR/ruu+/UqFEjhYWFycfBh9mGYWj48OEmVAkA8BRCQMAFdtOBfdPuBCQEBJCabdu2qVatWqkGgJJUqFAhbd682UNVwXR0AgJwk1GjRskwDFksFv3111+aNWtWsjWJ9xMCAkDWRwgIuMDVMwEZDAIgNdeuXVPRokXTXHfp0iXOc7qX0AkIwE1GjBghw0j+OysA4N5ECAi4wNUzAekEBJCaIkWK6ODBg2mu27dvn0JDQz1QEbwCg0EAuMmoUaPMLgEA4EUYDAK4IMGmEzBp4Cc5OBMwjjdnAFJWr1497d69W5s2bUpxzdKlS3Xw4EE1atTIg5XBVK50ArIdGAAAAE4iBARcYKETEIAbDRw4UIZhqF27dlq8eLHi4uLs7l+xYoWee+45Zc+eXf369TOpSngcnYAAAADIBGwHBlxgNx3YQScgZwICcEW1atU0fvx4DRgwQO3bt1eOHDlkGIa++uorLVq0SFeuXJHFYtH777+v+++/3+xy4QkWy50/EoNBALhs9uzZGfr+rl27uqkSAIA3IgQEXGBJsJkO7KAT0DebfQhoux4AHHnxxRdVvnx5jRw5Utu2bZPFYtGVK1ckSVWqVNGbb76p1q1bm1wlPMY21GMwCAAXPfvss+keBGIYBiEgAGRxhICAC1zuBIzlzRmAtLVo0UItWrTQuXPndOTIESUkJCg0NFTFihUzuzR4mjMhIJ2AAFIQFhbGNGAAQIoIAQEXpNkJmHQwCGcCAnBBgQIFVKBAAbPLgJnoBASQATExMWaXAADwYgwGAVxgSWM6cNJrbAcGkJpZs2bp2LFjZpcBb0InIAAAADIJnYCACxJcnA7MYBAAqenRo4cMw1CZMmXUtGlTNW3aVI0bN1bevHnNLg1moRMQAAAAmYQQEHBBWp2AkiTDsE52ZDswgNQ8++yzWrt2rfbv36/9+/fro48+ko+Pj6pXr24NBR966CFlz57d7FLhKa52AhICArBx48YN5ciRw2seBwDgXdgODLjANtQzfFP4z8f497rtIBEASGrmzJmKiYnRvn37NGXKFD322GPKkyePfv75Z7311ltq0qSJgoKC9PDDD2v8+PFmlwtPcLUTkO3AAGyUKlVKH3/8seLT+XdDXFycpkyZolKlSrm5MgCANyAEBFxg2wlo+KTSCfj/6AQE4IwyZcrohRde0KJFi3Tu3Dn99NNPGj16tCIjIxUXF6eVK1fqlVdeMbtMeAKdgAAy4L777lOfPn0UHh6uYcOG6cCBA0593759+/Tqq68qPDxc/fr1U3BwcCZXCgAwA9uBARfYTwcmBATgfrGxsbpy5YquXLmiy5cvKy4uTpJksfD3yT3BNgR0cPZssut0AgKwsW3bNs2YMUPDhg3TW2+9pbffflshISGKiIhQhQoVVKBAAeXNm1eXL1/WuXPntGfPHm3ZskXHjx+XxWJRoUKFNG3aNPXs2dPspwIAyASEgIAL7DoBU9gObPgYSnyrTggIwBm7d+/WqlWrtHr1av3444+6efOmLBaL8ubNq0ceecR6PiDuAQwGAZABhmEoKipKXbp00Zw5czR58mT99ttv+vvvv2UYyT/ATvyAqUqVKurbt6+efvppzgIEgCyMEBBwgW2ol+pgkMT1nAkIIBVPPPGE1q5dq3PnzslisSh79uyqU6eONfSrVauWfFMKgpA1ubodmE5AAA4EBAQoKipKUVFRiomJ0dq1a7Vr1y6dOnVKly5dUmBgoAoXLqxq1aqpUaNGCg8PN7tkAIAHEAICrkhIuxPQYvPmjE5AAKmZP3++DMNQlSpVNHLkSDVv3lw5c+Y0uyyYybazj05AAG4QHh6uHj16mF0GAMALMBgEcIH9dGDHnYC2Wy1szxAEgKTy5Mkji8WiX375RU8//bTatWun8ePH65dffjG7NJiFwSAA3GjDhg3atGmT2WUAALwEnYCAC2wP5vdJoROQwSAAnHX+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEhZpcLT3D1TEC2AwNIRWRkpCIjI7V27VqzSwEAeAFCQMAVtoNBUpoO7EMICMA5vr6+ioiIUEREhIYPH67r169r/fr1Wr16tdasWaMvv/xSX375pSSpbNmy2rt3r8kVI9PRCQjAjYKCgnTfffeZXQYAwEsQAgIuSLDZ3uuTLYXpwIbNdGAGgwBwQc6cOdWqVSu1atVKv/zyiz777DNNnjxZN2/e1P79+80uD55AJyAAN6pataoOHDhgdhkAAC9BCAi4wolOQNvBIJwJCMBZx44d06pVq6xdgGfOnJEk69TgiIgIkyuER9AJCMCN+vfvr8cff1zfffedHnnkEbPLAQCYjBAQcIHFxU7A+DhCQAApW7x4sfU8wMRODYvFIsMwVKlSJTVt2lRNmzZVw4YNmRp8r3A1BKQTEEAqHnzwQfXt21ePP/64nn32WbVv317h4eHKkSOHw/VhYWEerhAA4EmEgIALLDadgD4pTQf2YTowAOe0a9fO+nVoaKg19GvSpIkKFy5sYmUwjavbgekEBJCKEiVKSLrzAVN0dLSio6NTXGsYhuLi4jxVGgDABISAgAtsQz2D6cAAMqht27Zq1qyZmjZtqjJlyphdDrwBnYAA3Cg0NFSGkcIwOwDAPYcQEHCBM52Atm/ObNcDQFKLFi0yuwR4GzoBAbhRTEyM2SUAALxICq1MAByhExAAkKkYDAIAAIBMQggIuCLBtTMBCQEBOGPv3r3q3bu3ypUrp9y5cyt37twqV66cXnjhBe3du9fs8uBJrnYCsh0YAAAATiIEBFzgzHRgMRgEgAtmzZqlBx98UNOnT9eBAwd0/fp1Xb9+XQcOHNDUqVP14IMP6tNPPzW7THgKnYAAMsHGjRvVqVMnhYSEyN/fXz179rTet2rVKr322ms6efKkiRUCADyBEBBwgcWZTkDb7cBxvDkDkLIdO3YoKipKt2/f1iOPPKKvv/5av/76q3799VctXrxYbdq00e3btxUVFaXt27ebXS48gU5AAG725ptvKjIyUgsXLtSJEycUGxsri+XfD6rz5cunsWPHck4tANwDCAEBFzjXCWgzGIROQACpeOedd5SQkKDo6Gh98803euyxx1SpUiVVqlRJjz76qJYsWaKZM2cqLi5O48ePN7tceAKdgADcaPny5RoxYoSCg4M1f/58nTp1KtmaWrVqqVChQlq6dKkJFQIAPInpwIArnJoOzJmAAJyzceNGVa1aVd27d09xzbPPPqvJkydrw4YNHqwMpnE1BKQTEEAq3nvvPfn7+2v58uWqWLFiiuseeOABHThwwIOVAQDMQCcg4AJnpgMzGASAs86ePasKFSqkua58+fI6e/asByqC6VzdDkwnIIBUbNu2TbVq1Uo1AJSkQoUKcSYgANwDCAEBV9i82fLNlvaZgGwHBpCawMBAHT16NM11R48eVb58+TxQEUxHJyAAN7p27ZqKFi2a5rpLly4pgQ8VACDLIwQEXOBMJ6Dtm7OEeH6ZApCymjVravPmzVq7dm2Ka9auXatNmzapdu3aHqwMpqETEIAbFSlSRAcPHkxz3b59+xQaGuqBigAAZiIEBFzhTCegzXZgC9uBAaSiX79+SkhIUJs2bTR48GD98ccfun79uq5fv67ff/9dgwYNUps2baxrcQ9gMAgAN6pXr552796tTZs2pbhm6dKlOnjwoBo1auTBygAAZiAEBFzAmYAA3KlFixYaOnSobty4ofHjx6tKlSrKkyeP8uTJowceeEATJ07UjRs3NGzYMDVv3tzscuEJrnYCsh0YQCoGDhwowzDUrl07LV68WHFxcXb3r1ixQs8995yyZ8/Oh00AcA8gBARc4UQnoDgTEIAL3njjDS1btkyNGjWSv7+/LBaLLBaL/Pz81LhxYy1btkz/+9//zC4TnkInIAA3qlatmsaPH6+zZ8+qffv2CgwMlGEY+uqrrxQYGKhHHnlEp0+f1vjx43X//febXS4AIJNlM7sA4G5isfwb6vlkS7sT0MKZgACc8PDDD+vhhx9WfHy8zp07J0kqUKCAfFMKgZB1MRgEgJu9+OKLKl++vEaOHKlt27bJYrHoypUrkqQqVarozTffVOvWrU2uEgDgCYSAgAuMhAQlxoA+vil0Atq8OaMTEIAjBw8e1KJFixQTEyN/f39VrVpVnTp1Uo4cOVS4cGGzy4OZGAwCIBO0aNFCLVq00Llz53TkyBElJCQoNDRUxYoVM7s0AIAHEQICLrAN9ZzqBCQEBJDEpEmTNHjwYMUn6eAaPny4li1bpkqVKplUGbwCnYAAMlGBAgVUoEABs8sAAJiEMwEBV9h0XKTUCchgEAAp+fHHHzVw4EDFxcUpZ86cevDBB1WqVCkZhqFjx46pffv2SqCz695mG+r5pPBrGp2AAJw0a9YsHTt2zOwyAABeghAQcIHdmYBOhIB0AgKwNXnyZFksFnXr1k0nT57U9u3btX//fu3cuVOlSpXSwYMHtWLFCrPLhJkYDALAjXr06KHixYurfPny6tu3rxYvXqzLly+bXRYAwCSEgIALDNtOwBS2A8v33+sJcbw5A/CvLVu2KCQkRFOnTlWuXLms16tUqaL33ntPFotFW7duNbFCmM7VMwHZDgwgFc8++6xCQ0O1f/9+ffjhh2rfvr0KFCigOnXqaNiwYVq/fr1iY2PNLhMA4CF3fQi4f/9+jRgxQnXq1FGhQoWUJ08eVa1aVaNHj9a1a9eSrd+3b5/atm2roKAg5cqVS/Xr19fatWsdPvalS5fUr18/BQcHKyAgQBUrVtRHH31k1w2Ge4ttZ59vthQ6AQ06AQE4durUKdWoUUN+fn7J7qtXr54k6fTp054uC97EtrOPTkAAGTRz5kzFxMRo3759mjJlih577DHlyZNHP//8s9566y01adJEQUFBevjhhzV+/HizywUAZLK7fjDIzJkzNWXKFD366KN6+umnlT17dq1bt07Dhg3T/PnztXXrVuXIkUOSdOjQIdWtW1fZsmXT4MGDlS9fPk2fPl0tWrTQ8uXL1bRpU+vj3r59W82aNdOuXbvUr18/VahQQcuXL1efPn106tQpjRo1yqRnDFNZ0u4ENHwJAQE4dvv2bQUGBjq8L2/evNY1uIfRCQggE5QpU0ZlypTRCy+8IIvFou3bt2v16tVavXq1Nm3apJUrV2r16tUaOHCg2aUC/9feXYfHUe1vAH9347Jx17q7QwuF0kKR8sOlUIoVuVDctVzswsVuBS5WilwKFHctBSrU3dMmTSNN47bR3fn9MZ09M7uzm02yyTab9/M8fbo6ezKzydl593vOIaIO1OVDwIsuuggPPvggIiMjbbfddNNN6Nu3L55++mm8/fbbuPXWWwEADz74ICoqKrBx40aMGDECAHDVVVdh8ODBuOWWW7Bnzx5bFddbb72F9evXY/78+Zg7dy4AYM6cObjwwgvxzDPP4JprrkFmZmbn/rDkfe7MCchKQCIiaivOCUhEHaypqQnV1dWorq5GVVUVmpubAYCjnYiIuoEuHwKOGTNG9/ZLL70UTz/9NHbs2AEAqK2txddff41TTjnFFgACQHh4OK6//no89thjWL9+PcaNGwcA+PDDDxEaGoo5c+ZotnvHHXfg888/x8cff4z77ruvY34oOn6phwMHOKkE1KwOzJMzItLKysrCe++916b7r7rqqo5qFh0vWhsCshKQiNywZcsW/PLLL/j111+xcuVK1NfXQ5IkRERE4Oyzz8bUqVM1o6KIiMg3dfkQ0Jm8vDwAQGJiIgBg27ZtaGhowAknnODw2AkTJgCALQS0Wq3YtGkTRo0aheDgYM1jx40bB4PBgPXr13fwT0DHJfVwYGeVgH7qCg1+o0pEWqtWrcKqVat07zMYDE7vNxgMDAG7g9YOB2YlIBG5cNlll2H58uUoLS2FJEkICAjAhAkTbKHfuHHj4Ofsbw0REfkcnwwBLRYLnnzySfj7+2PmzJkAgIKCAgBAamqqw+OV2/Lz8wEA5eXlqKur031sUFAQ4uLibI9ti+TkZM11Kz/AdwlWizbQc1YJCA4HJiInMjIyNFMGdBT2M10YKwGJyIM++eQTGAwGDBs2DI8//jhOP/10hIaGemTb7GuIiLoenwwB77jjDqxZswbPPPMM+vfvDwAwm80A5BDPnlLtpzzG1WOVxyuPoe7D0qT9YOOsElB9u31wSETdW05OjrebQMc7VgISkQeZTCZUV1dj69atuOKKK3DSSSdh2rRpmDp1KoYPH+7t5hERUSfzuRDw0UcfxcKFC3HDDTfgwQcftN2ufOPV0NDg8Jz6+nrNY1w9Vnl8e75BKyws1FyvqqrSLGxCxydLs3uVgOo5AVkJSETewH6mC+PCIETkQWVlZVi3bp1tJeDff/8dP//8MwwGA+Li4nDaaadh2rRpmDZtGtLS0lq1bfY1RERdj5PxjF3TvHnz8NRTT+Gaa67Bf//7X819KSkpAKA7jFe5TRn+Gx0djZCQEN3HNjQ0oKSkRHeoMPk2dysB1XMCSlwYhIiIWqO1lYAcDkxELvj5+eGEE07Ao48+ij/++APl5eX49ttvcfvttyMpKQkff/wxrr/+emRmZmLgwIHebi4REXUwnwkB582bhyeeeAKzZ8/GW2+95TDn0tChQxEUFIQ1a9Y4PPfvv/8GIFYaNhqNGDVqFDZv3uxQDbhu3TpIkuR0VWLyXe5WAtrPCfjNU1vx/ND38duiPR3ZPJ9zNLsWu34v8nYziIg6V1sqASsrgUceAb75pmPb5otqarzdAqJOFRoairPOOgsvvfQS3nvvPdx9990ICgqCJEnYt2+ft5tHREQdzCdCwH/+85944oknMGvWLCxevBhGo+OPFR4ejhkzZmDFihXYunWr7faamhq89dZb6Nu3L8aNG2e7/fLLL4fZbMYbb7yh2c4rr7wCf39/XHrppR33A9Fxyb4S0M+/5TkBK/YUYuOjX8C84wD+uvcrNNWzYsMdudsq8Grfl/DJlNfwyT3rvN0cIqLO05ZKwOuvB55+GrjwQqCsrGPb50vuuguIjJT3HVE3kJeXh3feeQdXXHEFkpKSMGrUKLz44ouor69HQEAATjrpJG83kYiIOliXnxNw0aJFePzxx5GRkYGpU6fiww8/1NyfmJiIadOmAQCeffZZ/Pbbbzj99NNx5513IiIiAm+++Sby8/Px3XffaaoH58yZg3feeQd33XUXcnJyMHDgQHz//ff44osv8Mgjj6BHjx6d+WPSccC+EtDo3/KcgI0H88QddXUoy69DYu/wDmmfL/n73b22E+EDX+8EXhjXwjOIiHxEaysBt20DDh2SLzc1ATk5QExMhzXPpyxeLFdSvvMO8PDD3m4NUYf48ssvbfMB7t+/HwAgSRIMBgOGDBmCqVOnYurUqZg8ebLHVg0mIqLjV5cPAdevXw8AyM3NxezZsx3unzx5si0E7NOnD1atWoUHHngA//rXv9DY2IhRo0bhxx9/xNSpUzXPCwwMxK+//opHHnkES5cuRWlpKXr37o0FCxbglltu6fgfjI471mb3KgHVIaC98nwzQ0A31FeKYfgWc70XW0JE1MlaGwIqAaCitNTzbfJFkgRUVcmXKyq82hSijnTBBRfYLqenp9tCv9NOOw0JCQlebBkREXlDlw8BlyxZgiVLlrj9+IEDB+Krr75y67FRUVFYuHAhFi5c2MbWkS9xe3VgP+ej7KuK6jzaJl/VWNtou2w166/STUTkk1o7HNgehwO7p65ODgIBOQyUJM2cvkS+4rzzzsO0adMwdepU9O3b19vNISIiL+vyISBRZ3F3TkBXlYAMAd3TVKMKAesZAhJRN9LaSkB7rAR0T3W1uNzUBNTXAyEh3msPUQf5/PPPvd0EIiI6jvjEwiBEncFqcbMS0EUIWFPMENAdTapKQNQ3QLJKzh9MRORL2lIJqK5gYyWge+xXBVaGBhMRERH5MIaARG5qcyWgqrLAXGL2eLt8UbNZFQJKVpgrm7zXGCKiztSWSsDrrxeXWQnoHvsQsLLSO+0g6iS7d+/GTTfdhP79+yM8PBzh4eHo378/br75ZuzevdvbzSMiok7CEJDITe7OCRgWL1ZWC+yVhqjRfWzXzWWsBHRHc12j5np1CYcEE1E34U4IGBAARETIl/v1A267TdzHSkD3sBKQupElS5Zg5MiRePPNN7F//36YzWaYzWbs378fr7/+OkaOHIl3333X280kIqJOwBCQyE3urg485fahCBncG4E9UnHJ/85DULQIBesZArrFYmYISETdlLuVgIsXA5dcAnz2GaBe4ZOVgO5hJSB1Exs3bsScOXPQ2NiIs88+G1988QW2bduGbdu24csvv8SMGTPQ2NiIOXPmYMOGDd5uLhERdTAuDELkJm0loMHp3H/xPcJw/45ZtusrY8Rw4IZKhoDusNZrQ8CaUoaARNRNuBMCAsCFF8r/AKC5WdzOSkD3sBKQuol///vfsFqtePvtt3HNNddo7hsyZAjOPfdcLFmyBNdeey1efPFFLF261EstJSKizsBKQCI3aSoBXSz+YS80VoSATRWcE9Ad9iFgbWm9l1pCRNTJ3A0B1fz9xfBgVgK6h5WA1E389ddfGDFihEMAqHb11Vdj1KhR+PPPPzuxZURE5A0MAYncpKkENLj/q6OeI7C5hpWA7rA2aENAczkrAYmom2hLCAgAsbHy/6wEdA8rAambKCkpwcCBA1t83IABA1BSUtIJLSIiIm9iCEjkprZWApoSRCWgpZohoFsYAnYoc2UTlly9AkuuXsGVl4mON20NAWNi5P/LygCr1fVjiZWAnWHnTuDtt4Hqam+3pFuLiopCbm5ui4/Lzc1FZGRkJ7SIiIi8iSEgkZuslrZVAkYkihBQMnM4cEusFglSozYErK9kCOhJ3zyxCTnvrkDOuyvw5cPrvd0cIlJrbyWg1cpAyx2sBOxYDQ3AqacC118PzJvn7dZ0a2PHjsXq1auxfPlyp49Zvnw5Vq1ahfHjx3diy4iIyBsYAhK5ydIkKiucLQqiJzJJhIBobkZdFSuvXNGrTKuv4JyAnlS09YjtcuHalqsDiKgTtbcSEOCQYHewErBjFRQAxcXy5ZUrvduWbm7u3LmwWq2YMWMG7rvvPuzcuRNmsxlmsxk7duzAPffcgxkzZtgeS0REvo0hIJGbtJWA7oeA0amhmutl+RwS7EpteaPDbY3VrAT0pKYaEarWFZZ7sSVE5KC9lYAAFwdxh/0QVVYCelZFhbh88KDXmkHAGWecgYcffhh1dXV48cUXMWzYMJhMJphMJgwfPhwvv/wy6urq8Mgjj+D000/3dnOJiKiDMQQkcpN2TsBWDAeOD9KEhpVHGAK6ohcCNlQxBPSk5moRAlqKyyFZJRePJqJOpQ4BW9HXsBKwlTgcuGOpQ8CSEu5fL3vyySfx/fff49RTT0VQUBAkSYIkSQgMDMSUKVPw/fff44knnvB2M4mIqBP4e7sBRF2FphKwFcOBjX4GGEJCbPMBVhZyXkBXzBWOIWBTDUNAT2quFftTamxE8SEzEnqGebFFRGTDSsDOweHAHct+fx48CIwY4ZWmkGz69OmYPn06LBYLSo/9jYiNjYVfa/7OEBFRl8cQkMgFq0XCjl8KMWByorYSsBULgwCAMTwUlmMhYPVRVgK6UlfpGAI213BOQE+y1Gr3Z972coaARN7U0AAEBspV48rKvgZDq6ae0ISArARsGSsBO5a6EhBgCOgFWVlZ+Pzzz5GTk4OgoCCMGDECl1xyCUJCQpCQkODt5hERkZcwBCRy4eUTPkH1+t0ISE/GxEdOtd3emoVBAMAvPASWo/LlmmKGgK7ohoBmVgJ6klSnDQELd5UD56Z5qTVE3dzGjcDUqUB6OrBunagEbG11jno4MCsBW8ZKwI6lVwlIneaVV17BfffdB4u6shjAo48+iu+//x5DhgzxUsuIiMjbOCcgkRO15Y2oXr8bANB0uBCHNxSJO1szTxOAwEixQrC5lCGgK3ohoJUhoMdIVglSvTYELNnHqiEir/nwQ7lqavt24I8/2h4CshKwdVgJ2LHsKwEPHPBKM7qjlStX4u6770ZzczNCQ0MxcuRI9O7dGwaDAXl5ebjwwgthtVpb3hAREfkkhoBETpQe1s7dV5VbYbvc2kpAdQhYV+q5OQGtFgmfPbQB713/JyqLfGPIbEO1YwhoYQjoMebKJjHc8JjKHK4QTOQ1xcXicm7u8VkJWFAALF3quKJuV6YXAjIY8Ry94cDUKRYuXAhJkjB79mwcOXIEGzZswL59+7Bp0yb07t0bWVlZ+PHHH73dTCIi8hKGgN1ETVkjPrxlFb7713auBOqmigJtWFebXyGutLISMCg61Ha5vtxzlYDLX9uL7c9+i4NvL8end67y2Ha9qb7KMQSU6hkCeopeWGzOZwhIHrJrF/Drr4DEfsZt6hDw8OHjsxJw+nRg5kzgtts8u11vsg8BJQmorfVOW3wRhwN7zZo1a5CWlobXX38dYWFivt9hw4bhP//5DyRJwt9//+3FFhIRkTdxTsBu4r1Zv+Do9+sBAFGpYZg4q5eXW3T8s1/Ft6Gowna5tZWAITGiErChwnMhYM7KPNvlkm0FHtuuNzXWOIaAaGyApckKvwB+b9Fe1SWOgWpjEUNA8oBDh4CxYwGzGXjvPWDWLG+3qGsoKRGX2xMCRkbKC4lIkmcrAWtq5KHKgDxnoS+QJMcQEJCDK5Op89vji+wrAXNygOZmwJ+nHh2tqKgIZ511FgIDAx3umzRpEgDg6NGjnd0sIiI6TvCMuhuwNFlR/PsO2/Ws3w97sTVdh30IaClTfavdykrA0FgRAjZVeS4ENB8VJzHN1b4x12BDlX7VX02ZTjhIrVZd7FgJaK2sRn1NsxdaQz7l88/lABAAVvlGZXKn8FQI6OcHREfLlz0ZAhap5sP1lbkGGxrEflbjvICeY18J2NwM5OXpP5Y8qrGxEVFRUbr3RURE2B5DRETdE0NAH1Jb3oj5p32FF0YvRcEe8UF2y3f5kOpEQFR7lMNd3FFz1G7uPosISVpbCRgeL0JAS7Xn5gSsLxXH0lLjGyFgU63+B9OqYg4J9oTaUr25IyUc3l7R2U2hruqvv4A773Qc3vf99+KyOjgi1zw1HBgQ8wJ6MqyzDwF9Yai3XhUgwBWCPcm+EhDgkGAiIqLjAGvyfchPL2xH2fLNAIAPrzTgng2XAQC2fZ6leVxdiZMPv6RhLnER1rWyEtCUKOYEtNR6LqxrKhfH0urB7XqTsxCwppQhoCfoh4BA/o5y9D0hrpNbQ12OJAEXXywHQ+vWiYq/mhrgzz/F4xgCuqeuTjsP3eHDQNyx38O2hICxsUBWlhzAeGropfpYNjbKbQ4Ndf74rsDZAiesBPQcvRDwwAFgypROb0p3lJWVhffee69N91911VUd1SwiIjoOMAT0ISV7xJCimk37cPRgDRJ6haPwz/2axzWWMgR0R12J84rJ1lYCmhJEJaBUWwfJKrV6G3oslapj2VDvE/PmNZudhIAlvrH6sbeZy/T349E9PjLMjzpWZaUIhVavBnbvBgYOBJYvlwMiBUNA99gP262rE5WB7akEBOQQJs4Dwb79sSwr6/ohICsBO57evmQlYKdZtWoVVjmZlsFgMDi932AwMAQkIvJxDAF9SF2pqnJNsmL5f7Zjyu1D0XhIu2BEc6U23LI0WbHtxwIMmJyIkIiAzmhql1Bf7rlKwKhkEQLCakFtRRPCYxwnbG4Nq0WCtUZ7LCuO1CM2vWufnDkLAc3lrAT0hPpK/f1YfpCLg5Ab7CeTf/dd4F//An74QXu7XghYXw8EBLQt3PJV6vkAFfXHgvq2VgIqSks9EwIeOaK9XlYGpKW1f7vepA4BQ0PFXJasBPQMSRKVgBERYr8yBOwUGRkZMBja/0UzERH5JoaAPqShTBsIZX26BWHxjoGQtUr7DfiCKV+gYuV2fBsXgwcO34KAYJ6gAUBThfMQsLVVfDFp2uNQlmdudwhYXlAHWK2a2yoK67p8CGipYwjYkeor9CsBq3MZApIb1PPXAcD77wNPP+0YAtbWykFLeLh8fedOYOJEOaTavFkOBshxf6q1NwT01LyAepWAXZ06BExNBfYfGzHBSkDPMJvF3JbDhslVw1YrQ8BOkpOT4+0mEBHRcaxrjxskjaYKbQjYXFCEra+tdnic1NCAuqom+TGNVlSsklcOtpSUYduPBQ6P766aq1yEgH6t+9UJiwoAjOKErvJI++fvKznkOFy5qqjrzwvoLASsq+iYENBqkfDxnX/j1XO+R/5u368CaahShYBBwbaLdYUMAckN9pWABQXA/PnAoUOOj1WHR0uXygHLwYPAzz93bBu7Er1KQEV7hwN7aoVg+xCw3Af+VtiHgIqOrAQsKQHeegsoLOy41zheqOcDjI8H0tPlywcOeKU5REREJDAE9CGWKsdQqLlAf16m4hz5sUf2V2tW+ivNcTJZdjfkahXf1lYCGowGGMLEkGBPhHVluY5zGlUXd/1586z1+iGgswq29vrottXY/cqPOPrdOnx87U8d8hrHk0ZVCBjcM9l22VJcDsnqA6t+UsfSq1x7+GFxWT1XnDo8yssTlwv4ZZONp0NAVgK6Rx0CpqSIyx0VAlZVAWPHAnPmALNnd8xrHE/UIWBUFNCrl3y5vNw3QmQiIqIujCGgj5CsEqw1LuawMxg0lWilh+QPwEX7tR94Kw4zBATk6jDJ7Lk5AQHATxUCVh9tfwhYflgnBPTAdr1NahAhoEEVKDiby649dq8owr7Xl9uuV+/UqWbyMU3VIgSMGZQk7mhuwtFs54vhEAFwrAQE5MUsFBddJC47CwG7QyWUuzw9HLgzKgF9OQTsqOHAd94JKEM0f/9du4iOL1Lvx8hIEQICQHZ257eHiIiIbBgC+ojq0kbA0uz0/sCeaTBGmmzXyw7LJ/sl2drQr7qQKwcD8gIb6gpJewa/1k+47GcSgVbNURcBo5uqCh0Dm9qSzgsBq4ob8Nure1FZ5NkKPXUI6Bct3rMNVZ4NARvrLPjsyi/EvEUApOoalOS2/9gcz5prxH6MGxAnL9RwTO4WHzi5p46lDq3GjdPe16MHMHmyuM5KwJZ1xUrAzq7kKiryfGjWmcOBv/4aWLxYXG9uBvbu9fzrHE/sKwF79xbXOSSYiIjIqxgC+ojSXG0gFDqkt+Z62ql94R8VbrtemS9/AC4/pP3AW3uElYCACEmdMbShEjAgQlQCmkvbH9bVFDkGtnVlnRMCSlYJC8e+i79uWYoFo96B1eKZYaSSVYKkOtkLjBUhYNOx8Ko4pxaLzvoWb132KxrrLA7bcNf7161Ac/4Rh9uzVutUOvkQS60IbcNig+EfF227XrSHw7SoBepKwHvv1d535plAYqK4rqwqK0msBHTmeJ8TUFngRa0zKwG//16u1Bs4EGjw4BdB7lQCLl8O/Oc/jj9/axQXy0OA7e3Y0fZtdgWuKgG5OAgREZFXMQT0EerQyhAYiFE3jtXcP+KiPgiMESGgUvFXlacNAeuL2xYC5m6rwCd3r0XOZt8IEcrzXVeDtXZOQAAIihIhoCfCOvNRx6CyvrxzQsCCvdVoPCRX8zQXFCF3W4VHtltX3aypwAxJECuIKsNYP79rJYp/2IC8j1fi26e2tOl1Nn2dh8MfrdS9L3eDb4eAUp0IAUNjghGcLELAkv2uf3+3/lCA1y/4CRu/PNxh7aPjnLoS8PTT5ZU/FWedBSSphpgrFWSVlXKYpGhrJaAkARs36g9J7qrUIWBv7Zd3x0UloH0VoKe2665ly8Sqshs2eG676mAvWcyNaqsELCqS38933AG89FLbXkOSgBtvFO9XdcWhr4eAzuYEBFoOAZuagE8/BbZs6YCGEREREUNAH1FRIEIrQ3gYTr6uL/yTEwAAAT1SMWRaMkLiwmyPqT0WINUWakPAxtLWh4CWJivenfo+dr30A96f9h6aG61t+RGOK1VHWggBW7k6MAAER4sQsKG8/UNOG0odqxMaKjonBCw+qH2ftFQ56a6aMu2Qr/BkUQnYXCtXgZRtz7fdlrembWHU8if+soWNxsgImMYPst1XvEN/MR1fYVWFgOFxwTBlisqhqkPOQ8Cmegu+uvwjFH6xBt9e+ZFthXHqZpRAIygIMJmARx+V55wdNAiYOlVbCagESOoqQKDtlYDvvw+MGSO/VrWPVK0roWpwMDBggPa+46ES0NshoPq9oteWtlK/fyIi5PcyICrYtmwRlYerVrXtNTZuBL74Qr4cFwd89pm4b/v2tm2zq2jPcOC33gIuvhg48UTfCvyJiIiOEwwBfYR6fjj/yDAEhvjh1k3X4rTFV+L2jbNh9DMgNEFUAtaXyAFS/VFtCGipbP2wl7ydlbAUyycbltJyj1WFeZM6BPSLi3G4vy2VgCGxYk7Axsr2h3WN5Y7Bmye26w5lYRmF3iIlbWGu0IaAEakiBLSY5ROyxiIRVNUcattJrvmgGAY86r6pSJ2QYbteleW7Jx1N9Ra5yuIYU1wQonuJSsDaPOchYOG+algr5b8XUm2tT/yeUxsooVV8vBz+XXSRfNvWrXKQlZAgHussBCwrA+rbMJfozz/L/5eWAps2tf75xyOlEjAuDkhP197XlhAwIgLw95cvd1QI2JlzAqqrRj0ZAqorAcPD5SGrgKgEVFertXX+PnUl20MPyXNohh/7HObrlYD2w4Gjo8U+bqkScPVq+f+6OmDbto5pHxERUTfGENBH1BSJQCgwSg6bopKCcdI1fRAeEwgACE8UlYBKFVlTqTYElMxmNNQ6X2BET3G2NgA6mtUBE2t3stpiEQIGp8YC/gGa+9tSCRgaKyoBPRHWNVc4Bm9NVZ0TAlbkaatwKgs8UwmoCQENRkQki/esxdwAc2UTJFUFR1Ohi/m0nKivaYa1QrxHe09MQvpoEVw05h2FZPXMHIfHm8qj2jm1IhKCkdBfhICNRc4rfOyrP+0XFaJuwGoVIaA67IuNFcFTYKB8wg+IOQHtQ0D1fa2hDoTy850/rquQJG0ImJGhvb8tIaDBIKoBfWE4cEdVAqpDQJNJDk8BEV6pg6rcXO0K2O7KyhKXhwyRj82QIfL17GzfqWbVY18JaDCIIcG5uZovoxyojznnDyUiIvI4hoA+wlwsQpigmDDdx0SmikrA5spaWC2SrbJHrehA66q6yg5pP8iWZnf9ENBcIkLAoJgw+EVHaO5vSyVgeLwIAS017QvrJKsEqcYxeGuu8exKvc5UF2jfI/arSjfWWbBu2SF8NW8z3p75G+af9hV+fHFni9vVhICBgQiNDrJdtdY1IHertgJFqqtr9Wq+8jZEyJc5Ihp9ThSBhtTQgLxdXf89rKfqqPb9EZEQjLRhotJVqq5BdYn+5PtluR1T/UldSEWFWE07Pt7545Qhwc4qAYG2zQuoDgR8IQSsrJRXigXk/emJSkBAhIBdfThwY6N2zkS9tjQ1Afv3Az/8ALz6KvDnn+5t21kloNksHxP1kFVJkl+jtdQhYJ8+8v9Dh4rbdu1q/Ta7CnUlYFSU/L+yDywWOQR1hiEgERFRh/L3dgPIM+pKRRCinvtPLTpdhIDWqhoU59TKlR12SnJqkDEsyu3XrsjThgEVh7v+t9v1ZapKwJhQ1MVHoq5YnFC1pRLQlCBCQGtN++YELC+sB6yOK+NaazunEtB+Fela1SIlteWNeLHvf2Et1Z4o/r18CwaeloLMEdFwpq5ShICGoECExwXbrkv19SjY6TgMLXt9CeLsK2hcyNsm2mWIiEBoZABCTP4whIZCMsvH5cCao0gfEun2NruKmhJVCOjnj+Bwf2QOjwKMRtvfguwNpRg2PcXhufa/11UFDAG7HfX8XOpKQHtJScCePfJiILW1+iFgW07ufS0EVAdcnhoODIjFQWpq5CAtMLBt2wG0FZuBgfL2qqrkoMy/gz9C2od+9teXLAH+8Q9tlZ7BIA8VHzHC9baVENBgAEJCRCUgIP989kNW9+7VLoLjDiUEDAgQx1apBATkeQHHj2/dNrsKdSWgErD27y9u27sX6NdP/7kMAYmIiDoUKwF9REOZCGHCEvRDwJh0cbvU0IDcLfrf5pfmtC7Eqy7QPr46v+tXUan3Z2h8KEIS218JGJks5gSU6upgtbR9yGlJjn4AI5nrnA5llaySx4a51hVrX1+ZYxIAVr9/wCEAPNYC7P7NdfVPfZUIAY3BgQiLEZWAaG7GkR2Ow3/zt7Wu2uXoHtG2oGS5YsZgNCAoXYQaeZt8c3GQ6mIRAhpC5IA1INgPfvGiGvDwZv0h1vbVnjWFXT/sp1ZSrwzsTiUgIAc3eoFdaysB6+q01UUMAZ1TLw7S3qo9dfCmDm3UIU9HsQ+A7EPA5593HKYrScCKFS1vWwkBw8PlIDBS9aVPZaVjCLhvn1tN1rRDCQF79hSBqToE9OV5AdXvDyVgVS98s2eP/vPq67VzTjIEJCIi8jhWAvqI5koRWpkSQ3UfE98zXHP94Er9k7DWVvI5VIUVdf1woKlSVOqFx4eiqTYS6lOptlQCRiWLSkBIEqqKGxCVFOz8CS44XY3XakFtRRPCYwJRll+HL+5djdLtBWgoroK1vBIIDsbkf5+DU25w8g28m+xXkVaHpqUHVSfqISEw+PlBOnbCdXS368DOPgSMiA/S3H90m+M8YiV7WjcvYFmWOJJh6eJkObJfIur35gAASnf55uIgtaUiBDSGiH0bkhaHmiJ5Pzo7RrVF2hCw9igrAbsddysB7UNAT1QC2j/eF0PA1FTt/e2tBATkEDApqW3bAbTB24ABIrgqK5PbDMir4H77LXD4sPzPbAbuugs4//y2vy7gOgSUJHluOUAOPWfMAN59V77uTmCnDgEBbSXgwYOO8/W1dnGQoiK5ChYQw2AB7XBgX14hWAnsw8NFAGpfCajHfq5QhoBEREQex0pAH2GpEiFMZIp+JaApNlCzwMWRzfofrqryWxfiqavAAKChuOtXAlqqRQhoSgxFVEb7KwGjU0I01ysKWzd0t65KTKStHoJtjNS2TdnuxzevwOGlf8G84wAsRcWQGhshVVVh5bxfW9t0B03l2mOuXqREXQkaPa4fEk8TlQ/lWa5DwIZqEQL6hQTCFKcNAav3O4aAlQdbVwlYkytCwOjeIgRMHCpCjeoDXTME3PpDAZ5MWohner+NFW/sc6j8NJeL+f78wkQAHdUnzna5fL9+qFpfbBf8Fnf9sJ9aqS2VgEeOiBDQqPrI0dpKQF8MAe33Z1CQdt95ohKwvfMCKsFbZCSQopomQKkwzM8HTjgBmDcPePtteQXnlSuBG26Qg7r2cBUCVlaKkG3ECOCFF8R9bQkB1ZWAmzc7Pr61IaDefICAfJyVAL2rVgJKkny8L71UPtZ6lEpAZT5AQBsCOqsEtD/mDAGJiIg8jiGgD5CskmaOOWchoMFogNEk7qveq38SZl/x05LGMm0Y0FTW9cMBdQgYkRSK2F7a+eEMfq0PAUMiAjQhbEWBe/MCWi0SnhvyPp6LfhYf3rIKAFCZL45RYFIMYBC/ypVH5BCwbOth3e01FxajtrxR9z53WJqskKq17xF1CF1TKELAsGQT4vqLqpTaXPdDQP/QQASH+wNGcSJsOeoYUJkPt+4kt6FQhIDx/cXJcuZYEQI2HylGc6PjfJkA0FTvOBfj8eLnB3+HpagEjQcPY8WNH+K5we9h20/iJKquXFQC+oeLEDB+gDhG5sP6IWBjmfaY2wfB1A20Zk5AxcGDIhAYNEjc3tqTe/vQsKBAd07bLsW+EhDQDgk2tvEjmn0loLt++02e9+6ZZ8RtSvCWlCRWfQbEkM316/VXei0pAQ4dcv+19di/R2pq5CpDQBsCp6XJP7PSPncCO1eVgM5CwNaEms5CQEBUAx49qv2d6irWrweeeAL45BPgpJPkik/74FWpBFSHgCaTCJKdHSP7Y96WVcSJiIjIJYaAPqDyaINmkYjYDP0QEAD8o1QrBB9RnYCoghb7ip+WWCq0YYBUVd2u+e68raG2GWgUFVPRaWFI6GNfCdi2Xx1DqKgGrD7qXiXgxi8Po27nAcBqxb43V6Cp3oKaItVq0HHhmu1WFcnbbS6psN3WY/YpqmMsYd/Ktp94lB42A5LdyXdDPepr5FUu64+K909kWgSSh4gT0qbCEpfzEjbWqCoBQwNhMBpgCFZVA+qchFmKy5wGdg7br7PAUlZhu546VISAfSeqQg2LBQfXa8NFq0XC88M/wNOmf+HT+9e79XqdSbJKqN2nHXZZvycbn09/HZ89tEG+XqEfAqaNEJWAzUWlsDQ57s/mCu3fBWtl1w/7qZXaUgm4caO4PHSoXO0GtL8SsLlZ256uqKUQsLMrAZ96Sh6i+sgj8r41m8Ww2MRE/bkG1UHfv/4F3HGHuK4XprWG3ntECc3UIWBqqjyvn1JplpcnqgT1NDaK4LKlSkDlGFRWti6wcxUCtjQv4PLlwNixwH/+4/7rdabVq7XXv/xSDvhfeUW+3tgowtpIuwW2lHkBS0r035v2v+fV1a6PJREREbUaQ0AfUJqr/YAUl6E/JyAABEarA0IRqARkiMoN+8o+V5rqLZDsP6BZrfLKw24wVzahpqztVWkdoSxfG87FpIUiZaD2g6yxDZWAAOBncgzrWlK4U1XJ0dSEXb8Xwayajy0kLhzGUBHo1JTUo7a80bbSLQCc9I+h8E8WJ+0HV7f92/WjB/UrwEoOyce8qVQ1HDgzApmjRAgo1dejJNd5BWRjtQhfA0LlFS3Vc9fpslqQu60CAPDjCzvwz+iXMX/Kl7ph4+HtFZogUb1ScUR8EIzRUbbr2Wu1J3xrPsyGeVsW0NyEnYtWuG6TF2RvKnecJP+YXW//DQBoqBQhYGCEeM/0HCtCQDQ3I2+nal5HHKv+rNH+TksNDTBX6lQAke9qy5yA6hAwPR1ITpYvt3dOQEB/rsGuRB0CKqGqJ0LAtlYCKsGVJAFr1miH37oTAk6YAEyaJK5v2eL+a+vRO+ZKm9THPi1N/l+9cIk6hLNXo+rD9CoB1VVqEyc63l5fD8yZA9x8s34VpP3rO6sEBPRDwEcfBTZsAO691+nfdK9at05cVir9LBbg8cfl9456AR91JSDQ8ryAepV/HBJMRETkUQwBfYB6kQhDUBCCwpyv9xISH657e/QgMdePpdz9ELDogH4gVLS/5XkBd/52BM8nvIAXkv6Nzd8cPydzmkU3DEZEJQUjIj4IhiARRrVlYRAACIgQAW1lnnv7uexgheb6np9zUV8q2hieFK4JF2uK6xxCnNRBkYjoJ4LeI1vaHgI6Wz26NLdWHppeKY59XE8TUgZEaIZB52x0XpnSVCsC4YAw5yGgITAQhnDxXs7dVILGOgv+fuw7WCsqUfb7Fmz4wnE4dN42cUJsCA93mHMwJFMEGwVbtCHg4Y3iulRbi4oj9Tie7PlNVMYYoiIx/JFzbdctJWVoqregsUq0OShC/OwxqSEwhIkvCA5t0h6j4pxa3SrMoiz998LuP45i4Rnf4McXuuicV6RPHQK6WwmoHiaYliZCwNJSoKEBbtMLAtydF/D224GMDOCXX9x/vc6grmT0ZCVgnCrUd7fisrFRuz9Xr259CJiZKc/Pp+jIENC+EhDQhoCu5gVUL/qhFwKqh5lPny4uK6HVokXAW28B//0v8NVX+q+hhIB+fvJ+UVNXAtovDiJJ4ramJiA72/nP4S3rj1XCBwfL7ZswQb5eVSWHeOoQ0FklIKA/L6DeMXcWAkoS8PHH8qI0RERE5DaGgD6gslBUVhnCnQ8FBoDQBP0QMG28WJVQMpvRWOfevGfF2fohYPHBlgOuP17aKA+7bWrCny8eP8Mr1XP1GUJDbFV/xhjxYbatlYDhmaJCo2S3e0PZqnIrNNcL1h7WzMdmSgpDgCoENJfW4cge8RyDyYTgcH8kDhchYOXetoeA5Yf1j3n54Rq5ys8i3jtJ/SJg9DPAP1GcPBZsdxECmh1DQPUCFgq/+GgEpYh9WbijFGs/ztFUTeRudBy6VbRbhICBSTEO90f3FyFg2R7t80v3aI9X7pZWVNg4kfV3Cd6e+RvWLWvn3FkADv8tTorD+6fitNsGizutVuRuq9BUWgZFavdrYLLYnwXbtPMCOq3+zNG//bOZn6Hk5434+77PcHBD+/cTHSeU0CokBAhz0dc4qxJMS9MuLtGa+b7aGgIWFADz58ur1j7/vPuv1xnUlYBK9Z4nQkB1tdWuXe495/BhbdC/apVjCKg3J6ASAhqNchjXs6c89xvQ/uHA7lYC6oWAruYF1KsEtA+rADlMHTPGcZuffipu01vhV5JECJiZCQQGau8frPrbbF8JmJ+vDSkPHND/GVrrr788sxpxWZn42UaOlCv9xo8X9+/bJ+YABRwrAdUhoN4xak0I+PnnwGWXyStDr13rRuOJiIgIYAjoE6oKRVWYf6TrEDA8Uf/+fqekaK47q/CzV3ZIP+wrP9RyJWDVQXECVJN9/MztVF0kQkA/k6jcC4oXlQJtrQSMHySqZ9z9mc0FFZrrVTsPa1bjjUwNR2CkCAHryupQckB8Ex8QL5/cZI5XDfk+XKQ775s7nK0eXZFfq60MMxgR30N+v4WmiYCpeK/zENCiCgEDTfKJk3+YYyVgSEoMwnuIapeyfSXY9pH2ZLdsv2P4VJYlbgtLdwwBk4eL8MKcXaS5T/1+BYCCneW6P4O7muotWHrO/3B46V/4/ooPULCnfatql+0QFT+JI1Pk6lWTCP0PbylFc42oBAyJ1oaApp5if5bu0/6szn7Py3Id/07k7axEc8GxfSdJ2Pmj/gI11AUplYDx8fIcbM4EBWkDI4W6EhBo3TC/toaA6mqjnTvdf73OoISAUVFAwLFqaU+EgMnJInxx92fOydFeX79eDgYVLVUCpqbKP4PRKKoBDx9u++rEFos2hFToVQIqw4HV4aerSsCWhgMrevd2HL6alwf8/be4TW/YcWmpqIazHwqsvGbPnvLlHTu0lYe7d2sf64kQcOlS4OST5bDOfvuttWGDuDxunPy/fQWmu8OB21sJqK4A/P13/ccQERGRA4aAPkC9SERglPP5AAEgIkWnEtBgRJ8JcZohmyXZ7g1VrcjTDwudBUVqDQXi5KCpsOS4WUxEHQL6q4bvJo3NsF1Wh0WtkTZKPK8xv9jlIhm2xx2t0FyXqqo0Q25j0sM0IWBDRR3Kc8RzQpKiAAADT1Wt2NnchAPr2nZyVnNE/5hXF9ag5KBolyHSBL8A+U9MZC8RAlYecP66zaoQMChcDgEDwh1DQFNGNGL7iW1WHShGyUrtCUVltmMIWH1I3BbVyzEE7DFOHB9LSblmzrvGfG1oW7zXeYVbY50FW38ocLlgyR9v7oOl9FiQ2NSEP//rZsWOjuZGKxpyxIlS75PkypggVXXfkV1lLkPAmH4iBKy2CzydVX/qDWnf/r029DuyVedEnroei0UEOq7mA1SohwQr7CsBW7M4iN5j3QkB1WFQYaE2oPA2pbJSPXx3yBARnAwb1rbtGgxiJea8PHmYZkvsh502NAA//iiuJyU5hoC1tSLIVA95VQ8J3rq1VU23KS4W4Zh6/9iHgP7+4v2oDtzcDQGVqkW9SsBeveT3bMix/nXvXuCLL7SP2b/f8Xnq2/RCQEDMC1hTA+TmitvtQzpXcxsC8nFytWqxJAHPPSdfrqsD3n3X9fZasl41amPsWPl/+xBQXQlov1/T07X7055e4OesYnjlSnFZb25FIiIi0sUQ0AeYi0UIGBzruhIwOs3xfmNEOPwDjTBGmmy3OZv3zZ6zsK+mwPVJR01ZIyT1iUlTI/J3t68SylNqi0UIGKAKVS/89wT0uWkqBt55JqbdMVjvqS3qc4JqHq3GBuTtcv0zNzdaYa1w/ZjYzHCExGhDwOo8caJrSpM/hEcmBsMYI6pzsla2bUhwnZPVo2uP1qI0R7Q1IEa8nxIGiZM4c57zENBarwoBTc5DwJje0UgaIrbZkHXYYYGa+nzH16kvEMFdfH/HELDPhDi5kgUAIGHPH/IJZ3FOrWahFQCoyNavBLQ0WfHCoMX44qw38NKYD50GvZve2KC5nv1d20PAvX8dBZqVwNKAwdPkoEU9/LxsfymsZhEChsVqQ8Dkoar9WaDdd9WFzoNfezl/5mqul+9r+0rUdBwpKxOhjKv5ABX2IaAS1rSlErCxUQSQ6koid0JA+6ChvZVQntLUJMISdcgVESEPxV22DLjttrZvXz3k1J0hwfaVgIB2DsXERG1VV1mZ43yACk/MC6h+b6i3Zz8cOCVF/M0ODRWVlHv3Og/H3K0E7NVL3rYSch08CHz0kfYx+/c7vo46uOvdW78N6sVB1MOmW1MJ+MMPcsXtlCmaaTg01q7VBrGffuo6NGyJelEQvRBw/37XlYDq/XnggHZhFYtFVBurpxtwNixcvZ89MdSZiIiom2AI6APqykQ4ERLnOgSMzXSsBPSPlT/8BkSL+5xV+NmrLVI9TjU8rK7IdXB1cL1jQJOz3vnw2D8XZ+GTe9Zh20+FbaoYLMk14+WJn+LfIz/EynddD68xl4j9GRwj9mdYdCCufG0SLn1pPAJD2jZMK75HGAyhIlg8+LfrgKRgTxUguR62G98jTBMCNlXVoU41hDiqR5TtclhvUQ1YsKnlEFCySji4oQzVJWIuuYYSccwNIaphyCU1qFJVhqmHT6cOE2GU5WiZ06HIFlUIGBwhh4D2c9cBQEL/aGSMVK2ACcf3RHNxuea90txohaW0wnY9ZYhjCBgU5o+AVBFeZP0hhwwH15U4PLb2sH4l4M7lRWjMkZ9n3p6FI1k6Qdnmcph3aN+HDVm5bR4SvG+FqJLyS4xFRLwcnEb3EfuoOqcUUp0qBIzRhqvq/SlVV6OqWBzzmkInwe8Rx9vLtmhDwLochoA+Qb2IRVsqAVNS5OGtbakEVFcCDRokL0gAtL4SEHAdAprN8rDCo+14z/74IzB3rrywhivqVXvtQ9VBg4CLLnKcS6411CGgO0OC9ULARvH3GImJ8nBfpXKuvFwbAvboIS6PHCkut3VeQHXwM3y4uFxUJFe/KRWIynyACiVgqqjQzrmo5u6cgEqApwTPFovjca2ocFyB2dXKwAr1XIPq6rrWhIALF8rVfStWOA9b//tfx+21NZiVJBECRkWJny0tTfxOtlQJCIh5AZub5WBVcfSo+KJBHfzqhYCrVmmv79njfKVmIiIi0mAI6AMay0QFVFiC6xAwvqdjCBh8LKwJjheVW+4M5wWAuqPicf7JqqGupa6fn7/NMQTM36r/gf3vj3Kw/LoPsOvF7/H59NfxZMS/8fJJn7m9orBklbB4xueoXL0DtVv24der38eLEz5B7rYK3cc3lKtC1VjXw6tby2A0IChNnPDlb3E9L2DBrgrX2wsJQWCIH8LiRBjXXF2H5hLxvLje4kN43BARApbtch4C7v7jKN6e+RuejPsP3hs7Hy/1WiAv+gGgWbV6dHAPsb2G0lpU54sQKyxJhIA9RqsCO0uz06pPSRUChkQeCwEjHCsBU4dEI3NENGB0EcbavU7+rkrAKqolMobrzFkGIGqwOKks3CCHDHk6x6nxiH4IuH+FNpg4uNbxub8+t1H3uSvfbFuVUv468ZqRA0X7EweJ/V6fVwJJtRqrKV4brtrvT3XwWVesCn5VwUR9iTbgrCpuQFO+dvivVFWF8oI6UBfn7srAiqQk7XVl3ra2VAKqH5eSIoIfT1cCzpghV1UlJgKjRgEPPABs2+ZeGwE5zDnnHDmcmTgRuPpq50MZ1QGVuhLQU9oTAuot+qKEusqQYFeVgIMGyZWfgOvASZLk+fVuu00+rhkZYliyOiDu00eEdUVF2vuU95XCnXkB9ULAkBDHORh79XLcpsKo+vhsPyTYnRBQqaIDtNV19lWbOTn6VX7qQA7QP8bl5fLqufbUC5u0Rn6+eD+PGSP2gdEI9O0rX87K0s4DaV8JCDifF1D9ez5okDy3qP3tCvVQYEAOrPWGZhMREZEDhoA+oKlShICmRNehlSk2UHw4PyYsWQ5rQhJECKhX4aNHHfZFDBAVHi0NYS3a6Rj42a++qtj+ufaDnWQ2o3Lldnx10fsoy285XPjy8c0wb9POq1O9dhcWj16Er+Y5Vik0lov9GRrn2RAQACL6iLC0ZJfripOj+yrEFT9/h/uNEfIJTHicCHSaK2thrRInOYn9o2yX08eKE/O67CMOQ1WLc2rx/ND38fEpr+Lw0r9gLZdfX6quwYpFOyFZJc22oweK7TVX1KD+qDjuEani/RSTGqKpgDy0UT/wlRpUIWCUfAIQHGkfAhqQPjQK/oFG+MXrBHmq93fuZnEycnirCO0MoaGITgmBntSx4n1ctUc+2Sze5dhea2U16muaHW4vWK8NJvI2a9/XjXUW5H+ret+pqikPfNO2IcGVu8RrJo0WIWD6CFV1X1WVZhiYfQgo709RHZm3RfzMDarf88BMEeI0lmn/Tmz9Lk93qNn+VawG7PLaWwmohDVtqQRUhwDJySIErKyU56VzprHRca47ZyFgVRWwfLm4vnmzPJfauHGO29BTXw/Mnq0NbN59Vw483n7b8fHq/Xk8hYAJCXKAqRYRISq93AkBg4LEnIS7d8v7xt5338nB0QknAAsWyMf48GFgyRL5fvtjrryfior0VwZW2M9Pp0cvBDQYHKvWXIWAl10mLtvP26dcNxjENuylporfhQ0b5Aq40lLt+wKQq9vUC7QoDh3SBsl6Q77fe0/s+8suE6M1li1r25BgdcWisiiIQtnvTU3a4FwvBHS2QrD9MVe+SHCnEhDgvIBERERuYgjoAyxV4iQoMsV1JaDBaIDRpK0GjEiTQ0BTightlHnfqoobXA7BVa9SmzJGnNxJDQ2oKWvUewoAoEJncQj71VcVZTudVIs0NuCXF1xPOp67rQJbn/9J3KAO0pqbsPmZ79FQqw1ymqpEJWBLoWpbqFcIrm5hheCygxW2y2FDejoEuAFR8vE2JYggSaquhnp4bNpgcWLT72QR2km1tZqhqjt/O4LXRr3pMExVUbAuDxVH6gGL2F8po8T2LFW1aCwRIWBUhnaOpUDVIhWFOxyPv2SVIKmGn4VGyRVnShioMEZF2IZjh6TGau4L7JGKgDQRPhzZLYK/I7vE5YBEx6HAiv5TxEml5WgJKo7Uo+qA3nGSkLvVcV7Ayt3aYMM+6F2+aLeYv9BoxIQnz7Hd17A/F0f2uw7gq0sa8PzwD/B0xuvY/E0ezJVNaMoXr9H3FNH+HiOjAeiv4hqR4DjMOjRDhBHqoL65XD/4tVRoKwGzlmuHAityNzAE7PJaWwnoLASMiRHDXNUn943O+wunISDguhrwwAHtyquA8xBQXbGmnh+uoQF4803nr6F47DGx7T59RPhRVQXccINjRaA6wHFnf7ZWUpJYobmlELChQQSyPXoAJ56ovV99LJVtNjdrt6sOAQExJNhi0YYzkgQ8+6xcdak31FVZeddZCFhRoR1C6qkQENAe98BAEdLZh4AZGcCll4rrzioB1cNk9ShBWmWlvA1n7029xUHUgRzgeIwlCXj9dXH9scfkFYKV9rozh95XXwGXXCLPKwjozweoUCoB7R+nNxzYWSWg+nckOVlUDZeUaP8+1NYCmzY5bpfzAhIREbmFIWAXZ7VIkGpFaBWV6joEBAD/KG0IqIQ1kani9sbSGlQW1eM/g17H59Nfx4IpdiviQV4AQVJ9mO59Uorm/iP7nFcD1uY6hkD2q68CcjBUny1OBkY+/n+ImiQm1N7/0UanCy9YLRKWXv410CgPgTQEBmL22n9gyH1nA4Zjb/2mJuxarj05s1aL/RmR5PkQMH20qKJpyi92OcdhVW6FaEvPWAT30p7wBMXKxywySb+qzRASAlOcCNFSB0Zo5vHb+4f8s//8yi4sO/NtW+UfAPgnxSN8lPiwXrkzD0VZ6oDKgJ4TxMmhZDbDUiYmBI/tqQ0BwzJEYFe6T+f411k0J+zOQsDAJBHgRfbWVtBkTB+I0DRxf+k+EfyVZYnL6sfY6zcxHggQQ153/lKA+sP6YW3eNu2Q4NryRjQXagMv+wBxy1tiQZCIcQMx7baBMNhORCX89YbrIcHL7lgF87YsNB0uxNeXfYjfX9sj5o00+mHQqeKYBIX5wxgT5bgRgwHhMY7zjUX2Fseo4qB8jOTqT3HcU0aLSkCp1qxZAblovX4IeHQHQ8Auz1OVgAaDOLlXgqfFi+VFHS66SL9CSV0x2JoQUC8Eys7Wr0xThwovvCAHTcqXLosXu55vbPVq+TmAHB59+aX82tOny7dZrcCaNdrndPRwYINBVAPm52vnabN3+LDY7z16OFYCqod2q1cIVu+zjAztc/QWBzGbgZkzgYceEq930kny/lVeY+1aeX85CwEB7TyD9sOB1SGg3uqzgPMQUB1Y9ewphgertwkAF1ygDb3UIWBZmZgj0NlQYIX9kGB1CDhkiLisF5aqgzbAsRLwr7/E9k4+GRg4ELj4YnH/smWu21ZZCVx+ufy400+X96XeysAK9T5Sf2GgVwmofqyz4cDqSkBALAgDyD9787EvI6dMEbezEpCIiMgtDAG7uIoj9ZrgJDaj5RAwMFr7mLheclgTnSEqAS0V1fjywbWwlMgfZsv/2o7acm2lRkmuWXPCljo4SjPk8+gB/YomySqh6YhOJZjZbJt3TnF4RyWkOjHkd/wVfXDGUyfZrjcfKcaGL3SGygD4/KENqNslKgaG3H06eo6OwUXPjdVUi+1bLoYWSVYJVlWoGpns+RCw9wRV1UdTI/J2Vjp9rDlfVJpF9YhC3Kh0zf3KQjARifohoH9clOa6wWhAcE8R4hxefwRL567G6js/0Zzk9rpuCh7O/wfOefk0222W4lLkrBMf7g1hoUjsqw361JV89vfZL1Jhr7pU+/5SQkD7VWzD0sQQ4PgB2krAE68bhKie4iS1Klu8TlWOCOyiejkPAf0CjAjqIfbRnh+yYa0UgbZBddJ4dK+2EnDnr4UOIUZDfrEtqM76uwT1e3Ns9024dQz8AoyIP3mg7TZXQ4Ilq4S878VQK8lsxvqHv7RdD0xPRFCYtlo02K5aEgAMQUEw+jlWCCYMVK3inCuHFOWF9Zohjn1OUs3pBglHD8on1E31FtQfEL9LoUPFCXDlfoaAXZ6nKgEBbYVPaSlwzz3ye+yzz/SH3tqHA+ptuQoB1SGQ0jdZrfrhoDpYGjlSDoHOO0++XlQEfPON/muYzfLcf8rv/ZNPyuFbfDxw003icUqFm6KjhwMD7q8QrJ4PsEcPYPx47Zx36mOpDgGVfZ+QoJnWAIBjCFhSApxyinZ13aeeAv74A7jmGnlYMCCHT7t3a495YqK2Derw0b4SsEcPeQEToH2VgOphvBER2rksL7xQvl8ZXquu1FMHdi2FgOohtevXa4/RjBn621Q/Xi07W34vKtQLgijvwwsucH9I8Oefy4uOAHI167nnitdUz8upsA9KFXqVgOHh4nd4zx7RDvvfc/U+V1cJqocCz5olfrdZCUhEROQWhoBdXNlh7XxIsekth1bBcdpKQCWsiespQkCpthbZH6lOWiQJ23/SDnPUhHxGI+IyQuEXLbZRlqNfCVh0oMZWnQdAs6qw/SIK+/4QHwoN4eFI6mvCwMkJCOotwrDVCxwXWTBXNmHnAjG/U+iQ3rjgqdG269FDxUlkwXoRXFSXNmoCj6iUDhgO3IoVghuPVtgux/WJQq+TtSFgWKJ8LKOT9YccBSc6fgBXD+c8+L812LvwZ3FnQCAmzb8UV711MgxGA/pNjIchSFTi7f5CfGvvF2VCTGqIqKq0k9TXpLmuWaQi3zEENFdoQ0ClUs1+FduoniIEHHJ2pu39E9grHb3GxCC+vzhJrS8o070c1895CAgAscPECU7+D6r5jYxGRI0SJ4flB7SVgAf+1Akk6upwNFv+PV3/oagY8YuLwQmX9wAAjLxikGjn3kO2YM3ehi8Oa6o1AWgWO1EvaqIw9dAJAUP03y9pI0QYYTlaCkuT1S7MN6DPhDjNBPrF2XJbd/52RATJBgOGXzPK9pjGw0VOK3api2htJaCzhUEA7byAjz4qL2CgUIYeqjlbGATQzg9nTx0CKVV5gP6wSyVY8vcXVVg33CDuf+MN/ddYtEhUgk2YANx9t7hv/Hhx2f7n6ujhwID78wLah4AmEzBsmLjNWQiosB8KDGhDwN9/l6vRlBApPFyulnz4YdH/KyEgIAemyjGPi5OrK92tBPTzE+FbVpb+ohrVqr9pzioB7efyUyrO+vWTh0sHBYnqx/37RZDlzqIgCvUKwfaVgOeIaSIcQkCLRZ5HUE2SRFWdxSLPuQjIx+uCC+TLycnApEny5b17Xb8n/vc/7fV9++QwEHCsAgT0Q8DAQOfDoZV5AcvLxe+CqxBQfZ96UZCTThLv84MHXc8RSkRERAAYAnZ56hDQEBxsmyvNldB4bSWgEtYk9tGGNlBV4AFA1h/ak63SHPFB2hAeDqOfAUFx4pv0isPy/X8uzsJ71/9pCzZyNooAyBAYiIA0cbKoXowAAHLXig9+Ib3EB8LBV4lAr3zlTocFQr5/ZouoIPTzx8yPzoXBKMLGjBPFiUP1LvFzleVpKxHjMluurGyLoHRxEu1sheCmeoumAi1pQBSGna0NAU3J8glMQLAfEOi4im5YapTDbep5/CRV5YAhIgKX/HQdps4VVWlGPwOC+4h9VblBhFiBsfIxN4Q77iNDaCiCw7UVaepFKqzllair0g6v01aaGhBikp+vHs4MAPH9RAjYZ3wsTlp4GdIunYQrv7hQ/vmGitdpLi6H1SLBapHQXCyChpQhrkPAjAnqRW5EpaZffCyi+4qgrDpXWwl4ZJP+QgdZq+Wgt+BvMVw2/sS+tvfkuIszYbCtyCnhz9f1hwSvX6yqdDA6/vlOG+8YAsb2cwwB/cL0T8x6jlGv4mxB7rYKlB5SrQwcForAED/NvKLK34E9P4ufLSAtSfNelerrUbiv5bkOXxi9FE8lL8LWH9xcMII6T2srAe2DQr1KQEA7bxngOgT095dDIb3hwPX1wM8/awNFdSXg//2fuKweggjIFVRKFdbgwSK4OO00uSIQkLdtX6XY1ATMny9fNhjkBUDUK8wmJYmAbP16MYQR6PjhwID7IaD65+rRQ/5fPS+g3pyAaspz1KKixO27domAKyVFHj6tPh6ANgRcvVpUfinvFfX7SV3Jpw6UFUog1dCgv6iGO5WAvXtrn/Pqq8CHHwK//ir+9ipDgisqxIq4rQkBo6JEW7dsEQtqREbKVYLKcHT7OQH37NEPu5RjvH27COxOO02ssgu4NyQ4P18skpOW5hj82i8KAsjvYfuhv1FRmi95NfQWB7Gv/tQLAS0W+f0ByL9fvXoBQ49NESNJriteFT/9JAej9isMExERdRMMAbu4ykIR4hhN7gVWSnAEyOGdEhxGJgQ5LDyhVrRBGwKWHxYfpP1j5AAxJFF8iK7Or8Kmr/Ow/Lr/4eDby7Hk/C8BAAXbRQjonxiLsExxAlS8SxuIle4UQ0DihooPhFNvHwwEHTtRszTjlxdFtZbVImH3O6KKMW7KMM3iGAAwcJo4IbWWV8jViQDK81UhoH8AQiMD0BEieouT6NLd+pWABXuqHIZbx2WEwj9VnJClDhOhjTHMcUhwVKZjJWDviUkOt/nFxeCav67VzCenSBilOnlXVXAGx8nH3D/S8X3nFx3hcFuPUTEQi1RIyNmsDdDqKlUhYGCgLSALj9WGgEkDtSehp/2jP67/aCoyhkUBADJHqk5YLM3I21kpv5ZqQZOMEa5DwIFTHcM0AAjNjNNUGjYUaisBq/foD03M3yIPCa7ZJYKynpPFHFp+AUbEnSTC14Pf24UUkOdMLP5dzHk0YO7pCOqjnYer3ymOJ8TJgx1/VmchYHRKiCqMlCtz1b/nfsfmE/VXVfxW5Mn3568VJ9sxIzKQ1Cdcu/LxGtdDgj+e+xdqNu1F85FifH3NF6wcPN4olYBhYWL4nStBQSIUMBq1lYHq4MZ+4Q77YbOACAASE+Vt6YWAs2YBZ5whD6NU/m4qlYBJSdrgwr4ScPt20Y5RooIVRiMwZ458WZIcV/ldtkxUIp57rlgRV23CBPl/s1k7Z9nxFALaVwICwNSp4raB4m+T25WAgLYaEJADm5UrRWijNnq0+Pzxww9iIQglCLIfXg7I+y3I8csvzcITekOC3ZkT0L4SMCJCniMvXfVFnHpeQCWoU7+3WgoBAfG+bGgQ7/OBA+V9oRyLAwe0Q3fV8wEqi30AIgD76y9xm1L5p7jwQnH5yy/12/TRR+L1rr0W+OQTbbitVwloMDhWA+oNBVaoj5Hy3rSv/tQLAXfsEJWckybJr6ueP7GleQFLS+V98MUXciDqakEiIiIiH8UQsIurKhTfBuuFMXrUC1MEZ4oP1gajAX6RJr2nAABq9uZpTsyr8kVlT1CM/EE6PFk831xUjRXProGyUq15Wxbyd1ehZK8IAUMz4xDTXwRilXYrBJsPiG+G08eJD4ShkQFInCaGK+1TLRDy++v7YCkWrzHtMVWFwTG9xsRoFsjY8aN8IldZoKqsDPf8UGBFwhBxDKoPyifXX83bjCcTF+Kdq34HABTsqhBtCQ5GVJIc3Jy58BwE9++BtEsnYcz54oREL9iJ7R3lcFvfE+LEnEkA/FOTcOPaa20hmr3ep6Tr3q4MRQ6IDne4LyjO8X0UEhEAY7Q4Kcjbqh0SrA4BDUFi0YrolBD4xcknnoawMPQ90XUVUkxqCAyqIUiHt5Zh7XuiIsgYFYnYNP05FBUZw7TzW9ra0jdeU0VoKa2ApUkOD0pyzbCWiWBTHdAV7yrGgXWlYlVgAMNnaAO8oReLygjzrhxUFTdo7l+5JEtUtxqNmHrXMFz30yUwxsihaGDPNHlRE/ufZaRjJaB/uPMVK9UVt3u+3a/5PQ88FvYrC9IA8t8BySqhZqc24DQYDQhWVbwe3ug8BCwvqEPe52KOK0tRMdZ+csjp48kLlErA1gxdVU7OBw3S/M3RnNwD8ol87LH36ebNciCiaG4Wr608LzlZVBjl58vhx6efytdXrZKrqioqxPP695cru5SQyT4EVM8xpw4BAXm+Or0FQiQJePFF8bi77tLbAyIEBLQBpxKq+vu7DkvaIyFB7FclaCkrA268UZ67UAl69ELA884DnnsO+Oc/xdyIQOtCQHVYNHSoHAAqlZX2QkJEaGg//BvQDwHthwIrWlocRB0Cqv/OK4FcaKh2KLcz6pBv/345UPrhB/l6eLjjqsJ69AI1JXRVqhFra7WVuOr5AK++WlxWQkB1hZt9CJiSIn7Obdv05+BUDwW+4gq5mnDRIvm9OnCgPARXj30IqLcoiEL9e/bTT/J7UTnu6t9zhXKf+mdTFrBRh4AtzQu4YIGoojxyxHkQSkRE5MMYAnZxNUUiVAiMci+0Gn9JJjKuOBnho/pjxoLTNfepK3wAIHyk+FAnVdcgb5cYnlpbJD5IhyTIz4tMFxVgtVmFqFqrPdn687WdqFIFfdG9Y5E0RFRB1B8W9x3ZXw1JNXdP/1O0J46n3C2GBFsKj+KX+fJrrZ8vVmEMHdYX/Sc5nrQajAaE9BUnENkr5RCwNFv8fP6mjgsB00aKNjUVFuPvj3Kw+YmvYTlagkPv/4HN3+Th6L4K0ZZ4Uf02+rx0PLDnalz/0VTNEGd/k2Owldg/yuE2/0AjBt46FQgMgmnsQNy64Wok9HIM8hRDp+tXxZlS5GMeHOsYPocmOVYCAkBQigikNr+9Cbv/ECc26hDQGCxCQKOfAZd8cTkyrjgZ//fxTIRFO65qq2YwGuCfJF7nyK4y5HwvhgglnjpIs9+cbSOkj+PPnTg4DhnDVZWIVgvyd8vvmV2/iiGshqAgZJ4hQr2qA8XY8b0IyYyxMQ5zJo6/tIcY0m21YPV72iFgW98X1a7hw/sgLiMUCb3Ccc/Bf2DK21filjVX6i72kTY4UlvFASDQpFM9c0yvM8WJa8nKvZoQUJlPVPl9B4DaozXI3lSuWSlcGQoc0UeEgCW7nIeA3zy2XjtPKIA189c7eTR1uuZmseKpO/MBKt54A7j/fuCDD7S32w/hvOgi4Oyz5cuNjWI1WUAOP5QqPSUUCAgQ7cjPlwMKtY8+0laA9esnP0ep3Nq7VztXnKsQMClJrvID5CDiww/ly3/+KZ43erTzYEQvBLRaxYrHcXHOh0y2l3qF4MJCeaj0VVfJx+Wxx4Bvv5XvU0LAxERRvWswAPfdJ8/ZqB4hoDcc2FkIeNNN8nGdNQtYscIx/LV3guMXdi4rAe0Xp1Cow6jvvtOuLg2IEDA0VPu38aqrgB9/lOfbs5/TUo99JeDvv4tVmGfM0K9StKc3tFapKFUPSVbPC6hUAhoM8rBWJcjcuVMO05SgzH5uR4V6KLb9gje7dok5F8eOFfvyxhvl99D27c7n+VPvD8B1CDh+vPgd/vFH+fdYqcpT9r36GCghoHpRECXgVFeWuqoErK4Ww/cVr77q/PFEREQ+iiFgF2cuFiGgXhijx2A04NoPpuCejZc7DP/UVHAZ/XDpe2fDYBK37fxJDAmuOyrCAaUqLCZTPNZaXgFI2qFeB7/Zgbo8UQGWMDAWGaPiNM9R5obbs0K1GlxICNKH2A3pPSURgb1EkLf6rmV47dwfNKuvTrxH56TimMTR4rklW+QhZfs+FUGLqXcrTnZbqc+Jqm03NeGn65dBqZgEgLVv70DZwQrb9eCkqBa3GRDhGAKmDtKvMLn0pfF4zPwA7l53qa3C0JnolBD4JToOV4tKOxYIxTm+78JT9EPAiF6q1We37cfHp7yKZ/suxqav81BfpR8CAkD/SfG49oMpGHG2k5M+O6Fpolol968cNBwQQ1VHXTFQ7ykOEkY6vlb6qHhEp4Rohrke3iqHI9krxVDg4F4pSBsljnFj3lHkrhQhYNQwbRUgAASF+SNilKgs2fOlGBJcVdyAyvWiomXITHFiFxoZgJOv7YPIRP3j6BdghH+8tnonMML5MT/xGhECStXVOPqXeN2wJPn3W/l9B4C6ozVY9YYYamiMjkLKAPn4Jw4Tf1+qs4p0X6+mrBHZSx2HgFau3Y0j+13PI0idpLRUVI21phJw4EDgX/8Chg/X3m4fBj3yiPOKOfvFAhRKAFRYCLz7rnZ7H32knfdPqchSKqwaGrTVb0qYZzDohybqBUKuvVYOEuyrAJ0FeSNHykMb1T/X8uXyisOA/ut5knqI8j33iAUjADnQbGgQIZne3H72WlMJGBMjB43vvaf/PHvq94DCVQjorBJQXYH300/yAh4XXigCIiUENNlVrBuN8pDyge71EQ6VgJ99Jq6rh926MmKE4zQs9pWAgAgBGxrE3IEDBshVpMoxPnhQDvGU43nCCfpTvCihNgB89ZX2PvsqQLW4OIcvlDRaMxzYz0+0o65O+zusngdS+b0qLJSH1H//vXw9LEz8XUlMFBWvrioB//tf7ZyhgLw6tTvzCBIREfkQhoBdXH2ZmMNOL4xprdiBIriInzYC6UMiEd5fhCG5q0UI2FAqKn8iUuUP0/G99cMfRVNOPiwlYh61tOGx6DU2VrPC7IF1ckioWRSkR5Ju9dZpz04D/I59yJUkFH0jJpX3T03EiVc4GXoEoNfJ4gSi/kA+dvx6BA1ZIqgZf/Movad5RFxGqGbuNcluku+i5TtQmSM+rIanRbW4zaAouxAwIFBevdcJvaoxZyIHOw4Jju3hGAjZHp+mP6z85NtHagI0AGjIysU3M5dqqlrtQ8DWiuopTjgrV4sP+AaTCaPP0x/ebK/HRPsQ8NjKuAACE0Q1TNEe+TgVbxEhYOzwVPQcJ8ISqa4O5WtFZVL6RMcQEAD6zRAnr5Ub9qOpXq5WWvHabtuiAobAQJw8x41hZiohadohwUGRzkPAlAERCOypmjNTNcRZmU80IkUc88aSKmR/KlboTjldDM3KGCP+njQVFtuGTqt9+8RGsUCNn78Yhm214ufnNjs8nrygtSsDt6RXL1G9dMEFchCmHn7pLARUVxAqIaDV6rhIQm6uHDwplHBCHe4oQ4IbG0U41L+/do44xemnA5dcIl7v9ttFBVVamnaxBXtBQXIQCMgViOXlchihUOYc7CjqeQEXL9be9/XX2qHRng4BW8tVJaDJ5FiB5qwSMCFBDmaVBTwsFuDzz4HJk+VAWwkB9Y51a/TqJV5jzx4xtDQkRLsatSvBwY5BsPI+VYeMypyDW7eKIenKUGIlBJQk4K23xHPshwIrBg8Wcx7+8YcIxqxWEQIajcCll7r3MyhaMxwYAM4/X1xWLxCkHHN/f/H35sgR4OOPgcpjC3VdcomYYsBgENWAR45o59tU1NeL4N5gAG6+Wdz32muu20lERORjGAJ2cQ1l4uQnLKH9IeCMJ8ch7vTRiJ8+BrM/PAMAkDhGBAKlW0UI2FQuqnSUqjCHFYYBwGjUVBOqJ7juOSYWgSF+8IsTocrhTfIJZ/F2cfIXM1h/GNH4SzJx7udXw6DzYX7YDSe4HPapGeba1Ihv/vGD7ap/UjzGXaQf1HiKeoVge1J1DSrWigqsqB5RLW/PLgT0j41scdiru9ImOFZcxPeSj2lEsuP7Lranfhg8+LQk3J51GwbeeSb8ElUhWW0t9i8TgY9/aPtCwPgBqtBLVY0af/JAt8PPwdO0QxaN0ZG2hWJCVJWGZVllkKwSaveJEDDzhFSkDYqAIVD8HOqVmIeerf/eOnF2X1sgLtXXY/1nubBaJOxYssH2mOiJg1q9YE1kL20IGBzluvozQzWUWbOdY+FuVLr4fW48VCBX/R5z2r0iPO87UfUeb25G9iZtFUZDbTP2LVltu55wxkik/Z8Y5p/z6QY0NzoGh9TJWrsycEvCw+UKsSeeEMHU0KHiCwL1CsHOKgH1qsDuvVdc/u03cdm+EhAQ4deuXWIYov1QYIXBACxdCjzwgON9t92mne9Qj7rC7csvRViUlOS4Sq6nqUNAhRLAms3yHGmKtoSAUVGem9OwRw/Hij/lmBsMjvc5CwEBOfDJzpaHMyvbKCuTQzJPhYBBQXKVISAPoVXC8rPOkivV3KWeFzA4WISqepWA6kVBlKHE6mOsrqhzNkTdYBBVeBaLmMfwl1+AQ8fmYp02zb0h0Wr2w4Fbel+cdpqoxlSv4qz+PVcuHzmiDetuukm7rZYWB1m8WFTfXngh8Mwz4vfg3Xe180QSERH5OIaAXVxzpQgBTYntn8MuJjUEt/40A7f8cA7CY+QAo89kcbLVkFOIxjoLJKsEqUp8aIrrabI931aZd0zkCYOQds4Ih9cymEwwxclz5oRkiBPLop3yt7i1+8XJX+oY53MJjTo3Ddf9PQcBaeIDq8FkwvR7dVYgVIlKCtYEUQ37xUIE/WaO8ViA5kxkH+3JtF9iHIJ6q6rUVHOkxfWJanF7ITHaEDAwoeXnuEu9mrJCmUcwMtXxRCqul/OK0OiUEFz60ng8UvAPRE0Sx8hSKIKG9oaA6sU71EbOdHOYF4D4HmEwRkfZrgeni+MV2UNVaZhThrxdVZpqzoGnpcBgNCAgRWc+ytBQ9B7nuFgHIP/+BPcTAeG2ZXvx6X3r0JgtwvfR17R++GBcf+3rhUS7DgEnXK2/n2Iy5GMdm6l/8hw6pDd6jhb7JiopGMZI8V7IXqudF/C7Z7bCWnXsywSDEec8OxHTHhgNZRVpa2UVVryhs7ondS5PVwICwKmnyvPSKUFBQAAwZox8OTtbnLC3NBxYMWUK8PDDYuitwt9fLEahFwK6mg9QzWgEnn0WeP99MdebyeReJZ86BLzvPjEf4fXXtxwgtpd9CJiRIQeaivffF5fdCQFDQ7Vt9lQVICCHU/ZDgtXH3D4EdDYcWJGRIS9s8tdfYljpggVi4Zn2hoCA/grA7g4FVqjnBezfXwy5Va9QrISA6kVB7CsBAVHV5++vP9+gQh0+f/WVXE37j3+I22bPdr/9CpNJe7xaqgQMCpIDU3t6IWBzs/jZR4xwXFBFPS+g/ZDgpibg+efF9Ycekts2c6Z8vbpazPVJRETUDTAEbIHVasXLL7+MAQMGIDg4GOnp6bj77rtRaz/8yEssVaIdkSntrwTUM+T0FPEB2tKM3SuKUJpXB1jFxOpKVZjBaIBflLYacNKd43DCnCGwp14kIqqvmCuufH8xyvLrNNVF/Sa7nlA8bXAk7th2LRJnjEdgr3Sc8caFCAxxMXfNMZGDdU4iAgJwxn3DHW/3sIShqpNpgxEz3j4f/S8dofvY5IFRLW4vNFYbAoalem7FyX4T48WiFQAQEoLgcDnsjUl3fN8l93c9LByQ3ytTHtafs7G9IWDmSMcQ0BAWhrEXte6E1TRQvD+i+4vjFdtHVK7W5ZdjzTti/jGDKRypA+WfP7yXY2ASPijDZcDcY7qowitavgO7Fvxqux42vK/LIe7OpAzVhoCh0a4nrO8zPhb+SY4BpvJ7rvxvb+ScMQ63qVcgz/5DDLfP3VaB7S/9YrseM3koMoZFIWNYFMJHiWFlm17nAiFe5+lKQGfUQ4KVakB3Q8Bbb5UDRftQoVcvEVqp54prbQiouPJKeXGCm26Sw5OWgg5AG2wpQxWNxo4fCgzIoa06uH3nHXmxDmVfKkNLAfdCQINBWw3oyRAQcBwS7CoEdFUJqNa7N3DOOfLlfFGx7ZEQ0L76LTBQLHLjLvX7Qx1mhYSIIfAHDshDWpVFPwICxJx4etWeo0drVz62N2mSWOTlhx/kKtqDB8V9rR0KrFAPCXbnd0M9JFihPuZ61Yg33ug4B6e6EnC9XZ8xb56ocDzzTDE8Xz0keNEizSgVIiIiX8YQsAV33nkn7rrrLgwaNAgLFizAxRdfjPnz52PGjBmwWr0/TK3v1RORcuGJiJ48HKlDdFbt84DwmED4p4gP33t/y0PxQfWE/QbE9xBBkH+MCIAC0pIw5vx0DJyc4LC4hKmHCCYSB4sTy5o9+fjjNdU8boGB8ryBLQiLDsTNX5+Jhw5chwmX9XDnR9Md5ho7eajTRRY8afJNg2xVUgPmTsOIs1Mx+aaBYo4hdTuHRLW4vfB4bQgYmdHyc9zlF2DUrJbrHylOnuJ62J1IBQQgMsGNVREBDJueoq1+VDYR1r4QMDY91GHuwdiJA+Af2Lo/edOemASDyQS/2Gic8YioPEgaJE6CmwuKsOslMZQ8rF+aLeSLG+gYmKRMcD3MfMJs9cIcNeIkPSgYV3w0o00VqpmjtL8/YbEtv79TTnOsBlSqP+Xfd207DCYTTrmhn8Nz4oaKE7qCL/7Gb4v2oLHOgg/+bxmk+nr5Dj9/nPWvk22PG3uzCBPNOw7Y5gklLznnHOCTT+QTZb152zxFHYYoIaB6ZVdnIWB6urwaKwBcdpl2m+pQIixMDN9UFlBQh4BKONCS0aPloYmnnure4zMzHSsozz5btKWjPf20/FqvvCJXTPr56Yc87oSAQOeFgJGR2r/jra0EVJs71/G2jggBzzgDiGj5SzCNQYOABx+Uwzf7IefKkODiYjkkV4K6UaNERWpmpmPg52wosMLfX4SV1dViqG1wsDx0VudziFvUv2/uDBM/80zH6l29SkBFeLjjgiWAHJ4q23n/fXlxIEBeGOaZZ+TLfn5yZahi1CjxxcO2bcCaNS23l4iIyAcwBHRh586dWLBgAS644AJ8/vnnmDNnDl566SW89NJL+P333/GR8iHDi2YuPBE3fHo6bl9xPnqM7JgQEACih4gTroJ1eSjJEUOBDeFhmnAlYYw4sRl560QYjAYYjAakT9dWA8b0E6Fg5hjV/HBVVdj69De264EZSa1axKI1Bkx1PIk4+S7HaqaOEJcRintz5+LWQ/fhsv/IJz6x6aEIG9pb8zhDSAgi4lsO1cLjtMFOTE/PVQICQPxIsa8CYsVJTmx6KNSBkF9URKuCqhE3jne4rb0hIAAEJGqrAYdf5v5QYMWQqUl4tPwuPFx0GzKGRdluTx+m+l1TVw/4+WPakyLMSh3hGAIOOMP1SXOPkdHwT3asIBxx/xm2VXdbK6FnGAwmccLrTmXpmCu18wIagoJscxH6BxphCNdWgKafOxIBwY7Vt2c+NlbM2SlJ+OuOz7Bg8qdozBEVOcPuPxN9xoug8qRr+sAYo+xjA7Z9cwjkRT17yotf/OMfjqGHJ+mtEKxUAtrPCaeudLrvPrEK6jnnaAMRdfUfICqGqqrkwGLDsfk2e/Z0r3KpLfSGudrPadaRrr9eroS6/XZxm31YCrgf6HVkCDh6tDiW9iGf+viHhbUubJs61XHV344YDtzaocCKZ56Rhy3bV/Wpt6+sChwSIoItQA7s7H82Z4uCqOnNR/nUU+37HVcH6T3dqFqPiJCPjZqrEHDmTMdVnQH5tnnzxPXZs+Vh71deKW579lkx5YBCqQYMDuYqwURE1G0wBHRh6dKlkCQJd9xxh+b2OXPmIDQ0FB988IF3GuYF6oq5qm05WLtATE7tH6X9IH35aydj4J1nYvzzF+Gs+8XQlok3akPApMHipH/ItGSEDNT/wBg9yPVQ4PboPykeCBCBU2BmCoafmeLiGZ4VEhGAuAztN/gDL9buJ/+4KLe2FZGorXxL7O/e89w17YHR8smH0YgR14nFG/wDjTCEiZ9BHRC6Y+rcgTBGaD/UB4a3PwQMUy3egZAQTLi89cNoAXkVZfsQOqmvCfDXzuVljI3BRT9er3n/qFcIBgD4B2DI1JYnW0+Zog3gQof2wf89PqJ1DVcxGA2Y+Mw5CEhPRo/Zp6DXGP05E9WGnp4MQ5QIko2R2mPkp6oGhcFwbC4/R8n9TDjvk5liSGZzE6rXixVJIycNxflPaodhGv0MGHLTJKRffhKu3Xq7w/3ko1JTRYXfunXyMMX9++XrCQkiHALkIGrbNnkBkFtuEbeHhYmqQMBxxdL77hNhX22tqLR1Zyhwe6hDwMxMuWLMm8aN04Y0iYkO1dNORau+BPF0CBgWBjzyCBAXB9xzj/Y+dQiYluY4JNQVg8GxGtDTlYD+/mLBDU/prf1SEP36yVWyU6Zob1fPCwgAEye2vO0zztBW4U2YANh93m21a66RV2Z++mn32gBohwSbTNpFVexDwBtvdL6dBx6QA29AXuxn5kwx/P6cc4C773Z8ziWXAP/5j1wVrDyXiIjIx/m3/JDua/369TAajRhnN7lycHAwRowYgfX28454gSRJqGuu6/DXyTw1BuueOXayZC5Fw/ZS4Ng5fVBKCMxNYuVThAIznpPDP/XtqWNC4T88DXW7soGgIPQ/K05z/z82XIjvnt2K7QtWyKsWHhM3Nlq7fQ8LGJYM87YsAMCgq4d06Gu5Y8w1GVjzlNU2eXxQaohbbQpKAJoCxPxOUf0CPfqzxPYPwG35N6OqpAEJPcI027bEBMDSKL92WFIrX9cPSL5kKHLe/UPcZrK2u+1RI2NQvFZuU8xJg9Hk16CZ/qq9/AYlon53NgAgfFR/XP3pOYhMDNa0O7Z/AJpCYQsagvqluNWOIVdk4sAnxx4UEIjz3jsNdZY6wOL6ea6ceGMGTrxxFgC4vW+jTu6Boz/IlVJ+CXbHNSEQTUflNoYO64PY/gFOt9t3ahQmLDgHf839RHO7MS4GMz+ZovuzTZ8nKlvMTWaE+IfA0JqTfuqaJkwAPvtMXq1TPb+f3lDV3r0dQxJAXrH300/l4ZJnnqm9b/JkICtLrhp67TWxSIf9QgOeNnWqvCABIIeWfi3PWduhDAa5GvDZZ+Xr7lRtKeJUU3u4O4S4NR5/XF40xv73XT2k2t35ANVmzZKH3VZWytc9EQL26iUH0mVl8nst2sMjMiZPFpcvuURe3VivEk5dQThwoPYYOWMyyUOCv/hC/l1ZvLj978vgYHll5tY491w53LNaHY9riupL2TFjXIf1BgPw6qtAXh7w44/i9vR0YMkS/SHOISHy3wsiIqJuhCGgCwUFBYiLi0NQkONQzNTUVKxevRqNjY0ItJ/PpAXJdt9stmduwbrmOjy/6vmWH9hOklXCqpP/FidMioAA9DvfjOdXZbu1nfqnmnF4azkS+kTgjQPzgQN2DzgNsE5oxs4fDqNqXyH8I8JgGOeHHat+1N2eJ5Tdacben3IQHB0C/5N/wq5VP3fYa7lr/YW70Zgvr8gZMeQwGlYdbPE5kiRh7bk70VxagYCEaAQcfQ042uLT2iZfe3X1hK1oLpZXJYwYchi1q/a2anO1ZzVi/YE1tqG1B0wlOLDq93Y1sfFMC7aYD8LaZMGwC4DnV+1s1/bsVT5UjwN/5cOUbEKfEw/g9az5QJbj49acvhHWCnkOzchheXh+VYHjg+yFAFkPFKP8QBl6npyBDyteB1Z5tPluKb+0DltrNwAWC1JOLdW0fc+5hTgSuRcwGNDvEjOeX9XCkN3+wP77i3F05bHVfg1GDLpyFF7b+x/AjbfLfRPvQ2hA+1dA7y482c90qvHj5RBQLSNDhFXuOPFEefhrYKD+QiaxsfIqsTffLFcs1dV1/CIdY8cC//ufvOqx3vx03nD55WK/2g+bduWqq+RjNGpUx1VQ6gX+6krAtoSA4eHAtdcCL78srrdXYKC8QMyPP2pX1/WUSZOAX36R+8apU51XP6pDQHcr8AA5CB8+HJg+3XFIcWdJSJCrPhct0g5ZB+Tgb9gweajuU0+1vK2AAHn+0pNPBrZskaszP/5Y/p2nDuHJvmbMGODIkfa2iIjo+JSUJGah8TaDJHE5LGd69+6NpqYm5ObmOtx31VVX4f3330d5eTmiWjmPkF6HefToUVRWViKilRNKm5vMnRICAsDa9/agLlvunY2mMMSPSEWfExN15wHzBEmSum3lT3lBHbYt3QGD0YDhVwxBZIJ7C5VYLRJKDtUiLjOsw+ZR1LPt21yUbZSDyt7nD9fOmeemjcsOoHrXYcBgxMibxrn9Mx/v9qwoxJE/9gJ+fhg5Z2ynLDrjSQ3mZtTXNOsej+LsGgSE+CEqyc1hhAD2/nEEpftKkDYuFRnD3X+ftDYErKqqQmRkZJv+rvoCT/YznerAAXmS/7o6ecjj3Lny8F5vV875qpdeAlasAP7979YFgY2Njgs6dLTqarnysKxMDlRnzmz9NvLy5KShpkaeg8/dxWCOd/X18mIgOTnyEPlhw7zdotazWvWr9Zqb5Wp6d4erA/J75I035IVm1NWUHtbd+xnAs31NWpp2AW8iIl+Smip/DGmtjuhrGAK6MHToUBw9ehRFRUUO911yySVYtmwZGhoaWl0JaK89B7YzQ8DmRityNpYgJDIIKQMjum1AR46aG604uLYYQeEByBzZ8nxzeiSrhPxdlTDFB3e5oKwllUX1CA73R1AYi6/biiFg+3Sp/VFUBDQ0dN7qudR1FBfLKcHw4a2bE1Ctvl7+11ELwXiLJMlBGgPzTtOl/q52kvbsE1YCEpEva2slYEf0NTwjdSElJQW7du1CQ0ODw5Dg/Px8xMXFtTsAbK8Q/xDcN/G+znvBUzvvpaiL8cR74yQPbIN8Uoh/K6pAqGtTD/skUouP1x/i3RrBwfI/X2MwMACkLu14GSZHROTrGAK6MHbsWPz8889Yt24dTjpJpBP19fXYsmULTj75ZC+2TmYwGDhPFhERERERERERuaQz+QYpLr30UhgMBrzyyiua2998802YzWZcccUV3mkYERERERERERFRK7AS0IWhQ4filltuwcKFC3HBBRfgrLPOwu7duzF//nxMnjwZM9syKTUREREREREREVEnYwjYgldeeQU9evTAG2+8ge+++w5xcXGYO3cu/vnPf8Kot4oZERERERERERHRcYYhYAv8/Pxw99134+677/Z2U4iIiIiIiIiIiNqEpWxEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4f283gABJkgAAVVVVXm4JEZFvUP6eKn9fuzv2M0REnsV+xhH7GiIiz+qIvoYh4HGguroaAJCenu7llhAR+Zbq6mpERkZ6uxlex36GiKhjsJ8R2NcQEXUMT/Y1BolfX3md1WpFQUEBTCYTDAaD28/r27cvAGD//v0d1bTjHveBjPuB+0DB/SDvA0mSsGnTJqSkpMBo5MwX7Gfah/uB+0DB/cB9ALCfcYZ9TdtxH3AfKLgfuA8UHdXXsBLwOGA0GpGWltam5wFARESEp5vUZXAfyLgfuA8U3A9iH7Tl76qvYj/TPtwP3AcK7gfuA4D9jDPsa9qO+4D7QMH9wH2g6Ki+hl9bERERERERERER+TiGgERERERERERERD6OcwISERERERERERH5OFYCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgF2Q1WrFyy+/jAEDBiA4OBjp6em4++67UVtb6+2mdYp9+/bhsccew4QJExAfHw+TyYQRI0bg6aef7jb7QI/ZbEavXr1gMBhw6623ers5naqsrAz33HMP+vTpg+DgYMTHx+PUU0/FX3/95e2mdYqamho888wzGDp0KEwmE+Li4nDiiSdiyZIlkCTJ283zuGeffRYXX3yx7f3eo0cPl49fu3Ytpk6dCpPJhIiICEyfPh1btmzplLZ2Vexn2M/oYT/TffsZoHv1NexnOl5372cA9jXOdNe+hv0M+xlXPNnP+LfpWeRVd955J+bPn4/zzz8fd999N3bv3o358+dj8+bN+PXXX2E0+na2u3jxYixatAjnnnsurrjiCgQEBOD333/HI488gk8++QR///03QkJCvN3MTvfYY4+huLjY283odIcOHcIpp5yCmpoaXHfddejXrx8qKyuxbds25Ofne7t5Hc5qteLMM8/E6tWrMXv2bMydOxdmsxlLly7FNddcg927d+O5557zdjM96qGHHkJMTAxGjRqFiooKl4/9+++/ccoppyA1NRX//Oc/AQALFy7ESSedhNWrV2Po0KGd0OKuh/0M+xk97Ge6Zz8DdL++hv1Mx+vu/QzAvsaZ7tjXsJ9hP+OKx/sZibqUHTt2SAaDQbrgggs0t8+fP18CIP3vf//zUss6z/r166WKigqH2x9++GEJgLRgwQIvtMq7Nm7cKPn5+UkvvviiBEC65ZZbvN2kTjNp0iQpLS1NKigo8HZTvGL16tUSAOmOO+7Q3N7Q0CD17NlTioyM9E7DOtCBAwdslwcPHixlZmY6fezYsWMlk8kk5eXl2W7Ly8uTTCaTNG3atI5sZpfFfob9jB72M923n5Gk7tfXsJ/pWOxnZOxrHHXXvob9DPuZzuxnfP8rFh+zdOlSSJKEO+64Q3P7nDlzEBoaig8++MA7DetEY8aMQWRkpMPtl156KQBgx44dnd0kr7JYLJgzZw6mT5+OCy64wNvN6VR//vknVq5cifvuuw/JycloamqC2Wz2drM6VVVVFQAgJSVFc3tgYCDi4uIQFhbmjWZ1qF69ern1uKysLKxfvx4XX3wxUlNTbbenpqbi4osvxq+//oojR450VDO7LPYz7GfssZ/p3v0M0P36GvYzHYv9jIx9jVZ37WvYz8jYz+jriH6GIWAXs379ehiNRowbN05ze3BwMEaMGIH169d7qWXel5eXBwBITEz0cks618svv4w9e/Zg4cKF3m5Kp/v+++8BABkZGZgxYwZCQkIQFhaGfv36dZsPkOPGjUNUVBSef/55LFu2DLm5udizZw8efPBBbNy4EfPmzfN2E71G+Xt4wgknONw3YcIESJKEjRs3dnazjnvsZ5xjP8N+pjv2MwD7GmfYz7QN+xnX2Nd0r76G/YyM/Yy+juhnGAJ2MQUFBYiLi0NQUJDDfampqSgpKUFjY6MXWuZdFosFTz75JPz9/TFz5kxvN6fTZGdn4/HHH8djjz3W4mSivmjv3r0A5G+Oy8rK8O6772Lx4sUIDAzErFmz8M4773i5hR0vOjoaX3/9NWJiYnDJJZcgMzMTAwcOxKJFi/DZZ59hzpw53m6i1xQUFACA5lszhXJbd5lnpTXYz+hjP8N+prv2MwD7GmfYz7QN+xnn2Nd0v76G/YyM/Yy+juhnuDBIF2M2m3U7TED+9kx5TGBgYGc2y+vuuOMOrFmzBs888wz69+/v7eZ0mptuugm9evXCXXfd5e2meEV1dTUAwGQy4ffff7e978877zz06tULDz30EGbPnu3zk0uHh4djyJAhOPfcc3HiiSeirKwMixYtwsyZM/HVV19h2rRp3m6iVyhDKfT+Zqr/XpIW+xl97GfYz3TnfgZgX6OH/UzbsJ9xjn1N9+tr2M8I7GccdUQ/4/vvJB8TGhqKhoYG3fvq6+ttj+lOHn30USxcuBA33HADHnzwQW83p9N88MEH+OWXX/Daa68hICDA283xCmXFtMsvv1zzQTE6Ohrnnnsujhw5Yvt2zVdt374dJ554IqZNm4Z///vfOP/883Hddddh5cqVSEpKwpw5c2CxWLzdTK9Q/hbq/c3srn8v3cF+xhH7GfYz3bmfAdjXOMN+pm3Yz+hjX9M9+xr2MzL2M/o6op9hCNjFpKSkoKSkRPdNkJ+fj7i4uG71rdm8efPw1FNP4ZprrsF///tfbzen0zQ0NOCuu+7CWWedhaSkJGRlZSErKwuHDh0CAFRWViIrK6vF5ca7urS0NABAUlKSw33JyckAgPLy8k5tU2d7+eWXUV9fj4svvlhze2hoKM4++2wcOnQIOTk53mmclykTC+uVyCu36ZXWd3fsZ7TYz7CfAbp3PwOwr3GG/UzbsJ9xxL6m+/Y17Gdk7Gf0dUQ/wxCwixk7diysVivWrVunub2+vh5btmzBmDFjvNSyzjdv3jw88cQTmD17Nt566y0YDAZvN6nT1NXVobi4GN999x369u1r+3fKKacAkL9R69u3L9566y3vNrSDKRNKKxMoqym3JSQkdGqbOpvyx1/vm7Hm5mbN/93N2LFjAQBr1qxxuO/vv/+GwWDA6NGjO7tZxz32MwL7GfYz7Gdk7Gv0sZ9pG/YzWuxrundfw35Gxn5GX4f0MxJ1Kdu2bZMMBoN0wQUXaG6fP3++BEB6//33vdSyzvXEE09IAKRZs2ZJFovF283pdI2NjdKyZcsc/r366qsSAGn69OnSsmXLpL1793q7qR2qrKxMMplMUmpqqlRdXW27vaCgQAoLC5P69evnxdZ1jjvuuEMCID333HOa28vLy6Xk5GQpOjpaam5u9lLrOt7gwYOlzMxMp/ePGTNGMplMUn5+vu22/Px8yWQySaeddlontLDrYT8jYz/DfkaS2M8ounNfw37G89jPCOxr2Newn5Gxn8l0er+n+xmDJElSW1NJ8o65c+di4cKFOP/883HWWWdh9+7dmD9/PiZOnIjly5f7/KShixYtwq233oqMjAw8+eSTDj9vYmJit5w0FABycnLQs2dP3HLLLVi4cKG3m9Mp3njjDdx4440YPHgwrr32WjQ2NuK1115DYWEhvv32W5x++unebmKHOnToEEaNGoXy8nJcccUVmDhxIsrKyvDmm28iJycHixYtwj/+8Q9vN9Oj3n//fdswkQULFqCxsRF33303ACAzMxOzZs2yPXb16tU49dRTkZaWhrlz59qeU1RUhFWrVmH48OGd/wN0Aexn2M84w36m+/UzQPfra9jPdLzu3s8A7Gtc6W59DfsZ9jOd2s+0Pqckb2tubpZeeOEFqV+/flJgYKCUkpIi3XnnnZpvDnzZ7NmzJQBO/02ePNnbTfSa7OxsCYB0yy23eLspneqzzz6Txo8fL4WGhkrh4eHStGnTpJUrV3q7WZ0mKytLuuqqq6TU1FTJ399fMplM0kknnSR99tln3m5ah5g8eXKrfv9Xr14tTZkyRQoLC5PCw8Ol008/Xdq4cWPnN7wLYT/DfsYZ9jPds5+RpO7V17Cf6XjdvZ+RJPY1rnTHvob9DPuZzupnWAlIRERERERERETk43y/zpqIiIiIiIiIiKibYwhIREREW85TYgAADrpJREFURERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISB1Gz169IDBYHD575VXXvF2M8lDNm/eDD8/P8ydO1dz+4oVK2zH25WcnBzb43JyctrcjsrKSsTGxmL8+PGQJKnN2yGiroF9TffCvoaIOhv7me6F/Qx5mr+3G0DU2SZOnIg+ffro3jdo0KBObg11lLlz5yIkJASPPvqoV9sRGRmJBx98EPfeey/ee+89zJ4926vtIaLOwb6me2BfQ0Tewn6me2A/Q57GEJC6neuvvx5XX321t5tBHejTTz/FqlWrcO+99yIhIcHbzcGtt96K559/Hg8++CAuu+wyBAUFebtJRNTB2Nf4PvY1RORN7Gd8H/sZ6ggcDkxEPufll18GAFx33XVeboksODgYM2fORGFhIT7++GNvN4eIiDyAfQ0REXUk9jPUERgCEulQ5trIycnBV199hSlTpiAmJgYGgwErVqywPa68vByPP/44RowYAZPJhNDQUAwdOhRPPfUUzGaz7rabm5vxyiuvYOjQoQgODkZ8fDwuvPBCbN++HUuWLIHBYHD4Vm/evHkwGAyYN2+e7jaVOSFOOeUU3fsLCgpw1113YeDAgQgNDYXJZMLYsWOxcOFCNDc3Ozz+6quvhsFgwJIlS5CdnY1Zs2YhKSkJQUFB6N27Nx555BE0NDQ43X8bN27E7Nmz0bNnTwQHByMmJgbDhw/Hvffei0OHDgEA3nnnHRgMBpxxxhlOt1NQUICAgACEhISgtLTU6ePUNm/ejNWrV2PChAno37+/W89pDeVYtPTPnnJMFy1a5PE2EVHXxL6GfY0z7GuIyBPYz7CfcYb9TPfF4cBELrz44otYuHAhxowZg+nTp6OgoAB+fn4AgF27dmH69Ok4fPgwkpOTMWnSJAQEBGDdunV49NFH8dlnn2HFihWIjIy0bc9qteLiiy/Gl19+icDAQJxyyimIjo7G2rVrMW7cOFx77bUe/xn+/PNPnHfeeSgvL0ePHj0wbdo0NDQ0YN26dZg7dy6++eYbfPvttwgICHB47pYtW3D77bcjOjoakydPRllZGVatWoWnn34aO3fuxBdffOHwnH//+9944IEHYLVa0a9fP/zf//0f6urqkJWVhRdeeAGDBw/G1VdfjZkzZ+L+++/HL7/8gn379qFfv34O23r99dfR3NyMWbNmITY21q2f98svvwQATJ06tXU7yk0jRoxwOgfG3r178ffff8NodPx+ZcSIEYiPj8e6detQWFiI5OTkDmkfEXU97GvY19hjX0NEnsR+hv2MPfYz3ZhE1E1kZmZKAKR33nnH7cf6+flJX331lcP9ZrNZ6t27twRAeuSRR6SGhgbbfbW1tdLll18uAZCuueYazfMWLlwoAZASExOlXbt22W5vamqSbr75ZgmABECaPXu25nmPP/64BEB6/PHHddv7+++/SwCkyZMna24vLCyUYmNjJYPBIL366quSxWKx3VdSUiJNmTJFAiA98cQTmufNnj3b1paHH35Yam5utt23fft2KSwsTAIgrV69WvO8r776SgIgBQcHSx9//LFDO3fu3Kn5uR9++GEJgHTbbbc5PLaxsVFKSkqSAEgbN27U/bn1TJo0SQIgfffdd7r3K/uqpT9/2dnZtsdlZ2e3+LqHDh2SkpOTJQDSwoULdR9z7rnnSgCk999/v8XtEVHXxL6GfY0ksa8hoo7Dfob9jCSxn6G2YwhI3YbSCTr7p+5slMdee+21utt67bXXJADSOeeco3t/dXW1lJCQIPn7+0tlZWW22/v06SMBkF577TWH59TV1dk6CE91mPfff78EQLr11lt1n5eXlycFBARI8fHxktVqtd2udJijR4/W3K646aabJADSP//5T83tI0aMkABIL774ou7r2cvPz5cCAgKkyMhIqaamRnPf0qVLJQDSCSec4Na2FEpnfvDgQd371R2mu/9a6jDLy8ulQYMGSQCke++91+njHnzwQQmAdOedd7bqZyKiroN9jSP2NexriMhz2M84Yj/Dfobcx+HA1O1MnDgRffr0cbh9wIABDrdddNFFutv47rvvAACXXnqp7v3h4eEYM2YMvv/+e6xfvx6nn3468vPzkZWVBQC48sorHZ4THByMSy65BPPnz3f7Z2lJS+1MTU1F3759sWvXLuzfv9+hfP2cc87RnQti4MCBAID8/HzbbUeOHMGWLVtgNBrdnrw2JSUFF110EZYuXYr3338fN910k+0+ZZ6JW2+91a1tAUBtbS1qa2sBwK1Se1dL29fU1OCzzz5rcRuNjY0477zzsGvXLlx22WV47rnnnD5WaVNRUVGL2yWiro19jcC+hn0NEXke+xmB/Qz7GXIfQ0Dqdq6//nqHSWqd6dGjh+7tBw8eBADMmjULs2bNcrmN4uJiAEBeXh4AIC4uDuHh4bqP7dmzp1vtcpfSzpNOOqnFxxYXFzt0mBkZGbqPjYiIAADU19fbbsvNzQUAJCcna+YMacltt92GpUuXYtGiRbYOc9u2bVi5ciUSExOdfmjRU1lZabtsMplafPySJUuc3peTk9NihylJEq6++mr88ccfmDx5sm0SZGeU/VZeXt5i24ioa2Nfo499jRb7GiJqK/Yz+tjPaLGfIXsMAYlcCAkJ0b3darUCAKZPn47ExESX28jMzPR4u5y1x9ntF110EcLCwlxuQ+9bJr3JYD1twoQJGDduHNatW2freJRvzG644QYEBga6va2oqCjb5erqalsH1VEeeOABLF26FIMGDcKXX36JoKAgl49XOvTo6OgObRcRdS3sa9jXuMK+hojai/0M+xlX2M90LwwBidogPT0de/bswXXXXef2tzqpqakAgJKSEtTU1Oh+c5aTk6P7XKXTqK6u1r1fWaJer5379+/H/fffjzFjxrjVzrZSvmErLCxEZWVlq785u/LKK7Fw4UIMHz4c//vf/+Dv768ppXdHaGgowsLCUFtbi9LS0g7tMF999VU8//zzSElJwQ8//KDprJ0pLS0FgBY/ZBERAexr9LCviWrxOexriMhd7GccsZ+JavE57Ge6to6PxIl80JlnngkA+OSTT9x+TlpaGnr16gUA+PDDDx3ub2howLJly3Sfq3S2u3fv1r1fmSfDE+1sq6SkJAwfPhxWqxWLFy9u1XMvueQSJCcn48svv8TTTz+N2tpanH/++UhJSWl1O0aNGgUA2LVrV6uf666vv/4at912G0wmE7777junQwzs7dixAwAwevToDmsbEfkO9jWO2Ne0jH0NEbmL/Ywj9jMtYz/TtTEEJGqDG264AZmZmVi2bBnuv/9+3W+zjhw5gjfffFNz2x133AEAmDdvHvbs2WO73WKx4J577kFBQYHu602ZMgVGoxE//fQT/vjjD9vtkiRh/vz5Tud5uPfeexEVFYWXXnoJL774IhobGx0ek52djQ8++KDFn9kdjz/+OADg4Ycf1m3Trl27dDv9gIAA3HzzzWhubsYLL7wAoHWT56qdeuqpAIA1a9a06fktWbduHS6//HIYjUZ8+umnGDFihNvPVdo0ZcqUDmkbEfkW9jX62Ne4xr6GiNzFfkYf+xnX2M90cd5cmpioM2VmZkoApHfeecftx7paRn3Hjh1Sjx49JABSVFSUdPLJJ0szZ86UzjvvPGnQoEGSwWCQEhMTNc+xWCzSjBkzJABSYGCgdMYZZ0iXXXaZ1LNnTyk4OFi6+eabJQDS7NmzHV7v9ttvlwBIfn5+0imnnCJdcMEFUu/evaWAgADpgQcekABIkydPdnjeH3/8IcXFxUkApISEBGnKlCnSFVdcIZ1zzjlS7969JQDS+PHjNc+ZPXu2y331zjvvOG3n008/LRkMBgmANGDAAOnSSy+Vzj33XNty8862WVRUJAUFBUkApGHDhuk+xh2bNm2SAEjjxo3Tvf/333+XAEgt/fnLzs62PU79PpgyZYoEQOrZs6c0e/Zsp/9a2y4i8g3sa9jXSBL7GiLqOOxn2M9IEvsZajvOCUjURoMHD8a2bdvw3//+F1988QW2bduGNWvWIC4uDmlpabjnnntw/vnna55jNBrx+eefY/78+Xj77bexYsUKhIeHY9KkSfjiiy+wefNmvPbaa7qv9/LLLyMjIwNvvfUWVq9ejfDwcEycOBGffPIJqqqq8K9//Uv3eSeffDJ27tyJhQsX4rvvvsP69evR0NCAhIQEZGRk4Morr8SFF17osf3y0EMPYcqUKZg/fz7+/PNPfP755zCZTEhPT8d9993n9BujhIQEjBgxAmvXrsUtt9zS5tcfOXIkTjzxRKxevRq7d+/GwIED27wtPRaLBYD8bWN2drbTx9mv0qVcb8/PRkTdD/safexrZOxriKi92M/oYz8jYz/jewySJEnebgQRyZYsWYJrrrkGs2fPdrnUuy/at28fBgwYgMjISOTn5yM0NLTN2/r0009x8cUX46677sKLL77owVa2TX19PdLT0xEQEIDs7OwWV9wiIupI7GvY1xARdST2M+xn6PjFOQGJ6Ljw2GOPQZIk3Hzzze3qLAHgoosuwsSJE/H666+jqKjIQy1suwULFqCkpATPPvssO0siIi9iX0NERB2J/Qwd7xgCEpHXfP3117juuuswYcIEfPzxx0hKSsJ9993nkW0vWLAAdXV1ePLJJz2yvbaqrKzEv/71L4wbNw5XXXWVV9tCRNQdsa8hIqKOxH6GuhLOCUhEXrNp0yYsXrwYJpMJU6dOxUsvvYSoqCiPbHvkyJG2uS68KTIyEqWlpd5uBhFRt8W+hoiIOhL7GepKOCcgERERERERERGRj+NwYCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/3/7cKdH8m+83AAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lps.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lps.freq, lps.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lps.freq, lps.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb.txt b/_sources/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb.txt new file mode 100644 index 000000000..41881ffa0 --- /dev/null +++ b/_sources/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb.txt @@ -0,0 +1,500 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1f2bd82", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import copy\n", + "from stingray import EventList, AveragedPowerspectrum, AveragedCrossspectrum, Powerspectrum, LombScarglePowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "ev1 = EventList.read(\"nustar_A_src.evt\", fmt=\"ogip\")\n", + "ev2 = EventList.read(\"nustar_B_src.evt\", fmt=\"ogip\")\n", + "\n", + "ev_tot = ev1.join(ev2)\n" + ] + }, + { + "cell_type": "markdown", + "id": "c5a1d8f4", + "metadata": {}, + "source": [ + "# Observations with frequent data gaps\n", + "\n", + "Many X-ray missions are in low-Earth orbits, which means that their target is often occulted by the Earth. Additionally, these satellites can pass through the South-Atlantic Anomaly, where the flux of particles increases the background (and, in some cases, might even damage the detector, so the Science Operations centers often just switch the instruments off for protection).\n", + "\n", + "This observation of an accreting black hole is an example. Here, transparent red stripes indicate occultation and other bad-data time intervals, while data in good time intervals are plotted in blue:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "487d4764", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAGwCAYAAAC99fF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLj0lEQVR4nO2deXwU5f3HP7NnNscmISeBhPsWBEEhaj0wBRGtB7XVH0W0HtWCVmnR0iIqtmKtRatFba2CrSKW1hMRBERRCSDhDCA3hCMHSUg2557z+2Ozm91k9pp9Zmdm9/t+vVbJ7Owzz/PMc3ye7/M834fjeZ4HQRAEQRAE4YdG7ggQBEEQBEEoERJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBdHJHQAm4XC6cPXsWaWlp4DhO7ugQBEEQBBEGPM+jqakJBQUF0GjY231IJAE4e/YsCgsLJQvfDGA+gJyOv88B+AMAi889FwJ4E8BxAE0CYeQBGAvgHgCfdAmza3i3Avg7gDIApwPEqetvAsURXa4LkQQgF8D9AA77XBeKY6jwLgAwBsCfAcwL8sxUAD8B8CCAoxDOs8EAxgH4PYDng4TVNa5CZAAYDuAuAJtDhPU2gNsBHAPwjcD32XC/758DWB9lvAoAXAx3vt8LYE8UYQHCZVNsWOkAJgB4CMB/g9x3KYBlAPYDOB/gnlQA/QHcDWBXkLDuAPA3ANUAtgKwB7k3VFqnAngFgBbA9gBx0wMYBHf+nw0RXqg80wEwAajp+H+wOD4I4Dm46/hhdMdTxmYDuBzB257fAXgS7nzdFyBuvr8L1p558n87gJMC4Qi9x0DhXQngnwB2AqgMEC9bx/+fg7sd8NC17WmEux04DWAHgDaBsDx16X4A/wnwPKHwhRjQEdajAF6OMqxwy344YXXtR6IJ61K40/k/AD8NEVYsOHXqFHr37s08XI48bgONjY3IyMjAqVOnYDabmYfPVVXB+OSTgKmj6Wtrg/XJJ8Hn53vv0f33vzA9+CAcP/gBXIMGdQ+jtBT6sjK0zZkDxxNPdIbJ8wDH+YWnmzsXpn/8A46RI+G68sruYbW2dotDoDgC8F7nk5OF03fqFHSbN6PtH/+Ac+LE7un2iWOo8Lh334W+rg5to0bB8fXXgbIUXFUVDHPnwrBuHRxXXCGcZx9+CP3p02i7+mo4PvwwYFhd0y8Yr/Jy6L/5Bm1/+hMc99wTNCzdoEEw1dTAYTLBdffd3cMqK4N+yxa0LVgAx5w50cVr0ybo9+wB9Hq0vfYaHD/+sfiwBMpFVGFt2gT9kSNou+8+OP7854Bh6f75T5geewyOyy6Da+RI4ecdPgz911+j7eWXg6ZRN2sWTG+/DT4tDY6pU8FnZwuHF0ZadU89BdPixQDHucuYQNy42lpot2yBc/RowGQKGl7IPKuthXbnTrj69QNfUOC+GCCOuttug+mzz+Do2xeu66/vHpanjD3yCHSVlcHbnilTYNq8GY6CArhuuSVkXgVrzzz57xg6FK6Sku5hCbzHQOFp//53mBYvhmPsWLiKi4XjdewYdIcOoW3JkqBtj+PkSZg2bwav18N53XVwCQyKPXUpVHntGmfBd7lqFfQnTqBtyhQ4VqyILqwwy35YYXXpR6IK6/XXobda0ZaVBcexY0HDkhKLxYLCwkI0NDQgPT2defhkSQK8U2xms1kSkYSWFsBgADIy3H87nTCkpQG+z0pOBjgO+pQUICurexhGo/s2o9H9O0+YRiNgtfqH13Gv3mQSDstg6B6HQHH03J+RAXj+7kpDA6DRICUlxT9NQnEMFZ5W606nXu8fVldaWgCdu/gGzLOO75MNhuBh+cY1ULxMJoDjkGwyhQ6rIw16jUY4XklJ7rCSkqKPl8Hg/WdycnLoPAsVllDZFBuW5116ymwgOvI24HsEgLNn3XkWKo0d+cFxHAxmc+DwwklrRz0CgpQxmw3QaqFNSQF0uuDhhcozT1h6ffC2wiedeoMheBkzGkO3PZ6w9Prw2otg7ZknrKQk4bCE3mOg8MJpx3Q6gONCtz2ecgFAk5YWODyEUV67xlnoXbJse8It++GE1bUfiSasjn4zWasNHVYMkGqpDC3cJgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIGKG0+lCS5tV7mgQBEGEBYkkgiBixtV/+AgjnlqPynqL3FEhCIIICYkkgiBiRkWbAQDw3qZymWNCEAQRGhJJBEEQRFxgaWnHx6X7YXc45Y4KESfo5I4AQRAEQbDg5sVrcLRFjztzm/Ck3JEh4gKyJBEEQRBxwdEWPQBg44lWmWNCxAskkgiCIAiCIAQgkUQQRMzh5Y4AQRBEGJBIIghGHDtbi3MNzXJHgyAIgmAELdwmCAZU1lsw8aWtAIAT8kaFIAiCYISslqS+ffuC47hun1mzZgEA2tvbMWvWLGRlZSE1NRXTpk1DdXW1XxgVFRWYOnUqkpOTkZubi7lz58LhcMiRHCKB2fr9KbmjQBAEQTBGVpH03XffobKy0vtZt24dAODWW28FADzyyCP45JNPsHLlSnz11Vc4e/YsbrnlFu/vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAlnSEwn/+WoPvtx9VO5oEARBxIwjVefRanVg36lzckeFIMJCVpGUk5OD/Px872fVqlUYMGAArrzySjQ2NuKNN97A4sWLMXHiRIwdOxZLly7F5s2bsWXLFgDA559/jv379+Ptt9/G6NGjMWXKFDz99NNYsmQJbDabnEkLSk1DM/78TQ3ufPd7uaNCEN1ot9klfwYn+RMIJXKytgk8gC/KDkj6HJ5KGMEIxSzcttlsePvtt/Hzn/8cHMehrKwMdrsdJSUl3nuGDh2KoqIilJaWAgBKS0sxcuRI5OXlee+ZPHkyLBYL9u3bF/BZVqsVFovF7xNLzje3x/R5BBEudZYWXPHnLzHzpU8lfQ7tbktMrLx7GSzvcskcE4IID8WIpA8//BANDQ248847AQBVVVUwGAzIyMjwuy8vLw9VVVXee3wFkud7z3eBWLRoEdLT072fwsJCdgkhCBWzt6IePDh8dVbumBDxRovVARdZeAiVoRiR9MYbb2DKlCkoKCiQ/Fnz5s1DY2Oj93PqlHoW3W4sr8Adf/0ULhqJKQqeTCOi+Kb8OF5euxsul7wZuK7sEG549iPsPV4pazzimbrmziUQVF8ItaAIkXTy5EmsX78e99xzj/dafn4+bDYbGhoa/O6trq5Gfn6+956uu908f3vuEcJoNMJsNvt91MKeGhs2VQIbdtGib0IdnK1vCrhJ4a639+JMqxYOmUXSvSsPY2+DDvcs3cIkvHabHcs37kadpYVJePHAuWar3FEgiIhRhEhaunQpcnNzMXXqVO+1sWPHQq/XY8OGDd5rBw8eREVFBYqLiwEAxcXF2Lt3L2pqarz3rFu3DmazGcOHD49dAmTA0koNjhycrrdg/IIP8OKHm+WOimr4dH8t7nz3e5ytbez2nR3aqMNfV3YI739THnU4AHDeFn18AODhNzbgd2tP48cvfs4kvHigVgUiiQfwTukRLHz3K7mjQigE2UWSy+XC0qVLMXPmTOh0nb4t09PTcffdd2POnDnYuHEjysrKcNddd6G4uBgTJkwAAEyaNAnDhw/HjBkzsHv3bqxduxbz58/HrFmzYDQa5UpSSDiFTcsveHsjrl70Gc430aGQofjv1mOothnw4pbzfteV9k6VyPHqeu+/eYbzLfeuPIw5q06iouZ86JtjxMYKtyA43moQHQbP81i7uwI/ffGzuJher22KTCTZXS4mC/xdLldE+dfq1OLN3eQ5Pxo27TmGEb/7EIs/+FbuqESN7CJp/fr1qKiowM9//vNu373wwgu4/vrrMW3aNFxxxRXIz8/H+++/7/1eq9Vi1apV0Gq1KC4uxs9+9jPccccdWLhwYSyTIBPsOpl/lbei2aVH2fFaZmHGK3ZH9PnOA3C5eOw8RutfWHLqXIPcUWCKpdWKJgeHYy16VNU3yR2dqHC6eNS3hO+Wpd1mxxubDkfdytkdTny88zS2Hye/TFKy88hpPPT6WlTVu3eKP/Kf3Whx6fHS1gZ5I8YA2Y8lmTRpUsBRZVJSEpYsWYIlS5YE/H2fPn2wevVqqaInCUpdtKi0aJ2tbYTJqEdmWrLcUWFKVUMzcgGsPtiIMXJHJoYotdwrFZbWNrk532qDM4L0bD90GlZXFFOfHY86XdsIBzi0RxNWHOF5A9uPVOJihuH++J874YQGJ1/fiI8euxFOPn5M67JbkghCiFa7A5c+/w3G/HGj3FEJi0j6sza7U7qIREmoZDz3328w46+fwumMbvqHo/nJhCLS9UhK0YdV9RZM+/PHeO+rPXJHhQnnmlrBA9hcwXZDgbNDShxtVMiLYwiJJBnw7R8WvLMRP3r2I9ii7HTijTar9B7T7Q4n/vv1XtQ10g6kcHlleyO+rgTe/zbyhdKqsIyQdpOE2qYu9VkNZQHAb/61CWV1Wjz2mXLdxGzacwzXPP0hNuw8EvJem6N7P9PSbsPURR/hj+9tijou6nirkUEiSWb+tbcVexp0+GL3MbmjwoQNO49g1VZpjxxgxYJ3vsRvPq3A1L9EsAMpzjvRcJN3vkX5O5UI5aCGnW1d+d835TjXovzD0u9ZXo6jLXrc815kx1wdPeteg/riR1uwr1GH13eqe92bVJBIUgjtNuVXxlA4XS7c/d5BzP7gmOB2b6Xx+RH3IsMqm/gdSIQ4orUqvfjhZoz83Yf4pvx41HHZ+n2F99+chGPhaKYo1+44EvUUp5x4fCTp0ZmGt7/YiZWb9soVpZD8etVJ1LYr3zZi63CjEel5dZNfcrsxsbSxP6uxwalnHqZckEgimOHrD/BkTYNs8SCUg1RdzItbzqPJpccj7+3yXtOIXOf002XsO+quHdZv39qAHzy7DtXnxY3Wn/qiCsPmr8K+E4GPW1IqbTYnWqzuQaCec/+/zcVj/udnMXd1hbQHKkdZABvs0u1tOna2FnPeWIcTVXVh/8bucKKlzYrXVm/DSx+VRvV8BwMfZUJYWuLrbFLZd7cR4lDilL7Gp19w8SoY9TLMQ1qHHBnHatj4oXEqsB4IseJAO3Kgxc6T9bh2YF9RYdh4LRb+7zu89+sb2EZOYjxTbekmvXdUbuc7x+cOh3I3MkjJ9L9/jUqrAd+Xb0W4+7PHP/kx6h2dlu+bi6P3DcYzbAhbXHqMenpD6BtVBFmSCElgfRbXiap6/Pj5j/HZd5HNu8eKk+csckdB8fgK+3Un2I82XUocORBekZSdGr6D33CnY8+3tEv63qWcfq20usXOOXv40/2+AgkA6hTgALjVrv6lIsEgkURIgpOxSHrgzU3YXqvFA/9T3pl1lfUWvFBaH/rGOEIpW/i7dhqRcPRsHf7vr58xjE1ooq0VCsn2iDjXFLlI8qWlVVgIHDp9DnvONqHGIt30TqTrfGKNQ2C3WqxpkGBNk5IgkaQQPj/WBoeKF2Z2haVI+uea7TgrwS59VjHcdfQso5DkRw22GBYLmJ0uF3ZWtuJws7oWmCq7yxamttm9/T8nrVPQRlLOmpqFp2YPVrmtt65gueLzlZLLdrB1WXYXjzabA//+svvaOXuUdeGyJz7AlpPR7WoLmv9xAIkkBWFVwKiAFSzPmvrDl9VojHK3xJrtB/Hm2jJGMXJz7Gwtnl35NZrjfCQllnan/1qT/5Qe9v7byuvwyD/XiQr3pU+2CF6PZOH21oNnBK9beR0Wrfwa5xoiXzN1svo8Pti8z/2HRD2yUix44eJy8ahric6SFBVRvodop9vCPTeupT2wX7hjVefh4oHSs92ntZxRtrNnrAZUtNHu3mCQSCKY4Ws8Utr6kPv/ewQLN1Zh+yF2TuF+9Ldv8FqZBc+vD+3ELRgtbVbJDjBtaYvMPw3LLrje0ub396rj/o38B0fEOQz9+nD0ZwyebgicL38vs+COV9ZHFJ7DxeO70814ZmMljp31j188HE4bipc+2YL/fdPdwWhDmx1OFw+9VoN0k8iBjoxtSTQ7wHgAXx2oxFVPf9StDLRZwx9YOYKUn0hnH5TVKqsDEkkqQk0FXGkiycPhs9GuHeqUEc0ud6NfHYWfpR2HT2PEU+vx08WfRhmvTuosLbC0tGP5xt0Y8dR6zF0aWYefGAQvnwcskXXoviP6iS9t9fquAdxr1jzYo9RLpdXAopVfh3Uvz/NYs+s4jlZ2bjG3O52oFWElC8aZ2kb8e08zfr3qZLfvPOuRslINklrB6ppapHUlIJJWXouKNoNfGQCAp1ZE792aiA0kklSEb7MerTM+nuex+8gZ2H223zYzbGN+99EBnKqJfntqvLP4010AgO9qo6uKLh5YvKoM3+47jrHPfIkLn16PP65zO1pcedDK1IImFzzP48iZ8H3KBIPxvoKgFjiOoX2OB4e/l1nQYgttheMBHKx3YufZzoXPn+46gylLtjB19trUFjgu4exs+82/N0U9bfTge+UoXrgqqjBiyYGqCIQqS1clIb6vqrfg8Jlz7B7Yway/r8GzYYp7pUEiSSWcZTz623msCve8dwD/92Knhw4nw8b8vMOAR98VXjsSDL7j09iivFGhknG4XDhi0WD6v/cDcHemvm/zx2/uwSufbosozGl//hjP/Ed4xCvHyph2uxOLv6rAjrroneBZnLE7FZ7zdSDGKOfC2nUt0Lk6Op4/5YWNoteERYJHJOUEEUlltRocOBV9x3w+ip2OscDlcmHt9oOi1ruxIpTemvDc1/jhy9uwfONuZs9cv+MwPj3uxGtl6nSTQiJJJVQ2toW+CW7T/t6K6pCV4USDW4REa8EIxrnwouxHQ7s7Xuet0k/Xidk+znHSx2vu0vUYOu8jbNoT/nl+QrHq2h1/VB7ZWp6yOi3+sUN458vfyxqwsfxUTA+tZW39CcWOY5VhD+KDSR+tzzSTUiahG5160WvCumIN4gzSs7OtuyXJP8fa7f5h+Do4VEqeRYPLxePNz3fgF/89gonPrVd8mn639jQ27o5uraWHOf/bxyQcuSCRpBLsfPCRr2dh4NTFG7ClQn4HY2Lp2liyRuzRFbFi7/FKrDxoRTuvwy/eje64DFZJdTpduObpD3Hb4k/8rtdZgfKTNWwewoAV3x5iGt7XJ1rC78yCZPbVf44vD8RdOV4vLLba7U40dQx6stPCH5BsO3QWv/nE50w+EYqijdfB0qqs4zFW7XbvqGxyRbiAPUg9rrVI19Zv2i+8AzRSLCo/x41EkgqwOVxBnZo5XS5c//waXP/sR1E51+vK5n0n8Pz7m5l7z44VLnRvX1//+hh2HjktR3TCYtexzrO52vjoTg0So5GE3vTHWw7gaIseW2q6Nxen6gM7sIq01Jytj24a4qOjdmzYc9w7ZasUWiLtFBXI4TO1eCfAFEygYY1nqi0tSQ+jzn+QF6w9q2jqGqK4t/nFAeUI+K7sOR9B3Q6S/N+vDt/aHCmbKyRwTqdCSCSpgAaBhZG+uqWqvgnn7AaUN7A7iq/VasOvPjyC9w604sDp8NYLxHLqJRQulwv1DQ0AgPrmzhHlkWY9bv7nLkmf3RqFqGSZh5ouU4NiBfTyUnENcbMtsrRYInRXIERlu7szdjiUeVSCgqoIgPDcE1jtDuyuasOLm8+hzhJ+x+l1IpnaWe480qjameZ3rxT54lCYk0MpXr01yoFUMOodBjS2BF8zobDiLAkkkmTg++rIFHpja/dFzH/5ptr7b9YF9ev9FVhd3hl+YyubtQuHTtegNYjTNJY0Nzd73RDsON11wSCH+17xP47i/W/DmzcPZ6dSraVd1DspP14JB8MTW5XVRcSWRPBNxIL5b3+Jg5XB3WL47oBtag1fyIo5s02IeOiIFZOGCCPSGsSfk3oXdUSGdDKUCIiNj0ybCp2NI+WZQgfqHOjh+ywGNfxMbSOmv7UHWTob1kQfXNR8XuHfib741SncIlNcPFz/9x0yxyByr++JLMTigeX723BtswuDEfhdBqv+e09UB2yLvGe2pcngaVtCvt13HK++/SUWNzQjNysrrN888tbX4uuKjJUsaNsfR8doBYMsSSqgQcCSpDaO1bitOXUK3aYb7fqfeMDhdKLZ2b1J0JASUhxiFuW3MzitXdOlMJSeEraKu3gedQF3tqmbu/69FwebdPj2aPiOacvqtKhsEScqPIvfw2HdjsOhb4oAJS2hkAsSSSqgIcR0ly3IFtxY4lKOUTlu2LzvRMyeZQ2ws9DGcAowGEotPSzjxSosMX2XS+TI3/dA4dXbD2PDztAdsdXJw+FyQavhkJEc/sL15hhNx0eDx5t6pH7lxHpbr43AlcrvPjuJqnp2/oiUWidjCYkkFdAY4gDVXWfkc07mged5zFsenvPIxhbpt+ZKcQQCq1GVb8yqmoOP7n/1YXBfJU5I35DtrI+N40WWuyipce+O2Dz53sfL+bObzuG3q0+GPDPM48ojO9UYkdsNJa8ls0VpiQu2cYJla1XTyG61EFmSSCQpHrvThWZr8MrpUsDKEKeLR7XNf8QY6ATtbYfPxiJKTDnf1g67k8c5G9tpuSPN0W0Pb+jYwccCuZtDsdMRQjhc8tcJKREzBhD7fnkB8RpKzFh9RFK0KEU2DX58LRZ/8K3c0YgppJFIJCmeUFYkscgprFpieCQEKw5XKtOlvrVdWQ7ziNig9M6r05IU3hpEZxArosUem/aiviX0zr2XtjZI8uxYvc7In6PwghYDSCQpHCkWbVefFz5qQiyW1na/dQtC+LaBDmhCWscIaQj2nsi0Lkyi54qY9Lc73L/qakkKVPqarIHXVTY7OMnLZvX5JhyrF3GOUgDqYrCkIBBnG6P3N+aBmgQSSYqnMcgJ22I5eDb8XRmh4Hken39fC0sI0XOuS5tR1UgWEDnYH+Qg0f2nIjvbLVFQongMZ7qtW6xjlA4enee55XTZ/t/CR7671QUNTp9nJ2CEOHC6LvRNEVDbJt9mGqEdqmJRXsmPPSSSFE48bP8XoqZJWpEkxcJttSG0UDTY2XhWBlvEpaCq3oL1+9icI5XIsO3wQtevVKMOSfrwpspaQxS9/WeVOd0d7yhxgBBrSCQpHCFHkkpCbB0KZElSapVsj9DJolJRY5v32Z4zaHfFR1MV6bbxQHxztC5oXYnFaw61GzGSRdt2Pni+HK5phi1O6qAQTRLMGAjRZousP1Fhc8Gc+Gh54hgpLEksrSy8yGpU12pXVaPHsrFwOOWz2NQHKU8nG5Tpo8YhKvNj3LzHXH0Gr8OW9u7rUsRaBZrahcorj5qG7q5Hth+t9P5bjKftQFF0uFw4XMN2LaUvctud98XIUlYfoQG/TmKLvxogkaRgHC4XmiPwtqo0GpwGOANsFeZ5HlUW9VRAG0NLRmurMk89anOpb9dhIBJ9BMwy/SebhUMTuvp9XWd7Fe7ONl/aBM4K03Qs9+465SZmXZZSh2VKLa8nLcpwVCwnJJIkpKXNitL9J0Q7SLO0OcAD0GsV/JpC1O79FYEXCp9tELcYs/x4Zeib4og9x6vkjkJAAh34a3Moc32Tmmi3qTsPc0T4SPr6UHW3ayk6dyNzpqFN8LDveEBuSxYRGAX3vurn2j+txu3/2oe3NuwS9XvPzrYMU3QOB6OlslX8OKc1SEMvViTtPFaFLQdO4ssDZ4P6V4kXDtWz6xjanLFpjo+ePB2T58Qza/Z3FwzhUtso7W6wUN06x3HITI7ckiTkgF7PuVDUIxkAsD9Cf2Xhlna52xE1rhVUY5zFQCJJQk61uxuJV7aJ23LvWY8UydlHsSbkmqQgX1c1tsMloqZtP3YOv37/ezQ7uIhPrU90nODQ3MbOj0ogzp1LLHcCYspxV45W1uFodSNqG92Hxtp48c3zmSbpp0mCCZAknabbYbjRMLzADAA4UGnxrq1i2UnL3d+3R/Gu5cLpSoypOPW9GZUTybllHpGULmJExppA8RbbUOk1GticLu9J4ZHAcZ2HTAa+J74M2CzPNWtojsVasPjK/1CcOhf9wtvNFS1w8hz2nFH/dvdwt/6Hy4CcVBi0Glja7ZL4TIqz5oJgCImkGBNoIbMQnu3/rKfbapoiFyYWkR5kA3XteWb3egUxU26xNvMqwVfImdpGdoHFoENItE7HybOzaDolaJZj7QMrSS8uDfYAFhW9VoPBeWkA3NYkQKRDTSJiIumz4hHZRdKZM2fws5/9DFlZWTCZTBg5ciS2b9/u/Z7neSxYsAA9e/aEyWRCSUkJDh8+7BdGfX09pk+fDrPZjIyMDNx9991obu6+PVUNnG/tFCONrR1rkhhPt9XZ2L32/RU1on6Xm5YEADgr+dqJ6LG0ietgWDYtgRr7VnH749mRYGJIrdgdsZ0a4VzsRZlnyk0Sn0mkpgJyvLZF7ijIiqwi6fz587jsssug1+vx2WefYf/+/fjLX/6CzMxM7z3PPfccXnrpJbz22mvYunUrUlJSMHnyZLT7HOw5ffp07Nu3D+vWrcOqVauwadMm3HfffXIkKSShpoE8W2CdLh6WDv8kGabA022e9QtSEyje3x4PbuEItCAyP71DJDX4W6jCOXg31lYKsd7BHTFYDCrGOSHTqUjqXABQNnRF7I7eYPRMT0KGSQ+704UjNeocBKuRRPd2rpPz4X/6059QWFiIpUuXeq/169fP+2+e5/Hiiy9i/vz5uPHGGwEA//rXv5CXl4cPP/wQt912Gw4cOIA1a9bgu+++w7hx4wAAL7/8Mq677jo8//zzKCgo6PZcq9UKq7Vz8arFErtCUN8UwkdOR2vb1G6Hi+eh03BIMQrP77fb7LAGOWaCJY2tVvQW8btWu3BjmZtmBAd3OpvbHUhN0jGb1rI7XThW1wYzz6Z41zSJW+hsd/EQlrfyml9isV6L7RPIXBUtPNism5KDlo7NnRzHYXiBGZuP1mF/ZSOSRIbXbHWg4Xwrmq0ONLc70Gx1YM85Oy5nFuP4oqrJihpLO3LNYnNc3chqSfr4448xbtw43HrrrcjNzcWYMWPw+uuve78/fvw4qqqqUFJS4r2Wnp6O8ePHo7S0FABQWlqKjIwMr0ACgJKSEmg0GmzdulXwuYsWLUJ6err3U1hYKFEKu/P10fNBv29pdVuGPOuR0k2GgJ0az/Mx6z6qG4XFXagdOByETf0Gncbrkdcz5XbuXGCfSqGwOVw4WNWEVbvP4u9fHcWGQ/Wwh1jcHS7VIp1eOpwu70GfftdFVDuWloqYVPpEW5SkAr6tiJ31heXbd/mU2KE93VNup8+3od0R+VPsThfW7qvCf8tOY015Fb45UotdpxpYRTVuSeQ8klUkHTt2DK+++ioGDRqEtWvX4oEHHsBDDz2Et956CwBQVeV2opeXl+f3u7y8PO93VVVVyM3N9ftep9OhR48e3nu6Mm/ePDQ2Nno/p06dYp20bpyocoujUKKC7zBTN4a5/T+YVeBQtQVbj9Whor416jl8sZ00H+TXBekmAJ2Ltx1hOiDsanDaXnEef990FJ+VV+LIuWY4XDzSjGysSDzP45xISxLPA4erlTct4FTAQvS4Q6YsletdchxkMfCZk/Qo7PCZVC/yFB2NhkOGSY/emSYMzU/DuD49GMYwPjlY3RTU5108I+t0m8vlwrhx4/DMM88AAMaMGYPy8nK89tprmDlzpmTPNRqNMBoj9wYbDdvPNKPviPDvZ+EjqcnqROmxOgDu9iw7zegVJpFytNGFa0T8jkPg/qMgw4Tdpxu6rUsKxbE6/8Xe1Y1WOI08Mkx6DMpLw6DcVKRonajcHiCAADidrm62p2arA21RTGnuP2vBBb3SRf/eA8v+6EjVefTq24thiMrDFeLAVKVR1SDuqJpwJZIkOzRlEobDe5pxql5cfnEAbhrdC9yAfn7XD1Yklhf/SMhOMaDCzqP8TCMu6Zcld3RijqyWpJ49e2L48OF+14YNG4aKigoAQH5+PgCgutrf82x1dbX3u/z8fNTU+O+wcjgcqK+v996jRho6vG2nh9r+H6QvSNbyGJKXhrQkPXgA55qs2H26gVkcwyZAY1qQ4Z7jPtdsjcjS1TW4gbkpmD6+D2Ze2heXDcxGrjlJ1LqbM3XdF6FXW6JwvMi5pxLPtyrr4Fi9hl21D+RMVF0SRX6+PVondxRUw8Dc1KiOahIqm5zYg7pbbKhttnb7xBMjCtyDvN2nG2X3TC4HslqSLrvsMhw8eNDv2qFDh9CnTx8A7kXc+fn52LBhA0aPHg3Avch669ateOCBBwAAxcXFaGhoQFlZGcaOHQsA+OKLL+ByuTB+/PjYJYYxnZak4I4kg4kBk5bHlJE9AbgXSFc2tqOyoR0Hj8Z2232gapWWpEeaUYcmqwPVlvawVxCVN+iQ4/P3kLw0QMSJ410RWgR/LopTsHUdYuTAWQsuHZjtvW5zyVrtVIdTBe1yNFE8WdeCU+fbIOUYXexi/fqWIAI/ZkrYP3fdPpNScfyE/FvT/7fjNFoN3a3zU2SIi1T0y05GcmU7WqwOHKlpxpD8NLmjFFNktSQ98sgj2LJlC5555hkcOXIEy5cvxz/+8Q/MmjULgLtiP/zww/jDH/6Ajz/+GHv37sUdd9yBgoIC3HTTTQDclqdrr70W9957L7Zt24Zvv/0Ws2fPxm233Sa4s00NuHgeFsaOJNOS9Bicl4Yrh+SEvpkxwSz9PTM61yXJ7SVbaJAUjSVJp3WnZ3+lxe/YilDewoVQgU7w45RN3LSuEGIHr2rIMxfP4+vD4o9wCbfGiJ1u23Uq+EYTuRjeM/opbBaY9FokG3R+H53s3gfZotNwGNmxZCDaBdxSuIaQGlmHtBdffDE++OADzJs3DwsXLkS/fv3w4osvYvr06d57Hn30UbS0tOC+++5DQ0MDLr/8cqxZswZJSZ3bEd955x3Mnj0b11xzDTQaDaZNm4aXXnpJjiQxobndASfPQ8txSE0K9oq4oJuInE7ln61TkGHCoeomnG1sR5GJXesiTnB170jEbv8H3I2LUadBs9WB0/VtKMpKFh2Wmjhzvg0WPrZr/oRoszsRqxxvarNBjGnl+8om1DZboWN4zhkr2mxO7D9rCeDGQl48U/WhkVYqz5jQB0jzt6xs3nM4wN3qZVTvdHx3oh6VjW2otrQjT6Q7gHU7DmPyuCGMYyctstv9r7/+elx//fUBv+c4DgsXLsTChQsD3tOjRw8sX75ciujJgmf7v9mkhyYK64pLAq+3Ygh2CG5Bh1PJyoY28HkpsYqSIMdrW+FbfVusDrTaHKJnFXQAhuSnYc/pRuyvbIxKJCmvCxXG4XRh3QHxp9ezpMXqiJlIOtXMAxEKHYfThdKjbivS6N7pOL4/8oOwnTzPyNFFd/aeaYQjoK8veZHb6pxopBh1GJyXiu+rmrDrVAMmj8iHmFapTYU75OLMMBgfNERwHInam4rsVCP0Wvdht41WeU2xzU7/6uDxj9QjRXw34ZkWOFLTLOgzKd7YcqzeW35ZIbaMN1uVnd87TzWgyepAmlGHUb3ErfNoEHlkTiicLh6748A3jpX18SUxJtbHyQRjdKH7JIxDVU1osYord8OLckPfpDBIJCmQRq8jyTgQScF8AMDts6RnhzWptlU5DQLQOdXmOWdODHlmI3qkGOBw8VH5TFLD+ppqSzvKKtxrWMTuFhJC7MJtsQ15LGizOfHdcbfl6NKB2aKn2xrb7JL4rzlU3YQWmwMpjPyNycWxc8rzUxYJdgUtmchPT0J+ehKcvNsdgBjUaAAkkaQweIS/s00VhNHB9ezw3aQ4kdSxaDvXLH59DcdxGN7hJTiez0Byunis218NnucxOC8NJs7OLGwxHsoBt48rpbL1eB1sThdyUo0Ymp8mevqI54Gyk2wXV/M8jx0dYY4uzGAadqyRY3Bhd7Ar+5zChsGe8rDntDiRFM3yEbkgkaRAvCIpyp1tSimORyuDr7XwLMJkKZJYrFnwHGwbjSUJcB+lwEE5PpOCrRETy/YT9ahttiJJr8VVQ3LQyssv8JVqSWpss3s7mR8Myom6rO4+1cjUmnT6fBvONVuh02i8u5qEUEr7ojR4Fe7gCpdBuWlIMejQYnOEdRh5V9RYZkgkKQ0eaGwLf01ShdIPreSAfdXBveP2TDeBA9AS4DBcOWi1ObyWiJwofTClGnXok+VelH4gzqxJPIC6Ziu2dUwdXTU4B8kGZUzRKFUkfXfiPFw8jz5ZKVHveDTqODhcLmw/wc6atKNjynR4gRlJeuFl4aE8CvAuZViF5VmWxlAKKEBV+LqP0Go4jOrtFs5ihloaho5sY4X6Yhzn2FyAw8WD4zikJYUWSbYgc9aKWccSoqIbdBpkp8q/ZdwXz1RbZrIBBgaOT4YXdEy5VYoTSYGy0CpigyprE/66A9Vw8jz6ZacoytFcs9UpzXEcUXKs1r1O5nIfB6NirUmeTQV7TjcwEYXnW2w4Xut20jgmiqk2p5PdgCea0tru6lp3pS8P8b7z7oJe6dDGeRp9IZGkMGwdbYs5SQdtlL5TpNscHBmOEIf6Am5/SUqic9E2G/HWPzvF6zNJDIGadjsfuUjKy2C3Mf50C1DV2A6DVoOJQ3MV1UE4eR4tNmVYNLoyvKc5agsl4HZmmJ+eBIeLD2pNClcr7uxwHtk/OwWZQXd1Kk98RgPLUsu0Cigwm1OMOgwWORjSKNAfWChIJCkMl8bdMIW7aDv42asKrGEB6Bm2c7jY4F2PJNJpWld0Wo1irCxGPfvpsMsHZYdl+Yw1Hs/1SkKn4VA8gM0hJByA4v7usPacaYhqsXq7w+HdXDCmKDPovUdCrDNUU9vDGoZGNMUidkG/+iQSiSTF0d6x3zncRdunmuOjRirOkmRha0kClHOUAuv+q3emKegCXzlRoki6oFd6N0EZjfWhqEcyCtJNcLp4r1sBMbS0O+Bw8chJM6J3ZvD6WN8SX4e4sqSySf7NGVIj1uO2XqeM2Y1IIJGkMNo7Fi+nh+NIMkTDytJXjdSYk/QwapUxzmi3O2Fpd3euLKZEPHh8JsUbJcPyFDXN5ovnPSqJC3uzFZQc12mZKj/TiCaRaW7tmOu/qCgz5PtstamnbYk1LDtVKXaiygmJJCJqbI7wLUkNzeJPqFciWQzPbosGjxUp3aQPuLtHDL4+k+IJJfvzskjkkToajAIdRdfF9JEuOO+daUKvDBOcPI/vToizJrkApBh0GJwXelrYxfPqnDuJARzHUNjEl0aCgUQSwYpwOh6xjWFMiaCSK0YkMfKPJMTQOBNJSrdWNirQkiREV8NNbWNknqL9rUni3UxcWJgR1oaRrkf4EJ1oFF4n5IQsSQQzzKbQi2utYewaUxM9kpQxNPXubIvC03YgUlV+zENXlPHGAqPENUnhUN3QEvFvemcmo3dmstvKI5JRjKcCExGlDxzkRK9Vn0iKrxY7TkhL0kOnQqdb0ZKpFJFk8ViSlOW7iRUsfQex7g4+3HkGVocLNocLNocTVpFbhbQdUx5N7Q64eF6VxyGIobh/FlaWBXfeGgiTnmM6vUxEhqXNAXOXmc54k1tarfr6NRJJCiQcT9tqIZJKnpmRgSbJYhIeVocTDR3WBymm24jgnKiL3IISCA3HwcXzaLE6/HaTtduUZ11itfC9V6YJRT2SgYrIf5tqSGSBJL8cWbG9AsaMRvTJSkafrJSQOwyJ2EAiSYFEe2ZbJ/JX/EhQwg6p2mb39t20JD1MUXYaPJQ/HRUtrNP3w+F5MOo0MGi1MOg0MOg0WFF6RFS8UoxanIN7hO4rko5XsT0QVgqi8Yo+oX8WDu/yvxaO9VCFfv6YwdT/o8hmV8NxON9qw/lWG3adaoBWwyE7xQBleFdLXEgkKZB4siQ12jkoxPF3WNR1iKR4nWpTMhx4jCjoviZGz0U+5cYDSDXoAJfbDUAvqGtUHs3wpiDDhMPMYkLEihkTinDKrsOJuhacrG1Bk9WB6iYriSSZIZGkQNJNyt1SHe/UNbN3Iqk01GVfFE+KUQu0dV+8nSjp90UKK60Cj8VTNUadFgMzUzEwNxU8z6O+xYYthyvB17AJX4nnGKoB9a2iSgDiyZKkNs55RBKj40iUSKI0lSkdOwkbVbrDjSVSdJAnqhuYhlffJG7BOQvYSsjoQ+M4DlmpRvTPoL5AbkgkKZB0ZmuSiEjpXLStNEsSy05OXTKphRdnWfW4W7C0K8+hZKyx2tnngYOx8GpoiQ/nuOqqXaFJdAsUiSSFYdBx0DPaJpnA6zCjItWo81oh4hGhNk/sURZKJjXJI5K6pC0BG/19p+rkjkIUSP++9FzQk8LlQwGbWQKh3JixhUSSwjDp1fVK0vXx1+Eoz4oEBGqSWOX+1igORmUF65KUanCLpKZ2B1yuztBd8VdkQ6LgvjYk2hiIJAPYWdoMRlpTGk+oq0dOAJJ00rdmffVsvBGdPt/q3r0WZ+Qo0j8SSweQ/mE1tNqw/6z4oyxYwbozNOm10HAceJ5Hs1VdU25KcIcRDUqNfaB4sYxvklGJ7UdCGlCZQCJJYcTCkmROin4qqcXqwGd7qxjERnnkSXAciS8aRL6lPZqjJkKx9Xi9pOGHS7qmjWl4HNdZ1rtNuRGKI9HXvgihVLGZSJBIUhgmhpYkqSqYi+exprwKLTZ1jc7DRYmeto/WtqOZ0QJk376ovsWK7yvltyIB0kyrmDs2QST8DjfqbWOGUrdYdLUgR0uinFFHIklhmFWwYHjLsTqcOt8KvVaDCzIUuuBRJCa91u1fR0LE9FfH6tvxxjfH8NGuMzhS0wwno4U1pUfrwQMYkJMq6veuGPS+SRAvcDwiydKmLkGvitk2FfaRashWtaBRYwEQgfJ75ATDGIM1SdFwvLYF2zoW+ZYMy8P56tNokDdKTMlONXZbD6KEaYA0owatvDv/j9e2INmgxbCeZlF+pD3pqWlqx+Ea9/q04gFZeP/MOYYxZkcKZxP9W3PHcSS+022sR9RqIJpjTmKFFNUsSeMCr+JxnPLfWvxDlqQ4Rg+2rYOl3Y61+9zrkC7snYEh+fHnMD87VZk7UyYOyMAdxX0xtk8mkg06tNqcKDsZ3RlkW466t4UPyUtDdqoSd/S5iaajMJs61iRFOd3G2idQPBBPOWIwKLPes4SKsDjIkqQ0GNrZWY9CVu+pRLvdiTxzEn4wOFt0OEOSles0TslioUeKAT8YlINLB2TjRG0L9p1tBCI/+xU8gMrGNhyrbQEH94GoAJDOKfe9iKXTkhTddFur1QkziwiFSWpS/Hfa4ZLEST9VqtWq6IBJEVgdTmw9Vg9yUxw5ZElKRIKMKIJNLVVZ2mHUaXHdyJ7QacQXHXNy4A5AJ2LnF0uUKpJ8X4tWw2FAbip+NLqXyMCA0g4r0rCeZmSmuN9HEhd/i5s93uub2+2d67hEjKibrbHNG6OBbaetijVOAYjGh1FmUmJ3cS4Xjz2nG7Ds2xPYURGd5TlSrhbZPCkNsiQRfpypDb7T6doL8iQ9NoWVSBK7jihV4kXbYmFpKT/XbEfFeRs0HIfxHVYkJSBFP55s0EKr4eB08WhudyA9WS8qL5ttsV3Y4gxRDbQK8xBt1toRzoq2YOvLAq0VC1QuUjhryOelJulQ3ySNwE0L8HylTGtV1LVi0+FzqO04jzIzyOBUCtKSdABDJ51ykdgyOw5I0kQuKoLVYScfOLyL+/ZAv2xxu6DUgtqd+IXD9+fc/ogu6JUeteDN0rA8lDRAJynilXi2J3McJ7B4O/JejJX7hXA5URfcZ1QBGmMUk8DkmDu3Ddw6yl9sB9oenm8KZsaObMdUahQL+rsiptYreXfX2n1VeH/nadQ2W2HUaXHV4Bz8bEIR03WqodI/aVQRs2fJCVmSVI5JB7QyHCgFGwUVK8jqoGbEyTB2DbLdxUOr4XBJvx5Rh9W/h5j9ddLj24CbTXqcb7VFtXg71iIplIuHSDtoKaS/3mcdT/GQXsDh6pC/MeoCj8vPWdqg5xgLDwl1DMujTFhzsr4VGmMyRvVOx4T+WUjSa0VZ1/O4ZlHP72OyIT8zPgbUJJJiSH0Ty1G3eMRUlpIiPTSa7k2tJgEsL0og0CsTezDnhb0zkMrAJ1cSw7UzUpUkj9ftxii8btucLrTZnDAxXivki68/KOXaKDrxjSPHceifHNqyo9cFzr99tTYYIioEoW9ut4dZP0QUvpyUQPVH/rdX1CMZl4zsgx4p0U2xpWlCT2kKEYvjtWIFTbfFkDYVe6gOdFpKz8wUJDM0exPCBBK2Ykz+Og2HcX0zo40SALbTk1Kdq9XVoaTYNSOetR1SEetuJVnDtj167a5LmYYXinBe47nW8ESSVsNS/DKsEyKDunZEftQCiXAjq0h68sknwXGc32fo0KHe79vb2zFr1ixkZWUhNTUV06ZNQ3W1v0m3oqICU6dORXJyMnJzczF37lw4HMoUI0pwSggEb1wijSHHcSjQsDkwlwgMy5IzKCsJyQY2RuQUA7tF/Kz9enkQcigpBqlFklIJ5Bqia3vWIy05ZFgs28BwNnm0u8Lr4opErLVUgq3EFKV7hPvHxtKxhTqR3ZI0YsQIVFZWej/ffPON97tHHnkEn3zyCVauXImvvvoKZ8+exS233OL93ul0YurUqbDZbNi8eTPeeustLFu2DAsWLJAjKaFRhkaKmEwu8CJSpQi/eEcfZC1HOGRoOwXC0Fx2Z9Pp9eGPwC/JEbdzUa+NrjtK91qS3Hkg1gdRbXN8WUzDPXtrUErodHezeIh4ZXyEPwrWLkVKTnpKxL8JlHsMzg+XjK5x/u2tP4jZs3sa1Vl/ZBdJOp0O+fn53k92tttJYWNjI9544w0sXrwYEydOxNixY7F06VJs3rwZW7ZsAQB8/vnn2L9/P95++22MHj0aU6ZMwdNPP40lS5bAZlPeCwlHUASavjAzbBCCWpIE4miMgTM3IjjmZGFhE+6hsI9PGYgfJR/CQG0d9Frhat8rTVpXc//59Q2ifpeR1F2IpWrCtwp5vG43Wx1wuFzQdaSfA7Dql+PDDieWlqRoxx7GLj6vopkW1Wo4aIWsNhKMj6x8+F0SywNWWQ72itI4yayi4SDns4MxIFOdrixlF0mHDx9GQUEB+vfvj+nTp6OiogIAUFZWBrvdjpKSEu+9Q4cORVFREUpLSwEApaWlGDlyJPLy8rz3TJ48GRaLBfv27Qv4TKvVCovF4veJBfK6SQyPWNiFyPrEjnA7Cg5AUY/go+X0ZAOzjqevRthxXVoE4iYYpfOvDftek14LXcemg+Z2h7f8acEjLzP8o3Xqmq1wiSi7ozLjb5CRYeD9/BpxHJeQZ+IJoeE4Zo5ZU0RYPZXgmmDe9SORm+E/halW9yqyiqTx48dj2bJlWLNmDV599VUcP34cP/jBD9DU1ISqqioYDAZkZGT4/SYvLw9VVe7zw6qqqvwEkud7z3eBWLRoEdLT072fwsJCtgkLgFLEgVLiQURPepgehcN943pGUj6Vs8LEqKMQalyTIlgLxXGc3+Jta8eOJ0cE0ztaDQeHi0djhP42kjgHPn7sxoh+E4gJuS7cNiwJswdE7iMp2v6pZ5d1hwYtpwinieYwHEqGi+f4E6Om0xJj4JwRW2bCaV//+ZPBOPbMlJD3ZaaakMZwY4yei81Q/aoLB6Ao139zyLi+0bsckQNZRdKUKVNw6623YtSoUZg8eTJWr16NhoYG/Oc//5H0ufPmzUNjY6P3c+rUKUmf5yHUSEsDXvbzA6Ru+AZr5TlpXmi6oIfOhom91Tm68dD1eBglWS0MCvIK7Vm83dhuR+mx2oh/n9yx9T/SKbdL8v0XqGRzLWH9TqgaZqca8OzMa3BBYeSdTZ459KLqYAidn+br/qNnptk/0jESUKmclZmw93jQNvo0CZ/OLsbLPx7CJHxfjHotNBqNn9uHQKh59/Dm31yO6/pqce+YNMy+PvypbSUh+3SbLxkZGRg8eDCOHDmC/Px82Gw2NDQ0+N1TXV2N/Px8AEB+fn633W6evz33CGE0GmE2m/0+aqWFscd9sSbzcI8T6aNtEBV+tPzjp8P8/tbBiR1/uBmD88KfbgnGMLMyzj37ycXx4eWWNWafxdstDn9h/P7dF4b8vcenVKSLt7uOecIfyXevh0KNddi1tUs8bhnEYHu4T5hZ6Slhx4XlWiIAMDBeM3n1iJ4oMtnw1DU9MahXDq4dx14kqXXqKVIKstPxyv3X4vc/vQLaAGshlY6iYt3c3IyjR4+iZ8+eGDt2LPR6PTZs2OD9/uDBg6ioqEBxcTEAoLi4GHv37kVNTY33nnXr1sFsNmP48OExj3+kDErt3rFGWnVsAgsdjSFG8EGtRSLbL1MgR0oMYLFw/JoxA6OMQ3ARFO0OLFZwitiY7E8PoxMLS3oCEHvESPR4HEoKuQG4aFBvXFkQ/PedIilGi7eD1EMWHeziu38YdRgejBFO4WjBI1sTnkVNDnLNKdj0xM2Y+cOLvNeenxr+4IPjYlcLI3bZIkks4htZRdJvfvMbfPXVVzhx4gQ2b96Mm2++GVqtFrfffjvS09Nx9913Y86cOdi4cSPKyspw1113obi4GBMmTAAATJo0CcOHD8eMGTOwe/durF27FvPnz8esWbNgNCrzNHdfPnl0qt/fGsYu+TmN8OtVwFKCgHACFqmtv5+E3knympxzNK1BF0ROHhHYcqkE5FyHNu3igbij5KLQNwaCQcve1Q1AV96cNQX/uXMkrgkw/ZqaFFuRxPptSfH6u5apcJ/BccCMi3uyj5CE/PgHIyO6P1SR9ejcWIsWjU/76hm4EMGRVSSdPn0at99+O4YMGYKf/OQnyMrKwpYtW5CTkwMAeOGFF3D99ddj2rRpuOKKK5Cfn4/333/f+3utVotVq1ZBq9WiuLgYP/vZz3DHHXdg4cKFciUpKF0bka6LT2M3+gjcmgl1prGsyELPykg1ITclco+4nu3xQmtjPM+54+pRYceL4wJblPrkmLHl0R8gJ4yzjkJZ+rqSgsgEolBHr4RFtmIJt/zdOSrw7r2uXre7otVqcMnQIjwydYzg9ynGjjVNbXbYHGrYp+rP95XdF3sPzfS4QhCxdkxh5SlFG/u1eIGywLcNTdMJ523XnV/h8vWc6Lyap3Ssb7ok1xVy4NJfWxfVs+IFWUXSihUrcPbsWVitVpw+fRorVqzAgAEDvN8nJSVhyZIlqK+vR0tLC95///1ua4369OmD1atXo7W1FefOncPzzz8PnU7B3rwUgG+H+dG9Y3DHBcmC30XK1UXSucG/qDA94t+YOhqE/h3+Of778+6CqCA78nADkd/D7GcNDJSVGbrwRc9Pk/ehpzYyj+ZvzL4O+54o8bt2/fihAe6OLYEanEjXqWgFzhF88v+uwkCN8MYAz8LtFpsDLj6w7LqgX89ueccBSNJyXi/ldS3BrUlXCAzQhyS3wMy1I1UbWJBE6z05GA3W7sLutXsn4nJzHXJE+mDzvDFPbqYatTB1HHUi8HrijzAay7H9c/CToUZ8cM+F+O0P3IP/8TkuDOqVE/Zjkjj3PsyiFCd6ZaejyOTfftwyyOBXdkJasQBcOKRf0Hv2zL8al+hPA1CcHo45ilqTRMS+QF44oMCvVkXz/HsnjcHXcy7FLyRwdf/Yjy+P+Deewm3q6NzGDe509ZCkEen9OUCNcYU4td0XoQ4+EJ5T0yOdLksx+U83m4yxdeSWk5sreL1femcGTuzFoafRhvG6ExF3qhqNBseemYIBKf6WvUDONZP0Gq8TTWeIbqRr3nnITnUPAmqbgovc+dMu6Xbt3/dfhSmGg0HffQZDh7HhkJORil9PGQmtyNPsuxZJjuNQiHoGMYsfUgwGPHdnCcYM7I37p16CY89MwXt+TlXDcDAMHjrOhd/eOA4ajQZfPn4jCjq8V1/aS4/Fd/8Q+/54A2YMdu/2y9WEtmaHWtcWqA4kIiSSCL+tvNGuXSnMzcQ8ka7ugz072OnhkfDn64pQYLTh1f8LvaNJiJ+M7SXsfVgkeQZlb+8dktZ9evGpa3riEt0p9AngMBJwT4UL4ds2v/ngdSh96mboQnQUgZpzjUYTtrjiOM5rTQqHq3oB6Zo2v2fnpLk7jlDrkgKV43DXWwe0qkVhnWFt2An0xhLBgORBzAJ6TZd1oikifIlpNBp8+HAJ5l+Vh5fvKfFee+DaMbje+D1SDOK79QKjDX+c1Cui37Derag0SCQlIF3bcF3InoZlJQgvrNSOuXwWfow0Ph32rVeMxOanbsblFwQ3NweiMDcTy6aP6Hbd44l5YmF4U70ceJT0NWDzEzciX8FCKTe1u7CY+cOLMGloj5g5pmPlO8xzPEk4LHtwKvpy/laR7NTwRJIv3gW6Hf8IdxDCfOE2gzBMXdbGedLCaje7rxUwUY5CenJyEXpqLOilicxBaG5mGu65dpyfR+5odz1q4MLmp27G9ImjI/qdUaQlUi2QSIohTqcyFnx2baiT9J2dh1LGBL0yk/HOjOF4/YHwj58IRHpK5IdXRoonS//v8iFIDsNBHAAM7tmjm++QTK30gilYR91D0+r391/uuELwvkg7/WhIMfhbpa6KbKDrxbPDTSxZnum2ZmvY6Y6k2wo1Ii/sIW6xLyuW3DwAF2d3tmFdY8vS9881fU2yOZ6NJcMKc3Cl4Th6JKvzXDMg/q2HJJISkK6N25SxnYvlu60zAM90QWk61x7WfZxGg8tG9GPigKyriVsKfDtNITcG4fL2vcWRPtjvz2AdVchOjOeR6uPd16y1IzeCs83CQUyD2isrDZmaNmjhwuPXDsSbszqPcxiSawo7nEim24TokWIAx3GwOlxotko7enb6rHH73dU9cW0fLR6+cULYv5fCypeWbESfHp0HLbPWx77BcXBbruK9A44HOPDY9pjwYCoeIJEkMx7/Pz0YOFfzHB2QEkqIdGnceph9d7d1fvnq7aOwYIyT6YGJOta+oJiGFh7jhxYhW29Dv+ROQeHd6RPlaHpE33zMvyoPOjjx5DXR+TG5bZi7Q5txQXRHUiiBdK4dOq0GPXuk+YneRT+7ErcOMeKdGaGdx0Yy3SaETqPxjviDed7ukdaZ33qRIt/uY3W++dIReO2Ba73r8sIpY+k6B8JaFBxVeeW7/J8dkUbr5gvC3y1GsIf1YEpJ0F55mfA49Xpv9tVYun43hp2K/NDKrnz0y2Ks/PYAcjcEF1zhOtzW67RIMii3iOjhglYT+wlCg16HrU/eCI4D+v/uM/EBeaasuly+59pxuOuHLmi1Gry88b+ig3925jX4o9PF9DiAH/WPrjywPo0hLTkJf76rJPSNiN6SBABZqUbUtdhQ22xFv2zhadwcHx84Bp24vLdG6YtJK5HXZyFRJcVzXK7I0j957EBgY2zXxsSLlavIZENFmwGXCG9ITXjIkhRDeJ6HocMM/uvL3f6eemVnYP5tV3p9sETDkMJczL/typC7r3qkBPZn5GtC913PLafH5kCkadpj0lAJpV2r1fhZNFjnDythE0046fruaXrpvsnRREdWzFGuSQJ8Fm83hbd4W6wwszuVV9+6IuV0W6RoNRpM7cdmB2y4GPWxfZ5U/PehEjx6eTb+8YvOo2oS5Wy5cCCRFEN4ANqO6ab0lCS/72JZKNOTDeitacRvRgb3tKt0h3AuBRXfcYNEriZWID8tbMbAVDtemRn+Ghg1YNRpYIhSfOakeRZvB19g/8tx6RhmtuO30yL3kMyDg431Jo8gDjRFB8k8xE4U3vTEFbmZafjl9eNh7tInEW6UO5cShyjJGJPEOVCU093po28UNRzHVLxdkGZFmBu/wqLBFftK3TU/vp5zKRpb2tE3v4fg9+Fw14ReeHbTOYzO7D5dIMeI7sphvfCbH/1IkrDlPICX4ziYTfqozl/L6rAknW+1weFyBWxAH/3x5XhU9FOAVjtbkdTucxA2izfA81DOVliCkBASSQlMqA5Yw6iDNmlccDmBIantQGD/g6qkMDcThaFvC8r9112Cq0fWYGBBNpM4EYGJViSlGXUw6DSwOVw432JHIi8XJo1EJALKma9IAPQiF3FKja8U8rV20bR07BhSmMtkHRK9s+CYk6JdeM4hR4RTSSURTRnx/S0vcI2IDJaW4lj6LhPCs1O7XzLD6QIFoMxeO04x6kIdwCAPvnFqtXYW8GgqsKBvpSjbAwMn4rTyCNCJOQ2dUBXROpQExHneVhJq0DRi1kNe0p+2Z8nJu7+8CneMTMY7v7xa7qgwhUSSTGgibAVi1bCdPt/pcTma6bZZl+YBgHc3HxB9GqQ+I0jMOUqJBIsjYsTAcmTMxg1AeIu3lQrrDRmsgov2Lc+4ZjR+d2UuPrhH3LmMkRDv55WJoTA3EwunX42C7HS5o8IUWpOkNAJ0CB5HkT01Tcwf6dvI+Z5mH41ISuk4dV6nQZyf7OOP3K4SLhks3S67kb0zog5D7qkZ5m4A8sP3+M2KaKdoUvTix8btNre1tdYKpDncNVuK45bEJFGj0eC+KRczj4sQRdqGmDyHkB+yJMWaKPpQDkAuZ2EWlZDPi6It9goshppBDdMEcqHjOPz66iIMkHDxdyQCMNC9vdLl3WYcrddtoFMktdgcaIvS6aMcpOrF16Svjjd7/11bW8ciOj5wAf5NsEDuAZxaIZEUQ/zP95IenT66UXM0liQhjUQOyqSD44ABPbPkjkZIFv7fD3BlAfDn64pkeb5RF70DQINO47VINbSym3ILt3pE29klG8TXQ73Pur1mp7v7kMaztwSBMiQV6lyP5oHa4vCh6bYY085rIfVJWpoOcZSSHPmTuvpJEh0HgYUPkZ2Irk7M5u6+p4hO0pKT8NZDU2WNg1EbfenKTjXC0mZHQ6sd0Z2wF3sMPjox0s7Sdy1Okyuw5/5oCSdW+T17wlldDZ0u9t1YHy1bXyZk5VEuZEmKIe0+c/fHq1ibqjtRQkcthdNANQinvLw8uaMQkHA7xHDuU/NINCfF3amadeKnynI6Fm+Ha0lSc375wvvUQhvkPZZDp3U/3/d4oFgRH2+TCAcSSTHk5PlOE21za7uMMQmMnyUpim0wXp8dEOdPxWSQbpRKJDYpUUw3eej0vB37HZHRCi72Rgv2VpBo05ilU+fOw2iIFyGuNEgkxZBjdW3efyvJuBpoWi2a6TZtlPuM5ajwoQ4GZg01avKQqo9+LY1n8XZjm119UyVRlLtgKVVSee4eE/KBRoiDRJLqib6Bdvk08v5rksSH6eiYWmx3Kb+I3XeBDoXaBmTpE2/0mYgUputh5qzINooXxRnJemg1HBwuHg6XNCLJACcGGmK3mzUceIYTTSPSpXMOIoVeG5jq42hXUcNc9ihJ8MqN8nuwOCXS0ae2Y/69X//+ftc1ApU10gLuCtDIR1NPPi8/I/7HAZCq2v685EJcpj8JXRhrGxK58SjMkn+tGwuSdByKNOdh1osXSRqOQ1aK25pkk8gNQDJnh46ToDOOIkiWsfngN1MDOn5krTtZ1NoReVJvuSGUCIkkhRCq89V37FgzJvn7mWFyorf/Rn3vvzQcJ1oUCI2uo45r4uoTWVlY0hO3DjFi2uUj5I6KosjuWLxtk8CZIhD76d9w8K3Vnk2CYqulQa/DmIG9o42SIFI0FYN7xpcnaSI8SCTJhJKWMTh9BI2fOzcWziSJqFCC5eqOkovw57tKZNlFpGSy0zosSfZOMcPy/D8NJ5FI8ilSkZevzvtzk927BKXYgh9t+9g1WSymCf/vypFRh0GoD2r1YkhOsjKzOzO182iFnmmdDiij8pMk8NNoO/x4XwdAqIt0o7s+t9k7hZGeoUjSSlXeGU235ad1iCQN+3heUNTpGFXLRISxbXvlH7oQsUKZvXac8PCETBSZOhcD6x1tQe4OH9Zm+LTkzik8rdZ/uk0sWoHfKr1hUd0uJUJW7G3NoW+KAiVOt/nSJ12PQk0DCpLY7xy7sXh4VL9XelvjQQmWYiI4JJIk5OGbLsWmJ26WOxphYdK4d5r47nSjKTOCkA+hTRlMiKJa+05bcRyQzrVDy3BxOQceA7TSOdoNRDgDJBcNohISEkkyoQarRVQaSQJ9lZOk/DwjCFboAogkX+tDrNsRoaextIYY4GTSdCTi8I6sUtJAIkmFSNEseqqXb5sbTaUT+mW0lfhnlxRG9ftYw/Q9BeoMVSC24xXB8hxVEfd/l1JNt/1oUIok4UZCoLbAwHWfuhO1MFwKvcAH/COuUcOAXkrogNtY4lfWlKn6WR1LIjxVF11lM+rlPSsqHNQ8mkv0xlBuupYcDWORxAHor62Htoc+5L2BYOlMUgiDz8L3JJN7Q4lJxEHdUuA73RasmpvNZvLvHUeQJSmW+FSsXr0K5ItHEHz7SVZrkjzOKltaWpiEFw7U4RNywFJCsFzrAwB6DR/VOqdYDAAMXKcXbnO6eL9EUsQ01WT0/lsfRMCqeaBEdIdEkkzodErLet7nv26iEUlpSZ1GSk+YTRZpdwMRIfAcOhxCQFIjrwxYT7fpGbzW8dluG0kSpDlSxGNJUmIZNBn1+OdPBuPXo3jopfJhRSgOpfXUCQOnuOk2d3xcPNflijimXzEsyvgkAArsCIjwieTtie30oxULKZrO88b0DPwZ/fbGi3C1/ij6JLFxZ9IVA6OJKqlqVslFg/CD4dJ4CSeUCYkkwg8n11kktFrxxcOod1uS/B1ARtdIS6UpQnVENHXXHS5MqxQhDiE/Y2LQcQL/9gk7UhGm02qQp22GPoq2IRhCC7cJQk5ElfQdO3Zg79693r8/+ugj3HTTTfjd734Hm03cSerPPvssOI7Dww8/7L3W3t6OWbNmISsrC6mpqZg2bRqqq6v9fldRUYGpU6ciOTkZubm5mDt3LhwO6U6XZoVSbQiNbe5GKkvjP1KMtDMU3N0mNlLeOEQZAEGwREJLoEECDcLCkhQ2IisrK6/6ZKQlWCGqKv7iF7/AoUOHAADHjh3DbbfdhuTkZKxcuRKPPvpoxOF99913+Pvf/45Ro0b5XX/kkUfwySefYOXKlfjqq69w9uxZ3HLLLd7vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAjHJiim9MpJC3xQAaVwAuENtsrnn2pMUOKLTKuDsMCYHCpPaI0Kg07Lp5X1DkXoZpBLXESUSLPOf3mUnoqrNoUOHMHr0aADAypUrccUVV2D58uVYtmwZ/ve//0UUVnNzM6ZPn47XX38dmZmZ3uuNjY144403sHjxYkycOBFjx47F0qVLsXnzZmzZsgUA8Pnnn2P//v14++23MXr0aEyZMgVPP/00lixZItqiJTWDdA3I45oxNM/fV0kkhdIo4QZTT/dt7NhlwrSyRBnUDeOHsIkHQTBAym7EIIG3Cz2D3XLUeSofGoSxRZRI4nkeLpfb4rB+/Xpcd911AIDCwkLU1tZGFNasWbMwdepUlJSU+F0vKyuD3W73uz506FAUFRWhtLQUAFBaWoqRI0ciLy/Pe8/kyZNhsViwb9++gM+0Wq2wWCx+n1hh0tiRprFGFcavRuuRybWhl7aJUaz80cEJHdPtx2waVr1O+X6SCIIFuiA+ysQKFcVtqO2Gf5ujdDmmZjFCYjd8RFWbcePG4Q9/+AP+/e9/46uvvsLUqVMBAMePH/cTLKFYsWIFduzYgUWLFnX7rqqqCgaDARkZGX7X8/LyUFVV5b2n6/M8f3vuEWLRokVIT0/3fgoL1eXJecKQAkw2HkKeWfyUXTBMHIM1XRIccJuIZ8lRY6YuUrnoBkAe9BIIGgNjv0usyeTaJQubFoQTYhFVFV944QXs2LEDs2fPxu9//3sMHDgQAPDf//4Xl156aVhhnDp1Cr/61a/wzjvvIClJms4+EPPmzUNjY6P3c+rUqZg+X+kkcfbQN4WAunYikUjXWJHK2fBgcb6o33e1SuijXJMkZOVgaUmSworCss3oOrYwIvo2TQpoEKR8RB1LcuGFF/rtbvPw5z//OexzdsrKylBTU4OLLrrIe83pdGLTpk3429/+hrVr18Jms6GhocHPmlRdXY38fHdDlJ+fj23btvmF69n95rlHCKPRCKPRGPB7qVBLdTBJ5CiOIOKVLJMGnK0J+hwzk/CCTbdFgm8oMd3dFgCW4ipYWKfaDMyeQyQ2osYW/fv3R11dXbfr7e3tGDx4cFhhXHPNNdi7dy927drl/YwbNw7Tp0/3/luv12PDhg3e3xw8eBAVFRUoLi4GABQXF2Pv3r2oqanx3rNu3TqYzWYMHz5cTNIIAEk06iKIkPiWRgPjoinFdJtnnSHVIoIIH1GWpBMnTsDp7D7Ha7Vacfr06bDCSEtLwwUXXOB3LSUlBVlZWd7rd999N+bMmYMePXrAbDbjwQcfRHFxMSZMmAAAmDRpEoYPH44ZM2bgueeeQ1VVFebPn49Zs2bJYimKhEAdvtyLAQ0ajvH8va/nE/lHsgTBCpdPcdZreaZDC72GY7qHlQOg5ZCwB68qfs06oVgiEkkff/yx999r165Fus8BhE6nExs2bEC/fv2YRe6FF16ARqPBtGnTYLVaMXnyZLzyyive77VaLVatWoUHHngAxcXFSElJwcyZM7Fw4UJmcVAiUlhUPCFmmDQAg/WTUhh9EnHhNqFcHD4DGlGjzSDoNWwFjV6jvIOQYos6B2hyD5qJCOv2TTfdBMDdSc+cOdPvO71ej759++Ivf/mL6Mh8+eWXfn8nJSVhyZIlWLJkScDf9OnTB6tXrxb9zFhi0HFgvdwnU9OOJqcevTSNTMJLN2oZiaTAu9sCVfx4aBCUPCUYbsyUnAYlkWXSwsy1w8g50MZ6uk3LsaiGXgysnFP6lA3W9VX9tV9eqN5KQ0QiyeMbqV+/fvjuu++QnZ0tSaTijQm6k0jlrBhZWIATx9mIGQ/D8lNx9kwNHrg4g0l4GUlatLGNIhzQQAsn+AQfy3aFGjV1w3EcCjQWGDkn2nyusSBJy4GlF7RonFPGavAS6EiSeBg8hSIR0qhWRE3VHj9+nARSBFzeNxX5mmboJDhWgwOQxDlgjNLRYqbODg48slPYOmz0rfrNruh2nJCmIBKFYNv1xQgxKTx4s0aJRyERhOip9A0bNmDDhg2oqanxWpg8vPnmm1FHjAgNy9HH5PRq9NOeR5K2N5PwhJpx1mMlDbPDMEl9EdISaRkLVrLF1Pto/S5JyY8yK9GDa0Pfgp6oqmwBoOw6qeS4EewRJZKeeuopLFy4EOPGjUPPnj2p0MQBWg3HTHQEonfvXkBVg+jfa7pY4gwsPINHCJV0N1LU+ZTUVOZhKo1wBQ6r3PWEY/QRSUprr8f2zUIPTSsYuYYiCKaIEkmvvfYali1bhhkzZrCOT1wSi0ZJaQ1fi80lcFVZcSSUQf9Bg4C1a6HX6+WOingYWHW1cEHPuWDibEgzGVDJIFoelGxJItRNrE/MiDWiFsnYbLawjx8hEhO7U0gkEYR6SJbBspXC2ZCjaWU26NFp3PUwTa9ckaS0AR4RHt73JsFaWyUhKnX33HMPli9fzjouCY1Smgkpd1mwDlkpeUbEJ/0Z+nxjSSSioq+xDb00jchlvCFDfdDuMUIcoqbb2tvb8Y9//APr16/HqFGjupnJFy9ezCRyhPIJ6PMoxvFIVCifpSMeLBycxr37NVBa/PwehRNekDyJNCyCLfFQXpWIKJG0Z88ejB49GgBQXl7u9x29KOkJlceJ8g7YHp+iTBLlXaqRRFxrSBCJhiiRtHHjRtbxIGSGfWPcGV6m1gabk8eITOBQFbsnpHMsfRITRPxBEkvZkAhWPqyPHCKIbvQ2tMHlbEM142URUrssIAi5kGJtoCdE6pgJInxEiaSrr746aEX74osvREcoHknERoknAcOUWBxbQEcjRI9S63qiv1sNaLctIQ5RIsmzHsmD3W7Hrl27UF5e3u3gWyJBSew2WdUotaMnIkdN71KqJsMIB7LSTADUlR+siVQoJ3Je+SJKJL3wwguC15988kk0NzdHFSFCGURbQUgjhZEHMW6EqNGLEMqvuKBAa4GGj29fPlJCVkiG/OxnP6Nz24KghsLGKoaJ2iGrId1qKIexQA3viogeWrvYHSr54cNUJJWWlsa9i/J4hXWHMSw/FWauHSbYJXtGrCBRQSgJtdYjuaDcIqJB1HTbLbfc4vc3z/OorKzE9u3b8fjjjzOJGKEsIhUKeq0GUwwH0UtrAWCSJlIEoRASRUZLIdBI9LHBk480qGOLKJGUnp7u97dGo8GQIUOwcOFCTJo0iUnEiMCopVFRSTQjyk+15D2hLJRabhKm7IeIOwkLIhCiRNLSpUtZx4MgCBWh6g4zkRB4T/TuooPyL7GIyplkWVkZDhw4AAAYMWIExowZwyRS8UYiVqpETDNBJAq+lheq60Q8I0ok1dTU4LbbbsOXX36JjIwMAEBDQwOuvvpqrFixAjk5OSzjmBjI3NCEcwCmWMiUHb/QuyUIIp4RtbvtwQcfRFNTE/bt24f6+nrU19ejvLwcFosFDz30EOs4xiU0+iIIN2qtC1LGm8QnQSgDUZakNWvWYP369Rg2bJj32vDhw7FkyRJauK1yErlxTuS0E/FJKCFHZZ4ggiPKkuRyuaDX67td1+v1cLnojBxCGLVaDOSE8kxd0PsiiPhClEiaOHEifvWrX+Hs2bPea2fOnMEjjzyCa665hlnkCHFQM00QhC+BLEaRijrf+7uGqESBaIBT7igERYl5RvgjSiT97W9/g8ViQd++fTFgwAAMGDAA/fr1g8Viwcsvv8w6joQKocpPEMrCI5QSqW4aOWWLJJYk0nuNJaLWJBUWFmLHjh1Yv349vv/+ewDAsGHDUFJSwjRyCYlMawSoghEe4r0sJNI6HDW9SZbv5f961sHMtSNdY4PCjUmKJd7bgXCJyJL0xRdfYPjw4bBYLOA4Dj/84Q/x4IMP4sEHH8TFF1+MESNG4Ouvv5YqrqqFdWFTW+FNpE4pEmL9FtVWbghCLCOLspCraYEWtEaWiI6IRNKLL76Ie++9F2azudt36enp+MUvfoHFixczixxBdCWJc8gdBSJRUKio7NWrl9xRUAQ0+CJiQUQiaffu3bj22msDfj9p0iSUlZVFHSmCCES/NGU3jGStIaRm0KBBckdBUVCNI6QkIpFUXV0tuPXfg06nw7lz56KOVLzCeuSj5JGUVGLhhlE9AQBmrl2S8ENBDXLsUXI5lwMS4pFDOUaIJSKR1KtXL5SXlwf8fs+ePejZs2fUkSIiR6jhjKRr8fxeyg6JReN+/3UX46aUQ/ih4TCDGLlRc6dD8oEISoiyLVXZF9P2EIQSiUgkXXfddXj88cfR3t59FN/W1oYnnngC119/PbPIxSU0Ko4KjUaDMUU9oOdoQSYRvyh1sEKCJjRk+YwvInIBMH/+fLz//vsYPHgwZs+ejSFDhgAAvv/+eyxZsgROpxO///3vJYkoQUQCNVTyQvnvD4kLQmqojElDRCIpLy8PmzdvxgMPPIB58+b5OSebPHkylixZgry8PEkiGu9Q8SYSnXiQVdRRKQMp34PS3zENUNgSscftPn36YPXq1aitrcXWrVuxZcsW1NbWYvXq1ejXr19EYb366qsYNWoUzGYzzGYziouL8dlnn3m/b29vx6xZs5CVlYXU1FRMmzYN1dXVfmFUVFRg6tSpSE5ORm5uLubOnQuHg7aJs0Jsg+B3fAFVWoIAEPu6oNTuXKnxIoiuiPK4DQCZmZm4+OKLo3p479698eyzz2LQoEHgeR5vvfUWbrzxRuzcuRMjRozAI488gk8//RQrV65Eeno6Zs+ejVtuuQXffvstAMDpdGLq1KnIz8/H5s2bUVlZiTvuuAN6vR7PPPNMVHFTMkofyRBEJFBplh4aqBC+UJ0LH9EiiQU33HCD399//OMf8eqrr2LLli3o3bs33njjDSxfvhwTJ04EACxduhTDhg3Dli1bMGHCBHz++efYv38/1q9fj7y8PIwePRpPP/00HnvsMTz55JMwGAxyJEuVxEJ4kbiLnFjmGXWkhJKg9oJQAqIOuJUCp9OJFStWoKWlBcXFxSgrK4Pdbvc7D27o0KEoKipCaWkpAKC0tBQjR470Wwc1efJkWCwW7Nu3L+CzrFYrLBaL34cgCIKQD0l39EkWMhHvyC6S9u7di9TUVBiNRtx///344IMPMHz4cFRVVcFgMCAjI8Pv/ry8PFRVVQEAqqqqui0U9/ztuUeIRYsWIT093fspLCxkmygVQ9YEgkbwkSNVraF3Ed/Q+1U+soukIUOGYNeuXdi6dSseeOABzJw5E/v375f0mfPmzUNjY6P3c+rUKUmfFwnxIlGo8rOFxCvhi5j65bsbWQoSrc5TnUwMZF2TBAAGgwEDBw4EAIwdOxbfffcd/vrXv+KnP/0pbDYbGhoa/KxJ1dXVyM/PBwDk5+dj27ZtfuF5dr957hHCaDTCaDQyTglBKJtE68QI9lAZShzoXbuR3ZLUFZfLBavVirFjx0Kv12PDhg3e7w4ePIiKigoUFxcDAIqLi7F3717U1NR471m3bh3MZjOGDx8e87gHQg2FTco4qn28JXbEGOhXso9A5X4+QfggRdujhjaXNZIdMZPg7YWslqR58+ZhypQpKCoqQlNTE5YvX44vv/wSa9euRXp6Ou6++27MmTMHPXr0gNlsxoMPPoji4mJMmDABADBp0iQMHz4cM2bMwHPPPYeqqirMnz8fs2bNIkuRAknEhotQL3KWV6V3S74dJ9VrIp6RVSTV1NTgjjvuQGVlJdLT0zFq1CisXbsWP/zhDwEAL7zwAjQaDaZNmwar1YrJkyfjlVde8f5eq9Vi1apVeOCBB1BcXIyUlBTMnDkTCxculCtJcUssGm01jFhCdQfUYRAEorJWJmIdUkPbl6jIKpLeeOONoN8nJSVhyZIlWLJkScB7PB7A1YBvNUjEhkCp0LsgCIIghFDcmiQiNGro1BP57CQicaGyGQIpLCaU54SEkEiKZ+LUhEumaUIJqFUQqTXeBCEHJJIINx0NJwkQgmCPUoVJNPGitoJIBEgkKYU4bES9SOzEjog9krxL6nSlg0HechynmjqslngSyodEUgygCksQcQ4JvKiR1DLFsA1Wanuu1HipHRJJhCRQhU0MWHRsVFYSG3r/hJIhkUTEnGg71kRqVGVJawLlL0EQRDBIJBEAQjtJJNiTSGKPiAxaFB1b5MpvagOUD4kkpUGNIyER1CAnHkJvXC3lQC3xJOIbEkkqJNEbDxplE0RwhOpIQtebBG8zxZDo/YwHEkmEH6waUt8KltCNM0FIAXVgRIRQOywOEkmE6pBzhBPRs6lRSjiUNvpmHZtg6VNa2gmCBSSSYkAsGg/Wz6AGjyAIQl6ksv5Q6x4+JJJUDMsKlMiiiGXaEzkfCUIMVGfYQPkoDSSSYgjNCRNEfKLWmi22Y6W2TLnQu2ELiaQEJBaViEY1BEEEgkX7QFJAIcR5W08iiSAIIs7xHRgpdeepkuJCEB5IJCkEpWpxJiM+avyIBCfSesSszsT5KJ8gpIZEEuFPAguaRBdzkaSfplMTB1H1Qua6ROWTYAWJJBUiRQOgRjcFhDTQWxJBggtsgohXSCTFgEQUB4mY5kihPHIjVz4kQv6rwX+a2t6D2uJLRAeJJIKIMYk+rUcoB+rw4wd6l9JAIokgEgRqRAlCWVCdVD4kkhSG2mwMiWAVUUIalRAHQt1QGSKIyCGRJBNKG0EoLT6EdFBnqR6oXqpv4EjEFySSiJgRDw1+PKSBIOIdqqcEK0gkEX4EsjJEan2gRoog5EfV9VDNcY8jEt3yTCKJSHhU3ZEQcUnIjkkBZTbRO08iMSCRFAPU4KuEYAO9m8TB710niGAIVr7Fln3v7xIkDwl1QSKJIAgizglk9UkUUZ8YqSSkgERSDFGyeTpRGkuCSCgE6jXV9fiE3qs0kEhSMTzPK1p4dYUqMUEQBKEmSCQpBYUKCBI2BEEQRKJCIimOEWNlYmmZIoGlTuR6b7GyisphfaW6EFu65jflPiEWEkkxRk3TY2pGDflMDXf84CltiSiGEjHNaofeWPiQSIoBamhE1BBHgiAIIjRqGCSqBVlF0qJFi3DxxRcjLS0Nubm5uOmmm3Dw4EG/e9rb2zFr1ixkZWUhNTUV06ZNQ3V1td89FRUVmDp1KpKTk5Gbm4u5c+fC4XDEMimqhISR8mH5jiR539QYR4SaOy+O4yQpQ2prh9QWXyI6ZBVJX331FWbNmoUtW7Zg3bp1sNvtmDRpElpaWrz3PPLII/jkk0+wcuVKfPXVVzh79ixuueUW7/dOpxNTp06FzWbD5s2b8dZbb2HZsmVYsGCBHEkigkCNC0HID9VD5UDvQvno5Hz4mjVr/P5etmwZcnNzUVZWhiuuuAKNjY144403sHz5ckycOBEAsHTpUgwbNgxbtmzBhAkT8Pnnn2P//v1Yv3498vLyMHr0aDz99NN47LHH8OSTT8JgMHR7rtVqhdVq9f5tsVikTShjqGIRRHwjhcVJKEw1W7YIf+hkB2lQ1JqkxsZGAECPHj0AAGVlZbDb7SgpKfHeM3ToUBQVFaG0tBQAUFpaipEjRyIvL897z+TJk2GxWLBv3z7B5yxatAjp6eneT2FhoVRJihlKLNBKjBNBJAJSi59YiTiCkBvFiCSXy4WHH34Yl112GS644AIAQFVVFQwGAzIyMvzuzcvLQ1VVlfceX4Hk+d7znRDz5s1DY2Oj93Pq1CnGqSEIgiDkggZoBCtknW7zZdasWSgvL8c333wj+bOMRiOMRqPkz1ETidyoJHLaxUJ5pi4UZ6Wh8kOoBEVYkmbPno1Vq1Zh48aN6N27t/d6fn4+bDYbGhoa/O6vrq5Gfn6+956uu908f3vuIcInFo1poGcoriEnEppE6MalErtMa7JC2wWW7RW1fcpFVpHE8zxmz56NDz74AF988QX69evn9/3YsWOh1+uxYcMG77WDBw+ioqICxcXFAIDi4mLs3bsXNTU13nvWrVsHs9mM4cOHxyYhIYj1qDsRGneCIMKALDZhQSKFCISs022zZs3C8uXL8dFHHyEtLc27hig9PR0mkwnp6em4++67MWfOHPTo0QNmsxkPPvggiouLMWHCBADApEmTMHz4cMyYMQPPPfccqqqqMH/+fMyaNYum1GRGKnFIUz3SQN1EFFAny75eUj0nFICsIunVV18FAFx11VV+15cuXYo777wTAPDCCy9Ao9Fg2rRpsFqtmDx5Ml555RXvvVqtFqtWrcIDDzyA4uJipKSkYObMmVi4cGGskhE2NFohCCISlOa8kQYoRKIhq0gKRzQkJSVhyZIlWLJkScB7+vTpg9WrV7OMWsyRu/EJ9HzFe3xmCIlYN0p/T0qG8o4g4gtFLNwmIiPRG2LVi5mO+Cf2Wwwf1b9vgogBid4vSAWJJJmgAk0QiUOk9Z2VMIzndiZYHsVzuonYQiKJ8IPlqJ0aKoIgIoXaDUJJkEgiVEesG9GIhaNCG3nqfKRDrROCVCbYQ9PD8QWJpBhADREhFrWWHeoo4h/WU4KJWGbUWr8TCRJJBACqrEon8boPggVC9VrOuh4P5ZjaysSCRBIRM6hxUQaJOGInIOjwMtKyQHVYHbCo4/Su3ZBIIsKCOlaCUC9UfwkqA+IgkUQkPDRiIsRA5Ua5JOK7ScQ0xwISSYQgVOGIYFD5iI+ROb3HxCSStx4P5TwaSCSpEKWd50QQhDopKiqSOwoEoWhIJBF+JPaYQX0k+ihPaTAbbMTovWo01AUQRDCohsSAWFtplGIT6ppuslapA3pP8Y3S3q/S4kMQvpBIUghimolYWBGoASMIYahuEET8QyIphtDUCEHEJ4lSs4MJw2hFI7WPhBIhkUQQBBGnqNnaFU3M1ZxuQlmQSFIbVPkJQnVQp00Q6oREEkEkCNRRE6wINTVGE2exh+q3NJBIihOUWEFodxsRDnFRLhS6niYOcpYgZIVEksIIp6mVslOhxZPKIi4EBEHIjFJrEdVv5UMiiSAIIs7xHfoooWP2jYMS4kN0h96LGxJJBEGIRmmWx+TUVLmjoFiU9q7UComHxIJEEgEgsSt+Iqc93sjLywMg33EbrMqS2gWNXquVOwoEwQQSSYRkkPggEoVoJQ1zUSSRyAq3TptMJkmeHy6J3vaoXWQrCRJJBEEAiKxhTfROSDXE4D35lgVzZqbocKhj7w7lifyQSJKJROxkEjHNhHqh0krEChJDyoVEEkHIhUJFI4lZglAfVG+lgURSDFBD4fXEkUY0hKpRQV2TG6W1R0qLT7hQW5kYkEhSCgptKKJpwNTa+BFExETQYTLpXBVQt0gkEIkAiaQYwqpRIfFBEIkB1XWCkBcSSYTqiHXHES8jZupwiaAotJyLiRWVdYIVJJII1REvooUg1Ea8io9Ea1Pi9T1KAYkkgiAIiYm0U2LdaatRBFA3TigBEklKQ6bGTIqRBY1WoicRdh3GQzmJ37dDEIkNiSSCSDDiWXDJjRoEH4s4KqEMKSEO0cKyvKih7KkRWUXSpk2bcMMNN6CgoAAcx+HDDz/0+57neSxYsAA9e/aEyWRCSUkJDh8+7HdPfX09pk+fDrPZjIyMDNx9991obm6OYSpC41t4Y1mxWT5JbQ2S2uIrlsRIJcECoToRTj2Rui517dyps1cG9B7cyCqSWlpacOGFF2LJkiWC3z/33HN46aWX8Nprr2Hr1q1ISUnB5MmT0d7e7r1n+vTp2LdvH9atW4dVq1Zh06ZNuO+++2KVhLhDDeKCdeWlxoAg5EfSlofqOCESnZwPnzJlCqZMmSL4Hc/zePHFFzF//nzceOONAIB//etfyMvLw4cffojbbrsNBw4cwJo1a/Ddd99h3LhxAICXX34Z1113HZ5//nkUFBTELC0EQRBKg6QBe2hQlVgodk3S8ePHUVVVhZKSEu+19PR0jB8/HqWlpQCA0tJSZGRkeAUSAJSUlECj0WDr1q0Bw7ZarbBYLH4fNaGkRdZyWJ7UYO0iIidW71WS56i0TFKHTxDBUaxIqqqqAgDk5eX5Xc/Ly/N+V1VVhdzcXL/vdTodevTo4b1HiEWLFiE9Pd37KSwsZBx79cOi8ZR72zMhDuo4CYLwkuDtsmJFkpTMmzcPjY2N3s+pU6fkjlJCQJ1vF1ScHwnxLkOkMSHyoAuh0pyIeaJEaMDJDsWKpPz8fABAdXW13/Xq6mrvd/n5+aipqfH73uFwoL6+3nuPEEajEWaz2e+jRnieT8jKIFVDnIh5ScQ3JFkIIjoUK5L69euH/Px8bNiwwXvNYrFg69atKC4uBgAUFxejoaEBZWVl3nu++OILuFwujB8/PuZxjgaljsCUGi+CiGekFOxUpwkifGTd3dbc3IwjR454/z5+/Dh27dqFHj16oKioCA8//DD+8Ic/YNCgQejXrx8ef/xxFBQU4KabbgIADBs2DNdeey3uvfdevPbaa7Db7Zg9ezZuu+022tlGEAShAki0sYHyURpkFUnbt2/H1Vdf7f17zpw5AICZM2di2bJlePTRR9HS0oL77rsPDQ0NuPzyy7FmzRokJSV5f/POO+9g9uzZuOaaa6DRaDBt2jS89NJLMU+L2pHi+AuqtESsoRJHCEJtESESWUXSVVddFbRT5jgOCxcuxMKFCwPe06NHDyxfvlyK6LGHTOgEEdfErB7SztGgUHtIsEKxa5KI+IMaLoIgAGoLCPVAIikGUINAEIkNtQEEoU5IJKkQVg2uXA13opn+o4E6V0JJSFkeaUcfoURIJMmE0iqtko46IQgiNrAQJlTPxaPkvFNy3GIJiSQi4Yl1Y6BUOxpZ+OIber8EETkkkgiCIAjZIIsFG0LlI4lkcZBIImIGNYbqIJL3pOaGl8pj/ELvNjiUP+FDIikeoQpAEKqGlfhk2Rl2DUvNAjkaSGAkFiSSYgDThopZSAEgj9sEQRAEAYBEEtEBCRoiEhKhvESUxgS1qnRF8aWC3hMRISSSEpGOhiIROjqCIPyJpt5Tm0EkGiSSFEIkjQ81VLElUddeEJGjtLqptPgEq0ty1rN4q+OxSE185VhgSCQRRIKgtA6TiB2BRIDYMsFSVFC5JJQMiSSCUDNxNgImCIJQEiSSYghrk67aRnM0YuwC5UfcEElNjKTexrLOxJPcTsS2JhHTHAtIJBEEQRAEQQhAIikGsPRgLPVYId4WMMYLLN8LveHYI9son6wLBBEVJJKIsCDxJA+JYEKnM6e6I2WKffM7EfNWSSRC/VY7JJKIhIcaKoJQgSNIIqZQu+iGRFICI3UloEqmTui9xZ5YWHRYPIHKBpFokEhSIVI0VNT4EUQcooJ6HbLtoSlBQkZIJBF+SDmiJSFGa0AIghXB6pKcbQ3V8fiCRBJBEAQj1DwQkLtr7yYuVJyXciBV2Ut00UciKQ5Rc0NNEGoksbsReYl1aydF+5roQkTJkEiKASwqVawrEYs4k1iLXxLi3cZBGtWfAoKQFxJJCkGpnY5S40UQRPj4DrKoThNE+JBIiiG0KJqQEyojhFKgskioBRJJCYxQQxWpkKO5dEJqqIwpBxI3RKJBIikBkaLTCafxZNXAUkNNKA7GdYqEYXRQG0GwgkQSIRnUUBEEEa8oWcgqOW5qg0SSCiHxIR3UuBDxBLUUBBEdJJIIAOoSXiRkpIHyVT0oorZSeVEUamrD1QSJpBhAhVfZMH8/DMNLiLIT4zTKIQaV9B5946LT6QSvJxpyDRCUnOd0pp4bEkmEH2RNIJTccCsVtdYarVbr/bfcbz0WbY9a3xMhHySSiKiI5JBJ2t3mT7ykg+hE7DsNVI9YlpFAzzAmJTF7BkHEG3EjkpYsWYK+ffsiKSkJ48ePx7Zt2+SOkuKhTpogiEhQa5uhzlgTSiAuRNJ7772HOXPm4IknnsCOHTtw4YUXYvLkyaipqZE7agRBKAyPRUWtHX68IcV76BYmvWtCJLrQtyifxYsX495778Vdd90FAHjttdfw6aef4s0338Rvf/tbmWPXicPpDHmP0+lEe3t7t+tCpnKe5+FyuQKG5QoQllMgHp5GxRkgvEBhORyOgM8PGC+XC+1WK6DX+1232WwwRhwaYLXbwXeJm9VqFRES0G61gmMUFni+W56JXXdht9kE8x9B3n/AsOx2wbCClaVAOAKUC1cYZV3o+azKGAC022wAo/BsdjtcXcKy2Wydf0TwXtutVmhClDGhOiqE0+mEU6i96PK3y+kMWfZ4QLjtCXB/sHx0CZR9IHj55wOUPz5AuXA5neFbiHxEktVm69ZeiCkTPM8LtmN2u11UxyoUlti2x2a1diuvdrtdXFh2O7RCbU+CoHqRZLPZUFZWhnnz5nmvaTQalJSUoLS0VPA3VqvVr/BZLBbJ4wkAVZWVIe+prqpC+ZYt3a4X+TbIHdhsNrTW1QV8iS3NzdgjEJbBakVygN9YGhsFr9fV1aFSICwAyAgQViBaW1uxo6wMNmN3STQqjN8nJ3fGnud5HDl8GOcE3uHwCOMFADt37BCMV76IsOx2O7YJ5FkvEWEdPnwYtoqKbtf7iRAjFSdP4khVVbfrwcpFIKoqK1FRXy8YVnqEYbU0N+NIgDKWHWFYLpcL5Xv3ouX4ccHvDRGGd/z4cVQK1MEUn+dBE55hftfOnYJlLMXn3+fCtIJbGhuxP1gZ6xAHdXV1AAB9tzs7aW1uxt4I2ouzZ88GDKvJYsFhgbCyW1sD/qalpUXwenNTk2CbaLBakRMwNH98xdT333+P89XV3e7pF2ZYHtrb2wO2Y0MjDMvpdAYMK9KyDwB79uwRDKtIRFgH9u8XDOtiEWGpEdWLpNraWjidTuTl5fldz8vLw/fffy/4m0WLFuGpp56KRfQAAP3790ezVgtNRyOalpYGk8nkd09BQQEAgNNovPf54qnkqWYzMvLzkZ2dDY7joNFooOM4FBV1Fv/MzMygYWk0Guj1euQWFnqvDRgwAO2eOHIcMtPdXVyfPn1Qp9dDEyAsANDqdH67ZDwMGTLE+7u05GTkDBiAsrIyb7wFwwvDLH7FFVegeteuzp9EERYAmEwm9O3bN2i8OIQ/LaD3GQ0Ge5dJutDVb/Dgwd44BQsrnLgNHDgQ6HjHgcqFwWBAz549Q4bVr18/tOh0QcPShJlf2dnubsCT/0JoO54VClOHgOY8cQgSXnp6cBmX4lNHg8UNcJdBY1IScnKEu22DwYD+/fsHLWOea95ncVzAOJrN5m6/84tPx/9zcnJgO3rUe4/JZEJWVpZ/Oj2DjiDxSupIm75LXeE0Gr84ZmRkePNDMF4dZSKrRw/vtT59+qDW5/162q8eHfEM1o5ptVpoBepRYWEhavR6uACkp6bC4GspCvAuwylfANCrVy9kZmZG3Y4B7rTm5+cHb3tClD1fhg0bBm7DhpDtRTgMGTIkeBo7SAozbmpF9SJJDPPmzcOcOXO8f1ssFhT6CAbW9OvXDxg5EvA0TnV13SrRwP79AYMBw4cOdd/bFasVOH0ayQYDYDBg5syZwPffA0aj+7tenfaJrI5GpnevXuh9xRXdw2pqcsfBp0EfNGhQ9zgCyM/PR/6IEe7raWnCCTx6FBAYVV522WXAqFGdcTSbcc8997jvDxTevn1AkNEmAGRlZeH+++8HysuBkycD59nx40BDQ9CwAHcjNG3aNGD79sDx2rYNOHkyZFgAYDaZgIYGJBuNuEIo/wGgoiKshrS4uNidh4Hi1dQEhGGhBICRI0d2vuNAYdXVBX7PPvTr1w+44ILQYXWUo2BkpKUBWi0GDxqEwRcHGJ/u3et+nyFINrhtRElJSRg7ZgwQSPB54hcEnY9oCRi3ykqgsRE9LrgA0OncZV0AjuNw8803u8tRoDyrrARaW5E7YAAwaJD7WoA49s532zZzs7ORG6SMZaSlIcNTfz3hdZnS8QiWrIwM4fLqySuDAehaV7rEMacjrIL8fBQIhbV3L1BRAUNKp90sPz8f+Z6y5BNelmegVlSEPoHitWcPcOBAt69ycnKQM2JEZ9vTUXd1Wi0uHDkSGDBAOLwzZ7pf70JycjJ+/vOfA4cPB36Xp04BAhbWrmi1WkyfPt3dlgUKqyPPwuG6664Dvv46cFgd/Ug4XH311cDnnwcOq7QUaG+P+7V9qhdJ2dnZ0Gq1qO5iPq2urkZ+vvAkidFohDFAY0YQBEEQBAHEwe42g8GAsWPHYsOGDd5rLpcLGzZscI/CCYIgCIIgRKB6SxIAzJkzBzNnzsS4ceNwySWX4MUXX0RLS4t3txtBEARBEESkxIVI+ulPf4pz585hwYIFqKqqwujRo7FmzZpui7kJgiAIgiDCJS5EEgDMnj0bs2fPljsaBEEQBEHECapfk0QQBEEQBCEFJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAIgiAIAUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAceNxOxp4ngcAWCwWScLnmppgtNmAhgb3BZsN1qYm8Ckp3nt0ra0w8TwcLS1w1dV1D8NqhR5Am9UKh8XSGabVCnCcX3g6qxUmAI62NuGwWlu7xSFQHAF4r/M2W8D06VwutLW0wOmTh0JxDBUe53S602m3wxHkfXBNTTA4HDAAgfPM4XCHZbMFDatr+gXj1dYGPc+jra0tZFg6p9Od/y6XcLza291htbdHHy+bDfqOf7e1tobMs6BhCZSLqMLyvMuOMhsIXVtb0LIPAFxLizvPQqRRZ7PBBHeddlgs4A0G4fDCSKunHgFBypjFAq3TCWdLC2AyBQ0vZJ51hOWy28EHaSt80+mw2YKXMasVulBtjycsuz2s9iJYe+YNq71dOCyB9xgoPG047ZjDAR3Ph2x7HJ5yAcDZ1CQcXkddClVeu8ZZ8F2ybHvCLPthhdWlH4kqLJ53h+V0hgxLSjz9tqcfZw3HSxWyijh9+jQKCwvljgZBEARBECI4deoUevfuzTxcEkkAXC4Xzp49i7S0NHAcxyxci8WCwsJCnDp1CmazmVm4aoPywQ3lgxvKBzeUD5QHHigf3IjJB57n0dTUhIKCAmg07FcQ0XQbAI1GI4kC9WA2mxO64HugfHBD+eCG8sEN5QPlgQfKBzeR5kN6erpkcaGF2wRBEARBEAKQSCIIgiAIghCARJKEGI1GPPHEEzAajXJHRVYoH9xQPrihfHBD+UB54IHywY0S84EWbhMEQRAEQQhAliSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIkpAlS5agb9++SEpKwvjx47Ft2za5oxQWixYtwsUXX4y0tDTk5ubipptuwsGDB/3uaW9vx6xZs5CVlYXU1FRMmzYN1dXVfvdUVFRg6tSpSE5ORm5uLubOnQuHw+F3z5dffomLLroIRqMRAwcOxLJly7rFRyn5+Oyzz4LjODz88MPea4mSD2fOnMHPfvYzZGVlwWQyYeTIkdi+fbv3e57nsWDBAvTs2RMmkwklJSU4fPiwXxj19fWYPn06zGYzMjIycPfdd6O5udnvnj179uAHP/gBkpKSUFhYiOeee65bXFauXImhQ4ciKSkJI0eOxOrVq6VJdBecTicef/xx9OvXDyaTCQMGDMDTTz/td2ZUPObDpk2bcMMNN6CgoAAcx+HDDz/0+15JaQ4nLlLkg91ux2OPPYaRI0ciJSUFBQUFuOOOO3D27Nm4yodQZcGX+++/HxzH4cUXX/S7rro84AlJWLFiBW8wGPg333yT37dvH3/vvffyGRkZfHV1tdxRC8nkyZP5pUuX8uXl5fyuXbv46667ji8qKuKbm5u999x///18YWEhv2HDBn779u38hAkT+EsvvdT7vcPh4C+44AK+pKSE37lzJ7969Wo+OzubnzdvnveeY8eO8cnJyfycOXP4/fv38y+//DKv1Wr5NWvWeO9RSj5u27aN79u3Lz9q1Cj+V7/6lfd6IuRDfX0936dPH/7OO+/kt27dyh87doxfu3Ytf+TIEe89zz77LJ+ens5/+OGH/O7du/kf/ehHfL9+/fi2tjbvPddeey1/4YUX8lu2bOG//vprfuDAgfztt9/u/b6xsZHPy8vjp0+fzpeXl/PvvvsubzKZ+L///e/ee7799lteq9Xyzz33HL9//35+/vz5vF6v5/fu3St5Pvzxj3/ks7Ky+FWrVvHHjx/nV65cyaempvJ//etf4zofVq9ezf/+97/n33//fR4A/8EHH/h9r6Q0hxMXKfKhoaGBLykp4d977z3++++/50tLS/lLLrmEHzt2rF8Yas+HUGXBw/vvv89feOGFfEFBAf/CCy+oOg9IJEnEJZdcws+aNcv7t9Pp5AsKCvhFixbJGCtx1NTU8AD4r776iud5d4Og1+v5lStXeu85cOAAD4AvLS3led5dmTQaDV9VVeW959VXX+XNZjNvtVp5nuf5Rx99lB8xYoTfs37605/ykydP9v6thHxsamriBw0axK9bt46/8sorvSIpUfLhscce4y+//PKA37tcLj4/P5//85//7L3W0NDAG41G/t133+V5nuf379/PA+C/++477z2fffYZz3Ecf+bMGZ7nef6VV17hMzMzvfniefaQIUO8f//kJz/hp06d6vf88ePH87/4xS+iS2QYTJ06lf/5z3/ud+2WW27hp0+fzvN8YuRD145RSWkOJy6sCCYQPGzbto0HwJ88eZLn+fjLh0B5cPr0ab5Xr158eXk536dPHz+RpMY8oOk2CbDZbCgrK0NJSYn3mkajQUlJCUpLS2WMmTgaGxsBAD169AAAlJWVwW63+6Vv6NChKCoq8qavtLQUI0eORF5enveeyZMnw2KxYN++fd57fMPw3OMJQyn5OGvWLEydOrVbXBMlHz7++GOMGzcOt956K3JzczFmzBi8/vrr3u+PHz+Oqqoqv/ilp6dj/PjxfvmQkZGBcePGee8pKSmBRqPB1q1bvfdcccUVMBgM3nsmT56MgwcP4vz58957guWVlFx66aXYsGEDDh06BADYvXs3vvnmG0yZMgVA4uSDL0pKczhxiSWNjY3gOA4ZGRkAEiMfXC4XZsyYgblz52LEiBHdvldjHpBIkoDa2lo4nU6/jhEA8vLyUFVVJVOsxOFyufDwww/jsssuwwUXXAAAqKqqgsFg8FZ+D77pq6qqEky/57tg91gsFrS1tSkiH1esWIEdO3Zg0aJF3b5LlHw4duwYXn31VQwaNAhr167FAw88gIceeghvvfWWXzqCxa+qqgq5ubl+3+t0OvTo0YNJXsUiH37729/itttuw9ChQ6HX6zFmzBg8/PDDmD59ul8c4z0ffFFSmsOJS6xob2/HY489httvv917UGsi5MOf/vQn6HQ6PPTQQ4LfqzEPdBHdTSQcs2bNQnl5Ob755hu5oxJzTp06hV/96ldYt24dkpKS5I6ObLhcLowbNw7PPPMMAGDMmDEoLy/Ha6+9hpkzZ8ocu9jxn//8B++88w6WL1+OESNGYNeuXXj44YdRUFCQUPlABMdut+MnP/kJeJ7Hq6++Knd0YkZZWRn++te/YseOHeA4Tu7oMIMsSRKQnZ0NrVbbbZdTdXU18vPzZYpV5MyePRurVq3Cxo0b0bt3b+/1/Px82Gw2NDQ0+N3vm778/HzB9Hu+C3aP2WyGyWSSPR/LyspQU1ODiy66CDqdDjqdDl999RVeeukl6HQ65OXlJUQ+9OzZE8OHD/e7NmzYMFRUVADoTEew+OXn56Ompsbve4fDgfr6eiZ5FYt8mDt3rteaNHLkSMyYMQOPPPKI18qYKPngi5LSHE5cpMYjkE6ePIl169Z5rUie+MVzPnz99deoqalBUVGRt708efIkfv3rX6Nv377euKktD0gkSYDBYMDYsWOxYcMG7zWXy4UNGzaguLhYxpiFB8/zmD17Nj744AN88cUX6Nevn9/3Y8eOhV6v90vfwYMHUVFR4U1fcXEx9u7d61chPI2Gp8MtLi72C8NzjycMufPxmmuuwd69e7Fr1y7vZ9y4cZg+fbr334mQD5dddlk3FxCHDh1Cnz59AAD9+vVDfn6+X/wsFgu2bt3qlw8NDQ0oKyvz3vPFF1/A5XJh/Pjx3ns2bdoEu93uvWfdunUYMmQIMjMzvfcEyyspaW1thUbj32RqtVq4XC4AiZMPvigpzeHERUo8Aunw4cNYv349srKy/L6P93yYMWMG9uzZ49deFhQUYO7cuVi7dq037qrLg4iWeRNhs2LFCt5oNPLLli3j9+/fz9933318RkaG3y4npfLAAw/w6enp/JdffslXVlZ6P62trd577r//fr6oqIj/4osv+O3bt/PFxcV8cXGx93vP1vdJkybxu3bt4tesWcPn5OQIbn2fO3cuf+DAAX7JkiWCW9+VlI++u9t4PjHyYdu2bbxOp+P/+Mc/8ocPH+bfeecdPjk5mX/77be99zz77LN8RkYG/9FHH/F79uzhb7zxRsFt4GPGjOG3bt3Kf/PNN/ygQYP8tv42NDTweXl5/IwZM/jy8nJ+xYoVfHJycretvzqdjn/++ef5AwcO8E888UTMXADMnDmT79Wrl9cFwPvvv89nZ2fzjz76aFznQ1NTE79z505+586dPAB+8eLF/M6dO727tpSU5nDiIkU+2Gw2/kc/+hHfu3dvfteuXX7tpu8uLbXnQ6iy0JWuu9vUmAckkiTk5Zdf5ouKiniDwcBfcskl/JYtW+SOUlgAEPwsXbrUe09bWxv/y1/+ks/MzOSTk5P5m2++ma+srPQL58SJE/yUKVN4k8nEZ2dn87/+9a95u93ud8/GjRv50aNH8waDge/fv7/fMzwoKR+7iqREyYdPPvmEv+CCC3ij0cgPHTqU/8c//uH3vcvl4h9//HE+Ly+PNxqN/DXXXMMfPHjQ7566ujr+9ttv51NTU3mz2czfddddfFNTk989u3fv5i+//HLeaDTyvXr14p999tlucfnPf/7DDx48mDcYDPyIESP4Tz/9lH2CBbBYLPyvfvUrvqioiE9KSuL79+/P//73v/frBOMxHzZu3CjYHsycOVNxaQ4nLlLkw/HjxwO2mxs3boybfAhVFroiJJLUlgccz/u4iyUIgiAIgiAA0JokgiAIgiAIQUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAUx5133ombbrpJtufPmDEDzzzzTFj33nbbbfjLX/4icYwIgpAD8rhNEERM4Tgu6PdPPPEEHnnkEfA8j4yMjNhEyofdu3dj4sSJOHnyJFJTU0PeX15ejiuuuALHjx9Henp6DGJIEESsIJFEEERMqaqq8v77vffew4IFC3Dw4EHvtdTU1LDEiVTcc8890Ol0eO2118L+zcUXX4w777wTs2bNkjBmBEHEGppuIwgipuTn53s/6enp4DjO71pqamq36barrroKDz74IB5++GFkZmYiLy8Pr7/+OlpaWnDXXXchLS0NAwcOxGeffeb3rPLyckyZMgWpqanIy8vDjBkzUFtbGzBuTqcT//3vf3HDDTf4XX/llVcwaNAgJCUlIS8vDz/+8Y/9vr/hhhuwYsWK6DOHIAhFQSKJIAhV8NZbbyE7Oxvbtm3Dgw8+iAceeAC33norLr30UuzYsQOTJk3CjBkz0NraCgBoaGjAxIkTMWbMGGzfvh1r1qxBdXU1fvKTnwR8xp49e9DY2Ihx48Z5r23fvh0PPfQQFi5ciIMHD2LNmjW44oor/H53ySWXYNu2bbBardIkniAIWSCRRBCEKrjwwgsxf/58DBo0CPPmzUNSUhKys7Nx7733YtCgQViwYAHq6uqwZ88eAMDf/vY3jBkzBs888wyGDh2KMWPG4M0338TGjRtx6NAhwWecPHkSWq0Wubm53msVFRVISUnB9ddfjz59+mDMmDF46KGH/H5XUFAAm83mN5VIEIT6IZFEEIQqGDVqlPffWq0WWVlZGDlypPdaXl4eAKCmpgaAewH2xo0bvWucUlNTMXToUADA0aNHBZ/R1tYGo9Hot7j8hz/8Ifr06YP+/ftjxowZeOedd7zWKg8mkwkAul0nCELdkEgiCEIV6PV6v785jvO75hE2LpcLANDc3IwbbrgBu3bt8vscPny423SZh+zsbLS2tsJms3mvpaWlYceOHXj33XfRs2dPLFiwABdeeCEaGhq899TX1wMAcnJymKSVIAhlQCKJIIi45KKLLsK+ffvQt29fDBw40O+TkpIi+JvRo0cDAPbv3+93XafToaSkBM899xz27NmDEydO4IsvvvB+X15ejt69eyM7O1uy9BAEEXtIJBEEEZfMmjUL9fX1uP322/Hdd9/h6NGjWLt2Le666y44nU7B3+Tk5OCiiy7CN9984722atUqvPTSS9i1axdOnjyJf/3rX3C5XBgyZIj3nq+//hqTJk2SPE0EQcQWEkkEQcQlBQUF+Pbbb+F0OjFp0iSMHDkSDz/8MDIyMqDRBG767rnnHrzzzjvevzMyMvD+++9j4sSJGDZsGF577TW8++67GDFiBACgvb0dH374Ie69917J00QQRGwhZ5IEQRA+tLW1YciQIXjvvfdQXFwc8v5XX30VH3zwAT7//PMYxI4giFhCliSCIAgfTCYT/vWvfwV1OumLXq/Hyy+/LHGsCIKQA7IkEQRBEARBCECWJIIgCIIgCAFIJBEEQRAEQQhAIokgCIIgCEIAEkkEQRAEQRACkEgiCIIgCIIQgEQSQRAEQRCEACSSCIIgCIIgBCCRRBAEQRAEIQCJJIIgCIIgCAH+Hxv0Fo15d/gbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_10 = ev_tot.to_lc(dt=10)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts, color=\"grey\")\n", + "lc_10.apply_gtis(inplace=True)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts)\n", + "\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Counts\")\n", + "\n", + "for g0, g1 in zip(lc_10.gti[:-1], lc_10.gti[1:]):\n", + " plt.axvspan(g0[1] - lc_10.time[0], g1[0] - lc_10.time[0], color=\"r\", alpha=0.5, zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "id": "f28ccbbf", + "metadata": {}, + "source": [ + "When we study the variability of this light curve, we usually use periodograms. It is well known that these gaps are like square windows, whose Fourier transform has infinite harmonics, and that gets convolved with the actual variability of the data. If we were to ignore the good time intervals and just get a `Periodogram` of the dataset, we would get something like this (the black vertical line indicates the orbital period of the satellite and some of its harmonics):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8cd9cfbc", + "metadata": {}, + "outputs": [], + "source": [ + "ev_tot_dirty = copy.deepcopy(ev_tot)\n", + "ev_tot_dirty.gti = np.asarray([[ev_tot.gti[0, 0], ev_tot.gti[-1, 1]]])\n", + "pds_dirty = Powerspectrum.from_events(ev_tot_dirty, dt=0.01, norm=\"leahy\")\n", + "pds_dirty_reb = pds_dirty.rebin_log(0.01)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "904a460c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACChklEQVR4nO3dd3hUVfoH8O/09IQQCBASegsloYuABA0iIFJEsaxSFNc1qGys4K6oi+CKBUsUywK6P3VRV8C1A9Kkt9B7DYEUStokmXp/fwxzk8nczEwyN5lM5vt5Hp5nznnPnHvuFZPDveeeVyEIggAiIiKiAKb09QCIiIiIfI0TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOCpfT0AX7Narbh48SLCw8OhUCh8PRwiIiLygCAIKC4uRqtWraBUen9/J+AnRBcvXkR8fLyvh0FERES1kJWVhdatW3vdT8BPiMLDwwHYLmhERISPR0NERESeKCoqQnx8vPh73FsBOyHKyMhARkYGLBYLACAiIoITIj9kNBrxzjvvAACefPJJaLXaeuvPXVtXcalY1ToALsvenisRUWMg13IXRaAndy0qKkJkZCQKCws5IfJDer0eYWFhAICSkhKEhobWW3/u2rqKS8Wq1gFwWfb2XImI/Jncv78D9g4RNQ5qtRpTpkwRP9dnf+7auopLxaTq3JWJiEgevEPEO0RERER+R+7f39yHiIiIiAIeJ0REREQU8DghIr+m1+sRFRWFqKgo6PX6eu3PXVtXcalY1Tp3ZSIikg9XZpLfKyws9Fl/7tq6ikvFqta5KxMRkTw4ISK/FhwcjOPHj4uf67M/d21dxaViUnXuykREJA++Zca3zIiIiPwO3zIjIiIiklmjeGR25swZTJ8+Hbm5uVCpVNi2bRt38Q0QJpMJH3/8MQDgkUcegUajqbf+3LV1FZeKVa0D4LLs7bkSEVGFRvHIbNiwYZg3bx6GDh2Kq1evIiIiwuOdfPnIzL8xdQcRUWBi6o4qDh06BI1Gg6FDhwIAoqOjfTwiqk/XyszoODAVRrMVb605ib/d0curRH8qlQqTJk0SP3vT1lVcKiZV565MRETy8Pkdoo0bN2LhwoXYvXs3Ll26hBUrVmD8+PEObTIyMrBw4ULk5OQgKSkJ7733HgYMGAAAWLlyJZYtWwaLxYLs7GxMmjQJc+bM8fj4vEPk377cfh5zVhwQy5ueHY746BAfjoiIiOpDo1tUrdfrkZSUhIyMDMn48uXLkZ6ejrlz52LPnj1ISkrCyJEjkZeXBwAwm83YtGkTPvjgA2zduhWrV6/G6tWr6/MUyIfMVqtD2WSxVtOSiIioej6fEI0aNQrz5s3DhAkTJONvvfUWZsyYgWnTpiExMRGLFy9GSEgIlixZAgCIi4tDv379EB8fD51Oh9GjRyMzM7Pa4xkMBhQVFTn8ISIiosDm8wmRK0ajEbt370ZqaqpYp1QqkZqaiq1btwIA+vfvj7y8PFy7dg1WqxUbN25Et27dqu1zwYIFiIyMFP/Ex8fX+XlQ3TGUl+FCxoO4kPEgrKZyr/srLS1FXFwc4uLiUFpa6lVbV3GpWNU6d2UiIpJPg15UffnyZVgsFsTGxjrUx8bG4ujRowAAtVqN+fPn46abboIgCLj11ltx++23V9vn7NmzkZ6eLpaLioo4KfJnggBLydXrn+XoTsDFixfFz960dRWXiknVuSsTEZE8GvSEyFOjRo3CqFGjPGqr0+mg0+nqeERUXzRaHVpOfRcAoFB7vy9PUFAQ9u7dK372pq2ruFRMqs5dmYiI5NGgJ0QxMTFQqVTIzc11qM/NzUWLFi286jsjIwMZGRmwWCxe9UO+pVSpoI1tL1t/KpUKycnJsrR1FZeKSdW5KxMRkTwa9BoirVaLvn37Yu3atWKd1WrF2rVrMWjQIK/6TktLw+HDh7Fz505vh0lERER+zud3iEpKSnDy5EmxfObMGWRmZiI6OhoJCQlIT0/HlClT0K9fPwwYMACLFi2CXq/HtGnTfDhqaijMZhNKDqwBAIQmpnjdn8lkwhdffAEAuP/++92m7nDV1lVcKla1DoDLMlN3EBHJSPCxdevWCbAth3X4M2XKFLHNe++9JyQkJAharVYYMGCAsG3bNq+P+/777wvdunUTOnfuLAAQCgsLve6T6t/Haw+Jf2fi//qtcCqv2Kv+SkpKxP5KSkq8ausqLhWrWueuTEQUyAoLC2X9/e3zO0QpKSlu35iZOXMmZs6cKetx09LSkJaWJu50Sf5HEAScvVKG4Pb9AAAKpfdPgFUqFUaPHi1+9qatq7hUTKrOXZmIiOTh89QdvsbUHf7r7dXH8c7aEw51vz81DO2bhfloREREVF8aXeoOX8nIyEBiYiL69+/v66FQLZ3MK/H1EIiIqJEI2AkR3zJrPF4Z1x0RQT5/+ktERH4sYCdE1DhYTeV49u7hOPbedNlSd3Tq1AmdOnXyKHWHq7au4lKxqnXuykREJB/+s5r8mwDkXjgrfva6O0EQt4Fwt7zOXVtXcamYVJ27MhERySNgJ0TcqbpxUKg1eGHxN/hq+3mYZUrd8ccff4ifvWnrKi4Vk6pzVyYiInnwLTO+Zea30r7Ygx8PXMIr47rjjV+PoajczLfMiIgCBN8yIyIiIpJZwD4yo8ZBsFqw4/cfUXjoItBuoNf9mc1mrFixAgAwYcIEqNXV/y/irq2ruFSsah0Al2VXYyMiopoJ2EdmldcQHT9+nI/M/FDaF3vwv91nkPX2JABA/F+/xfrZI716ZKbX6xEWZvt+SUkJQkNDa93WVVwqVrUOgMuyq7ERETV2cj8yC9h/YjJ1RyOhUKBr74HIuloKKBRed6dUKjFs2DDxszdtXcWlYlJ17spERCSPgL1DZMdF1f6Li6qJiAIXF1UTERERyYwTIiIiIgp4nBCRX7OaDPj7lNE4sfgxWE0Gr/srKytDcnIykpOTUVZW5lVbV3GpWNU6d2UiIpJPwC6q5k7VjYQg4PyJI+Jnb1mtVuzbt0/87E1bV3GpmFSduzIREckjYCdEfMuscVCoNXhm0ef4ZtcFWGVK3fHbb7+Jn71p6youFZOqc1cmIiJ58C0zvmXmt/iWGRFR4OJbZkREREQyC9hHZtQ4CFYLMjf/jqLjFyC0Tva6P7PZjF9//RUAMHLkSLepO1y1dRWXilWtA+CyzNQdRETy4SMzPjLzW0zdwdQdRBS4mLqDqDKFAu269kJOUZlsqTv69esnfvamrau4VEyqzl2ZiIjkEbB3iJjc1f9xUTURUeDiomqZpKWl4fDhw9i5c6evh0JEREQ+FrATIiIiIiI7TojIr1lNBvzjz5Nwakm6bKk7Bg8ejMGDB3uUusNVW1dxqVjVOndlIiKSDxdVk38TBJw8sBsA0FSm1B1btmwRP3vT1lVcKiZV565MRETy4ISI/JpCrcETCz7CysxsQIbUHTqdDitWrBA/e9PWVVwqJlXnrkxERPII2LfM7LgPkf/iW2ZERIGLb5kRERERyYyPzMivCVYLjuzZhpKz5yE07+p1f/lFZVj635/RsVkYxo26BSqVqtq2FosFmzZtAgAMHTrUqa2ruFSsah0Al2VXYyMioprhhIj8mmA24bWZ9wKwpe7w1tRPN+Onp+4E4D49Rnl5OYYPH15tW1dxqVjVOgAuy0zdQUQkn4CdEFXeqZr8mAJo1a4TrpQYAO8zd+BoThE0TRNsXbtJBaJQKJCYmFhtW1dxqZhUnbsyERHJg4uquajab9XFoupOL/wEk8X2v8TZ18bINVQiIpIZF1UTERERyYwTIiIiIgp4nBCRX7OaDHj9yT/hzL9ny5K6w2oyIPc/f0Puf/7mUeqOESNGYMSIEdWm7qguLhWrWueuTERE8gnYRdXUSAgCDu3cDABoIsdyOEFA+blMAJ6l7lizZk21bV3FpWJSde7KREQkD06IyK8p1Br8ee7b+HH/JShkSN2hUGvQ9PanAHiWuuP//u//qm3rKi4Vk6pzVyYiInnwLTO+Zea3+JYZEVHg4ltmRERERDLjIzPySwcuFOLHA5cgWC04fXgfSrPPQWjS1ut+BasFhksnAQAWy21uU3fs2bMHANCnTx/J1B3VxaViVesAuCwzdQcRkXz4yIyPzPzSwPlrkFtkgNVYjqy3JwGwpe5YP3ukV4/MOjzzHU6/4VnqDr1ej7CwsGrbuopLxarWAXBZZuoOIgpkcv/+bhR3iNq2bYuIiAgolUo0adIE69at8/WQqI4VlJoAACN7tMCvCW2QU1gmS+oOKABVRHPbRw9Sd7Rp06batq7iUjGpOndlIiKSR6OYEAHAli1bxH89U+B4aWIffDL9LHq99CuKys1e96fUBKH1X5YAAEJCQly2DQkJwdmzZ2sVl4pJ1bkrExGRPLiomoiIiAKezydEGzduxNixY9GqVSsoFAqsXLnSqU1GRgbatm2LoKAgDBw4EDt27HCIKxQKDBs2DP3798cXX3xRTyMnIiKixsLnEyK9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxzR9//IHdu3fj+++/x/z587F///76Gj75WHl5OcaPH49z/3kZgtnodX9WsxF5381D3nfzUF5e7tGxx48fL9nWVVwqVrXOXZmIiOTj8zVEo0aNwqhRo6qNv/XWW5gxYwamTZsGAFi8eDF+/PFHLFmyBM8//zwAIC4uDgDQsmVLjB49Gnv27EGvXr0k+zMYDDAYKnJeFRUVyXUq5ANWiwWrVq0CAESOliGdhdWKshPbANhejXfFUunYUm1dxaViUnXuykREJA+fT4hcMRqN2L17N2bPni3WKZVKpKamYuvWrQBsd5isVivCw8NRUlKC33//HXfffXe1fS5YsAAvv/xynY+d6odGq8XHH3+Ml78/BIXK+7/OCpUa0SNnAgC0Wq3Lttrrx66urau4VEyqzl2ZiIjk0aAnRJcvX4bFYkFsbKxDfWxsLI4ePQoAyM3NxYQJEwDY/tU8Y8YM9O/fv9o+Z8+ejfT0dLFcVFSE+Pj4Ohg91QeNRoMZM2bgvWx53jJTqNQIT75N7NuTY9cmLhWTqnNXJiIieTToCZEn2rdvj3379nncXqfTMTEmEREROWjQE6KYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYGMjAyuxfBzVqsVhw4dQnneWQjhrbzuTxCsMOafF/tWKqt/78BqteLIkSMAgG7dujm1dRWXilWtA+Cy7GpsRERUMw16QqTVatG3b1+sXbsW48ePB2D7RbJ27VrMnDnTq77T0tKQlpYmbv1N/uGrHefx4qqDYkb68rIy9OjRA4AtdYe3BJMRl5akAQDK3p3iMj1GWaVjS6XScBWXilWtA+CyzNQdRETy8fmEqKSkBCdPnhTLZ86cQWZmJqKjo5GQkID09HRMmTIF/fr1w4ABA7Bo0SLo9XrxrTMKLOuO5omTobZNQxATpkNMTAyuXU/lIQdlsGc5caxWAWGR0RAEAXnF5WgnMUGJiYmp9vtSsap17spERCQPn0+Idu3aheHDh4tl+4LnKVOmYNmyZZg8eTLy8/Px4osvIicnB8nJyfjll1+cFlrXFB+Z+bc5o7ti+uB2UKuUyM/Ply91hzYI8U98CQBu78CcLjCj6aOfAwBWHriCv7Zo6hAPDQ1Ffn6+5HelYlJ17spERCQPn0+IUlJSIAiCyzYzZ870+hFZVXxk5t9CdWqoVb5dQ1NqrJhMl5k4sSYi8mdclUlEREQBL2AnRBkZGUhMTHS5ZxE1fOXl5bj//vtx/rt/ypa6I/9/C5H/v4Vu02MYDOViW5PR4BS3j+3++++XTN1RNVa1zl2ZiIjkoxDcPa9q5OyPzAoLCxER4dliWvKdRz7fhd8O5+LVCT1w/8A20Ov1CAsLA2B7y6xF00g8clN7PDy0fa367/DMdzj9xp0A3L/J9fuB87ilVxsAwNz/7sJLE/s6xCuPrWpfUrGqdQBclvmWGREFMrl/f/t8DRGRN7RaLd5++238648zKFKpkVdswPKdWbWeEClUajS5eYbYtysajVZsq1I772ptH5tUX1IxqTp3ZSIikgcnROTXNBoNZs2ahb/MtOC7PdmY/d0BeHPLU6FSI6L/OLFvV9QajdhWakJkH5urcburc1cmIiJ5cA0R1xA1Cjq1Cm2b8hESERHVTsDeIeJr942D1WrF+fP2VBveT4gEwQpzYZ7Yt7vUHebC3Ouf27ocW0JCglPqjqqxqnUAXJaZuoOISD4BOyGixqGsrAzt2rUDAKzdf67W/ew9fw2v/3IMxnIDshc/ZOv7jckuFy4bysvEtuYRu1yOTSp1R9VY1ToALstcVE1EJB9OiMjvhYSEeN3H17uysPX0FQCAQqPz+Hvu2roam1Ssap27MhERySNgJ0RM3dE42F9XB4Ctp67Uuh+L1bYUW6kNQkL6f8W+XQkOCRXbaoOcJyqhoaHYfzYX647mIa8MaBfqGLOP21WduzIREckjYBchpKWl4fDhw9i5c6evh0KN2PRlOzHvxyP487+dH6kREVHDEbATIiIpHZrZbuNoVApZ+jt3pRQAcDy3RJb+iIiobnBCRH7NYDBgxowZmDFjBowG5/QZNTWwTQSu/Pwu8n56FwY3/RkNBlz5+V1c+fldmE3OaUMMleKC2VTtuO3HqVrnrkxERPIJ2DVEDUlxuQn3fLwN56+W1ur7kcEaLP5TX/SIC7ztA8xmMz799FMAwL1P/N3r/qwWM0r2/yb2rdNVv2jaUqmt1TJfcmz2eJNbHql23IsWLYJOp3OqA+Cy7GpsRERUM5wQNQCHLhbh0MWiWn+/uNyMDcfzA3JCpNFoMG/ePACAWmK36JpSqTSIGvoAlMrqd6rOKy7H09/sx6ajFxE19AEAgFLl/L+SRqMR4wqVqtpx248jVeeuTERE8gjYCVFDfMssIToEn00fUKPvLPz1KH46kFNHI2r4tFotXnjhBQDevWVmp9JoEHnjZGhUimrzhW04lo+Nx/MBpa0tAKg1zm21Wq0YdzVuV3XuykREJI+AnRA1xJ2qNSoF2sXUbLO9cB3vFNQ3wZtkaURE1CAF7ISIGgdBEHD58uXrn71/M0wQBFhKC6FUKiAIAhSK6vsUBAHWsiLxc3V9AYAyOKLaccfExEChUDjVAXBZdjU2IiKqGU6IyK+VlpaiefPmALxL3WFnMpThwnv32/p+9Q6XmzMKJoPY1pTivM9QaWmpGI//67fVjtuehqNqHQCXZabuICKSD1+7JyIiooDHO0Tk10JDQ8XHVXIsqtYGhaDNcz9Ao1K4vQOj1AahzXM/iN+TGps9LhWr+phNqs5dmYiI5ME7RERERBTwAnZClJGRgcTERPTv39/XQyEiIiIfC9gJEZO7Ng4GgwGzZs3CrFmzZEndYTYZcXXNx8hf/bHb9BiC2YSraz7G1TUfV5u6wx6XSt1hH7f9OGVl5eh/+5+QdNt9yLtW4tRG6jtERCQPriEiv2Y2m/HOO+8AAO54KN3r/qwWM4p3fy/27So9hmC1iG2tlhcdYkazFTtP54nxqJserHbcr776KnQ6HY5cuoZdP34BANh07B+4rWcLhzYAnL5DRETy4ISI/JpGo8GcOXMAyJe6I2LQ3VAp3KfHUKhUiBh0NwDn1B3PfrsPK3afE+NSqTvs47YfR6FQi+0FlVKyTdUyERHJgxMi8mtarVa8eyJX6o4mNz3oMnWHnUJlaws4p+7Yff6aQ9zVuO00Wq3YXqPRSrapWiYiInkE7BoiIiIiIjveISK/JggCSktLxc9y9Gc1lsOq8ix1h2AyVHvsynGFRucUs487JCRETN1hNZZXfLdKGwBO3yEiInlwQkR+rbS0FGFhYQDkS92R9fYkW98vuU6PIZgMYlvTEOfUHZXjUqk77OO2p+EoKysV2xvuOu7UBoDTd4iISB58ZEZEREQBj3eIyK+FhISId0/2XSoDAJzMK0HW1VLERzun03BHowtG/F+/hUalEB9TVUeh0Yl3fjS6YJfxqo/MKo/bfpzg4BCxvS4oWLJN1TIREckjYO8QcafqxkGhsOUcCw0NhUpZsabmljc34JreebNET/pTaoOg1AZVu0Znf3aBR21dxSuP2x6r2r5qG6nvEBGRPAJ2QsSdqhufpPgojOweCwAwWqzIL5F/N2eD2YL/23Ze9n6JiMi3AnZCRI2D0WjECy+8gBdeeAFKwYKPHuiHpqGu9w9yxWIy4drGz3Fl/WcwGp3vMBnNVvGzYLG1vbbxc8nUHZXjgsUxdUflcduPYzIaxfYmk9GpjdR3iIhIHlxDRH7NZDJh/vz5AGy7OLvbTNEdi8WEoq1fX+97icv+BItFbGu1POsyHnnD3W7HbTJXHNtinufUBoCs50pERBU4ISK/plar8eSTT4qfa+pKiQE/HriEr3ddAGBLwRHe9w4olQq3/SmUKoT3vUP8nqu4QumYukNq3OrrxwYAlUol2cabcyUiourxpyr5NZ1Oh0WLFtX6+++sPYHPt1bsX6TWaBGd+gg0KoXb5KkKtQbRqY+I33MV92TcWp1ObK/R6iTbeHOuRERUPa4hooBWUGpy34iIiBo9ToiIamlccitfD4GIiGTCR2bk1/R6vazpLIzlpTj3z9ttfc9x3d/cUR3w7r19bN8b4Jy6w2osrzZ1h9S4S0v14rHLxx13agMwdQcRUV3hHSIiIiIKeLxDRA3S+mN5mPnlXuiNZrRrGorvHx+CMJ3zX9eQkBDk5eWJn72l0QWj9eNfQKN0n7ojJCQEc778A59vPVdt6o7Wj38hfnY37uDgELG9PXVH1TZynisREVXghIgapD9OXEaJwQwAOH1Zj+O5xeiT0MSpnUKhQLNmzWQ7rkKhgCokEiqVwm16DIVCgdDIaKhCCqpN3aEKiaz2u1XHXbm9PVVH1TZynisREVVoNI/MSktL0aZNGzz99NO+HgpRtfKKyzHm3U0Yl7EZxeV8w42IqKFoNHeIXn31Vdxwww2+HgbVM6PRiIULFwIAnnnmGe93qjaZULhlOZRKwGhMddmf0WjEuv8sRuHZazAPesopLlhMKNr+HQAgYuBEAMDOM9dw6GIRBIsJ6XPmom3TUHHcJqMRhVuWAwBMdyY6nRsAWc+ViIgqNIoJ0YkTJ3D06FGMHTsWBw8e9PVwqB6ZTCb87W9/AwDMmjVLltQdBZv+fb3vD132ZzKZsObf7wIArLOedIoLFovYV3i/cU6xT99e4DBuk7ni2Bbz353ODYCs50pERBV8PiHauHEjFi5ciN27d+PSpUtYsWIFxo8f79AmIyMDCxcuRE5ODpKSkvDee+9hwIABYvzpp5/GwoULsWXLlnoePfmaWq3Gww8/LH72llKlRlivWz1K3aFWq9Fv5CQcvVRUbeqOsF63ip+rxm6/609oERnkkLrD3t6euqPquf1pyjQUlJogKBrN024iogbB5xMivV6PpKQkTJ8+HRMnTnSKL1++HOnp6Vi8eDEGDhyIRYsWYeTIkTh27BiaN2+OVatWoXPnzujcubNHEyKDwQCDwSCWi4qKZD0fql86nQ6ffPKJbP2pNVo0HfWER6k7dDodJjzxCj7eeLra1B1NRz0h+V2FWoNnX30LQztVLJLW6nRie3vqjqrnlt3zQZzO1+O9DWcxe1S3mp4eERFVw+cTolGjRmHUqFHVxt966y3MmDED06ZNAwAsXrwYP/74I5YsWYLnn38e27Ztw3/+8x988803KCkpgclkQkREBF588UXJ/hYsWICXX365Ts6FqCae/+8BDO7YFC/d0R0hWs/+VzydrwcA7DhztS6HRkQUcBr0fXej0Yjdu3cjNTVVrFMqlUhNTcXWrVsB2CY4WVlZOHv2LN544w3MmDGj2skQAMyePRuFhYXin6ysrDo/DyIp2QVl+HrXBWw9dcXXQyEiCng+v0PkyuXLl2GxWBAbG+tQHxsbi6NHj9aqT51O5/ZRCPkPvV6P5s2bA7BtWihH6o7zb91p63vOFZf96fV6vDSxL8xWK4wDNjvFrcZyXHj/fgBA65lfVBsrnngYAFBaqhePXT7ugNO5ARDjPf/5Q63PkYiInDXoCVFNTZ061eO2GRkZyMjIgMViqbsBUb0oLS2VtT/BZHDf6DqToazWfUnFqtZVPbeajI2IiDxXowmR1WrFhg0bsGnTJpw7dw6lpaVo1qwZevfujdTUVMTHx8s6uJiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyUno3YWr4goODcebMGfGztzTaIMQ9+i+olQq3/QUHB+PpJavx1Y7zUGuDnOIKjRZxj/5L/FxdTBtk+25QUHBFnS5I8tzscZWGdzmJiOTk0RqisrIyzJs3D/Hx8Rg9ejR+/vlnFBQUQKVS4eTJk5g7dy7atWuH0aNHY9u2bbINTqvVom/fvli7dq1YZ7VasXbtWgwaNEi245D/UiqVaNu2Ldq2bQul0vslcQqlEurIWGiiYt32p1Qq0SQ2DupI6bYKha0vdWQsFFVek68cs39XqXSsq3puleMKGc6ViIgqeHSHqHPnzhg0aBA++eQTjBgxAhqNxqnNuXPn8OWXX+Kee+7BCy+8gBkzZng0gJKSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+vFt85qq64fmWVdLYXZKnjUNqewvE7G4I8sVgE/H7yEgxcLfT0UIiIKIB5NiH777Td06+Z6z5M2bdpg9uzZePrpp3H+/HmPB7Br1y4MHz5cLKenpwMApkyZgmXLlmHy5MnIz8/Hiy++iJycHCQnJ+OXX35xWmhdU3X9yOxP/9qOc1fkXdsSCLaeuoKZX+51qi8uN8NksTrVm0wmZGRkALD9N5WarNeExWxC0c5VUCkBk0l68l/52JtXfo6iU1dguXGmU1ywmFG850cAQHifMdXGzJN7if0V7Vxlq7uzu9O5ARDj1rj7vTlNIiKqwqMJkbvJUGUajQYdOnTwuH1KSgoEwfWdlJkzZ2LmTOdfOA1ZiFaNcJ3nS7QUCmB8clwdjsg/XCs1AgCahmpxa/dYfLPrAsxWAVOW7EDzcB06Ng9zaG80GvHXv/4VADBjxgxZJkTXfv/ket9vu+zPaDTip09es30v7c9OccFiFvsKSxpZbcxseh4AYDIZK+rMzzidGwAxbr397tqdIBERSarxW2Zt27bF9OnTMXXqVCQkJNTFmOpFXT8y+/nJoXXSb6DoHBuOBRN7IUijwtLNZwEAecUGaFSOa2dUKhXuu+8+8bO3lEoVQhKHQalQuO1PpVIhKWUMTuSVOKXmAGzrkUISh4mfq4spr5+T6vqxbeNQSp5bdf0REZF3ajwhmjVrFpYtW4ZXXnkFw4cPx0MPPYQJEyb43d4+fMvMP8wd2x1/H5OIG1/7HTlFzmutgoKC8MUXX0h8s3bUWh2ajX0GGpUCQUHOb45VPfbdzyzExxtPQ6N1/vuvUGvRbOwzkt+tHNPqbMfRBQU51Emdmz3Ot8yIiORV439mzpo1C5mZmdixYwe6deuGxx9/HC1btsTMmTOxZ8+euhgjBTilUgGFwtejICKixqzWGzP26dMHffr0wZtvvokPPvgAzz33HD788EP07NkTTzzxBKZNmwYFf4s1GE/+Zy9+2H+p2niLiCB899iNiI1wfVeE3LNaBWRddb1hIxERNSy1nhCZTCasWLECS5cuxerVq3HDDTfgoYcewoULFzBnzhysWbMGX375pZxjlVWg7VT984EcWFxsA5BdUIbMrAKM7O7dhpf1Ta/Xo23btgCAs2fPOqTaeHHVQXxwf19Ehzpnoq+OsbwUWe/a1u3o51x0m7rj1XsHo9xkgXHA72L9b4dzANjSc2Qvng4AiHt0icN3K8fKJ9reqist1YvHLh+3y+ncAIjxnq/+1+NzIiIi92o8IdqzZw+WLl2Kr776CkqlEg8++CDefvttdO3aVWwzYcIE9O/fX9aByi1Q1xB9P3MwWlS5C/TQZ7twINt/9/25fPmyQzkqRIMreiO2nb6KHw9cwgM3tKlRf9ayIo/blhZdc6rLK65Ir+GqL6lY1bqq51aTsRERkedqPCHq378/RowYgQ8//BDjx4+XfC25Xbt2uOeee2QZIMkrJkyH5lUmRBqV/z7aDA4OxsGDB8XPAPDRA32R+tZGAIDBVLM7gBptEFpOz4Ba5Vnqjic+WIVvdl2oNnVHy+kZ4ufqYpVTd4h111N3VD03e5yLqomI5FXjCdHp06fRpo3rf3GHhoZi6dKltR4UkaeUSiW6d+/uUNexeTjGJ7fCysyLNe5PoVRC26wNNCqFR6k7Ytt0gvacqtrUHdpm0v+vVI5VTt1RuU7q3OxxvnZPRCSvGk+I7JMho9GIvLw8WK2Ouwf7895E/qywzITzLnbGFuBZGhEiIqJAVOMJ0fHjx/HQQw9hy5YtDvWCIEChUPjNIuXGtqj6442n8fHG074eRr0zmUxYtmwZAGDq1Kmy7FRdnPkLVEqFR6k7dv7yDYqP58Nyo3PuPsFiRsmBNQCAsJ6p1cYqp+4ozvzFVnc9dUflcwMgxq1xk2p/kkRE5KTGE6Jp06ZBrVbjhx9+QMuWLf321frGsqg6NTEWa47kotyDtTLJCVFOC6r9ndFoxCOPPAIAuO+++2SZEF399f3rfS9wm7pj5Xtzbd97ZKpTXLCYxb5CE1OqjZlfsaXnMJmMFXVzn3A6NwBi3DpyXG1Oj4iIqlHjCVFmZiZ2797t8FYZ+c6IxFiMSBzh62HI4sCFQuw9X+CyzaVCx/19VCoVxo0bJ372llKpQnCnG6BUuO9PpVKh2w034+yVUizdch6PpXZ3WLCuUCoR3OkG8XNllWOVU3eIdddTd1Q9t+r6IyIi79R4QpSYmOj0KjCRt07nl2Ds+3+IZXWVN986NAvDpcJy2LdSah9jS/IaFBSElStXVtvv//ZfwtikVh5vOKnW6tB84t88Tt0xL+MzpH+9DwCw8+w1jOnVUowr1Fo0n/g3ye9WjlVO3VG5Turc7HG+ZUZEJC+PJkRFRRV7n/zzn//Es88+i/nz56Nnz55OjxQiIiLkHSEFhNwi2949QRol+iQ0wcND2zvEl0ztj+O5xQCAJqFaxEW5fiVedf0Oyr6sAjz02U788HjdJNud2Kc13ll7AudcLGgHAKV/PlkmIgoYHk2IoqKiHNYKCYKAW265xaENF1U3PoIgoNzk+BahQgEEabx/NFWd+CYh+HLGDU71WrUSPeI8X+v14KA22HzyMnKKypFXZHD/BS+0iAiSnBDd3LU5IoLUWJl5ER2ahdXpGCrLKy7H1lNXkNKlOSKDvVtTRUQUKDyaEK1bt66ux1HvGsui6roiCALu/WQbtp2+6hSbMqgNXh7Xo0b9bTt9Bf/dfQGVs4fc1DkG45LjvBpnaWkpEhMTAQCHDx9GSEgIACApPgpLpvbH6Hc31ag/k6EMFz6cDoUCKH3hjNhfdcfu0qsn8osNaDr1fae42mrE8qfvRH6xAe1nf+4Qs5rKcfHTxwAA5XduBQCUlZXiwoe2dB6GcZudzg2AGO/5cvVpcf78793Ye74AY3q1RMZ9fWznZbHCbBEQrK27ySwRkT/zaEI0bNiwuh4HNTAmiyA5GQKATSdqvoZswU9HsO+CY3qQH/Zf9HpCJAgCzp07J372liAIsBTledRf5WM3lWoqADnZWfbGTjH7ccwWK8a+9wf2ncmtODYEyXOzx536q8S+MH314VwAgMFswS1vbsBVvRE/PD4E7evxbhURkb+odXLX0tJSnD9/Hkaj0aG+V69eXg+KGpZts29BRLAau85ew4NLdtSqD/ujt3sHJKBZuA7vrj0Bg9mKce//AaVSgZ41eBxWWVBQEHbs2CF+9pZao0OLB9+CWunZouodO3Zgznf7cdzi/GhKpdXi0+9+w99WHoSyauoOtQYtHnwLAJBfasWB7EKHOo1WJ3lu9rhK43nC2rwiAy5cs72dd+RSMSdEREQSajwhys/Px7Rp0/Dzzz9Lxrkmp/EJ1qoQolVLrh36emcWDl2suPMTqlNj+pB2iAmTfgtqbK+W6NOmCZb+cQbFBrN418jd6/bVUalUsiYSVqpU0LXsDI1K4dFr9/3790f0HjMUZ5zvpimVKiT26gPddiMUSse+FErbcezHrFqnUqkkz80er9pfmdGCDcfzkBQf5fnJEhGRqMYTolmzZqGgoADbt29HSkoKVqxYgdzcXMybNw9vvvlmXYyRGqi8onI8+9/9TvVBGhXuHZCAvy7PxOUS24LmM1f0DvGfZw3FsZxi7MsqwLu/n6y3MbvTsbn/3D3JKSzH678cRXJCFM5fKcWnf5xB26bVr3kiIqLq1XhC9Pvvv2PVqlXo168flEol2rRpgxEjRiAiIgILFizAmDFj6mKcVA/OXdFj/4UCALY1RO6UXd8dW6NS4NFhHbDpxGVkZhWg1GjBHyfz8cdJ57VGra6/Lt+6SQhaN/H+l7fZbMby5csBAJMnT4ZaXbunwH+6IQF/vqkDIFhQcmgd1EoFzOZbnforq7QjuNlsxrfL/4Nz209AiOnj1KfVYsavq75ByaGTsDYd5RATrBboj2wEAFhGdHSuM/dwOjcAKDlke8HBGjcW/9l5Ht/tzcZ3e7PFR45n3bz+T0RE0mr820Ov16N58+YAgCZNmiA/Px+dO3dGz549sWfPHtkHWFf42n0F+5YK8386Wk3c9fd1ahWeurULyowWZGYVAADsOX97xkXiudtsu5rHNQlG25hQWcZsZzAY8Kc//QkAMH78+FpPiNrHhCE+OgSnLl7GlR/evN73S079vfT9IfGz0WAUjx3/12+d+rSYTHj5qb8AAE50GuSQXkUwm8TjmNOmONWZ5vzZ6dwAiHHrzbeh1FipPybvJSLySo1/e3Tp0gXHjh1D27ZtkZSUhI8++ght27bF4sWL0bJlS/cdNBB87b7C5H7xyCsuFycxlQ3q0BQRQbXfy6ZJqBZDOsV4MTrXlEolUlNTxc/eUiiVCGqTDIVCur9rehMAoH2zUARp1UhNTcWBC4WSs0aFUoGBQ4ZhX5Yt/vPBS9Da1yUpFAhqkywe06lOoZA8t4o4U3cQEcmpxhOiJ598EpcuXQIAzJ07F7fddhu++OILaLVaMTM3+Ze7+8fj7v7xvh5GrQQHB2P16tWy9hd7zzxoVAoEB1e/G/ZfUzuLx5780VZsl1hUrdYGYcuGdWg/5ycAQGGpCc3CbRMipUaH2HvmAahI3VG5ThcULHlu9rhKy9QdRERyqvGEyH4LHwD69u2Lc+fO4ejRo0hISEBMTN3dCSCqrbxiA+asOID5E3rW+7GVSgVu79USP+y/VO/HJiIiz9X6vrvRaMSxY8eg1WrRp08fToaoVqourI6Plu8tqRaRQWIOsS+3n0dxuUm2vomIqHGp8R2i0tJSPP744/jss88AAMePH0f79u3x+OOPIy4uDs8//7zsg6SGJbugDJM+3IJys/cL0ru0CMfvTw1DTmE5FAoFeidE1ej7paWl4l49O3fudEi1ER2qxYZnhmPo67Y3szxZdlxaWoqLnz52PXXHEbepO/r3748L18oQee9Cp7jJUIbu3bvjUmE5wia/7hCzmsqR81k6AMA4/EenOsO4tU7nBkBM99Hzb0s8OBsiIvJUjSdEs2fPxr59+7B+/XrcdtttYn1qaipeeuklTogasdgI27oVg9mKXeeuOdXXVvtmYbXePVkQBDHPl1SqjdiIGu5eLQgwXTlfbX/VHTuymtQd9nhY1bgA5+NUrrueuqPqudnjrlJ3EBFRzdV4QrRy5UosX74cN9xwg/i6NgB0794dp06dknVw1LC0aRqKn54YivNXHfe66dMmyqFsMFtQaqqf7QyCgoLE5MNypO7QBQUh9t75UHmYumPdunV4+ftDOK2WTt2xbt06vLPmOPYYHeMKtQax984HYEvTIVUndW72eE1SdxARkXu1St1h34eoMr1e7zBBosYpsVUEEltFuGyzdPPZ+hkMbCkuUlJSZO0vKKGXx6k7UlJS8OExHc5Uk7ojJSUF316MwN4qi6oVSttxAMfUHfY6e+qOqudmj1dN3UFERN6p8aLqfv364ccffxTL9knQp59+ikGDBsk3MvI7gzo0RZCm4q+USqnAsM7NfDgiZ0XlJvx2KMe2d1Ad2V+HfcvlcokBx3OLfT0MIqIGo8Z3iObPn49Ro0bh8OHDMJvNeOedd3D48GFs2bIFGzZsqIsx1gnuVC2/W7rF4tDLt8F6fX2LAoBaVbcbCJrNZvzwww8AgNtvv93tTtXpyzOx5kgeAODXWTdJ9ld6fCtU1aTukDp2duZRCOGJAACrVcC3uy8AAASrGStXrsTpXacgqDs5fFewWlB20pbJvnLqDrHueuqOyucGAKXHt9qOEzfC5Xm6YrJYMfyN9SguN+OLhwdicEe+IUpEVOMJ0ZAhQ5CZmYnXXnsNPXv2xG+//YY+ffpg69at6Nmz/vd5qS3uVF03VEoFVKi/R6cGgwETJkwAAJSUlLidEOUUlUt+tjMaDMhf8er1vp932V/lY9tTd1Re6nx37xYY3nNglbithWA2iccxPzLZqc70zBSncwMgxq1DU1yepyulRguKy80AgDOX9ZwQERGhFhMiAOjQoQM++eQTh7q8vDzMnz8fc+bMkWVgRJ5QKpW48cYbxc/eUiiV0MV1AwCUmaxwlXnNfuxjOcWSqTu6tIzEjTfeiNP5ejH+yv8OXz+QQjxO5dQdYt311B1Vz60iztQdRERyql0mTAmXLl3C3//+d06IqF4FBwdj8+bNsvUXGhKCFn+y7Sn0+NeH8NUjN7g9dnWpO+zxmV/uEXeqDtZWpO6wH6dy6g57nT11R9Vzs8eZuoOISF78ZyZRJc3DdejaIhyAbQNKX/low2mfHZuIKBBxQkRUiUKhwKs+yHlWVVk97eNEREQ2nBCRXysrK0P//v3Rv39/lJV5f0enrKwMD95xCy599ldYTAaPjr16wXRYJdra49/8/QGnuNVkwKXP/opLn/0VRkO5U53VZHA6t7KyMjFuMboeGxER1YzHa4jS09NdxvPz870eDFFNWa1W7Nq1S/wsR3+H9++1FQTX/VU+dphEKo3K8fiqcUGAMefE9cNYneogWCXPTfyOm7HVRlG5CRuP52NQ+6ZoGsY1SkQUWDyeEO3du9dtm5tuct7Xhagu6XQ6ca8enc77X+I6nQ6LlvwHr/50BEqV6/QY9mO/9vMRnJdI3WGPf7j+JA4onFN3NJs0FwCgvp6Go3KdQqWVPDd7XFnleAezi2p6qk5eWnUI3+3Nxo0dmuLLGdUvJiciaow8nhDZcyoRNSRqtRpjxoyp1XevlBjw/b6LTv0NuflWhBwLg8JN6g77sT+/EI0sibfM7PGfC/fgoETqjpAOtkz2qut7HVWuU6pUkudWEZftBVHR//bbrsWWU1dk75uIqKGT/6cqUQOV/PJvsFZ6cvWPHw6Ln7VqLqcjIgpkHv0WeO2111BaWuq+IYDt27c75DojqksWiwWrV6/G6tWrJdOwVN4v0VplGc+1UhMAIFijwuieLcX+tm1ah7IzeyFYXb/pZT92zuEdkm3t8awD25zigtWCsjN7UXZmL6zXx125TrBanM7NYnGMExGRfDy6Q3T48GG0adMGd911F8aOHYt+/fqhWTNb0k6z2YzDhw/jjz/+wP/93//h4sWL+Pzzz+t00JUVFBQgNTUVZrMZZrMZTz75JGbMmFFvxyffKi8vx6233grAlt4iNNRxb2mNSonHb+6IH/dfwunLesk+5k/sgehQrdjfzAfuBAB07Ol6Yl/52PbUHJ7GBbMJeV//HQBgmjbOqa5r0k9O5wZAjFtuWO1ybEREVDMeTYg+//xz7Nu3D++//z7uu+8+FBUVQaVSQafTiXeOevfujYcffhhTp05FUFBQnQ66svDwcGzcuBEhISHQ6/Xo0aMHJk6ciKZNm9bbGMh3lEolkpKSxM9Snrq1Cx4d1gHd5/7qUX+du/XAmSt6wE16DPuxz10plUzdYY9fuFbmHFcooGnezvaxUuoOex0USslzE7/D1B1ERLLyeA1RUlISPvnkE3z00UfYv38/zp07h7KyMsTExCA5ORkxMb5JEKlSqRASEgLAlmxTEAQIEq9AU+MUHByMzMxMWfv78ueNuPPDLVBpXL+1Zj+2q9QdmZmZDqk77JQaHVpNew+AY+oOe51Ko5M8NzHO1B1ERLKq8T8zlUolkpOTMW7cONxzzz1ITU31ajK0ceNGjB07Fq1atYJCocDKlSud2mRkZKBt27YICgrCwIEDsWPHDod4QUEBkpKS0Lp1azzzzDM+m5wRERGRf/L5fXe9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxTVRUFPbt24czZ87gyy+/RG5ubrXHMxgMKCoqcvhDREREgc3nE6JRo0Zh3rx5mDBhgmT8rbfewowZMzBt2jQkJiZi8eLFCAkJwZIlS5zaxsbGIikpCZs2bar2eAsWLEBkZKT4Jz4+XrZzofpXVlaGlJQUpKSkyJa645HJY5Hz5fMepe5ISUnBujfTqk3dkZKSghXzHoHVZMDxvBLbeiPY0nTkfPk8cr58Hvrr6/BUViMif39VPHbVcysrKxO/w9QdRETyatD7EBmNRuzevRuzZ88W65RKJVJTU7F161YAQG5uLkJCQhAeHo7CwkJs3LgRf/nLX6rtc/bs2Q5pSIqKijgp8mNWqxUbNmwQP8vR357tm20FD1J32I/tlJqjavw2AbvPXqsICgIMWQcBAO+tPQGodVArFNi/c6t4bKlzs3+nLlJ3EBEFsgY9Ibp8+TIsFgtiY2Md6mNjY3H06FEAwLlz5/DII4+Ii6kff/xx9OxZfbZynU4nS4oHahh0Oh2+/vpr8bMc/b2WsQRv/Hbco9QdX3/9Nd5efRzZ1aTu+Prrr/GvP07jSKX4TZ2bYcPRHMSMex4AYFWqoQDQqmk4pr6/BG+tPi6m7qh6bvbvVE3dQURE3qnRhMhkMolvvvTo0aOuxlQjAwYMqNVbRhkZGcjIyJDczI/8h1qtxl133SVrf6ljxuPD81s8St1x11134durW3GxmtQdd911FzaY9uBopbfMdGolFEoVQrsOcWj/55ROaN+sNz7K2iqm7qh8bsdyisXv1EXqjsq2n76CZ/+7HxN6x2FWauc6PRYRUUNQozVEGo0GCQkJ9TaJiImJgUqlcloknZubixYtWnjVd1paGg4fPoydO3d61Q9RfcnMqnjk1rpJSJ0ea/GGUzh3pRSL1pyo0+MQETUUNV5U/cILL2DOnDm4etX5X8Ry02q16Nu3L9auXSvWWa1WrF27FoMGDarz41PDZ7FYsHnzZmzevNnlRF2lVEDpvHeiZH+Zu7ah/MJhj1J3bN68GZdP7q82dcfmzZtx6VimZOqO8guHHY5jtViwb9d2sa7quVktFd/RKut2ry29kXdOiSiw1Pi++/vvv4+TJ0+iVatWaNOmjVOqhD179tSov5KSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+sxbdq0mg7dAR+ZNQ7l5eUYMsT2GEkqdYddkEaFl8f1wLZTV/DjgUuSbez9PTxpNACgwz/cp+6wH7u61B3VxQWzCblfPCvGFFoVjEYDHrnbdmxt82+RV1DscG5Go0H8zjfNv4VSW387whMRNXY1nhCNHz9e1gHs2rULw4cPF8v2N8CmTJmCZcuWYfLkycjPz8eLL76InJwcJCcn45dffnFaaF1TaWlpSEtLQ1FRESIjI73qi3xHoVCgY8eO4mdXHrihDR64oQ3mFJRh8Gu/V9tffNv2uFRYBsB1f/Zj5xSWSza1x/OLDc5xBaBu0lL8bG/ftl0HXCgoBRS2dTyVz02hUDh9xxWjmW+iERF5qsYTorlz58o6gJSUFLepNmbOnImZM2fKelxqHEJCQnDiRM3WucRFBaNDs1CcyndO9hoSEoIV63fZUne4uQNjP3Z1qTvscXvqDmulv+dKTRDiHvnEob0uKBhnTp9Ez5d+RXG5GcVmlcO56YKCnb7jzjW90aF85FIRhnTiTu5ERFXVamPGgoICfPrpp5g9e7a4lmjPnj3Izs6WdXB1KSMjA4mJiejfv7+vh0KNnH0adCKvxKP27WJsj/3+vuoQFvx0xKtjmyyOd4l2nq37tX9ERP6oxhOi/fv3o3PnzvjnP/+JN954AwUFBQCA7777zmEDxYaOb5lRfekdH1Wj9vsvFIqfV2VelHUsoboGvfUYEZHP1HhClJ6ejqlTp+LEiRMICqp4pDB69Ghs3LhR1sERuVNeXo4xY8ZgzJgxKC8vl6W/J6dNRt43L8FqMrptO2bMGGx6/ykIZue29vjXr6Y5xQWzEXnfvIS8b14SY0aDrb29TjAbce6rv4vnZjSUO32HiIjkUeN/Lu7cuRMfffSRU31cXBxycnJkGRSRpywWC3766Sfxsxz9bV63GgAgCO5fu7cfO36E8wJmh3jiww7roAWrFWWnd4mfFbBtKWFvL1xP1ZFzcCt+OmjryyrxHSIikkeNJ0Q6nU4yQ/zx48fRrFkzWQZVH/jafeOg1WqxdOlS8bMc/c1d+D7eX3cSCpXr9Bj2Y3+w7iRyVWq8ufoYbuvRwimuN5jx+knH/9UUKjWajp4lfgYAtUaDpUuX4ulv9ol1/R98AY8N7witVgu1RuP0HSIikkeNf6recccdeOWVV8QcSwqFAufPn8dzzz2HO++8U/YB1hW+dt84aDQaTJ06Vdb+xt51H5Zd3uI2PYb92FuUu/Db4Vycztc7vElmj1/TG7HwH6sdvqtQqRHWM9WhTq3W4E9Tp+KloxX7H7W9cQymTh0kxqt+xx2LIMBg5qSfiMidGq8hevPNN1FSUoLmzZujrKwMw4YNQ8eOHREeHo5XX321LsZI5FNWq4Cnv9mHce//ga2nrzjFXxlXd3n9dpy5ii2nLtf6+2Pe/QOpb3FtHxGROzW+QxQZGYnVq1fjjz/+wP79+1FSUoI+ffogNbVm/3IlkoPFYsGBAwcAAD179oTKTUJWT/o7dugAjLmnIUR1AwCcuaLHt7svVHvswjITBKsFCqXKKZ6ZmYkiibhgtcCUfw4AoGnWBgqlCtbr7Y25p6Fp1gYAYMo/h6cX52DTa1NhtVhgzD3t8B13rurdL76+VFiGf/58FCZL3aYDISJqyGo8ISovL0dQUBCGDBkiphUg8pXy8nL07t0bgOvUHTXp7/4xwwAA7a6n7qhu49DKx7an3/A0LphNuLTsCYeY0WhA7xsr2gPApWVP4BKA8pfugdFocPqOHL7Ydh4rZX69n4jI39R4QhQVFYUBAwZg2LBhGD58OAYNGoTg4OC6GFud4qLqxkGhUKBVq1biZzn6axbbElf1BniSuqNVq1awCtJN7XFBKq4AVGHR4ufK7XOLKlKBqMKiobyetkOhUIjlri0jcPyKPK/eF5WbZOmHiMif1XhCtGbNGmzcuBHr16/H22+/DbPZjH79+mHYsGFISUnBiBEj6mKcsuOi6sYhJCRE1h3SQ0JC8PP2Qx6n7sjOzsZVvRF9qiyarhy/pjeid5W4UhOE1mmfO9TpgoKRnZ2Nts9XLKpunfY5okO1CAkJgS4oGK3TPsctXZvDZBVw/Eq+F2dKRESV1XhR9ZAhQzBnzhz89ttvKCgowLp169CxY0e8/vrruO222+pijESNipvUfX7DaLai1Gj29TCIiGRRq81Mjh8/jvXr14t/DAYDbr/9dqSkpMg8PKLG56Eh7bDmSK6vh+EVk8WKW95aj8vFRvwyayjaNPVu7RYRka/VeEIUFxeHsrIypKSkICUlBc899xx69eoly/oNopoqLy/HAw88AAD497//7ZBOprb9PffYVOSfuoLWD/zdo2MbzVYIHf4EhVrrFL9ryv1O8VZRQRDMRlz+4U0AQMztT0Gh1sJoKMddd92F/AOXEHP7UwCAyz+8iUK1EuXPDIXRUI78lQvwe7gONz78klfn6a2reiOyrpYBAI7lFHNCRER+r8aPzJo1a4bS0lLk5OQgJycHubm5KCsrq4ux1Slmu28cLBYLvv32W3z77beype5Y+9P3KD222aPUHd9++y2+X/mdmGrD07hgtaL02Gbbca7HrFYrvv32W7HO3qbg0CYxdUfpsc04u+t3WCWOVxtf7TiPr3dluWwjCAJyi8phtTaSZ31ERBJqfIcoMzMTBQUF2LhxIzZs2IA5c+bg8OHDSE5OxvDhw/1mc0Yuqm4ctFot3n//ffGzHP09+8rr+HTTaY9Sd7z//vvQG8zIuOT8v5I9Xmow4/1Lzqk7okc8Kn4GbKk73n//fby46qBYFz3iUYRo1WLqjugRj6JzbDhUbsbmqUMXndPwVDVnxQF8tcM2aXrr7iRM7NNalmMTETUktVpDFBUVhTvuuAODBw/GjTfeiFWrVuGrr77C9u3b/WZCRI2DRqNBWlqarP3d/eDDWK73LHVHWloaruqN+EDiLTN7/JreiIwq8RE94rBGdbtDnVpta78wq+Its/A+tyM6VAuNRoNjeWUI73M7Eq+/ZVZf7JMhAEj/eh+WbTmL9jF8REZEjUuNH5l99913eOKJJ9CrVy/ExsbiL3/5C0pKSvDmm29iz549dTFGIp84f7UUhaU126OnqMyz9hn394ZK6fm6u+yCMny+1baz9fG84hqNSW77LxRyI0cianRqfIfo0UcfxU033YRHHnkEw4YNQ8+ePetiXEQesVqtOHXqFACgQ4cOUCprPMd36u/i+dMwXc2GuklLJL3yG7577EaXxy4xmCAIVigUSjz02S6H+IkTJyAIghi30ygV6KgrxsHsQqibtIRCoRTb248NAOZrl1BersXJ3CIIghXma5eQVaRE2+i6y59GRBSIajwhysvLq4txENVKWVkZOnfuDECe1B1lZWW446Z+AOzpMYKwbPNZt8fu/eL3uGoAMrMKxLhaMIvx+av24qMt2Q7f/e2lexyOYzSUo3PnbmIdAFz85M+4COABZUUZAAZ9sN6r8yQiIke1WkNksViwcuVKHDlyBACQmJiIcePGeZ1Yk6g25F4UX7W/QhePwextJ/VtjY+3VDxGmnpjW6iUCpdj0wSHwVxlLVBkZCSKyis2O1ToHCd4Cl2om4QivqE3mGG2CogMlmexNxFRfavxhOjkyZMYPXo0srOz0aVLFwDAggULEB8fjx9//BEdOnSQfZB1gbnMGofQ0FAUFBTUSX///OUoPlx/yqO2b/52zCGmUioc4m+tPu703bFv/ord566JdUHBISgoKHBI3ZEwa7nD9xJmLYdWrYRGFwygpIZnVzdKDGYMWrAWBrMVG58djtgI7/aCIiLyhRovuHjiiSfQoUMHZGVlYc+ePdizZw/Onz+Pdu3a4YknnqiLMdaJtLQ0HD58GDt37vT1UMgHElvZ7tyolAp0ah7u49H4t0uF5SgqN8NgtuLMZb2vh0NEVCs1vkO0YcMGbNu2DdHR0WJd06ZN8dprr2Hw4MGyDo6orrwzORlPjeiMyGANmoS63r/IYOZdRCKixq7GEyKdTofiYufXfktKSmTZGI+oJgwGA/78Z9tC448++gg6nc6j7ymVCrSV2Euncn+dJqYDALadvur22N0mPeUynnjX006xXZ/Pw5USI5qOnAmFWgOT0YCpU6fi8u4LaDpyJgDgyq+2TScrl5VKBSyPzfXoPOvDwl8rHhcWlplQWGbiWiIi8js1fmR2++2345FHHsH27duvv04sYNu2bXj00Udxxx131MUYiaplNpvx2Wef4bPPPoPZ7H3m9cr99U2I8Litxep87MrxcG3FUujwIA3MZjPOb/sZ+oNrIVhtd6AsFgs+++wzsU6wWqA/uNapXLx/DazWhnnX6s//3o0b5q9FQanR10MhIqqRGt8hevfddzFlyhQMGjQIGo3tX4Fmsxl33HEH3nnnHdkHSOSKRqPB66+/Ln6Ws7+bE1thaKdcbDpx2W1bq8Su1pXj9w5qh6ZREYhrEozoUC2MRqDHhMdw4VoZFNffzlSr1Xj99dcx/6cjYl1UyjQAcCirlQq3u2j7UpnJguyCMkSF8I4xEfmPGv9UjYqKwqpVq3Dy5Enxtftu3bqhY8eOsg+OyB2tVotnnnmmzvpTKqp/yb1y26pvmUn1dXf/EIdYp9T7UHy+QKxTa2ztM65UvGUWOfBOhz4jB94JrVoJlZqPpIiI5OTxhMhqtWLhwoX4/vvvYTQaccstt2Du3LkIDg6uy/ERNVqn8mv/RpYgMPM8EZGcPF5D9Oqrr2LOnDkICwtDXFwc3nnnHVmTahLVhtVqRXZ2NrKzs2G1Wuu8v3CdGtGhWvRqHem2rau41WpFeUE+zMWXIQhWh/b2OkGwwlx82blcdBnaGuRBIyIi9zy+Q/T555/jgw8+EN+aWbNmDcaMGYNPP/3U6/xRRLVVVlaG1q1bA5AvdUfl/iprEqLBzhdSoVAooFIqoNfrxbavrnJObOxqbGVlZTi+6E8AKlJ3hKmsYnt76o7sD6ZKlt/ddQprj+V7da5ERFTB45nM+fPnMXr0aLGcmmr7xXDxon9mvc7IyEBiYiL69+/v66GQl9RqNdRq+RYZu+pPrVI6ZKl3d2yXcaXK9ue6YV2a2dpWqlOqHMtVv0NERPLw+LeI2WxGUJDjlvwajQYmU/V5nhqytLQ0pKWloaioSPZcWFR/QkNDZf07WJP+KreVWlTtqq/Q0FB0/9uPKDFUvK4fGREOk8nkkLrjw9+PYv5PR8Vym2dWIal1JDq3bgbgiEfjrKmuLbhzNxEFHo8nRIIgYOrUqQ4b35WXl+PRRx91eBTw3XffyTtCogBmlVg7vWBiL3SODcf3Mwfjjvc318lxd5yR3oySiKix8nhCNGXKFKe6P/3pT7IOhqixiHaTDsRTZovzYu3EVrYNIxOiQ5xiDcXKvdloEqJFqyi+hUpE/sHjCdHSpUvrchxEtWIwGJCebkux8dZbb3mcusPT/jxtmzDqUbF+yqA2mD64ncuxGQwGXPzpfZgsAqJvfhgKtUZsf2XrOUTf/DAA4Ot3XsKVrEKxHJ75JdLSfro+tpq/afb70Tws+eNMjb9XU59sOoOtp6/gnXt6I7eoHIPaN4XCxZ5ORES+phACfEMT+xqiwsJCRES4TtVADY9er0dYWBgAed4yq9rfY8sPYcNx29tcTUI02PvirZJtX121Bx9vsb1g8N1jN6JPQhOXY6sci//rt1Bqg3Do7ykOdQCQ9fYksfzjE0PQq10LsT+TQoPkV1Z7db5SurYIx9Ec53yFtaFWKmC2Cvji4YEY3DFGlj6JiAD5f3833P3/iTyg0Wgwd+5c8XN99le5raqa1B3V9aXRaNDspvthtFihUKkwfXA7sf2iNcfFVB2jHpyJLaeuQKFSoWV0mEN/Ju9Tt0kqKJVvkbr5+iKo7GtlsvVJRFQXOCEiv6bVavHSSy/5pL/KbatL3VFdX1qtFs1THhDfMntxbCIA4KWXXsKy8oq3zEZPeQKHfzsu2V+ZpW7e8MwpKq+TfomIGjLuqEjkpyKDNXhwUBtfD4OIqFHghIj8miAIKCgoQEFBgSz5vWrSn7u2ruKCIMBSXgJreYkYs7e31wmCgNKSIody1f5eGdcDr03s6fV5ExEFOk6IyK+VlpaiSZMmaNKkCUpLS+u1v8ptjQbnNTKu+iotLcXR1ych6517IJgMDu3tdYLJgOfG9RPLcp9rfXr2v/vx4qqDYvnL7ecx9PXfseZwrg9HRURUgRMiIqoXn289J36es+IAsq6W4eUfDvlwREREFfx+QpSVlYWUlBQkJiaiV69e+Oabb3w9JKpHISEhMBqNMBqNCAnxfqPCmvRXua1W57wBoau+QkJCkPjCD0h4eiUUGp1De3udQqPDzlN56PXijxjctRVim0TIeq4NQX6xwddDICIC0AjeMlOr1Vi0aBGSk5ORk5ODvn37YvTo0V7vR0P+QaFQyPK6fW36q9xWatNBV30pFAooVGooVM7tFZVe4e/Xvhn2vVyRVFmp9Pt/wxARNUh+/9O1ZcuWSE5OBgC0aNECMTExuHqVeZjIf80Y2g4AcFff1j4eifzKTRZfD4GISJLPJ0QbN27E2LFj0apVKygUCqxcudKpTUZGBtq2bYugoCAMHDgQO3bskOxr9+7dsFgsiI+Pr+NRU0NhNBrxzDPP4JlnnoHRaKzX/iq3NZuc27rqy2g0Imf1J7i2bgmE6/sJ2dtfW7cEfzw9FPPu6OrwfbnP1RduWLAWhWV1s38SEZE3fJ664+eff8bmzZvRt29fTJw4EStWrMD48ePF+PLly/Hggw9i8eLFGDhwIBYtWoRvvvkGx44dQ/PmzcV2V69exdChQ/HJJ5/gxhtv9Pj4TN3h3xpL6o7zb93p1B6Ay7K9v00n8vHAv3ZAp1bCYHZOBtvQ/PD4ENz+3h8AgCCNEkf/McrHIyIif9ToUneMGjUKo0ZV/wPxrbfewowZMzBt2jQAwOLFi/Hjjz9iyZIleP755wHYEmWOHz8ezz//vNvJkMFggMFQsZCzqKhIhrMgX9FoNHj66afFz/XZX+W21aXuqK4vjUaDpoPuhMkiiGk6pNq7KwPAkI4x+H7mYDQN02Hwa7/X4Gx945X/Hfb1EIiInPh8QuSK0WjE7t27MXv2bLFOqVQiNTUVW7duBWDbzG7q1Km4+eab8cADD7jtc8GCBXj55ZfrbMxUv7RaLRYuXFgv/VmF6ttWl7qjur60Wi1ajJghpu6orr27MmBbjN2rdZTkcRqiHWe5xo+IGh6fryFy5fLly7BYLIiNjXWoj42NRU5ODgBg8+bNWL58OVauXInk5GQkJyfjwIED1fY5e/ZsFBYWin+ysrLq9BzIv7VpWvF6O9e+EBE1Xg36DpEnhgwZAqvV83UTOp0OOp0OGRkZyMjIgMXCt178mSAIMJttd1nUarXk6+/e9Pfi7YkOGwpW17a61B3VjU0QBAgWMwSLGVCqJNsDcFn29lyJiKhCg75DFBMTA5VKhdxcx+39c3Nz0aJFC6/6TktLw+HDh7Fz506v+iHfKi0thVarhVarlS11R+X+1Krq/xep3La61B3Vja20tBSHX70d598Y75C6o3J7d2UiIpJPg54QabVa9O3bF2vXrhXrrFYr1q5di0GDBvlwZERERNSY+PyRWUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/XiW2e1xUdmjUNISAiuXbsmfq7P/iq3/XR7To36CgkJwXs/ZeLDDSdxz+Cu1bZ3VyYiInn4fEK0a9cuDB8+XCynp6cDAKZMmYJly5Zh8uTJyM/Px4svvoicnBwkJyfjl19+cVpoXVNpaWlIS0sT9zEg/6RQKBAVFeWT/iq31ajyxXrt9cdsrvpSKBSYOSoJM0cluTy2u3Jj8Mw3+7Dl1BUsndYfnWPDfT0cIgpQPp8QpaSkSC5IrWzmzJmYOXNmPY2IqOYm9onDqfwSxITpkNjSdxt8dm0RjqM5xYgK0aCg1D/eivtm9wUAwKrMbDwzsquPR0NEgcrnEyJf4SOzxsFoNGL+/PkAgDlz5kCr1dZbf1Xbvntvb4/7kopVrQPgsiw1tu9nDkFBqRFv/nYcy3f515YS5qobPRER1SOfp+7wNabu8G91nbojNDQUbZ//UYyffW2Mx8f2NHWHPVbb1B1Snvt2v99NiP48rD1mj+qGM5f1CNWq0DwiyNdDIqIGrNGl7iDyhlqtxmOPPSZ+rs/+3LV1FZeKSdW5Kzc2J/NKkPrWBmjVSux78VYEa1W+HhIRBQjeIeIdInKjujtEDZknd4juSGqFdjGheGftiXoalWt/vqk9TuSV4PejeQCArbNvxo4zV7H55GU8PbILmofzjhERVeAdIplwDRFRw3IqXy9Ohuye/E8mACAmTIdnb+OCayKqOw16Y8a6xJ2qiRqWMpO52lh+saEeR0JEgShgJ0TUOOj1emg0Gmg0Guj1+nrtz11bV3GpWNU6d+XGZvPJK74eAhEFsIB9ZEaNhz3hqS/6c9fWVVwqVrXOXbkx25dV4OshEFEA4YSI/FpwcDAuXLggfq7P/ty1dRWXiknVuSt7w9rA36d49P/2+HoIRBRAAnZCxEXVjYNSqURcXJxP+nPX1lVcKiZV565cHZPF6rZNTJjOo76IiAJBwK4h4qJqasz6tm3its3NXZvXw0jk897aExjz7iYcyyn29VCIqBEK2DtE1DgYjUa88847AIAnn3xSltQdnvbnrq2ruFSsah0Al2VXY+veyjlh8euTeuHC1VK8+/tJsa6hPzazEwC8ufo4AGDp5jN47c5evh0QETU63JiRGzP6NabukHboYiHGvPuHQ90Pjw+BVq3ErW9vBAB8Pn0AQnVq3PnhFvcXpgG5vVdLvH9fH18Pg4h8jBszElWiVqsxZcoU8XN99ueurau4VEyqzl25Ot1aROCRm9pjzeFcnL5c/Sv60aHe3VEjImosAvYOUeVF1cePH+cdIqqWP6busFt/LA9Tl9rWyUndIYqPDsHwN9a77ad/2ybYefZaXQ7VY7xDRESA/HeIuKiai6qJXOrUPAz920b7ehhERHUqYCdEROS5O/u29vUQiIjqFCdE5Nf0ej2ioqIQFRUlW+oOT/tz19ZVXCpWtc5duT51aBZWr8cjIqpvXFRNfq+wsNBn/blr6youFata565MRETy4ISI/FpwcDCOHz8ufq7P/ty1dRWXiknVuSu706FZGNRKBbRqJVo3CUYes8YTEUnihIj8mlKpRKdOnXzSn7u2ruJSMak6d2V34qNDsOtvqVAqFYgI0jhNiDQqRY36IyJqrLiGiKiRiwrRIiJIIxlr3SQEs1Llm1CSfxEEAZ9tOYtVmdm+HgqRzwXsHSImd20cTCYTPv74YwDAI488Ao1G+hd/XfTnrq2ruFSsah0Al2Vvz9VuVmpnhGrVePWnI1731Tk2DMdzS2QYVfUEAB+st6Uf+cuwDlAoeJertvZdKMTc7w8BAAZ1aIrm4UE+HhGR7wTsxox2TN3h35i6o2aO5xY7bMx4U+dmAIBPNp6udkLUqXkYVqcPc7gO1dn07HAMfX1djcdVE+2bheJ0vu0tuzXpN6Fj8/A6PV5jJQgCPlh/Cgt/PQbAlux3ydT+Ph4VkeeYuoOoEpVKhUmTJomf67M/d21dxaViUnXuynLp1lKefwzER4fI0o8r9skQAPxyMAdHLp3AE7d0QpcWnBjVxNojeeJkCAB+P5rnw9EQ+R4nROTXgoKC8M033/ikP3dtXcWlYlJ17spyGdIpBhufGY6bFtbt3R25vfGb7a27onIT/v3QQB+Pxr/8eijHoTygHXcjp8DGRdVEBABIaFr3d3fqyqm8ul231BhtOXXFoRwVLM+aNCJ/xQkREYm0Kv5ICBTtYrxbb0fU2PCnH/m10tJSxMXFIS4uDqWlpfXan7u2ruJSsap17sp14fvHBzvVNY/Q1cmxyLeCtbZ1aNyLisiGa4jIrwmCgIsXL4qf67M/d21dxaViUnXuynLr2iICm54djsUbTqHEYEZekQHPjuzq9nt/SemAGzs0rZMxeWpfVgF+PZSDBwe1RYtIvj7uqa4tInAgmylhiDghIr8WFBSEvXv3ip/rsz93bV3FpWJSde7KdSE+OgSvTujpVB+iVaHUKL1v13O3VT9p+u9fBuHOD7fKNr7qTF+2E1f0RlwsKMOie3rX+fEam98O5/p6CEQ+xQkR+TWVSoXk5GSf9Oeurau4VEyqzl25Pn1wfx98teM8CstM2Hb6arXtpt7YFsu2nBXLbZrWz1qVK3ojAGD/Bd7t8MTq6xOg2AgdDmTz0RlRwK4hysjIQGJiIvr350ZkRJ5I6dIcHz3QD0mto1y2e+mO7g5lpUKBoZ1i6nBkznacuYp1x7ivTnUqP3K1v25vsggwWay+GhKRzwXshCgtLQ2HDx/Gzp07fT0U8oLJZMKyZcuwbNkymEymOu1PqfC8rbu4VKxqnbsyVbhYWC5+vlZqxN0fbcW0pTtxPLfYh6NquA5fKhI/39ihYrL60YZTvhgOUYPA1B1M3eHX6iN1x3d7LuCnA5dwe69WGN87zuNj+1PqjppY8NMRfLTxtENd5ZQmABzSfOz5+wg8+Z+92HTico2PVRsqpQIWq+3H2n8euQE3tPftYu+GaMvJy7jv0+22z8/fjBtf+x0AoFAAZxaMcfVVogaDqTuIKlGpVBg9erT4uS76m9inNSb2aV3jY7uKS8Wk6tyVfUHNtSaNRpdYx3Qngf3PYwp0nBCRXwsKCsKPP7pPOloX/blr6youFZOqc1f2hfHJcfjlYA5OVcop1pDY7w4BtvQUvEPkbOvpil2qVVWfBRMFqIBdQ0REtdMpNhxrn0rBlEFtfD0Ut5ZuPit+/npnFiZ8sBmZWQU+G09DUW6ybZ9w9ooezcN1YnLftn6cvoXIW5wQEVFAePa/+7H3fAEW/nrU10PxOYXCdldoyo1toVAo8PfbuwEAtGr+SqDAxb/95NdKS0vRqVMndOrUSbbUHZ72566tq7hUrGqduzJ5xmi2Yt4Ph8VyXpHBh6NpWPiwjKgC1xCRXxMEASdPnhQ/12d/7tq6ikvFpOrclRuqm7s2x+9HG8Y+QL8eysGnf5zx9TCIqIHjhIj8WlBQEP744w/xc332566tq7hUTKrOXbmhuqtv6xpPiF4Y3Q2v/nRE9rF8vStL9j793bXru3oTUQVOiMivqVQqDB7snKG9Pvpz19ZVXComVeeu7EutooK97qNDs1DxbbUZN7WvkwkROfvffluSYIOZO1MT2TWKNUQTJkxAkyZNMGnSJF8PhShg3H9DGzx7Wxd8OWNgrfuYeXNHqJQKTBvcVr6BuXEirwQPf7YTmVkFOHKpCFZrw378WBdaRtomsx2ah/l4JEQNR6O4Q/Tkk09i+vTp+Oyzz3w9FKpnZrMZK1asAGCbGKvV3v2Vrkl/7tq6ikvFqtYBcFn29ly9FaZT47GUjpKxynvbqBTSS3efvKUTJvRujdu6t0Swtn43mlxzJA9rjtge6T00pB3+fntivR7flwxmC85ctt2V69DMcbfz47klEARBfAuNKJA0iglRSkoK1q9f7+thkA8YDAbcfffdAGzpLLydJNSkP3dtXcWlYlXrALgs+3pC5MqgDk0xpmdLxEeHIDJEI9lm+uB2AFDnkyF3KUP+9ccZPH5zR+w6ew1DOsUgSOO7XcDrw+WSivVD3VtFAgDim1TsP5RTVC7eQSIKJD7/ibpx40YsXLgQu3fvxqVLl7BixQqMHz/eoU1GRgYWLlyInJwcJCUl4b333sOAAQN8M2BqUJRKJYYNGyZ+rs/+3LV1FZeKSdW5KzdU4UEaZNzfx9fD8NjjX9lyrU0f3A73DUxAy8gghOp8/uOxTmnVSkQG2yar8dEVE6IG/gIjUZ3x+f/xer0eSUlJmD59OiZOnOgUX758OdLT07F48WIMHDgQixYtwsiRI3Hs2DE0b97cByOmhiQ4OFjWu4M16c9dW1dxqZhUnbtyIBjZPRb3D2yD9K/34XKJbQ+hZ0Z2wcJfj8l2DPtdpCWbz2DJ5jPo2iIcv8y6Sbb+G5KVe7MB2PZnqkyrVjrVEQUSn/8zc9SoUZg3b564RqKqt956CzNmzMC0adOQmJiIxYsXIyQkBEuWLKnV8QwGA4qKihz+EFHdGt2zZa2/+9ED/XBT52ZO9Z8+2M+bIbl0NKe4zvr2NXcTybLraT2IAo3PJ0SuGI1G7N69G6mpqWKdUqlEamoqtm7dWqs+FyxYgMjISPFPfHy8XMMlomrc0z8eq/96ExZO6uVR++bhOkQGa3Bnn9ZiXXSo41qk1MRY7Pn7CGx6drisY7ULtLfP7HeHtp++6uOREPlGg54QXb58GRaLBbGxsQ71sbGxyMnJEcupqam466678NNPP6F169YuJ0uzZ89GYWGh+Ccri5u2+bOysjIkJycjOTkZZWVl9dqfu7au4lKxqnXuyv5EoVCgU2w4dG4WLEcE2Z7i3zMgAZkvjsCbdyeJsdmjuomfO8eGAwCiQ7UO61/kdPBiofj5aE4Rvth+DqVGMwDbm1qPf7UXc1cdbPC7hldmtlQ8EntmZBeHWFQ1i9+JAoXP1xDJYc2aNR631el00Ol0yMjIQEZGBiwW3h72Z1arFfv27RM/12d/7tq6ikvFpOrclRubL2fcgF1nr2JSv3inV7+Hd22OrbNvxoVrZejXpolDbELvOKy4vjZGLpU3Lbz34224VmpCQakJE3rH4fzVUvxvn21zw8n9E5DYKkLWY9eVvVkF4ucHBrVxiPVvG43Vh3Pxf9vO4b6BCfU8MiLfa9ATopiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyMtKrvsh3goKC8Ntvv4mf67M/d21dxaViUnXuyo1Nj7hI9Iir/v/HlpHBkq+Evz05GU/d2hlD/rlOtrH8uP8StColurWMwLVSEwDb+puFvx5Dy8iK6z/63U14555kjEuOc+rjmW/2Yc/5a1g2bUCt72QZzBYcvliEXq2jHPZ3qo0f918SP0cEOd4Rsj8yO3yJ6yopMDXoCZFWq0Xfvn2xdu1a8VV8q9WKtWvXYubMmb4dHDUIKpUKI0aM8El/7tq6ikvFpOrclf2NVlXxC13unQNaN3E94birb2t8s/uCx/0t23IWy7acRZjE6/eXCssdyh+sOyU5IbIf79dDOXh4aHun+JnLehy9VASNSon/7DyPKTe2xdBOjgvIn//vAazYm40/D2vv8NiwNjTXr3+zcJ1T7LGUDthwPB8AUGIwS543UWPm87/xJSUlYgZvADhz5gwyMzMRHR2NhIQEpKenY8qUKejXrx8GDBiARYsWQa/XY9q0aV4dl4/MiOrfkE7NcGef1mjbNAThQfW7ZuX5UV1rNCGyKzGY3bYxSzzCNJgrfrZYqizQLiwzwWCyYPgb6x3qt5+5igMvjXSosz8KXPrHWa8nRAezbXd/JvZ2nrwlxUeJn/dnFeDGjjFeHYvI3/h8QrRr1y4MH17xlkh6ejoAYMqUKVi2bBkmT56M/Px8vPjii8jJyUFycjJ++eUXp4XWNcVHZo2D2WzGr7/+CgAYOXKkLKk7PO3PXVtXcalY1ToALssNeafq6oTp1A4LpeU2fXA7/HooBx890Bf3fLxNnMw8P6ormobpoFQAdfHy2Kl8PTLWncQt3ZpDqVDgg3UnHZLfHrxYhM+3nsXk/vH4/Uge/vLFHsl+isvNOJhdiL98sRuje7Z0mAAJEHA6vwR7zhdgTM+KdCcXrpXil4M5uL1XK7SIdP0o9USebcfzUqPzPwSDNCq0bhKMC9fKsPPsNU6IKOAoBH96RaIO2CdEhYWFiIjwj4WRVEGv1yMszJagsqSkBKGhoW6+IV9/7tq6ikvFqtYBcFmuzbkezy3GrW9vBAB8Pn2A5P4+jcVXO87jxVUH8dStXfDosA4AgJFvb8SxXN/tMfTyHd0x9/tDLttM6tsa316/kzV7VFcs+PmoZLt543vg/oEJmPzRNuw4a3tV/ug/boNOrYTBbEWQRgW9wYxlW87iPzvPI+tqxZuJH9zfR3JvqM4v/Azj9TfRzr42plbnSFRf5P797X//xCSqRKlUol+/fuLn+uzPXVtXcamYVJ27MlXv3gEJmNS3NTSqimv16oQemLS4dnuYycHdZAiAOBkCUO1kCAD+tvIgNhzPFydDAND3H6uhN1qgUAA/Pj4UqzKz8dHG007fjQ7VSvY5fUg7LN5wCoBtR+vxEo/WiBqrgL1DVHkN0fHjx3mHiAJCIN0hqk7615n4bo9tXc5LYxNx5rIen2095+NRye/pWzvjh/2XJHfdPvTySMlcbdtOX8E9H28Ty8fm3QadunEnuyX/JfcdooD9Z2ZaWhoOHz6MnTt3+nooRPUmJqzi7aKWbtabNFZNK90dmTq4HdJHdHHRuvF58pZO1SauTa60sBoA9p4vqPsBETUQATshIgpE0aFarH1qGH56Yig6Xd/tOdBMG9wOo3u2wOsu0oi4SzHStUXDv3arj+TVOCdbkEblkCPuPzvOyz0sogYrYCdEGRkZSExMRP/+/X09FPJCWVkZBg8ejMGDB8uWusPT/ty1dRWXilWtc1eurQ7NwvxmZ+W60CoqGB/c3xd395POY5gUH4XberTAB/f3qbaP+RN7Yt/cWxEX5bxJZG1p1fL+ON5XaVfqmkhNrHiDd2XmRVzVGz3+rtUq4JONp7FS5l3DiepDwC6q5mv3jYPVasWWLVvEz/XZn7u2ruJSMak6d2Xynk7jOBF5dXwPhAdpJN/CqiwyWINJfVvjnbUnanS8xJYReGBQG8z+7oBD/bv39Maj/7e7Rn3VRnhQzX7s3/3RVnw14wbJzRyr+tO/tmPLqSsAgMslBsnNKIkaqoCdEFHjoNPpsGLFCvFzffbnrq2ruFRMqs5dmbwXpFHhnXuS8eR/MgEA6kq7aSsUgKvXTm7qHFOjCVH/tk3wzaM3otRodpoQDevcDL0TorD3fAGevKUTPtp4CuWm6ie+c0Z3xfyfqn8Lza5lZBC6tYzA70fzMKpHC0zs09rj8QLAybwSPPz5LqxKG+yy3durj4uTIQCY9+MRTojIrwTsW2Z23IeIiKxWAS/97xAEwbZXkPJ6zrDd565i7/kCpHRphoW/HsOvh2x5Fb977Eb0SWiC/RcKcMf7m132ndqtOdYcyQMArH86BW1jbPtH7ThzFe+vO4mN19NlnJo/2iFXmd5gxuB//o6C63nUKjuzYDQUCgVWZWbjwrUyZBeUYWC7aNzeqxU2HM/D9GW7AAC/PzUM7ZuF1fh6PPX1Pvx3j+Ou3hN7x2HBnT0l3zrLulqKoa8755E7+o/bEKThW2pUN+T+/c0JESdEROSBk3klSH1rA4CKCZHFKuC1n4/gk01nHNpOGdRGfJX/20cHwWIV0D0u0ik/2DW9Ec9/tx89WkXi8Vs6OR3ztZ+PYvGGU7i5a3PERgThq+uLnN1tmnj4YhHKTBb0bdOkVucqCAKulZrQ5x+rHep7xEXgkZs64I6kVg71W05exn2fbnfq58P7+2CUm0ePRLXF1+5lwkXVjYPFYsH69euxfv16WfLS1aQ/d21dxaViVevclal+tYwMQnSoFmE6Ndo2td3lUSkVeGFMIib1dXwMFaStuCsSolVjYPumkslSm4Rq8dED/SQnQwCQPqIz/u+hgXjnnmSH7QLcSWwVUevJEAAoFArJzRsPZhfhia/2OtX/d0/FIuoPKy1Gry5FCVFDxDtEvEPk15i6g+pTmdECqyA47eNzIrcYI65veJkQHYI5o7uJC6Ttj7e8lVdUjvk/HcGQTs2cJmB1pe3zP0rWn54/GvklBsRGBDm1O/vaGDy0bCfWHs1D1xbh+GXWTfUyVgo8TN1BVIlCoUBiYqL4uT77c9fWVVwqJlXnrkz1K1grvR6mU2w4NjyTgn9vPYfxvePQIy4Svz81DC0jg2X7b9U8IgiL7uktS1+e6t+2CXaeveZU337OTwCAMb1aoqvEflbTh7TD2qO2fZAEQeDfV/ILvEPEO0RERJIKSo04kF2Iz7acw5ojuW7b39A+Gv95ZBDOXtYj5Y31AGyLsd+anFy3A6WAxDVERERUL6JCtBjaqRkW/6kPvnvsRrftP76+y7X9TToA+G5vNi4Ver9pKlFd44SIiIhcUquU6JPQBM+P6lptm/kTeiIiSCOW/5raWfw8PmMzzBZuJkoNW8BOiPiWWeNQVlaGESNGYMSIEbKl7vC0P3dtXcWlYlXr3JWJ6tujwzrg7Gtj8PCQdm7bTuwTJ37OLTLgxwOX6nJoRF7jGiKuIfJrfMuMqP4Vl5uwKvMiCkqNeOO34wBsd4juG5jg0G7uqoPifkyhWhUW3NkLwzo1Q2SIxqlPopriW2ZEleh0Ovzf//2f+Lk++3PX1lVcKiZV565M5AvhQRr86YY2OJ5bLE6I8osNTu0eGNRWnBDpjRY88dVe3N6rJaYPaYf1R/Pw4I1tERPGv8vUMPAOEe8QERHVmn0Por+mdsaTqc4bTD7+1V78b99Fye8+cEMb/GN8jzodHzVefMuMiIgajHsHxKNt0xCMTZJO0fFXiUmS3b+3nUO5yYJjOcWwWAP63+bUAPAOEe8Q+TWLxYI9e2zpAfr06QOVyrtEkjXpz11bV3GpWNU6AC7L3p4rUX2a8MFm7D1fUG28W8sIpHRphiEdYzC4Y0z9DYz8FpO7yowTIv/GRdVE/kEQBOQVGzBw/lq3bU/NHw2Vkrtbk2tcVC2TjIwMZGRkMEmmn1MoFGjTpo34uT77c9fWVVwqJlXnrkzkLxQKBWIjgjB/Qk/MWXHAZdsOc35CarfmyLi/D3Rq3gml+sE7RLxDRERUrwRBwIHsQlwpMeJUfgnm/XhEst0nD/aDTq3EjR2aQq3ikldyxEdmMuOEiIjItwRBQLvZP1UbH9WjBd67tzcnReSAb5kREVGjolAocPDlkVg6VTpzwM8Hc9DxhZ/x2Zaz9TswCiicEJFfKy8vx/jx4zF+/HiUl5fXa3/u2rqKS8Wq1rkrEzUmYTo1hndtjs+mD6i2zdzvD+GBf23H1lNXsC+rAE99vQ+7z12rx1FSY8ZHZnxk5tf4lhlR43NVb8RtizYiLEiN0/l6j75T3caQ1HjxLTOiSrRaLT7++GPxc332566tq7hUTKrOXZmoMYoO1WLHC6kAbOuL0r/ehxV7s11+5+01x5F1rRRv3JUEADBbrCg3WxGm46858gzvEPEOERGRX3C3+Lo6KV2a4elbu6BHXCTKTRZoVEruc9QI8A4REREFJIVCgSdv6YR31p6o0ffWH8vH+mP5DnU3dmiKBRN7IqewHJM/3gYAWDCxJ+4dkCDbeMm/8A4R7xD5NavViiNHbHuYdOvWDUqld+8J1KQ/d21dxaViVesAuCx7e65E/k5vMAMAyk0W3P/pdhzNKfa6z/sGJuDIpSKHNCNhOjVKDGaM6tEC6SM6I65JMM5fLUXn5uE4kF2IwjITklpHITJE4/XxyXPch0gmlXeqPn78OCdEfoqLqokIAPKKyjHgelqQnnGROJBd6NPx3DsgAcEaFTYcz8Op6wvDHx3WAQ8PbYcwnRqCABSUGbFs81n0adMEI7u3EL9bXG5CmE7NHend4CMzmaSlpSEtLU28oOS/YmLkTQRZk/7ctXUVl4pVrXNXJiKb5hFBOPjySJzOL0HPuEgIAlBsMGP9sTxoVUp8v+8ifj6YU2/j+WrHeae6xRtOYfGGU9V+J1Srgt5YkU5qQLtoBGtUOHSxCG2ahmD3uWtI7dYcJ/JKUFhmwqPDOqBfmyZQq5S4cK0UN7Rvis0nL6NnXCQOXSyCxSrgSE4RHhrcDnnFBgBAm6YhCNWqca3UiIsF5dh86jJaRgahe6tIhAepsfvcNUQFaxARrIHBbIFOrcKWU5dxucSIpqFanM7X41R+CfKKDRjVowUSmoZgf1YhBAgY3qU5tp6+gosF5VhzJBfx0cGwWoF/jO+Om7vGyn+RZRawd4js+MiMiCgwlBktyLpWinYxofhh/0Vc1ZtwZ584RIVoYbUKWHs0D7lF5dhx5iruH5iA5hFB+HZ3FtYdzUdhmQktI4OgUAA7z3Lvo5o6+o/bEKSRNy8dH5nJjBMiIiKqiVKjGSFaNYrLTfj5YA5aRwVj34VCJESHQKNSICZch18P5iCnqBwmixWD2jdFSpfmmPzRVlwsLEdcVDCyC8p8fRr1at/cWxEZLO8aK06IZMYJERER+Uq5yYIjl4qQEB0CpUKBqBANDGYrlAoFzFYrdGoVTBYr3lp9HGVGC6YNbouYcB1CNCqczC/Bij3Z2HXuGm7u2hx9EpqgeYQO64/l43/7LmJgu2hEBGuw5I8zuLNva2QXlMFgsqB1kxAM79ocRy4VoVmYDtdKjYgO1SJIo8LgjjE4dLEQOYXlCNGqsP9CIYZ3bY7+baNRVG5CbmE52sWEepRXzmC2oMvffgHACZFf4ITIv5WXl+Ohhx4CAPzrX/9CUFBQvfXnrq2ruFSsah0Al2Vvz5WIqC4ZzVZ0/tvPADgh8gucEPk3vmVGRNQwVZ4QrUm/CR2bh8vaP98yI6pEq9Xi7bffFj/XZ3/u2rqKS8Wk6tyViYgaKpVSgSYhGlwrNfnFFgK8Q8Q7RERERHXidH4JMrMKcGv3FrLnleMdIiIiIvIL7ZuFoX2zMF8PwyOcEJFfs1qtOH/etgFaQkKCLKk7PO3PXVtXcalY1ToALstM3UFEJJ9G8cjshx9+wFNPPQWr1YrnnnsODz/8sMff5SMz/8ZF1UREgYmPzKowm81IT0/HunXrEBkZib59+2LChAlo2rSpr4dG9SQkJMRn/blr6youFata565MRETy8PsJ0Y4dO9C9e3fExcUBAEaNGoXffvsN9957r49HRvXBfmfFF/25a+sqLhWTqnNXJiIiefh8EcLGjRsxduxYtGrVCgqFAitXrnRqk5GRgbZt2yIoKAgDBw7Ejh07xNjFixfFyRAAxMXFITs7uz6GTkRERI2EzydEer0eSUlJyMjIkIwvX74c6enpmDt3Lvbs2YOkpCSMHDkSeXl59TxSIiIiaqx8PiEaNWoU5s2bhwkTJkjG33rrLcyYMQPTpk1DYmIiFi9ejJCQECxZsgQA0KpVK4c7QtnZ2WjVqlW1xzMYDCgqKnL4Q/7LYDBgxowZmDFjBgwGQ732566tq7hUrGqduzIREcmnQb1lplAosGLFCowfPx4AYDQaERISgm+//VasA4ApU6agoKAAq1atgtlsRrdu3bB+/XpxUfWWLVuqXVT90ksv4eWXX3aq51tm/olvmRERBaaAesvs8uXLsFgsiI2NdaiPjY3F0aNHAQBqtRpvvvkmhg8fDqvVimeffdblG2azZ89Genq6WC4qKkJ8fHzdnADVOY1Gg3nz5omf67M/d21dxaViUnXuykREJI8GfYfIvmB6y5YtGDRokNju2WefxYYNG7B9+3avj8l9iIiIiPyP3L+/fb6GyJWYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYHExET079/fq36IiIjI/zXoCZFWq0Xfvn2xdu1asc5qtWLt2rUOd4xqIy0tDYcPH8bOnTu9HSb5kCAIyM/PR35+PuS42VmT/ty1dRWXilWtc1cmIiL5+HwNUUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/WYNm2aV8fNyMhARkYGLBaLt6dAPlRaWormzZsDkGehcU36c9fWVVwqVrUOgMsyF1UTEcnH5xOiXbt2Yfjw4WLZvuB5ypQpWLZsGSZPnoz8/Hy8+OKLyMnJQXJyMn755RenhdY1lZaWhrS0NBQWFiIqKoqv3/upyjs3FxUVeT3BrUl/7tq6ikvFqtZVJlXmZJ6IApn956Jcd8wb1KJqX7hw4QLfMiMiIvJTWVlZaN26tdf9BPyEyGq14uLFiwgPD4dCoRDr+/fvL7m+yNN6V2X7Z/sr/1lZWbK94Vbd+GrbntfBdVyq3pM6XgfnMq8Dr0NDvA6etOV1cN2mrq5DeHg4iouL0apVKyiV3i+J9vkjM19TKpWSM0uVSiX5l87TelflqrGIiAjZ/oJXN77atud1cB2XqvekjtfBuczrwOvQEK+DJ215HVy3qcvrEBkZ6dH4PdGg3zLzpbS0NK/qXZWr60MONe3bXXteB9dxqXpP6ngdnMu8Dp4d2xu8DjXv25O2vA6u2zT062AX8I/MfImbQtrwOtjwOtjwOtjwOtjwOtjwOtjU5XXgHSIf0ul0mDt3LnQ6na+H4lO8Dja8Dja8Dja8Dja8Dja8DjZ1eR14h4iIiIgCHu8QERERUcDjhIiIiIgCHidEREREFPA4ISIiIqKAxwkRERERBTxOiPxI27Zt0atXLyQnJzskxA00paWlaNOmDZ5++mlfD8UnCgoK0K9fPyQnJ6NHjx745JNPfD0kn8nKykJKSgoSExPRq1cvfPPNN74ekk9MmDABTZo0waRJk3w9lHr1ww8/oEuXLujUqRM+/fRTXw/HZwL1v39lcvws4Gv3fqRt27Y4ePAgwsLCfD0Un3rhhRdw8uRJxMfH44033vD1cOqdxWKBwWBASEgI9Ho9evTogV27dqFp06a+Hlq9u3TpEnJzc5GcnIycnBz07dsXx48fR2hoqK+HVq/Wr1+P4uJifPbZZ/j22299PZx6YTabkZiYiHXr1iEyMhJ9+/bFli1bAvL/g0D871+VHD8LeIeI/MqJEydw9OhRjBo1ytdD8RmVSoWQkBAAgMFggCAICNR/17Rs2RLJyckAgBYtWiAmJgZXr1717aB8ICUlBeHh4b4eRr3asWMHunfvjri4OISFhWHUqFH47bfffD0snwjE//5VyfGzgBMimWzcuBFjx45Fq1atoFAosHLlSqc2GRkZaNu2LYKCgjBw4EDs2LGjRsdQKBQYNmwY+vfvjy+++EKmkcunPq7B008/jQULFsg04rpRH9ehoKAASUlJaN26NZ555hnExMTINHp51ce1sNu9ezcsFgvi4+O9HLW86vMa+BNvr8vFixcRFxcnluPi4pCdnV0fQ5cV/37YyHkdavuzgBMimej1eiQlJSEjI0Myvnz5cqSnp2Pu3LnYs2cPkpKSMHLkSOTl5Ylt7GtCqv65ePEiAOCPP/7A7t278f3332P+/PnYv39/vZybp+r6GqxatQqdO3dG586d6+uUaqU+/i5ERUVh3759OHPmDL788kvk5ubWy7nVVH1cCwC4evUqHnzwQXz88cd1fk41VV/XwN/IcV0aA14HG7mug1c/CwSSHQBhxYoVDnUDBgwQ0tLSxLLFYhFatWolLFiwoFbHePrpp4WlS5d6Mcq6VRfX4Pnnnxdat24ttGnTRmjatKkQEREhvPzyy3IOW3b18XfhL3/5i/DNN994M8x6UVfXory8XBg6dKjw+eefyzXUOlOXfx/WrVsn3HnnnXIMs97V5rps3rxZGD9+vBh/8sknhS+++KJexltXvPn74c///auq7XXw9mcB7xDVA6PRiN27dyM1NVWsUyqVSE1NxdatWz3qQ6/Xo7i4GABQUlKC33//Hd27d6+T8dYFOa7BggULkJWVhbNnz+KNN97AjBkz8OKLL9bVkOuEHNchNzdX/LtQWFiIjRs3okuXLnUy3rokx7UQBAFTp07FzTffjAceeKCuhlpn5LgGjZEn12XAgAE4ePAgsrOzUVJSgp9//hkjR4701ZDrBP9+2HhyHeT4WcAJUT24fPkyLBYLYmNjHepjY2ORk5PjUR+5ubkYMmQIkpKScMMNN+DBBx9E//7962K4dUKOa9AYyHEdzp07h6FDhyIpKQlDhw7F448/jp49e9bFcOuUHNdi8+bNWL58OVauXInk5GQkJyfjwIEDdTHcOiHX/xepqam466678NNPP6F169Z+/8vSk+uiVqvx5ptvYvjw4UhOTsZTTz3V6N4w8/TvR2P771+VJ9dBjp8FatlGTHWqffv22Ldvn6+H0WBMnTrV10PwmQEDBiAzM9PXw2gQhgwZAqvV6uth+NyaNWt8PQSfuOOOO3DHHXf4ehg+F6j//SuT42cB7xDVg5iYGKhUKqeFr7m5uWjRooWPRlW/eA1seB0q8FrwGlSH18WG18Gmvq4DJ0T1QKvVom/fvli7dq1YZ7VasXbtWgwaNMiHI6s/vAY2vA4VeC14DarD62LD62BTX9eBj8xkUlJSgpMnT4rlM2fOIDMzE9HR0UhISEB6ejqmTJmCfv36YcCAAVi0aBH0ej2mTZvmw1HLi9fAhtehAq8Fr0F1eF1seB1sGsR1qNW7aeRk3bp1AgCnP1OmTBHbvPfee0JCQoKg1WqFAQMGCNu2bfPdgOsAr4ENr0MFXgteg+rwutjwOtg0hOvAXGZEREQU8LiGiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOBxQkREREQBjxMiIiIiCnicEBEREVHA44SIiMhLRqMRHTt2xJYtW2Tt95dffkFycrLXWbyJyD1OiIjIwdSpU6FQKJz+VM4zRI4WL16Mdu3a4cYbbxTrFAoFVq5c6dR26tSpGD9+vEf93nbbbdBoNPjiiy9kGikRVYcTIiJyctttt+HSpUsOf9q1a+fUzmg0+mB0DYsgCHj//ffx0EMP1Un/U6dOxbvvvlsnfRNRBU6IiMiJTqdDixYtHP6oVCqkpKRg5syZmDVrFmJiYjBy5EgAwMGDBzFq1CiEhYUhNjYWDzzwAC5fviz2p9fr8eCDDyIsLAwtW7bEm2++iZSUFMyaNUtsI3VHJSoqCsuWLRPLWVlZuPvuuxEVFYXo6GiMGzcOZ8+eFeP2uy9vvPEGWrZsiaZNmyItLQ0mk0lsYzAY8NxzzyE+Ph46nQ4dO3bEv/71LwiCgI4dO+KNN95wGENmZqbLO2S7d+/GqVOnMGbMmBpeZeDs2bOSd+NSUlLENmPHjsWuXbtw6tSpGvdPRJ7jhIiIauSzzz6DVqvF5s2bsXjxYhQUFODmm29G7969sWvXLvzyyy/Izc3F3XffLX7nmWeewYYNG7Bq1Sr89ttvWL9+Pfbs2VOj45pMJowcORLh4eHYtGkTNm/ejLCwMNx2220Od6rWrVuHU6dOYd26dfjss8+wbNkyh0nVgw8+iK+++grvvvsujhw5go8++ghhYWFQKBSYPn06li5d6nDcpUuX4qabbkLHjh0lx7Vp0yZ07twZ4eHhNTofAIiPj3e4C7d37140bdoUN910k9gmISEBsbGx2LRpU437J6IaEIiIKpkyZYqgUqmE0NBQ8c+kSZMEQRCEYcOGCb1793Zo/49//EO49dZbHeqysrIEAMKxY8eE4uJiQavVCl9//bUYv3LlihAcHCw8+eSTYh0AYcWKFQ79REZGCkuXLhUEQRD+/e9/C126dBGsVqsYNxgMQnBwsPDrr7+KY2/Tpo1gNpvFNnfddZcwefJkQRAE4dixYwIAYfXq1ZLnnp2dLahUKmH79u2CIAiC0WgUYmJihGXLllV7vZ588knh5ptvdqoHIAQFBTlcx9DQUEGtVgvjxo1zal9WViYMHDhQuP322wWLxeIQ6927t/DSSy9VOwYi8p7at9MxImqIhg8fjg8//FAsh4aGip/79u3r0Hbfvn1Yt24dwsLCnPo5deoUysrKYDQaMXDgQLE+OjoaXbp0qdGY9u3bh5MnTzrdiSkvL3d4nNS9e3eoVCqx3LJlSxw4cACA7fGXSqXCsGHDJI/RqlUrjBkzBkuWLMGAAQPwv//9DwaDAXfddVe14yorK0NQUJBk7O2330ZqaqpD3XPPPQeLxeLUdvr06SguLsbq1auhVDrevA8ODkZpaWm1YyAi73FCREROQkNDq31EVHlyBAAlJSUYO3Ys/vnPfzq1bdmypcdvpykUCgiC4FBXee1PSUkJ+vbtK/nGVbNmzcTPGo3GqV/7a+vBwcFux/Hwww/jgQcewNtvv42lS5di8uTJCAkJqbZ9TEyMOOGqqkWLFk7XMTw8HAUFBQ518+bNw6+//oodO3ZIPnq7evWqwzkSkfw4ISIir/Tp0wf//e9/0bZtW6jVzj9SOnToAI1Gg+3btyMhIQEAcO3aNRw/ftzhTk2zZs1w6dIlsXzixAmHuyJ9+vTB8uXL0bx5c0RERNRqrD179oTVasWGDRuc7tzYjR49GqGhofjwww/xyy+/YOPGjS777N27Nz788EMIggCFQlHjMf33v//FK6+8gp9//hkdOnRwitvvgPXu3bvGfROR57iomoi8kpaWhqtXr+Lee+/Fzp07cerUKfz666+YNm0aLBYLwsLC8NBDD+GZZ57B77//joMHD2Lq1KlOj4VuvvlmvP/++9i7dy927dqFRx991OFuz/3334+YmBiMGzcOmzZtwpkzZ7B+/Xo88cQTuHDhgkdjbdu2LaZMmYLp06dj5cqVYh9ff/212EalUmHq1KmYPXs2OnXqhEGDBrnsc/jw4SgpKcGhQ4dqcNVsDh48iAcffBDPPfccunfvjpycHOTk5ODq1atim23btkGn07kdBxF5hxMiIvJKq1atsHnzZlgsFtx6663o2bMnZs2ahaioKHHSs3DhQgwdOhRjx45FamoqhgwZ4rQW6c0330R8fDyGDh2K++67D08//bTDo6qQkBBs3LgRCQkJmDhxIrp164aHHnoI5eXlNbpj9OGHH2LSpEl47LHH0LVrV8yYMQN6vd6hzUMPPQSj0Yhp06a57a9p06aYMGFCrTZP3LVrF0pLSzFv3jy0bNlS/DNx4kSxzVdffYX777/f5WM7IvKeQqj60J6IqB6kpKQgOTkZixYt8vVQnGzatAm33HILsrKyEBsb67b9/v37MWLECJw6dUpycXltXb58GV26dMGuXbskN8YkIvnwDhER0XUGgwEXLlzASy+9hLvuusujyRAA9OrVC//85z9x5swZWcdz9uxZfPDBB5wMEdUDLqomIrruq6++wkMPPYTk5GR8/vnnNfru1KlTZR9Pv3790K9fP9n7JSJnfGRGREREAY+PzIiIiCjgcUJEREREAY8TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOD9P/y4sOr8Fg3lAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 9):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "07f28d13", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.005)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGwCAYAAABfKeoBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM8klEQVR4nO2deXwTZf7HP5M0SVuucpbDUlwRBVdBKSCKAlpEVBRUPFalgKKsRcGuF+iC6w9PFFCs4rGA1yrqCux6K6Iggty4WkVBRKCUQ6SlV87n90eZIUmTdOaZJ82Tyff9evFimibvfJ5nJpOnM8+hMMYYCIIgCIIgiAaxJToAQRAEQRBEskANJ4IgCIIgCJ1Qw4kgCIIgCEIn1HAiCIIgCILQCTWcCIIgCIIgdEINJ4IgCIIgCJ1Qw4kgCIIgCEInaYkOkGgCgQBKS0vRrFkzKIqS6DgEQRAEQeiAMYYjR46gY8eOsNka7zpQyjecSktLkZOTk+gYBEEQBEFwsGvXLhx33HGN9n4p33Bq1qwZgLqKb968eYLTEARBEAShh4qKCuTk5Gjf441FyjaciouLUVxcDL/fDwBo3rw5NZwIgiAIIslo7G42SqqvVVdRUYEWLVqgvLy8wYaTx+PBU089BQCYNGkSnE6n4fezkkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8sY8eORdu2bXV9fwuFpTjl5eUMACsvL2/wuZWVlQwAA8AqKyu53s9KDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKUlpbq/v4WScrequMhLS0NBQUF2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA92qM3CrjiAIgiAIOUjU9zdNgEkQBEEQBKETajgRBEEQBEHohBpOBqiqqkJWVhaysrJQVVWV8g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdww1SXl5Ojjh4rOQQ5SFHfDxWcojykCM+HnLExyMqCy/UcDJARkYGfvrpJ2071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhORY4lbdjh07MG7cOOzbtw92ux1r1qxBkyZNhL+P1+vFCy+8AAC4+eab4XA4UtohUxZZHDJlsZJDpiyyOGTKYiWHTFms5IhHlmuuuYYrh2kadZ7yOHHuueeyFStWMMYY+/3335nX69X9Wt4lV44cOcKVVZbp72WdQj/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyhZPvv/8eDocD55xzDgCgVatWcXsvm82GTqcPxh/VHtwwfx3evW2Q4VWZ7XY7rrzySm2bB1kcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7Zspgh4Z3DV6xYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvgCAJUuWYOHChfD7/dizZw+uvPJKTJ06Vff7G+lcVu3xoce0j7WfSx4cikxn0rc9CYIgCCLpSNnO4VVVVejZsyeKi4sj/n7RokUoKirC9OnTsXHjRvTs2RNDhw7F/v37AQA+nw8rV67Es88+i9WrV+PTTz/Fp59+2phFIAiCIAgiRUh4w2nYsGGYMWMGRo4cGfH3s2bNwvjx4zF27Fj06NED8+bNQ2ZmJubPnw8A6NSpE/Ly8pCTkwOXy4WLLroImzdvjvp+brcbFRUVIf8IgiAIgiD0kPCGUyw8Hg82bNiA/Px87TGbzYb8/HysXr0aANCnTx/s378ff/zxBwKBAFasWIHu3btHdT7yyCNo0aKF9i8nJ0d3nurqauwuHo3dxaMR8NZylam6uhqdOnVCp06dUF1dndQOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcwgdQedgwcPwu/3Izs7O+Tx7Oxs/PjjjwCAtLQ0PPzwwzj33HPBGMMFF1yASy65JKpzypQpKCoq0n6uqKjQ3XhijMFfeejoDwYLE+QoLS3VtpPZIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYsZpG446WXYsGEYNmyYrue6XC64XC4UFxejuLgYfr9f9/ukp6ejw5inAQBKGt88Funp6di0aZO2ncwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcyQ8FF1wSiKEjKqzuPxIDMzE++8807ISLuCggIcPnwYS5cuNf2eNKqOIAiCIJKPlB1VFwun04nevXtj2bJl2mOBQADLli1D//79E5iMIAiCIIhUJOGXSyorK7Ft2zbt5x07dmDz5s1o1aoVOnfujKKiIhQUFCAvLw99+/bFnDlzUFVVhbFjx5p6X55bdV6vF5X/+wwA0KTHIK739Xq9eP311wEA1113HfeU8zI4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyDJ8+HCuHKYRMf24GZYvX65Nnx78r6CgQHvO3LlzWefOnZnT6WR9+/Zla9asEfb+RpZc2ff7YS1fzh3vsCq3/qVdVGSZ/l7WKfST3SFTFis5ZMoii0OmLFZyyJTFSo54ZEnZJVcGDRrUYM/4iRMnYuLEiY2UKDKMMdwwfx0y/pQHAFBsfHc57XY7LrroIm07mR0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymEGqzuGNSfCtup9++qnBzmXhHcMB6hxOEARBEImCOoc3MoWFhSgpKcG6desSHYUgCIIgiCQhZRtOBEEQBEEQRqGGkwEC3lrseWE89rww3tSSKyeeeCJOPPFEU1POy+CQKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQwp20GHZzoCMMD3x15tmwfGmDb9Am/3MlkcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspghZRtOhYWFKCws1DqX6UFJcyD7use1bR7S09Px1VdfadvJ7JApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDCk7qk5Fb698GlVHEARBEPJAo+oIgiAIgiAkhy6XGIAF/Kj+aTUAILMb31p5Pp8PixcvBgCMHDkSaWnGd4EsDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKcf/75XDlMI2L68WTkmWeeYd27d2fdunXTNWV7ldvLcu54h5ZckTSLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKLrmSKHg6h0NR4Mr5s7bNg81mw8CBA7XtZHbIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgbqHE6dwwmCIAgi6aDO4QRBEARBEJJDDSeCIAiCIAidpGzDqbi4GD169ECfPn10vybgdaN0wW0oXXAbAl431/vW1NSgV69e6NWrF2pqapLaIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYspGrUruoSUl5fTqDqJRkkku0OmLFZyyJRFFodMWazkkCmLlRzxyEKj6pIAJc2Bdlf9n7bNQ3p6Oj755BNtO5kdMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspiBRtXRqDqCIAiCSDpoVB1BEARBEITk0OUSA7CAHzU7NgIAMo4/g8vh8/nw8cd1V66GDh3KPeW8DA6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyy9O/Pt/SZaRq1R5WEUOdwuTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncMbmeLiYhQXF8Pv9+t/kaLA2f5EbZsHm82GvLw8bTuZHTJlkcUhUxYrOWTKIotDpixWcsiUxUoO2bKYgTqHU+dwgiAIgkg6qHM4QRAEQRCE5FDDiSAIgiAIQifUcDJAwOtG2Wt3oey1u0wtuXL22Wfj7LPPNjXlvAwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwQoaQ60HXmfts2Dy+XC4sWLte1kdsiURRaHTFms5JApiywOmbJYySFTFis5ZMtiBhpVR6PqCIIgCCLpoFF1KQRjDNUeH1K8zUoQBEEQSQddLjEAC/jh3v09AMB13ClcDp/Ph/Pumoef9h3B2WcPwDu3DoBicDJNv9+PlStXAgDOOecc2O12wzlEOGTKIotDpixWcsiURRaHTFms5JApi5Uc8cjSs2dPrhymadQeVRLS2J3D9x86bJkO5jJlkcUhUxYrOWTKIotDpixWcsiUxUqOeGShzuGNDN+SK4CjdWdtmwdFUYQ4evTooW0nyiFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGahzeCN3Dg/3UAdzgiAIgjAOdQ4nCIIgCIKQHGo4EQRBEARB6IQaTgYIeN3Y9+b92Pfm/aaWXBHhGDJkCIYMGWJq2nqzDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiWHbFlM0ahd0SWERtXJNUoi2R0yZbGSQ6YssjhkymIlh0xZrOSIRxYaVZcEKGkOtL7kb9o2Dy6XS4jjtdde07YT5ZApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDDSqjkbVEQRBEETSQaPqJCe1m5cEQRAEQQC05IouGGMYNW81WMAPz77tAABn9glcLr/fD/fen0w7Nm7cCAA444wzuKetN+uQKYssDpmyWMkhUxZZHDJlsZJDpixWcsQjS9euXblymKZRe1RJiJ7O4VVuL8u95z3qHC5xFlkcMmWxkkOmLLI4ZMpiJYdMWazkiEcW6hxugi5duqB58+aw2Wxo2bIlli9fHp83UoCczp1RerjW1HIp9ubtNB+vIzc3V9tOlEOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJIVsWM1iic3iXLl3w3XffoWnTpoZfq6dzWXCH7vX35yNvxmcAqHM4QRAEQSQK6hxOEARBEAQhOQlvOK1YsQLDhw9Hx44doSgKlixZUu85xcXF6NKlC9LT09GvXz+sXbs25PeKomDgwIHo06cPXn/99UZKThAEQRBEqpHwhlNVVRV69uyJ4uLiiL9ftGgRioqKMH36dGzcuBE9e/bE0KFDsX//fu05X331FTZs2ID//Oc/ePjhh/Htt9/GJSvzeTD6mlHY/+4MMJ+Hy1FbW4v9784w7RgxYgRGjBiB2trahDlkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUWjdkVvAABs8eLFIY/17duXFRYWaj/7/X7WsWNH9sgjj0R03HnnnWzBggVR36O2tpaVl5dr/3bt2kWj6iQaJZHsDpmyWMkhUxZZHDJlsZJDpixWcsQjC42qi4DH48GGDRswZcoU7TGbzYb8/HysXr0aQN0Vq0AggGbNmqGyshKff/45rrrqqqjORx55BP/4xz+48ij2NMx6uhgz3v8Bip2v6pxOJ1oNnaj5eB0vvPCCtp0oh0xZZHHIlMVKDpmyyOKQKYuVHDJlsZJDtixmkGpUnaIoWLx4MUaMGAEAKC0tRadOnfD111+jf//+2vPuvvtufPnll/jmm2/wyy+/YOTIkQDqJsYaP348Jk2aFPU93G433G639nNFRQVycnJoVB1BEARBJBGJGlWX9N/Yf/rTn7Blyxbdz3e5XHC5XCguLkZxcTH8fn8c0xEEQRAEYSWkbji1adMGdrsd+/btC3l83759aN++vSl3YWEhCgsLtRZrLNRrcowF8OMPJfAc2AlHmxyu9w0EAvAc2AkAphw//PADAKB79+6w2Yz38RfhkCmLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0unTp24cpimUXtUNQCidA6fOHGi9rPf72edOnWK2jncKA0tuRIIBNiwOSuk7Rx+5MgRw68Pd8jU2S/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHlpTtHF5ZWYlt27ZpP+/YsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKowdO9bU++q9VVfj9aNkbwUA4OT2zVDdpg3+qOKbRkDFlmHuXixjDM6mWfD5A7j+pW+weNJ5XFPPt2nTxlQOkR4rOUR5yBEfj5UcojzkiI+HHPHxiMrCS8I7h3/xxRcYPHhwvccLCgqwcOFCAMAzzzyDmTNnoqysDL169cLTTz+Nfv36CXn/hjqXBXfm/v4fQ6Eo0H5OVOdw6mBOEARBpDop2zl80KBBaKjtNnHiREycOLGREkUnQesJEgRBEAQhCQmfOZwgCIIgCCJZSNmGU3FxMXr06IE+ffrofk1tbS3GFtyAA/+dCebzgOcmZ21tLQ78d6bm4EGU47rrrsN1111negp9sx4rOWTKYiWHTFlkcciUxUoOmbJYySFbFlM0ald0CWloVJ263EruPe/VGxE3bM4KFggEDL2fiFF1sizbIspjJYdMWazkkCmLLA6ZsljJIVMWKznikSVlR9UlE06nE7NmzcILK35BtT0NJXsrUOP1G+qY7XQ60fK88QDMLbkiwjF79mxtmxcRHis5ZMpiJYdMWWRxyJTFSg6ZsljJIVsWMyR8VF2iCJ6O4KefftI1qk4dvVbl9uGU6Xwj62hUHUEQBEGYJ1Gj6lK2j1NhYSFKSkqwbt06w6+l0XUEQRAEkZrQZQoDBAIB/Prrr6jx+MBYAIpirN3JGENlrRe+8rolZOzN23LnEOH47bffAACdO3c2NYW+WY+VHDJlsZJDpiyyOGTKYiWHTFms5IhHlqysLK4cpmnUHlUSYqZzeO497+numB0IBNjlz66SctkWmTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncOThMzMTK7X1Xj92LDzDwCA4nCZziHCoZaFmezmxlsnVnWI8pAjPh4rOUR5yBEfDzni4xGVhRfqHM7ROTzSYw0R3qFbJVGdwxljuHLeamzY+Qfyclvi7Qn9uda7IwiCIIhEQJ3DGxkzncOtQPAVsPU7/0CNN/ZixwRBEARBpHDDKZGsvLv+osYEQRAEQcgPNZwM4Ha7MX78eBT+9RYwn5fLwXxeTC2aiN8/fJrb4Xa78fuHTyfcoXrGjx+P8ePHw+12p7xDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZeQxhpVp3p4R9UFAgFW5fayQCAgzbItjMkzYkMWh0xZrOSQKYssDpmyWMkhUxYrOeKRhUbVNTLBncP14nA4MGPGDHj9ASw4Yud6X8Vux5RpD+C55duh2PU5WFhH7hev74Wsc27QfDw4HA7TDtUzY8YMbTvVHTJlsZJDpiyyOGTKYiWHTFms5JAtixlSdlSdSkO98uMxqm79/fnIm/GZ7teHj6ILfr2RDLGctGwLQRAEkUzQqDqCIAiCIAjJoUsMBmCM4cCBA6j2+MAY45r3iDGGgwcOwF9dDlsGXwuZMQZ/dTkAJNSheg4ePAgAaNOmDX+dWMQhUxYrOWTKIotDpixWcsiUxUqOeGRxOp1cOcxCDScDVFdXo127dgCAnDvegeJMN+xgXje6/ylHc/Dm2D33uoQ7VI9aJ5WVlWjSpElKO2TKYiWHTFlkcciUxUoOmbJYyRGPLKWlpVw5zEK36giCIAiCIHRCV5wM0KRJEzDGoi6fogebMx0HjtSGdO7myZF7z3vcrxflUD1mxxdYySFTFis5ZMoii0OmLFZyyJTFSo54ZKmoqDCdiQe64kQQBEEQBKGTlG04FRcXo0ePHujTp0+io6Q86lU8tdM9QRAEQchKyjaceBb5dbvdmDx5Mu76W5GpJVfuu+dOHPrsBVPLpRz67AXDDrWBwhjjdkTKMnnyZEyePJlr+nvGGEbO/RLtz7oC7c+6ApfP/ZKr8WQ2hyiHTFms5JApiywOmbJYySFTFis5ZMtiCtNzjyc5ybDkSnCG3HveY7+W/W7YEQgE2OXPrmK597zHrnh2Fdv3uxxLrlS5vdzL0IjMIcohUxYrOWTKIotDpixWcsiUxUqOeGShJVeSAIfDgalTp8LrD2CRn3/Jlcl33o35q341tVxK8/5XaT491Hj92LDzDwDA+p1/wAebYUe0LFOnTtW2eVDsdtNZROQQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxAS66kyJIr8Vi2RQSRRijS8i8EQRBEQ9CSKwRBEARBEJJDf9YbgDGGqqoq00uuVFVVIeCpheJwcecIeGoBIKEO1VNdXQ0AyMzM5K4T5nWbyiIqh1mHTFms5JApiywOmbJYySFTFis54pElUTfM6IqTAaqrq9G0aVO0a5WlfdEbhXnd6NK+NXbNvpLbUV1djV2zr0y4Q/U0bdoUTZs21Q5mozCvW0h5zOYQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxADSeTpHYPMYIgCIJILehWnQEyMzNRWVmJao8PeY+uBACMmrca798+QPclR8Xhwq9lv+Ocx5brvi0V3jjLzMzUFublvbUlwqF6KisrtW0eFIdLSHnM5hDhkCmLlRwyZZHFIVMWKzlkymIlRzyy+Hw+7ixmSNmGU3FxMYqLi+H3+3W/RlEUZDZpgsxMhlM6tkDJ3gqU7K1AjdevexSYoiho0qQJbM50Xc9njGHUvNX1HHpfHyuHWYfq4V0pO9ihCCiPiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlqrrpHhmTlcRVEUvD2hfxxS1afG60fJ3tCDo8ajv7FHEARBEIQ4UrbhxIPH48F9992H++67D16vh8vB/F489I9p+GPFK2B+vqVOBjzyCf5Y8Yoph8fjMe1QPWqdeDz8dSKiPGZziHDIlMVKDpmyyOKQKYuVHDJlsZJDtiymiPfU5LLDu+TK/kOHtcdjLRESCARYldvLDhyp5VpyJfj9h81ZkdBlWyJBS67Im8VKDpmyyOKQKYuVHDJlsZIjHlloyZUkIC0tDZMmTdK2G4IxhivnrdaWOgEAxWbHzbdOxBvf/AbFZmx5kbcn9EeN14/eD3yIZr0v1Xw8pKWlmXaoHiN1EgnFZhdSHrM5RDhkymIlh0xZZHHIlMVKDpmyWMkhWxYz0JIrHEuuxHo82muDMbLkSvj7AOBaooSWXCEIgiCsBC25QhAEQRAEITnUcEoyMhx25OW2THQMgiAIgkhJqOFkgKqqqro5hxQFVVVVXI6ApxZtm6Vj52OXaGvFGUFRFCy84TTsfOwSbgdQVxazDtUjok5ElMdsDhEOmbJYySFTFlkcMmWxkkOmLFZyyJbFDNRwikEgwBCQsAcY7wKLBEEQBEGYg3rgRiEQYPjT1A9CHsvMzMT+/fu1bR4Uhws//LILQ2avMLW8yK+7SzHAwLItkRzH3fa6lokXUXViNouIHCIcMmWxkkOmLLI4ZMpiJYdMWazkiEcWp9PJncUM1HCKwqHq+hNrKYqCtm3bAqgbDcaDoiho07Yt7JktuLOpOcw6jL6eMYYarx8ZDrt21Su4ThozSySHiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyxSTV1dXIzc3FnXfemegolkSdk6rHtI8xat5qpPgsFgRBEESKYpkrTg899BDOPPPMuL6Hx+PB7JmPAQAKJ93B5WB+L2bNfBTlX29H836Xc+d4/NHHUP71z6Yc5V8vAgBdjhqvX5vIc/3OP7SFjT0eD2bOnAkAuOuuu7gunTK/FxXfvKs7SyRE5BDhkCmLlRwyZZHFIVMWKzlkymIlRzyy3HLLLVw5zGKJCTB//vln3HvvvRg+fDi+++47PPHEE7pfG20CrYOV7pAJIgFg3T0D0K5VFgBg/6HD6PPYVwCMTYAZ8NRi1+wrAQA5d7yDHx+9zNAEmJnONFRVVaFp06a6HZGyfHlHf3Rp35orR7QslZWVhle+rvb4cPK9Sw3VSSTM5gh37D90GG2ymnN1xBedhRxyZZHFIVMWKzlkymIlRzyylJaWomPHjo0+AWbCrzitWLECM2fOxIYNG7B3714sXrwYI0aMCHlOcXExZs6cibKyMvTs2RNz585F3759td/feeedmDlzJr7++uu4Zk1LS8NNN92kbfOg2Oy4vmAslmzaY2p5kTHjxuGd9btNOZqedoGWiRdRdWI2i4gcdrsdXc4ejoNH3Mh7aDn6nNAOb0/ob7jxJCILOeTNIotDpixWcsiUxUoO2bKYIeFXnD788EOsWrUKvXv3xuWXX16v4bRo0SKMHj0a8+bNQ79+/TBnzhy8/fbb2Lp1K9q1a4elS5fiq6++wsyZM7Fw4cIGrzi53W643W7t54qKCuTk5Oi64iTDkitG3j9WFqNLrkS74gRE7jSuF5mWXJEpC0EQBBGbRC25kvBvhGHDhmHYsGFRfz9r1iyMHz8eY8eOBQDMmzcP77//PubPn497770Xa9aswZtvvom3334blZWV8Hq9aN68OaZNmxbR98gjj+Af//hHXMqSigQvZJyX25LrCg1BEARBJAtSj6rzeDzYsGED8vPztcdsNhvy8/OxevVqAHUNoV27duHXX3/FE088gfHjx0dtNAHAlClTUF5erv3btWtX3MthZSJ1GicIgiAIqyJ1w+ngwYPw+/3Izs4OeTw7OxtlZWVcTpfLhebNm4f800tVVRWaNGmCJk2amFpeJDe7FX6bdYWp5UXatmxh2vHbrCtMOUR5Ap5a0w4R+0ZknYjIQg45s8jikCmLlRwyZbGSQ7YsZkj4rTqRjBkzRvdzi4uLUVxcDL/f2BWS6upqg6nkdTCvu+EnNZJHhEOmOpFlH1vJIcpjJYcoDzni4yFHfDyisvBiqOEUCATw5ZdfYuXKldi5cyeqq6vRtm1bnH766cjPz0dOTo7QcG3atIHdbse+fftCHt+3bx/at29vyl1YWIjCwkKtc5keMjIysGPHDm2bB8XhxIbvfsSlz6yC4uCbCyMjIwMlW38+umwLv6PThH9qmXgR4VEcTtMOEftGZJ2IyEIOObPI4pApi5UcMmWxkkO2LGbQ1XCqqanBk08+ieeeew6HDh1Cr1690LFjR2RkZGDbtm1YsmQJxo8fjwsuuADTpk0TNhGl0+lE7969sWzZMm2kXSAQwLJlyzBx4kRT7oauOEUaa2iz2dClSxcAZpZcsaFzbhektdjG9Xo1R26XLkhrsdWUI61FdsNPbASPoph3BO8bMw5RdSIiCznkzCKLQ6YsVnLIlMVKjnhkSdSSK7oaTt26dUP//v3x4osvYsiQIXA4HPWes3PnTvzrX//CNddcg/vuuw/jx4/XFaCyshLbth1rROzYsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKm2UHS+xrjgxxnDV86tN+QmCIAiCsB66Gk6ffPIJunfvHvM5ubm5mDJlCu6880789ttvugOsX78egwcP1n4uKioCABQUFGDhwoW4+uqrceDAAUybNg1lZWXo1asXPvroo3odxkVS4/Vjx8H6nc68Xi/mPPsMAGDseL6p3pnfh3nFc1Gx7ic0O+NiLofX68UzTz+NinVbTTkq1i0FAG6HKA/z+3Bk4/umHF6vF8XFxQDqGsWRGvd6HMFlUex8XQBFZSGHnFlkcciUxUoOmbJYyRGPLDfccANXDrMkfALMRBNpAq1oE1fSkiv1J8A88Ee5Vic8y6XItORKeFlsznSuCTBlWeLASg6ZssjikCmLlRwyZbGSIx5ZkmbJlS5dumDcuHEYM2YMOnfuHI9MjQLPqDq73Y6//OUv2jYPis2GK666Gh9+VwbFxjcbhN1ux1XXXIP3vt1rypHZY6CWiRcRHsVmM+0QsW9E1omILOSQM4ssDpmyWMkhUxYrOWTLYgbDV5zmzJmjLW0yePBg3HjjjRg5ciRcLle8MsYVI1ecrLTkysq7B+Ocx5dHLJue16vPj7UUix5kWuZEpiwEQRBEbBK15IrhP6snT56MzZs3Y+3atejevTtuu+02dOjQARMnTsTGjRvjkZEwCWMM1Z7QK2vBjSaCIAiCIPTBfT/ijDPOwNNPP43S0lJMnz4dL730Evr06YNevXph/vz5SKWuUzIXVV1LLnzBYoIgCIIgjMPdcPJ6vXjrrbdw6aWX4m9/+xvy8vLw0ksv4YorrsDUqVNx3XXXicwpnOLiYvTo0QN9+vTR/Zqqqiq0bdsWbdu2DZnqfdS81bobigFPLU7uchx2Pf0XU8uL5HbqoMsRvJYcAPTObYl19+XXdVJ/+i+mcqhZzHpEZIm2b4w6RNWJiCzkkDOLLA6ZsljJIVMWKzlky2IGw503Nm7ciAULFuCNN96AzWbD6NGjMXv2bJx88snac0aOHGmoQZIIeGYOB+rWzwOADIcdPTo0R8neCpTsrUCN16+7L8zvvx/kyhwphxHW35+P1k2c2kK8gRoxk4eJ8Ihw8NRJPHIAYrKQIz4eKzlEecgRHw854uMRlYUXww2nPn36YMiQIXjuuecwYsSIiPMwHH/88bjmmmuEBJSJjIwMfPfddwCAzMxMvD2hP06ZXr/zdywUhxMr127EVfNWm1peZN2mzbh0rrFlWzKddiiKouXoMK5Y2+YlIyPDtEdEluB9Y2Yqf1F1IiILOeTMIotDpixWcsiUxUoO2bKYwXDD6ZdffkFubm7M5zRp0gQLFizgDiUrNpsNp5xyivazogQMOxTFhpO794CzbampHD16nAJn293cDkWxwdk29n7Um8WsR0SW8H3D6xBVJyKykEPOLLI4ZMpiJYdMWazkiEcWqZdcCUZtNHk8Huzfvx+BQGjjIVnmduKZx4kgCIIgiNTGcMPpp59+wo033oivv/465HHGGBRFSZqGCE8fJ6/XixdfrruSNmbMGACK4fdlfh9eXfBPHNn8A5qemm/49WqOBf/8J45s/p7bwfw+VP6vbqQdr0PNcmTzR6Y8IrJ4vV4sXLgQQN2+4Z3KP7gsZpZcEZGFHHJmkcUhUxYrOWTKYiVHPLJcfvnlXDnMYngCzLPPPhtpaWm499570aFDB63PjErPnj2FBow3kSbQqnL7IvZdCl5ypbKyEorDFXMSysZacuWHRy5DE1dkR6TX8yxzEl4WtaP5wcMVtORKHLKQQ94ssjhkymIlh0xZrOSIR5akWXJl8+bN2LBhQ8goOivBGMOoeasj/s5ut+Oyyy7TtgMhr9PnV2w2DLt4OL746YCp5UUuGX4plv24H4rNhlHzVuP92wfUa8Q2lCPjxDO1baPkzfgMebkt8fxfTjPlEZEFqL9veB1mc4jMQg45s8jikCmLlRwyZbGSQ7YsZjB8xalPnz6YPXs2BgwYEK9MjUr4FafgKyvdOzRHptOODTv/QF5uS7w9oX9I4yT4uT06NK/XeInnkiuMMVz89Fco2VsR0xPtipPRpUX0lEWPR4+XllwhCIIgGkLqJVcqKiq0f4899hjuvvtufPHFF/j9999DfpeoHu7x4p0J/fHOhP4oeXBovUYTcGwuJwDaXE6NhaIoeHtCf67XZjjsyMttyf3eK+8ezP1aovGoW2rHp/1Lpdn8CYIg4oWuP6WzsrJCGg2MMZx//vkhz0m2zuHho+qOfckcy68odQ2UaFcc1MaL0bmcRGHgzlzY6+py/17l4VqKJcOZmMujhH7UpXaCZ42PdNWUIAiCMIauhtPy5dZbEDZ8VN0N/1yLb/d7Yr6muroaPXr0AACUlJQgMzPTcOMl4K3FGad0Q+nhWnS86Vmu7GoOBoBd8SRsjnTDjpqaGvT+cw/s+aOGO4eaZfdz4wCgQQ9jDDVePzIc9pAv74C3FqUv3arLEStH+L7hcQSXhadeRWYx46jx+rFu296Qel2/8w9DM9yLyAHUdebscXTelQ2bv0XrFs24Gm8y1KtMDpmyWMkhUxYrOeKRZc2aNVw5zKLrDDpw4MB450g4m3cdhs0VeycyxrBz505tmwsG7PrtN22bSxGUI8eE47ejDt4cqsdfsb9BT/AVkHpXPhh0ORrKYXbf6C1LY2URcawlul4ZY/jLi2u0Y+2MBz9F3xM7cF35kqVeZXHIlMVKDpmyWMkhWxYzcPd6ra6uxm+//QaPJ/QqzWmnnWY6lCyE75P09HSsXbtW2+ZBSXPgky++wuj5a6Gk8c2Foeao9fpw/ZID3I4Vq77GVc+v4c6hetqPngUAMT3Biw2HX/lQ0hy6HA3lMLtv9JalMbK4XC6sWPW1ts2DWq+vjOuLm97/ncthtiw1Xj82l1aF1CvPlS8RWazmkCmLlRwyZbGSQ7YsZjDccDpw4ADGjh2LDz/8MOLvk6WPUzSym7uwr8INoO6kHzw/kt1uN714sWKz4/TeeXB9eJjboeao9vig/Ievf5XdbkfvvD5w/ecQdw7V4+rQzZRDsZl3iNg3IsoCHF0SoOfpAAC3nyHDxgxdXWGM4eoX12oNzbwta7mu0Kj1enrvPCgfGu/LBog75l0dumHl3YNxzuP8t/1F7WOrOGTKYiWHTFms5IhHlkQNSDM8Wc3kyZNx+PBhfPPNN8jIyMBHH32El19+GSeeeCL+85//xCNjo/L2LWfFxauOvsvLbYkMh/7O1TQQKrlQb0n2mPax9m/UvNWGLikHX50Djl2hS3ZoUAFBEFbA8BWnzz//HEuXLkVeXh5sNhtyc3MxZMgQNG/eHI888gguvvjieORsNGL9Ue/z+bBo0SIAwNVXX420NP3VV3fFAHAoDK/+61+o/P5bNOl+bszXRJuMU83h9vnBAllQbMa/kHw+H95841iOak/9Ttt6PZXf111FaKg80WABP6p+WGHKYWbfBDuCy8JTrzVeP9bvOBhSHp5bUyLqRHW8s+gAWKAV93Fitl5F5BCVxUoOmbJYySFTFis54pFl2LBhXDlMwwzSrFkztmPHDsYYY507d2ZfffUVY4yxX375hWVkZBjVJYxnnnmGde/enXXr1o0BYDmT32K597zHfvu9iuXe8x7Lvec9duBIbchrKisrGeq62bLKykrGGGNVbq/2/Cq3N+T5kX4X7Mi54516r4n2+mFzVrBAIBDREem9Y2WI5rji2VXae8TyHDhSq23/Wva7rvIEvz6kPmq9LOeOd3TXSTQi7Ruj7D90WHe9RqPKXb88Rj2RHInIwZj5ehWVQ0QWqzlkymIlh0xZrOSIR5bS0lIGgJWXl3Nn4sFwc++kk07C1q1b0aVLF/Ts2RPPP/88unTpgnnz5qFDhw5GdQmDZ5Ffm82G/Px8bZsHm82Gweedj9Xbfzc0EVNwHxc1hz/AsI1zTh7V8e3uw1oOnisjNpsN6bm96n7gGCU1at5qQFG4HcE5ROwbsznU16bn9kK/P7XCL/yTbZnPIiCHiHoVUh+CsljJIVMWKzlkymIlh2xZzGC44TRp0iTs3bsXADB9+nRceOGFeP311+F0OrUVi61KRkYGPv3006i/19ONJSMjA+99+FHE5UtiEfx9o+aItgyKHlQHY4x7IkzVk33NDK7X1nj9KNlbAZvDhTMnzsaOg1VcHjVHrH2j18FblmBsDheyr5mBd8KWo+FxJDqHiHoVkUNUFis5ZMpiJYdMWazkiEeWRHUON9xwuv7667Xt3r17Y+fOnfjxxx/RuXNntGnTRmi4ZINnsd1EUzczeuI77b51S3/0eYj/S5UgCIIgGgPu61wejwdbt26F0+nEGWecYZlGU8smTm27VaYzxjPrSOR6dVYiidqaBEEQRApjuOFUXV2NG2+8EZmZmTjllFPw29FZsG+77TY8+uijwgM2NjYF+OXhi/DLwxfBZgv9Nq+ursYpp5yCU045BdXV1QCML7ZbXV2NvF49UfrSrQh4a7kyqjnyevU07QguC6+n9KVbTZUn4K3FgD6nC6kTM+URURbg2BIyA/qcbqpORNSr2Rwi6lVEDlFZrOSQKYuVHDJlsZJDtixmMHyrbsqUKdiyZQu++OILXHjhhdrj+fn5eOCBB3DvvfcKDZgIwhtMKowxlJSUaNsqRq6WMMbwww8lR3/gyxecI+fCBp6sw8FMTqHv/d3cEjJgwNYffzDlEFEeIWU5+lrv779h6+9ADu9o2aMOU1kE5BBynIioD0FZrOSQKYuVHDJlsZJDtixmMNxwWrJkCRYtWoQzzzwzpC/PKaecgu3btwsNJxvp6enagsdmpov/8JPPMGaBuSVXli9fjlqvH7d8ytehWkRZ1NdmX/swAP5lSpQ0B5Z88DFueXWD6TpRt3kdZsuivjb72ofx/A29cftyvissqsNMFhE5RNSriByisljJIVMWKzlkymIlh2xZzMC15Eq7du3qPV5VVZVUnaJ5sNvtGDRoUMznMAZUe3xRZwe32+04d+BApC/j/wJRc1R7fFCWxR5VF61BHlyWao/PVJb0zubWJ1Rsdpx9zkCkf+k1laOhfaPHYbYsQF150jufhrPPGQjlS74O76oj0TlE1KuIHGazMMa0/od9zxoAgH8os6hjzaxDpixWcsiUxUqOeGRJmlF1eXl5eP/993HbbbcBgNZYeumll9C/v/6+PjJidDmUSFw5bzV+2FuBvNyWeHlcX0HJ+NDmSSKIFIYdXQYneBkboO7zzrMGIEEQqY3hhtPDDz+MYcOGoaSkBD6fD0899RRKSkrw9ddf48svv4xHxrhQXFyM4uJibVHitfedj+zWLWOeRH0+H9577z0AwCWXXBJxuvgf9ta1gKOtL+bz+fDfpUtR/dMmZHTla1ipOdxeP1jAEXUJC3WeJKBurbzgRmFwWc67gLOj1FFP9U91jTPe8rCAHx/89z+o/mmL6ToBou8bPY7gsvAuDcICftRsW4sP/lsNFnBxeVSHmiVROUTUq4gcZrIEr/0XXK/rAn0NT/hqJodoh0xZrOSQKYuVHPHIcu65fMtRmcVw6gEDBmDz5s149NFHceqpp+KTTz7BGWecgdWrV+PUU0+NR8a4ED5zeKYzrcG/PN1uN0aOHAkAqKys5Nrpbrcb11x1JQAg5453uBbxDc6Rc8c7UHTMwxT+l3WwY/+hwzFfyxhDtSfyNAtutxsHFj+kZeGB+bwo+MtVphyi9k1wWfTUaySYz4sDix9CwWJ+j+pQsyQqh4h6FZFDVJYVfxuALu0vA5D4Y82sQ6YsVnLIlMVKjnhkKS0t5cphFq7Sn3DCCXjxxRdDHtu/fz8efvhhTJ06VUgwGbHZbDjrrLO0bV7Hmf37Y9NvhwFF4Zo0U80RYAx7dL4u/Gl6yxLtNkewx9Wpe+Q30YuioE+/M/Ht7nJTS66I2Demy3L0ta5O3XHacS1QZqJORNSr2Rwi6lVIfQjK0jTdEfL5S1QOIfUqURYrOWTKYiWHbFnMwNdsjMDevXvx97//3dINp4yMDKxatcq04+tVq3Dx01+hZG+FNmmmkdsFag6zS66oZYnVOTz4NgdQvx9YRkYG2l8/0/D7V3v8msfmcOGDz77QluNQf2ekMSlq3/CUJRybw4X218/EByaXXDGbRUQOEfUqIoeoLBkZGVj2xQruz43IHGYdMmWxkkOmLFZyxCNL0nQOJ8yjTpp5ynT+k3ciWH9/Plo3cQqZHT1vxmfajOuRfkcddwmCIAgZScx1LiIplxjJdBq7CtQQasd1oG7pmrzcltrP0TrXEwRBEEQioYaTAWpqatCnTx/06dMHNTU1phznnHUmAl53wh1myqJ69r58B/a+fIfuLCvvHhzyc8Drxrlnn4md8ydh5d/O5s4hYt8YLUskAl439r58B4YMPJvbozrMZBGRQ0S9isghKktNTQ3OOetMU/Uq8jxg9vNXXV2N3nl56J2Xh9/Lj3DNpCxLeWRxyJTFSg7ZsphB9626oqKimL8/cOCA6TCyEwgEsH79em3brCPnXL7p4kU7eMuivtZT9nPdDzpP2hnho6oYw8YNGwAA6Wl8V7RE7RujZYkIY/CU/YzNZUDOQKbp1L5kuvpvHXWYyhIhh1GEHCcCcojKEggEtGONt15Fnwd4HYwxXPvCaq08p//jE/Q9sYPhW9yylEcWh0xZrOSQLYsZdDecNm3a1OBzEjWnQmPhcrm0+SNcLleDz490XlYdbq8fd3xtLocIh7rNi8vlQtsrpwMwtzTIvxcvhcth584iojwiyqK+tu2V0zHn6l6Ysrbuoq46MSqgb+JF1WEmS6QcRhFRryJyiMricrnw78VLMeH1jdz1KiqHWUeN14/NpVUhx4l6i9vIYBNZyiOLQ6YsVnLIlsUMuj9d6towqUxaWhouvvhi3c+/6vn6s3arjmqPD0Vr+DqHi3QA5pZcSUtLQ+YJfbhfD9QtyXHhRUOR6UzjzmJ030RzmC0LUFeezBP64IIL8zF1fd0osh+C+nPp+XJTHaJzGEVEvYrIISpLWloaLrzoImSu4V8hQFQOsw7gWN2uvHswznmc7xwtS3lkcciUxUqOeGRJ1Kg66uMUR3YcrFuAN3zWboIgCJHUu/1NEETc0HXF6dFHH8Xtt9+OzMzMBp/7zTff4ODBg0Jap7Lh9/vx+eefAwDOO+882O11J6sMhx09OjQPGSUWTPBtGdVR6/WDBfxcy0+IdADAmQP4b7H6/X7U7Ki7jZuey7coLQv4seyzz5DusHNnibZvjDqCy2JmyZXand/ii8/BvX9Uh5olUTlE1KuIHKKy+P1+fLF8OWp2bOKuV1E5zDoAefaxlRwyZbGSIx5Z8vLyuHKYRVfDqaSkBLm5uRg1ahSGDx+OvLw8tG3bFkDdujElJSX46quv8Nprr6G0tBSvvPJKXEMHc/jwYeTn58Pn88Hn82HSpEkYP358XN6rtrYWF1xwAYC66eKbNGkCoOF5mYK7sgQ7eJefEO1oaMmVhjz73/q7loUH5vPi0osvM5Ul2r4x6ggui5klV/a/9XeMesvckivh9coY06Zo0NPBXEQOEfUqIoeoLLW1tbj04mEA+I9XUTnMOgB59rGVHDJlsZIjHlmkXnLllVdewZYtW/DMM8/gL3/5CyoqKmC313Xkra6uBgCcfvrpuOmmmzBmzBikp6fHNXQwzZo1w4oVK5CZmYmqqir8+c9/xuWXX47WrVsLfy+bzYaePXtq28HoHcSiOgKM4bCJJR9EOdRtXmw2Gxztjq/7wcTSIKeedhpsimJqGn6z5RFSlqOvdbQ7Ht2ym6HCRJ0EZ2EMIUvf6JogVEAOIceJiPoQlMVms+HU007Dj2VHTC25IiKHiM+fLPvYSg6ZsljJIVsWM+juHN6zZ0+8+OKLeP755/Htt99i586dqKmpQZs2bdCrVy+0adMmnjmjYrfbtVuIbrcbjDGuuUz0kJGRgc2bNwtxmF0uRZQDMNc5PCMjAx3HzuV+PVC3JMeadRtMdQ4XtW/MlgWoK0/HsXPxhcklV4KzhC99o6eDuYgcIupVRA5RWTIyMrBm3QbTS66IOg+YRZZ9bCWHTFms5IhHlqTpHG6z2dCrVy9cdtlluOaaa5Cfn2+q0bRixQoMHz4cHTt2hKIoWLJkSb3nFBcXo0uXLkhPT0e/fv2wdu3akN8fPnwYPXv2xHHHHYe77rorYY24VCRObVSCIAiCkJKEj6qrqqpCz549UVxcHPH3ixYtQlFREaZPn46NGzeiZ8+eGDp0KPbv3689JysrC1u2bMGOHTvwr3/9C/v27Yv6fm63GxUVFSH/iOg01DCKNOVCfQdDtefY8inhy6uELxxMEARBELKS8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz+/3nOzs7PRs2dPrFy5Mur7PfLII2jRooX2LycnR3fWmpoaDBo0CIMGDTI1XfygQYNw4ZDzTS35IMoRqyyMMYyaV79hpI4iBIDtew+h7F/3ouxf90bMwhjDlfNWh9xGUJS6kYYlDw5FyYND8UpBLwwePFhIvZp1xCqLXgJeN8r+dS8uGzbE1HIpZrOIyCGiXkXkEJWlpqYGFw4531S9ijwPmHEA8uxjKzlkymIlh2xZzKB/etkE4PF4sGHDBkyZMkV7zGazIT8/H6tX132h79u3D5mZmWjWrBnKy8uxYsUK/PWvf43qnDJlSsjyMRUVFbobT4FAAF9++aW2zUOwI6f37VI4opWlxuvXplgInosqZBQhY3Dv+q7uBREuT4X3zVGvLimKovXPqfK6hdarGUessujmaJ18vQvI6TPJlMNUFgE5RNSrkPoQlCUQCGDlihVarkTmMF2vgDT72EoOmbJYySFbFjNI3XA6ePAg/H4/srOzQx7Pzs7Gjz/+CADYuXMnbr75Zq1T+G233YZTTz01qtPlcpma6v2tt97Sts043D4/7tvEv+SDKIe63RDhI7jUTSXNgTaX3attx2L9/flo3cRZbySYyHrldTDG4FfSdJclFmqdPHrFqXjwf/zLpZjNIiKHiH0jIoeoLC6XC6/+6w3csWiLqSVXEn28qsiyj10uFxYtWgSPPwC/Yje2LqPgHCLqVZYsVnLIlsUMhhpOXq9X69H+5z//OV6ZDNG3b1+uXvrFxcUoLi6G3+9v+MlHSUtLw6hRowy/VyRHtceH+7fwL5ciygHoG1UX7dyn2OxocvIAXe+Z6Yx8EjWaJRJm9o16O3HDzj90lyUWap1cNjIf//c930gnI/UazxwijnkROURlSUtLw+VXXIn7tzRLeA6zDkCefWy327Ho9+OwYecfuH/LMu1xXdNmCMwhql5lyWIlRzyyJMWoOofDgc6dOxtqbJihTZs2sNvt9Tp779u3D+3btzflLiwsRElJCdatW2fKQyQ/4bcT1f5bBEHoI/wzpKJOm0EQVsLwrbr77rsPU6dOxauvvopWrVrFI5OG0+lE7969sWzZMowYMQJA3T3NZcuWYeLEiXF970j4/X6sWbMGAHDmmWeGTBevjhRbH+HkEclR6/WZWiJBlAMATjuDf9p6FvDDXboVAODqeBKXI1qWao9f96X+WPtGLyzgx7NDmsGVFsCNe0LrNXjWbiD2LQi1Tr5ZnWlqyRWz9Soih6h6NZtDVBa/34+136xB7e4SIcermRxmHYA8+9jv96N2dwkAYEtxIex2u+F5pWSqV1myWMkRjyw9evTgymEWww2nZ555Btu2bUPHjh2Rm5tbb8r0jRs3GvJVVlZi27Zt2s87duzA5s2b0apVK3Tu3BlFRUUoKChAXl4e+vbtizlz5qCqqgpjx441Gj0Enlt1tbW1GDBggJY7uOxqh+lqjx9XzluNH6KsWxfsMLNEgkiHmSVXmM+Lfa/frWXhIVqWvBmf6b7UH2vf6IX5vLjkgvMAhNZr8K08LVuMXGqdXPJ69P2jTs8QrQEmol4j5WjofcMRVa8N1YceRGSpra1F/uBBAMQcr2ZymHUAYupWVHnU49U292ZkZjgTlkNEvcqSxUqOeGSResmVYNQrP6JYv349Bg8erP2sjngrKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhaioqECLFi10vUZRFHTt2lXbjvT7Jq40vBNz3bo6B2OAh3s1DnEOdZsbBUhr2UHbNpsl05kWcuVOzwzZ4Q7u8ijACSfUOYLrNdJtiJi5jtZJTqtM+KJEUf8aj9oAE1CvkXI0+L7hCkH1Gp7DyNVEkVkURcEJJ3TFzkNVQo5XMzlEfv5iHWuNkUVRFO14TWSdiKpXWbJYySFbFjMYbjhNnz5daIBBgwY1uETKxIkTE3JrLpzMzEz8/PPPDT4v1r5UHWaWSxHpAEI7ZBsdoW1zpKPTzS9yZYiUBagbwfd7lUf7kmcsNGOkL1y9+yYWNkc6vi35AQCi1uvKuwfjnMeXA4j+5a/WydoIy2D06NBcm+IBiN4AE1GvquN//xiKgvlrQ24j622QiqrX8PowcjVRZJbMzEx8W/KDqSVXROUw6wBiH2uNmSUzM1M7XtUlsBKVQ0S9ypLFSo54ZElU53Cu6QgOHz6Md955B9u3b8ddd92FVq1aYePGjcjOzkanTp1EZ4wLPLfqUoFR81bj/dsHJKwlD+DoHE/HbjmE3/o0+oVrBsYQ2rcpKBfPl3/dc+saXWbWbTOCcnTC0Rqvv1HfN5zwfoB6G28EQRAyYXjm8G+//RbdunXDY489hieeeAKHDx8GALz77rshE1XKDo2qO0bwTOAleyukGwUT3l+sMUfqhM96Hr5cjNEsilJ3OzKTs58PL+qEo439vqEZ6hpw6+/PT1gGgiAIsxhuOBUVFWHMmDH4+eefkZ6erj1+0UUXYYU6I69Fqa2txcUXX4yLL74YtbW1phyXX3YpmM+TcMfFF18Mt9uNtyf05/Iwnwf7334A+99+QEiWWPW68u7BUX8nYt8wnweXX3ZpSL2GX+nKdNob/PJX6+TaK0Zw14meeq32+GPe5lYdl192qenj1Wy9qjncbjd3403U5+/yyy5tlOM13g5AzLEmqjzq8ZrIOhFVr7JksZJDtixmMHyNfN26dXj++efrPd6pUyeUlZUJCSUrfr8fH3zwgbZt1pHT/Uau/qmRHEY724aXRXHw3S5hgQBqflmvbfOgt14zYnzhitg3LBDAxx99CKD+vgmf9TzWl79aJ5/9AuScchPXPtZTrw3dKlQdH/8i5ng1U6/BORQb37Em6vOn7uN4H6/xdgBijjVR5VGP10TWiah6lSWLlRyyZTGD4TOYy+WK2CHrp59+Qtu2bYWEagx4+jg5nU4sWLBA2+ZBdbh9fjy8le8LJJLDaH+b8LJ4OZdDU+xpaH3RZG2bB5H1asah2NMw78WXAKDevok263k0T+uLJmP68B54YjtfncSq1+AO5rH6CamOh0b+OeH1GpyD91gTdZzMe/El3Lf4u6Q/XgExx5qo8qjHayLrRFS9ypLFSg7ZspjB8Cft0ksvxYMPPqitFaMoCn777Tfcc889uOKKK4QHjBc80xE4HA6MGTPG1PuqjmqPD49EGNmjTrSoLqgby8EYw6fzVnN1tg0vi5dzqRPFnoamp5rrs8JTr8Ej7TIcdiH7RrGn4YbRBQAQcd8Y8TQ9NR/XXp+PJzk7YseqV7Wjd0OdvFXHDaOHwsF5RTH4WKvx+rXjxMjVzfAcvMeaqM/fDaML8Mg2/v0r8jxgFhHHmqjyqMerw8G3Zp5M9SpLFis54pElaUbVPfnkk7jyyivRrl071NTUYODAgSgrK0P//v3x0EMPxSNjyhA80WJebku8PK5vzOerk24GD91PFYJH2jXmKDsZqOtg3nidvI1OAErExsgs9ARByIfhhlOLFi3w6aef4quvvsK3336LyspKnHHGGcjPt/5IGb/fj//9738AgFNPPZV7uvj//e9/qImwXErwRIvrd/6BQ1WRO3uG5+D5Eg138MICfngP7AQAONrmcjl46vWHsLmQKms92L71B0OOcFjAjy1bNmvbvEuDqHXyv2+3mFpyxWy9qo4tWzaj7xmn8y9RsnETVq/dAEfbXK0sRq5uhufgRdTn77vv/gfPvl8a9XhVURuh63cc1PZv/7xeeOdWvilARBxrourVs+8XbdvMudFsDrMOmbJYyRGPLLm5fJ9hsxhuONXW1iI9PR0DBgzQpj1PRniXXDn99LoTv5np4lVHQ0skqBMtNpRDcbhM5eB1AHVLPuxdeDsAc0tYiKxXM0uDnNW3DwDgstmfYXNZ3YiNvNyWMW+dRvLsXXg7zlvIvwyGiHpVHWctjFwnegYU1NbWanWSc8c7+Or+/KjHpd4cvMeaqOMkuDyNnUP94yh4/65r+Q73fFYijjVR9aqWp3bW6IR9hkU4ZMpiJUc8siTNkitZWVno27cvBg4ciMGDB6N///7IyMiIR7a4wrvkSseOHbVtHlQHA0wt+SAqRzQHY0xb1yy2CLA3baVtxyNLYzmgAB06doQC4PXxZ2pf8IZvpRytk7bN0k0tl2K2XlVHu+bpEfPrGVCgKAo6dOyI/RW1gBJ7ZCNvDt0aQcdJcHkSlQMKkN2+Aw5Wuvn371GP2WNNVL2qx2siP8NC9o1EWazkkC2LGQw3nD777DOsWLECX3zxBWbPng2fz4e8vDwMHDgQgwYNwpAhQ+KRUwoyMzOxZ88eIY6GlksJXtqjoRzVHJ1tYzkYQ70+LdGwOdJxXOErht8/VpZEOWyOdGzbsdP0TNZqnaw3sQyGiHpVHSUPDtXKZHT27szMTGzbsdPUEiXhOXiOVzWLiOPEbHlEHWvf/bzDdN9EEceaqHpVj1czS67IcB6QKYuVHPHIkqjO4YYnwBwwYACmTp2KTz75BIcPH8by5cvRtWtXPP7447jwwgvjkTEl4frLXhDhi9oavVVFyIs6oIBm7yYIQg91dx989f41tMasleH60/qnn37CF198of1zu9245JJLMGjQIMHxiEQTPvEjkfyErwVIEAQRiUgjalVSeWSt4StOnTp1wplnnomPPvoIZ555Jj788EMcPHgQixcvxqRJk+KRURpqa2sxatQojBo1ytR08aNGjcL1115jaokEUTkacjQ08SPzeXBgySM4sOSRpChPLJjPg+uvvcaUQ/UcWPIIxt3wF1NLrpitV9Vx/bXXmKrX66+9JuE51CwijhPe8qh/eR+qqMTlV1yJy6+4EjU1NVw5mM+DcTf8xVS9qh6zx5qoelWP10R+hoMdhyoqua+QyHJOSrTj2GCG+ucjnjVDE10eURi+4tS2bVv8+OOPKCsrQ1lZGfbt24eamhru+9qJgmdUnd/vxzvv1I3EWbhwIdf7Bjty7riWe4mE4Bw8S1iIcAB1Sz5Ub11Vt33RHVwO0fXK62CBABa/+29TDtVTvXUV/rsVyLnjL9xLrpitV9WxeCvg97/M5fD7/VqdiMphZskVEccJT3mC//IOeGqx66jj2uf/isWTzjP8VzcLBPDfJe8azhHJY/ZYE1Wv6vFqZikNkeeBb3Kugc15bD3Vhq6QBM+vVVXj1jzqLNVmsiTyvCbq3Kju3xVf/gcDZ69OWJZgx9NPP83lMIvhM9jmzZtx+PBhrFixAl9++SWmTp2KkpIS9OrVC4MHD06aSTB5RtU5nU4888wz2jYPqsPj82PObv4lEoJz8CxhEctRo2c03VEUexpaDZmgbfMgsl71OoJPkuofooo9DbPmPAVnmt30MhithkzA3ReejGf38i+5YrZeVcf9F3c3Va+z5jyFGe//ICyHmSVXRBwnPOUJ7vcXvG827ankmkpAsafh0Sfn4PGPfuSu1+AsZo41UfWq1kljfYajOaLt31gDIcJvSTG/TyvP6IUb8e/Ccww3jnnLE3xu8sGGWXOeAsA/I7uIeg0+N2Y15R9Fn4hzfTzg+qRlZWXh0ksvxdlnn42zzjoLS5cuxRtvvIFvvvkmaRpOPDgcDhQWFgpxVHt8eOroyB6jfezCc3jDRsSZdeiZpyd4dFazMy7R96Y6s8TbEX6S7NGhOYC6k8Mtf73V9Kg6xZ6GZmdcghtvzsdzJpZcMVuvquOWv5pbcuWWv96Kp/aaW4ImOIeZJVdEHCfB5VGn3DAy5cSG6RcCuNDUiDjFnoYbb56A5/abG1Un4lgTVa/q8WpmyRXR+1cdBNHQvgofEBP8+du4+whX45inPJH7FJ0AAFj1z/VcfYpE1GvwuZF3VKyoLMGOpFly5d1339U6hZeUlKBVq1YYMGAAnnzySQwcODAeGS3PJXO/wrIiMXU3at5qvH973SzERhpk4cPUG0IdnVXj9aPa0/C6aYkm/ApT8ImpZG9iPnxE4lGPWyMdXaljffLAs6/W35+PTKc9Iee18AZcSC4Ds/UT8cXwHpgwYQLOPfdc3HzzzRg4cKCp5TqSjUAggO3btwMATjjhBNhshvvWaw7GGLpnN8UP+yqx42AVLpn7Fd6e0J8rR4bDjh4dmqNkbwVK9lZoiwSPmhf9PnSkshhd905RFKSn2bDt55/hPbQHaS076Hqdniw8jp9//jmiI9oVpnAYC2Dbzz8jw5nGnUP1+P7Yi+3btoGxABTFuEd1AEBayw6Gbp+GO7b9/DP+3P0kw+VhjKHK7cX3P5rbv+E5eBF1nJT+9itOyqjEj9WZ2r4x8qUUCATwy/btputk+7Ztphyqx+yxJqpevYf2aNtmzo1mc5g9H2U67VKc19bfn4/0NAXf//gzLn92VULPr8Hnxg45/MuciPwOBer6XCcCww2n/fv3xyNHUlBTU4Nu3boB4J8uPthRUXEElz6/HjsOVmkNHt4cb0/oj1OmH7udUuP1a1dSenRoXm8epkgOnmHqNTU16PnnHgD4l7AQXa/hjvC/4qJdYWJej1YWM8sKMK8HpS/egjNfVJfBSG/4RVEcQJ3D6DInwY6eLxovj9rYXPfzXuyafaWWg4fwHLxLrog6Tk46qa7xtv/QYSiOdMNXFUQc88zrwZmn/9mUQ/WYPdZE1at6vNY8drXwz7ARh9l9I8pjtjyZTjuY1x1ynISv5qDnFrOIeg0+N+4/dNjw60VmCXYkzZIrQF2v9iVLluCHH+oWVe3Rowcuu+wy7oX/kgm9Hcn1OGw2Be/dNiCkwcObI9ZnJ9otCBFlUT0Vtfz3vUVlkcUBAIqrCZqlm+wr5WoCe9h+Uycj1dvIVlxN0JwjR0hnaFfdye2MzlncE6Hy5ghH5D7OdKZB4SyPiGO+eYsWOGLSAYg51kTUq3qcJDqHiH0jyiO6POGNfL23mGU6N8qUhRfDn7Zt27bhoosuwp49e7S/3B555BHk5OTg/fffxwknnCA8ZDzgmY6gSZMmOHz4sKn3DXfwdLQzmiPSZ0pEWVRP6f6DppawiEe98mBzpqN0/0HzS64409F58iJzS64cdXz/j6Eh+0/PX5jqOoOqI3jJFZ4c+w/+jkyn3VCDLdwRnIO3c6lMnz+zx7zNmY7tu/eZX3JFwLEmql47T16kbScyh9l9I8ojqjx//PEHRs1bHbH/qZ5bzKLPjWY6h4v+DCdN5/Dbb78dJ5xwAtasWYNWreoWdfz9999x/fXX4/bbb8f7778vPGQ84JmOQC/BHa1puRJxhHdgV/t1AXUdvtUPtOFFeSVGUWCo0RNrpl9eMp126pBKEAkieCCOSjIMyLEyhs+GX375ZUijCQBat26NRx99FGeffbbQcMlK8IFu5Es8hZf+0YWiIOQEwhi025xXzluNH442olJ5KQBaZ5AgrEdd/9PU/eMleFR0MGaufpnBcJd2l8uFI0eO1Hu8srIyYZNRNRZutxtjxozBmDFj4Ha7Yz5XPdDDv7xjOa56Xt9srEZyxNOhem6+aRwOvj8bzOeNexa1Xuvq9tjjJbt+x8H3Z+Pg+7Oxbvt+rltKzOfFzTeNM10nzOfFwfdnY+ItN3HXieq4+aZx3FlW3XUOmn7zAsaOHcvtEFEnIsoCyHPcizjmmc+LibfcZMqheswea6LqRP38Jfu+EeWR6Xg16xB1buTJol5F7zHtY/SY9jG6T30P7XpfiHa9L0Sff3zEncUMhhtOl1xyCW6++WZ88803YIyBMYY1a9ZgwoQJuPTSS+ORURp8Ph9efvllvPzyy/D5+Fq64Q51KgEA2HGwSkiOao+/3ugLvQ71dhig72qFz+fD66++iqrvloEF+JZaEFGvLOBH1XfLTOVgAT9ef/VV7hxq3yI1y6J/vWYqS9V3y/D6q69y14nTxoTUq5k6UR1mywLE5/PH6zB7zLOAH4v+9Zoph+oxe6yJqhP185fs+0aUR6bjVYbzAG+W8KvoIs71ZjF87e/pp59GQUEB+vfvr80Q6/P5cOmll+Kpp54SHlAmHA4HHn/8cW1bhEO9rWdkZF1DOfTc+47mMHqb0eFwYMbDj+KJT7ZCsdvr9TUSUR49KHY7sgaN1bZ5HTMefhTONJvhHMF9i9Qsk84/EQvK+bNkDRqLOy84SdixxpsjuE54TpnhZeE97cbj88eTJfyY50Gx2zH9/x7GU8t+5naoHrPHmqh6VT9/iTxeRewbUZ54HK+Jcpg5N4rMsv7+fKTBj+K2j8LrD+Cf+xPTDcFwwykrKwtLly7Ftm3btOkIunfvjq5duwoPJxtOpxN33XWXcIfRrjjxynEsj/776U6nE3f87W94sTxyX6OXx/U1lUUvit2BFv2uMO24429/M9yXoNrjD5mNXLE7cP5VN+GucX2xUEeDuNpTv5GqlueOvw2Fk7Nvg6h6Da4TH0efgvCy8DiA+Bz3PFnCj3keFLsDEycXYWGl2SVX6up24uR8LOTsLCyqXtXPn5k1yETkMLtvRHnifZ5uTEfwecBMvyKzWeoGqrhw35R7UO3xYf49i7ldZtB9Rg4EApg5cyb+85//wOPx4Pzzz8f06dORkcG/4B9hPX4Imlxy/c4/cKjKk8A0jUPejM9CZiNff38+Wjdx6u5nlTfjs6Ts0M6zzhtBEESyo7uP00MPPYSpU6eiadOm6NSpE5566inTi/UlG4FAAHv27MGePXsQCATi6ojV16gxc+jxlO7ZA9+Rg2CsvkfPjNe8WYLriLEA/pThjppDD4zVlUVPjuD3BkJnI09PU1BaWorSPXuiZgl/vTofS3AW35GDKE3wPo5VJ3kzPkOPaR9j1LzVYDGGhIooCyDPcd/QMa8HxgLYW2rMUdeHzhf0z6/V7d7S6MdaQ4iqE9+Rg/AdOZj0+0aUR6bjNZ7ngcbOojpinV/jje4rTq+88gqeffZZ3HJL3bT6n332GS6++GK89NJL3Gt6JRs1NTU47rjjAJibLl6PI3joffhf9I2ZQ4/nxD91ARB7yYdYHc15swT3x6qqqkK7VllaDh6Y16OVpaEc6ntHWtsvuDzR6iTW69Use54dgxOfTew+Dq+TzMzMeotBNzQJX3hZzCy5Ivq458kSfszzXHljXg9OO+kEzdHg86PMz6XW7WnPmltyRUS97nl2TN32jBEJO17D9w0vIjyynKdFnwfMLrkisjydbn2FO4sZdDecfvvtN1x00UXaz/n5+VCUur+s1UIkEzwzhwNAWpr5uTT0OmL1NWrMHHo8vkD0Kw7qratYXyq8WdQ6Yt60kBzBndSNzI9lJEestf30eBpcG9BmR5rN3C0w0cdJcGPV0CR8AsoSniXRDvVYU+vA6O3Whj43wYSPLApGsdlhl+A4gc18R13R+ybRHpmOVxkcojyisnC/v94n+nw+pKeH/jXjcDjg9fLPlZFIeGYOb9KkienyWsmhesqramIuTZDpjP2XuKjyBOcI7qR+fJvof9UEzz7e98QOeNvjMdRfJ3w287zclmiT1RxerxfVHh/3kg02Zzpy71pqarkUEfVqc6ajvKomJIPRyfjCy2JmyRXRxz3vkisej6feMhh6lr9QsTnTsfePSq7Zn9ffnx/S4M540osar5/7WOOt1+BJCRVH3T5WfY2ZI9zR0PmosTyynKdFnwfMLrkiqjzVHh9Olr1zOGMMY8aMgct17NJ2bW0tJkyYEPJBeffdd8UmJAgOgjupx5ofq+4KQd02Tyfn8OUQqKN0asB95U0AMiyBE4+lfQgiWdD96SsoKKj32PXXXy80DCEO9UpKqi+5cXybJlrDKfjqkorRteAiIWo5BPX2YkOTl6YK4cssyNYoTeVlMKLdOlTPNzwz9xNEsqD7U79gwYJ45kgK3G43ioqKAACzZs0Kufomm0O9khLty0ZEDtVzx6TJ+H3tLrQ67yYoacYnNRNVJ5FyvHfbAO2KUnqaHVc9vzrktlpwo1JknRQVFcHnD4A1Haq7ToJvLzKfF4c+fwl3HH4PTz81h7tO7rpjEgD+8jCfF3fcfhvS7DZTjuCyQGm4IR/pisZJbdOR+/M7UAA8OvMJZDXNNNyQCq8TPVni4WA+L+4umoTf1+9Gq/NuMvz64Cw8x1okB8B3nKy/Px925sO9d90Je4UCj6c3d72KPg/wIsKTTN8XDRF8Hpjx6OOGXy8yS8gx7ziHO4sZUvPPJU58Ph+effZZAMDjjz/OtdMby9HQlRQROVTPC8/PAwC0HDQWCoyfuEXVSaQc4fUQ67aayDpRPTl35Ouuk+DbiyzgR+Wm9/HCJmDWk08k7FhjAb9Wr2YcwWVRdFwBjXRF44c9h/HJ0SwfZubX9UkzOPdVeJ3oyRIPBwv4seDF5wHUHa+88B5r0Rw8+zjTaQfzHvv8zZw5U0i9GsmhXp2sqq4NOQ/wEn4+4XUky/dFQwSfBx6Y8bDh14vMEuzodOtZ3FnMQA0nAzgcDkyfPl3bTnWH+tqp9/8dxcu3hSxNYORWoajyRMoRTqzbKyLrZPr06fD6A3it1vgXiLqswOxm06Aoiq4s6hdH8G0+EeVR7HZMvf/vcNiNLbUQnEex29Hi7GtROLgr1zIn6+7LR8H8tfh+txctzr5Wy9XgNAg66oR3yRWzDsVux11T7sMLK34xvTSI3mMt0grzGQ57XM4nIupVL8FXJ5k/9BjhRe/5JFYmL1Mw9f6/AwC8TEG1x2f4drMs53re80A8sgQf869wLjNkFmo4GcDpdOKBBx4gR5jnvr9Pw+ve0NEnDd0qFJ0lWg6jDlF18sADD4Axhq3zot8ajIa6rMA//vEPXe/HGCJ21BVRHsXuwH1/n2aoL0/4bTbF7kDWgOtw39/5llxp4rLj/dsHHP3Sv0RXZ+xonZfD64R3yRWzDsXuwN1T/463AuY6latZqj0+vB5jBFi0+lCnUBB9PhFRr3oJvjqpHmuAuf5WZs4noXXdDwDw+ozlWiYjV0llOdcHnwfMLrkiqjzVHh9elX1UHUEYQUSn62SnsUbcRbqtlchBAfHIY7Qjtmx1kmiideY2MoVCMhA8VUOiBhPEmnPLavWdqtDeMwBjDOXl5QCAFi1acH0oreRQPYcPH0agthKKq0lCyyNDjkgenpMkbxb1i0NtIBw+fNiwIzzH4cOH4XGmcTnW35+PDIcNnupKlJeX654zLVqW8vJyVHt8YIwJqRPeHCIc5UHHKy88dbL+/nwAxybuDC+PiM8ODyI+f+qxBgAZJo+1wyb3D2MMn9/WBxlOOxwZTdHnoWVcDhnO9cHnAUeG+ePVbJbgYz4RpMZaKYKorq5Gy5Yt0bJlS1RXV6e8Q/V0ym6LXU9dA+Z1JyyLLDlEeXgd6hw/iqIIycG8bnTKbsvtyHTaAZ8HrVq1ElavnbLbGtrHZurk2Ppwx273iKrXrjntTR2vwVmM1EldfRy78ibL+UQWh+oxez5R93Gn7LaAL7HnxkSfB0Rm4T0PiISuOBEEQUSAJnkkCCISSX/FadeuXRg0aBB69OiB0047DW+//Xbc3iszMxMejwcejweZmZkp71A9hyur0fnOJdyLt4oqj9vtxsi5X2o5jPZpEVknMuwfEQ7F4cLhyuqE5wj2HK6sbpRjLVo/qdYtmgmp19JDR0x9boDGr5NUcKges+c1WT47spwHRGURccybJemvOKWlpWHOnDno1asXysrK0Lt3b1x00UXc6yXFQu/Q8FRxBHsUO/+hJKo8TqcT/y48h7sztug6sZLD4Ujs/g3JwhTu/me8WYL7SSmKApvN3N+cIj43wR7zdSImh1lHWloaarx+eCNMm6CnfCLKcswj5rzmcKTByzkSTcbzAG9ZhGcxccybJekbTh06dECHDh0AAO3bt0ebNm1w6NChuDSciMYj0uK5eq4epfIyGET8kGF9OKsT69ao0WH8BBFPEn6rbsWKFRg+fDg6duwIRVGwZMmSes8pLi5Gly5dkJ6ejn79+mHt2rURXRs2bIDf70dOTk5csno8Htx1112466674PF4Ut6heqbeew/+WD4fzM+36nWkLOpQ/pIHh6LkwaENnjRlqxMZsohwML8XU++9J+E5gj1T771HO9aqPX5Do2sSUa/HOpgf62TO/F48cN8UU5+b4CzBdcLrSPQ+Lq+qwWcLn4xYJ+ow/sbIoXrMntdk+ewk+jwQfPwfrqzG5KK/YXLR33C4spprVJyIY94sCf8TqqqqCj179sS4ceNw+eWX1/v9okWLUFRUhHnz5qFfv36YM2cOhg4diq1bt6Jdu3ba8w4dOoTRo0fjxRdfjPl+brcbbvexnvgVFRUxnh2K1+vFE088AQB44IEH4HQ6db/Wig7V89TsWQCAFmf/BYrd+GXYaFmMXD2SrU70eqJdWauudktRHub3a/tXVA7efgnBnpw7zoJid2hD6vVekRCRxYgj2lUU5vej+OnZAOo+N7xEqhMzjkTuY6/Xi4q17wIAvv3Pi2jbsrmuyU5j5RB1Xgsm0gzsQP3bicGfnbun3s+dQ7bzgJGyhB//AU8tdh31vIuzuJZNCi5Pp1tf0f06kSS84TRs2DAMGzYs6u9nzZqF8ePHY+zYuvWC5s2bh/fffx/z58/HvffeC6CuMTRixAjce++9OOus2GvXPPLII7pnZA7H4XDgzjvv1LZT3aG+dtIdRViw6lfuJQ5kKY/IOtHriTZJpizlUex2TLqjyNRSC+E5eHtIqB7GGH7JbYONeyq13+mdWFBEFiOOaJMh5h3fBpeb/NwEZ/H6A1gc589fcIMheHqGSA7eem3et+6P5xZN0rlujcb7vKbndqJKPD47iXLwliX8+Ffsdm0f61k2KRLBx/y/fbTkSj08Hg82bNiAKVOmaI/ZbDbk5+dj9erVAOoO5DFjxuC8887DDTfc0KBzypQp2urMQN0VJ7239pxOJ2bOnGmwFNZ1qJ6HH30MS2Is99AYWWRx8HgiXVmTpTyK3YGHH3rMVP+e8Bw8y3GEe4LXoTNyRUJEFl5H+KzWNd6ztc9NcEPEyKAGNUu1x8f9GdRznDQ0NYOoem05eJy2zUO8z2t6ZgVXCf7s8C5TIuN5gLcsx45/fcsmRSP4mH+Xllypz8GDB+H3+5GdnR3yeHZ2Nn788UcAwKpVq7Bo0SKcdtppWv+oV199FaeeempEp8vl4l71Pl5kOOzaorgEkWjq+iQYX9+rMUnGQQCxOpgHf4nI2BE66pWzFF7GRm0ImGkEpBJWGmCR9KUYMGAAAoGA4dcVFxejuLgYfr/+LwjGGHy+utZ2Wloa93Tx4Q71ds0p0/X9xRivHDwwxuD1esH8PsDGtzaULOURWScyZOFxhF9ZUPevV2HCcvASjzoRkYPXkYYAzjiuGTbsqggpi5HbF2oWr9fYMjThDq+3rpOtnnqNtB6cqDphfp+2zeswUpaGPOp5LRINNQSCPzu8K4PIdC4xW5bgLGaP12BHIkj4qLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3Trdr6murobT6YTT6TQ1XXwkh5HjJ545eDxZTTPx2xMjTC11IkN5RNaJDFl4HOFXFk7vkIGsppkJL4soj0wOl8uFxbcNxPp7z0HJg0O1NeR4smQ1zWy0z5/aYFCXseFxRMvx2xMj8NsTI6Q41sye15jXLcVnR4RDRFmCs4g4Xs04zCJ1w8npdKJ3795YtuzY4oiBQADLli1D//79Y7ySIAizrL8/H6/d1C/RMSyP2ggJXj+OIAh5SfitusrKSmzbtk37eceOHdi8eTNatWqFzp07o6ioCAUFBcjLy0Pfvn0xZ84cVFVVaaPseOG5VZeZmYk//vhD2+bBSg71tYcOHULB/LXYsr/uEjnPUicylEdknTRmlpoo/ZHM5qibKdspvCx65uPR40lUlng4eFE91R4f+j+5hk+S5sKefQcAABkZGaZyqNu8dZIz6U1tW0QOXjIzM7Fn3wGc+fAyU0uu7Nl3AJnONDgykvu8JqIswVnMHK/Bjn4Pf86dxQwJbzitX78egwcP1n5WR7wVFBRg4cKFuPrqq3HgwAFMmzYNZWVl6NWrFz766KN6HcaNUlhYiMLCQlRUVKBFixa6XqMoCrKysky9b7wcwfMB6Wm4iMihelq2bImlRReYWupE1npNhiznPL5cihzxdDRGlvCRbYnKweNxenzc/Xn6PHTsij5vx3RRdWJLb6pt8zpE1quax4zDzEg0WY41EWUJ9pg5XkU4zJLwhtOgQYMa7OA1ceJETJw4sZESJSfB8wEZbbiIen+rjJhIBsInzgQSP8IpeIoAvajPTcQxG07wyKgeHZrj5XF9E5gmvkQ6fgBjHdMJOQj/vMnwWbI6Kfvp4LlV5/F48PDDDwMApk6dyjXXSDwdRhovInKI8ljJ0VhZwifOBOqfMBuzThhD1Hl+wh3BXSuNzPwdj/JkOBwRGxAleyvQ56HIQ8xjlYc3h9ljzesPgPnP0D1zePDxozpeWPELWvS/ylQOwFydHP7q9aPbg7kabx6PB48/PEPLYaZeH/q/GTj81TbuOmF+Lx76vwfhsNsw+c67uXM0dJyET4UQ/lkScayJKEtwFqPHa3THydxZzKCwRI3nkwT1Vl15eTmaN28e87lVVVVo2rTu0m1lZSXXQsLRHNUeH3oETbZW8uDQqCeOeOZIhMdKDpmyxHIEH2/Bx1r448zr1uVYf39+1BN4dXV1iCMzMxOj5q2u31iJkSPTmRaxPHrLoT4eyRE8IzZjwKh5q0PmVAv/Igp3KA5XxPcymiPac/V6cu54BzZnesRzRyx3uOPHRy8z9HqjdRKNA3+Uo12rLADA/kOH0bZliwbfNzzbunsGaI6G6jV8JnT1+A0/7oPrJJIr/DEA6DHt46PLi1yplafPY18BCJ3OAQj9g0fv548xFvEzpNLQsaYXNU+0sjS0b2OVJ9bxqtfR6dZXsOfZ0bq+v0WSsleceEhLS8Ott96qbae6Q6YssjhkypIoh/rFoH4hhDuCr3YYmTwwXuUJv1L7/u0DYl7JC3fwdHUXfaz5/AF8FGW+IT2Om2+ZgH+t3QXFhENEnTQ9/WJtW0SOaDQ0E7qIOlFsdtx8ywSk2W0hWRq6QhSeI1J5Il1xjvZZEnGsRSuLUUQdr6rjA06HWajhZACXy4Xi4mJySJhFFodMWRLlCJ8YMJKDp09cY5WnoWzhDp7OsqKPtWqPDx9zLrnicrkw++m53K8PzqHCWyetL/irti0iRzQamgldUdJM14mS5sDsp+ci05kGxljEW8JA7H5lscqj9zMk4lgLLouZzuGijlfV8SEtudK48PRxIgiCIKxFpJnQRWPkChEhP1JPgBlPeGYOJwiCIJKXao8f1R5fyEi0SDOhxwP1ChFNeJr8pGzDiYeqqio4HA44HA5UVVWlvEOmLLI4ZMqSjI66BYZDv9iMeGK93miWaMjiCPa0aJKBgKeW29GiSQZ2zrzMlENEneyceRl2zrwsbvWaN+Mz9Jj2cYNXekTUScBTixZNMhJ+nIhwRCvLsYbosX+xxpuJOl7NOsySsrfqeFEXSySHWI+VHKI8jeUInkspkTliTWmgx6Pn9XqzNIQsDlGeeDoMzTMUMN91IjxHtDmrgNhzn8lerzI4IjVAG5paRJbymCFlG048fZwyMjKwe/dubZsHKzlkyiKLQ6Yseh3BcymFT/rYmDkOVXnqNXqCv9ga8kTq8Bv+xRiP8tT6AqYdvKieGo8P58/7ltvx8y+/YtATX0Bx8M17FKtO9I4iy8jIQKdbF2rb4YTP7B7pizlSvUbqX6THY7ZOFIcTP//yKzKcaUlxHohFcFlaNW8atSEKxO7sLup4VR2Dn+JcZsgkKdtw4llyxWazoVOnTqbe10oOmbLI4pApSyxHpL/C1RNeY+YIJnjpmPApDYxmifR6o45o1HccayToXbZF9LFW7fFBUb7jdnTs1AlpzdqYzqGS4VAMjyKz2WxaBputfi+S4AZYtMZXtHo1OopTRJ0oSp3DzCzsspxLwssSqSGqp7O7qOP1mCMxvY1StuFEEKlMtLmUoi0YHC+iLR3TuonTVEfd8CkRGovwL3crL9sSC1GjyFJlaRi1wW1kuaJEkupLbKVuyTnweDx46qmnAACTJk3iXvLBKg6ZssjikClLQ45IJ7/wBYPjnUPP0jGNlYXXEW3ZlkhX8ETmCPZ4fAEw/0ncS1jMfnI2yr/ZiuZ5l5rKARwrj54v1+DZuw9X1qD8m38f9Q3WRrkFHx/Bja9IjQ2Px4Pip2aH5OAtj9k6YX4vZj/5JJxptgazRGtQynLMGymLnixmj9ennnoKjDH07PBn7OJKYg5acoWWXLH88iKN6ZApi15HpOUboi2XomfJlVhLeoiuV70ZRGZpaNmW4C/3aJn0lCV4bqEarz+pllyJVK/hjgyHPaQzf/iyHm1b1u9CEX6eDCfSkis8RKsT3iVXImWJtWyKns9fOEaW99FLpCVX9O7fSHUjesmVPXv2oFOnTrTkisykpaWhoKBA2051h0xZZHHIlEWvI9ZVH1nKIsoTL4fRWxcN5dB7y0/1+AIBrDSxhMV1N9yAJZtKTS25YrRewzvzKzY7mvz5fLRp6kSzjMgzhzc0Qq5ZhkvYsRZcJzy30hSbHdfdcAPSbJGXKdHTaV2WY76hshjNYvZ4VcvjcBi/YiWClG048Yyqc7lcWLhwoan3tZJDpiyyOGTKYsQR7YtflrLIlCVejob688TyNHQlpqEsL7w0H1+ZXHLFTJ1oV9geviTmdAV6GhuijrXgOuGZ4VtJc+CFl+bHbFDrWd5HhuNVT1mMZDF7vKrlqaioiP3kOJGyDSeeUXUEQRDxIlZ/HqtjpDN/Y3VM5p3/KZkJvuUMJE9n9cYmZRtOBEEQsiGiUaBnvqN4vt4q8Mz/JCPhjSGV8DIwxnRNIEvQkiuGqKqqQlZWFrKyskxNf28Vh0xZZHHIlKUxHbGmMaB6jY8j2NOxXRtt+Ql1WZEe0z7GqHmrYy6BoTo6tmuD3+ZcjYCn1vDrRZVHFkewp2XLlmBed9gac/rWtAt4atGxXZuElocxhhFPfY6mzbPQtHkWTr53adR9G2kCWZVe7dNNlyW4PMHHK6/DbBYz0BUng5SXl5MjDh4rOUR5kskRPo1BPHKI8jSmI1aDUnSdDOqchc1loV9GsfpH6cmi9/WxHEaQxSHKk2hHjdePTb8dBnPXb2DEmgsreFQnUNcIbHaH2Ho1MwZO1D7mhRpOBsjIyMBPP/2kbae6Q6YssjhkyhJvR7TJK8P7fqRyvUZrUMajTv70pz/B7a+7gmCkf5TqYIyhY+cusNlshvtXJeO+ibdHcTix5bsS00uuiMjRcfzzePfWs3HKySei1sca3Lfhfc4CaZlC67XG48PwV7aZcpjNYgZqOBnAZrPhxBNPJIeEWWRxyJQl3g69k1emWr3qaVDGq04yOforJ0u9NpZDlEdRbOh64omml1wRkcPRqhNO7XESMp1psHmML5Arul7rlkv5BYDBRaDDstCoukaGZzoCgiBCSfWlFyJhZDZ0gkh19C4CLRMpe8bjmY7A6/XihRdeAADcfPPNXJNvWckhUxZZHDJlsZJDpix6HA01KI3miNZXKpnqJFkcojzM78Pzzz0LZ5o9oeVhfh8qt3yE55/bjom3/hWA8QaJ6HpljOGM407Dxt1H6j2noXUIg7Ncc801XDnMQkuu0JIrKbW8SLwdMmWxkiOaR5YlV+LhiDZJoJ7lNKItAxL++mgOI6/nKU8kZ/BSGjIea9HgXXIl3jnUJU9OvndpSA7F4Yq4L/UuyyNqyZUjR47A5kwPer0/4uc3lqO0tBQdO3akJVdkxm6348orr9S2U90hUxZZHDJlsZJDpiyN5dDTVyqZypMsDlEexWbDyMuvgN2mJLQ8is2GzJPOxtBT2sNutyOQoBzhnrS0NKRHuTgQ3O8pvA+UqCxmoIaTAdLT0/H222+TQ8IssjhkymIlh0xZGsuhp6+UHk9Dsz8nU500hkOUR0lz4rU33jTVB1BUjrYjpuC1B4ci/ehVoETkMOKJNeov2EGdwwmCIIgQRHS+N7tsSzyW3aClPOQg1pWdxibWEjeAXMvcUMOJIAjCYkT7EuL58onHenmpsgaf7Mi0H2ItcQPINTKVllwxQHV1NTp16oROnTqhuro65R0yZZHFIVMWKzlkyiKLI5ZH/RIqeXBoyL9Iw7wjOdSGVzjRGl56ytOQMxnqtcHXefzalZuAtxZdj89NeHkC3lrsLh6Nrsfnorq6Oup+UIm0jxurXtUrrJH+qcetqCxmoCtOBmCMobS0VNtOdYdMWWRxyJTFSg6ZssjiaMij9zZfJEe0v/6j/dWvpzwNOZOlXmMRcgWHAXtlKA8D/JWHsLeyzsFzZSfR9RqPLGaghpMB0tPTsWnTJm071R0yZZHFIVMWKzlkyiKLI95ZjPSv0psjljNZ6zXabdE+J7TD0o0boShKQsujpDnQYczT+Pet/TWH0b5zyXC8NiYpO49T8MzhP/30U6PPAxGOkXmcCIKow+g8TgQRDxhjuq/OxQs98yjF8zORiPc3Mg+jSFK2j1NhYSFKSkqwbt26REchCIIgkphIfXNk6chMiIf+JDOA1+vF66+/DgC47rrruKfQj+QIvtzb0MiXeOZIhMdKDpmyWMkhUxZZHDJlsZJDpiy8DrWDerXHD+b3oarkC7z6ShnGFYy2VL0OHz6cK4dZUvZWnYosS64Axy73NnSJV5ZlI2TKIotDpixWckTzWHnJlWTKYiWHTFl4l1wJprGWfjG65IqILLTkShJgt9tx0UUXaduiHXo77MU7R2N7rOSQKYuVHDJlkcUhUxYrOWTKYsQRrZO6YrOh/Sn9cUZuS6pXQdAVpwR1LiMIwjzUOZwgjhGpkzrQOB3VU6lzOJ1ZCIIgCMICiFiih2iYlB1VRxAEQRAEYRRqOBmguroaJ554Ik488URTU+hbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGeiangEYY9i2bZu2neoOmbLI4pApi5UcMmWRxSFTFis5ZMqSrI7g6RASnSUeUMPJAOnp6fjqq6+07VR3yJRFFodMWazkkCmLLA6ZsljJIVOWZHWErNmX4CzxgEbV0ag6gkhaaFQdQcgBYwyj5q2uNx0CAOTltsTbE/oLH9lHo+pMMHLkSHzxxRc4//zz8c477yQ6DkEQBEGkFIqi4O0J/RM2HUJjYomG06RJkzBu3Di8/PLLcX0fn8+HxYsXA6hrrKWlGa8+KzlkyiKLQ6YsVnLIlEUWh0xZrOSQKUuyORqaDkF0lvPPP9/w64XALMLy5cvZFVdcYfh15eXlDAArLy9v8LmVlZUMAAPAKisreWJayiFTFlkcMmWxkiOap8rtZbn3vMdy73mPHThSq21Xub1Sl4eONXkdMmWxkiMeWUpLS3V/f4sk4VecVqxYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvo2e1WazYeDAgdp2qjtkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUPCO4d/+OGHWLVqFXr37o3LL7+8XsNp0aJFGD16NObNm4d+/fphzpw5ePvtt7F161a0a9dOe94XX3yBZ555psE+Tm63G263W/u5oqICOTk51DmcIJIQ6hxOEKlLojqHJ3wCzGHDhmHGjBkYOXJkxN/PmjUL48ePx9ixY9GjRw/MmzcPmZmZmD9/Ptf7PfLII2jRooX2Lycnx0x8giAIgiBSiIQ3nGLh8XiwYcMG5Ofna4/ZbDbk5+dj9erVXM4pU6agvLxc+7dr1y5RcQmCIAiCsDhSN5wOHjwIv9+P7OzskMezs7NRVlam/Zyfn49Ro0bhgw8+wHHHHRezUeVyudC8efOQf3qpqalBr1690KtXL9TU1BgvkMUcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspjBEp0APvss8iylsSguLkZxcTH8/vpzTkQjEAhgy5Yt2jYPVnLIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgapG05t2rSB3W7Hvn37Qh7ft28f2rdvb8pdWFiIwsJCrXOZHtLT0/HJJ59o2zxYySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGRI+qi4YRVHqjarr168f+vbti7lz5wKoa2F27twZEydOxL333mv6PWnJFYJIXmhUHUGkLim75EplZaW20jEA7NixA5s3b0arVq3QuXNnFBUVoaCgAHl5eejbty/mzJmDqqoqjB071tT78tyqIwiCIAgitUl4w2n9+vUYPHiw9nNRUREAoKCgAAsXLsTVV1+NAwcOYNq0aSgrK0OvXr3w0Ucf1eswbhSeW3U+nw8ff1z31+3QoUO5p4u3ikOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8s/fv358phmkadp1xCaMkVuabQT3aHTFms5IjmoSVX5MhiJYdMWazkiEeWlF1yJVHw3Kqz2WzIy8vTtnmwkkOmLLI4ZMpiJYceT42n4c+yLOWhY01eh0xZrOSQLYsZpOocngioczhBJC/BncODoc7hBGF9UnbJFYIgCF4yHHbk5bYMeSwvtyUyHPYEJSIIwurQn2QEQSQtiqLg7Qn9UeM9dpsuw2GHoigJTEUQhJVJ2StOxcXF6NGjB/r06aP7NTU1NTj77LNx9tlnm5ou3ioOmbLI4pApi5UcsTyKoiDTmab9i9VokqU8dKzJ65Api5UcsmUxRaN2RZcQGlUn1yiJZHfIlMVKDpmyyOKQKYuVHDJlsZIjHlloVF0S4HK5sHjxYm071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhOSk7K06ngkw/X4/Vq5cCQA455xzYLcbH/JsJYdMWWRxyJTFSg6ZssjikCmLlRwyZbGSIx5ZevbsyZXDNI3ao0pCqHO4XJ39kt0hUxYrOWTKIotDpixWcsiUxUqOeGShzuFJgKIo6NGjh7ad6g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdw6lzOEEQBEEkHdQ5nCAIgiAIQnJStuHEM3M4QRAEQRCpTco2nAoLC1FSUoJ169bpfk1NTQ2GDBmCIUOGmJou3ioOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwS4XC689tpr2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA42qo1F1BEEQBJF00Kg6giAIgiAIyaFbdQbw+/3YuHEjAOCMM87gni7eKg6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyydO3alSuHaRq1R5VEPPPMM6x79+6sW7du1Dlcos5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/BGprCwEIWFhdo9Uj0oioLc3FxtmwcrOWTKIotDpixWcsiURRaHTFms5JApi5UcsmUxA3UOp87hBEEQBJF0UOdwgiAIgiAIyaGGE0EQBEEQhE6o4WSA2tpajBgxAiNGjEBtbW3KO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZcQWnJFrlESye6QKYuVHDJlkcUhUxYrOWTKYiVHPLLQqLokwOl04oUXXtC2U90hUxZZHDJlsZJDpiyyOGTKYiWHTFms5JAtixloVB2NqiMIgiCIpING1REEQRAEQUhOyt6qKy4uRnFxMfx+v+7XBAIB/PDDDwCA7t27w2Yz3u60kkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8snTp14sphmkbtUSUh1Dlcrs5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/AkoU2bNuSIg8dKDlEecsTHYyWHKA854uMhR3w8orLwQp3DqXM4QRAEQSQd1DmcIAiCIAhCcqjhRBAEQRAEoRNqOBmgtrYW1113Ha677jpT08VbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKRq1K7qE0Kg6uUZJJLtDpixWcsiURRaHTFms5JApi5Uc8chCo+qSAKfTidmzZ2vbqe6QKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQw0qo5G1REEQRBE0kGj6giCIAiCICSHbtUZIBAI4LfffgMAdO7cmXu6eKs4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyJKVlcWVwzSN2qMqTvz3v/9l3bp1Y127dmUvvviioddS53C5Ovslu0OmLFZyyJRFFodMWazkkCmLlRzxyEKdwznx+XwoKirC8uXL0aJFC/Tu3RsjR45E69at4/J+mZmZ5IiDx0oOUR5yxMdjJYcoDzni4yFHfDyisvCS9J3Dv/76a8ycOROLFy8GAEyePBn9+vXDtddeq+v11DmcIAiCIJKPlO0cvmLFCgwfPhwdO3aEoihYsmRJvecUFxejS5cuSE9PR79+/bB27Vrtd6WlpejUqZP2c6dOnbBnz57GiE4QBEEQRIqR8IZTVVUVevbsieLi4oi/X7RoEYqKijB9+nRs3LgRPXv2xNChQ7F///5GTkoQBEEQRKqT8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz8fANCxY8eQK0x79uxBx44do76f2+1GRUVFyD+9uN1ujB8/HuPHj4fb7db9Oqs6ZMoii0OmLFZyyJRFFodMWazkkCmLlRyyZTFFo3ZFbwAAbPHixdrPbreb2e32kMcYY2z06NHs0ksvZYwx5vV6WdeuXdnu3bvZkSNHWLdu3djBgwejvsf06dO1HvnB/2hUHR+yZJHFIVMWKzlkyiKLQ6YsVnLIlMVKjnhkoVF1ETh48CD8fj+ys7NDHs/OzsaPP/4IAEhLS8OTTz6JwYMHIxAI4O677445om7KlCkoKirSfq6oqEBOTo6uPA6HAzNmzNC2ebCSQ6YssjhkymIlh0xZZHHIlMVKDpmyWMkhWxYzSDWqTlEULF68GCNGjABwrOP3119/jf79+2vPu/vuu/Hll1/im2++4X6v4uJiFBcXw+/346effqJRdQRBEASRRKTsqLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3TpTHoIgCIIgUgepG05OpxO9e/fGsmXLtMcCgQCWLVsWcgWqsWCM4cCBAzhw4AB4L9RZySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKcR0leLnyJEjbNOmTWzTpk0MAJs1axbbtGkT27lzJ2OMsTfffJO5XC62cOFCVlJSwm6++WaWlZXFysrKTL3vM888w7p37866detGncMl6uyX7A6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKdg5fv349Bg8erP2sdtwuKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhSgvL0dWVpauaQmqqqq07YqKCvj9fsPvayWHTFlkcciUxUoOmbLI4pApi5UcMmWxkiMeWY4cOQIAjX7lSarO4Ylg9+7dukfVEQRBEAQhF9u3b8ef/vSnRnu/lG84BQIBlJaWolmzZlAUJdFxUgp1Kohdu3bRiEYJoP0hF7Q/5IL2h3yUl5ejc+fO+OOPP5CVldVo75vwW3WJxmaz4bjjjkt0jJSmefPmdCKSCNofckH7Qy5of8iHzda449ykHlVHEARBEAQhE9RwIgiCIAiC0Ak1nIiE4XK5MH36dLhcrkRHIUD7QzZof8gF7Q/5SNQ+SfnO4QRBEARBEHqhK04EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EN8XFxejSpQvS09PRr18/rF27Nubz3377bZx88slIT0/Hqaeeig8++CDk94wxTJs2DR06dEBGRgby8/Px888/hzznoYcewllnnYXMzMxGnSk2GWjs/fHrr7/ixhtvxPHHH4+MjAyccMIJmD59OjweT1zKl2wk4vNx6aWXonPnzkhPT0eHDh1www03oLS0VHjZkpVE7BMVt9uNXr16QVEUbN68WVSRkppE7I8uXbpAUZSQf48++qix4I26pDBhGd58803mdDrZ/Pnz2ffff8/Gjx/PsrKy2L59+yI+f9WqVcxut7PHH3+clZSUsPvvv585HA72v//9T3vOo48+ylq0aMGWLFnCtmzZwi699FJ2/PHHs5qaGu0506ZNY7NmzWJFRUWsRYsW8S5m0pCI/fHhhx+yMWPGsI8//pht376dLV26lLVr14797W9/a5Qyy0yiPh+zZs1iq1evZr/++itbtWoV69+/P+vfv3/cy5sMJGqfqNx+++1s2LBhDADbtGlTvIqZNCRqf+Tm5rIHH3yQ7d27V/tXWVlpKDs1nAgu+vbtywoLC7Wf/X4/69ixI3vkkUciPv+qq65iF198cchj/fr1Y7fccgtjjLFAIMDat2/PZs6cqf3+8OHDzOVysTfeeKOeb8GCBdRwCiLR+0Pl8ccfZ8cff7yZolgCWfbH0qVLmaIozOPxmCmOJUjkPvnggw/YySefzL7//ntqOB0lUfsjNzeXzZ4921R2ulVHGMbj8WDDhg3Iz8/XHrPZbMjPz8fq1asjvmb16tUhzweAoUOHas/fsWMHysrKQp7TokUL9OvXL6qTqEOm/VFeXo5WrVqZKU7SI8v+OHToEF5//XWcddZZcDgcZouV1CRyn+zbtw/jx4/Hq6++iszMTJHFSloS/Rl59NFH0bp1a5x++umYOXMmfD6fofzUcCIMc/DgQfj9fmRnZ4c8np2djbKysoivKSsri/l89X8jTqIOWfbHtm3bMHfuXNxyyy1c5bAKid4f99xzD5o0aYLWrVvjt99+w9KlS02Vxwokap8wxjBmzBhMmDABeXl5QspiBRL5Gbn99tvx5ptvYvny5bjlllvw8MMP4+677zaUnxpOBEGYZs+ePbjwwgsxatQojB8/PtFxUpq77roLmzZtwieffAK73Y7Ro0eD0QIRCWHu3Lk4cuQIpkyZkugoxFGKioowaNAgnHbaaZgwYQKefPJJzJ07F263W7eDGk6EYdq0aQO73Y59+/aFPL5v3z60b98+4mvat28f8/nq/0acRB2J3h+lpaUYPHgwzjrrLLzwwgumymIFEr0/2rRpg27dumHIkCF488038cEHH2DNmjWmypTsJGqffP7551i9ejVcLhfS0tLQtWtXAEBeXh4KCgrMFyxJSfRnJJh+/frB5/Ph119/1Z2fGk6EYZxOJ3r37o1ly5ZpjwUCASxbtgz9+/eP+Jr+/fuHPB8APv30U+35xx9/PNq3bx/ynIqKCnzzzTdRnUQdidwfe/bswaBBg9C7d28sWLAANhudUmT6fAQCAQAw9Ne0FUnUPnn66aexZcsWbN68GZs3b9aGzy9atAgPPfSQ0DImEzJ9RjZv3gybzYZ27drpL4CpruVEyvLmm28yl8vFFi5cyEpKStjNN9/MsrKyWFlZGWOMsRtuuIHde++92vNXrVrF0tLS2BNPPMF++OEHNn369IhDSbOystjSpUvZt99+yy677LJ6Q0l37tzJNm3axP7xj3+wpk2bsk2bNrFNmzaxI0eONF7hJSQR+2P37t2sa9eu7Pzzz2e7d+8OGd6b6iRif6xZs4bNnTuXbdq0if36669s2bJl7KyzzmInnHACq62tbdwKkJBEnbOC2bFjB42qO0oi9sfXX3/NZs+ezTZv3sy2b9/OXnvtNda2bVs2evRoQ9mp4URwM3fuXNa5c2fmdDpZ37592Zo1a7TfDRw4kBUUFIQ8/6233mLdunVjTqeTnXLKKez9998P+X0gEGB///vfWXZ2NnO5XOz8889nW7duDXlOQUEBA1Dv3/Lly+NVzKShsffHggULIu4L+nusjsbeH99++y0bPHgwa9WqFXO5XKxLly5swoQJbPfu3XEtZzKRiHNWMNRwCqWx98eGDRtYv379WIsWLVh6ejrr3r07e/jhhw3/YaEwRr0GCYIgCIIg9EAdEgiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIEzi8XjQtWtXfP3110K9H330EXr16qWtOUcQROKhhhNBECGMGTMGiqLU+7dt27ZER5OWefPm4fjjj8dZZ52lPaYoCpYsWVLvuWPGjMGIESN0eS+88EI4HA68/vrrgpISBGEWajgRBFGPCy+8EHv37g35d/zxx9d7nsfjSUA6uWCM4ZlnnsGNN94YF/+YMWPw9NNPx8VNEIRxqOFEEEQ9XC4X2rdvH/LPbrdj0KBBmDhxIiZPnow2bdpg6NChAIDvvvsOw4YNQ9OmTZGdnY0bbrgBBw8e1HxVVVUYPXo0mjZtig4dOuDJJ5/EoEGDMHnyZO05ka7QZGVlYeHChdrPu3btwlVXXYWsrCy0atUKl112GX799Vft9+rVnCeeeAIdOnRA69atUVhYCK/Xqz3H7XbjnnvuQU5ODlwuF7p27Yp//vOfYIyha9eueOKJJ0IybN68OeYVtw0bNmD79u24+OKLDdYy8Ouvv0a8ujdo0CDtOcOHD8f69euxfft2w36CIMRDDSeCIAzx8ssvw+l0YtWqVZg3bx4OHz6M8847D6effjrWr1+Pjz76CPv27cNVV12lveauu+7Cl19+iaVLl+KTTz7BF198gY0bNxp6X6/Xi6FDh6JZs2ZYuXIlVq1ahaZNm+LCCy8MufK1fPlybN++HcuXL8fLL7+MhQsXhjS+Ro8ejTfeeANPP/00fvjhBzz//PNo2rQpFEXBuHHjsGDBgpD3XbBgAc4991x07do1Yq6VK1eiW7duaNasmaHyAEBOTk7IVb1NmzahdevWOPfcc7XndO7cGdnZ2Vi5cqVhP0EQcYARBEEEUVBQwOx2O2vSpIn278orr2SMMTZw4EB2+umnhzz///7v/9gFF1wQ8tiuXbsYALZ161Z25MgR5nQ62VtvvaX9/vfff2cZGRls0qRJ2mMA2OLFi0M8LVq0YAsWLGCMMfbqq6+yk046iQUCAe33brebZWRksI8//ljLnpuby3w+n/acUaNGsauvvpoxxtjWrVsZAPbpp59GLPuePXuY3W5n33zzDWOMMY/Hw9q0acMWLlwYtb4mTZrEzjvvvHqPA2Dp6ekh9dikSROWlpbGLrvssnrPr6mpYf369WOXXHIJ8/v9Ib87/fTT2QMPPBA1A0EQjUdaYpttBEHIyODBg/Hcc89pPzdp0kTb7t27d8hzt2zZguXLl6Np06b1PNu3b0dNTQ08Hg/69eunPd6qVSucdNJJhjJt2bIF27Ztq3dlp7a2NuQ21imnnAK73a793KFDB/zvf/8DUHfbzW63Y+DAgRHfo2PHjrj44osxf/589O3bF//973/hdrsxatSoqLlqamqQnp4e8XezZ89Gfn5+yGP33HMP/H5/veeOGzcOR44cwaeffgqbLfRmQEZGBqqrq6NmIAii8aCGE0EQ9WjSpEnUW1PBjSgAqKysxPDhw/HYY4/Ve26HDh10j8ZTFAWMsZDHgvsmVVZWonfv3hFHmLVt21bbdjgc9bzqcP6MjIwGc9x000244YYbMHv2bCxYsABXX301MjMzoz6/TZs2WsMsnPbt29erx2bNmuHw4cMhj82YMQMff/wx1q5dG/GW36FDh0LKSBBE4qCGE0EQpjjjjDPw73//G126dEFaWv1TygknnACHw4FvvvkGnTt3BgD88ccf+Omnn0Ku/LRt2xZ79+7Vfv75559DrrKcccYZWLRoEdq1a4fmzZtzZT311FMRCATw5Zdf1rsSpHLRRRehSZMmeO655/DRRx9hxYoVMZ2nn346nnvuOTDGoCiK4Uz//ve/8eCDD+LDDz/ECSecUO/36hW1008/3bCbIAjxUOdwgiBMUVhYiEOHDuHaa6/FunXrsH37dnz88ccYO3Ys/H4/mjZtihtvvBF33XUXPv/8c3z33XcYM2ZMvdtR5513Hp555hls2rQJ69evx4QJE0KuHl133XVo06YNLrvsMqxcuRI7duzAF198gdtvvx27d+/WlbVLly4oKCjAuHHjsGTJEs3x1ltvac+x2+0YM2YMpkyZghNPPBH9+/eP6Rw8eDAqKyvx/fffG6i1Or777juMHj0a99xzD0455RSUlZWhrKwMhw4d0p6zZs0auFyuBnMQBNE4UMOJIAhTdOzYEatWrYLf78cFF1yAU089FZMnT0ZWVpbWOJo5cybOOeccDB8+HPn5+RgwYEC9vlJPPvkkcnJycM455+Avf/kL7rzzzpBbZJmZmVixYgU6d+6Myy+/HN27d8eNN96I2tpaQ1egnnvuOVx55ZW49dZbcfLJJ2P8+PGoqqoKec6NN94Ij8eDsWPHNuhr3bo1Ro4cyTVJ5fr161FdXY0ZM2agQ4cO2r/LL79ce84bb7yB6667LubtQoIgGg+FhXcqIAiCaAQGDRqEXr16Yc6cOYmOUo+VK1fi/PPPx65du5Cdnd3g87/99lsMGTIE27dvj9hJnpeDBw/ipJNOwvr16yNOQEoQRONDV5wIgiCO4na7sXv3bjzwwAMYNWqUrkYTAJx22ml47LHHsGPHDqF5fv31Vzz77LPUaCIIiaDO4QRBEEd54403cOONN6JXr1545ZVXDL12zJgxwvPk5eUhLy9PuJcgCH7oVh1BEARBEIRO6FYdQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6+X/DiLPOFtt7bAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 5e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "42b87c7c", + "metadata": {}, + "source": [ + "Yes, we do see a nice QPO there, but how can we be sure about the low-frequency continuum when it's so polluted from the harmonics of the observing window?\n", + "\n", + "A proper treatment of gaps is not possible at these long timescales, but gaps can certainly be ignored at shorter time scales. As we've seen in the `AveragedPowerspectrum` tutorial, we can study the short-term variability with" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a71841b4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:00, 1671.53it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum(ev_tot, dt=0.01, segment_size=256, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "11aff354", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2e0lEQVR4nO3deXxU1fk/8M/sk8lCEgLZSAi7rImGgChKsFFERKEVrbUaELG2waVUq6hfqf1RbOuGfo1SV2xrFbUF+1WLC7Ioe8CAENkDJEA2ss++3N8f6VwzZDJL5s5MJvN5v168nLnnzLlPLpg8Offc88gEQRBAREREFMXk4Q6AiIiIKNyYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT1luAMIN4fDgbNnzyI+Ph4ymSzc4RAREZEPBEFAW1sbMjIyIJcHPr8T9QnR2bNnkZWVFe4wiIiIqAeqqqowaNCggMeJ+oQoPj4eQMcFTUhICHM0RERE5IvW1lZkZWWJP8cDFbUJUWlpKUpLS2G32wEACQkJTIgikMViwQsvvAAAuP/++6FWq0M2nre+ntqljpuIKFpJtdxFFu3FXVtbW9GvXz+0tLQwIYpAer0ecXFxAID29nbExsaGbDxvfT21Sx03EVG0kfrnd9TOEFHfoFQqUVxcLL4O5Xje+npqlzpuIiIKDGeIOENEREQUcaT++c19iIiIiCjqMSEiIiKiqMeEiCKaXq9HYmIiEhMTodfrQzqet76e2qWOm4iIAsPVnBTxWlpawjaet76e2qWOm4iIeo4JEUW0mJgYHDlyRHwdyvG89fXULnXcREQUGD5lxqfMiIiIIg6fMiMiIiKSWJ+4ZVZZWYk777wTtbW1UCgU2LFjB3f+jRJWqxWvvvoqAODuu++GSqUK2Xje+npqlzpuIiIKTJ+4ZTZt2jQsX74cV1xxBRobG5GQkODz7r+8ZRbZWLqDiCg6sXTHBQ4ePAiVSoUrrrgCAJCcnBzmiCiU7HY7rrnmGgiCgNOnT+Oiiy4KqNCfQqHATTfdJL4OpK+ndn/OQ0REwRf2GaItW7bg6aefxp49e3Du3DmsXbsWc+bMcelTWlqKp59+GjU1NcjNzcX//u//YtKkSQCAdevWYfXq1bDb7Thz5gxuuukmPProoz6fnzNEke3s2bPi01oAMHnyZD61RUQUBfrcomq9Xo/c3FyUlpa6bV+zZg2WLFmCZcuWYe/evcjNzcWMGTNQV1cHALDZbPj666/x8ssvY/v27fjiiy/wxRdfhPJLoDC6MJ/vA3eAiYgoDMKeEM2cORPLly/H3Llz3bY/99xzWLRoERYsWIAxY8Zg1apV0Ol0ePPNNwEAmZmZmDhxIrKysqDRaHDdddehvLy82/OZzWa0tra6/CEiIqLoFvaEyBOLxYI9e/agqKhIPCaXy1FUVITt27cDAAoKClBXV4empiY4HA5s2bIFo0eP7nbMp556Cv369RP/ZGVlBf3roOAxGo2YN28e5s2bB5PJFPB4BoMBmZmZyMzMhMFgCKivp3Z/zkNERMHXqxdVNzQ0wG63IzU11eV4amoqDh06BABQKpVYsWIFrrzySgiCgGuuuQbXX399t2MuXboUS5YsEd+3trYyKYpggiCgoaFBfC3FeGfPnvVpPG99PbX7cx4iIgq+Xp0Q+WrmzJmYOXOmT301Gg00Gk2QI6JQ0Wg0eO211wAAarU64PG0Wi2+/fZb8XUgfT21+3MeIiIKvl6dEKWkpEChUKC2ttbleG1tLdLS0gIau7S0FKWlpbDb7QGNQ+GlUCgwfPhwScfLy8uTpK+ndn/OQ0REwder1xCp1Wrk5+djw4YN4jGHw4ENGzZgypQpAY1dUlKCiooK7N69O9AwiYiIKMKFfYaovb0dx44dE99XVlaivLwcycnJyM7OxpIlS1BcXIyJEydi0qRJWLlyJfR6PRYsWBDGqKm3sFqtWL9+PQC4LL4PZLx33nkHAHDbbbd5Ld3hqa+ndn/OQ0REwRf2jRk3bdqE6dOndzleXFyM1atXAwBeeuklcWPGvLw8vPjii5g8eXJA5+18y+zIkSPcmDFCHT16FCNHjgQAfPrpp5g2bRp0Ol2Px2PpDiKiyNDnSncUFhZ6fcpm8eLFWLx4saTnLSkpQUlJiXhBKfIIggCz2Swmx1KUwFAoFLjuuut8Gs9bX0/t/pyHiIiCL+wzROHG0h2R6+TJkzh58qTLsUmTJgU0Q0RERJGhz5XuCJfS0lKMGTMGBQUF4Q6Fekiv14c7BCIi6iOiNiHiU2Z9x4gRI6BUhv3uLxERRbCoTYiobzCZTJg6dSpuvfVWyUp3jBgxAiNGjPCpdIenvp7a/TkPEREFH3+tpogmCIK4jkiq0h3ObSB8Kd3hqa+ndn/OQ0REwRe1CRF3qu4b1Go11q5di7Nnz0pWuuObb74RXwfS11O7P+chIqLg41NmfMosYh08eBD19fUYMWIEKisrYbPZ+JQZEVGU4FNmRERERBKL2ltm1DfY7XZ8/PHHqKurw2WXXRbweDabDWvXrgUAzJ071+PTa976emr35zxERBR8UXvLjKU7It/Bgwdx+vRpccdnlu4gIooefa50R7iwdEffIJfLcemll8JkMkEuD/wOsFwux7Rp08TXgfT11O7PeYiIKPiidobIiYuqIxcXVRMRRS8uqiYiIiKSGBMiIiIiinpMiCiimc1mXHPNNViwYAHMZnPA4xmNRuTl5SEvLw9GozGgvp7a/TkPEREFX9QuquZO1X2Dw+FARUWF+FqK8fbt2+fTeN76emr35zxERBR8UZsQ8SmzvkGtVuMf//gHampqJCvd8fnnn4uvA+nrqd2f8xARUfDxKTM+ZRax+JQZEVH04lNmRERERBKL2ltm1DfY7XZs2LABNTU1yM/PD3g8m82Gzz77DAAwY8YMr6U7PPX11O7PeYiIKPj4XZgimsViQXFxMYCO0h2BMpvNuP766wF0lNTwlKh46+up3Z/zEBFR8PG7MEU0uVyO3NxcmM1myUp3TJw4UXwdSF9P7f6ch4iIgi9qF1WzuGvk46JqIqLoxUXVEikpKUFFRQV2794d7lCIiIgozKI2ISIiIiJyYkJEEc1sNmPOnDn45S9/KVnpjssvvxyXX365T6U7PPX11O7PeYiIKPi4qJoimsPhQFlZmfhaivG2bdvm03je+npq9+c8REQUfEyIKKKp1Wq8/vrrqK2tlaR0h0ajwdq1a8XXgfT11O7PeYiIKPii9ikzJ5buiFx8yoyIKHrxKTMiIiIiifGWGUU0u92Obdu2oaamBmPGjAl4PJPJhPXr10On0+FHP/oRFAqFx3N//fXXAIArrriiS19P7d4+S0REocWEiCKaxWLBzTffDECa0h1lZWWYO3cugI6SGrGxsd32NZlMmD59erd9PbV7+ywREYVW1CZEnXeqpsglk8kwcuRIWCwWyGSygMfT6/UYPHiwOLa3cztnpdz19dTu7bNERBRaXFTNRdURKxiLqjdv3gzn/xKFhYUSRUpERFLjomoiIiIiiTEhIiIioqjHhIgimtlsxq233opf//rXkpTuMJvNePDBB/Hggw/6VLrj6quvxtVXX91t6Y7u2r19loiIQitqF1VT3+BwOMTH16Uq3bFnzx6fxnM4HPjyyy+77eup3dtniYgotJgQUURTq9V48cUXUV9fL0npDpVKhUcffRSAb6U7/v73v3fb11O7t88SEVFo8SkzPmUWsfiUGRFR9OJTZkREREQSY0JEEamtrQ319fWw2+0oLy/H999/L8kmm3a7HYcOHcKhQ4e8jme327F7927s3r3bbV9P7d4+S0REocU1RBSRvvvuOwAdpTuuv/56ANKU7rBYLPjlL38JALj99tu9lu6YNGkSgO5Ld3TX7u2zREQUWn0iIcrJyUFCQgLkcjmSkpKwcePGcIdEQWaz2QAAAwYMwODBg2E2myUpgSGTyZCamiq+9tbXU5kPT+3ePktERKHVJxIiANi2bRvi4uLCHQaF2Lhx43Dy5El88803YpIUCK1Wi/feew8AvC7O1ul0OHnyZI/avX2WiIhCi2uIiIiIKOqFPSHasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS7tMJsO0adNQUFCAd955J0SRExERUV8R9oRIr9cjNzcXpaWlbtvXrFmDJUuWYNmyZdi7dy9yc3MxY8YM1NXViX2++eYb7NmzB//+97+xYsUK7N+/P1ThU5iZTCbMmTMHS5cuhcViCXg8s9mMxx9/HI8//jhMJpNP554zZ47bvp7avX2WiIhCK+xriGbOnImZM2d22/7cc89h0aJFWLBgAQBg1apV+OSTT/Dmm2/ikUceAQBkZmYCANLT03Hddddh7969mDBhgtvxzGazS82r1tZWqb4UCgO73Y6PPvpIfB0oh8OBrVu3+jSet3N7apc6biIiCkzYEyJPLBYL9uzZg6VLl4rH5HI5ioqKsH37dgAdM0wOhwPx8fFob2/HV199hZtvvrnbMZ966ik8+eSTQY+dQkOtVuPVV1/F0aNHoVKpAh5PpVLhN7/5jTi2L+furq+ndm+fJSKi0OrVCVFDQwPsdrv4GLRTamoqDh06BACora3F3LlzAXT8pr1o0SIUFBR0O+bSpUuxZMkS8X1rayuysrKCED2FgkqlwqJFiyR7ykypVIr7GnlLsJzn7km7t88SEVFo9eqEyBdDhw7Fvn37fO6v0WhYTJOIiIhchH1RtScpKSlQKBSora11OV5bW4u0tLSAxi4tLcWYMWM8ziZR7+dwOHDw4EFUVlbC4XBIMl5lZaVP4znPffDgQbd9PbV7+ywREYVWr06I1Go18vPzsWHDBvGYw+HAhg0bMGXKlIDGLikpQUVFBXbv3h1omBRCZ8+exebNm8Ukwmg0Yty4cbjjjjtcFsv3lNlsxp133ok777wTRqPRY1/nuceNG+e2r6d2b58lIqLQCvsts/b2dhw7dkx8X1lZifLyciQnJyM7OxtLlixBcXExJk6ciEmTJmHlypXQ6/XiU2cUXRobGyEIAgAgJiYGarUaKSkpsFqtkp2jX79+PvUTBAHJyckAOh4AcFePLCUlpdvPe2ojIqLQCntCVFZWhunTp4vvnQuei4uLsXr1atxyyy2or6/HE088gZqaGuTl5WH9+vVdFlr7q7S0FKWlpXzkOUINGzYMgwYNgkwmQ319vWSLqmNiYsTNQb0VXHU4HPjnP/8JAGhpaUFSUpJLe2xsLOrr691+1lMbERGFXtgTosLCQvE3/u4sXrwYixcvlvS8JSUlKCkpQWtrq88zAtR7KBSKsBdF7bz2h4k1EVFk69VriIiIiIhCIewzROHCW2Z9g8lkwsKFC1FfX48HH3ww4PHMZjP+/Oc/AwAuvfRSaLVaj+devnw5AODFF1/sNjYAeOONN1zG8tRGREShJxO83a/q45y3zFpaWpCQkBDucMiLAwcOoKGhASNHjkRGRgb0ej3i4uIAAJ9++in69euHrKysHm+2uX79erGUTHt7u8d1RGfOnMGgQYMAAPv378f48eNd2jvHduFYntqIiMg7qX9+R+0MEfUNarUazz//PKqrq6FSqWCxWHDu3LkeJ0QqlQolJSXi2N7O7ezrbldrZ2zuxvLURkREoceEiCKaSqXCAw88AIfDgZqaGhw5ciSg8ZRKJW666SZxbG/n9tTXGZunuImIqHeI2kXV3Km6b5HL5dDpdOEOg4iIIlTUzhDxsfu+weFw4PTp0wAgyT1kh8MhlopxOByQy7v/ncE5KwUAmZmZHmPLzs52GctTGxERhV7UJkTUNxiNRgwZMgQAUF1d3eNxWltbceLECZhMJtx6660AgNmzZ3tc7Gw0GsW++/fv9xjbhQunPbUREVHoMSGiiCfFrbJz586hubkZAPx6BN5bX0+x8RYfEVHvEbUJEfch6htiY2Oh1+sBQExoeqJzfbT//Oc/4tjezu3s6y65cZbnOH/+fJddtTvHTURE4Re1CxdY7Z5C4bvvvsPx48dx8ODBcIdCREQeRG1CROSOc6ZHqjppRqMRADgbRETUy0XtLTPqG8xms1j411lGIxCxsbH4/e9/D6CjdIdGo/F47meeeQYAxHIf3bXfd9993cb90ksveTwPEREFH0t39ILSHTabDeXl5TCZTD36vFKpxNixYxEfHy9xZL2Pp9Id1dXVOHr0KHQ6HSZNmuTXuIcOHUJNTQ2SkpKQl5cHQNrSHZ9++qlYEuTCNj5lRkTkP5bu6IPa29vR3t7e48/bbDY0NjZGRUJ0IZVKJc4MedtZ2hdKpVIsutrdeBaLBYcOHUJtba3YV6ns+r+SSqXqtl3quImIKDBRmxD1xqfMtFotJkyY4NdnKisrUV9fH6SIej+1Wo3HHnsMQGBPmXUe7+c//zlkMlm3NcYaGxvR2NgIlUqFn//85+LnuhvLW9xERBR+UZsQ9cadqntSfsLdzAQFV5TfZSYi6pP405QimiAIaGhoACBNcigIApqbmyGTySAIgsenzQRBQEtLCwCIa4ncjQWgS9LdOe6UlBTJnmojIqKeYUJEEc1gMGDgwIEAAivd4WQ0GjF37lwA3hc7m0wmsa+70h0Gg0Fs//TTT7uNm4uqiYjCj/sQERERUdTjDBFFtNjYWHFNjxSLqnU6HTZu3AiZTOZ11iYmJgYbN24UP+cuNme7uzauRSIi6j04Q0RERERRL2oTotLSUowZMwYFBQXhDoWIiIjCLGoTIhZ37RvMZjMeeOABPPDAAzCbzQGPZ7FY8NJLL+F///d/vY7n7PvSSy+57Ws2m8V2i8XiNW5BEHD48GEcPHgQVqs14K+FiIh8F7UJEfUNNpsNL7zwAl544QXYbDZJxvvnP/+Jf/7zn17Hs9vtYt8LN/h0OBw4f/58t+3u4tbr9Th37hzq6+vR1NQU8NdCRES+46JqimgqlQqPPvqo+DpQSqUSt912G2QymdfxnH2drzs7fPgwqquru213F3fnRdZccE1EFFpMiCiiqdVq/OEPfwAgXemOu+66y2PpDieVSoW77rpL/FxnLS0tLu2e4iYiovDjLTMiIiKKepwhoogmCAIMBoP4WorxjEajz6U7TCZTt+fu3K7VaruNW6fTsXQHEVGYMSGiiGYwGBAXFwdAutId1113HQDfSnc4+7or3dG53V3pDmfcLN1BRBR+vGVGREREUY8zRBTRdDod2tvbAUDc68dgMMBkMnW5TeWLmJgYfPrpp5DJZG7LcXSm1WrFmZ+YmBiP7RfG0jlub+chIqLgi9oZIu5U3Tc4a47Fxsa6rMPZuXNnjzY3lMlkiImJQUxMTLfretra2nzq66m9u7iJiCg8ojYh4k7VfU9CQgJSUlIAdCxavnB3aCk4HA6cPXtW8nGJiCi8ojYhor7BYrHgsccew2OPPQabzYZx48YFtEGjxWLB66+/jtdff91tQuVwOMTXVqvVY9/O7RfOVnWOOxiJGxER+YcJEUU0q9WKFStWYMWKFZLU/7LZbHjnnXfw97//3et4zr7vvPOO2zIfntqljpuIiALDRdUU0ZRKJe6//37xtb8sFgvq6+tRU1MjjvGTn/zEp/EUCoXYV6FQ+NUeaNxERCQtfiemiKbRaLBy5coef/7UqVM4c+aM+F6tVmPx4sWQyWTQaDQeP+vs64zDU7vUcRMRkbR4y4yiGm9XERERwISIqMcGDhwY7hCIiEgivGVGEU2v10taAsNgMGD69Ok+jZeVlYWxY8cCcF+6o3MZkAtLd0gdNxERBYYzRERERBT1OENEvVJjYyMOHjwIu92OmJgY5Ofnu30aS6fToa6uTnwdqJiYGKxdu9an0h06nQ47d+7E2bNnuy3dsXbtWvF1MOMmIqLAMCGiXqmxsRF2ux1Ax60ng8GAhISELv1kMhkGDBgg2XllMhkSExMhk8m8ltSQyWTo378/DAZDt6U7EhMTu/2slHETEVFg+swtM4PBgMGDB+PBBx8MdyhE3bJYLCgrK8OePXvcbuZIRETh0WdmiP7whz/g0ksvDXcYFGIWiwVPP/00AOChhx6CWq0OeLy///3vAIApU6Z4HM9iseDll19GS0sLfvOb33Rpt1qtWLNmDQDglltuAQA0Nzejvb0dVqsVy5Ytg06nkyRuIiIKTJ+YITp69CgOHTqEmTNnhjsUCjGr1YrHH38cjz/+uGSlO9544w288cYbXsezWq147rnn8MYbb3RbusM51oXtNpsNK1askCxuIiIKTNgToi1btmD27NnIyMiATCbDunXruvQpLS1FTk4OtFotJk+ejF27drm0P/jgg3jqqadCFDH1JkqlEnfddRfuuusuSUpgKJVKzJo1C7NmzfI6nlKpxM0334xZs2Z1W7rDOdaF7QqFArfffrvfcVssFjQ1NbkUmSUiosCF/ZaZXq9Hbm4u7rzzTvz4xz/u0r5mzRosWbIEq1atwuTJk7Fy5UrMmDEDhw8fxsCBA/HRRx9h5MiRGDlyJLZt2+b1fGazGWazWXzf2toq6ddDoaXRaPDaa69JNp5arcaDDz7oU+kOjUaDFStWoKqqqtvSHd2taVOr1Vi5ciWSk5P9iq+8vBwGgwFZWVkYNmyYX58lIqLuhT0hmjlzpsdbXc899xwWLVqEBQsWAABWrVqFTz75BG+++SYeeeQR7NixA++99x4++OADcW1GQkICnnjiCbfjPfXUU3jyySeD8rUQ+ePw4cNISkrCiBEj3M4wuWMwGAAALS0twQyNiCjqhP2WmScWiwV79uxBUVGReEwul6OoqAjbt28H0JHgVFVV4eTJk3jmmWewaNGibpMhAFi6dClaWlrEP1VVVUH/OojcMZvNqKmpQXNzc7hDISKKemGfIfKkoaEBdrsdqampLsdTU1Nx6NChHo2p0Wi83gqhyKHX68WaYnV1dZKU7nDOWDY0NHgcT6/XY/z48RAEocu6NqBj/yTnbeB//etf3bZ9//336N+/f0BxExFRYHp1QuSv+fPn+9y3tLQUpaWl4uZ/FLmct5GkYjKZfO5rNBp7PJY/5yEiouDyKyFyOBzYvHkzvv76a5w6dQoGgwEDBgzAxRdfjKKiImRlZUkaXEpKChQKBWpra12O19bWIi0tLaCxS0pKUFJSgtbWVvTr1y+gsSh8YmJiUFlZKb4OlFarxbvvvuvTeDExMdi0aRPOnTvXpTQH0DEb6RzrwlnJzm1SxE1ERIHxaQ2R0WjE8uXLkZWVheuuuw7/+c9/0NzcDIVCgWPHjmHZsmUYMmQIrrvuOuzYsUOy4NRqNfLz87FhwwbxmMPhwIYNGzBlyhTJzkORSy6XIycnBzk5OZDLA18SJ5fLkZaWhvT0dK/jyeVyDBo0CGlpaW77Osdy1+6pjYiIQs+nGaKRI0diypQpeO2113D11VdDpVJ16XPq1Cn84x//wE9/+lM89thjWLRokU8BtLe349ixY+L7yspKlJeXIzk5GdnZ2ViyZAmKi4sxceJETJo0CStXroRerxefOuupYN8yM5lMPu8V03kbgGgnCALq6+vR3t4e7lCIiCiK+JQQff755xg9erTHPoMHD8bSpUvx4IMP4vTp0z4HUFZWhunTp4vvlyxZAgAoLi7G6tWrccstt6C+vh5PPPEEampqkJeXh/Xr13dZaO2vYN8y27dvn9f1JdRVc3MzKioquhy32WxuE0yr1YrS0lIAHX+n7pJ1f1itVnz44YcAgMsuu8zjeFarFW+99Raam5uxePFitzE7NxqdM2dOt20jR44MKGYiIgqcTwmRt2SoM5VK5deGcYWFhRAEwWOfxYsXu/2B05spFAqf95YBOqqfB5rk9QXOMhYqlQopKSmoqamBIAjYv38/1Go1dDqdS3+LxYJf//rXAIBFixZJkhA5E6w//elPHsezWCz4wx/+AAD4xS9+4XGsWbNmddvGgsREROHn91NmOTk5uPPOOzF//nxkZ2cHI6aQCPYts4kTJwZl3GgRGxuLUaNGQaFQoLq6GkBHAiKTyVz6KRQK/OxnPxNfB0qhUOBHP/oRZDKZ1/EUCgVuuOEG6PX6bkt3/OhHP3Ibm6c2IiIKPb8TogceeACrV6/G73//e0yfPh0LFy7E3LlzI25vHz5lFhmGDx+OYcOGYceOHW7XWmm1WrzzzjuSnU+j0eDxxx+HTCZz++TYhed+7rnnPJbuePzxx91+tnObt/MQEVHw+f14ywMPPIDy8nLs2rULo0ePxr333ov09HQsXrwYe/fuDUaMFOUunBUiIiKSWo83ZrzkkktwySWX4Nlnn8XLL7+Mhx9+GK+88grGjx+P++67DwsWLOAPsl6koqIC9fX13bZrNBpcfPHFETfT1xsJgsBNF4mIIkyPEyKr1Yq1a9firbfewhdffIFLL70UCxcuRHV1NR599FF8+eWX+Mc//iFlrJKKtp2q6+vrPS5eN5lMaGtri7iESK/XIycnBwBw8uRJl1IbR48exdixY/1aaG0wGMQnws6cOeO1dEdBQQEcDge+/vpr8XhDQwOAjv27br31VgAQN2F06txWXl6OAQMG+BwjERFJz++EaO/evXjrrbfw7rvvQi6X44477sDzzz+Piy66SOwzd+5cFBQUSBqo1KJ1DVF+fj7UarXLsQMHDqCtrS1MEQXOmYA4qVQqWK1WNDc3o66uDpmZmX6N508l+aampi7HLBaLT2OxYj0RUe/hd0JUUFCAq6++Gq+88grmzJnj9rfvIUOG4Kc//akkAZK0VCpVl1mgSL61GRMTgwMHDoivAWDs2LHYvXs3APi8OaaTVqvFm2++CZlM5lPpjk8//RQ1NTXdlu548803xdfdtbF0BxFR+PmdEJ04cQKDBw/22Cc2NhZvvfVWj4Mi8pVcLsfYsWNdjsXGxiI1NbVLDTxfxxsyZAhkMplPpTtGjhyJmJiYbkt3DBkyxON5nK+JiCi8/E6InMmQxWJBXV1dl9/AI3lvokhms9m4MzYREVEP+Z0QHTlyBAsXLsS2bdtcjguCAJlMFjGLlPvaouqqqipUVVWFO4yQs1qtWL16NQBg/vz5kuxU/fHHH0Mmk/lUuuO9995DU1MT7rrrri7tNpsN69evBwBce+213baxdAcRUfj5nRAtWLAASqUSH3/8MdLT0yN2/UlfWVTdv39/NDQ0+LRWJiEhIeKeIvPGYrHg7rvvBgD87Gc/kyQhevbZZwEAv/vd77yW7nBurlhcXOxxLOeu1O7aIq0sDRFRX+R3QlReXo49e/a4PFVG4ZOSkoKUlJRwhyGJtrY2tLa2euxz4W7VCoUCN954o/g6UAqFApdffrlP4ykUChQVFcFoNOLcuXMYOXKkS8LpaSx/zkNERMHnd0I0ZsyYLo85EwXKYDBgz5494vsLZx51Op1LMuQs8qrVasWq8e7U1dVh4MCBPs+MaTQaLF++3OfSHX/7299w6NAhAB2P0Q8cOFBsV6vVWL58udvPdm5j6Q4iovDzKSHq/Fv7n/70J/z2t7/FihUrMH78+C63FBISEqSNkKKCc+8euVyOhIQEZGVlubSPHz8eer0eQMfWAd6SCGdC1dbWhu+++y5oxXbT0tJw6tQpLmgnIopwPiVEiYmJLr+xC4LQZU0EF1X3PYIguF2bFMxbPFqtFnl5eV2Oy+VyxMfH+zxORkYGmpqaYDabXTZKDAaNRuM2Ierfvz+USiVqa2vFGa1QsFgsaGpqEs9PRETe+fTdcuPGjcGOI+T6yqLqYBEEAfv27UNzc3OXtszMTIwYMcKv8Zqbm1FTU+NyLCkpCampqYGECYPBgDFjxgDoqNfmTDwSEhIwfvx4lJWV+TWe0WgUNxU9ceKEx0TGYDBg3LhxsFgs4iaLnZnNZsyaNQsWiwXvv/++S5vJZML8+fMBADt37vQrRm8OHDiA1tZWDBgwQNyjyeFwQBAErlciIuqGTwnRtGnTgh0H9TKCILhNhgCgsbHR7/GOHz/epTxIXV1dwAmRIAg4deqU+DpQgiCIGzp6G8/buQVBELdCuLC983kcDgf27NkjWfkU5y3u8+fPi+Pv2rULVqsV+fn5IZ2tIiKKFD2eTzcYDDh9+nSX2xETJkwIOCjqXaZMmQKlUomWlhbs37+/R2M4b72lp6dDrVbj1KlTYiIgk8n8uh3WmVarxa5du8TXgdJoNHjllVd8XlS9a9cuHDlypEt9OOdYGzZscNuuVqvxyiuviO+DWUvOYrHAZDIBANrb25kQERG54XdCVF9fjwULFuA///mP23auyel7FAoFFAqF2xIT586dQ3t7u0vfQYMGuU0QAGDgwIHo168fqqurYbfbxUTA2+P2nmKTspCwQqHARRddBJlM5tNj9wUFBVCpVG5n0xQKBS655BLI5XK3j907t66Q4jaW3W5HY2MjH2ogIuohvxOiBx54AM3Nzdi5cycKCwuxdu1a1NbWYvny5eJGcxQdzGYzDh8+3OW4XC5HRkYGvv/+e3EGsfOiY7lcjoKCAuj1erS2toq3nXqDSJo9MZvNOHHiBBISEmA0GlFdXc1CsUREPeR3QvTVV1/ho48+wsSJEyGXyzF48GBcffXVSEhIwFNPPYVZs2YFI04KAaPRKM7Y+LLztbOPTCZDdnY2mpqa0NraCofDgaamJjQ1NXX5jPM2lFarleQWl81mw5o1awAAt9xyS4+fqsrIyEB2djbsdju++OILyGQyXH755V3G63xdbDYbPvjgA5w6dQqTJ092G9v777+PU6dOdfn/wm6346uvvgIALFy4sEcxnzt3DrW1taitrRVvOfLxfyKinvH7p4derxc3n0tKSkJ9fT1GjhyJ8ePHY+/evZIHGCx87L6r48eP9+hzzsrtdrtdvPXlXEQcHx+PoUOHAuhYUyP1DIbZbMbPf/5zAMCcOXN6nBDpdDpotVo0NjZixYoVAIClS5d2Ge/o0aNuz/3pp592GdNiseAXv/gFAGDq1KkuyZTFYhHPc/vtt/co5s7/dqVYUE5EFM38/ukxatQoHD58GDk5OcjNzcVf/vIX5OTkYNWqVUhPTw9GjEHBx+5/kJ6eDovF4vaHalJSUkB72ahUKiQlJQUSnkdyuRxFRUXiaynGy8/P73Y8q9UKoCOBUiqVKCoqQltbm9u+crkchYWFYnt9fb24n5e38xARUWj5/ZPu/vvvx7lz5wAAy5Ytw7XXXot33nkHarVarDpOkSU9PT2iktnOYmJi8MUXX0g63jPPPAOZTOZxNisnJ0c8d3l5udtF1VqtFl999RU2b94MoCOZci4212g0eOaZZ8R+REQUXn4nRM5bBACQn5+PU6dO4dChQ8jOzu4zRUapb7FYLDhy5AhGjhwZ8nPLZDIMHDgQdXV1IT83ERH5rsdz9RaLBYcPH4ZarcYll1zCZIh65MLZESnXGHUu6Hr27FnYbDbJxiYior7F74TIYDBg4cKF0Ol0GDt2LE6fPg0AuPfee/HHP/5R8gCp9zGbzfj2229x8ODBgMeKjY3FpEmTkJubi7y8PLEMh68MBgPGjh2LsWPHwmAwuLSpVCpceumlfo83f/58zJ8/v8t43Z37Jz/5ibjxYWdGoxFjx47FDTfc0KXdWbpj/vz5fDKMiKgX8DshWrp0Kfbt24dNmza5/HZfVFQkPv5MfZNzxsXhcKClpUXckLHzTExP6HQ6JCUlITEx0e9NCgVBQEVFBSoqKtwuCu9ug0hP4506dQonT570qXRHRUUFTpw40W3pjoqKChw/ftxt6Y5Tp07h1KlTfEKMiKgX8HsN0bp167BmzRpceuml4hMzADB27NgeP7ZNkSEmJgYTJ07sMqNx4VN6DocjZNsZaLVasfiwFIuTtVotnn/+eZ/Gc5772LFj3Zbu2LhxI06ePOm2dIfzPIEmlEREFLgele5w7kPUmV6vd0mQqG+Ki4tDXFycxz7V1dUhiqaj7EVhYaGk4+Xl5flcuqOwsBCJiYndlu4oLCxERUVFl0XVzvM4XxMRUXj5fcts4sSJ+OSTT8T3ziTo9ddfx5QpU6SLjCJOUlKSy546MpkMycnJYYyoK5vNhoaGhqAWUw3m2FKxWCzQ6/XhDoOIqNfwe4ZoxYoVmDlzJioqKmCz2fDCCy+goqIC27ZtE/dbiQTcqVp6/fv3xxVXXCGuiZHJZEGfNbTZbPj4448BANdff73XTSS///57nD9/HgDcFoW12Wz45ptvAMBt6Q53566srMSECRMAdKwNqqmpAdCxk/S6detQVVXVZbG43W7H9u3bAQDZ2dm+fKmScTgc2LVrF2w2G3Jzc4O6cSYRUaTwOyGaOnUqysvL8cc//hHjx4/H559/jksuuQTbt2/H+PHjgxFjUHCn6uAIRRLUmdlsxty5cwEA7e3tXhMis9ns9nXnY//zP/8DAPj1r3/tcbzO53ZXuqN///7Izc11226xWMTz3HTTTR5jlprD4RC3IDAajUyIiIjQg4QIAIYNG4bXXnvN5VhdXR1WrFiBRx99VJLAiHwhl8tx2WWXia+lGG/s2LEAvNcHc55br9e7PXd8fDwuu+wyGAwGsf3YsWNdzsPSHURE4dfzIlUXOHfuHP7nf/6HCRGFVExMDLZu3SrpeC+99BKAjuTFufDZ07m7K93hbO+8qNq5gFqj0YjnYekOIqLw46+mRJ2o1WrExsYCgNvNFkOlqqoqbOcmIopGTIiIOpHJZGGpeXYhLvYnIgotJkQU0YxGIwoKClBQUCBJCQyj0Yjp06fjnnvu8TpD5Dz3bbfd5naBtrP95ptv7tJuNptxzz33+HQeIiIKPp/XEC1ZssRje319fcDBEPnL4XCgrKxMfC3FeN9++y0A74uqvZ3bU7vD4cDhw4cli1sKNpsNjY2NSExM9LvkCRFRpPM5IXL+kPDkyiuvDCgYIn9pNBpxHyIpSmBoNBqsWbMGx48fh0ql8uncJ06c6LZ0x8cff4zTp0+7Ld2xYsUK8XWgnHXlAnH06FHU1tYiMTHR42JyIqK+yOeEyFkviqg3USqVmDVrVo8+a7FYupTUUCqVmDFjBr799luvexo5z93dU2bO9u5Kdzh3dvd2nlBxxujuayEi6ut6x3diohBw7kDt1LkYMfcCIiKKbj79FPjjH/8Ig8Hg04A7d+50qXVGFEx2ux1ffPEFvvjiC7+fzLJarQA6kqEBAwaI423cuBFlZWVex3Oee8eOHW77Otu3bdvWpd1ut6OsrMyn8xARUfD5NENUUVGBwYMHY968eZg9ezYmTpwo/gCx2WyoqKjAN998g7///e84e/Ys/vrXvwY16M6am5tRVFQEm80Gm82G+++/H4sWLQrZ+Sm8TCYTrrnmGgAd62icewg5yeVyDB48GHV1dd0+hTZq1ChxvZDJZBLLcXz11Vc+n9td6Q5P7RaLBQ899BCAjhpsREQUXj4lRH/961+xb98+vPTSS/jZz36G1tZWKBQKaDQacebo4osvxl133YX58+eHdOfd+Ph4bNmyBTqdDnq9HuPGjcOPf/xj9O/fP2QxUPjI5XKxXlh3t72GDBmC7OxsfP311z6NN27cOBiNRq812ZznNhqNbs/tbDeZTF3a5XI5hg0b5jFuIiIKHZ/XEOXm5uK1117DX/7yF+zfvx+nTp2C0WhESkoK8vLykJKSEsw4u6VQKKDT6QB07O0iCILXx6Wp74iJiUF5ebmk433zzTf49ttvvSb2znN7Kt1RXl7udlG1RqPB66+/DoClO4iIegO/fzWVy+XIy8vDjTfeiJ/+9KcoKioKKBnasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS3tzczNyc3MxaNAgPPTQQ2FLzoiIiCgyhX2uXq/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDJffuBMTE7Fv3z5UVlbiH//4B2pra7s9n9lsRmtrq8sfIiIiim5hT4hmzpyJ5cuXiwtZL/Tcc89h0aJFWLBgAcaMGYNVq1ZBp9PhzTff7NI3NTUVubm5HteKPPXUU+jXr5/4JysrS7KvhULPaDSisLAQhYWFkpXumDVrFh544AGfSncUFhbirrvu6rZ0R2FhIebPnw+z2QyDwSDGaDab8cADD+CBBx4Qj8lkMowbNy7gr4GIiPzXq/chslgs2LNnD5YuXSoek8vlKCoqwvbt2wEAtbW10Ol0iI+PR0tLC7Zs2YJf/vKX3Y65dOlSlzIkra2tTIoimMPhwObNm8XXUoy3detWAL6V7vB07gvbW1paXNr27dsHAKisrIRWq4VMJus1mzQSEUWbXv3dt6GhAXa7HampqS7HU1NTcejQIQDAqVOncPfdd4uLqe+9916MHz++2zE1Go0kJR6od9BoNHj//ffF11KMt3r1alRWVvpUuuP999/HyZMnuy3d8f7776O6utqlPTk5GfX19Vi2bBkAiOfh4moiovDxKyGyWq3ikzO9ZWp/0qRJPXrKqLS0FKWlpdwUL8IplUrMmzdP0vHmzJnjc+mOefPmeSzdMW/evC5PmcnlcigUChQWFrr09zZTqdfrff46AtXc3IzDhw8jNTUVOTk5ITsvEVG4+LWGSKVSITs7O2RJREpKChQKRZdF0rW1tUhLSwto7JKSElRUVGD37t0BjUMUKp0fAAj2bNLp06dhNBpx8uTJoJ6HiKi38HtR9WOPPYZHH30UjY2NwYjHhVqtRn5+PjZs2CAeczgc2LBhg1gYk6Kb3W7H1q1bsXXrVkkSdbvdjh07duC7777zqXTH1q1bUV5e3m3pjq1bt2Lv3r1uS3d89913Pp3HnWBv5siZUyKKNn6vIXrppZdw7NgxZGRkYPDgwV1KJezdu9ev8drb23Hs2DHxfWVlJcrLy5GcnIzs7GwsWbIExcXFmDhxIiZNmoSVK1dCr9djwYIF/obugrfM+gaTyYSpU6cCcF+6w0mhUGDEiBFobm5GfX29x/GuvfZaAL6V7nCeu7vSHd21WywW3HfffWJbTEyMS7vRaITNZuv2tl1NTY3H2IiIyD9+J0Rz5syRNICysjJMnz5dfO98Aqy4uBirV6/GLbfcgvr6ejzxxBOoqalBXl4e1q9f32Whtb9KSkpQUlKC1tZW9OvXL6CxKHxkMhmGDx8uvvYkMzMTmZmZMJlM2LFjR7fjDR06FGaz2et4znN319fZbrFYurTLZDJkZmZ2ibvzwvCmpiaxZmBPSPHUHRFRtPA7IXI+GSOVwsJCr483L168GIsXL5b0vNQ36HQ6HD161K/PaLVa6HQ6sQ7fhePt3bvXp9IdznN3t6ja2e5cVN3537lWq8Xf//73Lp+JiYmBUqmEzWaDxWLx6+tyx2q1urzX6/VITk4OeFwior6mRwsRmpub8frrr2Pp0qXiWqK9e/fizJkzkgYXTKWlpRgzZgwKCgrCHQr1cc5EyF0C5o7z9tnRo0dx/PjxgM594SxR572QiIjoB34nRPv378fIkSPxpz/9Cc8884z4m/G//vUvlw0Uezs+ZUahkpCQ4Ff/trY28fWFRWEDpVAoJB2PiKiv8DshWrJkCebPn4+jR4+63FK47rrrsGXLFkmDI/LGZDJh1qxZmDVrltdSG76Od/PNN+ORRx5xW47D3bnvvfdet7e3nO2/+MUvurRbLBY88sgjeOSRRzzeGuNmjUREoeH3GqLdu3fjL3/5S5fjmZmZfPKFQs5ut4tPcEn12P3nn38OwPuiZG/n7tx+7733dmnbuXOnZHETEVFg/E6INBqN2wrxR44cCeiJmFDjY/d9g1qtxltvvSW+lmK80tJSnD592mvpDue5nX1Pnjzp8v+As91ut3cZS6VS4eGHHxZfExFRePmdEN1www34/e9/L9aPkslkOH36NB5++GH85Cc/kTzAYOFj932DSqXC/PnzJR3vtttu86l0h/PcBw4cQENDAwwGg8uTZM52q9UqFox1UiqV4n5Hwcakn4jIO7/XED377LNob2/HwIEDYTQaMW3aNAwfPhzx8fH4wx/+EIwYicJKEAQcOnQIe/bscft4/YgRI4J27paWFjQ1NfX482VlZXxwgIjIB37PEPXr1w9ffPEFvvnmG+zfvx/t7e245JJLUFRUFIz4iDxylsAAgPHjxwf8FJXdbsf+/ftx7NgxjB49GkDHrtHu1sc5z221WmG327uc22634+DBg27b7XY7KisrAQBDhgzxGPexY8d6vD3EhfsQuWM2m3HixAmv+4EREfVlfidEJpMJWq0WU6dOFcsSEIWLyWTCxRdfDMBz6Q5/xrvyyisB/FC6o7tEofO53ZXf8NRusViwaNGibj/bmRQbNHpy9uzZLgWUiYiijd8JUWJiIiZNmoRp06Zh+vTpmDJlisdv5r0VF1X3DTKZDBkZGeJrKcZLT0+H1Wr1qXSHp3N7apfJZEhJSelR3Gq1Gmq1Gu3t7X59rjs2m02ScYiIIpnfCdGXX36JLVu2YNOmTXj++edhs9kwceJETJs2DYWFhbj66quDEafkuKi6b9DpdJLukK7T6fD999/7XLrjzJkzbhdNe2vXarX44IMPehRjfHw8b28REUnM70XVU6dOxaOPPorPP/8czc3N2LhxI4YPH44///nPIXtqhiiS9ZVkxuFwcIaViPoMv2eIgI49hzZt2iT+MZvNuP7661FYWChxeER9T1ZWFs6fPx/uMALicDiwa9cuWCwWFBQURORtcyKizvxOiDIzM2E0GlFYWIjCwkI8/PDDmDBhgiTrN4j8ZTKZcPvttwMA/va3vwVc6sJkMqG4uBjNzc148sknfTq3w+HAL37xiy4bQ5pMJvzsZz/r0q7RaGCxWLBixQoAwKOPPirJppKhZLVaxVIper2eCRERRTy/b5kNGDAABoMBNTU1qKmpQW1tLYxGYzBiCypWu+8b7HY7PvzwQ3z44YeSle746KOPsHnzZp9Kd3z44Yf417/+1W3pju7a7XY7Nm/ejM2bN4f1ttPZs2dx7tw5j30EQYDZbO4zt/qIiNzxe4aovLwczc3N2LJlCzZv3oxHH30UFRUVyMvLw/Tp0yNmc0Yuqu4b1Go1XnrpJfG1FOM9/fTTqKqq8ql0x0svveS2NIe3dpVKhfvuu098HS6+PKl25MgRMWm66KKLkJaWFuywiIhCrkdriBITE3HDDTfg8ssvx2WXXYaPPvoI7777Lnbu3BkxCRH1DSqVCiUlJZKOt2jRIp9Ld5SUlHT7lJmn9tTUVMydO9ev2KR6zN5fnWeQDh06hDNnzkCn04UlFiKiYPH7ltm//vUv3HfffZgwYQJSU1Pxy1/+Eu3t7Xj22Wexd+/eYMRIFBYmk8mnnZ4783VPn7Fjx/q17s5kMonbC+j1er9iklpbWxs3ciSiPsfvGaJ77rkHV155Je6++25MmzYN48ePD0ZcRD5xOBw4fvw4AGDYsGGQy/3O8buMd+LECVRXVyMjIwNbt27FJZdc4vHcNpsNDocDcrkcBw4ccGk/evQoBEEQ2ztrampCe3s7MjIyvMZtMBjE1xaLhTM0REQS8zshqqurC0YcRD1iNBoxcuRIANKU7jAajWIC5CypUV1d7fXcX375JQCgtbVVbLdarWL7gQMHUF9f7/JZ5y0zb6U7nPXViIgoeHq0hshut2PdunX4/vvvAQBjxozBjTfeGHBhTaKekHpR/IXjeboN5uyblpbmkvBkZmZCJpN5jC0uLs6nJ7e8Pe3WG9jtdgiC4HXdFRFRb+X3d69jx47huuuuw5kzZzBq1CgAwFNPPYWsrCx88sknGDZsmORBBgNrmfUNsbGxaG5uDsp4J06cwOnTp33q66xc7ySTyTy2x8bGYvPmzS4zSpHKZrNh+/btcDgcmDx5MjQaTbhDIiLym98LLu677z4MGzYMVVVV2Lt3L/bu3YvTp09jyJAh4mPEkaCkpAQVFRXYvXt3uEOhMIiLiwPQkbhwPU5gzGazuI4qEvckIyICejBDtHnzZuzYsQPJycnisf79++OPf/wjLr/8ckmDIwqW0aNHY8iQIVAqlV73AYqEW1ZERBQYv2eINBoN2trauhxvb2+PuPIDFPnMZjPmz5+P+fPnw2w2+/w5mUyGmJiYLsmQu/G6uyXn7dye2s1mM5YtW4Y//vGPsFgsPsfdG3W+HWiz2XzeeoCIqDfxOyG6/vrrcffdd2Pnzp0QBAGCIGDHjh245557cMMNNwQjRqJu2Ww2vP3223j77bcl+UHceTznbTVf+rpbi9a5vfNj9UqlEjabDR9//DE+++yzPrWO7cCBA9i2bZvf+zcREYWb37fMXnzxRRQXF2PKlCnib9c2mw033HADXnjhBckDJPJEpVLhz3/+s/hayvFSU1PR2NiIpqYmr33dPV3VuT0rKwvx8fHQarVQqVQQBAH3338/TCZTn3syy+FwwGw2h7UkCRGRv/z+TpyYmIiPPvoIx44dEx+7Hz16NIYPHy55cETeqNVqPPTQQ0Ebz9Nu0p37XvgUmbuxOu81pFarcccdd/SJp8yIiPoCnxMih8OBp59+Gv/+979hsVjwox/9CMuWLfO4oRwRda/z7tP+YuV5IiJp+byG6A9/+AMeffRRxMXFITMzEy+88IKkRTWJesLhcODMmTM4c+aMJE+DeRtPoVBApVIhPj7ea19P7Q6HA3V1daivr+9R3IGWKCEiIlc+zxD99a9/xcsvv4xf/OIXADpKFcyaNQuvv/46vzlT2BiNRgwaNAiAdKU7Oo/XmUqlwmWXXQag41aaXq8X+3auYeZLbEajET/5yU8A/FC6w581NxkZGTh//rwfXxkREXnicyZz+vRpXHfddeL7oqIiyGQynD17NiiBBVtpaSnGjBmDgoKCcIdCAVIqlZIuTPY0nkwmc1lX5O3cntoVCoVLuZv+/ft36RMpO78TEUU6n3+K2Gw2aLVal2MqlSpiH68tKSlBSUkJWltbJa+FRaETGxsr6b9Bf8br3NfdompPY8XGxmLjxo0uj9x7WsB94Wcv/H9RSoHOshERRSKfEyJBEDB//nyXOkUmkwn33HOPyzfQf/3rX9JGSBTF3C2eHjVqFGJjY5Gfn489e/YE5bwtLS1BGZeIqLfyOSEqLi7ucuznP/+5pMEQ9RVS7cHjLiFybhgZzFmiQNXW1kKpVPbqGImIOvM5IXrrrbeCGQdRj5jNZixZsgQA8NxzzwVcaf3C8Xzte++994rHMzMzMWjQII+xmc1mPPfccxAEAb/61a98LnszYMAAv76eC50/fx7V1dUBjeGLqqoqNDU1YcyYMTCbzUhMTPT5liARUTjIhCjf0MS5hqilpQUJCQnhDof8pNfrxRkTKZ4yu3C848ePo7GxEUDHrE/nAsad+x44cAD19fUAgEsuuQQJCQkeY+vc5nzKrLCwEACwadMmsd+QIUPE9UmTJk1CTEyMmFhYrVZs3bo1oK/XndjYWOj1eknGkslkEAQBubm5SEpKkmRMIiJA+p/ffatmAEUdlUqFZcuWia9DOV7nvt2V7uhuLJVKhfnz50MQBCiVSvHxfE/UanVIZlmkLM7q/H3LZDJJNiYRUTAwIaKIplar8bvf/S4s43Xu213pju7GUqvVuPPOO8WnzHpS+iZYyZHZbA7KuEREvRl3VCSKUEqlEpmZmeEOg4ioT+AMEUU0QRDER8T79esX8KzJheP52tfdUjxPsQmCgLa2NjgcjoDWPY0YMQJxcXE4fPhwj8cgIiLOEFGEMxgMSEpKQlJSUkDFUnsyXue+RqPRr7EMBgNmzZqF2bNnR8X6msOHD+Po0aPi+7Nnz2LHjh1oaGgIY1RERD9gQkREIXHmzBnx9ZEjR2AymXDs2LEwRkRE9IOIT4iqqqpQWFiIMWPGYMKECfjggw/CHRKFkE6ng8VigcVigU6nC+l4nfvGxMT4NZZOp8NXX32FL774wuPmhUlJSVAqlUhMTHSpe9ZXWCyWcIdARASgD6whUiqVWLlyJfLy8lBTU4P8/Hxcd911rMcUJWQymWS7Qvs7Xue+7tYueRpLJpNBqVR6XfOUkJCAqVOn+hQPERH1XMTPEKWnpyMvLw8AkJaWhpSUFHEjPaJIlJWVBaDj33Nf07mYLRFRbxL2hGjLli2YPXs2MjIyIJPJsG7dui59SktLkZOTA61Wi8mTJ2PXrl1ux9qzZw/sdrv4A4X6PovFgoceeggPPfSQJLdf/BnPW19P7RaLBS+//DJWrVoFq9Xq0jZ06FBMmTIFo0aNCvjr6W22b98u6caPRERSCXtCpNfrkZubi9LSUrfta9aswZIlS7Bs2TLs3bsXubm5mDFjBurq6lz6NTY24o477sCrr74airCpl7BarXjmmWfwzDPPdEksgj1e577ufsh7GstqteK9997DmjVrunxWJpNBo9H4vIWAs0aaXB72/529stlsbp/IIyIKt7CvIZo5cyZmzpzZbftzzz2HRYsWYcGCBQCAVatW4ZNPPsGbb76JRx55BEDHzrpz5szBI488gssuu8zj+cxms8tOvK2trRJ8FRQuKpUKDz74oPg6lON17ttd6Y7uxlKpVPjpT38qlu4IRFJSEvLz86FSqbBjx46AxgoFPllGRL1R2BMiTywWC/bs2YOlS5eKx+RyOYqKirB9+3YAHRvczZ8/H1dddRVuv/12r2M+9dRTePLJJ4MWM4WWWq3G008/HZLxLtx8sXPf7kp3dDeWWq3Gr371K0nW1MhkMsTHxwc8Tqg4N6skIupNevUce0NDA+x2O1JTU12Op6amoqamBgCwdetWrFmzBuvWrUNeXh7y8vLw3XffdTvm0qVL0dLSIv6pqqoK6tdAka3z4/Rc+0JE1Hf16hkiX0ydOhUOh8Pn/hqNBhqNBqWlpSgtLeVTLxFOEAQxUfHlMXZ/xxs+fLjLhoLd9e2udEd3sTnb7HZ7n9xfiIgo0vTqGaKUlBQoFArU1ta6HK+trQ34keSSkhJUVFRg9+7dAY1D4WUwGKBWq6FWqyUr3dF5PE8JVue+3ZXu6C42g8GAq666CldffXVUlO4gIurtenVCpFarkZ+fjw0bNojHHA4HNmzYgClTpoQxMiIiIupLwn7LrL293eWpk8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq8XnzrrKd4y6xt0Oh2amprE16Ecr3Nfd5uBehpLp9PhwIEDOH36NIYPHx5w3EREFBiZ4G7xQwht2rQJ06dP73K8uLgYq1evBgC89NJLePrpp1FTU4O8vDy8+OKLmDx5siTnb21tRb9+/dDS0oKEhARJxqS+ZdOmTeLrwsJCt31OnjyJkydPAgDy8/PD9tRX51gjgVwux8CBA9HU1IQJEyaw5A4R+Uzqn99hnyEqLCx0uyC1s8WLF2Px4sUhiojIf6mpqeKaobi4uLDFERsbC71eD6VSGTFPxTmfGK2trcXQoUPDHA0RRauwJ0ThwltmfYPFYsGKFSsAAI8++ijUanXIxruw75gxY3weS+q4nfLz82G1WnHy5EmcO3dOkjFDJcyT1UQU5cJ+yyzceMsssun1enFGpr29PeBbLu7G6+6Wmbdze2qXOu4LHT58OOISoqysLAwbNgwGgwEKhUIsSUJE5E6fu2VGFAilUolf/epX4utQjuetr6d2qePuKwwGA3bt2gW5XI7LL7+cezQRUchwhogzROSFL4uqextfZogGDhwInU4nLgYPt6ysLBgMBpw/fx4AMGXKFDQ3N6OpqQlDhw6V7LYiEfUNUv/87tX7EAVTaWkpxowZg4KCgnCHQkSASzLk9P3336OmpgbV1dVhioqIokXUJkTcqZqod/FUgsdisYQwEiKKRlGbEFHfoNfroVKpoFKpoNfrQzqet76e2qWOuy9wbmJJRBQOXM1JEU/q/Xb8Gc9bX0/tkbJPULi0traGOwQiiiJMiCiixcTEiOtLYmJiQjqet76e2qWOuy86ePBguEMgoigStQkRN2bsG+RyOTIzM8Mynre+ntqljvtCntbjOKlUqqCdn4go0kTtGiIuqqa+rF+/fl779O/fPwSRSOfUqVMoKyvjmisiCoqonSGivsFiseCFF14AANx///2SlO7wdTxvfT21Sx33hdzVUxs1ahRMJhNOnTolHoukbcgqKysBANXV1Rg1alSYoyGivoYbM3JjxojG0h3utbe3o6yszOVYfn4+5HK5OCs6YcIEKBQKfPvtt5KeO9gGDhzYpW4cEUUflu4g6kSpVKK4uFh8HcrxvPX11C513BeKjY1FVlYWGhoaYDQau+3HdURERB2idoao86LqI0eOcIaIuhWJpTucGhsbsX//fgDuZ4i0Wi127drldRznb2G9AWeIiAhg6Q7JcFE1kW90Op1Pi7SJiCJZ1CZEROS7tLS0cIdARBRUTIgooun1eiQmJiIxMVGy0h2+juetr6d2qeMONp1OF+4QiIiCiouqKeJJvbbFn/G89fXU3lvW5BARERMiinAxMTE4cuSI+DqU43nr66ld6rg9xSiTySCXy6HValk1noioG0yIKKLJ5XKMGDEiLON56+upXeq4uxMTE4PLLrsMMpkMSqWyS0Ikl/OuORERwDVERH2eSqXqdq8jrVaLnJyc0AZEvYYgCDhz5gxqa2vDHQpR2EXtDBGLu/YNVqsVr776KgDg7rvvDnijQX/G89bXU7vUcQciJycHCoUCx48fD3is2NjYoC8SFwQBp0+fBgBkZWVBJpMF9Xx9WVtbG44ePQoASEpKkryEDFEkidqNGZ1YuiOysXSHf/R6vcvGjMnJyQCAqqqqbhMinU6HSZMmuVyH7kyePBk7d+6ULN7u4jEYDACAgoKCkF27vkYQBJw6dQqHj3XUiEsf2B8TJkwIc1REvmPpDqJOFAoFbrrpJvF1KMfz1tdTu9RxB8pdMdieCOYCcSdnMgQADQ0NOHnyJHJycpgY+amhoQF3vfc9jjU7AAAjEk34fPx4zrhR1GJCRBFNq9Xigw8+CMt43vp6apc67kAlJSWFZHZHapWVHbMbNpsNubm5YY4mspypqReTIQA42uyA0WqHTs0fCxSduKiaiACEZnYnWDrPGpFvmpqbwx0CUa/ChIiIRLxdEj10ushNgImCgQkRRTSDwYDMzExkZmZKMkvgz3je+npqlzpuqeTn53c5ptFowhAJBVtvWLtG1JvwZjFFNEEQcPbsWfF1KMfz1tdTu9RxSyUuLg6TJ09GVVUVbDYbLBYLhgwZ4vVz2dnZSExMDH6AHrS2tqKhoQGZmZlM4nzQi/7ZEfUKTIgoomm1Wnz77bfi61CO562vp3ap45ZSTEwMRo4c2eW4QqHodt+uoUOHdjvexRdfLH6twfTdd9/BarXCbDZj9OjRQT9fJBMEAQ9/XhPuMIh6FSZEFNEUCgXy8vLCMp63vp7apY47FMaOHYuzZ8/CZrOh2cOC3MzMTJw5c0Z8H6rF2larFUDHTBF5ZrTacaKp43plxCtxts0W5oiIwi9q1xCVlpZizJgxKCgoCHcoRBEhOTkZ48aNQ3x8vMd+F9Zok8lkSEpKCmZoXTQ3N+P8+fMhPWck6Xyb9pWbfvj7cjgc7roTRYWoTYhKSkpQUVEh7tpLkclqtWL16tVYvXq1OEMQqvG89fXULnXc0c5sNouvbTYbysvL8d133wW9jEik0ut/WMjfr18/8XV19Rl33YmiAm+ZUUSzWCxYsGABAGDevHkB1wRzN95FF12E+vp6DBw40K9ze2qXOm76gc32w+0fJpvu2TpdF5Xyh397p06exEXDvS+iJ+qLmBBRRFMoFLjuuuvE18EYLy0tDWlpaX6f21O71HGHEvcqIqK+iAkRRTStVotPPvkkLON56+upXeq4Qyk1NRUNDQ29av+kzjqvj2loaAj7dgC9UXNLi/iaCS5Rh6hdQ0REPRMbG4tJkyYhMzMz3KF4VV1dLb4+d+4c9u7dy6fQ4Lp4WqX+4ZaZNoLLtxAFigkREUWFw4cPo7W1VSwISx06zxDJ5fyRQNGL//opohkMBowYMQIjRoyQrHSHr+N56+upXeq4qXsOhwPHjh0T33d+Io2IyIlriCiiCYIg/rCTqnSHr+N56+upXeq4e5v+/fv3mn2AGhoaXG6dRTtBEPDA/51y34a+92+RyFdMiCiiabVafPPNN+LrUI7nra+ndqnj7m3S0tL8ToiGDRuG48ePSx7LuXPnJB8zkhmtdhw73zFLNry/BjGqH55yfGJTMzZeKnChNUUlJkQU0RQKBS6//PKwjOetr6d2qeMOBykKqOp0OvGWYVZWVlASIurec7OyoFMrMGpgLA7X6XGyxQaj1Q6dmj8aKPr0iTVEc+fORVJSEm666aZwh0IUNTIyMjB06FDk5ub2eIzBgwdDJpNh0KBBEkbmmcFgwHfffYfW1la0t7f3yVuWvtLpYiCTyfDmbePCHQpR2PWJXwPuv/9+3HnnnXj77bfDHQqFmM1mw9q1awF0JMZKZWD/pP0Zz1tfT+1Sxx0OSqUS2dnZbtt8ueWSk5OD1NRUpKSkhHxzyvPnz4u39AYNGoThw4eH9Pzh1PmRe12MDgDQ+W8rmhNEim6R913YjcLCQmzatCncYVAYmM1m3HzzzQCA9vb2gBMLf8bz1tdTu9Rx9zaJiYkYMGAAYmJiui1L4tzHKNjJUFNTk8f26upqDB48GC0tLUhKSoq4ncP9ZbH8ULYjLj4OgOv+QxaLFbEalpKh6BP2W2ZbtmzB7NmzkZGRAZlMhnXr1nXpU1paipycHGi1WkyePBm7du0KfaDUK8nlckybNg3Tpk2TZA8Vf8bz1tdTu9Rx9zZKpRJjx47F0KFDwx2KTyoqKnDgwAFUVlbCYDDAbreHO6SQcCbiWu0P68E4Q0TRKuy/lur1euTm5uLOO+/Ej3/84y7ta9aswZIlS7Bq1SpMnjwZK1euxIwZM3D48OEuxTYp+sTExEg6O+jPeN76emqXOu6+LCUlBRkZGTh06BAsFgsAYMiQIZJusOicRaqurkZ1dTViY2NRUFAg2fi9SV1dXbhDIOqVwv6r6cyZM7F8+XLMnTvXbftzzz2HRYsWYcGCBRgzZgxWrVoFnU6HN998s0fnM5vNaG1tdflDRME1YMCAHn923LhxSE5Odns8WPR6fdDGDrdTJ096bLc7omN2jOhCYU+IPLFYLNizZw+KiorEY3K5HEVFRdi+fXuPxnzqqafQr18/8U9WVpZU4RJRN9LT01FQUICLLrrIp/5qtRpKpRJpaWnisQvXIqWkpODyyy/H5MmTJY3Vqa/eOvL2Vf3s9bI++7UTedKrE6KGhgbY7Xakpqa6HE9NTUVNTY34vqioCPPmzcOnn36KQYMGeUyWli5dipaWFvFPVVVV0OKn4DMajcjLy0NeXh6MRmNIx/PW11O71HH3djKZDLGxsV7XSznXtKSnp+Pyyy93SaA6r0eKjY0F0JEkxQSpIGl7e7vL67Nnz4prixwOByoqKnD06NGISh4cDgdW7DR1OR6jUmBwQsffzdEGI4xWzhJR9An7GiIpfPnllz731Wg00Gg0KC0tRWlpadQsnuyrHA4H9u3bJ74O5Xje+npqlzruYBIEoUc/IGNUCr93PM7NzUVLSwvS0tK6fLZ///6YMmUKTCYTEhISXNpSU1NRW1vrd4yedP572bdvH6xWK6xWK1JTU2EymcS1OOnp6YiLi5P03MFSe74Zp9s6vq7R6fHiLtUymQzPzMzEvDX8BZGiV69OiJz7k1z4ja62ttZlKr0nSkpKUFJSgtbWVvTr1y+gsSh8tFotPv/8c/F1KMfz1tdTu9RxB5PRaseYJz7z+3MTByfhg3um+JUUxcfHIz4+vtt25y80Fxo9ejSGDBmCHTt2+B1nd+rq6iCTyRAXFwerteNR9crKSlRWVrrEUFZWhtGjR3eZyQaAQ4cOobW1FRMmTOjx37PD4UB7ezvi4+MDKqkhCAJ+/tZe8f2H91zmMp4g9O7EnCjYenVCpFarkZ+fjw0bNmDOnDkAOr45bNiwAYsXLw5vcNQrKBQKXH311WEZz1tfT+1Sx90blZ1q6lIGovMPYKnrZXlLONLS0lxutXtz5swZnDlzxu2+RGaz2eX96dOn3SZEzvPV19e7Xa9oMBig1+shk8lw7tw5ZGZmdllAfvjwYdTW1iIrKwvDhg3zOf4LGa12HG/siHtwggI6tevXlTUoC8AZAB0bh4LlOyjKhP1ffHt7u1j1G+j4Day8vBzJycnIzs7GkiVLUFxcjIkTJ2LSpElYuXIl9Ho9FixYENB5ecuMyDcxKgUqfj/D5/4Gix0Tl7u/jZ2UlIS0tDTExMSEfDPKoUOH+pUQOfnyPcLdOqLOt9wubLfZbLDb7V32VGtpacHUqVNdjjlnyKurqwNKiDor/fGwLglpfMIPM3Ptbe1I0PXumUsiqYU9ISorK8P06dPF90uWLAEAFBcXY/Xq1bjllltQX1+PJ554AjU1NcjLy8P69evd/jbmD94y6xtsNhs++6zjds6MGTMkKd3h63je+npqlzruYJLJZJIV+1QqlT4/adYTgwYNQn19PcaNG4fy8nIxmRk6dCjUanXQzmswGHDq1Cn0798fMpkMp0+fdrmt1t7ejjNnziA9PR3nz5/HwYMH3Y5js9nQ1taGgwcPYsCAAV0SIIPBgNbWVgwYMECcuTKZTKivr8fAgQN9LrjrLsnrvOC9pbUVGakpPo1F1FfIhEh6RCIInAlRS0tLl4Wa1Pvp9XpxQWt7e7v49FEoxvPW11O71HH7Sq/XY/fu3QCACRMmuN3fJ1AGi01cc1Tx+xlhq5x+9uxZHD16FEOGDBFrru3evTusewyNGDECR48e9din8629oUOH4sSJE277jRw5Eunp6SgvL0dLSwsA4Morr4RMJoMgCJDL5bDb7aiursa5c+fQ3G7EPV8aAABb7stHdobrOszOf29/KdJhRtF0EPVmUv/87r2/lhL5QC6XY+LEieLrUI7nra+ndqnjpq4yMjKQlpbmcn1HjhyJb7/9NmwxeUuGALjc1jtx4gQEQYDFDqgVruuujhw5gsbGRjQ3N4vtW7duFWd/Jk6ciNraWlRVVUEQBJfH7VVKz7XKzPaOOAJ9eIUokkRtQsQ1RH1DTEyMOOMR6vG89fXULnXc5N6FyWa/fv1cHtEfPnw4jEYjzpw5E47wxGQH+CHh6ZwAAcAfdppwrNmBEYlyLJ2shbVTclRfX+/S/uhkrZg0nT9/HufPn4fZJsBsh/i4fXa8HAOSPS8TuG+jAdll3+Krh6+BUtm3i90SOUVtQsQ1RBSNOq+j8XW9SV/T+RoMGjQIVqs15AmRIHQkKSt2mlwSld9dpsWK/yY42fFy/GaiFseaO9qPNjuwbJsJVW0/JD9mO1zazXZABgFqRcc5/mdzMw6ft7qce9XNI92uWYtRKZA/OBF7TjUD6EigZr34Ndb/eprkTwQS9UZRmxARRSOVSoVJkybB4XCEbN1Sb5OZmQmTyeRx/dRFF12EQ4cOddseGxvb7VqkzrM+Tp1nfy5MhJxOtzmw9Gsjag2C+P7+jQaXPlVtPyQ/rRZgxU7XXc6Xbev4/PBEOZaq67okQwAgg/vkRiaT4cN7LkPVuTrMe30Pag0CDtfpu2yd4IlzE8+ebMpJFG5RmxDxllnfYDQaxVp3X375ZcBlHPwZz1tfT+1Sx+0PnU4XsnP1RlqtFmPHju22PT4+HikpKRg7dmy3T4ONGjUKOp0OZWVlMJl+WJsjCIJ4C6uz4Ykdsz1PuUmEsuLlsNgF1BoEMRnyxYXJEgDx88eaHVj4f/U+j+Ukk8mQnZGKJy+LERdgt+hNiFHFek1wBEHATau2Y8+pJkzIiMNH917JpIgiStQmRLxl1jc4HA5s27ZNfB3K8bz19dQuddzUc503XhQEAYNyhsHiAGL7JUEQhG5/qDuLz57sVD3e0ukWVmfHmh345ZeuCUx2fMdtL42iYxHzPRe0vzBdh2fLuiZQF8qKl0OjcH/ezuc6/d9bbbEa/77tT/nTZlyS1Q///NXlHhMco9WOPaeaAAD7z7bjyIlTGDUsx69zEYVT1CZE1DdoNBqsXbtWfB3K8bz19dQuddzUc3K5HKNHj0ZFRUXH7M5nW8U2Z9JyYRpgsNihtNigiU2A2dYxK3PBxs94cXrHTNx9F8zkjElPwHuLJmHPzm1igqFRCC7rd8al6ZColePJyzrWCT1T1nXWaUSKFr/J60iGgI5kTID7vs/MzEBTYyMy0wYgPT3d6zW58Jbf3qoWr7fOTp465fJ+0XvfY/OjgzlLRBGDCRFFNKVSKZZ1CfV43vp6apc67t7KcOFPVglJuU5l4MCBqD3fjGPNx1yOn25zdJm5AQB8ua3LIeciaCeNm4ezvnlwKjL7J0Amk+Hiiy/G6dOn0djYCJlMhg9+MQUmW0ciE6NSwOFwYPv27ZDJbHhsslZMUlQKYPJlU6FTK1FXVweTyQSz2Yx+/fph4MCBmJh3Htv2fOeSiI0bN9av/aCGZ6cBcN3/6PChw8gdN9rtNhFGoxH3vH/E5djpNgfaTRbExzDhp8jAhIiIgqa7Eh5SGJOe8N/isb5/prskSiaTYfjwYQA6EqLdjxWh+M1dqDjX6vPY7hZBqxVA3qAElFe3Ij87UUyGACAxMRGxsbE4fPgw4uPjIZfLoVP/kGwoFApkZGTg9OnTSElJgVqtxrlz5wAAsZqOfYTc7difkpKC6ZdNRN7RcpRXt2Li4CSxqr2vRl90Ebb9NguX/XmzeKymrg76XQaMGJLd5bxNrXrx1l6qTiauZWpqakJ8DPcyosgQtQkRF1X3DXa7HV9//TUA4IorrnBbiDNY43nr66ld6rh7kxiVAhMHJ6Hsv+tJgqXiXCvGLvvMr894SqI6z2bFahT45L6pMFp/ONZRe2w3HA4HJk0qgErVkZQIAnDDCxtxvNEi9h2XGiM+Wfa34jwoNDFukzGVSoVx48Z1G29OTg6SkpIQHx+Pqqoqn7/O+Ph4rC2Z2uMnvmQyGdISXZ9C7FgDZcCIxAZ8/vC1LmPW1dWJr9++Iw/XrurY/LKi4vsuO2IT9VYs3cHSHRGNpTt6J+fj18EZG5i3artfszf+6q7kiPMXqAsT2Pb2dmzd0bHRpkarxZiRw1BRUQEAmDZNmn18zGYzTpw4IRbIDYX/fLmxy2JwADj45DVQwiGuf1v/5Ubx1mLZ40XizGBOPyU2PnIN1xFRULB0B1EnMpkMY8aMEV+HcjxvfT21Sx13byNlQVh3Lpy98cafJMrTLabuZvLi4uJw5eWX4syZM0hNTUV8fDzi4uKg0Wgk+/vVaDQYPXq0JGP5KjW5H4Yndl2kvWHTN9AogMy0AYiLi3MpCxKjUmDUwFgcrtPjZIsNBotNvMVH1JtxhogzRERRwddZK24q+AOr1YrW1lYcP1WNc/WNXdZIZcXL8ZuJGjywsWODyCGJKnz18NU439qOiU9tAQD862c5uGRC9/s+EfUUZ4iIiHog2LNWfZFKpUL//v2RnJyM1tZWjPh2G452mi2qanOIyRAArPvvZoy6ThuN/nLdKWwaMQwxMVoQ9WYss01ERB7JZDL069cPr986Bn8p0uHpK93vrK5SdSScMSoFhvfvSIBqDQKufX4TNyClXi9qE6LS0lKMGTMGBQUF4Q6FAmA0GnH11Vfj6quvhtFo9P4BCcfz1tdTu9RxE4XC4MGDMaNoOnJHZHVpm5AeK669kslk+HfJZUjVddx6PNVqx6kzNSGNlchfXEPENUQRjU+ZEYWezWZDTW0tLBYrTp6shNUOjBs9EpmZmS799lccxg1/7djbaXCCHO8vvATJycnilgVEgeAaIqJONBoN/v73v4uvQzmet76e2qWOmyiUlEolBmVmQq/X4/Spk9AoOxZgX2jY4EHIjj+B020OnGp1YGd5BYYNGoisrCycP38emZmZUKvVYfgKiLriDBFniIiIemzTpk0AOjaRzMnJ6dK+Z98B/OTdH+qcZXUqapuRkYGLRo0KUaTU13CGiIiIeo309HQ0Nzdj4MCBbtsvGj4EIxKrxKfTqtocnTZ7PIaj/28YLBYzdDodtzugsOIMEWeIIprdbsfevXsBAJdccokkpTt8Hc9bX0/tUsdN1JsJgoBtu/ag5NM6NJtdf+Q8fWUM+sfIoI6JQ/qAZCQnJyMpKSlMkVIkkfrnNxMiJkQRjYuqiSKDIAg429iGy5/+uts+wxPleHCiFtdcNQ1yedQ+BE0+4i0zibC4a98gk8kwePBg8XUox/PW11O71HET9XYymQzpSfHi+6x4OaraXPcmOtbswD1fGjC87DM8e10mxo8bx8SIQoYzRJwhIiIKGYdDgCAI0Ovb0aI34c53vsPRBpPbvpvvm4g4jRLJycn8xYG64C0ziTEhIiIKH0EQoDfbMGfll12KyAJAdrwcz80ahEsmjOVsEblgQiQxJkREROFntVpx8tx5XP3yHrft2fFyvFM8Hv0HpiFGpYDzJ5dczpmjaMU1RESdmEwm/PSnPwUAvPfee9BqAysg6c943vp6apc6bqJIp1KpMDwrFaMG6nC4ztCl/XSbA1e8tA/APkzIjMf+M20AgG8fuRwaXRxiVAreVqOAcIaIM0QRjU+ZEfUtDoeAWS9+je9r2jAqWYmF41T47Zbu6/2l6mSoNQgYl6bD/91fyKQoinCGiKgTtVqNV199VXwdyvG89fXULnXcRH2FXC7Dp/dfAaPVjhiVAg6HgN9u+U+3/WsNHb/TH6gxYEf5QUzOHQuTzQ6tUg6bzQ6lUsnbauQTzhBxhoiIqFdzODp+TBksNsx89ssuj+u7MzxRLi7Sfm9eJsaMGIqEhAQ4HA4IQsc2AEyUIhsXVUuMCRERUeQ4UVmJ+f84hNM+JEWdZf+3hppaAdz5WccapQP/Mx2teiP2798PGYDhI4ZjaPYgyGQyMQnrmG3q2EleLv/hOJOp8GNCJDEmRJHN4XDg+++/BwCMHj064Mdy/RnPW19P7VLHTRRNBEGA0WqHSgYYrHbk/v5LycYelqzB76cl4ra1tV3a/n3bYNzwTkeh2p0PXY6UxATUN7XAarUhLj4OapUKMaofkifgv/suAZCBSZTUmBBJpPNO1UeOHGFCFKG4qJqIHA4BJrMZN7yw0e1eRuHwafEw2AQ5bvjrUfHYF3ddhJTUdLF2oc1mw/m6c9Dq4pGZ1lEcVyYD2oxmxGnV4i9KnWel/JmhCsZsli9jOvvIZIDR2lENIhhPATIhkhhniCKbXq9HTk4OAODkyZOSJES+juetr6d2qeMmoo69jBpb9UhJTIDJ1jGDdLauHjFqJarO1uLXn1R3u/7oz1fGeHyaLVScJU2y4+X449UDIVco8NMPzgAAXinS4Zdfdtzue+3aBGRnZSEhIQExagVa2g3o1y8Rzc1NiIuLR1t7O6a/1FFAumLZj9Bm6NgNPCk+FlYBsFptMJvNaG5uhkajRlxcPBQKBdraWqFUKKFQKuFwOCCXy9HS0gKLxQKlUolrX68AALw1KxkDBqQgJkaL9rZ2CIKA5P7JaGpqwY1/OwYAWHVtEu5Z39QRw+9nQKeW9jkuJkQSY0JERBQdbDYbGtv00Gpj8PNXt2H/OT0uyU7Eh/dcBkEQMOyxjqfZPrx1MDLS06FSqTB/dRkO1oY/UYp03y0rQnyMRtIxmRBJjAkREVH0ca5D6nwrx93tIGc/rVIhLrDWmy2I1ajRbjKjrbkRGo0WbW1tiInRwmwH7n7vexyu02NokhonmiwAgFGpcThc2x76L7QXGJEox6e/KYJKpZJ0XO5DREREFCCZTNblFo67dTGd+zn/65zpSNBpkaDLAACk9E8WP7P+1wPFZMs55eBcT+N8Ys1Jb7bAbjFBkKsgk8mgUimhUchhstkhCALkcjnsdgdOnz4Nu92OjMwMqFVqKJUK6PUG/OyN3Th23ozhKVr89Y48qNVqNDU1or6+HvHxCfj1x1U4dt6EYckaOAQHKpusGJaswdt35EKv10OtVsFqtUGlUkKhUCAxMRHtbe0wW8z/vYXWjuTkZPTrlwCbzQaT2QxdjM7jGiLn1ywIDmz9ZivUCkTEhpmcIeIMUUQzmUxYuHAhAOCNN96QpHSHr+N56+upXeq4iSg6uZvp6q4dgMe+UnM4HNiyZQsAYOrUqVAquYaoV2NCFNn4lBkRUe/UOSEqKCiQ/Pscb5kRdaJWq/H888+Lr0M5nre+ntqljpuIqLfpuAWogtVq5S2zSMAZIiIiouAwGAxobW1FSkpKr79lxhkiIiIiCgqdTgedThfuMHzChIgimsPR8fQFAGRnZ0tSusPX8bz19dQuddxERBSYPvFd+OOPP8aoUaMwYsQIvP766+EOh0LIaDRiyJAhGDJkCIzGwDdP82c8b309tUsdNxERBSbiZ4hsNhuWLFmCjRs3ol+/fsjPz8fcuXPRv3//cIdGISL1dKw/43nr66k9UqaRiYiiQcQnRLt27cLYsWORmZkJAJg5cyY+//xz3HrrrWGOjEIhNjYWer0+LON56+upXeq4iYgoMGG/ZbZlyxbMnj0bGRkZkMlkWLduXZc+paWlyMnJgVarxeTJk7Fr1y6x7ezZs2IyBACZmZk4c+ZMKEInIiKiPiLsCZFer0dubi5KS0vdtq9ZswZLlizBsmXLsHfvXuTm5mLGjBmoq6sLcaRERETUV4U9IZo5cyaWL1+OuXPnum1/7rnnsGjRIixYsABjxozBqlWroNPp8OabbwIAMjIyXGaEzpw5g4yMjG7PZzab0dra6vKHIpfZbMaiRYuwaNEimM3mkI7nra+ndqnjJiKiwPSqjRllMhnWrl2LOXPmAAAsFgt0Oh0+/PBD8RgAFBcXo7m5GR999BFsNhtGjx6NTZs2iYuqt23b1u2i6t/97nd48sknuxznxoyRiaU7iIiiU1RtzNjQ0AC73Y7U1FSX46mpqTh06BAAQKlU4tlnn8X06dPhcDjw29/+1uMTZkuXLsWSJUvE962trcjKygrOF0BBp1KpsHz5cvF1KMfz1tdTu9RxExFRYHr1DJFzwfS2bdswZcoUsd9vf/tbbN68GTt37gz4nCzdQUREFHmk/vkd9jVEnqSkpEChUKC2ttbleG1tLdLS0gIau7S0FGPGjEFBQUFA4xAREVHk69UJkVqtRn5+PjZs2CAeczgc2LBhg8uMUU+UlJSgoqICu3fvDjRMCiNBEFBfX4/6+npIMdnpz3je+npqlzpuIiIKTNjXELW3t+PYsWPi+8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq/HggULAjpvaWkpSktLYbfbA/0SKIwMBgMGDhwIQJrFyf6M562vp3ap4yYiosCEPSEqKyvD9OnTxffOBc/FxcVYvXo1brnlFtTX1+OJJ55ATU0N8vLysH79+i4Lrf1VUlKCkpIStLS0IDExkY/fR6jOuz23trYGnOD6M563vp7apY6biCjaOH9uSzXL3qsWVYdDdXU1nzIjIiKKUFVVVRg0aFDA40R9QuRwOHD27FnEx8dDJpOJxwsKCtyuL/L1uKf3ztfOR/6rqqoke8Ktu/h62p/XwXO7u+O+HON16Pqe14HXoTdeB1/68jp47hOs6xAfH4+2tjZkZGRALg98SXTYb5mFm1wud5tZKhQKt//ofD3u6f2FbQkJCZL9A+8uvp7253Xw3O7uuC/HeB26vud14HXojdfBl768Dp77BPM69OvXz6f4fdGrnzILp5KSkoCOe3rf3RhS8Hdsb/15HTy3uzvuyzFeh67veR18O3cgeB38H9uXvrwOnvv09uvgFPW3zMKJm0J24HXowOvQgdehA69DB16HDrwOHYJ5HThDFEYajQbLli2DRqMJdyhhxevQgdehA69DB16HDrwOHXgdOgTzOnCGiIiIiKIeZ4iIiIgo6jEhIiIioqjHhIiIiIiiHhMiIiIiinpMiIiIiCjqMSGKIDk5OZgwYQLy8vJcCuJGG4PBgMGDB+PBBx8Mdyhh0dzcjIkTJyIvLw/jxo3Da6+9Fu6QwqaqqgqFhYUYM2YMJkyYgA8++CDcIYXF3LlzkZSUhJtuuincoYTUxx9/jFGjRmHEiBF4/fXXwx1O2ETr339nUnwv4GP3ESQnJwcHDhxAXFxcuEMJq8ceewzHjh1DVlYWnnnmmXCHE3J2ux1msxk6nQ56vR7jxo1DWVkZ+vfvH+7QQu7cuXOora1FXl4eampqkJ+fjyNHjiA2NjbcoYXUpk2b0NbWhrfffhsffvhhuMMJCZvNhjFjxmDjxo3o168f8vPzsW3btqj8/yAa//4vJMX3As4QUUQ5evQoDh06hJkzZ4Y7lLBRKBTQ6XQAALPZDEEQEK2/16SnpyMvLw8AkJaWhpSUFDQ2NoY3qDAoLCxEfHx8uMMIqV27dmHs2LHIzMxEXFwcZs6cic8//zzcYYVFNP79X0iK7wVMiCSyZcsWzJ49GxkZGZDJZFi3bl2XPqWlpcjJyYFWq8XkyZOxa9cuv84hk8kwbdo0FBQU4J133pEocumE4ho8+OCDeOqppySKODhCcR2am5uRm5uLQYMG4aGHHkJKSopE0UsrFNfCac+ePbDb7cjKygowammF8hpEkkCvy9mzZ5GZmSm+z8zMxJkzZ0IRuqT476ODlNehp98LmBBJRK/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDNTV1Yl9nGtCLvxz9uxZAMA333yDPXv24N///jdWrFiB/fv3h+Rr81Wwr8FHH32EkSNHYuTIkaH6knokFP8WEhMTsW/fPlRWVuIf//gHamtrQ/K1+SsU1wIAGhsbcccdd+DVV18N+tfkr1Bdg0gjxXXpC3gdOkh1HQL6XiCQ5AAIa9eudTk2adIkoaSkRHxvt9uFjIwM4amnnurROR588EHhrbfeCiDK4ArGNXjkkUeEQYMGCYMHDxb69+8vJCQkCE8++aSUYUsuFP8WfvnLXwoffPBBIGGGRLCuhclkEq644grhr3/9q1ShBk0w/z1s3LhR+MlPfiJFmCHXk+uydetWYc6cOWL7/fffL7zzzjshiTdYAvn3Ecl//xfq6XUI9HsBZ4hCwGKxYM+ePSgqKhKPyeVyFBUVYfv27T6Nodfr0dbWBgBob2/HV199hbFjxwYl3mCQ4ho89dRTqKqqwsmTJ/HMM89g0aJFeOKJJ4IVclBIcR1qa2vFfwstLS3YsmULRo0aFZR4g0mKayEIAubPn4+rrroKt99+e7BCDRoprkFf5Mt1mTRpEg4cOIAzZ86gvb0d//nPfzBjxoxwhRwU/PfRwZfrIMX3AiZEIdDQ0AC73Y7U1FSX46mpqaipqfFpjNraWkydOhW5ubm49NJLcccdd6CgoCAY4QaFFNegL5DiOpw6dQpXXHEFcnNzccUVV+Dee+/F+PHjgxFuUElxLbZu3Yo1a9Zg3bp1yMvLQ15eHr777rtghBsUUv1/UVRUhHnz5uHTTz/FoEGDIv6HpS/XRalU4tlnn8X06dORl5eH3/zmN33uCTNf/330tb//C/lyHaT4XqCULGIKqqFDh2Lfvn3hDqPXmD9/frhDCJtJkyahvLw83GH0ClOnToXD4Qh3GGH35ZdfhjuEsLjhhhtwww03hDuMsIvWv//OpPhewBmiEEhJSYFCoeiy8LW2thZpaWlhiiq0eA068Dr8gNeC16A7vC4deB06hOo6MCEKAbVajfz8fGzYsEE85nA4sGHDBkyZMiWMkYUOr0EHXocf8FrwGnSH16UDr0OHUF0H3jKTSHt7O44dOya+r6ysRHl5OZKTk5GdnY0lS5aguLgYEydOxKRJk7By5Uro9XosWLAgjFFLi9egA6/DD3gteA26w+vSgdehQ6+4Dj16No262LhxowCgy5/i4mKxz//+7/8K2dnZglqtFiZNmiTs2LEjfAEHAa9BB16HH/Ba8Bp0h9elA69Dh95wHVjLjIiIiKIe1xARERFR1GNCRERERFGPCRERERFFPSZEREREFPWYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQEREFyGKxYPjw4di2bZuk465fvx55eXkBV/EmIu+YEBGRi/nz50Mmk3X507nOELlatWoVhgwZgssuu0w8JpPJsG7dui5958+fjzlz5vg07rXXXguVSoV33nlHokiJqDtMiIioi2uvvRbnzp1z+TNkyJAu/SwWSxii610EQcBLL72EhQsXBmX8+fPn48UXXwzK2ET0AyZERNSFRqNBWlqayx+FQoHCwkIsXrwYDzzwAFJSUjBjxgwAwIEDBzBz5kzExcUhNTUVt99+OxoaGsTx9Ho97rjjDsTFxSE9PR3PPvssCgsL8cADD4h93M2oJCYmYvXq1eL7qqoq3HzzzUhMTERycjJuvPFGnDx5Umx3zr4888wzSE9PR//+/VFSUgKr1Sr2MZvNePjhh5GVlQWNRoPhw4fjjTfegCAIGD58OJ555hmXGMrLyz3OkO3ZswfHjx/HrFmz/LzKwMmTJ93OxhUWFop9Zs+ejbKyMhw/ftzv8YnId0yIiMgvb7/9NtRqNbZu3YpVq1ahubkZV111FS6++GKUlZVh/fr1qK2txc033yx+5qGHHsLmzZvx0Ucf4fPPP8emTZuwd+9ev85rtVoxY8YMxMfH4+uvv8bWrVsRFxeHa6+91mWmauPGjTh+/Dg2btyIt99+G6tXr3ZJqu644w68++67ePHFF/H999/jL3/5C+Li4iCTyXDnnXfirbfecjnvW2+9hSuvvBLDhw93G9fXX3+NkSNHIj4+3q+vBwCysrJcZuG+/fZb9O/fH1deeaXYJzs7G6mpqfj666/9Hp+I/CAQEXVSXFwsKBQKITY2Vvxz0003CYIgCNOmTRMuvvhil/7/7//9P+Gaa65xOVZVVSUAEA4fPiy0tbUJarVaeP/998X28+fPCzExMcL9998vHgMgrF271mWcfv36CW+99ZYgCILwt7/9TRg1apTgcDjEdrPZLMTExAifffaZGPvgwYMFm80m9pk3b55wyy23CIIgCIcPHxYACF988YXbr/3MmTOCQqEQdu7cKQiCIFgsFiElJUVYvXp1t9fr/vvvF6666qouxwEIWq3W5TrGxsYKSqVSuPHGG7v0NxqNwuTJk4Xrr79esNvtLm0XX3yx8Lvf/a7bGIgocMrwpmNE1BtNnz4dr7zyivg+NjZWfJ2fn+/Sd9++fdi4cSPi4uK6jHP8+HEYjUZYLBZMnjxZPJ6cnIxRo0b5FdO+fftw7NixLjMxJpPJ5XbS2LFjoVAoxPfp6en47rvvAHTc/lIoFJg2bZrbc2RkZGDWrFl48803MWnSJPzf//0fzGYz5s2b121cRqMRWq3Wbdvzzz+PoqIil2MPP/ww7HZ7l7533nkn2tra8MUXX0Aud528j4mJgcFg6DYGIgocEyIi6iI2NrbbW0SdkyMAaG9vx+zZs/GnP/2pS9/09HSfn06TyWQQBMHlWOe1P+3t7cjPz3f7xNWAAQPE1yqVqsu4zsfWY2JivMZx11134fbbb8fzzz+Pt956C7fccgt0Ol23/VNSUsSE60JpaWldrmN8fDyam5tdji1fvhyfffYZdu3a5fbWW2Njo8vXSETSY0JERAG55JJL8M9//hM5OTlQKrt+Sxk2bBhUKhV27tyJ7OxsAEBTUxOOHDniMlMzYMAAnDt3Tnx/9OhRl1mRSy65BGvWrMHAgQORkJDQo1jHjx8Ph8OBzZs3d5m5cbruuusQGxuLV155BevXr8eWLVs8jnnxxRfjlVdegSAIkMlkfsf0z3/+E7///e/xn//8B8OGDevS7pwBu/jii/0em4h8x0XVRBSQkpISNDY24tZbb8Xu3btx/PhxfPbZZ1iwYAHsdjvi4uKwcOFCPPTQQ/jqq69w4MABzJ8/v8ttoauuugovvfQSvv32W5SVleGee+5xme257bbbkJKSghtvvBFff/01KisrsWnTJtx3332orq72KdacnBwUFxfjzjvvxLp168Qx3n//fbGPQqHA/PnzsXTpUowYMQJTpkzxOOb06dPR3t6OgwcP+nHVOhw4cAB33HEHHn74YYwdOxY1NTWoqalBY2Oj2GfHjh3QaDRe4yCiwDAhIqKAZGRkYOvWrbDb7bjmmmswfvx4PPDAA0hMTBSTnqeffhpXXHEFZs+ejaKiIkydOrXLWqRnn30WWVlZuOKKK/Czn/0MDz74oMutKp1Ohy1btiA7Oxs//vGPMXr0aCxcuBAmk8mvGaNXXnkFN910E371q1/hoosuwqJFi6DX6136LFy4EBaLBQsWLPA6Xv/+/TF37twebZ5YVlYGg8GA5cuXIz09Xfzz4x//WOzz7rvv4rbbbvN4246IAicTLrxpT0QUAoWFhcjLy8PKlSvDHUoXX3/9NX70ox+hqqoKqampXvvv378fV199NY4fP+52cXlPNTQ0YNSoUSgrK3O7MSYRSYczRERE/2U2m1FdXY3f/e53mDdvnk/JEABMmDABf/rTn1BZWSlpPCdPnsTLL7/MZIgoBLiomojov959910sXLgQeXl5+Otf/+rXZ+fPny95PBMnTsTEiRMlH5eIuuItMyIiIop6vGVGREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT0mRERERBT1mBARERFR1GNCRERERFHv/wMSzZujiI3MSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.loglog(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "b7af40af", + "metadata": {}, + "source": [ + "Note that, while the \"clean\" and \"dirty\" periodograms at high frequencies mostly match, at low frequencies the two diverge. The low-frequency periodogram cannot be trusted if one does not use some trick to avoid the gaps. \n", + "\n", + "# The Lomb-Scargle periodogram\n", + "\n", + "Fortunately, a method exists and is called the *Lomb Scargle periodogram* ([See this review from Jake Van Der Plas](https://iopscience.iop.org/article/10.3847/1538-4365/aab766/pdf))\n", + "\n", + "The method is slower than the standard periodogram, so we will limit its usage to the interesting frequency range." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5d995bbd", + "metadata": {}, + "outputs": [], + "source": [ + "maxfreq = 1.\n", + "dt = 0.5 / maxfreq # Using the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "69759093", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGpCAYAAACTcAx5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfV0lEQVR4nOzdeXhTxfoH8O/JnnTf6AJdWAtFbNmFIqCCLIqCgrgDItcFVC6ignpZVEABlatUwQVwwSuKgv4EUUE22bciFigUCpRCWwpdsy/z+yPkkDRJkzRp07Tv53n6eHJmzpxpic3bOTPzcowxBkIIIYSQACLwdwcIIYQQQjxFAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOH4JYPLz83HbbbchLS0NXbp0gVKp9Ec3CCGEEBKgOH8kcxwwYADeeust3Hrrrbh27RpCQ0MhEokauhuEEEIICVANHjXk5ORALBbj1ltvBQBERkY2dBcIIYQQEuA8foS0Y8cOjBgxAgkJCeA4DuvXr7erk5WVhZSUFMhkMvTu3Rv79+/ny06fPo3g4GCMGDEC3bp1w/z58736BgghhBDS/Hg8AqNUKpGeno4nnngC9913n135mjVrMG3aNCxbtgy9e/fGkiVLMGTIEOTm5qJFixYwGAzYuXMnsrOz0aJFCwwdOhQ9e/bE4MGDHd5Pq9VCq9Xyr00mE65du4aoqChwHOdp9wkhhBDiB4wxVFVVISEhAQKBD6bgMi8AYOvWrbM516tXLzZ58mT+tdFoZAkJCWzBggWMMcZ2797N7rzzTr584cKFbOHChU7vMXv2bAaAvuiLvuiLvuiLvprAV0FBgTehB8+nc2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv2AAB69uyJkpISlJWVISwsDDt27MBTTz3ltM2ZM2di2rRp/OuKigokJSWhoKAAoaGhvuw+CQDZ2dmoqqoCAISHh6NLly5+7hEhhBB3VFZWIjExESEhIT5pz6cBTGlpKYxGI2JjY23Ox8bG4uTJk+YbikSYP38++vfvD8YY7rzzTtx9991O25RKpZBKpXbnQ0NDKYBphoKDg2Eymfhjeg8QQkhg8dX0D7+sXR42bBiGDRvm0TVZWVnIysqC0Wisp16Rxk6n0+HLL7+ERqPB/fff73Vb//3vfwEAL7zwAiQSSZ3rOiv35B6EEEI849U+MBzHYd26dRg5ciQA8y9shUKBtWvX8ucAYNy4cSgvL8dPP/3kbX9RWVmJsLAwVFRU0F/fzYxSqURwcDAAYOPGjUhISEB6errXbVVXVyMoKKjOdZ2Ve3IPQghp6nz9+e3TERiJRILu3btjy5YtfABjMpmwZcsWTJkyxZe3Is2QSCTC3XffDb1eD6FQ6HVb48aN44+9qeus3JN7EEII8YzHIzDV1dXIy8sDAHTt2hXvvfcebrvtNkRGRiIpKQlr1qzBuHHjsHz5cvTq1QtLlizBd999h5MnT9rNjfGE9SOkU6dO0QhMM3X48GFUVlYCACIiIuo8AkMCg9FohF6v93c3CCFuEIvFtf5x6esRGI8DmG3btuG2226zOz9u3DisWrUKALB06VIsWrQIRUVFyMjIwAcffIDevXt73VmAHiE1dxTANA+MMRQVFaG8vNzfXSGEeCA8PBxxcXEOJ+r6PYDxNwpgmi+VSmWzqzMFME3X5cuXUV5ejhYtWkChUNCmlYQ0cowxqFQqlJSUIDw8HPHx8XZ1GvUcGELq0759+zBixAgAwPfff4+IiIg6t6VUKtGyZUsAQGFhoctJvLXVdVbuyT3IDUajkQ9eoqKi/N0dQoib5HI5AKCkpAQtWrTweq6iKwETwNAyaqLT6aBUKn3WXkVFhc/qOiv35B7EzDLnRaFQ+LknhBBPWf6/9cViC1cCJoCZPHkyJk+ezA9BkeZHKpXiq6++QmJioteBrFwux6lTp/hjb+o6K/fkHsQePTYiJPA05P+3ARPAECIQCNCqVSu0bt0aZ8+e9bqt9u3b+6Sus3JP7kEIIcQzPkgHSQghhDQtq1atQnh4uL+74Rfjx4+32Yy2sQqYACYrKwtpaWno2bOnv7tC/MRgMGDdunX44osvYDAYvGpLr9fz86pc7TPiqq6zck/uQQLf+PHjwXEcOI6DRCJBu3bt8MYbb3j9Xm1qAuXDcezYsfwj4Kbq3Llz4DgO2dnZNuf/+9//8tuiNGa0jJoEjN9++w1Dhw4FQKkEmjKNRoP8/Hy0bt0aMpnM391x2/jx41FcXIyVK1dCq9Vi48aNmDx5MubNm4eZM2f6u3vQ6XSNIh/X+PHjUV5ejvXr19daT6/XQywWN0ynGjGj0QiO4yAQ+H684dy5c2jdujWOHDmCjIwMn7RZ2/+/vv78DpgRGEIEAgEGDBiA4cOHez27XSgUYvTo0Rg9erTLtlzVdVbuyT1I0yCVShEXF4fk5GQ888wzGDRoEH7++WcAQFlZGR5//HFERERAoVBg2LBhOH36NADzHhoxMTFYu3Yt31ZGRobNXhp//fUXpFIpVCoVAKC8vBxPPvkkYmJiEBoaittvvx1Hjx7l68+ZMwcZGRn47LPPbD5M1q5diy5dukAulyMqKgqDBg3iV/dZRkfmzp3Lt/v0009Dp9Px7ZpMJixYsACtW7eGXC5Henq6Tb8BICcnB3fffTdCQ0MREhKCW2+9FWfOnMGcOXPwxRdf4KeffuJHq7Zt28aPBKxZswYDBgyATCbD6tWr+e/B2pIlS5CSksK/tvR5/vz5iI2NRXh4OD/y9dJLLyEyMhKtWrXCypUrPfq3dPQI6a233kKLFi0QEhKCJ598EjNmzLDpn6UvixcvRnx8PKKiojB58mSbEdja3gfW9/3555+RlpYGqVSKCxcuQKvVYvr06WjZsiWCgoLQu3dvbNu2rdbv4eTJk+jXrx9kMhnS0tKwefNmcBzHB4+tW7cGYN5Vn+M4DBw40Ob7sKjtPeNPNImXBAypVIo5c+agTZs2Xk/ilclk+P77731S11m5J/cgtWOMwWQyNfh9BQKBV6sq5HI5rl69CsD8oXD69Gn8/PPPCA0NxSuvvILhw4fj+PHjEIvF6N+/P7Zt24bRo0ejrKwMJ06cgFwux8mTJ9GxY0ds374dPXv25JepjhkzBnK5HL/++ivCwsKwfPly3HHHHTh16hQiIyMBAHl5efjhhx/w448/QigU4vLly3jooYewcOFCjBo1ClVVVdi5cyesB+K3bNkCmUzGBxYTJkxAVFQU5s2bBwBYsGABvv76ayxbtgzt27fHjh078OijjyImJgYDBgxAYWEh+vfvj4EDB+LPP/9EaGgodu3aBYPBgOnTp+PEiROorKzkA4rIyEhcunQJADBjxgy8++676Nq1K2QyGZYvX+7Wz/nPP/9Eq1atsGPHDuzatQsTJ07E7t270b9/f+zbtw9r1qzBU089hcGDB6NVq1Z1+rdcvXo15s2bh48++giZmZn49ttv8e677/JBgMXWrVsRHx+PrVu3Ii8vD2PHjkVGRgYmTZrk1vsAMG/a+c477+Czzz5DVFQUWrRogSlTpuD48eP49ttvkZCQgHXr1mHo0KE4duyYw8UCRqMRI0eORFJSEvbt24eqqiq8+OKLNnX279+PXr16YfPmzejcubPDETp33jP+QgEMIaTRM5lM2LlzZ4Pf99Zbb63T6BljDFu2bMFvv/2G5557jv/A2rVrF/r27QvA/IGYmJiI9evXY8yYMRg4cCD/gb1jxw507doVcXFx2LZtGzp27Iht27ZhwIABAMyjMfv370dJSQmkUikAYPHixVi/fj3Wrl2Lf/3rXwDMj42+/PJLxMTEADCn4jAYDLjvvvuQnJwMAOjSpYtN3yUSCVasWAGFQoHOnTvjjTfewEsvvYQ333wTer0e8+fPx+bNm9GnTx8AQJs2bfDXX39h+fLlGDBgALKyshAWFoZvv/2W/0Du0KED375cLodWq0VcXJzdz23q1Km47777PP55R0ZG4oMPPoBAIEBqaioWLlwIlUqFV199FQAwc+ZMvP322/jrr7/w4IMPetw+AHz44YeYOHEiJkyYAACYNWsWfv/9d1RXV9vUi4iIwNKlSyEUCtGxY0fcdddd2LJlCyZNmuTW+wAwPz776KOP+EfkFy5cwMqVK3HhwgUkJCQAAKZPn45NmzZh5cqVmD9/vl1///jjD5w5cwbbtm3jf9bz5s3D4MGD+TqW90VUVJTDfw/AHMC4es/4S8A8QqJJvISQxu6XX35BcHAwZDIZhg0bhrFjx2LOnDk4ceIERCKRTU64qKgopKam4sSJEwCAAQMG4Pjx47hy5Qq2b9+OgQMHYuDAgdi2bRv0ej12797ND/EfPXoU1dXViIqKQnBwMP+Vn5+PM2fO8PdITk7mP6QAID09HXfccQe6dOmCMWPG4NNPP0VZWZnN95Cenm6ziWCfPn1QXV2NgoIC5OXlQaVSYfDgwTb3/fLLL/n7Zmdn49Zbb63T/JUePXp4fA0AdO7c2WaOSGxsrM2HrFAoRFRUFEpKSurUPgDk5uaiV69eNudqvrb0xTrojY+P5+/rzvsAMAeRN998M//62LFjMBqN6NChg83Pffv27Tb/3jX7m5iYaBOYOOqvK+68Z/wlYEZgaCM7otFo8Mgjj0AoFHo9Q16lUvHDrqdPn65111dXdZ2Ve3IPUjuBQIBbb73VL/f1xG233YaPP/4YEokECQkJEInc/xXbpUsXREZGYvv27di+fTvmzZuHuLg4vPPOOzhw4AD0ej3/V3t1dTXi4+MdzoGwnrdRc+K4UCjEH3/8gd27d+P333/Hhx9+iNdeew379u2zexTiiGW0YcOGDXyaDAvLSJA3mzbW7K9AILB7VOFoRV/NYInjOIfnGuIxpC/uK5fLbR5dVldXQygU4tChQ3YjgpaFAvXF2/dMfQqYAIYQxhhKS0v5Y2/bsjx3d9WWq7rOyj25B6kdx3EBMRE6KCgI7dq1szvfqVMnGAwG7Nu3jw9Crl69itzcXKSlpQEwf4+33norfvrpJ+Tk5KBfv35QKBTQarVYvnw5evTowX/Ad+vWDUVFRRCJRDYTWt3BcRwyMzORmZmJWbNmITk5GevWrcO0adMAmEd31Go1H4js3bsXwcHBSExMRGRkJD+p1PI4q6abb74ZX3zxhdNVRBKJxO2dtGNiYlBUVATGGP+BXnPJb0NJTU3FgQMH8Pjjj/PnDhw44FEb7rwPHOnatSuMRiNKSkrcDuRTU1NRUFCA4uJixMbGOuyvZc6Lq38PV+8Zf6EAhgQMiUSCTz/9FC1btvR6OahMJsORI0f4Y2/qOiv35B6kaWvfvj3uvfdeTJo0CcuXL0dISAhmzJiBli1b4t577+XrDRw4EC+++CJ69OjB/2Xdv39/rF69Gi+99BJfb9CgQejTpw9GjhyJhQsXokOHDrh06RI2bNiAUaNGOX0Us2/fPmzZsgV33nknWrRogX379uHKlSvo1KkTX0en02HixIl4/fXXce7cOcyePRtTpkyBQCBASEgIpk+fjn//+98wmUzo168fKioqsGvXLoSGhmLcuHGYMmUKPvzwQzz44IOYOXMmwsLCsHfvXvTq1QupqalISUnBb7/9htzcXERFRdU6oj5w4EBcuXIFCxcuxOjRo7Fp0yb8+uuvftlC47nnnsOkSZPQo0cP9O3bF2vWrMHff/+NNm3auN2Gu++Dmjp06IBHHnkEjz/+OD/J+cqVK9iyZQtuvvlm3HXXXXbXDB48GG3btsW4ceOwcOFCVFVV4fXXXwdwY7v/Fi1aQC6XY9OmTWjVqhVkMpndv4c77xl/CZg5MIQIhUK0a9fO7hlzXdvKyMhARkaGW8uoa6vrrNyTe5Cmb+XKlejevTvuvvtu9OnTB4wxbNy40WaUYsCAATAajfxcF8D8IV7zHMdx2LhxI/r3748JEyagQ4cOePDBB3H+/Hn+r21HQkNDsWPHDgwfPhwdOnTA66+/jnfffRfDhg3j69xxxx1o3749+vfvj7Fjx+Kee+7BnDlz+PI333wT//nPf7BgwQJ06tQJQ4cOxYYNG/jHCVFRUfjzzz9RXV2NAQMGoHv37vj000/573PSpElITU1Fjx49EBMTg127djntb6dOnfDRRx8hKysL6enp2L9/P6ZPn+7uj7xWAwcOxPjx492u/8gjj2DmzJmYPn06unXrhvz8fIwfP97jP07ceR84u+7xxx/Hiy++iNTUVIwcORIHDhxAUlKSw/pCoRDr169HdXU1evbsiSeffBKvvfYagBt/UIlEInzwwQdYvnw5EhISHAZR7rxn/IU2siMBY8eOHTCZTPwy6oiIiDpvZEcar0DdyK4pcHeTuaYgOTkZc+fO9SiIqWnw4MGIi4vDV1995buO1aNdu3ahX79+yMvLQ9u2bevlHg25kV3APEKybMnubRZiErgMBgN+//13xMTEeB246PV6rF69GoD5L6va/vpxVddZuSf3IIQ0nJycHISFhdnMZ3FFpVJh2bJlGDJkCIRCIf73v/9h8+bN+OOPP+qxp95Zt24dgoOD0b59e+Tl5eGFF15AZmZmvQUvDY1GYEjAoFQCzQONwPhPcxqB8ZRarcaIESNw5MgRaDQapKam4vXXX6/TvjUN5csvv8Rbb72FCxcuIDo6GoMGDcK7776LqKioersnjcAQ4oBAIEDv3r2hUCh8Mgdm+PDh/LE3dZ2Ve3IPQhqDQEjg5y9yuRybN2/2dzc88vjjj3s0yhRoaASGBAyaA9M80AgMIYGLkjkSQgghhNSCAhhCCCGEBBwKYEjA0Gg0ePTRRzFgwABoNBqv2rJs89++fXuoVCqv6jor9+QehBBCPBMwk3hpGTVhjKGwsJA/9ratvLw8t9pyVddZuSf3IIQQ4pmACWAomSORSCT44IMPkJCQ4JNUAn/99Rd/7E1dZ+We3IMQQohnAiaAIUQoFKJLly78KiRv28rMzPRJXWflntyDkEA1Z84crF+/3m9JFknzRXNgCCHEx/bs2QOhUOgwyV5TN2fOHHAcB47j+GzZ//73v1FdXe3vrjUqc+bMQUZGhr+7EdBoBIYEDIPBgB07duDEiRPo0KGD122tW7cOADBq1CiIRM7/V3BV11m5J/cgTcvnn3+O5557Dp9//jkuXbqEhISEerkPYwxGo7HRvbc6d+6MzZs3w2AwYNeuXXjiiSegUqmwfPlyf3cNRqMRHMdBIAiMv9/1ej2lIXGGBZiKigoGgFVUVPi7K6SBbdq0iQFgANjGjRtZdnZ2nduqrq7m26qurvaqrrNyT+5BblCr1ez48eNMrVb7uyt1UlVVxYKDg9nJkyfZ2LFj2bx58xhjjD300EPsgQcesKmr0+lYVFQU++KLLxhjjBmNRjZ//nyWkpLCZDIZu/nmm9n333/P19+6dSv//u/WrRsTi8Vs69atLC8vj91zzz2sRYsWLCgoiPXo0YP98ccfNve6dOkSGz58OJPJZCwlJYWtXr2aJScns/fff5+vU1ZWxiZOnMiio6NZSEgIu+222+z+P1uwYAFr0aIFCw4OZk888QR75ZVXWHp6Ol8+e/Zsm9eMMTZp0iQWFxfHGGNMo9Gw5557jsXExDCpVMoyMzPZ/v37+brdu3dnixYt4l/fe++9TCQSsaqqKsYYYwUFBQwAO336NN/eiy++yBISEphCoWC9evViW7du5a9fuXIlCwsLYz/99BPr1KkTEwqFLD8/n23dupX17NmTKRQKFhYWxvr27cvOnTtn8z0sW7aMtWrVisnlcjZmzBhWXl5u8319+umnrGPHjkwqlbLU1FSWlZVlU15QUMAefPBBFhERwRQKBevevTvbu3cvW7lyJf+7wfK1cuVKxhhjANhHH33ERowYwRQKBZs9ezb/PVhbt24ds/4It/T5888/Z4mJiSwoKIg988wzzGAwsHfeeYfFxsaymJgY9tZbb7H6VNv/v77+/G5cYTshtRAIBEhPT4dcLvf6ryeBQIABAwbwx97UdVbuyT1I7RhjUOsbfgWiXCwEx3EeXfPdd9+hY8eOSE1NxaOPPoqpU6di5syZeOSRRzBmzBhUV1fzObJ+++03qFQqjBo1CgCwYMECfP3111i2bBnat2+PHTt24NFHH0VMTAz/XgKAGTNmYPHixWjTpg0iIiJQUFCA4cOHY968eZBKpfjyyy8xYsQI5ObmIikpCYB5W/nS0lJs27YNYrEY06ZNQ0lJiU3fx4wZA7lcjl9//RVhYWFYvnw57rjjDpw6dQqRkZH47rvvMGfOHGRlZaFfv3746quv8MEHH6BNmza1/xzlcuh0OgDAyy+/jB9++AFffPEFkpOTsXDhQgwZMgR5eXmIjIzEgAEDsG3bNkyfPh2MMezcuRPh4eH466+/MHToUGzfvh0tW7ZEu3btAABTpkzB8ePH8e233yIhIQHr1q3D0KFDcezYMbRv3x6AeUuDd955B5999hmioqIQGRmJjIwMTJo0Cf/73/+g0+mwf/9+m3/rvLw8fPfdd/i///s/VFZWYuLEiXj22Wf5BK2rV6/GrFmzsHTpUnTt2hVHjhzBpEmTEBQUhHHjxqG6uhoDBgxAy5Yt8fPPPyMuLg6HDx+GyWTC2LFj8c8//2DTpk18egLrxSlz5szB22+/jSVLlkAkEuHPP/9067135swZ/Prrr9i0aRPOnDmD0aNH4+zZs+jQoQO2b9+O3bt344knnsCgQYPQu3dvt9ps1HwSBjUgGoFpvrZv3862bt3Kzp8/z7Zu3erVCAxpvBz9BafU6lnyK780+JdSq/e4/3379mVLlixhjDGm1+tZdHQ027p1K3/85Zdf8nUfeughNnbsWMaYeSRBoVCw3bt327Q3ceJE9tBDDzHGbozArF+/3mU/OnfuzD788EPGGGMnTpxgANiBAwf48tOnTzMA/AjMzp07WWhoKNNoNDbttG3bli1fvpwxxlifPn3Ys88+a1Peu3fvWkdgDh48yKKjo9no0aNZdXU1E4vFbPXq1Xy5TqdjCQkJbOHChYwxxn7++WcWFhbGDAYDy87OZnFxceyFF15gr7zyCmOMsSeffJI9/PDDjDHGzp8/z4RCISssLLTp0x133MFmzpzJGGP8aIf174urV68yAGzbtm0Of3azZ89mQqGQXbx4kT/366+/MoFAwC5fvsz/XL755hub6958803Wp08fxhhjy5cvZyEhIezq1atO71FzpIox8wjM1KlTbc65OwKjUChYZWUlf27IkCEsJSWFGY1G/lxqaipbsGCBwz75Ao3AEEJIAMrNzcX+/fv5uU8ikQhjx47F559/joEDB+KBBx7A6tWr8dhjj0GpVOKnn37Ct99+C8D8F79KpcLgwYNt2tTpdOjatavNuR49eti8rq6uxpw5c7BhwwZcvnwZBoMBarUaFy5c4PslEonQrVs3/pp27dohIiKCf3306FFUV1fbZSpWq9U4c+YMAODEiRN4+umnbcr79OmDrVu32pw7duwYgoODYTQaodPpcNddd2Hp0qU4c+YM9Hq9zeo8sViMXr164cSJEwCAW2+9FVVVVThy5Ah2796NAQMGYODAgXj77bcBANu3b8dLL73E38doNNrNidNqtTbfh0Qiwc0338y/joyMxPjx4zFkyBAMHjwYgwYNwgMPPID4+Hi+TlJSElq2bGnzfZpMJuTm5iIkJARnzpzBxIkTMWnSJL6OwWDgR1Kys7PRtWtXREZGwlM1/33dlZKSgpCQEP51bGwshEKhzQhwbGys3chboKIAhjRbJpMJOp0OUqnU48cEpGHJxUIcf2OIX+7ric8//xwGg8Fm0i5jDFKpFEuXLsUjjzyCAQMGoKSkBH/88QfkcjmGDh0KAPwqnQ0bNth8cAKAVCq1eR0UFGTzevr06fjjjz+wePFitGvXDnK5HKNHj+Yf27ijuroa8fHx2LZtm11ZeHi42+0AQGpqKn7++WeIRCKbfZuKi4tdXhseHo709HRs27YNe/bsweDBg9G/f3+MHTsWp06dwunTp/nHadXV1RAKhTh06JBdxnfLYzrA/Air5v/jK1euxPPPP49NmzZhzZo1eP311/HHH3/glltucdlHy7/Vp59+avcoxtIPuVzush1nav77CgQCu80w9Xq93XU1J/tyHOfwnMlkqnPfGhMKYEjA0Gq1eOaZZyCVSvHee+951ZZKpUJGRgZMJhPWrVuHLl26OK2rVqvRp08fAOblsTV/MTkrd3UdcR/HcVBIGvevK4PBgC+//BLvvvsu7rzzTpuykSNH4n//+x+efvppJCYmYs2aNfj1118xZswY/gMmLS0NUqkUFy5csJnv4o5du3Zh/Pjx/Fya6upqnDt3ji9PTU2FwWDAkSNH0L17dwDmEZ+ysjK+Trdu3VBUVMQvfXakU6dO2LdvHx5//HH+3N69e+3qSSQSfo6KtbZt20IikWDXrl1ITk4GYP4gPnDgAKZOncrXGzBgALZu3Yr9+/dj3rx5iIyMRKdOnTBv3jzEx8fzIy5du3aF0WhESUkJbr31Vvd+WFa6du2Krl27YubMmejTpw+++eYbPoC5cOGCzQqyvXv3QiAQIDU1FbGxsUhISMDZs2fxyCOPOGz75ptvxmeffYZr1645HIWRSCRu7ywfExODqqoqKJVKPrihfXcCKIChVALEZDLxQ9ne/gVhMBhw+vRpAEB5ebnL+x49etTpfZ2Vu7qONC2//PILysrKMHHiRLvdwu+//358/vnnePrpp/Hwww9j2bJlOHXqlM2jl5CQEEyfPh3//ve/YTKZ0K9fP1RUVGDXrl0IDQ3FuHHjnN67ffv2+PHHHzFixAhwHIf//Oc/Nu+5jh07YtCgQfjXv/6Fjz/+GGKxGC+++KLNyMSgQYPQp08fjBw5EgsXLkSHDh1w6dIlbNiwAaNGjUKPHj3wwgsvYPz48ejRowcyMzOxevVq5OTkuJzEaxEUFIRnnnkGL730EiIjI5GUlISFCxdCpVJh4sSJfL2BAwfiww8/RExMDDp27MifW7p0KcaMGcPX69ChAx555BE8/vjjePfdd9G1a1dcuXIFW7Zswc033+x0H578/Hx88sknuOeee5CQkIDc3FycPn3aJjCTyWQYN24cFi9ejMrKSjz//PN44IEHEBcXBwCYO3cunn/+eYSFhWHo0KHQarU4ePAgysrKMG3aNDz00EOYP38+Ro4ciQULFiA+Ph5HjhxBQkIC+vTpg5SUFOTn5yM7OxutWrVCSEiI3UibRe/evaFQKPDqq6/i+eefx759+7Bq1Sq3fuZNmk9m0jQgmsTbfP35559s0aJF7Ouvv2abN2/2ahKvVqtlixYtYosWLWJ79+6tta7BYGC///47+/3335nBYHC73NV1xLFAXUZ99913s+HDhzss27dvHwPAjh49yo4fP84AsOTkZGYymWzqmUwmtmTJEpaamsrEYjGLiYlhQ4YMYdu3b2eM3ZjEW1ZWZnNdfn4+u+2225hcLmeJiYls6dKlbMCAAeyFF17g61y6dIkNGzaMSaVSlpyczL755hvWokULtmzZMr5OZWUle+6551hCQgITi8UsMTGRPfLII+zChQt8nXnz5rHo6GgWHBzMxo0bx15++WWXy6itqdVq9txzz7Ho6GiHy6gZM0+y5TiOn+DM2I1Jq9b9Zcw8CXjWrFksJSWFicViFh8fz0aNGsX+/vtvxpjjCbBFRUVs5MiRLD4+nkkkEpacnMxmzZrFT3a1fA8fffQRS0hIYDKZjI0ePZpdu3bNpp3Vq1ezjIwMJpFIWEREBOvfvz/78ccf+fJz586x+++/n4WGhjKFQsF69OjB9u3bxxgzT9q+//77WXh4uN0y6nXr1tn93NatW8fatWvH5HI5u/vuu9knn3zicBm1tXHjxrF7773X5lzN94WvNeQkXo6xwMoyZ8mFVFFRgdDQUH93hzSgHTt2wGQy8akEIiIikJ6eXqe2jEYjdu7cCcD8rLyuk+aI72k0GuTn56N169aUQ6oeXbx4EYmJidi8eTPuuOMOf3enUaH0CHVX2/+/vv78DphHSIQQQuruzz//RHV1Nbp06YLLly/j5ZdfRkpKCvr37+/vrhFSJxTAkIBhMBiwb98+5Ofn85tzedPWnj17AAC33Xaby7q//fYbAGDIkCEOUwk4Knd1HSENSa/X49VXX8XZs2cREhKCvn37YvXq1bRNPQlY9AiJBIzffvuNX3K6ceNGJCQk1PkRkuV9BJgfTdW2gkGpVPJLMqurq+2WODord3UdcYweIRESuOgREiEOWJYwSqVSn6QSSE1NBQCXe8AIBAJ+joyzVAKOyl1dRwghpO4ogCEBQyqVYtmyZfwkXm/I5XIsW7YMAFz+lS+Xy3HgwAGPy11dRwghpO7oz0JCCCGEBBwKYAghhBAScCiAIQHh2rVrUKvVmDJlCu677z5otVqv2rO0NWXKFGg0Gpd1MzMzkZmZCbVa7Xa5q+sIIYTUHc2BIY2eWq3G33//DZPJhJycHADeb81v3ZarhXgmkwm7d+92el9n5a6uI4QQUncUwJBGz5J1VSKR4JNPPoFYLOaz29aVVCrFm2++CcA+g6ujuuvWreOP3S13dR0h3tq2bRtuu+02lJWVeZwxurE6d+4cWrdujSNHjiAjI8Pf3bHjq595SkoKpk6dapPEknjGLwFMSkoKQkNDIRAIEBERYZPQjBBngoKCMGnSJBQXF+PEiRNetSUSidCvXz/+2FXdkSNHelzu6jrStIwfPx7l5eVYv369v7viktFoxKJFi7Bq1SqcP38ecrkc7du3x6RJk/Dkk0/6u3uNWt++fXH58mW7hJ2k4fltBGb37t38Jl+EEEIazty5c7F8+XIsXboUPXr0QGVlJZ9Jub7odDqvR079Ta/XQyKR8BmpG7um8DOvDU3iJQHDaDRi27Zt2LVrF4xGo9dtZWdnIzs722Vblvtu27bNYV1n5a6uI83L9u3b0atXL0ilUsTHx2PGjBkwGAx8+cCBA/Hcc89h6tSpiIiIQGxsLD799FMolUpMmDABISEhaNeuHX799Ve7tnft2oWbb74ZMpkMt9xyC/75559a+/Lzzz/j2WefxZgxY9C6dWukp6dj4sSJmD59Ol/HZDJh4cKFaNeuHaRSKZKSkjBv3jy+/JVXXkGHDh2gUCjQpk0b/Oc//+Ef9wLmhIgZGRn47LPPbHZlPXnyJPr16weZTIa0tDRs3rwZHMfVOnL1zz//YNiwYQgODkZsbCwee+wxlJaWOq2/atUqhIeHY/369Wjfvj1kMhmGDBmCgoICm3o//fQTunXrBplMhjZt2mDu3Lk2/yYcx+Hjjz/GPffcg6CgIMybNw/btm0Dx3EoLy/n6/3www/o3LkzpFIpUlJS8O6779rcp6SkBCNGjIBcLkfr1q2xevVquz5fuHAB9957L4KDgxEaGooHHngAxcXFNnXeeusttGjRAiEhIXjyyScxY8YMm8ds48ePx8iRIzFv3jwkJCTwm3V+9dVX6NGjB0JCQhAXF4eHH34YJSUl/HWW7+m3335D165dIZfLcfvtt6OkpAS//vorOnXqhNDQUDz88MNQqVROf+4NztP01du3b2d33303i4+Pd5r2e+nSpSw5OZlJpVLWq1cvPn24RUpKCuvWrRvr0aMH+/rrrz26v6/TcZPGr6Kigm3dupX9+eefDAADwDZu3Miys7O9atPS1o4dO2qtW11dzdetrq52u9zVdcQxtVrNjh8/ztRq9Y2TJhNj2uqG/zKZ3O73uHHj2L333uuw7OLFi0yhULBnn32WnThxgq1bt45FR0ez2bNn83UGDBjAQkJC2JtvvslOnTrF3nzzTSYUCtmwYcPYJ598wk6dOsWeeeYZFhUVxZRKJWOMsa1btzIArFOnTuz3339nf//9N7v77rtZSkoK0+l0Tvs6ZMgQ1r9/f1ZSUuK0zssvv8wiIiLYqlWrWF5eHtu5cyf79NNP+fI333yT7dq1i+Xn57Off/6ZxcbGsnfeeYcvnz17NgsKCmJDhw5lhw8fZkePHmUGg4GlpqaywYMHs+zsbLZz507Wq1cvm8+S/Px8BoAdOXKEMcZYWVkZi4mJYTNnzmQnTpxghw8fZoMHD2a33Xab076vXLmSicVi1qNHD7Z792528OBB1qtXL9a3b1++zo4dO1hoaChbtWoVO3PmDPv9999ZSkoKmzNnDl8HAGvRogVbsWIFO3PmDDt//jz/My8rK2OMMXbw4EEmEAjYG2+8wXJzc9nKlSuZXC5nK1eu5NsZNmwYS09PZ3v27GEHDx5kffv2ZXK5nL3//vuMMcaMRiPLyMhg/fr1YwcPHmR79+5l3bt3ZwMGDODb+Prrr5lMJmMrVqxgubm5bO7cuSw0NJSlp6fzdcaNG8eCg4PZY489xv755x/2zz//MMYY+/zzz9nGjRvZmTNn2J49e1ifPn3YsGHD+Oss39Mtt9zC/vrrL3b48GHWrl07NmDAAHbnnXeyw4cPsx07drCoqCj29ttvO/25M+bk/9/rfP357XEAs3HjRvbaa6+xH3/80WEA8+233zKJRMJWrFjBcnJy2KRJk1h4eDgrLi7m61y8eJExxtilS5dYWloaO3r0qNv3pwCm+bEEMFu3bmVpaWmsQ4cO7Ndff/UqgKmsrGTJycksOTmZ7dy5s9a6SqWSpaWlsbS0NP6Dw51yV9cRxxz+AtRWMzY7tOG/tO4HnrUFMK+++ipLTU1lJquAKCsriwUHBzOj0cgYMwcw/fr148sNBgMLCgpijz32GH/u8uXLDADbs2cPY+zGB8+3337L17l69SqTy+VszZo1Tvuak5PDOnXqxAQCAevSpQt76qmn2MaNG/nyyspKJpVKbQIWVxYtWsS6d+/Ov549ezYTi8U2QdKvv/7KRCIRu3z5Mn/ujz/+qDWAefPNN9mdd95pc6+CggIGgOXm5jrsy8qVKxkAtnfvXv7ciRMnGAD+D+o77riDzZ8/3+a6r776isXHx/OvAbCpU6fa1KkZwDz88MNs8ODBNnVeeukllpaWxhhjLDc3lwFg+/fvt+uLJYD5/fffmVAoZBcuXODr5OTk2FzXu3dvNnnyZJv7ZGZm2gUwsbGxTKvVOvy5WBw4cIABYFVVVTbf0+bNm/k6CxYsYADYmTNn+HNPPfUUGzJkSK1tN2QA4/EjpGHDhuGtt97CqFGjHJa/9957mDRpEiZMmIC0tDQsW7YMCoUCK1as4Ou0bNkSABAfH4/hw4fj8OHDTu+n1WpRWVlp80WaJ5lMhpycHOzYscPrJH8KhQKrVq3CqlWrXLalUCiQk5ODnJwcKBQKt8tdXUeajxMnTqBPnz42ebcyMzNRXV2Nixcv8uduvvlm/lgoFCIqKgpdunThz8XGxgKAzfA/APTp04c/joyMRGpqKj/RPTg4mP96+umnAQBpaWn4559/sHfvXjzxxBP8Iw7LBN4TJ05Aq9XijjvucPo9rVmzBpmZmYiLi0NwcDBef/11XLhwwaZOcnIyYmJi+Ne5ublITEy0mUPSq1cvp/cAgKNHj2Lr1q0230fHjh0BAGfOnHF6nUgkQs+ePfnXHTt2RHh4OP9zOXr0KN544w2bdidNmoTLly/bPCax5DNz5sSJE8jMzLQ5l5mZidOnT8NoNOLEiRMQiUTo3r27XV+s20hMTERiYiJ/Li0tzaa/ubm5dj8rRz+7Ll262M17OXToEEaMGIGkpCSEhIRgwIABAGD372X9/ouNjeUfD1qfq/ne8yefTuLV6XQ4dOgQZs6cyZ8TCAQYNGgQ9uzZA8CcoddkMiEkJATV1dX4888/8cADDzhtc8GCBZg7d64vu0kICTRiBfDqJf/ctyFvV2NJP8dxNucsAZAn+wplZ2fzx9YZgAUCAXr27ImePXti6tSp+Prrr/HYY4/htddeg1wur7XNPXv24JFHHsHcuXMxZMgQhIWF4dtvv7Wb++GLDOzV1dUYMWIE3nnnHbuy+Ph4r9qdO3cu7rvvPrsy6z9qAi2LfM3+KpVKDBkyBEOGDMHq1asRExODCxcuYMiQIdDpdDZ1a77XHL0fG9OeVj4NYEpLS2E0Gvm/EixiY2Nx8uRJAEBxcTE/emM0GjFp0iSbKLmmmTNnYtq0afzryspKmyiVENIMcBwgCawPEmudOnXCDz/8AMYYH4Ts2rULISEhaNWqldft7927F0lJSQCAsrIynDp1Cp06dQIAtGvXzq020tLSAJg/8Nq3bw+5XI4tW7Y4XFa9e/duJCcn47XXXuPPnT9/3uU9UlNTUVBQgOLiYv5zwlXC027duuGHH35ASkqKyy0PrBkMBhw8eJAfpcjNzUV5eTn/c+nWrRtyc3Pd/vk406lTJ+zatcvm3K5du9ChQwcIhUJ07NgRBoMBhw4d4j/rLH2xbqOgoAAFBQX859vx48dRXl7O/7ukpqbiwIEDePzxx/nr3EkWe/LkSVy9ehVvv/023/bBgwe9+p4biwZfRt2mTRscPXrU7fpSqRRSqRRZWVnIysqi1RzNmEajweDBg6HT6fDqq6961ZZareZXXCxZssRl3XvuuQeAefVGzb9OnZW7uo40PRUVFTYjHgAQFRWFZ599FkuWLMFzzz2HKVOmIDc3F7Nnz8a0adMgEHi/GPSNN95AVFQUYmNj8dprryE6OrrWPYhGjx6NzMxM9O3bF3FxccjPz8fMmTPRoUMHdOzYESKRCK+88gpefvllSCQSZGZm4sqVK8jJycHEiRPRvn17XLhwAd9++y169uyJDRs28Js21mbw4MFo27Ytxo0bh4ULF6Kqqgqvv/46ANg8XrM2efJkfPrpp3jooYfw8ssvIzIyEnl5efj222/x2WefQSgUOrxOLBbjueeewwcffACRSIQpU6bglltu4QOaWbNm4e6770ZSUhJGjx4NgUCAo0eP4p9//sFbb73l8nuxePHFF9GzZ0+8+eabGDt2LPbs2YOlS5fio48+AmAOPIYOHYqnnnoKH3/8MUQiEaZOnWrz+2DQoEHo0qULHnnkESxZsgQGgwHPPvssBgwYwD/Ceu655zBp0iT06NEDffv2xZo1a/D333/bPOJxJCkpCRKJBB9++CGefvpp/PPPP/wmngHPmwk0qDGJV6vVMqFQaDex9/HHH2f33HOPN7fi0STe5ufatWu0CqkZqW0SYGM2btw4/t/b+mvixImMMca2bdvGevbsySQSCYuLi2OvvPIK0+v1/PUDBgxgL7zwgk2bycnJ/ERPC+vfu5bJl//3f//HOnfuzCQSCevVq5fLhRGffPIJu+2221hMTAyTSCQsKSmJjR8/np07d46vYzQa2VtvvcWSk5OZWCxmSUlJNpNeX3rpJRYVFcWCg4PZ2LFj2fvvv8/CwsL48tmzZ9tMMLU4ceIEy8zMZBKJhHXs2JH93//9HwPANm3axBizn8TLGGOnTp1io0aNYuHh4Uwul7OOHTuyqVOn2kyKtrZy5UoWFhbGfvjhB9amTRsmlUrZoEGD2Pnz523qbdq0iV8RFBoaynr16sU++eQThz9ri5qTeBljbO3atSwtLY3/OS1atMjmmsuXL7O77rqLSaVSlpSUxL788ku7f9vz58+ze+65hwUFBbGQkBA2ZswYVlRUZNPOG2+8waKjo1lwcDB74okn2PPPP89uueUWvtzZRPJvvvmGpaSkMKlUyvr06cN+/vlnm5+xo+/J8jO05uzf1FpDTuLlGHORCKYWHMdh3bp1NpF+79690atXL3z44YcAzM9qk5KSMGXKFMyYMaOut+JVVlYiLCwMFRUVNs9zSdOUm5uLy5cvAzBPyjt//jwqKiqQmpqK6OhopKen16ldrVaLN954AwAwYsQI3HLLLU7rGgwGrFmzBgAwduxYu2FsZ+WuriOOaTQa5Ofn2+wdQpquXbt2oV+/fsjLy0Pbtm190uaqVaswdepUm8c0TdHgwYMRFxeHr776yt9d4dX2/6+vP789/o1aXV2NvLw8/nV+fj6ys7MRGRmJpKQkTJs2DePGjUOPHj3Qq1cvLFmyhN+IiRBPWf8Cio2NRb9+/XyWSmDw4MH8sau6d999N0pLS6FWqxESEmJX/sgjjzi8ztF5QpqzdevWITg4GO3bt0deXh5eeOEFZGZm+ix4aapUKhWWLVuGIUOGQCgU4n//+x82b96MP/74w99d8xuPA5iDBw/itttu419bJtiOGzcOq1atwtixY3HlyhXMmjULRUVFyMjIwKZNm+wm9nqK5sA0bxkZGX5NVnf06FGYTCZcuXKl1tEaQkjtqqqq8Morr+DChQuIjo7GoEGD7FYvEXscx2Hjxo2YN28eNBoNUlNT8cMPP2DQoEH+7prfePUIyR/oEVLzsm/fPqjVanTt2hXBwcE4fPgwrl69CrFY7NUjJJ1Ox+9N1LVrV/Tu3dtpXaPRiE8//RQA0L59e7u9MYxGI7+XUbdu3fhJhc7Ok9rRIyRCAlejfoREiL9oNBp+BcHGjRu9buuZZ54BAOzYscPtuo7ua92v6upqfh8GZ+cJIYR4L2ACGHqERDiOQ3JyMoxGo9Mll560ZXms6aotV3Ut/apZ7uw8cU+ADQ4TQtCw/98GTAAzefJkTJ48mR+CIs2PQqHAuXPn+Em8arUaly9fRlxcnMcBgkKhwLfffgsAbqUSsNStrV/unie1s+z+qVKpaO8cQgKMJQ1DzV1860PABDCEWFjmkmg0GuTm5kIikSAqKsrPvSK+IhQKER4ezudcUSgUNIJFSCPHGINKpUJJSQnCw8MbZM4fBTAk4ERGRiIlJQWXLl2CTqeDwWDwd5eIj1mS/TWmxHGEENfCw8NtknXWp4AJYGgODNFoNHjwwQcBAN9++y0qKirskpF50pZlC3NHSeKc1Z01a5bLflkeSTk7T1zjOA7x8fFo0aIF9Hq9v7tDCHGDWCxu0NWWARPA0BwYYjQa8dNPP/HH3rZlScDmKruqdV1H93XWL1/2t7kSCoW0/JwQ4lDABDCESCQSfPLJJ/yxt229+OKLAFxPNnNV11m/fNlfQgghtiiAIQFDLBZj0qRJXrdTWFiI06dP4+677wbgOpWAWCzm63rSL1/1lxBCiD3v87gTEmCuXr3q7y4QQgjxUsAEMFlZWUhLS0PPnj393RXiJyaTCTk5OcjJyXE5b8WdtvLz85Gfn++yLVd1TSYTDhw4gM2bN0OpVNZLfwkhhNgKmEdINImXqNVq3HTTTQDMW/N7Q6vV4oknngAA/PXXXy7va6nrKJWAWq3mUwbs3LkT/fr1c9hfSiVACCG+EzABDCEAEB0d7bO2wsPD3d722lXQbCmvqqqyOe/L/hJCCLmBAhgSMIKCgnDlyhWftCWXy7Fz506Ulpa63K4+KCgI69ev97jcl/0lhBBiiwIYPzOZTDhz5gy0Wm2dro+Pj6dt9AkhhDQ7FMD4WWVlJQoLC+t8vUajoQCmHlVVVaGsrMzf3SCEEFJDwAQwTTWVgGV1ilQqRXJystvXqVQqXLx4sUFTl/ubRqPBxIkTAQCff/65V23pdDq88sor0Gq1ePPNN53WO3LkCDQaDRYuXAgAePnllx3266233rIrr9lfSiVACCG+EzABTFNfhSQWi5GQkOB2/bKyMly8eLEee9T4GI1GfPPNNwDA73DrTVuWFUVz5851Ws9kMsFoNGLLli0AwO/IW7MtR+W+7C8hhBBbARPAECKRSPD+++/zx94Qi8V4+eWXoVQq3dqJd/Lkyfyxo345KvdlfwkhhNiiAIYEDLFYjKlTp/qkLZFIhMceewylpaUucyGJRCKMHj261n45KvdlfwkhhNgKmJ14CSGEEEIsaASGBAyTyYQLFy4AAJKSkrxuq7CwEGVlZQgODnZZt6SkBADQokULh+VFRUV25TX7KxDQ3wuEEOIrFMCQgKFWq9G6dWsAvkklMHz4cACuUwlotVo89NBDAJynEnBUXrO/lEqAEEJ8hwIYElAUCoXP2pLL5W4vQ3e1BNpZuS/7Swgh5IaACWCa6j4wxH1BQUE22Z69IZfLsX//frdSCcjlcvz666+19stRuS/7SwghxFbAPJSfPHkyjh8/jgMHDvi7K4R4paKiAseOHUNpaam/u0IIIQErYAIYQhorg8HgUf1Tp07h6tWryMnJqaceEUJI0xcwj5AI0Wq1mDJlCgBg6dKlXrWl0+kwZ84caDQavP766y7rfvDBBwCA559/3qbswoULOHnypMPymv2VSqUAzJN7ATSrNBCEEOJrNAJDAobBYMBnn32Gzz77zONRj5qMRiN++OEHbNiwweW8KqPRiA0bNjisW1pa6rTcl/0lhBBii0ZgSMAQi8V80kRXu+e6IhKJ8Nxzz0GlUrlMJSASifikjI7qOiv3ZX8JIYTYogCGBAyJRILXXnvNJ22JxWL861//ciuVgFgsxqOPPupxuS/7SwghxBY9QiKEEEJIwKEAhgQMxhiuXLmCK1eueD0BljGGa9euoby83GVbjDGUl5c7reus3Jf9JYQQYoseIZGAoVKp+FxD3qYS0Gg0bqcS0Gg0GDVqFADHqQScldfsL6USIIQQ36ERGBLwzp49C41G4+9uEEIIaUABMwJDqQRIUFCQzaMYoVAIwLzfyoULF9ChQwe325LL5fxuuM5SCahUKr7u1q1ba23LUXnN/hJCCPGdgBmBoVQCpKa2bdvyQUx9BLaFhYU+b5MQQohvBEwAQ0hNcrkcycnJ9da+yWSqt7YJIYR4hwIYEjC0Wi2mTp2KqVOnQqvVetWWTqfDO++8g6VLl0Kn07msu3TpUqd1nZX7sr+EEEJsUQBDAobBYMB///tf/Pe//63T1vwGgwHFxcW4du0ajEYjvv76a/zwww9upRL44YcfnNZ1Vu5tfwkhhDgXMJN4CRGLxXj11Vf5Y0/l5+fz81pEIhEmTZrkdiqBRx55hD92t9zb/hJCCHGOAhgSMCQSCebNm1fn660f74jFYjz//PNupxJ48sknPS73tr+EEEKco0dIhLhgvcyaRlIIIaRxoACGBAzGGJRKJZRKpU9SCahUKqjVapdtxcbGIiEhAWq1ml+2XbMttVpt15Yv+0sIIcQWPUIiAUOlUiE4OBiA91vzazQa3H777QBcpxJQq9VIS0sDAIcb1lmnJaiZSsBX/SWEEGKLAhjSKBiNRly+fBkGgwFyuRyxsbH+7hIhhJBGjAIY0igUFRUhLy+Pfx0cHGw3YqFQKPgkjgqFwqv7yWQy7Nu3D1evXoVMJqu1rlwux8WLF/H33387rCuTyfiRF+tyX/aXEEKILQpgSKNQc58UR/umcBzns8cwHMdBoVBApVKB4ziXdYOCgiCXyx3W5TjOLp8SYwzV1dWQyWQ08ZcQQuqB3ybxqlQqJCcnY/r06f7qAiH15tKlSzh06BD2799PE3gJIaQe+C2AmTdvHm655RZ/3Z4EIJ1Oh9deew2vvfaay+3/XdHr9fjggw/w2WefQa/Xu7zvm2++6bSuXq/HZ599ZlOuVCqh1+vx8ccf49VXX/W6v4QQQmz5JYA5ffo0Tp48iWHDhvnj9iRA6fV6zJ8/H/Pnz3cZdLhiMBjw6aefYvXq1S63+TcYDHjvvfec1jUYDFi9erVdueX822+/7XV/CSGE2PI4gNmxYwdGjBiBhIQEcByH9evX29XJyspCSkoKZDIZevfujf3799uUT58+HQsWLKhzp0nzJBKJ8MILL+CFF15wuf2/K0KhEI8++ijuv/9+h3u71Kz79NNPO60rFApx//3325Vbzj///PMe9Vev16OkpISCHkIIqYXHnwJKpRLp6el44okncN9999mVr1mzBtOmTcOyZcvQu3dvLFmyBEOGDEFubi5atGiBn376CR06dECHDh2we/dul/fTarU2mXwrKys97TJpIqRSKZYsWeKTtiQSCV555RWUlpZCIpG4vO+CBQuQnZ3tsK5EIsGUKVOcnr/11ltdBknWcnJyUF5ejqioKHTp0sXt6wghpDnxOIAZNmxYrY9+3nvvPUyaNAkTJkwAACxbtgwbNmzAihUrMGPGDOzduxfffvstvv/+e1RXV0Ov1yM0NBSzZs1y2N6CBQswd+5cT7tJSKORm5uLyMhIxMXFuVW/vLwcAHD16tV67BUhhAQ2n86B0el0OHToEAYNGnTjBgIBBg0ahD179gAwByQFBQU4d+4cFi9ejEmTJjkNXgBg5syZqKio4L8KCgp82WVC6l1JSQlOnjzp724QQkiT4tN9YEpLS2E0Gu12UY2Nja3zL3CpVAqpVOqL7pEAp1QqfbY1v1qt5h/PuEoloFKpkJKSAsBxKgG1Wu0wlYCz84QQQrzn143sxo8f73bdrKwsZGVlwWg01l+HCCGEEBIQfBrAREdHQygUori42OZ8cXGx28//nZk8eTImT56MyspKhIWFedUWCUwKhQIlJSX8sTdkMhm2b9+Oa9euuZVK4PTp0/jnn3+cphJYt24df+zqPCGEEO/5dA6MRCJB9+7dsWXLFv6cyWTCli1b0KdPH1/eijRDHMchJiYGMTExLrf/d6etyMhIhIeHu5VKIDo62mldjuMQHh5uV+7sPCGEEO95PAJTXV1tk3QvPz8f2dnZiIyMRFJSEqZNm4Zx48ahR48e6NWrF5YsWQKlUsmvSqoreoRECCGEEAuPA5iDBw/itttu419PmzYNADBu3DisWrUKY8eOxZUrVzBr1iwUFRUhIyMDmzZtspvY66lAeoRUUVHBP+pwxXqPm+bIZDLh2LFjbu3vo9PpsGjRIgDASy+95HL/ltro9Xp88sknUKlUmDRpksv7Ll68GEVFRQ7nben1eqxZswYAMHbsWJfnCSGEeM/jAGbgwIEuk9NNmTLF4cZezYVSqURhYaFH13iy0VlTolKpUFZWZnf+ypUrduf0ej1ef/11AMDUqVO9CmAMBgM+/PBDAHA5OmgwGDBv3jwAwKOPPuqw/PPPPwcA3H///S7PE0II8Z5fVyE1VcHBwUhOTvbomhYtWtRTbwKDWCxGRkYGcnJyoFKpcPHiRRQWFtpswS8SifDkk0/yx96wbPOv0WjcSiXw+OOP4+rVq05TCdx11138savzhBBCvBcwAUwgzYEJDQ1FaGiov7sRUDiOQ1BQENq2bYuioiJcuXIFjDGb5IhSqRSffvqpT+4nkUgwZ84ct1MJ/Pe//601lcD06dPdPk8IIcR7fslGXReTJ0/G8ePHceDAAX93hdSjqKgodO7cGQJBwLw1CSGE+EHAjMCQuqttzhIt7yWEEBKIKIBpwhhjOHbsGK5du+a0TosWLZCWltaAvao7pVLJzxUqKSnxOpVAr169wBjD5s2ba62rUqmQlpYGk8mEX3/9lT/PGEN1dTXUajWfmf3HH3+0uYej84QQQrwXMAFMIM2BaSwYY7UGL4A5f1UgUalUDs8XFxcjISHBoyX2arXaq/tWVlbCZDIBADQajcPrnJ0nhBDinYAJYAJpH5jGqHfv3jYrdzQaDQ4dOuTHHnlOLpcjPz+fPwZsVyOdPn0aPXr0cKstqVSKTZs2oayszGWyUJlMhqNHj+L48eM2dS17+EilUvzvf//jj63v4eg8IYQQ7wVMAEO8IxaLbT7sA3EkSyAQ8FmhLWJjY3Ht2jU+E7onbbVs2RJSqdTlhGGBQICkpCRcu3bNYV2BQOAw15ez84QQQrxHSz1IQBMKhWjVqpW/u0EIIaSBUQBDAoZer8eSJUuwZMkS6PV6r9oyGAz46quvsHbtWpdt6fV6fPzxx1i7dq3NvjTWba1du9au3Nl5Qggh3guYR0g0idcxjUaDv//+29/daBA6nQ7//ve/AQCTJk2CWCyuc1t6vR4LFy4EADz00EMu67766qsAgNGjRzssz8rKAgB+593azhNCCPFewAQwNInXlmVHWKPR6HKlkVAobBIbwwmFQjz88MP8sbdtDR8+HFqt1q05MKNHj0ZZWZnDukKhEHfccYddv5ydJ4QQ4r2ACWCIraCgIGRkZLi1FDgkJKRJBDAymQyrV6/2SVsSiQTvvPMOSktL3VqF9OmnnyI7Oxsmkwkmk8nm5ymRSPgkkzXv4eg8IYQQ71EAE8DCw8MRHh7u727UWWFhocOs08CNHYItuwj7e8dg6/tfuHDBbjUUIYSQhkUBDPELxhjy8vL4AKVmksTk5GQ+uJHL5QgODnbZplqtxrlz55CcnOzzgCckJIQ/tuz/UpumMOJFCCGNGQUwxC8YY3zw0q5dO0RFRdmUJyUlISkpyeacUqnkRz7OnTvHpxKwnsx77tw5REZGuswGrlar0b9/f5hMJmzYsKHWuiqVCrGxsTCZTPj6668dtmWZCLxu3ToA5hEb6/OWDe0IIYT4RsAEMLQKqeFotVp+i3wLdzZ8q6vY2Fi3VxQ5Sn0QFBSEzp07IycnBwDs+u5MWVmZ232sLeVCWFgYKioqAMDu+7Cc97Vr165BpVIhPj6eJggTQpqlgAlgaBVSw7h48SLy8vLszsvlcvTq1cvtRzOMMZw5c8ZmkrFYLEabNm3sHhe5Sy6X459//uGPrcXExEChUDjNlVSTVCrFunXr3E4l8M8//+DSpUsOgwWpVIq//voLp06dskslsGLFCv4YqD0zuLtMJhO/dF4oFCI+Ph6Aedm2SCTy+3whQghpCAETwJCGUV1dDcD8CMQy4mI0GqFWq2Eymdz+a7+qqgoXL160Ox8SEoKWLVvWqW8CgQCdO3eu07WO2mrXrh1KS0vdWkbduXNnBAcH87mYapZ37NgRer3epi2BQIDWrVvzr0tLS3H8+HG3R4icsb7esglfUVERTp48iZiYGJ/9jAghpDGjAIY41Lp1ayQlJcFoNGLnzp0eX28ZabCMuly6dAlVVVUoLCzE1atXbSbFNhfFxcVeBy/OXL58GQCcruoihJCmhgIY4rHKykp+pAYwBynR0dEOH12IRCLEx8dDqVSiqqoKKpUKKpXK5eZ7juj1eqxatQoAMH78eK924rVs819dXY0xY8a4vO+nn36Kq1evOsx2rdfr8eWXX6KwsNCmLYPBgE2bNgEAhg4d6vXjI8YYNBqNw+/bF4+mCCEkkFAAQzxiMBhw5MgRuw9MyyOWwsJCmEwm6HQ6m/KUlBSEhobCZDLh5MmTdbq3TqfDv/71LwDAww8/7HUqgblz5wIARo0a5bKu5b4bN260KzcYDJg2bRoAYOTIkTbXvfvuuwDA78jrKaPRiOLiYgQHB6O4uBiFhYVo0aJFndoihJCmhAIY4hGj0cgHL9HR0aisrIROp4NOp0NBQQEuXbpkU18kEvH/tXzw5ubm1mnEQCgU4t577+WP6yoiIgIdO3bE0KFDUVVV5dYcmHvvvRcqlcrhfQUCAYYNG4bKykqbtoRCITIzM73q76VLl3DmzBmbcyUlJXVqixBCmpKACWBoGXX9MJlM2LdvH/+65siJMxzH4aabbkJOTg4/78IyvyMiIoJfKRYTE+OzvspkMqxfv97rdqKjoxEXF4cvv/wSOTk5DlchGQwGfl6J5b7nz593OIlXKpXiq6++wrFjx2xWWEkkErz11lte9VWj0Xh1PSGENFUBE8DQMmrfEovFEAqF/AqjmmouU/ZERESE3SZ0gaaqqoo/dmcXYIvq6mq3l3ITQgipu4AJYIhvCYVC9O7d22HwIhKJ+F1umzuJRGK3S7Aj1kGOdfBDCCGkflDClmZMIpEgLCzM7quxBi8qlQopKSlISUmpdZTDnQzdKpUK3bt3x4MPPlhrfbFYzN83MzPT4SMdtVqN1NRUPPzwwzblGo0GDz74IB588EGH19EOuoQQUnc0AkP8zpPdfc+fP88fO5Obm4ugoKBa8yExxlBQUOCz+zoqZ4yhuLjY6XUymcyt+xNCCLFHAQxpcC1btuRzC4WHh/MrlVyRyWTYv38/f+yo3dOnTwMwj4rUFsDIZDL89ttvOHv2rMvUBpb7Xr582WFdiUSC/fv349SpU3aTeD/++GP+mBBCiO9QAEPcVpcdeR1p164d2rVr5/F1QqEQPXv2dFpuCYzcSdIoFArRtWtXSCQSl49yLPd1tgrJui3rewuFQnTs2NFlXwghhHiO5sCQWgkEAoercGglGCGEEH+iERhSK47j0L17dz5poEXNXXCNRmO95fmxMBgMWLNmDQBg7Nixbj96ctbW2rVrcfHiRX5zPFf3LS0txU033eSwfPXq1Th//jx69+7Nnzcajfjzzz8BALfffnud+0oIIcQeBTDEJY7jXM7hOHv2bL33Q6vV4tFHHwVg3rLfmwBGq9Xi2WefBQAMHz7c7fs6SiWg1+sdlut0OsyfPx8A0K9fvzr3lRBCiD0KYIhXIiMjUVpayq+yEYlECA8Pr5d7CQQCDBo0iD92hTHGb/9fc9KvQCBA//79oVQqXa6CstxXo9HY3NcyKsVxHAYNGmSXlkAgEKB79+5u99fXdDodxGKx26u8CCEkkARMAEOpBBqn+Ph4xMXF2Zyrrw9MuVyOP/74w+3658+fx7lz5wAAGRkZdm2tXbsWOTk5LpczW+5bcxJvXl4eAHMqgT/++ANHjx61mcQrlUqxePFit/vrS5a+tmrVqk4TpgkhpLELmEm8kydPxvHjx3HgwAF/d4XUwHGczVdjYb3ZXX1s72+ZBxQdHe3ztr1lCdwuXrzo344QQkg9CZgAhpDGKjIy0u6cu5vk1Ze6ZPsmhJBAQgEMCRgqlQqdO3dG586dvR5RUalUuPXWWzF+/HiUlJTg6tWrLu87ePBghykBLOX33XcfNBoN/5hTo9Fg/PjxGD9+PGWVJoQQHwuYOTCEMMZw/Phx/tjbtnJzc/njK1euOE3a6Oq+zspdpSBQKpVgjDWqx26EEBIoKIAhAUMmk2Hr1q38sS/aKiwsdCuVwNatW1FUVOSwrqU8Ly/PLpXA+++/zx87UllZSZsCEkJIHVAAQwKGUCjEwIEDfdrWhQsXXO5hY6lbWyqBgQMHIiIiwi6VgPXqp5qb/wHmTfAIIYR4jubAENJA/LEXDCGENFU0AkMChsFgwC+//AIAuPvuu71OJfDLL7/gypUraNOmjVt1S0pK0LZtW4fl69evR35+Pm6++Wb+vNFoxJ49ewAAffr0qXNffUWr1eL8+fOIjIxslEu/CSHEExTAkICh1WoxatQoAEB1dbXXqQQsbTlKD+BJXWflOp0O//nPf9y6R0MoKCjApUuXcOnSJZ89iiOEEH+hAIYEDIFAgL59+/LHntBoNLhy5YpdW1qt1mVbrupaypVKpV0qgc6dO9epv/WBlnITQpoSCmBIwJDL5di1a5dbdU+cOGHz+sKFC/yxUCjk23JnEq+lrrNJvJZyR6kEli5d6lZ/CSGEeMb/fxYS4kOu9lSRyWSIiYlpoN4QQgipLw0ewJSXl6NHjx7IyMjATTfdhE8//bShu0CasJYtW9a6r0pycjKEQmED9ogQQkh9aPAAJiQkBDt27EB2djb27duH+fPn17qNOyEWarUaPXv2RM+ePaFWqx3WiYqKQteuXaFQKNxqa8SIEdBqtW7VveeeexzWtZQ//PDDNuVarRZPP/00nn76aZf3IIQQ4pkGnwMjFAr5DxetVgvGGCWeI24xmUw4ePAgf9xQbbmq66zcZDLx6Qq87S8hhBBbHgcwO3bswKJFi3Do0CFcvnwZ69atw8iRI23qZGVlYdGiRSgqKkJ6ejo+/PBD9OrViy8vLy/HgAEDcPr0aSxatIj2pCBukUql/D4wUqnUJ22VlJS4TCXgqq6l/OzZs3apBObPn88fE0II8R2PHyEplUqkp6cjKyvLYfmaNWswbdo0zJ49G4cPH0Z6ejqGDBmCkpISvk54eDiOHj2K/Px8fPPNNyguLq77d0CaDZFIhLvuugt33XWXV3vAWLd1xx13uJwTY6l7++23O6xrKe/fv79NuVAoRJ8+fdCnTx+ad0MIIT7mcQAzbNgwvPXWW/zGXTW99957mDRpEiZMmIC0tDQsW7YMCoUCK1assKsbGxuL9PR07Ny50+n9tFotKisrbb4Iacz0en2t5WKxuFHsC0MIIYHMp79FdTodDh06hEGDBt24gUCAQYMG8VuqFxcXo6qqCgBQUVGBHTt2IDU11WmbCxYsQFhYGP+VmJjoyy6TAGI0GvHHH3/gjz/+gNFo9ElbO3fudNmWq7qW8j179sBoNOLSpUv8+YMHD+LgwYMwGo0oLCwEACQkJCAoKMir/hNCSHPn00m8paWlMBqNiI2NtTkfGxuLkydPAgDOnz+Pf/3rX/zk3eeeew5dunRx2ubMmTMxbdo0/nVlZSUFMc2URqPBnXfeCcCcSsCbIMC6LVfb/LuqW7NcJpPxZS+99BJ/Xi6XA6D5MIQQ4gsNvgqpV69eyM7Odru+VCr1esImaRoEAgHS09P5Y1+0pdfr3UolkJ6eDp1O5zSVQHp6OtRqtU15dHQ0n/zR+nxCQgKKioq86r8vqFQqyGQyepxFCAlIPg1goqOjIRQK7SblFhcXIy4uzqu2s7KykJWV5fWjAxK45HK5R8GvO225m0ogOzu71lQC2dnZdqkEZDIZPvvsM5u6HMfVuluws/1tfO3y5cvIzc1FWFgYunbt2iD3JIQQX/Lpn14SiQTdu3fHli1b+HMmkwlbtmxBnz59vGp78uTJOH78OA4cOOBtNwlptHQ6HX8cGhpab/exJLasqKiot3sQQkh98ngEprq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiUmTJjg044TUhtvl1k3BrT0mhBCnPN4BObgwYPo2rUrP+w8bdo0dO3aFbNmzQIAjB07FosXL8asWbOQkZGB7OxsbNq0yW5ir6eysrKQlpaGnj17etUOCVxqtRoDBw7EwIEDXT5qSU1NRevWrZ0+rrG0NXbsWLdSCdRW11I+ceJEm3KNRoOpU6di6tSpTu9hGQlxpKysjF+5RAghxJbHf6YOHDjQ5db/U6ZMwZQpU+rcKUcmT56MyZMno7KystZkfaTpMplM2L59O39cm6CgIAQFBSExMRE7duzwqi1XdZ2Vm0wmHD161OF1lr1iVCpVrfd2pby8HElJSV61QQghgSjwx9lJsyGVSvHdd9/xx+4QCAQICwuzm+thaau0tNStVALfffcdrly54jSVwHfffYdz587ZpRKYPXs2f2ytdevWOHHiRK0Tet1RXV1td45yixFCmoOACWBoFRIRiUQYM2aMT9tyZxWSpa6zVUiWcssqJMvoikgkwsCBAx22aVm6XFFRgezsbKSnp9cpmLHMk7GeL+PtqA4hhASCgNkAglYhkcaurpNuy8vLXc7DccWS4R0ADAaDV20RQkggCJgRGEKMRiP27t0LALjlllu8WqVjaauoqAjh4eFe1TUajdi1axfUajU4juP7ZTQacezYMQBAWloarSoihBAfogCGBAyNRoN+/foB8E0qAUtb7qQSqK1uzXJLygCtVovnn3/e7jwhhBDvUQBDAgbHcWjXrh1/7Iu2DAaDy7Zq1rUkI61ZzhizaYvjOLRs2dIn/SWEEGIrYAIYmsTbTDEG6M2TUhVyBU6fPu2TZhUKc1vuTOKtWbe6utpmoqylXKlU2szRksvl+Prrr33SX0IIIbZoEi9pvBgDVgwB5ieYv1YMNZ+rZxqNhl9JZC0mJoY/tt7y3xfquvTZZDKhqKjIblSIEEKauoAZgSHNkF4FFOy78bpgr/mcpO5zX1y5dOkSTp065bBMLpdDoVDUyzLlQ4cOITMz0+PrtFotTp486fP+EEJIYxcwIzCEaAwMd917P+666y5oNBrv2tJocNddd2H8+PE2oylKpdJp3bvuusvhcmdL+f3332/TllarxYwZMzBjxgyXIzYGg8HljsB1ZTAYsH//fpSWltZL+4QQ4g8BE8BQLiRiNAEbN/2GjRs3ej0Xymg0YuPGjdi6dWutbTHG+LobN250GGRYyn/77TebtoxGI/bt24d9+/b5de6WUqmkze0IIU1OwDxColxIRCIEVn66DBBJXW7/77ItiQQrV67E1atXIRaLndZTq9V8XQAQi8V2oymWcq1Wa9OWWCzGK6+8wh97Qi6XIzg4uNZkj4QQ0pwFTABDiFjIYfzjj/pkDoxYLMb48ePdWoVkqQsA+/fvtwtgLOU1VyGJxWIMHTrU674SQgixRwFMfbFa/usTYgVAe4kEFE9HXRqbmvvaEEJIY0IBTH2wLP+1XkHjrcRbgCc2NesgxmhiOHb0b0AsR5cuXbxOJXDs2DFcvnzZ5eMo65QAjuayGI1GZGdnQ61Ww2g08v1q0aIF/vzzTwDm7NOBlEqgqqoKR48eRUREBDp37uzv7hBCiB0KYOpDzeW/vtAAS4gbO40B6NqrLwDfpBLo2rUrAPdSCVjqbtu2zWVblpQBBoMBkyZNsjsfCEpKSmAwGGgODiGk0QqYACZgd+KdngdIFK7rOaNTAYvb+a4/AYzjgISEeACcT1IJJCQkwGg0upVKICEhgT+uuemcpdxRKoHo6Gj+2F+qq6v9dm9CCKkvARPABOwqJImiWY+a+JJCzKEw/7RPfp4KhQKFhYVupxIoLCwEYJ7EW3NJsqW85iRehUKB77//3uu+estV+oWLFy8iLy8PwcHB6NKlC6RSaQP1jBBC6i5gAhhCAk2gTIDNy8sDYB6pOXv2LMLCwhxu2EcIIY1JwGxkR0igEYlEaNu2rUfXWEZL1Gp1fXTJpeLiYpw6dQolJSV+uT8hhLiLAhgSMDQGhjEPPYoxY8b4JJXAmDFj8Mwzz0Cn06GoqMhp0GCpO2bMGH5koqCggN8PxlL++OOP2+wRo9FoMHXqVMyZM8et5I+MMZqvQgghbqIAhgQMowlY++N6rF271iepBNauXWuTlsDZlv+WumvXroXBYAAAXL16lS9njGHt2rX48ccf7a778ccfsX37drf6W1FR4c23ZCOQVjwRQkhd0BwYEjAkQmDpknd9lkpg6dKlYIwhLi6ODx4cjYBY6gJAx44dkZuba1MeFhbGl0dFRaGqqoq/bsmSJTh79qxbm9pZ9prxhaCgIL89hiKEkIZAAQwJGGIhh8nPPOWzVAKTJ08GYB5B2b59O39cW13rkRcAiI6OhkQi4cv//vtvm+ueeeYZ7N692+v++pPRaMS1a9cQFhbmdeBICCG+EjCPkCgbNakvHMdBofBir54m7syZM8jJycHx48f93RVCCOEFTAAzefJkHD9+3GafDdK8mBjD6dN5OH36NEwmk9vXxcTEQCQSQS6X83sImUwmnD592q22XNV1Vm45f/HiRY/629hYduMtLy/3b0cIIcQKPUIiAUOtBzrclAHAs1QCrVq1QqtWrWzbUqvRoUMHvq1a72tV9/z587WW79mzx+b8TTfdBCDwUgkQQkhjRwEMCSi+3IXZui3L3BelUlmn+zorDwsL41cuBSq9Xs8fWyerJIQQfwqYR0iEBEk4lF88jfKyMq8SOQJAkEKB8pJCvq3Q0FDndYOCUF5ejvLycof3tS6PiIiwOV9SUoJffvmlyYy+7Ny5k0+rQAgh/kQBDAksi9sBK4YCDlYLuY0xYMUQYH4C31a7dr5JmNm6dWu0adMGGRkZPmmvMcrPz/d3FwghhAIYEiDiutw4LtgL6FXO67qiVwEF+3zSVs3JuRKJBElJSQgPD697/xq5gMsITwhpkiiAIYFhwiZon8vB+PVqjF+v9jrZoNbA3G5Lq9Vi/PjxGD9+vF1dvV7vtFyr1eLJJ5/E22+/zacScLTPDCGEEM9RAEMCA8fBIJDgi6N6fHFU7/XEWIMJbrUVGhoKg8GAL774Al988YXDus7KDQYDvvrqK/z22291GrUI9Mm/hBBSn2gVEgkYYrEYCwdJ+eM6YQzQqSAWota24uLiEBERwU/KXbhwodO6YrHYYblYLMb8+fNx/vx5iESe/6/WsmVLlJWVeXwdIYQ0BxTAWDDm3bwKazoftUNsSCQSvJQptbzwvAHL5N2CfZAIOZu29DWqSqVSxMbG8q9feuklAPapBPh+XS+vef7FF190mUqgXbt2yMvLszsvENAAKSGEOBMwAUxWVhaysrLqbwKhXmVelUKaLuvJu35Sc0M9AE73VeE4rr67QwghAStg/sQLyFQCibcAYsqx4ysmkwmFleYvb7fmNz13xO22TCYTCgsLUVhY6DSVgKNyy/krV6543N/g4GCEhoYiJCTEo+sIIaS5CJgRmHonVgCvXvJ9m/RXtM+o1Wq0et+87X/1f9QIktX9w11tENi0JQmW1X7f6yMnzlIJWMqtUxyo1Wq0adMGgOepBLp06QKhUIguXbrUSzbra9eu+bxNQghpSBTAWHAcIPFud1dS/0Q+HDP0pC1nk3AjIyNrLReJRHVaOt2Y578wxnDp0iUkJNAjV0KI/1AAQwJGUFAQ9P8JtbzwaVs1J/Ha1b2eD8h6Em9iYiJSUlLAcZxNviDr65RKpccjKNHR0XVatWSRk5NT7/mKTp06BYVCAY1G43V/CSGkLui3DiF1JJPJfD7RtnPnzoiJifGqDcumefXt2LFjMBqNiIuLQ8eOHRvknoQQYtF4x6kJaYJatGjh7y74jGVF4JUrV/zcE0JIc0QBDAkYWq0WkzeoMXmDD1IJeNCWVqvF5MmTMXnyZId1nZVrtVo8//zzWLJkCXQ6HVq1alVr1mtCCCHuowCGBAyDwYCPDurx0UEfpBLwoC2DwYCPPvoIH330kdNUAo7KDQYDli9fjp9++qnO+xeJxWJERUXV6VpCCGnKaA4MCRhisRizB0j444ZqSywWY/bs2U7rOisXi8V4/fXXUVBQUOdJrhzHoUuXLjh16hQuXfLxMn9CCAlgFMCQgCGRSDBnoMzywqdt1bYKSSKRYM6cOQCcpxKwlNc8/5///Kde9nFpTIxGIwoLC9GyZUsAgFKpRElJCeLi4jza+4YQQjxBj5AIIV47ffo0P//n+PHjOH/+PE6fPu3nXhFCmjIagSH+ZZ1E08XOxYwxVGjMm8KFMQZvFjDXbKu2xhhjqKio4I9rKw8LC+OXVjPGUF5ebrM7ryPWj5e8fTTmT5Z0CUqlEgDt9ksIqV8NHsAUFBTgscceQ0lJCUQiEf7zn/9gzJgxDd0N0hhYZYcGYM4d9cQmp0GMSqVCxDtVAIDqV1QIkgbX+dY125IES532UVV+BRGR5szUjlIJqFQqREREmNuyClZUKhWf0Xrjxo1O+yKRSJCRkQGDwYCwsLA6f0+EENKcNHgAIxKJsGTJEmRkZKCoqAjdu3fH8OHDa/0LlTRRNbNDF+w1n2ssKR0sAdaZvT5v2noDPIFAQEkbCSHEQw0ewMTHxyM+Ph4AEBcXh+joaFy7do0CGOKSQqGA7nXzB71I4V2W75ptOVxIfT3AUohhrjvjAirU9jUVCgW/+6314yCFQoHq6mrs2bPHbmv/iIgIxMfHQygUIji47iNJjcnVq1f5ibyEEFLfPJ7Eu2PHDowYMQIJCQngOA7r16+3q5OVlYWUlBTIZDL07t0b+/fvd9jWoUOHYDQakZiY6HHHSRPGGKBTmv9rheM4iIXmL2+38PekLb6uWOywLseZy2qWW86LRCK764RCIVJTU9GuXTufpyPwl7y8PJSVlfm7G4SQZsLjAEapVCI9PR1ZWVkOy9esWYNp06Zh9uzZOHz4MNLT0zFkyBCUlJTY1Lt27Roef/xxfPLJJ7XeT6vVorKy0uaLeMESHDj7qkPmZJ/3b8UQYH4CsHKof/vSiLRo0QICgQBSqZO5Oo2ERqPxdxcIIc2Ex4+Qhg0bhmHDhjktf++99zBp0iRMmDABALBs2TJs2LABK1aswIwZMwCYg5KRI0dixowZ6Nu3b633W7BgAebOnetpN4kjNSfNOuJiIm2906tv9K/omE2RTqfDa7+bPyDnTddB4sVcmZptcVIH+8pcD+Z0RobXtmiBytcw7aVXHLf12mvmtubNg+T6HjU6nQ4zZszApUuXMHHixDr3FQDCw8PRr18/KJVKHDp0yKu26tOpU6f83QVCSDPh031gdDodDh06hEGDBt24gUCAQYMGYc+ePQDMS0vHjx+P22+/HY899pjLNmfOnImKigr+q6CgwJddbl5qTpp1xDKR1lM1R3bqYSRHr9dj8R4dFu/RQa+vbes5H7TFGD8CpDfCXPf9/zqsq9frsXjxYixevNimXK/X4/3338eaNWu8Tn0AmP9fIoQQYubTSbylpaUwGo380lGL2NhYnDx5EgCwa9curFmzBjfffDM/f+arr75Cly5dHLYplUob/bB5QJqeB0isJsLqVMDidnVry9HITj2M5IjFYkzvU8dUAoyZv0cnbdWcZMsZNPwIkFgIc91bnnGaSmD69Ol2/RKLxfj3v/+NS5cu1TmVACGEEMca/Ldqv379+A2vPJGVlYWsrKw6J8UjNUgUvluu7Ghkpx6WREskEiy68/r2/2KxeaTHxeZ3ABwGWDZtSSSAQICOHTvygTZwYwRJIuTMdWe+havV9tmoJRIJFi1a5PD822+/3eRTCRBCiD/4dEw6OjoaQqEQxcXFNueLi4sRFxfnVduTJ0/G8ePHceDAAa/aIfXshaMNc58VQ80TfVcMdf24Sqe0Hx0S2+fo4UdJGEP8pgn27ax0416EEEIahE8DGIlEgu7du2PLli38OZPJhC1btqBPnz6+vBVprMRWIy46lU8/8Blj0BvNX6zob/NJV3N2rOayADA/OntiExhwo60afRSYtJBeyzW/iO0C1uImc93Cv8Ec3IsxBr1eD71eb9OW5bzBYHCYgoAQQkjdefwIqbq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiW/Kqmu6BFSAFrczqdzYVQqFYLfur79/8wQBLmTkFqvurGaKa4LEBQNcJxtW9NqSUvwxCaolEoER5lHEM9PUDvu1/XN6GqmErCc37hxI2VmJoQQH/I4gDl48CBuu+02/vW0adMAAOPGjcOqVaswduxYXLlyBbNmzUJRUREyMjKwadMmu4m9npo8eTImT56MyspKyhfTmInl5qCl4Pr2+40pPcCEOgRSHOeT4Ktbt25oERMNmExAM1pNdPXqVWg0Gn7jS0II8RWPA5iBAwe6HA6fMmUKpkyZUudOkQDGceYRF2Vp7auaaqwKcodCoUDZK+bt/xV1Sdps9QFq05aLtATWdaVRUTh3sRiMMX50RaFQ8DvQWrdlfT4sJATcG5HmglllN4IYSzZudyYjA3arpRq7Y8fMo19yuRyRkZF+7g0hpCmhtZ1NjeUD0REPA4Y64zjbJdo1ubOhnrXEWwCxApxehXCZb/6K5zjuRltupBLg68rlyMzMBGOMn/TLcRzCw8MdX2c5X33lRoHqKhAcY/tzcPNRm1wuR7t27WAymXD27Fl3vtVGwRf74BBCiLWACWBoDowbPA0M/KXmsuu4Lna77gK4sVeNq9EJyyZ6YsWN9t0c0agLm1EQy5YABrXn97T+Obj5qI3jOLRq1QoAAiqAIYQQXwuYAIbmwLjBnZ12AX5EwylnIzX1ERRMzzPPm1ngIItxjb1qdDod5m8zb///6q1SSITX+7JiKFB8DEjsbX5tPaLhhE1bLtISOK1rMgFvREBnZJi/UwuEtsKr3x+H5PrGizqdDvPnzzdf9/wkuDPnuCnT6/W4dOkSIiMjERIS4u/uEEICXMAEMMRDNXfateYqEHE2d6U+8iTV9qipBr1ej7nbdQCAl/pKIbEMhBRfH72xDt5cLK+2aUuvtwkuuBpzvJzWVV01lxtxvfwsXlJVQCKJAfQq6HWMz+P10jPj/RLAJCYmNpr0G+fOnUNhYSEuXryIzMxMf3eHEBLgKIBpqjzdaVessF095IifVxSJRCI828M8e1fk5UIem7ast/lnDBnZM92raykX4Ea5UMg/xhPF9cKzzzwDcJx7qQSsH4X5KEiMiIhoFAGMXq9HYWEhf6zX63H8+HEoFAq0b9/ez70jhASigAlgaA5MPbOsHnI0auFNniQfkkqlyLrLN3up2LRllWtLYNIipDrf/CKuCyBWQAo4rMu3JeJulAtM/EiQtGg/shZ+Y957RlnqulP8ozA/ZwSvB5cvX7Z5XVZWxn+1bt2ackURQjwWMBtSUCqBBsBx5tEVuy/3H/M0KS73jXFjd93F7a6nO3Aj/xf/KKyOGcEbMVqFRAjxtYAJYAjhH3M1FFcrn1YMdV5urWAv8MkA3/QpQGk0Gn93gRDSxNC4LWlc9EqnRUqVCuFP/wkAKL94GkEfp9f5NkqlEuFvVprbekGJoFrm9Tisq1cB186Yy3UM4e+Y0xKUP6OEpSWb868wBEmuB0QOEkk2N3XJSE8IIdYogCGNy39rD0r4RxE+eKxl8OAz1K5ujZVKztpyeL4JzW2pq5MnT/q7C4SQABcwAQxN4m3CHK2AcrBXjVwux8WLF/ljb8jlclz8d7BbbdnVrZHhWi6Gw7Zsztcl9YEPBFrqAUIIcVfABDC0kV0T5mgFlIOlxAKBAC1bXt/wTuf8UZM7BAIBWoYKLC88q2ud4RqAgOPQMpSza8vmvJ8EQgJFk8mEwsJChISEIDQ01N/dIYQECJrESxqHmiugAuCDFwAw86J500BPuEiG6q6YmBi3zjV2RUVFOH36NA4fPuzvrhBCAggFMCRg6HQ6LFq0CIsWLYJOp/O+rV1aLNqlddlWrXU5AXQQOSzXGdmN80aroGXlUJ8FMTV17tzZ5nVQkH82HfQE5XQihNRFwDxCIkSv1+Pll18GADz75DivtubX6/V4ebPW3JayApKgcPfq6vWQSCS1lOv4fumNuHG+p+RG6oOiYz7Z5yUqKgpXrlyptQ7NgSGENFUUwJCAIRKJMG7cOP7Y67bSr2///+HNQOs+wD1fu67rKJWAdfnqUTfOC3DjfD2MdcbFxSE8PBx799aS/oEQQpqogAlgaBUSkUqlWLVqlfmFl5N4pVIpVo20Wn1UsBcwqF3XdZRKIDgCq57uZR5Zqcy/cV7E2d7DGmOA3vH9bOuoas2NJJPJwHEcmBePpBQKBRhjUKtd9IcQQhqRgJkDQ6kEGiFL8kFdI932Xqeqn77VDBY4zpx2wBMrhtaeX4oxc1LI+QnXUxHUz5wZwLzKKjg4uN7aJ4SQ+hAwIzCkkbF8wF5PXNgo1UcCyhp7wPA8XTVVfKz2cr36xs/W3SzgzATUcYfbtm3bupxPQwghjUnAjMCQRkavsg9eHGw+50tKpRLh4eEIDw+HUundIySlUonwtysR/nYllLraRzds6paX3tgD5nq2aqVSifAWLe3aUuqY63u8cNSr74PHTBi4fRTwRoR7iSNrkMlkvukHIYQ0EBqBId6bnmfe2r+WuRq+UlFR4bu2tPbnOCePahzVtc5W7axfdtdFtuVzKAEAxN4vc+Y4DiJ95Y0m9ZXQS8K9bpcQQhozCmCI9yQK1483fEAul+PUqVP8sddtTTH3md/mnzFkZM+sva71fa8HL3K5HKf+yQaWZdqkDJCLYX+PJzYBi9u70UP357wkJSWh8NQ1t+sTQkhTQAEMCRgCgQDt21//8Hd3FVJcF/MjnxqPtwQCAdpH2e6RItBcQ0i1eRWRNjIV0uv1beo6SDtg7lc7oGZ7U/9Ge7vklG6OUK1wMM/GiZSUFMSFCIHdbl9CCCEBjwIY0rRZHvO48Xgr8suB/PHloSuR4u3jMG8eD1k/ZnKDTOp8DkuHDh1w5swZ2oKgiWOMoaqqCjKZzG6zRUKaooCZxJuVlYW0tDT07NnT310hfqLX6/n9gPR6vXsXWXIs1QhG9Ho9svbrkLVfB73R0eMaznFdB/fV6/XI+ni5bVtxXaAXhyLrZHQt9wA8eVRkrn596boHy6oTEhKQnl5zJKhxMhgMKC8v92pfm+bq2rVrOHz4MA4dOuTvrhDSIAJmBIayUROdTocpU6YAAMY/PAZiF/VdtvWrxtxWhhjiWnbct6mr09ndV6fTYcrUF23bmrAJOoMBU9acvXE+5RZAXGPujicpBayXrifeYp5P42CUiGPMvBKJ8+3fJ3FxcSgqKvJpmzX9888/KC8vR+vWrZGcnFyv92pqKisrodUbwUwqVFZWUmZv0uQFTABDiFAoxOjRo83HshDzh3hB3bbRFwqFGJ1mfvsLXXzO29R1kFtIKBRi9H0jgZO/3GiL42z7O2MZEBLpXQ4k66Xr1nvDmEw2S6f77hkPANg2YB1/TuBg7k5dREVF4erVqz5py5Hy8nIAwJUrVxAVFQWFQuGzvjdl1dXVmLTmJPLKTejB5WJWVBRuTs/wd7cIqVcUwJCAIZPJ8P3339848cQm84e4TuXxpnUymQzfj3Fvzxqbug72S5HJZPj+f1+bd82trb/1wWQy7/3igNhqaXVQUBDatm2LM2c8m1vjL9XV1Th48CAiIiIC5vGXP50+ex555eYg9iBLBWdopLtjE+JD9KcNCVyW+S2S+ts8r94pom4cv3jKeT1mcrxBncq90RCO45CYmOhh5/yvrKzM310ICMXFxTavxSJvHrASEhhoBIYQf+IEwKzrH9JOkkkCABa0apj+kIDDGMOC/bbvHSainZVJ00cjMCRgqFQqtGzZEi1btoRK5d0QuUoPtPyvFi3fq4JKX/uKF5VKhZbvVZnrOrivSqVCy9bt7dpyu78CgcP9ZepDQkKC60okoKh1Bpyvqnm2fnfEJqQxoBEYEjAYY7h06RJ/7FVbAC6Vm/f5ZzMKAU7jdB4NYwyXqpjT+5r7dfn6sRf9FStubLznDp0Kni7D7tChA6RSKfLz8/lzISEhbl0bFhaG0tJSj+5HGoDe0cgdLUMnTR8FMCRgyGQyHDlyhD/2WVsKBWB0PgIik8lw5Kkgp/eVyWQ4sn838PlgyEQ1znvSX44zb7y3oKV738TidubcSu5iDNCrkNiqFYKCzN+PUqlEfHx8rZcJBALcfPPNfgtgKisrcfHiRbRs2ZK2UHBT3O9PA2l/1XtuMkL8iQIYEjCEQiEyMjLqp61aNqkVCoXIiLu+fNrBmmuhUIiMHrcAf2ealzdfT1sg5DjP++vpB467O/Za7SEjSLwF0df3kImOjnZ5qUQiQXh4OAD7ZeTJyck4f/68Z332UG5uLpRKJSorK3HLLbfU672aCmn56RvL7AlpoiiAIcQTznIUcdyNZd2+zMpdM3t1XTnbQ8bKTTfdhIqKChQUFDhtJjExESUlJTbnQkNDUVlZ6eQK7ymV5rxXGo2m3u7R1NADJNIcBMwkXkolQPR6PVatWoVVq1a5l0qgRgLHuralhxir8ltgVbYO+it5ztv64gvoOQkfvHjcX0ee2FS36+ogOjoabdvW/kgqJCTELhN4Q04MVqvVqK6ubrD7BQKTyX55/RjdbErHQJq8gBmBoVQCRKfTYcKECQCAMWPGQCyuZa+L6XlAULTTkRD7tmzLrS/T6fWY8KU5cBmTZp92wFm/HJ4XK27sIFxLgGXVExflzcu+feZRpF69ekGhCOD9f3yoyiqgSwoT40KFHsdZCkrKKhEbF+zHnhFSvwImgCG4vurEi/IAJxQKMXz4cP64VpLaH+PYt2U7CSY6Osa27tAhwJktDtMOOOuXw/P19ajJU442xQsgWq2WApjrDAYDf/zZqATcuco8J6m6qgqxcf7qFSH1jwKYQOLhdvlNjUwmw4YNG+qnLZ3SpjwoSGFb96cf7FIFuOqX0/5adhB2xG6ERu64nrcWtDJvoEd5hpoU63C4tLQUbdun+q0vhNQ3CmAaO+sPNHe59WiCNEo1R2i8Sf7oiuoqEBxjd7ply5YoLCysv/v6gPWoQ3On02odnhfV9oiVkCaAApjGzvoDzV3+fDThDzWDvEAP4GobofHU9b1f4MGEznbt2iEhIQEHDhzwTR/qQU5ODgYOHAjAvOOxVqtFeHg4uOb0vr+uqvrGNrxy+Y33vUjk4jErIQGOAphA4MsPtACmUqn4zMRHjx69MQeiZpDnRgBn11Yt/yeY62YAFTocnSSGQsw5KLfvl9P+NqTre78grot9mZN5MBzH8RvdNXaMMRw8eBAmkwk333wzIiMj/d2lBicU3njzervBIyGBhAIYEjAYY8jLy+OPbXgY5NXaVq117YflnbXlyT3qg9CovbH3i6P0BO92CPh5MIwxfhmxSqVqlgEMIc0VBTAkYMhkMvz111/8sU/bMjrfJI2vq1dD9ud9bvfLl/2tN07mwdQmNjYW586dq5/+eKCqqgrZ2dn+7kajRdvAkKaOAhgSMIRCITIzM+unLRepBDIzM80rlbbZP5py1i9f9rdBWc+bcfAoLjk5uVEEMPn5+TAaa/mHawYYY5i6qcRh2Yu/l2JzBmuW84JI8xC4Y8ckcOhU5g9/+pOw8bPkTJqfgK5HZjr8N6vLB6KvclhZKysr83mbgUatN+LMNfMuz2ncOUQqREjjzgEAzpQZoNY37wCPNG00AkPqn2X/msRbvNoa32AwYN26dQCAUaNGQSSq+9vXri136ho0GGViEAk4x+U1+uXL/jYYq5xJYZUnIDBpEROTZC6zjMy4ucJLIpFAp9MBqJ9HaBzH0Xb5Vt//95K5EHAP4HvJXHTWrrQrJ6SpCYDfqCQgOdq/pmAvoCytc5NarRYPPPAAAKC6utqrgMCurVq2zLCpOzMEIol7/fJlf+sPs31UVGNlUufOnRHRoqVNNmsk3gK0meFypVf79u1x5swZpKSk1FPfbZ09exZlZWVo27YtOI6zy9nUJOnV/KExqiOgiII+ogNQZFUupf1gSNPkl9+oo0aNwrZt23DHHXdg7dq1/ugCqW/WS5t1qhujMF7sJiwQCDBgwAD+2Bv2bTnfWp+vy4wQcEfd7pcv++vUC0eB/6bX/frF7c0ByYRfAb3SvEOvlajISPMqJZ3SJpu1IEULk1DmNKVDy5YtERMTg5gY8wTh+sgkLZPJoFLd2B/JZDLh6tWruHr1KgCgZ8+eAbMcvK6sEzkqR69GqECA4iHLgS/O+a9ThDQQvwQwL7zwAp544gl88cUX/rg9aSiWpc3OdhP2cMM5uVyObdu2+aRrdm3VSCXgsK5O6TCdgLN++bK/Tol98AFdsBdY3h8odrDU2om2bdqgXKVHXFwcrl27ZlfesmVL7/vlgnXw4oharYZQKIRQKKw98WcAszyiA4Aghfm9QJN2SXPhlwBm4MCB9f+LnTQeznYTbm47BteFdfAX2Ra4dqZ+7uNB8AKYA5SWPtpcMSgoCEql8wCyrtRqNf755x9+NRjHcU36w93yiDIsPNy/HSGkgXg8rr1jxw6MGDECCQkJ4DgO69evt6uTlZWFlJQUyGQy9O7dG/v37/dFX0kgs4zGWH81pg8TS6AANK5UBJbg79VLXk2AbqzCwsLQoUMHm3O+mrty5ow52DMajTh06BB2795dL4+y/Emn1/u7C4T4jccBjFKpRHp6OrKyshyWr1mzBtOmTcPs2bNx+PBhpKenY8iQISgpcbxXgStarRaVlZU2X6R5UqvVyMjIQEZGBtRqtesLPGmrZqBgFVzxdXv2gVpvv6rDWb981l9+l2HPAj5hzc35nj9S9z7Uoq6PZyQSCbp27QqJxHZWdMeOHX3RLRtKpRJ6vd7h465AduzY3/7uAiF+4/EjpGHDhmHYsGFOy9977z1MmjQJEyZMAAAsW7YMGzZswIoVKzBjxgyPO7hgwQLMnTvX4+tI02MymXD06FH+2OdtOUlHYFP3rhC3++XL/tZFz4PP257g6mcicWRkJDp27AitVov8/HyX9QUCAUwmE+Li4hyWh4WFoVevXrh27RqfioE4Yap9mbSesnaTJsync2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv21KnNmTNnYtq0afzryspKJCYmet1XEnhkMhl+//13/rih2uLr6jWQ7X3E7bZ82V+/0bne94XjOMTFxaG8vNytJtPS0iAUChEWFgbA8QiOQqGAQqHweQBTUlKChAT7idgWluXugfDvxUwmvLuzEIDt9xNklTR07Iqj+PXfA5v03B/SfPk0gCktLYXRaERsbKzN+djYWJw8eZJ/PWjQIBw9ehRKpRKtWrXC999/jz59+jhsUyqVQiqV+rKbJEAJhUIMHjy4wdvi6+qUwH7HqQQcteXL/vqE9YTgxN7Aoz8AK4aBFR2DGk7+H1vUGWjVE3jwG4DdqCNnzKMHWlKpFFFRUdDpdAgPD7fZE0ckEuGmm27CmTNn0LZtW5vrQkNDffrY2Pq+ly5dwrlz59CuXTu0aNECSqUSBw8eBMdxuPXWW+tv6buPlJdfw0mjOXhJExdBrggGAARJzbvxHmcpOFmiglpvhELSGPcgIsQ7fnlXb9682eNrsrKykJWV1exznxA/sgkAGtFEX7dZrQazrAB7YhPU89sgzbJzqyNnAMz7C8CNOj0+P4Lvn+ln+5c9YxAYNTAJ7IMhjuPQpUsXp7eIjo5GdHS03fmbbroJx48fd3t0xxOnTp0CAJw4ccJmSTZjDKdPn0a7du3s9rlhjKGqqgoymcxu7k5DYozhwZU39iT67qX7wV0PuDiOs92Nl5AmyqcBTHR0NIRCIYqLi23OFxcXO33e7a7Jkydj8uTJqKys5IeeSfNiMBjw22+/AQCGDBnidSoBd9uyqfv4LxAxnc0ScGdt+bK/DiXeAog9XLFTc55PHR8tHLxQCbXOAIVll1fGEPzd/eh/+RAqQjsBvbbUqd2aJBIJMjIyfLbtQmlpKfbu3YvWrVvz5xhjdskpL1++DJlMhuTkZLvrc3JyIJPJcMstt9R6L8YcJ1IsLy9HWVkZWrVqVecJ0GqdAblXzJO007hzCJIOsCmnB0akOfDpb1SJRILu3btjy5YtGDlyJADz5MUtW7ZgypQpvrwVaYa0Wi3uvvtuAL5JJeBuW3Z1a+zu6qwtX/bXzgtHgfBk+7116kAOLY5LJ9Re6Zk9wMd9oIIUPbTLzOest6nXqyC6fAiAOYeSHm4u77XOr1THYCo+Ph6XL192u75Go8GJEydc1quurrY7V1FRwbfh7JrCwkIYDAZcuXIFCQkJdsvEjx49CsYYGGNo06aN2/22YZVC4Iuor8FJnnVel/IhkSbK49+o1dXVNhPr8vPzkZ2djcjISCQlJWHatGkYN24cevTogV69emHJkiVQKpX8qqS6okdIRCAQoEePHvxxQ7Xlqq6zcl/21464DvvoKKIcnuY4QAFt7dcu62b+s97Nz0K3RhZq5leqsXzdkZqb3olEInTo0MGjAMZdjv7NnC3D1mg00Ov1OHTokM35S5cuoUOHDjAajRAIBDYJKF3tJOyuy4OyEGP9cxMrYIzuBBRef035kEgT5XEAc/DgQdx22238a8sKoXHjxmHVqlUYO3Ysrly5glmzZqGoqAgZGRnYtGmT3cReT9EjJCKXy3HgwIEGb8tVXWflvuwvANsAxEkwYq0quDVCqvPNE3YnbDLnNKrJ07/OQ+LgMNZhdVgmbpX5GgV7za+d7O570003obi4GK1bt8ahQ4f4P2S6dOlSbytsLI/CW7ZsibKyMpSVldmMvJw5cwaRkZEIDg7G3r17nTWD8vJy/P3334iMjMRNN91k87MqKSmBwWBAfHw8H9xcvHgRHMehVatWTtu0ZjTV+KOO42B4+Htgkfm9p9PpEGiztQhxh8cBzMCBA12msJ8yZQo9MiLE1wQCYFbZjWMXsjMW4Nb+/Wt/PKN3sMFebBfnqQUeXQcsOWl7zmSySwLpa9aTfFNTU5Gfn482bdrU+x8zxcXFdnP6LAoKClBQUICkpKQbJxmDwKQ1T2S+/jMvKiqCyWRCaWkpzp/Lx8DtowAA2wasQ2mpOTv72bNncdNNN0EikfA7CMvlckRFRcFkMkEgEIAxhuLiYpw6dQpazY1RqIiISLu+SSQ3JlIXXLyI8Ej7CdKEBDpaW0dIIPHgURRzsjGfDeuRnFnXAIPGPCqzwEkyRptVRyZz8KK66uDm9TfvokWLFmjRooXNuc6dOyMnJ8f7xi2jI842/XMQoFy4cIEv63pkBsIqT6IiNBVHur4NcAIUFRXx7V48dRRJDFBDCpGuEgZpOADzhO/s7Gy0bt0ajDHojMDff/+N4OBgKJVKtG7dGiEhITbbUVg4yghuPSp1/uIlpHXu4jRzOCGBqnFvdGAlKysLaWlp6Nmzp7+7QvxErVYjMzMTmZmZPkkl4G5bruo6K/dlf+uNZVRnVhkgEN7IU5VY+wobAMDiDsAbEY4fH60cah/EmK4HPIC5TOebOSAAEBMTw7crMGqQWPPxCzO5fszFTBi4fZR5hKRm3evXdz0yA/13jkXXIzNtvz/GINZXIKzyJBgDxBXnMGDbKP46vl0Tw2jdbKRpV+K9HRdhMpmg1ZvAGdQAYzh79izm7dPgqc0qzN+n4ScS5+fnQ6vV3vg+rHbgDQkOrvXbmrKDYfi7m12OnBMSaAJmBIbmwBCTyYTdu3fzxw3Vlqu6zsp92d+6iIpyPU8GgP2ojiUvlLIUWNzO9fXvp9mfKzpmO6fFZDIHO4A5WFo59Mb8FwvGzJsFiuSAQe340Vdtq5asRkBw7haU3fwWqpVKPoAAzI9tnI2uiPWVNsd6Sfj1dm9cbxFWecI8EiOUAYwh4/AMSCrzoYQUY3SzcZylII07h+/2TcHRjHlQXd8EsPXB/+AQewcAcNjYGnN2q3GhGujB5eKz6O+w9+b5yCs3v1dOl5ugNZjAcQJIhAAzGdFr24NgAO4zvAXAPErmaD8auSIY3SUFOKQz71qee81AG9qRJofezSRgSKVSrFu3jj9uqLZc1XVW7sv+1kWH9u3rfjHHARI3p36a3Mi3Y/2YqeKCffACACuG2s69qbkyqeaqpQm/2gQ6ndolI2z79UcsBXsh6GyecGsdmLRvGYnTl8rt780YhEbHK7FEuko+ALGQW81kFhhUmFg6FodYqk2d4ywFYyomQ7azEEeM1zeVq3GLC9dXah9kqdBXFmLOHtuRujm71ShSc2gXLoDs8HH8U2Nzuk6iy/wOvNY4gQBrX30EVxek8cvejQYDQAEMaULo3UwChkgk4vcXasi2XNV1Vu7L/tZFXTdJ8xlmAkxGuL2tWs2JwwV7zaNAQdHmIKbmqqXl/c3XXA903FnpGBlsHjGxnctjNXJT81tgDHMPC3G6RuDQg8vFcyYT9AYluu5+GofYMof3O8FSADd3fuiptW+jSG3up3lUxn4U763hbfkdeGvipMGQxrQBLppf5508hq7d3HsEzxhDhVIDhUTo1x2HCakNzYEhhNSPBa2ANyKdz5Nxx+J25pEZR/M3LAGPZQl2DdLrCRkZA1RMChWTgi3vj9TDs8D4uTgmCI1qh8ELGINBr8HpCvtfkwdZKuZvu4RJW3FjYz8AB6VP47h0Av6RPmF3zQHp00jjzrn8ljtx59CNO+W0vDVn3vOmB5cLcVCE84Y4DurR/+NfllwphVKrdzkXhjGGUVl/IeOtP3HXe1scbuhHSGMQMCMwNAeGGI1G7Ny5EwBw6623erWqwpO2XNV1Vu7L/jYaCvslu25RXqn7PS0BiqtJqDXKW6e0RsmRY/YjKFeADvuUmNlbjoHb74caUqiuJ7OUQwuOA7jrozLiinxYckAdlD4N4EbAkmuMt7lfDy4XUagEx5m70l10FocMbfgyhTwYG/AqriLUJuixSOPO4XvJXCigxc5+3yA1ew6Cq8/jcd0Mm8dT30nmIghaHOy3Ei1bJbr44d0YaXpqqwnY+ju6JYbhh2czne6fo9IZkH3R/NjtdLkJf+09gKGDbnNYlxB/CpgAhhCNRsNvolhdXY2gIBdLhH3Ulqu6zsp92V+/qJm9esImQHXjr3EVpPY78z6fDXyQYd/Wx7cDlozXWqNNZuuaLEGEDWYClg9wWN9czswjNVYUCjmi41ridMVpu+qnKgS4afsE3KWbj+MshT9vCSIydj8FAHxgAzjfrfig9GkooLXpN8cBK54ZAsEvz0N46TBkiRm4PPR3mL4dgaiqfGSILyBbb94/JkNcgHcnDkfS/70F8VUtKkI7gYmDIJn4G4oLT2Pt2jtxkcXgVt1/zW0DkMd1QN+Bd0Lk4jGhdWZqi8MFFVDpDAhysjvvzp1/2byev0+DIXc4zutEiD9RAEMCBsdxSEtL448bqi1XdZ2V+7K/fmFZjeRk1Y+jUQQsOgLrrNUOLTlZa50eXC6+l8y1vd3yAcC1M87b1Kvt59AwhjZtWgMwBzA1R1AczTk5zlI8zuKsgBYKzj64kUa2guxfv/I/v5Ych+09loAzavCiWAGV1gAB00Ik6oC2KUnAlN2AXoVQkRyZJhNEIhEiInpBt6sb5JfzbNrmntjkMngBAEVYFFbH/g9di2banM/JzUPPLh3t3pdqtRrz99nmebpQZUJ5tRoRIbSfL2lcAmYODCEKhQI5OTnIycmBQuHdL1NP2nJV11m5L/vrN5bN8K5/0MnFAvTgcuv1lgdZKq4ilJ+3omJSqK5eNP83PNX2vGVui9XjI37Oy+cjoNbeWCGlgBZRqLTrfxp3Dv9In6h1fkoPLhfy66Ms1tf3SA6HPO56ssbE3sDMQqheKoRy+kXI5Aq7n1+ntDTIQiLRKS0NUrEAYon8xiTc63U5geBG4k+Og+SpPxE54zh/z8jENNcbFF7HCQSQTtxgd/6Bb85iyKLf7PIxKbUGXKgyzw9K4Yr480XFRSCksQmYERhK5kiIG+K6mPdgSbzFPGriYxzH4XvJXKjh5BHQS9dHCha5sX9MDdaZrh2O7gCAk8/RtM9y8P31x1KWfVhwAcD8P29UikgBFxyG7wts+2959LNB8qrT78v68dD3krlQTz8PiBWQS8XgsNNmlEpRy4p5612EY2JicOXKFbtdhe1wHATyEJydNwzQqyCQDvcokac8KMRmTxiLU9eMKLhcgtS2Kfy5iwUF/PH3kjn8KNXT353CtpmtA3MkkTRZARPA0CReQhywmadivzdKfdyPi+sChbNcSRKh+d7xHcyBlAfkzDy6cbDGfiruOF6sQmcXj6XkT28BpMHglKVQ1Nyg75k94D7uY57nEtkWuHYGphadUaUxIKwyF5oWGeAASEuyYUjoDkVwmO3P180REWsdOnRATEwMIiJqWUlkRSAUAMLad911hBMI8Mkzw6H6+HZ+Ho2FiZlQXl6O4OBgCIVCPP9zPl+mgJafP3O+0kgb4ZFGh96NJGCo1Wrcc889AICff/4Zcrm8QdpyVddZuS/765SjeSp1+DD16H6P/Qgsvr5JXkg8UHXZvs6ETc7zKdXSdK2jOwDwwt/mDfauj/AwWI24WLFMxrWEGHJowQmecr5BX7jV6MSUg4BBDYFYAblOh6tlJYiISYBAIAD0Koh9FByKxWLXoy8+EhQeA6lCAuhsz4//5iTm9pVDKgSi41riQpX5fBp3Dgpo8b1krsdzgghpKBTAkIBhMpmwefNm/rih2nJV11m5L/tbq/oOWuxveONwwq+OVx05+4C3POJy1jIHKF48BrzbwXGF8BbmESarSbM2j34iWgMTf4N88cO2XYjrcuORmlhhnq9i2RQvsTcgCbbN9H395ymRShEVZxXcNOjP2XdkcjkML2bj7FstwADcrZuHEywFxSqGpzerkBgiwIs9LvL1v5fMBTf9FLjFXfhz586fR1r7tn7oPSGOUQBDAoZUKsXXX3/NHzdUW67qOiv3ZX8bLUviR8sjLGfzbmZeNOcgEsmBlcNuLM12lFLAWSboF085zMbNcVZLnJ/fcz3AqVFpglVKAo4DnvjNnHfJ8j1wXP08cmtERGIJMPsaTNoqbHg7GXfr5vEjVwVVJkzdeiONAQfY/TtM+F8udr2aApGoCexnRJoECmBIwBCJRHjkkUcavC1XdZ2V+7K/jYrCKkmkItrxUuuac3MkwTfKrOvrqs079rrDWWBjMfOiwwDHfC1n/1rq+XySgCcQQCALhbFFGjaUvGqzv4yN2M6AIgryuA5Iu2CeB1OsYhj6/jb8Mf12msxLGoWAWUZNqQQIaSQEAvPjllll5uMaS4UB3Jib8+ol24SMljJ+1MPBryCx3Bz0AOYJtXblihvl1ixtiRXmR0bEMY6D8Jm/wIXGoyVXalfcg8uF/ImfAYEA3BOb8IvkNT59Qd5VDcqr1XbXEOIPARPATJ48GcePH8eBAwf83RXiJ0ajEQcOHMCBAwe8Xk7vSVuu6jor92V/Gx2BwPloh4WjwMYdNYMfZ+XT8+zLLOUTHFxHbhAIgH8fh4BjOCO9MUr4j/QJrI5aCc4yOsVxEHAMv0he5euUlJQ0vfczCUj0CIkEDI1Gg169egHwTSoBd9tyVddZuS/722RZRktqTuy1BD86+ySNN8pr2eeGHnG4JhAAs65B+EYkzl4PYgQcw9G+7yG9xs/P+tWT357AG5nn0L1bN8hkMnAc5//M56RZogCGBAyO45CcnMwfN1Rbruo6K/dlf5ssjgP+tQP4pL/jDfhs5ttE2V/vTM05OPWwqV+TIBACs65B8MaNJJ0Gg9XoyvUAU375GL8nTEGVCRM2KbGCHYLeCMjEAmRmZt7YPZiQBsIxV7nVGxnLRnYVFRUIDQ31d3eaB50SmJ9gPn710vW/jB2cI6SuGHOacwmWJeg1H1lZEjhagpSac21qa5PYMhmB60FM/uOH0bqN1dwjkwlY2gPKqxcd7gmTFCLAhhduRUhwM5wUTTzi689vCpkJIf5X2142ta0sqiXZZMPvjxPABELoXy1BVVUVkiMia5QJgKe2QzG/FbpzuThUY6fkC1Um3LnkL6wc0wZSqQStU1Iart+kWaMAhhASuChI8RmxRIrIKCf7Fek14DhgrWQulJDhdu27KMGNFAiXq40YutKc9fvjQfkID5KhW7duTXf/I9IoBMwqJFpGTTQaDUaOHImRI0dCo9E0WFuu6jor92V/CfGr6/OPOA4I5jTYK53itOozm1V45c9ynMzNhcFgcFqPEG/RHBjiWiOZA6NUKhF8/Tm7t6t6PGnLVV1n5b7sLyF+Z5mLpLoKLG4HE+PAALTVrnZYPVbBYU5fObrf3LnBcj6Rxo3mwJBmSyKR4JNPPuGPG6otV3Wdlfuyv4T4nWUuUlA0kNgbgutpIM5KH3EYyBSrGJ7ZrELygcP46tHOaBETA5lM1sCdJk0ZjcAQ1xrJCAwhpJFgzJwGYnl/4NpZAKh1RCZWwWFuXzlu759JwXwz5uvP74CZA0MaCZ3KHLw422CMENL0cRwgDQGe2smfEnAMQo7hrPQR7Jc+Y1PdkvV6+HtbcOp0HlQ6AxhjMJnMX4TUBT1CIp5Z3M5vtzaZTDhx4gQAoFOnThC42sreR225quus3Jf9JaRRss5GHmvOPyUoPoZoVumwel65CXd+ngsgF+ktQ3C0sAoAcGLOIEglEggEtF8PcR89QiKuWW8YVpOjDcTqCU3iJaQRst4wEDAf61QwLmrPP046IH0aPbXLXDaVPbMfwsPC6rO3xI9oEi9peNYbhtXUwLucRkdH+6UtV3Wdlfuyv4Q0SjX34pEEAWIFhEm9cfaCOccSB+ZwE7yaBr63Czum90ewVbBPozLEGRqBIYQQ4nuWkRn+JYOKSVGtNaD3gj/dbubjQQqkpCQjPjoS4eHhAMDPm6HgJrDQCAwhhJDGr8bIDAcgCIBCKkJqlAi5V93b5O6ZzSoAJ9AuXIC5t8VAqVLhX7+Z584cn30HTJwQ+fn5MBgMSOvQlt/9l4Kcpo9GYAghhDQoxhiuVSohFAqhVVWhUqXF4GV/e91uYogAv04dAIFAgLS5WwAAh14diGCpGGqNBlKJBEwogkwkhPUHHwcKdBqCrz+/AyaAycrKQlZWFoxGI06dOkUBTDOk0WgwceJEAMDnn3/u1aZYnrTlqq6zcl/2l5CmzmhiaPvqRr/df9OTaTAajeA4DgkJCQhVyKBSqyGRSKBSKSGSyqGQiAEAGoMRMpEQKp0eQVIxOMp27pZmG8BY0AhM80WrkAhp2oxGE87m5wNgCI2IxvkLF/DAmgJ/d6tWHSJFWPNsf4jFYly+dAkmkwmtE1tCJBJBYzACACQCDhqDCeA4cADkYvMIEIcbwRCuH8vF5mO13nzeUm4pcxQsMcag1tuWm0yMv4dab+RHnKyv5jjwbVvaMZ/nnN7LGzQHhjRbEokE77//Pn/cUG25quus3Jf9JaQ5EAoFaN+uLf86NiocZ9PN+8toDEaY9Frk5eVBJFXg3z/l4XSZCe0jhFg3pT80Gg1GLduHgipTg/b51DUDur5Vc1JyTp3bSwwx7xfl6PtoHS7CrMwQ6LRa/hwDsGC/BucrTUgKEeDV3jIwWOYO1d3e6X0RFx3huqIf0QgMIYSQgONo1IExBpXOCL3BAKFQCAHHQcwxlFerIFeY96npMud3h+0lhggaPPhpzH56tA3Sb+rk0zZpBIYQQkizx3EcFBKR3bkgqQiQ2p5vEXljc7yz84fzxybGwEwmaI0miGCCRCI1P2q5HhwZTSZwHAehQACjTo1KpQZSqRQ939kJZ6wDodpGUxqDlDARzlUY0CFGjg9HtkF1VRVKS0sBACEKqZ975xoFMCRgmEwmXLhwAQCQlJTkdSoBd9tyVddZuS/7SwjxDevVRgJwgFAAsbhmLQ7Bwhr/v0pDEPr/7d1/TBvlHwfwdykDxq/O0u/AFlg1yhKYaxOgaDLiMCSkf6yZUf8UtkT+MNOYdKgYE4mJkT/czOIkMWr8lcyEzAQ0U5NFZCFuGpSF6f5YHAkaLFJGcFsps2Pt8/0DaaC0tF2fu+Po+5Vcwj3Ps+PzvmvDs+tdr6QEwPIkKPYalpV1gwFYvL18TUlhnhFCCPwTWISpaDsMOTnRa1JuLy1haek2LKZS3FpaHm8IL2F2/h+YzWYU5m2Df24eZlMJbi2FkZ9rAIzbEIlEEIlEkJubi0gkAqNx+ZqZlYuKc3Jy/ruWxRCtaeWaG2D9NTCxZ7GuXr0Kn8+niwuTOYEh3bh16xbuu+8+AJlfFJvOtpKNTdQvs14i2jxWT4JizwIBWD4L9B+DwYAyU/G6/uUx22PG58JeuD06zlbxPwDA9u1ISXFB+tfaxatfL/RbOWWlwv8+x1Z7W8nGJuqXWS8RkVqmp6ej/wHbrDiBId0oKipCMBhUfVvJxibql1kvEZEaVu6YNJvNGleSHCcwREREBACoqqpCUVFR9JEMmxknMERERAQAyMnJgcVi0bqMlPC2CNKNUCiEzs5OdHZ2IrTqi5yU3laysYn6ZdZLRERr8YvsSDf4KAEiIv3aEl9kd+bMGRw9ehSRSAQvv/wynnnmGS3KIJ3Ztm0b3njjjejPam0r2dhE/TLrJSKitVQ/A3Pnzh3U1tZieHgYJpMJ9fX1uHDhAsrKylL69zwDQ0REpD+y/36rfg3M6Ogo6urqYLPZUFxcDLfbjbNn4z+bgoiIiCietCcwIyMjOHDgAKxWKwwGAwYHB9eN6evrg91uR0FBAZqamjA6Ohrtm56ehs1mi67bbDb4fL67q56yihAC165dw7Vr15DpicN0tpVsbKJ+mfUSEdFaaU9ggsEgHA4H+vr64vb39/fD6/Wip6cHFy9ehMPhQFtbG2ZnZzMulrLb4uIidu7ciZ07d2JxMbNHxaezrWRjE/XLrJeIiNZK+yJet9sNt9udsP/tt99GZ2cnDh8+DAB477338PXXX+Ojjz5Cd3c3rFbrmjMuPp8PLpcr4fZCodCaW1Bv3LgBYPmzNMouq7/V9ubNmwiHw6psK9nYRP0y6yUi0ruVv9vSzkiLDAAQAwMD0fVQKCSMRuOaNiGEaG9vFx6PRwghxNLSknjggQfEX3/9JQKBgKipqRFzc3MJf0dPT48AwIULFy5cuHDZAsvU1FQmU48oqbdRz83NIRwOo7y8fE17eXk5rly5AgDIzc3F8ePH0dLSgkgkgpdeemnDO5BeeeUVeL3e6HokEsH8/DzKysrWPe67sbERP//8c0q1JhubqD9ee2zbRusrP9+8eRNVVVWYmpqScjX2Zske2xZvXwwNDWmWPZXxPPbMnqyd2Zk9Xttmy55sfLp9qRzr2L7V+UtKShAIBGC1WlOufyOafA+Mx+OBx+NJaWx+fv66ZzLs2LEj7lij0ZjyCyTZ2ET98dpj2zZaj+0rLS2V8qLeLNlj2zbaF1pkT2U8jz2zJ2tndmaP17bZsicbn25fOsc6UX6TyZRy7clIvY3aYrHAaDTC7/evaff7/aioqJD5q+I6cuSItLGJ+uO1x7ZttJ5OjenYLNlj25LtGxnS3SaPffr9zL5xG7PHX9/q2WPbNlv2ZOPT7UvnWCuVf7WMvsjOYDBgYGAABw8ejLY1NTXB5XLh5MmTAJY/8qmursZzzz2H7u7ujAveKrL5C/myOTuQ3fmZndmZPbsomT/tj5AWFhYwMTERXZ+cnMT4+DjMZjOqq6vh9XrR0dGBhoYGuFwunDhxAsFgMHpXEi3Lz89HT0+PLh5ZLls2ZweyOz+zM3u2yebsgLL50z4Dc+7cObS0tKxr7+jowCeffAIAePfdd/HWW29hZmYGTqcT77zzDpqamqQUTERERKS7p1ETERERqf4sJCIiIqJMcQJDREREusMJDBEREekOJzBERESkO5zA6ITdbsfevXvhdDrj3gW21S0uLmLXrl3o6urSuhTVXL9+HQ0NDXA6ndizZw8++OADrUtSzdTUFPbv34/a2lrs3bsXp0+f1rokVT3++OO455578OSTT2pdiirOnDmD3bt348EHH8SHH36odTmqyrZjvULGe5x3IemE3W7H5cuXUVxcrHUpmnj11VcxMTGBqqoqHDt2TOtyVBEOhxEKhVBYWIhgMIg9e/bgl19+2fDZYVvF33//Db/fD6fTiZmZGdTX1+P3339HUVGR1qWp4ty5cwgEAvj000/xxRdfaF2Oou7cuYPa2loMDw/DZDKhvr4eFy5cyIrXOZBdx3o1Ge9xnoGhTe/q1au4cuUK3G631qWoymg0orCwEAAQCoUghJD3GPpN7t5774XT6QQAVFRUwGKxYH5+XtuiVLR//36UlJRoXYYqRkdHUVdXB5vNhuLiYrjdbpw9e1brslSTTcd6NRnvcU5gJBgZGcGBAwdgtVphMBgwODi4bkxfXx/sdjsKCgrQ1NSE0dHRtH6HwWDAo48+isbGRpw6dUpS5ZlTI3tXVxd6e3slVSyPGtmvX78Oh8OByspKvPjii7BYLJKqz4wa2VeMjY0hHA6jqqoqw6rlUDO7HmS6P6anp2Gz2aLrNpsNPp9PjdIzls2vBZnZ7/Y9zgmMBMFgEA6HA319fXH7+/v74fV60dPTg4sXL8LhcKCtrQ2zs7PRMSvXOcQu09PTAIAffvgBY2Nj+Oqrr/Dmm2/i119/VSVbMkpn//LLL1FTU4Oamhq1IqVMjeO+Y8cOXLp0CZOTk/j888/XPShVK2pkB4D5+Xm0t7fj/fffVzxTqtTKrhcy9odeMXvm2TN6jwuSCoAYGBhY0+ZyucSRI0ei6+FwWFitVtHb23tXv6Orq0t8/PHHGVSpDCWyd3d3i8rKSrFr1y5RVlYmSktLxeuvvy6zbCnUOO7PPvusOH36dCZlKkKp7P/++69obm4Wn332maxSpVPyuA8PD4snnnhCRpmquZv9cf78eXHw4MFo/wsvvCBOnTqlSr0yZfJa0OOxXu1us2f6HucZGIXdvn0bY2NjaG1tjbbl5OSgtbUVP/74Y0rbCAaDCAQCAJYfpvn999+jrq5OkXplkpG9t7cXU1NT+OOPP3Ds2DF0dnbitddeU6pkaWRk9/v90eN+48YNjIyMYPfu3YrUK5OM7EIIHDp0CI899hiefvpppUqVTkb2rSSV/eFyuXD58mX4fD4sLCzg22+/RVtbm1YlS5PNr4VUsst4j3MCo7C5uTmEw2GUl5evaS8vL8fMzExK2/D7/di3bx8cDgcefvhhtLe3o7GxUYlypZKRXa9kZP/zzz/R3NwMh8OB5uZmPP/883jooYeUKFcqGdnPnz+P/v5+DA4Owul0wul04rffflOiXKlkveZbW1vx1FNP4ZtvvkFlZaVu/+Clsj9yc3Nx/PhxtLS0wOl04ujRo1viDqRUXwtb5Vivlkp2Ge/xXGkVk2Luv/9+XLp0SesyNHfo0CGtS1CVy+XC+Pi41mVoYt++fYhEIlqXoZnvvvtO6xJU5fF44PF4tC5DE9l2rFfIeI/zDIzCLBYLjEbjuosv/X4/KioqNKpKHczO7Ksx+9bOHk827w9mVz47JzAKy8vLQ319PYaGhqJtkUgEQ0NDeOSRRzSsTHnMzuwrmH3rZ48nm/cHsyufnR8hSbCwsICJiYno+uTkJMbHx2E2m1FdXQ2v14uOjg40NDTA5XLhxIkTCAaDOHz4sIZVy8HszA4we7Zkjyeb9weza5z9ru5dojWGh4cFgHVLR0dHdMzJkydFdXW1yMvLEy6XS/z000/aFSwRszM7s2dP9niyeX8wu7bZ+SwkIiIi0h1eA0NERES6wwkMERER6Q4nMERERKQ7nMAQERGR7nACQ0RERLrDCQwRERHpDicwREREpDucwBAREZHucAJDREREusMJDBEREekOJzBERESkO5zAEBERke78H1FGNSxfcukbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "\n", + "plt.loglog()\n", + "plt.ylim([1, 1e6])\n", + "plt.legend(loc=\"upper right\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "06d734f5", + "metadata": {}, + "source": [ + "Now we're talking! The Lomb-Scargle periodogram nicely connects to the low-frequency part of the periodogram. Now, we can try to model the low-frequency continuum more confidently. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "59da1227", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.003)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAGwCAYAAABiu4tnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACO7klEQVR4nO2dd3gU1frHv7MtDUKIgVAMoNgIYighGEQJGqQpRcWGEooo16BorqioF9QfilcUsUSxXIpeVMAr4BVBBUWQJh019Iv0UKTE7CZbz++PZYbdzW6yZebM7O77eR4eJ5t1PvOemZ19c+ac8wqMMQaCIAiCIAgiZHRqHwBBEARBEES0QokUQRAEQRBEmFAiRRAEQRAEESaUSBEEQRAEQYQJJVIEQRAEQRBhQokUQRAEQRBEmFAiRRAEQRAEESYGtQ9AbVwuF44ePYr69etDEAS1D4cgCIIgiCBgjOGvv/5Cs2bNoNOp1y8U94nU0aNHkZWVpfZhEARBEAQRBocOHcLFF1+smj/uE6n69esDcJ+I1NRUlY+GIAiCIIhgqKioQFZWlvQ9rhZxm0iVlpaitLQUTqcTAJCamkqJFEEQBEFEGWoPyxHivdZeRUUFGjRogHPnzkWcSNlsNrz55psAgLFjx8JkMslxiOQkZ8z4yElOcmrXGW0xyvn9HQmUSMl4IsxmM+rVqwcAqKysREpKihyHSE5yxoyPnOQkp3ad0RajVhKpuH20pwQGgwFFRUXSNjnJqXVnPMRITnKSU5s+tZxyQz1SGsloCYIgCIIIHq18f9OCnARBEARBEGFCiRRBEARBEESYUCIlI2azGWlpaUhLS4PZbCYnOTXvjIcYyUlOcmrTp5ZTbqJzZJeGOXfuHDnJGVXOeIiRnOQkpzZ9ajnlhBIpGUlKSsLu3bulbXKSU+vOeIiRnOQkpzZ9ajnlhmbtaWTUP0EQBEEQwaOV728aI0UQBEEQBBEmMfFob//+/RgxYgSOHz8OvV6PdevWcVmR1Re73Y4PPvgAAPDggw/CaDSSk5yadsZDjOQkJzm16VPLKTcx8Wive/fumDRpEq6//nqcPn0aqampQa+QqlSJmBOnzyIjLVXxYorRtqQ/ObXljIcYyUlOcmrTF6lTK4/2or5H6vfff4fRaMT1118PAEhPT1ftWHQ6HZp36IEzFhtyX/oBnVtnYv7ofEWTKb1ejzvuuEPa5gE5Y8cZDzGSk5zk1KZPLafcqN4jtXLlSkyZMgWbNm3CsWPHsGDBAgwcONDrPaWlpZgyZQrKy8uRk5ODt99+G3l5eQCAhQsXYtasWXA6nThy5AjuuOMOPPPMM0H75cxoLTYHsid86/Va2Yu9kGyK+nyVIAiCIDSFVnqkVB9sbjabkZOTg9LSUr+/nzt3LkpKSjBx4kRs3rwZOTk56NWrF06cOAEAcDgcWLVqFd59912sXbsW33//Pb7//nueIRAEQRAEEaeonkj16dMHkyZNwqBBg/z+furUqRg1ahSGDx+O7OxsTJ8+HcnJyZgxYwYAoHnz5sjNzUVWVhYSEhLQt29fbN26NaDParWioqLC6x9BEARBEEQ4qJ5I1YbNZsOmTZtQWFgovabT6VBYWIi1a9cCADp37owTJ07gzJkzcLlcWLlyJdq0aRNwn5MnT0aDBg2kf1lZWbIdr8ViweHSoThcOhQue7Vs+63L2bx5czRv3hwWi4Wc5NS0j5zkJKd2nfEQoxJoevDOqVOn4HQ6kZmZ6fV6ZmYmdu7cCQAwGAx4+eWXccMNN4Axhptvvhm33HJLwH2OHz8eJSUl0s8VFRWyJVOMMTgrT5//QZZdBuU8evSotE1OcmrZR05yklO7zniIUQk0nUgFS58+fdCnT5+g3puQkICEhASUlpaitLQUTqdTtuNITExE02FvAQAEA5+1MBITE7FlyxZpm5zk1LKPnOQkp3ad8RCjEqg+a88TQRC8Zu3ZbDYkJyfjiy++8JrJV1RUhLNnz2LRokURO2nWHkEQBEFEHzRrLwhMJhM6deqE5cuXS6+5XC4sX74c+fn5Kh4ZQRAEQRCEBh7tVVZWYu/evdLP+/fvx9atW5Geno4WLVqgpKQERUVFyM3NRV5eHqZNmwaz2Yzhw4dH5FXi0Z7dbkflr8sAACnZBRD0yjev3W7HnDlzAABDhgzhtqQ/OWPDGQ8xkpOc5NSmTy2n7DCV+fHHHxncQ7O9/hUVFUnvefvtt1mLFi2YyWRieXl5bN26dbL5z507xwCwc+fORbyv43+elY4/6/EvWMunvmZmq12GowxMZWWl5KysrFTURc7Yc8ZDjOQkJzm16YvUKef3dySo3iNVUFBQ50j9MWPGYMyYMZyOKDwYY7h/xgYkXZoLABB0fJ6a6vV69O3bV9omJzm17CMnOcmpXWc8xKgEmhpszhPPR3u7d++OeLCa50DzSzJSsP+UGQANNicIgiAIJaDB5ipTXFyMsrIybNiwQfZ9z3uIBsITBEEQRDwQt4mUkgiC2kdAEARBEAQPKJGSEZe9Gkc+GIW89m25loi5/PLLcfnll3Nd0p+cseGMhxjJSU5yatOnllNu4nbwjhLLH4ABjjPHsP8MkMWxRIy4fASv4W7kjB1nPMRITnKSU5s+tZxyE7eJVHFxMYqLi6XBanIgGIzIHPIq/lWUi4e//0uWfdZFYmIifv75Z2mbnOTUso+c5CSndp3xEKMSxO2sPRG5Rv17ztrb+Fwhcie5F+akWXsEQRAEIT80a48gCIIgCCLKoa4SGWEuJyy712LRgnNgrnoQdMovLuZwOLBgwQIAwKBBg2AwKH9KyRk7zniIkZzkJKc2fWo55SZuH+0psSDnVU8vwqE37gAAZD3+BXSmRMUf7ZnNZtSrVw+Au25hSkqKYi5yxp4zHmIkJznJqU1fpE6tPNqLvtRPJpQYbA5BQELW1ejUsiEOcVpMSqfToXv37tI2OcmpZR85yUlO7TrjIUYliNseKREabE4QBEEQ0YdWeqSiM/0jCIIgCILQAJRIEQRBEARBhEncJlKlpaXIzs5G586dZduny27F0ZmPoKBrHlx2q2z7rY2qqiq0b98e7du3R1VVFTnJqWkfOclJTu064yFGJYjbwTuKDDZnDPYT+/H7CSCrkM/QM5fLhW3btknb5CSnln3kJCc5teuMhxiVIG4TKSUQDEY0vvP/UDqkA/7+s4w1/GohMTER3333nbRNTnJq2UdOcpJTu854iFEJaNYezdojCIIgiKiDZu0RBEEQBEFEOdRVIiPM5UTV/s34bqkdzKXjViLm22/dPWG9evXitqQ/OWPDGQ8xkpOc5NSmTy2n3NCjPRkf7VGJGHJGmzMeYiQnOcmpTV+kTq082ou+1E8mPGvtyYYgwNTkcmQ3S8WfHEvE5ObmStvkJKeWfeQkJzm164yHGJWAeqRosDlBEARBRB1a6ZGKzvSPIAiCIAhCA1AiRRAEQRAEESaUSMmIy25F+b/HoW9hAdcSMddddx2uu+46rkv6kzM2nPEQIznJSU5t+tRyyg0N3pETxmA9sgMbjgBZXfmViFmzZo20TU5yatlHTnKSU7vOeIhRCSiRkhHBYESjQc/itcE5+McWIxdnQkICFixYIG2Tk5xa9pGTnOTUrjMeYlQCmrVHs/YIgiAIIurQyqw9+oaPchhjqLK718JKMuohcFq/iiAIgiAISqRkhbmcsB7+HatXGcFcTsVLxDDGcPu7P2PN6p8BANdd1w1fPNxN8WTK6XRi1apVAIDrr78eer3ypXDIGRs+cpKTnNp1xkOMSkCP9qK4RIw/585XBij+KDHaygiQUzs+cpKTnNp1RluM9GhPZZQpEQMYL2qBSxulwMLrCdt5p7jNRSkIyM7OlrbJGb3OeIiRnOQkpzZ9ajnlhnqkoniwuadThAa3EwRBEPGAVnqkaEFOgiAIgiCIMKFEiiAIgiAIIkwokZIRl92K458/hzv69+VWIkZ0Hv/8Oa5laXr27ImePXtyLSNAzuj3kZOc5NSuMx5iVAIaTCMnjKH6wFb8dADIav8wV6e4zQOXy4Vly5ZJ2+SMXmc8xEhOcpJTmz61nHJDiZSMCAYjLrrl75g08GpM3sWnRIzoFLd5kJCQgH//+9/SNjmj1xkPMZKTnOTUpk8tp9zQrD2atUcQBEEQUQfN2osx4jsdJQiCIIj4hLouZIAxhsHT14K5nLAd34ctm9K4lIgBIDkBwJTZWnEf4F7Sf/PmzQCAjh07cisjQM7o95GTnOTUrjMeYlQCerQnQ9eg+IjNZaumEjHkjCpnPMRITnKSU5u+SJ1aebQXEz1SrVq1QmpqKnQ6HRo2bIgff/xRnQMRgBYtWgICwDiWiNGnNpa2uSgFAS1btpS2yRm9zniIkZzkJKc2fWo55SYmeqRatWqF3377TcpqQ0HOHinAPdgbgNfPNNicIAiCIORFKz1SNNicIAiCIAgiTFRPpFauXIlbb70VzZo1gyAIWLhwYY33lJaWolWrVkhMTESXLl3wyy+/eP1eEAR0794dnTt3xpw5czgdOUEQBEEQ8Y7qiZTZbEZOTg5KS0v9/n7u3LkoKSnBxIkTsXnzZuTk5KBXr144ceKE9J6ff/4ZmzZtwldffYWXX34Z27dv53X4XjCHDXfdcTvuuuN2MIeNm/PEl5Nw4stJ3JzV1dUYOHAgBg4ciOrqanJGsTMeYiQnOcmpTZ9aTtlhGgIAW7BggddreXl5rLi4WPrZ6XSyZs2ascmTJ/vdxxNPPMFmzpwZ0FFdXc3OnTsn/Tt06BADwM6dOxf2cZutdtbyqa9Z1uNfMAAMAMt6/AvW8qmvmdlqD3u/wXh9nUr6RCorKyVnZWWl4j5yxo6PnOQkp3ad0RbjuXPnIv7+lgNNj0q22WzYtGkTxo8fL72m0+lQWFiItWvXAnD3aLlcLtSvXx+VlZX44YcfcOeddwbc5+TJk/HCCy8ocryC3oB33n0PAPDq//g0raA3IL3XGGmbByaTCR988IG0Tc7odcZDjOQkJzm16VPLKTeamrUnCAIWLFiAgQMHAgCOHj2K5s2bY82aNcjPz5fe9+STT+Knn37C+vXr8b///Q+DBg0C4F7Ya9SoURg7dmxAh9VqhdVqlX6uqKhAVlYWzdojCIIgiChCK7P2ov4b99JLL8W2bduCfn9CQgISEhJQWlqK0tJSOJ1OBY+OIAiCIIhYRtOJVEZGBvR6PY4fP+71+vHjx9GkSZOI9l1cXIzi4mIpow0XxhgsNuf5bRfKyn6XtgVB+bH8jLlgP3UIAGDMyFLcBwAulws7duwAALRp0wY6nfJxkjM2fOQkJzm164yHGJVA04mUyWRCp06dsHz5culxn8vlwvLlyzFmzBh1Dw7uJOqO6Wux6cAZ9892Gzp3aA/AXa5FMCUqfwx2G47NKJacPLBYLLj66qsBAH/99VdYC6GGSlVVleTkVbogHpzxECM5yUlObfrUcsqN6olUZWUl9u7dK/28f/9+bN26Fenp6WjRogVKSkpQVFSE3Nxc5OXlYdq0aTCbzRg+fHhEXjke7VXZnVISBQAdW6ShKiMjouMKB10Sv2fDjDEM+Wi95Lzvo/VYMPZGLkv7Z6jQtvHgjIcYyUlOcmrTp5ZTTlQfbL5ixQr06NGjxutFRUWYNWsWAOCdd97BlClTUF5ejvbt2+Ott95Cly5dZPFHMljNc7D3xucKcVGKCYIg1Bh8HkuDzWmAO0EQBKEFaLD5eQoKClBXLjdmzBhNPMqrjWSTPmoLLhIEQRAEER7RN6qLIAiCIAhCI8RtIlVaWors7Gx07txZtn1WV1djyJAhGF50v1SuRekHp8xhw8n/TsHJ/07hWpaGt1Ns2yFDhnAtXRDrzniIkZzkJKc2fWo55Ub1MVJqI9cYqbIXe4HZrdIMtqzHv4DOlIjspqlY/Gg3RR77WWwOXPX0Ihx64w7JufOVAYqPkeLtBNwr2Itty2tmRzw44yFGcpKTnNr0ReqkMVIxiMlkwhtvvAHGGL5l6dh5woKyYxWosjsVSzQEvQENbxwlbfNADafYtuI2OaPTR05yklO7zniIUQnitkfKc/mD3bt3y9Ij5Zksma0OtJ2o7Mw9mrVHEARBxCta6ZGK2zFSxcXFKCsrw4YNGxTZP03gIwiCIIjYh7oRZMTlcuHgwYMAgIwmzRTzMMZQZXfCYnOCMRecFScBAPrURoo5vf38nZ5t26JFC26lC2LdGQ8xkpOc5NSmTy2n3FAiJSNVVVW45JJLAAAnTp9VxOGvLM2R6SMB8CsRo4bTs215li6IdWc8xEhOcpJTmz61nHJDiZTMJCcnK7p/37I0ACAYExR1+oO3kzEmtS3PYX1Kn08tOOMhRnKSk5za9KnllJO4TaTkqLXnS0pKCsxmMwD3oGwe6EyJaFHyHy4utZyMMRR9sh2NHpkHABj2yXbMH52v+ErynueTF7yd8RAjOclJTm361HLKTfQ9jJQJpQeb8yC7aarXf2MV3164jQfOoMouXwJMEARBEOEStz1SsYC7V8a9erq41AJBEARBEPyI2x4pJbBarRg1ahRGjRoFq9WquE8QAD1zYszDD+HPJW+BOeyKOwGAOez4c8lbMe/kfT7VcMZDjOQkJzm16VPLKTsszjl37hwDwM6dOxfy/2u22lnLp75mLZ/6mpmtdlZZWckAMADsxOmzXr+Ti9qcWY9/IavL5XIxs9XOzFY7c7lckj/r8S8Uc/pDDSdjzKttKysrFfep4YyHGMlJTnJq0xepM5LvbzmJ20d7Sgw2NxqNmDRpkrTNA6PRiIkvvIg3l+2BoNfLtl/ms8xCbsuGmD86HwAg6PVIu/5+aZsHajjVOp88nfEQIznJSU5t+tRyyk3clogRkbNosWeZlNp+Fwn+9quEK1ApGABUloYgCIJQHSoRQxAEQRAEEeXQn/QywhjDqVOnAADJqWncnCdPnoTTcg66JD4ZOWMMrqoKAIh5p3g+MzIyFF+3Sg1nPMRITnKSU5s+tZxyQ4mUjFgsFjRu3BiAciVi/DlbXeyu68evRIwVh98eEvNOz/PJq3QBb2c8xEhOcpJTmz61nHJDj/YIgiAIgiDChHqkZCQlJUWqA8erRExKSgrMVnuNwdhKojMlouVTX3PzqeX0PJ+x6oyHGMlJTnJq06eWU26oR4ogCIIgCCJM4jaRKi0tRXZ2Njp37qz2oRCEBGMMFpsDFpsj6v9KIwiCiAfiNpFSomix1WrFY489hscee4zr8vrj/l6C08s+4Fqu5fSyD2R31pZEKOWsDd7nkzGGQW//hCZdb0eTrrfjtrd/UjyZUuuaJSc5yak9ZzzEqAS0IKeMC3IyuxX16tUD4J611/mfP0u/U2pBTk9n1uNfYOcrAxRfkPOqpxfh0Bt3yOoMtJK6IAiw2ByKOOvCbDZLbctlxowKcfKOkZzkJKd2ndEWo1YW5KTB5jJiNBrxzDPPSNu8nOOeehrvr/wf13Itqfl3SttyUGV3SkkUAGw8cAZVdqeURCjhrAs1zifvONW6ZslJTnJqzxkPMSoB9UhRiZg6PSJKloiprQxMvJSIiZc4CYIg5EArPVJxO0aKIAiCIAgiUuhPXRlhjMFisbh/MJi4Oc1mM1y2agjGBG5OZncPCox1p3g+k5OTuZVL4BmnWjGSk5zk1J4zHmJUAkqkZMRisXgNNuflbJyeBoBvuRbPAdGx6vQ8n7wGXvKOU40YyUlOcmrTGQ8xKgE92uOAxeakNYEIgiAIIgahHikZSU5ORmVlpfsHj0d7uZOWeU3nl9t54vRZdPq/ZbI9CnKv5+QM+HvBmCD1lvB6zKaG0/N8Jicnc3HyjlONGMlJTnJq0xkPMSpB3CZSpaWlKC0thdMZOGEIFUEQpG5JxhhyWzbExvNT+n2n88vt1JkSZdmf73pOgZyCTL5gUcvJu5uZd5xqxUhOcpJTe854iFEJ4vbRnhIrm3siCALmj87HxucKFdm/Uviu55Td9MKUUvcjSjWOiiAIgiC0SdwmUkpgs9nw7LPP4tlnn4XNZoMgCEg2Kbuoos1mw/MT/oEzKz8Gc8pbOmXjc4WYPzpf+jl30jIMnr4WzGnHmZUfK+IMhBpO3/PJA95xqhEjOclJTm064yFGJaAFORUqESPOPpBjsUzGGKrszvPbQNuJypWI8T3eJKMeg6evlR5RAoDLVi17GZO6FuSkEjHKEG0lIchJTnLGji9Sp1YW5IzbMVJKYDAYMHbsWGlbDnzHLHk+ahM9D495BJ+sPQBBJ3/vl/iI8k+zDbmTlrlf0+lRv1N/aZsHajiVOJ91wTtONWIkJznJqU1nPMSoBNQjpVCJmFDeE6zDFyVKxATaVzDHEQlUIoZKxBAEQYSCVnqkaIwUQRAEQRBEmFAiRQRFklGP3JYNpZ99HzESBEEQRDxCiZSMmM1m9zpAggCz2czNmZJgxIF/3gKXrVoxjzhWquzFXtjwVDcseewGxZ2euGzVOPDPW7g61TifvONU65olJznJqT1nPMSoBDT4IgQ8Z88lGfkMeNYS7uUcDGB2umwIgiAIAqBEKmh8Z8/ltmyI2SPyvN6TnJyMEydOSNs8SE5Oxh+Hj6LbP3/kWjqFt1MwJuDiR+ZI2zxQ43zyjlOta5ac5CSn9pzxEKMSUCIVJL4rfoslXzwRBAGNGjXielyiU5/cIOadcvp8exf91UBU63yqcS55Qk5yklObzniIUQliZoyUxWJBy5Yt8cQTT6h9KITGEXsXsyd8i+wJ37pXa4/vVUAIgiCIMImZHqmXXnoJ1157rarHYLPZMGXKFADAuHHjYDKZuDhffeWfOLdmD1K73Ka4Ty0nc9pRsf5LAIjYGah30Xe9JjXOp5xxBoNa1yw5yUlO7TnjIUYliIkFOffs2YOnn34at956K3777Te89tprQf+/wS7o5W+xxI3PFUqrfStVIqauhTCVLhHjb1+eS/pHY4mYYBe+pBIxylBZWYn69esDAE6cPouUlJSAj1flItpKX5CTnGo4oy1GrSzIqXqP1MqVKzFlyhRs2rQJx44dw4IFCzBw4ECv95SWlmLKlCkoLy9HTk4O3n77beTlXRjo/cQTT2DKlClYs2YN56P3xmAw4IEHHpC2eTmHjRiBLzYe5lo6hbdT0OlR75qbpW0eqHE+ecfJO0bGGO6bsVGKMfelHyEYjMht2RDzR+crlkyp9dkkJzmjyRkPMSqB6kdtNpuRk5ODESNG4Lbbaj7KmDt3LkpKSjB9+nR06dIF06ZNQ69evbBr1y40btwYixYtwhVXXIErrrgiqETKarXCarVKP1dUVMgWS0JCAj788EPZ9hess/S99/FjgF6rWHEKBiMu6vMoNx8AmEwmvFn6HgDACXcSoGSvCcA/Tt7XbJXdia1HzTViDPR4VS7U+mySk5zR5IyHGJVA9USqT58+6NOnT8DfT506FaNGjcLw4cMBANOnT8fixYsxY8YMPP3001i3bh0+//xzzJ8/H5WVlbDb7UhNTcWECRP87m/y5Ml44YUXFImFiB18l7sAoHivSbyx8blCAJAejxMEQUQjmp61Z7PZsGnTJhQWFkqv6XQ6FBYWYu3atQDcidGhQ4fwxx9/4LXXXsOoUaMCJlEAMH78eJw7d076d+jQIcXjIKIP3wHpgP8lL4jwSTbpkWyKv4VtCYKILTSdSJ06dQpOpxOZmZler2dmZqK8vDysfSYkJCA1NdXrn1yYzWakpKQgJSWF6/L6jRo2wMGpt3MtncLb6bJV4+DU21Vxnnj7zpiNU41rVoyxUcMGfEspqfDZJCc5o8kZDzEqgeqP9uRk2LBhQb+3tLQUpaWlcDrl7WGwWCyy7o+cF2B2a91vUsBZZefv5Ila59LCuV3j5XNCTnJGk08tp5yElEi5XC789NNPWLVqFQ4cOACLxYJGjRqhQ4cOKCwsRFZWlqwHl5GRAb1ej+PHj3u9fvz4cTRp0iSifRcXF6O4uFiaPikHSUlJ2L9/v7TNg6SkJJTt2oOeb6yEYOSz/oYaTsFoQvPR/5K2eTq/GnMdBn28m6tT3FYaNa5ZMcbvH7+B6+dEjc8mOckZTc54iFEJgkqkqqqq8Prrr+O9997D6dOn0b59ezRr1gxJSUnYu3cvFi5ciFGjRuHmm2/GhAkTZFsY02QyoVOnTli+fLm0JILL5cLy5csxZsyYiPYdao9UMKtt6XQ6tGrVKqLjChWdToeWrVrB0GBXTDsFQQdDg8y636iAs0XLVhCEvVydvFDjmhVjbMnRq9Znk5zkjCZnPMSoBEElUldccQXy8/Px4YcfomfPnjAajTXec+DAAXz66ae4++678eyzz2LUqFFBHUBlZSX27r3wJbV//35s3boV6enpaNGiBUpKSlBUVITc3Fzk5eVh2rRpMJvN0iy+cAmlR4oxhsHT10bkIwiCIAgi9ggqkfruu+/Qpk2bWt/TsmVLjB8/Hk888QQOHjwY9AFs3LgRPXr0kH4uKSkBABQVFWHWrFm46667cPLkSUyYMAHl5eVo3749li5dWmMAupJU2Z0oO+Zeb+qSjBTsP+UeEOfbS2W321FaWgrAnaj5Szjlxm6345233kLFhl2o37Gf4j61nMzpwF+bFwMAd+f00h1gzssh6DksWMk5TjWuWTHGd97aiYf+9rDiPkC9zyY5yRlNzniIUQliokRMJASzxLxnSZENzxai80vudW88kyoqERNbJWL8OXWmxLDOYSjHFeslYnxjPHH6LDr/82cA4X0+giXaSl+Qk5xqOKMtxqgtEdOqVSuMGDECw4YNQ4sWLZQ4Ji6EO2sv2aRHdtNUlB2rkJIoEb1ej3vvvVfa5oFer8edd9+Nr7cfg6Djs5qFGk5Bp0Nydndpm6ezz9VNsCFG41TjmhVjvOWaplw/J2p8NslJzmhyxkOMShByIvXYY49h1qxZePHFF9GjRw+MHDkSgwYNQkJCghLHpxjhztoTBGD+6Hy0nVizlygxMRFz5syR8zDrJDExETNnfxKw1yqanRabO8llDBAMJjS6dZyiPl9E53SP4tS8nLxQ45oVY5z5Yi9uTrU+m+QkZzQ54yFGJQj5T97HHnsMW7duxS+//II2bdrgkUceQdOmTTFmzBhs3rxZiWPUHFQhRD4YY7DYHFLS5EnupGXInvAtDfQnCIIgNEvYzw46duyIt956C0ePHsXEiRPx0UcfoXPnzmjfvj1mzJiBOB965ReLzUnt4oFYzy57wrdePT7ZTb2fdYsD/QmCIAhCa4SdSNntdsybNw/9+/fH3//+d+Tm5uKjjz7C7bffjmeeeQZDhgyR8zhlp7S0FNnZ2ejcubNs+zSbzWjUqBEaNWrkd6n73EnLMHj6WlmTKbPZjJbNm+LQW/dyLREjh9NfPbvclg3x9SPdUPZiL6moLeAuK3LorXu5xik6r2p1MXcnrzjrumaVQIyxZfOmfEspcY6TnOSMNmc8xKgEIY+R2rx5M2bOnInPPvsMOp0OQ4cOxRtvvIGrrrpKes+gQYNkTVCUQImVzQF3fUBPkox65LZsiI3nEwax8K2cs5N8nTyQ27nxuUIkm/RIMuohCILf9nFV8e+ZclVV4M8qIJmzkydqXD+uqgqcquLrjIXPCTnJGWs+tZxyEvK3eefOndGzZ0+89957GDhwoN81Hy655BLcfffdshxgNJGUlITffvtN2gYAQRAwf3Q+/jTbFBmwnJSUhA1btqL/26u5loiR25ls0teaXApGE5qOKJW2eSA6543Ox5AvDnN1ittK4++aVRoxxq8euY5rGQrecZKTnNHmjIcYlSDkROp///sfWrZsWet7UlJSMHPmzLAPKlrR6XRo27ZtjdfdPSzKTOvU6XTIzm4LUyM+X/RqOQVBB1Oj2q87pZxXtcmGIBzl6uRFoGtWScQYs7P5edWIk5zkjDZnPMSoBCEnUmISZbPZcOLECbhcLq/fR8vaUuGuI0UQBEEQBCESciK1e/dujBw5EmvWrPF6nTEGQRCiJjFRYoyU3W7HrFmzAADDhg3jtrz+zH/9C39t/R312hXW/T9EqZM5Haj81f1olLfzk5kHwJzNuZWI4RmnGtesGOPMfx3CfUOLFPcB6n02yUnOaHLGQ4xKEPI3w/Dhw2EwGPD111+jadOmEOJgUaVgJ9nZbDY8+OCDAIB7772XywVhs9kw5uG/AQBSsgsU9/lzWmxOaZC4UjCnA6e/fUdyyo24jpVnHKKz5Ft3uRZeiZSScfqixjUrxjjmW+DOu+9R3Aeo99kkJzmjyRkPMSpByN8MW7duxaZNm7xm6cUyjLGgF4TU6/UYMGCAtB14n7IcmuS55db+WL7zBNcSMZ7O3EnLkNuyIeaPzlcsmRJ0OiRdfq20LTfiRAAxDk9nwRWN8DvHEjFKxulLsNesnIgx3nRVY65lKHjHSU5yRpszHmJUgpATqezs7KifqhgKVXantCBkdtNUJBndJ9pzSYPclg3P92QYsHDhwjr3OXj6Wix+tJssSUdiYiLmfvEf7iVivlq0EIOnr1V0WQdPBIMJjW97Tvb9inUTRcQ4PJ0fcy4Ro0ScgUhMTAzqmpUTMca5nEvE8I6TnOSMNmc8xKgEQX3rVVRc+KL55z//iSeffBIvv/wy2rVrV6MbTs0KzErj2eMyf3S+9IUbzGOtJOOFYsdlxyoUTTp4oPSyDkDNNbh8kx45cJ9T96M9XskSQSgFY0y6L4ko/didIOKdoL7J09LSvD6IjDHcdNNNXu+JtsHmgWbted6IxN4nEc97UaBFIwMhJh7+ih1HK0ou6yDu3zNhZQyyt58gIKoTWoIQEUsu+asWoORjd4KId4L6Bvnxxx+VPg7u+Ju153sjym3ZELNH5AW9T4vFguzsbABAWVkZkpO918NW4j5msVjQJjsbR85UodkD78ovCOAU49y4dbuiLjFhFZ0843TZq3H0o4fR8bNE4I6p0BkTQ96Hbw9BXb0DohMAlzjrumaVQIyxzedJ2KTw9SOiRpy8nVV2JzbsPeZ1/eiMiYo/ducZp/h5slgs6NT+GgDApq3bcVGD+oonivFwDcVDjEoQ1Cere/fuSh+HJvCt/bbxwBmcNtuC/v8ZYzhw4IC0zQPGGA6ed4JTPeR4iRMMcFacwKEKICsMp78egjp7B847xW2lUeNcijEerOB7/ahxzarVtgCw6ske6P5GcBNlIlJyitPz8+SyVePQeWfHF79H3uVNFe91i4drKB5iVIKw/0SxWCw4ePAgbDbvROOaa66J+KDUwGJzoH5CzdevfzX43rjExET88ssv0jYPEhMTsXL1Gtz5/joIBj7TRuMlTsFgRJOhU/HxiDw8sPjPkP9/f0WZ6+odEJ3ittKocS7FGOc9dC3X64dnnIwxuHQGrFztXm/PpTNIwx+UxLNt01NTFHWJ8Gpbz8+T7+dE6V43QL37Hk9nPMSoBCFfdSdPnsTw4cOxZMkSv7+PljFSvuS9tBxtWzWRfg5nYLNer+derFmv16NTbmckfHWaq1OM02JzcHPyjlPQ6ZHQ9Ap06JQLYUlkA9FXPdkjqKRcdPJCjWtWjLFTLj+vXq9Hbm4uquxOWJ0McLqvWyUGYvsdq/SV8kuEAOq1Le9raNOEXkg26blOElHr/s7TGQ8xKkHIidRjjz2Gs2fPYv369SgoKMCCBQtw/PhxTJo0Ca+//roSx8iNHR6JkzjIWUszuTyTO3HJBTlhjEkLUxLykqTgoHyibngOxPbXEwkov0RIPFFXkXOC4EnIV+IPP/yARYsWITc3FzqdDi1btkTPnj2RmpqKyZMno1+/fkocJ1eym6Yi2aQPeXC4w+HA3LlzAQB33XUXDAZ5P+jiVH3gwl/SDocDn3/2KSp/346UNjeEve9AXzT+8Izz1kG3h+0MBd84/a1ELjfM5YR5x0p8MfckmCsdgk75ZEh0AojofAaL0tesP8QYP//sT9wx+E7FfQDwV5UVP33zJQB3u4rnUsnkhrmcGH+luwd18i6+1w/PtlXjGnI4HJgzfy6sDieYK41L26oVJ09nPMSoBCEfsdlsRuPGjQEADRs2xMmTJ3HFFVegXbt22Lx5s+wHqBS1FS0O9y9Uq9WK++67DwAwcOBA2S8If1P1rVYrRg5z1ytLvjw/7H37/hVdW4+XZ5wnTt8StjMUfOP0XYlciWSKOez48+vX8bevz5eIUahXSZqJZHNKTiCy8xksSl+z/hBjHPk1cGv/AYr7AHecYrtu+ugZpKSkKN7bzBx2/O2B4QCUvX58nWq0Le9ryNPJq23VjpOHMx5iVIKQj/jKK6/Erl270KpVK+Tk5OD9999Hq1atMH36dDRt2lSJY1SE2ooWh/udrNPpUFhYKG3zQKfToceNN2Htvj9lW19h43OFuCjFFDA5USvOwsJCbD981itORR+XCAISW7ZHl0vT8T+ler18ewLPO8VtpVHjXIox5re+iOv1I7ZrvUQjn0etgoAeN7rX29vLaw0nldpWrfuB08W4ta2acfJyxkOMShDyt8/YsWNx7NgxAMDEiRPRu3dvzJkzByaTSargHK8kJSXh+++/D+q9chX6TUpKwtdLlspaIsb9WDPwcXnGyWuwuej07L1RukdBZ0xA5t2T8IWCJWJ8ewJ1xgT0ePwt2VdwD0Qo16xciO36NccSMUlJSci8e5K0zQOdMQFfL1kKANxKOKnVtryvIdFpsTm4ta2accaqTy2n3IScSIldcADQqVMnHDhwADt37kSLFi2QkZEh68HFMjwK/cYioa4oH01sfK4QySa9Iiu4EwRBEMoQdj+azWbDrl27YDKZ0LFjx5hMosRab4A8s+Q89wd4F8glCHEmEuXVBEEQ0UPIiZTFYsHIkSORnJyMtm3b4uDBgwCARx55BK+88orsB6gmYq23shd7BdVzZLFY0LZtW7Rt2xYWiyXg/jY+VyjbMVosFuS2z8HRjx6Gy14t237rctYWZ6w4xVIm3Tp34Nq2PM+nmu2a2z6H6/Vz9KOHcfSjh7nGmds+B7ntc7hdP2q1rVr3A55tGw/3vXiIUQlCfkYyfvx4bNu2DStWrEDv3r2l1wsLC/H888/j6aeflvUA1SaUR0mMMZSVlUnbgfcn30BXxhh27Cg7/4Nsu63TWVecSju5dNowwP7nQez6E8jqw0PI/3yqcS7Fdt3xJ9/rx/7nQWmbjxTSuczqXcd7ZXSq0bZq3g94ta3acfIqERPrMSpByInUwoULMXfuXFx77bVePTRt27bFvn37ZD24aCMxMVEq8Mxzef0l3y3DsJm/cC0Ro0acnk6rU/kPnGAwIvOel/H+/Z3w6I98/urlfT7VOJdiu84ansf1+sm852VpmweCwYgl37knKTz0vZmbU422Vet+UG13cmtbLdz3Ys2nllNuwioRI64j5YnZbI77QdN6vR4FBQVh/b/ibDQgtEUm9Xo9bujeHYnL+XzRi04xznBn7YW6inqNtnUqP1tQ0OmR2OIaXHd9dwg/8StDwfN8RnLNhovYrjdwLIau17ud4jYPBJ1eilFYzmfygFpty/saEp0Wm4Nb2/KK0/O7AADyunYDwGdpADXPZTQTciKVm5uLxYsX45FHHgEA6Qv/o48+Qn6+8gsIKkWHrDRsO2FTpPRKXfiuJRTrs/lCWUWdIAgiXqjt3hjr3wvRTMiJ1Msvv4w+ffqgrKwMDocDb775JsrKyrBmzRr89NNPShyjIviubP7xyDwYk1IiWtvJ4XDg66+/BgDccsstQa/Q6ruWUCiLTDocDvx30SJYdm9B0mV5YR13qHjGeePNoQ9QCGUVdX/OW27hs5o6czlRtfcXfPNfC5grgVsZCp7nM9xrNhLEdv3vomr04VRSyuFwwLJ77fntm7jF+d9Fi85vG7mViFGjbXlfQw6HAwu/+RpWu5Nb2/KI0/feKJ5PANjgylO8VqNa55K3U25CPuJu3bph69ateOWVV9CuXTt899136NixI9auXYt27dopcYyK4LuyuRzrE1mtVgwaNAgAUFlZyW15/bvvvAOAu1SCXAt91uUU4zxx+mxE+6prFXV/zsrKSgjGhJBdnot5BvV+hx0nF7yEogV8y1B4nk8ePt7XrNiudy+I/PoJFqvVipMLXjq/PY5bnJ7nkleJGDXaVo37nujk+dnkGefG5wrB7NVonO4u9ROr9wM1nHIT1hG3bt0aH374oddrJ06cwMsvv4xnnnlGlgOLRnQ6Hbp27Spt83Jem5+PLQfPAoLAZaFPOeOsaxX1QM5Qh5qH9ThREJDQvA2uubgByjmWofA8nzx8vK9ZsV07tEjj+jlJaN5G2uaCIODa88MdjnAsEaNG26px3+vatStcjHFrW95xJpv0EPSmmL8fqHIPkhnZUr9jx47hH//4R1wnUklJSVi9ejV355rVqzF4+lpsPJ8kKFp/Dt5x8iwR49m2oXp9u8yBuh8p6owJaHLfFHwjc4kYsUfMnzspKQnLV6yUyl549p4p0dOoxjUrtutyzmVMmtw3Rdrmgc6YgOUrVgLgWyJGjbZV4763evVq7iVi1IjT837Aw6fWuYxmoq8PjaiBuNDnn2ab4vXnYgGxFIvSj0ADIZ6j3JYNMXtE7eOgPM8nDTYlCILQHtHZj0bUQO6FPmOZC6VY+CUkvuWBgMAlgvy9t7b3EwRBEOpBiZSMVFVVoXPnzujcuTOqqqrIGeVOl92KY7MfR8/u18Flt0a0L0GAVG6othJBVVVVyMvLw4EZY7Fp/A11vj9S1GzX67tey/X6OTb7cRyb/TjXOK/vei2u73ptxNdPKE412lat+wHPtlUrzuu7Xotjsx/nEme83NvlJuhHeyUlJbX+/uTJkxEfTLTjcrmwceNGaZucyjkFHp1vjMFWvgdby4Gs7pGvpB7MzFDPOBMNOkWnOvv6eJ1LsV03l/O9fmzle6TtmofEavT2RfzolzFs3rQJAJB1A7f6Taq0rZr3A15tq1ac4jUEDuVT1D6X3O5BMhP0XXrLli11vueGG26I6GCinYSEBGk9jISE0Kfn+xLM6t9yO4NBC04bh8+bYDCi0R0TMe2u9hj/C5/OW95tq8a5FNt1+pCOXK+fRndMlLY9YQx+Z3RGOiZNMBjxnwXudaQeXxPWLsJyqtG2at0PrHYnt7ZVK87/LFiE0XM2cykZpYV7ezQSdCIl1sIhAmMwGNAvxEXwAiVKgW7utTl5zaBT2wkANg5eQadHcuvOuLl3IZ7ZyGcQfzjXUDT5gAvt2rsvv5llBoMBya07S9ue+JvRCUQ++1XQ6aUYS9bxKxGjRtvyvoZEp8Xm4Na2asXZu29fJK/jM/5VzXMZzdCsPZUJNMsunNW/CYKIDHE8Gs1+JQgiWIJKpF555RU8+uijSE5OrvO969evx6lTp6I+wwwHp9OJH374AQBw4403BiyOKs7K2hjk4pC1rf7t6by2G59Hq2o7b7zxRi5O5nKi+sB2rPjBvc2jDEWw11C0+oAL7bp8mR4FPXoo7gPccVbt33J+uzBgnHLOfGUuJ5YvWyZt8yoRo0bb8r6GnE4nvv/+R1TbnTH72RSdy5ctQ9X+LUhseQ0Xnxox8nbKTVCJVFlZGVq2bInBgwfj1ltvRW5uLho1agTAXSenrKwMP//8M/7973/j6NGj+PjjjxU9aE/Onj2LwsJCOBwOOBwOjB07FqNGjeLm96S6uho333wzAPdS9ykpKX7fJ677JJYrqeuv39pW//Z08ioJobYz3BIxocIcdpyY9w8MnsevDEWw11C0+oAL7dp/Ht/r58S8f7i3pz/CLc7+/S6U9/C8fhQZ3A712pb3NeTpjNXPpujs368PAD4lYtQ+l7ycchNUIvXxxx9j27ZteOedd3DvvfeioqICer0eCQkJsFgsAIAOHTrggQcewLBhw5CYmKjoQXtSv359rFy5EsnJyTCbzbj66qtx22234aKLLuJ2DCI6nQ45OTnSdm3IUdsvVKdcaMHJZZ6OIMDY+BJckVkfFRzLUPBsWzXOpdiuVzWpz/X6MTa+RNrmgiCg3TXuXoSzHtdPoHJFsiy4qlLbqnU/cDHm1bY8nOI2L2e7a67BzvK/uJWIUfveHo0E/U2ek5ODDz/8EO+//z62b9+OAwcOoKqqChkZGWjfvj0yMjKUPM6A6PV66ZGj1WoFYwyMwzRRfyQlJWHr1q2qOXmWa1HTycurMyag2fC3sULmEjGeVPlMNuB9DalxzYrtuo5zGZNmw9+WtnmgMyZg3Qb31HXPEh9KDW4XnWq0rVr3Pd4lYtSIc92GTTEfI2+n3ISc/ul0OrRv3x4DBgzA3XffjcLCwoiSqJUrV+LWW29Fs2bNIAgCFi5cWOM9paWlaNWqFRITE9GlSxf88ssvXr8/e/YscnJycPHFF2PcuHGqJXVEbGCxOXks2QIAuP5Vmg0bz2x8rlDRBVcJglAe1fvRzGYzcnJyUFpa6vf3c+fORUlJCSZOnIjNmzcjJycHvXr1wokTJ6T3pKWlYdu2bdi/fz8+/fRTHD9+PKDParWioqLC6x8R2wSzHpcnuZOWYfD0tRH6HAGd/krA0KzM+MRdrojOO0FEM6onUn369MGkSZMwaNAgv7+fOnUqRo0aheHDhyM7OxvTp09HcnIyZsyYUeO9mZmZyMnJwapVqwL6Jk+ejAYNGkj/srKyZIulqqoKBQUFKCgo4Lq8PjkDI45HqevRnG9yU3asAi67FeWfPo0BfXoGXZ5B9GVP+DagU5xsUPZiL+mfODaGd9uqcS7Fdu3d8yau10/5p0+j/NOnucbZu+dN6N3zJq4lYtRoW7XuBzzbVq04e/e8CeWfPs2tREy03Nu1hKbXkbLZbNi0aRPGjx8vvabT6VBYWIi1a909BsePH0dycjLq16+Pc+fOYeXKlfjb3/4WcJ/jx4/3KndTUVEhWzLlcrnw008/Sds8iFdnsCVigl2PS0xu/jTbLiRAjMF66DesOQRkdR4bli+QM9BkA95tq8a5FNt11SG+14/10G/SNhcYw6qVKwEAWZ0e5eZUo23VvB/walu14hSvIV4lYtS+t0cjmk6kTp06BafTiczMTK/XMzMzsXPnTgDAgQMH8OCDD0qDzB955BG0a9cu4D4TEhIUW4Y+ISEB8+bNk7Z5EK/OcErE1LYeFyAmNxcSHsFgRMaAp/HK7e3w4q+hl2fY+Fwhkk36kKa1825bXj5xur/F5pTa9Y27crhePxkDnpa2eSAYjPjk088AAM9uUb68h+hUo23Vuh9YHU5ubatWnJ98+hken7uNW4kYte/t0UhIiZTdbpdG2F999dVKHVNI5OXlhTXiv7S0FKWlpXA6gx87UxcGgwGDBw+WbX+hOnmWa1HTCYRXIqa29bj8Iej0SLmqGwYMKsT//R76rD33+JfQ/lbhfQ3x8PlO9xfb9bbb+ZYxSbmqm7TNA0Gnx2233wEAeG4bvxIxarStWvc9i83BrW3VivO22+/Ac9vqc/Op+R0WrYQ0RspoNKJFixayJh+1kZGRAb1eX2Pw+PHjx9GkSZOI9l1cXIyysjJs2LAhov0ohe+0eIKIVoJ93EkQBBGNhDzY/Nlnn8UzzzyD06dPK3E8XphMJnTq1AnLly+XXnO5XFi+fDny8/MV94eK0+nE6tWrsXr16qCTTc9BztlNU6XXg50WH44zUuLFyVxOVB8uw/q1a8Bc2ojTYnPCYnPItlYa73bd+Fwhfp1YiMfaubBmzZo6nRdmQF74F07sTqf7XFYfLuN6/axdsxpr16zmdv2I1+zaNbH92RSdPNtWrTjXrlmN6sNlXOKMl3u73ITcx/3OO+9g7969aNasGVq2bFljOffNmzeHtL/Kykrs3btX+nn//v3YunUr0tPT0aJFC5SUlKCoqAi5ubnIy8vDtGnTYDabMXz48FAP3QslHu1VV1ejWzf344Ngl7r3LBeTaNDjzvfXBl2Dz9fJsySEmk6eJWKOz3kSt8zhW4aitmtIHAgvyyrYQfjkJtmkB7Nbcf311wOo/fqRcwXw6upqHJ/zpHv77QeDjtNzCYtQS7gwhx2FPQoA8Lt+xGu2cI532/ouxSFHORoR3teQr1Mrn02lnJ7XEA+fmucypkvEeDJw4EBZD2Djxo3o4VFcU5xRV1RUhFmzZuGuu+7CyZMnMWHCBJSXl6N9+/ZYunRpjQHooVJcXIzi4mJUVFSgQYMGEe1LRBAEXHbZZdJ2KP+fOJamxswxhZyREC9OCIChYVNkpSfDwUvpJ05/Ra7lWAU7kE9pgnXKuQK4IAgwNGxap9MXz89hyAmcALRu7Y7Txun6Ea/ZlukpXsfpez+RKxEH1L2GGLvQtkomi55OcZsHgiCgdevLcOC0GeCg1PL9QMuEfBeeOHGirAdQUFBQZ1f9mDFjMGbMGFm9SpCcnIw9e/ZEtA/fmWOhOHkN/Fbb6eu12Jyy3zQBQGdMRPMHP8QvCpaI8cXfNVRbkWt/xW9FgmkTOa7ZUAnn+hFX/xZjD7WnKDk5Gc0f/FDarg1/iSsQegKnMyZie9kOAOBW4kO8Zre/2CtgHIB8iTig7jXkWSJGyWTR08mT5ORkbC/bwe36Uft+EK2E9Sk6e/YsvvjiC+zbtw/jxo1Deno6Nm/ejMzMTDRv3lzuY1QEJR7tEeqQO2mZ7DdNreFv3SnG4PfRl0i0tonnUgkivn9cRNRTVAeeiSuAGslrtOAbBxC9sQSCV7JIELUR8hW2fft2FBYWokGDBvjjjz8watQopKen48svv8TBgwfx8ccfK3GcsqPEoz2CH7430Hi8aQZ69CUSjW0SaFwUIF9PUTAEWjA12oiVOAIRD8kioX1CnrVXUlKCYcOGYc+ePUhMTJRe79u3L1aKK7DGKdXV1ejXrx/69euH6upqciroFG+gShZ8ZQ4bTsx/HvfcPhDMYVPM40m4bbvxuUKp3EwobaKFc+lJbUsl+JbWCTXOE/Ofx4n5z3OLkzlsuG1Af9w2oH/Q1484KzPcGYriNXvbgP6aOJ88nFarFckmg8c/ZQaeqxXnbQP648T857ncg9Q+l7ycchPynyobNmzA+++/X+P15s2bo7y8XJaDilacTie++eYbaTvenOKjGCXGK/lzhjqeLFSYy4Wq/23Esv8BWW0f4DHWM+zzGc7in5H4IiFYp7+V4cPtYXE6naj638Y6nXLCXC58u3QJACCrzcigrp9Ix/mI1+y3/9Pe+SRneE7xGmIcyqfES7vKTch3pISEBFRUVNR4fffu3WjUqJEsB8UDucZIMcZQ5XAXWjQajZg5cyYA9xpYPDCZTJpxyj01Pxinkgh6Ay7q+xgm3pqN1/bxeTzCO04tXT++hJscBnJe1PexOp1yIugNmP7hRwCAl3cFjkPOcT7iNfvSoKs1dz7JGZ5z+ocf4dkFv0HQK38Pipd2lZuQz0z//v3x4osvSrVxBEHAwYMH8dRTT+H222+X/QCVQo4xUowxDF0yFFtPbgUAdGjcAbOLZnMd3Gs0GjFs2DAAwc+A8pzpFU7vkaeTMabY1PxATl4IegPqtSvEPfcV4nVOYy6UiNN3Zp/nOVejXcO5ZuVw1mtXKG3zQNAbcP/QIgDA5FpmXck5zke8Zu8f2gtGI5/kXzyf4nVm9zmnSvRQq33d8nTeP7QIk/fymbUXL+0qNyF/0l5//XXccccdaNy4MaqqqtC9e3eUl5cjPz8fL730khLHqFmqHFVSEgUAW05sQZWjCsnG2qdXq4nvYF6x9yhcapuaT6iPv5l9Wp3N57sOUDwR7YPCa5skoNXrjVCPSJdt0Rohf3IbNGiA77//Hj///DO2b9+OyspKdOzYEYWFyg36jRaYi2Hb1m1IMiahXbt20OuVX23X6XTi119/BQC0vrJNne/3Hcy78cAZ/Gm2hVT3zNMpxqn0l4A/p9IwlxP2kwfw6/ZtYC4nBB3f8ylHnP4Gb3v2GKrRroGuWSWTcKfTCdvx/0nbvK6fbdu2Sts8rh/xmt22bSvyOnbgdj5/2bwFa3/ZBGOjljXiVKKH2ul0YuvW3wCoc93ydG7bthW24/+DsVFLLj6lY/RNusVrFgCMjVqi8yUZUZd4h3xlV1dXIzExEd26dZOWdY9GlFhHitkZuuZ1BcB3ef0OHToACL9cS+6kZV51/kJxqhEnLydz2HFs1qO4cRbfMhRKxbnqyR41ajiqfS7/+usvv+OD5C5qXF1djWOzHnVvTx3K7frpmtcZAN8SMcdmPYqus+o+n5GUv/GkurraK85NL/ZCskmvaA+12tctT6dn2/LwKR2j7x934jULuGOMxmVbQj7StLQ05OXloXv37ujRowfy8/ORlJSkxLEpilLrSDVt1hQCBK7L6zdr1kzaDoXspqkoO+aeOCD+V2lnuITq9LeoY+hSQF8vHY3qJ3IpzwAo27ZJfr7I1T6XOp2uxvggQJnyHvp66dI2FwSg6fk4eV0/4jXbODWxzjjlWtRUEAQ0bdYMJyqqAUHeSQK1ObV+D5LL6dm2PHw8Y9z4XCHgsOKauc3AGPh9TmQm5Kt92bJlWLlyJVasWIE33ngDDocDubm56N69OwoKCtCzZ08ljjMq0CXosPePvVzHSCUnJ+PIkSMAQh+4K36BhfpXo6eTF6E4axuvEQo6YyIuLv4YGzmXiOHZtlo5l0p/8SYnJ+Pi4o+lbR7ojInYu9/9yIJniZiLiz9G2Yu9/LapEouaJicnY+/+A9xiFJ1auG55OHm2Lff7j0mP5HqpOHrkiFe5n2gj5E+N+EjvmWeegcPhkNaVevXVV/HKK69E7ToQ8Ygg1Cy9EQvUtqgjQcQzsVL+hiC0RFh/Bu7evRsrVqyQ/lmtVtxyyy0oKCiQ+fAIIjL8LepIEPFMtM8QJAitEXKJmObNm+Paa6/F0qVLce2112LJkiU4deoUFixYgLFjxypxjFGDy+bCfXffh8GDB3NdXn/w4MHkDIA4XiOcJIo5bDi5cDJG3H8v1xIxPNs2ms5lpM6TCyfj5MLJXEvE3HfP3bjvnru5XT/iNXvfPXdzbdv77rkbJxdOjtnPiZpOpduWMSaVJDpdUYnbbr8Dt91+B05XVIZcoigcxHbl+TmRm5D/LGnUqBF27tyJ8vJylJeX4/jx46iqquI27kAulJi1BwYs+HIBAGDWrFny7bcWnE4nvvjCPZvj3Q8+4u5UI05eTuZywbJrNf67C8h6/F5uJWJ4xhkv59LpdMKya7W0zQPmcmHBl/8BAGQ9fg+X60e8ZhfsApzO2RyM7vYU42R9H+fmjJfrVsm29R1P6rJV49B538aW9yDv8qaKL0Xg2a68PidyE3IitXXrVpw9exYrV67ETz/9hGeeeQZlZWVo3749evToETWLcioxa0/QC5j65lSY9Cauy+u/88470nY8O8UZenL9ESXoDUjvORpP9r4K7x7jVyKGZ9vK6attBXWlnMFiMpmQ3nM0V6egN2DqtDcBANMO87l+xGv2uX5tuLbt1GlvYtLiHVzKmIhOLd6DlHAq2ba+40nF60fc5rEUgdiuNoeT2+dEbsI66rS0NPTv3x/XXXcdunbtikWLFuGzzz7D+vXroyaRUgLBIOChvz3Eddae0WhEcXExAO9ZexabU7FxQZ7OQMjdIxyMUxw0G8qaWL54zmoS9Ab0GHQ/xozIw3sT+ZVoqCtOLfr8zZQMtGo+7xhFZ/2Ot0jbPBD0Bjz0t4cBAG9ymo0k6A2o3/EWPPQ3viViHvrbw3jzGL8ZV2pdQ2o4PdvW33Iuct3nxfGkQD+ukxDEdrXYHNw+J3IT8iftyy+/lAaZl5WVIT09Hd26dcPrr7+O7t27K3GMRBiIi2x+/Ug36HT8O0sHT1+LxY92q/EBdz+Pl+/Rir/p3KGsieWL76ymJKM+YCmDeMRfaQexjQKtoE4QhDz4S27kKsHDY/2vWCXkVhs9ejRuuOEGPPjgg+jevTvatWunxHFFJczFsHfPXiQZk9C6dWvodCGP5Q8Zl8uFffv2AQAuvfRSr6Si7FgFbnn7Z78JjVxOzziTjHppkc+yYxU1uoQjWd8pkFOJWn/irCaXy4W9e/eiyuYAYy4IAt/zyeMaCsUX6PzltmyI2SPypJ/9raAerlMuXC4X7KePSNs8nIy5sHfPHmlbEHSK1xNkzAXHmWPYu2cPrm5zpaJxikm1y+XC7zv3wH76CAwNmyrm88TlcmHP+bZV417L03n4j//hyqRK7LQk+70Hyfn4TYxRjXseT6fchNzyJ06cUOI4YgJmZ8hpmwOAXwmBqqoqXHHFFZJz/uh8WGxO3PL2z9h/yuw3oZHbKcYpJjVtAzwG8+21CGVtp0BO0avEX1KeTneJj0TZHbU5eVxDofj89ToBNXue/K2gHq5TLqqqqnD0w4fc2/+8i0+JGLsNOVdnA7hw/Sj9uITZbTj64UPI+VDZtvVMql22ahx64w4AfMqYAOpdQ2o4r7zySgDuEmCeTiUev6l9z+PllJuwvn2cTicWLlyIHTt2AACys7MxYMAALkUctY6c5WbCcQqCgJQEA75+pFvAhEZupyfBdnxtfK4QF6WYQuopU7tto9FZFUQPSDi+jc+5i5SHeyNXo12FBOW/+HwR4+zYIg1by72nzCu1SKyQkILURGUf0dQYpHy+bTu2SOO28G20fzZDdSabDFwevcVLu8pJyGdl79696Nu3L44cOSJlypMnT0ZWVhYWL16M1q1by36QSqDE8ge6BB2OnjzKdbB5SkoKzp49W+N1JdeeDOQMhWRTaAMk5XCGiujkWbpA7jhre8QWiS+SFfHVOpctHpsrbfNAZ0rE0ROnkGwyBBxbFskjd999WmxO6EyJaPHY3IAlYpRg84u3IPmVswDkr5EYCDXvB7HsVPOeF1clYh599FG0bt0a69atQ3q6uwjon3/+ifvuuw+PPvooFi9eLPtBKoFSRYvlwHMANZU2IULF3wD8QNdRsEsWEJEh9+NnuepJygENUibinZCv/p9++skriQKAiy66CK+88gquu+46WQ8uXvEcQC3HF5uSSyEQ2sN35iHgf/ZhbUsW0LWibQKNVwOoriRB8CbkRCohIQF//fVXjdcrKyu5LVKmVVx2Fx4c+SAMOgPef/99JCQkhL2vYP+CtVqteOgh9yDaQM7cScsCrukTDsE45UZNp8PlAmt8GwSD8usPyRVnMNdPld2JjftO4M9v3YsMXtRrDJcF+NQ6l6cWv+HefraAi5M57HjwgREw6HSKxnlh/R93nI8/Uozh6z/g2rYPP/gAAL7nUw1nrN/31Lzn8XTKTcjzDG+55RY8+OCDWL9+PRhjYIxh3bp1GD16NPr376/EMUYPLmDOJ3Mwe/ZsOByOut8fAYwxWOwWVFRVYPbs2TWc4uMdETnX9HE4HH6dAY/zfB2nSBbpDMbpG3Okf5mLzjmffALm4rMeUihtKwfM5YT5t+Uw/7Y85mL0vPYqLFYpTh7tCrjbds4nnygep/hoLdlkgEkHrtcPwP+aJafyPjXueTydchPyn51vvfUWioqKkJ+fL60Q7HA40L9/f7z55puyH2BUoQcy78xE83rNYTAo9xc9YwxDlwzF1pNb4XK40HFER9x15V1eKzaLj3f+NNtknyJrNBrx6quvStuBjxNej44iWXE8GKe/xTQjeUQlOm0OFz44fSEhU3JcUbBtKxeCXo+0guEYe9PlmHmOz+MgHjH6PrZkTjvSCoYr6vRF0Osx6eVXYDLouDl5Xz/kjC1noHterDnlJuRv+7S0NCxatAh79+6Vlj9o06YNLrvsMtkPLpq4Kv0q7Dy9E436NoINNjh1ymXWVY4qbD25FQCgM+hgu8GGMfeOgcno/WjV/XhH/gvTZDJh3LhxdR+nzziOSFYcD9Yp56Be0WmxOfDh+dkkvskhIO+4omDjjBRxYUhBb0SDLrdjzGOFmMWpJIQSMYrxiEltzRpi7jhzWzZEg5SksHtnPRfUrCuBFvRGPP73v3MdiM3r+iFnbDr93fNi0Sk3QX/CXS4XpkyZgq+++go2mw033XQTJk6ciKSkJCWPL2qY3Xs2qhxVKJhXoPahEApSWymUJKNe8ZWr5YJXHS1eiPH4GwvoOYYo0t5Dz3ajgfnB4/u5oMkvRCwRdCL10ksv4fnnn0dhYSGSkpLw5ptv4sSJE5gxY4aSxxdVJOgSYD9jB+BOPOWEMYYqRxUASP8F3GVpHOccOHrkKC5tcWnIZQt8p8oHM67I5XLh2LFjAICmTZtyK5WgljNQ6QLPUij+eqoicQLyx+lvWQTGXLg6zYUzJ8q5loSQI0Z/8fgbC5hs0iPRoMOxY8dw5rwzUo+nK1CPE2MuHD1yBEkmQ8x/To4cOVKr0zdxjzQJDcYpN/Fw36vrnhcrTrkJOpH6+OOP8e6770ozCJYtW4Z+/frho48+4nJBRQNVVVXY9fgu9/awKtRLqCfLfj3HRNX4nZ1h1+O7cPnjl4dVtiCccUVVVVW4+OKLAfAtlaCm01/pAs9SKJGUvwnklDtOf8simM1mNE5PwzfPKFOewV8PnVwxBqqzGIxTMAY/+8m33YItzcHsNlx+aSvJGQ+fE09noAQUiLw+nJbijCWnv3uev8+TnD2Kdd1no4Ggr+KDBw+ib9++0s+FhYUQBAFHjx6VGiGaUGJlcwCAAmPlPMdEeXJV+lUoO1YG6AGDEP44jHDGFSk5mD7aneGUv4nUGSy+55rZDX59/gbUh0OghEOuGP1du0o4wx17Fy3XrBJOf4m7nPXhtBJnrDl9ff7Ol9yPtdVoVzkJ+ugdDgcSE70zRaPRCLvdLvtB8UCJlc1TUlJw9b+ulraVYMWdK5BkuDAurcunXXD1v67G+nvXcytNk5KSwv28q+kMtXRBqOVv/Dl54S9Gf48ps5umYvaIvKD2GagnQuylE0zyxxiq02JTfiq5zpSIc+YqroPNtfbZVKqguNbijBWn6GOMYfD0tX57E4HIexT9OeOiRAxjDMOGDfNaEKy6uhqjR4/2Shq+/PJLeY+Q8CLJkCQlTBa7ReWjIWIRfwPqy45VoPNLgXsSPIsjCwJq9EQAyg4w9tf7obSTIGKVQJ8nOXsUY4mgE6mioqIar913332yHgwRu2Q3TZWWP6ASFtHDhmcLUTTjF6+lK8Tz53mT9S2OrFRPRG2o4RTxfBQaLTM3iZr4Ky4tEm9JuZqfp2gj6FaaOXOmkscRE1itVhz9+Kh7+3Yrl0dtLrsL5Z+V4/F1j+OtaW9xK1tQUlICAJg6dWpQTvfzdPd2ODekcJyRIjodThdYvV61li6okunLk3ecdcWYkqDH4ke7+V2ANJTiyP6cAP9zKTohyJfIByogzBx2PP7oIzDodarFycs57vGxUe+sqxD0lY0S0XLPFxAAvDLlNSQkJCieXKl1P+Dl83QGc5/VKpRuyojD4cDpH05L21xwAad/OI0PfvgAU1/jc+E7HA68++67AIBXX301KKcgIKK/bsJxRoqnM+vxQggI/AH37ZGRw8kjzmBiDPSXaaDiyHV9sah9Ll999VUIHslepElwoALCHS6ujw8eny45tfrZJKeb2gpBA8COI2fx3fvu87kkuRA6U6Lia4mpeT/Q4n1Wq1AiJSNGoxGNBjSStrmgBxoNaIRR7UZxLVswceJEaTvWnXanC/+urtmDEW6PTDBOcVtp6oqxLsLp/tfC9eP5Z45cSTDgvfinnjkx+ax8cQbz+FALbSsXvo/ZPGNWOk7P88gYMHj6Wvx+2I4G190DwF3+B4hs0LW/x4i+51Wt+wEvn6cz3HuQFqBESkZMJhMyB2VK2zzQGXTIHJSJZ+99tkaJGKUwmUx4/vnnubi04LTYHJjjZzaJv0HVkXb1846zrhiVdPLE12lkTPYkGLhQQNiNQbY463rsJKKFtpWDuuJVOk7v8wiPx9u3AIh80LVWz6cW77PRACVSBBEBNCAzOgn3saRaBHrsFKsTN2p7zKZGzHJ/zut6jBir5zVWoW8AGWGMwWl2Stu8nC6LC2fPnkVSRhKXLwLGGM6dOwcAaNCgQcw7LTYHGGMxGWc8xBjIqXQSrFSctdUOVKttz549q5jTM17gwuKwSjr94dm2xiT51gn0jQ+4cF7Vuh/w8nk6ed6D5IZqu8iIxWLBjuId2FG8AxYLnzWemI1hR/EONG/cnJvTYrGgYcOGaNiwYVw4m2c2ArNbuTp5xekvRrlmINbljJfrR26n+Ngp2WSo8aUTS3GKeMYrxhxLcfrG53le5XQyxmCxOXz++YzRipP7rNxQj1SQiEWDkwx8en0IQi3kHHxNEIT6BDsmiwiPqO+ROnToEAoKCpCdnY1rrrkG8+fPl90hFg3u8mkXFC0tCvjYLjk5GW0/aou2H7VFcjKfci2CSUDbj9rirPms7E7GGCx2i/RPjDs5ORk2mw02m41bnGo6z1ZaQipyK4czmDjl6DkSfVarFZ0va+L1O6XGacTb9UNOcqrtDHZMVrzcZ+Um6nukDAYDpk2bhvbt26O8vBydOnVC3759Za1151k0eMuJLahyVPldbFMQBAgGQdrmgSAIgME9hVROp5g8ehZL7tC4A2b3ng1BEPgt73AeNZ1GJnA9n8HGKUfPkafvi7915TL4Ot6un/hw8l/FXs22tXOo1ejrlIvaxmQBHJfuOY8a91m5ifpEqmnTpmjatCkAoEmTJsjIyMDp06cVKxocL3gmjyK1JZEEH5RYu0qEZiCGDpWDIaIN36UdiMhR/dHeypUrceutt6JZs2YQBAELFy6s8Z7S0lK0atUKiYmJ6NKlC3755Re/+9q0aROcTieysrIUPmp3weAqR5XXazabDeWfl6P883LYbDbFjwEAXA4Xyj8vxzNPP6OYc8ltS7x+ttlsGDduHMaNG8ctTjWdzzz9FJiTTwX2uuIUp+2XvdhL+hfJysrxdi7lduZOWhZwPaFYipOcgZ0Wm9NrALecM7Z5xym3L5gB7mrcZ+VG9bTUbDYjJycHI0aMwG233Vbj93PnzkVJSQmmT5+OLl26YNq0aejVqxd27dqFxo0bS+87ffo0hg4dig8//LBWn9VqhdV6YWZARUVFLe/2z9AlQ7HrzK4ar9vtdpxaekra5oITOLX0FN5c+iZeevElRRYCTTIkef1st9vx2muvAQCef/55LouPqu3MerwrBL3yXd7BxClnz5Ha7RqNTn+9gkDNnsFoj5OcgZ1PPvOc9LpvIi1n2RjeccrpC3aAuxr3WblRPZHq06cP+vTpE/D3U6dOxahRozB8+HAAwPTp07F48WLMmDEDTz/9NAB3cjRw4EA8/fTT6Nq1a62+yZMn44UXXqjxujiwGkCdM/P8JVGA+9lyRu8MaZsLeiCjdwaGZA+p02mxOYN6BCTOUAyE0WjEE088IW3zQE2n3enCAj2fxfF4xxlv51IOp7/FPIGaY8qiPU5yBnamJif6TaaByMrG1OaMtvtBsAPc7eB/n5Ub1ROp2rDZbNi0aRPGjx8vvabT6VBYWIi1a9cCcH/pDxs2DDfeeCPuv//+Ovc5fvx4qbo14O6RysrKwoPfP4gycxkA70HVoWAymdDk7ibSdqSICU1tSY3OoEOTu5vg5XtfrrNETO6kZchumlqn03eQuS8mkwlTpkypdT9yo6bTYnNgIcfyKTzjjLdzKRfB9ArGQpzkDOz0TaYjLRsTjFNplPLVNsDd333W39hDLVce0HQiderUKTidTmRmZnq9npmZiZ07dwIAVq9ejblz5+Kaa66Rxld98sknaNeund99JiQk+K1o/eupX6FPcp9ouQZVW+yWsNedCiahCQbfxxBlx2p/lOk7yLxD4w5ej/bEpI7W0yKI+KG2AsLxCk3OCJ5QB7j7S0jlfGQqN1F/FXTr1g0ulyvk/6+0tBSlpaVwOuW7ITDGwBzugYb3f3M/dp/dHVbvFmMMp6tP10iifJMa8b1wup8zM0PN5fXFxxB/mm21/rXkr/drxZ0rkJ6Y7vVawbwCMMbQ/qL2mNFrhuzLLtR2fA6He8qxwVBzRWclnXY73/IpPONUs13JGR3Ousa6MMakMaHRHCc51Y3RAIZOLdKw6eBZv++T85Gp3GjviDzIyMiAXq/H8ePHvV4/fvw4mjRpEuD/Co7i4mIUFxejoqICDRo0iGhfIhaLBb8/8DsAgL3PoEvQhdy75a8nasWdK5BkSPLbC8RsDGUPlSHtgTRUVlb6XfbB/ZdT4GfPgXq/RF+SIQkdGnfAlhNbJOec/nMwB3MCOuXGYrGgXr16AKCKM+vxLyCYErmUT+EZp9rtSk7tO+sqIMzsVpjq15fVWRex0rZac6od419//QWdKdH79wo8MpUbTSdSJpMJnTp1wvLlyzFw4EAAgMvlwvLlyzFmzBhF3UVLizDvlnncuxH9PVpLT0xX9Dj8rRnl2fslCAJm954t9Vjd8MkNwe03Brv/qXwKEc/4KyDMqyYbEftE6+NS1Y+4srISe/fulX7ev38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7gEerTXMrUlDlQcwM7TO0MeJ5WcnIw2pW0AuEu3RIr4aK22JEowCWhT2gbLBi+TZUn/QL1fgiBIbRGsU86kIzk5GWfOnJG2eSA6GWN44LMyry7nQItg+pvxGMp4Mt5xqtmu5AyOUMYjKR2nv7Eu0dy25FTXp5ZTblRPpDZu3IgePXpIP4sz6oqKijBr1izcddddOHnyJCZMmIDy8nK0b98eS5curTEAPVQCPdqb1XsWesy7cDx1LQXgiSAI0KfIN30zmC9g0ZmWliZLr1WSIanO5LE2p1IrbwuCgLS0tIj2EYkzmPIpgR6RhjJOLtI4A12vga4ltduVnHUTymONaI6TnOE7fZPtcGe4aTlGLaN6IlVQUFDnSrBjxoxR/FGeiADvi6+2mXNXpV+Fnad3So/Bgk24Yhl/a+xoedpqsATT5ezvESnAr7RObTM9w13Sg1CHYBf9jBWUmhXouZ9YuA8FwjfZzm6aen6Gm/tnmmWpLKonUmoRzKy9QF+MIrN7zwZw4a99m82G4wvcA+Mb3doIOsOFCjyei32K+/b8f8PF5XDh5H9P4qW9L2HiPyZyWeG3Lmcoz7l9e1DE9vB9Xe/SY/LkyQCAZ555hkucNpsNL7/8cljOFXeuAOCe5cjLWdv1GiiZi8QXLuSsm2AX/ZTTGS6ROoNdATscp2eCEen0ea21baBkG3Avc9N2Yuhr32ktxmhBYHIWBopCxEd7bd5rA32SHivuXCF9+XluL7ltCfp86b0C+/p713t9MZ08exKNG7rL1mS/nw1dgjuRurLhldJq6O0btQcA6QvPt6fAYregy6dd/O7fF4vdgs4zO6PsIfdCorXNsrDYHMj2WVSy7MVeSDYZFHPWhb8elA6NO2BW71koWlLk9frVqVfj89s+j9gZCmazOaQZLL7tCCDodg3XGcgvjnWrclRJ17C/Y4jEFy7k1I7T874g3g9CfU8oTn/78ndvEgmU/NTmZIxh8PS1/hOMADHKEWcwbRnqe+ty+vbkMQYMnr424HqBdSWTWoyxtv2I39/nzp1Damrti00rSdz2SIWK7/pN/jAYDEi/Md39g0c5aM+SMr49BhE/9tEB6Tem444r7oDBENrpFMvihPxIMgKnJ/56ULac2IIz1WdqvL79z+14cPSDMOgMITkjGfxtMBjw8MMPS9s8kMsZzFg3OX2hQE5yBsLfrEB/n9XanL69eXJNn9di2/rr/V/8aLcaPZkidfVoajHGaCA6j1qjJCQkoNnQZlydOqMOzYY2wxv3voEEY80V2wPD8OCy4dh+ahtHZ2D89fh5vq4z6vDGW2+ElHBGOvg7ISEBpaWlQfvkgLczGF8oEy6AuhPVeGhXcoZHsCtg1+VUYhp9tLRtJLFHS4xaI24TKSVWNo8qBHuNJMrfyuly4/ml7Ds2yh+RHE9dg7/9TRCg0jfehFOqiAa2EwQRT8RtIqXEyubRSm0rp8uJXPUDw8Hf4O9IlyoAAieGsUJdEy78wWuWIkEQhBaI20RKCVxWF34f+TsYGLLfvTDYXGln2cNlaPBAA5w9ezasAa3BjqeJ1BnoSzmYnjCX1YUGye6EN5w4ffcfzFIFZrNZWt/En1OJxLAup9yE4hMT7kB4DmyXyykX5CSnL6EuuRCu09cTjCtSZ7hE67lUG0qkZEQQBDCnexLkktuWoN/ifnzETsABBx+XTE7PL2XfR2yBenbEYppyU9tSBbU560oMw+2hUirOSH2hJtxyOOWEnLUTyaKO0RQnEN6SC+E4w/VE4oyUaDuXWiBuE6lQx0j5Fu7114uSlJSEw4cPAwAa1OfzuFAwCrjyjSvx9cCvkZSk7PimcJ3i4y/fMVGBvpT9DToXjAL27N+DJGOS7HEGHJ/lcT7rcvomhuE+Ig3FKQe8feTUrtN3Zps4VV5JZ7iE6xSTRYut9kLM/hY9DcdZW8Hn2lyROCMhms6llojbRCqcMVJi4V7A/5elTqdD8+bNAVxYgFNpBJ0AY0MjmjVvBp1O+UeJoTqDffzlm6gCPoWTdQKaNW/GddyN5/msC7l6a0JxygFvHzm15axtUceNB84EnEYfiVMOwnX6WwYh2CUXIo3T11ObSy5nqITi8/d4MpzV49W4fuQmbhOpcPAs3EsEh7/HX/568wRB8EpUgZqP/KIZmh1IaBF/K6h7rrsUC6VFaksWc1s2xEUpJi6fxWCXdogW/CWlka4eH63EzlnVADabDW+++SYAYNTDo7g4XQ4X/vzuT7xx7A2MKxnHrURMOM66ZgfWlqi6HC688fobMOlNGDt2LLfSBeL5jNTpO/4q0OxAOZ3BwNtHTu05a1t3KJiFLLUeZ6ByO0BoPShaj5OHr7akFLjQixlKwqhGu8oNJVIyYrfb8eSTTwIAho0axkfqBI7PO47n5j2HB0c/iBTBPeNB0R4PD+djjzwW9IUf0eMvJ/Dc+OcAuNs2w5jhNz45lyPwPJ8PP/xwyB9wf48rRQItERCpM1R4+8ipfWeoBZOjIU45FuiMhjiV9gVKSiNZPT6UGH17SC02bQxSp0RKRgwGA4qKiqRtLuiAtOvS0CChAQq+KIDO6B6zpOiiiOed/S7txz1OACj4ogCdmneqEZ/cyxFEej79Pa6sa4kA3teQGtcsObXtDLVgcrTGSc7wfHKvGh9KjL7JmsvKZyxyXcRtIqXEyuYJCQmYNWsWAH6DzXVGHS4edXGN15VcFFF0fnDvB7KViAmEZ6+OZ5z+4pN7OQLP8xkuoY6rC+QMpkxLOD1wcsTIy1lXG9TWCxtNcWrBGcqXZTTHSU51fcE463qcqAXiNpHS2srmciVegWrW8cbfkgfh4NurE+yij3ItR6AF1FwRXisE0wZUmiZ+CLb+Y7R/9onaHyd2/MdXKh2VN3GbSGmJoUuGYteZXQCAq9KvimhfStfKCwa5v/jDmS1Z13gsLcwGDHYmX6hlWnjUTORNMG1ApWnig1DuL5RcxwZKFKGWE+0emQpclX5VRF9AZrNZWg9jzx97gv7/xCQKAHae3hmS02V1Yedj7v/nqmmRJWGhOpuNbYYjR47UWNI/2CUPQsGzbZu/2jzi8jvB9Np5Ov3FGSn+ZvK9e/27uPjiiwM66yrTAoT2V7jSMSrh9G2DYHopozHOWHd6Lo4ZClWOKmw+vNnrvhfofiBnch1NbRstPrWcckOJlAeze8+OeB/nzp2T4UhCw1XlCuHdDBDsEHS2iJ3nquqOVc6CyGLbNkd4i7fVtuhnoB4quc9nMDP5anPKWaZFRI1rNhJnuG0QbXHGujPcWV4i4n1vxZ0r/P4xF8wQgFCJlrZV0xdOgqxGu8oJJVIykpSUhN27d0vboXJV+lVSj1SwPTiCUcDlr1wubdcOQ3LL6dAnHwj52Pw5v7j1izrjlOuLX2zbKnsV7l1/b1j7CLToZ6AEL9LzGewxeN70lXDWBm9fME5/418ifRSrxTjj0VnX4pi1lUvxxPMedFHqRVyqOmi9bbXiCzVBVqNd5YYSKRnR6XS4/HJ3UhPO4HHPHrFge3AEnYCEJoFnzonHUeVwAoKtRhIVziM30XnZ5ZdxK0sjtq3FboGwwbtdQhnYHsx4K8/9NG/l7v2qdlYD5//AirR3rbZjEOOUkgmnMuO5PJMV3xiVHqDr+Tnxd1xKDKyvzakU5KyJXItjqnkP4glvZ7i+SBJkNdpVbuI2kVJi+QM5kPOxjecgdgBIbtVU2q7c/Rw2PtsX6Un1onogphJfvHU9Ergq/aoavUpyovQsvbr2r+YA3boGlcfaQPpIlnSIVrQ+cJgIHbkS5Gglbq9mJZY/sNvt+OCDDwAA9w2/T5Z91gVzMJxecRoAkF6Q7vU7zyQKAPSJxy78fy5T2Ddp0fn+ufcx5m9jYDQawzjy0BDb1ua0gaUwCAb3ccs1sN3f2CXfthWdO0/vRJdPu0QQTWDsdjvef+99LN+w3MsJyJdEeLaZvxi3nNiC09WnFat16Pk5GTVqFBzChdWJPX3+BtbXdc36O94kQxIcDofkfPDBB7les4GcSizpUJdTCdRw8rwHicmu3W7HjI9mAABGPDDCz/mU/xh4t20kvnATZDWuH7mJ20RKCWw2G8aMGQMAKCoq8vpi9hz/JCfMyXDs3+4EqeH1Df2+R+61pURnyb9L8OBIPhe+Z9tmv5/tlWCIRDKw3d/YJbPZjMYPNAYAbHt7G1JSUlC0tKjGeZSzl8Rms6FkbAkA9/n86d6fZFsPy1/pnG8GfIOWD7QEAKx7Yx36Le4HoO5euUjwPJc/N/0Zv/31m9/3hTO+zt9xi7MhReewYcO4X7P+nEos6VCXUwl8nQaDoc4EPNJrmdc9yDPZdVldKBtbBgD4KPGjGjMFr8loD+AuAPL1vvA+n1q4fiiRinP0ej3uuOMOAO6l7n2/mBXpxRCA1NxUadsfsj8KOe+8qcVN0OuDGxwaKWLbOl1O7BJ2+X1PpAPbfccu6RJ10vmsn1gficZEzLtlXtDrP4WDXq/HoNsGYfnB5YAg7yw9f0lGvYR6UoyNUhoFnFEoZ7LoeS63/7kdOlPNMS6h+GqbCQm4kxEbs0lx8r5mg3GGs6RDpE658HTqdLqgHktH/PiY0z3IK9mt4167/dRWQLgNYPLVw+N9PtW+fkJxJhn16JCVhkNKHVgIUCIlI4mJiZg/f77Xa+KXoFIlY3QmHVqMaaHIvuty/vvefyPRmMjFKbatxW5R7LFaIKcn4SwOGqrz35//W7YYa0syOjTugIb1GnrFGGjsl5zJor9z6ZtIhOLz15sIeCcj/s6lP8Ids+T3/9MDsz91TyBJMNReSkmuhDnYOOXE02mxW4Ia2xfp+k5q3INW3rcSScNqJvdKLbUA8D+fal8/oSAIAj4emYe0vytwUCFCiRRBxDCBkgzAf1IgV6IYajImd29iOIQ7ZonK1/jH3xg3JZMOpVFiDTciMrTyeaJEKorx7W3o0LgDGiY2rPFaLM1y8kQLZV6iAaV70fwRaKySlpOJcMcsUfka/1DiQcQLlEjJiMVikdbD2LNnD5KTlb2JCIKA9254D5df4Xa+t/s96ASdVw+EEjOvXFYXdj+1G5c9cxn27tmreJzAhbZlYGg4sSF0CTrF/7LlfT5F5zXZ1+Ck5SSu+OcVXHxyxRjMWKUqRxVgR41zqTQWiwWXZwcfZ7hjljz/P4vFgnZt2uFU1Sku51J0im27vWx7wDjlfFTreQ1tK9smyz7rQrV7UAjXkGxOjvcgte55vJ1yQ4mUjDDGcPToUWmbF8eOHvP6mUcPhOOsA8fOHoPZZkZSkvJr3Xi2bfdG3fFbhfdMLyV63tQ4n4yxGudTaZ9cMQYzVsnX2RD+Z5rKjcVukZxmmxkwKvOo0fP/YwaG8mPl4R90GLhcrgufk7ndAyapcvYOqnXfE+9BPD+batwPeDrjIUYloERKRhITE7FlyxZpO1adglFA6xdaAwB6LOiBjk06Kv7IxjPOq6++GjbmXStQiYUL1Tqfa35Zg/uX3B9EyR95fHLGGEwSLzqr7FUY9duoiJ3B0Pe/fb2uWUEnKP6okfe5BNzJmxhnbU45HzWqeQ/6pM8nMX2v5e2MhxiVIG4TKSVWNtfr9Wjfvn3Q7w+ntl6kzkhJMiShY5OO2KK78PiGx/gP3zgNHC5d3m0LADZmwxVXX4GkMj7j2tSIUXRa7BYIZcolGJ6PGgWdgKSW3m0a7nUbbB1AvV6PnPY53M6l6BTj5DXY2/MaUmp2si/i+cxpn8N1mr5an5VY9anllJu4TaSUWNk8VMKprac2no9vonkGjlah9pSPYB81hkq0nCMa7E0QfIjbREoJ7HY75syZAwAYMmRIUCu0RnqjC8cJAB1bpAVdad0Xh8OBeXPmweq0goH5XWVcbsKNMxqcnj0nzMFwdu1ZAEDBgALFZ1zyblex1Mbnn30Ou9MOplf2+hEfNXrGOejOQSHvp66B9EDNXmW73Y5PPv4EZ9aeQVp+WshOkUA9Xv7++LLb7Tizyl041j7YDnBYJDrStg0H8XPyieMTjBhas1yLEtjtdsyaMwtA7N2D1PKp5ZQbSqRkxGazYfjw4QCAwYMHc1tePxznJyPzwu4B83QGKtciN9HUtqHi2XPiWZZm+rTpivdS8m7XgnkF7lIbD7lLbahx/fQb2C/k/7+29bhEfBMbm82G0Q+MBgA0yAu/1ztQD5i/MV42mw1H/nXEvf2aDeDQIRVp24YDczIc+dcRjP7XaNx3930xdT9Q0xkPMSoBJVIyotfr0bdvX2lby85IvqBFp5M5cUhwL9DvudyCEkRT24aD2HOiS9RJToOBzzgwpWOs0ZsjAPWuqSdt81jrTI44Q50Nq9fr0atPL6w+sjrk8mvB9ID5G+Ol1+ulto3Fz4nE+WvouubXxXScvJ3xEKMSUCIlI4mJiVi8eLHf3/lbPFOOL4/anEohOj1LfIh/NXdo3AHTC6cr5uRJPDh5+Pz25gy7sMljfKBnnLwGRCcmJuLLRV+GVe6nth6w2sZ4JSYmolVJK2m7NsIphRPIybttdSYdWpW0wpf3fsm1TFUs3w8YY3DpXZi/0F2uxQVXredTrs+tGu0qN5RIccL3xhgtg8trw99fzdKiiwThgRqrq0c7SrdZbYPmtb4KPSEvwZQ58oWukQtQIsWRWPsyoRl8BBFdBPPIEIjPkjbxTDBljnyha+QClEjJiMViQU5ODgBg27Zt3JbXJyc5o8WnBefajWsV94nOa3KuwaG/DuGyFy/j5tz91G739kALkht4t21dg+bD+YNIjbZ1WV3YO2Evrpl0DbZvC1wKR04sFgtycmP7s+KyulD1ahV0gg7rNq7z65P7j2Y17gdyQ4mUjDDGsHfvXmmbnOTUujMeYlTTuW/vPi4uT6ftuE3a9kewPePBPqI328xS2/IaIwUAtuM27Du+L+avId7O/fv2A+C3DpkaMcoNJVK1wBDaSU1MTMTPP/8sbfOAnOSMJl+8OZetWIZR34/iViImMTERlzx7ibQdCcH2OjAXk5x9/9sXgk75WAWjgEuevQQf9vww5q+hSJ2MsTqTYvH3glHAshXLkGhIjKoY1YYSqVq46+u7Qnq/Xq/Hddddp9DRkJOc0e/TgpNXr4ler0d+13yk/JHCxSc6Uy5PkbZDJdgxVJ4IOkFyiii9pIXozO+az3WafrR9VkIdRC7oBOR3zZetJyqYJA4AOuR1AABYXVbAFdy+lV4yJRRiIpEaNGgQVqxYgZtuuglffPFFRPtKMiRJNfBOWE7IdIQEQRDaJ5iFR4MhFmYlxwKhDiKXMwEOZyZgKHRo3AFvd31bkX2HSkwkUmPHjsWIESMwe/bsut9cB4IgYO4tc3HX13eFXFDY4XBgwYIFANzJHY8FFclJzmjyacHZ65Ze0uueCYPcy3Y4HA58+cWXOPfLOaR2SpV137U5z/1yzr19pyOsEjGhzi5W43wyJ0PFpgp8afoSdw++m9s1JK6xFI2fFX9FrH0xwih1RkTqCzaJE88lAKR2SoWgDy4B33JiC85Unwn7+OQkJhKpgoICrFixQrb96QQd5t0yL+Q1n6xWK+68804AQGVlJZcPGjnJGU0+LThPnLnQ06zkkh1WqxX333s/AHcpHB5YrVYcetddbcD6khXg8PRDjfPJHAyH3j2E+9+9H4P680lq1L5uI3UGM3jcbDYrEmNtSZzZbEbjke6yWCfOnEBKSu2Pwj1nDfZd0FeW44sU1ROplStXYsqUKdi0aROOHTuGBQsWYODAgV7vKS0txZQpU1BeXo6cnBy8/fbbyMvLU/S4wlnzSafToXv37tI2D4Jxyr2qulbjJKf2fVpwpphSah0HJNfjDZ1Oh+tvuB6bjm8KuURMJM7kK5OlbV5O3ucTApB8ZTI6ZXaK6Thj5X5QWxInJAiSs15CPSQZa//shTOOT2lUT6TMZjNycnIwYsQI3HbbbTV+P3fuXJSUlGD69Ono0qULpk2bhl69emHXrl1o3LhxyD6r1Qqr1Sr9XFFREdHxe5KUlCRrz5hcTrlXVddqnOTUvk8rztrGAck1vicpKQlLly0Nq0RMJM5Lx18qbfNy8j6fOpMOl46/FEvvXVrnF69caOG6jTVfOE7P77OKigo0/VtT5Q4uSFRPpPr06YM+ffoE/P3UqVMxatQoqTr09OnTsXjxYsyYMQNPP/10yL7JkyfjhRdeCPt4o5VYW1WdICKBPg+EVgl2phsQv4P6xc+vw+hQ+1AAaCCRqg2bzYZNmzZh/Pjx0ms6nQ6FhYVYuza8FXTHjx+PkpIS6eeKigpkZWVFfKzEBajWHkEQhDeMsaCW3ihaWiRNdKoLqnenDTSdSJ06dQpOpxOZmZler2dmZmLnzgsXWmFhIbZt2waz2YyLL74Y8+fPR35+vt99JiQkICEhQZHjraqqkrxr167l0rWuRWefLwP3MCrlVIJ4cMZDjGo6r732Wuw9sxeX/uNSZRw+f7Sc/us09v7DvUp01SA+ddDUaFuXzYX//d//cO3Ua7F+3Xpu57Nr564AAscp6GxgrvPnRdCjyuEEBBsAhqFL78Hus7tCcopxAsCl/7gUOpP3uCW5693Fy2dTbjSdSAXLsmXLQv5/SktLUVpaCqfTKdtxuFwubNu2TdrmgVac/gYAyrkmiVbijDVnPMSopvPX7b+6f1Co8oXvrEOX1YXqQ9WSnwdqtC0YUH2oGr8e+lVTcda7YhIAoGD+BOm1+le5/7v7bPCuq9Kvwuzes90z2h50jwVeMXiFNKNNqSLx8fLZlBtNJ1IZGRnQ6/U4fvy41+vHjx9HkyZNItp3cXExiouLUVFRgQYNGkS0L5HExER899130jYPtOL0t5CfnM/vtRJnrDnjIUY1nV998xUe/eFRWUvE1DZrSTAKaPVEK7ROa42G9RrK5qwNudu2rjFCVY4qKc63bnxL9WsolFlkYoJUF+K9M6F+guRMr5/udxX3utoqFEI9l3K41fhsyo2mEymTyYROnTph+fLl0pIILpcLy5cvx5gxY9Q9OD/o9Xr07Nkzbp1KDuDVUpyx5IyHGNV03lR4E+qdqAeg5hdLuGMJg1l9nOcgZDnbNtjVsAWdgHpX18NNhTdxLRET6L43u/dsnK6qRKf/cz8d2fSPQiQZ9aiyO71eS0+qF9J5CaZt5eyZCvVcyuFW47MpN6onUpWVlVLlZwDYv38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7go8WiPIAgiEHJ+4cXqrMNQSpooXc8vFARBcB8LMwEQ100yAMzh9ZpcyW2oaynJ2VZqurWK6onUxo0b0aNHD+lncUZdUVERZs2ahbvuugsnT57EhAkTUF5ejvbt22Pp0qU1BqCHihKP9hwOB7799lsAQK9evbiVECAnOaPFF2/OH779AY3+aIQTWScClr6Q84smltq2ttWwHQ4HVi5fiW+++YZrnIu/WwxA/bYNtSZisElcMOdSbrca16zcCIwxhYZBRgdiItXmvTbYOHJjRH/lmc1m1Kvn7savrKysc6l7OSAnOaPJF6/O2kpfyNlToXacdTktdou0QOn6e9fXuN/W9ftgncHupy489/PDgB/QuGHjwE6bA9kT3AlB2Yu9kGwy+H0tFOh+UDvi9/e5c+eQmsqnnqU/oi/1kwklHu3pdDrk5uZK2zwgJzmjyRevzmBKX8jtjJe21aLTYnN6/ZeHUw603q5ahXqkZOyRIgiCIAIjV49UpB4l9uPZ++SPcHqkiNrRSo9UdKZ/BEEQBKEhkox65Lb0v+REbsuGSDLymV1I8IfSY4IgCIKIEEEQMH90PqrsNR/nJRn1VMYlhonbHqnS0lJkZ2ejc+fOsu2zqqoK1113Ha677jpUVfGpN0dOckaTj5zk5O2sclTBYrcE/Bfs6JZgnIIgINlkqPEv3CSK7gfRQdz2SCmx/IHL5cKaNWukbR6Qk5zR5CMnOXk761q/K9jCv1qPMxp9ajnlJm4TKSVISEjAggULpG1yklPrzniIkZzx5wxl0chgC/9qMc5o96nllBuatUez9giCILjgOQvO34KbnsV4I5ltBwRXs090BVr8U87jIeRHK7P2qEeKIAiC4I6cJXP8EUoZHaWPhYht4jaRUmJBTqfTiVWrVgEArr/+ei7FNMlJzmjykTO+ncE+cqurbI4ccYby+K9D4w4wCSasWLEiImeo0P0gOqBHe1Qihpxx7IyHGMmpLWddj9yAusvmyBVnMMciHo/FYtF820abL1InPdqLQQRBQHZ2trRNTnJq3RkPMZJTW85QHrnJ5ZTjWKKhbaPNp5ZTbqhHigabEwRBEETUoZUeqbhdkJMgCIIgCCJS4jaRUmJlc4IgCIIg4ou4TaSKi4tRVlaGDRs2yLbPqqoq9OzZEz179uS6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZSUhIwL///W9pm5zk1LozHmIkJznJqU2fWk65oR4pmrVHEARBEFGHVnqk4naMFEEQBEEQRKTQoz0ZcTqd2Lx5MwCgY8eO3JbXJyc5o8VHTnKSU7vOeIhRCeL20Z5nrb3du3fTYHNyxqUzHmIkJznJqU1fpE6tPNqL2x6p4uJiFBcXSydCDgRBQMuWLaVtHpCTnNHkIyc5yaldZzzEqARx2yMlQoPNCYIgCCL60EqPFA02JwiCIAiCCBNKpAiCIAiCIMKEEqnzXNPoGiQZkiLaR3V1NQYOHIiBAweiurpapiMjJzljx0dOcpJTu854iFEJaIzU+WesZ8+ejXjQebTNeCAnOeMhRnKSk5za9EXq1MoYqbidteeLHLMFTCYTPvjgA2mbB+QkZzT5yElOcmrXGQ8xKgH1SGkkoyUIgiAIIni08v1NY6QIgiAIgiDCJG4f7XmubC4XLpcLO3bsAAC0adMGOp3yeSo5yRlNPnKSk5zadcZDjEpAj/Zk7BqMtoF65CRnPMRITnKSU5u+SJ1aebQXtz1SSpGRkUFOckaVMx5iJCc5yalNn1pOOaEeKY1ktARBEARBBI9Wvr+j72EkQRAEQRCERqBEiiAIgiAIIkwokZKR6upqDBkyBEOGDOG6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZMZlMeOONN6RtcpJT6854iJGc5CSnNn1qOeWGeqQ0ktESBEEQBBE8Wvn+pjFSBEEQBEEQYUKP9mTE5XLh4MGDAIAWLVpwW16fnOSMFh85yUlO7TrjIUYliIlHe19//TX+/ve/w+Vy4amnnsIDDzwQ9P9Lg83JGc/OeIiRnOQkpzZ9kTq18mgv6nukHA4HSkpK8OOPP6JBgwbo1KkTBg0ahIsuukiV40lOTiYnOaPKGQ8xkpOc5NSmTy2nnER9j9SaNWswZcoULFiwAADw2GOPoUuXLrjnnnuC+v+1ktESBEEQBBE8Wvn+Vv1h5MqVK3HrrbeiWbNmEAQBCxcurPGe0tJStGrVComJiejSpQt++eUX6XdHjx5F8+bNpZ+bN2+OI0eO8Dh0giAIgiDiHNUTKbPZjJycHJSWlvr9/dy5c1FSUoKJEydi8+bNyMnJQa9evXDixAnOR0oQBEEQBOGN6olUnz59MGnSJAwaNMjv76dOnYpRo0Zh+PDhyM7OxvTp05GcnIwZM2YAAJo1a+bVA3XkyBE0a9YsoM9qtaKiosLrn1xYrVaMGjUKo0aNgtVqlW2/5CRnrPjISU5yatcZDzEqAtMQANiCBQukn61WK9Pr9V6vMcbY0KFDWf/+/RljjNntdnbZZZexw4cPs7/++otdccUV7NSpUwEdEydOZABq/Dt37lzEx19ZWSntr7KyMuL9kZOcseYjJznJqV1ntMV47tw52b6/I0HTs/ZOnToFp9OJzMxMr9czMzOxc+dOAIDBYMDrr7+OHj16wOVy4cknn6x1xt748eNRUlIi/VxRUYGsrCxZjtdoNGLSpEnSNg/ISc5o8pGTnOTUrjMeYlQCTc3aEwQBCxYswMCBAwFcGEi+Zs0a5OfnS+978skn8dNPP2H9+vVhu0pLS1FaWgqn04ndu3erPuqfIAiCIIjgoVl7QZCRkQG9Xo/jx497vX78+HE0adIkon0XFxejrKwMGzZsiGg/BEEQBEHEL5pOpEwmEzp16oTly5dLr7lcLixfvtyrh0orMMZw8uRJnDx5Erw6+shJzmjykZOc5NSuMx5iVALVx0hVVlZi79690s/79+/H1q1bkZ6ejhYtWqCkpARFRUXIzc1FXl4epk2bBrPZjOHDh0fk9Xy0JxcWiwWNGzcGwG95fXKSM5p85CQnObXrjIcYlUD1RGrjxo3o0aOH9LM4ELyoqAizZs3CXXfdhZMnT2LChAkoLy9H+/btsXTp0hoD0EOluLgYxcXFOHfuHNLS0mRZBsFsNkvbFRUVsiZp5CRnLPjISU5yatcZbTGK39tq92RparC5Ghw+fFi2WXsEQRAEQfBl3759uPTSS1Xzx30i5XK5cPToUdSvXx+CIKh9OJpGXCri0KFDNMNRBqg95YXaU36oTeWF2lNezp07hxYtWuDMmTNIS0tT7ThUf7SnNjqdDhdffLHahxFVpKam0k1ARqg95YXaU36oTeWF2lNedDp1581petYeQRAEQRCElqFEiiAIgiAIIkwokSKCJiEhARMnTkRCQoLahxITUHvKC7Wn/FCbygu1p7xopT3jfrA5QRAEQRBEuFCPFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJVAxTWlqKVq1aITExEV26dMEvv/xS6/vnz5+Pq666ComJiWjXrh2++eYbr98zxjBhwgQ0bdoUSUlJKCwsxJ49e7zec/r0aQwZMgSpqalIS0vDyJEjUVlZKf3+jz/+gCAINf6tW7dOvsAVQo32fOmll9C1a1ckJycHXLn34MGD6NevH5KTk9G4cWOMGzcODocjolh5oNX29Hd9fv755xHFygPe7fnHH39g5MiRuOSSS5CUlITWrVtj4sSJsNlsXvvZvn07rr/+eiQmJiIrKwuvvvqqfEEriBbbk+6fFwjm896/f3+0aNECiYmJaNq0Ke6//34cPXrU6z2yXJ+MiEk+//xzZjKZ2IwZM9jvv//ORo0axdLS0tjx48f9vn/16tVMr9ezV199lZWVlbHnnnuOGY1G9uuvv0rveeWVV1iDBg3YwoUL2bZt21j//v3ZJZdcwqqqqqT39O7dm+Xk5LB169axVatWscsuu4zdc8890u/379/PALBly5axY8eOSf9sNptyjSEDarXnhAkT2NSpU1lJSQlr0KBBDY/D4WBXX301KywsZFu2bGHffPMNy8jIYOPHj5e9DeREq+3JGGMA2MyZM72uT899aBE12nPJkiVs2LBh7Ntvv2X79u1jixYtYo0bN2Z///vfpX2cO3eOZWZmsiFDhrDffvuNffbZZywpKYm9//77yjZIhGi1Pen+GdrnferUqWzt2rXsjz/+YKtXr2b5+fksPz9f+r1c1yclUjFKXl4eKy4uln52Op2sWbNmbPLkyX7ff+edd7J+/fp5vdalSxf20EMPMcYYc7lcrEmTJmzKlCnS78+ePcsSEhLYZ599xhhjrKysjAFgGzZskN6zZMkSJggCO3LkCGPswo1gy5YtssTJCzXa05OZM2f6/eL/5ptvmE6nY+Xl5dJr7733HktNTWVWqzWkGHmi1fZkzJ1ILViwIMSI1EXt9hR59dVX2SWXXCL9/O6777KGDRt6XYtPPfUUu/LKK0MLkDNabU+6f0bWnosWLWKCIEiJp1zXJz3ai0FsNhs2bdqEwsJC6TWdTofCwkKsXbvW7/+zdu1ar/cDQK9evaT379+/H+Xl5V7vadCgAbp06SK9Z+3atUhLS0Nubq70nsLCQuh0Oqxfv95r3/3790fjxo3RrVs3fPXVV5EFrDBqtWcwrF27Fu3atUNmZqaXp6KiAr///nvQ++GJlttTpLi4GBkZGcjLy8OMGTPANLzcnpba89y5c0hPT/fy3HDDDTCZTF6eXbt24cyZM6EFygktt6cI3T9Db8/Tp09jzpw56Nq1K4xGo+SR4/qkRCoGOXXqFJxOp9eXKwBkZmaivLzc7/9TXl5e6/vF/9b1nsaNG3v93mAwID09XXpPvXr18Prrr2P+/PlYvHgxunXrhoEDB2r6ZqBWewZDII+nQ2touT0B4MUXX8S8efPw/fff4/bbb8fDDz+Mt99+O6R98EQr7bl37168/fbbeOihh+r0eDq0hpbbk+6fobfnU089hZSUFFx00UU4ePAgFi1aVKfH0xEMhqDfSRAykJGRgZKSEunnzp074+jRo5gyZQr69++v4pERhJt//OMf0naHDh1gNpsxZcoUPProoyoelbY5cuQIevfujcGDB2PUqFFqH07UE6g96f4ZOuPGjcPIkSNx4MABvPDCCxg6dCi+/vprCIIgm4N6pGKQjIwM6PV6HD9+3Ov148ePo0mTJn7/nyZNmtT6fvG/db3nxIkTXr93OBw4ffp0QC8AdOnSBXv37g0iMnVQqz2DIZDH06E1tNye/ujSpQsOHz4Mq9Ua0X6UQu32PHr0KHr06IGuXbvigw8+CMrj6dAaWm5Pf9D9s/Z9ZmRk4IorrkDPnj3x+eef45tvvpFmOcp1fVIiFYOYTCZ06tQJy5cvl15zuVxYvnw58vPz/f4/+fn5Xu8HgO+//156/yWXXIImTZp4vaeiogLr16+X3pOfn4+zZ89i06ZN0nt++OEHuFwudOnSJeDxbt26FU2bNg09UE6o1Z7BkJ+fj19//dUrgf3++++RmpqK7OzsoPfDEy23pz+2bt2Khg0bql4YNRBqtueRI0dQUFCATp06YebMmdDpvL9S8vPzsXLlStjtdi/PlVdeiYYNG4YftIJouT39QfdPN8F83l0uFwBIfxTJdn2GNDSdiBo+//xzlpCQwGbNmsXKysrYgw8+yNLS0qTZXffffz97+umnpfevXr2aGQwG9tprr7EdO3awiRMn+p1umpaWxhYtWsS2b9/OBgwY4Hf5gw4dOrD169ezn3/+mV1++eVeyx/MmjWLffrpp2zHjh1sx44d7KWXXmI6nY7NmDGDQ6uEj1rteeDAAbZlyxb2wgsvsHr16rEtW7awLVu2sL/++osxdmH5g5tvvplt3bqVLV26lDVq1Cgqlj/QYnt+9dVX7MMPP2S//vor27NnD3v33XdZcnIymzBhAqeWCQ812vPw4cPssssuYzfddBM7fPiw13R8kbNnz7LMzEx2//33s99++419/vnnLDk5OSqWP9Bie9L9M/j2XLduHXv77bfZli1b2B9//MGWL1/Ounbtylq3bs2qq6sZY/Jdn5RIxTBvv/02a9GiBTOZTCwvL4+tW7dO+l337t1ZUVGR1/vnzZvHrrjiCmYymVjbtm3Z4sWLvX7vcrnYP/7xD5aZmckSEhLYTTfdxHbt2uX1nj///JPdc889rF69eiw1NZUNHz5c+pJizH0jaNOmDUtOTmapqaksLy+PzZ8/X/7gFUCN9iwqKmIAavz78ccfpff88ccfrE+fPiwpKYllZGSwv//978xut8sev9xosT2XLFnC2rdvz+rVq8dSUlJYTk4Omz59OnM6nYq0gZzwbs+ZM2f6bUvfv8+3bdvGunXrxhISEljz5s3ZK6+8In/wCqDF9qT75wXqas/t27ezHj16sPT0dJaQkMBatWrFRo8ezQ4fPuy1HzmuT4ExDc/rJQiCIAiC0DA0RoogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCCJCbDYbLrvsMqxZs0bW/S5duhTt27eXaoQRBKE9KJEiCMKLYcOGQRCEGv+0XGFebaZPn45LLrkEXbt2lV4TBAELFy6s8d5hw4Zh4MCBQe23d+/eMBqNmDNnjkxHShCE3FAiRRBEDXr37o1jx455/bvkkktqvM9ms6lwdNqCMYZ33nkHI0eOVGT/w4YNw1tvvaXIvgmCiBxKpAiCqEFCQgKaNGni9U+v16OgoABjxozBY489hoyMDPTq1QsA8Ntvv6FPnz6oV68eMjMzcf/99+PUqVPS/sxmM4YOHYp69eqhadOmeP3111FQUIDHHntMeo+/Hpy0tDTMmjVL+vnQoUO48847kZaWhvT0dAwYMAB//PGH9Huxt+e1115D06ZNcdFFF6G4uBh2u116j9VqxVNPPYWsrCwkJCTgsssuw7/+9S8wxnDZZZfhtdde8zqGrVu31tojt2nTJuzbtw/9+vULsZWBP/74w2/vX0FBgfSeW2+9FRs3bsS+fftC3j9BEMpDiRRBECExe/ZsmEwmrF69GtOnT8fZs2dx4403okOHDti4cSOWLl2K48eP484775T+n3HjxuGnn37CokWL8N1332HFihXYvHlzSF673Y5evXqhfv36WLVqFVavXo169eqhd+/eXj1jP/74I/bt24cff/wRs2fPxqxZs7ySsaFDh+Kzzz7DW2+9hR07duD9999HvXr1IAgCRowYgZkzZ3p5Z86ciRtuuAGXXXaZ3+NatWoVrrjiCtSvXz+keAAgKyvLq9dvy5YtuOiii3DDDTdI72nRogUyMzOxatWqkPdPEAQHGEEQhAdFRUVMr9ezlJQU6d8dd9zBGGOse/furEOHDl7v/7//+z928803e7126NAhBoDt2rWL/fXXX8xkMrF58+ZJv//zzz9ZUlISGzt2rPQaALZgwQKv/TRo0IDNnDmTMcbYJ598wq688krmcrmk31utVpaUlMS+/fZb6dhbtmzJHA6H9J7Bgwezu+66izHG2K5duxgA9v333/uN/ciRI0yv17P169czxhiz2WwsIyODzZo1K2B7jR07lt144401XgfAEhMTvdoxJSWFGQwGNmDAgBrvr6qqYl26dGG33HILczqdXr/r0KEDe/755wMeA0EQ6mFQN40jCEKL9OjRA++99570c0pKirTdqVMnr/du27YNP/74I+rVq1djP/v27UNVVRVsNhu6dOkivZ6eno4rr7wypGPatm0b9u7dW6Pnp7q62uuxV9u2baHX66WfmzZtil9//RWA+zGdXq9H9+7d/TqaNWuGfv36YcaMGcjLy8N///tfWK1WDB48OOBxVVVVITEx0e/v3njjDRQWFnq99tRTT8HpdNZ474gRI/DXX3/h+++/h07n/bAgKSkJFosl4DEQBKEelEgRBFGDlJSUgI+yPJMqAKisrMStt96Kf/7znzXe27Rp06Bn+wmCAMaY12ueY5sqKyvRqVMnvzPYGjVqJG0bjcYa+xWXD0hKSqrzOB544AHcf//9eOONNzBz5kzcddddSE5ODvj+jIwMKVHzpUmTJjXasX79+jh79qzXa5MmTcK3336LX375xe8jwtOnT3vFSBCEdqBEiiCIiOjYsSP+85//oFWrVjAYat5SWrduDaPRiPXr16NFixYAgDNnzmD37t1ePUONGjXCsWPHpJ/37Nnj1QvTsWNHzJ07F40bN0ZqampYx9quXTu4XC789NNPNXqKRPr27YuUlBS89957WLp0KVauXFnrPjt06ID33nsPjDEIghDyMf3nP//Biy++iCVLlqB169Y1fi/2uHXo0CHkfRMEoTw02JwgiIgoLi7G6dOncc8992DDhg3Yt28fvv32WwwfPhxOpxP16tXDyJEjMW7cOPzwww/47bffMGzYsBqPr2688Ua888472LJlCzZu3IjRo0d79S4NGTIEGRkZGDBgAFatWoX9+/djxYoVePTRR3H48OGgjrVVq1YoKirCiBEjsHDhQmkf8+bNk96j1+sxbNgwjB8/Hpdffjny8/Nr3WePHj1QWVmJ33//PYRWc/Pbb79h6NCheOqpp9C2bVuUl5ejvLwcp0+flt6zbt06JCQk1HkcBEGoAyVSBEFERLNmzbB69Wo4nU7cfPPNaNeuHR577DGkpaVJydKUKVNw/fXX49Zbb0VhYSG6detWY6zV66+/jqysLFx//fW499578cQTT3g9UktOTsbKlSvRokUL3HbbbWjTpg1GjhyJ6urqkHqo3nvvPdxxxx14+OGHcdVVV2HUqFEwm81e7xk5ciRsNhuGDx9e5/4uuugiDBo0KKxFMzdu3AiLxYJJkyahadOm0r/bbrtNes9nn32GIUOG1Pp4kSAI9RCY76AEgiAIDhQUFKB9+/aYNm2a2odSg1WrVuGmm27CoUOHkJmZWef7t2/fjp49e2Lfvn1+B92Hy6lTp3DllVdi48aNfhdEJQhCfahHiiAI4jxWqxWHDx/G888/j8GDBweVRAHANddcg3/+85/Yv3+/rMfzxx9/4N1336UkiiA0DA02JwiCOM9nn32GkSNHon379vj4449D+n+HDRsm+/Hk5uYiNzdX9v0SBCEf9GiPIAiCIAgiTOjRHkEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYfL/ol9URXwtYe8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 3e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "81a65e58", + "metadata": {}, + "source": [ + "We might still expect to detect the satellite orbital time scale in the periodogram, due to the imperfect frequency response during the orbit, but it's a lower-order problem now.\n", + "\n", + "Looking into more detail, the two curves do not exactly match, in particular close to the maximum frequency:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "afa946e8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNsUlEQVR4nO3de3hU5b03/O89k5nJ5DThfNAQUREECQkEAxFEHvDAtm69nmd7etVSradu3Oi22or7UUqtRi27B1svaX0V2K1KRUX7tgoV5RwSCYSTBwqWQmxBFMlMjjOTNff7x2StzJpTMsmazKzM93Ndc5lZs2ate1YWmZ/3/bt/t5BSShARERGZgCXVDSAiIiLqKQYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBCxEREZkGAxciIiIyDQYuREREZBoJBy5bt27FNddcg9GjR0MIgbffflv3upQSjz/+OEaNGgWn04n58+fj8OHDRrWXiIiIMljCgUtLSwumTJmC559/Purrzz77LJ577jmsWLECtbW1yM3NxZVXXon29vY+N5aIiIgym+jLIotCCKxbtw7XXXcdgGBvy+jRo/H9738fDz30EADA7XZjxIgRWLVqFW666SZDGk1ERESZKcvIgx09ehQnT57E/PnztW0ulwsVFRXYuXNn1MDF6/XC6/VqzwOBAL755hsMGTIEQggjm0dERERJIqVEU1MTRo8eDYsleSm0hgYuJ0+eBACMGDFCt33EiBHaa+GqqqqwbNkyI5vRa8LmwJgH3wQAHP/Z/4H0ew3dn4iIaKBraGjA2WefnbTjGxq49MaSJUvw4IMPas/dbjfGjBmDhoYGFBQU9Fs7FEXBls0f4oHa4PNjhz+Fa9CQuO9p9pxB5a8PAgC++Nsh5BUMSnYziYiI0pLH40FRURHy8/OTeh5DA5eRI0cCAL788kuMGjVK2/7ll1+itLQ06nscDgccDkfE9oKCgn4PXHJzcwAEAAD5+fndnl9IRfs5P78A+f3YXiIionSU7DQPQwehxo4di5EjR+KDDz7Qtnk8HtTW1mLmzJlGnoqIiIgyUMI9Ls3NzThy5Ij2/OjRo9i7dy8GDx6MMWPG4IEHHsBPfvITjBs3DmPHjsVjjz2G0aNHazOPiIiIiHor4cClrq4Oc+fO1Z6r+SkLFy7EqlWr8IMf/AAtLS24++670djYiFmzZmH9+vXIzs42rtVERESUkRIOXC677DLEK/0ihMCPf/xj/PjHP+5Tw4iIiIjCca0iIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgUsMNpst1U0gIiKiMAxcYkj2IlFERESUOAYuREREZBoMXIiIiMg0GLgQERGRaTBwCRVn8UgiIiJKPQYuKilRsn9pqltBREREcTBwUflbkd98rOu5zZm6thAREVFUDFxiSXA6NAeZiIiIko+Bi0FuWrkPkjkyREREScXApQ+cNgsmir8DAD452YI2v5LaBhEREQ1wDFz6QAiBtfZlqW4GERFRxmDg0kdcGICIiKj/MHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi4hWD6OiIgovTFw6SSlxPU+LrJIRESUzhi4dGrzK/hEngMAmDgyF06bNbUNIiIioggMXABASlh+/3+0p2tunwKR4CKLRERElHwMXADA3wpx6mPtqbA5e3ccLrJIRESUVEkJXJqamvDAAw+guLgYTqcTlZWV2LVrVzJOlRw97W2x5aApr7jrub8tOe0hIiIiAEkKXO688068//77+N3vfocDBw7giiuuwPz58/GPf/wjGadLHSGwv4SLLBIREfUXwwOXtrY2vPnmm3j22Wdx6aWX4vzzz8ePfvQjnH/++XjhhReMPp0hZF+GeJgLQ0RE1G+yjD5gR0cHFEVBdna2brvT6cT27dsj9vd6vfB6vdpzj8djdJO6FQgEdM8tFqb+EBERpSPDv6Hz8/Mxc+ZMPPHEE/jnP/8JRVHw+9//Hjt37sSJEyci9q+qqoLL5dIeRUVFRjcpYZxRRERElJ6S0rXwu9/9DlJKnHXWWXA4HHjuuedw8803R+3JWLJkCdxut/ZoaGhIRpOIiIhoADB8qAgAzjvvPGzZsgUtLS3weDwYNWoUbrzxRpx77rkR+zocDjgcjmQ0g4iIiAaYpCZz5ObmYtSoUThz5gw2bNiAa6+9NpmnIyIiogEuKT0uGzZsgJQS48ePx5EjR/Dwww9jwoQJuP3225NxOiIiIsoQSelxcbvdWLRoESZMmIBvf/vbmDVrFjZs2ACbzZaM0xEREVGGSEqPyw033IAbbrghGYdOa32qB0NERETdYsGSPrBYLMjNydWeh9eDISIiImMxcOkDIQQmT56c6mYQERFlDAYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBC4KF41rBhR6JiIjSXVIq55qJlBI3rNyPPd4VqW4KERERdSPje1za/Ar2NHi059OKCuC0WVPYIiIiIool43tcQtU57kXh7QchhEh1U4iIiCiKjO9xCZUDL4MWIiKiNJbxgYuRKzofOHCAK0QTERElUcYHLuErOlssiV2S0P1bWlu4QjQREVESZXzggrAekkSHiji0RERE1H8YuPjbtB/l8EmALSeFjSEiIqJ4GLiECNz6JsAeFCIiorTFwEWHQQsREVE6Y+BCREREpsHAhYiIiEyDgQsRERGZBgMXA3kVYwvaERERkR4DFwPdtyWAG1+sZfBCRESUJAxc+shps6BcHNKe7z7WiDa/ksIWERERDVxpG7hIKaEoStr3XgghsNa+DHWOe1PdFCIiogEvK9UNiGXfvn0IBAJwuVwoLS1N69L6QgA50pvqZhAREQ14advj0tTUBABwu91cuJCIiIgApHHgQkRERBSOgQsRERGZhuGBi6IoeOyxxzB27Fg4nU6cd955eOKJJ9I+yZaIiIjSn+HJuc888wxeeOEFrF69GpMmTUJdXR1uv/12uFwuLF682OjTERERUQYxPHCprq7Gtddei6uvvhoAcM455+C1117DRx99ZPSpiIiIKMMYPlRUWVmJDz74AH/9618BBKc1b9++HQsWLIi6v9frhcfj0T2IiIiIojG8x+WRRx6Bx+PBhAkTYLVaoSgKnnzySdxyyy1R96+qqsKyZcuMbgYRERENQIb3uLz++ut45ZVX8Oqrr2LPnj1YvXo1li9fjtWrV0fdf8mSJXC73dqjoaHB6CYRERHRAGF4j8vDDz+MRx55BDfddBMAYPLkyTh27BiqqqqwcOHCiP0dDgccDofRzSAiIqIByPAel9bWVlgs+sNarVZWvyUiIqI+M7zH5ZprrsGTTz6JMWPGYNKkSaivr8fPfvYz3HHHHUafKn2xZg0REVFSGB64/OpXv8Jjjz2Gf//3f8epU6cwevRo3HPPPXj88ceNPlV6sOVAFlUAx/d2bfO3AQ5byppEREQ0UBkeuOTn5+MXv/gFfvGLXxh96PQkBAIL38XO9/8EbEl1Y4iIiAY2rlVkBCEQsDLBmIiIKNkYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5ERERkGgxciIiIyDQYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5JIKVMdROIiIgGJAYuBrBYLMjNydWeBwKBFLaGiIho4GLgYgAhBCZPnpzqZhAREQ14DFyIiIjINEwfuEgpmVNCRESUIUwTuCiKEhGgSCmxZcsWbNmyhcELERFRBshKdQN6or6+Hs3NzXC5XCgtLYUQAgDg9/u1ffx+P+x2e6qaSERERP3AFD0uzc3NAAC3280ZO0RERBnMFIELEREREcDAhYiIiEwkowMXKSUURUl1M4iIiKiHMjZwkVKivr4eu+p2GX7sAwcOcJYTERFREmRc4KL2sgQCAXg8HsOOa7F0XcqW1hYmERMRESWBKaZDG0XtZfF4PMjLyzP02OoUbSIiIkqejOpxCe1lUadYExERkXkYHricc845EEJEPBYtWpTYgaSERWkHwnJFolXQJSIiosxg+FDRrl27dDN1Dh48iMsvvxzXX399Qscp2f8jFPkOw11wIerLqoDOoZjq6mqtgi4RERFlFsMDl2HDhumeP/300zjvvPMwZ86chI7javor4BBweT6FJeBFwJqtvdabCrqc+kxERGR+SU3O9fl8+P3vf48HH3wwZvKq1+uF1+vVnhs500cVmpRLRERE5pXU5Ny3334bjY2N+M53vhNzn6qqKrhcLu1RVFTUq3PV1dXFzH0xeupzTzAPh4iIyHhJDVxeeuklLFiwAKNHj465z5IlS+B2u7VHQ0NDj48fOvTj8/mwe/futAkYtm/fnjZtISIiGiiSNlR07NgxbNy4EW+99Vbc/RwOBxwOhyHnbG5uRiAQ0IrBJVpbJbSInBH8fj/sdruhxyQiIspkSetxWblyJYYPH46rr746WaeISkqJLVu2YMuWLQn3eLCIHBERUXpLSuASCASwcuVKLFy4EFlZ/Vuc1+/3R/2ZiIiIzC8pgcvGjRtx/Phx3HHHHck4PBEREWWopHSHXHHFFaZJTDVJM4mIiAgmXqvIiMBISomf1HEVZyIiIrMwbeCyffv2Ph/DpwDHm4I/TxR/h9NmzOXwKqzjQkRElAymDVwAY5Nv19qXGTar6L4tATxV287ghYiIyGBpG7hICbRKB1qlI6EAoLa2tlfn62vI4rRZUC4Oac8PNwbQ3O5n8EJERGSg/p2rnICF+BH2escDAMbVBfBohUzrOitCCKy1L8NpFKDcuwIAULdrF4YPKURpaWlat52IiMgs0rLHRdgc2Ivx2vPDjcF8lHDp1pshBJCDrgUjvQrQ2NiY8ErWREREFF3a9rj0RH19faqbENfiTa0YV2jB7NnpFWARERGZVVr2uJiZE16UZf1de364MYA2f5TuIiIiIkoYAxej2HKAkZMhBPCW9VH8eg4vLRERkdH47WoUIYDb12s/Oqwpbg8REdEAZOrARUoJb0fw0atEXaOTe2PMHNq3b3/aJRITERGZkWmTc6WUeLK2HUcagzN2xhVa8GhFdkLTji2yawYQRkwKDvckQUtzMwKBAKxWdsMQERH1hWl7XHwKtKAFCCbBRpsy3WO3vR2zx4SIiIjSg2kDF8MxaCEiIkp75gpcpIRFaY+dmyJ7XuhNSglvEmcpWxRv9zsRERFRQsyT4yIlyuqXwOX5DO6CC1Ez+amIXbI6mgBbYQ8Opc+PSYaZNXcDWJm04xMREWUi0/S4WKQXLs9nAACX51N9Ym2CwvNjysUhOG0GXApbDmRRRcRmr5J+yxMQERGZkWkCl+CXv/HHrXPci7X2ZcYsgthZy+XAVet0mxdvasWNL9YyeCEiIuoj0wQu920J4Hrf0t4HLzHyY3LgNTQvV1gsuKjsYjjhRbk4pG3ffayRpf+JiIj6yDSBCwDUyfFogyPxN0qJsvpHcOm2G1FWvyQieAmMuMjQGi5CCAgBrLUvY+l/IiIiA2XGt6q/NW5+TMdt/19SpkOz9D8REZGxzDOryABSAm1wRBluYg0XIiIiM8iYwCUgBb7lexKfyHMwpi5506CJiIgoedJ0qKj3PSDqwouhM3iklFrQAgDHm/raPiIiIkqFtOxxEbbuE3Cjzi6S0ArLjSu04E+VwZ3a/AEtaCEiIiLzSsseF4stO+7rUgI/iTLc4w10FZY73BhAmz8NhoRYu4WIiMgwaRm4nHXvS3Ffb4NDG+4ptnzVDy3qvZL9S1PdBCIiogEjLQOXRLxhe0z7OWCxp7AlIWw5wMjJAID85mMpbgwREdHAYfrARZfGm4RaLL3SWfqfiIiIjGX6wCVtpUsQRURENIAkJXD5xz/+gVtvvRVDhgyB0+nE5MmTUVdXl4xTERERUQYxfDr0mTNncMkll2Du3Ll47733MGzYMBw+fBiDBg0y+lRERESUYQwPXJ555hkUFRVh5cqV2raxY8cafRpTkpwaTURE1CeGDxX98Y9/RHl5Oa6//noMHz4cZWVlePHFF2Pu7/V64fF4dI94WuFAa4wVov0+b9Tt6WL//v0MXoiIiPrA8MDlb3/7G1544QWMGzcOGzZswPe+9z0sXrwYq1evjrp/VVUVXC6X9igqKop7/HLvCpR7V0R97T932vQbZCCtAgWP24NAIA2K4hEREZmU4YFLIBDA1KlT8dRTT6GsrAx333037rrrLqxYET3YWLJkCdxut/ZoaGgwrC27t7+PLVu26IKXieLv2s/l4hCcSO9eGiIiIupieI7LqFGjMHHiRN22Cy+8EG+++WbU/R0OBxyO7tcmimXvlCeBj7qeb7Pfj9m+X+r28fv92s9r7csgADTlFWN481/hcV0Ipy2n1+cnIiKi/mN44HLJJZfg0KFDum1//etfUVxcbPSpAACKVb+ukVPE70ERAHKEF7vLfoxDQiBgcaCSNVeIiIhMwfChov/8z/9ETU0NnnrqKRw5cgSvvvoqfvvb32LRokVGn6rHAoHIPBcpBALWbBaKIyIiMhHDA5fp06dj3bp1eO2113DRRRfhiSeewC9+8QvccsstPT5G+xcfA9Dno4RSt5eLQ8i3SZSLQ9rzaDkre/fVJ/YhiIiIKC0ZPlQEAN/61rfwrW99q9fv//KVH+LED4ci3y4wybsy4nU1T8UJL6qzVuP/Hfo67J6/wQkv2kKmSgeEHR0dEiJ9JhYRERFRHyQlcDFCjvBCIDvqa2qeimrv1CrY/G5cUr0QCAlSnqiTON7cijH5SW4sERER9Yu0DVwSIkREki4AHG/u/G9TP7dngJFSos2vQEoJh1XAarVCMDeIiIhSYGAELpQ0Ukr824qd2H3sDABgXKEFz1wxAmVlZQxeiIio3yVldehkKrUdZ9G4ftTmV7SgBQAONwbw1TduVgAmIqKUMFWPy68vFcjNHo+28TXIeXFGqptDRERE/cxUPS6OLAFhsUBGqXQ7o6Ki18e12Wzd70REREQpZ6oel7hsOQicfTHQsK9Hu8+eNQuw5wIAczWIiIhMwlQ9LiqbLUq8JQQ6bvsTds74bY+OIYTQHtQ7iqKk1erbREQ08JkucJkzZ07sF4VAls2hVdJNN14FaPV1DIgv+/r6emzbtg179+4dEJ+HiIjMwVRDRdPLp3fbQyKEwFr7MrTBgVY4UO5dEblT0QwgBStCL97UCmzaiPLiQXj9nplo71AAAE6b+eqiNDcHi+S43cEZRlarNcUtIiKiTGCqwKU7apKtEEAOvLoqupr79wODRqR0ccW6Y2dw9a+24dMTwcp45cWDsPbemWkZvLA3hYiI0klaDxU54dUvoGiL31whRDDpNh57Tv8ELWqycAxq0AIEA5k2v5L8NvUC67UQEVE6SeseFyGgDfs44YVf3A4AsLlGavv4bQVh70mTXovOZOE9m99D+eZDqJPjMSbfXMsPSCnR6kvPgIqIiDJTWgcuQMiwT+g2ixXy8W/g9/uBnTUpalkPCIFAVrYWfG0vX427N5mjByO81H+oyksq4bAKVFdXp6BlRESUydJ2qGjbJa9g26zXYr4uLFbY7A7teToXkROic7XrNOkM6onwUv9j8rtuFavVymRcIiJKibQNXCAskKL7nJY5c+Zgzpw5XUNEthzIEZP7oYGZ47m5OXi0Qr/6tpQS3o7gY8+ePUziJSKifpH2Q0XdichpEQKB7/wZ1mfGpKZBA0RoIOKwhr8G3PjiR9h9rBUAMK6wHe+VKcjKMv3tREREaS59e1wABCwOKGdNBwC4Cy5MoPZKeo7JTC8vT3UTeix8NlGBqysJ+psWX8SK0ek6K4qIiAaW9P5fZCHQfvPb2F27HQGLA5VmShJBZN6N7bUbADyUmsYkQEoJRekKXCpmzAgus/DmSQDA7Gc3pappRESU4dK6xwVAcOjHmp3SgnG9JYTA7LlXQI4M5tyIUx+nuEXdk1Kivr4etTVds7WsVgty7FkoLx6k23fiqPz+bh4REWW49O5x6SWLJX3iMWGxALevB6rOSnVTeiQQCMDj8URsF0Jg7b0zdUNCHR0KSn68sT+bR0REGW5ABi5pU4ROlW7tiUHtbYlFCIEce9ct06Qwr4WIiPpX+nRNGMmWE1xIkXpMSgm/368tnkhERJSOBmSPC4QA7lgPtDQBP9mW6takPbWnJdoQERERUToZmD0uQDB4sfd0+nRmC89rycvLS2FriIiIYhu4gQslRK2EW1pegdLS0oTfrygBVs8lIqKkG5hDRelGzbk5HjvxNVg7RYHFYun35GIpJZ6sbceRxgCw8UNMHJWPeyYkdoytO2pw9jAXysrK0i85moiIBozMC1xszv4/p5pzc+ZL4NndUXfZt28ffK3NcLlcKC0t7dcv/za/EgxaOn1yogn3n+j+faHTzhdvag2W/i9h6X8iIkqetB8q6suqz06bVVc0rbx4EJz2FH2pdpNz0+RpAgC43e6Icvv96Zwh+jaOK7TAaYu+EnR4UTqW/iciomRL2/81njVrFgoKCuD3+3t9jPCiaU6blcMY3fjjokoIAVTvqAYA2K2x6+Ko1/eUpw0VVVwGgIiIks/wHpcf/ehHEELoHhMmJJgwAWjv7Su1aFqOPYtBSw8IEexJcWQJOLK6/x0Er2/0HhkiIiKjJaXHZdKkSdi4sasUPHMezMViscDlcsHtdsNVUABLRxugdAYwthzTVAImIqKBJykRRVZWFkaOHJmMQ1M/EEKgtLQUAUWBZfW/QPyxtuvFohnBRGMGL0RElAJJSc49fPgwRo8ejXPPPRe33HILjh8/HnNfr9cLj8eje1DqCSFgDXghGmr1LzTUAP7W1DSKiIgynuGBS0VFBVatWoX169fjhRdewNGjRzF79mw0NTVF3b+qqgoul0t7FBUVGd2k9JGKqdhGuX9f18++VoDF5oiIKAUMD1wWLFiA66+/HiUlJbjyyivx7rvvorGxEa+//nrU/ZcsWQK32609GhoajG5S2nDaszCtqEB7Pia/+/eohelSXpXWltv18/LzgZevYvBCRET9LulZs4WFhbjgggtw5MiRqK87HA44HI5kNyMtCCHwh9tL4HtmHABge/lq3L0pds2W0MUPU1GYTsfmDOa3NNQEn6tDRvbc+O8jIiIyUNIL0DU3N+Pzzz/HqFGjkn0qUxBCIEd4kSO8cfNbpZRobvfhq2/ckFKmvDCdVv33oegBqGrfvv2p7x0iIqIBy/Ael4ceegjXXHMNiouL8c9//hNLly6F1WrFzTffbPSpBiwpJf5txU7sPnYGQLB67aMV2SluFWJW/w0t/d/S3IxAIACrlbVdiIjIeIYHLl988QVuvvlmnD59GsOGDcOsWbNQU1ODYcOGGX2qAavNr2hBCxAspe9L40r6LOxHRET9xfDAZc2aNYYeL3Stor6sW0RERETml/YlbYUQmDNnjvbzQOVVAEDCVNXzfZ31XKRdt7m+vh7Tpk0b0L8vIiJKjbQPXICBHbCoFm8KBgHjCi143Lmvm72NE5xu3cuk3+XnB/971iwA/65tbmaeCxERJYkpApdMcrgxgDPuln45lzrd+qtv3D1/ky1HPy0aAL7YZXzjiIiIomDgkkIWxQsgdXk7gUAgcokFXytg7Qj+HG1aszot2t8a3FftdSEiIuoHDFxSaGbN3QBWproZOtafjQeEN/hk5OToOwnBwnNERJQSSS9AR2FsOXAXXJjqVvTMyQMJv8WrAN4OySJ0RESUFAxc+psQqC+rwo7K1aluSWz39z45ePGmVtyzsRU3vljL4IWIiAzHwCUVhIBiTYNKuLHYEhsGcsKL8jEFum27jzWizZ/GVfOIiMiUGLikkBNelItDAICJo3qwVHR/URdUVBXNCM4mikEIYO13y3Bg6Xw8Nzf2fkRERH3F5NwUEgJYa1+GtvsPocNRiJInPgAAeJUUD7GEzhwCgkFLN7V0hBDIsWfBwdItRESUROxxSTEhgJznxsP66v/Wtj28tS2FLeqkzhyy53YbtBAREfUXBi79zGKxwOVyIWBxoHnwRdr2nC924AKXvoLtxFEF4W83nJSyc7kBIiKi9Mehon4mhEBpaSkCgQAsc7YBraeB5edDCGBD+61oczjgLhiPvO+9D4s1C5OWbkhaW6SUeLK2HUcae1nyn4iIqJ8xcEkBIUTXOj72nJDtQA68yGnaD0X44BXJ/fW0+RVd0FIuDsEJb1LPSURE1BccKhoAggslKn2qm/LrORastS9jOgsREaU19riYnLpQosfjgcvlQmlpaa9W03ZYmYNLRETpjz0u6crfGn2RwzChCyW63W4EAj3LVwn20iQ3t4WVc4mIyGgMXFLNlqMVe2vKG6tttv5sPPA/1yXllGovTW1NjbZtevl0w8+zf/9+Bi9ERGQoBi6p1lnsTS75B478r5f0CzB+sUv70atE9mCoAUiiQntpVFqycG/5WmHpaENBQVcF4K++8UBRONeaiIiMw8AlHQgB4chDadlU5C3eDvnQ4YhdFm8KLlwYCAS0RNxAIIDm5ua4hzYicbdHlp8PUXUWSvYtjWgze12IiMgoTM5NI0IIWLOygtVqEVzLaNrZudj9RQuA4MKFNXV74GttRkFBQcx8FkVRYLEEY1IjEndjUoe5GrqGnHK+2I5pRY9gd4NHa3ObX0GOnbcaERH1HXtc0pgQwBtfXYsPh/63tq3J0wQA8Hg8Wm+L0+nUXq+vr8e2bduwd+/euIm7hlTMVdc0evSfwENHtE1/uL2Eiy0SEVFSMHBJRyEJu0IAI5sOxtxVSonxk0rg7ZCQUmrBjNvtjplfolbMXbyptWujvzXqvt3S1jQKLaQndIst9stQFRERZQT236cjtSej5Wtg+fkxd9NK9m/4EAAwrtCCRyuy4w4HSSlRU1evq5hbZm9A3q/+H8CgUSSLxYLcvDwAwWCoekc1hg8pNH6oioiIMg57XNKVELpeDNWk0qnwdkh4OySafNAFIIcbA/B1M/wTCATQEpLQW/tQBd4SP+wqPlc0I9jj06emC5SVleq2JVJjhoiIKBb2uJjMrOXbDT1efra9K2h56AiQO9SQErrsWSEiomRgj4sJOOHFuMLYr184Mj/2i4mw57DuPxERpTX2uJiAEMD/LbegHdmomDFDV/EWAC6uKEfZk5tS1LoofK2AzZ7qVhAR0QDEHheTyAp4MXywC67cbAwpzIcjS2iPWMMyvamqa4jl5ydtuQIiIspsDFxM4pLqhSitXwIBYNq0acjLywMAuFwuWK1dv0YJaMm7ra29nOLcGyFTuAHolitQcVo0ERH1VdIDl6effhpCCDzwwAPJPtXAExYMiIYawN8KIQSmTZuG2bNno7S0VPeWJ2vbcc/GVtyzsRVP1bYjIKUWyEQNGnwGBTfqFO7OQnShvEowmNqxYwf27t3L4IWIiHotqTkuu3btwm9+8xuUlJQk8zQDV5x6LkKIqAsjNjTpp0cvrW7Xtk07XIs/3FWhf8MvSwyr3xJrCrda6C5YZ6YRgUCg74s6EhFRRkpaj0tzczNuueUWvPjiixg0aFCyTjPwhQcDvlYggR6L0EBm97FGtPqU6KX+DajfEsoJL8rHFOi29aTODBERUTxJC1wWLVqEq6++GvPnz4+7n9frhcfj0T0ojuXnAy9f1RW8SJnQcM8Nv63Rl/oHgsM7d6w3dCq0EMDa75bhwNL5EesWMdeFiIh6KymBy5o1a7Bnzx5UVVV1u29VVRVcLpf2KCoqSkaTzC088bUz1wVSAi9fCevPxvf4UJ+d7KqaWy4OwQlv0uq3CCGQY8/SrVsEANXV1cx1ISKiXjE8cGloaMD999+PV155BdnZ2d3uv2TJErjdbu3R0NBgdJPML1riq68V8LUADbW9OuSv51iw1r6s3+vNqbOeTp1ujLkIJBERUSyGJ+fu3r0bp06dwtSpU7VtiqJg69at+PWvfw2v16tLzHQ4HHA4HEY3Y+AJz3VZfj4wcjKAznwScQh1MtjzMnFUPj450RT3cA5r/xTJtVgsKHAVQF1w8RcHLVqvz7TDtXjj3kouD0BERD1meI/LvHnzcODAAezdu1d7lJeX45ZbbsHevXs5m6QvwoeMTh4A0JlPYl+GTxy348X/ZcGa8JlDKSSE0M0qCx2q2n2sEW1+9roQEVHPGd7jkp+fj4suuki3LTc3F0OGDInYTgmKOz0ayIEXDquI2pMyJt+C450zjMYVWmDvx9KD7FEhIiKjcK0is4lRK0V7OcYso0crsiEAVMyYgfpdNRABbxIbqee0WVFePAh1x84A0AdRUkooigKLxcIAh4iIutUvgcvmzZv74zSZQx0yaggutihHToboHDaatv+/4Nz2OcrFUi3nZVpxIRxWX+csH2u/BwhCCKy9dyba/AoURcGOHdW4d2MwuNq3bx98rc1wuVwoLS1l8EJERHGxx8WM1CEjf/DLX0gJVJ0FAMjxfA505ry0wQE8fAT27Bxs3769/9up9vzYcrSp0YoidIV6mzxNcGQJuN1uVtQlIqJuMXAxKyEAe27wZ19L1Jdz4AVsFij+VliUdgQsDkBKWJR2WJX25LdRzcMpmmF4gTsiIspMDFwGupevgvXLA7gUgLtgArI+z8elUVZuNkzYMBaAroJ5aqBFRETUSwxcBrovD2g/ujyfAeErKhi8RpFuGMvXGjH7yWKxIDcvD2pdFyIiokT046RYSic7KldD+WFDcoZw1GGsKLOfhBCYMoWrhRMRUe8wcMlQijU7GFww74SIiEyEgQulDa4aTURE3WHgQmmDq0YTEVF3GLgMBOFrGHUuvmgGXiW4WrQarKj1XIiIiKLhrKKBIKwgHUIK0qW7xZuCbb5wZB7uvygAB+vPERFRHAxcBopuCtKlk1yHDROG2vHZ1z5t26cnm3HvyeACkLNnxx4qklJqPTJc34iIKPMwcKH+EVL+32Kx4N0H56HF64eUwE0vfoRPTgQLzBxuDKDNryA/K/LWlFKivr4eHk9wX65vRESUeZjjMhClY87L8vOBp0YDL18VXHbAYkG+04GCHAf+vHgWapfM7fYQgUBAC1oA5sMQEWUi9rgMROmS89LD8v/qqtVERETdYeAyUKVDzks35f/jUXNZmMdCREShGLhQcoUGUAlQc1mSkcfCBF8iIvNi4EJpx+fza7ksah6L1WqFlBLejq4ZR70ZXWKCLxGRuTFwof4XMsMo2lpJdbt2wZGl397R0YEbflODPQ1dq0p3N3U6mlgJvlYrc2yIiMyAgQv1PzXXpWhGzNWppZTwKcGft9fsQltbmy5oAYJTp5vb/ch3ClgswQlyzIshIhrYGLhQ/+jhDCMAkACe+8SG+gZ355ZWjMnvmrn/00udeHhrGwCgtqYGjiyBgoICAIibFyOlhKIohn80IiLqPwxcMoEtB7JoBkRn0OAuuBD5g4ZrvRT9opsZRrq2OPJQ33BK9/rxpq56LQ5rZG9Kd8M/4bktRERkTgxcMoEQEHesh/S1IBAIIM+Wg1Krtf+HU+LMMApty71/7gpaNn//Ulz231vjHjZ0WMluRdTPFZ7bkpeXh+bm5kRaT0REaYCBS6YQAsKRh3RNQXXarCgvHoS6Y2e0beXFgzBmSJ5u+7hCi242kQTwZG07jjQGtNcfrcjuel1KtPkVKIoCb4eE3QpccsklsFqt2LZtW798NiIiMg4DF0oLQgisvXcm2vxdOShOm1Xb3tzuQ/WOatit0HpXAKDJJ7WgBQgm7KqvSynxbyt2YndIMDQm34I/VUgIpQNSSibxEhGZDAMXShvB0v+Rt6S6vWuKdNcUaDVJN5o2v6ILWoBgrkzJjzcC6OqdkVKi1deh7aMGTERElH4YuJDp2K3AtOJC7D7WqG0bk2/RJfCG++XcHPx3Xbtun8ONAXgV4Ibf1mLP8a5jlRcPwtp7ZzJ4ISJKQwxcyBQsFgtcLhfcbjcKCwux9p4paO8IQFEUVO+ohgRw78bWmO/PtgLLKrNRPqMSXgUo/0mw18WnQBe0AEDdsTNo8ytRe3+IiCi1+JeZTEEIgdLSUl2BuRy7BVJaMXxIIU6dbtT29SpAU5sPWVlZEcfIsWfBqkSvthtaH4aIiNITAxdKPSmD9V1UMZYCEEJElOZXA5rmdh+wMdiLsnhTK7DpQ4wt7P729oYEMdHqw3Tf9K4FG1Ws3EtElDwMXCi1fC3Ay1cCJw90bYuzFEA0QgjkZdsjplMfbeyI866gvvSwxCpqx4UbiYiSx/DSqS+88AJKSkpQUFCAgoICzJw5E++9957Rp6GBYvk4fdACdC0FkAB12vTHy67Azh/MibqPy+WCxWKB02bFtOJC3Wvh9WF6IryonUqt3EtERMYzvMfl7LPPxtNPP41x48ZBSonVq1fj2muvRX19PSZNmmT06ciMoq1bNHIycOtbwUCml4QQyHXYogYNFTNmwJWbrfWC/OGuCnywuasAXXh9mERVVlYCAKqrq3v1/vAhJw43ERFFZ3jgcs011+ieP/nkk3jhhRdQU1PDwIWCQtctUtlyIntZwnNf4omRF6OyWvWBgBAipC6MdkLtJ0VRIGXsei7qgo3qcgNqrkysonahgUl4UBJtyInDTURE0SU1x0VRFKxduxYtLS2YOXNm1H28Xi+8Xq/2nIvgZYg46xYBiJ77Ek+CeTHd2bGjGi5XAUpKSiCE0BWlCwQCqKnbA4+nCU/VdtaG2agvahcqPDAJD0qiDTlFWyiSiIiSFLgcOHAAM2fORHt7O/Ly8rBu3TpMnDgx6r5VVVVYtmxZMppBZpbokJGaF2PPRa7DhglD7fjsax8AYMJQO3IdtoQO92RtOxqaWoE3TwIIFrz7w10VACIL1oVSlxyQUqKprSsgd7vdWqASLyipqKhAbW1tQm0lIsokSQlcxo8fj71798LtduONN97AwoULsWXLlqjBy5IlS/Dggw9qzz0eD4qKipLRLEp3sXJfbo/Tk+JrBZaf3/UzAIstB+8+OA8tXj8AINdhg8WSWB56Q1gV3t3HGvHuB8GcmD3H9cNXE0cVYPUdF2P6k8FeFwng6p9/iEOn/do+oT0xPgVo9XXAapVw2vTBC3tYiIjiS0rgYrfbcf75wS+TadOmYdeuXfjlL3+J3/zmNxH7OhwOOByOZDSDzCZW7ktPh3/UAKZoBix3rEd+tj14rI6QadFxjpeblwdAH5SEFqVbvEn/2nNzczD30krkZdt1i0P6FOiCFiDYE+PxoWvZgc6hpfLiQVhz18U9+3xERGT8dOhoAoGALo+FKCY190V9dBe0qL00oRpqunJknhqtf7x8FSCltoSAyuVyofLiabpp0uMKLRjiFJgwJHKYaVyhBWcPcyEv2x43gfanlzq1n+/f1BqxnpK6vICUEt4OiVafAm+HhJTRq/sSEWU6w3tclixZggULFmDMmDFoamrCq6++is2bN2PDhg1Gn4pI30sTOmzkbwMaouSKdObCCHuutoQAAFiEgOhowxt3TEGbPwApJRzZORAWCy6bI9DeEdxPnR3ktFlhtUafdRRajXf0kAKMK/TicGNXwDIm34K1981BRdWmzmMGc2qONAaAjR8CCAZGs2dLbeVqtZ29GfYiIhpIDA9cTp06hW9/+9s4ceIEXC4XSkpKsGHDBlx++eVGn4ooqLsZSg8dCf5XDWq0t3UuISBlsHemoRYCQI66Q8hMpRx7z4OF0Gq8paVT8N40oQ0lVe+oht0K5IRUu2vzK8GgJcThxgBOt/hw+6o6fHKiSds+Yagd7z44j8ELEWUswwOXl156yehDEiXO39L1sz0n9n5AsLcmTu9M3KCok9NmjVhyoLx4EHLsWRBCID8rC4qiaLVjFCV6Zd0P/nMW5v18OwBoPTKhPvvahxavH/nO6HlhLGRHRAMd1yqigemXU2K/1jn7KGqibozeme6oSw6EJumG1n4JV1tTE3X74BwbxhVaIoaW/mtWIe5575u4bWAhOyLKBAxcaOCINp26aEZkVd6Q2Ue4Y73+GN31zsQhhECOPfY/KTUh2O1267a3haw1IITAoxXZuuUHLptdCV8AwHsb455fLWSnVvMFgFOnG9Hc7us2iZiIyCwYuNDAEW86dbSgpqeLOUZbeiCRadpa8wRKS0vh9/uxaesObftl/701Yj9HyL/MrKws+HzxV7oOXYJAS/RVbdyI8uJBWHvvTAYvRGR6DFxoYImVqBtr9lF3QhJ3dXq5xIAQAjabDcMGuzCusF03JDSu0AKnrfukW0UJQFEULX8ldIjIpyAi0RfomnYdr0eIiMgM+FeMMkd3s4+i6WZadcLHQzB4KSsrw58m+bB5W9dq0nZrsHcldDjJ5XJFzCDauqMGDitQ4CpAxbQySCmjrvH13NzgsFd44TwiIjNj4EKZzZfAl3qsxN1eDCUJIZCVlRVlhWro68t09qqEBi9dgUgrptXt1NZQAoCKGTO0WjCOKKsHSCl7nECs7h9rVWsiolRg4EKZLZHZQ9ESd/swlBSerKv2rmj1ZULk2LMiplsDwTWU1Mq7PkVf/C5aU/9txU7sDjnGxFEFnbkvweehgUx3q1oTEaUCAxfKPNESdYHoM5Di8XXmy/RyKElN1u1Jj0bodGtFUbBpa7XW87J3376QyruRtV9UbX5FF7QAwCcnPJi0tKuqdWgSrzpLSRVvVWsiov7CwIUyT7TZR0DiM4XCe2t6UQMmWu9KvH1z7FmQ0ophgwugLgh5xt0SkZA7rbgQdqtPN61aUbqefPToPHxn5Ue6qrxAMIlXnT5NRJSOGLhQZuppom5oBV4gfm9N7lB9MOTr5SrX3RBCoKSkBHjzZMRrtUvmIt9ph90CbN++HUDX0FFtTVfP0JHPDuLhEgW+ScHhL6/SlTtTvaMaw4cUBs9BRJRmGLgQxRNegTeR3prQnpeRk4HbQ3Je+hjIxBpSyrFbkWPP0vWuRNPkaYIjK1gvJi8vDxdMvAjY9AGAYBBz6nQjOjq6aseoOTStvg5YrcFgKDwfhksNEFF/YOBCFC5eBV4gfm9NrB6ZkweAqrP0xwtN3jWoyF08U6dNBTZt122rrKyEzWbTzTRSe16m/rUO/3FhMEjpyqHpqt6r5sNIKVFTtwdNnq5hp2GDXSgrK4savDDIIaK+YOBCFC5eBd5E3yslsPKqYOASqqEGaPk6OFMp1j497KUJnUkUb9VoqyUyl8ZqDfaaRFskcs/xRvguCAZrsYrafdXkxcKXP8KnJ/W5MuMK2/FeiYKsLP2fGK6nRER9xcCFKJreFKuL9d57tnUFMqFVe7tL4g3vpQkNZEKybh/e2tZ16t61WJu11Nzu081Y8oaNOIUXtbv4qQ+iHu9wYwBtfgX5YYFL+EwlgLOViCgx3dcXJ6K+UQMZe24wgbdoRvT9Rk4Glvwj+Bg5OfJ1NZB5ajScPy1CuTike7lcHILzd98CpNRqxISyWOP/cxdCIC/b3jljKWjxplZd5d1LL5mBfHtweYJQY/ItePV/j0TtkrnaNkUJQMrYdWUqKipivkZEFAt7XIj6U6zkXkA/FBTaSxNlKEkIYK19Gdrg0LY54YX4AoC/FcKei9LSUjS3+7S8lNBVqGM3T6BiWhmm1e3E7mONutfKiwchL9sWcwVru90ePF+nrTtqMGxwAUpKSpBjz9LWVfJ2BIMZrwJ4OyTsvexoCa8CDHRfCZiIzI+BC1F/68kwVLzhJnUXAFot3ygLR4bXiAlfhTraOkhAME/mjXsrowYF6vvcbre2grXL5YLdbo+xNEEr8OZJlBcPwmt3Xowbf1uDPQ2dn6NzaYJxhRbMnh27ZyYaKWVEFWAgWL9m7T0z4+b69AWDJaLUY+BCZAaJ5NyE1I9xSonyMQWoO96VVzKtqADzKkuCibkxEpDVYnfRhFb7BfSzgmItTVB37Aze+3BbV9AS4nBjAF952pHntAXbbLNqScOxRKsCDASXQKjdXY8Z5VMNDybiBUt/uKtCC9wYxBAlFwMXooEmpOdFAFgrgTZHyJDSKS/Es1He14P1lYD41X5Dk3yrd1TrCtuFWnntCEycOBEVVcElCmY+u0V7bVyhBU/NG4qpU6fq3hPa29EaMk4VnjDscXuSkuwbL1j6YPM2OLKENkMKAKd8EyUJAxeigSBW/RgE45AceLs/RugUbfWYoV+24bVmYkzPVntrgitfRx8CunjqFDhtVkwYasdnX/t0rx1uDOAbdzO2bdumFb6TAJ6qbcfxpshp2dFWwe6NROrL7PzBHOzatSsiKFNnSO3bt083eyovLw9lZWU9OrbaFg5JEUXHwIVoIIiX9NudWFO0Q6dfR6s18+g/Yw5fqbOaTp1u1LbZc/Kgrq+kDqu8++A8tHj9AIK9KGoPjFcBJGTMYEU1rtACuxXIzutauwnoWpeppz0dPakvEzpDav+eXbqAqWLGDOytq9XOHT7lu7k5GIjFOnZoOxRFwQ2/rcWe44261yaOyseauyq0WNFisWhJz0SZhIEL0UDR29ozPa32m1BTRMSspnv/fCpiP4vFgnxncBjLau1aYiDa8BIQ+eWt9kK0dwR0azdVV1cDQI+HbnpSXyb0/eGsnVPNpZRo9SnazKmKGTNw+NODaGnRr3nldrvh9/thtVq1tqjB01ffuLHneOTn/+REE0p+vFG3LXQ1b6JMwcCFKNP1tNovoO+FseVEvq47bLAuTHiybnnxIG2GUqho1XsBYOKogs4v59jDJUKJPiQVa+gmXrXeiooK1NbWRmzX7TNjRjBYCVkCQUoZXBphw4ddO278EBNHFWDNXcH2K0oAtTU1sFu7gquCggKMnzQZgUAAX33j1hX9e25uDuzW2MNkdcfOoM2vxEykJhqIeLcTUY+mXwNIeP0kNVk3NF8jZvARZd94+8dSOr0CDqtAbU2wB6mjoyOhar09Seq1Wi26/Vp9Cpp80ZdG+OSEJ6KnZFyhBY9WZAMAfvCXL3Hk9RNRz+OwAo4sgWWV2bA58zBlSgkUJYCtO2pi9kqF5+oATA6mgYWBCxFF6suSBxGHij21ui/7xqLmyaguPFiL+y+SEADKp0/H/j27dHkrbX4FitI1vBOv2m9Pz6n2lDz3sRWfnGiK2P9wYwBl02egtqYmarADBHum5l12sdZWNfhQFCVmQnK0XB2A60HRwMLAhYhML9YwEwB8erIJ96rpLxu3YEx+sLejxduBm178CJ+c0H/JhwY6TW0+rVqwougDjFjnnDqmEPl2H4QQ+OOiSvhC3tbqU1D+k2Dvi1eRumGh2iVzsXdXcIiq8pJK5GXbEwo0pJRobvfhq2/cuu12a1cPk8ViYW8MmR4DFyIyvfBhJkVRsGNHddTckONNAdy7sVWXnxJKH+h8qAU64SsmhJ5TURRU7wjmrMyuLMNHH32k7ZMTY02D8F4ah1V0TiFHwrOFAoEA/m3FzoiZSAC09je1+XDw4EG0NDfDboV2/HTpjTFiiIvDZJmBgQsRDQihw0xSWjFiSCGWVTZqAUd+QQF+srMlYuhG/WIHoifBaoFOCHVJAfWcitIVdKhBSzSxemnGFVpQv6umV1+wiqKgek991KBF1/6NXUnDao6NECJqvo86hBYeCOQ6bD1eTiGRIEId4nK73boAscClX+uqu/N1N0wWrU3x2tUX/XmuTMPAhYgGHHU6dvgU6D+VS9TurofH3fXlFtr78IsFIzB+UnBlbkUJ4KYXayMCnfLiQRF5OGrdGre7a5gm2lpQob00Ukrs378fHrcnogckkbWWNm2t1j1/bm4Ohg0uwOTJJbjhNzURQ2FAV46NWnsmOI27o/Nn4PoVO6O+b8JQO959cF7c9qnH2rdvH5o8+muXmxdMMNaedwZCgUAAbrc7OCtLl/MTXOtKXVYh3lIQ0aa0A/phMjWwUQsbxmpXeHDRkwTx8EClvr4ezc3NEfulSw+XmTFwIaIBKdrSBEIIzCifGrMmS/gX1p8Xz+7RLKdYgVKs2VNq4BOtLd39H7nFYkGBq6vgXvjsormXduXH/HnxLLT6OrRzhBb5C609E63gXTSffe1Di9ePfKcjao9C98dqBd7uGqJTAyEA8CnRZ2UBXcsqDB9SGPNLP3Tl8YoZMwBAm1mmtlUNWqIGSG9HHzoEul+8M1aPkSo0MI03o416hoELEWWUeGstRds3kRlRiX4Z9fY9FdPKMK1uJ3Yfa9S9Vl48SJfUK4RArsOmvR5a5E/lUxA10LhwZD7uv0iBADCpdCpmLd+uvRbri9qrIGrxvFg++9oHT6s3Ig9o13/Nw5HPPsZX33h0gVmsL/2ugEm/8rhq4sfVWHNXBbwdwYToWAFSLOGLdwYCAa3iMxDsnTv1jTtmvZ1pxYV49Y5y7Ny5M6HzxtPbfJ5kDGGpx1QrVieb4YFLVVUV3nrrLXz22WdwOp2orKzEM888g/Hjxxt9KiKijGSxWPDGvZV9qnmjVvgNndn00reGoaM9WOXXblW0Y+Vl23XvjT2000UdsiopKYnIL2lu82sLa9bW1Gj5QapcRxZmlE8NVl7eFNkTEr6WU6tPidtjFK3qMADU/d/5cNr0M6327duPls4hntBFQtXFO4UQWPDfG3HotD/ieLHsPtaIxvauKfetvg5YrbLHv69owUa0oajuhqFi5QH15L3x2qYeM7xCdLIYHrhs2bIFixYtwvTp09HR0YFHH30UV1xxBT755BPk5hpTF4KIKNP1teZN+KwmAOhob4kIIlwulzasBHStzB2r4B4Q7GH4l3mxc1J6ksMT3hsVDLBkzGnsqufm5mDupZUAEHNmGRDsnRqSGznl/JKK8pChtY6IwKnF648btIRWeg6d/q673p0z2robggKCgcGePXvw9ZnonzfeMFR4wNPR0RExXV516nQj3C3tut+12gsTL8CKlVuUTIYHLuvXr9c9X7VqFYYPH47du3fj0ksvjdjf6/XC6+1auba/LwARUaaIV+9GXbAy2krWze1dK3hHC3jq/u983XBPdz0Joa+VTq9Ajt0aDIg2Rh5bpQ0ZxZjGrn6GfDu0gC67s+pw2XR9zku8OjmhAZPVGr8Y4c4fzEGes2soLnzhy3jXGwj2xFR/tBszp0/VbQ8dtlEUBT98/1TMIHHiqHy8ckc5PupcpkLtzcnOsmDv3r3ad2r03J4wYUNsqp6uiVVRURH3daMkPcdFzbIfPHhw1NerqqqwbNmyZDeDiCjjhde7Cf0/cjXYiJbr4LRZMa7QgsNRvvSmFRdG7bnoqWiBUOh5Y33xq9PYQ89qtwKFhYW6QntCCG32VG/r5ADBHp+mNh/aQpJ68pw2bZHQaGLNIgsdgvrG3YyNm7bq3qdOAxdCoKnNFzfY+OREE8qejOzNCc1RUtufaG6PKtqaWNGqTkdLTE4GIXtT37qHAoEA/vVf/xWNjY3Yvn171H2i9bgUFRXB7XajoKAgWU0jIqIeUhQFW7dujfrFNO+y2cjKSuz/gaWUuH7FzqgBSfj/3avTq9UvfZU6RBKth0jNqdm7d69uijqQWC5Hq68DEx/fEPP1A0vnxw1cwqmBYquvA5OXxe45iqV2yVzkO+2dx4o9bb07u/5rHnId+iAkdEhJXQw0NMAKzQeSElFLBQDAsWe+lfTv76T2uCxatAgHDx6MGbQAgMPhgMPR8188ERH1L4vFgsLCwqhBQG+m9cZaUBOIHGZSZ0bFmsYeb9p5+BT1ePtHE6/HZ8JQu27GVk+ow1B52Za4Q0jRjCu0YEiuXRck/nnxrIjeHInYq4kDwcBwaJ4j7jVQFKWzd6qrX0PN1UkHSetxue+++/DOO+9g69atGDt2bI/f5/F4tEJO7HEhIkoPmVpOX+3xCf/siVQRjnXc8MAtNAAJN2ywC2VlZXFnDKltDD12b4rpKYqCbdu2QUqJX31qjzljK3S4rsBVgHPOGYvRw4eYr8dFSon/+I//wLp167B58+aEghYiIkpPvak5MxCE18Ix8rjRZoUl2rMUerzQ309+gsN3sY75Hxf64LsgR7e9YsYMWK0WXRBksVjQ1BQ5dJQMhgcuixYtwquvvop33nkH+fn5OHkyuFqZy+WC0+k0+nREREQDRjoEiKFLWAghEJIOA5fLBVdudkp72gwfKor1YVauXInvfOc73b6fQ0VERESp1ZsKu/31/Z2UoSIiIiIyr3To+Yml95lFRERERP2MgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkYHrhs3boV11xzDUaPHg0hBN5++22jT0FEREQZyvDApaWlBVOmTMHzzz9v9KGJiIgow2UZfcAFCxZgwYIFPd7f6/XC6/Vqz91uNwDA4/EY3TQiIiJKEvV7W0qZ1PMYHrgkqqqqCsuWLYvYXlRUlILWEBERUV+cPn0aLpcraccXMomhkRAC69atw3XXXRdzn/Ael0AggG+++QZDhgyBECJZTes1j8eDoqIiNDQ0oKCgINXNSQleA14DgNdAxevAawDwGgDBEZMxY8bgzJkzKCwsTNp5Ut7j4nA44HA4dNuS+YGNUlBQkLE3p4rXgNcA4DVQ8TrwGgC8BgBgsSR3wjKnQxMREZFpMHAhIiIi0zB8qKi5uRlHjhzRnh89ehR79+7F4MGDMWbMGKNP1+8cDgeWLl0aMbyVSXgNeA0AXgMVrwOvAcBrAPTfNTA8OXfz5s2YO3duxPaFCxdi1apVRp6KiIiIMkxSZxURERERGYk5LkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTyPjA5fnnn8c555yD7OxsVFRU4KOPPoq574svvojZs2dj0KBBGDRoEObPnx+x/3e+8x0IIXSPq666Ktkfo08SuQarVq2K+HzZ2dm6faSUePzxxzFq1Cg4nU7Mnz8fhw8fTvbH6LNErsNll10WcR2EELj66qu1fcx0L2zduhXXXHMNRo8eDSEE3n777W7fs3nzZkydOhUOhwPnn39+1FmDiVzTdJDodXjrrbdw+eWXY9iwYSgoKMDMmTOxYcMG3T4/+tGPIu6DCRMmJPFT9E2i12Dz5s1R/y2cPHlSt5+Z7oVEr0G0f+tCCEyaNEnbx2z3QVVVFaZPn478/HwMHz4c1113HQ4dOtTt+9auXYsJEyYgOzsbkydPxrvvvqt73Yjvh4wOXP7whz/gwQcfxNKlS7Fnzx5MmTIFV155JU6dOhV1/82bN+Pmm2/Gpk2bsHPnThQVFeGKK67AP/7xD91+V111FU6cOKE9Xnvttf74OL2S6DUAgiWtQz/fsWPHdK8/++yzeO6557BixQrU1tYiNzcXV155Jdrb25P9cXot0evw1ltv6a7BwYMHYbVacf311+v2M8u90NLSgilTpuD555/v0f5Hjx7F1Vdfjblz52Lv3r144IEHcOedd+q+tHtzb6Vaotdh69atuPzyy/Huu+9i9+7dmDt3Lq655hrU19fr9ps0aZLuPti+fXsymm+IRK+B6tChQ7rPOHz4cO01s90LiV6DX/7yl7rP3tDQgMGDB0f8PTDTfbBlyxYsWrQINTU1eP/99+H3+3HFFVegpaUl5nuqq6tx880347vf/S7q6+tx3XXX4brrrsPBgwe1fQz5fpAZ7OKLL5aLFi3SniuKIkePHi2rqqp69P6Ojg6Zn58vV69erW1buHChvPbaa41uatIkeg1WrlwpXS5XzOMFAgE5cuRI+dOf/lTb1tjYKB0Oh3zttdcMa7fR+nov/PznP5f5+fmyublZ22a2e0EFQK5bty7uPj/4wQ/kpEmTdNtuvPFGeeWVV2rP+3pNU60n1yGaiRMnymXLlmnPly5dKqdMmWJcw/pRT67Bpk2bJAB55syZmPuY+V7ozX2wbt06KYSQf//737VtZr4PpJTy1KlTEoDcsmVLzH1uuOEGefXVV+u2VVRUyHvuuUdKadz3Q8b2uPh8PuzevRvz58/XtlksFsyfPx87d+7s0TFaW1vh9/sxePBg3fbNmzdj+PDhGD9+PL73ve/h9OnThrbdKL29Bs3NzSguLkZRURGuvfZafPzxx9prR48excmTJ3XHdLlcqKio6PF17W9G3AsvvfQSbrrpJuTm5uq2m+VeSNTOnTt11wsArrzySu16GXFNzSgQCKCpqSnib8Lhw4cxevRonHvuubjllltw/PjxFLUweUpLSzFq1Chcfvnl2LFjh7Y9E++Fl156CfPnz0dxcbFuu5nvA7fbDQAR93ao7v4uGPX9kLGBy9dffw1FUTBixAjd9hEjRkSMzcbywx/+EKNHj9b9Eq666ir8z//8Dz744AM888wz2LJlCxYsWABFUQxtvxF6cw3Gjx+Pl19+Ge+88w5+//vfIxAIoLKyEl988QUAaO/ry3Xtb329Fz766CMcPHgQd955p267me6FRJ08eTLq9fJ4PGhrazPk35cZLV++HM3Nzbjhhhu0bRUVFVi1ahXWr1+PF154AUePHsXs2bPR1NSUwpYaZ9SoUVixYgXefPNNvPnmmygqKsJll12GPXv2ADDmb62Z/POf/8R7770X8ffAzPdBIBDAAw88gEsuuQQXXXRRzP1i/V1Qf89GfT8YvlZRpnj66aexZs0abN68WZecetNNN2k/T548GSUlJTjvvPOwefNmzJs3LxVNNdTMmTMxc+ZM7XllZSUuvPBC/OY3v8ETTzyRwpalzksvvYTJkyfj4osv1m0f6PcC6b366qtYtmwZ3nnnHV1+x4IFC7SfS0pKUFFRgeLiYrz++uv47ne/m4qmGmr8+PEYP3689ryyshKff/45fv7zn+N3v/tdCluWGqtXr0ZhYSGuu+463XYz3weLFi3CwYMH0yYnJ2N7XIYOHQqr1Yovv/xSt/3LL7/EyJEj4753+fLlePrpp/GXv/wFJSUlcfc999xzMXToUN3Ck+miL9dAZbPZUFZWpn0+9X19OWZ/68t1aGlpwZo1a3r0hyed74VEjRw5Mur1KigogNPpNOTeMpM1a9bgzjvvxOuvvx7RVR6usLAQF1xwwYC4D2K5+OKLtc+XSfeClBIvv/wybrvtNtjt9rj7muU+uO+++/CnP/0JmzZtwtlnnx1331h/F9Tfs1HfDxkbuNjtdkybNg0ffPCBti0QCOCDDz7Q9SiEe/bZZ/HEE09g/fr1KC8v7/Y8X3zxBU6fPo1Ro0YZ0m4j9fYahFIUBQcOHNA+39ixYzFy5EjdMT0eD2pra3t8zP7Wl+uwdu1aeL1e3Hrrrd2eJ53vhUTNnDlTd70A4P3339eulxH3llm89tpruP322/Haa6/ppsPH0tzcjM8//3xA3Aex7N27V/t8mXQvbNmyBUeOHOnR/8ik+30gpcR9992HdevW4cMPP8TYsWO7fU93fxcM+35IKK14gFmzZo10OBxy1apV8pNPPpF33323LCwslCdPnpRSSnnbbbfJRx55RNv/6aeflna7Xb7xxhvyxIkT2qOpqUlKKWVTU5N86KGH5M6dO+XRo0flxo0b5dSpU+W4ceNke3t7Sj5jdxK9BsuWLZMbNmyQn3/+udy9e7e86aabZHZ2tvz444+1fZ5++mlZWFgo33nnHbl//3557bXXyrFjx8q2trZ+/3w9leh1UM2aNUveeOONEdvNdi80NTXJ+vp6WV9fLwHIn/3sZ7K+vl4eO3ZMSinlI488Im+77TZt/7/97W8yJydHPvzww/LTTz+Vzz//vLRarXL9+vXaPt1d03SU6HV45ZVXZFZWlnz++ed1fxMaGxu1fb7//e/LzZs3y6NHj8odO3bI+fPny6FDh8pTp071++friUSvwc9//nP59ttvy8OHD8sDBw7I+++/X1osFrlx40ZtH7PdC4leA9Wtt94qKyoqoh7TbPfB9773PelyueTmzZt193Zra6u2T/jfxR07dsisrCy5fPly+emnn8qlS5dKm80mDxw4oO1jxPdDRgcuUkr5q1/9So4ZM0ba7XZ58cUXy5qaGu21OXPmyIULF2rPi4uLJYCIx9KlS6WUUra2tsorrrhCDhs2TNpsNllcXCzvuuuutP3HqUrkGjzwwAPaviNGjJD/8i//Ivfs2aM7XiAQkI899pgcMWKEdDgcct68efLQoUP99XF6LZHrIKWUn332mQQg//KXv0Qcy2z3gjqlNfyhfuaFCxfKOXPmRLyntLRU2u12ee6558qVK1dGHDfeNU1HiV6HOXPmxN1fyuA08VGjRkm73S7POusseeONN8ojR4707wdLQKLX4JlnnpHnnXeezM7OloMHD5aXXXaZ/PDDDyOOa6Z7oTf/HhobG6XT6ZS//e1vox7TbPdBtM8PQPfvPNrfxddff11ecMEF0m63y0mTJsk///nPuteN+H4QnQ0kIiIiSnsZm+NCRERE5sPAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZxv8PlCOWE1nGswQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "f26a6319", + "metadata": {}, + "source": [ + "That little \"wiggle\" happens somewhere between 0.5 and 1 times the \"Nyquist\" frequency when data are mostly evenly sampled as in our case. The solution is simply to use a smaller sampling time while maintaining the same maximum frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e0fece49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNJklEQVR4nO3deXxU5aEH/N9zJjOTyTIT9qWGiIrsIYFgSASRF1y41qv3vnW7tkWtCy1WvVar9FYxdQkut622vqJeC9xWRalF78cqVFDCHgiETRTBIkQFUSAzWWcmc573j8mczMnMZD2TzMn8vp/PfMw5c+acZw5j5pdnFVJKCSIiIiITUHq7AEREREQdxeBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESm0engsmHDBlx55ZUYPnw4hBB4++23dc9LKfHwww9j2LBhcDgcmDNnDg4dOmRUeYmIiCiJdTq41NXVYdKkSXj++eejPv/UU0/hueeew5IlS1BeXo709HRcdtllaGxs7HZhiYiIKLmJ7iyyKITAqlWrcPXVVwMI1rYMHz4cv/jFL3DfffcBANxuN4YMGYJly5bh+uuvN6TQRERElJxSjDzZkSNHcOLECcyZM0fb53K5UFhYiK1bt0YNLl6vF16vV9tWVRWnT5/GgAEDIIQwsnhEREQUJ1JK1NTUYPjw4VCU+HWhNTS4nDhxAgAwZMgQ3f4hQ4Zoz7VWWlqKkpISI4vRZcJqx4h73wIAHPvt/wvp9xp6PBERUV9XVVWFs846K27nNzS4dMXChQtx7733attutxsjRoxAVVUVnE5nj5UjEAigbP2HuKc8uH300Cdw9RvQ5mtqPWdQ/Mf9AIAv/3kQGc5+8S4mERFRQvJ4PMjOzkZmZmZcr2NocBk6dCgA4JtvvsGwYcO0/d988w3y8vKivsZut8Nut0fsdzqdPR5c0tPTAKgAgMzMzHavL2RA+zkz04nMHiwvERFRIop3Nw9DG6FGjhyJoUOHYt26ddo+j8eD8vJyFBUVGXkpIiIiSkKdrnGpra3F4cOHte0jR45g9+7d6N+/P0aMGIF77rkHjz32GEaNGoWRI0fioYcewvDhw7WRR0RERERd1engUlFRgVmzZmnbof4p8+bNw7Jly/DLX/4SdXV1uP3221FdXY3p06dj9erVSE1NNa7URERElJQ6HVwuvvhitDX1ixACv/nNb/Cb3/ymWwUjIiIiao1rFREREZFpMLgQERGRaTC4EBERkWkwuITr+rJNRERE1AMYXEKkRO7eRb1dCiIiImoDg0uIvx6ZtUdbtq1pvVcWIiIiiorBJRauTE1ERJRwGFxisFp7ff1JIiIiaoXBJYZ4LxJFREREncfgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgYhCuckRERBR/DC6a7kWP65fugeQijURERHHF4AIAUkJZdkWnX+awKhgnvgAAHDhRhwZ/wOCCERERUTgGFwDw10N8s6/TLxNCYKWtJA4FIiIiomgYXLpJtzAAm4qIiIjiisGlO6xpqMnIadn2N/ReWYiIiJIAg0t3CIG9uWwqIiIi6ikMLt3FVaSJiIh6DIMLERERmQaDCxEREZkGg0sYjgkiIiJKbAwuzaQErvEt6u1iEBERURsYXJo1wI4D8mwAwLhhmXBYLb1bICIiIorA4BLFitsKIThaiIiIKOEwuETBzEJERJSY4hJcampqcM899yAnJwcOhwPFxcXYsWNHPC5FRERESSQuweXWW2/FBx98gD//+c/Yt28fLr30UsyZMwdfffVVPC5HREREScLw4NLQ0IC33noLTz31FC666CKcd955eOSRR3DeeefhhRdeMPpyhpBcHJGIiMgUUow+YVNTEwKBAFJTU3X7HQ4HNm3aFHG81+uF1+vVtj0ej9FFapeqqrptRWHXHyIiokRk+Dd0ZmYmioqK8Oijj+Lrr79GIBDAX/7yF2zduhXHjx+POL60tBQul0t7ZGdnG12kTuOIIiIiosQUl6qFP//5z5BS4nvf+x7sdjuee+453HDDDVFrMhYuXAi32609qqqq4lEkIiIi6gMMbyoCgHPPPRdlZWWoq6uDx+PBsGHDcN111+Gcc86JONZut8Nut8ejGERERNTHxLUzR3p6OoYNG4YzZ85gzZo1uOqqq+J5OSIiIurj4lLjsmbNGkgpMXr0aBw+fBj3338/xowZg5tvvjkelyMiIqIkEZcaF7fbjQULFmDMmDH48Y9/jOnTp2PNmjWwWq3xuBwRERElibjUuFx77bW49tpr43HqhMb5YIiIiOKLE5Z0g6IoSE9L17ZbzwdDRERExmJw6QYhBCZOnNjbxSAiIkoaDC5ERERkGgwuREREZBoMLkRERGQaDC5ERERkGgwuREREZBoMLkRERGQaDC4ApFRRDy70SERElOjiMnOumUhVxXVPvoGd3iW9XRQiIiJqR9LXuDTU12Kn9yxte8qILDisll4sEREREcWS9DUu4f54kcDllxZCCNHbRSEiIqIokr7GJZw9RTC0EBERJbCkDy5Grui8b98+rhBNREQUR0kfXMJXdE5PS4eidO6WhB9fV1/HFaKJiIjiKOmDS7iJEyd2uqmITUtEREQ9h8GFiIiITIPBhYiIiEyDwYWIiIhMg8GFiIiITIPBhYiIiEyDwYWIiIhMg8HFQN6AsRPaERERkR6Di4HuLFNx3cvlDC9ERERxwuDSTQ6rggJxUNveebQaDf5AL5aIiIio70rY4CKlRCAQSPjaCyEEVtpKUGGf39tFISIi6vNSersAsezZsweqqsLlciEvLy+hp9YXAkiT3pYdCR62iIiIzCpha1xqamoAAG63O7EXLrSmQWYX6vf5G3qnLERERH1cwgYX0xAC6rz3sHXaS71dEiIioj6PwcUIQkC12Hu7FERERH2e4cElEAjgoYcewsiRI+FwOHDuuefi0UcfTfhOtkRERJT4DO+c++STT+KFF17A8uXLMX78eFRUVODmm2+Gy+XCXXfdZfTliIiIKIkYHly2bNmCq666CldccQUA4Oyzz8brr7+O7du3G30pIiIiSjKGNxUVFxdj3bp1+OyzzwAEhzVv2rQJc+fOjXq81+uFx+PRPYiIiIiiMbzG5cEHH4TH48GYMWNgsVgQCATw+OOP48Ybb4x6fGlpKUpKSowuBhEREfVBhte4vPnmm3j11Vfx2muvYdeuXVi+fDmeeeYZLF++POrxCxcuhNvt1h5VVVVGF4mIiIj6CMNrXO6//348+OCDuP766wEAEydOxNGjR1FaWop58+ZFHG+322G3cygxERERtc/wGpf6+nooiv60FoslsWe/JSIiIlMwvMblyiuvxOOPP44RI0Zg/PjxqKysxG9/+1vccsstRl+KiIiIkozhweUPf/gDHnroIfzsZz/DyZMnMXz4cNxxxx14+OGHjb4UERERJRnDg0tmZiZ+//vf4/e//73RpyYiIqIkx7WKiIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhc4kBK2dtFICIi6pMYXAygKArS09K1bVVVe7E0REREfReDiwGEEJg4cWJvF4OIiKjPY3AhIiIi0zB9cJFSsk8JERFRkjBNcAkEAhEBRUqJsrIylJWVMbwQERElgZTeLkBHVFZWora2Fi6XC3l5eRBCAAD8fr92jN/vh81m660iEhERUQ8wRY1LbW0tAMDtdnPEDhERURIzRXAhIiIiAhhciIiIyESSOrhIKREIBHq7GERERNRBiRtcpIQSaATiNFpISonKykrsqNhh+Ln37dvHUU5ERERxkLCjinL3PoJs3yG4nWNRmV8KNI8k6i4ppdbB1+PxGHJOIDjtf0hdfR1UVYXFYjHs/ERERJTAwcVV8xlgF3B5PoGieqFaUrt9zlAti8fjQUZGhgGlbCEMClZEREQUW+I2FcWBqqpaLUtoiDURERGZh+HB5eyzz4YQIuKxYMECQ84fbQZdIiIiSg6GNxXt2LFDN1Jn//79uOSSS3DNNdcYcv4tW7ZoM+gSERFRcjE8uAwaNEi3vXjxYpx77rmYOXOmYdfoygy6HPpMRERkfnHtnOvz+fCXv/wF9957b8zOq16vF16vV9s2cqRPSHinXCIiIjKvuHbOffvtt1FdXY2bbrop5jGlpaVwuVzaIzs7u0vXqqioiNn3JbxTbk9hPxwiIiLjxTW4vPLKK5g7dy6GDx8e85iFCxfC7XZrj6qqqg6fP7zpx+fzYefOnYkRGKTEpk2bEqMsREREfUjcgsvRo0exdu1a3HrrrW0eZ7fb4XQ6dY+uqq2thaqqkFJ2KTSETyLXHbl7FwFSwu/3G3I+IiIiCopbcFm6dCkGDx6MK664Il6XiEpKibKyMpSVlXU6vHRrEjmrQ/sxs/YoFNXbxsFERETUFXEJLqqqYunSpZg3bx5SUnp2ct7wWo4erfHgzLlERERxF5fgsnbtWhw7dgy33HJLPE5PRERESSou1SGXXnqpaTqmmqSYREREBBOvVWREMJJS4rGKzk1k11GWQCNTERERkcFMG1w2bdrU7XP4AsCxmuDP48QXcFiNuR31sKN48zyk/Pn7DC9EREQGMm1wAYztfLvSVtK9UUVhCrxLcI1vEUTVdsBfb8g5iYiIKIGDi5RAvbSjXto71SxUXl7euYs0625kcVgtmJKTpW1XyNFoQOfKTkRERG1L2OAyD49gnHcpxnmX4rEKNS4BQJFhc60MGQ9Y07p8LiEE3ritEM/N0p9j7969DC9EREQGScjgIqx27MZobftQdbA/SmuGBoIfvd3tuViEELBbWrbrYUd1F1ayJiIiougSMrh0VGVlpXEnM6B/i6IoSM/I0LYLvEviVltERESUjEwdXBKNEALTCvIxKqtl36FqoMEfpbqIiIiIOq1vBBepBh+dfp3xNSFCCPy6QEGFfb7h5yYiIkp25g8uUsXFZf+Gi8v+rXPhRcrgKs5xIIRAGrjIIhERkdFMHVyklAg0epqHTANWv6fDr1VULzJrj7bsCFvd2Wh79nBkERERkRF6dulmA0kp8Xh5Iw5XWwEsRYE4iHu6kw3iuLpzXW0tVFWFxWJp/2AiIiKKybQ1Lr4AcLi6pWmoQo6Gl6OOiYiI+jTTBhciIiJKPuYKLlJCMWjVZSkl6mE3oFBERETUU8zTx0VK5FcuhMvzKdzOsdg28YlOv15RvVAVOySAx3eoOORdEpeiEhERUXyYJrgo0guX51MAgMvziX6dofZIifzKB5tDzxhsH78Ih9wtT08+KxMOa/w6znoDBi9PQERElKRM01QU/PLv4ov99WGh51NcuOUm7akK+3y8Pm8ChEGjihRFgcvp1O2766N6XPdyOcMLERFRN5kmuNxZpuIa3yLDJ7tNg9ew0AIEJ5/Lzc2FA14UiIPa/p1Hqzn1PxERUTeZJrgAwSHPDSboUCuEgBDASlsJ/jjTVLeYiIgoofFbNY6EAOwKm4eIiIiM0qeCi6rY2nxeSgSXB+ih8gCI23pIREREycg0o4o6pI2+KqoU+L7vcRyQZ2Oc+CK+5bCmAUMnAif26ddDIiIiom5J0BqXrneWlVLC2yR1I3iklFpoAaD9N26EAG5eHd9rEBERJaGErHER1vY74EYbXSQlmhdeVDEqS8G7xcGDGvxq/MNKa3FctJGIiChZJWSNi2JNbfN5KYHHKiJXVPSpLQsvHqpW0eDnqotERER9SUIGl+/Nf6XN5xtgx7Ga4M8jxfEeKBERERElgoQMLp3xpq2kt4tAREREPcT0wYU9SYiIiJKH6YNLOCXQiYUXiYiIyHTiEly++uor/PCHP8SAAQPgcDgwceJEVFRUxONSOhfs+Hncr0FERES9x/Dh0GfOnMGFF16IWbNm4f3338egQYNw6NAh9OvXz+hLGcLtHI0B1rTeLgYRERF1gOHB5cknn0R2djaWLl2q7Rs5cqTRlzHM3twSzOqhOVek0UtbExERJRnDm4r+7//+DwUFBbjmmmswePBg5Ofn4+WXX455vNfrhcfj0T3aUg876sNWiN496XHt5wbZauI62YF5XHpwori9e/cyvBAREXWD4cHln//8J1544QWMGjUKa9aswU9/+lPcddddWL58edTjS0tL4XK5tEd2dnab5y/wLkGBd4m2HbC0TFY3w/es/uD6UwkVFDxuD1SVk+IRERF1leHBRVVVTJ48GU888QTy8/Nx++2347bbbsOSJUuiHr9w4UK43W7tUVVVZVhZdu7ahbKyMl14CV9gcVSWApvFsMsRERFRnBnex2XYsGEYN26cbt/YsWPx1ltvRT3ebrfDbm9/baKO2mi7O6Lmxe/3az+vtJVAANh84XKkWFMhuKYQERGRaRhe43LhhRfi4MGDun2fffYZcnJyjL5UVA7RMpeLqtginhcA0oQXdotgaCEiIjIZw4PLf/7nf2Lbtm144okncPjwYbz22mt46aWXsGDBAqMv1b7mYKKqidPPhYiIiLrO8OAydepUrFq1Cq+//jomTJiARx99FL///e9x4403dvgcjV9+DEDfHyVcaH+BOIi0VBvyrMe0bQciZ8/dvaeyc2+CiIiIEpLhfVwA4Pvf/z6+//3vd/n137z6AI4/MBCZNoHx3qURz4f6qTjgxRaxHHfPGo0mfyOm7n8DImw0tZSAt0lCsMKFiIioT4hLcDFCmvBCIDXqc6F+Ktq2osBqT8PuyYsRaHQDZcH9j+1Qcay2HiMye6DAREREFHcJG1y6RAioFjuA4Fwpx2qDu4/V9F6R+gIpJRr8AUgpYbcIWCwWdmwmIqJeYcrgUn/bVqT9z+TeLkbnJdBkeB0lpcQPlmzFzqNnAATnvnny0iHIz89neCEioh4Xl9Wh42lUloJUa/dmjXM7x0JVjJs7JiprGmR2oW6XIiM7Die6Bn9ACy0AcKhaxben3ZwBmIiIeoWpalz+OFNBemr3Jo1ruGM79h08Ev81ioSAOu89bP3gXa3PDREREXWPqWpc7BbEDC3FxcUoLi5u9xypmf0iQovVajWkfBG0PjdERERkBFPVuBhBCIGZM2dG7CMiIqLEZ8rgYrV2r9gMKsYIBAJQFIX3k4iIeoypmooARNSWtGZTgjPoJiJvAKj3NelWqzaryspKbNy4Ebt37+4T74eIiMzBVDUuUwumtvvXvRACK20laIAd9bCjwLukh0rXvjvLVKBsLQpy+uHNO4rQ2BQAADisCTwvSoxQUlsbnCTH7Q6OMLJYujfSi4iIqCNMFVzaE+pkKwSQBi+QoBUBFUfP4Io/bMQnx4Mz4xXk9MPK+UWJF16khPzfqwAsiNgfnL+YiIioZyVsU9HGC19FxfSlWrNPgTgIh7Xt4gohMGP69J4oXocEAoGYz4VCCxAMMg3+2Mf2Gn89xJcVEbvNOB8NERH1DQkbXCAUQLFgpa0EB+w3BxdWbK6RaGv4srClQw6Z2FOlbFdKih35KV8AiL3adaKSUqIeHM5NRESJI3GDSzMhmhdcDGuZEGkDtZ/9VmfEC9Sb/t5DpWufUBT858yRWvgyCyklfvA/lVH7CE2bnIvioqJeKBURESW7hA8uUSkK8PAZyIdPB2tm0LoWJsH6XyhK82rX5tHgD2BnlUfbzslo6TBk+UM+rH+50pRrLxERkbkldHBRFTuahk8FEFxfCNa0licVBUKxYObMmZg5c2bidWztQyrs8/HrglYflWPl8Psb4W2S2LVrF4dEExFRj0jsUUVCwPsfb2NL+Saoih3FUcKJGQKLqthR0288LKcP93ZROiw8iKTBCygCoWFaEsAPfIuw80MVQD1GZTXi/fwAUlIS++NERETml9A1LgCa1/tJ7dyiiNa0YA1NohAC9vkfwfezyBE6iar16s/OzJa+RKelEzvlaG37ULWamKOiiIioz0n84NIVQqAyvxSbL1zeq8UI73djtdlgSc3sxdJ0nJQSgYA+uEyYMEH7eYbv2WgvinexiIiIErypqDuEgKqkAqjvxSK0LOhohiYtIBhaKisr8e1pt25/ms2Cgpx+qDh6Rts3TnyBA/Ls4Ia/AUBqzxWUiIiSUp8MLoqiwOVy4eSp6t4uimkCS4iqqvB4PBH7hRBYOb8o2CQkJeBvQFNjHnKf2d3zhSQioqTVJ4OLEAJ5eXmobfQBa9f2dnFMI1TbEosQAmm25o+M3YqaNmYGJiIiioe+2ccFwS/ZRFv4T7Gn93YRYpJSwu/3a4snEhERJaI+WeOSqISSmDkxVNMSrYmIiIgokSTmNyn1KK1fi5RQAo1wplqgqI29XSwiIqIIyVfjYnX0dgkSklRVjKl8GC7PZ3DAiwbYASzt8OsDgQCklKbrjExEROaSfMElQb9Yg3OnBKAoSo9/+Usp8UR5Aw65FwIIDnNeblvcqXNsKt+B4UOGID8/n+GFiIjiJvmCS4Las2cPfPW1cLlcyMvL69Ev/wZ/AIfCpm05IM/G1CirQremhPXZubNMxaisb/B+Lqf+JyKi+En4Pi76VZ87x2ENTpoWUpDTDw5rYo00Cqnx1AAA3G53xHT7PWmkOK7bLhAH4YA36rFpNgsKxEFtm1P/ExFRvCXsn8bTp0+H0+mE3+/v8jl0k6YhGGTYjNG2d22/gvrzSlj+kA8AcMAbs3VNCIGVthKcghMFHaihISIi6i7Da1weeeQRCCF0jzFjxnT6PKHXdldo0rQ0WwpDSwcIBGtS0oQXaSJ2aNGOF82rRxMREfWAuNS4jB8/HmvDZqxlnwdzUezpqO0/ARmn9wMAZPY0CGtaL5eKiIgoTsElJSUFQ4cOjcepqQcIoSD9zo0IeGuDo5xs6Qk7GouIiJJLXDrnHjp0CMOHD8c555yDG2+8EceOHYt5rNfrhcfj0T2o9wlFgcXhhLBndC60SBm/QhERUdIzPLgUFhZi2bJlWL16NV544QUcOXIEM2bMQE1NTdTjS0tL4XK5tEd2drbRRaIepLz67wwvREQUN4YHl7lz5+Kaa65Bbm4uLrvsMrz33nuorq7Gm2++GfX4hQsXwu12a4+qqiqji5QwHFYLpmQ7te0Rme2/JjQxnUzEMGBNA7Kn6XaJLysAf30vFYiIiPq6uPeazcrKwvnnn4/Dhw9Hfd5ut8Nut8e7GAlBCIE3bs6F78lRAIBNBctx+0ex52wJX/ywNyama5cQwC2rEfBUA6Vbers0RESUBOI+AV1tbS0+//xzDBs2LN6XMgUhRIeGGkspUdvow7en3ZBS9vrEdDEJAdj0I44SsnaIiIj6BMNrXO677z5ceeWVyMnJwddff41FixbBYrHghhtuMPpSpqcEvAAiZwaWUuIHS7Zi59EzAIBRWQp+VZjaw6XruPCp/4HgatOJOT8xERGZneHB5csvv8QNN9yAU6dOYdCgQZg+fTq2bduGQYMGGX0p0yvadjuircDc4A9ooQUITqXvS+CZ9BOq+YqIiPo0w4PLihUrDD1f+FpF3Vm3KGFY0+B2joXL84l+v5QIzltLREREsST8IotCCMycORMzZ87sG3/ZC4HK/FJsLl6u2z1qz2Pw+tU+0T9kz549feJ9EBFR4jHFXPx9IrCEEwJ+qwtu52jg2+Cu/+e7XwDrGjAqS8HDjj09VpTgcGtjO/3W1tUF+7lY2NOFiIiMZYrg0icJgb25JcC6Bt3uQ9UqzrjreqQIoeHW355298j1iIiIuivhm4r6tFg1ST3UzKKqKpdYICIiU2FwSUAT9j/W20UgIiJKSAwuCchZc6i3i9Bl9bDDG5DsnEtERHHB4EKGKvAuwW0fqrju5XKGFyIiMhyDC3W7T43DakHBCKdu386j1WjwJ/CseUREZEoMLr3IZgGmjMgCAIwTX/ROIaRE7t6Hu3UKIQRW/iQfB+w3o8I+36CCERERReJw6F4khMAbtxfCF5BoaqxFbvMKyw0yymrZcWp2UVQvXJ7PWi5zVgFgTWvjFdGFFo8EW4eIiCiOWOPSy4QQSLNbIcJWWJ7hezbiOEV6e6Q86o1/iz1Mu7PYx4WIiAzG4NLDFEWBy+UCALhcLm1lZYfVglFZ+n+OcSnH414eKSXqEVbD09XQYk2DzC7U7/M3RD+WiIioi9hU1MOEEMjLy4OqqlAURVvOQAiBXxWmwtckoUgvphVOgyIUjH9iU9zKIqXEYztUHPIu6f7JhIA67z1s/eBdoKz7pyMiIoqGNS69QAgBi8USsQaTEAJ2qwKrzYG0DCeEEt81mhr8ARwKm+1/VFaw5qfLhIBqidI/h4iIyCAMLn1AcKHEQOfnTQk7vsI+H78uUPregpZERNSnMLiYXGihxI0bN2L37t0dDy9SQvnLv2mbafAytBARUcJjcDG58IUS3W43VFXt0Oukrw7iq53atts5Gpn9BmudhY3AmXOJiMhoDC5JSEqJPXv26PY5bl+DvPx8Q2td9u/fz/BCRESGYnBJELGGSYf4fV7IVrUpoWaizlJVFZ6aGt0+S0pkZ+HOUhQFzsyWqf+/rfYgEOC0/0REZBwGlwQRGiY9Y8YM5OXlRYSIn22y4vrHl0ENBLSOuKqqora2ts3zdrnjbhcIITBhwgRt+84yLrZIRETG4jwuCSQ0TDrEkZaBgtSvUdE4HABQ0Tgc28u3otHXBKfTGbM/SyAQ0GpsKisr4fF44HK5ogYio6XZLCgQB1EhRwNoWWwxzcaPGhERdR9rXBKYUBSs+K+b8P9N92v7amqDTTwej0erbXE4HNrz4SOM2uq4GzFjrlFlFgIrbSVcbJGIiOKCwSXBCUWB1RY7YEhVxehR58Lva4AMazpyu90x+5eEZswtMGLG3GhlFsHh1SE91VRFRER9H+vvTUyqKp796DPs/kdwTaA860HcPWs0RBtDmqWU2FZRqZsxd+wAC9Lt1riVc8vmLRg8IKtHmqqIiKhvY42LyYydkAdvk4S3SaLO68Vuf7b23G7/CDQ1tb2KtKqqqAvr0Fthn4+///xCQ+dviaYzc8wQERHFwhoXk5n+3C5Dz5cGb9xDCxERkVH4jWUCNgUoEAdjPj9OfNFzhSEiIupFrHExAWlJxf8MfBM2zz+jPw9gvHdpzxaKiIioFzC4JDhFUeDKysLuyaXol2FHbm4u9lRsRd4HP9COqZdho46khBJoBABU7toV3Fa92nMAoKiNPVb+luuyUy4REXUfg0uCC82oq6oqFEWBEAKTimajpmICMs/sBwDIweOBquDxk/Y8goy6LwAAPudICAG4PJ8GjztyAQDgwqo9AHquhiZ37yIcnPwbbWI8jiwiIqKuinsfl8WLF0MIgXvuuSfel+qzQjPqhr7whaIg4+cbEXigCnLhV1B/+JZ27Lwz8zDOuxTjvEtx63fXIdN9EPXSHqyVqdoO8eV2/cnPmgpY04wrrDUNyJ6m3+X5An5/IzZv3ozdu3dzThciIuqyuNa47NixAy+++CJyc3PjeZmkJBQFFkfzgoaNZ7T9n8iztZ8r5Ghc4Xtc21cgDmKlrUR/oh+/HZwxzrCCCeCW1UBdDfDYxuB1vUuAD1WMymrErwqroaqqbmkDIiKijopbjUttbS1uvPFGvPzyy+jXr1+8LkPtaB1k6mHXT/Ufj2YbIeBIz0TBCKdu96FqFT4uFk1ERN0Qt+CyYMECXHHFFZgzZ06bx3m9Xng8Ht2D4ucHvkVxm+o/nBACK3+SjwP2myPWLeISAERE1FVxaSpasWIFdu3ahR07drR7bGlpKUpKSto9jowRXgMzJScLDmv8mmyEEEgT3uB47RApsWXLlh5brZqIiPoWw2tcqqqqcPfdd+PVV19Fampqu8cvXLgQbrdbe1RVVRldJIrijzMVvHFbYY8Hh9w9i+D1qzh5qjrmIpBERESxGF7jsnPnTpw8eRKTJ0/W9gUCAWzYsAF//OMf4fV6dR0z7XY77PbYqx9T+xxWBQXiICrkaADBmXQPhNWsRGO3IP6hxZoGmT0NOFap7brl1PX4ZF1wUcgph8rx1/nFrHUhIqIOMzy4zJ49G/v27dPtu/nmmzFmzBg88MADHE0SB0IIrLSVoKG5023CzKQrBMQtqyFrPcDjmwDom6p2Hq1Ggz+ANBunEyIioo4x/BsjMzMTEyZM0O1LT0/HgAEDIvaTcYQILpgItJpJt1l4LUyBOAibMrbHCibs6T1zLSIi6vP4p26SWGkr0Sbdd8CLjeKNHru2w2pBwQgnKo4FR4yNyASO1QSfk1JyRl0iIuqwHgku69ev74nLJC3FnoHa/hOQcTq4BEBqdh4KvvwaFY3DAQAF9iqkwRuXKVs6IjQ0uuGJcwAAmwqW4/aPVADAnj174Kuv5SgjIiLqENa49AFCUZB+50YEvLVQFAWKLR0rpURDfS0AwKaoEE890LtlDA2NBmBRvQCsAIAaTw3sKQJut5sz6hIRUbvivlYR9YzQEgDCnhHsV6IoSMtwIi3DCSES65+5aNvtLRuciI6IiDohsb7RqO+KsvgiACjS2wuFISIis2JTEfWM5sUXpa8Oe7dtAd7393aJiIjIhFjjQj1HCAh7BsbnTe3tkhARkUkxuBAREZFpMLhQwuCq0URE1B4GF0oYW7Zswe7duxleiIgoJgYX6lXeAOBtklpYCc3nQkREFA1HFVGvurNMBVCPsUMzcPcEFXbOP0dERG1gjQv1uHR7CgrEQd2+T07UYv7aejxR3thmU1FobSP2hyEiSk6scUkCipJY+VSxZ+DNc9egsWoxJIBrfIu0lasPVato8AeQmRL50ZRSorKyEh5PcLFGrm9ERJR8GFySQMJ9sQsB5SerkeavB3z1+PvT5+EUnCjwLmnzZaqqaqEFANc3IiJKQgwu1DuEAGzp2o9pnPqfiIg6ILHaECg+rGmQ2YXapts5Fqpi78UCtUNKrS8L+7EQEVE41rgkAyGgznsPm8vWAkAwtCRa81EY5dV/R+XkR+GpqYlLPxYppTbkWlGUxGtKIyKimBhckoUQUC2pvV2KSKFVo49VarvElxWoPedbwJKq68cipYS3qaUGxtaFri3s4EtEZG4MLtS7mleNDniqgdItMQ9ramrCtS9uw66qem3fqCwFM2Z0rimJHXyJiMyNwYV6nxCALU23K7x2ZdO2HWhoaNCFFiA4dLq20Y9Mh9CGfKuqyuYfIqI+jMGFEo4E8PsDqaj8OhRU6jEis6Uf+dMzUnH/xkYAwI4t62G3CGRkDQKEgMfjidn8E+rwS0RE5sXgkiQURYHL5YLb7QYQ7NuRSBPThZfltHSGhZagYzUt6xdN+eQxAPcBAC7cPA9pwgu3cywq80sBIaI2/7Tu20JERObE4JIkhBDIy8tL2NE04WWZ4XtW+3mj7W7dNgA4aw7rtqUErO5/wu9vRIo1Ner7at23JSMjA7W1tUYVn4iIekji/MlNcSeEgMVigcViSajQAgAOqwUFOf10+wrEQXxPfKdb1+h8F+BAy2R1Wwtfwg98izDOuxS3fahGrHUkpUS9rwn1viZtFeri4mLk5+fH/00REZHhWONCCUEIgZXzi9Dgb+6DIiUcf34O4kuJlbYSNCA4Yd6eSX+AKG95XbVqx045Wts+VK3Cp51C4gdLtmLn0TPa8yMyFbxbKCECTZBSJlyAIyKitjG4UMIQQiDNFvaR/MlqwF8P4atH2jPnAQCKtt+OerTM+vuLTWrr0wTbjgA0+AO60AIE+8rk/iY4Ed+oLAW/KkzVamVCHNbEq5EiIqIgNhVR4gqtZ5Q+ULdkgQNeFKR+rTt0nPhC+zl37yItvIQ8OytNNzIJCNbOeAPAtS+VY9zDa7THNUu2cqkBIqIExRoXSnxCADevxp6d2+D2eOByOvHm5EI0BiQCTU2ofeESOD0HMd67FADg8hwE/PWApWVumFQLUFKcioJpxfAGgILHgrUuvgCw61i17nIVR8+gwR/Q1/4QEVFC4G9mMgWhKMgtKNJNMJdmAaTVgsOznsX+774BPgw2G9XDDp+nGimOlloTRW2ERQikwYtYc+Q+fZED929o6IF3Q0REXcXgQqYRGhXVel9efj5qG33Ah8FalALvEuB3+5qbj84G0DLfCzYCkHYAwdoZb1NLHxm7pfP9WsIXbAxJtKHmRER9CYMLmZ4QAhmpNhTk9ENFWGfcA/Lsdl8bmoG3K2JNaseFG4mI4sfwzrkvvPACcnNz4XQ64XQ6UVRUhPfff9/oyxDphIZTf/zIJdj6nwURz2++cDn2XPE+5MKv4Lhvv25uGCA4wqizq023ntQuJDRzLxERGc/wGpezzjoLixcvxqhRoyClxPLly3HVVVehsrIS48ePN/pyRBohBNJTbVBlVsRzU4svhiu9eVZdIbS5YbZOewmqxQ6bAvjUsNoXXz1gzQx2DO6A4uJiAMCWLbFXuG5L6yYnNjcREUVneHC58sordduPP/44XnjhBWzbto3BhXqNxaIPAkIAafBidvk8bV99WN8XPH0e5Ih8iFtWRw0voQUbpZTwBQBvQGr7owWO8GDSOpREa3JicxMRUXRx7eMSCASwcuVK1NXVoaioKOoxXq8XXm/LFO5cBI/izpoGmV0IUVUe8xAJoOFYJWStB8KerpuUTlVVbKvYBY+nBk+UNwYXgFwbmtQO+HWBoptHpnUwaR1KojU5RVsokoiI4hRc9u3bh6KiIjQ2NiIjIwOrVq3CuHHjoh5bWlqKkpKSeBSDklS63YoxA2349DsfAGDMQBvS7daWA4SAOu89bC5bq3udNyC1IdU/8C3CJ/Js4PFNAIApOVl447bgJHjXvlQeMfdLyKFqYOrGeRBf5KHmP/5Pq61xu91aUGkrlBQWFqK8PHagIiJKdnEJLqNHj8bu3bvhdrvx17/+FfPmzUNZWVnU8LJw4ULce++92rbH40F2dnY8ikVJQlEUvHfvbNR5/QCCQUZRWvVDFwKqJVW3S5USQD0ABENLmJ1Hq/Heuo0AgF3H6nXPjRNfYLltMaZ6lwAI1tZc8/nl2PmbddoxoeUFgOCkd/W+JlgsEg6rPrywhoWIqG1xCS42mw3nnRdcW2bKlCnYsWMHnn32Wbz44osRx9rtdtjt9oj9RN2hKAoyHZ37XKVnZCAUXEL+e7qirYd010f6556blYZZ0/KQ8dv/0BaBBIAG6Bd+BILLC3h8wH9X6JuWCnL6YcVtF3SqnEREyaxH1ipSVVXXj4WotymKApfLpW27XC4UXzAFU3KytH0F4iAG2iXyrVURr89P+QIj+lmRYfG3OfDo6Ysc2s93f1QfDC1hQssLSCnhbZKo9wXgbZJcK4mIKAbDa1wWLlyIuXPnYsSIEaipqcFrr72G9evXY82aNUZfiqjLhBDIy8uLGOnz1/nFaKirAZ4+Dw54oRYexEWbbkBDq1pBB7wQ7wF4L/LcDbLl2LOybBiV1YBD1S3Pj8gEVi64GIWL1wMI9uN9vLwRh6tVYO2HAIJNSzNmSG3l6lA5ozZ7ERElEcODy8mTJ/HjH/8Yx48fh8vlQm5uLtasWYNLLrnE6EsRdUusJQTSbBZABGsILYoFaB46jfsOA1YHsPRy4MQ+/cnOmgp8Hvxxhu9ZbfekNf+Of8CrCz4Onxf1Ky8EsAAA0OAPBENLmEPVKk7V+XDzsgocOF6j7R8z0Ib37p3N8EJEScvw4PLKK68YfUqixGBLA2zpwB0bg6tPh3GkOFDw4jbdkgMF4mCwZiYUfMKILyuiXmLdgsmY/fwuAEBh6UcRz3/6nQ91Xn/M/jucyI6I+jquVUTUFn9d5D4hggEmfBeAlfOL0OAPBNt+/A1wWGdCiDu0YwKBALZt/BAXbpmnP19Yf5ah/zMJBeJBVIR17h2RqeC/pmfhjvdPt1lUTmRHRMmAwYWoLc9O6vChwWam5v+lwueNaaZIiYx+gyP2N9S3hCMBaMsRAMDWaS9h+vSL4FMF8H7bywmEJrILzeYLACdPVaO20YeMVBvDCxH1CQwuRK1Z04DsaUDVtpZ92dOC+7tBCIHc3Fzg7/r9Fz+3Q/vZ97MKVO7ZpdXKzC6fB5QDgfDlCKIIX4JA6+gbsnYtCnL6YeX8IoYXIjI9Bhei1oQAblmt78diTevwgottnzp4Dge8ON+l4jN3SyfbAnEQjrQi+K0uuJ1j4fJ8EvUcgYCKQCCg9V8JbyLyBRDR0RdoGXat1QgREZkUf4sRRROlH4vRp1/T+EP9aCN4oabcCldWFirzS6GoXricTuSOPQ94eoJ23IbN22C3AE6XE4VT8iGljLrG13OzgjVErSfOIyIyMwYXop4U1gzVerSR2zkWGda0yPllWo1gagki9ZiyYyveuL1Qe65w2jRtLhh7lNUDpJTBDsTNwhePjKatVa2JiHoDgwtRTwprhpJSYu/evXA315Zk9huMPIsl6vwyDnhRIA7qRhsBwM5j1WjwNWkdcr2B2DPuSgn8YMlW7Awbsj1umLO570vzdcKCTHurWhMR9QYGF6Ke1twMJQDkFhS1X6NhTYMYMQ0rj7WMNqqHHQXNizru3bU9bObdlrlfFLVRd5oGf0AXWgDgwHEPxi9qmdU6vBNvaJRSSFurWhMR9RQGF6JeFK12JcpBwC2rIfz1SEOwJuTjHeXAu8FgcqamLqJDboE4iDmbQ0EnOBopEGhpItr+q9m4ael23ay8QLATb2j4NBFRImJwITKDsM7CAsC4SQXAu5siDquwz0cavNqMvQhrOSrfVq79fPjT/bg/NwDf+GAHXm+gpe/Mls1bMHhAVnDoNhFRguGCJ0QmFN6kpARaOvimwYu0+z+G+mAVNhcvj/n6Gk8NhBCwpwgMyMrExTOKtOe8geDEdU1NTdq+ltWrm7RH+ArWoXlkQg+ubk1E8cIaFyKTu2DHzwEsadlhSwMsqQhYUnXHTZ4yGfgoWEujqI1QAgLTCgthtVrR4Pdpx4VqXiZ/VoGfjw0GkJY+NGu140L9YaSU2FaxCzWelmanQf1dyM/Pj9pnh+spEVF3MLgQmZHVof3YIFvmgpFnTQ0OuVYjJ6GzKC19aS7cPA9pwgtsDG47JFBgfxIV3mztmF3HqtF0XrBSNtakdt/WeDHvT9vxyQl9X5lRWY14PzeAlBT9rxiup0RE3cXgQmRGYV/yM3zPtuz+8dtdmuFXCGClfAANdrtuxFL+5tubjwhufzjwv7F/wq9x1/oGAMAFT6yLer5D1Soa/AFktgourUcqARytRESdwz4uRCbksFpQkNNPt68gpx8czVP6K4oCl9Ope16x6P9331y8HIEHqoCFXwFDJwYnxBNe3aR4Bd4lWogBgKE1++FK8WJUlv5cIzIVvPbvQ1G+cJa2LxBQ2+zrUlhYGPM5IqJYWONCZEJCCKycXxRzFtzQgo4N77a8psEX0J0jYEkNjlSyWIA7NmprM6WqKqa8shs7q/Q1IwXiYPNoJYFfFdoRfrqLZxTDZrOhtrGlr8yGzdswqL8Tubm5SLOlaOsqeZuCYcYbALxNErYuVrS0ngW49T0gor6JwYXIpIQQbS6a2PoL/OL/3qDbdjmdUBQldLA23FoB8NefTdeHAl89HE//B4QA+qXbcKbOC7vFDggBl8sFm80GIUTL+RDq5FsPvHUCBTn98PqtF+C6l7ZhV1XzkgXNSxOMylIwY0bnRiFJKSNmAQaAKTlZWHlHka4cRmJYIup9DC5EfVi0pQJCNSe5ubkxv3AjQ5ElOIEMgImr/w0Ags1MtnTdqKA0WwoKcvqholWgqDh6Bu9/uLEltIQ5VK3iW08jMhzWYJmtFlgsbYeBaLMAA8DOo9Uo31mJaQWTDQ8TbYWlN24r1IIbQwxRfDG4EPVVUZYKAIJhRoyY1rnVr8MWhwyxWCzBZqYwoSas2kYftmzeopvYLtzSq4Zg3LhxKCwNLlFQ9FSZ9tyoLAVPzB6IyZMn614TXttRH9ZO1XoVbI/bE5fOvm2FpXXrN8KeIrQRUgA45JsoThhciPqqVksF6FjTOjf6KGxxSN05oh4arK2xp7SaujfMBZMnwWG1YMxAGz79zqd77lC1itPuWmzcuFFbPFICeKK8EcdqIodlR1sFuys6M7/M1l/OxI4dOyJCWWiE1J49e3SjpzIyMpCfn9+hc4fKwiYpougYXIj6srC+Kz15LkVR4HK5cPJUtbbPlpYBoL75VMFmlffunY06rx9AsBYlVAPjDQASMmZYCRmVpcBmAVIznNq5gZZ1mTpa09GR+WXCR0jt3bVDF5gKp03D7opy7dqth3zX1gaDWKxzh5cjEAjg2pfKsetYte65ccMyseK2Qi1vKoqidXomSiYMLkRkOCEE8vLygqOMmmfbnf/3kxHHKYqCTEewGctiaVliIFrzEhD55R2qhWhsUoG3TmjHbdmyBQA63HTTkfll1CiT+oVYmoeaSylR7wtoI6cKp03DoU/2o66uLuLcfr8fFotFK0soPH172o1dxyLf/4HjNcj9zVrdvvDVvImSBYMLEcWFEAIZqbaIzroFOf3gsEa274TmpmndsXfcMGfzl3Ps5hIRiN4kFavppq3ZegsLC1FeXh6xX3fMtGnBsBK2BIKUMrg0wpoPWw5c+yHGDXNixW3B8gcCKsq3bYPN0hKunE4nRo+fCFVV8e1pN7xhLUTPzUqDzRK7mazi6Bk0+ANtji4j6mv4aSeiuGlvvpn2jm3r+FjyphbCbhEo3xbsSNzU1NSp2Xo70qnXYlF0x9X7AqjxRV8a4cBxT0RNyagsBb8qDK4l9ct/fIPDbx6Peh27BbCnCJQUp8LqyMCkSbkIBFRs2LwtZq1U6746ADsHU9/C4EJEcdXefDNdPTaWUD+ZkLH7y3H3BAkBoGDqVOzdtUPXb6XBH1zROtS805WVrVtfM1RT8tzHFhw4XhNx/KFqFflTp6F827aoYQcI1kzNvvgCrayh8BEIBGJ2SI7WVwfgelDUtzC4EJHpxWpmAoBPTtRgfqj7y9oyjMgM1nbUeZtw/cvbceC4/ks+POjUNPiQkWptDgz6gBHrmpNHZCHT5oMQAv+3oBi+sJfV+wIoeCxY++INSF2zUPnCWdi9I9hEVXxhMTJSbZ0KGlJK1Db68O1pt26/zdJSw6QoCmtjyPQYXIjI9Fo3MwUCAWzevCVq35BjNSrmr63X9U8Jpw86H2pBp9WKCbprBgIBbNkc7LMyozgf27dv145Ji7GmQetaGrtFNA8hR6dHC6mqih8s2RoxEgmAVv6aBh/279+Putpa2CwtMysnSm2MEU1cbCZLDgwuRNQnhDczSWnBkAFZKCmu1gJHptOJx7bWRTTdhL7YgeidYLWgEya0pEDomoFAS+gIhZZoYtXSjMpSULljW5e+YAOBALbsqowaWnTlX9vSaTjUx0YIEbW/T6gJrXUQSLdbO7ycQmdCRKiJy+126wKi06Vf66q967XXTBatTG2Vqzt68lrJhsGFiPqc0HDs1kOg3y2QKN9ZCY+75cstvPbh93OHYPT4iQCCI4Cuf7k8IugU5PSL6IcTmrfG7W5ppnG5XBFf8uG1NFJK7N27Fx63J6IGpDNrLX20YYtu+7lZaRjU34mJE3Nx7YvbIprCgJY+NqG5Z4LDuJuafwauWbI16uvGDLThvXtnt1m+0Ln27NmDGo/+3qVnBDsYa9vNQUhVVbjd7uCoLF2fn+BaV6FlFdpaCiLakHZA30wWCjahiQ1jlat1uOhIB/HWQaWyshK1tbURxyVKDZeZMbgQUZ8khIgYISSEwLSCyTHnZGn9hfX3u2Z0aJRTrKAUa/RUKPhEK0t7f5ErigKnq2XCvdaji2Zd1NI/5u93TUe9r0m7Rvgkf+Fzz0Sb8C6aT7/zoc7rR6bDHrVGof1z1QNvtzTRhYIQAPgC0UdlAS3LKgwekBXzSz985fHCadMAQBtZFiprKLREDUhvR286BNpfvDNWjVFIeDBta0QbdQyDCxEllWiBpq1jOzMiqrNfRl19TeGUfEyp2IqdR6t1zxXk9NN16hVCIN1u1Z4Pn+QvxBdA1KAxdmgm7p4QgAAwPm8ypj+zSXsu1he1N4Cok+fF8ul3PnjqvRH9gHb812wc/vRjfHvaowtmsb70WwKTfuXxkHEfb8GK2wrhbQp2iI4VkGJpvXinqqrajM9AsHbu5Gl3zPl2puRk4bVbCrB169ZOXbctXe3PE48mrNA5QzNWx5vhwaW0tBR/+9vf8Omnn8LhcKC4uBhPPvkkRo8e3f6LiYioXYqi4K/zi7s1501oht/wkU2vfH8QmhqDs/zaLAHtXBmpNt1rYzfttAg1WYVWIQ//wqxt8GsLa5Zv26b1DwpJt6dgWsHk4MzLH0XWhLRey6neF2izxijarMMAUPHrOXBY9SOt9uzZi7rmJp7wRUJDi3cKITD3v9fi4Cl/xPli2Xm0GtWNLUPu631NsFhkh/+9ooWNaE1R7TVDxeoH1JHXtlW20DlbzxAdL4YHl7KyMixYsABTp05FU1MTfvWrX+HSSy/FgQMHkJ5u0JopRERJrrtz3rQe1QQATY11ESHC5XJpzUpAy8rcsSbcA4I1DP8yO3aflI704WldGxUMWDLmMPaQ52alYdZFxQAQc2QZEKydGpAeOeT8wsKCsKa1pojgVOf1txlawmd6Dh/+rrvfzSPa2muCAoLBYNeuXfjuTPT321YzVOvA09TUFDFcPuTkqWq46xp1/9ahWpi2AlasvkXxZHhwWb16tW572bJlGDx4MHbu3ImLLroo4niv1wuv16tt9/QNICJKFm3NdxNasDLaSta1jS0reEcLPBW/nqNr7mmvJiH8ubyphUizWYKBaG3kuUO0JqMYw9hD7yHTBi3QpTbPOpw/Vd/npa15csIDk8XS9mSEW385ExmOlqa41gtftnW/gWBNzJbtO1E0dbJuf3izTSAQwAMfnIwZEscNy8SrtxRge/MyFaHanNQUBbt379a+U6P37WmlVRNbSEfXxCosLGzzeaPEvY9LqJd9//79oz5fWlqKkpKSeBeDiCjptZ7vJvwv8lDYiNbXwWG1YFSWgkNRvvSm5GRFrbnoqGhBKPy6sb74Q8PYw69qswBZWVm6ifaEENroqa7OkwMEa3xqGnxoCOvUk+GwaouERhNrFFl4E9Rpdy3WfrRB97rQMHAhBGoafG2GjQPHa5D/eGRtTngfpVD5O9u3JyTamljRZp2O1jE5HoTsyvzWHaSqKv71X/8V1dXV2LRpU9RjotW4ZGdnw+12w+l0xqtoRETUQYFAABs2bIj6xTT74hlISenc38BSSlyzZGvUQNL6r/vQ8OrQl35IqIkkWg1RqE/N7t27dUPUgc715aj3NWHcw2tiPr9v0Zw2g0troaBY72vCxJLYNUexlC+chUyHrflcsYett2fHf81Gul0fQsKblEKLgYYHrPD+QFIi6lQBAHD0ye/H/fs7rjUuCxYswP79+2OGFgCw2+2w2zv+D09ERD1LURRkZWVFDQFdGdYba0FNILKZKTQyKtYw9raGnbceot7W8dG0VeMzZqBNN2KrI0LNUBmpSptNSNGMylIwIN2mC4l/v2t6RG2OROzVxIFgMByYYW/zHgQCgebaqZZ6jVBfnUQQtxqXO++8E++88w42bNiAkSNHdvh1Ho9Hm8iJNS5ERIkhWafTD9X4tH7vnZlFONZ5Wwe38ADS2qD+LuTn57c5YihUxvBzd2UyvUAggI0bN0JKiT98Yos5Yiu8uc7pcuLss0di+OAB5qtxkVLi5z//OVatWoX169d3KrQQEVFi6sqcM31B67lwjDxvtFFhna1ZCj9f+L9PZieb72Kd8+djffCdn6bbXzhtGiwWRReCFEVBTU1k01E8GB5cFixYgNdeew3vvPMOMjMzceJEcLUyl8sFh8Nh9OWIiIj6jEQIiOFLWAghENYdBi6XC6701F6taTO8qSjWm1m6dCluuummdl/PpiIiIqLe1ZUZdnvq+zsuTUVERERkXolQ8xNL13sWEREREfUwBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg3Dg8uGDRtw5ZVXYvjw4RBC4O233zb6EkRERJSkDA8udXV1mDRpEp5//nmjT01ERERJLsXoE86dOxdz587t8PFerxder1fbdrvdAACPx2N00YiIiChOQt/bUsq4Xsfw4NJZpaWlKCkpidifnZ3dC6UhIiKi7jh16hRcLlfczi9kHKOREAKrVq3C1VdfHfOY1jUuqqri9OnTGDBgAIQQ8Spal3k8HmRnZ6OqqgpOp7O3i9MreA94DwDegxDeB94DgPcACLaYjBgxAmfOnEFWVlbcrtPrNS52ux12u123L55v2ChOpzNpP5whvAe8BwDvQQjvA+8BwHsAAIoS3wHLHA5NREREpsHgQkRERKZheFNRbW0tDh8+rG0fOXIEu3fvRv/+/TFixAijL9fj7HY7Fi1aFNG8lUx4D3gPAN6DEN4H3gOA9wDouXtgeOfc9evXY9asWRH7582bh2XLlhl5KSIiIkoycR1VRERERGQk9nEhIiIi02BwISIiItNgcCEiIiLTYHAhIiIi00j64PL888/j7LPPRmpqKgoLC7F9+/aYx7788suYMWMG+vXrh379+mHOnDkRx990000QQugel19+ebzfRrd05h4sW7Ys4v2lpqbqjpFS4uGHH8awYcPgcDgwZ84cHDp0KN5vo9s6cx8uvvjiiPsghMAVV1yhHWOmz8KGDRtw5ZVXYvjw4RBC4O233273NevXr8fkyZNht9tx3nnnRR012Jl7mgg6ex/+9re/4ZJLLsGgQYPgdDpRVFSENWvW6I555JFHIj4HY8aMieO76J7O3oP169dH/X/hxIkTuuPM9Fno7D2I9v+6EALjx4/XjjHb56C0tBRTp05FZmYmBg8ejKuvvhoHDx5s93UrV67EmDFjkJqaiokTJ+K9997TPW/E90NSB5c33ngD9957LxYtWoRdu3Zh0qRJuOyyy3Dy5Mmox69fvx433HADPvroI2zduhXZ2dm49NJL8dVXX+mOu/zyy3H8+HHt8frrr/fE2+mSzt4DIDildfj7O3r0qO75p556Cs899xyWLFmC8vJypKen47LLLkNjY2O8306XdfY+/O1vf9Pdg/3798NiseCaa67RHWeWz0JdXR0mTZqE559/vkPHHzlyBFdccQVmzZqF3bt345577sGtt96q+9Luymert3X2PmzYsAGXXHIJ3nvvPezcuROzZs3ClVdeicrKSt1x48eP130ONm3aFI/iG6Kz9yDk4MGDuvc4ePBg7TmzfRY6ew+effZZ3XuvqqpC//79I34fmOlzUFZWhgULFmDbtm344IMP4Pf7cemll6Kuri7ma7Zs2YIbbrgBP/nJT1BZWYmrr74aV199Nfbv368dY8j3g0xiF1xwgVywYIG2HQgE5PDhw2VpaWmHXt/U1CQzMzPl8uXLtX3z5s2TV111ldFFjZvO3oOlS5dKl8sV83yqqsqhQ4fKp59+WttXXV0t7Xa7fP311w0rt9G6+1n43e9+JzMzM2Vtba22z2yfhRAActWqVW0e88tf/lKOHz9et++6666Tl112mbbd3Xva2zpyH6IZN26cLCkp0bYXLVokJ02aZFzBelBH7sFHH30kAcgzZ87EPMbMn4WufA5WrVolhRDyiy++0PaZ+XMgpZQnT56UAGRZWVnMY6699lp5xRVX6PYVFhbKO+64Q0pp3PdD0ta4+Hw+7Ny5E3PmzNH2KYqCOXPmYOvWrR06R319Pfx+P/r376/bv379egwePBijR4/GT3/6U5w6dcrQshulq/egtrYWOTk5yM7OxlVXXYWPP/5Ye+7IkSM4ceKE7pwulwuFhYUdvq89zYjPwiuvvILrr78e6enpuv1m+Sx01tatW3X3CwAuu+wy7X4ZcU/NSFVV1NTURPxOOHToEIYPH45zzjkHN954I44dO9ZLJYyfvLw8DBs2DJdccgk2b96s7U/Gz8Irr7yCOXPmICcnR7ffzJ8Dt9sNABGf7XDt/V4w6vshaYPLd999h0AggCFDhuj2DxkyJKJtNpYHHngAw4cP1/0jXH755fjf//1frFu3Dk8++STKysowd+5cBAIBQ8tvhK7cg9GjR+NPf/oT3nnnHfzlL3+BqqooLi7Gl19+CQDa67pzX3tadz8L27dvx/79+3Hrrbfq9pvps9BZJ06ciHq/PB4PGhoaDPn/y4yeeeYZ1NbW4tprr9X2FRYWYtmyZVi9ejVeeOEFHDlyBDNmzEBNTU0vltQ4w4YNw5IlS/DWW2/hrbfeQnZ2Ni6++GLs2rULgDG/a83k66+/xvvvvx/x+8DMnwNVVXHPPffgwgsvxIQJE2IeF+v3Qujf2ajvB8PXKkoWixcvxooVK7B+/Xpd59Trr79e+3nixInIzc3Fueeei/Xr12P27Nm9UVRDFRUVoaioSNsuLi7G2LFj8eKLL+LRRx/txZL1nldeeQUTJ07EBRdcoNvf1z8LpPfaa6+hpKQE77zzjq5/x9y5c7Wfc3NzUVhYiJycHLz55pv4yU9+0htFNdTo0aMxevRobbu4uBiff/45fve73+HPf/5zL5asdyxfvhxZWVm4+uqrdfvN/DlYsGAB9u/fnzB9cpK2xmXgwIGwWCz45ptvdPu/+eYbDB06tM3XPvPMM1i8eDH+8Y9/IDc3t81jzznnHAwcOFC38GSi6M49CLFarcjPz9feX+h13TlnT+vOfairq8OKFSs69IsnkT8LnTV06NCo98vpdMLhcBjy2TKTFStW4NZbb8Wbb74ZUVXeWlZWFs4///w+8TmI5YILLtDeXzJ9FqSU+NOf/oQf/ehHsNlsbR5rls/BnXfeiXfffRcfffQRzjrrrDaPjfV7IfTvbNT3Q9IGF5vNhilTpmDdunXaPlVVsW7dOl2NQmtPPfUUHn30UaxevRoFBQXtXufLL7/EqVOnMGzYMEPKbaSu3oNwgUAA+/bt097fyJEjMXToUN05PR4PysvLO3zOntad+7By5Up4vV788Ic/bPc6ifxZ6KyioiLd/QKADz74QLtfRny2zOL111/HzTffjNdff103HD6W2tpafP75533icxDL7t27tfeXTJ+FsrIyHD58uEN/yCT650BKiTvvvBOrVq3Chx9+iJEjR7b7mvZ+Lxj2/dCpbsV9zIoVK6TdbpfLli2TBw4ckLfffrvMysqSJ06ckFJK+aMf/Ug++OCD2vGLFy+WNptN/vWvf5XHjx/XHjU1NVJKKWtqauR9990nt27dKo8cOSLXrl0rJ0+eLEeNGiUbGxt75T22p7P3oKSkRK5Zs0Z+/vnncufOnfL666+Xqamp8uOPP9aOWbx4sczKypLvvPOO3Lt3r7zqqqvkyJEjZUNDQ4+/v47q7H0ImT59urzuuusi9pvts1BTUyMrKytlZWWlBCB/+9vfysrKSnn06FEppZQPPvig/NGPfqQd/89//lOmpaXJ+++/X37yySfy+eeflxaLRa5evVo7pr17mog6ex9effVVmZKSIp9//nnd74Tq6mrtmF/84hdy/fr18siRI3Lz5s1yzpw5cuDAgfLkyZM9/v46orP34He/+518++235aFDh+S+ffvk3XffLRVFkWvXrtWOMdtnobP3IOSHP/yhLCwsjHpOs30OfvrTn0qXyyXXr1+v+2zX19drx7T+vbh582aZkpIin3nmGfnJJ5/IRYsWSavVKvft26cdY8T3Q1IHFyml/MMf/iBHjBghbTabvOCCC+S2bdu052bOnCnnzZunbefk5EgAEY9FixZJKaWsr6+Xl156qRw0aJC0Wq0yJydH3nbbbQn7P2dIZ+7BPffcox07ZMgQ+S//8i9y165duvOpqiofeughOWTIEGm32+Xs2bPlwYMHe+rtdFln7oOUUn766acSgPzHP/4RcS6zfRZCQ1pbP0Lved68eXLmzJkRr8nLy5M2m02ec845cunSpRHnbeueJqLO3oeZM2e2ebyUwWHiw4YNkzabTX7ve9+T1113nTx8+HDPvrFO6Ow9ePLJJ+W5554rU1NTZf/+/eXFF18sP/zww4jzmumz0JX/H6qrq6XD4ZAvvfRS1HOa7XMQ7f0D0P1/Hu334ptvvinPP/98abPZ5Pjx4+Xf//533fNGfD+I5gISERERJbyk7eNCRERE5sPgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbx/wM3J5Fg0MWcegAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "maxfreq = 1.\n", + "dt = 0.2 / maxfreq # smaller than the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n", + "\n", + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "81bffa81", + "metadata": {}, + "source": [ + "# The Cross spectrum\n", + "\n", + "A great new addition to Stingray is the Lomb-Scargle *cross* spectrum. The cross spectrum is the basis for many of the spectral-timing techniques that Stingray was born for (e.g. the covariance spectrum, time lags). \n", + "\n", + "Here we show a simple usage of the cross spectrum as a proxy for the (Poisson noise-subtracted) power density spectrum, using two datasets from two identical instruments onboard the same satellite.\n", + "\n", + "Time lags measured with this cross spectrum make sense in our tests, only when the light curves are sampled at the same times. Also, we do not provide error bars on the time lags at the moment. Use with care!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b047a2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:02, 107.72it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE6klEQVR4nO3df3xT5dk/8M9J26Qt0ApUWsqvggpbQNvZ0q5Mt6LdWJ04cfCwZ5tWfMbEpVPXR/cA7kvHprIfythctioOQacb1s1uAwVGdUOlrrRYpxYQtEAFWiiFhqYlocn5/nHaNGl+pyc5ycnn/Xrl1eScO+dcJdZeve/rvm9BFEURRERERDFCo3QARERERMFg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFlESlA5Cb3W7HyZMnMWbMGAiCoHQ4REREFABRFHHhwgVkZ2dDo/Hdt6K65OXkyZOYMmWK0mEQERFRCNra2jB58mSfbVSXvIwZMwaA9M2npaUpHA0REREFwmQyYcqUKY7f476oJnkxGo0wGo2w2WwAgLS0NCYvREREMSaQkg9BbXsbmUwmpKeno7u7m8kLERFRjAjm9zdnGxEREVFMUU3yYjQaodfrMXfuXKVDISIiojDisBEREREpjsNGREREpFpMXoiIiCimMHkhIiKimKKa5IUFu0RERPGBBbtERESkOBbsEhERkWoxeSEiIqKYwuSFiIiIYgqTF4ouppNA52FAXaVYREQkI9XuKk0x6OB24E/fkJ5PLQbKtwEJqvlPlIiIZKKanheDwYCWlhbs27dP6VAoVKdbhp4frwde+C/lYiEioqilmuSFVMg5mSEiIhrA5IWiT/a1SkdARERRjMkLERERxRQmL0RERBRTOJUjkjqPAG+uBy71juw6E/TA5x8EBEGeuIiIiGIIk5dI2rcRaH5+5Nf54GVg9m1AxpUjvxYREVGMUU3yEhPrvPRbpK9XfQm48ouhXaNuLWDtAWwW+eJSm3PHgH1PA+NmAAXLlI6GiIhkpprkxWAwwGAwOHaljGqTCoCi74T23j2/kJIX8m7vE1IvFwBccQMwdpqy8RARkaxYsEvq41xTNNL6IiIiijpMXoiIiCimMHkhIiKimMLkhdStaTNgOqV0FEREJCMmL6Ru/64Gtt2vdBRERCQjJi+kfuZOpSMgIiIZMXkhIiKimBJ1yUtbWxtKSkqg1+txzTXXoKamRumQiIiIKIpEXfKSmJiIDRs2oKWlBbt27cL9998Ps9msdFikhAungGe+AlzqUzoSIiKKIlGXvEycOBF5eXkAgKysLGRkZKCrq0vZoCiy0icBSanS82NvAu3vKRsPERFFFdmTlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHB47Wamppgs9kwZcoUucOkaJYyDvj+B0OvRVG5WIiIKOrInryYzWbk5ubCaDR6PL9161ZUVlaiqqoK+/fvR25uLhYsWIDTp0+7tOvq6sIdd9yBp556yuf9LBYLTCaTy4NUIHWctLEiERHRMLInL2VlZXj44YexaNEij+fXr1+P5cuXY9myZdDr9aiurkZqaio2bdrkaGOxWHDrrbdi5cqVmDdvns/7rVu3Dunp6Y4He2mIiIjULaI1L1arFU1NTSgtLR0KQKNBaWkp6uvrAQCiKOLOO+/EDTfcgNtvv93vNVetWoXu7m7Ho62tLTzB223ApYsje9j7wxMbERFRHEmM5M06Ozths9mQmZnpcjwzMxMHDx4EALz11lvYunUrrrnmGke9zHPPPYerr77a4zV1Oh10Ol1Y4wYAfPw68Ievhf8+JJ+pxcDxeqWjICIimUU0eQnEddddB7vdHvT7jEYjjEYjbDZbGKKSUWIyMLVI6SiIiIhiVkSTl4yMDCQkJKCjo8PleEdHB7KyskZ0bYPBAIPBAJPJhPT09BFdy6PpJcBKGYakErRAUvLIr0NERBSnIlrzotVqkZ+fj7q6Oscxu92Ouro6FBcXj+jaRqMRer0ec+fOHWmYniUkAslpI38wcSEiIhoR2Xteenp6cOTIEcfr1tZWNDc3Y9y4cZg6dSoqKytRXl6OgoICFBYWYsOGDTCbzVi2bNmI7hv2nhciIiKKCrInL42NjZg/f77jdWVlJQCgvLwcmzdvxtKlS3HmzBmsWbMG7e3tyMvLw44dO9yKeImIiIg8kT15KSkpgehnRdSKigpUVFTIet+YKdil6NFvkWaQHdsLLP49MNvz2kRERBRdom5vo1AZDAa0tLRg3759SodCvogicGI/cPgfwNE3AZuCa9+cbgGOvgGINqDmTimZGXTqP8Bjs4A/LOb2BEREUSbqpkqTyh3+B/DCkqHX838IfOFBZWIZnpT0XwQSB9YM+qgO6GkHjrQDFhOQzDoqIqJooZqel7DPNiJ5dLf5fk1EROSHapIXDhsRERHFBw4bxaNzx4Dzx9yPXzYVGJsT8XDQ2wX0nQP6zkf+3kREFHOYvMSb7hPAr/MA0cMWDIIGuP89IH1y5OJpfw94bCZgvxS5exIRUUxTzbARa14CZDohJS6aJODyTw09NEnS8e5PIhvPmYPKJS4nmpS5LxERjYhqel64wm6Q0icDhn8Pvf71tUDXR8rFo4Q3Hlc6AiIiCoFqkhdSQM8Z4O/3AebTQ8euWQoULpf3Po2/B47sBmZ+GZic771dvxXYXgk0P+//mqaTwIVTwcXR0QLU/Ri4Yj5QdHdw7yUiItkweaHQHfkHcGi767Fzx+RPXv6zVfr6Xg1wX7P3dicagXee8389ux3YsSr4OOp/A3z4qvTwlbzYbdIaMgn88SIiCgfV/N+V2wPITBSlYtqL512Pj5sxVNBrH/i3npgH5H0DePUH0oJuOx8Cxl8J5N8JCIJ8MVlM3s/t/Q3Q8GRg13nlf4GWWun5mImB98Bc7Pbf5tJF4HfF0uyp4grgk33AjWuAzNmB3YOIiPxSTfLCmheZffAy8JKHnb4TtEDlQWDU+KFjozOBWWVS8tJ/UeqhAIBp84DLZ4U/1q5WYNdDgbf/cOfQc/1XgX9X+27f1gBccYPrsRfvAOZ+Gzh7BDjfBlx3v7QKb3cb0PWx1Oa1nwzcbwfw/Q8iO4uLiEjFVJO8kMwG14HRpQNp2dLzzg8Bm1VaNt85eQGkNWIWPSntF9T4jNRLYumJTKz9F8N7/ecXS9sYOGv5K3DoVenfAwDGTQeuvcP7NY6+BeQuDV+MRERxhMmLWplOAmc9zB46czC463z6ZuDW30rPf3GVa3HucLlfl75+8LLnIZ7Ow8DJ/f7vmTref5tIa/+P+7HBxAUATr4DfOb2yMVDRBTHmLyo0cVuaepzf5/3NkKEl/jptwBPzQesFzyfz5wDzP0fab0Z/Vf9X892SRqeiZahmMZNQFKqVOdDRERhxeRFjXrODCQugpeaE0FKFCLpUu9Q4nLFjVLydOQfQ+dHZQAFdwV+vWe/Chx7Cxg1Afhmje+29ktScbEmIfDrv+2nDsaTps1MXoiIIkA1yQtnG3mQnOa6EF20+MaLwFu/dE1egtXxvvTVfBro6/Ld9tS7wOOfAu7eA6RNDOz6vZ3BxySKwb+HiIiCpprtAbirNPlkPu25bsUbTVL4YiEiohFRTfJCRERE8YHJC8W+916S71rvbgUeznIvdtYkAge3yXcfIiIKGZMXin2B7GUUqHee8zxLKzFZvnsQEdGIMHkhZV3qVToCV8FMIR81IXxxEBGRV6qZbUQxJvNqAAKAgRk6E/P8v0e0A7XfBTo+CGyfoVCMDiIhSWBRLxGREpi8kDJmfRl44LC09osmKbDF5vrOyTtENNyex0Z+jWjrSSIiUiEmL+Rq7xPAf16U1kYJt9GXA7g8/Pfxxbn35NxRIFEX+HtNJ1xfXzIDT37eS2MReONxwNoLlKwCEvz86PWdA1LGBh4LEVEcUU3Ni9FohF6vx9y5c5UOJTYlp0lfD24DGn8PnGiUXuvSlIspUm6SocfFn66PgbofA288Ju395MvuHwE/y5ESSSIicqOanheDwQCDwQCTyYT09HSlw4k9XzUCB7dLdSWDEpOBvG8oF5OaWM1Dzw/+Hbhmife2b/5S+vraw8C874U3LiKiGKSa5IVGKHO29IhWgsY1sYq0d18Y2fvrfzP0XDs6sPf0XxzZPYmIVEo1w0ZEREQUH5i8EPlyzdeVvf+vrwUumpSNgYgoyjB5IVLChXZpF+qzHwGmU97bdX0EnD4QubiIiGIAa16IIq35eekx/QtA67+kdW7+rxXQjVE6MpKTuRMYlaF0FESqxJ4Xih+n/gOcfEfq8QiEdjSQqQ9fPK3/kr7aL0m/6CwXpBlfFPtefxT4xRVAvVHpSIhUickLqUvO9d7Pvf4w8FQJcOGk/+sUfgf4/vtA4d1SD0kkbH8A+BOnpsc8qxniP3+GXlEHccdqwK7gLDkilYrK5GXRokUYO3YsFi9erHQoFFMEIP9OeS41drq0wm1SMvDNl4DxV8pzXV/+86fw34PCTnx1FRZbq6C3PIMl1iqIpgCSZSIKSlQmL/fddx+effZZpcMgkiRqgU8v9HwuQRvZWEQReHkF8MxXOAspSvXt/xOaxFkAgEZxFvouseeFSG5RmbyUlJRgzBgWLxK56e0C3v0jcOxNoK1B6WiIiBQhe/KyZ88eLFy4ENnZ2RAEAbW1tW5tjEYjcnJykJycjKKiIjQ08H/CFGGXTZMKcmeUjPBCgvuhaZ8b4TWHObzT6YXo5TkRUfyQPXkxm83Izc2F0ei5yn7r1q2orKxEVVUV9u/fj9zcXCxYsACnT58O6X4WiwUmk8nlQeTX3XuA1SeAK0tHdp15Fe7Hsj8z9Hx05siuDwD2/pFfgyJnTJbSERCpnuzJS1lZGR5++GEsWrTI4/n169dj+fLlWLZsGfR6Paqrq5GamopNmzaFdL9169YhPT3d8ZgyZcpIwicamc98Cxg3Y+j1/IcCe9/GG8ITD0WcW3/YJe5RRSS3iNa8WK1WNDU1obR06K9djUaD0tJS1NfXh3TNVatWobu72/Foa2uTK1zy5t0/Ant/A3xUp3QkgP6rSkfgauq80N7X1+X7fNNm4LfzgNY9oV2fIkIURSw5e7frwfZmRWIhUrOIrrDb2dkJm82GzEzXrvTMzEwcPHjQ8bq0tBTvvvsuzGYzJk+ejJqaGhQXF3u8pk6ng06ng9FohNFohM1mC+v3ENcSk6Wve58YdlwX+VgGlawGWv7qv13ufwMf7gD6zoV2n/TJ/tt88SdA3jeAo29Kr1PHA9pRQ+cTU4D+vtDu//f7pK//WDN07NS7wFVfDO16FBZ950+jRcxROgwi1YvK7QF2794d9HsMBgMMBgNMJhPS09PDEBXhpp8D7//F9ViCFij6TvjvLWgAcQRTTlPHA5PnAod3hfb+a8ulIt/nfaw9lJ0HCAIw/Xrg3mZpnZjBVXQBQJMQ2r2ddTv1LL72E+DaO4DRE0Z+XZJH54fux7Y/AFz7X5GPhUjFIpq8ZGRkICEhAR0dHS7HOzo6kJXFIregXOoDrGYv53rDc89ZZdIjUM8vBsbmAN/6s/RLfSQm5QPJ6cC5Y0DnoZFdKxQJSVIvx5jswFboHTfd/VjGVdL2BHJqfgGYdy+gicpVD+LPuaMAxrke62fNC5HcIpq8aLVa5Ofno66uDrfeeisAwG63o66uDhUVHmZtBCHuho2evlHpCLy7/FPA+eNSHUdfF3Dg7yO/ZlIK8M0a6fnPpvuvEYlG0z4nf/Kyu0rq8Rk+5bv9PWnDxwmfkvd+5JvgnkSKAGDtBbSpEQ+HSK1k/3Otp6cHzc3NaG5uBgC0traiubkZx48fBwBUVlZi48aN2LJlCw4cOIB77rkHZrMZy5YtG9F9DQYDWlpasG/fvpF+C9HtyiCSlisUSnC+/gKw4k1gwmzp9d/vlR6A9D/3kfbCkKuGjUC/dej1+Tag+jrgt0XSonYUOYdedTu0xFoF8VKItU5E5JHsPS+NjY2YP3++43VlZSUAoLy8HJs3b8bSpUtx5swZrFmzBu3t7cjLy8OOHTvciniDFTc9L4uqga+sD6ytUn/pJSQBWVe73z/7M8CcxfLUfgwSNNJic9YeaVgmHh3cBvz7d8DnBop6e5zWTDJ3AqnjPL+P5Jcy9G89PQ1oNQEtYg76LtnBfhci+cievJSUlEAUfa/8WVFRMeJhouHiqmA3Vrufv/xTYOpn5b2mIAAr3gA+aQKmzQOOhzblHgBw4G/yxeWJLoxbXhx9ayh5oajwomE+5q57XekwiFSJVX4U+8bNAK5ZAqRPUjoS32bM998mnFr3APW/BfotysahYs5/tnF0lCh8onKqdCjiZtiIfJtSCIydDtisUhHrSHpiYsng/ke2fqD+N57bbBnYGTvlMmk9GpKVKIpY8oHMPYtE5JFqel7ipmCXfLtsKnBfM1DZAkzMVToaV2OygIl5wb/PFuDeRp80AdvuBz74i+923SeCj4H86rtkQ0uvNGStT7uIlCQZa7uIyIVqkheKI9rRTs9HeW83nCbJ6bkCv1gEDXBHAKsBD+cvGRn09A3AO8/5b3fmoP82NCI1xcc4bEQURqoZNqI4suh30pTUzDlAWnbg7yu6G7h4HphSJF/xbGrG0PNRl8tzzeEunJL3emePyHs9ciMkBZFUE1HQVJO8sOYljuRcJz2CNeML0kNOl88Ebq8FIAITPj2ya827F9j7azmiGnKiCRh/JXCudehYsspn4ynl4oWh51OLXM+ZTgCXhSm5JYpDqhk2Ys0LKeaK+cAVN3g+lzlHGuYamwOM9rOW0We+JXtoqF0hJUTOvTf+4qDQOC9ElznbdbXd89ztnkhOqul5IYpK468AHjwi1dskJIZv3ylfml9wnbf73ovAwg2u9UKiCLxXIy2ydlVpxENUHbeCFxbAEMlJNT0vRFErKUVKXPzxsC+OLDoPAaeHFek2POX6uv094C/Lgee/BlzsDk8came54PWUePF85OIgigNMXoiiwbV3AOlTwnf94TOWdv8I+Om0oU0zP3h56Bz34QmJ+OT1Xs8t2aHxu/I4EQVONcmL0WiEXq/H3LlzlQ6FKDifNQC3PBHeJVn7L7ofu3ge2PVD6fmbAe6XRR6Joogl1iqXYylJCdAndwIAWnrT0XeJkwmI5KKa5IUFu1EofbLTCyG4ac0UFFEEekVdQA+XDoC+c4rFrCZ91n60iDkAAP2YXqQkJUAQBNQUHVU0LiK1YsEuhc+tvwOuLQdEG3BZjrT6LYVFH3TQW54JqG2BcAg12rVSR0+/Fag3hje4eHCh3fG0ZvlcCAO9aIIY4OrIRBQU1fS8UBRKSpGmEV9ZCmRcqXQ04SHE3hLwjeIs9EEnvejvA3auDu4Ch3YA1dcDH+4aOnbqXeDt3wGWHvkCjSXt7zmeCs49jFxThygs2PNCFKpP3Syt1hsFUmBBi26Zzza90KHAUj3ym9WukIab/vpdaRo4ADx7K9DXBVh7gM8/OPJ7hIN9oObE29YQtktAQpLnc34JcOwprXH6m/CqLwK7PpGed34MZM8M8fpE5Iw9L0Sh+vrzgDZV6SgASLW+qYLF9wOW4C7aeRj487eBj16DS6HMYJ2M+Qzw+y8Brz8qJS6A1APjzG4DTr4jJQaR0HfOcx3P4d3Aj8dJj+Y/um92eaIJ+FkO8PKKkG7rdR7RBP1Qm+7jIV2biNypJnnhbCMime18SFq47rlFwOabXROYQW3/Bv71M8/v/6RJShaeKgG2fd/1XOdhwGqWN96+88B6PfCz6cBFk+u557829Lx2BdBS63p+/7NSr9G7fwz6tqIoYkmtlzVenGaQLfnLOU6XJpKJapIXzjaiuJAxa+i5VqbNJb053TL0/NibgMXkve0g5wXutlcOPXfe7frDncBvCoBHs4FXHpSSDn/e3AA8/UWg62PvbUwnB1YwFqV7+NLxgbRw39ZvAYf/MTSkFAxLD9D8AvoatqClR1qtWC8cRUrS0LBUSlIC9Bppa4CWC6nos7KAl0gOqkleiOLCXTuAm38pDUeUVvlvL7fuE77Pt+4BjuyWnnd84LnN4HlAWul3/7PSc2sv8IfF7r00ALC7CvikAdixCvjnT4HuT1zPiyJcBm+sA4XDtn7gH2s8x7Hj/6RF+p5f7Hr8PzVSUrPr/0lDUCf2A0/kA+/8AehqBf72PeDom8Cr/wfU3gO88gPHW2vGbHDMNAIgTZe+dqiYV2z38m9CREFhwS6R0lLHBtYuMQVIHQcU3CU9Olr8vycUjZuA8Ve5H7fbgF/q3Y8P17RZmmEWqJ4O6esnDcCRf0jPb6wCUi4D7HbXGpYPd0iPTxqBb70kHbP1A78vlWprhju8C3jrVwCk/GZwllXyG7/ERWgB6JACC4QDf3OcT/nzt4dGe2xWiPv/gD7rJaTUGgAMtHn/rxCsUi+T80CQcOWNbiEITvEv2XoC2x/MdUlwiCh4TF6IlDIpH8i6Bsj3PUvI4ZYnAmuXlArMfwjY9VBocXmrYXEe+vEl1LoO0T70/OR+oOVv0vCP847Yg478Q+oJ6TwM5Jd7TlwAx3vtooCbrY84FpJzpheOYhsewhJrFZrEWcgXDuFZ7U+lAue3q7HY6TgANImzUGCV1soRIeBm66NDF/PQG5Zy00+gb9mBFjEHLV1A3yUbUrX8Xy/RSPAniCiStKOB0ZlSb0Ppj4Dpnw/sfd99G5jwaddjY3M8t13wiDQEI7fXH/XfZpDdDthHMMPouUX+2/xV6gnBWxs83L8fsNscKw/fbH0UreJEj5dpEXMwz/JrtGM8ACk5mW15BnrhKLZof4omcZbj+KBGcRbMSMZC6yOO6+qFo0gZe5Pb9YXxV6BGuxazA1xEkIj8Y80LUSQlJALfawLufz/wxMUbbSrw9WGzY6Z/QRpSCgdP+yN5s+fn7sf+/G1pSOr8sCnD9b+RemtGsKu28/YIogjglQcg/vZzWPzPsZhtecaRYGThrMv7Bl8PJi7OWsQczPWxLo5zQjRdOIVt2oe8DgcJhcuHXhzdG8y3RkQeMHkhijTdGOAymXaQ1gzrPE3QynPdkXpzg/ux92qkYtwPd7ifO38cgOBxjyZ/o1CiCCy2VkFveQZ6yzNYYq2CXRRw9swJNHXpHO30wlHs1d2LgoHhnwLhEPbq7oVeOBrSt3hUzAIgJS512gegEXwEWvA/Q/H+7V6/1xZFEb0XutF7+A2IPZ0hxUekZqoZNjIajTAajbDZuHMrqZB2dJDtR4UnjkDZrMG1P7gd4tmPHPUlzvTCUWkvJqdjKbA4imr7oHMb0vmK9REccKpvadStwHiYIAhAjXatVHQ7cI3t2tXog85tBeJ9uhUot65Ei5jjqIMBpETJ+drbtKt9Jy7DLDm7HNtPH4IwYZbH86IoYvETr6HppNTTVXB5PWoqb2aRL5ET1fS8cJ0XUq1bq4PvqZm9CEibJMvtA9mx2q13RAzyj4idq9C37zm3xAWQhm9mD/SqDD6+Yn0UZh+9Ms7JRYFwyJG4AAOrEX/hPtfXHlYgHgULtmtXo0W3DC9p12KUYMEowYLt2occvTUFwqGh9/mYYZWSJDje0yLmoHfXI17b9lr6HYkLADSe0aDvEv8oI3Kmmp4XIlUaNQHI++/g35dyGbCoGtiycES3HxyS8ZRUOHPdqTqI2hgvGnUrkAILllirPM4QciQ0A0W1vq7jnLg43PAQULJS2ufo/HFgyy2ATQOcdm0mjL8CqV0fSYsDlv0UGJMNzW+LHL01jh6gadcB33zJaxxCYrJL0e6SD4qw/aIJQnKaSztRFLHkl9sARMnwH1GUYvJCFId6ofOxIY9rO3+JCyAN1ZxFGlJFC3D4DWBgPRXn4R1PnNde6cVQfUoqpP2YBpMER3vAJaEZXlSrF446zg3vcXEzuEHjZVOB7zUhRRRR8PBmNPZNRIFwCCkPHZM2WTSdAMbNcHmrIEgxwtAApI4HUsbB5zeaNhGpsDjiaxFz0Fl9MzK+UwshdZyjWd8lG1q6pcRlunDKURDMXQWIXDF5IYpmw6dHB0PwsnsyENLu0o26FW5DK851Ip6u6dIjM0wgvTqOJMHJdu1q9ELn1itTIBzCi9ofDyw+5yNx+uKP3Y9pEiAAqJnyMvqO7ZPeqx3Y3mBY4oLCu6WF+P77j8Dl/hM7x/dSdQ41W76G2Ye+DQCY2/5/yP/JZrz0X1kQPvMNt/Yvatc6ErMl1fXYfu91rHshGsDkhSgaXbUASBkLXHd/6NeYlA98+hbg4DZAtCMFFhSM7kRjT0bQl/LWi5EiWlAgHEKjlwTEpUdmGG+9OgXCIaT42AFbEIbqUZx7ZQaTFUeyMykfOHdUKnY+f0w69q0/+6xNEWZ9CanH3wSyr/XaBjf9HPjST4BEnfc2nmg0SB2V7tKj0iTOQl/tMqR6SF5S590N/cE0tJwyoeWUiYvbETnhTwJRNJpRAhR/d2TXSEoGlj4HfPQa8NwiCEkpqNE9gr5L54O+lLdeDOfZO8789cgM59yr42+oyfnew3tlAAB3vyH1iCTqpC0NRLu0s/VFEzC50PdFi+6R6lsm+UhegOATF6eY67QPYIblec8N+odmaQmn3kHNipWYXeVnk0miOMTkhUjtZswHyv8OpE2C8MS1SJV55MFTEuGvR8aZ39qUUAIaTC40CQASgBVvSuNUGj8TLBO1wKwvyxSIBwlaaAQR7+vuwhzLJgDDSo+cp5j3dMr3b0KkMkxeiNROEEa+mm8It/TUI+OJx56W9KnA7X8BGp8B3jYGfuPEZM9TxAXBd0FtpMz9NvCfrdA4pSw3Wx9FXds+aDreA8bNVjA4otgRleu8bNu2DbNmzcJVV12Fp59+WulwiCgEggCkXnePtIaKj4fXnCLjqsB33AaAT90MVB6Qdt6OVlMKgTVdSKlqh35MHwCgVZyIG3/7Lsx/Xwn7lluG2k68RqEgiaJf1CUv/f39qKysxGuvvYZ33nkHv/jFL3D27Fn/bySKR9mf8b5BYyAW/gpIH+FWBV/+KQAvGUgQs3FG7EsPR3fiMkiTAEGjwbab7cgR2gFICcxsyzOOoSQAwOcfcHkbp0sTDYm65KWhoQGzZ8/GpEmTMHr0aJSVlWHXrl1Kh0UUnUZfDtz37siucf3AlODPfEsa1hhutp8dnke4qWLIStcOPdffCoybHvkYRkAz4/Oo0f7I4zm9cBQpGVNdji2profIDIYIQBiSlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHBce7kyZOYNGlozHrSpEk4ceKE3GES0aCCu6Rdrhc+4fn8+Ct9vz/VfUfmkF3+KenrFSWBtV/8jDSt/IYfyhdDpIzJwvgFK90OZ6IL225JgCAISElKgH6itApvyykTeq3cJoAICEPyYjabkZubC6PRc5Hd1q1bUVlZiaqqKuzfvx+5ublYsGABTp8+7bG9PxaLBSaTyeVBREG6bIo0E+eyacG/N1MvXxz/9Zy0iNyNP5JeZ/gZdppzG/DNF6X6mBikmWfAx/dPQ4PuHsexbbrV0Fw2GQAgCAJqVhQ7zrH3hUgie/JSVlaGhx9+GIsWee5qXr9+PZYvX45ly5ZBr9ejuroaqamp2LRJGuvNzs526Wk5ceIEsrOzvd5v3bp1SE9PdzymTBnh+D2RLwlJSkcQXgXL3I+NmRi5+18+E/jcfcCogd6cT30F+NrvPbeVs8dHQRpNAjIw9EfXeFxwOZ+qde194SaNRBGuebFarWhqakJp6dAKlxqNBqWlpaivrwcAFBYW4v3338eJEyfQ09ODV199FQsWLPB6zVWrVqG7u9vxaGtrC/v3QXHsc/dJy+4X/I/SkYSHboz7sfFXAPPulVaq9UbO3hdnmgTg6sXAD88Aq08CMwfWYPnsd6VeFzUYkwVNYhI+1n0TH+u+CY0gApf6HKeH977YRcBuZ+8LxbeIrvPS2dkJm82GzMxMl+OZmZk4ePCgFFBiIh5//HHMnz8fdrsdP/jBDzB+vPe/sHQ6HXS60Fa7JAra3P+RCltDXGE1Zn3pJ9LjR+mez9+8AXj9Uam4928V0rGkUb6vmX+ntEdQIBK1ALTAN7YG1j6WpIwFvt8Cjb0fWD9Q89Pf59LEeTr5nIEVdz9+9CZoNFGwdg2RAqJykbpbbrkFt9xyi/+GToxGI4xGI2w2dqlSmMVb4uJPxkzp3+T2vwCmk0PHb/+LtCS/J3MWAwvWBZ68qN3oywG7Pai3dPVakTGa/y1SfIrosFFGRgYSEhLQ0dHhcryjowNZWVkjurbBYEBLSwv27ds3ousQUZC8JnMCMOFTnk8t/j2gTQ1bSDFP69pr5TzraFCf1cbiXYpbEU1etFot8vPzUVdX5zhmt9tRV1eH4uJiH+/0z2g0Qq/XY+7cuSMNk4i88TcURKHTaKTeqLxvDdX2DBhe9wIA1//8dXzl12+y/oXikuzJS09PD5qbm9Hc3AwAaG1tRXNzM44fPw4AqKysxMaNG7FlyxYcOHAA99xzD8xmM5Yt8zDLIQjseSEKQVKQvR+3PQlkXg1c/unA2icmBx9TPCv+LnCr0a3nBXCddTSo5ZQJNz/xJntgKO7IXvPS2NiI+fPnO15XVkqrd5aXl2Pz5s1YunQpzpw5gzVr1qC9vR15eXnYsWOHWxEvEYXZmGy3v/D9+vRC6XF4N/D814DMOb7bj54AfPlngOUC8PrD7udTxgF9XcHFEKcGe19mDxTsDhqcPp2qjcoSRqKwkP2/9pKSEr9/BVRUVKCiokLW+7JglyhItz0JJKf5b+fJVaVARWNga8B8doX09aPXgON7gQlO06oX/x54zs/2A+TgbRNLs8UGUZR6Z4Ro2D2bKMyibm+jUHHYiCjCMq4CdMPWfknNkFbpTU5331Zg4a+Awu8Atz01dOyKG4BZN4U/VpVISUpAwTRpp23nIaS5j+zG7KqduIk1MBQn2M9IRK4+/yCw5xehvTdRK/XIiDYgKcX13OUzgZtCvC4BGBo66rsk9bQMH0I6MFADs/3e69gDQ6qmmp4XzjYiihKJWvfEhWQjCAJStYlI1Q71wjjjFgIUD1STvHDYiChIY3P8txk3A8i6JuyhUPAGe2HeX+t9+xQitVJN8kJEAdA4jRRfNtV/+3vfAVLHhS8eGhFBEDBal4iPHmXdEMUXJi9ERDEuQSO49MBw2RdSO9UkL6x5IaJ45rxH4+Lqes46IlVTTfLCmhciimfO+x8dOGXCjNWvMIEh1VJN8kJEFM887X904nwftw4gVWLyQkSkEsP3P7r+569jSXU9ExhSHdUkL6x5IaJ456n3pfHYOa77QqqjmuSFNS9ERJ73P+q12tj7QqqimuSFiIg8K3h4N4ePSFWYvBARqYjz5o3OOHxEasKNGYmIVMR588bkxAR09VpR8PBuAABnTpNasOeFKJ4kpSodAUXA4OaNGo2AVG2C4/icqp2w20X0Wvs5hEQxTTXJC2cbEQXghv8nfb3+f7230SRFJpZBoy6P7P3i3A2P/xP6NTuxuLoeZguTGIpNqhk2MhgMMBgMMJlMSE9PVzocouhU9B3g6sW+N1u8ejHQ/DwwoyQyMV13P9D9CTD71sjcL84dPdsLAGg6dg6zq3aiYNpY1KwohuBpmhJRlFJN8kJEAfK3S/T4K4D7/xOZWABg3Azg9r9E7n5xZnDbgJZTJo/nBwt5U7VDvw4GtxXQaJjQUHRSzbARERG587RwnS92u4gZq1/h3kgU1Zi8EBGpXDAjQl29Vo/PiaIJkxciIpVzXvtFPzENHz96Exp/WOo4z5pdijWseSEiUjnntV9SkhIGplIPTaFeUl2P7fdex6JdihnseSEiigODa78MJiiDhbwA0HLKBLNVWn3Xzm4YigFMXoiI4tDwQt45VTths4sofKROwaiIAqOa5IWL1BERjcyHHReUDoEoIKpJXgwGA1paWrBv3z6lQyEiignDN2os+9UbCkVCFBzVJC9EREQUH5i8EBERUUzhVGkiojg1LlUbVHtRFNE7MCspVZvAqdWkGCYvRERxSqMR8P7aBZhTtdPjebsowm4XodEIsNtFfOWJN3FgYI+k/Glj8RI3dCSFcNiIiCiO+dp7sfCROsxY/Qp6LP0uiQsg7Uo9vOCXKFLY80JERD5565khUgp7XoiIiCimRGXysmjRIowdOxaLFy9WOhQiIlVz3rRxesYohaMhCkxUJi/33Xcfnn32WaXDICJSvcFtAlp+vADbvned0uEQBSQqk5eSkhKMGTNG6TCIiOLC4KaNqdqhzRoDMbiHo90uwmaXZiZJ06n7IXKDRwqjoJOXPXv2YOHChcjOzoYgCKitrXVrYzQakZOTg+TkZBQVFaGhoUGOWImIKIyGb9boz5LqetjtImasfgVXrH4FM1a/gtt+txf6NTuxpLqeCQyFTdDJi9lsRm5uLoxGo8fzW7duRWVlJaqqqrB//37k5uZiwYIFOH36tKNNXl4e5syZ4/Y4efJk0N+AxWKByWRyeRARUWj8Ldvy/toF+PRA70zLKRM+Odfncv6d4+cBAI3HzuGs2coEhsIi6KnSZWVlKCsr83p+/fr1WL58OZYtWwYAqK6uxvbt27Fp0yasXLkSANDc3BxatB6sW7cOa9eule16RETxbLCAt/HYOY/nNQJQs6LYMX369k3/9nqtgod3I3/aWDx7VyFX5CVZyVrzYrVa0dTUhNLS0qEbaDQoLS1FfX29nLdyWLVqFbq7ux2Ptra2sNyHiCgeOBfwfvzoTWj8Yalbm4tOi9MdO9vr83pNx85hdhWHkUhesi5S19nZCZvNhszMTJfjmZmZOHjwYMDXKS0txbvvvguz2YzJkyejpqYGxcWex2F1Oh10Oh2MRiOMRiNsNq74SEQ0EoMFvIC0h5GzUPOPxmPnHPsiDV6XPTEUqqhcYXf37t1Bv8dgMMBgMMBkMiE9PT0MURERxZ+UpARMzxiF1k4zAKDvki3oDR0Hfe13e3Gw/QKAob2RBq+ZksRkhgIn67BRRkYGEhIS0NHR4XK8o6MDWVlZct6KiIgiQBAEvHi3a8/34IaOwRpMXABpOMlstWFxdT1nJ1HQZE1etFot8vPzUVdX5zhmt9tRV1fnddhHLkajEXq9HnPnzg3rfYiI4o2nDhFfGzoGak7VTjQNFAYPH1Yi8iXo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF4PBgJaWFuzbty+s9yEiouD868GSgNqx94UCFXTNS2NjI+bPn+94XVlZCQAoLy/H5s2bsXTpUpw5cwZr1qxBe3s78vLysGPHDrciXrmxYJeIKHKcp1TnTxsLURSxf2CNl+HGj9YFdM2WUyb0XbI5ioWJvAn6v5CSkhK/mXFFRQUqKipCDioULNglIoqcwSnVg8W2ABzDPslJCbhi9SsAgI8evQmWfv5RSfJiektERD45zy5yfu48pRoARumGnn/86E0ApOLeYNntYsjvpfigmuSFw0ZEROGh0QhBJyPO7fyt2uusx9IP/Rpp9d6PHr0JCUxgyIOo3FU6FCzYJSIKH41GCLknZHCI6Y0fzPfbtvCRodmqV6x+xdELQ+RMNckLERFFL0EQkDJstd5AdPVawxANxTomL0RERBRTVJO8cJE6IiL1GZzJRORMNckLa16IiGLH9IxRAICCaWN9bjUwuLqv3S6y/oUcVDPbiIiIYseLdxdjlC4BKUkJ6Lvke5ao3S5ixsC6MR8/ehOnUJN6el6IiCh2CAKQqk30u5N0r9WGTrPF8ZoFvASw54WIiKJYwcO7lQ6BopBqel5YsEtERBQfVJO8sGCXiEgd/C1mN7x4VxRF9Fr7uSN1HOGwERERRZVkH9Oj7aJr8a4gAIur69F07ByunXoZXloxjwW9cUA1PS9ERBTdvG3wmJKU4Jg6DQAXfcw+umi1O56fNVtx1mxF08CeSfuPn8cMbikQF9jzQkREEeFtg0dBEFBX+QVHj8rYUVqP75faDj1fXL0Xx872urXp6rUiY7ROpqgpGjF5ISKiiPE2pOOc2Fzs997z4lzW4ilxofigmmEjzjYiIoptgexcvbh6b4SioWimmuSFs42IiNTv9AWL/0akeqpJXoiIiIbjNGp1YvJCRERR718PlgT9HlEUsbi6Hvo1O7Gkup4JjIoweSEioqin8bMHkid9l2yOadSNx8753QCSYgeTFyIiUh1puMg27Bg4hKQSnCpNRESqIopDq+46W1xdjwOnTCiYNhY1K4r97mhN0Ys9L0REpCoXnYaLnB04ZQLAISQ1UE3ywnVeiIjUISUpAQXTxrocm3RZiuNY/rSxyBmfOqJ7cAeB2KaaYSODwQCDwQCTyYT09HSlwyEiohAJgoCaFcXou2RDcqK0SaNGM3QsJSkBnT1WzH1kd8j3mFO1Ex8/ehM3cYxRqul5ISIi9RAEAanaRJdVdwePCYIAOcpVunqtI78IKYLJCxEREcUUJi9EREQUU1RT80JERBROzmvHpGoTONVaQUxeiIiI/BjcamBwCnb+tLF4iWvFKIbDRkREpCrhWEC3b9jaMU1cK0ZRTF6IiEhVljy5V+kQKMyiLnlpa2tDSUkJ9Ho9rrnmGtTU1CgdEhERRZlxqVqv5zpMlghGQkqIuuQlMTERGzZsQEtLC3bt2oX7778fZrNZ6bCIiCiKaDQCGh66cUTXEEXAbOmH2eJ7s0a7XeSKvFEm6gp2J06ciIkTJwIAsrKykJGRga6uLowaNUrhyIiIKJponIplp2eMQmtncH/oLqnei6NnewF4L8C120XMWP3KyIMlWQXd87Jnzx4sXLgQ2dnZEAQBtbW1bm2MRiNycnKQnJyMoqIiNDQ0hBRcU1MTbDYbpkyZEtL7iYgoPrx4dzEaf1ga1HsGExfAewEuV+GNTkH3vJjNZuTm5uKuu+7Cbbfd5nZ+69atqKysRHV1NYqKirBhwwYsWLAAhw4dwoQJEwAAeXl56O/vd3vvrl27kJ2dDQDo6urCHXfcgY0bN/qMx2KxwGIZGt80mUzBfktERBTjBEFae2Wk7APjQ3LteST39UgSdPJSVlaGsrIyr+fXr1+P5cuXY9myZQCA6upqbN++HZs2bcLKlSsBAM3NzT7vYbFYcOutt2LlypWYN2+ez7br1q3D2rVrg/smiIiIhrGLcAwRybFpo/OQEzeBlJesBbtWqxVNTU0oLR3qutNoNCgtLUV9fX1A1xBFEXfeeSduuOEG3H777X7br1q1Ct3d3Y5HW1tbyPETEVH8uvHxfzqeDw4XpSSF3pvjPOTE4Sd5yZq8dHZ2wmazITMz0+V4ZmYm2tvbA7rGW2+9ha1bt6K2thZ5eXnIy8vDe++957W9TqdDWlqay4OIiChQ0zOkCSGeplhzAd3oFHWzja677jrY7fag32c0GmE0GmGzccVDIiJylZmm87r+y4t3F2PuI7tdjtkHpk6HY7VeURTRd8mGlCTujxQqWXteMjIykJCQgI6ODpfjHR0dyMrKkvNWbgwGA1paWrBv376w3oeIiGJPzd3e6yc95Q+Fj9TBbhexpNp7yUMwiY1dFGG3i449kvRrduJrv9vrKOil4MiavGi1WuTn56Ours5xzG63o66uDsXFxXLeyo3RaIRer8fcuXPDeh8iIoo9oXRwnDjfh5ZT3mewLqmu97m4nbPCR+owY/UrMFuH9kjaf/w8Zqx+BbaBBMZuF5nMBCjo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF/a8EBHFt3AM8fjScsoU9OaM58zuhbtXDCQwM1a/ghmrX2ECE4Cga14aGxsxf/58x+vKykoAQHl5OTZv3oylS5fizJkzWLNmDdrb25GXl4cdO3a4FfESERHJKZZ3eT5yusfxvKvXiozROgWjiX5BJy8lJSV+u8kqKipQUVERclChYMEuERFRfIi6jRlDxWEjIiJSM1EU3TaSFEURvVbfG0uqUdRNlSYiIop1oiiizyrfSMDgLKXBYt/8aWNRc3cxljwpHSuYNhY1HjaWVCvVJC8cNiIiii/jUrUuz6NlFdvhiYYc+i7ZXK7XdOwcunqtjmONAxtLpmpV82vdJ9V8lwaDAQaDASaTCenp6UqHQ0REYabRCPj40Zscz6PF8ESD5Kea5IWIiOJPNCUtFDmqKdglIiJSihoLZ6P5e1JNzwtrXoiISAnONS4F08Ziy12FSoc0YsO/p2grBlZNzwunShMRkRKca1wGC2djiadtCaL9e1JN8kJERETBscfotgRMXoiIiEYghn7nu3GeXh4tU80DoZrkhbtKExFRpNlFYE7VTqXDiDuqSV5Y80JERJHmaZdou9PsnDd+MN/tvBKieeZQKFQz24iIiCgaFD5S53ieok1QMBJJtM8cCoVqel6IiIjUxtNMoGBF+8yhUDB5ISIiikIuM4E85C+eNn6UI9mJBUxeiIiIopDz7B9PtTXX//x1l9d2ETE57TkUqkleONuIiIjimXOCE0vTnkOhmuSFs42IiIgkfVabz5lFQ7OPIhiUjDjbiIiIKMoFkmQ4t7n+5687ZhZ5ajc4+2h6xiiP1/I26jQ4HKX0bt6q6XkhIiKKNHuEui4WV+/122bJk65tvM0scp591Nppdjtvt4seF96Lpq0EmLwQERGF6Au/+Kcs1xHhOxk4fcHi9xodJv9tAuGtXiaathJg8kJERBQh3jpqbv71m5ENxAu7XYxYb9JIsOaFiIgoTFKSEpCZpnP0inhbIK7faRgmJUmZVXntojQsFAvY80JERBQmggDU3D0v6Pco4WxP7EyvZvJCREQUJqKoXDISrLJfveHzfDQNJ6kmeeEidUREFG3UsI8QIE2ddt5wUmmqSV64SB0REVF4eNqeQEmqSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGJK1CUv58+fR0FBAfLy8jBnzhxs3LhR6ZCIiIgoikTdxoxjxozBnj17kJqaCrPZjDlz5uC2227D+PHjlQ6NiIgoYpTaoDEWRF3PS0JCAlJTUwEAFosFoihCjKL9FIiIiCIhVvZEUkLQycuePXuwcOFCZGdnQxAE1NbWurUxGo3IyclBcnIyioqK0NDQENQ9zp8/j9zcXEyePBkPPvggMjIygg2TiIiIVCro5MVsNiM3NxdGo9Hj+a1bt6KyshJVVVXYv38/cnNzsWDBApw+fdrRZrCeZfjj5MmTAIDLLrsM7777LlpbW/HCCy+go6PDazwWiwUmk8nlQUREpEYND92oyH2jbQAk6JqXsrIylJWVeT2/fv16LF++HMuWLQMAVFdXY/v27di0aRNWrlwJAGhubg7oXpmZmcjNzcUbb7yBxYsXe2yzbt06rF27NrhvgoiIKAZpFBpLWvLkXkXu642sNS9WqxVNTU0oLS0duoFGg9LSUtTX1wd0jY6ODly4cAEA0N3djT179mDWrFle269atQrd3d2OR1tb28i+CSIiIkRfb4OSOkwWpUNwIetso87OTthsNmRmZrocz8zMxMGDBwO6xrFjx/Cd73zHUaj7ve99D1dffbXX9jqdDjqdDkajEUajETabbUTfAxERERB9vQ2hsKs0AYu6qdKFhYUBDys5MxgMMBgMMJlMSE9Plz8wIiKKK9HW2xCKOVU7lQ4hLGQdNsrIyEBCQoJbgW1HRweysrLkvJUbo9EIvV6PuXPnhvU+REREscyugvEwWZMXrVaL/Px81NXVOY7Z7XbU1dWhuLhYzlu5MRgMaGlpwb59+8J6HyIiolhW+Eid/0ZRLuhho56eHhw5csTxurW1Fc3NzRg3bhymTp2KyspKlJeXo6CgAIWFhdiwYQPMZrNj9hERERHRSASdvDQ2NmL+/PmO15WVlQCA8vJybN68GUuXLsWZM2ewZs0atLe3Iy8vDzt27HAr4pUbC3aJiIjiQ9DJS0lJid/l+isqKlBRURFyUKFgwS4REVF8iLq9jYiIiIh8UU3ywtlGRERE8UE1yQtnGxEREcUH1SQvREREamAXAbtal8aVCZMXIiKiKDKnaidmrH5FtUv7y0E1yQtrXoiIyJPpGaOQnJSgdBhBO2e2Kh1C1FJN8sKaFyIi8uTFu4shCEpHQXJSTfJCRETkCRMX9WHyQkREFCFq2BQxGjB5ISIiipCyX72hdAiqoJrkhQW7RERE8UE1yQsLdomIiOKDapIXIiIitWPJjITJCxERUYy4eMmmdAhRgckLERERxRQmL0RERBRTVJO8cLYRERFRfFBN8sLZRkRERPFBNckLERERxQcmL0RERFGIWwl4x+SFiIgoCn3hF/9UOoSoxeSFiIiIYgqTFyIiIoopTF6IiIgopqgmeeE6L0RERPFBNckL13khIiKKD6pJXoiIiCg+MHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYkrUJi+9vb2YNm0aHnjgAaVDISIioigStcnLI488gs9+9rNKh0FERERRJiqTl8OHD+PgwYMoKytTOhQiIiKKMkEnL3v27MHChQuRnZ0NQRBQW1vr1sZoNCInJwfJyckoKipCQ0NDUPd44IEHsG7dumBDIyIiojiQGOwbzGYzcnNzcdddd+G2225zO79161ZUVlaiuroaRUVF2LBhAxYsWIBDhw5hwoQJAIC8vDz09/e7vXfXrl3Yt28fZs6ciZkzZ2Lv3r1+47FYLLBYLI7XJpMp2G+JiIiIYkjQyUtZWZnP4Zz169dj+fLlWLZsGQCguroa27dvx6ZNm7By5UoAQHNzs9f3v/322/jTn/6Empoa9PT04NKlS0hLS8OaNWs8tl+3bh3Wrl0b7LdBREREMUrWmher1YqmpiaUlpYO3UCjQWlpKerr6wO6xrp169DW1oajR4/isccew/Lly70mLgCwatUqdHd3Ox5tbW0j/j6IiIgoegXd8+JLZ2cnbDYbMjMzXY5nZmbi4MGDct7KQafTQafTheXaREREFH1kTV7kdueddwbc1mg0wmg0wmazhS8gIiIiUpysw0YZGRlISEhAR0eHy/GOjg5kZWXJeSs3BoMBLS0t2LdvX1jvQ0RERMqSNXnRarXIz89HXV2d45jdbkddXR2Ki4vlvJUbo9EIvV6PuXPnhvU+REREpKygh416enpw5MgRx+vW1lY0Nzdj3LhxmDp1KiorK1FeXo6CggIUFhZiw4YNMJvNjtlH4WIwGGAwGGAymZCenh7WexEREZFygk5eGhsbMX/+fMfryspKAEB5eTk2b96MpUuX4syZM1izZg3a29uRl5eHHTt2uBXxEhEREYUi6OSlpKQEoij6bFNRUYGKioqQgwoFC3aJiIjiQ1TubRQKFuwSERHFB9UkL0RERBQfVJO8cLYRERFRfFBN8sJhIyIiovigmuSFiIiI4gOTFyIiIoopqkleWPNCREQUH1STvLDmhYiIKD6oJnkhIiKi+MDkhYiIiGKKapIX1rwQERHFB9UkL6x5ISIiig+qSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiimqSV4424iIiCg+qCZ54WwjIiKi+KCa5IWIiIjiA5MXIiIiiilMXoiIiCimMHkhIiIKk3GpWqVDUCUmL0RERGHw/toF0GgEpcNQJSYvREREYcC8JXyYvBAREVFMUU3ywkXqiIiI4oNqkhcuUkdERBQfVJO8EBERUXxg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCREREMSVR6QDkJooiAMBkMikcCY3YRRtgkT5P9F0Cgv1Me3qH3m+2eH9/T99Qu0HmvuDvN1L9Fqd4g7z/SP6diFTigtnq+fiFC77f5+d8qEymC+jXJuBCz0XZrnmhp0e2a43EhQsXoLVbZL3m4O/twd/jvghiIK1iyCeffIIpU6YoHQYRERGFoK2tDZMnT/bZRnXJi91ux8mTJzFmzBgIgqB0ODTAZDJhypQpaGtrQ1pamtLhUBD42cUufnaxKx4/O1EUceHCBWRnZ0Oj8V3VorphI41G4zdjI+WkpaXFzQ+i2vCzi1387GJXvH126enpAbVjwS4RERHFFCYvREREFFOYvFBE6HQ6VFVVQafTKR0KBYmfXeziZxe7+Nn5prqCXSIiIlI39rwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCUau3txfTpk3DAw88oHQoFKC2tjaUlJRAr9fjmmuuQU1NjdIhkQ/btm3DrFmzcNVVV+Hpp59WOhwKEH/OOFWaothDDz2EI0eOYMqUKXjssceUDocCcOrUKXR0dCAvLw/t7e3Iz8/Hhx9+iFGjRikdGg3T398PvV6P119/Henp6cjPz8fevXsxfvx4pUMjP/hzxp4XilKHDx/GwYMHUVZWpnQoFISJEyciLy8PAJCVlYWMjAx0dXUpGxR51NDQgNmzZ2PSpEkYPXo0ysrKsGvXLqXDogDw54zJC4Vgz549WLhwIbKzsyEIAmpra93aGI1G5OTkIDk5GUVFRWhoaAjqHg888ADWrVsnU8Q0KBKf3aCmpibYbDZMmTJlhFGTJyP9LE+ePIlJkyY5Xk+aNAknTpyIROhxT86fw3j9OWPyQkEzm83Izc2F0Wj0eH7r1q2orKxEVVUV9u/fj9zcXCxYsACnT592tMnLy8OcOXPcHidPnsRf//pXzJw5EzNnzozUtxQ3wv3ZDerq6sIdd9yBp556KuzfU7yS47MkZcj12cX1z5lINAIAxJdfftnlWGFhoWgwGByvbTabmJ2dLa5bty6ga65cuVKcPHmyOG3aNHH8+PFiWlqauHbtWjnDJjE8n50oiuLFixfF66+/Xnz22WflCpX8COWzfOutt8Rbb73Vcf6+++4Tn3/++YjES0NC/TmM958z9ryQrKxWK5qamlBaWuo4ptFoUFpaivr6+oCusW7dOrS1teHo0aN47LHHsHz5cqxZsyZcIdMAOT47URRx55134oYbbsDtt98erlDJj0A+y8LCQrz//vs4ceIEenp68Oqrr2LBggVKhUwDAvns+HPGYSOSWWdnJ2w2GzIzM12OZ2Zmor29XaGoKBByfHZvvfUWtm7ditraWuTl5SEvLw/vvfdeOMIlHwL5LBMTE/H4449j/vz5yMvLw//+7/9yplEUCOSz488ZkKh0AES+3HnnnUqHQEG47rrrYLfblQ6DAnTLLbfglltuUToMChJ/ztjzQjLLyMhAQkICOjo6XI53dHQgKytLoagoEPzs1IOfZeziZxcYJi8kK61Wi/z8fNTV1TmO2e121NXVobi4WMHIyB9+durBzzJ28bMLDIeNKGg9PT04cuSI43Vrayuam5sxbtw4TJ06FZWVlSgvL0dBQQEKCwuxYcMGmM1mLFu2TMGoCeBnpyb8LGMXPzsZKD3diWLP66+/LgJwe5SXlzvaPPHEE+LUqVNFrVYrFhYWim+//bZyAZMDPzv14GcZu/jZjRz3NiIiIqKYwpoXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYgqTFyIiIoopTF6IiIgopjB5ISIiopjC5IWIiIhiyv8HsaIGE8ncHK0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray import LombScargleCrossspectrum\n", + "from stingray.gti import cross_two_gtis\n", + "gti = cross_two_gtis(ev1.gti, ev2.gti)\n", + "ev1.gti = gti\n", + "ev2.gti = gti\n", + "lscs = LombScargleCrossspectrum(ev1, ev2, dt=dt, norm=\"leahy\")\n", + "lscs_reb = lscs.rebin_log(0.01)\n", + "\n", + "cs = AveragedCrossspectrum(ev1, ev2, dt=0.001, segment_size=256, norm=\"leahy\")\n", + "cs_reb = cs.rebin_log(0.02)\n", + "\n", + "# plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "# plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "# plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.plot(cs_reb.freq, cs_reb.power, ds=\"steps-mid\", label=\"AveragedCrossspectrum\", zorder=10)\n", + "plt.loglog()\n", + "good = lscs_reb.freq < maxfreq / 2\n", + "lscs_reb.freq = lscs_reb.freq[good]\n", + "lscs_reb.power = lscs_reb.power[good]\n", + "lscs_reb.unnorm_power = lscs_reb.unnorm_power[good]\n", + "plt.plot(lscs_reb.freq, lscs_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle cross spectrum\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7fe119a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Modeling/ModelingExamples.ipynb.txt b/_sources/notebooks/Modeling/ModelingExamples.ipynb.txt new file mode 100644 index 000000000..658865ab4 --- /dev/null +++ b/_sources/notebooks/Modeling/ModelingExamples.ipynb.txt @@ -0,0 +1,2393 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# The Stingray Modeling API Explained\n", + "\n", + "Some more in-depth explanations of how the Stingray modeling API works.\n", + "\n", + "Who should be using this API?\n", + "Basically, anyone who wants to model power spectral products with parametric functions. The purpose of this API is two-fold:\n", + "(1) provide convenient methods and classes in order to model a large range of typical data representations implemented in Stingray\n", + "(2) provide a more general framework for users to build their own models\n", + "\n", + "A note on terminology: in this tutorial, we largely use _model_ to denote both the parametric model describing the underlying process that generated the data, and the statistical model used to account for uncertainties in the measurement process. \n", + "\n", + "The `modeling` subpackage defines a wider range of classes for typical statistical models than most standard modelling packages in X-ray astronomy, including likelihoods for Gaussian-distributed uncertainties (what astronomers call the $\\chi^2$ likelihood), Poisson-distributed data (e.g. light curves) and $\\chi^2$-distributed data (confusingly, *not* what astronomers call the $\\chi^2$ likelihood, but the likelihood of data with $\\chi^2$-distributed uncertainties appropriate for power spectra). It also defines a superclass `LogLikelihood` that make extending the framework to other types of data uncertainties straightforward. It supports Bayesian modelling via the `Posterior` class and its subclasses (for different types of data, equivalent to the likelihood classes) and provides support for defining priors. \n", + "\n", + "The class `ParameterEstimation` and its data type-specific subclasses implement a range of operations usually done with power spectra and other products, including optimization (fitting), sampling (via Markov-Chain Monte Carlo), calibrating models comparison metrics (particularly likelihood ratio tests) and outlier statistics (for finding periodic signal candidates).\n", + "\n", + "Overall, it is designed to be as modular as possible and extensible to new data types and problems in many places, though we do explicitly *not* aim to provide a fully general modelling framework (for example, at the moment, we have given no thought to modeling multi-variate data, though this may change in the future).\n", + "\n", + "\n", + "## Some background\n", + "\n", + "Modeling power spectra and light curves with parametric models is a fairly standard task. Stingray aims to make solving these problems as easy as possible. \n", + "\n", + "We aim to integrate our existing code with `astropy.modeling` for for maximum compatibility. Please note, however, that we are only using the models, not the fitting interface, which is too constrained for our purposes. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "# ignore warnings to make notebook easier to see online\n", + "# COMMENT OUT THESE LINES FOR ACTUAL ANALYSIS\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "try:\n", + " import seaborn as sns\n", + " sns.set_palette(\"colorblind\")\n", + "except ImportError:\n", + " print(\"Install seaborn. It help you make prettier figures!\")\n", + "\n", + "import numpy as np\n", + "\n", + "from astropy.modeling import models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The models and API of `astropy.modeling.models` is explained in the [astropy documentation](http://docs.astropy.org/en/stable/modeling/) in more detail.\n", + "\n", + "Here's how you instantiate a simple 1-D Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "g = models.Gaussian1D()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAEvCAYAAADiuwAFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAt9klEQVR4nO3dbWhk2Zkf8P+p0nS1hONZ1N3UBtuqKjIjq42zxNCYgjZIeHeD0zG7X7NbsyOIUIHZhTHsEpJoviRQEAhs0rD2BGl7SLdTZAnshoTFy8aBVS9t0o57HNvEVkUetiTteCe1M2qHdaOe6pF08kF9yrdunXPvuXXfb/1/MDCtl9JRqeo+9zznOc8RUkoQERFRPEppD4CIiKjIGGiJiIhixEBLREQUIwZaIiKiGDHQEhERxYiBloiIKEZzcTzo1atXZb1ej+OhiYiIMuett956X0p5Tfe5WAJtvV7Ho0eP4nhoIiKizBFCHJo+x9QxERFRjBhoiYiIYsRAS0REFCMGWiIiohgx0BIREcWIgZaIiChGDLREREQxYqAlIiKKEQMtERFRjBhoiYiIYsRAS0S5sLa2hrW1tbSHQRQYAy0REVGMGGiJiIhixEBLREQUIwZaIiKiGDHQEhERxYiBloiIKEYMtESUCdy+Q0XFQEtERBQjBloiyrxut4uHDx/i/v37qNfr6Ha7aQ+JyBoDLRFlWrfbRbvdxnA4BAAcHh6i3W4z2FJuMNASUaZtbW3h5ORk7GMnJyfY2tpKaUREwTDQElGmHR0dBfo4UdYw0BJRpi0tLQX6OFHWMNASUaZ1Oh0sLCyMfWxhYQGdTielEREFM5f2AIiIvLRaLQDAxsYGhsMhKpUKlpaWRh8nyjoGWiJKndq+MxwOUa/X0el0xgJpq9XCzs5OiiMkmh5Tx0SUKm7foaJjoCWiVHH7DhUdAy0RpYrbd6joGGiJKFXcvkNFx0BLRKman59HqTR+KbLZvsPTfigvGGiJKFXVahXLy8uoVCoAgFqthu3tbW7focLg9h4iSl21WkW1WgUA7O7uAsBotqr+TZRXDLRElIiwgXN3dxfdbnescUWj0YhugEQxYeqYiHLBvd92OBxif39/tN+Wa7aUVZzRElGigs5s1dcfHBxM7Lc9Pz/H1tYW13Mp0zijJaJc4H5byisGWiLKBe63pbzyDbRCiMtCiP8phPieEOIHQoh/kcTAiIicdMflAcCTJ0/YF5kyzWaNdgjg81LKJ0KIFwA8EEL8iZTyYcxjI6KCc57ao6qITQVNah12fX0dZ2dno48fHx+j3W5jaWlptEWIKEt8A62UUgJ48vyfLzz/T8Y5KCIqDlPg1FURO9db+/3+xDaeVquFjY2NsUALXBxC0O/3GWgpk6yqjoUQZQBvAXgJwFeklN/SfE0bQBvgmgkRjRsMBhOB03Rqz49+9CNIKXF+fg5gfBtPq9UaBWY308eJ0mZVDCWlPJNS/j0AHwfwWSHEpzVfsy2lvCGlvHHt2rWIh0lEeTUYDLC/vz+x//Xw8FD79WdnZ6Mgq6htPABGrRrdTB8nSlugqmMp5f8DsAvgC3EMhoiKp9/vawNnuVwO9DgqrdxoNCYOIXjhhRdwdnaG+/fvo16vsziKMsWm6viaEOLnnv//PIBfAtCLeVxEVBCmlO7Z2RkuXbo09rGFhQXMzelXtEqlErrd7sQhBFeuXIEQAqenpwCAw8NDtNttBlvKDJsZ7d8G8GdCiO8D+DaAb0gp/zjeYRFRUXildKWUo8CqTu156aWXJmaswEVgbrfbGAwGqFaraDabWF1dxUc+8hE8e/Zs7GtPTk5GqWaitPkGWinl96WUn5FS/oKU8tNSyn+ZxMCIqBh0qV7lww8/RLlcxurqKg4ODtBqtUYzVh1VXexkWutlxyjKCvY6JqLI6PoYqy03vZ5+xcmZWnbuqzVxf65SqWi/nrsfKCvYgpGIYletVn2rhd37ak1qtdpYINfNmBcWFjA/P8/TfCgTGGiJKDZqhnr//n2cnp5CCDH2+VKpNGpGodtX67awsIBOpzP2MXdxlFrrZfMKygqmjokoFu4ZqurmNDc3h9PT01HjChUQ/dZUa7UaOp2O9ki8arU6ehw1293Z2YnqVyEKhYGWiGJhmqGWy2XcvHlz4uNLS0vawqZKpYJms2l9fq1J0HNwiaLC1DERxcI0QzWtwepO53Gmlm2tra1xbZYyhTNaIgrMZnboNUN1cj/GxsbGWE9k01qr+j4GVco6BloiCs0d7NbW1jA/P4+FhYWx9LHfDLXVanFtlQqHgZaIIqE7oWd7e9t6hupmM2PVnWfLamPKGq7RElFophN6AIxaJX7wwQfY29uL7GfqzrPd39/HYDCI7GcQRYEzWiIKzXRCz9bWFur1eiw/U1fVfH5+PmrRqGbX9Xp9Yu8tUZI4oyWi0EyVxLrK493dXWxubo4aWfgda7e7u6stuvKqanbOrtVpPmqmy6pkShoDLRGFZmqvqOs37E75TnusnVcvY/fsWncYAVFSGGiJKDRdv+FSqaRN2epSvtMca6fbd+v+t9NwOMT9+/fx8OFDruNSohhoiSg0d7/hSqWC5eVlbbtEU8o36LF2rVYL29vbYz2O19fXfb9PpZZ5MDwlhcVQRBSIc0tNvV7HrVu3xrbYrKyseG6xMTWyUKngIC0SnftuNzc30W63rb5PFWrpbgSIosYZLRFZ062vvvHGG2NbbHq9Hr75zW+OCp3caVpTyjdsZbDN6T9OPBieksJAS0TWbIPZ6ekpgItAfHR0hM3NzdHndCnf7e3t0LPLoIGTB8NTUoSUMvIHvXHjhnz06FHkj0tE6SqVSpjmmlGr1XBwcDD2sahO01GPc3BwoE1Jl8tlSCnHKpFLpRLu3bvH1DFFRgjxlpTyhu5znNESkbVpZ4FJpGlNp/+8/PLL1oVaRHFgoCUia7pgZiOJNK07Ja0CqjoUvtlsYmVlBQDQ6/V8G2UQRYVVx0RkTc0C1UEBtVoNt27dwptvvonhcIhyuYzz8/Ox9HIUhU5Bxmc6/Uf1Y1YpZNUoQ30fUVwYaIkoEGcwU+urP/zhD0efd57iU6vV0Ol0Yg1ktmu8un7MqlEGAy3FiYGWiCLjPtoubKFTWM6gb8JtPhQ3BloiKiR3qtiE23wobgy0RDS1MKfgxD3bffr0qW+QXVhYwPz8PNbW1lKffVNxseqYiIzyfKScX0q4UqlgaWnJs10kURQ4oyWiQjL1VK5UKmg2mymMiGYVZ7REVCjqoHhTT+VGo5HSyGhWMdASUWAqmGWZqacyU8WUNKaOiSg0d9DNShDW7fk1NbQgigtntETkK89FUURpY6AlIiKKEQMtERFRjBhoiWgq3W4XDx8+xP3793N1Eo6zkGswGOTyd6B8YTEUEWmpQDocDlGpVMa2xXS7XbTb7VEP4bydhNPtdvHgwQOcnZ2NPpa334HygzNaIprgDqTD4RD7+/ujGd/W1hZOTk7GvkedhJN16ndzBlklL78D5YtwnhsZlRs3bshHjx5F/rhElIzLly9rT7yp1Wo4ODhAqVSC7tohhPDtL5y2er2u7Ril5OF3oOwRQrwlpbyh+xxntEQ0wXSsnOofbDrxJg8n4fj1QM7D70D5wkBLRCNqv6zqpuRWKpXQ7XaN7Q07nU4SwwzFK5Dm5XegfGGgJaIJjUYDpdLk5eHs7GxUMKRrb5iHIiLdTQIAXLlyJTe/A+ULq46JaILqB9zr9SY+pwqGDg4OJtob5oEKpBsbG2MV1Xt7e9aPobpk5en3pvQw0BKRVrVa1QZawH+dM+ucPZCJ4sbUMREZmdZqWTBEZI+BloiMdGu1s1IwxIMUKCpMHRORkVqr7ff7o/XMpaUlFgwRBcBAS0RjBoPBWGBtNBpoNptpD4sotxhoiQiAvv+var0I/Gx2S0TBMNASkWf/3/Pzc/T7fW2gLcL2liL8DpRtvoFWCPEJAPcA/DyAcwDbUsrbcQ+MiJKjOyTAydSSMc/cAZZ7YykuNlXHpwB+W0p5HUATwG8KIT4V77CIKEl++2JN23xmUV7P4aX0+AZaKeW7UsrvPP//nwLYA/CxuAdGRMnx6//rPIt2lpnO4WWwJS+B9tEKIeoAPgPgW5rPtYUQj4QQj957772IhkdESfDr/8tCqAt5PoeX0mMdaIUQHwHwhwC+LKX8G/fnpZTbUsobUsob165di3KMRBSzVqs1dkhApVLBysoK3n///dGe2cFgMDMpU1N62JRiz3tLSoqXVdWxEOIFXATZrpTyj+IdEhGlwav/7+bmpjZlqr6vSHTp4VdffRXARYpdd2g8W1KSF98ZrRBCALgDYE9K+bvxD4mIsmaWUqa63/X8/BwbGxuYn5/P7Tm8lB6b1PFNAL8B4PNCiO8+/+9WzOMiogyZpZSp6XcaDoeoVqu5PYeX0uObOpZSPgAgEhgLEWVU0VOmak12OByiXC5rG3eo4OpMsXPPLdng6T1EMyjoyTS6quSipEzda7K6IFsqlbjFiabGQEtEvtxVyUVKmfp1xapUKlheXuYWJ5oaex0T0QRdSrSoKVOvdebV1dUER0JFxRktEc000zoz205SVBhoiWhkd3e3ULNVG7r1Z67JUpSYOiaimabWmTc2NsYOu69WqxgMBuj3+2MfJwqKgZaIZp6uK9ZgMMD+/j7Oz88BXOyj7fV6uHr1Kq5du4Zqtcqj9cgKU8dERBr9fn8UZJ2Oj49xdHSEzc3NFEZFecRASzRjeJ6qHa/D7ovafpLiwUBLNEN4nqq9Wq3m+fkitp+keDDQEs2QsIcDzFJVsumMXqUo7Scpfgy0RDNklg4HmIbzzN2trS2sr6+jXC5PfF1R2k9SMhhoiWaIaRbG2dnPqoydafW7d+/i5ZdfxsrKSiHbT1IyuL2HaIZ0Oh202+2x9DFnZxd0VcYnJyfo9/toNpujXsezkjqn6HBGSzRDinw4QFjPnj3Tftyr+pjIBgMt0YxptVpoNptYXV3FwcEBg+xzQXsec5sU2WKgJSKC+cxdXdtFbpOiIBhoiYhgTqvrzqE1bZPa2NgYtWUkUhhoiQhra2sMELBPq5u2Q3E9l3QYaImIPOiadPAMWwqCgZaIyIIz4AZZzyVioCWaYUwZTyfIei4RAy0R0RS4TYpsMdASzQD3zHWWDgcgShsDLRERUYwYaImIHKad7bNTFJkw0BIRhcROUeSFgZZoxjnPYOVMbDqmTlFbW1spjYiyhMfkERWIKniyTX2qM1jV8XBqJgaAVbQBmDpFmT5Os4UzWqIZ1e120ev1tGewciYWjKlTlOnjNFsYaIlmkFpTNOFMzI4qnDJ1iup0OimNjLKEqWOiglPVsMPhEPV6HZ1OR7um6MSZWDAqzb6xsYHhcIharYZOpzORfg+a2qdiYKAlKjBTNaxXkOVMbDqtVgs7OzsAGEhpHFPHRAVmqoYtl8vary+Xy9je3mYhFFGEOKMlKjDTWuvZ2RkWFhbGgnCpVMLdu3cZZKfAgxnIC2e0RAVmWmtVp82o02cqlQqWl5cZZIliwEBLVGBe1bDO02eazSaPeCOKCVPHRAWhqy62rYYlovgw0BIVgKm6GGA1LFHamDomKgD22iXKLgZaogJgr91s8Dpij8fozS6mjokKYGlpCYeHh9qP22BKOV5+qX0qNs5oiXJobW1tbO+mba9d9/dRMpjan20MtEQF0Gq1xvbFqn2ynC3FzyYlzNT+bGPqmKggpqkuZso4HNuUcNjUPuUbZ7RERFOyTQnzGL3Zxhkt0QxQM1euz0bLLyXsPhaPjUNmEwMtEdGUbFPCKuA2m00ATNnPGqaOiYimxJQw2fANtEKIN4UQfy2E+N9JDIiIKC9Y7U02bFLH/x7A7wG4F+9QiGhaNmuvXocO0PTYS5r8+AZaKeWfCyHqCYyFiCzoAqbi1f6PnYmSw6IzcopsjVYI0RZCPBJCPHrvvfeielgicjAFzMFg4Pl97ExElJ7IAq2UcltKeUNKeePatWtRPSwROZgCZr/f9/w+diYiSg+39xDliCkwqhmum0phsjNRNnANdzZxew9RjpgCo6p6NeE2lOQNBoNRD+SHDx/6pvepuGy29/xHAP8DwCeFEO8IITbiHxYR6ZgCZqPR8Pw+bkNJ1mAwwP7+/ijTMBwO0ev1cPXqVZ5DO4Nsqo5/LYmBEJE/FRjdrfzU9hK/7+U2lHi4n89+v4/z8/OJrzs+Pma19wxi6pgoZ1qtFprNJlZXV1Gv162CLCXLtGYO2FV789zgYmGgJco551qg6TxUSo7N889q79nCQEuUY+61QLWv9vr165wRpUDtc/bDau/ZwkBLlGO6tUCbfbUUD90+ZzdWe88eBlqiHDCt2ZnWAr3WCCk+finhqKu9uZabD2xYQZRjlUpFG1QrlQoGgwH6/b62JzLFw9QYpFKpoNlsstp7RnFGS5RjjUYDpdL423hhYQGLi4vatVs2TYiXbp9zqVSa2OfMmehsYaAlyiDbC3G1WsXy8vJEI4rHjx9r126fPn3KWVWM3I1BKpUKlpeXUa1WPb+PgbfYmDomyqHd3V10u91R44pKpYKVlRXs7e0BAF555RXt93FbSfycjUGIAM5oiXJFzXzcx+UNh0Ps7++P9nCaeh9zW0n2qfOGuS+6OBhoiVI2TdpQt43k/Px81HHItHbLgqhsM503zGCbbwy0RDnkdb5st9ud2F/LQwTSsbu7G2hN3HTesF/LRso2rtESRUzNTqMoOjLNdE3bSBYXF8dmRMBF1Wun02GQTZHpteD++3rdQFF+cUZLlHG6c01N20gAeKaUKdtMa+i6j3MtNz8YaBPA0n2alu5c0/39fQDQbiN5/Pix9nE4I8oH03nD7rV1ruXmS24DLYMXzQJdL2M1Q3Uel/fBBx9gb28v0IyI0uGciaoMheLeh2taW+dabr5wjZYoYX5ruOpC7NWv2DRD7XQ6aLfbYxdhtUZLyfH627q3ZfV6Pbz99ts4PT0dtcpsNpuej8O13OlEWT8RRG5ntERF5L4Qm5RKJW2a0NSZiIVQ2WA63ef09BSAfatMZi7yhTPaGZfWHV4RTbOU4Zy91ut1PHnyxPeYNQA4OztDu93G0tLSRHs/dibKLpsZpzrm0KttIzMX+ZL7QMtAQVllkyJ2F7QEYXNB5vsiW0zbstz8MhoqQ+FswdloNJi5yKjMB1oGUsoT59F06uJnYnNIuB+eO5svupmojqmFphMzF/nBNVqiiJi24pi2XERRuGJzQabsUGvo5XLZ+DW6Y/Uo3xhoiSLitRVHx1S4cuXKFauft7CwwAtyDrVaLczNmZOJNsfqhcXtkcnKZaD12ocWtbAvSJvuLXzRF4Mpjeu1FUfX3en27du+P0vtr9zb2+OySg55pfyjDLJFuLYU4XfIXaD1Ox7MVhJ/vKDdW4rwgpplNkfTOW+8tra2sL6+rt2KY3qsSqWC1dVVHBwcsPAlx7z+vkDwwwjIX5otK3MXaP2OB8sSdm+ZLbqj6ZxbLnQ3Xnfv3kWj0cDq6iqazeZoNmN6LKaKi4F/32Tp3nuvvvpqYsE2d4E2Tx1RkhorZ8Lp0x1N524WYbrx6vf7E49XrVaxvLw8Mdu1TStyRpRtur9vtVpFv98PPONyHjrBwwX00p6gZX57j5tpH1oWO6IkPdagW6HczRKKfpRaVFvF3I9j6uZ0dnaGXq83em5NN1im9bpqtRp7UQylx/n3VRXr6kZNLTMBGHtPul97m5ub2uUp9/fZKPJWyrQnaLmb0eoKSADgyZMnmbuTsz2JIw08/SM6tm31FhcXtd9fqVQmZiXuAj/OUItNV7Fus8wU5/JUkTJlabeszHSg1S1e7+zsYGlpaWIf2vHxceYChe1JHGng+nF0bNvqAdDeeC0uLo7tvz08PMT+/n6s1fSULaasxuHhoWewS3umlhemCv+kJj2ZDbSmGddgMEC1WtXuQzs5OcHGxkam7sKcR5llqVKUb9Do2N4VP378WHvj9fjxY+3+W93aLRWDO0PhV4Xspmabac/U8iLtwzYyG2j9CkdMd4BZaEmXh5QL36Dhqb+zaTnDbWlpaezGq16vY2dnx/iaffbsWdRDpoy6c+eONtvhV4U8zUwt7DaXJK9vUW3JWVtbw87Ozui956zwT0Jmi6H8CkcqlYr2AmXTks5ZBHT58mU0Gg3s7e15fl1cxUK6s0eTKEzS9VzVrR/nuUAiqbG7G7yXy2Wcn59DSjn6Gq+1edNrWXfTk8e/A/lzv4ZqtRo6nY5vL2OvwwV01y8AxuKprDFlNQH7Qq+sTHgyO6M1zaxUINXtQ7O5A7RteDFNsVDQOz1TtWoShUlZXj/OI+dM9XOf+xw++clPjqWp1GxWxzSbyULRHCXHa5nJ69ri/D41UzNdv1577TVtpnBjYyO238vE73pZpDqSzAZaU8WuCqTufWgqUPilA2z3UyXxR/Y6vSWJF1RW14+LoFqtWqepeNNDUTNdv46Pj7Vf77zZz8rSV1x1JGnsO85s6tgmleLch6ZSan6pFts/XhLFQn6PZfOz0ko9Z4VteliXRlOvlSDpWOfjmI7BU48X5GLlPPLMOR6miostrr9v0OtUuVyeeF2nvYc7aB8Cm2uB7X7lqGV2RgtAWzgyLdsqvSSr+fwe69KlS54X6zRTz4rf3W8W7o69KtjDPM60fbaJpuGcifkdpuJ1MpSucO/8/HzidZ329rI4+hBMu185rEwH2jjYVunNz89r14A7nU5kwcOrWtVmvTnt1PM00gi8QVofBn2crPbZpmIJetaxKUjdvn17Yplibm5urHAPuHhd93q9VNs6xrGkEvSErahkNnWsMxgM0O/3jalkmyphryo9J5U2cf88Z4rPlimV4R6LYltxGEXqeRYEbX3opm4MuPeYkqRbFnJSN3nqOuK8Ph4cHGB9fR1vvvnmxPULwNgyhRDCcxxJpVd1dEsqYXYTBKnwj1JuAq0pt760tORZZQfoe4U2m82xx9fNsnRrwDbjVC92m7VSU+C2CeaXLl3yDBZF2hMb5s1lep5stoI5RdW7end3F91ud3SD5dx6QQSYl4XcDg8P0e12tddHdTJUtVr1fN+Ygo+TypDlve7jzp07Vtsao5ab1LEpt67Sf9NUCQdZ87DhTu+Y1kqjSp/qtjgpUbx4ojy/McmU8draGq5fvz4a++np6cRdu01q3i2qPttRrRlTcXktC7m12228/fbbntdHL17XEaejoyOra0LY93pU1wrnWNV/7jOgk6rwz82M1q8TVNC0nvsOUK15AJi62s5roT2OP6Q7va2400ReTHe6YTeLp1kA5f7bnp2dAQDm5uZwenpqnZp3U7/3+vr66DGBn/XZtn3Deq0Zp13pSelS70ebwKd4BWSb5RHTdcRtcXExspOCouCV5fIqFLWd6UcpNzNaU5qvVqthd3fXmL4zVe7qgmKY/rLdbjeVhXbnfk31XxR7YvO8WVz3twUutjAEeX50d9atVsvYZ9v93Ozu7mJzc3N0V3358mVcv37d+Hp49uwZt/MQgOiWffyWR9Ssr9frAQBWVlawsrKiLQQFJoP6tNeEKLNlOn6Fokn3Ec98oFXNt02doFR61FRNbEoPTtMr2ZTSUHdPJl77vtLe+mJiCgZ+p4lkQdx9sG1vqEzbgUzH5RVpTZ3Cse2frei27fgtjwwGg4nXZ6/Xm0hDOw+/0Ak6kYjjiE534NbVUjgl3RM/84FWMXWCUjMT0+kMplSc151e0DVbr7unNFvphQnkfi0wbUS9Bu5muiu2OQklzB216fHdz5lpOxCgPy6PBVGkqOuZDdO2Hb9Oef1+3/McZeBnWx9brVbg3gKm60/U2TJd4PYTtBAyrFys0bq78aysrGgPATBV8DorgdV2nkajMbaO5+a8u3vppZc8x+d1RzftQrtX9bJf8Ixqj6+uOs/5pvLaTmW7Bu5eZ/GrLlaf39zcNK4X6f62zuxG2PVn3ePrAqXpdfH48WN87Wtfm+h6lveKTopWq9Wa2Prn5rVtx/lvt93dXat1YOcWIr+DSGyvO1FvkwtSOAZMXseSkPlA69WNx+bCZLrgLy8vY3l52bcA4PT0dGxjuC4AmrZ91Gq1QAVJ6oWaVpsw5xjUmEwtMP2ClWkNvNfrodfrhd7S4nVXXK/XAWDi5koFeK/vbbVaYxcM3d/ba4+1k9d2IFPLRSIn002jytb53ZB63cCaXp9uarnIdE0Iek0Kuk3OOWZdC1SvAO3eujRtIWRYmU8dh+3GY7rgP336FHt7e6NCIi/q55m279y6dSvwmZA6qnim1+v5tgmLOi1rKvwxHTrgl/6x2f9nu6XFmeZVv6vfXbEqEltZWQEA9Ho96+9VTH/vwWAwVoRmKq6a5qxQIif3kpnfklgQtuvAzjRrFAeRTNtaMWjNQ6VSiaVQdBpWM1ohxBcA3AZQBvD7Usp/FeuoHMKmGUwXfLXRG4DVxf7o6AiXLl3SBsCvf/3r2N7e9u025cevqEr9znFsTQrK7+9iuwlebWkxpZ283ly6k0gWFxdHd7zuc2H9vtd9R+21d9vmebbtQkbkxdk4J0o25yh7FZQqpgyQ+9ANv2yZ3/vCr+bB+Tm/cSedRfINtEKIMoCvAPhlAO8A+LYQ4r9KKX8Y9+CA8N14vC747XYbL774olWg9UqzHB0dadeHdekar9Nf/NYa1O/stTUpqUDr93fxWwNX/IJxkDfXCy+8gJ/+9Kd49uwZAIztdfX73lKphPn5+bGLRhTVy9O07CRKivv1qQuUpmuK++bYNAHQLfOZlk6c18fLly+j0WiM6nGC1DzMz89nak+6Ter4swDellL+hZTyGYA/APCr8Q7rZ8Kk3waDwVgFndvJyQneffdd32Cg0hq21aYmfqe/eM3SnakV04U+yX2YXn+Xbrdr3MvqZnpOVSrb683lrrL86Ec/OgqyXtzfa0rH+e3dJkqa2u4Y12M7l9P8zlF2M00AbJf5/K6PpuusKupyprSzFGQBu0D7MQB/6fj3O88/lgjTth2vNMNgMMCDBw/Q6/W0s5ognNuIdHt5g6y5mWZn6+vr6Ha7ngFbFdAA9ttL4rSzs4OlpaWJvwsAqx6tgF1aymtLgXu9yHSotd/36i4oppu0addY0zhsmihKftsFwzbs8avHMa0pn52djdV76Go60mazRqs72kFOfJEQbQBtIPoLvk36zVSxOy21kK7uHnWztKBrbqYXnHqhrK+v4+7duxMpTfdsy3Z7SdR0aW/34QxBSu1tijp0WwpMwc5mXdjmeTK9hubm5vDSSy8FXmP1OxCDyMRdNRz110f5WGFPxvGr+1Dvu1deeWXia5zdnnSzYiC5+hUdm0D7DoBPOP79cQB/5f4iKeU2gG0AuHHjxkQgjopf2uTp06fWQXZhYWG0Rmvacwno+2aqrwnyx/Na5/UqqnL+DF3A1xUTONda3Gsd0zCldYDxF7DN3au6eQAwFrgXFxfx+PFjbeGQTUGRaV3Y3ePYL1B6tXDU/b399v6GLaoicps2fRzmFCw/pvef7aEbplO2nIG61WppAy1wcU3SbddMun5FxybQfhvAy0KIBoAfA/hHAH491lGFYJumcO6nevHFFz0LAEwpDdMfz3QnqJuducfuNXs3BXxn8Oh2u3jw4MFYytx277Fuz2jQ58Dv6D5nAZi7cOLdd981jnlnZ2c0PtM+XPf+Vvff0uYOfTAYWBdB2d7xZ2FNnWaHu5HMrVu3jAWYUVHvTd0Nqjp0wy+DY9oz7H6fm2bOXhmttN9rvoFWSnkqhPgtAH+Ki+09b0opfxD7yKbkNWvUbfS26bYU9uBwxSv1AfinWLzWMFqt1igQm6ptTacI6YLz4eEhXn31Vdy7dw+tVsvYRWY4HI4F6HK5DCHExBYBd5r44cOHvpkH55ht06+6M4RtU1/qZ5hM27YtrcOmafboGsm88cYbo88HbfijWy5SmbEgy3U2GRzTjbJ7nF6d30wNiNJ+r1k1rJBSfl1KuSyl/DtSykzvtjctmM/NzU290du2769NRWCr1TKejuG3dui3huG3Pqr7fpvgDJifg3K5PNbU4ezsDFLK0Qk3pope25sUNWa/84in5SxS0jUKUWwKt0zu3LnD3sYUim21sU2NhLsS2PTYflXAwMX7x+t94zQcDseKAXU/19kIxl2kqIqxvJp4NBqNTL7XMt+CMSjTml6Y/LypIGfaC69tCz83v72rfmlzdWSg88VtG5xNz4EQQhuky+Uybt68qX3MIFWA6neL40SeIIVzYbrxuF+T7G1McbFdOvP6OnV9qNfrnlXA7iyYrShaypqaeFSrVbz++uuZe68VLtAC0TcJmCZ46xruO8ekS3H68avA9Uub624M/N6YKtCZngN1jqWbKQD6pWfdY1a/myn9GmZPq23hXKVSCV1Iwd7GlATb/sU2qVSvozJNWTBbzt7iOl71IibO91XW3mu5CbRhnzDb9TrT1+k6qJhOrjE13A+6ncM9Fr8KXFOxldqWovvZfsHZfTKHezvP06dPtd+v0jru38G2kQUwfvdsWygRhG2FdBzFI0Rx8Cu4BOzfN6ZrQ7lcttrCp6r9TdT7z6/DVBG2w2X+UIG0eK2JbG5u4ujoyHhwsanh/jTrie5zUwEY1zB0zT1WVlZw8+bNiReoWu/wW9PW3XE61zWfPHmCS5cujX3eKzjZdG5ycqaZdOsyzpuboJvUbe7qVcqYDScoD9zXgFqthi996UuBGv4oXg0i/KjrzurqauAGO3HVY6SpEIE2zCHe0/A7uSaqKmXTzNgriLg7HgHwDEBBgjMweaLN8fGxVfGTMk31n7NiUXeTYVO0oWNzekm1WvW9sSLKEnfHtK9+9asTJ1nZXCfVtaFcLlv/7FKphJWVlYkGO0GKP/3qMeJsQxmX3KSOTYKmaU1/oCB/OL/qX1PKxXZ7iFcxgjPo+I3Zq8m3U5A1bd3d5ocffohKpWIsfnKySW3pqH1wutS/37Yn0/Pkt91K/b38bqxMSwhEWTHtGdfq8HmbWaxpicqm+NO5Jmsy7fa6LMh9oPVK08aVz/er/tUFk4WFhdHnbdeLw86MvZp8qzR0UF53m15HZLmDnXOd2dkRysRrJhzkKEVdkdrKyopxX57X46uLlfsmD5i+mpIoDqZ0rFdBkuJ3vbFpDONV/GlT/e+8frq/1100lcX3Xu5Tx1GlaYPwO7hYt06yvb0dOPDb7t81mbbJt9d6pOlnu/fTDodDHB0dadNT7vT28vLy6N+6PcZ+xRteBw84mbIfgH79V/29vPYQe810ibIiTMN/03u+UqlMdcqPm1+BZK1Ww/r6Ovr9/tg1KU9LOrkPtH7BKI58vimQOu+k3Osk09xlmY6is62CneaUH/carHtd2LTeIoQw3jEHYdqM7vX8+d34KH7ZD/f6r3rtmB7flE4zXbzyuLZExRDmxC/Te97mOuS8aTcVKXpNilZXV9HpdHD37t2Ja9Jrr72Wmxvd3Ada00Xwzp07kV/UnBfKoIFUV7Dld+E1HRFoe/eoe4MAF02+TQVVfhV/e3t7uHfv3sRNhqmM33YDvZNXdxgdmxsfr7H4ZT9Mj1+r1bRfn3a7NyK3oAVJTu6bX9sMnfumXdWIXL9+fSyt7DVjBsw3yKZjMY+OjjJ3U5v7Ndo8dN3xSln6jTNM8429vT10u12sr6+Pzb6Oj4/xk5/8RPs9Nh2YdM0X1PPvllTQsWkIEaZIzfT4urX4tNu9EblN243O+f3uNVa/65KuIYzuIBLTsZ+2He/csnijm/sZLRBNmjZOflWrQfndrbln3mrrjZN6wbt5BR2v7VPT3jG7fxeb321zc3Oq7Vym7Me0DSlsZ9JEWeDMFMVxnXS/d20ySKZjP50zZlPgvHLlSib7GusUItBmXZCq2Dh4zVLdgUrXAN/JtJfXlF4K82bWFWWZsgM2wda2SC1I2inrN3k0m4LewAZ5LFt+9TM2x34C5hvk27dv5+ZGN/ep4yzwO0zZbztQ3LzOaVSByv0CVangcrk8UfSj2z7lLukPuz5i2vc3Pz9vzA7YbFnSpYCj7ItNRBf8DmPx2/+u+C0PZq2vsQ5ntAmwrYqNi6koSnGnsZ2zNFPZfdjtU353yaaiLK8CiLjGQkRmpvePLoN079690Q16kExf3jNHnNHGyNSkYZqCrTAbs92FEDqmF33YLle23M9V0ECexQIIoiKzuTn1yiD5ZfqKdPPLGW1CwtyRmfa2BtmYrQohgu6ni7qAyJZp60ycBRCc2RIlx9QnIIvFTGEx0IaQ1IVZVyY/bdVyo9EIFKhMBUR7e3ux/u7TFEDE/fdgIKZZFvXr39QnIG9pYRuFSR0X+QIYZdVytVrF66+/HiiNncah5UUogCCicbpe4+4zrouoMIG2yMJWLbsrgtMInNPIyziJ8iLN91HQk9aKhIE2B0ynARVxLSMJUV9seBNA5M+v13iYfb5Zx0CbA2m0mSzyi56IkpfGSWtZwUAbkm7NIY4AyDQqEeWRul7V6/VQWwXzfN1j1XEIYdoBpoFVs0SUlrS2CmYBA20IQQ8LYKAjolll22u8iJg6DiHtwwKIiPJEtwRWxH2zbgy0IaR9WECSsjYTz9p4iIhMGGhDyPO2m7wEqryMk4jIhGu0IfDgbyIi8sMZbUjcdkNERF4YaHOEgZyIKH+YOiYiIooRZ7RERJSYWczMcUZLREQUIwZaIiKiGDHQEhERxYhrtBGYxTUHIiKywxktERFRjBhoiYiIYsRAS0REFCMGWiIiohgx0BIREcWIgZaIiChGDLREREQxYqAlIiKKEQMtERFRjBhoiYiIYsRAS0REFCMGWiIiohgJKWX0DyrEewAOI3/g7LoK4P20B1EAfB7D43MYHp/D8GbxOaxJKa/pPhFLoJ01QohHUsobaY8j7/g8hsfnMDw+h+HxORzH1DEREVGMGGiJiIhixEAbje20B1AQfB7D43MYHp/D8PgcOnCNloiIKEac0RIREcWIgTZiQojfEUJIIcTVtMeSN0KIfy2E6Akhvi+E+M9CiJ9Le0x5IYT4ghDi/wgh3hZC/NO0x5NHQohPCCH+TAixJ4T4gRDitbTHlEdCiLIQ4n8JIf447bFkBQNthIQQnwDwywCO0h5LTn0DwKellL8AYB/AP0t5PLkghCgD+AqAfwDgUwB+TQjxqXRHlUunAH5bSnkdQBPAb/J5nMprAPbSHkSWMNBG698A+CcAuPA9BSnlf5NSnj7/50MAH09zPDnyWQBvSyn/Qkr5DMAfAPjVlMeUO1LKd6WU33n+/z/FRbD4WLqjyhchxMcB/EMAv5/2WLKEgTYiQohfAfBjKeX30h5LQfxjAH+S9iBy4mMA/tLx73fAABGKEKIO4DMAvpXyUPLm3+JisnGe8jgyZS7tAeSJEOK/A/h5zae2APxzAH8/2RHlj9dzKKX8L8+/ZgsXabxukmPLMaH5GLMqUxJCfATAHwL4spTyb9IeT14IIb4I4K+llG8JIdZSHk6mMNAGIKX8Jd3HhRB/F0ADwPeEEMBFyvM7QojPSin/b4JDzDzTc6gIIdYBfBHAL0ruPbP1DoBPOP79cQB/ldJYck0I8QIugmxXSvlHaY8nZ24C+BUhxC0AlwF8VAjxH6SUr6Q8rtRxH20MhBAHAG5IKWetqXYoQogvAPhdAKtSyvfSHk9eCCHmcFE89osAfgzg2wB+XUr5g1QHljPi4i75LoDHUsovpzycXHs+o/0dKeUXUx5KJnCNlrLk9wD8LQDfEEJ8Vwjx79IeUB48LyD7LQB/iosCnv/EIDuVmwB+A8Dnn7/+vvt8dkYUCme0REREMeKMloiIKEYMtERERDFioCUiIooRAy0REVGMGGiJiIhixEBLREQUIwZaIiKiGDHQEhERxej/A0gFML3tJKZkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Generate fake data\n", + "np.random.seed(0)\n", + "x = np.linspace(-5., 5., 200)\n", + "y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)\n", + "y += np.random.normal(0., 0.2, x.shape)\n", + "yerr = 0.2\n", + "\n", + "plt.figure(figsize=(8,5))\n", + "plt.errorbar(x, y, yerr=yerr, fmt='ko')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Likelihoods and Posteriors\n", + "\n", + "In general, model fitting will happen either in a frequentist (Maximum Likelihood) or Bayesian framework. Stingray's strategy is to let the user define a posterior in both cases, but ignore the prior in the former case. \n", + "\n", + "Let's first make some fake data:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# define power law component\n", + "pl = models.PowerLaw1D()\n", + "\n", + "# fix x_0 of power law component\n", + "pl.x_0.fixed = True\n", + "\n", + "# define constant\n", + "c = models.Const1D()\n", + "\n", + "# make compound model\n", + "plc = pl + c" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're going to pick some fairly standard parameters for our data:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# parameters for fake data.\n", + "alpha = 2.0\n", + "amplitude = 5.0\n", + "white_noise = 2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And now a frequency array:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "freq = np.linspace(0.01, 10.0, int(10.0/0.01))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set the parameters in the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.modeling.fitting import _fitter_to_model_params\n", + "\n", + "_fitter_to_model_params(plc, [amplitude, alpha, white_noise])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "psd_shape = plc(freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a last step, we need to add noise by picking from a chi-square distribution with 2 degrees of freedom:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "powers = psd_shape*np.random.chisquare(2, size=psd_shape.shape[0])/2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the result:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAGfCAYAAACp/5+nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABsHUlEQVR4nO3dd3xUVfrH8c+dmUx6T6gJJKETEjoISBMpNhQUFSsiKrqubYttraur/tZeUWn2XrBgxQIoioD03gk9vff7+yOQpWSSSTKTmSTf9+uVVzK3nPPMkEueOfPccwzTNBERERERkZNZPB2AiIiIiIi3UrIsIiIiIuKAkmUREREREQeULIuIiIiIOKBkWURERETEAZunA6hOVFSUGRcX5+kwRERERKQJW758eappmtFV7fPqZDkuLo5ly5Z5OgwRERERacIMw9jlaJ/KMEREREREHFCyLCIiIiLigJJlEREREREHvLpmWURERJqHkpISUlJSKCws9HQo0oT5+fkRExODj4+P0+coWRYRERGPS0lJITg4mLi4OAzD8HQ40gSZpklaWhopKSnEx8c7fZ7KMERERMTjCgsLiYyMVKIsbmMYBpGRkbX+9ELJsoiIiHgFJcribnX5HVOyLCIiIiLigJJlEREREReYMWMGr7/+utPH79y5kx49ergxIs8ZMWJE5cJyZ555JpmZmbVu4+mnnyY/P7/ycV3bqS/d4CciIiJST6WlpUyfPt1j/ZeVlWG1Wr2y7fnz59fpvKeffprLLruMgICAerVTXxpZFhERkWZv586ddO3alSuvvJLk5GQuuOCCylHN5cuXM3z4cPr27cvYsWPZv38/UDF6etdddzF8+HCeeeYZ7r//fh5//HEAVq5cySmnnEJycjITJkwgIyOjsq2ePXsyaNAgXnjhhcr+CwsLueqqq0hKSqJ37978+OOPAOTn53PhhReSnJzMRRddxMCBAytHbIOCgrj33nsZOHAgS5Ys4cEHH6R///706NGDa6+9FtM0K+O89dZbGTZsGN26deOPP/5g4sSJdOrUiX/9619Vvh4ntv3mm28yYMAAevXqxXXXXUdZWRkA119/Pf369SMxMZH77ruvyrbi4uJITU1lxowZ9OrVi169ehEfH8/IkSMdtvHss8+yb98+Ro4cWXnc0XYAnnzySXr06EGPHj14+umnK/8Nu3XrxjXXXENiYiJjxoyhoKCgVr8HVdHIsoiIiHiVW+atZdXebJe22bNtCE+fW33Jw6ZNm5g1axZDhgxh6tSpvPjii9x888389a9/Zd68eURHR/Pee+9x9913M3v2bAAyMzP5+eefAbj//vsr27riiit47rnnGD58OPfeey8PPPAATz/9NFdddVXl9n/84x+Vxx9NnNesWcPGjRsZM2YMmzdv5sUXXyQ8PJzVq1ezdu1aevXqVXlOXl4ePXr04MEHHwSge/fu3HvvvQBcfvnlfPHFF5xzzjkA2O12Fi5cyDPPPMO5557L8uXLiYiIoEOHDtx6661ERkYe91oc2/aGDRt47LHH+OWXX/Dx8eGGG27grbfe4oorruDhhx8mIiKCsrIyRo0axerVq0lOTq7y9Z0+fTrTp0+npKSE0047jdtuuw2gyjZuuukmnnzySX788UeioqKOa2f58uXMmTOH33//HdM0GThwIMOHDyc8PJwtW7bwzjvv8Oqrr3LhhRfy0Ucfcdlll1X7714TjSyLiIiIALGxsQwZMgSAyy67jMWLF7Np0ybWrl3L6NGj6dWrFw899BApKSmV51x00UUntZOVlUVmZibDhw8H4Morr2ThwoUnbb/88ssrz1m8eHHl465du9K+fXs2b97M4sWLufjiiwHo0aPHcYmo1Wrl/PPPr3z8448/MnDgQJKSkvjhhx9Yt25d5b7x48cDkJSURGJiIq1bt8bX15eEhAT27Nlz0nM4tu0FCxawfPly+vfvT69evViwYAHbt28H4P3336dPnz707t2bdevWsX79+hpf55tvvpnTTjutMpGvbRuLFy9mwoQJBAYGEhQUxMSJE1m0aBEA8fHxlW8o+vbty86dO2uMpyYaWRYRERGvUtMIsLucOK2YYRiYpkliYiJLliyp8pzAwECn2zdN0+HUZUdLJpzdDhWr0R2tJS4sLOSGG25g2bJlxMbGcv/99x83n7Cvry8AFoul8uejj0tLS6tt2zRNrrzySh555JHjjtmxYwePP/44f/zxB+Hh4UyZMqXGOYznzp3Lrl27eP755+vcRnWvybHPzWq1uqQMQyPLIiIiIsDu3bsrk+J33nmHU089lS5dunD48OHK7SUlJceN2FYlNDSU8PDwytHON954g+HDhxMWFkZoaCiLFy8G4K233qo8Z9iwYZWPN2/ezO7du+nSpQunnnoq77//PgDr169nzZo1VfZ5NMGMiooiNzeXDz/8sK4vw0lGjRrFhx9+yKFDhwBIT09n165dZGdnExgYSGhoKAcPHuSrr76qtp3ly5fz+OOP8+abb2KxVKSg1bURHBxMTk7OSe0MGzaMTz/9lPz8fPLy8vjkk08YOnSoy57viTSyfIKzZv7Ogi2png6jktUCcy7qzYW92ng6FBERkSatW7duvPbaa1x33XV06tSJ66+/HrvdzocffshNN91EVlYWpaWl3HLLLSQmJlbb1muvvcb06dPJz88nISGBOXPmADBnzhymTp1KQEAAY8eOrTz+hhtuYPr06SQlJWGz2Zg7dy6+vr7ccMMNlTcd9u7dm+TkZEJDQ0/qLywsjGuuuYakpCTi4uLo37+/y16X7t2789BDDzFmzBjKy8vx8fHhhRde4JRTTqF3794kJiaSkJBQWcLiyPPPP096enrlDXv9+vVj5syZDtu49tprOeOMM2jdunXlDY8Affr0YcqUKQwYMACAadOm0bt3b5eUXFTFqG4o29P69etnHr3js6HM+n03W9PyGrTP6jz2w1buHd2Z+8d28XQoIiIibrNhwwa6devmsf537tzJ2Wefzdq1az0WQ1XKysooKSnBz8+Pbdu2MWrUKDZv3ozdbvd0aI1WVb9rhmEsN02zX1XHa2T5BFcPbOfpEI7z2A9bPR2CiIiIeEh+fj4jR46kpKQE0zR56aWXlCg3MCXLIiIi0uzFxcV53agyVNTtNvSn7HI83eAnIiIiIuKAkmUREREREQeULIuIiIiIOKBkWURERETEASXLIiIiIs3Azp07efvttz0dRqOjZFlERETEQ6paatpdqkuWGzKOxkbJsoiIiDR7O3fupGvXrpWr5V1wwQXk5+cDsGDBAnr37k1SUhJTp06lqKiIpUuXMnHiRADmzZuHv78/xcXFFBYWkpCQAMC2bdsYN24cffv2ZejQoWzcuBGAKVOmcNtttzFy5Ehuv/324+JYt24dAwYMoFevXiQnJ7Nly5ZqY1u+fDnDhw+nb9++jB07lv379wOwdetWTj/9dHr27EmfPn3Ytm0bd9xxB4sWLaJXr1489dRTzJ07l0mTJnHOOecwZswYfvrpJ84+++zKWG688Ubmzp0LVEytd9dddzFo0CD69evHihUrGDt2LB06dGDGjBnu+4fxAppnWURERLxK2k9/o/jwKpe2aY/uSeSIJ6o9ZtOmTcyaNYshQ4YwdepUXnzxRW688UamTJnCggUL6Ny5M1dccQUvvfQSN954I3/++ScAixYtokePHvzxxx+UlpYycOBAoGK55hkzZtCpUyd+//13brjhBn744QcANm/ezPfff4/Vaj0uhhkzZnDzzTdz6aWXUlxcTFlZGQcPHqwytptvvpm//vWvzJs3j+joaN577z3uvvtuZs+ezaWXXsodd9zBhAkTKCwspLy8nEcffZTHH3+cL774AoC5c+eyZMkSVq9eTUREBD/99FO1r09sbCxLlizh1ltvZcqUKfzyyy8UFhaSmJjI9OnT6/LP0igoWRYRERGhIhkcMmQIAJdddhnPPvsso0ePJj4+ns6dOwNw5ZVX8sILL3DLLbfQsWNHNmzYwNKlS7nttttYuHAhZWVlDB06lNzcXH799VcmTZpU2X5RUVHlz5MmTTopUQYYNGgQDz/8MCkpKUycOJFOnTo5jG3cuHGsXbuW0aNHAxVLY7du3ZqcnBz27t3LhAkTAPDz83P4nEePHk1ERIRTr8/48eMBSEpKIjc3l+DgYIKDg/Hz8yMzM5OwsDCn2mlslCyLiIiIV6lpBNhdDMM46bFpmg6PHzp0KF999RU+Pj6cfvrpTJkyhbKyMh5//HHKy8sJCwtj5cqVVZ4bGBhY5fZLLrmEgQMH8uWXXzJ27FhmzpxJQkKCw9gSExNZsmTJcfuys7OdeLYnx2Gz2SgvL698XFhYeNyxvr6+AFgslsqfjz5uyjXPqlkWERERAXbv3l2ZeL7zzjuceuqpdO3alZ07d7J161YA3njjDYYPHw7AsGHDePrppxk0aBDR0dGkpaWxceNGEhMTCQkJIT4+ng8++AAA0zRZtarm0pLt27eTkJDATTfdxPjx41m9erXD2Lp06cLhw4crt5eUlLBu3TpCQkKIiYnh008/BSpGtPPz8wkODiYnJ8dh3+3bt2f9+vUUFRWRlZXFggUL6vAqNj1KlkVERESAbt268dprr5GcnEx6ejrXX389fn5+zJkzh0mTJpGUlITFYqmszx04cCAHDx5k2LBhACQnJ5OcnFw5CvzWW28xa9YsevbsSWJiIvPmzasxhvfee48ePXrQq1cvNm7cyBVXXOEwNrvdzocffsjtt99Oz5496dWrF7/++itQkdQ/++yzJCcnM3jwYA4cOEBycjI2m42ePXvy1FNPndR3bGwsF154IcnJyVx66aX07t3bJa9rY2dU9/GCp/Xr189ctmyZp8PwKMvfP+fe0Z25f2wXT4ciIiLiNhs2bKBbt24e63/nzp2cffbZrF271mMxOOLNsTVGVf2uGYax3DTNflUdr5FlEREREREHlCyLiIhIsxcXF+e1I7feHFtzoGRZREREvII3l4ZK01CX3zElyyIiIuJxfn5+pKWlKWEWtzFNk7S0tGrnna6K5lk+QUnWdqz+LbDYgzwdioiISLMRExNDSkoKhw8f9nQo0oT5+fkRExNTq3OULJ8g9bvpFB1aQXD3KwhOvg57hGahEBERcTcfHx/i4+M9HYbISVSGcYLwwQ8QEH8m2atfZu/rSez/+Azyts7DLG+6K9OIiIiISNU0snwCvzaD8GsziLJh/yVn3WyyV7/KoS8mYQ2OJSTpGoJ7TMUa0MLTYYqIiIhIA9DIsgPWwJaEDbiT2KmbaXH2+/iEdSLj13vZPSuBQ19fSeG+33QTgoiIiEgTp5HlGhgWG4EdzyOw43kUp28kZ/XL5Kx/g7yN72CP7kVIrxsI7HwhFp8AT4cqIiIiIi6mkeVasEd0JXLEU7SbtpPI057HLC8h9btr2TMznrSFt1OSuc3TIYqIiIiICylZrgOLPYiQ5Gtpe9kKWl2wAP92o8he+Rwpc7tz4NPx5O+Yj1le5ukwRURERKSeVIZRD4Zh4B8zFP+YoZTm7iNnzUxy1s7i4LzzsIXEE5x8LcGJU7D6R3o6VBERERGpA40su4gtqA3hg+4ldupWos98C1twDBmL72TPzHgOfzuNooPLPR2iiIiIiNSSRpZdzLD6ENR5EkGdJ1GcuobsVS+Tu/Etcte/jm/L/gT3nE5g50lYbLVbalFEREREGp5Glt3IHpVE1KjnaTdtJxEjnqK8OJvUb69mz6wE0hffRUnWTk+HKCIiIiLVULLcACy+oYT2+gttr1hNq4lf49dmCFnLnyRlblcOfjaR/F3fYZrlng5TRERERE6gMowGZBgG/u1Ow7/daZTm7CF7zavkrJ1N/vYvsIV1JCR5OkHdr8DqF+bpUEVEREQEjSx7jC04lojBD9Ju6jaix72G1T+a9IV/Z8/MOFK/v56iw6s8HaKIiIhIs6eRZQ8zbL4EdZ1MUNfJFB36k+xVM8jd+DY5a2fh22Yw5/gPwGLGezpMERERkWbJME3T0zE41K9fP3PZsmWeDqPBlRVmkLv+NbJXvUxp1jYKrJG07nstwUnXYAuO8XR4IiIiIk2KYRjLTdPsV9U+lWF4IatfOKF9biFmyjquOvwvUv17kLn0UfbM7sTBLy6kYM+PePObHBEREZGmQsmyFzMMCwuLevND7PPEXLWR0D63UJiyiAMfjWXvGz3JXvki5UXZng5TREREpMlSstxI+ITGEzH0EWKnbSdqzEwMnyDSfrqF3TPjSP3hJorT1nk6RBEREZEmRzf4NTIWmz/B3a8guPsVFB1YRvaql8hdN4ec1TPwixlOSM/pBCSMx7D6eDpUERERkUZPI8uNmG+rfkSPnUXstB2En/ofSrN3cejLyeyZ3YmM3x6iNG+/p0MUERERadSULDcBVv8owvr9nZgpG2g5/mPsUT3I/O1B9szqwKH5l1K4d7FuCBQRERGpA5VhNCGGxUpAwtkEJJxNScYWsle/Qu7618jb/AE+UT0ISb6eoK6TsdiDPB2qiIiISKOgkeUmyie8E5HD/0vstJ1EnT4Dw7CS9sNf2D0zjrSfbqM4fZOnQxQRERHxekqWmziLTwDBPabS5pKltL7wZwLizyR79cvsfT2J/R+fQd7WeZjlpZ4OU0RERMQrqQyjmTAMA782g/BrM4iyYf8lZ91ssle/yqEvJmENbkdI0jUE95iKNSDa06GKiIiIeA2NLDdD1sCWhA24k9ipm2lx9nv4hHUg49d72D0rnkNfT6Fw/++6IVBERESEBk6WDcMINAxjuWEYZzdkv1I1w2IjsOMEWp//DW2vWEVIj2nkb/+c/e8NZd87p5Czbi7lpQWeDlNERETEY+qVLBuGMdswjEOGYaw9Yfs4wzA2GYax1TCMO47ZdTvwfn36FPewR3QjcuTTtJu2k8iRz2GWFZH63bXseTWOtIW3U5K5zdMhioiIiDS4+o4szwXGHbvBMAwr8AJwBtAdmGwYRnfDME4H1gMH69mnuJHFHkxIz+toe9mftLrge/zbnUb2yudImdudA5+OJ3/HfMzyMk+HKSIiItIg6nWDn2maCw3DiDth8wBgq2ma2wEMw3gXOBcIAgKpSKALDMOYb5pm+YltGoZxLXAtQLt27eoTntSDYRj4xwzDP2YYpbn7yFkzk5y1szg47zxsIfEEJ19LcOIUrP6Rng5VRERExG3cUbPcFthzzOMUoK1pmnebpnkL8DbwalWJMoBpmq+YptnPNM1+0dGamcEb2ILaED7oXmKnbiX6zLewBceQsfhO9syM5/C30yg6uNzTIYqIiIi4hTumjjOq2FY5tYJpmnPd0Kc0AMPqQ1DnSQR1nkRx6hqyV71M7sa3yF3/Or6tBhDcczqBnS7AYvPzdKgiIiIiLuGOkeUUIPaYxzHAPjf0Ix5kj0oiatTztJu2k4jhT1JelEnqN1PZMyuB9MV3U5K9y9MhioiIiNSbO5LlP4BOhmHEG4ZhBy4GPnNDP+IFLL6hhPa+kbZXrKHVxK/wazOYrOVPkDKnCwc/m0j+ru9wUHEjIiIi4vXqVYZhGMY7wAggyjCMFOA+0zRnGYZxI/ANYAVmm6a5rt6RilczDAP/dqPwbzeK0uzdZK95lZy1s8nf/gW2sI6EJE8nqPsVWP3CPB2qiIiIiNPqOxvGZAfb5wPz69O2NF62kHZEDPk34QP/Rd7Wj8heNYP0hX8n49d7Ceo6meCe0/GN7unpMEVERERq5I4b/EQAMGy+BHW9hKCul1B06E+yV80gd+Pb5KydhW+bwYQkTyew00QMq93ToYqIiIhUqUGXu5bmy7dFb6JHv0zstJ1EDPs/yvIOcvjrK9gzqwMZv95HaU6Kp0MUEREROYmSZWlQVr9wQvvcQsyUdbQ873PsLfuSufRR9szuxMEvLqJgz0+YplljOyIiIiINQWUY4hGGYSEgbiwBcWMpydpBzuqXyVk3l/ytn+AT0Y2QntMJ6nopFt8QT4cqIiIizZhGlsXjfELjiRj6KLHTdhA1eiaGTwBpP97M7plxpP5wE8Vp6z0dooiIiDRTGlkWr2Gx+ROceAXBiVdQdOAPsle9RO66OeSsnoFfzHBCek4nIGE8htXH06GKiIhIM6GRZfFKvq36Ez12NrHTdhA+5GFKs3Zy6MvJ7JndiYzfHqI074CnQxQREZFmQMmyeDWrfxRh/f9BzFUbaTn+Y+xRPcj87UH2zErg0PxLKdy7WDcEioiIiNsY3pxo9OvXz1y2bJmnw/Aoy98/x9dmwc/WeN7XWAyDGRckM6lnG7e0X5KxhezVr5C7/jXKizKxRyURnDydoK6TsdiD3NKniIiINF2GYSw3TbNflfuULHu3Gb/uZOPhXE+HUSvPLtrBXaM68dAZXd3aT3lJHnmb3iN71UsUH16FYQ8huPuVhPS8Dp/wzm7tW0RERJqO6pJl3eDn5aYPjvN0CLX2wi87G6Qfi08gwT2mEpR4FUX7l5C96iWyV88ge+Vz+LU7veKGwPizMCzWBomnJsWl5ZjU7c2p3WrBMAwXRyQiIiI1UbIsjZ5hGPi1GYxfm8GUDXuc7LWzyFkzk0OfX4A1uB0hSdcQ3GMq1oBoj8X4+rI9THl3ZZ3Pv/HUeJ49r4frAhIRERGnKFmWJsUa2JLwgXcR1v+f5G//nOxVM8j49R4yfv83gZ0uIKTn9fi2GtDgo7Tb0vIBeLgOpSkv/bqTrY2sFEdERKSpULIsTZJhsRHYcQKBHSdQnL6BnFUvk7PhDfI2vo29RW9Cel5PYJeLsNj8GzSuO0d1qvU589ZqmjwRERFPaTxTLIjUkT2iG5Ejn6bdtJ1EjnwOs6yI1O+uZc/MeNIX3UFJ1nZPhygiIiJeSsmyNBsWezAhPa+j7WV/0ur87/CLHUHWimdImdONA5+eS/6OrzDNck+HKSIiIl5EZRjS7BiGgX/scPxjh1Oau5ecNTPJWTOLg/POxRaaQEjytQQlTsHqF+HpUEVERMTDNLIszZotqC3hg+4j9uqtRJ/xJtagNqQvuoM9r8Zx+NtrKDq4wtMhioiIiAdpZFkEMKx2grpcSFCXCylOXUP2qhnkbnyb3PWv4dtqAME9pxPY6QIsNj9PhyoiIiINSCPLIiewRyURNeoF2k3bScTwJykvyiT1m6nsmZVA+uK7Kcne5ekQRUREpIEoWRZxwOIbSmjvG2l7xRpaTfwKvzaDyVr+BClzunDws4nk7/pONwSKiIg0cSrDEKmBYRj4txuFf7tRlGbvJnvNq+SsnU3+9i/wCe9EcPJ0grpdjtUvzNOhioiIiItpZFmkFmwh7YgY8m/aXb2d6LFzsPhGkP7z39gzM47U72+g+PBqT4coIiIiLqSRZZE6MGy+BHW7lKBul1J06E+yV71E7oY3yVk7E982QwjpOZ3AjhMwrHZPhyoiIiL1oJFlkXrybdGb6NGvEHvNTiKGPkZZ3n4Of3U5e2Z1IGPJ/ZTm7vV0iCIiIlJHSpZFXMTqF0Fo31uJmbKelud+hr1lXzJ/f4Q9szoyIuU2TvFdg2mang5TREREakHJsoiLGYaFgPhxtDr3U2Ku2kBon5tplb+Ut6LvZ+8bvche9RLlxTmeDlNEREScoJplcYtZS3fz9cZDDdpnRIAPn0zpT6Cv9/xa+4QmEDH0UZ7PncyaJXN5uuVvpP14M+mL7yao22WE9JyOPbK7p8MUERERB7wnq5Am4+8jOrBuf8OOnO7LLuT7Lansyiige6vgBu3bGWUWPz7KP40PJj9F0YE/yF71EjnrZpOzegZ+MSMI6TmdgA7jMSy6JEVERLyJ/jKLyz1yZrcG7/P9lfu4+M3lDd5vXfi26k90q/5EDH2MnHVzyFn9Koe+vBhrUFuCk6YR3ONqbIGtPB2miIiIoJplEY+xBkQT1v+fxFy1kRbnfIQ9ojuZSx5gz6wOHJp/GYV7f9ENgSIiIh6mkWURDzMsVgI7nENgh3MoydhM9upXyF33Gnmb38celcRp5umsN8c53Z5pmnyx/iDp+SVOHe/nY+HcxFb4+Vjr+hRERESaLCXLIl7EJ7wzkcMfJ3zwA+RufJecVS9xDU+Rl/8Kq+ZNJjfuSkqDOlTbxr7sIi59a0Wt+n3/8r5c0LNNfUKvtx1p+WQUFFe5LzLATvuIgAaOSERERMmyiFey+AQSknQ1wT2mcv1Lr9It813GbZ9LyI6ZLCrsyZu54/ihsC/lOB4Nfm1yL06Ni6y2nx3p+Zz+8hKKyspd/RRqZW9WAR0eWeBwv8WAA/ePISrQtwGjEhERUbIs4tUMw+DBy69k3cGJHCw8RNCetxm06w2G+j1GqX9bctpfQU7sJZT7Hp8U+/tYGRAbhsViVNt+ablnk+SjsgtLAfjb8A4MTYg4bt+CLak8t3gHuUVlRAV6IjoREWnOlCyLeLkWwb60CPYFoqDHQ5jl95O//XOyV83AtvERwrc8QVDnSQQnX49vq/4YRvUJsjfrFxvK+MTjZwJxtvZaRETEHZQsizQyhsVGYMcJBHacQHHaerJXv0zuhjfJ3fAW9hZ9COl5PYFdLsRi8/d0qCIiIo2epo4TacTskd2JGvkM7abtJHLks5ilBaR+dw17ZsaTvugOSrK2ezpEERGRRk3JskgTYLEHE9JzOm0vX0mr87/DL3YEWSueIWVONw58ei75O77CNL2jPllERKQxURmGSBNiGAb+scPxjx1Oae5ectbMJGfNLA7OOxdbaAIhydcSlDgFq19EzY2JiIiIRpZFmipbUFvCB91H7NVbiT7jTaxBbUhfdAd7Xo3j8LfXUHSwdnMxi4iINEcaWRZp4gyrnaAuFxLU5UKKD68me9UMcje+Te7617BG9uW8gMEY5d09HaaIiIhX0siySDNij04m6vQXiZ22k4jhT0BxFk9EPEe/308l/Zd/UZq929MhioiIeBWNLIs0Q1a/MEJ7/5VDba9k6jPP8lTXJfgse5ysZY8TEH8WIT2vx6/daRhG43s/nVVQwqTXl5F1ZKGTY53XoxV3jurkgahERKSxanx/CUXEdQwLvxT1ZFPiy8RetZnQfn+ncP9vHPjkTPa+nkTWn89RVpjp6ShrZUtqHt9vSaXcNIkKtFd+7UzP54NV+zwdnoiINDIaWRYRAGwh7YgY8hDhA+8hb8uHZK+aQfrPfyPjl3sI6noJIT2nY49O9nSYTrtvTBfO7t6y8vF5c5ayO6PAgxGJiEhjpGRZRI5j2HwJ6nYpQd0upejQn2SveoncDW+Ss3Ymvm2GENJzOoEdJ2BY7Q0a1zOLthPuf3yfPlaDaQPbER3k26CxiIhI86FkWUQc8m3Rm+jRrxAx9FFy171G9uqXOfzV5aQHtCI4aSrBSddgC2rr1hjiI/zxsRo8s2hHlfvD/H24fnCcW2MQEZHmS8myiNTI6hdBaN9bCelzMwU7vyF71Qwyf3+EzKWPEdBhfMUNgTHDMQzD5X0P7xBFwSNnnbQ9Na+YVg98S1m56fI+RUREjlKyLCJOMwwLAfFnEBB/BiVZ28lZ/Qo56+aSv/UTfCK6EdLzeoK6XYrFHuzSfi2Wk5NwiwtuT/5qw0Fu+2wdZSfk2yM7RvLyBT3r34GIiDR6SpZFpEYr92ZxzuylFJaUnbBnBL4MYrR9EZNK59Ptx5tI/+VugrpdRkjyddgjvXuxkyW7Mth0OI9Lev+vlOS33RnM33DIg1GJiIg3UbIsIjXaeCiXvVmFXNK7LWH+PlUckcC9u87BSF3O/KFryFk7i5xVL+EXM4KQntMJ6DAew+Kd/90YBrx5aZ/Kx9PeX8U3m5Qsi4hIBe/86yUiXulfozvRtUXVJRZ3zd/AEz93JnrsbUQM/T9y1s0he/UrHPryYqxBbQlOmkZwj6uxBbZq4Khrx2LA3qxCAu748phtBi9PSubSPjEejExERDxBybKIuJw1IJqw/v8ktO/fyN8xn5xVM8hc8gCZv/+HwI4TCOl5Pb5tBrvlhsD6unFIPBEBdkzzf4XMT/y8jbUHcjwYlYiIeIqSZRFxG8NiJbDDOQR2OIeSjM1kr36F3HWvkbf5fexRSQT3vJ6grpM9HeZxktuEkNwm5LhtjqatExGRpk/JsjQpz/2yg+hA1y6WEWC3cuOQeIJ8dbnUh094ZyKHP0744AfI3fgOOateIm3BDWQsuhNb3MXE2XoAfWpsR0REpCHpr780CfERAQT4WHnlt10ubffoJ/GJLYM5J9G7a20bC4tPICFH6peL9v1K9qqXKNsyiwWtSsla9T55wbcQEH8mhsXq6VBFRESULEvT0L9dGLmPnOnydlfuzaLPUwspM7XwhasZhoFf2yH4tR1C2s6tvPTag/zF/hOHPj8fW3B7gpOvIThxCtaAFp4OVUREmjEXTOsvIlJP/i15PmcSq05ZSIuz3sUWGk/GL/9i96wEDn19JYX7lhx3w52IiEhD0ciyiHgN0+JDYKeJBHaaSHHaenLWvErO+jfI2/hOxQ2BydMJ6joZiz3I06GKiEgzoZFlEfFK9sjuRI54inbTdhI56kXAIO2Hv7B7ZnvSfryFsoyNng6xwaXlFXM4t4jDuUVVrKYoIiLuoJFlEfFqFnvQ/24I3P872atnkL12Jqx6kbeiEvFJvwaz7BoMa1UrCzYdzy/ewU2frq183CbEjz33nO6Vc1WLiDQlSpZFpEG8vSKFKe+urPJmyaObrNUkfoZh4NfmFPzanELZsP9y4M+ZtF3yArHbb2HPrEcJTppKcI9pQNMs0UjJKsRqMXj63ES+2nCI+RsPYZoVy3WLiIj7KFkWkQax8VAupeUm/zq9U5X7/X2sjOkS7VRb1oBofHvdxmmfdOOtEZkML/uUzN8fIXPpYwS1Hstg335g9ndl+NVatS+LS95cQVFZeeW26EA73183iEAXzs9tsxj8ZUg8aXklzN94yGXtioiIY0qWRYQnf97GB6v2Odyfklnokn4MAx4c19UlbQGUY+Vw2HBanTqFkqwd5Kx5lYzVc3gjej5Fv7xJVtENBHW/HKtfeL37+nrjIdLziysf940J49pT2gOwal82Gw7lcm5iS4J9bWxPz+fXnRnszymioxazERFp1PS/uEgzFhPmz+mdokjNK2Z3RkG1x47qFEW7MP8Giqz2fELjiTj1P2yPuYmHZz/OQ6G/kL7w72T8eg+BXS4mpuxUdtOuTm2f1jGSlfuy+XzdQQCyCkv4cNX+ymT5qCfGJ5IQGciby1P4dWdGvZ+TiIh4npJlkWbM38fKt9cN8nQYrmX1Y17+cK4e+A9GR+0nZ/Ur5G58m7+VzuEcoys56/9BYOdJWGx+Tjc5/5pTjnt886dreWN5iqsjFxERL6Sp40SkyfJt0Yuo01+k3TW7+NjvFgLII/Xbq9kzM470RXcQXLynwWIpLzeP+xIRkcZBI8si0uRZfENZ5HsBb+WfyS8XQPbqGWSteIYLzCeJjuxN/nYD/7gzMCxWt/Q/Z+lupn2wimMnAnlgbBfuGd3ZLf2JiIjrKFkWkWbEwD92OP6xIyjN3cdnnz5Gl4PvcfCziViD2xGSdA3BPa7CGtDCpb1uTs3DAO4b0wWAZxZtZ9OhXJf2ISIi7qEyDBFplmxBbVgZdT0jDrxEi7PfwyesIxm/3sPumfEc+upyCvf+glnFnNB17s9i4d4xnbl3TGciA+0ua1dERNxLI8si0qyVYiOw4zkEdpxAcfpGcla/Su7618nb9B4+UT0ISZ5OUNfJWOzBng5VREQ8QCPLIiJH2CO6EjniCWKv2UnU6TMwDBtpP9zI7plxpP54M8Vp6zwdooiINDCNLIuInMDiE0hwj6kEJV5F0YE/yFk9g9y1s8lZ9RJ+bYfRufgMbOjmPBGR5kDJsoiIA4Zh4Nd6AH6tBxAx7P/IWfcaOatf4czsOxkQHkb6L9cT1ONqyk3D06GKiIibNFgZhmEY5xmG8aphGPMMwxjTUP2KiLiC1T+KsH5/I+aqDXzW6jlWFXUgY+mj7J7dmaLvJzPEdxUWmub8ybN+303QnfMJvPNLOj/6A0WlZZ4OSUSkwdQrWTYMY7ZhGIcMw1h7wvZxhmFsMgxjq2EYdwCYpvmpaZrXAFOAi+rTr4iIpxiGhbNPv4z9/V7j005fsz5qKsOCtvJ69INYPx9A1opnsJZkeTpMl1pzIJvScpMhcRFsTc0jq6DU0yGJiDSY+pZhzAWeB14/usEwDCvwAjAaSAH+MAzjM9M01x855F9H9ouINEodogKPLCjSGRiJWfoUeVs/Jnv1y6Qv/Af9Lb48Gj4E0sIh6lRPh+sS/j4WzuvRmu+3pLIjPR+AFsG+Ho5KRMT96jWybJrmQiD9hM0DgK2maW43TbMYeBc416jwGPCVaZorHLVpGMa1hmEsMwxj2eHDh+sTnog0A6XlJsWl5ZVfJWXlDR6DYfMlqOtk2lz4E20u/YPDLSZypv+vWL86jb3vDKZL1if4UdTgcbman0/Fn4xBzy2mzYPfsiezwMMRiYi4nztu8GsL7DnmcQowEPgrcDoQahhGR9M0Z1R1smmarwCvAPTr169pFgCKSL1ZjYqb6m77bB23fXbylG5WD91z5xvdk22dHuaG5Wfw53kHMLfNYXj6/fzcMoC0nxYRnDTNM4G5wEU92xBkt/HrrnSeXbSD9PxiYsP8PR2WiIhbuSNZrupPlGma5rPAs27oT0SaofAAO3Mv7kVKVuFJ+wJ8rIzoGOWBqP4n1wzE7HINbQffzDMfv42xeQ7j17xK9soXeNzeg42FkzBLEzFsjaeUIdDXxoW92uBjNXh20Q5PhyMi0iDckSynALHHPI4B9rmhHxFp5q7oF1vzQR5mGAYH/fvwVGYYN94ykNz1rxP58zNMyrmPXTOfxafz5QQnXU1IdBdPhyoiIlVwx9RxfwCdDMOINwzDDlwMfOaGfkREGhWrfxShfW/jutLZXH74XuandyJ/1bOkvZXErvfHkbf1E8yyEk+HKSIix6jXyLJhGO8AI4AowzBSgPtM05xlGMaNwDeAFZhtmqbWiBUROeLVC3uzLCWBMi7lud1bMbe8yS0BCzn0xUVYA1sT3OMqghOnYgtp59J+n/hpG88triif8Pex8PGU/nRrGezSPkREmpp6JcumaU52sH0+ML8+bYuINFWD4iIYFBcBwAerfLloxQVMv+YZ4gt/IXvNq2T+/giZSx8lIP4MgpOuxb+9a9ZxWrg9jZyiUoYmRPDZuoOsP5hTr2T5vz9uIz4ygLtHdcLPx+qSGEVEvI2WuxYR8QYWKwEJZxGQcBYlWTvJWTeb3LVzyN/+Jbbg9vS2jyfK0rve3cRF+PPvcV35bN3BGo994ZcdvL9yH9vS8o/b3ikqkFbBvny69gD5JWWM69KCIfER9Y5NRMQbNdhy1yIi4hyf0DgiBj9I7NXbaHHWO9jCOjAg7TkWRF/DoS8n0yrvd2iApbXf/XMvaw7k0CU6kOsGxVVu79E6hH33jeHTq/oDYDbRZb5FREAjyyIiXsuw2gnsdD6Bnc7nkU++omD9bK7e8yOjCz/iu5ZtyF6xleDEK7H6R7othr4xoXx33SC3tS8i4u00siwi0ghk2eP4b84UYqftZHGbR0gvDyFj8R3smRnHoa+nULjvV0xTI7wiIq6mkWURkUbEYvNjR9g53H+4M/n/jCN33UxyN7xJ3sa3Iaw7u6IvJq3leZg+IZzeOZowfx9Phywi0qhpZFlEpJGyR/UgauQztJu2i6jTZ5CSU0b7LffSdWF/tn4+jde++dzTIYqINHoaWRaRZqOgpIw1+7MrHx/MLfJgNK5jsQcR3GMqj/6WiG/mKh7r/Bvjt72P/87v2ft2H4KTphHU5SJPhyki0igpWRaRZsHfx8qmw3n0fOLn47YHNLH5gff6dKPT+Gtpfdc4Huu+htPKviBtwQ2kL/wHF3EanzIWzF6eDlNEpNFQsiwizcKT4xO5ILn1SdvjIwI8EI375ZhBrAmdzOVnP0jRgaXkrJlJn/XvMcj4nLJvZ3BZ4ClYSzoCberd17bUfGJC/Ylroq+liDRvSpZFpFloHeLH+cn1TwwbG8Mw8Gs9EL/WA7lxz2QSsudzNT/yQPhMyn95k8OpkwhOuhrf1oMwDKNWbfsfGZW/6r2VAKz5+wgSW2n5bBFpWnSDn4hII/XB6n18sGofH63ex597s8gqLKn2+EIjiG85h4KxP3Luwf8jrdUE8rZ+wv73R7D3jV5krXiWsoI0p/sf1D6cr64ZyD2jOwOQUVBcr+cjIuKNNLIsItLIRAZWTAc3+c0VJ+0bnuDcAiVrSzqwp+uF9DvvBfI2v0/OmlmkL/w7Gb/cTUDHCQQnTQOz+pFmi8VgbJcWWGs5Ii0i0pgoWRZxQmZBKQdz6j5zQm5RqQujkcbit10Z7MksYHdGgUvbvX5QHKM6RVFWDtmFJezPKapMWHu1CalVW0dn0gjuMZWiw6vIWTubvA1vk7fpXR4jhsUl51CW3xFrQLRLn4OISGOhZFmkGj7WikqlqUdqMuvDblXVU3MR7FvxX+sV7/xZuS0ywHWLg1gsBl1buL422De6J74jnyHi1EfI2/IRm799ikmlL7F75kwCO4wnuMfV+LU7DcPQ77KINB9KlkWq0b1lEG9d2ofMguprQZ3RMSrQBRFJY3BO95Ys+eupFJaWVW5rF+bcTBHrD+SwNS2v8nFSqxDiIxt2lgmLTwDB3S/noR/iibfu4anuyytWCdzyEbaQeIJ7XEVQ4pXYAk+eXcTdyspNXvx1J5kFJYzpHM3A9uENHoOINC9KlkWqYRgGk3u39XQY0shYLEadk7jTX17CgWNKfgbEhvHbzUNdFVqt7bfEETl8MuFDHiJ/6yfkrJ1Nxq/3krHkAQISziI48Soo71Pn9j9YtY/X/tiDzWrwwNgu9GwTWu3xaw9kc/OnawFYuD2N764bVOe+RUScoWRZRFymtNxk+oerq9y3bE9mwwbTSOWXlDG5d1v+NjyBf3y+nsN57p1h4r2Ve3n3z70ARATamXF+cmX50bEsNj+Cuk4mqOtkSjI2k7N2Njnr3yB/22e0923J30MGY8ttCVR/g6Fpmtz/7WYO5hTRKtiXFSlZLNiaSlFpOae0D68xWS4rN6v8WUTEXZQsi4hL9I0JpVWwL/PWHXB4zMgOUQ0YUePVIshOn5gwwgN83J4sz166m8U70okO9GV3ZgH/HNGRLi2Cqj3HJ7wzEUMfJXzwv8nfMZ8dS1/hmsJ52BZ8wr4NQwhOnEJgp/Ox2E9uJyWrkH9/txmbxaC03KRP21ASIgLYcCjXXU/R7UrKytmbVUhMqB823Zsg0uQoWRYRlzg/uU2zXPSjKejVJpQbT43n0rdOnoquOobVh8CO53KgfDCXzZzP16fvJGr/+6R+dw1pP91KYOdJBCdOwbf1KZULnphmxWhw/9gwluzKwKTxjw5f+c6fvLtyH1f2i2HOxb09HY6IuJiSZRERqbdD5RHkdjqbnqPvpWj/EnLWzSVv8/vkrpuDT3hnghKnENTtMqB2U9s1BkenlazP9JIi4r30eZGISBP187ZU/vnFeh7+fjMlZeUN0qdhGPi1GUz06Fdod81uoka/gsU/iozFd7FnZjxlP0zmdL+lWE3NPS4ijYNGlkVEmqC+MaEsS8lk9f4cisvKGdO5RYPHYLEHE5w4heDEKRSnbyJ3/WtkrXuDl6O+Iqv8Fd4PHcpaxrON2AaPraHN+HUnt362jhsGx/HE+ERPhyMitaBkWUSkCfr5L0MA+GrDQc6atZRy07O1wfaILkSc+h9yut3B1U89znVRi5gS9CU+xmdssHXjzcBh+JQdX/O+Mz2f7MJS4iL8CfE7eVGXtPxi/tidSf92YQ30LOpuxd4sikrLWbo7w9OhiEgtKVkWEZEGY1hs/FDYnwLrGDbv2cFfWv/OSONrHg5/mbL1czhUPJ6g7pezy+8UEp9YDMCwhAh+umHISW2t2Z/DwGcXsf2uUcRFNOzCLXV19EZHEWk8VLMsIiIekVYexudM4oaSVzjv4GNsj7iAgj0/cnDeufh82oM7Q+eS7LeLjCpW0Jx7cS8eHNcFgLzispP216SwpIy0vOLK2Tm8lWmaLN6Rxup92Q3S3/ebD3PenKUN1p94pw0Hc5gwZylpbp66srFQsiwiIh5msKakIyva3k27a3bR4uwPKInoxxVBX/FJ1G08ZZlO1opnKMs7WHlGmL8PXaKrnw/akZKycto/9D3R933DnfM3uupJuMXaAzkMe+FXej35c4MswvLasj18tu4g320+zDUfrOLMV3+jtIFuDvVm//xiPS3u+4ai0tq/MWuMHv95G/PWHeTrTYc8HYpXULIsIiJew7DaCex4LhkD5zB4/6s8nHMtJfiQvvAf7J4ZR+DiSznT/xeMssI691FcWl652EtKZgFZBSV8tHofP29LddXTcKikrJzMKkbKHck/ZtS83DTZn13Ia3/sYX923Z+/s2b9vpuvNx0mPd+5eOcs3c2Fry8jp7DmmU5M02Tp7oxavRae9PhP20jNKya3qHkky8WlFW+QvPyDlwajZFlERLxSRnkI7xWcyT/Ln6PtFasI7Xsbtqy1PBf5JN0W9qP9pjvpY99Y77/oz/2yg0mvL2fkS0uIefA7UjILXPQMTvb77kwi7vmat1ak1On8/yzYwlXvreQ/C7Y4PCansJSd6fl1DbHOrv1wNR+u3s+GQzk1Hrt6fzanPLuYi99Y3gCROe+HLak8tXCbp8MQL6NkWUREvJ49ohsRpz5M1pkruPzwvWRHn07EgU/5oMXd+H3Zn4wl91OcfnxJRVZBCVe/v5Lgu+bT5dEfeODbTVW2XVBSMVp4Wsco9mUXsiU1z+3PJyXz+JHhd//cy2t/7KmxhrroyIjf0e9VGfDMQhL+s4DfdtVu5g3TNPlkjePl6h1ZnpLJTZ+urVWZyNER2t+9bHaQ0a8s4W+fra/8nRABJcsiItKYGFZ+LepJSo+nWTXkD/6Z/hfMwHZkLn2Uva8ns/ftgWQtf4rS3L2s2JvFnKV7CPGzsSU1j683Oq6/tFkM7hndqcbu7/tmE5a/f86Ud/6s19NIySrgqnf/5LEftnIgu5BL3lrBVe+tZOOh3Hq1C7DpcEWyn55fu5uzUrIKya9DkvjIgi08v3hHrc/zRkffq3j7jZ/SsJQsi4iIS+3OyGfqeyu5/O0VPPqD43KB2vpw1T5u+GhN5eNyWxAf5Z9G0ciPiZ22g4hhj4NhJX3R7eyZmUDLJZO4MOB73pmUwNgu0VW2uTU1jxUpWU7HsGpfxbEr9jp/TlV+2prGa8tSuHP+BkqOGZEtKXNPkrYrPZ/fdmVUmwSW1rHv6ka5pfnamprHO3/u9XQYLqFkWUREXOrbzYeZ+8ce5q07wD1fV136UBcfrNrH6v3ZjO4cRZ+2ocftswW2JrTPTbSd/CsxV64j7JR/YSvczyMRLxHzXS+uLbybgebPlJceX4+8dE8m32w6TNtQv1rF4unpkvdmFfLIgi2VyXtN+j69kMHPLWalpoSTBtLnqZ+59K0Vng7DJZQsi4iIW5yf1NrlbcZHBPDNtYOICfN3eIxPeCfCT7mHvSMWce7B/yMnbgpx5eu52XyQ3a/EkP3DtZzquxIrFSUHXVsEseGfI10eqzt9tfEQd3+1kYe+q37kvqSsnNNnLKmc0SK3qOaZKkSq88OWVHY5cQNpU5o5RCv4iYiIS3yy5gB7Mgu9Z7opw2BtSQcyEy/jsQOTaV2wnEc7rSVvyye8Fp1FalkoXxecwkbr6fhah3k62jopq+HFzsgv4Yet7p0Sr7o3LtL0nP7yEpJaB7PqbyOcOr683MRiadwrV2pkWUTESxkYrDuYQ+jdX/HUwm1469+blsG+WC0GTy3czqVvrWDdwZqnDmtopmFlvdGb6NGvEHXlDq5P/Se/F3VnYsBPPGT9B3tmxhG+5k4G2NeB6Z0jYk/8vI2Zv+/2dBgnsdShJmX+xoMnbTuQXagb607wxE/biH/4+8p5j73Fmv3OX+M1vaFrDHNtK1kWEfFStw1P4OahCVw9sB1/GRLPcxOSPB1SlZJah5D6wFjmXtwLwOv+sJ/IsPnxbeFAbkr/OwP2z+b/yv6Fb9shBO5+j3da3EvM931J/fFmClIWYZZ7T+J8l5evNnjU4OcW88X6k5PhYx2dOq9nmxAAFm5Lo82D33HXV+57jle9+yc9/vujS9vck1lAeT1XVtx8OJf3V+6rct8/vljProwCchpx+UxpNa/PxkM5RNzzNbO88E3gsZQsi4h4qUFxETw5PrHya+qAdm7v8/Yv1zP1vZVsdGJhiWOF+vsQ5u/jpqjcp8D041eG0fKsd9k7di1/TbuNoogB5K6by4EPR7FnZjxpP95C4d7FmKZ3vwnwFuUmvPbHHqeObRHkC8DhvCIAlu3JdFdYvLYshfUHnZuar9/TiyipYZnvdQdyaP/Q99x/zPzddZmfecKcP7j4zeXkNeKEuCq2Ix+FVfc6Hp0q8Yv1tZ/fuyGpZllEpJnKKy6rnKosqVUw3VoEsXpfNjszCugUFejh6P4nu7CUfk8tZMOhHOLCA9zWj2kLYH7BEP7W9+90jfElf8d8CrZ9TM7a2WSvehFrYGvOLxlImm8y+Qx0WxzHeuEX5+cvLigpY8KcP6o95uM1+xmaEFnfsAA47aVfOZxbzJD4CKeON02TW+atIyLAx+0Lv6TmFRHub8daRe3S1tQ80vKKGdg+3OH5Gw/lkl1YSmSg/bjtE+b+wfuX96VViB8ZBRXzWP94pCb8zeUpXPHOnyy+cQiD45x7TQA2HEkYaypXaCy2HM7lYG5R5YjyvuxCQvyqfiNdXFpxjN3q3WO33h2diIi4nI+1IoGY8u5KftqWho/VoEfrENb9cyQbbve+WSH2ZhWyYm8W/WPDuGNUR7f3V1Zu0uXJpYTNCuCj8Mdod90+os94A9/Wp9C/+Gtej36Q1ywXcujrK8nb8hG+ZsXMACcmOx+v2c/bK1IorWGE8kQ70vJZnpKJaZq86+Dj+aM+XXuAP4/M+bw3q5BvNx+u9vj5GxwvzFJbP21LY93BHIqdfH7p+SU8t3gHD3y7udarC9bGgexCWtz3LVPerXrhmFOeXcSg5xY71dbylEwGPrOo8vHiHen8sjO9ymOP3kjpioVlqlNaVl7v0o+DOUXcNX8D2YWurxc+/eUlDHvhV9qHV9z4eez83XfN38Dol5dUPt6cWvFaldTz+bibRpZFRJqZLtFBzLmoFxlHbqwZluD8KJgnXT84jot6tXXq2EM5RXxVzYp91SktN9lxZGqsLam5WOxxBHW5iKAuF3Hj7EVkbv+OCyP+ZMzOb8nb+A5P48PCyGS+TRnIw1+Y3H32YHal53PBa8sAaF/DaHi3x46vo+3wyAIAFv5lML42C6XFVX+0P7BdGL/vzmTN/mx6nzDvtCM2b71L1EU2Hsrho9X7AXjnz728cUmfk445Oo2eM95fuY8/3FgacqIv1h+ke8sgEiIdf7Iz4JlFtAz25atrTqlzP88u3s6jP2ylY1TgceVdpWXl2Oo5yrvnSD360d+1Y9PgR3/Yetyx2458wmD19MTlNVCyLCLSzBiGwZX9Yz0dhls9tWg7j/9UMYNIdKCvy9otMXxZUNifQ+ZpTLv2VAr3/cobn7xEd5+fGeW/nPKtM9j/wRBKWo4lxhpBSlnLGkdeHS0xnVNYfQ3rxb3b8vvuzLo+lUajpKwcq2E4Nf3YuFd+Z3dmQY3HAfT474/MvLAXp1RTjuHI7KW7+akWU/I5k4QWlpQzfvZSAF6YmMT1g+Mq96XnF1eWhLhiYZnMgorfrWNrrP/cm8XAZxbx0ZX9nG7HNE0Mw+DWeWt5ZtEOyh8/p3Kf4UQC3Ck6CICO0YGk5xfjY7EQ7Od9qanKMEREpMkpLi0nwMfKoQfG0r1VsFv6MCw2zBaDuSd1Cnf5vc9NJS/wo9+VlBVlYF3xL35ufQNft7yZ8PUP0q5oOTZqvoHrnNm/uyVWT8grKqWsnh+vF5eWE3XvN5w9y7nXxdlEGWD9wVy+3FD9rB2OTHt/FW+ucG4p55V7s7Df/iVvr0ip9rhjy3j+8vGa4/Y9smDriYc75cNV+1jioGzkRCtSsigtN/l0nXM32/37u810+M8CDuYU8cyiitr6r2r5eh6dKtAAEv/7E2NeWVL9CR6iZFlEpBmYu2yP22+q8jYWC0QE2Gs+sB6u/WA1h/OKCfS1sd3syHcB1xBz2QpKxy/j35lXcagsnJAds7g0dTp/tLmKZyOeYELAT4SQWWV7Rz/CbuwO5BQSfPdXnDdnqVPHrztQUbu6O6OgsgYboLC0jJyiUr7eVHUt9nOLd2D/5xds8MK5vY86WsP8eQ3T6VWnqjcB7/65l0Xb06o978I3ljP0hV/q3G917vtmEzszCmj/0PeV286a9b9/761H/r+p7r7Fo7s+WbOfgzlFXvtJiZJlEZEmLCbMH1+bhZeX7GLjoVw6VlML6Q7lpsn7K/ex+bB7b3rylKN1369M6nn8juAE5uaezRWp97N77Do+iniMrwtOob/veh6PeI7XbRfxYfQd3Bj8AYk+2wGTx8/pzoDYsAZ/Du6QmlcxU8SXTt5QuPBI0rclNY++Ty10ehq191bupbTcrNWIsqt56ta0S95awfAXf63xOFfcO5dbVMp5c5ayPCXzpH01lRn984v1fLvpENd/tPqkfUcT6U2H847Z5n03+3lfYYiIiLhMUusQch4+o/Ij3oacoik8wI5pwsVvLmdAbBi/3Ty0wfp2tzX7cxjw9EKWpVTM0hFbzZLPpi2Izf6nMTOjIwblJPrs4MKotSQaS7g55D1uDX2Xg2XhlKeM4LClG9stCaSW176OtiH96OIltP1sx/9eFpeV0xBv69YdyGFvVgFtQ/0prMMcyQBdW9S9zKe6WS3qu7hPRn5xnc89sXxmeUomn607yGfraj86/u3mwyfN0lJcWu7wZtNV+7Lp5eQNqw1FybKISBNns1o88p/9LUPjufaUdvz1k7Ucyi3yQATHM82Kj4bLXTRytSwly+G+JQ6mRjOxsLakA2Z5L9YdOpdISxbD/VYw3O9PxmT8xLVln3BtG9hQ3J4/Pu3NKT49WVzchSJcd5Nibb34607uG9P5uBu21h9T9jDXiQVIUvOKuOmTtS6JJyO/mIlzlzHtFOcX6XFUO3106r33Lu/LKc86N53ciSID6r4Yz7nVlKkcO/Xdir1ZFJeWY7dV/Wb3jFd/I7l1CI+d3b1y2/lHZmOpi2OnLPzPgi38y8UrK/7fT1u59+tNtKviTaY3zjetZFlERNzCYhh0bRFMiK/NK5LlpXsy6fzoD3U69875G3jhlx3kFtU8+rjhYA5T3l3pVLtp5aF8nD+Sj/NH8uppSSxc9iMBaQs51Xc1F/p9weX+n1IU5sOyoq4sLuzF4qJkNpTEYTZgFeWD321m2sB2xFQzel6Tn7el1ThndE0OZBfSKsSPbWn5/Lw9jU2Hc0mIdG6RGkdzLgPsyihgZ7pnyjiqK1M59vXKLCjh4QVbeGBslyqP/WbTYb7ZdJirBsTSKSqIzYdz+Wnb/+qZi0rLsFstGIZBWbnp9E1/N326lswC18/FfO/XFaseVlU+44W5spJlERGRmvy6I92pRBmoXPDi6DzIVVlX1Q1phoVdls4szIliTv4FWMoLGGBfzxC/VQz1W8XtYW9wO5BRFsQfxd1pc3AU3X0iwEyq47NyXk2zWkzu3ZZ3/nRudoi6yiwsoVWIX+XjolqUKbzl5MwVzvhha/U31bnL0t01L+TS/f9+4rGzuvHp2uNntAi5+yv+PqIDD5/RjQ9W7XN6+jl3JMo1UbIsIiJSS86WTRSXlvPQ95vJLCxl5V7HJRJ1UZs1E7ILSxkcF859Y7ow9pXf6txnoenLwqLeLCzqzSNZ0MKSzhC/1Qz0XccA33W0T3mEz1tC1qL7WbFxEKHtR9DDx876kjjKsda5X6mety3scuIKkUt2ZbDmwPHJcEmZySMLtvLwGd0qF9wBuOfrTfz1k7X839ndCfevezmJK5keu2XSMSXLIiLitQLtVvKOrGAXaK/6T9Zd8zdw9+mdsFkMHvp+S+X2IN+6JYz3fbOpTucd5WuzcGp8JHZr1UlVzzYhrKrDwhKHyiP4JH8En+SPAOClMyL4+udPGGhfz/C0DVjSvmdeS8gpD+CPom5Ebh9DmXUYfkYRhabnap6buud/2YHdZuHN5RXzKOc7WHHxi3pMHVedAznHlzidOKpcnaMjx//8Yj2vHpnRZc7SmmvQ3ckbV75WsiwiIl7rqXN7EO7vg79PRQJ6rKTWwfRoFcwXGw4SFxHAFf1iXNLnH3syiQq0k5pXzNoDOby9IoXdGc7VtOYUldaqPKA+Cu2tmZc/nHn5wxkSFs6c8S3526uvVo48t9jyCIVbHmFlGysbSuJYUdSFQ5aelGZ3wBoc69QKa1X5euMhXvltV7XHlB6T8Zz20q8emd2g3KwoXRjQzr0zixSUlPPwMW/Sbvp0LTeeGn/ScUff9Jmmyb3fbGJclxYu6b/3kz87feySnemVSb230tRxIiIitRAZ4MMYB0lF1xbBrP77CCLu+drl/f737O7cPG8tC7aksmCL89OkHV0848Sp0FzthsFxDImLOH5jQBs+LxjK5wUVU/R9dXlHkmybePGjd+nju4kLAxcQYJnPntmPYAlsi1+bgfi1PgXflv2wR/fC2aUXzpxZ82p629L+91H/T9vS2HnMR/8NadSMJaQ9OM4jfVfljFd/Y3iHSB7+fkutR3C/2XSYgzkn3yiblu98XfGQ592zQIkreV+qrGRZRESaKJvlf8lfQ1aZRgb4cMuwBFbtc23d9LGen5jE9rTqV2Qss0dgizmDJ7IrylFslDKu5WGSbRuJPryS8cYy8rd8fORoA0K78N/wVqwtSWD7xgP4GeGV5Rvx/1kAwDPn9XDbc6rK7HqWBOQVl/HYj3VbKtoRZwbkMwtKOGvm79w5qtNx24/OWgGwL7v2qzW2fuDbWp/T2HjhwLKSZREROVlBSdlxH6U3JjcPjadlsC+JLf+3WMTtp3Wkc4sg9mYW8tGa/W7tf0JSa8KquVmqS3QQnaIC+XC1e+M4USk2tpmd+GJva2AkQ68YSnJ4AcUHV1B0aAUrVv3EqX4rmRj4ExTO5tY2FraWxrCmuAPrihPYWNKeD/9o0JC57bN1lT9/tu4gt85bx01VlDhUZ4uLV48M8Km5Fn5nej5LdmVwz9cbuX1kR5f27y7ecmOdt8RxLCXLIiJSycDAYlB5o9y4LtEejqj2TusYxTmJrY7bNrxDFMM7RPHT1lS3J8snKiwp44djVrwLsFuZfVEvTNNkf3YRMf/+rkHjOZYtsDW2hLMISDiLGZvO4KMt+2lhSSfJvo0k+1Z6+GxnhN8KLgj8sfKc/a0i2VjSnk0l7dhYEsemkvZYzJZuj/WerzdSUmZ6fHW3XAc38FWlvqvwNaRrPzh5OWpP0MiyiIh4NbvNwsdT+ldOL3VaxyiXtFtQUs6KlEyCfZvfn51Xf9/N9rSTa3YNw6BNqF8VZ3hOuzB/dmdGsKAwggWF/Y9sNWlhyaCLzy5OizpIcNEmuvrsYojfauxGKQClqTYmt2jL5tJ2bCuJYVtpW7aXtGVnaSuKsZ/Uz/xpA7n509qt6FdSVpFFPfZDRVlFRkEJv+6see5hV3vLy2+Qa+yULIuIiNcbf8KobH0F2K1sTc2j39OLmJjkuO2ycpPychOLl81jW195xRUJZceoQLamVl9nXJXElsFkFJTQMtjOn3trP+Vc/RkcKo/gUFEEuYTwZ0ZFDD6UEG/bTxefXUyMSaO8YC397Rs4N2BR5ZllpoWUshbsJ5a1oa3ZVtKWbaVtCSzvhBPVDLWSnl9c53PtNud/56IC7WTUYrEOZ3O/tLy6x9+ULNqRxrAOkTUf2ICULIuIiFs9cU4ik3q2Ydr7q8gsKD1p/9Ebpu75ehPP/7KTbXee1sAR1o+zU121DLJXmSwfXenP0dLNY7tG8/g5ieQWlfLCLzvp1jKoXvG6Sgk+bC5tx+bSdgQFteWdLRWr5PkbhcTb9tHBtpcEn710sO2lq+9+LgtahZ9xJCH89l+8Z/MnM6stBz/vznlFAYQHBrO7tCV7ylpilhXDCSPSnaMD2XzY8ZuNrzdWvXT0m06s3lfdstMnqs2MexsO5XLpWyucOnZPFUs/N0cPfb+Fu0/v7OkwjqNkWURE3KpFsC/jE1sR4FP1x+6+NgtvXtKb91bu4/P1B8kqPDmhbgg924RyUa82FJeWMywhkptOjWd5ShZfOUjCAAbEhnFBzzb16vfXv56KaYLFYvDAt44XRAnytXH7aZ69WcyZke0C04/1JQmsL0mAI/lfXLg/uzNyaWNN5Z99yrm8czHzflhIJ8thSjK2MLRkG6PC/zeymjX7ZvKCYnkrKoh9ZdHsL4skKKA9C/382Fcaxf6yKHLMAFw1z8ms33eftC3VwUhvdQn7UX2eWljvmJqr4QneNaoMSpZFRMQLXNInhpyiUj530ypnzgjz9+Gdy/pWPn5wXFcA+j71c5VJYlLrYH67eWi9+zUMo1ajlVXJKixl7h81T7OWX+L8zWmuVo6VlLKWmG17ENo7npnfJ9I9OJiRHaO48eNVRFsyibUdpL3tAM+eHoQtfxc+qSs4xXctLa3pWMvKufKYEvrccj/2l0WxvyyS6NXd8be1YHJgIYfLwjhcHsbhsjBSy8KqrJl2Rq8nf671zBtSf1YvLMNSsiwiItLIrT2Qw9oDOTUet8vJlQgb0oZDuZhYKuqiiyNYXtyNV/uNJTzAzoXffw6AlTLOiYfde7fQ2ppGa2tqxZet4ufS3V8Ra83koSoW68sqD6xMnCuS6HAOl4eRVhZKZnkwmeXBpB/5nlUeSDkVxdQNtRLjUdd/tKZB+/NWWsFPREREHHJnnlAx04X3JctVOfFlKMNKhhHJimLHdwXaKCXSkkW0NZMoaybRlgyirZkVjy0V35N8thHll0mQpeoFQcpNg2wzkIyyYDLKg4nc15LocCsZR5LpnPIAcsyAiu/lAeSYgZU/55r+lYl2XTSWfxt3875UWcmyiIiIWxhH6mm/2+z8ctm2Ix9BWy2ACyomjp1TukuLwOMSskHPLWZyr7bMndy7ynPD/X1qNeuDK507eymLbjy1VueUYuNgeSQHyyOhhrADjAIiLNmEW3IIs+QQZsklwpp95OccIo58b1NyiFN80wi35BBgOXmp6RPllvtVJtS55YFHvvuTb/pRYPqSV+5HgelHvulLgelLfrkf+ZWPK74f3VZw5BjTyWXImwovHFhWsiwiIq41b90BT4fgUOfoIHq3DaGgpJyNh1y7stuJ+sWGEh8RUDlntTP+c2Y3ftyWyoGcIp5dtKPeMXxZTQ14SZnJ68tTHCbLnvSLm+dPzjf9yS/zJ6Ws+sVUgnNs5BRV3HBqp5jOYWXk5mYQbOQTbMkj2JJ/5Of84382KvaFW7KJtR7E3ygkwFKEv1FUOTe1s4pMnyNf9pN/xk7xSfuPOY6Kn4tNH0pNKyXYKDFtlGKl1Kz4uQQrpaaVUmwUH7ev4vij+0pM65FzK34uxVqvkXRHtIKfiIg0WX1jQjmzawvyS8oY0SGKVsG+Ddb3zvR8NhysOfltE+rH8luHA9D50R+cmve4riNdAXYbD47rwuVv/+n0OQPbhzOwfTiP/7Stbp0e4+dtaR4bGa7OkLgqCour8PKSne4NxAnH3hBZjJ0M04+9pf71atOHEvyNoiPJcyEBRsX3QEthxXaj4nugUYi/pRA7JfgaR7+Kj/tuN0oINvKIshy77/if3ancNCjDQhlWykwL5VgoPfK9DAtlpvXI/v/9XHGM9ZhjKr6XmxZKsbK55BxgkFvjri0lyyIi4hJtQ/35YtrABu83zM/G5+sPum0mjaBGuurgf+uQcPv5uOcj/2OXiO7ZxrnlqpvqDW8l+FBi+pBd5v75sg3K8aEUX6MEH6MUH0qxGWX4GKXYqPr70Z9tRhk+HPu4FPsx+2yU4mNUpL+2I9+tlGM1yo6MOZdjNSq+H3eMUY6VsmP2V/xsMcoJoBRrTTU0HtA4/wcQERE5YslNQ7nts3W882fNi0/UxduX9mHN/mzu+mojq/Z5YgW92hvTOZrFO9JrPVWcj8XC34Z34Imfq060g33/V5ZQG1XNWWya8P2WVC7rG1Pr9sQ5JhaKsVNs2r3zzrkqdDOCuN/TQZygeVWNi4iI1yspK+dwrvNL/7YM9qWlG0s+YsL8OaNbywYtK6mv8AAfLHX8C+9rc3ziTUNdN+9wal4xmQUl5DbwIjR+1Ty/E5WVN5IMswmx1HfScTdQsiwiIl7l/NeWMWHuHwDYrfoz5Sq2umbPbnJ0NcJfd6U7dfzP29Nc0u9L5ye7pB1pPrzryhERkWZva2oePVoF8+YlvRkSH+HpcJqMYF8bp7R37ua6hnB0BNGZ5aNdqXN0YIP2J42fkmUREfEKrYL9gIqlmwe2D+eSPjH4NNOR5Z5tQtzS7tndq58qTdzPx+p9ZQZSPd3gJyIiXuHcHq04cN8YisvKaR3i5+lwPGp052jO6taCLzcc8nQoVRocF8453Vtx5/wNAHSM0mitNF3N8y27iIh4pRbBvsSE+WO1NL3RtwHtwvGzWegXE+bpUFxufKJGrKXpUrIsIiLSAP5zZlfyHz2LG4bEua2Pv4/o4La23W2wk4uViDQ0lWGIiEiDsBjw47bUyp/FO/z983WM6hhVq2WGfbxsZg0Rd2qwZNkwjEDgRaAY+Mk0zbcaqm8REfG8J8Yn8tuuDHxtFgLsVn7ZmeHpkAR48uftPPnzdpJb13xT4fCESHb2yefKfrEsT8mq3N6Y5qAW71abN20NpV5vDQ3DmG0YxiHDMNaesH2cYRibDMPYahjGHUc2TwQ+NE3zGmB8ffoVEZHGZ0JSax47uzsPjutKVKDd0+E0Sz1aBTvcV1ha82p/sWH+vHFJH07vHH3c9rah/nx6Vf96x1eVTsfcPOiF61XUWkmZ9yWD3iQt3/uWu67v5yhzgXHHbjAMwwq8AJwBdAcmG4bRHYgB9hw5rHbrb4qINHF/+Xg158z6nbxi/fco7jM+sVW9ktrqymdstaytKS4rd+q4+8d2qVW77hRot3o6hCavl5umTayPeiXLpmkuBE5cemcAsNU0ze2maRYD7wLnAilUJMzV9msYxrWGYSwzDGPZ4cOH6xOeiIjX69M2lFPjI8grLuNAThF92oYy+oRRO2mejs4x7Q1zTVsMuG9MZzpE1m6KuL+e6nh57BInkuUvrx6AtwwmvzgxifGJrTwdRpPXIsj7SnrcUbPclv+NIENFkjwQeBZ43jCMs4DPHZ1smuYrwCsA/fr102cVItKkdYgKZOFfhng6DHGT4QmRXN43hpgwP3xttRuV/M+ZXTm9UzQTkuqWoOUWOfcpRXLrEFbvz3a4f3xiSz69akCN7SREBpy07cnxiTy3eIfTcfzqxXXs0wfH8eyi7W5pO9Bu1adKR3jLm6NjuSNZrup5mqZp5gFXuaE/ERERrxQT5s9rk3vX6dyuLYLp2sJxjbGz7FaL0yUP9VHfWB8/pzu3Dktg/cFcJsz9w0VRuVZiNTXfxxoaH8GiHSd+8C6NlTs+20kBYo95HAPsc0M/IiIizVbbUD/O6d6SofER1R53fnJrt8Zx2/AEh/tOLGM2DMcjhzaLhU7RQZzboxWntPfMnMvvXtaXCT1UauFJ3ngTpzuS5T+AToZhxBuGYQcuBj5zQz8iIiIA+ByTldltnq/xbQi+Nivzpg7gzUv7eDoUhwzDYHhCJACzLuxJxr/HYXHiRsB7R3fmrG4t6NU21N0hHqdDVADRXlgz25wYXliIUa8yDMMw3gFGAFGGYaQA95mmOcswjBuBbwArMNs0zXX1jlRERMSBW4YlEB8RgJ+PlREdIj0djlQh0G4jxM/HqWPHdW3BuK4t3BxR42AxoLw53cHlfbly/ZJl0zQnO9g+H5hfn7ZFRESc1TrEj+mD4xq0T7M5JTBSK+3C/cG5+xprZLdaKCx1f825t2guZRgiIiJNXpi/c6OkjU34kecVEdA0n19DCPat3Vhkv5iwOvWT2LL+N4B6G28sw1CyLCIizZK/T8WfQP9aTunWKSqQ32461W0r1nnarcMSWP/PEdw81PGNe57S0GlUbZPeunr6vEQij3lzMrpzVIP0K85RsiwiIs3Se5f35b3L+/LGJbWb2i3QbmVAu3AiAprmkt0Wi0HXFsFYXPR5+NFV71zRXO+2odw7ujOvTEquf2NO+HxqzfNLu0JEgJ0zu7Wscl9zKsEA7yzDaJi3TCIiIl7GVfMYNxWbD+e55WP9B8Z1oVN0ICM71v/GS1+bhfvHdmF5Smb9A2sEElsG4+9jYVlKlqdDaTBemCsrWRYREWnO+saGVruCX73bjwmjbx1rcqX6mTAKS5veqn/eOLKsMgwREZFmrH1YAIPjKhYBMdEUH97Gx+o4e9yWlt+AkTQM3eAnIiIiXmd3RgEAJWVKlr1Nt2ZWKqSRZREREWlQvtaKP/UBPo5n/diXXQjAhCT3Lo3dGPSLbdhVA8X7KVkWERFpwqYOjOWNS3rz7zO61HisVj+EaQPbezoElzu/jm+CTmkf7uJIauaFA8tKlkVERGqjsRUqhPr5cGmfGNqG+ns6FIesFgOrpWHTJMOgwaagqy1X1+3OubhXnc6zV1Mv7S6GF9ZhKFkWERFxQv/YMHxtFo+MtjVltw5LIOPf4xo8We4aHeRVo8gLt6dVuf3sxKrnX66NoAZaXMUVvC9VVrIsIiLilAfHdaXg0bN46XzvHI30BrY6JLx+PpZGk8y1CvY77rErlzzfdeQmyxNNTGrNt9ee4rJ+nNUuzDOfRHjhwLKSZREREXGNpTcP5e1L+3g6jCrdMiyBj6f0q1cbHaMCjnv81PjEOrd13aD2TieG1U0f50r/Pbt7g/TT2DSOt3IiIiLi9Xq1DaVDZKCnw6jSk0cS2yU7050+p1149aOrdlvdxxw7RAbiZ7NQUFLzctb1qWH+y5A4p4/tGOX5fzvVLIuIiIhLWY9JLixemGi4krWa59c3JpRQP9eOAfrWIxl2pf7twup03hPju/PchCQAXp/cmyv7xbgwKvfwxt9g7/gtEBERkTppHeLLzAt78uYlvaudS7kpuOO0jg73/ffs7vxtRIcGjAaKSmseFXYFfx9rnd4I3Drsf6/HZX1jmHNxb1eG5Rbe+H5PybKIiIgLeGpKOcMwmDqgHZf0qduoYedoz3/07oxJya05o1v9Z4ZwpUO5RSdt694yyAORNB477x7FoGpmlPHCXFnJsoiIiCtc1KsN/WPDOKNrC0+H4rQ3LunNxb3bejqMRiv4hFk8zk1syZq/j6hTW38b3rCj4p7SLjyg2v2qWRYREWmi7hvThd9vHtqoloyuLi2xHZmBIdDeeOcCePiMrm5r++lzE7m0z/FvNMID7HVO9sZ0ia71ObcMS6hTX94q3N+H607xnrmvj1KyLCIiHrPhYK6nQxAHJiW35ulzE3lwbM3LZHurO0d14rSOUfWa5aFbiyD6xYSetP2moQmE+PmQEFn9SKmrtAjyPWnbk8dMXRcf4Zo4rhvk/mTV0fuJtH+Po0sL7ytjabxvF0VEpNEa2SGKiUmtKC41Oat74ylbaE7CA+zcNLTxj1zWd0GPlX8bXu0I/MdX9ue6D1fx++7MevVTkxkXJDNqxhK39gFwx8iOvLxkl9v7aUyULIuISIPrEBXIh1f293QY4kGnxkfQOTqQ0zpGubUfSz2X0faxVv8hfHKbEK45pb3bk2Vnl1m3GFDuqbtNmyglyyIiItLghneIYuPtp3k6jGatX0woy1KyGrxf77uFr3qqWRYRERGXObqQR0yon4cjcU50oN3TIXhMiJ+Pp0NoFJQsi4iIiMvYbRZSHxzL+n+O9HQoTll+6zBPh3CSC3u18XQIcgwlyyIiIuJSEQF2gnwbR6VnQy8R7swiMP1jwxzuC3Hxkt6e4I1zKVdHybKIiIjU2tF8x9rIEp+G4OzNeLXh72PlntGd+XSKboxtaEqWRUREmoh24f4AtK9hlTRXuLBnG24bnsDVA9u5va+G4mOpSIumHXlOJ67Q56wr+sWS+uBYkluHnLTv6EwV6fnFtW73gbFdGOHm2UOOstZzFpGmRMmyiIhIEzGlfyyZD43jkTPdt3LdUXERATx+TiKdo71vEYm66tEqGICXL0gm75EzTyolsVst3DQ0nncv61tjWxEBVd84eHGvNgyNj+DSPjH1D9iFIgN8SG4dQmSgnZhQPx4cV/ViNF2cKCOpSWNLw5Usi4iINCEhfj7V1oQG2q0NGE39+ftUxBsT5u/2vo7OyWwYRmW/xzIMg6fP7XHSDXgRARWzSnRwYjW//rFh/PyXISQeScxdZXxiy3qdf/jBccRHBhDka2P3PaMdJvPzpg7g3w4S6aZKybKIiEgzMqJDw3yM7ypndmvBl1cP4L4xnT0dikNnd2vJV9cM5LbhHRq876OlIlf2i3Xq+NYhJy+bXRtx4QE1LiQzOM71NduepGRZRESkGbFaDNqHu3+U1lV8rBbO6NbSq+cEtlktjO3SosrRaG/z9qV9Kn92V1lyTTOMVLXbz+a9KWnjn39ERERERJwyvEMU2+4cxcdr9rMlNQ+2pLq8D9Os/XrbLYLqN+LtTt6bxouIiIhIrfhYa07t4iMD+NuIDlWO8MrJlCyLiIiIeFhAPUs4QvxsxEcE8MQ5iS6KyH2MRjYfhpJlERERabaOjq5GBVY91VtDqe9CJr42C9vuGsUNQ+JcE1A91KYI48Ke3r+0t2qWRUREpNlqFezL/WO6MLJjpEfjaK6LgDSGp61kWURERJqNVsF+AFzer2IeYcMwuNeLp6VrihpbrbSSZREREWk24iMDKHrsLKduhPNWd5/eiTYhfi5r74WJSfVu474xnXng280A1GYyjN5tQ3l35T7MWhVvNKzG+5siIiIizVJ954luzIkywL/HdeX6wXH1bueKvjF0iAxwSQlKkN2GvZav65yLenFuj1b17tvdGvdvi4iIiDQ7UYG+jOzg2RrjpmBQXARb7hxF1xauWXq7tuUVsWH+lfNiePMMGUqWRUREmqB+MaGE+tnqvbyxiDOOLaK4sn/1S297b1pcNdUsi4iINEFLbxnm6RCavUFx4azen+3pMBrcxKRWnJ/Umuj7vnH6HNUsi4iIiNeIDKiYU7ix1+4CtAiqeC7Bft43/vfEOd1Z8tdTeW5Cjyr3n9m1JQD+Po3/3wGOHzF2piTDxMRoBFNjeN9vloiIiLjVnIt78cuOdM7s2sLTodTbcxOS6BgVSK82IXy18ZCnwzlOgN3GwPbhDGwfzjcbD/PFhoPH7Z95YU9uP60jUYHNq1SmMSTIx1KyLCIi0swktQ4hqXWIp8NwiQAfK73bhno6jDoJ9fehX2yYp8PwCrrBT0RERESaLNM0az0bxrHzMatmWURERESajery5mOTau8dT/4fJcsiIiLNnPeO6Yk36taydvMyT0pu7aZIGoaSZRERkWZudKdoAFoGN68bzaRuwvx9+MuQuJO2O6o7fu+KflVubyxv0nSDn4iISDP3xdUDyCkqJfzIlHLiejZrYyg4aBi1nWLO05Qsi4iINHM2q6VJJcrJrUP4x8gOng7jOH8f0YGM/JJGPfvFM+f1wG6rKEo4cfq3xjJKXBcqwxAREZEm5ezuLbm0T4ynwzjO4LgIfrxhMK1D/DwdSp20D/fnr6fGV3vMcTfuVTNkPKZLxfzebRrJa6GRZRERERGpldpWT1gMKD8y/HzbsAQmJrUiITKQ7Wl5Lo/N1ZQsi4iIiEi99WoTwi87M7BUMaq86fbTWHcwBwCLxSAhMhDw7sVIjlKyLCIiIiK1UlWVxZyLe/P1xkNEBNjJLCg5bl+HqEA6RAU2UHSupZplEREREakX04SOUYHceKSu2fvHi52nZFlERERExAElyyIiIiJSK64aOW4M8ywrWRYRERGRWvnHiI7YLI0g03UBJcsiIiIicpKWQY6XP28T6seC6YMc7q/tiLHpxauaKFkWERERkZM8clY3JiW3dmsfjWFsWsmyiIiIiJwkITKQx87u7tSxZj0XvPbm2mUlyyIiIiIiDihZFhERkUZncp+2hPjZiI8I8HQoTVqwb8X6dZf0aVur82q7Mp831yxrBT8RERFpdKYNbM+0ge09HUaTFxloZ/99Y4gOtLulfW8uvzhKybKIiIiIONQy2PGsGK7izUmzyjBEREREpF68uYyivpQsi4iIiIhHeXOyrWRZRERERFzK2bIKw5vrL45QsiwiIiIiHmF685DyEUqWRUREREQcULIsIiIiIvVS1/FhlWGIiIiISLPj/Smw85Qsi4iIiIhHqGb5GIZhnGcYxquGYcwzDGNMQ/UrIiIiIlJXTiXLhmHMNgzjkGEYa0/YPs4wjE2GYWw1DOOO6towTfNT0zSvAaYAF9U5YhERERFxKLl1CH3ahrq9n9gw/3q30Rhqlp1d7nou8Dzw+tENhmFYgReA0UAK8IdhGJ8BVuCRE86faprmoSM//+vIeSIiIiLiYr/ddGqD9BMXEcD1g+N46dedJ5VTNIIc2GlOJcumaS40DCPuhM0DgK2maW4HMAzjXeBc0zQfAc4+sQ2j4q3Do8BXpmmucNSXYRjXAtcCtGvXzpnwREREROQIPx9rg/UV5u/suGtN7fi4pB13qE/NcltgzzGPU45sc+SvwOnABYZhTHd0kGmar5im2c80zX7R0dH1CE9EREREvFmrYF8m9GjFCxOTPB2KQ/V5O1DVALvDWxpN03wWeLYe/YmIiIhIE+JjtfDRlP6eDqNa9UmWU4DYYx7HAPvqF46IiIhI8zR9UHv8G7CEQpxTn2T5D6CTYRjxwF7gYuASl0QlIiIi0sy8eH4yAGv2Z3s4kvprDLNcOMvZqePeAZYAXQzDSDEM42rTNEuBG4FvgA3A+6ZprnNfqCIiIiLijbx/aZG6c3Y2jMkOts8H5rs0IhEREZE6iA60A9Ay2NfDkTQfRpNa2LpqrpnvQ0RERMTDrurfjs7RQQyOC/d0KNKEKFkWERGRJsFuszCyY5SnwxCqnjKtsarPPMsiIiIiIk2akmURERERqRezCd/hp2RZREREROqkCc0Q55CSZRERERFxqaaURCtZFhERERFxQMmyiIiIiIgDSpZFREREpF4c3eB3dKGYxkzzLIuIiIhInTgqTbZbLfxteAfO7t6iQeNxByXLIiIiIuJShmHw33O6ezoMl1AZhoiIiIiIA0qWRUREREQcULIsIiIiIuKAkmURERERL2RpRFmaSdNd77oR/TOIiIiINH1tQ/1IiAzgX6d39nQoNTKa0lJ9Dmg2DBEREREvEhFgZ+udozwdhhyhkWUREREREQeULIuIiIiIOKBkWURERETqxdFy102BkmURERERqZOmf3ufkmUREREREYeULIuIiIiIOKBkWURERETEASXLIiIiIlIvTfj+PiXLIiIiIlI3zWABPyXLIiIiIiKOKFkWEREREXFAybKIiIiIiANKlkVERESkTsL9fY773hTZPB2AiIiIiDROV/VvR0FJOVMHxHo6FLdRsiwiIiIidRLsZ+P20zp6Ogy3UhmGiIiISCM1oF0YADaLUjp30ciyiIiISCM1+6JeLN6RTstgX0+H0mTpbYiIiIhIIxUb5s/k3m09HUaTpmRZRERERMQBJcsiIiIiIg4oWRYRERERcUDJsoiIiIiIA0qWRUREREQcULIsIiIiIuKAkmUREREREQeULIuIiIiIOKBkWURERETEASXLIiIiIiIOKFkWEREREXFAybKIiIiIiANKlkVEREREHFCyLCIiIiLigJJlEREREREHDNM0PR2DQ4ZhHAZ2OXFoKJDlZLPOHBsFpDrZXlNRm9ewITREPK7uo77t1eX82p6ja6X+dK14vj1dK42DrhXPt+dN14qzx3nqWmlvmmZ0lXtM02z0X8ArrjwWWObp5+TNr2FTicfVfdS3vbqcX9tzdK14/t+5Mcaja6X+x+pa8fyXrhX3nOPs8bU4zuuulaZShvG5m45tTrztdWmIeFzdR33bq8v5tT1H10r9edvromvFPefoWqk/b3tddK245xxnj/e23weneXUZhqcYhrHMNM1+no5DxNvpWhFxjq4VEed447XSVEaWXe0VTwcg0kjoWhFxjq4VEed43bWikWUREREREQc0siwiIiIi4oCSZRERERERB5Qsi4iIiIg4oGRZRERERMQBJcu1ZBjGeYZhvGoYxjzDMMZ4Oh4Rb2UYRoJhGLMMw/jQ07GIeBPDMAINw3jtyN+SSz0dj4i38pa/I80qWTYMY7ZhGIcMw1h7wvZxhmFsMgxjq2EYd1TXhmman5qmeQ0wBbjIjeGKeIyLrpXtpmle7d5IRbxDLa+ZicCHR/6WjG/wYEU8qDbXirf8HWlWyTIwFxh37AbDMKzAC8AZQHdgsmEY3Q3DSDIM44sTvlocc+q/jpwn0hTNxXXXikhzMBcnrxkgBthz5LCyBoxRxBvMxflrxSvYPB1AQzJNc6FhGHEnbB4AbDVNczuAYRjvAueapvkIcPaJbRiGYQCPAl+ZprnCzSGLeIQrrhWR5qQ21wyQQkXCvJLmN2glzVwtr5X1DRxelXSRQlv+9w4fKv4Ta1vN8X8FTgcuMAxjujsDE/EytbpWDMOINAxjBtDbMIw73R2ciBdydM18DJxvGMZLwOeeCEzEy1R5rXjL35FmNbLsgFHFNofLGpqm+SzwrPvCEfFatb1W0gC9oZTmrMprxjTNPOCqhg5GxIs5ula84u+IRpYr3r3EHvM4BtjnoVhEvJmuFZHa0TUj4hyvvlaULMMfQCfDMOINw7ADFwOfeTgmEW+ka0WkdnTNiDjHq6+VZpUsG4bxDrAE6GIYRophGFebplkK3Ah8A2wA3jdNc50n4xTxNF0rIrWja0bEOY3xWjFM02HJoYiIiIhIs9asRpZFRERERGpDybKIiIiIiANKlkVEREREHFCyLCIiIiLigJJlEREREREHlCyLiIiIiDigZFlERERExAElyyIiIiIiDvw/SnPjsbvulpEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,7))\n", + "plt.loglog(freq, powers, ds=\"steps-mid\", label=\"periodogram realization\")\n", + "plt.loglog(freq, psd_shape, label=\"power spectrum\")\n", + "\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Maximum Likelihood Fitting\n", + "\n", + "Let's assume we've observed this periodogram from our source. We would now like to estimate the parameters. \n", + "This requires the definition of *likelihood*, which describes the probability of observing the data plotted above given some underlying model with a specific set of parameters. To say it differently, the likelihood encodes what we know about the underlying model (here a power law and a constant) and the statistical properties of the data (power spectra generally follow a chi-square distribution) and then allows us to compare data and model for various parameters under the assumption of the statistical uncertainties.\n", + "\n", + "In order to find the best parameter set, one generally maximizes the likelihood function using an optimization algorithm. Because optimization algorithms generally *minimize* functions, they effectively minimize the log-likelihood, which comes out to be the same as maximizing the likelihood itself.\n", + "\n", + "Below is an implementation of the $\\chi^2$ likelihood as appropriate for power spectral analysis, with comments for easier understanding. The same is also implemented in `posterior.py` in Stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "logmin = -1e16\n", + "class PSDLogLikelihood(object):\n", + "\n", + " def __init__(self, freq, power, model, m=1):\n", + " \"\"\"\n", + " A Chi-square likelihood as appropriate for power spectral analysis.\n", + "\n", + " Parameters\n", + " ----------\n", + " freq : iterable\n", + " x-coordinate of the data\n", + "\n", + " power : iterable\n", + " y-coordinte of the data\n", + "\n", + " model: an Astropy Model instance\n", + " The model to use in the likelihood.\n", + "\n", + " m : int\n", + " 1/2 of the degrees of freedom, i.e. the number of powers \n", + " that were averaged to obtain the power spectrum input into \n", + " this routine.\n", + "\n", + " \"\"\"\n", + " \n", + " self.x = ps.freq # the x-coordinate of the data (frequency array)\n", + " self.y = ps.power # the y-coordinate of the data (powers)\n", + " self.model = model # an astropy.models instance\n", + " self.m = m\n", + " \n", + " self.params = [k for k,l in self.model.fixed.items() if not l]\n", + " self.npar = len(self.params) # number of free parameters\n", + "\n", + " def evaluate(self, pars, neg=False):\n", + " \"\"\"\n", + " Evaluate the log-likelihood.\n", + " \n", + " Parameters\n", + " ----------\n", + " pars : iterable\n", + " The list of parameters for which to evaluate the model.\n", + " \n", + " neg : bool, default False\n", + " If True, compute the *negative* log-likelihood, otherwise \n", + " compute the *positive* log-likelihood.\n", + " \n", + " Returns\n", + " -------\n", + " loglike : float\n", + " The log-likelihood of the model\n", + " \n", + " \"\"\"\n", + " # raise an error if the length of the parameter array input into \n", + " # this method doesn't match the number of free parameters in the model\n", + " if np.size(pars) != self.npar:\n", + " raise Exception(\"Input parameters must\" +\n", + " \" match model parameters!\")\n", + "\n", + " # set parameters in self.model to the parameter set to be used for \n", + " # evaluation\n", + " _fitter_to_model_params(self.model, pars)\n", + "\n", + " # compute the values of the model at the positions self.x\n", + " mean_model = self.model(self.x)\n", + "\n", + " # if the power spectrum isn't averaged, compute simple exponential \n", + " # likelihood (chi-square likelihood for 2 degrees of freedom)\n", + " if self.m == 1:\n", + " loglike = -np.sum(np.log(mean_model)) - \\\n", + " np.sum(self.y/mean_model)\n", + " # otherwise use chi-square distribution to compute likelihood\n", + " else:\n", + " loglike = -2.0*self.m*(np.sum(np.log(mean_model)) +\n", + " np.sum(self.y/mean_model) +\n", + " np.sum((2.0 / (2. * self.m) - 1.0) *\n", + " np.log(self.y)))\n", + "\n", + " if not np.isfinite(loglike):\n", + " loglike = logmin\n", + "\n", + " if neg:\n", + " return -loglike\n", + " else:\n", + " return loglike\n", + " \n", + " def __call__(self, parameters, neg=False):\n", + " return self.evaluate(parameters, neg)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make an object and see what it calculates if we put in different parameter sets. First, we have to make our sample PSD into an actual `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = powers\n", + "ps.df = ps.freq[1] - ps.freq[0]\n", + "ps.m = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-4835.88214847462" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [1, 5, 100]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2869.5582486265116" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [4.0, 10, 2.5]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [2.0, 5.0, 2.0]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Something close to the parameters we put in should yield the largest log-likelihood. Feel free to play around with the test parameters to verify that this is true.\n", + "\n", + "You can similarly import the `PSDLogLikelihood` class from `stingray.modeling` and do the same:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from stingray.modeling import PSDLogLikelihood\n", + "\n", + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To estimate the parameters, we can use an optimization routine, such as those implemented in `scipy.optimize.minimize`.\n", + "We have wrapped some code around that, to make your lives easier. We will not reproduce the full code here, just demonstrate its functionality.\n", + "\n", + "Now we can instantiate the `PSDParEst` (for PSD Parameter Estimation) object. This can do more than simply optimize a single model, but we'll get to that later.\n", + "\n", + "The `PSDParEst` object allows one to specify the fit method to use (however, this must be one of the optimizers in `scipy.optimize`). The parameter `max_post` allows for doing maximum-a-posteriori fits on the Bayesian posterior rather than maximum likelihood fits (see below for more details). We'll set it to `False` for now, since we haven't defined any priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst\n", + "\n", + "parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit a model, make an instance of the appropriate `LogLikelihood` or `Posterior` subclass, andsimply call the `fit` method with that instance and starting parameters you would like to fit." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2., 1., 5., 2.])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.model.parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.npar" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "starting_pars = [3.0, 1.0, 2.4]\n", + "res = parest.fit(loglike, starting_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is an `OptimizationResults` object, which computes various summaries and useful quantities.\n", + "\n", + "For example, here's the value of the likelihood function at the maximum the optimizer found:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2183.789677035487" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: Optimizers routinely get stuck in *local* minima (corresponding to local maxima of the likelihood function). It is usually useful to run an optimizer several times with different starting parameters in order to get close to the global maximum.\n", + "\n", + "Most useful are the estimates of the parameters at the maximum likelihood and their uncertainties:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4.72916493 2.09193061 2.10372265]\n", + "[3.78311696 0.7300253 0.55312843]\n" + ] + } + ], + "source": [ + "print(res.p_opt)\n", + "print(res.err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: uncertainties are estimated here via the covariance matrix between parameters, i.e. the inverse of the Hessian at the maximum. This only represents the true uncertainties for specific assumptions about the likelihood function (Gaussianity), so use with care!\n", + "\n", + "It also computes Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for model comparison purposes:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AIC: 2189.789677035487\n", + "BIC: 2204.512942872433\n" + ] + } + ], + "source": [ + "print(\"AIC: \" + str(res.aic))\n", + "print(\"BIC: \" + str(res.bic))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, it also produces the values of the mean function for the parameters at the maximum. Let's plot that and compare with the power spectrum we put in:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAHWCAYAAACBqMQDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAC02UlEQVR4nOzdd3hb5fXA8e+9Wt4ze2/IHiRhZzLLbpmFlg5GoXTAD8rqHkBbWnYnBUqhbMregUBCgEAgCdl72U7ibcvWvu/vD+leSdaw7NiRk5zP8/SJrXt17yvHJUdH5z1HU0ohhBBCCCGESKRnewFCCCGEEEL0VBIsCyGEEEIIkYIEy0IIIYQQQqQgwbIQQgghhBApSLAshBBCCCFEChIsCyGEEEIIkYI92wtIp1evXmrYsGHZXoYQQgghhDiILVu2rEYp1TvZsR4dLA8bNozPPvss28sQQgghhBAHMU3Ttqc6JmUYQgghhBBCpCDBshBCCCGEEClIsCyEEEIIIUQKPbpmWQghhBCiPYFAgF27duH1erO9FNHD5eTkMGjQIBwOR8bPkWBZCCGEEAe0Xbt2UVhYyLBhw9A0LdvLET2UUora2lp27drF8OHDM36elGEIIYQQ4oDm9XopLy+XQFmkpWka5eXlHf4EQoJlIYQQQhzwJFAWmejM74kEy0IIIYQQ+6ChoYG//OUv2V7GAe2FF15gzZo12V5GUhIsCyGEEELsg3TBcigU2s+r6Tr7c+3pguVgMLjf1pGMBMtCCCGEEPvgpptuYvPmzUyZMoUbbriBhQsXMnfuXL7+9a8zceJEtm3bxoQJE6zz77zzTn75y18CsHnzZk455RSOOOIIjj/+eNatW5dw/V/+8pd84xvfYN68eYwePZp//vOfQHjD2g033MCECROYOHEiTz31FABXX301L730EgDnnHMO3/nOdwD417/+xU9/+lMAHnvsMWbOnMmUKVO48sorrcC4oKCAn//85xx55JF89NFHceu49957GTduHJMmTeLCCy9MuzaAP/7xj8yYMYNJkybxi1/8wnr80UcfZdKkSUyePJlvfOMbLFmyhJdeeokbbriBKVOmsHnzZubMmcMtt9zC7Nmzueeee/jWt77Fs88+a12joKAAgIULFzJ79mzOP/98xowZw0033cTjjz/OzJkzmThxIps3b+7oX2cC6YYhhBBCCLEP7rjjDlatWsXy5cuBcAC3dOlSVq1axfDhw9m2bVvK515xxRX87W9/Y/To0XzyySdcffXVvPvuuwnnrVy5ko8//piWlhamTp3KaaedxkcffcTy5ctZsWIFNTU1zJgxg1mzZjFr1iwWLVrEmWeeSUVFBVVVVQAsXryYCy+8kLVr1/LUU0/x4Ycf4nA4uPrqq3n88cf55je/SUtLCxMmTODXv/510te5detWXC4XDQ0Nade2atUqNm7cyNKlS1FKceaZZ/LBBx9QXl7O7373Oz788EN69epFXV0dZWVlnHnmmZx++umce+651nUbGhp4//33AfjWt76V8me4YsUK1q5dS1lZGSNGjOCyyy5j6dKl3HPPPdx3333cfffdqf/yMiDBshBCCCEOGvr1L3fbtY07z8j43JkzZ7bbnsztdrNkyRLOO+886zGfz5f03LPOOovc3Fxyc3OZO3cuS5cuZfHixVx00UXYbDb69u3L7Nmz+fTTTzn++OO5++67WbNmDePGjaO+vp6qqio++ugj7r33Xv7973+zbNkyZsyYAYDH46FPnz4A2Gw2vva1ryVdw6RJk7j44os5++yzOfvss9td21tvvcXUqVOt17px40ZWrFjBueeeS69evQAoKytL+fO54IIL0v78TDNmzKB///4AjBw5kpNOOgmAiRMn8t5772V0jXQkWBZCCCGE6GL5+fnW13a7HcMwrO/N1mWGYVBSUmJlpNNp28VB0zSUUknPHThwIPX19bzxxhvMmjWLuro6nn76aQoKCigsLEQpxaWXXsrtt9+e8NycnBxsNlvS67766qt88MEHvPTSS/zmN79h9erVadd28803c+WVV8Ydu/feezPuSJHqZ6iUwu/3W8dcLpf1ta7r1ve6rndJvbPULAshhBBC7IPCwkKam5tTHu/bty979+6ltrYWn8/HK6+8AkBRURHDhw/nmWeeAcJB4IoVK5Je48UXX8Tr9VJbW8vChQutkounnnqKUChEdXU1H3zwATNnzgTg6KOP5u6772bWrFkcf/zx3HnnnRx//PEAzJ8/n2effZa9e/cCUFdXx/bt29O+RsMw2LlzJ3PnzuUPf/gDDQ0NuN3ulGs7+eSTeeihh6xzKioq2Lt3L/Pnz+fpp5+mtrbWuncmP8Nhw4axbNky636BQCDteruSZJaFEEIIcdDoSKlEVykvL+fYY49lwoQJnHrqqZx22mlxxx0Oh7Vpbvjw4Rx++OHWsccff5yrrrqK3/72twQCAS688EImT56ccI+ZM2dy2mmnsWPHDn72s58xYMAAzjnnHD766CMmT56Mpmn84Q9/oF+/fgAcf/zxvPXWW4waNYqhQ4dSV1dnBcvjxo3jt7/9LSeddBKGYeBwOHjggQcYOnRoytcYCoW45JJLaGxsRCnFtddeS0lJScq1DRgwgLVr13L00UcD4Q15jz32GOPHj+fWW29l9uzZ2Gw2pk6dyiOPPMKFF17I5Zdfzr333hu3kc90+eWXc9ZZZzFz5kzmz58fl3XublqqFH5PMH36dPXZZ59lexlCCCGE6MHWrl3L2LFjs72MbvPLX/6SgoICrr/++mwvJUFPXlsqyX5fNE1bppSanux8KcNoQymFCiYvrhdCCCGEEIcWKcOIoZSi+o1LUYafPl95QkZnCiGEECLrzJ7MPVFPXltXkcxyDE3TcPWZQuvG52n87M5sL0cIIYQQQmSZBMttFE27lvwx51H/4U9p3fZWtpcjhBBCCCGySILlNjRNo9eJ/8DRazzVr3+DQOOWbC9JCCGEEEJkiQTLSeiOfPqeHu55uPfl8zACLVlekRBCCCGEyAYJllNwlIyk96n/wV+zipq3r0w5JUcIIYQQIpnLLruMNWvWdMm1hg0bRk1NTdpzbrvttg5f95FHHuGaa67J2v0PBBIsp5E37CRKj/0NLRuepunzu7K9HCGEEEIcQB588EHGjRu33+6X7WA12/fvLhIst6N4+g3kjf4qdYtvwbNjQbaXI4QQQogepqWlhdNOO43JkyczYcIEnnrqKQDmzJmDOVytoKCAG2+8kSOOOIITTjiBpUuXMmfOHEaMGMFLL70EJGZ5Tz/9dBYuXJhwv7PPPpsjjjiC8ePH849//AOAm266CY/Hw5QpU7j44osBeOyxx5g5cyZTpkzhyiuvJBQKAfDwww8zZswYZs+ezYcffpj0NdXW1nLSSScxdepUrrwy/hP2TO+f7LwDklKqx/7viCOOUD1ByNesdj46WW37a1/lb9iS7eUIIYQQIsaaNWuyev9nn31WXXbZZdb3DQ0NSimlZs+erT799FOllFKAeu2115RSSp199tnqxBNPVH6/Xy1fvlxNnjxZKaXUww8/rL7//e9b1znttNPUe++9p5RSaujQoaq6uloppVRtba1SSqnW1lY1fvx4VVNTo5RSKj8/33rumjVr1Omnn678fr9SSqmrrrpK/fvf/1aVlZVq8ODBau/evcrn86ljjjkm7p6mH/zgB+pXv/qVUkqpV155RQEdun+687It2e8L8JlKEY/KUJIM6M4C+p7+DJVPHMPeV86n//nvozvysr0sIYQQQrRRu/D/8Fev6NJrOntPpnzOn1IenzhxItdffz033ngjp59+Oscff3ziNZxOTjnlFOt8l8uFw+Fg4sSJbNu2rUPruffee/nf//4HwM6dO9m4cSPl5eVx5yxYsIBly5YxY8YMADweD3369OGTTz5hzpw59O7dG4ALLriADRs2JNzjgw8+4PnnnwfgtNNOo7S0tEP378h5PZ2UYWTIUTqa3qc+ir96JTULrpINf0IIIYQAYMyYMSxbtoyJEydy88038+tf/zrhHIfDYU0G1nUdl8tlfR0MBgGw2+0YhmE9x+v1Jlxn4cKFvPPOO3z00UesWLGCqVOnJj1PKcWll17K8uXLWb58OevXr7em7WU6oTjZeZneP9PzDgSSWe6AvOGnUnrML6lf8gtcfY6geNoPs70kIYQQQsRIlwHuLpWVlZSVlXHJJZdQUFDAI4880qnrDBs2jL/85S8YhkFFRQVLly5NOKexsZHS0lLy8vJYt24dH3/8sXXM4XAQCARwOBzMnz+fs846i2uvvZY+ffpQV1dHc3MzRx55JD/60Y+ora2lqKiIZ555hsmTJyfcZ9asWTz++OP89Kc/5fXXX6e+vr5D90933oFGguUOKp5xI749n1O36EacvSeRO3hOtpckhBBCiCz68ssvueGGG9B1HYfDwV//+tdOXefYY49l+PDhTJw4kQkTJjBt2rSEc0455RT+9re/MWnSJA477DCOOuoo69gVV1zBpEmTmDZtGo8//ji//e1vOemkkzAMA4fDwQMPPMBRRx3FL3/5S44++mj69+/PtGnTrI1/sX7xi19w0UUXMW3aNGbPns2QIUM6dP+HHnoo5XkHGq0nlxNMnz5dmbtIexLD30zlk8cS8tQw8KKPsRcNyfaShBBCiEPW2rVrGTt2bLaXIQ4QyX5fNE1bppSanux8qVnuBN1ZSJ/Tn0GF/Ox55XyMoCfbSxJCCCGEEN1AguVOcpYdRp9THsG/93NqF3xfNvwJIYQQQhyEJFiOETIMvrbgEZ7dtgJDGe2enzfidEqO+hnutY/RtOIv+2GFQgghhBBif5JgOcaTW5fzwo5VXPDef5j24l08t21lu0FzyZG3kjfiNOrevx7Prg/200qFEEIIIcT+IMFyjHtWR4PdL+urOP+9R9sNmjVNp/fJj+AoGcHeVy8i2Lxzfy1XCCGEEEJ0MwmWY7x20uXcOHEe+Xan9VgmQbPuKqbPGc+iQl72vHIBRvDAbLothBBCCCHiSbAco1dOPrdN/wpbzru1w0Gzs2wsvU96CP+ez6h99wey4U8IIYQ4RGzbto0JEybs83UWLlzIkiVLkh7z+XyccMIJTJkyhaeeeorLLruMNWvWAHDbbbft871FahIsJ9HZoDl/1FmUHHkL7jX/pnnlP7KxdCGEEEIcoNIFy1988QWBQIDly5dzwQUX8OCDDzJu3DhAguXuJsFyGp0JmkuO+jm5w06l9v1r8VZ8mK2lCyGEEGI/CgaDXHrppUyaNIlzzz2X1tZWAJYtW8bs2bM54ogjOPnkk6mqqgLg3nvvZdy4cUyaNIkLL7yQbdu28be//Y277rqLKVOmsGjRIuvae/fu5ZJLLmH58uVMmTKFzZs3M2fOHD777DNuuukmPB4PU6ZM4eKLL87Kaz/YyQS/NnzBEC67LemxGm8Lf171PvevXUxL0B93bGJpf3425UTOGToB5Wui8sljUP5mBnz9Y+wFA/fH0oUQQohDUrYn+G3bto3hw4ezePFijj32WL7zne8wbtw4fvSjHzF79mxefPFFevfuzVNPPcWbb77JQw89xIABA9i6dSsul4uGhgZKSkr45S9/SUFBAddff33CPRYuXMidd97JK6+8AsCcOXO48847mT59OgUFBbjd7v39sg9YHZ3gZ98vqzpANHoCjP3De5w7eQDXzx7BkNK8uONmpvm6CbMTgmYz02wGzaed/jS7nzqeva9cSP9z30Gzu7LxkoQQQohDiu3hxECzq4S+fWfKY4MHD+bYY48F4JJLLuHee+/llFNOYdWqVZx44onh54dC9O/fH4BJkyZx8cUXc/bZZ3P22Wd325rFvpMyjBh/WbKN3c0+7l+8lVG3v8t3n17OhurEd2qZlGcctfhNlkz7A57dn1C78Mf78VUIIYQQYn/TNC3he6UU48ePZ/ny5Sxfvpwvv/ySt956C4BXX32V73//+yxbtowjjjiCYDCYjWWLDEiwHGPx1jrr66CheHjpTsb+4T0u/M8yVlQ2JpzfXtD8jXXrObv3j3hm3UIaVv5zv7wGIYQQQux/O3bs4KOPPgLgiSee4LjjjuOwww6jurraejwQCLB69WoMw2Dnzp3MnTuXP/zhDzQ0NOB2uyksLKS5ubnD93Y4HAQCgS59PSJKyjBivPLdmby9oZrbFmzkgy3hwFkpeHpFJU+vqOS0sX24Zf5ojh5WFve8dOUZa/yKa/JP476lS/h5sJTzp34VXZP3KEIIIUR3SFcq0Z3Gjh3Lv//9b6688kpGjx7NVVddhdPp5Nlnn+WHP/whjY2NBINBfvzjHzNmzBguueQSGhsbUUpx7bXXUlJSwhlnnMG5557Liy++yH333cfxxx+f0b2vuOIKJk2axLRp03j88ce7+ZUeemSDXwqLt9Zyx4JNvLZub8KxOSPLuXn+aE4Y3SvhYxdIvxFwQnEvfj7tK5wzdIIEzUIIIUQXyPYGP3Fg6egGPwmW2/FFRSN3LNjIs19W0fZHNWNwCTfPH8WZ4/qh6x0LmmO7Z0jQLIQQQnSeBMuiIyRY7ibr97r5/bubeOzzXQSN+J/Z+L6F3DR/FBdMHoDdlhj4WkHz6oW0GPGT/yRoFkIIIfaNBMuiIyRY7mbb61r548LN/GvpDnzB+MB3RHkeP5k7ikunD0raq7nG28LvXv8VD9Z7adWcccckaBZCCCE6R4Jl0RESLO8nu5u83L1oK39dso1mX3y7lwFFOVw3ewRXHjWUfFf8HkplhFjz/Nk8UNvCY7kzaQnFP1eCZiGEEKJj1q5dy+GHH550H5EQsZRSrFu3ToLl/am+1c/9H27jnkVbqGuNb9tSnufgh8eP4Jpjh1GaF80khzy1VD5xNLWGxpPjf8tfNn0hNc1CCCFEJ23dupXCwkLKy8slYBYpKaWora2lubmZ4cOHxx2TYHk/cPuC/OPj7fzp/c1UNfnijhW67Fx1zDCunTWCvoXhSX6+vcupeno2zr5H4PjK89y1dolsBBRCCCE6IRAIsGvXLrxeb7aXInq4nJwcBg0ahMPhiHtcguX9yBcM8cinO/nDe5vZWtcadyzHrvOdmUO4Yc5Ihpbl4V73BNVvXErR5Kspn3u3dM8QQgghhMgCCZazIBgyeGpFJbcv2MiaPfEjs+26xiXTBnHjvFH0Wvdrmj6/m14nPkjh+G8C0nJOCCGEEGJ/kmA5iwxD8dKa3dz2zkY+2xU/MlvT4PwJvfmV41actUvpf/5CXH2PsI5L0CyEEEII0f0kWO4BlFK8s7GG2xdsZOHm2rhjpXoTbw68meIcGyO+8Qm2vD5xxyVoFkIIIYToPhIs9zBLttVx+4KNvLo2Okp7vGMLT/e5lW36WGwnvcCJhw9I2NErQbMQQgghRNeTYLmHWl7RyB3vbuKZlZUoBWfnLeRPZffxUPPpvFn4Y26eP5qzxieO0pagWQghhBCi60iw3MNtqHZzx7ubeGzZLm4q/BffLnyV6+p+yIutsxnbp4Cb5o/ioikDE0ZpS9AshBBCCLHvJFg+QOyob+XPC9dz9MbvMMmxkfP2/o41gREADC/L44Y5I/nWjMHkOOJHaUvQLIQQQgjReRIsH2B2791F9dNH0+RTnLnn99QbRdax/kUurps1kiuPHkpBm1HaEjQLIYQQQnScBMsHIN/uz6h8Zi5VOVP56s4b2dtqxB0vy3Pww+NGcM1xwyiLGaUNEjQLIYQQQnSEBMsHqObVj1Lz9mXkTv4RT9qu4s6Fm6lsih/lWeCy8b2jh3HdrBH0K8qJOyZBsxBCCCFE+yRYPoDVvPcjmlf8ld6nPIpj1Hk8+tkufv/eJrbUxo/SdkVGaf8kMko77hoSNAshhBBCpCTB8gFMhQJUPX8y/j3L6H/BB7h6TyYYMnh6RSW3L9jE6j3NcefbdY2Lpw3kxnmjOLxPYdwxCZqFEEIIIRJJsHyAC7XsoeKJo9B0JwMuWoIttxwIj9J+ec0ebluwkU93NsQ9R9PgaxP7c9O8UUwbVBJ3TIJmIYQQQogoCZYPAt6qpVQ9O4+cgbPod/bLaHq0fZxSinc31XDbOxt5r80obYBTDuvNLSeM5rjh5XGPS9AshBBCCCHB8kGjedXD1LxzJcXTr6fsuNuSnvPRtjpuX7CJV9buSTh2/PAybjlhNCeN6R03SluCZiGEEEIcyiRYPojULLiG5i//Qe+vPE7BmPNSnreispHfv7uJp1dUYrT5K542sJib54/inAn940ZpS9AshBBCiEORBMsHERXyU/XsifirVzDgwkU4e01Me/7Gaje/f28z/1m2k0Ao/u96bJ8Cbpw3ioumDsQRM0pbgmYhhBBCHEokWD7IBFuqqPzvUWj2vPCGv5zSdp+zs8HDnQs38+An2/EE4gecDCvN5Ya5o/h2m1HaEjQLIYQQ4lAgwfJByFv5EVXPnkDu4Hn0PeuFuA1/6ext9nH3oi38Zck2mrzBuGP9Cl1cO2sE3zt6GIU50VHaEjQLIYQQ4mAmwfJBqmnlP6l99/sUz7iRsmN/06HnNngC/GXJNu7+YAs1LfEBcGmugx8cN5wfHj88bpS2BM1CCCGEOBj1mGBZ07R84APgF0qpV9o7X4Ll9JRS1Cy4Cveqh+hz2pPkj/5qh6/R4gvy4NId3LlwMxWN8aO0852RUdqzR9A/ZpS2BM1CCCGEOJh0W7CsadpDwOnAXqXUhJjHTwHuAWzAg0qpOyKP/xpoAVZLsNw1VNBH1bPz8deuZsCFi3GWj+/UdXzBEP9Ztovfv7uJzUlGaX97xmBumDOK4eXRUdoSNAshhBDiYNCdwfIswA08agbLmqbZgA3AicAu4FPgImAA0AvIAWokWO46QXdFeMOfs5ABFy7BllPS+WuFDJ5ZWcXtCzayanf8KG2brvH1qQO5ad4oxvaNjtKWoFkIIYQQB7JuLcPQNG0Y8EpMsHw08Eul1MmR72+OnFoA5APjAA9wjlLKSLxilATLmfNWfEjVcyeSO/Qk+p75PNo+BqaGoXh1bXiU9ic7GuKOaRqcM6EfN88fzRExo7QlaBZCCCHEgWh/B8vnAqcopS6LfP8N4Eil1DWR779FmsyypmlXAFcADBky5Ijt27fv0/oOJU0r/kbtez+k5MhbKT36F11yTaUU722q5bYFG3l3U03C8ZMP683N80Yza2R0lLYEzUIIIYQ4kOzvYPk84OQ2wfJMpdQPOnptySx3jFKKmrevwL3m3/Q541nyR57Zpdf/eHs9d7y7kZdWJ47SPm54GTfPG8Uph/exRmlL0CyEEEKIA0GPKMNQSt3e0WtLsNxxRtBL1TNzCdRvYMCFH+IsO7zL77Gysonfv7eJp5ZXJIzSnjqwiJvnjeacif2x6RI0CyGEEKLn29/Bsp3wBr/5QAXhDX5fV0qt7ui1JVjunGDzTir+exS2nFIGXLgE3VXULffZWO3mDws38+hniaO0D+9TwI1zR/H1adFR2hI0CyGEEKIn6s5uGE8Acwh3udhDuH/yvzRN+wpwN+HWcQ8ppX7XmetLsNx5nl0fsPu5k8kbfip9znh2nzf8pbOrwcOd72/mnx8njtIeWprLDXNG8e2Zg8mNjNKWoFkIIYQQPUmPGUrSURIs75vGL+6n7v3rKDnq55Qe9dNuv1+128c9i7Zy/4dbE0Zp942M0r4qZpS2BM1CCCGE6AkkWD5EKaWoeeu7uNc+Rt8z/0feiNP2y30bY0ZpV7cZpV1ijtI+bjjl+eFR2hI0CyGEECKbJFg+hBlBD1VPzyHQsJmBFy3BUTpmv9271R/kwU/Co7R3JRmlfeXRQ7lu1kgGFIdHaUvQLIQQQohskGD5EBdo2k7lE0djy+3FgAs/RHcWtv+kLuQPGuFR2u9tYlNNS9wxp03n2zMH85OYUdoSNAshhBBif5JgWeDZuZDdz59K3ojT6XP6U9264S+VkKF4ZkUlt7+7kS+rEkdpXzRlADfNG824fuFgXoJmIYQQQuwPEiwLABo/v4e6D26g9JhfUzLzpqytQynFq2v3ctuCjXy8vT7huDlKe/rgEkCCZiGEEEJ0LwmWBRAOUqvfuJSW9U/R96wXyRt+StbXs3BzLbcv2Mg7GxNHaZ80pjc3zx/FrBHlaJomQbMQQgghuoUEy8JiBFqpemoWweYdDLhoCY6SUdleEgCfREZpv5hklPaxw0q5ef5oTo2M0pagWQghhBBdSYJlESfQuDW84S+/HwMuWIzuLMj2kixfVjXx+3c38WSSUdpTBhRx8/zRfDUySluCZiGEEEJ0BQmWRQLPjgXs/t9p5I06mz5feQJN07K9pDiba1r4w8JN/PvTXfhD8VMBx/TO58a5o7jkiEE4bLoEzUIIIYTYJxIsi6Qal/2ZukU3UXrs7yiZcUO2l5NURaOHP72/hX98tJ3WQCju2JCSXK6fM5LvHjmEXIdNgmYhhBBCdIoEyyIppRTVr19Cy4Zn6Xv2y+QNOynbS0qp2u3j3sVbuX/xVhrbjNLuU+Dk2lkjueqYoRTlOCRoFkIIIUSHSLAsUjICLVQ9NQt/3TqKj7iWkpm3oDvysr2slJq84VHad72ffJT2NccO44fHD6dXvkuCZiGEEEJkRIJlkVaotZq6RTfhXvsf7IVDKZ97F3kjTs/2stJq9Qf519Kd3LlwEzsb4kdp5zlsXHH0UP5v9ggGFudK0CyEEEKItCRYFhnx7FpE7bvXEKhbS96IMyib82ccRUOzvay0/EGDxz/fxR3vbmJjklHal84YxI1zRzGiPF+CZiGEEEIkJcGyyJgK+Wn8/B4aPvkdACVH3krxtB+h2ZxZXll6IUPx3Moqbn93Iysqm+KO6RpcNHUgN84dxYT+RT0yaK5++0rsBQMoPfoX++2eQgghhAiTYFl0WKBpO3ULr6N1y8s4ysZSPu8+cgfNyvay2qWU4rXIKO2PkozSPntCP26eN5oZQ0p6TNCslMH2B8pQIR8Dv7EcZ9lh3Xo/IYQQQsSTYFl0WuuWV6h971qCzdspGHsJZcffgS2vT7aX1S6lFO9vruX2dzfy9obEUdonjunFzfNGM3tkObW+1qwGzYGm7ex6aDQAeaPOpu/pT3fLfYQQQgiRnATLYp8YgVYalt5G47K70B0FlB77WwonfhftAKnt/XRHA7e/u5EXVu1OOHb00FJumT+ar4ztk7WguXXbm+x54Qxyh5yIZ8fb9D//fXIGHN2l9xBCCCFEahIsiy7hr1tL7bs/xLvrfVx9Z1A+/35cfaZme1kZW727md+/u5EnllcSajNLe/KAIm6aN4pzJw2g3r9/g+bGz++m7oOfMOg7G6l6ahb2omH0P39hj5uqKIQQQhysJFgWXUYpRcu6/1K76EYMTw1Fk6+m9OhfoLuKs720jG2pbeEP723mkU93JozSHt0rnxvnjeKSaYNoCnr2S9Bc/c73aN38EkOvrKTpy39Ru+Aq+pz+NPmjzt6n6wohhBAiMxIsiy4X8tZTv+QXNK/8O7b8fpTN+gP5Y84/oLKhFY0e/vz+Fv6eZJT24JIcrp8ziu/OHEyr4evWoLnyqdloup3+5y1AGUEqHpsGKsTAS5aj2Rydfn1CCCGEyIwEy6Lb+HZ/Rs271+Df+zk5Q+bTa+49OErHZHtZHVLT4uPeRVu5/8NtNHgCccd65zu5dvYIrjp6GAHN3+VBs1KKHX/rR/6Yc+k1/wEgvKlyz0tfpXze/RRNumLfX6AQQggh0pJgWXQrZYRoXvl36pb8HBXyUjL9eopn3Ihuz8320jqkyRvgr0u2c9cHm9nrjg+Gi3PsXHPccH50/HCwBbssaA617GHHPwdTNvtPFE/9ARAOoKuenU+wfiODvrUW3VnQdS9SCCGEEAkkWBb7RbBlN3Uf/ISW9U9iLx5B+Zy7yRt+SraX1WGeQIiHlu7gj+9tZkeDJ+5YnsPG5UcN4f9mjyQnx9jnoNmzcyG7nzuJfue8Ru7QE6zHvVVLqXrqOEqO+hmlR/2sS1+fEEIIIeJJsCz2K8/O96h99wcE6jeQN+ocymf/CXvhoGwvq8P8QYP/flHBHe9uZEN1/Chth03j0umD+cncUZQU0OmguWnF36h974cM/u6WhJ/R3lcvonXbGwz61lrs+f26/gUKIYQQApBgWWSBCvpo/PzPNHxyO+h2So/+OUWTv39AblgLGYrnv6zi9gUbWZ5klPaFUwZy47xR9C+1dThornnvR7jXPsbQq2oSNkcGGjax69FJFI7/Dr3m3999L1AIIYQ4xEmwLLIm0LiF2veuxbPtdRy9JtBr3v3kDDgm28vqFKUUr68Lj9Jesi1xlPaZ4/tyy/zRjOjjzDhornruZJTfzYCLPkx6z9r3fkzTyr/LGGwhhBCiG0mwLLJKKUXr5hepXXgdIfcuCsZ/m7Ljfoctt1e2l9YpSikWbanjtgUbeWtDdcLx+aPDo7QnDsrhrtUfpA2aj3j7DPKHnEDvk/+V9F6h1r3sfGQsuYPn0feMZ7rl9QghhBCHOgmWRY9g+N00fPJbGr+4F91ZTNlxt1Ew/tIDZmx2Mp/tbOCOdzfy/JeJo7SPGlrKzfNGcdSIgpRB82GhGm4aPopL5t2SciNgw9LbqV/yC/qfv/CAzcoLIYQQPZkEy6JH8desoubdH+Cr/BBX/6PpNe8+nL0nZXtZ+2TN7mZ+/94m/vtFRcIo7Un9w6O05x5WzD1r0meak20ENAIt7HpkHPaiofQ///0DavCLEEIIcSCQYFn0OEoZuNf8h7pFN2H4Giia+gNKj/oZurMw20vbJ1tqW/jjws08vDRxlPaoXvncOHcUp44v5f51i7h/9UJajPhzUgXNzaseouad78kYbCGEEKIbSLAseqyQp5b6D39K86p/YSsYSPnsO8kb9dUDPnta2ejlzx9s5u8fbafFHz9Ke1BxDtfPGckJvr/wwOYv+E/eke1mmsNjsI8AFZQx2EIIIUQXk2BZ9Hjeqk+oXfB9/DUryR16Mr3mP4C9aEi2l7XPalv83Lt4K/ct3powSvvRvrczrrCJkgsX8+CmJe2WZ3i3vs6el86hfO59FE2+cn++DCGEEOKgli5YPnB3VomDSk7/Ixnw9Y8pm3Un3soP2f3C6Rj+5mwva5+V5zv51cmHsf3WE/j9aWPpW+iyjg3RdrC4rjfT7vwIrXo4S79yPTdOnEe+3Wmd82V9Fee/9yjTXryL17VBOAccT/0nvzkofjZCCCHEgUCCZdFjaLqd4mk/pO+ZzxGo30D125fTkz/56IjCHDs3zB3Fllvmc/85ExlTqjHQVs2mwCCavEFuX7CJI+78iNaKISw+6brkQfPC//AVfQ6v+Qup/+zPWXw1QgghxKFDgmXR4+QOnkvpsb+jdePzNH1+V7aX06VyHTauPnYYy747AF1TtOaNso55Agb3LtrKjD9/TPXWgbwz78cJQfOq5kauyT+N49du55n172MoI9lthBBCCNFFJFgWPVLxEdeRN+oc6hbfgmfnwmwvp8uphnUA3Petc3n6G0cwdWCRdSwQUvzrkx0cc/cnbFvXl1dm/TAhaF6vl3HhkpeZ9uJdPLdtpQTNQgghRDeRDX6ixzL8zVQ+cQwhbx0Dv/4J9sJB2V5Sl6lb8nMaP/0jw65pRLM5UUrx5vpqbluwkcVb6xLOP2NcX646fiAfNK7ocJ9mFfQRbKkk5K5Ac+Tj6jO1W1+bEEIIcaCRbhjigOWvW0flE8fgLB9H/3MXoNld7T/pALDn5fMI1K1l0KWrEo4t2lLL7Qs28sb6xFHa80b14upZA1jauJQH1i6mVYtvITfOZeP/Cr2cbOzAcFcQdFdgeGKuo9sZcvlObLnlXf6ahBBCiAOVdMMQByxn2eH0PulBfLuXUvv+/2V7OV0mULcOR9nhSY8dP6Kc1y4/ik9/fDxfm9if2JbT726q4dyHVvL+p/14ulcBV3o/I09Fs8xrfCG+W+PghLq+vOEYTe7Isyk5+pf0OvFByufeC0YQz44F3f3y9lndopvZ+/o3s70MIYQQQoJl0fPlj/4qxUf8H81f/oPm1Y9mezn7TIX8BBo34ygbm/a8IwaV8Myl01l1/Ry+ecQgbHo0av5kRwPnfHAERa3TeLjfCK4dOoJ8m906vo4Crmjpz0nuEbzb93Tyx11C4cTL0F0leLa/3W2vrau0bHiWlvVP4q9dk+2lCCGEOMRJsCwOCKXH/oacQXOoffcafHu/yPZy9kmgYRMYQZwpMsttje1byCMXTWXjTfP43tFDcdnD/7f14+APVXM5/92RvPjJYfx65Le4fvyclH2an9+xBufgeXi2v92jW/KFWvYQbN4OQNPKv2d5NUIIIQ51EiyLA4Km2+nzlcfQc3ux95ULCHlqs72kTgvUhTthtJdZbmtYWR5/+dokttwyn/+bPZJ8p806trm2lev+t5H/vuniJ4Mu5rpxyYPmk9wjedWXi6/my655Md3Atye8T8FROgb32sdkAIsQQoiskmBZHDBseX3oe/pTBFsqqX7jUpQRyvaSOsVftxYAR9lhnXp+/6Ic/njGOLb/9AR+cdIYSnOjm/wqGr38/NUt/Ps1B9f0uZAfjZ0dFzSv8fi4Jv80Zrzz3x7bcs6351PQdMrn3YfyN+Ne+99sL0kIIcQhTIJlcUBx9ZtB+ey78Gx/i4ZPfpPt5XRKoG4d9sKh6I78fbpOWZ6TX5x0GNtuPYE/nD6OfjGjtGta/Nzx9nYeesXOd0rP45rDZsUHzd6gVZ7R04Jm3+7PcJaPJ2fQHJx9ptG08q89umxECCHEwU2CZXHAKZx4GQXjLqXhk9to3fJKtpfTYYG6dTjKO1aCkU5hjp3r54xkyy3zeeCrExlWmmsda/IGuXfhLv75ko0L8r/KVWOOJy+mu0ZsTXNPCJqVUvh2f4qz3ww0TaNo8lUEatfgrViU1XUJIYQ4dEmwLA44mqZRPu9enH2mUv3Gt8Mb5g4QyggRqFufsm3cvshx2LjqmGGsv2kej1w4hcP7FFjHvEGDfy2p4p8v2fiBNowrvZ+Rr0drnntK0Bxs2IThq8fVdwYA+WPOQ3eV0rzir1lZjxBCCCHBsjgg6fZc+pz2FOg29rxyPkagJdtLykiweTsq5M24E0ZnOGw635w+mFXXz+HZS6czbWCxdSwQUtz1ZT9+4P2M33sq+fbwY1J2z8hG0Ozb8ykArn7hvvC6I4+C8d+iZfOLBN2V+3UtQgghBEiwLA5gjuJh9D71PwRqVlPzzlUHRF1roNbc3Nd1ZRip6LrGVyf259MfH8/rlx/J8cPLAPDhYqlvHKOaF/PQKw6O8Z/KJUOO7hFBs2/3Z2j2PJzl463HiiZdAUaI5lX/2i9rEEIIIWJJsCwOaHlDT6T0mF/Ssv5JmpY/kO3ltMtvtY3rvsxyW5qmcfJhfXj/+8fy/tXHcOrhffjAO4VRjgoG2Pby1toG/vO6k8nuE7lg4FFZDZp9uz/F2Xcamh4dsOIoGUnusJNp/vJBVCjQrfcXQggh2pJgWRzwimfcSN6I06lb9BO8FR9mezlpBerWYcvrhy2nNCv3P35EOa9ediQ/OP+7AMzKWW4d+3CzmyffcjG6fh5f7TdzvwfNKuTHX73cqleOVTTpSkItVbRufrHj1z0APnEQQgjRc0mwLA54mqbT66SHsBcNY++rFxFsqcr2klIK1K3dr1nlVCaPnYmtYBC/nlTBpdPjR2l/scPDcwtyGbhnDqf3mb7fgmZ/zSpUyGfVK8fKHXYK9qJhHZ7o17rlFXb8rR+Gr6mrlimEEOIQI8GyOCjYckroe/rTGP4m9r769R75cb1SCn/duh4RLGuaRu7QE3HsWcRD509k403zuOqYYdYobYD1u328/F4+5RXHc3L5Ed0eNPt2Rzb3Jcksa7qNwklX4N31Pv7a1Rlf01u5BMNXT7Bp2z6vTwghxKFJgmVx0HD2mkCvE/+Or/JD6hbdmO3lJAi1VKH8TTi7sMfyvsgbeiKGvxHf7qUMK8vjga9OZOst87lhzkgKXNG2cttrgrzxQQEF249lXsnUbguafXs+Rc/tjb1oaNLjheO/hWZz0bQi8+xyoGEzAMGW3Z1elxBCiEObBMvioFJw2AUUTf0hTcvvx73uiWwvJ07AGnOd/cwyQM6Q+aDpeLa/ZT3WryiH358+jm23nsAvTzqMsrzoKO3dDQYLPizCsfkojiuc0uVBs2/3p7giw0iSseX2In/MebjXPpZxWUWwcQsAoVYJloUQQnSOBMvioFN23O24Bh5HzTvfw1+9MtvLsUQ7YfSMzLItpxRXv5l4tr2dcKwsz8nPTxrDtltP4I+nj6N/UXSUdr1bY9HHxbDhSI7Mm0Sebd+DZsPXRKBuHa5+iSUYsQonXo4KuGnd9nq711RKWZnlkGSWhRBCdJIEy+Kgo9kc9PnKf9FdJex55QJC3oZsLwkI91jWXSXY8vpmeymW3KEn4tvzGSFPbdLjBS47/zdnJJtvns9f2ozSdnt0Pv60lOD6GUx1TdinoNm393NAJa1XjuXqMw00nUDtmnZfm+GpRgXcAIRa9rR7vhBCCJGMBMvioGTP70ef054k2Lyd6je/hcrS+OZYgcjmvlRlBtmQO/QkQOHZsSDteTkOG987ZhgbbprHoxdNZVzf6Chtn8/O55+X4107nQn28eTaoqUbmQbNvt1LAZJ2woil2V04Skbij5S0pGNmlSFcL97u+fUbMfzN7Z4nhBDi0CLBsjho5Qw4mvJZd+LZ+hoNS2/P9nLw16/rMSUYJlff6eiuUjzbE0sxkrHbdC45YhAr/28OL1w0guMGRYeHhAIOvlzRC8+aGRyuje1Q0Ozb/Sn2klHYcsraXYOjbKw1CTGdQMMmAGx5/Qi2U7NsBD1UPD6div9Mw7Prg3avLYQQ4tAhwbI4qBVOvor8wy+i4aNf07rtzaytI+SpxWjdi7OHbO4zabqN3CHz8Gx/u2PDO0KtTFl+Js8e9gRvXH4ks0eUW4dU0MHaVX1oXT2DEcbhGQXNvj2f4eqbPqtscpSNJdCwCRXypz0v2LgFNB1X/yPbrVkOuStQQQ+h1t3sfvZE6hbdhAr6MlqPEEKIg5sEy+Kgpmkaveb/FWevCVS//k0CjVuzso5AD9vcFyt36EmEWioJ1K7K+DmNn/2JUPNO/DUrOemwPrx39TEs+v6xfOXwPtGTQg42r+1L6+oZDA6MIUdPHjQ/s24hAXdFu5v7TM7ysaBCBBo2pj0v0LAZe8Fg7EVD2w2Wg+5wmUbvrzxO4cTLaFz2ZyqePLpHbRAVQgiRHRIsi4Oe7sijz+lPgzLY+8r5GEHPfl+Dv4e1jYuVO/REgIxLMYLNO2lc9ifQbAQbtlj14McOL+OVy45k2bWzOG9Sf6zS7JCDHRv641kzg37eUQlB84UfvcIZBV/nddU/o+4Z5huO9koxgo1bsJeMxJbXFxVwY/jdKc8NtVSGr106ml7zH6DvWS9gtFZT8eQxGdVHCyGEOHhJsCwOCY6SkfQ+5RH81SuoXXBNx0oOukCgbh2aPQ970ZD9et9M2AsH4SgfR2uGwXLdhz8FZVB8xHWokJeQuyLu+NSBxTz1zemsuWEu35o+GLs5SjvkoGrzQDxrZlDeOhJXTNC83taLi1d8nFH3DEfpYYDWbhAbaNiMo3gEtvx+4dunqVsOucPBsj1/AAB5w7/CgK9/DEaQlnVPpr2PEEKIg5sEy+KQkTfiNEqOvBX32v/Q/OU/9+u9w50wDkPTeub/5XKHnoSvYjFGoDXted6qT2hZ9wRFR1xL7pD5QHQjXVuH9SngoQunsPGmeXz/2GHkmKO0Qw5qtg7Cu2YGxe4R5KqQ9ZxMumfojjzsxcPTZpZD3gYMb204s2wGy2lKMYItVWj2PDRnkfWYvWAgOQNn0bLphZTPE0IIcfDrmf9yC9FNSo76GbnDTqF24bV4qz7Zb/f1163tkSUYptyhJ6JCPrxpOkEopah7//+w5fWjZPpPcJSMAuJbtCUztCyP+86ZyNZbT+Anc0dR6Ip00Ag5aNw+kFcb/8vclnqcWrSzhhk0T33hzzy9dXlC0OwoOzxtZtmc3OcoGYk9g2A55K7AVjAgoa1f/qizCdSttQbKCCGEOPRIsCwOKZqm0/uUR7AXDKL6tUtQoUC339PwNxNq3omzB27uM+UMPA7NlpO2brll/ZP4di+l9NjfojsLsBUOQrO5CKbILLfVt9DFHaeNZdut8/nVyYdRnudguL2SIVo9pXuL8K2diat+GI6YoHlVw24uWvgYk1/4E09u+YKQEQ6anWVjCdRvQBnBpPcys93hMoz+AATbySybJRix8kaeCUDrphczeo1CCCEOPhIsi0OOLaeMstl/JNi8ndatr3b7/QJ164GeubnPpNtzyRk0C8/2t5IeNwIt1C2+FWefaRSMuwQIv/GwF48gUJ++K0VbpXlOfnZieJT2748Mb7Zc4R8NIQfeyqH4187EVjcEB9GgeU3DHi5+/3EmvXAnj2/+HL3scDACVga5LfNxe8lI9Jwy0O1pB5OE3JXYChKDZXvhIFx9Z9Cy+YUOvUYhhBAHDwmWxSEpb/hXsBUMpPnLB7v9Xj25E0as3KEnEqhfT6Bpe8KxxmV/JuTeRfnsP8XVXTtKRhFoTF+GkUq+y87sku1ojkJuPPtURvfKDx8IOQhWDce/biZazRAcRDcCrmvcyzc/+C9Hrd7G/xyH01qTfOx1oGEztvz+6I58NE3HltePUGvykddKKULuSuxJgmWAvFFn49+zjGDTjk69TiGEEAc2CZbFIUnT7RRO+A6e7W8RSJGd7CqBunWgO3AUj+zW++yr3GEnAYkt5ILNu2j87E7yR59LzsBj447ZS0bFtY/rKN/upbj6HsF3jxrOmp/M5alvHMGUAZFNdiEHxp7h+NfNgOoh2GOC5o0tzdyQdxLTly7hkY2fEjRCcdcNNG7GXjzC+t6W3zdlzbLhq0eFvNiSlGEA5I86C4CWzS916jUKIYQ4sEmwLA5ZhRO+A5qt27PLgbq1OEpGocVMsuuJHKWHYyscnFCKYbaKKz3utsTnlIwKt49r3tXh+xlBL/7qlbj6hSf32XSN8yYPYNm1s3jtsiOZNSIy+jrkQO0dTmDtDNTeodhV9Oe4xW/w3cVPMfb5P/DQhqUEIkFzsGELjpLomxN7fr+UwbLZNs5W0D/pcUfpGBzl42mVrhhCCHFIkmBZHLLsBQPJG3Eazav/3a2jjf1163CU99zNfSZN08gdeiLeHe9ZG+e8VUtpWfdfiqb9GEfxsITnOEojHTE6UYrhr14JRiBhcp+maZxyeB8WXn0si685ltPH9g0fMBxQPYzAupmovcMoiNnct6W5lss/fJrDn7uDf6x5H0/L7vjMcl5/gin6LAcjtczJNviZ8kedjbdyMaHWvR1+nUIIIQ5sEiyLQ1rhxCswPNXdtoHLCHoJNm7B2cPrlU15Q0/E8Dfi2700vlXcjJ8kPd8sLQnUZ9YRI5Zvz6cAuPrNTHnOMcPKeOm7M1l+3WwumjoQXQMMO1QP5fKqXfzAsxSbEc00b3PXc9UnL3NC4Td51FuILxQOqG35fTFaq5N2z4hmllMHy3mjzgZl0LrllQ6/zq6klKL6zW/j2fFuVtchhBCHEgmWxSEtd+gJ2IuG07yye4aUBBs2gjJwlB4YwXLO4Hmg6Xi2vxVpFfdJpFVcYdLzw+3jcgh2IrPs2/0ptvwB2AsGtnvupAFFPH7xNNbfOI8rjhqK06azyz+QH/k/pu+mYag9w9FjguZKvYjrtmxnzLO389e1HxLI7QuopJlhc9S12WIuGWevSdiLhmd/QEnIj3vt47RuezO76xBCiEOIBMvikKZpOoUTv4u34oNuGTxhXvNAKMMAsOWU4uo3k9bNr0RaxU21WsUlo2k69pKOt48D8Fcvx9lnSoeeM7JXPn87dxJbbpnPjIlHAjDGVgk1QwitPxK1ezi5oehmw12tjVzz8f84YvUOHnVOoqWpIuGaQXclek45uj0n5X01TSNv1Nl4dizA8DWmPE8pA9/eLzr0mjrCCLjDf3pquu0eQggh4kmwLA55heMuBd3RLRv9wiOZNRylY7r82t0ld+iJ+GtWJm0Vl4yjeGTKkdepqJCfQP0GnL0mdGqNA4pz+PEZpwJw9Xgf5XkOMGxQO4Tr9mzkR61L0YJO6/xKv59f585h3Hv/497Vi/AEo8Nowj2WU2eVTfmjzgYjQOvW11Ke417zHyr/e2SHfx6ZMoPlkLe2W64vhBAikQTL4pBny+9L/qizca95FCPo6dJrB+rWYS8egW7P7dLrdqfcoScDkD/6a+QMPK7d8x2lowk2dqx9XKBhIxhBnOXjO71OW04ptvz+zCqrZtutJ/DnM8czsDiH0bYqZrXUYGyYido9EmKC5t1+P9cufZGRz97GXavepyXgI9hSiT2//VIQV/8jseX1S1uK0bLpfwAEG7d1+nWlo8zMsreuW64vhBAikQTLQhDZ6OdroGXDM116XX/dWhxlh3XpNbubq98MyufeR/ncezI6314yChXydah9nL9mNQCO8nGdWqPJUTYWf91a8l12fjxrBJtvns8RxXXU2QaBskHtINSGmehVw+lruK3n7fE0c/2nLzPq2dv5S0sh3rz2M8uappM/+qt4tr6O4WtKOG4EWvFGNt4F00wL3BeGvyX8p2SWhRBiv5FgWQggZ9AsHKVjunSjnzKCBBo2HjCdMEyaplE0+UpseX0yOt/sZ9yR0oNA3RrQbDhK9+2NhLN8LIG6tSilwmvRguT6Kznr6GN46htHMHVgESgbobohPNfwHKc27IFANNO81+vmDtskZu4p4g8r38UdSN9CMP/wi1Ahb9LssmfHAlTIC5Cyp/O+MjPLIY8Ey0IIsb9IsCwE4QCxcOLl+HZ/gq96RZdcM9i4FUJ+HGX7lj3t6RwlkV7LDZl3xPDXrMZRMjLtprqM7l02FhVoIdS8E4Bg0zZQBs6SEZw3eQCf/XgWr18eHnDSZBRyuncbauORqMrRKL/Luk5tCG5e9hojnvkdt69YQJPfm/R+rn4zsRePxL3+iYRjrVtfRXMWojnyCXVXZtkqw6hHtZlaKIQQontIsCxERMG4b6DZXF220c9ftxYAxwGWWe4oW8FANFtOhzLL/trVOPahXtnkKAt3GTG7jgQawqPLzQBe0zROPiw84GTogOGMyW8BpUP9ANg0kwF7ShhoREsqan2t/PTz1xnxzO/47fK3afTH17BrmkbB4Rfg3fleXKmFUgaeLa+SN/Rk7AUDUgbL7vVP07jsz51+vSrQYn6F4Wvo9HWEEEJkToJlISJsOWXkjzkP99rHMfzN+3y9QCSAO9DKMDrKbB8XbMisfZwR9IQHtXRBsOyMtOQLRN6YmJMEzWEpscrKBzO6wB0dcILOWLePt5sfZcDuUpQ/muWu93v4xRdvMuKZ2/j1F2/R4IsGzfmHXQTKoGX909Zj/j3LCLXuIW/EadjyBxBMUYbRvOoh6j/+bdLhKJkwrGBZ6paFEGJ/kWBZiBiFE69ABdy41z+1z9cK1K3DVjAQ3VXUBSvr2RwlozIuwwjUrQuXSuzj5j4AW24v9NzeVhY/2LAZzZGPnqTe2p7fj1BLFRP7F1oDTr46SsOJgb9+MGycgao4DOWLBs0Nfg+/Wv4Ww5/5Hb/4/A3qfK04yw7D2Wca7nXRUoyWLS+DZiN3+KnYIvdJJuTeiQq48des6tTrNWuWQeqWhRBif5FgWYgYrv5H4uw1keaV/7A2jXVWuBPGwZ1VNjlKRmXcPi5Quyb8nF77nlkGcJaNjfSzhkDjFhzFI9E0LeE8W34/VMhnDRUZ2Suf88cAmo1Lj5tKgcsBDf1g00zUrsNQvmi7v6aAl9+ueIcRz/yOny57Hf+o8/Hv/Rx/3XoAPFteJWfAMdhyyrDl9yfUUpXw+6OUItgcHoriq/qkU6/V8EeDZcksCyHE/iHBshAxwhv9rsBfvRz/ns86fR2lFIG6dTjLDozJffvKbB8XjGy0S8dfuxp0B47iUV1yb0dMR4xgwybsJSOSnmfL6wtAqDWa9Q25q7Dl9+MPZ05k260n8KuTD6M8zwmN/WDTDNSuw+OC5uaAj9tXLmDK+mr+mHMsO1b/l0DTdvw1X5I34nQA7Pn9UUEPyh/fXs7wNaCCrQB4qz7q1GuNzyxLr2UhhNgfJFgWoo2Cwy9Cc+TTtPIfnb5GqHknKtBySGWWIVwG0R5/7RocZYeh2Rxdcm9n2VgMXwMhdwWBpm1J65UBbPnhXsqxbd1C7krr8bI8Jz87cUzMgJNcaOwbEzTnWc9zBwP83XUEUzc1csOiR6nVcskbcVrkPv0ACLZUxt0/5A73odZsOfiqPu7UazUCLWi2cBcPySwLIcT+IcGyEG3oriIKDruQlg1PE/I2dOoaZncGxyGSWe5Ir+VA7Zou2dxn3Tuyyc+z4x0I+bGXJM9Ym0FsbLAcbKnEXjAg7rzYAScPnj+ZMb0LIkHzdNTOsShvNGhuxc59exuZU/Rtbtm4nt2tTUmDcsAqwcgdfirBxi0pNwGmowJubHn9QLcT8tR0+PlCCCE6ToJlIZIonHg5KujBve7xTj3/UOmEYYq2j0ufWTb8boJN27pkc5/JfEPSuvnl8PcpyzASg+VwZnlA0vOddp3vzBzC6hvmRgacFENTH9g8HbVzHJo3Wp7hwc6fV7/PyGdv46Yt29ir5SVs8gtGMsv5Y84F6FR22fC70ZwF2HJ6ychrIYTYT/ZbsKxp2tmapv1T07QXNU07aX/dV4jOcPWdhrPv9E5v9AvUrUXPKceW17sbVtfzhNvHjWy3fZzZ4q0reiybbHl90V2leHYsCF87RRmG7ipGs+UQat0DhFvYGb76hMxywvV1rc2Ak3Jo6o2xeQbfrd/E2FC1da43FOT+LauYU/gtrlu/jp3uButYyL0LNJ284V8Bm7NzwXKgBd1RgJ5bRmg/l2H49nxO7fs3dLrtnRBCHKj2KVjWNO0hTdP2apq2qs3jp2iatl7TtE2apt0EoJR6QSl1OfAt4IJ9ua8Q+0PRpCsI1K3FV/lhh5/rr1tnlQccKhwlI9stw/DXrgbo0syypmk4yseigq1oNhe2wkEpz7Pl97eGiZiZ31SZ5WTPNwecLL7mWE4f248l1XO5YHct2o6xKE+Bda5fs/OvulZGP3c7V3z4DFuaawk2V2DL74/uyMfVZxreTgTLKmBmlssx9vMGv+bVj9D0xT00Lrtrv95XCCGybV8zy48Ap8Q+oGmaDXgAOBUYB1ykaVrsv4w/jRwXokfLH3MeurO4wxv9wp0w1uIsPTRKMEyOklEEGrekHcPsr1mNZs/FXjS8S+9tdh2xFw1D01L/Z82W39cqwwi5wxvw2sssJ3PMsDJe+u5M/vuDb7NhxK/RWvrClmmo7eNRrYXWeQEjxL82fMLhz/2ea/YqtueFs96u/kfj37MMFfR16L5GwI3uyEfPKSPk3b81y/7IGPiGj39t1eQLIcShYJ+CZaXUB0Db9MZMYJNSaotSyg88CZylhf0eeF0p9fm+3FeI/UF35FMw7hJaNj3foc1Uhqcaw1t3yGWW7SWjIeS3anOTCdSuwVF2OJpu69J7m3XL9pLkJRim8MCQcLAcjATLtoL+nb7vpAFF/Ofr09h40zy+f+xwcn19YOtUbmz4nDH+Buu8kDJ4NlDCXN9kLlr4GFuKJ6JCPnzVyzt0PxVoRXMUYMvttV8zy0oZ+Gu+JH/019Ac+dS8fUVGPbWFEOJg0B01ywOB2GaruyKP/QA4AThX07TvpXqypmlXaJr2maZpn1VXV6c6TYj9onDiZRDy417zaMbPiXbCONQyy+FANZimFMNfu7pLO2FY9478rFPVK5tsedFgORRp7WbLH7jP9x9Wlsd954R7Nf/0hDEM9cP9TW+jtk5GuUus8xQaT29dzlGfL+fqvK+wdPP7HbpPOLNcEMks1+7z4JxMBRu3oAJucoeeRNlxt+Gr+rjT7e+EEOJA0x3BcuLoLFBKqXuVUkcopb6nlPpbqicrpf6hlJqulJreu/ehsTlK9FzO8vG4BhxL05cPZpxJM6fJHSqdMExmr+VUHTFC3npCLZVdurnP5Ow9ETQbznamAtry+2H46lFBH0F3FZo9F91V3GXr6F3g4tenHM5ZM6YwxNXIIEc/2D6ZnK2HMyuwLe7ctxyjmLtxL6e//SAf792e0fWV343uLMCWWw5GIG5ISXcySzCcvSeTN+oc0HQ829/aL/cWQohs645geRcwOOb7QUBlinOF6PGKJl1OsGET3p3vZXR+oH5d+KPyguQbzQ5WtoIBaPbclJv8zDHXXbm5z2TP78/AS5ZRMPYb7Z4HEGzdTchdgS1/QNLR2Psqp2gAdqOVDf83k4cvmMKsQhsPtb7EMbtsqKbyuHNf37WOY1+9j5Pe/Dsf7E7dek8ZofAmRkc+ek74Gvur17KvegVoNhzl47DllOLqNxPP9nf2y72FECLbuiNY/hQYrWnacE3TnMCFwEvdcB8h9ou8UV9FzynPeKOfv3ZtuC63G4KwnkzTdOzFI1K2j4t2wuj6zHL4uuPanQpoy4+MvG7ZTailqlOb+zJhDkCx+fZw6YzBPPu1cJA+sng47JyA2nQEQ1qCaDFlFAsqNzL39b8y57UHeLtiQ0KJhTkqW3dEMsuw33ot+6tX4ig7HN2eA0DukBPw7fmMkPR6FkIcAva1ddwTwEfAYZqm7dI07btKqSBwDfAmsBZ4Wim1et+XKkR26PYcCsdfSuvml6xNYekE6tZZ3RkONY6SUSnLMAK1a9CchdgKByc9vj/ETtcLxoy67mr2SDu6oDvcns5oDf/e/PPSU3n/6mP4yvAR5FcM53X3Ywxshti4eNGerZzy1j849tX7eGXnGitoNiIlF5qjICazvH96LfurV+LsPdn6PnfoSaAMq7e1EEIczPa1G8ZFSqn+SimHUmqQUupfkcdfU0qNUUqNVEr9rmuWKkT2FE74LqgQzasfSXue4WsM1+UeYvXKpnTt4/y1q3GWjctqxt2WF5tZrsRWsO+b+5LexxqtHQ6Wg827AA17wQCOH1HOK5cdyRPf+xqjjHpOqW+CTTNR9f1QKvqz+aR6B2e98xAzXrqb57d9ScjXDIDuyEPPKQPA6ET7uJC3gZbItMOMzvfUEHLvwtV7kvWYq990dFeJlGIIIQ4JMu5aiAw4SkeTM3gezaseSt9H+BDthGGyl4wKt49r3plwzF+7Bkc7G/C6my2vD6ARqF+PCnqw70PbuLT3MTPYrWabugps+f3iykQmDAoH7jfPHsQ1M8eRWz0WNs5E1Q1AGdGg+Yu6Cs5779/MePcpXnGMxrDnW2UYoU60j3Ove5y9L38t43pnf/VKgLjMsqbbyRk8F8/2t/dbRw4hhMgWCZaFyFDRpMsJNe/As/3NlOcEIsGy8xDrsWwyO2IEG+NLMUKtezE81TjLun5zX0douh1bXh98e8Ot3jOd3tdRuqsEzZZjlWGEmnclZLE1mwM0G8WOAPeePYFtt57Az+ZMorRhHGw8ElU7EGVE/xO9urmRH+edyszPv+CxnVsIYMPoxMhrw1sf/tPXkNH5VieMXpPiHs8dehIh9y4C9es7vAYhhDiQSLAsRIbyRpyJLa9f2o1+gbq1aDZXl0+oO1A4SiPt4+rjO2JYm/uynFmGcCmGf+9yoHPT+zJhjta2yjDcu7AnGcOtOfJQQS8Qbjv3q5MPY/tPT+DPX5nGIM8E2HAkqmYwKhT9T/XG1ha+8+HTnFT0TR6prscfCnZobWa7OcPfnNH5/ppV2PL7Y8uLb+WZM+Do8PE9yzp0fyGEONBIsCxEhjSbg4IJ38Kz9XUCTcn74vrr1uEoHdPlE+oOFLb8/uH2cW0yy/5I2zhHN7SN6yhbfn+rs0R3bfALXzt2WmAF9iStBHV7nrUWU4HLzo9njWDTzfN5+NyZjFWTYONRjKzXKVDR8dg7tUKur7Uz+tnbeWDNYjzBQEbrMoNkw9eU2fm+emy5iT3vHaVj0Gw54bZyQghxEJNgWYgOKJzwXQDcqx5KejxQt+6QrVeGSPu4kpEJ7eMCNavRc8qw5fXL0sqizPZxEO4N3W33KehPqKUSw9eE8jcl3Uyo2XMTgmWT065z6YzBfHn9HF745jF81ebkg6aHKazujQrarfN2tTbyw09eYNSzt/HnVQtxB3xJr2eygmV/hsFy0INmz01cu27H0WuCVaYhhBAHKwmWhegAR9FQcoefSvOqh1Gh+EyeEfQQbNx6SAfLEOmI0bYMo24NjvLsdsIwmZ0qdFcpepIgsKvY8/sTbNlN0L0r/H2KYNkIetJeR9c1zhzfj5tn96cIP6eUToGNR/K1pm0UG9HAeLenmRs+fYXhT/+OX3/xFnW+5EG4CoSDZZVhsKxSBMsArt5T8FevkE1+QoiDmgTLQnRQ0cTLCLXupnXrK3GPB+rWA+qQ7bFschSPJNC01eoaopQiULO624aRdJRZetGdWWUAW14/lL+JQP0GAOxJ+ktr9lxUIH2wbFKBFgD+++3ZrLh2Phe6gjxd/wKqaiQq4LTOq/O38qvlbzH86d/yk09fpqo1Pig2/B2rWVZBD5ojL+kxZ+/JGN46Qkm6nwghxMFCgmUhOih32KnYCgfTtPKfcY8HDvG2cSZH6ei49nGhlkoMf2OPCZbtkV7L9m7qhGGyRdrS+fZ8Fvk+SWbZkViznIoRcINmQ7O5mNi/iNnjxjAyp5kfjT+evO1HoypHo/w51vnuoJ8/rXqfkc/cxtVLnmNrc230OmRehqECrWj2nKTHzHZyUrcshDiYSbAsRAdpuo3CCd/Bu+MdAg3RcoNA3VrQbDhKRmdxddlnN9vHRX42/ppwJ4yesLkP9mNmOd8MlsPdIpJ13ghv8Msws+xvQXcUWKUstpwyCLbyp9NGsfPWk/ndUfPou/s4Lq3fxOhQtKWczwjy9/Ufcdhzd/DND/7Lel9kImDGZRjelOUqzt4TAU3qloUQBzUJloXohMLx3wbNRvOXD1qP+evW4SgZgWZ3ZXFl2ecoGQlgjb0OmG3jekywHM4s27ppIInJHqmN9u/+DFteXzSbM+EczZ6D0YHMsuYssL43R14b3lpK85zcPH80m388gVttb/Gq+3Hm7W1BtRZa54eU4vHNn3OiOo6r8k5jWbM7s/uGPGj25GUYuiMfR+lo/NXLM7qWEEIciCRYFqIT7AUDyBt5Bs2r/40KhjdZBerW4ig9tEswIDzoQ7PnWll3f+0abHl9seX2yvLKwuwFg3H2nkLOgOO69T7mwBPD34gtSY9lAM2e14GaZTe6Iz96/cgUP8MTzSL71z+OroLYbDncMcLLccxHbZuEcpfEXettx0hOqbJz4ht/572qTWk36IXLMFJvhHT2nmxN+RNCiIORBMtCdFLRxCswvLW0bHoeFQoQaNiE4xCd3BdL0zTsJSMJRNrH+WtX4+gh9coAmt3FwIuXkjfspG69j55TBpFscrJOGGDWLGcWLBuBFrSYYNnMLIciU/yUMmhe9RA5g+bg7DOFAdouPvj+cXz0nTM4t/gU2DoV1VQed813qzZywht/4+iX7+PlHasxlJFw33A3jOQ1ywDO3lMINm0j5G3I6HUIIcSBRoJlITopZ8g87MUjaP7ywfAQDiN4yG/uMzlKRhFs2IxSBoG6tT1mc9/+pGma1Vc62UASAD1Nn+W2lN+N7oiWYdhyy4BoZtm7412CTVspnPhdHKVjCNSH36wcObSUp785nQ0/PJsfDpzHa82PcaZ/HVpMNvnT2h2cveBhJj3/J57Y8gVBs5NJKAAqlLIMA8DZayIAgbo1Gb0OIYQ40EiwLEQnaZpO4cTL8FYsomXj8wA4y3pGXW62OUpGEWjaSrBxCyrQ0mM29+1vdmszYYrMsj23A5llN5ojsWY52LwDI+ih6ct/oueUkz/ybBwloyNdSKLt4Ub2yufOU4cwxqjjz563+HvD+6i6/igj2vt6bdMeLnn/cUY9cwf/XP8x3siUv3T9qM0a8JCnJqPXIYQQBxoJloXYB4XjLgXdQeNnfwTAUXZYllfUMzhKRkHIT+u2NwEOycwyRAeg2FPWLOeiQj6rJ3U6CTXLOeWg26lbdBPb7y+mddP/KBj3TTS7C0fZGIC4bi0AygqeNU4sbeX+o77G0Jo5qJpBqFD0n4OdrfV8b8mzDHv+Hh5yTqFFS71pVXeVAmB469t9DUIIcSCyt3+KECIVW15v8kd/lZb1T2ErHBIXzBzKzPZxrZtfAsB5iNZyR9vUpd7gB5G64JhOF8kYgZa4czS7i35ffYNA7VoMfyMq6KVo8vcArPaFgbr1uPpMjV4jMpDEltcHAs1cfewwrjx6KC+squL2hWv53LMGyirQ7EEAagKt3JY7i/tWbuMH6g1+NP54euXE/47bciLlIN66zH4oQghxgJFgWYh9VDjxClrWP3XIT+6L5YgEy95dH2ArHIzuKs7yirLDHmlPZy9MXoahO6LBMu0EyyrQElezDJA7aBa5g2Yl3rdkFKBZmyxN5kASW8EAa4iOTdf42qQBfHVifxZvncIdC9fx+u4VUL4LzeEHoFkZ3LbyHf745UK+OWo6N0+ey/DCcBmI5iwEzUZIgmUhxEFKyjCE2Ec5A48jd/hXyBt5RraX0mPY8vuHs6YqdEjXceeNPIvCyVdhLxya9LjZkq29XstKqUjNcmafXOj2HOxFQ61R29Z1ImUYtvz+qKAHZQSja9E0jh9RzqvfOZbV3/kG3yw+l8HVpQw2Gq1zAirIvzZ+zOhn7+Dst/7NF7UVaJqGnlMmZRhCiIOWBMtC7CNN0+h31gsUTboi20vpMTRNs4aTOHsdmvXKEB7E0mvuPWi6LelxM1hu2xFDBX00rfxntJY55AcjmJBZTie2I4bJ3PBntrKL3QAYa2zfQh65YBofnXM0bzc/ypTaQpQnem+F4uWKL5n+0l0c9cIDfOQaSciz/zLLvr1fUPv+DWn7QwshRFeRYFkI0S3MuuVDtRNGJqI1y964xz073qb23e/jrVgMRMsn2qtrjuUoHU2gfkNcQBlbhgHtj7wudoawo3jv/Hn8Y9q3Gdw4M2HAyaf1W7lYzWR+dTFPbv6CkJHYq7k9dR/+FPfaxzM+v2XT/2j64h5C7ooO30sIITpKgmUhRLewMsuHaCeMTJgt2VQgPrNsBrFmzbEZ5HYos1wyGhVwE2rdbT2m2mSWVeQ+vr1f0PDZnxKuYa7LlVPAZUcNZeuPzuP1k67gyMB8VGNvYhO7a8nn4g8ep9/jv+WulYvwBAMp16ZCfhqX3YUKhWuiW9Y/TeuWVzN+bUZruE1doH59xs8RQojOkmBZCNEtcoeejKv/UT1qel9Po8Vu8Ith+FsACEZavykrWM6824qjNNI+LqYUw4ipWY79vnn1I9Qvvtka3W4y12VO8NM0jZMP68OSK05l5QVX8bW8s9DrB2KPmfxXF2zi+mUv0vuxX3H9R69R50usx/ZWLqFu0Y14Kz8K38cIokKZ9ZsGCHmqI69tQztnCiHEvpNgWQjRLXIHz2bABR+gpxmVfKhLtcHPDI7NQNcMnjPd4AdgL420j4sJKI2AG82eF+2NHBk6EmqpAiAYk4UGUCFvZJ2JE/wm9C/imQuPZ9flV/OQ3sjlni9QwWiDJY/ycte6d+n3319z0dtPscMd3QBoBuHK8JsLw2hTipKOOeK7pwTLQXcllU/NJtSyJ9tLEUJ0AwmWhRAiS7RUZRhmsNwms6x1oAzDXjgYzZYTl1lW/mZ0ZyG6qzB8H78ZLIeD5JC7Ku4a5rrSTfDrW+jiK4cP40b/Iu4d9y36uMeh/NEhJiGCPL3rU0Y8fRuzXvgXn+7dhQpFMtiRbhzKCGY8yRDAaI1klut6RrDsr16Br+oj/LWrs70UIUQ3kGBZCCGyRDc3+IXis6oqEM4kBxo3o4xQtGa5Axv8NE3HXjoqrq7XCLjRnIXozqLw95EyDCtYbonfMGdYZRipg2UAPTKY5Kppvaj4/rd58bjvMy44A+WNZsKVpviwfi1HvXo3Ry75lIX2oYRCAfNGHQqWzdHaPSWzbGXK22kBKIQ4MEmwLIQQWZIysxyZtEfIT7B5Z6dqliFctxxsiK9Z1h0FVrCs/E0opaJlGG0zyxkGy7Ycc+R1Hbquccb4AXx5+QV8ceZ1zHfORWspiTt/bcjHZflnMfqDD7n1o3fxKJVxsKyMUHhaoM1JsHmHFdBnk7l2I/ImJ5VA4zZpdyfEAUiCZSGEyBJzg1/bmmUzkwzhTX7RmuXMM8sA9sKhBJt2WgGa8rvRnAWR2mcNw9+E4WuwyiJCLZVxz1dBD+gOND39sFfdFc4sh9oMJpk8sJi3Lj6Nyktv4Io+Z5PT2i+ug0a1FuKOda9xXM4F3O4bTIU7fSs7MMdqK1x9ZwCKYJte0tlg1lunC/h9e79g18NjaF7x1/21LCFEF5FgWQghsiQ6lCQ+yFIBt1XaEGjYhAqGg+WOtI4DsBcMQIW8GL4GAIxAM7qjEE3T0ZyFGP5mK6sMxH1trqu9rDJEyzCMFCOv+xS6+Otpx9Hwveu4d8J3OcqvyFd+63i9nsvf7GMZ8vRvmfH0P1lcuTN8/1CAYPOuuGuZnTByBhwD9IxSDKsMI5C6DCNQFy6H8VYu2S9rEkJ0HQmWhRAiSzRNR7O5kmzwa8VRMhrNnkegYZNVltGRbhgQbRFnDu8w/M1W3bPuLMLwN1n1ymh60jIMPUknjIT7xJRhpOOw6VwzcyyvTR/E4qaHOEPlQCC6GRDN4POW9cx+8x6G/PvP/Oude9j56ESMmJ+PWa/s6n8kAIGmbe2ur7tZZRhpa5Yj7fU0+WdXiAON/L9WCCGySLPnJc0sa85CHCUjw5nlgBvNnptybHYq5vCRoDtcXhEuwwh3wtCdhZFgORwgO8rGJkzEMzqYWW5bhpGKCvkoxM9/Zo5g27k/4Z7W15kYjG+7VmFUcmXlbk5zncW1775Giz+ciTYiwbK9aChoujVoJZsyySwrdWAEy4bfTePn90TXKw5Jhq+J+k9+hzJC2V5Kj9Cz/18rhBAHOc2Rl7BJzQi40R352EtGEWzYiBFo6XC9MkTHWpsBsVmGAeFgWfmaCUYyy64+0wgmlGG0WgNJ0tFdJeHrt5NZtq4bmdynjCADCx2cFtjI8y1P8dORX6Mk0D+urnm9rRf3V35MyaO/ZN6z/2Xd3nCJhi23N5ojv91Ndan4dn/K3te/0SVBYUbdMCL30TStw9ffek8Ou58/rVNr66ja96+j7oMb8Gx/B9/eL/DsfG+/3Len81Yspv6jX2V7GftN3aIbafjoV7Ru+l+2l9IjSLAshBBZpNlzE4Is5W9BdxbgKBlFoHErhq+hw/XKAPb8cLAcdFeglIEKtFhlGFpMGYZmz8NRdhjK3xTtxAGooNfahJj2Neg2dFcJhi/zzDKAMgJWr2UN+MXRk6i94v945uirGK2PwWFEA1nD5uf95s85av0Orss9iQfXV6E7CuI2Q3aEZ+dCWtY/1SWZabP1X9rOHNY7gE78s6sMPDve7vjzOiFQuwYId16p/O+R7H7u5IyfawRaCTRu6a6lZVXVM/No+OR32V7GfmP+/8oaHHSIk2BZCCGySLfnJo67DrjRHAU4SkeDESRQuwbN2bF6ZQDN7kLPKSfkrkT5zV7NiWUYtvz+CVloyHyDH4RLMTIvwzAn9wVRKhhzv3DQ+bWxI1l36RV8MsDP9d4PcYWi/1QZmsZLzsP5/sonOI153L+rhWp3x9vHxQXsQPWb36XmnasJNu3o8LWMDMowzMxyqHUvzWsf6/A9TIHGrez4x2ACjVs7fY10zE8aNJurnTMT7XnpHHY9fHhG5yqlqH3vx/j2ftHh+wixv0mwLIQQWaTZc1GBJN0wHPk4SkYB4K9b26nMMoQ7YoRaKqxMkWaVYRRFumHsxpbfLyYLHW0fpwKt6LZMg+VSjA7ULEN8ZhkSu4IMdIT4nm8ZO447mmuGfoXCUFnc8TX2cn6r+tLvid8w4/H/8O7W+Jrr6HV9CYG8mQ1WRpBA41bca/9D86oHqf3ghoxeQ/z12y/DMMs9PNvfpObN71gbFdu9dpu+zO41jxJq3YN7zX9SPifYtIPWLa9mdP22zPaBSnW8VtXbgZINw1NN04q/sPuFMzp8n+5Ut/gWdjw4ItvLED2MBMtCCJFFmj0vrouCMkLhjG6kZhkAI9jhThgmW8FAgu4qa1pfQjeM1irs+f2wFUQ6Z8T0WjZCHjRHhsGyqzTzmmUjJrOcJlg2A1qXauGeefNouOwWnnVu4ORgFaiY2l+7n8/9Kzjh3bvp+497+M3iZfiC4WCv8Yv72fZACTv+PiCuJjs2u+3d9T6A1U6vPWZf5bbrTls/3aY2WrW5RuuWV3FveCbxaW0DcGuDYOrhJhVPHMWel85JvZZ0zL+PDgTL/ppVVDw+s2O3MUepZ/hmbH9p/OxOQu5d7Z94yOh4jf3BSIJlIYTIIs0R3w3DHHWtOwqw5fW1NvZ1dHqfyZbfP1yGYWWWI9dzFaL8zQTd4TIMM7McX4bhzbgMw5ZTiuHLLFjGyiwHrTKI8P3aBMvmsI+YOuqZVPFQnxY2nHMLl1NFmRENOjVdUePYyS83PkHRP2/jzOdepmrzgnDgp0LRNnnEZ7c9O99Dz+uDq8+0hNHjbQXdFWz/SzneqqWJ60xbs9wmWDb81C2+xdpAt+elc6h+7eKEpyUG71rS68U9J8OsdTod6YLQ8Mnv8Fcvjz43gymF5puATN+MCZFNEiwLIUQWafacuOyhERPUappmlWJ0phsGRMowWvdYJRLRmuUiQKECbmz5/dCcRWiO/LheyyrQ2uma5UDjNhqX3ZU0cFLBcKBKmzKMhIytuXEuJmAMeWqw5fZmZGkpv+oT4hP7In4+9izKtV5xzw3mNPJq0/sc3TiY3+ccyw6tCL+nKeba0TV4d75P7qDZkc2W6eufQy17wAgQcu+MeT0Z1Cy3yQSroJemL+6jdfMrae+n/G2mGka6aag0mWXruTE/exXyZ1xTHnlCxqfqeX3aPLf9DiOZjlIXWdIFY9mD7grc657sgsVknwTLQgiRRbo9L65m2cwA65ENfWaw3NmaZVvBQEARaNgUuW44WNacRdFz8vuhaVo4Cx1ThtGxDX7hMgyzNrdlwzPULboxYYQ2xGZ12ynDCEZ6KwfCwbLhdxNyV2IvGhK+p6MAe9DNL446nr3fuonX5l3F5LzRcSUaTbqTf7qOYH7hpYx+7XXOefZ11uxptLLbQXcVoZZKXP2PCg+ICabPLJtBZLJ1p69Zjg8+VdCDCvnazWTHdieB8CCbyAXx13yZvvVdzD33vHweO/7WN+29Uj23Pbbc3m2e236wbJasaBkMvREHpt3PnUT1G99M3yXmACHBshBCZJFmz8MIRf8xsYKISHDsKB0NRGuNO8oemeJnjoW2yjAiQTNEJ/3Z8wfEb/ALetAzLsMoA2VYrdiMSEY0WXcJq15YhUC1X7NsXtNfswpQOHtPCb8GR0FcicbJQ0fy+QVXsvOCn3HxoOPIUdFATGka1TlBXmpewIQX/8A1W/3s1fLweZusn4dmz41mnFOwguQkwXLaoCDmfMAaQd5ecJ6qDMO35zMqHjuCxmV3tbtWz8738Gx7PfxYKJDy/PjndiCz3PZ3M5PMsvmmUILlg5b135I2v/sHIgmWhRAii8LdMGI2+MXULAPWJr/Ob/AL1yIH6taHrxtXhhFmz+8XObe/VbOslIEKZV6zrLvMKX51kdcRDoaCTdsTzjU3+KlQIC54a5tlNQNJM2A062JdfaYARIaSJPZZHpBfxKMnnk39hT/k7y0vMx0/WszHyprDx7Ou/swq/DaT3lrER7ZB7GoMREpi2smCWZnlaDCZSes46w2C+ZxISUTCa24TzKpA8mA5WB/+pMC3eykpRYKU2F7JmW7C7EhmOWHNZJBZtka4SxlGz2T+/yVxg9/Wu51Uv/nddq+gafbwlQ6CKYASLAshRBZpjnCdrFlfGg0iIpnlkkhmudM1y+GR1/761MGylVkuGBjeDKiUFah2pAwDokGgGeAGm5NlliNlGCoYF5SlyixHg+UV6Dll2AoGRV5DARiBhEDU4tnL/OBW3p56OO82/5uL83NxEu0fHNRsVOQZfKPgqxz55Xq+vylIhTdEszd1JszKLCfpD522DKPNcIdQisyy0SY4TsgsR2qWjWDkEwgt9Qh0lSSjF/JmuPmvI8Fy28EVGWWWzTIMCZbTCXlq8FZ8mO1lJHCvTd260KJHfjc70Yawp5FgWQghski354X/MYl0hWhbs+wsH4vuKrXKMTp8/dxeoDsIRYJWM0NtlWHoDvScciAcNKuQF8PXELMBK7OPya2R1/7GyJ+RYDlpGYa5ua5tzXLbLGskqI68gfBVL8fZe7I1Mtp8Q5GqZZvZ/cJeMpLBqol7hxXQ8M1fcf+M85mi4jfOtTjhuZwy5uR9jbJ//IkTHnuFtzfsxTDabHRKU7NspBt3bcRnX80Mb0LG2Re/LqtmWXew941vUf/hT8OPmx0vtDT/jKskwbKnNvX5sU/tSDaw7ZuVDJ5rbWS1Rcept2x8zmop1x1C3oa4MqMDQdUz86h6Zm62l9E5WmbBsnvDMz2+rlmCZSGEyCIzs2YGCW1rlnVXMUO+V0XeiNM7d31NtzLH4Q4b4f/smxv8zM194a8jvZbdFR3uVmAG34YvHCybAW7SMowMh5KYXTOMQHN4eEjNKqteGaLt9FSKkdeh1kiwXDQMNB0j2ILLZueqCTN5OX8drzU/xrn5LgpUtE45qNkwCqt5L7CQkxfeQ/l9f+OHr3zKppqWyJpT1ywT8ifN5oZfc9syDDNYbvMGoU33C7MMQ7Pn0LLuvwnXNdp2y4h9bpK1pGsrF7dZsENlGPF13tv/2itpz+j4hYTfPGh6+KN6b+XH7H31Iuo6MRQmU7seGcvOB4d16TW9FYuj3V06ybf7Mxo+/WPSY4G6dft07WwyP/VIN+DGW7GY6tcupu6Dn+yvZXWKBMtCCJFFZuZWhczBFpHMckzZhZYue5gBe6RuOfaauiscLNvz+iWcF3RXWiUFuj2a+UtHdxUD0cyoWU4QbE4MlonLLEczrm2zS9EyjCYCdetQIR+u3pOs42aWPFndMsRklvP7ozkKUP5oBloFvYwx6vj7sEKWNP2LP44YzWFtfsyaw0dT0WYeqH6KMU/cxdi/PckrayMT7sxPApSK6xqSqua5bV1v6jKM+NdiZug13ZH8NbbuSfJopM40WRlGusxybP34PtQsA7RseDaz50QCqpBnb/jPJN1TuorhzSyrDuG63GRi2/H5a1ZR9cw8ahdFA73OBM6VTx5D/Ye3dvh5PZ753600nzSEPNXhP2P6u/dEEiwLIUQWaZFg1Nwcpqya5c5t6EvG3OSnxXQt0CNjr235/WLOC9c3h1oqrcBVc2RYhhHJVJuZztgyjLa9ls1Aqf3Mshksu/FXrwDA2XtyzGsIv57YIDhWsGU3mj0XzVmI7iiIC0TNbKgRbCWPIN8bNoKPJgzk9ebH+PqgaeRorrhraQUNbHB9xjcqVvOrnNn8ftl23l6/l1DAByirlCVVSUjbut5UG/xSlWGkyliHWuKD5fqPfoW5OStZwGukqVmOfeOSSSnF3te/QdXzpybWLIevlvQ5zav/jWfHu9Ha7EhAZdXI2zJ7c7Yv9qUco+adK62A2HyjYmZ/Wzb9j233F+KvXtk1C80m8/+zWscn+IVa9uCvW2/VLKd742X+tyDVm8GeQoJlIYTIIj0SjJqZXCPgBs2GZnOle1qHmNP5YtvFaTYHmiPfCqTB3AyoEWzeGRO8ZFqGYQbL8WUYKtiakNFLWbOc0BnCrFluJtC4FYhueITYmuXUmWVbfn80TUN35lubysLXjnTkiAQ+mu5As+cw2qjjkWNPoGLWcfw9r4KpRcOI7QgQtMF/XJP5vV3n5HfvZ+Bf/kmlVoDPVmy9XpMRaIkGv6G2NcuRYLmdDX7WGwgjecu3kGdvXPlEwye/i7lYkjKMSJlMMnHBcgaZ5Zb1T+HdsSD1Bsskat6+nN3Pn0Ljp3+Iv3eoYxtK01FKsfVuJ/Uf/ybp8V3/Hp9xOYbha6Jmwfet792rH6F1y8vh+0Ret6aHs9DmgBnf3i86u/SUMpmK2KHrGSFaNr/U5dcF2PHgMCoenUh02mT0Hk3L/0L121da3xvWoJyePVZbgmUhhMgiqwzD7KgQaEGPTO/rKjarDKMw7vHeJz9C8bQfRddic2LL60uweVd0HHGGwYtmc4R7RseUYZiZ6rZ1y7FDSZJ1lYBIeYNZhhFoJujehZ7XB80efRNh9vdNWbPcshtbXt/I68hPmlm2arN1R0wphRej4n3mVz3H0jMuZfv5t/KT8SdQZo//+Wk5rdQUb2d24bc5xz+NZx1jueu9lWysDt9n579Gsf2vvSKvte1GvnCQEPLW0fj5PdF1+ZupXXgd2x4ojfwcgpHnp+iPbART9oZOlo1O22fZ6FwZBkkzy5mKZMHNNy1dkVmOvO6GT25Lfjjy0X8mGj79Pc1f/jPuMfPNiRUs25KXbHStaMBZv+QXaftrZ6Lx87vY+/K5tG56fl8Xlsj63UkMxGsX/hj36oet7327PwGS9RPvWSRYFkKILErc4OeOK5foCvYkZRgA+aPOsiYEmmyFgyKZ5XAQqWdYhgHh7LKKKcNwlo8H0gXLgdQT/MxAxFkIRpBg/SbskZZxJqtm2Z96g59ZZqI5C9pkls1gOZIJ1h1WNl+FvIRawzW0RsDNoPwSbp95Cnsu+RkvjhvDWf51uGICAaVprHWWclPeidxS+yGHPf4Ahz3wLP6YnsaJG/wawn96quM2tRn+JpqW348KtISDsiQbChOkKplI0g0jecmEeSw2s9x++zfr1GSZ5UwzlmbgaW0o3bdgufrtK9h2X6SESU/dVg/Ave7J9BMQIXmGXYUwAq3RLL2t60oIwj2Mv51YzhPz82xYejt1i27cp/uYXWrM33MI/z3WLbop7acPqfjr1qYJ4FP/LjhKxwDgjNmL0BNJsCyEEFkUzSxHa5b1LqxXBrAlKcNIxV44iFBMsNyR4EV3FWH4GsNZQiOAwwyW2/RatoIrIxQXoMUGy2ZW2Ryl7K9bi70wPli2umGkaNkWLsPoFzm3IC4AsaYDWpllu/VajaCHUKRrhIrJeOmazuyiPP7keYt1o3L517EXMC2/N3pMwKV0hVZczaa8jzm28Lv8Nud4jvzHK2ypbohfm6+eZEIxAbbRWp2yVhmi7fpSduBImllOEyzHbvDrQOu45JntzIJlM4NtlWEkydJ6dizAn2FXCPfqR6yvtXZCnOo3vknzir9ldN04ymD73/pQ8/Zl4fvobdcc/6mQUorm1Y+02x7NLIlwr32c7ZFPFkzene91fJ0d5F73JI3L/kzdhz/L6PyguwLPzvcBqHpyFnWLbmzzO2f+HDL7XXCv+y+tW17twIr3HwmWhRAii3RHfBcFI9Bi1eJ2FXuKMoyk5xYOIejeZWW6O1JDqjuLMfzNVt2tvXAwmrMwrtdyOFtqdpIIRjOmmt4mWA4HYLbccBmD4anGXjg47n5WzXKSzLIRDPeLNqcTao68uHKNxDIMu1WfrYK+mMxymwyfEQ6MCwjxrTEzWDz7BBY1P8zPioMcHor/eL9Wz+MR11Q+cyzkDP9Q7sg5li9tfVCQ0CLO1Lj0DuvrYEtlylpliAbLKeuLkwW86UomOlCzHFvrmqq0w7f707jMZfILmSUNkTKMJG/Odj9/KhWPJs88qlAg9Ya6DLrIJO8mkp5SRlxv6fb2F3i2vU7N21dQv/in7V055ZGmlX/vyBItu/93BvVLfpHRudZkTcMfs5bU5WC7Hp3E7udOxLPrA2uvwrb7i1Ken/7mIarf+BZ7Xjqnc8/vZhIsCyFEFlllGGZmOVKz3JXM2mEtw8yyCrRYbdcyHUoCoLmKMPyNVvCqOwvDwXfTNuucuMxmKFqGoTsK4zJvZv2yHgmWw68jeWY52QY/c/22vMTMslLKCnYMs07a5oh2Jgl5rcxyQi2lWUMcCSaNQCt9VQs/7FvAK+4n+OjouVx92HGUtAmg6mwuHnQdwTkFFzKv4FL+6DqGNXqv+PCoTVY15K5oJ7Mc3lSYqkSjw5nlDpRhxJW0JAvAlaLyyWOpfHpO2utEyzDCfw/Bph14dryb/jkx6hbfTMXj0wk0bEo8mEnLxXb2BiTdANfmZ9NeJwcj0ibQbI+X+mZpfuZJ3rzUf/wb3OueSHtJz/Y3aVh6e5rrdn6Dn/mpy+5nT4g+GPM7Zw5CSn+P8LHGZX/u9Dr2BwmWhRAii9pu8OuOmmXdkU/RlB9kNNjErAsO1G+IrK8jmeVIGUYks6w7C7AXDY2f4hfzkX3suGvNWRj3cX7bMgwgoQxDsznB5ky6wc8KlmPKMKwALyZgTL7Bz4MRyYiqNsGyVZ4QCQrMDLHuCn9sPjG/gPuOOZvtc07gkZb/ca5/Nbl6fOC801bM33Omc2bh1zmp4Bvc7TqStXov1vX/Udx5QXdV2lplqwwjSW1y5IUkaduXWbDc3gY/MwAEEif4xTw/mCyIjb+puTAA3GsfY/fzp6R/Tgxv5ZLwEjx1CcfSjQLfJ22DZetNToqgULWfpU123fhDiX8fDR//huo3Lk1/zQ5JvT7D18i2v/TCs2NBh69a8d8jaV79b7b/fUD7J5PYb70nkGBZCCGyyArQzD7Lga6vWQYon/Mncgcd3+55tkipQ6eCZVekDMPqFV0YCZajG/zi6luNoPURvu4siC/DCJrBcrn1WNsyDEisRTaZ0/usDX6OaDeMuKDcvKdmtz5ONzw1MZ042gTikcDU8DWy55Xz8deuDt8npyzuuHLv4rjgTu7wLKD24l/w75xNnONfGzctEGCrrZT7c47kjMKvc0Gdl9/lHM9S2wBCaOzduzVt0BrNLCc/RxmhhDKOlF01ID4wb6dm2fzYHZIH4KmGsySc15GuG0kvEA4wkw7uyaCjjOFt6PCI7YRNge2UYVjnt5PpbvuziHuj04mfU0YDUjLsuuOrXoHyN7H7+VM7vg5/EzVvXx43PTJdyzpvpA66J7FnewFCCHEo09ts8OuOmuWOMLO3gYaNgNahfs+60yzDMDPLhTiKhmH4Gwl567HllMYFVsoIWMGl7ihsU7McPs+W1ye6tjZlGEBkMl/7mWXNkR8eRx0KxPVztjLLMWUYwead1vG29dBmhq9l8wsofzOtm14Irz+nJO54yL3Leo6DEPO0Go71LMXnsbHIPoTXHKNZ4BhBixYtvWhxaDzMVB52TaXU8DBi3R7mKT+XYiOHxGApo8xym8x0phv8YoOzQONWHMXDU14nWRmG9XcSEyC2bH45yU0jZRgdKAdQStGw9HbyR38NK5ubNFhuPx/YtOIvtG5/i/7nLWDnP4cmu1uSh+L/LsyR3WkWHD4vyXqq37o85rz4ILw2pr9ze28q6hbdhKP0MAonfNt6bM9LX02/rjRaNj5nfd286iFq3vlep6+VTPOqh6hdcBX2Nt14eioJloUQIptszrjNbd3RDaNDy8nrB7odw1ODZs/rUL/ncOu4ZivrqDsLsEeCrGDTtkiw3CazHAnmNGchRsyoYzOgtWqWNT1ugIp1T0de8prl1t3h5+T2iZwXfgOy97Wv4yiNDjaxhq/ElGHEBstmiYcR9NDw8W+sNzKazYUiplOGy8wsh1BK4dm1KOYeHiuj6yLECcGtnBDcitdjY6F9GG86RvGeYxjumKmB9Xouy/JzWUYpD6hRHB/cwfzAFmYFt9NLRdr6mRv80tUst80kpxsgEtvzOiY42/XwYQz/cZvnxQ2TSbym+Xdi9k3213zJ3pe/lmyR5kVSr6vttb11NHz0S5q/fDD6yUOy39OYMox0tb3Bhk34IuUcGUlZhmE+kPCEVAdwr/l3yus2r3rQ+tq7YwHuDc9QMOa8pEsya37NYFmF/Hh2vJ18/R2haV0eKAM0fR5eb/Iyna4flLKvJFgWQogs0jQNzZ6LEfSglArXLGcxWNZ0G/b8gQSbt3d4mpruCu+ED7mrwtdyFGAvGgZAsHELrj5T40sgYsZd684Cgo2xGd/4mmVbfv+kGTzNEd8/2RRs2Y0ttzdapNeuOcCkdfOLOHpNiLlPJJutO9Bt4X+k4zPL4YC4afkDNH52J1pkUmFcxl2zWW35lBHEve5xvDvewVF2OIG6daigN2lAmUOIU4KbOSW4Gb9HZ8Osh3n6s8d4xzaYvXr004VWzcmbjlG86Qhn4SYG9zA7uA3b6hauRmPD3ibGlSQJMIwkmeVM+yy3U4YRd91kGwnbdFNpO8bbOs8Mkjs0BCVS6hLyRp+fJGsbm8ltt7Y31Sa9JBnvtlne9j99SZP9jjst/aZK9+pHUwbLpp2PjKPPaU/QFDPoBqDh0z+SO+wkXL0n469bT/PKSMu8djL61a9dnH7NnRSo39gt1+0uUrMshBBZptnzUIHWcCCpQl3eDaOjbJFSjA4Hy85wDW0okiHWnYXWx/eBxm1AtF5Ys+WgjKAVoOnOtmUYkcxyTjhzmKwEA9LULMf0WA6/lryYY9F2YWYXktg+y0kzy2arNzOgjAkQdVdxNBBSITxb38BWOJji6eFhIyroaXfKnRODE/oM5LfG5yxufohn3E9zlXMvQ0ms/f3S3pf7c47kntx8jiq8jOPeeIlef3qUbzwVnx2N/flaj2XaZzlVaYd17TabAdsEm0Yw/HfSbp9uswyjI32dzU2hmi2mZjnJZr5MumFYp3ZgsEjbNwfWc1Nt8DNrltvrvNHeIJj2M67Bhk00fPI7Wre+Fvd4/Ye3Uvn4DABa1kez7EagBV/1ikj3l56S0e15o68lsyyEEFmm2/PCH9WbH113cTeMjrIXDsJHtAd0pszMcrA5XK+rOwrR7C70nDKCjVuBaLCmOQsiQ0kiZRhtW8dFgmrdkYfmyE/ohGHd05lv3Q+gec1/qF/yc2y5vay2ceHzoj/TuI1GZv2y7rAykWawrDkKrJpla7OU7gA8cWvVnUXRrLcRxLf3c1x9plnTD1XQk37MdISmO9HsOejA1NBujnLs5Bbdz5rqTbxjH8H7jqEssw0gFBME1uu5UNQKfMkTrV+yOv98jg7u4pjgTlo+38bkCcPpG3OPdJnluJKNdOUakdcZ+7Vmc8UH0P74Mox2A8kOZJatgF/T0weiHeiG0ZFgOe0myWTnd0E3jI7RMLyJ3UGs28SMla//8FbqP7wVPbc3pcf8qovuv696StAeJcGyEEJkmWbPQQVbo/2Js5xZNrO45pCOTJklCsGWynDwaQ9/PG0vHm71WjYDHd2en1CGEb/xLlJLbM8hb8Tp5A45Mfk9YwJagPolPyfkriDkrqBg3JS486Ji/jE2g3fdEclEaih/E5o9D1teH2vAijVhTreHh4rETA3UnYXWaOWQr4FgwyYKxl5iBYoq5IsLsMKlI4l11prdFZfNNz9pGKW1MtK/jCv9y2jCyYf2IbzvGMqCnEnUx2ZkNVhp78dKez/+znT0pu3YFzzNNa7pHBPcyYTQXkJeLyFDYdMTA7e4YLedYDluTLkRCAfLcUNfzL+/dkoUrA1+nZgYqOnRMoJObvCzJCnxCQe5Scow2vxs6hffTOumF/Dt/gSIbi6NeQYA7tUP0/vENMNFOhksBxq3xH3fuul/ac+PDZZNhic6UMe96qFOreNgJmUYQgiRZZojL1yzHDCD5ezVLEO0RVunyzCaK+JGazuKhkf/QTfLMBx54ZpaFQTNFr5XyG99HB8t13DR59T/UDj+m8nv6SrFiBkdnTNolvW1LT+aU03/BkRD021W/TiAvXAguiMfw1tPy+aXogFGTAbZerazyCoD8O9ZBoCrz7S4vs2xAZazbGzyVeiO+PrXkC+ctY0pISnCz6nBTdzhWcC24+fwYvMTXOddwlTVgNYmc2no4M9v5c85x3BuwQVML7qCb4cmUfinvzP74df50/sbWVnZhGGEg7lMg2XfnmW0bHgm5kbBlOUWoZY9bLuvKOW4aqv0IIMyDCtDa2bHNVtMkJ0Y/Iead+CvW9vudSFVZjlFhjNJdt4MlAHqP2wzqS9JEFz34c/wVn3S7nmZ2PXw4Rmf6634EG/lh526z6FMMstCCJFlWqQMw6y9zWbrOIj2WtYcmU/vg5gyjJYK7Hn9rcftxcNo2fISyghFg2BHPspTHQ60dHs0sAx50fT8aGbZlr7m1ZZbjuGtR5nXifno3ZYfXUPa1xKTVTSz/PbCYRjBFjzb3sCz7Q2cfaaFjyf5aF93FlnXMEcvO3tPtPpLq6A3rqzBUXY4vj2fJlxHs7nigk4V8kXfSMS8IQDod+47EPIz3qhmvK+aH+U1kXvW6zz32IkssQ9miX0wm21lcc9xay6WOAdBr00sZhOLNr0HK4vIDZQyqXgwlxfvYK557zTlGpVPHB33vTKCKd/gGd7a8L1XP5L8Yh0qw1CAFi3lic0spwhs97xwNoO/s779Sydr/6ZU8g1+7ZWoJDwhGgTveekc8secT+Onv6fx09/Hn0b6YNlfs6rj926j6pm57Z8kEkiwLIQQWabZc1H+5mhmuQfULENnMsvhYJmQP67u2l48AkJ+Qi2VMbXI+dFx17HBctADjvxoUN3OBrFwazmF4a3Hltc7bpOgPWaDn5lZ1nPKrQDOFJtVNINze9GQuFpos445rvWd9boLrfpYw/o7LIoZZe6JCz6tYSJt2ZzEZkhVyB/u/5wk0M8dNAvPzvei5wZ9FDvsnBjcwonBcBbfP/svLKGc15b+kyX2wezW48eda7oBBQ14aWApW1napBhfcCHTg5Xkr93DV/VihhqNaMDe1y4h2FJJ7xP+lrhuI5jYPi1BinrdFGUYSik0TcNfuyb2QdBS1Cyn6OoQbNqKe+3j7awtRa9kZZC8DKP9mmWlFPWLb6Zw4uVx12jd8iqtW15N8aT0wXKopZJt92X3vw2HKgmWhRAiy3R7LsHWvTGZ5Z5ShtFOJ4M2YoPA+DKMYUC4I4aVFXTkh0swjCCaZkePDZaJqXltN7Mc7sMc8lRjy+uNEfTgKB9HwdhvkDssOjbZVjiI4uk3oNlzaPj4N3HXiP8IPhzY2IuGEorJ5po1ncnqPWM3+FnBtB6dCKhCbVrH6XaKpv4Iw9cQ12dXsznjSinCmWU9dVmOZo8/t00Q19+u8fU+Q5njeQcFbNNL+MQ1is8oZZl9ADv1NkG7prHa1ofVtnBv6r9wKcWGl0mhPUzavoNJoT0Mf+oCRrRZhlLB9tunpegEES3DaNNhQoVAs1PxnynWQ4a3Dm/FInRzWqKmx2xKTL0pzLPjnfRrSylFzXI7nU0AAvXraVz2Z1q3vUHRxCsyvF1XbfATXU2CZSGEyLJwn+XWmJrl7GaP9JxyNFuONV0wU5o9L5xhVSF0RzRYtgaTRDpiQGRyodkHOGZ6nhUsB72Alvzj8RjRYLnWep7uLKZk+v/Fr03TKTvud7RsfinJC47eI9QabitnLxpKoGFzwqmxmxCtp7uKrMyyVT6ixWTLA564MgNNs1E263YAiqf9iIrHIiUeNldMUKmFA+CYYSnojriOFWYP6fC6fInt3mJax2nAcKOBEYHVXBj5GTsvr2bxni28sm0jH+zZQoW3JiE0bNRzWKQPZZEjOt1ugGMGE0N7GRuq5vBQDWNCjfQL2EifW06VWY7UqLctwzBCCX/3Ne9cSeuWVyibHR5ooWkahlm6kDbQzKAVWbLMdKoexBmUQmjW74MPlWF3h/Zbx3Wv1mQTFgUgwbIQQmSd5ojULPt7RmZZ0zSKpl6Dq+/0Dj9PdxZh+OrjyzAKh4CmE2zaii0/PIVPc0S7YcQFlpFgU4V8aPacdicImn2YDW9N5PmetOUjuqs0ZsHhj/HjMsuRgMVeNDR5OUySgEZzFkaDo1B0I6D5BsDq0WwtIvpPrzNmQIqmO60ODrqrOPwzsOVYfXzt+QMINm+PuXGbzHLbASSRzH388qPB9sD8Yi4YMZULRkwFYOey+1nw0T18buvPSltfvrT1oUFP/FlW6kVU6kXWkBSAvFCA8fnDrQB6XKia0UYdLnNMd5u/x75n/o+a934Y/XkabcswQgkhbijSDq3u/evCTwm0RlukpRuu0ZGuGLFrSBHkZlQ3bP5OGcHMM8ZZDpY9217P6v17MgmWhRAiy9r2Wc52Zhmg7LjbOvU83VWM4auPK8PQbA7sBYMJNG61glvdWQDKCH+krdutcgsjNlhupwQDwJYXnvAXzSx70HNKU58fUyqiOfJR/mawJXZCsBcNTVpykUzsBj9rU56mWa33DF9D3PmpevqGSxnCIWJ4/HdVuC1b5NquftPjguXYOlsV8iZM6yPJUJJUo7EBinTF7OB2ZhsV4AuigB16MSttfa3/rbb1waslhg6tuoNP9YF8ah8Y/bkog8FGEyONOsrqbMxwjGWkUcfIUD1lxZNwFI9IvcEvyYY/81MEU8hdET09XfY2o2A52fOTb/AzB66kY5XlqGD6QD7udlKG0VNJsCyEEFmm2XNQgVZrc1i2M8v7wgySY4NlAFvRYELNu1C9JgJY7dBU0BPfDSOmDCOTmmkrs2zVFHus+ufk50cDad1RQMjfnDR4teX3t0oy2l1DTOs4FfJZgZKVWTaDZXNDWqrSEt1uZWB1ZyGh5p0Q8uPsNYGiSVeSO+wUWjY+R97Is6LXMykjcVqfkZhZTsucjKc7w91FgKFGI0ONRs4IbAAgqNnZqJWwxtabtbZerLX1Zp3ei0Y98e/K0HS220rYbisB4FmipRzacw8wniEMVy3UPfEUZ3k1JuplDDYaySGUdKKf3iZYjl+7skaTJxxKMuEx8emZl2EY3oZ2r2f+3SgjgOFLPSAk/n4SLAO41z1B3vBTs72MOBIsCyFElmn2PFTIi+FvRrPnxtWiHmi0SOa2bcBvy+tDoHaN1aPWPK6CXtDt1iY2M7uuQt72N40Buj0HzVEQV7OcvgyjJLrWyD2T/bw1Tc8osw3mUJKY/suO8LrN9Rve+sj9CsIDT9oEy/3P/4DWzS9GSk7MYLk4crkW0OzkjzkXgKFX1VivL6GDQ9sAM1lmOQ0zQNVszrihK7HsKshYVcNYowYil1ZAw/Bz+XznMtbZerHW1ot1ei+26yWoVBv7HEFWUcoqSsH7KR8yHArDte19DTfe/9xHmbOcc1zTGWI0MthoYlCogFJSDYhQeKs+Tnokrid0Cp7tbya9ZrKMddtuKukYrXtp+CSzT2myXbPcUwST7BXINgmWhRAiy8zWYIanJus9lveV2T4udoMfgC23D97W96Ot46y+yuFMrC3S5i3YUhV+PJhZsBy+di9CkRHWRih9zbLmKIhuQozdOBcx4MIlVheM8rn3kDN4Ds1fPoi/ennS6xXPvIncISfE9V/WImUK4VKMHGtoiu4sJORvSshk5ww4ipwBR8U9ZrXhM4JxwbzZyzr8TXyQ37YMQ6lgYmlGOua57baBi6cBg5x2SoNbmR+MbuL0YGerXsJmWxnr8sayw+9ns62UTXovjDSl6Hv0AtAbaTQa+XPOMdEDleAo+j79lJt+hpsBRjP9jWb6KzdF6zYyrsBGueaiWPky2dIXp22HFCBlVt58Y5bOzgeHdXAFQDt9lg8Z7exTyAYJloUQIsvM4C7UWt0j6pX3hRUsty3DyOuN4a3DCHjCQXAkYFRBD+j28AARTSfkDvc2Njf4ZXTP3F4YMTXLaYNlTUN3lYTHWEfWEBu8uvpFNzXa8npTNOkKWjY+l/xa9lzKjvl1+L6xgVXckJNcQpEyDN2RH97ulqbDhxb5+F5zxmTmU5yvtakdDkXeaFiMUFz3jPaomDKMjkr2xiaXIOOMGsYZNZybU4yvMTyIpfyM/1FRNp1Fr/+ADd4Ay3KPJtT8GTtsxVRohRhpaowDmo2dWnFi27vNS8N/Fl2JUwXprVrpZbTSW7XQ22ill4p+Xa5a6R05lkNiuYdp50NjyD/8woTHVYpyj30mmeUICZaFEEK0YbZoC3mq44OkA5DZa1lr00nCltsbUOFNWTaXVUJgBD3hbhiRgNkcBKKCvo5lllv3Rp7naX+QSU4pyvBHg+QUG+6ir6kk6eNxQWVsZrnNRECzZlmLvIFIOgAj+ozI5aKvPeX5bR7f+8p5cd+HM8uZB8tWzXKGP/dY7T0ntpzBbnMwtrQvpfl+Quwmp/8emva8AEAAnQq9kC+OeJQvmkPkbPszO/RiKvQitmlleDIoUfJrdiq0Iir0onbPzVUBSpSXEuWlVHkoMcyvw3/2a4Zc+1DrnELlpygUIP1vTOd4Kz/qhqsegCSzLIQQoi0zuAt5qrEXDGzn7J4tXWYZIOjeFZ9ZDnnRI10j7AWDosFyyJtxzbAtt5xA7VprQ1t7kwfDHTsarGAzffBK6u4aMV00NE2L2cAX87g919oQptvzzQdT3ywSKMQH4qkyy+0Ejm03+LXp05zAyix3vGa+/U8BosGytQFS00CF0GJ+jg4MhhmNHDdhLI7iYWy9+6vWscJJV7Jn5d+p0gup0guo0gqpjPl6t15AlV5Aq5Z5ZtyjOfBoDqooTH5CLZB/VsLDLhWkQPkpVD4KlZ9CfJHvw48VKL/1fT5+clWQPBUglwC5KkiuCpBnfk0AHahdcHXG6z64SbAshBCiDbMzhNG6F630sCyvZt+kqlnWc8NT4ULNFeFJdWZrraAXIufaCwfhr/ky/HjIlzKjm3DP3N6EvDVWJ4103TAg3GtZs+2OBm3tZJZtmWSWIVILbSRklkMtu8NfR7LtWpJWdTEXSVhTyvW1E+QrIxRXHqLnlGJEMvAAweZdaI58bJE3A8oIhV9De0F4slW3V+ccW2JgXj/y80r2OgL1G3AUD2tziQB5BBlp1DPSqE94jqkFBzV6HjVaHtVaHtV6fvhrPY9qLfp1rZZHoBOvFcCn2fFpdmrp2OCeVHJUOHAOB9CBSGAdJEcFcRLCZf0ZwkX4a6cKWY+1PcdJ+Dzza7sycBDCjoFdGdgxcGBgw8AR+d78X88LVbNPgmUhhMgyc4OfCvlSjzY+QETLMFJkllsqwkNKdHPCmccKLm0FgwhufR2lVHiDX16GZRg55ahAizW0or3Msi23FyFHQTQD3OkyDEeb7+3hsoc2NctmZwmrHj1NgFY09Qd4dy3E1W86zasejCwgRWa5nWC5bTcMm6skLlje+a8R6DllDP1eOJhHhcJ/L53JLLdXuqESM8toOqrNmwvTnhdOZ/iP2wz/CGVWUpJPgHyjkaE0pl8S4cC6QcuhQcuhTs+1vq7Xwl+vNwbgtLfSoOXQqOfQjJNmzUWok4NOUvFqDryag3rS/+7uD3YVDqptKByRr83g2h4bWCsDHYUtcq75ta5U3Pc2VOQx8/yYr1XM8yLHnIH+XNtUw8iiNK0C9zMJloUQIstiM6EHco9lAD2nLPxnmwDTlhfOLGMEI5nl+A1+EM4sq2Arhq8+49ZxEO2/G4qUcLQXLJce8ysMbz31H/0yfH67wXL7ZRjhC4WDzNjyiNgNm1ZmOU2Qmz/yDIb/2E/rtmgrs5Tnt5MVVSpodR+B5K/DmoAH4ay4Zmu/vCPpUtqpWY4dxW1llhPLVjK+RhfQgAICFKgAg1Rz6mYUbWJ2BXix06yFA+dmzYlbc9KMy3rMrTmtx1sJl3q0ag482MN/ao7I43a8WndUQHdeULMRxPw7ysICAjCzokqCZSGEEFFmGQb0jOl9+yJ/5Flopz+Fsyy+nER3lYSDYiOIFrPBTwW9VlcHe+EgIBz0qmDm3TBsueHBJMHmnQDt1jo7iodD8fBobW47mVTdVZz08aSZZYjPLMe8+TFLU9oLzqFN8NnJzHLrxucpmnJN9DJpJhvCvpZhtPPGJmZEtFmGoqGHa5ZT1GS3bn2jzTU6sFmxG2mEO33kqiB9VPJ+1B1hEA6+YwPocGDtwKfZ8GHHr9nwYYv8acen2fCTeMyPDZ9mj/wZPSeo6QTQCaJHvraFv458b37d1Rnzzmpo7do3RvtKgmUhhMgyzRHNhOrOAztY1uwu8kedk/i4pmPL7U2opSqxdVwkeLIVhIPloHtXxuOuIToGOejOLLNsSdI6Lhl78YikjyfU6ZqZ5ZggNvbNjx4pt2mv1jh8qZhuGKk2BLYT1IZa9+Ct/DB6f2ch4VAvxfhlFQpnlq0yCVvSsdPtrTf5paOBbrQLiS1chpGihnvPi2fGX6OLM8s9hQ7kESRPBSnHk/KvZ38wIBpEtwmkA1o0wA5EAusQGgYaIfTwn1rM17HHtPD3CceSXGNbqC8Dc0uy90NIQoJlIYTIMs128JRhpGMGy8Rs8ANlfexvZpaDzbvCZRiZ9lmOZExD7nCf4UyDZWt4SDvBck7/mQy+bBu7XzidQM2qmBu3eZ6VqY4JlmNqt82BM+3WGpNZZjld0K07izH8jRi+mLpdzRbuMe1LvjlOmTXLkTcBmu5AheKDZVe/mfh2L018cjvBcrApOqzEKl/R9HAtc4ZlGB0a3S06RQecGDjNmpTYwH0/BfH1hTMZMKj//rlZhnpGvl0IIQ5hVsaRA78MIx09sslPs7ni26GZG/zy+oFmC2eWg972OyyYT4/USQdbKsLXzzizHFlD2u4UYfaCAYllF23Wlyz4jp3IaAXO6VrHJbl2quA6bdAdeU0q0BLzoEpfihEpw7C6fCT5ueSNOrvd9bbH/PlokZrlTMpSIHFCYVZk8EZH7Jv+RTn0K8rsjfL+IsGyEEJkWWzN8oE+7jqd8GCScLAc+9F7tIWbDVvBAIINWzqWWXaZmeXK8PeZZpatoC2zACixRjmTzLL5SYFmvZ70reMiZ8dlllOUW6QpwzDXZgTja2rTtuMzyzBiMsttperW0pFBJtGWe3okm53Zzz/YtC3je6RTNusPnX5upoG9OLhIsCyEEFkWmwnVD/AJfumYHTE0m7NNZjkagNgLBtGy4WkAXAOOzei6uj0HzZ4XU4aRYVaqA5nluPMj2vZZtjLLMa9Ns/pNq+jzM8ost1+zrKWbdGZtoPTEP5wms2yWYWhpark1+74Hy9bPW7eBEaT23R9k9LRA3brM75GGo2xc558smeXu1wMn+EmwLIQQWabF1okeCpll3RlXQhD7tVm3XHLkLeQNPTHja+s5ZQRbwpnljGuWMxxKEj2/zXltg+xkmeXY1nFWmUYHg+VOBGjmveLLMFIPWAGsMoxoMJskWE5RbtGxzHK0ZjnUUpnxJsIusw/BmGSW94eeFyzLWyQhhOgBdFsuRsh/UNcsRzPLrvigIyYYLBj3TeyFQyg56ucduraeU0Kog90w0mVQk98kfRmGFmm7FfdGIPaTAiuYzqAMI7ZdXWcCtMi9jDbBcsqe0YQzy+E+y5GgPklgrNnDQbGjfDzOXhNpWf9k3OOZMDPyWpbyddo+BGMSLO8HPTCzLMGyEEL0AJojD/yNB3dmOXaDX0wdbmyZQd6wk8kbdnLHr+0qw2xO1uENfhlmbtuvWY7WXlsPxWaW9cwzy3pMKUmnMsvmc4z43sR6TknqJ5ndMJIE/dZ1IxlkW34/HDG9tFOVZyQV2w3jQCNlGPtBzwuWD8DfVCH+v727D5Lkru87/vn2zM4+797t7d7e3d7pbnU6nXSS7sTpOCQhEWH0/ICEAKEDgSSDQNgiOlJ2CiV2SJXtICeuSgUDdkkROROnkAlxIYjBpCopF5UECAplB2GVyjIx5kLFkh0jIWFxutvOH/PU09Pd0z3dM909835VYd3O9MNve699n/nut38/YPQ0H/LzzowxapzpRmW5OtlZfY3bMxx1bE8vbvI2jLhh2bdd12wY3ZVj79Rxk9uOaubsWzSx+dxY52sfJH5Aq8xsawwm+OG/qMqyNs7Uq+PNEBvUhtHs025u2zruQuwxeudZ9qrMrcU+Riq0YRRcjhNNhyAsA0ABtGZKGOnKcn3xEO+iJPUX0lfrmtPHSRa/fzZhz3L3A35hy117H/Br/zyrc2taffN/SLzwTJLK8uSOyyL36fmAn2e568Dr0jyuuyFvBdCpxQ/L7evUGUEiZ+rIVIrKJZXlwXMJywCAAE6zslzyFfyiVBqVZTkTvgf8ki+v3HXsRgi06lT0LBEerTH0+YBfV09vQFtH2FRrsc7XXMEwwYeJ1phCvqegB/w2mjNm+Nswgh7ma7znyh+W57u3DRtj6+fj+F5P//cg5gD635XK8uC5G3mPoMvQwrKZzZrZ75jZo2b2rmGdFwDKwBrtF6NcWbaJWc0f+qBm1m/oDHMZVOua7QWx+5Ulz3LXMdswmu0iIfMQW8By15YgRHYNr/GQX5LKcuvhubA2jIDK8vc/sagfnDjQmmc5qg2jtnxQqtS06ehDHT3H3rnCEwzWN7ghheVUD/hRWR40VyMWls3s02b2nJk95Xv9ejN7xsyeNbOPNF6+XdLnXde9T9Kbuw4GAGPMqtP1X4Enma+2ZMxMy2/8V5racbmvspxFz3K9DSNJWG61SyScDaP1M4pVWe7/w08zLCf5MNGqBnuDqOf7q8ysBu53+kfPyt3Y8LVhdJ+3MrVJ6x96qT6tn6dCa05F297y5djjbO7jeyHR/rmgsjyW0v7NPCHpeu8LVr/LPinpBkkHJB0zswOSdkr6QWOzIU+qCADFZtVpORNzsVsIys4ClrtOo92GkaSynHCe5daUao3+cn8Pc0DPcrqwvKn+hyS/lg4Iy95FWmrLF2p2/zuC9/VXlntoTZXXqCrXVg7GH2d9T9/xgivLy9c+lvC4yc6baE/C8uCNWs+y67pfk/T/fC8flfSs67rfc133lKTHJd0q6aTqgTn1eQFg1Di1eVmCGQVKz7vcdYYP+MVevU/t4BN7No5KZ2W5u2e5e1GSrupzAk6tXlne+OkLsfdpL+HtCcuVzmsyHTI1n7txuqNnuXdoqYfOZgtR4spwVxtG99+DTZf901Q9xsHn7f94kzsuz3AgCOJ45xgviEGE1jW1K8hSPSSvSfp9SW81s9+S9KWwnc3s/Wb2pJk9+fzzzw9geABQPItHfkEr1zyS9zCGJuvKcrMX16kkaMNIsPx0fftGEG0G8rDlrh3vB4H+g9nM2TdJkqpzO2Lv410dr/Wa7wOEfxaKJvf0TxptGM3362G5Mr9Lq2/5A531gR/6TyZJcppzLAccd+fd3w0fbIw2jNm9t3SON5OHAPv7mex58BXVVi7K4PyI4vTT/z5gg+hUD/pb6Lqu+7Kke3vt7LruI5IekaQjR44UrxYPAANQWzpPWjov72EMT8hy130frq8H/JptFXFnw+hc2a57UZKAyrKk1bf8gSYWz44/rob5Qx/UzN5bVJ3fFXufoJ7lVo91q1IcHJY3Xn1JlcmlrtA6sXh2yNLjzcpy/ZoH/YZgYvO+8LH6zjN//l366f/5rwHn8MQKpyKdSdfJ2e8HGDNneDN2jLMCtqINorJ8UpL3zt4p6Ych2wIAxlBH9TWDPtBKPw/4tRbHiBnWneg2jOYDa/4H12Z2X6OJTXtjj6t1PLNEQVlScM+yvxUkrLJ86uX6tWhND9ejXtUINaEPPPbkC8sX/qz2PPiK1u76dntM7hl5w3LuYTXm+WsrFw92HKNs1HqWQ3xL0j4zWzezmqQ7JX1xAOcBAJSVk20bhtXm6y0ECXqW5UQsvhF0Dsf/gF/woiTDXLhiZt/tmjn7lvYQmoHe+897Mxw3w21IWN549aXGA36N76MVWkIqfa3jNpfHTvihJ2AcZo5qyxeqtnKoMYaNzkrjgNswtt78OS0e/Ujo+3HnBM/yQcDqwnpmx0J/0k4d91lJX5e038xOmtl7Xdc9LekBSV+V9LSkz7muG9G0BAAYN2bWCj5ZtGGYmZyppYSV5WTLXfecOi5gNoxBW73pcS2/6VOeIQRUlv0B0xdSm3N7u6d+LDkVT5tCdIXPmqGzFZajg+TWmx7Xrvf+uWcY4dsvHH5QklRd2KOOynIWH0Qifs1fXdijStSS4HHDelYfmBLMTjIyCtiGkeqn6brusZDXvywp2YSLAICxYk5V7pkzsR+w62Xh0P2qLV8Yf4dWG0ayFfxaS5P7FyUJmGd5KLzna17LjnmWm0tUN8KvL/A5tQWdefUluWdeqe/nD2dh4aUZknvU3aw6Lff036kyt+ZrKwnfb/78uzR//l3d5x/0A35m9VlBQt+PGVwzWmDFKjWZM2ZhuYBYigYAkA+nKp35qaySzT9Fmy/95UTbW9J5lltTx9U6vvZs0HHcYelY4MXXclH/Y3Rl2anN68zLnm272jBCzxx4vK6tGmG567rEnc/Z/4BfauFh2WT1Zb/D3o8Z1hP/dsEqgeett/wQlvPGTwAAkIv2NGc51W0sYSXYtyiJvyKdNHxnpqOy3Kj2Rky35u9Zdmqe+b2dSkBPc6+e5ehfm7eWwu4zLEe2lPQjarxmjYcKw94fUBtGyLWwymTkB4RK0gdAS6F4bRiEZQBAPpL2DGes1VaRsA2juriu6uJe1ZbO920w/Af8JF8VsxVgPQGrx3zG3sVwzCqaPa/eYTl77tt7nTjweF2bNdtW/KE9bpXYG24HPlOCSRsRYTn2A37J/g7M7b8z+I1KLfL6VpqrPGKgCMsAgFxY0spuxirTy43/bom1fbPtojKzql33Pt3dH+3k04bREeB8M1RI8dow2u9VVFs6T+vHT2liaX/zAIGntYBzBQ6vUVl2N171vxO5n+dMnj9mEVt6VZbbPctzB+72vR03LCergG+67J9oev3G1teTq6+tH6dSizynm2QpdPSNsAwAyEclWWU3a5PbjmjtPd9RbTnmqmytSnhweGmF/2G3lXjClMVow+gOy51tGAlO3Pi/PSrLjcq1e/qVyHH0Oo9U/4Czcv1ntMUzA0hSPRcl8VSWFy/5sG/nuNXwZH8HzBzfh5bmNH+9ZsMo3pzEo4iwDADIRd6VZUmqNaunMfTssc6pstwR/mJUlv09yTYxG7pt49WwE3edK8jW605o4eKf1+S2o5HjCNXx/ZnmzrtTlZmt8fYNPmD0e96e5X5bR/p6EDGkgh51nQq4gMcoYjYMAEAumrNg5NWznFjPynKzZznPVeYCWiN69Cw73rmpveGwZxCL14ZRXThLW676l91vxJ5P17r+HDtoBx6u19RxZzxf+qfRG9BsGLLwdpeouiZtGENBZRkAkI+82hb61LuynNNsGF7NvBVZmYwIgAFB30Iry2HHjylmVbSzpSReNbt//sqy73uPG5b90wrGPXfQnyM+TL76t8/0cZ6CK+CiJIRlAEAucptqrU+tcYYsEtEKdYWolIfPs+yvjHfO0+x9r0eYDeqPTsCN229rQSEyTaCKbsPomDrO37ISewaPpFPH+UO55+fXXDESuSEsAwDy0Zq6rQjhMobmeHtWlvP8fpptChELefjDrffDSlDlNLQ9YNBV3vaZul8aTBuGmUkdK/j5q/DJ54aOP6yQ6+xfVh1DR1gGAOSivTx0nj2+8fUab6sqW7C2ktrKIUnS9J5rG6/4q6WeyrKToGe5FQj7rPLGfjit8wG/znNnzbRw8c97Tue7VrFnw0h6TUxh17G/lo4yow0DAIC6QlRiE+hVCc9pueteassHddb9z2n+wHvqL0Q9tJZkNoxWZbnfsBzz4bSANoxUD/j1mGe5tuVA+2v/B6OBfrALGZeTvrI8e+4dfe03ddbVqc+dXPFm+CAsAwBy0e4BLla4DNN+wC8kMDn5T4XX5HqqtuZUVJna1P66Kyw77e9piD3L8UORp383k57lth3v/Gbouepf9jkbRtLxRbWGZNCzvHLdv0l9jHFGWAYA5KNkD/hV59ekSk3Vhd2B71sRKstBoavHoiRm1p4jOij4hgW5jFoi5g/er90PvBj6fuazYbSOUdHk1tdEb+pvWYnbhtGHjVPB12B611Wpj12uVo7itWHk//EXADCWclvxrk/V+V3a88CL4ZXUgob/7uWuu6unJqde53XiV5bTP+BXP75VanKqUxEnCpgNI0VYtqj2kYBr02FgbRimn/z5E4HjmbvgXll1Ss//4T0DOnew6sK6itgSkQcqywCAXJRuURJFtxy0Ho4rRPj3hJxes2HIW1mO37PcmvrNc7zVW5/Q5tf/aswhNsfYq5IY8IBfn9XHufPf3eMYydowVq4/0dc4JGlyx+t7b+S6MjNV5nb1fZ4kZve9dSjnKRvCMgAgHwVY7jpTBWjDCOyV7bHctWTtUJhkBb/G+95WhZn1G7Tptf8w5mibYbtH8M3oAb/146e0ct1jPY4RvQiJ/8NEZXZ74nE0zR94t6wy1Tir/xr4vx5OhXf+ovf1GMcQsCgJAAB11ppdolhtC/0qwlR4QQt9dLdhRFSag8YeFl6as1mknsYtQWW59VIW8aV3G0bXHMdd16fHTCER3DhT5zXGU5lZ6b1tiLW7vt33vrRh1BGWAQD5KNvUcb0UoLIcqOcDfk67SpxkNgylC8uxwqJvHM7EXOg5l678dc1f6K+MBmg94NcdaLsqvP7w3NWmkqIK6p06r0c1tbZ0fl+n2PHOb6q2fKEkaec9T2v1ti/1GBPhOEjB7mgAwLiwAk21lolmkMrh+9l131/KnKp+8hd/2PVe1/LWXX243tX+4o/dbVWW+w2MzYDeY39PgFu+7rHGn7r3qa0c6lyqOlREz3LXWKLbMobZMjCxeZ9e/ds/S7SPd7aPiU17NbFpb9bDGgtUlgEA+ei1fHTJWI6zYVRnt6kyvRyrZ9lflZ3adZXawbW9bc/KbyMs9z3PcsLK8tSuN6o6uy38nLGXoo5aTMVXSe4Rlt2A6d6cyc3xxtFRuQ9rdWlv427EXMQlhaA2nqztuu/7mtp51cDPkyXCMgAgF63KcqnmgA1XWzmk2uqRVA99DUTQIiQNq7c+0fkr/oDZMEIrv60gl3ZRkpiV5Y75lmM8nBcqYvq5HlPH+av0Z37yXMfX0+s3avcH/yreMLwfFsw0s/fW8HFI8Vc8TMP/AWYAbRlObbGQD/FFISwDAPLhVCVZyqWLi2Ny68VaO/bf5UzM5j2UjpDjD3id//T7QkuCeZYVMHVcIm682TBa7R6BU8gp8rWZfbdHHDlGYOsKz+3rM3fBPV3LSFem4laVJf/1nT3nNs9b3dcmqMWkMn9WgvMlH1MepgtYdR6N/w8FACgdcyZGp1+5KGKs4GcRFVpvG8b0rjeqtnqJNl/+K4GncjfOBB4jvrjzLDdbRCJCftf7das3PR5wvARTx/nbMjzXZ+WaR+TU5oIGHLNy6mvD6LXPxumul9Y8y3VXZnfEOGdCQ64A77rvLzV3wT1DPWcchGUAQC4q01tUmV7Oexgjr2t2Dk9IbAXGViWzHQad2rzWjn29NZtCl7Q9y+1BRL8fUFmOF3Tr1u76n9p+x9c8+yZ4wM9M2972n9v7B0ytt3jJPwgZeA9dLQ7RlfPpPdd1vVaZ3uLZJ4NI57pae893ml8MZnaMiJ93dXZb7wc+c0BYBgDkYuE1D2rHnf8t72GMvqgH/Hr05EZL14Zh1ZmO//Y+jzdMxn/Ar7Z8kaZ2XOrdsPt4/vc8X0/vvLK9f0BP99KVD2v5mn8dsn+4jofpzDr3DQipyz/zm9EHzCRkurIReYYgS/z+CwCQC2diRs5Er6CE/niDWPywHBQGw0+Rbp7lhUP3a+PVH/euzAYtix0r6IaIqCz7Z7/wVzl7Vz1TBNaOn0vA2PwLpHSdmfrnoHBlAQAYGQEhq2ue5Yr3Tf/G8U+VMixbpabNr/vHcqpTvU7U2KFXZdlitg0kmA1jkNzwnuXAKQB76WPs3VO45f+AXxERlgEAGGURleV272/jIboEbRjNWSrCgl1WMzW4rdUFvefpji+Je6cbx7OKN6ynW2Al2XE69+krICc+ZxGUZZxthGUAAEaNd+q4HNowdv/c32jn3d/per0vgQ/4pW/DaIbTXff9Rdd7fUuyf0Rleebsmwd77lhjQhNhGQCAkREQmCKXuw6fOq638LDs1OblVKcTHCtKzEVJYodFf89y9JR0WastX9T4ky+Yer6nqbUrkh84k/nKCctBCMsAAIyyOJXlZkUxyWwYQSvrDULgoiQplrv2zYYxiEVxQudf9p5f3uq/bzaMCAuHfq7vcfVSb3nxjiP78Jy+3WT4mA0DAIBR0Qi73um/otowuoJigspys/o5s/vahIPsU0flOM2sE74H/HrMQhFPZ6jcdOkvy2oLeunp39XpHz0bfP6oeZZDvr/146ckSS/+yae63ivi/MThyjRWKssAAIyM2b23aeHwcS294TfaL/qrxTFX8OtlcttrtedDL2t699X9DDWBoKnj0lSWWzt07dec83nHsW9o8+t/LXzP2rxviJ1jdCZmtfl1/yjwelbnd0qSKrOrnWNJHXazasNoXpckLTn9nKc8CMsAAIwIq0xoyxv+uW9lN1/PsiIqqQkD0jAWsHBbDxJGr+CX+Nf7/gqz1JrGbnL1sDa99hcDd9tx7BvaefdT0ceMMH/wg1q54Xc1s/c2365pV0JMt//8he/TzJ4bVF3YrcUjv6httz0RuF1t5VCq8wx7Ce0sEJYBABhhXdVNJ2ie5T56lodkYnGvJGlq++XtFwOCoRu3WumrAicNqZOrh1Wd3d45xs376u9tvaRz46DFRZyq5vbf0bkgj79nuY9AuXDwA4n38Vq++lOyyoTMTEtX/JomNp8buN22t35V227/SqpzlQ09ywAAjDL/bBhO+59+f1BMNhvGcEyuHtbOe/5U1UZorktTnWzM2xy1OElCU2tXaO09/0sTm/f3f5A+K65Wm5d76seaOutNzVc0yDYHq0zJmdwcuc3s/nfo5Wd+b2BjGDYqywAAjLDIymmaeZaHaGLTOZ0PsKVqw/DP4pFNW0Bt6bwUD9nFnw2jS+CiLeFWb/1Cf+dpsrRhPMX3mhPCMgAA46oRGN0+VvDLU/gHgBghzt8DPdCp74JCYdgY08720TklXpiZ9Ru149g3NLPvdlUX9/R/nlS6r4EztSVgu2IgLAMAMLbKUVnuliKw+VYeLMSUa5ZiNoyu/XofZ3L1sFZvelxmybtx41XwC3BNM0RYBgBgTKWZZ7ms3KIu6ZzJfM9SZW4tg8E0hF2rXtew5/gD3i/Ch5YQhGUAAMaVbwW/srRhpJOsxzeVoHMEBk1TbcsF/Z2jtfpiVSvXn9COt/+XJDsnP1/a6+bbvzq/uzGUgn6IEWEZAIDx5Z86btBLV2clVWBrhrLO77W6sJ7imCmZqTq3I+1BNHfeO1VdOCuTIdUPGXSds/2QMbX7Tb03yhlTxwEAMK78U8c5ZYkFWfQst4+x/Y4/0sSmc1KOKSepPjj02Deo2pt6NoywoRS3DaMsdwUAAMjYOPYsV2brPb3zF72/9drUjsvDNk+pOwDGXjwlZP/8pR1TEb+naIRlAADGVrrlrnOT5gG4qU1aP34qw8EMUnCwnt1/p6oL2fX6bvmZT8bf2CzwIcnFI7+gF578jcTnrs7vah448b7DUpLmJAAAkLmSPuBn1ZneG5VadHDcesNntPT6X/HtkjxsTm6/VJJU23J+4n39nNqCbGI20T4Lhz+s+QvuaXxV3Af8qCwDADCuStqG4VSnVFs9olN/9WTeQ4kWezaM0AP0d46Y5g68W1M7r9TEYtjDjcEzd8QYVMRb7fdmdl9TiodKiz9CAACQKatM1v/rf8CvJGFZkpzJTZ0vFPgBsYFK0YZhZhFBOXyfXlVgq9TiHsz7RaJxDBOVZQAARtCOd35Tp398MvjNyqR05qdqB5TmXL3lCcuBCjxXbyJ9BP94K+slP2qgHtd582UflTMxpxf/+BPRhy/Jz4vKMgAAI2hy62s0u/eWwPealWXXPeN/Y9DDGisLnhk32pIExLzDZH/nd2oLWrry4YzHkh/CMgAAY2Zq++skdc+rXKY2jGaQm9zxeklSZWZbnoMJtHDofq0fP6XtIavqzey7XZJk5vs5JKkSF7b9JGxc/teLOv422jAAABgzKzf8W516/k9UmV7ufKOEbRibjj6kqe2XyplcyHsooabWrtD07mv1d9//Tx2vr1zzqJaufFhWmQjZM0aQzKWVodc5e4y7sAE/GJVlAADGjDMx27kQR3PquFJVluvMnEIH5S6ecGuVCVVnM6qIFyqA9gjToSsDFhNhGQAA1JUwLJfHgForChUye4/FCjXeeAjLAACgrkxtGCWZSWHgCtmGEd9gZvHIFmEZAICxV942jGJVVuMYVLgd3nVwJuZC3vF8b6X7uYQjLAMAgLoyhuWySBQeCxI0Q6rWtZWDSjLGHce+3vmC51q4uU+P1xthGQCAMbf15n+vqbU3lGLpYfjkVMGdOedW3yuuwgL05Oolvk2LH5C9mDoOAIAxN3vOrZrtCj8YjBhBMUkAzi14FqT6PQSEZQAAUEJBIbH+2vT6jdp09KHhDqeHpSsf1l+felFTO//eYE4whArz1pse93yVIqQHjLXID/rx+xYAAFBi3SGrtuWC1iqFRVHbckA77vgjOROzeQ+lL5W5nZptrDgYT3j4ndh0jiTJmdqcclTDQWUZAACgrHKbdaL/8y694V9oZv0mTa5eotMv/98MxzQYVJYBAMBoKfu0ZUn6kEvysNyWN31Klbk1SZJTndLM+vU5jyg+wjIAACixcoTFwRvwB4QYH0AWDz9Y37Qy1fXewkXv01nv+98BexX/50dYBgAAKJKSVsY3X/ZRrR8/JatM9PE9FPd7JiwDAIASK27I6lthWivij8MtzJizR1gGAAAou4FXo0fwQ0lMhGUAAAAk4wvnVtLWkTgIywAAoHxG+Nf+ieQUUhcvfiCbA5Xg50hYBgAA5TWKFc0SLHc9tXaFdt79lGcY/nEk/LkU+OdIWAYAACOi+FXKWPoKwNmHzfmDH/AcfcBhtsAVZsIyAAAAusztv0M7730m72HkjrAMAABQVjm2L2Q6XRxtGAAAAFmKCmrFDV6JxAmQw2pfCBxLFucubvtFE2EZAACUztKVv67a8kFNbjua91AGJ0EQHlRPcWV6WZI0f9F93W+6G+HjKXClOKlq3gMAAABIanL1sNbuejLvYYw8pzav9eOnQt7Noipc/FBNZRkAAIyEkVtyuejV2YjKcoKDZHCMwSIsAwAAlF0ewbrjw0na0FvcDwaEZQAAMBJGqU+2DNwSVIWzQFgGAAAooqK3lWTShlF8hGUAAAAk1xHmR7eqT1gGAAAjYbwf8MsjrGZwvUvwMyMsAwAAILlMH/ArLsIyAABAWeW63DU9ywAAAOUzTrNi5NrGkOG5C/wzIywDAACUXe7zLI+uoYVlM7vNzB41syfM7NphnRcAAACDQBtGi5l92syeM7OnfK9fb2bPmNmzZvaRqGO4rvsF13Xvk3SPpHf0PWIAAIBA41HpLIwx6VmuxtzuhKRPSPpM8wUzq0j6pKRrJJ2U9C0z+6KkiqSP+fb/Wdd1n2v8+Zca+wEAACAT7TaM5WselWzwzQOT2y/N4CjF/4ATKyy7rvs1M9vje/mopGdd1/2eJJnZ45JudV33Y5Ju9h/D6mtQPizpK67rfjvVqAEAALoU9yGxYZq/4O6hnMecqjYdfUg/+h/+GmlfR8vgGIOR5mPHmqQfeL4+2XgtzIckXS3pbWZ2f9hGZvZ+M3vSzJ58/vnnUwwPAAAAQzHCD/vFbcMIEvQRIPRKua77cUkf73VQ13UfkfSIJB05cmR0rzwAAEDZpZyFozK3ptlz367Fw8ezGc8ApAnLJyXt8ny9U9IP0w0HAACgX6NSY+vj+8hrnuKUFWUzR1tv/HcZDWYw0rRhfEvSPjNbN7OapDslfTGbYQEAAIwbk1NbzHsQ/SnwoiJpxaosm9lnJV0ladnMTkr6qOu6j5nZA5K+qvoMGJ92Xfe7AxspAADACNv9wAsymV790Z/lPZTkxr1n2XXdYyGvf1nSlzMdEQAAQApW4JkVojjVqcafShQ8R7ii3MRy1wAAAKU3+qE1L4RlAAAwEqbPurr+393X5DwSjJI0s2EAAAAUxtT212n9+Km8hzGmStQ6khCVZQAAgELpp6WCNoxBISwDAAAUShmrtKMb1gnLAAAAQAjCMgAAAFIqYzU8HsIyAABAIcVvbbDc5jse3faLJsIyAABAIY1utbZMCMsAAADo0+gHesIyAABAIY1+i0MZEJYBAABKj57lQWEFPwAAAGRu5py3aO78d+U9jNQIywAAAIVU7n7g1Zt/L+8hZII2DAAAgLLLbeq40UdYBgAAKKQSBWC33FXwKIRlAACAshvhsJo3wjIAAADSGeE2EMIyAABA2Y1wWM0bYRkAAKBAqotnS+Zo82UfzXso8Y1wGwhTxwEAABSIMzGr9QdfyXsYMY1+RZvKMgAAABCCsAwAAIA+jW77RRNhGQAAAAhBWAYAAECf6FkGAAAAxhZhGQAAAAhBWAYAACi73Oc5zvv8g0NYBgAAQH/GYOVAwjIAAEDZ5RVac69oDx5hGQAAACmNboWZsAwAAICURrfCTFgGAABAf+hZBgAAAMYXYRkAAAAIQVgGAABAX8yp1f/gTOQ7kAGq5j0AAAAAlNPC4b+vjVMvaPGSD+c9lIEhLAMAAKAvTnVaS1f8s7yHMVC0YQAAAAAhCMsAAAAltXTlw5Ikq07nPJLRRVgGAAAoqYWD79f68VMyh87aQSEsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIc1037zGEMrPnJX0/xqaLkl6Iedg42y5L+uuYxxsVSa7hMAxjPFmfI+3x+tk/6T7cK+lxr+R/PO6VcuBeyf94RbpX4m6X172y23XdlcB3XNct/f8kPZLltpKezPt7KvI1HJXxZH2OtMfrZ/+k+3Cv5P9zLuN4uFfSb8u9kv//uFcGs0/c7RNsV7h7ZVTaML40oG3HSdGuyzDGk/U50h6vn/2T7sO9kl7Rrgv3ymD24V5Jr2jXhXtlMPvE3b5ofx9iK3QbRl7M7EnXdY/kPQ6g6LhXgHi4V4B4inivjEplOWuP5D0AoCS4V4B4uFeAeAp3r1BZBgAAAEJQWQYAAABCEJYBAACAEIRlAAAAIARhOSEzu83MHjWzJ8zs2rzHAxSVmZ1tZo+Z2efzHgtQJGY2a2a/0/i35F15jwcoqqL8OzJWYdnMPm1mz5nZU77XrzezZ8zsWTP7SNQxXNf9guu690m6R9I7BjhcIDcZ3Svfc133vYMdKVAMCe+Z2yV9vvFvyZuHPlggR0nulaL8OzJWYVnSCUnXe18ws4qkT0q6QdIBScfM7ICZXWRm/9H3v62eXX+psR8wik4ou3sFGAcnFPOekbRT0g8am50Z4hiBIjih+PdKIVTzHsAwua77NTPb43v5qKRnXdf9niSZ2eOSbnVd92OSbvYfw8xM0sOSvuK67rcHPGQgF1ncK8A4SXLPSDqpemD+Y41f0QpjLuG98qdDHl4gblJpTe1P+FL9/4mtRWz/IUlXS3qbmd0/yIEBBZPoXjGzLWb225JeY2YPDXpwQAGF3TO/L+mtZvZbKvESwECGAu+Vovw7MlaV5RAW8FroSi2u635c0scHNxygsJLeK38jiQ+UGGeB94zrui9LunfYgwEKLOxeKcS/I1SW659ednm+3inphzmNBSgy7hUgGe4ZIJ5C3yuEZelbkvaZ2bqZ1STdKemLOY8JKCLuFSAZ7hkgnkLfK2MVls3ss5K+Lmm/mZ00s/e6rnta0gOSvirpaUmfc133u3mOE8gb9wqQDPcMEE8Z7xVz3dCWQwAAAGCsjVVlGQAAAEiCsAwAAACEICwDAAAAIQjLAAAAQAjCMgAAABCCsAwAAACEICwDAAAAIQjLAAAAQAjCMgAAABDi/wPUnP16RmY34wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,8))\n", + "plt.loglog(ps.freq, psd_shape, label=\"true power spectrum\",lw=3)\n", + "plt.loglog(ps.freq, ps.power, label=\"simulated data\")\n", + "plt.loglog(ps.freq, res.mfit, label=\"best fit\", lw=3)\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That looks pretty good!\n", + "\n", + "You can print a summary of the fitting results by calling `print_summary`:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.72916 +/- 3.78312 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.09193 +/- 0.73003 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.10372 +/- 0.55313 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.579354.3\n", + " -- The Akaike Information Criterion of the model is: 2189.789677035487.\n", + " -- The Bayesian Information Criterion of the model is: 2204.512942872433.\n", + " -- The figure-of-merit function for this model is: 1079.682849.5f and the fit for 997 dof is 1.082932.3f\n", + " -- Summed Residuals S = 69267.121618.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(loglike)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Likelihood Ratios\n", + "\n", + "The parameter estimation code has more functionality than act as a simple wrapper around `scipy.optimize`. For example, it allows for easy computation of likelihood ratios. Likelihood ratios are a standard way to perform comparisons between two models (though they are not always statistically meaningful, and should be used with caution!).\n", + "\n", + "To demonstrate that, let's make a broken power law model" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# broken power law model\n", + "bpl = models.BrokenPowerLaw1D()\n", + "\n", + "# add constant\n", + "bplc = bpl + c" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude_0', 'x_break_0', 'alpha_1_0', 'alpha_2_0', 'amplitude_1')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bplc.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# define starting parameters\n", + "bplc_start_pars = [2.0, 1.0, 3.0, 1.0, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "loglike_bplc = PSDLogLikelihood(ps.freq, ps.power, bplc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "pval, plc_opt, bplc_opt = parest.compute_lrt(loglike, starting_pars, loglike_bplc, bplc_start_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Likelihood Ratio: 2.2374827070098036\n" + ] + } + ], + "source": [ + "print(\"Likelihood Ratio: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Bayesian Parameter Estimation\n", + "\n", + "For Bayesian parameter estimation, we require a prior along with the likelihood defined above. Together, they form the *posterior*, the probability of the parameters given the data, which is what we generally want to compute in science.\n", + "\n", + "Since there are no universally accepted priors for a model (they depend on the problem at hand and your physical knowledge about the system), they cannot be easily hard-coded in stingray. Consequently, setting priors is slightly more complex. \n", + "\n", + "Analogously to the `LogLikelihood` above, we can also define a `Posterior` object. Each posterior object has three methods: `logprior`, `loglikelihood` and `logposterior`. \n", + "\n", + "We have pre-defined some `Posterior` objects in `posterior.py` for common problems, including power spectral analysis. We start by making a `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDPosterior" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The priors are set as a dictionary of functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law index\n", + "p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_0\"] = p_alpha\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There's a function `set_logprior` in `stingray.modeling` that sets the prior correctly:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import set_logprior" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "lpost.logprior = set_logprior(lpost, priors)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also set the priors when you instantiate the posterior object:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Much like before with the log-likelihood, we can now also compute the log-posterior for various test parameter sets:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -198.61635344021062\n", + "log-likelihood: -2412.2493594640564\n", + "log-posterior: -2610.865712904267\n" + ] + } + ], + "source": [ + "test_pars = [1.0, 2.0, 4.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the prior is zero (so the log-prior is -infinity), it automatically gets set to a very small value in order to avoid problems when doing the optimization:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -1e+16\n", + "log-likelihood: -2534.0567826161864\n", + "log-posterior: -1e+16\n" + ] + } + ], + "source": [ + "test_pars = [6, 6, 3.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: 1.383646559789373\n", + "log-likelihood: -2184.6739536386162\n", + "log-posterior: -2183.290307078827\n" + ] + } + ], + "source": [ + "test_pars = [5.0, 2.0, 2.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can do the same parameter estimation as above, except now it's called maximum-a-posteriori instead of maximum likelihood and includes the prior (notice we set `max_post=True`):" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod='BFGS', max_post=True)\n", + "res = parest.fit(lpost, starting_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "best-fit parameters:\n", + "4.8949 +/- 0.0762\n", + "2.0690 +/- 0.0636\n", + "2.0547 +/- 0.0149\n" + ] + } + ], + "source": [ + "print(\"best-fit parameters:\")\n", + "for p,e in zip(res.p_opt, res.err):\n", + " print(\"%.4f +/- %.4f\"%(p,e))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same outputs exist as for the Maximum Likelihood case:" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.89491 +/- 0.07623 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.06898 +/- 0.06363 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.05471 +/- 0.01489 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.845867.3\n", + " -- The Akaike Information Criterion of the model is: 2188.688941098666.\n", + " -- The Bayesian Information Criterion of the model is: 2203.412206935612.\n", + " -- The figure-of-merit function for this model is: 1104.686605.5f and the fit for 997 dof is 1.108011.3f\n", + " -- Summed Residuals S = 75870.935552.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(lpost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unlike in the maximum likelihood case, we can also *sample* from the posterior probability distribution. The method `sample` uses the [emcee](http://emcee.readthedocs.io/) package to do MCMC. \n", + "\n", + "**Important**: Do *not* sample from the likelihood function. This is formally incorrect and can lead to incorrect inferences about the problem, because there is no guarantee that a posterior with improper (flat, infinite) priors will be bounded!\n", + "\n", + "**Important**: emcee has had a major upgrade to version 3, which came with a number of API changes. To ensure compatibility with stingray, please update emcee to the latest version, if you haven't already.\n", + "\n", + "Much like the optimizer, the sampling method requires a model and a set of starting parameters `t0`. Optionally, it can be useful to also input a covariance matrix, for example from the output of the optimizer.\n", + "\n", + "Finally, the user should specify the number of walkers as well as the number of steps to use for both burn-in and sampling:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Chains too short to compute autocorrelation lengths.\n", + "-- The acceptance fraction is: 0.640200.5\n", + "R_hat for the parameters is: [0.33858822 0.00779588 0.00477259]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.92699673203164\t0.5826084748010877\t4.001167475075788\t5.916405947428704\n", + "\n", + "theta[1] \t 2.0850162824299567\t0.08840420643721274\t1.945198565812\t2.236054242762929\n", + "\n", + "theta[2] \t 2.059927524015745\t0.06916995745141118\t1.944976347964247\t2.172179088048585\n", + "\n" + ] + } + ], + "source": [ + "sample = parest.sample(lpost, res.p_opt, cov=res.cov, nwalkers=400,\n", + " niter=100, burnin=300, namestr=\"psd_modeling_test\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The sampling method returns an object with various attributes that are useful for further analysis, for example the acceptance fraction:" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6402000000000001" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.acceptance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or the mean and confidence intervals of the parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.92699673, 2.08501628, 2.05992752])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.mean" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[4.00116748, 1.94519857, 1.94497635],\n", + " [5.91640595, 2.23605424, 2.17217909]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.ci" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method `print_results` prints the results:" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "-- The acceptance fraction is: 0.640200.5\n", + "R_hat for the parameters is: [0.33858822 0.00779588 0.00477259]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.92699673203164\t0.5826084748010877\t4.001167475075788\t5.916405947428704\n", + "\n", + "theta[1] \t 2.0850162824299567\t0.08840420643721274\t1.945198565812\t2.236054242762929\n", + "\n", + "theta[2] \t 2.059927524015745\t0.06916995745141118\t1.944976347964247\t2.172179088048585\n", + "\n" + ] + } + ], + "source": [ + "sample.print_results()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, the method `plot_results` produces a bunch of plots:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABC4AAAPrCAYAAACXrc0vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXhU19bA4d8ZzSSZGHEBgrsTihQKtJS21Ch195a21F1u3ehXh7oLLW2hQgWKFIfg7gQSLAkJ8cno+f6YzDATnUCABNb7PPe5Tcb2ORP23medtddWVFVFCCGEEEIIIYQQojHSnOgGCCGEEEIIIYQQQtREAhdCCCGEEEIIIYRotCRwIYQQQgghhBBCiEZLAhdCCCGEEEIIIYRotCRwIYQQQgghhBBCiEZLAhdCCCGEEEIIIYRotHQn6oOjo6PVli1bnqiPF0KIeluxYsVBVVVjTnQ7jpdTrZ8uLLezM68MlwoaBVo1CyY8SH+imyWEqAfpp8XxImOGEEfmSPvpExa4aNmyJcuXLz9RHy+EEPWmKMruE92G4+lU66dziq10Gj8Hu1NFr1VY+PBQYs3GE90sIUQ9SD8tjhcZM4Q4MkfaT5+wwIUQQgjRmMSajWx8eCjpWQWkpUTIBFQIIUSNZMwQ4viSwIUQQghRIdZsZFSnuBPdDCGEEE2AjBlCHD9SnFMIIYQQQgghhBCNlgQuhBBCCCGEEEII0WhJ4EIIIYQQQgghhBCNlgQuhBBCiEYqp9jKtI3Z5BRbT3RThBBCBED6bSGODSnOKYQQQjRClbfa23gCt9rLKbZK5XwhhKhFTrGVGVtzGffrOpwuTni/LcTJRgIXQgghRCOUnlWA3alSbHVgNupIzyo4IdXrG1MARQghGiNPP2mxO7HYXQAntN8W4mQkS0WEEEKIRigtJQK9VsFs1KHXKqSlRJyQdvgGUOxOlfSsghPSDiGEaKw8/aQnaGHSaU5ovy3EyUgyLoQQQohGKNZsZOPDQ0/4Eo3GEkARQojGyref1GoU3r2oCyPaxUh2mhANSAIXQgghRCMVazae8DTjxhJAEUKIxkr6SSGOPQlcCCGEEKJWjSGAIoQQjZn0k0IcW1LjQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhKhFTrGVaRuzySm2nuimCCHESUn6WSFEXXQnugFCCCFEY5VTbKXT+DnYnSp6rcLGh4cSazae6GZVK6fYSnpWAWkpEY22jUIIUVlT6mcbMxkDxMlOAhdCCCFEDdKzCrA7VYqtDsxGHelZBYzqFHeim1WFTPyFEE1VU+lnGzMZA8SpQJaKCCGEEDVIS4lAr1UwG3XotQppKREnuknV8p34250q6VkFJ7pJQggRkKbSzzZmMgaIU4FkXAghhBA1iDUb2fjw0EaffisTfyFEU9VU+tnGTMYAcSqQwIUQQghRi1izsdGnLcvEXwjRlDWFfrYxkzFAnApkqYgQQpwEFEWJUBTlZ0VRNiuKsklRlP6VHj9DUZRCRVFWV/zvmRPVVnFseCb+MmEVonGSflocSzIGiJOdZFwIIcTJ4R3gH1VVxyiKYgCCq3nOfFVVRx3ndgkhhHCTfloIIY6QBC6EEKKJUxQlDBgM3ACgqqoNsJ3INgkhhDhM+mkhhDg6slRECCGavlZALvCFoiirFEX5VFGUkGqe119RlDWKovytKErn49xGIYQ4lUk/LYQQR0ECF0II0fTpgF7AB6qq9gRKgccqPWcl0EJV1e7Ae8Cv1b2Roii3KYqyXFGU5bm5ucewyeJYyim2Mm1jNjnF1hPdFCGE2wnpp6UvEEKcLCRwIYQQTd8eYI+qqksrfv4Z9wTZS1XVIlVVSyr++y9AryhKdOU3UlX1Y1VV+6iq2icmJuZYt1scAznFVjqNn8PV362k0/g5csEiRONw3Ptp6QuEECcTCVwIIUQTp6rqASBLUZT2Fb8aDmz0fY6iKPGKoigV/52Gu//PO64NFcdFelYBdqdKsdWB3amSnlVwopskxCnvRPTT0hcIIU4mUpxTCCFODvcA31VUqt8J3Kgoyh0Aqqp+CIwB7lQUxQFYgCtUVVVPWGtPgJxi6ymxx31aSgR6rYLZqEOvVUhLiTjRTRJCuB3Xflr6glPbqTLmiVOHcqLmrX369FGXL19+Qj5bCCGOhKIoK1RV7XOi23G8nEz9tCdl2u5U0WsVNj48tEEnco1tglhdexpbG4U4FqSf9ncy/rs/GY+poR2rMU/OvWgIR9pPS8aFEEKIk55vyrTZqCM9q4BRneIa5L2PdVDkSMSajX7H1xjbKIQ49ir3BU2d9GWBORZjnpx7caJJjQshhBAnvWOZMn2s15E3xK4AstZdCHEyaEx9WWPeseVYjHmN6dyLU5NkXAghhDjpxZqNbHx46DFJcT2WQZGGusMla92FECeDxtKXNfbsg2Mx5jWWcy9OXRK4EEIIcUo4VinTxzIo0lDpvseyjUIIcbw0lr7sWC4/bCgNPeY1lnMvTl0SuBBCCCGO0rEKijTkHa6Tba27EOLU1Bj6slM1+6AxnHtx6pLAhRBCCFFJY6mcLne4hBCi8ancNwNM25gt/bQQx5AELoQQQggfDb12+WiDIPW5w9VYAi5CCHGyqdy/evrmIx0zpL8Won4kcCGEEEL4aMi1y8ezgFtjLxYnhBBNVW3965GMGdJfC1F/sh2qEEII4aMh1y4fz+3jZKs6IYQ4NmrrX49kzJD+Woj6k4wLIYQQJ1RjS5dtyLoSRxsEqc+5OVWLxQkhxLGWGmVCRSXUoK3Svx7JmNFY++vGNh4L4SugwIWiKCOBdwAt8Kmqqq9Wejwc+BZoXvGeb6iq+kUDt1Wc4jQP/RHQ81xvnH+MWyKEaCiNNV22oSqneya0M7bm1vu19T03UshTCCEaXk6xlSETF6GqoCgwd+yAKv1rfceMY9FfH23QobGOx0J41LlURFEULTABOAfoBFypKEqnSk+7C9ioqmp34Azg/xRFMTRwW4UQQpxkTpV02ft+W89dU9bRafwccoqtdT4/p9jKhIUZWB2uep0bz+RZJptCCNEwPONUqc2JgkJGvqVB3rch+2tP0OHq71YGPM5U1hTH45xiK9M2Zh/R8YqmJ5CMizRgu6qqOwEURfkBuBDY6PMcFTAriqIAoUA+4GjgtgohhDjJNNZ02YZU38JtngmozeGizOYkSKeg1Zyc50YIIRq7xj5OeQLdNoeLEpvziItKN/bjrEwyRE49gQQukoAsn5/3AP0qPed94HdgH2AGLldV1dUgLRRCCHHSOhWWN9R3MugJdJTYnAC4XOC+PyCEEOJ4a8zjlOfi3VoR6K6uBkegGvNxVqchdwATTUMggQulmt9VnkGdDawGhgGtgX8VRZmvqmqR3xspym3AbQDNmzevd2OFEEKcfBqqnkRjVd/JoCfQYdJrsNhd2FwqRhcyKRNCiBOksY5TvstYQgxa7h/cirsGph5x0KGxHmd1mlqGiDh6gWyHugdI8fk5GXdmha8bgSmq23YgA+hQ+Y1UVf1YVdU+qqr2iYmJOdI2CyGEEEfkRK2Hrc9aZk+g46Mx3Ykw6WRSJoQQNTjVaxz4XrwbdZqjClo0NZ6x8rure8kykVNEIBkXy4C2iqKkAnuBK4CrKj0nExgOzFcUJQ5oD+xsyIYKIYQ4tZ1KFdNjzUau6Z3MiHYxTSZtVwghjqfG3qcfj61Fm9ryjobWlDJExNGrM3ChqqpDUZS7gem4t0P9XFXVDYqi3FHx+IfAC8CXiqKsw7205FFVVQ8ew3YLIYQ4hTTEBLUproeVSZkQQlSvMffpxzOoIuOEOFUEknGBqqp/AX9V+t2HPv+9DxjRsE0TQghxIhWW28kptjaKOzgNMUGV9bBCCHHyaEx9euXsisYcVBGiqQoocCGEEOLUszOvjE7j5zSK9NuGmKCe6im1QghxMmksfXp12RWNKagixMlCAhdCCCGq5VLB7lQbxZ2ihpqgSkqtEEKcPBpDn15TdkVjCKoIcTIJZFcRIYQQpyCNQqO6U1SfnTkawqlerV4IIY6nptrn1pRdcbzHLCFOdpJxIYQQolqtmgWzsBEsEzkRaiqsdjyqxAshxKmmse8QUpvjtWRFxh9xqpPAhRBCiGqFB+lPucmR0+ki/2AxUxftJHRfHkUoaEOCmL8lm9PbxzXZiXVtZDIshDjRAilm2Zj7qmO9ZKUpB3aEaCgSuBBCCHFKU1WVtSt28dsPS0lfsBW73QlAe5/nfLxgDZMTIkjR6Mk1h1CeENUoan8cLZkMCyEag7qKWZ4sfZXNamfXjhz27TlEabGFkuJybFYHer0WvUGHKdhAZLNQoqLNRMeGERUdiqIoskuJEEjgQgghxCls+aLtfPruDDK2ZWMON3Hu6D60aB1DXEIkLqOe5TtySdRrsBwqYc2qTA4uyyB2by7q5l1Mz82h/MxODBzakYTkqGPSvmN9h1Emw0KIxqCu5Rb16asaU2aG0+li09os5s/ayJplGWRm5OJ0ugJ+fXCIkeSW0cQmR5G4p5ii0BBsxpBGU3tKiONJAhdCCCFOOaqqMvX7xXz81gySmjfj/qcvYOjIbhTaXaRnFdC8YsKb1ruF9zVXAtlF5fy9aAfW7ftZs2gbn7w9g0/enkHr9vEMHNqR/md0ILVNHIqiHHUbj8cdRtmyTwjRWNS23CLQvqqxZGbsy8rn10lL+G/GegoPlaI36OjWuyX9BrejTYdEUlo0wxxuIiQ0CINRh8PuxGZzUFZq41BeCfkHi8k5UMie3QfJ2nWQDcszaJ5XAoBWq+HV/QfodVorevZrTceuyWg0Ne+30JgCOUIcDQlcCCGEOKU47E4mjv+LP39ZzsBhHXnk+dEUOVR+2pDNuF/X4XRR44Q3LiyIG0Z2BjrD3WdyYO8hFszeyMI5m/j6wzl8/eEc4hIj6D+4PT37taZrzxaEmIOOqJ3pWQXYHC5KbE5CDdpjkg1xvIrKCSHE0Qi0r6ouMyMtJeK49XEb1mTy01cLWTJvC1qthoHDOjJwaEf6DGhDSGjNY4HBqMFg1BNqNhEbH17lcVVVyc0uYvvm/Wxam8XqZTv59uO5fPPRf8TGhzP0nG6ceV53mqfG+L2uciBn7tgBZORbpL8XTZIELoQQQpwynE4XLz/xEwtnb+LyGwZxw13DOVhqp9P4OVjsTix2dwqvbypybXer4pMiGXPtQMZcO5C83GKWzt/Cknlb+GvqCn79YSkajULr9gm0bh9PSstokltE0yzGTERUCOGRIRRYnTW+d2qUiVKbu95Gqc1JapSpzuM7kjtrx7qonBBC1EdN/VggfVXlzIzUKFODZmBU1zZVVdmwOpMfvpjPsoXbCAsP5sqbTmfUpWk0izEf1Xt7KIpCbHw4sfHhDDijAwBFhWUsX7idWX+v4aevFvDjF/PpfVprxlw3kJ5prarUxgg1aOn/3gIUlCZdJ0ScuiRwIYQQJwFFUSKAT4EugArcpKrqYp/HFeAd4FygDLhBVdWVJ6CpJ9QX789k4exN3P7A2Yy+egBw+A6dJ2hh0mm8qciBpB37TjbPHd2Hc0f3wWa1s2ndHtYsz2D9qkwWz93CP79WPd1OrQanTotTr6NXmxgSEiJoFmumRWos+4xGgvUaSu0ugg1aMvItdI4Pq/HYGkuKtBCietJP1+1o+7HKmRkNWcencttW3j2Q9Qu28OfPy9m+ZT/mcBM33XMmF17ejyCT4ajeO5DjDgsPZti53Rh2bjfyDxYz4/dVTPl+CY+P/ZqU1rHccveZ9O3RwhvIUVFRVSixSU0j0TRJ4EIIIU4O7wD/qKo6RlEUAxBc6fFzgLYV/+sHfFDx/6eMWX+t4aevFzJqTF9v0AL879BpNQrvXtSFEe3c6bYTFmZgdbgotTmrnejVNNk0GPV075NK9z6p3ucWFZSxJzOPQwdLKCwoZemWbKYsz0K12glyuSgos5G/JpP83GLvzib9tBoKm4VTkNiMbs0qf6X+pNCmEI2e9NN1aIh+zDczoyHr+KRnFWC3u9BnHyI5v4C7Rq/AZrGR2iaOex4fxZnnda9XwMI36H20xx0VbWbYpf24Z0cJ4XtyKc/Yx//u/57ep7Vmxu3D2KfTkxplYsjERWgURWoaiSZJAhdCCNHEKYoSBgwGbgBQVdUG2Co97ULga1VVVWCJoigRiqIkqKq6/7g29gTZunEvb73wO916t+TOh87xe6y6tdOegITN4aLM5iTEoK12olefyWZYRDCdIg5fp/QptjLBJ+jxV0XQw+l0sTczjy0b9rJq1W6WzttC1Ort3H3xOwwe0ZkLL+9H246JVd5fCm0K0XhJPx2Yhu7HIoO0LLk1jZV7CumdHIFJdWEtt2Mw6motoqyqKmUlVgoOlbI3M4+M7dls2rSfPnO3oLM7cGo19B7akUuvPI1O3VPqXZC5utoTR3vc6VkF2FDYGRPFwcRoHorRs+r3FTx5y2dcet1ARtx2htQ0Ek2aBC6EEKLpawXkAl8oitIdWAHcq6pqqc9zkoAsn5/3VPyuSU+IA6npUHColOcf+pHIqBCeeu0ydHptledUXjvtCUh4CmPeP7gVdw1MrfIZRzPJrqnYnFaroXlqDM1TYzhrVA9cLhcb12Qx+++1zPxzDf/+sZoOXZK55JoBnH5mJ++EWQptCtGonbL9dH0caT/mcrnYsCaLjWsy2bJ+Lzu2HqAgv5Ryy+HY0GeVXmM06tEbdej1WvQV44LT6cLhcFFWUu7NfPOIjgtj8JD2RHROYfQ5XUmJCT3i46wc9M7ItwR03LWNeb7jkU6rcNutQzDeOJBP3/2XH7+Yz5J5W3jo2YsY1SnpiNstxIkkgQshhGj6dEAv4B5VVZcqivIO8BjwtM9zqrsdpFb+haIotwG3ATRv3vwYNLXhBLIm2Olw8tKjkyksKOXNz24mPDIkoPeuHJCoLmgBtU+yAwmqBFJsTqPR0KVnC7r0bMEFNw7mux/T2fbfRl56bDLtOiVy8z1n0SOtVcDvJ4Q4IU7JfvpIxJqNAe8EYrM5mP3XGn7+ZhFZuw4CkJAcRfvOSTSLMWMOM+HSa8kstNIiPIhgvQabzYG13I613I7d5sRud2C3OUFxB441Wg2hoUGERwYTHhlCYnIULVrHEGquu0ByoKoLetfVf9c15lU/Hhl58H8XcfrwTrz94u/ce8OnXH/HUC67YVCtW6gK0RhJ4EIIIZq+PcAeVVWXVvz8M+4JceXnpPj8nAzsq/xGqqp+DHwM0KdPnyoT5vo41nvHB7JM45N3ZrB2xS4efn50tcsrahJrNjJ37AAmr97HZT0Saw1IVDfZDLTQWn3OUU6xlT4fLHa/Z9d2fHxtDFM/n8ejd35F34Ftue3+s6tshSeEaDQaZT/dUBqyvw+0/1y+aDv/99yv5B8spk37BB594RJ692/tF6D2e6+D9gYvWnykx30kmSWBjHk1BT9adm/BJS9cxpofF/HFhFlsXr+Xh567qEGDMXU51nMCcfKTwIUQQjRxqqoeUBQlS1GU9qqqbgGGAxsrPe134G5FUX7AXeyt8Fiumz4eO1zUtUxj+m8rmfr9Ei66oh9nnte9Xu+dU2xlyMRF2J0qExbt8rY/0OMKZIJZ33NU+T0NHVP4bMo9/D45ne8+mcvtl0/kvEv6cO1tZwScWSKEOD4aYz/dUBq6vw+k//xrynLee/VPWrSK4eHnL/Zu/3kk73WkGmIHlPq05UiXJvq10xTOW/ecxaSJs7jr6o94ZvzltG6fEHAbjpTseiUaguQICSHEyeEe4DtFUdYCPYCXFUW5Q1GUOyoe/wvYCWwHPgHGHsvG+E4W7U6V9KyCBv8Mzx2r767uVWUStHT+Vt5+6Q969mvFrfedXe/3rqn9gR5XIBPM+p6j6t7TYNQz5tqBfPHbvZx3SR/+/GU5N1/yHv/+sRp3fb/jJ6fYyrSN2eQUW4/r5wrRhDSqfrqhNHR/X1v/6XK5+Py9f3nnpT/ofVpr3vzsZnr1a11jccxjWbT4eIxzvmob8wJupwsi09ryf5/dhMPu5IGbP2fJvC1+zz8WffnxPlfi5CQZF0IIcRJQVXU10KfSrz/0eVwF7jpe7TleO1xUd8dq3ardvPToZFq3i+eZ8VdUW4yzLpW3SC2w2MkptgZ8XIGkAdf3HNX2nhGRIdz96Hmcf2lf3nnxD954dir/TlvN2EfOpWXr2Hoff33J3TQh6nYi+unjkZ7f0P19bX3dNx/9x49fLuDcS/pw9yPnotXV3r8fy6LFJ2InpyOpY1RTPY13v76NZx/4nmcfmMTN485izLUDyC2xHZO+XHa9Eg1BOd53ZDz69OmjLl++/IR8tmiaNA/9EdDzXG+cf4xbIk5ViqKsUFW18qTzpHW0/fSJWM+6cW0WT9z1NdGxYbzxyY1ERIXW2Ja62pdTbGXG1lzG/boOpwvvJA44ouOqrQ2pUSYy8i0Ncq5cLhd/TVnBFxNmYSm1cvkNg7jy5sEYjPqA21Vf0zZmc/V3K73p2N9d3UuKhIoTQvrpw45nQPF49Pcb1mTy0C2fM/zc7jz47EX13oI0EPU9jkDGkcZQ16Gm8Wfh9lxWfjuf9P82c9b5PWg7uh/X/bjmmPTlGw4UeetGdY4PO+r2i6brSPtpybgQQghxTDT0Dhd1TVy2btzLk3d/Q2SzUF778Hq/oEXlyTtQ54Q+1mwkwqTH6aLK+uj6HldNFxCe6vkNeXGh0WgYNaYvpw/vxMdvTef7z+Yxb+ZG7nvqfLr2ahlQu+rrWN1Nk8mqEEfuWNZ3qOxY72hkKbMy/ukpxCZEMPaRc49Z0KK+/WFtx32k/Wug/V59+sfK7fRrW3AEL14/iKlfLWD//kKMUdFwDPry6upGBfpayegTIDUuhBBCNAGeicuV366gzauz2HCgyO/xXduzefyubzCHm3jtwxtoFnP4bk56VgFWh4tiqwOrw0V6VkGD1qoIRHVt8H3sWKz9DY8M4eHnR/Py+9ficDh56NYveO+VaZQWlzf4Zx/p2uvaeL7zq79bSafxc6R2hhD1VLn/So0yNdk6NJ+/P5MD+wp46LmLCQ45NhetDd0XH8n71TbW+daeONr+sXLdi+Qzu/Hg/y5i06rdXLB9Fx+c3bZBAwRHc26lPobwkIwLIYQQjZ7nwr/U5gSg/3sL2P7YcGLNRvZl5fP42K8xGnW89sH1xMaH+702NcpEWcXrymxOUqNMxIQYqw1IVLfVaUOsj66uDR41BUcaKtugd/82fPTjWL6cOIvffljK4rmbufvR8xgwtGODZko09B3X43m3WIiTkW//lRpl8t7xbmp3rbN2HWTaz8sZNaYPXXu2qPP5vn0nBL60r6Ezx2p7v6LScrZn5rItM5es7ALyC8vILyxl36EyEg9ZcAIuFEY/u5+xZ7QjITaCcf9mYFF06HUa3r6wy1H1j9XWvegUR3RcGC8+MpnfX5xKn7evIrZT0lGdg0DOxbF8rTi5SOBCCCFEo5eWEoFfZrDqnowOTQnnqXHf4nC4eOPTG0lIjqry2ox8CyEGLSU2JyEGLRn5FjrHh1UJSNS2nKO6CWFZuY39uUWEmAyEh5oIMupqTF+uqQ1QffG4hkgxBv8J+x0PnsPQkd14+8Xfee6hHzjj7C6MffjcY1a47mjJZFWIo+fpv6ZtzG6ygcDvP52LwaDjmtvOqPO5vn2nVqMAql+Notr6uIYu5On7fq3Nelas3cGqzXtYuXkPWQcKvM8LMRmIjgghKiyYlvHhbC+y4XKpaFQXIeWlfP/nMgBaADaNDktQMNu3R2BQ1Gr7x0CC3jUda69+rXn7y1t4aty3PHTrFzz20hgGnNHhqM5DbZ93rF8rTi4SuBAnHSniKcTJJ9ZsZPE9g+j/3gJQwaDTkJYSwfuvTWP/3kO8/uH1tGhV/e4ZaSkRGHQazIriN8GrHJCo6Q6/7yTQZbXy7V/LWbt1H9syc3H5FLgOMuho2zyGzq0T6NImgZ4dkoiOCK21Db7HV1tbZmzNJcKkr3XS5j9hB1BwuvwDH+07J/He17cx+esFfPfxXFalZ3DXI+cyakSX+n8px5hMVoVoOE01EJi9v4D/pq/j4qv6e+sW1ca37wzSaXCpKjanGnCwpqEyx/IKSlm1ZQ8rNmaxYlMWu/cfAtxBip7tkxnarwOvLtlHqc6ARq9n4yPDvH3chgNFfmPdmvsGsyf7EFd+NBejpYzQ8lL+nraIzkF62rRO4pqRvYgJNQCB14OoLbjRPDWGd768lWfu/57nH/qBm8edyZhrBx51XZGjObfHuoaKaBokcCGEEKJJ6BwfxvbHhnsnW7vXZjL777VcfeuQKkUnfQV6AVzdxN53EhhmKSK1KAfV5aJjqwQOhjfDojWgV1QeHtQSS1k5m3dlM3X2Gn6YvhKAFgmR9O6YQs8Oycy/tS87ih31TlnWamDcr+urBCEq852wm3QaUMBid1WZsOv0Wq66eQgDhnTg/577lZcf/4kFszdy96PnER4ZEuC3cXzIZFWIhtFUA4Ezfl+FqsIFl6cF9HxP3xlq0FJqc+IJLWs1xy5Y43S5yNibx/rt+9mw4wCrt+wl84A7UBEcpKdT60RWWPUUG4JxBZn44bZhpGcVULSq0B2c1uLXR1ce62LNRpKiglnywiWkZxXQOzGM3VnZTFuwiXkrtvPo/+2iQ2ocl4/oiSMiss7MmkCCG5HNQhn/0Q3833O/8uk7/7Jrew73Pnl+jbtTCXE8SOBCCCFEk+G5kLWUWXnvlWmktIzmipsGB/w6j+ruNlU3sZ+2MRuHw0nUwQPEWgo5pA8iN64Ft5/Tix+nrPNODpt3bOV9f4fDybbMXFZu3sOKTVn8s2gzU2avBSAxJpzFreJo1yKW9i1iSY6LIDYqFINeV6W9nrYUWOzc5fNZNd01rBzsAAWdRlPj3dWWbeJ4+4tb+OnrhXzz0X+sXbGLe5+8oEHSgoUQjU9TCwQ6nS5m/L6KXv1aEZ8YGdBrPH3nhIUZvDlvJ6U2Jyadhncv6lLl4ry+dYRUVSWvsJRde/PJ2JfHtsyDbM/MZfueg1htDgDCQoPo2iaBC87oQq8OybRvEcs/Ww/yrWe7aNfhJXy1ZcBU9135/k6rTeDDnzbjiGlFlKWQ5DIrz330D0mxEUSoIRBkrrHvD7R+UJDJwBOvXErL1rF8/eEc9mbl88z4y4mKNtd5roQ4FiRwIYQQosn55dvFZO8v4I1Pb8JgqH0oqzw5re1uU+XJYt/kcBLz92O2FLE/OIK9odGEKO7Pq2nSqdNp6dgqno6t4rn63D44nC62Z+WyavNe1mzdy4YdB5i5dKtfG5uFh9AsIpjwUBPhoSYiw0xEhgUTFRZMdIgJk8sOhtpTvCsHXqDmonS+5+SKmwaTdno73vjfVJ57cBJnnd+DOx88hxBzUCBfRcBka1MhRH2sX7WbnAOF3HzviHq9LtZs5K6BqUxYtAtNxfK8Ee1i/J5TV9ZBcWk5W3bnsGVXDjv35rFrXz679uVTUnZ4946wECNtm8dy8dButG8ZS5c2CaTERVRZUlFtIcw6MmByiq3M2JoLwIh2MVUe9wYf7C7UkEhuuKonYeUlfPjTQuL37qV7XCT3XHx6tX2tb1aKiupXLLoyRVG4+tYzaN4qlvHPTOHuaz7iydcuo3P35nV8CyeGjDMnNwlcCCGEaFIcdifTfl5Gv9Pb1VlhvrrJaX12q5gxbx3m0iJ6pXXi4912VKDU5qR5RBBvX+iuC+GZEE/bmF3tZEmn1dChZRwdWsZx5chegHtSvC0zl325RRzIKyI7r5hDRWUUFFs4kFdEQZGFYp8JcgtAq9XQOiWayX8upVfHFHq2T8YU5J+2WznwUt1xVXdOWrWN552vbuW7T+by4xfzWbMsg4eeu5jufVJrPb+Bqu4zIfBq/0KIU8+yhdvQ6bSkDWxb5bG6LlDrCgxUHgfmbs2mmaucZeszWbYx0694ZlR4MC0Tozi7fwdaJkbRMjGK1KRmREeEBFT3oaa21JQBs+FAEae9u8C7i1aEScdmnxoYUDX40KpZMJ3j4xnUsxUzFm/m418W89S7vzOrb1vGXTmYxJjDu23Fmo3MHTuA/u8tQFVhyMRFdRYuPX14JxJTonjh4R95+NYvuPW+EVx05WlHXfeiIR1pUWvRdEjgQgghRJOybNE2DuWVcO7oPnU+t7ogRaBF6havzWDC5Pmc2a89pw3twbffrXSnHes1jPo8HQX3nby5YwdU2WYQqPVumTkkiF4dU+jVsea22+wOtu8v5L9N+zCrDg4dKmL99gNM+mcl3/y5HJNRz7C+bTlnUCd6dUxGq9EEdP5qCtzo9TpuGDucfqe34/Wnp/DoHV8x5toBXD92GHr90U0Xqis2et9v62WCKYSoMQixbOE2uvRsTnBI1WyEQC5Qa1sak5YSgV4DCU4LkQcLeevdLThdLoKDDPTqkMz5g7vQvmUszZpFsKXAWmfmWl39V6DLdHKKrfR/73DQAsBqd1UJsNcWfDhnYCeG9W3Hd38t58s/0lm0eic3X9yfq8/pjU6nBdw7XSkolNgcaBQloMKlrdvF8/63tzH+f1P58P/+YePaLO5/+sIq38+JIlton/wkcCGEEKJJ+W/6esIjQ+g7oE2tz8sptlJgsaPV1C9FF2DLrhyeeO9P2qTE8NQtIyi2uzDqNGgUBRUVVCi2uSdHk1fvq3JRPu7XdRRY3GueI0x6Nj9S/wvzgnIngz9dVmVybim3s2bbXv5cuJmZy7bx54KNJESHcfW5vTl/cBeC6iieVlfgpmPXFD6YdCcfvTWdn75eyJoVu3jylUuJT4o84jTcyp8JyARTiAZQWG4np9jaZAN/NQUhCg6VsmtHDjede2aV1zTEBeqOjH0MKt3H/oOFRIYFc+7InpzRuy2dWsV5L+5rC5DkFFvp8PocrA4nRp32iPr46qRnFeCzWRUARr2m2gB7bcEHo0HHTRedxnmnd+aVL2YxcfIC/lq4iaduOYuubRKPeJeZULOJ/71xBT99tZAvJ85ix5YDPP7yGNp2TDzKIz96TXXnHBE4CVwIIYRoMlRVZe2KXfRMS0VbMbmsTuWtQSeM7uqX+VDb3a+de/MY9/ovmEOM/N+DF2EK0mMKwhvsSI0yMWTiIu/Wppf1SGTCol1+F+VWu8v7flaH84gm1jVNzk1Belq1TOCDisJs5vJizGoZb3w9h0+mLOaqc3pzxcheBBmqBjA8gYe5YweQkW+pMQARZDJw7xPn0/u01rz53G/cdfWH3Pb4+Vy9cE+9sySq+0youUaIECJwO/PK6DR+TpPNWqqpn9u+aT8A7TsnV3nN0Vyg5hWU8ua3/zFz6RZaJkbxyrhRDO7VBp22asZabVtkvzZnOwUWO+DevWnG1lyu6V21rfWVlhKBUXe4La+d15Ex3RJrrVURYtDicLoIM1YdExWDgW+LgjBGJ+E4kM2tz//ApWf1ZOylg454lxmNRsPlN55Ox24pvPbUL9x/46dcfvtQItLa0q955An7O2yqO+eIwEngQgghRJOxLyuf/IPFtW5/ClUnnBEmfUCTmN3787n7lZ/RajRMeHwMcVGHq6f7BjsqT44qF8U06jVYHO7ghUGrocBS/7uitU3OfQuzFWlD2EsI5shQLotX+OCnhUydvZa7rxjMmf3aedcg11RnoqbaHACDhnWidbt4Xnx0Mm8+8RNxrZLY1Dwec5A+oGBMbXcsZYIpxNFzqe7spaaatVRTP7djiztw0bp9fJXX1OcC1TdLLDMzm8ff+wOL1cGto/tz3ai+VXZ0qqttnj6trGIXkYbmObbalhr6PnfK9X0444PFAAz9YDFrHxpC5/gw73M8Y0W+NpiyhFZcHacwecYqFq3eyVO3ns2oTkcebOnWuyUfTLqTl5+ewrfvzyQ/dgWZ3Vuz7skRJzR40RT/HYjASOBCCCFEk7Flw14AOnVPqfV5R3JHbs6ybbz46Qx0Wg0fPHEpxuDgGi/qK0+OKv+8+ZFhzNiaS1G5naf+2cxdU9bVu5ZDbZPz1CgTKip6DXiSO4oNJhJ7teWOi0/jrW//46kJf/LzzNU8efMImidEVltnYtyv67DaXRj1mirF3zwSkqN46/ObeePFP5j71xqCS8vY1bNtQOe0tpRumWAKcfQ0Ck06a6mmfi5jezZxCRGYw6rf8SKQ/sM3cBriKKfNwSySYsJ59d7zaZEQdURt+3bFHix2J+UO93oOg0Yh2KitsmtJXe2qrl/3/D41yhRwDaBZ2w56/1sFJq/ex3MjDwcu/LbJ1io8c/NQ9pzdjRc+mcEdL03mkuHduevy0wkxGQJuv6+wiGAG3nEmU/NtNN+SSei8NfzSO5E7L+19RO8nRG0kcCGEEKLJ2JeVj6IoJDdvVuvz6nNHrri0nDe+mcM/CzfRMTWOl+8ZhS4o6Kiqk8eajVzTO5lpG7Ox2p1YHComXWAF0Cq/T1pKRJXtXIdMXISqgkZRcE9XQQEu65FI5/gwvnrhav6Yu573f5jPNU9+ze1jBjJsYGe/YE5Rud1bh8PiqD3V2WDU8/jzF5PSKoZvJ8wkLXMvRocDqP2cHO2aY9naTojatWoWzMJGtEzkSP7NVheEyN5fQFxixFF9lidwWl5WTutDWRhDDLz32CVER4QGfDy+bcsptjLu13VYKqLF4UE6XjqnA2FBtdcVqtxm37Fl6T39yS0pZfa2bN6dvx1VdaICiqrgdKjoMPLtil0UWFxc3jPJL5sC3H3+izO3uV9T8XPl9lceC2M7pvD9y9fx0S8L+WH6ShatyeDJW0bQt/ORbXHar3kkea0TKYoMo+3a7fz22u8Y9udz/Z3D0OlrXtIpRH1J4EIIIUSTsX9PPs1izRgqFaCsbgIbyB25Jet28dKnM8grKOWWi0/jxgv6odNpmbYxu0GKRzqdLiwVd+YsDhWn01XHK/zVtJ2rzeHyVp03auGGvi24e1BL76RWq9Fw0dBuDOrZite+mMW7k+YxZ9k2/rvpTHaVuUhLifCmInus2ltYa1qyoihce+PptGoRzatP/cz9N33Gy+9fS3xSZI3tP5o1x7K1nRB1Cw8KbBnc8dCQ/2Zz9hfSM62V930r9yGBfFZaSgQGRaVl4X60Lhcv3n1+vYIWlaVnFeDpwk06DS+d04Fnpm/x1lJ696Ku1fahLpfK7vwCtuYc5M8NuwlhD4rGikFxcN6ETd7nRVS+xq8Y5j7+bxdOVcOXC41c07cdZ3VoSb/UFIINejrHh7H2oSFMXr3PG7gOhClIz31Xn8Gwvu144ZPp3P3qz4we1o27rxhc7+wL336+e8xIpnw8m8lfLWD18gwee+kSklJqv9EgRKAkcCHqTfPQHwE9z/XG+ce4JUKIU03OgULi4iP8f3cEk+Xi0nLe+X4uf8zbQMvEKF773wV0anV4LXV9MwV8U3x9i17+sHqv3/N+WL2X/i2jAr6Qr2k7V5TDz7E64btVe7h7UMsqS1uiI0J5/b4LmLF4M699OYv7XpnM07edTaw5jhHtYogw6Sm3O7A6VD5ZspuvlmdVOX+VLxoGDuvIqx9cz9P3fsfdN33G8xOuo1Ob2BqP4UiXhMjWdkI0LQ31b1ZVVfLzSoiKMdfYv1e39C3CpK8SvH79tFg+/HEzT95+Dv06Jh3V8fktu9DAjrwyrD5B5Nt/XoNJr+Hvm3qyrzCfpRn7WJG1n5yiAiz2wzUxDIoeOwbK1WB6J8eycHcxZXYFp6rBoNMRpNPwxeXd2ZlXwqKMbP7ZvBeDxk6QxsrUVWuZsmoNBq2W/q2aM7xDa0Z2astzIztU2+a6xsdu7RL55qVr+OjnRUz6ZwUL12Tw2I1nMqB7qvf1dY1XlZ9z75MX0Ktfa95+8XfGXvkhdzw4kpEX9fLWWxLiSEngQgghRJNRXGipcoe/vpPl5Rsyefajv8krKOO6UX255eL+GA3+w2Gs2cjcsQO8d7HqKv7WafwcrA4XZTYnIQYtBp2GjQ8P5c4BLflxzX7vc0e2j61XkKW6AEqs2cjiewbR9+35lFcUAFVV6P/eAhSUKu+rKApnD+hI59YJPDnhTx55+3euOqc3d11+OpsfGcqEhRm8NW8nJTYn5kpb6tU06Y1pFcey7m1pt2Qjd974GZ98cxvtWjbsXTXZ2k6IpqWh/s2WW2y4nC5CzUE19u+Vgwjjfl2P0+XfTzmcLn6btZqubRI4f2D1F/Z1qXxR7imcOe7X9XyyZDdlNgdheitayjBpywlWyrn2y80AqKqCXQ3CqZh5bmQP+rRIoFV0FBn5Fj5Pz+Kz9ExmZaiU2kIINmgxaZUqWRtD2zXnx3Vl3qUgy+4diM1ewpytO5m1eQdzt2Xw0t9zGNmpHWN6daFPiyS/AEEg42OQQc+9Vw1hWN+2vPjpDO5/YyrnDurEtRf1J23C4lrHq5rGiNPP7EyHrsm88eyvvP3i76Qv2Mp9T11AeGTIEX0PQoAELoQQQjQhRYVltOvsXsPrmVCGGbWoqIQYtNVOln0nnus27ebpiX+REhfB+PsupGOrqhXrPa8ZMnERdqfKhEW7ag0weCaGnrtulQMAU6/vw2XfrECngXt+Wweqi3K7A60epq7NYGBqJC6XiqK4l3hoFQWDTkewQY9Jr2P9Q2ewfE+h3x2vzvFhLLvvdPq/twDPjFZVocRW8+Q0OS6CT56+nHcnzeP7v1ewPTOXl+4ZxV0DU93buVZs71rt7iWVJr3pWQUUhYawsltbeq/ZyrP3fsvH395GqLn6Qno1fR+1BW1kazshmpaG+jdbVmoFICTUSN8agiG+n1VgsXPXlHVV+qlZS7ew/2ARD1w7tMrd/roKZKalRJBbaqX/ewtQVTBWBKNjzUZCDBr0aiEmTSHxIRY0ijuAbFcN2Ajj2bN74sDEg9N2UGx1YjbqiA5PoEtinHdssdid3loZoQYt9w9uxV0DU6ucM9+lIMPbRrOv2E5aShyntWrOY2cPYcP+HH5ZuZ4/1m3mt7WbaBcbQ5/UttzSvyuJEcH1CiZ1bZvINy9ew+e/LeXrP9KZvzoDY1Az8rWmGseV2gIjMXHhvDLhWn6dtITP35vJHZdP5MFnL6bPgDb1/6MQAglcCCGEOE4aotBiaYmVkNAg710eT60Hk16DRqMwd+wAbwHLn9fuY/3+Iiat3odLhVC7hdTcLDq3jufNBy7CHBJU4+fUJ4sjLSUCrQaCtApW5+EASp/kcFZn7WfmpvXEBx1Ao1oxaOwoigoVS4jf+ncXb9VxzDqNhmYhwUSHBtOiWSSd4mPomBBLt6R4tj823Gf3ki2YjVWDD74Meh0PXTeMDi3jeOXzf7nluUm8+eDFNV5s1DTp9fzeHhvBjj7tMSzfwqtP/sJzb12FVqup8Vjqu6xHdh4RomlpiH+z1nL3sgqDUV9rMMRTvHjG1ly0Gv9+asOBIiZMW0mzyFAG9Wjl9/6V+6G5YweQkW8hNcrkDVhrNfgFpAGmbcgku2AvU1dvJFJnxaFqsapmXju/H71SktiaZ/UrovzY3xlV+mTP2OIJWph0Ggw6TbVBC4/O8WHcNdBYbd/ZJTGOLolxPDJiMJOWreflGYvYmrOIb5akc9+wftw8oFe9gkkGvY47xgxkSK/W/O+jf0jet4ew4DDyjPHVjit1BUY0Gg2jrx5Aj7RWvPLEzzx5zzd0Hd6ZcQ+dQ/NYc5X3E6I2ErgQJ1ygNTOEEE1XQxRtc7lcWMvtmIIN3slfScWksszuwmzUkZFvISbESPvXZlNY7rOm2GmnTX4WoWEm3rjvwlqDFnAkKc8KikbBrNfy9LAUDhTsZcxHX3GwtAytoqBX9DgwUOoKcU92HQp6nY77B7ehX/NIFEVBRcXlUnG4XNidTspsdix2B4fKLOQWl5JTXMLqrH38tX4LAHqNhp7Nk5i1006pMxSNRseE0dUXh6ts1ODOJMWG88g7v3Pzc5N466GLGdWpavZJTRcNlX+fPn0t770yjbfenE5x19Qai8RJ3QohRF1U1V3QWKtxB0FrCob4jitaDd7+L7fUSrfx/9EjN5dDxlA25RT79Ue+/VCoQetdZqeioqq4g+E6TcV+TaBVHERoc3lj+la0isKgNqlM2WSnxGHEqNMxrH0bYs1G2vk0sablhv5LXBTevahLjX32hgNF3tdn5Ftq7TtNBj2xkYnkOlJxOYqINhbw3pyF/LBsFbcM7MvlfboRpA/8sq9jq3i+e+laPvhlMZP+Wk5yfiZrNuzizH7t/LJXAs2yadU2nv99cCOj7vgGddYGrl28g9fevILT+qYG3CYhJHAhhBDimPFkWRRY7Ed9wWqzOlBVlSCTwTv5CzVoKbU5CfZZJpKeVYDF7vR7bcuibBRV5aV7zic8gOUM9Ul5dlead6F1FRGpL+KTeZsJ1usZ0i6VYe1bM7htS6wOxVu8c8jERbi0Ki6Nws39u9Y7gHOozMKm/Tks2LGbKas3Y9aUEqIoWFzh2B1tAn6/pKQYrrnqLH7+5T/GvvwTb9x/IX2q2Q6vposG39+PGtOXpct38e8PS1i5MY8XZ4az9qEhVYIXUrdCCFEXz+5Liqb2Yo6VA6ERJneGxoSFGZgcVnSqiyKDicmr9/HcyMN9kW8/5AlWlNjcQQxFwVs3AxTCdIWEaXPRa1Uu6t6FLiltcKo6vt+wDovdgU6jVjue1bTcsLaxpfIylW5vzEUFXpy5jTl39q+z73QflwY74RQTwUeXteO79JW8Mn0uXyxewd1n9Oei7p3Q1ZIV50uv0zLu8kGcN6ADL346nacm/Mm/Szbz8PXDiYk8vDtLoFk2q3NKyGjfgqxwM1037+K5u77m2tvP4PLrB6HVybapom4SuBBCCHFMVL4bVjmVt77KLTYAgkz+6cOVd/JIS4nApNdic7ozLoIcNsJtFgYM7Ervdgl+7+l7R6vyRXYgk7GCsnK2788gVrcDrd6BU9Vx++mncdOAnoSb/LM6PO/lO2kFquwEUpucYisztuYBWs7r1oNX55dgsZYRoS8kTFfI639PY/XutjwyYjBJETVvi+f73QQFxzPEmMf9/zeVV8edz8BKadWVX1djMGdgR0oWbafTll0sTutc5WIBpG6FEKJunuVmqkut9Xk1BUIv65HIxD9WAGDRB3FZj0S/11UeP06fsBCTToNOqzD/roHe8WTSslV8MG8TfVokc/+wwZz92Srs6ZsCGs/q2vWkukCHb1bipd0SvRkfKvDbhuw6+87q+tcRnVqxNCOLN2cu4Knf/+XD+ekM7dCVW/p3JS6s9sxDj9Yp0XzyzJVM+mcFn/yyiCse+4pxVw7mgiFdat0ppPL46l1iGB/FpthwbreX8NXE2Sydt5VHXhhNUnP/As8NsbxUnFwkcCGEEOKYqDxxmzC6S5Xt6urDUuYOXJiCDy9X8Ez+fIMOsWYjWx4dxhfLMnluxlYSyopRgTvO7+P3fhsOFPnd0aouQ6Amm/bn8PmiVfyzcQt2p5M+zZPo3rw116d1IiHcRE6xtcaAhKfd9V0+k1Nspd1rsygqd2eThBjcd6isLiNFznj+d94Qyi3ZfLl4JXO3ZnBNv160iU9lQMtmVd7X97vBqGPMpUOZ9ut8Hnn7d16774Iqa8I9n19be6/o25z3O7Sk74rNtN2xh8t6DK/2OKRuhRCiNjq9u2+z+2whWp2aAqGd48N4dFBzfvorm7n3Vd+v+/bDoFRsMa0QE2Kkc3wYXy5eyQfzFnNu53a8Pvoc/tmSW6/xrPKSkHG/rsPposa+vvJ4Cf5Bm9bNggPqO32PyzMG9UtN4YdbrmDq6i088utsvlm8gM8XreDjK0cyvEPLgAIE+WV2lPgELrtqBKsWreHlz/5lxuLNPHnLCBJjwqs8v6bxtfL39d+M9bz3yjTuvPID7nhwJOdc3BtFURpkeak4+UjgQgghxDFR+W5YILUXamPxZlwY6nxurNnIo8Pacn3vFK5+7As6d2tJ+0rbqE5evc/vjlZ1GQK+isut/Ll+C1NXbWDN3gOoqoJFDcNKFO9cdo732AKdcNW33oO7COfhJTA2hwu97vD5Hd01hVhzGy7t3ZXn/pzDpwvTsaurOeRIYP49Z/pN3it/N2e0j2fk42O457VfeOydP3jzwYtI69KiXu3tHB/GgufPY/yroMzfjGNPHgQYCBJCnPwCvYOurwhc2Gy1By6g5kCo4nAQYjLQp2V0ra93L/VzF8vUaTSkZxXgsOXx6vS5nN2pLa+PPgedVlPv8SyQXU98VX7/uwelMmn1PsrtToL0WsZ0S6zhk6qqaQwyGCPJdbREcR4ixpjPXT9M5Yx2rZmyGSwOHYoCi+8ZVCXQk1NspcPrcyiw2AGICArjrSvb8uXURVz9xNfcdfnpjB7WHY3P0p6axtfK39cZI7rQpUdz3nh2Ku+89AeL527hvqfOJz239poe4tQU2CInIYQQop48E7fvru7VIHdLSovLAQg1B5beCmCzWCgpsTC8b9sqj13WIxHPNEup+Lk6G/Zl88iUvxn0xkc8O20WZXY7F3TvRbajDXvKYih3GknPKvA+3/cC3+5U/R7zdbT1HuwuFb1Gw4TRXf3Ob1JEGBf0PI2D9mQU1Um0LpPhE/4gu6jc+9rK3w3AvN2FPDN2FEmxETzw5m/MX7u73u3tHB/GR6+OIT4pkvdf+xNHpVojQohTk+di+urvVtJp/JyKTIfqGY16wF3X6EhZym2EBBDkrtyvdYo18co//9GnRRKPjhjGP1tyySm2HtF45rlIH9Eups6+s/L7d44PY+ujw/j5+r5sfXRYvcbPmsYgTw0MVRvFIbU1N/bvy8Idu4hUdmIimzKrnf7vLajy3aRnFWB1HO7LrQ6VZi2T+f6V6+nSJpHxX81m7MuT2ZNd4H1OoOMrQHRsGC+/fy3X3H0mK9N3csuYCVg3ZKLXIPWQhB/JuBBCCHHM1LSW90jWrRZXXHjbtdqA60Js2ZUDQIeWVe/UdI4PY+1DQ7xrcGNCjH7vu35fNhP+W8KcrTsJNRoY3aMzo3t2pktiHLklNj5fNQezUUWrUSiw2L2T20ADEvWt9zCiXQwRJj2lVjsVO+nhUvEWpPOVlhKBjRB2W1KIN+YQocvh7h+n8dX1FxJs0Hs/v/KSFffa7SiS1SLu/79f+eipy+ndNr5e7TUG6bnjwZE8+8AkfvtxKZdcM6DW4xJCnPzqk2EWZHL3UZ66RoHyHVucLtW7K0ltKvdrXy1eTmG5lcv79qHbm/OqZC0cyV3/yp8RZtKw9uB+dhbls7Mon72lhRRYLRRYyyl12NDsUNBqNBg0WmJMISwrDiU+JIz2EdF0jIwlPthca22Jmsag6mpDTWjdmmu+/osoQwFhumKKXTEsyTzEBZ3j/d7PqNN6t3A16jXeMeDdR0Yzbf4G3v5uLlc/8TV3XzGYS4Z3rzK+1rUM82CpnfszStH260zr9Tv5+NVp3HRaa3pdNYhh3ZKO+zIRqa/ROEngQgghxHFzNOtWiwvLALho0ipKjcaAXr9lVzZ6nZZWyc2qfTwmxEjf5u4lJJ3Gz8HmcIGicntvA3+sXU94kJFxQ/tzbb+emIMOf45nAjhjay7jfl3HXVPW+bUn0IBEfSbCsWYjmx/xfOZ6nC611rt3i+8ZRP/3FlDoSsblKmD93izGfDyJC3oOIDQoyJvq7HtBYdJpQNGwOTyJToeyePyd3/jhpWuJCg+uV3tPG9yetIFt+fbj/xh+bjciokLrfI0Q4uRVnwwzrU6L3qDzLg8MROWx5eZoB9padiWpfGE6qlMcew6V8cnC5djUUK6etBlUKLE5j3qpgktVybTkssm6gy8WZLLm4H4cqjsIoFEU4kyhRBpNRBpNRAUFU253km+xgV5he2Eeiw7spsh2OAsiymiiR7MkYnQxXNq+PX0S/LeyrhygmLE1F8Db56elRPidqynXX8jFX8wlXJNDpO4AXy2YTWrEMLomHQ5ae8Ye3/cBUBSF8wd3Ia1LC17+dAZvfD2b2cu28tQtI+gcH1Hr8ktfnnEoX6enPK0Tj8ToWfrTUnZs+JHI+89mxAU9aw3WNCSpr9F4SeBCCCFOAoqi7AKKASfgUFW1T6XHzwB+AzIqfjVFVdXnj2MTgfrXdfB1KK8EAItOF/Dr9x8sJj7ajL6ardZ8JycqKi6XisXuID4omz/WlnJR9y48dc5gQoOqTlg8k14Ap4sq7Qn0Ar+6uzqVf1f552t6JzOiXUydgZHO8WFsf2y4N7his+tx5u5j/PS/2WNJJCQomM2PDKtURA5AwRli4oCxOcG5WTz67u9MeGwMBn3gUwZFUbjtgZHcdtkEJn0+nzsfOifg1wpxsmoq/fSxUN8MM5PJQHlZ4IGLymPLIasDe8W2qpXVdGH685rtaBQXeeWhoMW7NeqRLlXYXpjHT9vXMm3XJvaWFqFVFBKCmtG/WUfOa5VKr/g4WpgjKSxz+u005d+2McSajRTZytlyKJdNh3JYemAvf+zYhka/nR8zF5NqjuL81I6c26I9HSJjAbwBig6vz6bA4l5yE2HSs/mRoVXOVZHVyaZHR7Ek8xC7c/fw9ZJlXPbJJC7t3ZX7hw8kMtjkHXtqEhdl5u2HR/P73PW88/1crnr8a+6+4nQuGd7Dr/ZFTSoHtm69ZTA3XNKLt174jTef/43Zf6/lvqcuICE5qt7fQ30dzTxFHFsSuBBCiJPHUFVVD9by+HxVVUcdt9ZU42jqOuQfLMEUYkRr0GHW1pxt4OtgQQkxEdXf7fednIQatKA6SDbtJUhjpcARw6D23WoMWhxeWqGgrWYdbm1ppp4t4nolhXPtD6tQVTDqNN5aE53Gz8HucmIMLuf+4XG8t2QLqsaBVudkWJsYTBoDew85OCs1hV4aE1B7RgeA1e7C4jBRYk8iKWg/zYP3kGtL9k7IKm/R6vnvtRt38eT7f/LqF7N4+tYR9brjldIymhGjevDnz8sYfXV/4hIiAn6tECexRt9PHyv1yTALDjVSVlpzHYzKKo8tyZEh7Nq5r9rn1nRhWlJ2CFUFrc6MTqth7tgBfltte9TUv3v69lYJMDVzFWsO7UajKJyemMqtHfrzwOR9ZJS6WAT8uTiLzY+0pbDM6ReoePvCLlgdLkptTkIMWu/npGcVkpYSS9+4FKJcyXz7rw6LWkZEZBk6s4v31y3i3bUL6RgZy6VtunJRamfSs4qx2g8Hb6yOwwGSyuNwrNnIac0juenH1TicKYTr8vhl5Xqmb9zGg2cOYkzPLrUGIDznpH/vdpzWtSWvfP4vb3w9h9np23j61rNJjK2684ivagNbZiOvf3QDf09dwafv/Mvtl0/k5nFncf6lfdEEsAzoSB1t/Slx7AQUuFAUZSTwDqAFPlVV9dVqnnMG8DagBw6qqjqkwVophBDipFDfu26+8g8W0yzaXK/XHzxUQsdW8dU+VnlyMqy5jTVZNvIdiaja8BonKzO25mKxO7HYXYQYtNx2Wgt6JoV702drSzP13SLOl6q6eHHuGiy6fIyJ2wgJKkPRqHy0ZRv6cAWnQwcuLSv2Z1NoL0erc7B+wzbe2jCbluZIRqS05boOvUkO9Z8c5hRbGffreiwO9+TV6goiy5JMsmkvsYY9qM5Sb10PzwWFb2G2M/u1J2NvHp9OXUL7FjFcfnavWs93ZVffdgaz/l7Ld5/8xwPPXFSv1wohTl2mYAOlNQQuqgscVB5bJv+5FIvVXu1rCyz2agPO6/btp1tSPNcP6ut97+p22Kiuf99woIhu/zeHiMQDmHMO4XJqcBTGMfuai+gQHcm0jdlYbYcDKVa7y5u155f9UG6nzOYuhFlmc7LhQBHXTVrpt5Wqp8gmzhBcxaF8d+ZQNDoHf+3ezM871vH8slm8smIOZya1wxTqxFLgLlJq1Gm9x1XdOHo4oKNid0Vzyxk9WLx9Pc/8MZPPFq3i6XOG0S6uarZfdefkrYcu5vsZq/nopwVc9cTXjLtyMBcN7VZr8KO6wJZGo+G8S/rSd2A73nnpdya+/hdzp6/nvqcvoHlqTI3vdTSOZp4ijq06AxeKomiBCcBZwB5gmaIov6uqutHnORHARGCkqqqZiqLEHqP2CiGEqJ4KzFAURQU+UlX142qe019RlDXAPuAhVVU3HNcWVjjSAmcHc4uJjjXX6/VFZVbCQ6vfhcR3chKsLWfspCncfno/2iW2rnGysuFAEXf8ssZbpKzM5uSTJbsx+GRMVHc3z33HrIA52w96gxYarQNjaCmm0BKCzKX8nr/e/XuNCeuhaFzWEB7s35XXZmbicKqU2pwcnvaq6IOsnN/LhDnMwmeblvHZpmV0i2jBfd0HMKR5c29bnC73J5r0GsaP6kRYkJ6CslJ+WDqXB3+eRp4jBUVr8s/48JmA3nxRf7bszuWdSfPomBpPt3aBb8sXGx/OqDF9+O2HpQy/JI0sRSsTQXEqazL99ImUU2ylXFEo9NkJyfexmgLDvmNDaLARm92Jze7wLnOrnC33yrntCQvSe997V94hzuncrtbxpXL/PmNrLhEmPdO37iMmNZOg0FKKcptRmB1DqN7I9hwbHaJrLnAJ+AXQwZ2BV+5woQL/m74Fm9Pdh/tmh1S9sDZyXYfeXNehN5sP5fDDtjX8vGMdoc1tNE+N5PTojjzWv2+158oTCEqNMnnrgljsLv73byYhhgi0LnAezOPmb37CokZS5IxGp9V5z31NY969C7NRm7UgMX8/r305i1npW3nq1rNJiK7/Ntmx8eG8+O41zJy2hg/f/IexV33ItbedwZhrB6CtZino0TrSeYo4tgLJuEgDtququhNAUZQfgAuBjT7PuQr3OrxMAFVVcxq6oUIIIWo1UFXVfRWB438VRdmsquo8n8dXAi1UVS1RFOVc4Fegyh6hiqLcBtwG0Lzi4vdEqXxXLfdAIT3TWgX8elVVKS2zEhpcfe0IODw5uf7Ln4kMNtEitkWNF9Y5xVb6v7eAMpt74qnXKGg1irt4m6J4J5T+mRwQFuyiy7vTcGmtaA02opuXYTBZ0BnddwNdTg32slAKc6LRWiN5/wJ3VsO4X9fz8oxMtBq49bQWTFyYgdXpCXso2MuDeG7AYHf19uxcRv7wByscmVw3ZxeXte7O02lDq2SVjOmW6D02s1HHi3/+RaQ2i3xni2rv/nmO6X+3nc0Nz3zHE+//wdcvHC7WGYgrbjydv6as4JZHf2Zr97ZS7Eycyk66frqh5RRb6fD6bFrnWTBmF3t3a/IItP6AOdgdsC4utdIsQlfltaEGLY/9tQkFBb1WYdm4gRRaykmJrH1JQ1pKBFqNgknvXqpwxy9r0OpthCXvwhhsIy8zidKCCIL1mio7etRU4NK3kObpExZS7ji8vMMTtDDpqr5fTRfWHSJjeTbtLK5r04+BX/xGbnguv2UvYtXMTdzZpR+jW3fBqK0azNFrFV4c2Z6H/9jozdIrtbmAMEocIcQH5ROiPYReW0SJK46lmYc4v3N8tUsrvOfaqeCISeHBLuHMmbOSqx7/mvuvHsL5Q7rUu9imoiicdX4PevdvzYTX/+Lz92cyb+YGHnr2YlLbSpDhVBDIAqEkIMvn5z0Vv/PVDohUFOU/RVFWKIpyXUM1UAghRN1UVd1X8f85wFTcQWffx4tUVS2p+O+/AL2iKNHVvM/Hqqr2UVW1T0zMsUnDBPdkadrG7Cr7xfs+3mn8HK7+biWdxs9hb14pB3OKiE+KDPgzLFY7TpdKqMlY5f18P3fDvmyW7soiq8TMTT+updP4OWw4UORtn6etP6/dh8NnQqnXKQTptZiNWgxGG7nqPt5YNY8XVv1DWt/9tOyyjbA2a7lu3lcEp2wjNDETU/QB4ps5cZQHU5oTT9Hu1nx1+g3Ys1uhKY1Fpxq82546nC6KrQ4cTpWeSeFVKuS/cm4HOseHkVNs5ZdVeRRnx7N3UzusBdH8vHMNZ/72KasP7Wbjw0P57upeVYIF53RMplBtjqJAM10WbZsZalzbaw4J4pVxF1BUauWZD/5if6Gl1u/PV0RUKN1Gdidqfx7qwSLsTtUbJBHiVNLU+ukTYcbWXAosDmwaDdid3gt9j0DrD5hD3H1dYWl5ta9FAVV1F1a2O1VmbnPnsyWGm4G6xigVV8Vry+wOQpMzUHQOrkw+gwf69OW/O/vzw7V9qvS5ngKX1/ROrvL7UZ3iyMi3YK8IVOg0EKzXYDbqiDDp+ejS7n7LUv73z2Y2HCiq9VxuPGChJK8Zeze3oTArBYdD4fEl/zB4ykc8NnceewvL/II5dqdKWJAek0FLiEGLAt7/NxkMlCkJHHK1BEVHpG4fU1csYm9BkTd70Xec8fuedBruOL8P3718HR1SY3nps3+5b/wUsvOKa21/TaKizTz9+uU89frlHMwp4u5rPuL7z+bidDiP6P1E0xFIxkV14bDKy3N1QG9gOGACFiuKskRV1a1+b3QSR4iFEOJEURQlBNCoqlpc8d8jgOcrPSceyFZVVVUUJQ134Drv+Lc2sK3GKt9Vm7/pAABR0YFvq1lW7q5IH2Iy1HqX7r+tGShAqTOMYquDEIOW/u8tQEHx7rLhcLqLpXkGvxCDhs+va8Oc/ZtZnJ3JIVspz63Y5K4aHxxGqDaEwYmptAwLx6QJ4rm/M7BZDWhdBtIfOtN7jDWtN06NMlFasc65xObEbNCi1WgAd+AkLEjHjX2be8+lraKYm1Gnx3YwiQ9HnsEba2dz239TuLPLaTzUY3DF6w+LNRtZ//BIfl69nQ/nzuKeH//gs2suqXFtb7sWMTx07VBe+uxfBj31CwdCIzHqtGx+pO7siZtvHsziaaton7WfjLia64cIcbJqav30iebUatA6q16IBlp/ICzUk3FRXu1rU6NMDJm4CI3izrhoFel+nzBTUK1jlHv5HVgrgtjm6Hz0RhsFu1ty7Tkd/WpieIIfgS6PS40yeetbOFwQpIcJo7v6ZWf41kl6ceY21j40pMpneo4v81BZxTiiUHgojI1rI3n3igE8uWg2P1gW8f32ZTzQ43T02sP1Pka0i/E7Rxn5Fr//X7W3CJfLRWHJfr5YtIxRE77inqEDuK5fT78MkJqKbU547FJ+mbWa93+Yz5WPf8V9Vx1Z9gVA+7TWjHnhMtb9vISvJs5m0ZzNPPLC6GNS+6K2gtvi+AkkcLEHSPH5ORmoXKZ3D+6CnKVAqaIo84DugF/gomIt38cAffr0qRz8EEIIcWTigKkVA78O+F5V1X8URbkDQFXVD4ExwJ2KojgAC3CFqqonpB+urQaEZ1JQ+a5aapB7DWtEVD0CFxb3UozgIAO9arlLN29bBh0T4sjdq8dsdG+NigrFNgcmnQYUvOuSAcIiSuneoYyH09cRZjByekIqp8U1p198CpYyHadPWIyqwnKdho0P9yPWbGRMq+5VJj2VJ3m+P2fkWzDpNZRVfO4V367wWSYCL5/TgVizkWkbs7E7VUoqJruq6r4TeOM327C5EghPUPhg/RI25ufw7ukXEG70r/cRazYypkcbXvx3A9a8vQx+ZxKLH7ymxhTk84d0YfL8zahbs8hRDBQYTMzYmltlm7zKk7zUxHAuvWYAU7+cz8SLOsnET5yKmlQ/faJ4Ms4UvRadS2VEu6oXoYHUHwgPcfd1RSXlVfojz2t9L6y3HNgPQIih5kC3b2HPEIOWclc54bG5WIpCcZSZGTJxkTfIEUiAvrKMfIu3vgWAzaF6j9dzDL51klTg8/QshraJ9ttK1RPINuj8g9V2h8qOPTqKdrfBbiggKj6XtzfMpmvPKM6M7cEtXbtVGZ88QZGYEGOV47mkZ0de+GsOr8+Yxx9rN/H8+WfSNelwMezqi20qXHpWTwZ0T+XFT2bw0mf/Mit9K0/cMoK4KHOt58eX3/kNjuDLZy/mq7emc/fVH3Hnw+cw8qJeRxQMqfOzZKnjCRVI4GIZ0FZRlFRgL3AF7poWvn4D3lcURQcYgH7AWw3ZUCGEENWrqEHUvZrff+jz3+8D7x/PdtWkSlAiylTtpMB3Upm1YQ8A5nBTwJ9TanGn+AabDFXeD2Daxmy6xIWwdu8B7hzSjw+v6u13J86sHM640CgKpTYnzRJyCYnJoVw187++Z3J5m24E690V23OKrfSZMIsS6+G7hJ4Jb30LfaVGmbxFNQG/oAXgLSjnOZcmnQaLw4XNqaJRXN6Jr2V3PBf2S2TB/g2M/ucbvj/rCuKC/SeH6VkFlDrNlLuiiTUe5KV/5vPeZWf53bnz3RJw6LDerN++n1ZF2WyIqpo9WdMk75obBvLvL8v46bP/yA46W+5ciVNKU+un4cTcZfbUgnjrdQvrsvOP+HPNFYGLPXklXPxr3cU8V2W5A90mg560FHOVQHflwp4fXNKVNWUb+DlDpTw3iTK7C61G4+3zA63FAf5ZEkF67eHAhVNl3K/r6JkUxpCJi7A7VRTFnQrvGRE+XbqbT5dmerdS9Q1kW32WNoK7IOhlPRKZsGgXqjWCosxw3rgske93LOOTHbNZnL+J5/oNJ8VUdeeQmo5n4pUX8O+m7bzw1xwu//QHrknrwVVpvVmfXVbr301SbAQTHvfJvnjsK+69aggXBJh9Ubk9tE7gwx/v5PVnpvL2i7+zYvF27n/6QkLM1Rfnro/6fJfi2KozcKGqqkNRlLuB6bi3Q/1cVdUNvhFiVVU3KYryD7AWdx7rp6qqrj+WDRdCCNE0VQ4i1DQp8J1U7qmYx9Tn/kmpxb1UJNRk8H6u565Zh9dnY7W7CNZZaaaDxPDIGu/E5Za6i3JGxeUREpPDmYkd+GDY+eg17iwQz6SzwGL3W0jpdKmEGbV8u8IddPFN9/VV+eIgp9jKkImLqjwvWK+gqgpGvcZ7F9JzLn9eu49H/9zk/lyn/2R1+gqV0LBW7G+5m8unf8/3I64kMeRwarEn+GGnGeWqnX83rueXlcnc/uturA4XZTYnIQatd+eU87sl8XRsEskHdtPGklfljmhN32eo2cR5V/Xnx4/mMMk5B0tsRKO9cyVpweJUV9td5mP97yPWbKRDQhirj6JmgafGxca9gV102iuWpei1mmqXOXiy2zyFPVftOcTssm20Nycwz2ogWI9fNl+gtTgqn+f5dw3g8/QsPliYQblTxemCyav3+R3Dy+d24LkZW1FVleKKQLnZqKtov0KoQUupzUmwQVtRcLMD4A54x4QYmTt2AP3fW4CqKjzy0wGcrkSM4cGsdRzgkn++xVYcTllOPDrVVH3NCp/jyS2xYSOMr264gm+WLOObpav4Ysk6Cp3xuDTmWvt4T/ZF/26pvPzZv7z82b/8u2QLT9x8FokxdRdJ9bRHq4ECix1nUASvTLiWn79ZxJcTZrFzWzbPvHEFLVvHHtXfbKDfpTj2Asm48BQI+qvS7z6s9PN4YHzDNU0IIcTJyjdIEMikQFNxB8blCjxruqQi4yLE5D9J8RR/A9BjAR2M/XUbg9u2qvZOXHpWAcbwfELiDmArDmdwRC+mbz7oDWqc9u4CnC4Vo06DTqsQXLHEQ6PA0A8We2MZESYdmx8Z5jdpqu7iwHPh78myMGgVgg06fr2hD7O2HeSyHolVJl7PTN+CqqqU2V2YdP7hnXKHir40hDvbjODjHTO5bPp3TBpxJSmhEd5j9Xxu94RQHvjpN57/ayaqM4VSmzs4U3nnlNXPjOKVr+ewaMlGtmzbQ2yv1t7Pq+37jEpri/WrhSRt3s2mqLBGeedK0oKFqDkAebz+fej0WlwuFafDeUTbXZZVxDyCFFdAF51Olzvgq6uoBVQ5S87TrwXrNZTYnLy/fBMJbUvYvjPMmyHx1y39/MaQQGpxVD7PGfkWHh3ahq+WZ6F1uFBRGd42mgmLdnmPISnchF6rodjqHsdMFTuYVFefwncJiec7e/vCLigolNgc3naU5oZTXhhOUFQuwc0OEp5aRPmhZvyXkc1l3ZpXezzV/S00C4vjrVlzidLtweIyM2vbfq7s1bLW7yo5LoL3HxvDN/+s5NNfFnLV418z7qohXDy0a43ZF572zNiay7hf13PXlHXeNlx2/SA6dUvhpUcnc+/1n3DLo+dx47IDR/w3G+h3KY69gAIX4tSgeeiPE90EIcQpKJBJgb7ibpK13B7w+5aUVWRcBBtqfI5BY0NVwerUMWNrLhEmfZU2JEcpBMfuxV4aSvmBFtz32wacLtBqFKwOp7f+RbnDxfsXdyG72Mpb83Z603U9rHZXlQv1mup9+N5Jeveirn6pwhMW7apSLM7uVL31MCwO/+BOkE5BRWVY8xYMbnUF1878gSumf8/Hp19OxkFHlXXf711+Phd/9B2R9r3Y1RaU2lRCKu7c+W7F99BVg7lz535e/HQGP7x6PZFhwd7Havo+B7SO5tF2KbRcu4OY3EP1vnN1PDIhJC1YiJoDkMfr34euIljhcLjqHbjIKbbS9f/m0lLR8HX6buY+PdpvuVt1HBVBcU0tF8pzxw4g7e35AJjMJQBYig4vvfttQzZFVqf3c3yz/Goq0ul7nhVFZc72g6RGmbxZEagw+qvlzB07wC8QUXmM8GS++faPnvoUvtkivpkZniWGHi6XhvK8OAoORhARn0NI1EFe2jgFq2EwV7brUSWYU93fwmU92/LszCyMroOEavL4v+l/YWAwo3t2rnUJyMFSGw8uyUWNbkli/n5e+2Ims9O38uQtI0iIDqv2NbFmIxEmPU5X1b/HLj1b8P53t/PCI5N5/9mpxLZJZnNyHOYg/RH9zdZ3uac4NiRwIYQQ4oSra1IQHeueuORmFwb8nsVl7owLz1pnD0/xt3K7E53iwIkerUZh3K/rcbqq3pH5LWutO922/7kUlyo8PG0jFrsLk17jtz0qwM68Um5Ma86ERbsIBb+dSIx6TZUL9eouDgJJU56wMIO7BqYC+BWLK6tID/b8v1YDTheg4i0c991ZV3L59O8Y+ds3FGW2QYvWO/GNNRuJDzfz1qXncdPXv3BWajnDOvYi3GTwW+qSU2yl+1vz0GgiaFm8i+c//Zc377/AOzH1/T4rBxvmvnUp91/3MXHZuUQFBT4NOV53eiUtWIiaA5DH69+Hpyapoql/gUXPBbVD0aA4nWTkW+oMILgqMi4q777kKyPf4t2W2mCyYC834HK6+zAF+Cw901tvYuPDQwEqMgLW4XRRY7/19oVd2Fto4Ym/NvPWvJ28PW8n717UmZDQEnTB+URHlfDCpjXEmrVM3+rEqbq4/qJgHDYjrcOjiY3MYleZlfM+2IzNrqnyOZ7vLNSgRUWlZ1KYX7aCw+kCBabdlMbor5ajOIKw5Tbn83PP4vuMpTydPoNvtq7k6T7DOT0x1dvumsevYaRnFWDQWHlr5jye/P1f/li3medGnUmLZhHVBqC9QRCngiMmhQc6h/Hff6u46vGveeDaMxh1evWBj9r+HpvFhDH+4xt49X+/smD6OozlVrK6tpI+vQmTwIUQQohGr1m0GUVROJhT+771vkrK3NvghZj8My48xd/Sswr4bP4srI5grjqtK3dNWVflro3FYeeXHes4p0V7zm6dRIfXZ3szLAxaDVqNgt2nGOdHSzL5cvke790xz/ZxgPeOmO/EuaaLg5rSlD1rl9+ct4OJS7ei0ai4VAcu9Lx2XleGtG7mt31dgcV++Li8Sz3iuTF1KO9vnYEpPoOcXc25/ec1mPRa72T3tNQUbhrQl08XprMo04ZdifJOxMFnkqnqCImIZtGqHfyzaBPnDOzkd66rCzbER5i496GR/O/+7/l76grOvywtoO/zeN3pramQq6QIi1NNdQHl45U27/IELo5gYwhPf6lqtWhVV5XimtUFEJxq7RkXnvc16DSEAsbgcrpEJjBpeH9mbTtInNnI439t9vZPM7bmct9v67HYD2flVe63fNtkd7pQAUVx0bzlHv61p9NroDtQ77Br2VNkZvchLYNaxBBuMlBoL6FUk8N/eduYnuvOROxzhkJhQRjFh6KZsiOCm7v1Qa/RebNF3HUtDgexr+mdzIh2/oU4K3+357dtxfSsrby8fA7XzvyRM5Pb8FSf4QQrwaRnFfhlgviOX2kpERXHFoVZq2Xd3mwu/OAbbhqYxvNz8rE7/QM5lQMQd17Ql4sHtOfFT6fz4icz+G/Zdp645SyahYf4fSd1/T3q9TqeeukSPogN47dvFnJmUhhhuobZbUQcfxK4EMeMLD0RQjQUnV5LcotmZGzLDvg1JWU2TEF6/t6cW2VC45mQv/NvOd2S4hnRLqbauzYL9++iyGbl8jbdvRfOAEFahZfO6cBT/2wmSKugKqCt2HlEoyjeO3zg3k4up9jKjK253D11HXanC6NOy+ZHhvqlE9ek2F5GjnMf795gYPqurews2UtIaDFa3eFsD1WFHw+lYz3UlSHx3YjWpZKRb6FnUpjfnbbUKPeuLNd36cwb8zdhis+iWfI+8rKS0PlUxAdol9iactcGzJoccuxGZmzN9U5yU6NM3vNVbIpmSDMdb3w9h14dUohrdjh1uqZgQ7/T29Gtd0u++nA2Q0Z0ISwiuM7v83hmQvimeEu9CyH8HY+0eWdFNpumlgyI2rx9YRd+/jGb2DBTlay16gKfnvpJWo1S45I0z0Xygt0HeWDlWs5p04LBraMZ3DqanGIrz0zf4u2fAOxO1Ru0MOk0VfqtGVtzsdicWBwugvUawsKK6NZrPeawUpKCmjM0dgT/rdcw8b88PKWp1y/XsOPxM701JpZmHqJFrIMsy36emrOQ0Mh8UlJ38kfRDmYtnkKfqE70b9aNvLwYb10Ll0v1689rC5orisLI5u0ZmtSaLzYt5721izjzt08oy4+m9GAsekVXbb/oe2wuQzhXdulIXkEGE+cuIowg9tljgBC/YtyVA8bDvliBXY0iOkph6frdXPX41zxx81kM6d3G77Pq+ntUFIWx940gKjaML9/8h0fGfs1rE67FFCx9eVMjgQshhBBNQkxSFJu2ZpNTbK3z4jGn2MraPYcosqtc/d3Kai86c4qtZBeXEmzwz3xIjTJ5J0+LD2Ri0GjpE5fMDk0ZZZ5t5pwq6/YXY3eqlDtVgvUaXCoE6zWoqASHFDN9/062Fu9ma1EWG3LzUTRO+g5x4lIVXE4t965eSnxoCEEaI0FaA1rl8DruUoeFQnsJh+xFFNlLvb8PMQajFpk4sKc5dmsQdoeGchsEBZcT3ayQ/3LTmZm7kJLCcDK2taEgL5pvrujFtT+sQlXh9AkLvTUz7MXNcGpshMZmg92EWhTvN6k+rXkkRa4EojQZROn2c8/U1SiKzrucZu7YAd5skq6RBu59+Ude+GQ67z5yCZqKdOqagg2KonDXI+dy51Uf8sWEmdz75AV1fv8nokCa1LsQouEFUqumrNSKMUiPVlu/wIVvsLF5QTlmo5acYmvFkrqaA5+OiqUih8oc9H9/fo3Bylizke4pQbASUkLD/Y5l7tgBTF69j+Fto8ksKPd+nlaj8O5FXeiZFOYdY1btLeKeqeu8NSaiYw7Rs+9qVKee86MuJ1ZpTb9mkZQn5DKRfO/n2+wub9ChclB1+uhupGcV0DUxiAPOTJbmrWdp3nrm5a7EoNHToXs0u3fHkZvTjHumrkNR8G6xuvieQd6aGNUxanWMbtETsyOOXzKXs8K1g7DQPMoPJrAk8xAXdI73PnfDgSLu/GWt99jKbE4+WrIPgy6IF886gzdnzqeFaQ9lajS9kg5/pm8AwhtosjkhNIpx5/Vg1ox0Hnn7dy48owv3Xz0UU8W24IH+Xdy9uYCwbq1xrdleEby4juAQCV40JRK4EKIOgWaOuN44/xi3RIhTV06xlWnZpSTsO0TnV2ey4bEza5zwurc7nUPMgVyMKNVedLont7OI1jj4cvl+7hlqrZTe6p4M9uy9lz6xyRSVOZm8eh+mih1DVOCr5VlYK+6UeWpeKMZiunbfzP/t/geAEK2JCE0cJUVhlNsUXC4NiqKi1bpoFRJCmM6AxWnlgKWAUpudYL0WrVYhRBtEoimGlqbmfLOkgOIiM9ayMFbfMxKlYsmH71atqgr5WRp+fvB0Ptn0H3P1c+naZwV5ByO5/qcyyu0mb/G5239eg1ajoKpQeqAZeqOVkNgDvHFBWpVzanNp2G+PIzloHyFKNocc8VjsLsxGHav2FnHfb+u95+rNSwYy4fv/+OnfVVx+di+AGgNCsWYjLdvEcdEV/Zj6/RLOvrAXHbok1/l3cLwLpEm9CyEaVqBZTOUW2xFdVPoGGx1oyC0qp8Prc7A6nOi1GiaM7lrt1tSepSmr9xXVGqzMKbbyy8bdAAQrJu+xuOMrCg6nixdnbvNuRer5PHDv7OHZYtqo03h3I0mIz6drn9XEm2K4L/UWBr6zErtzlTdAHBako6jcvQOIXYW7p67j/Yu7VttOT1tb0JV+zbpyoMjC7xnrKdJvZ6FrNdHx+ykvN5C9J5l9e5IotbhrQPV/bwHbHxte67h6+FjNaIxtCYrZS0jCHj7Y8TdJMWfROzaZnGL3mFRaEeTXadzLb0psTkwuDaHBMUwbex1PT5vFmqxMxv04lZcvHEG7uGi/z6tcpPq5+Vk4DXHEhWv4fe561mzdx0t3n0eblJjqmlvj38WuqAjo3gbNuh2MveVznn/7GprHmet8vWgcJHAhhBCi0UvPKqDYHEIiYDhUWuudb/d2p3ZiXC5cigZjNSm66VkFuJx20IDdpfW+n98d9iAN2wsPcnp8Gp3Gz8HmcGGxuwjSKZQ7VModLow6DV0TzKw/UEJkXCYdu27G5dSSsbkDT/Q/g6u6dOBgiZ0Of82hwOK/I8pDHXpyTdfkWify0zZmk7lzpXdyumxPoXdymlNsJSPfwuJ7BvlVm3/nTy2F5QNJbr6XDp230XfwYtat7kzOgVgALHZ3u1FVQg067Aeb072FgWdX/EP32FjaRkR7z5GCQpkzmHx7JM0Mh3ApoWgUMyoqReV2v4lzZPNEBnRPZcKP80nr0oLUpGZA5fXO/sd47e1DmTtjPe+9Mo13v76t3ndXjzXZBk+IhhVoFlNRoYVQc1A171A73wtetFqsVqu37/Us26ju37HD6b7QTmseWWOw0tNXK6EHCYmHrQcO94EmnQaUw59RanNiNuqIMOn9lqp4Lug9QQu93kbHbuuINUTzWvd7mbetxK8Q8+TV+1h490DeX7CLj5a4AyZF5Q6Kyu1V2lk5kyWn2EqXN+ZW9LuRzL7zMS7+6XdiEjNp3nonLdrs5GBuFLt3plB2KL7WcbXy9/buOf0ID9JxSDnAhA0LuOSfbxndqjO9Q7uAz8ZW7sN0/8LicDHu1/VsfmQoP958Cf9s2Mpzf87mko+/5/7hA7nhtF7ebD3fvtdbq8nmhPBY7jm3B3//tYSbnp3EHZcPJiw5odr+2fd8+P5dFCRFs02jwbV6K5dd9wlTJt1BYlTdyxXFide4ZghCCCFENdJSIrBUbIkWWVAc0J1vBVAVhbsGtKhyV889ifGsodZ53y81yoSKSqhBizHIhoqKyx6E3alSYnMSYtBy54BUwoLcyzqsDhdLMwuJjN9N154bKTwUzqpFA8nZ04oRLVujUTTEmo28e1EXd7CgQohB670L51kLXGx1YHe61x5P25jNhgNFNaY3eybQV3+3kiETF3knbelZBThdKqqqIWt3Ckvm9cNSZqJ32ho6dN6CoWI1itXhwupUcaEy985BfDF8DAaNjiun/8iOvELvOTLqNIQYtFiVGDolxBNryEGn2ECFp/7ZglaDt239mkfy1C0jCDLq+d+Hf2N3HC5a6jvptTtV0rMKAAgOMXL7AyPZvnk/v/+4tF5/Ew3Ns+NATrHV7/eeLA8JWghx9ALNYsrLKaJZbM1LF2riueD97upeXNUnBafDEdDrPBlpCWEm7+srjxuefsxOxY5VOpO3hpCicRdsDjVoUcBvC+nDS1Xcv1fAOx6067gdvcFOD81IwvQh3jEoWK+pKMS8kyETF9E1wT8rICxI79dOwDsmdBo/x3vRbnO4KLY6sDpcfLVsH3k5Maxb3ouV84dyethQzKFl9O63hr6D51FgXEe507//86j8vY1oF8P5neO5rlMPZl90G3d17c+0XZt5aeMUQqIPEmpwb7carPe/1HS6Do9xvZq3YNrY6xjStiWvz5jHDV//zN6CwwW4PX1v5RpUl5/egW9evIb2LeN455vZPPDeX3R6fbZf3+07RnYaPwfAe77evagrB+Oi2NiuBeEHC3n1f1O8u8qIxk0CF0IIIRq9WLORdU+OICopipFhulovIt3bnerQABoFbkxrXuX5sWYjn13aBYCvr+zrvTs1ZOIiVBVQ4NnzmgNwVssU76TJoNPw6NA2vH9xNwwVBdhCQkvp1HULebnN2LKqH2+PSqsy4R3RLoYQg5YQg5ZQo5Yl4wZ5P3Pcr+u9a4EVRWXcr+u58tsVdHtjLnf8vAa708kr53bwe8+aAgG+k8sIk54nBvdmyYI0du1MIbV1Jlecsxuj7vDtMNVVscWfy8ieHYnklhczZPJ3HCgq914ATLqmN9sfO5OJV4xCo9EQpdtHqc2O06Xy7kVd/Sb4zSJCeOLms9iyK4dPpy72fk5tFyuDz+pM34Ft+WLCLA7sPVS/P4wGUnmSWzl4IYRoGL6BhdqK3R7MKSY6xlxjQLGuzxjVKY7oMBN2u4OIIC0mnYYIk84bMK7M4XIHWv/ZkgtQbbDS04+Zgpy4HDrO7RDP3LEDQAEFBUWBiZd0Y+1DQ5h0TW+/gMJdU9YBCh9UPH7XgBYEh5SS0mIvmbuSidTGeccgVHfBZVNF8MLuVAkL0hNh0mPSa4gw6b3LXTztrG5MSI0yeTM8Sm1OJi7MoKjcXTDTYgmii2EA3/R/lhHm0XSNiWfS3t+5cemzfLPrTwpsxQF/byF6Aw/3HMK/F97CgPgWGKP30alHFp9c1wqDzv9SU1Fg3K/rvH2tU9Xy3uXn89KFI9iwL4cLP/iGv9ZvqfOzm0WEcP7Fg8kzRxFZcoiE/bv5b8sB72uqOx+VAyHFqQnsbZfClkXb+Py9mYH+eYkTSAIXQgghmoRYs5HBp7dl69osrOX2Wp83/66BuDNOFYZMXFTtpLfEagMgNMi9XapnolNqc6KgsCk/D4CecbFsfHgor5zbgRv6JJNbamVEuxiCDe7Vlq3a7EJVYfXKzrhUxZsaXLlNh4MAw4kJcacOz9iai8PpDloE6TTcnNYCp8vdBhUos7sotbl47K9Nfu9XUyDAd4K3+ZGhPDqsLbNvH0g37VCGhA0jV7OVXmmr0WrddyGNeg1pKRGkZxVgLQ3h0L54dCFFvJg+z/t+nolxfLiZp889E71iJdGU773rVnmCf0aftpw/uDNf/ZHOik1ZVdpVedKrKArjHh+FVqvhzed/OyF3vmoKBAkhjj+b1U5ebhGh0eajCiiajAZcLpW1Dwzhx+v6sPmRYTUGSorLHagqXPv9qho/y9OP9WoRTIdmkcSajWTkW1Bw7yjldEGESU/n+LBqAwpOl0qESU9MiJEeSRG0ab0fVVU4mNXWu8OHJ7tPq1HQaBRCKnaE6pkU5l5icW0f745UvqobEzLyLQQbDhd9tlbsimXUaby7TCWEBXNvzzN4ot1YLg6/ntYhLfkxcwY3pT/LxzumkGct9Dv+2rLPWpgj+XTYGD4bNgaNRuWJ5b/Rr+chgoPcwROTXsPNac1xuvDraxVF4ZKenfntzmtoE9OMB37+i6d//xeLzV7rZ5/WIoqC6Hj2NUskyGbh++//JSv7UI3no/L3+N3VvZj10TWMGtOXn75eyN9TV1R7XKLxkMCFEEKIJqPvwHZYrXbWLM+o8pjvnbmMfAsujQbV5ar2QjSn2MqDv68D4IIvVpBTbK0y0TEYHEQYggjWG8gttXLP1PW8OS+Dbm/MJbfUyuZHhvLR5W1p3jybg/uTMRISUAHH3NLDd/fvnrrWe0fMU+jTqbqqpNei4ncMtQUCPDUl0rMK2HCgiNFfLefPTTm8+JOBS+MuJio6nyvP38xnV3Ri8yPDALxpzEpJLPbiSP7ct5J5+6qe44t7tOeKPj0I0Rbw3vnJNU5gH7x2GClxkfzvg78pLLZ421XTpDc2IYJb7xvBmuUZ/DXl+E8epQinEMdHINlN+7LycblULCGmIwooesYCl1KRFadT6lzutafQ3U/V9VmxZiOK1k5iqHvpRl19R+XHU6PcBT3vnrqGmIS9NNe3Yd1953j7bd/svmk3pQHgcKqcPmERUH0miKddGx8eyoTRXXn+7PbM2JpLapTJu9xPAUINWsKD3MUuUWHIxEVsOFDEtyv20OH1OTw4OYcPf2nBSx0fYlBMT/7YO4+b0p/lg+0/k28rqvKZNekansLWdS2xHIxjY1EWUa230SymAJNew01phzMYtRr32OP5G0iODOebGy/l1kF9+Wnlei77ZBI7c/Nr/BzPMX9w21D+78HRlFls3PrcD2zKyK4zs8czHsWFBTH24XPofVpr3n/1T9av2h3wcYrjT4pzCiGEaDK69W6BMUjP0vlbSRvUzvv7ygUu544dgKLRoEOtdjKZnlWAS3UHDGxOxVuUzLcQ4xPL/iAhxL3GevLqfd56Y2rFz8+N7EBIbAbqbhdfjLiCzJ56v6JovkXSNhwoov97C3C5VFyqewlLmd2FSafBWFHsUwVemrUdgGCDhi8u687YKevQaBQMOk2VY6hphw3fc6GiuncPqQiOjPvawuQ7rmXirm/Yov+Ts1w30eP/FlRUindXwD+91WBun/8j4+b9xrRRN5IcGu73/k+eM5gt2dmM//c/+qUm0io6qkobTEF6XrjrXG5+dhIvfDqD8fddgFJxEVGTcy7uzfyZG/n0nRn06d+G+KTIWp/fkKQIpxDHRyDFObN2HQRgUI8U9Ls31Sug6Nv/RZUVEguUlduIDKu9+GJCxb/5QD4rx1JKpyh3m+vqOyo/7jl+U8QBDEYbXUN6el9T+bkztub6FfOcsTWXa3rXvvvSuF/Xe4uRRph0zL9rIBn5FlKjTGTkWw4XurQ6CMW9m4jTqXqXK5qNOtZlKrQzncWITsOYnT+Xv/Yt4N8DSzg/aTBjkodj1ofU2ob0rALsDoX8fdHo8sxEJ+8jJGEvnSNcBAc72PjwUGZszWXcr+u5a8o6v4LNeq2WB88cRL+WKTw85W/GfPI9r108ku7JKdWeY99x8JNnruDe16dw50uTuXTMEC4d2D6gXai0Oi2Pv3Ip917/Cc8//CPvf3s7sfHhdb5OHH+ScSGEEKLJMBj19B3YlkVzNuF0Hl5SUDnVPyPfwqW9UojUV7/dXlpKBLqK62idVuO31MIz0dl+qJAwvQmAy3ok4rnsVip+BliSu4FYXSLxQTHe17nvXs323lH0BC1KrE7K7C7KHS7K7C5CDFqMeg1Beh2mKgXM4J7f1qPRuNdNzx07wBsQqWu9t++5cLlU7I7D58nlUnEUJ/NA+2tYX7iDFzd+isPl8EtjbhEZyodnjMapqoydO5Vyp39xO71Wy1tjzsOo03Hvj9Mos1W/bKdDyzhuuHgA81fu4NPfl9XYXg9FUbj/aXeA47Wnf8HpU9zzeJAinEIce4FkN+3akYNGo9CtU0Kd9TA8feKGA0Xe5Xee/s9W0WuXWmpeWugRatSh0yh+n5VTbOXbFXv4dsUeb5+rqir55WU0Cwr2fn5dAU/fvsVz/Ckpudhteka36lXjc4sqLYms/HNl6VkFWH36TavdRUa+hVGd4rzLV3wLXaK4a2l4ghYmvQatRuHuqWu5/OvlDH5nDVckjObDvk/Qv1lXfsmaxc3LnueXrFnYXIfbUnlc8tYC0WlwWI0c2NGS0v0p7CjKY8Tvn/HjjlWEBelwumrOphnUpgVTb7+aNjHNuOfHP+g9fjJXf7ei1iVDLRKieOWB0RS6FL78fha9np8W8PIic5iJZ9+8EpvVzsuPTcZuD6yoqzi+JHAhhBCiSRlyVhfy80rYsDrT+7vqJsPJMWGUWazYHc4qF/uxZiP3D24FwPhRnf3e33PHbsehQhbsKCSn2Ern+DDWPjSEp89sy9qHhtA5PozMgiK2lWSxfKvRG6DoNH4Ot/+8hgKLwzshm7x6n7vgp49gvYYHBrdi8yPD3EtOxnQnLOhwEqQnlddTbyMj3xJwAUnfqvQWuwvfHUYtdhepUSbOiO3DPW0vJ8u+k4491mA2av0uIlqGRfJ/A89jbd4Bnkv/t8pnxIebGT/6HLbn5vHstJmolQ8Q2HCgiAeX5lJsCuWTnxewYF1mledUFpsQwb1PXcDGNVl88/F/dT7f15EU8RNCHF+BFOfcufUAiSnNCDIZag0oevpETzHjq75dwbhf13t3O9Lo3PUdyspttbYpp9jKjrwynKrKeR1jvUGLDq/P4bpJq7hu0iravTaLnGIrxXYrDtVFpNF0REV9Y81G1j40mOSkfM6I70ZiLZkgYUH6Kr+rrY9z7wR1uKaFp4ZR5c/3nP/F9wzCqNNUFHPW8dGY7rw4sr23gGeBxcGMrbkkmWJ5uOP1vN/7UTqaU/k84zduSX+Rt1bNZv3+wirnwPMZH13anQiTHrNRj7MkitztbSgrCub/1v7HJztnYDDaaw1gxYeb+eaGS+nTMpUQzUFC2Ivd6ax1ydCOYju7Y1tg1ehJyM7ky/82BTwuNE+N4cH/XcSmdXv4+K3pdT5fHH+yVEQIIUSTkjaoLcYgPXNnrKdb75ZA9em6MZGhAPR+fSYWjd4vHRVArVj8cd9v63l42ibvY95UXo0Tp0PrTWXuHB/GcyMPb8/3165NaDQqB7LDsTpcvPjvVmwOFxZ7xd0rnQa9VuGyHom8NX+n3zEoCtw1MNXblmt6JzOiXQwztuaiotIjMYQRH88nyGAjSK+hR5LCkqwstJpyiqwqqmpgwsIMv/cA/HZGcakQbNB6U43BvRXfqr1FZORbCDO2I8U2EGIXcueFeTzQ8TL/nVCat+POLqfxwfol9IxJ4rI23fyOYVCbFtwztD/vzllM9+QErk7r4deO/u8toMTmYltoLF1sVp7/6G9+evU6wkNNtX6/Z4zowqolO/jh8/l075NKz7RWtT7f83m+S4Vq261ACHFi1bTMzSNjWzZtOiTU+T6+BZUBSmxOzEb3krcIk54wezkPv5FZa+DC03cY1VzMWthfaCExIpj0rALK7Yf7zqJyJzO25jKknXtciTCaAlr2Up1sZxY2tZyh8T29bagua8O9Q5Yeq8OJXqvhqX+2YHe6UBRYfM8gOsf7bxcbazay+RH3MgzP66tbuuh7/iuPm9+u2FPjeVqfpeWuljeyIWorz63+kTzzr/yyey66oE7k5wdjNuqYsTWXCJN72aRnXEvPKvAuUdm/M4VmMUVs1Rwgts1Brmg+kNu796ixvzbqdTx29lBGTCwmTH8Qk5pFx5hBbDhQxOTV+7isR6LfeUhLiUBj0LMnvgUtsncz+af/yIxrgctkCmhcOP3Mzoy+uj9TvltMlx4tGDKiSx3fpjieJHAhhBCiSQkyGUgb1I6FczYx9pFz0VakFFSeDCfFuteoKlYrxRqlysTyQLF7MltqtRNi1Hgf82RvaDQqGqresfIwmEqhCEpKQii3Oflt/X6sTncBNJ1Ww7sXdfFOHBffM4jT3l3gnWC7VHeRzphQA/nWrWSUzCSnbDuY94KSy8oSK69edfizZuX8H+jh9asP/87m0PFjhpGE0CjMhhjCDC3Ykx9JcjMX6/bEYdK5U3E9mRchBi1ajcIdv6wB1V1jA4Lp2Lk5tF7GkqLmnMZpfpPYB3sMZu3B/Ty1ZDqdImOJNUT6PX7H6f1Ys+cAr/wzl47xsfRq7l5Ck55V4M0ycWq07I1OJDgvi+c++oc37r8Ijab2ehd3PnwOG9dm8frTU/jghzuJiAxgTfURXEAIcSoLZJnD8WYtt3NgXwFnjupe53M9fXWIQUuZzUmIQevd7SjWbGRHlrtWRm2BC0/f4XKpmLWwcFcel/YIJi0lAm01/VSZw71EIkRnoG9c1cKb0zZme+tJ1HReV+RvRKfoOJAdyQZHEUMmLqo26OoJRKRnFZB5qIyH/thAucPdsfZ/bwHbHxtebU0N3zoY1dV/8m1b5XHTN1hi1GkZ0S6mynu8fWEXVizsT2R8Jh06bafXgEXsy2zBnp3tGPfrOpwu/I5lVCf3Vq/uc6VHLY3mhzPP4rmV0/ls5xxs+kKe6jMMo9b/sjSn2FpRC2MdDmczHKqBWMMB7pw0lf+ywnGoOl6cuc2bBek5/rljBzB59T5CldZMmjSTpJxMsuJbBjwu3HzPWWxam8XbL/5O+85Jx7XekqidBC6EEEI0OQOHdmT+zA1sXreHzj2aV/uc1KRmAAQ7bZhNoVXSUTvEhvMHYDZq0FY85pnIT7m+DzcsXMPlvVJqnNDvKjqIqoK13P14udO9BOT+wa2qZEJ0jg/jg0u6cdvk1ZQ7VWxOO4/PeoNLem8G7R4U9OzJb8bB4nAOlSbRITqexbtLKLVqMOq0XNY9kanr9+JSnWgUBwadE0VjIyzIRnRbE059IRlFM7Fri7n/XCgqC2HFrnasyuhGRm4Kc+7sT2ZBOXf8soYym/92o5s2tKNLc4WPd0zhgdW7yM2O9Zt0PtNrJFfM/JabZ/3Cjo0tsNu1fo+/PnokYz7+nnt+/IO7hp3Nme0SKlKW3QElRYE595zFpvU7Gf/VbL6els4NF/Sr9fsNMhl47OUx3Hv9J4x/ZgrPv321N0BVneqWCjXGizIhGovGmqW0JzMPVVVJbhlT53N9M+2qCxYEm9xbXZdZag5cePoOneJeltExNtj73kvGuQPOTpeLIL2OEe1iyLa5t9tcu6+Yvs3w+/whExdRbnd6axjpKwWwwX3e5+xfz8GD4dzwz3q/AsrVBV09dTGum7TSG7QAvDtN1XUhvjRrPy1jdqLXFRERbOfpOQsotwfxxsJQPh49hNTI9ug1h5er+AZLfLMwLDb38hGzUUdRuZ0ym4vSzGRy9sdxzdkHUVqup21qPsuWtyVzb1SVY6kuK/KnkVczfuVcPt6Yztq8/Xww5GISKwpie/4+LXanN4tRMYZx8+kd+Gz+XJJNJeyxJOJQ9RXFsg+/zhMI0moUDHHNSd6/i+TcLOJMA2s9V75jxmMvjWHsVR/yyhM/83+f3oROr631teL4kMCFEEKIJidtYFv0ei0LZm+sMXARFRZMWGgQZ3dqRrs+VdM94yvWFo8f1YELurQAoNP4OVgdLspsTlK6qXyzfC8tNRmEBen9Jp8AwSYrtkNGVPXwBbWiQNuY0GrbM6JdjPvi2+nkxiF/MbDdenZmJ7Ei4zzObX0BL/2e6S2SFqTTuLdHNWgx6jRc0akLsze4K8EH6zW4VNBqFIw6DS8OGVrR9tkY9aW0T9zFhT12M6DtWoZ2WsX6rLbkW6OJMLVAQ3WZDgoDjeezUvMLbbqsJudQX+y2w5kVA99dikufiDllO4bYXeTvbI7ZqPdOSsNNQTx//tnc8NVPPPXbP4yjBRsfHlZlktoprjtLN2Tx4c+LSEpoxll92wA13/Vt3S6eOx8aybsvT2PSZ3O55rahNf05VJkUe77LxnZRJkRj0VizlPbuzgMgpWV0QM/3zRiovHQiuKJGRGkdRS3fvrALG/ZmMXXlAXxKDdE5Powdjw/365/W7nJvm/rarB2M//sgmx8ZxqhOcUzbmO0eOyoust3ZdU5unbwavU7D4nsGERNipNvb0+k9JJfsnDbunT0MWhSl9t1M0rMK8KlFTZBOU+1OUx4u1cmu4lnsKplJgX4p94ys/vgX509mcZ6GMH0bkkJ7kBTcn4Tg3n7nNKfYyrhf13vHJkVx194IMWgpsTmx2fVM+ieJ6OhQTkvbSufeK4iOT2THpk6kRvkvC/TdqttzPm9pPxDVGsr3uxdw/p9f8vHQS+gdk8SMrbl+QQvP0sur+3SgRWQwj079i2TTXvZYkr3Fsj3nyvfv+pkLuvP8FDvNc7K48ZUpzBx/HfHhQVXORXWBvPueuoCXHpvM1x/O5qZ7zqr2HIrjSwIXQgghjouGvAMeYg6id/82zJu5gVvvG4FGU/VuvKIodGgZx7ZdOUzcu77KRWys2b38oFOsO13WM/H0LOdQXQpWp4O7p64HIMKkZ/Mjh6vN7yspISHUTIhBi9OlolEUtBqlyvZu/m1S6dliKwPbref3FQOYunwIoQYtczdleSeG4N76LsSg5YGK7A3ALyU6uGKy69lt5NsVe7DYXeSXGSko7ciYDpfwv2nrGdBuKWd1W0ih/gFSTOcRYuwCaCuqe6juWh56LVd0b8FI+y3cteJ1+qStZcOygX5b9xWXGdAaEwmJ30tMYh7OggS/SXNeuY4CZwKRun0EOfd7t+3zvRDKLbHxZa6WJJ2Bx9//k8TnryYmylxrgOHc0X3YsCaLbz+eS8duzel9Wusa/yZ8J9vTNmY3yosyIRqLQHb3OBHyDxYDEB1jPur3Cg5yZ1xYalgq4nuxGqwtI1wD+WUWv+dUXkqxYk8RAHaXC4vFwetztvHI0LakpURQ3Y7PVqeK1emk/3sLmDi6G0Gh7oyNgvxwTHp3AKLy8o3KfL8rrQbevagrI9q5M1Kmbcz2e12RbQ8Lsl8gt3wdwbpY2kdcTIjSh5VZOkrKjTw3IxO91kpkSAlhwUUkRe2lbfweSuJ/Y1PBZIK0ETQPHUrbsPOIDupEelYBDp+oidPlomdSGAadBpOqYrG7sDhcZB0wkze9N63a7CS51Q7CIg9x3nelpN822i/bpPKyFU92hCGoFR06HeDK6d9zSdJAPphV6A1amI1aJozu5r15MLpHW7SaUTz525+cHnWIBLOu2nOl1yqEBemxBIWy2xxDy+Jc/u+H+Yy/vWoQotpA3lmdWbGkF5O/Wkivfq3pEUC9JXFsya4iQgghjrkjqb5elyFndeFgdhEb12TV+JwubeLJ2JuH3ebe5cPmcHkrkieEuyfG+wvdE+XUKBNlPoUsVZcGRXM4NbfM5q6w7jmWZXsOkplvQ6txb5GK4l4nXWx1YLE7vQXSPNKzCgjSlXH94H/YfTCO31cOcm+DWkO5B98Cnp6MggcGtyKkouCm724j435d553kWRwunvpnCzNvH8KN3e+hf9Q3BDnPI8syjQnXTeaba5LY8fhwdjx+Jp9e1oP3Lu4KQLuoGJ7tcjMhIeXcfMEeokP1fpNAtSSa4QntCY7O5pNrW/pNsNNSIrAr4eTbIgjVFvLIb/OqfMfpWQXYVIWtYfGgqjw98U8WZeT5bWNbuVq8oiiMe3wUzVvF8NqTP5ObXVjjd+2rsV6UCdFYBLK7R0Ora+efnGIry7floGgUzOG1F/ENhF6nRa/TYrFWn3Hge7Fqc7qXAuSVlNb+nor7eYrG3d9OWLiLNq/OIrfUyuJ7BhFq1GLUVu3UXS73WBIeWeiu/2ON4qMx3dn48FDvVqVQ/a4hvt/V5keGeWtY+I6p2UXlbCmYyh+Z11Fo28WguGcY03IKaTH3EWPsy/1TC3hs2gFsDiOvnDOAO9KGsmhba35aOpiXf7sKij7jjIRXiDf1ZmfR3/yZdQvfbbmRcPNSNBrfrand487Gh927YUWYdJgqlgWWWWHLplYsX9QXVVXp1HsJE7f8gVN1VTnfnh23vOe/3Mi1yWdhKTXyfeY8XCHZh8+dSpWMxwu7teaLa0dzsKSE27/7lVKrrcq52vjwUO/2r+URzSgODWf+wnUsXptR5fupacy486FzSGrejNefmULhodr/NsSxJ4ELIYQQx1zlCUtt25kF6rQh7TEYdcz5Z12Nz+nSOsG9VWeZe8JRanN601fjwkIxaLVk5LnvgK3aW4Tvpp7Bej1Gw+E7TTanyrhf1zFjay52p4oTFy6Xgs2hurMlVLyvt9hd3PnLGjYcKPK+Pi0lgmFdVmIOKuOzOecRYjDy0Zju3i3pgvX+Q/K0m9K82R3TNroncXcNTMWg0xBq0OJSVTIPlTFja65fGjGA06V67+AN/2A9t33Tg49mXs4h636K9Q/j1LrP2X2/reeuKeu8waSBCR24vc1o1hRt4oUVUwG8k8C5YwdyXnwabcJjeGb533y5art3gh1rNvLuRV0odsVQ4gjGrGQzaeVWvzZ5Job6kGByYxLZuy+PRfNWo6J6i+pVF2AocqicfvtwrFYHLzz8I9Y60r497TneF2VCNDW1bTXa0HyD1x1en823K/b4XaB7Hv9j5R7sWi0HS+v+dx6I4CA9pTXUuPC9WNVUFIbMrSNwMbyNO8Cg17k7XatTpcTqpO/b8wHY/thwPrmsByEG/5oIGo27aOiZXbWY1Cjm3jHEG4CYtjHbu512TcH9yt9V5TF13r5JLMkdT4ypKxc0/wazMpQ/N+Wy4UARr83ZTpnNSbHVgdXhpKjczo68Mr/3Ly5XMKmnUXzobrqGfM/U9JHsK8llZ/mrTLz+G9JaZRBSsXTRk+FxTe9kNj8yjI8u7U54xRobuwsO5kWwcO5pHMxOYFnZPF7Y8AllDkuV4MBlPRL9fg7WGSnIbIWlyExU0gHCYt3Bf6XieCvr2zKZty49j437c3jwl7+8wSHfc+UdC67pzT8vXk7r5Gie/fAf8gpK/QJpNY0ZQSYDj788hqKCMt59ZVq1W3+L40eWipwCNA/9caKbIIQ4xR2LO+DBIUYGnNGR/2as5/YHzsZgrLrn/f+zd97xUZXZH37uvVMySSa9kQIJgRB6C6H3KqAgIjYsa11Fsaxd1113XfvaELCsHWVFpUmX3gm9h1AChEAK6WUy7d7fH5O5mclMIO7Psqv3+XzcJTO3vLfM+573vOd8T0JCNAoQaq2lyhCISS+SW2qhY1wIekmiVUQYJ4pL/B4/JsBMx8gAUlqmMGvrGeocsuog0EsCoiIhSTbq6lM8LHaZF8em8/zKY9Q5FWpssqr8Di7D68YMJyV1sUzu1JfbM5PUnOwN9/Uj462N6rmDDBKVVqffvNv5t2Yw+sPtWB0K9y84RGiAK3zYHYlhkAREAe9UD6uD7SdTOFl8C9NHf8sPPEKw4ynsTtTQWHcZu+Twrly8sJUdcRv49F917LhzMplJYar+h6iPICy5hGd3LuXRhW058qhL2b57Qgg2h0KBI5aWgef4ZPNGhqTG0TXRFdLcWIfi04Xb+G7VHsLC4yg3h6lpL554Xn9UhxTqdh/jjb8t5Ml/TEbwF5ft+fwuU3Lx10ITDdX4PeLZFwHc8+1+THrJpwy1XZZRaJ7wZHMIDDA0GXHh7pNW5RSjKAr/XJFLfnml323dpEeFIwBXd4ti3iZFFTuuczT091N7JtI9IYS+MzYjywqCIPDy2PYU11jZU3Aei8Ul5OmZKqHUe76rPUQ6G+tBQEP/kRJhUsfUpMgi6qRPSQzsx7D4VymuttPhtXXY6lMfPafaFrvM/QsO+ThWnlmezbMrsnHK9aXClQy+39uN3m2Oc8+Qrdw78t/o5e70iXnIpy2j0qKZcXVn7vh6H/Z654HDoefWhCmktD7P7BPf8ui+t/hzx7t8tI88/y6usVJrVag5k0RkUj5hcUXoBRGlKs7LZvDsQ4e1S+WBoQN4a+0mXlq5kWeuGOz3ObvfpRemjePWP8/hufdW8HVNIHaPCihN0Sa9BbfcO4yP3vmBdSsOMuyKLk1uq/HzojkuNDQ0NDR+dvwpiv8UjLqyG+tXHmT7xhwGjezo8/2h4lpqjSZCbK7VJVH0dpq0bxHNjlxX3XpXGTgdVruMUS+SHhnB0fICZo9sy6e7zqGXRLXU3pHHhvLSkbPk2/JUh0GgQSIh1IRO5xLgBECBVTnFPLToEFaHzFMTj1FWHca/dpzls115qtG+N78Sq8N7Jaex48HtXLhv/gGvbW1Omfcnd6Wyzs79Cw5hcyrYnA6Ka6z1Jf1AJ4BDgeLKcF5cdDNv3vgdgvEV0uOvJ/t8KyRRUMvYKSiIYge6mstJ7biPDWf6YhKDGvQ/bDoceQlEJ+ehjzynTjBySy31gm2Qb2mBTjjHNR9+w+rpt5AcGay+B24DMr17O6o3HiO2rBCrIUB1KHniNdmJDufmKX1YP287ScnRTL17yP/r3fk1+G+t5KCh8XPjdl6bdCIWh4zFLqMTfctQ63QSoqL8ZOldgQH6S5ZDBVfkmd2pEK2TOFlcfsltjZKOKFMQ0aGwY/pAer21SXVee1b66BgXwoknh6vlPJ9alo2CQp9hFoovhvmkSrgdCSa9iCS6Sqs27isAH42IU6UV2ExP4lDM9It9GkEQ1X6z2uZs6jKosTkJ0InIilI/ZriiBi31+kquyxHYfiKN4xfaseTeMk7WfMGWkrsorLuFE+dH8ODCIzjlhrbodQJ2W8PYFGoyMDZ+AAmmGF48+jGP7Psnf+5wF+M7NGhFeI4JWXnlGHUidQ6ZkrwEEBSCYgt4dGT7S+pkPLu6mEBC+WLHHlKjo7g+o6O6bWObIyUhkvuvH8Q/v1hHUHgceQazOra63wN/ffM1U/uxbUM27768lI7dWhLbIuyS74nGz4OWKqKhoaGh8Yvwc4Qld8tsTVRsCD98v9fv95lJYdQFBhPksBImyWx7YIDX+Tu0iKWwqprCyur6MnDD+PqWDLIfH0ZaeCTnayoJCZR8QkhjzEY6RsdgpQZBUNQQ2lFp0Wqec5BBAgEq6+zqpD/UVEVRZfBlU2ZeGecy1FIiTCgoBNenUgDQKFLVqJNcZfoahRbP23e+/l8CnpVE62wBZEa8itkQz/TR3/HZTZG8M7ETTtkVfaEoIMs6cvZ3Q2+wsdO6kl6Joa5VuHoslSHUFEdhDCulRLmg3muDTsSkE7ErBs7XxSFh5bH5K9QQXmjIc0+NCqI4JhGHpCPx4jnahhp87kPj67/33qGMGNeVL95fx+a1R/zeu/9mfo6UKQ2N/wXczuv3r+1KmEnvE33n/n5c5xYYUIgK8o2g+08IDDA0mSoC3r9Jh6LnxMVS4NJ6HIlBoZyuKqNjXAg7HxpIsFEi2CD5VPqIMRsJM+nVvhVk9HoHOAL8pkpIolDfvyvsza/06Ssa9x+5pRbaxG+j2pHLgNhnMekigIZ+M1DvXUdKAPWzYINEgF4i0CBhNuow6iSMerH+3yKvjGuvalfYHBLFpaO4utVcog19yKn+F0ern0CmXG3L3vxKXh3XgUC9q9pVmMlVPraoykrehVCeaXs/wbpAnj04i0PlJ/w+C5ejXVBbW3I2kfbmRF4/sI7lZ7J9nleD8wfO1UZhk028tGItZ0vLL6mrNXlEN7q3TyKmvJBwSVHH1kv1zZIk8vjfJiHLMm88v1BLGfmV0BwXGhoaGhr/s0iSyNDRndm9/SSVFbU+38eYjcy+YxAAf82M9VnRz0x25RjvyM1Tt3c7VzpFxuJUFI6UFvp1ugQowTgUB3q9zavCR8e4ELY9MABBAEWBZ1ccUyf9FZYgzKZaTHrRy2h3RXvoCdCJBBkkEkIC+NPiw/R/d4vLkYDC30a3U9Xcgw0ux8i7V3dSK50Mb9tQPlAApnSLry+jp2B1ugzW67q2YN29fTlXbqR76MvoxQAcppcZ0saoGtBGnciS2zOpqQ7hdE4ah2uO8sHRDfx5RJrXvZvapjedwuP5x97VbMvP95mYSLoQapQYDubnMWvjdsA7z33wrK2se2Ag024dSaAIb36yCoejYYWwqMrK4FlbXUJ29fc3NiSAB5+5kvadE3n12fkcPdi0MOt/I5poqMbvmQZdBP/6MzFmI/06xuN0yJRerP5JzhkcaKS6tmkxaM/fpCwYuVhVxfny2iYnvUVVVgIFM0dKizh0oYJ5+86z5PZMZl3Thbcm+Jbd9jy+TnRFMozrEK2Kcrqd4u9M7IxSH/HgmZLo2Vc07j96JYZyrGIhUQEdSQjqo7Zv8KytoLgiDNfd25fPb+jO5zd0Z929ffnT4FTW3duXr6b2ZOFtGfyhV0teGptO9uNDyX58mPpcJneJx6h3OaIl0eUMWZPj4GLx/czZNJ6UmHz+MukTkiILEQXUqBKDTseH13Yl+/FhQIOA6LAZh3g89V6ijeH85dB7HK446XOvYsxGlt6R6fGJwD8yx9I9Kp6HNi/hYEnBJXQy9FSTgF4SeXz+CradKW3SESGKAn+5ezQmvcQYUy2HHx2iinheqm9ukRjBXQ+NYt/OXJbN39XkO6Xx86GlimhoaGho/E8zeFQnvvl8C1vXHWXMxJ5e3xVVWbnhu6Mk6g38a8U+rh/VHUANH02PjSbMFMDanFxEfYRXSGm3KFdt+P0XL9AjOsHnvOcv1kcIGKoQ7N6pDrmlFgQEqm0OzEaBV8d14PGlR6ioCSUmpIr3J3f1UkmPMRvZNK0ffWdsxumUufozX6Po4UWHMOgklt6RSaXVJTKaW+oq3Xe4oJJxH+1Qtw0ySkQHuY7tlGX0ooBOEnl2ZJqaU62XBLY++Hd2lE7nUMXrvDnhfgRcqTBZeeUICBzLSSIsupBNISs5sG0gIQEB2J0yRp3Enb1bMeT905iSirhu+Tw2TLqTlAgzU3smMiotWs0b3517kHfXb6dtTBR2QrxSX3JLLdw5NJ0ko8Jzs5fz9lcb+NMtw9RnZHcq1NTnfLvvr8Go569v3MBDf/iI5x78ijc/uYPEVlE+9+u/kZ8rZUpD43+JS+nPxCWEA1CQX0ZUTIjP9z9GI6aoykqVA8qrLU1u4/mbLKsq5B/L17A8+5zfcspuxytB1QS3sNL9ndU47Qb+vvo4Jr2IokCAXlKdyZ7Hd6eMyLLAqpwC/tTJ+14UVVm9Js7ulMTG1+r5maLLpsJ2mv6xz6jXsyqnGIvdicUuYzbqqLQ6mdoz0SvFYubW08y/NYOhs7dR7xdmcGqkV3WToiorigJORcEpw8CZW3DKIIlgd3bjeGE0D475lqcnfEFBwT28sSacKqsDk06kss5OVl455RY7NodMtc1JsEHiWIGTl7rcz5MHZvCXQ+/xQudppIckez2PSqtr2+r6VJbtpyu4NmEQb9cs5Z5181k87tZL6mTsPH2aP323jO75Jy/piGgRFcK9k/vz1lcb2H/4NKP6pjerbx47KYPVKw4y+42VpHRpRYe2MZd8BzV+WrSICw0NDQ2N/2napLegRWKE3+oi7snvRUMwAXW1LNh7lvRX13Ld57tIf3UtF2ts9GiZyLJDJ7jpy91eq2txgWbiA0PYUXjW65hFVVbm7D7H66tcop5h4RUI9WKYbhqvCg1OjcQgSRRVRhAXWszwtqE+hpHb2WFppHXhzhCxy6685HEfZZES4RJ3cyv093lnMzW2htIiTllhVU4x/d/dTK1dxi4rVNY52HCyUfnR01FYqqZQaN3ER3v+zUOLDqntd4XsChzc2xFBkGmZdpgXr0jn65szyH58KLmlFmw2HcVnEhH0Vp7cttKr3Q8tOsT9Cw4x5yB0bBHLkwtWEBng8GtMju7XnhvG9GDeD/tYvuWI33voeX/DIoL5x7tTEQR4dvqXlP8Plan7JSs5aGj8r5HQMhKAs7nFPt/9mLLa7m03na3gXEn1Jbd1/yYzWsYBYBJtfvuerLxyrA6Zqqr6ihNBDVF+FrtMnUOm3GL3KYXtmTLisOsQdHY1AsCzapS/lMTGfYXnZ/k12xCQaBU8TD2WZ2lsqV7TqajKyswtudgcslqu+82Np9TkPwXP1EIXq3KKqahzYKsfL9xVSZwyPDuiLWdL4vj7glspKI8kOek9OiS6IigsDpkHFhzihjm7uX/BQZcuEq6xK8QosfVkHX9KvZtQfTB/P/whJVbvEteZSWHo6ge9uvpj3fP1EU4ei6PIUs2DG5cQHWzwui+e92Rc53Zc2TmdL3bs5vvbulyystS1o7rTLjmGd+ZuxFJnb1bfXFxt4+vQCOrsTm5/4EsKK+ua3Fbjp0dzXGhoaGj8BhAE4bQgCAcFQdgnCILPcr3g4h1BEE4IgnBAEIQev0Y7fw4EQWD42C7s33Wa4kJfI0gvCVhDwhCAg4dPU25xYHHIlFscrMopJiEiDlFw4nBU+YSUDk1MZeP5XOqcLiV8tzF8zzf7uViho7IimOjYizjlBqeBe0Vw/q0ZPDQwhQ339SO31IJTVtidm4pRb2db/gaf63DnJRsajcyDW0d6/e2UvUXdrHYZp+zt7DDqXCHJFqu3ONvBC1WqQS6JMG3+Ae6dm0RuURyTMlchU8OqnGK1vGmAJFBbG8jJnNZExxXx+q5N6mqU+94aHKHYy2LZUXKCBadcjg/vPGSBazL6YQ4w8uziFWyd1sevMXn/dQPpkZ7ISx+vJudMsU95OsAr5zwhKZK/vnkjF4sq+ctDX2G5RDi4hsZ/A7/nfrq5tEgMJzQ8iMP7zvp892M0YtSILUVEkmW2nLp4yfMWVVnJKXFi0EmcKb3otzRmZlIYggD2ugCcDgljcPMdpu7+0lIbTFBwtepQ8HTEAD/KqVlUewpRiaOsRlSv2Z1mYtKJvDPRFdaR/upaXlt3QhXrtNhl1pwopkFNAmLrS2+7qWxUdtrmdGlmKCiYjTqCDRLltWZmrZqKpCTxx+Hf0S6uAHA5QmpsTld0Xr0TwqQXGf9xFjd9uYf+b+3h/uTbqHNaefHoR9hlh3oe19jTGVN9eXD3sUrLDZRdiGVLYS6zD+y85H15+oohmAOMzFi3ibHpMU3eT50k8sjUoRSXVfPl8ualfmTllVNjNHI8JYHQ4nK++DqrWftp/DRojgsNDQ2N3w5DFUXppihKhp/vrgDa1v93NzD7F23Zz8ywsV1QFIW1yw94fe6e/H5yW19Sk6I5c/Kcz75Te7VHUQQiDLU+K/sjEttQ67Cz7NRxlhwpZFVOMXangqVeRb6oMJrwiHJ0OgdZeeUcLqikzctruGHObobO3sYbG08xeNZWtXTduZJULDYj1fIWn7xpd16yXicRaBAwiALBRpFJXVoQbGwYrgP0kpeom1EvEqCXVN2Ll8am88KYdlTW2ZEkT2k26NzCrBrkL4xJp8rqRFFEPts0BnNALVf2WMu93x2gqMrKqLRoAus1L3JPtqK6KojkdoeZseW4V937mZM689KA4XSPTODp7Ss5UX7RJ1piRFoL3r3uKoqravjH8tWMaRftZUwWVVlZkXORh24bSUhQAE+8vZiKKotXSLm/ldYOXZJ46h+TyTl6nr8+MhdbE2UPG3Mp4T0NjZ+Z320/3RwEQaBTt5Z+HRc/RiPGva1kdKX0pYa4/t/fb9/tQLhl7j5q7AZ2nTnfZLSDS3xZh6MmGJO5msZqySEBDaKUnudx95d9WyQTG1nHjrNl6njidsR8e+A8f1mRzeEC35KsjY9XVGXlYNFRdp8xk/7qOubsPudVItVkkNSUvXKLgzqnq531/gAERGZc3YmHB7XGHKDjqWXZXn1rSIC3OKpREuqFmxX+9P0RnLKTIIOEUw5kcMzrGMRQ7hs1j8SwKgSoF6yWCKgX/xTrhUfd15p/MYCH2t1EduVpPjg53+sauyeEYKof0wTAWC8SWlYUjr3GzJsHNvDRnpwm++/wQBOPjRzInrzz/GXZNr/buc8VHx/FsF5t+WLJTorLLq+r4n6vylPjqQ43s/XLLZSV/DR6LBqXR9O40NDQ0Ph9MAH4XHFJYW8XBCFMEIQWilJfEuJ/nISkSDp2bcmqxXuZcusABKFhwu42QKsGdeStL9cTEx9OlahXq3HEmI2MSE9lW+5ZFv1xoJeh2rdFK0INATywaiPV51siiQKC4FEhoyCaNmm5xMRfIMQo0XfGZqo9ohxqbE5kxaW47s5z3nKmPT1StpA5YxEvjO6nakq4y9eZjTpmTuoGwPSFh3hy6VEUBF4am05CqElts2c+LsC3B85z8EIlL645TlV9GwINIm7D2p3H7L4fc3Y3OHHOXGzBuqPdGdJ+L0v29uOTnWd5Ylhbj9zsQ+Qe7UDnzJ3MO7qR2VvPqVEQ7hJyBkMYCe1KuW/DIu5NvYL5t2aw5vhFpnSLrw97juP5K4fz1MJVPL90Hb3bdFLb7lnebsGdo3nqzYU8N3sZbzx6NZIoeq20euacA/Qf1p4//WUirz03n5ee/pZnX5mCVB9x4g+tJKnGfzG/6X66uXTu0Yot646Sf7ZETR0BV1++4b5+zNt3Xu1X/OGOettwXz/W7sllztwL2CyWJn/7Xv2LaOJoQRF1dgcBet9pkrvM6SNrNrK5cjeGQAs6ezB/7NuKbglhjEqLBvB7nhizkYzoFI7k7eWuhZuw1ZmRRDAbdQiCwgMLDqEAL6w+zoFHB6uaSf7anZVXTnBADRerkym32Lnnm/0Y9RIvjGlHSICeUWnRFNdY+e6AdwqIXhII0EtqCmNhlRVZbhh73H3rqLRoQgJ0VNa5oiF0koiiKNTaG6ILA/UK82/NYMPJOl5Ydw0PXfERUwcuYXTC21TZZK8UG3d6o1kQVKdTjDmWY5WnWZC/jrqyRP7xfaVXedXcUgspESb25lcyfeEhnLJCXWFLdAFH+fP2H3hiYaq6XWNdiv6pqdgVE//euYvZWeUceWx4kyVV1/6hNxv2nOSTRTt4/LbhXu9Q4+N6jr2JN3blmTs+4qN3fuDR569u1rut8f9Di7jQ0NDQ+G2gAKsEQdgtCMLdfr5PADxLMJyr/+w3wxWTenLuTAn7d532+/3YAe0x6iX+mGpSdRrcBsnNfbpRa7OxJ++M1z4Bko4uocnogsqpcdRhtTu5oVuiGsbqqA2nqsJMi6SzjP94B06n7HNei13m/gUH1LznVQf6I4lOBqRv5p5v99PhtXVeK2VuYbYwkx670yVsVmNz8o81x1WnRWOjqrjGygMLDvH+9rOq0wLA4VAIqF+tCjJIqpgnuCqZhAY0GOYr9vdGEBSGdtjLjjNl6udhJj2bpvXjD516UVYSQVLKKZyKK81m5pZc6uyu3Oc6q8S42ExyKor54w/LGTp7G2/WR5y4V7yu7taRa7p35ps9B7jzq3V0eG2dz6rjGbvEqBE92X7wDB/O3wZcfqV1xLiu3PfYFWxdn82bf1+MLPs+BzdaSVKNX5HffT/dHPoNbQ/gU/LYHZn21qZcr36l8TaelYuGdnCJLOcV+JYTdf/2PfsXpxDkcjbnnfc5rjviIcZs5O+D+qDIAmGRlQToJR4f2papPRN9HCGN+xhndQsATGFFOGWFdyZ25subenBHZisvzYmPsxpeg1U5xVjqNSbcx8tMCsPh1GHU1ad/1OtrPPb9ER5adIjsoiq6vL6BRYcLva5DEiVmTurMhvv6MXDmVl5bf4KaevHMxuVpc54YplYk2T59AI0rgNqcMmM+3MFd3+wnpyCMeduH0i7+NMX2VWq0ijutMLfUwob7+vmk34yJGkldrYnvi7+nos5KldWBzSGTW2phfAdXJTDPSjRvX9kdS0kshuAqZEMFfWds9qt5svNcBRXOGCTBiUEp8XoGjZ/PWYvCVYM7sWj9Qc4XV1xWS8Xt/O/WKYFJN/XlhyX7vCpcaRF9Px9axIXG7xbx0e9/7SZoaPyU9FcU5bwgCDHAD4IgZCuKstHje8HPPj6FyOuN6bsBWrZs+fO09Gdi0IiOvPfPFSz9bifdeqX4fB8abGJE73as25nDozcPIdjUsIrSOzmR5Mhw5u48QJvYRHVFr2NcCPd06smm4myCwsupuhjFF7vz0EsCoiBhd8qcP5NEuy5HMIeVUVYSjp/bSmWdk3u+3V+vPRHBjuNdGN5xNz8cysBSF0VuqcVH0TwlwqQKmwE4nXJ9VEUVn+/OQxQEjDqRI48NZd6+837OCga9gCSICIJrxcydV+0+zz+uSOehRYdwyHCxKoz9Z9oypP1eOgU+4rMqteG+fnz2ZRode20nIfk00xdK2ByyugJXY3MSokRhLY8gIKIYQ3kg1TXBmAXBK0IiM7UjX+0+QYhUQInD9QwadDcEpi88iNOpEB8cxieLdtChdRyDeqReVvF9wvV9qK6q4/P3XLniDz83AUnyXZ/RSpJq/Ir87vvp5hDbIoy0DvGsX3mI624bqH5+qcirprY5Ve1Ar5M4V1jOdb3aef32UyJMLDlSSGZSmNq/dIoNZPzMj9mem0ff1q576y/iIUhvoEtYS07qC1h92yCvPsmzj5FEgXKLXXV4jEhO5l/ngoiPL6aqMFV1RqdEmHjLQzDzo6wzPDG0DeCKvHOnJ4Ki9oFRQUGY9N7pce7tXll7wu+Y4Kh36n6clUe5pWHfu/q0Us/nvifu8rVult/VmyGzt3kcq+F4AFknejKg3VHaxX1GnWMsAbrwy0a47cuv4cTR9nTquYeU1DOcOpFCtc3J2bJa9Z65KbfYqayz46iMxhlWQmDsBSpyg32iRdzPADGQOjmYYLGU9KgAv8/HPQb0iuvN0k2H+Wjhdrr373bZ98zNjXcOYs2y/bz78lLe+fxuSmrtWkTfz4gWcaGhoaHxG0BRlPP1/18ELAAyG21yDkjy+DsRON9oGxRF+UBRlAxFUTKio6N/rub+LBgD9Ay/ogvbNhyjusp/+btrRnSlts7O9+sPeX0uCAI39urKvnMX6PXGCv6++jhdXt/A4YJKBiQl0SowhpDoEhBcE3V3mU6bU+FMXhw2m56UNqeYe1MPTDpRjXLwxGKXcThl3pnYmW6Rd2CxG7llwApqbQ5SIkw+OdW5pRZMuoZ5jMWhcP+CQ7y//QwWu0yNzYnVIZOVV86UbvE+M54AncDLYzugoOB0KsiKTHFNw0pS25fX8shil9PCzeZj3TCbLLRtkeezKpVbaiHr7mtoqU+lXVo+siJ7hQ0D/HXVMWqL4nHaDEQmnSc4AB/nQN9WEVSTiIJEhC6fNpEG3prQiZmTOvPOxE44ZaiyObkQHkuLuAj+Mns5ufklzVJ8v+muIdzyx6H8sGQfb73gP/KiseinZlRq/FJo/XTzGT62K6dyCjhzqkj9rDlOx8bb9GkVQXJ8BMfzvAV/N9zXT63M5CmMGWgwkBQRydpjp9RjNu4LV+UU0+G1dWw9IlLrtLLpwimvNnjq/4DCtPkH1ZX7GLORa1v3ITyyjG0PZaj9T8e4EGZc3QmD6OrJ7Q7XeVznbujHqqxOimusFFVZKa+JJCrEFR0XoBPVSECLQ2bdSf9ipAZJZPrCg8zakuv1eWpkIMU1VlWjyV+kQXqMmZAACb0IBgkC9Q3jXKBB5L3J3bi1w19xKNUcr1zi9941jnBLiTBxLj+SosIoUlLPIEouZ/1jS46obThcUEnqS2u4Ze5e7l9wCIdToW9YJ3TGOgJDq/y+D+5n8MyYQYiCzA9Hs32+8xwDYiPMTBzSmeVbjpJq1jXbuW0KNHL3w6M5kX2B1Uv2aRF9PzOa40JDQ0PjfxxBEIIEQTC7/w2MAg412mwxcEu9an0foOK3mDc9fFxX7DYHm9cc8ft9x9QWdG+XwNyVe3A4vCtuDE5ri1MRiTC4DEHPEnGPdh+ApHcQHF4OgN3ZsJbldEqYq7sSGnmRh1evQRQFpHphTaNOJEDXsIxabXOSX2HBbIhj8e6hdEo6zZiue71SONxkJoV5RQz48YWoZVg7xoVw4NHBPDyoNcFGyeU80bt0HirrnNhkhco6J+9uzsVSn9pRZXXgDugQgWu7xPFg3ysR0HO+NstnApASYSIrr5xrkoZQp9QQ06KQIIO3loTVoVBVp1B5PglJb2dkptXHORBjNnL4sZE8PGIYRsnJjZ8sZNr8Azy06BDdE0LQSwLBBglZEPjTHaMwGnQ89tYiqmqaV3bupruGMPXuIaxavJe3X/jeb/qOVpJU45dG66d/HEPGdEank1ixcI/X524nZ1NOR3+T0k5tWnDoxAW+P+yqejG+Q6yrnHN9eVBbvQPYHR2wvxCOF13k8HlXyevGfSGAzSFTVmrCadfzSfYev+1wl0BtPIkdn9QHBYUDNfu99pncJZ5AY31FKIfMvd8dIMQoITeqGvVJ1lk6vLaOnacDiQsrxmwUCDRIPDcyTd2mzqEQIAmqGKdREggySPzjinScMlid3sc8X1FH73c2UW11ejnFPXGn9dll0EsSoujqq4ONEjumD2Rqz0RSI9KJNXXjeOX3KIpyWWdTbqmFIIPEqePJGIx2WrZ0jbmW+gWCVTnF9J2x2Sv6sNoqs3S3DdluoHu6pUkndIzZyF392jGoTTJfZu3DaveuXtJ4DLh+TA8UWWHdtqM/yrk9eFQn2ndO5NOZa+gSGfiLRvT93tJSNMeFhoaGxv8+scBmQRD2A1nAUkVRVgiC8EdBEP5Yv80y4BRwAvgQuO/XaerPS1qHeBJbRbJ66f4mt7lpbAaFJVWs3Xnca9A/WFBDjTOcYF0tRtFlBEzp5sqPHt+6Le3D4giNvQiCjMPDkBSA5zLHYRZDaZl2hFq7HUVRcMqgKAqCIBLgETnx1LJs7l9wkKwTPTmc14aJGWtIjyvxaWeDgr2k5h97YtSJbHtggNeK3RND2yAJAs768x+8UOW1zxe7z2Gx+07kZeCbAwXc++0xjl1I5Gz1dr+rkzfO2c2k2eeI1Ecwrk8Fc6f2ZP29fX0iTKqrArCWRrO7/ARHK/P9Xtt9AzsysXsGBqEGg1KkRnVsuK8fCKAocPVXB3jiztFcKK7kz7OWeZWddePPcJt69xBuvGMQKxbt4Z9/XeDXeaGh8Quj9dM/grDwIPoOSWf1kv3YrHbVqTBt/kEeWnSI4pqmJ2yNJ6UtE6Kosdi4/dPt6iq+Zypejc2pOmbtToVSqyut4KvdR9XjeU5kuyeE1O8rUF0SRnblec5Ulfm0w13iOqiRfkRSYCwdQ1qzomArstLQN7lLgbr70xqbk/EfZ/HVTQ1VcQWgdWQQdqfCsYI4AvR2pvRwsuG+fiSEmrzOL4hwe2YrAnQiVqeCKAiEBOjRezg03Ow5V06traEtSn1KCrj62Dm7z3H/ggPq+KGXRJbcnsnDg1qz7YEBdIwLUfviWMMVVNnPUWjZpwqqukuDN3YCZCaFIYoCZaVhlJWG0qr1GcxG0ctJ1FhbA8BiV6grjSa7opAW0Y5LOhdu79eTizW1fH8wu8ltABJiwhic0YYFa/cTYhCb7dwWBIG7HxlDaUk1Gxbu+sUi+i6nxfFbRHNcaGhoaPyPoyjKKUVRutb/11FRlH/Uf/6eoijv1f9bURRlmqIoqYqidFYUpXlFy//HEASBkeO7cXDPGc6d8R8q279ba5LjI/ho4Q46vLpWHfRTIkzYxUhkRSTGWMr6e/uqqu6CIPBApwFIejshUS4nQ6Be5LquLTjw6GC6xUcyKmwMQeZqUtNyqbXLWOwyNqeCxS4jN0rksDtk3pnYhQFxTxNsCGVP2TMsPnLMq9TdkiOFRAe5nBcPD2rNVzf2xKQXkAQw6UVW3tWb3FKLl7GyKqeYijoHtvpQ1U93ukoKSgKYdKJabcUo+Uulh1q7TG5RPNX2M8iKU50AuFcnq21Oqq0yu49EcLzmNAPaBDIoNYqdDw0k2CgRqBcRcIUt28pa0DI4nOeyVlHndPg93wODe1KnhBJpKCNQqlFF3FBcRrvNIVNjDORPNw9l24HTfPDdVq/9mzLcBEHg1vuGc+t9w1iz7ACv/nk+zkYRNhoavyRaP/3jGT+5F5UVtaxZdsArBN/mkJsUZfSHHGwGQFddqUY+5JZaCKyPGAusFy52RwcY9YE4FAOnihqydDydIZ77OqujkASRT456PyrPEteCgM+kfUyL/py3FLOnzHsyPSotGp1H/6woIEki6+/ty3VdW7Du3r5M7uIqh51X3BpZgUrnVgbP2kr3hJD6SlIuBATm7DlHXX0+oCS6jn/ksaG8OaGT13kHpUZ5/f3quA4AzNl9jvRX13HPt/uprHP1oQGSwAtj2jHps12qUOrhgkrSX13LdZ/vYux7ru2K6g5cVlA1xmzkjsyWgMDZ04kEBlm4qZ9JnfiPSovGqBMJ8ij3HWbSYzbqkKsjMEo6Fp863OSzB+idkkRKZAQfbtl72Xcls2calTVWvlh9wOe7pqIbiqqsnNIZyBjUjvlfbiMQ+ReJ6Ps9pqVojgsNDQ0Njd8Uo67qjiSJLJu/2+/3oihw21WZnD5fgrG6ykvDYf19A+nWqi0mqYYAyZWa4DZWSssCsFWFEBJzEVFnRxQF3p7YWV1pemhuBfl5LUhtm0tkuHdd97+OSvNKqzDqRUalRXNVh3R6hv+DClsJO0v/TMfXf+BwQaU6GU9/dS0DZ27lzY2nmPTZLgQETAaJr27swfiPs5rMRXbjDgd2Kq7QY1lxrf4FGXWsv7cv9/Rp5bV9oF6kojYUBJm8ioYI9ZQIk1eUSUlRNAoKu0pdKTnuEoHvTe6KOUDnctMoAo93HcqZqnJmHvB2OLiJDQlg44NTaBEaRlJgEXan/5XQq4d14arBnfh0cRartjUY+pcz3G68YzC3PzCC9SsP8tIz3+Gwa84LDY3/FbpmJNMmvQXffrGVjIRQNQTfHZHV3AnbqM6JWPVGouy1auRDZlIYRp1rZd+oE1UxStdqeU/u6teVfXn5FFZW+xzPc18DRkYntuPrEwcoq3Ol/BVVWZm5JVd19goIPumAA6O7E2EIYVH+eq/PPSPtAvUuYeUQo8TET3ey+HAhEz/dCcCRx4byh4xu5FxIJqP1QexOVyWOHdMHqlF6oiioLnOTXuSdiZ3VSh/39U/h4KOD+fOIthx8dDBXdoxVtxWATnFmOry2jnu+2U+5xe4VqeceVzz73k+yzlJucWBxyBRWSiBHUmHLZVVOMdX1qYl1dqffZ3V7ZhICUFQYjSwLpLQs8apKcuSxocyd2pOTTw3niWFt1QojRx4dwdCE1iw/m4PsLyyjnuJqGweLJc6UXKTjqysoqrL6dUIcLqjk2vnHqJP0vPldFocLKtXvmnKSe37+uWyktsbK4nlZTbblp+T3KDStOS40NDQ0NH4y/hvyLSOizPQdks4P3+/DZrX73WZkn3RaRIcQXXkRc30Yr7vO/PITMg5Fx3Pfr6Wgsk41SqYvPIi1JAFBUIhOLPJK01iVU4zd7uTIoXbYbHo6djtIWKCASS8SZtLzh14tOfnUcLW0XPbjw9R9d+RG8K9142kTe45rei/i46wzqkFotctYHU6qbU4UXBERigI3frlHzUWusTp4Zd0Jiqqs6oqbsT7UuHE4sFNW1NW/QalRzJ7cRTVe19/bl/cmd6W8NhSAKz9dxuGCSnXFTPQI0iguCSJEMrOrrEFLxJ3TrdQ7SZwyYA1lUuuOzD60nWNlxX6fRcuIYD65ZSKyovDwN0s5XlztsxIqCAKP3zacbu0SeOHDlRzNdZX4a47hdt1tA7n74dFsWn2Yfzw5T3NeaGj8j1BcbSNuQDrnzlxkz5YcNQR/2wMDVMdBcyZsMWYjt4zoTJDNwrY/9vGaEDcO6XdHVlyX0REFWOInvaDxvg9174fFYWfmgR31EQpreWPjKa8yo+4KJu5J88rsEoZE9mNPWTana7z1VzvGhbDtgQGIooCiwJgPd6hOgXKLqxR1jNnIlG7x7DzZhZjQctLjz6p6RyeeHM5XU3uy7YEBGOrvk0kvMSot2uc8z49Jp2NciE8EyprjF7E7FbVKicEjCiTIIKkpJ+5n0DoyyPsmyYlctORy73cHsNU7OmrtMiFGb10kdzsOPDqYpwZ3oF1wa47XHfO5354RDJ5/X9EqnSJLNWvPnG7S9liVU0yhJciVcuIs49sD5/06IebtO48iCBSbQjDbLXy8MUc9RlNOcs/PK4MDSe7WivlfbsNS+/PbQL9HoWnNcaGhoaGh8ZPw35RveWV9iPG6FQf9fq+TRO6e1A+jrY6ne0ax4b5+zNt3njq7kxqbwkVrBKdLSnhh5XbVKHHK8Pa4noxP7IYxpJzzdtfkuajKyv0LDmKVwWHXc3BvR4LM1YwedIpXx7Un+/GhqqE8tWciU3sm+hgYO0+157usQfRtexh90BcIguxaCdSLGHWu1TMBl8EoCK6oETdWp8KbG0+R9soaBs7cioCAXhJYf29f/jYm3es8NqeCLCvM23defT5u43VQahRhJj1u/TKL3UnfGZtVQTbPCiJBBh1RUgKnqr31K/w5Ep7NGE6gXs8Lu9aieKyKeTq5kiPD+ceEURzIL2DP6WyflVAAvU7i5elXEh4SyBNvL6a0orbZhts1U/tx32NXsHV9Ni89863mvNDQ+C+nqMpK+qtr+evxSmpNRl56dTmyrDC+Qywd40Iu+7tv7ESfOKgDiqKQte+Eus2lRHqTI8PpkRTPVzsPsPhwgd8Uh8ykMLLyygmTQhjcIpUPD+/kj/P3UG5xUGNzEmiQeHhQa68KJumvriX9Vdc4+cy/HRhFA9/lrfE5v2fKXJ3DW6Onss6uOpT35Lan0hLEE1cc8JnYu+/TzEmd+dvodqzKKW5yXE6JMCEIEGyQMOpEpnSLV/vyMJOON67qqKZoGHSimnLifgaTu8QTZtKrzvqoQAOVVtlLVBNg0eFCv+ePDjLSq2U43cLakW8posLuG+nij0EtXKXPb16w8ZK2h1PRYZEDCJJqOFlS69cJ4a7OVRIQggJE1jW0oSkneePPb71rCFUVFlYt3qvu+3Mu6PzehKZ1v3YDNDQ0NDR+G3iuPFyu9vlPRVGVlay8cjXM103XXikkp8aw6OsdjLqqu6rt4Mnoful8uWwX27Yc4LV9JVg9JueVDjOhzko2ZB/CIKWoRsmotGimBI7g5LJzPL19Bb1iEsnKq8TuYVhWlcZw7Ggb2rU/wZuHljCkzW1NGtZZeeV0TwghJEBiyd5+BAdYGN1lM0M7wsiW9zK5i0scNCuvnJQIE7mlFkKMEuM/ziJAJ3oZtHU2GUlyaWoE16+YtY0OJlAvejkdau0yL689wdubc8l5YphX2zKTwggwWOuPZ1TV7N2VPtzGuEEn0iE8gWWFOZyvqGFPfrVXqLXnMymqsjIipivzz2WxPv8UQxNTVSeXZ6370R3aclNmN77M2seHk8aiN4T5PNfwkEBeeegq7v7bv3nyne9598lrVMPtcu/GhOv74JQV3v/nCl6V5vPE3ych6aRL7qOhofHrkJVXjtUuo4gCp5Lj6XQ0l68X7eXBW/oCNPm7B/z2L60To+jSNp5F6w9y4xU9/Y4JjY+RFJXInrws7pi7GUUM9nKSND7H46PasUE6iS60GIpiMOlckW/T+qd4jY0mnQgC9akXetoZurG+aBc3tRpLnClSPX9mUhhNJT88uyKbkAB9/TFFVh/sz6TMVRTU7iEusIfP9tMXHqTc4vJIh5n0qjO9qMrKqpxiKuvsPLviGIqHHofb6bEqxxUpNyotmsld4tX+0f2MPPvK7McbtrfKc0CO8GlLamTgJZ9XZFQp7XvC8aqzZER0uOTzcZ8/NiCUPGM1VdYIgg0Sq3KKCTPpCTG6xsHhbV1OeZsSTJjuIhM6RPDZrjwfJ4Q78mPevvPkbrOw//DpeoFtwe/YBvj9vEPXJBZ8tZ3x12ZSUmv3eRe1seU/R3NcaGj8RIiPft+s7eTXr/yZW6Kh8evwS+db+jNO3QaBIAhcOSWTGS8t4djhfNI7JfrsL4ki904ZwJ/+uZAgh4lSQwgGEVzC6gJF1mhMUh53dDcwoF0XL2Pl9X7jmLDsM57fuZqnuo7CqBfVkFpBgFPHkzGHVJHW/gTvH9zCO3FXXLLtL17RnocWHebrbcMJMtYxMWMzFy8mEmOeDrjK9xVVWdmbX8ktc/e6BNtEgWCjRLW1XjDNICIKIpIgUGNz8sbGU+glAYNOQgGvHGW7rGCvc/DtgfPc1z9F/TzGbOT+ATFYAIvdgMUu0z0hRDXM3M6TzKQwDtXuZ0mhTObs5VRVBanPwP91OglJMfDEllUsvuIP7DpX4ePkykwKo3NSO9JO5/PSijV8dPMUv06E9ORY/nz3GJ6duZQXP/qBv9wzxmcS0tS7MenGvjgdTv719g8EmPQ8/OcJ6r6uFd51WB1OjDpJNe41NDR+eTKTwtR+tSAmgtSzFzi4ZA/y1N6I4qUDxptyok8c2pm/fbCS3UfyyOjY0mc/92TYnTZosdlpYRQxUkqVM8jLGd/4HPGmCBzVIYRElyLWxPLOVV0ZlRatRma4x0ZJbKiSIYkCt6WO4vEju/ni1EraC8O9+rupPRJ5f/sZtX06UcAhuypGAeoxdxzP4IY+e9hdMpuxpvcRhIb743YAubE6nGq/mv7qOsot3umUZqOO3FIL0UFGVuUUM33hIZxyQz/qHouaGnsfWnQIp+zgpRvyaRnUnpAASRX1NBsl1Rnf1POSylxCqieq81THRWOHcuPzX9EvlvPVJwFXyfH75h9AlhsWIl5YfZx19/blWFEJ/1y5jKLKEi+njCeuCMQQvtXV8dpna8nNL6F1oku4tClnWePPJ93Ujxce/5odm3IojQn/xRd0fstojgsNDQ0NjZ+EplYkfi4uF+ExdExn/vX2KpZ8u9Ov4wKgf9cUOrWNx3GykNJYM5JBj0GRsdkVjIZArunemfl7DzKlZwev6+kUGcf9nfvx9oEtDIlvTfbjw1QjqGVYAENnb+Pgvo4EBlo4G7Ga41UdaWt2Gcpu4TarwxVGazbqCAnQE2SQqKhT+GTDWIx6G71a/5vs8kTSwyaphprF5lQdJAE6kdev7EBIgB5AzV+euSVXza82G3U8PTyVHWfKWHPiInV2J57VUE+W1Kptchvsq05m0TPFSFmNGQXYm1/J1J6J6r11V1ox2105zYpoV5/BqpxiHlp0SDUo35rQqf4ZyTgLopEM+XSZtZC/DuwNuPKmRcEVpuw2RI1SCPHGciZ+8C0XHS3RS6LPKtXIPu04c6GUD+dvo23LaG4am9Hsd+PaWwZQW23lq482EhUTwi1/HAa48qDdRrzFLrMqp5ipPf2/NxoaGj8vMWajV79qHpTIrL8vYu3yg4wY1/WS+zblRB/eO40Zczfy5fLdPo4Ld2qK1S4jiCAiYHFAhRhKhL4Mu2LzcsY3PseotGhaxVzJzeu+5KreqE4L97V4On8HztyCK5xCIdwQysDITNYUbee1TQHI9kA1tcTqcNWjMtZHbwgCOGXU83mOt5WKyJbCF8iu+I72Ydd69emejnWDJFJusbMqpxhro0pLJr2o6nGkvbKGWqsTR72TxbMfbdy/uiMcyi127E6FTi0PYjJYqbN0J+eJ4V5RG27Hg6ed4HkvRQTC9CEUWFzVuw4XVNJ3xmYUxXUf3NfseX5LrR5J50SQnCjOBme+GwWYuzef6CADwUYj+/IuMKhtW6+xqvEYM7B7Kq99tpZtB06rjovm0m9wOyKizKxcvIdpz1/zuxPQ/DnRHBcaGhoaGj8Zlwrf/SkpqrJSbrEjiU0bBEHBAQy9ogurl+zj7odHExLqG6IqCAJ3XDOAh16eR3RVKeVRcWy5f6AaVRBkENh26gzPLl7Nwj/ehEHXMGw+0KU/Wy6c4entK/l+fAt1kltUZWXG1Z04VVLD5B69+CD/Q547OJtXuj1IgDOcDq+tU50WgfWG4qi0aI49MYxvD5znVEkNt3Z5nSLlFXYUv44k6DmWn+kllAZQ55B5Znk2m+/vryrWx5iNTOufwsytpxEFAUFQeHpZthpy/MzwNvxjjSvHW8Cl5u65eqWg8MSV5zhVFI+iuFbtKuv8C5waBJfDxKCX1WcAeBmU4DKyTTqR2vJQHHFFSKGFPPr9YerqLWKb08GGkyXqfhj1dG3Znh0nD6CXi7ET43eV6vYJfTiZd5F3/72J1omR9O3SEDlyueifW+4dxsXiKr78cANRMSGMneTt+NDQ0Pj1cesCAcjd4/nh2518NmsNg0Z0wGDUX3I/f070AIOeySO78eH8beTml5CS0JCa4XJcNpRtDjS4dHZkMRK9VMEtHQO8Jrb+zxGDvSqMdfIROr6hcPiRUT66E0uOFOKUXQLGkigwc0su8ZFdge3EtjrO2WNdmLfvPHanQo3NSZBB4pFBrZlWHxnX+Jrc/WK0cgWnq1az++IsApQe9HrzuDop3zStP3vzK+tTQrKZNv8gguAql+omJEDi3au7MCotmm8PnFejJMDlJG+s6yCJLvFpUXClojhlVwSJJCqM67aDC+XRjGk3zOsZQtPRcJ738pUTRyiyllJUZaXvjM1ejgj3NnpJIMggoaDQP7EFu7IPozfYsFlMgKvkt7v6CcD7212lwRMCJLLO5F924SM20kxyfAQ7Dp3xcYxfDkknMXxcF76bs42HbPZfdEHnt44mzqmhoaGh8T+F2/CZNv8goDBzUucm80bHT+6Fzepg5aI9TR6vVNBTGRRKZHUZotVKbqlFFbsKMhp4/srhnLpYyoz1273204kif+kxBkURuGfdAuocdrVtTy3L5tNd52gdGsULXaYhCiJ/PjCLNafPYHM0CJbJiiuf2LNE3etXdaJzi0iGxL1AQmAftha9RIvIrS4HQKMyIVaHTN8Zm71EydxG4Etj02kfY/bKkxYFQa0icuDRwXSMC/Ey4IKN1cRHFHG8oMHQdEd0NEYvuhwTH03pzJc39WDDff0AkES8ViGPPDaU96/tSpjJgKUkGmOQBcXgLbx2qqTGy9Hw2IgM6pQQIg2lmKQ6v6tUoijw3N1jaNMyimfeXcqp/BL1u6ZEO90iacXVNh58+kp69W/LjJeWsC/rFKPSogkz6QjQiQQaRLonhDT5zvjjv6GijobGbxVRFLlz+kiKCipY+O8dl92+KdHCySO6YdRLfLFk5yX3f3VcB768qQdHHx/F5B6dWHHkGAUVVZc8R1ZeObXFcSDISGEFfkt/ZiaFIQquaDN3St9Ti89QlJ9EYsvzBAdZvIQx3ToZ7jGiKSFGQRDoG/sUkmBgS9HzKIrdq9T31J6JtAwPxCm7yshW1jmQZZkgg8S7V3ci54nhqnC0OxLPzeh20X7GWAUUsMsyDlXAWuGtawtJiCiib9zN7DxX4dMf+qvO4dbaOFtWy6qcYsxSCBet5a775zGACQLq5H/+rRnIsoKiwEur8gAICnQQbJAIM+n5cEo31t/blz+PaOtV9rtONnK2tIwucUGXjYTo0zmZvdnnsNkdPt9djlFXdkd2yqxbefB3J6D5c6I5LjQ0NDQ0/qfwNHycsktsrCmDIDUtjq4ZKSz4ajv2JoyPzKQwyiJiUASBuPJCeiWGen0/sE0yk7t34qMtu9ib11C2rqjKytCZuyg8E8/ximKe2rrKr1EWb4rm753vw+K0srr2a3SGBkNOEgU1WqIxkmhgaIuXiA/M5FDl63x3Vw1/7JtMsEc5Oam+XF5jdfTiGiv3LzjEjrPlXscc3jbKqwSe+/rdBtzA9P2IAhw824kAnUsdvnEJPTc1Tle7481mMpPCGDxra70zSVCdSeB6XqPSosl+fCivDRuEIouERlZ6HesPmS29HA2dWoQy7/arMBmMpJhLsDbx7EwBel5/eCJGg47H3lhIRVXDvWxsLDauelNa5+Dpl64lsVUULz71DdTUsWlaf3SSgIDA4Flbm+2E+G+qqKOh8VulW2Zreg9MY+5HGym9WHX5HfwQZjYxaXhXlm85yunzpernLsdlQ1WMyV3i1f7jzv4ZKIrCU4s3XPK3nZkUhiQHYC2PxBhWQkyY7LNNcY2VijoHNqeCgqtqiFOGe9LGoRdF7r+q2qsayFsTOjX72oJ00fSPfRqneILJfVbVa2oIlFtcTnV3X+92gNc5FQSgZXig1xh6e2aSGoshAC9cke71fVZeuRo1IiAgo2DSCYzsvAXF9CFRhl5c+69Av/2hK1oDTDoRSXSlCaa/upZb5u7l/gWHuGXuXpYcKqXG7nJYG3QiwQaJYKOkliAvqrIy/uMsLPWLAHVWV2ufGpHCV1N7kv34UKb2TGRQahTPj0nn/gHJ6vXYZIPr2u11bLivHw8NTFEXDxrTPT0Bm93JsdNFzX4GblqmRJPSNpZNqw//6H01mkZzXGhoaGho/E/xY0VAp9w6gJLiKtYu918aNcZs5OBToxgzrBtBlmqOncj32ebJ0YOIDg7iga+XcabUFS3gdlKUlQZSVxLNgtMHKZLz1QocCgohRoklRwoJVqL4a6d7KLWV06XXTgwGG+CKTnAbleC7ai+JRuLEZ6iqTueU5Z8cuPg9OlHg3as78fkN3dk+fYBaOtTzXnySddar/SIQqBeZ9NkuLyPSnWu84b5+zLmpK5N6HqaFqRfbpk1h3i0ZZD/ucj74iySosrtW5cz6oEbOJIUwkytKw3MyD3B7r2R6RrbCFFpJoN616hgaoCM6yNtoLKqyMuZfuzlRGUlZTRX93/qmyQlDbKSZVx+6iqKyap6c8T0Oh/9Sp/6cSoFBRp57/XqsNgd/emAOu06XIuBaCfV0BF0Of8fW0ND46bn74dFY6+x8Nmvtf3yMW6/MJMCo48P5W9XPXJoaQ/n65gwfYV6DLoAqZwhbTxyn02urKKqy+o2wckd6vTlkJMF6Ax9kb/E597x9573+Nkiu8tUT01tzZcJAtpbu5mxtAeASupw2/yAdXlvH4YJKr/MdLqjkLyuyOVzg7QRuGTyYTuFT6Ze2mxnXnUNWZO75Zj/pr7ru15HHhvLa+IZqHdU2J2fLar2uKTrIyIFHB/PIoBRmXN2J6CCj1/kaj8EGCab0XcmVPdfSImAYcs1jWB3CJfpDAQSXSOknWWe9hKMBbHaJGmedej+/mtqTE08OV53tWXnleFTWpqbO5Zb456Ycv+kYHeNCWHdvX67r2oIZV7uqrhzML2bwrK28tSm3SSd15zYuIdGDJy74fNccBo/qxJH9eRReaHz9TaNF7l0aTeNCQ0NDQ+N/ih8rAtqzbyqt0+L49vMtjLqym98yeDFmI3+dOpCT2Wd444t1ZHZsSYBHDnWtHXIqIggVzzLo7W/Z+egNXsaboyyejPQAXt63hg9umshtnx9HlhWGzt5GoEHCqBPZcF8/ki1XYAlcQq++e9iflYHTKTFt/kH0kqAKsrlzfzfc148NJ0t4YMEh9LpxTB9tYerAxUiiTMvwHmo+rj919NaRQV5/y7jKoAqCoObyNs41XnW/lYMVRbQLe5iYYONl1ePzq8sAsNbpyUwK9HEmeU7mgwwSM7fk0iMhlJV7HUQnO3AaarDVBGHU4VfU0+pwYnEGUm4LJcxQxtd7cnhgcGev62oQeYvk6TtG8tf3VvDWVxt49JZhPs+4KYeXMdLMofYptNl9jDdfXY7UMflHC6n90hV1NDR+ryS2imLC9b1Z8NV2xl6TQbuOCT/6GOEhgVw3ugefLNrBTWML6NA6Dmhao2lVTjFltnDiDBUEUOzTX224r5+qixRjNnJD12TKxL68uncDWy6cpn+LZPVYU7rF88Lq42oGxBtXdWRyl3hizEamGEeysmAbn5xaTE9xglf/2XfGZgRcTo75t2YwdPY2FFwVM9xpf266R95Nhe0MeXxC11Zj2XSsKxaHS3B4VFo0By94R6s8svgwz67IBgS1gsiG+/rx6a5z2J0KzyzPpqLOFfX299XHOfjoYHUMLrMdJtcyk1ZRF1h9sC9T0qfROymiyf7QFa3hKtttscvM2noGq8PbcSEgISuOJp9JZlIYRp1r7d0pK0iiiCILyILTrx5SUZWVSZ/twu5UWH28kEgRdpwpumy1j8iwIOKjQzlw/Dw3XtHT90VqhKfoKIDcugUAG384xLW3DGjW/lrp1EujOS40NDQ0NP7n+DEioIIgMOmmvrz+lwXszTpFj96pXt97GhuP3zacP/5jHh8t3M606waq22TllVPrDER2hBJuKOOzrCM8Nry7lwNFp3dy5dJP+due5YhSMtX14atuPYu+MzaDAgGh3ejZey/dMvdwYGcGlbWuiAm3IFuV1UGgXqTXW5twOmUUwObQ89aKa5k+6jtu6L+EFiHtgGvU9jVWR5/cJZ7HlxxRy8G5qbU5SYkwqdfkPl9qdDkHyz8h2tSZlkHe1+3PuCuqsvL29gNExOnJfHM782/txa0ZSaRGBqpGuKeAWq3NyZsbT2FzyjgE1/n1AXU4LUFNinoadRIWu0yxLRKzvoalB3ZzT/8OGHSS+twaG3k3jOnB3BV7SGsVw1WDvUOsm3J4ZeWVczE6HH1iDK3OFHDTpB6075H8o4TUfumKOhoav2em3jWE9SsOMuOlJbz92V1I0o8PIJ86LoOF6w7yzlcbmP3MFL8ObXD1M9MXHqTaLlEuhBKuL6ewstxLYNnTqeB2YvSNaEekYTfPbl/Fqgl3oBdd/VbHuBAOPDqYefvOM6VbPNFBRo9+w8x1LUfxae73DErtq07+lXo9iSqbq3+cvfW06vhQcEVxPD+mwXEhCjoGx/2NOcce5rbBy1AQ2HysC5V1djq8to7KRiVQbU4FyS6D4Kqo1Hg8aiStxCdZZ3l+bCyhEe9RUrWSMMHMpxuu5uDZzvxzZASAmuLiWV0F8EpXsdhl6hwywQaJu/u0pHVkECEBesqCbKy7mNfks2tcpWXwrK2ASxjUn9PYexyTECWBECPNcjZ3aB3L4ZMFTbbFjed45HodXU6gziFBrF99pFmOi8sJhmpoqSIaGhoaGr8DBo/qRFhEEIsaibq5S+Bd9/ku0l9dS0JCNOMHdeTL5bs5mXdR3c5tbNUJsTgUI/N37+BidY2XjkJEQCAfDL0Gi2zDnHCGYIOIAAQZJAQBUFxhuXUVMaTZriA0tIouGbsJC3QZOrFmI5Lo2r623qCze4TDOpw6Plh7LUfOteFQ5T/JLv8O8J+mEGM2suPBgQQbJQJ0DUN9kEFSNTXc1xQRqHD7kPnoRAP2qukUV9t9rruxcZeVV44xsIaaahNWh8KQ2dt4c+MpHlhwiOIaV4ir27i8u08rjDqRapvTlQ/t0OF0SOgDrPx9TDpHHhvKqLRon9KC2Y8P5fMbuvPZDT15fdJoTpeU8eHmBkE9f9d9//WDyOzUilc+Wc3+HN+UH38iae5rLGifTF1QAHu/2szQlqE/2vmgCbBpaPwyBJkDuOdPYzh+9DxLvr20yGZj3KH4tQ646+q+7D2Wz6a9p5rc3q3nAFArR2Iy6Nl56gi19Q7pWruMLLv6IVu9WPINc3aT8eYWTp+KJLeqlFn7s7yO6dYZig4y0uG1ddwwZzdtXl7D4YJKJiQMIdoQwcenF7L23t58eVMPtj0wAINHSuC9/ZK9NCimdIv3abckGhmV8Ao5F1rzh8FLmZSRhTlAh92pqCVO3RhEMOpFjDpJPYenQKjewzEUZLTQruUiFpy+ltPV6+gcfiuTk7/mT/1uUXWN3OLZDy065NMu97jw/uSuhJl0mI06DDqRP2S2pGV4IKPSotHpFHTipdfW3f2tWw8kUK9jas8Ev/2v9zgmEmYKwOqw+RVwbky75BguXKykotq/FpUbz/HIapexOpxUWR2UxoZz4nA+JcWX12TRIvcuj+a40NDQ0ND4zWMw6Bg7KYMdm3LIO93gkHCXwLM4ZMotDlblFPPA9YMINhl4+ZPVyLLLwmuoUpHBnNsmUmO18cyiH1AUbwuwY0Qsr/Ybi2SqoU+3Ktb+sQ9zp/b0MjwNOpFn+g7lqQ5/ICyskrEjjuDEzpNLjwICd/dpRZChQYDTpBeZ0DGWIINEtVXkvdXXgL0nO4r/yTfZs0iJMKml6SSxwdiJDjIya1IXXr+yg5eB6P4+xmzk8KNDeOO6rcRHFPL2yiu4ec4ZLzE1f9U53KVoA4OqsdUGq/cIGlb/PPlk51nq6kOBrU6ZIIOOYCmQfqlBPDGsrWowvjWhk1eFGHcZvak9E5nQNY2xndrx3qYs9p8rZsmRQlIiTD5Gnk4SeWHaWOKiQnjm3SWUVXqr4/sjxmxkw339eHBIKo//7WpKi6r44v11l3+pNDQ0fjUGj+pEj96pfDpzDReLKi+/A94iuumvrqM6JJzE2HDembuhycoRnpPJAIOB2/v1Yl9ePqEG10Q2yCAh1pfldus21NicKEBZaRD2ajOzD2+lsNZ34pqV1xC5UW110nfGZo4XWdiyqxWlzmJuWPI1mUlhRAcZ+dvodtzZuyUb7uvHoNQoDjSqDtX4OpccKUQSDEzvPosApR9X9lxDVPTbhJjqvMYXAKm+ZGr24w19vdsh8OVNPdjx4ECig2Wu7L6N126cjSFoOcnBw5nY6it6RN1DfGiY6rT1nMBbbE6fNEZwCZQeL65m4W291IpUg2dt5cZ6B05BdRUBoqFZzxRcfXigXodeJ/hoRHjqOLmvLTzQRIWlrlnO5natXBEPx8/4Xocnnu+JpxOosoWr5O72jdnNuo7mOFN+zzTLcSEIwhhBEI4JgnBCEIQnL7FdL0EQnIIgTP7pmqihoaGhofH/Z8J1megNEt9+7iuY5kmY2cT0GwZz4Ph5Fq1vEPR0Gzl9UuJ5fNQgNhzPZU7WPp/9+0alYiuLIafuNNcvWkFmUpiXEeg2SPpFdeWe5JsoVc7Tvttuah02HE6Z7gmhGD2U1LMeHMj7k7uqq15VVpGH545m16nO1EpzeHHLC8iKs75snMuJ4Fky9rmVx9g0rb+PMaQoCvvK3kcxbGT+zoHsym1Ntc2JzSF7ial5Gnfu4z68dCeGACtjUtJZflfvJlf/PFcr3YiCQHAAJIeZfdrqb4XOzeMjByIIMOHDxdz05R4Gz9rqZYyCS0TUqoi89MB4KqrreP79FapjpSnRs6IqqyrSduva0wwZ35XFX2dxNvfShqqGhsavhyAIPPDUeBwOJ7NeXQZcXtjQc1JdbrFz3/yDZGEmr6Ccr5b7L5ndeDJ5TffOOBQDYboiBBT0ksi2BwaokRFGneiKsgOCDTpsJYnIyPxt5xqfY2cmheGVoaK4HL9FF2IpLookMfUYC7NPkf7qOu5fcIg3N55i4MwtFFVZfapDuWlc4UgSjFyf9hqZ0Q9x0ZrFP2/4nM9udvLS2HbqPha7woaTJT4T+RizkdHpZhTDYt6c+h6TMtfT0tydq1p+xoC4P2PW+0Z6uKuGgKvqyPSFh7yex+GCSrq8voG/rz7O0NnbSIkwkVtqweaQqa534Kw+fYZwfdiPEqoUAIvd6XXthwsq1b8Hz9qqpvEF6HVYmxBxbkxKgiv1JdejAo0/PN+T7MeHqU6g3c+PJS4hnO0bc5p1Pi1y79Jc1nEhCIIEzASuADoANwiC0KGJ7V4BVv7UjdTQ0NDQ0Pj/UFRlZXNBDYOu6MrqpfspLqwAfEvguUt/jhvYgR7tE3n3602UlNf4HO+mzK4MbpvCa6s2kV3gPcHNyiunpiiO2gozhqh8Pjnkmoz7M0iU6pYcO9CFiKgyemTuRxBlRqVF+yipx5iNvDOxE6b6tA+rXeCTDePZcLQro7psZlLmcmyyHafsOn/jNIrcUovXuZ2KnR/O/ZkC29dsPNqVJXv6q22SUZqsdOI+rhToMuJamZIuufrnqXPhMuQl9JKARbYRYfTV2rhURY64UDMD2rQjQKjEZq/2ui7wrmASFhHKwzcNYduB03y6eEeT5UqLqqzM3JKLzSGr508d050Ak4HZry33iajR0ND47yE+KYKpdw9hy7qjLFt24LIliRuXA7U4ZCqNQbRLS+KTRdspuFjZZLUQd/+593wVlc4YDKKdaGMF70zsRMe4EK+0hblTe3Lg0cF8NbUn6+8ayqi4Liw9k826cye92hNjNrLtgQEEGVwpfTpJrE/REDmd3QlBgJ22lVgdDdEgVrvcZB8J/vtTQRBoHzaFMUmz0Uk6qnQvERf/PN2TcxAFl2f5iaVH1WtWFIViyyG2Fr7MN7kT2V0yi2hTOmMTP2BsyzcIN6Y2eX7XWNVZvcdO2btPn7fvvI8+R2ZSGHg4cAICLNTWmmjz8hpumLO72SWmz5VbsNic6rV/knXW6293O1yOC/8RNo2JDg8mMMDA6fMll93W8z1x/zs2JIA+A9PYt/MUdRZbs86p0TTNEefMBE4oinIKQBCEfwMTgCONtnsA+A7o9ZO2UENDQ0ND4/+Bp2hWkFWmqywz/8tt3PPIGLUEXmNRRUEQePIPI7jp6S94/fO1vDT9Sq9jCoLASxNHceWsL7jry8XM+cN1tIoIBtzGsYi1sBXGgJN8cXoj13RIpk1opE/bMpPCqChO5PghmbTOhxg66RxOxcnuc1U+Io+j0qIxGSR0kogkgqKIfLrxCmqsAYzttoO40FI+3ziFlAgTe/MrkUT85srKipPNBX/jQt1avt0xmKX7+uK2GgN0gCJw33cHMOhE5t+awfiPs0ABQ31lFL0kEBtdiSwLjE5Oo6jKSm6phWn9U3xWiRqLqOWWWmgVKXHlyn0kBIeqaSdSfai1JAqcLatlzu5zqqibp3jqYyP6sfroMWKMZVQR7KW50VjU7OphXdifk8+H87dhDzL7fJ+ZFEaH19ZhdcjU2pyqU2VwxxZI9wzh/X+uYPe2k2T0a/P/fAM1NDR+Lq65qR/rVx7iw9eXofTsQJUiYNKJrMopZmrPRK9t3f3Rqpxipi88iFN2CTQ+dvMQpv19Li9/tpY5FQGXrOqQmRSGLJqpk4MJ1ZXQJS7A5xxuZ6pbw8IuOwlNNvLEtuWsnnAnIYaGfaKDjOgloT4yTCE6qKHPzBeCWVy8lKRWAeSccFVPMepFUiJMLDlS6FcIOCXChIJCUH1/5tn3Rwd0ZGKruZyqWsnei58yffR3WO16zlyMJb+sBWvzdxJlrqDSfo4q+zl0gomWwYNpF3o1MSbvik6XYlRaNCa9hCQIKCiqIDT4VlWJNRsprrHy8tj2PLH0CJLOhtFkYWuOg2qrKypCUZQmhSrd44NDVth8uhSLw1UhRhAUPsrKw1KfpiiJNFSS0umw2O0+x/KHIAgkx4dz9kJZs6+/cfuUVjHYrA727DhFvyHp/9FxNFw0J1UkAfCUdj1X/5mKIAgJwNXAe5c6kCAIdwuCsEsQhF3FxVoIpoaGhobGz4/npLbGaKRt37Ys/W4XlRUu/YOmQjNbtYjgzqv7sHbncdbtPO5zXIcscaoqiqLKSga9NY85u89RVGVtCBm9sRdLr7qRAEni9jXfUFLXoLdQVGVlzu5zrMopZsN9/Xhz6ARuTJjAoeojTFg+g5u+9F1lahyKOuPqzph0Et/sGMbnG68irUUe/7zx31z9+VKmzT8ICF6aEQAWRwnrLjzF6eo1CHVTWbqvH26nxS09E5BEiVq7k2qbk1qbk9Efbqfa6lRTSHJLLRx5bCg92tbRzpyMUTRcdpXTU0RtfIdYskpyAege3kpNEQGFl8amIysK9y84xC1z95L+6lo11Ned+5xXYaVWCcMk1SAqDefyJ2omCAKP3Tqc6IhgVq7cgUFQ/JZrrbE5CTRIPDyotXqvxk/uRWx8GJ+8uxpZln2uSUND478DnV7i8b9NwlZrI/XwKVAUvykKbtzaOdmPD1PTPzonR3P7hD5s23cKQ3XVJaO/3P3w368cTqBBYtaGzU1GZqljT51M9YWWFFtqeGHXWp9tnLIr+sMdMeeuyvTUV05KiqJIaZfNixNj+fyG7mya1p/Bs7b6jR6bs/scA2duBQUEATbc189rXCuqsrLsaAkhwgiuSZlLasCzbD3eHUmE/ml7sQpbqbKVEG5IpXf0o0xpvZiBcc/9KKeF+x7NvzUDh6wgywqDZ21V2+muqvLIoBRCA3Q8ufQoXV7fwBNLjyKJIuFRpQgCXCgIV49Xa5e9nB+e1+Mef0prbbi7apNe5I7MVrjll0x6kXcmdlbvhSgIWB1ys9NQEmLCOF9c8aPugWf7nt5biFMnsX5N4zV/jR9LcxwX/uoDNf6FvgU8oSjKJROGFEX5QFGUDEVRMqKjo5vZRA0NDQ0Njf+cxpPaW+8YhLXO3iw1+qljM0hrFc1rn631URV3l0gttYdjEit48NtNpL+6VnVejO8QS5fYaF7tfRUXaqq49YdvqHPY1Uomt8zdyy1z9zJw5lZSIkyEWjvRWT+A6Bb5JLY9jN3pGxLs6WRxR2CYjTr2n+lG78jXsTpLefyqWUzstQSTvpowk1411s5Ub2DRmZs4X5tFr6gHGZN8h1eazIi0GK9z1TlkrJ7y84JrNW/TmQKKHQW0N6fy6rrj1PgJxb0Uy85kkx4eTWG5oDqUnDIUVlmxewhiWO0y8/ad98p9Hv3BNgotZmRFQK+UqMJvTYmaBQcaefbOUeQXlvNQqtHrey8xNZ3oFTFiMOi49d5hnDh2gY0/HL7sNWloaPxyNE7nSGkbyx0PjCC8sIzkIlcaW+MUhcY0dljfNLYnibHhxJUVEKIXvaIVGp8vxmzk5l6teWBoP9bn5LLq6Am/53DrPZh0ItgCuTUtg3knDrD23AmvbfxVkvj2wHnKLU727emIza5jv7KMSV0jyS21+KSCuCfI93yzn3KLXa3g5K4g5b4GTyfzxWonA5LGcnunZzl4/FH+NOcJpn/+EHd9cgMdzX8lPWwSejHoP34+4z/Oos4hU2uXsTbSTeoYF8KQNtHI9ZW2FFyCpnaHTHhUMTabjvKyUHX7QL3odS1uPBcl3LNVs1GHSS9xe2aSel9NeklNAwVwyAr7z1dc0uHuSUJMKBdKqnA0EmxqrqZKpV2mLCqMrM05OBuLPmn8KJqTKnIOSPL4OxE432ibDODf9TWQo4CxgiA4FEVZ+FM0UkNDQ0ND4z/FM13BHVqb0a8Ni/69g2tu6kdFfc6wv7BbnU7iz3eN5rbnvmTG3I08e9do9Tu3wVljiyTQaSHCUMjZWgPfHjhPy/BA1QCd8lE2mBI5KJ9h+sYlXBnbF6u9wXips7vU5AUEJNFMq7YpJLfORVICyEwaftnrWpVTTGWdncX7HVyoepJaaT6D2++jT5ujBIWeZHOBjTpnOfm124k0pjMw7s+EGpIBvNJkAPSSiF504tE8AiQBnU5kye2ZDJ61lZCoC7TvpvCP7ys5dyFX3c4zFLcpDpUUsLs4nyd6DPEx2Kd0i2fGltNY6k9u1Lvyvd/c1FCq0BU5rKPKEYxZV4WzfomtqMrqV72+qMpKjlWic5dUlqw7wDVDO3kJzzV+LzwZMrozX3+6mbkfbWTwqE4Igr91HA0NjV8Sz9Q/z3SOiTf0YdP6bJz7z1AbYcYRqP9R5ST1Oomnbh/OtJe+5bZEiadvaaii5O98ALf07s73B47ywrK19E5OIiwwQG2jOz0OhPpJtcCd6X3YXnSax7YuY/mVtxNjcqUXvjWhE4BXetwTS48CYLMZ2L+nM3367eG5Ax/SWb5KTa1rHD3mTosI0Ik4nDIhxobqIZ6T/CCDxMwtuQxvG8XQ2ds8VqNlNZVufIdYrzS9HyMWmZVX7rXEbXN4twUaxs9gg6RGvZkCbMTEFXKxMI6QAH19/y5g9KiG5e8YZqMOQVC4rmsCI2N6qO1tqn+vtDoB79TBS6WhBAcH4nTKXCyrJi4qRP2uqffCX/sqW0Rg2VvCob1n6JqR0ux7qeFNcxwXO4G2giCkAPnA9cCNnhsoiqI+AUEQPgWWaE4LDQ0NDY3/FjzzjgGu/8NAHr3rE76dl8WDJ6ouaXyktYrhprEZfL5kJ6P7tadXx5bqMY88NpRX1p1gxiY7rQLzaBFQyBNLDyMKrvzityZ0chmLJcGgj2WVcIzEoDCMetEj91ZAUaDa5jKiHukwmT3OFZB6kF1VO8mg1yWNx+kLD1Fu8czXHY3TMpr+Hb7nXO1KUMwE68NIC51Ir6jp6MSGY3jeF9eqkYIkCNhRCNCJGHUiM67uTPeEEObtO4/VIWOOKMRu01Fc1CDCaZAEr1Dcpph9aDtmvZEb07oRavDVv9g0rR978yuprLMTEqAnOsglXtd3xmYcDpk6p8sarnYEEaqvIjbQoUawlFtcYmthJj3Zj7uqjLg/l2SFLoLIix+t5tPnb0QUBb/vhSeSJHLtLf15/S8L2LX1BL36t73ktWloaPz8+NOzGd8hFlEUefbFydxz/WyG5p7j1Y/u+NGVGTI6tOSqwZ1YsvEwJVd0I8Yc1+T5AHSSyIsTRnHth3N5acV6Xpk0xmtCq6CAAha7jE4U2Xe+mncGXcVVSz/jkc1LeL33RDq9vt5r/HELBnumn9SWRzEufAJLyhayqfBLoDszJ3VRHR2eE2QFmWqra2wZOnsbM67uxOQu8V5CybU2J29uPMVr6096hdDrRUF1hjRnYt4UrtLUAgYRbDLYZYWhs7ex7t6+VFqdPo4Fd/9/UF7JllKZ29uMISQtku4JIeSWWkiJMHmNgYcLKpm37zxTusWrx/jTnkPEmU1e/XlT/XtkoAEB/xpQbjyvP8RaQzxQWFqlOi5W5RRjsTmxOOQmnR+e19glKpD7r36bDasOaY6L/weXTRVRFMUB3I+rWshRYJ6iKIcFQfijIAh//LkbqKGhoaGh8VPTqXsrOnZtyYI5W3HYL5/qcMfVfUiKC+Olj3/AUtfgJIgxG3liaBuCAwIpdcQRIFkxi0Xq8cDlmAAoLYjEVhHBx8d28NK1UXx+Q3c+v6E726e7Sui5jajR7WJ4rdft9IroyKwT39D/s6+aDGnNyiunzu6bpfnJDrjzkyu59f2HufeTu7nrkxsIke9hRXb5JcNanTKqc0BWFAQBuieEMHjWVt7ceIpam4OY2IuUXYxGr2tYQdNLIi3DAi4ZNnumqoxlZ7K5Jb0HofXidG6j252zPXjWVronhPDcymNMm3+QDq+tIzrIyIknh/PBlG6EmfQEGyREnRmdKHIw/xxZeeVeESxWh1OtrOL+3ClKFIRGc+x0IUs2NT/1Y8joTkTFhPDNZUroamho/DI0lVoBEBkdwlMvXEPZ+TLmzVr9H1UFmn7DICJCA/nHRz/gcDgveT6A9i1iuHtgLxYdOMqa7JNejg5FAQTvCXJaWDR/zRzJ5guneSFrg1fax6qcYjq8to43Np7CYpcJrK/MIQrw2FwLOUfaERVbSEr7Q8iKrKaJeKbK3dU7WW2bAjyy+DAdXlsHwJHHhvLIoNYEGSSqbb7jxu2ZLVUHRXOrPTWdLiEge6gNKMCYD3dw05d7SH91LXN2nwNQ9Y8IO8bm0l2Mjx3Gc99fYNr8gwye5Uqj9NT02HjyolpOtcvrG/j2gKsqiV2RMYgSjfHXPpNeok1UoE9qoSee128RXMc9nl+mHnP6wkN+hT8b43aetIwx02dQOzavOYKzmaVYNXxpjsYFiqIsUxQlTVGUVEVR/lH/2XuKoviIcSqKcpuiKN/+1A3V0NDQ0ND4qRAEgRvuGERVSTWxFy5ecuUFIMCg5+nbR5JfVMGsbzZ7feeuTPLYsB6U2sII0VUQrKtCFFyhvw1lTAVqChLpEJLAK/vXkhBrZWrPRLWEnqcRpRMlnmz/B2J1CbTptA99cJFf4zElwkSd49I5s7V2mTq7k8y3NnHjJUrLqaUC60uu2pwKVofMx1l52J0K1TYnsTGVGIw2Sopi0IkSL41NJ8jgMuqGzt52ydJ1nxzdhSSIBFlbqEKm4DIQ3eVIbQ6XrkVjg7lBUM9VJvb4kyNpGxPJieJSMpNcESxujDqJzKQwUiJMiB5WjiUknHYpsXw4fys2e/NK4en1OiZc35v9u3I5dbygWftoaGj8fDSlZ+OmZ9823HDHIFYt3svieVk/+vjmoAAeu3UYx88W8+n3WZc9H8AfB/amQ1wMTy9aRV5ZQ0Uno05k2wMDfPa9rk0XJqZ0ZOn5vQSYK9XxB/ASDL6yQ6wrQsIuU2uTOXmiJSeOpRCXeI5ZuV9w89ydan/rdgKnRgZ6iRPanIpXPzqtfwqGeke5UScSIIEkgNko8fzodmqqiqvaU/OiEho71rPyynE4ZRyyt+NIFKDK6qDc4uDub/bT4bV1FFRa+Cz3e2af+JYuIemcz21LXf1igr/xYPbW017lVB9ZdJgOr69BVhQCdLpmtU9XPzD4E+V245nKUul03dEnFu5X00ec9dfWWPjTH27nSbeB7agor2VP1qkmt9W4NM1yXGhoaGhoaPzWyOjXhrSOCWQUl/D5dV0vGwrbo30SU0Z2Y96qvew5mufz/d9+yOGiLRKL00issYjrukSoIppGvYhJJyKJArMGT6RDeAzTNi7kYIlrMpxdVMWXu/PILqoCXIbOt/uK6CxfSV1tID0z92MOqfQxHjec9K4tr2tiVK+1y1jqRS7r7E5mbsn1cS64DfT3r+1KaIDLALTYZd7blotYv2oY06IQ2SmSlx+BU1aotTkRBYEaT4G1+pVD9ypXUZWVD3ac5Mtj+6gpD+X+b4/VVw1xGZIpESZq6lf/amxOhreNanKF01NQL8wUQGVdXb3jaJgaweJOExk8aysCrtDod6/uRPYTw5h27QCKSqtZvOFQk8+5MWMm9sBo1LPo3zuavY+GhsaPZ+PJi9zwxS42nrx4ye2aqgTl5uZ7htBnUDve/+cKDu87+6PbMSSjLYN7teWjhdvZduTcZc9n0Ek8NWY45bVWXl3pqhrirujkrqbkuW9xtY1BYT1oFxZDVMt8Xp/kqmg0Ki3aSzD42ZFpGHWi6kwGOHcqjZjafkTEFNIhYztIdV4CnU8ty8YcIHFPn5aEBOh8+lF3P//S2HTsTpk6Jzjrq5BAw2R/2vyDyArc2bsl82/NYFVOsZfDGWgyKiMzKcyrtINehJfGpmPwiNKrc8gYgkt4cPebzMv7gcGRvfnXgmTe3Hia2vpIOX/jwb39kr0dM7KCXXZFQYbovUvTNtU+nSTicF466sF9nx4e1BqjUY8TAWw2VuUUe0XhNBb+bIyn8+TWLecIDA5g3fIDlzy3RtNojgsNDQ0Njd8lgiAw9a4hXCyowHS68LL5u0VVVlK6tKNFdAgv/GsVtXU29busvHLEegG2C3VxgEDO+SN8dyCf7KKqhnxnBAJ1Bj4edi3hRhO3rZnH14dOMmT2Nr7ef4Ehs7fx4g/HaP3Sam6Zu5dHFp5gx7buOJ0S7bvv4qK11KtNBy9Uev19Y/cEPr+he30khEigXiRAJ2LSNZh6tXaZ19afVB0HnrgjG2Zc3RljvbFssSvYZZkXr2hH61auNJFAXQCSKBBrNiKJrlUpATBKAk5Z4f4FB9SQ4HavrOXxDRuwK05KCyLUc7lTOnJLLQTWR20EGiQqrc7LrnAChJgCqLA0qPxP7ZnIqLRosvLKWZVTrEaJiIJAy/BA14pkp5Z0SYvn08VZ2B3Oy6rCA4SEBjJ8XBfWLj9AZXltk9tpaGj852w8edGrH7yc8+JSiKLIY3+7mtj4MF54/GuKLpT/qP2Lqqx8XCBiReTe1xdxrrTmsvsU1gpUOGMxirUEUOJV0cmTwwWVtHl5DbfN3c/ufVEYJR1zzq5D1DmIMRvZcF8/HhqYwob7+qnReM+NSiNA5+rPBQHa6XtybH8PzCHVdO29jciIykYpKgLjOsSR88SwJvvRJ5cdVR0EAHaHoqbYuY9TWedg1pZTDJm9Ta2ClfbKWtWB0TiNJsQo8ZcV2RTXWNn2wACCjRJBBglzgJ4/9GrJOxM7ESBBeEQZPTL30r3PDkodpZw60pkWlkHYHILqxAb/48Gg1CjW3dsXo9QwhbXUOy7MBqNXn95Umo9ekrwqWDWFO0JFrxOxSzoEu53pCw9RXGPlrQmdfMqN+8PzftoQSMlozZZ12dRZbE3uo9E0muNCQ0NDQ+N3S+aAtrRp14KvPtp4ybxT96rJH745wC5dBOeLK3hzzvqG4ySFEaCXCNSL6CQjdw8cSH5ZOQ9/s5whs7dSY3NS51DUEqcxgcF8MfJ6AJ7b8z2SrkE349mVOdTaPKqOWExkbeuBIMm8kP0+J0pLVMOsc4sGgUyAzJbhTO2ZyBPD2nLyqRH8++YMdj40EJNBR5BBwljvwKhzyJRb7H4rcQDqyp+KAi9u3YaVGkqLYnlpbDqg8NSybEDh5XHtMRlErE6FWruTyjpXqK/VLmNx2DFHlWCpDMZubVgRc6d0ZCaFqRofbvX4y61wAuSXVxIRaPJ5Rjd9uYfpCw+qyvuSCOUWVxlaQRC49cpMisuqWbL1mN8wYn+MvzYTm9XBuhXaSpmGxs/B7K2nL/n3jyXYbOIv/7wBq9XB0/d/8aOcjqtyiim1yeSGxGK0W3n+kzWX3SczKQyHGIZFNmMWi9Epvs6OoiorfWdsptrqpNrmxFqn4w8pQymsrebWNfM4VVrJ4FlbeWtTLoNnbaWoykpxjZWnl2WrpUVrbTJPL8+mtCiWK4JuIj7UyIs5M8nX7cCgU7wm6U31o1l55TSW/zDqRTXFTqkXZwZ3JacGKusc3FOf5gGoToX5t2YwdPY2VXsC4MSTw5k7tScb7uvHsmPnOVS7m8xB2+kzYBcRERXk5rRh/er+nM9LRBAENTVDgPrxyv94UGl1eqUBBhhdjdQpBq8+3bN9ng4Gl+OieToTMWYj70zsjFPSoZed2J0yfWdsZtr8gzy06PKRe42dJxOv7kGdxcbWddnNOr+GN5rjQkNDQ0Pjd4sgCEy9ZwgXzpWyelnTk1LPVZMqvYl+fTqyeMMh1u86DjSElf775gxOPzOC9vEJVMlRBEpVhOkrPM7XIOLVOiSCT4dPQZCcRLc+gyj5110QAMUaSs6+DGqUSm7f8hY3zd1Bh9fWMTg1kpAACYMoEBIgMblLvLqf29hzr9rNvqYLt2W09Dp2foWFv6zI5nCBd+RGjNmorpgFGyREUSAypghZFrhYFENhlRWn7MpXdspwsqTWy9kCYNKJGPUioZEVSDonlcVRBOpFXhqbrqZ0xJiNzcohbxwZUV1n5ciFInolJ/p9Rk4Z3pnoWhEDQRX6LKqy0rdLMjERwXyzZn+zxOcAUtPiaNOuBau+33fJdmloaPxn3Nsv+ZJ//yckp8bw/Js3UHC+nL8//jX2ZmrbuKkwBlEQGMaBfSdYuvXYJX/rrn5sGP+8ZgytIsP465JVzNl1yie1wsthIMCwlq24vfVQjpUVc9f677DL3mLR8/adx5/EqM0pkxrcktm9nmRoTAaLC1YzZfwh3rkuUe1Hm+qf3M7iIINEkEF0pdI9PgyAgTO3YHPIyIrsFannicUhe+lmjO8Qy5rjF720J+btO0+M2UiPRDOTF81lTulMDiprUBTINIzhlQ5PUXQ2jUBdAHpJYFRaNEcec2kYHXh0MHOn9mxyPHC1vyHtxGRyOf5zi5xYGolt+3Pe6CURu1Nudv89Ki0aRafDiNOVUqPQrHEDfDVZBvRLJTY+jB+W7Lvkfhr+aU45VA0NDQ0Njd8sfQa1o237eL761waGXdEZvd53aGy8avKnGwZSUnCRFz/6gY6pLYgOD/YqvZaZFIZNiMIi1xFtuIggBGAXgtj2wAAvA6pzZByfDJ/MzT98TXTKWYpOtUKRGwyyQL3Isjt7U2l1khJhYty/rbTvtpf0rns4ujeD3FILOU8M9ymX6hYQ8/zsoUWHsNULeRp1InoJnl6WjQK8sPo4Bx4d7FJ3r6djXAgnnhyulqt7YO8mKkojERUDU7rFM3PrafV+pEYGet2vQL3Ee5O7MKxNBNf88CmCM5KL9mAEQeC19Sd9DFJ/Zevc1xBilBj/cRYoYNCJHHlsKPvP5SErCpkejovGz8idNuKUXc4Jk15kVU4xU3smcuWgTny8aDsBicFwGWFWN6Ou6sas15aTe7yQlLaxHC6opO+MzSiK637+mHKBGhoa3gxKjWL9vX2ZvfU09/ZLZlBq1E9y3M49knnkzxN45c/f8ebfF/PoXyciipdetx2VFk2YSYfVLlMdFUuiXeQv768gNy4FwWho8rceYzYyuWsirUKv4KZPvua5xSt5iFYceWy4Kp7pTsETBFhyeyaDZ23F7lQwhSZxKu4M5oRayE9GLwpqBMQLq4/7OC/cEWvBOiOPpE+ld1Rn3j3+b+bXfYyzeAjDnUPo+cY2tZzphvv6kVtq8SlF6jlGzNl9Ti0rDWDSCwQaBFBcTv5nR7TllXUncMp4RbLFmI1M6RavtlMApnSLZ395Dq8c+pLW7csoLQlj764u1FVG8NgtPekeH+W3De5xwHMs8sQ9LrhLZwMctx9jzvHzPPX9CSz2hmpeTfXpBknC6nQ0u9xrjNnItT1bsX7XcbY9MIDBs7ZiFoRmjRvu/T3HtxHjuvLVvzZSeKGc2BaX3/+/AX82xa+B5rjQ0NDQ0PhN8WMHWEEQuPW+YTz7wByWfruLiTf08dnGn6H3t3uv4JZn5/DX95bzzhPXIHkYw+7Vtw0ni3hv/Q8E1Rbx8c3X+jXG+sa14r0hV3PP+gX06FbIldEDeWVtLha7jCSKVFqdjO8Qy5IjhZQWxXBofwe6dD9Mh+776JE4zMco8qw/7zbI3NEI1TYnwQaJu/u05GRJLYsOFwINK2TPj/Fun/vYFyzFmIJqGBnTnztGDvW5HwDPrsimzuZEkgS2Tx9Ax7gQFp06zIXaSu5uM5zDBy5SZXUZxTO35DKtf0qTz8d9DVaH7JXzHAxsPFXMhxs2kRgWQs+W8V7Pu/EzykwKU8vRWuwy0xceZFRaNCP6tOOjhdt5fVAi4S3j1WtYcqSwyfdm8KhOvPfPFWxcfZiguDA15NtNVl65j/NFQ0Oj+QxKjfrJHBaeDBvbhYILZXw2ay1Go47pT1+JIPiPJgB3pahhal+ydO8ZZv1rKbHF58iPS77sb72wVqDc2YJwKZ9gJZ/tZ0q5qlMLn37TM0qMijDu6JPIV6e3kNGjiA8GT1Ij0g48Oph5+87TIyGUTbkltI4MYnKXeC9HdVlRHH9v9yiLi5fz3bk1LMvfTmSLZE6ciiNQr6fvjM0ICF6T9Mv1V4oC70/uSphJr/aLf+jVklU5xUxfeIhp8w+qx+sYF6K2c0q3ePKUQ8w8MI9oYwTbt2dwOi8MEAgzSV5Coe77kBJh8nKs+MPf2BZjNnL10nVYLUZqbS6nRYBO5J2JnQD/fbpeknA4ZfXem426yz7T+Mhg6uqspMcE+3W4/BhGT+jBV//ayA/f72Xq3UN/9P6/NE3d918DLVVEQ0ND4zeCIAiSIAh7BUFY4ue7IYIgVAiCsK/+v+d+jTb+3DRV/qzxNo3DQzP6tqFbZmu+/HADNVV1fo/dOOS0VYsI/nTLMHYdyWPO0l0+xwe4tlsSH988Cb0k8uzi5VTX+Q9JHZHUlpmDJ1DqLGe3dRcmg28ZusykMAw6kYrCJE4caU9kTBFf5n9DQaXF63r8Kal7RiPoJIGPd55j9fEG8Tv3CllTobO7y1z5uLd0yFSv3/N+uA39ebf24uRTI+gYF4KiKHxwJIvU0Ehu79QZSYQASaDW5uTNjacuqSvhvgZPp4WroQprj+wlr6yCFyeOptzi9HrexTW+YqMN5WjBKbuOnRIfQUxEMEeP56vG6uXem7CIYDp1b8XmtUdc4cEeS6CeKUAaGpdC66d/HW64fRDX/WEgy+bv5qMZP1x2e8/+bVz3VhRFxWO21xFXUURKhOmSKQYpESbqlGAqnDEEiNVsP3EYpT5HxPO4jaPEHuyeybuDJnK2tphpW7+lyFINuKIPpvVP4Y5v9vPhjjyeW3lMPZfnmNfnrZ1Mjb+WN7v/icTAaNp0PMygoduJiC4C5fJpcaPSogkJaFjTDqivmNE41eJ4cTV2p+xzvI5xIfxldBo7atcx4/i/6R7ejnd7Psb226/j8xt61KcIDvNyuHR4bR03zNlNl9c3MOXzXX5Fo934G9ssDjsHSi9grwlWt9NJAt0TQprs060OBVlRLlvu1ZPwEBOKApXVdc3SYLoUsS3C6JaZwqrF+5Dly4uENpefK3WxqeosvwZaxIWGhobGb4cHgaOA/xhL2KQoyvhfsD2/OJ4DrL9VlKZWDgRB4M7pI7l/6vvM/WQjd04f5ff4jaM5rhzUkR0HT/P+t1vompZAfHyUz/FbRYbx9pTx3PnFfB75dhmzbpiArl4R3fN4Y1q2452BE5i+aRH9M2Fq0lAGp8R4OQoaVnqGs75sI5+d/p55+wvJOdgJveRKV/CnpO5Wq5+37zyxZiNPLcumxuYkyCAxvn0Mz45MIzrI6NV2z9Di3aVHiQ2IJD4gusl74bl6lpkUxvHqCxwuLeTlvlcgCgIgIOOa71fbnJgURU3daIz7GgL1IrV2V661JAk80NvEd3v288jw/mQmJ7LkSKH6vAP1Ir3e2oQkCl6pG6PSojEZJHSSqN4PQRDI7NSKjbtPoCjKZd8bNwOGtWfWa8tJlB0YdCLBAAI+KUAaGpfgd99P/xoIgsAfpg2nutLCN59tITQsiGtv6d+sfWPMRnY+P5EXPlnDjp3ZjHtlGWWBoX5Xn4uqrAyetRUUqCWcm7vEMH/fQZLCzdw7uLfPcRuv3o8zp2M2GLln/XyuWf4FHwy9hvbhMX77qMykMGZuyaXO7qTWLhNYnw4XZgrgqbb3safiEF+cWUJgzz1UlYdz9mQq1WXRfifp7v58y/391RSM7gkhXm1zj582h0xt/fjhOel3KjJvHpvDuqJdjG0xgD+2uQZJkAg047efb+ygrnPI1DlkXll3gieGtvHpU10RdNSXFnf9veXCaZyKDFYzQQYJob4/zi21+L1fq3KKmbHlNMEigMzMSV0ZlRZ92f47NNglBF1WZSE8JPCS2zaHMRN68NLT37J/12m6Z7b+fx/v54yKaKo6y6+B5rjQ0NDQ+A0gCEIiMA74B/DIr9ycX43LDbCXmqC2bR/PiHFdWfDldq6Y2JOElpHqfkVV1vrw2IM4ZbwMg6duH8mxM0U8NeN7brl5tN/j90lJ4s9jh/KXJWv4+7K1/HX8cIqrbT6GxrjkdAAe3LSYz1nD8LQpXu33DO+dYh7J4cJydsVvwi47yD3SVTXO3prgCpN1G2RFVVYGztyK1eHEILmMvmCDBAKq06KxAewOLTboFAaMyKGl1IEv9+SrNesbOzn25lcyfeFBHE4FBBjSp4QYUzATW3dk9bESnLKCzdkQpmCxy/zxu/10TwjxSaFxO1r6zthcb4wq3NpF4Ls9+5ncvRN39u/l9byDDJJPdIb73jeVz52eHMuSjYcpqajxem8kUfDK3fak7+B0Zr22nON7cv/f4cIavz+0fvr/T3NTAf1tJwgC054YR1WlhX+9vQrgRzkv3rhvNDf9tQz5zAVKw0XsZrPazxwuqFQdw+60PLNRx8B2nRFx8va6rRh0Enf0z/A5bmMn6aD4FOaOuoG7181n4rLPub5lP6a07eQ1tqVEmOjw2josNgcWh6tfrbXL3P3NPnSiqOoBjUzozsqCrfz7zA+Yw3aRbEpkV3k0zrOJ9G4Z7uWQ8ByLwLuPn39rBrO3nlbT94INEg8Paq2m/CmKwszj81hXtIubk8dxXdKoS6bjQEP/HaATqHM0jA2zt+Tyyc6zvDOxsx+nguAKEXT9D59m7ybWFMz8e8ezN79Kfd7RQcYm7peTAMFJsNEVgddU2drGhAS5KmJV1/iPZvixKap9B6cTGGRk3YoDP4njornO9/+EpsbQXwPNcaGhoaHx2+At4HHAfIlt+gqCsB84DzyqKMrhX6JhvySXG2Av59i4Y/pItq7P5r3Xl/P3d6YCDSsZFrsTS33de0/DIDjQyKsPXsXtf53LymXb0Ivhfo9/XUYXzpVX8uHmncSFmEmKTvZraPSKTOGu1GF8fGod1638ijkjryM20P9jnZZ+FSO+KSSpTQ4mPQQZMmjz8hovwUhwlfcrt7iU1y12mRevSOfFtcdRFBg4cyuguFbR6q+v1i5jlASsToX48HJsio2vtyrMKNhLmEnHOxM7q20PNkj0nbEZp6yo98cQWMuBsnwe6jyYAEnndd+dioxTBqvDVdqv74zN36sVzgABAABJREFUnHhyuGpAu59dbqkFAYFam5WkwEJ+OFrLPQMzeWhYP9Ugdj/vmVtyeWPjKdV50Th1w9/kICnO9f3ZC2X0aJ/EkceGqs4pz9xtLxHRFmG0Totj+8Ycrr1lgKZpofFjeQutn/bhxzgjmrOqfKntJEnkyReuAeBfb69CpxO5+sa+zWqnTifx4v3jmfz0F7StuEB+UACZSWEcLqiky+sb1Owxs1FSowL6tAxnbPoo7E4nr/2wCcDHeeGPblHxfDrkRkbP/5LPcjfy4d4jrP7jNZwrt3npY1gc3rKdLgeAk2AanLfj4gcyKq4v64p2MvfMD8zM/Zza6iAubExl7U03sudcldqfm3TuqA29+lmQQWLI7G3qOYIMEgad6OW0+OjUQlYWbGVK0iiubzna7zNp/Izd/feqnGLuX3CAOruMzalQ51Soszi459v9mPSS+vzcYssWu4xOFPkm+zibL5zmyR5DSAgNJCG0IRKiKT0Ri0PGpHdto5dEdZy43DsYHOj6rKrWN5X0P4l2MAbo6Tcknc1rjnL/k+MxGP5/U/KfOyqiOZoovwSaxoWGhobG/ziCIIwHihRF2X2JzfYArRRF6QrMABY2cay7BUHYJQjCruLi4p++sb8Al8o/vVzpzYgoMzfdNZisLcfZuu4o0LCS4Z6Um3Sij2HQOjGKZ+8axdFTBdyXIDDnxu5+j//I8P5M6NKet9dtpajsvM+K0Jzd50h/dS0vLi2mPC+Z/JoKJi3/ghPlF/FHjNnI6mvvol/QSCJiC3jmwHvUOeuosTmxOmRW5RSz5Egh+RUWr/1+yCkGhfrtnFjtDU4LN9b66IiI6GJkWaD0YgQAdfXOAXfbEVwibhaP/UNjipEdEkm6JJ/7vuyO3niuwymK6x431idJiTARINWRHHQOg1DLU2OG8fDw/j6reDFmI9P6p2DUiQQbJIKNUpOpG545wEmxrueXX1yhHifMpFfLvLpzeRvnDfcZmMaR/WeprrL4HF9Doym0fto/zdElctPcXPvLbSfpJG5/4kpSM1rz3j9X8P03Wc1ub2pcKJ88cy1mg0Q/20V0stOnZKm9PurMHRWgk0RenXQFYzum8doPm3hg3g8UVvrXUvLkVLGdyrOpVBZHYAi7yH1b5pEcq3jpYwTqm5jKNXLe6kUdo+L6cnXwXWTv74bDKZDa8QDT9/+dM9JWAoNqAVep03u/O0CIUWpwNsvezpHx7WPU8c3itDLzxDwW5K/jyvhB3JI8zqcp/p6xpxbU1J6J5DwxnH9N6UaYSadqElnsrpSUVTmud9xzcm4wOJiXt4UIYyCRcoLf96YpPZGA+nt24E9DvCJOLvUOuh0X1Rabz3f/qQbE0DFdqKmuY8/2kz7368dqVVzOtvmtoEVcaGhoaPzv0x+4ShCEsUAAECIIwhxFUaa6N1AUpdLj38sEQZglCEKUoiheM2JFUT4APgDIyMjwVz7+f57LrRxMvL4Pq5fuZ8bLS+ncM9knjeCJoakUVdsorrF6Rwl0SOa2qzL5dHEWbZMiiekY53NsQRB4YcJIymotvL56AzOvGklQYBQpESYGz9rqFdUBwdzacgRzzq7n6uVf8OHQa+gT11I9lucK0TM9r+T1PUbWyEvpM2Anu7O64bAG8cCCg8gKOBsJgK07WYKAK11EJ4nIioxHFTwVk14gNbmYvMJIHA6XyVDnVOieEKKuZrnbLgoCogCKoRpTSDXWiy0YmNygieE2Hju8tk6t9BGoFzHqRB+FfbNRx8L9x4g15GHSG3lxwniGpydf8pleLpS18arYprsyAXA4Gu5N41Urd3ix50pat8zWfPXRRg7vy6P3wLQm26Sh0Qitn/bDjwlxb+6q8uW2K6qy0vnNDTgiomgXU8a7Ly/FYXc2O/KiW2osbz92NQ+88h0PvTafcRMHen0vCq6oNZ0oqtejk0QeHTWM+YcK+eHIIRYfPse2R64nPtTU5Hlc1yFiL03CYg+lLqWQq5Z9xpSUnvQOa6/qEDmdMtd/uRtrffRFoF7k5bHt/R6zT8sIKorjuVgQR1RMCTcMqWVF4Xp6DFAoLwknPz+WgvOxjPlwB3Nv6sHG3FI+2H7a6xgDW7vSKPeWHWNGzlwKraVckzic21L8V2tp/IxX5RTz0KJDPhEKU3smMiotmm8PnOeBBYdQcOle3L/ggJoycuSxoaw5dYEPTq3iQm0VpWeSufPAoWaVNHWPEbtOHWHhvnL13jfnHTQFuMI06qz2Jp7Tj4926JKRTIDJwK5tJ+gzqB3w/9Oq+G+Jivg50RwXGhoaGv/jKIryFPAUuFTpcYUXT/XcRhCEOKBQURRFEIRMXBF3Jb9wU/8n0OklHnluAg/e9i/ef2MFj/71atXgCTFKDJ29DQV4a+Mp1t3bl0mf7VKNjEN/GsK5wgre/fcmEmJCGdbLd2KrlySeHTuSe75ayN+Wrebta8eRW4pPVIckCryy8jyKmIw56RRTf/g3r/cfx8TWHf0aN7e0HcysfxXRpvMe+g3K4tCerhQWhTd5nUadwF19WtE9IZTKOjuPLTmCxS5jkAREQUAnCkTHlGATaig+30bdL0AnkltqoWNciGokeToNHt/+PVlFBtb/YZKPweUpxtY4R7rB+JMIkUr4Yls23ZNaMPP6q4gIurwY2uWMtsbG6b7zFep37vz04W2jvPRB/Bm0IzslotNJHNx7WnNcaDQbrZ/2z4+Z9DU31/5y26m/a7vMsW5tubH0Iu/9cwWyrHDN1H7NanfXtAReefBKHn1jES+8twwxNB5ZEDHpBETR//Xsya+kzBGHURGIMJQz7d+LmXPb1QQZDZe9jpQIE4Pf24g+8hz/PrWLL20HsF1M4MB9E4gNCeDMMyNZlVNMZZ2dZ1dk89SybJ5becw33c3PvbloLWfh2S18Wb2Zjl2yad/pGBXlITyRdYyq8ggwBGAUJQRZh9FYx2t7VvL5+RIiYwtJMMXwatcH6Ria2uS9avyMAVUrI8ggeTkKYsxGWoYHYvTQvbA7FHUbp2jl0zNrXGW2U0fw/JELzdZ1cI8R647sxaDXqzpGl3oH3WPD2Lb1EYd+HBf/qQaEwaCjS89kdm87oX72c2pV/BbQHBcaGhoav1EEQfgjgKIo7wGTgXsFQXAAFuB6xV2fTcOHtA4JTLm1P//+eBO9B6QxcERHxneI5S8rstWQYAWYvfW0l5GxK7+CP989isKSSv46eznhIYF0b+etpl5UZaXbm5uw2UOINVbx0DdLeX78KK+ojhfGtONUSQ0fbD9LtUVEOdOGXj1KeGjz9yw5nsvAyC5+jZvtd17LP7e2Jcu5kG6ZuzmR05pTx5NRFN9wYlEQ+CjrDIoiIIlg1EmIgqtcqUkvgKBw5YBSzlsDqS6NA1xOlQC96GXYuSM/UiJMLMo5zYYLJ7i/cz+Sw33T+BsbiNP6pwCw5EghmUlhHPzTYB5bsIpdp4sZkd6W4R174JClZj2zy+Uoe0fOQGm9yNrJkhqueX0DAH9ffZxAvUhAfV61P4PWGKCnbYd4juzPa1a7NDQuxe+9n/6xk77mripfarvG5aH//PIUPnr5ez54cyWyrDRbsLNvlxSuGt+X7xZtoU35eU6ExSNJerWqhef1FFVZKbfYkUQRqxxHtRzAsYILjJ/1JW9dO56uidE+x/fs07LyyrHbJUrPJBAQHEp4/AVM8bncunYerw8cRafIOKb2dFVacqe7NTXxbXxvooxh3Nl2HH2CBzD04+VExF4gMqqUlNQziOJpv9deV2cgpKYrz3W9jsTQYL/beJ7P8xkX11iprU85rLU5SYnwjjrJTAojQK+jzuFyEhj1ImkxRp7Z+gNfn9yHALzZbyKZMS15cVnBj4p0KKqyMv9gHiIy6a+u452JnRiVFu33HfTULnnxB5kegNXuJzSx0T1tjmaLe5u07q3I2pxD0YVyYlqE/VdV8PhvRPi1+sOMjAxl165dl99Q4/+N+Oj3v3YTNDyQX7/y126Cxn+IIAi7FUW5vKrWb4Tfez9ttzv40x0fc/b0Ra59fjIjM1pRXGNVDRkBfCIu3KtbZZW13PPC15RU1DL76SmktWowSufsPsctc/cCIOJkcGIFhZXlPDduJIGmSDX1wupRcs6gE1n9x96M++5b9KElOGqDsVxohcOh8wknLaqy0umNH2iVfpCYFheorDBzcG8HKitDCDJIPDuiLS+sPo5TVqhzNIiNzpzUmePF1by58RTVNicprYpI77qfP6ZOpndIbzXP2FPl3R354W5rdKt8jOYK5g67jX4t/U8aPI068FSuh6mdFVYcPsZtfTJ4fWs1difNCpctqrKS/uo6rA4nRp1E9uNNi/a5BDgPYaypomVxHiejEimVvA1ns1HHlzf1YHyHWL9G6LsvL2Ht8oN8t/7Jyyrna/yyaP20RnNo/Lt22J28+tx8Nqw6xNS7hzD17iHN+m0XVVnJfG4BMRfPU2s08emz15KRHOV1DnefbncqSCK8M7Ez3RNCGDFrFWYhHxB4Y/IVjO/c1uu4jSs3DZ61Va38hCBjjiwjqWUZ1Q4rI5Pa8lDXAUTrw5osa91YANlfH3m4oJK+MzYjywo22U5MdBUmk41BqSFszC2gzvZ/7N13eFvV/cfx95Fky3sldhwnTuLsvXdCBoEQQti77NKyV9m0P0pLaSmFssNsKXuPAGEFyCKL7L33jp3h2E48pfv7Q7Yj25It75HP63nyxLaupHOvrs4953vP+Z5gjh6JIisrHIcxRIUGVTqnwtS1B/jNu0vIKhx59/6VA8oEV1Izc/lhQyp7cw6TZu3l211rOZafz7EjMRw9EE+kI5z193uST1dmpMPUtQe466NPyXYFsS+nJaEOG6HBdp/78Mj36/nbT5sAMJabgalbuPnikVx7zmC/rx/IVA/vbWKPZtJl/hr+/sJVDBzesfjxhrCCR22qaj2tERciIiI+BAU5uOnh87j9qld4+dEvuGt4L9Y8OI6V947m4+V7uaRvEj0So3zeqYmNCuP5+y/k93/7kDuf/IzXH76M1oXJIL25sfOboaP4ec1CHvn6Bx6ZNI5ttCieThFeOJ3ikr5JfLx8Lxn7WkGGk7hW+2jddTs3dBzLxV07lRkKvPru05m2sS9/nvsj7buuYdiohezZ3pbXT7uMtAzPyIpjBZ47XkXJRvu18ixJ6rAbYiPctO+6nnahrZmYNBK7sXHlgNZlyu899cMenIczKp3Mg82Y8OqS4pVCSvO+MzV17YHCkSP5tA47yPdrjnLH2GG0iU8h/5el5d419G7clV41ZdrGNJ/lPZGA04IcT3LNHHvJYdphQSWTr/q6c9uuYwuOZS0ibf9RElqW/VxFpGEr/b12BNl54LELCXY6ePe1meTm5nP97adXGLxIiHSy8NHz+d8Py5ny9TxeeetHnrn3fLLdprhzamGBRfESqTGhQWw7nM1xVziH81rTOuwA9302lV2Hh3PjKYOx2UyZKQPbDmeXWkEJrIwEHuk5jn3s5PU1Czlr1/8Y06o9b17TDysnkvbNwooDJt7Bj/I61T0So9j84LjigEtR0AOg/ayfSiRxLrA8Uz4qO51hcHIMwQ4bkcaUqGuLAz3NHcw/uIVP961i/ZE0nHYHvaPb8sNCG1nHPfV1Lq7i963Me/dLisROHm48o0SyC9w47Daf+zCuU/MTgYvCRKsV3fAPZKqH9zaOUM8yqzu3pxUHLoqmrzT14EVVKHAhIiLix9Z8i829OtJ16QbaLt/Erzv6c3bPRP46Iap4G39DkhObR/H8/Rdy42Mfcevjn/Dyny4hKT6a8Z3jiQkNKh4dcHaPJH7T/wLu+uQb/jL1Z64ZOpAgO8VDRS/pm8Tol+Z5livNcxFGc7L3RNCy8z6eWf8tttBR3NB9MHabrUSZAA7sS2D3vmh69tpEcvvtPL7tKYbG9Sc6JgjSI7HbbDx/Xk/6tYrilMnzyHPl07rNXrp330YeedzV9TLspuQ0E++7iJ6hz57l8ZwJaWAZMtOaEWojoMZs0bDYpNAjhNmOcuXg/tw8aghpWXllkmQWTSfxzgJf1AB/9IwuAX+mRe8Z7cqjwGYnOCQYXBZuCz64oj/2wiXyymsstu2QAMCObWkBBS5OhjtoIo2d3W7j7j+fi9MZxCdvzSUvp4Cb7p2AzVb+IowJkU4euGgIQ9rF8acXv+Gmv3/MWeecUmI5UWMoM/w/yG4gOIyjVjsu6+bmuRnzWLRjN4+fd4bPKQNFKyhNnrcdW2Gnv3tCNKGHO/KfkZ15Z8NS5h3cwMw9n9EtNoF+BzuR7y4gM9ci0ung4+V7A8qf4H1N65F44lr3652nMOCZ2eS5TnTeXW6rzFSPiiREOpl1y/DiGwAJkU5W7D3CuLe/wxl9GEdYFsZAt5gWXNpmGDf06ktkcAhdf50OeKZqOB32Kk2jSMs8ijFw7eDOvLooHZcbvwlcL3hrMWFBNtwWTL1uIA89tpmKBuEEMtXDextjg+CQINL2n8i5VJ0EnU2dAhciIiJ+DE6O4VjLOHZ0aUPbDTvZ+u1S6Dkx4OentGrGCw9cxG3//IRb/uEJXrRsHsX6+8uO0njkrPE8+OVPvLVgMZd178Sp3fsxMqV58d2ZrDwXIQ4bNwxtywNjOxIc7OaPC77niaUzmblnC/8eMYnWEdGAp+Fzx5RVhck+g9i+rg//O/03zEmfx08HFtJrSD4hJoxO4SlscR9j4abjJHXcR7PmR4iIPEaUrTV/6nMZ0bTwGTDIK0ysFhZsJ8hu49FJbXh+8yqOHWpGiC2EYIetzF00X532hEgnT09syT++X8f5fXvypzNHYYwpm5Su1F3C0ne1okKCiAl1kJvvxhlkY3znsvPFvd9z1T2jufze/zJkYAfuuXZcpYMKLRI9x9m7semPGqEijYfNZuO2B8/CGRLEZ+/O41hWDnf/+Vzsjopz7YwZ2Imn7zmfB5//mnffm0Z4eAtwOotHOyzbU7xoTJm8D/ERwXyydDWPfz+Tc15+h79OGudzNF/R84oScZ4yeS75LuvEtMKgjjx+UQs+27ac93fMJaaDjdCMONyZzbikbxKT522vcv6EHolRLPnDqOKpJMfz3dgMnDJ5Ls+f16vENEJvpa8BqZm5xXX65AVbuPWMcP63dgkRSfnk5waRcyiBB4cO4e/f72Ke6zj/nT6ftfeNZf39p/qcslgZP67bhMNm43fDetCjVYbf1yq6xhzPdxPpdHD4mGcZVGdQ+V1nXzlbSu9/6W2u/WEhwc4Tr6sEnf4pcCEiIuJHUQPj151H2PDFQr796FfatYnj3MuGBvwasc2iueTisXzw0QxP8OKPF5PYPKrEUFCA3k/PJt/lIMoez8/rN7EnPZ3ByWczODmmePnQnAI3/1u0k98OTmbbrmwe6XcmY1t14K+LfuLMr9/gz4PGcVGHXizc5bmTBJ6pIM+f15OWIfG0zR/DQymjmH1gFRm23cxLXY8zZA1ut6FlkoPs7BCWLOzDw0PH8utGG3dMmYHLfWKY8cfL9xZngwcKVweB6akrcbsNOYcTMAZm3TLc58iI0p32DfvTePqn2Qxu15q/nT2uxLDsouGyk+duI6/AXTzMuuiYed/VGt85nvX3nxpwAOLA/sNk5+Rx+uBO5Sbx8xd0aRYfic1mAgpcqBEq0rgYY/j9XeOJiAzhrZenk308jwf/cRHBwRV3m4b0asur/3cpdz31Oe3TdjLxrOH87vReAD6XAPWuCy4Z0ItBbVtz/+ffcdcn33Bun278ccIYokPL1md3fbm61PLZhVNRjIPQvBbc2uEsnGHH+WzbSn7asxFX7EEeWJTBlaPa0CuqHWd3S/KZe6GiOrRoKsmJKSuenBs3fLICh90w//aRJUZp+LoGeOpEN+7wNMIS03hrUwEFeRGk725JTmYEEU4H8c5o8l07y9SbvqYAlldu78csy2LKyg30bNWSIS+UDIaXVvoa0zMhHABnAOeA91QPX4F37zIW5Ltwudw4C5db9fXeStB5ggIXIiIi5UiIdHJ2j0Qmdp3EsSPHeOnJ77DZbJx9if8EXUW8G20RsUl0ObKHGx77iL/edg6nv72suDHz7Lk9Czu3LnA2447RPfh44XwuePU9/n7ueJ4/ryc3frKC7AI3+S6LYS/MwWCKG0LfTWrDPXOnct+8b/li6xru6jmmRMOnX6souj85ozixW6jDYNECm0kgx+XCWIYgm8EYG0EOw8M/bCQ330V2YfLO8GA7w16YA5YnC3xYkK14rnNB0FFWZewg53ALsrINkU5TvFxqeZ3243n53P7xVIIdQfxxwmk47GWnpHgn/owItpcYMu3rbmSgAYFp89cTHGRnaK92AX12pRucdoedmNhwDh/MqvC91AgVaXyMMfzmd6MJC3fy8lPf8chd7/Pnpy4lNKziu/wxcVEsiUwi8dhOpnwxm5D8XNKj4oqDvuUFMFOax/L+9Zfy8uxfeXX2QuZt2cH/TTyVM7qfSNxZVK8WBS1C7IZcl0V4sB27De6Ysro44Lz2vjP5x/DxvLNuBU8vWcDq4H18sXsRS4514apufRnSog02Yyo1Msx7yorbbZFd4PYkei6AYS/MKbGqivc1IDzYzuS52+jZ1hDVbiN2Zw6u7HCeHXkev3t3M/YCNxFOmH/7SOLDnQHVm97XCWMoETjx3ie7DUJMBlG2LDanR5Dr9nwWwTbDpyv3ckvhClfe++h9jTmeeQyAsBDfS9f6KpOv/CZFr1fcLsjOoScQExvu9701Qu8EBS5EREQCYLfbeOgfF/H3hz7hxSe+4fixXC697pRyn+PdaMMZwuWXjeOzT2dyz5OfYYtqSablILJwiKh3I+2awd25rF8Kd37yDbd/9DVndO9CWDDYbHZcbgubgeP5ruKG4K0jUvjwjCt4f+Ny/rVsJldMf4fbJg6gV3gXTmkXz8Jd6Sey0QPZBRYUL+zqCRi4XPD4xM60ig7l1s9XFQctQoNsGAOWRXHC0EndEvh67QGyCwpolryPZsGR7DjagkinKZGTIiUu1G/j889f/8yOQ+kcdiUz8qVfyzSUvRN/FiUpvXVESrUbccdz8vhu7jrGDe5MRDmdkIpGSoRFhHD8eG6F76dGqEjDFMgIg/MuH0pYuJNnHvuKB256i8eev5KomLByX3fhrnRyjIM1Ma3plJXKR1N/5WhYFDkR8YQ7g/x2xL3Lc8fY4ZzWtSP/9+WP3PnxVE7v2pE/njmGltGRpZZ2NsV5irYdziY9O59bP19Vpt7q6GzP0W1HyLVnEtv8KNP3bObbXetoHRHNBe17EONOrPTIsGfP7UlGTj4PfLOueBSey+Vm4LOzMRaEBNv55dYRBNkN4cF2sgvyeHXDL4SkHiIxOoKzk8ZwY+++tIgKYfh9yWU+i0DqzYW70kuMAhz2wpzixNAlgiYON82d+8l2hZDtjsKyPNe3PLfF7V+sZnSHZiVGikDJXB9LdqcC0CzmRIDB3/lTOlhTOr+J9+OJB44A0H9IB7/vLScocCEiIhKgYGcQDz9xKU/95QveePEnjmXlcO2t4/wmbyt9t/3cQe05vWsLbn38U9qk7sAWn0yBPcjPOvJOPrz+Ml6Z/Suv/rKQTpGhbDoaSw4RJ0Y95Ll4ZvZWJs/bztr7xnJll35MaNOZx5fO4M2Ni0gK24AJG0XH2NYlssEXsQHef12+5yjXDWrj1Sj2LN3XJiaEsS/PBzwjLm4e3o4fNx0kInEf9uA8/j7kXJLHxPPx8r2M69Tca+k/w2MTuhAVElRiHvHsTduYumodx9xxHMpxEum0yjSUSx8776BFyTtpnoZ76WVa/TV4f5i3nuM5eVxwap9yP+ui948ItmNRNgFdWHgw2cfzyn2NImqEijQslRlhMP6cfkREhfKPhz7hnt+/weOTr6Z5QpTPbeFE3REeGsyekCRyMg4TfzSN7vm5nDZhCA+c2avcJTKLytO9ZQIf//5y/jd/CZNnLmDii29y86ghXDusv89OfY/EKFIzc30Giz1lsoErivyD0Uy7aiRLjmzn8y2reXHVfNyWRVTbMJwZMVjHYsodGVa0ZCqWZxWqP43rxGM/b/SMyPO6zuRkF7BsTwar7x3DA9PnMv3QOmyOfHION+fBcRO4sNeJaR++VtLwVW+WrtsHJ8eUTJhpnUgMXTTNMjTI0CzoAAaLTHcSwQ47F/duyasLdhY9hY+X7y2RdLu0Q+meERdFgYvyzp/S167SS9J6Px576CiJyXEktor1+96lNYRkz/VVBgUuREREKsERZOe+Ry8gNNzJR2/OYffOQ9z7l/MJC/e99GeZBmakk/88chm3PP4JwQd3cc+1p5EQ6WTN/gwW7TxCSlxocUMg2GHnjlOHM7ZLe2796BuaOfaQVRCGI7gFYzq14IcNaYXzmk1xY615aDj/HjGJyzr24dHFP3P33KkkOKOJjo3m6JEIKFzWzXu6R5EJXRKYtjGNR88oGWyYuvYAYcH24oScR3MKeOCccCavPcgl7fuSHBrPsBfmYFnwzC9bi4fGAtz39VpCg+3F84izcvN45OufaRsXy5KD8WVGafhLYObvjhbAjZ+sKPEe/oIaR7OyefWzefRon0ivTi3L/ZyLMt8X7dfol+aVaJwGBTvIK3x/ETmhIXSsKlLZ3DPDx3Tl7y9cyV/u/oA/XPcf/v7iVbRJ8Z0E2HvVjHGdmnPBW4vJDQ4h6dBeFk+bx5JWYZw5ontA5XHYbfx+5CAGt2vH376bydM/z+WzZWu47/RTOKtbhzLLtfqrN339vU1sT85v35P9xzP5cutaPt+yhg0hezHs5aY5RzmtdUf6xbXhYLqdIW1ii69Tg579xTM1pNDfftqI02HnukHJvDxvu9djFgsPbmHylqnsy0kHdwiZO9tiy4+ga3xUuStF+Qok+doG4E/jOvHXaRux20yJxNAABhfNHPsIsR3jdyOH0TUphcHJMaQdy+W1BTux8FwRL+mb5P9kAfameRJ5JsRFlPt5+TvW3qM5ih7/cckO3p32K6dcNbzc967oGNT1d6w+y6DAhYiISAXW7M8oXrqtR2IUdruNOx6aRHLbZrz+7DTuvPZ1/vL05bRKblbmub7uGrVsHsWbf/kN9z37Ff/67zS27jvCg4uPYBnD337axMybhzGqQ3OvDkAsH/z2coY+/QVh9oOE27exeFs6eQUxgB277cSdtRPPSeDLidfw4YbVPDDnJ6KTjxIWH0z24XheO3Msq/Zl8eTMLcWNTIeB26asLh5yGxPqYP39pwKeO0hOh61wCT6Ym76CD7cs45x23bmr1yi6/msmWbme54U6DHa7jdAgG9n5brIL3DjstuKG3TM/z2V/RibvX38prWKalUlgVjTKoyjY4KszUXTHytd7ACWGDnsHNV79cDYZWdk8f/+FZRr8vmw7nI3BkJVXgM0rOASABcZW8WuInEwaQscqEFXJPdNnYApPvnYdf7r9He65/g3+9vwVdO3pO1lk8aoZ87YX33FvH+Hgubd/4i+vfM+i1Tu55+pTCQ/15ExIiQvFwpOnonR5UjNzGffaEnLywwg2rUgsyOS2j75mYJtW3Df+FPq0LhmE9Vdv+l26OyySG3sO4caeQ9hy9BBTt6/jp92b+deyWQC484NwzQznjkG9+ecPe8l1O4ATq6xk57tx2Gz0axVNSLDBCskiLCqT8OhMvjqQjyvXSe7hNvx5xBBi+jvp1yqqwpWiijr93p3/0ttM25jGbV+sIiPHE0AOD7bx+TUDi5/z1sK1xNq24jAFZLji6ZqUUiK4sPLe0cXBpW2Hs4kPd/o9V7fuPkhis0giQn2Pqih9/lQ0yi4h0snBueux222cf3ngyb6rk+y5pgKK9ZlwWoELERGRcqzZn0Hvp2ZhAY/9tImV946mR2IUxhguuGI47Tq24B8PfcIdV73GfY9ewNBRXQJ63ejIUF544EL+9voPfPrtItqGRLIjKgHL2Bj/6gKm3TiUC95aXKJxt+S+i/h50z6mLFvG8p3bSQlPJ8sVy6MTT/F71yrKnUDGti64Qg4TFX+QqKQ93L3kQ85r343Q8BxyjgYBhgIL7C5Xcfly893FDZKiO0TfbNrJnCMr+XDLJq7rNpCHB47j23WpWNaJ/cousJj5+8HsTM/hjimrcLkpbtgt3bmH9xcu54rBfemX7LnDNam7Z8nVEsGGT1cQGmT32+nxXhKw9HukHcvleJ7LqzyeoMYHs9YxdfYarp40iM5t/S+X6q28xqnbsrAFEPwQOZk0llV0qpp7pmPXljz9xvX86dZ3uP/GN3n4X5cyaESnEtuUPgbbDmcXH4PJD13Mf76Yz1tfLWT5xj385cYzSWzZjNEvzfMEQ71WZfJ+vaIcRccJZfbeEP49sRefLVnGpf/5kFO7tOe2McPo3jKhwvJX1HntEN2MO/uM5M4+I3ln+VbunjYPQjIIDc/i5fWziW4L0YAr34GrwIENG5bbhs3u5pnNm4jqeJwoIMjY6RSRxML1Ng4fCgcMD3yzntAgu1cy6pJBCu+6NiUutMy1rPQ2GTn5xUELgIICN5Pe+BWnySHCfgSnycQimLT8ZIw9okxwoUdiFLeOcAYUaNuy+yDtWzcv/r26uYtS9x/lx6+XM/6cfjSL9z9FpbSqJnuuyYBifSacVuBCpI7Z7v06oO3cT51dyyURkUB8vHxvcRpLX3Nh+w/pwIvv3Mjf7vuIR/7wPuddPpTr7zg9oKXznMEOHr15IqERYXz10zLCCvLYHNOSPIKY8PqvOGyGrMIVNYqScF7evx3jOrWk15PfE0Iq0Y7DvDzjWzKy+tAyLtlPg9BGwfFY9m+OwhlxjNj4dL7dtYbItm7C8oLIzgqH3AgKssPIO+5piDqDbPRJimB7xhFWHtrHR5tWMHf/DhzGxoP9x3BjjyEYY8rMMQ4LspGR6+LKAa0Z3zm+uAxhwYYHvviBpJgo7ho3osRxSIkLLRlsKLyDV16nJyHSWeY9iu7KhQfbi6eqhDpshLnz+OrruaS0asb15wd+d6u8xmlebj5R0aHlPFvk5NOYVtGpau6ZVsnNePqN63n4jvf48x/e5+6Hz+X0s/sWP17eMXDYbdx00QiG9W7HIy9/x42PfcSwod0pKHCRlecuDnR4Ty0YnByD2ys4DIb0vCi+v+M63l6wlDfmLeWCV9/jlI4p3D5mKL1bJ/osd2U7r2d0aIWV1Zz8o82w7PDhtT259KM5FNhyCHLmEhTkonNiOBYumoeFkBIdS+uIaLrGxHNKUgqZ2W66L5tBqMOzQlVRvQ6UOT6l61p/ATDvbaZtTCssqUWoLYeo4OOE2zNxmALcliHD1YwsVxwYG/NLBYOKBBJoO5qVzdbdhxgzsGOJv1cnd9Frz/yAsZkKE3yXVtWASU0GFOsz4bQCFyIiIuW4pG8Sj/20yedcWO+7V8+8+Tv++9w0pnywgNVLd/DQ4xfRum1zv69bxGYz/OmasTSLj+X1D2fS49BOtkW1IC8yCgxEFOaWeNorCWdCpJNV901g4a504pwFfLp0Of+dtwSHbRkxjkjsxGEr1SAsHp2QH0PegVi+OGcAH2xYzScb1xEWnYnNng5ADOAwdsKDgjjlqxXF5WwVHsXdfU/h4g69aBkeVWLf598+sjgXhNNrjrF3w+6Bz79nT3oG71x7MRHOkkvKbTucXTLYEGQr0eAv7y5h6cbj4OQYgh02Io3BbuCWrlHMm70Mm93GU384l4xcNz9tPhBwg8tf4zQrM4d2HRvenWSR+nSyrKIT1zySJ1+/jkfv+5Cn/vIFh9IyuPS6UzDGBHQM+nRuxbv/uIpn3p3J1NlrSAlysjeuJS57kM9pB9//fghjChMkF12HIpzBjO7SnQd+SCXcpDNr0w5+2byNQW1bc/2IAYzqmILNazpbRZ3X0vWsr/2Yfd1ZDHthDnkW4LDx4dX+gx+hkXhde04s0eo7GXXJutZf8Cch0smZXeNZtz+Nwxl7aBu+nyCOYTMWxhhy3WEcKYgnx4rAbdkKl581ZYJBRQIJtC1asxO3ZeGK8Fz3qntOL5m/mV9+WsPVN42lRcuy71eRQJKWllbTAcX6SjhtLMuqeKtaMHDgQGvx4sX18t4nm0Dv8EvDohEXDY8xZollWQPruxx1RfX0CaVzXID/u1fzZ63n33+dQn6ei1vuO5Px5/QLKJ8CwIw1u7nr318Skp9LRkQM7zxwDl+vP8jTs7dyLM9FqMPGqxf34coBJ+ZVFzVYkiIMXyxfwZcr1pHvcjG8Qzsu6t+bAsKLE6sVbeudU8IY+O2gZMZ1DyfPfoy07GMczD5GVkEeiWGRRNhCyTzm4NJunUmMCvG774DfhtOnS1fzf1/9yK2jh3L72GFl9rvkKiElc1xUZYjrgYwcvlq8jVVL1vHryu1069CSU08fxIAOCWXmVle1EXrhmMc5dWJvbr3/rCo9X2qH6mmpS/n5Bfz7L1OY8f0qJl4wgNseOAu7w17xE73MXb6Vv//3Rw4fPc4Fp/XljstGEhIcVPx4Ub0d5bTz86aDxdeh1Mxc2j/+E8fzPHmKDG5uHhzJ6t1b2J+RRZvYaC4b1IcL+vYgJiykTF3qvdoF4LOe9dUhLv23QHIn+NumvOd6P2ZZ+czetI3Zm7czf+tOsnI9Kzq1iommTbN4JvbowPhu7cktMGWucRXV9RWV/4+Tv2Xawo1satWZIIetzCohleF2u7ntylc5npXLa5/cSrAzqOInVSDQa2RDSppb1XpaIy5EREQq0CMxqsxSaf7uXg0b3ZWXP7iZfz38OU8/+iXzZq3nD/93DjGF2cjLM7ZHa7596jqe+nA2Cxas47HnpnDLb8bwgt0T+MgucHPHlNVlOvW5BW6Mgfm3j+TOU4fz3sIVvL9oBXO3bCffCibXimPuXWfTNi6iOKeE96ocr87fwdtLyuaU8G4Q/e2bvcWP+9v3ojsw3g2kVXt288jXPzG8fRtuHjXE534HuoJIRUNc9x3M4Id56/lh3jq27jlEWEgQ1543jIeXp/PFt5uw2IhlUXgXrurDZfPyCsjKzCG6cGk8ETk5BQU5uP9vF5DQMoaP/vcLB1Mz+dM/LyYkNLjiJxca0bc9Hz9xLc9/MIvPflzGryu38dB1pzGwR5tyO6ULd6Xj9loYysLG0A6deebC0fywdhMfLFrBv6bN5rnpczm9WyfO69OdVfeMZsmejDId+2fP7Ulegbt4amJRXezrvb3vtgfaafY3SqC85wbZ3WQe28+dH89g2a59ALSMiuTMHp0ZkpLMoLataRFV9rpa9D6Bjvwpb/RA1vFcZi/ZTGZoJJl5LiKAYS/MwWCqFPyeO30dWzbs596/nl8jQQvwfY0sndgUmsay3ApciIiIVEF5Qy/jW0TzxCvXMOWDBbzx4s/ccMlL3P3ncwNK3NkqLoxnbpnAytN689fXvufh57/ijA6t+M4Ek2E5cLktpm1MIyY0iPTs/BJJLYe9MIfND47jzlOH0ya+HTd/NIsQc4QI+37OfflNLujbnUsH9Cp3VQ7vho2/oEF5++7dGA23Z9E8aB89k1rwwqVn47DbfO5zeXeCKhrimpWdy/RfN/Ld3HUsXb8bgN6dk3jg2nGMG9KZX3ZmkL90KZm5BUQE2zGGag+XPXwwE4DmCZFVer6INB02m43f3nYaCYnRTH7iG+79/f/4y9OX0zwh8KSLEWFO/nj9eMYP68rjb/zErf/8lEmjetClX1e/gdvByTGEBNmKV4aKDnEwvnM8QXY7k3p1ZXC7FKas2sbWAzuZvmEzU1etp0VkBBN6dGb7wWbku9xk5nqCuBk5+cXXkWN5LlLiQgMKGlcnd4Kv557VLYFlu/by7q/L+XHdZvLdbjrFN+MP40YwtnN7OiU0Kx7BmJqZW2JJ1dJqoqM+9Zc15OcXkBkfR6TDgYWFZUFWXuX31+Vy89bL02mTEs+pZ/auVrm8BZLYtL5HWNQUBS5ERESqoKJ5zDabjQuuGE7/IR144uHPeeQP7zPh3P7ccPcZhEeEVPj6vTsn8f4/ruaD75fwv69+pVOeiyMRsRwNbl68kobdZrDwmvJpUdyQGtGuGQW2WI64ogk1OVzS0cmnS1fz/qIV9G6VyD9O74xxxPLAtxtKrMrhrbx5xuWPkHAT5E4j0nGYxOhmvHrF+YQ7fd+BLO+uW1FAw9/Q3J9+3cC/3vyZo1k5tEmM5cYLhzNheDeSEqK99sFWYh9KD4/21/AtL5hyKNUTuGhWiY6JiDRtky4aRPOEKP75p0+54+rXePTZK+jYtWXFT/QysHsb3vvHVfz3iwW8990SZi3ZTFxoHIRGl6mjEyKdrL//1OIklUUj8aBsvbrsD9ewZu8epqxYy/uLVpDvcpHgcBBli6DARBIWZCOsMJ9SWLC9uI6sKC9CoLkTfNWnJZ9rkZa+jwtf/Ym1+1OJdDr5zeA+nN+3B11aNC8z3TKQ60Z1p0Tk5Obz0Q/L6NWxJV/fPbHEFBTP0uCVC35P/24lu7Yf5OEnL8XuFcSvbnkDTWzaFChwISIiUkWBJMlq17EFz731e955ZQafvjOXZYu2ct9fz6dX/3YVvr4z2MG15wxh4sjuPP3ebGYu2kiL7KOkhkaz0xlFSFgo/zqrOw9+uw4sCC6VGLN0cOHI8Wy+WrGOz5at4emfZxNkt3Nx17bERsbTKaFsA7u8AIWvfbcsC+PKpLljB0Emh1writevvICYMP+BGn+NrPIapkezsnnq7elMm7+BHu0TeeoPY+jVqaXPXCK+9qFofnh5Dd/y7ljt33sEoExitZqeQ9yQ5iSLSMWGjurC029cz5/vfJ97f/8Gf3z8YgaP7Fyp1wgJDuLWS0/hzBHdeOLNn8ncsIcBrQu497Kyd86LVlcqrXS9umJfFpN6dGZCj85k5uQyY8NWvly5noXbd5HvSue5H/cTH+Qkwh6G24QzqHV0hcF5f4FlXzkw/E05+eH6frw+bxlLd2zjiWkb6JTQjL9MGsc5vbsRFux/KkVVrhulVVS/vvjRL+xNO8ofrz+9xPWu6JgUjUoJpH52udx8+MZsOnRJZMTYbiXKUBOjIwJJbNoUKHAh0kBp2VSRhiXQBGS+GiHBwQ6uv+N0ho7uwpN//oL7bniTi64eztU3nRrQsqkJcZH88/az2LlvOC9/Pp+fF6wnNvMwx0MjaOVux/r7xrB0b2aFwYXYsFCuGdafq4f2Y93+NL5YvoZvVm3g8PGtWJbh79+Fcefo3pzapR3dWyZgt9lIiHSWmS9b+ljsOnKMdxatZeGWDaw/kEbLyHDO7DWS3w/vXWEjzF8jy1/D9PDR49z42EfsSTvKDRcO55qzB5eZguIrO35lhjhXdMdq3+7DGGNITIqp8LOvqpp+PRGpG+07JfLcW7/jz3e+z5/vep/rbh3HJdeODDhJc/HrtG7OK3+6hKm/rOHFD3/hD//8hPNP7c2NFw4nOrL8pZhT4kKxsAgPtpfpvEaGODmnTzfO6dONnPwCFmzbycyN2/hl8w72pKcCcM7L/6N7yxZEh0VzWpc22EwE4Dv/kXf9tGZ/BsNemFMcSC/q5J+oT+18u24XVsFRpq5az5p9qdiN4bRuHblicF8GtW1V4XFKzcwlPTsfu63stL9ARhukZuaWWemkdP26YOV2PvlxOZee0Y9BPdqUeH7RNbEy9fPsH9ewe8ch/u9fl5bYv9oYHdGUV/ZR4EJERKQCgXYiK2qE9OjThpc/uInXnvmBT96ay5L5W3jw7xfStn1CQOVo0zKWx2+dyKqzBvHmd0tZu2Y7/3jtO6IjQjh1cGeSTBeadWmF3eY7l0QRYwzdWybQvWUCvZK78tsP52FzZxAVdJyXZ8/n5dnziXAG0ymhGa1jYvlwxUHy3TaMsXPVwDa8s2QHWAUE2VwMSHKwdm8qxli4rCAeHD+Gq4b0IthRsonhvaKJ9905f40sXwGNggIX9z37JQcOZzL5oYvo16XsncaKPivvcvi7K1XRHau9uw7TLCGyRHK1mm6ANuXhviJNXbP4KP7939/y9KNf8saLP7Fl437ueeQ8nCGVS8hojOHsUT0ZPaAjr38+n89+Ws6PC9bzu/OHceG4Pjh8rGCSmpnL6JfmgQUWFo+e4T+3UkiQgzGd2zOmc3sA9qRnMG3tVn5Yv51ftuzBYXbw/eqVAMRHhNExvhltm8VyLN+O3X2U4/kGO05mbD7AkDZxDHvhF7JyXdhwY8fw6YotxDrdRNkPEROWQ7DJ5p/fbgCgZ1ILbhszgtjIeE7vnBRQB7vkClSGyRf0LDFFpqK6u+j52Xkusgtzg5SuX/emHuWvr31PSqtm3HLJyOLneV+jKls/T/lgAcntmjNibNcSf6+t0RFNIRGnLwpciIiIVCDQRkogjZDQMCd3/ukchpzShacf/ZLbrnyV3981nrMvHhzwHble7eL5981nUOBys2Dldr6ft47v5qzli+kriYsO45R+7endrS354RGMaN+83Abh0LZxYAsn1woj3TLMvmkwW9JSWbZrLxtTD/Lzhi2E23KhMBby1bI9RBf+bFlwICOaY+4YjuaFYHNE0SI2yWfQomj1k+N5LsKD7cV34/yNiPAV0Hjl07ms3ryPv992ls+gBZT/WVW0HOC7SzzJPcd3ji/3jtWOrWm0TYkv8TdfCdLKSxxXkaLXiwi2Y2GRElf+HVYRaVhCQoN56B8X0aFzIv+b/DP7dh/m//51aZkpZoGICg/hnqvGcv7YXjzz7kyefncmn/60gjsuH8XIfu193sXPKky2ee/Xa3nw23XMv31k8XLe/gTZndz3/X6y84PIzm+DDRexIQVcNyAeGzlsO3iY71Zv4GhOLrEOiC2s6h/5cisASUGAV2zm+Z88fw+3QUxYGAPbpDCiQzLD27clK99WODrjIMGODQGNKitdv8eEBpUZZVhe3V30/KKgRYjDVqJ+Xb/9AA8+9zV5+S7GnzmUjFw3Gbllg+He9b3dZkjPzic1M9dn+bdvPsD61bu58Z4J2ErdVGjKoyNqgwIXjVigUwlERKR6Ar0rUplGyNBRXXjlw5v591+nMPmJb1kweyN3/d85JCRG+31OaQ67jc4dW5HuDOeGS0ezYfMeZi7exLQFG/hy5mrcxpAdGs4D5w3kzGGdaR5Tduk4X2Xu3jKOs3t77gwdyMih51M/k5ufT76rAIMbl2XHYXNgGTv/umgA13+yApvD8ntspm1MK3GHKyvPRaQxfofxepel6PHlG/bw1lcLOWtkd04b4v8OYnmflXejNyLYzsfL93LriBQAuv5rOunZnuVhY0KDWH//WJ/BKZfLza5tB+l9Uckl6L2PY+mlBqsyzSMh0smsW4Yz7IU5WBaMfmmepouINDLGGC697hSSU+J58s+fc/PlL3PqDeO45Ow+Vfout2/dnOcfuJC5y7fx/AezuPeZL+nbpRW3XDKSPp1bASfqwFCHjewCt2fVkYITq06V977FHft8T13tdARh2UK497ShJXIAzdh8gIggF+tT02keZsNm3Bw+lstTMzfjcltYxvDgqV3okRhLclwMybHRJXJWpGbm0uvpn8nK9QRXQgpXyyrK1+FvamYg1+LyRht4P98YC5fbE4AfPXkuTw9vweuf/EJUeCjrY5L4w7St3P/zNp49t2fx6l3hhUvFTuregrX3jS2ccrKKWz9f5beu/+GrZTgcdsb5WUmkqY6OqA0KXIiIiFSgMgGJyjRC4ppH8tjzVzL1k0W8/tw0brr0JW65fyLjJvb2Ofqi9HQLXx3k04d2YcrKvdzy5lyCszKIyz3Gi+/PZPIHM+nbuRXjhnTh1EGdaBYTHlCZW0SFsOa+00rOCQYycwsAiwveWsyMm4eRkevym8Dtjimri4MWBnzOuy7atmhkhjEU3yHMycvnb699T2LzKO6+emy5x7S8z8p7FMOxPBdPz97K5HnbPQ3TwoY6QG6By++omv17jpCbm0+7DmWn9xQdx6lrD9TINI9th7MxGLLyCrD5CfSISMM3fExXHn31Om655W2+/vc3vPTFcm65fRyX9Gtd6QCGMYaR/doztFdbpsxcxX+nLOCGv33EKf3a8/sLhtOlXUJxp/rmz1YWL3Nqea065U/pkQTPn9ez3NVKSnfULx/UL6Dr5LSNaRQUnKhzcwrc3DFlFeM7e0ay+XuP6o5Q8H5+enY+t36+CndWFi2OH2Hy++sY0qstI08dyJwv1hbX33uOZpdYKjbKaS9+rZjQIFxu/Nb1Bfkufv5mBcNGdyE6NtxnmSRwClyIiIgEoLbuihhjOPuSwQwY1pGn/vIFT/75c2ZNW82tD0wkMSm2eDtf0y0wgFU4gsGr0TQ8pRl5EZEcC40gywbfXtGHlet28POvG3nq7ek8/c4M+nVtzWlDOjN2UCdio8JKlMlXcssrB7RmfOd4Fu5KZ+bmNJ6evQ08b8/Pmw7y1wldfT5/4a50XG7Pkq2hQTaenNSdNrFhfofxFt3ZghN3CL/8cQm7U4/y4oMXERFacUPV32dV1GidPHcbT8/eyrE8F7bCAJEzyFYcXHE67H5H1WxYvQeATt2T/L5/Tc1bbsrZ4UVONjssG6sG96D16q0kb93D23/5nMf6d2LlI2dWafSFw2HnotP6ctbIHnw0bSnvfLOYqx9+l1P6tef684Zy5YDW9GsVVTxqy+m16pQ/gU61yMwtIDzYzuS527h1REqJwEJF18miYHaOyyrxd5fb8/pA8XuEBtlKjMQI9D0q2sfTOsbxw6+baZu6g9Cc47hsNq47fzi/P28wh47lE2RfV1zvpmXllnj+z5sOMqpDc6DiOnrx/M0cTT/O6Wf3q3J55QQFLkRERBqApOQ4nnztOqZ8sIC3Xp7ODRdP5sobxnDBb4bhCLIXNxiLOvVZhcELY8pmVvfV+BzcNYnfnT+MrbsP8tOvG/np1w088ebPPPX2dAZ0S2ZcYRAj17LR/ckZ5BW4wWvUQ9HrTuregpS4UJ6ZvQ0LT+zkkr4nOvG+8kh4N+wu6p1UvDJJ6RwQg5NjKDHQxILvVuzkza8X0rN7O9q2qX7gKCHSya0jUpg8bzs2YwiyG8Z3jmf9/acybWMaGTn5RJWTQG/96t2EhAYTFh/tN4dFTc1b1vxnkaZjcHIMboeNtd1SOBwbRbeNO+jxy0re+zSeP1w3osqvGxoSxMSxfYloncS+zTv5avpyrn3kfQb1aMNlE/qz8f5TWbznaEB1SNGKG6X/VlQHFXXUw4PtHM9z8UzhqLXKTGPzDmaHOGzYbaa4Li66htltngtBdr6b275YWWLUR1UUFLjYtDONVZv3MX/ldpas3Uluvovk2Aj6jejP784aQLv4SKBsvZt2LNfv9a6iOvqnqcuJiQtnwNAOVS67nGAsy6p4q1owcOBAa/HixfXy3k2FclwIaDnUumSMWWJZ1sCKt2waVE/Xn9R96bz05HfMn7Weth0SuOW+iSR1TfKZ4NI7wWRlGnaWZbF510F++nUDP/26kd0H0nHYbbRvn8T0w27220OxjI0Ip93nvOg1+zP4ePleLumbVCLh29S1B7jivaXFQ2ffu6K/z+VU/Q0FLrGcnt0w3jrExp0H2ZrUHltwcI3lefA1hzqQ1WNuveIVHM4g3mvdqt6WKg1kad6TleppacjW7M9g6PNzOJbnIjQ7h77rtxORnsWYM3px6wMTiYoOq/hFSildby2+bQS/LFzPR9OWkXYki3ZJcVw4rg8TRnQjKjyk3Nfp+q8ZpGfnAxAT6uCXW0eUmY4IMHnuNp6ZvbV4tN97V/QPeBREeUmSi+qzl+Zu47YvVhc/58Xze3JLYT6iirjcbnbuO8L67QfYsD2VddsOsG7bAXLzPDmMWreIYUTfFIb3SWFgt2SfK7OU5u96V56szGwuO/1JzrpoEDffe2ZAzzlZVLWe1ogLERGRBiahZQx/efpy5s1YxytPf88DN73JKaf1YNb1o9lWQJklRQNtSHkzxtCpTTyd2sRz00Uj2LAjlR/mref7eetoffQ4LY0hPTic4xFRzNlykAv6tirx/B6JUfx1Qtn39TV0tvTQ3vJW/uiRGMXmB8fxw4ZUZs1YyqqVqexv3or0AkOk3aqxPA8Jkc4yAZWKVo9JP3KMLRv2M+SCQeQfq5+lSgNdmldEGp4eiVFseWhc8aiGU9ufxYxPF/Le67NYuWQ7f3j4HAaP7Fyp1yxdb60+eJyrJg3i8gn9+enXjXz4w1L+/c4MXvxwNqcO7szEkd3p3y0Zh91W5nVyC1zFv+fmu/l4+V6fdWLRqLXIwpESlVlFydcohdLXsNKj3h74Zl3xaL3SjmZms3zjHlZu3MvarftZv/0Ax3M8wRdnsINObeI5b2wvendKIrFFHNuPuysd9PV3vSvP3OnryM93caqfpJxSeQpciIiINFDDx3ZjwLCOfPL2HD56cw7zZqxj7IRe9PntqBrtKBtj6NquBV3bteC2y07hi3kb+eO7c4nOzqLZoSyeef5TZndLZnifFEb170Bic/8NuECmN1Q0Lzi/wMU/3viRqMx0DkfFcTwimki3/1VLqqIoAOA9JWZwcgx2myE0yDN8ufR7LV2wBcuymHBadyZP3VAvuScCXZpXRBqmopxBRa74/RgGj+zMk498wcN3vseo03tw0z0TaBbvv571NX2jdH3kcNiZMKIbE0Z0Y/32A3w5YxXfzVvHd3PXERMZymlDOjN6QEf6dmlFcJCDwckxOB32EyuKBNm4pG+SJ0BRznTEqqyiVFGeivGd4wkvTKIMnikaRXXdsew8lqzbxcLVO1i8dhfb9hwCIMhhp3ObeCaO7E739ol0bdeCtklxxQGaug76zvhhFS1bx9G5nHxIUjkKXDRAmgIiIiJFnCFBXHnDWM44tz+fvjOP7z5fwvTvVjLq9J6cffEgevRt43MFkqo6dCyfkLhYvvjLxWw5eIzw3GyWr93B/JXb+Pc7M/j3OzNIadWMQT3aMKhHG3p2aElcqeHNFTVK/QU3LMti+cY9PPzqD0RlHmVveCwZ0QlMPq8nMaFBNTo1YuGudPIK3GR5JQKdf/tIwPJkHKXsVNrZP64htlkEQwa2ZW23pHqZrqGEnSJNT6duSbz4zg18/NZcPvzfLyyet5lrbx3HpAsHYi81lcFXB7yiYHHXdi2IuyiGp7bk4TyWSVZ2Jl/NWs2nP60gLCSIQT3aMLB7G769vCcbj7mx2WzFeSWKVigpraZXUSr92gvuGOmZNui2iHTlsmPNFm6eMouVG/dS4HLjDHbQr0srJgzvRp8uSXRPScQZ7L9rW5dB36NHjrFi0TYuvmZkjV6fT3YKXIiIiDQC8S2iufneM7n8t6fw8Vtz+e6LJcz8YRXtOiRw+tl9GXJKF1q3bVatRpK/O1LjBrQHxrJz3xFmLd3MojU7+XLmKj6etgyAls2j6N4+kZRWcbRpGUfblrEkxEYSExmKzea7PAmRTs7qlsCRjGyWb9jD3OVbmbZgA/sPZhAbHc6+FslkOCOKk2f6S+hZ1XwPg5NjPLfxClkWfLx8Ly43ZBe4cdhtJRq2h9Iy+XXORi68chg2m63WVpmpiBJ2ijQt3nXYlTeMYeyZvXjx8W946V/fMvXTRdzwhzMYNLxT8fb+OuAV1UcLd6WTZxkO2cPIbBbF3y7uTYKVy7wV25i3YhuzlmwBICwkmPiEWHZ0TKRPh0RiYiO5+/NV5GLzOVLBVzC1qvWy222xN+0oW3YfZOOOVC4Py2Lt1v3k5RXw9lfb6Nw2nsvO6M+w3u3o3TmJ4KDAu7J1GfRdMHsDbrfFKeO619p7nIyUnLMB0ogLqQwl56w7DT3pmzHGDiwG9liWNanUYwZ4DpgIHAeutSxraXmvp3q6YcvJzmPmD6v45rPFbFy7F4CWrePoP6Q9Pfu1pc/AduUONfbFV2JNf43h3LwC1m7dz5ot+1m3bT/rth1gb9pRvJsVdpshNioMpzMIF4bYcCc2IK/ARV5+AamHs8jO9cxFttkMmcFhZIRFkR0ZxczbTimRx8NXUAWg679mkFvgwumws/7+yg39LUoEWrRU4Kxbhvsd8vzhG7P53+Sf+e/nt9O6bfNKHVepO6qnpTHxFyy2LIt5M9bz+nPT2Lf7MAOGduC3t59Ox64tqzTloWi1kDumrMLlxufzVu84yEdzNvDx3I04c7Nx5udi86rQC4yNAkcQPZLj6N46jtioMCLCnESFh+AyNnZk5NI7KRqHw86VHywj3wKHzfDJVQOJCXVQ4HKTk1tATl4+x7LzOJqVw9GsbI5kHOfAoUz2H8pkX9pRcgqTaBoDHZPj6d0piT6dkxjYow3NosOrfbyLAipArQWAH77zPXZsTeWtr+7SiAsflJxTRETuBNYBvnqrZwKdCv8NAV4u/F/qSXVXhggJDWbCeQOYcN4A9u89wqI5m1g4ZyMzvvcEM8ATyOjSI4nO3VvRpUcrOnZtSUhosN/XrMwdKWewg35dW9Ov64m52rl5Bew+kM7O/Uc4mJ7FofTj7D6Ywecr9oDbjf1oHiPbNyMuJIhgh52hvdsRFRXOo7N3kG6cZFmeBl6kZWPb4ewKE3qmZ+cXZ8DPznczbWNaibnjFR3nokSg3o/7Gs1w/FguX3ywgL6DUhS0kOpSPS3F/I2eMMYw4tRuDD6lE19/vJD3/jObW694hTFn9OLaW06t1Kgr73w+FvDEWd3KJLpMzcxlzH8Xk53nIjusOYRBZLCd587sSDObm7s+XoI9L5dgVwGmoIAFq7aTnplDvlcyT4CPC//3roXvfmKb37LZjCE6IoQWzaNokxjDkJ5t6dC6Ge1bNyelVTPCy7leVUXRSLnazHeRk53HsoVbmXTRQAUtapgCFyIiTYAxpjVwFvB34G4fm5wLvG15htktMMbEGGNaWpa1ry7LKR413WhKTIrl7EsGc/Ylg3G53GzduJ8Vi7exbtVu1izfxcwfPMvK2ew2Ujom0K1XMr0GtKPPgHbENosofp3qTkNwBjvokNycDsknOvdT1x7ghd0UN8zPOrfkKI6paw9w9NdDZOV67rKFBtl8Bk1S4kKxsIgIthc/7mvetbdAjnPpKR++poB88tYc0g8f47pnTqvU8RDxpnpaSqsoWBwU5OCCK4Yz/px+fPL2XL54bwG//LSGcWf14ZJrRgZUR5fO5/Pgt54VOkpvk++yyC7wJOYMDbIR5LAxsW9bEiKdDOmd4vO6kJObT8axHI5l55GT5xlNkXo0h99/vAyXy8JuM7x0YW/iwoOx22zkuCwu/2AZeZYNW5CDlfePIzHa/xKttaU2810sX7SN/LwChpzSpUZer7STeTlsBS5ERJqGZ4H7gUg/j7cCdnn9vrvwbyUaxMaYG4AbANq0aVPjhRSP2mw02e02OnVLolO3Ew3TI4ey2LBmDxtW72b96j1M/24lUz9dBEDbDgmMGNuNU8/sTXK75gHlbqhMw6mihrn343YbPH9er+KcFt7vN/qleViWZ/jwrFuGkxDpZHzneGJCHeTku7HZoF+rkjexfR3n0kugVuTAvnQ+e3c+Y87oRdeerSvcXqQcz6J6WrwEGiyOiAzlultP45xLBvPR/+bw3ZQlTPt6GYNHd+Xq340uUd+X5iufT+lrTnn1cHn1fYgziBBnyaVLARZ3S/b5nKlrD3DMEeKpk7GxeM9RJlUzcFGVjnxt5rtYOGcjoWHB9Ohb89/Nk305bAUuREQaOWPMJCDVsqwlxpgx/jbz8bcySY4sy3oNeA08c6drqoxSUm01mvw14GKbRTB0VBeGjvLcAXIVuNi0fh8rl2xn0dxNfPjGbN7/zyw692jFxPMHMHZCL79TSirbcKqoYR5Iw70oAHEsz0Wow8ayPRn0SIwiIdLJL7eOKM5TMfqleSXKU/o4p8SFVqrs6Yez+OOt72B32LjutnH+D7xIBVRPiz+VSfTbLD6Ki24ex6OHXDTfupf5czaxcOZ6+g1pzyXXjKTf4PZlpickRDqZf/vIEvl8Sl9z/NXDVe0o+9unmr72lVe+8gIatZnkePmibfQe0I5gHyucVHe0xMm+HHZAgQtjzAQ8yYLswH8sy/pnqcevAB4o/DULuNmyrBU1WVAREfFrBHCOMWYiEAJEGWPetSzrSq9tdgPJXr+3BvbWYRnFS200mirTwLQ77HTt2ZquPVtzyTUjOZSWyaxpq/j+y2U8+9hXvPbMD5w2qQ/nXjqkTE6HQBtOpRtoFS2PWt7jg5NjsNs8P2cXuLljyuriu4HL9mTgcltk57uxGVOiPKWPc2UafRlHj/PgLW+Ttv8of598FYlJsX7LJxIA1dNSIxbuSifb4WBt2yT2tk/iruZBrPtxFQ/d8jZt2scz6aJBnDaxD+GRJ0Yy+MrnU5qverimO8o1fe3zVz7v66HdZnj+vJ5lRvIlRDorPQKvIkcOZbFn5yHOPL9/mcdqYrTEyb4ctq2iDQqzH0/GkzCoO3C5Mab02i7bgNGWZfUG/kZhFFhERGqfZVkPWZbV2rKsdsBlwPRSjWGAr4CrjcdQ4KjmTZ9QtMxmamZunb1nUSOxpu70eDfg8l0WC3elB/zcZvGRXHDFcF796Bb+/Z/fMnRUF777fAm/u/BFHrn7fTatO9F3CqThVNRAu/zdJXT858+s2Z9RrX1LiHTy/Hm9CA3yNFtcbs/+pWbmcseUVWTne+Zl221ly+N9nANt9B05lMX/3f4uu7cf5JGnL6dXv7bVKr+I6mmpKd71mM0ZxE03jeWtqX/gnkfOIyQ0mJf+9S2XnvEk/3j4c9av3k3RCpJVuebURke5Jq99/srnfT1Mz87nxk9W0P3JGSWu8UXXqSveW1rmsaLHK9suWLNiJwA9+pa9ZlTnGl2kKPDz3hX9T7ppIhDYiIvBwGbLsrYCGGM+xJM8aG3RBpZlzfPafgElk8mKiEg9MMbcBGBZ1ivAt3iW2NuMZ5m96+qxaA1KU5kzWhMNTGMMPfu1pWe/tvz+rvF8/ckivvp4Ibdd+Sojx3XnmptPpU1KfEBTO3IL3BwrTAY37IU5bH5wXLWO6/jO8YQG2XHYTiTvXLgrHZcnZkGow8bz5/Ws9LQV75EhzcKC+OazRbw5eTp5eQX8378uZcDQDlUuc1N2MieIq0mqp6Wy/I1aGH9OP/qO7c7AP31Ns+37mf7DKmZ9u4IOXRI5bVJfxozvSVxzf+lVKvdeDYW/8hVdD0ODbGTnu8kucOOw20qMGCkvB1JKXKjPpbErqve2rN+HzWbo2CWxzGM1FQSqzNSipiaQwIWvREHlLc10PfBddQolIiJVY1nWTGBm4c+veP3dAm6tn1I1bI15zmjpRlRNNjDjmkdyzc2nctFVw/ni/fl89u585s1Yx2mT+nLVDWMqnNpRYpq1j2RwleVr/0o3BMd3jg/odYrK4R20ik3PYMLhw2zbuJ9+Q9pz6/1nkdyu9pc+resAQE28X1MJ9tUX1dNS3e+hv87rwl3pHI0MZ3fntsR0a8t9rcPYvWATr/77e15/5gf6DmrPqNN7MGx0F2LiIny8cuDvVZcqyldRunxF14tpG9O4Y8oqXG7KBAvKy4FkYYEFWXmuEkGNiuq9HVvTaNk6jvQ8Nwu3HChR3oYeBGoMAglcBJQoCMAYMxZP4GKkn8eVBVlERBqUxjpn1F/nsaYbmOERIVx5w1gmXTyYj/73C19/vJAZ363k/N8M44rfj/aZxNM7GRwWBPtIBleVhruvpUur0xBcuCsd56EM2q3fSbP0TFJjw3no8YsZfXqPMgnuakNdBwBq6v0ac7BPpL7V5ve+xDQSu+H6a0eScPs4dm5LY/p3K5nx/Sqefewrnv+HZ3Td8DFdGTama73l8AnkOlCdBKFXDmjN+M7xPt+jvBxI4cF2jKFEuyCQem/rxv0kd2rht7wNIQjUmAUSuAgoUZAxpjfwH+BMy7IO+XohZUEWEZGGprHeBanrzmNMbDg33j2B8y8fylsvT+fjt+Yw4/tV3Hj3GYwc171MR790MjjwLIVX9HNNNdyr2hDMOHqcpe/MpueCNeQFB7GrezumPXMxrZsHdheyJtT1Z1hT79dYg30iDUFtfu/9Xc/apMRz7S3juObmU9m6cT9zpq9jzvS1vPLv73nl39+T0qkFg0d2pv+QDnTvk+xzRYyaFkgCTaj+8SrvGuH9WOl6bdYtw9l2ONvvCL/S9V5ebj7796aTPLgj+dkK7NaGQM7KRUAnY0wKsAdPQqHfeG9gjGkDfA5cZVnWxhovpYiISC1qjHdB6qvzmNAyhvsevYAzzx/Ai098w2MPfEzfQSncfN9E2nVIKLlt4XEtfcfs2XN71usd+/mz1vP837/maPpxzrlyOC1H92Bkp7IN5tpW159hTc6xbozBPpGGoLa/9+Vdz4wxdOjSkg5dWnLNzaeyZ+ch5s9az4LZG/j07bl89L9fcIYE0bNvG3oNaEfv/u3o1D2pVgIZ3gEJgBs/WUFosL1MILuu6klf9VqPxKhyH/e2d/cRLMtiQI8kgpalKrBbC0xRptlyN/Is3fQsnuVQ37As6+/eyYSMMf8BLgR2FD6lwLKsgeW95sCBA63FixdXp+xNlu3er+u7CNIEuZ86u76L0OgZY5ZUVLc1JaqnG776TpDoKnDx7edLePPl6Rw/lsv5lw/l6pvGlpk+MnXtAa54b2lxoGLyBb2468vVdZ4jwbIs/vPcND59Zx4pnVpw71/Op2PXlrX+vuVpjDkuGjLV09IYNMTv4bGsHFYu2c7SX7ewcvF2tm9JBSAo2EGXHq3oPaAdPfu1pVuv1oSF19wS3tn5ruKVoSKdDt67on+ZwEtDPF6lzZuxjr/e+yHPv30DsW2aN/jy1qeq1tMBBS5qgypa/xS4kNqgwEX1qUEs4tvRI8d448Wf+H7KUlokxXD1nWeQk9SsxModpaeGAHXesPvf5J/48I1fmHTRIG66dwJBQVW7i9gYGtEnK9XTIjXj6JFjrF62k0WLtrJk0TbSdhzEclvYbIZ2HVvQvXcy3Xon061Xa5KS40pMFwy0jkzNzC2TQLOxJvt9/7+zeOul6Xwx+481EthpyqpaT9f+BCYRERFp0qJjw/nDw+dy2qS+PP3olzz5wEccahHH3u7tWP7IBL9DbOtyesj7/5nFh2/8wsQLBnDbg2dVOfmmVtQQkZNBdGw4nQa159yZO8jv0gFnp3Z8ML4jezfuY82KnUz/biVTP13k2TYmrDiI0bJjIhd/v4lcY6uwjqwogWZjsn1zKi2SYhS0qEUKXIiIiEiN6NWvLef95SIe/Mc3tNq6l5hZy3nl1RD+dNdp9ZpH5NvPF/PWy9MZd1Yfbn9oUrVWDNGKGiJysiiRh8LpILtFLFeN7QqAy+Vm59Y01q3axdqVu1i3cjcLZm8AoI8xZESGkdU8hs++X8315/Qm2Bnk933q8vpQGyPmLMti8/p9ZfI8Sc1S4EJERERqTMcWEWxMTmR7fBzdNu1k7gfzuG3JVm69fyI9+7Wt8PlFjcqUuNASGd2rasuGfbz0r28ZOLwj9/z5XGw2W5VfC7SihoicPMqr7+x2GymdWpDSqQUTL/CM+s9IP86CRdu49/U5RBzMoNW2PUz55x6+feZbevRtw4ChHRk0vCNtOyTUyZLTUDJQATW3opW3rZsOsGfnIc7/zdBqv1ZTl5qZCyER0VV5rgIXIiIiUmO2Hc4mLNjOMYLZ1L8zV3eJZfHHC7jnd28wbmJvrrvtNOJb+G6zFE3DyCtwcyzPRViwHafDVuXG5fFjufzjoU+IignjvkcvwO6wV3f3tKKGiJw0KlvfRcWEMf70Hvw0tCMLd6XTKy6UfRv3sXzRVpb+upX/PDeN/zw3jeYtohg8sjNDRnam3+D2OEP8j8aojrpa0Wr6tyuw222MPr1nDZS66Sr6PIhKSKnK8xW4EBERkRobPjs4OQanw4bNGILsht9cOICbLh3IR//7hU/ensucn9dx8TUjuPjqEWVWHykalpyV5wLgWJ4LmzHFjcs1+zP4ePleLumbRI/EqHLLbFkWL/5zKnt3HeaJV64lJja8yvtUWmNcPldEpCqqUt95P6dtYhRDR3UBIHX/UZbM38yieZuY8d1Kvv1sMaFhwQw5pTMjx/Vg0PCOZa4LlTV7y0Fenredm4e3IyPXVSJQAdTIiDnva489J49pXy1n0MhORMWEVavsTV3RNR5jq9JdBAUu6pBWCxERkYaoJhNO+rtDd80t4zjjvP688cJPvPvaTL7/cilX33Qqp03sXTwSomhYckSwvXjERVHjcs3+DHo/NQsLeOynTcy4eRgXvLXYb5l/+HIpP3+7kqtuHEvvAe2qe4hERKSaEhKjOfP8AZx5/gDy8gpYuXg7c2esZe6M9cz8YTXOkCCGnNKZUaf3ZPCITpUeiTF7y0HGvDwfgI9W7OOLawaWCFSM7xxf7RFz3tfLyOPZnLlnH7k5+fz2ttMq/Vonm6JrPJbbVZXnK3AhIiJykvA3QqGmE076u0OXmBTLHx+/mLMvGcxrT3/P03+dwkf/+4Urfz+G0Wf0LBH0KJ3jYvLcbRQt4G4BL8/b7rfMq5Zu54XHv6H/kA5cfv2oSpVdS52KiNSu4nq2VzIDh3fktgfOYtWyncz+cTVzpq9j9o9rSozECDSI8fK87SV+/3D5nhpf0WrhrnQK8lw027KHDtv2ciDcyfjbxhMaX6W0DSeVomt8iydTt1Xl+QpciIiInATKG1VR1wkne/Vry/Nv38D8WRt4+5XpPPHwZ7z7+kwuuGIYp0/qW9yo7JEYVfycS/om8dhPm7AAA9w8vB0/bjpIRLAdC4uUuFAA1izfyZ/vep+WrWP50xMXY7cHnoyzsiNPFOQQEakc73rWbjM8f15PxneOp++gFPoOSuHW+yeycukOZv+4mrnT1zHzh9WEhAYzcHhHho7qwuARnYj2M/Xv5uHt+GjFvhK/V2dqn6vAxcG0TFL3pXNg31G2bNjHqhW7GLR2Dza3xZEWcazomcKsNYf4y/oZAY9WPJmvHQmRTsjJOlqV5ypwISIichIob1RFXSScLN1QM8YwfExXho7qzNzp6/j47bm88PhU3n5lBhPO68/pk/qS3K558fN7JEax8t7RJXJczLplOMNemINlweiX5vH+KclM/usUYppHcNofJnIcGxGVKGNlRp7U5PQaqRnVyVYvInWjxBKrwI2frCA02F5ch9oddvoNbk+rbq1IOWcQEQePsnr+JhbM3sCcn9dijKFDl0T6DEyh94B2dO6eRFzzSABGdWjOzJuHFee4GNWhud9yWJbFkUNZ7N+bzv49R0jbf5S0A0dJO5DBwdQMDqdlcuTwMSzLKn5OsNNBp65JnHXRYJztWxCRksCtn68iK7eAEIeNaRvTuHJA63L3X9eOqlPgQkRE5CRQ0aiK2kw4WV5DzWazccppPRg5rjurlu7gs3fn8cnbc/nof7/QrVdrRpzanb6DUujQJZEeiVH8dYInKefUtQdIz87HYOBwBu237+Xf38yndUo837Rvw5TvNhI0bVOlGoWVGXlS09NrpHqqm61eROpGUT0bGmQjO99NdoEbh91Wog4te80Yz+0PTWLTur0snLORFYu389VHv/LZu/MAiG0WQUrHFsQnRhHXPJLL4sLJWLaNb1dsJyOngA2704m1WRQczyVtfwap+9NJ3X+UvMLgSZGIqFDiW0TRPCGKjl1aEtc8gvjEaFq0jCGhZQyJrWIICjrRfV6zP6M4mXROgZvbv1jF+M7x5V5zdO2oOgUuRERETgL1uYxnIA01Ywy9B7Sj94B2HD6YyfTvVvLTNyv4z3PTAIiMDqV9p0TCYsL4YuthrAKL0Owc+hzPIfRYDi6HnUtvHEvc4E58+snKKjUKK3OM6np6jZSvutnqRaRuFNWz0zamcceUVbjclKlD/V0zOndvRefurbjyBsjJzmPDmj1s3bifLRv3s2NLKju2pnLk8DHcLneZ93XbDHGx4SQkRpPSsQVDTulCi6QYEpNiSWwVQ4uWMZVe0WTb4WycDhu5BZ73y3O5K7zm6NpRdQpciIiInCTqaxnPyjbU4ppHctFVI7joqhEcSstg+aJtLF+0jT07DrFmxS4SDmXiNobcsBC6dE4kuWsSV/1mCClJMaRm5larURjoMarPQJCUVd1s9SJSdxIinVw5oDXjO8f7rEMDuWaEhAbTZ2AKfQaWHGTlcrnJzMjGVeDmx41p3Pb5Ko66LMLCgnnvygE1eg0cnBxDaNCJwIXTYa/wmqNrR9UZ73k7dWngwIHW4sWL6+W964uWQ5X65H7q7PouQqNnjFliWdbA+i5HXTkZ62mpPTWVjCw1M5fu/5ruGULssPmcClL6vU7mRGgnk9TMXFokNN9sZWd2qu+y1BXV09JU1US9XRf5JFIzc5m2MQ2g3Gkiug6dUNX2tEZciIiISK2rqdEeCZFO1t5/qs8GoHfD0P9c6bpNhKbGat2pTrZ6EWlYKnPN8FXPFv1t1i3DSyytXRvlVELOuqHAhYiIiDQqvhq0/hqG9ZkITY1VEZHa5aueBRpU3auEnDUj8MXNRURERBoo74Zhvsti4a50oH4TofkrU3mKVkxJzcyt/QKKiDRyvurZqtS9takq1yFdC8rSiAsRERFp9Pw1DOsyEVrp4cqVbaxqhIaISOX4q2cb0sodFV2HfOVl0rWgLAUuREREpM7UVs6H8hqGdbGair+GZmWCJhpOLCJSvtLXEH/1bENbucPfdcjXtUPXAt8UuBAREZE6Udt3kepruVfwH3SoTJnqc1qLiEhD5+8a4querc/rQWX4unboWuCbAhd+BLp0qZaYFBERCUxTvotUEw3NupzWIiLS2DTFa4iva4euBb4pcCEiIiJ1oinfRaqphmZjuUsoIlLXmuI1xN+1Q9eCshS4EBERkTrR1O8iqaEpIlJ7muo1RNeOwGg5VBEREakzRQ20ptLg9Kbl60REaldjuobomlCzNOJC5CQRaN4WUO4WEWlYamslkpqk5etERJq2ylyLdE2oeRpxISLSyBljQowxC40xK4wxa4wxf/WxzRhjzFFjzPLCf3+uj7KKVFZR4++K95bS/ckZDfbOlXfSuHyXxcJd6fVdJGlAVE+LNG6VvRbpmlDzNOJCRKTxywVOtSwryxgTBMwxxnxnWdaCUtv9YlnWpHoon0iVNZYs8k0xaZzUKNXTIo1YZa9FuibUPAUuREQaOcuyLCCr8Negwn9W/ZVIpOaUbvylxIUyde2BBjdtpKkmjZOaoXpaGorGMPWuIapsIELXhJqnwIWISBNgjLEDS4COwGTLsn71sdkwY8wKYC9wr2VZa3y8zg3ADQBt2rSpxRKLBMa78ZcSF8rol+Y12DnDygwv5VE9LfVNeReqriqBCF0TapZyXIiINAGWZbksy+oLtAYGG2N6ltpkKdDWsqw+wAvAFD+v85plWQMtyxoYHx9fm0UWCVhR42/b4WzNGZZGS/W01DflXaiexrSiSVOkwIWISBNiWVY6MBOYUOrvGZZlZRX+/C0QZIxpXucFFKkGzRmWpkD1tNQX1aHSmGmqiIhII2eMiQfyLctKN8aEAqcBT5TaJhE4YFmWZYwZjCdwfajuSytSdZozLI2V6mlpCFSHSmOmwIWISOPXEnircP60DfjYsqypxpibACzLegW4CLjZGFMAZAOXFSaLE2lUNGdYGinV09IgqA6VxkqBCxGRRs6yrJVAPx9/f8Xr5xeBF+uyXCIi4qF6WkSkepTjQkREREREREQaLAUuRERERERERKTB0lQRESnDdu/XAW3nfursWi6JiIiIiIic7DTiQkREREREREQaLI24qKZA70yLNEUamSEiNSk1M1fL9ImISK3RdabxUuBCRERE6l1qZi7dn5xBvssiyG5Ye99YNSpFRKTG6DrTuGmqiIiIiNS7hbvSyXdZZOYWkO+yWLgrvb6LJCIiTYiuM42bRlyISK3TlBIRqcjg5BiC7IZIp4Mgu2Fwckx9F0lERJoQXWcaNwUuREREpN4lRDpZe99YzT0WEZFaoetM43bSBS6UTFNERKRhSoh0Mql7i/ouhoiINFG6zjReynEhIiIiIiIiIg2WAhciIiIiIiIi0mApcCEiIiIiIiIiDZYCFyIiIiIiIiLSYClwISIiIiIiIiINlgIXIiIiIiIiItJgnXTLoYpIw1XTyxW7nzq7Xt5XRERERERqTkAjLowxE4wxG4wxm40xD/p43Bhjni98fKUxpn/NF1VERERERERETjYVjrgwxtiBycDpwG5gkTHmK8uy1nptdibQqfDfEODlwv/9WrL7qO5yikitUh0jIiIiItL4BTLiYjCw2bKsrZZl5QEfAueW2uZc4G3LYwEQY4xpWcNlFREREZF6lJqZy9S1B0jNzK3vooiIBEx1V+MXSI6LVsAur993U3Y0ha9tWgH7qlU6EREREWkQUjNz6f7kDPJdFkF2w9r7xpIQ6azvYomIlEt1V9MQSODC+PibVYVtMMbcANxQ+GuW9e9zNng93Bw4GEB5mirtv/Zf+9/wta3vAtSlJUuWHDTG7KjvctSixnLe1TYdBw8dBw//xyEkIpqohBSMzY7ldrV4MnUbOVlH67Z4FVI93XDoO+Wh41Dfx6Bh1F06DzyaU8V6OpDAxW4g2ev31sDeKmyDZVmvAa/5ehNjzGLLsgYGUJ4mSfuv/df+n7z731BZlhVf32WoTTrvPHQcPHQcPHQcGpeGXE/rXPLQcdAxAB2DIoXHoV1VnhtIjotFQCdjTIoxJhi4DPiq1DZfAVcXri4yFDhqWZamiYiIiIiIiIhItVQ44sKyrAJjzG3AD4AdeMOyrDXGmJsKH38F+BaYCGwGjgPX1V6RRURERERERORkEchUESzL+hZPcML7b694/WwBt1azLD6nkJxEtP8nN+2/SN3Teeeh4+Ch4+Ch4yA1ReeSh46DjgHoGBSp8nEwnpiDiIiIiIiIiEjDE0iOCxERERERERGRelGngQtjTIgxZqExZoUxZo0x5q8+trnCGLOy8N88Y0yfuixjbTPG2I0xy4wxU308ZowxzxtjNhfuf//6KGNtqmD/o40xX3udH00uV4oxZrsxZpUxZrkxZrGfbcYUPr7GGDOrrstYm4wxMcaYT40x640x64wxw/xsN8gY4zLGXFTXZZTGzRjzhjEm1Riz2s/jscaYLwrr2IXGmJ5ej1X4/WwsjDHJxpgZhd+zNcaYO31s09UYM98Yk2uMubfUYxOMMRsKr0cP1l3Ja1aAx8Fvu6OpnBOBHAevbcvUv03lfJCaV506t6kIsJ45Gdr41bruNAXVveY0FQEeh3MLj8FyY8xiY8zICl/Ysqw6+wcYIKLw5yDgV2BoqW2GA7GFP58J/FqXZayDY3A38D4w1cdjE4HvCo/T0Ka27wHs/x+BJwp/jgcOA8H1XeYa3v/tQPNyHo8B1gJtCn9PqO8y1/D+vwX8rvDnYCDGxzZ2YDqevDoX1XeZ9a9x/QNGAf2B1X4efxJ4pPDnrsDPXo+V+/1sTP+AlkD/wp8jgY1A91LbJACDgL8D93r93Q5sAdoXfk9XlH5uY/kX4HHw2+5oKudEIMfB67MvUf82pfNB/2r+X3Xq3KbyL8B65mRo41f5utNU/lX3mtNU/gV4HCI4kbaiN7C+otet0xEXlkdW4a9Bhf+sUtvMsyzrSOGvC4DWdVjEWmWMaQ2cBfzHzybnAm8XHqcFQIwxpmWdFbCWBbD/FhBpjDF4TubDQEEdFa+h+A3wuWVZOwEsy0qt5/LUGGNMFJ4Gzn8BLMvKsywr3cemtwOfAU1m36XuWJY1G0/d4U934OfCbdcD7YwxLeqibHXJsqx9lmUtLfw5E1gHtCq1TaplWYuA/FJPHwxstixrq2VZecCHeK5PjU6Ax6HJtjuKBHIcCvmqf5vM+SA1T3VuwN+vJt3Gh2pfd5oEXXM8AjwOWVZh1AIIp1RMwJc6z3FhPFMFluO5KP5oWdav5Wx+PZ7oZFPxLHA/4PbzeCtgl9fvu/HdsGisnqX8/X8R6AbsBVYBd1qW5W/bxsoCphljlhhjbvDxeGcg1hgzs3Cbq+u4fLWpPZAG/M94pgv9xxgT7r2BMaYVcD7wiq8XEKkBK4ALAIwxg4G2nGg0VPT9bJSMMe2AfnhGOQaiSV6LAjwOpdsdTe6c8Hccyql/m+T5IHWmvDq3ySmnnjmpvkdVuO40OVW85jQ55R0HY8z5xpj1wDfAbyt6rToPXFiW5bIsqy+eSmuwv7luxpixeD7MB+qweLXGGDMJSLUsa0l5m/n4W5NY9iXA/T8DWA4kAX2BFwvv0jclIyzL6o9naNitxphRpR53AAPwjEw5A3jYGNO5jstYWxx4hpO+bFlWP+AYUHqu9LPAA5Zlueq4bHLy+Cee4OByPHeXl3FiZFdF389GxxgTgecO+l2WZWUE+jQff2vU16JAjoOfdkeTOicqOA7P4rv+bXLng9Sp8urcJqWC79dJ8z2q4nWnSanGNadJqeg4WJb1hWVZXYHzgL9V9HqOGi9hgCzLSjfGzAQmACUS+hhjeuOZTnCmZVmH6qF4tWEEcI4xZiIQAkQZY961LOtKr212A8lev7fGM/qgKQhk/68D/lk4bGizMWYbnvmQC+u+uLXDsqy9hf+nGmO+wDMEd7bXJruBg5ZlHQOOGWNmA33wzA1r7HYDu71GWX1K2cDFQOBDz2whmgMTjTEFlmVNqbNSSpNWeOG8DjzJ0oBthf8C+X42KsaYIDwNhvcsy/q8Ek9tUteiQI6Dv3ZHUzonAjgOPutfmtj5IHWrvDq3KQng+3VSfI+qcd1pMqpzzWlKKnMuWJY12xjTwRjT3LKsg/62q+tVReKNMTGFP4cCpwHrS23TBvgcuMqyrKbQWQPAsqyHLMtqbVlWO+AyYHqpTjvAV8DVxmMocNSyrH11XdbaEOD+7wTGARTOf+wCbK3TgtYiY0y4MSay6GdgPKWCdsCXwCnGGIcxJgwYgmdeWKNnWdZ+YJcxpkvhn8bhSUTqvU2KZVntCs+TT4FbFLSQmmQ8K9sEF/76O2C2ZVkZAX4/G43CDsJ/gXWWZT1dyacvAjoZY1IKj9VleK5PjU4gx8Ffu6MpnROBHIdy6t8mcz5I3fNX59ZnmWpagPVtk23jF6nmdadJqM41pykJ8Dh0LNwO41llJxgoN4hT1yMuWgJvGWPseIImH1uWNdUYcxOAZVmvAH8GmgEvFe5LgWVZA+u4nHWm1L5/iyfr8GbgOIUR6qas1P7/DXjTGLMKz5C6B8qLujVCLYAvCs9rB/C+ZVnfex8Dy7LWGWO+B1biyQXyH8uyGmVD2Y/bgfcKGzFbgetKnQMi1WKM+QAYAzQ3xuwGHsGTCLroHOsGvG2MceEJnF1f+FSf38+6LX2NGgFcBawqHKINnpWb2oDnWBhjEoHFQBTgNsbchSfrd4Yx5jbgBzwrSrxhWdaaOi5/TanwOOC/3dGUzolAjoNPlmUVNKHzQWpYNercpiSQ79fJ0Mav1nWn7otbK6pzzWlKAjkOF+IJ5uUD2cClXsk6fTIVPC4iIiIiIiIiUm/qPDmniIiIiIiIiEigFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBwVbWCMSQbeBhIBN/CaZVnPldpmDPAlsK3wT59blvVoea/bvHlzq127dpUvcT05mpPP1kPHcVtgM9C+WRjRIUH1XSwRqUNLliw5aFlWfH2Xo640tnpaRKSh1tNqT4s0PeofVk1V6+kKAxdAAXCPZVlLjTGRwBJjzI+WZa0ttd0vlmVNCvSN27Vrx+LFiytT1nqVmplL9ydnkO+yCLIb5t43loRIZ30XS0TqkDFmR32XoS41tnpaRKQB19NqT4s0MeofVk1V6+kKAxeWZe0D9hX+nGmMWQe0AkpXtE1aQqSTtfeNZeGudAYnx+ikFBEREZGAqD0t0vSof1i3KpXjwhjTDugH/Orj4WHGmBXGmO+MMT1qonANTUKkk0ndW+ikFBEREZEqOdnb0yJNifqHdSeQqSIAGGMigM+AuyzLyij18FKgrWVZWcaYicAUoJOP17gBuAGgTZs2VS2ziIiIiEijo/a0iEjVBDTiwhgThKeSfc+yrM9LP25ZVoZlWVmFP38LBBljmvvY7jXLsgZaljUwPr7B5U0SEREREakVak+LiFRdhYELY4wB/gussyzraT/bJBZuhzFmcOHrHqrJgoqIiIiINEZqT4uIVE8gU0VGAFcBq4wxywv/9kegDYBlWa8AFwE3G2MKgGzgMsuyrJovroiIiIhIo6P2tIhINQSyqsgcwFSwzYvAizVVKBERERGRpkLtaRGR6qnUqiIiIiIiIiIiInVJgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLioQ6mZuUxde4DUzNz6LoqInKSMMduNMauMMcuNMYvruzwiIiIijYH6cvXLUd8FOFmkZubS/ckZ5LssguyGtfeNJSHSWd/FEpGT01jLsg7WdyFEREREGgP15epfvY24OJqTf1JFqxbuSiffZZGZW0C+y2LhrvT6LpKIiIiIiEiTV93REurL1b96C1xsPXSc7k/OOGmCF4OTYwiyGyKdDoLshsHJMfVdJBE5OVnANGPMEmPMDaUfNMbcYIxZbIxZnJaWVg/FExEREak5RaMlrnhvaZX7n+rL1b96myritiiOVk3q3qK+ilFnEiKdrL1vLAt3pTM4OUZDi0SkvoywLGuvMSYB+NEYs96yrNlFD1qW9RrwGsDAgQOt+iqkiIiISE3wHi0R6XRUqf+pvlz9q7fAhc1w0kWrEiKdJ0WQRkQaLsuy9hb+n2qM+QIYDMwu/1kiIiIijVNNjZZQX65+1Vvgon2zMOYqqYmISJ0xxoQDNsuyMgt/Hg88Ws/FEhEREak1Gi3RNNRb4CI6JEgnjYhI3WoBfGGMAU/9/75lWd/Xb5FEREREapdGSzR+Wg5VROQkYVnWVqBPfZdDRERERKQyKlxVxBiTbIyZYYxZZ4xZY4y5s5xtBxljXMaYi2q2mCIiIiIijZPa0yIi1RPIiIsC4B7LspYaYyKBJcaYHy3LWuu9kTHGDjwB/FAL5RQRERERaazUnhYRqYYKR1xYlrXPsqylhT9nAuuAVj42vR34DEit0RKKiIiIiDRiak+LiFRPhYELb8aYdkA/4NdSf28FnA+8UsHzbzDGLDbGLE5LS6tkUUVEREREGje1p0VEKi/gwIUxJgJPBPguy7IySj38LPCAZVmu8l7DsqzXLMsaaFnWwPj4+EoXVkRERESksVJ7WkSkagJaVcQYE4Snkn3PsqzPfWwyEPiwcIm95sBEY0yBZVlTaqqgIiIiIiKNldrTIiJVV2Hgwnhqz/8C6yzLetrXNpZlpXht/yYwVZWsiIhIzbLd+3WNvp77qbNr9PVExDe1p0VEqieQERcjgKuAVcaY5YV/+yPQBsCyrHLn4YmIiIiInOTUnhYRqYYKAxeWZc0BTKAvaFnWtdUpUFOVmpnLwl3pDE6OISHSWd/FEREREZE6ova0yMlD/b7aEVCOC6me1Mxcuj85g3yXRZDdsPa+sTqJRUREREREmhD1+2pPpZZDlapZuCudfJdFZm4B+S6LhbvS67tIIiIiIiIiUoPU76s9ClzUgcHJMQTZDZFOB0F2w+DkmPoukoiIiIiIiNQg9ftqj6aK1IGESCdr7xuruU4iIiIiIiJNlPp9tUeBizqSEOlkUvcW9V0MERERERERqSXq99UOTRURERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuGjAUjNzmbr2AKmZufVdFBERERERkTqjvpB4c9R3AcS31Mxcuj85g3yXRZDdsPa+sSREOuu7WCIiIiIiIrVKfSEpTSMuGqiFu9LJd1lk5haQ77JYuCu9voskIiIiIiJS69QXktIUuGigBifHEGQ3RDodBNkNg5Nj6rtIIiIiIiIitU59ISlNU0UaqIRIJ2vvG8vCXekMTo7R0CgRERERETkpqC8kpWnERQOWEOlkUvcWZb6oSlQjIiIiIiJNmb++UEOiflnd0YiLRsZXohpA0UgREREREZE6kJqZy7SNadwxZRUuN0ogWgcUuGhkvBPVRDodTNuYxl1frlbGXRERERERkVpWdCM5O99Fdr4bgEing4W70pnUvUU9l67p0lSRRqZ0ohpAGXdFRERERETqQNGN5KKgRajDpgSidUAjLkpJzcxt0NMuSieqAZRxV0REREREpA5430i22wzPn9eT8Z3ja7Tv2ND7pPVBgQsvvvJHNMQTpShRTRFl3BUREREREal9tb3iSWPpk9Y1TRXx4p0/ojFNu2gMGXdFRERERESagtrsfzXWPmltU+DCS+n8EZp2ISIiIiIiInVFfVLfNFXES20O+9E8JRERERERkco52fpRtT0VpbFS4KKU0vkjaoLmKYmIiIiIiFTOydqPqo0+aWOnqSJ1QPOUREREREREKkf9KCmiwEUd0Dyl+pWamcvUtQdIzcyt76KIiIiIiDR6ddW+Vj9KimiqSB3QPKX6c7IOLxMRERERqQ112b5WP0qKKHBRRzRPqX54Dy+LdDpYuCtdn4OISCHbvV8HtJ37qbNruSQiItJY1HX7Wv0oAU0VOek19WkUGl4mUpIxxm6MWWaMmVrfZREREZHGp6bb1029PyI1o8IRF8aYZOBtIBFwA69ZlvVcqW3OBf5W+HgBcJdlWXNqvrh152RYdudkmEah4WUiZdwJrAOi6rsgIiIni5O1PS1NU022r2uiP3Iy9NsksKkiBcA9lmUtNcZEAkuMMT9alrXWa5ufga8sy7KMMb2Bj4GutVDeOnEydOjh5JlGoeFlIh7GmNbAWcDfgbvruTgiIieTk649LU1bTbWvq9sfOVn6bRLAVBHLsvZZlrW08OdMPHfqWpXaJsuyLKvw13DAohFr6Mvu1NRwKk2jEDnpPAvcj+dunk/GmBuMMYuNMYvT0tLqrGAiIk3ZydieFglEdfsj1em3aYpK41Kp5JzGmHZAP+BXH4+dDzwOJOC5o+fr+TcANwC0adOmkkWtOw25Q1+TUUVNoxA5eRhjJgGplmUtMcaM8bedZVmvAa8BDBw4UI1mEZEadrK0p0UCUd3+SFX7bRqp0fgEnJzTGBMBfIZnvl1G6ccty/rCsqyuwHl45ueVYVnWa5ZlDbQsa2B8fHwVi1x7iqJuAGvvG8t7V/RvcCdxTY8GKRrm1ZD2UURqxQjgHGPMduBD4FRjzLv1WyQRkZPLydCeFqms6vRHigIfle23NaQR9hr5EZiARlwYY4LwVLLvWZb1eXnbWpY12xjTwRjT3LKsgzVRyJrmK4GLr6hbQ8yLUDqqmBIXytS1BzRiQkTKZVnWQ8BDAIUjLu61LOvK+iyTnBDosqQi0ng1tfa0nNwaUkLMquTbqIsR9oEcI438CFwgq4oY4L/AOsuynvazTUdgS2Eyof5AMHCoRktaQ/ydHI0lUaX3cKqUuFBGvzSvSZzoDanyExEREalJTa09LSe3mu5s10c/oLanzAd6jBpLH7QhCGTExQjgKmCVMWZ54d/+CLQBsCzrFeBC4GpjTD6QDVzqlVyoQfF3cjTkvBalFUUVp6490CROdEUaReqWZVkzgZn1XAwRkZNJk2pPy8mtJjvb9dkPqM2VBwM9Ro2pD1rfKgxcFK4fbSrY5gngiZoqVG3yd3I0xkSVTeVEV6RRREREmrKm1p6Wk1tN9kGaaj8g0GPUGPug9aVSq4o0BeWdHIFE3epjKJO/96yvE72mj0FTCcCIiIiIiDRWa/Zn8PHyvVzSN4keiVF+t6upPkhqZi7p2fnYbU2vH1CZY1SbIz+akpMucAFVPznqYyhTRe9Z3r5YlkVuTj7Hj+Xicrmx3BZuy8LpDCI0LBhnSBCeKZeBW7M/g2EvzMGywOmw1cgxUKRRRERERKT+rNmfQe+nZmEBj/20iZX3jq4weFGdzrZ3H8dug8kX9GJ85/gm1Q9oKgGJhpKL8KQMXFRVoEOZavLD9feeLpeb1H3p7N55iAN700ndl86BfUc5ciiLwwczOXL4GMezcnC7/U+NNMYQHRtGs/hImjWPpGXrOJJTmtMmJZ72nROJjAots1/DXphDVq6rRPlq4gvZVL7YIiIiIiKNzcfL91LUa7AKf//rhKha67SW7uPEhAY1qaBFU9GQchEqcFEJgUxpqOkPd3ByDE7LTVTWMSL3H2fJW7P4elsae3YdJj+voHg7h8NOfIso4uIjadchgb6DwomICiUs3EloWDAOhx2bzYAx5OXmk5Odx/GsXNKPHONQWiYHUzNYtWwH2cfzil+zddtmdOnZml792tJ/aAcWHckFrziIMTSZ4VwiIiIiIierS/om8dhPm7DwJGO5pG9SrXRa8/IKSD98jFaufKIzsoh0uTH5DtoaNxlHjxMVHVYj+yM1oyHlIFHgohICmdJQEx+uZVlsXr+PuTPWsXzhVgau3YvL5QZg4+EoOnROZNCITrRu24xWbZvTslUssc0isNtt1do/y7JIO5DBzq1pbFq/l/Wrd7N0wRZ+/mYFAInJcXSwBXOoWTQZzaKYe/tIRUZFRERERBq5HolRrLx3dIkcF1VdwdCyLNL2H2XrpgPs2p7Gjq1p7N15mAP70jmUlknRYjndvJ5z75yVAETHhtOuQwIduiQy5JQu9OrXBrvDXhu7LAFoSLkIFbiopIqmNFTnwz2Ulsn3U5Yw/btV7N5xEJvdRpcerbjo6hH06teWTt2TiIkNr4G98M0YQ0JiNAmJ0Qwc3hHwVDw7t6WxdMEWli7YwuHF20jYsZ9gp4NP8jJJHd+ToaM6ExqmAIaIiIiISGPVIzGKv044kdci0H5NTnYe61ftZvXyHaxfvYeNa/dy9Mix4sfjmkXQul1z+g1pT2JSDHHNIwmLCCEsLBi7w05udh7Z2XkcOZTFzm1p7NiSxtRPF/H5e/OJig5j+JiuXHjVcNqkxNf2IZBSGlIuQgUualhVPtxDaZl8/NYcvv18MXm5BfQe0I4LrxzGyHHda3S4VFXmqBljaNs+gbbtEzj/N8PIzcln5dLt/PrLRubNWMf8WetxOoMYOroLZ5zbn36DU7DZqjfyQ0RERERE6pe/fo3L5WbT2r0snr+ZJQs2s2H1Hlwud2G/IZ4hp3SmU7eWdOjckjbt48vkzQtETnYei+dvZu70dcz4YRU/fLWMUaf34De/G027Dgk1vatSjtI37usrWacCF7Ug0ESTlmXx2bvzeOvl6RQUuDntrD5c9ttTaJXcrMbLVNk5av5OSGdIEIOGd2LQ8E7cct+ZrFmxi1k/rGLmtNXMmraaFi1jGH9OXyacN4DmCf4zETd2DSW7roiIiIg0XfXd5izq16QfOcbP365n0dxNLJm/hYyjxzHG0KlbSy66ajg9+7Wle59kIiIrH6QorXifB3Vg5KndST9yjM/fncdXHy9k9o9rOOeSwfz29tMICQ2ugT2UyqjPZJ0KXNSTgnwXLz7xDd99sYThY7ry+7vOICk5rsqvV1Gl5p17IzzYzuS527h1RIrPbQM9IW02G736taVXv7bc8IczmDdrAz9MWco7r87kvf/MZtioLpxz6RD6DGxX6WVXG7KGlF1XRERERJqm+m5zpu4/yrwZ65g7Yx2rl+3A7baIjg1n0EjPTcz+Q9oTHcA09soEX3zuc2w4v739dC66agTvvDaDLz/6lcXzN3Pfo+fTrVdyTe1unanvYFR11GeyTgUu6sGxzBwee+Bjlv66hct+ewrX3HxqtaZXBFKpFc1RCw+2czzPxTOztzJ53naf21blhAx2BjFmfE/GjO/J3l2H+fbzxfzw5TLmzlhH156tuey3pzDklM5NYhqJr+MzODmm0VZAIiIiItLw1EcnMSszm19+Wsv071aycsl2ANp1SODy60cxdFQXOnZtWan2fGWDL+Xtc1RMGLfefxYjxnbn33/5grt/+18uvmYkV94whuBg/93ahhQoqO9gVHXVZ7JOBS6qoDonv6vAxcN3vsf61bu5+5HzOOOcfhW+B1DtlUyK5qhNnruNZ2ZvJSvPRaQxPrctfUKmxIUyde2BgPc3KTmO3905nqtvGsuPU5fz8Vtz+cvdH5DSqQXX3HwqQ0d1KTMCoyFVKBXxdXwacwUkIiIiIg1PTXcS/bW38/MLWDJ/Cz99s4IFszeQn1dA67bNuPqmsYwe35PguEgW7konJjmm0jchKxt8KdrniGA7FhYpcWWnniR1TeL8Ry9m3ZRFfPS/X1g4ZyP3/+0C2ndK9LnPtdlOr2wfpiEtL1oV9ZmsU4GLSqruyf/x23NZs2InD/ztQk6d2LvC9/CscGpwuU+8H5QMZARaqSVEOrl1RAqT520n0hif2xZ9+WbdMpxth7NJiQtl9EvzqrS/wc4gzrpwEBPO7c/Maat57/VZ/OXuD+jaszW/vf00+gxMKbO/QXbDrFuGs2xPBgDjO8c3uCBA6S9sY6+ARERERKTh8O4M11Qn0Vcf5viBdH74ahk/f7OCo+nHiY4JY+L5Axh3Vh86d0/CGFPtvo+vfkp5nf2ESCezbhnOsBfmYFkw+qV5Jd6zZHnCePcfF/PGk99y6xWvMu7c/lx3wxiaxUcWv15V2umBBiOqcmwa0vKiVRVoPseapsBFJVWnk7p1037efXUmo07v4TdoUfo9Qh02MJCd7ybS6WDaxjTumLKa3AIXToed9fePrVTkq7xtfX35KpMbwx+7w864iX0YM74n075ezruvz+T+G99k1Ok9uPHuCSw8mF3iPYY8/wvH89wAxIQGFe9jffBXcXl/YZtCBSQiIiIi9c9Xe7w6ncSitmx6dj75LovsrBwSDh/lnt/+h9StqTgcdoaN7sJpk/oycFhHHEH2Es+v7g260n2PtGO5DHthDlgQ7LD5vCm77XA2BkNWXgG2UiPES5fnYPMYZg/oRuL6nUz7YjGzvlnOpIsGMeG8/rRJia90O70ywYiqHJuGtLxoY6PARSVVtZPqdrt5+q9fEhkdym0PnBXwexSNuHDYbATZDRk5+aRn5wOeYMa0jWlcOaB1pSJf/rZduCudnHwXx/PdhAXZir9QgebGqMih7AJcXVrzxNs3MeuLRXzwxi/Mn72Bs649hSAbRDodWFi4XCeek1vgqrcRDIFWXKqARERERBqPhjxFuSZH8ha3ZQvcxB4+SqfdacQeOIzNbZHXKo4rbzuNc87rX26CzZq4QVfU90jN9AQtsnI9jf0IYNrGNO76cnWJ9nZ571n6MYBsh4OVndrQvH0Sl7uzmfLBAj5/bz4tkmLoN6g9z3ZoxlGnk9H92xAXUn731/v4hwXZuHPKKv7v9M70SCy7WmJVj019jVho7BS4qKSqdlJ//mYlm9btZfxNp5HrKP+wFw2R+nj5Xi7pm0R8uLP4/aZtTKuJ3fDJ5XJzPN8z0uF4vpsop71SuTHK42s6yH0b0mm9ahtTXp3BZX3aMPK3Y+jVMZ5TJs8lp8BTDqfDXm8jGCpz4VAFJCIiItLwNfTkiIF0hgMNvHy/YCst124nbs9BQvLyCQ5z0m5UN77It5MZEcbP245xRgD9ktJ9n6oGfhbuSseyvP5QmPLOV3vbX3+rdHmA4uPltgfxp/smYs/JZd7M9Sz7dStzZqwjKyMbgK8AYwzRsWE0i48kvkU08YnRJCRG07Z9ArHJzUjPzsduM4QF2Tie7+ajFfv4eMU+Vt47ukzwQjcv65YCF1VQ2U7qsawcXn9uGlkxETy6LZPHn5xRbiWZmpnLKZPnkpvv5oW521h//6nF7ze+czwxoQ5y8904g2yM7xxf/JzqfGlSM3O5/L2lJf7286aDjOrQvNzcGIG+77SNaWTnu4qnvHy8fC/HnE4W9+xA+7QjONbtZP+fP6HVn85h/f2nFgdo6jPHhaaAiIiIiDQtdZmbrCrt84o6wxUFXjIzspnx/Up+/Ho5G9fupaWBI81j2ZMcz6x/nseyA1m8/d5Sz/4HeDPSu+9TncDP4OQYnA5Pck9jYP7tI4kPd/psb5fX3yr9WJnjFenk7IsHc/bFg7Esi/TDx9i94yDrNhxg1ZY0wgvyOXbkOAf2pbN62Q6yMnOKXyvPGUT7ZtG07NuWb3MtLJsNC/h4+V7+OiGqzGda3ZuXDXn0T0OjwEUd+M9z0zh65BjbhvUkM4ARC9M2ppGeXQBAdsGJ6SBFnj+vF3CiU18TkePp6/YRmXuMyNxcQlz52CyLnC12nvjfbqIjQklKiObDczpxGAdjuiRW6n1TM3O5Y8oqsgtHc9hthkv6JnkCISFBpLdrweMPjef1x7/msfs/4vzfDOX3d47H7rCXea26pCiqiPhju/frgLZzP3V2LZdEREQqo65uTFWnfV5eZ9hX4GVi13iW/bqVH75axryZ68nPK6BDl0RuvGcCvUZ2YUNWfnFbNijYUa39r07gx1/burojOso7XsYYYptFkB8cxNgp68l32QmyO1j72MTi187KzOa9n9bz9KfLcB7JpHlaOnnfHmRUkIMdyS3YmdyCS/om1fhonYY++qehUeCils2atppvP1/CWZcPZUmGIbLwxKxKJenr5AbfFUjRahf+vvAFBS4Wrd3J/JXbWbh6J9v2HKJd4WNuDBFhwaxYuxMsi4xjObjcJ8Z1TWndjL5dWuOIjSG/wO0JxpRTcS3clY7LE7Mg1GHj+fN60iMxqkwl9cx/r+e1Z37gi/cXsHXjAf74z4uJKWfOnfdxqa3ggqaAiIiIiDQddXVjqrZGdqTEhWJhER5sJ8Tt4tD8Dfz2oQ/Zt/swkdGhTDx/AOPP6UfHri2Ln9PJ6/nV3X/v969Kn8ZX27qmRnSUp7zPIyIylPNP686flh0g32Wx11h8OKYd33y6iOBFWxlDHsFHslh4OLtGP9OaOkdOllEbClzUor27DvPsY1/RrXcyt9w5nstyCsqcVL5ONM90kKDilUOKpoP4W+GjdOQ4JS7U7xd+4440vp69mh/nr+dIZjbOIDt9urTmrFO6ExodyQ1fb6DA5iA4yF78vAKXm9RDmexOTWft1v0sXb+bb+esJTs3n042OxlhkRyzxfituEqXr2h/SldcjiA7t9w/kU7dknjuH19z+5Wv8uizV5DSyf8XWJFKEREREamMurgxVRsjO1Izcxn90jyCs3NJ2r6PNvsP8f60Anr0bcO1t5zK8LHdCA6uuHtXmf337quAZ3lSLM9Uj1m3DK/2iIPS/aDaCvhU9Hn4Cuicdlp35k5fx4v/nMod17zO+deMLF5QoCY+05o4R06mvpACF7Vkx9ZUHr7jPWw2w0P/uAhHkJ2EIHuJL56/Ey0h0sn6+8tGQstb4cP7i+ZzBEZiGJM/nsP3c9cR5LAzsl97zhzRjaG92uEsrOCmrj2AyxFMVm4BkTYb0zamERMaxODkGJISoklKiGZwz7Zce84Q8gtc/Lp6B1/PXsvc5VvJz0rnj09/zhUTBzJqQAfsNlvxfgYS2fWuuE4/uy9tO8Tzl7s/4O7r/8sjT11G38HtfR7nupynKCIiIiISiNoY2fHzsl0kr9hM8z0HAeg4sgu33zKWDp0Tq/3avpTuqzx7bk/yXZYnWb/TwbbD2T5X2wjkdadtTOOOKaspcLmhMN9Fj8SoWpvKE8jn4SugM+LUbvQZ1I7JT3zLZ2/M5m9XjyD59D418pnWxDlyMvWFFLioBcsXbuXR+z7C6XTwz5evoUXLGJ/blXei+RtGVd4KH0Xbl/jC22Db6s08+e8luC2La88ZzG/OHEB0RGiZ8pRchtVwx5RVuNz4jN4FOeyM7NuekX3bczwnj29+WcMH3y/lwee/pk1iLDdfMoKxAzthjCkuu7/pK74COJ27t+LZN3/P/93xLn+6/V3ueeQ8Tp3Yu9wyK4GmiDQ0gebCEBGRpqemRnYcP5bLR2/+wmfvzqd5gYvU5ATSOiTx3iNn1viIB2+l+ypAjY0QyM5zkV24iiDAsBfmsPnBcbU6laeqn0dEZCj3/+0CgoMdTHl7LrclxZBQQ8GB6p4jJ1NfSIGLclR2vpBlWXw/ZSkvPD6V1u2a87fnrvAbtICqnWjlrfDh7dlze5KVeZz50xfz7tfrGDuoE3dcNoqkhOhyX7uookjPzufWz1f5DKqUPi5hIcFcfHo/LhjXh5mLN/Pyp3N56PmpdGnXgruvHEPfLq3KHcbkL4CTkBjN0//9LX+950OeePgzjhzO4sIrh/stc1Of1yUiIiIiJw/Lsvj6q+X877lpHD96nFPP7M05141iS6672u3eQKYY+Jruvfa+scWr/3k7npPH2q37ST2cRX6Bi/wCF8buwIqOZlSnhDLtfu+ghWdfOdEHaIA55owx3PHHSaQfOcbkJ74lJi6CU8Z1D/j5tZWH4mTqCylw4Udl5wsdSsvgub9/za+/bKT/kA783xOXEB4ZUu57FJ1ovr78gTyvvNELBfku2qVuJ8a4eezWs+jTox0Ld6XjCA0pdz+KKorUzFyfQRXv42K3eVY4KVrdxG6z0atbW2Y6txAWF0LBrjRufOwjJo7sTtf+3fyOLikvgBMRGcrfX7yKf/3fZ7z2zA8cPXKM6247rXgkh3eZRURERESagvTDWTz1t69YNHsDWVHh7Brek3cemERCpJNuNfD6gUwxKN3nAIqneLhcbiIKcritezRrNu1ly66DuC2rzPu4MTwSEsaDlw7jqtN6Fyf3jAi2Y7MZXG43YHA6bA1+tIDdYeehf1zEg7e8zZN//pzkds1p1yGhwufVdh6Kk6UvpMCFH4HOF7Isi5++WcErT31Hfp6LG++ZwLmXDsFut/l4Vd/u+nJ1pU9kfydoUbmbHdyHMy+Xcy8eQ58e7Sr9ZfEXHPE+LgA3frqCUK9Engt3pZPnsjgcFMHRxEiubxvEtPnrmLVkC83C4iAsukxwwtd7lY5KPvT4xUQ98Q0fvTmHI4ePcdefzq735VJFRERERGrawjkbeeqRL8jMymFn52Q2tkwgIjSoRvMXVDTy27stXnRTs/uTMyg4nkNk1hGaZWfidBfwdaqN/l1bc+25g+nVMYk2ibEEOezM2HqIOz5cTGhWBrE5Wbz41k9s3Lqfl3e5sAqTe869bQTx4c5GNVogJDSYh/91Cbf85hUeu/8jXnjnBkLDyi/3yZSHojYpcOFHINM4jhzK4ulHv2ThnI306NuGex45j1ZtmlXqfap7Ipfu4A9OjiE6J4v4nAyORDdn/OCOTJ67jdwCN8fyXIQ6PEk3rxzQusLX9hUcKTouoQ4b2QVusvPdOLwSeUY57RzLcwGQVWBx/fnDuOPcQfzrzZ85tm4XQ6Lg4d+NL1MxBbIM0u0PTSK2WQTvvjaTY5k5PPj3Cwl2BgV8rMo7biIiIiIi1VHd9qXb7eb9/8zm3ddmktKpBQ8+cwXjP11NRGGbuCZHJAQygtu7Lf7pvI0k7N9FRHYmAEeDw9gb0oxv7h3PoJT44ucVvd6pXVuSExLGQeNkV0RzOhw/xLRfVtMiJJwNkYmEhwYXJ/esqU58XbXvm8VH8dA/LuahW97i2ce+5sG/X1hiNHjpMqVn52OvwdVITlYKXPjh78tc9IWIPpLJS49OISszmxvvmcB5lw3BZgt8lEWR6iRU8dfBPyUklyNxUbx2/zmMfmkeeQVujhcGE7IL3NwxZXXx9I7K8p7ecseU1bjcVolEnhYWoUE2jue7CQu2s+1wNpO6t2DyQxfx+c8ref6DWdz22Af84coxTDqlh88vub9gjjGGq24cS0RkCK/8+3v+eNs7PPLvy4mMKptotCrHTURERESkKqrbvjyWmcO/HvmcBbM2MO6sPtz5x7NxhgSxNiW+1jrjFY3gzswtIMHK5bZ/fsqOnQcIs9nZHxZLalg0efYgwoPtHMj25Krwtf/zbx/JsBfmgAVHwlvyhwk9ePPTOXSypZIW3rpGO/B13b7vOyiFq24ay1svTadD72TCercrNwBktxkmX9Czyn0wUeDCL18Ru6KTL2LvITqt2ERSUizPvXgl7TtVfQmi6iRU8dXB7xgGm3emcs9VY9l1NLd4yaIQhw23ZZHnsnC5rWqP7LhyQGvGd45n2sY0lu9J57UFO8nKcxXPVysdiDHGcOFpfRjSqy2Pvf4Dj70+jQUrd/DQb08jotTwqoqCOef/ZhixzSJ46pEvuPu3/+XvL1xJQjlJUAM5bhquJSIiIiJVVZ325eGDmfzp9nfZsSWVW+6fyDmXDPZ7B78uDE6OISI/m+T0VMJzj5MRFcbdV44hOyaOW75YTV6BJ5eFMRS30/3t/+YHx5XoQ1h5Bbz91QIeGZVU5sZwdYIzpd+/aDR4bY6+uOy6U1j8/+ydd3wUVfeHn5nZmt4rCYROEjqEDgKKFBVUxN79WUCxY+/o+9oVBHvvIIiCSEc6hE4oIRACCQmkkr7ZOr8/NrvZ3eymIJZX5/l83leSzN65c2fm7rnnnvM9W4/x4evLyBiUiiXEv8kCBCF6teK0+B0ojgsv+PLYpeeVE3SymI57j1IdHMDFT0z6XU4LB2crqOJtgf/pDxvQqiXGDulGnU1wK28KMtr68qbe8tgcIqGensCmPJj3/bQfY31ER4BGQqMSWXhjP1YfKWFKL+8T0tzHp/DFku18sGATB4+d5vmp4+jeMc5tPJpz5px3YXdCwwN47sHvuP+Wj5k56zqSOrVsDP9NZYMUFBQUFBQUFBT+eM7GviyqMrJyxwmWvfELlWdqeeHta+k7qKPb3//sKOEjucW8/8Mm2pw6jr+fjqsnD+X6cb3RadQUVRnRLckELEiiyJZ7hjr74+v6Pdc5d14+kH2H8/hg/gaG92qHSqfzeo2tdWa4nt81GvyPHDdRFBlw83nsfvBrOu7O4sDg7i0qQKCkrJ8diuPCC748hh11Eu0P5FAVGkh2WjeGd/t9Tovf+9B6LvD9VQLLNh9iVFpngvx1BEEjJWBfeWxdX1lDucEuuBmiV5M5w91b6NDI8NdIzvFwjJPj9/cPb8+UXnEMm7MZo8XK7E3HyZwxEqDRhHTTJWn06dqGp99dyh0vfM8dk4dw/YT+iKLgvLbmnDk9+yXx2kc38+Q9X3H/LR/x6IuTGTi8S6vHDWDJwUJl8lBQUFBQUFBQUDgrWhtFXVRlpO9TS+i47RCiLDNz1nX0TUtyO8Z1TeKvkZizKYdpQ5Kcf2vKvm8tuafP8OHCzazcehh/vZY7Jw/hygt746fTeBwpI2DfHI30bzhfS8T2ASRR5OnbL+SGp77moTcWcdkVoxqtu9ISQn5XYYFyg5lpCzP+lOjqkd3jeLR3JzptO0i7I7mkJVzQ7JgoKetnh+K48IIv79iCD9agEwVufvISLujb9qwfMkd0g0MjQi0JrJs6mJwyA0lhenLKDC2efFwX+D+u2UdtnZnLR/f0+veiKqPXNtLzyjGaG2opGy1Wtxc8KUzv1MioNVnJPVNLUZWx0ThNG5LEiqxiyg1mAAxmmzNMy5sjqEfnOL568Xr+88lK5s7byK5DeTxzxzjCgv2aHDvXl799pxhmf3k7zz7wLc8+8C23Tr+AydcPbja8zrXsqzJ5KCgoKCgoKCgo/F5aE0W9dNNROm09iFUUyOjXjWxJzSCPYxy2tr9GotZk5c31x5i96TggY7WBvYih4FxPnI0de7qkkk9/3sbidftRqyRuvDiNa8f3I8hf1+jY9LxyrDa7Zp5KEt3SMRx/b8kCPT4qhP9Ov5h7X13I8l82oyUAXNZdZ5t242rfSyLoVSKCAOUGM0VVxkYbt+fC4RMVqGXby5N4/b9q9izbS96Bk0QN7NCoT65jqKSsnx2K48IL3rxjx7OLWL/yANfcNoIL+rYlPa+81U4GaAj5MpisGCx2Z4G/RmLQ7I3Ist0x4F+fctGaycdmk1mwei8dEyJI7Rjr87zeJo+0hBC0atHZH61Kcgtvyykz4K+RqDZZkYGHFx/k6eWHOfjwyBZ5lpsLk5p+w/n0TU7kza/WcsNTX/LC1An07tq46omvawiPDOLVD27mtWcX8dHbKzh5vIRpj4xvUcURZfJQUFBQUFBQUFD4Mzl+tJAlryxGlkR29OqMQav1Kp7vWJPM2ZTDm+uPUW2yolfLINudB3qVCIJ9s7C1duypkkq+WJzOz+v2IwgCl43uyc2XDCA8xL/RsQ6bPSlM75KOgZtQv8OZ4rDRm7Ox+6ck8tT/jWHmhyvoH+hH2sBkbhrT01klsam0mxqDiZLyasoqaqmsrqOq1kiNwYgoCtSabWSV1KI11GIWVFRZRO5asA+ty9rqXG9cRgVqef6pi5mWmc8bzy/iw/l34+fve10kiQJ6tYgkKinrrUFxXPjA0zu2d0cOAGljupP86lqnrkNrnQyOl9jhJNCr7Z5AZBrKiJqsBApCqyafb37dyZHcYp65Y2yzlTq8lUSdNak7lXVmgnTqRpNmWkIIGpWIXpYxmG1OL6ujf659HNM5khC9CqPZhlYtOttqSZhUaodYHpu9mKkvzefWSwdy88QBSC6VWpqaAHV6DY//ZzJftg3nm4/Xk511mqdevZLoZkQ7Fb0LBQUFBQUFBQWFP4vjRwuZccdnaDQqrnj4YtLXHwezzad4flSglmlDkpiz+TiBguB0Eqgk0RlxoRLFFtuxh48X8c2vO1i5LQsBuHhEKjdfMoDo8ECvx3va7I4ocdd0DL1adDpTHCktU3rFNWtjjxuSTLvYMP7zySqWLktn+codxEUG0SYqhKlxfhRWmQjRSrz+yXLKKmspK6+htKIWg9Hc7HUm1v/XLEiUa/2pDQplW+4ZLk6J+UM2LrU6NQ8+O4n7bvqI+Z9v5Mapo5s42u58qv+/RigaGN5p1nEhCEIC8AUQA9iAD2RZftvjmGuBR+p/rAbukmV57znu619K/olSdHoN32aVOPUeoPVOBnfhGLvDoHd8ECPmbsafhoiL1iyid2eeZO68DYzq34lxQ7r5PK9U7wNwLYkKjfUnPF8Q9xKodqEbrWShqLyAJ3/ax96Tpyg3GAjU6QjUabk62Z/QgDAu69mJyACNs42WhEl98cJ1vPLZKj5cuIWdh/J4Yep4IkICGo2dt/ERRZEbp46mc0o8rz79I3df+z6P//cKeqe19zl2v6eqi4KCgoKCgoJCS1DsaQWA/NxSHp36BSq1xKsf3Iw6NICnt+Q163jwps/WGo0Lq83Gpj05zFuxm+0HcvHTqZlyQS+uHtvXp8PCgafNnlNmcKZjeBYBEEXBmdIyZ/Nxp5Ojqb51ax/D5y9cS8aRU2zcc4yTheWcLCwn60QxKpVIiSSiUasIDfKjW/sYwoL9iAwJICLUn/Bgf4ICdAT56fDXa1h+uIg7f9iLoc6M1momUDajNdYRZqwisqiSjz8uR3X5IPp3b/+HbFx2657AeRd2Z8FXWxh/eT8io4O9jqdruo3nGlJJY/eNIMvePT3OAwQhFoiVZXmXIAiBwE5gkizLB12OGQwckmX5jCAI44BnZVke0FS7/fr1k3fs2PH7r6AZzpXH6uG7PmdrZiF7B6VSY7KiV4vUmm2oRQG9RiTrkdGtShfxVmr1bNJPsvNKuOflBfjp1Xz2/LUE6H1/5qudJ7njh73OcLKvr+0DwLVf73JORl9f26dJB0zemRpeXLaBjUcOY7HZCNbr6NUmlqhAf6rqjFTWGTlaXEpRVQ0AscFBpMS3o0dCOyal2iM8HNc5Yu5mry+lLMv8suEgr36+Gj+9hmfvGMeA7m19jp038nNLefbBbzl5vIQb7xrFlJuGIrpEbygonA2CIOyUZbnfX92PP4s/a57+X0R8aPFf3YW/JbbXLv6ru6DwL+fvOk//r9vT/2bO1Vqi8FQ5D932CcY6M699dAuJSZFn1X5rji8qq2LpxoMsWpvBqZJKIkMDGD+iO1FJbRjeKarF5/O1kHbtC+CR0iLy/uSebhHeZ3O9raGoykjnl1dTZ7KhUYv8d3w3nvg1E4vZQpiphqF+Fo7mFpGWksjUa0eSXWU55/04XXCG2y5/h1HjuvPA05O89rEpx8SSg4WtWpv9L3K283SzEReyLJ8CTtX/u0oQhENAPHDQ5ZjNLh/ZCjQWKPgLOJceq4o6CzbsERYBGonr+sTz/tZczDYZS52V4hpji9t2FY5xrWbh+F1OmaHZNmw2mZ/XZfD2N+vQazW8PP2SJp0WYE/j0KulRl7dlnocD54q4pGFyzhSXMrlvVO4dXA/kiJCG6WmFFbW0eO15Qi2agxllZyq2MeKAxm8+GsgtXI4JpvWLdTMc8IQBIGLhqeQ3D6ax9/5hemvLODa8X2564qhLRY9ik8M5+3P/o83X/iJT+esZu+O4zwy8zJCwgKa/WxrUEK5FBQUFBQUFJrjf9me/jdzrtYSxYUVPHLHZ9RUG3n5vRudTgvwvS442/6YzBY27DrG4vX72ZZxApss0y85gXuvGUHXTm3o/sY6zLvKfX7e07ZtKjrZ0y6fNiSpXjzUisFsY/qiDLcU9D86mqC4xkhVnV2Tz2y0R8fbZKixgugXzFXX9MZ0qpBZ367j3pe+56W7Lzrn9ntMXCgXXNyLVUv2cMcDY/EPaBA5dYxtU5EoShq7b1qlcSEIQjugN7CticNuBX79HX06Z5zL/KWkxDCOZp5yPkR6jcqZlSQD8/YU8NzYoBa35/riSqLArEmpzpSR5uoYHy8o4z+frGTP4Xz6dG3Ds3eNIzqs6TAv8J0W0ZJUiW05edz5zSICdVo+vPZShnVq5/M8209WUGfVUGUMAoLQiEZCVJUEqSvRCZVU2QKos0Y6Q8180b5NBJ89dw1vf7OOr5fuZE9mPjOnTSAuqnHYlWNMXa/Dz1/L4/+xp4rMffVX7rr6PR57aTI9+vrue2tQQrkUFBQUFBQUWsv/mj39b+ZcrCXOlFbz6F2fU1Fey3/m3kCnbnGNjmmpTdlUfzKPF7J43X5WbMmkssZIVFgAN16cxoThySREhwL23XxvpUddoyY8++E4b0s26aICtcyalMod8/disNiw2nDr4x8tij9vT4Hb+iy7tNbNCTAgMZSolBj6Jifw2KzF3P/6j7x090UM69OhqWZbzZiLe7F0wQ42rj7IhRPtEe4tvcfNpbH/mzdNW+y4EAQhAFgA3CfLcqWPY0Zin2iH+vj77cDtAImJid4OOad481id7c3u1DGK35bs4bPLuzOkUyTFNUbeWn8MGRCAKb0aT0JN4friAtwxfy+SJIBcr5vhpY6xFhsPdNaz5LcM9FoVT9w2houHp3gV4/R1nZ6e0ZaMx/bjJ7nj60W0CQ3i0xsmI6Piq50nARoJeYJ76aYakxWTTUuRKRKzGImfWEaA6gyBVLM5K4Ah7YII9dP7HCedVs0jN59P/9REXvxoJdc/9RWP3DSaMYO6Nrpeb5OBIAiMv6wfXVLb8NKj83jkzs+46pbhXHPbcNTq36dNq1QkUVBQUFBQUGgN/4v29L+Z37v7XXGmhsemfkFxYSUvvXM9XVO9B9G01Kb07E+0XuTZLzdw4MAxcvNLUaskRvbvyIRhKfRPSXQTuff2+aQwvctGKtzcP5E6s5Vas11kc0VWMff9tL9Vm3RjOkei10iopMa6Hec6msAz1X50pwhmrjriXJ/dkpbAIyM7NlrrtIsL470np3Dfqwt5ZNZiXrp7Auf169Ti8zW3juya2oY2bcNZvXSf03HRmnWDrwjzf/umaYtWboIgqLFPsl/LsrzQxzE9gI+AcbIsl3o7RpblD4APwJ6Td1Y9bgXehGzO9ma362B/eNoYDM6wqX0PjWDengKm9IojJabl0RbQ8OLq1aKzUoe/KCEIuL3M6XnlmC02/M6UEF9bxo+5NiYMS2HalUMJD24oV+SZY9aS62zJw3+goJC7vv2JuJAgPr/xCqyyRNdX1lBusDtcQvRqMmeMbOQcWTd1MANmbXD+zk8tsf7uoUT6a1lz5DR7Thxm0d79rMrM4u7zBnJN/16oJN8aFKP6d6Zr22ieencpT81dytaMEzx0w0j8dHbxT2+TgasHOTA2lAlPXMqBBdv45qN1pG/I4uEXLqNdh6hW3TdXlFAuBQUFBQUFhZbyv2pP/xtxtavPVsS9/EwNj975Ofl5pTz/1rWk9m7r89iW2pSOtc3SPbkc2neEqc98hSjL1Kq0VIREUxcUwsLrz/fZT8+1kedG6rubj1NXX/mw1mSlss7c6k265lJLzlU0gWMdY6ovmuCnkdCqRBbe2I/v9uRz1+B2zvWZtz4HB+h559EruPeVBTzxzi+88eClTk29ps7XknWkIAgMGNaFn7/fhsloRqNVn5N1w79907QlVUUE4GPsYkFv+DgmEVgIXC/Lcta57eLvw9Vj5S08qqU3u0fftmh1arZtzKL/ELtHLiUmyJke0tpIDm+VOjx1HwCOnSyhXeFxdKY6avX+fHT/RQzoFu/WlueL9NbE1Gavs6jKyJxNOZgsNrcID9fj8ssruf3rRQRotVwzcDhWWSI9r5w6s815jNFi9dp+TpkBueEwZGRyygykxARxVZ+2XNWnLbcM7sMLS3/jpWXrmLdzPy9OvICebWJ9jmVcVDDvP3klHy/awmc/pbPvSD4vTJ1At6ToZj3IIGC1yahVAXzxwuV89vqv3H3d+9w8bTSXXjPwrIQ7/8yKJGcbKfRvDidTUFBQUFD4u/C/bk//HfmjbBxvC9TWLg7Ly6p55M7PKThZxnNvXtNkhTtwtymTwvQ+Bfszjxfy8Y9b2bA7G1EUqfQLJl8bSK3arqMQSOMqFd7O5fi7cyNVJWKw2JxOCwB/jUSQTt2ixbY3XYxzFU3guTnr6XSprq/06Kj4eP13uxEQWHmkxC3Vxdt4+us1vPnQpdz54jwem72Yj56+ivZtIrz2u7VOg9ReiSz4ajNHDp0ipVfiOVk3/Ns3TVsScTEEuB7IEARhT/3vHqe+PK4sy+8BTwPhwNz6tAXL31HR+ffcbI1WTe+09mxbf5ipD49zW+iebdhOVKCW6/q2YUznSLeHOCUmiKIqI32fW0xMUR4qQWTkhQNI7daWJC8vk+eLBE0Lbjr6a7TYqK0XG/VMpekcruWBH37CaLFwtCqGaT9mopYOs/DGfm6TmkYSvY5jWkIIWrV9EgTQqqRGx4X4BfJrjj+CNQ5rURFXffQdF3VP5rO9FkxW0eekdcflQ+ifnMjT7/7Kbc99y52Th3Dt+H4+Pch6lQgCzmoqtnbRvD9vGm+9+DMfvLmcLesyuf+picQnhjd7z7zdwz/a03m2z9e/PZxMQUFBQUHhb8Q/xp7+O/BH2ji/d1e7uLCCx6d9SWFBOc+/dW2zTgsHUYFaZ4q4ZxTB8ut7sWDZDlanZxEUoOOWiQM5b1A3Br+3DdFiQ6g/trXrG/eN1P1YrA3ndURCN1fS9GzuhTenk6/oaVdNQJtsw2yR0apFNkwbUl+GtQEZGUEWqDLZ23CkuniOp6d2xxsPXsrNz3zDA68v4vMXriU4oHEae2vXkck9EwA4uC+PlF6JzvH+PeuGP3PT9O9IS6qKbMSeJtTUMbcBt52rTv1R/N6bPXJcD7auP8zOLdnOqAv4/ROct4d4/qbDxBTmYVBpOBmVwJFDFQiHMpxCnq7aEp4v0pjOkY1SZFxVih39rTFZ8ddI3D+8PdOGJAH2FBOL1UK4Kg9/tZlbhp7HMyvznde2+kiJU7tCqxKZfWl3t3F0nYgyZ4xiRVYx4F0LIz2vHKNFpsbkR5kxkVj9GZbsP0SIIFJoicRMSKNJyxGVUiBreOuxK/lw3jre+X4Dm/fl8Owd4xp5kO21pQEEt2oqoYFann39alb8vJv331jOnVfN5YY7R3HZtYOQmkhZ+Ss42+fr3x5OptAYQRB0wHpAi33+/0GW5Wf+2l4pKCgo/PP5J9nTfwf+SBvn92x05ueW8tjUL6iqNPDiO9fRvU+7Vp3bM4rAUGcixnCGaS8cQq9VccukAVw7rh8Bfu4C+96iCVqK50ZqUpie3fmVTF+UwbSFGW4inUsOFjY6V2vvhS9Hh7dxd21bpxKos9gzowwWG+uyS92EQPVqkVcmJPP08sMECgJqyf66eUZliILgpt0hiTBrUnceu30sj725iGfe/ZU3HrwU0cMp0tp1ZEhYAEHBfpw6Wdaq+9Ecf8am6d+V36dO+Bfxe0LDfs/NHjKyK6HhASyen+7muEgK0yMj438Wnk5XHNfVNVTHkiVbsKjV5Ee1xSaJIEOVqUHIU6+RnC+6rxfJUVrJc3LwnBimDUkiKlBbn0pjJVjMQ0Ud1w0cwQVd2/H0ypPOa5vSK445m48j1k8IYzpHuvXf81xjOkeyIquYFVnFjZwXaQkhOHRFZUQqrVHce15f3l+/gTj9aYxyDZ3CB7pNWv4aiUGzNyJgP/9vd40gMDqCVat2cu3jX/DIzedzwcAuXvVNPMdHEAQunNiHfoM7Mus/S/jo7RVsWHWAB56Z9Lu0L841Z/sF+m8PJ1PwihEYJctydX2u9UZBEH6VZXnrX90xBQUFBQWFlvJH2jhnu9F55FABT9zzFcgyr7x/k9fqIc3huK4AtYi6qpK2VUWobFbGDU9l+pVDCQ3ya9RXx7rGEbHdXElVX7i2lVNmwGrD6YxwLPQd0dr+GglNfeRCa4shNOXoeGtiKtCw4enatk2WAauznUd+OcTW6UPdhEAn94hjco84N/tfLQkE1G+6+mkkJBF251dgrI/CALh9/l5UksB/LhnIFws38clPW7nt0kFNjlFLiI4LofBUeYuP/zdQVGUEXYD3EpHN8D/nuPgrw9/VahXjJvXh2082kHe8hIR2ERRVGRkxdzPIIAj2cKqz6Y/rdcWeOU14rYG5MyZTipqkMD0j5m5GL8tOIU+V5J7D5utF8jU5eJuQu0ToiFDZnRZVcjwTUjs2uraUmCCfk7nnuRxhZ+UGMwAhehWZM0Y5PxMVqGXJLWmM/XAbogAalciNaZ0Z0zWBF5dt4lBBNjd9/j33jRrmnLRkZKcTx18jMfidTQgI6CPbMkZVxZNzfmHz3hwevGFkozHxNdGERwbx7OtXs27Ffua8vJRp17zH5BsGc/Utw9HpNa2+l+eas/0C/beHkyk0RpZlGaiu/1Fd/z9F2E1BQUFB4X+KP9rGae0CNX1jFi89Np/AID0vzbmBhHbedRJ84brQ33rXIJ75cDlHT57CoNZyKjqRu64aQWgLxSrPxRrJ0xkBOKO1ob4CoiB4XVdA00UCfDk6vJVh9dT+GDhro7MPAnYHi6/NWweun7dHkuznw60nqK2PHjc6tD0s8Nj2EqamdeHjH7cyuGcSye1jzmr8HETFBJN3vKTFx//Ttekc95mgqKSz+fz/nOPirw5/n3jVABZ8vYWvP/yNR1+c7BbSFahVOQUoW0t6Xrk9/8poJqC6gq7JiQxKbiiZ5E3I05t2hevDXlRlpNxgRhRArxaRxIbPeE7IuWXl3PP9IvxVJqakDeH2wT19Xpu3ydzbucAu3unAaLaxIquYEL3a2Y/LPt+BShSg3jECMPr9rZitIjqpLR0iqnhmyQomd+3AyG49SY0NZcTczQQKgpsTw6ZR0XZQb3p1K2H+sp3szjzJ83eNp0fnlnm7BUHgvAu70yutPR+8uZzvPtnAmqX7uP2BsQwd1c1rydk/k7ONFPo3h5MpeEcQBAnYCXQE5siyvM3j70qZPQUFBQWFvz1/Fxvn53nbePfVX2nfKYbn376G8MjWrQNcF+3BxmqSDaVUVNdRFBzJCW0wgWq1m/3sa0HbkjWSp9Cla0q3ow3HOTydEWpJwE8tUmu24ad2L3XammII3pxOTX3Gte2t04cyaPZGkEElic7N0ZaKkdojSexrmwCNxO0DE3l/a67TGSIj0G9IdzKyTvLSxyv57LlrUKkkr/esJQ6GgCAdtTVGn3/3bPOfrk3neEYRxMaD2gL+5xwXf3X4e0hYABOvHMD8LzZx1S3Dz1l/ksL01JishBhrkGQbFw7u6vZ3X0KeDjwf9nVTBzNi7mZn1RCtSsTXxurOE/nc/f1ibLLMG5MvoU62C9K09NpcxT5rTFZ09efqHR+EViVhqK9ColYJTF+0317dw6X6iatjJKfM0FCWSavh5mGjOX0mj3fWbmF//ilmTrzAzXM6Yu5m/LGXbHp743E0KpEFD1zKW1+s5s4Xv+eWiQO5aeIAt1KrTU02IaH+zHj+MsZd2pc5//2FmTO+p/eA9tz54Li/VfqIgsLZIsuyFeglCEII8KMgCKmyLO93+btSZk9BQUFBQaEZrBYr772xjJ+/T2fAsM489tJk9H6tX2im55VjttgIKT1NTG05qshg3px2EeO/3Y/eYkUUcNu49LWgbc5ud10rSCLIMlTU2dPQg3QqRIFG53B1CKybOphBszfir5GajDJ3pNAHNJFC79l2S9ccKTFBHH10tHMz11WDoyWLfM/zzBjZiZvTEhk0eyOyDFqVyPBOUYTfMIpHZy3m2+W7uH5Cf5/j2Ny59X7aFjsu/urN+T8Dx/gj26zNH92Y/znHxd8h/H3y9YNZ8sN2Pn1nFc+9ec056U9OmQE/jURoRTVmUUIXFur1uJamhMzbU+AmRmO02NB4pJeYrVbeW5/Oe+u30SY0mJcmjufCj3e7vYgtuTZXsU+AOosNtSSSU2Zgw7TBfJKeR4dwP4J0aqYtzGi2+onr7wa1DSMqNZbzOiXx8MJl3PnNT1zRJ5Vbhwxkf2Et66YOZt6eAt5cf8wZtlal0fPli9fx2udr+PDHLWzbf4J7rh9NrsHmdHY0N9l0792WOV/fweL52/ny/bXcddVcLpzYh+vvGEl4ZGDrbq6Cwt8QWZbLBUH4DRgL7G/mcAUFBQUFBYV6KstrefGx+exJP8bl1w3m1ukXnLW4ezs/kXZFJ9AZDVQEhbLgySlo1Cqojyw222wICNTUb/T5WtB6K6nqq2qHXiVilRv2JurMViRBwGCx+TxHTpkBAYHq+ood3qLMHSn0citT6L2t77xtNJosVoqrqskoKMVitVJtshGoVbd4ke/tPFGBWo4+Otrtd5H9OjKsTwc+WriFCUNTCAtu0BZpjYNBp1dTV2dutl/w12/O/xk4xj/61aKcs/n8/5zjAv760LDgUH+uvnU4H89aya5t2fQZ0KFZ9dzmFv9pCSFoVSL+VjNmrY6BbcNa/XnXh90houkqRuOaR/bT/uP8sncHmaeLmNijG0+MO4/1ORVeyxA1h+Pc/hrJKdijloRGToJ1Uwc3Wf3EcW2+KqL8cPvVzP5tKx9v2sF3Ow9zxhoHoh/rpg5mzubjTgXhtIQQAvRanr1zHIN6JvHfT1Zx6zNfczoshgr/IGSZZid/AEklMenqgYwc251vPl7PkvnbWfPrPi6/dhCTbxiCf4Cu2bFRUPg7IQhCJGCud1rogfOBl//ibikoKCgoKPwt8WaDHztymuce/I7SokoeeGYSF17S+6zb37jnGM+99yuhgo1xE4dw84W9nKkTVpu9ekaARgKBJhe0B05XMm9PAVN6xTWqxuetaocj4sJktUdc6NQikmA/Xi1ZSY32R5Zlt1Tpliysnanv9akYzaXQe46vwybPL6+l7xvLEWQDWtFInzgtxVXVlFTXOOPH4zQgq8GCnr0n/IjQGUlrl9CoGogn3taRnr8TBIG7rxzGVbuz+XbZTqZdOaxV43A2/B025/8MogK1UFddcTaf/Z90XPwdmHT1QH5ZsIMP3ljOnK/vQPKS/wQtDyeKCtRy4KHzmHx/FhcO6OI8pjWf93zYvZVIMlmsDHpzAX5CCTISz188hqv6pQCQliC4vYhJYXpnCoggwJZ7hnqdfHydy9Mj6U1Ap6jKPXzKdeKFxuI+D54/FI06mLfXrCNcOkGVLZzvdp30WWP6wkFdKZbVvPzJCuJKC/A3VHM6LLpVk01wqD93PTSOiVcO4LO5q/nm4/X8smAHV906nPGX9v1LBTz/6SI+CuecWODzep0LEZgny/KSv7hPCgoKCgoKfzu82eCZW4/y2rM/EhCo49UPb6Zb94Szattmk/l8cTrvL9hEp8RIXrrnIhKiQ53nLTeYkcQGZ4U3O9dhAwZpJUa+uwUZmLnqCLMvTfUaERAZoGHtHf349VAuKuo4VlLGocIyKg0Gaox19qod9cuZsbOPoJEkwvz1tAkJpmNUOB0jw/liSkfOGCXO7xTbqB9pCSHO1HewbxImhelbNL4aycJ7kzqSU1rC7rwC9uYXEiLa27HJIkZrJCM6JVFpEpi/rwijxYpWEhiQEIBELd+k7+bLbbvoFBnOtPMGcmFyJzeni+v6oiVahEVVRvaXmxncuwM/rtnHzRMH4Kez2/utdTC0RiXvr96c/7ujOC7qae0CUKNRcdu9Y5g543t+mpfOZdc0LpkDrQwnEmVMJgsd4kKb/by3/no+7K4/J0cHsjozm2eWrMVfrKbSHICBGAL8ItyOd3VAzNtTQJ3ZSm29RsWg2RvZcs/QJutER/prnROC0yOpE9AFVrCn+iDpB82UG+v4tdiGZNXx5bYSLHVa1LYAFt3Un/Pe3QLAC6uO8I6PiffKPp15fnUuevk0QVIpX29dx/tb49n/8IWNdD/S88rp3T6SU7HtCDpTQkRFMe01NiZMGMgVQ7q0arEflxDG4/+5gsnXD+bj2at4//VlfP/pBi6/bjAXTe5Pta1xydWzpSXP479BxEfh3CLL8j7g7LeGFBQUFBQU/iW42eAaiTdf/ZVdv+wmuWcCT758pdfU4ZbYb1U1dTz3wXI27MrmwkFdefzWC9Bp1c7PN+hQCMy5LNVZGjTSX+tsO7OoylmVzyY3qNjJwP5TlcjI+GtEdJKRnMLj3JORzp68UxRX1zj7EernT/uIUNLaxhAbFIi/VoNaktBIIjUmMyfPVHGkpAKjycAvGYepMjZsNr6p1dA+IozY4CAW7j+DyaZCENU8fn4K/hqoNsn4aRrSSWRZpsZkpriqhpLqGvLLK1memYc/uagkI2rRwhM/H0USRbpGR3JZr1Q+2l5CnVWLKGn49PpRzg3Pr/atxYgVBIkXJ9odOqnRfmTkn+S99encN/8XesTH8J9JY+gQGc6B05X0eG2d07Gz76ERzUaBOO5BgNlKm1ojP204RGB8jFt6SUscDDar3GwEiELLURwXnP0CcOiobqQN7cxnc1Yz+LyuxMQ11qVoTTiR0VQfrlU/efn6fGv7e6SohP8sW8fmY7m0Cw/lWFUCtfh77Y8jlCz51bWYLDan0wLs3uFBszciILidt6jKSNdX1tq9nyqJzBkjCfKTWFd4mPMHn2FHcR4W2cbHmccJ0ugI1eoxWW3k11QQHG9v22JScd/6ErT+aow1foDA/lOVXscuKlDLgYfPZ86mHN7duIdgqZAQcnh3426eGTcQ8CJWOm0IOWUGgi11vP7ZKr74ehXVhaXcf82w+jzCltM5OZ6X372RjN0n+PajdXw8ayXff7aRwzERFCREI+rUv8uJ0NL765arqBZZkVXMdX3beGlRQUFBQUFBQUGhNThs8BABuuzMZFdJBRMu78ddD49D7cV2bIn9diy/lBlv/URBcSUPXj+SKy7o5RYZ4LlhGaJXO21tR9ui0CCqCaBXNXxeEiz8uPcgoVI1WqEWUbAxZ10OCaHBDExKoFdCLDFBIVz1zQHyywUOVMCW8YO8alXYz6dFLek48NClgIWckjKyS8rILi4jp6SMbcdP4i/W4l8v7zF3TS5xGkADsizw9KJjPLbAhtnaWItRJYqIsgqDTccZsw6V5IdR1lGYL/HuNUO4+zxfG4J2T41NtjFszman6P/Bh0fSr2073tu0h+UZe5ny4Xe8evlY1uWY3Rw78/YU8NxY344L13uARoe/v56ZP6RzMqJNqzcKjXVmtDp18wcqtAjFcUHroiI8Pan3PDqB26fM4Z3//sILb1/rtWzmWxNTAZweU1+YzPaXWqtpuC2+SgY5qoUEaCSf/TWYzLzz2xY+27ILf62GJ8adx9X9elJWa27SG+xaBtVfI2G12b2+VpuMIEO1yUKARmLOphymDUliRVaxsxyRSajj4Q0ryajKpsxooF1gKDd168uoNh3pF9kGjSRRVGXk3kUZbN2fj0pjRutXiz6oivLgU0R3sGGq01JdEoZZjvOZAhIVqGXakCTmbD5OqcWPUFUB327bQo3hDE9PGO01TcURqbLJL5bQAIGFq3az62AuM6eNp1NipM/74u2+g13As/ucG8jcf5K33l5J9a7jRGUXUNQ2mrUZ+YzsHn9WERgtfR7TEkKcZWcNZhvTF2U0+4wpKCgoKCgoKCg0T1SgluWXp/DfR+dRW1HDPU9dwthJfX0e72q/udrJDrts/a5snnn3V7QaFXMfu4JeXey7d56pFt4qcri2rZHc1xqSYOaRYaH8lpXNmZpKAMw2iTo5kKv7dKFHmzgu6Bzn7MeSg4XUWQRnSseg2Rs5+uhoN/vR0xbdfrKCi5KjiQ4KYGD7hlLpdgfHamSrCY1k5b/jOlJRV8fRkirC9RIalYBGklBLEjZZ5NV1JzDZJERRzasTenP3j/ud1Q9ls4zJaiNQK/rU2UvPK3dqf4AIghWD2S4ouiKrmPt+2o/ZKqOV4hkUW8G0b3/m6rS+CMjICAjA6E4RfLXzJJV1ZoJ06ka2s+emcbukWCoPHKe6zkyAruVCoGB3XPyVKeX/NBTHBa0v++nmSY0N4Ya7RvH+68tYuyyDUeN6NHl8U5RU20OwKl28qOCe8lFUZST3TG2z+WNbc/J46ueV5J2pYHLvVB48fyih/vpG7bVkPBbe2I+LPklHFHCKb9aYrLyx/hhzNh/njoEJ6IMqCQg/gz6wmvUlMLpNR27u1o/BMW3dnDmupVORRSxGLRajFqE2gl8vG8C4r5ahDikmrM0pllcX8st3+9hw/WXN6nr0iQ9i4e49zF23jb0nT/PEuPO93tP0vHJMssBR/0hi9AH4V5Rw09Nfc8fkwVw7vh+S2FgRujkPetfUNjz/xjX0fXIJ0UdOEnesgM/v/4pXYsLIbxuLJcS/Vd7Zlj6PUYFaZk1K5Y75ezFYbFjrU1WU3DgFBYW/CvGhxS06zvbaxX9wTxQUFBR+H5vWHOKVpxfi56/ltRboWTjstwAPO3n/g+fx86pdfLxoK12Tonnl3kuIDrenmXimhoDstSKHq20oCmCxGglSVxGkqkInGflx93F6tonlit7JvLy+kDqrBkkU+XBHJdb0SiQxk1mTujOmcyRpCSG47bPKje1HTyHPcoOZoipjI1vWbouPbtFG3ZKDhVRbzzidIaIoolGJ+MmyW4S3JDbo7DUnMAoCKlG0l9iEhkgJrYqbhoxk05F9fJO+k2dG9cUqRjG6UwSTPttOuaFhrRWiV5M5o8FO99w03rQ7mwP7jxGKCZuoaXKd6DkOtbVGxXFxDlEcF7RcZMXXTvjEKwewfsV+5r66lN5p7QkND2jyeG8PdlGVkQs/Tqcd8PiSA4wa0Fh/wTG5GcxWZ8iTn4diryzLvL9hO2+t2URiaDCf3ziZAUneJ1pfeXie45GeV46AQK3Z7rS4qFsUSw4VYbAa0YWV83nBASLbmbGYVNSWRLH6ukvoHhXh9ZyuasMAKlFAI4lO4c/9UyfzzsZjzN6+H3VIMX5hhUz49WOm9RjAbclp6FXu4VauTpi7zxvEwKQEHl6wjGnfLuTpkQNpF9WWgYmhXid+kxTE+w+N4aP565nz/UZ+2pjJk7ddSO+O0Y363JL7uHPmRaTnldNWsPH5ZxsxrT1IxMliyiJD+Wl1DP83qZfXMfGkuefR9bxjOkei10ioJPEfWzpJQUFBQUFBQeH3UlRlZEVWMdB0FLQsy3zz0Tq+eG8tXVPb8PRrV7npWTRnP8/ZlMMb649RY7Kikm08/PbPZB05yYRhKcy4aRQ6TYMt65n2i4yzJKmrfe9o+4e92RzKP8ZvWbmYrVbaR4Qzuc8ALkzuRHyI/djrBtj7V24wM21hhn0hD9zxw170aomDD49kyz1DGTR7I8igUYlu9qPj+tZNHczu/EqmL9rPtIUZPtMkPDdYfdmvnhtzYzpHsm7qYNLe2uA8RqsSmTUplZwyg1fb29NGdoyh49+u7Q9JimBS97EAfJu+k/evnUSl0YrRxUkCYLRYGzluHE6S9Lxy/IP9AdCYzdQh4w1fm5zVlXUEBilVCM8ViuOinpaIrPjaCZckkQeemcTUa95j9n+X8NQrVyIIQqv0KRyRAAA2a+MXCBomN0P9C6dXiWhdJhuz1coTP63g532ZXNy9K89ffD56TYPYj2c1j6aiCFzHw/06YHL/INZX7CQsoBxBlDFU+XOmIAZDZSD3D+/g02kBuKkNA1hsMjqVPd9s2hC72M3dQ9vzzuYTlOTqUBcZiIgr4fU9G/gmaw+P9DmPS5KSET2iOBzX1q9tGxbddR1P/rSSues2M6LTKYa2G+N2XZ5OgQduHsN3x2uxFpzm9ue/4fbLh3Drxf2dYjqtuY+OMZvx5CV0F3SE55wm9sRpfnjhRw7/sosrbx5Gv0EdvaYUueLrefR23n9D6SQFBQUFBQUFhbPFrse2xrnT7rnL7sBYZ+b15xaxbsV+Rk/oyX1PXIxGq3bamklhekbM3dyk/exIZdZazCQU5nHUauahG0Yy+fxejew/9wgCe8SF52aUzSbz25FjfLZlF+nHTxKg1XBFn1Qm90klOTaq0bU6bMiiKiNqSUCvEjFYbBjMNlSi6FxjHH20caSEp5351sRUrLaWp9M3t7bwtFnT88qdac+A06Hh+Le36GNPR0lT7R84XYlWl0jb8CIeWvArH1x3Ber68XCgkcRGG3+u14JspQsgmow+o5t9bXJWVRoICfP3Ol4KrUdxXLSCpnbCE5MiueHOkXw8ayXLf9rF2El9W6VPkZYQgqSSkAGNbPO6c+45uc2a1KA0bLZaeWD+UlZmHmVsag8eumCIm9PCcyJpja5HVKCWXfcPZe6+newsP8qD6XsJDlPTL6wr4+NTuPbzQ8jYy/3cktZ0GF1OmQG/+hA6AJ1KdAunc0xyzhSIOj3V+Uk8d0kcK4t3cd/GxXx4MJ3n0i6gX1QbH+k4AmO69yclLpY56zYz8d2veO3ycc7IE0+nwMojJeRJ/pwOb0u7ykI++mEj2/fl8MRtF9A2NsznfWwuCiPjiTGk55XTI8KPHav2s+CrzTx5z1d07BLLVbcMY8ioboheUlOawtd9U9JDFBQUFBQUFBS8k55X7rbT7m2Xvbysmmcf+JZDGSe55Z7zmXLjUARBcNqaJovNrvcmQG29roI3+zkqUMtXEzrwn4+Wo9aI/Hf65fRLTsQbTUUQRAZoWJOZzdtrN3O4sISYoAAeGTOcK/p2J0DbfPqBo+0VWcVMX7TfKWLpKnbf3AIcfDsQvI1xc2sLz3OmJYSgUYkEAAiw5Z6hzvWVo+++aG4T0bWaiFoIJDmkig82bOadS/ty+7w91FlltJLArV7WLq7X4q+RsIoSfoKNOh9j4Gtzu7K8lsQk3xu6fxStrZb5v4LiuGglTUVmDJ/Uj+WrDjL3tV8pCwvm/N4JjY73Vd84KlDLwRmjuPaRE5zfLcJneoAvscq3Vm9iZeZRqm3RfLrbxFf7fnOL5nB9+eZsymFKr7gWTUQZhSW8vXcr6aVHqDQb6RYaxYsDL2RiUjIBavv54+4K4d3Nx7lrcLtmayOnJYSgVYmIgoAkws39E/lg6wlqTFZEQXBOcp4pENckd+UquQvv7t3FstO7mbzsKyZ36E7fgBS3SdJVmEctCfx84+U8u2QFN33+AzcO7MfDY4Z41bEAMEsqjoTE8VjPULZt2sd1T3zJbZcO4trx/bxOtC2JwnB8JvGaQVx8RX/W/JrBvM82MvOReXTsGsst91xA34Edmhwzz/Fr6ReIgoKCgoKCgsK/Ec+FW1pCCFp1w067ViW52VC5OcU8de/XnCmp5qlXr2ToqGTn3xxpztUuEcOe4pkOZFnmu+W7mfXNOtq3CefV+ycSFxncZF89bcyLkqPZeSKfe75bz9780ySGBvPypRcyPrULaklq1ThEBWq5rm8bxnSObBR57W1h6y2do6WRvS3VxfDsn2f7jr4FaSWmLtznTGfxjOBozlEyb0+BM7HDLKsJDYxnzeFjDOvUBZVKxF+ya/e9vzWXz3acdGvfcxwiA3X0bRvGzDsbjvEcQ8/rkGWZM2XVhIQFtOqe/V7Otlrm/wKK4+IcUVRlJPX13yAikp6HT/H2zJ+YPiCZgzNGuT0srhEHnvoUUYFaEqKCqKqqbdR2Uw/g+iM5fLx5J4M6dGJhptToBXa8fP4aiVqTlTfroxtcnSBgF81xeHh3Fefz/v7tLM87DIC5Opi3Ro3niq6d3cLcDpyu5KJP0pFle+RCcy+HN8/y5zvyEAXBzQHg6aQBSH3tN7t4kdSWCQNlfjx2gOWqLHQhUVjKgp2hZq6T2LFymV2l0fhh47OtO1iTdZw3Jo8nNS7c2acxnSMJ0aswmm1o1SL3XpqGdEkfXvl8NXPnbWTVtsM8dssFJLeP8XkdTUVhOFCrVVx4SW/On9CTtcsy+OLdNTw+7Qt6D2jPnQ+MpV3H5qMmWqrHoqCgoKCgoKDwb8SX3Zw5Y5RXjYuMXcd55v5v0WhVvPrhzXRJiXdrLy0hxB5WXI+fWuT+4e3dKoYAmC1WXvlsNT+v2895/TryzB1j8dM1HRnhufg9VVHFG6s2sjgjk5igAF64+Hwm9Upu0mHRkt111/SRr3aeZPqiDMxWe/SIQ2fOU9vC87PN4Rnh0ZQuhre+Oa7FEd3i5iiiaQFRzzVEWkIIU3rFMXPVEafzIv2UiliNiscXr0eW22C1yejVYqPNU9drcbR1xzNfERuo9ZlS4xntAVBbY8RktBAa/uemirQmqv5/DcVxcY5wPiSSiiMd2tAtK5ewnNNeXzJHxIE3T218VDAZR055b9vLA2ix2vjv8vW0jwjj+YtGsvjIBq+78W9NTGVPfjkfbM2l2mQlUBDYnV9JiF5NcY2REXM3Y7Ja0ASV07OzkeyqYnSSmrozEZQVhmI1a7jtq2zOe7Sd86U9cLqStLc2uOWJteTl8HyxPR0Z3iYCV6cAwMINIn5+nenWq5Kq6DykgDJMxQn0jg9ym8QAzFaBk8YoAlU6bKXFXPb+V0w7bxgdouOdk3zmjFEek76Wl++9hDXbs3j9i7Xc+uy3TD6/J3dcMYQAvdbrdbQ0GkKSRM6f0JPhF6Twyw/b+fqjddx1zXtcckV/+k3qx5LsMqb0ivMZvdLSLxAFBQUFBQUFhX8bvuxmR/SBKxtWHeDlJxcQEx/Ki+9cT3RsSKP2ogK1TjFLWbYLSHo6LSpr6nj07cXsPJTHzRMHcPtlg51aab5wX/zCY8OD+XLrTmyyzF3DBzCsU1d+OlBEcnGNT5uwNbvrriL/Bpe0mUGzN7LlnqH2tYDFhgxIIsiy0KjN5pwkUYFaQvRqN12MFVnFhOjVLdpwW5FV3Kh/AAg0squ9bYZ6jsW+h0Ywc2UWiw8WUmu2USMFEiidodZkxl+jBgGn3Z4Upndu4kbVOykc9rbRZEGjanAetcQ5cKa0GoDQ8ED+THytR/4J6SOK4+Ic4RrVkB8XScyZStoePkGcxex2XHM75u3jI1ix5TC1dSanl7apBfFPew9yrKSMWVMuIiHU32u4VddX1mA021BJArb62tCSKDB9UQZWGyCZ0YaUEBxSiqSycrhEy5MDRjM2oSs9XtuA1Wz3eNpsspuWw6DZG92cFjJyi8LCDpyuZN6eAufi3FW5t9xg9joROMbAVWBIrlHT2daHbadF9BEFqBMP88GBADIeGsHOk5VuCsN6tUiVOYg6q45YXSHvrltHjTUEgxDNwYdH+3QGjOrfmbSUtrw7fyPzV+1h7Y4jPHD9SEb269RIYKm10RAajYpLrxnE6PE9+fzdNfw0L515C3ZysEtbZq4KZd9DI5pNvWkN/4QJS0FBQUFBQUGhKVq6kfTzvG3MfeVXuvVow3NvXkNQsJ/PNlNigryKWQKcLCzngdd/JL+ogvtvPJ+AuGgOFVWRU2YgKUzvNcUbGha/JnM1EapiPtxoZEy3jjxy4QjK63DqM7yw6gi/3TWI4R0aayV4LqCbchJ4ivw7ke1pFZ5RDoAzxXzakCQAur6yFqPFilYleRU3hcaafI71RnOOlQOnK7lrwV5n/wRArxYRRcFN+8IVV/vdV+Tz25O6s/JICZIoYhP8EYQzhOnMyKLWGd3dlOjq6Yo6yipr0ep8p9R4e8ZKiqoAiIg8t46LljiPvK0H/wnpI4rj4hzh+pAkhek5kNOdeU/O46P/LmbW57ejUktux/raMW/fxp7CcOxkKakdYxu17fqQFlQYeHXVJrrGRHFBt45e216RVdxQq9gCGklAoxKYObYLT6zYhyq0kICwMwiiTG1lIFUlYUjGQNoMSaRdaCBLbknjvHe3AGAw25yaHOl55dhs7iWBJEFsFBbm+XK5CuXMXHWEfQ+NINJf61bDWhLtE6WM7K4B8vBIfthXwN0/7gegzmLjo/RcVGIE5VWBBMTk81P+DvJMp3h50LhG4j53LthLrUlDrqENEZpSwjTlaGQDizJyuH1wV5/3NsBPy8M3jmb80GT+++kqHpu1hME9k3j4hlHERbnnLZ5NNERQiB/3PHYRJ6LD2PT5Bnrtz+ZkbATfpicx85LUVrXli3/KhKWgoKCgoKCg0BTNbSTJsswX763lm4/WMXBEFx5/6Qq0OrWP1tzb9bTxDmSf4oHXF2GTZV6YPpEpiw5jtJyktj4l3PFfrReNht5xgQSritGrSrGh4sWJ47i8t90e/WBZplvhzXEfbiPnifMbXUtrnASux4oCmG02RAQ0KpEpveJ4c8MxxwghqqyIkhWLZGX2jr28t3sf1/WNxyCdQRZEaqwiPxw4we1pHVF5aMe5poy4RXs3kbbg2BCtMdmdFjpJ4LVLUkgM9Wt0D5vT5wioX0MEaSVnBIXjeUiN9mfCnI+Z0j2IqSMGOp1KviIoiqqM9HhlFUmyzLvbT3LDRKMzGqO5zcqyYrvjIuwcOi5aas97Pqv/lPQRxXFxDnF9SFJigoh/4hKef/g75n2xkWtuHdGiNrom1SvhZp9yOi482wb7g9vn9aWEiLXkVodSXG1q0ULUZJXRamxsLs8gqH0mAJaqEJ4eMJy7vj8KgODiMKg02qufVJus+LtocqQlhLiFwGklAbPVSp1Fxr++WkpSmN4trO7gwyPdhHJk7B7e/omhbi/Tf8Z35dGlh0CGEXM3O1/KqEAtiaF+6CSBOqu9FZPFxhMXduLF1Ueozm+LX0glR9WFjF/yKWNje/F4/6HEBum5rm8bescHMWj2Rmw2mVJTBLIQQKjqFLNXL0dNDTcO7NNkWF9Kh1heeWgycxZtY+PGDK569DNumTSIa8f3Ra1qnViSN24en8pb+4tpn1NAu9zT5H6ymvxescQnhjf/4Wb4p0xYCgoKCgoKCgrN4WsjyWq1MeflX/hlwQ7GTuzD9McvQjpLGy59/wlmvPUzoUF+vD3jMvaVmTBbZTcRfsd/RUFwi4aoqqvm4QXL8BNKSUvqwLMTzqN9REOU7ehOEbyw6ojzZ1EUfNpub01s2OSatjDDp63nudguNlTzS/ZxVNo6Pslez7ABpewrLkFUmRG8mMMLTh8jun3Dz69kZfNqFoTr/Ij1DyIxIIS2gaFEaAIpKhd5ZcVJzBaR2vpKit50KBxrl/S8clw9NSqVyOQecV6LFfhauEcF2iMoHLb+yHe34K+RnMKejrGIDw5EkE1uERbrpg72GkGRnleOaLSXXK0T1Y10MJqypYsLKwCIjD530dNna8//U8T9FcfFH8iQUd0YfkEK33y4jsHndaNdh8a1lj2JDgskNiKIvVkFXHlhH5/HpeeVI8k1yDLUWv3cHlzXCcEuPKmmzmzFaLESElGFf9QpNpZauKRdCl21nQlW20Vj/L2IhjrKFAV6aHI48v0GzNqAzQYqCWqMdi9prcmK1Wrzqn/hKZQzulMEXaMCXV4mCNKpERCoMlkI9BDLSUsIQaeRqKuPIjFZZV5YeQRBgBqTDaEihKkj+jNz50oW23ay6Ggmiy6ZQt/YaLcwP0foXudwLW+vWc/LK9az7kgO/5l0IbHB3j2jRVVGur+xDrNVRhfVjmsibLw7fyO/bjrIIzeNpk+3pkvBNkdKTBB7Z9idO70w8/UrvzD1+vd5YOZkRgzr/Lva/qdMWAoKCgoKCgoKZ4PJZOGVpxayYdUBrrxpKDfffX6jtF9feC62V6dn8fTcpbSLC+OpqRexr8xEUpjeTQzfNeJCEqkvSWojQKogXFOMv0bDnKsuYXTXDo3OddnnO/BTi9SabehVAoKAc1PR9TjXiOWZY7sgiXi19cw2Kxmlp9leeJLdJfnMPHiK07VVzr9H6QNoFxTKmMT2LMk4g82iQpBVyDYVNquAJIq8e1kP7lywB4tsRa2WeW5cB+psRnIrK8ksK2NvySmW5R7GKtut/KCOYDGpCTTp6BsVy5UpHcmuLOHi9/dhtrpHhTRVFtWV5hbuOWUGBARq69PcHbp+rseF+OnJPVOF2RribCenzOA1giItIQQ/iwmAOo3G7R40l7JRXFhBQKAOvd+5i3A+W3v+nyLurzgu/mCmzRjPnvQc3nhuEW9+cqubV9fXA9+jUxzbD+Yiy3KjCdWhDzG6UwQ6sRazrEMlqdyEVzw9kZkzRrI19wzLCrez9GQeqaExPNRzJCeLJWddZ0kUvL4IDu+lQ5PCtZ+R/lo0koRRtiLLglu1lKu/3kWdi9NCqBfVUWmNfHxzJP/ZsBO9v4HH9u4hpY3E2HEGqsy1WDAzv3YlA0eD1SJhNPiRYSumNjeW1OAOdA5sS+aMUTyzPJP3t+YCUGu24q8RnX0PUOmoym+LVV9KWPxprl79Jfd1H06CKpEBiaFuUTEA71x1MT/s2s9/lq3jkrlf8vSEkVzUvWujsXedLNGqGD22D+cP7Mqsb37jrpfmM2FYCtOvHo4J8awnhpSYIJ4ba1d2ntY7m47bDzHz/m8oe/xiLr2sb6vacuWfMmEpKPzRiA8t/qu7oKCgoKBwjqmtMfL8w9+xe9sx/u++MUy+fkiLP+tpW78zPI63v1hNasdYHrtjHGlztrjt3LtqWzj+W24wM23hXvw4RaBYRbvwGD6+7hIiA/3dzuOq91ZrtuGvkbDa5EZRyOBhlwIPLz6IVi0x57JU+ib6sfvMCXZl5bO7OJ99paeps9qPSwwIIS0qgV6RsaSERdM5OJJQnd55/ge6N/TdUV3EUYVl2PREr9oJJks4COG8NK4LT63KwCTWoNYZ0emNqHVGDhqO8OT2LAD8OwiY6zRg1vHMVhjXMZGOweHsun8o+07VNGmneiu5euB0pTPlw7OSor+XsrXBeh2mqppG6x5vERRRgVqmdA5h1dZCqm0iQ9/ZxOFHRgHeiwm4UlxUSUTUuYu2cPTnbO35f4K4v+K4+IMJCQtg2iPj+c/jPzD/i01cdctwoOlQp/6piSzfkknWiWK6tGuI0vDUh+gXCaEB4bx++WCvk5jDEzm+WxSbK3az9OQB7kgZwM2dBpH62m8YTFZnRIS/RuLdy3s0EvQpqjI6Q6nmbD7eaMK02uwiP/4au0NGr7bnuYkCiKKV4JBKoiIqmNBX5P79z1Nutnt3OyaD2azCaPBDbYuhX1hb/FV6dJIWi2ylss5IbmUFckQ1h6qPsLFsh719SUv34E7EJ7RDTLdis9nP+/KEZGceHIBaEsEQgSE3mH79qnhl7xrM1YGYihM58MAYtxddEASu6NudAUkJPPLjMh5euIyVh47y7EWjCfP3c07kDk+6q/rwiO92YwlsQxQlLNt0iPW7ssnWh1GiC0SoFxM6G4HN9LxyanRatvbuSp+Dx3jvxZ/RIjP+sn6tbsvBP2HCUlBQUFBQUFBoDRVnanhy+lccPXyah567lAsu6tWqz7va1nGWGt764hB9u7Xh9QcmsSq7zM3uzikzNNogS4kJYu/JYiJVJ1AJRmrlCN6/ZhKRge679556b4FaFTIyomCPHNDZZFZkFTOmc6SbXapXi5ioQwyoQRtk4O2j2RQfsNvbalEkJSyGqzv3on9UG5L8osguNnvVjXBdl6ybOphhcza7CXGCd+0EV1HPR5dmopF0qMxaRLPAa6NTGdM5kmA/ieyKUnacPs2jK3eCug6VzsDyU3v59dQewC7G2SYgmK6FUXQLjaSNPhyMgZyXFO2WDuJacnXqgn3OTVNHWrqr5qA3YVSL1YpOrWqxA2BPVgHVai1mWaCizsIP+wpIDPVrNmWj5HQlkTHBPlo9e/7N9rziuPgTGDEmlY2rD/LVh+sYfkEqcQlhTYY6De5pV+7dtOeYm+PCXR9Cpry2jpPVBjcPrGcIUf82wTyyeSnzszO4p/tgHug1jF8OFdlVhV0iImpNVnrHBzVaZDfVT0+vp02W0euriIwuJSS8hMCQM0iS/RxVtmhSA7vw1ZYaKioCKCnzQ4MOjUpifjNCkUVVRtafKEAfVMJx4zG2lx2k2Lif0ReqKDoVw+ncdgTp3B0urpPWx9tyWVdgwT/mNPrETN7fG8VTQwc0inhJDAvhq5un8Onmnby9dgs75nzBg+eP4I5FJ5wT+cIb+7H6SAlTesWRU2awj43ZhhwcxaNXDOSXX7cRlV+AVuPH8aAoBs3eyNFHRzd7fd5C09SSAAE6stO6cUt5KW+/uBhBEOh7fqoSOaGgoKCgoKCg0AyFp8p54u4vKTxVzjOvXcXA4V1a3YbDJouz1hJXWkBKpzhef2ASOq262dD9oioj8/cc5cvNGwjRyUzpP4KbBqQ0ErD3tLfnXNadEL2aIK3kFMmvs9i4a8E+1JKIDTO6wGouHaFne1Ee5eYaAGSrRLewdvxfXD/6RsaTEh5DZa2V9Lxy2mr1DJvtvXKG6/n9NRJP/ppJucFeGdFgtrEiq9hZSta132kJIXaPQz0CArMmpXqtbJIcFk1yWDRjE7o6Px/kJ5FTWcaxijKyK0vJKi8h80wRq/OOYkNGlsG21Y/be3bnppTeJATYx/dIcTVmq62RjohjneLpPHKlymjCX6NtZEt7s8crqg2cKa2gyr9Bb+5YaQ2Te8Q1m7JRXFRJ55S4Zp8vhZajOC7+BARB4K6Hx7Fjy1Hef2MZz715TZMTXXiwPz06x7F2xxFumTTQ+XtXfQgBGUGQqbMImASbW41qVw/ixqIjzM/OYHqPwTzQazhFVUbKDWYEQUYjCpjqK4O4Cm86cBwrCvZICkl072dUoJaVd/bjs/07MOlPcqQ2C62+DoAAwjh8IoHyknDqqsP49L4LSc8r5+TxXc5J8f7h7RvVwfakcf5eGqO1g0nsWMnGsh1sU+8lNuEks48d4cnf2pN++2VOIc+0hBC6vrK2fuINo6rSn6i2+Xx8bC2nLYV8/5uE2Sy6Td6SKHLb0P4M75TEoz8u54mfl+FPEPnGcPw0Gi76JB0BgTmbjzcS8rmoTzvG92rLgKcWEFleRGrpCYqsUWzLPcPFKTHNXp9rPzzvY4hG5LmHvuPtF3/m2OKDFMZGKNVBFBQUFBQUFP7n+LPKs+ccKeSJe76kzmDmpTk30L1327PqQ1Sglq8v6sizcxbTpX0Ms2dchk6rdv7NEQHgSVGVkV6v/kygkI8NFd/eMpl+bWOcf/OMcJBEwWlvO1IzlhwsRCsJGK021DojUlAl+uBqVDoDggCbTmsYHt+O7qHxaCwhXNKpLUL9Aj5BH0JlrdV5HrneEVDjpcJHWkIIkmgX068xWVmWWeR2LZV1Zq/9PvjwSLbcM9RNjN/Rd19j7Rkx0C00im6h7jqAn24/ztTFW9EF1qALqOaTw+l8mpXOhIRkvlsvY6xT2fVD1CIGsw0/LykhvjhTa2BnvoFFR3Y5rwG8p37sOnQSgCpNQ3TMzWmJzaZsmIxmKs7UEBl97iMu/s0ojos/ifDIIK65bQQfz1rJ9k1H6D+kU5MP/Hl9OzLr2/Xknj5DYkwoYPca7ntoBDNXZrH44GnA7sCw2mQ3sRjHhCDLMh/8to0uIZHc33OYc7IxWmzUmqxoVSKCTcavXnHX9WU/cLrSqcpba7ahFu0iOjbZxpGqXPaVH2FbyUEyyrMRdTasZonqyghysztSWRbFdT06svRQrtvk6Omsac5pAXYPsNHS4FF1lEIN0avJnHEVnRnG89sXE5NwgojoQu7dkc9DKZfTNyqp/rMN9agtJi0VJzry8EQ/Pj2cjj5BRU1uPFiCG4V4dY6O4LvbruKN1Zv5dPMOkvxrqLBGY7AFUm1qWshn6eMXM/zNNcSUnib2TCG/Lt7I4PhxhIf440lTES2eE/szr13FXf/3Gba9Rym3gTE+QqkO8jv5s4wnBQUFBQUFhT+vPPv+3Sd45v5v0OrUvPHxLbTr6F6ZrzV9yM4r4eWPltE+Ppx3HrkcP52m0TH3/bQfo8WGUC8smRITxDvrdxIonMRo01JhS+B0jdBIx8Jh/9m1JOT6yhoN5TXahAkERhcRHngGldaMLIPF4EddaTRyXRBb7h5PbJD3lBO1JPDWxFTneQI0EoLgXbzTjoBcL6xptMpuf3ly2WEm94jzabc6xO9dtS8ckc/D5mzCaLahVYtkzhjVovutFlUYa/0x1vpTURjFfy5uT2bdMZbmHcIvUabmRAL+hHD/8PbOKOiW2HJmq5VTFVUYraFu12D/W+Pr2rArmyB/LRseGcPCjNNM6RXn3OR1tdM97cnTBfY2Y+JCm71WhZajOC7+RC69ZiDLf9rFe6//Sq+0pCZzlEaldWbWt+tZt+Mo11/U3/n7lJgg3p7UnZVHSrDJAqJgQ8RdsMfx8oi6KjLPFPPyoHFO76trmaY6i40AL5EPjlrK1UYrgmAjKLiK8IgzhIWf4c49azBjV9cNlSI4lZdIfkEY5poI3pnUC9rD9EUZfLA11ymKIwiw9mgJSWH6Rgv95haOSWF6ak3WRr83WuxhbyPaxnNqXhdyjyUREXeCDp1zeOrQmyQcTqaLMAS1ZPfENiDQJzCZlLR47tu4hKj2xzGXR9E7vnElEY1K4tELhzGiU3ueXLyS/DMFGOVAJKKw1ZeM9TVpHXpyHNtyz1B8LI/PftzM1Y99zuO3XsB5/Tq5naMlIYau4/PMa1dxzVXv0uPgMQ4H65XqIL+DP8t4UlBQUFBQULDzZ5Rn37jmIC8/uYComBBemnM90bEhZ92HkvJq7n/9R/RaNW88eCkBfo3TCtLzyqkzW6mttzcHzd7IG+NjmLd9G2b8KbfFo5IkksL0XnUs1JI918JqA4PFhkoS+Gz/fjKqj7LxVA7+EWCsDqCyNAqhLpj1d57nc6HueW2Am53pEA912I9LDhY6r8FqkzHVOyw0ooAkCciyfb1QZ7byytoj3JyW6FPM39Uedlyn1WZzjovB4p5y4sDbWsBeFVGF0WxDrRJ4eVUeVpsKlaYrfrE5RLbLpe606Fy/eEsJ8Wy3qMrINzuzsckyNRb72LhGk3tel9VmY+OeYwzu1Z6e8SH0jA9pdA7P63XYk6fzzwAQ00ZxXJxLFMfFn4hareLOh8bx5D1fsejbbVxxg29F49iIILomRbM6PcvNcQENYWljZ+dQZ7NRYrAhiQ2VLBwvT0BsLuHhOiYmJQMNi2TXMk0INKoWsiW3lJCwEtpFFRAdW4xGYw8Pq672I1bowlVd+tA9uCMWk47k5WsxWWwgQO/4IHLKDFhtdhGhAI3EtX3a8MHWE7y5/hhvrT/GvodGeJ3YfC0cc8oM+Gskp+iPA63K/gWQnlfurHry5noVebnxdOiUgy0pk+O2w0S36cS0xBG8vfE4AgJalWgX1Zy7G5O1E37Rp9CFFvF/67/jrWEX0zkkstG9GNQ+nuV338CstVv5aNN2VOrjlFuiGDR7A1vuGUZKTJDXa7k4JQZSYhjVtwPPvPcrj7y9mMtH9+Tea0ag1ajc7qU35423NhOjAvnkk1t5/PZPGHwoB9FgBGWxfVb8GcaTgoKCgoKCQgN/dHn2n+dtY+4rv9I1NZ5n37yGkNDG0a4t7YPFYuXRtxdTWV3H+09eSXS4fZPL0z5beGM/5+IcQEc5r608zIhOSTw1fgx7TlWRlhDCiqxiDGYrBrPNTceiYeEMYRFV6MOLmHtkHzF+gUzvMYTRsV3Zd9IINFT38CX87nltYzpHNrIzU2KCyK+oYfAHi1HrqwkIrGFsdx09BxQgqY2o1GZEwYY9rhvMJjV1dVpWV+9l+dJAPrpxCFZDOMPaxjRbsrQ5vNm6jjY2TBviUpElwx41Iqu4NHoEe8w7yY87Qbm1kiga2+7eUnFGzN0M1nIi1GCyadCrRGZNSm2kj+cYp92ZJ6mormNY7/ZNXoM3e9KSVwZAbHyoEt17DlEcF38y/Qd3Im1IJ779eD3jLu1DQKDe57FjBnZh1rfr2XX0NAUmwe2BjwrUkhoXyeacIreJ1+3lURuJ1YWiU7nn4aXnlROklbjok3Rkl/JK4QFqVp3exrzKX+jevxKLRaK0KIqyokhOFYZgNGrJ0Kt4rlcqYVotaGHd1MHOlJJBszey5JY0twnTTyO5CIraBUafG2ufbJtaOLqGmGlUIoGC4KxRHaRT0zs+yFntxDEhzdl8HKtZy+GDnck70Ybk7pl0TM5kY2U+P9x+HZbaMLcxqjaCUJjA9H69WXByCxct+YxH+57HTV37IXqUQi2rNfPS+krM5gRCVacJV5+iylLJkNm/kfXohY2+jFyvpV1cGB89fRVz523km193knG0gBfvvsiZAuQr8sbX+HRuF86rc27g/ls+4tkHvuW1D29Gp28ctqjQNH+08aSgoKCgoKDgzh9Vnl2WZb58fy1ff7iOgSO68PhLV6DVqc+6D0VVRl78bA0ZR08xc9oEN7F8T/ts9ZES/DUSNSYrAVI1oapC+rdNYPaVF6FRqWgTaq9QN31RhjMK2FXHoqjKyFcHDpHSK48T1WW0Cwhjao9RTEpKobzW4nVh7wtf1zaog46Miv3MP51NVtUJjlXnkzrA3hfZJpBbG0r/NmEUlsP+fBMmi1DfTxmV2oxOV0dIaAV+/qf5MP8IAgIbTAkMjOjO4PAeJPjFINTbzg77Sq/2jHqGxBCdM8ojKlDbaCxXZBVz30/7G12vWhIIqB/jT7cVoNVEE925gld3r+fDkZc3GgfPduftKcBsldHJtfaIdVGPXiMxpnOD08PTHl+59TBajcpZNMEX3uzJbxcVExCkx6RWkaJE954zFMfFX8BN00Yz9Zr3+Om7bVz7f+f5PG7MoK68890Grnx7BacDI9zy5gB6xkezKzefzyf3ZHC78EZVRUS1ia5h4W5tOl7Kr3aedJYyFQWBhdm72WdZy4naU3QNbMf1bS6lsDAcKVhFZYKZhxcfBGxYbbgtynPKDCDj9DSP/3gbr0xIJkinZkznSDKLqnhz/THn+af0alDX9faiF1UZ+WFfATN+OYiIgEoSmDm2q7M9x8u+5GBho/JTDnGku3/cR2WNHzu29iYmtojk7od5J/c9eukH0dt2caPz3ta9B//XO5lHNi/l+e2rWXMym9eGTCDGryF9xDkBmtVUmdsQqi4nXFOKH8eZvX4Pc7aWuX0ZeS6C1SqJe68ZQd9uCTz3wTJueOorLp4wiOtHd29RrWrPhXVSp2gefXEyzz7wLW/N/JlHZl7u/MJQaBl/lPGkoKCgoKCg4JtzXc7RbLYw66UlrPh5N2Mu6c19T1yMpJJa3YcDpyuZt6eA0Z0iuG7uWmKL8igLCCGuXazbcZ722ZRecczZfBytUEu4qpBusdG8f+1ENKqGZZY9FcP+b9ed/oyiEsbO/wF1YDk2s4b/DpnAVV1SnRtoK7JO+dwYa+raRnUOZl9FFguOZrLrTCYFBrt4qF7S0k6fQBd1fxbtMFFdFYDV6M9vdw1lXXYppYXl7Nt70mfb4YEy825L4pTlJFuKD/Dl8V/48vgvJPhFMyoqjfNjBhAVGOS0ye9csJdak/3C/dSiU+TesYj3HEto0JrQq0Rn+de3JqayO7+CD7aeqK8gomJkVApL8nZzoKyQlDD3MfF1jwKEOizoef+KXo1ERF2xWG2s2X6Eob3ae9U08RxvT3vyxNEi2nWIYvvJCiW69xyiOC7+Ajp0iWXgiC4s/GYrl183uNFuuWtIUbt2MdTlFlOjCQFBcCuv2bNNLBabjcRgGtU33pp7huk799I2OKhRm4Cb1zcwqIpfKpcTpQtlarvrsVUlkKD247qfNzvz8LRqEVEUkHEXAvUsg1RrsvHQ4oOoJIElt6RxyafbnX8L1KqI9G+YIDxfdICur6ylylhHQlgRcaEl6DQmVpzYiFqy0SayB0YhEX91NP3aNC5DFBWo5bq+bRjTOZIf9hXwyC+HqCqNY++WKNp1zmR3/Gau27SPV/ve5mXBquXjUZP55sgeZu5Yw4U/f8xLA8cyoV1X53U6zicIMiZbBCWWQMJUp5i/fTMBQjAVhKNTqdzCzjzDw4b2bs9bj07hmufnMW/Bet5dc4hNM68gOkjX6DlpbmE9cHgXbrhzJJ+/u4bknglcMmVAyx5ABSf/5lrYCgoKCgoK/+sY68zMnPE96ZuOcO3/jeD6O0ae1UbOgdOV9HhtHTLw0opMepQWUKPScswvvFFpe2/22do7+nHTF/MI8wvmtcsmsOZomdcy964pHD/lHOTRzctQ+ZspPx2JXBlD0KAop9PCM0rDapPJPVNLUZXR64L7ZG0h6WUH2FF2kAMV2VhkK1pRQ4+QToyPHUJqcEcC5Ai6v7a+3r6HWZO60zs+iCHvbKKyrnFqh15tr743KSUWvVri7qHt6lOkOzP9YwFB1YHImCI69a3h8+OL+frEUkZG9eeyNiO5rm8bescHMWj2RupLIiLLOEXuHYt4z7WAJNrPbbDYuOfHDATBrv8hiYLbGN7beyBLCnbzc/Zhck7bdfFctT8879GWuwdxybuZTO7TixC992gcBzsO5HKmspbzB3Zu0fPjak/abDaOZxcxcmx3ksL0yMj4t6LqiYJvFMfFX8SUG4eydd3HLP95NxOvbFhweuZkvTqkG8dyThFkqqVS6w9yQ8RD38R4BGDLsVz6JDZEMkQFarkkJYZn9us5Y6yjqMpI11fWOBV9Z03q7uL1FRg1JBur5M+TnabT/81tmK0l2GR7tRKHgOe1feL5ctdJBFlwEwKNCtQ6yyCZrTJGi406iw0scOGHWzFaGlSJzVZbI0+j40WvNp9iafYC7h23lviwItRSY0HOE8Z1nDhl/7cg6/noplTMpm6kxYwHcAs9mzokyal+XG4wM3WBity8CHr0OsRzh2dzc/uLGdxmkNuEJggC13buzeCYtty3cTHT1i9iSU43RoX3YURSVKOJNT2vnN5xgXy2ZTtfbN1Fkn8t1XK8M+zMl4ZHTo2VE9FtiSguIPxMMY/N+YV3H5zo1L1wpbmF9VW3DONQxknef305nbvF07V7G5/HKigoKCgoKCj8U6ipruPZB74lY9cJ7n3iYsZf1q9Vn3fdXJq3p8CZ2pxQVYJks5ITEo8siG62twNX+8xotvDcLytAlrmo10DSZm/BavNd5r5rtI4Xdi9j8fFDpIbGsm1PCHKdptHC1jVKA6DWbOXuH/fz5LJMMmeMIjJAw+GqE6wu2M3m0n2UW0sBiNfFMDH+PPqGdiM5OAm12LBI94xYDtGrySkzUGd2t7s1ooBOI3F1r3i+2X2SL3baozC+31tA5oyRDZHItSpMxkTOH9qHh7sJ/JT/G6sKt7GycCv9w1K4tM1INt89hPl7TzG6UwSXfb4DURB8CnuC3Zlyxw97MZhtGMxWREGgztJYFyQqUEuQWsfbWzKpPlWFwWzDv75SomPcXds9eCofWZb5cPsZZm3d1WTqxs/r9hMcoGNor6b1LbyRd7yEmuo6YjtE23U1ZBAEe3q9Et37+1AcF7+D3yO2ktIzkW49Elj49RYuuryfM6TNMycrNDaKAH8dscZKbIFBbmVLQ/319IiPYf3R40w7b2Cjc0TrAyisrWJFVjHlBrsX1WCxUVlndnos4xJzKbWdYpB6ApuO1XgV06kxWfl8Rx519U6IwPoKJY7JICUmiKOPjmZFVjF3LdjnrFoiu1dScqZQuI6bUdjOwfLvOG3YBRJYbW1YmdGfnOIY8kqjsFj8qKxTYZNFYoPqePGiaL7YtYN2kbl0is0hOng7a4u+5FB+EpsO92BfXje23DOClJgg54R14HQlNSYr1UWRbPgtmOmXF/HxsUW8UbqBwxk9kC16t4krKSiMH8Zex8s71vPhoW0sOXYU45K27L/nYrcJ0PHvJ8aNoH/bBJ5avBKtMZfF+zK4eVBfnxoVaQkhqFQSxZHxUF3GgYMnuPeVBbxy/0SC/N0jL5p7xkRR5OHnL+Xu695n5iPzmPvNnQSF+DX/ACooKCgoKCgo/A/gzRYqK6niyelfkXO0iBkvXMaocT1a3aanwObMVUcIMNUSWVfJwLSuZJ6GABk329tbv9Ye3M3+gkIqbW14/NdjGCz1Ec1eytwnt1Fz48pvya+t4M7kwTzUZyhl55mdum6O/+aUGUgK09u1IlSis00Ala6ctzMXUmA7TJGxDJtNoKIsjFMFXakui0a2+DPTx4LcVxqyTi1hsjbY/8+N7cLLa4/yxY48t3M7qvo52gnQSM5o7Hi/IKZ2msK17caztGAjiwvW8/i+d6ipCuJkTjvmbI5n3dQhzmvzvKeO8ewdH4RWJWEw2+qrnMgE1EcsuKZ3FFUZKasGm2B2pqxXm6yN1ikO1hw+RpBez6lKbZOpG+VVBtbtPMrk83uhUXtfKjdln2dm2J08hvBAzNYSe5/q09p9iaoqtIxmHReCICQAXwAxgA34QJbltz2O6Qp8CvQBnpBl+bU/oK9/K85FKcXLrxvMzBnfs23jEQaf1zglQS0JDE4KJ3dECt8t280zk5IZ1S3W7Tx92ybw6ebtHDxVRnJsmNuLFB8QRHZlGcM93pFTlXUMSwojNSaQ9dZNlJ8J4ukNRoJ1GUgibmI6GlFAEHA6LfQq0WuokyNNwxESJst2IR2dDCazFUkS2Dp9KMU19lKrfpparhq0nN5JBwhQxdEr7P/oEDSWXaKaV5dsA1lGr1Gx6KZ+XPRJul1Hw6SjoKwNGw7XsPpgVwI0EqEBZ+iTtJehXfbxf6MXcbJ0Ezf9cJx7B13qnNxyygz41Qv6qNEzTHcpEUISayzL6TloE1l7e3kVBm0ndaIqtxR9TC76+KM8u20ts0eNQRLFRhPWmOT2pLW7kUd+XM6rKzew+Vgej48d7bNklKMSypReQzmZU8Dz7y/jrhfnMWvG5YSH+LfqGQsK9uPJl6fwwC0f8+rTC3nurWsQRdHtWf09Og6KGrKCgoKCgsLvQ7Gnzw5XW8gh0q4xW9g8exklpyt4/q1r6D+4U6PPNGe3eG4uVRqt7HlgGPe9NA9dWCAv334BT5hsPttx9EuyVRCqKmBwx64sOAQGi33xr1eLSKJAucHsTO3YcvoEd6xdSLnBSnVBB147UsstXcxOjbrkV9ditNioNVmdkQPrpg5md34l9y3eRUDESRLa5hMUXEWGQaR3aFdS1EN46ScD5TUN6TF6lZVPt+dSa7IypVec22LZVxpy1iOj+GFfAdmltdySluCsEujqtAB7VT+HPfv8hV145JeD4BGNbaxTE1jTm1eSh/JN9kaWVq2nS499VFUc5+N9Om7t0ddNYP/gwyPJLKriwg8b7P+ZY7vw8OKDGCz2KIr/G9iW3vHBFNe4l6GVrSKi1NDHAI+UDMez0D3Gnw1HjnNBcmeO7bYRqBUQBJm1R0tICtO7jdGS9QewWG1cMiLV67Nz4HSlM/3FNbrDQcauEwQF+zGmfzvU644rIvDnkJZEXFiAB2VZ3iUIQiCwUxCElbIsH3Q5pgyYDkz6A/r4t+RclFIcNLwLYRGB/Lpwh9Nx4W1CuWREd75euhNrSQlRge2cny+qMvL6xlJCRRjz7q8sn3qx20TwxKR4Vp/MJqCTe/jXi6uPAvDTgULOO99EeUUoIGCy2nj1omSyS2v5OD0XuT60qao+500AXr04mck94nx+ETiiL1xTKlZkFVNZZ2ZddikzlhykY0wWN49YSoDOgFB3JRppMrEREdTWwWWfr0UlCgiCwIZpg93aC9JKjHx3izOUzybLFFUE89POYfy8awh9kw4zOe037r7wW/ad3MqL749j3R1XkJYQglYlOkPTBiSGMoCRzJ5bRcfuu0jtt51STSSyPIbiapPbFyT4U32iMwEx+Swt2EPJylKe6n0hI9/Z0cihYLIKLDisQS1HsfHocW7/ej4/3ziWMqOqkUfZcZ/mbD7OwYdH8saDlzLjrZ+4feb3zHl0MjERQa16xjonx3P7Axcy5+WlzP9iE1feNMx5rt/jYDsXDjoFBQUFBQUFxZ4+GzxLa943bw9992QRUGvgydfdnRZFVUZWZBUzfdH+RqkanniLPNi5L5vqimoemToenVaNTotPuys9rxyr1Uyo6jQmm44RXVL4OesggVoVkggzx3blyWWZTFuYgVoSeOOqGF7YtYJwTSB5ubFUVEsEamWnvTxnUw5Gi80ZteyIHNhVlMeZwAyGjk7HLFsIFaOYEDea8QlpBKsDKKoy8l95Lf6ahs8aLDYeW5oJwMxVR9j30IhGzgvP64oK1DpTrCP9tUT6a5FE0EkCgijw9AV2rYeiahOZRVVc9vkOp2gogFgf5eDqgBEEWHJLGq8skgmOzKdt58Mc1v3Izeu2gKoLVbUaArUqfthXwN0/7nf2xWgwA6DXSKgkEUmET7fn8WG9MKefRkJb79SR1BasNX74aUSW3jqASqPVaXO72rABUiWBopkr+iTz4Pl2Lbx7ftzPm+uP8db6Y84xstlkFqzeS68u8XRIiGh034uq7Buw1Ub7WAfgnkYkyzI7txylz8D2RAfpFBH4c0yzjgtZlk8Bp+r/XSUIwiEgHjjockwRUCQIwoQ/qqN/N85FKUWVWuLCib357pMNlBZXEh5pn1Q8J5R2cWGkdoxlyfoDXDOur1N0KD2vnDqrhjpZi1ascJb6cSx0/Wz2cpu3Ld4ABPvogwWL2f4YaCSRJ5dl1gvgwKxLuwM40z/8NBKJofY0hK/qc928KfK69t8uLLSfcoMZQbBx5cA1XNhjO3mlkcxZeRUllfFYbftQSwJvTUzFbJWp8QipcrT3zLJMXLNPYgO15FcYAJBlkR3HurH7eGdGpexkYt9NPDDhA9bl1zK5y21OdWPXPi678UK+3dMFS9AW5hX8Qp4xj2R5jNsYNuTSXcDGoiM8uW05V678EnRxVJX5EaCRmLMph2lDkuq/XKHMGIRZpyPYWMzUbxcyJW1go5zFRg6J7m1559HJ3PvqQu58cR7vPjGl0TOWFKZvctwvviKNjF0n+GzuGpJ7JtK9d9vf7WA7Fw46BQUFBQWFfzuKPX12uJbWNBtM9N2bRUCNgUO9OlEV0WDbOhapBpPVZ6qGK54bhaF6FR8s2ELntpGcP6BLs/3q3yaYUNVpRGQqiWNc12jGdY12iwaw2qDKaCEsopKnd+yhb0QbXhlwMf0ztqBXW5FEu22X/OpaTPWRFn71Uc9REdUkdjjKd+W/ohZUjI5OY1zsEDoGJvi8jtwztTy85KBbCVIZ+DQ9l9cuSUWWZWoshVSZT1Jlzud4+QkOFZbTJSoAf42aV9ZUcLwomoLyKH68cQg2GeqsMlhlXlp9hGqjFRl4c/0xZz/B7tyQkQnS2m3iOrPVmbpx0SfpbLlnKPP2FPDWxiiiE4/RvuNxwiKLOZbZjbLTiWSX1nodY0d0cnSglseWZlJd75ixVxUR2HmyHEFlwmoJRiNJhPtrqDQanJ93tWHD/CoI9fenT0I8oihQWGV0rilkYN6eAp4bG0T6gRMUFFdw5xVDvPYpPa/cPRVewM3GP3akkLLSavoO7Oi8P4rdfO5olcaFIAjtgN7Atj+kN/9DnKtSiiPHdufbj9ezZd1hLprc3+dxE4al8PKnq8jMKaRb+xigYTI3ysEEC0X0b6N1LnQlEfQEEKYJwBxUDsXeHReyTUCntfLOpfZwKEdYlkOwx/mFUZ8ikhSmp+sra5yaGSF6NZkzfO/Cp+eVY7RYAZkbhi3nvG57WL2/D99tHc2t/dvzze4C56IYaNIZNKVXHDNXHXFONNll9slJJ4FFBosNrDaJlRlppGcnc9Pw5fRq+xlrTh2lq/8jbnWh100dzIi5mzFabNhs8Tx/dTy/la4iT1eEv183QOfMpXNcx9CETiy5KI7/W72Q2jY5iNooSk9F8Mb6Y8zZfJx1Uwc7+4+o5o0rhnDj54v4YvNG5m7MYudDlxMdpPPp9IqOCeeqK0fx3fdrufs/83n/qSudz1hSmJ5hczZTXu+FDtGryJwxyulRdjyH9z15CdmHT/Pfx3/g3W/v+t0OtnPhoFNQUFBQUFBoQLGnW47D3l6eWcTsp34goNrA3tQOWGLDvG4KOZwWjmoYTdktrovKXzcdpKC4gtcfnIQoNl+VZFtODhqhmom9+vDg6IFOO9jRnsN+Cguvwj82D1NNAOuyw6jrIwAyyPbI4U/S8zBZbFSbrARoJKaOiMQWtocDhlGdoREAAQAASURBVAxMJjVHDrenrKAdHzwwrtm1xogO4ejVEqIg1EdfyMSFlpBdvYNluV9SaTmIoV7AE8BqE9AHSOQZQG2SmTzA6vz9TzkdaRsxgIyTbQABg9nqtnlok6mvtGevdmKzyYx8dwt6teh0WoD9UnfnV9IpMgAJDYXHu1Bd3JYpY3KRUvfzwMQBxEgJvLn+WOPrmdtQ3VAS7Wkgjo1UUYBvMo4iSFBn0CBYbQyavdFrqdUQrQ2NUMPE7v2c99Z1TSHU/wywYNVeQgL1jOzX0esYO6K4wR6VvuWeoW73Zeu6TAQBzkQE+6z+onD2tNhxIQhCALAAuE+W5cqzOZkgCLcDtwMkJiaeTRN/K86FFy0xKZLo2BB2bjnapOPiggGdeeurtSzZcMDpuHBM5r9lF/HikkVsO3bUGVkwfdF+7vlxP34RfmjCigj0s1JVK+GntqdMRAVqySurpaQ4jIjIEgK1Ku796YBzwhcEmXKDmeIaIyCAYJ+kPknPo87UkHpSZ7Y6Iw58heLp1TBl4DLO67aHxbsGs3T3SAI0EncPTWL+vlNupaE8K3e4VgpJiQli30MjuPLLHRwsrHGe48Ku0VzeI45pCzOcoYQVtQHEiI/TLXAnmVVzOVU9lUD9RE6UBhKoVTFvT4FbSN7DX8KnN1/NkvIFjBy5k/MDJjMhqRuAW0WWDdOGsHdPHOoIK36RRUg6A0Un4hEFu5aGa//T88opsSQQIOQTqCriicWr+eDq8V6dXm7hbCGxdCw7yd3/XcD7T0zhouRolhwsrHcA2TGabW4hea6pHI+9NJn7bvqI1579kefevOZ3OdjOlYNOQUFBQUFBQbGnz4aoQC3inmxCi8vpf9VgbhyV0ijy1HWjxVHm01t0qjdkWea75btpFxfGkJ5JzR5fXlvHf5avo2ebWF66ZBiSi66Ya5/fv64tD23di6nWn8JjCQRoBObtKXBqRxgsNt7dlIPRKhOoFWjbMZtMv1XYDHD8aBJHstpisdgrgvywr4DJPeKc0cOOa3OtHKhWibw0rjOB/keoljdTK+8kIrACgEJDNBpSSA7uRZugTny02cCzy0uRZXvfHxjejvn7M4gKLqBDdD5DO2fwwISvOF4cw4L0Eew/2VBdQwCW/Z89LaPcYLbb3/X2dK3Zhp9aRJbtovwqSWT6ogxnNPecy+z3JdhP4IE9b/DRie+Y3XcGv901yE3jIkin9hoBnRSmZ112KXf/uJ+txacIiQGhLggZsFps1FnlRqVWn1qylo1ZAjcP7u28Bseawq43Z9cBKSiuYOPuY9xwcX+fopzN2cW/rTxAVUgg/7ckE37JZMs9QxVBznNIixwXgiCosU+yX8uyvPBsTybL8gfABwD9+vWTmzn8b8u5FCsUBIG+gzrw2/L9WMxWVGrJ63GB/jpG9OvIii2ZTL96hLN0ZlSglim9Eth3oitLMjJ5+IJhhOjVWG32l10sD0cbXsTwHjYe7j2U3PI6pi3cx7H6sKyS4gji2hRSYivAarPfEp1KxGqDaQszkOu9wvaSRDbe3Xwco7Xh1hktNl5fl82bG455fTnD/OGzW5dSatqDYJzEs8Pv4KbudT5rLIPdW70+u4SxH25DFOxKx44cxUh/Ldf3TXDm7gHc1C+Bid1jGdPZnrOWcaqKb/ec5KXV2bz6Wygbpr/GrvKneHDCp7y78moKK+KY0iuO137Lduvr1C9L2PDANGblfMLiyi/paryR7BNhbhVZPk3PxWwRKDsRS3i0Hr+oAuI65VB3ur3zGty97RLV1jao5GI2Hsni9m8sxIZ34qrebdycXm45nFo9V1w+gu/n/8b9r//I3MccOh2SMyxPqxadzpHGqRxx3HbvBbz3+jJ+/HYrl10z6Hc52JQwNwUFBQUFhd+PYk+fHTs2H+XL939j9ISePPzQGGfKtCut3WhxteVz8wrJzCnkkZvPd7bdlK3/xuqNVBrqeP6i0V6dFgD7S0/z5I6ldA2JYlt2JDrJHjUwpVccczYfdwrh11llIsNqGTY4E4NYyqCIPlwSNZY+v+zA4mJv7z9VyZPLMp02abBOxexLu1NZZ6bcYCEy6AwXpO7AGvg6Nn0tepuWoyfbsSpjKIcLOlBeG+Ki+5HKZalGnl22DrA7Im5Oa8vNaW0ZNHsjmfnJ/HZgFN/dXIMtdB4PTvie1Qf68PXGMcgIPDaqI7nldQD0jg9CLQn4a6RGoqI5ZYYGx4ZL+VWHw2Wg+hIWGT7llUNf8HLP6Zx44nxnlPHu/EokUXDb3HTch3l7CgDQB1ZhrNVzfvtY1mSXUmOyj5ck2m3wA6cr+WZnHjuPZ3NBt45EBwW43aOUmCCeG9uwblmwai+CAJeN6tnks+PLLj6df4bc7CJKuiQ601oGzd7I0UdHKxt/54iWVBURgI+BQ7Isv/HHd+nvzR8hVthnQAeWLtxJ1qECknsk+DxuwrAUVmw5zMbdxxg9oLPb365J68kPu/czf9d+Lu7R3el1FmwC5uog9lqzuexLDQ8P70KVsWHnvrQoCjVHMPploZYiCdSqkJGRZXtenlYCEFAJ9nSMOouNAI3EtX3iKawysvxwkTMkbOCsjbx7eQ+3yWV78VuUmnYzJPoJOgbZUzZTYxvSVry9/AdOV3Leu1ucP1ttMiuyihnTOdI59n4a0X4PRIFb5+9lULswogK1TB2SxJKDhXyzO985SWYXtaNryJvsMj7KwxfNY0TUHJJCg/jm2j5c+vkO53kEAQpKdLzZ+0FeOPAhLx38hEHai9z6VmOyIokQqFUjV0Xx8oT+vLBnGZGdT1BkOkMUMW7X5vol+v7GdL7etoPKQ0W8tDqafQ+d53T0eKZkTBnaldRIPx6dtZgXPlzOzGkTyJwx0il0GqRTe/2cI1Jl0tUD2bM9h09mraRnvyQ6dI7h74xSuURBQUFB4Z+MYk+fHSaThXf+u4SEpAimP3YRgiD4tBlautHisOUdApJX+dcQGuTHhKHJbn93tfXBvskUrDEzf2cGNwzsQ5eYSK/tHy45w/Wr5hOk1vHGoIkM2Z4OghW7iwDemphKZZ2ZJ5dlEhGbR4duB1Fr/Hiw820MirCXdV1++0A3Wzg1NgjDjpPOnyvqLNwxfy+Jkae46/wt9EvKxCqL7DnRkfSjyRzO74gk6Zg1qTuk4uY8cEQj7HtoBJ+m59I+3J9If6298km9HoUjCqHq4FDm73+V0anbKasOYumeQby5IRuD2e4kCNGr2TDNXvnEYZ861gGR/lpWZBXX280Ndqrr+LbrlEBd+6PUWuuICtS7iXuCzMsTGhcFmNIrjv9uyEDrb6D8VBTnD41k9VF7CoxeLTJrUneKa4z0eG0dwepyorQmhnZyXzd5Um0wsui3DEb07Uh0eGCzz5A31q20C4yWRYc6fyfL9iIFjvR7xcb9fbQk4mIIcD2QIQjCnvrfPQ4kAsiy/J4gCDHADiAIsAmCcB+QfLYhcH9n/gixwtTebQHYv/tEk46L/imJRIYGsGTDgUaOi+TYKNLateGrbXu4cWAf54K53GBm+i+1BLXLQggo5NkV7l5q0aZhRGR/1pZs4bfpMzheJDn1FMCK3cfh7swXRYHv9xZgscoYLA1/qzFZuX3+Xvw09giJKnktWZU/kRp6vdNp4cD1Swdw+wJyeFIdGK0ydy7YyysTkp1jr1eJqESBWrMNSRTd7oPnYj5IK5H2xjGigi/niYlfsq10BrGBHyFJIn6uuXgClBvMFJTpGaq+Apv/D2ypWUKHdj3IPxmN0WLjy50nEQSBlyd0c06k/eOjuGHV91y94ls+HHk5A2MawjZdv0QtQiTFxnAitaWAwPe783l+XIMgq+dOQVS/Tky7chjvfLeBpLhwbrtskJvzxvFl6m2HQRAE7n96InddOZeXn1zA7C9uR1vv7Pi7oVQuUVBQUFD4F/CvsafP5WbEkh+2cyr/DC/Ovh6dXnNObAa7/po9XVhrMbE3N4+rxvdzRjN72vo/7Cvg0aWHQJaJVOcR6afn7vMGer3WgopaRv/wNZKulsrcDqyNq8BqkzGYbYiC4KLDADOuqGBD+X6SAzvxRMpNhGgaFszDO0SQ4ZLKANQv5u20j8pnYt+N9Eg8hsGkZWXGQH7d14+K2oaoAj+1jco6M8dKaxAFGm1yRfpr+WzHScxWmaeXH3bqv7lWvRuQEMmN347FX1fN5f3XkV8aR+apJBxrA6PFai/X6qIjd/Dhkc6SoTab3MhuXnKw0Dm+BoP93hmsdfir9PbCAy7ino8uPcTkHnFu9y8lJohbR+tYdlJk6dUT6BgawtPLD7tFZ8zZlIOMTKi6nFqrjoxCG5ObeCZ+WptBda2R6y/ynbbfFLIss3rpPpJ7JvDGI+czaPZGZNmu3deSKjcKLaMlVUU24nAR+j7mNNDmXHXq78wfIVYYGh5Am7bh7N99gik3DvV5nCSKjB+azJdLtlNSXk1EiHvI002D+jD1259ZfvAIE7p34aLkaIqqjLBIT215EPrwUs4Uh+F621WSwPiokawr2cayklU8lHwDRVVGruwZy0dbc7F69EEjCdyalshH23Kprlc/ttVHYoD9vypRYNPJDVSpXiRa34ve4f/n1oZnTW6QsdrsEQ+3piUyPCmMeukiJ7UmGw8vOYjNJuOnFlFJAharPa1FqHc4FFUZAXse4BU94ugeG8iIDuHMXJmFDBRWhPPWsit4YuK3rDn1KP3avImuXsTIhoxaFJlaX0FFrxZRqzty7cUyco+9DGo7nO/Wa9wm0hEdwp1fVj+MvY7rV33PDau+5/2RlzEyvkOja9arJc6YQxGQidCWUXTmGLLc1RmW6G2n4Lrx/cg5WcqHP26hfUI4tf7BXh1n3pxnIaH+PPjspTxxz5d8+PYK7n7k7ylSrlQuUVBQUFD4p/Nvsaebciy01qFRU13H1x+uo8+ADvQbbBdLXJFV7CzD2VKbwfO8aQkhOLJNomvLkYHYDg2bTu56GQIzfjlIrclGgKoKtWDg/OQ0AnXaRvbszLFd+PHkdlR+1ZTkxlNbqeWRXw6iliRnRDMy1FiN9O2dwYbyYi6OG87/dbgUSZAa9dM1leGrnSfRSgJ+ugpuGr6cHolHqa7T88vuUTwxbBptkkWGxtby0OKDTpu81mxzKzP6zqWpbtELrvaXv0Zi5sosp0PHXyNx76IMnrygM5kzRrE8qxM2+VEeHL+Cu7+4FaPFniKjVdlT3F3tuBVZxUxduM9ZMhTc7eakML1LZLh9TVJrtdvwSWF6N3FP14iFpDA9OWUGOkdpWXs6i8kdUxmcaL/3npt4U3rFMeu3nahFC0WGSKfzxxsWi5Vvl+2iT7c2yH5+PLMs0xlx0lKOHSnkRHYRdz86gZSYII4+Otq5gewt2kXh7GhVVRGFP06sMKVXIpt/y8RmsyH6yJcDGDekG58vTmdN+hGmjOnt9rfzOrUnKTyUd9dvwyYGMyAxlKhALbMmdWfqz7XogysJjimi5nQ8pvq8OVkWOFIoMzZqBIsLVxMvdWTaF5XO6hWe+GlU3JKWwOc78pzOm+cv7MKDiw86PcFWm4xev4cai8TouFcRBffHzHWi1KkEbDYw1etrOOopL7yxH8sOF/H+1lzn55zlnawy/oJErdk+IdZZbExdsA+VJGK2NghuAgTpVFisDRPgsaJ4vto4gRuGL+JM4BIOPjzRObFMXbDPmZNWa7aBWeCrnztz9QQ4HrCegJB+lJ8JAcBmk93Ui9dNHcxtSWP4NGc1d/32I9+OuYbekfZJ0lmiq76/ZeYwtJLMb1lZPL44iPtHpvl8jgRB4NFbzuf4qTJmfriCtx67slWOs36DO3LZtYNY+PUW+g3qyMDhzZf4+rNRKpcoKCgoKCj8M/C1GeEqIqlVi87KaE2xfdMRqisNXPN/IwC7PTV9UYbTHpTEBpvBl1PElyNlyz1DGfL2OiLqqqj2D2ZUt1jnZ1xt/XKDmbsW7EPARqSmFLOsZdrwPo2uFeDBlVuJbn+CqpJQasvt/ZJlmDUp1bnwHj53I3367CU8spRjh5K5rPfFTqdFUw6fe37MoHviIW4c/isqyYrOfC05BYN5ZngHUmKC6BlrP+6RXw75HM9CjyoXDvvLoU+x5FCRsyRrjcnK93tPMW/vKfY9NILr+3ZkX/Ed7C5/hrbhp8kuasMr9Wkc4F4VsLLO7GZ7g3e7OafMwCFrNevPiFiMWvCDnDKDezQ0MH1RBhar7KwoEhB9Cl2ohUvbNmhReG7+dYrwIzWiFoscxA93jGvSCbE6PYviM9Vcc+lgery2DhmYueoI+x4a0WLnxfJFu1CrJUZckOrWn6Iqo2LjnkN8r5AVfOJ4GM9lqE9Kr7ZUVRjIO17S5HFJ8eEkxoYx/7f9zggDB6IocFW/3hwtLuXWbzeQ/OpaiqqMjOkciUb2x3gmgoCwM8y4MJYQvcqpvJx7ppYnvlZTVR7Mp7k/IEtVbu1qJZH/jO/KF1f3JnPGSFJigjj48Ei+vtaekjK5Rxz+GnvFErCXd1qSeRS1EIpa9Hdrq6jKSLnBjCSCv0aiziI7nRYOZGBXfgUTkmOcbXpSZ3aPBak2WakzW92cFo7jas02tBKo6r3rO46lorb1ZmfJB2zNO0ZaQgi944MafRbAZpUoyx5AXZ2O3v33otXVoRLtY029DojJYi/BdMf3B9m1J5JwnT+3rJlPdoU9385Zoqt+EtarRAxCFEY5gIU7d5D88mIOnPYdBapRq5g5dQKCIPDWZyvZ98Bw59h7ewaLqowsOVjofD5uvvt8kjpF88bzP3GmtNrnef4qHAZCU9ekoKCgoKCg8PfH12bEiqxiyg0WDBYb5QaLszpGU6RvzCI4xM+ZRp2eV45jPaxXicyalOpWme3ar3c5bV9nGy7OBbNVJj2vHLCnG7w+KAZJtvHBtAsa2R4OW39M50i0KpEoXSVq0cKLl4wiNljvdq06lYggWQlvk4+5TkP5qQZdMVG0py5clBxN1+gArrgwh8ioUvbvSSb/RKKzP679NFlszNmU47yObXmnmDLoJ6aN+ZGiylBe/PFW/u/rJN5cf5phczbz1c6TztKbL0/o5nM8+8QHu/3ssL8eGN4e//pSo/4aib5tGo6TaRDDzCm2Oykig08hCSJBOrWz/w47bt3UwTy5LJM6l1Ryf43UyG6et6eAQI3IsoLtFBeFk/bmNoqqjKQlhKBTS/hrJAK0Ei9P6IbVZrfzZaBONqAJLqG2PISL389otBZy2MAfbtpFcXU1T44dwfEzdY2Oc16fLPPtsl20jQ0ls05yRnu7XndzGOvMrF66lyGjuhEU4ud1jBUb99ygOC7+JqT2soeoHdiT2+RxRVVG9hgkTuQV0/0/Kxq9iCGBUVhkFTqhxDlBO16aWaPGEK7zY7chg/0Pncecy7oDAg8vPsiZWis7d6QiCDIpvTMQxQZPp1oSSIkJ4rq+bZxfEG5aDPXt3zGoHWDXpKizyNTZChv1PfnVtUxbmAEIXNcn3ud1ju4UQbnBjEZln7z0Hg4Mq7uvA53KXubVE53aHp6n16gJ0Knqv0hFugTejdFi5Nfjs0h+dS278yvx09jD3bSSgFYlElCvjDxtYFd2pfdEpbLSp98+1CI8MboTKkmsD/0Di9VGldFCbZ3I+PAhmK0y1638ngpjnduXeIhezftX9GTWpB6UmWMwyWpCpXyGzF7rc1IFiIsK5vFbLuDAsdMsWrHLp+PM25e3RqPi0RcnY6g18sZzi5Dlv58Auacz0NP5oqCgoKCgoNB6/uzv03O1ULPZbGzfdJR+QzohSXYb0NWe0mskxnS2i2P6ck54fsbVkWK12fh1QwYpHWIY2t13SdmoQC0bpw4gSlfOsI5JXNW3a6NrvWtwO8LiTiGpLZTmtXGWGAVYcktDVO0H2QvJsx4m80AnTubFU2OykhTm7gQJqHcgvLH+GMmvriWvohCj7jEGdtrH4l2Deemn6ymtDnM6AcoNZm6fv9dp843oEO4zH+m7PfmNnoOoQC3ThiShUdltWo1K5IWxXZ1tCOBMs+gQ2oaaOj3tI4uRRIHpizKc9ibYqwLmlBkwuxjpfmqRdy/vwZZ7hqKpt61rTFZeX5fN5fOXotPXcfJkFEaLjRVZxaTnlbPwxn48MLw9W+4ZyuQecc5xEYDwuCJkoOxUJAazlRVZxc5n/MDpSpJfXct1X2/n7TVb6R4fx43zj3p1aDnYczifQzmFXDW2L1f2jvd63c2xac0hqqvqGDepr9e//xEb3v9WlFSRvwlxCWFERAWxa9sxxl/Wz+dx6XnllOsDCSsvRl9d2ShXalDbMOrkcAKkQkxCrVO9Nz2vnPOSovEPGsO09YtYeGI37fQd7IJBDrEfcwDZB7rTpeceevQ6yJ5dKfhrVKgk0U1DwlsoW1Sglg7hDV7GI6cSGNYlgxNVa9Ez2Blu5xo+6K9pXPpVJdpTTy77fEd9ziDOSiWfbs/lqWWZWGx2R8WN/RJoF6bnhZVZ9lKuAgRoRcz1Xt7ltw+ka1SgVxHQ9LxythztzYBOe1iYPobKuobUGKNVJkgn8s6lDRVSHh/Wnzn7quneZz9hsfk8v0JEq7ZHojy69KDTs2ww23h6yQmCgtoQ1PYoD21cyoejL2uUXlRUZUQWJAoMsbT1yyNEKmRb7hkuTvFd/WP0gM5ctC+Fr37ZzvkDutC5bWM1a18hmu06RHHL3efz3uvLWLl4D2Mu6e3lDH8PFLFOBQUFBQWF388f9X3anFaFN82uMZ0jCdGrMVqsaFUNTgdfVJbXUllRS5fkhsWjr3TtplJOfX1m1dbD5J0u58W7m9f/mrdzN1abjSfGjfB6reelqFlQXkF1USSCyR8/tT3lOEAjUVmv8/Bb0Q6WFKynhy6N9XlhgD3tIafMQEpMEFGBWtZNHczMlVksPlhIjcmKRmVlTcGjIBUwd8U17DxuF/NXqSVc9+oc+nIOh41WJbhFPDhYcqiIlUfWNnoOvI3RPhdh0JSYIIqqjIx6byMvXmXGZFHzyMgOPLf8MHVWGX+N5LQ3XfVDAERBIESvdkZrz9mUwxvrj1FjstAz+Qh1dRoKT0WhEWWmL8rAbJWdZVVnbzrOrEmpzrSSIkshz+85QF1JNFazGgM27v5xH6IgYrXJzqqIeooRsBIT2g7z8bIm9SW+WLKd0EA944d0Q6dVN7rulvDLwh3EtgmjR792LTr+XPJvq8qnRFz8RXh6wAVBoO+gDuzelo3VIy/MlbSEEGSdjjq1lqDayka5UlGBWrbcN5FAnY6Rbe05d6478P3Dk5jQtitv79tIaJDZJRJAxfuTe/Ls4DGcONKJ2Dan6N79KNf2icNktXLXgn0kv7qWFVnFPr3armw+korZ1I7NRa/R683lXPv1LqYv2u9WEunmtESCdO6+swCtijYherdzHCmuprjGyMtrs3H4WOosNr7bk88Lq7KoNdswWmVqzTZkWeDDKb3Ycf9w55dFUpieOZtyKK4xOiescoOZHTk90Kgs9G53mCeXZbqNuywLbrWmX16bzcmTMZSXBdO521FMshmrDY6V1lBtdL9fMlBRqaWuJOb/2Tvv8KiqrQ+/55zpyUx6ISGBUEIJvYReRUAQqaJeu14rdsXu9X52xYqC7doriHQR6b33EkIoAUIC6WWSTKae74/JDDOZSQj2ct7nuVcyc8o+ZfZee+21fovluVksyM4I8LZ68iu1Gj0Vzmh0YhUlZv8IlWDcc9VATKF6XvhoGU5X4HuSnhSOJAro1aJf7ifA2Ct70bFbM2ZOW0JeTknQ4/+WKzONPXZDKycKCgoKCgoKjeO3GE8bSstoiFijlsyHhzDr2h5kPtywA6XAbGXelhMAZFtdfucItnp9viiPuvs4nC4+mLuZVknRDO3ZcJnME8WlzN65n8ndO9I8KiLg+xqng5f3rMRp02ApjkWrFtCoJG/0QnpSOAeLzvDm4W9pHZLCPW0noK2NbpBEWH20iINnK9zREjM38cOhAix2F6EakWv6LwTVYT5cPcbrtABwuFzcnJ6MRvLxEAhuG9CdahF8XbrK5vRGKdSl7j1yC4O29U7et+WUEW0qQKNycLIwgWeWZ1FTG1lR7RM54rFvQ7WSN3LZdxF1cpcEtCqR5s3yCI+o4HBGKk6niss7JeB0udso404NKbPYue27vQyauYm2cTreO7yOthExvDRgKHqVewprd8jU2B2YrQ5cLhmVYCNCXYaVMC7v2hIZmVCNFFRfIutkIZv2ZnPFiG7otOqA626M3ZpzoogDu09yyfhuDWoU/hb83N/iXxkl4uIPoD4PeNf0lvy0YDdHM8/QJi14GoWnc359lprVa/fiqKmBOh10UmQIdw/uxQtL1/LVjsyAFfhnew1na/4pntu9jD0PXMGevEq/SID7FrRCrbHRNOUE67LWUW1L8Tt+Y0RmnC6Jt34ayENjPmdE51V8tn4oRq2aGRM6+tUyznpkKMuyCv1qP3vO4RELemPdcd5Yf7xuVVZsTpc70sIHTxc+YMYmrA4nkihQZXV6hXZW39HHG80hCAlYbbFc3iObzUc6eztgvVr0uzZ3TqUMCBzLbEP3vtto3SqXgpyWtIjy1/DQiGBzufP57GVxpCY7eHLLTwxskkKETu+3rUd1eMupUr7ctIZ3Vm/ksk6pRBj03vekrhc1LFTPA9cM5qmZS5i7ch+XX9wlyN2Xa+9V3TK2Ig8/M4Hbr3yXaU/P5bX/3eTXyf6WkQ4XcuwLEev8p3maFRQUFBQUGstvIX79SyqBBYvEqIvHXjCcKaYd8PLWHJ47VnFem6Qxx/bww/qDnM4vY9r9Y93aCw3w1qpNaCSJOwb28rbP1+74KGMbp6vKqc5vgcXujhyePr6D19aVZZnbN76PIdTF7PXNeTxVImPqEObsy+OueQe8ovRvj++A3SlTaXMSqpH4z6UniYk5yMIdQ9l0xF9YXauSGJsWx5vrjns/W3xTOuDWEnluZBu2nSrj852nA67HYndHKQDeqGLfawKC2lXpSeG0aeJOZz9ZnIDsY3+rJYHduRVeJ4dvVQ3PMX1twMW3duSFo6soKgkj77Q70jg9OZzFh/K9tr9WJVLjcGFxuFBJIo9vWUZxTRUfD51ErCYCveYQKklEEGTMNa7aa3MyItXKsUI1n/xrNJd9sgNZdlctXHtn34D35/PF2zDoNEwa1pm6NNZu/WnBLkRJ5OJLuwR891vzT6zKp0Rc/AHU5wHv1qsFoiSyaU39isDg7pzvHdcTQYAl6zO8n/t6Bq/o3ok4Yygbsg6ilvxrN0fqDLzU5xIOlRbwyZEtAZEAGVOH8ky3q2kutScl9SgtWmXXnsHdSa29s29Qr7ZJp/Zr58G8RKrMFzO4/TYuT9+MWhLomuju1Aqr3G0FuKZ7U+7sl+LV0KgrFlRpcyK7/QaE1Oa4hWokVKLgrY4CoFcJaFQiueUWyix2LHYXlbVOC0/r31h3HIvdidnqoKLGybbjiVg56o0E8USe+F6b78DvqI4mXt2Ejq0q3PWu6+QSqiS3SKnDJeNwuTiQEUWFzcr0vZvrfZaXpcXz/NhhVFqtfLp5l/dZ1udFvbh3G7q1a8rHC7ZgqfGv/uIRrrI4XDhdBKyuxDYJ546pl5CxN4clc3cG7PtbRTpcyLEbmx/7T/Q0/1IEQUgSBGG1IAiHBEE4KAjCvX90mxQUFBQUfht+C2HA37oSmMdecFpsAFQg/qo2SY3VzodzN9GhVRMGdG3R4Lb7c8/y48Esru/TjRhjSIDdkVVUxnsHtjIwvgWC1eS9Jx5bF2DWsa2YIkrIzGhFVZXOqz13rLjau40M7D9T4b2vGpVIm8T9hKpSWHuoH0atW6NtZGo0L1zSlvVT+rLySJFXmy1UI3GqrIa2r6zmum92c9e8A8ze4++0UIugrY1SqKhxctucvbR9ZTUzN2bT9hX3NaW+vIqWL67kX1/uDLCrIkJcXNFrJypXKguvH4POJ93b5nSnedQXGeNnA7qcfJTzLZLk5GRmJ/RqiXC9mkmdEsiYOoRvrunOvocG8eqY9oRoRLfOXXgp24qPcVfHvnSIive+1zMmdOTm9Gbe+xCtq+ZgXh4PXNSPEou7RGuVzYmAQHaJxe9+5BaUsXJrFuOHdsQYogt49o2xW202B8sW7qb3gFQio41+3/0e2jJ1f4spkfq/vT6cEnHxB1Bfpx8WEUKn7s3ZsDKDG+68CCGI2KSvV7RnWjMWrz/ITeN6U1Rlo/201dgcLhBg8939mTK4N/9ZtIIPxndDo40gJVLv3XdYUmtuaNudjw5tp3tsIqOa+YsNjUmLp0fFdYxb+hZt2h9Fr3WRcyyVKXP3By3TNGdfHttOlQa099E5Pfn6FhjVdTkXtUpkwAzZL39NoxLJmDoE8PfwesSCpm/IRiMJqESBDXf1I7vE4q3jvPpoEW/4eJsvS4vnyYtT6T19Q9D7LgArjxaeK6sKnCyKZkBbC2+Nb0qELjboyr1v7l9KpJ5rlmUSn5zNoHfXcn33FuhryzZpVSIuWfbWz7Y6AKsKvTmMb47s5t4ufQjX+kddeGgdG80laal8sXU3ozuk8dXus9gcLiptzgAvaka+GXXTppQcOs2cFXu49tKe5323fBk2ujMrFu/h47dX0GdQW6JijI3e9+dyocduzMrJP9HT/CvgAB6UZXmXIAhGYKcgCMtlWc44344KCgoKCn89LiQSobHHC6YZ8WvhLdFZKySuMWiQfkWb5NufdlNYWsWzU0YHtbM9yLLMtOXriTToubmvW3Sxrt3x8s4NVNqtPJk+hFf7mLx24qCZm7A7ZTQqmVEjt2OpDKX0bDIgY9JKLM7IJzZU43e+jk1M/N+ItmzLKaNropqVBc+TFnEVGVOHeqMzlmYV8VNWES+tPorT5balQzUSkigwd18eFp/qeHUL5V3VtSmLD+Uj4l7cstjd/7t/wQHsQTLUdS6ZZVmFDE+NYVtOGZERC7G6irgk+Xli9WGsn9KPp37MZElmATan7F0sq/uunasm6LYBU1ofJs9+kt6a0dx/eXdWHilicpcE73vkKSH6n58OIyAgaWsIa5JHl5gk7u7Uz+/Y9y04gNXhotrmxKiBMKmAhPBILm7XFkkUG7Q7v/5xJ6IocNXI4IKajbFbN646RHlZNZdO6un3+e+l1VZ3fuJ57/7O+nCK4+J3om5oWX2d/oCL2vP2i4s5mnmG1u0SAo7h+0N4b0gbpn28jG0HT1Ik6b0TXYA+b28g8+EhNIvcwSebtvH8+Mvo8/YGkPE6Cx7vPpS9RWeYunEJqWHRtAqP9jtfE5OBBSPv47XMb6HlbtRqO3v2tMGoVfvV5U59eSUVNYGlRAFcskBpyc3sKcmlS/Ov6dTsEtZldgHc+WtGQWBZViH3LTgQ8GMrrLJSXuPW6bA53f/1dIhp8SZSIvW8ue44tcEYPHlxKtklFr8IiBCNyA8392LlkSLijFoeW5IJuJ0Mkgille7jdU820z66Y73PzzPwL87Ip6Q4koTmx0FXwrubRKwOFyG1+XO+SsrgLtflKIunxnSYr7P2cGfHPkGPX2C2kpbUmh8PZjFs5iJK7VE+AxJecdTCKqu3xnSqxsCni7YxeXhXtBqVt53nMygEQeCex8dw2xUzeffVH3ny5cmN3vfn8lsc+7de9fk7IsvyGeBM7b/NgiAcAhIBxXGhoKCgoNAofm1nSN1jZ0wdwjtvr2Br5kk+va4nfVKifhW7obisis8Xb2NA1xZ0bdO0wW03HD3JthOneWrUEEJ1gRG4Go2D9YWZjG/RgdRwd5qzx070ODdS4s9QZC/mjtRruHljES6XzJB3NxNS62zQqwQcLtBrJCZ1OmfzW13FyDgJ0zQj1qgl32cFXQZq7E5staKYV3dL5P0tp5h/0F8nra4vIj05nKlDWrI7t4K75+332tcep4VG8o9irnG4uGvefkQB4sLyuX/0lzQLGUSsvqNXj8PmcGGvbUcwO8x33iKJcPdIgd3ycU6dSOTHfTbAfS9mbDrhN9H2OIiqHDYSUk6iEVW8PWAsKp/0Zu82tQuhPeIrOF3sZG+hiY6vrSVj6pB67c7SimoWrTvIyH7tiIkIDfr8G2O3Lp6znSaJEXTt5R+583surPnOT/4Ji3lKqsjvQLCQ9vpK4wwe0QG9QcPcrwJTC+qGLamiIokMMzB72W53Z+EzY5dl2JVbwQPD+nOksJjh7y6h0uqk0ubEVltyaNnhIp7pMQq9SsWta+Zitlm97fWEGsWb9LzS8wZGxQ6hSXIOPdP3o1W7/PLgamz1i4mKooCAyGfrxrDvVAtuHPQjIztv8aZ7qGuFhTzXZfWpXV23fvKMDdl+IVBp8Sb2PTSIp4a1Zt9Dg0iLN5GeFI5KEtGp3OFlW+4ZwMCW0UzuksCx4moEAW9Fk633DODe/t0AsLnKG3x+nvOmJ4UjuNxOAkF0R1eEaCQeGNiCzIeHsuUetyBRiEbylj49cO8oOkc1YcXpo/Uev/201Tyw6BgWlwEN5VTZHBg0Erf2TgYE7vx+H61eWsk7G054U1/OGCKorLayanuW3/EaU3YpMTmKf908kPUrDrJzy7EL2vfn8msfW6mN/csQBKE50BXY+gc3RUFBQUHhb8KvESIfa9RistmIijEytlPCrza+v/bFauwOJ/dcFVgdxBdZlnlnzWYSwkxc3u3copav3XHvJUZsLidphlS/a3WLpLv/Hd0kD0u1gZqyJggIbhF53At35TUOXAho1SIb73JHEnjmCkNm7kNARYnVbTdO7pLgV6ZTqxJr9dhEDJqG16CHtozEoBZ59IdDDJq5ia6JJm5OT0LrI+wZohF5/bI0TDoJtc/M0O50oVOXc+tF32Cx6rBWXgecm49U1joNHhjYwmuH+T5/33mLLrSIPa6llJVEcOjAuSjvKpuznhK2ENcsD1Fj5ZXelxJr8Hcw+DqRjKpKckvOUOmKotSq8jtemcXuLZnq4dufdmGzOxg1qFOD72pDduvRzDMc2H2SMZPTA0Q5/4iFtX/KYp4ScfE7cCGet1CjnkvGd2f+t1u58a5hxMaHeb9LidT7qeP2TYmicGgn/jdvCzWV1Sy+KZ2RH25FFNydWnpSODGhsbSIieVIQRFFGHAhIQP3zN+P0+UW1PnyxtFM2TCHe9Yv5Pkel9LptbUB0Q9T2o4nTG3kGxbSs0UGKk1/CszuDkGjFrFZz0VcGGrLNAm1KSsxIVocLjXTf5rELUMWcUXv1YzvaCJecz29ktwKzb5inNPWHOPtjSeYf0MPnl1xxHvc97ec4otduWh90kt251bQOiaUmBDfTkVGqD1mTIiWdceKGPyu2xEkAG+P7+D1bP9naQ7/nQRPLdvJR2OHBnROwcK9PrmyI68e24JGUHsVk6f0S/GmuPgKEnmO1z4skW+O72DzqQL6JMf6Hf/l1UeptjqoccrodCYiVGeJ1DlA1NAlMRzHllPeSJpPt5/07mvW6LGp1MxatodL+rVvxJvoz6Rr+7J88R5mvvID7357J5rzDH5/Rn7LVZ+/M4IghALfA/fJslxR57tbgVsBkpPrr22voKCgoKDgy68ZIp93qoTE5KhfrW3rdh1j5bYsbp/Uj+Qm/tVB6kZFbzh6kr25Z3lmzDA0Kslv21ijlmFtonjqu704qkw88P0xHpGOkzF1CIVV7kW3R4a04oU1B4iMLiX3RApCjOBn53qEJ60OFxpJRXaJhewSizdy2u7UgT2dYxVL6Bp1i3ehbvaePC5qHc24T7fjcMqA7BXpDCx+Wnvd2SXeinwGWabnm+uRajXiDGoRURTYfHd/AJwud/lSARmDRsKoszFl+GwMWivv/HQDK//tjiyoO0n22MB1n//aO/siiRAaWkmH7ruprNKTuacbLte5iX5Inchijy1972gdHx2u4MFOg7mkRaugz2vtnX3Zl1fKW8t/JNYYw6azURi1ePUe2r6ymjKLWwsuXK8i8+GhGCT4bvke+nRpyYgv9/7sd3X+N1vQ6TWMGNs14LvfOp0qGH/EOf8IlIiL34EL9YKNv6o3AvDNx+u8nxWYrQyYsQmH0+2t9ajjThjaGbVK4oP5W5jw2Q5UooAoCt7vBUHgqUsGI+Kkib6EUK3Ey6Pb4XThjdxwWEJ5ptdwVuce4/qf5mN1OIOK0VzTchhPpd3CmZp87tv1Gt1nLmTK3P2oRIEXR7Xl/oEt2P/QII4/fhHfXNOdo49e5K1Nvfnu/ujVGr7cMJ5NWV3QhCwgLuZbYkLV3h/brb2buUPgHC7KLHYWHMznhUvaess9yZzzzC7LKvSKEF33zW7avrLK25H5ilMuyyrkkg/PLSjLuEuYbsspc1czsbgFebSqam+khy/BxHmqnTUAOJ0SBFEqruuhXXesiDeWFQNw8afLOXi2wvtM27y8ijfWHfdWNHEIRtSSxIT2ejKmDnFXWfGJpLE6QSsJbo+4IFAaGsGh42c5dSZQX+R8lNlc9LiyL6dPFrPk+x0XvL/CXxNBENS4nRZfybI8t+73six/IMtyD1mWe8TExPz+DVRQUFBQ+Evya4l8u1wuTmYX/mqOixMFZp7933KaJURyzegeft8Fi4qeuW4LCWEmxnUOvig0K/MApTYLVcXR3mudsy+PTq+u5dkVR3h8SSYxsSWIokx5UTzDU2NYe2dfHhjYgrnX90DyqWQi1JYxTYnUU1W7SFXjcPHaslRsLjPLc+/HbM/zlumssDr97NwKq9MbffziqLZeAU4PDp+g6Gq7ixqHiyqbE71a5MFBLTn66EUApL+5niqbE6tTRq8WubyLyJtXzyYpqojSwil8e9WEOkL+gRGvdZ9/domFFy5LomefXThdIts2d6XK4o6K1kkCJp2Kl0e3AwSmzN1P21dW8+XO03x2cA8fHd7K5FaduKtzr3qf16CZG1lxcBdVNhuvTRpJxtSh3jZll1iwOs4tqlrtLrbllPHd8j1UWWy075L6s9/VstIq1iw7wLDRnQk1Bteu+y0jmOvjjzjn743iuPgduNCQ9tgm4Vw6qSdL5+3kxLECwD0BL7PYqXG487l257onv1HhIUy4qBMrNmci1NRQaXPidMre7wH6tEjkyh6dCZHK+XBCS0w6tbeKhseRcnGT9thK4jhScxIpPL/efLXeUR15pcu9VDvstO+5CX1EHk6XO23jtcvSvI6Kuj+ctHhTrUdX5JuNo1mb0YtDZbNZfOIJFmW4lY+7Job5nWvmxmxeWXMUg8ad2gFgUItIosDG7GKqrA7vtp4Oqa6TCAgodfXRthyu/moXd8/bj9XhcYrYeX3d8QAV5WBOpy35x5FdAkVlOmQZZu/JC3B4FJitfLnzNDM3ZjPig804bG4RJlFt96bALMsq9OYYenh2ZBodE+IwW8q9XufNd/dH5zMQqSQRrdpdI7wm1K1cvXlfNheCp+N/fH8R5ggjs7/YiMMeXKdE4e+D4FYi+wg4JMvy6390exQUFBQU/j78WuHqxw6fpbLCQoeuzX5xmwrMVkb83/eUm6vZKJvIKqrySw+oO9n+cHMGu3POcHm3TgHRFp7jPbFuE067mvIyHQa1WwTyWHG1XxW7/q3dC2Pr/z0KgEEzN/Hm+myu/XY3snwuPsJqd/Dy6qOsPVaMVnXOXj16NpFQx32U2Y6z6NR1HClfjCzLQe+xx6lxY89kQjTudGWdSkTvczyVCDqfy6m2u3DJMoVVVvq8vQGLj4ejWexxerSbRpHlLDOXX8GLy0IZNHMTB89WeO+dr63vSQ9JidQjiW59N0mElnEym5zfIUkutm/uRo1Fj83pdszUOGVkGfLNVpwu9/0vs9i5Y9FG/rPjJ7pHJ/FcrxEBAqq+z0stl7Lx2AkeHNaf1rHRfm1KTwpH6/P8tGqRDjEGvl66k35dUhjbs8XPflcXf7cdu83B2Ct7nX9jhV+Vv15s+F+UCw1pv+bWwSxfvIfPZq7k6deuanDbm8b2ZtHag8SWFVBsaoLF4eKe+Qe89ZkBHh0xgA3Hsnly4XIKHClIosSLo9pg0qm9oW3mglh0Qg3h8QX0a53IG8MGB3WyGOVYNqxNp2XHnXRP30vOsSp6NB183mtyC2cKmG1OPl0/hOLKECakryKz8CS3zbmS5bcOxqSTvEKfVqeM2inz0ui2PLrkEAa1iCAIOFxO3t9yyu/YatW5TueZEW04cKaCDk1MdE00eb3PLpfMUxen8uKqo5hrnR5alYjdKaFTuz3QoiD4pfIEC72yqgqprgpFL2motjl5Y91xr7AQuB0SvsJHbiRkGSSVg8ld/EVXfTHp1HRqGs832/didzpRSxJp8Sa23zfAT1x17Z19yS6xkJ4UzpRnitm87wRXjOgWEO5YH74df25KAsZdh1m7/AAXjQqsZa3wt6IfcC2wXxCEPbWfPS7L8pI/rkkKCgoKCn8Hfq1w9d3b3BXjuqY3XK60MXy/+QhhFSUU6MOoUOno8/YGBARveoCvI0ASBf63cTsqJJ5aWcjEbtaAa1ibXYCkN2MujgQEXDLMvb4HB86aEcArGJ/aRKDKrCM53OQnnKiV3NGzHqxOeGPdcQQgRCtBbZSAVi0yoOlYDLoBbMh/jk0FL3C4fB7do+/g4EOD2X66POAe160yMWDGRiwOty2qV0u4ZMB57uTPrzzKK6uPoq4V5dCobFyevo6hHbZzpjSa91ZcTkFFBDang1CNFHDv6qaHSKJbYw8BNNoaXjnyPjXOGh5sdQvjVxzDVzJUr3I7fCZ3SWDGphPoVAIOqYbw5FM4rGpGRvdGIwU6jjzPK0LrwCQW0Kt5Mtf1Cp6ukfnwEJZlFQIwPDWGH9fspaKyhpvG9m7UuxrMprZZ7SyYvZXmXZqhizYF7KPw26I4Lv6kmMINXH5dPz57dxU7txxjeFpTwvUqrHYXWrXoTiGoJdyo54bL0pk5ewMxhmoKVQactWWMwvVq7w9uTJeevLdmJXrOUu1swqNLDiHLUG1zYtBIVNtckJ+EVutiM3vYWpTMGGO7gLZtyynDYtGxdWMPOnfNJKnlUZ7P+ISH215LUrix3smzp7PRq0QsDheLdveipErPjYOWcPuwzzhW0oZ3xnfi1u/2UOOo9UYL7sm8LLu9wzqVgKuOFqhahHfGdwLwy2cDCNerWT+lr7eM6u7cCreSs1rEYnfnFzqcEmrJWa/X1eN0KjBbWXTwLCerTzOyeQcGSS14Y93xgOooFpvTz3PtuRDZJdK+id6rxzE8NQaTTkVFrYPDpJMYnhrDVnUlVoeT40WltIlzV3qJCdEyc0In736xRi1p8e4OM71DMovXHeRseQ0dXlvTqHw934G6Kj6CpBYxfPf5RoZe0qnB8mC/BY11tij8cmRZ3oBf8pGCwh+D+NCiRm3nenXMb9wSBQWFX5NfQ3tq+8YjNGsZ6y3X/nOpsdlZ9tNWHCo15VFxCLWeBbPNX3POM4HNyi/ig7WHKLRG4RCFoJp0Tk05gihTXe62wWRZZvgHmxEFEb1G4OLWsdw/sAXb7T9ikNxRF27BTvfQa60nuFUGbunVjJZRBo4XV3FjenKtTdSEEYlvc8z8I7uLP2RZ7j2EaZrTMn4kBt3FQJMAO8rT5unjOnLbnL1Y7C5A4OXRbbl/wUHsrnMRH3YXuLAztF0GY7qvJTzEzLpD3Zm/fSilFlVty2r/X4bKOvfOdyFMrxLdFoaqivY9dlJqd/JS57toa2rO9vsSvAtwKklk+rgOXns2Y+oQ/rvyAAuL1gBQkN0MffdAzTnPNW6/px/XfTYLh1PPyE49KKqyBbUfY41arunurh6TXVDBJwu30a19Mh1aNfF+X9+7Wp9ey/ff7aCitJotrQx8P221d9FSsWN/HxTHxZ+Yidf0ZeWSfbz13ELem3UnmQ8PrfeHcdXIbixafxB7QT62Ji0QRMFPgDNj6hD+1b0Nr6/eQ7i6GNlhoNoV5s2nq6otvXn/wBbc1Gsw926ax73rF1Jtc3FFmzS/c3lrbKMlO6MzNVVG5NaZXLvxJZ7tdAvjP8wMOnn2dE7Lsgq5Z/4B7E4XG7M6UWnVc8dF86nWPE6/JtMwaFRIossr7glu5wqA1SGj1wjYbOfao5JEcsstvLz6KDV10h2qbQ5251YwPDXGzyM87dL2PLk0E6cLQOCKLglMSu3md299O0lwqz2L6mp6DqqmuT6Rof1SmLHpBEZB8KuOEui0AK0EgujiaIG7I/Tcl6xHhvp5g2ONWppGuAfD/AozbeKig3aevu2Lj4ukxuZg+YHTjRaBretp3vZTtF8Z3gKzNaBdP4fzOSV+r1rXv6SNCgoKCgoKCr8PRQUV7N91kmtubbjyR0N4xvWMnYfIKyjn5XsuwxpiJCVSz6CZm7x2m8e+80xgHzy0F1kWcAjh9aYPnKgqQiWIqJwGbLijg924bb+fDhey9ngJt47SUmQvw+J0R21MH9eB277bG9RGBPd8f2xaHBM+24HdKfPpjtNem0gQRFqZRtM8dBjZ5uUcqVjEruL32FX8HuHqNL7aFsfBnBYUlDfh4NRzQvPDU2PQqyUkQUBGZlDLKGZf253xn7l1zSJDyxncbg+D2u3BpK/GILbmxR8mkZnnjgw2qN2LhnqVyJPDWvP8yiOEaCRkZFIi3doOnjmBQS3idMmYjDV06LEDlcrBo63voK2pOeBOGQ8mXg+g1cpksRtJ5aTsZAuMqhC/BVp/WxEmtLFRUllJsTOZ27/PQC0datB+LDBbGfHMfCJqbCwok/g/c2AkTV2CFVYY3iqKOZ+txxweSm6IAWOt5t59Cw78oXbsPwnFcfEnRqtT88B/xvLgvz/m47eXc9ejl9Y7EdWoVTx96whueeZbroqR6TuoA1Pm7sdsdbhrJG/MZkq/FLY8cDk3f/E92rIiztoMgJrq2nJGnuoYABu2RaJLKOXhLYtRCSITU89FXvhOesssdu74Xqaw2ECXHvuZdnwGhrBOnD4THnTy7PF+Dk+N4emfMnl/yyn2nmzNK4v/xVNj57G19C423fsCWflNvB3b4gy35oan7NItvZvx7qZsb1SGxe7isSWZQOBSss0pc8/8/Uwf19GvA0qOMJD5sNtp4FSr0KsFBtdGVXjy9Dw1qhHgpVHtsDtlDCa3CGaVOYzYFv6TfwBJdItnyrLMQ4NbkRDm9rYfKCxhScVBLFYJoVYEyJOH5/EGe4g3uVcYzlZUAsE7z/SkcG8nHmq30BSIEJx+4Y6+Cs3B8PU0Dx7RgfdfX8pPC3YR1jSKtq+soszijgQJ16vJfLjxHbHHYPDcw4Y689+z1nV9bf2jHScKCgoKCgoKbtYtP4Asywwa3vH8GwfBM66Llmqanz3BoPQ25Is6sNiJCQmvNz3gdGk1i/ZlYnWFIguqAOF1D/uLz9AuMpYHRnXgrnkHAr6vcbgFML/eXEXHHvD+zr38q11ntxNBI6GS3PoPz41si0mnJjlcx4KD+cSGalhwMB+rRzxTJbIsq9DPRlSJWlqHXUrrsEsx2/M4YV7B3qJljO66itFdV2G2GFiRt5g2UR2I0LREr4pkyW0xXPXFIbQqCzd+/ykRhkpuGniaVk1O0SS8BJcMe0+2YnK7GziW34o9p/biccLo1WKtTQkvrz6GyyVTbXdhUIsMmrnJazPNvb4Hg9/djNFkpmP6LoxaiSfa3EWPOP9Un2ARDjUOO7esmsPJyhJmDBgH6WEBz8bXVozXl7PuSCHD2nfmk10WLI7z248rM/IIqyimWBdKlUrXKFszmJbI0vk7qSyp4kyvdhh1ar9Fyz/Kjv2noTgu/uSkdUlm3FW9mPf1FvoMbkf33i3r3bZjqwSuHNGNb5bu4pJerf1KL/nqMHx63TgmvP8VHUKLuHXQMDo0ifCmUnicEXaHSOmxZJq0OsnDWxeh1wqMatY24JzJ4TqqbU6qCqPZvK4XE0Zk0aH7DgyH21KU27xesZvCKiuf7sjx/n28IBGx+lnU4a+wrfR+BiY/Q2zoAMDdeagkEb1aRiWJ3JSexGc7chAEZ2342zm0KoHreyRx8IyZzadKccrURlUQVITnvgUHeHayky8P5xIjVXgn2jJu0SBPRMojP2SgliSiIqoBGNE8FfDvhA+ercDqcHm97y+sOkqYToVLBo2hipAk0KCF84gARYcaACiqrPJef922+3biosot/FlRXukT0bKfKXP3N3oyHmrU02dQWzasOkSzMT2w+txXq8PZ6I7YYzBYHS6cLhlRcHvr6+vM/+i603+040RBQUFBQUHhHCuX7KNV2yYkNY/+WftvyynD7nDRtPgsDlFi5ikHlpO7gXMLMcHG+a92HkIUnBTbQpFUAtklFm9Kri9Hy4sZkJBS7/l1taVOC4qNOJ0in2Su47nFJWRMHRLUaVJgtjLu0+3exSIPwfTqfDGqE+gYeR2ibRz9Z/xA+6bZtE88ycXtyjhY+jUy5yKQ/zPRf99qq5ass0lsyOzC1mNtqLFFMSwxDQG733YCMjMmuB1Id3y/j+pa27Da7kISRa/NtPJIEZFRJXRL34vDIZFYMYazxSEUGBqObLC7nNy1bgHbC07z1oDLuDQlNeh2HlsxSmvBKBbSo1kzvt5v9UavOGWXNwIkGPu2ZyDIMmURcX62ZkMRt3Ujk40SfPnBWhLaNOG1py7hRGmN9zh/pB37T0NxXPwFuHHKMHZuPsbr/zef92bdidFU/4/zjsv7syvzNG99vpJVj17OZ/sLeXfTCa8Og6eTeefKMVz/6Rzm7dzM2OsnEROi9UulkEQBg0qDOacFnXoWc9e6BbzS186klh39VqmdLpdXRbmqysBgzb84GrIcoV0GN/Y3EhEiBXQMBWa3grHVcS7HLkQjMaJVZ4z6D1iZ9xBrzjxGz5j7aBc+qXYL2ZtgFxNyLuXkrnn7vRoRAFqVxFe7T1NpPTfxFgR3uFzdAePLnaex2JxIogOrXWL2njzvJDZEI+HyyQGUZZg+rgP7nPmcsBtoGhbqd98911TXkWKxO7E5ZaIj3E6Imzq15fruLRrsyNWShEaSqLa5B5BgAkL+YlKgUUsUlVUSa9QSrld7y91eyGS8c4/mrF12gOaSWxTKMyBoVVKjO+JtOWXe1QIP9VWoqe/afk/+aMeJgoJCwyhaGAoKf388dmJcjZWjmWe48+FRP/tYKZF6TFXlhNprOG6KwyKfq8rW0EJMeWUpsiwgqYwN2gNmuxWnQ2Tq0gy/zzUivD62Ayadmnvm78dqFynMjya+aS5nTqV47Zwyi51lWYVeh8S2nDK/xSJN7Sq+zSnjdMnnteGySyw4nWFsPtKR/Se7MLZFdya2jaDCfhqrq5xjxQU88eNuKmo0mGv0VFhCKDKHIcsiBo2IJIhofQTuDRrRrXkHCIJIuF5NSqTem7INeCupePZJbVlMT+0uqqoM7NzSjV1U8MXmXQ0unjldLh7a+AMrTh/l2fThXJYSvPQsuG3Fz65oy/2z52OXtSw6qvGrzOJy4RcB4qHAbGXOpixWbT3M5cO70a57O7+5yPkibn0XJ997ewXlpVVsbNOcRe9u9tv+j7Rj/2kojou/AFqdmoefncC913/IOy/9wKPPT6xXQFGrUfHi3Zdy/VNf8eKHS1kmRFFTOwEVa2tFA3RNSmDaxEu4b/ZiHpyzhOEde/qtPL84qo1bvNMpsW1nDEN7a3ho4w+YbVZi5CTvtnVRC1qe7XQrX538kW9P/cSZ3QV8u6QllhqNt2PYllMGss8+osAPN6fX/ti1jGg6g/Vnn2Zb4essP7oHlfUGb81qlXTOw+tJOVmWVUhFjR2TTg3AzbN2+7Xp5vRkAK9mQ2GV1Vv5w+JwolY5cLpUXmXjUI0EAsyc0JEbZ+8F3OkoXRNNnCxxEFUd6IHfllOGTx/qRa+W0KpAbajCZdPw/qYzfLz17HmjIAwatddxAYHhdXUn/Lf+J5fisvojNBpD+07u+5R/LN+bRgMXpnGRnhSO76sZopF4YGALpvRLaVTKyu/NH+04UVBQUFBQ+CfjO4FMyTxBolpiyMifnyYy5O31JJUVUKnWYTaY/OzNhhZidp7KoU+LJCb17FGvPeB0uah22Plq51ksdv+IEFEUmdQpgVij1mubPvSjjeiY9bTpuI/kiKF+AvLhehWZDw91l+30WSzSqyUEAbS1GnXniw5ITwpHoxL9dDskUUOEtgUFZitjP8inxt7Rq1VR43ChlQR0Gon1U/p5K9R5jrn1HncVO1l2n7/MYmd3rh2DRqLK5sSgFnlwUEum9EshJlTDrFPL+PrMYlqENiPcehGjh4bwzLIsLA6n3+KZb/tjQjU8tW0ZC7IzeKTbYK5t23BVvKLKKp794SdkJE5bmqBViwgCXqH9GocLtc/8wHO/2r+yiqa5xxElNVdc0oPk6HOLjhcScVtSZGbxN5spjovkjF6P0envUPoj7dh/Gorj4i9C63YJXH3LID5/bzVd01MYOa57vdsmxobz39sv4cHX5xOrt1JqjANBoNrqILPA7O0QRrRvzT1DB/DWqvXu0qOSxjvZBXDWCk0aBRVXJQ0iXLeF/9u+gmtad0ctneswPBg07monoiBybfPRNA9pwrRDX5LWM5/tW7pgt4d7OyWNSiQEdyqGWhKY8NkO72ReLeqJFR7jg73PcEnnVRzIOY5BOxEwBEzEfTUiCsxW5uzLo07QAwNTImnx4gqvBxlALYBdBr3GiijA4BZJpMWbWHtnX3pNX4/TCVPm78egFt35fBqJ7BILVQ4LoSpDwD1314uuLbsqy1zXPYm7+jcnJkTL+hOFPLrnAOaS8EZHQejUKmrsgY4hX3w7yujwEIrLq72f/5zJeLOWMWi1ao4dPsOw0Z0DtDcaQ6xRy+a7+/uVbm3IafFnQBlwFBQUFBQU/hg8E8hKi43I3CKad2mOKSzQzmrssULLilC5nJwMT8BW67QwqEVeubS917FQl9JqCydLyujYNKVBu8kbYxxkoWrpLb38xOg9i2tfHDGySr2Qj07Owuo4Z1dZ7S6vLVh3schzLR5798udp72C+5LorhbSNdHkdTrUZ/NtyynD5nB5Uzxk3KVbd+WWM7lLAmnxpoB0GI+IpkdIf8rc/YjCudRpi93F5C4JRISIvHH4K1YWbGNwTHf+lTCRL3ee4b/LsrDWOmEkEUxaiQcXHuSjbadqnSHw7xEi3x7bw/D4Tkxs1rXB6IdKq41bv5pPjc1GhdwUvUaHWhJYe2dfdudW+BUi8J0fbMspI7y4AK3dSk5MU/YVVPk5Li5kke/915ciu2TOtEv+XSJ0FdH4+lEcF38hrrxpIPt3n+Sdl5fQun0iLVPj6922f9cW3DyxHx99v5GmgsRpYwx2GQa/u5n9Dw0iLd5EgdnKUyuK0MgxbDh6nPGpLbm0S09aRYcwYMYmr/dXEqFfs2guaz+e/25fwReHdzJhcBuaudrx1NIj3nM+PqSVX85eeWEidyb/m9eOfEKfAds5ur+r94f+5tgO7M4t54MtJ6myOf1y5QA+3Z7L7C1DySuN5voBP/L42M9RWR7CqA6eV+jp9Cw+VUXUosAzI9tw7be7/ZwW4HZaAMSHlQDw5Q4H41pb2Z1b4betQSP6iV3aBBeCSAANOQus6lLsshNnVXijOzxJFHHWrfvaABEmA3mF5X7t8Z2MN6YTFEWRmHgThfkVjT5vMBpSjlZQUFBQUFBQ8OCZQCaXm1HbHeTER7LuWBEDW164xkWHGAOR5lJKtSFUq93i6BpJ4L1JDS/G7DqVD8Dnuwr5dM/qeqNi1aJEhEaPXVObUuyzUBVMDyPWqOXBbsNolgOfZC+kQ9dSdu1si9OpQqsWSYnUszgjn/Sk8ID2eaIUPLat70Lhrd/txepwL6ppVSIZU4PrdqQnhfup1osCXPvtbgQEZmw64Z38g390rSft2OF0UWlzolOJaFWi95wHigr49OxiMiqOc22z0QyJGETbV1ZT7pO6rVOJPDy4FUPe3ezj55GJTizg22NF2MpimHUY5m5YzZtjOwSNfrA5nNwzaxGHzxby7r/G0jY+wc+2TIs3MTw1Jqi9qakyE2UupjQ0HFuoye9exxq1jV7k27YhizU/HeDa24bwyVV9fnPbVhGNbxjFcfEXQpJEHn1uIndc9R7PPzKbt7+4lZBQXb3b3zI2nRNnS1m5MQObpKbAEA7A7D15/N9Ik9fLXWINAz2sP3qMEI2I3K4bzlp9B71aZPq4jt4fzTPpF5MYYuKlXWuIVRchStG4nO7X6MmfsujfIoq2sUa/H938W+7mg1Ofo+m2k5kHI5j+gwqnS0YShXq9nS2iQgDYcLgT+eURTLl4HpLpCT7fOoL7FnQjw6fcE5zz2Hs6dr1KRK+RSAzTB/WMe0gILwMgvzzCncJSh6eGpVJQaeOjbSeZMnc/HXuU0iPZv664r1Og7sBRYLYydeVGJL0KpyWUGRM6Nir1QiWKOIPlntRDhMnAgWNngn53IZ1gTHwYhWfLg353IShRDAoKCgoKCgrnwzOBvO+Oz8jVqlludrH43c2suaPPBTsv1m/LRJJdlIRFeT8zaFR+pTWDsfZoHgDlVgmdpmFdifgQI2mRIVx5UfdGT2AHhg/gkKGSrfGrmXCphd7a0QxPbteoymtWh8tr22pEAZtL9qaAV9mciD76dXXxjYKVZbfmGzKYbW7HS6/p672LdXUryKVE6r1RFlaHC6NOQiOpiIgsZUHFJ1hdVh5tdyNtdO2ZsTGbaltglHBRldXPaREen48hqhhLSRTms7HUOJwYtW7PSt35gNPl4vEFy9h0/BQvjhvOwNbuhcu61xnM3iwpr+atz1fSNC6CR64ZTpt4Y9B7fT5btbrKytsvLia5RQxX3NgftVr1m9u2imh8wwRZO1b4MxMeGcpjL0ziTG4pr/3ffD9xmroIgsCztw4nrW0SzcyFRFvKEYDJXdz1mX3DpGxCNFMG9WVpxhHm7NiIRnJXgtCrJbommlickU+B2YogCNzeoTdvDbiMUmcZ8a2Oo9bWeM/57qYTfj86q8PF8oPV3JtyGyVFUWy3LSO2eQZmqx2nS+a5kW25b0BKQNmpSZ0SCNOpUIkCR84m8Z85N3E0vylX9/+BK/rM56esk942FZitlFnsSCIYtSrC9Wrev7wzGVOHMDw1Bo1KJFQjYdCIvHBJW0w6FXq1SJhORdeUo1RbdZRVRZGeFE7XRJNfSdWXVh3lvc0nqKhxYrY6cLoEyq1W7/cep8DVX+2i/bTVFJit+LLxZDGqkAqqyo3U2F3syS0LeE6eEqx193VdgOMiJiKE0opqbEHSS3yfh702L6++c4aEh5B7pizgcwUFBQUFBQWF3wKd00lxZh5n4qLwCGW9u+lE0G3rs18AftyQQefURDL+O4bPr+rK51d1bVQ593Cd+5w6jfa8UbHxehOZpUWNdlp47MRpczXs2ZqOJMLKmq/5JHsRLux+tlnda3Q6z4mdC8D/jWxDuF5NqEZCoGHxcw+eKNhvrunO5rv7u/UwtCoEwZ0S7sEjXOohu8SCQSMBYNBIvD2uI49McNKp5zZCVDpe6/oAbXTtaT9tNa+vOx6Qpv308FRuTE+utallwpvkY4otxlwUQeHpODzBGS5ZpmuiiYypQ/jq6m6svbMvW06V8vDcZSzen8mDw/ozvkvaee+zhxqbnalvLsBcbeXFu0czoUsi2SWWADu4Mbz32o8UFVRw35OXoVb/Pmv9imh8wygRF38CLjSXqVP35vz7nov54I2fmP3ZBq64YUC920qiyHsPj+f2l76HrFxevDTNmyayLaeMtXf29RPmMeq0vLJsDT1jI7mmz0A6J0YG9VKOTWlPcmg41y6bjdgqm+JTTbGYjdzRtzltY40BpVjfWH8cma40b3OQlq1PYAyp4XhGZ55cmonThbdUq+/1vz2+IxU1dp5cmondGcbrS65gQo/NXNJlPWU1d/HRxuHsO9UeEL0RHDMmdAiIaKgbCnZTejLLsgqRhXJk42G0zpHsf/Bir7pziEbyhsbZnC6/KA7ZpUKSzqWjnM8zKurMCKILS4WRGoeL19dl8/H2HDIfHtqgqrFLlpHqEWANRkJMGLIMZ4vNJMdH+H1XtxNMidQHPWeB2cr3WUVElVloP63+UEkFBQUFBQUFhV+LzesOgyyTH3vOfrmjb/OA7RqKIM0tKOPY6WLuu3qwn/5ZYwjVuifon17ZlX7No+q1fQrMVpbuq0YbbSbt9WUcfGD4ee0kj85Epc1JZb6JOYu60rFTFnLTrXQfqOHkkRYUn2nmJ8LZftpq7z4eDBqJtHgTmQ+7bdqUSH2AsGZ9eCILCsxW3hzbAYDkcB2D393s3UYlin6TZI92mygI6HV2MtU/sKc8g/TIDjzY9hpCVQYWZ+Rjd8pe0U6nDLIso1dL3NgzmVijlj0PDmTqhqVkWooxF0VSmhePb/6K0yV7K4KkJ4XTftoq9PJZQqQyruvdnVv692zw2nxxuWSe/eAnDh47w4t3jyG1WSzgjh6RkTGoRWTkBkunetiwKoOfFuzmypsGkNY5udFt+KUoovENozgu/mB+bi7ThKv7cPhgLp/OWEmrtgl0792y3m01ahUzH57A/a/O46Nv1xBh0HDrypygE9cHlpxFcDXBWXiGD9au4OreA+qdmHeNSWD5uJu4aulsxJRTXN6sBwNaRCEI7mO+vPqotxRrqEZCEEROHe6IbAulWephOjRVs2B5G8wWAb1KZM6+PEw6tddZ4RHb8ageuzvp3pRWX0J5zVvcOHguB3P2sHDXYLLOxqFXuwOIGipnBO6qInfO3ceITuu4tJuDlsbLvPukJ4WjkkT0ahm15O6wVaKIJApMH9eBHG0JhyqzvMc6n2d0w9njSEi4LOcEgXwFmepzfDhdMqJ4YY4LgLyC8gDHRd1OsL5zbsspwyZJqJxOHPb6S4YpKCgoKCgo/PX5s4gAblhxkLiEcBZOvYj3Np/kjr7Ng6aJNLRYtHr7UQAGda/fHoaGr/mStrHoGlhZ35ZThrXKgDYaZE1lo+yklEi9N/0awOFQsXtXe+JzkkhJPUzrtEySWpxkc0kkl4X2PidW6uO0AHcgiqfNnnMG09Vo6Lp95xtvju1ASG2lEACn7B8y4bEd5x3byzrLQg5UVHFLi/G0kroxbcUpJndJCLCBfRdDARYePMOKop1kWrIZGpfGd5kiEJj24qkI4pJlr9Oi0hlJx6TURr2jBWYrW0+VkrHjECu2ZnHXlQMY0rO197tBMzchy7jF9tUig2ZuCli49Tve2XLefG4hqe0TuPbWIY2+x78WSrp1/SiOiz+Yn5vLJAgCD/xnLCeOFfDS43OY8fXtxMaH1bu9Tqvm1QfGcd+rc3nlo2XoI+IpUYf6nXNZVmFtmSYD1fZEjLoiZq5eTogUB9rQoBPzJiEmfhx7PQ9vWsJ3J3ZQsbaCV/uOBuCT7ae8eXgqSWT9FE8ncREHq/fxRtbXdO5VwrbNXbFY9Nw170BAu41aFdklFu89iQnRsiyrJW/+eDN9U7czqutaHhv7MYdym7F0bzr3LQgs3+nb6QEM++AnJvdeyYC2+9iZncrda09x9NHWPvvIILtFjM612b3v64dkLE6b99gNeUYLzFa+PXQYp12PzXHOCaFVn/Nq1+f4qLbZySmz8uXO043SxGieEAnAkZxCendqHvC9bydY3znTk8Jx1ZaU1TmdSniagoKCgoLC35Q/iwigzWpnz45sRk3owaBWMQxqVb8ehWflPDRIikTWyQKaRJu8CznBqO+aQ7Xu666oqaGiRl3vRDk9KRzRbkB2iqhCzKRE6hucWHsmzZ4AWr1KoMYhY9BIVJSHsXljd6Jjikltd5QPTn7DhtKtXN5kDGpJILTWqaCR3NHTL41qd4F31p+68426CPhrZVicVr7PX8TiinWESZE8kXoXIXIMnV5diww8t+II+x4aFGADe6K6209biSbuJBpjOTe16cVt7fqwcOMaRMG9GPjcyDY8ufQwTpf7WXRLNDFt2Rqv06JGiKVFlOG876in7Gl4cT5R5hIuGdCBa0b1CLhuj4Om2u5CFAT6vL0BASHguNYaO8889C1Oh4tHnpuISi39ovuu8OuiOC7+YH5JLpNOr+GpV67gnus+4PlHZvPq/25sMAcrRK9h+tSJ3PfaPOTM04gR8VQZIoOe0+rScdOAYazK2I4l7zSTOnbk8RH9gw5qepWa6QMuo0t0Ai/sXMXYJZ/xr6RBOF2e70Wmj+vgV3Yp1tiTKG04/9n3AX0HbmP7lq5UlJvqHFcMqGHdftrq2jJLAiNTrmdM07tZeWoW8eELuH/Ud1RZdXx3ZDl9EoeQZGpJtTWM9Df3oVObiQ8v5d997Tw1YT5alY0fdvdm4a7+iLhYllXI8NQYXl59lBqbkxqnjEoSvU4Tz7kTWpSQ2LyGhxYe4Mb0ZNLiTfV6RteeKEDU1GAuPTcIvziqrTd8zn0fAh0f+RU1lFZbWH6klG8P7g4QTApGhMlAQkwYB4+d9X5W32Ban7Ml1qjl9Su68daBbBZe2VkJT1NQUFBQUPib8mcRATyw5xQ2q6PByGHwXzkXBLzaaB5bJ6egnCYxJu+2dW2cArOVGRuzsTrcuhG+15wY7t5vf24RV3ydWe9EOdaoZe2d/bn4+xOoQ8z0e2dDbTSF4K3uEUw4vtruIlQjcf/AFkzukkB2iYVTpdXcNe8ARYXRFBVG8fQkFYctG3jm8HTuv7wr2vKuPP1DDi6Xe7L9yA+H+M9Ph3+2g6nufKNrognJJ7LX197eU3qY6Ue+paCmhLOnmrMpqzXLfjrC9T1qvGKbMh6x/7YB783aEwVomxxHHVJJdUEC3Xq0J86kC7A9J3VyVwnp0sTIS0tXsOzQUW7q25N2ia3olRzBsqxCb0UVnUrk5dVHecSngiHA1lOlRBadJaKylNLQCLr364Tgk2rtuW6PI8igkUAAWYZKm/+7L8sybz2/kKOZZ/jv61fRtNmFV7ZR+G1RHBd/ML80lympeTQPPD2O5x6exQdv/MSUh0c3uL1ep2b61Ak89OZCtu0/wXUDmhMTqgHckQrhehVWuwutWmRS52Ru6pXC04tXsGDvfhyOKl4aNwKTPrCSiSAI3Ny+Jx2i4rhjzXymHVqM1pQIFWGoJSFA0bnAbOVUnol7mt3GC5kf0rvfDnbv7Ehhvnu7MJ2Kt8f7V+DwqCt7vKaP/HAIk64T3ROvYeh7zUhtkkmbhCN0Tj7I/opt7K+t6vnK1f5tPXK6OV9tvJgzZZ4OSeauefsQEPxKOUki3k7c03nW2EAUZd5Yf4w31mWzr7a0bDAMITUIAtiqz9Ujr7Y5z5vKsiG7CEEAl+xOffEIJp3PoEhrGc/erFxkWaaw0ub1UnvSXOqWugp2vOZNa9NMqhVxTgUFBQUFhb8rfxYRwN1bjyNJIh27NWtwO9+Vc080bkyI1mvrtMwtYnj3FkGjKgCvbkS1zekVtfSUyFQLbrHLpZmnz+vMyS6xYK8yoTFWUC1X47D5Oyp8t09PCkcS3QtxKklgSr8Uv6iEJ5cexupwolVJ3JE2hBD9EL7LWc7802uwOvaQmNKc40dTAPG8FUTOR935xrKsQuy1UdGeCoJOlZkXMr5kY9FeEvQxjA27locOFdbeD5mWUQZqC5MgABe1jvYrMQpQUF3J/44vR2WopOpMEs7KSMos9qBiqrFGLYNbhHPvdz+w8dhJHhsxiOv7dHMfx2zlnvn7vTpzNQ4Xb6w7zifbT3l14uwOJ5vW7CKispRiYyRlUXH0So7wOq48OiCetBDP3ymRegbN3IQoCH7v/nefb2Tlkn1cd/sQeg9sc8H3WOG3R3Fc/An4pblMAy5qz4Sr+zD3q82kdWnG4OEdGtxeq1Hx2K0jeerdpXy+cAtVVRYevM7twc18eGiAE+WlcSNIaxLHK8vWMf79r3hj0mg6NY0H3B3LsqxCwO34SDHEkZPZHG38CQxNTtChWXNeHzgiIIXCd1BZdOs9vHfyM3r22ktnzSDaqnoyok1s0BA9X73KKpuT277bi14jsfbOAcze09Ldqa110DqulCeGR/D1nv1o1BWYLSEUVETw1piLuH/VCax2GYNaxiUL1Dhc2B0yDpd/PqHHq+vXedaeX5bd/5i9J48p/bRBHU/HK4oBsNW4P/Ot6NIQTULdx3bI7p+nRhI5eLaC1UeLGJsWR4XVGdTJ1Tk1keVbDnO6oIy9xTbv4At479P5PPVNEt2Oi9xTxedtZ2P4s+TPKigoKCgoKJzjzyICeGh/Dq3bJaA3NHx+X0eLJEKZxe6efNfaOrIABZU1AZEky7IKOVJY6RW79I18GDRzEzaHiyqbg1Yh8O2uY0hinJ8zp64dk54UDjVGAPTGSsxWrV8bAxFqbcdzBqznmJ505JRIvfcco6JHcDirCSvKltO67XESmp7h0IE2FBbEICM36GCqz+bynciXWezM2ZfHEz9mYql1XITo7ZSFbOX2HRuQBIlrm41mfNMhlFfLPCat9t6PSZ0SGNQyitl78riodTQTPtvh5yAqdpRz88o5lNksvNV3HJUVodwz/wBT5u5HEt33wJMakjF1CLJs59av5nG0oJjnxw5nYtdz1UO25ZR5I7d98ejE9U008uj0RezNyuVfo3vSomNreiW7bViPk8oTYeEbDeNZbKz77i9ftIePpi9n4MVpXHXzwAbeRIU/EsVx8Tfh5rsvJvPAad54ZgEprWJp1iK23m0LzFY6vb4Ou0NHXFgU36/cS2FpJc/eOSqoE0UQBK7r3ZVOifE8MOcHrv54Fg9ePIBL0trTbtqaWl0MCNermD6uIzabmuKjzQiPL+B4zAnGLP6CJWP/Rcc4d4SD76CiV4scy5d5v/dDvHH4SzYUrSEmwkJEyOSAdscatSy+Kd1PBdnicCGJArP35DG5SwIzNp1AENQUmeMQHB1Ylyl5vbU6ScBiiyLz4ZbeDnzQzE2oJRFJBJcNPKJBAAWVNm97PZ2nJDlxOEQ8A9BFraNp+8oqb5SKxwsMsP1sPrJTxOVQoZEEXr8srVFCSseLS2pvvBaDWsTucvLYkkwA3lh3HINaRKcOdEL06uBerdh+4BT909uilgT0ahGL3YXF4UJVK37UkJMsPDKEsHADJ44WnLed56Oug6ohISQFBQUFBQWF35c/WgTQ6XCSlZHHJeO6nXdbj6NlWVahz2RYQBLdemhOSQ02e4CD4575B7A73ZEWoRoJjUpkSr+UOiKYAjaXBkmwMn1cB8L1aq+DIJgds+bWIVy/5jT2sErMRVEAtRNzf9z2o4zF7kIlit6Jct1jeqr3eSb37vZ2JD4+kVbtDtGj9x4KzkaTldmKwiprUBuqwGyl7SurvREcnhTj+qqUAGi1Vlq1PkmzlFyWFjgZGtuT61PGEKUNq73ngRP8WKOW/xtp8lYU8TiIPtm/n89PrCNUrWH2iKvpEBXvLunqqrX3VSIIYLG7MGpVLNh/gq+2rMNcY+P9q8fTv5V/xI3nOXoqFHpSVLRqkWjs3Pj0V5SaLTx75yiG92nr3c/TLs+11hep4vvub1qTyevPLqBLegumPjMBUQzyMBX+FCiOi78JKrXEky9PZsrV7/PMQ7N4+4tbMYQEnxx6HQc2J4TFcmV6CstW7OCOF2bzyn1jiYkIDbpfl6QmzL3tGp5YsIyXflrLgn1HsNm1gFu4xlrrIFBLAnpJRdmZeKzVeqKb5nHVyi94e+BlDGnasjZ0zj3xt9hd3DN/P8NTh/JIuxtIOrmUb04tJceSz2PtbiRa618h48BZM2oRb71onUqk0ubktbXHmLHphN/kuLDKiugToqHTSAGKzL4dcmaB2esUEYCb0pOAc52nXiWiUjlwOs85Ik6V1VBmcUc1WBxurQxPCS6nUIPLocWoVXs91Y1h/dHTyDKY7Wr0arDbZb/vq+0uJFFkWVahd3CNNWpJig8nPsrI1gMnmXBRZ58Bfr+3QouvXkgwr7wgCKS0juNY1ll+Kb4OqlCNVK8QkoKCgoKCgsI/j1PZRVhr7KSmJQZ8F8xOiTVqCderz02G1SLTLm1PcoSB7etFNu0+6hdJUmaxM2Xufqpq00PuH9jCm65RV/vAiRatYPFLq12cke9NUTaoRT875vaRqXxj341BI1NtE5DlwMlxsHScuhEhs/fknVvM85ncG9Qi6VHtWLo+nITmp2jZOpv+g7fwzME8Bp7tw/gWXUkwnUtFPiew797fY4/WrVIiSk5i4wpJaHqGmFh3dO2ZvCbkn2zFx1PGEKVtOJ058NokDFGFvH90H+0iY/lo6CTiDUbvNp5UGbVKQBREVKKIQarkvTUrCNGq+eqmybSNDxRk9X2OKZF6dudWIMsyUkkxj7w2F1OojvefvIJ2KXFB2+WradFQKtT2TUd44bHvaN22CU+/eiUazS+fGivRxr8diuPib0RUjInHX7ycR27/lDeeXcDjL17uJ1DjoW5Hetf4XlyUlsDT7/7IjU9/xSv3jaV9i/ig5wg36HjnyjF8uW0PryxbT7wG8uVYqpwhqFVuLQtfj7izJorq06G07ljEjau+49rWPehhTOO5kW2YuigDi8OF1aeDvab5KJqFxPNW1jfcueNlEqqGcEunPqTFmzh4tsKv8kiIRsLhcnswqms9Ge7UjRQAt5Jz7XZPDmtNYlhg3WbfDjnWqGXNHX14d9MJ7ujb3EdI9JyX/8O8LdRUhRKqVTGpU4I3TSYYRdZKhjRrwuR+3fzCABvqxGRZ5mhBHnZCMGrV3tWESuu5SBCDWkQQZO74fh8CoPEJgevVsRkrtmbhcDi9dcyHp8b4nft8SuIdujbj6/+tpaKsGlO4IUgrG4fveyYjBxVCUlBQUFBQUPhncvpkEQCm+Ag/rYSG7JS6i19PLs0k8+GhWFrEsnTDQU6eKaFZk0ivsLqvvetxWkDgxPiTTbtYvG83avGcvZUSqafapxqFQS1SbXc7QU6e0eOUXahDqtC6TH66aB6CpePUtcE90cKeCBEQEAWBapuTlUeKkEQV2Uebc/pkIs1STtEs5TRLKmaxcPv39I1Jo39cR5qHJOCQbdTFKbtoFQfhkcU0MZUQFllCREQZkspFjUXLyewkTp1IorrKcMG2WaxRy/b7+vHAxh/YXZrHoIRWXBrXG9GpqbOlO1VGFETW3dmHjzbtZOn+TJpFxjLjqstoEmYMOLbvxN/TnuZhOl75dAVLN2XSrV1TnrtzNFHhIUHb5ftcG4r03bw2k+cfmU2zFrE8N/2aehd8L4Q/S7WevyvndVwIgpAEfA7E446j/0CW5bfqbCMAbwGjgGrgBlmWd/36zVWoS12vXqfuzblhykV8/PYK2nZoysRr+gbsE6wjje3eiv89fSUPvb6A25+bxWM3X8wl/drXe65re3WlxmXgpR9Xkqg/g9kRxnNjzqVJDE+NYfq4Dt5/mwwST2xaxhdHdvCJJQPL2eaoVSosDnekwl3z9nu3HRDTDYcljKf3fUSV6QcmLTnArEtu4vu9+X7tGdYqihVHi7FyblCZtuYYb2/MZvq4jl4Pc4hG4vmVR7xqQpvv7h80ZaPAbPXm6y0/UuTX2cQatUzsEsOsKjNd9L2Ze5H7u66JJj+hoq6JJu99yq2qoFdcUkBYoO9x6z6/A3n55JZV8NSIIcSEN/EOgnP25XGsuJqxaXGcKqvhju/3eUVKQzknCNWnUwoL1hxg/7EzdG3T1Nt234HofEriPfq24ssP1rBr2/Hz6qU0RN3BI5gQkoKCgoKCwj8BxZ4OJC/HnRo7es5+rILotZEaslNijVqmj+vAbd/txeJw4XS57ZqB3Vvx6uerWb39KDdclu7dtiEdD1/7aELnFBbv282hswX0belOW8gusRCikby2pCDgTV34aksZSWkCgq4Sa2koOlXw9IK6NliwNvn+DTBjYzZvrDvujZLQSiDIWm5qOZqXVh9GH55PQkIxe9VH2Fa213vsi0ZocTrd7VhYvZXZG6pwyk469HRX0TBXhJIkdiBJTOXNDZXYnWCpTaGpa5vVV5nFs2CX2kTise2Lya4o4e60Aby4oIK5zv1+dq5/qgw8t2Qle3JOMrpDG5677GL0GnXA/Qo28S8pLuPJGT+Qm1/OrRP7csNl6Uii2GD1PM89ry9Fe9WP+3j16XlEN4/hoVevPO9CXWOjKP4s1Xr+rjQm4sIBPCjL8i5BEIzATkEQlsuynOGzzSVA69r/9QLerf2vwm9IfV69ydf3Jysjj/+9tYxmLWLp0bdVwL7BQr9aJcXwyf/9i8emL+K/7y1lX1Ye918zGI1aFfRcYzs057Efm6NzFmBUlfLpxpXsONWeK7q1DhDs0UkqhkR157ONZRjiThOSfJi+xq4s2mnFYndRUePgtjl70ddqN6zJsLNpXTpt07Jo0eokzx5+h5vbToIV59p7Q89k1p8oRZZlbE4XDpdbdbjG4aKixh6w2u+Z6Peevp53J3b2CweE2sohNicWhytoZ7M27wAuXAxq0s67X91BbXduBfctOIBddhDR2opRZai3Ewt2T+ftyUAtikzo2pYwvc7bUU7qlOAXuuiHcM7L3zMtGUkU2LLvhNdxUZfzKYmntk/EGKZn24asX+S4AP/37M8gAqagoKCgoPAHodjTdTiTW4repMcqiH420vnslOGpMeg1EipJ9Ps+MSGKJRszuH5MT2/EcWN1PNo1cWvDHTpb6HVcpCeFo1GJGGsXXdbe2ZfZe/KYtuYYNQ6wVhvQhVYBYHO6Gj1JDebM8P17Sr8UZmw6gd4luyOTnWDUijQN16MSVVSXJnC0NIFDex2Ywqoxmap5ZEQchbYScsqr2H6qFHMZOGzRdIiM56eDFsrLwrDb1fQamMJ/LuvA7Z2t9UYl1FeZpe0rqyiz2AmJLCUyIZ9InZa3+01g9QErVTZ35T9fO9fzHMO1LiJVOezNsfLgsP78u18P7/Op6xDws5k1Eq/P2sD6DfsJM+q55l8XMaZfG6/T4udENsiyzJwvNvHR9GVURJjYkpLEkve2NLj/hZzrz1Kt5+/KeR0XsiyfAc7U/tssCMIhIBHw7WjHAp/LsiwDWwRBCBcEoUntvgq/EfVNiAVB4KH/juP+U8W88Nh3TP/8lkbXIo4wGXjnsct5d/YGvlyyg0PZ+bxw16XsKqoJeq6MqRexLaeMrDNnmLF2PWfLt/Dd7kysxFBlkwM6MKojMZ80EJpwki3VOwhPiIK8eCx2/MSLJndJ4LkVR8jY347iwih69TzC26fepUuXJA4ebIndrubG2XuYf0NPRn+0DUcd5WGTTu232t/n7Q3e76psLj8nybnKIQe8Cst1Q/5OlJXxyoE5IOi56sNcDj7U1hvy5zuoVdTYsdicONXVANhqNKSnBu/E6j6/5Vl5zNl1gLGd23udFsE6yvSkcLS1nn2hNoLE04GGGrS0bR7H7szcep/x+VYgJEmk98A2bFqdic3m+FXy/TznVbzOCn8U4kOL/ugmKCgo/INR7OlAykqqiI4ODbCRGhMpUTdKof201RhqNDQpOcOy7ccYkR64aNcQEQY9MaEGjhWW1HueWKOWKf20vL3xBDUOF9YqA6bYQgTRiValxqSVeHppJpO7JDRKjL0+6gqROl2yNz1m7Z19WXus2Js6XVNioLwiFG1FJx7t3pTFGfl8+cMur77YEVmm2n4upeKjbTk8PKR1g1EJweYXAFaXlZjmp9GbKqkxh3BlylCu/eSoV+sN/O3nWKOWmWOTef7HlWhVEq9OHMfA1inebYPZuZ6Jf6ToJLHgNKtzLPTr1pIviyQ2rs/l6U15543KqQ+H3cmMaUtY8v0OWqW35KuwKCocLoxOucH9L+Rcf5ZqPX9XLkg2VRCE5kBXYGudrxKBHJ+/T9d+pvAb0pBXT2/Q8t/Xr0KlEnn6/m+oMtc0+rgqSeTuqwbyyn2XkZNfxjVPfkFVXj7qWuVm33N5JtJPLs/lZHUyFQ4TkZoyYlUnCdfacThdmLSSd9uMqUP4YnIftlxxC7el9UITVkz7zjlEhjn8jp0Wb2LfQ4O4rXczKorjWfJjOieOJROflMPAoRtp3uIkdqedlUeKcMn+4pUhGskbTXFp+zjS4k1svrs/oVoJnXQuL9Je21EVmK3M2JiNw+lfzxrc0Q1nKyy8cuhztPpq9u1uj9Xujs7wRD5kTB3CV1d3Y+2dfXly6WF3BQ+tu171sOZNvdf91dXdAvI0fZ/f4bxsnC4XrZu08IbjWexOzFaHt62+9/Gba7qz+e7+ZJdY/Opjd26TSMbxs1ht5waSunjuTX0d6qDhHaiqrGHn5qONfm9+CQVmK4sz8oPW+VZQUFBQUPg7odjTbswVFiIiQoLaSOezU3y/90wsc1UG7JKKTxdtu6B2eGyQpMgIjhX6l4Ov245Yo5bMh4fw+VVdubVLGoIAT4xqwvwbejDk3c08u+IInV5dy8GzFY2ybepu4/kb4JruTcl8eAgzJnQEZKbM3c+gmZs4Vlztdwyrw8Xd8/ZTYLb62ZYIBGjd2ZwuP322g2creHppJgfPVng/q2uf9mwaRoVYQFTLI+hCqyjNjacguxmF5bJXmB9AIwlMH9eRWKMWm8PJCz+u4T+LfqJtXDTzb7/Gz2kB/g4Bj50bHaLhpe6RtCk8SbTk4tk7RzF0RG+sSH7bXWhkQ1lJJY/e+RlLvt/BFTf056mXJqPSSI3a/0LPdb53V+Hn0+ilVEEQQoHvgftkWa6o+3WQXeS6HwiCcCtwK0BycvIFNFMhGOfz6sUnRPDkK1fw6B2f8czUb3l2+jWNWj33hm2lJvHFc9fw3/eW8vpnK7ixR2t6DejCwNaxfufallOGKIALkXxrLGZHCO0iylBZTlIiRzD03Y3sfWgIafEmPw/vY92HMDAhhfs3LCa8+RFGJXTlsZ7nogdiQrR8tft0bTlTNYcOtuF0TgJt07Jo1yGLlq1PEJ0oEKJ3YrG7nSMGjciWe/oH3IuYEC0zJ3Qit9zCcyuOIOCusmHSSrR6aSWu2hw8T6msrokm2k9bjaipIrXDAcIii8k80JaS4kgEnNw1bx+y7BbOnD6uI10TTbXK0O4O3BBiRRJEusafy8n0XLdvWJzn+bWN1nH5h19Q5TJyz4IspEVHcMkubylXSfTvKD0Oo2ARGZ1TE/j6x50czSkkrWWTRr5N/u3q2rMFpjADa37aT59Bbc+/8y9AETJSUFBQUPinoNjT56gy19CkacQvjsj0VpLQaagwRXL8xFkOHT9Lu3qE5n3xtUHCVdVEa6uQZTmouL1n+205ZXRNNGFzxSOdFakUSnl30wnvg5KBj7fl8NmOnAZtm2Bl4z2lUX33cVdSwbvi3zLK4NVX81Be42BZViHDU2N4c6w7zbdrookBMzYB58qgeqr5dU00sfZYMXfPO4AMPLfiCPseGuS11T32aWKkwGPbF7Eq9xgtw6PZuDMMh1UHwGVp8Xy8PccbrWzQqOiaaOLjLUdYsHsrh/MLubZXF6ZePBCNSqr/uWkkZGR0Diu3Pz+bvVm59O/SgsduHkZ0eGiAyOr5onLqpp8c3HuKFx79joryah55biJDL+kEND6FWYmi+PPQKMeFIAhq3J3sV7Iszw2yyWkgyefvpkBe3Y1kWf4A+ACgR48eAR2xwoUTrLP3/cF26t6cB54ex7T/zOW1/87jkecmNlifONgk8t0nLufzRdv5cO4mDh3LI+6GYcR2a+ndJz0pHJ3a3SG5ZFhyyzB+PHSGTzdvJUpTSqiqkscW7eB/V/YL+LH3a9KcH8fcxNQNS1iYu5Pj1Xm8NfBSWoZFsS2njDrBFAi2cK6Pvx6LOo98426WFi2nx0CB4qJo8nMT+HDUSLJLLMTUKgP7CkNaHe463nq1iCAKzL2+B6M/2ubVvtCKcEvvZkwd3ILvj++iVcedRMQU4HKJ6Ir7UJhrBGQ0kkCN3YXN6W7czbN243CBoVawKUQjoQ2tpEtUAhpJ8nseQMD9vbR9HO+s2YzFbsfsSPSW+PKMSHqVyPRxHQLuXX2ha3FR7pC/4nJ/j3xDBHvuAy9OY/miPVRXWX8VpeX6UISMFBQUFBT+CSj2tD9OpwtJuqDg76D4Tiw7RBu45T+fM+O7TYwc0++CxBQNopoqm42SKgtRoYaACbDHVvLYkzIQk2JgVlYGZcdae48pAC2jDPXaNp7jllns2BwuKmsFMn1Loxq1Km/Z+5RIvd/EfVKnBADunX8Ap8/Tr6ixB9hyvkKmHhxOmT5vb8Bmd/k5W2bvyeP/RrptyBCdwGHrYR5YsRWVKHJvh4GU5IezQz6BA3d52Hc3nWD+DT05VeaO6u6SYGT4zB8IEfIBkUdHXkRsWBxlFgexxkDHRaxRy9o7+9Jn+noiy0t47NXvMeo0XDa6D/8e1ZVoky7g+dYtjxtsDuS9ByK8nKjj+4/XERsfxhsf/5tWbZv4nf9CqqgotukfT2OqigjAR8AhWZZfr2ezhcBdgiB8i1tEqPzvmo/3ZyfYBHTY6M4UF1bw8dsriIw2ctsDI+vdv75J5I1je9G7YzOe/fAnHnpjAcP7tOGBa4YQYTIE7VCiQjS8suYEZoeROG0Bh0/vpeerOay/dyLJkaF+53TaJRauCwFDMvuduYxa9DEPdR3IpUmdvFoOAC+PbucVqSwwJ7AsqxmWimzWFO0gtkke0V0LeSN3HxVlYZRvjcJSGUZ1lR5LtR6HQ6LKdq50qlGrYv7Bs1hdNYSGWtHprZjCKthk28d9ByoxO6owRWjIPdGco8cSEewGahyyV03a10rwRMlV1Q48t/VL4LvifQxLbhXwPN4c2yHg/naIM/DRpl30bJ7Mj8f1GLWeXEbZKzw1PDWwxnV9oWtO0T04nMwvb/R7E+y5D72kE4vnbGfTmkyGje7c6GNdKIqQkYKCgoLC3x3Fnq6HeiIbLhTfieVlQ7vw5aKtzC4Cl97QaDFFBPc2J0tKccpSgD3tsZU8C14A1eVGopqewaGqwSAYGNM+jicvTiUmRMt/fjrstW1SIvUszsj3LqbZnTKCcE44vsrm5KLW0T6lUQXumb8fpwtvNIaviOakTgk8/mMmFTX+acG+jpBtOWVeIVNRFLyLawjuKiM21zlrVgAmd0nA4XKxIPsgr+xaS76lksuat+eWNn0Z9M4OauwlWB0yWkmk2u5i1t4zzN57hn0PDSI+VMUNXyzEKJ6lyqGnwpXAfYtPI5DbYDTtpoxcUs6eQGe3UqE3cjQyjp37y3gjY03Q1KG61CfuaSuvpt3hE8wuqWDAsDTue3IMoUb9BbxRCn9GGhNx0Q+4FtgvCMKe2s8eB5IBZFl+D1iCu3TTUdzlm2781Vuq0CjqczxMvr4/xQVm5n61GZ1OzXV3DA0aBufpwENqw7ZSIs/9yNu1iOezZ6/hs4Xb+GThVrbuP8l9Vw/mkn7tAjoUj0bFc8uzWJxhIEQsIFxdwlUffcOrE0fQp8W50EZ3m8FcZMRR3YbOPSp5fudqFp44xOybB1NdpQ9QO277ymrKLPbaI7Qi+3BrjBElmCKLiY4pJqnFMb+xUHYJOJ0SDqeIKIAoOclSyVw8yl/V01JloInUkimtu2NyNKfPis3UOFyAjF4l0C3RxM7T5VTbXagFsPt4MHQqEY1KJD6+CophcGILv+cRqpHYnVuO5KMVkhKpZ8BbCwkRbSw/LvoNTJ57U99qgcdTPXtPHpO7JHhXA4Z+sIUU4L9LDzGif1qjQtqCOQ9iQjXEJYSzasne39RxoYTgKSgoKCj8A1Ds6ToIooDL6Tr/hkFoqDxlQutmOIXthJYVU6zRN1pMsUkoXP3x12QXl5FXqQqwp31tZM8ilqXChCyfISK2FEeRkbdqNR4Ar412Uetor7NCRsblkqm2u9CpBLSSQI1TRqMSOVVW421LmcXOlLn7vefPLrEEVCJ5Z3xHbp29hxqne2EN/B0hKZH6gNL02SUWvxL1giBzc3ozru7ehF1lR7l901ZyKsvpFBXP8z1HU1NtYP1Rs4/NjTctGkBGZtqKHRw6fZgyi5VCWzRl9jB3+VgZzLbg0bQ1NjsfzdvCl0t2oBIkTkcnYjYYQYbKRkbgBlus7dk0jLgzRSQdzEaQZW555FImXt4jYM7T2PKmCn8uGlNVZAPBc+58t5GBKb9WoxR+PvWtXguCwO0PjcRaY+frj9Zhsdi47YGRAT9kz2S41/T1OJ0wYMZGMh8e6v1Rq1US/57Qh6HprXnho+X83/tLWbIhg0duvIikuAi/Y6XFm3hrXEeWHynC4kwAVziJ6nJu/Px7JnZN4+HhAwnT6/zarELgw8ET2FaczbM7VnLT2m+Z3KoTvVMGUWB2i2Luzi3HYjvXgWolAVkWKC+JIr8ggiOZrZAkB9ERNegNFkJCLNzQK57TFZWsP5GPwyUgyBJXd03mk80FVFZrqKzSIFtNiLKOb2s9vIsz8lGJ5+6PxSGzK7cCi92FQS2CABrA7pDRqAVmTuhM3xQTE5d/wsCEFNpFxBKlsiKJAjqVSJXNyQdbTqKWRGZM6MDw1Bg2nShGJ5RQ5dBjkXUBA9P5OmzPQDhj0wnvwKSyWACoVmnr7fTrdtj1OQ+GjOzI7E83UFpciV2j/s06eSUET0FBQUHh74xiTwcSFm6gvKzxaa0eDp6tcFeLk0GjEgNW8we0iuHJUBNRleVUCq56Izl9baFL28fhcLpQSxLZRSVc17tVg7oKJq3EgoP5xIZq2GGG7cJhnhnWy2+RbcCMTVgdTl5fdxwBqKyNeKiuDdW1OmRCtCI4ZawOF/fMP0Dmw+4U4gKzFUl0pwt7KnXUtd2Gp8Zg0KpQ107cTTo1Bo1Elc2JQSORXWIJ0JeLCXHbhp6FsoQI+Ckvg39vWEGJ1ULX6ATuThtIjdnE5I8O4HSBU/Z3Lnn+Ugl24rSFbDlaTVJkFEfNTSizS+jVIi+Pbs+TSw+jV8sBOm07D+Xw4sfLyTlbxpiBaVw1pjeHSmq8DhVPpb7zReDWXaxdtfc0B2dvJmXvUZq0jufBp8fRsV2g1puirfbX5depc6jwp6Gh1WtRFLn3yTHoDBrmfb0FS7WNex67FKmOYM7u3Aqqa9Mqahwu5uzLIznC4He8Fk2j+eCpK5m3ah8zZq/nX499zrWje3LdmJ7oNOp622PSScxYs5mPN+1k3ZFs7h4yAL0uMiAEboypHUOatuDtfZv4KGM7S04epuhMBIVnIpBl/3xIGbeIksVH2djlVDHr8oupsDq9x1yckc/HB3d5O7i23bux+srweutYe0qdhgJO17mQPq1K9Jamqra70KpEVKK7kskXR7dSarXwYJeBABRWWbE5nThdMjLu/Y1agXC9mlijllJzAZLgoIYmF5wmESy6Jj0pnFBbNTLg0BuCHq++DjuY82DIyE58+/F6fli8h/uOVSqdvIKCwl+axpbFdb065jduiYKCQlhECNlH8gM+b2g1vMBspc/bG6i0uiMLQiFgkSbWqOXDO4bx4CtzmNY3Pqi9Up8t1DwynONFJQ3qKnjE0W0OV62TQEN4sxCe372crnFxdIyKZ1lWoV+UQkhtBQsZGYPanWoRopG4pVcz3tt8AovdhdNVtyynAIJbP27OvjyeXJrpTR3xtLduWVitSkSsZ+LvuWYHNnQmM73byuwpOY2IQO/YFHpGtOHi5OYMfnczFrvTa1eHaCQMGhGXyz0vCNGIGKVyItRFqESB+y8axIj27ej42lqMWvf9HNQyCpBr9drc4cnllRbe+XY9C9ceIDE2jHcenUTPNHcEdsv4MKDxgpngs1irkWhyOp9Zj+/G6XBx24MjGXtFr3r1UxRttb8uiuPiL06wzr2h1WtRFLn9wZEYDBq+/mgdBWfKeeyFSZjCDfWe45EfMhAFMWDCKooCA3q1xWY0sXvrAT6av4UlGzJ44NohDOjawhvNUbc9D148gEs6tOHRecv4z6KfqHGFUE08B6aO8OukQtVaHus+hMtbdeLeNT9SGX2ahLAiKgqjqSw+58AQBBFLbchdjcPdORo0EhVWp995g0WjBKtjffBshTf9wtezPvojd9Uyq0fgqFYRqcbhQhLh1mU/sqcqk7Ep7WmijeTLnae54/u9XicQuEutes4tyzKL9h8kJSqSaUP70ys54oKcAXXVmE1aiR/3nCLBaqZJ83gWP3xR0ONdSIfdvGUszVvGsnpFBvbkJKWTV1BQUFBQUPhViI41sm1DFk6H07uIdr7V8ADhdoGgizT9OiTRKimatdsOc/2o7gHf12cLtYqNYu/pM362YN2KFTM2ZmOtdVoAVNlcSLnNiGp3gok/fsHtHXqhsfnbSC+PbkdyhMGdIjxjEzKgkkRuSk/isx05qETRz9mwLacMZ23FO4vdxQMLD3pF4X0Xq+rOAXzTQrbllNGzaRiyys6uwly+yzyCLvE4Kr07MnfnWTXmkhiqSiI4sU/NQvVpnhZzQcbrtNCrRLSqc6nMVmsFM9ZuJK+slF7Nk3lmzDCaRgQ6HdztB4vDhUoU+N+Pu1m3ZjcVVTVcd2lPbh7XG51WTV0uVDBz2aQOTH9hEWeOnKV1jxTufXIMiUlRDe6naKv9dVEcF39hGhPq5NvxeibmgiBw/Z0XEZcQzjsv/cBd177PXf83gQKdO21jeGoM4Xo1VocTURCQZRmzzUFIrdCPryryufOrmXXfOD78bj1T31hAr47NuO/qwbRIDN55tG8Sy80DL+KOWasIFQvRcpwXf9rIy+MGolH5v5atwqL4ZOjlpE1fhBRxhoiEs5hiC6kpi6SsIAKrQ41OJXJ9j6bM2pvn9UYH64jeHNuBiho7Jl1gZ+m5X51eXetXGsrjWa+bhqlVidgcLvQa0MWdYk9VOfaKCG5sOYD201b7eavBXar1vYmdGZ4aQ6xRy65TuWScKeC/o4cyJu38Jbvq4lVjfnsDLpfMsBkbaF96GpXLyeM3X1xvaaiGOuxgjrCuvVqweM4ONMlN/7SdvJKrqKCgoKCgEMifeXxMbZfIvJotnMouIiQ+3Kvt0NDiSnpSuFe4XRBg8939g16XIAiM6NuWGbM2kFtQRmJsuN/39dlCXZMS+PFgFt1eW4FdVvuVCfXYvbbaqiIGtXvhTCsJiLKKb4Zdw/SDa5m+bxMCENciBEu5CcllYGibcNpEhVNYacM3EiEmRBvgbPC11fQqEYvjXCU7lSAjCC7iTSrav7Ych+xEo3bx5dWdEVVO8i2VZFeWcduqIwjqGiSNFUHyVM+TAB1lZ2OxVBix12jxzV6qrk2FFkXBKxA6fZw7tdnpsvFZ5i4W7ssk3hTKm5ePZkT71n4p575OB0/7o0QnTQpzWbAok7QW8Ux/ZBKpzQIF5y+U6iorX3+0lnlfbUEfouGh/45n2KWd6y1j64uirfbXRXFc/IU538p5sEm4x3kBMHJcd5q3iuP/HvqWJ277hBPtmlPaLI6Mh4eS+fC5SIMh724GoLpW6Ke+81v0IXz53DXMWbmX/83dzDWPf87Eizpzy8S+mEJ0Ae3v0ywSmxBFocNIuKqAHw/sJfPMKR6/ZDADWjX3bucZdNfcPJzduRWcrC7gYNVRNquOY4gqxFJhpKo0nFn7YP2UAQEpH55j+JawCtFIQfMiZ+/JCygN1TM5ArtTrhXprPU+qyWmjWlDpVTIx5nbKXeaKTsTi1wRz7x9+VgdLq/TQicJqFQim+/u73f/v9y6B6NWy5hO7S742XvILrEgIGCx2WlVfha1w0ZOTDJzMouJizL5le/ydXAF67Drc4R17pHCvK+3MGdkK8xRYX+6Tl7JVVRQUFBQUAjkzz4+tumQCMD2HSe481Apdqc7DddXxLzuQsmFTDq7dUiBWRuYu+Ygd0/u16jjdE92lxrVSTXYHWq/MqEeu9dTteOW3s34aNupWrFKgShdCO8OHs/3B7O5+YdVhEaUEZ7oLgozcskx9Co1KlSENHOicwqIosC4pacwalXYnE6OFVfVpj/LxBo1JLV3UeN0Um1zgOC2TgXR/d9Jq/YT2uLc9dy6/rD33wIgGVTYajQ4KsIZmJTA7d3T6N80if9tOcVd8w7Ue89EUWDz3f29trReDf/buINPN+9EluHW/j25fWAvDJrgC4AejGqRR1rrmLviEAadhrtuHMbYwR0RxV9WRUaWZdYuO8AHb/xEcaGZi8d04d/3Dic8IuSCjqNoq/01URwXf2HOF+oUbBLuqc/soW2Hpox/eiKvPz2XFgezKc0vZdXeVK7s35JL28exOCOfEI3kFRTyCP3Ud36VSuLKEd0Y2bcd78/ZyJwVe/lpcya3X96fsYM7IInn8s3qDhqZZ/N4/sc13PLlPAanpvDI8EGEaA1BBt2mQDdOmkt5fN061jmOYAgzIztzeXxbBZPbtqUGLbKs8Xpe65awqrQ5g+ZFTu6SwHMrjiBzrjRUTIi29jpF1PoaLu9pwiqV8+rRuVgcdlKMkZw9nIJsNqGWBC5qHc1zK45A7TFevSzNW8bVw+H8IpZmHOHGPt0I0WqCPt/GrJKkJ4VjcNpoXnoand1KXkQchaKW19cd9xPsDObg8r3uuqGPvtu169gUgFNH84mICgvajj8SJVdRQUFBQUEhkD/7+JiQFElcQjjLlx3AnpCA2epArxaZdmn7AG01Xxoz6SwwWxn88U6aaPV8vHQPk0d2J87kv4jm0avwtbXaxMVg0umodFRidhi9tiAE2r1dE8OQa9MqVKLoPc61X2RQ44iloiAGSe1Ar7dyy4A4ooxQWG1h9v4cZNmFS4BwVSixei3lNQ4cNS7sThmVKJLaJIaUyBDUokiN3cXaY8VkFlSDLCDL0L95NDtzKnA43dEe/5vUjeQwI7H6EGSHmk6vrfUu1i3NF1i1J5OMqU0CIo5VAjhkvJEWnkW25HAtX27dw6dbdlFuqeHSjm25/6J+JIb7zyPqIssy63Ye4/UvV3O22Mzo/u2568qBRIbVn5LeWLKP5DNz2hL27TxB63YJPDXtCtp1TPrFx1X466A4Lv7CnM/rHGwSHozBHRK4s1d7IrPP0uzwKWY9MZuIB0Zw8ZguXoHKYAq/DZ0/3KjnkRuHMX5oZ17/YhUvf7KCeav2cu+/BtGjfbLfMTyDT6wxhd4pSXyxdQ8z125lzMzPSW/REqdTxmwlYNBtZozgjYEjaT9Ng6w1ozOVcTa0hCe2/ARApFZP+8g42kXEEqEORWesAI2ExSoguwSqnU6ijQKFlirOmi1szSmmeZSGj65vzrKjebSK0zDr5BZOVZbRtnMxeVUVuJD5MR+ahoYxLiWNiS070D0mkcJKm19en6+zJznCEPBsXl2+nlCthlv6pwd9JnVXSeqKl4J7cNi4/TCtCk6iUkvcet0IMmskXl93nCqbO83Ht3yXr4PJ1ykC+IU+hmgkv2dtCjcgqUSm/ZjByaOVv2jV5rcIWVVyFRUUFBQUFAL5PcfHnzO+C4JAvyHtWPDtVnTRMZhxC60/uTTTr6Ldz8HjtCnQhNLcXMjiXSe4eXDbgDYHi0j5V89OvL9+G/f3T2Rsx2SySyzEhGgDytCfW9hSIYlQZrGzLKuQc0EFAk67GlHS8UiPft4o2M+Wr6bG7sDqkNmQ644AXntnXwZtry2ZKgm8eYO/nXWw5bkoagF4+bpB3gohwe55xtQhzNiYzRvrjlNpc2KstQnd6eAqrHYXapXIO+M70jXR5LUxJcHJO2s28/mW3VTUWBmcmsLdg/uQlnB+h9fJMyW88eUaNu87QcumUbz35GS6tmn6s5+hB3OFhS/eW82iOdsJCdVy92OXcsn47vWKbyr8fVEcF39xGvI6p8Wb2PfQoACNi2DHyHh4KNtyykgWXHz66hJef2YBP87byR1TRzXoHDmf1zu1WQzvPjGZFVuzeOfbdUx5cQ4DurXknisHktwkImB7jUrFzf16cFmndryzZjPf7TpAjAr0YiR2Icpv0PXod8y9vqe3ekhMqIbjFSVsOnuSg8X5HCzN57PMndhcTvQJoAd8z3rl6sx6277JDCaNlqTQcLrEJDC8aVsEu4EJqa1Ii/XX7qib16eSRPRqGZUkBhgKa7KOs/7oCR4ePpBwQ2AKDfivkoRqJPq8vQEBwTuwhuskXvpkJT+sP0h6h2b897aRRIWHuCMnNp3wU5QOpjrtO1C/ObaDX+jj/QNbMKVfio8Iq4jepEdlsf2iVZvfKmRVyVVUUFBQUFAI5PcaH3/J+H7p5T2Z9/UWrtE6ec+hweJw4XQFRsReKB6njd0UjmwuZM/BkxR0T/FrV30RKVf17Mz/Nu5ASwkTPivwW0SqW4Y+Y+oQlmUVcs/8A0yZux9JFNDUanA4XS6u6JLI1CGtvOf1iG56xOQ9ToXsEst5n9VtvZORgbv6p3ht+vruUaxRy5R+KczYdIJQ3BX4UiL1xBq1ZNba/L7nkbDy1qq1LNqXic3pZGibFtw5qDcdGuGwqKy28r95m5m9fA86jYp7rhrIFcO7oqpTtfBCcTqcLP5+B1+8v5oqcw2jJvTg+juGBi0o8GfWclH49VAcF39z0uJNAekhwfCdeL/2v5tY8cNePpq+nHuv/5Chozpx3W0/f5IpCAIX927DgG4tmPXTbj5duJUrH/uMiUM7cfP4PoQb9QH7xBhDmNwznembKwmVCjFJxejVFXyxdTuXdkxj5dEyb46eR7/D076WYVG0DDvnWHC6XBTXVHOm2sz2vHweWXIAu8uJIMroVCKTOyfy7e4zWKygFdX89+L2jGuXRIw+BJ3KHVJ3blCu4a1l2xsxKPuXgPKw6vBJ7v/uB5pHRXBNeud69/ZdJZGRkWWotLkH1rVZ+az8cTO7D+fy7/G9uXlcH2/OoMdIWZZV6Hc83+e7OCPfb6AG/FZkpvRL8W7nGQDUoru81i9ZtfktQ1Z/j1zFArMVdKF/vlwZBQUFBQWFevg9xsdfMr4nJkUxaHgaG1bsJ6J3GqoQwy+ODvFMYtfe2ZfduRW88u5p1u84QvuzLjJ8Ijnqi0iJM4UysWsas3fuR3Q1xWzVYdSqmL0nL2gZ+iOFlTicLrcTQqtixoSOANwz/wDzDuSz+FCB125MidR7S6Jaakui1q10V2C2+tlgvpp1AFd1TWzUffBEiPR6az12h4v+72zk8CNDvecpqqzi080HWbA3g0NnC9GrVUzomsZ1vbrSIibyvMd3OF3MX72PD+duprzSwmWDOnDbpH5EhfnrTfwcp8Ke7dm888oP5BwvpH23Ztw1dRQtU4ML2f/ZtVwUfj0Ux4VCAIIgcPGlXeg7uC3ffLyOBd9uZe1PBxg1sTtX3TSQyGjjzzquTqPm+jHpXDowjf/N3cycFXv5YUMGN17Wi8uHd0HnI/RTYLbSe/p6qmwS5cSjEa1cnOLifxu288H6HVQ6jWjEMGwubb36HR4kUSTWEApONQ9/t5cqazh2l7v7NwPt+rRArrQjOWUESeCKdqnecL4VOfne9I9gg1WwjnhbThkOp4zF4UISBe8Avv5oDrd/PR8XElvORnKkqLrhKBgflelBMzchCgI62cE3X6+goMTMM3eOYkSftkH3v2/BgXo78LoD9fDUmAYjMnbf3Z/SIjO33tSVhCEdfrY3+6+c0uEZFDHFpvzRbVFQUFBQUPgz8UvH9zumjmLP9mwuPn2GpjcM4eJ2cT979bzuJPbNsR0oCwmjSclZxBqLn1MlWESKZ5J9c7/e7Dp1BmdBHg5tc0RJYHKXBGZsOuG9zpRIPe2nrabG7qTaxwkxPDXGG1lR124cNHMTsuwWwVx9Rx9vxHAwoXRJhOnjOrInt8xvGWzkh1s58cSwgHsTzEGw9lgx1bVi8eU1dmZuyCA+xM6arOPsPX0GGeiQEMcTlwxmTMd29UYC+yLLMhv3ZvP2N+s4kVdCt3ZNufdfg2jbPNBZdaFOhVPZhXw0fTlb1h3GqtdysktrdsZH8ViQKG0Pf3YtF4VfD8VxoVAvIaE6/n3PcMZd2Zuv/reWxXN2sHT+LkaN787l1/cnOvb8kRzBiAoL4ZEbh3H58K688+063pm1ntnLd3PL+D707NKKnXkVlFnsOJ3nummbS8uaHInnRozktZWbCZEqMBoqqHbqqLCbGNM+2rttfZ7dZVmFlFnsAe0x6dRBB666GhO+g7JnsArWEadE6n1qeztJDtey9GAWjy9YjguRU9UJOGSBPm9v4OijF9XbgfuukmRMHcKGY4XM+mYlBRXVvP3oxHrzBs/XgdcXOurZ5sudp7HYnFgcLoxaFSt2nAQgtVUsg3/BQPBXTunw3FME8ZfFPSooKPwmiA8t+qOboKDwj+WXju/hESHc+OAlvPHEHHZ8vI4XWjTFoJHQBqn+dj7q2kAA1SEmXCX5RFSVB61S4rF/6tp+K28dya1fziGcMzwyfBDt44x+Ua27cyvc+mC1jgGnS2btnX29op91nTm+QvFGrYoKqzNggu3bfoDb5uxFU0fLQRQCU2n82w5b7+5HlbWadVlHiNIUoxdr0Ek1fLv1GOB2Vtw5qDeXpKXSqk76c0McOHqGd75dx+7DuSTFh/PKfZfRtnVTtp8uJ9JsDXhWjXUqlJdW8cUHa/jh+x3odGr6XtGbN0pcVDhcGM+TOvRXXhhTuDAUx8UfwF8tDys61sS9j49h0rV9mfXJehZ9t50fvt/BxZd1ZeLVfWjaLPr8B6mlwGz1dvjDU2N4/cHx7DqUwzuz1vP8R8uxqddSaIqhOtSERi1S43R69xWAqFAj1SRQ4YglRCwjzlCJwVrAvz//hmHtWpHevBlTFmRjc4rn9eyqBQjRqRieGhMQSlm3o62be9hQR5xdYsGgkai22YnWVXHn13MoqjTTLDKC7KpwHHLt3FdufA5nTKiG3Zv2cupMCW9MHd+g2FFjOvD6QkcLzFbumX8AS23pV0mEkt3HkSSR9p2TA7a/UP6q5ac89xTZ5Tz/1goKCgoKCv8sfun47kiO5WxyHAknz2IRRI6nJHhFxi/kuIGVP0y4JBXlBiNhlWWUmavrtQvr2nY5FS6+uPFyHpjzA08sXMq8vfuZ3L0L9y04it0pIIkCLp9YCEkUvNX3gjlz6ratW6KJosoqyqprqKixYq6xYq6qIlQqR6d14HC5EJDRCgLD2oaz8UQJAjIqSWBd5h42HxGwOZxY7HZOllZhogxBciAJTkbPOKfhFqkGq0tLhd3Ef0Z2YVLXVGKNoX7Xfr65ydGcQj6cu5k1O44SGWZg6vVDGTu4I6UWR8BCnudepieFn9cmtdsdLJq9jS/eX4PFYmPoZV259a5h2FQq3p62GqMkntcZ8VdeGFO4MBTHxe/MXzkPKzEpigf+M45//XsQsz7dwPJFe/hx7k56D2zDxGv70qFLMoIg1Nv5FZittH1ltTfqIVyvIvPhoXRrl8RHT1/Fq/N38NWirSQW51JTUcSIwZ2ZkVGKxe10RqrVcfCtsBETqmF3zhkW7jvEjwcOs3h/JpECVAt6nHIos3ZlcWvfdmjVqqBKyh6nRV2CdbR1BTh9v28WoePz7ceI1Lk4dKaAGHUOarUFQZCJConhyUsGcnG7VmzMLmHkh1sRBdCo3MKdHpHRhgRU567cx7LNh7l9Uj96d2ze4HP6JR24J7QRQK8WeXloKxY9MYuhozoRG//PlXfw3NO4aQXZf3RbFBQUFBQU/m6kJ4WT2yEF0eGk5Yk81JJAYdvkC149r2sDeeyaHH0E4dUVzPh+C2/dfUm9bQhm+82//Vrm7NrP9NWbeXjuD0QKAtWCAZes59puzfhqTwFOWUQjOYnWOzmQl+92QtRYqbbUMHf3CYqrqimurGZYciV55ZXU2K0MfeNQ0HYYRaBOwYxDeaXE6NwfqiWJjcdOoJZE1JKEQaNGK6lAkLC7NFQ6RERRjSBqmX9TfzRqHfP25we1Mz0LivfM34/TRcDc5GhOITO/28TG3cfQ69TcMr4P/xrVHYNOA8C2nCI/Z8+yrEJvurIowM3pScy9vkdASozL5WLN0gN8/t4qzuSWUh4dxokubdhh13KDSnXBtuxfdWFM4cIQZFk+/1a/AT169JB37Njxh5z7j2RxRj5Xf7XL+wP/6upuf9kfWmlxJQtnb2PRd9swl1to1aYJwyb25Jbd+dhlIaDzW5yRzxVf7MBSG1KnV4nMuq6Hf4jeK6vQmcuJqShCY7dhVWnINURQGRqGJAlIQv2RFA6ni1VZJ/n3t+tQU4lasAHuDr5VTCStYqJoEhZOlUOkd7NY2sZFYNTpqLS62J1XQa/kCO8xc8uqWXLoLDaHg26JoahEF6dKK9mTW0KkXsDmsHO6rILs4gosthpOl1YgCO7fkgC0jo2hSUQ0EzqnMrxditeh4yk7igCb7+4P4Ffeat9DgwIGlUPZ+dzyzLf0aJ/E6w+O9wpxNpYLifCp61h7RG1j5YJdfDjnLpKaNz6y5u+KIAg7ZVnu8Ue34/fi79RPK6kECheC69Uxf3QTFH4mSj/956ehBa4tJ0vY9sV6tq84yKX/6sNdD4xAEC7M7ql7Lo9dk1iSR5S1itmv3ECTaJPfNp72FFZZ611MqrE7+G73YabO30qIqgq16Gh0O0K1GqJCDESHGogODSEqxECEQU9kiJ5wvR6TXotJp8XqgEs/3oHN6a7q9uZlHRnRJpY40/m1JwrMVmZszOb1dce96SgNzTM898Zid3ptc88+zTUuPlmwlQ17juMSREqMkZjDozjw6LCAZ1ZXU2TK3P3eVBfwt29lWWbn5mN89PZyjmedpUVqPGmXdeeJ/UWYG9Fmhb8HP7efViIufmf+TnlYEVGhXH/HUK64oT+rftzH3K82894LC+moVXMqIYby5vF+IX7pSeFoVZK3c9Sq/UuF+pZl7Z5oYuOuYzz3xVpaVORjqy6hJDSCXLWREL0maOigShIZ3i6FHQ8lsC2njNQoLTmlxew6lcuRgmJ2nMzlTIU7dO6rLf7X4vHfqUQBlyxzPneeVqUiOtRArDEEvcZEZpFItUOFIGp57/JeTO4amFbhCUH0qE5nl1jYfqrUe65gIqOVFitPvrOYCJOe/7v9kgadFsEMgQuN8PH1cBdsOMSs9zcz9opeitNCQUFBQUHhH8ZvkdrckF0Sa9RyWYcmjH5hEu+E6Vn89WasZgv3P3kZ0s8srelr1zQz9ODeF2bxxNuLee/JyZTVOP2iDdxSEgJO17lyp77XrVOriAiNpop4CqqdhGoE3rgslTbRWqpsNmRZpqLGwX0LDmJ3iYiixIrb+pMaG45W3bgp1+KMfKxOVe0Cp0hkiLZRTgvPtXpKoIqC4DfPCPYsPXapd0FREgirqWTB3DXsO5yLKVTHoAGd+PB4DeUOGSPieXXTwB21oZEEbLVadR779qrECj56ezn7dp4gPjGCR56byOARHSiqsvPfQ6sx1mmzgkJdFMfF78xfOQ+rvgFMp9cwakIPRo7rxoqVh/jPaz/RKjsP18kz7FLZSLmqF+07JdXWjh7ip3FR9/p9Q70mDelA/26t+GrNQXZtP8TRkwXECEWYjeEkaAJdC572pUS6y6uGG/SkxrXkorYtvdtU1lg5U2Emv6KKAnMlW08W8cXOU9idTrSSyNj28QjA3AP51DhAI6m4e0ArDBoNz604jtkmY9Bo+XLyuUiRdceK+P7dzd5zxJsC60tDcKdVSqSe51Yc8UZcTO6S4N1elmWmfbqSvMIKZj5xOWFBysb6XnswQ+DnKC3HGrWQcYpZ769m0PAO3PbgyAa3V/jrIAjCx8ClQIEsyx3+6PYoKCgoKPw5+a1Smxtjl0iSyD2PXUpUdChfvL+GirJqHn/xcnR6zc86p69t+dQtI3h0+iJe/HQVb+e4/KIN9CoRBLDYXfW2zWPL6VUiKklkTFoz73WlJ7tTU6qcod7rO1nupGNi46dbv3SBM9g84+DZCvq8vQFkd5qy51l6zhUhyYRXV5DirMRsruasI5S7rhzAxIs6U2mX+XjaaoyS3GjdtIypQ5izL4+75h0AwGSuonLRNu7dcozwyBDufHgUoyZ0R13rzPkrz40Ufl8Ux8UfwF8xD6sxA5goigy/OI0uvVvx07Zs8jdnsXHZATYuP0CL1HjGXdmLwSM6ck33+oUl6xIfpuPBsd1hbHc27D/FJ4t3cCjzFHf839d0b5fExIs6M6BbC8pqnN40jCqbs1416lCdltY6La1j3REE/VtZ+WiXBbsgIwsCT48aBMC3B1fjFGUcosAtfTsB8PzqM+g1blEk34575ZEivzavPFLEwJaBEQrBOuZYo5Z9Dw0KGpb47dJdLN2Uya0T+zYoxgn1GwIXOgDKssy8b7bwwes/kd4/lYefmYBUR826Ln81sdl/OJ8C7wCf/8HtUFBQUFD4E/NblZhsrF0iCALX3DqEsIgQZry8hEfv/Jxn37oao8l/EedCbZAhPVtz9ajufLVkJ8bwWEo0JhDcjgitWgQEVOL5BCEF92oTAoVVVgbN3FRvFbpfw/FwodStlNLn7Q1UWt3a4qG4n+3g5uHs3n+cidoK9mSfBqB1u6ZMvvgiBnRriarW9jPouOD2xBq13Nkvhdaii49mrKT0UC4njDquv2Mo4//VG70h8Bh/xbmRwu+PonGh0Ch+rjaHpdrK6qX7WThrG9lH8zGG6Rk5thujJ/agSdPIn9WW4rIqFq07yPzV+zhTVIEpREvr1GS+z7NRKKuhNheyoXb6DnRA0BSLxnwGcPBsRYBORUyI9mcPOg6niw++38Rni7YxuEcrXrj7UiTx/M6D+hxLjR3UK8qreeOZBWxak0nfwW159PlJaHXqn33en8Of3Qnyd8idFgShObC4MREXf6d+WtG4ULgQFI2Lvy5/h376Qvit+unfUkz+Qsf69SszePmJOTRrGcuLM67DFG74RW10OF08Mn0xG3YdpdxgoigqnjcndmF4agwQaBP6sjgjn6u+3EmVzUmIRuKBgS14c322n33sEQX9o20Zj+bFa2uPUW1zonfYiJatXBKvYX9WLg6niybRJi4dkMbIfu1oGhf+q5z32OEzfPXhWjauPoQhRMuka/sy7srehBgbl/Liafuf4R4q/DYoGhcKvyk/N3RNb9DS4+KOONs0xVRSwfpFu/n+q8189/lGuqS3YMRlXek3pN15J8i+RIWHcMNl6Vx7aQ+2HTjJkg0ZrNlxjP9n777Do6rSB45/z9RMek9ISCB0Qm+hSlWw9152XXWta9lddV1/6q5tXcu6Kott1VXXtvaCCEjv0mvoBAgtCYT0ZOr9/TFJmCSTZAZSJsn7eR4eIHPn3nPvTM5573tP6Wp3kKw3kG8KpTw0HKfOUKecp2ZP3orTdaqhq53c8Jb5rS8b3C8xvEavibgQ82k39rn5xTw2Yxabdh3mkokDePjXkxtNWlSVrXZG3LPSb6wR3bbxIH//vy/JP17C7b+fxmXXj0Lnw3Gb8olMW15xRwghhGhPmrP7vr9P18+akk5Q0HU8+eBnPHzn+/z9jV8TGRVy2jGIQa/jxfsvYvoXy/ls1hq6FNpJdvWujp0akhZtoczm7r1QZnMypWcsM1bsr3cVOl9pmsbhk2Ws2p/PsM4RxIWaQbnLajTo0et0jd7Ma5pGUWkF+YVl7D1awO0frUZnraCzzUqovQK95h4Sc9wcybXThjKgbyrFxqAak9OficzN2fzv/aWsWryTkNAgbvjtBC67fnSdXjKNkXhQ1EcSF8Inp9uA1al8Hr+UO/5YwdzvNzDn+w08/9hXhEVYmHbxEC68coRfvTD0Oh2jB6YxemAaJeVWfli2g1krd7Iv6yiOvALMRUZeeNfO5OE96NY1kbU5Zdz37VasdifljlOzJ8/dlUekxejzqhverkG/xPDqSTVnZub41ZA6XS427jzMvFU7mbNyBy6Xxh9vPpvgTgnklzuID2t8Qqra5fK87u5lZDWvy1w5HU4++vdiPntvCQmdInn5vVvp3S+50eNVacrJZpurW6rwj1LqduB2gNTUupPMCiGE6BgCqfv+iLE9eeqV6/nr7z/lwdve4/k3f31GMYhOp7j/mnGcN6o3T/97No+89gPdOseyukxPflAoToORmbdkcLCgAjg1L1tWfjkhJj0llT0uiqzOeuNjh9PF8ZMlHDtRTM6JInLyi8k7WcrxkyXkF5VRVFJBUWkFxWVWbHYHDXWC1ymFA9BQaDpFfGgQRoMOBdgcTqw2BxU2B06nq/o9cYAThd1ookv3ZKYN60ZQVATTBnRGKUWfFxZgtbswG3XseHjyaSUHNE1j09r9fPLOYjatzSIswsJNd0zk0utGEdrA3GwNkXhQ1EeGiohm1dAQE5fLxaa1+/nxyzUsX7QDzaUxbHR3zrloCGMm9MZk9r0XhqcDecWM//tPBJUWE1pRgsHpzoxb9UaKjBZKjEGUGc1gCcJkNFLfTX1tvmaA69vO6XJRUFxOfmEZR48XsTf7OHuy89i48zDHC0oxmwwkpSYS3CWFb/YU4NIaL1N9x1udXVB93S1GHWhQ7nDV+AyOHsrn+ce+YvuWQ5xz0WDuevA8QkJ978bnefymeCLTFjLs7aELsgwVEaJxMlSk7WoP9bQ/2lM97Yst6/fzxAOfEBUTyotv34wzyPvQ3G3Hiupd1rQ2h8PJt4u28PHcTRw5egINKDeYKDOYKTOYseqNBFlMfHfbaAx6Pee/swqH04VJafz78v7oXU7yC8vIKygh72QJOSdKyDlRRO7JElyumvdZIRYTsZEhxESEEB4aRERoEKHBZg4WWvlqaw4VTg1TZUJCAXoF947tysH8Ur7bchSHw4lJr5jUPYbOEUFoLg2TyYDJqMdsNBAdHkx0ZAg6g4Gbvs6kXBkwGnQsvntMjbk4nprWu3ryTIAPrxvi1xx0LpeLVUt28b//LGXH1kNEx4Ry5a/Gcv7lw7zOYeGPthAPijMjQ0VEQGooG67T6RiS0Y0hGd04kVfET9+s46dv1/Pcn78gJDSI8ef0Y8r5A+k/pItfa3hvySujICiMYmUhLLoTv+kfw7crd2MqLyXKWkJcRVH18SMiQjhYoVGqDCiTiXdnb2BK306EWEyU2jV2HC9jYKcwIi1G5u/KRV9Wht1qx2xQvDNrPT2jLZSW2ygtt1JabqOswka51c4VZivHi8sxODRuf+K/lJZbKSmz4aqVKOwcH8Hg3skM7deV3/58gGXFLth6arLP+jLNnskCb5lpz+te1ePCoD812dTC2Vt47W8/oJTiz89dxcSpp7/ARFM9kZFZpYUQQgj/FFbYyS22tts2s/bDkQFDu/LM9Bt57N6PeOj293nhrZvrxCCec489M283mx+c0GDywmDQc+XZgxk/si99n/6JoKICQu0VhNvKiK0odm9UCL975gAAnn0Rn5yxv/rfZqOe2KhQ4qNC6ds9icxdJ7DqDGhGE9/eMY6+KdEEB3lfGSW32Mr7lTfrpWigQYnNSZjZQPcBPbkuJZIPPG7mn76j8Zv5zX1S6o0V954oa/C99bFZ7cyftZmvP17Jwaw8EpOj+N0jFzD1oiF+DftuiMSDoj7S40L45XServvznqpeGPNmbmTZgu1UlNtISolm2sVDmHLBIOISInw6nmem1jPLrFcaT0/qRieDk6PH8tmdfYJFmYcxOmzozuB3Qa/XEWIxERJkIjjISHCQCYvZiCXISKjFTLDFRGiwmZiIEGIig4mPCiMtOYaQyqW9ZmbmcOUHa6rXvAYw6iAsyFgn09zQ+Xlmpr1NQDqsUzjfvruIbz9dRfqgFB559koSOkWe9nl3NG39SZ5S6lNgIhAL5AB/0TTt3fq2b0/1tPS4EP6QHhdtV1uvp/2l79RTi/rt9Db1VNrXuLChJ+/bNh3ksXs/IizCwjOv3UhqWlz1+/4yewdPz9td/f/Hz+7Jk+f28alsVUuHulwa5XYXeqcDk8tBhFHx2gV9CDHp0ekUJTYnBwqtDOsSQ5f4MCLDLISHBFU/aDudSe2rrktatMVrXOdPL5LGruXiu8dw1owVWB1OzAY9Ox5u+PtTUlzOrK/X8c3HK8k/UUL33olceeNYJkzth97g/5Bm0bGdbj0tiQvhs5buulVRbmPZgu3M+W49m9ftRynFwGFdmXL+QEZP7EN4RHCDZa1vosraZc4ttvLLwZP0i7Wgczo5WVTGol25/GPhbqw2B2aDDk1BhUPDpXSYjAb+c/1Q+idHERJsItRixmTU+9UrxFt5ez+/gMIKR/XPgo16frl/XJ3GyVtj6MsM1qXFFTz7yOesW7WXy64fxW/vn+pTYyNO6WgBcXuqpyVxIfwhiYu2q6PV0yqxpxZ+62s+r/bW2vyJJRu7+d+VeZgnHvgEu83BX/5xHQOHdQW8r/bmz42+ZwJhw2F3L92qOS58PYczjZkbmrvsdGNwf2LjKjlHC/j201X89M06ystsDBnZjWtuPovBI9J8jntl6IeoTYaKiGbX0pPlBFlMnH3BIM6+YBBHD+Uzf9Zm5s/axMtPfYf+2R8YNDyNsZP7ctaUdCKiQmq8t/bwhYaGM8SHmbmoX2L1/4PDQogrhbLQXJwuDSsaDoeLCoM7yWcx6nAFh5DaKarJzjU+zMzOP03mL3N28N7qg9hdoNcpsvLL6zS23obfNDZcI/dYIY/f9xHZ+4/z+8cv5txLhzVZ2YUQQgjROnSKM54cuyX5E0s2Nvlmr/RkXnn/Nh6/72MevedD/vDEpUw+f2Cd1d787Z3gGVN5e68v53Cmwx1qx3VNEYN7i429PfjSNI11K/fywxerWb1sFyjFxKn9ueLGMfTo08mvYzZV2YUASVwIPzTlChL+6tQ5mhtvn8gNv53A7u1HWDY/k2ULtjP9uZm8/sIsRoztyZTzB5ExridBFu/jB31RczUOmHH5AIYkh3PWjOVUlLt7Q5gN+mY59/gwM09O68MXm49WZ6UzUiLrZMT9bQz37DjKEw98THmZjWem38jQkd2bvOxCCCGEaHndYoJZ3oaeYPsTS/oS7yQmRfHye7fy1IOf8fzjX7FhzT7u/MO5NVZ7a4lz8NZ7oSlXZWmOGLx2T4i1d41m0+LtzPxyLQez8oiMDuHqm8dxwRUjiE9sfKh2S5ZddEwyVET4JZDGqGmaxr7dOSyYtYmFs7dwIq8Yc5CRjLE9GTclnRFje/q9SkZ93RJzi63M3ZUH1Owu2Bw8jzUkOdzrOEdfrVqyk+ce/ZKwcAtPv3oDaT0lw30mOloX5PZUT8tQEeEPGSrSdkk9HfiaI5a02x189PYiPn9/GdFxYfzh8UsYNrpHk+zbm9rziLXEUAhfrps/13ZmZg43fLQOQ85JUo+fJCn3JA6bg179krnkmpFMmNoPo7FpnnEH0v2DaH0yVES0iJZa09uXCk4pRfdeiXTvlcgt957D5nX7WTY/kxULt7N0fiYGg56Bw7oyemJvxk5KJyYurNHj1pcVjg8z+7VM1Jl64Lut2J0aGhqaBqWVM0v72r3O5XLx1UcrePe1efTs24m/vnwdMXF1nzxIQyKEEEKIltQcsaTRaOA395zN6Al9eOkv3/Do7/7L2Ml9+dWdk+naPb5JjwU1z2FmZk6LDIWob2hHFV/nknC5XGzfcojNP2xkyKLNmK12nHodY6YN4OrrR9Gzb1KzlF2Gh4gzJYkLEXBOZxIfvf7U0qp3P3w+2zdns2rJTlYu3smM52fx+gs/MWBoF8af048xE/vWm8QIhCWYPMcChpr0KIVf3esOHzzBjOd/ZN2qvZx1dj8e/OulXofPyGRJQgghhGhP+vTvzOuf3MnnHyzny/8uZ/mC7Yye0IfzLx/G0JHdMRibflLylhoK0Vjc1tBcEtYKO1s3HGDtyj0snZdJXk4hLqUojY3gQFIsXz1xPkO7xjRLuYVoKpK4EAHnTCfx0et19B/Shf5DunDb/VM5sC+XJT9vY/Hcrfzr7z/yr7//SO9+yYye2IeMcb3o1jOhxszIrZ0VzkiJRK8Di0GHQa9Yes9YsvLLG02klBSX88k7S/jus18wmvT87pELuPDKEfXO+iyTJYn2QIaACCGE8GQyG7nx9olcfHUG3/3vF7773y+sXLyD8Ihgxk3py9CR3YnrlsCeCmeTPKTyfOg1onMEoTo4eiifwpNlFBeVU1pSQWlJBRXldhx2Jw6HE03TMBj0GIx6zGYjIWFBhIYFERZhITIqhMjoEIIsphoxXGNxW3UCxagnpMIKe4/y3vzN7Mw8wraNB7HbHBgMeoaO6s7gS4fzt72FFDjdD8eOlDkYekZXQYjmJ4kLETA8l59qysx1l27x3HRHPDfePpEDe3NZsXgHqxbv5P0Z83l/xnxi4sIYPqYHo87qzdBR3c9ock9f+DY8Q7nX8EIRF2JucEbs/XtyWPDTZn76Zj3FReVMu3gIv757MtGxDQ+NkcmShBBCCNFe1I6vwiODuemOSVx7y1msW7mXhbO3sOCnLcz6eh0A1iATFaEWLhvTjW5pccTEhhEWYSEs3ILRbECv16HTKZwOF1arHWuFndISK8WFZRQVllGQX0pBfilFBWUUnHT/+62TpdisjkZK6huz2UhkdAgR0SFERAajNxvpvuc4DqVD6RR7Z2q8NVtHWamV0uIKigrLOe/ISY7nFOFyupi+aAN6vY6uPeK58MrhDBvVgwFDuxBkMZFbbOXvLy4kzGMy+DO51kK0BElciIBQu/vb4rvH+NTLwB9KKbr2SKBrjwSuv3UCJ/KKWbtyD2uW72bZ/O3M+W4DRpOBISPSGD6mB0NGdiela6zP61T7wpfhGauzC3C6NMrtLgw6XY2MusPu5Ojhk+zYeogdWw6xed1+DmblodMpMsb14qY7JtVYqqqhhiUQhsUIIYQQomW055vNhuIro9HAqPG9GTW+N3a7gw9mZ/LiZ2sx5xcTVmFl+fxMFpRa/T6m0WQgMiqEiKhgIqJCSE2LIzLa3VsiIjKEiKgQwiMthIQGERxiJshixGg0YDC6hwE7HC4cdmdlQqSCkuIKigvL3QmRkyWcPFFK4cnS6qRIeZmVHiUVlJXZUMD8746jlCI4xExoWBAhYUGkD+hMwrQoOiVH0a1XImk94jGZjXXKfiYxoAw1Fq1FEhciINTu/paVX97swxZi4sKYdvEQpl08BLvdwdYNB1m1ZCe/LNnJ6uW7AYiODWPA0C70HdCZhO4J5JrNjOkee9oV9OrsApxWB/bSCoJ18M3PmQyKDaaiwo613EZFuY0ThRWk7j0Edicmh4MVb+WzsNRK7tECjucW4XK5VwIKDjHTu38yF109grOm9CMqJrTGsaoaFpvDBQpW3juuTs+NphgW054DISGEEKI9aO83m74OfzUaDVw8sTePrDmCveupa2HRXBSeLKWosJziwnLsdgdOhwuXS8Ng0GEyGzGbDYRUDucIjwjGEmxq8OFWdXwUG06sl2ttMukwmQwEh5jrxHC+ONP4y98YsOp4BeV2GWosWoUkLkRAaO1hC0ajoXpyz7sePI+jh/LZsHofG9dkkbkpm8VztwKgAa8Emxk5MIVu3eOIjg0jJi6M0LAglE6hUwq73UlhQRlFBaWcyCsmL6eIE3nFnDxRwskTJWRU2KuP+/XyLXztpTxJgMFkICzcwomjBYRHBjNwWFfiO0WSmBxF7/QkUtLi0Ot19Z7T6uwCbA4XJTYnAKOnL2PPI1OaNFBp74GQEEII0R6093mt/Ikj6+ttEBZuabLyNHd81NLxl+fx9DqFXuffxPFCNIVGExdKqfeAC4FcTdP6e3k9CngP6A5UALdomra1qQsq2rdAG7bQqXM0nTpHc/7l7iWGP1u2l0f+swpDQTGRFVayD+WzfeMBrB5JCG/MQUbiEyOIiQujT//ORMWEYAwJ4rgL+neJJikujOAQM5ZgE+YgI+YgI0FBRkxmAzpd/UkJX2SkRFbOk+GmaTR5oNLeAyEhhBCiqbRmTN3aD4iam79xZHNPxN7c8VFLx1+1jzfj8gFEWowBEbOLjsOXHhfvA/8CPqzn9UeBjZqmXaaU6gPMAKY0TfFER9Laq3k0ZPKgzpQkx2BPjKZAr5j10CTiQk2UlVo5kVdMWYkVDQ2XS8No1BMeGUxEZHCdGaFbUnyYmZX3jmP09GVoGpgNuiYPVNp7ICSEEEI0ofdppZg60B4QNYdAiiObOz5q6fir9vGm9oprl98hEdgaTVxomrZEKdW1gU3Sgecqt92hlOqqlErQNC2nicooRKurr8EPCQ0iJDTI63tyi63M357bqgFCv8Rw9jwypdkClY4QCAkhhBBNobVj6kC6sW8PWnMC9JaOvyTeE4GgKea42ARcDixTSmUAXYDOQJ1KVil1O3A7QGpqahMcWoiW40+DH0hzPzR3oCKBkBBCCNEkfIqpJZ5ufb7Eee0t/pJ4T7S2MxtE7/Z3IEoptRG4F9gAeF3AWNO0tzVNG65p2vC4uLgmOLQQgclzLKDdqbE6u6C1iySEEEKIwOZTTC3xdOuTOE+IlnfGPS40TSsCfgOg3IP5syr/CNFhydwPQgghhPCHxNRth8R5QrS8M05cKKUigTJN02zAbcCSyopXiA5LxgIKIYQQwh8SU7cdEucJ0fJ8WQ71U2AiEKuUOgT8BTACaJr2JtAX+FAp5QQygVubrbRCBLDakzTJWMCGJ64SQgghOhKJqdsub/FMc8Z5Ej8JUZcvq4pc18jrK4GeTVYiIdqgQJqMM1DINRFCCCFOkZi6bWrpeEbiJyG8a4rJOYXo8GSSprrkmgghhBCirWvpeEbiJyG8k8SFEE1AJmmqS66JEEIIIdq6lo5nJH4SwrsznpxTCFFzkqa0aEuD4xI7yrhFmbhKCCGEEG1dS8YzVTHi4rvHkJVfLvFTK+kosXpbI4kLIZpIfJiZjJTIBscldrRxizJBqRBCCCHaupaIZzpajBio5HMIXDJURHQoucVWZmbmkFtsbZb9NzYuUcYtCiGEEEKI2pozRmzu+Lc9kVg9cEmPC9FhtEQGtbFxiY29Ll3ThBBCCCF8057ipuaa20J6EPhH5hgJXJK4EB2GZwY1zGxgdXZBk3f7a2wcZEOvS8MihBCBQffgDz5t53rpomYuiRCiPu0tbmquuTRaIv5tT2SOtsAlQ0VEh9FSGdSqcZD1VXTeXs8ttjJjeRY2h0u6pgkhhBBCNKKlu/S3xHCLxmLI0yE9CPzXHJ+DOHPS40J0GIGaQa16YmB1uCizOQk16Zu9YWlPXSuFEKK1+NozA6R3hhBNrSVvyNty7474MDOL7x7D5xuPcPXgpDZTbiFqk8SF6FACcZWLqicGpTYnISY9vx/fjXvGpjVbw9KWG18hhBBCCGjZB1JtebhFbrGVCa+vwO7UmLFiv8R9os2SxIUQraz2E4PmTFpA2258Rcfgz1NsIYQQHVdLPZBqy8MtJO4T7YUkLkTAa+/DGlp6CEtbbnyFEEII0XEESgwYqMONfSFxn2gvJHEhAlpHGdbQkkNY2nLjK4QQQoiOIdBiwEAcbuwLiftEeyGJCxHQpHtb82irja9o22QIiBBCCF9JDNh0JO4T7YEshyoCmnRvE0IIIYToeCQGFEJ4kh4XIqBJ9zYhhBBCiI5HYkAhhCdJXIiAJ93bhBBCCCE6HokBhRBVZKiIEEIIIYQQQgghApYkLoQQQgghhBBCCBGwZKiIEEKIMyKrhQjRuKb+PXG9dFGT7k8IIYQIZNLjQgghhBBCCCGEEAFLelwIIYQQQgif+NpzRHqECCGEaErS40IIIToQpdS5SqmdSqk9SqlHWrs8QgghhBBCNEYSF0II0UEopfTADOA8IB24TimV3rqlEkIIIYQQomEyVEQIcVpyi62szi4gIyWS+DBzaxdH+CYD2KNp2j4ApdRnwCVApreN1x0qlIk3hQhQHW2yT6mLRCCTmEiI5ieJCyGE33KLraS/uBC7U8OoV2Q+NEka6rYhGcj2+P8hYGQrlUUIIYRo8yQmEqJlKE3TWufASuUBBzx+FAscb5XCBAY5fzn/tnP+QaERhMenoXR6NJeTotwsKkoKz2CPbeX8u2iaFtfahThdSqmrgGmapt1W+f+bgAxN0+712OZ24PbK//YGdrZ4QVtOW/neNTe5Dm5yHdza+nVo0/W0v7zE04GkrX+XfNN4TNQxrkPD5BrINagSC4ScTj3daj0uahdWKbVW07ThrVWe1ibnL+cv599xz78FHQJSPP7fGTjiuYGmaW8Db7dkoVqLfO/c5Dq4yXVwk+vQtgRykka+S25yHeQagFyDKpXXoevpvFcm5xRCiI5jDdBTKZWmlDIB1wLft3KZhBBCCCGEaJDMcSGEEB2EpmkOpdTvgDmAHnhP07RtrVwsIYQQQgghGhRIiYsO0TW5AXL+HZucv2gRmqbNAma1djkChHzv3OQ6uMl1cJPrIJqKfJfc5DrINQC5BlVO+zq02uScQgghhBBCCCGEEI2ROS6EEEIIIYQQQggRsFo0caGUClJKrVZKbVJKbVNKPellmxuUUpsr/6xQSg1qyTI2N6WUXim1QSk108trSin1mlJqT+X5D22NMjanRs4/Qin1g8f34zetUcbmpJTar5TaopTaqJRaW882Eytf36aUWtzSZWxOSqlIpdSXSqkdSqntSqnR9Ww3QinlVEpd2dJlFG2bUuo9pVSuUmprPa9HKaW+qaxjVyul+nu81ujvZ1uhlEpRSi2s/D3bppS638s2fZRSK5VSVqXUg7VeO1cptbOyPXqk5UretHy8DvXGHe3lO+HLdfDYtk79216+D6LpnUmd2174WM90hBj/jNqd9uBM25z2wsfrcEnlNdiolFqrlBrX6I41TWuxP4ACQiv/bQR+AUbV2mYMEFX57/OAX1qyjC1wDf4AfALM9PLa+cBPlddpVHs7dx/O/1Hg+cp/xwH5gKm1y9zE578fiG3g9UggE0it/H98a5e5ic//A+C2yn+bgEgv2+iBBbjnYbiytcssf9rWH2A8MBTYWs/rLwJ/qfx3H2C+x2sN/n62pT9AJ2Bo5b/DgF1Aeq1t4oERwLPAgx4/1wN7gW6Vv6ebar+3rfzx8TrUG3e0l++EL9fB47OvUf+2p++D/Gn6P2dS57aXPz7WMx0hxj/tdqe9/DnTNqe9/PHxOoRyatqKgcCOxvbboj0uNLeSyv8aK/9otbZZoWnaycr/rgI6t2ARm5VSqjNwAfBOPZtcAnxYeZ1WAZFKqU4tVsBm5sP5a0CYUkrh/jLnA44WKl6guB74WtO0gwCapuW2cnmajFIqHHeA8y6Apmk2TdMKvGx6L/AV0G7OXbQcTdOW4K476pMOzK/cdgfQVSmV0BJla0maph3VNG195b+Lge1Acq1tcjVNWwPYa709A9ijado+TdNswGe426c2x8fr0G7jjiq+XIdK3urfdvN9EE1P6lyff7/adYwPZ9zutAvS5rj5eB1KtMqsBRBCrZyANy0+x4VyDxXYiLtR/FnTtF8a2PxW3NnJ9uIV4GHAVc/ryUC2x/8P4T2waKteoeHz/xfQFzgCbAHu1zStvm3bKg2Yq5Rap5S63cvrvYAopdSiym1+1cLla07dgDzgP8o9XOgdpVSI5wZKqWTgMuDN1iig6BA2AZcDKKUygC6cChoa+/1sk5RSXYEhuHs5+qJdtkU+XofacUe7+07Udx0aqH/b5fdBtJiG6tx2p4F6pkP9Hp1Gu9PunGab0+40dB2UUpcppXYAPwK3NLavFk9caJrm1DRtMO5KK6O+sW5KqUm4P8w/tWDxmo1S6kIgV9O0dQ1t5uVn7WLZFx/PfxqwEUgCBgP/qnxK356M1TRtKO6uYfcopcbXet0ADMPdM2Ua8LhSqlcLl7G5GHB3J31D07QhQClQe6z0K8CfNE1ztnDZRMfxd9zJwY24ny5v4FTPrsZ+P9scpVQo7ifoD2iaVuTr27z8rE23Rb5ch3rijnb1nWjkOryC9/q33X0fRItqqM5tVxr5/eowv0en2e60K2fQ5rQrjV0HTdO+0TStD3Ap8HRj+zM0eQl9pGlagVJqEXAuUGNCH6XUQNzDCc7TNO1EKxSvOYwFLlZKnQ8EAeFKqY80TbvRY5tDQIrH/zvj7n3QHvhy/r8B/l7ZbWiPUioL93jI1S1f3OahadqRyr9zlVLf4O6Cu8Rjk0PAcU3TSoFSpdQSYBDusWFt3SHgkEcvqy+pm7gYDnzmHi1ELHC+Usqhadq3LVZK0a5VNpy/AfdkaUBW5R9ffj/bFKWUEXfA8LGmaV/78dZ21Rb5ch3qizva03fCh+vgtf6lnX0fRMtqqM5tT3z4/eoQv0dn0O60G2fS5rQn/nwXNE1bopTqrpSK1TTteH3btfSqInFKqcjKf1uAs4EdtbZJBb4GbtI0rT3crAGgadqfNU3rrGlaV+BaYEGtm3aA74FfKbdRQKGmaUdbuqzNwcfzPwhMAagc/9gb2NeiBW1GSqkQpVRY1b+BqdRK2gHfAWcppQxKqWBgJO5xYW2epmnHgGylVO/KH03BPRGp5zZpmqZ1rfyefAncLUkL0ZSUe2UbU+V/bwOWaJpW5OPvZ5tReYPwLrBd07SX/Xz7GqCnUiqt8lpdi7t9anN8uQ71xR3t6Tvhy3VooP5tN98H0fLqq3Nbs0xNzcf6tt3G+FXOsN1pF86kzWlPfLwOPSq3Q7lX2TEBDSZxWrrHRSfgA6WUHnfS5HNN02Yqpe4E0DTtTeAJIAZ4vfJcHJqmDW/hcraYWuc+C/esw3uAMioz1O1ZrfN/GnhfKbUFd5e6PzWUdWuDEoBvKr/XBuATTdNme14DTdO2K6VmA5txzwXyjqZpbTJQrse9wMeVQcw+4De1vgNCnBGl1KfARCBWKXUI+AvuiaCrvmN9gQ+VUk7cibNbK9/q9fezZUvfpMYCNwFbKrtog3vlplRwXwulVCKwFggHXEqpB3DP+l2klPodMAf3ihLvaZq2rYXL31QavQ7UH3e0p++EL9fBK03THO3o+yCa2BnUue2JL79fHSHGP6N2p+WL2yzOpM1pT3y5DlfgTubZgXLgGo/JOr1SjbwuhBBCCCGEEEII0WpafHJOIYQQQgghhBBCCF9J4kIIIYQQQgghhBABSxIXQgghhBBCCCGECFiSuBBCCCGEEEIIIUTAksSFEEIIIYQQQgghApYkLoQQQgghhBBCCBGwJHEhhBBCCCGEEEKIgCWJCyGEEEIIIYQQQgQsSVwIIYQQQgghhBAiYEniQgghhBBCCCGEEAFLEhdCCCGEEEIIIYQIWJK4EEIIIYQQQgghRMCSxIUQQgghhBBCCCECliQuhBBCCCGEEEIIEbAkcSGEEEIIIYQQQoiAJYkLIYQQQgghhBBCBCxJXAghhBBCCCGEECJgSeJCCCGEEEIIIYQQAUsSF0IIIYQQQgghhAhYkrgQQgghhBBCCCFEwJLEhRBCCCGEEEIIIQKWJC6EEEIIIYQQQggRsCRxIYQQQgghhBBCiIAliQshhBBCCCGEEEIELElcCCGEEEIIIYQQImBJ4kIIIYQQQgghhBABSxIXQgghhBBCCCGECFiSuBBCCCGEEEIIIUTAksSFEEIIIYQQQgghApYkLoQQQgghhBBCCBGwJHEhhBBCCCGEEEKIgCWJCyGEEEIIIYQQQgQsSVwIIYQQQgghhBAiYEniQgghhBBCCCGEEAFLEhdCCCGEEEIIIYQIWJK4EEIIIYQQQgghRMCSxIUQQgghhBBCCCECliQuhBBCCCGEEEIIEbAkcSGEEEIIIUQAUEr1Vkpt9PhTpJR6oLXLJYQQra3RxIVSKkUptVAptV0ptU0pdb+XbS5RSm2urGDXKqXGNU9xhRBC1Cb1tBBCtA+apu3UNG2wpmmDgWFAGfBN65ZKCCFan9I0reENlOoEdNI0bb1SKgxYB1yqaVqmxzahQKmmaZpSaiDwuaZpfZqz4EIIIdyknhZCiPZHKTUV+IumaWNbuyxCCNHaDI1toGnaUeBo5b+LlVLbgWQg02ObEo+3hAANZ0OA2NhYrWvXrv6WN+AUVtjZd6IMlwY6Bd1igokIMrZ2sYQQzWDdunXHNU2La+1y1Cb1tGgvpE0VZypQ6+nTdC3waUMbSD0thGhrTreebjRx4Ukp1RUYAvzi5bXLgOeAeOCCet5/O3A7QGpqKmvXrvWzuIEnt9hK+osLsTs1jHrF8ocmER9mbu1iCSGagVLqQGuXoTFST4u2TNpUcabaQj3tC6WUCbgY+LOX16SeFkK0WadbTzc6VMTjAKHAYuBZTdO+bmC78cATmqad3dD+hg8frrWXija32Mrq7AIyUiIlwBKiHVNKrdM0bXhrl6M+Uk+L9kDaVHEmAr2e9pVS6hLgHk3Tpja0ndTTQoi25nTraZ96XCiljMBXwMcNBcMAmqYtUUp1V0rFapp23N8CtUXxYWYuTE9o7WIIITowqadFeyFtqhAAXEcjw0SEEKIj8WVVEQW8C2zXNO3lerbpUbkdSqmhgAk40ZQFFUII4Z3U00II0X4opYKBc4AGk9BCCNGR+NLjYixwE7BFKbWx8mePAqkAmqa9CVwB/EopZQfKgWs0X8egCCGEOFNSTwshRDuhaVoZENPa5RBCiEDiy6oiywDVyDbPA883VaGEEEL4TuppIYQQQgjRnjU6VEQIIYQQQgghhBCitUjiQgghhBBCCCGEEAFLEhdCCCGEEEIIIYQIWJK4EEIIIYQQQgghRMCSxIUQQgghhBBCCCECliQuOpDcYiszM3PILba2dlGEEEKINkHaTiGEEKL1NbocqmgfcoutpL+4ELtTw6hXZD40ifgwc2sXSwghhAhY0nYKIYQQgUF6XHQQq7MLsDs1iq0O7E6N1dkFrV0kIYQQIqBJ2ymEEEIEBklcdBAZKZEY9YowswGjXpGREtnaRRJCCCECmrSdQgghRGCQoSIdRHyYmcyHJrE6u4CMlMjT7uqaW2w9430IIYQQbUFDbae0h0IIIUTLkcRFBxIfZubC9ITTfr+M9RVCCNHReGs7pT0UQgghWpYMFRE+k7G+QgghhLSHQgghREuTxIXwmYz1FUIIIaQ9FEIIIVqaDBURPmuqeTKEEEKItkzaQyGEEKJlSeJC+OVM58kQQggh2gNpD4UQQoiWI0NFhBBCCCGEEEIIEbAkcSGEEEIIIYQQQoiAJYkLIYQQQgghhBBCBCxJXAghhBBCCCGEECJgSeJCCCGEEEIIIYQQAUsSF0IIIYQQQgghhAhYkrgQQgghhBBCCCFEwJLEhRBCCCGEEEIIIQKWJC46gNxiKzMzc8gttrZ2UYQQQrRT0tYIIYQQorkYWrsAonnlFltJf3EhdqeGUa/IfGgS8WHm1i6WEEKIdkTaGiGEEEI0J+lx0c6tzi7A7tQotjqwOzVWZxe0dpGEEEK0M9LWCCGEEKI5SeKinctIicSoV4SZDRj1ioyUyNYukhBCiHZG2hohhBBCNCcZKtLOxYeZyXxoEquzC8hIiZSuu0IIIZqctDVCCCGEaE7S46Kd8TY5WnyYmQvTEySQFEII0Ww82xqZqFMIIYQQTUl6XLQjMjmaEEKI1iZtkRBCCCGamvS4aEdkcjQhhBCtTdoiIYQQQjQ1SVy0I809OZp0/RVCiMATaHWzTNQpxJlRSkUqpb5USu1QSm1XSo1u7TIJIURrk6Ei7Yjn5Ghp0ZYmnSRNuv4KIUTgCcS6OdAn6swttgZs2YSo9CowW9O0K5VSJiC4tQskhBCtTRIX7Ux8mJmMlMgmD2Q9u/6GmQ2szi7gwvSEJiq1fyToFEIIN291c0ZKZKvXkVUTdQaaQEz0COFJKRUOjAduBtA0zQbYWrNMQggRCCRx0Q41R5IhULr+StAphBCn1K6b06ItUkc2IJCS8ELUoxuQB/xHKTUIWAfcr2laaesWSwghWpfMcdEONUeSoarr78c3DG3VQFgmfRNCiFNq181Z+eVSRzYgUJLwQjTAAAwF3tA0bQhQCjziuYFS6nal1Fql1Nq8vLzWKKMQQrQ46XERAJp66EN944vP9DiB0PVXgk4hhKjJs25uzTqyuYfxNcX+A33+DSGAQ8AhTdN+qfz/l9RKXGia9jbwNsDw4cO1li2eEEK0DklctLLmGvpQO8nQXoZYSNAphBD1a606srnbmKbcfyAk4YWoj6Zpx5RS2Uqp3pqm7QSmAJmtXS4hhGhtMlSklbXU0If2NMSiKuiUpIUQQtTVGnVkc7cx7akNE8IH9wIfK6U2A4OBv7VucYQQovVJj4tW1lLdemWIhRBCiObS3G2MtGGiI9E0bSMwvLXLIYQQgUQSF62spbr1yhALIYQQzaW52xhpw4QQQoiOTRIXAaClxtvKuF4hhBDNpbnbGGnDhBDizOke/MGn7VwvXdTMJRHCPzLHRS25xVZmZuaQW2xt7aIIIYQQooOROEQIIYSoS3pceGgvK2/4q7mXsBNCCCGaWntsuzpqHCKEEEI0RhIXHjxnLQ8zG1idXdDuu6XWFyS1x4BQCCECmdS7vmuvN/gdMQ4RQgghfCGJCw8dcdZyb0FSRkpkiwWEEqgLIUT7vRH3hz/tQXu9we+IcYgQQgjhC0lceOiIs5Z7C5JaKiCUQF0IIdza6424r/xtD9rrDX5HjEOEEEIIX0jiwkNHfPrvLUhqqYCwowfqQghRpb3eiPvK3/YgUG/wmyKOkNVThBBCiLokcVGprT/9P5NgqXaQ1FIBYUcP1IUQokqg3oi3lNNpD5riBr8pH1i09ThCCCGECGSSuKjUlp/++xssOexOdm0/wpb1+yk8WYa1wo7N5iAiMpiklGiSUmLo0Sex2c+/owfqQgjhqSM/aW+N9qCpEw1tOY4QQgghAp0kLiq15af/vgRLLpeL1ct2M+vrtWxau5+KchsA5iAjQUFGjCYDhSdLsdudACil6N4rkQHDujBsdA8Gj0jDaGz6r0tHDtSFEEKc0tLtQVMnGtpyHCGEEEIEOklcVPLnaU+gzYXRULBks9r56Zt1fPPpLxw9lE9MXBjjpg3AmBLLRVP60j0lqnrbYwXlLNx8mASng8O7jrJ53X5+/Got33yyiuAQMxnjejJuSj8yxvbEHGRshTMVQgghaqpqk9OiLWTll/vcNvuSaPCnvZdehEIIIUTzkcSFB1+e9jRl19KmSoB4C5acThcLZ2/hg9fnk3uskPRBKdx8zxR6jejGwH8uwb67kGf2/VJd/txiK/1fXlzjvG66YxI2q50Nq7NYsWg7KxfvZNGcrViCTYyZ2IeJ0wYwdGR3DEb9aZddCCGE8FXtdrOqTbY6XJTZnISY9JgMOp/a5sYSDafT3ksvQiGEEKJ5NJq4UEqlAB8CiYALeFvTtFdrbXMD8KfK/5YAd2matqmJyxoQmqpraVOPra0KlmxWOz9+tYYvPlzB0UP59OjTiT/+5VIGZ3QDYGZmjtfy13deJrORkWf1YuRZvbjvUReb1+1n0ZwtLFuwnfmzNhMabmHMxD6Mm5zOkJHdMJkkFyZES5N6WnQE3trNqrar1OYe5lhicxKmlM9tc0OJBpmzQgghhAgcvtxlOoA/apq2XikVBqxTSv2saVqmxzZZwARN004qpc4D3gZGNkN5W5S3HhFNNYa1qQOi4qJyZn3tHtZx8kQJvfolc+u9VzN2cl90Ol31dvWV35fz0ut1DMnoxpCMbvzukQtYt3IvS+ZtY/mC7cz9fkP1cJIxE/syfEwPQkKDTvt8hBB+6bD1tOg4vLWbVW1XiElf3ePCWxt2Oj0cZc4KIYQQInA0mrjQNO0ocLTy38VKqe1AMpDpsc0Kj7esAjo3cTlbXH09IppqDGtTBUT79+Yy84vVzP1hI9YKO8NGdefqZ69k0PCuKKXqbO9Z/rRoS43z8Oe8jEYDo8b3ZtT43thsDpYs2cWPP21m3aq9LJqzFYNBz8BhXRk1oTcjxvQkKSX6tM5PCNG4jlpPi+YXSHM6eWs3a7dpnnNceM59MeH1FX73cJQ5K4QQQojA4Ve/fqVUV2AI8EsDm90K/FTP+28HbgdITU3159BNypdArKEeEU0xhvVMAqJjR06yeM5WFs7ZQtbuHIxGPZPOG8il142ie69En46dkRLpNTFzOudVYHVy7ZKD2IMiMI4dxDfn9mTn2n2sXLyT11+YBUBichRDR3Zj6MjuDBqRRnhEsE/7DqSgWYi2oL3U06Lp+VufNvWQxjNVX7vp2Xb1SwyvU3YNDU2DUpvT7x6O/raL0mYJIVqL7sEfWrsIQjQrnxMXSqlQ4CvgAU3TiurZZhLugHict9c1TXsbd/dkhg8frvld2ibgayDWEl1E/QmIjh7KZ+n8TJbOz2TXtsMA9B2Ywl0PnsfEaf2JjA7169hNOVSl9r4Ko8K47f6p3Hb/VLZsP8oPP2dSvOcoi+ZsZdbX69DpFD37JjFibE+Gj+lBr/Rk9Hpdnf0GWtAsRKBrL/W0aHq+1qeeN95n2k7YrHYKC8ooKiijpLiC0uIKSkusVJTbsFrtWCvsaJo7qQBgNOqxBJsIspiIiAohLjGCuPhwwiIs1T0IfW03PcseatKjFM0+5EPaLCGEEKL5+JS4UEoZcQfDH2ua9nU92wwE3gHO0zTtRNMVsWn5Goi1dhdRTdPYu/MYq5bsYMWiHezdeQyAXulJ3HLv2UyY2p/EpKhG9lK/tGgLGhqh9YwH9kd9SZ7cYiuTPt3kDuIiY9n83eWcPHCc9b/sZd3KPXz878V89PYiIiKDGTm+N6Mn9GFIRhqWYPe1lonRhPBde6qnRdOrfSM/Y3kW94xNq9G21b7xXnz3mDp1u6ZplJZUcCKvuPpP/vFi8qv+faKEk5V/ystsTVL2yOgQeqUn07tfEoNGdCN9YIrXZLen2u3S4rvH+LVU6umQNksIIYRoPr6sKqKAd4Htmqa9XM82qcDXwE2apu1q2iI2LX96UjTlsma+dB8tKS5n45os1izfzZrluzmRV4xSivRBKfz2gamMm5J+RskKz7JMeH0FmgZKweK7xzT5cqxQN4hbf7SYCwen0m9wKtOuH8PizGOYjp5g+5p91RN8Gk0GMsb2ZPzU/gwc3KXRz0q65QrR/urp9qIl66fGjlXV9oWa9JTanLy8ZB8zVuyv0SvAs86OUhpLlu7mtZ7hbMw8gnayjP+75d/kHSv0mpAIDjETExdGdGwYvdKTiIwOJTI6hIjIYMIjgwkNsxAaFkRIqJkgiwlzkBGTyYDecCoBYbc5KC+zUV5uo+BEKXm5ReQdK2Df7hx2ZR5hzfLd/PetRUTHhDJ2SjrTLh5Cz75JXq+Ht3apahhJc2krk3lKuymEEKIt8qXHxVjgJmCLUmpj5c8eBVIBNE17E3gCiAFer+zO6dA0bXiTl7YJtEZPivq6j548UcLObYfJ3HSQDWuy2LP9CC6XRnCImWGjujNibE9GntXL72EgjfFcPi7MbCArv5x+ieFnFMx4S/I01BOjxvV45CL+GKRn28ZsVi7azpJ5mSxfuB1zkJE/TE4nflQPLprQq06ZpFuuENXaVT3dHrRk/eTLsaravhnLs3h5yT5KbU5cLo25u/K4bnAS+3Yd48TKPfTesIvgwhLMFTa+XbAOgCCLieTUaDqnxjB0ZHfiEyOIiQ8nJjaU6NgwomNDq3vKnQmT2YjJbCQiKoTEpCj61Hq9tKSCNct3s3R+JnO/28APn68mY1wvbrx9Ir37JdfZX1M+fPBFa/fU9IW0m0IIIdoqX1YVWQbUXZ6i5ja3Abc1VaGaW0sGMy6Xi/kbswnKKySosJToCiuPP3CE8pxCco4WAO5lRvv078x1t45ncGU3WINR32xl8pZQaI5gxteeGFXdaQePSGPwiDRu/8O5ZG46yLyZm1g0dysVszaxoXcnLr1+FBOm9sdkMjS4HyE6mvZYT7d1LVk/+TME8p6xaUxfnoXZaiPqaBGvPvEVX5WUUVZSAUDvpCgiBqcybHAqgwZ2JqVrLLHx4V5XqWppIaFBTJw2gInTBlBaUsEPn6/my49WcN+v3mbMxD7c8cdzm6RX4plo6WSJv6TdFEII0Vb5taqIaLiLpc1qZ/0v+8jcnM2h/cfJ3n+co4fysdud9KvcxqVTOA1x9BnQmUuuHUmvfsn07NOJIIupxc7BW0JhZmZOvcFMc/XECDXp0dBIi7bUeF2v1zFgaFcGDO3K7X+YxsLZW/j+89W89JdvePe1n7nwyuFcfM3INtMtVwjR8bRk/eTrsQ5m5bF84XambdtD/oHjANjMRrqO6sFF56QzaHhXYuK8D6c40+EFTT08ISQ0iGtvGc/F14zku//9wmfvLeX2K2dw/W3jueKmMZyscAZ0z4fWIu2mEG1Pa60W4utxXS9d1MwlEcJNaVrrTBo/fPhwbe3ata1y7NO17VgRo6cvq54bYuW94+iXGM7G1fuY9c06Vi/bRXmZDb1eR1JKNCldY0nuEkNiUhRBUaHk6PRMGZJCYqSl8YM1oDnGp9bX46K5upV6XkuzQdfofnOKKvjqp60cWLKdjav2EBxi5tJrRzL+0mFsK7BKcCpahFJqXUcaXtEW6+lA0lR1tS/7qW+bnKMFLJq9hYWzt5C1JweAHunJLHLqyY+NwB4RQubDkxss35m2Ay0xPCH3WCFv/uMnli/YTnLXWOZ17kRhaMhplzeQkh5NXZ5AO7+mlFtsJSE+do9WXtyztcvSUqSebv8CfZlTSVwIf51uPC09LnyUW2xl9PRllFid1T8b/dpSHrM4mP/teiKiQpg4bQDjJqczaERXjMbmubTNFQD6O6zjTGXll6NQlNgc6JRqcL+5xVb6vbTIfc4xccx5byI/fbKST95dwref/cLVN48jPG3UGZdJCCGaUlMMG/C1zvc8VlFBGUvnb2PBT1vYuuEAAOmDUrj7ofMYM6kvcQkRft28nmk70BLDE+ITI3jixWv5Zekunn/yW/oc2EJWaifyeqf4dbxAmwOiuYZxtsfhIVXXivD4tNYuixBCiKYniQsfrc4uoHbnlE77jzF/50EuvW4Ut957NiazsUXKUTsAzEiJ9DkAbShY9WeCzcb4OsO9L/utfc5HjSYee/5qsnbn8P4b83l/xny+++wXrrt1PBdcPrxZ5wcRQoiW5OtNv81qZ9WSXcz7cSNrV+zB6XTRuUssv757MpPPHUhics25H/y5eW1oouX66nnP11pyeMLIs3rxjw9v56o7P6LbgaN0OlFA/FX9fX5/oM0BMXdXHuU2J+UOV0CUJ5BVfXYonQQBQgjRDkniwkcZKZGYDTo0TaPM7iKhtJTUXdmkDk3j8tsntUjSoqocngFgWrTF56cxp/Pkxt9Z0nOLrczdlcd9327B6aLRGe592W99QW9azwSefPl6tm08yH9mzOP1F2Yx84s13PngeQwb1b3BcgohRFvQ0E2/pmns3HaYOd+tZ/HcbZSWVBATF8Zl149i0rkD6d470a9JNetLRHirrxtqT7y91lh935TDF9KSIpn18W/5/IdNLH1/MX+9831uvH0i19w8Dr2h4XvaQJoDIrfYyn3fbqXc4QJAr0PmpGhA1WeH5nI2vrUQQoi2RhIXPvIM3LpGBfHUb98jJ8jEV1ExfPPSohbrTlo7gKz9dGjurjwiLUavwd/pPklq6MmcZ7AJkP7iQsrtTsrt7kCrsRnufT1+Q0Fvv8GpvPj2b/hl6S5mvPgTj97zIcPG9eJ3D55HUkp0o/sXQohA5Vn/pUVbWJ1dQN9wE5sWb2fu9xvJ2pODOcjIuCnpnH3BIAYNT0Ov1/l1jFMJ5604Xd4T27Xr64bak/pea6gdaY7hEL+7PoNfXdCfGc//yAdvLGD1sl383/NXE5cQUePYnm1LIC1pujq7AKfL3dXTYtTx2qUD2t2cFE2p6rNLeDE3q7XLIoQQoul1uMRFU6yQcTj7BIVHCzia3pUCF4Q5NZ+SAE31RMkzgPR8OqTXqQZ7OjT1k6TaweYrl/TH7tSqkxYWg67Fnlgppeg2pCuzB/YiNuQIzpV7uP2qf3HVr8dxzc3jWnTVFiGEOFO124sRnSPIePR7YvcfIzonH51Lo3e/ZO7/v4uYMLU/IaFBp32c9BcXVg9HgIYTzlUaak/8bWt8SaqfbvsZHhHMn/92FaMn9OGVZ77n3pve5vEXr6HfoNR6EyaBMgdE7es4tVdcaxephkCc5DM+zAwVJYWtXQ4hhBBNr0MlLprqqc7W9e7JzspiI3wOzFpiUs2Ccjv3fL2l3uCvqZ8k1Q42gRpJlNcu7c/UXnFnfBxfr93q7AJsKHZ2TiAvOY7rrMV88s5i5s3cyD1/uoBR43ufUTn8KW+gBXNCiJbTFEuHVtd5Ong/oxOf/3cFffbmYDfoye0cz+/vnMjN09LPuKxV9XhV0sJi9C3h3FB74m9b01iioynaz4nTBtC1RwJP/vFTHr79fe798wU4enUOqPksaguk3h+1BdokpkIIIdq/DpW4aKpJt7asP0BEVAjrnjyfNYcKW2RW9irbjhXx+cYjTOkZS5HVWX3sC9MTyC22YtQrQkx6NDTSok8tu2qzOziUU8DBYyepKCjlux17OVlUTlmFDavNgc3uxKVpKAU6pTAY9JhNBsxGPcFBJkIsJkIsZsJCzISHBBEeGkSiQU8QTjSjDg2NIcnhzRJk+XrtPINf9IrH/3ouObuPMv3vP/KX33/CWVPSufPB84iND2+ScnkjwZwQHVtT1AGrswtw2J2EHcyl28FjTJ+1ioTkKA70TyOnUyx6k4HzxzTNPD41e+3Ba5cO8DnhvCO3mI/XZRNu1jc62XPtYYX+DM9oqvaza/d4Xvvwdp778xf88+nvuePPFwXMfBb1CZTeH7UF2iSmQggh2r8OlbhoqqESB/bl0r1XIgnhQVyY7lv33KY49rZjRQx8aTEa8PS83YSY9JgNuhrdWxffPYbR05dhcNi54IVZ3Ngzgp37jnEopwCXx7IoSkF4SBDBQabKBIUBpVNomoamadgdLqw2B1abg3KrjbIKu9cydQU0wKnTc8OjWXRPiKB7pwj2xYUTFxlKXHQoiTHhJMaGER0egk7n+0Rx/l47b8Fv/NCuzPj4Dr74cDmfvruEtSv3cPPdU7jo6gy/x4H7QoI5ITq2M60DnE4XZZv2M3jpJszlVkrDQ7jvqcs599wBnCizN3li+HSf6i/Ze5xJry/H4rAxb9VObhsYh7W0nOzjxWgOO2VlNgAMBh06nWJfsQOr3ojDaKLCbKHUZMFg0Ps0PKMphzmGhVt46pUbePR3/+X9f85m/tu3kK30AdejIdAF0iSmQgghOoYOlbhoqm6XRw6dZMI5SS1+7M83HsFzRdZSmxOdUtWBcYXVzneLt5Gac5AQaxkAS4uPMyI9hXNG9aZLpyhSO0UTHx1KRKgFg5cb96oeHVcPTqJf4qmeCU6Xi7JyG8VlVopKKygsrqCwpJzlu3P56Jf9uOx2jC4HO3OLyDp2kiDNhdNZc2Jvk1FPcnwkKQmRdOkURfeUWLp3jqNrUhQmY/1fRX+unbfg12g0cP2tE5h87kD+9fyPvPHSTyyau5XfP34xXbrFN3TJ/SbBnBAd25nUARtX7+PNf8wma08OffsmkX7+YK6+cBAJ4e4EeWNP3093iIqvT/UrbHY27DjEmm0H+XLFboYWFKOrbJUWLM/FZjDi0Blw6fVcMaQLQUY9TpeLrOMl7C3KJbi8BFOpu11woigPCubtmev442UjsATVvzJXUw+ZMBj1PPz05dx17Ru8/bfv+ed/bmN3fhkzlmfVafuEd4E8jKU9UErtB4oBJ+DQNG1465ZICCFan9I0rfGtmsHw4cO1tWvXtsqxz0RJcTlXTPw7t91/Dlf9atxp7eN0g0vPHhcAwUYdQUY9W/44gWWrd/DmlysoKbNiNxgpCImgIiSMdY+eS6cIS4P7rSpPuFnPpDdWogEK2PzghEYDuOqJ3TxWEgGwGBQhesXMm4ZgK6/g2IkiDucWciingOycAg7lFGB3uANYg15Hj9Q4+qYlkJ6WwOA+nUlJiPRpGT9/r6WmaSz4aTNvvPQTFWU2rrt1PNfcfBYGY9Mt+y5zXLRfSql1HSmAbKv1dGvztw7IPVbImy/9xPKF20lIiuS3909l3JT0GnVgY/tsrmFqh3MLWLJ+Hys27mPjrsPY7E5MRj1JidGsPGGn1BhEucHMYxf05/lF+6p7mnx8w9DqIYyeK5YYcBJcUU5QWQmhFSWYHHZCg81cOnEA1583jJjIkDMus69WLNrBk3/8lGk3jOahI/bqtm/6Zf25cmCS1N9tVHuopysTF8M1TTve2LZST7d/ugd/aO0iNMj10kWtXQTRxpxuPd2helw0hdxj7smq4xMjT+/9ZxBc9ksMZ+Fdoznv37+456LQKf57SW8efflrMvflkNG/C7dcMpKkpFif597wLI/d6apOimi4e3g8eW7DiYuqpy7uwHQLVruLcoeLcoeGQa8n16XnwiHd6rzP4XByMKeAPQfz2HUglx37c/l51U6+WbAZgNjIEIb27cy4wd0YPSiN8JC6Q3JO51oqpZhy/iCGjerO6y/+xIdvLmTZgu384YlL6NnXv140DV2T5ngqKkR70d5/B3ztweB0uvjh89W8//p8XC6Nm++ZwhU3jMZkrtn7wJe6rimHqR08epK5q3awYPUu9h46AUC35BiumDKIUQO6MrhPMkEmI0v2HueNFfu5a0xX+sSH8fLSrBo9TTzLrdfBjMvd82fklVoZPX0Zx1zxRDgruLqTgU9+WsfXCzbx64syuPbcoQSZ6u+B0VTGTOzDmIl9mP/1OtSI/mh6d/+RP3y/jSfm7JQ5ioQQQogAIokLP+UdKwIgLjGikS3ryi22MmN5FjaHixKb87SCyyKrE4NeR3GFnVR7MU+++i2RYRaeuvt8po7qXf2Ezte5NzyD3WDjqaEjCrh6sG838vFhZm4c1pmpveJqPFlrqJu0waCnW3IM3ZJjmDq6D+DuDXHg6EnW7zjE+u3ZrNmWzdyVO9HrFIN7d6Z/vy4cUhZuyOhCv8TwMwrUI6NDefS5q5g4tT/Tn5vJfb/+N9fePI4bfjuxSXtf1CaTd4qOTn4H3A5nn+CFx75mx9ZDDB/Tg3v/fCGJSVFet/WlrmtoiEp9QwA9nSwqY/aKHfy0PJOd+3NRCgb3SuaB6ycwflh3kuMj67xnfPdYxnePrf5/7aEDMzNzapQ70mIkPszM6uwCFIoSuxOdOZjJ04bywHXj+ddnS3jji+V8u3ALv79hIhOG9/D/wvrpwqsyWLFoB7EnCsiNjwbA5tSw+7jMuRDNRAPmKqU04C1N0972fFEpdTtwO0BqamorFE8IIVqeJC78lJfj7nERl+DfGNiqYN3qcFFmcxJq0p/WHAhVwWlXayFxhXmMHJTG03ed57VHgj/7qwp2Z902kvm7j5/WOF/PBMbpPE1VStE1KZquSdFcPnkgLpfGtn1HWbZhH7NX7mTdl8twofjy+2CeuHYMU4b38Gksubenu9U/G96Nt7/8HW+89BOfvLuE1ct386dnriA1Lc6vc/eVTN4pOjr5HYB5P27iX3+fid6g50/PXMGkcwc0ODTOl3kz6ptzwHOI4TPzdtcYAmizO1i6fh+zlmWycst+nE4XfdMSeOD6CUwZ2Yv46LA6x/Gnt0x95fb28/gwMy88cAlrMw/yz48W8fCr33PumD48+KvJhJ1m++aL5D5J2MxGkvNOUpgUg0mvA5TMUSRa21hN044opeKBn5VSOzRNW1L1YmUi421wDxVprUIKIURLksSFn3KOFGAw6ImOrRvQNaQqWC+1OQkx6fn9+G7cMzbN7yeN8WFm3pzUmRffy2RSRm/+ds/5p7VSh+f+age7nk/QTnefTXEjotMpBvRIYkCPJI6GxjB/9lZiKoqJrihm+gc/89n3K3h0VF869UhlSt9OPo/7Bur87OGnLmfMxD68+swP3HPDm9x2/1QuvjrDp3k2/CGTd4qOriP/DlSU23jtbz8wf9ZmBgztwsNPX0G8D733fJ0I0Vvd6zmpc9UQwJv6Wflu0VZmr9hOUUkFcVGhXDdtKOePS6d7Sv31f0O9Zep7zVu5Gzqf4empfPDUDbz//Wre+24VG3ce5q93nceQ3p0bvU6nY+2RIgpjIgg/XoBJp2PG5QOJtBjb7TAm0TZomnak8u9cpdQ3QAawpOF3CSFE+yaJCz/lHC0gLjHC76U0awfrp5O0ANi+7xiv/nc+g3sn89Sd03xKWjT2hKyhREOgjEW/Zkgyz87fQ7YxiEOhsXxwXhrrNu7h89lrMeg3kDUunRsvGE5qYs2u1t6e7gJen/iOm5xO+sAUXn7qO15/YRab1mTx+ycuISy84clN/SEzsYuOrqP+DuQcLeCvf/iU/Xty+NWdk7j2lvF+tSOnmxC+enASz8zbDZqL6IpS9q5Yxw0f52A06JkwrAcXje/HiP6p6HWNl6Wh3jL1vVZfuev7edVknkFdUnj+j0m88sE87vnbF9x11ThuOH/4GSXqvclIiaQsOoy4I8cJsdmY2iuuw3wnRWBSSoUAOk3Tiiv/PRV4qpWLJYQQrU4SF346dvgkicmRfr/PM1hPi7acVtDudLl46u05hIdamHLuKAoqnMQ3sIwonNl48kAai94vMZzND06oMU77xrMHkJ1zkk9mrWPm0m18v3gLZ4/sza2XjiItOQao/+lufU98o2PDeOqV6/nmk1W8N30e91z/Jo+9cDW90pOb7FyaqkeKEG1VR/sd2LbpIE89+Bl2m5OnXr2BEWN6ttixwzQnj/UJYv6qnditNsqDIrj32vFcNL4fEWH+JWUb6i3j7TW/V1cpttLnhQUUlDsAiLQYWf+nq3nrs0X8639L2bE/lydun4bZ1HShS3yYmQ/uncgTd2Tx1oSuTdrGBUriX7Q5CcA3lT0+DcAnmqbNbt0iCSFE65PEhZ8OZ+cz4Zx+p/Xe+DAzGSmRXpMBvgQ483/Zxb7DJzgWl8xvv8nEqN/O4rvHkJVfXu/7vD0FS4u2NDpRW33vbY6bDV+Du36J4XVWOUlJiOJPvzmb2y4fzWez1/PFzxuZ98tOpo7qwx1XjiE5PrJ61ZMqjT3x1el0XHHjGPoNTuXZP33OH259j/v/7yLOuXBwk563EKJ98qzTdq3Zy98f/ZK4xAie+vcNpHQ9s6F49R3Hsx5zOF0s27CXL37eyNrMbPR6HeOHdufSiQPI6N+lTq8FXybvhIbrztqvQd0heY3dvK/OLsDqsax2hd3Jf9Yf5oGbz6FvtwRm/G8ZxwtK+McfLyXUcmpfZ5ogGNC3EwBlx4v9fm99AinxL9oWTdP2AYNauxxCCBFoJHHhh6LCMkqKyklOjTntfXhLBtSXzPDkdLl455uVxMVGsCMojGKrgxCTntHTl6EqJxLz9r7aT8HCzfp6J2qrHfw19HTNl0DR121ON5FT4/roDHQZ0It/nzWAOUs288XPG1mwZjfXnTuUCyYN5oHvttY5RmNJmD79O/Ovj+7g2Ue+4KW/fMO8lft44MHz6BTVdENHhBBtU311lGedlngkj7St++jTvzNP/fN6wiODG32/P6/XrjuNmpPvF2/l6/mbOHaimISYMO66aiwXje9PTGSI1/NoaPJOb7zVnZ5lrXqt9ooiviTNM1IiMRt1lDvcyQurw8XLS/YxY8V+Mh+aRKfYCP7y5k/87rkvefWhy4kIszRJgiA4xExEVAjHjpz0630NkUlohRBCiKbVJhMXrdX98kh2PgBJKdGnXS5vyQBfApxVm/dz4OhJHr51KqsWHCJMKTQ0NA1KbA5CTXqv76v9FGzG8qwaE7U98/MuXr10AED1qidKwcp7x9EvMdzr8JaqbRsKFH0NJn1J5DTWq8Tbsa6eOoQ3v1jOhzPX8NWCLQQHRXHIEEJYkNGvADIiKoQH/n4159/2ARtnb+LS9Qf48sPfkhIX6tP7hRDtT0P1W1WdFrn3MF13Z5MyIIW/v/4rgiwmn97vy+uexymusBOv7Px5xo/s3JmN3eFkWN8Ufn/jRMYN6Y6hkXk0vE3eec9Yc70rMaVFW2rUx/WVNS3agoZGiEmPXudOkFzy3uoGEyTxYWaW3jOW/6w+SKnNyUfrD1Nqc6JTyl1vj+qNJcjIn1/7gYde+Z4Zf76yyRIEiUmRHD3cdImLjjwJrRBCCNEc2lziojW7Xx495A5qOnWum7jwtVzeutr6MjZ4wZrdhAabuXhcX84a1pPV2QWEm/VMemMlAKU2J2nR3nsCeD4hq5qorSpQ/X7bMX7enct9YxIwuI5jUFaMys7Fb3xESoSJcrsdm8NBmc1Zvb8go4Eo5ULTA0px+VuHiLQYMej0GPQ69EpRWOEgjFKcOg09Om776Gs6hVswG/SYDAYsRgORliB0OgOh+kJMQQaUTmNIUliNQNSXXiX1Ba5P3HEuV50zmL+/v4DSrKOEm4M5YerkdwC5/mgxWX26km8y0WfXQR773YdMf+vmGk9PhRAdR0M3yxkpkSRl55C6O5uTCVG894/raiQtar/fYtAxd1ceNw7r7NP+qwxJDCOqrJAuRflYbBXsKzRx2aQBXDZlEN2Sfe8V6NkmKGBKz9g6bZnd6WToy3NxOa1oLisWgwODTmNCt0jySioIpQwrCr1m4I1lG7ikfzfO/vc60KhMsCsen72zRoLkvdXZ/OPimsMuc4utTHh9BXanhl6nvN74jxvcjcd+O40nXp/Fa58s5qbLxp5RgqCqrQ2PCeXogRN+vbchHXUSWiGEEKK5tFriorDCTm6x1e/GvDW7Xx497O5xkZgUeUblqt3VtrGxwZv/MJ4l6/cybkg3jAY98WF6LkxPYGZmDsEmPaU2J8EmPVn55Q128QX3PBEL7xrN1LdWEqQrItRQQrAq55NVO4k0gFPTYXMZcWhGkqNi6B0fwd4T5fy8Kw+HS8Ok15GREs2SfcfR0NABg5Lj0OvA4XLhdGk4XC4MegPqeBl6QKc0DDqNvJJS7A4nVoeDcrudgnIrdqeTMB1Q+VBw2mtZpEZHEmVwEqwzY3VZcGhmim3Oeq9rQ0+2+nZL5D9/vY6P5mzgna+WE3Esi9mLN3HD+cN9mkXfc/+F3ZLYFxaEcfNebr/pLZ745w2k94j3aR9CiPajoTpnw8JMUrdlkTa0K/954RqSouomODNSIqnqCFHucHHft1trrGbR0P5PFpXx9YLNfDlvIwmFZcTGhHPVOSO5esoAgoNMdY7VmNoTH2fll+NwOnA5SgjSVXDT+59z6GQ+UTpXdT3t0HSAnkMFBqKDzRiUHYPBiR4nn/6ykk9/WUmU0lNEKOVaFDanCYdLq3Hc7jF1r0vtdnTG5QO8lnna6D5k7j3GZ3PWM3Zwt9NOEHg+cEjLLiIlpxBN05psGez2OgmtTDoqhBCiNbRa4mLfiTLSX1zod4+J1ux+mXu0kMjokDpPz4Aa3WJPp1yeAU7tscHfrd5LUUkFE4Z1r/GejJRIzAYdOqX8OuaGQ0dJDjqIUWfD5jJQ5opgxpVjSYiIZOq/14IGJoOOf145CcA9y3uF+wlepMXIPy53//xM57jQNI3sk6Us3JNDYqii1FrO2oM5rMw6QnxwOUXlhaAHl6anXB+MnTByi8vrJLwan2xT8avzhnLB6N68+OECZvxvGcs2ZPHXO84lKT6i0etVe0WYC56eTfe1O7j75nd4/f3bSO8RL4GcEB1IfXXOysU7eOXp7xg6sjtPvnI9pnpWv4gPM/PapQO448tNlNvdCd+5u/KItBir91c7mf3f5XvYs3UvC3/ZgdXuZMygNK6dNpSM/qlnfKPdLzGc347UmJO5izmZe0gwHEUZQdMUwcZ4ih2RFNqM2Fwm7C4jwSYjJoOOT26pOSfRsORwispL+HHbPl5dvJlIYxGRFFKhRVKgYii2KYw6hcWk48qBSXUmBa3dvqdGBnHhe6vRNDAbdDXihbuvHseKTVlM/2wJHz1702klCDwTJeVmE7YKOwX5pUTFhEqdXg+ZdFQIIURrabXEhUsDu1Pzu8dEa3a/zM0rRh9srnPjXNW9FQ2UgsV3j2mwXI0FRLWDN2dhEQBD+6TU2M7fa1Fus/PXH+fz3abt6JSBfHsSFYSy8t6zqntq7HlkSo39zczMwVk5ybvFoOO1S/tXH6exz62xSdwAhr6yrDoA+vrXw3l+6T40IlBEMP+OYRw4nscTP60lSFdKiCrm77O+5elZobx2xQQu6N+jenZ8X55sxUSG8Ny9F/LT8u28+MECrvnzB9x7wySunuz9qZ63c5mZmcPJyDDWDerFsE27+Ou9/+WpGb9m3PtrJZATogOpXefs2HKI5/78JT36dOKJl66pN2lRZWqvOMwGXXW7cd+3W3C6qDOB8Lrdx7jp5R8JLSkEFOeO7cstF2fQNcn7XEv+OF5SyvebdzBzyw4yj+YC0CMuhhtHDiEsOJorB/Vg49FiFny8nmKHA4tRx2uXpJMaFVyjzfG8Fnqdjr8tPonVkYxeObhliJm5mTuID67g/ikTiAyJISMlkrxSq9dJQT2TxKOnL6PEemqYome8UGh1MmBwT36cvZpFG/dTag72OybwbGtt4e4eIAf25WE3GeXmvB4y6agQQojW0mqJC53itHtMtEb3y9xiK4u3HcWpVJ2eIlUNeUnlcIaGhmxUPa2oPQmmp9oJiadfn0mPlFgiw+rOYeHrtTiYX8Kdn35HVl4ud56VwfheffluW26d2d1r7692EmVIcjgzM3NOayb82k9qXrmkf40A6I0V+2uMgf7L3H1cMziZAmcSxVY7Fl0FYYYSwowlPPT1TF5dEM41wwdy9bABRFiC6r3enuVRSjF8UHe2x+4hLu8w//jPz2TuOcpvrxrHhqPFjQa+VdfDHhfB7oy+hG7cxV/u/RD6dKdY6SSQE6IDOnbkJH/5wydEx4by9Ks3YAluvBeamwIFTpeGE/dcRdWTFCcG8/ZXK5i5NJMQICc4kpLIWDLGD6FrUnSDq5p4HqP2Ni6XxkdrMvlg1UaOFebhdGn0TYyn1BVPqTOU4zlm3vvV6OrtTQZ9jTbgyoFJDdaRVe1hqc1JiMmAMnXmlrM68/PWtTzz4xxuHj2U8/qcVWei6M83HuHJc8NrJInxGF2iFNXnVNWWOOxOeigdd785j4NRSZiNOnY8PNnnJINnW9sjSM/9V23nwL5cDoUEy815PWTSUSGEEK2l1RIX3WKCWR7ATzFqB4WrswtQdifWIFOdniL+NOSrswuwOlyUVk52OXr6MvY8MqXOdagK3pwuF1t2H+GCs9JP+zzm7srj/777mSBVQLGWxDn9BlRPgFa1zFx9n0PtYRJV7/NnJvyqa1lQbq8RDAI1rttdY7ry+aaj1bHq0qyTLMs6SViQnlCTgVKbBR2hODTF9AtTmLV1O/+Yt4w3l6zmkkH96NmpK1N6dqoxC7638qzOLqBcZ2RbRDLdyvP5aelWvl69l0OxyehMJq/n5fld8EwqHc/K5ZG7PqDv+h1sy0hHJ4GcEB1KRbmNJ//4GXabkxffvoHIaO8rDnlL3DpdGuV2F6EmPSgIMxswKY1NazJ5btFmQOPiSQN5ZU85Vk4NQ6wvAe55DPccGgqny3281feNYenuPfxn5XqOFRXjcOkpckTw35umYNfM7l4VVgdh5prtW3yYmcV3j6ke0tFYwrqqPQwx6SmzOfnnkn0ARFpiuX1oEu+vXE+Zzc7Vw0fUmBT06sFJNfaZkRKJyaAj1H0arLx3XJ2HBcV2F4WWMCLKiygPdVLucPHl5iN1eoQ0pKqt1TSNyOgQMjdlc+v5g+XmvB4y6agQTUf34A+tXQQh2pRWS1xEBBkDtsHzdsObkRKJUmDQqRrBY1Xj7WtDXrWfahoNPs3Zd+gE5VY7A3okeX3dl/PQnIXEGQvIt0ViVeF8vvGIX0+TPJ+ANfS+xpY21esUeh3VweDUXnF1rtvmBydw91ebWZp1surycGtGFyb1iK2zDN91I/qz81ge0xf9wserNwAb+RPRLPzdpXSPC6+3S2t1oinISH5wAmP6pbD9l82kHt3P4fjUGudVX/KjOqgfmMITL17L4/d/xOXHjvHUKzcE7PdaCNG0NE3j1Wd/IGv3MS78wwUExdY/OXLt+ghqJm4X3z2GxZsOMGfOar6fV0hRcDgno+O57cpx3EbNnhMzM3O8JsBrr1aCAqvdToKliMvf+pAKu52Y0EiOViRQ7AgFFCsOlHHP2IR6b9Q9V/rwlujOLbbS54WFWB1OzAY9Ox6eROZDk5ixPIsXF+2lwuEea2i1w7jeA4kLs/DvZWuICw2pMSloYz0PPY/p+bCgwhpEdFkhJpcDm97In37cXj3vkz9DPJRSjBjTk5VLdvKwxSA35w1or5OOCiGECGy+LavQwXgGf1W9K+LDzPSJD2VY5wgyH3JPTtnr+flc+f4aej0/H3DP+dBYgBMfZmblveMINesJNekxGXQNPs3ZuucoAP17dGpwv7nFVmZm5pBbbK1xHg6ng2jDMSqcZkpdcRj1iqsHJ53W06TGepZ4e93zWjpdGs+c24cHzkqrngekKgCqum79EsN5+tw+NfZ7Sb8ELkxPoF9ieJ1r3DsxjnMHjiDP0Y0iRygWTnDVvz/iv79sYGhSmNfyVgXE7hnrFd8etrIjqjM6NLrk7GfrrsPV19Hbd6G24WN68MDjl5C99RCfvjYXTdPqbCOEaH++++wXFvy0mUM9U/i/bSdIf3FhjTrYU+0JnKsStx/fMJSND5zFrDlr+OCjn6mwOTgYl8LOsATKdcbq9sez7qsvAe5ZBwcZXUQZj9MtZD+huhOM7JrCF7+9jrdvvIISRxigqns6VNWJH98wtM7NfmN14NxdeRSU2ym3uygotzN3Vx7xYWbuGZtGkFFfvZ3Z6G7r/jBlLJcNTmfG4lVsP3KQJ8/tU+/QyqrlwldnF1Rf123HipixPIuvfz2cGZcPwBHkHkIZbLcSbHSHNA3V1w0ZM6kvJUXlrFu1t841F0IIIUTrarUeF4Gsvhv00FAzBuUOpl5fnkVRhftpl63CyZebj3D32DSf9t8vMbzOJJj12bL7CJFhFpIbWP2ivl4BGSmRhOoL0CsXJ7VOvHXV4Ool907naZK39zU0jKKqDFXXUq9TPDZ7B04XDQ5RKbI6CTbqKLO7CDbqKPKYnM2bjJRIdHozZc5kXJqVYYk2nv1pEV+t38bXN02gyG6qc57xYWYiLUacLvfcJKEhIYwePZblc3/hq68W8/rSvaz968U+DwOadvEQco8W8NHbi0jrEc/lN4zx6Zo2BZn9XoiWtyvzMP9+ZS5pQ7uyKi6hwR5sDU3gPCTWzJ9f/oadB3K5ZtoQrpg2nGHTlxNWWZ97q3OqEuCjpy+rXgWq6vd/zX1jeXnBKpbt3kuZzU6ZK4wK4nj64nOrj+mtp0N9T9H9ndOgqMJePQ/SjocnMXdXHuCejBTgx+253DvxLI4VFvO32YsY170LiRFhXvdVu237+tfDmfTGyuoJPadf1h+r3ghAiHLyzIXpPDFnJzrl7t1XUO7fsuvDx/QgJi6Mj95exPAxPdD5uGS2EEJ0ZL4OeXG9dFEzl0S0d5K48KK+Mb2x8eHs3XkMgL0nymq8p/b/fTmGL10tN+06zMCeSQ0ud1ffkAiXphGkCrC6LLiUpTppcSY3uvFhZtKiLcxYnsWUnrFc/kHd1TQ8z6sqmTF3Vx4bDxfw1qqDNSag83YN0qItKKUIMigMel2jwWfthElcqImft+/h6VkLufOTr7hp5BAm96ibSKiIfG81AAEAAElEQVQdkI/umcgnG1NJyjlIYm42H8zbzEOXjfA5yXPDbyeQtTuHf7/6M2k9ExmS0c2va3s6ZGk6IZpeY3VkaUkFf3vkC6JiQnn4r5fx5VurCGtgWer6JnBeun4vT741G4B//OFSxg1x1xm+1DlVCfCqxIDT5eKztZt5bcEK8svKGdA5hQVZBk5a9XXq236J4dwz1lzdI8FzCJ6382+oPFN7xRFpMWC1uzAaFI/N3lk9r0bmQ5O4cVjn6n161lXzb5/Ar97/lJfmLeOlK87zeo41hr4Ydfxzyb4aE3ruPVGGwT2ZByade+LQKwcmMXdXHvd9u5V7vt7iV71oMhm44tYJvP33mXz37QYuu3xYo+/xhSSXhRBCiDMniQsv6hvTG5cQwS9LdqFpGrdkpPBKZRClgFsyUhrbrdfjNBTMnCgs5VBuIZdNHtTgfup7Ivbpup0YlJ08azSazsWM5VlcPTipwQk2G7PtWFH1EnZPz9tNiElfIxFxXp84KpwO7C4ndpcLp+Yir8zK739cj93pwqo5CQvRY9JrdI01cLy8lKJyJ1uPljEqNQqAs2asqB67XeFwcPdXmzEZdI1OIuqZBJma3pNRaSn8Y94yPli1nlnb9vDcJdMY16Nzjfd4BuQAepORI4ldSM3L5utvlzG8cySTRvT0Kcmk0+l48MnLeOA37/DsI58z4+M7SegU6fO1PR2yNJ0QTcuXZOBrf5tJzrFCXnr7N3RLbnyOo9p1dFq0hSc+XMKcn9fSu2s8f7/3IpI8etX5M4fAA99tRblKiNDnYlBWBiZ34qYx4xnfozMLX19BmLluz42qc7RVzpMRbNJjrqxjgTpzVjS2tPWOhydXT8B8z9dbvNZHteuq7CIXvxk9jDeXruaWMcNI7xTv9brpK5e8Lre7mL8nDwU12t37Rqdy9R928tCEbtXXvqo3nb/1Ym6xlTs2H6d3eAiv/WM2Q0b3oGun+ns7+kKSy0IIIUTTkMSFF/XdDCanRmO12jl2+CT9Okc3OLFYY3wJZtZvPwTA4N7JDe6rvidiOQW5aJrCpQun1ObkhQW7eXnJXhSKEpsTi1HH3F151U/EfPHZhsMYgsoxh5RhNFsxmR1EmOzo9A4e3LCN3611eH1fSFf335EeP7twdmaNbbQ1OqLMFoKSNWKsRhw2E7byIMrLLShnUL3BZ30JoHBLEPdMPIu31xTiLDrCrf/9kgcmj+XO8cOre7DUDsirrmP/uAk88/pMHpvxI1ddMZ7rJ/arN9isffy//ONafnfDWzz35y946d+3YPAY593UZGk6IZpWY8nAhbO3sGjOFn5912TiuidUD4tobILjqrqla1QQlz77LdEFxykJDuPZBy4jKSbktMo6b9dRgjlMsKEIh2bgimGjeWvNSebsP4Bed5Bnzu1NeJCxurdd7XMsqUwQl9qcuFwac3flUVRhp6DcDriTBd7aCG/t14XpCeQWW+skaKquj7e6akK34by7fC2ztu70mriIDzPzzLm9+f23W7FroGmK6Zf1J6fYWt3uFhSXAxAV4n3yTn/qxdXZBdhdkNkjhREbdvD8X7/h9Td/3WCPR5/2KcllIYQQ4oxJ4sKL+oKeXunuBMLOzCN06hxNv8RwnjzXv4RFFV+CmTXbDhAabKZvt8aDHM9JzKqGS6zef4CMtBS+3OF+RmV1gdXmIrjyRrrc7uK+b7fUCWqh5s14bKiJxUf28emujSzN30+nXu6g1uXQ0TUikmBdBCH6IPrERhBiNJFbbKdbVAgGnZ6nft6Fwwk2hwuTQYdBp/jbeX0JNetxaBobjhTwwdoD2DUHRqOLfqmhHOc45pAygiMLqyegczkM/JTrQBfSi7M6pRFmanjJU8/rXOYMJs+aQufgXF5duIzdubk8e8lULCaj1+tY9Tk8eucFXP7oR3z8xWJeXLqfDY9f4PU61T6+MTKU8b+ZwOx/zeX91+dz2/1TG/38TlegLk0nXaNFW9XQTW/O0QKmPzeT9EEpTLoio966x9v3Pz7MzAV947n31VlEFxwnLyiMEzHJbMopIcVL4sJzH1BzVRGXS+OztZt5ef4yLMpOsTOGElc0ydEJ2J0nKba6E8gP/ZCJxaSv7klR+xxDTXpKbA70RgdOo53f/7wUJw6CwvS4HHoc9rp1ZFVZqlY1CTHpq9uvxpbP9nyt6nyGpiazZPd+fjUqo841yy228uhPO7BXjg8pszmZ0D2mxoOCopIKACJCLdU/O916seq62OMjOdSnC2ptFt98svKM5iyS5LIQQgjRNCRx4UV9QU9ajwSMJgM7tx5i4tT+Z3SMxoIZTdNYvfUgw/p2Ru/DBGG1b6B/uHkgRwqLGdszHcXJGtveNKwzH67Nptzhwumquxyr576Cwgvp2eMkh0oLiQ0K5oru/elkjmHfER23DOtBXIiZPi8swGp3Md9gR6ecleObC3nlkv6UnzxBsdVBqEnPPeO7cc/YtBpB5NmdrLw7v4LCyid8K44bWP67C9hwuAi7y0F4mI1Vxw5T6Cpg2bF9/HgwE6NOx7mpvbmx9xByj5saTABVXecQs5kSUrj/rEjeXrqK/fkFvHHdJSSEh9Z7TTNPlHMwLoWUY/tJzMnmp00H+fW4njW2qZ2Amrsrjwe+24rdqdE9NYEvPlzOgKFdGXlWr0Y/w9MVaEvTSddo0ZbVV/+7XC5e+ss3uFwuHn7qctYdLfJa99T3/dc0jdc+XcKadTspCI/mREQ8xnpWlarah7VyKVG9zt3bwKhXzL51MC/PW8z67COMTkvhupEZXPnfrWgaPDZ7B3qdwmLUUW53Ue5wYdDr6tSLBqOT56+O56f9e9heeIRSZ0WN43um4z87Ukxs3CimpvRCV5lJTou2UFbZW6PM5iQtumbSoKHlsz2XyDbqFY9P7MwbS1bS/8W5WJ2GGtdsdXYB9sprAGA26KrnB6lSWOLucREeGlTnc/S3XvSck0nT+rPjoyW88+rP9O7fmX6DUv3aV+19SiJXCCGEODOSuKhU+wmZt6DHYNTTd0BnNqzed8bHayyYyTqSz9HjRfzqwhE+lbn2DfSXG3cCcO3Q3sz4ZQ0VlcFfeJCB343ryhebj2DQ67wmTdz7cqHCj2HplIvmimL6WZcwLbUXJn3lsIch7r8+WneIgnL3071yB5h0Tmwuqpel80zO1E5aVF2HZ87tze++2QpAUYWDDYeLmNorzn1uyZ24oo/7pt/hcrE+7zCzDuzgq71b+WH/drqERmOOCMWRH45eR51zqT3Rar/EcIakJPCHL2dx1b8/4U/TzmH1IavX4T4ZKZHoTEYOx6fSNWc/332zlEsHd67xZK92Agqo/hz29e5CXxz846/f8MZndxETd3q9c9oa6Rot2jpv9f+PX65l87r9PPDYxXTqHE1GrWERnj0jvH3///vjGj75aR1XnTOYmy4dw5pDhfXeyHr2aDhFI9FSxM0ffo7FaOCajFHcPW4Iaw4VVg7/cx9vxuXupPrvvtmC3elCp9yraxwtKmdn8VE+37OJn7N3Y3e5iDRZiNZFc/yIwmE3oZxGNJcOl3KgMzi4b1InFhzbzp2LvqFPVBxvTricYBXM5xuPYKlc+SnEpCcrv5y4EHO9K0rVvj42h8u9mpNJj9VlAsBmt1Fsp/qaZaREUlBux2hQVDYxBBn1der4vIISAGIiTm+4jTdVyWezJYJpCRH87c9f8PrHdxIRdXrHCLTkshBCCNEWSeIC/54QDx/Tg/emz+N4bhGx8Wd2I9pQMLNsw14Axg72vjJF7TIvvntMjSDxaEEePeNj6JcUw46HJ/Hl5iPsO1HKbzJS6ZcYXm/SJLfYyokyKyEJhzFFnsBeHMXnl9xEckRwjW08uzB7slU+HCuzu0iNDPLpSVN4UM3uyEUVdq+fh0GnIyMhha7B8fzrRzsqOJ990ccJTszHFGXGlp+IS9Nq7MvbRKsTe3Xj01uu4Zb/fsMDX3zP4fJOPDNvN5sfnFAjeeGZXAqxDuSxV7/j0ekzefWhyzEY9HW2qboeVZ+DQa946OkreOKO//D8Y1/z3Ou/Qq9v/8vrSddo0d4cO3KSd177maEju3PupUOB+pPP3r7/3y/eyoz/LWPq6N784cZJ6HSKC9OD6j1eRkokntMqGJSdJEsuQbpyhqSkMnufiVeWFzBj1aI6dX/VsqM6BS4NCivsPPDzIoI35KEzWYkyW7ip91AGR6Rx2dvb0HAf6I5RqfxuXFqdBMT/uc7ix/3b+euaeVzx03/J3p1CRZmZ8sqkhcmgIy3a4rXO9tpzMdpSnZAptTmJrKz/7U73z/Q6qvdndbhwujT+b0oPeseHeR/WmO9OXCTEeF9S1V+eiSfMBibfdTZfPf0Nzz/+Nc+8doMskSqEEEK0Eklc4N8T4hFje/Le9HmsXraL8y8f3mxlWrxuL33SEuoNxmqXOSu//NTEkgkhXPT6e9yQcWo1kifm7MTu1Hh/7SGvy5aCe8WQ0dOXEZKQjTnyJONj+/HCpeeQGB5UnayoPW558d1jiLQYsTqcuDSquzYDzN99nPHdYxt90uS5nJ7ZqCM8yNjg5+HuPqwozovAlB+BJbwYS1wOwZ0OcP3Pn/DmlIvoFRnn9TpV7at3Yhyje43g63XL6Ww5wpGKTny+8UidOUtqzHlx6zk89fYcXvtsCX+4cZLXbaDuUob3PHw+Lz/1HV98sIxrbxnf4LVoD6RrtGhPXC4XLz/5HUrBA49fXGOiRm/1aO3v/779R3nu3Z8ZNaALT9x+Ljpd4xM9xoeZmXlLBuf9+xdCDMVE6nMIMur445TJRIcn8P3uDV7r/qrft5mZOThdGvrQfDol5GI023FUBHFt53E8PWEUZr2Bv8zeUZ20APjPmmy+2Hy0eqJNOJWkHp3Sg8+nJXDlT58QlLyHkzu7E2IK4veVw//qq2e9XZ+s/HKCK1ejCjbp2XTUnXhQyoXFqOO1SweQlV9eo8fJs/P3sOXBCV7rktz8YkxGPRGh9SeC/FE78XTBWT2Jf/BcXvvbTGZ9vY4Lr6y/F6QQon3TPfiDT9u5XrqomUsiRMckjw7w7wlxWo8EOiVHsXReZr3beJNbbGVmZg65xdZGtz1RUMq2vUeZMLS7X2WuChJ3HDuC3elkYi93bw3PoNLu1FidXeC1fKOnL8NuKMQceZLy43Fc3TWjOmmR/uJCbvh4PaOnL8PqcFXvKyu/nB0PT+J/Nw1nzm9HVofBCrh6cJJP1yY+zMyOhyfzv18NZ8fDk5naK67Bz8PzaaTNCUUnwyjZ34vyYykcqyjk/B/+w0sblmB1Ohr8bH8zsjuHypOxu4wkBR2lV4yrwc9pxOAeZAzvzf/mbGDOyh0Nnk9V0A4w9eIhnHV2Pz58cyHbt2T7dE2akj/fvaZS+xoI0Vb99M06Nq3N4vbfT/NpeWPPHmkVJWU89q8f6dY5hufuuwijQe/T72NusZXLP1hNtDGHaMNResbH8Mep53Ne/z6MTI2qt+6vXg40zEZ46l5iUw+jufTk7U/hyK5uvLOwmMIydzLg6sFJeKZQbE4Nq8NV3T541vvpLy7EVmHi5i5TUMpFbOdcTAZd9fA/f9rQjJRIzAYdYWYDZoOOYZ3dwy+CjCYsRj1Te8WRkRKJy1Wz99znG4943V/eyRLiokLPaOUPT1WJp49vGFqd5D//8uEMHNaVD99cSGlJReM78VNr1NFCCCFEWyM9LvDvCbFSivFT+/PFh8spOFlKpA9jXv2drHD5xn1oGpzVQOKioTL/vH0PUcEWhqe6V0HxJahcnV2ApmlEJR3DYTNSnp/gdcx2qEmPUngNmgEW3jWaN1bs564xXf1aItZzH7nFVl65xD1O21vXYACH81RQazHquH1UF95bo+fIznBC4o/wry0rWHBoD6+Nv6Te69QvMZx5d57F9KW7OVm4kxfmzOePP+yg3GnxukpA+osLsTsUXcwWnn1nLj1TYunWObbRc1NK8cBjF7Er8zDPPfolr39yJ6Fhlkbf1xRkokwhTl/u0QLeefVnBmd047zLhjW+vcfvm1m5GFeRg16v48XfX0JwkIncYmv1ZMZmo44dD0/2+vv4Y+ZBItR+jDorxc5olh6JYtl3uzDO3F1jdY7adVqp3caLGxbz4c71xEYEcV6nsSTrk3kwazvgqk5cX5ieQL/EcDY/OIEZy7J4a9VBNGpOtDl3Vx7lNiflDveQkNHTl6FQBMfGY47J4dOL+9ZYMcXXNrT2trO2bgNgxhXDmdTjVPLlp9+OZOIbK4GGE+HHC0qJjax/kuXTUbuniFKK3z4wlXtvepsvPlzOzXdPabJjSR0thBBC+EZ6XFTy5wnxxGn90Vwai+du9WnfvvR48LR0wz4SY8IIjwyrfgrj7YmMtzKX2+ws2pXF5N7dMFTOp+DtCVKVqv2mRVsIiSrAZLFSnpfEyt+N9zpm22TQsfLecfXu6/IP1jJrRx6Xf7D2tJ4ebTtWRI+/z+eurzbzwHfer+/cXXmU2U9NWqcUDE6OxOnSKCqD4iMpTI4YxeHSIi768X1W5u3x+tlWlXfu7gI2nYglNMhCuMrGZi+t8zlVf4Y2J4dikzEYDfzp1R8oLbf5dF6hYRYe/dtVHM8p4pVnfkCrNRdHc/H3uyeEcNM0jenPzcTl0vj9Yxf79ES/+vetwk5cziGO5hXy3L0XkhQXAbjrroJyB+UOFwXlDr7cXLcXwYIde5k+fw56HOQ7OlPsigNN1fgd9lb3rzx2gGk/vMsHO9ZxU68hLLr8Dv424Swm9ojFVjmEr/YKIP0Swzk/PZEQk3vOnqqJNnOLrdz37VbKq4f+aaBBsdVB2Yk4gnQm/rX5lwbbo9xiKx+tO8RH6w7VaQs8tz1w4iShZhNXD06pcT594sMIDzJg0ivCggzEhXhvm08UlBIb2XQTc9anV3oyE6cN4KuPVlBcVN5k+z3dOlp6aQghhOhopMeFn3KLrWyzQUq3OOb9uIlLrhnZ6Hv86UbrdLlYv+MQY4Z0p99Li7A7NXQK7C4XCoXZoGvwicxP23ZRarNx6aD0GmWubyLOU096YMCQMqyOKL655zKUUszMzKl+T+2nad56U3gb55yREsncXXkUVdgJDzLW24Oiqjyjpy+jxOqssc/G5sh4/oL06uEloZVjp7/4pYwgc3fGDi/g/mU/sCX/GH8eOokTpfYa5ap6ohhmNnDDqPH88+c5dLYcoVDrWuNz8vwM0SmmnTeKb79azHPv/czTd5/v001NnwGd+fXdk3lv+jzm/tCTaRcPafDzaQoyUaYQ/qn6fXTtPsLq5bu544/nkpgc5dN7q37fuloLCK0o5Y5rJzC0b0q92//px+1cOTCJ+DAzLpfGG0t+YfqilfRPSuAvF0zlQKGzel6hMKW8/g5bnQ5eWL+Yd7evoWtYFF+ceyOpljiW7ikgI0WRlV9OiElPic1ZnZioqr9zi60UlNsxVNYRep2ioNzOl5uPYK1MDluMOp6/IJ0n5uwkTCl0QEF+CKvt+0l/cQGZD9XtNVLVs6RqxalIi5EdD7vnBapd163PPkpCeCR5JbYa+3H3AnQPYTEb6m8LKmwOLJUTfDZVXVrffq64cTSL5mxh6bxtTTbH1enU0dJLQwghREckiQs/eAYLySYLKdsOcDArj9S0uAbf50832l37cykpsxISE4U9O989s7kHTdOYsTzL69KiAP9bt4VusdEM75Jcp8y1AxzPRENUZAVZxSd4btS5KKVqdGdees9YsvLLGyx7VQCs150KwNKiLTWCV4BIi6He7tGrswvAoyOCUnWXN4W6k3lWBf6ZD01ixvIs/rF4L6U2J5qmY4BuGD27xfFO5hr2nDzJzGXB2B3KnQxyuqqfKOp1cOWgLgzvfCV3fvI1aSEnMOlPFaZq/3N35XHft1v42+oc4iLj+HnVTob07swVZw+qU05vrvrVWNat3MvrL8yi74DOBMWGN2sAKhNlCuHmy01tVX2pldsYtGwTvXp34pKrM3w+RnyYmU8u6sHjr2UyKaM3vz5/aI3XhyR7T/hO6RHNw1/P5ucde7hkYF+evOhsgowGBrir8Xp/h/cUnuC+Jd+ReTKXK9MGMTpyABZXeJ0Vp0wGHSGAC42DJ8uqn9JXbafXKZ47vzePzd7BXV9tpszmrK6KlYIJ3WOq6787v9qErSCUuMiTuEzFXhMKq7MLsNpPTdRsdTiZuyuvepnRqrquwm5nx7E8Sl0xpL+4sEb95+sNvc3urJ47xN+61Nt3wtt+qs5pROcYOneJYeHsLU2WuDidOlqWnBZCCNERyVARP3gGC7mJMSidYt7MjT6919ehKBt2Hgbg0tE9MeoVFmPNj6jM7uKfS/aR/uLCOl1Etx7JYdOho1w9bEB1D4CGuqF6BoZBUScIN5q5tFu/Ot2ZR766jGv+u5Y+L9Q9JpwK9O75egsuzcVtI1NZfPcY98zwHsErgNXuYsXBPHIr8jlcnsv+0iNklRzmSHkePRMVQWYXoSY9oWY9K+8d5/V6VU3m+dZVg3jt0gE1fn714CTKK4/pvlZZvDsHJscMYdHRPZg77abUUUFhhYOyyu2CDO6Z7OPDzGR07cTbN1zC0aJi7v98ZvUSfVX7j7QYcbrcXabzQqPp0T2Jf368iB37cxr8XKvodDoefvpyzEFGnv3T56zYe7zZh3LIRJmio6s90WR93eur6svkbVno7U5G/3o8+sqlj32Rd7KEl//zM2nJMdx93QR+3J5b41hZ+eUEe9TpSkG0BS5+81Pm79zLI9Mm8PfLphFkrPlMwdvv8Df7tnLRj+9ztKyYf4y6mPd/Vtzy2ZYaEyiX25xsOFzE4rvHoKFRZnPxu2+20vv5BbywcDe2yu2cLo2cYitOl3uJUs+BbE4XTHh9BeDuOaFQVJSEoLkUxpDiOgmF6iS2x2UzV17D2nXdN5v3oRQU2kx16r+Ghjh6crlcKPwfclHfd6L2fubuyqvert9LixgxKZ0t6w9QVFDW4P794W8dLT3phBBCdETS48IPNYYL6BWDMrozf9Zmfn33FPT6pskB7dyfQ1xUKH06R9d4wu9wajhdGkpBic1JmFJ1nrK8vXQ1YWYzVw7p57XMeh0UlNvJLbYSH2auDgy/zszmxV1buCB1MBaDsU6ZquaTKLe7mLsrjxuHda7xeo1174E3V+7ng7XZLL57DGGhNqJC84iOySc8opjg4Ar+fWIO/z7h/fxHTAKjMhFriuSzvP10KUuiW0gS3UNTSA1OrDEko/bTu/gwc41u0e6yuyizu3h/IVjCU4hNPUR8twPk7uuCy+n++hv0iqm9TvWaGd6lM09fdDaPfDuH52Yv5okLJnu9nka94t6bJvPYP77ikddm8tGzNxJqaTzwjI0P56GnLuOxez9i57drMOqDJAAVohn5+oQ6IyWS6PxCOuXkc6RHMueNqX+C5CpVT+2HJYXz5IwfKbfaefaWqQx9bVmd+ikjJZIgox6lFErBu1f24dfvf4EOB8VaMuf379fgsLPcYivLD5xg6cmNfJ21mYyEFKafdTFr9pdhdx6onkC5qutaucPFfd9u5bVL+6N55JALKxzMWHEAm8NFsFGHhsaUnrFMX55FkF5hdWqYDToqHC6sDhcmva66R4DZoANMOK1BjOxh8jr80OpwUWZzYdYrDHodS+8ZQ1yIuc7N9rbs3Wga6A2hGLzUf1U39FXzOXjrkdApLoLDeYX8xs+b+fq+E7XreKDGdlpiFJqmsWfnUYaObPz70RykJ50QQoiOSBIXfqgdLOz8ZQ/P/Olz1v+ylxFjenp9j79jbnceyKN3l/jq4904rDNTe8WxOrugeqyzXqerE5jtO57Pz9v3cMdZGYQGnTpOzSEOW7nn6y11utE+uXwF5lgX7ywo4/cDrZVDMYxYHU4UVPdMANh4uKDOPBUZKZHodWDSKWwujXK7k4TEXP6x7w2GjXf3ILHbDBQXRjIishcmQkmPiSMm2IJRp0eh2HeyiFUHj9MvKQijuYLj1kKOVRxn5uEl2DV3QiTaFM6wqL4Mj07neG58dTAZZNDx/MI9/GlSDzJSIjEZdITifnJoNigqHJVBfFE4eftTiOuaTXzaAQoPpqFXRq89Oy4dnM6u3OO8t2IdvRJiuXb4wDrfgarPw2CJJzX3AH99aw4v3n+RT/NddBmQytALh7Dghw385y+XonokSQAqRDPx9Ql1hFHHWYePUZEQwbszbvBpqEHVsIL4ojyiC47z1zvP5ahD5/Wm2LP+iDDZuP/zHwAX2eXJGI2hDXb5zy220u+fczAnZGGwlHNl1yH8fdw5GHQ6MlJMNc7vqWm9efCHTCocLhxOd/1tNuo8JtsEa1XSQgM0uOQ/a7A7XaAUYUF6/nZeHx6bvQOnixorSFWVf8EJ+PnQTlyahq6yzvOcNwjA6tQwGVT1vBqL7x7D5xuPMKVnLKuzC9iQfZjeCXH8Y+KIOsM1qtpNoMEhIF07RbFx52G/b+a9fSeqjlvVY7Dq+J7bTR3VjW+BfbuO1UlcNOd8RbXVXvlECCGEaO8kceEnz2AhcnxvwiIs/PzDRq+JC3/H3NodTg4cyWfisB71HrO+wOzd5WsxGfTcNHKI1zK7hzjUDaR/2pmDIfw41lILtgpz9c93PHzq5vysGcsptzmxOjXeWnWQ99ce8nIuCp1OEWSsYOCQ7cTE56HpYhgVPJk35lVw7HgwoSYDW9ZpaC4wG0vZ8fBI4sPMbDtWxG/eXoyGCYWLzQ+eQ7/u4eQWW1l1MJ+UODt5rsOsy9/O0rxN/JzzCxZdMF17JbB3bxJlZcH8c8k+/rMmmx0PT6qRWNhwuIg7vtxUPXykoiSMguwuRKYcYMiQPP475RrSosO8fh5/PHsce3JP8OyshfRNjGNQ5041Po+ZmTnYnRr5ykRwRBxL1+3h+8VbuWTiAK/7q/29cNiN9IsM5Z0XZzHjozskaSFEM2nsprbqhjP7503kHD7Jc6//is6xja9UUfXUXisuJqrgOAMHdOO8senkFlvrTZTEh5npFOLgjk++JzzIzKGKzhiNxjo3z7XL+XHmDiydd4LSyNufwuuZDn7Tq4R+ieF1zi+v1Iq1MnlQanMyJDmcHQ9Prp4ouSohoVWuFlLVQ62KQadIjQpmx8OT65Slqv4r2Z3M11mbOVhcQNfwKC8rkUCoSV/jvCa8vgKrw8Uz83YTYlJ0Mh7lmuEDa9yA1243X7mkf4O9ZbqnxDJ7xQ6yc06SkhBFRkpkg8kDz+vrec2g/gRJ7e9OdEwo2VnH6+y3ofa+JZMaQgghRHskiYszYDIZmDi1P3O+30BpcQUhYUE1Xvd3Aq1jJ4pwaRqdEyIbPXZe6akgyOWy8f2m7Vw9fCAxocFet6/v6dLDC5ZiSbSRfyQFs+5UgO2ZLFl6z1hGvLIU0Ci1OXG6tBpDRlZnF+B0aWiGMkaPW0uwxca1yRdzXbfJnCix88/vFmIxOnFpWnXvjXLHqWEn763Orh5TrQHvrc7mT5N61AkCk+nH4/9ZSHTsSVK6HiK5y36Su2ZxOLsTu3f0oMKuq77GVWXvlxjOkORwRr22DKfL3f352ckjOWzrwmeHlvDEulm8N+VKjLq649j1Oh0vXH4eV7z9Mfd/PpOv77iB6JBT19fzmhZZYjmnk5l//HchA3om0S05pt7Prvp7YXexa1BPYtdt56mH/sdrH/yWIIup0c9eCOG/+p5QV91wGgpKGbBiC2ed09/nIQAZKZGYcdG56Bh2g5E7rh7n9am9543qir0HuOez70kID+M/v7oCvc7U4M1zXKiJj3Zu4F+75qE5jeTsT8FhNQMuRk9fxp5HplQP/as6v9XZBQRXrrAU7LGSSFWdfeXApOrk7th/La97YpUTI1cNb/F2w90nyj28bkdBLl3Do6rbAXCvRPLihemkRgVXv++jdYdq9MZwOspQJo2QoIgah67dbgIN9pY5f1w6b3+1kg++X83t105sNHlQNZRFKVh577jqa1aViPbWXtf+7oSGWygtqWiw3J7vl1VAhBBCiDMniQs/1X5qcvYFg/nhizUsnb+Ncy8dVmPbqhvbEJMeDY20aEuD+z6cWwhAUlzdmeerjp3+4kIq7E7K7C5CTHrMBh13DTfi0jRuGTPMaxnB+xPH77cdxRSVi608CMoieO2q/l6Dqaz8cvS6U8MfKhwu7vt2S/WQkYyUSCxBdoYOW4/JZOP/et/N6MRTPVBcmgunU0On8z6EontMcJ3/ewsC1xw8iUvTcTwvhuN5MYQGW0nueoAuadl0Ss7hwL5UkiPrLk/bLzGcvX+eUmN4h92pYYnszFIti8dXzeW50ed6HeIRGRzEa1dfyHXv/o8Hv/qJf994GXqdzus11Tnt3Pjof3nsXzN576/XE2SuO18I1Ex4aHoj9/31Ml56+DP++fT3PPLsFT4NNRFCNI3V2QXYHS66b9mL06Cn76UjfH5vXKiJKyOsrD3oICuhC1PfXQMonC7vN6jL9x7grk++Iy02indvupzYUHevjvpunlccOMEvxZv5dPdGJid3585eE5k4YzUOKns1aN6XCU2LtqAUlROBamTmHyJv93oKXfmY9WYsehNJ0XH0Scjg1oxU/rlkX/V7jTpVPXyuoRvuXhGxKGBXwXHOTe1dJzletdoT4LU3hkVf7j6eMbR63iWom2Sf2iuuwd4ysZGhXHXOYD75aR0qPLzBhwWrswuwOlyUVvYw8Uz8+DPhpSXYRFmZrfrcqtqW+t4vq4AIIYQQZ04SF37wFsT17p9M5y4xzJ+1uU7iIj7MzOK7xzB6+jLQ3DOzN/SkJfdEMQCJsXUTF7nFVmYsz6pOWoC7C7AOF99v3s35/XuTHBneYKBZ+6nRAfsB9GYr5Ye7YDEZmNorrs7Y4qqAzGzQ4XS6qHC6n6g5XTUD5ssnHybbWcFDPX5bI2nh7ppc2Q3ZpRFsdCdxzAZ99fHCg4yEmnXY7BpBJvfyplD3KVtatIVn5u1GAxSgc4VwYFcfDmSl0KvPXrr13M+LWf/iybBb6BmWWuez8BzeUWx1QEE0lwyO4rM9m+gRGcNt6Rlekz79khJ4/PxJPP7DPN5cspp7Jo6qs183M3+98zzuf/FrXv5oEY/eeo7Xz9lbEin3rsm8P2M+/QencpEfyy8KIc5MRkokiUfyiCwqJWtQdyb06+Tze79btIV1W/aTFxnPCUxY7C5Q7omMa9+grsrK5u5P3UmLD359FZHB7h56nnVOjZtno5P/HlzIuuPZ3N1/NH8cfBZ6nY41D5xV3aaYDLo6w0ugchUQZSexywGSU46w2FUGRyHSEI4DB+XOCpyaizlHV3Lh4Et4Zcmplah/vmMU/RLdbVBDN9zBRhOpYZHsOJkLNDwcx7M3hkmvUECQvgKr08Tjs/fwtwVZ1W2V57xMVRqbz+Geq8exc38u389cSUJELITHek0+uP/vsWaKR+LH23HrYzQZsNscddrb+nrZyCogQgghxJmTxIUfPIM4i0FXPdRhwtT+fPLOEvKPFxMdW3O+hKz8chSKYpvD60og4DG++rg7cREdHlzn9fQXF2JzuGpMlAkQpCvG6nBw3YiBdcroGWjWviE/VFLIG5nLGR6bSnrcYK4Zkgyc6qbs7mGhVU/MtvjuMWw4XMR9326tfppYFTCPeudL+g7bzqF93TkYEk5umLXe5MxNwzozNi26ehWPPi8swGp3YTToeOeaAQxJDvc6/rgqoN384AQ+33iEqwcnERdirl51JStzMEW5qYwZtYM/bnyZG7tcwBUpU9Crmqu91A4gnxw5Cd16K39bt5BYYzi3/Xd/jaRP1TUd37Mnlww8zIzFqxjeJZmRaSlekxyjBnblVxeO4MOZaxiWnsK00X28Xofagfg1N48jc+NB3np5Nj37JtFnQGev7xNCNC2L5mLAwaOE9urEh69c7XMX/v1H8nn5o0UM7pPCVxWhhLnAvbiUwlBrAuV1Bw5z1yffkhIVwX9+dUWNpEVV3Y6Cmbdk8Mol/TluLeLrY0vZkl/Ey2Mv5PLu/auP2y8xnJX3jquuB/NKrYyevgxNA7NBxz8u7ktMUhadu+0lKMjGieNRHMhK5f/ZO/P4Kqrz/79n5q5J7s2+ERIIO4R9iayyKaKgAiruu9Uqbm3FVmtrW61t1aoVUat1QcUNRVRUZN+XsG8hBEIggZCd5N4kd5/5/XFzJ/fm3oTgz+3bzvv16quYO3PmnDMzZ855zvN8Hlt1Ku/MHktuZhzbSs6gxBxn4aklvFjyMq/ecREnj2cxuWcSNpdP9YA424K7d1wyBWeqQsbCtrK1tGS38n9bTKKbJq8Jh1dGJ4lh38ZIWaPaQqeTeO6hGfzznTV8se4Ag6wij9x0QZjYZ3aCudljzv8d1UliSJuqGl3cs3ifahRq67rOJjdJqdaw721xrSNi+7UsIBrniiAIErADOKUoyvSfuj4aGhoaPwc0w8U5EMieAS1p5qb0Sub8C3JY+Po6Nq0+FLZbfraJX/COTVpdBakGXViIQWBy1OD2EW2Q8MkKogCiKDAyQ8bjS2BIZqc2r9d6V+jgQxN4bPu3KAqs2xHDCtdxXt5yIkQEzawXQfG3MzAhC85wEph8fXmwnMye+TQ1mjiY34W7Du/FrJfUCV8gQ4nT48PllXl3ZykLd59ky31j2X3KRp3Dq/anzelRwzgCk9XWk8CcNCt/ntrikdK6TmaTj5eOfMiC419SaD/BQ31uwiS16EZEmkD+c8w0ji87wyN5X+MTu2FvkrAYdSwvrAqZPO94YCz7TpXz0Kff8J8br2LM/G0RJ9Z3XTGaPYdP8fc3V9A3O5WstPizPluiKDL3L7O498Z/85e5H/LSe3eFGcE0NDS+f955dTWNdif/eOVyUq2ms58AuD1e/vDyV5iNev4652KekPRhnmqB8eVgWQV3LlxCmtXCWzddGaKTk1dah9srq+KYE17ZQlysE0vn48SZ9Sy88BpGpGaGXDsgcunxKczbVIzHp6ihDzHWepY53qZHvxpqq+PYvWMQdbX+OllNEtkJ5pBvweYHf8PCsk9ZUrmUOTk3Muv142FjWnsL7j7xyawsPUq/Z1fh8QptGhlal2NzOJn+cgGiZP5OoRWRjMYmg57f3zGFQb0yeGHhWu7/60fcNH0E0yYNZtDz6/0iqs1ipABmnciLM/qHGDdGzdtIg6u5L4kchgPQ2OAkq1vyOXlSaFlANM6RB4BDQOTYYQ0NDY3/QcSzH6IRIMVi5MUZA/yLesAnK+SV1tGlewqduySxcc2hiOfkz53IwuuHRpzQBU/Q8PkwGsPFGYMnR0ad31X4wxuHs2XOeRyuqGTGoL6qLkKk6wVfw+NTeG7XNtaeOsa0TkNxu/Tq34Gg60gY9WLYhCww+Qq0wxh7mhirneNHeiLLEg6PjNsrM39TsbprV/DwROZO6I5ZL9LkkWlw+Rg1byM2pyeknUU1TSH1zCut6/B9CdTJ4ZTor1zCdRmXs7VmP7/f9xL1noZ2z4/SG/j3hFnoRIGYTiewmPy7pUBIfQ5UNPLCVdOodzj57ZLleHxyxLrqdBJP3HMJOknksZe+wuX2dqgd1rgoHn/2Guw2B3Mf/IDTZxwdOq8jVNpdLM2voNLuivjfGhr/ixwtOM3SRduZftUIuvfueIjIq59sovBEFb+/YwpJcTEhY1Dwv0/U1HHnwiXEmk08e8WlbCttCHnncjPjggMXMMfWY8k8huzT8WCvaWFGCwj9Zrg8Mj5ZQRBkuvc8xuCRWxF1Hm7pdAN783JVo4VBhNtzu7D7lC1kTCssl3ms3x30jMnijeOfooiukDHtbJkw+sanIKMg6xxnHbeDF+7fHj4JwLxZIyJ+G9szCAQM8dcv3EW/Z9aEjWHTz8/ho6dvYdKInryxZCsPPP0pXo8Pu8vrT/0qgMWow2yQVM+/QL8qwTdDIKIhQlEU6s40Yo2LOuv3XUPjuyAIQmdgGvCfn7ouGhoaGj8nzupxIQhCJvAOkIbfv/I1RVH+1eqYPsBbwFDg94qiPPsD1PVnwZReyZj1UogrsCAIjJnYh0/e3Yzd5sBiDRXhbG+nJXiCpmtQsEaFT3wi7XrlpFlZvPsgAON7Zrd7veBrGEwuPjt5gH7WDG7uM5S312xpUwQNaDfet8Lm5MOS5cRKcVRVpKl/b3T7eG79MeZvPq5O5uaMyeb5DS0CcChgNemJM+txeX0YdRK35WayYEfpd44Dbu1Z8s4vbuS14+/z0J7n+euAOaSYEtrUADFh5pqsMbxetJqZY708PeYCgCD3ZqhzeIiPTua3F53PE1+vwSKlgjE+Yl3Tkqz84c6pzH3+c/71/joevmVyh9pg6ZTA4T5dcO8t4qK73mXlGzf/f0+GI8Vht/Zs0Sbc/7fRxulwzrbolmWZ+U9/hSU2ipvvntThcnfkl/D+NzuZOWkg5w9tO/tIlb2R29/9FFlReHrWNMa/uj3iOxcQPrYk1RCXXo67yYy7vBvTrs6KWG52ghlZUTDpBPQ6EYPRyaD+u0lIrKPqdDp/GXsrFfUCy37Rjelv5iHLCg6PzOtbT6CTRCSRkDFWL+q4sfOVPF7wAt37HOLw/kHoJSHMOyPSONE/wT/uG8wOLM6os47bgbFIkuuJ10GqJYbR3c8ttKIjQpeJsdH85Z5LGDM4mz+9uoxMUxMlSZnodWK7OhRGnX9TIpBxJNJzU1fbiKPJTafO8WpdNU8Kje+ZF4CHAc3t8v8o4kNf/tRV0ND4r6QjoSJe4DeKouwSBMEC7BQEYYWiKPlBx9QC9wMzfoA6/qxoa0I1akIfPnp7I3kbC5l8yaDvVN43XzRhb4y8yx5pcrS1uITE6Ch6pSaddZL+wuX98co+FpQup6hOYPOuWMbv3MKTU3tjNenVDCHQonBfaXe1GWdcaXeR+/qn9B9xiiP5fREUCfBhEAVEsVk4NEjTI8ViZMt9Y0NE5ab0Sqbg4dC+DBOttLv4ZF8ZRTVN3JabqYrGBeoQfGzrCa1sz+Spgffyp4P/5pF983h60IPklTrDJr25mXHqBD06NZm1HGJXbR+mdunNuntG82ZeKW/klTBn8X411GZT0Qk2HD3OHy4awsyB3SL2+flDu3P9JcNY+PVOBvfOYEobehfB5JXWUZGejL6yns5Fp/jgs108cNOos553tjKD2/zxnjJN4f6/D22cDqIj6SdXfb2P/L2l/PrxGcRYzGHnRxpPG5pc/OW1b+mcGscD145v8/oNLjd3LvyM2kYHb998JSU2IeI759/lV4hNqyA2pZqmegsNZVncPapbm+0aN3+zGhoSF19N7siDOH0u9u7sT31VZybv24WAP2wjoIXx/PpjNLh9WIwC82cNIM6sDxljL3qpgPTsbLK6FzHEOpj7h/oX98GaTp/sKwtJbwrQOSYWq8HIzNx4JicNJTvB3O53KDAWybIbdFBq87XZh20ZBM4lPOOi0X1xeXz89T/LmaSz8+Q9F5OTZg35jgRfL9L3p3V7ykprAeiU2XbKaw2N74ogCNOBSkVRdgqCMKGd4+4E7gTIyops5NTQ0ND4b+OshgtFUU4Dp5v/bRcE4RCQAeQHHVMJVAqCMO2HqujPiUgTqt45GcQnxpyz4SK4vGVfKBj1HZcdOVhWyeDO6VQ1uNucpAeLvxnjq4lOraGpoiu2JgHwMPfLfMwGSRWiDKa9na1lhyvI7JmP02HkWHE6JklRPRO8soJBlhEEJWRSmZNm5ejvJodNBIP7MrhvK+0uev1jNTanP9Ti+fXHeGlmfzXrSOs2Bya0Mc3pZ61GiWOnovl1tzt4tug1/rD/ZR7q/suwSW9IuE5FGtlpPn698WuisTLzjb04PD4czaKoMQaJFUeqGd9nCPtPVbBk1zZuHNGjzXt0z1Vj2X/kNH97cwV9u6WSmdq+3kWgDaf6dyO+ycHq11cz6/yeZHZNave8jpQZaPPswZ2Yv/m4pnD/X4Q2Todytl15p8PNWy+tpHdOBhdODx2v2zN6PPfeWqrPNPD6H6/BbIqc7tjrk/n1oq8orKjm7zOnUWIT1FSZMa1SYw/rbCUm7ST62FoaauJxVGTg9Cq8urmYBTtKwwwu/nSe/sV+ZpeT9BtQQH2TmcK9o2mwxyAIfg0Hu7tFLHLOmGz/+y4IqndH8MJ8/qZi3F6ZQ4e6kpBSzlFpNRNe9bH2l+NCNJ3u++wA0QYJneTXhggYu3MSUjlmr+aRIXFnNRYFxiKj6I/JmNA95ZzvbVubB20Zm0YO7UmtdScUn2LiC2s58PuL2vQwa/39idSekmK/F2JGlma40PhBGANcJgjCJYAJsAqC8J6iKDcEH6QoymvAawDDhw9XwovR0Pj50VFPFPnZS3/gmmj8X+WcNC4EQegKDAG2fZeLCYJwpyAIOwRB2FFVdfaUY/+XEEWR4aN7sGNLET5v27tI7SHLCmLzxPJseH0yJbV1dEuKD9OwCI4xDoi/NXrdmBIrcDdGIzfFqjodDq/cZlxyeztbx7z7iY2zU5DfE9kn8fS0fsyfNYDfTuxBg8uHW1awO30UVNpDtBRaa2S0R15pHU2t9CF+9fkB+j2zhuWFVWFtDqSfRfD35cRXtnDdezuZ/nIR92bfwilHJfOPv8WuX48OiUkOVbyXOFyQTKPHzdVfLcbtbTFagN+T5N7P9vOLRQc4VBfP8Zoz/P3bdW22QaeTeODmC5AR+O2/lkbUuzhYbuPxZQUcLLepk/L3bhrO66/fitGg4y9zP8TR9N21KFrHYeekWbW47P9itHH67LvyixduoabKzp2/uohDlQ3q+we0OZ6u31XEVxsOcuVFwyh2iW3qxfz923WsP3qcX11wPrd+UsT1C3cx/uXNLL55OAigNKfGPlXfxBO7l6GPrWVq+iD+M/lSHF7/+sPhVXB6fGHjciCcoXe/QvoPOkR1VQK7t4zi2n59mT9rAFvuG4tBF6pNFHj/588agKwo3PXJXvo8vYaD5Tb6PbOG59Yfo9HtwyDqyN/fG1OUk4S0UoprHTw5tcVLTAEa3D7qHB7uWrRX1Zfon5DGoTOVzNtYhNsbWfcnQKAul+WkopfEDouhRion+DvSnu7F8sIqSg1+j3tDXW2H0p1C289B8ZEKzFEG0jLivlPdNTTaQ1GURxRF6awoSlfgGmB1a6OFhoaGxv8qHd7eFwQhBvgUeFBRFNt3udh/u4X4vLG9WPHlHjZvK6Y+3nLOac+cHh8Nzbnhz3ZeWb0NjyzTNSmh3Ul6bmYcCGBNqUaUfNgrO/HSjAEA3L9kv5ruNNKue1s7W6cdVRz0rcd2JoG6yk7EmXWM757I+Jc30+BqWZgrwEWvb0VEwKgXKXjYH0ceaVcs0m5ZdoIZb2j2VzwyYUKiwfUPpJ9t8viNRw1uHxZBoKEuid/1vZWn8t9gwamP+H2/2xGbU6UGt7PO4eGeT/fhPp1GQsZpjPE1+GoTVeOFXhJweny4fQpgwmhO4OOd+zm/R1cu6BvueVFpdzHhjR0YY1Jwlp7k7wtW8/gvpqi/Hyy3MfDZdSjAkyuPsO+h8eSkWdVdv0f/dhWPzHmH5/7yOY/+7SpVhPVcae0lpMVl/3eijdN+2tNIqKmy8eFbGxg7uR9CenzY+xdpPK2zO3jqjRV065zEU4ca8RzcFVEv5skLkngvbw+3jBpKWnwGHl+F6vWx6kg1AgINbi+iqHDbqk853HCKB/qfz6+GjubxZQUhbZCVcHHIuGiR+686xfa6E5w6kUnRoX40uWX+vbUEo+4k+XMnhukULc2v8GfycHpU7zWHR+bNvFI1I0mU3h+6t7pIwHYmjsxuxxiaEUOdI1RAWScKeGUlJIVpVlQibtnHvLxDNLoNxBgkVSMjcO3g/k+xGMmKM2KQIk8/zhb2GOmYs3nYuCU9Nr2ZBKe93ecmmLa+q8eOlNO1RyqiqGmba2hoaGho/Jh0yHAhCIIe/2R4oaIoi3/YKv3fZeh53RFFgTn/Ws2JnpnnJHxYaXex46Rf1bzfM2vOel51QyMATq/A/E3FLL55ODaXL+IkceOc0Uxf9h/cDVZEbxQ2pwerSc+GOWMiipQF03qBW+ms5ZF9L6ETRF4e8wtO9NSFhFu4faHrHJdXAfwT3U/2lfHHbw/j9srQLH6Wk2aNkK51PF5pL/vrlvPA1GPEGBsx6t1U22OpbUii2p7M+O6DIy5MshPMKChE6UUcHpnooEl0cWUqV2dcygenvuAvOxdzT+9L1fMC7TxYbqPR7UOpicdstROfXsljY0fw56+Ph6QdDGDzJdEnSeGxL1bQKS6BY2c8IfUJ9EutZMZsSeDr9QcYN7grk0b0AuDjPWVqVgGl+b+D070Ozu3GrfdewBsvrqBXvwyuumlMm8+Exv822jgdSlvGuQWvrEb2ydxx/4W82ur9eyuvhGcv6x82tjw6byn2RidXXTWBr1cUR9SLiTM4+NfqQ0zs1Y25F46jptETOUTLJGLJOM7hBjuN5Rn89aiN63u6mD24E0+uPKLW54Prh4bUodHr4C8HX+NAfRF3dJvB6MGjeTn5uOoxEawpNL1fakiYoAL45FArcPdEv5hmtEGiye1jxZFqAC5InESevJg9jbuZ0msEcWYdTrcPp09BajZcBMbV3Mw4Fu73n+fTNRJlMPOr87sxe3CndgWARUFU61Npd6leEEMyrGcVDg7+XkgivDhjAEMyrBHTgOeV1jEkw0qcWYfbYCTa4QrJJHK256f1c+Dz+jhacJoLLx3coTI0NP5/UBRlLbD2J66GhoaGxs+GjmQVEYA3gEOKojz3w1fp/y7RFhOpPdKwlddhz0o/J+HDvNI6ZAQU2ae6pbZ3XqPLvxN256IDOGSzulsYUQWdM4g6L7f2G8z8sjru/ewAAHFmHQUPT+qwV0it28bv98+n0evgbwPvo4clgwHN0guB3SmzTsTR7CZhlERcvpbJclFNE26vTEPz4n/UvI2q5oXHp+CRG5ncfy/Ly/+NLFQgSlGkWKOxO6Kpa4wit6sbj7ITBA9rqr4iPWo4fTtfRGKMPwNIpd3F+Jc3gwKiKLDm7lHYXD6yE8yMf3kzTo8PnyLTf3An8tLX8+6bTXxx9YwQ401xrYMog0Sj24ezojMJccfYVL+T/LlX8uzaozy3vlhtj1EEo07i75dP5Y73FjH91U+o8XZGL4kRw1DqzKmMTtTz1/+soE+XVDqlxIYsVgRg9uBOYf1+1U1jKMwv4815K8jukcrw0W1ramj8b6KN0x3j2JFyln+xh1nXjyK9cwKzdTqeWHlE/f2NvFIentgzxOixYuthVuUVcvdVY7lkWDa/XX08xBgxb9NxdIKHRP1pPIqB3140GUkUIy58d/16HL9Y8ymFdjsNpztTUxWLxdgy3u97aDxv5ZWQFG3k1o/3qB5xWx8cwYvH3+BE42l+2fV6BFtXqnVueibHtOltFwgTbHCHhy5GGUSuHNiJKwd24h9rjvLK5uOqUfaf3zRy66wufFSynAtyz6Pg4UnM31SsCnzGGCR+dX435ozxZ7N64psSYroL6E1OcArMGZMd5gGxvLAqRBA02qjH6fVSVu+g/7NrqXP4PUGiDRICzZ5ybXw/QzSJgLs+2YtZL4VkC4FQDaQNc8bw0vtrOXb07N6MwbQ2fh0vqsTR5KbvgPA0tRoaGhoaGho/LB3xuBgD3AjsFwRhT/PfHgWyABRFeVUQhDRgB2AFZEEQHgT6fVdX5f/LjBzVnbIFG4kTQTwH4UN/SIeAJLQduhFMo9sNgK9ZpiTSbn2ApccPYdEb6RmTgd1Vo/7d6fZ12LBS4azh8QOvUuOq58kB99DD4p+4HSy38fGeMmYP7kT+3IksL6zi/iUH8Mn+3TmjIuLxyWq609e3nVDLVJSWsJEki527LniX1Nga4vSDyIy6k4telmlyC2pquuRoI98WVoB4kuzU3VS4VrOx4gn21b7N8KT72VPaHZdXptHtI9ogYXP5mN4vlaX5FTg9Ppqawz127+7DqGg73fvvYeJ/onA5okMEPo06EVEQ0KNn7qAJ/GXXcr45dYDBGWkhfXLP2G78dmIPUixGpg0cwuJd25HkGjwkhWRTCV68eJ1ObnzsPR6b/xX//sPV5KRZ2ffQeLUPI6ndC4LAQ3+awckT1fzt0UW8+O6dZGiK9hqhaON0B3jjxRVEW0xce/v5gF8w+KWZ/fn1Fwdx+xTk5jEpMCbW1Dfy9IJV5HRL44Zpw9E1GyWDQzFuHpbOkl2bAKj1duZARSNdE2OA0IWvy+fljzu/otBexh+GTuHhjyuxGJUQD4Gl+RW8vNk/RjqbDcCJVi+PH3oJh2Lj/m63cPW/T+P21vhDPAwSeklk/qz+IZmhoCVMMBiTTkAniWqqz0q7i7e2l6jXAlAUgb7SGL5sfJ9vT2/h0ozzQwQ+9ZLfOJFiMbI0vwKfDB6nCVOUi6cnDIigGySEhCXmz51IjNFfz43F1biCNIR8sj8EpT3h4NZGcodHRhIEPt5TFlKvYMNJca2D9GgDpwwdF7+OxMG9JQD0G6QZLjQ0NDQ0NH5sOpJVZCNh05+wY8qBzt9Xpf4vM2p0Dz5bsJE/D0zh6ssHd3h3J8Vi5IJeKRwtq2Fl8259R2J9haD/j7RbD5BfW8GQ5E7oRSnk74qAqm7fHgW2Yp44+B88ipc/97+LfrH+VH2R9BluGNaZKb2SQyb2wW0IpERVFDDqRLITzGwpLeKvV36EW25iRPxz9E0a2Wxs2EVjszr+7lM27l9yQI25jjN349Dc2/FIO9lR9RKrT8/FKw/EqB9Ho9tKk9uH1SixNL+C7AQzclAEi+yT2LtjECPP30rvgXvZvGE4MQaDumAJXpgkxxjYUFHE07vX8f6kG4gz63F5fRh1kmq0AHhgwnA+2HmIZEMNdYolZMIdmMgHyvz9HRfyyItLefnjjTxwnV/TIpLBKRiT2cCf/nkt9974bx7/zYdM+93ljOmZfE67hxr/vWjj9NnZt/M4OzYf5Y4HpmCxtox7Vw7sxB+/Pazuzge/u8+9uwaH08Mf7rwIndSiidMSirGaKKWMKMlFjScDUTKq5weP3wnReh7c8CVrTx3j76Mu5pqeg5jexRUyTvb8+2rViyBAXIyLAbk7sHk93JV5M476VDy+MtWLorE5xWmcWR82FrQeb/WSoIZVFNc6SI72a0MEOcVh0gkYdSIzuw3m2LFtLCpdwdT0UW1qhgRC83Cb0MXY1TCM1rpBcxbvD9GfSIyOAiDWqCAESUWY9Do2zAn1nGitkxEoO2Ak9/r8xurn1h9j/ubjIRmmgg0gH5VWkZnacm+/C3t3HCc5NZbU9P+/cjQ0NDQ0NDTOnf+/7QeNMPoO6IzeoMNYVXfOi8q4GCM6RVGNFu2lljPq/LfuwxuGsKvMo+7WRzJ2lDTUMSQ5gym9kokz63F6fDi9MiL+cI2A1kQkNlTt5p8F75JojOXv/e8nM6rFO6O1PsNbeSVM6JFMbmZciBdH8L+DU6JmJ5iZ/ta33HPhAqxKAxPSniPekKMaG4InnoCaBhDA5ZHZfrKe3Mzh2Gv+xmcFC5g6eA2PX3GUl1fM4GRNN6a/mYeAf4fwg+uHMnPBDvV8jzOKY/n96T1oD/36nuD08V4hYnLBdf7ryIuY8sV/eGbfag7Nndl83VBjUqrVxLJ7ruT6Nz+kp9VGnLnFSBTpXl514WDe/2YnQ/p05vyh3SP2fet7mZYRzy9/fzlPP/whf33sU44P60X+OYT6aGj8r6IoCm/OW0FisoXLZueG/Ba8EA5m/a4iVm4r5K4rRpOdEe7hlFdah06uI0pnw+5L5J5xA5kzJpuqRhf/WHOUN/JOoCgCegmunuThm5LD/GH4ZK7pOUi9bmCceW/nyTCjRWyMi4kT92L3utm4YShf151g8c3JKCiqLkVUkNZEJFqnoIbQEIp194xGEgXMehGdKHDHeV24LTeTVKuJq7Om8McDr7Cpei8TUoaH6x3ZXYybvwmvV8brNmLUncFkbLEQBxt4WhsRSmv9bb3lgzxEoogyiDw9rR9XDuzkT7EaQfso+BuYYjGqRvL5m4oj6nwEG1pMosKRkirumDnqbI9Km/h8Mnu2FzNmYp/vLJKsoaGhoaGh8d3RDBffMwajnr4DOrN3R/HZD25FlMlAo9MfAnK2GGGT3n/rOlmNXD7Qv/CNNNEzGhVsbheZMbEAvDijP7tP1fPvLcf9oRNen6o10XoBvL32IP849DZ9rdk8lnMHsfqYkN9bi8m9kVfK69tKzypKGpjQfpl/muvHLsYaZeeV5dcTPS6FBz8PnVQH77wZdZKa3cOo93tr9HtmDQ63D4d3KHnHunDfRZ8yd/oHfJp3EesPDaeh2WNDkkT2PzSeJ1cU8mV+BU0emcrTaYzo24suPY7w9MTJbYrCdYq28uiwSTy6dRmrywu4tt/gkPYEGxiemXURd3/wOc+v2sxvLzo/4r3MK63j/mvPZ9+RMp54bRnvPnkjaUnWsDIjTdqd6Qmc6N2FrodP4Dhc2uFQHw2N/2U2rTnEof0n+dUfLsNo0kc85sHPD6jv2457x/D026vokZnEjdNHRDw+JUomVqrAJUfhEpJVo0XAC009LqOSr0qq+PXgcdzeL3JZNmdo9g6j0cklFx7A7nWwfctQ6uv84/e1C3chif7wuYCGT7ARNZLhOtjg0DqEYvcpG6CgKGB3+Xht6wkW7Cglf+5EMnRdsYrxfF66gQkpw8PqvLywStWmEJr0RAPHbLUMTgr1/Isocik3j3eKmwa3EYtRR1Z8VMg342yZQgJlzxmTzbxNxZh1IpLYkokluN1rth9BUWBon+/ucHTkUBkNNgeDR3T7zmVoaGhoaGhofHe0fF4/AAOGduFYYTmNduc5nWeJNtLY5EJRlFYxwnD/kgMhOeoTovyuzsU1NpbmV6gT1rC8880zaIdbps/Ta7jrk728mVcS4lTu9SksL6xSY6wr7S5qXPU8d/g9ukan88SAe0KMFoHjkqON7HtoPH+4oCcvzeyPrBCW87490hM30jPtBIvzLuJkbRZASP2Lax2qTkSKxciGOaP51fndeGlmfwoensTuU7Zmo4XfmFHflMyL39yB5BvK7JHLmDZko9p/dQ4PydFG/jVjACa9REyzAOc367JwOo28c3IRXsXbZv2v7TmIkalZPLVzDQcqa9R+ChgYAvcmp1MG1w4fyNtbdrK1uBSInFbPoNfx1L3T8fpkHn/1G7y+UMX/iPeyuaya7ulUZiTTuegUwrHyDj5dGhr/m/i8Pt6ev4qs7GQuvHRIxGNav2/Pvr+e6roGHr39QvQ6Kex4t9fLU9+sIi7KyMMXTeKFy/0ppoO90ABiE89gSqziiuyBXN11mDpuBFNpd/FYUCrUGJOHq6YV4KKJX2bdiq3ZaAEgCv7wEAFB1fABv0HiYLlNHYv6PL2a93ae5GC5LeSarcciAJ/coqfR6PaLQy8vrKL/s+vYdziJwsZi8mvaH2e8br8x6HRjZLmUgBEhYJhItcRg0ukwiO429SzaS/MdjtD8TYvsCbFs8yHiLGZKvbqw/gdCvn1tsXX9YURJZPio9sWRO1JWR47R0NDQ0NDQCEXzuPgBGDi0KwtfX8eBPSWcN65Xh8+LjTHjkxUamlykWEztxgiP6eLfsfr153uw++JVD4XWEz1zc0jJ8iPl1Dn8/3Z4ZJ66uA9/XXXEnz3DK3PvZ/uaU9Qp6CW4ZcYRXD4PD/e9BZNkUOsYyRPgz1P7UGl38cdvD3dwkgmNnkoKG/5NomEo9+bexnlXxFPV6EJBIcYgqcaGSrtLDZ0J9ogY3z2R+5ccUI0WVpPESzMHMqVXMopyIWtO/5WLB6+hb3Iyz3zbm3s+3YdB5xfWy587UXUvtjl8FOzLwZi7k6zuRzhe2Dti/QVB4O+jLuaiL/7D1E8+wn6qK3pJ5IXL+4ftCs6dcj6bj5XwyGff8sU9N7YZH945NY6Hb5nMn15dxhtLtnDXFS2pTtuatKdYjOQ/PIktxwax/Nml/PtvX9KnZwrde6d3+DnT0PhvoCMaQACrvt5H6fFq/vDM1UhSZFt98PsW43WyY1cxV14wmJzukd+r51ZtoqCiir/PuITbPj2KyyNj1IssuWWE6oVmttiJyzjN6NRsfjNwIjnPro3o0RWsMxFjkrl8agE23xn+MuBuBsb1ZN9DmXy8p4zJPZOYtWAHkiiGCHoGxmOl2XMikB3kjo/34PEpRBkkjLqWTEeLbx7OK5uPc/forvRJsaCXBNWQa5QEAl3k8SkcP5FC155H+LR4C/0SZ4b0uz/NqF/zxyT5NStON9k7dO9EUaB7cgJmvYFrRg6NeA/bGjdb4+8/BYdHRieKIZ4ZlXYXaw6Xs2FXETUx8dz04Z6w/j9bWGaALWsL6D84C2tcVJvt6khZHb2ehoaGhoaGRiiax8UPQN+Bmej1Evt3HT+n82JjTADUNTiAll2qKb2SQxTa6xwe3D4BSRRB8YR4KOTPncjC64eqk6EzjR4URSDvZE3ItTrHmXnlioGYdf5HwO2RaXT5y4pNOcmhhqPc1f0KsqJaMmlU2l3M31SMyyuHeQIEJpnB126PvKoXkBUf4zs9wqX9/NcY//JmFAXk5gn4nMX7VQ+T1juiH+8pw9esuGnSiczISWP3qXoKKu3kPLueX74zih3HetM1YxH9s/bT4Pbh9srkldap7sWBHcey8gRKT3Sic9fjRFttrLtndMT6d7XGc3GnIehibPhMtXh8/uu3NjBEGfQ8M+tiKu0NPPH16pB72brci8f0Y9q4HN76fBs7Dpaof2+vP1MsRi4f1Im/PHctllgzf3hgIVUV9e32t4bGfxOtPZ3a2rn2eLy899paevXrxJiJfdssL/C+vXvtYM6X7CTFRfPLK8dEPHbrsRLe3rKL60YMosEXTZ3Di8MrU+fwUlLnZM3do5jSL4r0bqfoHZfMa5NmsuuULaIHFbQYTawmkYHD9lAvV/Jov9sYGNcToFm8tw/nd08KGxNCUoMqIAh+0WMAt09BocWLIq+0joPlNia+soWP9p5m4itbqGp0kT93Ii9fMRCLSYcgCoDAkAwreklA57PSUB9HuXIkrN/Hv7yZDXNG89GNw8n/zQUYRIljdXUd9iTokZLIidoz6rgY7IUQ+DcQcdwMpnUGk4DB+2C5jR5/X8Vv316PT1aoNltD+j9wjeWFVW3emwBlpbUcL6pk1Pje7bapLU+5cz1GQ0NDQ0NDIxzN4+IHwGjS07v/uetcJMX5wzGqzzSSmRqv/j1URX0/cxbvRy8JDEm00lQb6mrbWkBt+8l6ZLcBQR86kRySYSU52ojZICGKgrpLBxCXXI5ejqHyVGcqY1o8Hvo9swa3V6apOd2oXhJCBC1bX7stTjftoKRxLUMS78KizwBaJnONbh9mnYhb8ae5C3gxBNTr/d4YAqkWI6LgN1o4vTLv7DwFwPPrj2HWCTi8Cv9edRkW84fcMWEp1fZYKuuzQjwXXpwxgLs+2YvDI1OQ34uUtGp69DvIsZoJEcVKK+0uhlh78anzIAkZ5TSVxDGlV3LYrmCl3UWJTeDGkcN4e8sOYqOT+MXogREn35V2F/1z+7On8BR/+vc3LPzrTcRazGod2+vPxGQLT/7rBn59+xs8/qv3efb124iK/r+5c9fR3XON/20Cz0mdw3NW/QOAFV/uoeJ0Hfc9Mv2sgoopFiPu8gqOlVbz5JxpxESFP4eNLje//2IFXRLimHvhON7afjLk903FNdy7r4TozCOIisDmHYkcz3VG9KAKTiV98KEJ/P3QuxS6aniw9w3kJvYPa3N7qUED5a67ZzRv5ZXw3PpiQCEuqoEYg4dGdxJ1Dg9v5lWHCCoHUogeqWoI8VoIGMHzSuso03n5onwljV4HeaW2kH4PhPMBxOiNvLnjOM+XuTHqJAoebt+A3Sslic/3HuJMowOPLKpeCJIoAApenwLNqbDbEo8O3LfW30dJ9HuMNLk8dLfXYtObOYOemKDvVvD1JJF2vQU3rckHYHQ7xq9I96Mj96yjKdM1NDQ0NDT+19EMFz8Qg0dk8/5/1tFgdxBjOXvKUYCUBL/horI23N02xWIkzqzHJ6NOGuOjrXRT6pk3JbKrLfgnSV6XCb3Jof7NpBMornWQk2ZVwyaeWVvUHOeskJh0hqKSVG7et4c4s44lt4zglc3HcXn9aediDBK/Or8bswd3alPQsi18iodtlf8kRteJnLhr1El5cBYRv6uygK7ZJTo7wax6YwDIisxvvzpEo9uHXgxfjDi8ClF6kSaPjnnfzuLxWW9z9wWfc0H6myFpZodkWDHrJSRBoNENxYd702fgfpqiCoC0kDJD3HvNmVizjnDtREVtb7BrcsuEGOJFEws2b+aFTeUcnDslpH8Cx7q8MmYhjh62Ev76xnL+8cBlHVatz+6Zyu//Pps/PLiQvz2yiD89dy1ShJj8nzOa67RGRwh9t86+2HS7PLz/n/X0zslg+Oj2dQkAauubeHXRJob3y+SC8yKH+P1z5UbK6mwsvG02dpfMo98UhPy+YEcpMRkl6AxuKou64moSVfHjYANnsIjnkyuP8PQtbgpd+7mxyzT6Rw1SjcFAyHgCQnM4X8t7ElxuQrTCVbl70cd+Taf4CqzmJn9feHUcr0+iVumCxTQSuzMKARiaEUv3v63CJyu4vLJqkA42RO+t683n5St4+8BOJqQNbHvRrYh4ZC8Oj9/ovLywihuGtS2G2TvVnzr1cGU11Q6DahAx60UUpUV3oy3x6GBafx/NOhEFhUSnHYPso9gaT5Re5Ffnd2POmOww4c/5swaEiF+3NqRuXltAj97ppHWKb7MOgXqcLbyloyEwGhoaGhoaGqFohosfgEq7i6akWGRZYd+O4+3u0gRPkFITLQAcLTuDJ8iLIdLiXi8JjMhK443NJUzqkUCUIbJSforFyO1DevPu0TwE0YciS5j0uhDPA78q+3GcXhmT2Yle78VW79/hanJ5mfDKFrW8aIOEQSeGTf7MOvGsE1WAQ3WLqPecYHKnZyiodDHyxY34ZBmTXseGOaFZRAL9EuyNYZAEvLKAq3lS65GVsGtE6UXuGtWV7on+WGSLlIwS/UfswhtU2ueGLJIX3zycVUeqmdwziXqnl7WuJhafXsbFnUdg1UerZYZMdDEzOa0/X57YzzWnBzAmvWvE48x6kSrSSDOcIJrTbCs5w6U5aSHHBoxBjeiJsiSybmcRn67ay5UXDG63H4MZProH9/72El58ain/eupLfvWHy/9PpevrSPYADY2zLTZb89WnO6iqqOc3f5rR7vsQGF+3rtuFw+Vh7s2TIx6/88Qp3t++l5vOG8LQrAze23kSm7MlhalREtHHVRIVa+dMWSquJv/4oSioz3TguZ6/qVj1fEjvXMbq2oNclDaKifHjQwwVt47IUscIgyggigJOrxzynqRYjFzUx8rh+k9Zc3whTt8Z+qR2YXNRT45VpqAoBtLjqkmLq2RcnzzO711A4YnrOV2bw3ULd6k6QQB3juzCbyf2oKrRHxY4e3AnEszpKLLAq7t38nhxQ0i2p+B+Nwg6BLHFc+9s9E5NAqCwooqpOTkh4R5uX0s5gf4LfAtaX7ct47egKGQ0nqFRZ8QbHYNJLzFnTDYpFmOIB59eEpjSK7lNzYuNtwzn0L6T3HjXhIjPTev6dMTzsKPeiRoaGhoaGhotaIaL75nApMfr8TFcEtm4sbBNw0WkneaE2CheWlVA2e561fU32KsheNJ4oOwkb2yGQ6crGdYlQy2z9WRqbKcuvFeUx/0XJDEssWvIJA38k6iChyfy+LcFvLXbH8ssCP5ptTs02QXT+6bwrxkDSLEYyc2MU4XcHF6Zez/bH1Z2ME5fHftq3yYjahQGeTgjX1ylhqg4vR52n7Kpho/gGGn/dfwLCbdPAfweFQ6Pf4dQJwnMGd2Vf647hiQK6CWRt7aX4JNR+/Wk6wb2n3mHqjPnqYsfo07kkje2IQki8zcfJ3/uRAaIV3Hfzn+w8MTX3N3jqpA6BBuN/pA7gaNrTvLo1mUsu/R2zDp92HGiAPVOHdUkkmKs5njVSYI9OXIz4wheH9XGJDAmQc+/3l/HoF4ZxMZbO7wrN+2KEVRX2nn/P+uwxkVxx/1T2j3+54TmOq3REVo/J+2NNS6nh4/f3sjAYV0Zktt2+srAGCw6HHQtL2bGpEF07ZQQdpzH5+NPS1fRKdbCg5Mja1/Ihkbi0ivxNMTyyIgx/HXVUcCvOdH6mZ7cM4knVh4hNq6e/oMO0c2czT09ZrOsoLpFswJUTzcAt6wgyOHixZL+OKvKfo/DV0aiYTgT0m9H8PbhN++Hhl74ZMhKrOTRS7+lT7eXOdk0DIf3QoIzcQzJiA3zBpk3sz9OpwmdsRGXVw4JDwnGpBeRRBmTJGAySEzplRzSz63HsqSYKOKjzByuqOamkcYwj5RR8zaiKP7+Cw7tCPY2af0NDf4+frZyN2+eKOCRX0wlKikxZCMg4MEnCIRpGrU2kH28eCeKojDhogFhz43mJaahoaGhofHjoRkuvmfUSY9HxpZgZceWorMfG7TTbI2zoDtta5k07SlrM6Y4PdY/wd5SfIphXTIiTqYAbnjrMNHdRD4qKOCRW0e06b7654v6sGi/P2Zbp/NPnAN6EQEeu7CXen6KxchvJ/bgka/97tI2p5flhVVM6ZUcccG9t+ZNvLKD4Un3srGoThXXbE2kdjw5tTe//uIgbp8SEqoSvPN339hufLKvjKX5Faw5UoVLRu3XYZ2v46CyApf+VUz6m7G7Wrw2IHgHsxOXdBrL12WbuDh9DF2jO6ltbe3e+9SoqVy7/ANe2LuRR4ZNDDuuzuHh7k/3UeeOxapr5PWNW5g1uBcZcVb12C33jWXUvI2ggEEn8vhdF/HgUx/zuxeXst6UilsROjwxvumXE7HXN7FowSassVHMvnlsu8f/XNBcpzU6wrk8J199up3amgYe+dtVbR4DzWOwVya9thxZFOk5sGfE497ZupsjVTW8fO1lRBn0qmHVH5ImgyCTnHWKKMnIF1dfR8/EWG7L7dKmh8CsBTuIjfYwdMRe4g0Wnhz8C2obvdQ5PEgimHUiDq/s94LTiciKgtunYNQJXD+0Mx/tLWPO4v2M6bWHa0Yv40yjiXc33Mjxqmzy5/YJ66tAW3Mz45i/aShFTa9z4YAdVNniWL4/FwCTDrLiTDy5ojBEByOvpI4mowmT2UmT20fJmSa1/csLqwC/ZtKx2kYExYROJ7JhzpizZu0QBIG+ackcKq9S72/g2xYYGwMaIMW1joheWa2/oYHvY73dwaJlOxk1sCsThnQPEcAM9uALnBOsodHaQHZyexG9cjLIyEoMK0PzEtPQ0ND4/hEf+rLDx8rPXvoD1kTj54ZmuPieCZ70NCTFUn/oBJWn60hJj2v32MBO884uyRSVVGFpdmGdPbgT8zcfD9uNrrS7GPfyNuIFHf9cs4/ZwwZFnEwBeHwCzoYoDFG2sHCFYFIsRg7+ZjK/3LOBmJhGwK8XEWOQcPtkzHqJ5OjQCfgTKwpDyjhZ54g4SXV4aymsX0JP63TijNnkZrow6SU1jjnGKJIVZ+LxZQWY9RIOj08V51xeWMVjywqavS1AJ4mqy2/whLOq0cV9nx0g2BwiiZCdYGbAs5vJSprMAxe/x2PTjvK7xb1xePzXNuvEkL69ocslrKvcyRvHlvDEgHtC+id4cjoqrQtX9xjIf/LzuCy7HzkJqSHHVdpdzZlLBMqcKRjEUh5e/C3v3Xql6oqek2bl6O8mhyxw/nz3xdz7909IiFY4EpPc4YmxIAjc8/Al2G0O3nhxBTEWE5fMGt7uOT8XNNdpjY7QkefE7fay6J3NDBzWlYHDurZ7bG5mHFZPE7FuB9UJqYzvFV52dUMj89dtZVLvbkzq3T1kIa6TBKIFiaikSnRGF38fOZOeibHtis36x2mZvsP2otd7uchyFS6nXi1TEOCm4Z35YE8ZigKSKDQbLrw4vQrv7SpFAKYOXs20IVtobOrL019czGmbEYtRCQkhCfTVwXIb20vOkJ1gZvbgLgx89gKSLPVcmbuWvSf6UWGLwemFCa9swaxr8cAQgEX7yug5wEh8fD0KMPfLfB5bdhhZkbE5/R5z0QaJuG4KHh8ICOw+ZVONypG+S4G/d46PZ2fJARRFCQnPCU5/PX/z8YipvgP3L9LfX/9sC40ON9dfNjLse3Q2D69go0+a283vb9/C3Q9dHPbcaF5iGhoaGhoaPy6a4eJ7JnjSk+5x8+ht/2HXtiKmzhjW7rGBCW6PrGQkRebJiV25emR3UixG1t0zWt15CkyClxdW4XD7MEgmonVNbCs5w3lZ8REnU3pJQG6MQ7KexGJpP01dqtVEij6VM/GVABglAZ+629cSqx1IjeqTQ2NJTpyJvDN21LYUGS/94q9R275hzmhV40JADNHSCBAIEfE1X8asE3lxRv+Iu60f7ymjtQ/Hk1P7UFzrwOWV2VOSyb6SbmQnf02MsSc60R9P/eKM/gzJsKpx0sW1DqalTubDU1+y+8xhhsS3nQLv0WGTWHXyKI9uWcar42az86RNvZeBzCV3LtqL06vH5ktmZ8lJPtqxj2tGDFLLaL0YG5GTxRVThvLp8l10MkfjlGI7PDEWRZGH/jyTxgYXLz61FKNJz+RL/NfSMndo/C+w5pt91FbbeejPM896bFK0gfMNDqqsUSx+fGbE9+KltVtxe308POV8IFSbJtog8cdpmbxStJ9pWTlc3qP3WcMIcjPj6NKjyC+CfHAgl4zoHZrWFHhn50mMOoknL+6N1aTH5vQw98t8HF4ZRYHJAzYzbcgWNhcO476hf8Hh2YpZJyOJhI0VB8ttIaEf+x4az76HJrD4QBw66fdcNHAL72y8UD0+IG58ab9UBmfE8uflh1FkUQ0fdHhlfIpCsMOcT5YRJB+SokNWFO79bB9Ks7fY4puHh+hJBId9WKVaokUfdqcLq9mklhfJkyLwHZzcMylkHGv9DT1aWsWnK/cya/JAKnxSxO9RRwQ0p/dL5aV/fIXeoGPSJQPDfte8xDQ0NDQ0NH5cNMPFD0Bg0qMoConJFnZujWy4CD4W/AvLuWtOkAn885v9XD3Sv7s3bv4mXB6ZeZuKKXh4EgD3LzmAwyujx4xV30BqtNLmZCp/7kTWFFfw6N4P2VJ1jAlZXdqt/8DYXpz0FGM0OXE5TVh0EhZji1fCwXIbo+ZtRJYVXK202D7YcypM7d8nuzlU9wnp5hHEGlquXVzrQBQEGr0KshIu6hYwUkzplRwW2x5pET57cCeeWHkkpAyrSR+iJbF092gevfw9nrniNAnS5SHK/e7mxUiUQcKkV7j44njeKv6cQXEPIQpixL6KNZp4oP94/rDjG4a8/gmO2qSQxcqQDKsaklLpjGFAlsw/lm9gbI+udI6PbfMe/OracRwoPIXxdCXz7ju3+Gm9Xscfnr6aPz64kGcf/wy9XkefkT1+kphszVii8WPi88l8vGAj3XunMfS8trUtAqzeXsjRkioev2sqGQlRYb8fq6pl0c79XDNiEF0T/RklshPMNDVr8zS5vSyvyiPBZOaJURcAZw8jqJRPktX9KD2M/Xnz+htUvSC9JKghIg6PjCQI/O7rQygKKIoMgkCUXmRI9h5mjljDjmM53Df0CVJizICAgoLHp1DV6Ap514INugrwVl4JE3okc9d557G//iLG9vmWL3aNpK7JLw4dbZAw6kQeu7AX4+ZvwhkIFRRaLBUB77cAJr2EKPmQfTrcXh/NzmxEGySmv5kXoicRHPZhNkkgQnVjU4jhorVHQyCzlNsr8+TKI0Q11zEwjgX6V1EU/vnuGizRRu68YjQuRYxozO+I547T4WbVV3s5/4J+WGPDn43AfQuEy7SnuaKhoaGhoaHx/0/k1ZjG94IgCAwd2Z1dW4vwes6utr68sIp6dPgEAYOjkbzSOpYXVlHn8OLwytQ5/BoSeaUt+hCy4FeuLygvD1kkAizNr6DS7p/EXj0wi4kZ3fjs2EF8skyl3aX+3poYbxYAqWl+rwuv7GP+rAGqZsaoeRtpcPn8sd2ATvR7ZoBfAf7FGQNYeP1QdVJZ5TqIw1dNn7hZIdcJiG6a9SLGVik8o/Qi5maBt4BBZv6sAfzlot68mVdCt7+t5Nr3dtLvmTVqG3LSrKy9exRGnYhREogz69Xzl96Wi1knUlbblWMVmZiilzOtr/+3wEKjwe1DARrdPtxekcGGcRQ1nGRz9d4271ml3cWvPizDZY/BkHCaJp9/Uh4I0ymudRBlCLRNYNvpGBrdPh5ZsgJFiazxAaDXSfzjgUsxSCIvLFiBx9txtX4Ao0nPn5+/jr4DMvnHY5/y8dK96mIhuH4/JIGd5+sX7gq5TxoaPxQbV+Vz8kQN194+/qyZdWRZ4fXFW+jeOZGLRveJeMy8tVsw6nXMGX+e+rfiWgfRze90fLKNI7Yq/jjiAuKM/rTX7YUROH1unj/8HmmmRJ4adhOpVv9iPTDG/fuqQcSZ9ViMOhD8dWx0+2jyKDg8Mp0Syrn5/GUcPNmVhRsvZ09ZA/M3FeP2+nB6/ceOfHFjyLs2e3AngnvijbxS9Z2ME69EL/kY2aMAs15g7d2j+OCGYeTPnci6ohqami3TgqCgKAJGCQKRJNEGicv7pfDSzP6su2+Ev30uUTVa6JpFQVH8Y6qAoIaPBPpHEP392OB0h3yTAv0R+I4EvOaCx+hI49jqvCPsOnSSu64YQ2yMOaycczEsrFtxkKZGFxe3EW5XaXfR5+k13PTBbm76YDd9nl6tjXEaGhoaGho/IJrHxQ/MyPN7s+LLPRzcW8Kg4dltHldpd3H/kv04vAp2vZloZ1PIbk4woRNjPZnxcawsKOLXX1eoafRAwCeH7q7P6t6flSePsvTYEW5/p7jN3feLs3vxxloLnbPKKDmehcOjsOdUnSq62Xq9bZBERFHAoBMippbbeDIfdBBv7BGh5f6JrSTC2rtHqalJbS5fiAEmO8HM/Uv2U+fwhpUQvKN5fvckTvz+gpBd/oAYnigKCAJM7nI1xc5nqXDsJS1qiNqfMQZJ9biQREiSe5FuTOH9E8sYlTQIKYLXhd/oAfWn0knvdZSkzuV4KruFxGAbdSKyrODwyjR4JOy6ZLafKOWzPfmM7dGjTY+E9CQrj95xIY+8uJTXPt3MnKvHRX542sBkNvDEv67n4V++zbJ/LSNhaC+Ij/3RYrI1ATuNHxNFUVj0ziYyshIZPSGyISKYDbuLOF5Wy1/uuQRJFMO8g4qqalh2sJBfjB1BQnTLjnt2ghkEiDEKRCVVkBOfxqVdWzJHtRdG8P6Jbyh31vC3gfcRpTOF1CfFYuSGYZ3VcTY7wewX7m1GJ3m5fcISGpxRvLfhCmRF5O5P96EoimpEBv+iPjg1dU6alTV3j+KVzccZnBHLU6uOqu/kBzu8pHeOJTvlFMv2KZTUOblhWGcOltu497MDaplGowuv24jbh+q90ej2sfJoDRuOn+G9Tn5RU6/boJ4joCCJEqIgYDEK6rgT3D9OZy2PfXESu8vHpAgeYYHxItjLBfyG7TCjkMvDix+so2dWMjMmtWQA+a76OV99sp0u3VPoPzgr4u/+kKGWOrk8sjbGaWhoaGho/IBohosfmGEju6PXS2xZV9Cu4cLvReH/t8MUTZytCsXtZkqvZOLMelxeH0ZdqAdCYGL8xqatLMzbg9fXA7tLxqwTQUAVtwxMpiZ37kG80czbh3bj8cW2uaBMsRgZGTecg8oarFYbNpuV+ZtP8PaOk6y7ZzRGnahOlqP0Iia9xOKbh7PqSDWzB/uzcLy38yQ2p4fHlhUwddAeLhgg0uiIx6IPb7PDK6OTRGwuH3+e2rLgCI4VV1Dw+sI9FAShJaY7eOER3J7WKvL19uHojVEctX1FWtSQkP7MTjCz+5SN+5cc4L7PDpKankHPgbtZV7mTSakjwq4fSAmr85hwVCcTnVLJyxd1VQ0meaV1rLtntFqmT1bwCPEMzBB5atk6jjcdw+H1e5wUPBy+IzhpRC8unzCAd7/azrC+mYwc2LXNZygS0RYTf5t/Ew/f9TbCniNMf2g6My/s96O4NGsCdho/Jnt3HOfIoTIe+P2lSFL7zoSKovDO0u1kpMQyObeXGv4WSL+ZP3ci/96Qh0mv45ZRQwH/+LK8sIr7l+xHUcAUX4uo9/C7YeHeHa1DAPNK60hLbOSzk2uYkjaSgXHh2UsijV9b7hvLeS9uoMktc+mQTaTF1ZAq/JnrBqfz6pYSmpo9+YySgCtofLQ5PSHlzlqwA49P4dvC6pBQvm6J0Ryo6ESP1FMhdXkzrzTkv1PjFSxCPHsNEg1uHwZJQBAEGt0+REFgfUkZAGbBjCwKuGUFjwwmBV6c2Z84sz7EiBPon6/21wFQUNUYohvS+psU8HJpcPsw6UTuGtWV307sETKOvffVDspr7Pzplxcjif9/zqRHC05z+OAp7pl7cZueO36jtKSKPBv14WlvNTQ0NDQ0NL4/NMPFD4w5ysiQ3G5sWn2Iu349td1JUGCR59FZwFbFpj3HmDV5EAUPh+/eBU+MJ/XuxoKtu4iSGlGMFtXjQieG7koZJR2zuvVnQcFODIa+WGh7QXl3/wncvWcdXbudZN+efri8MgZJpLjWEbLIL651qPHHHp/CvE3FyIo/NWoAGS+yIrDiSCXxZrPajuBQEUkMrUdA/NPd7B4cbZBoPReNMohsuW+saiRoS8MhYFww60QkEc7LTKWwcQKljRuQFR+iIIX05+5TNlxef1YTTqcyckgKH5V8Sz9zf1YeqQFC45kVBVxeGVdFIqa4ev65bw3DkzMZ8tyGkPoE38dGVxOXvvwORuU0tZ50HB45ZJc0mF/fMIEDR8v406vf8O5fbyQ5PqbdZ6411rgo/v7KTcy9822WvfANk/ulkdIn/ZzK+C5oAnYaPyZfLsojxmrG3S1dDTdoi0PFFRw4epqHbppEbZNHDX8LsLLwNF8fKOT63EEkREep40uT29ecCUkhLqGK7jGpjE3vCvhFMAMiyoFsRy3jksyAEdvJSDFzW/YM9ToBY0XwGBo8fuWkWTn2yAV8e6QIOeafJOgmcsNbPhzuEzi8LV4WOklEr1NocPn/9tiyw1w5sFNIKJzd5SXGIPGLkV0YkhHLlF7JAGz4NplEyyHizTr1b90TgzUdFAR9E0OT+vCtTsQiCM2iyQoGyf+NEfRODKLE/gcvYvXRGtVI29oDrzU2pxOAnkmWIN0Qn9+rJYjczDh0kgj4+/+t7SX8dmKLB19FrZ13vtrOBef1Ykif8DG0dX+fbTz68uM8v7DxtEFtHpNiMVLw8ERN40JDQ0NDQ+NHQjNc/AicP6U/eY9/xqH9J+k3MDPiMcGLvBGdY5nzxPus2X6EWZMHndXVdXiXDBKjo5iYYWLa4KGq1wCET6au6zWYNw5tZ+60OPpF9WpzApcdH88Fqbmsk7Zzurg3TqcxxNU3UJ+cNCvv7TxJk9ufqs8kCcityjpW0Qn9IB//3LiSogq/R8Y/pvWlf5oFt8+HrICs+BfugYlzn6dX4/DIuLwyMQYJg05UPRdsTg+nbU4OlNs5WtXI7lM2dp+qV40cFqOOT/aVUWF3MXtwp+YUrgIIfiPDJ/vKiInpjhL1NWdcR0k0tWQNUUN2mnfRJFHkqswLefX4QsYu+JBjJ5IAiDPrKHh4EnmldbgDrjKKiP10OicNx3l656aIYRKBjCwHK92M6NabLUcPYZMaafRFt3l/TUY9f713Orf8cSGPv/IN8353RciOYkcm4269nskPXswXTy3h0Xvf5Z//uY3MrkltXvP7QktzqvFDU2l3sfZAGZvXFnA6K5WbF+0LM14GvCXAPyZ+umovZqOei8f2ZW1xHcHpiAQBTtWewivLXNuc/SevtA63V1bTN0fF1SPpPdzQcxiCILC+qFrNihTI3JGTZlXPM8VVEJtQw2DjFBxOiXVH/OFvAeFlsdnY3Oj2ERPB48AYtQKH4Gbvscm4vU7VaGHSiegkgaW35fLB7lO8mVeCRwaf3JIWtXUo3GtbT6heJVWNLoZ0igMgf+54tb+uHNiJR78pwOnxYY3x4MWFx2FVxTUDRubAuPPAlk/pG59Cp1gzNwzrzJAMK2/mlbYygLTcr8B5p+ps6CWJOpffgN3kkTHr/Qby4FTX/gxN/blr0V5/VhM5NETw1UWbUBSl3XC6s2V7CWCra2L1sn1cMH0wMRZzhJJaCIT3aGhoaGj8NIgPfdmh4+RnL/2Ba6LxY6AZLn4ERo/vg96gY923+9s0XEDoIm/i8J4s/HoH9XYHsWeZPEmiyIV9e/D53nx+N3USw17YGDI5C6Z7bCKj0rL4/MR+fjNzTLsutdd0ncya6q385WqRDO/QiAvjSruLez/bpyrPO30KMUYJt69l97Kkyt/mnM4F7Cv1ty84fhrA5YW7PtmLWS/xl4t6h2hZ3Dkyi4cn9lR3INcXVavnf36wQj1OAGIMEoIA9312QE3/N29mfzw+v1K/wyNz72cHiI2CF26EI3VbSUxrMVwEh+wEsppcktmJD0q+plPXIo6dSAQENZ65tbuw12FhVEo2K8r3YTD2woI+xKslePIsiQrxopFUUxVn5BjVaBOJ7IxEHrp5Ek++vpy3v8jj9hkjw8rTS0LIwiJ40RY4JqZPN0bvK+R39yzg+TfvICWt7cwmGho/dwLPdtLRU3TxyZR1SgozFgZEFOsc/vCJBAP0OX2MS8/PIcbs9/wy6ERiAATYOGc0D3z4CaO7ZamZRHIz45CDcnNYk2vwuowkiilU2l1MfX2bWicFfyaPP0+1kp1gptHtZVDfIzQ2mukdN5gef1/lzxSCQpO7tZnXrx0R8DiotLsY9NxyHpv1BUdKe/LvlU24fArRzalFX5wxgCEZVsbN36y2DwjxYFPFjTcV89z6Y2p4xyf7yrjvswNMH3qGWclQ1egi1RqlnrPp3jF8vKeM7Mw6FtXA/DV1PGvbHLLgD2TPOlhbwfRmnQ9/JqyW+jy2rICChyeFeMa5vTIIcEVvN51iLXRPjFLHUIdHDvO4AL/ByWyQ/N4lQWNq4YkqvtmUz/UXD6dTctvj2VmzvTQbVCo3HMLt8nL57Nw2y9LQ0NDQ0ND48fmvzyrSXvaMH4toi4nzxvVizbcHOpRdBGDogGx8ssLidQc7dPwl/Xvj8HhZsO2AOjlze2XmbyoOa/sNvYZyqtHGmlNF7ZbZOSqVUYkDWVG5EYfcFPGYvNI6PN6W7UqTTuTvl/TlrpFZROkFog0SXjkOqzSM4d0OoJPCxTUDBDwsVrQSJB2cEWoweWXz8YjnG3UCvzq/G7fnZoWk/9t/2hYi7AZQ3xRDbYOVwppDIc9HcFiJUS8ypVcyNQ0eeulGYIm1EZ9Q579WczxzwF34pZn9iTKIiAiszDPhUxTGDHKo2VgC9Q+ePPtkgV+MG4NO8DI9POQ9jOnjcrhoVB/e+GwL+wrLwspzeWVGzdsYlsUj+JgGs4lpD02nqcHFHx9cSFOjpoKv8X8X//gjk3CyCntsNE5LVJimSmsRRbOtHo/Xx6zJfm+KwML+/RuGcfR3k3G6Gzhts3Pl0P7qOSkWI3+4oBcAerMTg9mJ80wSI7PiySutQ2wVARjQ+imuddAprR5rbAOlR7tz4/t7aXD5aHT78LXS7AlkZjLqBNVjLq+0juyUY8SYHKw8MEzVsWhy+3j+0hzizHo1tC2AToAnp/YOGTNTLEbmjMnGqBPV/jlW04gCRBuduDw6Fu0tV4+vtLsY//JmXthQzDNbtwNQUWNWM3kEf1eL6muwuV0MTEyP2N8BI2/gt4BnXIPLx/qiU2TExYZkajHqRLX9wQRnCFl3z2i1Hq8v3kyM2cjNl7VvaGhPc0fNgPTuTt55dxM9BmZywI2WJURDQ0NDQ+NnxH+14eLnlI5x8sUDqT/TyO68Y2c9ttLu4tIP9uPUG/nXZ3kdqvfwrAw6xVo5WnEyxC34ufXHwto+JasnKaYYnt25Rf17WwaeackX0uRz8uTOJRH7MDczDqO+5TEy6EQeW3aY93eXYdDpeOWKgeTPncjItFtIiLFxyaBdbbbBpBNocvtYUViFgN8IEkhpGsw1gzMin6/XMXtwJ7onRqnp/wRgQLo1KCVpC/VNVg7XlER4PvxhJSBQ1eh/hv71FXg9eqaPruNX53djw5wxIXojWfFRSIJIg9uH06nHVpXAnvpifr0sL6y/gifPl/bPxqHEsbXoCAOe+abdey0IAg/fMpm0JCuPvfwV9fZWqQWbsw+2Tnna+pqXjOnBY/+YzYljVTz1yCJ8EVKt/hwMfhoaZyM3Mw5rYxOWRgdnOqew5b6xYakvczPjMASJdcY77WSlJ9Azq2VcCXi7pViMLDtYiEmnY0KvburvlXYXf1t9FIDouHoUWeD+oUPV8k16yS9UrBNZe/coNcwhNzOOjKyTeNx6yk+nIgfZKnSSQKxJh1kvEmvSYdT7xyinV+H+JfuptLvITjDTu1MRLq+OwtMt3noKcOvHe7n2vZ3cv+QA+qD2eRW/xkXrd7d1atBbc7MQgNTYWiptCcwOGleDjZ3WuDM02mMwi2b0kkB2gjnku7qqpNjf1lR//bITzIhBWk7BopW5mXEEBmcBGR1uok2WIA0LcHpltf2tCWgjjX95M9cv3MXgJ79m/a4irrt4GNZoU9jx7bU/2LATaK+prBqjw81XkulnMW/Q0NDQ0NDQaOG/2nARPPmKlPP9x2T4mJ7EWEys/mZf2G+BReLBchtL8ytYXliFR4YKkxWj28nn289u7BBFgRmD+rLjxEnW/XIEvzq/G1HNxovWbT/T6KX0VAwFtjJyXviGg+W2Ng08p6pNVJZlkJ51AkHfFNaHfo+DSbxz7RDeuXYIL80cgE/297nXJ3OkqgGA9KhhZESN4qrcrcy/ohNmXegWZYxR4u7R2UQbJH+2EoPE3AndI2bakCSRqGZjibnZy+Kda4ewYc5oxr+8mUe+LiDaKHJ5Tipr7h7F+O6JqseFAPztkj68c+0QsuMziI2yhzwf/lARBYdHxicrfLynDI9Pod6hUFbamSrhKO/uK2Dc/M28t/Ok2lfZCWYU/C7cggCOmhR8Xgl94im2lZwJ6a/gyXNxrYN6bzI+RSKa02wNOjYSMVFG/nrvdGrrm3ji9W9JjjGo5W25byyGoB3V1q7iwRP2YaN6cN/vprF90xFefW5ZyDV+TgY/DY32SLEYeSDFiKSX+PrvM8hJs6oGiGAEwb+TbxV9mF0OLhnTN6JxTpYVVhw6yvk9uxJlaEmBFPDsAIWoWBvOhmj+sfI4/Z5ZA0D+3Im8euUgXrtqEH1SLOp5JpOXlPRKKsrScbhFXM1xaNEGia33j2PjvWN4aHx3Nt47hpdmDvBnhAJ8MiwvrGLc/E30Si/mcFkWXjk8srPR7cMnK7w0cwC/Or8bpubzXV5fxFTawQaanDQr+x4aT7/0Bgam9grRlGgxdkpY4+qY2LlPyJgV/F1dWXKcJFMU2ZZ41VNDaG7jSzP7h4SJ5JXWsfS2XGKMEnFGL4IAE3tmqhoWwe1v63sd/F2Pr63CbDIw+6IhbT0ibbY/mEB7s09X4TIZqEmK/1nMGzQ0NDQ0NDRa+K82XPyc0jEaDDrGT+nPxtX52G0O9e+BReK17+1k4LPruK55B00SwWWNRxYEjhcUd+gaMwb3Q1YU1hQWhrkFB7c9r7QOx5kEFFlAslapi/NIE7XczDjKinshCApdexwlNzMubMIfECi7YVhnpvRKbtPjY0TyfYBC54yXePWqPpiaXaNNksDLswby24k91IW3UScyuWcS8zcVc7A81G04O8GMKPqvYTbouDwnlSNVDSzNr8Dh9vlDIlx+sc9ZC3aw+5QNc7OhI+DVMaVXMumWKFUXQ0EhO8Ec9sxM7pmkGiROl3QBID6thDqHh7sW7aXfM2s4WG5j/MubQfEvkJbelotO0NNUlYo+qhHZWB9yv4OFNP07jToa5BQMopM6ewWtad3fiUlxTBw/mA27j/H52v3qZDwnzdrmjmLrCXul3YXcJ5OLZ+fyxUd5rFveojnid/WW1fATbeKu8V1p/ex+3548iqKwe2MhI8f2IrtZZLI1Ad0al1fG6vKPvf37ZEY0zh2pqqGqoZE6l5n1RdVqXQOeZTqjG53Bg8NmweGVQ8bL+5cc4K5P9tLnaf+Y8N7Ok/xj63p8io/yUy1ZfPSiwCtXDCQ52qiGY4x/eTNDMqwY9ZKaZQnA5fGQFlvLieo0dAIYpPCsVAHnhttyMzE1e234tXz2hRhXgwnch1izE4Ohgi6xfUN+Dxg7n5+djk7vZVxaX3X8CDbS6iU43lTOealZCIKgGhUamnU0suKjQrQtrl+4i1kLdrDlvrHcMiwBgHE9/J4aAQ2Ls32vA2N0kuAlxtnAFRcOIcb8/5fNI8ViZOXsAcTW2Jg5OxdjB+qhoaGhoaGh8ePyXy3O+XNLx3jJrOF89ekOVn+zj8uvPg9o2T1qbPYI8GfFEJg/awBxZj07NhpYueUQNfWNJMb6M0+0VsgPtCsrIY5xPbry8c793DUut82252bGocOA2x6HMfYMl+QkMm/T8YhpSVMsRvbcdwnPH2pkf8Z2TjnKufClQ20qs7clBOcXQuvK+PQ/s7rst6Qkv060cQKSVwEUbE6/kFugzlajxMRXtqgCmwGV/oPlNkbN24gsK4iiwBtXDVKPa43DI6MTRWxOT4vwm1fhufXHmL/5OG/fbic7PkXNNjL+Zb/wXHC613HzN+P1KYgCPDRmAJ9XHyQzq4yjh7vh8PrTEAYMP4GMJiV1TmRFxlEbR1RiFfMObOSy7r2oanBHVLXPnzuRrSVneHvjal7fuJVZg/sQYwoX1gyIb45/eTMer0yWKZrnF65leL8sOqfGqf1/tiweIWUKAlf3y+CFJ7+gR990MjITyU4wt5uaUEOjI7T57J4lq8O5UHS4nOpKGzfdPanNY4KNkTENjcRZzRTYfTg8/pTHwUKNX+z3h4N8uN/Ge/u2EG2QMDZnNHpxxgDWVRxiRTUYvLEhC9vlhVWqGKXDIzP8hQ24vDIDBh8gJVVPVU2LF4ZXVhiSYQ0Ti/TrOijQnGXpVL0Dna4JUVSob4rGq4BVLzKjfwqf7juNTwG9CF6fwpzF+9FLAk9O7c3cL/NxeGVsTh93LtqLUSdye24ml+WkYXP5QlKvDul6mFsnQLp5WFi/pViMRMdXQT0Mje+j3tNgI+27N/Xl7s17GdcpO6yvW+uMBNpq1vs1LBoc9XRLSiDZEq1eryPf68Bxj7z0FUVn9Nw8Lbzu34Uty/Yh6UTSc3uwLjsxTORYQ0NDQ0ND46flv9rjAtp2Df0p6NEnnV79OvH1pztQFP9SOzDRizZI6u6/XhKY0iuZ6f1SufXS4Xi8Pj5ZuQegWSF/NTd9sJubPthNn6dDXfmvGzGISnsjqwqK2mx7YOL3x1HjEESZTVWFBCbMRDABpFiM/G7IDMySkdeKluDx+XfjHZ623ZHb8vjoHD2G4Un3UeHawILbdiIIMo1uf6aPPk+vBvxK9auOVIcIbH68p4xKu4tR8zbS4PLR5JFRFHh7R2lEo0WUvmXHrHWrAuEzda4a3N4ohOY0hIHd00C/7T5lo87hwemVafLI/GVFIZWnsjCaXHTNPKOWP3twp5DJus3pweb04fEJ1JWncNRWxceF+aowXUA4NbBTm2IxcllOGn+ePonqhiZeXt+SoaB1uJPqHeP2UZaQDoLIH1/+Gq8vPDtBW4SUqQiM+cUkREnkqd8twuvxhQjlRRskimsdZylRQyOcNp/d79EFf9uGwwiCwHlj21a3DYx37103hC46LwN7deaBzw8EpTxuGZ+W5xfjkXV4Fb9Nv9HtU0Vv5yzez9fFRaSYYzj44NSInk0BXM3pSpOSa6muTkAnigSkgKKa36nWi3zwh0gEjA6Pf3sYq9kvimxzRKu/Lz1UQUDX0yNDk8en9qnVpA/RHHJ6ZeqdXp5bX8yEV7Zw1YI8Rr64UR2HuqUUg2JkW3FCRM+MXWcO0T2mM3EGv+El2KNCQGDNyeMAjE7rEtLXkXRGAl4kDo/M/Uv2sf3ESXK7hqYS7ej3Wna5OFRwgpmTBp5V26IjOB1uln+xm8qUBH6xtIDxL2/WjBYaGhoaGho/M/7rDRc/N6ZflcvxokpVpDMw0fvghmHse2g8798wLGTC1yU9gQnDe/Dx8j3YG51+N35PyyLV6fGpmUMq7S7sHjMZcbG8sanFOBKJFIuRu4f3Y2RqFu8c3unXdfDKbcYWx+pjuK7LxZR4ikhOqwQCE9BQEbWACzLQZthC37jZ9I+/kSrP19w+4VP0kn+n0uXxh3csza9gcs+kEIHN2YM7+evVqkkrCisjtu/p6X3Va1tN+pDfTDqRuCgHslBCpqV3h8OJnF6Z6sokTEIUN07wqeUHh2isu2c0RTUtGVga62LxugzM27+JrvEm1bMmkPIw2HV+QEYaVwzpz7vb9lBa678HrRc3wUYSwWjgvusmcPBYOR8s29lmvVvTuswLhmTy4O8v5WjBaRa/v0VND2kx6jDoxB/VVVoTBf3vob1n9/tywT+wu4TsnqnEJcS0e1yKxcjozhZq65uoVHR4mlf+gZTHgfHJ423CKRsJKEgGNGsCoreisQmzbEUQhJAF9pReycSZdRiC0ovo9R5MZhf1dVaiDCLRRr0aBhdYFAePkYEwu4DOg9unICv+8kShRT9HJDxcxKz3pwjNijMxtFPbKUFdPv/YowAWo8SArEIOnszihoX76f2P1Tz0xQE1NM/maSS//hjD4/up57e+p7W+WtKjLGTGtFwzkvGhtYaFpDhocnsY1S2r3fvWFotX70NRYPaUjmlbnI01y/bT1OiiPDNF07bQ0NDQ0ND4mfJfHSryc2Ti1AG89dJKPn1vM0PP6w6EuvcHC6QFuH3GSNbuOMpH3+7msguHYtSLOJp39FxemefWH2PepuOAgk8Gi2Qmpq6cbcdPMjI7M6y8YO7KOY9bVy/CHFcHdfHqgqK1FgPAZRnns6oiD/PgQirLz6PBJaqGjun9UlXX8MBu4z+m9eXKgZ0iCOUJDEu6G5/XitxlPnOnNzDv2ysRsHD/kgP4ZL8r+Zq7R7HqSDWzB3ciJ81KcrQRnSRi0ilIosCD47L566qjarkGESTRn8Y0+LpTeiVjNUk43TIGvcDLswbRO2Mj+XYfOYlTyZ+bGdLWQNuHZFiJM+twun24fM0x3aLIqMRBbK7dwW9H3YBZaskskpsZF9L+5tbiqUvhpPEkXx0/qgqmRhkkdp+y8eDnB0Jc5++bOIqvDhTw/KpNPHfVtIju08H/nRxjIG9vEa9/upnxQ3uQlR4f8d4FE6nM5Mn9GD2hD+/+ew1jJ/X7SUKsWocWfB+hBBo/HWd7dv9/760syxQcOMnEqQM6dPyuwtMAfFvSQJNoUsNAAlmLnB4vFTYbt583BEGfxuSeSSGhFTGCD1Hv5tBJH/2eWRPyfAZEipcXVnH/kgO4vT6irH5PpTuH9ue2G0YDhLW9dWhX/tyJahk+WUES/J4OT03LoLFhmFqXaFCNoAB/uKAXggATXtnSob64YWhnRnc/gxxTz9d7xmN3+dNUP7e+mOfXF7PvofGUCwXIKIxMaunf4Hs4onMs05a9ztj0rghCuDGlNQENC50kYpbOIIkiY7plnXW8ao3L7eXztfsZN7Qb6Unh38tzRVEUvlyUR2b3FHYmWrHIaNoWGhoaGhoaP0M0w8WPjMGgY+JlQ1j81gZ2HzjFkP6RU3sG06tLCuOHdeeDb3dx1ZTB6gR596l6Xtt6gka3D7PeH+rh8MpgtJJmruP1jdvbNFwEJosjOmfQKy4Jn7WRB3pOYmRWPEDEBaQkSNzbczYP7XmBHn2LKDrUNyyO2eWV1Qn1vZ8d4NFvDvHSzIHq4iBEmDLteoxSMiJ/5cUb30N03Mu9i2Q15tvm8vHnqX1a1dy/UyorMluOh2bguDU3i2n90shOMKsaFcW1jub0fCKSpKATJSb3jGXbmS+JN/QgwdgDjKiLh0AojssjY9SLbJgzRi0j4N5dKZ9kTfUWttUcYEJKS3x1cPuj9CJ3jerKkIxYJvZI4KoVb7OlNh+jLhlREFTX8OAY94AB6NZRw3h5/TZ6pGdz5aDuYYub1v/98C2Tuea3C/jbmyv4032XkfPs2rMu/luXIQgCV8+5kB3bjvH835byzMs3nVUr4/umdcx/oD80/u9ytmf3/4fS49U0NbroOyCzQ4vfDfmnAKhVdEQbJH51fjfmjMlWj99xohwFyElP5urhoeNO/tyJ/GntLr4+A42NBnTNO/K5mXEhY82UXslsmDOaUfM2Yol2AjAlu5t6jbO1PSB0PKVXMnmldQzvHMPKypewRtUzMStVrcv8TcX8c10RTR4ZneDXAfLKHQ8Xe3dnKU3SGib1Fyk41Ru96A87gZbQPGPWfhINsfSIafmGBPezTW6g2tnIeamRf28rRDGvtI4XV36DXkriRJ0rTPcEwg08wazKK6TO7uCqC78fb4tD+09SdLic+x+dzlNTBv5sNLE0NDQ0NDQ0QtEMFz8ylXYXj5c6GCAK3PHYEr55944OTZDuvGI0N/z+Xd7+Io8HrhuvTm4X7ChFFITm+GEFneR3Gb4hdwivbtjCrpIyhmZ1CqtDsGHiuWuG88cdyzDE1JNiSWNpfkXIAjJYx2JKr05cnD6Gb9jEvQMmMr1bP9VLISBOF4zN6eOuT/Zi1EkEPEKCF9SDkqfQ2ZLF+vLHsYl/YdaI8/hy1wQgfMcrr7QOr0/B2ezRsLqoJuT3a4dk0CfFono9NLl9fq2GZvHNgFjnurJ/4pKKmZT+TFh9/SJ7/t1Hh1dm9ymbuogITGaTlGys+mh21B4MMVwEi1o6PDK35WaqHjS39RvOkztWs+QXE6izG9S2RXKdv3TgAF5at52nl2/kj8tLzup5kBQXwz2zx/KPt1exYMW+77T4r7S7GPv2DpIy03BvK2Lz1mOMHtntrOd1pNyOLgS+Sxagc92t1fjvoaS4GoDYTvEd8tSJRkYWBMxmI3qdGGK0qLS7mP3OFqwiPPBFIRN79wgLdRjTI5qvt4NBMSNJAtkJ5rCxxqATeeHy/ggIuBX/OJJ3wk5ZdUWI8fNsz2qwgSeqNgWb+2TIb3PGZPOvjcfAA14FvB5fWBnBxojWOLxehmbvA89glt0xmfP+tRGP3FJGUozI6tp8Lkg9D1EQ1T4K7uc/X+E3co9O7xLx90j3IcViJD0aSmrPUO9LYdS8jSiK33sk8K1p7YXWuoxFK3bTtVMCw/u1703YUT7/cBvRMSYmXTwQc9T3Z1jT0NDQ0NDQ+H7RDBc/MnmldTh0Ok6lJ5Fxsoo1+09x9ej2F4iVdhcFdpnJI/uwaMUerrpwMJ2SY8NcrwPl52bGEWMUWbRrL/PWbOatm68Mq0NgcRtjkDhywkBWTDwv7NvIlKxeIQtIQYBffrKXpuYZcJxZz67fTGFbzX62e77huqickAmrJPqFMZuCJtKOoK08h1cOW1AnmvowPettdlTNg5wlTOpXxOD4B8MmrLmZcbQO7zZKArLiNwDMWrCDFy7vH5alJaY5Ntxi1DGy5z5c0nL6x99AZsyYs94vm9MTcTI+NK4PO2oP8eXBcs7LiifFYlRFLRuaFzHFtQ7VcHFV94H8c88Gvizdzz9GX6KWH8l1/mBlE41yAhapmgZvU4eMD5dPHMDi1ftYv34PBkvnc9YRCDwTRamJdCou481XVv1/Gy7ONfTjXEMJtNCS/23KSvyGy5OIHTLWNTU5SEuI4fEbhoU9X3mldSiK3/Da6BZZXljFDcNChSMbfP7Qj9dmjWB815TIGaGaQyb0koBR8gvc/nlFAQ0NJSHGjXN5VpOMfal07gv5W4rFyO25XXh+/bE2z/vL1D78Y00RLq8PnShgd7WMyTmdi4mLbuCttd2RhtpU4UyDJKATBZ7fuYm+QzzkRLfoW7T2iFp+ooj0KCv7SlyYs1wd9ph6b8dBAGqcZgw6BW8gDK8dLzTwv++fbTtK/rEKHrppUofCU85GTZWdDSsPcvk152GO0sYOjZ8HgiCYgPWAEf88/RNFUR7/aWuloaGh8dOjiXP+yASMAtXdMxAUhdMbCto9PrA4u37hLv5z0ocgCMz/aIP6e7AQWvC/G1wyQ7v0ZEtxKd8cKIpYh5hmvYUXNhyn8KiFgjNVLD1+qCWl6awB+GRZNVoANLo8bCxq4MFe11HSVM5rRZ+GTFgVReDVKwfy0sz+mPUtE0uD5NeeaGtBrRfNjEp9mIsy5mMxxrCr7vesOPUgFY49qshoisXIlvvGEmVoeWx1kohBJ9LkkXG4fdicnrAsLQadyKZ7R/KfG4u5fszXpJoHMyTxzoj97RfZ02PWi8SZ9VhN+oiZEHpG9cTubeSuL9fS7xl/Zpf2RC1jjSZmZOewpDgfm9sZ8f4F3x+3kICsiFikmrC+Olhu4/FlBaqIHvi1PX5z40Sqahv448DYdjMeRCLwTERFG6nonkHpgZMc2l/aoXNbExDYXF5Ydc5ZJM4lC1DrrBWamN7/FmUna4lLiGZsr5QOeepU1zWSlmCJ+HzlZsahE7z+3X+vwP1LDoQJxJ5ushGjN3DVgExV06atjFD5cycyZ4zf8Kcgq4KYDUHZizqKUehJo7eC3WVFIcK1t+VmRpDpbCEj1kzBwxP56MbhHPndZF6a2R9Ds3Hgwv47sDvM7CzuxubiGiQx0H8isqIQm3waj1uP7UxiSB+19DMcbaig5LSOG97fTb9n1pCdYFb7Q0FpM43y0fJTeBQTRr2JJo+MW/YbfxbfPFwVKG19LwPfwecXbUEWREYM7h6x7HMV9136yXZ8PpnpV43o0PEaGj8SLmCSoiiDgMHAVEEQRv60VdLQ0ND46dE8Ln5kgneVd5m8rPp8JzfeNpbE5MgiY8GLM4w6Ro3sx8oN+5g5qYTh/SIrsh8stzHyxY00uT10jdJx76Jv2Zh5K+mx5pA6BOKkG90+hLpYemQn8I9da5mS1YsUi5E4s57WiUk8Mtz72T4KfzuZ2ZkX8nHpCm7PygyZbAZCK3SiBHgx60TmzRwQFnIRibSoIVya9TYFdZ+wv/Ydlp28h2RTDjlx19E5egzJ0UZevWIQNmdLWMqj3xwC/N4cjy07zIY5o0N0KXqllVNg/xVN0hG6xExkZMpcRCHyo+8X2Qv1Yok0kW6y+Sf0+ugzNNpj1Z3BdfeM5uM9ZcweHC5KenXPgXxwZA/fnDjM1T0HRbx+oA4H517AX74xsCr/AE6PA//Gi//eDnx2HQr+uPY1d4/C5vKRmxnHkD6dGTM4my/X7GXJZSOIMhnavEakawaeywGJZh64ch5ffbKDvgPOzR27tfdNy4Lo+xe7+y6hJRr/PdjqmohPiOmwp47D6cEaEzl1ZorFyMTuCWw9dgYQ8MlKmMfAGZeDBGNUyDkBMc3AeGQ16alqdFFc6+C89AxW2iEmxkFjQ4zqcXEuz2ql3cVtC2Uevgwe+uY98opGYGz22MhJs7LvofE8s6aId3a2hJIYJRGzQVJ1hQJcObATf/z2MBkJJxiYdYxFWyfQ6BZ5dWsJVpPE3y7py6PfHMLp85KSVkl1eQYjz0sIa29eaR3GqEZ+sX4vroY07C4v0QaJj/eUsfjm4Ux/Mw8UGP/y5jDjaUF5FUeqqnlo0ljWlwh8tPe0+tuqI9Wc3z0p4r3MK63D53JhabJxJiaeA1VNdE22hPXVuXhgOZpcfPFxHqMn9CEjM7HN4zQ0fmwU/25NQ/N/6pv/13aaOA0NDY3/ETTDxU9AYFd52JzJbF2VzwdvrOfe302PeGzrxdl9V4yi8NBx/vnOGt598gZ0Oink+Eq7i1HzNja7L4tUuRPpZKrg5Q27eWL66JA6zB7ciSdXHgGg0S1zT7+xPLrzC97M3849A0aRmxmHKIbv6Xm8/kn9DX0vocB2nHdPfsayOfdSXhPVIrzZqt5TeiV3WJhPEvTkxF9L79iZ7K76nIL6D1nr/D06IZqtR7uz+0RvSqs7Y3da8MkKsgImnYDTq+Dy+Nh9ysaVg6I53rAC0bKMLTUHMUtJTEz/G1kx46m0u1hZWtFu1o3WSv+ts474XFF43HqSEu00VrVkYgkIzc3ffDxs4jwoMZ1u1gQWHzvQruEiUIc/XjyKdQX5vLdtD49ePAHwi+YFZi8KcPHr21Rdk3X3jKbXgJ5s2lPMZ6v3cf0lw9VnoiPhF8HtnnjxQFYu3cNdv5mKxRp55zQSrd3F58/qT5xZ/4NoUHzfWSo0fv4EP8t2m4MYq98Q0ZGxxen2kGxoO21qUpSEQtteYfVuJ1E6A0vzQ8eOBz8/oOpcGCQBt08hyiCh03sYPRl+f3EKyZ6h56RxESCvtI6TtUlU1MczJLuQNYeGIgqCalTJSbPSJT70/by4TzKzBnaioNKuGhEC4SkHH5rAytP34fbFsr5guHqOx6tQYXehKAIpaZXodDLX9xgbUaNier9Unt29HkkQwGUh2iDS5Pbx/PpjPL/hWItmRVA9A3y25yB6UeSaEf3J6dyoGi4CKa+DrxFMdoKZmPozCECZ0RrRm+NcxX2/+WwnDTYHs28Z26F7oaHxYyIIggTsBHoA8xVF2fYTV0lDQ0PjJ0czXPyESLHR9B3fl68/28mVN44hLSNe/S14gt56cfar6yfw8L++4KPlu9XFaQB/rHbLfzd4Y/AoNlbl72Pu5KFYzS07jsW1Dsx6f5iFWS9iFRK5oHMP5u/fwoxuOXSyWFl6W25Yij2j3h8GIQkSD/e9mQd2PcNLx9/m4R53n1Pqw4PlNtU7IVIa2NpGgYvnx+KT7yCn8zHuHHeavp23Mry7P97b5ojmZG0SHq8Jj0/C44PEGBt1+jN8VNwIQJyhG8MS76FX7AwMUsx30kUInkgHn99/uJV+WV6+udSvhD9/UzFur+yPdY8wcRYEgQsz+vDvQ5s5WFlDTkr7u3wplhim5vRi8Z6D/OaCsRj1OtXYFLjFoiioO56j5m1EQCDLFMXCb3ZyzdSh1DRG1ug4G9NmDefrT3ewfsUBpl3RcTfqtgxWPxTfZ5YKjZ83rd/dmfUOOnWOP/uJzbi9PvStDL3ByIqP7IQYnr9waMQxq8bh4EBZE9dv26W+S611Llw+/5vZ6PaBW8TpMFHcVMqtgy4GIqe7bt3GkMxLmXHoJZH9Jb2Z0C+PFIsLr08fYlRpPSasKaph5ZFqGoLSpZpkheWFVUzscxKveBDJcSuSYAb8AqJGvcjswZ2Yv/k4WVkVuJwmrhs8uM16rj55lGHJGbw040Lmbyrm+fXHwvSEWht/XB4vX+wrYGLvbuw/3cjU17dh1gkoCCz7xXnt9k3BaRspjnrqjNHooswh+kEBshPMKChqyE57Xi1Oh5tF72xm4LCuHc5Ko6HxY6Ioig8YLAhCHPCZIAj9FUU5EPhdEIQ7gTsBsrIie99qaGho/LehaVz8RAQm4QtkIx5Z4bV5K8N+u37hLvo9swYgJC77/GHdGTu4G699upmyqvqQcnMz4zDqRKINEtEGiZdmDuDtG6dR53DywurNIcdmJ5hV4UyHRyY7wcycfufj9vm45dslVNic2Fz+ySj4hTB/fX42BQ9PUusSb7DyeP+7aPQ6uW/7C9z6yWZV8yF4Udk67jgQ8vDEyiMMfHZdiF5DgMCioN4ps7+0B6LzHv748a956vMbWLjpAvae6I5Z7yXFeoahWbX0TCtDVgQOlPYkyncTl2Yt4LKsd+mfcAMGKSakzO+qixB8vtNhxqnYAX/62OfWH6Ox2R3cp8iUnGkKaXOl3cXz3/oFBScvWNahOOzLB/WjweVmw9HjAKp7+B8u6Mnau0dhbNbUEPxJZbC7vJyJiaemrpHtB0q+c3u7904jPSOeresLz6l/Agarc9XY0NA4G62f5Ua3F/EcBBoFhLDQt2A8Ppkog75NjZVahwvZJ4a8SwFDnUmKXI+aymT21h/G6Tv7u9563A+MoflzJ3JFn2vQSTLzrj4T8l5V2v1hKYtvHs7Vg9J56uI+yAohRgsAp1fmgc/3san8Rapt8Ty4KB1BgJdm9ueda4dQ8PAkctKsbHpgKInJ1VzRZQxpbXhaldjryD9TyaiUbuSV1jF7cKcQbZ8t942N+P4v3V/AmSYHo3v0ZMIrW3B6ZRxeBVEAmys8K0ow5UUl6GQf9XHJGHQi2QnmkG9KwNtNUQAB1t0zut2x5/MPt1FbbafHxYM5WG4L63cNjZ8LiqLUAWuBqa3+/pqiKMMVRRmenJwc6VQNDQ2N/zo0w8VPRGASXiuIlHdJY9PKAxw7Uh7yW1uLTUEQmHuzX1X96bdXqeKV0LJw/OCGYRQ9Mpl7xmQzrkcm144YxAfb97L/VLl6bCALBkC0QWL3KRuT5++i8lQyhQ1lDHz1U7ITzOqkNNqo49bcLPJK60ImjIdK9IzVX4nO4KLf8G0gOdU6R5qMQ3jIw8d7ysL6qPUO2pReybxw+WBO1nRh5YERfLTlMhT7E9zW9yOmdf6Avy25n5eX38In2y5jfMatJBh7IghCiGBbJF2EcxF0Cz7f6zbhUJrYUlKj7rqa9SJen0yTW+bezw7Q5+mWNueV1uFyGPG69YhRtg4ZEUZmZxIfZebrA4fVv+WkWfnz1D5qPPjC64ey5b6x6n1yxliwRBtZtGofdQ4Pkhh5BzRwfyK1XRAEzhvXiz3bj+F0uM9az2DORWBTQ6OjtH53oww6FCXyMxzpbwpwqt7R5nvu8fnQS2Kb50uSgtAqlCQw3r42ezBWkw5dqy9qZVkqXjysOrX3rO3LK63D5ZWxu7y4vLI6PqRYjMzol0uyKQe9eQ3JMQa1jv2eWcO17+1k1oIdfHWokqfXHkUS/cLLAqhinAC53XfjkI/zxc5J1DkUXB4Zq0nPDcM6q+/q7sbdKCjMyBrdunoqK0/6wwufWlrF9Qt3Mf7lzay7Z7RqrMhJs4a9/4qisGDrbnqnJpFfGWo9khXa9Y5odLhZsmoPw3KyeOO2May7ZzTjX94c8k0J9nwRECiudbRZnt3m4MO3N1KXEsfDO8oZNW+j2u+ayK/GzwFBEJKbPS0QBMEMXAC0r+SuoaGh8T+AFiryExE8Ca/skUGPqjO89vy3/G3+TR0SHUxLsnLXlWN4YeFalm8p4KLRfdXfgj0dDpbbeDOvlM7WDOKjC/njlyv5+BfXopekliwYgqCmonN5fTiqEzDH2jAmn2L76UrVJTo7waxqOAQ0FcbN34zL68MgiVjjh9N3yA4GnbeVE43ZVNrj2ow7DnZvDo5vDhC8gyYE7aBN6ZWMWS+hE/26DnPGZAP+Sf+6e0aHxZBHCg0Jbs/ywiru+2w/bp+MUSdR8HBkL4FKu4vlhVUA6nVsJgMLTx4lJ92o3i8FBb+3uKL2Z6DNAbdvX5MFg6WO4Z1j23w+gl2XL+zbg6X7CvD6ZHRS6Moo+F4Hh+b8+6P1fLH+AG9USog6ifmz+oeFbZwtbCZ3bC+WfLiNg3tKGDaqh+ZOrfGT0jr87M+/PI7D5Q17hoGIfzta04S73h86FckbyOPzoZPENt8Lh9dDj8R4Lunbg4xYc0i9bhjWmSm9kvlkXxn3fXZANco22pJwNpn5++6vGBE/qN33JjvBTFOzp0ST2xem49DTejmbK5+i3LGL9KhhkdOxBunKWI0Snx+s4I28ElKs5cwcsRxJzmFvSR9AxuGVue+z/eq44FN8LDu9mb4xPdhZLJOb6YpY36+KDxMrWah16mlw+8f14lpHuyFb648cp7Cymr9ediF9OmXw5Kqj6m/LfnFeyHjdeox5Z2ketgYnc64aQ073VJbmV4R9U4IzvLSX0QTgnVdX09TopGRQTzUleFvhLRoaPxHpwIJmnQsR+FhRlKU/cZ00NDQ0fnI0w8VPROtJ+Javknn5mW/YuCqfcRfkdEh0cPaUwazYWsA/313DiJwuJMRGhfwenIECINkcR21jGa9t2M6cCSPD6gD+tKUOj0xNSQbpPYtYeGId1w68men9wieMb+aVUufwq+k7PDK/HZxLiSOdI4av+cL+Ns+/OYTPr54RYoQJuPjmZsax76HxvJlXSvfEKJKjQ9sYPCmPNki8mVfKkIxYNdVgXmkdVqPEn74t4J2dJxEEQVXbD+6vtgwnuZlx9HtmDY1uHy5vS7jM8sIqbhjWOaQulXYXfZ5eo7bVatLx0swByAb/gqGTNSoku8Cj3xzC5Q8dx6iT1L4N9Pe/duex8PgmGpVGIDzLQeuF07xLO/Pxzv0cKq9kQEZau89UYPFgSU1CVBRosOOzxhJn1oc9R2cTs+szoDOCIHBo/0ky+2d+J60MDY3vk+BnPCraSOWZRjxxSSHPMBD2XAPIgoDPJ6u76q0X2l5ZQSdK5JXW4fT4aPLIROlF1chZbnfisDWwYUcBZp2A2aALeQ9SLEauHOg3wBbVNNE9MYpHvi7gxPEMevc7ypfHDnL7oKFtti3gAdfg9mHUiew+ZQvRcehmuZBdNa+wp+Y/pJmHhizWG5vP8SkyQzKsJEcb6fP0GlxeH9FGJ3dMWkST28jvFk/C7WnxeKh3etUxb2v1fqpcZ9iUl82/T+9EEGDLfWND6nCwsoYdVSdxVKfQ4PYRpRfPaihQFIUX12ymc5yVSwf2pc7hJdakw+HxYdZL9EnxZweJZDByNTWx8OudTB3Tl5zu6UDkbEIpFiPr7hnNqHkb28xoAnBofylffrydC2cOZ6dLjyXICH+uwqkaGj8UiqLsA4b81PXQ0NDQ+LmhhYr8hAS71E+/cgTZPVP593Pf4nS4O+RuL4kij/3iIpqcHv757mr17wE35zfzSkPyZ9W7ohmS1YVX1m+joLwqrA4pFiPzZg7ApBPxeQw0lmdyxFbFY1tWsjS/guwEc8iEMSUmNN3mkysLeXuDg03rzqOxIYpeg3fw6cmVHHhoPAuvH9rsobGJq9/ZQZ+n/fVdsKOUR74uCIstzs2MQxL9uhqNzYr1N32wWz0vO8HMhFe28OrWEpo8smqAaO3m25b3SmDRHjBaBLA5PWEu4n4Xbl/QMV5+8dFu/rbG77lpEP398ODnB3jk6wJEQQyKHffv9gbKTLEYuWFAbwAO1LSE7QTTOlRIFqMB+Ovy3RG1QCIxa1RPFCDJ52pzF/Fsnj3RMSa6dk8hf+9318rQ0PihiLGYkDzesGc40nOdmxkHgoheoM33wSfL6EQBq1GiqVn7p8kjYzX6U30iKKpGhsOrhI03gYX3I18XsGBHKeO7J6KXBGrLuuJx61lW/S3rjlaxNL+Cg+W2sHHGP+b5Pd+cXpn7l+wPDVURjQxJvItK516O2ZephtBXrhiIxahrzmwiM27+Jt7MK6HO4cHp9XLjuM9IjLExf8VM6ppi8MiRhT4+P7UOixhL+elkGt0+Glw+cl/YwPqiarWubx7ciyBAXa1V7R9ZVhj/8uaIbQJYU3iMg6cruXv8SAw6v2FIVsDt82eECvRhpDHmX++vR68TuffqcWp5benoFNc6EBBocPtweHyqh1yAsjNNPPGHxcQnxXDPg1NCyogU3hLMuYQTamhoaGhoaPwwaB4XPxMkncS9v53Gb+54k/deX8sd90/p0HndMhK5fcZIXv1kExNHHGZgv67qrpUgKDRrNgJgMoj8ZfpkbnvnQ+Z++g2L7rwOkz70ERiSYUUnCcSIEoIznhld4lh0bA8LtlQh25NDdqY+2ReqS+GTweWTwWti26YRDB2Wz7a0tRTtK+Q848WUnLFS5/C7Iji8Mm/mlba7468oLSr9AVwe/2Jhe8mZsL4QhPBY6baym7TerTTpRAw6kUe/OYTbIyNJAlvvH0dOmrVZ8FRShUwBXDJIBhder8ThykaKax0hbcmKj2J6v1QOltsYNW8jioLqEdIzNgmdIFJQV8XlEe5p64VXZpwFj6xj/dGTDHx2HfseGn/W7ARZSTH0zU6jyetjfhveER3J/NJ3UCbrvj3AA51jzxq+pKHxYxJjNdNkd0Z8hiP9bVR2AlU2J6vbeB+8skyUqGfVkeqQv686Us3swZ1463QgsM1P6/GmtQfT7lM2Xri8PyfrHLx66CQ5Awu4fulizpRn4PQqRBskdJLAizMGMCTDyu5TNty+FgNpJM+QntbpHLUtZVvVcySbBpBi6UycWY9XbhmbnG4ff1l+GJ3o5caxyxmYdYwF66dSVNEZATAbJBqaxTCtJokhGVZe37uDg7YirsmYzteCVy3L4ZWZ8MoWYgwSBp1AzuBSvE4zXldL/zV5ZERBULMaBXtkeX0yz6/aRGZ8LJcN7ANENphW2l0hejySCHl7itiwq4h7rx5HcnxoGttI2YSCDT8Oj9/wEwiDqbS7uPjOd0krreXo8N40yB3PSPRdMlFpaGhoaGhofP9ohoufEf2HdGHq5UP59L0tTLp4IN16th0WEMyN00ewYVcR/3h7FbfdeknI5HnezP6q2/KVAzuRYjHy1IyL+MV7n/H08vX8cdoktZxIuhJHaxr5+GAx5pRTNHr0IbHMVpM+pB7BAv96QcdNna7hX3vX4O6dzxeetzhxtDuCkIWi+B19uidGIYkCZr2IJLYshivtLuZvKg7zhoCWVKzZCWaeWHlE/XuUXmLLfWM7PKEMXrRnJ/jT65WcaeLez5qzjfkURr64kaJHJgPw4oz+2Jz+UJHffHkQl1chLr6OujOxPLmikMcu7BXWlkq7i1HzNqqLBEBdiKRGxVDeZA+pU6XdxSf7yiiqaWLxzcOxuXzkZsYxf1MxHlmPXvSqQqZ/nmoNOS+wuxisY9EjM5Gt+4632ydnm7x365HK15/uQGhydSh8SUPju3KuGirxiTHU1TaSFK0Pe4ZbP9eVdheNHhmTJLRZttvrw6CTmNwzSR1bAvo7OWlWTHoRpyASpRcRBIG/X9I3pN7BHmmSCPcvOYBPVvD4ZJzezqRnlNOv/2E2VCWgeE1q5o87F+3B5VUw6kSc3hZDbSRDrCCInJ/2Z5aW3Mra049ySeZrYYZVSRKIj67n1gmf0i3lNN/sHcOfJtzDqgy/ASY52qiGtdldXka+uJEBw7cTYzEwIXEUW+5TyH1hA46g8bfB7SM+2sGJhlouzczl34WN6m8mnQCC39Dc4PanZn5gyX4eu7AXe0uKOVJZw4uzp6OXJPXetA5RDBgGJFHgb5f05vGlB/h6WR4eo5lBQ3qq4YVnG8tenNGfuxbtxeGV8ckt4+1HX+4h7VgZpZ2SqU6KjxgqFPysBD+HZwup09DQ0NDQ0Phx0AwXPzNuf+BCtqw/zL+e/JLn3rwdSTp7NI9OEnn8l1O58ffvsnH1TvRilLqbFTBWBDOuR1duHjmUBVt3MbZ7Fyb16Q6E6koEBNdGZSXgruiC2Oko0Z1OEBXdotY+pVcycWYdLo+MUS+y5JYRTH8zT/UuEASBkpJUSspiyRlQQLfeR0jrfIqjh3pTV51C/zQLoDS7hPgn7IHdLZdXDjNcROklltwyQl2kr717FF8cLKdbYnTEdgaXF2m3LHhxk5Nm5b2dJ0PO9ckKywurePDzA82TanhxxgA+vH4YV763FWusnaLCbL48VsG3hdXIigwKyIrc4qashJYXiAVPj7JyurHFcFFpd9HrH6uxOf27nS+sP8a+h8aTYjEye3AnXtugI1psQgBSm3cQUyxGDpbbOO/FDTS5/X0VZ9arAqPxcTFU1zXy5pZipveP3D9no2tPf/+cKKpkxJie2oRd4wfhu+xqJyTG4PPJ2OsdxMZHn7XslHI7Bq9bfXda4/H5UBSBGW/vwNScHmTZL84L8m5SuHtUNj31vbl/yX4e+bqAx5YdBhR8MiFaCXUOD3MW78fu8mKUAAT27+nH2AlbGTD4EDu2DSbgvREwVjibxzuTTkQnCWy5byxA2KI9Rp/OuLQ/sbLsNyw/9QD946/j4NwxrDxSB0IlnZMKOGR7E1GQeX31lVzXfyZ9Uiyc3z1JbeuUXsmqbk9CYi3xSTUUHerDuoR64sx6vvnFeUx/Mw9ZVnB4ZKINEuaEahKMUTw66jw+2rwel0dGrxN46mK/AeexZQWqB9tHe0/zyd6TDEos47yumVzYt0dIXwfG3mAjdeC7U25zklpdBorCyfh0Rs/fhCL7jdbBqbgjMaVXMmaDhE4SW7w5Ttex9vU1NFmjKMvJbtdjLNJz2BGxbA0NDQ0NDY0fHs1w8TPDGhvFL38zlX889imfvreZ2TeP7dB5XdITuOfqcTz/3lr+ec14ErM7t7tD9ZsLxrD9+El+t+RbPr3zOjITIseGp1iM5D90ASuP5TD/6Dc8sPkzFkTNZmhyBikWIwUPTwrZnTr6u8lBIpUFuH0K+Izs3jGIrp3PMHrEMaKG76auJoFrF9fh8cXj8PqzZQQL6wVEOS/omcS3h6twemVEAaa9sY3GoEX6hjmj2019dy67ZVN6JWM16VTjgVEnsudUnTqpBrjrk72Y9RLPX2/hmzpoqEuiySOrtheHV8bhhTs+3oNBJ6AgEKUXafLISKLAuPmbeXFGf6J0RiodLXoVAUHAAMGeFTlpVm7N7cZnu/dhMUk88nUBf/z2sCpGFzBaQEsWk9zMOJ7ZXEoaMOejXTz0dcFZJ/2RyOzqX+ycPFHNiDE9z+lcDY32CN7Z/i672vGJ/vCB2uqGdg0XgbI9soJBCQ+/CNSj0e2hqtFDnaPFdaykzqn+26vIWIx64ox6fDLYXV7MelF976MNfi2MQKajQNiCywcxRpHrB/Rj7ZFauvUpoHNWGSdLMkLqGaUXMegkXpzhzwAEoZ4Igb+nWIxkRI9kgPVhDtS/xhrnIxhEC+aEKBq9FZS4IC26B41195F/sppHSvzjRbAxKKDbIwgyffsX4nQYOVrUiXtL96MofiPMlvvGUlzrIDvBzJqSEp4t2MctfceRGRetjvvBmaYkUeCCHgl8nl8JQJKxmkaXm0enjkdodscLvueB9rm9Mk3N471eEjBXVxLtbOR0QhouvV4d3xzeyOLJwbT25ohC5tcPLET2ybz06i2UIrX7XWzrOdS8zTQ0NDQ0NH56NHHOnyETpw5g3OR+LHh5NUWFkQUcIzH7wiHk9u/CG4s30T8uPItEMAadjn/NnoYA3PfRUhxuT5uiZykWI9cN6srHF11HoimKG1d8RF5FaZtlP/j5AeZ+ma8aAEw6kV+fn83W26/mqrg7KTrUD3NMA4PP20b/YTtIT26MKKxn1Ik8eXEfogwSFqMOBPAFaV44PT5GzdvI9Qt30efp1by382SYeFp2ghkFhZjmSXF7u2UpFiOFv53EO9cO4aWZ/REEeG1rCU1uHyapJXbah4dNtg10NqXRWJ+AQRSQRAGjXlSPc/sUGlwyXp8PWUHdiaxzeLhr0V5WH6nGFRTPnp1gVhc6EJ4iNt3qb4eioIrXfbynLMSjA1qymOSV1qkifAIt2iBno7UIXWxcFHqDjpoq+1nO1NDoOIGd7esX7qLfM2vChH87squdkOzPRlFb3f6zGRhTdJIQFn4RXI+y+iYEIfInsdzmRFYUXB651RglYdSLRBskmppFhPs9swbwh5eZmz03UATqHG5OHe9CbXUcvfsdIdroUcuPNkj8Znx3Ch6eyA3DOoeFKATGjYCIcaXdxZT5Rh545x7+vfJaPM4hWKQ+nJf8Gy7PWsjMrguIN2apBhaXV2b+pmL1vQ6El3TJLsUaayf/QG/0gg63V8bu8uL2ympYYE6alW31B0gwmrmt73CgxWNi9ykbDrcPu8uLT1a4sHcKAhAlNRKrtzNr6EB6pyVHvOfLC6vw+BQamo0Wvz7//7V33+FRVekDx79naia9BwIJvfeqgILA2rGhomtdy8+Cfde6a9lVd3XFtWPvil1ExYaFIk16DUUhQKgJqZNk+tzfH5MZJslMMgmBFN7P8+SBZO7MnHvn3jPnvPec93Tl/TO78eWPKzlpZE+mXzeBJ87sG/LcqStRpr9siWY9D9/5MXt2FvLQkxczqG9mvQmvw42uiCRZthBCCCGOLAlctEBKKW65bxJxCRamPTgTp8NV/5MAnU7x4HWnEmUy8OCL3+J0+QIHwQ294P9nJScy7fzT2XKggH9+8zOaptXZQOsQm8DHp15Cu5g4rvz5E77etrVaQ9R/N83l0QLzoy1GHdEmPXeP70F6nJlR2Skc3NOZlb+OY9fvveiYUcHgUYu59rxtHPDsIi3WVCvbu//3JbecQJRJHyiPXqcCHfkSm5trP1lD7ycOrU4SnLODqpwdQL2N3suGdSQ7KRqPl0Cj+sYxXUi0GIkz6+nWezNl3mLOTD0Dq92L06tR4fAw6y8juLHqbqufw+Mrp1K+YwG+O4der6LCeejzGffiYvRKEW3Uc/3xnWol4DRWTRnS0AJ3JqcMzsRk0BFr0hNt8q1k4p8mMjIrEUPVnHKFFsgNUpeaHYt8qwOlFKnp8RQciGw1EyEiUXMFidwiW8igaV2SU6tGXBSW17mdPyA7tEMiGbHhlwRWeIkxmUi0GLAYdCRaDJzSM418q4P+T/pWM3ph0U6AQFk33z2ezXdP4K9juwaWMvUn1fRPW4itClp+nXOACqeX3M39MBjcXHJaQVWd4gvS3jSmS7X99neiowxVQVP3oaVcfSMmvJTavSzd1pkb3z+RS18fR7J+EonmLhSUOwPJLmsGVfxTZRbdPpj+/XMpzE+jorA9ZqMuMD2vwukJTGtbsn8nv+7bwdQBo6i0U+275NZZGwJ1vV4HFwzM5LfbRtMrsYTMxAQeOmNs2M8cCAQJTAYdF/RO4am3f6RrhxT++X+ncla/dlwwMJNEixGLUUeixciQDvG16qhQPG4PTz70BWtX5PLXh85h8Miu9Z5PwedKQ85DIYQQQhwdMlWkhQkeSnv7/Wfz0B0f8PL/vufWv58V0fPTkmL5x7WncPczXzH944Vces6oasONg+dj59w1nrE9unDTScfzwryl9MpI4+rRw+p8/YzoOD465RIu//Ejblv0BSq2A9b8hMCw2uA7Vv6cEMEJI6sP5T2FWIuX2XsXMmvPXO5d9zw947KZmDIWr5YVeM/gXBSb754QyB8xpEM8415cjNvrW5rQ6dFw2lyB4cQ1c3as3lMWyFdR3zz6mnfe7hnfnbtP6sbTmz9hvT2P8ztOZOXWqMCABw14afEO7j+5J28tz8Pu8i3PGm3SYzbomD91NPO3FXLPNzmAQqfTiDX5kpv6y1leVc4zq+5yBp8TK/KKfQGYoMSp/qBOqCHM6XFmnji9F0+/u5v/TurHlOO61tsIDzdMOiExGmtpZZ3PFaIhwk1La0gOlcSq6SElRRX1bOmzZk8JBpeTvtPmBq79Q+XQo5RG33YJPHHeiGrX1OycA7iqVu0ITvjoH9k0MiuRm8Z0YfriHcQpVX2a3V3jmb4ol//N30aly0u0Ucf1QweR3s7Et/lzmXnjCZSXpIacgpAeZ2b+1NEc/9xCwDc6S6/zHbuCCgeVzkMjtmwuLwadLlCe4Dr/+uOzeHXpLl/9ohTL8ko4vU8qb+V9hEmv442TriW3r44Sm4sbP19HhdNDtElPbpGN+Cg9ty/4lnaWOE7J7Fct/8Mz5/THUzWqy2LU8dy5A0iPM/PsL/OpdNh49ZKzMBkONTFqfuan9EwL1F/9Ui3c99QXuD1eTj1jNFaXF0sUVdMRD9Vx4eqo4O/NFIuBJx6cyfw5G7j2tpOZeMagiM8p/3GXXD5CCCFEyyOBixYkVGKwC68Yw6fvLqL/kE5MOH1gRK8zblh3ppw8mI9+WIUWFxdo6AXPxw5u9E0dezy/5xcybc4CspISaiVSqynNEsOnp13GDXNnsYhc9GY77sIOgcb3/Kmj+WTN3kA2fv8oj+DGeUlVgOGUnmlMyT6ZczqM4+cDy/g07xde2vE+9koL9y3uzLcXXkKnxITAe/tHRPjl3DWeJ+b+zlMLcgN/W7PHd7ezZkO5zO7C5vJgc3mrBVrCdfyDgwJRUW5e2fY56+0rOK/DeM5MPZXP9+2rttzs1zkH+PH3g4G8G/7VSvwjHR78YQsKXwb+gR0txJtNQPjhycHnhNm7l2i9jnKnN5A4tV+7+Dob2U6H727k1Sd0IzrKVOdnWlc5TGYDTqe77icL0QCRLMVbn+gYMzq9DmtZ+Bw3fsvySsDrxY2qtsyovxw//76ff321hcyE2FrX1MisRIxVox70HFoxqGb+iflTR7N6T/WRSf7kuo9WrVJic3mZMjiT7mldWWPdwHu7P2P6sHuJ0ofe/9V7yvBqh4IDj57Wm2V5JZTYXIERHv7H/Ndszc794A6JmAy7qwVV3t/xLRvLtnNX7ytIMyeTSwlDOsRjNujQVW3XJdnCcW9/gim5FNuerizoWlztdYFagYjvN27l89UbmdinH1nJqdX2peZ3g/8zP713Gn/73yx27SsmLz2LW7//A+OP2wLBpeDPI9xSqv7PwoDG5Px8dq3K5ZpbT+bCKyLLESWEEEKIlk8CFy1IqLtJf5k6kZx1eTz776/p1qsdnbqmR/RaN188ljVb9/Dtd78RlZwFZkNgxEVwxnXwTTH573mnsb+snL99/i3Xj5vIhYO719mZsDngoo5jSY+K5wvWMrJnNMrgJt9KIFnb9MU7mD91dOB3f9b9E6cvpsTmm/6SaDEEkkYOjxvB0uJk5m3+jXadcuncaxO3rX+E09uP4szME+gYXbuDnh5n5u7xPXhzeR52lxe728srS3fx9ord5Nw1vtqSpydOX3RoyUCdr2Fe10oG6XFmJvRM4JMdc/ly71xc2Dk5ZQLm4mH0eXsuHi/ERekZ3y2VH7cWVCXg1FVbMtY/cmJ2zoFqoyoO2irpkpAYeJ9QnbjgjPsm5cGj6at1UMLx333cdaCM6ChTREEL/3P8qyIEl8NkNlBWWn/nUIiGONw720op4uItEY0GGpmViF7T8OpqXz/pcWaOy/Lly0iwRFV7nv+6+Orq4Vwybz1/n9jz0CiMqroa4PpP12I26gCFx1u9PsktshFdNV3EP5KhX7t4zk45m5d3v8H0TbP5W//zay3D6ZuKsT5QZ5n0Ou7/fnNgmoVeR62RbQC7iivxaN5AXp/gkQ0jsxLJsa3nk7wfGZdyHLvz2jF51txAmYOv/083/44x6QDlRYm4yn3Hx6hXxJj0aGgM6VB9xJfTbef+r37CpUXx/jo3H2+cW61O9U+J83835Nw1nrRYE8/MmM+SdTs447SRPJVjrTNBa6i60v9ZVFQ6GZCznV0HS8jr04mTJo9o4BklhBBCiJZMAhdHSc1GaSih7iYZjHr+/tiF3HTpyzx4x4ecff95nNi7/iRhZpOBf980iSsfnMGp+jImXzie0V1SAEKWI8po4OGzTmXSizN49qefePjHP1h/12kRLTH63ymn8MTaXzj96ze5KGtMteDLJ2v21vrd4T40xNmfNNI/vNnh9lLpTKUwP4Ok5DKuPdXGt/sW8tXe+QxI6M5p7ccwOnUgJp0x8Br+1U2mL8rlqQXbqXB60FUNiZ7UN4NJfTOYnXMAT9XiGxaDjufO7R9ILFdzBIrL62Jl8WYW5K9iaeF6HF4nB/OT2bRxEN9Z9ZgNawNLGMaZDZw/MJNfc4vQh+gUhf5socRVQYeY+Gr7UHOlg+CM+2nRblBGXrlgULWpN3V9Ntn5u+ifFh9yu7o+z5oBHJfTg8Fw+OlwIrkGhGiI6GgTdlv9OYDS48z0TokiKjaaJ2+vPUWsqNIX/EiKtgT+Vu26MHqI7QoJUb56x389W4w6bC5vIM8DimojuvxTSoJHMozMSmTj/jLOfXEXA4a050fPr3TfMoBrZmyvdg0uyyupVmddMzKLl5fspLIqkBFt1PPyBQMY0iGe3CIbBRWOakFhi1Exf+oJgX2d1DeD5UUbeWrL+/SK7cq0T5KodKwNlN0/kmtS3wyK7Tbe37kAzW3EXdghEADxr2SE5gtQ59w1nkl9M7C73Fzy5mzcXi/F7iysDg9xZlUt+BAqMF+cu4tP5qzm4lOHcunZI3h+y9x6E7SGGhET5XHTd+1W4krL2dQzm9JO7SNamUYIIYQQrYcELo6C+jqGfuHuvKemx3PzP8/j4dtm8Pj9n/F/I3qz+Z6J9Xb+stsn8cB1p3Dfc7PZumoT5w6cCBC2Mfd7oZNCdxbJ+p3Eq118m5PHX46rPW2kZgPU7Ejnb70n8dGuX5n++xxi0tOgoB1GnS+B5PTFOwKN0SmDM3l+0Y7AXUSzUUeXZAv/nfsHlU4PdrdvHviZfdK5/+QTSIsx02vnWMrNW1hYvJxpm98hzhDNCWlDOCltGH0TunKw3MWyvJLAewV3EPxqBoWGdIjnxOmLDyURjbZRYdnEoxu/ZnXxFuxeBzH6aLqZ+vHezybyCw8FAPxBC4tBF/KOZn2fbUaixoU/raVHYmqt7YKPsX8Z1mijjjiTh7E9OpFoMYZ9TrXPxu7C7LCRmNK+zu1DfZ41G/zlVhtpGQl1vEL9Ir0GhGgIg1GPK2gZ4bpYK+wM7tkh5Hl3sNwXuEiNjQ78bVleCU631zdKSue75q0Od2Da2/ypo3lzWR6v/bYDjweMBoVO6TDUCGD6r31/bh7wLXWsAVtyepDRLp83c7/A5RlQ1eGvnS/IqFec3a9dtSlxlS4Pi3ILuXXWejxeX+Jel/vQ0sg2l8b8bYWBaWuLDmzhu7KP6ByTyRjTebzhzsFWFUQ26VVgFNpXG/fxQd48Cu0VvHvyFMrLowL12rK8EhQKq9MdyJdxZp90Hv7mF3L25fPYuWfwfzNziTNr9dbBjgMFvPDRr/zpuJ7cdsk4dDrVqOlDXmslp2/ezoEKG1uH9KA0IyXilWmEEEII0XpI4OIoqK9jGCzc8OmdURa2dM+iz++7KN24k8/W7WVqjRUsQpkwoieXnjGMGd+upG/Xdkwa2y/stiOzEtHpzRR7skkx7OLFuT8xKDOeIVnptbbzN0B1Cm74fC06FCZjB674Uwdmso7s9k7+c9zpIRNIbr57fLUEmydOX0SJ7VAOBZvLyzeb8vlhawGHhl7r2HDn3ezz7OLH/Uv55cByvtu3iCRjAlt2xlF8MJnK0hTm3TiBHcX2kA3fZ87pD8D47ol8tmUTye13kJVQTEpKCZZoG+/mQYoxkZ270jl4IJ2KkjTm3XgCb1QuAqrneEiIMvD8edUTj0Z6d2972UEAeiamhd2mS7IlkHzP4XLhcLuYtbGYd9etqrPj7/9skvUaes3L6L4da20T7jnh7nSWllTStUe7iPYtnIZcA0JEymgy4HLVn3/F69UoLbeTGGcJ+XhhhS9wkRITHRgZFG/2Te8AqHR6SAIe/WkrlUVF+Bb5Ubg9XiqcXswGhU7pA/ltQtU/wYmBZ145nEd/+h2Hw8zvW7rRp/9W0tunwb72gfwSNaduBQc+/N5ctouqGDBmg67m6siBZMCxyfsYNGw9DpuFMy3n0js1KTDtwz9Czat5OXH6YkzJe4hKKeDewRM5KbtT4LXyrY7ASiXBdcWHy9cxc81Gbhx7HOcN7sWYbp3rzRsU46jkwee/YlDPDjx43WnoqpaCbuj0od837eXB2z/A6XDxxMtXktG9nYzqEkIIIdooCVwcBfV1DCO1u0MacRU2uuzaz/9ens8FAzMjapxNnXIiW3bk8/hbP5HdLomBPTOB2kP3g+8M/nUWYNvFlNc/5qNrpjAs+1BjMni7Gz5fS6XT13KORc+ElGGc07U39y35nmsXfMxVvYdzx+ATqjVGgxNszs45gMN16C6hQQcGnY5ypweLQVdt6PWK3WVM6tuLIUm9sHscLC3cwGfbl5KUup30zN0APPDHYjrHZrB6RwplNkVmXDQ6FDPWbsdgshNlsfNxhQ0vXnr1B4fDRHlJElf3OJmx7fuzNhcu27i6qoOtyC2ysfnuCTwx93emL96Jw+0lyqDj+fMGVEsSWp98q4PeT/yCw+Ulvv0+4lL09EoKH7jILbIFku8lmH0dM4fXVG/H3//ZvPzVcr7Zt40TBnaqtU2454Rq8FvLbBw8UEaHTikR72soTXUNCBFM82rolKp3u2JrJR6Pl7SqlUhqKrBWoFcKt1fHgP/5RgZpaFiMOipdXqKqVsfw4PUlOg6qm8A3Csuo16rltwlWM3BX5vCw7s5xvLksjzeXK8o65tOt73puP24YJ2V14cTpi3C4vJiNukAOoFCCqk4cVVPeDDovXo1ATqOMTn/Qq88flBTHs/K3ISzTfsdi3B5IlPn0gu2UOz0odFhS9hOVUoCjJIUOet/KTvlWB3O2FnDrrA14vL5kpNMn9/eNNNu3h0e/m0uf9plMGTYEqDv4kB5npk+cnuuf/Zb2qfE8cfvZmE2Na4Ys+mUT/73/cxKTY3jsxSvo3M0XYJeAqBBCCNE21dtiUEplAe8C7QAv8Kqmac/W2EYBzwJnAJXAXzRNW9X0xW2dmiKD/ik904gxG9jcI5sou4Oum3bw2XfrmTpleL3PNeh1/OeWSVz90Afc/exXvP2vS9CZzbWG7kNV9n3A4TWzy5FJlmUv18+YyTtXTqZfZvXgQ6LF6Fslw09RtX8Z/HD2NTy+ah5vbFrO7B2beGDERM7s1BtVo5MxMisRs1EXmLIRbTJUTfXQoddBVUJ99Lrqnd0ovZmT0ofR19KfvtN+wRRdRlJyMVefkMB+x0Hm7d2MTudhndVLlFERl6THZjNTUR5LV1Nvftng5UBhDDijeeXCwVzWzReEiMp2VOtg++98nt2vHU9XDdN2uL0M6VB/7ohgc7YWBEaVJFisZFvSidL7Lr9QuR9GZiViMuiIU4oovdX3IrqoiDv+23L3kZoUS+fM5IjKF66zsWXDHgB69488SBPu9Q/3GhDhHav1tMvlwRhBxze/0HcNpSfHhX7cWkFqbAwr95QFAgwxJj063aG8NDoUBr03kBCTqtrPv8xpXddluOVfx3dP5dWlO1m5bABjxv3GQvsXRO++PFBX2NzewPLONeucWJMepRReTcPj1bC7vWiaxssXDCLRYiQ9QePWxW+SkrGfvbvb8fuG/jidCvAtnZpbZKu2jGtU0kEs6ftxliXiOtiR47KTAlO8/LmAwDfaItFi5EBZMbd/8g1Or5m5u2IZ8L/59U4BO1Bk5bZpMzGbDDx79/lhR8DUZ+YHS3j1qR/o1a8D/3zqzySlxDbqdYQQQgjRekRyq8MN/E3TtFVKqThgpVLqR03TcoK2OR3oUfVzHPBS1b+iyuFm0E+PM7P01hMY9fxCtg/pQcyyHH58YQ6nDupAt1715zFIiLXw5F/P5Zp/fchtT35Bt9FDAzkU4swG5mwtCAxl1ut8gQKzMYYyrROZpnwuf/tTnp0yiRO7dw68pj/pHIBSsOSWQ4ng4kxm/n38qVzQbQD3//YDNy/4kg/areH+4RPom1w9ALL57gmBYdD+zPjBK4H4xj/XHAR96Pk5d02olWX+1QWrAnc3HzujN/cu2AQamAw63pw6mlnzF2PwaBhNKvCeh17v0Eok/iz4wXdfg1cGaGjCSb3RiSnKQY9Y32cWLvdDcDnm5qxm0bZS5t94Mst3l9b5XvlWB32f+IXOO/dQERNPQbnzsIIEG9fsRClFzz6ZjX4Nv8O9BkSdjsl62uVyR5Q49kBRfYGLctLjYmoFGIKnapz8zRYmD2vHSSlDGZmVSEGFg1HPLyTGpEcpmD91dNhrLVzgrkuypWo6ShSrVw5g5KiVzKv8Ar2+Gx5P9a/n3CIb0VV1EIAXjZcnDyQ7MYrxLy0BoMLpISvBzBrrRj7Y+SPp7SoZYZnAeePHs6aXlVtnbcDt8aKh0SXZFzR45pz+LCnczDf79zC2fTfOH3oCozolV1uxI5ALqCpA0z4GbvzgSywmMztt7SlzeIkz6+qcAlZWYeeOaTOpsDl55f6LaJ/asOAvgMfj5ZX/fc+XH//GmAl9uOeR8zFH1Z33RwghhBBtQ72BC03T9gH7qv5vVUptAjoAwQ3ic4B3NU3TgKVKqUSlVPuq54om0q9dPH/cO5FleSV0ve54/n3re/z95vd46s1r6JBV/1D+Lh1SuOfa03jg+a/Y+NUibAmZxFQ10MvsLmwuT2BaxvTJ/Um0GBmZlYimubhuxhfcMGMWD545gYuGDwTqv4ueb3Wwp0DP62MvZmbuOqZvWMyZs9/igm4DuHPIWDKi4wKvU3PaRfBKIDa3F4Nex5ytBYEyQfXVUWpmmfd3PvQ6uP/7LWiaL7gy88rhrN5Txl0ndSO/3MnVI7Nqldv/esFLHsZWu/vqu2MaLugQKphxSs80Ei1G9IkFaBrcOHhIYB/qy/2w+UA+/TMzyIiPYlLf6ss11rQsrwRDZSV6zUtZVEygHI0Z6aBpGvPmbGDgsM7ExNX9vqJ5Hav1dGWFg+iY+s/pvQVlAGSG6SznWyvomBRfK3DpD1oAJBpi2VlexMjBvutpV3ElHq8WqDNX7ykLm98CfPWK/1r0v3aJzUWUQYfd7aXoYDJb1vdHN3AjY04sYd3KIeCOYUiHeGbnHKBLsiWQCwJ8I0ASLUbKHJ7AcqsZaWXct+5FklILqSiL58kRtzA8oysA/dsnMKRDPKOeX4imwYnTFwNeTCn7iEouYFz7brw64TzM+kPNgpp16XPnDqB9HEz9aBYKjecuOpsz3lxLnNk3haTE5iLf6qi1/3ani7ue/pKd+4p55q7J9OwUfppcOHabk8f+/hlLF2xh8qWjuPa2U9DrZbUjIYQQ9dPd+XVE23mfPOsIl0QcjgZNLlVKdQaGAL/VeKgDkBf0++6qv7XaBnFLFdxJf2z6Ffztmjf5x03v8fRb10Y0XNYVG8e+5PZkFu2je3k+U/40houGdODE6YsC87X1OlVjyU0zM66awh2ffctDs38mZ18+/zj9JEwGQ9i76MGdev9cay/diU7N54vtG5mVm8Ml3Yfy1yFjSDCH7hTXbDQHz7EGDY+XWndFa45WKLG5uGnmeiqcHmJMes58Y1kg4R7AW8vz2Hx33YkuQ919BZi+KLfaqJXgZV1DjaDYeNc4zvj2dXomdmJgRlrIffQ3/AH6TpuL2+Mhw1DICd3qT8Tqf714Rzka4IyJpUuypdGreWzN2cvevCIuvurEOreThn/L0pbr6eBzLTXGSIXVTmx83dMN8q0OFm/ZR3SUifjY0HVNQXkFQ7J8o6D8AYbg+sureTGneciN20vP//6Mx0u1ekSnCKzuEe46C17iuMLpCzYY9TpMBoW9Kr9o8YFs7uh2HC/mvs/YCUs4NXUiJ720EKfbt1LS7KtHMunNZYHRYyOzEnF53aRnHCQjK5ek1EKcDhObNvSkcG8X9neNgaDqObfIhkJR7nRjMXmIz8zDHF+GvTiF7LT+lFZ6SI871CyoGZzeU1LKlNc/RuGlVOtE55TkQL6jm79Yx/Wfrq2Vl8Pj9fLQS9+xduseHpl6JiP6ZUf8efuVFlfw0B0fsGXjHm6+50zOmjKywa8Riqx2JIQQQrQeEQculFKxwOfA7ZqmldV8OMRTao3tV0pdB1wHkJ3d8MaLqC67SxqPPHspd1//Nvff8j6Pv3wlcWEa8f4Gf5dkC7aEJPI9btJLC/Ds2sX27CQ8VUneLAYdz53bv1bjLTbKzMNnncbD3y3g45XrWb83n8nDjueUXqGXF5yztSAwgsNi1IEGNjd4DrSnsjgZS+oB3t6ynJm567ih//H8pfcwYoymaq8RKgBhdbiDXs9LjEnPqOcXolC1AgWT+maQbz2Us6LmcoEAdpe73kSX/kY7+Br+BRUOxr24GKfbS2VVQMQ/CiPcCIp8q4M316+n2FnB5b3/VOs9/Mnvbpq5HqNe8cw5/XF5NNyuCpQR9IbQSQVDlXlYnMIdn87se/50WKt5zPlqNUajnjET+oTdRhr+LUtbrqdrnmsrbhyF16sRW8doIP9zMvbtwehVtaZO5VsdLNlZRHGljdTYQ9dY8HUTZVDY3RqxlWYsSR4qvTbczkN1lcWg45qRWbz2W16d15n/NcurAh6+gKdi+uSBgW38AeO+yZm8vO1zZhd8x6AxZg7sT8Vtj2ODNZ6vbspm1f4DpMZ7eH77O6wr3ULvIS7MRNNVjeXthVG43PpqOTeCV0rR0IiPcRPXYRc6s42KA+0pOpDEswdyeWnJzpCB4El9M9h64CDXfzAThZc8WwdMRnO1/Syz+/YrOC+HpmlMe+cX5q34g79edhKD+nUOLCcbaT2Rv6+Ev9/8Hvv3lnD/fy+qsz5qKFntSAghhGg9IgpcKKWM+BrDMzRNmxlik91AVtDvHYG9NTfSNO1V4FWA4cOHh05aIBqk94COPPDkRfzrrx/yj5vf47EXryCmxl3Fmg3+mVcOZ9Ibv6H3uPlp4UYMeh3GoCXugnM+BAc8/PkeonUd2LB3Hxv2fs3dX7VnzV3n1OoM3DprfWAEh0mvQylfklANDY/TzIEdHUiIS2PAYDvTVs/n9Zxl/F/fkZzeoT8b91dWazT7lwLU6/wjE3wjLvyvhwZWZ+iGZ82h38c/txCH59CdUq9GYK53KMEBEP8x9L9nudNDrEnPHWO7ctOYLoGy1kzC53vuL1iytqCUmaFJnWu9R6LFiMd7qAENvju3MTonAOcO6BrR+VBYWsH23Qe58cITwpYnEgfzy/jhy1X8adJgYutIoNcWGv5tZcRIW6+na55rv+bsB6hzpJn/OXqXE6cpqtr56b+mPR4XGUYw6EJPkfBqGuDBVhaPlrmf2OQi7AXtcXg0Ykx6TAYdV43M5u0Vu+u8zvyvGVs1rSO6KuBZfXSbT3tLGv/sdz0/7VnLQ799TfvMfIymPXxTtplv/OGocnDYoyjKb0dJYQalRcn87Naj18H0yQMC9fj7K3dz66z1uD0a5U43CcmlxLXfR5zZyMPDz2HddsXTxb6VRWIgZCB4+Y7d3PTRVxj1ekq1TpiM5ojqk1c+X8wXv6zjikkjGD+6X9AoFt+0k1D7Hmz3zoPcc+M72CqcPDb9cgYM7Vzn+9VU37Utqx0JIYQQrUckq4oo4A1gk6ZpT4XZ7CvgZqXUR/iSvZW25nnTrc2I0T34x3+n8MhdH/PPv37Iv5+/DJP5UMKymg3+n38/iFI6tkenoAO+n7+e+04bRs/BvTguOynQwKvZWdc0311CtzGGSrJJMuwjXr+Hv37+PY+eNYENByoDow6CR3A8f56vgeq/4+dPJFdmNfHf407GZSjn2bWLeGL1fP67YiH24jQ8Zank/O1kgGqN3eAGeXBAJU6psA3P4OksS289geOeXUilyxe8cHo0Tpy+OOx0kVDH0J+ML8akBwVTBh9aljZU3o/ZOQdQMUXozXbK93Zi1Z4yMhOqBwNqNqBP6ZlGzl3juf6DWVQ4EumZUXu/Qlm+YRcAxw3oFLY8kfj03UV4vVq900Rae8N/4/6ywJx/s0HXakeMHAv1dM1zrXOUL79BYnL4wMXIrESMOjB73DhMpmrnp/+atjudYIT8ykMBzeDrJt6s56SXluBxGbGVxRGbXML/xp3CyKykaiMT/COnwgmXPyPc+aaUYlBCHzav2YfD5SUm2sXn/9eLRIuBJFM8v223c/WHG7E6PEGj0NyBVT/AV3f6R74pnYeUrH3EJJViL4/mxt6ncn7PXpzY3hFYWSRUINjlPMiDX/1E+4R4Lhs9lmFZabXKPqRDPL5wsm9Yz5AO8Xz8wyre+vI3zh7Xn6lTTuCbTfmBOhTg+s/WYjHqw15zO7blc++N7+D1akx77Sq69WwX9tiGEsloMFntSAghhGg9IslsNQa4HJiglFpT9XOGUuoGpdQNVdt8C2wH/gBeA6YemeKKcEaN682d/zqP9at28shdH+N0ugOP1WzwTxmc6fs9ykhRajtOHdOXT75fya4Nv5MWe2gItH+6h9Xhxu3x3XiNMxswG/ToDVEUeztTqaWwamcuJz/3Nld/sIC+0+bSJdkSeD+LSR+4qzapb0YgkRwQWJ1jcGomb028kDt7T8Jli8GSup+YTjnct/hHfti2G4fbi9XhxuXRfMv8BQ1f7tcunpy7xjPj0qHVkmPOzjkQyBURrF+7eF6+YCCmoCR3dpcnsAxsOCOzEtHrfIEY/1xzVdVSH/fi4mrv5S+bvxEcG2snOn0PzkoL7vKEsMGVmvuREmNkb3EhAzLbh92fmpZt2ElCbBS9OqWHLU999u8t5tuZK/jTpEG065AUdjv/3cz5U0dXK3dd6vpsjrZ8q29ViHKHhwqnB4fbW+950IIdkXq61O5qEZ8V1L5GtErfaKSkFN8Uj1DnVnqcmV+vOw4dGvee1q/a+XmoXvTVBQPaJYZ8310ldl+QEnAUpWIweNmrttGvXXyt6+rWWeu5/tO19H7il5DHLbjeiuSa9AeBbW4vFZVGdu6NY0BiD0rLLCzeXo5Sh+pks1FXbRnn6Ytycbq92FweLAmltO/1B9GJpZTsTyd/e2cSTTG1juuSW07AoNdhMfqWo17y+3rumzWHAR3bs7ownVtmbWXci4trdfJzi2zV6vVZ8zfy1PvzGDesG/dc9SeUUoHjbalaBcbm8uLyaCGvue2/7+fu695CKcWTjQha+I+dP1AS7n2CPxMJWgghhBAtWySriiwk9Nzo4G004KamKpRonAmnD8Ruc/Lsv7/m0bs/5oFpF2E0GkLeVQr+PTXGRIzZwLuzl1NWYefuv0yksMJVbbqH3e0l1qxj+uSB1UY8jMxK5JPVv/PMz/NJNuym0hvPhn0lYe9i1VxCNXiaxpQ+Pfjn7N3YDZVYUgqYe2Ajc/M3EpURj+tgCpU2S8hpHcEjKvKtDno/MRe7y41ep2PprSfQr1184LFleSUM6RBPlEmPsyojnsPtrXO6yCGq6kpQ7Cqxo1C+O5NKhZ0isbk4n1sWzcTj1lOwMwuvy0NBRe2s+zX3A2DT/gJK7Q4+WlfK66tXRZRDYvWWPQzp3bHa6gMN9fozc1BKcfn148Nu05jcFi0tH8ayvJJqGR6UotWNGPE7UvX09sJK+k6b2+yflV/wNbL4oG+J0+TUuDrPLbfDDkCPjsmB1wkOus3/YzfP/bSTpGhTtceDk3MGAr+eeE7P7sPrOcsw6HTcMehETHpfh33O1gJKbL46JTjPw+HwB0z9r3nLF+sDy5/6Rzc8f15/LhjoW644eBSaw+3FgY20zvuwxJfjrIzi4I5scEaTaDHUWgbaPyUONAw4SdLt5/PVdq48fgiZKV35cut6bG5fjiH/vgVPJTQbdOiUItFuZfY3WxjRL5tHpp6JoWoHaubz8Xi1kKO0dmzL594b3sFoMvDEK3+hQ3b9K2aFO3ateTSYEEIIIapr0KoiouU7Y/JwvF6N5x+bzWP3fcbfH7sQg1Ffq1Nc8/e7/zKR+Ngo3v5qGQWllcT07B4YZeFX7vAGngsEnj9lSA/++dMuzN6DxOoKeeqHb9BrJzJ5cL9aHej0ODPzp45m1PMLA6MVghNqBgc8HMrGQ4t+5Wf3JmKSSnHbovn492T+nnYcUfrQp66v8+Cq+s3D8c8tZNt9EwHo/cRcHG4PZoOe/5zemzu/2ojdowVGfvgDHH7B86N9dz59Sx8adL6GuL9RrBTM/eMgXZItpMWYA88pdpdxyZyPcLjgwPbOeFy+4dufrNnLv04LvSxjsKXbfdM+Kj3RgaSkdXWGDhRZ2VtQypRThtT72uHmfm/bup9ff87hsutOIi0jIezzG5PboqXlwxiZlYjJoCMWQMGSW05oEZ3zlsSrEbhb3dJylxQVlqPX64hPsPDt5oKw51Z+YTkA7VJ8yy/Xyvlzeb9qr5tvdQRGK5RXrRg0ffKAwONjuyVhUDpe2rCUubu388yJk0g2JLB6T2m11ymzuwKJKIFGT0e4aFAmryz11QWldjf3frMpEG/TgANBy4/6l3F2a26MyftITi1C0xTFe9phLUwGFHeM7cI947uHLMdvu4oxaSXEmw4AiitHn8g1owbQ+4m52KoSG9tcXm6dtZ4hHeIDeY/8qy79uHwbn36+hb7d2/PE7WdjNlWvp/1LX/unDtY8Hnt2FXLfje+gN+h54tW/RLTMdzgyDUQIIYRoWyRw0QZNumAEbpeHl578jsf/8Rn3/vsCDEZ9nc9RSnHjhSegMxh4c+ZiKjbuxR7fniiTEXuNlThq8jUQJ7Isr4SUKA8vzPuV+7/6kU9Wruf+08czsGP1Yb7+JflCjVaoPnoCJqQOYdZiHYbYQqKSCnk391e+3LOcSZ37MLlrP4amdcA3vd/X4Vizp6Tae7mrOl0lNlcgoGFzeSmzu4k2GzB6Dt31C+7MA9U6N/OnjkavU1VDqA/loPhs3V5u+WIDTy/YzjMLthMXpQe9i5jUfMwJRbjdOkp2dMXj8t3NVfhyYkRi4baddElJJj/fCLgCHYaaI178DfJ1W315Fgf3rPv167o7/cnbvxIdY+bcPx9f52s05m5muOc0V3LMhnZs8q0OiIoNH81pg3SKZr1bXde5UXTQSlJKLDqdrs7zMb/INzIjLcmXC6NmAG1zQQUADre7asTWL9idHhwejdiqBJrBnXRfcmA9uujObPLkcdrXb+JxRGG3xmKOiUU5YzDpDfzju804Pd5AcuJwyzeHs2DbQU577Te83ur178qgKQ8KyKiaHpceZ8bqdLDJ9jsJXTeBzoPLmoT9YHus5b460mLUcfXIrJDvm3uwmHcXzyfRsB+7N5pKMrlm1IBA0DaYx+sLwFbLnbRyOzO/WEC3jqk89bdziY4y1XoPv1DLaOfvL+XeG9/B4/Ey7bWrDitoUdf7CCGEEKJ1ksBFG3Xun4/H6/XyylM/oPEZ90UQvADo0KsLe1N20K5wH/2K8zh+4kg+3FyEy+PFbNBXG14cLLiBeHyXKXy1bhNP/vgrU17/kLMG9OaOiWPITPSNMgjOF6EUlNhcgYa3X/Wh2jqemjCBP/VIZUVBHm9tWs1n29YzY+tqUs1xnJ7di5Myu3PRG5uwu6o38h0eL/FmfdAoDJ9Hf97Kb7eeGOhAQPVAhX85Un+jfPWeMqhKXOefX5AeZ+aA1eEbsq3zEBVbgSnBiiWhFBSUFyZTdCAFr9uIxaA4u1877j+5Z62RHTXlWx3M25bP8h27uXjEYPp2SuOlRbnYPRoer29Uye1fbsDh9qKqRgr0axdPzvb9mIx6emSH/oz8wo182L+nmAU/5TD5kuPDLqsb/Hk39G5mqOc09/SRSDs2/nISn97lKBSrxeiaEs2iZpomUt+5UVJUEVhRJNy5tSyvhD2F5eh1ivgY32pLNYMcE3u056k5sK/UWm26B8D/Hd+Je8Z3r3bNWIw6NK+G3RaDs6IX4wbCcutOopMLiUk9iEKRZkpg2z6FqoimvDIag9eMw60RbdQx4plf0etUnclgN+4v46SqJMY1uTQw6RUTuqeyeGcR9327mQd/3Mhtp8fwae4aypwORmd2ZlzKQCb36gbAZ+v2cs83m1BUH+UG4HC5eXXhcl5duAyHG8o86VRqiSy55cTAykR6nSLKoMPh9gZWQ5kyONOX1NNsIMFRziefzadzZjLP3XM+cTHhl6gNpbS4gvumvku51c4Tr/yFTl3T63+SEEIIIY4pErhowyZfOhqAV576gceJbOTFyKxEbPGJ7DIY6Viwm83zl/PBNafgjU+gS7Iloo6qUopzBvVlYq9uvLZoBW8tXsmcTb9z5fFDuXbMcHz3CRUaYLW7ufHzdbUa8TU714kWIzql+Ms723B54tAbemOMKWVfXDHv2lfw3u8riO5kAGsMqiIGR0UMbqcRUPz8+0FuGtOFaJOOSqcvsOHxwvxthWQnRYd8P6Ba58b/HLvXhcmg8c6GjbRPVhSa95DRLReTxYbSaXjdOhxlSdgL0/G4THjdvpUKNFTEQYu+0+Zi8JaQaNB4fkkRdk9lYOlFo15RZndR6XBjr5rKM+r5hfxx70Q25x6gR3YaBkP9n3Gou9MzZyxBQb2jLfwaczez5nNa2vSRcPzlROnqj/61IQlRxmYbYl/fuVFcWF5tKdSauW78QY/2xfvpFBMVGJnln672yZq9TBmcSazZRJTRyLq9B9GZqne4h3RIqLWssFJgdfmCGxV2xeC47nyzTPmClzGVnD0klr2OQmISC4hLKQbA4zLgroylvDQGV0U0dqcJjyd8HowXFu6o89g4PRpztx0kKqYCY0Ih0fFW3tiicVp2T6b2H8XA1PbVts9OikanlO9YVo1yO7NPOnM2/cG0OQvYXVLGkOxOfL/NSKkD4sy6GtPnNBQQF2XghfMOLWOac9d43vt5PTNnbaFbdhrP3T2ZhNjaQc+6Rs7YbU4evP0DDuwr4bEXr6BHn8hGpAkhhBDi2CKBizYuOHjh1T7lvv9cgNEY/mMPvnPZOUbP469+x8MvzmbKacP5y6YKXFXDnSO5Mx4bZeaOiWO4aNgAnv55Ea8uXM6HK9bRJb0zHo8Xu9vX8a5wetDVmDISqnNd7a6nR4fDmYgtP554i+LakxKYsWkDlvhyYpN9c829Hh0uu5kDJo1PdxTznwvSeOjbXGwO8Go67vhmJVEmHWaD4uUL+xMVW44xzo3B4CHPu42rToFtxaVoOhcv5c4moXsZSXpf4GP671sAiDGYSIuNZne+BVtZHI6KaO4Y241zzsxg0pvLiDbqqHR50etUrTudofj3MVpXjFszUOEyYXN7iDHpmdQnnRtHd+bct1cEghYAaL656Vt25nPa6D71nBGh70477C5+nL2G48b34bdCOyOjo45Kh7W1JNDzlxPN66l/a9EU6js3ig6W061X6NUmguuKTI8HXZSvzsu3OqqSQ67H44XnF+0ANBKVnplrt1Hk8aAAs0ERZTQwpEN8IE+FP9iREWfm3m82Ue70XZeVVaO8NK8emzWOMzv4csxc8eEqjFEOzNGVjO5tJNe0H3NCCQBupxF7eQx//bmM9kljqbQZAktR51sdvLsyL+R+mY1gspRjiLViibdiMLnwevS4ylL44vwz6BKfwrK8EtqZq49gq3kszaqSP7/xMWt276NHegpvXXE+3dIy6DttLnHm6kkzg1c2Meh1gZWdAJav+YPPZy2kd+d0nr1rcsiRFnWNnPG4Pfz73k/ZmrOHB564iAFDOtV3WgghhBDiGCWBi2PA5EtHo5Ti5f99z7/v+ZR//PfCeoMX/gDC6w9dzP/encvH362gnTmarXEZEB3VoDvjmYnxTDv/dM4ZNIAr3vsW664tpBn0WHTJHLTHYTEZa3VMQnWugxvfvkT1CoNOh0Ep7h45kqv6DWLkMwtw622YYioxRdmJinaw+MB2vt+dA0BCNoRKUvDX37Zg6XDo91c27SbeZCbFHE2CKZodB8DjSsLrMfLghP6MyEzHgoUJ01dQ6fQEgjAAlU4P5769HE3zJTeMMelDBmeCBWfnj9I7iNbZsXrTMRv16HUaFU4Pszfl883m/GorYUQZdJgMOjpF66mwOeudJhJ8fIPLsXTBFiorHLxt1XhqRmQrmDRUqLuurSWBnr+cGdPyc5u7LK1NY3OY1HVuaJpGaXEFiUkxIZ8bXFforBoxZkOgA21zeQKrJVmMOtCgVEWTZi7CYbcTY4rijrFdmTI4MyivBYDC4/XluDAEBQHO6ZfBMwu2B1b5GNLBN0pBoXDZo3Dbo/j7oFHsKLbx1+9WoJnK0EeXY4m3ojeUcM3C9/G69XgXRHNR/y7YHDosSUXo3V6UzotO78Uc5cQQZcdkduJFw+tV2K2x2A6244ZBg7ntgu4AYQME/mP52dptLP0jh1s+nkVabAyPnPUnzhvcL7DyR6jjHSqApGkab8xaymszlzCiXzaP33YWsZbqn63/cy+xuUKOnNE0jWf/8zXLFm7l1r9PYvT4+oOuQgghhDh2SeDiGHHeJaPQ6XW8+MS3PPy3j3hg2kWYzMZ6nxdlMvKPa0+ha6cMnnrvFwYU7aJAl0mXZEvgTmSknZESp5FCdxZul5X0qGISDQV0SrMyvHNPhnbqWmv7UCuhBDesCyocgeHe/lVJlt0+lhHP/EpFURQV+IIGr1w2jAk9ksi3VbC5sIgrP16JW/Pg9Lgx6XUYdHpemjyIjvGxJJqjSDBFkWi2YK5auWR2zgHmLl4VaHh3NmdxXIYve7/LQyBoYdAp3F6Nd1bkBRKaxpj0KEWdIwpq3pGc3EvH0lwDC64/i7goM9MX5fLUgu1UVN3h9b+eXgfPnesbtr1pq+8Obffs1Ig+i5p++W4dMUkxFCXGNem0jeCATPAKBDU7VS1xekhN6XFmsJeX1r+l8Is0h0m44Ea4c6Pcasfj8ZIQJnARXFf8+K2dg0XWwCiMQNDCoMNs0AMaHk8CUESquRynLpqbxnSpPsLLoAPlS+zrX2Uk0WIMjASLrgpO+lcoAt+1X171t0lvLkOh0OuieHTCYO7/fjMOr4bObEMfVQmmCqKi7Xy3awuVHgexNQaSJJli6JecyaC0dqQZkrn1453g9QUtbzvBt0KIrz4KPbVm8/4CXpi3hJ82byPaZObGsaO47oRhWEzVvwNCHe+a9W6yxcC/X5/D1ws2MuG4Xhw/bgiVbogNek7w566UFgjgBteB7786jx++XM0l147jzPNHhPwchRBCCCH8JHBxDDnnouMwGvU895/ZPHjHB/zzf38myhI+83uwP588iB6d0nn41e8xHMjjgn99xv7EdPRGQ8jOSKiOSGC4PXGUavHcOTqDNTu38vOmdfyYs4F/fZfE9zdMom/75LDl8Des862OQEd4+uIdgTL0axfP8ttPZNTzC9E0MBt8Kw5EG010NproHJ/E+ps6BjrTkWT3DzdkvfoIEMXVIzry6tJdlDt9swl8HSNdvasIBHeQkqNc/Pr7Tq4cNZRuab47tzeN6cL0xTvQKRV2VYKv8w6iFHTr2PDAhcftYdVv2xh3xiAWOHXEVb3P4U7bCO68aFWJTf3LS7bUXBaiaUWSw6QxCVorrHaAOpPI+uuKxT8b2ef21Lpenzu3f7UVemYscbHlQAGf/t+5dY7wMupVIMcD+OoBs0EXuD79143J4LuWNDQ0DcqdvmOQnRTN5rsn1AjopYJesequ8SRGG9haWMKavWWMyU6lU1IsOlV9WekzOveMaGTE1gMHmT5/KT/k/E60yUSZJ4V95Uk8Mq+EP4/wEmH1HziWBcXl3PjYF6zbupeLTh/OfzZV8OJHa2t9bsGfO/hGhhmq6q70ODPfzlzB+6/O4+SzBnPFDeMjK0SV5lqFSAghhBDNSwIXx5gzJg/HYNDz1MNfcv+t7/PwM5cSHRNZ4294z/Z8/vgV3P3qjyxakoO5spz8lPa1OiPhOiL+O3f+Oeb/nb8fjTiMdCKKQmINhVzw6ruc2rcHfx4xiBGdOlBQ7gzZSK2rQ9SvXTx/3DsxbOM2+K5iv3bx5FsdvLgol22FlVw9MqtWAs1wQ9Zr/h3g7RW7iVOqWsfIH1AJ51CHQ0+iPo+U2BguGja02oiWmu/vL7d/mz92FdAhLaHOJQjDydtxEKfDzeAhncgZ27vJOgXBn1EkI09E2xNJDpPGJGi125wAEQVeE+MsFJXZWJZXEjaIOKlvBl0Sx3Lhax/y7tJl/OusPwHwzDn9AcIuQewXvJ3/MX9dV2Z3cf/3m4k16dHQ6JJsqVYHhapb+qen0D89/HKg9Y2MSDA5eeSbOfy4+Q9iTCauPH44j/9agtXh2zYWb4ODhys35fGPF77BZnfy8NQzcCUk4dq4KuTn5v/cLQYdNrcXu9tLnN5AbpEN69Z9PP/YbEaM6cElt53KN5vyI65vmnsVIiGEEEI0HwlcHINOOXsIBqOeaQ99wX1T3+XR5y+rd/lLP6NBz32Xj2fojkpSC/aSVZDHTz/8hs02mHE9M3zTNeroiKTHmUm0GPF4CXRoXSoKNx1xaS5uGBrL9xs3893GraTGxrGjzEKFJw693lStkVpfh8h/x7S+Tni+1UHP//5Cmd13Z/CZBdtZd+e4kMGLUI38mn+PNF9DzbuGG+88iYe+mce8LQ5um3ASw55diMPlxWzUsfnuCbXep2YDfmxFQcT5LWratnU/AN17t2/SaRs1P6P6Rp6ItieSHCaNSdBqt/uWNzZH1T/dzWg2UlZh56J3lmM26QPXU039MjO4/LghvLN0FYnRMfx7fgkuT/VkxJGMFgl2+5cbcHk0dAq8aCitdpLeprzmdhcf5MtVy/j1jx3ER5mZOu44Lj9uCIt2lOHVVgK+0WBetJDLUAfv15ytBQCM75rMN7+s4e2vfqNjRiIv3ncBXTumkm91hP3cqgepN+Dx+o5PUlk5/7n3U7r3bs91/ziHgU8vaNA0otayCpEQh0MplQW8C7QDvMCrmqY927ylEkKI5ieBi2PUhNMHEhVl5D/3fcrd17/NY9MvJzE5tv4n4muUrnrgTBbnFrJs6UZ++nU9v67J5e7kDJb889x6OyL1dWivHTOSUc/MxlFWTKzOSozKx6nF8Pz8Fdx+0hBSYqPr7RBFemduWV4JdtehhSI04JM1e/nXaXUvW1rXsfFPZQmXA6Rm2db9bRwvzV/IvC2bmDJsAHZvHCU2XyDF5g69ZGJwAz7BqNiTX8KZJ/ZtVJn37S4CoGN2+Du8jRFupIg4ttTXMW9MglaPx5enQl+VVLIuBS6FAjSHgxKPKewSpAB/+9MJ7C+z8sqvS4kjht3ONKJNh5IRb9xfFsir069dfJ0d6Wo5MqqSgFa6607S2xiapvFbbh4v/7qMpbl5JEdbuGPiGC4ZMYi4KH+g1zdtDUBDw6jTcdPM9SHrxnyrg95PzKXE5sLictC9/ABRTgenj+nDnVdOCCThrO9zS48zc9mwjpzSM41leSVkul38+7b3SUmP45FnL2Xh/ooGTyOaP3V0q1iFSIjD5Ab+pmnaKqVUHLBSKfWjpmk5zV0wIYRoThK4OIaNHt+Hfz19Cf/620fc+X9v8fhLV5KaHlnHMj3OzOguKVzxsQtPcjadrfmkH9zLzY9/yn9uOK3eBm1dHdp1+yso9yRgdcRgVE6SzeXE6q18umIZn69cTv/MdmQmpXHuwB6c3rsjel3tzkukd+ZGZiUSZdTj9PgCBQqYMjgz7H5HMr+6vqDJnK0FgZUN4s06bvroKzbt28v1J47k9gmjmbFqT53H3l9ufwM+1lkBQP9u7RtV5uLCCuITojEY9fW+b0O1lsSbonk19DzxByy8Xm+928Yk+eqWGJcdu6H61JKa10aJzc2f+g2nU0oaryxYQpfoXThIIM3iZeP+MgY+OR8NePSn31l357g6g7Q1c2qAhkGvO+wOt7/MQzPjWLlrJ28uXsmm/QWkxUZz76njmDJsANEhkm7669wSm4ubZq4PWzcuyyvB5XTS0VpIRmUxXp2eKeeP5W/nDq9Vlkg+t/Q4M8MTTfz16vcwmQw8Nv0KEpNjGWk0NngaUW6RrVWsQiTE4dA0bR+wr+r/VqXUJqADIIELIcQxTQIXx7hho7rz7xcu44HbZnDHVa/z2ItX0LFTZAkel+WVoGlgM5rZlNSRDu5y4opLuPKB9zln/ABuuGAMiXHmsMtghmvwVm/wG5h27nGc3COV4kors9Zs5vUl61m3Zx/fb1hHrNnMsOxMhmZnMjQrkz7t04k1myIefp4eZ2brPRP4bN3eWjkuapa7IaM4wgVN8q0Obp21HofLRaKxjBRDKVv2e3jozAn8ecQgwDdPPiHKgM3lwWLUB+bX1yy3vwGfu+EP3v96F327hl5mtb4yFxeWk5gSenUGIVoif+DC7a47cJFvdfC/3/bQVemIddmwxScFlisNdTc/eOWbGX+ezJuLl7Nxz26ufOcjkmMSSDEp7F4zDk8UH63ewyOn9wnbkQ6VAyf4/5GuyhRcDwH0m/YjJq2IaF0peuWmW2oyj559MmcN6I05gmWu65ri4fZ4KczdTc/9uRi8Hg5GxVGa1o7LJw6os4x1KTpo5e83vYfD7uJ/r19Nuw5JIY9PpNOIJBgqjiVKqc7AEOC3Gn+/DrgOIDs7++gXrI3R3fl1cxdBCBEBCVwIBgztzLRXr+Ift7zP3659k8devIKuPdrV+zx/Nn0ApeD7WybRMdbI6zOX8PnPa/lp6RYuPnME9y4vxOWlzs6+n39u9cOn9iI+ylgt2V1GfBT9s70U/FpOpdNOstnJcV0s5BUXM//3XF85gOzkRPq2T+fOMfG4NBMndc/EpNfQNA1VIzs/+BrQU8d0qVWOmh3+hoziqNnY9ni95B4s5s2lm4hTe0iNKUenNLKTU3n83IkMza4+ykMp0CtFiOJWK/ekvhlcP3MePTulERcTVWubSMpsq3QSE1v7uUK0VJZo38gJW6Wjzu2W5ZXg0RSlpmiS7BXke9yBHBM1r41P1uyt9rtLM/PxNedTVFHJl2s3MWvtZg6WF6BTvuWPv1iex8pty8hOTqBjYgIHSxPISkogOzmB7KREzEZDrU62P3AQaYLJQ9t6idZXMDpLkazyUDqwe2O4buwY/jZ+CDpdHRVFDaECBk6Xm29+zeH9b5azO7+UQd0zSe/TjS3lXu4Y163RIxvKSiq5b+q7HMwv47EXr6Bz99oJRZt6GpEQbYVSKhb4HLhd07Sy4Mc0TXsVeBVg+PDhWjMUTwghjjoJXAgAevTJ5MnXruK+m97lrv97i4efvZR+g+qO4odrVP7tigmcN2EgT78/j9c+XUiWwciumBRc8Yl1zu0OnlsNkGgxsPnuCdW28QcFok1ReHQWpk32NfqLK2zM/30Xc3/Po9JRzvo9+/l+41Y0YMZS33MtRgPtE+JJiYkmOcZCUrSFWLMJTdORX+GiW0osiRYjep2OdfvKMHiL8Xg8GHU6/vfzUjokRBGvLyTGoqFXsGHXVrbt34ZX0/B6vbi9Gh6vF4fbzSX9POwtq0SHh4tff598aznuqmHtJmXArsXj0JJYcNUZtRrjy/JK8Hh9+S0Mel2dx6y03Ma6rXu58uyRIR+PZOSJx+ONKFeAEC1FQpJvhFBpcUWd2/nP/7K4RJIPlmOpLMdlTArUWUa9Cqz2MbFHKtMX76h1rSTHRHPV6GFcNXoYa/eU8PrSLXRP1uFy29lZVMKuohKW79hDhdMZeF8FZCbG0y01mR7pKXRPT6F7WgpdU5PrHZHlL5vH6+TVxRuJZi9mgxW98rIt34idJKyuJHR6M1eO7NegoIVfYPRFkZU3Z61m5i9rKSiuoG/XDJ64ZBwpmWkM+t8CNOCrnPyQCYvrU2G18/eb32NPXhGPRPB9Ul9ZhTiWKKWM+IIWMzRNm9nc5RFCiJZAAhciILtLGk+9cQ333vgO9974Dvf950JGn9S7zueEa1R27ZjKc/ecz3dLt/KP136ie+l+7PZSLLbwr7csrwSH+1CiTIer9pJ94YIlLq+Oa2fmVt3FjCLnrstIiNKzs6iEtXvyWb6zgCiDh5LKCooqbPyRX0hRpY0KhxOnx1OrLACJBgJXyJdrDgAQE9S/f3vpQXRKoVMKpRRGnQ69TodRryPGbMJiNBJvMTO8UybtE+LplJzI8E4dMBuiWL67tNoUlOCh4CU2F3pdZEuHLl6bi1fTGDO4S8jHI7lj6fF4G9X5EaK5xMSaMZuNHMy31rmd//z/YUs+T02fRYfKYvYkJQWuhflTRzPq+YVoGkx+Z0W9K98M6pDI8+cfV+vvmqbxR0EZP27dQ6LJS1GlldyDxWwrKGJJbh6uoDomLTaWFIOXBL0BlJGc3b+zMz8Xq8PFy4v/QGlODMqJXvny7kQpHQ4tBqeWwM83nYlRrw+s+NEYHq+X5Rt28fnPa1m4ejteTWNk/048eN1pjOiXjVKKh77fjP8WbmMSFtsqHTxw+wy2b93Pg09ezJCRXRtdXiGONco3NPQNYJOmaU81d3mEEKKlkMCFqCajfSLPvHUtD97+AY/c9RG3P3AOp549pFGvpZTijFG9GNI3m9e/XcWSxRv4+zOzGDWwM1OnnEjPTtVzN/imnuixuXwjE8xGXdhOe4nNxZytBYGpJOHuYiZGx3HjrBVBw7JPAQ7NNV+WV8KlM1ZS4XASZ9YzffIAxndPQQFFlS7W7C1jeMdEMuKj0CuFvio4odcdClg0xqS+vqkZwcPG/Qn8PF7Q6xTTJ/evNlUmlFlz15OZlkC/rqETc0L9dyz1el1glQYhWgOdTkdyWhwFB0rr3TY9zszlw7MwXTqOp975iYcHHwpK5BbZUCjKnW50SpFbZAu5skXNXDc1A4EF5U5GvbAk5PQPt8fLmt35nP3GAtAc2K1OBrePYX+ZFavNypuLCwPvZUSPUzPgJJqLBnfnquP7kBgdx8o9ZdXe37/MaiTT7/z2Hyxj9oKNfL1gA/sLrSTGWbjszOGcc9IAOmYkVtvXiT1SefSn39GoP2FxTbZKB/ffOoNN63dz378v4PixvSJ+rhACgDHA5cB6pdSaqr/9XdO0b5uvSEII0fwkcHGMiWRVjISkGB5/6Qruv+NDnvrXLPL2lnDN9Sc1upPePsHCA38eQ94pg3npy2X89lsOl9//HicN78415x5Pz07pgK+Dsfnu8YG7iaE67b7pJL8ElgtNtBjZfPf4sFMiagY05mwtqNbo9y2vpyPGbEavV/ypZ/vAe7ZLgL7tkxu1z8Hlret4h1oy0eb2Emc2kGgx1tkh2bqzgDVb9nDzxSei06mIPttQTGYDpSWVjdo/IZpLx04p7NlVWP+GVaZMHMDaTbt4/6ulnDiwExntUuod3VRfAk9/0KCu6R8GvY79FQqrO5YKp4UYk55rxw5jUt8MNE1DqxrakF/uoP+T83B5fa9955+OD1zHkxIsgTJFmmsHwOF0M3/lH3y9YCPLN+4EoEvn9txz3mgmje6FKSiZZ819nXvjKH7+/WBg6Vf/NnXVMf6gRc66PO559HzGntwv4s+nuTW2/hSiqWmathBfzFAIIUQQCVwcQxqSFM7qgXdT08luV8anr83jwJ5i7n3oHPSGxi2ZmW91MOTZX3F5NMypnfl7/3i+nreOeSv+YOzQbvzl7JH06+YLGlw2rGPY11mWV4LDdWh0gMPtCTTcQ02JqBnQAI7a8nqhjrd/H/zvFW7JRL3ON6ok3+oIWSZN03jxk1+JjjJxzkkDGvTZ1mQyGXDaXU2230IcDR2yU1i7cgdfbdjH8Z2S6z3flVL8/ZqT2ZR7gHue+5pVse2x6Yx1jm6qL4Gnv+6pL5dMl2QLlU7fdJFKp4cuyZZAmfzx4HbxURHVRZHkrSktt/H5T2v5ZM5qiq022qfG8+czRvDY2mI2eYz88FMez8UmVNvnmvta5vDwr9MOTe2rr46prHDwwG2HghYnndK/zs+jJTmc+lMIIYQQR4cELo4hDblTtyyvBCeK1b070ycmigXfrsVeZuMfj19IlMV0WO/tNekpTkrjtYcv55dFG/noh1UsWLWNYX2yuHzScI7r3zlszoWRWYmYjTpsVcsgmg36QMM91JSIUEsSHq3l9aqNpjDo+GzdXh78YUutxnHN8s3ZWsCtszZw08z1YRvRs+auZ8m6Hdxx2UnEx0SxIOdAxJ9tTSazAYfD3dS7L8QR1b5bBk67ixteXogzOS6izmZstJn/3nY21z36MZnWHWyPS8cTnxB2dFPNIMGUwZkhE3jWl0smt8hGjElPudNDjElPbpEtZLLL+uoi/6iAcLk4DpaUM+PblXzxyzpsDhejBnbmz6cNY0S/bL7dnI9t/SqsVdf69Z+uxWLSB45bfQGRur4/Kqx2/nHr+2zZuCdk0KKlj2ZoyHejEEIIIZqHBC6OIZHcqau1bZSRA72zuf/sAbzzzA/c+X9v8eC0i0hvH/65db1ejElPpdPD0wu2M33xDnLuGs+fTx/GrLnr+PD7Vdw+7Qs6pidw7viBTBrbj6T46Gqv45tOMqHWdJK6GsY1OwNNNcKivsb4yKxE/It12Nxe7vlmEwAVTk+1xnHN8iVajHi84RvRu/YX88yMeYzsl82Uk4dUO76RfLY1RVlMOGTEhWhl7GkJAJjyS6hIiI24s9mzUxpP/G0y1z8xk14leynx2hmYERNy21ABiXD1R11Bh5FZiZgMOuKUwqhXdEm2MDvnQIPqoLpGBRwosvLu18v4av4GPB4vJ4/qzWVnDKdH9qE8Qv46wmLUYXN5a61aVF/wJVwdYy2z8feb32Pb5n384/ELOWFC31rl7v3EXBxuD2aDns13t7zRDIdTfwohhBDi6JDAxTEkkhUm6tq2S3Yy/73/c2654lX+9fQl9O4ffkpHuNebviiXpxdsp9zpIU6pQKP50jOGM+WUIfyybCtf/LKOFz7+lZc/W8ToQV04bUwfThjcFbPp0OmaaDFWS1bXkGG+TTHCIpL3TI8z89y5A7j+s7XYXF7fhFVV/2ohdTWiC0sruO+5rzEZ9Txw3amBkSkN+WxrMkcZsduc9W8oRAsyYVBHXoqOIqPESnkDO5sje2fy1bSreOL9eSxbsYVbH/2IS88YzqQT+2GJMlbbtmZ90Zj6w399ztlaQJndxYnTF+Hx0qBpCaFGBUzomsS7s5fzwbcr8Hg1zjyxL1dMGhlIthmuDLfOWh94/+DjVte+hapjykoquW/qu+zcns+DT14cMhHnnK0FgSWubS4vc7YW1DkdsDkcTv0phBBCiKNDAhfHmIY0umtue/zYXjz7zv/xwG0zuPu6t7nrkcmcOLFvHa9Q+/VuGtPFN9S66s5jcKPZaNBz6ug+nDq6D9t3H+Sr+RuYs2QLC1ZtIzrKxIh+WfTt0ZF7F+7BpgwYDbpAY/NID/PNtzqqjfII9541R2Gc0jMNi1GPQacLJPera7lF/3EK1YhetSmP+6d/S7nNwZN3nEN6clyt5zVkv/1ldXg0vF6t1t+lAS9asvQ4MxedP4yv3l/MwiuHNfhczUqJ4fnbzmTFxgG8+OlCnnz3F6Z/spBJ4/pz4rAe5Hv1HJed1KTXwO1fbsDm8gRWToqkvvJfj12SLRj1iliTHk3zsnf7bqa8PIuC4gpOHdWbG6ecQPvU0EuWBl/Tlw3rGKjDGnqNB9cxJUXl3Hvju+zeVchD//szI8b0aMCRaHmO1JRBIYQQQjQNCVyIBsnuksazb1/LP//6IY/e/TGTLx3F1bf8CaMxslMp0jtbXTumcvulJ3HLn8eyMiePn5dt5bf1O5m/chudAJfS4TRb+M+7cxnWNZ14ZwVGnRGltCYf5htqJZNfbxpda1REuFEYNfc31Nz2moIb0W6PlxnfruDlTxfRPi2B8y8YR+dO7Q57n/xl7bw1j6yq5VAlSZ1oTc67YDhfvreIVXNz6N1tXKNeY3i/bB7LmsywR78lvuQgn/ywik9/WIXTYKQiJp4X/3ICJw3ujKGRiYnBd11NX5SL0+0NBC0sBl290xJqXo8zrxzOhS/OI6M4nzc+3kLPzuk8dstZDOgRfrnScNf04XTSiw5auefGdziwp4SHn7mEocd1C7vtKT3TSLQYcLi8mI06TumZFnZbIYQQQohwJHAhGiwxOZYnXr2K15+Zw8wZS9ias5cHnphCYnJsRM9vSKNZr9Mxsn8nRvbvhKZprNmWz/kv/IzRbsfisrN8+WaWLM0huNk+nNvsqAAAKSBJREFU5Y5tRFnMpMRbSIiJIjbahCXKhMVsrPYT5f9/1KF/o82mar9bzMaQK5mEWo1kdpgEmY3tJBSVVvLV/PV8/vNa8ovKOWFod94t1PPzj7nc88uOsEGFmqND6luG1atpeKvWZJQkdaI1ad8xmcEju/LN5ys4/7LRmGtM84jU8t2lWI0W9sa3JzbRS7ytnNhKK4mlhfzj2S+JsZjp2rU9k0b35tSRPWpNJ6mLP3DgcHupdHqINekx6HU8d27olUyCn/ffuX9Q6fRgd3tJNGg8/c7PdM7fg1NnYG9KJvdffBIDetQdxGzqa7rooJW7r3+bggNlPPLcpQwa3qXO7f15iWQUlxBCCCEOhwQuRJ3CTRswmQxMvfsMeg/oyNOPfMnUS17mrocnM2Rk1yP23kophnTPYOkj5wf+nhxt5GBxOXsKStlbUMquA2U8N28ryulmd4GNEUYDpeU2Ku0ubA4XNrsTu7NhK2gYDXr6eMGNwqt0KL2OWZ+VMzfGjM6g5xu3RqfUWGIsZlLKi4lXOhR6YhyVbMs7SGy0mZhoE9FmU8jVUjRNw1rp4GBJBYs372X2sm0YbZXk5hXgcnsY2S+bu66cSKk5htc/WF1nByTU6JBQyfCq5dFwe4iLt9T+uySpE63An68eyz03vM1XnyzjwivGVHts4/4yPlmzlymDM+sc6VRzWeJKswlrfDKFysv/xmXx2MzllG3axfqNO/jf2z9y/IDOnHx8L8YO7UaZ01tnp9wfOKioWlHkjrFduWlMlzoDFnO2FnDLF+sptbtRmpd2lSV0qCgmXwfFCSnkx6ViMPqmstSnKa/pwoIy7r7+HQ7ml/Hoc5cyYGjnsPsQfExkGoYQojno7vy6uYsghGhCErgQYUUybWDC6QPJ7pLGY3//jHtvfIfzLxvNVTdPjHjqSGPeu2YjWGc2s08zcdyQHqi8EvavKQ107h+fMrRWg9nr1XA43VQ6nNgd/oDGoX/3l1Sy+UAZ7WOM6DQvdoeLonIH2/KtuN1uLHooKXdQWmFnW34ZyutlheZFp2kED4K+96m8WvtlNuoxmwwYDHq8Xg2v14vd6cbp8hwqH1BpMHPBmL5cdcYwOmcmB45JfR2QmqND7C53yABH8BSWxa8UUbS/dpLPLskWuUsqWrzBI7owfHR3PnxjAX86cxBJKb6RXxv3lzHwyflowKM//c66O8eFDV7UPO9X7ykDDuWz2ZuciTXaRQZOLsi2sGnbHhas2kaU2UCBIYbimARc0THk3D2h3tU4pgzODHtd+VfgqHS6cbq9pNitZFYUEeVx0bFTO5655XTM0dENui4jmZ4XSV6bg/ll3H392xQdtPLo85cxYEinkNvJdDMhhBBCHAkSuBBhRTrEuHvv9kyfcT2vPTOHz99fzNoVudz1r/Po3N23bWOSPUb63jUbyfOn1s49UZNOp3zTQEIM9863Oji/jkZ34P10GppOQ2ufFlje9N2LBzG2UyLWSgfllQ6sFb5/y22+fytsThxONyUVDvaW2mgXH0Ws2YDJaCAlMYa5O0v5OOcgFUYzmtJBx6xA0AIi64CMzErEaFBUDbjA4dbokmwJeYz9AaDvCqyBzp7/7yOzEqXzIVqsmnXK9X89jRsvfomnH/mSfz19CUopPlmzF3/KWQ34ZM1e/nVa+FEX4c774KWhXXoTD1w9ntQYE6u37Oa1b1dTsXY7cRWl2I1m3vguiTsnj8AYlA+jZlBk3IuLw15Xc7YWUFLpJMFZQY/yQqLdTioMZrYkZvK7SsQcHd3oVU3CPSeSQENhgZV7bnib4sJy/v3C5fQblB32vWS6mRBCCCGOBAlciLAaMsQ4ymLilvsmMez4bjzz76+5+bJXuOy6kxh33ggGPD0fp9sLCpbcckJEySkjfe+ajeRQuScaor5Gd/DjsSY9Kmh501GdU0iKM5MUHx329Q91EowYS73k3DUmUMZB+8t48w/fHWIFTBlcO+FefZ2W9DgzL5w3kOs+XYvd7SXGpCe3yBb2mFeU29n++34uvnpsg46DEM0lVEc7u0sa191xCi9O+47P31/MBZePYcrgTB796fc6r6eawp33oeqUYX2yyOqYTr///ozFWkKKtYhZXy9mwYI1nD2uP+eOHxhY5cN/3YbLgwNQbnOwds3vDCjcSZTHhV1vJDexHeXR8dg9GnFe7Yhch3O2FgRWOgl1rR/ML+OeG97mYL6V/9QTtACZbiaEEEKII0MCFyKsxqxtP3p8H/oOzuaFx7/hrek/88236zBmZFBkiQJg1PML+ePeifW+VqTvHaqR3Nj51PlWByU2F3odYRvdNd8vkuVNg9UVEOjXLp51d46rNie/MaNVTumZRrRJj1Ff/6oFm9btxuvVGDC0+rBv6XyIlircNXT2RcexduUO3nz+J/oMzKLfoOxa11N9wp334eqU9DgzG++ZyLK8EoZ3SCB35z4+/GE173y9nHe+Xkbfru0YM7grx/XvRKf2SYzomBB4fZPykqH38OH3q1i6LpfVm3fjcHnwmqLYFpNMcVQcFpMeg04RZ6i9fHSk6qpD8q0Obp21PrDSiV5X/T0O5pdx13Vv+UZaPH8Z/QbXHbTwH5PDCR4LIYQQQoSiNE2rf6sjYPjw4dqKFSua5b3F0bHgx4288MQ3lBRVsCsrg22dM4mKNvHhZcOa9K5hYzr3oV7DfxdXr1N1Zvw/nPerb1h28GsDjZ6uEWkZH/v7pyyZv4WPf7wLS3TtTo10PqpTSq3UNG14c5fjaGnqerqpr9Wa10W51cbNl75CZYWDaa9dRaeu6Ue1jP6yaQ4nyZWlHJ+o+H1nPv6vWbNRT1yshbIKO86gJMGdM5M5bkAnTh3VG2JiGPX8QjQNzAZdg4OjocoTrg6ZnXOAS2eswupwYzHoeOXCQVw2rCPgWz3kruveouigb3pI34FZDXpvIZqL1NNtnyTdFM3N++RZzV2EVq2x9bSMuBBHzNiT+zH0+K7874nvUN+upV1BMXt6ZzOiY0KTvk9TZKxflleC0+2lvGq5wkSLMWwn4XDer667kTU7Gc+c07/R0zUiKWPu7weY98MGLrrqxFpBi0hfw19uCXCI+jRV0sa6rqHYOAv/fuFy7rz2Te694R2mvXYVHTul1ipHXefr4VzfgdEgHoU7PpWL/jyUMR3jWLVpNweKrOzKL2Xb/lJGpcbRKSOBtKRYBvbIJDO9ep34x70Tq5UxktEidZYnTB1Sc4TJKT196YXz95Vw79R3OZhfxn8kaCGEEEKIFkDX3AUQbVtsnIWHHpnMAy9cQcd2CXRd8wf/ueU9ctbVXnEjEvlWB7NzDpBvdTRpObskW6hw+lb2qHB6wia0bAr+jlHNTlNwJ8Pl8d2iDV6iscTmarL91jSNt1/6megYMxdcPrrRr+PvjF46YxV9p81t8s9FtB01z+9leSWNfq1w1xBAh+wUHn/5SjxejXtueId9u4sCjx3p87VmIKBLsoVFu60M6NuJP53Qnye3OfmkLIpndro5ddxAThvTp1bQor79O5zy1Jxq4g8Czbh0aCCQtDeviL9d+ybFheU8Nv0K+odZPeRoOVJ1vhBCCCFaFwlciKPihFHdePfTqdz5z/PI31/KHVe9zqP3fMLevKL6n1zlSHY6cotsRJt8KwFEVyW0PNpC3f3MuWs80ycPADRumrm+1n43plGvaRpvPv8TS+dv4eKrTyQ+IXwy0fo0VWdUOidt39HMm9KpazqPv3QFDoeLO697i53b84GmDZ6EOmeDAwHzp45m3IuLA/XVnK0FTfbekaoZmABCltkfJNmbV8Td17+NzebkiVf+ElFOiyNJAqNCCCGE8JOpIqJejZ0KUPN5Op2Ok88azAkT+/DZe4v59N1FLJm3mUkXDOfiq8dWW5IzlHDDnmu+T2PKOzIrEbNBh041PgleOJGWJ9wQ+ESLEY+XkPvdmKH3M16bxyfvLGTSBSOYcuUJh7VvTdEZbaopBKJlO9pJG7v2aMd/X/4L99/8Hn+95k0efvoSRnbLaJLgycb9ZYx6fiFoYDLoqp2zoVYQiTHpWb2ntFbi36Mxzcq/zOucrQXcOmsDHm/o62zhkm1Mu+8TDErxxMtX0q1X+yNSnoaQ1Y2EEEII4SeBC1GnxnYq63qeJdrM5deP54zJw3nvlbl89ckyvpu1inMuOo4LrxwTdgTAyKxE9DqwGHTodQQa/sHv47/L2dDyHqlOVUOPX6j59eGCAw1t1LtdHt5/bR4fvrGAU84ewk33nIFSKqJ9CHdcmuK4Sefk2NEU+WgaolvPdjz99rX84+b3uHfqO/zj8SmHfb7mWx2Men4h5Q7f1LJYCHnO+q/bGJOeSqeH15buxKDX8dgZvYiPMlJQ4WhUXdWY8vadNheb04PN7Vs9pOZ1NuPT5bz9xDc4okxsG9GbuMzkJi9HY8jqRkIIIYTwk6kiok6NHVodyfNS0uK4/f6zee2zmxl9Um8+fXcRV571DG9N/4nS4oowr6xAVf0b4n0+WbO30cOxm2peebCmGJoeah46NKxRv2l9Hjdf/kogaHH7/Wej09V/+UcyVPtwj5t0TsSR1C4ziafeuIbO3dJ5+M6P2LBwy2Gdr8vySqi2GJci5Dnrv27/OrYrMSY95U4Pbo+Xe7/dxE0z1zPq+YU43d4jPnXEXwf5gxYW46Flkj0eL6+/PJd3Hp9NWWw0vw3pTVmU+ahMY4lEuLpPCCGEEMceGXEh6tTYTmVDntexUyr3/vsCLr7qRN5/bT4fv7WQLz5YyqQLRnDeJceTluFLXrcsrwSPV8Pm8mLQ6QJ3TYPfZ8rgTKYv3tFiOsGH2ykPHu1Q845uJKMdCguszHhtHt/OXElKWhwPPXkxo8f3ifj9j8ZoiKM9hUAcexKSYnj8xSv5598+5L/3f461tJJzLj6+Ua/ln1YGoBQsueWEOlcgumlMF1+dpBQaGpoG5U7f9BGlOOJ1VXAdpNfBc+cO8K0eUm7j3r99wLqVOyhsl8zanp3x6nUY0Zq93gx2tEfpCCGEEKJlUlq1W0dHz7G47nRr1VQ5LiK1c3s+H735K/N+WI9SiuPG9yH7pH6MHJIVcmh1U+S4OJIO5/g1NvfDjm35fPnxb/z49Ro8Hi9nTxnJlTdOIDqmYcdD8k9U19h1p1urxtTTLe36C+Z0uHjs75+xeN5mrrhhPJf+30mNep2G7qN/+y7Jlmp12Pypo8ktsh3xYxVc3kSznh++XMVbL/yM1+vl8ltP4f/WFlBi9019SYgysOWeCS3usxMiUlJPt326O79u7iKIY5z3ybOauwitWmPraQlciBZr/95iPnhnEd9+sRK9x4s1KY4brj2RhD5ZjOqacsQb1s3dAZudc4BLZ6wKjHaYcenQOu88FhwoZf6cDcz9fj1/bN6HyWxg4hmDuOgvJ9C+Y+PnrDf3cWhJpEFct5YW6Ap17nrcHp56+Et++mYtl19/EpddN77Zy3Q0OOwu5ny9mo/fWkjBgVL6D+nEnf88l/Ydk3l/5W6u/2wtNpc3orpGiJZM6um2TwIXorlJ4OLwNLaelqkiosVql5lE+imDWVboIWVXPln7DjJj2rckJEaTd0p/xp82gL4DsyJKMNlQLaEDVtc0E6/Xy/49JWzbso+1K3ewdkUuu7YXANCzbybX3XEqfzpzEAlJMSFfuyGdJxmqLSLVkhKthruG9QY9f33oXJRO8d4r8/B4NK64YfwRq0dqXmdH+nraU1jBr5sP0DVKDzYH27buZ82y7Wxcm4fL6abvoCzueOBshh7fLbDPp/RMw2LUY9DpWsQUOyGEEEKImiRwIVqsfKuDW2etpxwd5dntKO3ZkU8ndmHpD+v44ctVfP3JMjIyExk1rjcjx/RgwNBOmMzGw35fp9PN97/lErOvCMoqife4efQfnxHj9lButWG3ubDbnLhcHjTNN2ddp1PoDTqMBj1GkwG9UY9DKeJizLj1Otonx5CUYMFiMRFlMWKJNmGOMmKOMmE2GzAY9RiMevR6HZrX95oej5c3hqazaU8pGSYdn7/yCwfzyziwt4RduQU47C4Aoiwm+g3O5uRJgxkzvg8dslPqPa7NHZQRbVNLSrRaVxBFr9fx1wfPQa/X8cHr8/F6vfxl6kQKyp31BvQiDfodqetM0zR25RawYfVOdm4rYN+eYvbvLaa0qIKKCgdul6fWc7r2bMdZF45g1LjeDBjaqVaQRvLMCCGEEKKlk8CFaLF8yTh9/7cYdDx33gAmDuvIxPG9qSi3s3jeZhbM2cC3M1cw68OlmM1GevTNpFe/DvTsm0mH7BTS2iWQkBhdq6FutzkpK6lk/94S9uYVsjeviF25B8nbUcDe3cV4PV56V23r1SkKbZWo1DgSkmLIaG8kymLCYNSjdAqFrzPhdntxuzxYK538uGk/yu2FvWUYNS85Hi8pRh0OuwuX092o4xFlMZGWEU9aRgJnTB5Gl+4ZdOqWTvde7TEY9Q06ruE6dDItRByOltQBri+IotPpuO0fZ6GU4qM3f6WgqIInnCZcXsIGGhoSjGjK0SfWMhvLFm5lyfwtrF2eS1lpJQDRMWbadUgiq1MqA4d2Zq/dzRdbCqhUOlS0mQfOGcAFJ3YnMczIq2AyskoIIYQQLZkELsRhW7DtIC8t3sGNozsztltqk71uzY7HKT3TAo/FxEZx8qTBnDxpMHabk3Urd7ByyR9s2biHrz5ZVi04YDQZMEcZ0et9KwFUVDhw1wgeGAx6MrOT6dw9g7F/6kfHzqlEJceyR9Mxrl97MuKjIi737JwDPF+Vm8IveN642+XBbnfisLuw21047C48bi8ulwePx4tOKZROodMpLNEmLNFmYmLNRMeYm2Q4e7gOXX2dMglqiEi0lA5wJEEUf/AiNj6KT99ZROeMZNb06ozZbGDO1gJO6ZlW7fkNCUY0dPRJzXq0rLSSxXM3MW/OBtau2IHX4yU5NY7jxvZkwNDO9B+STWbH5Gp1wsb9ZTzx5Hw0fAtGjxrZJaKghRBCCCFESyeBC3FYFmw7yEkvLQHg47X7mHfjqCYLXkR69zbKYmLkCT0ZeUJPAFwuN7tyD3JgbwkF+0soyC/D5XBjtbn4aNVuXAnxeM1GHjyrH927pNEhK5m0jHj0hshHLdTF32GJNempcHqINumrdVwMRj2xRguxcZYmeb+GCndc6xuJ0ZKnl0hQRYQSSRBFKcW1t56CKdbCjOk/MczmYGPvztz8xXp0SuHxaoFlRId0iI84GNGQ0Sf+etTgdrPg+/WcY9HYsS4Pj8dLZlYyF14+mtHj+9CzbyY6nS7s6+QW2Ygx6Sl3eogx6cktstGvXXy9x0kIIYQQkYs0Qawk8WxaErgQYUXSGXxp8Y5avzflqIvG3L01Gg1069mObj3bVfv77JwDbHMcWqUjZlAXhh2BO8PBHZYuyZYjstzh4XbUQx3Xuu4Qt6SkizW19KCKaB2uuPpE8twav7wxj1HLc9jduT27u2ZSUTVd7frP1mIx6iNewjTSa7SwoIynX53PoPW7SC0sRadpbI+zMOTUgZx37lBGDM2OeKTVyKxETAYdcUo1e44RIYQQQoimJIELEVKkncEbR3fm47X7qv3eUh3NxIHBgYGmvuN5pDrqdd0hbklJF2tqyUEV0br835+P4/ltpWTm7CA7dy8Z+wvZ2yGNXekp2DBi0OnILbLVe37VdY2WFJWzYc0uNqzeyfqVO/lji6/+jDObyOuQxoH0ZDxp8Szx6njty03k9GwX8fXdknKMCCGEEEI0JQlciJAi7QyO7ZbKvBtHHZEcF02trTTqj2RHPdwIl5Z87FpyUEW0LulxZtbdfwrL8kqIKSjhi7d/xbwuj85/7MaaFEdlYiyuzelsN2okp8QSF2+pNcXM4/GyYNN+dGU2DNZKEt1unn3qe/TF5Wzbup+DB8oAMJkN9O7fkatumshxJ/Zil9Lx8pKdDO6QwH9+/qPR13dLyTEihBBCCNGUJHAhQmpIZ3Bst9QWHbAIdjiN+paSR6G5OuottUPUkoMqovk09no9dJ5nMH5cL3blFvDN12tYvGALxbvzefnfX1XbPjhprtfrxVbpBGBI0DYrcxRZnX0rf3Tt2Y6+g7Lo2TcTo/HQV3AXYFz3NPKtDqbN2yaBOCGEEEKIIBK4ECG1tc5gQzsxNbdvSXkU2tpn0xRaalBFNI9Ir9dI6oXsLmnceOvJ3HjrybhdHnbvPMjO7QWUllRQVlKJtcwOmgZKoZRvxaOYuCg0o4ECpeeEgR3o3SU14iWLW/L13VKCt0K0ZUqpN4FJQL6maf2buzxCCNFSSOBChNVWOoP+TozT7QUFS245oc68E6E6PUdiesbhdALaymcjxJEQyfXamGCkwainc/cMOnc/stdeU17f+VYHc7YWAHBKz7RGBxxaUvBWiDbubeAF4N1mLocQQrQoErgQbd6yvBKcbi/lTg8Ao55fyB/3Tgzb6A7V6Wnq6RnSCRDiyInkej0WkrrmWx30fmIuJTYXAIkWA5vvntCouuZYOF5CtASapi1QSnVu7nIIIURLI4EL0eaNzEqEoNUENY06G92hOj1NPXxbOgFCHDmRXK/HQlLXZXklONyewO8Ol7fRdc2xcLyEEEII0XLVG7iob66dUioJeBPoBtiBqzVN29DUBRWisdLjzCy55QRGPb8QTQOzQVdnoztcp6cph29LJ0A0Jamna6vvem3JuSSaysisRMwGPTaXFwCzse66ry7HwvESorVQSl0HXAeQnZ3dzKURQoijQ2maVvcGSo0FyoF3wzSIpwHlmqb9SynVG5iuadrE+t54+PDh2ooVKxpZbCEarqUllmtp5RH1U0qt1DRteHOXoyapp0U4TZXjQojWoqXW0w1RNVVkdiTJOdtSPa278+vmLoIQTcr75FnNXYQWqbH1dL0jLiKYa9cXeKxq281Kqc5KqQxN0w40tDBCHEktLaFlSyuPaL2knhbhpMeZuWxYx+YuhhBCCCHEYdE1wWusBSYDKKVGAp0AaSUJIUTLIfW0EEK0AkqpD4ElQC+l1G6l1DXNXSYhhGgJmiJw8TiQpJRaA9wCrAbcoTZUSl2nlFqhlFpRUFDQBG8tIpVvdTA75wD5VkdzF0U0gnx+4jBJPd0GNaRekDpEiNZB07Q/a5rWXtM0o6ZpHTVNe6O5yySEEC3BYa8qomlaGXAVgFJKAblVP6G2fRV4FXxz8g73vUVkZOnN1k0+P3G4pJ5uexpSL0gdIoQQQojW7rBHXCilEpVSpqpfrwUWVDWSRQsRvPSmy6OxLK+kuYskGuBIfH5y9/XYIvV047Tk66Qh9YJ8BwghhBCitYtkOdQPgZOAVKXUbuAhwAigadrLQB/gXaWUB8gBZC5eCyNLb7ZuTf35yd3Xtkfq6abX0q+ThtQL8h0ghBBCiNYuklVF/lzP40uAHk1WItHk0uPM5Nw1XpbebKWa+vMLvvsaZzawLK9EVjdp5aSebnot/TppSL0g3wFCCCGEaO0OO8eFaB1k6c3WrSk/P7n7KkT9WsN10pB6Qb4DhBBCCNGaSeBCiGOM3H0Von5ynQghhBBCtBxNsRyqEMe0lpzALxz/3VfpjAkRXmu8TlpjfSSEEEIIUR8ZcSHEYWjpCfyEEMcOqY+EEEKIlkN359cRbed98qwjXJK2QUZcCHEYZJlBIURLIfWREEIIIdoqCVwIcRhaQwI/IcSxQeojIYQQQrRVMlVEiMMgCfyEEC2F1EdCCCGEaKtkxIUQhyk9zszIrESW5ZVIQjwhWom2msSyNSYUFUIIIYSoj4y4EOIwSUI8IVoXuWaFEEIIIVoXGXEhxGGShHhCtC5yzQohhBBCtC4SuBDiMElCPCFaF7lmhRBCCCFaF5kqIsRhkoR4QrQucs0KIcTRo7vz6+YughCiDZDAhRBNwJ8QTwjROsg1K4QQQgjReshUESGEEEIIIYQQQrRYErgQQgghhBBCCCFEiyWBC3HMyrc6mJ1zgHyro7mLIoQ4hkjdI4QQQgjRMJLjQhyT8q0O+k6bi8ujYdQrcu4aLwn6hBBHnNQ9QgghhBANJyMuxDFpWV4JLo+G1eHG5dFYllfS3EUSQhwDpO4RQgghhGg4CVyIY9LIrESMekWc2YBRrxiZldjcRRJCHAOk7hFCCCGEaDiZKiKOSelxZnLuGs+yvBJGZiW22aHa+VZHm99HcWxp7ef0sVL3CCGEECIyuju/btLX8z55VpO+XkshgQtxzEqPMzOpb0ZzF+OIkbn0oq1pK+d0W697hBBCCCGamkwVEaKNkrn0oq2Rc1oIIYQQ4tgkgQsh2qjgufR6naLE5mo1yy/KcpEilObKD9Eaz8fWWGYhhBBCiHBkqogQbZR/Lv2crQXcOms9N81c3yqG17eV6QCi6TVHfojWeD62xjILIYQQQtRFAhdCtGHpcWYSLUY8XrA63MSZDSzLK2nR8+uDpwO0hvKKo+to54dojedjayyzEKJxVu4ujSix35FI1tfUCQWFEKIuMlVEiDautS2/2NrKK9q21ng+tsYyCyGEEELURUZcCNHGtbblF1tbeUXb1hrPx9ZYZiGEEEKIukjgQohjQGtbfrG1lVe0ba3xfGyNZRZCHDkyrUOIY0ek13ukU8ia+vUaS6aKCCGEEEII0UIopU5TSm1RSv2hlLq3ucsjhBAtgYy4EEIIIYQQogVQSumB6cDJwG5guVLqK03Tcpq3ZEIIUbcjPbJLRlwI0QrlWx3MzjlAvtXR3EURosWS60QI0QqNBP7QNG27pmlO4CPgnGYukxBCNDsZcSFEK5NvddB32lxcHg2jXpFz13hJvidEDXKdCCFaqQ5AXtDvu4HjmqksQgjRYihN05rnjZUqAHYG/SkVONgshWkZZP9l/yPb/6jYBOLTu6B0ejSvh7L8XOzlpUe2eEdca/n8O2maltbchThaQtTTrUdk10lrOe+ONDkOPnIcfFr7cWjV9bRS6kLgVE3Trq36/XJgpKZptwRtcx1wXdWvvYAtR72gkWnt51JTkeMgxwDkGPilAjGNqaebbcRFzcIqpVZomja8ucrT3GT/Zf9l/4/d/W+pWnPjPxJy3vnIcfCR4+Ajx6HZ7Qaygn7vCOwN3kDTtFeBV49moRpDziUfOQ5yDECOgV/VcejcmOdKjgshhBBCCCFahuVAD6VUF6WUCbgY+KqZyySEEM1OclwIIYQQQgjRAmia5lZK3Qz8AOiBNzVN29jMxRJCiGbXkgIXLX7I2xEm+39sk/0X4uiT885HjoOPHAcfOQ7NTNO0b4Fvm7scTUDOJR85DnIMQI6BX6OPQ7Ml5xRCCCGEEEIIIYSoj+S4EEIIIYQQQgghRIt1VAMXSqkopdQypdRapdRGpdS/QmxzqVJqXdXPYqXUoKNZxiNNKaVXSq1WSs0O8ZhSSj2nlPqjav+HNkcZj6R69j9BKfV10PlxVXOU8UhSSu1QSq1XSq1RSq0Is81JVY9vVErNP9plPJKUUolKqc+UUpuVUpuUUqPCbDdCKeVRSl1wtMsoWjel1JtKqXyl1IYwjycppb6oqmOXKaX6Bz1W7/XZWiilspRSc6uus41KqdtCbNNbKbVEKeVQSt1Z47HTlFJbqr6P7j16JW9aER6HsO2OtnJORHIcgratVf+2lfNBNL3DqXPbigjrmWOhjX9Y3zttweF+57QVER6Hc6qOwRql1Aql1An1vrCmaUftB1BAbNX/jcBvwPE1thkNJFX9/3Tgt6NZxqNwDP4KfADMDvHYGcB3Vcfp+La27xHs/9+B/1b9Pw0oAkzNXeYm3v8dQGodjycCOUB21e/pzV3mJt7/d4Brq/5vAhJDbKMHfsE3v/eC5i6z/LSuH2AsMBTYEObxacBDVf/vDfwc9Fid12dr+gHaA0Or/h8HbAX61tgmHRgB/Bu4M+jvemAb0LXqOl1b87mt5SfC4xC23dFWzolIjkPQZ1+t/m1L54P8NP3P4dS5beUnwnrmWGjjN/p7p638HO53Tlv5ifA4xHIobcVAYHN9r3tUR1xoPuVVvxqrfrQa2yzWNK246tel+NavbhOUUh2BM4HXw2xyDvBu1XFaCiQqpdoftQIeYRHsvwbEKaUUvpO5CHAfpeK1FJcAMzVN2wWgaVp+M5enySil4vE1cN4A0DTNqWlaSYhNbwE+B9rMvoujR9O0BfjqjnD6Aj9XbbsZ6KyUyjgaZTuaNE3bp2naqqr/W4FNQIca2+RrmrYccNV4+kjgD03Ttmua5gQ+wvf91OpEeBzabLvDL5LjUCVU/dtmzgfR9KTOjfj6atNtfDjs7502Qb5zfCI8DuVaVdQCiKFGTCCUo57jQvmmCqzB96X4o6Zpv9Wx+TX4opNtxTPA3YA3zOMdgLyg33cTumHRWj1D3fv/AtAH2AusB27TNC3ctq2VBsxRSq1USl0X4vGeQJJSal7VNlcc5fIdSV2BAuAt5Zsu9LpSKiZ4A6VUB+A84OXmKKA4JqwFJgMopUYCnTjUaKjv+myVlFKdgSH4RjlGok1+F0V4HGq2O9rcORHuONRR/7bJ80EcNXXVuW1OHfXMMXUdNeJ7p81p5HdOm1PXcVBKnaeU2gx8A1xd32sd9cCFpmkeTdMG46u0Roab66aUGo/vw7znKBbviFFKTQLyNU1bWddmIf7WJpZ9iXD/TwXWAJnAYOCFqrv0bckYTdOG4hsadpNSamyNxw3AMHwjU04FHlBK9TzKZTxSDPiGk76kadoQoAKoOVf6GeAeTdM8R7ls4tjxOL7g4Bp8d5dXc2hkV33XZ6ujlIrFdwf9dk3TyiJ9Woi/tervokiOQ5h2R5s6J+o5Ds8Quv5tc+eDOKrqqnPblHqur2PmOmrk906bchjfOW1KfcdB07QvNE3rDZwLPFLf6xmavIQR0jStRCk1DzgNqJbQRyk1EN90gtM1TStshuIdCWOAs5VSZwBRQLxS6n1N0y4L2mY3kBX0e0d8ow/agkj2/yrg8aphQ38opXLxzYdcdvSLe2Romra36t98pdQX+IbgLgjaZDdwUNO0CqBCKbUAGIRvblhrtxvYHTTK6jNqBy6GAx/5ZguRCpyhlHJrmjbrqJVStGlVX5xXgS9ZGpBb9RPJ9dmqKKWM+BoMMzRNm9mAp7ap76JIjkO4dkdbOiciOA4h61/a2Pkgjq666ty2JILr65i4jg7je6fNOJzvnLakIeeCpmkLlFLdlFKpmqYdDLfd0V5VJE0plVj1fwvwJ2BzjW2ygZnA5ZqmtYXOGgCapt2naVpHTdM6AxcDv9TotAN8BVyhfI4HSjVN23e0y3okRLj/u4CJAFXzH3sB249qQY8gpVSMUirO/3/gFGoE7YAvgROVUgalVDRwHL55Ya2epmn7gTylVK+qP03El4g0eJsumqZ1rjpPPgOmStBCNCXlW9nGVPXrtcACTdPKIrw+W42qDsIbwCZN055q4NOXAz2UUl2qjtXF+L6fWp1IjkO4dkdbOiciOQ511L9t5nwQR1+4Orc5y9TUIqxv22wb3+8wv3fahMP5zmlLIjwO3au2Q/lW2TEBdQZxjvaIi/bAO0opPb6gySeaps1WSt0AoGnay8CDQArwYtW+uDVNG36Uy3nU1Nj3b/FlHf4DqKQqQt2W1dj/R4C3lVLr8Q2pu6euqFsrlAF8UXVeG4APNE37PvgYaJq2SSn1PbAOXy6Q1zVNa5UN5TBuAWZUNWK2A1fVOAeEOCxKqQ+Bk4BUpdRu4CF8iaD951gf4F2llAdf4OyaqqeGvD6Pbumb1BjgcmB91RBt8K3clA2+Y6GUagesAOIBr1LqdnxZv8uUUjcDP+BbUeJNTdM2HuXyN5V6jwPh2x1t6ZyI5DiEpGmauw2dD6KJHUad25ZEcn0dC238w/reOfrFPSIO5zunLYnkOJyPL5jnAmzARUHJOkNS9TwuhBBCCCGEEEII0WyOenJOIYQQQgghhBBCiEhJ4EIIIYQQQgghhBAtlgQuhBBCCCGEEEII0WJJ4EIIIYQQQgghhBAtlgQuhBBCCCGEEEII0WJJ4EIIIYQQQgghhBAtlgQuhBBCCCGEEEII0WJJ4EIIIYQQQgghhBAt1v8DaeUH7wOW1iAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = sample.plot_results(nsamples=1000, fig=None, save_plot=True,\n", + " filename=\"modeling_tutorial_mcmc_corner.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calibrating Likelihood Ratio Tests\n", + "\n", + "In order to use likelihood ratio tests for model comparison, one must compute the p-value of obtaining a likelihood ratio at least as high as that observed given that the null hypothesis (the simpler model) is true. The distribution of likelihood ratios under that assumption will only follow an analytical distribution if\n", + "* the models are nested, i.e. the simpler model is a special case of the more complex model *and*\n", + "* the parameter values that transform the complex model into the simple one do not lie on the boundary of parameter space. \n", + "\n", + "Imagine e.g. a simple model without a QPO, and a complex model with a QPO, where in order to make the simpler model out of the more complex one you would set the QPO amplitude to zero. However, the amplitude cannot go below zero, thus the critical parameter value transforming the complex into the simple model lie on the boundary of parameter space.\n", + "\n", + "If these two conditions are not given, the observed likelihood ratio must be calibrated via simulations of the simpler model. In general, one should *not* simulate from the best-fit model alone: this ignores the uncertainty in the model parameters, and thus may artificially inflate the significance of the result.\n", + "\n", + "In the purely frequentist (maximum likelihood case), one does not know the shape of the probability distribution for the parameters. A rough approximation can be obtained by assuming the likelihood surface to be a multi-variate Gaussian, with covariances given by the inverse Fisher information. One may sample from that distribution and then simulate fake data sets using the sampled parameters. Each simulated data set will be fit with both models to compute a likelihood ratio, which is then used to build a distribution of likelihood ratios from the simpler model to compare the observed likelihood ratio to.\n", + "\n", + "In the Bayesian case, one may sample from the posterior for the parameters directly and then use these samples as above to create fake data sets in order to derive a posterior probability distribution for the likelihood ratios and thus a posterior predictive p-value.\n", + "\n", + "For the statistical background of much of this, see [Protassov et al, 2002](http://adsabs.harvard.edu/abs/2002ApJ...571..545P).\n", + "\n", + "Below, we set up code that will do exactly that, for both the frequentist and Bayesian case.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "\n", + "def _generate_model(lpost, pars):\n", + " \"\"\"\n", + " Helper function that generates a fake PSD similar to the \n", + " one in the data, but with different parameters.\n", + " \n", + " Parameters\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + " \n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder \n", + " to generate a model data set.\n", + " \n", + " Returns:\n", + " --------\n", + " model_data : numpy.ndarray\n", + " An array of model values for each bin in lpost.x\n", + " \n", + " \"\"\"\n", + " # get the model\n", + " m = lpost.model\n", + "\n", + " # reset the parameters\n", + " _fitter_to_model_params(m, pars)\n", + " \n", + " # make a model spectrum\n", + " model_data = lpost.model(lpost.x)\n", + " \n", + " return model_data\n", + "\n", + "def _generate_psd(ps, lpost, pars):\n", + " \"\"\"\n", + " Generate a fake power spectrum from a model.\n", + " \n", + " Parameters:\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + " \n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder \n", + " to generate a model data set.\n", + " \n", + " Returns:\n", + " --------\n", + " sim_ps : stingray.Powerspectrum object\n", + " The simulated Powerspectrum object\n", + " \n", + " \"\"\"\n", + " \n", + " model_spectrum = _generate_model(lpost, pars)\n", + " \n", + " # use chi-square distribution to get fake data\n", + " model_powers = model_spectrum*np.random.chisquare(2*ps.m, \n", + " size=model_spectrum.shape[0])/(2.*ps.m)\n", + "\n", + " sim_ps = copy.copy(ps)\n", + "\n", + " sim_ps.powers = model_powers\n", + " \n", + "\n", + " return sim_ps\n", + " \n", + "def _compute_pvalue(obs_val, sim):\n", + " \"\"\"\n", + " Compute the p-value given an observed value of a test statistic \n", + " and some simulations of that same test statistic.\n", + " \n", + " Parameters\n", + " ----------\n", + " obs_value : float\n", + " The observed value of the test statistic in question\n", + " \n", + " sim: iterable\n", + " A list or array of simulated values for the test statistic\n", + " \n", + " Returns\n", + " -------\n", + " pval : float [0, 1]\n", + " The p-value for the test statistic given the simulations.\n", + " \n", + " \"\"\"\n", + " \n", + " # cast the simulations as a numpy array\n", + " sim = np.array(sim)\n", + " \n", + " # find all simulations that are larger than \n", + " # the observed value\n", + " ntail = sim[sim > obs_val].shape[0]\n", + " \n", + " # divide by the total number of simulations\n", + " pval = ntail/sim.shape[0]\n", + "\n", + " return pval\n", + "\n", + "def calibrate_lrt(ps, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, \n", + " nsim=1000, niter=200, nwalker=500, burnin=200, namestr=\"test\"):\n", + " \n", + " \n", + " # set up the ParameterEstimation object\n", + " parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "\n", + " # compute the observed likelihood ratio\n", + " lrt_obs, res1, res2 = parest.compute_lrt(lpost1, t1, \n", + " lpost2, t2,\n", + " neg=neg, \n", + " max_post=max_post)\n", + " \n", + " # simulate parameter sets from the simpler model\n", + " if not max_post:\n", + " # using Maximum Likelihood, so I'm going to simulate parameters \n", + " # from a multivariate Gaussian\n", + " \n", + " # set up the distribution\n", + " mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov)\n", + " \n", + " # sample parameters\n", + " s_all = mvn.rvs(size=nsim)\n", + " \n", + " else:\n", + " if sample is None:\n", + " # sample the posterior using MCMC\n", + " sample = parest.sample(lpost, res1.p_opt, cov=res1.cov, \n", + " nwalkers=nwalker, niter=niter, \n", + " burnin=burnin, namestr=namestr)\n", + " \n", + " \n", + " # pick nsim samples out of the posterior sample\n", + " s_all = sample[np.random.choice(sample.shape[0], nsim, replace=False)]\n", + " \n", + " lrt_sim = np.zeros(nsim)\n", + " \n", + " # now I can loop over all simulated parameter sets to generate a PSD\n", + " for i,s in enumerate(s_all):\n", + " \n", + " # generate fake PSD\n", + " sim_ps = _generate_psd(ps, lpost1, s)\n", + "\n", + " # make LogLikelihood objects for both:\n", + " if not max_post:\n", + " sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,\n", + " model=lpost1.model, m=sim_ps.m)\n", + " sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, \n", + " model=lpost2.model, m=sim_ps.m)\n", + " else:\n", + " # make a Posterior object\n", + " sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power, \n", + " lpost1.model, m=sim_ps.m)\n", + " sim_lpost1.logprior = lpost1.logprior\n", + " \n", + " sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power, \n", + " lpost2.model, m=sim_ps.m)\n", + " sim_lpost2.logprior = lpost2.logprior\n", + "\n", + " \n", + " parest_sim = PSDParEst(sim_ps, max_post=max_post)\n", + " \n", + " lrt_sim[i], _, _ = parest_sim.compute_lrt(sim_lpost1, t1, \n", + " sim_lpost2, t2, \n", + " neg=neg, \n", + " max_post=max_post)\n", + "\n", + " # now I can compute the p-value:\n", + " pval = _compute_pvalue(lrt_obs, lrt_sim)\n", + " return pval" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, loglike, starting_pars, \n", + " loglike_bplc, bplc_start_pars, \n", + " max_post=False, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The p-value for rejecting the simpler model is: 0.97\n" + ] + } + ], + "source": [ + "print(\"The p-value for rejecting the simpler model is: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the p-value for rejecting the powerlaw model is fairly large: since we simulated from that model, we would be surprised if it generated a small p-value, causing us to reject this model (note, however, that if the null hypothesis is true, the p-value will be uniformely distributed between 0 and 1. By definition, then, you will get a p-value smaller or equal to 0.01 in approximately one out of a hundred cases)\n", + "\n", + "We can do the same with the Bayesian model, in which case the result is called a *posterior predictive p-value*, which, in turn, is often used in posterior model checking (not yet implemented!).\n", + "\n", + "We have not yet defined a `PSDPosterior` object for the bent power law model, so let's do that. First, let's define some priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law indices\n", + "p_alpha1 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "p_alpha2 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the break frequency\n", + "p_x_break = lambda xbreak: ((0.01 <= xbreak) & (10.0 >= xbreak))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_1_0\"] = p_alpha\n", + "priors[\"alpha_2_0\"] = p_alpha\n", + "\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n", + "priors[\"x_break_0\"] = p_x_break\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set up the `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "lpost_bplc = PSDPosterior(ps.freq, ps.power, bplc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2230.14039643262" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lpost_bplc(bplc_start_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And do the posterior predictive p-value. Since we've already sampled from the simple model, we can pass that sample to the `calibrate_lrt` function, in order to cut down on computation time (if the keyword `sample` is not given, it will automatically run MCMC:" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, lpost, starting_pars, \n", + " lpost_bplc, bplc_start_pars, \n", + " sample=sample.samples,\n", + " max_post=True, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The posterior predictive p-value is: p = 1.0\n" + ] + } + ], + "source": [ + "print(\"The posterior predictive p-value is: p = \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we find that the p-value does not suggest rejecting the powerlaw model.\n", + "\n", + "Of course, a slightly modified version is implemented in `stingray` as a subclass of the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod=\"BFGS\")" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_lrt(lpost, starting_pars, lpost_bplc, bplc_start_pars, \n", + " sample=sample.samples, nsim=100, max_post=True, seed=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.2\n" + ] + } + ], + "source": [ + "print(pval)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bayesian-ish QPO Searches\n", + "\n", + "When searching for quasi-periodic oscillations (QPOs) in light curves that are not constant (for example because they are bursts or have other types of variability), one must take care that the variable background is accurately modelled (most standard tools assume that the light curve is constant). \n", + "\n", + "In [Vaughan et al, 2010](http://adsabs.harvard.edu/abs/2010MNRAS.402..307V), a method was introduced to search for QPOs in the presence of red noise (stochastic variability), and in [Huppenkothen et al, 2013](http://adsabs.harvard.edu/abs/2013ApJ...768...87H) it was extended to magnetar bursts, and in [Inglis et al, 2015](http://adsabs.harvard.edu/abs/2015ApJ...798..108I) and [Inglis et al, 2016](http://adsabs.harvard.edu/abs/2016ApJ...833..284I) a similar approach was used to find QPOs in solar flares.\n", + "\n", + "Based on a model for the broadband spectral noise, the algorithm finds the highest outlier in a test statistic based on the data-model residuals (under the assumption that if the broadband model is correct, the test statistic $T_R = \\max_j(2 D_j/m_j)$ for $j$ power spectral bins with powers $D_j$ and model powers $m_j$ will be distributed following a $\\chi^2$ distribution with two degrees of freedom). The observed test statistic $T_R$ is then compared to a theoretical distribution based on simulated power spectra without an outlier in order to compute a posterior predictive p-value as above for the likelihood ratio.\n", + "\n", + "Since the concept is very similar to that above, we do not show the full code here. Instead, the p-value can be calculated using the method `calibrate_highest_outlier`, which belongs to the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# compute highest outlier in the data, and the frequency and index\n", + "# where that power occurs\n", + "max_power, max_freq, max_ind = parest._compute_highest_outlier(lpost, res)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.79715722])" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_power" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_highest_outlier(lpost, starting_pars, sample=sample,\n", + " max_post=True,\n", + " nsim=100, niter=200, nwalkers=500,\n", + " burnin=200, namestr=\"test\")" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.15" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pval" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convenience Functions\n", + "\n", + "For convenience, we have implemented some simple functions to reduce overhead with having to instantiate objects of the various classes.\n", + "\n", + "Note that these convenience function use similar approaches and guesses in all cases; this might work for some simple quicklook analysis, but when preparing publication-ready results, one should approach the analysis with more care and make sure the options chosen are appropriate for the problem at hand.\n", + "\n", + "### Fitting a power spectrum with some model\n", + "\n", + "The code above allows for a lot of freedom in building an appropriate model for your application. However, in everyday life, one might occasionally want to do a quick fit for various applications, without having to go too much into details. Below is a convenience function written for exactly that purpose.\n", + "\n", + "Please note that while this aims to use reasonable defaults, this is unlikely to produce publication-ready results!\n", + "\n", + "So let's fit a power law and a constant to some data, which we'll create below:" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "m = 1\n", + "nfreq = 100000\n", + "freq = np.linspace(1, 1000, nfreq)\n", + "\n", + "np.random.seed(100) # set the seed for the random number generator\n", + "noise = np.random.exponential(size=nfreq)\n", + "\n", + "model = models.PowerLaw1D() + models.Const1D()\n", + "model.x_0_0.fixed = True\n", + "\n", + "alpha_0 = 2.0\n", + "amplitude_0 = 100.0\n", + "amplitude_1 = 2.0\n", + "\n", + "model.alpha_0 = alpha_0\n", + "model.amplitude_0 = amplitude_0\n", + "model.amplitude_1 = amplitude_1\n", + "\n", + "p = model(freq)\n", + "power = noise * p\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = power\n", + "ps.m = m\n", + "ps.df = freq[1] - freq[0]\n", + "ps.norm = \"leahy\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What does this data set look like?" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu6klEQVR4nO3deXwUVdY38N9JSAj7oqBAWE1AghiUwAjoyybbmLCICnlQRmTYUZRRCMKMOKwyyKMOi4IgqzCYhx0GUBSRTbbhVbaw+mIEH8CAskPIef8I3XZ3ujtVXVVdt7vP9/Ppz6e76tatk67O6du3bt0iZoYQQojwF2V3AEIIIYJDEr4QQkQISfhCCBEhJOELIUSEkIQvhBARQhK+EEJEiCJ2B+DPvffeyzVq1LA7DCGECCl79+69wMwVPJcrmfCJKA1AWkJCAvbs2WN3OEIIEVKI6P95W65klw4zr2bmvmXKlLE7FCGECBtKJnwiSiOimb/++qvdoQghRNhQMuFLC18IIcynZMIXQghhPiUTvnTpCCGE+ZRM+NKlI4QQ5lMy4Vvlyy+/xOjRo5GTk2N3KEIIEXTKj8M3U+vWrQEAMTExGDlypKl1CyGE6pRs4VvdpXP+/HlL6hVCCJUpmfCFEEKYTxL+Xd9++y0SExMxceJEu0MRQghLRGTC//HHH/Huu+/ihx9+cC6bOnUqjh8/jhEjRtgXmBBCWEjJhG/GOPyrV69iy5YtuH37NiZNmoSGDRs61y1btgyvv/46evbs6Vx248YNQzELIYTqlEz4Zpy0feaZZ9C8eXMMHToUw4cPx759+wqU+eabb/zFgFdffRXDhw8HMwcchxBCqELJhG+G9evXA8jvqgnE0aNH8f7772PSpEn46aefvJa5desWFixYgMOHDwccpxBCBIuS4/BVkJub6/W5q0WLFuGll15C5cqVfX4pCCGEKsK2hR8MWVlZAIAzZ87o2k66iIQQdghawieizkQ0i4hWElHbYO1Xq8zMTOfzmzdv+i17+vRprF27Fnfu3NG9n5MnT+L+++/H4MGDdW8rhBBGGEr4RDSHiM4R0QGP5e2JKIuIjhNRBgAw8wpm7gPgRQDdjOzXTN6S9vTp072WXbp0KUaMGIFmzZohNTUVCxcu1L2/zMxMnDt3DtOmTdO9rRBCGGG0hT8XQHvXBUQUDWAagA4AkgCkE1GSS5FRd9cr4cKFCwVa9N9//32BctevX0e3bt0wceJEZGdnAwB+/vlnr3UeO3YMX3zxhdeum7y8PBOiFkII/QydtGXmLURUw2NxYwDHmfkkABDREgCdiOgwgIkA/s3MBcdI2iQ+Ph7lypXzW+a7775DhQoFbgDvU6NGjfDrr79i27ZtaNq0qXP58uXL5cIuIYRtrOjDrwLgR5fX2XeXvQzgSQDPEFF/XxsTUV8i2kNEe4IxyVlubq7XydSOHTvmfH769GldJ1odF4wtWLDAbfnTTz8dYJRCCGGcFcMyycsyZuYPAHxQ2MbMPJOIzgJIi42NbVhYeW8cY/CNOHjwoPM5kbc/qXClS5c2HIcQQpjFihZ+NoCqLq/jAegat2j0StsePXoEtJ3L/lGkiPHvwo0bN+LWrVuG6xFCCDNYkfB3A0gkoppEFAugO4BVeiowOpeO0TtazZ07FxkZGYbqAID9+/fL7JtCCGUYHZa5GMAOAHWIKJuIejNzLoDBADYAOAxgKTMf9FeP2bp37x7M3fm1ePFiu0MQQggAxkfppPtYvg7AOgP1rgawOiUlpU+gdajCMc5/zZo1fsvduHEDp06dQt26dYMRlhAiAik5tYLRLh2Vpi5ISsq/BCEtLc1vufT0dCQlJWH16tXBCEsIEYGUTPhGT9q6jrAJFseMmZ7nD7SM1Dl79ixWrFgBIH+sPpA/E+fXX3/tvCjs7bffxuTJk02MWAgRaZRM+EZb+FevXjU5osINGTIEADBnzhzd27766qvO53l5eTh//jzGjh2LFi1a4M0338T58+cxevRovPHGG4XO8yOEEL4omfDNuAGKmbR0EX3++ecAgF9++UV3/Y7WPQDMmzcPFStWxJgxYwAAU6ZMcZue2XVqBmZGv379MH78eN37FEJEHiUTvmpefvllt6Tsy44dO3QPw9Rya0VfXzjHjh3DzJkzMXLkSF37FEJEJiUTvhn3tDXbP/7xj0LLbNq0SVede/fuRbly5Qq9OGvYsGFel/u6MYsQQnijZMJXrUvHKnPnztXUwl+0aFEQohFChDslE75R999/vy37nT9/vq7yRqZKzsnJQYcOHQLeXq/JkyfLKCEhQlxYJvx3333Xlv26zrDpkJmZGdCNUgozZ84cnD592nA9n376Kdq1a4cLFy74LHPr1i288cYbMkpIiBCnZMI32offpEkTS5JsIK5fv44XXnjB1DpzcnJw6dIlzeXff/99DBkyxOvJ3x49emDjxo2oW7cu2rRp4zWhu/4SkRu4CBG6lEz4kdKHH4gtW7agQoUKGDdunNvyWbNmFSj7+uuvY9CgQXj11VfxwQcf4MiRIz7rvXDhAr744gt8+umnBdapdOWyECJwSib8SKG3zx8AZsyY4bWV3bdv3wLL3n33Xbf782qZqlm6bMIfM+v6hSiM0fur+OrVq/jtt98siUUSvo2uXLmie5v//Oc/Ae8v0Bu5+GrhnzhxwutN4IXaunXrhnLlymHfPmXuNBpSbt++jd27d/v97J86dQojR47EDz/8gAoVKuDFF1/UXH/JkiVRpkwZS4ZdS8IPMVpP1HpL0loSvtbum5UrVyIhIQH9+vXDBx98gLNnz7qtP3ToEHbu3KmpLqFfTk4Oxo4di+zsbN3bfvbZZwCATz75xOywgu7kyZPYuHGjprJXrlzxOzjBU25uLi5evFhgeb9+/dC4cWPn1fDeNG/eHOPHj0fNmjWRk5ODefPmad6vgyVTxDCzcg8AaQBmJiQkcKAWLlzIACLq4apJkyYF1tetW5efffZZBsCvvvoq5+bmFigzffr0Au/l1atXneuvXbvGzMwtWrQoULcr13Xnzp0L+DhGquzsbB41ahT//PPPXtenpKQwAK5Tp47uuh3HZfDgwUbDdHP58mUeOHAgb9++3dR6/XH8LatXr/Zb7osvvnCWvXLlCjMz79ixg1u3bs1ZWVm8fPlyHjp0KOfl5Tm3SUpKYgD8008/8aVLlzg1NZXHjh3r9tn+z3/+47af06dPc15entf/z7fffttnfNevX2dm5iNHjjjLX7p0KcB3hRnAHvaWW70tVOXRsGHDgP/gSEz4S5cuZWbmO3fuaCpfsWJFTQn/ypUrzvXnz5/nvLw8btq0qd8vHNflLVq0cFuXm5vr/OIQ3j3yyCMMgJs3b15g3alTp3y+7/5s2bKFBwwY4DPh5+bm8s2bN52vb926xfv373dLgszM3377Lc+aNcv5evLkybx48WLOyMjwGdPt27c5JyfHbdmZM2cK1J2bm1tgmT/e3oe8vDxu3rw5d+/ene/cucM7d+50K3fkyBG3bZOTk53PH3roIZ43b57m/yHX/U6ePJkB8FtvveWzbGZmprO84712JPlevXq5lZWEr0MkJnwAfOvWLa/JWOvDkfD379/Pa9euZWb3hK/lg3/3A+d81KxZk3Nzc53rWrduzRUrVuTLly87l+Xl5XF2dnbAx9ufnTt38pgxY9xiuHr1qiX7unbtGqelpfHChQsN1eN474oVK+Zznbf3ffHixfzpp5/6rdPx8Ez4jz/+OCcmJvLt27eZmbl79+4MgN9//32v9Xz22Wf8ww8/OF/Hx8d7jYmZuXTp0gyAT58+7YwTAE+dOpWZ8xP9m2++yQDY1/+9ty8Cb+/Djz/+6FxWpEgR7tChg9ek6++z7PglrPV/jpm5ePHimsp36dKFBw4cyAB43bp1nJ6e7rWcJHwdzEr4rVu3tjRBm/2oXLmy4TpcWzcnT57ky5cva9rO4wNX4LF+/Xq3dTt27HCWHzNmDAPgyZMnB3zMfXHsb968eczMPHr0aAbAGzdu1F3X0aNH+aeffuLZs2fz3LlzC6x/7733nPvLy8vjr7/+ukDLVk/Mrgl/3759/Mc//lHT+15YcgTcE77rMf/888+5atWqztf16tXjy5cv88KFC/nXX391q+PAgQN+PwtZWVl88+ZNt/8nZuZKlSq5lV20aJHPv4mZecaMGQyA58+fzxMmTOCjR4/yjRs33LYZNmyYW5dIMB9HjhzhkiVLmlrnxYsXdX9uXI61JHzHIz4+nmvVqqXpTX/ttdds+QDZ+Zg0aZLz+fjx4zkzM1PTdh4fuAKPSpUq8aFDh5yvXRO+Y1lsbGzAx9zTxYsX+auvvnLW/fe//91tX4899phb+d9++42fe+45Xrt2LZ84cYI7dOjgFqNnsgPAW7ZscVv/17/+tUCZtLQ03bE7ti1evDjn5eXx5cuXfSYUb9vduXPHZ52OhyPhe3Z5PPDAA5o/K57dEI7HjRs3uGvXrgzA7XxPVFQUnz9/3q1sbm4uDxo0yG3ZmjVr/MYeCY9Fixbp/ty4vF/2JnwAtQDMBpCpdRurEn5eXh5Pmzat0Dd8ypQpbi22SHkUK1YsoO08PnAFHpUqVXJrOXpL+AD4+PHjzMxek5YetWvXdqvXcdLM8bpJkyZu5UeNGuVc16xZM+fz3r17c+XKlXn8+PFe/66dO3fy119/rfm9Yc7/pVC3bl2eP3++1xOOju2KFy/OTz31lO73/ZVXXuGff/7Z2T3j+R4D+Qk/Ly+PY2Ji3Jbfe++9tn8G4+Li+IUXXuDZs2fzhAkTbI/HjoeRk+qwIuEDmAPgHIADHsvbA8gCcBxAhse6oCf8d955h6Oiogr8gxT2hm/dupWHDRtm+4EPlcf58+c1v7dAfqL0Vd4xqqJVq1Y8Z84c3r17Ny9evFjTsf/oo4+4Z8+ehe7fM+G7ntBMSEgw9b1xaNOmjduXnud7t23bNs7JydFVd15eHn///ff8008/FVhHRNytWzc+e/ZsgXUDBw7k2bNn2/65kYf3R5cuXQLKfXf/nyxJ+P8HwKNwSfgAogGcQH6LPhbA/wWQ5LI+6Ak/JyeHo6Ojna9d3hS/jxs3brglAXkU/hgzZgzPnTtXU9k333zT57HwTIqOXx3fffcdM+efHN2+fTvfuXOHT506xSNGjHAmTa2xBjPhP/nkk37XnzhxglesWBFQ3Y8//rjtx10e5j9iYmICzn/wkfCLwABm3kJENTwWNwZwnJlPAgARLQHQCcAhLXUSUV8AfQGgWrVqRsILGiJyfJlFvL/+9a+ay44fPx6XLl3Ctm3bCi17/fp1APkXntWvXx9/+ctfMGPGDLcyu3btwhdffKF5/0SEv//979i+fTvWrl2rebtAFBbXxYsXMWLEiIDq3rp1a0DbiQjk7VtAzwNADbi38J8B8LHL6xcATAVwD4APkd/6H6GlbjNb+D169GAA3K1bN9dvQb8PrS18x5hpeVj/WLNmDV+6dMnnei3H1dvjn//8p+1/mzzk4fkIFKxo4fvg7fp9ZuZfAPTXVAFRGoC0hIQE04L66KOP0LNnTzRr1kzXdg0aNNC9r3Llynm9JFsYl5qaakm9L7/8siX1CqESK+bSyQZQ1eV1PIAzFuxHlxIlSqBt27YoUaKEru169eplUURCCBFcViT83QASiagmEcUC6A5glZ4KWKH58GNiYuwOQehw5oztbQshlGUo4RPRYgA7ANQhomwi6s3MuQAGA9gA4DCApcx8UGe9hu54ZbXk5GS7QxA+VKlSxe4QhFCWoYTPzOnMXImZY5g5npln312+jplrM/MDzDyusHq81KtMC9/TY489hv3796No0aI+y9SrVy+IEQkhhDZKzoevagu/Zs2a+J//+R+/ZXbv3o0nnngiSBEJIYR2SiZ8VVv4zz77LCpXruy3TEpKSsB3lhJCCCspmfBVbeELIUQoUzLhq9rC10puEC2EUJGSCT/U1a9f3+4QhBCiACUTfiR16ZQqVcruEIQQEULJhB8KXTrR0dHO52XLltW9/VNPPYXc3Fx8/vnnJkYlhBC+KZnw7aS1O2bkyJHO582aNcP06dOxadMmzftZs2aN25eGEEJYTcmEb2eXTs+ePTWVGzFiBBo3boy4uDh07twZAwYMQKtWrSyOTgghAqdkwg+FLh0iws6dO/HLL7+gYcOGdocjhBCFUjLhhwoiQvHixe0OQwghNJGEb4OSJUs6n+fm5toYiRAikkjC91CxYkXL97Fu3Trn82vXrlm+PyGEABRN+HactK1fvz6ysrJw3333+SxTqVIlw/spW7as2+RqrvPtnzp1SlMdu3btMhyHECLyWHGLQ8OYeTWA1SkpKX2Ctc/ExETUrl3ba9L96quvsHnzZvTu3dv0/TZt2hTPPPMMHn30Uc3j+Rs1aoSoqCjk5eWZHo8QInwpmfBV06JFC7Ro0cKSumNjY/HZZ58BkDl4hBDWUrJLRwghhPkk4Yeo9u3b2x2CECLEBC3hE1EJIppHRLOIqEew9huupk6dancIQogQY/Qm5nOI6BwRHfBY3p6IsojoOBFl3F38NIBMZu4DoKOR/Yr82y0KIYQeRlv4cwG49S0QUTSAaQA6AEgCkE5ESQDiAfx4t9gdg/sNS2XKlEFqairatm1rdyhCiDBkaJQOM28hohoeixsDOM7MJwGAiJYA6AQgG/lJfz8UPneQlJSEMmXKICEhAbGxsUHdNxFh9erVzudCCGEmKxJvFfzekgfyE30VAMsAdCWiGQBW+9qYiPoS0R4i2nP+/HkLwvOuZcuWAICqVavif//3f7Fr1y5lkm7fvn3tDkEIEQasSPjesiQz81Vm7sXMA5h5ka+NmXkmgLcB7AtWC7tBgwYYNGiQ83XRokURFWXvj5B7773X+fyjjz6yMRIhRLiwIqtlA6jq8joewBkL9mOalJSUoLXmtV5c1bx5c2sDEUJEHCsS/m4AiURUk4hiAXQHsEpPBaEwH36grLpi1w4PPfSQ3SEIIXQwOixzMYAdAOoQUTYR9WbmXACDAWwAcBjAUmY+qLPeiLmJeahKTk6WSdyECDFGR+mk+1i+DsA6b+s01hv0ydOEPmXKlEGxYsXsDkMIoYOSwyNDvYXvuCjqnnvuKbDO6Ilo126u9957z1BdQojIomTCD/U+/DZt2mDZsmXYunWr2/K4uDi88cYbpu1nyJAhftfHx8ebti9PqgxZFUJop+T0yESUBiAtISHB7lACEhUVhS5durgtq1q1Ko4fPx60i7l69uyJ3bt3W1Y/M1tWtxDCGmHbwi9atKjzuetdpeykJ9m3a9cOAPDkk08GtK9JkyZJUhZCuFGyhW+G9u3bY/jw4ahVq5bbTcNDRa9evVCpUiX84Q9/8Fvusccew86dO92Wvf/++35v1WgG6dIRIvQomfDN6NIpWbIkJk6cqKmsKr8AXBUpUgSpqamFlluxYgXuv/9+t2WOXxLSwhdCuArbLh0tRo0ahYSEBLz00kuW7sdK3lrylStXBgCcPXs22OEIIRSmZMIPljFjxuDYsWNISUmxOxTNoqOjCy3j6G5p0KCBpjpdzy2kp3u9tKIA+fUgROiJ6IQfih5++OFCyzgmftOalH/77Tfncy1fKK7GjBmjq7wQwj5KJvxQv/DKCq1atQIAdOjQodCyehO+64gmAKhUqVKh2zh+RYwaNUrTPoQQ9lMy4Yf6hVdWWLBgARYsWIBXXnml0LKOZJyXl6d7P0SE8uXLF1ou0OGiQgj7KJnwRUGVK1fG888/j7i4uELL6m3heypsyob33nsPr732WkB1CyHsIwk/DDla+IEmfH+t94SEBAwZMgQlSpTQXW+fPjIXnhB2koQfhhwtfMcJXrMuPBs1ahQ2bdoU8Pbt27cvvJAQwjJKJnw5aWuMI+H/4x//wFtvvYV9+/Zhzpw5husdM2YMqlWr5nN9cnKyz3XhdOMXIUKVkglfTtoa4+jSKV26NEaPHo3ExET06tXL8n73IkV8X7hdp04dS/cthCickglfGOPrBuze+vTNnJH0nXfeQd26dTFv3jyv62X+HSHsJQk/DEyZMsXttZ7E2rhx44C39VStWjUcOnQIPXv2LLBOrswVwn6S8MOAZ1eNrxa+FkYSs7TghVBb0BI+EdUiotlElBmsfUYqFRLv0qVL8fbbbztfB+vGL0II3zQlfCKaQ0TniOiAx/L2RJRFRMeJKMNfHcx8kpl7GwlWaKOnD9+TWV8Wzz77LP72t785X997770B15WUlGRGSEJEPK0t/LkA3AZRE1E0gGkAOgBIApBORElEVJ+I1ng8KpoatfDLyPz+WqZV8NSgQQOULl0a1atXD3i/QgjraUr4zLwFQI7H4sYAjt9tud8CsARAJ2b+nplTPR7ntAZERH2JaA8R7Tl//rzmP0T87pFHHtG9zbx589C4cWMMHTpU97Z79+7FhQsX/H7RGPnl4G3bQYMGBVyfEJHKSB9+FQA/urzOvrvMKyK6h4g+BPAIEY3wVY6ZZwJ4G8A+6ffVb9GiRQGdtO3Zsye+/fZbVK1aVfe2UVFRhu8aNnLkSJw4ccLrOm8Jf+rUqYb2J0QkMpLwvTXZfHYSM/MvzNyfmR9g5gn+KpYLr/Rz9JHXqlXLZxlvffh65783wl8rf+zYsYiPjw9aLEJEIiMJPxuAa3MwHsAZY+Hkk6kV9Nu8eTMyMzMLvem5Q0ZGBmJjYwudbrl27dpmhAci0jWnz7Bhw0zZrxDid0YS/m4AiURUk4hiAXQHsMqcsIRe9erVQ9euXTX3lU+YMAEXL14M6u0dW7ZsiR49emgqO378eOdzFYaZChEOtA7LXAxgB4A6RJRNRL2ZORfAYAAbABwGsJSZD5oRlHTpBEfx4sWDti8iQnR0NBYuXOi3jBDCOr5nu3LBzF7vbM3M6wCsMzUi5HfpAEgzc54XEX7TG3Tq1AkrV660OwwhQoaSUytIC18dKnxJ+Gr5P/roo26vly1bhhkzZgQjJCFCkpIJX4QfK7prvNXZpUsX0/cjRLhQMuHLKJ3I5O9LYcuWLQWWlS1b1u01Myvxi0QIVSmZ8KVLxxqhlAxdkz8R4YknnihQRu6RK4Q+SiZ8aeGHH7OnVgCAuLg4t9eh9IUmhB2UTPjSwrffhAkTUL58eaxYsQKxsbFo06aN5fuUYZlCWEvTsEwReTIyMjB8+HAQEa5cueL3frVamJnMfQ3XLVq0qGn7ECIcKdnCDyetWrUCALRt29bmSPRzJOmYmBhbW9+e+y5dunSBMtHR0QXe42eeeSaoVxILoTolE3449eF/8sknePfddzFx4kS7Qwn5Pu7Vq1cjKSkJ8+fPL7Bu06ZNBe6q9dlnn2HOnDm69pGYmKipnEz0JkKRkgk/nPrwq1WrhqFDhxq641M40PILobAyqampOHjwIOrVq2fqfh2Sk5Nx9OhRzeWFCDVKJnwhXAWrO0nPL6BOnTpZGMnv3nvvvaDsR0QGSfhCSXqTfLDPMdSvXz8o+2nevHlQ9iMigyT8CGJnH74ZXTpaeP6NgdQ5bdo0t+mZHVzPKRkdtSSEHZRM+OF00lYUtHLlSs3z4gPB79IZOHAgRowoeBfO0qVL47XXXkOrVq0KTNxmhuHDh5tepxCulEz44XTSVhTUsWNHv/PiB8LxpWDky0HLyJspU6Zg06ZNKF++fMD78cXbSK6aNWuavh8RuZRM+CL8WDG1gjdGuq369++vuWz16tU1l/V1c3ZvXG8D+d///d9y9bEwlST8CKLqOPynn34agO/EHqyk5zmOvzDp6V7vC1SAvxvLewr0GG3evBlNmjQJaFsROSThi6Dwl7TNmBIhHFvCepJ/8+bNkZaWZmE0IhwEdagBEXUG8BSAigCmMfPGYO5fqMlbsjbr14iV3UHeyicmJuLYsWPO10uWLNFVp96Y3nnnHWc/fzh+6QlzaW7hE9EcIjpHRAc8lrcnoiwiOk5EGf7qYOYVzNwHwIsAugUUsQhrHTt2RGpqKqKifv9ohloic0zP8N1336FbN30f85deeklX+WHDhuHZZ5/VtY0Zdu3aFfR9CuP0dOnMBdDedQERRQOYBqADgCQA6USURET1iWiNx6Oiy6aj7m4ngkj1cfhA/pDN1atXm1a/v/1OnjxZd4J15ev9XL9+PTZs2BDQxVmTJ08OOB6reBst16hRIxsiEUZp7tJh5i1EVMNjcWMAx5n5JAAQ0RIAnZh5AoBUzzoo/79vIoB/M/M+b/shor4A+gL589AIYZW//OUvAKB7grXC1KpVS9eJWleeJ471fElb9Uto1apVcsVvmDB60rYKgB9dXmffXebLywCeBPAMEXkdA8fMM5k5hZlTKlSoYDA8EQpCrcvGwXUIpVX0JPx77rnHkhhC9fiIgoyetPX2SfD5CWXmDwB8UGilRGkA0nzd6EKEHqvH4TvKlCtXDsWLF0e5cuUM79eVtymZx40bhxMnTmDz5s2m7MNTiRIldJWPiYmxJA4RPoy28LMBVHV5HQ/gjME6hUVUG4ffsmVLANrHs2sRFxeHo0ePYv/+/Zq3cdwgvWnTpl7Xd+zYES+88EKB5ffddx+++uorlC1bNpBQfVqwYAG6du2KP/3pT37LOb7UHAr7cgv0F8mDDz7o9vrhhx8OqB5hP6MJfzeARCKqSUSxALoDWGU0KJlaITKsX78eWVlZeOqpp7yudyTgLl266Kq3SpUqXu8/kJpa4LQSAODrr7/GjRs3vJ6c1MuMXxTPP/88MjMzUbRoUb9f0lpa9MWKFXM+37lzZ0DxeHat6rkfgUPXrl0D2rcwl55hmYsB7ABQh4iyiag3M+cCGAxgA4DDAJYy80GjQcnkaeHHWyKMjY1F7dq1fW7z73//G+vXr3eeXDW63+XLl/ss4+/iLyvG8kdHR2uuM1B9+vRxux1kvXr1wMy2/NKzu/E2c+ZMW/evCs0Jn5nTmbkSM8cwczwzz767fB0z12bmB5h5nBlBSQtfAPmzU7Zr107TVMRakrJKUxo3btzY9Dpd34ObN29aluQC+RVT2L2FXX+JCOsoObWCtPCtEQrj8FUUirHrnRdID1/nOvx55JFH/K5PTk4ONBxNVDt/ZRclE7608IVZ7J6QzSg9J4Q9T65aoVatWujXr5+pdUb6/Z6DScmELy18oZevBO46RYPZdRuhtcWpJ/5GjRphxYoVOHLkSKBhFWrcuHFB7Rrr0KFD0PYVCdTp1HTBzKsBrE5JSeljdyzCHHa1qGvVqoU2bdpYeiMRlboLzL65uuNamMOHD2Pr1q147rnnTK3fwdfnY926dThw4IDhewirdIzspGTCF9YI5w+9r9E+UVFR2LjR2KSsodL9441Zx/zBBx8MSpeRNw899JDhOsL5s6+HdOmIkPbrr78iOzvbklsOBkLrl4MZM1xakcT+/Oc/m16nUIeSCV9O2oYfq1rJpUuXRpUq/qZvMs7M2OPi4nDt2jVlJwZs06aNZXWrNCw2UimZ8IWwml3dNESk9Jhzq+bWL1u2bMBX+pohFLt0Jk2aZHqdSiZ86dKxxqOPPmrbvkO5HzyUY9ejRYsWAf2thU0vPWXKFDz44INo2LChpi4jmQQunxVfvkomfOnSsUafPn3w8ccf48SJE3aHElLMTPjBbmnWqFEDAFCqVCnT6961axe++eYb9OrVC3Xr1vVZ7rXXXnM+nzVrFvLy8nD58mWf5SPlC7YwVrwPSiZ8YY3o6Gj07t074JtzGKFan7WZiTeQeeiDlfj/9a9/IT09Hdu2bTO97kaNGuHxxx8HABw4cAC3b9/G8OHD8dhjj/ndjohQsmRJ5xDSbt26oWrVqn63iURmz8IKyLBMYbHt27dj69atpo8PD6bCWlqrVq0yZeigFWrUqIFPP/1UU1kjLcqoqChERUVh4sSJ+PDDDzX11y9cuBBffvkl2rVrh0uXLmHp0qUB778wodiHb0UPh7TwhaWaNGmCN954I6x/pterVw/t2rUDAJ9TPXtS8f3wdlXvk08+qbsercm1ZMmS6NixI4oWLYr77rvPudzIe9O5c+eAt40ESiZ8OWkrVKIlAX300UcYO3Ys/va3v1kWR9GiRS27u1b16tUxbdo0t2VNmza15abq3t7v7t27Bz0OM9y4ccPuENwomfDlpK2wmtkt7OrVq2PkyJE++127desGAOjRo4fuuh1TCzdt2tSym4mfOnUKderUcVv25z//WfdtFq2yePFiQ9sbPd6BTinh7z4LdlAy4QuhEjO+HObMmYOVK1fin//8p+5tV61ahdGjR2PJkiWG4wiGQPvLBwwYgM6dO6Ny5cqmxlOqVCk8//zzSEpKCriO/v37B7xtIPclaNu2bcD780cSvhA+OMaDN2zY0HBdxYsXR8eOHQO66KpSpUp46623ULFiRcNx+KLC0NPp06dj+fLlmmLxdctEzy+LlStXYu/evShVqhQOHjyIZs2aBRSbEX369MGdO3c0l3fc6c0KkvCF8CErKwszZszAkCFDTK87FEaNBBqj0b+tV69eAICnn37aZ5mePXvipZdecr4eOnQo1q5d6zbkePjw4ejYsSMSExMNxeNLbGwssrKyNLXg9UxzXaNGDctO6gct4RNRXSL6kIgyiWhAsPYrRKBq1qyJ/v37y5WfQZaRkYGtW7di0aJFPsswM15//XXn6+TkZPzxj390KzNx4sQC25mdSGvXro0+fUJnFndNCZ+I5hDROSI64LG8PRFlEdFxIsrwVwczH2bm/gCeA+D/BpdCWCwUWtiRKjo6Gs2aNUNcXJzubVUc7qqXlZ9NrS38uQDauy4gomgA0wB0AJAEIJ2IkoioPhGt8XhUvLtNRwBbAWwy7S8QQihFlZE9VgvFRoOmhM/MWwDkeCxuDOA4M59k5lsAlgDoxMzfM3Oqx+Pc3XpWMXNTAPrHpglhItVagunp6XaHUECgCa1Hjx7o2rUrMjIycPr0aZOjyud5/NLS0kypd+HChWjdurUpdanIyNQKVQD86PI6G8AffBUmohYAngZQFMA6P+X6AugLqDf/ihBWuHTpkiWX0dslNjYWmZmZQd1nuXLlTKmnR48eOHbsGDZtcu+EUK2BECgjCd/bO+CzScDMmwFsLqxSZp5JRGcBpMXGxhofDyeE4sIp2dstkH7/QD3xxBNB25dZjIzSyQbgOsVdPIAzxsLJJ1faCuHbvHnzAACffPKJzZHYh5m9trpffPFFtGzZEtOnT/e6nZ7hkYWx6kI4FU7aerMbQCIR1SSiWADdAawyIyiZS0eEOyP/1D179sTt27c1T9TmjZYpGlQ7KanlwrPixYvjyy+/xIAB3kd+z5gxA9WrV/c7g6jWv7tChQqayqlE67DMxQB2AKhDRNlE1JuZcwEMBrABwGEAS5n5oHWhCiEcjN4fdtWqVVi+fLnXdW+++SZq166t3IRlhw4dMlxHUlISfvjhByVPkgeD1lE66cxciZljmDmemWffXb6OmWsz8wPMPM6soKRLRwhrlS5dGp06dcLDDz+M5ORkt3Xjxo1DVlYWSpYsaVN03gVyoxmzFNaa37p1a5AiMUbJqRWkS0cI6xER9uzZgz179tgditKaNWuGevXqYdq0aV6v3nWUKcxzzz2H+Pj4Qqd6ULUP3zLSwhciOGJiYgx3D9nByphdE25MTAyWLVsGABg4cCBeeeUVAPB7D19f/vWvf+H06dO2TpmsZMKXFr4QwpsJEyagbdu2zjuMWW3+/PluJ4uLFSuG69ev4/vvvy9Q9uOPPy60PrvH8yuZ8KWFL4TwJiMjAxs2bAjarxLHjWtcxcXFITo6usByVe9r7ErJhC9EuFNtyKP4neux0dMiN9J6D+Q+CYFQMuFLl44QIpJ88803zuf333+/ZftRMuFLl44QIlJZOfxUyYQvhBDh6k9/+pNt+5aELyKS3aMlROQaOnQotm/fjs6dOwd930omfOnDF1aTk6bCLlFRUWjSpIkt4/GVTPjShy/CnfzCUFegjQG9x9SORoeSCV8IIYT5JOELYQPpUlJP7dq1AdhzbILVvRN6k2gIIYQFhg4datu+69WrhwEDBqBOnTqW7kfJhE9EaQDSEhIS7A5FCKEooxcojRkzBosXLzZlnn3AWB8+Efm8S5eZlOzSkZO2wmpy0jT0lS1bFt999x1OnToV0PajRo3CwYO/37MpmPfDtYuSLXwhhNCifv36huv48MMPsWrVKuXu8GUFJVv4QggRLP369cPatWudJ06DddJWhmUKESQySkZEoqAmfCIqQUR7iSg1mPsVQjXyhSOUbeET0RwiOkdEBzyWtyeiLCI6TkQZGqoaDmBpIIEKIYQwRutJ27kApgKY71hARNEApgFoAyAbwG4iWgUgGsAEj+1fAvAwgEMAwv9UuBBCKEhTwmfmLURUw2NxYwDHmfkkABDREgCdmHkCgAJdNkTUEkAJAEkArhPROmbO81KuL4C+AFCtWjUdf4oQ2smwTBGJjPThVwHwo8vr7LvLvGLmkcz8KoBPAczyluzvlpvJzCnMnFKhQgUD4QkhhH7ly5cPaLsGDRrg0UcfNTkacxlJ+N6aSIWehWDmucy8xm/FMj2yEMImgwYNwn/9139h5cqVurYrUqQI9uzZg9mzZ2sqn5iYGEh4hhi58CobQFWX1/EAzhgLRwgh7FWsWDEsWrQooG31dBWOGjUKAIJ6wZeRFv5uAIlEVJOIYgF0B7DKjKBkagUhRLgrUaIEJkyYgOTk5KDtU+uwzMUAdgCoQ0TZRNSbmXMBDAawAcBhAEuZ+aC/erSSLh1hNbvHwdu9f2EdlfvxtY7SSfexfB2AdaZGlF/vagCrU1JS+phdtxBCWKlBgwbYtm0batasaXcoBSg5eZpMjyysJsMyhZWaNm1qdwheKTmXjvThCyGE+ZRM+NKHL4QQ5lMy4UsLXwghzKdkwhdCCGE+JRO+dOkIIYT5lEz40qUjrFKqVCkAQLly5WyNo127dgCAtLQ0W+MQkUXJhC+EVWbNmoXo6GjMmDHD1jjKly+Pmzdv6p6vRQgjSMUr/lzG4fc5duyY3eGIMHPt2jUUL17c7jCEsAwR7WXmFM/lSrbwpUtHWEmSvYhUSiZ8IYQQ5pOEL4QQEUISvhBCRAglE76MwxdCCPMpmfDlpK0QQphPyYQvhBDCfJLwhRAiQih54ZUDEZ0H8P88FpcB4Nm5723ZvQAuWBRaYbzFE4x6tJYvrJy/9b7WqX5c7DomWrcxUiZUjwlgznGx6phoKWfV/4rRY1KdmSsUWMrMIfUAMFPjsj0qxRiMerSWL6ycv/W+1ql+XOw6Jlq3MVImVI+JWcfFqmOipZxV/ytWHZNQ7NJZrXGZncyKR289WssXVs7fel/rVD8udh0TrdsYKROqxwQwJx6rjomWciH1v6J0l44RRLSHvcwlIewlx0U9ckzUY9UxCcUWvlYz7Q5AeCXHRT1yTNRjyTEJ2xa+EEIId+HcwhdCCOFCEr4QQkQISfhCCBEhIibhE1EJIppHRLOIqIfd8QiAiGoR0WwiyrQ7FvE7Iup89/9kJRG1tTseARBRXSL6kIgyiWhAoPWEdMInojlEdI6IDngsb09EWUR0nIgy7i5+GkAmM/cB0DHowUYIPceEmU8yc297Io0sOo/Lirv/Jy8C6GZDuBFB5zE5zMz9ATwHIODhmiGd8AHMBdDedQERRQOYBqADgCQA6USUBCAewI93i90JYoyRZi60HxMRPHOh/7iMurteWGMudBwTIuoIYCuATYHuMKQTPjNvAZDjsbgxgON3W4+3ACwB0AlANvKTPhDif7fKdB4TESR6jgvlewfAv5l5X7BjjRR6/1eYeRUzNwUQcJd0OCa+Kvi9JQ/kJ/oqAJYB6EpEM6De5eXhzusxIaJ7iOhDAI8Q0Qh7Qotovv5XXgbwJIBniKi/HYFFMF//Ky2I6AMi+gjAukArL2I0OgWRl2XMzFcB9Ap2MAKA72PyCwBJKPbxdVw+APBBsIMRAHwfk80ANhutPBxb+NkAqrq8jgdwxqZYRD45JmqS46IeS49JOCb83QASiagmEcUC6A5glc0xRTo5JmqS46IeS49JSCd8IloMYAeAOkSUTUS9mTkXwGAAGwAcBrCUmQ/aGWckkWOiJjku6rHjmMjkaUIIESFCuoUvhBBCO0n4QggRISThCyFEhJCEL4QQEUISvhBCRAhJ+EIIESEk4QshRISQhC+EEBFCEr4QQkSI/w8WZdMUaIgkSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit this, we'll write a convenience function that can take the power spectrum, a model, some starting parameters and just run with it:" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDLogLikelihood, PSDPosterior, PSDParEst\n", + "\n", + "def fit_powerspectrum(ps, model, starting_pars, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + " \n", + " if priors:\n", + " lpost = PSDPosterior(ps, model, priors=priors)\n", + " else:\n", + " lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m)\n", + "\n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + "\n", + " return parest, res\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see if it works. We've already defined our model above, but to be explicit, let's define it again:" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "model_to_test = models.PowerLaw1D() + models.Const1D()\n", + "model_to_test.x_0_0.fixed = True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we just need some starting parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [80, 1.5, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([109.14539343, 2.07102572, 2.00200532])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks like it worked! Let's plot the result, too:" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0TElEQVR4nO3deZgU1dX48e9hYNhXBWWTRRYZRFCRCOgPFNki4IIIvCiKBFE0LrwqICRiUEFfNG6IS0BQEINE2STiLqIgICEKCrIZHJeAIooIwjDn90dPD71Pb9VdPX0+z1PPTFfdunWnq+fU7Vu37hVVxRhjTOlXJt0FMMYYkxoW8I0xJktYwDfGmCxhAd8YY7KEBXxjjMkSFvCNMSZLlE13ASI5/vjjtXHjxukuhjHGZJSPP/74e1WtHbjelQFfRPoCfZs1a8a6devSXRxjjMkoIvKfUOtd2aSjqktU9drq1aunuyjGGFNquDLgi0hfEXn6p59+SndRjDGm1HBlwLcavjHGJJ8rA74xxpjkc2XAtyYdY4xJPlcGfGvSMcaY5HNlwHfK22+/zcSJE9m7d2+6i2KMMSnn+n74ydStWzcAypUrx/jx45OatzHGuJ0ra/hON+ns2bPHkXyNMcbNXBnwjTHGJJ8F/CIfffQRzZs3Z8qUKekuijHGOCIrA/5XX33Fgw8+yJdfflm87vHHH2fbtm2MGzcufQUzxhgHuTLgJ6Mf/oEDB1ixYgVHjhzhgQce4Mwzzyze9vLLL3PbbbcxdOjQ4nWHDh1KqMzGGON2rgz4ybhpe9lll9GlSxdGjx7NmDFjWL9+fVCa999/P1IZuOWWWxgzZgyqGnc5jDHGLVwZ8JPhtddeAzxNNfH44osveOSRR3jggQf4+uuvQ6Y5fPgwzz//PJ9//nnc5TTGmFRxZT98NygoKAj5u6+5c+dyzTXXUK9evbAXBWOMcYtSW8NPhS1btgDwzTffxLSfNREZY9IhZQFfRC4WkWdEZJGI9HD0YP/+N7kx7rJgwYLi33/77beIaXft2sWrr77K0aNHYy7ajh07OPHEE7nxxhtj3tcYYxKRUMAXkZkisltENgas7yUiW0Rkm4iMBVDVhao6ArgaGJjIcSP6+Wfo3p3Pgf5RJA8VtJ944omQaefPn8+4cePo3Lkzffr0Yc6cOTEXb8GCBezevZtp06bFvK8xxiQi0Rr+LKCX7woRyQGmAb2BPGCwiOT5JJlQtN0ZkyfDnj00BRYA7wNnRUj+/fffB9XoP/3006B0Bw8eZODAgUyZMoX8/HwAvvvuu5B5bt26lTfffDNk001hYWGUf4gxxiRXQgFfVVcAgUNPdgC2qeoOVT0MvAhcJB73A/9U1eA+ksnSuDHUqlX88hxgDfA80DBE8gYNGtCwYagtx3zyySds2LAh6iKcddZZdO/enVWrVvmtf+WVV+zBLmNM2jjRhl8f+MrndX7Ruj8CFwCXich14XYWkWtFZJ2IrItrkLORI2HbNh4EDvusvgLYAkwCqvisLygoCDmY2tatW4t/37VrV0w3Wr0PjD3//PN+6y+99NKo8zDGmGRzIuBLiHWqqo+q6pmqep2qPhluZ1V9GrgbWJ+bG+utV4/XPvqI2/C0J/3DZ31FPO1JW4E/EPmP37RpU/HvIqH+pJJVq1Ytrv2MMcYJTgT8fPxbTxoAMfVbTPRJ2yFDhgCwHbgM+H/AOp/tJwLPAP/C85UjxPEpWzbxRxRef/11Dh8+XHJCY4xJAScC/lqguYg0EZFcYBCwOJYMEh1LJ3BGq/fx3Fi4Es/VyOs04A1gKXCKz/pZs2YxduzYuI7ta8OGDTb6pjHGNRLtljkPWAW0FJF8ERmuqgXAjcBy4HNgvqpuipRPsg0aNChonQJzgBbAn4ADPtsuBD4FHgOOT3JZ5s2bl+QcjTEmPon20hmsqnVVtZyqNlDVGUXrl6lqC1U9WVXvjSNfx2a8OgjcAzQHZgDeTpJl8VyltgL/CzE/uBWOt5//0qVLI6Y7dOiQjcljjHGUK4dWSLRJJ5oeNd/iuXF7BvC2z/oawFSI+sGtkuTleR5B6Nu3b8R0gwcPJi8vjyVLliThqMYYE8yVAT/RGr5vD5uS/BvoBvTF023Ty/fBrTo+E6WE462dB94/iKanzrfffsvChQsBT1998IzE+d577xU/FHb33XczderUEvMyxphwXBnwE63hHzhwoOREAZYCp+J5WOAHn/XnAAOmTqX5xIk0jrD/zTffDMDMmTNjPvYtt9xS/HthYSF79uzhnnvuoWvXrtx5553s2bOHiRMncvvtt5c4zo8xxoTjyoDvZBt+JAXA40AzCHpwq/Ybb7C5aH2tEPu+8cYbAPzwww8htkbmrd0DzJ49mzp16jBp0iQAHnroIb/hmX2HZlBVRo4cyX333RfzMY0x2ceVAT/d9kHIB7fKA6Px9O8fA1QI2G/VqlUxd8OMZmrFcPcktm7dytNPP8348eNjOqYxJju5MuAnY07bZPA+uNUZ+NBnfQ1gCvAFnqE/vW/iW2+9FVP+H3/8MTVr1izx4aw77rgj5PpwE7MYY0worgz46WrSCedDPEH/Evxv7DYEngU24BkalBgnNpk1a1ZUNfy5c+fGlK8xxoTiyoCfqBNPPNGRfBfiubF7HeA7MHIbYBnQbfJkzowhv0SGSt67dy+9e/eOe/9YTZ061XoJGZPhSmXAf/DBBx3LuwB4Cs+N3buAX3y2dTx4kHXAC0CTonULFiyIa6KUksycOZNdu3YlnM8LL7xAz549+f7778OmOXz4MLfffrv1EjImw7ky4Cfaht+xY0dHgqyvA8Bf8AT+J/BcCLwGA5uBh4EqBw9y5ZVXJvXYe/fuZd++fVGnf+SRR7j55ptD3vwdMmQIr7/+Oq1ataJ79+4hA7rvNxGbwMWYzOXKgO+2NvxI/gvcALTGv0dPLnAzsAPPGPzJ+ktWrFhB7dq1ufde/xErnnnmmaC0t912GzfccAO33HILjz76KJs3bw6b7/fff8+bb77JCy+8ELTNJl03pnRwZcDPRF/g6dHTEc/TuV5V8IzBvxMYC1Ty2fbcc8/FfJzp06eHrGVfe+21QesefPBBv/l5oxmq2ZpsSj9VjekboklMrN+KDxw4wM8//+xIWSzgJ9lqPOPv98MzAqdXTWAynq6ef8TzDeCXX34J2r8k//rXv+IuW7wTuYSr4W/fvj3kJPDG3QYOHEjNmjVZv965mUZLsyNHjrB27dqIn/2dO3cyfvx4vvzyS2rXrs3VV18ddf5VqlShevXqjnS7toDvkCVAO+B/8IzA6XUi8GjRumuAnBjzjfZGbaggHU3Aj7b5ZtGiRTRr1oyRI0fy6KOP8u233/pt/+yzz1i9enVUeZnY7d27l3vuuYf8/PySEwd46aWXAHj22WeTXayU27FjB6+//npUaX/55ZeInRMCFRQU8OOPPwatHzlyJB06dCh+Gj6ULl26cN9999GkSRP27t3L7Nmzoz6uVzxDxJRIVV234BnL7OlmzZppvObMmaN4hsFP+1IWdDjoLk9Pfb9lC+ggUEnCcXx17NgxaHurVq10wIABCugtt9yiBQUFQWmeeOKJoPfywIEDxdt//fVXVVXt2rVrUN6+fLft3r077vOYrfLz83XChAn63Xffhdzevn17BbRly5Yx5+09LzfeeGOixfSzf/9+HTVqlH744YdJzTcS79+yZMmSiOnefPPN4rS//PKLqqquWrVKu3Xrplu2bNFXXnlFR48erYWFhcX75OXlKaBff/217tu3T/v06aP33HOP32f7X//6l99xdu3apYWFhSH/P+++++6w5Tt48KCqqm7evLk4/b59++J8V1SBdRoqtoZa6ZblzDPPjPsPdlPA9y7lQW8C/S5E4P8EdABomQTynz9/vqqqHj16NKr0derUiSrg//LLL8Xb9+zZo4WFhdqpU6eIFxzf9V27dvXbVlBQUHzhMKGdfvrpCmiXLl2Ctu3cuTPs+x7JihUr9Prrrw8b8AsKCvS3334rfn348GHdsGGDXxBUVf3oo4/0mWeeKX49depUnTdvno4dOzZsmY4cOaJ79+71W/fNN98E5V1QUBC0LpJQ70NhYaF26dJFBw0apEePHtXVq1f7pdu8ebPfvm3bti3+/dRTT9XZs2dH/T/ke9ypU6cqoHfddVfYtAsWLChO732vvUF+2LBhfmkt4MfAjQHfu1QGHQe6N0Tg3wQ6OIHAf/jw4ZDBONrFG/A3bNigr776qqr6B/xoPvhFH7jipUmTJlpQUFC8rVu3blqnTh3dv39/8brCwkLNz8+P+3xHsnr1ap00aZJfGQ4cOODIsX799Vft27evzpkzJ6F8vO9dxYoVw24L9b7PmzdPX3jhhYh5hgv455xzjjZv3lyPHDmiqqqDBg1SQB955JGQ+bz00kv65ZdfFr9u0KBByDKpqlarVk0B3bVrV3E5AX388cdV1RPo77zzTgU03P99qAtBqPfhq6++Kl5XtmxZ7d27d8igG+mz7P0mHO3/nKpqpUqVokp/ySWX6KhRoxTQZcuW6eDBg0Oms4Afg2QF/G7duiUln1BLddBJoPsJDvybQa8AzYkxz3r16iVcLt/azY4dO3T//v1R7RfwgQtaXnvtNb9tq1atKk4/adIkBXTq1Klxn/NwvMebPXu2qqpOnDhRAX399ddjzuuLL77Qr7/+WmfMmKGzZs0K2v7www8XH6+wsFDfe++9oJptLGX2Dfjr16/X3//+91G97yUFR/AP+L7n/I033tCGDRsWv27durXu379f58yZoz/99JNfHhs3boz4WdiyZYv+9ttvfv9Pqqp169b1Szt37tywf5Oq6vTp0xXQ5557TidPnqxffPGFHjp0yG+fO+64w69JJJXL5s2btUqVKknN88cff4z5c+Nzri3ge5cGDRpo06ZNo3rTb731Vsc/LMfhCfw/ERz4t4Jejec+QKo+vA888EDx7/fdd58uWLAgqv0CPnBBS926dfWzzz4rfu0b8L3rcnNz4z7ngX788Ud95513ivP+y1/+4ness88+2y/9zz//rJdffrm++uqrun37du3du7dfGQODHaArVqzw2/6nP/0pKE3fvn1jLrt330qVKmlhYaHu378/bEAJtd/Ro0fD5uldvAE/sMnj5JNPjvqzEtgM4V0OHTqk/fv3V8Dvfk+ZMmV0z549fmkLCgr0hhtu8Fu3dOnSiGXPhmXu3Lkxf2583q/0Bnw8k0jNABZEu49TAb+wsFCnTZtW4hv+0EMP+dXYnF5qgk4E/ZHgwL8DdCRohRSUo2LFinHtF/CBC1rq1q3rV3MMFfAB3bZtm6pqyKAVixYtWvjl671p5n3dsWNHv/QTJkwo3ta5c+fi34cPH6716tXT++67L+TftXr1an3vvfeifm9UPd8UWrVqpc8991zIG47e/SpVqqQXXnhhzO/7TTfdpN99911x80zgewyegF9YWKjlypXzW3/88cen7DMfbqlQoYJeeeWVOmPGDJ08eXLay5OOJZGb6jgR8IGZwG5gY8D6XngGltwGjA3YlvKAf//992uZMmWC/kFKesNXrlypd9xxR8pPdHXQCaA/EBz4/ws6Hs/FId0fyMBlz549Ub+34AmU4dJ7e1Wcf/75OnPmTF27dq3OmzcvqnP/1FNP6dChQ0s8fmDA972h2axZs6S+N17du3f3u+gFvncffPCB7t27N6a8CwsL9dNPP9Wvv/46aJuI6MCBA/Xbb78N2jZq1CidMWNG2j83toReLrnkkrhiX9H/kyMB///hmQd8o8+6HDzPFzXF83zRv4E8n+0pD/h79+7VnJyc4tc+b0rE5dChQ35BINVLVdCxoHsIDvz7Qf8KepILPpi+y6RJk3TWrFlRpb3zzjvDnovAoOj91vHJJ5+oqufm6IcffqhHjx7VnTt36rhx44qDZrRlTWXAv+CCCyJu3759uy5cuDCuvM8555y0n3dbkr+UK1cu7viHU006QGP8A35HYLnP63HAOJ/XEQM+cC2wDlh30kknxf0HpzLgi4ijJ74y6M2g/yE48B8BnQPa1gUf0HiWUaNG+XWL8y6hasFwrG031Hnx3hCM9tidOnXSu+++W3v27KkFBQWOBvySlnXr1mmrVq3Sfj5scc+SKQH/MuBvPq+vxDNV7HHAk3hq/+OiyTuZNfwhQ4YooAMHDvR9UyIu0QZ8b59pp5eyoENA/01w4FfQd0H7E3vPnkxali5dqvv27Qu7PZrzGmp57LHH0v632WJL4BIvwgR8J4ZWCPX8vqrqD6p6naqerKqTI2bgwBSHTz31FMuXL2fGjBkx7deuXbuYj1WzZs2Y94lGATAXaIvnJsnbAdu7AAvwDNQ2DjjekVKkV58+fahRo0bS8/3jH/+Y9DyNcRsnAn4+ntn/vBoA3zhwnJhUrlyZHj16ULly5Zj2GzZsmEMlSsxyoBtwFvB3/MfjbwjcB3yFZwrGM1JeOmOMGzkR8NcCzUWkiYjkAoOAxbFkoC4aD79cuXLpLkJE6/C8wY2Be/B0mfKqgGeS9Y+B9XjG7a+R0tKl3jffpL1uYYxrJRTwRWQesApoKSL5IjJcVQuAG/FUQj8H5qvqphjzTXqTTjK1bds23UUI8jXwJ+AkPDdN1gRsPx3PjZRvgTnAeYRue8t09evXT3cRjHGthAK+qg5W1bqqWk5VG6jqjKL1y1S1RVF7/b0l5RMiX9fU8AOdffbZbNiwgfLly4dN07p16xSWyN9veAL674qW54CDPtsrAEPwtP9vBe4GTklxGY0x6eHK8fDdWsNv0qQJ//jHPyKmWbt2Leeee26KShTZGuAqoC5wPZ6mHV8nA3/G8zVsPXA7/jdfjDGliysDvltr+AMGDKBevXoR07Rv3z7umaWc8hOe/rDt8UzK8hjwY0Ca04EHgF3ACuAWoEnKSmiMSQVXBny31vBLg38DNwH1gP54unEeCkhzLvBXPBOw/xv4C3BmCstojHGGKwO+W2v40cqECaIPAS8DA4AT8DT9LMe/eyfAaXhuBq/D081zBp5eQaWxj78xpZ0rA36ma9OmTbqLEJOf8dzc7YWn5j8CeJXgmn8DPPPwzgP24Gn3vx/oAVRJVWGNMXFzZcDPpiadqlWrprsIfvYAfwP64KnF98dzMdgbIu3pwB14vhnsw3MBeAzPNwC7+WuM+7gy4GdCk05OTk7x7/E86n/hhRdSUFDAG2+8kcRSJdcBPM0+VwF1gE7AXcBKgpt+cvBcAG7E8w1gF55HrpfguQdwCdAoJaU2xoRTNt0FcJs2bdrw6aeflphu/PjxjB8/HoDOnTszYMAAWrZsGfVxli5dGncZ0+EonifsVuEJ4FWBrkB3PDd5TyO49lC/aOnjs24v8AmerqCfA5uLlnw8o0UZY5zjyoAvIn2Bvs2aNUv5sYcOHcrtt99eYrpx48axaNEiPvnkEy6++GLOPDO7+rHsx1N7X1L0uipwNtAZzzeBs4vWBaqF50LRNWD9ATwz5uwAvixa/uPzc3/SSm5M9nJlwFfVJcCS9u3bj0h3WcIREVavXs3BgwepVKlSuouTdvuBN4oW8NT2W+AZuO30ouUMINw4opWLtocb6G0vnhH4vvNZ/uvz+248zxbsxXPxMMYEc2XAzxQiYsE+jEKONde84LO+EdAaz3AOpwCtipbjSsivVtFyahTHPoIn+HuXvUU/f8ZzMfglxE/f33/FM0SF73K46G8yJpNZwE+DKlWOdWIsKAi8/Vm6/adoWRaw/jigJZ4LQuOipZHPzwoxHKMcnpvMdRIqabACgi8EvheEAjz3Orw/j4ZYV1KaQo7NfuH7e+DrSNtiTRvq3km4+ymxrC9NeaSDE+WwgB+gTp1kh4lgy5YdC3e//vqr48fLBD8AHxYtgQSojecBsRPDLHXwNBfVBJz6zlW2aIltRgVj4uPEN0pXBvx03LRt06YNCxYsYOfOnWHT1K1bN+Hj1KhRw29wNd/x9nfu3EmTJiWPYLNmzRo6dOiQcFkyheJpo98NlNx/CnLxBP5aHLsI1MRzE7kKnoDt+zNwXSWgfMASyzcMY9zKlQE/HTdtmzdvTosWLUIG/HfeeYd3332X4cOHJ/24nTp14rLLLuOMM86Iuj//WWedRZkyZSgstFblUA7juaH73yTnW5bgC0F5PBeYXDzPIpRN4GdZPDe7xWcpE+b3WF9H2hYo3NB/sawvTXmk01VJzs+VAd9tunbtSteuXR3JOzc3l5deegnIjDF4sllB0WK9gEyqJDvgu/JJW2OMMclnAT9D9erVK91FMMZkmJQFfBGpLCKzReQZERmSquOWVo8//ni6i2CMyTCJTmI+U0R2i8jGgPW9RGSLiGwTkbFFqy8FFqjqCKBfIsc1RNWbxxhjfCVaw5+FZxj1YiKSA0wDegN5wGARycMznPpXRcmOJnjcUql69er06dOHHj16pLsoxphSKKFeOqq6QkQaB6zuAGxT1R0AIvIicBGeAREbABtw8b2DvLw8qlevTrNmzcjNzU3psUWEJUuWFP9ujDHJ5ETgrc+xmjx4An19PEOr9xeR6RwbZDGIiFwrIutEZN2ePXscKF5o5513HgANGzbkv//9L2vWrHFN0L322mvTXQRjTCngRMAPFSVVVQ+o6jBVvV5V54bbWVWfBu4G1qeqht2uXTtuuOGG4tfly5enTJn0fgk5/vhjs8Y+9dRTaSyJMaa0cCKq5eM/w10DPCPbulb79u1TVpuP9uGqLl26OFsQY0zWcSLgrwWai0gTEcnFM8Xp4lgyyIQpDuPl1BO76XDqqdEMVmyMcYtEu2XOwzPrXUsRyReR4apagGdq0+V4ZrGbr6qbYsw3ayYxz1Rt27ZlzZo16S6GMSYGifbSGRxm/TKChzyPJV/Xz3iV7apXr07FihXTXQxjTAxc2T0y02v43oeijjsueB6nRG9E+zZzPfzwwwnlZYzJLq4M+Jneht+9e3defvllVq5c6be+QoUKUU2QHq2bb7454vYGDRok7ViB3NJl1RgTPVcOj5yOCVCSqUyZMlxyySV+6xo2bMi2bdtS9jDX0KFDWbt2rWP5q7plIjhjTLRKbQ2/fPnyxb/7ziqVTrEE+549ewJwwQUXxHWsBx54wIKyMcaPK2v4ydCrVy/GjBlD06ZN/SYNzxTDhg2jbt26/O53v4uY7uyzz2b16tV+6x555BFOOOEEJ4tnTTrGZCBXBvxkNOlUqVKFKVOmRJXWLd8AfJUtW5Y+ffqUmG7hwoWceOKJfuu83ySshm+M8VVqm3SiMWHCBJo1a8Y111zj6HGcFKomX69ePQC+/fbbVBfHGONirgz4qTJp0iS2bt1K+/bt012UqOXk5JSYxtvc0q5du6jy9L23MHhwyEcrgti3B2MyT1YH/Ex02mmnlZjGO/BbtEH5559/Lv49mguKr0mTJsWU3hiTPq4M+Jn+4JUTzj//fAB69+5dYtpYA75vjyaAunXrlriP91vEhAkTojqGMSb9XBnwM/3BKyc8//zzPP/889x0000lpvUG48LCwpiPIyLUqlWrxHTxdhc1xqSPKwO+CVavXj2uuOIKKlSoUGLaWGv4gUoasuHhhx/m1ltvjStvY0z6WMAvhbw1/HgDfqTae7Nmzbj55pupXLlyzPmOGGFj4RmTThbwSyFvDd97gzdZD55NmDCBt956K+79e/XqVXIiY4xjXBnw7aZtYrwB///+7/+46667WL9+PTNnzkw430mTJnHSSSeF3d62bduw20rTxC/GZCpXBny7aZsYb5NOtWrVmDhxIs2bN2fYsGGOt7uXLRv+we2WLVs6emxjTMlcGfBNYsJNwB6qTT+ZI5Lef//9tGrVitmzZ4fcbuPvGJNeFvBLgYceesjvdSyBtUOHDnHvG+ikk07is88+Y+jQoUHb7MlcY9LPAn4pENhUE66GH41EArPV4I1xt5QFfBFpKiIzRGRBqo6ZrdwQeOfPn8/dd99d/DpVE78YY8KLKuCLyEwR2S0iGwPW9xKRLSKyTUTGRspDVXeo6vBECmuiE0sbfqBkXSwGDBjAn//85+LXxx9/fNx55eXlJaNIxmS9aGv4swC/TtQikgNMA3oDecBgEckTkTYisjRgqZPUUpuIEhnfP5phFQK1a9eOatWq0ahRo7iPa4xxXlQBX1VXAHsDVncAthXV3A8DLwIXqeqnqtonYNkdbYFE5FoRWSci6/bs2RP1H2KOOf3002PeZ/bs2XTo0IHRo0fHvO/HH3/M999/H/FCk8g3h1D73nDDDXHnZ0y2SqQNvz7wlc/r/KJ1IYnIcSLyJHC6iIwLl05VnwbuBtZbu2/s5s6dG9dN26FDh/LRRx/RsGHDmPctU6ZMwrOGjR8/nu3bt4fcFirgP/744wkdz5hslEjAD1VlC9tIrKo/qOp1qnqyqk6OlLE9eBU7bxt506ZNw6YJ1YYf6/j3iYhUy7/nnnto0KBByspiTDZKJODnA77VwQbAN4kVx8OGVojdu+++y4IFC0qc9Nxr7Nix5ObmljjccosWLZJRPEQkpjF97rjjjqQc1xhzTCIBfy3QXESaiEguMAhYnJximVi1bt2a/v37R91WPnnyZH788ceUTu943nnnMWTIkKjS3nfffcW/u6GbqTGlQbTdMucBq4CWIpIvIsNVtQC4EVgOfA7MV9VNySiUNemkRqVKlVJ2LBEhJyeHOXPmRExjjHFO+NGufKhqyJmtVXUZsCypJcLTpAP0TeY4L6b0DW9w0UUXsWjRonQXw5iM4cqhFayG7x5uuEiEq/mfccYZfq9ffvllpk+fnooiGZORXBnwTenjRHNNqDwvueSSpB/HmNLClQHfeulkp0gXhRUrVgStq1Gjht9rVXXFNxJj3MqVAd+adJyRScHQN/iLCOeee25QGpsj15jYuDLgWw2/9En20AoAFSpU8HudSRc0Y9LBlQHfavjpN3nyZGrVqsXChQvJzc2le/fujh/TumUa46youmWa7DN27FjGjBmDiPDLL79EnK82GskM5uG665YvXz5pxzCmNHJlDb80Of/88wHo0aNHmksSO2+QLleuXFpr34HHrlatWlCanJycoPf4sssuS+mTxMa4nSsDfmlqw3/22Wd58MEHmTJlSrqLkvFt3EuWLCEvL4/nnnsuaNtbb70VNKvWSy+9xMyZM2M6RvPmzaNKZwO9mUzkyoBfmtrwTzrpJEaPHp3QjE+lQTTfEEpK06dPHzZt2kTr1q2Telyvtm3b8sUXX0Sd3phM48qAb4yvVDUnxfIN6KKLLnKwJMc8/PDDKTmOyQ4W8I0rxRrkU32PoU2bNik5TpcuXVJyHJMdLOBnkXS24SejSScagX9jPHlOmzbNb3hmL997Son2WjImHVwZ8EvTTVsTbNGiRVGPiw+pb9IZNWoU48YFz8JZrVo1br31Vs4///yggduSYcyYMUnP0xhfrgz4pemmrQnWr1+/iOPix8N7UUjk4hBNz5uHHnqIt956i1q1asV9nHBC9eRq0qRJ0o9jspcrA74pfZwYWiGURJqtrrvuuqjTNmrUKOq04SZnD8V3Gsi//vWv9vSxSSoL+FnErf3wL730UiB8YE9V0Avsx1+SwYNDzgsUJNLE8oHiPUfvvvsuHTt2jGtfkz0s4JuUiBS0kzEkQmmsCccS/Lt06ULfvn0dLI0pDVLa1UBELgYuBOoA01T19VQe37hTqGCdrG8jTjYHhUrfvHlztm7dWvz6xRdfjCnPWMt0//33F7fzl8aLnkmuqGv4IjJTRHaLyMaA9b1EZIuIbBORsZHyUNWFqjoCuBoYGFeJTanWr18/+vTpQ5kyxz6amRbIvMMzfPLJJwwcGNvH/Jprrokp/R133MGAAQNi2icZ1qxZk/JjmsTF0qQzC+jlu0JEcoBpQG8gDxgsInki0kZElgYsdXx2nVC0n0kht/fDB0+XzSVLliQt/0jHnTp1aswB1le49/O1115j+fLlcT2cNXXq1LjL45RQveXOOuusNJTEJCrqJh1VXSEijQNWdwC2qeoOABF5EbhIVScDfQLzEM9/3xTgn6q6PtRxRORa4FrwjENjjFP+93//FyDmAdZK0rRp05hu1PoKvHEcy0XaqW9Cixcvtid+S4lEb9rWB77yeZ1ftC6cPwIXAJeJSMg+cKr6tKq2V9X2tWvXTrB4JhNkWpONl28XSqfEEvCPO+44R8qQqefHBEv0pm2oT0LYT6iqPgo8WmKmIn2BvuEmujCZx+l++N40NWvWpFKlStSsWTPh4/oKNSTzvffey/bt23n33XeTcoxAlStXjil9uXLlHCmHKT0SreHnAw19XjcAvkkwT+MQt/XDP++884Do+7NHo0KFCnzxxRds2LAh6n28E6R36tQp5PZ+/fpx5ZVXBq0/4YQTeOedd6hRo0Y8RQ3r+eefp3///lx11VUR03kval4lXdzi/UZyyimn+L0+7bTT4srHpF+iAX8t0FxEmohILjAIWJxooWxohezw2muvsWXLFi688MKQ270B+JJLLokp3/r164ecf6BPn6DbSgC89957HDp0KOTNyVgl4xvFFVdcwYIFCyhfvnzEi3Q0NfqKFSsW/7569eq4yhPYtBrLfARe/fv3j+vYJrli6ZY5D1gFtBSRfBEZrqoFwI3AcuBzYL6qbkq0UDZ4WukTKhDm5ubSokWLsPv885//5LXXXiu+uZrocV955ZWwaSI9/OVEX/6cnJyo84zXiBEj/KaDbN26Naqalm966a68Pf3002k9vltEHfBVdbCq1lXVcqraQFVnFK1fpqotVPVkVb03GYWyGr4Bz+iUPXv2jGoo4miCspuGNO7QoUPS8/R9D3777TfHglw832JKmlvY95uIcY4rh1awGr4zMqEfvhtlYtljHRcoFuHudURy+umnR9zetm3beIsTFbfdv0oXVwZ8q+GbZEn3gGyJiuWGcODNVSc0bdqUkSNHJjXPbJ/vOZVcGfCthm9iFS6A+w7RkOy8ExFtjTOW8p911lksXLiQzZs3x1usEt17770pbRrr3bt3yo6VDdzTqOlDVZcAS9q3bz8i3WUxyZGuGnXTpk3p3r27oxOJuKm5INmTq3ufhfn8889ZuXIll19+eVLz9wr3+Vi2bBkbN25MeA5hN52jdHJlwDfOKM0f+nC9fcqUKcPrryc2KGumNP+Ekqxzfsopp6SkySiUU089NeE8SvNnPxbWpGMy2k8//UR+fr4jUw7GI9qLQzJGuHQiiP3hD39Iep7GPVwZ8O2mbenjVC25WrVq1K8fafimxCWz7BUqVODXX3917cCA3bt3dyxvN3WLzVauDPjGOC1dzTQi4uo+506NrV+jRo24n/RNhkxs0nnggQeSnqcrA7416TjjjDPOSNuxM7kdPJPLHouuXbvG9beWNLz0Qw89xCmnnMKZZ54ZVZORDQLn4cTF15UB35p0nDFixAj+9re/sX379nQXJaMkM+CnuqbZuHFjAKpWrZr0vNesWcP777/PsGHDaNWqVdh0t956a/HvzzzzDIWFhezfvz9s+my5wJbEiffBlQHfOCMnJ4fhw4fHPTlHItzWZp3MwBvPOPSpCvx///vfGTx4MB988EHS8z7rrLM455xzANi4cSNHjhxhzJgxnH322RH3ExGqVKlS3IV04MCBNGzYMOI+2SjZo7CCdcs0Dvvwww9ZuXJl0vuHp1JJNa3FixcnpeugExo3bswLL7wQVdpEapRlypShTJkyTJkyhSeffDKq9vo5c+bw9ttv07NnT/bt28f8+fPjPn5JMrEN34kWDqvhG0d17NiR22+/vVR/TW/dujU9e/YECDvUcyA3vh+hnuq94IILYs4n2uBapUoV+vXrR/ny5TnhhBOK1yfy3lx88cVx75sNXBnw7aatcZNoAtBTTz3FPffcw5///GfHylG+fHnHZtdq1KgR06ZN81vXqVOntEyqHur9HjRoUMrLkQyHDh1KdxH8uDLg201b47Rk17AbNWrE+PHjw7a7Dhw4EIAhQ4bEnLd3aOFOnTo5Npn4zp07admypd+6P/zhDzFPs+iUefPmJbR/ouc73iElIs2zkA6uDPjGuEkyLg4zZ85k0aJFPPbYYzHvu3jxYiZOnMiLL76YcDlSId728uuvv56LL76YevXqJbU8VatW5YorriAvLy/uPK677rq4941nXoIePXrEfbxILOAbE4a3P/iZZ56ZcF6VKlWiX79+cT10VbduXe666y7q1KmTcDnCcUPX0yeeeIJXXnklqrKEmzIx8GKxaNEiPv74Y6pWrcqmTZvo3LlzXGVLxIgRIzh69GjU6b0zvTnBAr4xYWzZsoXp06dz8803Jz3vTOg1Em8ZE/3bhg0bBsCll14aNs3QoUO55ppril+PHj2aV1991a/L8ZgxY+jXrx/NmzdPqDzh5ObmsmXLlqhq8LEMc924cWPHbuqnLOCLSCsReVJEFojI9ak6rjHxatKkCdddd509+ZliY8eOZeXKlcydOzdsGlXltttuK37dtm1bfv/73/ulmTJlStB+yQ6kLVq0YMSIzBnFPaqALyIzRWS3iGwMWN9LRLaIyDYRGRspD1X9XFWvAy4HIk9waYzDMqGGna1ycnLo3LkzFSpUiHlfN3Z3jZWTn81oa/izgF6+K0QkB5gG9AbygMEikicibURkacBSp2iffsBK4K2k/QXGGFdxS88ep2VipSGqgK+qK4C9Aas7ANtUdYeqHgZeBC5S1U9VtU/Asrson8Wq2gmIvW+aMUnktprg4MGD012EIPEGtCFDhtC/f3/Gjh3Lrl27klwqj8Dz17dv36TkO2fOHLp165aUvNwokaEV6gNf+bzOB34XLrGIdAUuBcoDyyKkuxa4Ftw3/ooxTti3b58jj9GnS25uLgsWLEjpMWvWrJmUfIYMGcLWrVt56y3/Rgi3VRDilUjAD/UOhK0SqOq7wLslZaqqT4vIt0Df3NzcxPvDGeNypSnYp1s87f7xOvfcc1N2rGRJpJdOPuA7xF0D4JvEiuNhT9oaE97s2bMBePbZZ9NckvRR1ZC17quvvprzzjuPJ554IuR+sXSPLIlTD8K54aZtKGuB5iLSRERygUHA4mQUysbSMaVdIv/UQ4cO5ciRI1EP1BZKNEM0uO2mZDQPnlWqVIm3336b668P3fN7+vTpNGrUKOIIotH+3bVr144qnZtE2y1zHrAKaCki+SIyXFULgBuB5cDnwHxV3eRcUY0xXonOD7t48WJeeeWVkNvuvPNOWrRo4boByz777LOE88jLy+PLL7905U3yVIi2l85gVa2rquVUtYGqzihav0xVW6jqyap6b7IKZU06xjirWrVqXHTRRZx22mm0bdvWb9u9997Lli1bqFKlSppKF1o8E80kS0m1+ZUrV6aoJIlx5dAK1qRjjPNEhHXr1rFu3bp0F8XVOnfuTOvWrZk2bVrIp3e9aUpy+eWX06BBgxKHenBrG75jrIZvTGqUK1cu4eahdHCyzL4Bt1y5crz88ssAjBo1iptuugkg4hy+4fz9739n165daR0y2ZUB32r4xphQJk+eTI8ePYpnGHPac88953ezuGLFihw8eJBPP/00KO3f/va3EvNLd39+VwZ8q+EbY0IZO3Ysy5cvT9m3Eu/ENb4qVKhATk5O0Hq3zmvsy5UB35jSzm1dHs0xvucmlhp5IrX3eOZJiIcrA7416Rhjssn7779f/PuJJ57o2HFcGfCtSccYk62c7H7qyoBvjDGl1VVXXZW2Y1vAN1kp3b0lTPYaPXo0H374IRdffHHKj+3KgG9t+MZpdtPUpEuZMmXo2LFjWvrjuzLgWxu+Ke3sG4Z7xVsZiPWcpqPS4cqAb4wxJvks4BuTBtak5D4tWrQA0nNuUtW8k3mDaBhjjANGjx6dtmO3bt2a66+/npYtWzp6HFcGfBHpC/Rt1qxZuotijHGpRB9QmjRpEvPmzUvKOPuQWBu+iISdpSuZXNmkYzdtjdPspmnmq1GjBp988gk7d+6Ma/8JEyawadOxOZtSOR9uuriyhm+MMdFo06ZNwnk8+eSTLF682HUzfDnBlTV8Y4xJlZEjR/Lqq68W3zhN1U1b65ZpTIpYLxmTjVIa8EWksoh8LCJ9UnlcY9zGLjjGtTV8EZkpIrtFZGPA+l4iskVEtonI2CiyGgPMj6egxhhjEhPtTdtZwOPAc94VIpIDTAO6A/nAWhFZDOQAkwP2vwY4DfgMKP23wo0xxoWiCviqukJEGges7gBsU9UdACLyInCRqk4GgppsROQ8oDKQBxwUkWWqWhgi3bXAtQAnnXRSDH+KMdGzbpkmGyXShl8f+MrndX7RupBUdbyq3gK8ADwTKtgXpXtaVduravvatWsnUDxjjIldrVq14tqvXbt2nHHGGUkuTXIlEvBDVZFKvAuhqrNUdWnEjG14ZGNMmtxwww38z//8D4sWLYppv7Jly7Ju3TpmzJgRVfrmzZvHU7yEJPLgVT7Q0Od1A+CbxIpjjDHpVbFiRebOnRvXvrE0FU6YMAEgpQ98JVLDXws0F5EmIpILDAIWJ6NQNrSCMaa0q1y5MpMnT6Zt27YpO2a03TLnAauAliKSLyLDVbUAuBFYDnwOzFfVTZHyiZY16RinpbsffLqPb5zj5nb8aHvpDA6zfhmwLKkl8uS7BFjSvn37EcnO2xhjnNSuXTs++OADmjRpku6iBHHl4Gk2PLJxmnXLNE7q1KlTuosQkivH0rE2fGOMST5XBnxrwzfGmORzZcC3Gr4xxiSfKwO+McaY5HNlwLcmHWOMST5XBnxr0jFOqVq1KgA1a9ZMazl69uwJQN++fdNaDpNdXBnwjXHKM888Q05ODtOnT09rOWrVqsVvv/0W83gtxiRC3PjEn08//BFbt25Nd3FMKfPrr79SqVKldBfDGMeIyMeq2j5wvStr+NakY5xkwd5kK1cGfGOMMclnAd8YY7KEBXxjjMkSrgz41g/fGGOSz5UB327aGmNM8rky4BtjjEk+C/jGGJMlXPnglZeI7AH+E7C6OhDYuB9q3fHA9w4VrSShypOKfKJNX1K6SNvDbXP7eUnXOYl2n0TSZOo5geScF6fOSTTpnPpfSfScNFLV2kFrVTWjFuDpKNetc1MZU5FPtOlLShdpe7htbj8v6Ton0e6TSJpMPSfJOi9OnZNo0jn1v+LUOcnEJp0lUa5Lp2SVJ9Z8ok1fUrpI28Ntc/t5Sdc5iXafRNJk6jmB5JTHqXMSTbqM+l9xdZNOIkRknYYYS8Kkl50X97Fz4j5OnZNMrOFH6+l0F8CEZOfFfeycuI8j56TU1vCNMcb4K801fGOMMT4s4BtjTJawgG+MMVkiawK+iFQWkdki8oyIDEl3eQyISFMRmSEiC9JdFnOMiFxc9H+ySER6pLs8BkSklYg8KSILROT6ePPJ6IAvIjNFZLeIbAxY30tEtojINhEZW7T6UmCBqo4A+qW8sFkilnOiqjtUdXh6SppdYjwvC4v+T64GBqahuFkhxnPyuapeB1wOxN1dM6MDPjAL6OW7QkRygGlAbyAPGCwieUAD4KuiZEdTWMZsM4voz4lJnVnEfl4mFG03zphFDOdERPoBK4G34j1gRgd8VV0B7A1Y3QHYVlR7PAy8CFwE5OMJ+pDhf7ebxXhOTIrEcl7E437gn6q6PtVlzRax/q+o6mJV7QTE3SRdGgNffY7V5MET6OsDLwP9RWQ67nu8vLQLeU5E5DgReRI4XUTGpadoWS3c/8ofgQuAy0TkunQULIuF+1/pKiKPishTwLJ4My+baOlcSEKsU1U9AAxLdWEMEP6c/ABYQEmfcOflUeDRVBfGAOHPybvAu4lmXhpr+PlAQ5/XDYBv0lQW42HnxJ3svLiPo+ekNAb8tUBzEWkiIrnAIGBxmsuU7eycuJOdF/dx9JxkdMAXkXnAKqCliOSLyHBVLQBuBJYDnwPzVXVTOsuZTeycuJOdF/dJxzmxwdOMMSZLZHQN3xhjTPQs4BtjTJawgG+MMVnCAr4xxmQJC/jGGJMlLOAbY0yWsIBvjDFZwgK+McZkCQv4xhiTJf4/BYmLVSBLjekAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")\n", + "plt.plot(ps.freq, res.mfit, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can find the function in the `scripts` sub-module:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling.scripts import fit_powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([108.96093418, 2.0699128 , 2.00198643])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)\n", + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fitting Lorentzians\n", + "\n", + "Fitting Lorentzians to power spectra is a routine task for most astronomers working with power spectra, hence there is a function that can produce either Maximum Likelihood or Maximum-A-Posteriori fits of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "l = models.Lorentz1D" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude', 'x_0', 'fwhm')" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "l.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "def fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + " \n", + " model = models.Lorentz1D()\n", + " \n", + " if nlor > 1:\n", + " for i in range(nlor-1):\n", + " model += models.Lorentz1D()\n", + " \n", + " if fit_whitenoise:\n", + " model += models.Const1D()\n", + " \n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + " \n", + " return parest, res" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make a dataset so we can test it!" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5zklEQVR4nO2dd5gUVdbG3zPDDBmEIUgccs6MsIIBliACs2BCkEX5JKiI+Cm6uopI8lMRMYEiCqIoArKigAQRUFFxCSIIgohjYBhkSEqUCZzvj5puqruruqu6qrqru8/veeqZqVu3zj1d1f3WrRvOJWaGIAiCEP8kRdsBQRAEITKI4AuCICQIIviCIAgJggi+IAhCgiCCLwiCkCCI4AuCICQIxaLtQDAqVarEderUibYbgiAIMcW2bduOMnNl/3RXC36dOnWwdevWaLshCIIQUxDRr1rprmzSIaJMIpr9559/RtsVQRCEuMGVgs/My5l5ZPny5aPtiiAIQtzgSsEXBEEQ7EcEXxAEIUEQwRcEQUgQXCn40mkrCIJgP64UfDd32hYUFKCwsDDabgiCIJjGlYLvZq6++mpcf/31msd+//13tGvXDgUFBRH2ShAEITSunnjlRr766iuUK1dO89jhw4exfft25OXloVgxubSCILgLqeEXwcw4depURMoRBEGIBhETfCLqT0SvEdGHRNQzUuUaZdWqVShXrpxjgvz9999j9erVSEqSZ6wgCNHBkvoQ0VwiyiWiXX7pvYjoByLaT0QPAwAzf8DMIwAMBXCzlXKd4Ny5c4bznjx5EnPmzDFlv3nz5liwYIFZtwRBEGzDanVzHoBe6gQiSgYwE8C1AJoBGEREzVRZxhUdj2mGDx+OgoICvPHGG4ZH7ezYscNhrwRBEPSxJPjM/DmA437JHQDsZ+YsZs4DsBBAP1J4GsAqZv5GzyYRjSSirUS09ciRI1bcs419+/bhp59+CkjPzs7G7bffjpycHEN2ihcvbrdrgiAIhnFiKEkNAAdU+9kAOgK4B0B3AOWJqAEzz9I6mZlnE9EhAJmpqantHfDPNF26dEGpUqWwf//+aLsiCIIQNk4IPmmkMTO/COBFIwaYeTmA5RkZGSNs9SxMDh06hJSUFMt2tmzZYoM3giAI4eHEkJFsALVU+zUBGGvzKCKaoRVyc3OxZs0a5OXlaY7YadeuXUgbr776KoiU596CBQtw8uRJAJCx+YIgRBUnBH8LgIZEVJeIUgEMBLDMjIFohlZ4/fXX0atXLxQvXhzPPPOMqXN//vlnAMD9998PAJg0aRIGDx6ML774AgC8DwFBEIRoYHVY5rsANgFoTETZRDSMmQsAjAawBsAeAIuZebdJuxGp4f/666946aWXfNLUYRF+++03n2Pffvst8vLyvPuTJk3yOf7777/77D/++OO6ZR87dgz5+fmmfRYEQQgXq6N0BjFzNWZOYeaazDynKH0lMzdi5vrM/IQ9rtrH1KlTsXnzZnz88ccYM2YM9u3bh71794Y8r23btti16+KUgzfeeOPiwcJCpGVnoweAvwEoo3G+WuArV66MCRMmhP0ZosX58+e9D7qzZ89G2RtBEMzgymmfTjfpPPTQQ5g/f753/5prrsG4ceM083799ddBbdUGcMmECUDlyrjpiSfwMZRXniMAFgCor3MeMyMrK8u7/8UXX6BmzZomPkV0yMnJ8b65lC5dGjt37oyyR4IgGMWVgh9pDh06pJl+7NgxXH755ZrHUgA8CuAHAGXnzgVOnPA5XgLAIAC7AaT5zbA9ftx/6oIy1v/gwYOmfY80/h3ZWp9FEAR34krBd8sCKBcuXNBMT4dSi58CRdg9nClfHusAfK9KKw6g4zvv4BVcHK/q6dSNZSQInCDEHq4UfKeadPLy8iwvXnINgG0A1DPCtkGJL/HW//0fugNoDmWm2TZVnjsBvApF9PXeKGIBj9B7gsDJyCNBiB1cOTCciDIBZDZo0MBWu1WqVEFmZmZ4PjFjHICJuPiUzAPwbwAvACgEUHbDBm/+zQA6A3gdwD+L0kYAOAZgnerN4bHHHkPbtm3D8kkQBMEMCVXD//PPPzVH45w/f977/7JlgVMGLgHwfmEhJuPiBcsGcBWA6VDEHgCWLFniaxfAbQB2tGnjTXsYwFBVc8iUKVPw4ou+E5DHjx+P7du3G/pMkUaacgQhdnGl4EeTb77xjevWBkrTTB+V0K0H0A7Afw3YuwBgef/+WK5KG7BuHa4EvGP61c0iJ0+exOTJk7Fo0aKgdgsLC7F582YDHtiLeh6CIAixRcIJ/tatWw3n7ZqVhU0A6qnSngbQE8qwS6NwUhIGAfi2aD8FwCIAxYtGuDRr1gwlS5YEAGi91eTm5oKIfGrXW7duRceOHU14YZ38/Hw0b97cJ+3w4cMR9UEQhPBxpeDbMUrn9OnTOH36NI4ePYobbrghYBYsACxcuFDz3FJQ2t7v3LrVOwrnJIAboDTJhNPtewZAJoDcov1qAB7ZscPbiVKpUiXdc0+fPh2QFo2F0rU6vG++2XVr2QiCoIMrBd+ONvz27dujffv2yM7Oxvvvv49ffvklIM9ff/0VkHY5gB0AhqnSvgOQAeD9MH0ZP348AKXdfyAuPjBanDiBp8K0GQ1kRI4gxDauFHw72LdvH/bt2xc0T2pqqvf/EgD+D8BGAOqxQfOhhEr4EUCPHj0s+7UByoQtD2MBtNVYXMWNiOALQmwTt4LvQW9ZwRkzZuDTTz8FoDS17IYyxDK56PifAB6tWRO3ArA7YsxUAB+q9v+5fj1K+QVqiyXkQZBY7Nq1S0ZrxShxL/hDhw7VPdYGwEoosZvVHbPrALQEsLxCBUd8YijDNT3rZ5XIz0eTRx9FWYPnb9q0yRvDxupEMjOIsAsA0LJly4DRbHaxefNm3HvvvY7YjhWcXNrVlYLvdGiFNlDa47dDWWndwzEAdwDoAd81Gj1kZ2fb5sOfUDqBPW8PaYcPYz4uhl+oX1877NqJEyfQqVMnjBo1CgDCHpo5f/580w8Lj+BXAzAHwDT4hpYQEgf/4blffvklzp07F/ScgwcPBoQcHzBgAO677z7MmTMHADBnzpyAeSluJFTcqyNHjhh6KJ45c8Znv7CwEFWqVLHkWzBcKfhOTLyi/HzcBOAzKEJ/nerYBQCzADQCMBtKDVwLrZE+VtgJZfath34AJhT9X6xYMRw/fjxgNM6gQYN89sNdRevWW2/Fr7/+Gta5swDcDqX/QTvGaPgcOXJEszNduEh+fr7ropReccUVeOWVV4Lmueyyy1CvXj2ftPfeew/PP/88hg8fjjVr1miet3HjRizwC0AYDqdOncK5c+fwww8/GD7nm2++wdmzZzFlyhQMGTIEgDJCLlhk2wceeABVqlRB+/ZKAJa8vDzv5M6dO3dixYoVAJTh1mXKXAyknpOTg1OnTpn+XKZgZtdu7du353ABwCUA7gXwHIDzy5ZlBgK29wBuoWh8wNayZUuf/UGDBmnms7pN9fPpeoAff/xxBsAdOnTgn376iQHwhQsXAs694447ODc3l5mZb7jhBn777bcNX59p06bxv/71r5B59+3bx8zM+fn5XMLP1x+L/Dh48GDY98rfr9tvv90WW26iS5cuvGPHDmZm3rRpExcUFIRt65VXXmHlp2uMlStX8oYNG0yXc/78eS4sLAxIB8BfffVVQNrTTz8d1F6JEiUC/FZ/l1u3bs133HFHQJ4mTZp48zAzb9myhc+ePcu//PILT548madOncrVqlULWvbatWsZAD/wwAMMwOf6Hz9+XPc8ADxjxgyf8idOnMgA+Mknn+RVq1YFnJOamuqTv0uXLt79+vXre9OzsrJ8Pqv6WtStWzfo5wkFgK2soalRF/VgW1iCv20b77juOv4M4L80BJ4BzgN4e5Mm3CqEEDsh+Ndee21AWhLAq1X+nQL47xUreo+vWrVKV/AB8Lx58zw3mQcMGGDoMgHgqlWrGhIOAHz8+HHOz8/nDI3rWUr15WZmzsnJ4e+//978vSsq65prrgnrXDcDgJ999lnu1KkTA+Bly5YxM/PmzZv5zJkzPnn/+OOPoPdl8uTJpgQ/KSmJAfCXX35p+JynnnqKAfDYsWMDjgHgTZs2BaSFEnzP93XHjh08aNAgHyH3F/yZM2fy999/z+fPn/fJ5xHJSZMmedP69u3r/X2sXbvWp8y3336be/bsyW+//ba3guQRcWbm3Nxcr72lS5fyzp07eePGjfzggw96f28vvvii7u/58ssvZwA+33f18T/++IPLli2rWVF74403vPdRy7YVEkfwH3lEU+QZ4J8BngBwNYAffPDBkOIcKcEHwJcAvE/law7A6X559AQfAJ87d44BcLly5fiZZ57hrKwsPnDgQMDlWb16tTfvpZde6vPFAsBdu3YNOAcAHzlyhPPz83mExnXN8PuCtm/f3ru/dOlSr2icOXOGz50752O7efPm/OOPP/qUZUXwH3vsMZ4zZ46hvPn5+Xz06NGwy9qzZw8/9dRT3Lp165B5AfD06dO992vJkiXe9PHjx/vkzc7O9rmehYWF3rcDzzlGBWHFihXe/P/4xz8MnfPuu+96z+nZsyf/9ttvnJOT41P++++/z8zKNVi6dKmP4G/dupV///13Pn36NOfm5vLSpUt9/H7sscc0v8Nt2rTxCrJ6q1Klivd/T21by8ayZcsCrktmZiYDSqUIAJcsWdLn+i1fvjzATrVq1RgAv/POOwyAy5cvr/u789TYPZ9/ypQpljUiLgQfykCYOQCWGD0nLMFfu9ZHjHYDPA3gna+/7nMx7RB8zyuqHYIPgJsCfFzl+16AK6mOf/rpp7rnnjx50me/Xr163LFjR60vAs+ePdvni60+5v9F8zwcDhw4wK1bt+aZKv88221F540ZM4ZPnjzJzZs3Z0B5QF155ZVem7Vr1+arr746wJ933nnHZz+U4APQbGrwHKtTp07Q8z2MGzfO8A/rpptuYgA8d+5cn7KM/Dg9eZ5//nnv/++99x6fP3+eAfBDDz3kk3/z5s0+Nj2C6m9v0aJFAQ+3DRs28Pnz5zV99Aj+1q1bveW++uqrfOmll/rYqFy5svecnj17cnJyMleqVIkPHTrEFVVvnnv37vURw3bt2vmU2a1bN+//8+fPD/nbaNeunabga23jx48PmSc/P9/7v1Yt/ZNPPuFRo0aZ/g1HarMCnBB8AHOhRAvY5ZfeC8piUPsBPOx3zFnBP3OGTwwcyAMArqq6eP433F/w/V8vgdCC/69//cv0TQwm+AD4SoDP4aKYfg1waY0fkP/mL/gAuEyZMlpfBO+mJ/iTJk3ib7/9lpmZ169fzwB4+/btDIA3qnzzbE+rbK5fv94r+Bs3buSrrrrKWwYArlixYoA/6n4HvS/7tm3b+LHHHvPmycvL07z9QGjBz83N5ZMnT/Ktt96qWdbq1at1r1u3bt0C0kL9OD15XnjhBe//ixcv9tYGBw0axAcPHuSPP/7Y+5qvtrlgwQLN+6TO9/LLL/Ovv/7KAHj06NG6ebOzs3nw4MHefc//zMwXLlzgvXv3+uTv0aOH7neudOnSAWnqzxjtLdjvJRY2K8Ahwb8KSuDIXaq0ZAA/QanRp0KJVNBMddxZwWcO+NIC8KmZPProozx16lTvPhFxYWEhA0qtx5MeDcEHlE7bQlwU1M9wUfT1Nk/HbqgvjfpY9erVvXnefPNNn2PlypVjZuZ169YxoNRsAd83EM+2XHXeunXruEWLFgyAP/jgA7766qu9ZQDgChUqBPjjEXK1f/40atTIx466Fjt16lS+9957vcfq1KnDe/fu9WmG8C/T45d/WadPnw563fQE/88//ww4p3fv3vzSSy9586grHYsWLfI5v1q1apycnOyTlpWVxcwXBf+vv/7in3/+WfMeA0oHv+ezafno2dSCr7axZs2agPRggi+bs5sVoCP4loZlMvPnAPwXNe0AYD8zZzFzHoCFUEYcRhX12qtTpkzRHc7Yvn17LFq0CE89ZU+Um3AWXHkfwGjV/lUAVgEoo50dgP4ErOrVq3v/37Jli8+xnJwc7/+33Xabz7GTJ08CgOchjWHDhqE6AK2paM1U/3vyA8CCBQuCTtY6duwYAGDy5MkBx/yXl9QLk1FYWIhnn30WL7zwgjctLy8PTZo0Qe/evXXL/u6773SP+TN27NiQeaZNm4bs7Gwfv1euXIl77rnHu6++FurrBChrNfhz+PBh5OTk4JZbbgEAlChRAk2bNg3I5xm665mTsX//fuTn52P37t2avmrdk5MnT2quBbF27VpNG0Js4sQ4/BrwnbeUDaAGEaUR0SwAbYno33onE9FIItpKRFvtnHGWkpLis9+/f3/dvAMGDEBGRoYt5V533XWhM2nwCgD1yrdXAlgNbcEF9GfBepZTPHDgADp06BCWL4AiUOrAyFtxMQhcHSgRRgFg+vTp2LVrFwBg8eLFAX4xMwoLCzFgwADUrVtXt7wNqtXDtDh27BgKCwtRrFixgBDNngfZ2bO+QTHU+dQVgF27doGIsGrVKrzxxhsBZU2fPt3Hf70JRrVq1cLq1asBaAfm01p8x8PZs2cDrlXv3r1Ro0YNnzQtu/5rJB88eBCpqalo0aKFZlm5ubkBaeXLl8fMmTN1/RPiAyeWONRSHmbmY1CWdg0KM88mokMAMlNTU9uHyh8uZcsaDWQQPZ6D8m73XNF+ZwBfQJkd7B9557PPPgtqS29B9lB0797d+79aPr4BUBZAYyi1hsZQJrStXLnS53x/4WZmnD9/Hu+9955P+okTJ1BBFcoi1Czg6tWrY9q0aT5pzz33nM+++q3g0KFDPm87aq69VplvPXr0aGRlZQUtd/369ShVqlRADd3Dpk2b0L17d+/6BmrUgqp1vr/gnzhxIqgvHl566SVD+Tx8/PHHpvIL8YMTNfxsALVU+zUB5OjkdQV6P147SE5ODp0pCM8DGKPabwbgaygdJ2qGDx8e1E44cXD8X/Fbqf7fDeB71X5gQ4N2+X/++ac3XLSafv36Yfnyi+uCffjhhyCioH6rm6SAwJquGnXTij+ekBlqsf/ss89MzUT2NKtMmTIlIHyAFv4zpgFlBq0gOIpWw76ZDcobvbrTthiALAB1cbHTtnk4tu3qtPXvXGVmPnLkiE+ap9N28eLFzMz8ySefBO20vfvuu3nnzp1BO11mzZrFq1ev9km7/vrrw+rAGQDfiWTnAL7d4Ln79u3j3377LWjnkBE736vK7wzwE6r9KTZ0UvXq1UszfezYsZq+pqenh/a5aEKMVd/CvWayyRbuZgU4NErnXQCHAORDqdkPK0rvDWAflNE6j4ZhNxPA7AYNGoT1YdWCn5yczMzsnRHnuZBGBL948eI+edSC/8svv3gurO42a9Ys3rNnDwPgW265hQHwZ599FvYX4EoEjpKZg4szXYNtBw4c0D22YcOGkOdfoiozD0rYisGqtKUR/BFE4pxQW0FBQUQ+r2yJu1kBDo3SGcTM1Zg5hZlrMvOcovSVzNyImesz8xNh2LU9eFq7dv6NIKHxBDyyg5dffhkAkJ6eHraNjQA6QlmBy8PtUNbK7Rzi3KQk/VvdtWvXkGV3Uv3/LYC//Py4LKSF+OKKK66ItguCYBpXRst0OjyyGYK1CwMwHLUwJSUFBQUFqF27tiV/foSyAtd8VVpDAJ9D6dwtp3Oe/2gPs/RV/e/pHt4FZa1fQBmaVcdSCcZgB/tbzPD1119H2wVBMI0rBd+JGr4ROnfujIYNG5o6J1jN2R+rHbgezgK4FcBQKHH1AeVG/i+UdrRhsPfGJkFpY/Pg6Vq9AOArVXok6rx33HGH6XP+85//OOCJIMQerhR8O2v4Zhb5+OKLL9CmTRtT9j0iXkFjdSz/8eF28yaUoZKrVWlVAbwOpad8IOy5wb2gDLUCgKPwFfkvVP+rF5Nxitdee830OTfeeKMDnghC7OFKwY9WDV+LSpUqBT3euHFjANBcpcZ/2KATZEMR2kHwne3WAkqP+h4AowBYuZLqRdfnAlAvybJC9X9fAMUtlCMIgrO4UvDdRIMGDYKGWXDLOq8LoUx+ehyAes2cRgBmQpkIMRfANQBSAs7W535c7LDNA/Cy3/EduLg2bzn4riQmCIK7cKXgR6LTNjU11THbdlGihLkVY88BmAQgHcpSiSdUx0oB+B8ozT9HoDwgRgFoDe0HwKUApgN4VpU2HYDWVCR1B/K/oD3VWhCE6ONKwbfapGNEKMuVK6cZU8QIS5cuRa1atUJnNEnlypV99o0Ml9TiBICJUIR/FJRauJryAG6GUvP/FsqD4hcA/wWwCcrkiUMA7lOd8yWUtwctZuLiYuxtAdwVlteCIDiNKwXfKunp6Th69GjIMe9GHygtWrRAo0aNvPv9+/c3NTrHKF999RX69r04AHLu3LmW7J2CEoStDZQQptMB/KyRLxnKw6EDlCGf9fyOrwbQB0qTjhbHimx7eA5K05EgCO7ClYJvR5NOWlpa0HC0ZujTp4+ple7DpUyZMihe/GK3p9bIn3DZAmAsFDFvDeBeAIug1Oy1wqoVAFgP4CYo06ZD3YkpuDgRKxXAR0VpwUI6C4IQWVwp+E6M0gk23LJfv36O1NiBi8M2w7GvFn872QngRSjDNusCKAmlc7cDlBm7TaFEwuwGYAmUed6hOA/lLcAzUigZyuieHACvQenMrWjbJxAEIRycCI/sSrp166Z7bMiQIbaXR0SoX78+GjRogO+++y5ov8Lx48dRsWL05DAPygxeqxyAEvphMS5OwioLYHjR5smzC8oEsYNQhpUehNKRfKJosy+ghSAIauJa8NXxxOvVq4fnnnsO9913X5Az7OPMmTMoUaIEiMhnIQoiwqxZs3DnnSGXBgCg9DO4IcSEUQ5BWaFrCIB/A2jid7xW0RZsktY5KML/B5TOYM92zu/vWSgPhwIo0fs8W6j9QijNWP4bm0z3P6Z+E2K/v1ppZvNHwm48EDef5dw5QGNdBSvEteC3a9cu5MpJdrJ+/XoMGjQIhw8f1lwAIxw6deqEVatW2WIrUjCAt4q2y6E09XSDEsPfyGDYkkWb9nIlgpAglC4NhLlwkR6ubMO3axx+nz59gh73tK9Xq1bNUjkeunbtGnJmrppFixaFzPPOO+9YcSnqbAIwDorwl4bSP3AjgAegjOZ5ryjPDwByodTABUFwBlfW8Jl5OYDlGRkZI5wsJzk5OarRF/3H3WvhP1InLS3Nu/h3rFEAYG/RFoxSUNbuvQRKTb9UkL/FoUwcK1b013/TSk+GMjksSWMzm+45pg6LR35/tdKCHbOSZsVGPBBPn6WkyYmXRnCl4Av62Bmj36142ucPRtsRQYgifPZs6EwmcWWTjqDP6dOno+2CIAgxigh+CFJSzIQacxc1a9YMnUkQhIRBBD8EPXv2dMx2s2bNcN9996F8+fKYNm2aqQ5fDz169NA91qSJ/6BIQRASmYi14RNRaSjRdfMAfMrMMTH8xMnwx1WrVsX06UoUmrFjx9puXytGvyAIiYulGj4RzSWiXCLa5Zfei4h+IKL9RPRwUfL1AJYw8wgA/7BSbqzTtWtXPPDAA47Zf/PNNwE4H6vf6jq5giBEFqs1/HkAZkCZYwMAIKJkKBFze0CZOb+FiJZBWSXPE1/L+LqDcUijRo3wzDPPOGZ/wIABOHXqFLp06eLoOP7ffvvNtnV6BUFwHkuCz8yfE1Edv+QOAPYzcxYAENFCAP2giH9NKCHYdd8siGgkgJEAULt2bSvuJTR3332342U4FXBOEARncOIXWwO+y6tmF6W9D+AGInoFwHK9k5l5NpT1O76JhVWpBEEQYgUnBF+r4ZiZ+Qwz/w8z3xWqw9ZNi5irGTRoEO69996o+uAZydOgQQND+Tdu3OikO4IgxBBOjNLJhhIQ0UNNKGHRDUNEmQAyjYpapMjMzERmZmZUfUhLS8PRo0fx448/GuqUveKKK0LmEQQhMXCihr8FQEMiqktEqVDW2VjmQDmupHbt2o4tXAIAkyZNwrZt2xyzLwhC/GJ1WOa7UIIdNiaibCIaxswFAEYDWANgD4DFzLzbjF03NOm0adMG06dPN7Qgupp58+Zh925TH9cUlSpVQrt27RyzLwhC/GJJ8Jl5EDNXY+YUZq7JzHOK0lcycyNmrs/MT5i1a1d4ZCukpaXhvvvuMz2WvUqVKqhfv76tvlSrVi3mwyQLghB9XDmuzqkafmZmJmbMmGGrzUiQk5ODW265BQA0l0Ls2rVr0PObNm3qiF+CIMQWrhR8p6hfv35Exqc7xfnz530WY69RowZat26NNWvWBD2vVKlSDnsmCEIs4Mp4+G4dpRNt/Ocl7N27FyVLlvTOdk1KSsKFEEuirVu3LuiC7oIgxC+urOG7odM2FihTpoxX7Dt37owbb7wR8+fPDxglpF7Vy9Mn8cILL0TOUUEQXIHU8OOEtWvXIjk5OeAtwB+P4Ldq1SoSbgmC4CKkhh8nlCxZMqTYAxcF38joo/bt2xsqu0yZMobyCYIQXVwp+IJzlCxZMujx2bNnm7aZnp4e9PjgwYNN2xQEwX5E8BOIe++9F5dddhkA/Rp+qCUdW7RoEZAW6m2hbNmyBj0UBMFJXCn4bph4FU94Om3bt29vaiKZurPXw44dO9C7d29T5VsZCvv222+Hfa4gCL64UvClDd8ZPJO3ghHqgZCUlIRixcz19WvNA7jtttsMnSvNQYJgH64UfMFePDV1s6tTadXwAfNLJ2rld3r5RUEQAhHBT1D0BDccIQ51Trji7ulvEATBHkTwXUbNmjWj7YIXvRp+27ZtTS1gHm4NP9SIIkEQzOFKwU/kTtspU6bglVdesdWmnnCHy7hx47B3717D+StUqBCQZkTwpdlHEOzFlYJvV6dtLApGmTJlUKdOnYiW2alTJ+//Rq5ZcnKy4clWzIxy5cqF5Vcs3j9BcDOuFHy7GDJkCNauXRttN0yjVSO2G7WYEhG6dOnic3zEiBG4/fbbTdsKp3w9atWqFTKPIAjGiWvBr1y5Mrp37x5tN0zTsWNH/PXXX46WoTdixyPEs2fPxj333OOoD6F47rnnACgLwAiCYJ24FvxYxsl1cb/88kv4B6azu50/FEZq+GlpaQDgswaAIAjhE7FomURUD8CjAMoz842RKlcAJkyYgP3793v3O3XqhCNHjthmX9raBSE2MCT4RDQXQF8AuczcQpXeC8ALAJIBvM7MT+nZYOYsAMOIaIk1lwWz9O/fPyDNrklV4RKJcphZHkaCoMJoDX8egBkA3vIkEFEygJkAegDIBrCFiJZBEf8n/c6/nZlzLXsrOMaLL76IvXv3Ij8/PyLliRALQuQxJPjM/DkR1fFL7gBgf1HNHUS0EEA/Zn4SyttAWBDRSAAjAaB27drhmhFC4F/Db9WqFVq1aoV33nnHtC1PW7tThIrgKQiCMax02tYAcEC1n12UpgkRpRHRLABtiejfevmYeTYzZzBzRuXKlS24J4SD2Zr3b7/9hv/85z8OeaMwadIkzJs3z9EyBCERsCL4WsqgO9SDmY8x853MXL/oLUDfcALPtI01atWqhUsuuUTzmFqkhw8frmtj6tSpQcto3bq1ZnTNSI8sEoRYx4rgZwNQz4ypCSDHmjtCpIhEp62WSP/973+3pZyHH37Y0vmCkIhYEfwtABoSUV0iSgUwEMAyO5ySePjxS6gVt4zy5JNBXxJx1113WbIvCPGIIcEnoncBbALQmIiyiWgYMxcAGA1gDYA9ABYz8247nJImHefx1PDT09OjMrHJiVE6L7/8su02BSGeMCT4zDyImasxcwoz12TmOUXpK5m5UVG7/BN2OSU1/Mixfft2PPvss959fyG+6qqrTNl7/fXXNdM9DxgtoTfbFr9ixQrN9KZNm5qyIwiJhitDK0gN33k8IluhQoWgYRzs7hjt3LmzZRt6QdX8A8I5zT//+U/HyxAEO3Gl4EsNP3roCaV/7J1w6dq1a0A5ZsVZ7yFk58MpNTXVNluC4BZcKfhSw3eeypUrG1rU3MO1115ra/lun2lr5OEhw0KFWMOVgi81fOdJSUnRnFXbtGlTtGzZ0rL9X375xWc/WBu+mjfffNNUOSdPnjSVPxjqh5qIuRCPuFLwhejRqlUr7Ny507sfrvClp6drppcqVQoff/yxrvDfeuutpsopW7as938iwpgxYwCE57f/esLDhw/3jvzJyXH/FJPrrrsu2i4ILseVgi9NOu7DqIAaydejRw+r7uiW/fzzz9tm67XXXkOHDh1ssRcJ3n///Wi7ILgcVwq+NOm4h3DXow2FU234VuzGQzOOXQ88IT5xpeDHGsnJyahRQzduXEwzZ84cU/n11uO1U0wbN26smW7nsEz/PgcnHwZ2NsUMHTrUNltC/OFKwY+1Jp3vvvvOdGdjrKAXGE2P/v37+6yupYcVQS5RokTY5/7v//6v7jEtn4L5addDoFSpUrbYEYRQuFLwY61Jp2nTpgEdfolKcnIy6tevHzKfurPVKv369TOcN9h8grZt23r/9xdzJ4eR2vn24PbhrkJ0caXgC+4hKUn5itgtJPfffz/q1Klji60PPvjAFjt9+vSxxY5Z3N53MGnSpGi7INiECL4QlNTUVPz888+GmlHUMXn88Re1ihUr4uqrr7bsn1m0xHXHjh0AfB9qoeYNzJgxA4888ogDHroPz1BXIfYRwRdCYrQmHu3mBK2YQA0bNgx5XrCRSHqfadSoUWjevLlh33744QfDea1QunRp223a2fwmRBdXCn6sddoK0Wf37t3o2LFjQLqR8BHp6en46KOPDJWzcOFCn/2mTZuiWLHQS0MHe2haadLxX/c5OTk5LDvB+jY8zXpC7OPKOxlrnbZC9GnWrJm3Nj5q1CjvaltGmo2ICL1799Y9pubmm2/22d+xYwc+/PBDAEr0zNmzZ3uPadWMH3300ZD+RINhw4ZF2wUhArhS8AX3YbVjUet8PZsDBgzQtbNly5aQZc2cOdM7Q7Zr1654+umndfNmZmZ6/zczLNOTnpKS4q3hP/TQQxgxYkRAjX/w4MHe/5s1axZgK5xr27ZtW3zyySe2dfhGuzlOiAwi+ELUufHGG3329SZvdezY0fLqXP4CuWyZ9qqc/fv3BwA0b948IGRBt27dNG16RDNYv4GZB18wypUrF+CHIIRCBF+IOnXr1jWU7+uvvzbUXu5POLXXpUuXAlDar/1nwn7yySdBz73zzjsxatQo02UGY9y4cUGP79u3z9byhPgkooJPRP2J6DUi+pCIekaybCF2sHtculHBr1q1qqFRPaEYM2YMZs6ciYcffhiA0pFqtcmkZ0/tn4uRtwqjnD9/3rINwd0YFnwimktEuUS0yy+9FxH9QET7iejhYDaY+QNmHgFgKICbg+UVYg+zYQjc1m6ckpKiuyZvODzyyCPYvHkznnvuuaD53DLxyuwqX267f0JozNTw5wHopU4gomQAMwFcC6AZgEFE1IyIWhLRCr+tiurUcUXnCTGCE6LkFqEzQrARY8E+x2WXXYaKFStqHvMPzBasGchfXPUCyIWLXeLtaQozSosWLWwpVzCGYcFn5s8BHPdL7gBgPzNnMXMegIUA+jHzd8zc12/LJYWnAaxi5m/s+xhCPOHkg0Bt24zIlSpVyna/FixY4LN/xRVXeP+fO3cuDhw4oHleq1atMGPGDFNlGe0niTTffvtttF1IKKy24dcAoP5WZhel6XEPgO4AbiSiO7UyENFIItpKRFuPHDli0T1B0KdevXoBaZF86xg4cKBPmZdeeqnPca2AfG+99RZmz56NlJQUXbtDhgwJSLvyyiutuOoY4U4Us4rWrOxEwKrga1WRdH8xzPwiM7dn5juZeZZOntkAJgL4xmybouBeotl8o1eTr1y5ckTKMQIzo0qVKj77WgwZMkRzRrEa/2GukSTYjF030bp162i7EBWsCn42gFqq/ZoALC/+KTNtE5tYatsHjPnreRj06tULrVq1Mn2+3f4YoXPnzobyTZw40ft/rLTJm13nIV6wKvhbADQkorpElApgIADtmSwmkFg67mPgwIHecAV6mK3hRlvYtfz1j01jBDOfIy0tLSDcsF2TsYLh/zZjJOSxeqgnM+uO4qlVq5Zmupt5/PHHo+1CVDAzLPNdAJsANCaibCIaxswFAEYDWANgD4DFzLzbGVeFaJKRkYF58+ZF242w0Ap7rEfdunWj/iBygieeeMJn301DKr/++uuIl9muXbuIl+kGDE9bZOZBOukrAay0zSPF5nIAyzMyMkbYaVdwjj59+uhODgLM1VhjVXCNiqje53NShP07KUOVddNNNznmiwetuEKRIla/Y1ZxZWgFadKJPVasWIGmTZtG242oEAnxaN++PSZMmGC57OrVq/vs33///QF5GjRogMWLFweMoLG67GNaWprlWEh2IYLvIqTTVrCTSDVfBCtH79iKFSs0VwrzF6SSJUva0u7smdxlxNe//e1vunm2b98esiz14uxdu3ZFbm6uUTd16du3r2UbiYwrBV9q+EIksPtBEM7s1z59+ngnRZnpa/AQ7DP4jwYyasez4InewidZWVkha+rDhw/H0KFDfWzq2TNT27Yz9AWQeOPxXSn4UsOPP8z8qCdOnGjbwuTB/IhkkLZINiF4mmK0xMyIH8EmdQHhzdr1lBuJEUlGSNQmHfOxZgXBYWrUqIEaNYJN2HYXZsUjPT3dIU8Urr32WmzYsAF79uwJuWCMmYdUqM/ZpUsXw3lDle1GqlatisOHD0fbDUu4soYvTTpCPNO2bduQgmilBpqcnIwuXbrgrrvuwmuvvaaZx26xLSgowLp16yzb+fjjj4MeD/X2YRYz17latWq2lh0NXCn40qSTGETqtdoNNUkjPkTTT6sLlScnJ4dtQ/09aNu2bdC8FStW9HmT0BvaedlllxkKnXHhwgVjTsYJrhR8If5wYywdNzwI3MDnn3/uHb3TsmVLw0snhlqQPdT1NdsX4AkKt2HDBtx1110AgN279ed5BluZLFifgh7x8H2RNnwhoXDiwVOnTh3bbeqt62sVrc+vjqS5c+dOw+dOmjQJkydPDsuP48ePo0SJEiHL+Omnn1C8eHGkpqaiUqVK3vQJEyYEHaJJREFHKel9D86dO4eSJUuGcj9mcWUNX9rwhViiRYsWtj5IDh486HjEy0jXVv2vT4UKFbzCGuza1atXDzVq1EDlypV9fK5SpQp69+5tu19aDyG9vFaYOnWqbbbM4ErBlzZ8Id4w04ZfvXp17/9lypRx1C83EM3mvmg16QwdOhTjx4+3zZ5RXCn4QvzhhnHP7733ns++uonAaZKSksK6BsFqnJHGrP/hCKRdohrKTjj3wk7Br1y5sk9Y6Ughgi/EPZ4fqrqZ5MCBA5g/f360XLKNDh06hDURynNN3NYRGY4Qu3U1Lzcigi8kFB5BqVmzJsqVKxdlb3wJR3wXLlyIH374wQFvjIuvf9C87t2747rrrnPCJU20rpvVyKXxiisFXzptBcEYycnJpiYjObG6ln+QtbVr16JPnz5R80mLjIwMx8uIBVwp+NJpG3+4cRy+YA6n7qHT341Zs2bhv//9r2U7dn2P7JiRHC6uFHwhMUi01+lQRLKJKRIPQXUZTo5tr1evXtDjWpE6y5Yta7ncb775RjN9xowZQc+LZp+DCL4guIRLL70U58+fj7YbtlO2bFm89dZbhvKGUwmYNWuWV8CNRuMM9sB79dVXNdPVYR+aNGmiGwbi7rvvDupvNBHBF+Ie9Y/bfxUnt6G3UHgs07RpU6SlpQFwJjxy8eLFcckll/ikWXmD0fuODB48OGz7bhkgEDHBJ6KmRDSLiJYQ0V2RKldwB25pvhk5ciQ+++yzaLthmLVr12Ljxo222bNyH9q0aYOWLVva5oud1KpVy6fz2m39NqNHj462CwAMxtIhorkA+gLIZeYWqvReAF4AkAzgdWZ+Ss8GM+8BcCcRJQHQjtkqJBTRqM2WLFkSV111VcTLDRera8CGChxnRhi//PJLW8oORUpKCvLz802ds3r1auTl5Zkuq1u3bhHpRHXLA8hoDX8egF7qBCJKBjATwLUAmgEYRETNiKglEa3w26oUnfMPAF8AiF43teAaxo0bFzD7VXAP/iJVsmRJRzpf/d86fv/9d1StWtWUjbJly3qbjULZV9OuXTvDZfg3G8Uihmr4zPw5EdXxS+4AYD8zZwEAES0E0I+Zn4TyNqBlZxmAZUT0EYAFWnmIaCSAkQBQu3ZtI+4JMYDWj65evXohR1gI0WPw4MG2/AabN28e9Lj/spMVK1ZEmTJlIrK6lKfsnJwcVK9ePcAfNVbettzysLASHrkGgAOq/WwAHfUyE1EXANcDKA5gpV4+Zp4NYDYAZGRkuKPhV4hpMjMz8d1330XbDVdhpImhRIkS6NGjh+WyZs+ebapcM/ms4hH3UqVKOVqOp+/jv//9r+2rdpnBiuBr3RFdgWbmTwF8asgwUSaAzAYNGoTlmCCoSU9P1x1qJziHZ9hisWKRX3Yj2ANDPdrGTpo2bYo9e/ZoHqtVqxYAJfZRNLEySicbQC3Vfk0AOdbcEQTBSVq3bh2xsoYOHeqK0Vn+4n/DDTcE5HHaz2bNmrniWlh59G4B0JCI6gI4CGAggFvscIqZlwNYnpGRMcIOe0L0ccOXPdFR3wNPjdMNqP3yzIgtXbq0LbbXrl2LK664Qvd48eLFg/oTbxiq4RPRuwA2AWhMRNlENIyZCwCMBrAGwB4Ai5lZf4FJE0jwNEFwjlOnTmHAgAEA3DFc0COwO3fu9C48brVN3fO5unfvHnRNgeLFi8e1wPtjdJTOIJ30lQjSARsuUsMXBOdw6ypabp3UZRT/B8cff/zhmtE5HlwZWkFq+IKQODhRw7Y7Hv5jjz1mqvwlS5a4JpyCGlcKvoRHjj/0JsUIghvwnwvgj9mhlDfccIMrmsv8caXgSw0//nj22Wfx66+/RtsNQXA9DzzwgGO2XSn4UsOPP0qVKiUzp4W4wcnae40aNRyzHfkZEYIgJCxazSVaQfTGjBmjG2/eacLtU5g4cSKysrJs9sZeXCn4MtNWECKDHSs/WeXKK6/Etm3bfNIGDhyIgQMHhmXvgw8+gJZ2rFixAn37+ob58oi7/4pY4eAZ6houFStWxPHjxy37EQxp0hGEOKZChQq6x/bt24cHH3wwgt5oQ0SmolaGol+/fpoB24ItrF6+fHnN8M8fffSRbX5p4RH4tm3bol+/fo6WBbhU8IXEw+0rUcUq1113HQ4cOKB5rGHDhpozTROVTp06BaQ5PWfB80B+6aWXwlqjwCyuFHwZpZN47N69WzfwlBA+RISaNWtG242Yws55Aenp6bbZsgNXCr406SQejRs3RpMmTaLthiDENa4UfEEQhEjQqFGjkHmSkpKQkZERAW+cx5WjdARBEJymsLDQUHt5YWFhBLyJDCL4giAkJHpDMeM5eqYrm3Sk01YQBDdy//33a6ZrDekEzI24GTx4MG6++WZHHziuFHzptBUEwY08++yzmulaQzrN8ve//x0LFy60bCcYrhR8QRAEwX6kDV8QBEFFqFDJ48ePt3UIsd7MYCcQwRcEQTDBxIkTbbX3wQcf2GovGBFt0iGi0kS0jYj6hs4tCIKQeEQ9tAIRzSWiXCLa5Zfei4h+IKL9RPSwAVMPAVgcjqOCIMQ+blwFyio33XST7jG3fV6jTTrzAMwA8JYngYiSAcwE0ANANoAtRLQMQDKAJ/3Ovx1AKwDfA9BfQl4QhLhm2bJlOHr0aLTdCEo8j8M3JPjM/DkR1fFL7gBgPzNnAQARLQTQj5mfBBDQZENEXQGUBtAMwDkiWsnMF6w4LwhCbFG7du24W/kslh4QVjptawBQx13NBtBRLzMzPwoARDQUwFE9sSeikQBGAoi7L4YgCEI0sSL4Wo1TIR91zDwvxPHZRHQIQGZqamr7MH0TBEEIYOzYsbj66quj7UbUsCL42QBqqfZrAsix5o4gCIJzTJs2LWQeO5to3NZpa2VY5hYADYmoLhGlAhgIYJkdTkloBUEQBPsxOizzXQCbADQmomwiGsbMBQBGA1gDYA+Axcy82w6nJHiaIAiC/RgdpTNIJ30lgJW2eqTYXQ5geUZGxgi7bQuCIATDTJNO+fLlcfnllzvojb24MrQCEWUCyGzQoEG0XREEQdDljz/+sN1mWlqa7TY9uDJaprThC4IQD/ztb39D3bp1TZ1zyy23IDs72xF/pIYvCILgEPPnzzc96icpKQk1atRwxB+p4QuCIKiwc1hmUlISkpOTbbNnFVcKviAIQrRJTk5G/fr1o+2GrUiTjiAIggYFBQXRdsF2XFnDlyYdQRAE+3Gl4AuCIESLWIp+aRYRfEEQhATBlYIvoRUEQRDsx5WCL234giAI9uNKwRcEQYgW0oYvCIIgxDwi+IIgCAmCKwVfOm0FQRDsx5UzbSUeviAI0WLgwIH466+/ou2GI5CbOygyMjJ469at0XZDEAQhpiCibcyc4Z/uyiYdQRAEwX5E8AVBEBKEiAk+EXUhoo1ENIuIukSqXEEQBEHBkOAT0VwiyiWiXX7pvYjoByLaT0QPhzDDAE4DKAHAmfW7BEEQBF2MjtKZB2AGgLc8CUSUDGAmgB5QBHwLES0DkAzgSb/zbwewkZk/I6KqAKYDGGzNdUEQBMEMhgSfmT8nojp+yR0A7GfmLAAgooUA+jHzkwD6BjF3AkBxvYNENBLASACoXbu2EfcEQRAEA1gZh18DwAHVfjaAjnqZieh6ANcAuATK24ImzDybiA4ByExNTW1vwT9BEARBhZVOW9JI0x3Uz8zvM/MdzHwzM38azLBEyxQEQbAfKzX8bAC1VPs1AeRYc0fBs6YtgJNE9KPf4fIA/GMuaKVVAnDUDn/CQMufSNgxmj9UvmDH9Y65/b5E654YPcdKnli9J4A998Wpe2Ikn1O/Fav3JF0zlZkNbQDqANil2i8GIAtAXQCpAHYAaG7UXrgbgNkG07Y67YsZHyNhx2j+UPmCHdc75vb7Eq17YvQcK3li9Z7YdV+cuidG8jn1W3HqnhgdlvkugE0AGhNRNhENY+YCAKMBrAGwB8BiZt5txJ5FlhtMiyZ2+WPWjtH8ofIFO653zO33JVr3xOg5VvLE6j0B7PHHqXtiJF9M/VZcHUvHCkS0lTViSQjRRe6L+5B74j6cuifxHFphdrQdEDSR++I+5J64D0fuSdzW8AVBEARf4rmGLwiCIKgQwRcEQUgQRPAFQRAShIQRfCIqTURvEtFrRCSB21wAEdUjojlEtCTavggXIaL+Rb+TD4moZ7T9EQAialoUWn4JEd0Vrp2YFnyTYZuvB7CEmUcA+EfEnU0QzNwTZs5i5mHR8TSxMHlfPij6nQwFcHMU3E0ITN6TPcx8J4ABAMIerhnTgg8lbHMvdYIqbPO1AJoBGEREzaCEfvAEeyuMoI+JxjwYvydC5JgH8/dlXNFxwRnmwcQ9IaJ/APgCwLpwC4xpwWfmzwEc90v2hm1m5jwACwH0gxL7p2ZRnpj+3G7G5D0RIoSZ+0IKTwNYxczfRNrXRMHsb4WZlzFzJ1hYSyQehU8rbHMNAO8DuIGIXoH7ppfHO5r3hIjSiGgWgLZE9O/ouJbQ6P1W7gHQHcCNRHRnNBxLYPR+K12I6EUiehXAynCNW4mW6VY0wzYz8xkA/xNpZwQA+vfkGAARlOihd19eBPBipJ0RAOjfk08BfGrVeDzW8B0L2yyEjdwTdyL3xX04ek/iUfC3AGhIRHWJKBXAQADLouxToiP3xJ3IfXEfjt6TmBZ8l4VtFiD3xK3IfXEf0bgnEjxNEAQhQYjpGr4gCIJgHBF8QRCEBEEEXxAEIUEQwRcEQUgQRPAFQRASBBF8QRCEBEEEXxAEIUEQwRcEQUgQRPAFQRAShP8H/NjtD0N+a7IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(400)\n", + "nlor = 3\n", + "\n", + "x_0_0 = 0.5\n", + "x_0_1 = 2.0\n", + "x_0_2 = 7.5\n", + "\n", + "amplitude_0 = 150.0\n", + "amplitude_1 = 50.0\n", + "amplitude_2 = 15.0\n", + "\n", + "fwhm_0 = 0.1\n", + "fwhm_1 = 1.0\n", + "fwhm_2 = 0.5\n", + "\n", + "whitenoise = 2.0\n", + "\n", + "model = models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + \\\n", + " models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + \\\n", + " models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + \\\n", + " models.Const1D(whitenoise)\n", + " \n", + "p = model(ps.freq)\n", + "noise = np.random.exponential(size=len(ps.freq))\n", + "\n", + "power = p*noise\n", + "\n", + "plt.figure()\n", + "plt.loglog(ps.freq, power, lw=1, ds=\"steps-mid\", c=\"black\")\n", + "plt.loglog(ps.freq, p, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make this into a `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "import copy" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new = copy.copy(ps)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new.power = power" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So now we can fit this model with our new function, but first, we need to define the starting parameters for our fit. The starting parameters will be `[amplitude, x_0, fwhm]` for each component plus the white noise component at the end:" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]\n", + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.49011854e+02, 1.06004236e+00, -4.00733295e-05, 4.54780918e+01,\n", + " 1.89830161e+00, 1.10287737e+00, 1.01732386e+01, 7.49528676e+00,\n", + " 6.72319819e-01, 1.99444430e+00])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cool, that seems to work! For convenience `PSDParEst` also has a plotting function:" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAHpCAYAAAAvabtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADV70lEQVR4nOzdeZxN9RvA8c9jX6OUJISopLKN9k0l7Spp+bVpoT0t2heppJKKlFJJ0iYtCKUSWqjsZJedbFnGzszz++Pcc9175+5z1/G8X6/zmnvP+Z5znrvMzHnOdxNVxRhjjDHGGGOCKZbuAIwxxhhjjDGZyxIGY4wxxhhjTEiWMBhjjDHGGGNCsoTBGGOMMcYYE5IlDMYYY4wxxpiQLGEwxhhjjDHGhGQJgzFZRkTaiYiKyJlJOPZiERmT6OOa2IjIGBFZHGXZciLSS0SWikieu18sx0gEEWkhIhNEJNfz/WyXqnOHiKe/iNi44WEk829JJhORMzPhO2pMNrGEwZhC8PnH47tsEZFJItJRRIqnO0ZT5D0C3AN8DrQD7gtV0HOBGHJ7vERkf+AroDzwIHA9MC7R50klEblURJ5JdxzREpHaIvKMiDROdyzJlqzvcTql8vsmIpU935UzU3E+UzSUSHcAxhQRnwIjAAGq41y4vQ40BDok+FwfAZ8BuxJ8XJOdWgIzVPWhgPXn4nwffbUDauN8NxOpOVAZuEVVv0rwsdPlUuBG4Jn0hhG12kBnYDEwNZ2BpEA7Cvc9HgeUBXYnJpyEuJTUfd8q43xXAMak4HymCLCEwZjEmKyqA90nItIHmA3cKiJPqerqwp5ARCqqaq6q5gF5hT1eJhKRssBuVd2T7liySDVgaeBKVU1lQlnN8/O/RB7UU0NXWlW3JfK4Jnmy4TNT1XxgR7rjMCabWJMkY5JAVTcD43Hu8NZ114vIVSLyq6ed9zYR+UNErgjc39O0qb+InO0pvwUY5tkWtN2xiBwoIm+KyDIR2eX5+aaIVAly/JoiMkhENonIZhEZJiKHh3o9InKriEwWke2efUaJyKlByhUXkadEZImI7BCR6Z7X/Iwn5to+Zft71h0kIv1EZDWwFajh2X6n5zwrPK9nlYgM9D1GkPfrLBEZ73lvl4vII57t+4vI+yKyxrPtWxGpHur1Bhz7eM+x53n2zRWR30TksiBl3ddUSUT6eM63w1P+hCDl9xeRd0VknYhsFaffQbMo42onThv9OsAZPk3invFs9+vD4Hl8BnCY+DehO9OzvaGIfOF5v3eKyL8i8rOIXBghjsXAh56nP7vH9dke1ffS53t9juc7tBDnou7KCOcvIyLdRWSl5/v5p4icG6JsVJ+lOP14bvQ89n2v2nnWHSUib4nI37L3d3mSiLQPF2vAOaJ6v0WktIg87jnXDhHZKM7vaxPf9w742fP0A594x0QbT8A5E/KZieMOz3vjvt8/i0iLgOPUdr+7InKRiPzlea2rPJ9tCZ+yiwnxPfaJJ9RypucYBfowiEgxEXlCRMZ5Potd4vQL6hPkdUcdb5Tv9xjCfN886w/xxLLUE9tKEekrIlUDjnWAiLwmIgs9Ma33vP8Pua8dWOQp3tnnXItjidnse6yGwZgkEBEB6nmervOsex54AvgOeArIBy4DvhCRu1X1zYDD5ABtgHfZe0EW6nyVgN895+wHTAaaAHcAZ4nI8aqa6ylbGadKvibwNjAL5x/wzzjV9IHHfgl4GPgTeByoiNPM6mcRaa2qI3yK9wZu9xzrFeAg4C32/oMK5gfgX+A5nDbwWzzrOwETgF44d66PAW71vJ5jVXV9wHGaABcDfYEBOBctL4rIDpx/xotxqvvrAfd6ypwTJi7XZcBRwCBgCVDFc7yvRORaVf0kyD7fA2uBZz3lHwBGiEhtn8+hpKdcc5xmZhOAxsCPQOBrC2YcTl+B13C+Y10966eHKH8f0A04ELjfZ/1szwXRaM/ztz2v80Cc7+AJwPAwcdwHnI/znXgBp2YNiO176eMVoCTO934zMDfMucFpDngpTkL9PXA4Tn+KYN+5aD/Lrjg31E7DeY9dv3t+ngmcDnzrOU95oC3QV0QOVNVu4QKO9v32fEe+A07G+Y70BioB7YHfROR0VZ2I8114Aef3sy/wi+fYMddsJvgz+wi4BhgMfACUBq4FfhCRy1V1aMBxLgDu9Lwn/YDWOH8HNnheH4T5HuPUtPl+XuDctHkBp6noujAvvRTwEPAlMATn5kVz4BbgVBFpFqTWLpp4oxH2+yYitXBuQJUC3gcW4nw+dwAtRCRHVTd59vkC57v5DjANKIfznT8T6I7zPt2P83fja5zfFdj7d9eY4FTVFltsiXPB+SOswNM4/8AOAo7D+cepwHhPuaae5y8EOcY3OP9kK/qsU89yTpDy7TzbzvRZ19Wz7s6Asnd51j/ns+4Fz7qbAsq+7lk/xmfdkTiJza9AKZ/11YGNOBfhxT3rGnr2/w4o5lP2WJwmVArU9lnf37NuYIj3tnyQdWd79nk4YL164jzBZ10pYJVnfa+A8q969jkyis84WBzlcC6KZgWsd1/TWwHr23rW3+azroNnXZeAsvd51i+O8ju42Pcz81k/JvAYwdZ51l/iOeeVcf4eFPhOxvG9dI8xFygX5XnP9ezTP2D9pZ71WtjPMobvRDHP+7sJKBkh7qjeb5wLOwVaBazfD+fi2Pd39UxP2XaF+dwS9ZnhJGcKdAhYXwKYiJNoiWddbU/Zrfj/jRBgJrAqmu9xiNf4sufY94V7rzznKhtk/1sCP6tY440yznDftyHAGqBGwPocYA/wjOd5JYL8/QlyPDf+Z2KN05Z9d7EmScYkRhecO8prcO7q3AwMxblwAeeumgIfeqr7vYunXEXgpIBjTlPVH6M8/2We8/cNWP8Ozl013yYXl+LceRwQUPalIMdtjfNP8GX1ubumqitx/sEdhnP3EeAiz8+e6rQRdsvOwLnzG8orwVaq6lbwNhWo5HmvpuFckBVo3oOTnP3hs/8unFoRwaml8OXega0fJi6/ODyxlPPcHS6Hc4e4gYjsF2S31wKeu3eTfc93KU4i1SOgbB+cBDKV3LuT54d4PfGK5Xvp6qPRt3+/1POzu+9KVf2GIDUTcX6WBQQcp4znOAcAo3Au5o+KcIho3+/rgDnApIC/GaVwauZOFaffTyIl6jO7DsgFvgmIvTJObVBtCv7+faOqi90nqqo4tZXVRKRCrC9ERG7FqTV4W1VfD1dWHds9+xUXZyShA9n7uxvsb05C4w3GU+NzEc7/iR0B7+ViYAFO4gywHdgJnCBBmm4aUxjWJMmYxOiLUxXs3nWap6q+HUAb4Fy4zglzjIMDns+L4fx1gIka0FlYVfeIyFycGg5XXeAvdTpP+5ZdJSIbgxwX4O8g55zpc7yJPmWDNSGZi9NsJZigr1NEzsKpuTkBKBOwef8gu/wTZN0Gz89FIdYX6N8RJI6qwPM4yVPVIEUqU/AC3y8WVV3vtFLzO19dnDuRmwPK7hSRfwj+GpNCVceKyACcO8bXishfOE2jPlfVWYU4dCzfS1cs3/u6ODVIwfaZjVND5hXnZ1mA52LwGZxmbzWDFAn72cXwfjfAaSa4NszhDgSWRYo5Bon6zBrg3AgJ1yzq4IB9g/0Ou83zqhBDsxkRORsn+R6FM+xwNPtciTMscBOcJla+ov2bE1e8YRyJU3t1i2cJ5h9wbpKIM9xsT2CRiMzCSXi+UdWfEhCL2YdZwmBMYsyPUBsgOMnE+YQe4SjwojyZo4xoiPWBw3AGPg8nlrJ7AwlyN1lEmuP8o18APIpzwb8dJ+7PCD5gQ8iRowKTI99ThYvN0xdlFM7FTy/gL5y7w3nATcD/gsUS5fnc70TMcSWDqt4oIt1x2mWfinPh9ISI3KeqvVMYSizf+3Dvk9+2eD/LED7BuevbF6f/wH84TUMuwGlGFPE4Ub7fAszA6QMTSrhkIlWCfWaCE9v/wuw3M+B5uNHfov6dEJEGOH0R5gJtA5OfEPtcjjOXyZ9AR5wkbAdQHE8zyyC7JSTeSKF5fg4kdF+27e4DVX1bRIYAF+L0TbsCuFtEPlfVqxMUk9kHWcJgTGrMB84Dlqrq7EiF4/APcKSIlPD95+gZreMI/O+E/QMcISLFfS9sReQQnDawvhZ6fjb0eew62ud4sPcu/pEUvPN2JLH5H84/6vNV1Vs7ICLlSeGdd5z+KI2AZ1W1s+8GT3OHwlgInCsi+/nWMohIaZy7vBtC7hm/UAmKs1F1Js5F3MuezvF/4HQcf9PT3CJWsXwv47EQpznGERRMuAObBcX6WQZ9vZ735SLgI1W9PWBbNJ3o954g8vs9H6df1GjfZn6hDhfLucNI1Gc231N+gqomukNtyNfqqUUajtM056LAGrwwrsdJEFr43sQQkUjNyxIl1Gta4NlWKtomqqq6CngPeE+cYW4/Aq4RkR6q+leYcxkTkvVhMCY1PvL8fEGCzP4sAUPjxeEbnAuLwAuf9p71X/usG4LTFOCGgLKPBDnuUJx/Lg95Rmxx4z0E567sEmCKZ/Uwz8+OIlLMp+yxQKsYXgvsvXMXeJfucVL7dytoHCJyDMHbcsdiCE5S9GDA+jtw2sEnwxZgf8/ddi9xhmL0e19VdSNOEliOgk3CovUN0X8v4zHE89Nv0joRuZSCSWqsn+UWz/YDojzOIRR8nUHF8H4PwJnjImgNg4j4NmN0L8oD443VNyTmMxuA87sadMSogNhjFep7XAbnO3EI0Nq3f0EU3IEZfP92CfBkIeKMRdDvmzqjwY0ALheREwN3EsdBnsflRKRcwP557B05zT12or4rZh9iNQzGpICq/iUinXE6R08VkS+AlTj/2JrhNEsoVYhTvIwzEs+bItIU5yK+CU6b17me7b5l/we8K86Y/3/jjBpyEgHDDqrqXE+ziYeBcSLyOXuHVa0AXOvWUqjq3yLS17PtRxH5GucC4y5PPM2I/s7W1zhNO0Z4jrkLZ0bj4wJjTLLZOO/Pw55/xHNx7prehnNnOFh77mh9gPNePS0idXCGTWyC8zkuJDl/nyfg3B3vLSK/41wkjcb5Ptzv+cwW4MyAewZOojfI7Qwah1i+lzFT1e9FZBhwo+dC6zucYVXdz+cYn+KxfpYTgLuBt0RkOM578oeqLhKRUcB1IrIdp2nTYZ7jLCKKfjE4yXo073dPnO99d0+fntE4fSxq4YwYtgNw5zSYhdPJ+E4R2YYzitkaVXU77UYrIZ+Zqg4WkQ9wmsM0xRmCdh3OPCsn4QwLWjfMIcIJ9T1+EDgRpzlSPRGpF7DfDxp6Es3BOMNYj/b0LymJ06m+XIjyiRby+4ZzE+FXnL/BA3A+k2I4719rnOTsGZzv81jP92omTi1lA8/+i/AM9uDpU7UAuFqcuTNWA1tV1b3pY0xB6RqeyRZbisLC3uH5OkVZ/kKcEYP+w6kyXwaMBO4IKFdgqEifbe0IPoSlO+fBcpx/NsuBN4EDgxyjFs4/yM04FxnDcC60FhN8iM72OP+kdnj2+QE4LUi54kBnnCEfd+Lc2boSZyQkBar6lO1PiGEEPdsvBSbhdCJfh9N3oVawGEO9X6HOQQxDUOJcDH6B0x57G04b58tw/kErQYaKDXGcAjHi3OF7H6ej5Fac4SJziG3YyFCfWYFj4MwX8D7OBYJ7R/VMnPkfPsS5eN3q+Yyn4VyAlY4ihqDfyVi+l+GOEeHcZXFGmvoXpy33XzgX3gU+ixg/y2Ke7+1yn/eqnWfbgThNPlbi/E7MwPkdieo1xPJ+4ySO93pe11bPMh/4GDg3oOwFOPMm7CBgiORk/C2J5vXiNPX5xfMad+B8X78CrvIpU5sQw3yG+GxCfY/7s3dI6mDLmeF+/z2f4SxPnKtw+qgcQMDvbqzxRvk9Dvl98/nOdcfpJL4DJyGcgZNUHu0pUwVnhLapnu3bPd+x14FDAs53PPCb5/ukRPn3xpZ9d3HHQDbGmKTx3AU+C9hPQ3cINsYYY0wGsj4MxpiEkSBjwovIcTijQ422ZMEYY4zJPlbDYIxJGBG5Had99nCcZh9H4bTTLwacoqpTwuxujDFFhme+jkgTuOWpaiYMjWtMWNbp2RiTSJNx2oTfi9P2NxenM2IXSxaMMfuYTjh9usJZgtMnwpiMZjUMxhhjjDEJJiJ1iTwS1HZV/S0V8RhTGJYwpNCBBx6otWvXTncYxhhjjDGmCJs0adI6VT0oUcezJkkpVLt2bSZOnJjuMIwxxhhjTBEmIksSeTwbJckYY4wxxhgTkiUMxhhjjDHGmJAsYTDGGGOMMcaEZH0YjDHGGGNM2uzevZvly5ezY8eOdIeSdcqUKUONGjUoWbJkUs9jCYMxxhhjjEmb5cuXU7FiRWrXro2IpDucrKGqrF+/nuXLl1OnTp2knsuaJBljjDHGmLTZsWMHVapUsWQhRiJClSpVUlIzYwmDMcYYY4xJK0sW4pOq980SBmOMMcYYY0xIljDESUQaiMjbIjJYRO5IdzzGGGOMMabwnnnmGV555ZWQ27/55htmzZqVwojSzxIGHyLST0TWiMjMgPXnichcEVkgIo8CqOpsVb0duBLISUe8xhhjjDEmtSxhMP2B83xXiEhx4E3gfOBo4BoROdqz7RLgV+Cn1IZpjDHGGGMSpWvXrhx55JGcc845zJ07F4B3332X5s2b06hRI9q0acO2bdv4/fffGTp0KA899BCNGzdm4cKFQcsVNTasqg9VHScitQNWHw8sUNV/AETkM6A1MEtVhwJDRWQ48ElKgzXGGGOMKWLuu+8+pk6dmtBjNm7cmNdffz3k9kmTJvHZZ58xZcoU9uzZQ9OmTWnWrBmXX3457du3B+DJJ5/k/fff55577uGSSy7hoosu4oorrgCgcuXKQcsVJZYwRHYosMzn+XLgBBE5E7gcKA2MCLWziHQAOgDUqlUraUEaY4wxxpjY/fLLL1x22WWUK1cOgEsuuQSAmTNn8uSTT7Jx40a2bNlCq1atgu4fbblsZglDZMHGq1JVHQOMibSzqvYF+gLk5ORoQiMzxhhjjClCwtUEJFOw4UnbtWvHN998Q6NGjejfvz9jxowJum+05bKZ9WGIbDlQ0+d5DWBlLAcQkYtFpO+mTZsSGpgxxhhjjCmc008/na+//prt27eTm5vLsGHDAMjNzeWQQw5h9+7dfPzxx97yFStWJDc31/s8VLmixBKGyP4C6otIHREpBVwNDI3lAKo6TFU7VKpUKSkBGmOMMcaY+DRt2pSrrrqKxo0b06ZNG0477TQAnnvuOU444QRatmzJUUcd5S1/9dVX0717d5o0acLChQtDlitKRNVaybhE5FPgTOBAYDXQWVXfF5ELgNeB4kA/Ve0az/FzcnJ04sSJCYrWGGOMMSb7zZ49mwYNGqQ7jKwV7P0TkUmqmrBh/60Pgw9VvSbE+hGE6dhsjDHGGGNMUWVNklLA+jAYY4wxxphsZQlDClgfBmOMMcYYk60sYTDGGGOMMcaEZAmDMcYYY4wxJiRLGFLA+jAYY4wxxphsZQlDClgfBmOMMcaYfUPt2rVZt25dXGW++OILGjRoQIsWLZg4cSL33nsvAGPGjOH3339PSrzRyOhhVUWkAtALGKmqX6Q7HmOMMcYYY5Ll/fff56233qJFixYA5OQ4UymMGTOGChUqcPLJJ6clroyuYVDVLTgzK++X7liMMcYYY0zRs3jxYo466ihuvfVWjjnmGK699lp+/PFHTjnlFOrXr8+ff/4JwH///cell17Kcccdx4knnsj06dMBWL9+Peeeey5NmjThtttuw3dS5IEDB3L88cfTuHFjbrvtNvLy8kLG8eyzz/Lrr79y++2389BDDzFmzBguuugiFi9ezNtvv81rr71G48aN+eWXX5L7hgSR0QmDxyygdrqDKAzrw2CMMcYYE5lIcpZIFixYQMeOHZk+fTpz5szhk08+4ddff+WVV17hhRdeAKBz5840adKE6dOn88ILL3DDDTcA0KVLF0499VSmTJnCJZdcwtKlSwFnBubPP/+c3377jalTp1K8eHE+/vjjkDE8/fTT5OTk8PHHH9O9e3fv+tq1a3P77bdz//33M3XqVE477bRCvMPxyegmSR4vA2+JyEeqOi/dwcRDVYcBw3JyctqnOxZjjDHGGOOvTp06HHvssQA0bNiQs88+GxHh2GOPZfHixQD8+uuvfPnllwCcddZZrF+/nk2bNjFu3Di++uorAC688EL2339/AH766ScmTZpE8+bNAdi+fTtVq1ZN8StLjGxIGI4ClgEzRORbYD6wLaCMqupzKY/MGGOMMcYkjE9rnpQqXbq093GxYsW8z4sVK8aePXsA/JoaucRTfSFBqjFUlRtvvJFu3bolI+SUyoYmSc8AjYCSwGXAw551gYsxxhhjjDFJcfrpp3ubFI0ZM4YDDzyQ/fbbz2/9yJEj2bBhAwBnn302gwcPZs2aNYDTB2LJkiVxnbtixYrk5uYm4FXEJxsShjpRLHXTFp0xxhhjjCnynnnmGSZOnMhxxx3Ho48+yocffgg4fRvGjRtH06ZNGTVqFLVq1QLg6KOP5vnnn+fcc8/luOOOo2XLlqxatSquc1988cV8/fXXaev0LMGqV0xiicjFwMX16tVrP3/+/HSHY4wxxhiTMWbPnk2DBg3SHUbWCvb+icgkVc1J1DmyoYbBS0TqicgpIpJVM6DZxG3GGGOMMSZbZUXCICIXichCYC4wDmjmWV9VRBaIyBVpDdAYY4wxxpgiKuMTBhE5E/ga+A/oAni7oavqGmAhzuRuxhhjjDEmC1kT+fik6n3L+IQBeBqYBpwAvBlk+3igaUojMsYYY4wxCVGmTBnWr19vSUOMVJX169dTpkyZpJ8rG+ZhyAE6q2p+sDFugeVAtdSGZIwxxhhjEqFGjRosX76ctWvXpjuUrFOmTBlq1KiR9PNkQ8JQHNgZZvuBwK4UxRIXn1GS0h2KMcYYY0xGKVmyJHXq1El3GCaMbGiSNBs4Lcz2i3CaLGUsGyXJGGOMMcZkq2xIGN4HrhCRW9gbr4pIORHpBZwE9E1bdMYYY4wxxhRhGd8kSVX7iMgpwLtAD0CBT4EqOM2VPlDVj9MYojHGGGOMMUVWxicMAKp6nYh8CVwHHIUztOofwABV/TKtwRljjDHGGFOEZUXCAKCqX+PMx2CMMcYYY4xJkYzvwyAiORJiPFVjjDHGGGNMcmVDDcOfwCYRGQuMBkar6sw0x2SMMcYYY8w+IRsShruAFsCZwCU4IyStA35mbwKxIH3hRWbzMBhjjDHGmGwl2TQNt4gcB5zlWU4D9vNsWq6qh6UtsCjl5OToxIkT0x2GMcYYY4wpwkRkkqrmJOp42VDD4KWq04HpIjIYOBd4ADgaSP6c2MYYY4wxxuyDsiJhEJEqOM2SzsapXagH5AFTgJeAn9IXnTHGGGOMMUVXxicMIjIZOA5n7oW/gZE4fRfGqOrmdMZmjDHGGGNMUZfxCQPQGMgHBuLM8DxOVbelNSJjjDHGGGP2EdmQMFzL3o7O1wO7ReQvnGZIo4HfVXV3GuMzxhhjjDGmyMr4idtU9VNVba+qhwN1gDuARcCtOAnDRhEZlc4YjTHGGGOMKaqyoYbBS1WXAP1EZDzOhG63Aw1wOkMbY4wxxhhjEiwrEgYRqcPeZkktgIM9mzYCQ7BRkowxxhhjjEmKjE8YRGQRUAtnlKStwK94ZngGJms2zTxnjDHGGGNMlsn4hAFYAvTDSRD+UNU9aY7HGGOMMcaYfUbGJwyqema6YygsEbkYuLhevXrpDsUYY4wxxpiYZPwoSS5xNBWRKzxLUxGRdMcVDVUdpqodKlWqlO5QjDHGGGOMiUnG1zAAiMh5wFvAYQGbFovInar6fRrCMsYYY4wxpsjL+IRBRE4BhuJ0eO4FzPRsagi0A4aKSAtV/T09ERpjjDHGGFN0ZXzCADwN/AucoKqrfDeISHfgD0+Z89IQmzHGGGOMMUVaNvRhOAHoG5gsAHjWvQucmPKo9lEDBw7k+eefJz8/P92hGGOMMcaYFMiGhKEUkBtm+2ZPGZMC119/PU899RQLFiyIa/8hQ4ZQsmRJPv744wRHZowxxhhjkiEbEobZwNUiUqD5lGfdVZ4yJoXirWGYPXs2e/bsYfLkyQmOyBhjjDHGJEM2JAx9cJol/SQiF4pIHc9yEfCTZ9tbaY3QGGOMMcaYIirjOz2r6nsiUh/oBJwapEh3VX0/xWEZY4wxxhizT8j4hAFAVR8RkX7AJUAdQICFwFBVnZfW4IwxxhhjjCnCMjphEJFmQD1gHTBOVbunOSRjjDHGGGP2KRnZh0FEyojISOBP4BNgFDBbROqmN7LskZuby9lnn02bNm2K3BCoqsrjjz/OJ598ku5QjDHGGGOKvEytYXgYaAVMAUYDRwAXA+8BZ6UxrqyxePFiRo8eDcD27dspX758miNKnDVr1tCtWzcA/ve//6U5GmOMMcaYoi0jaxiAtsAE4HhVfUhVWwMvAGeIyEHpDc2kwz333MOJJ57Irl270h2KMcYYY8w+JVMThrrA56qa57NuIE5n53rpCckEmj9/PosXL07JuXr37s0ff/zBhg0bUnI+Y4wxxhjjyNQmSWWBtQHr3OdlUhxLUCJyKXAhUBV4U1VHpTei1Nq6dSs5OTmA06cglVKVpBhjjDHGmMytYQhHknZgkX4iskZEZgasP09E5orIAhF5FEBVv1HV9kA7nNmm9yk7d+5M27lHjBiRtnMbY4wxxuxrMrWGAeAGETnR53kZQIG7PXf3famqdkzAOfsDvYEB7goRKQ68CbQElgN/ichQVZ3lKfKkZ/s+b8eOHVx11VU0bNiQF154IWnnKVbMyXOPOeaYpJ3DGGOMMcY4MjlhONezBLo0yDoFCp0wqOo4EakdsPp4YIGq/gMgIp8BrUVkNvAiMFJVJ4c6poh0ADoA1KpVq7AhZrRly5YxdOhQhg4dmtSEwRhjjDHGpE6mJgx10h2Aj0OBZT7PlwMnAPcA5wCVRKSeqr4dbGdV7Qv0BcjJyUltY/847dq1i0mTJnHccccVqeFYjTHGGGNM7DIyYVDVJemOwUewPhOqqr2AXqkOJhXeeOMNOnXqxL333kvPnj3THY4xxhhjjEmjbOz0nGrLgZo+z2sAK2M5gIhcLCJ9N23alNDAkiU3N9fvpzHGGGOM2XdZwhDZX0B9EakjIqWAq4GhsRxAVYepaodKlSolJcB0SGcysXr16rSd2xhjjDFmX2MJgw8R+RQYDxwpIstF5BZV3QPcDXwPzAYGqerf6YwzEzz88MNpO/fbbwftLmKMMcYYY5IgI/swpIuqXhNi/Qgg7sH/ReRi4OJ69bJ/kurKlSuzceNGSpRI31fngAMOYP369YgkbUoOY4wxxhjjYTUMKVCUmiQlOlHYuHEjxx13HJ06dUpbDMYYY4wxJjRLGPYhAwcO5LnnnkvrLM2+duzYQf/+/ZkxYwY9evTwW3/99dfTr1+/NEZnjDHGGGPAEoZ9yvXXX8/TTz/NxIkTGT58OM2bN+fLL79MSyy9e/embNmy3H///QW2LVy4kIEDB3LLLbekITJjjDHGGOMr49p2iMjoOHZTVT074cEkSKb1YcjPz+fHH39k4sSJfP/997Rp0yZl537vvfcAZ3K4QNWqVePhhx+mVatWKYvHGGOMMcaEl3EJA1AXCJwRuTxwoOfxRpzJ1NwOAeuALSmJLE6qOgwYlpOT0z7dsaTb4sWLQ25bvXo1H330kSUMxhhjjDEZJOOaJKlqbVWt4y7A2cB2oCdQXVUPUNX9geo4My1v85TZJy1cuJCffvqJ3bt3py2GXr160a9fP/Lz8yOWLV26dAoiMsYYY4wxiZJxCUMQrwG/q+r9qvqvu1JV/1XV+4AJnjL7pNNPP51zzjknqX0RXn31Va666ipCzVTdsWNHbrnlFmbOnJm0GKKxePFievTowebNm9MahzHGGGNMUZINCcOZwNgw28cALVISSRrl5+fz999/s2HDBr/1K1euBGDr1q1JO/eDDz7IoEGDmD59ethy6azlAOjcuTOdOnXi+++/T2scpqCVK1eyfv36dIdhjDHGmDhkQ8KgQIMw2xtSsM9DRhGRi0Wkb6g79NEYMGAAxxxzDKeddlrIMqpK165deeaZZ6JqHpSNduzYwerVq4Nuc5OpvLy8VIZkotCgQYMC391t27ahmtG/usYYY4whOxKGUcAdInKD+EztK44bgds8ZTJWIiZucy+Gly9fHrLM6tWrefLJJ+nSpQuLFi2K+1yZ7Icffij0Mb799ltuvPFGtm/fnoCITDQ2b97M7Nmzvc93795N+fLlefjhh9MYlTHGGGOikQ0JwwPACuADYIWIjBWRMZ51/YCVnjL7hGLFQn9kvndrY71zu2PHDqZPn572u/NTp05l27ZtIbe7zZ7q1q0b9znat2/PgAEDmDNnTtzHMIXjTh74yiuvpDkSY4wxxkSS8QmDqi4HGgMvARuA44ETPI9fAhp7yphCeOCBB2jUqBFvvvlmukPhmWeeiVjGp7IpZhs3box7X2OMMcaYfU0mzsNQgKpuAh73LCYJ3CZPmXAx/e+//0YuZIwxxhhjUiIrEoZsl2kzPSfLnj0CnAKczNVXw4oVsG4dlCwJFSpA/fqwe/c9wDBgVlTHXLx4MbVr1w66bcaMGRx55JHMmjWL4sWLJ+hVGGOMMcYYXxnfJAlARGqKSD8RWS4iu0TkLM/6gzzrm6c7xnAS0ek5s50IvM0dd1wK/Aq8zOefw6+/wpw5MGMGjB8PAwbA7t0vAn8Dc4D7gQphjxw4IpI7jKxr3rx5aR/O1RhjjDGmKMv4hEFE6gATgTY4V5reW8mquhbIAW5NT3T7LtViwKXAb8B44Da2bCmNkwi8Tf363ejdexbOqLeNGDlyG336QPHiHwFrgSOBV4GlOH3WS0Z13ueffz7RL8Wk2I4dO9IdgjHGGGNikPEJA9AVyAeOAa4FAnu7jgBOTXVQ+6Lly5ezbt06oCVTprwLfA2cDPwHvMRLL43EmTLjDubPf5zc3KE4TY+mc+qp+dx+O5QufTtwCHAJMA7YH+gBTAeciqJwoySZ7Pbqq69StmxZ/vvvv3SHYowxxpgoZUPCcA7wlqouI/gEbUuAGqkNqegKNxtv797fAyNxpr1ojFM7cA9QC3iU/PxpUZ4lD6cfwxnABcBc4Cic2orHmDNnXpzRm0z31ltvAVjCYIwxxmSRbEgY9gNWhdleiiLYefuDDz6gVq1adOvWLaXn7dWrV5CLOQHuYcKEt4HzgE3AIzjNinoDWwHn7nHsRgLH4TRPKgm8AAwFKsYTfgGLFi0KOTO0McYYY4yJLBsShmU4DeFDORFYkKJY4iIiF4tI302bNkW9zy+//MKyZcsYPXp0EiPby3dCuM2bN3sfL14M8BPQi/z8MsBHlCp1NPAy4N8WvXTp0iGPn5+fz7Rp00J0UN4FPAi0AtYBF+LUNhwW8ngLFy4M+3oA9uzZQ926dWnUqFHEsiY13AkF586dm+ZIjDHGGBOtbEgYvgJuFpFjfNYpgIi0AdoCg9IRWLSybZQkp58CzJ17BsceC9ACWMOxxz4N3IBI8GZLy5eHnj+vf//+NG7cOMKIRqNw5uSbBRwL/M6iRWXjeQmAk6RAwZGWTPqsWuVUFt5yyy1pjsQYY4wx0cqGhKErsBz4AxiIkyw8KiLjcRKFaTi9Zk0Izz77bIHhSMMZPnwqMJLff7+RLVsAvgAactBBv8UdQ/S1K/8AJwE/A9W5444GTJkS92mjtnbtWlq1asW3336b/JPtw9wahq1bt6Y5EmOMMcZEK+MTBlXdjHMF+R7OEKoCtMRpQP8W0EJVbZxGYOzYsUHXv/zyy3z66acR969duw7lyt0GzATOo3TpLTi7XYnTVChVNuN0hh7Bxo0ladECnI8+tClTprBixYq4zzhr1ixGjRrFk08+GfcxjDHGGGOKooxPGMBJGlS1o6oeBBwMVAOqqOo9noTCAE899VTIbXl5eWH33b59P9aufYdt294GKgPDuPTSp7j66thiqF69emw7hLQDuJQzz/wPp3LiO0J1Zdm4cSNNmzZl8uTJfuuHDx8e81l37doV8z7GGGOMMUVZxicMIlJLRPZ3n6vqWlVdo562DSJSVkRqpS/CzOHbcTnQI488EnLbF1/AiBEvs3VrS4oX3wK0Ay7h889fZ9SoUQmPM3q7ef75BVx8MUAV4Afg8AKlQk0EFm6IWICdO3cmtfOtqtK5c+e4EpeiYvPmzX6fz549e9IYjTHGGGPikfEJA7AYWCIirUNsvxxYlLpwMpdI4Jx2wT3wwAOeRwfw00/tufJK2LmzImXL/krz5jcDH3rLtmrVKu54vvrqq7j3dZUooQwaBM5ITYcAPwKHxnSM8uXLB11/0kkncdRRRzF16tSYjte6dWtuv/32iOW2bNnCs88+y0UXXRTT8YuSI444wu87ZAmDMcYYk32yIWEAZ6bnL0XkwXQHkmo//vgjHTp0YMmSJQk75vz581m4sCHwN//805zy5aF5835Ur34TZcqsTdh55syZE7FMNEOelikD0BqYANTGGU2pctxxnXTSSX7PYxnuFmDo0KG88847cZ9/X7J69WrGjRsXtow7KpcxxhhjMlO2JAwPAIOBl0XkHREpnu6AYhHPPAy+3n33XUaMGFFgfXyz5VZix44+DBt2K1CNatXmMX061K//E1FWUKTJVpyO0DOBo3FG2y0FwM033xzTkapWrZrg2ExhnHvuuekOwRhjjDFhZEvCsENVrwa6Ae2BkSKSHZMaEHkehuuvv54qVarE3ITnoYceijGSc4EZ7Nx5DbAduI+LLupB3boxHiZtNuBM6rYKZ26I9wD4+eef0xiTKawpqRg31xhjjDFxy5aEAQBVfRK4CTgd+F1EsuZSF5xOtu3atePZZ5/1W//zzz/z33//MWnSpJiOF/1Y9pVwLq6/B2oC44HGQE9ENKZzplpubi5bnMkgPJbiJA1bgOuBZ4PuZ4wxxhhjEiOrEgYAVf0QaIUztOoE4OT0RhS9jRs38uGHH9K5c2e/YU6LF4+/hVW5cuUilHCb8dyCM1TpI8BpwLyojn/22WdTsmTJuOMrrJYtW3LooYGdnKfgzA2RBzyFk0PuNXbsWLtrbYwxxhiTIFmXMACo6licydw2AXekOZyMtGVLSaA/MByogZNbNQFexrnQdrz77rsBd/D9denShZEjRyYz1Ig2bw421cZI4C7P477AOd4tb7/9Nk2bNk1BZMYYY4wxRV82JAxdgOmBK1V1HnAC8AUQfhiWfc7ldOx4NnAjTl+FTsApQPBRi/7880/v40hzF2SWd4CXgBI4feKP9tvavn37NMRkjDHGGFO0ZHzCoKpdVHVmiG3/qepVqtoi1XFlol27DgW+Bb5kw4aywK9AI6AHzsi0/p588knAmWDMFa62ITM9hpMsVMKpTYl9BKT169f7vQfGGGOMMWavjE8YTEGTJk1i1KhRPv0gSjJixHEsXvwtTofgTbRvPxU4A5if0th27tyZ0vOBAjcAf+DM0TAEKBPTEdq0aUPHjh0THpmJXl5eHhdccAFff/11ukMxxhhjTICMSxhEZLSI/CQiJXyeR1p+Snfc8dixI5+vv95IXl6JqPfJy8sjJyeHVq1a8fvvv5OXdxowha++ao5qWeBj4EjOP38RwWoVki14fwN/d955Z4LPuh24BGdS8BOBAUBsk0pMn16g1ZtJodzcXEaOHMlNN90UubAxxgTx77//xjk/kTEmkoxLGIC6QB32XvG5z8MtWTW8quvkk3/g8ssrs2LFPVHvk5/vJgGHs3btO+zc+R3QkIMP3kSNGjcB1wGrkxBt4jz//PMRyxx00EF+z48++ugQJV1rcGtXoC3QNWTJPXv2RDy/SY94Jzc0xphDDjmEAw88MN1hGFMkZVzCoKq1VbWuqu72eV4n0pLuuOMxdao7ss99Ue+zZUtxoDswi927L8KZAfkpnnnma8qXHx90n4MPPrhwgaZB48aN49hrFnAFsAenb8MtBUqoKl9++WWhYjPGGJOZilJ/tFNPPZXXXnst3WEYA2RgwlAUicjFItJ3x44dAVuibzKkWgK4HadPQiegFKVKfUKZMscBz1OyZF7IfWvUqMG1114be+AJlJubW6j9Z82aFWXJHwG3yVMf4CwAVq5cSY8ePSJWVzdq1CjeEAF44IEHEBEOO+wwv7k2Vq5cWajjGmOM2bf89ttvPPDAA+kOw2SRadOm8eijjyYlcbaEIQVUdZiqdihTxr8zrkg0CUMx4FqWLBmJcwF8EM4oss0oX/5uihX7N+64mjVrFlP50aNHx32u7t27x71v7N7FmW+iJPAl+flH8corr9CpUye++eabsHsecMABhTqzezdo6dKlfh3AFyxYUKjjFoaqpqEzujHGmGBGjBiBiDB37lxUNa3/H0zRcuqpp/LSSy+xdevWhB874xIGEekXx/J+uuOOh0joDNBJDi8DpgED2b37MGAu0IaqVa8EJhfq3B06dKBKlSox71esWMZ9ZUJ4FPgSqMyOHYPp2/cbIHn9F/bs2ZPipCh6nTp1okKFChSs4TLGmH3Tc889R9WqsQ/DHcq2bdto2LAhv//+e8Syn332GQB//PEHvXv3pn79+n7zIZnU++ijj1i3bl2hj7Nr1y5EhN69eycgKsfGjRtZsmRJVGWT2SQvE6/+2sW5ZJW8PMjLK+mzphIA+fnwzTcwbNjTwFfAMcBiqlZ9FGgIfMV++1WMePxoRiuKlu9d9169esV1jNQnGgpcD/yJam22bfsEKEOJEtGPSBWLadOm8fDDDyfl2IX16quvsmfPnqTccTDGmGz09NNPs3bt2oQdb+rUqcyaNYtOnTrFtJ+bYIwdO5Zt27bFff7t27fHve++Yvz48UFvGi5atIgbbriBK6+8Mu5jDxkyBBFh0aJFAHTp0iXuYwU67rjjqF27dsKOF6+MSxhUtVgcS/F0xx2rNWsAfMOuw4wZjTn2WLjsMli/vjawCrgLOJJKlb4C8hg6dGhUF+3t2rVLWKxNmjShTp1s7FfuDLcqshTVE4H+qEY/3Gp+fn7UTXn2jl5lirr8/HwmTZrk10fFmFT7448/mDBhQrrDMHEIdhf44Ycf5vzzz4/reDNnzqRcuXJ8/vnnhQ0t6T799NOkjoaXn59P37592bVrFwDz589nv/3244svvuDkk0/m6aefLrCP+3++MH0NX3nlFQD+/vvvuPYXER566KGg25YtWxZyv40bN3pvEOfn5yf1xmDGJQz7ihUrAteMYdiwtsyaBTVrwgknfAIcDrwF7GL+fGcCttNPP51KlSqlNligZs2aKT9nOI899hinn356FCVXU6bMFcBm4Cq++Sb6fhtt27Zlv/32i6opT2EuHnfu3Mnrr7/O8uXL4z5GLFatWpVxF7vZlHANHTqUnJwcPvnkk3SHYhJszZo1Cb3rnEwnnngiJ510UrrDMB7xNAUR8b+BNW7cuLjOPXmy00R5+PDhrF27lptuuimuGoc5c+Zw3333JaxZy/jx4xERJk2aBDiJzf/+9z9uvvnmhBw/mE8//ZTbbrvNO3z7Bx98QG5uLq+++ioAM2bMKLDP6tWJG4o+XC3RGWec4b35+umnn3o/N5ebdMRi//33914T3nPP3iH6E/maXJYwpEnB5miVOOCAtfTrBwsWwNFH/4hzh9y4fJtGXX311VHPClys2CxKlrwW2MPw4Y2IpgXbo48+yldffcWuXbvo06dPxPIXXHBB2O3btm3j2muv5eeffy6wbcKECdx///08/vjjEc9TWP/99x/Vq1fn3nvvTehxC3tX44svvvA+jn5ErPSYO3cu4PzzM0XLaaedxplnnllgfX5+PhMnTkx9QGmWl5dHjRo1+PTTT9MdStYITAJS7YknnqB///589NFHfuv/+uuvAjXmPXv29KvVuOiii+jZsycLFy5MSCzDhg0D4Pvvvwf2/p9I5s0xt/Yi2v4Io0eP9vudV1VEhGeeeSau819//fUht40bN47FixcD8L///Y9WrVrFdY5Q+vXr531cr169hB4bsiRhEJESInKFiHQXkfeytdNzfr4CpwCfcu217ls/FugPXEGHDj256SYoVcp/vwYNGqQyzIwQbO6IwvQ/KF78R5zmXQB9gRYhy+bn5/PSSy95nz/wwAMR77hs2LAh7Pb58+fzySefcPfddxfY5rapXFGw2inh3OFtBw4cmLBjfv7551SoUKFQnfbmzJnjfXzNNdcUqbHUTfaYN29egYR1/vz5dOvWjebNmzNmzJiEnOf777/PiqGWt27dyooVK7jttttSfu6pU6dG9bc300TT6TnVr2nhwoUcf/zxdOzY0W/9fffdx3fffZew82zfvj1obXHg6/3zzz+59dZbQx5nxIgRnHHGGQmpeQ72Xv/777/emoDAGwHuOZ977jnv/sn637xu3TouvfTSuJqSzZo1i3nz5iUhqtAyPmEQkQOAScDnwIPATezt6HwjWdTpeeXK/YBfgatRhWrVfsd5CTcBX1KsWHb9YYxFrL/4TZs25ZBDDklwFH1p3Pgn3OFW4ciYjxCsw1QsVb9FcSZj9+5Rou64T58+vcA/Nl+7du2yEZ9MSmzdupUjjjiCJ598EiDoSCWqGvMF4Hnnncfxxx+fkBhTIT8/n44dO/LPP/8k/Vzffvstzz33HDfddBOvvfYaGzduTPo5EyHYd2D16tXUr1+fBQsWsHjxYkTEL6GIpTZi1apVUdeq+8azc+dOcnJyAPyawLhNdKI5zpYtWyKW2717N+XKleO+++7zrgv3+t5/P/R93gsvvJBx48axfft2Jk6c6L2onz59ul9z2pkzZ3LBBRdE1dfQN5ZDDjmEqlWrFmi2E+wzrFGjBjVq1GDUqFERz+Fr3bp1IRMN3/MOGTKEq6++2vv80EMP9ZtcNtT3v2HDhhx5ZOzXMIWR8QkD8DxwFHArTqN+AVoBDYBPgb+A2McHTYtywBrgeRYsyKd58xeB6IbKisfLL7+ctGOnQsWKkUeDilWVKi8DXwP7AyOAA2Pa/5RTTimwLpb+AKrKqlWrYjrnvuiNN94Iue3ss8/Oqostkxw7d+5Met+XaBLThx56iGLFisXcL6gwdy3dDp2psnXrVnr16uV3YZMsF198MU8//bS36UY2GzRoEAsWLKBnz578+OOPgNNsJJ4ahurVq3P55Zeze/du+vXrx/fffx/0QjnwIn3KlClBLzoffPDBkOfyja93795UrFgx4rCe7ncyWCKwe/fusPuG07x5c5o3b86MGTNo1KgRnTt39m677bbbGDlypF8tgdtfIpDbGdktu3XrVmrVquW3b7AJZt2awFatWjFs2LCYagZr1KgRdH24ViMrV67kiiuu8D4fPHiw93G651PKhoThQmCAqn6A03MVIE9V56rqdTgN/bulLbqYLAJqAk+RYX2I0yYZSUE4zmR51wETgbrAUJxEbq9Qd8p3795d6LGyV65cSfXq1Rk6dGjQ7cuXL+epp55K21213NxcqlWrRuXKlVPWCRtiG673119/DdpxTVV5+eWXC5WQ/fHHH1x77bVh5+vItCYSPXv25Icffkh3GCnXuHFj2rdvn9RzjB07NmIZ97ubyoEExo8fn7Jz+Urmd3/16tVJH+Vn48aNCUkyg124JaLTcyi+d7dVlVtuuYXzzjvP26ynsJ/LzJkzyc3NDRrPV199BRBX7ZJ7vC5dugRtPhPLXAXuhfpff/0VtpxvO/7Nmzfzyy+/eB+D0xzJtWvXLr/+cyLifb3BXHLJJZx88sl+68aOHevt1xbM7t27ue222/wSjUhNmEMpU6YMI0eODPm9SfaNhGxIGKrh1CIAuP/FfadM/ga4JJUBxe8/ILV3hpIp1EVvMKFGWerRo0eiwonBNuBinNqdk3CaJ+2dE6NRo0YF9hg7diylAjuXFEKomT179OjB888/731vV69ezZ133snSpUujPvbzzz9PzZo14/rjsWrVKlavXs2mTZt49913Y94/Xon4Jz5jxgweeeSRoHdBFy5cGNWdoTvuuINPPvkkpclSYd13332ce+65ST3HuHHjCnWXMFHeeOMNb3X+nDlz/C4OkqFNmzZJPX4o//zzD127dg15IZjsmpUaNWokfGCESM4///yINRjvvvtuVP93pkyZUmDdxo0b2X///XniiSci7t+pUyd++OEH9uzZw9ChQ/0+hz/++IPy5csX6KvgW+a9996LeA6A6667zjuJWzju2P6B5xk4cKDf/r4XksG+O6G+T8ceeywXXnhhgfWPPfZYofrt+MYTrPmM76g+sbjmmmsoV65c2DKqyhVXXMFvv/0W9XFVNeJcDEuWLKFbt2488sgjzJo1izPPPDNs5+URI0bQt29f7rjjjqjjAOe9E5ECNylDDbAiIkn/u5ANCcN/QHnP41xgN85tetdunPYlJo169OhBu3btOOGEE4JuP++884KuP/744yOOMJQc/wLn4jQROw8YSLhfh2B3R5IxSo57F8S9OBs0aBB9+vSJaqQm11NPPcXy5csLPXJRvNWfqsqCBQvC3KW/EXgIKJvQGNw7vMH6iRxzzDGcccYZEY+xfv16IPydv0SOguIOqZvIiRYTbdKkSZxxxhk8+uijSTn+9OnTmThxIv/88w8vvfRSyIuaWbNmce+993LVVVcl9PwTJkygTp06UX0GwT77ZCRSzZo148knn4wpcc3NzU3YHcYVK1aEbRYYaPfu3ezevZsff/zR72bIpk2baNKkSVRj00dzU6RDhw60bt26wPo///zT7+9d4F1g2Pu7PWjQoIjn6dGjB+eeey5du3aldevWjBgxwrutW7du5OXlMXz48JBDaLZv357p06d7n0+bNs2vFrAwNQJNmzb1ex44SIT7HXWHNHXvsEPBDr6+fMu5XnzxRe/j3bt3U7duXYYMGcI999xTIGFK9pwgvhfcn332Gdu3b/fGsGnTJvLz8wsMiTx16tS4zxc4+Imvxx9/nJdffpmWLVsCThLx66+/Bi1b2FqzVN64iyQbEoZ5wNEAqpoPTAHaiUhpESkH3AAkvyeWCevqq6/mgw8+8Bv6NFh7wMwyD6c7zCbgSuAdYvk7nuy7m7C3k3Umd/L94IMP/J6PHz+e+vXrh6hVugtnVLCXgfB/CBcvXkyZMmXo379/VHG4/yiD/TPesWNHyFodX6lubjR48GDuv//+mC7OUs39JxzvhESRNGrUiObNm3PHHXfw6KOPhqwJci/M463OD+WJJ55g8eLFEZs6BBPrBUm0M/m6TRJjGcp1v/32i2pumg0bNsT1WiOdu1SpUrRs2ZL69et7148aNYqpU6fGPURlOG4ytXbtWk444QS//z2+pkyZwi233BLy7mu4uSzcO/vu78CKFSsYMmQIAC+88ALly5cPue9PP/3kffzLL79ElahEI9iw025/GBHhnXfe8Tt/LC0BXKrq13kZnDlKFi1axB133EHv3r0L9Oc755xzChwnMMEONnfN9u3b2bZtG507d+bpp58O+TfYt5Yl0Oeff07btm2pWrVqyDLRCGzOGukmSTR39IvSkMTZkDCMAq4QkdKe568CJ+DUPKwBcoDX0hRbxqpQoUK6Q8gSU4GLcLrC3Mr48ZdFvWey2ywX9m7hsmXLuOyy6F9Porh3Cn3bijpKAL6zbF6L048kOLfN7IABA4JuD0xIihVz/pwl+6LfPX4iOq+7F7/WEX7vhVA2TeIXS8fcyZMnU758+ZhGugnXlyaYP/74I+z2xYsXc8ABB8Q9aECo2rVE3NCI5ff2008/pWbNmowdO9ZbsxDq7+VFF11Ev379/H7HfPuIxXJnPFQnVog+/r///jvsaHlr1qyJec4PdxQvX24SEXjnO9zfGt+bLj179vTbFmp+gQkTJhT4XtStW5cbb7zRr8MuBO+r9u2331K+fHmeffZZnnvuOUaOHOndFuyufbDRigYMGFCg78Hbb7+dUZMwprvDciJkQ8LwAlBNVXcCqOog4Arge2Ak8D9VzYp5GCLp169foZsmXHDBBbzxxhveCVNMNH4F2gC7mTr1HCD6CdQGDx4c9I91LIIlHt9//z2lS5dm+PDhcR/366+/5ptvvilEZI4BAwbQokWLmC9eCmoJVAVmAR961l0X99ECm2u4/7RSdcH50Ucf+f1zi2TSpElUq1bN2zSiqNq4cWNUY9HHa/r06XHNYhuKe6EX60Xv8OHD/ZqquMNP+sa2atUq7rnnHvbs2eO9CIzlO1NYubm5fm24E1FLtGrVqpTMGRPuAtz9fvk2+4nluIEJ0xtvvMF3331X4G/chx9+SLzmzp0b9OJ8woQJft+bQE2aNKF58+ZxnTOa64fq1auH7DQfTXPLwN89d0Zl32MsWrSIAQMGMHv27IjHC+T7GkI1Zc4UBW+KheYOP57NMj5hUMfOgHVfqerlqtpWVZM7rEIK/fvvv3499l2+Va2lS5cusN1XxYoVufvuuwvMVtqmTRvOPvtsjj766ITEmk22bt0axcXASJyL13ygK04b+8jatm1b4E6MK9phbd0OU6NHj/beEXGbDPhWa8cqURfON998M2PGjIlqLO7w3A6knwDunafE/UMI1yQp3mMF43sBFm1zKXDaPq9evTqjRzTatGkTdevW5dtvvwWc351Ym1LcfvvtnHLKKQkfscP3M1m2bFmhjrV06VLv98SdfT2azrC+MVx00UUF2hdXrFiROnXqeJ+7zTcSnSQEfsePOOKIoOWuvPJKTj311Lj73TRr1szv+V9//UX16tXD3mmP1uzZsxGRkG2/XZFiD9UE0eU2cXOPk5eXx/z58/3K33vvvZx//vkhm3TF8/698847dOsW+wCOwZrkRXv+aGuvPv7447Dbw/0NDRzBL/CmVmFrmwp/Y8okS8YnDJlKROqKyPsiMjhy6chatHBmHu7bt2+BqqsmTZqwdOlS1q5dS5kyZYLtHtFll13Gjz/+6D2PCWYQLVp8gpM0vEy0SUMooRKJcCKNdZ1Mn3/+uV8b05dffpm8vDxvDYjvbMzhhB7y8UzPz5HAGJzxCo4HKscTbgGJaJIUzb7uxTTE9s/NbaoVz0XEtGnTEJG47tjFYuHChSxatIguXboAcOedd3r7qET7vrqTDsWasMb7uf33338xlf/111857LDDCiRChW2+4P5t9p2UyX0Pkt1MLvAC2BVstKBYRNPvJ5gVK1ZQt27dsO3O3XkJkj2UaqBwnavHjx8ftPNvNDJtuOVw3nzzzaDrY505ONhrjrWp7nXX+dcyR5O4m/TIioRBRMqLSHsRedlzkd4vYElIkyTPsdaIyMyA9eeJyFwRWSAijwKo6j+qeksizgtw4IHOBGJ//vkn48aNK7C9Zs2a3jKF4f5TizfxSBX34i9ZfO8C+mrQYDzOHIGFTxpSOS57Ilx99dXeC0Vw/hn4ji/tjvkdSfA5FWrgzLu4CaffyBbgd6A4ELmjZjQS2STp888/L1RzhGDWrFkDxNeMwu04F00Ts86dOxd6JCf3uxvLcL7pUqVKlZh+19z3/+mnny7QpCjTuCOOuW3eO3XqlPK5a0IJN0zxRx99xKJFi7wdcMNxB8cITPzCtfOPRuAEYtEOkRtNx/FgEn0zrvA1uvGLduTCQw45pNDnCqyJzIa/OfuqjE8YRORknAHz3wE6ATcB7YIsidCfgDYSIlIceBM4H2e0pmtEJOHtesqXL+8d7zjaYfriGS3kkUce4ZNPPsnoLP6OO+6gbdu2ST1H9erVw2z9gEQlDYm0ePFijj322LDNlCLd8Y71Ytq3fKx3n/y5Q5r+ivO+uo/BmQsjPr53QBPZJOnhhx+mXbt2Ecsl6iIz0nFieW3PPvtsQmIqrEix/vHHH37tlSMlOeHGmI8nSZw3b17QsefDSXZSsXPnTjp27Oi3rn79+t427T169IjpQjLwPfW9IVBYCxcujLpsuM8nUmK+bt06nn766Zg/48AbHIWpQYqnWVRh+XaoDza6UDKFqxny5VubZoq+jE8YgDdwrjBaAweoarEgS/FEnEhVx+GMvuTreGCBp0ZhF/CZJ5aoiEgHEZkoIhGHPShbNvK49ACHHnqo93G0w/S5DjroIK655ppCDz+WTJ07d45wQZ849957L9WqVQuyxT9pGD68SUriCWfKlCnMnDkzaHXy0qVL6dixY8QOtWeffXaywovATRjG+Kxzmy7FnzCcc8453n/WhW2S9N1338XUiQ2ibzNcWKEShksuSc6clbG+D76iqd3YunUrJ554YsInRsvPz2fixIlhLy7TXZMQbJSXcePGkZubS//+/YPW0IVqchRMbm5uyNfoO5yq2yTItWHDhrCz3AYK9z66yYTbxNL3uC+99BIXXXRR1OepX78+zz33XMgBINL9eSaL7xwI0cw4bkyyZUPCcDTQXVWHqerGNJz/UMC3h91y4FARqSIibwNNROSxUDural9VzVHVnEQFdNhhh/HaazaSbDL49x/5ALgZyGPo0OZADyBxk3bFK9g/yNdee41evXp5xwgPxb1zlPp5HdyEwfcfnzsEZHOcpknh/frrrwVGAVmyZIm3r0isTZJU1duBb/v27Zx//vlxdbiLpkYwLy8vbP+UYBfZ/fr1Q0TYtWtXyIQhWaOhuaO7hLoYW7ZsGSLCW2+9FfIY4S7k3KEwI3V4jdXgwYNp3rx5xN+DeBWmqZe7b+D3YM2aNZxxxhk88sgjBZpWhXoPfeMIvNO/3377ef8/hIv39ttv9z525zFo06ZNQmY5d2c6Dnw9M2fO5NFHH41r9DffJkq9e/cuXIBZIFLHZGNSLRsShlU4vSPTJdhfXFXV9ap6u6oerqqx92I0Galg/5EPgasoXjwPeAB4n2gubuMV790y9wIs2uZsu3btSmEb2WrAETgTtU/2Wb8OmA+UA44Le4R169Zx2mmncc899xTY5rbrj7VJUt++fdl///2ZM2dO0kfmiGcMbnfSoI0bNya0uZWvWI7nW9ad0f2uu+7yDhc6ffp0brrppqjey6efdubj8E1co22WFc60adOA8MOHhjqP7/rCzosRS/MZt53/d999F/Y9OOuss7yPfUeqCTby3YMPPgj4vw63yWug7777jj///NP7fPTo0VHFHc938aGH9jbvnDx5cpiS0UlV7cKNN95I165dU3IuYzJVNiQM7wH/8/QlSIflgO8MUTWA0L29ghCRi0Wkb0KjMkkR/IL7S+6++ztgK04Xmi+A8MPbxmvGjBlB14f6Zx+LwPGzoxmzO9zQsPn5+X4j/uTn54dIQtzahd+AwM6p7qRJ4ZsluRfcwZpzuGJtkuQOdRnt6E/JNG7cOIYMGULdunWDfi7JSBi6du1Ko0aNWLt2LV9//TU9evSIuomj74Woe4f73nvvpX///lHFGK6JzaxZs1ixYgUXXHBByAv3wHMEPg9MLvbs2cNVV10VdtQg32ZY1atXj6mNfqDAYV9bt25Nhw4dgpZ1kyco2M7evVMPe4d/Bfxm4Q01fG3gexfYKdd9feeff77f+lhmsF+4cGHUtS4iwnfffed9HsuQxOD0Kwom3Pct1N/TeBR2vh1jsl02JAzdgD+B8SJyk4i0EJHTA5cknv8voL6I1BGRUsDVQExzrXuaUwX/b2Eicu9mJks0I6wcffQK4BycLi6XAaPYvr1coc67bds2v3+g4ZQpUybsZD/RuPbaa2PeZ+DAgSG3LVy4kMcf3zvJXfv27alSpUqQkmd6fgZrh+v2YzixwJbPPvss2jB56623vMMzZtNMwe7IMDNmzOCpp55i0aJFQecY8E0YVJW+fftGvLiP9L1+8sknmTFjBu3bt+fyyy+nU6dO3iFUXcEuxgKTalVl3bp1BTpAxprcuK/xkksuoW/fvowcOTLmkapCnXP27NkMGjSoQIficKIdFawwAmtYAocxDexn4IpmJJloRtQK1mk1lvbyqZxTJJ5an+OOC19zaYyJXol0BxCFskAVoBlObUMgAZQEtBMRkU9xrm4OFJHlQGdVfV9E7saZWbo40E9VCz9dpkmLwDbTquod1i+yCTh3y0cCp/Phh7VwahviuxP56quv8tRTT0VVdtOmTd67jdE2OwoUbLjewgh2cRb8bqebzwe7EHFrGAomDIGTYoUyduxYv4scVWXZsmVUrFiRypUrR3WMRJo0aRLHHnsspUqViljW9/0K15TH9y7u8OHDue222yLePX355Zd57LGQ3au8fCcVi2YkmcCEbPXq1Rx00EER9/MV7q70rl27vO3o4x2a+Mknn+T888+nadOmfus3bNgQdSITrFZPRPjvv//8JtMsDN+BLhYvXuw3Mk5h3XnnnRHLNGkS/2AOmdDZuGPHjuTkJKx7YFyGDh2akInsjMl02VDD8CZwJfAN8CBOL1Tf5SbPz0JT1WtU9RBVLamqNVT1fc/6Eap6hKe/QswNGa1JUvSqVq1KpUqVknZ8946emyRMmzaN9u3bx3CEmTgXt1PYtas2zgXvyXHFEsskbcmesCtW0U+WdRDOuAXbgGADhU33bKsPBJ9nxLcpRjSj96gqtWrVon79+gW2TZw4kZNOOsnvwti9ax/KN998Q9++4X993Qvb6tWrk5OT4zfCCcTWWTawrO9nr6reZl+RLu5nzpwZdP3KlSv9Xk+41x5N3KHu/P7+++8xHdc3jliaxYQ6hu/3JlFGjhxJlSpV6Ny5c8KPnQ6F6asRSw1pJKEmEovGG2+8kZAY4tW6desCM2IbUxRlQ8LQGueufhtVfV1VPwy2pDvIcFLRJKlz585+k2xlo1atWrF69WrvpHLuncx476iHc9NNNwEF2/VHZwXOXfPhOBe5o3FaqkXvtddei/sOXWEn5Sqsv/76iypVqtC9e/coSru1C78TfOyCPJxWfxCsliEe7vdm3bp1BRKb7t27M2HCBMaNGxf1+3jZZZdx2223hdzepUsX79C87gVYtBeU4WJwt5155pneSbIScVe3Y8eOIV9PuHb77rmjfd9++OEH7r//fkaNGsXgwYOBvZ9NYb/Dwd6HLVu2+K2fNm0al156qV8txerVq/06+MbKraGMNNeFiLBq1aqEjDiUqe66666EjUZ19913x71vLE0XjTHxy4aEQdh7RVEk7b///px44t6LJd8RMKK1YsWKBEYUvW7dunHfffeFmMugcNy5GKK/mx29EiUK2xpvC04u2xunA/SnOJO8Rdcybvny5XFPeuNO4hRMYf7xRsttZ+3bITO0YMOpBgrdjyEevheNgU2+3G2jR4/2u3NfmAmtunbtyrp164JuW716dUK+v+7fhEQkDH/88Yffc9+L91mzZvltCzxfXl5exA7GrlGjRvH666/TqlUr2rZty4svvshhhx0Wd9y+5wls679o0SIqVqzoN8zrRx99xJAhQ7zD7oJTKxOuX06i5OXlUb169bCdrLNdIptPGWMyXzb0YRiDcyVRJJv0NGnSxDu83NSpUwGnc2q0U7Onmzv0YzJcffXVYdvdFy+eroGzXHnAPcBc4FWcGaGb4tQ2BL+A9PXtt9/GddbOnTtz1VVXcdhhh3lrY4KJtg9AcsWSMMQ/gZsv3zvKgc1y3O9M4PwBr776akLOHchNpKMZfchNYH777TdGjRrlNwlftKMkBfZr6N69O6eddprfDYnATtXRJiFTpkzhtNNO48ADgzcdCxQ4lKzbnyJUX41Yah0CJ6xzR10K1h9p1apVCauVi/Y40XRKNsaYbJINNQz3AWeIyAOeUYqyTrR9GI477jiuuOIKIDl31bNVzZo1KVGiBDfeeKPf+kqVKnHLLbekJAZ3noPgegNnA6s9Pyfi9NFPnqOOOirkMI2uwo4lH8y2bdv43//+F2XpKjjzK+zAGegsFLfj8/EkYo6LcDU3wZLMaC+YI3WOd5vdBBPqQjPY+g4dOnD//ff7JT7RJAz5+fl+o8KoKg8//DCtW0c9MX1Y69evZ/z48VFPFhdq6NSHH3446O9TJnSiNcYYE1w2JAw/AxWA7sAWEVkiIv8ELPEPmJ0C0fZhKFasmDdhSKUtW7ZENTpKutSvX5/du3cHnRPgyiuvTOi5QlWzh7sYdPyCU7swHjgMZ86B5DYPimbYxHDmzJkT82yisQ3N2srzcxwQbuKyNcA/OL/mDWOKJxq+d/cL0xQtUh+htm3b+j2/9NJL4z5XoGAJQ6S5CFxr1qyJ65xTp071q+WIVagRjsaNGxe2Q3Qogc2lovXKK68UaIYVL0tqjDH7qmxokrQUZ9hUkyS+FzZ16tRJXyAZLLoLhZU4o/K+BtwJvAGcS4IG8Uq4yy+/nE2bNtG6dWsqVKgQ1T6xJSlus7qRYUs5JgB1cZolTY/hHOHl5+f7Da2aymZsieoQCnsnpduwYYM3eRg0aFDCjh9MYYbcDGfSpElx7VeYmwOJmlMhnhm7jTGmKMj4GgZVPVNVW0Ra0h1nUdCyZctCH6NevXoJiCS00047DSAl4+u7F2kA48ePD1PS1y7gLqANsAG4GJjG3LmZN073pk2bgOgnOotttKpiwHmex9FMOOe+v6fEcI7I9uzZ4xe372ca7f6um266iffffz+uOGJpkhSMG3efPn1CJiLpuvudzPM++eSTEZoDOlI1WV+8AxUYY0y2y+iEQUQqiMhCEYl+es4MlA3zMNxzzz18//33hT5O9+7dC4xgkkjfffcdixcvplatWkk7h+uuu+5i//33j3Pvr4BGOM1xqvPWW5cCrwOFmx06kKr6zRabOY7H6cOwEJgXRfkxnp9nJysgAA455JCYyvuOrz5z5syEz/4bbcLg23Ts008/jWqfWGbszQSh3otly5Yxbdq0sPtGM0mZMcaY+GV0wqCqW3CuOiLfYspgqZiHobBEJCEjiRQrVoxDDz00AREFV65cuUINzeiqXbu293GouRgOPPBAbr65MM2JlgFnAZ0RUaAjTnObM8LuBdEPWXjvvfdSsWLFDEwa3Pb80XWQdSbE+xeoDjRIWBTRDAEa7g759OmJax4VTDLvzrtzNyRbokYgCvVeNGjQgMaNG4fdN13DSoeSiuGNjTEmlTI6YfCYAKR37vcsty921OvUqVPIbY8++iglS5b0Pg/XpjrcRFbRyQOe5cEHBwHTgMNx7qa/idPJt3B69+7Nnj17ohq2M3UEuMrzOJZJlX70/DwnYZFk+nc/kZPwxftaCzsxYuCs1vHKtIv+wgg1y7YxxmSrbEgYHgWuFJGbJN1T3GaZqlWrAqSk+U6mueOOO6Iu615o1a9fP1nhULPmWqA50BlnxuM7gTnsvbDOTPFdhJ4GHAosAmIZnSb5CUO6Oq0G/umaM2cOqpr2WbuNMcaYaGRDwvAqTu/R94A1IjJBREYHLD+lOcaMdMMNN7B06VI+//zztMbRtGnThA4xmb12A8/izNHwB85F9Wc4IwfHPpyo77wAoWYajlZiR9xp7/n5SYz7uQlDC5zZsxPvpZdeSspxIwm8i9+gQQPeeuutlNWA5Ofns337drp165aS8xljjClasmFY1bo4w6q6U2cenMZY4iIiF+MMl5Pq81KzZs1Un7aA8ePHU6pUVs65lyQzcIYPvQl4EWco1qk4zZSeA2If+74wHVynTZvGVVclqqajKk7/hXwg1pmmVwBTgCY4tQzDvVvifX3RXJCn4qL9t99+K7Duhx9+SOjQq+GOddVVV0Uxl4gxxhgTXMbXMKhqbVWtE2lJd5zhBOv0fMkll6QrnKSLdehK9+5rqJlhi4KCswQr0A84Ame+BsHpFL0QeAIon7LYBgwYEHJb2bJlYzzabTi1A8OAJXFE86Xn5+V+a2ObMG6vTOnD0KpVqwLrli5dGqRk/AInjvNlyYIxxpjCyPiEoaj68ccfIxfKUqVKlYrpAsW9mFq2bFmyQkq7J554IsSWjcC9OLNEjwQqAc8DC3D6OSSnaY6v9957L+S2UCNIBVcZeMDz+LU4o/nK87M1iagAjabzaWE7/cYrtvfWGGOMSZ+sSRhEZD8RuVxEOnmWy0WkYrrjisfNN9+csU10WrduzX777Vfo47Rp0ybqss2bNy/0+cLp2DEbpvGYjjMz8pk4/Ruq4TRR+ge4n1TWOMTvIZyk4Scg3iZSsz1LFaDgXflYRdPJOS8vr9DnicecOXPScl5jjDEmVlmRMIjIrTiD2n8BvOxZvgCWi8gt6YytqHnttde8MwDv6ypVqkS1atVSfNaxwIk4TXKm4cxL8CpO856ngQNTHE+0GgDuULahalOi9YHnZ/uwpRLlr7/+Ssl5jDHGmGyV8QmDiFwC9AXW4rR3aOlZ7gfWAH09nYqNSaizzz6bZ555hmuuuSZi2T59+iT47F8DjYELgd9x7rh3AZYD/cmsqUlK4VzklwLeIbahVIP5EGdEqQuB2GZmjkevXr2Sfg5jjDEmm2V8wgA8jNNGobGq9lTVnzxLL5yG33OAR9IaoSmyDj74YG65JXIlVsWKyWodNwI4Baep0nCgJHAj8BfOhfnNQOGbkBXOG8AJOAOZJeJXcQ0wBKcPg82Ya4wxxqRbNiQMjYD+qrolcIOq5uLcjmyU8qhiICIXi0jfdMdhstlY4CKgHtAd+A84Hngf+BdnPocLSf1Iyd2BDsAOnGZUiWrO9orn5104HcGNMcYYky7ZkDCAM+ZkKJkxbmIYwYZVLawjjzwSEeGEE05I5GGj4naKtllq02ERTqVbDaAdMBooizNj9Lc4ycOHQBugQhLjqICTpHQCdnnOPymBx/8Dp/N0JZzhZo0xxhiTLtmQMEwDbhSRAsPEiEgFnKumaakOKt3OP/988vPz+eKLL1J+7g8++IAHH3yQU089NeXnjseSJfHMB5DptuMkBmcDtYDHgFk4fR1uAAYD64DvgUdxJoormYDzlgCux2kJeBWwGadmYWgCjh2oi+fnI0D6JyA0xhhj9lXZMNPzKziDs08WkV44V0UADYF7cNpoXB5i34yUqUOqRuvCCy/kwgsvTHcYUVu3bh0A1atXZ+XKlQCUKVMGgPr16zNr1qyg+yWvX0KiLcOZMfpFnIngWgOXACcD53oWgK3AnzizSk/DGcp1ARA4qVyg8jjNn1oB1wGHetb/5Xk+LzEvo4BfgM9xEpPXgCuSdB5jjDHGhJPxCYOqfiMidwMv4fSudJsgCc4V0N2qOiRd8cXiyCOP5Msvv6Rfv37pDmWfdNhhh3kThlNPPZWhQ4dy0kkn0bJlywJl+/Xrx2GHHZbqEBNgHk6/gu7AQcBZwBk4naYbAC08i69NOEnHfzg1FztwmjnthzOsa62A8rNxfh0HkPwWgZ1w+ma0walM7J/k8xljjDEmUMYnDACq+paIfIIznGodnGRhIfCDqmbNpAEVKlSgYcOG6Q4jKjk5OUycOJFDDkn+sJbpULx4cS6+OPRovNnyOYW3FucO/eee5wcDzXDGCGgEHAvUxuknEK5j8S6cir0fcPpJjEtOuEEtx+n4/CHQG5jCPtgC0RhjjEmrrEgYAFR1I85kbSYFJkyYQF5eXtY3nzK+VuMM0zoiYP0BOLUI++HULJTBqWnYjJN0LAbSMxuyYwBOX40bgJE4Ta0WpzEeY4wxZt+SNQmDSa3ixYtTvHjxdIeRNkW1ZiW4/zxLJmuPMzLUWTg1HOextzuTMcYYY5IpIxMGEYl1yBVV1dZJCSYBPDNRX1yvXr2o95kwYUK854prP7NX9erVqVnTRuXJLLuAy3AmrzsV+A24CfgmjTEZY4wx+4aMTBhwZqiKRUbPxaCqw4BhOTk57SOVLcy8Cq1ateLee++Ne/+iqlix2EYPjrW8SZXNON2YBuJ0gv4aZ+K6R3GGkDXGGGNMMmTklZGqFou04LRN+Muzy6o0hptQtWvX5oUXXohr3169enHSSSclOKL0cftPVKpUuJl+H374Yc444wwaNYpvQnBLIDLJDpzhVe8FdgK3APNx5mqwGaGNMcaYZMi6KyEROUZEhuNMA3sk8BRQP71RmWS48sor+eCDD3j00UcLdZwLL7yQMWPGUKtW4PCg0UnHbNomkjeAxsB3QGWcOSiWAq8DTdMVlDHGGFMkZU3CICI1RaQ/zriKZwO9gMNVtauqbk9rcAlWo0aNdIeQUmXLlgUoUANQsWJF2rVrR9WqVUPue/jhhye9v0G5cuUScpynn346IccxrjnA+TgT0/2EM8pTR2ASzlwRL+LMOWEjfRljjDGFkfEJg4jsLyKvAHOB63EGlT9KVe9X1fXpjS45rr/+ejZs2EDz5s3THUpKNGvWjB9//JEhQ2Kff+/www9n6dKlSYgq8Zo2Lfyd7+ycTC7ZfgDOAZrg3EdYDRyF00xpNM4IUKNxEojLKTgRnTHGGGPCydROz4hIaeA+nP/6lXGuCh5R1anpiyp1KleuTMmSJdMdRkoUK1aMs88+O91hZIVzzz2Xd999N91hZKipODUMD+DMbn0eTu1DIwrOcJ2Lcw9iNk5NxQKcJk3LcLpE5acqaGOMMSbjZWTCICI3A12A6sBknERhdHqjSqwtW7YwbNgwmjRpku5QUm5fSYTAqRFYsmRJusNIm1KlSrFr164UnzUPp0ZhNPAwUBU43rM0x5nt+iAgx7ME2g2sYG/ysBZY4/PTfbwe2IQz5KsxxhhTdGVkwgC8hzNU6kRgENBYRBqHKa+q+loqAkuENm3a8Oqrr6Y7jJSbO3cuO3fupEyZMukOJWXee+89WrZsme4w9nFrgG89i6sKzpgJRwENgDo4TZVqAQcDtT1LNHbgJA4bPT8Dl63ANp+f2yKs24GThFgthzHGmMyQqQkDgODcDoymIb8CWZMwnHzyydx000188MEH6Q4lpY444ggA9uzZk9TzZNLQsjYk615nnHEGY8eOTXcYHuuB3z1LoNI4s0rXwqmdqIpTI3GQz+OqwAE4Q7mW8SwHJzjGPThDx+7y/Izl8Z4olrwoy/mWz8NJZMIt0ZSJp7wGWQh4bIwxJhkyNWFoEbmIMQV9/vnnnHfeeaxbl9iJvBYuXMibb74ZsmaoePHiCTvXzTffTL9+/RJ2vExx8sknZ1DCEM5OYKFniUYZnMShsudnJZ/n+wHlgPKen6Ee+/4s7VlKeJbyhX5F+xa3ZiZccpGIdYk4ZiBbn7j1yT6nSQx7f5MnsUPCZ2TCoKrZcFURNRG5GLi4Xr16CT/2IYccwjXXXMOePXtsBB2cWoz99tsv4QlD3bp1OfTQQ0NuP++887yPDz74YFavXh33uXr16lUkE4aia4dnif8zD644e5OH0jjDwwZ7HGxbcfYmHNEukfYpiVPxWyzEUjzMtkTtIz4LPvH4slo9Y4xJtIxMGMIRkWI47QX+VdWs6G2oqsOAYTk5Oe0TfewSJUrwySefJPqwJgYHHHAAlStX9j6fMGECderUift4IhK5UBFWvXp1Vq5cme4wMkAee/s3mOj4JhLBkotErUvEMUPFbusLvz7Z5zSJYe9v8iT+vc26hAGnAfEioCXOMCjGGGMM/s1/jDHGJEq21t1aWmqMMcYYY0wKZGvCYIwxxhhjjEkBSxiMMcYYY4wxIWVjwrAd+BCwXpEmI1WqVCndIRhjjDHGJEzGJwwiUtP3uapuVtWbVHVOumIyJpz999/f+zhRIx6NGjWKefPmJeRYxhhjjDGxyPiEAVgsIiNFpI2IZOOoTibL5Obmht2ek5MT9bGaN987UXnjxo1p27ZtXDFVr16d+vXrx7WvMcYYY0xhZEPC8A7OdHWDgJUi8oqINEhzTEVOhQoV0h1C2lWsWBGATZs2hS0Xy6zOvu/rYYcdxqBBg3jggQfiC9AYY4wxJg0yPmFQ1TuBQ4AbgJnA/cBMEfldRG4SkXJpDbCIeOyxx9IdQkIVK+Z8tcuV2/v1OPDAAwGoVq1a0H1atWoV9pj//vsvEDmhMHuVKlUq3SEYY4wxppAyPmEAUNWdqvqxqp4F1AO64cz2/B7wr4j0FZHj0xpklitqNQyHHXYYL774IsOHD/eua9euHb///jt33HFHXMd0myqdf/75CYnxxBNPTMhxMtkBBxwQdL3N5GyMMcZkj6xIGHyp6iJVfRI4CvgYqADcCowXkSkiEl8jcVOkiAiPPPIIZ555pnddyZIlOemkkwp917tKlSqFjM5xxBFHRCxTo0aNhJwr04Sq5THGGGNM5sm6TsQichxwC3AtcACwBHgf2AXcBnwmIg1U9dn0RWmMMcYYY0zRkBUJg4jsB/wPJ1FoCuQBw4B3ge9VVT3legCfAHcBljAYk4XczufGGGOMyQwZ3yRJRAYAq4C3cGoUngRqqmobVf3OTRYAVDUPGAIclJZgTdq4/Qp850DIVmXLluXaa6/lgw8+SHcoafHMM8+kOwRjjDHG+Mj4hAG4ChgBtFLVw1W1m6quDlP+d+CmZAclIuVF5EMReVdErk32+Ux4X3/9NcuXL+ewww5LdyiFJiIMHDiQdu3apTuUpJowYQK1atUqsP7oo49OQzTGGGOMCSUbEoaaqtpWVX+IprCqLlbVD+M5kYj0E5E1IjIzYP15IjJXRBaIyKOe1ZcDg1W1PXBJPOcziVO6dGkOPfTQdIeRcKeeeirg1DoUNSeccALff/99usMwxhhjTAQZnzCo6poUnq4/cJ7vChEpDrwJnA8cDVwjIkfjDOu6zFMsL4Uxmn1Inz59GDt2LHXr1k13KElx1FFHpTsEY4wxxkSQ8QkDgIjUEpGuIjJIRH4SkdEBy0+JOI+qjgP+C1h9PLBAVf9R1V3AZ0BrYDlO0gBZ8j6a7FO5cmVOP/30Qh2jS5cuCYom+SZNmpTuEIwxxhgTIONHSRKR84GvgVJALgUv6JPtUPbWJICTKJwA9AJ6i8iFOCM2BSUiHYAOQND22sYkW7NmzdIdQlRq165N06ZNmT59erpDMcYYY4yPjE8YcGZ1XgdcqqoT03B+CbJOVXUrUXSuVtW+QF+AnJwcjVDcZIHAid98BuoyxhhjjClysqEpzVHA62lKFsCpUajp87wGsDJNsZgkKlYsul+HChUqULt2be/zotgh2RhjjDHGlQ0Jw1qcWZzT5S+gvojUEZFSwNXA0FgOICIXi0jfTZs2JSVAkxgnnnhi1GWbNm3qfXzWWWclI5ygbFIzY4wxxqRaNiQMHwFtUnEiEfkUGA8cKSLLReQWVd0D3A18D8wGBqnq37EcV1WHqWqHSpUqJT7oFHEvVAOb4xQl2VBTcN999/HQQw9lxKhJRx55ZFz73XHHHYgEa+lnjDHGmEyUcX0YRCSwZ3B/oIWIDAF6AosIMoypqi4t7LlV9ZoQ60fgTB63z3r99de59NJLufLKK9MdSlbo06cP5cqVS/hxa9asycsvv8zo0aMTfuxUKVEi4/7sGGOMMSaMTPzPvRgI7EXq3o68KMx+xZMSTQKIyMXAxfXq1Ut3KHGrV68e2Rx/qt1+++3pDsEYY4wxJiEyMWF4loIJQ1ZT1WHAsJycnPbpjsUYY4wxxphYZFzCoKrPpDsGY+JRs2ZNDjrooHSHAcBrr73G/fffn7Dj3XzzzfTr189vnQ0na4wxxuwbsqHTszFZYf78+UyYMCHdYQCw//77J/R4ffr0KbCuatWqCT2HMcYYYzJTxtUwhCIixXHmZNifIImOqo5LeVBRKgp9GBIp2vkOsk3p0qXTHYLXueeeG3Z7nTp1WLRoUaHOccABBxRqf2OMMcZkh6xIGETkEeBRYL8wxTK203Om9mE47rjj+N///kfDhg1Tet5ixYqxcuVKihfP2I8s64V7b5ctW8aDDz5Y6IQhGjVq1GDp0kIPYGaMMcaYNMr4W70icivQDZgKPIkzYtLrQHfgP2AicHOawstqlSpV4uOPP+bxxx9P+bkPOeSQrG7Scvrpp6c7hIzXqVMn3n777XSHEVLXrl3THYIxxhiTFbKhhuF2YIKqthCRKkBXYLiqjhaRnjiJhN2qNinVsWNHSpQowd13353uUNKmSpUqYbd37949RZHEp6g2jTPGGGMSLRv+YzYAvvA8dodlKQGgqquAvkDHNMQVNRG5WET6btq0Kab9bBSazHLCCScAeOej2G+/cC3kkuuoo45K2rF//fXXAusCL66POeYY1q5dm7QYjDHGGJM5siFhyAO2eh67P317Wy4G6qcyoFip6jBV7VCpUqWY9nMvSCtWrJiMsEyM2rVrx5YtW2jZsmW6Q+HVV1/l8MMPT8qxy5YtW2BdiRIleOqpp/zWbd26tUC5bCIikQsZY4wxJisShqVAHQBV3QksA07z2d4cpy9DkfPxxx/zyy+/FLhQM+lTvnx57+OSJUsCsQ9h6h6jMKMqVa1alf/9739x7x/JwIEDC6w79thjk3Y+Y4wxxmSubOjDMA64EHjM8/wL4D4RKYuT8FwH9Auxb1arUqUKp556arrDMCFccMEFvPjii1x33XUx7XfHHXcA0KJFC959991khBbR9u3bw26/9tprY35dxhhjjCmasqGGoSfwpidBAOgMjABuBK4HfsAZctWYlNpvv/145JFHOPTQQ2Pa75BDDuHZZ5/16zT8zTffJDS2SM1tZs+endDzZSNrkmSMMcZEJ+NrGFR1LjDX5/lW4BIRqQTkqeqWtAUXJZu4bd+Wk5PDiSeeGHJ7zZo1ad26dcLO9+yzz3LggQeGLeM2pyqKKleuzMaNGyOWs4TBGGOMiU421DAEpaqbsiFZgPg7PZui4a+//uKNN95I2fmeeuqphFwM33nnnQmIJvVKlMj4+yDGGGNMVsmKhEFEiovIDSIyUER+EJEmnvX7e9bH1ibEmH1IvPMNFKZTdjrde++9UZWzGgZjjDEmOhmfMIhIOWAs0B9oDZwFuMPSbAZeBO5IS3DGJNBVV13F2WefnfDjnnbaaVFfRBcFzZs3j6qcJQzGGGNMdDI+YQCeAXKAy4C6gPe/vKrmAV8BrdISmTGFULy4M0F5/frONCKfffYZP/74Y8LPU6FCBXr27EmZMmUSfuxMZBMeGmOMMYmVDY192wJ9VXWIiFQJsn0BcFWKYzKm0Bo0aMAbb7zB+eefn+5QjDHGGGNCyoYahurAtDDbtwEZPRWyiFwsIn03bdqU7lBMBilWrBh333130mZsTqZkNJ1KlGhrGKxJkjHGGBOdbEgY1gPhOjU3BFamKJa42ChJJhlWrVqVlvMefvjhvPjii2k5dyJZwmCMMcZEJxsShp+Amzydn/2ISB3gZuC7lEdlTJotX748Ledt0qRJQvtDPPqoM+/i/vvvH6FkdA4++OCEHMcYY4wxjmxIGLrgjIr0F85oSAqcJyLdgMnATqBb+sIzpmhq1So1YwlceumlQGImk7v//vtp1qxZoY9jjDHGmL0yPmFQ1QXA2cAe4FmcUZI6AY8Ay4CzVXVZ+iI0pmhKVcIQSa9evaIu26RJk6jLWpMkY4wxJjrZMEoSqjoJaCQixwANcJKG+ao6Jb2RGWOS7YADDoi6bCxJgCUMxhhjTHSyImFwqepMYKbvOhG5DeioqkenJypjMkPHjh058cQT0x2GMcYYY4qYjG+SFIUDgSPTHYQx6fb6669z9dVXpzuMAtxhY4sVS/6fm0ypNTj55JPTHYIxxhiTMEUhYch4Ng+D2ZeNGDGCnj17ctBBB6XsnFdeeWXQ9Q0bNvQ+3m+//ZJ2/hdffJFevXp5Z/E2xhhjspklDClg8zCYfdkRRxzBvffem9K7/++//z5XXVVwAvjBgwd7H7dt25auXbsm/NzHHnsszZo145577qF69eoJP74xxhiTapYwGFMExDI6UFHmJiUVKlTgyCMLtlQ86qijvI/LlSvH448/HtPxjz/++Ihlpk+fTrlyzrQxiRgq1hhjjEk3SxiMyXLPPvssI0aMSHcYGUdVw25PRY1HpBiMMcaYbJCRoySJyAMxFD8laYEYkwVycnKoVq1ausPICJnS6dllCYMxxpiiICMTBuCVGMvbf2VjjJ9kXqzffvvtiAh9+vRJ2jmMMcaYTJGpCUOLdAdgjMk+qaphuPHGGznxxBMLJAxHH+0/HYzVMBhjjCkKMjJhUNWx6Y7BGJPdktGHIdI+w4cPj/mYxhhjTKazTs/G7MO++eYbSpTIyPsGWal27dp+z32TltatW6c4GmOMMSYxLGEwZh92+OGHc/DBByfkWP369UvIcQrDtwYgE5oDxRpDhw4dkhSJMcYYEz9LGIwxCdG4ceOEHGfHjh0x73PFFVck5NyuY445JqHHM8YYY7KZJQxmn9esWTMAKlasmOZIirYzzjiDgw46iDZt2oQtF0/C4NYsJKqGoXTp0nHv6+vqq6+OqXwm1IoYY4wxgSxhSAERuVhE+m7atCndoZggevXqxeTJk2nevHm6QynSGjVqxJo1azjjjDMSetz69esn9HjRiPbC/rbbbkvKcTPFjTfemO4QjDHGpID1dkwBVR0GDMvJyWmf7lhMQeXKlaNJkybpDiNtbrnlFp599tl0hxG3P/74gy1btlCsWDEuvvhi7/pkXHzHOrJSpk0kl2hF/fUZY4xxWA2DMfu4Z555hgsvvDDdYcStZMmS1KxZk88++4yyZcsm5Jh2IWyMMcbsZQlDmmVbEwRT9IgIQ4YMSUvTnkQIdXFvv1vGGGNMYljCkCYNGjQAoGHDhmmOxBgoXrw4FSpUSHcY+zxLcowxxmQiSxjS5KGHHkJVGThwYLpDMSYqVapUAeDYY49NcyT+rIbBGGOMSS7r9GyMj65duyasHXxRc+aZZzJ69GhOOumkdIeSdsGSkerVqyfluMYYY0y6WcJgjI/HH3883SFkrGLFitGiRYt0h1FAKmsYwnWGnjlzZth9ixWLXKGbbQmDdQ43xph9gzVJMsaYALFeCPfu3Zv9998/bJlOnToVJiRjjDEmbSxhMKaIGjJkCE8//XS6w0i6RNcwfPLJJ4UJJ6STTz45KcfdF/nOt2GMMSb5LGEwpoi65JJL6NKlS7rDyDrXXHNNukNIqe7du6c7hJgdfPDB6Q7BGGP2KZYwGJOlSpYsme4QMkJRGiUp0TFHM7fG+eefn9BzGmOMKXqs07MxWeqxxx5jx44dNGvWLN2h7HMCL+wT1fk3UQlDmzZt2L59OwMGDODAAw9MyDEzSfny5dMdgjHG7FMsYTAmS5100kmMGjUq3WGkXaaMkpRJBg0aRLFixcjLy0vqedLxftx1111Wu2aMMSlmTZKMMSZAuhKDaIZeTfRxsiUJCuX4449PdwjGGFPkWcJgjAGy98KxKPVhKFWqVIF1hx56aFLPma2fu+vOO+9MdwjGGFPkWcIQJxGpKyLvi8jgdMdiTCI8/PDDVK9enZo1a6Y7lH3a9ddf7/f8mGOOSVMkmeGSSy5JdwjGGLPP2ycTBhHpJyJrRGRmwPrzRGSuiCwQkUfDHUNV/1HVW5IbqTGpc9VVV7FixQoOOuigdIcSk6JUwwBw1llnpTsEY4wxxs++2um5P9AbGOCuEJHiwJtAS2A58JeIDAWKA90C9r9ZVdekJlRjTKYJTEYSlZxka5KTSqqa9c2ojDEm28i++g9KRGoD36rqMZ7nJwHPqGorz/PHAFQ1MFkIPM5gVb0izPYOQAeAKlWqNKtdu3ZC4jfGGGPMXpMmTQLIiqGmt27dGnF44OnTp1OlSpWk92MyRceuXbvIzc2lSpUqTJo0SVU1cS2JVHWfXIDawEyf51cA7/k8vx7oHWb/KsDbwELgsWjO2axZMzXGGGMKKz8/X/Pz89MdRkYB1Lmsiaxr165avXr1hJ178+bNWqFCBf3+++8jlu3evbsCOnr0aB02bJgCOnjwYF2/fr1fuVhez8SJEzUvLy+u2FNpz549Sf/e7t692+/5P//8o6qqo0aN0p07dwYtf8EFF+iff/4Z9znXrFmj3bp10507dyqg7777bkz7L168WHNzc4Nu++GHH7R79+5RHadu3boK6NatWxXYqgm8bt4n+zCEEKyOO2T1i6quV9XbVfVwjVALYYwpWlauXJnuEEwSfPHFF3z11VcF1qsqkydPTkNEodWsWTMld54HDhzIihUrkn6eQKpKbm5u0o7/xBNPJPT3eObMmWzZsoXHHnssYtkZM2YAsHTpUj799FMArrjiCk499dS4zv3LL7+Qk5NDjx49WLBgAcceeyzr1q3zKzNhwgR27tzpt27WrFkMGzbM+3zs2LGccsop7N69O644As2cORMRYe7cuQCsXr2aEiVK8MQTT7B169aQ++3Zs4cNGzbEdc7JkydTsmRJhg8fDsBXX31F3bp1eeqppzj33HMLfD47duzg8ssvZ8SIEd4BJ/r27cuCBQtiOu+NN97IY489xuOPPw4Q9HvQrl07WrVq5d3+5ZdfsmnTJnbv3k3t2rVDfv4tW7bkoYceCrotJyeHM888E4BevXrxzz//ADBy5MiY4o9KIrOPbFooWMNwEvC9z/PHiLLmINrFahiMyX5ffvmlAvrDDz+kO5R92saNG4PeLSwMAu7o7tq1S0uUKKHHHnusAjpmzJgC+yxcuFD79OkT83keffTRhMaaDLm5uQpo3bp1tXXr1jpt2rSknk9V9aOPPtK77rpLX3zxRQV0+/btUe8by3uS6Pfvt99+K3DM1atX69FHH60LFizQf//9V6tWrarTp0/XG264QQH94IMP9LrrrvPuFxiP77p3331XH3vsMVVV/fHHH3Xs2LHe9+ajjz5SQK+99lpt3769AvrOO++oqur27dv1kEMOUUBvvfVW77G7dOlS4Jzu3ekFCxZ4161du1ZfeumliLUCe/bs0fLly+t7773nXffoo48qoI8//riqqk6YMMF7zqZNm4Y8lltm586dOnDgQB04cKDm5eXp448/rqtXr/aWmzRpkp5yyim6bds277r7779fAb3zzjtVVfXxxx9XQMuUKaOAHn744VqlShWtUqWKjhkzRp999lnv+erXr6+7du1SQA888EBVVb3zzjsV0N69e+tff/2lGzZsCBrzqaee6vc5AvrVV1+pqvN3xPd1TZo0ya/chRde6Pf8mWee8R73v//+865fvny55ufn6+rVqwucS1W9r9FnSWgNQ9ov3NO1BEkYSgD/AHWAUsA0oGEiz2kJg9lXLViwQJcvX57uMBLi4YcfVkBffPHFdIeiqqqdOnXSTz75JKnn+PLLL3XTpk1JOfZ///2n//77r27fvl1nzJgRslx+fr4+//zz3u/RIYccom3atCn0+bdv364jRoxQ1YIXkeeff77fP+D+/fsX2L9OnToK+F20RBLpYnXWrFnaqVOnkBdpf/31V4FjrF+/PqYYwrn22mv17bff1k2bNvm9/pycnKDlN2/erLm5uTp37lxdt26d37bBgwfrjh07Ip6zR48efueqXLmyAvrff//5lfn0008L7Dt37lzdsWOHd99ffvmlQJnt27frgQceqF9//bWq7v0MgsV277336nfffacbNmzQhx56yHvBp6r63XffaaVKlXT27Nl+F6+//vqr95gnnXSS7tmzR3v16qWAXnHFFXr33XcroDfffLPeeOON3rIHHHBAxIRh1KhR3scDBw70Kz9o0CC/hOH666/3XuD27NlTf/nlF2/ZBg0aFDi2u/To0cMvYdi1a5f26dPH7z395ptvdN26dfrzzz/r2rVr/WKdMmWKAlq+fHnvOjdhcD9P34Qh8PXm5eV5m1S527Zs2eJ93LlzZwX0oosu0u7du+tll12m5cqV88a2Z88eXbp0qbf8nXfeqW+++WaB84VbqlWrpk2bNvU+/+effwqUqVChgt5www2ak5OjkyZN0oMOOkiLFSumhx9+eNBjDhkyRAEdMGBATLG43/9oF/emRsCyWC1hKHSy8CmwCtiNMyLSLZ71FwDzcPolPJHo81rCYPZVJUqU0MMOOyzdYUTkti3es2dPyDLuP8EXXnih0OdbunSpNmvWLOyFciSRLj4La/bs2Qro5ZdfHlX5vLw8vwusSJo3b641a9b03hkMbMftmjFjht9rTdTrvu222xTQiRMnFjhm4D/gDz/80LttxYoV+v3333u3bd26Vbdt2+Z3Abp79279/fffVVV13bp1evrpp3vfz3Cx16pVSwFdsmRJ0O2+F5DueQBt1KiRX7mdO3fqwoULvTFt3rw5qvfNLbNhwwa/19+sWTPdsGGD30V84Pt08MEHe9f/+OOPCugDDzwQ9Dy+CU7ghXOwhMHdNmvWLK1cubIuW7ZM169fX+BzqlOnjnefrl27KqDTpk1TcGpLfL9LgM6YMUPnz5/vfZ/c9YcddpjC3kTxnHPOCXnB63th7v59eP755wuUFxE96aSTQl74TZs2Tfv16+cXh++Fe7jlggsuiFjmpZde0ry8vKDbfBOGM888M2iZU045RQE97rjjVFX177//9u4HzgX1Aw88oCeffHJUMc+bN0/btWvnfb5kyRLv43vvvTeqYzRr1iyqculczjjjjHScd6JawpCdS6oThq1bt0Z1Z8ckz9tvv62//fZbWmMYPXq0PvDAA2ntIOn+AUuEUJ09d+3apZdeeqlOnTq1wLacnBy96667Ih67bNmyCs6drVAeeugh7+tZuHBh1HG7d+AWLVrkXffGG28ooPfcc0/YffPy8nTYsGFBX3fge7tnz56QF92RbN68WRs2bOjtuDl37lzvHfRwTQh8uRfg0XLjP/TQQxXQpUuXBi03depUb9nly5d7H3/77bdRn0vVaWLRqlUrnThxoq5du9b7mV966aUF3svAf8C+CUPgNvdi7dBDD/WWcZtD/Pnnn/r+++8r4G0yEu49qlGjhvfiadOmTd6mVytWrNAJEyYUSBh84/DleyGmqvrtt99G9bsYzcVIuPK5ubl600036TvvvKOAtm3btsA5/vzzTwXnDrmqavny5f2OUbx4cYXgCYN7t75Xr166aNGioPG5NWLu808//TSq1+V7V9xd3n777ZDvi+uRRx5J6MWe7/neeuuthB470jJo0KCoyv3++++FPleJEiX8nvsmH7YUerGEIVuXVCYMK1euVEDLli0b090+kzhudapvFW06HHTQQQrounXrND8/X5977jmdPn16Ss69YMECXbVqlfcPmGvPnj168sknB23iEcmVV16p5557boH17gV54F1W1egTFreKe+HChQWq3AOPBU7Tg2i5dxWrVKniXec2WYiUzLhV6wMGDPBbP3/+/AKv7b777lMgrhFT3La1devWVVX1u8sYmDAsXbq0wGgkqtG91/n5+XrdddfpmDFjvOUjJQzuHWJA58yZ4/c5uHG4bZ7D9W0IdfHltvP2jT2wjO/7H+4fteuiiy5SQIcOHepNGFq1alWg3Geffabr1q3ThQsX+h3HvdvaokULVVWtVKmSgtN/xi3j2xQH0I8//li3bt2qqqpVq1b1O1fp0qW9z+fPn+89/7x58/Tnn3/Wvn37Rnxt7jJ58uSQ70WjRo2Cvifbt2/X5557Tt944w3vd9/dFuo8bttw378j11xzjYKTMARrNhLNcWNZevfuHfJY7vc5EefxXR544IGEH9OWfW6xhCFbl1QmDNOnT/d+acLdLc1GO3fu1CZNmugdd9yR7lDCirb6P9ncGNatW+e9AAl3t3jo0KE6ZMiQoBeD8Zz7yCOPLPA+uJ0pixcvHtcxAW9bZJf7nW/YsGHIfcIZP358gT+44c4fy2cbeEHh6tmzp4Jzx3Tnzp06c+ZM7zb3wnbHjh362GOPKaDPP/98yFgC10X6/GbPnq2DBw/W3NxcnThxoo4aNUr/+OMPv+P5VqP7fmfcCzbY22xm3LhxfuXD+eCDDwq8j+5d9TFjxmhubq6+8MIL3gtfVf+/ab7NegDvTRH3jnZgIpqfn6/dunXTJUuWeGt1wi033XSTXy2Gu0SbMLidUd2E4eabb9azzz476HfniiuuUEDPPvtsff311/22u+3RA5cnn3zS+9htNhO4+HaWhOAX8bt37/Y2BXMXt49OpMXtdHvHHXdEVb5ly5baokWLoNsivZ/gJNqB6yIlDNHWKhRmcb9fyT6PLbbEsVjCkK1LUUgYhg0bpm+99VZam7csWLDA+9risWXLFp09e3bc5//nn390xYoVEculK2EIbJLixrBu3TpdvHixArrffvsF3dfdDtGPI71y5Up9/PHHg44hHfgHzOUmDL7r5s2bF1WnzWDHU3U6igJ61FFHhdzH15w5c7Rly5b677//FmirHe5zi1Qm2N3twLvALnckGMCbFLidet2aoVWrVnkvELt06aLr16/XOnXq+P2O+x7Tfe57B9jX9u3bddq0aVqvXj0F/Jqt+N7VVA2eMLjt5X2/J8Heu3AJS2BnYtibMADei+u33nrLu49vu/PAhMF9z933EJx27m7C4Za/7LLL9NVXX437H/Cbb76pt99+uw4ePDhsucWLF+uePXsKjH6SaUvjxo3j3nfYsGFB2/THs4wcOTLufb/44ou0voe+NUa22JJhiyUM2boUhYTBPea8efPi2j8/P1/nzp0bc3OJjh076imnnKI7d+7UZ555xhtHPC6++GIF/6HjYgH+zUpCiSVhCDVhSzzcIfu2bt3qN3xbNAnD3LlzveUfeeQRVXUu5D/66KOQ53MvMgcOHFhgW+AfsGnTpmnHjh1148aNfu+NZ5IZveGGG/z2nz59eoEmdb7HO/fcc3XVqlXeOAGtV69eyDjy8/O9F5HundG+ffv6NXfwXTZv3qzDhw/Xnj17hnxNkydP1g8++EBVVY8++mgF5w6wqtOpc/v27bp9+3a/fVy+7aXr16+vgM6cOVPz8vK8CQPs7fz39NNPe++aXnXVVQWO6Xun8/LLL9fly5cXSMLuuusuv/1KlSoV9LWrqp5++une54cffrgOGTLErxkRBG/zDeiDDz6ogLeZ17PPPqsVKlTQHTt2REwY3MW3RsU3YQjsTOrWBgQbKWT06NEFkqt4l2jbV7vfxaK8+DbhssUWWzJysYQhW5fCJAz5+fm6dOlSvyr6cJKdMMR7h95tMvDSSy/Fdd5///3XmzAEa3oSDXes4sA7sKtWrYoqkXFjCWXXrl26YcMGv4Rh2bJlIcvPnDlTAX311VeDHmv06NExdV53z/nee+/5/fGIlDB06tSpwIVcbm6uHnfccQrBx6BXVe9oJu+//37IWNzlqKOOUsCv+c/ixYv97vA//vjjfhd5Xbp0CXvM8847T6+77jp94oknFNDatWvrU089pc8//7y3Jswt27t3bwXn7qjbXKRv37760ksvBf2D69usI9T53cWdsdVdZsyYoY0bN9aTTjpJt23b5rfNFepiO3C58sorFdAnnnjCmzD4NvUCCox8cskllyg4d+vDvX8lS5YMes4+ffroCSecEDG2aF+DuwRLFmBvHwbfxXd0ncAEKdx7H7i4yUthl4oVK0ZV7qeffkrI+WyxxRZbCrFYwpCtS2ESBnfs5SZNmvitf+KJJ/TMM8/UWbNm+a3P1IShW7duCqGH2Yt03n///dd70XnMMcf4ldm9e7fOnj07YnOpYAmDe/cy0mg1vrEE444VDfgN9zdmzBj94Ycfgo5e4w49eNZZZ+kPP/yghx12mLdT8scff6yAvv766xHjCozv6aef9vvjsW7dOm/TlrJly4bcz3fxvavrO1RhsP2iSRjc5fjjj/c+rlu3boEmQZUqVfJedLVo0UJ37typ559/vl9nz1CL74VnYCfO8847r0D5vn37hjyWb8Lwww8/hKyJiLS4NSiB3x3fJjSFXdwJh9zFt4NruM8kVMIQ7RJrwhDN5+a7dOzY0ft3I9Ry+eWXJ+x9TMTijhRliy222JLGJaEJQzFMVlizZg2Ad9pvV9euXRkzZgy///474EypHmpa93bt2nHiiSeyevXqsOeaMWMGN954I+PGjQtbbuTIkfz888/RvoSEcd+LQE888QQNGjTg+++/j/mY69evB+DHH3+MK6YdO3bw4IMP0qVLF+86389h3rx5tGzZkssuu4xXXnmFTZs2BT3Op59+ypIlS/jss8+4/PLLefnllwFYvHgxQMj9li9fzkMPPcS6detCxrh7926ef/55ALZv386WLVsivq7Bgwf7nSNR/vzzT+/jf/75hw0bNvhtD3yda9euZeTIkbRs2TLisVesWOF9/N1333H00Ud7n1euXLlAeREJeay7777b+7hly5YccsghEc8fjHOdvteuXbuCrk+knTt3Fli3efPmAutC/b2I1osvvlio/V2+n5uvnj178thjj4Xd96uvvkpIDInyzjvvpDsEY4xJKEsYMtS6dev46quvClykFSsW+iPbunUrFStWpGzZsgUuwAA+/PBD/vjjD+bNm8f333/PaaedxtChQwuU+/LLLxkwYAD9+/cPea7NmzdzwQUXcNZZZ0X/ohKkZMmSQMELvdmzZwOwcePGqI7zyy+/cOuttwa9iIrVDz/8wKuvvhpy+44dOwAYN24cDz30EJ9++ql326RJkwAYPXq090Lys88+4+uvv2batGl+5SpXrsybb75Z4PivvfYar7zyStgLpxtvvNHveTSv200wgsnPz6dnz54F1i9evJijjjoqYsLp64MPPoi6bCy2b9/u/V4AHHDAAQXKhEsYPvnkk4TE4RsDQOnSpRk8eHDCLrYBHnjggZDbbr75ZkSESpUqJex8xhhj9h2WMGSozp0706ZNG+68886o99m8eTM7duwgLy/Pe8c8lO+++45ff/2Vb7/9Nq74gt2VzM3NpWHDhlxzzTVxHTPRVJW2bdvy+OOPB93esWNH3n//faZMmVLoc11yySUxld+2bZv38SOPPOJ9PGPGDMC5GPe1ceNGpk+fDgSvBcnNzQX23rkOZtSoUTHFGCwOgGXLliEi3HXXXdx3330FtterV4+5c+fSp0+fqM/jxu/LTfwKU4sVGP9bb71VoEy4hCFRLrroogLr2rZtm9Bz9O7dO+S2ZCVkxhhj9g2WMKTYwoUL+e+//yKW2759u9/PTPPoo48WWPfvv/8ya9YsPvvss0IdOzc3l5NOOsmveY9r6dKl3iZVGzduDNu8aseOHQwePJhu3br5rT/11FP9nhe2SUY0TXuiFaq5Vf/+/bn55psByMvLC7n/Pffc43387LPPhj1X//79Offcc8MeL9A333xDrVq1AHj77bf9tnXo0IGLL77Ye7xYvgdTp04tsK5NmzZR7x+Kbw1NKLHUhMQrUjNAY4wxJpNZwpBC69evp169etSqVcvvzmeXLl1o0aIFv/zyS4F9NmzYwLx585La1jkWZcqUAfzvkBfGxIkTKV++PLfeeivDhg1j9erVLF26lAkTJvDMM88ELe9atmwZ1apVY8+ePUGP/fXXXwddX6VKFb/nLVu25Nprry1QbuPGjSxcuNDvvf/111+jeVlA8LvZgQIv1letWhVxn2HDhnHllVfG1VfD1xNPPMEPP/zA1q1boyq/e/duLrvsspDb8/Ly4q6xGjNmTFz7RfLvv/9GLPPhhx8m5dzGGGNMUWEJQxxE5AIRmSsi80Uk6jZD7oXt1q1b/S5C3333XcaMGcN3331XYJ9JkyZx5JFHMmjQoIjHnzdvXrShFPDee+9xxBFHBG228uCDD3o7S1eoUCHuc8Deu/nffPMN1apVo3nz5mzbto3333+fSy65hNtuuy3s/pMnTwbg8MMP965z39fANvluUuP2eQjH7XBZs2ZN73nq1KlDvXr1qFq1Knl5eUyYMIHTTjvNu8/06dOZNGmSX8dgX5Hu8A8aNCiq2IL54osv6NChA+vXr/dLouKxe/duXn/99aDbMiVRNcYYY0z6lEjlyUSkVjz7qerSRMcSLxEpAfQEzgLWAxNF5GtVjXxrOITixYtHLBOsGVNgM4cOHToE3fehhx7yaycfzE8//cT8+fOZMGFCgW1uZ95QCclFF11EgwYNaNeuXdhzADz99NNAwdGeXEuWLAm7/3vvvQc4TbtcO3bsoGzZsiH3KVWqlN/zkSNHhixbr1498vPzadasmXfdunXr+Prrrwu0Of/ggw/o27dvXLUtXbp0oUGDBoW6IN+wYQNt27bl559/LlR7+CeeeCLjR3WpUaNGukMwxhhj9lkpTRiAxThjw8Yq8hV16hwPzFLVZQAi8jVwEfBuqgMJ7EcQ6uKzT58+UXccnT59Osccc0xMcQwfPpzhw4eTk5MTsWyJEiVCNiECpy37Rx995H2+cuVKqlevHvaYgc14Pv74Y1atWsWTTz7ptz4vLw8RiTg60JAhQwqsC5aw5efnx900a/Pmzfzxxx8ht7vDqIaTm5vr/Vy/+OKLuOIAGwLSGGOMMeGlOmF4lvgShoQRkdOBTkAzoDpwk6r2DyhzJ/AQcAjwN3CfqrodDKoDy3yKLwcOTXLYfn766SfWrFlT4MI33JCrc+bM8T4O1s7cHSnmyy+/DDr0ZDSiuVteqlSpsAkDwIABA7yPly1bFjFhOPbYY/2ef/vttwVe4wsvvOBtsx/J5ZdfHrGMMcYYY8y+Qva1NsoicgFwKjAZGADc6ZswiMhVwEDgTuBXz8+bgKNVdamItAXOUNW7PeXvAKqqasEhfQqcu67CCwBceeWVbN26ldWr1zBx4l8ANGhwNMcddxwAf/75B4sWLfLuW6FCRbZs8R96snTpMuzZs5u8vDyaNz+eOXNme4enPOWUU/ntt+AddIsXL87hhx/OvHnzqFv3cJo3b8748eNZutS/OVCdOnU4/vgT+PxzZ7SbY445lpkzZ4R8fSeddBLjx48H4KqrrgYgP9/p1FusmFNJNHjwFzGNynPOOS2pUqWKN4Z4FC9egrw8J0nJyckJ2+a/Xr16LFiwoMD6nJzm3s/JVa5cebZti67DcNOmTb39L4wxxhhjkuuaSaoauelHlPa5hMGXiGwB7g5IGP4Apqtqe59184HBqvqYiJwMPKKqrT3bugKLVTVokyQR6QB4Ohc0awaF66BqjDHGGGNMeJLQhCHVTZIKEJHiwLXAucDBwMOqOkVE9gcuBn5S1RUpiqUUTlOlVwI2jQJO9jz+E2goIjWBdcBlwDmhjqmqfYG+zvEPUHDuvH/88Sf06NGDyZMnecu2bn0pV1/tbH/77bcZO3ZMgeMVL16CRo0aMXnyJMqXr8Du3bvZtWsnHTrcxrBhw1i1aiXgzPoabuZhXx9+OIB33nmHhQsXcsABBzB79qyg5Ro2PIa//55JiRIl2bMn8twFV199DZ995sxo/O6777F06VKeey78yEGBnnvuOerVq88111wd036+SpcuQ35+Prt374pYSxKqZubWW9vz3nvxd1Np2/ZKvvgi8khXxhhjjDGZJq0Jg4iUY+/F+FagHLC/Z/Nm4EWgH/Bk0AMk3oE4HawDZ1lajScpUNU9InI/8BPOsLQ9VXVldIffAHwOwFVXfcxnn/3C5MnDvFsbNjzcmzCMGvUnY8d+XuAI69dv5O+//+aUUx6mVKn9Ud3Jrl3bOP74lowdO4JVq+YCUK1aM++5IqlZ8zZq157AmjV/cvDBNZg9e0zQcgcfvJa//x5N8eKl2bNnZ8TjNmrUmM8+c2LIzT2B5557IKp4fP3yywby8k4m2tcSTIkS5cnLy2P37h1Uq7aemTMLzpTsWrnyT2BRgfW1ajUsVAxffBH/vsYYY4wx6ZTueRieAXJw7tLXBcTdoKp5wFdAqzTEFdhOS3zXqeowVT1CVeup6huJOukLL7zAlClTCqxv0KBBzMd6+OGHvY+PPfbYApOVAd5RhHwnkXP7QCTChg0bvI/jnQ151KhRQSdwS5TAjuKhmui5w8EaY4wxxuxr0p0wtAX6quoQID/I9gVA7RTGsw7IA6oFrK9KwVqHpGjatCmzZgVvEhSvUqVKcd555xVYHywRCRw+tEePHpxzTsgWVwX4jmj0/vvvRyxfunTpqI578MEHRx1DoK1bt7Jjxw6/daeccgoAd999d9zHNcYYY4zZF6Q7YagOTAuzfRtQMUWxoKq7gElAy4BNLYHfk3nuG2+8keuuuw4oOAa/exFeoUKFsBOUxaJDhw7eWY3DOeGEEwrM9xCtXbt2RSxz1FFHRXWswEnqnnjiCVq0aBFXXLC3JmHNmjVce+213vW+7/25554b9/GNMcYYY4qKhCUMIjJaRAaIyOEx7Lae8HMYNASi7B8QHRGpICKNRaQxzuuv5XnuzkL9KtBORG4VkQYi0hMnsXk7kXEEiYt77rkn6LYGDRqwY8cO/vvvP79Zi32b/ATz8ssvJzTGWIZDTbYrr7ySwYMHx7zfjz86/Rdq1XI+brejdzCnnHIKl156aVTHfeWVwH7yydG+ffvIhYwxxhhjEiiRNQxnAtcBs0Tk9Sj3+Qm4ydP52Y+I1AFuBr5LVIAeOcAUz1IW6OJ5/CyAqn4O3IfT0XoqzpwNF6jqkiDHSpjixcNPZl26dGlKliwJ4NcfIXCm4VNPPZV27drx1ltvJTzGsWPHRiyzcePGiGWiqdlo2TKwkgfKlSvwNYmb2yQJgs/iHKtq1QJbsRljjDHGFA2JTBjqAMfhzJBcL8p9uuCMivQX/2/vvsOkqs4Hjn/f3aWD4Epv0paiSEcQRAWlSJGmAipFRRFERUhU0PgTg8QSCyoRISiIYseCgjUqEQ0oRiIasDeCiDFqNFjQ9/fHnVlnZ+fO3Dtzp+zu+3meeZi55Zwz5bLn3FNemI4zsXiIiPwBJ7DaD8AfAiwjqvq8qkqMx5SIY/6kqi1UtYqqdlfVDUGWIdr8+fOZM2dOcbTlYcOGxa14t2vXrsSk5khNmjTh9ttvZ/r06SW2R/ZM+NW9e/fi50cffXTcY3/6KfZyq0uXLi1+vnVrvFFojlhDr2rWrJnwvGS8+eabrvvGjh0bWD7169f3dNzxxx8fWJ7GGGOMMakKrMGgqh+p6jZVvVFVh3s8513gaGAfzh1+AX4DXAh8Ahytqp8EVcZc1LVrVy699FI6dOhAp06daNeuHQC7du2Ke16jRo185XPZZZexfPlyTjjhBN9lrFOnDkcccQQAo0eP9n0+wKeffurr+H79+iWVj1exGlBFRUUlXjdr1oxTTjmleBhTqiIbTfGsXLkykPyMMcYYY4KQ7UnPqOoWVe2M0zsxDieyWXdV7aSqiW9Fl1F79uwpta1KlSrMnz8/qfSmTp3Kjh07XPc3b96c0047jcmTJ9OnTx+GDRuWVD6Zkp+fT9u2bdOSduvWrYvnMMTTs2fPlPMKqofitttu44kngh6dZ4wxxhiTmOcGg4i0EZEhUdt6ichaEdkoImemUpBQ78T9qnqfqpYORlDO9OgRWLRuX4YNG8bGjRs57rjjspJ/tGRiTKTqhBNOKB7+FU+9evVSzmvGjBkppwFw6KGHMnhwNkKSpCaZoXCRS/MaY4wxJvv89DBchTNUCAARqQusxwms1hG4RURGBVq6cqpBgwYxexjKmkcffbT4edeuXYGSk3+9BIFbvnw5TZrEWygrOzZs2FAc+8Hr3IOwww47LB1FStqAAQOyXQRfEi0AYIwxxpjM8tNg6AFEDuaeAOwHdAPqAZuA8+IlICK/iMjPPh/7/L6pXDds2LCUJiHnokceeYSvvvqquOEQzW050OrVq9O5c+dS2730POy///6ulfM5c+bEPTcc4dmtF6Fbt27Fzw855JCEZYlcdWn16tXFzyO/59q1a3PFFVdQUFAQN63KlSuTn5/PhAkTiudyREek9mP27NlJn5sNc+fOzUg+kyZNykg+xhhjTFnnpxZSj5IxEYYAG0NDiX4E7gEOSpDGHTEeb+JMdn4beAR4NPRcQvtW+ShjzissLAx0eVAvwkHK0ik/P5/atWsHktZnn33GkCFD+OUXJ/h3r169Yh4nIlx22WUx90UOBYpVMezbty8LFy7kuuuuK7WvadOm1KhRw3N5CwsLadGiRfHryHN79+5d/PyII45g3rx5nHvuuQCMHz8+ZnoFBQV888033Hnnndx6660sXLgwbfM50s1v7wyUbHylU1BBEI0xxpjyzk+D4TugDoCI5OPEJ4hcbnQvTo+DK1Wdoqqnhh/AapzlWEepagdVHaOqo1W1AzAmtG91vDTLkm7durF79+6M9S6EK2uJJvjOnj2b1atXJwwEl2nffPMN8OsQlcMOO6y44ly1alXP6ezcubPUturVqzN37tziVakS2bp1K2eddZanYyN7LSJ7E6J7CeL9DqpXr05eXh4dOnRg7ty5xZ9BtoYXTZ06tdS26FWlYkmlZyTdMtGQNsYYY8oDP3/N3wQmisgBwBlATeDpiP0HAn4H5v8euFVVH43eoaoPA0uBBT7TzFkiknA4Slj47noqJk2axMcff8y9994b97h//OMfgLeAaunWuXNn6tSpA8CUKVMAaN++PTt27ODuu+/miSee4PHHH/dUWQ374YcfAGficLI6derkK890GT9+PHv37i0RGyOWV155xXXfSSedxDHHHOMr38WLF5fa1rJlS19p+M3TGGOMMbnBT4PhGpylTz8HFuNER/5rxP5BOMHW/OgEvBdn/7s4E6orjPCd5M2bN8c9buTIkUybNo2FCxe6HiMiNGvWzFOPxsknn8zf/vY3f4WN4OeOv5vBgwfz+uuvU6VKFYASw3zatm1LtWrVaNmyJUOHDvW0ylFY+NhUJ9P+/PPPKZ0fFC+fdbxepauuuiru8LFrrrmmVJyPWA3dyIjjXnhZpjaIpWzXrl3r6TjrYTDGGGO88dxgUNXHgQHADTgRmgdp6C9uqNfhU2CFz/z/g9PQcDME+NpnmmXCt99+G7NiM3jwYE9B2Vq2bMmSJUs45ZRTAinPAQccUFxR92Pr1q289NJLFBYWBlKOdDj//PPp2bMnHTum1vb84IMPgOwtiRupadOmKZ0f7lWKZcCAAaX25+XllZjM3bFjR9/B+BJp3LgxmzZtSjkdrw1DazAYY4wx3vgaYKyqG1R1jqperqpfRmz/d2j+wcM+818NjBSR5SLSQUTyQ48OInIbMBy4y2eaOW/EiBGu+2rVqsWaNWvSHuk4KJ06dSqxUpGfO/+ZMnr0aDZv3ux5CI1bRTK8fdSoUUEVLWnXXXdd3OFtiXohEg2Nq1u3bqm7/dHneB1e51XlypUD+f0cfvjhAZQmNSeddBLgfI7GGGNMWZftGYmX4KyMdCqwDfg+9NgGTAEeCx1Trhx11FGceuqprvt79+7Nhg0b6NOnj++027Rpk0rROPfcc1OKIzB9+nQGDYrXaZS7vv32WyD2JOl4Yg1VGjZsGCeffHIg5YqlVatWrsuPvvnmm+y336/rD/Tq1YshQ4bEPDaeXKh4+7Vq1Spq1arl2lsW2dibNGlSWlYsW79+PXfeeSeqWiY/Q2OMMSaa6y3C0B1+v1RVT/dx8A/AaBEZBIzCWRVJcOY1PKKqTyVRhgrrjTfeSHnYzaxZs5g1a1bSd3oHDx7MkUceWWrJynh3vPfu3QvEHyaTCePGjeOGG25IeFz0kquxhmM99thjQRXLt4MOKrm6cd26dVm/fj3VqlXj+++/95zO/vvv77pvypQpPP744wnT6Ny5Mx9//LHnPFMV/t1u376diRMn8uKLL5bY/+CDD1JQUICqUlRUxHfffefrt96oUSN27dpFjx49qFy5Mi+99FKJ/e3bt0+qcWaMMcbksng9DFOSfPimqk+p6gxVPVZVh6jq2dZY8C9XgsFFL6X5hz/8IW4gtfBqSF988YXvvGIFXku2seN1Xf4qVaowfPjw4tfhuAHHHnssEydOTHh+q1atAGfMfphbTIZ4gp5DEC0ylkWkoUOHJgyMB3Dbbbdxyy23xNx3++23M3Xq1OKhO/H4mTMS/u5btGgRc1WmyN9mMr+T8Dm33347GzduLLU/euGASpUqFT9v3bp1wvRzMeq5McYY49pgUNW8JB5JL0MjIgeISI/Qw9/yKxVY5N3uWrVqBZZuuGIUa2hHooZJ5cqVS1SmZs+ezYEHHuh6fORqSH517dqVzz//vPh1z549XZeRDb+nIGIDxPoM1q1bxx133JHw3GnTprF582ZOPPFEwFnO9u677+a4447zNRxs165d3gucBLdVkLwO4zn11FNdK8CTJ09m2bJl3HVX4ilKs2bN8pQfpN4gSFX06lPz5s0rfu7luy1r0af79++f7SIYY4zJgGBnLSZBRDoDN+IEgovc/lfgXFXN7jiVHFdYWMg777zDL7/84ml1Ja82bdrEhx9+SLdu3Urtu+6661i3bl3cJTCTmX+RrMhehqVLl9KlSxfef//9UseNGTOGrVu3BjK3oGbNmp6PFZESY9kLCgro2bMnH330EeDMdwB45JFHUirTtddeS+fOnVNKo6yLbCS4NRjCk9fjNSiKiop455134qbvRZcuXZI+tyxIFBTSGGNM+ZDVBoOIdAReBKoCj+JMdgY4GBgB/FVE+qjqm1kqYpmQ6kTnWHr27OnaIJg6dWrMyL9BCy8d2qlTp0DSa9u2LXfffbfrfq9Rn8G5c7xu3Tq++OKLhD0WX375ZczhTgceeCAffvhhIMNQmjdvzuzZs1NOp6y69tprmTNnjqdhP2HxKvBuK2XFOydRg708NhiMMcZUDL4aDCJSgDM5uRewP6WHNPma9AxcDvwE9FHVN6Ly6ghsCB0z1k85TfkwYsQIvv3221KTjL1o3rw5U6dOZcCAAZ7PSRTbINygaNiwIe3atWPTpk2cccYZnHXWWXHPC0eujiXeUC2vZsyYwbnnnpvUuX379o05Fj/dgqw8r1u3jiFDhjB8+HDatm2bljy8ePbZZ+Punzdvnqcha0EqKChg3759aUs/W7Es6tWrx549e7KStzHGVESeB3OLSCGwBbgXmIOzFOqU0GMyyU16PgJYHN1YAFDVbcCfgCN9pmnKmPB8gKKiolL7kmksgFNRWrZsGRMmTEipbJHOPfdctm/fXrw0Z6tWrXj22WdTWoY2CMOHD/fVOxJpyZIltG/fPuASxXfOOecEmt6RRx6JiJRoLEDiBoPb/rVr1yasCEef++c//5kOHTrEPcfLdxRUI2f06NGAsypUIm+8Ueq/35znZXEBY4wxwfEz+3MB0B6YCrTGWf50MNABuBt4BfA7WbkG8Fmc/btCx5hyrEePHtx5552sWbMm20WJKy8vj3bt2pW7oSU33XRTtouQErfvI9kGw9FHH53UkKQgBLXS2Zo1a1BVBg4cmPDYVN5TNq6FmTNnlsj3oosuyngZjDGmovHTYBgG3KGqtwPfhLb9rKo7VPUUYC/wB5/5v48TzdnN8NAxphyJHvNfUFDAySefnPRdcnCWNIX4sQNMbMcccww///xzws8/vESoW/TiZJaGhV/jRoRjdfiJFQHpqbT6HWoTVBny8/O54oorSmwbPHhw0ul5KVeuN4Avv/zyUtsiy5zpHjJjjKmI/DQYGuL0IgCEB8VGRuN6GDjOZ/53AINFZLWIHCwi+aFHRxG5CxgErPCZpklCODZAOq1du5bVq1cnPcwonoceeohPP/00kDkBFVFeXl7C5VIHDRrExRdfzMUXXxxz/wUXXJBU3osXLwYojk7tt8HgNuk82R6GeOclU7k+/PDDS8RjSFSmrl27+s4jUqyVzRLlmYpEc39SFbk0rUldkMtvG2MqDj8Nhi/5dXjQf3EmKzeL2P8TzkRoP/4I3A+MB/4BfB96bAUmhPZd6zNNk4Tzzjsv7XkMHz480DkFkapUqWJBr6JMmjQp0B6X6tWrs2DBgsAriF4D5rlxq/AmagDFqyg/8sgjMZffTaZyvXbt2phLtMZSuXJlBg8ezP3338+IESN85wWUmMSe7h4GVeW1115L+nwv8vNLh/fxUub69eunnHeiBQ3KolTi3hhjKi4/DYa3gYMAVPUX4O/AFBGpIiLVgUn4HD6kqj+r6jicuRBLgKeBZ4BbgEGqOj6UlzHGpxUrVvDZZ/GmCJXk9S64X1dccQV5eXlpu7Pp1sOQaGJsvErnIYccwrJlyzyXIV5aderUSdjz9e233zJnzhxmzpxJXl4exx9/fPEQLb8V+vB5XqUayDBWtPVc8fLLL6fcIC1v5s+fn+0iGGPKID9/KZ4CjheRcOjf63CWV/0S+BzoAVyfTCFU9WlVPVtVh6rqsao6U1WfSSYtYyqK8ePHk5eXR8uWLWPuFxFfk2jnz59Pz549XdNL1rx589i7d2/gQ9HCcQ/cKtSFhYUlXidaxSgs6CFJXtSoUYM//vGPMSu3seZTzJo1i9NOOy1huunuYfByrtucl1R4LXPv3r0zEjOmLAmvoGWMMX74aTAsBBqq6g8AqnofcDzwJLAeOElVlwdfxIpr9uzZTJo0iUmTJmW7KCYHTZ48mR9//DGwSZ9Dhgxh8+bNaZk4HtTqP5Gee+45nnrqKc93yKOHl/itKDdt2tT1bnWyle6uXbu6zv2IbiiccMIJxc+vv/56li8P5r/bdI9pX7lyZdz9fn8b06ZNK/F5+10C1w+/50ZeO3/+8589n9enTx9f+bipXbt2IOkYY0w0zw0GdfwQtW2Nqo5R1RNU9d5kCiAiB4rIFSJyn4g8KyJ/iXrEj4ZUjo0dO5aVK1e6Rlw2Jtb47oqifv36npYNdeN3UvT1118feA/DqFGjuOqqq2LuC1eEw3nWrFnTd/peytuwYUPP6UX32iTSt29fhgwZEveYgoICzytBqSodO3Ysfr1w4cKE5/Tv399T2kGIbLwPHx5vAcBfVa9ePbDgiYcffnjM7X4nwhtjTLTUBq+mSESOw5kbMRdnRaRWQMuoR/qX7zHGlDl+K+9BD7WKlGxDws95Xo6tUqVKwmNSccghh/g6fu7cuSnPkUhW+PMKB1rMZJ7RzzPFrbfl9NNPz3BJjDHlTYHXA0XkUg+Hqar+3kf+VwGfAKNjRXs26RUeU+5lsmv4mFxfs92YWF5++WUOPfTQEtsSLasaa3/Hjh1566230jZBPNKiRYuoUaMGhx56KE888UTMY0Qk7pCcoK9Xt+FDF110EVdeeWXC8y+//HLq1KnDueeeW7xt1qxZbNmyBYAmTZqwc+fOhOl4qZj7jaWRKJ90HA/BlDORcDT6cLyaXHbQQQfx1ltvZbsYxpgofm79XBbn8X8Rz/1oAdxojYXs6Nq1Ky+++KKn/5wvu+wyZs2axciRIzNQMpNuQ4cOBX6NfZDLjjnmGI488shS2/1Uznr37l18pzu8qk8ylbsbbriBJUuWUFRU5PvcWOKVoUmTJqxcubK4kh7r2Pvuu6/EJNboY4IeshZZ0Y8UDr7n5q233mLEiBFccsklnHPOOcXbVbVEoLply5YlTCtSOirbkfMQkmkw5OKqUV26dOGmm25i1apV2S5KQrG+0yZNmmSkYWWMceenwRA9VKglUAQMwVlB6W+A39mXHwDp7UM3rkSEvn370qZNm4THHn744Vx//fUW66CcuPLKK3nvvfdo3rx50mmcccYZvo4Pjz3v27evr/MaNGjA888/X+qufrJ3z++66y5OOeWUhKs2xUq/UaNGpSbdplKWVIckHX/88axZs4a//vWvQOnKlogEelfZbdK3W2UuvL1Dhw48+uijnoLlefn/KHx8OiqRXucTfPDBB6W2DRgwwHd+QfUCRfegRecxc+ZMDjjggEDyyrRrr7VwTMZkm59Jzx/FeLynqk8BQ4GfgVN95n8DMFVEgg/9m0Yi0kxEnheRt0Rkq4iMyXaZTPLCFaoGDRpkuSSZU1BQkHJ07wkTJnDbbbd5Pn7AgAF8/vnnjBs3LqV8r7zyStq1a5cwMJubgQMHsmrVKt+RntNROfXyHXjJt3v37imdnyu8ltXLKklu3+MNN9zgu1yxRAdA69ixY1IxDoL6fqpWreo5ra+++iqQPNMh1vdWln7DxpRXgcxGU+dqfgAneJuf85YCy4A3RWS+iJwqIpOiH0GUMWD7gFmqehAwEFgUCl5nPMjPz2fIkCGMHTs220UBnMBiX3/9dYnVV8qj8MTHIJfR9Ht3NN5wDa8Bts4880y2b99OQYHnKVhpl+xd4vHjxweaR7LleOWVV5I6L1G+2Zzz5FbJ9BPVPrL8ieJJuC2PmynR8SZiDeMLc1t+1W2VpWyzBoMx2Rfk8hWVAV/9nSLSABgDNAd+BywHVkQ9bg+uiMFQ1V2q+nro+efAf4DgoxOVUyLC+vXreeCBB7JdFMApT3gs/+bNm/n73/+e5RKlx4033siePXt8rdV+3XXXccopp6SxVHDwwQczaNAgT0tkZlImKrte8hg0aBBQukIYS6yKlZfKVo8ePRIeA+4rTXldFjVoVpH81cSJE1P6PIYPH15iPkmyEjWcHn/8cd9p2mIbxmRfIA0GEekBnAf80+epS4CeOBGixwD9Yzx8DQoVkSNE5FER2SkiKiJTYhwzQ0Q+EJHvRWSLiPTzWe7ItHoAlXBWe/LN/uDllp49e9KlS5dsFyMt8vLyfEfdPf/88z1PlKxVqxbt2rXzXa6aNWvy5JNPBha8yq/WrVtnfTnMeFq0aIGqxh2j7tVvfvObEq+jg9nFMmzYsOLnrVq1YvHixaUmU9evXz+lciX6zOvVq1ei7EH3trgtO+onjWz8X37JJZe47vO7BG6iFbe8ShSIL7zggh/hcn388cdJlcmLbC3/a0xZ4fkKEZH3XR5fAZuAesA8n/kfDSxS1Tmq+rCqvhDr4TPNmsA2nAbM3hjvYxywCCdydVfgJWC9iDSPOGaby6NZVFoHAHcAp6vP/2n79+9PUVFRiT/GxpRllStXZvv27WlLPzxOP+g/7M8991zMlcKiK4uZXL40WbHKEdkoiG7QderUKWGaa9euLfF6xowZrF69Gog/xCxZseamfPLJJ1x99dWB5xV2zjnnsGXLFtatW1die9WqVdOWZxDmzp1b4vXZZ59d/Pzyyy/PdHHSJnztNWvWLMGRyXv22QobI9YYT/z85f0Y+Cjq8SHwDE48hXaqGnuxcHc/AO/6PCcuVV2nqvNU9QHglxiHzAZWqOoyVf2nqp4D7AKmR6TR0eVR3IsgIlWAh4A/qOpLbuURkTNF5FUReXXPnj3F2ydOnMjbb7/NggULUn/TxlQAq1at4tZbb/U1pMqLZs2alYjQm8sWLFjge8jcqFGjUnp/sRohxx13HHPnzk3LuP3Fixdz6aUlw/5UqVKlRDlGjBgBEDOKdDiy8zHHHFNq35133hkzz4KCArp161ZqRamjjjqK3//eT2gh71q3bg2UboiOGzeuOG5CItGNq8jo0pHLw8by4IMPesojVRdddFHx84ceeijh8cmsNBWEoBq/XoZwTps2LZC8jMkkP6skHaWq/aMeA1T1+FAF/cMk8n8cZ9JwRohIZaA7zjKwkZ4CPI+HEOcv1wrgL6oad7yGqi5V1R6q2iMX1+c2JhXxVucJWps2bTjzzDPTnk+8wG2JzvEjmVW5Lr744phD5qpWrcqsWbOKl1eNtnz5cvr161dcSQ1LdghK1apVWbhwYeA9DKpKYWFhwtWGevXqhaqWmnuxfft2Hn/8cZ544gluvPHGUuedfPLJMdNzi/0wdOjQuL+5yAUEghqS1KlTJ156yfUeVCmRcThSkYleMi9RtzMxl2nHjh1pS9vLpPoWLVrEbNAak8uyPWhvNtBMRG4UkdaS/v+x6gL5wO6o7buBhj7S6QuMA0aJyOuhh78Bo8aUA4ccckhOBqrKlMaNGyd13qZNm3jhBb+jLd2JCNdff73r5OU+ffqwYcOGhOPL3Xz66ads27bN93lucxuOP/74uOPvw/xWqtq1a0e1atUYPHgwhYWFns+L9acn3CsT789Sr1694qYbL27NL7/8kjB9L9asWZNUYyVdcy5STTeoVdziTcRv27ZtIHkkK1eGMBrjh2uDQUSaJ/Pwmf8XOHf8zwbeBvaJyM9Rj30pvD830f+jSYxt7iervqiqearaJeJh0apNhVRe//jl5eUljDocXrrS62ewbds2HnroIQ499NCkJoinyktlLnJYS1iTJk04+OCDfeX1wgsv0LNnz5j77r///oRDfVSVp59+2leebho2bOg7+JeXzyrR9+4lSKFbPs888wxz5swBoGvXrkk12LZt28amTZt8nxeUgw8+mOnTp8fcN3Cg++CC6CFZsT6jv/zlLzGHpIVVqlTJ0xydsPB32aFDB8/nROvfv3+5/f/QmHgLmX+Ij0p0hPzEhxS7I8k8kvUFToC56N6E+pTudTDGeDBw4EDuuuuutEwQveOOOwJPM5HIIUlvvvkmJ554Ivfff38gd2QPPvhg3xXvTFu7dm1SlZ777ruPqlWrctxxxwFwxBFHeD433ZWsnTt3lpgsv2bNGj777DNmzJhRquKa7QpfOP+jjz6a/Px8rr32WmrVqpXU7ybeObGigsdSvXp1/ve///nOG3Bt5Ozbtw8RKbXalptY117//v3jToQXETZu3Oi5xyI8H6Rly5b8859+F3x0HH300Z6OU1VOPvlknnnmmaTyMSYb4jUYLqd0Zf44oAvwNPAWzp35g3BWO3odWIsPqjrFz/GpUtUfRWQLzryJ+yN2DQQyMwPMmHJm8eLFTJ8+PeWlNaP169ePiRMnBppmMuJVIG1Z5F+dcMIJSZ/bo0cP1q1b53vZX6+iV9YKj/s/8cQTqVmzZtLpJmpcTJgwgfvuuy/mvmHDhnHzzTfHHTqV6cZLrN/zV199xZgxY3jssccCyydRQyGo6yrWd+s256NFixY89NBD9O/fnzp16iSVn6p6+s4aNGjAlClTOPXUU0vk/+GHHyaVrzGZ4NpgUNXLIl+LyElAS6B7OGhZxL5uwLM4w4qySkRqAm1CL/OA5iLSBfhSVT8GrgNWichmYCNwFtAYJyaEMcan2rVrexp6UZ5l+650snKlwXPhhRfSq1evpGJNpPIeDjjAV6zRYuGVcPr06cNTTz1VohyREctHjRrFwQcfzJtvvlni/E8//ZSGDRtyyCGHlOrh8PJ+3njjDXbt2pVU2cP8zGe59dZb487HyEVu12SVKlVcz4k3KbtatWrs3VtqpXbf7rnnnpiN67Lwf8jkyZNZuXJlYOnVqFGD7777LrD0THr5mfR8IXBzdGMBQFVfAxYDc6P3ZUEP4O+hRzVgfuj55QCqei8wC7gEp1fkcGCoqn6UhbIaY3JMrgfryoR0R/eOVr16dYYOHVomKk1AcTDDSy65pFQjZ/HixfTs2bPUsqbLly8vft6kSRPy8/M588wzXaNnx7J69WrWrVtHx44d484B8GL48OElYjXE++wbN25cvJRtIrlyTWTjt+TlvY8bNy5mLJl0xpgISseOHQNLq3LlyjHj35jc5afB0Bb4PM7+3UBRasVJnao+r6oS4zEl4pg/qWoLVa2iqt1VdUMWi2yMKePKSkXXa2Xuz3/+c5pLUnaEewxiLcman59fapLs8OHD2bx5M5UqVSqx3W0CuBfh723ChAmlYkUkKy8vz9NKVX4k22MT7cILLyzxOvJ363U5YrdrMlZU7+i4H8lKpbFU0VabGzhwIM2b+10nJzel433kYtBIPw2GXcCYWEufikgeMBb4LKiCGWNMLolVGciVu6kmfWrWrMlbb73FlVdemfG8090Q9ZJ++JhEFdo9e/bw8ccfB1KuUaNGlbi2Ip+/9tprxatnxSt/rH116tQptVSvl7gf8SRa+tfrEq6Z+r/Eb+DHdAn3Vvzud7/LcklSl+ycl3hy8SaUnwbDMuAo4EkRGSIiLUWkhYgcCzwJ9AOWpqGMxhiTNX4qVeVFKu9nx44dGR1qkInPvkOHDinf8fNazmz9lhLlu2jRIs444wzX/XXr1i0VeTodGjdu7Ck+R6wGXqz3GK+iHl5lKt5wrOg0Cwp+nRr68MMPlwgSFz18bc+ePdx+++2uaadDrMCPXoU/qzlz5jBr1qyUyrFgwQKgZIPrlVdeSSnN8iRyuGCu8NNguBK4EWdFpMeBd4H3gMeAAcBiVf1D4CU0xpgMKm+V/0xr27ZtSmvZm1+FV4065JDMxAWNV3muWbNmcYMhyLHsYffcc4/rUrzJXJNBBGcLfx7xok9Hlq1fv34lvquRI0eWODY6JkbdunUDC1Tn5rXXXgs8TRFJeQhVuGEV+ZtzCzyZ69LxNyO8PHUu8dxgUMcsoANwEU5vwrLQ84NU9Vy/mYvIbSLiGipTRA4Vkdv8pmuMMZlQ1ocklfXyQ/bfQ/juc7du3QJP+6CDDuLFF1/kuuuuCzztVFStWpUdO3bw6aefltoX/j7Cd5C9GjdunGv08z59+sTc7vbdu00g9tvDEA4gF2/IyfLly5k2bRpfffVVTgVuC0+sDnq567BMXHcVtcehqCjr04Fj8tPDAICqvq2q16jqdFU9K/R8R+IzY5oCtI6zvyUwOcm0jTEmMPH+QOZKJSERr3/ky8r7yQVjx47l+++/9xVVOJ7o76hv375xlwINyh//+Edfx7dt2zbmUqvh8gfxGwrfhU40qXTRokV88MEHnH322Xz77beBzaVYvHgxr7/+Ok2bNnU9pmnTpixZsoTatWsHkmekVCr7CxYs4JNPPglsOVwv6cRa/cmvyGB8Qfc4JLNsc9CmTJmS8JigJuEHLfVvN71qAD9luxDGmIorXsWnTRsn5Eu67uIZ77z8IfbDzx3UTFTo06lXr160atUqYSXfz2fipcEQnrycan5FRUW0aNGCm2++mRo1aqRUpkhVqlShc+fOvsoSJLeelbBdu3YxefLk4t9f5BCo/Pz8uA0dvyKHWrl9Frl+Haxfv56NGzd6Ojb8f7sXDRs2LPE6XkMnei7UsGHDYh6X7Z7TWFwbDKHhQstFJD/idaLHcrf0ItJtLiJHiEh4sGL78OuoxyhgOs5cCWOMyTnz58/niSee4Kijjsp2UUxA4lUqJ0+eHPhSpNn26quv8uSTTwLOGPwzzjgj7uRmCK4HKjzkJ5F09HiFlw6+7bbcGPUcWUH8zW9+4+mchg0bsmLFiuKKerKfU/QSwG4i0w+qRyW6Yhyvojx+/PiY2wcPHpwwn8svv5zCwsJSlftULV++nLvuuqvENrdGQCxer4FcEK+HYUrokR/1OtEjkVOB54HnAAUuDj2PfqwBugJXeUjTGGMyrlKlSp7+WJU1NiQpthUrVvD73//e1zl+7xRm+rPv3r17ceUvPz+fpUuXsnRpZhY8jNcbkA6Rn+3pp5+OqjJ69OiMliFarO/7mmuuQVU9D/GJNQwscvWheHNgioqKePjhhxPmET05+6yzzuKmm26iZs2apcqRLtGTyMO8rGA2bdo0IPjr67TTTvMVfyT6N+elPF4bdOnm+mtU1TxVzVfVHyNeJ3rku6UX4WGcRsPpgOBMnD4t6nEqcDzQUlVXpfQOjTHGxJSL3d7lVXlohCX7e7nssst48cUXXfcPHTo02SIldPbZZ6ct7XQLBw1MJLxq1YABAwB4+eWXS0zCP//88/n888/Zs2dPifNeffVVXn75ZYYOHcpvf/vbUum+++67dO/eHSj9ORYUFDBz5kzWrVuX1u8vW1K5XhOdu2bNGs9ptW3b1vdNinQpSHxIsFR1K7AVQEQOBB5U1W2ZLocxJj2mTp3KQw89lPT5jRs3BpzgTbnEKte5qV+/fkDsSMy5pmfPnmVm5RcRcf3Nx6sQxTrn//7v/1yP/89//pPWnoabb76ZSy+9lAYNGmSt0fbRRx8llfeCBQtKDXcJi2yAPfbYY7z++uv079+fkSNHxlwlKnIZ1AceeICioqISE/XdvuvKlSsD7ne5+/XrR48ePWLG4Hj55ZcDH3Lz73//G1UtXnLYq/D78CqbDfyWLVuWeJ0rNxtSnvQsIt1FZKCI+I5qo6rz3RoLIpLbs2eMMTEtXbqUnTt3Jn1+mzZt2L17N+eff36ApUpervxnHYTyuEpSmzZtUFVPwby8CI8HD2p1mUgbN27ku+++i3tMLjdMg570DM6SpW6V0aA+i2x/ps2bN3dd6jWeFi1auI7b79u3b/HzwsJCBgwYgIh4ymfs2LFJrerl5XOM7Ino3bt3IGlGKiws9DUEKMxvNOZ4v99wQD83qf7e+vbtS2FhIZDe3je/PDcYROQ3IrI2attqYDPwBPCGiDTwk7mIHCsil0VtmyEi3wDfichqEcmNwVvGGE9EJOXVMurXr1+mKq1l1UEHHRR3f9ATBMuCFi1acNddd3H//fcHnnalSpVcoyFfdNFFgecXtCCXTPUjqPzK4v8pqUYY9yry/4JYjY7ISnC8z3HixIkplSPe+032+4uMbh3EbyDW8K2ghHsX6tWrx86dO7nmmmtcj83UXKMwPz0M44HixY1FZEBo2z04E5cbARf4zP+3QPuINDsAi4B/AU8D44CyOwDRGGNyUL9+/dixY0fxmOdoeXl5zJgxg3vuuSfDJcsNJ510UlJ3MYOQaoUmE1G2y2LFO9dluxckcllir42DaEG8h3TEs0hmFbsbb7zRdd+JJ54Y99x4k9UTfUb9+/cvft64cePiWCSxZCoCfJifOQwtgJURr0cBu4BTVFVFpC5wHDDHR5odgHURr8cBe4FDVfWbUA/GZOAGH2kaY4yJQ0Ro27Zt3P2LFy/OYIlMULZs2cKPP/6Ycjqx5jBku1KbrAMOOIAuXbp4jj590003lVoVKF3vPVcaXyJCQUEB+/btK7HN67nRevbsmVQ5kvmcE53jdfJ42MiRIxk0aJDvcoRFxuWpVq0ae/fu9XzuokWLSm1z+x4y1fsU5qfBUAP4X8TrAcAz+us39RZO3AQ/9ge+iHh9DPAXVf0m9Pp5IHcGcBljKqyyWlkyFUu1atV8V5D88jvpOdsKCgr4+9//7vn4mTNnprE05VuPHj2YPn06c+b4uXecOV4aQQ8++GBKeUT2CiS6HsLlqVSpEj/99JPva7ewsJAvv/zSfyGT4GdI0k6gExSvbnQQ8ELE/v2BH3zm/wVwYCjNWkBPIHLttUr8GgfCGGMyLlfuAAYhFytz5V34Tms6hlrksiCuG/u9ZlZ4CdXI727MmDGAM3Hbi/z8fP70pz/RunVrALZv3x73+EMPPTSZohan74WX3+LUqVNp164dV155Jfn5/qudkas2hVdkatSokeff8Jw5c1DVuHmfc845pbbdfffdPkuaPD8NhrXAWSJyM/AATuPg8Yj9HYEPfeb/cijN43GGHRVQcohSG5xhT8YYYwJSnhpBuW7JkiW8+uqrNG3aNNtF8SXWb8RL5Scdlfxc/L0+8cQTvPrqq9kuRqDWr1/Pxo0bS9whnz17Nl9//XVSqzwBtGvXLu7+ZJfU3bJlS9yAdG7clmMdPnw427dv58ILL0yqPHv27ClucIUFdZPA7fevqikNnfLLz5Cky3F6GGbgNBZmqepuABGpBowGlvvM/zLgL8B9odcrVfWtUJoSSvM5n2maHJNMa90Yk1lFRUW888472S5GuVO1atVSFYlYevToAZDUcpeZ5qUCn8lKfjZ6IoKO8J4LvSn7778/ffr0KbFNRNhvv/1KbHMraybfQ+3atWnVqpXv8zIRXTzeb3/WrFlpzz9dPPcwqOp/VPVooA6wn6reGnXIkcAVfjJX1TdxJj6PBI5S1VMjdtcBrscmPJdZe/bsYffu3dZgMOVCLvxBT6e//e1v/OMf/8h2MSqsMWPG8MYbb+TUuuu5btmyZUydOpWBAwdmuyhJS9SwCt+lXrZsWSaKAzjDXEaMGFFqGJJbWYNsHCa7ylfk2P/oRnc2e6ii/24k8/4SlT/R8thB8R24TVW/UdWforbtVdWtqup55oWI1BCRS4GeqrpWVTdEpfkfVV0UigxtyqC6deuWWC3AmLIoF4dDpENhYWHGl+kzvxIROnbsmHO/t8gKT6aHJCUaxtW0aVOWLVvmGvitPLjiiiu4+uqrOe200zKWZ69evXj00UfjLumZzryTcfXVVwPO8rBjx44NskieZeumUqb+z/DVYBCRWiJyqYi8KCLviMhhoe11Q9vbJ0ojTFW/A+YByQ2MM8aYAC1cuDBhBE9jKop4lZBMDUnauHEj99xzT9x17bMhkysA1ahRg9/+9rc58Rlko0K8a9cu13gxkcIBEb387lINSJnou4gsQ6LPLBxUzsuwxWjhtDP1vXhuPopIPZwVjFoB74b+rQagql+IyGScYUSzfeT/HlDxQokaY3LO3LlzmTt3braLkVaHH344Z511VpmIKmxMs2bNGDduXLaLATgr3nz44Yd8//33KUeyL+sy2QvWsGHD4iCK8Sb/+qk0N2rUiM8++yyp8jz99NNJf/+xynjsscfy/vvvF0d4zmV+mqwLcCr3vYB+QPQ39whwtM/8/wScISLZCalpjDEVSEFBAbfccgsHHnhgtotiyqB69eoBv07QrkheeOEF7rjjjgrfWIjHSyCxJUuW8MMPflfgjy1WA8LrtrARI0YkPGb//fcvfn7MMcf4KaJrQ2bDhg1s3LgRIGFjIVy2bM+j8zNAbTjwJ1V9zaWC/z4wxWf+/wW+BHaIyErgHUoGhwNAVe/wma4xxgQq2/9ZG5MNkb/7du3asWXLlgo516V58+ZMnDgxbemrKs2bN+fjjz9OeOy5556btnIko0qVKixcuJDjjjsu4bF5eXnFcQrctGvXjj179iRMK1P/JxcVFbF58+akznUrY79+/TynkSvzmvw0GOriDEVy8wvgN071iojn57sco4A1GIwxWZEr/1kbk0luv/tu3bqVeP3VV1/5GrNtSor87F577TV27UocemrRokXpLFJSghzOmSjYW7To31+2f4NFRUWceOKJXHTRRcWBG4OQ7fflp8HwGRAvtF5XIHHTuKT+Po83xhhjTI5wC05lDW3/DjjggOLx+uVVun4X8dI9++yzS7y+8MILGT9+fOBlmD59OmeccQZt2rTh3nvvBYKt5EenlekGhJ85DOuA00WkUfQOEekFTMKZx+CZqr7g5eEnTWOMMcYEI9t3NY1JVfSqSOmaSD916lRUNfBGX640vv00GOYD+4C/A3/AGSo0WUTuBjYA/wKuCryExhiTA6ziZCqSXKmkGJMJ5eX/93vuuYd9+/alJW3PQ5JU9TMR6Q3cDJyGs0rSRJyGwzpgeqLAbSIyKfR0lapqxOtEedscBmOMb23atOHdd+NNvUrMKk7GGJO7UqnspzumSJANES/lSOcyxL7C+KnqJ8BIEdkPaIfTaHjXR4TnFTgNjHuAHyNex/sUbNKzMSYpW7Zs4euvv852MYypMMLLjiZaCcc4jjzySJo3b86ll16a8NgdO3bw/fffZ6BUsQ0aNIgLLriAkSNHJp1GMpXvcMTp6IBpbmnVqVPHdx5+bdmyJWNL7IbfT2FhYcz9mbrWkor7rarfAK9EbhORvsDlqhovFkP/0Pk/hl4PwGkQlEkikgdsAj5S1eOzXR5jTEn77bcf++23X7aLYUyZ07t3bzZs2OA7wvC8efNQVaZNm5amkpUvderU4aOPPvJ0bNu2bdNcmvg6d+6c1B1zVeX000/ntttuSyrfRYsW0aBBA88NlbPPPpv8/HzOOeecpPLzInq1sHSaNGkSP/zwAxMnTuT3v/89AA0aNKB9+/aAsyrT66+/zo033pjWcnhqMITiLrQGvlTVd6P29QYuxwna9kuCpA7Eme8AgKo+76ewOWg6TrTqpBpexhhjTC5au3YtO3bsoFKlSr7Oq1GjBgsXLkxTqUxFVK9ePa6//nrPxxcUFDBz5sy0Nhi8Wr9+PUOGDEkpjby8PKZNm1Y8NyE/Pz9mpOoGDRqklE/CcsTbKSL5IrIE2A28jBNg7WURqS8i+4nIamAjTs/BaiBRNJfbgT4R6f8sIiel9A6yRETqA2OApdkuizEmfXr37g1AixYtslsQYzJov/32C3QNeVOxlZdJxX4NHjw48DSz9Vkm6ms8BzgTZwWkB4GtQC9gMfAkMA5YBbRX1YmqmijaxndA9YjXgc8mFJEjRORREdkpIioiU2IcM0NEPhCR70Vki4h4D7n3q2uA35G4V8UYU4ZNmzaNrVu3+orMaYwxprRY8w569eqVlryOPPLItKSbLdlegCPRUJqJwBvAYar6PwARWYwzFOffwOGq+rKP/N4EzhGRPcB/Qtvai8gR8U5S1Q3x9kepCWzDmShdarK0iIwDFgEzgBdD/64XkYNU9ePQMdtc0j5WVT8JlVdV9SUROcpH2YwxZUx+fj6dOnXKdjGMMaZcevLJJ1NezS6Wxx9/nN27d6ecTrYr6rkiUYOhLXBZuLEQcgtOg+Eqn40FgHk4PRVrQq8VuDj0iEVCx+R7zUBV1+Es84qIrIhxyGxghaouC70+R0SG4LynuaE0OibIpg8wUEQ+BKoCtURkuaqe7rWcxhhjjDEVQbxhNLVr16Z79+6B51mjRg1atWoVWHrZnnTuJjx3Id0LfCRqMNQAomdWhF+/4TczVX1ORFoBPYFGOMuqLsWZH5F2IlIZ6A78MWrXU0TMrUhEVa8ErgyleRQw062xICJn4gzronnz5r7LbIwxxhhTHqTjbn0yY/pfeeUV6taty3nnnefp+N27d1OjRg3f+WTC1VdfTffu3dMyXyKSl9V9or+J8OufkslQVb8CngYQkfnAOlV9NJm0klAXp7ciuo9qN3BMOjJU1aWEJkb36NGjYs76McYYY4wJUKzGh9fGQ48ePXzlVb9+fV/HZ1K1atWYMmVK2vPx0mAYKiINI15Xx2k0nCAiXaKOVVX1vPaVqrb0emzAon9REmObt4ScpWGfT7E8xhhjjDEmCcn2XFxxxRV88skn9O/fP+ASBS8vL48JEyZw+unZGf3upcFwUugRLVZUFgW8L5abeV8APwMNo7bXp3SvgzHGGGOMSVGuLqvasWNHXnvttbjH1KpVK0OliU9EWL16ddbyT9RgyP0mlw+q+qOIbAEGAvdH7BqIMxnbGGOMMcakQVlccejOO+/MdhFyQtwGg6q+kKmCBEVEagJtQi/zgOahoVNfhpZNvQ5YJSKbcYLOnQU0BpZkobjGGGOMKUcWL15MQYGXARymLMjl+QuZVB5/0T2A5yJezw89VgJTVPVeETkAuARnpaZtwFBV/SjjJTXGGGNMuTJjxoxsF8GYwCWK9FzmqOrzqioxHlMijvmTqrZQ1Sqq2t1nYDhjjDHGGOPRYYcdBkC7du0CTztX50eUN+WuwWCMMcYYY3LHmWeeyXvvvVfccAhCWZwPUZZZg8EYY4wxxqSNiAQaddlknjUYjDHGGGOMMa7K46RnY4wxxhhjknbDDTfQs2fPbBcjZ1gPgzHGGGOMMRHOO+88+vTpk+1iJGXt2rWBp2k9DMYYY4wxxqTBRx99RJUqVTKa5/DhwwNP0xoMxhhjjDGmzKpduzaQm0HWmjdvnu0iBMIaDMYYY4wxpkxSVUaPHs3y5cs5+eSTs12ccssaDMYYY4wxpkyJjMMgIpx22mlZLE35Z5OejTHGGGOMMa6swWCMMcYYY4xxZQ0GY4wxxhhjjCtrMBhjjDHGGGNcWYPBGGOMMcYY48oaDMYYY4wxpkxS1WwXoUIQ+6AzR0T+C+zIdjlyRG3g62wXwkWmy5au/IJKN9l0kjnP7zlej68LfOGzLOVVLl97kNnylddrL9lz/Zxj155/du2lPz+79n7VTlVr+SyHO1W1R4YewKvZLkOuPICl2S5DrpQtXfkFlW6y6SRznt9zvB5v117wv4vyUL7yeu0le66fc+zay97voryULx352bVX4rhArz0bkmSyZW22CxBHpsuWrvyCSjfZdJI5z+85ufw7ylW5/pllsnzl9dpL9lw/5+T67ygX5fpnVh7+9tm1lyY2JCmDRORVVe2R7XIYU9HYtWdMdti1Z0x2BH3tWQ9DZi3NdgGMqaDs2jMmO+zaMyY7Ar32rIfBGGOMMcYY48p6GIwxxhhjjDGurMFgjDHGGGOMcWUNBmOMMcYYY4wrazDkABEZKiI7ROQdEZmR7fIYU1GIyKMi8h8ReSDbZTGmIhGRZiLyvIi8JSJbRWRMtstkTEUhIi+FrrttInKpp3Ns0nN2iUgB8E9gAPBv4FXgaFXdldWCGVMBiEh/oCYwWVWPz3Z5jKkoRKQR0EBVXxeR+sAWnMi0/8ty0Ywp90RkP1X9RkTygReB6ar6erxzrIch+w4F3lLVT0L/UT4EDM9ymYypEFT1OeC/2S6HMRWNqu4KV1BU9XPgP0DdrBbKmApCVb8JPa0ceiRkDYYUicgRoWENO0VERWRKjGNmiMgHIvK9iGwRkX4RuxsDn0S8/hRokuZiG1PmBXDtGWOSFOT1JyI9gEqU/FtojIkhqGtPRDYBnwPPJOpdAGswBKEmsA04D9gbvVNExgGLgIVAV+AlYL2INA8fEiNNGydmTGKpXnvGmOQFcv2JyAHAHcDpamOkjfEikGtPVXvh3KDuIiIdE2VqcxgCJCLfAjNVdUXEtk3AP1T1jIht7wAPqOpcEekDXKiqI0P7rgA+VNVlmS29MWVXMtdexLajQufaHAZjkpDs9SciVYCngWWquiqzpTam7Evlb1/EvguBn1X1j/Hysh6GNBKRykB34KmoXU8BfULPNwMHh1aMqAaMBh7PXCmNKX88XnvGmDTwcv2JiAArgL9YY8GYYHi89uqISN3Q86rAIGB7orStwZBedYF8YHfU9t1AQwBV3QecDzwLvAHcoqr/ymQhjSmHEl57ACLyDHA/MFREPhWRwzJXRGPKLS/XX19gHDBKRF4PPQ7JYBmNKY+8XHuFwJMi8g+clTlfUNXHEiVcEGQpjavocV8SuU1V1wJrM1oiYyqGRNfeMZktjjEViuv1p6ovYjctjUmXeNfe+zi9EL7YxZpeXwA/E3FHM6Q+pVt/xpjg2LVnTPbY9WdMdqTt2rMGQxqp6o84wWgGRu0aiDNr3RiTBnbtGZM9dv0Zkx3pvPZsSFKKRKQm0Cb0Mg9oLiJdgC9V9WPgOmCViGwGNgJn4cReWJKF4hpTbti1Z0z22PVnTHZk69qzZVVTFFqS8bkYu1aq6pTQMTOAC4BGOGvnnq+qGzJURGPKJbv2jMkeu/6MyY5sXXvWYDDGGGOMMca4sjkMxhhjjDHGGFfWYDDGGGOMMca4sgaDMcYYY4wxxpU1GIwxxhhjjDGurMFgjDHGGGOMcWUNBmOMMcYYY4wrazAYY4wxxhhjXFmDwRhjjIlDRJ4XEQ099mUw3yUR+aqItMhU3sYYE8kaDMYYk4NE5KioymL0o3e2y1jBfAFMBCZFbhSRy0LfR49YJ0V8j79JIs/bQnk+lMS5xhgTmIJsF8AYY0xcdwPrYmx/N9MFqeC+U9U7M5mhqm4GNotIG2B0JvM2xphI1mAwxpjc9pqfiqqI5ANVVPV/aSyTMcaYCsSGJBljTBklIlNCw12OEZHfich7wPfAiaH9IiLTRWSLiPxPRP4rIs+JSP8YaVUVkWtE5F8isldENovIIBFZISIadeyHIvJ8jDTCw2+mRG2vIiLzRORNEfleRL4SkbUi0tXtfBE5NXT8DyLykYhc4PIZdBWR+0Vkd+jYT0TkbhFpLSKVRWSPiLzocu4Fofz6xf+kgxU1JyL68WEmy2KMMV5YD4MxxuS26iJSN2rbD6r634jXfwQqAcuAb4Adoe2rgAnAA8DtQBXgZOBpERmjqo9GpHE3MApYCzwJtAbWAB+kUngRqQQ8AfQJledmoDZwBrBRRI5Q1VejTjsLaAAsB74CTgGuEpFPVXV1RNrDgQeB74A/4wzTaggMBjqq6nsishKYIyLtVXV7VD6nAm+r6l9TeY8htWN8T+C812hXhMobqTVwGbA7gLIYY0ygrMFgjDG5bX7oEeleYHzE62pA18hhSCIyGqdxME1Vl0ZsXwT8DVgkImtVVUVkEE5jYaWqTok4dgOpT7idCRwFDFHVJyPS/hOwDaexc1TUOc2Bg1T1q9CxtwEfAecAq0PbquM0gr4OvfedEedfLiLhHvSlwBzgNKC4l0JE+gLtgQtTfH9hz3g9UFWfjnwtIvsDLwP/xvnOjDEmp1iDwRhjcttS4P6obZ9Fvb4lxpyFU4D/Ag/HuPO9FududhHwNk5jAeCayINU9WER2QG0S6rkv5ZjO7AlRjmeBiaLSDVV3Rux/fZwYyFUjv+JyN+AwyKOGQzUBS6KaiyEz/kl9O/bIvICMElE5qlqeFnU04F9wMoU3luks3E+y2idcRpFMYV6YB4EWgLHqKpNZjfG5BxrMBhjTG57R1UT3b2OVVHtANQi/hCXBqFzWwG/uKTzT1JrMHTA6QHZE+eYusAnEa/fj3HMv4EDIl4Xhf79u4cyLAXuAobjNKBq4szzeExVgxoCtDnG0Co8xG24FegPTApoaJQxxgTOGgzGGFP2xVoRSXAq6SfFOW9bxLFuYu3TGNsg9t8UAd4AZsfJI7ox8XOcY6PL5VaWSA8CN+L0KjyMM5yrBqXnEWSUiMzDmUexQFVXZbMsxhgTjzUYjDGmfHoHaAv8TVW/TXDse8Cg0PFvRu1rH+P4L4HCGNtbuZSjHvCX8DChgIQndnfFGdrkSlV/EJE7gHNFpDFOw2EnzmTsrBCRE4EFOPNRLs1WOYwxxgtbVtUYY8qnO3D+j/9DrJ0i0iDi5SOhf38bdcwoYg9HehtoLyJNIo6tgjOOP1Y5GuLSwxBVDj+ewom+PEdEGsVIN7pnZBmQD1wF9AZWqKqXnozAhaJ0rwQ2AVNU1UsviTHGZI31MBhjTDmkqg+IyO3ATBHpBjyGU8FuijN5uA2hHgFVfVJE1uJMQC7EufPeGpiGM2ypY1TyN+MM63lGRJYAlYGJxB4atQgYCFwjIgOAv+As/docOBonbkSpuBAe3t//ROR0nCVjt4lIeFnVejgToq/j14YQqvrPUDyGU3CGMd3mN88APYKzDO79wPFRbZtvVfXhbBTKGGPcWIPBGGPKKVU9TUSeA84E5uJU7D8DXgu9jjQOZ4jMyTgV/G3AWJw4DiUaDKq6MRScbR7Oyko7gVuAV4Fno479SUSGATNwGhXhJWL/BWwmhVWKVPVRETk8VI7T+XWS94s48yaiLQUOB55T1VgTqzOlfujfa2Ps+whnnoUxxuQMsZ5QY4wxbkRkBTBZVeNNjC4TQvMG7gVOUtW7fZz3PE5vTDdAVfXf6SlhqXxr4KwwdQHOcLGWqvphJvI2xphI1sNgjDGmojgbZ1jWmiTObYazmtPPZO5v57U4w8KMMSarrMFgjDGm3BKR+jhzJfoBRwBzVfUHn8nMAfYPPQ9ypadEbsCZoxEWHbDPGGMywhoMxhhjyrODgNXAV8ASYs8biEtVtwRcJq/5bseJkm2MMVllcxiMMcYYY4wxriwOgzHGGGOMMcaVNRiMMcYYY4wxrqzBYIwxxhhjjHFlDQZjjDHGGGOMK2swGGOMMcYYY1xZg8EYY4wxxhjj6v8B8/bkbw17h14AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "parest.plotfits(res, save_plot=False, namestr=\"lorentzian_test\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function exists in the library as well for ease of use:" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import fit_lorentzians" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.47811631e+02, 3.65200027e-02, 1.35036166e-03, 4.03665876e+01,\n", + " 1.89162600e+00, 1.20693953e+00, 1.05461311e+01, 7.49865621e+00,\n", + " 6.36152472e-01, 1.99437422e+00])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Multitaper/multitaper_example.ipynb.txt b/_sources/notebooks/Multitaper/multitaper_example.ipynb.txt new file mode 100644 index 000000000..d2abbfb27 --- /dev/null +++ b/_sources/notebooks/Multitaper/multitaper_example.ipynb.txt @@ -0,0 +1,1373 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "be4b7e30", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dhruv9vats/misc/blob/main/multitaper_example.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "baae2cbe", + "metadata": {}, + "source": [ + "If clicking the link above turns the screen gray, try right clicking on the link and selecting \"Open link in new tab\"." + ] + }, + { + "cell_type": "markdown", + "id": "0ecdeb50", + "metadata": {}, + "source": [ + "## Install Stingray in colab\n", + "Comment out the cell below if running locally." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "505d88ed", + "metadata": {}, + "outputs": [], + "source": [ + "# %%capture --no-display\n", + "# !git clone --recursive https://github.com/StingraySoftware/stingray.git\n", + "# %cd stingray\n", + "# !pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm seaborn\n", + "# !pip install -e \".\"\n", + "# %cd ..\n", + "\n", + "# import os\n", + "# os.kill(os.getpid(), 9)" + ] + }, + { + "cell_type": "markdown", + "id": "04439f30", + "metadata": {}, + "source": [ + "__The kernel will (crash and then) restart after executing the above cell to finish installing Stingray. So the cells below will have to be run again or manually.__" + ] + }, + { + "cell_type": "markdown", + "id": "59513a94-a334-4efb-b004-763e4f738f09", + "metadata": {}, + "source": [ + "## Multitaper Spectral Estimator Example" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "76bde484-7cfb-49e8-8fe9-a840a0c0ccf2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/largememory.py:25: UserWarning: Large Datasets may not be processed efficiently due to computational constraints\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set_theme()\n", + "sns.set_palette(\"husl\", 8)\n", + "\n", + "import scipy\n", + "from scipy import signal\n", + "from stingray import Multitaper, Powerspectrum, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "id": "33cc5179-9412-4d10-825d-66f987b99b7d", + "metadata": {}, + "source": [ + "### Creating a light curve \n", + "---\n", + "Lets create a `Lightcurve` sampled from an autoregressive process of order 4 that has been frequently exemplified in literature in similar contexts" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "648c871f-4f45-4db4-a09b-89439e08ea93", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD7CAYAAABqvuNzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABgeUlEQVR4nO29eZwdVZn//6mqu/XtJb2kkzRJJBAINLsGZAZFJKyjicAwI0zEnzog34kzOKKMBH2NKMpgHOeF8lVZ/CqMQ4ZhUBIkIJtEQMMmoCxhDUnI0tk6S+/33qo6vz+qTt1TdU+dqrq36nb37fP+53bfW1XnnKpT5znPcp6jEEIIJBKJRDLlUce7AhKJRCKZGEiBIJFIJBIAUiBIJBKJxEYKBIlEIpEAkAJBIpFIJDZSIEgkEokEgBQIEolEIrFJjXcFamXfvmGYZvSlFF1dLejvH0qgRhOTqdTeqdRWYGq1dyq1FUimvaqqoKOjmftbbAJhxYoVePjhh7Ft2zbcf//9WLBgAQBg48aNWL58Ofbv34/29nasWLEC8+bNC/wtLKZJqhII9NypxFRq71RqKzC12juV2grUt72xmYzOOOMMrFy5ErNnz3Z9f+2112Lp0qV4+OGHsXTpUnzjG98I9ZtEIpFI6ktsAuHEE09ET0+P67v+/n6sX78eixcvBgAsXrwY69evx969e4W/SSQSiaT+JOpD6Ovrw8yZM6FpGgBA0zTMmDEDfX19IIT4/tbZ2Rm6jK6ulqrr193dWvW5k5Gp1N6p1FZgarV3KrUVqG97J71Tub9/qCobW3d3K3bvHkygRhOTqdTeqdRWYGq1dyq1FUimvaqq+E6kExUIPT092LlzJwzDgKZpMAwDu3btQk9PDwghvr9JJBKJpP4kug6hq6sLvb29WLNmDQBgzZo16O3tRWdnp/A3iUQikdQfJa79EL7zne/gkUcewZ49e9DR0YH29nY88MAD2LBhA5YvX46BgQG0tbVhxYoVOPTQQwFA+FtYpMkoHFOpvVOprYB/e1u+/1OUPnAMCov+chxqlQzy2daOyGQUm0AYL6RACMdUau9Uaivg397WG24GAAxes6zeVUoM+WxrRyQQZOoKiUQikQCQAkEikUgkNlIgSCQSiQSAFAgSSWMyuV2DknFCCgSJpIFQd+5By3/8PyiDw+NdFckkRAoEiaSByPzxFSjFElLvbBrvqkgmIVIgSCQNBFHsPwxzXOshmZxIgSCRNBS2RDClQJBERwoEiaSRsOWBIgWCpAqkQJBIGgpbIkiTkaQKpECQSBoJ6kOQGoKkCqRAkEgaCUVqCJLqkQJBImkoLIEgfQiSapACQSJpJKSGIKkBKRAkkkbC8SEY41oNyeRECgSJpBGRJiNJFUiBIJE0Egr1IcjkdpLopJIuYOvWrfjHf/xH5//BwUEMDQ3hueeew6JFi5DJZJDNZgEAV111FU499dSkqySRNC6OD0GajCTRSVwgzJkzB/fdd5/z//XXXw+D6aw33XQTFixYkHQ1JJKpgVyHIKmBupqMisUi7r//flx44YX1LFYimTKQKqKMMr97xtl/WTK1SVxDYHn88ccxc+ZMHH300c53V111FQghWLhwIb785S+jra2tnlWSSBqM6D6E7NMvJVUZySSjrgLhV7/6lUs7WLlyJXp6elAsFnH99dfjuuuuw/e///1I1+zqaqm6Pt3drVWfOxmZSu2dSm0Fyu0t5TMwAGTSKkzPb36M2Z/Tu1qgqIrw2InAVH229aBuAmHnzp14/vnn8b3vfc/5rqenBwCQyWSwdOlSLFu2LPJ1+/uHYFYRUdHd3YrduwcjnzdZmUrtnUptBdztzYyVkAVQLOjOyx10L+hws2fXAUDTEqtnHEzlZxsXqqr4TqTr5kNYtWoVTjvtNHR0dAAARkZGMDhoNZQQggcffBC9vb31qo5E0thUs6ey3Id5ylM3DWHVqlX4+te/7vzf39+PK664AoZhwDRNzJ8/H9dee229qiORTEq0LX1QBgahH+0TmUedyqSKKCO5dmHKUzeB8PDDD7v+nzt3LlavXl2v4iWSSGQfXAulUMLYBWePd1Vc5O9cDQAY9BMIlGrGdtOE9u57MN43G0hNbNORJBnkSmWJhEPmz28g/caG8a6GQ+q1t6AMDAUfqFS/habWtxv5ux9A9rd/iHyupDGoa5SRRCKpgpKOpl//FmbntOBjaeqKKvwByugoAEDt3xf5XEljIDUEiWSiY8/2lcHh4GMdH0IN/gDpS5iySIEgkUx06OCuRFgjUMuYLqONpixSIEgkE50oM/ZaoozoJaSGMGWRAkEimeA422GG0RCc5HbVDOrVO6QljYEUCBLJRMcRCAmXQ7UKaTKaskiBIJGIIATKyOj41sGZsYeQCHQsr2ZQN6RAmOpIgSBxoewfCBfvPkVIv/QaWn54B9Q94xiKWSebvkIFgjQZTVmkQJC4aLl5JVp+/F/jXY0JQ2rDewAAde/+cauDYptySKgooxqEB924SjqVpyxSIEgkISB1ygqt7twDjBXcX0bY7KamcFO63kFqCFMWKRAkEhHOAFsfidD883uQ/+9fu7+MEmVE7f/VrFSmGoL0IYw76o7dyN96F8joWPDBcZZb19IkEok/9kCs7dzj/p6acATyQDkwiOxv1zECoYrypVN5wpBZ9yK0vfthvrmpruVKgSABAGhb+6QzkUsdB0e/+x9CQ2i692Fknvsz1N391ZdPNQTJuEPyOetzaKSu5UqBIIG6fSfy/7Uamaeer/laqVfehHKggXa0ovIgStqIavHxFSgkOOxUGbYHjnTa/qYak5GcEEwUSL7J+pQCQVJvVDtpWs2hlaaJpjWPOzn7G4J6mk/8ZuhG8MI0pVB0/19NpBAtvx7CTyKEZDPWH57nmjRSIEiqS57Gwx5QlDrPahLFrJ8ZxXeGbnKej0dQKcWS+9haFqZJJg6KgtYbbkbmd8/Upbi67IewaNEiZDIZZLNZAMBVV12FU089FRs3bsTy5cuxf/9+tLe3Y8WKFZg3b149qiRh4Q041RBiJjvpqGebbIFasd6A51sghP+8HPNSFQKBCr9Gen4NQvbpl1D86F8kXk7dNsi56aabsGCBe9u/a6+9FkuXLsV5552H++67D9/4xjfwi1/8ol5VklBi0hCUBjQ5OKaXeliO6P1TPfePcJzKfhpADfWtKctpSYdSLII056u/xmTCNK3n0UB9HRhHk1F/fz/Wr1+PxYsXAwAWL16M9evXY+/eveNVpakLCQ5rDIURIV5+IsMOtnR2HiKdtLLvQOWisgg4JiPF/VpyB2pC+ELBrCF01Ckn+vNrunsNWm76z+hlTkaKJbSuuBWZP7yQfFl1DgGum0C46qqrsGTJEnzzm9/EwMAA+vr6MHPmTGiatZm3pmmYMWMG+vr66lUlCcURCDV2h0bREFwvofV3mNlzyy3/jfwv7q2+XF8NobLs3K9/i9bv3lLxvVLDwrRIC+A8pLaU31t1z76GXstA/TXpF18d55rET11MRitXrkRPTw+KxSKuv/56XHfddfjsZz8by7W7ulqqPre7u7Wq84y3N0OdNxtKenJtSe3XXr0lCx1AtikNM+BYEaZZRBGAoipV39u4qKV8ohug8/yUpoIAaGvJQgu45hgArX9/1WWbI4P2/VNd1zC25VCCW06k33wXQGU7M2kNpufYoPrQtbDZtAoTgJZSI7eBXqNreADFn/4PUuefgdRHFka6RljGu2+RJg0FACoh6NzXDwyOQFt4VKxl6M3WO8nmlapHu+syovX09AAAMpkMli5dimXLluGaa67Bzp07YRgGNE2DYRjYtWuXc2xY+vuHYFZh++zubsXu3dHj5dX+fWi+7W4Ujz8ShY+dHvn88ULU3tTAKJoAFEZLoFHsVd2b3QNohjWnrub8uKj22TroBuirpxd1aAAGDoxAD7gmPWfw9vtgdrWj+JcfiFSs1j+IPCrvX+qA9XxMw6xQ6XfvHnQNFMWxElKeY4PuBT27MFpEGoBhmPxzxgpovfHnGD3/bOi987nXOPDONjQBGH1nC8Z6F1RcolZqfrYxoIyMogXWxKF0y/8CAPa+b26sZaSHxpADXJpWXO1WVcV3Ip24yWhkZASDg1ZDCCF48MEH0dvbi66uLvT29mLNmjUAgDVr1qC3txednZ1JV6k2bBuxtiuCr4OQCb0KuGxmqLGOTpTMJI9mZs0d9O8Ik470K28i+7tnK75Xt+9C6w03+y/c0+2spn4mozB14Gxyo72zGdmHnqysz9YdrrpQsxjx8SGo+wcAAJmnX/QtXtEbxGzIQe3fZ6UHoW1M8J127l6dTW+Jawj9/f244oorYBgGTNPE/Pnzce211wIAvvnNb2L58uX4yU9+gra2NqxYsSLp6owLTff8BqkNmzF4zbLxrgofjt1Z2T+AzB9fQeGMU0K/3EqjhJ1yBULtL3/6z68DAFLvvofS+4/mlOu3IlngF/DWixNllL/nQQBA4dyPuA5t/q9V/Gv5PT9V5ZfJoutW8V6h1gCkX3wNmT++AtJkhc8num5jnFwwiQuEuXPnYvXq1dzf5s+fj3vuuSfpKow7qQ2bx7sKYjgCoem+x6Bt34nS0Qtg9nSHu46z0nZyDgbKyChafngHxs4+tfydfU+UOGZqQfsd+zmERbugVQgEO4V1Ndqej0BKvbUR2cefxujiRfwyGcoawiTXEnnQ52Y7lWPpE37UEhxQAw341JKmhsGuzmaj1JvvltVbEQZnICjZK1+jzPQmeZSR2r8fgLVLmgN9H4PMNWFeXDpI+h1Lg70qBAIVSpz+46lX2fxXRR19sqqm//w61H0HkNpqRRIJI65sDWGSzgnCUc0grRvRkgdKgTDBIcR6qArzf1QKpVirJELbsh1N9z6M7Nqngw/mCSoqJLQIXSTmzeC197ZD3bojnouFgQ5mdii0i6AZd5j+QIWr38TAV1AIBnmv2YIO1n6rm0X41It4TUUiDaFEBUL1Q0vul79B9pGnIp+nvbMZoOUnSDUL+Fr//Tbkf7Eq0J+Yfv5lZJ5+SQqEiU7miWfR+u+31ZQRUikUoO7cU59N2+0XI0zCOp5TWTGjm38Ux7QhPi71+jvAaPACrvzK+yrt3EkiEghBg0CYQYJqTr4vecgbyF7Sm2vJcSpzDg7QUAN3SqNt5LwDTnH0HtbgQ0i/vQmZF6LF+KvbdyF/z4PhJkC1UuUgre3YbY0jK2711RZyj/0B2d89IwXCRCe9/h0A9mrUKlEKRWtHrDt+FVe1/LHTICulEFoJL4olwobruft/i/zt94TqxMq+ATStfhRNv34suF51RinZUVIpnkCIQUPwEQja5m1oveFmqMP2RMFzKeFiM68gEiW3C5rM+Ak1OraL+oStRYxXlJE6OGQVa2fuTRTevQ05cDuCLsiUW0V0WxxIgRASc5oVaV3TZuv2Q1brsF8AobPckg5tax/MzdsD6+WyXUcIrUu/+ha0HXvcAqFQhDJUfjmVkVGk3troCCjFfoEnFEKTUe0+BBp54/URpJ9/2SqWrvb18SGEcipHER6VNRR/TQR7LlONIAYNoSpomuiUhvzP77HMR0lRhfbloASYDT1lkDr7HaVACIu9KtlJM1xVNsk6Sns6yBdLyP/XahR/eGegM5PtpAp9saPUmREs+f/8FVr+bzlRYdM9D6LpVw9BoXvEqhOv69HkfITjNwmMKAnz4jqDgedatDw/p6OoaD8fAqe+FeYlLwHPWhH5EOjz1MdnLYrjuzBNaDv3ILfm8eQK4/mTwpqS7S6gBDmYQ/hrkmBy5V4YT+i7YghstAEEdoI4oQMC62QzTfHslx0QqIYQJXyRmZ1qdsQOTdPs+DLCRiKNRy4cXtbXsLZczu9q325AVWB2TLMDEnyijOgzce65n4ZQWax3tq5wFqY51Gr2ckxGvIrY2k9pfDQEpWhpCMROsR/oD6kF3rVDl2fflwAB4mx4VGeTkRQIEalpUNeTj4CgcAcGkwAcecBdmEZn+1E6JG9AGysCTdlyfDw9RqAhqH27YXZOC19uXJi0zdEjdHgaRPMdvwQA6PMPRmrDZhT+8v3ca1HznnNvKi4lcDb7LEzjDsfssxTZwb0/OesnKmetuV89BM0VCTYOghwo9z0txOK5GuG9E4phhGo5URTrdgb5EGj967xpkRQIUalJINRRQ+DFlAeFNdY08wEUmvqZmWGrIyMwm7Lljm2b3HxXso6OofmOX6J0+LzQ5cYGTxsQhXyyCAQnXZioUKexn8nImTB4NQT+19a1fHwIPNjBJYqPgXh+Z85Nv7XR+opu+ejUtU6CgRDrnfQ67JPUEHiDdBUmI9EdEprnEkQKhKgYApU8AKWOGkIkkwGVHbxOHUFDKPtX7JkQXbsBRuOgx/hoCNTHoO3YHbrc2BBFdgSajELsl+C3TiNIQyACiVDhQxCsETDN8hV4PgZROQhphnH2Ywg+NA6yDz2BzJ9eR+HUk9zlJ2lqqYPJaLx8CBPPszdhsQc0RkPIPr4O6s494S9Rh0Uzzowp0qAWj4bgOtbPgWrbev1szI7ASI3DXEWoIQQ5lUMMQH7+J69TOYoPwSuIRPUwAzSEIKEmGsQ8JsZY0jqEuEbmT68nV74f1Sz6o9D3ItCpXAdNh4MUCFGhM95iCZln/4z8natDn6rUwWSUe2AtWr93G3h5aXxfkihhjSJCCBSFrtb2iUKhAoGMw14TCi9Chw40o2PI3fuw/4K6MAOCwXfUl30IPmkfRNf2CgDRoM4+C57gCFx8F6IviJzaUamm79XDCVuTQLA/AgWC/XuQmS9mpEDwkH7+ZSh2ml8uTmfgRPEEUQeTUfqVN60/orzwArtrlJmWy+REO75ngHIWyvlFGTnx5G6B4JsyOk54g5n9d+aFV5F+811kXniFf26IgcgZBCqcth4zgq8iF6z1CYMAggaXIH9JKJNRtJmtsn8g2LcV5joRFlLWCs90xn1PdAOZJ54r5wUDQmsItD2Ep60miBQILGMF5B77A/J3/dr3EK+dN9KAWc8oI5424jN7FK+ErVZD8DEZBdwDR0Ng1gKkXnkTLT+5E9rWhLdX5WkIFSuB/fwwIe6TQf0pEQctQR/TNm5B8ae/DHWsq1yBSVHxkwihNASBH8aDumM3Wm5eifSLVjJBbct28b0XQQfYOASCYUAV+bBCmmPTL72G7LoXkHnmT5wyQq4aDzLzxYx0KjNQya+MjPkfZPrYecNQqmOUES9lhacjq/37oG7bWRZuXJNPlJeyUkOoMBkFOeU54a6pDe9Z3x0YBOZE21EvErxQW289fV7kUBMDX6dxuHrx7ln26Zdg8o7lwdRdmDnV5xKsBpi79yH3cV4tM4TQU+00MNrmbTDb25D/3wcwduaHKq8ZBr81HFWQ/d2zyDz3ZwxffjHMro7K+vAW+PHKpRMAqvUC5fUaYRemGR4hzgsbjxGpIbCEmWXUEmVkxKsh5O59GK033AzAmm251hFQ56wg7LT5tv9B0wNrxbO6Wp3K3vtENQS/+8cZUGgyQJLLha9LAKlX3kSKmtcoHNMZHTgJfZGjZipl8BeGYsc1TRoYaqmX6HkFmR+CHOjMtdNvbnRCTt3HhNcQ2D6i9u8DUN6VDbD6sNoXLtqMat+K1yxWxXuq7rTKVAa8eZHsa/EmBbxiaCSdd1CndRPBizKSJqP6oOwfQObJ55wtDPkqof1Zi/Mq5kUmdKN17e2NaL79l64BTuH5NqJuzAJEW4cQJkrJmRkF+TMY4TYWnBk1Kk1rHkeTN70Bz5dC68F7uVnC9Ieq+06E42uIMgrUckI4jBVRvqOKg8sCgfZXkkk7P2eefhHNd/zS0mKDoBoCM/NuunM1Wv79p8HnetFSFdcCwCxcDPme8PwFJGQf4PWVRjAZ7du3D1/96lfx3nvvIZPJ4OCDD8Z1112Hzs5OLFq0CJlMBll7uflVV12FU089NeCK8ZO/636o+wdgzD0IgLgzKxGdZi5icng13bnatQWjtsMKfVX3Mc5wZ00Am4bBbzDzd8hFCt9jO75P2KkSoNqL/RkJmNxMk9kaks4A2ReYCgQFMAR1CHOfzIABNQbnqrCPsc9CZAf3K88WhlxNxZkwla+ReeJZkLYW/nahTDkKIWUTJxNdRjOXan27YM6eyb8GPVYv5zKipKrcS4Nmu63w+YkWvQk0BJd5KKSGwF2YVocIqsQFgqIouOyyy3DyyScDAFasWIHvf//7+Ld/+zcAwE033YQFCxYkXQ0hjpoaxunrbFFYxcMJIRC0Lduh7tmP0vuP8j0mtaUPqS1lB6vjiM2WZ1e8tNeKSfhzTcdUFqdT2S6zwmRUtqPnf7EKyvAIhpd9irmG/0tXy14UvpR0wF5l68xueSp+HBqCYzLyXCPIERuhqwnNSkEmowCBJZ71u5+bMjqG7KtvAYC/QCiVzYdK0dYQ2OiyKCm0aTh4HKHdNLeUR0NQhAKBc8+80WNgfDeBe080qMmovb3dEQYAcMIJJ2D7dkEq5nGEXWmbfvZPyD64FuqufretmfOgMk88C23ztuDrhxjQ8nfeh9xDT/gfwOtIdLFXJsN8F+xDqKhXiC0aHQwDTXfdb0WGON9xfAhepzKjIWjbdrhsxq468lTlJJID8mbNgpfQ34cQ/Gydc/3e6xr8E2FQgmab9CtfH0KIetBzi5ygBm99WG2Rq52EtLcDzKQmhj6S8iQbdKojEgic75wd8liNM2QdOJsRVbVPdkTqGmVkmibuuusuLFq0yPnuqquuAiEECxcuxJe//GW0tbXVs0ouWIGQe9zaeSnz5zcAAPohc60fOLa97LoXgXUvYvCaZeIC4jAZ8WbOTsI4ZhEa74X0K59GQ0RY3azsH0Rq01YnUgTwEXjea/qsxlX2HUD6z6+DNOet/2tJMRwBhXDSObhCHz3RHj73MJTG6HWYl3Soe/a6TSc84poZujQEwaAWVWCx53iTGIooMYsUqdNe5wyeYRz2VNuIoY84JiPaV0u6FdjgRKGFNBk5EUWVE4xAHwtdh9DIYaff/va3kc/ncckllwAAVq5ciZ6eHhSLRVx//fW47rrr8P3vfz/SNbu6WqquT3e3tekNDTJtyajwMxplMimYKKtUvAGLXs8LvX42rTohgkHH+v1OxgrwulizuTRMAC25tFP/bMoqS2WEREd7E1Tmuk69NOtYXvx5S3MGKU5dzNIYigC0tOaclUkp1nUUxdFM2loy0LpbnbJSivXupJnzurtbUbj1v0H2HoB2+gdhANCUcm1SKevY1nyaWxcefvfP2/aujjyUNqsPlXJpGABU5j7Qu0f3Esjm0mjl3Y+B/ShWfOtGtV/opmwabd2tKP7i1zD/9AbUE4+27puzDsBd/1I+gzh0o7aWLDT7uiYpVtSXlq+q7vKLGQ0mys+Oh3Ou/X9Khev58tBzKegAMrk0FLuN+YzqtDWbtsptac66nns3pw+nYJlD6SdLUF/wUmqy6tKSt8ot3vZLmG+8C/X9vTBhRX56y+iY5n63AEDPW+9jRlOc9572J2+bAIAQ4rzbzv1jBEJXRzOU9mhtiUrdBMKKFSuwefNm3HLLLVBte2xPjxVTnslksHTpUixbFjDD5tDfPwSzCmdLd3crdu+2Vr/SWzy8dxBZn+OLRR0pAEQ3oAAghllhr6XX80KvXxgtIh3yWL/fMToGb5cojJWQBjB0YBg0MLM4UkAKgGkS5yXd1z8MM1e+Lr1OcdQ6ltemocExlDh1UXfuRzMAnShOaHRxrGRdBwQgVprfgf0j0HcPOmXpRR0aAL1oOOft3j2I1r2WpjE6NIYMAEM3nHrrunXs0IFRbl28sM/WxVgB2radMOa/z6lP/+5BkILVf7LDBWQAmEzZDnYfKxQMHOBcW9s3jHxAveh1x0aL2L97EM3vvAcVQGFoFGmU7z+B+/lnhgq+/TIK9FkAgNo/hOaKClptNA3TVX6uoCMNwCjq/jZme+AihvV+6IWS6/nyyAyOIQugUNRBRovIABg9MAJq+CwWrP40NFh+7t5nS5+jMVaE6lNH33fJh6xdl6GBEZR2D6L1DSuarzAyZt2HUmUZ+/cNw/CUkz4wihzK7wUAEJNAATA0wOnLplluDy2DGdv69wyChNgRNwhVVXwn0nUJO73xxhvx6quv4sc//jEytp17ZGQEg4PWDSGE4MEHH0Rvb289quMLdcQSnjPL4zuoZvsPkQ9B3b4z1Mbzolz9rmgGnr3dN3pE7FTOPP2SZdpg60EX2zArirnt87PB+9lDOdEilfWsziyQe+Qp5P/3ASjsNqimCW3zNqjbdjDqvGCC4ffgw6Su8Job6f3ymqP81inUSthVwN5nJrKde6GhmWFMN2yABq0PG9hhfxVqTw7eQq5q8TFVUcd36MSR3jQ37HFBId48E2UjmIzefvtt3HLLLZg3bx4uvvhiAMCcOXOwfPlyXHHFFTAMA6ZpYv78+bj22muTro4YUV6iOJbGe22JTBx283/eC2PWdP7vftegOC+TWCAohgFl736Qznb+NXmx6YUSsuteQPqPL2P4is8w33OyljL3hm4EUvEyB8TiOzZk7iYkJrQNm5H/3wcxfOknYc7o4l7DDye1Nt29za5P/r+tVCXF44+0Ky9+8dIvvobSsQuAdDmqK1TqCs+A76yMLwUs1otrIAg7uHh/ihJqXdWxpCwcXO9glGtRgeAzEYoSsUQzG3tDpqlfLmSUUTlYg3McVyBEC3BIgsQFwuGHH44333yT+9vq1auTLj4SIkeYaKAKDfERCPasiK4nsMox+dtdimbObEQC58XIrn0GWt8uDP3jp0HayiojbRs3aZe9Srji3jgrjgPq5h0og1Z6O9fltzP17hYAVg6fqAKBbq8IZqEb2y66Ilg0AGmbtiH96ltQd+5B4a9OA0YLaFr9MMzuEHXxagD0f7rKlrOqW9uxOzYFge5PkXtwrfDeVdQjioZAn1sYpzIbgmlyzosiXOgaCZ5A8HuXfOvFnMdiWxBCp3gRCY4gDYE3cWqEdQiTCpGG4PfSRsHwPHC6cMUvIojXiTkaAp1VuU1Glcdpfbus44ZHQVoZC7JoIR5NG+FJR+3cB56ZiqBsjKzQECpXlLquS9vCDTs1QZpydr0E+ab8oOsMWCEwPMLUTay9AHBMZNSElnpvG1KbtoGESbHgFYZGZX0omSeeRebFV6GMFVFacEjwtcNgEmhb+pB+7W0QOz8UH75ACGcG4pgvPSj9+4Fs2rXIs0JbAoRaefql11xbdwp3GIsqEDzhrnSzp6gaAjeiLuRaBqc97CSP4zCPG5m6gkWwMI2bCkKAMjCEpv9a5RpwfOPAedf2S6LG60i03jyTEbcHEXeHFMzmVLrto3fDGmdGxnRY1wzYZx2CWXme64XRKweBcry66aQ2iPo8rGtWCjGXMA4zE6YCYWTUfWwhKMaIcT940ztw+l123YtQxqxrqgNDgdcOhWmWFyyKZvAVLgzBrNZDGH9Dy213oeX//sLtl+OYfGgfYfu8ufcAUNKRe+hJpO2Fb67yatne0mmD55pUky8J/FuEcFJdcN4R+zO1cSta/v02YLQ8sXGPDxwBZxJrQ64QazyqRQoEBmHsdMTU1ekXXkVq6w6kX1pf/tJnEORpCL5xyqJ1CGxCOJFpxjQDzUsOBbpPsk89XMvymTL9ktsZnPPY+8JzKjMvltNWLXrXVXh1ZgVLmN22aF09ce+Rggw8lw8SbkoxWNiEK5eES85If9MNK9DBo9GEwtOnUm++awVOcMpRGB+C27FaaQotfudW5O+6v7I81kHtQdu2E6033OwOJhDW3XOP6HoCKkw59yH98uto/d5trr1URHs0pDZthaIbSLELWtm6856TrqP55/cgv/K+cO2oAikQWGLUEKiNXhlgQst8NYQoi8j8NQSXmcVndy7AbgtvNsLB6dR04BscQvqFV/kzMtaJRjfI8V6b95Kws0LdPdC6jjVN/r0KC2/GxtMQRDB9RHv3PXdq47BQUwTnmlxCRJ+FwjT9t+lkoesl7nkArT/4eTQfgo3rHg+PoOneh5Fbs7ayPvSTZ2rymvDsemjbODmKBMIq/bK1zWbqnc2u77UNm21BccB9glc40cAJu6/whH/6zY3WoYNMhlSRo9vGtVKfTejIudfqfmssSXK/celDYBBGe0Q1UdgzWJcgYc0gxETmwd9B0Q2Ujj2i8nzfnDkCDcE10xasPi7p7g4n0ow8A39u9aNIbd2B4ges/DRcv4XLZOSJ1BAJEsDZM8I102NsyYpIbQ+ClsO2lxUwYdJP2HVRB4eRv/uB6HUA80wUBSAkcFUv18dUTbmEgIQSCNZHatM217GhMpjysJ34Wv8+9/eMoPFOPKy/PeZDkV9CVL7Pu5R+fQMAILV5G0qd08o/MBMH7Z3N5fBXURkU3ixfpFnpHAHoQ0WalwSQAoGFzrQ5P0V2JjvChbmGR0PI/NmauZR651ee79M5uC8lZ5BUBM5bRdfdJiNR/hdPWmE6OFFnM9tAlw/BZ4Mc51hWKzA5GoLrWGamaFINorLOat9uazbnXZlKTVi0DUwZrsE2TBRHHJscEbdACJxs1BLq7LoOCd6giPNb1YKAns8b5IHQPgRuBFKU8n2eqxOgMOoJULDLyzz/MjLPvxytMI5mK3y/XBUS9z9ldFT4exxMWZMRMQmaVt5n7XlqE2c2Te6sz8dMww33jGAyKptZmDJ1z8vE4jUZ6f7tpgM3rQ+xM4Oqg7az3BUWxww2jmPOp5NztBnrb94+DuW2KBy7MqX5jl+i+ef3wNy0Dc23/jdQKCL9wqto/e4tQLFUfr6MVsBmhQ3cxSrkMYEQ95Sz4ln7LQyrFcZkFDorKhBdO/bCPlPmWnSgVlwCoVJ4lAMRqrz3VMMp6VD2DaDp7jXAaKG8Tas3q2ktApCd3Igc3Z66WecGlFtIzplMmbICAQcGkXpvO7LrXih/V+Oex8rwCNTtu/yvxc7KWVMFL0R041ZkH3qy8uXkzTY4M1+eQ84pW/cIBJGpxPBoGvZiLCd6yuSoyISUr0lMcUge3LN0riBlo01oWwUvmf6b30PdewDatp3IPfIUAEAdHCqfyw5wrIaQRDZVHkEzwSTLDbWWgCDzu2fK9anRZOV6vuy9ZyPKTOYZU7waQrUTNvquFUvIrn0aqXe3IPXOpvLKY2+fqyXen1d/Ub9ig0uC+gXrr4pLa/QwZQUC4XXyGgeE/M/vQfN//sr6xwkFrYxiARA4EGUfX4fMS685u0UpI6PIPPkcPwSRdmjXIit7VsSrqGHyXzyfY12ftNM6EReVJgAFcNqqHhiE9m5lzLurXgH3whVj7gwSgmdlx5wrBWYB2ugYEyHEDFBFZsYaRy79MARlFU0K0wzdxuzTL5X/iVEguHw2TkQZ4a4jcH2n61VP2Jy1LcxESB0ecfqHMzkrlWyhWX0/ULgmI8H75Rdowrs2G22WkLYwdX0IvFDPGk1G6pA9azaMcif0cyqzqjNvi0g71E0dGbUyTb7xLrJ/eAFmx7TKQ+ngH/aF8YadCg511HVPLLrTPp8ZDs0Gm17/DtLr3xFWx9XRRc8gwGTkkLYFwhhz3dGxsvmryJow2AGqXgKBftZZIvBi5Tl4Z6pVrflg8dEQXCmrebvV0ec1VkTrv/8UpSM5vrYwMJMz5x0fLZTLKulQt+1E8y/uxejHT49PQwih2fAEiC+MhqDoOkgsKQ/dTF2BwAtfjGlAUApFrobgSpnNviTc0EV3qJtzHVFMesj6u2y2UaGDRdCsMYJwdZkURIOkWY6jZ+3JuV//1p0HikkJQjTVWr8wWmCck5xBCaijQKi3amBh7ZgX/bmHnmj4ne/SENj7zQRD8BYs0mdtmyfTb2yornxmNzXqQFaKxXIkXkl3QllTb2+qbWLoWt8TwtTlt0CTg2ucSMi8OXVNRhyVKxaHIQCMFqDQ8EmXXZ/pLMzAztcQ6HGe/Cmi2UvYAc2oUiAYRllDCDo2yiwrpElCMco+BNaElX7tLeR+u658IMfJrhRLjK+F78SO7fkHoJR0ZB9fF5+zOCwRTEZmPhd8UFjYvs7+zebQ4kUZUSFR6zoMVkNwBEKprDGWSlDsFfnKWKH6yRIs02RuzeOWEPM4xbmw5qmAcl2CNcYAGJYprCHUqAYLUMYK5U5Y4j9w18MVDYiOfZOaaIIjggIxzeoiKXQj/Ow2yiKmsDZqV7y6/bINc0Lx6EBjmOUY8pJevj+6j9+gTgJB27E70cVFvrBppgNQSjqMGV3QdvXXXKxLA2QnP2y4tGA2XWu4Zdl8a5TNLswEASUd6tCwXddiTSaj9MtvQNu914rGC/EOuBbwBb1bultYJjGdmLoCIcF8IMrYmNuRRfFxKosGRHXfAbTecDPM9jb7vOAEfIF4fAhhUUql0EInyuw3tEAg7igjpX8fVE6SO8Ka2ehLWSqVTRB+Ya71MhmNF2Z4h6lS0p28UbXi8huMsplmywLB0QZ4Idi1zoZZDYGuNSoWodjh1kpJB7EFhVIolcNRq0Cx/YhKoRhuUuQKyggwGQXtdxIDU1YgcKOMYsKtIfDt466XhFcXe3DS7DBWukpRNLMPaw5QqjUZlfRkNKuwuXrYepsGWm77H/5x9qCjjBbKW2CWmMV4Pj6EWm3lEx5iRhtcM5ngY8LAmonYRWCOhhAyHLZKnCR5ul6eqBVL5QG4VIJSsoVfoQAlV72zlmpAyuBwuHsdxans0malySheEhUIxbJ91G8AZQdBjoPbiRyKkrsn7Ay3WKpcnRkCpaQnEpqpiLQe9jiTVPoQOBD6Uo6xg0+Jn2K5Di/ZhMEkkbSg2DQExl/H9jtntk4ISD3uPeuUZcyfSkkHoXUplEBqEITO3tIHBkPdP23rDrTecDMAoHhCwI6R7ESmhtBYEVIgJIBLQ/B5AZWQJiOFTZYVVG5INTLzp/XAn9YHH+ilVH0suAjXwC2C8SEIQyGpQGDMSa4QVF4yPQQ4/8YBY1Z3rL4Gy3kbYSBJRdlDQFBuKcCHAEAxktfOXM5p3Shr7CVGczAMkFoSKNKyRkZBQtw/6rsAgMyfXhdfk/0nIQE67lFGGzduxEUXXYRzzjkHF110ETZt2lSXchM1GY2McuP0XceEdCrXHAMeI6zKHet12U1qRLDZOkVZRu0ZqWs2OuYeDMp/T5z766V40nEguZjMNoCVSC/CQFKLLd0FO/lhfQjsuxFHjqgA2ImHYhiuFf4uoRXH2FAoJrvQsVHDTq+99losXboUDz/8MJYuXYpvfOMb9Sk4YYEQOND45NOZ0JT0RByvytAISJg9b9nUFWE2pPERCC5fzkR2JKsqiBLjK8qs4whFpF3G/HGHWPO1wXqE/FJhSFKa1Y9pmcWSW1uJYdKjAFWZZYOgOxfGmXeNZVwFQn9/P9avX4/FixcDABYvXoz169dj7969yRee4CCsDI8GOihdKRMSFE5xopRKiThe1aERkFw2eEbKxNGHMe9QkxFRFP5aj4mOqpRz8ccBE6UVitgEAtO/49rboQZINgvFKIchK4RAGSuAeHcFrJEk+hyxc4k1pMmor68PM2fOhGZ3PE3TMGPGDPT19SVedqImo+GRwGic0OsQJhBJzHgA+8XJZpw9pn2PY53KYa5rH0vyTeWd3yYTqgrErCFEmYmHsYGHwrUOIZk+FAWSy1oZfnUTRC3vW0Ka4k8FETsZW2jJsFM+XV0tVZ1XTGoQ1jRoI6OBEjxlGs7CkrqvWI1KUxYYLaC5WEBSir3WlAUJEDgqIpo86LXbmkFiWGBVb9ra8yil4hMI2bQKooTPqZdvbYrleauMNq5OAE0t1ZoH2bsPgAI0NwH22gGtJQ8SIYgjNlqboR40A6a965oILZcFwSBamzNIeff9iIFxFQg9PT3YuXMnDMOApmkwDAO7du1CT09P6Gv09w/BjLiyMPXWRjS9Vl1elCDM1uZQOxsZo2Pj78AJiZnJQDEJxrbtRjyBiJXoigJVgTAlhjlWhArbBBRBiJayWaSo/TidmlCOehEHBsaQQ3xqfHGsBKVQQth5/0jBiCd9WqFU3lXVJCApbVx9NyVNQ4oAAIGRyUCDJRBK6XQsAyLJpCOZgY1cFiUtFerd0lUVGoCh/cMo7R4MPJ6Hqiq+E+lxHZO6urrQ29uLNWvWAADWrFmD3t5edHZ2JlpuxWbfMWK2lW80EZlAiiWQmGy0iaMoMNtaoO1OzrdD0qlAB6rjfM9Gi7wh+SZXOZMGRWkMkxEAMNFSJOLzixvCLjxj/qY7qNV8/YjXIdlM6Hvd0D4EAPjmN7+JO++8E+eccw7uvPNOfOtb30q8TNLSnNy1WxmBIOj4SlGPN6QwQYiqwpgzC+q+A8EHV0sqHehApbPKqAumCJuoLZ2UjpMAqhIu+iosUVOWxDhhIVlmEGYWftVrUsT2GeISAvy/ayor6nWymfBrPuiEJqE1M+M+XZo/fz7uueeeupZJWi2BQLKZUOGLUTCnMapYNg342MUVXQdpawZ4ydloPSOYRqKaUSKhKjAOmQu8ZC1mI5oWe5ggSacCncrOsRFmmETTXCtPeZEkE9aMpMQdZUSiBTDEtQ4B7mfmen4prS5JBVkzDiucSC7H/bumsiJeh2QyQMgIJ6ohJBWmO+4awnigHzIX2tmnoPDhE2O/tktDCFgCT9JpoVmJzmTopjjG9A7/i8Wp3ntRVZhM2YloNukUEHY2zMz2hj/3Nxj51Hni67JmIo7JKO5ww9hQlNBCMhSERFrzUuvsnZ2e+AmEWM1SorqwkwJWK/DRFmoqqxqTUUjh65g8G9VkNC5k0kif+2GY3V0VP9X6Erh8CIztmktKE8/C7BfHmDMLg8v/Acb7DvI9lB3UYlfDVRUmY2Zzqf/0uxoHLktDCCcQXC93a7PQhEQyaZffgHvsRPUrKEp4IRnmcroBRTfCp02utR+x9zXjpyEwzyZO4eeFFUJ+QiAuH0LU5HjZdPh7rWmWGVFqCAnAG4xrnLG4Zh8tefGxqZSwIxizukFyWZSOOzJ4tsjWO+5Zl6q4ZuVcp26tL3M6JXSgsoMFyTL24FRKOKCTdMpdd542UKdZqhcz3yQ2f6nxCgRnLUbYAavWd4Ed7FNaeaKS9fEhxGiiqqhLlt9/2cE7rk2BomrQJJ0O//5oKqBpjblSebxxDTL2i1fz7Jo5nzQz0S28Y1MpR2XmmS2MuT0Y+tLnypqB6IVxaQjxPlaiqq6ByWzlOOVrLJOkUiAiDYEdnDJuGzTvmTkDbTrtHphcwsS+9+PgaDbzTRj+58/CbPafNBDEazKiCf7CDlg19yPvJMXe67rCh0DLC2O6q9Kn4tIq/RzMQRp9WNj+FkagG0b4e62q1rsmNYQEYB8C7Zi1zhY1rWz7Z192zgMnac0RINxwSM09EIuElcsWG0GoheqwnkGJtFXGMNc8eKTTwtkw23aX2UfTuMLQseMqCkiGFQicwWg8fAj0nooGOFURC8moRdpJBEObNGqeHKnOpItomiN4/QRCqPLUKuvElsn2JZdAKL+vNfk2Imrrim6ED6jQVKuPSw0hATTO7KRWNVnTMHzZJzH82Qvdpgw68LMPPpUqCwqes9P7gog6DXus3RbeYF88vhejS86wcgeFtVF7BiUqvFxt4bzMRld78LXZa4Y0iXmd9a6Xl7adamfEtEJaKWyEiWYfmx4HkxG9p6L7H7MPAbC0O/3wQ8IdXLMvSin3b01z2uIahFlhzHn3KvpwtRqCnyObXR/BmoxqGAeIpjkWAZHWU7ZKqO6xSDS5Uu1j5X4ICaBWagi1m4xUkNYWkNYWaDv3VJalqU4MMUmlyuXxOmAEgcB2cqdDaWpFdlLSMQ36MQswdMShAICWH/wcCJps2Lb9ocv/DurwCLTN2yrawqtb8UMnwpg3Gy03/adVtig0NsipzN6LrMfEw947+yUz803WilyTBGsIWrTXgOQy7v0VqoG2VSQE4w47hRWgEDZst2btRLEFQgl2eKnd71vy5b7gGgg570BKi2WXPuLjR3KZC1lTkpaCgiqfMSsEMv6h56XjjgRpbkLxL96P9OvvlH/QNH8NQFUBVZU+hCRwSWJHQ6hRRrIdnPVR0LK8QohqDrwQVc9MQajG8mZanMHGeclpOGYEkxHparf8GbRe7Lm8WY2quGdIIoEW5FR2aQgegcDzIVANwTRdYYCuiCNnEqBGinAxp7WFPtYXhXMPK46Jb6Wyy5QWtq0xlE3U8kTLlWzQ7ofEx7zimJo876PSVt2iUsL4vVzvPauZs8+iFg0hk3JSsAiFbzqF4mknA9mMu/+J+oRGfQhSIMQPO2BTM0itzlH2fPZvxpbqHMs6lTmOvooZk0h74dhiuTMub2cLIRC8M0Xnuqx/gzfIeGe4gnsbGHbq8iF47pWrDbYGQgeiphxIE+Ms9Jrs6Hf0+YQZLFMpjHz6fBRO/4vgY30gYTSEONNfU/t9FIFQs4YARgtTUTrqMAC2QKXCJlVpVqXHW79b3xnTO1A86Thkll1cVVVIJoOxMz+E0SVnuDUEnwlgLWtTiF+IrRc/k6vnnXRNLFXVev+kySgBuE7l+DQE9wN3d3Dnb2rz5nUc74AuCq/krUPgzto934V56b3nMP4Q52yeYPGGygp9BGmxg9snUsgPY95smBu3oHDmh1x2Yu5LyGbVY81gPhBVgTGnB8reGlJ5UPux6P7HmcvINtWxs/NAVLWmFfBEUaDQZ5pJo3DqSSiedDxIR1v5fruijDjvjtOXNRTO/BDaOqrM8KmpKJ10nPU3uydDOoWRpZ9w+w+YepV654Nks0ht2hoqaSUAIJMuJ/MTCAS/ySNRFHeSR/a9sKOMpMkoAYjqnq0DqN2RxuvUbFnsgMQ6UnkmI4/aKvRv8FRv3gBcMRgIIntoR/SeQ7/n2O4rjnOZzQRRUgFOZZeZiHOvRj9xBgqnneyo0mZbC4b/YSnMWd2AosDobIc+/32utnDNePVKOEjvlyiySokxyoja72kwQRhqdmgrZUFkR5GRzmmuI/xMRs55jjZaY1V8fFAklYJx8OzKRap2nzC7u1D4q9MiaUsknXYEgVBDUNh3g504CbR4TbW034QEgtQQKHSmXmv+eY96V1EWOyClUk5H53WcCvOFUEMIKdy8IaSq4v+uqXa8s3eWSmfQHDWXnVFWRDFRO7aqVu54FmAycq0f4Kw21o9eAADIPvGsdYxnrcTIZZ8EVBWpV950tw/ul5Foauixh21n6JxTtO1hBts4ncr0fqc0IKSPltCFcdXmyGKqXvHMaPvDOJW9F/PWM8T9JxzzLQD/dyqEwPZFVazcSYWi8y5y6+hXpwqzLlzHEbkOISHYgYCGHkaMOBHCEQiu2Rk7iPNmEpE0hEqnMs8fUjE7FJkkHDu35xwnSoqjIYg6tsjZnSo7lbkzWNfCouAomYpFRjTskWfCYhfehdEQ6LH0BY/igKRlhhIIamwmIyqAiaaGFzK1ls0KE5+B1x12KlhFLnS02v1dVBe/5+pzXWc8qCKrKMlkMPrJj6N07BEg01r9y3GZjATattdXl+BK5amtIbgG7HjWIbjgzQDYh+uyiwdHGTkDPWcDDl4sfhgNIfBFK+kVmopicgZC1rxEJy9eZ7RTL7VylspqCLxwWTYksL0Vpd7DUDzx2Ioqj/zNX6F1e5+/+YkrEHz8Pn54BYIWITQyyoxfQXUzVA6FD5+I9MtvwJhzEFKbt4Y7KWjHogj45ptyrdXhTRQq+/DYWR8GUhpyv3mifJ4O69n5DeARTYHOpCPCwDt2xikwZ3SBdE4DATC2eBHSz7xk/ch5jr5pOzjatus4TQXGpFM5flyDAycMLsbrE97MMF1eh2DO6q44vUIjMMr7AVTsyMQLd/WL/HHVUaCKU6ex9zqOyYgTsifSEJgFbd5SCbtSWVUB+AsEaBrGzj+LW2fj8HlIn3Is4LebFKsVcjSgUOtQ7HqWjl4AbesOGLNnIffwk8HnAczEIOSxMaWuMGbPRPHUk+yywzuVa0JRytN2v2geVxgw5xiO761kTwSoQHD6kyAgwPtcR/72Y+IV2/Q3ej1CryNw6GbSMObN8dRfoBEG+ddUBTA8AkHV+CbXmJjaJiMGZxAV5LWJGpLKXcnr0hA0FM76MEYXL4LBEQjeWU15gxieeYmN91cq60uLjaIhsIvpWByTUeXgKoqndl5+3kCTTokFWQgzURhcTlqODyGUhshEzowtOQNmqziJoat8p6wwJiPE50MIChGmv7HPjD2nSk2lcNoHAQBmu2fthmNu8wk7tX9X7EVd5jRBdBEvOMCL57kahx0Mc84s38OpsKjYd0AUGOEXWAHwHzdvHRQLrz10VbP0ISRMGA0hagQKzzzh8iGkQNpaoB97RKiVyvqh70Op9zAUzj614lC3Pd8TsseW6xPBwLW/+rxopeN7YXS1o/T+Yyqv7zOgAGBMWcxs75gF5e+cZ8BJ4xHXHgysXdwxUWl8Dcf3GoJrBhFl1q2o8e2Y5gpdFE0CfI6LMBkiTF/QjzsSg1f/H27+K8CtIYAT0GHMtKJ/SscdKahzOVjBl6iTObqY0asNCNeNhNDI2TJYrZ7nY+GZmRIOO53aJiMWOiKKBn1BZxg745TKBxjoQ6hcTOaqknfDjnQKY+efBYW3lSVHQ3DbJW0zjJ+GwLO/chbTAQBpa8HI5X8HtW8X/zreetDztEr1f+zjp1s2YTbmnjMwmK0t0Oe/j69JRYG9J5xZaigtsMLsVoVA8HNmsnbjODUEFpEAU1TQXCauPa41DdCNcBFVNDqN/d8Lx5REOAEdZs9MDJ7zkXDvpWjhY1QfAg1K8PiLiKb563YiDYEHb5Ekew43bDxZDSFRgfCtb30LTz/9NDKZDPL5PL7+9a/j2GMt+9/y5cuxbt06dHR0AADOPfdcLFu2LMnqCHFCCIWdyrJV8l6K0gePrzzB5UPgzKD97Kp0mX+EyAj3oh6fwdmoVGtdK2Y9AoHwBItfPXgaiI+/gng1J2qvdUxdfPV59JMf59cjCmzZtnM8eqbY8H4YYfkMTp9iBlMSY5RRrRqCy06vBwxGNLBAeFsqAxO4Cw5VJfiZhNHuIgqE0rFHQO3fh8KHPLsqBiWeq/iO70y23m9mfOBpxTQk3BO6nWS200QFwkc+8hF87WtfQzqdxtq1a3HllVfisccec36//PLLcckllyRZhUCG//5voQwOl5NLMR2n8OETkXnuz2UHLruy1evs4cC1p/tEGbnq9I+XiMPdeB2PfbFo+KbGExI+IW3cQYIxqQTVg/NSVpo7AgSMM2v0cbDFAHtPFDY2n15eNCGgg7a3KhE0BN8JBx1o2SitONcheFe7+sHxsVj1Y7W7IIEQ3k/iekd4O/GFSa2SFkTVUUKajPR5c5DatBVIWSujKwh77yi8+tN9pNkhhGcy8tMQVC0xp3KiAuH00093/j7hhBOwY8cOmKYJNabIiTgwZ04HZk5Hev3b1hfMYFQ89SQUP3wiWr97i/UF6/QMI6FdAyb9dEcZ8SCCTVOs6/I6Gaty2p+cULaKGadQINC8QD6zWq6ay2oInvMC8/fQME6fFyEOWGHDZJ2lN4272Q4VBPag7bVVR9r60c9HRQdar1YXmw+BLUtg11Z80pGEcdzSa1BtQlR3OhiyEwjXSuXK330RrLtxLhdSQxj95MeEIcSBqam9x/O+o2Yn1uwTss9TH8KkNBmxrFy5Eh/96EddwuD222/H3Xffjblz5+IrX/kK5s+fH/m6XV18Z1UYurvLkQvFTAomgJb2ZidEnv5Ok9dqmZSVo4Sm9PW5FoWkCGjWlGwuAxNAyr4GAHTNnAaF2WaTlsO7luu6TRoKnu/aulqdKuWbszAAZPPZcmZre3Ce1tkMjbl+IU3bVPnCpDQVBEDztCZM47Uvqzj1yOTSMAFo6XL7OjqboXa3Ou3KNtn3IJdxjnE9g2yq4ndKu32tsPjdQ9MsOkmNMykVJoC2jmaU7EHSdc9sFNuMo6RSgG4gm9HQylzfHBkKnSg51ZQFAZBKa+jubkUhZeXOV9IpoFiy+pbN9O5W6PaztGyVIQvh0N5Rvn/myGBlfe3rq8ygPH1GGwq2eHD6fogoLHoN2kYetE9M62px+m3btCbnbypL2qY1uforUPlepuzcQams9cmaP9Wj58N8bQOm97Rz+3hYCva7QMvi0dbRXFFXo81qk8IIRzWTAkaA1pYsUszxtD2q3Rc12jcYudoxvQVGaxMMw8D06S2u68ZBTQLhggsuwPbt27m/rVu3Dpr9AB544AHcf//9WLlypfP7lVdeie7ubqiqitWrV+Oyyy7DY4895pwTlv7+IZhm9Delu7sVu5lY9ZxBkAYwdGAENM0V/Z0+Mh0KNAAElekedvPi3kcKzrmFoo40gJJuwPjwiUi/+Br2DBWB0bKkp8dyr8VSKsH7mh0YLoKKlpGRIrIACgWrTADODPHAwBgM5vp53YAGwIRSEXKm6yY0AEOjOkq8OhWKTj2KJQMpADoB6BPcd2AUZm4QzW0tUAeGnPqUSLnjuZ7BWMn+XanomPsOjMEMui823mfLogwWQKcQRZ0gBWBgpIScSaAAKJRMeC3ZRFWgGICZSUMdK6A4UsQB5vrqwCjCJmWmbdN1AwO7B9FU0pFC+f6bKIf+7ekfRqagIwt75k6qNxPs2z/q3D/1wFhFfa0+Tdzl7x1Gi7WRp/NcTaWyn3ih16Bt5NFCrOseGBxz+u3AUAF0fTm1zA0MFaAz12CfrfNelnRoTB2JqkCxb9WBjy2C8qGTMLh3JKDWYpoNw2oT07+9HBgqut4tAEjZbSJ2ewHAVFSoAIb2j7jeq1zvYdAPOxjZJ5+DCssqraJ8LwDrPdDSGeRMgv53toN4w3lDoKqK70S6JoGwatWqwGMeffRR3Hjjjbjjjjswffp05/uZM2c6f59//vm44YYbsGPHDsyePbuWKlWNs/DJu+CLhQlvCyWXWScZ40OgpiivSj38938bLu0uzwHlY+oo/2N/RvEh0O9Em9p4y+I4lYc/fzFgGMg99gfrez+h70R6JWgyYutMV4ezJgJe2TQ0lx7vVddpv4C/1dwxO/nNsHkmGTYXVK0zwSCTEfWLecv3Rt+F2vdYHEnF4vazRQvbLF/E/mAyozqO71QKpKsj+BphEZmMfPYE8eIsiPP8RBdbZp98zjqOdz1NtTY5UhQopVItSiOXRE1Ga9euxQ033IDbb78dc+a4V/Dt3LnTEQpPPfUUVFV1CYl6QwVCxQpglgh2VOt4wToATkc3Z06v+I6Ln6OK4qRU4Ngg/V4w7mIxW6DpPjZVrtOc810mDSBdDt3zNTsIfo/LqcyGOdprG5RC0Uk57LtiFCjfD69AoO1Mp/ztz5oG6Lq/wOctylNQvp+ss9kH4QrWoCgjGm7q17dpLi6BycgVKWVdVFxhAFBVDH/6AihjBc8iMLH/yl0wk0IE1jNWCjXuaFdRhv1By+BEGvIHcM1dRwCFU0+CtrUPpWOP4JdFb5uPD4F0dWDoS58rR+fFSKIC4ZprrkE6ncYXv/hF57s77rgDHR0duPrqq9Hf3w9FUdDS0oKbb74ZqfHY7NyGpo6oWFHJQNgoI4hnhBU4L2S8Nj8K+6I6i1bY+0k31IgSymprOEqYPD3c1dGea3pe3MoCBb/HFW3D3Cf96MOReWk9jLk95d+5QtQON7a34lS8YZc0TDSV8r9XNN+Oz4DK23TIiiiJoCEI93IIiDKiyqDPDJiE0RBsX4uz25nIp5zNWKuQNdV591JvbWQOsD+iaEai7WjjQhhlxNHS6fGMQCDZjLVTWmBZPE3Ovl4CwgBIWCA888wzvr/dcccdSRYdGf2IQzH8mQth9nRjuLuTn+fEO4uLEg8cl+rvYeTvliDzzJ9AWiyrMMlmHHXZNZsrWJoPu52kVR/7k6faOhqC/9TUbMrBOOzgshbh2ejDfUH7M+CF5WsIMZmMmOsYcw/C4DXW2hclhDAifhoTndmmU8CoT7nU7OQdUFVGA2COc/6O0m5Rkr2gNBSitCHM98KV/FSLCSG8zVndUDduAfTy+8MVRoJrDX/+IqCkI/fQk67za9ntLBBWcIvSWXu/Y/2cgWOAT0SgXxkxIlcqM5gHzbA+/Uw3Hg0hlI00l4HZ2Z6YQDDmzcGonVBr7NzToB86F5l1L1g/8nwN3p2hvPZXFmpG8zMZARj+0ucAALnVj1pfqBwzmVOWZ9MTL6m0q06uU+NaoAWgtOAQ6Ece6vpOGbPipcyu9soT6LoOW5ia0902aXN6J8ymHAof/Qs0/fqxitMBlPdZ8K7ebm8D3tsOdWDI+j9KrqmKMtyraCtWPVNEKRYCTEbsgDR6wdkg+SbkV97nOpf6WkTm19FPnInMn16DOYt517hbvvo/d3N6p/2XR5gnMGgSb2grT6MWmIxc5qVakgsmHLIvBUIEnBmI00mDH+zQlZcCALIP/s4+JT6BYDa7c/6X3n+UVQTVEHjrHPyS93E6c+mEowAoKJ7ygeDK+K2OZqFt9zObOCYZjgCKMYXD2IXnVnw3+tfnQNu0ja8ZUnPKtFaMLP1EZfqMbAbDX/oclBE/9QC+jtbiB49D6uU3oB8yF+k3NlS2M0q7vc+QncUGLExztm0MMhkxAl8/0h0mToMtSHsbsHUHlMFh/7rmcyiestBTf7ZfUB9CeKcyBIN1zTiL3wRlCNLNu4VzuPrxdsuLtOalCqRAiILTGeB8jp53pmOuEUJNBjENbINXXebfsTg+hNTi01D44/rKY4m/845kMxj7xBnhKkTbJ/Ih0GP8cuPT+vJMVAm/CPoRh0I/4lCk3ny38kdGuzMO9o+CI6IJAs9HAGuLxqFrliHzhBVZ4m1npAHAOyCxRbkizqxnbjY3QR22hRgvrQh7Hp0MCRdmWceadiI7Y/77wtfde+0oC9MCgxVqxzEXcjQux5fI8z+xOyUaHG1NBG+skCajCYRa+VLrRx0e7lxHiMQ0exGk6aYOZPYFSS06GfuOParyWJEZJ9JmLu6Bw/Wd93o+AoFqNBVO26h1qYVano/g3Ir9MCpWjNufov10AwhrbqImneIpC5F79Pfu+ngHnLSdZoFeWzToOhFRKoa++BnxfgM8uCajMJFKVDtN0JlM+2bJ7psV4bmEL7x4E4Gwz5RnLkt4YpTs1RsEJ/7csaNWhpIF4gwE8dXLD9JkmZIq/AUiuPH34btHeR2Cv8nIiT7xcfoZh8y1PtmoH+da9emqwqiWkL5ALvb9NQ6aieIHjsboEo/mFZRaJExf45mMeH/nshhc/g/ORjMAfNOKEOrX8dFwXLDJ8Jrz0dPFB62l8S3XR5jFiKMhGLY5k3Nv+ZMqjokpqE2cd2n4MxeiePIJ0ocwESBNWTtW3f5fNJP1IyGnMo/CGafAOGgGjHlzgw92TEZVvowUnkCo0BDoLNNHILzvIAx+5TKo/fuRfeJZT13qNHcRtjnki8yDGbQK53zE/1zvJUR5h2jWTG8ZvPr4mO8q/vdeg9nlLpAa+3i1WqqzNoA5f+yMU2B2RF/F60fh7A9bO6LNnI7Upm3lTKQsIpNRNRoC03bzoBko2EEvSSI1hBDQaAZnL2GfpHRC/GaASZBJQz++N6RDTpD2u4rZSBgfgnC2m0mLV00nTQ3yQPiiBw2WfutUBKt+Ry84GwW6LSbvGNeqcf+qsed6+4Ez+XHWN9TQxiCq1VLt82gdSS6D0gePh3H4IdXVgwNpacbY4kXld98VvtxT8Z0D7/mF7MtJO5B5SA0hBKNLzrAiQIpWrh1u9E4QQWF9SRBh2X/ti8EqNY0KDYNez35x9UN9NBhunPxE8CHUoCHY+GpdPhoCNyUI/a0lj+LhJyL71PN+FSofG7buXk3RZy2K2THN/xpxCAQSIcrIrrNywMoLRFqrT3gZCOc9Hr3wXKh7D/DfIcfUVv4q8FlQpECYoOSyKJ1wFNLPv2z9L3Lo+iF4sRMjxIupiFJOR3mxeYvO/ExGhGDwq5f7d3jmvOJJxyHz/MvR7dHVInIMB90OkQ3b2Z1NvFLczzHsSkvt+c23SIUxawQd67NfxugnzkDm6ZdgTu9w9gwZWvYprsOY+Ai1sLj2qnAih4KHKCccvN1Kd6cfcajo8JrgCuhsBmaPz05+TKh62GfhUM+xwkYKhCj4qNWRzp1gAkGsIYRvJy1JZDJy9nnIZsQDPHNe4YxTUPjoX9RvtiSILw/clERUR0OcOoS7ox57zTCbr3gPcdmt/avmOtbrVG5vQ+GvTkP6xddc3wmvUbWGwPFjtYUI6bbPM3pmYPCfPwdECaaolrCmX56mU8vCtISRPoQo+Nl5Q1CePU3MW861V1YjvHh7O9sUP3gcxs49zT+pl43ZygwCipJsbhovvBWoNEw2TE4nDzQ3Fs0v5RsrHzS7FmUCDbqm928eNAIszHapflAXUbUCwW6HfghjSgyhjRO7v5CUlrww8NPkfCD5JhRPOg6jFy8pfxl2QilNRhMcp6MTjJ35IRg9Ebz+9NRxUANLRxwCv9dEtG9ypBeblwvIe76mOauphWQzMJtyFekl6oJAIAgz4fow/Nm/gTIygvzdD1hfBGY79QzuIlu6/VX2ms9j38Y+ZB9/2vN7hOcX5OMKMxeqVUNQFAx//mKYbS3Q+nZB3bs/1GmF006G2dUO47B51ZUbhaimX0Wp3IozSCBQwSoFwgSH6QSlk46Ldi6d4dVZQxj88qVAOlWxoY6DEw5Z5aIgD8IoowjQHEl1h1flDN03IbpAQFMWpCnrrB73zeNEbc3egAWhQLC+UzraYOisAxmVeZPCxr779E9nciBaDhFDSDXNE2UcPFu4KtxFOoXS+4+uuexQBG4DG0zY7TylD2GyUM2uFOOlIdBFdX44Mdw1hp3ynKZ1WHMRO0INIbrJyIGmHxfuqQz/2WOUzWPoytlqFkP5mqzCRPvUqCFMBuJYTxSU7VeU7TRhpECIgiDvTyB1XJgWCVWguVQjvEQmo0kALyTQOGgG0q+/A/2wg0NfZ/gzfw1luLxto+OQ9kvs53evaLQNT1D5jd40bw77c9CjCBrMQ/kQEkwuN1GII1owqoZQx9spBUIUaCx2DVFG9Xy4YXA0A95+vdWYjKpZkTmR4NTZ7GzH4L98Ptz2kfScgzy7/4U0GXm1TyWEyajyexXWzsbhn4VX4JjefTOoQBP0fcdhPg6277pRQ2BJ5TX8frc/pQ9hguO8FFVEvcTRkZLAGYjKM1GlFk1ossNdj4FIwoCLIdYQfAcJUdZPX4FAz4kgnJlcRSOfOq9i4ZnC23TJj3GwfdeNOk7s6hqibpOoQFi+fDnWrVuHjg7LUXTuuedi2TJrh6rR0VFcc801eO2116BpGq6++mqcfvrpSVanZpyXopZ1CBNt1qzSZf8cx0iEutLkX6G225zI1LpAz4fCWR9G9rfrQmxh6nkOohz6ftVicvCHxjEdWjmlKqDrKESCMWJI5mQkcHFiDHC3wK0TiZd4+eWX45JLLqn4/mc/+xmam5vx6KOPYtOmTfjUpz6FRx55BM3NIRaijBcBi4vERMyFXidonLyT0ZU6JCNS3rC+EFvdxgP+YBb+oQ1dfjEUzu0rfeBolD4gioTxK0MkEAI0hCjmO00sROimRaE0hIk26YmV5NtGd+8j+aaAI+Nn3ET5b37zG1x88cUAgHnz5uGYY47Bk08+OV7VCYdRg8mIDhIT7GUpnHEKRj9xJox5dohfFcIAQDmaqVCMp2LjBS+nfhRNqaujYovNqIz+9TkY+eTH7AvSeoUXCITj3A3Kn1MWhD7H6REmQw2sIdTj/XUEQnP9BULiGsLtt9+Ou+++G3PnzsVXvvIVzJ9vbbu3fft2zJ5djjPu6enBjh07Il+/q6v6RFbd3b7R+VxKGRUGgOZpTZgW8Vw9n4EOIJ/PRj43Lnzb29MB870+FAHX3q9R7o8xpxslAM3tLaBGo6j3N06qLZukAa+OM62zGVrCbTG25VACkM2k0Prh48vf93SiBCA9sxPm9l2uc7qmt0CZZtWru7sVhXQKBIBqz/ZT9v8AML27FQpnFe+Y/ZnNZ2ACyOcz3P5Zymh232+u+N343AUAAOXJP4IAaGvPJ3q/xrNfGXvyKMF9b8PWh97roOPpcW2zOlACoChK3dpck0C44IILsH37du5v69atw5VXXonu7m6oqorVq1fjsssuw2OPPQYtxkRl/f1DMHn27wC6u1uxe/dgpHOyg2PIABga1VGKeG5muIAsgJGRIooRz42DoPaqA2PwGusi3Z85c5D6+OnQjzocrQ/9Pvr5MVLNs6UowyPwTjEODIzCSLgtqYExNAEoFHQcYMvq6UHqwnNhtrag+aU3XOf07x0BKZbbmy8Z0ACYhEAFoBsm6Ju2p38IGK5cWEeHmULRQBrAyFiJ2z+zA6NW3y9w+v6sWQCAppKBFICBoQL0hO5XLc82DrT9I8gDKCmqM3iGrU960V9C7d+PwYDjtb/9GNJvvouRwTHkARCTxNpmVVV8J9I1CYRVq1YJf585sxx6d/755+OGG27Ajh07MHv2bBx00EHYtm0bOjutvQb6+vpw8skn11KdxDHmzAJeeq1yk/VIVGmSSZpa1XxFgX7ckfHUZRzh+RDqsjmPYEGYvuAQqDv3RDinhl26fCgdfyTSL7wCfcEh4utgfKJj6oVim0SpzywKpZNPCHWccdjBMA47GOrW6BaTWkm0p+/cudP5+6mnnoKqqo6QOPfcc3H33XcDADZt2oRXXnkFp556apLVqRn9mAUY+qf/D+acWZHPrSUfTj1gB0J9XsiUAY1IjVlfE4O3MM1PUFXjVHZWx/KPM2dOx9A1y0CmhTBdTNAEjnHgCIRsBsasbhSjprCJVFiDhZ1effXV6O/vh6IoaGlpwc0334yUHUp16aWXYvny5TjrrLOgqiquu+46tLQkuLFFTJDWKqOgJrhAYMMtRz/58bIDfaoRV9bXqvHRIHlViLKqOKgNcTZxIgjQpLAjDUm+CSOf+5tkyxoHRStRgXDHHXf4/pbP53HTTTclWfyEgtAEaZNAIEDT6rchzUQjpq1E4yfKOgTO4qnQuYxiGIUa2GRUOqEX6sAQin/5geQLazQNQVJmopuMJsagNwHgzq6Tvzc0yynJ+SQqj7IOgWf+qadAaGTSaRTOOKU+ZY3DM5ECoU4Yh8xB6dgjUPjQieNdFS6EF39fJUOX/115M/IGoB5OUuPQ92HszA+h5OeY51Uh47N5jFPfKLmMAqsYjJQliUC8eaUSpHHe2omOpmFs8aLxroU/1aTj8IF0tcd2rQlBXaKMFOEeG6xnwcznoI6MVQ7y9r9cZ3ONTmVJ/aHWBLOOC9SkQJBYxCgQGo6JYBNnBurhZZWpYNzHWh+RZv0TNBvvlMZ+JmZNYe7RkAJBYiF9CA6jf30OzM52NP8/Kyx6YtwbZqT2MxVRnO04I9SbF6oqGVeMObOQ/uz5GJwRYaveGpECQWIhBwIH/QjPXs4TTEMIfWyUats2qdoylU6A+9RIKAq04xYAdVyZPRGmPpIJRCnEStSpxoRI5xxFKFU12xdkVZVMGaSGIHEYvPLvGyo6KDYmnUAIyFzKQ7QRj2TKIJ++pEwuO3UXpImYCCajavwBkeot2KozJMVTPgCiqTBm1s8JKokXOR2USIKYALl5Iq0TUcI7lYc/+zdQdB2pV95wn1sFxrw5GPrq/6n6fMn4M/49XSKZ6EwIDSHCJj007DREKLHZ0w1jbg+zgVMVdZM0DFIgSCRBTARHa5R1IlWkPHCOnAhtlYwbUiBIJEFMhEEyig+Bl7oiCHunvAm6W4ekTkiBIJH4UDp6wXhXoUwooeTRDCaAHJNMLqRTWSLxYWzx6Rj72GnjXQ2LSFpKFRpCVeVIGg0pECQSP1R1csXlm/amRikZOiypjknU2yUSiRBbIJBqFhcS6T2QJKwhfPazn8W+ffsAAIZh4O2338Z9992HI488EsuXL8e6devQ0dEBwNpjedmyZUlWRyJpbOztHZGir7Uc5CXRqNsWmo899hh+8IMf4MgjyxuAXH755bjkkoBUvhKJJBSK4dEQosgDZx2C9CFMZepmMvrlL3+JCy+8sF7FSSRTD+pDSNvpsSOZgaQ2IamTQNizZw+efvppnHfeea7vb7/9dixZsgRf+MIXsGHDhnpURSJpXLwaQpRBXmoIEtRoMrrggguwfft27m/r1q2DZidKW7VqFU499VR0dnY6v1955ZXo7u6GqqpYvXo1LrvsMjz22GPOOWHp6mqpuv7d3a1VnzsZmUrtbcS2jtmfvLZ1d7dizB7Vm9uboQPIZlIwBeewFLPWsW1tOWgT/N414rMVUc/21iQQVq1aFeq4e++9F1/96ldd382cOdP5+/zzz8cNN9yAHTt2YPbs2ZHq0N8/BNOMru52d7didx03nhhvplJ7G7WtrQBINlPRNtrelpIOBcBQwUAOQKGgg+6tFnQ/coUS0gAGBsagT+B716jP1o8k2quqiu9EOvF1CC+++CIGBwfxkY98xPX9zp07HaHw1FNPQVVVl5CQSCRuhr74GRCRBk3DTjNV+BBkcjsJ6iAQ7r33Xpx//vkVpqCrr74a/f39UBQFLS0tuPnmm5FKyXVyEokfpDkvPsCofmFa4SMfhDI4BP2wedErJmkYEh+Bv/Od73C/Z0NSJRJJ7Zgzp0Pr2+WsQ1AiaAikcxpGP31BUlWTTBLklFwiaRBGLvo41P79UEZt9zMBSC5bXrAmkQQgBYJE0ig05WDOmQXt7U32FwRDX/zMeNZIMsmQAkEiaTToWgICuUe2JBIyuZ1E0mg4kUJy9bEkGlIgSCQNB6MhSCQRkAJBImk0qIYgU1pLIiIFgkTScMjVZZLqkAJBImk0nAR1UkOQREMKBImk0ZAmI0mVSIEgkTQqUh5IIiIFgkTSaMg9DSRVIgWCRNJoOAvTpIogiYYUCBKJRCIBIAWCRNJwmO1tAAB9wSHjXBPJZEPmMpJIGgzS1oLBL18K0I1yJJKQSIEgkTQi2cx410AyCZEmI4lEIpEAiEEg3HfffViyZAmOOuoo3Hnnna7fRkdH8aUvfQlnnXUWzj33XKxduzbUbxKJRCKpPzWbjHp7e3HjjTfitttuq/jtZz/7GZqbm/Hoo49i06ZN+NSnPoVHHnkEzc3Nwt8kEolEUn9q1hAWLFiAww47DKpaeanf/OY3uPjiiwEA8+bNwzHHHIMnn3wy8DeJRCKR1J9EfQjbt2/H7Nmznf97enqwY8eOwN8kEolEUn8CTUYXXHABtm/fzv1t3bp10MZ5i76urpaqz+3ubo2xJhOfqdTeqdRWYGq1dyq1FahvewMFwqpVq6q++EEHHYRt27ahs7MTANDX14eTTz458Lco7Ns3DNOMvkS/q6sF/f1Dkc+brEyl9k6ltgJTq71Tqa1AMu1VVQUdHXxfbaLrEM4991zcfffdOPbYY7Fp0ya88sor+I//+I/A36Lg17Aw1KJdTEamUnunUluBqdXeqdRWoL7tVQipLQPWmjVr8L3vfQ8DAwNIp9NoamrCz3/+cxx22GEYGRnB8uXL8frrr0NVVfzLv/wLzjzzTAAQ/iaRSCSS+lOzQJBIJBJJYyBXKkskEokEgBQIEolEIrGRAkEikUgkAKRAkEgkEomNFAgSiUQiASAFgkQikUhspECQSCQSCYApKBA2btyIiy66COeccw4uuugibNq0abyrVBP79u3D5z//eZxzzjlYsmQJ/umf/gl79+4FIG7rZL8PP/rRj3DEEUfgrbfeAtC4bS0UCrj22mtx9tlnY8mSJfjXf/1XAI3Z3rVr1+L888/HeeedhyVLluCRRx4B0DhtXbFiBRYtWuTqt0D17Uuk7WSK8elPf5qsXr2aEELI6tWryac//elxrlFt7Nu3jzzzzDPO/9/97nfJNddcQwgRt3Uy34dXX32VXHrppeSjH/0oefPNNwkhjdvWb3/72+T6668npmkSQgjZvXs3IaTx2muaJjnxxBOd5/n666+TE044gRiG0TBtff7558n27dvJ6aef7rSTkOqfZRJtn1ICYc+ePWThwoVE13VCCCG6rpOFCxeS/v7+ca5ZfDz00EPkM5/5jLCtk/k+FAoF8slPfpK89957zovVqG0dGhoiCxcuJENDQ67vG7G9pmmSD37wg+SPf/wjIYSQ5557jpx99tkN2VZWIFTbvqTanmhyu4lGX18fZs6c6aTs1jQNM2bMQF9fn5N1dTJjmibuuusuLFq0SNhWQsikvQ8//OEP8YlPfAJz5851vmvUtm7ZsgXt7e340Y9+hGeffRbNzc3453/+Z+RyuYZrr6Io+MEPfoAvfOELyOfzGB4exq233tqwz5ZSbfuSavuU8yE0Mt/+9reRz+dxySWXjHdVEuGll17CK6+8gqVLl453VeqCruvYsmULjjrqKNx777246qqrcMUVV2BkZGS8qxY7uq7j1ltvxU9+8hOsXbsWN998M6688sqGbOtEZkppCD09Pdi5cycMw4CmaTAMA7t27UJPT894V61mVqxYgc2bN+OWW26BqqrCthJCJuV9eP755/Huu+/ijDPOAADs2LEDl156Ka655pqGaytg7RmSSqWwePFiAMDxxx+Pjo4O5HK5hmvv66+/jl27dmHhwoUAgIULF6KpqQnZbLbh2spS7XuaVNunlIbQ1dWF3t5erFmzBoCVuru3t3fSqJd+3HjjjXj11Vfx4x//GJlMBoC4rZP1Plx++eX4/e9/j8cffxyPP/44Zs2ahZ/97Gf42Mc+1nBtBYDOzk6cfPLJ+MMf/gDAiirp7+/HvHnzGq69s2bNwo4dO/Duu+8CADZs2IA9e/bg4IMPbri2slT7nibV9imX/nrDhg1Yvnw5BgYG0NbWhhUrVuDQQw8d72pVzdtvv43Fixdj3rx5yOVyAIA5c+bgxz/+sbCtjXAfFi1ahFtuuQULFixo2LZu2bIFX/va17B//36kUil86UtfwmmnndaQ7f31r3+Nn/70p1AUBQDwxS9+EWeeeWbDtPU73/kOHnnkEezZswcdHR1ob2/HAw88UHX7kmj7lBMIEolEIuEzpUxGEolEIvFHCgSJRCKRAJACQSKRSCQ2UiBIJBKJBIAUCBKJRCKxkQJBIpFIJACkQJBIJBKJjRQIEolEIgEA/P/0VXor3+gHdAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(100)\n", + "coeff = np.array([2.7607, -3.8106, 2.6535, -0.9238]) # The 4 coefficients for the AR(4) process\n", + "ar4 = np.r_[1, -coeff] # For use with scipy.signal\n", + "N = 1024\n", + "\n", + "freq_analytical, h = signal.freqz(b=1.0, a=ar4, worN=N, fs=1) # True PSD of AR(4)\n", + "psd_analytical = (h * h.conj()).real\n", + "\n", + "data = signal.lfilter([1.0], ar4, np.random.normal(0, 1, N)) # N AR(4) data samples.\n", + "\n", + "times = np.arange(N)\n", + "\n", + "err = np.random.normal(0, 1, N)\n", + "\n", + "lc_ar4 = Lightcurve(time=times, counts=data, err_dist='gauss', err=err)\n", + "lc_ar4.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b6853e57", + "metadata": {}, + "source": [ + "### The Multitaper Periodogram \n", + "\n", + "Tapering a time series as a way of obtaining a spectral estimator with acceptable bias properties is an important concept. While tapering does reduce bias due to leakage, there is a price to pay in that the sample size is effectively reduced. The loss of information inherent in tapering can often be avoided either by prewhitening or by using Welch's overlapped segment averaging.\n", + "\n", + "The multitaper periodogram is another approach to recover information lost due to tapering. This apporach was introduced by Thomson (1982) and involves the use of multiple orthogonal tapers." + ] + }, + { + "cell_type": "markdown", + "id": "7da1916c", + "metadata": {}, + "source": [ + "In the multitaper method the data is windowed or tapered, but this method differs from the traditional methods in the tapers used, which are the most band-limited functions amongst those defined on a finite time domain, and also, these tapers are orthogonal, enabling us to average the _eigenspectrum_ (spectrum estimates from individual tapers) from more than one tapers to obtain a superior estimate in terms of noise. The resulting spectrum has low leakage, low variance, and retains information contained in the beginning and end of the time series. For more details on the multitaper periodogram, please have a look at the references." + ] + }, + { + "cell_type": "markdown", + "id": "e9a8e18e", + "metadata": {}, + "source": [ + "##### Let's have a look at the individual tapers." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "608c3d1a", + "metadata": {}, + "outputs": [], + "source": [ + "NW = 4 # normalized half-bandwidth = 4\n", + "Kmax = 8 # Number of tapers\n", + "dpss_tapers, eigvals = \\\n", + "signal.windows.dpss(M=lc_ar4.n, NW=NW, Kmax=Kmax,\n", + " sym=False, return_ratios=True)\n", + "\n", + "data_multitaper = lc_ar4.counts - np.mean(lc_ar4.counts) # De-mean\n", + "data_multitaper = np.tile(data_multitaper, (len(eigvals), 1))\n", + "\n", + " # Data tapered with the dpss windows\n", + "data_multitaper = np.multiply(data_multitaper, dpss_tapers)" + ] + }, + { + "cell_type": "markdown", + "id": "fa535945", + "metadata": {}, + "source": [ + "Plotted below are the first 8 tapers (on the left), and the corresponding tapered time series" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b7b5e756", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAnBCAYAAACY5Ow3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3xUVdoH8N+90zLpjSa9hd4VBCmCiICAYgEVsCzYdbHi6rIrll1d26uiu1YQAbuC0i0UQYpKFaSG3lOA9Gn3vH9MZnJvpmYyyWSS3/fz2SW5bc49Jpl57vOccyQhhAARERERERFRHSVHugFEREREREREkcTAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMRERERVdLx48fRrl07DBkyJCquW1exP8kXfaQbQFQXTZo0Cb/++qtmm9lsRnx8PJo0aYLOnTvjqquuwiWXXOLzGt988w2efPJJzTZJkhAbG4sWLVpg8ODBuO2225CYmOhx7pkzZzBnzhysW7cOx44dg81mQ0pKCurVq4euXbuid+/euPLKK2EwGDTnORwOLFiwAIsXL8aePXuQn5+P+Ph4pKamok2bNrjkkkswdOhQXHTRRUH3xcyZMwEADz74YNDnEBFR5bVr167C5zRu3BgrV66sgtbUXR999BHy8/N9vmcTUfVgYEwUQY0aNUKjRo0AADabDRcuXMD27duxdetWzJ07F506dcLLL7+M1q1b+7yG0WhE586dAQBCCBw/fhy7du3Crl27sGDBAsybN08TqG7atAn33XcfCgoKIMsyGjRogPT0dBQWFmLv3r3YtWsXPv30U6xZswYNGzZ0n1dQUIA777wTW7ZsAQAkJyejTZs2kGUZx44dw8GDB/H999+joKAA9913X9B98NZbbwFgYExEVN169uzpsa2goAD79u3zub9evXpV3q665uOPP8aJEycwduxYr4GxwWBAy5Yt0aBBgwi0rvZhf5IvDIyJIuj666/3CAgLCgrwww8/YObMmdi1axduvPFGfPrppz6f7NerVw+ffvqpZtvPP/+MRx55BCdOnMDTTz+N999/333thx56CAUFBejfvz/++c9/onnz5u7ziouLsW7dOnz55ZeQJElzzZdeeglbtmxBcnIyXnjhBQwePNh9jBACu3fvxqJFi5CUlFTpfiEioqpX/r0DcD48vfXWW33up+rXoEEDLF++PNLNqDXYn+QLxxgT1TDx8fEYO3YsvvnmG2RkZKCwsBBTp06Fw+EI+hoDBw7E/fffDwBYt24dzp8/DwBYs2YNcnNzERcXh5kzZ2qCYsBZzn3llVfivffe0zxJtdvtWLRoEQDgySefxJAhQzSBsyRJ6NixI5544glMmDAh1FsnIiIiIooIZoyJaqjk5GT85z//wdixY3Ho0CGsWLECI0eODPp81/hkRVFw9OhRJCcn49ixYwCAli1bIjY2Nuhr5eTkoKioCADQqVOnCtyFbzNnznSXUQOeY91++uknNGnSBA6HA6tWrcLKlSuxY8cOnDlzBhaLBQ0bNsSAAQNw1113eS2H+tvf/oYFCxbghRdewMUXX4w33ngDGzduRH5+Ppo1a4Ybb7wREydOhE6n89q+s2fP4sMPP8SaNWtw6tQp6HQ6ZGRkYNy4cRg7dqxHRt11Pw888AAmTpyIt99+GytXrsTZs2cxcOBA/Pe//wUAbN26FbNnz8aWLVtw7tw5xMbGIjU1FZ07d8aYMWMwaNCgynYtEVGVOHbsGJYvX461a9fi6NGjyM7ORmxsLDp06IDx48d7fY86fvw4rrjiCvfY5E8++QSff/45Dh8+jJiYGPTp0wdTp071O2Ro+fLl+PLLL7Fr1y4UFBQgPT0dAwYMwN13340mTZp4HO96P9m7dy9++OEHfPzxx9i7dy8uXLiAhQsXokOHDgCAvLw8fPTRR/jxxx9x7NgxCCHQqlUrjBkzBhMmTPCYZ8NlzZo1eO+99/Dnn39Cr9ejU6dOuOeee7y2xZ/yc4VcccUVmv0ff/wx+vTp49GHvu515cqV+OCDD7Bnzx4YDAb06dMHjz/+OJo2bepu9wcffIDdu3dDURT06dMHTzzxBFq0aOG1fSUlJfjkk0+wdOlSHDp0CDabDU2bNsWIESNwxx13IC4urkL3e+DAAbz33nv47bffkJWVBaPRiNTUVLRv3x5XXXUVRo8e7XFOVbwX++tPwDmfyjfffINvv/0We/fuRUlJCRo2bIghQ4bg7rvvRmpqaljujWoeBsZENVjHjh3RrVs3bN++HWvWrKlQYCyE8NgWHx8PADh8+DDOnz+P5OTkoK4VFxcHSZIghMC2bdvQtm3boNvhS6NGjdCzZ0/3mOXyY9lMJhMAICsrC/fffz9kWUZaWhqaNGkCq9WKEydOYN68eVi2bBk++eQTn2/sR44cwYsvvoiioiJkZGTAbDZj//79+Pe//40tW7bg9ddf93hj/f3333HffffhwoULMJlMaNasGYqLi7Ft2zZs3boV69evx8svv+xxHgDk5ubi+uuvx6lTp9CmTRu0bt0aer3zT+3KlSvxwAMPwOFwID4+Hm3atIGiKDh9+jQWL16MgoICBsZEVGO98847+OqrrxAbG4v69eujXbt2yMnJwcaNG7Fx40Zs27YNTz31lM/zn3vuOcybNw8NGzZE69at3Q99165di9mzZ6N79+6a4+12O6ZNm4YlS5YAcA4datu2LY4cOYIvvvgCy5cvx4cffoiuXbt6fb33338fr7zyClJTU9GsWTOcPn3avS8zMxOTJ0/GqVOnYDAY0LhxY0iShD179mDXrl1YtWoV3n//fRiNRs01586di+effx4AkJaWhkaNGmHXrl2444478Nhjj1WoP9PS0tCzZ0/s3LkTVqsVnTt31rxeQkJC0NeaP38+nn32WdSvXx/NmzfHwYMHsWLFCmzfvh0LFizAokWL8MILLyA9PR1NmzbFwYMHsXLlSvzxxx/47rvvPIK9s2fPYvLkydi3bx90Oh0aNWqE2NhYHDp0CDNnzsSKFSvw8ccfIyUlJaj2/fHHH5g0aRKKi4thNpvRsmVL6HQ6nDp1Cj/88AMOHz7sETxW1XuxP655UjZt2gRJktCwYUM0atQIR44cwUcffYQVK1Zg7ty57ocNod4b1VCCiKrdxIkTRUZGhnjzzTcDHvviiy+KjIwMcdVVV2m2f/311yIjI0MMHjzY63kffvihyMjIEO3btxe5ublCCCEOHTok2rdvLzIyMsQ111wjlixZ4t4XyM033ywyMjJE9+7dxdtvvy0OHDggFEUJ6lx/MjIyREZGhs/9eXl54uuvvxY5OTma7YWFheKtt94SGRkZ4vbbb/c474knnhAZGRmiU6dOYuLEiSI7O9u9b926daJ79+4iIyNDfPLJJ5rzzp49K/r06SMyMjLE66+/LoqKitz79uzZI4YPHy4yMjLEp59+qjnvzTffFBkZGaJDhw7ihhtuEMePH3fvKy4uFkIIMWrUKJGRkSFee+01YbFYNOf/8ccfYuHChT77gYioOmzcuNHn3+XVq1eLrVu3evzt//PPP91/G3///XfNvmPHjomMjAzRsWNH0alTJ/Hdd9+59+Xn54sHH3zQ/V7m+lvp8tprr4mMjAxx9dVXi23btrm322w2MXPmTPd55f+eutrfqVMnMW/ePOFwOIQQQjgcDmGxWERRUZEYNmyYyMjIEP/4xz/EuXPn3OceP35cjB8/XmRkZIhXXnlFc909e/aIjh07ioyMDPHuu++6r2uxWMSzzz4rOnXq5Pd92ZfBgweLjIwMcezYMa/7XX3o7bque+3WrZtYsGCBe/u5c+fE9ddfLzIyMsTdd98tunbtqtmfm5srxo4dKzIyMsTLL7+suaaiKOKWW24RGRkZ4r777hOnTp3SnHfvvfeKjIwM8fDDDwd9j3fffbfIyMgQTzzxhCgoKNDsy8zM9HhPrcr3Yn/9+eijj4qMjAxx8803iwMHDri3FxUViX/84x8iIyNDjBs3rlL3RjUXxxgT1XCumaFzc3ODPmft2rXu0t3LLrvM/US3RYsWePjhhwEAu3fvxsMPP4xLL70UQ4cOxSOPPIIvv/wSeXl5Xq85Y8YMpKamoqioCG+88QZGjhyJ3r1747bbbsPMmTPds5iGW0JCAq677jqPp9mxsbG4//770atXL6xfvx5nz571er4kSXjttdeQlpbm3nbZZZfhgQceAAB88MEHmuz6rFmzcO7cOdxyyy2YOnUqzGaze1+7du3w2muvQZIkzJ492+vr6XQ6zJw5E40bN3Zvi4mJAeDM1APAnXfe6ZGF6Ny5M6655ppA3UFEFDGDBg1C9+7dPTJ0HTp0wD//+U8AwLfffuv1XLvdjptuukmTOYuPj8dLL72ElJQUnDhxAkuXLnXvy83NxezZsxEbG4v//e9/6Natm3ufXq/HAw88gCuvvBInTpzAihUrvL7muHHjMGHCBMiy8+OuLMswGo34+uuvcfjwYQwaNAjPPvuspnqqcePGeOONNxAbG4v58+fDYrG4982ePRt2ux2XX3457rrrLvd1jUYjpk+fjpYtWwbTjVXihhtuwLXXXuv+Pjk5GX/9618BAKtWrcKNN96o2Z+SkoKpU6cCcE7YqbZ69Wr8/vvv6NChA/7v//5Ps0JFSkoKXnnlFTRs2BDLli3DqVOngmqf6/3v9ttv9yjBbtWqFW666SbNtqp8L/Zl3759WLRoERo0aID//e9/mvJ+s9mMGTNmoHPnzti2bZu72i2Ue6Oai4ExUQ3nGgtcWFjodX9WVhZuvvlm3HzzzbjpppswYMAATJkyBfn5+WjYsCFmzJihOf6uu+7C/PnzccUVV7jLlY8dO4YlS5Zg+vTpGDx4ML744guP18nIyMDixYsxefJk95jevLw8bNy4EW+99RZGjx6Nhx9+GAUFBWG8+zK///47/vOf/+Cee+7BxIkT3ffsekPas2eP1/OGDRvmdXmR8ePHw2Aw4Pjx4zh06JB7+/fff+/e702HDh3QuHFjHD58GGfOnPHY369fP82HCDXX0lzLli3zfaNERDXY+fPnMX/+fDz++OO44447cMstt+Dmm2/GK6+8AsD332IAXidnjImJwQ033ADAOVmky88//wyLxYJ+/fppylbVhg4dCsA5k7Y3Y8eO9brd9Xd+3LhxXvc3aNAAXbp0QWFhIXbu3OnevnbtWgDAxIkTPc6RJAm33HKL1+tVB1cfqqnnBPG33zX/iIurf8aOHevxEBdwfi7p168fFEXBb7/9FlT7XO9/K1as8DrUq7yqfC8O9JrDhw/3usKGLMsYPHgwAO3PXEXvjWoujjEmquFcAbFrfHB5VqtV8+TSNRHK5Zdfjttvv93rOOKLL74YF198MaxWK3bu3Ik//vgDa9euxYYNG1BQUIB//OMfiI2NxahRozTnpaWlYdq0aZg2bRoOHz6MP/74A5s2bcLKlSuRk5ODpUuXIi8vDx9++GHY7t9ms+Hxxx8PGEy6Zt4ur1WrVl63x8fHo0GDBu7AuFWrVigqKsLx48cBODPk3sYtAcC5c+cAAKdPn/aY+MvX6wHAHXfcgRkzZmD69OmYNWsW+vfvj549e6JPnz5eJ/MgIqpJNmzYgIceesjn31vA999ig8HgsRKCS5s2bQBA85By7969AICdO3fi5ptv9npefn4+AGjGDqv5mtDLVeH03//+1+f7leuhqyvoysvLQ3Z2tqa9vu4jEpo1a+axTf2+4m2/q5LKNbmmi6t/vvzyS5/LGp08eRKA774v7/bbb8eGDRvw3//+F99++y369++PXr164dJLL/V4H63q92JfXPe9atUq/PHHH16PycnJcb9mKPdGNRsDY6IazlWm5Ctw8jWrYjCMRiN69uyJnj174rbbbsOePXswZcoUZGVlYebMmR6BsVqLFi3QokULjB49GkVFRfj73/+OpUuXYt26ddiyZYvHZFqh+uCDD7Bs2TKkp6fjsccew8UXX4z69eu7s93Tpk3Dt99+C7vd7vV8dQl1eenp6Th+/Lj74YPrQxbgnD06kJKSEo9t/mb7vvnmm5GQkIBZs2Zh165dOHjwID7++GPo9XpcccUVeOqppyr8hJuIqDoUFBS4g+LRo0djwoQJaNWqFeLj46HT6XDs2DEMHTrU59/i5ORkd+lxea6/0+rKKHXQGyj4Upc7q/n6e+y69q5du/xeFyj7O68OHn29r/h7v6lq3u5VHVAG2q/m6p/9+/cHfF1ffV/eoEGD8MEHH+B///sftmzZgs8//xyff/45JElC37598dRTT7kn9qzq92JfXK979OhRHD161O+x6vuuyL1RzcbAmKiG27x5MwBoxldVlfbt2+Pee+/Fs88+i8OHD+PChQtey4nKi42NxXPPPYfly5dDURTs2LEjbIGxa7zav//9b68zNl+4cMHv+f7GZrue/rvGBKnfSLdv3x5wPFIoRo0ahVGjRiE3Nxe//fYbNm3ahCVLlmDFihU4fPgwvvrqK6+la0REkbRmzRqcP38e3bt39zoTsL8ssmu/oiheg2NXFk49PtP19/jOO++s8GzPgcTGxiIvLw9Lly71u0xU+XNccnJy3OWzaq77iHaue33//fcxcODAsF23f//+6N+/P/Lz87F582b3+9/69etxxx13YMmSJUhKSqqW92JvXK87Y8YMn1UKvgR7b1SzcYwxUQ22a9cudznP5ZdfXi2vqR7LZbPZgj4vPj7endW2Wq1ha4+rnKpXr14e+xwOh2b8lzeZmZletxcUFLhL5FxLPSUkJLjLnoJ5Ul4ZqampuOqqq/DPf/4TixYtQkJCAvbu3YsdO3ZU6esSEYXC9be4R48eXjONgf522Ww2n1k4199p9bJ7rgxbVfwtdpU8V+TaiYmJSE9PB+Bcs9YbX+830SaU/qmIhIQEXH755XjiiSewbNkyNG3aFFlZWVi1apV7f3W9F6uF474D3RvVbAyMiWqo8+fP429/+xsAoGXLlhg2bFilr5mbmxtwYghX2VJiYqI70LXb7QEzs0eOHHE/La/IzJyuJ8HeSqHU+13ZXbXFixd73a72/fffez3miy++gM1mQ+PGjTVjkVz9/NFHHwXV/nCoX78+mjRpAgA+Z9cmIook9dry5dlsNsyfPz/gNT755BOPbRaLBV999RUAYMCAAe7tl19+OYxGI9atW+czEA3VVVddBQD4+OOPoShK0Of1798fAHzeazB94I3rfS7YsuSq5uqfzz//HMXFxVX6WnFxcWjXrh0A7ftfJN6LXfe9aNGisGT/fd0b1VwMjIlqmIKCAixcuBDXXXcd9u3bh9jYWLzxxhs+x2ZVxHfffYcxY8bgs88+8ygxLi4uxpw5c/D+++8DcM5G6XrNoqIiDBkyBP/5z3+wZ88ej+D6119/xQMPPAAhBBo0aOD+8BAMV4b6119/9br/4osvBgC8+OKLmhmvV65ciRkzZrg/rPkihMCjjz6qud8NGzbgrbfeAgBMnjxZk/246667kJqaisWLF+OZZ55xT+7hUlBQgKVLl+KFF14I+h5d5z300EPYsGEDHA6Hpn1Lly7Fvn37IEkSOnbsWKHrEhFVB9ff4hUrVrhnZwacD3Effvhhd0bZF71ej08++QRLlixxbyssLMQTTzyB3NxcNG7cGCNHjnTvq1evHv7yl7/AbrdjypQpmhmrXfbu3YuXX37ZPeQoWOPHj0eLFi2wefNmPPTQQx5LDlmtVqxevRpPPvmkZvsdd9wBvV6PVatW4cMPP3QH1VarFf/61780k4dVRKD3weo2dOhQ9OrVC0eOHMGdd97pkQm32+3YuHEjHn300aArxB566CH89NNPHsdv3LgR69evB+BcttClqt6L/enYsSNGjx6NvLw83H777R5VEEIIbN++HU8//bRmJu+K3hvVXBxjTBRBX3/9tfuPpisre+zYMfebbefOnfHSSy8FPQYqEEmSsG/fPjz99NN4+umn0bhxY6SmpqKgoACnTp1yZ2379+/vXu/YdV5BQQFmzZqFWbNmITExEY0bN4Ysyzh16pQ76ExOTsabb76pWW8wkBEjRmD//v2455570K5dO/fs26+99hrq1auHv/71r1i/fj1WrVqFAQMGoGXLlsjNzcWpU6dw6aWXon79+vjuu+98Xn/y5Mn49NNPMWjQILRt2xYFBQU4cuQIAOcT6fLjiOrXr493330X9913Hz755BN8/vnnaNWqFWJjY3HhwgUcPXoUiqJUeMy3oihYtmwZli1bhpiYGDRv3hxGoxGnT592Z2DuueceTSkhEVFN0blzZ4wcORJLly7FlClT0LRpUyQmJmL//v0QQmD69Ol4+umnfZ7foEEDDB48GI888ghefvllpKWl4eDBgygqKoLZbMbLL7/sMZZ06tSpyMnJwZdffonJkycjNTUVTZo0gd1ux4kTJ9yVTH369KnQvZjNZrz33nu46667sGLFCnz//fdo3rw5kpOTkZ+fj6NHj8Jms7lLp13at2+Pxx9/HC+88AJeeuklzJo1C40aNcLRo0eRn5+Pxx57DC+99FKF2gI43wdXr16NGTNm4JNPPnGvJvHUU0+hQ4cOFb5eZUmShJkzZ+Lee+/Fb7/9hpEjR6JJkyZIT09HUVERjhw54s5u//vf/w7qmuvWrcOyZctgMBjQokULmM1mZGVluR9KjB49Gv369XMfX1XvxYE899xzyM/Px+rVq3HjjTeiQYMGaNiwISwWC44ePeqehO3WW28N+d6o5mJgTBRBp06dcv/hjImJQUJCArp164bOnTtj2LBh6N27d1hf75ZbbkH79u2xbt06bN68GadPn3YvT5Ceno6OHTti1KhRuOqqqzRZ1ISEBKxYsQLr1q3DL7/8giNHjuDEiRMoKipCfHw8evbsiYEDB+Kmm25CSkpKhdp01113QVEULFmyBAcOHHA/cXW96Xbs2BGffPIJ3njjDWzevBmZmZlo2rQpHn74YUyePBn/+Mc//F6/efPm+Oqrr/DGG29gw4YNyM/PR5s2bXDjjTdi0qRJXjPxXbt2xeLFizFv3jysXLkShw8fhs1mQ/369dGnTx8MGjSowqXtcXFxePnll7F+/Xrs2LEDp0+fRmFhIZKTkzF48GDcdNNN1TaOnIgoFK4HtQsXLsTp06dRVFSEgQMH4p577gnqb/8//vEPtG7dGp9//jkOHDgAk8mEYcOGYerUqV6XOpJlGc8//zxGjhyJzz77DFu3bsXu3bsRFxeHRo0aYdiwYbjyyivRt2/fCt9L8+bNsXDhQnz++edYvnw5MjMzceLECdSrVw/dunVDv379MHz4cI/zbr/9djRv3hzvv/8+du/ejcOHD6Nz586455570KRJk5AC42uvvRZ5eXn46quvcOTIEff7cl5eXoWvFS5paWmYP38+Fi5ciCVLlmD37t04c+YMUlJS0KFDB/Tu3RvDhg0LWLXl8uKLL2Lt2rXYunUrzp49i/z8fMTHx6Nv374YO3YsxowZ43FOVbwXB2I2m/HOO+9gxYoVWLBgAf744w/8+eefSEpKQsuWLdGzZ09cddVVmiFjodwb1UyS4ErURFQL/e1vf8OCBQvwwgsv4Lrrrot0c4iI6qTjx4/jiiuuqNTSgkRE1YFjjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbJt4iIiIiIiKhOY8aYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BMREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1Wn6SDegNlEUAYdDCcu19HoZdnt4rlVbsY+Cw34KjH0UHPZTYNXVRzqdDFmWqvx1qlq43jf5sxkc9lNg7KPgsJ8CYx8Fpya9bzIwDiOHQ8H580WVvo4sS0hLi0deXjEURYShZbUP+yg47KfA2EfBYT8FVp19lJwcC1nWVelrVIdwvG/yZzM47KfA2EfBYT8Fxj4KTk1732QpNREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1WkMjImIiIiIKHyEiHQLiCqMgTEREREREYWF7sgJJLz4DvT7DkW6KUQVwsCYiIiIiIjCwvTjLwCAmMUrI9wSoophYExERERERCGTCosQs/AHyKezysqoJSmyjSKqIH2kG0BERERERNHLuGYTDLsPQL/vEJSUxEg3hygkzBgTEREREVHIpBKL81+HAyhNGAtmjCnKMDAmIiIiIqLQqYNgVym1zMCYogsDYyIiIiIiqoSyIFhyL9XEwJiiCwNjIiIiCsnTTz+Ndu3aYd68eZFuChFFkreMMUupKcpE1eRb8+fPx4cffoisrCx06NAB06dPR9euXX0ev2zZMrzxxhs4ceIEWrRogccffxwDBw7UHHPgwAG8/PLL+O233wAAGRkZ+O9//4vU1NQqvReiOkMISOfyoDt1BrozOZDO50E+nwepuASS1QrYHIBOhtDpAJMRSmI8RGI8lPRUOBqkQWlYDyLWHOm7IKJyVq1ahW3btqF+/fqRbgpRzVZUAt2ps3C0alp7g0XNbQkv24hqvqgJjJcuXYoXXngBzzzzDLp164Y5c+ZgypQpWL58udcgduvWrXj00UfxyCOPYPDgwVi8eDHuu+8+fPvtt2jdujUA4OjRo5gwYQJuuOEGPPzwwzCbzdi3bx8MBkN13x5R7VJigf7QMegPHIHu4FHIRSVeDxNGA4TJCElRINnskIpLIJ/P8zjO0SAdjhZNYMtoCaVxg9r7wYIoSmRnZ2PGjBl47733cO+990a6OUQ1WtycryGfz0PRjSPhaNM80s2pIuqMsWsT36spukRNYDx79myMHz8e119/PQDgmWeewerVq7FgwQJMnjzZ4/g5c+Zg4MCBmDJlCgBg6tSp+OWXXzB//nz885//BAD83//9HwYOHIjHH3/cfV7z5rX1DxZRFRMCusPHYdi+B/p9ByE5FOdmWYbjogZwXFQfjob1oKQmQSQnOrPA5d80bXZI+YWQL+RDzsqB7nQ2dCdOQXcmG7oz2TBu2gYlKQG2jm1g69oBIjUpAjdKRE8++SQmTZqEdu3aVfpaciUn6HGdX9nr1Hbsp8Cqqo9cD3z1Z7MhMlqE9dqR4K2fJNl7KXVd/Xnj71twalo/RUVgbLVasWvXLs1TaVmW0a9fP2zbts3rOdu2bfMImPv374/Vq1cDABRFwerVqzFlyhTccccd2LNnD5o3b477778fAwYMCLmt4fgPW9N+SGoi9lFwqqWfbDbot++BYdN295u/MBlh69QSjrYt4GjZFDAZNadI8FFhZTIApmSI9GQ4WjeFw3X8uQvQHTgK/e4D0B07BdOGrTBu2ApH2xaw9e4KpXnjkJ9M82cpOOynwOpKH82bNw9FRUX4y1/+Uulr6fUy0tLiw9AqICUlLizXqe3YT4GFu49cNVOxsUbow/TzXhOo+8kaY4BS+rXrb6BOrwvb73e04u9bcGpKP0VFYHzu3Dk4HA6kp6drtqelpeHIkSNez8nOzkZaWprH8VlZWQCAnJwcFBUV4YMPPsBDDz2EadOm4aeffsLdd9+Nr776Ch07dqxwO8P5Bg/UnB+Smox9FJyq6CdhtcHx82bYf/4dKCgCAMitm0J3aVfIXTIgGcM4JCEtHmjTGBjeFyL3Ahybd8H+y1bo9x+Gfv9hSM0vgn7EAOgyQq/44M9ScNhPgdXmPsrMzMR///tffPHFF5Dlys/fabcryMsrrtQ1ZFlCSkoczp0rhKKIwCfUUeynwKqqj1x/EYoKrbDlFITtupHirZ+MVgdc7/qKXYEMwKEoyKkF9xsK/r4Fpzr7KTHRDINB5/eYqAiMfRFCQPKTJfK2z7VNUZzPta644grcdtttAIAOHTrg119/xeeff45nnnmmwu0Jxxs8wF+mYLCPglMl/aQo0O/YC8OaXyEXFEJIEhwd28DWtweUhvWcx+RbAFjC83oedEDPrkC3TtDtzoRhw1bojpyE7Z3PUdK8MaxD+5W1Iwj8WQoO+ymwmvYGXxW2b9+O3NxcDBs2zL3N4XDgX//6F+bNm4fly5dX+Jrh6itFEfzZDAL7KbCq6iMhorTvFQXw8iBM3U+au1It1xSV9xtG/H0LTk3pp6gIjFNSUqDT6ZCdna3Znpub65FFdklPT/c4Picnx318SkoK9Ho9WrVqpTmmdevWOHHiRMhtDed/1JryQ1KTsY+CE65+kk+eQcyyNdCdzQEA2Dq0hmVgb4jU5NIXqsb/FpIMpWNb2Dq0gX53Jkxrf4XuyAnEzPoKtp6dYBnYG4gxBX05/iwFh/0UWG3uo6FDh6Jz586abZMnT8Z1112HsWPHRqhVRBROusPHYfxlM0quuRKGzX/AtH4LCu6+xf+8HupcVGlgLDj5FkWZqAiMjUYjOnXqhPXr12PIkCEAnBnfDRs2uLO95XXv3h2//PILJk2a5N62fv16dO/eXXPN8qXYhw8fRrNmzarmRoiilcUK05pfYdj8ByQAjsYNUXJFP+cM0ZEmSbB3bAN7+1YwbPsTpjWbYNy8E/rdmbAM7Qd7x7acGZMoTBITE5GYmKjZZjAYUK9ePbRo0SIyjSKisIr9dBEAwLjuNxi3/gkAMOw+AOtlvXyfxHWMqRaIisAYAO644w5MmzYNnTp1QteuXTFnzhyUlJS4n1BPmzYNDRo0wKOPPgoAuPXWWzFx4kTMmjULgwYNwtKlS7Fz507861//cl/zL3/5Cx577DFccskluOSSS/DTTz9h06ZNmlmqieo63eHjiFm8EnJ+IUSMESVD+sHWtX3Ne8OTZdh6doa9fWuYVm2EYccemL/7Cba9h2AZPpBrIRMREVWEQyn7OtCcAqrPBJI7MK6CNhFVoagJjEeOHInc3Fy8+eabyMrKQocOHfDBBx+41zA+deqUZiKQnj174tVXX8Xrr7+O1157DS1atMDbb7/tXsMYAIYPH468vDy88847eO6559C6dWu88847IU28RVTrOBzOLPGmbZAA2Dq0geXKyyDiYiPdMr9ErBklVw+GrUs7xCxeCcPeg9AdO4WSkZfD0bZFpJtHVOusXLky0k0goqqgTgLrAk22p6mlLt3EyJiiS9QExgAwceJETJw40eu+uXPnemwbMWIERowY4fea48aNw7hx48LSPqLaQso5B/N3P0J3OhvCZETx8EGwd2wT6WZViKPZRSicPA6mn9bDuH03Yr9aBmvvbrBc3gfQVf+kRUREVMcJAf2OPTDs2IPi8aMAQw3/GK4ObCuQMXbPxMXAmKJMDf+NJKLqpt97EDGLV0Ky2mBv0hAlY4ZCJCVEulmhMRlhGXk57G1bwLx4JYy/bofuxBkUX3slRGLdXluRiIiqn3nJKgCAft8h2Du1jXBrAqlIYKz6mmOMKUpVfhFCIqodFAXGNZtg/mYFJKsNlst6oXjCNdEbFKs42rZA4V9uhKNRfehOnEbsrC+hO3Q80s0iIqK6SkTZzPWBSqk5+RbVAgyMiQgotsD85VKY1m+BMBlRdMMIWAf2DvyEOIqIpAQUTbwW1l6dIReXwPz5Yhg274x0s4iIqC6KhphRHeuGUkpNFGVYSk1Ux0nn8mD+Ygl0uefhSE9B8XXDIdKSI92sqqHXwTJsAByN6iNm2WrEfL8WttzzEOOvinTLiIiottNkiSMbGet37oNkt8PW3d+EsxUopfZxGlE0YWBMVIfJJ8/A/OUyyEXFsLdpjuIxQwGTMdLNqnL2Lu1QnJKImK+Xw/D7H7Dl5wOjrgCMtf/eiYiIzIt+AgD/gbE6wK1IxtiNqWOKLrWnTpKIKkS/7xBi538HuagY1p6dUXz98DoRFLs4mjRC0W3XQ6mXCmXvYcTMXQipoDDSzSIiorogGrKqFRkjrD7W9TXjYooyDIyJ6iDD5p2I+Xo5YLej5Ip+sAzrX6vGEwdLJCei+LbrILdtBt3ZHMTOXQAp90Kkm0VERLVeVETGZV8Kxe+RwltgTBRl6t4nYaK6TAgY129GzPdrAZ0OJWOHwda7W91+EzMZYbjzBtg7tIZ8Ph+xc7+BfCor0q0iIiKqev5mx/a2BFMwxwZ7DlENw8CYqK4QAsbVG2Fa8yuE0YDi8VfD3r51pFtVI0h6PSzXXglrz86Qi0oQ+8m30B05EelmERFRbaIOFCP5PFpRvH9dXkVmmtZkjF3nMDCm6MLAmKguUBSYVvwM08ZtEDEmFN08Go7mjSPdqppFlmEZ1h+Wgb0hWW3OmboPHot0q4iIqLaoKbNSq4PhYINXfwE0AO391OEqNIpqDIyJajnhcMD03U8wbv0TSpwZRROugXJRg0g3q2aSJFgv64WSoZdBsjtg/mopdAeORLpVRERUC0jq4DKSsaNDnTH2V0odWiPd442ZMaYow8CYqDZzOGCbtxj6XfuhJCWgaOJYKPXTIt2qGs92SVeUXDUAkkOB+evl0O89GOkmERFRtFMHoRWIGfV7D8Lw6/awNUNyOFTtCK4hUsDjGART9GNgTFRbKQpM3/4IZfteKMmJKJp4LURqUqRbFTVsPTujZOTlgKIgZsH30P95INJNIiKiaKYpYQ5UmlzG/M0KxPy0HrBYw9OOYDPG6mA4UGCsGT/NjDFFJwbGRLWRoiDmu5+g350JKS0ZJZOugUiMj3Sroo6tWweUjBoCAIj57kcGx0REFDp1EOovIPVBk+mtDNV1pGAD9Iq01z35VvCnENUEDIyJahtFQcyin2DYfQBKciKM990EkZgQ6VZFLXuXdigZcwWA0uCYZdVERBSKUCa9UnM4YPhtB6TzeZVrhyOEdlQkY1waGUuMjCnKMDAmqk0UBTGLVsLw5wEoSQkomXgNpJTESLcq6tk7tnVmjoVAzMIfOCEXERFVnDp4DDjLsyfD9j2I+fEXxM36slLNkBRV5tlfJrgCgbykiYtdpdQVbxtRJDEwJqothEDMklUw/LkfSmI8im4ZA5HETHG42DtnwDLyckiKAvM3K6A7xKWciIgoeJoFjULIGMvnLjjP9TXW2OFAzOKV0GUe9X8he5ABbxCBsVRQBCm/wPsazRW9x3CVihOFiIExUW0gBEzfr4Vh5z5nUDzhGohkZorDzdatA0qGDYDkcMD81XLojp6MdJOIiKgm8zWBVQhjjAMtn6TfewiGP/Yi9osl/q+jDkD9Za6DCIzjZ85B/FtzfewP/h4NG7ci4aX3IB8/HfQ5ROHGwJioFjD+/CuMW3ZBiTWj6ObRDIqrkK1XZ5Rc0Q+S3Q7zF0v4Jk5ERMGpZCm1CLSusN0e1HWkIEukJSXArNQh3IMvMas2AgCMm3eG7ZpEFcXAmCjKGTZtg2n9FgiTEcU3jYJITY50k2o9W+9usFzeB5LNjtgvlkA+nRXpJhERUU3kK2McyuRbcoDAOFDg7OIIcoxxoEm6ii3+94ciyFsgqgpRFRjPnz8fQ4YMQZcuXTBu3Djs2LHD7/HLli3D8OHD0aVLF4wePRo///yzz2PvvPNOtGvXDqtWrQp3s4mqjGHbn4hZuQHCoEfRuKuhNEiPdJPqDGvfnrBc1guSxQrz54sh5ZyLdJOIiKim8ZUlDiWQDBT4BhsYq4Jhv2OdVe2VvBwmFRaVfcOJtqgWiJrAeOnSpXjhhRdw//33Y8GCBWjXrh2mTJmC3Nxcr8dv3boVjz76KG644QYsXLgQQ4cOxX333YfMzEyPY+fNmwfBRcgpyuh3H4Bp2RoIWUbxdcOhNGkY6SbVOdYBl8B6cRfIRSWI/WwxpAv5kW4SERHVJOqPl6oMrBRSGXKYAmN1o/ytY6wJ5BXoDh6DfDan7OWKilX71ZNvMe1L0SlqAuPZs2dj/PjxuP7669GmTRs888wzMJlMWLBggdfj58yZg4EDB2LKlClo3bo1pk6dio4dO2L+/Pma4w4cOID33nsP//73v6vjNojCQpd5BDHf/QRIEkquGQpHq6aRblLdJEmwDL0Mts4ZkPMKEPvZIu0TdCIiqttUAaOkLk0OZfKtQAKVWruoX9pPO9TBu1RsQeznixH34Rdl2+yqkmxvCaaQbpFBNUWOPtINCIbVasWuXbtw7733urfJsox+/fph27ZtXs/Ztm0bJk+erNnWv39/rF69WnPdRx99FE8++STq168flrbKwf5RCuIa4bhWbVWX+0g+ehIx33wPSVFguXowlI5tfD7hqsv9FKzK95EE6+ghkKw26PcdgvnzJSiZeA0QYwpfI2sA/iwFxj4iIhfdgSMwrf0NxddcWbaxsqXUgZYzCjZTG+xYZ3V7rbbQr0MUJaIiMD537hwcDgfS07XjJ9PS0nDkyBGv52RnZyMtLc3j+Kysskly/u///g9t27bFiBEjwtJOvV5GWlp8WK4FACkpcWG7Vm1V1/pIOX4a1i+XAnY79NcMQcygi4M6r671Uygq20di8ljYPvgK2H8U8QtWwHjXjZCMhjC1rubgz1Jg7CMiiv1yKQDAtGFL2UZ12XIIpdSaDK3XA4ILjKVgl41St9HbpTWZZy9BP4NlijJRERj7IoSA5OePgLd9rm0bN27E8uXL8e2334atPXa7gry84sAHBiDLElJS4nDuXCGUqii1qQXqYh9JOedg/nghpBIrrP0vRmHn9kBOgd9z6mI/VVRY++iaYYiZ/x10B4+j8P2vYblxBKDThaehEcafpcCqs48SE80wGGrHzxZRbSbUH0WVIANSXxwBlmMKEIhKeQWQrNZy5/gbYxygjaKyY6a9kJzt1B0+DnuXdhyvTNUqKgLjlJQU6HQ6ZGdna7bn5uZ6ZJFd0tPTPY7PyclxH//bb7/h1KlTuPTSSzXH3HfffejXrx8+/PDDkNoazg9DiiL4ATSAutJH0oV8mD9ZBKmoGNaLu8DS/+IKvanWlX6qjLD0kcGAonFXI3b+Qugzj0J8+xNKxlwByFEznUNA/FkKjH1ERG6y6gGWpvS4CjLGAf7uxL89FwBQPGZo2TX9rWOsHhPt8NJeX5nnSmaMYz/+BnJ+IYolyRkcE1WTqPi0ZjQa0alTJ6xfv969TVEUbNiwAd27d/d6Tvfu3fHLL79otq1fv959/C233ILvvvsOCxcudP8PAKZPn45nnnmmKm6DKCRSYRFiP10EOa8Ati7tYBl6GZ+g1mSxMSi+aRSUpAQYdh+A6fu1LCcjIqqr9GWBsaReJinYh2fq949AY4yDzNpqssb+2hEoIyy8H+veHuJbn5xfCADQZeUEOJIovKIiYwwAd9xxB6ZNm4ZOnTqha9eumDNnDkpKSjB27FgAwLRp09CgQQM8+uijAIBbb70VEydOxKxZszBo0CAsXboUO3fuxL/+9S8AzvHG5ccgA8BFF12EJk2aVN+NEflTYoH5s8WQz12ALaMlSkZezqA4CoiEeBTdNBqx8xbAuPVPiBgTrJdfGvhEIiKqVYR6OI0IYfIt9XGqjLEu8yj0+w7BctUASIVFEDExwV/T32zSvrLAXgNjX6XhlcgYqz/jeMtSE1WhqAmMR44cidzcXLz55pvIyspChw4d8MEHHyA1NRUAcOrUKciqcsWePXvi1Vdfxeuvv47XXnsNLVq0wNtvv43WrVtH6haIKsZqQ+wXS6E7mwN7i8YouWZorSrJre1EahKKbxqN2PkLYdqwFYgxwXppj0g3i4iIqpNO9b7trdw4EHWWWRXQxn6xxLn7ovowLf8ZwmyCdVAf7fV9PEiX7KqxyuUzxr5mmvaWWRY+AmdRyZSxt2sSVYOoCYwBYOLEiZg4caLXfXPnzvXYNmLEiArNOL13796Q20YUVnYHzN+sgO7EaTguqo/i60cA+qj6dSUASv0055jjTxfBtGojhMkEW4+OkW4WERFVF/UD7VCWN1Jnmb2UUstncyApCqTCYkh5qgk5FcX35I82VWBcfqyzz8DYf8ZYUxouPPeHhIExVTOmn4hqGkVBzHc/Qn/oGBz1UlE07mqgFi77U1cojRui+PoREDoZpuVroP9zf6SbRERE1cXX2sXBxoy+lkQqJRVbyr5WB7x+JurSHOd3jLE68A2wHFOgMcghkFhKTdWMgTFRTSIEYpatgWHvQSjJiSi+aTRgjol0q6iSHC2boOSaKwFJQsyildAd8L7+OhER1TIOX2sXB1tKrZ4Ay/McqaRE9Vp+xg6r2Wy+j/NVPu3wDIw1M1qrJ+rytj8UzBhTNWNgTFRTCAHTT+th2LEHSkIcim4eDREfG+lWUZjY27VCycjLISkKzAtWQHf0ZKSbRFRh7777Lq6//nr06NEDffv2xQMPPIDDhw9HullENZbXTGv5r/0JkJWVitWBsZeZob21SZUx9ghe1VlizWRhXpZuCrRcU2UxMKZqxsCYqIYw/rIZxt92QDHHoPim0RDJiZFuEoWZvWt7lAy9DJLdAfOXSyGfyop0k4gq5Ndff8WECRPwxRdfYPbs2bBarfjLX/6CEnXWiojKqLK4UgjBoxSoXNmiyv6qX8vfOsmaUuryY4xVXys+Al/FW2DsJTMuBOSTZxH70deQs3N9t0dN8RKAE1UTBsZENYDhtx0wrf0NwmhA8fhRUNJTIt0kqiK2S7rCMuASSFYbzJ8vDv7DAlEN8OGHH+K6665D27Zt0b59e7z44os4ceIE/vzzz0g3jahm8jfG2O4IHCAHCoxVkazkpdzZGynYUmrh49rujLHqmt4m3wJg/mopdKfOImbJap/t0dCUjjMwpurFaW6JIky/Yw9ifvwFQq9D8Y0joTSqF+kmURWzXtYLUokFxt92wPzpYhRNupYVAhSV8vPzAQBJSUkhX0OWK7c2u+v8yl6ntmM/BVYVfeQrWJUtFiS8/B7sbVvAMm6k7/PVX3sbY6wJTssyxrIkQfi4D/WyT5JU7n7Vp/gIymUopYf6yICLsoyx5MpoCyWoftUEw4qI2p9X/r4Fp6b1EwNjogjS7z2ImKWrIWQZxWOvgqPZRZFuElUHSYLlin6AxQrjjj2I/XSRMziOj4t0y4iCJoTACy+8gN69e6N169YhXUOvl5GWFh+W9qSk8PcnGOynwCrbR0IRcM0VbdK7wkhA/dnfkJ0LAUC//zDi/fwOCFlxX8tbebROLkvQGnWS+7VSks2QkrTXdQ140AvFfU5CnAk61euLIr379dTt1ateJzneOSlorNkIu5f97sm3AHdArTca/P6uu9pmVPWX0aT32zfRgL9vwakp/cTAmChCdIeOIebbHwAhUDJmKBxtmke6SVSdJAmWEYMgWa0w7DkI82eLUTThGs5CTlHj2Wefxb59+/Dpp5+GfA27XUFeXnGl2iHLElJS4nDuXCEUf0vP1HHsp8DC1kcOB1wf863FFveHbcXucI9hdIiy8Yw5OQXwRbpQCNc0nMKhoHxezWFX3NexFlvdr3UutwDCrjpaCHeb7FY7XCsc5+eXwKF+/eIS93GK6toOm9399YVzBUhOSURRoQVG135r2X6hCEhwPjxzZYDtikCBn/t095fF7r4Hq82BfD/n1GT8fQtOdfZTYqIZBoOPtb1LMTAmigDdsVMwf70ckkNByYhBsHdsE+kmUSTIMkpGD4VkWQb9oWOI/WIJim4ew3WrqcZ77rnnsHLlSsybNw8NGjSo1LXC9WFIUQQ/gAaB/RRYpfvIUXaucGhLg93bpbKg1d9rSXZfyz25r1T2papEWnEICM1yS6qlnFTXEQ5F8/ra0m/VcapjlNLXEYr3/e47U5VXC1nyuE+pqBj63ZmwdWmnapu2j6L9Z5W/b8GpKf3EybeIqpl84jTMXyyBZLOjZEhf2Lp3jHSTKJL0OhRfdxXsTRpCd/IszF8t084YSlSDCCHw7LPP4vvvv8ecOXPQtGnTSDeJqOZRr+nra21hKcgxlcJ7YF22X/W1v3WMfS0V5W+5JnWw6222aOFjv7e2yZ6ZupjvfkLM92thWr3Re3uC7SOiMGFgTFSN5FNnEfv5EkhWGywDe8PWp3ukm0Q1gdGA4htHwtEgHfojJ2D+ejlgZ3BMNc8zzzyD7777Dq+++iri4uKQlZWFrKwsLtdEpKbJ1KqCZBEo++tJvVyTx5rDgO+Zo8sH0b6CXI/reb+21/N9Hettm+wZcuiOnXT+e+KM93PCtR4yUZAYGBNVE/lMNmI/WwzJYoXlsl6wXtYr0k2imiTGhOKbRsFRLxX6Q8cYHFON9OmnnyI/Px+TJk1C//793f9bunRppJtGVHP4XN/XRxAb7LUC7RfeZ8D22w6P6/sITL0tO1WBQF/ovIQcrmBZc26ABwFEVYhjjImqgZyVA/OniyCVWGC5tAesAy6JdJOoBhKxZhTfMgbm+d9Cf/AYzN98j+LrrgL0/ieLIKoue/fujXQTiGo+n2N2fYz5DfJaXmlKqVXZaQjNrlBKqTWvrXieo14qynuZtzpj7KUs2ltg7Ov1iaoBM8ZEVUzOOQfzJ4sgF5fAeklXWC/vw3Ez5JMrOHakpUCfeQTmBSuC/wBFREQRpymZ1kx65b3E2m+2tSIZYy/Bq7tNio/X85Mw9pURlgqKYV/1K1Bi8brfVxs8dpdmkbUPD4I/nyjcGBgTVSFnUPwd5KJiWHt2dq5dy6CYAhBxsc7gODUZ+gNHELPwBwbHREQ1jHwmGzFLVmkDREAb3PnMhqq2+5twsQKBseSjXNrztSueMVZf2/T1ctgXrYZx/Rbvr+3apv7GW/Y3UMbYy7rNRFWJgTFRFZGzcmCe9y3kgiJYu3eEZVh/BsUUNBHvDI6VlCQY9h1CzLc/MjgmIqpBzAu+h2HHHsT8+It2h6+xtz6CWMnffBIBS6kDjAP2dh1/Y5GDKLn2PgO1/3Z6PccVGNt9zKbNUmqqZgyMiaqAfDoL5vmuTHEnWIYPZFBMFSYS4lA0YQyU5EQY9h5EzILvOSEXEZE3QsC04mfEfL28+kpwSzPFumOntNt9jDGWfI0xtvt56Bkga+q7RFrVhsIibSm034yx6trq7YFm0Q6039t/E9lVSl12/5KvwJyoGjAwJgoz+eRZxH76nXtMsWXYAAbFFDKREI+iCdfAkZoMw/7DMH+5DLDZIt0sIqIaRc45B+OWXTDsOwRYrNXymiI5EQAg5RWU2+Eji6vma1KucgLOzBwgMDZs+xPxb86B8dcdfo8L2JZA2dsQ9rtnqva1/jIDY6pmDIyJwkg+fhqxny2CVGKFpW8PjimmsBCJ8SieeI1zKafDx2H+fEm1ffAjIooK1rIHhn7X6Q0nVymwv7JlH22Rgi0ZrlBg7BlUGjduc/67+Q/v1/S3XJOv16lsO11c/edj/WXJV78wYKYqElWB8fz58zFkyBB06dIF48aNw44dO/wev2zZMgwfPhxdunTB6NGj8fPPP7v32Ww2vPzyyxg9ejS6d++OAQMG4Mknn0RWVlZV3wbVUrrDx51BscUKS/+LYR3E2acpfERcrDNz3Kg+9MdOIfbTRUBxSaSbRURUMwQRjIab8PUWL3wEqz4v5OeYQOerS7W9ZYK99UUIs2AHylwHfBjhbY4M93rIQY6TBmD4/Q/EvfkR5FNnod+xB+ZPvuUQIwqbqAmMly5dihdeeAH3338/FixYgHbt2mHKlCnIzc31evzWrVvx6KOP4oYbbsDChQsxdOhQ3HfffcjMzAQAlJSU4M8//8S9996Lb775BjNnzsSBAwdw//33V+dtUS2h350J8xdLINnssAzq41ynmEExhZs5BkU3j4a9SUPoTp1F7PxvIRUURbpVREQRpwnMHNWUMfZBs75vEDMr+w06AwWk6m+8LcPkNTD2s6xTFSVjJW//TVyvrf68pLkHz3OMG7ZCLipBzNLVMC9ZBf2Rk9DvORjm1lJdFTWB8ezZszF+/Hhcf/31aNOmDZ555hmYTCYsWLDA6/Fz5szBwIEDMWXKFLRu3RpTp05Fx44dMX/+fABAQkICZs+ejZEjR6JVq1bo3r07/vGPf2D79u04c+ZMdd4aRTnDlp2IWfg9oAiUDB8Ea7+ekW4S1WYmI4rHj4K9RRPosnIRO/cbSDnnI90qIqLI8jXWNhKEOosbRKRptUJ3+Lj3ILgiZcPqCbZcbfC2jFIopdSV5e0BgZe+8bvkFAAopZln9YRdzBhTmOgj3YBgWK1W7Nq1C/fee697myzL6NevH7Zt2+b1nG3btmHy5Mmabf3798fq1at9vk5BQQF0Oh0SEhJCbqssVz5L6LpGOK5VW9WIPhIChrW/w7j2NwidDMu1V8LRvnWNetpUI/qphovKPooxwjL+auC7H6HfnYm4eQtQMu5qKI0bVNlLRmU/VTP2EVH1k89kQ87KhYg1u7dJilJV4Z13ruDSZnNmqytY1m3+7ifI5y6gZPgg2Hp0BOAcnmVa8yvsbZoH3w6HZ8bYa6ZWxSNDXFXjd720wx2gq/9k+psx25dIPwihWiMqAuNz587B4XAgPT1dsz0tLQ1Hjhzxek52djbS0tI8jvc1hthiseCVV17BmDFjEBsbG1I79XoZaWnxIZ3rTUpKXNiuVVtFqo+EosC+4Cc4ftkKmIww/mUszG0r8OZVzfizFFg09pGYfB3s366EY+1mmD/5DoZbx0DXsXWVvmY09lN1Yx8RVZ+4WV8CAEqGDSjb6FBgXLMJUlExLCMuD+vrSefyINlsUOqneeyLn/kxJIsVhXfcULYxiOBOPncBAKDfk+kOjGM/XeTcWYFVCDSP5PyNMfZ2nPv7oF+uYrxlf731TaCMsesu1bt8BP+6oydh2PonSkYMAoyGoJtKdVdUBMa+CCEg+RnH6W2ft202mw0PP/wwAGD69Okht8duV5CXVxzy+S6yLCElJQ7nzhVC4eLmXkW0jyxWmBb+AP2BIxBxZpTcNAqFqWlATkHgc6sZf5YCi/o+GtAbBoMRxpUbYP3wG1hHDoK9e8ewv0zU91M1qM4+Skw0w2DQVelrEEUVdQDpcMC0fgsAwDJ8UFjn/Ih/xzkkL/+RsqpEqfQ1pdLVAiSbqrS3AtlMycuEipI1xOX5XH+DAo23VgXQcu6FKsu+ep2cy2tgHL6Mcez8b52766VymBsFJSoC45SUFOh0OmRnZ2u25+bmemSRXdLT0z2Oz8nJ8TjeZrPhoYcewvHjx/Hxxx8jPr5yGd9wfhhSFMEPoAFUdx9JeQUwf7kUurM5cKQlo/jGqyFSEoObdTKC+LMUWDT3kaVPdzjiYhGzZBVMS1YDORdgvbxqZkWP5n6qLuwjIh8UBVJxCURc4Mo83f7DMOzah5JRVwB6Hw+BVIGTumRYvpBfdozdDhjCny3UncnW/I11ZX0BAFbVcnoV+FsgFXlJroRa2lwuYyxQLqPses2CQpjnfwvJbofu5FlYe3QK7fUC8Ts7tnryLdXY4SDvXfI247V6fyEnqaTg1KThkD4ZjUZ06tQJ69evd29TFAUbNmxA9+7dvZ7TvXt3/PLLL5pt69ev1xzvCoqPHDmCjz76CMnJyVXQeqot5FNZiJ3zNXRnc2Bv0RhFt17nDIqJagB75wwUj7saIsYI08atiPl6Odc6JqIaxfzZYsS/OQfS+byAx8Z+tQyG3ZnQ7zvk8xhNhlWVMZZzz6u2+w+aQqV5DUCzQoBkLcsYBxvcOc/zkh2uZGAc6PX1ezKhP3oSupNnAQCGbX+G9nqBeM0Ye27STFYWxIzeAAL/N3Y4oDt4FDFLVnlfNoqoVFQExgBwxx134LPPPsOCBQuQmZmJGTNmoKSkBGPHjgUATJs2Da+++qr7+FtvvRU///wzZs2ahczMTMycORM7d+7EhAkTAAB2ux1//etfsXPnTrzyyitwOBzIyspCVlYWrFZ+mCQt/e5MxM5fCLmgCNZuHVA87mogxhTpZhFpOFo2QeGt10NJSYJh/2HEzl0ASZ05ISKKIP2REwDgDsKC4i84Kin7vKYpX7aUBZhhnbFYHWTaHZ7fu4Tzc2So1SelbROlWW2f9UPlxt5WJJCvkKBLqQOMMZZc/6iqBQL8N5bsDsR+vgSGHXug3384iMZSXRUVpdQAMHLkSOTm5uLNN99EVlYWOnTogA8++ACpqakAgFOnTkGWy+L8nj174tVXX8Xrr7+O1157DS1atMDbb7+N1q2dE9OcPn0aK1euBABcc801mtf6+OOP0adPn2q6M6rRFAWm1Rth3LQdAkDJ4Eth69OdaxRTjSXSklF42/UwL/we+sPHEfvRVygZexUczS6KdNOIiJx03vMy+t0HYNy4FcXjR6mO9T2WXjNu1eYjGLaFMTBWX9du17y+upw35HHBAGK++1Ezw3bQWdPygg1wq2vNZ38BvrqtoYwxDnQP6v9uzBiTH1ETGAPAxIkTMXHiRK/75s6d67FtxIgRGDFihNfjmzRpgr1794a1fVS7SEXFiFn4PfRHTkLEmFB8zVA4WjWLdLOIAjObUDxuJEw/rodxy06YP/kOlsGXwta7Gx/qEFGNZV74A4AKlPOqA1Ob92BYstvDNtGyOuCVHIo2u6kKvkKfMEuBYdd+7WuGOBlW2VJIkv8As5qWOvJ3H9q1iwPNSu2FelxyQRFi534Da8/OZfvV2Xx9VIU+VM3400HkhXzyLMwLVkDOK4CjfhqKrxvO8cQUXXQ6WK4aAEejeohZ8TNiVm6A7vhplFw9mMMAiCiyAgWOqgpAvxlfdaZQHQzbtJld536bM/ssV2IUobXcddWBm7otIZZSS97u1V7JjHGAh6GB1jkOG6+BsWfgqwmS/WXLFe9ZZuOv2yCfz0fMyg1l1wxn1QDVagyMidSEgOHX7TCt3gRJUWDr1Na5/l0VzGhJVB3sXdujqEE6zAu+h2HfIejO5qB47DAoDetFumlEVJeUy6gafv8D+syjKL7+Kr9ZPMnup/RVnSlUL9ekfi27A9KFfMT/dx6sXdvDcvXg0Npf7jUku0MTDKvLtyVL6KXUHkIdIx1kYFxtpcWugNdmg+mn9XBc1CBgRljyt19duq4okPIKIOflQ84+73msOmPOIJn8iJrJt4iqmlRQBPPnS5xPGSUJJcMGoGT0FQyKKeopDdJRePv1sLVrBfl8HmI//gaGTdtCn+2UiKiCNGXIVitiflgH/cGjHqXDALSlrzabM5gpUs1AXWKBnJWrHePrK2Nss0N39CQAwLhjT+VuwqpdK1mT3bT7CNIrKeTBL+7AOMBx1ZUxLn0dw/Y9MG79EzE/rAs80ZfX/aU3pA7oHQri356L2LkLvS55Jfkaf05UDjPGRAB0B44gZskqyEXFcKSnoOSaK6HUT4t0s4jCJ8aEkrHD4Pj9D5hWbUTMyg3QHziCklFDIJISIt06IqqlpPN5nhNoqQJM+WyO8wv1msSqZZgkux2x87+F7tRZFEy9HSLWjLhZX0K+kI+SkZeXXdNb+XTp+TCoPu4qSsjl1Jr1cu0O7RhnzYRfYcwYhyrYNYCra4wxAAgBqcTi/N5qgzAGSDz4uQfNQ5G8stUXJIvF82CFGWMKDgNjqttKLIj5aT0MpU+RrT06wnJFP2aJqXaSJNgu6QpHi8aI+e4n6I+eRNyHX6Bk2ADYO7XlxFxEFF6Kgvj/zQcAFNw7wb1Zk9F1BS3qQKdEFdzY7NCdci7vJF0ogDDHQC5dhk69HrLPjLHdoc0u2uyAyRj8PQgBOec8lPQUbVbYoQ2M1cG+FOq44HByBZU1qTKo/IRlIWWMVdcqpfl58ZYBVz90YcaY/KhQYLx//34cPHgQeXnOP0SJiYlo1aoV2rZtWyWNI6pKuv2HEbP8Z8gFhVDizLAMHwR7RstIN4uoyin10lB02/Uw/fwrDJu2wbzoJ9j2ZMIybABEYnykm0dEtYVFtc5woarE1eFlgiV10KkKdKSCorJjFUVTKiuVL7l2UWeMHQ5tOxwOr7NUyyfPAskJQFo85EPHINJTIeJiYVq2Bsbtu1F082gvGWNVwKUps64BwZerbTUoLoaiaP/bB5p12t9+Tem63et2zeu6MGNMfgQVGH/11Vd4++23cfr0aYhyT28kSUKjRo1w//334/rrr6+SRhKFk1RQBNPK9e5xTbbOGSgZehlgjolwy4iqkV4Hy5C+sLduhpilq2HYfxj6IydgGdQHtp6dKjdzKxHVDkLAsHknHE0ahjRhnzrA1blKpgGvS/Jogk7VeXJhWWAs2WwQJaogVx1Al1uiyc3hgKQKjL0FRtKFfMTN+RpClqH8dQLMnyyCEhuDwql3wLh9t7P9h45DaZiufQ11llsdGPubMKy61MSMsaJo/9uEkjEufZAi+ZhQS/IymZhmjWlmjMmPgIHx3Llz8eKLL2LcuHG4+uqr0apVKyQlJQEALly4gIMHD2Lp0qV4+umnUVJSggkTJgS4IlGEKAoMm3fCtPY3SBYrlPhYlAwfBEfbFpFuGVHEOJo3RuGUcTCu2wzjpm2I+WEdDLv2oWTYACiN6ke6eUQUQbpjpxDzwzoAQP6T91b4fKlYFbiqxw17C1TUGUB1kKmZtMumDXLVJbTqc2zazK7mHC9Bq6ttkqJA5F4AAMjqyb4AQJa05zoU7fjc8jNW1xQ1KDCWFEU7y3ag8c3l1zeWJK9jojWTnXld8qrcz0NRMWB3sEKKPAQMjD/66CM89NBDuPPOOz32paamIjU1FRdffDEaNWqEWbNmMTCmGkl39CRMP6yD7mwOhCTBeklXWPpfzPVciQDAYIB18KWwd2yDmGVroDt5FrEffQ17l3awXN4HIj4u0i0kogiQLuRrvtdlHoXSMB0iLja480tUwaV6UiRvpa0O74GxJugpFxirJ1qSfIwjlRxKufG/do/qYvXxwkfmVyoshpScqNpXPmPsffKvSNGdPAvdmezAMz9XJ0VoHhoEmtXCPWHXhXzE/28+LJd291peLQXIGGtK64stiJv5MSBJKHjgViCW1YJUJmBgnJ2dja5duwa8UNeuXfHWW2+FpVFE4SJn5cK0eiP0B44AAOxNG8EybABnnCbyQmmQjqJbx8KwYw+MazbB8Mde6PdkwtqvJ+x9ukW6eURUHaw2xP13HuwZLTVVI7r9hxH71TI46qWiaMr4oC6lKXVWlUB7W/9XE9DYtFli99c2mybA1lxTTZPZdWjLZ70FreqgVjUWWlKVccuFRVDUQZ1SbiKp8sF4hBm37op0EzyVzxgHQwgYdu4DAJg2boPQ6wKc4EkTjOflu7POcl4+lBADY6mwCIbNO2G9tAcQaHZtihoBA+N27drhiy++wCWXXALZx5gzIQS++OILtGvXLuwNJAqFlFcA09rfoP9jLyQhoCQlwDKwN2feJQpElmHr3hG29q1hWr8Fht92wLTmVxh+3wn7lX2Bdq0BueIfTIgoOuhOZ0EuLoFx+25YVKWm+kPHnfuzcgNewzVBliaoVWeMy88SDfgppVYFUlabZv4Dr0vzoFyQ7XCUW75J9Tq5F6A7k+0sky4lVCXUUn6h9rXLrZ3rLcB33kvkM8Y1kqJAslWszFzKL4T+T9Va16E8dFBnlDUPa7z//LjZHYidvxD2ZhfBOrivZpdp+c8w7DsEOSsXJdcPr3ibqEYKGBg/8cQTmDJlCkaOHIlhw4ahVatWSEhIgCRJyMvLw6FDh/DDDz/g9OnT+OCDD6qjzUQ+SbkXYNy0FYYdeyEpChRzDCz9esLWszMQwlNGojorxgTLkL6wdu/onL169wHYF/4Ec8JGWPv1gq1re/5OEdVC6lmgNUFEXr63wz0Jgfg3PoKQJFiGlAUT6uyu16WVHN5nGZbKZ49VD7cDBjZwBsmaYEwVtMa/+wkAwHqJqjJSlTGWVYGxZLV5BNyax+yBZkam0lmpK/bQwLzge+hyzru/D6U0XFNmr/6ZLvb/8yOfzXaWpJ886wyMbTYYtu+BrUs7yKW/D4Z9h1Di9yoUTQIGxr169cK3336LDz74AIsWLcKpU6c0+xs1aoQBAwZgypQpaNasWZU1lMgf+WwOjBu2Qr/7ACQhIExGWHp1gbVPN44jJqoEkZqEkmuvhK1/L8Rv3Ar8sQ8xK36Gcd3vsPXqDGuPThyjRVSLyKpxxZogwuqjbLkc17hkSQif2TnJy9JKPsuPy435laBqh8XmeXx5DsV7xlgdLOUVuL8WRd5LqWG1abPa5YJfqfwax+RBCiFj7FrDOmxt0Mxq7j+klUsnYgOcPwvuLPH5PIi4OADZYW0bRV5QyzU1a9YMzz77LACguLhYs46x2WyuutYR+SEcDuh2Z8L0+x/QHz0JAFDMMbD27gprz84MiInCSNRPg/GOa3Fu1yHo1/0O/d5DMP38K4wbtsDWpT1svTpDSU+JdDOJqLLUY3jVQbI6uyaEz2FJsqrUWj6nCix8zCBdNiu190yix6Ra6sxyMNlDH2OM1bNkywWqkmn1GGN1kGwrV0pdvr3MGAemiApnjIXJqJ1VvJKkchNxSQWFMK79HfY2zZ2rlNjtzqxw5wztQ6L8Qhj2HQJQ+jOuU1VMWW3QHTsJR4sm2u0UdYIKjNXMZjODYYoo6XweDLv2wbJ9N2IuOJ/yKsmJsF7cBbbuHQADJ0EgqipKw3oouW64c9jCbztg+GMPjFt2wrhlJ+xNG8HWrQPs7VsDhgq/vRBRBEl5BRAGg3ZcsHoNYVWQKJ/JhvnzJbBe3ge2bh2cG+0O5xhSdcCpyrhBPZu0+jVKrDCu3hjcskJ2OyQvsxL7I9kd2jGm+YWInfM17BmtyrZpMsaqMcbqr202TVZbKrcskCbgCrQMUV3lULRLaQWjKvvSYoHhj70wbvsTxm1/Iv/Je2H8ZTNM67dAn3kEjnqp7kM1D4ZkWRPgGzdtg2nd77B1ykDJmCsq1gY/D5mo+vGTC0WHEgsMezKh37kP+mNl5fz21s1g7dUZjlbN+IeFqBqJ1CRYrhoAy4BLYNy+G4Ztf0J/7BT0x05B/LgOtvatYe/QBo5mF2kmyyGi6iOfOgv9wWOwXtod+i27Ydn2J+SrBkJp3FB73NkcxH34BexNG0GoliSSfASJMcvWQC4qRszS1e7A2Pz5YshZubD16V52jo+ybE3GuMQC04atQd2PZHMA9iDKp9UciqbM2bD3kHvcqIt6LLGmlLq47GtY7eXWwy2X+YzyCbdsGS3dGdEqoyja7H0QJJsdIsYEJTEeurM5YW2OZLFqJ/MSAroTpwEA+syjUFSTz2nW4S4qgnqxKd2JMwAAw659AQNj+cQZmNb+hpKrBzsfLG/ajsLbr4eIj3V+jtUzNIsk9j7VWFJhEfT7D0O/7zB0h4+7x+woSQmwd85A/MCeKJQNUCr49JiIwig2Bta+PWC9tDt0R07AsG039PsOwrhtN4zbdkOJNcPevhXs7VvD0aQhy8yIqlHM8jXQnc4GbDaYNmyFAKDfvhv2coGxa0lD/bFTsKnmDJDVwYB6zd7yk14pintIk373gcDnWysY3LrY7RUvqy03KzUCjf8t9JExVhTNOGt/Y4yjkfXS7tAdO6X5bxZukqKEVGYuYkxV8t4hlVgBSfWQpqBIOwbZot6nmoitxAJIqge+PqodhJftsfO/heRwwLj2Nxi37wYA6A8fh3HDViiJ8SieeG2ot0NhwMCYag5FcT7dPnwC+swjkE+ccT+PEzFGWDtnwN4lA44mjSDrZMhp8UBOgd9LElE1kSQ4WjRxjrEqtkC//xAMfx6A7vBxGLfsgnHLLgiTEfYWTeBo3Qz2Vs0gEuIi3WoK0fz58/Hhhx8iKysLHTp0wPTp09G1a9fAJ1LVcDjLmGEwwLhhKwybtqF40rXOoBiAnH3OfahUVALDbzsgn82BZcQgQJYhnS8reZbPB559WjNzdVExoAomdGcCT0gU6uRUkt3he+1iP6+lmeValRH2Sl0SXag9VqrCoDHiZFmzbFWVCCFjDADCaIDQhb/ySLJYNaXaUl6+dlyxeliAamZsWMrNjq4qxXeXRisKrK/NQYzRiOKRgxGzZBXsrZq6f/bl3LLr6fcdhnzB+drSuTzojp2EkpYCpXGD8N0sBYWBMUWO3eGcCv/4aegPn4Du2EnNU2QlMR62ti1gz2gJR9NGzDQRRQuzCfau7WHv2h5SUTH0ew9Cv/+IM6O89yAMew8CAJSUJNibNoKj9H8iOZFDIqLA0qVL8cILL+CZZ55Bt27dMGfOHEyZMgXLly9Hampq4AtQyOTsXEh5hXC0aAzTirXOD98DeyN29lcQMUYU3XEDTKs3AgCMv2wuO0/1wV3OOY+Y/YcBAPaObeFo2QTyubyy/cGsU6wKbuSzOYGzsOFit2vKs4Pi0GYpywe7/mhKqRF4eZ+oJsvaLGhVUERoJeeyDFRJYGzRlPXLOec11RDyBdXvhSqQlSxWzXuVfL7sOOPa32DY9iesV/SDOHEWOgDmb1ZAd+os9IePu49TP0DSHzzq/tr08yYY/jwAJSkBhfdOcI79jzVz3o5qwl6m6mG1Qc45DzkrB7pTzrE98tkcTWmVMOhhb9kUjhaNYW/RBEqDdH5IJopyItYMW49OsPXoBNjs0B07CX3mUegOHYMu5zyM5y4AO/YAAJQ4M5QG9eBokFb6bzpECoPlmmb27NkYP348rr/+egDAM888g9WrV2PBggWYPHlyhFsXWfLpLEAIKI3qQz6bAznnPOxtmzvHDToczgDNZATsduiOnYLSIB1y7nnod2fC2qc7oNdBzj0PR+OG7rGPUmERdMdPwd66OcyfL4GcVwDrJV1h3Panc7/DAbmwCCgsglE1VldfGvwC2g/h6g/4hu27IWflaILhik4cJZ/NqbbfUamgEHJxCYQkBb+erd0e8sRYcmkptev1Ai3vE9Ukqeozxg6H72W5/NHJVZMcsVg15fK6k2c0uyX1A6McVdVFuZ8h9fem0gdSMd/9VHZdL0tO+RpOYPjTORRBvpAPw+adMP34C5TUJBTdfgMM23dDd/QkbF3bw9GmOQy/boeccx7W/hdDJMZDPpMN2OxQLqoP3fHTMP20HtY+3eBo3tg5AZ0ioDt9FvY2LRCz4mcIowGWyy+FceNWKKnJsLdvDf3+Q1DSU6HUT3Nm073NEeL63ZMk7de1QIUDYyEE3n77bYwfPx7p6enur+vVq1cV7dOoaOnWsmXL8MYbb+DEiRNo0aIFHn/8cQwcOFBzL2+++Sa+/PJL5OXloWfPnnjmmWfQvHnzKr+XWsluh3ShoKwc5PwF6LLOQc7JhXQ+H+V/ZZTYGDgaNYDjovpwNG8Mx0X1mRUmqs0MejhaNXNOlgdnSaPu2Cn3/+SzOdAfPKp5ei6MBiipSVBSkp3/pjr/FUkJzqfoteTNOFpYrVbs2rUL9957r3ubLMvo168ftm3bFtI15Up+GNcfOQHLh7/AbLECrljJ9WFNHTy5t5X+X+m/knpb6XEirnQinKJiiMR4Z5ZRliFiY5wfaO0OdwZLKiiC0OshkhLcH6ztrZtBd+g4JEWBUi8VSr1U6DKPAlYbHBktIOde8MjMGn//A8Kgh2SzQ0lLhpRf6Gyz3eERBBp/2+H+2rBrf9n2jWWBcTDjeA27D8CgGhMcCv2ZLIiY6lnLXFdazirSUyAFkdkGKjGeWUXEx0LKL6zVGWNJJ1f5RIlyRSdOc9HpqmaMcbFFUy7tmkTLvV/1eydXoNIgXGJ+WAfA+XMfN+tL9/Jn+v2HYe/REYYtu5zfHz0JpWE69LszAQCOBumQ8/IhFVtg/vZHv69h2L6nbGjD4pUAnA+CRFoy5OxzUOqlQuh1zuETpWXiUrEFwmSASEmCfCYbwmiESE5wlpsrCoTJWPbfSyr9P82/pUofKFgMepjtjnJjtcuOdTRvDOvIyyvcf6GocGCsKArefvttDB48GKmpqe6vqzowrmjp1tatW/Hoo4/ikUceweDBg7F48WLcd999+Pbbb9G6dWsAwPvvv4+5c+fixRdfRJMmTfDGG29gypQpWLJkCYxGY5XeT1QQArDaIFmszv8Vl0AqLIZUVAypsKj032LIBUXOcRmqMUflKckJcKSlwlEvBUrD+nBcVB8iMZ4faonqMBFrhr1dK9jblS6bYrdDzjoH3ZksyGeyoTuTDTkrF7rT2e6xkprzdTJEQhyUhHiI+DiIxDgosWYIcwxgjoGIjYEwl/4vxsTZscPg3LlzcDgcSE9P12xPS0vDkSNHKnw9vV5GWlp84AP9cBx2wHY2F3KgTKDXD2jeP7BJrjG5suRc11aCM25WlUy6GQ3OktvCImc22GqDPrP04U5iPOSs3LJ1T3U66PeWzvyrzra4XtdmB2RZO56xAkLKxoUqOQEoLHZ+GA82exsm+tQkKEEGxnqbDZVtnS45ASK/sFaPMU5OjYNNL1e6r/yJN8gIZe5uQ4wBMJsQ7p9uuVD7uTXcs16Hk3zuAiBJkHt1hPL7LndQjIQ4yOcuOPfHmSHFmIIa5+/ibby/JITzb6DJUPYAz1VRoAjAoHf+LhQWA3rX10XOyhh1EB0kAcDfu7MuMR7xqXGQqiFmCKmUWj3LmrcZ16pCRUu35syZg4EDB2LKlCkAgKlTp+KXX37B/Pnz8c9//hNCCHz88ce47777MHToUADASy+9hH79+mHlypUYPnx4tdyXN/KZbDhOnIQuvxiyQzh/uFz/AzTfS6L0qbcQnv8DnBMdOBRnCZfD4Zw1UfWv82vnfslqA6zWskC4Ak9ZhSxDSU6EkpQAJSkBovRfJT0VSloyYOTawkQUgF4PpVE9KI1UD1qFgFRY5Myw5Z6HnHsB0rkLzqfheYWQz+cHNVkQAGdWz6AHjAYIowEwOP8VBr1z/XO9zjnBi+ws2/P1tbPcsDSQkiSI0jdrWZbgSDBDV2iBLJz7XMe4HgKKGJNzzoRaFqQLIUL60GK3K8jLq1wmRm7VHMn/eQTnzxXAvUiBqy2hfpByBUAmozMjHGd2LvtjsTqzIXqds9RZOD8kwqFAOnfBmTXJyoXhtz9gb90Mjo5toNudCehk97KCun2HAKMBjtbNYFi/BbBYYe/RCcZVG+Fo2hD2i7tAPn4aIiUJQic734/zChDz+RI4WjeHnHMOclauM4tTOnbW0bQRYLW5PxDb2zR3zzQtZDmo8mElLtYjUPDHkZgAe+9uMH2/roKdW3kWkwnBfqpQiks8KtYqyhYTo/nALHRy9T6EqAbnLxQjRvgPUCqrMLcAphDOszoEYFeqbPynkpLkzsYCgJKa7B5yIGJMnrOwV0CFyv5d55RWjgCArXsHKBc1gOHX7bD17gZ79w4wFVuh23sQ1kG9Ye/VGYaN2wGHA7Y+3QAhYFqyGgBgHT4Q+t//gIiPhaNVM+fM2gYDDD//CnvnDMj5hTBs3AbLlZdBKi6B7shJWIdc6kyCFVvgaFN6jqxz/g1U/z212iBdyIdITXL+/csvgEhJcr63lY9ZAI9KHQDOh4CyhOSkWJy/UORcZab8A0MBZ3VObtms4KFKTDTDYPBfeRAVY4xDKd3atm2bR8Dcv39/rF69GgBw/PhxZGVl4bLLLnPvT0hIQLdu3bBt27aQA+PKloShxIKYD7+ETQhUT2GSJyFJgMnoXL/NZIQwGZ0fImNjIGJjIeLMpf+LLfs3PtbnB72q+CPr6udK93ctx34KjH0UnMj1kwQkxkMkxsPRojE8nm3bHZAKCiHlFThLHYuKIRWVOCtcSv+H0nI5yWaHZLVVadbHBgT8211y4wg4MlpWWRuqUkpKCnQ6HbKztRmJ3NxcjyxysMKx5J6kk6FIMhTNhzCEnsk0qT6+x5fOnq6XtWuMukoFBZzvf2kpAAClYX3YR5etZap0aKO5tPp7S79e7q+Lxw4rO6ZJo7ITYmKApEQUPDIZkGXojpxAzLc/wjKkL/SHjsGwcx9sXdpBzj4H3ZlsCKMBtoyW7sDY0awR9IdPOK+VEAeUrtlbdNNowG6HkpoM45adcDRIh3nJqqC7SIkxwdqrC/Q79rgrOsoHGFVFiY8N/uDSWayFyVjxpZ5crxdX7vUMBsBRu8qqFVH2kK/KhNj/ogpKqdUBq6NBuubn1tG4QVlgbI5xJo9KA1UlNsY99rx8G93Lipb+HshdMmA/clI7azWcD2n9zc5tb9nUGaieOANr945QGtWHtXS9cAigeMzQstmvAVgu66U5v/j6shjGMahP2Y6UJOf1x13t3mRRrTuOXl2c/yYnlW2Lj3e/rubvqV7v/psHvQykJDu/Lns6WfqPpPnWgyRBMuidf78lL+OVXdU61ZSIjYrAOJTSrezsbKSlpXkcn5WVBQDuf71d07WvosJREgbEw37tEIic82VZBo//wfmD5CprCHAc9DpIpeUNcP+rg1T6L3SlpQ8xRmcZmNFQLeUK4ZCSwuVegsF+Cox9FJwa2U8NkgIfoyIUxTkTqcUKYbU5l96wWiFcs9c6HM5sYOm/QlVhA7uiehouAEWUVU75quBx7VMEEGNEUre2kGIj9eizcoxGIzp16oT169djyJAhAJxDrDZs2IDbbrstwq2r5UofPjuaN0bhX519be/YBpaBvUvHQTuzvfaMls4qiFL2Vs3cgbHcrgWU350lmI4mDZwBHgDLlf2hO3ayQs0RZufPsGVQH8R+vgSWyy+FLvOIR2Bc2Yyb19eOD/7vkCv4EWZTyIGxKBeIC6Mh7PcUcRKqvJIl1P6HLId9uSbXuHEAUFISNQGvo3EDGP7Y6zzOZCwNjJ3BrUhOAlyTsqketij1UqE77YwfSoYPhKTXIblzKxRu2w/DL5thu7gLzN+scF9ff8T5O+mon+Yu4XZ97WjeGLYeHZ0VKrFm7zcQJZ/To01UBMa+BCrd8rav/Lby34daDgaEpyQMAOTO7ZGSEodz5wrD8iQ9aDYANiuAEP9wVSNZliLTR1GG/RQY+yg4tbOfJEA2AmYjYK58wB90HxXbgeLKrcEeTElYVbnjjjswbdo0dOrUCV27dsWcOXNQUlKCsWPHRqQ9dZosQyQlAHAGi5Yr+jm3C4GSqwbCcVF9zZrDus5tofy+y5kBNWiLkdUTaPkqvxZGg3uYlSswdrRqhoIHb4OIM8N8/JTnOaXjris627U/5QPVoM6JiQFQNuxCSU6AkpoC3ZHjfsuihU7nnKNAvc1QC4eHVcM6xgHXkPZFJwNymDPG8WXVEyLWDCU9FfLRk86fi4SyJJcwGZ0PNkuzvkpKonuSPSUxHrrSMbiOhvXcWWZH44aQTQZnJrRVUxS3aKJZMsye0dIdGNs7tIHubA7sLZuiZPQQ6HdnwtazU+lkfz6CYqoyUREYh1K6lZ6e7nF8Tk6O+3jXZGFZWVmaybtyc3PRuXPnkNsazg+MiiJq0QfQqsE+Cg77KTD2UXDYT4HV9j4aOXIkcnNz8eabb7pXifjggw+4hnFNIknOD9cAYLXB3rIpRHoKTF3aomT81bBd1MDjFFegCwAizuzOpqlLTkVcLCSrMyMsVFUP7kDVy9wkQq93znjsJTC2XNoDuuOnnGWnFZj1V4mLrfDYzfLBbeHdtwCyjPj/m+W3LFq45iRQ87GmrHrcd9SRUOXrGIceGOvCvo6xkhgHXelzHBEXC+vA3sDa32C9pAuEuexnRZiMmjJgJTmxbF9iAlAaGIvEeBROHuf8PfL286HXofCum0rLwmXgh3VwNEyHtVdnKEkJsGe0AAwG2C7uEtb7pIqJitk/1KVbLq7Sre7du3s9p3v37vjll18029avX+8+vkmTJqhXr57mmgUFBdi+fbvPaxIREREwceJErFq1Cjt37sSXX37pd+lEijCjAcU3jYJ1WH9IkgRHm+ZAjOcUSOpgQCnNQju3lwXA6rG9IsHL0DFXAK2+vkEPofcRSCbEoXjS2LKZ6YGgZkUW5pigxpyqy281wY5e5y4b9gh6yzMZNBOICtckfN74uM+oUA3rGLvWDBY+Hiz4ImTZ+d8sjJS0sgd5SnIiHE0bofiWMXC0ban5+RVmk7aaQvVzryTGa49LTnQOSfT5mikQyYkQCfEouOcWFI+7GjAZYe/U1qOCgyIjKgJjwFm69dlnn2HBggXIzMzEjBkzNKVb06ZNw6uvvuo+/tZbb8XPP/+MWbNmITMzEzNnzsTOnTsxYcIEAM4S6ltvvRX//e9/8dNPP2Hv3r2YNm0aGjZs6B43RURERFQnqII9kZpc9rUqM6yklo3nFwmeww8swwfCUS8VReNHlR1ncs747v5ePY7VtV0dKPkILNTnOQPjID7CqoINTbCjDnQDBLPCaNSWTrtmr/d2bAUDvhpFqvrJt1wZ4wqXCFfBGstKWnLZ1ynl5qlQV0/EmrU/v6qfT5GkCowruJa3SElyrpdONUqFf4MlScJFF10Eo9Go+bqqBSrdOnXqFGTVL03Pnj3x6quv4vXXX8drr72GFi1a4O2333avYQwAd955J4qLi/HPf/4TeXl56NWrF95//32uYUxERER1l3pZTnWQkJToLmFWkhM8TlPSU1E0Zbz2UjExgE41pt6gd89OLEqDcXXgKYwGr5M0iRijO+OIGKNzyaRAt2HQuyfJUt8H1J/zvASzmrHUxnIZY/eSbV5Ee8a4igNjuXScrog1AxeCW2YPgHsN8HByNG4AYTQ4qyPM5caQq4NfcwysndpCv/sArJddrBnfrg6oNT9fFLUq/BssyzJWrlzp/l79dVWbOHEiJk6c6HXf3LlzPbaNGDECI0aM8Hk9SZIwdepUTJ06NWxtJCIiIopGJYMvRcyqjbBe3KVsVl7VDNDCbELh/ZOca5Z6K6X2QnI4NGWwmsDXHRiXfRwVsWb3pEgaJpN7NmD4K2dW0WR6jdrg283VBvVY6lizOzBG+THGRoMme6lepkfodRDwvTJNpAQzHltIVT/5FuB8wGFv0Ri6U2eDP6cKSqlFShIK/nq7Mxtd/oGAunoixgSlXhoKHvoLYNBrll5yNKzn/lqpzzkWaoMofrRFREREROFi69Mdtku6agI/Tfl0TAxEQpzXMmqfSiyaUlRNhrZ0u7q0VsSpvjbo3evHivKltAFKqYUsa0tgDT4CY9eoZkkqGyMdHwuczys9VltKLQx6bVmvXudcyg0oDdhl53JvNYCjQTqKbhqNmKWrYNh/2P/BriU+q5itWwcoqlL9oFRBKTUAn5OoAc41xo2btkFxTVRX+jOj/tkXSQkoHnk5EGNiWXQtwcCYiIiIiJyBUblMrK+xuYFY+vaAacNW2Du1hWHn/rJrqIPM0uBWU66tLmM1GNyBsWu5J9c4WBFo+R5Zey/arK+qlNqVSFXFhEK1v3wpNYwG7aReer0qA14awNWQwBiyDMTGBBfwynKVz0oNwLkUUkVnmK6CUupArIN6w9q/l+fryjKKrx5c2l8S7N06VGu7qGoxMCYiIiIiryS7veybCkwuZR3UB/Z2raE0TId+T6Z7uzrwdZcxqyb40mQGjXqgdBlmERsDnLtQVhLspbRWXdYMWXZO/OWiCbhV5wovkbE6cDNoS6lFuVJqj4nFdDLguWpVZLgC4mBKpCVUWQ24MBndDw/UpflBk2WfE55VKR/BuL1r+2puCFWXqJmVmoiIiIiqh+XySyH0etg6t0PhX25EyRX94Gh2UfAXkCQojeqVZqFVY4jVgbF7VmrPMb+ANrts69gWAOBo3NC5odw4X+e5ctlyT7LsmflV7Strj3O7O6AubXvZsZJ2fLKh3BhjdYCukz1LviNIuALiYDLBUtVljDUVAQmxFc4YC53vMeXCy3Zfs4PX3tXlKVyYMSYiIiIiDWvfHrD27QEAEInxUBqkh3wtTfComrnZFdQo6Smwt2kOe7OLIJ+7UHasKsCx9eoMEWeGo2lpcK4OiAyl43zl0lJmRXEGqOXKst1Uwav1kq7QHzkJW4c2MOw+4NF2e/PG2kDZY4yx6qO0rHP+r6ZwtTPSGWNzjHvMthIfB7nEc9Zxv3Q638G0eoy36/X0ZWPTNYwGwFpT0vlUEwV8ZLN+/fqgLmSz2fDII49UukFEREREVIvotFlVj+2yjOIbR8LWp7smsBQm1TI6kgR7hzbu5XI043xLA0BnZlF2v4522R0TlMT40uuWbXe0bYnCO25AyYhBZa8ly85twwfC0aa59l4cDm1ZryYwlis+fraUUhXL/bgC+iDHGFdVtltdKi/iK54xdpZS+8gYe1siS53hV92Tpf/FAADrxV0q9vpUZwT8ybz33nuxZs0av8cUFRXhrrvuwvfffx+2hhERERFRLaAeh6vz/rWbOuCNMXrudx+nOtedGVUH3eUC44R4WC7vA1uH1rD27am5lNKwnja7HB8LpWE92Hp0cgeV9ubOTLVIStSUHKvHK4tKzJ6spKeEdJ5f3vrFnyqalVqzxq9eH1R7hKot5UupNaXS3tah1nvOfA4AjuaNUXD/JFgGXxpky6muCfiTOXToUDzwwAP48ccfve7Pzc3FpEmTsHXrVrz11lthbyARERERRS+hLuXVlFV7m0BL9dHUXwClPs4VRGmyyDrteGajAfZOGSi5dhhEov81mL3ttwzuC8vA3rAM6l0u663NGAvN2Ofgg2SRmICiidegaOI1QZ8TkGsG7wABr5Ak57FVFRgb9LB1aQdLv9IHEsH0i1xuMrRyM4G7v/by8EQklC2dpAmiZdn539ZblpkIQQTGr7zyCkaPHo2HHnoIS5cu1ew7fvw4br75Zhw/fhyzZ8/G5ZdfXlXtJCIiIqIoJCll0x5pAhVvGWN1+bTie7okTbDnnlhaLptlWie7xyO7J+wKwDJqMKSmDWHr0dFjn9KoPqyX9fLIeGpmuC5fSl2RJYZkCY6mF0FJK8scV7q0WQ5yVuqKlFyHQpJQMmoIrIP6AAjyvjQVATptdUH5ydBKFd0yBtZuHWDrqlpCSfPzVnMmRqOaKeAjE0mS8O9//xsmkwmPP/44rFYrrr32WuzZswd33nkndDod5s+fjzZt2lRHe4mIiIgoimgCIc06xl4yxuoMoPC9HrB72SbngaovXYGxDspF9VE4eZxmLWZ/7N06wDTkEhTkFPgPyn1ljHWyJggVOh2kINducq/PrM5mGg1AiSWo871e09XvgWabdjW5CgNjjWAC43Jl8ZqMsXqGcdV2R/PGcDRvDN3+w2XHqrPL1bBOM0W3oGsJnn76aZhMJjz11FPYu3cvvvzyS9SvXx+zZs1Cw4bBPYkjIiIiorpFpCSWfa3O4Ok9AxVNsOyv5NVHXOz+ujSwUuqnBd/QYPnIGAvXrNguFclQugJq9XhsowFSJQLjoNcxdgWMwcxeXZl2uKiDXEkq95CjdLteDwnOe/dYrsnH8l5etxm8B9FE3lSoyP5vf/sbTCYT3nvvPXTr1g3vvvsukpKSqqptRERERBTlbB3awLR6E6xd25crbfUS1KgDQ38zNXsJpiCVbRdVFeQB5YJf32OMK1RK7Q5ifWRGQ+HOGAcKjMu1IdzKXVfI5caZe1taSV++lNp7v3idwE3vY6KuGrTGNNVMAQPjSy+9FFL5H2ghkJmZieHDh3scv2HDhvC1joiIiIiimkhORP4jkwGDHvpd+8t2eAlUhFG9xJLvwFgzsVZpmlhAlX2sqiAP8D3GuFzJb4UCMW/HGv3Myu2DJgMbbMbYtdxVdZVSlx+H7SUw1qx9XX5WaqP/jLHP5bSYMaYAAgbGEyZM8AiMiYiIiIiCZgouyHO0agpb+9awZ7SAo1F9mH7+FdbuHTyO045FLvvS/Ym1Cj+7Cl8TbMmydh1mL7Nu++TtIYF6CSkfJcder+NwlH5dOm45UIBe5Rnjct9rZu7WuXcLWYaklI4r15crUVcHuKryaKVBGrD7ABTVWsmaINqknqiLs1GTfwF/Qh588MHqaAcRERER1XKSLcBkVLKMkrHD3N/mPzJZMwuxizab7MqQql8o9DYGpJlMTDW5U/l1jCs0K7W3wNig3e8KeP1eRwJchwVZSi2qeIyxRyZa82BBnWGXANd8azptyb1QBb7CWLbPntESSlIiHE1U8x2pg+oE1dJbXKaJAmBNARERERFVC/XyOkExGb0GdrbOGQAAa+9uquWaVMdVVym1OtjS68tlkyuwjrHqWMuAS2Dt0anc+OUg70fdtmCXYar2McZ+Mu6uY8qXUvua2VySYe/YRrP2tFD1m5KU4LMdROXx0QkRERERVQt7xzawns6CrWPllvkUaSnIf2wKoNdD/8deL0dU0+Rb6uWA9DqPMuGgqYI2a/+LAQAxS1aV7dfJCGblJyHLZXfuXsc4UCl1kJN0hcrPck3C15js8oGxmjpzHuCBQaUnMKM6hRljIiIiIqoeOh0sV/aH0jgMS30aDICvsbfVNMZYk9nU67XBXUUm3/I2iZQm+xvktdSvGWzAG2xmOVQepdTlZqUupZ5JXLP+cOm4bcvgS+FoWA+Oxg3KzvdWgp4YByUpwVlVwHHFVAH8aSEiIiKi6Kcppa7C11GXg6snFdPrwjsrtSbIDbaUWvL8OlA75OoOjNVLL6n6r/wyTuWOt17aA9ZLe0C3/7DqHC/3ptOh8N4JgCRBv/dgJRpOdU1UZIxPnjyJu+66C926dUPfvn3x0ksvwRFgAoLz58/j0UcfRc+ePXHJJZfg73//O4qKitz7N23ahHvvvRf9+/dH9+7dce2112LJkiVVfStEREREVNWCmMA55EurJ9xSzxyt12vXT67AZFZe111WB9nBXspLxtrXms4eY5Crau3n8oGx6nslNalsuyZj7CNIBrSBta+gn+OJKQQ1PmPscDhw9913Iz09HZ999hnOnj2LJ554AiaTCVOnTvV53mOPPYasrCzMnj0bNpsNTz31FGbMmIGXXnoJALB161a0a9cOd955J9LT07F69Wo89thjiI+Px6BBg6rr9oiIiIioEoQkQQIg2ewQJiMkixXyuQtV94I+AmOUH2OsCs4CLrcUKGMcbKDvLcscZCl1ta1jrCISVZNjaSbl8tHHgLYUOybAMmAMkKkCanzGeN26dcjMzMTLL7+MDh06YNCgQZg6dSrmzZsHm48p/zMzM7F27Vr861//Qrdu3XDxxRdj+vTpWLRoEbKzswEA99xzDx566CH07NkTzZo1w6233ooBAwbgxx9/rM7bIyIiIqJKcDRr5PxCUWDt2al020VV9nrajLGp7Gu9XlsOXJFZsr3MYC0qMKu1+xx1YO6lRNq1X0gS4ArUq3yMsecma5/usFzWy3O5JheDupS6XMa4AuO4A67hTKRS4zPG27ZtQ/v27ZGenu7e1r9/f8yYMQMHDx5Eu3btPM7ZunUrkpOT0blzZ/e2fv36QZIk7NixA0OGDPH6Wvn5+cjIyKhUe+UwlKG4rhGOa9VW7KPgsJ8CYx8Fh/0UGPuIKDJKRlwOyDpYL+kC5aIGUBrVh71Fk6p7QXVgnBBXtr38GGP1nwL1Gr3eeAvgNIFqkCljddmxe33icktIKYp20jKp3PHh5iXgtgzpCwAwbNrm3qYJ6isyo7cfjpZNYG/dHLb2rcJyPardanxgnJ2djbS0NM02V5CcnZ3tNTD2do5er0dSUpI7Y1ze8uXLsWvXLjz//PMht1Wvl5GWFh/4wCClpMQFPqiOYx8Fh/0UGPsoOOynwNhHRNXMHIOSa690f2tvV7VBkNCrJt/SazObwteEWeqsLTyTqF4zm+rgMNhSam9jc9UP67ws++Se8VpSbwtQ+l0R/jLR6n3BZnet1uBfW6dD8biRwR9PdVrEAuOZM2firbfe8nvMmjVrAACSj18oX9t97RNCeN2+adMmPPnkk3j++efRunVrv23yx25XkJdXHPL5LrIsISUlDufOFUJRqnD2iCjGPgoO+ykw9lFw2E+BVWcfJSaaYTCEJ6NCRBXkawkgm933TNLly3+VcunjQGOMg6SetMpdil2ulFoq3zbXl+XbXonAWB1Y+x277KOPJLvvSXZFbGzI7SLyJ2KB8aRJkzBmzBi/x9SrVw/p6enYtWuXZrsr61s+K+ySnp7ukRm22+3Iy8vzOOfXX3/FPffcgyeffDJge4IRzg9DiiL4ATQA9lFw2E+BsY+Cw34KjH1EVLuJcrMkC1mGpCgQCbHlxgr7GGPsraw6QBAcdPZW5zk2V5ONdo2B1pR5e1nvOFDpdyDexjD7Ok79mqVcs1UrsWaPU5RG9VB8zZVwNKxXiQYSeYpYYJycnIzk5OSAx3Xv3h3vvvsucnJy3EHt+vXrkZiYiFatvJfK9OjRA+fPn8euXbvQqZNzEoaNGzdCCIGuXbu6j9u0aRPuuecePPbYYxg3blzlb4qIiIiIajejQfNt4X0TIGefg1IvDdh3uGyHJlMrlcWi3gJFbxNtlc8qB0MqN564/Ou5tqnjbG+Tb1V2Ii51YO3vWrI2m+2iJCehcPI4KAnehyjaO7apXPuIvKjxU7X1798frVu3xrRp07Bnzx6sXbsWr7/+OiZMmABD6QLrO3bswPDhw3HmzBkAQOvWrTFgwABMnz4dO3bswObNm/Hcc89h1KhR7vHJmzZtwt13341JkyZh2LBhyMrKQlZWFs6fPx+pWyUiIiKimk6WUXjnTSi4fxIAQCTEw9GyqedxmkAzwEzK3oJHh+9yYsAzc+28juprV/Y40Dheb4GxeiIsv63wIdgg21e/SIBSPw0wmzzPIaoiNX7yLZ1Oh3feeQczZszA+PHjYTabMXbsWDz44IPuY4qLi3Ho0CHN8k2vvPIKnnvuOdx2222QZRlXXXUVpk+f7t6/YMECFBcX491338W7777r3t67d2/MnTu3em6OiIiIiKKOkp7idbtUYlF9o9ohBwgUvQXBDnXG2Et4qtcD5cbiatZOdgXG5QJOD6VtE77aGMp442ADY9lH0M5lligCanxgDACNGzfG+++/73N/nz59sHfvXs225ORkvPrqqz7PefHFF/Hiiy+GrY1EREREVMdZnUkaEWOqWGmyl8mmJHUptZe4VOh1nnGut7Jpdbmye7/qgpK3SbpUpd+yHDB77UETZPs+TDP+WT0+mqveUQRERWBMRERERFTTWQdcAslmg2Vgbxh/2Vy2I8D65pK3wNPPzMwAtEszuS/kmYHVrAnsbdUW2UsptabEWQIqGBcLSfY/ptpFNbZaUxpe2THORCFgYExEREQB7dmzB++99x42b96M8+fPo3Hjxrj55psxadKkSDeNqMYQ8bEoGTPU+Y2PQFNIkmdC1OFloi3FMxpVr4EsdF4+xnsphxYpSR7btOf4mJXa3zmBBF1K7T1jLJgypghgAT8REREFtHPnTqSmpuLll1/G4sWLcffdd+OVV17Bp59+GummEdVMkrcSZi1b5wwAgL1lE499jsYNnfuaX+R96SNvGWOoX9P5r5KS6HlYRWalVgXJNtds0IHGAAcZWKuz2ZqMcYAMO1FVYMaYiIiIArrhhhs03zdt2hTbtm3DDz/8gJtvvjlCrSKqwXxNvqVSMmoISoYNAExGj332Lu1QlBAPx0X1Ef/Wx2XXcZRGtcHObq3ToXjsMECSYFz3u+d+2XMssnZccllZdMnoK2Ab0hdxS1ZBHDru9Z7Kt8PXQwGPe2ApNUUYA2MiIiIKSX5+PpKSkgIf6IdcycyQ6/zKXqe2Yz8FFu4+klRBn6S6pqQK+mSd7GdJIgmidVNneacrY6zTlZVde2mn+nVkSXKPH1ZcmV7XuOdyQbssS5DUaylL3tsu63WQvGWgPRqiOqf0+l4PM5QFw5K+LCyRZTmqs8b8fQtOTesnBsZERERUYVu3bsXy5cv9rhoRiF4vIy0tPiztSUmJC8t1ajv2U2Dh6iOb2eies0pn0Lurl9WBZrA//yWlgaZk0LtnvtYbDR6TVRtjDHCNVk5INENX7voWg04zThkAjCYD4tPi4UiMhWvhU13pcQA0AbOrvZYAqxvr9GXnxyd4tsNFuRAHa+nXMYlmd38lpcRCDtPfhkji71twako/MTAmIiKqw2bOnIm33nrL7zFr1qxBw4YN3d/v378f9913Hx588EH07ds35Ne22xXk5RWHfD7gzDSkpMTh3LlCKEoF11qtQ9hPgYW7j4wWGwylX9sdAq7cqFDKppbKySkI6lqxwnmOIknuCYLsioLyo4wtVof7NfPzSuAod/2Y0nYIURYcW20O5OcUQFdkRYzr2pDc11ZE2aREOTkFkGUJ8S0aw3HoBJTkRMjn8zza61Cdk19o8WiHi1xghbn062K7gKug/HxeCURMcH1TE/H3LTjV2U+JiWYYDN7G5ZdhYExERFSHTZo0CWPGjPF7TL169dxfHzhwALfddhvGjRuHu+++u9KvH64PQ4oi+AE0COynwMLVR5qZldVjdlEWlAb9Oq7D1JNVSZ5jjAUAy8DeMOzYA1uzi5xRrZqXilVR2g5Z8rGmsKok3NVe/fD+KIqPhz0lGXEff+N5UdXrCOHnPlUl14r63vydE0X4+xacmtJPDIyJiIjqsOTkZCQnJwd17P79+3Hbbbfh2muvxcMPP1y1DSOKdr7WBQ6Jlwm3vI3LlCRYL+sF62W9Arep/Db1msKa8cZexjIb9LB3bQ+Rfa7sHEmCVDoWWpRfB9kX9esYDGVfc/ItigAGxkRERBTQ/v37ceutt+Kyyy7DHXfcgaysLACATqdDampqhFtHVAOps6aVnVyoNC7WLmnkbVbqCjTKval0vWN1MKoLcobo8ks8uSYJC3a5Jtl7MC4CLQdFVAUYGBMREVFAy5cvR25uLhYtWoRFixa5tzdu3BgrV66MYMuIaibha13gkGJk16zUAYLHgNWoXg5wtUfno5TaX3vLr3eseNnuL7BWv47m9RkYU/VjYExEREQBPfjgg3jwwQcj3Qyi6OEzOAwhMnbFs7I6Y+xtwHCAyNg91bR6Y+k3vrK3/trr6x6DzBhrS8PVQbL/SZKIqgIfxxARERERhZsmUPQ/ZjfwtVxfqAJfb+OWA11beImMXV+q26gPJWPsfR1k4e98H1liwYwxRQB/6oiIiIiIws5H0GgIoWDTdb565l5vGeNAY5m97i4dYyz7KKX2e70gysX9TDwmVFnikF6fKIwYGBMRERERhZt68i11NtRk8HJwAO7AWPHcpnnNED7aCy/jlzUZ2+BKqYWvWbj9jjH2MXs1M8YUAfypIyIiIiIKN8l7oCeMxgpfSngJjL3OdB3K7NeKo/RcH+N9/ZZSe39tTduCXa5J9vE1UTXh5FtEREREROGmGX+rCjQNoWSMS6+lKqV2tGwKbN8De7OLoD96svS4igeUkkPxPDfY6/gspQ5+VurC266DMJkgFxUFdw5RFeHjGCIiIiKicPOZMQ69lFpSZYwdFzVAwT23oPimUWXXDhjQutqkGqtsd3ieqxkj7Gcd4mCC4QBtUi5qAJGWzLWLKeKYMSYiIiIiCjf1+NswBcaaMcZCQKQklTsuyMm31Ks6ua6pC3JcsOZ6Qcy8Hey1ZE64RZHFRzNERERERGEmfIyftbdt4fy3TfPgL+YjMPZQgRJkV4ZWsnsZYxzsNYNYx9jrWGhvOOEWRVhU/ASePHkSd911F7p164a+ffvipZdegsPh8HvO+fPn8eijj6Jnz5645JJL8Pe//x1F6rELKlu2bEHHjh1x3XXXVUXziYiIiKiu8bH8kNIwHQX3T0Lx9cODvpS3ybe8LmlUkXJkVyDqbfKtYDO+Pkupva9p7FcoE4cRhVGND4wdDgfuvvtu2Gw2fPbZZ3jxxRfxzTff4K233vJ73mOPPYYDBw5g9uzZ+N///offfvsNM2bM8DiuoKAAf/vb33DppZdW0R0QERERUZ2jLp+WtQGkSIyvWBBber6kCBTdMAKWQX2c1/BxXHDtKw2sSyffCmWMsaZcXHOPobSJgTFFVo0PjNetW4fMzEy8/PLL6NChAwYNGoSpU6di3rx5sNlsXs/JzMzE2rVr8a9//QvdunXDxRdfjOnTp2PRokXIzs7WHPvss89i+PDh6NGjR3XcDhERERHVBb4ysKEEgKqMsaNtC1j79Qz8mgGI0sBYclVh+mpjCBljEcp4ZXgpDSeqRjV+8q1t27ahffv2SE9Pd2/r378/ZsyYgYMHD6Jdu3Ye52zduhXJycno3Lmze1u/fv0gSRJ27NiBIUOGAACWLl2Kffv24fnnn8e7774blvbKYSgDcV0jHNeqrdhHwWE/BcY+Cg77KTD2ERGpaTOwPrKxwfJWSu3tNQMGoaX7hYA9owWMW/+EvWUz5zZ1hlvykf31cTlNGz2+DvKGGRdThNX4wDg7OxtpaWmaba4gOTs722tg7O0cvV6PpKQkd8b41KlT+Pe//41Zs2bBGMJC697o9TLS0ryUtYQoJSUubNeqrdhHwWE/BcY+Cg77KTD2EREB0I4BloPMwPriCjQd/gNjmIL/TGu54jI4WjWDvVVT5wajASUjBkFJjIfOtS4yEOIYYx/jjf0QZlNQxxFVlYgFxjNnzgw4TnjNmjUAAMnHL6Sv7b72CSHc26dNm4bJkycjIyMj2CYHZLcryMsrrvR1ZFlCSkoczp0rhKLw8Zk37KPgsJ8CYx8Fh/0UWHX2UWKiGQYDlzYhqtF8zEotQkgZK4nx0J2A93HFAIrGXw3Djr2wdfZMGKkJ9Usb9LBntNTst3XvCADQHTulOieEwFj1UCBwFrv0uPg4FN04EiI5IajjicItYoHxpEmTMGbMGL/H1KtXD+np6di1a5dmuyvrWz4r7JKenu4xlthutyMvL899zq+//orNmzfj5ZdfBgAoigIhBDp27Ii5c+eiV69eId1XOD8MKYrgB9AA2EfBYT8Fxj4KDvspMPYREQHwPcY4hGWJLFdeBhj0sF7a3et+R6tmcLRqVuHrBiWUMcZ6H9nyABwVWcKKKMwiFhgnJycjOTk54HHdu3fHu+++i5ycHHdQu379eiQmJqJVq1Zez+nRowfOnz+PXbt2oVOnTgCAjRs3QgiBrl27AgAWLVqkOeeTTz7B77//jtdeew1NmzatxJ0RERERUV2nHmNcflbqCl8rLhYlVw8OR7OCVNZGKcC4Zjcfy1OFVDpOFAE1flbq/v37o3Xr1pg2bRr27NmDtWvX4vXXX8eECRNgMBgAADt27MDw4cNx5swZAEDr1q0xYMAATJ8+HTt27MDmzZvx3HPPYdSoUe7xyRkZGZr/paWlwWg0IiMjA2azOWL3S0RERES1gGaMsY+JqWoqdRyfewEAoMTF+j1FHfwLvSr3Fg33S4QoCIx1Oh3eeecdyLKM8ePH4/HHH8e1116LBx980H1McXExDh06pFm+6ZVXXkGrVq1w22234a677kKvXr3wzDPPROIWiIiIiKiu8bVkUTTMXK9qr1LfWbFpb9866HMQYik1USTV+FmpAaBx48Z4//33fe7v06cP9u7dq9mWnJyMV199NejXePDBBzXBNhERERFRWPhc0zhCRIB5EFRtLLl6MPR7D8LWs1PQ52gC45pwv0RBiIrAmIiIiIgoqqjjQV+zN0cBkRAHW+9ugQ9UT76lmZW6xheoEgGIglJqIiIiIqKoUxPLp0vbFLA1oQTy6nvUjDGuIfdOFAADYyIiIiKiMFOvVyyibQIqX9luv+eoZuFmKTVFoSj7LSUiIiIiigKhBJdVTElPBQA4Lqrv/8BQlpRSZ4Z1nHyLog/HGBMRERERhVsNHFdsGXwpRFI8bF3aBTgyhPb6nHyLeTiKDgyMiYiIiIjCTCQlOP81GmrOWr4mI6x9ewY8TISS5dX5KKVmxpiiBANjIiIiIqIwE3GxKLj7ZohYM/SHj0e6ORUTQiAvDIayb9STb9WQbDlRIAyMiYiIiIiqgEhNdn4RbcGhLoQMt7EsMFYv1xR19051Vg2p6yAiIiIiqqWiLTgMJWNsVGeMdb4PJKqhGBgTEREREVUlISLdggoJaXkpdSl1tD0IIAIDYyIiIiIiUguhlFoYOK6YohsDYyIiIiIiKhNSxlgVGHMmaopCnHyLiIiIiIjKhDLGuNxM1AV33QwgukrIqW5jYExEREREVJXqxBjjsrBCSFLZjNxEUYKl1EREREREVCakdYw5xpiiGwNjIiIiqpCjR4+iR48e6NOnT6SbQkRVIZQxwgyMKcoxMCYiIqKg2e12PP744+jVq1ekm0JEVSWEwLb8GGOiaMPAmIiIiIL29ttvo0mTJhg5cmSkm0JEVSWUwDg+tuwbzkpNUYiTbxEREVFQtmzZgoULF2LhwoX46aefwnJNuZIfoF3nV/Y6tR37KbCq7CNJlU2Nhv8Gkmod4/LtLd9PRQ9MglRQBEkVGMuyDBEF91lV+PsWnJrWT1ERGJ88eRIzZszApk2bEBsbi7Fjx+LRRx+FTqfzec758+fx3HPPYdWqVdDpdBg2bBj+/ve/Iza27JdWURR8+OGH+PLLL3Hy5EnUr18ft99+O2699dbquC0iIqKoUVBQgGnTpuH5559HUlJSWK6p18tIS4sPy7VSUuLCcp3ajv0UWFX0kejdEbYDB6Hr2i5sP/NVSbkQC2vp177a6+6n0v1CEbC49qXFQ0rgzxp/34JTU/qpxgfGDocDd999N9LT0/HZZ5/h7NmzeOKJJ2AymTB16lSf5z322GPIysrC7NmzYbPZ8NRTT2HGjBl46aWX3Mf8+9//xi+//IInn3wSbdq0wblz51BcXFwdt0VERFQjzJw5E2+99ZbfY9asWYM33ngDl19+OS677LKwvbbdriAvr3Lvu7IsISUlDufOFUJRomtJnOrEfgqsyvto5BDnvzkF4b92mMn5JTCXfp1Trr3++skV3uSeLwKsdffnjL9vwanOfkpMNMNg8J1UBaIgMF63bh0yMzMxe/ZspKeno0OHDpg6dSpee+013HfffTAYDB7nZGZmYu3atfj666/RuXNnAMD06dNx9913Y9q0aUhPT0dmZiY+/fRTLFq0CK1atQIANG3atFrvjYiIKNImTZqEMWPG+D2mXr162LRpE06fPo1PPvkEACCEgKIo6NixI/7zn/9g9OjRIb1+uD4MKYrgB9AgsJ8CYx8BUN2+r77w10+KkIC63ofgz1Kwako/1fjAeNu2bWjfvj3S09Pd2/r3748ZM2bg4MGDaNeuncc5W7duRXJysjsoBoB+/fpBkiTs2LEDQ4YMwcqVK9GkSROsXLkSU6ZMgSRJGDBgAB577DHEx4de4hKOGvmaVm9fE7GPgsN+Cox9FBz2U2DR2kfJyclITk4OeNyHH34Im83m/v6nn37CrFmzMH/+fDRq1KgKW0hE1a6ys0pH159BIgBREBhnZ2cjLS1Ns80VJGdnZ3sNjL2do9frkZSUhOzsbADAsWPHcOLECfz44494+eWXYbVa8fzzz+Nvf/tbwJIyX8I5VgqoOfX2NRn7KDjsp8DYR8FhPwVWW/uoZcuWmu937twJWZaRkZERoRYRUZWp7AM+mQvfUPSJWGAc7JgmAJB8PLXytd3XPiGEe7sQAjabDf/5z3/QvHlzAMCMGTMwceJEZGdnazLUwQrHWCmA4xKCwT4KDvspMPZRcNhPgdW0sVJERKFS6qfB3rIp7C2bhHYBZowpCkUsMA52TFN6ejp27dql2e7K+pbPCrukp6e7j3Gx2+3Iy8tzn5Oeng69Xu8OigGgdevWAJyzYIcSGAPhGyvluhY/gPrHPgoO+ykw9lFw2E+B1ZU+uu6663DddddFuhlEVBVkGcU3jQr9fIkZY4o+EQuMgx3T1L17d7z77rvIyclxB7Xr169HYmKie9Ks8nr06IHz589j165d6NSpEwBg48aNEEKga9eu7mPsdjuOHTvmnnTr0KFDAICLLrqosrdHRERERFQ3MWNMUajGP87p378/WrdujWnTpmHPnj1Yu3YtXn/9dUyYMME9I/WOHTswfPhwnDlzBoAz8ztgwABMnz4dO3bswObNm/Hcc89h1KhR7kzwZZddhvbt2+Pvf/879uzZgx07duC5557DsGHDQs4WExERERHVeRxjTFGoxv/U6nQ6vPPOO5BlGePHj8fjjz+Oa6+9Fg8++KD7mOLiYhw6dEgzW+Yrr7yCVq1a4bbbbsNdd92FXr164ZlnntFc97333kNCQgJuvvlm3HfffejatSteeOGFar0/IiIiIqLawNGwHkSMMdLNIAqJJISo/QOhqonN5sD580WVvo4sS0hLi0dOTkGdGKcWCvZRcNhPgbGPgsN+Cqw6+yg5ObZWTL4VjvdN/mwGh/0UGPsoOH77SQjn/+p4xpg/S8Gpae+bNX65JiIiIiIiigKSVPk1kIkipG4/ziEiIiIiIqI6j4ExERERERER1WkMjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jRJCCEi3YjaQlEEHA4lLNcyGHSw2RxhuVZtxT4KDvspMPZRcNhPgVVXH+l0MmRZqvLXqWrhet/kz2Zw2E+BsY+Cw34KjH0UnJr0vsnAmIiIiIiIiOo0llITERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BcQ0zf/58DBkyBF26dMG4ceOwY8eOSDep2rz77ru4/vrr0aNHD/Tt2xcPPPAADh8+rDnGYrHgmWeeQZ8+fdCjRw88+OCDyMnJ0Rxz8uRJ3HXXXejWrRv69u2Ll156CQ6HoxrvpPo8/fTTaNeuHebNm+fexj5yOn36NB599FH07t0b3bt3x3XXXYfMzEz3fvYTUFBQgBkzZmDAgAHo1q0bRo0ahYULF7r318U++u2333DPPfegf//+aNeuHVatWqXZH64+2bRpE8aOHYvOnTvjyiuv1PQ7VQzfN/m+WRF83/SN75uB8X3TU6163xRUYyxZskR06tRJfPXVV2L//v1i+vTp4pJLLhE5OTmRblq1+Mtf/iK+/vprsW/fPrF7925x5513isGDB4vi4mL3Mf/85z/FoEGDxPr168Uff/whxo0bJ2655Rb3frvdLkaNGiVuv/128eeff4rVq1eLPn36iNdffz0St1SlVq5cKcaMGSP69+8v5s6d697OPhLi/PnzYvDgweJvf/ub2L59uzh69KhYvXq1OHXqlPsY9pMQTz31lBg2bJj49ddfxdGjR8W8efNE+/btxaZNm4QQdbOPVq9eLV577TWxYsUKkZGRIVauXKnZH44+OXr0qOjWrZt44YUX/p+9+46Torz/AP6Z2XJtr9/RmxzSy4EFRYqFIBIbaDBG1KjETjRRiQUV7F1jiyZGfkRQYxJBjUosiCAgNg6kw9Hr9X5b5/n9sXe7M7uz7W7vdvfu8369EpfZmdlnn9u72e98n+f7iN27d4u33npLDBkyRKxZs6bd3mdHwesmr5uR4HUzMF43w8Prpr+OdN1kYBxHLr30UvHQQw95/u1yucT48ePFG2+8EcNWxU55ebkYOHCg+PHHH4UQQtTU1Ihhw4aJ5cuXe/bZvXu3GDhwoNi0aZMQwv3LOWTIEFFaWurZ5+233xYnn3yysNvt7fsG2lBpaamYOHGi2L59uzjrrLM8F3j2kdvTTz8tLr/88oDPs5/cfvnLX4rXXntNs23KlCnijTfeYB8J4XeBj1afPPXUU+L888/XvNbtt98urr/++rZ8Ox0Sr5tavG4GxutmcLxuhofXzeAS/brJodRxwm63Y8uWLTjjjDM822RZxrhx41BUVBS7hsVQbW0tACAzMxMAsHnzZjgcDk0fFRQUoEePHp4+KioqwuDBg5GXl+fZZ/z48aipqcGePXvar/Ft7J577sGVV16JQYMGabazj9xWrFiB4cOHY86cOTj99NMxY8YMfPDBB57n2U9uo0ePxpdffonjx49DCIHVq1ejpKQE48aNYx/piFafFBUVac7RvE9n/VvfUrxu+uN1MzBeN4PjdTM8vG5GJtGumwyM40RlZSVcLpfmQwEAubm5KC0tjVGrYkcIgccffxynnnoqCgoKAABlZWVITk6GxWLR7Jubm4uysjLPPrm5uZrnm/u0eZ9Et3jxYjQ0NODaa6/1e4595Hbw4EG8/fbbKCgowJtvvolLLrkE9913H7788ksA7Kdm8+bNQ58+fTBx4kQMHz4ct956Kx5//HEMGTKEfaQjWn0SaJ+qqio4HI62an6Hw+umFq+bgfG6GRqvm+HhdTMyiXbdNEbtTNQmhBCQJCnWzWh3Dz30EHbu3Il33nlHs12vL4QQIfcJtj2RFBcX49VXX8V7770HWda/r9XZ+whwv98RI0bg9ttvBwAMGTIEmzdvxjvvvINzzjkHAPsJcH9Z3LZtG/7617+ia9euWLduHe69915069YNAPtIT7T6xHcf33NQy/G6yeumGq+b4eF1Mzy8bkYuka6bzBjHiezsbBgMBr+7RRUVFX53wzu6hx9+GCtWrMCiRYvQtWtXz/a8vDw0Njairq5Os7+6j/Ly8vz6sPnfvneaEtHGjRtRUVGBKVOmYOjQoRg6dCgOHz6MRx99FFOnTmUfNcnLy0P//v012woKCnD06FHP8529n6xWK55//nncfffdmDRpEgYPHoxrrrkGkyZNwqJFi9hHOqLVJ3r7lJeXIysrCyaTqa2a3+HwuunF62ZgvG6Gh9fN0HjdjFyiXTcZGMcJs9mMYcOGYe3atZ5tiqJg3bp1KCwsjF3D2pEQAg899BA+++wzLFq0CL1799Y8P3z4cJhMJk0f7d27F0eOHPH0UWFhIbZv364pA7927VpkZGT4/cFPRJMnT8aHH36IZcuWef7XpUsXXH/99XjttdfYR01Gjx6N/fv3a7bt27cP3bt3B8DPEgA4nU44HA4YDAbNdlmWoSgK+0hHtPqksLAQa9as0Zx77dq1neZvfbTwusnrZjh43QwPr5uh8boZuYS7bka1lBe1SvOyE++//77YvXu3uP/++zvVshMPPvigOOmkk8T69etFSUmJ53++y06ceeaZYt26deLnn38Wl112mW7J92uvvVZs27ZNrFq1Spx22mni+eefj8E7ah/q6ppCsI+EEKKoqEgMGTJEvP7662Lfvn3i/fffF8OHDxdffvmlZx/2kxCzZs0SF154oWfZiXfffVcMHTpUfPDBB0KIztlHdXV1YuvWrWLr1q1i4MCB4h//+IfYunWrKCkpEUJEp08OHDggRo4cKZ588kmxe/dusXjxYjF06FAu19QCvG7yutkSvG7643UzPLxu+utI100GxnHmrbfeEmeeeaYYNmyYuPTSS8XGjRtj3aR2M3DgQN3//ec///HsY7Vaxfz588Upp5wiRo0aJW699VZNeXchhDh06JCYPXu2GDlypBg7dqx44oknhNPpbO+30258L/DsI7fPP/9c/PKXvxTDhw8X06ZNE0uXLtU8z34SoqSkRPzpT38S48ePFyNHjhTnnXeeWLx4sef5zthH3377re7foRdffFEIEb0+WbdunbjooovEsGHDxDnnnCPef//9dnuPHQ2vm7xuRorXTX28bobG66a/jnTdlIRgxQ8iIiIiIiLqvDjHmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBNRzHzyySd4//33Y90MIiKihMDrJlHbYWBMRDGzfPlyLF26NNbNICIiSgi8bhK1HQbGRERERERE1KlJQggR60YQUedz9913+931vvXWWzFnzpwYtYiIiCh+8bpJ1LaMsW4AEXVON998M44cOYLa2lo8+OCDAIBu3brFuFVERETxiddNorbFwJiIYqJPnz7IysqCEAKFhYWxbg4REVFc43WTqG1xjjERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIooZk8kEm80W62YQERElBF43idoOA2MiipkTTjgBO3fuxBdffIGff/4Zx48fj3WTiIiI4havm0Rth+sYE1HMVFRU4P7778f333+P6upqrsdIREQUBK+bRG2HgTERERERERF1ahxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsCYiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqxlg3oCNRFAGXS4nKuYxGGU5ndM7VUbGPwsN+Co19FB72U2jt1UcGgwxZltr8ddpatK6b/GyGh/0UGvsoPOyn0NhH4Ymn6yYD4yhyuRRUVTW0+jyyLCE314KamkYoiohCyzoe9lF42E+hsY/Cw34KrT37KCsrFbJsaNPXaA/RuG7ysxke9lNo7KPwsJ9CYx+FJ96umxxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIqNVsJZvQeHhtrJtB1CLGWDeAiIiIiIgSX+kXvwcA9Lz8K0iSFOPWEEWGGWMiIiIiIooeocS6BUQRY2BMRERERETRw8CYEhADYyIiIiIiiiIGxpR4GBgTEREREVHUCGaMKQExMCYiIiIiougRItYtIIoYA2MiIiIiIooe4Yp1C4gixsCYiIiIiIiip4UZY0fVHrgaK6LcGKLwcB1jIiIiIiKKmpbMMXbZqnH8k2sBAL1+szLKLSIKjRljIiIiapEHH3wQgwYNwuLFi2PdFCKKMU0w3ILAWGGmmGIsoQLjJUuW4Oyzz8aIESMwc+ZMbNq0Kej+n376KaZOnYoRI0bgggsuwKpVq/z22b17N2644QaMGTMGY8aMwa9//WtUVPAXk4iIKJivvvoKRUVF6NKlS6ybQkTxwCcwrtu5DHU7l4Z/vCRFv01EEUiYwPiTTz7B448/jltuuQVLly7FoEGDMHv27IBB7IYNG3DHHXfg0ksvxbJlyzB58mTcfPPNKC4u9uxz4MABXHHFFRgwYADefvttLF26FNdddx1MJlN7vS0iIqKEU1ZWhvnz5+Opp57iNZOI3BRvwS0BBVU/vICqH/4cwQkYGFNsJcwc44ULF+Kyyy7DJZdcAgBYsGABVq5c6QlmfS1atAgTJ07E7NmzAQC33XYb1qxZgyVLluCBBx4AADz//POYOHEi7rrrLs9xffv2bYd3Q0RElLjuueceXHnllRg0aFCrzyXLrfsy3Hx8a8/T0bGfQmMfhSdQPymSN2Osfirc/lTvl+g/A36WwhNv/ZQQgbHdbseWLVtw0003ebbJsoxx48ahqKhI95iioiK/gHn8+PFYuXIlAEBRFKxcuRKzZ8/GNddcg+3bt6Nv37645ZZbMGHChBa3NRo/2Hj7kMQj9lF42E+hsY/Cw34KrbP00eLFi9HQ0IBrr7221ecyGmXk5lqi0CogOzstKufp6NhPobGPwuPbT06rgkNNj7Myk3Gk6XG4v+NWOQ1HIzwm3vGzFJ546aeECIwrKyvhcrmQl5en2Z6bm4v9+/frHlNWVobc3Fy//UtLSwEA5eXlaGhowBtvvIHbb78dc+fOxZdffokbbrgB//73vzF06NCI2xnNCzwQPx+SeMY+Cg/7KTT2UXjYT6F15D4qLi7Gq6++ivfeew+y3PrZWE6ngpqaxladQ5YlZGenobKyHorSsiViOgP2U2jso/AE6ieXtcbzuLKy1vO4vLwurPM6qr37hXtMvOJnKTzt2U8ZGSkwmQxB90mIwDgQIQSkIBP19Z5r3qYo7uEe55xzDq6++moAwJAhQ/Ddd9/hn//8JxYsWBBxe6JxgQf4yxQO9lF42E+hsY/Cw34KLd4u8G1h48aNqKiowJQpUzzbXC4XHn30USxevBjLly+P+JzR6itFEfxshoH9FBr7KDy+/aS4nN7HTqdmv7DO5/LOUe4o/c/PUnjipZ8SIjDOzs6GwWBAWVmZZntFRYVfFrlZXl6e3/7l5eWe/bOzs2E0GtG/f3/NPgUFBTh8+HCL2xrNH2q8fEjiGfsoPOyn0NhH4WE/hdaR+2jy5MkYPny4Ztt1112HGTNmYPr06TFqFRHFAyFUxbdcdtX24IksveOJYiEhqlKbzWYMGzYMa9eu9WxTFAXr1q1DYWGh7jGFhYVYs2aNZtvatWs9+zef03co9r59+9C9e/eotp+IiKgjyMjIwMCBAzX/M5lMyM/PR79+/WLdPCKKAVvpZtTv/UxblVrxBsZhr2ncgrWPiaIpIQJjALjmmmvw7rvvYunSpSguLsb8+fNhtVo9d6jnzp2LZ5991rP/VVddhVWrVuHNN99EcXExXnrpJWzevBlXXHGFZ59rr70WH3/8Mf79739j//79ePPNN7F+/Xpcdtll7f7+iIiIiIgSTennt6Jy3WNwNZZ7N7oc3sfhBrwKA2OKrYQYSg0A06ZNQ0VFBV588UWUlpZiyJAheOONN5CTkwMAOHr0qKYQyJgxY/Dss8/ihRdewHPPPYd+/frhlVdeQUFBgWefqVOnoqamBq+99hoefvhhFBQU4LXXXmtR4S0iIqLOaMWKFbFuAhHFAcVW5XkslMgDY8GMMcVYwgTGADBr1izMmjVL97m33nrLb9t5552H8847L+g5Z86ciZkzZ0alfUREREREnZFwWr2PVRljAQVhLWLHOcYUYwkzlJqIiIiIiOKTJjBuwRxjTfEu0TELGFJ8S6iMMVFn4bJWwlGxC47qvXBZKyHsdYBsgGRMgTGtG4yZfWHOHQLZmBzrphIRERFBcdk8j9VVqVtUfEu4AIlhCrUvfuKI4oSjag8a9q9A46E1cFbvDX2AZEBSl5FI6Xs2UvucBdlsaftGEhEREelQZ4yhmmMslDCHSPsGxgxTqJ3xE0cUQ0IoaDy4CnU73oe9dJNnuzG9N8y5g2HKLoAhJR+y2QIhFAh7HZz1x+Co3AVb6c+wHd8A2/ENqP7pL0gbcD7Sh14OQ3J2DN8RERERdUbC2eh93IKq1EKz3JMLkiFqTSMKCwNjohgQQsB65FvUbHwDjqpiAIDR0hNpA85Hcq8JMGX0CuMcCuylP6N+z//QsO9z1G1/D/XFHyNjxG9hGTgdksxfbyIiImofwqkaSh1BVer64k9hSMnRyRgTtS9+cyZqZ876Y6j6/s+wHlkHADDnDkXGiKuR1P0USFL49fAkSUZSl1FI6jIKmaOuQ+2WJajbtQzVP72Chr2fI+eM+5GU1aet3gYRERGRhwgwx1ggcGAsXDZUrn8SAJA74WHv9nCHXxNFEQNjonYihEDdzvdRU/Q3CJcVBksPZI25Fck9T4ckhbWQQUCGlFxknfx7pA24AJXfPwd76c8o+fR3yD71D8jNvTRK74CIiIhIX6A5xsEyxprh08wYU4wxMCZqBy5rFSq/fQLWI98CshHpw65ExrBZkIxJUX0dU9YJyD/nBdRuWYKazf+HinWPw2g/gqTBvwXCW0WQiIiIKGLCpb+OcfCh1KplmYR2jjFRe2NgTNTGbKU/o/yb+VAay2HM6I2cMx6AOfvENns9STYgY8RVMHcZgfLV96Pkx0VILd2P7NPvg2QwtdnrEhERUeclFKf3sXootRIkMFYHwMwYU4yFP6GRiCJWv+dTlH75ByiN5Ujtfx66TP1rmwbFasldR6PbuX+BObMnGg6sRPnqB7TrChIRERFFiyqw1RbfChzkCqE/lJoZY4oFBsZEbUAoLlT99Coqv30SEAqyTvkDck77E2RjSru2w5TZBwN/9XcYM/rAemQdg2MiIiJqE5pgNtyq1Jpj1NljBsbU/hgYE0WZcDlQsfYR1G1/D5I5HXlnPQPLiRfFrD2mtHx0/cULMGb0hfXIt6j49gltgQsiIiKiVlNlfANkgn2p99MEw/yeQjHAwJgoihRnI8pW3YfGA1/BkNYNXab8BcndxsS6WTCk5CL/nOdgSOuGxv0rUF3011g3iYiIiDoSdTCrGQodJMgNGEAL/32J2hgDY6IoUey1KFtxF2xHv4Mxsx+6/OJlmDJ6xbpZHoaUXOSd+SRkcwbqtr2Lul0fxLpJRERE1EFo5giHmf0VAYpvCcHAmNofA2OiKFDstShdcQfsZZthzh2KLpNfhCE1L9bN8mPK7IvcSY8CshFVP74EW+mWWDeJiIiIOgIRYL5wsKrUmiWanOonotcuojAxMCZqJcVeh9Kv5sJRsRPmLqOQd/YzkJMyYt2sgJLyRyDrpN8DihPl3zwIV2N5rJtEREREcUYozsgyt4o646v/2P81AhXsik5gLIRA9aaFsB0visr5qGNjYEzUCoqjAWUr74ajfBvM+SOQN+lxyKbUWDcrpLQBFyC1/zQojWUo/2aBz11aIiIi6swUZyMOvzsZ5avuC/sYoc7yBiqq5XeQKoB2OdRPhP26wdhLN6F28yKUfnl7VM5HHRsDY6IWUpxWlK282zN8Ou/MJxMiKAYASZKQfcptMOUMdF80trwd6yYRERFRnHDWHAAAWA+vDf+gQEOpg1WY1hTfUt2kj1JVasVeF5XzUOfAwJioBYTiRMU382Ev3QRTzmDknfVUwgTFzSRDEnLG3Q/JkIyazf8HW9nWWDeJiIiI4kGwecEBj1EFueqlm4JkfwMOpSaKgYQKjJcsWYKzzz4bI0aMwMyZM7Fp06ag+3/66aeYOnUqRowYgQsuuACrVq0KuO/vfvc7DBo0CF999VW0m00djBACleufhvXItzBm9EX+WU9BNlti3awWMWX0RuZJtwJCQeXaR6E4GmLdJCIiIoqxYPOCtfupg171UOoAw6r9TqAKpl3ejHG4r08UTQkTGH/yySd4/PHHccstt2Dp0qUYNGgQZs+ejYqKCt39N2zYgDvuuAOXXnopli1bhsmTJ+Pmm29GcXGx376LFy9mWXgKW3XRX9Gw938wpOYj76yn47rQVjjSCn6J5J5nwFl3GNUbXot1c4iIiCjWggWzmv0CFNnSrGkcpPiWpip1+HOMNZnm4HuGuR9RAgXGCxcuxGWXXYZLLrkEAwYMwIIFC5CUlISlS5fq7r9o0SJMnDgRs2fPRkFBAW677TYMHToUS5Ys0ey3e/du/PWvf8Vjjz3WHm+DElzttvdQt+0dyOYM5J31NIxpXWLdpFaTJAnZY++CnJSJ+t0fwlYSfCQGERERdXBhZ2xVgad6KLVm7nCQcykBinQFSVgpthocfvccVH7/fJhtJAqPMdYNCIfdbseWLVtw0003ebbJsoxx48ahqKhI95iioiJcd911mm3jx4/HypUrNee94447cM8996BLl+gEOLIsRe0c0ThXRxWLPqrf+zmqN7wKyZCE/LMeR1L2Ce322i0Vbj/JqdnIPnkOytc8gsrvnkH3X74ByZDUHk2MOf6+hYf9FBr7iIg6irCHMgfKEmuGUkc3Y2wr2QgAqN/1AbJP+UOI9jFjTOFLiMC4srISLpcLeXl5mu25ubnYv3+/7jFlZWXIzc3127+0tNTz7+effx4nnngizjvvvKi002iUkZsbvbmm2dlpUTtXR9VefVR3eAMOfvskIBlwwi+fROYJp7XL60ZLOP2Uk3Mx7IdWoHb/WjiK30P3028KeUxHwt+38LCfQmMfEVHCC3ModcD1ijWPg5xLU3xLXZU6cEArGcxhtY0oUgkRGAcihIAkBb4zr/dc87Zvv/0Wy5cvxwcffBC19jidCmpqGlt9HlmWkJ2dhsrKeigK73Tpac8+ctQewvHld0C4HMg+9Q44M0ajvDwxyv9H2k/po3+PukM/4dj3CyF1mQBTVr+2b2SM8fctPOyn0NqzjzIyUmAyGdr0NYio89KuKRxsxxYEw9oXUh2uPibI39CIAmNeryh8CREYZ2dnw2AwoKysTLO9oqLCL4vcLC8vz2//8vJyz/7ff/89jh49itNO02b+br75ZowbNw5///vfW9TWaH4ZUhTBL6AhtHUfKbYalK64G4qtGpbBM5E24IKE/JmE209yajdkjLwG1Rv+goofXkTeWc8EvfnUkfD3LTzsp9DYR0SU6ETYSyfpV59WF7UNNiw70FDqYMdIsinMtkVSpIsoQYpvmc1mDBs2DGvXehcZVxQF69atQ2Fhoe4xhYWFWLNmjWbb2rVrPfv/5je/wYcffohly5Z5/gcA8+bNw4IFC9ribVCCES4Hylc/AGftQST3PAOZhTfEukntwjJwBowZfWA79iOsh76JdXOIiIiovYUbGIczlDpY1jbIUOra7f+GvWxbeO0IeH5n6H2ImiREYAwA11xzDd59910sXboUxcXFmD9/PqxWK6ZPnw4AmDt3Lp599lnP/ldddRVWrVqFN998E8XFxXjppZewefNmXHHFFQDc840HDhyo+R8A9OjRA7169Wr/N0hxRQiByu+fha2kCKbsE5FzxjxIcucYtigZTMg6aQ4AoOqnVyCcthi3iIiIOgLr0R9Q+f0LzOIlgPCHUgcoshVmhelAGWN7xXZU//QySj7TqXcSRmEw2/EiOOuOQAgGxhS+hBhKDQDTpk1DRUUFXnzxRZSWlmLIkCF44403kJOTAwA4evQoZNkb548ZMwbPPvssXnjhBTz33HPo168fXnnlFRQUFMTqLVACqd36Nhr2LIchJQ95kx6DbEyJdZPaVXL3U5Dc8wxYD69B7fZ/ImP4VbFuEhERJbiyr+4E4L7GpPQ6I8atoWDUQariaIC9bAuSup3sN70qrCxxuMs1qZd7stcGbpvPUlCSpM3zuayVKP3ydgBA1ql3Bn5tIh8JExgDwKxZszBr1izd59566y2/beedd15EFad37NjR4rZRx9FwYCVqNv4NkjEZuZMehyE1P9ZNiomsMTfj2NHvULtlCdL6n9dp+4GIiKJLOK3RP6cQaNjzKYTTCsugGVE/f2ejDoxrt76N2i2LYRk8E1ljbvbd0fsw4NrFQYZSBzpGCjJKT/2aTiskU6r2aUeD9x8cSk0RSJih1ETtwV62DRXrHgMgIWfcAzDnnBjrJsWMMb0n0gdfCuGyoebn/4t1c4iIqKOQov/101lzAJXrn0LVjy9CcbZ+hZBOTzWU2na8CABQt/09nR3VmWH9LHHQ4lsBMsuSHCR3p84su+z+z6uOFQyMKQIMjImaOOtLULbqPsBlR+aYm5HSa1ysmxRz6UN/A8mcjvo9n8JRrb9mOBERUUTaYLUDoQ6GGQy1mjr7KydlBtkx0HJN6sfBMsaBlngK/BkJmY3WnNP7WRDB2kEEBsZEAADF2YjyVfdBsVYgreB8WAZdGusmxQXZnI6MYbMAoaB6499i3RwiIuoApGDDZFtIBFwPl1omvDnCIqyh1EHmGGuWdVI9DnZzI+C85uZN3nYoDt4wofAxMKZOTwgFleseh6NyF5K6FCLr5Ns6zdq94bAMvBiG1K6wHvoGttLNsW4OEcXQ66+/jksuuQSjR4/G6aefjltvvRX79u2LdbMo0bTFNTZEsEQRCnuOcDQzxqogO2hgrK54rfOzVj2v2KpVzeANEwqOgTF1ejWbFqLx4CoYLD2QM2EBJEP4C8d3BpIhCRkjrwUAVBe9xqFIRJ3Yd999hyuuuALvvfceFi5cCLvdjmuvvRZWa/SLKVEHFkbgWl/8CY7/7yYo6kJKwaizxAyAWi9AJlhnR91jtMFwkOWaNMfrr2nsOwJAm6XWG0qtHxgzY0yhMDCmTq1h3xeo3fIWJFMa8iY9DkOweTSdWGq/yTBl9Ye9dDNsR7+LdXOIKEb+/ve/Y8aMGTjxxBMxePBgPPHEEzh8+DC2bt0a66ZRAglnjdzK9U/BUb4NjQe/Du+cYRZ7igXhssFRtTfWzYiIJuAMNjQ94BJN6mHV4WWMA61pLFw27blCDNPWnseueszAmIJLqOWaiKLJVrYVFd8+CUgycs94EKbMvrFuUtySZAMyRlyD8tX3o+bn/0NS91M53JyIUFvrXms0M7PlNxVluXV/S5qPb+15Orp46icJrrDbIcly0H0VRwMUWw0kyRsgyZJo0ftsqz46/sWfYCspQpcpLyG5y8ionrutSJosr6pvZUnTT4G+CqhvTkgI/POQAlWlVgW3kmKDLKehasPrqN+3ApkjrvK2R+fcMvSDellS2u3zH0+/b/Es3vqJgTF1Ss76EpSvug9QHMg66fdI7nFqrJsU95J7nQFTVgHs5dtgPfodUnqMjXWTiCiGhBB4/PHHceqpp6KgoKBF5zAaZeTmWqLSnuzstKicp6OLVT8JIXCg6XFaikH35+5srET9sS3I6HeGZ9/0DAtygnxGfn7jEjjry9D33Ic92zIzkpCc3fLPVbT76EBJEQDAULsVuUMSY8ULW4oRNU2PjQYJzTlb9c8tOzsNVpGMozrHy5I3nE5LMwX8PXemmlDV9NggA805XbPZGyhlZSXDbLHgwJa33RtqdqieS0FSlvbc9Q4zjjU9NhkFmid6ZGelwmSJzt+bcPHvUnjipZ8YGFOn465AfS8UayXSBlyItIHTY92khCBJMjJG/NaTNU5m1pioU3vooYewc+dOvPPOOy0+h9OpoKamdWvOyrKE7Ow0VFbWQ1FYAyGQWPeTer3Z2to6oLzOb58jH14LZ80B5E161LOtvt4BobNvM2d9GQCg6vgBz7aqylqYlMDHBNLWfdTQYEd5kPcSTxobvMOXHQ7vsOby8jpNP1kr9d+PosrU1tdZIQd43w313voELqd3qLO1wft3obK8BkZbquffdqf3u0dFSQkq//cQ0gdOR2qfiQAAW1W9d1+b931UVNTCaEvRbUe0xfr3LVG0Zz9lZKTAZApeEZ+BMXUqQiioWPsYHJW7kdR1DLJO/j2Duwgk9xoPU/YAOJg1JurUHn74YaxYsQKLFy9G165dW3WuaH0ZUhTBL6BhiFU/KQ5vgKI4HbptcNa4g1t7xS7PNgFDeO2VvF9pFZerVe+xrfpIiMT5jCqKau6uevmjpvYLxYWGY0WAZNY9Xl0wSyhKwPetfh3t3GBvkKy4nD7He4Ob2l0fwXbsJ9iO/YRev1np2V+vHUqQdrQV/l0KT7z0E4tvUadSs+lNWA+thtHSE7nj50OSeW8oEpIkIWP41QDc1bxZoZqocxFC4KGHHsJnn32GRYsWoXfv3rFuEiUITWVj4YSz/hisxzfo7yyrVocI8+a1OpCKt+JbCUlTPMu/+FbJT4tR8tnvUfn984FOoHrk/11BcTRAcfpUsw+wXJPvz1NbmMsOX5r91QW3+LmgEBgYU6dRv/cz1G5ZDMmUhtwzH4eclBHrJiUkT9a4YjusR9bHujlE1I4WLFiADz/8EM8++yzS0tJQWlqK0tJSLtdEofkEPcc+vAJlX/4BjpqDfruqb1oHqySsCZ7UARKXa2o9oV8Uq1n1Hne1cEfFDr/n3McEX2v4yL9+iSPvTfWpSh0ooHVpf9aaStM6P2tFP/PMwJhCYWBMnYKtZCMq1z/trkA9fgFMGX1i3aSEpc4a1259O8atIaL29M4776C2thZXXnklxo8f7/nfJ598EuumURsQiguV659G46G1LT+HUPyW2BEuhydwclTs9D9IPZoryFJBir1O/Q91w1G79V1UF73e4nZ3VlU/vYq6XR9AswyS3uiwEJl8EXBNY89G9/+rsr8BM8aKC0K1nrVmuS+9myABhmRzlBuFwnGk1OE5ag6gbNU8dwXqU/6A5O4nx7pJCS+51xkwZvSBvXQTbKU/Iyl/RKybRETtYMeOANkh6pCsR79HffHHqC/+2DN/MxJCCBz/+BoYUrsg57S53idUwYqrocTvuLAzxk79YEkIF6qLXgMAZIy6nrVEwqQ46lG3/T0AgGXgjBB7h+hTTRAaOFOr+fn7DLf3PlaguFSjUpTggbHvsP1w2kEEMGNMHZzLWomylXdD2GthGXI5LCdeFOsmdQiSJCN96OUAgNqtLa9IS0RE8UsdeLaI4oSzZj9sx77XZBDVWUJXY4X/62qGvwYbSq3ODKoCY3u9aicOqw5XoHm9enO2Q95s0ASn2kytOnPrqjvm3a7oZ4whXNrh0aph87rzyTWfi+BDuonUGBhThyWcNpR/fS9cdUeQ0udMZBb+LtZN6lBS+06GITUf1sNr4ajaE+vmEBFRtLVy6KlmmKwmyxd8/qpm2GyQjLF2eLY3WHI2HNfdHmu682HjiXqIsrpgls/NBcVpDV0UTfUz9gteVedTHOqbGPpzjIXi8hke7dDdT/f1GBhTBBgYU4ckhIKKdY/CXr4N5rzhyDntHkgSP+7RJBlMsAy+DACzxkREHZFeNeKIjlcFpS5rteoJVUCrM7xVkxEMGhirs4iqLHRDqXefYMe3N8UBxVYDe9m2WLdEl/CZp+2hCi6ri17HoXfPhbV8b6izBXiMgHOAA80xhnBpM9iajHGIOcaCc4wpfIwUqEOq3vAaGg+uci/LNPERSMakWDepQ0ob8EvI5gw07P8SzrqjsW4OERFFU2szxqoARrF6h0wLncJO6qBFuLxrHgcLbLWZQVWwpAms1VnQ9iOE8BsmLlx2HP/0OpR8dhPslbtj0q5gtEWt9NcXbr4R7tQZAh/4xD5DqRX9OcCB1jEWfkOp9dtpO16Eyu+eDfL5YcaYgmNgTB1O7fZ/o277e5CTMpB75pMwJGfFukkdlmxMgWXQDHcF0KaCHURElLiE4kLZyntQu/1frR56qskY2/QzxqqddY9ryVBq9ZDgWAXGVT+8gKNLZ8BWslHTluZstrN6X0zaFYym38O8ORHeiYNljAMMdfbJJGsywwEqWZd+eTvqd3+Ehj3/Uz2tCrCdVpSvfqBVVdapY2NgTB1K/d7PUP3Ty4DBjNyJj8KU0SvWTerw0gZOh2RMRn3xx3BZq2LdHCIiagVH1W5Yj6xD9U+vaIehKi5Ub/w77HrLKwWiHprrCjBMt3mYrSbIVQdlLihOK5z1x+EnQEEvzWNXbIZS1+/6AADQeHCVqi2qgC6G07uc9SUQQkC4bGg8vM7T3+qh1IrTWwW6tUPqfTO1mmA4jOWaEGSOsd6NE81NGNVr1e34DxoPrkL5qnsjaTx1IgkVGC9ZsgRnn302RowYgZkzZ2LTpk1B9//0008xdepUjBgxAhdccAFWrfL+cXI4HHj66adxwQUXoLCwEBMmTMA999yD0tLSIGekeNZ4+FtUfvukZ61iLiHUPgxJmUjr/0vAZUf97g9j3RwiImoFzbJHTm+A2rDvc9RueQsly6+P4FzqzG+AwLjpsWYYrSowFsKJ459ci2MfXAZXY7n2/AGzzAGKfsWAZErz/kMdYMYoMK7f+xmOfTATNZv+jqqf/oLyr+9B9ca/NzVP1YeqwLi1lb395vYGmmOsKfilHUotAgyl1txE0T3W+ziimzrUKSVMYPzJJ5/g8ccfxy233IKlS5di0KBBmD17Nioq9Oc4bNiwAXfccQcuvfRSLFu2DJMnT8bNN9+M4uJiAIDVasXWrVtx00034f3338dLL72E3bt345ZbbmnPt0VRYiv9GRXfPAgIF7JPuxspPU+PdZM6FcugGQAk1O1cFlcVQImIKELqoaeqoKMldSS0Q3PV6wzrzF9V9ANjKA646o4AAFz17jVvnfUlaDy8zifLrB8MBx2K3Q5kU6r3H6r2xqogaMOeTwEAtVsWo3H/CgCA9ch695OagFOVMW5tNW2fofPaYdH65/YryhVodIDTPzDWjBLQrJnN5BcFlzCB8cKFC3HZZZfhkksuwYABA7BgwQIkJSVh6dKluvsvWrQIEydOxOzZs1FQUIDbbrsNQ4cOxZIlSwAA6enpWLhwIaZNm4b+/fujsLAQ999/PzZu3Ijjx3WG61DcclTtQdnKeyBcNmSOuQVpJ0yJdZM6HWN6TyT3OgOKtQIN+7+KdXOIiKiFtMOQbbqPwz9XgCyuXsVjdeDjVB+nCpwMZgDAsQ8uQ/nX98ChLmClabc6MI71zVrvV+1QawO3C1VArjgb3ZuMyQB8fl7qjHGrl5nyyRgrgTLG+vtAaIdSa3/WOj/fgKMEolOVunb7v1G3c1lUzkXxxRjrBoTDbrdjy5YtuOmmmzzbZFnGuHHjUFRUpHtMUVERrrvuOs228ePHY+XKlQFfp66uDgaDAenp6S1uqyyHWNctgnNE41wdVXPfuOoOoeyruyAcdcgYPguZQ2fGuGXxpT0/SxlDZ8J66BvU7fgXLAXnQgq1xmGc4O9beNhPobGPqCMQTcES4Dus2qq3e/BzufQrRWuzf+6AJ+BQalV7vAGPO8BRbDX6rxVindtoEkIEvd5pbiiog2FXjIZ4Swbv46Z+8gTG6p+3Q/U5EG1YfCvAuYVPgS4RKJjWOT5gsB2l5Zqqf3oZAGAZeHFUzkfxIyEC48rKSrhcLuTl5Wm25+bmYv/+/brHlJWVITc312//QHOIbTYbnnnmGVx44YVITU3V3ScUo1FGbq6lRcfqyc5OC71TJ2arPoSSL/4IV2M5cofPQO+zb0+YYKy9tcdnSeSMQ23REDSWbENS43ak9z6lzV8zmvj7Fh72U2jsI0pkiiogUgcwir0u4nMFrBQtdOaSBqgw7VIv86Q4fIIeSfWcfmDcllWp6/d+hsp1jyF/yqtIyhuqu482MFYHd7HJZEvqwLiJbGgOjAPdXGjL4luBglifatURFN8KPHy+9YGxdhkpgeoNf4EhOQfpQ3/d6nNT7CVEYBxIqLt0es/pbXM4HPjDH/4AAJg3b16L2+N0KqipaQy9YwiyLCE7Ow2VlfVQFC5GrsfVcAwln98GR91xpPWfitRRc1BRUR/rZsWd9v4spZ54CRpLHsHh9f9AfuqQNn+9aODvW3jYT6G1Zx9lZKTAZPL/gkvUWpoMrToYcUQeGCPQkGad4ksB17b1maes2GtV/7bq7qedJ+2A4rSi4psFSCuYhpTeEyJ/HwFUrnsMAFD90yvoMuUV72uq12RWV3d2hRgC3B5k/78bkjEJgE/AqSm41cr1rINkjAMtCeY7Dz1gMK0XtLc2wx2E5udpr0Vd01KVliEzYzZvnKInIQLj7OxsGAwGlJWVabZXVFT4ZZGb5eXl+e1fXl7ut7/D4cDtt9+OQ4cO4R//+AcsltZlfKP5ZUhRBL+A6nDWH0fpF7fBVX8MqSf8Almn3gUhJP8/vOTRXp+l5F6TIKe8hsbD62CrOgBTRu82f81o4e9beNhPobGPKJFphlIr+gFq2OdSH6/J3Kp+PzxzjAMMlfU5R6B5z9qgUzuUuvHgKliPrIP1yDr0+s3KiN9HIAZLD7jqjsBZe1D7RBjDwkWMhlLrZYw9mfcA/d5qwYpvBaIJhF3acwRa1slz/tbP327Y+zmqil5Dl1+8DKOlu7cpzgbvY7t3KL+z9nBCfechfQlxa8NsNmPYsGFYu9a7ILeiKFi3bh0KCwt1jyksLMSaNWs029auXavZvzko3r9/P/7v//4PWVlZbdB6iiZn/TGUfvkHuOqPIWvgucg9/R5IOnc/KTYkgwmWgdMBCNTt+E+sm0NERBHSVvyNfF6x5lxCm7lVvYj/PoGWXvKpNq2uQqwtEKWfnRaKA1JT0a5oa6447RfkqufDajLGqrbHqiiYzncmobdkVlQD48DFtwIfow6EfYpvafbT2R6FbHzFukehNJajoalyt+flVFMNXKo57opVf5UcSiwJERgDwDXXXIN3330XS5cuRXFxMebPnw+r1Yrp06cDAObOnYtnn33Ws/9VV12FVatW4c0330RxcTFeeuklbN68GVdccQUAwOl04ve//z02b96MZ555Bi6XC6WlpSgtLYXdHusKhqTHUXMApZ//Hq66I0jtcyb6nfsQg+I4ZBlwASRDMhr2LNcURiEiovinKXKkGVYdfhaufs9y1O9Z7rMEkypY1alKHWiorPCpNq0+j6IOkgNWpdYGeK3NJjrrjsJeWdx8Mvd/fYbQam8IqNvYugx8NOgO9/UsmRViiHKLtSBjrBpVIIQr4DERBfAt+NkbUrT1itS/E9rib7FdL5uiIyGGUgPAtGnTUFFRgRdffBGlpaUYMmQI3njjDeTk5AAAjh49Cln2/rKPGTMGzz77LF544QU899xz6NevH1555RUUFBQAAI4dO4YVK9x3gS666CLNa/3jH//A2LFj2+mdUTjslbtQtuIuKLYqpJ5wLnJPnwtJTpiPb6ciJ2Ugtf+5qN/1AeqLP0b60Mtj3SQiIgqXuuCWZlh1eF/8hRCo/PYJAEDmmFu9TwRYrskT8ARYpzb4UGpVxliTYdQOCRY+hb2aqzC3xLEP3de0Hr/6RHVebf0adbCmqDPGoZYZag96Q6n1MsZhBa9h8p1ZEmnQLZTAx0Sznbov7Wj6rwuSbND8TqiHUrdlkTdqPwkVWcyaNQuzZs3Sfe6tt97y23beeefhvPPO092/V69e2LFjR1TbR23DVroFZSvnQjjqkTZwOrJOmsNMcZyzDJyB+l0foG7XMlgGz+TPi4goQQTKGIcbyGmzzAHmGGsyxk3FtwIM49UMOQ4yx1jTBpf6eKc2eFIcAFoeGDezV+xAc8Tnl4VVAmSMAxQIa1c6gbGnv8OpFt0CAoq7qrlshGxMjjjoFkrgjHFb0BZPs8FZdwTHPpqFzMIbYFTNI1YXggu8djIlkoQZSk2dU+PhdShbcQeEox7pw2Yh66Tfs+pfAjBl9kVSt5Pgqj8O65FvY90cIiIKV4DhvuFmxBRblfcYp37VaO1yO/4ZY818YZd2nrLmPE79wFibnXYFrAzdGs6ag942+w2l1p9jjIBVn9uT/3Biz88jipWofV4AR/59Po4uvUTndcI5Psgc47bgc2OmbtcHgFBQveEvPp+/6H+uKLYYYVDcqtu5DOWr7oNwWZFZeCMyR83mOsUJxF2EC6jbuTTGLSEiorAFLIIVYI6wD5e10vNYvfZxwHm/wj9bGaiaddCh1Oq3oGgzxi0ZEq57Xk1/2FSBsc93E83cav05xrHKGKtvNHg0va+oFtxSv6ajoem/TctqRnModSs4647AUXNA5+VUnxGXPfBSYAGGyVPiYmBMcUcIBVU/vYqqH14AJANyzniAC6cnoOQep8OQ2hW2Yz/AUb0/1s0hIqIwaDKZLm2A4BEkgFKs1d7HzYGQ+x+6523OGGteVxNAajPN4WSMtXOUXZpKwq0Z8qp+P8Jl994gaMoYl319H0o+vzVgkS3tzYUYZYx13r9+xjiKL6m+QeK0RT6UOkjxrZZyNpTg2Ie/QekXt/m/nu8NEM1oh0CBcWQ3Fezl2+GsPxbRMdT2GBhTXFEcDShf/SDqtr8H2ZyB/LOfRWrfs2PdLGoBSTYgbaC7sF39rg9i3Boios5HcdR7bkxaSzbi0Mqn4Kwv0d3XVrrFvW/AbK02OLAe+0Eb+OrspwmIFP3gwpMxDpCF1mQ4XeHNMda8B+HSZJYDDXl11h2FYvd/P5q2aAJjmyqLKcHVWA7r4TWwl27W7IcAhcTaIgMaDm0AJ2m2iTZqk+LwzsV12Sojf++KK+r95ajY6T61tdL/c+RTJC3QaAfNiIUIiqkpthqU/O9GHPuASZ94w8CY4oajej9K/ncjrIdWw2jpifwpryKpy8hYN4taIa3/NEA2oX7PcihNQ6mIiKh9lK9+EMc/vhr28u0oWzUfpRv/idrt//Lbz9VQitLPb8Hxj6/2KYKlvwRSw77PUbbiTpR/M9//RdVBhCPQUOoQGWMV7b5O7TrGgYpv+QSjvufwa3JjOY59eDmOfTLbfYi9TlOAyXMqn8DY8/qKA47qfd79bNWq/QK8b2cjjn18Dao3LdR9D21F0zfNQ8A987zbPmOsWKtakDFWop4xVt8E8b0h4ls9PGCVdM0Q/fAzxs76o5E0ldoRA2OKC40HV6PkfzfBWXMAyT1OQ5epr8GU0SvWzaJWMiRnIbXfORDOBjTs/SzWzSEi6lRsx34AADTsXwHFWgEAuuvLW49v8P4jjGHAjYe+cZ//6Pd+51IHEeqAQzNPU+hkTgMFPppCWk5txtipP8dYu/ST06dKtX9mz9VQCsA959RecxSH3vslKtY85H6usRy12/7pDpDUQbnTplrKxxl4fdsA1bjt5dvgrN6L2s2L9N9DFAkhUPLFbShbNU93GHxbZ4yFKjB2WVuQMRaugCMKWtwm1U0ORXUDx/1yvhljn6HVzce1cI6xq6HM89hWsgnH/nsV7JW7wz6e2k7UAuP//e9/GDJkSLROR52EcNlR9dOrKF99P4SzARkjfovcSY9BNqfHumkUJeoiXHp34ImIqG256o97HusVzlKsVd7nFf3iW5r1jVXziD2v0VAKZ+1hbWCsDjg0Abd6qLPOUkEBCMXlU906jCydcGrmKesGhqo+qd67CgDQeOArAMCxj3+L6g1/QcO+L/xvFDRnuxWHZh6zS5MxDjTEtv1yU46q3bCXbIT10Dc+w9ibrsme4exxmjFug+WaNG2y+wTGivbnrJkeoBr9FqjieCBVP76Emi1LPDdiAKB64xtw1hxA6We3RNR+ahvMGFPMOKr3oeR/N6Fu+3uQTBbkTnoMGSN+y+WYOhhzziCYc4fCWbMfNnVWgoiI2oe6arLODUrNF3y/NX/9+WbYAODosl/h2EdX+GRV1UNNtesRex8HH0qtfWFtxjicYMQdTOsPCfe20/v+FZ+CXqJprVqXtcJvfrMnqHc5oDi9AZN6KHWgQmWaYdlRzob6ctYc8r6Wps9E0zaX5r/Rpp6L67JWRB6Ai+jPMVbsqpsXvoGx7w0Ql3YIvPexdu66o3o/XI0Vuq8nXA7U7fgPajb+TdMfhuSspudtEIoTjpqDTCLEkDHUDvfcc09YJzpy5EirG0OdgxAC9bs+QNWGVwGXHeYuo5Bz+n0wpnWJddOojVgGTkfFuq2o27kUyd3GxLo5REQdluK0wlV/DKbMfqqt6sDYP1DTLGcURhEhSTIEfM6pWv5GOx9YP9Or2Kpw7L9Xw5CSE/J13cdFGDQoLp/lm7ztcNQcgKNiJyRTqmeby6YuGKbKkttq/IfUes4rNIGuYlcPV9dvr2Yor63GEyC1Be3w80adHdo2Y6zmaiiFISkzsoPaYB1j9c0LxVHnLih3eB3MecO01dgVp/bnrskYq4bP22tw/OOrAQC9frPS//Uc+hlq9e9I1Y8voX7XB8id+BhSeo1r2RujVgkZGC9btgz5+fnIz88Pul9Njf+cFSJfjpoDqPzuWdhLNgKSARmF1yN98GWQ5MAXWUp8KX0mQd7wKqyH18BZfxzGtK6xbhIRUYdUsfZhWA+tQf7kF70b1QW1dJY40nzBD6NQou88XXWGy15VrHpZ1Wv5zPtVc9bsh7Mm9LJ+QjgBvXV4QxwjAgylPv7fqwAAliHe6sDOhnLPY1eDt4K3Yq3wWSpKG2Cq5xUr9lqE5u0z4WwAkBXGMeFpPLga1qPfIevk2yHJBm1gbPfP9nszxm2/tnL97o+AgmkRHSOEEvVstm9wWrNpIWq3LkFq/6lI7XuO9znFoZ0e4NQfSq1ev9vZUAKzRfs9R/16ztrD3u2qGyTNK3g0HvyagXGMhAyM+/bti5EjR+Kpp54Kut/y5cvxhz/8IWoNo45FuByo3fYOaja/BSgOmLIKkH3aXJhzBsW6adQOJIMZaQXno3bLW6jf9SEyC38X6yYREXVI1kNr3P89+p1nm7pIkOKywVa6Ga7640jt5w4ANMNDdYZJ+9IOkXZpCxKp5k8GLqjVwgBMcUUeIClO7VBYnaHUSqM3GHY0eIfCuhq9RZJc1iqfpai0lYw1BbciXIUh0HrMkajf+xnqd3+IvEmPo3z1/QCA5J5nIKXnaZrz6y2x5fl5tMfaysIFe/mOyI5Rol98SztKwgprc6G6vZ8hpddE73PCFTBjrKiXAVPPWW6sAHwCY/Xz6vWL9aYlSMaUiN4LRU/IwLiwsBAbNoSeFyhJEsfEkx8hBKxH1qF6w2vu4VUGMzJG/Q7pQy6DJIf8+FEHknbiBajdugT1xf9FxoirIBmSYt0kIqIOwXr0e0AIJPc41bNNu96qtpJz6ee3AgCSuhbCkJLrMyQ0+Fq+AKA41BnmOs0arr6FjPREUsFXe5wzrHnFmmOEy2e5JvdjdYDoslV5Hmszxt7AWDgafIZSaytiq7PEit5w5WBtdFrhaiiDITUvouPUKtc9BgCo3fZP73mbgi7NOs46bWvrqtTN5JQ8KI1lPkPNwyCiX3xLO1fYBjTXtxGKdoSByydjHKD4lmaotOrc1pJNqNm8BKn9JnuPCzG6gKMoYydkZDJr1iwMHTo05IlOOeUU/OMf/4hKo6hjsFfuQvVPf4Ht+E8AgKRuJyH7lD/AmM5lmDojY2oXpPQaj8aDq9Bw4GuknTAl1k0iIkpY9Xs+hWKrQdqAC1D21V0AgJ6//sLzvKYSdYAv866GUhhScjVf5PUyWH7Ugaa91icID7CEklpLgxyfdYzDPkbdXkcDqn54CUmqehfqjLGzscrz2KXarjgbNDcAfANM9ZzhSDPGNVsXw3poDXInPoqUXmdEdKwvZ6230Fbz8N6Q88aFy53cauOh1LLZ0hQYhzPU3EsIBVKUg3bhkzFWVEOh/dYn1vzcA80xVg3NVv38Sz6/HRAu2EqKvPtq5hv794Vir0PjwdWo2/Uhcsc/wJVa2lHIwHj48OEYPnx4yBPl5OTg1FNPDbkfdXyOqj2o2bIEjftXABAwZvRB5ugbkdzjdEjqypjU6aQNnI7Gg6tQv3MpA2MioggpthoozgbI5gxUfvskAMBo6e55Xj130WWt0Bzneaz6Iu5qKAVyB2ur6+oNtQ3apto2r6rcTPisYxzWMYpLM5S6Yd/nsJdvQ93O/3i2qTPDLpsq86vKJAtHo88cY5+MsfrmQ4SBcfPw9+qfXm11YKy58dEU2Adc71lzYPSzsr6aA7xIP2PuodTRDoy1lcjVgbF6vjB85qhr5uCrPvfqEQiNh1ajesNrME2+x9NuzeupR1Xo3LRQbNWe4fDWYz8itc+Z4b8xahWOZaWosVfsQM3mxbAeWg0AkJOzkTHit0gr+CWHTRMAIKlLIYwZfWEv3wZ7xQ7OMSciisDx5dfDVX8MuRMe9mxzVO1RPfYWvlLUgbFq6Kq6oFTzeqq6lYrDFPGw2Nbwmc8cFt+h1HrrOKv7Rx0Yq9d3dgYPjNWZRHWBpkgEyqSWr3kIzur96DL19ZDfp9TzopsD0HD6TCjONp9j3NLMp2iDoF09HUA46rXz5FUjBYTi0C73FeB3RT2HuGHPcgBA8dKbIRlT/I8J8V40N7ICLP9EbYPRCrWKcDnQeHAV6nYthb10MwD3HJL0Ib9G2oDzIRuTY9xCiieSJMFy4kWo+vFF1O1chpzT/hTrJhERJQxXU9Ee9Zrwjur9qsf7vPuqvlAH+jLfPKRTOFoTGNdp10luQ0JxhlU12/cYTWAcMmj11stRzz1WnL5zjH3WOw6wjE9EbRUKytc8DENyNlJ6T4C9fBtS+5/XNALPPUxavQyXYq9F2df3Iq3/ed42q37uzX0V1vBzxRn1tYJ9tXhIsFCiXnxLMwxa9XMGfH53lMDFt3zOqL+5ee5yBFyNparHZX7PCyEgnI2QVcuMtYS9cjcaD65G+tBfQ2bBLwAMjKmFHFV70bDvC9Tv+cQz/MSY3guWwb9CWv/zIBnMMW4hxavU/ueieuPf0LD/S2SNvglyUkasm0REFDOKrQb1+z5HWv/zgn7RVQc3ttKfPY/V6wa76o569w9juGpz4KSEMy840DnsNYBsavHxkb2Y0y+ICUUoTk3GL5ziYJ59VRljKE79is6ep9XFnFrWn8JRh8b9XwJw3/xwVBXDXr7d87yjslgTGDfs/Rz20p9hV30e1CMFvBnj0O1xZ2Xbeo5xSwPjFlQjD+OczVyqNY0B7TQE4bJr9o14xEIL2u1SVXZ3NZRBuOywHd8Ac/4IyKZU1Gx8A7Xb30PepMeR3P1kv+Pr93wKKC6kDTjf7znhcqBu1wdI7n4yqn96FbbjP8HVWIrUPmfBemQ9Mguv79Tf4RkYU9ictYfQeHA1GvZ94R2uJclI7nUGLCdOR1K3MZBacGeMOhfZlIbUE6agftcHqN/zKdKHXBbrJhFRhJYsWYK///3vKC0txZAhQzBv3jyMHDky1s2KuYb9X0GSjUjpPQG1W99B45FvkTfxEb+AQLjsaNj/FVJ6T0Dpij/CUbkbcDmQPvTXfud0WatgL98OY1oXzzZnzUHPY0et97Gz/igioVgr4ag52LqMsa0WkrF9vkgLl10zzDQsPpWsIyn8pJ53CvhnFjVtizCTHUrz9yxbySbPNvUyP4A2gNNjr9iBim+f0mRAA1KcbV6VWjKlteg4obggteEwb80NEPjeXGjdz7W1Q8Bd1kpU/fgS6nd/BMvAGcg8aQ5qty4BANRseQvJ3U9G48FVACSk9J4AZ32Jp/5AUveTUfXDSzCk5CD71Dvcx/y8ELVb34a120me4rjOqn0oK3YX8DNm9EFa//MgXNZOWfSLgTEFJFx22Ep/hvXwt7Ae+RZO1cXXmHkCUvtNRmq/yTCmdQ1yFiJ/lhMvQv2uD1C36wNYBv+KN1SIEsgnn3yCxx9/HAsWLMCoUaOwaNEizJ49G8uXL0dOTk6smxczzrojqFizAACQP/nPqC56HQBQu/3fyBx5DazHfoKrsQyp/X6Bms1voXbLW7AeXuMOigHYSjfB8e1+2I7/hLxJTwCyCZIkofK7Z2A7vgFJ3U7yvJYmA6ga5umsiywwbtj7PzTs/V9L3zIAd8ZYUtpnGKbLWg5AQDKlhV3AyXe5pkgqL7t8AmHfAMrnlcI+byTUQZqroQS240UwpveCUByaYmv6x1aiYc8nYb2OUFwRL4UVKcnYwmUa2yJjrKLYfG6AWL0Z5NBD70OdvHV9qlgr0FC+FQDQsP8LWIZ4b545q/fDXrED5asfAADknfM8XKrPRHXRG7Aedhd2S+p2Mlz1x2CvcK8hbTv2o2c/R413Ooa9fCsaD6yEvWIHuk5bqLkhpyaEAsVa6V7uTQgIR12HCKQTKjCO9A71p59+ij//+c84fPgw+vXrh7vuugsTJ6oX7RZ48cUX8a9//Qs1NTUYM2YMFixYgL59+7bH24k7zXel7aU/w1a6yT18R/ULbcoqQHLP05Ha92yYsvrHsKWU6ExZ/WHuMgr2ko2wHf0eyT3GxrpJRBSmhQsX4rLLLsMll1wCAFiwYAFWrlyJpUuX4rrrrotJmxz1pXDWVUFRdIIToUBxNEA2pUIyJMHZUAJTRm93UCFJMKTkoX73RzDnj4RkMKN2y2JYBk6HvaoYrtrDSDvxQtRt/zeSup+CpLxhaDy8Fqas/kjKHw5b6WZUb3wDSV1GwZCc7XnJ2q3veB7bjn6HxtwhKP/6bk976nd/CABNmZ6m91BZDFeDe4mlmp//D9ZjPzYFf+73pP4iG4i6aFB7Uey1kNupKnVz5tOQkgNnuJWNXfYWz0/1BN8GM+Cy+wXK7a1+1weo3/VB25xcODXLbrUF2dCyujNCtHHG2GcUQrsWlAvBWXvYcyNMsdVoh83bqlBf/Knn3w17lgOqNZCth7/xPK745sGAr6G+ydR4YKVnKkDVjy/C1ViO5K6jkTHyOjTsXQ57+XZYBk5H9aa/w3poDTLH3ALbsZ9gPboe2WPvgmxOh6u+BKkn/ALO+uPuucsGE4S9HoqjHpIxCabME2A99iMkgxkpXUag7vAG2BslyKnd4GqsBKBAkk2AZACEE4bk3JbfVIlQxIGxEAKvvPIKLrvsMuTl5Xke5+fnt0X7PCK9Q71hwwbccccd+OMf/4izzjoL//3vf3HzzTfjgw8+QEFBAQDgb3/7G9566y088cQT6NWrF/785z9j9uzZ+Pjjj2E2d8zx9UIIKLZqOOsOw1V7BI7qvXBUFsNetdvvgiqbM2DuciqSu49Fco/TAt41ImoJy4kXo6JkI+p2LmNgTJQg7HY7tmzZgptuusmzTZZljBs3DkVFRS06pyy3rnBT/e4PceDbZ1txBgm+2T7rkW+95y/+GIB7mR8N2eS5eewo3xbweHv5NlSuf8rz76ofX4bQWSu4OSgGgMaDX0f2FmJIsVa2V+0tT39Hkplq6XxfNWNKHpx1R6D4zEXtSCThaod1jFs2skASCoC2uPni87svmwElxJrP7cx3fnjjga80/27++wS4/+7ISZneY1vw2VcfYz3kDqwd5dtQt+N9T1vqd3/k2af6p1c8j5uHcAPuoDog2ej9rEmGkFW6jem90f3Ct9plydeIA2NFUfDKK6/grLPOQk5OjudxWwfGkd6hXrRoESZOnIjZs2cDAG677TasWbMGS5YswQMPPAAhBP7xj3/g5ptvxuTJkwEATz31FMaNG4cVK1Zg6tSpbfp+oqm5Op1w1ENxNECx10GxVsBlrYCrscL7uL4Ezroj+sOPJBnGzBNgzj4R5vzhSOoyEsaMPhziSm0mpfcEyMk57mH6dUc1a3ESUXyqrKyEy+VCXl6eZntubi72798f4KjAjEYZubmWVrUp2TEK9iNjIVw+X+pV36EMZgtctlq47PUwpeXBVn0IptRcOBrKYas8gLTuI9FwfKs7Y6b7RU1yV14WCrIHT4PiaEDdwR8ghBGZ/c9E5Y5Pva+jKu7U/G/FWgFLr5PgqC+HrXJfq95vvDBn9IC99hhctfuRlNq66riRSkrLhN2/WK8uSURYLEnv9TK6BP7+FAOWnieh7nDoEQSRyMwwoxxtO8c4IysLLVl8yGgEDEag5TPh9RmS0uFSZYvNabmw10Y2HaG9NTYFq2ndR6H+6EZAcUAyJiGt6zDUHf4p+jdvZAOMKdlw1pchrfsoyKYU1B5w3/gzWbrAUede/s2c0QP2miMAgNSuw9BYthupXQa7q3ILF2SzBYYkC+w1R9BYsh2WPqdBcdrQWLodad1GQggXHPWlMKXlQ5IM7mWyFBckgxGWXicjL699hmm3aCi1EEL3cVtpyR3qoqIiv4B5/PjxWLlyJQDg0KFDKC0txRlneBdST09Px6hRo1BUVNTiwLi1d76FEKjZshi1jUdga2zwrJ8mFCfgsnuWHRCKA8JpheKodxcGCHOYkGRMgSmrAMb0HjBaesKU2Qfm7BNhyuoLydA+wxSiobmfW9vfHV1c95NsguXEC1Dz8yI0FH+ErNE3xKYZ8dxHcYT9pCWaKtS6h4fVQbHXA4oNVZUyGqproLjsEJ7/OTyVTSVjMtIHTodsblkRmnglhGjR3XynU0FNTeu+7spJ/TBg+quorKzXH0odhBACUOyQDEnIrD0CZ2MZkvJHwHr0BxhSsmFIyYP16A9I6X0GFFsthMsOU0YvAEDGWBcAAUk2wtrYgMYDXyN95DWo2/G+Z+6nZfCvUL1pIQAgbdi1sJVvh+2Hl9zPDZqOuh1L/dqUO+4+1O5cipRe42FM7w5n7VFYj/0A27GfWtFL0ScMqTCm94Kj5gDqRPv+XXAh/CG5Tlvri2IJk3ZkomRKjXqxrXCZsk9E9pnPom7JmVE9b1VFNVzOts2W1rfwV91hs8Mp2qBtxhTAXu+9EZaUDcRpYJzc/WRYj/7g+be515nuwBiAOWcwTD3PAg67/0ZkDL8SNVveDmtdavU6y7I5wzOMPPeM+2E9/hPSB82AKaMvhMsG2WxxxyM/vQZDSi4sJ16Iyh9ehDG9FzKGXoa64uUw55yIpLwhQV9Tfb2QZQnZ2Wkh/36Xl4dfTT6QjIwUmEyGoPskxBzjltyhLisrQ25urt/+paXuEujN/9U7Z/NzkYrGnW+XrRYHN74Zdnl32ZwGY1o+DOY0GJIskM1pMJgtMKXmwJiaB1NaLoypuTCl5cKU1gXG1Jx2GYrQXrKzO9aXy7YSr/2UfuqvsWXzYtQXf4wTzrwVcjvNIdETr30Ubzp6PwmXA/baY7BVHYS95ggc9WVwNJTDUV8GZ9Njl60GSiuq+Ob0Goys7mdGr9HtKDs7GwaDAWVl2nRdRUWF3/U0XJEGs8HO06JzSWYIRUBO6w5zWncI4S5U0yyl7zkAADkl2ae97hFVQhHIOeNBKGPKYUjNh/XI957AOG3wZXA2VsKQmg9T7jAYswdBuJwwZZ4AY0YvT2CcWjANDcXuIknJfc5GSr9faJrorC9RBcb+Q7/l5Gz3yLGmYZByUmabD/uVZBNSeo1Hzc//51lfub1IxvD/DjV/6ZcMSZEvtdNETtZ+n5SNqXC1R2Asyd7ER9NjY0ZvCAEk9zgN1iPfQjJZdIfmR6p682K42niOupBM2vcU7nFCaZNh3pJscn8umgpsyclBige2oN2tJSdleOY/p/Sb4gmMjZaeSOrunYJmzhuK1P7ToDitEC4b0gfPRP3ez+GqPwbJmIycMx6EcNSjvvgT2I7/hLSB01G/0/23J6nbybAeWg0ASO03GXU73wfQ9Heo6W+fAACjselvnwGZY27xvHb2aXd79kkbcAGA8P6m+yZWW/z3O8oSIjAOJNQdar3nfLf5/ruld72B6Nz5BiT0vPAtpBrrUVvvBCSjuzKlbIJkMEGSjZBkM2Bw/1eSg9/5AABn0/8arQCs8TEMqLXCvcPU2cV/P6Uipfd4NB74Ggc3fARL//afwhD/fRQfOlo/CcUJR81BOCp3w16xG46qPXDWHnYvhxLsLrskQzalwWDpDtmUBtlkgWx235SUjSlITkuD3QH3XDXZBMlgbvrb7f6fbE6HM6Ow1Xe/w7nz3RbMZjOGDRuGtWvX4uyzzwbgnmK1bt06XH311e3ennghSTIMqe4pZZbBl8J67EdYTrwYsjEZ2afc7t1PNmqWqEsfNgtCcSJ9yGUQ9jqk9puse103ZXqLghrSusHlsyyTbE6HkM1wNQXGhtT8tp8PazAj7cSLUPPz/3k2SYbksNbMbS0pghEXzcGwZEptcWBsSNEGxpIpDWj0H8stGZOjMqe5WXL3Uz3z1XPOeAB1O/4Ny6BLPf+2Hl4HoThQ+e0TTQ3wTgOwDLwELls1Gvd/EdZrqQvBtRnZAEk2RfxzEIoLUltUpZZNkIzewNgQJDCWTZZ2L8plzOgDe+lmAEBS/nCkD78KtdveRfqIq2G09EBSt5NgL9uG1P7nQZINSB/8K8+xksG9trhwWpHS83T3ObqfAmfNQUiGJE9gnNzdGxhnjJoNxVGP1L7ndKgkWiQSIjBuyR3qvLw8v/3Ly8s9+zfPiS4tLdUU76qoqMDw4cNb3NZofGE0WHrCkmuBrbwu6PkE3HeqO7N4ucMU7+K5n9JOvBiNB75G7Y5lSO13bszaEc99FE8StZ8Uex1spZthL90IW8km2Ct3aZa5aSan5MGY3hNGS08Y07rBkJoLOTkXhpRcGFJyICdlBbwhKcsScnMtKO/gf7uvueYazJ07F8OGDcPIkSOxaNEiWK1WTJ8+PdZNiwvJ3U5Gj0s+gGQMXWgoc9Rsz+PcCQ8F3C+lz1loPPA1LIN/1ZShhSaDJSdlQRgaPQW8DCn5nmWgAhW3Mab3hqux1BvINVVeDpckm2BIdg83dzWWAZAgmS0QjW0fGMstWA9XNqZCQWXoHX1IxmS/QFwy6c+plkyWFgfGyb0mwJCcBXPeME+ga8zoAzQFxql9zkRqnzM9+8umVKT2O0ezzrExvYdnjeukHqcipcdYHDq0KqKfa1uSJIO7aF2kNyiEq02ytZLBBElVKVvvBkjzvHLJbAEiCIwlg9k9haYVkrud7AmMDWndkTnyWmQMvwqS7A7f8iY9BuG0QU7K8Ds2Y+RsVHzzIHLGL/BsMyRlwpCfCeGyuVeXkU1I6z8VwmVHUv4IyKZU5Jx+T6vanOgSIjBuyR3qwsJCrFmzBldeeaVn29q1a1FYWAgA6NWrF/Lz87F27VoMGjQIAFBXV4eNGzdi1qxZbfuGiMgjqUshjJn94CjfBnv5dphzB8e6SdQBCKHAUbkL1sPr0Hh4HRwVO6EefiqZLDDnDYMpawBM2QNgyi6AMb0XZGPLlhPpTKZNm4aKigq8+OKLnuUT33jjjU69hrEvOUDg1FKG5CzkT34BAFC98W8AoMm8GZKzoDhMnv2Nlh7etiRlQLH6B4TZY++EKWcgXPUlqNm8CEl5w4NXkvUhye7XM2b0aQqMBWRDkk7tYP+h360lmyKftuYbzGYW3ghj1gmo+GZB0LVqJWMqZKPq2KaRIN4dVDcojMlQWjjkVjanIfvUOwAA5pyBUJxW9xz3I+uQOer6wMclZ3keG9K6ewLj5r9lkmSEQHwExpBkSAYTRKRL+woFog2Wa5Jks2YZIDlF+zdMNqXB1RQYy6a0iEqTSaa0lgXGqorNqSecC2f9MSR3PcmTwW0OigH39IBA9YFS+0xC8q8+1r2JJBmS0HXam55/qzPNnV1CBMZA6DvUc+fORdeuXXHHHe4/KldddRVmzZqFN998E5MmTcInn3yCzZs349FHHwXgHkJ91VVX4dVXX0WfPn08yzV169bNE3wTUduTJAmWEy9C1Q9/Rt2uD5DDwJhaSAgBe+nPaNj3BRoPr9EsQWdI7YKkLqNg7jISSfnNVfc751CxaJg1axZvIsdIc5CmHo4qGZIhS96RDM3DuoGmgjrNgbEqeywZkyEbUyBn9kXuGQ9EPJS2eaimOkiUdG4suTNnra8MrTlnCzLGvoGxZdAM91QH1VBaPbIpTXOsZDBrgxNjijeraDC7328LssbqzKUpq7/ncbfz3wp6nDG9F8xdRsFZvQ+mrALYjn7X1K6m87XzvNhgJMngng4YIaE42mQotWQwQVJUGeNk/yJrzTQBpmRwV6nXmfdsGTgDdTvfR+bwK1H5g/tGk3dURWhyUhaUpn0NKbnIaZrD2xItGVnR2SVMYBzqDvXRo0chy96lhcaMGYNnn30WL7zwAp577jn069cPr7zyimcNYwD43e9+h8bGRjzwwAOoqanBSSedhL/97W8ddg1joniVesIUVBf9FQ37v0Tm6BthUK3DRxSKs+4I6os/RcO+z71FgCQZ5vwRSOk5Dsk9xzEQpg7DMmQmKr6Zj/Rhs1C3/d8QLivklBxPkSnA5wt9kneZE2Oqe9kVQBuIuXeM8CthU4DTHITLyTm6gbF7iHZ0A+OWVHXXZH0l2T2kF9rAXrWzJ+iRTCmaAMMdGJtU/07yLuMkmyDJZghEHhi3dJSBJMnIP+cFQLGjbteHqna5fxZtkWltMdmguakQLuG0QYQxNSHy9pggG72jGWSzRbM+uebnrvrMSbIRkCR3hWZoKzunj7gamSfNgatql/e8eoFxgCkOhmRvYKz72aQ2FfGnU5Ik9OjRA2azWfO4PQS7Q/3WW/531M477zycd955Ac8nSRJuu+023HbbbVFrIxFFTjalIfWEc1G/axka9izXFKch0iOEAtvRH1C3831Yj6xH81BNc/4IpPb7BVJ6T4RBNcSQqKNI7XMmTOe/BaOlO1L6nIm6be8irWAa6nf/17OP+gu9nJTledy8HikAzRBSAJpgLxzNGePMwushXHakD70cVT/4D8WWZGOUB1K7A5GwqgSr9tFmfZO9Q1N1hqLK5nRPll02pkIyeYMy2ZSmuYmgvhkgGczuGwEt0JIsuOdYSQIMSZrgunmOu2RIglAiHbvcRiQDYIjscwYAwtUIiOivYysZmqpkN//bmALZlOopXKf+mWiG78tGqBdK1yx51PTZkpOzPc8bLd3hqNiueW3ZnOapOK1myuznrQ9A7S7iwFiWZaxYscLzb/VjIqKWspx4Eep3LUPdrg9gGfwrSKqLFVEzoTjRsPcz1G59B87aprl0KXmwDDgfqSecC6Ole4xbSNT2TBm9AQDm7AHIGTcPgLuCccOe5cgcfaMmkDOov6CneB/7ZowjDoyb9pfN6Z6CPXoZLnd2LbpL3bgDY0PIc0qy2VMlWxs0eoNhT2CsaqMhKcsTGEumNG3m0JSq6SvZmOKZeyoFmX8cSjSGvWoCuaaAXTalwhVkOafWLGMVKUluwVBqSXbPt26L4luyGZC855WMKZCMqYCtumk+tLetms9A02e6ea60bEzxzq1vOsaQnO2eTy0EssbcjMYDK5HabzIa9n3uPofJAjQFxuoiX8k9x6Fh3xdI6n5K1N8vhZYwQ6mJqGMzZZ0Ac5dRsJdshPXo90jpMTb0QdRpCJcD9XuXo3bLEs9waXP+SFgGTkdK7wktGp5H1JEkdz8ZPS51D6W1HS/ybDekdfM81gTGvuvGhxMYqzOwepk/vYrtkjFgEGsZPBP2ih1w1hzQLRAWiGxMhiTJITPR7vnN1qZmpKi2q7K8nvftzQDKyVlA02pXsqkpWGp+zpTmM8dYmzHWzLk2JAedv6xpaxQKtsnq92h2ZzgzR9+EijULYBl0Cep2/Mf/dY0p7RYYNxffiugQYyqEo67VFZ71m2NyzxVu4l6CL9V9o0Mo2iHzZm3GWH3zXn0jyjsSwYShv/0QVTVOSKZ09PjVx5AMSZ7AWDane26oGFLz4ayu9zzuccmH/r+f1C74TYKI4oZl4HRUlGxE/c5lDIwJgLugVuP+Faje+Fe46t1L0ST3OA3pw69EUt6wGLeOKD6p55WqM6WmlCzPY98hxJIh9FdCTWEpvcyfTqQqyQZIkgEC/sN5DSm56DL5z6hc/zTqiz8O+fqeczZnjEPRBKmqLLFmLnRToyXJ+1Czb6p77qnq3/CZY+x9bNZkRN3rGocXGEejIr6iKvrVHLil9j0Lyd1PgauhNGBgDFtVq187HO7iW5EFxs0Zb2ftoeg3yGCEJHk/97LZp9Ca6kaPJmMsGf2GYOsxW7rAYHMv3+c7h9yQnO35jTCk5MFZvc/9OklZussvUftgYExEcSOl13jIKbmwHvkWzrqjHBbbydnKtqL6p1dgL9sCwB0QZ4z4LZf0IgohKW84TLlDkNrnLE0QqJ537ztdRROwBBgCLBmSPIGxXuZPdy6rrA0ifF7Uu0+I14Zq2SfJmKKfnfZrrzpI1Q+MVYu4qY4zaR77VqFWB0yaoMhnKLVuMbIAlBauf6yW3G0MDGndkVYwTbNdNlugBFiDVzalRLQMUavIkc8xDtTuaJBkbYYfshmyWRWUqm+A+A6llkMHxkGpPlPq9ZMNPktGUftiYExEcUOSjUgrOB+1mxehbteHyBp9Q6ybRDHgslWjesNf0LBnOQDAlD0AmWNuQXLX0TFuGVFikIxJ6HruXwAADQdWerYHLcKkyYLqLznkmx31o3N+STIEDGKlpqyvOmunXp9Z+9reZZ+kcIdSB8jsyupseXMQrq5arwrkZbPPKgmKA5LsDZ60Q6lNmqBaNiaHDDpzxs1D3a4PkdJrfIg9Q5PN6eh+0Tu6z2lGCBjMQNPQ5KSuoyGn5HmWeWpLLVmuqSVLX4XLPSdc9ZmWJG0mWBW8ajL6Pjd7WjKVR31jSr28mnrYPrU/VrchorhiGXABIBnQsOfj9pv3RHFBCIGGfV/i+H+vRsOe5ZCTs5E9di66nPs6g2KiFlLPp80ddjGSuoxC7plP+u+nzooGqKysDYz9s6HC5Wg+mfqgwMUUPRljVeAcIMjQvnZS6KHUkhzwPekOpRaqMFsIJPeaAABI6Xs2ACC51xkAAHP+cJ+q1Kp2yT5DqXX6CIDmJkRqv8no8osXW7xcU7ikAMPKDWndkH/WU8gcfSMAwDLoV23ZiLiqB+E7GgCAdui7+jmfG0eaERYtKAwmVJ83Q0qe99xcVjCmQgbGa9euDetEDocDf/zjH1vdICLq3AypeUjpPQGKrQYN+1fGujnUTlwNZSj/+l5UrH0Yiq0KaQXno9v5/0BawTTNsEUiiow602WydEHXKS/q1nDQZFfVWb0AwaXenNjmjLT2XIbAQ6mbfrcln6BDlzqwk6TQfxckWRNwawpuqc5lSGnK1mmy3QI54+5D94v/DVNGLwBA1phbkTN+PiyDLtVWpTaoi3qZtO3UZBkjX6YomjQ/O02W1N1HlsEz0f3ifyG13zlt2IjIi29lj53bRo2Bex3jpqHLppyBALyffTk5O+DnUjImaz5/IoLAuHn+sGZagzEFeWc9jS5TX4/8PVBUhQyMb7rpJnz99ddB92loaMD111+Pzz77LGoNI6LOK+3EiwAAdbuWxbYh1C4aD63F8U+vhfXIOhgtPZF3zvPIHnsnZHP0160k6mxMOSfClDsEWSfdAjlYUKLOjqmDgECFpnQCY1NGXwCAOXeI5rySpJ8RlnTmGAfKKPoFzOFkjDXtVQ0lVh2bWfg7QDZ6MqbNryUbk2FI9WbyjJbuSO1zpjujF6AqNWTfqtTqbHJsA2PIgQL25uHssntIbzhFzVpIkg36RduCSD1hiuc7QdTbY0xCWv9pyJ34KHLHLwAAZJ1yG5K6jkH+2c/6jDhQ/R4Yk7U3OiIIjPPOfh6p/X6BjJHXerYptkokdz8F5pxBrXg3FA0hA+PJkyfj1ltvxRdffKH7fEVFBa688kps2LABL7/8ctQbSESdT1KXQhgz+8FRvg328u2xbg61EeG0ofL7F1C+6l4othqkDZyOrtPe5LBpoiiSTWnoeu5fkDFkZtD9tNlgnyxo82O99X9VMk+6BenDr0bOGfer9kvWBFuSb6EtQFvMSjP8WFUQyzdDrJeFVs/7lOSAWWL1fqbMfug5839IH/JrzzZDcvACSIH6RDam+ATG6psK6vfd/sNl1UN01YWk/ALhtmybZIg4YwxI2nm3gUYfhH069dxgMyTZgJReZ3iKfRrTuiH/nOdgyurvc8NGe7NI/TmOZB60ObsAOePugyE5G7kTHoYpewBSTzi3Ne+Ioijkp+uZZ57BBRdcgNtvvx2ffPKJ5rlDhw7h8ssvx6FDh7Bw4UKceeaZbdVOIupEJEmC5cSLAQB1uz6IbWOoTThrD6Hks5tQv2sZ5KRM5E56DNkn38a1G4liRJMdU893lQNkQHUq8RqSMpE58hpNlV3JaNbOIZbUAWLTdp+qz97XVu0rtKW2dIdSq4M8yeBTGMt/+HCgc4WqDOxbpdr7ONmnurc6U64KkhHbeaSG1C6ex3590drAMwhJ9lmuKZzXkmTIqnWCWxsYa+eAB89eB5x3L8maz2bz8PPssXdF1JaU3hPQ9bw3YEjODr0ztYuQM+AlScJjjz2GpKQk3HXXXbDb7bj44ouxfft2/O53v4PBYMCSJUswYMCA9mgvEXUSqSdMQXXR62jY/yUyR98IQ1Jm6IMoITQe/hYVax+GcNQjqdtJyDn9Xs0XaSKKAU0FXvVarqr5tKqAMdybWJJs1gRbkmz0VJP2VKVWB62qIEiSTZ55y555nM3n0hny614v2QlAQJIMmnnQ2qrM+l9/s0+9A43Fy9xFIIORfYbVqtquDaDUmXJ1pjS2gbFRFRj7VQxvw6HUfhnjgEtzqXaRJBhSu6q3tLIJZgiX1fM46L7qn5n6Zy7Jmn5KO/FipPQ5SzNvmBJT2KXhHnzwQSQlJeHee+/Fjh078K9//QtdunTBm2++iW7durVlG4moE5JNqUg94VzU71qGhj2faoa5UWISQkHtliWo2fQmAIH0oVcgY+S1LK5FFAc0wasqY6xZfshk8W4Pd41eSdZm+XSGUqsDWM0wblUQ7ckYNw+/1mSHmwIsSXL/Twj3HGN10GpMgmXgJWjY9znSB12q29T0gRei3+m/QXl5HRQl8GJQmmV8VMO1ZUOydii1rB8YS6YUT3AWC+q5074Z41YPVQ5Gkn3mGIcIcpvaktrvHNgrtiO1z5ko++pPEAiy7FgohggyxprfA++NFcVe57fME4PijiGimul33303kpKS8Ne//hWjRo3C66+/jsxMZnGIqG1YTrwI9buWoW7Xh7AMntmmQ7yobQmnDRXrHkPjwa8hGZORfdrdSO1zZqybRUQ6fLO2nsfqQEIJtUJvE+EKPcc40FxgdQCanAVX/VFAcTbvqGmjcNnc2yRDU5CsnWMsJ2Ui6+Q5yBxzU6uXDNIMx1UHT6YUbVGmAEXHjBl9YLdWtqoNLZF10u/hrDsMWT2H2ue62mbLBUmye963+ucmGUIEuVLToUZkn3xb80Eteu3mzLQUQWCsvhEkJ6VDMqZAOBuh2Kp8stjUUYT8y3Daaaf5/ZIIIVBcXIypU6f67b9u3brotY6IOjVT1glI6lIIW0kRrEe/111ihOKfy1qF8lX3wV62BQZLD+RNfBSmrBNi3SwiCkA9lNq3QnVyr/GwHvoGxow+YZ1LuOx+Q6m9j5uGUmuqJKuf9waZhpRcbQjlu/axywZJlgFFhoA7A64+r8Gc6ff6LaW+caCdT52sfa/qx6rMu2XABago2YjUgmmtbkskLINmAAAa9nkL6voVw2qrodTN51WHFKGC3BAF1iJ67ebAOECVdT3qlRFkkwVJXUbBeuRbGNK6t2jtYop/If86XHHFFVxsmohiJm3gxbCVFKF+51IGxgnIWXsIZV/9Cc66wzDnDkXupMc45Iwo3mkCWfU8SyNyJzwMKI6Q2bZmwmX3D2J9Xkcz5DlAEJ3abzKsh75Bcq8JTftps9ACaMoYS57X8R1KHS3q4d6awFg2w1l7SLWj/lBqU84gdJ/+PuRY/S0MOPcZbTaUuvnnZQiSrdY5SGebzjGy0TuSQO80ssG7xnYkQ6nNqqkDsgHZp92Nuu3/hGXgJaj8/rngbaeEFDIwnjNnTnu0g4hIV0qv8ZBT8mA9sh7OuqOeJRUo/tnLt6Ns5Z+g2KqR3GsCcsfNY9VpogTQHEQA2oyiZDC7kyVhBsWec/kMn1Wd0P0fdcZY/bzqtVN6jUeXqa/DlNGvaT9VgKQuyNU8FVkyaALYaNIMn1a/hiQhucdpaNj3OSyDZ2qDNZ/1m0NVvm5LmroOfutDS+odVZlRCUDgeddhvCgAILX/VDiq9sCUMxBVP70S/BCdxXMkSfZrhSQbIYIExprPn2YERIjA2CebbkjOQmbhDe5/iFb0BcUtTtgjorgmyUZYBpwPQKBu14exbg6FyVayEaVf/gGKrRqWQZcgd/x8BsVEicJl9zzUFBmKZBhyUybSdyi1X3Vf+GQtA2SMIRlgzhnk+TuiCe48BblkCDQFcrIBKX0mwZDWLerrxKrX1ZWMKcg/5wWkD5sFc95wpPQ9G12nvYnM0TcFybzHuOBgoD6G/o0LANpMf0s0D5uXjcg6+fdI6z819IjUcDPG6iXAfDPg8Bm+r74REOIGjyElP+B+sSyeRm2HgTERxb20gvMByYCGPR+7C6xQXLMeWY+yr+ZCOBuRMfJaZI65lZWniRKIZErzPlYPR9YJOgJJH3o5ACCt/9Qgxbea5516AyBNEC2ps6w+QZL6nM0TVyVZVb3aAENKLrpdsAQ5p98TdrvDIaszxrIBSV0LkTlqNiRJgiRJMGX1d7dXDvS+Y/z1O8yh1Nrh6q37G+5X/RpA6DBEL3CW/J7zHdXg/zLqNbrTWCcUmQABAABJREFUgu+rYkjOQtdpb6L7Rf/0e06x1zedI8zq7JQQGBgTUdwzpOYhpfcEKLYaNOz/KtbNoSAaD65C2ar7IFw2ZI65BRnDr2KdCqIEkT/lVaT0PRvpQ3/j2aYZjhxBYJwx4rfoev5bSBtwYcAiVM3bZXOG98AA+/pSB1qeQa2aTKhB899oUg+lDrpfoCG8bblWcBgCtcu9QZ3dD5A9bgm9n0OLMsbeOeSeTToF3bSHeLcZUnKRPvQ3MOePhDEt9HKzpqz+MCRn+21XHHXuc6vmIVPia31pPiKidmA58WI0HliJul0fuDMQFHca9n2JinWPAkIg+9Q7kTbg/Fg3iYgikJQ3FEl5D0Co5k9qM2zhB8aSJMOU0dv9D03mVBWINQVhxrSuyBk3D8aM3qgv/lT1ekGmX2iyru72Sup5sG0YfGqqdgejDtQ1c5FjHBhrqoBrf6aST8a4+ZMgyabWzDAOcDOgBVWpVefzLPUUaIksvW2SjMzC64O/bhhEU2AsMzDuUBIiY3zkyBFcf/31GDVqFE4//XQ89dRTcLmCr59XVVWFO+64A2PGjMEpp5yC++67Dw0NDZ7n169fj5tuugnjx49HYWEhLr74Ynz88cdt/VaIqIXMXUbBmNkPjvJtsJdvj3VzyEfDga/dQTGAnHHzGBQTJTD1KA/1kjWRDKXWnlD1ddOgP9c2td9k9xxiTcY4yFBXWW+uqeQZSt2WWVnJYELe2c+iy9S/hdrR+1A9/DqCGwxtIWhbAmWMWzrH2FMYLcDPK9ihes97hsoHWAJM5+euziJLURrGnjH8t+7/DpsVlfNRfIj7wNjlcuGGG26Aw+HAu+++iyeeeALvv/8+Xn755aDH3Xnnndi9ezcWLlyIv/zlL/j+++8xf/58z/MbNmzAoEGD8OKLL+LDDz/EjBkzcOedd+Lrr79u43dERC0hSRIsA6cDAOp2/CfGrSG1xkNrUbHmIUAI5Jx+L1L7nRPrJhFRlGiyti0MjKUAc1p1g9dwA2Pd9KUqY6wXOEdRcreTYM45Meg+6oBMVmfeQ1RDbmvq4fGxnWPseTbA4yA/Q/W8dL1565p9o1hErIll0Az0uORDpPabHJXzUXyI+8D4m2++QXFxMZ5++mkMGTIEkyZNwm233YbFixfD4XDoHlNcXIzVq1fj0UcfxahRo3DyySdj3rx5+Oijj1BWVgYAuPHGG3H77bdjzJgx6NOnD6666ipMmDABX3zxhe45iSj2Uk+YAsmcjob9K+BsKIl1cwjuQlvl3zwICBeyT5vLLwlEHYzks8xQy04SYK6qbhYxQCVnX55lhKBdOsfzOA6+4kr6gXG0grOWkoIExlKAjLGkKoSW1O0k99OaNYkDBL7NP49ggbXvElF62/0OCRDs6s5l1g/2W0tOygi9EyWUuJ9jXFRUhMGDByMvL8+zbfz48Zg/fz727NmDQYMG+R2zYcMGZGVlYfjw4Z5t48aNgyRJ2LRpE84++2zd16qtrcXAgQNb1V5Zbn2RmeZzRONcHRX7KDwdrZ9kcyrSB16Ems2LUb/zfWSPuan15+xgfdRW9PrJevRHlK26H1AcyBl7BywDpsWqeXGBnyXqiITwTl0LulZsMJrAJEAQ5NmmDlyCzWoV/o8l9ePY/x5qKnqrg9EYt00yqeY7+w3rVgem+sFn9ugbkZ2XjSMbP0H1pjebnjcAwaY5Bp1j7Lt2ssv7OOD59Odv6w6lVvd3jG9KUHyL+09HWVkZcnNzNduag+SysjLdwFjvGKPRiMzMTE/G2Nfy5cuxZcsWPPLIIy1uq9EoIzc3epPws7PTQu/UybGPwtOR+injtFnYsu2fqN/9EU6YeBMMSdH5netIfdSWmvup/thmHFp1H6DY0evMucgfdVmMWxY/+FmiDkWVjRWKPciOgemtOQwECmK8zwt1VjhIu1RHt6R5bUZWB8YhlgZqT+olhoIOpQ6w3JRkNCM55wTNcHV1oS6t5jnf/kGu3g0CdVEtKdjPU3WsMTUfdp3tqp1Vh8V96EMxFLNPx0svvRRynnDzfN9Ad9aC3XHTe04Iobt9/fr1uOeee/DII4+goKAgaJuCcToV1NQ0tvj4ZrIsITs7DZWV9VCU1tQA7LjYR+HpmP2UgtR+k1Ff/CkOfP8eMobMbNXZOmYfRZ+6n2yV+3H8s99DcTQis/B6yL1+ifLyulg3Meba87OUkZECk4lrQ1M7UAWnmuHAkdAMjw3wuHmTOoDUDX6bngpRIzloUNVONAFoPAXGgebnujeoHquHKJt0HgfILuvRHUrdfLzqZxni8+F9Sn9esabitmejOmPMv5sUWMwC4yuvvBIXXnhh0H3y8/ORl5eHLVu2aLY3Z319s8LN8vLy/DLDTqcTNTU1fsd89913uPHGG3HPPfeEbE84ovllSFEEv6iHwD4KT0frJ8ugmagv/hS12/6NtBOn+1/YW6Cj9VFbsdeVomTFnVBs1bAMuhSWIZez33zws0QdiRAudDn3NViP/Yikbie36BzaJYCCB1OaYl9BMsaa8+gF0HE2lDrehvBKhmQIl9V/uyZoVq93rF4r2NS0rza7HPSvnm5RLL11isObY6wJ2iUZ3S5+D67646jdsgT+FYj0s+BEvmL2W5qVlYWsrKyQ+xUWFuL1119HeXm5J6hdu3YtMjIy0L9/f91jRo8ejaqqKmzZsgXDhg0DAHz77bcQQmDkyJGe/davX48bb7wRd955J2bObF3WiYjajynrBCR1PxW2o9+h8cDXrILcTpy2WpSuuAuu+uNI6TsZmWNujvlcOSJqY8IFc+5gmHMHt/wcAQpuSTqVozWZ1WAjA/UygwGrG8dG0HWYY6zHpR8EH6oOaIJPTTXx5nnJIW5yaE4VrCiWet1sWVYF2MFGhmoDaGNqFxhTu6BWd2f1YwbGFFgclOwLbvz48SgoKMDcuXOxfft2rF69Gi+88AKuuOIKmEzuX8xNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75ievX78eN9xwA6688kpMmTIFpaWlKC0tRVVVVazeKhFFIH2Ie05r7bZ/QgQZbkfRoTht2PPhH+Co2oOkbqcg57Q/RW09SCKKP2kFvwQApPQa3/qTBaxKrROkqALjYIFlyCGz8XDTLo6zk5IhSbNsk/4+esOnVUFygOyy7rl05vbqXkNCVS3XeS50pekgQ8eJVOL+02EwGPDaa69h/vz5uOyyy5CSkoLp06djzpw5nn0aGxuxd+9ezfJNzzzzDB5++GFcffXVkGUZ5557LubNm+d5funSpWhsbMTrr7+O119/3bP91FNPxVtvvdU+b46IWiyp6xiYsgfAUbkTtpIiJHcdHesmdVhCcaFizUNoPLIB5tzByJ2wQPuFiYg6nKxT70TmmJtbPq84gFDLP0kBqg377WdQB8bxWYgrmksDxYKkFwwDniA51LB4Dd2McfCh1PrzxPWGzauOMekV5FTfMEnsnwm1rbgPjAGgZ8+e+Nvf/hbw+bFjx2LHjh2abVlZWXj22WcDHvPEE0/giSeeiFobiah9SZIEy+CZqFz3GOq2/ZOBcRuq3vAaGg9+g6SsPsg760lIptRYN4mI2pgkSZCiFhSrghlZOzfU/4VDFFJqPo16yaE4DYwTPQhTD2vX3NBofhxJ1lY3++tffEsKs/iWz8k9jwyp+f7PGnTaTqSD4+CIKGGl9j0bhtR8WI98C3tlcayb0yHV7foAdTv+BTkpEwUXvQhDclasm0RECUc9h1S/mrDe83KwwDgpS2erpPswVozpPQC4s5hyUmaMW9MCmiyxOrhs/rmFqvasXiYpysW3NKfxntto6aZzSvW89cS+WUFti4ExESUsSTbCMuTXAIDaLYtj3JqOx3pkPap++DMgm5A36REkZfWOdZMohrZv344//vGPmDRpEkaNGoVp06Zx6hGFR10HQp0RDlaQCb7DpbXSTrwQyT3PQO6kJ/RH18bBV1xDcja6nr8Y3S96B0ldCpEx6nfIn/JqrJsVNvWUGd1Ma6j54lLwIcytm2Os/zppJ0xFUvdTkDPuft3zMGNMwcT+rwYRUSukFfwScnI2Gg+shKPmYKyb02E4qvag/JsFgFCQc9qfkNxlZOiDqEPbvHkzcnJy8PTTT+O///0vbrjhBjzzzDN45513Yt00SiBSiKHU6mA5udcZAIDUfpP99pONKcib9ChSep4W4IXiIGUMwJTRC7I5HZIkIWPYFUjKGxrrJoUt4Bzj5m0hi2+pA2O9kMP/Z6QNloP8DNU3QzTz0pOQf9bTmtUqNNnqOC6IRrHH2yZElNBkYzIsg3+FmqK/onbr28g57U+xblLCczWWo2zl3RDOBmSMuEb3Syl1Ppdeeqnm371790ZRURE+//xzXH755TFqFSWEQBk7nWDJkOYdCmvK6I0el34UoKCSl2iKkrh8XJSpA0q9gouhim9JkieA1f3ZhCq+FeYcY80SX3o0Bd8YGFNgDIyJKOFZTrwItVveRsPez5Ax4moY0/znGFF4FGcjyr6+F66GEqT2+wXSh18V6yZRHKutrUVmZuvmTspy64KZ5uNbe56OLpb9ZEjK8DxWF0IyGIyQfNqTnDcIueMfhDnnRMiyBDk5A6FIaI6/JPe8WMUBV2N5xO+VnyUtdTArq+d+N/WPOkusnzFWBbZC8e/X5iH2kgEQrqbXVA+llnR+FpLnOc+rGExBf2a+7WyPny8/S+GJt35iYExECU82pcEy6BLUbl6E2q3vIvuU22PdpIQkhIKKtY/BUbED5vyRyB57FzMwFNCGDRuwfPnyoKtGhGI0ysjNDZ4NDFd2dnSXFeqoYtFPjuw81DY9tqSnoarpcW5ehu6cz9zcCyM6/+GmP1MGowxDdl9Yy3dDaSxp8Wers3+WDjT9NznZhPqmxympSZ6fYXP/pFmSUd60zWQ2w958gqZAV5Ikz4hnk0ny+3mUyAIOuEcRCJc7MDaYjGhefNVoMvodc0SWoAAwGCQ4m7alpqXo/qyb30dSSjIamx6nW0zIitLfnHB09s9SuOKlnxgYE1GHkD7oEtRtfw/1xR8jY/iVMKTkxrpJCae66HVYD62G0dITuRMfDj08jTqEl156CS+//HLQfb7++mt06+YdibFr1y7cfPPNmDNnDk4//fQWv7bTqaCmpjH0jkHIsoTs7DRUVtZDUfSW7SEgtv1kc3mLaNU3uDyPKyqtUTm/0pR5dDkV5J7+J5SsuAvZY+eivLwuovPws6RltTk8jxsbvY8rK+uRnZ2GhgbvNqdLdaBqCHUzu83m9/NwOpqOVw2ZdqnO43IKv2Oafy4ul/cFGq2uoD9ru927b01NHVwRfi5agp+l8LRnP2VkpMBkCj6UnoExEXUIclIG0k68CHXb3kXt1neRddItsW5SQqkv/hh12/4JyZyO3DOfgCERlxahFrnyyitx4YXBM3T5+d61QXfv3o2rr74aM2fOxA033NDq14/WlyFFEfwCGoZY9JMpv9D939whmrmo0WqHJMkQAITLBmP2QHSfsQySJLX4/PwsNRGq4cop+UjpPRGmnIGevhFCPaJIp2iWasSRUFx+fSqah0/LJojmnK4qSBbQ+xkKn/8G2k/dHNU5Xf7taEv8LIUnXvqJgTERdRjpg2eifucy1O1ahvQhM2FIzQ99EMFWshGV3z8PSAbkTngIpgwuy9SZZGVlISsrK6x9d+3ahauvvhoXX3wx/vCHP7Rtw6jDMGX0RrcL34EhJQcNB76O+vmNGf1gL90EZ+0hACzC1RYk2X198NnofayexysZ0DRI2vu8UPxP2hQYaypFa4pvhflzDFVQS3V+odcOoiZcromIOgxDSg4sg2YAigM1XNc4LM66IyhffT+gOJF1yh+Q3HV0rJtEcWrXrl246qqrMG7cOFxzzTUoLS1FaWkpKioqYt00SgBGS3dIhqQ2OXfW6Jvc/z3lj21yfoL+0lrq5ZokvWrjqoyxbmCsNO2uWhZKU+k6zDAlxH6agl6KK/CO1OkxY0xEHUr6kF+jbtcHqN/9X6QP+TWMlu6xblLcUhz1KPv6Xii2GlgGXQrLgPNj3SSKY8uXL0dFRQU++ugjfPTRR57tPXv2xIoVK2LYMkoobZCxM+cNQc9ffxmgMjJFhe5yTAHWB5ZUQ6kl2f0z1wlIRfM2TQE29drH4WWMQy7BJBuRWXgD6nb8Bym9x4d1TuqcGBgTUYciJ2UgffBM1Py8EDWbFyHntLtj3aS4JBQXKtY8DGf1PiR1PxWZo2+MdZMozs2ZMwdz5syJdTMo0SnO0Pu0AIPitqW7prAmY6zuf8n7X8kACMUzn1jDM8dYJ6gGoDuwVS/jGzJjbET60MuRPpTrrVNwHEpNRB2OZfClkJMy0LD3Mziq98e6OXGpuuh1WI98C2NGX+Se8YDukilERNGmGyBRnFIVQ9INPvXnGKszxp6gV+fn7skYS+FnjA1pXQEApswTVLuFCGd404TCxMCYiDoc2ZSG9CG/AYSCmp8Xxro5cad+939Rt/09yEkZyJv0GGRz+63pSESdHOd4JgyhCoz1hitLmkJZquJbTcGtJEmQ5CDL/nkyxur5yeostH+YknXy75E24EJkn/Yn1THBA9+QQ62JmjAwJqIOKW3gxZBTctF4YCVsZVtj3Zy4YTte5K1APf4hGNN7xrpJRNSJiDYaSk1tQITIGKszupqMsfdB7qTHYcrqj+yxf4Ivz+gBnaDa50QeSfkjkH3qHyGb0vRfWyV77FwYUvJgGThd93kiXwyMiahDko3JyBx5HQCg+qdXIUTs18eLNWftYZR/8wAgXMg+9Y9I6loY6yYRUSfTXPwojcFK3ErucZr7v13HeDfqDGvWVBnXBM7eqtRJ+cPQddqbMGcX+B1vyuzf9N+++ucJMUQ6fdgsSIZkpDS111dawTR0n/5vGFLzgp6HqBkDYyLqsFJPOBemrALYyzaj8WD0185MJIq9zluBevBMpBX8MtZNIqJOyGjpgZ6X/Q/ZJ98W66ZQADnj5yP/Fy8jpd9kzza9TL+cnOV5LOnNDQ5RVTp3wkNIHzYLWWNuCbBH8OMzR81Gj5mfQk7KCLofUbgYGBNRhyXJBmSOuRkAUL3hdQiXPcYtig2hOFG+5iE4a/YjucdpyCy8IdZNIqJOrK3WM6bokI3JSMofrlmnGIrDbz+DKjDWz+4GD2yNaV2QOWq2NrCVIluuSQpzSSeicDAwJqIOLbnbSUjuOQ6u+qOo2/F+rJsTE9Ub/gLb0e9gzOyHnDPu57ImREQUEd2MsVmdqdWZG9yioFVd0IthCrUvfuKIqMPLHH0jIBlQs/kfcDWUxbo57apux/uo2/EfbwVqdcESIiKiMAiXf8Y44PrDkneOccSkgP8ganMJERgfOXIE119/PUaNGoXTTz8dTz31FFyu4OX+q6qqcMcdd2DMmDE45ZRTcN9996GhoUF3359++glDhw7FjBkz2qL5RBRjpow+sAy+FMLZgKqfXol1c9pN46E1qPrpZUA2IXfiYzBaesS6SURElIgCVBPvMvWvyJ/yCtRBbPOjlgxzlhB+8S2iaIv7T5zL5cINN9wAh8OBd999F0888QTef/99vPzyy0GPu/POO7F7924sXLgQf/nLX/D9999j/vz5fvvV1dXh7rvvxmmn6Ve0I6KOIWP41TCk5qPxwFewHv0h1s1pc/by7ahY8xAgFOSMuw9J+cNj3SQiIkpQQmeOMQCYcwYiKW+YdtizJyBuScaYWWKKHWPoXWLrm2++QXFxMRYuXIi8vDwMGTIEt912G5577jncfPPNMJlMfscUFxdj9erV+M9//oPhw91fBufNm4cbbrgBc+fORV6et2z7Qw89hKlTp8JkMuGrr75qdXtlufW/0M3niMa5Oir2UXjYT15yUhqyT/49ylbdj6ofnkf38xdCMiR1yD5y1h1F2df3QLhsyBpzEyz9zmr1OTtiP0Ub+4iIOhrLoF+hbse/kNJnUog91X/3WjGUWnMMl1mk9hX3gXFRUREGDx6sCWbHjx+P+fPnY8+ePRg0aJDfMRs2bEBWVpYnKAaAcePGQZIkbNq0CWeffTYA4JNPPsHOnTvxyCOP4PXXX291W41GGbm5llafp1l2NucChsI+Cg/7yS0n5zzYDyxHzb41cOz5N7qf5q3O3FH6yGmtwa5P7oFirUTeiEvRa/x1Ua3a2VH6qS2xj4ioo8g66RZkFs4OXUlc7zrTorhYdZBgYEztK+4D47KyMuTm5mq2NQfJZWVluoGx3jFGoxGZmZkoK3MX3jl69Cgee+wxvPnmmzCbzVFpq9OpoKamsdXnkWUJ2dlpqKysh6Lwj4Ie9lF42E/+LIVzUHvwBxz7/k0gbyySc0/sMH0kXDaUfDkXtoq9SO55OlJG3ISKivqonJufpdDas48yMlJgMrG6OBG1vfCW19KLgjmUmhJLzALjl156KeQ84a+//hpA4Mn7wbIges8JITzb586di+uuuw4DBw4Mt8lhieaXIUUR/AIaAvsoPOwnLzm1GzJG/Q7VP72M8jWPodt5rwNIS/g+EooT5d88BFtJEUzZJyJn3P0QMEBE+T0lej+1B/YREXU6UQpoJUl9w49/R6l9xSwwvvLKK3HhhRcG3Sc/Px95eXnYsmWLZntz1tc3K9wsLy/Ps08zp9OJmpoazzHfffcdfvzxRzz99NMAAEVRIITA0KFD8dZbb+Gkk05q0fsiovhnGTQDjYdWw16yEdWb/4G8s2+LdZNaRQgFld89A+uhb2BM74W8M5+EbEqNdbOIiKiziFYFaYkjYSh2YhYYZ2VlISsrK+R+hYWFeP3111FeXu4JateuXYuMjAz0799f95jRo0ejqqoKW7ZswbBhwwAA3377LYQQGDlyJADgo48+0hzz9ttv44cffsBzzz2H3r17t+KdEVG8kyQZOaf9Ccc/uRY1m5egfug5gKlfrJvVIkIIVG94DQ17lsOQkoe8s5+BISUn1s0iIqJOJUpDoFWBsRBKdM5JFKa4X65p/PjxKCgowNy5c7F9+3asXr0aL7zwAq644gpPRepNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75icPHDhQ87/c3FyYzWYMHDgQKSkpMXu/RNQ+jJYeyBx9MyBc2PfpPVDstbFuUovUbl2Cuu3vQTZnIO/sZ2BM6xbrJhERUScTrSKPmmWfOJSa2lncB8YGgwGvvfYaZFnGZZddhrvuugsXX3wx5syZ49mnsbERe/fuhcPhXWPtmWeeQf/+/XH11Vfj+uuvx0knnYQFCxbE4i0QUZxKG3ABUvucCXvNEZSvexIiwSpg1m57FzUb34BkTEbemU/ClNkv1k0iIqLOKFoBrSbAZiEual9xX5UaAHr27Im//e1vAZ8fO3YsduzYodmWlZWFZ599NuzXmDNnjibYJqKOT5Ik5Jx2F5zVu9F4cDXqdvwH6YMvjXWzwlK79V1UF70GyZCM3EmPw5w3JNZNIiIigjcwbl1gK3G+MbWzuM8YExG1JdlswQnTngBkE6o3/AXWYz/GukkhqYPivDOfQHLX0bFuEhERdWbqjHHz6KvWDq+WGaZQ++Injog6vdQuQ5Az9g5AuFC++gE4qvfHukm6hBCo+fn/NEFxUtfCWDeLiIjIo1WTklRTmpgxpvbGwJiICICl4DykD/0NhKMeZV/fA5e1KtZN0hCKC1U//Bk1P/8fJGMq8s56kkExERHFB3UF6abHUmuXcGJgTO2MgTERUZOMUbOR0nsiXHVHULZybtxUqhYuGyrWPoz6XcsgJ2cjf/KfkdRlVKybRURE5KYpXhmdOcYMjKm9MTAmImoiSTKyT78X5i6j4KjYibKVd0NxNMS0Ta6GMpR+cTsaD6yEwdIDXX7xMsw5J8a0TURERFo6aw63Ni6WGRhT+2JgTESkIhuTkTfpcZjzhsFetgVlX90Fl606Jm2xl23D8f/dCHv5NpjzhqHLL16GMb1nTNpCREQUiGa5Q8/j1g6lZphC7YufOCIiH7IpFXlnPgFz7lDYy7ag9PPfw1l/vN1eXwiBuh3vo+SL30NpLENq/2nIP+d5GFJy2q0NREREYVPPMUZ0qlKz+Ba1NwbGREQ6ZHM68s55Fsk9ToOzZj9K/ncjrMc3tPnruhorUP71Paj68UUAAlkn/R7ZY++CZDC3+WsTERG1XmvqUquOZcaY2hk/cUREAcjGFOROfARpAy6EYq1E2Yo7ULNlMYTijPprCaGgbvdHOP7xb2E98i2MGb3RZcqrsAyaAam1a0ESERG1JVXG2DusurXrGDNjTO3LGOsGEBHFM0k2IvvUP8KcPxxV3z2Hmo1voPHAKmSPvQPmnEFReQ1byUZUb3gN9vJtACSkDZyOzMIbIBuTo3J+IiKiNqUzx7i1yzW1erknoggxMCYiCkPaCVNgzhmEyu+ehr10M0qW34iUPmciY/iVMGX1j/h8QnHBduwH1G77J2zHfwIAmHIGIfuUP8CcOzjazSciImozAjpzjFuLc4ypnTEwJiIKkymzL/Inv4j64o9Rs+lNNB74Co0HvkJS19FI7fcLJHc/FYbUvIDHC8UJe/k2WA9/i4b9X8DVVNDLmN4bGcOvQkrfs7k8BRERJR6hEwy3tvgWr4fUzhgYExFFQJJkWAZcgNR+v0D97v+ibvu/YDu+AbamwlwGSw+YMvrAkJoPyZgCKE64bDVw1h6Es3ofhMvmOVdS1zFIG3ABUnpPgCTzzzERESUq9VDq5uxxywJjU85gOCq2w5w3ovXNIooAv4kREbWAbExG+uBLYRk0A7aSjWg88DVsx3+Cs+YAXHVHdI+RTGlIyh+J5B5jkdLzdK5JTEREHYNmuaZWnQj55zwLR+VumPNHRumcROFhYExE1AqSJCO562gkdx0NAFAcDXDWHoLLWgnhbIQkmyCb0mBI7wFDSj4rTBMRUcejGUrdfJ1r2Vxj2ZSGpC6jWt0kokgxMCYiiiLZlApzzsBYN4OoTR04cAAXXXQRzGYz1q9fH+vmEFGMaYpvNd8A1pt3TBTHWAediIiIwuZ0OnHXXXfhpJNOinVTiCheqINgzzJLDIwpsTAwJiIiorC98sor6NWrF6ZNmxbrphBRvFDNMZaahlKLFsw7ZpKZYolDqYmIiCgsP/30E5YtW4Zly5bhyy+/jMo5Zbl18+6bj2/teTo69lNo7KPw6PWTpnxG0z8kRN6XktQx+p+fpfDEWz8lRGB85MgRzJ8/H+vXr0dqaiqmT5+OO+64AwZD4PXNqqqq8PDDD+Orr76CwWDAlClTcN999yE1NdWzj6Io+Pvf/45//etfOHLkCLp06YLf/va3uOqqq9rjbRERESWMuro6zJ07F4888ggyMzOjck6jUUZuriUq58rOTovKeTo69lNo7KPwqPup1mxAfdNjWZahAJBlhP37faDpv0lJxqj9TYgH/CyFJ176Ke4DY5fLhRtuuAF5eXl49913UVJSgj/96U9ISkrCbbfdFvC4O++8E6WlpVi4cCEcDgfuvfdezJ8/H0899ZRnn8ceewxr1qzBPffcgwEDBqCyshKNjY3t8baIiIjiwksvvYSXX3456D5ff/01/vznP+PMM8/EGWecEbXXdjoV1NS07roryxKys9NQWVkPReE4zEDYT6Gxj8Kj1082q93zvCLc2T+XS0F5eV1Y58w6eQ6qfngJ5hMuDvuYeMbPUnjas58yMlJgMgVOqgIJEBh/8803KC4uxsKFC5GXl4chQ4bgtttuw3PPPYebb74ZJpPJ75ji4mKsXr0a//nPfzB8+HAAwLx583DDDTdg7ty5yMvLQ3FxMd555x189NFH6N+/PwCgd+/e7freiIiIYu3KK6/EhRdeGHSf/Px8rF+/HseOHcPbb78NABBCQFEUDB06FE8++SQuuOCCFr1+tL4MKYrgF9AwsJ9CYx+FR91PuvOJhRJ2P1oGXoK0ARdBko0dqu/5WQpPvPRT3AfGRUVFGDx4MPLy8jzbxo8fj/nz52PPnj0YNGiQ3zEbNmxAVlaWJygGgHHjxkGSJGzatAlnn302VqxYgV69emHFihWYPXs2JEnChAkTcOedd8JiafkQjmiMkY+38fbxiH0UHvZTaOyj8LCfQkvUPsrKykJWVlbI/f7+97/D4XB4/v3ll1/izTffxJIlS9C9e/c2bCERxT29qtQRVtKS5LgPS6iDi/tPYFlZGXJzczXbmoPksrIy3cBY7xij0YjMzEyUlZUBAA4ePIjDhw/jiy++wNNPPw273Y5HHnkEd999d8ghZYFEc64UED/j7eMZ+yg87KfQ2EfhYT+F1lH76IQTTtD8e/PmzZBlGQMHct1uIvIGwZJnS+wzgESRiFlgHO6cJgCQJP2774G2B3pOCOHZLoSAw+HAk08+ib59+wIA5s+fj1mzZqGsrEyToQ5XNOZKAZyXEA72UXjYT6Gxj8LDfgot3uZKERG1G/VQ6hZmjIliLWaBcbhzmvLy8rBlyxbN9uasr29WuFleXp5nn2ZOpxM1NTWeY/Ly8mA0Gj1BMQAUFBQAcFfBbklgDERvrlTzufgFNDj2UXjYT6Gxj8LDfgqts/TRjBkzMGPGjFg3g4jigNAEwc3JqcjXMSaKpZgFxuHOaSosLMTrr7+O8vJyT1C7du1aZGRkeIpm+Ro9ejSqqqqwZcsWDBs2DADw7bffQgiBkSNHevZxOp04ePCgp+jW3r17AQA9evRo7dsjIiIiIuoULCdeBOuh1cgYeS3qiz9xb2TGmBKMHOsGhDJ+/HgUFBRg7ty52L59O1avXo0XXngBV1xxhaci9aZNmzB16lQcP34cgDvzO2HCBMybNw+bNm3Cjz/+iIcffhjnn3++JxN8xhlnYPDgwbjvvvuwfft2bNq0CQ8//DCmTJnS4mwxEREREVFnk9z9ZPT41SfIGH6Vaig1M8aUWOI+MDYYDHjttdcgyzIuu+wy3HXXXbj44osxZ84czz6NjY3Yu3evplrmM888g/79++Pqq6/G9ddfj5NOOgkLFizQnPevf/0r0tPTcfnll+Pmm2/GyJEj8fjjj7fr+yMiIiIiSnSyKRUAIDUNpWa+mBJN3FelBoCePXvib3/7W8Dnx44dix07dmi2ZWVl4dlnnw163q5du+KVV16JShuJiIiIiDq95gK4zBhTgon7jDERERERESUIybtgE1EiYWBMRERERERR0pwxZmBMiYWBMRERERERRUdz8S1mjCnBMDAmIiIiIqLoYsaYEgwDYyIiIiIiigqpKWMsmDGmBMPAmIiIiIiIooRVqSkxMTAmIiIiIqKoSCv4JQDAMuiSGLeEKDIJsY4xERERERHFv7SB05Hc41QYLD1j3RSiiDAwJiIiIiKiqJAkCcb0XrFuBlHEOJSaiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqDIyJiIiIiIioU2NgTERERERERJ0aA2MiIiIiIiLq1CQhhIh1IzoKRRFwuZSonMtkMsDhcEXlXB0V+yg87KfQ2EfhYT+F1l59ZDDIkGWpzV+nrUXrusnPZnjYT6Gxj8LDfgqNfRSeeLpuMjAmIiIiIiKiTo1DqYmIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsA4zixZsgRnn302RowYgZkzZ2LTpk2xblK7ef3113HJJZdg9OjROP3003Hrrbdi3759mn1sNhsWLFiAsWPHYvTo0ZgzZw7Ky8s1+xw5cgTXX389Ro0ahdNPPx1PPfUUXC5XO76T9vPggw9i0KBBWLx4sWcb+8jt2LFjuOOOO3DqqaeisLAQM2bMQHFxsed59hNQV1eH+fPnY8KECRg1ahTOP/98LFu2zPN8Z+yj77//HjfeeCPGjx+PQYMG4auvvtI8H60+Wb9+PaZPn47hw4fjF7/4habfKTK8bvK6GQleNwPjdTM0Xjf9dajrpqC48fHHH4thw4aJf//732LXrl1i3rx54pRTThHl5eWxblq7uPbaa8V//vMfsXPnTrFt2zbxu9/9Tpx11lmisbHRs88DDzwgJk2aJNauXSt+/vlnMXPmTPGb3/zG87zT6RTnn3+++O1vfyu2bt0qVq5cKcaOHSteeOGFWLylNrVixQpx4YUXivHjx4u33nrLs519JERVVZU466yzxN133y02btwoDhw4IFauXCmOHj3q2Yf9JMS9994rpkyZIr777jtx4MABsXjxYjF48GCxfv16IUTn7KOVK1eK5557Tvzvf/8TAwcOFCtWrNA8H40+OXDggBg1apR4/PHHxe7du8Vbb70lhgwZItasWdNu77Oj4HWT181I8LoZGK+b4eF1019Hum4yMI4jl156qXjooYc8/3a5XGL8+PHijTfeiGGrYqe8vFwMHDhQ/Pjjj0IIIWpqasSwYcPE8uXLPfvs3r1bDBw4UGzatEkI4f7lHDJkiCgtLfXs8/bbb4uTTz5Z2O329n0Dbai0tFRMnDhRbN++XZx11lmeCzz7yO3pp58Wl19+ecDn2U9uv/zlL8Vrr72m2TZlyhTxxhtvsI+E8LvAR6tPnnrqKXH++edrXuv2228X119/fVu+nQ6J100tXjcD43UzOF43w8PrZnCJft3kUOo4YbfbsWXLFpxxxhmebbIsY9y4cSgqKopdw2KotrYWAJCZmQkA2Lx5MxwOh6aPCgoK0KNHD08fFRUVYfDgwcjLy/PsM378eNTU1GDPnj3t1/g2ds899+DKK6/EoEGDNNvZR24rVqzA8OHDMWfOHJx++umYMWMGPvjgA8/z7Ce30aNH48svv8Tx48chhMDq1atRUlKCcePGsY90RKtPioqKNOdo3qez/q1vKV43/fG6GRivm8HxuhkeXjcjk2jXTQbGcaKyshIul0vzoQCA3NxclJaWxqhVsSOEwOOPP45TTz0VBQUFAICysjIkJyfDYrFo9s3NzUVZWZlnn9zcXM3zzX3avE+iW7x4MRoaGnDttdf6Pcc+cjt48CDefvttFBQU4M0338Qll1yC++67D19++SUA9lOzefPmoU+fPpg4cSKGDx+OW2+9FY8//jiGDBnCPtIRrT4JtE9VVRUcDkdbNb/D4XVTi9fNwHjdDI3XzfDwuhmZRLtuGqN2JmoTQghIkhTrZrS7hx56CDt37sQ777yj2a7XF0KIkPsE255IiouL8eqrr+K9996DLOvf1+rsfQS43++IESNw++23AwCGDBmCzZs345133sE555wDgP0EuL8sbtu2DX/961/RtWtXrFu3Dvfeey+6desGgH2kJ1p94ruP7zmo5Xjd5HVTjdfN8PC6GR5eNyOXSNdNZozjRHZ2NgwGg9/dooqKCr+74R3dww8/jBUrVmDRokXo2rWrZ3teXh4aGxtRV1en2V/dR3l5eX592Pxv3ztNiWjjxo2oqKjAlClTMHToUAwdOhSHDx/Go48+iqlTp7KPmuTl5aF///6abQUFBTh69Kjn+c7eT1arFc8//zzuvvtuTJo0CYMHD8Y111yDSZMmYdGiRewjHdHqE719ysvLkZWVBZPJ1FbN73B43fTidTMwXjfDw+tmaLxuRi7RrpsMjOOE2WzGsGHDsHbtWs82RVGwbt06FBYWxq5h7UgIgYceegifffYZFi1ahN69e2ueHz58OEwmk6aP9u7diyNHjnj6qLCwENu3b9eUgV+7di0yMjL8/uAnosmTJ+PDDz/EsmXLPP/r0qULrr/+erz22mvsoyajR4/G/v37Ndv27duH7t27A+BnCQCcTiccDgcMBoNmuyzLUBSFfaQjWn1SWFiINWvWaM69du3aTvO3Plp43eR1Mxy8boaH183QeN2MXMJdN6NayotapXnZiffff1/s/n/27ju8rer8A/hXV5L3HrHjFSdO4jjOcDbZJKyQsqHQllX2LvwKpEBDSRhljzJadqDMAiVQ2hBGQghkk8Rx4kw7cbz3nlr394ct6V75ypJsyZKt7+d5eFCurq6Ojq4lvfc95z0FBeKDDz7oV8tOPPTQQ+KMGTPEHTt2iNXV1Zb/bJedOPXUU8Vt27aJ+/fvFy+77DLFku/XXnuteOjQIXHz5s3iKaecIj7//PNeeEWDQ1pdUxTZR6Ioirm5uWJWVpb42muviUVFReLnn38uTpo0SdywYYNlH/aTKF5xxRXieeedZ1l24uOPPxYnTpwofvnll6Io+mcftba2igcPHhQPHjwojh8/XvznP/8pHjx4UKyurhZF0T19UlxcLE6ZMkV88sknxYKCAvH9998XJ06cyOWa+oHfm/ze7A9+b/bG703n8Huzt+H0vcnA2Me899574qmnnipmZ2eLl1xyibhv3z5vN2nQjB8/XvG/f//735Z9Ojs7xVWrVomzZs0Sp06dKt5+++2y8u6iKIqlpaXi9ddfL06ZMkWcM2eO+MQTT4gGg2GwX86gsf2CZx91++6778Rf/epX4qRJk8Tly5eLa9euld3PfhLF6upq8U9/+pO4YMECccqUKeLZZ58tvv/++5b7/bGPtm/frvg59OKLL4qi6L4+2bZtm3j++eeL2dnZ4mmnnSZ+/vnng/Yahxt+b/J701X83lTG703H+L3Z23D63lSJIit+EBERERERkf/iHGMiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIvGbdunX4/PPPvd0MIiKiIYHfm0Sew8CYiLxm/fr1WLt2rbebQURENCTwe5PIcxgYExERERERkV9TiaIoersRROR/7rvvvl5XvW+//XbccccdXmoRERGR7+L3JpFnabzdACLyT7feeivKy8vR0tKChx56CACQmJjo5VYRERH5Jn5vEnkWA2Mi8oq0tDRERUVBFEXk5OR4uzlEREQ+jd+bRJ7FOcZERERERETk1xgYExERERERkV9jYExERERERER+jYExEXmNVqtFV1eXt5tBREQ0JPB7k8hzGBgTkdeMHj0aR48exffff4/9+/ejqqrK200iIiLyWfzeJPIcrmNMRF5TX1+PBx98ELt27UJTUxPXYyQiIuoDvzeJPIeBMREREREREfk1DqUmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msabzdgODGZRBiNJrccS6MRYDC451jDFfvIOewnx9hHzmE/OTZYfaRWCxAElcefx9Pc9b3Jc9M57CfH2EfOYT85xj5yji99bzIwdiOj0YTGxvYBH0cQVIiNDUNzcwdMJtENLRt+2EfOYT85xj5yDvvJscHso6ioEAiC2qPPMRjc8b3Jc9M57CfH2EfOYT85xj5yjq99b3IoNREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+bUhFRh/8MEHWLp0KSZPnoxLL70UeXl5fe7/9ddfY9myZZg8eTLOPfdcbN68udc+BQUFuOmmmzB9+nRMnz4dv/nNb1BfX++pl0BERDRsPPTQQ8jMzMT777/v7aYQERENyJAJjNetW4fHH38ct912G9auXYvMzExcf/31doPYvXv34u6778Yll1yCL774AqeffjpuvfVWFBYWWvYpLi7G5ZdfjrFjx+LDDz/E2rVrcd1110Gr1Q7WyyIiIhqSfvjhB+Tm5mLEiBHebgoREdGADZnAeM2aNbjssstw8cUXY+zYsVi9ejUCAwOxdu1axf3fffddLFq0CNdffz0yMjJw5513YuLEifjggw8s+zz//PNYtGgR7r33XkyYMAGjRo3CGWecgfDw8MF6WURERENObW0tVq1ahaeeeooXk4mIaFjQeLsBztDpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK6666TbVuwYAE2bdoEADCZTNi0aROuv/56XHPNNTh8+DBGjRqF2267DQsXLux3WwVB1e/H2h7DHccarthHzmE/OcY+cg77yTF/6qP7778fV155JTIzMwd8rIH2lz/1+0CwnxxjHzmH/eQY+8g5vtZPQyIwbmhogNFoRFxcnGx7bGwsTp48qfiY2tpaxMbG9tq/pqYGAFBXV4f29na8+eabuOuuu7BixQps2LABN910Ez777DNMnDjR5XZqNAJiY8Ncfpw90dGhbjvWcMU+cg77yTH2kXPYT44N9z56//330d7ejmuvvXbAx3Ln9+Zw73d3YT85xj5yDvvJMfaRc3yln4ZEYGyPKIpQqexfYVC6z7zNZDIBAE477TRcffXVAICsrCzs3LkT//rXv7B69WqX22MwmNDc3OHy42wJggrR0aFoaGiDySQO+HjDEfvIOewnx9hHzmE/OTaYfRQREQytVu3R51BSWFiIv//97/jkk08gCAOfjeWO702em85hPznGPnIO+8kx9pFzfO17c0gExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/6OhoaDQajBkzRrZPRkYGysrK+t1Wd76pJpPIPyYH2EfOYT85xj5yDvvJseHcR/v27UN9fT3OPPNMyzaj0YjHHnsM77//PtavX+/yMd3VV8O5392J/eQY+8g57CfH2EfO8ZV+GhKBcUBAALKzs7F161YsXboUQHfGd9u2bZZsr62cnBxs2bIFV155pWXb1q1bkZOTIzum7VDsoqIipKWleeaFEBERDWGnn346Jk2aJNt23XXX4aKLLsKFF17opVYREREN3JAIjAHgmmuuwYoVK5CdnY0pU6bg3XffRWdnp+WLeMWKFUhISMDdd98NALjqqqtwxRVX4O2338bixYuxbt06HDhwAI899pjlmNdeey3uuecezJo1C7NmzcKGDRuwY8cO3HvvvV55jURERL4sIiICERERsm1arRbx8fFIT0/3TqOIiIjcYMgExsuXL0d9fT1efPFF1NTUICsrC2+++SZiYmIAABUVFbL5TtOnT8ezzz6LF154Ac899xzS09PxyiuvICMjw7LPsmXL0NzcjFdffRWPPPIIMjIy8Oqrr/ar8BYRERERERENTSpRFL0/oHuY0OuNaGxsH/BxBEGF2Ngw1NW1+sR4e1/EPnIO+8kx9pFz2E+ODWYfRUWFeKX4lru543uT56Zz2E+OsY+cw35yjH3kHF/73hx4SUkiIiIiIiKiIYyBMREREREREfk1BsZERERERETk1xgYExERERERkV8bMlWpibzBZDKgraMcbe3lMJp0gEqF4IBYhIYkIzAg0tvNI5IRRRFtHeVo76yCTtcMlaBGgCYc4aGpCAqM9XbziIiIiHwWA2MiG126JpRUfo+Kmm2obdgHk0mnuF9E6Ggkxs/BqOTliAgdNcitJOpmMhlQVbcTxRXfobpuN3T6JsX9ggJjkRg3B0kjFiExbjZUqqFf0ZiIiIjIXRgYE/Vo66jAocJ3UVK5wRIMazVhiI2ciNCQZGjUIRBFAzq66tDUUojmthNobjuBo0UfIyFuDiaNvQFREeO8/CrIX5hMBpws/waHj/8T7Z2VAABBpUVM5ESEhaQgQBsJEUbodM1obj2B5rYiFJWtQ1HZOoQEJWLsqEswJuU8qNWBXn4lRERERN7HwJj8nl7fioOFa1BY8gVE0QCNOgTpqcuRmngaYiInQhCU/0zaO6pQXPEdTpR+haraHaiq3YExKedj8vibodGEDPKrIH/S2HwMu/OfQmPLUQBAQuxspCcvx8j4eXYDXZ2+BZW123Gy7GtU1+9G3pGXUXDyM0wadyNSEpdCpVIN5ksgIiIi8ikMjMmvVdbuwJ78p9HRVQONOhjj0q/EuFGXQutEYBsSnIAJY67A+PTLcKLsfzhY8DaOl36JqrpdmDN1NaIjxg/CKyB/Iooijp38BAeOvQZRNCI2ajKmjL8VMVETHT42QBuOtJFnIG3kGWhqOY78gjdRUbMFO/c/jOKK7zA9+14Ecx4yERER+SkGxuSXTCYD9h/9BwqKPwMApCaehimZdyAoMNrlYwmCFhmpFyB5xGLsPfQMyqt/xo87b8fMSfchJXGpu5tOfspo7MLu/KdQUvk9BCEAUzJvR0bqBVCpXF9cIDJ8DOZN+ytq6vdiz8FnUFm7Dd9v/T1mTnoAI+PneqD1RERERL6NyzWR3+noqsPmX+5CQfFnCNBGYm7OY5g95S/9CoqlggKjccrURzFp3M0wmnTYkbcahcVr3dRq8mcGQzu27L0fJZXfIyQoAafOfgVj0y7qV1AsFR8zDafNfQsZaRdBp2/G1r3341DhOxBFk5taTkRERDQ0MDAmv9LUchw/bL8JdY37ERWRiaWnvI6kEQvcdnyVSoXM0b/F3JzHIAgByD38Ao6d/MRtxyf/YzB04Oc996Kmfjciw8diyZxX3TpMX6MOQs6EO3HK1EegUQfhYOEa7Mhb3b08GREREZGfYGBMfqO2YT9+3HUHOrpqkDbyLJw66yWEBid65LmSRszHvGmPQy0EIu/IKygq+9ojz0PDm8lkwPa8h1DXeAAxkROxaOYLCAqM8chzJScswpI5ryI0OAllVZuwZc+foDe0eeS5iIiIiHwNA2PyC5U12/HT7j9Cb2hF5ujLMXPS/R5fpiYhdibm5jwGlUqNPQefRlXtLo8+Hw0voihid/5TqKrdgYjQ0Zg//SkEaMM9+pwRYek4dfbLiAwfi5r6Pdi86y506ZTXRSYiIiIaThgY07BXVbsL2/Y9CJNJhymZt2PSuBsHbWmahLhZmD7xXoiiEdv3/QXNrUWD8rw09B0t+hDFFd8gOGgE5s/wfFBsFhQYi8Uz/4b46Bw0thzFz7vvhk7fMijPTUREROQtDIxpWKuu24OtuQ/AZNIhJ+v/MG7Urwe9DenJZyNrzO9hMLZj+76/wGBoH/Q20NBSVfcLDhx7E2ohCPOnPYGQoBGD+vxabRjmTX8S8dHT0NhyDD/vvgd6feugtoGIiIhoMDEwpmGrtmE/tu69vydTfAcyUi/wWluyMq5GQtwctLSdxJ6Dz0AURa+1hXxbe2c1duY9DMCEGdn3IjI8wyvt0KiDMG/aXxEbNRkNzYfx0+4V0Bs6vNIWIvKe9o4qGI1d3m4GEZHHMTCmYam57SS27r0fRlMnJo27GeNGXeLV9qhUAmZN+jNCghJQUrkBRWX/9Wp7yDeJogm/7H8MOn0TMtIuQurI073aHo0mBPOnP4WYyImoazyA73++HyaTwattIqLB09pejq9/uhQbd9zsluMZTTq0d1S55VhERO7GwJiGnc6uOmzZvQJ6QwvGp/8GmaN/6+0mAQACAyIxe8pDAATkHXkFbR0V3m4S+ZiC4s9Q05CLyLAMTB5/i7ebAwDQakIwb9oTCA9Nw8myzcg99CJHPBD5icbmowCA5tbjbjnejztvx9c/XYqWtlK3HI+IyJ0YGNOwYjC0Y8ue+9DeWYmUxKWYNO4mbzdJJjYqG5mjfweDsQO7DzwBUTR5u0nkI5pbT+DAsTcgqLSYNfnPUAsB3m6SRWBAJBbOeArBQbEoLPkCR4s+9HaTiGhQuPc7qqH5SM//D7n1uERE7jCkAuMPPvgAS5cuxeTJk3HppZciLy+vz/2//vprLFu2DJMnT8a5556LzZs32933hhtuQGZmJn744Qd3N5sGiSgasSPvYTS2HEVcdA5mTrofKpXvneJZGVcjMiwDNQ25KCz5wtvNIR8giibszn8KJpMOE8de57V5xX0JDUnC8lP/BrU6GAeOvY6Sig3ebhIReZinRoeoVGqPHJeIaCB8L2qwY926dXj88cdx2223Ye3atcjMzMT111+P+vp6xf337t2Lu+++G5dccgm++OILnH766bj11ltRWFjYa9/333+fQwOHgfyCt1BZuw3hoaMwN+dRn8q4SamFgJ6gXY38Y2+go6vO200iLztR+l/UNx1EdEQmxqdf6u3m2BUfOxFzc1YDELA7/0k09AyzJKLhSXRzxthMhcFZMpGIyBVDJjBes2YNLrvsMlx88cUYO3YsVq9ejcDAQKxdu1Zx/3fffReLFi3C9ddfj4yMDNx5552YOHEiPvjgA9l+BQUFeP311/HXv/51MF4GeUhJ5UYcOfEBtJowzM3566Ct+dpfURHjMDbtYhiM7dh/5O/ebg55UWdXAw4cew2AgGkT7/b5TMrI+FMwefzNMJq6sG3vA+jsUr44SURkj69/zhGRf9J4uwHO0Ol0yM/Pxy23WIvRCIKAefPmITc3V/Exubm5uO6662TbFixYgE2bNsmOe/fdd+P+++/HiBHuWSdUEAZ+FdR8DHcca7iS9lFD81HsPvAEAAGnTF2FyPBU7zbOSdnjrkVJ5UaUVH6PMannYkTsNLc/B88lx7zdRweO/QN6QyvGpl2M2KgJXmmDM6T9lDn6MjS1FqC4/FvsyHsIi2c9D0HQermF3uftc4nI3TxWB0PFvxEi8j1DIjBuaGiA0WhEXFycbHtsbCxOnjyp+Jja2lrExsb22r+mpsby7+effx7jxo3D2Wef7ZZ2ajQCYmPD3HIsAIiODnXbsYaroGAdtm9aCaOpC6dMuxPZE5Z6u0kuCMOCmXfj+y33I+/o33DJ2R9BrfZMcMFzyTFv9FFFdS5Oln+DkKA4LJzzBwQGuO/zw1PM/XTmwlX48vsy1NTl4eDxV7B4zkovt8x38O+NhjJRNGH7vgcRHzMDWk2IR55DNXQGLBKRHxkSgbE9oihC1cdVR6X7zNu2b9+O9evX48svv3RbewwGE5qbOwZ8HEFQITo6FA0NbTCZOPdZiSCoEBkZiK9/uAet7ZVIG3k6UkZchLq6Vm83zSVRYfMwImY6quv34Jd9H2LsqIvdenyeS455q49EUcRPO58BAGSPuxGtLSq0wnfPX6V+mjP5YXy/7QYcKvgcoUHjMDrlV15upXcN5rkUEREMrZbDUcn9GlsKUF79M8qrf8bM7Ps99Cz8PiLPa20vRXn1FoxNuxgqlRomkw5qdaC3m0U+bEgExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/Xbt2oaKiAqeccopsn1tvvRXz5s3DW2+91a+2uvPHkMkkMpjpwy/7X0d1/V5Eho/F9IkrIIqeq6DpSZMzb8OGbdfjYMG7SB15FrQa92ebeC45Nth9VFq5EfVNBxEVPg6piWcMmfdH2k+BAXGYM2U1Nv9yF/YcfB6R4eMRFT7Wyy30Pv690VAmmgzW2x4qviWKRo8cl0jq+63XwmjqglYTgrrGAzhZvh5nL/oUIUHumT5Jw8+QGMsSEBCA7OxsbN261bLNZDJh27ZtyMnJUXxMTk4OtmzZItu2detWy/6/+93v8J///AdffPGF5T8AWLlyJVavXu2Jl0FuVFm7E3sOvAWNOgSnTF09pK8ARoWPRdrIM9Glb8TRoo+93RwaBEaTDgeOvQEAmDz+Vp9cVsxZcdFTMGncjTCZdNi+7y/Q6303601EjkmDYU/NMTZJgm8iTzGaugAAre3lOFm+HgBQXfeLN5tEPm7I/Bq75ppr8PHHH2Pt2rUoLCzEqlWr0NnZiQsvvBAAsGLFCjz77LOW/a+66ips3rwZb7/9NgoLC/HSSy/hwIEDuPzyywF0zzceP3687D8ASEpKQkpKyuC/QHJaR2ctduY9CkDEzEkrEBYy9N+v7LHXQRACcKzoE3R01jp+AA1px0u+QFtHORLj5mJE7HRvN2fAxo26DEkjFqCtvQy/5D85JEduEFE3aTbXU5ldk8jAmAaP9DweyheiyfOGzNmxfPly3HfffXjxxRdx/vnn49ChQ3jzzTcRExMDAKioqJAV1po+fTqeffZZ/Otf/8L555+Pb775Bq+88goyMjK89RLIDUwmA3bufwRdukZkj/s1UkcOpWJb9oUEJ2Bs2sUwmjpx6Pg73m4OeZDB0I7Dx98HIGDy+Ju93Ry3UKlUmJF9H0KDk1BevRkFxZ96u0lE1E/SC1vuDGClx+VQahpM0vOYS4VRX4bEHGOzK664AldccYXife+9916vbWeffbZLFaePHDnS77bR4Dh0/F3UNuQiKmIc5s74I5oa9d5ukttkjr4cJ0q/QlHZOmSOvhyhwSO93STygMKSL6DTNyFt5FmICEv3dnPcJkAbjlOmrsYPO2/D/qOvIjoiC3HRk73dLCJykTRodeeQZ5Ool9xmxpgGjyxjPHRyguQFPDtoyKiq3YXDx9+DRh2CuVNXQzOE5xUrCdCGY+yoX0MUjT0ZRRpu9Ib2nnnkAiaMucrbzXG7qIjxyJnwB4iiETvyVqFL1+jtJhGRi0wmveJtnb4F32+9FkVlXw/4uKKJGWMaPPKh1MwYk30MjGlI6Oisxa793fOKZ2Tfi7DQoT+vWMnYtIuh1YThZPnXaOuo9HZzyM2Ol6ztyRafgfBheg6nJ5+DtJFnorOrFrv2P+ax4j1E5BlGSWZXlGR2T5R+habWQuzOf6Jfx5VlopkxpkEkHfnAOcbUF54d5PMs84r1jRiTegFSEofHvGIlAdpwjE27GKJoxJETH3i7OeRG5myxSqVGVsbwyxabqVQqTMv6I8JD01FVt5PnMdEQI88YGxS3u+LYyc9QUvG97CKZP84xNhq7sGnn7The8qW3mzIkuHMYv8g5xuQkBsbk8yzzisPHYcr4W73dHI8bO+rX0GhCUVS2Du0dVd5uDrlJYfHn0OmbkTbyjGFRSb0vGk1w9zJqQhDyC95GTf1ebzeJ3OS1117DxRdfjGnTpmHu3Lm4/fbbUVRU5O1mkRuZTDrrbdl8Y9cDY1E0Ie/IS9i5/xFZYOyPyzVV1u5AXeN+7D30nLeb4vMOFb6Dtd+fhubWIrccz+SBSusNzUexededaG0vdcvxyDcwMCafJp1XPGfqqiG9XrGzrFljA7Ntw4TR2IWCk5+ie27xld5uzqCICEvHtIn/B8CEnXkPo7Or3ttNIjfYuXMnLr/8cnzyySdYs2YNdDodrr32WnR2dnq7aeQm8gDYGswaJQFzf44lQlqV2v8CY4DL2DnrYOEaAHA4n71L14jahv0Ojydfgsw959623D+jpiEXvxzo39QC8k0MjMln9ZpXPMyzbFLjRv0aanUwisq/RmdXg7ebQwN0snw9uvSNSEk81a/O41FJy5CevBydunrs3P+oXw6fHG7eeustXHTRRRg3bhwmTJiAJ554AmVlZTh48KC3m0ZuIg2ApUssGY2uX/yQF9ySDMsWjWhtL0Nl7Y5+tnIoUg34CMM90277HWES+74Y893Wa/DjrtvR0Hy0z/1MJun8dvd8D5mM3W3r0jW55XjkG4bUck3kP/xpXrGSAG0ERif/CgXFn+F4yVpMHHutt5tE/SSKRhw9+S8AwPj033i5NYNv6oQ7Ud90CDX1u3Ho+HuYmPF7bzeJ3KilpQUAEBkZ2e9jCMLAAgbz4wd6nOHO2X4SRXsZY2tg7HRfq6xBiMHUJnkSI775+XcAgGUL3kd4WJpzx/MwT55L0mP25/jVdXvw4667MGvy/UhPdn4pUk/wRD8VnPwcew+9gNPnvmHZZjLp+3yOLl33SKTm1kLERmXa3U+E9IKCyS3tVquDAH3334XS8fi55Bxf6ycGxuSTrPOKx/vFvGIlY0f9GoUla1FY8gXGj/4dNOogbzeJ+qG8+me0tZchPmY6oiPsf3EPVxp1EOZMXY2N22/CocJ3EBc1GSNiZ3i7WeQGoiji8ccfx+zZs5GRkdGvY2g0AmJjw9zSnujoULccZ7hz1E9BFdbiRAGB1h+rarU1uHD2PWttb7ceN9gacAcGWQcsmlQViI2d2H3bZEBrezUiwpJgNOrQ1lGLiLAkp57LnTxxLjW3B1tu9+ec/2n3OwCAXfufwIwpv+51f1NLMcqrdmNCxgVQqQYnyHBnP326/gUAQFH5vy3btFqTU30VHNz354ggWM/d0FCNWz5zAgOC0d4JiKKuz+Pxc8k5vtJPDIzJ51jmFWtC/WZesZLQ4ESkJJyKksoNOFn2NTLSLvR2k8hFoijiyImPAPhnttgsInQUpk+8G7v2P4qd+x/BaXPfQnBgrLebRQP08MMP4+jRo/joo4/6fQyDwYTm5o4BtUMQVIiODkVDQxtMJs7jtMfZfmpv75Tctga27R2tltt1da1wRlt7o+V2ba21mGR7e5d1e10lIkO7j7dlzwMor/4ZS+a8gn2H/476pnycteCfiAhLd+r5BsqT51JLi7Vfne0/qS5d9+MFQav4+M++6V7RQq8LQnLCQrvHMZkMqKnfi7joKf3+feXJfurSWYPY9o52p/qqpaW1z/06O9sl+zp3TMe6+06nVz4eP5ecM5j9FBERDK2276rkDIzJp8jmFU+8F2Ehyd5ukleNT/8NSio34NjJTzEm9TwuMzDE1DbkoaH5ECLCxiAhdra3m+NVaSPPQG1DHk6U/gc78x7GwhnPQhD4FTRUPfLII9i4cSPef/99JCQkDOhY7voxZDKJ/AHqBEf9JJ2PaTRas7wGY5dkH+f6WW+0zhHV6a3Bg7RCdWdXveV45dU/AwCqan9BfVM+AKC24SDCQkY59Xzu4olzyWSSVuV2/dimnvdCELQoLt+IppZCZI+73nK/eX5uc2sJRsbbP/6RE//CgWOvIW3kGZg1eaXL7ZC1yRN/c7J57Xqnjm80GfrcTzp32Wjse19nmS8qmEw6B39P/Fxyhq/0E4tvkc8wmQzYmbe6Z17xhUhJXOLtJnldVMR4xMfMQFtHGcqqfvJ2c8hFR4us2eLBGtrmy6Zm3o7I8LGobcjFocJ3vN0c6gdRFPHwww/j22+/xbvvvovU1FRvN4ncTFpwyyT2b+1iy7Fk6yBbb4uSucsGY+8RA4KgldweHhfQ+rsOtOXxPe+FoNJgR94qHD7xnuKSjiYH1cMrarYCAIorvhtQezxFWr1c6bV0dtXheMmXspUObPdrbD4KvcE6p11+Trun+JZa8M/RjMMdA2PyGQcL30ZtYx6iIjIxJdM/5xUrMQ/BPXbyEy+3hFzR0laMytptCA6MR2riad5ujk9QqwNxytTV0KhDcPjE+6is3entJpGLVq9ejf/85z949tlnERoaipqaGtTU1HC5pmFEGrQOOJiTPF4aZEsDFSUqlTUYFlTDJDAe4EUG84UFtRAgOWbvIM/598z3L9aaFJZW2nPwOew99Bzyjrxs3U9y0aWh6TA2bL8BP+76g+RR0qXC3BMYSy/e0PDBwJh8QmXNdhw58QG0mjDMmbJK9sHv7xJiZyE8NA31TfloaD7i7eaQkwpL1gIAMtIuHDYZD3cIC0nBjOwVAETs2v8o2jurvd0kcsFHH32ElpYWXHnllViwYIHlv3Xr1nm7aeQm0mHOA89yKmeMIXkOJdLfAKph8vk50KWWzO+FNCBTqVQoq9qMjq46yzbjMAqMVQptbGjqXhpOukST9KJDVd0vAICmlgLLNtEDgTENT8Pj04aGtPbOauw68BgAYEb2nxAWMvgVKH2ZSqVCRupFyD38AgqLP8fMSfd7u0nkgN7QjpNl6yEIAUhP/pW3m+NzUhKXoLZhHwpL1mJn3sNYNPMFXjwYIo4c4cW54c6tgbF0HWNReSi1UvJY+nmgGsI5HFEUkV/wBmIis236wgSVyrXXZQ2MrX1TUb0F+468hMCAGOt+Dtb+Nb+/Q2J6j5N9JL3o0Kmr672D2P/AuK7xAIIC4xAanGh7UJeOQ0PD0P20oWHBZDJgx75V0OmbMTbtEiQnLPJ2k3xSWtJZ0KhDUFK5EV26Rm83hxwoLv8GBmM7UhOXIjAgytvN8UmTM29FdEQm6hr3I7/gLW83h4gslAPj/mTapNlL28DQcht9H3coZ/iaW4/jyIkPsC33AZvsuesXHMyPF1TWjHFjyzEA1vV8+3tsX6WUMbZSngvf2dU7MJbNW3bhfOrsqsOmnbdh/U+XOf0YGtoYGJNXHTj2Buqb8hEdkYXJ42/2dnN8llYTglHJZ8Nk0uFE6X+93RzqgyiKKCz5HACQkXaxl1vju9RCAOZMWQ2tJgxHiz5ERc02bzeJiGCTMZZmefsRoMrmGMuGEvedwTOZBhZE+gqD0Tr3Xvo6jA4KZClRyhgrDc923F/mvh8KGWPn2ijrW6NS30rONxeGtNsmIrp0TThYsEZW+Gsg6hoPYOf+R2WFwsi7GBiT15RXb8Gxkx93zyue+hALGTiQkdq9jvHx0i8HPFeJPKe6fjda2ooRE5mN6Ijx3m6OTwsNGYkZ2X8CAPxy4K+KFVaJqP9q6vch78g/XApqRTvDTvvzvSMdPi0vviXJGJt6t00aOCoVYBo6pJlK6+vo0jXgu62/R1GZ83PzrX1m/emuVNDL2aC772xs93mQe+gFlFR873Qb3UJy/rltGL1k1LMrGWPRZrj0noNP49Dxd7A7/ym3NGvTzttQUvEdjpd84Zbj0cAxMCavaGkrxS8H/goAmDnpAYQGj/Ryi3xfeGgqEmJno6OzGhU1W7zdHLKjsLi76NbYtIu83JKhITlhEcam/Ro6fTN25K3mRR8iN9r8yx9w7OTHKK36EfuPvo73Pl+GusaDfT5GOrRZGkT0J0CVZ4ytx1JaPkcaLOsNrZLHDd3PBOlrlvZFQfG/0dx6Arvzn3T9mKK9LHw3pQsNsvvNfd+TjbXXv82tx7vrQOx/xOU2uo975vHK57Q7HxgbjfJq+/WN3Wtrt7QXu6Vd5HsYGNOgMxjasT13JfSGVmSOvhxJI+Z7u0lDhnlobkHx515uCSlp66hARc1WBAXEIDlhsbebM2RMHn8ToiOyUN+UjwPHXvd2c4iGnbb2Mhw+/j7aOqpxovSrPve1lzEW+xUY28kYywIVQ8//rduMxi7Fxw01RpPkdZikGeNG1w/WE8jK+kZp2LTD0cfW97e08ges/f40lFX/1Gsvbw3vlZ8bfVcvt3L0ouXndHPbSZRW/uDwqNKh8KIoQm9oBwBo1MFOtss5Adootx6P+o+BMQ0qURSxO/8pNLedwIjYWcgee523mzSkJMbNRmhwMmobctHcWuTt5pCN4yVfAjBhdMp5nBrgAkHQYs7UVdBqwnHs5L9QXv2zt5tENKx06Zuc3lc+fFo5e+wsWcZZGsSJvTN40ueVZupcmRPqa2SvQ/KadTrn3w8z89Bn6TGVs/jOB4l7Dz0PAMhXuCApDeoHk/QCgmJ2V3HesYji8m/xy4HHFY9pW2n9uy1XYUfeKnR01vTZFmlfG42dMJq6/61Vh8guIHV21eNE6X+dGt1QVrUZ/910AZpajlu2qdUBOHz8PZwsW+/w8eRZQyow/uCDD7B06VJMnjwZl156KfLy8vrc/+uvv8ayZcswefJknHvuudi8ebPlPr1ej6effhrnnnsucnJysHDhQtx///2oqen7j4QG5mjRxyit+gEhQYmYPflBqFRqbzdpSFGpBIxOOQcAcKKMRbh8iclkwMny9VCp1Bidcq63mzPkhAYnYtbkBwAAvxx4HK3t5V5uEdHwoXMiQ9nWUQGdvhn2CmOJdoZCKyko/jcKiv8tG5Ytzz5LC3wpBMbSTKuTmWpRNCLvyCuorN3p1P6DQfo6pH3hyoUKq57AWDr/2k6hrfLqLdhz8BnFjKu19JYAgyUDGtprP+UiVp4nKlw0ceYxuw48hpPl69HaXtbnMds7qy23HWXFDcYO677GdsttjSYE0r+T/II3sefg007NPd6+70F06RqQX/Cm7HnyC97EL/nKgT0NniETGK9btw6PP/44brvtNqxduxaZmZm4/vrrUV+vXBlu7969uPvuu3HJJZfgiy++wOmnn45bb70VhYWFAIDOzk4cPHgQt9xyCz7//HO89NJLKCgowG233TaYL8uvVNX9ggPHXodaCMTcnEcRGBDp7SYNSaOSzoZKpUFx+TeyIVXkXZW129Gla0BC7GwEB8V5uzlD0sj4eRif/lvoDa3YtvcBVuokchOjbKmk3kGtwdCO9T/9Bt/8fIXdwMTebSX7Dr+IfYdflAXTsvnGCseyO5TaQRauqeU4Sis3oanlOI6d/ARb9tzrM5WspYGVNPNtDkhdoVIYSq30PqigwrbcB3Ci9CtU1+/u85jmYerdgZ6cweh6G93B3gWUvkgvFiitDy2/6CK9sNB38C/NGEvfM0HQyNpmzv4WV3zjVHu722nNfHvrIgT1NmQC4zVr1uCyyy7DxRdfjLFjx2L16tUIDAzE2rVrFfd/9913sWjRIlx//fXIyMjAnXfeiYkTJ+KDDz4AAISHh2PNmjVYvnw5xowZg5ycHDz44IPYt28fqqpYGdXdWtvLsTPvYQAmTM++F1ER47zdpCErKDAaSSMWQKdvRln1ZscPoEFhri6anrzcyy0Z2rLHXo+E2NlobjuBnXmPDOk1TIl8haMKxE2t3T/sdfomu4Gxs0s3SQMPUbYmsvISTOZjmfqZMf5+2zXYkfcQWtpLLNukAak3SYNY+dBk54pKdXY14Ofd96Kmfh/MGWN58S2lOcZ9B1zWe61t0CoFxv0I3t1BNscYzgXGHZIssNJcePmQfmufGB1cQLG33JYoyv8GlPrPMWsIZlvki7xH43gX79PpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK66+TzVxcsWIBNmzbZfZ7W1lao1WqEh4f3u62CMPB14czHcMexfIFO34Kte/8Enb4J40b9GunJZw74mMOtj1yVkXY+yqo24UTpV332p7/3kzPc0UedXXWorN2OwIAoJCfMG5b9PVjnkiBoMTdnFTZsvxmVtduQX/AGpmTe4viBPoB/bzRUtbRZg0qlYc7d253L5On1LdbH2ym+JQ/u+s4YOzvHWBrI+Uola+nrkBVycjIwPlL0AarqdqKqbic06u7gy96Qc2eZp7BJ31uNOshy+2DhOwgLTvJe8S3R9eJb0gsASnPhRTuBsaORBfJgWL4Ot+zikEKW2jHrOSAbci8aOc3Qi4ZEYNzQ0ACj0Yi4OPnwxNjYWJw8eVLxMbW1tYiNje21v705xF1dXXjmmWdw3nnnISSkP1d+AI1GQGxsWL8eqyQ6uvecj6HGaNJj3Q/3oqWtGGlJC7Bk3goIgvv+4IdDH/VHTMxC5B5KQW3DPgiaGkRHju5zf3/tJ1cMpI9yD34OUTQic8yvEB8f7cZW+Z7BOZfC8KulL2LtN1fhyImPkJQ4AZljhs68bf690VAjHTarVDEasAmS+8jk6SSBsaxQlIOMsd3hrqIe9U2H0NB0GBlpF8qeS3pMX1z7WNp/BkOH9A7Z9raOckSGZ/R6vPT1KQ0Rlh3TcmjnRtmooLKEZub/6w3tOFS4BkD36B1vkI9SsP9apBcX5Gtk9x0YOzNH21FbRNEkC9odjciwc3Rrm2wuoGg1/A7xliERGNsjiqJsjL4tpfuUtun1evzf//0fAGDlypX9bo/BYEJz88CH7wiCCtHRoWhoaIPJ5J413LxBFEXsOfgsyip3IDJsDKZPXImGBvcMbxoufTQQo5J+hf1HX8Oe/f9CTtbtivuwnxwbaB+Jooj8o91TOhJjz0BdXauDRwxNg38uxeCUqaux+Zd78OP2RwFTHOKiJw/C8/bfYPZRREQwtFpmFchJkt8+SkGjLMMqKg9/FmXVgk1obS9FSFAiBEH+U1K6BrF0SLP0eZXmG8uzegbZ7R923AwAiI+ZhoiwdMt9XboGy22j9Ll8JGMsGx5uZ7js5l/uREPzESyd8xqiIyfI7lMLgX0eX2nIuL2h8PuPvgq1OqjPwFHpgkX37b5/b7uTvTY4+xil995kJzA2OphjbLJzToowye5TumjhiHSuv2wuMwNjrxoSgXF0dDTUajVqa2tl2+vr63tlkc3i4uJ67V9XV9drf71ej7vuugulpaX45z//ibCwgWV83fljyGQSh3Qwc+zkJzhe8h8EBsRg3rQnoBaC3f56hnofDUTayGU4cOxNnCxfj+yx10Ottv8F6s/95Kz+9lF940G0tJ1EdEQmwkNHD/t+HsxzKS56OqZO+ANyDz2PLXsewKmzX0F4aOqgPPdA8O+NvOlE6X9x+Ph7WDLn79aN0rWJlQIH6bxgJ+YYV9XuwM79jyBt5BmYNVmeUNDp7QTGJuW5sUrFt+xlAG0DJYM002aQBuG+UXxL3n/SdZyt70dD85Ge/x/tHRirAyT/6h2YKgfGvYdat7aX42jRRwCAyPCxdh9jr0CaSdRDrQro9Th3sT9837mh1PJzq3ewKysCZ+xfxli0ubAjb5vrFw1kUwdMNudx39dDyIOGRPGtgIAAZGdnY+vWrZZtJpMJ27ZtQ05OjuJjcnJysGXLFtm2rVu3yvY3B8UnT57EO++8g6ioKA+03j+VVf2IvCN/hyAEYN60vyIkOMHbTRp2ggJjkDRiIYtweVlReXfRrVEsuuURGakXYGzar6HTN+Hn3fegs6vO200i8ml7Dj6N9s7KnnXVu8kDj74zxrKCWXaC0uKK73v+/53CsSQZObtDqXsX8rK35rGsAJJNYCwbquyDax+Ldl6TUvEtpYvb0rm/jqotW7f1nqvd1FLQ+35JBticvZQVTrPbdveyHZZsOzLBGdL2KWWB+xqm33fblC8MmUw6txaGlBVp85HCcf5qSATGAHDNNdfg448/xtq1a1FYWIhVq1ahs7MTF17YPd9kxYoVePbZZy37X3XVVdi8eTPefvttFBYW4qWXXsKBAwdw+eWXAwAMBgP+8Ic/4MCBA3jmmWdgNBpRU1ODmpoa6HQsmz4Q1XV7sDPvEQDA7MkrEROZ5eUWDV/m9XJPlH7l5Zb4J4OxEyWVGyEIAUhNPM3bzRm2pmTeipTEpWjvrMSWPX/iMk5ELpL/qFcaairN0DpeR9bQx9+gyc68Wvl8ZYWMMZSHrUovhtlmA6Xtszds25tM0kyltC8VlsySBsFWrmcilap7yzP0CmsbWzLG1v61l+13p7Kqzfj8u6Woqd9rfS4H84WVOMoY26tKrfS6TCYDquv2wGjskr9/Jmm/6mUXkPo3lFp67nYq3qbBNySGUgPA8uXLUV9fjxdffBE1NTXIysrCm2++iZiYGABARUUFBMF6Yk6fPh3PPvssXnjhBTz33HNIT0/HK6+8goyM7uIGlZWV2LhxIwDg/PPPlz3XP//5T8yZM2eQXtnw0tB8BNtyH4BJ1GPaxLuRnLDY200a1kbETEdocBJqG/ahpa1kSAwzHU7KqzbDYGhDauJpCND2v5o99U2lEjBz0v3o6mpATcNebM99EPOnPwlB0Hq7aURDgqM1iO0Nc7a3rJC+jzVuZev12pn3K69W3RMYy4JI5UDHXH34aNG/UFLxHaZOuENyn+cDOVfZDr+1blcKTntvc7TOrhJplt6ciZQvtaU0YkDf6/n0+rZe97vbrv2PARCRe/hvkudylDHuuVggOTWNDofOS4ct9x0YHzv5CQ4cew2jU86TzfEWbTLGThYWt0v6tyF9z0TRiJa2UgQGRCBAGzGwJyGXDZnAGACuuOIKXHHFFYr3vffee722nX322Tj77LMV909JScGRI0fc2j5/19JWgi27V8Bg7ED22OsxJuU8bzdp2FOpBIxKPhsHC97CyfKvMWncjd5ukl8xr13MYdSepxYCMDfnUfy46w+ort+NHXkPY86Uh3oV/iGi3mQZ4z4CI0A+rNOevta4NdnN4vY9b9jemsdGhWGy+492z5+uazwoeS7psG3fWP/c3vBwpfdAaQiwdJuzWUmlgEsa1Ck9j7lt0vukRdTKa7bgWNEnmDftMUSE9b0Khis0mmAYdZ2yUUCOi2+JPfcpX3RwRD6suvtxjS0FCAyIRnBgLCpquqdtnij9DzJSrVXQewfskqrY/bhwIHufJHOMu3T12PzLnQjQRuLcJf9x+bg0MENmKDX5ttb2cvy0+4/o0jciI+1iZI5WvoBB7jcqaRkAFU6Wf+PWOS/Ut7b2CtQ07EVIUAJGxEz3dnP8glYbhvkznkZoSDLKqzdj14HHeM4ToTvLdeTER7JtssyYrOCQ0lDqvgMnW8rZTT0Mxk6beb92MsbSDKZlHWPHw11NJh30doJy2yD8ZPl6FBavdfhaPMnePF3lIbyOtjk3rFqWMbZkgiXvr8KFD/NFC3lgbA1Wcw89j7aOMvy8Z4VTbXCWumf4uDQId7gsmGU+dN/96QyTSYequl+wYdt12NUzBVCjDlZuiyzrbrR70cNZSpl9AGhqPQEA0OmbXD4mDRwDYxqwtvYK/PTLXejorEbayLMwNfP2QSvrT0BI0AiMiJ2Jzq5aVNXu8nZz/MbJ8q8BdF+Y6M/8Iuqf4MBYLJr5AkKCR6K0ciN+OfAEg2PyS/VNh1BVuwuiaETekVdw4NirsvtlyyZJMlKiaMTBwnfw8+57LQGuvHiR44yxStV7qbBvt1yFLzecJQvC7M37VSpqJBtKbW99YpPOZjkoa5Asnc9sMLThlwOPI/fwC04XcPIEe+vgOp8xlgRcThei6j1sWvHCh3S5IEsAbX0+aT8HBXRPW+zorHaqDc4yB6HyqujK54l1m6nXY/o7rtlk0qO+MR8AUNPQPc9ZLZnrrVTh29wGe1XU7WluLUJnl3V5MVmBOZM1SO7skq+oQ4OLv+ZoQNraK7D5lzvR3lmFtJFnYuakPzFI8IL0pO4pA0U9wRp5liiacLJ8PQBgVJLydA3ynJCgEVg083kEB41AccW32HPwGQbH5Hd+2HEzft5zD1rbKyzbjLLli9oVt5tEAw4VrkFV3U60d1R1b3NQvMiWUiavraMcANCpq7cey87SOEpVqeXVsO3MMTbpZK9LdlsShEuHWNtbP9iT9D1LVtnLKirP81Ya4iytoOxsISrpY3oCY4WMsbS/zfPCbS9CeJpa6L0ElKO52OZ+cMda1d39Iw+qpdNz7BXIEkWT7EKF0ajcV1t+eRpHiz5BW0clvtt6NTbusE53k62nLPn7bHfzxQdyDSdnUb+1tJXi59139wTFZ2DmpPsUryKT5yWNWACtJgwV1VvQpWtCYECkt5s0rFXX70F7ZxXio6chNGSkt5vjl0KDR2LRzOfx4647UVS2DkZjF2ZOeoBzjskvSH+kN7cet9zukgy/NMiGakqXMupd5EoeODkOiPoaOtreUaG4n72MsbUisnKBMNuleKQBsHS4r/Q16mT90AGNJqSPV+NelbU7sWXPvRif/lu7y/0okb7OorJ16NI1KQa5jihVIJcX3DL1bOvdNnlfK69p7E7KQ/L7Lr5lDujdsVa1yaSHqJI/h20hLOt2+agL6VrUSm3RG9qw/0j39Aa10H3+STPu8nn91ufU61tcfh3kPkztUb80NB/FjztvQ3tnZU9QfD+DYi9SqwOROvJ0mEQ9Siq/93Zzhr2TPUW30ll0y6vCQlKweNbfEBKUiJLKDdiWu9KpwkFEQ1VV7S4cO/kZ2trLLNukGVqdrtFyWxYYm+QZYzNzYOlqplA+9FW0rIMLwJKFtj2uaGeOsaUqNZSDL9u2SQNjexlj6RBrvWFw14VtajkGADha9JHN8PC+Aznp69yd/yQOHHsVBmmm38kMrlGWce2dMVZiCYyNyueBp5a/UsycO1iuyRwsu2OUkMlk6HUuS+ewy5a+sgmYZUOpFbLc0qH9lbXbej230WYkhJmB32Fe5VRg/MMPP+Dqq6/Gueeei7vuugu7dvWex7hv3z5kZXG9Wn9QXbcHm3fd2V1oK/VCzJz0AINiH2AeTn2yjMOpPUmnb0FZ9U/QaEKRlLDI283xe2EhKVg8+yWEh6ahsnYbft6zwjKMkWi4+XnPPcg78hIaWwos26QZJmnG2CirTiwNsHoHxq4W3zLaBFDS4KJDtu6w8xlje4GObSEuacChN1ozxvKAWfra7VfQ9gT7r9lRxrh3v0svdPRvTd/ec4yVmAN4e8N7RQ9V+XbYLulQZkNHz0UY97XFJOrlF15EvezvRhr8yi5SiEab+ce9LyLIRjYoZIFNdi5GGWXV1X1jPW5/4jAw3rJlC2699VZ0dXVh1qxZKC4uxlVXXYUnnnhCdoWQ/ENJxffYsmcFDMZ2TMy4FlMn3Mk5xT4iKiITEWGj0dhyDI3Nx7zdnGGrpHIDTCYdUhOXQiMp0kHeExI0AotnvYSoiEzUNuTih523oU0y75JouOnSWYv46CQXgrpkGWPl5WAM0mCyJzsmurhckzSrZzB2yLLTzizRJGUJjO0EX7bBmtFOxli2Bq9BOWAeDAY7Q3EdMb9O6W/rrn5UJpYtY+RqxthOFtNTNRwcHdccmLa2l+PLjcuQe/hv7g2MbTLGRmOnLACWB7/yOcb2hvubR0bIRzA4P89d+rfqzEWq/urorOEIKwUOI5qXX34ZF1xwAT7++GP85S9/weeff45HHnkE//rXv3D77bejq4ud6g9E0YQDx97Azv2PwCQaMS3rj8jKuJrVp32ISqWyDO1lES7PMWfk05M4jNqXBAZEYdHM55EQNwctbUXYuOMm1DbkebtZRB4hrW6rN0gyxnaGUkt/xEsDaXPlYaOdLKc98qJEHfIf8y4Gojp9Mzb31Apw9Fwm0WAzx9je0k2DO5S6qeU4isr+1/Pc0gsDzgdxluyuJBjS6ZsH1C7rUliOMsZ9F99yx3xexed1UGnbfH9p5UYAwPGStW4NjEXRIBv9YDBIz2XBZo6x7VDqvteolo1skFyoccTeMk6uMhq7UFz+reIQfr2hHd/8fAXWbb4EJpMB1fV7ZCM9/JnDwPjYsWM477zzZNsuueQSvPfee9i3bx+uvvpqNDY2eqp95AP0hnZsy12JIyfeh1YThvnTn8CY1PO93SxSkDbyTKhUapRUfO/RK43+qqmlEA3NhxEeOgrRkZw64mu0mlDMy/krMtIuhk7fhJ9++aPdH9tEQ5l0SRedZJimdBqBvWrM8sxqdwApD4ZdGw1oMHTInqs/GdqahlyUVf/ocD+TyWB3LrGsTbL2eH4o9ffbrsHu/KfQ0HRYFhCJLqxvKyoMwZVe6OgPS3E1R8O4LQXQBvd3g8OMcU+hLZ2HClKZTHqb+b0dkmDUZLP0mG3GWFKVWnKMppZCHCx8R3ZRQ7r0lSPSjLVO34Qfdtzaa41yZ+Qd/Qd2HXgMew+90Ou+zq56GE2d0OmbUVGzBT/98n/49ufLXX6O4chhYBwYGIj29t4fKpMmTcJHH32E+vp6/OY3v0FpaalHGkje1dRSiB923ISKmi0IC0nBkjn/QGLcHG83i+wIDIjCyPi50OmbUFG91dvNGXbMmfj05OUcLeGjBEGDnAl/QE7W/0GECbvzn8QvBx6X/VglGoqkQUSHJDDWy36AS4dJOz7nzYGQo8JQfekefjo4SyKZRL3NesXKQa9RNse4E6Io4kTp/9DaXu7+Nkn6rlPXKK8wbKd9SoxGHXbkrcaREx9Ktg5syqI1C+1oLq85Y+yezLBO34y9h55HR2cNmltPYPMv/6c4vcXReSeKRhiNXWhqLXRLu3o/v81QalOXzegHO5XdRaPNUlzWY2z+5S4cKlyDY0WfWra5VvfCGnBX1u5AfVN+rzXKnVHbkAsAKK3c0Os+6aiO1p5CfoM95cBXOQyMMzMzsXnzZsX7UlNT8dFHHyEkJAT33Xef2xtH3iOKIgqL12LjjpvR0laMhLg5WDLnVYSHpnm7aeTAqJ4hvic5nNqtTCY9Ssq/g0qlRtrIM7zdHHIgI/UCLJr5PIIC43CyfD027rgZza1F3m4W+RGDod2pNUnrGvPx7ZYr0dTS949/aSZJNsfY0HtoNCCfE2mPOwLj7izbIAXGNhljeyOjDDaFx6rrd2PPwafwzc+/dVtbCku+QFnVZllWt0tXJx/qbXR+CG1twz6UVm7EsZP/clsbLRW/3ZgxbmopRHn1lj7rDOUeegHHS77Alj1/wta9D6Cmfg92H3xa4XkdD9vPO/IKqut6F/11B5NoUJjDLhltYCdIFmFyOAy8ua1I8jz9+/vqlAxvdrWuU2BADADlgNfeUm5tHRX4/LulOFj4jostHT4cBsZnnnkmNm/ebHe4dGxsLN5//33MmjWLxbiGic6uOmzLXYncwy9AFE2YPP5WzJ/2BAK04d5uGjkhMW4OAgNiUFm7Ex2dNd5uzrBRUbMNXfpGJMadgqDAWG83h5wQFz0Vp899Cwmxs9HSVoQN22/A0aJ/eayQDFFV7S5L8cOte+/H15t/LVu+SMmmnbeipa0Y+QVv97mfvWWKdHYyxs4wZwgHFhh3DloRH5NJL5/DayeQkxcw6pJ9F7rj71+nb0Huoeexfd+D0EuGand01dl9nxzp6HL/97XTyzUpzDG2Z8P2G7Flz/2orNlrdx/ziIam1kK0d3af/9LKzC1tJejsanDqvDte+qXDffrLZNLLziGDod1mXrF02L5tUa6+A2Nn1gN3pKWt2HJbp2+CyWRAZe0OSxv3HXkZG7bdoPj311dxUGkw3Cm5yFZQ/G+IohGHCtcMuO1DlcPA+De/+Q1++OEHREVF2d0nJCQEb7/9Ng4fPuzOttEgE0URRWVf49stV6Oi5meEhiRjyexXMD79MlaeHkIEQYO0kWcCMOFk+bfebs6wcVIyjJqGjsCAKMyf/iQmjbsJEEXsP/p3bNp5O7PH5HYGQzt+3nMPNmy/Hnp9K2p6hjLWNioXgbMdXhkYEOng+NJiPpIsseQ4BhcDY3NgMpB1ag3G9kEbhmkSDS5PizAaO23mZA98Obe2DuuQbOma0jp9s01xMNfeD3dzdrkm9GRAnQlUzcF2W3sNTCaDYlJMqwmV7N8dxJmX9axvPIhvt1yBnXmrnVqOKDgw3uE+/WUSDbKgUmeQz2WW3ufMCAzbYw+UdDRC9/D057BlzwoUlnRfLCg4+SkaW46isnZHr8cqZbSPnfwM3/x8hWwkS5dkHXRWqXZyHWMa/ppaCvHT7ruxO/8J6A2tGJt2CU4/5U1ER07wdtOoH9KTu9c0Lir7miM53KCjqw6VtTsQGBCNxLhTvN0ccpFKJSBz9O9w2tw3EB2Rhfqmg9iw7XocOPa6S3MAifoirera0HzUcru1rXcNlqq6XfjPD79CkZPrzouiSbYer70CVK5njN00lNo0WBljnctBuMHYJQsE3FHISRoMS5dHNBjaZYH7YBezsmW+kOBMAGo7rNiRorLN+Pe3S1FS+X2v+6TJFI06uOf43edYdf1uAEBNw16nhhi7I8C0e2yb4lu2VcANA6gQ7Y73XlpxXm9os1Q+P1H6lew8lg7bNlOqDp935CW0tpfgROlXlm3SCvfSCz7+uoayxtsNIO/q7KrHwcK3caL0fwBMCA9Nx4zsexEbNcnbTaMBiAhLR3REFhqaD6GqNg9aIcPbTRrSisu/gSgakTbyTAgCPzaHqoiw0Th19ss4dvJTHCp8B0dOfICTZV8je9wNGJW0jCNjaEA6u6yZl+bW49btkoyMWf6xNwAAu/OfsGzT61t7hpjWIz5mqnXfgrdwtOhjZKRe5LANrgbG7iq+pcLgFCM0mVwL3oDuTJ88wz6wJZAAoEPyXkuHQOsNbS4vV+VJjc1H8OXGZdBqHE+FE01GmFwY/ltQ1H1RZ9f+xxCgjURbexky0i4EIB/FoFJpZNtcXZu5S9cEtToYYSHJaGopcOmxjoiiUR4Y6+Tnhr3iW4NFGvy2tlsvsBkM7WjvqLT8u6vnfDSPhIoIS5d9FlTV7pL9DXTpG623JUOppdM+9IY2h6NYhiP+wvNTnV0NKCj+FIXFn8Ng7IBWE46JGb/HmNQL+MN/mEhPPhsNzYdw5Ph/MGns/3m7OUOWKIqSYdRne7k1NFCCoEHm6N8ideRpyD/2OoorvsPu/CdxtOhfyBpzJVISl1iG/BG5olNnzRi3SX+09gyHbGg+grb2cqQkLoFaCOz1eJ2+CdtyH0BLWzHmTXsSI+O7R6ccPv5PAEBJ5XcO2+BqYNzeWYXSyo0DyxgbOjBYAxBNJr3LgafR2CULMAa6NnD3MazBnTQbbTAM3rByV+gNjrPkrmaMpbbsuRcAkBA3G2EhybLg13zxxTxMWefyElQmBGjCIKjc/9vUdo6xzmATGEtGQgxW5XUpaTDbKBmF0tFVIzuPO3UNaO+sxvfbrgMg4ox578g+C37ec4/suO0dFbLHmkmDZL2h1anAuKOrDlp1CDSaYOdelI9jBORn2joqcOzkpygq/S+Mpi4IKi3Gpv0aWRlXIUAb4e3mkRulJC7FviMvo/Dkd5gw+hYIqt4/xMix+qZ8tLQVIzoiCxFho73dHHKTkKARmDV5JcakXoj9R/+Busb92Ln/ERwsfAfj07sD576Kl9DwJYrGfl0ckWaMpUMSu3QN6NI1YeP2GwEAocEjFYfz6gytlmI7TS3HIIoG2SgGZ4YAu7JeKgBU1/2C6rpfXHqMLYOxc9BGW5hEg8uBrdHYJctg2s4j7Q/p3E9pYS+9odUrAZQ7iKKxn8N/rdO1GpoOISwkGTqdNTA2B5cGQxtMJgM6+7E2s0YTCkHQ9qNtfTOZDLIiWbYZY6nBmi4gJS0E1ioZvi+KRllhri5dAyprt1vmfxdXfOf0RTKjUbl2QXtnFVraShAfPQUaTYhlu8lkwM97ViAiLB0TRl+Jb3++HFERmVg862+obzqE0OCkIZ1pZmDsB0wmAypqt+FEyX9QVbcLgAi1EIixab/G+PTLEBzkucIG5D0B2nAkj1iIksoNKKvajNRELjHUH+Y5gCy6NTzFRmVj8ayXUNuQi0PH/4ma+j3Yc/Ap7D/6d4xKWobRqechInSUt5vpcz744AO89dZbqKmpQVZWFlauXIkpU6Z4u1n9Iooi2jsqERQUi8raHdix7yHMzXkMTS0F6OiqxaSxN+BI0YdISzqr17nQ1FKILXvvw+jkX8mybfLAuEkWfNY25ikOr5YuzdLcWoT8gjdl9zsTtHhjTqvB2AFhkEZZmEx6tLu42kL3UGprMNzRWY1fDjyBtKQzUVa1GVW1O7Fkzt9xsOBtxMdMRWzsBYrHKav6EQeOvY7J42+RZYylgXH3xZGhWdeje03fga1j3NJeClEU7Q6X1htaZVlJZ6kFrUfOMZNokzHu46KLt1czaLNZg1s6tLqzqwEtrSct/25pPenyRTJbu/IeQaeuHhlpFyNnwh8s25taC1FTvxs19bsRGpwEg7EDtQ25KKvajO37HkRM5EQsmfOPAT23NzEwHqZE0Yiahn0oq9yEsuqfLFXnggLjMDr5HGSkXYjAgCjvNpI8Lj3lbJRUbkBR2dcMjPvBYOhAaeVGCEIAUhOXers55CEqlQrxMdMQHzMNdY0HUFj8OUqrfkRB8WcoKP4MUeHjkZK4BCmJSxAaPNLbzfW6devW4fHHH8fq1asxdepUvPvuu7j++uuxfv16xMTEeLt5DomiCJVKhS5dEwSVGtX1u7F9318QH50DvaENomjE1r33WfZvbj2B2oZ9OHLiA5wx710cO/kJxqRegOiI8Sgs+QIdndU4WLgGqYmnWR4jnavXpWtAfdNBy7+bWgplgZV0P7OK2m3uftkeYzR2wDBIU7C6dA0wGjsgqLROrw1rsMkYF5WtQ2t7qWWKDAAcOPYaisrW4Xjpl5gwbjFMJhUAayAmikbsyFsNUTTiyIkPoBYCLPfJgm5J9euhZiBDqc06Oqtg6PkbUqLTN8uy7c4SBC1UHjjHbOesu2OYvae0dpTJ/i2/+FYvG9Lf2FIw4EDefPGuqnYnSis3oamlAONH/xZ1Dfst+0j/hsxTPuqbDqKppRDNrUUYOWJ+r5FXza1FKKvahDGpF6BL34Saul8QHvFriKIIo0kn+9vyBpfPMlEU8corr+Cyyy5DXFyc5XZ8vOezjq5eof7666/xt7/9DWVlZUhPT8e9996LRYsWyV7Liy++iE8//RTNzc2YPn06Vq9ejVGjhmZ2oK2jEjX1u1Fd1/2feXK9SqVGQtwcjEk5D4lxp3AOsR9JiJ2B0JAEVNftQVtHJUKDE73dpCGlrPpHGIztSB15BrTaMG83hwZBbNQkxEZNwpSuehSVrcPJ8m/Q2HIUjS1HceDYa4gIG40RsTOREDMTcdFTh828KlesWbMGl112GS6++GIAwOrVq7Fp0yasXbsW11133aC3R29ow5Hjm9DQWAeDoRNaTSi6dI1oaj2OlITFaOuoRFHZ/5CSsASdugaUVm7E6JTzcKLsKwgqDUKCEgAANQ25inN/axv2WW7/tPtudHbVorz6Jyw95XWUV2223CddMkVeKbpFFhg3NB1x+JpcXXbJmwyGDo8Mc1XS1jM3MiQ4Ea3tJU49xmjslA2flmbazIrK1llub9v7AgqKvkFM5ESEBiciJiobIUGJlkCjofkIQoOTFZ9L9GAFZU8T3RAYF5Wt63Moeb8DY5UGgsr951j3fHBrht+XA2NzZjtAGwGdvhmtkgyy3tAqX0LMJogeiNb2EuzIWwVARGXtDoRIfkdKi6E1tlirs3+/7VoAwIiYGUiImwO9oRUqCEiMPwW79j+G1vYS1DTsQ2dXPVraitDYmgedzoiKmq0Yn/4bxERmo7n1OFQqAcFBIxAXNQUhwQlue019UYkuruViNBoxadIkfPbZZ5gwYYLldnZ2tqfaCKD7CvWKFStkV6i/+eYbu1eo9+7di8svvxx//OMfsWTJEvz3v//FG2+8gS+//BIZGd0Vel9//XW8/vrreOKJJ5CSkoK//e1vKCgowP/+9z8EBLh+xUKvN6KxceBLfwiCCrGxYaira4XJ1PvtEUURnbp6NLUUorH5CBqaj6Kx+SjaO63FPlQqNeJjpiElYQmSRiwYdtlhR31E3QRBhYKSd7A3/21MzLgGWRm/93aTfE5f59LmXXeipiEXC2c8hxGxM7zUQt/gr39zoiiiqbUQpZU/oKxqM1rbrfO6VCo1IsPGIDpyAqIjJiA6chxGpWahpVn0eB9FRYVAqx38ImE6nQ45OTl4+eWXsXSpdRTFn/70J7S3t+Oll15y6Xh6vRHNzQMrVnTkxIfIO/LqgI5B/RcfnYPg4BEoLv920J4zLnoKahuU14e2FRaS6nQQ7c/OWvAetux5wKN9NWfKg9iR94jLjxsROwMadQjKq39ya3tsRx5oNWEDHoLsaTGRE1HfdBCCENBr6oRKpUZgQLRs3e7hICgwDucu+XzAx4mICHb4vdmv1KE0lh6sNVJdvUL97rvvYtGiRbj++usBAHfeeSe2bNmCDz74AH/5y18giiL++c9/4tZbb8Xpp58OAHjqqacwb948bNy4EcuWLRuU16XEYGhHXUMFqmrL0NFVjy5dAzq76tDWXoHWjjK0tpcpVGVUISJsDEbEzsCImJmIi54CrWSyPPmvzDHnYW/+2ygqX48JY67ikjROam0vR01DLkKCEhEfM83bzSEvUalUiAofi6jwsZg07ga0dVRaChbVNOxDY8sxNLYcwwn0rAu5DQgKjEV4SCpCQ5IQFBiHoMBYBAfGIygwBsFBIxAcGOvdFzUADQ0NMBqNiIuLk22PjY3FyZMn7TzKPo1GQGzswEZj5IRcjJCQIAAiNOogdOlaYDLpERmRhvyjn0KrDUFWxoXYtud5iBCRkXY69h/5CKEhCWhtq3B4fFvZ436Nto4aFJVuAgCkjpyHkoqtDh8XHTkGHZ316OxqdPk5fVF4WDJaWsvQqa9BWNjgDqEPC41FrZNTVTt7llMK0IZBp3cu6AkPTUL2+F/DaNJjd97rMIkGhATFITVpHo4c/09/m+3TwiO0AAY2x9gRvbHc8U4KAgODoNW4vxii7XB8Xw+KASA2Oh31TQctQXFQYJTlMyU0OL7n3+4PjGdOuRm/5Dl/ATI+NhtdumZEhY9CUsJMdHU1Ye/Bd6DVhGBy5m+wJ/8tAN2fp/nHPoVaCMDiUx7E0eP/g0YTjJSRcwBRRGt7JWKixg34e8JZQ2JMrU6nQ35+Pm655RbLNkEQMG/ePOTm5io+Jjc3t1fAvGDBAmzatAkAUFpaipqaGsyfP99yf3h4OKZOnYrc3Nx+B8aCMLC1/AyGdvzvx1/3WX1SowlFVMR4RISOQnRkJqIjMhEVMc6vAmFzPw+0v4c7QVAhKiLNcnW9vmk/4mNyvN0sn2LvXCquWA+ge562Ws3le/g31y08dCTCQ89FRtq5EEURHZ3VqG86jPqmQ2hpK0JbRymaW8vQ2VWHmoZchSOosGjWc0gYZiMQzPN2XWUwmAacMRaEIORMvAoNDW29MvWLZi623D5rwSyoVAJUKgHpSZdBqwnFidJ1KCpbjwljfoete/8MAIiJzEJ90yHZcWKjslHXmA8ASIpfhoiwdIQEjYagUiMhdqYlMNZqw6GXfH8HaCMt84lDgpIhihqHgbFaHeSVNVNdJSAQQYExaG2rREjg4M69V8H53zvmob2hwcnQ6a3D2FMTlyIoMA4VNdvQ2l4ClUqNuOhJqKnfh8njb0ZywqkAAI0qESdK/4esjKvQ2GwdLhoYEGOp3wIAaiHQK5WL3aWoeC86BnDRJj15OUorN8mmEdgyB0OuMhoAlQfzcCqV2uvFtZyl1ciHFIcGp1o+UwID4qEWPLOaQlrCxTga9g2aW08gc/TvcOTEhz3PGW2pjxAbNQmCoEVj8zHMmPgAwkNTZceIj16EAG1ET1bbhNDgRIxOORtpyQsgGqMRHpqOuTmLez03ANTVDfyihccyxoOtP1eoa2trERsb22v/mpruK4fm/ysd03yfq9xx5dtkCsbo1FPR0dmA4KBoBAfFIjgoBiFBsQgPS0JkeBqCAqP69QNkOIqODvV2E4aESZkXYNP2PJTXfocJ4xZ4uzk+SXoumUxGlFR8AwDIyb4YEWGcX2zGvzlb4UhNyQDwK8sWo0mPltYytLRVoq29Gu0dNWjrqEF7Ry0AEanJ4xEeOjTPqejoaKjVatTWyjMS9fX1vb5PneWuYecmk6Mh7GqIYncQr9V0LycyOuU8jE45D6IoIiF2NnT6Fsyesgo/774HoSFJGJ18DvYcfAZZGddCow6GTt+CiLCxAICsMb8HIF87OCw4CY0Ga+GbsJBk1Dc19dxOgyiqLOuRBgXEKFanHhEzAxU1WxAeOgqjU85Fa3sZ6hvz0dhytNe+3qRSqREekobOrlzUSgryDAatxvXlJUNDktHQ3B0YBwfGY/aUhwB0Vw1vbS/ByPh5OGXqX6AJaIBoTLScS0kjFiNpRPePdYPBOnQ1LCRZFhgHBcWhzbKkjgDA1I9X5j2/HHhyQI9PTz4H49J/g++2XNXrPrU6WDbS0dXh7SqVxqPry2s1YbKCeL40pFqjDpatjW07vz08NA11jd1/f8FB8W7tpxGxs9DQdAjpyedApQrAopkvoLZhH5JGLLAExpHhGZaq+yFBCZg1+UEYjB3QakJ6fR6Hh46x3DZ/fooiMCp5oc9M0xoSgbE9jq5QK91nu8323/296g2458o3AORMWIHo6FDFq9/tbUB729ApyuEpgqCy20dkZe6nmIj5UKuDUHjyO0wcc5tfjS5wROlcqqzdidb2SoyInQF9VwTqunzjC9Kb+DfnmLmPmpt0MJniEBIQh5AAAFHy/XSdQF3nwM4pZ658e0JAQACys7OxdetWyxxjk8mEbdu24eqrrx709riLSqXCghlPW/595vx3AQhQqVRITlhk/4EAtBrrxSKtNgIadYilUnFoSLKl8FZYSIps+ll0ZBYqarb0Ot64UZdidMq5iIoYbxl2v3nXXY5eAQZ7mSCVSoPE+Lmoacgd9ExpgNa5wFiaCQwOtF64CZLcnpJ5G+KipyAx7hSo1YGIiRprNzsVETZKcns0GpqPWIa0BgdaA+MAbbhi5fHhLEAbKSvwGRaSYil0FhMxATUNewEAsVGTMTJ+Pg4cc35YrqDSQqXyXMhi+35pNaGWwFil0ni1qFpgQDRMXd1rTKtU6l4rI4SHplluh4WkwGCwxiH9CfClIx9iIiZgwfQn0X2hBwgMiEJyQvdFopHx81FRswUpCafCYOhAfVM+RsbPg0qlGtK/MYdEYNyfK9RxcXG99q+rq7Psb66iXVNTIyveVV9fj0mTJvW7re78wej46jexj5yjFoKRPGIxiiu+QUnFD1yTV4H0XDpR2l2hdFTS2Ty/bPBvzrHh3kfXXHMNVqxYgezsbEyZMgXvvvsuOjs7ceGFF3q7aW7jatYldeQZKKn4DqmJS9DaVmIJjMMk2Z3IsDHQqK0/GONjciyBsfTHd3BQHMJCUmTH1zj4oalRB8No6rIEgUqFedxNENQYGT8f+49a1ywdrCAiQBvp1H7STKA0mA6SzPMPDIjE6JRznDpeYID192JYSAoCNGGWrH9w0AhJ+yL8LjAODIiEIGgwMn4eWtvLerKKHwDoHmJb33wYALBo5gsorvjOpWMLgsajlc+1mnD5v7XhQGf3kmtqdSAMhoGc0wMbPaBWByFQG4mOrhoEaCO622Y+shCA0BDrZ0xYSLJsXe3gwHhLYJw5+vLuav0tBZaRE0pCghPR0nbSctveZ+HMSfejtmEfRsbPR2L8PNQ35iNpxMJ+v05fMSSq8EivUJuZr1Dn5OQoPiYnJwdbtsivxG7dutWyf0pKCuLj42XHbG1txb59++wek2goS08+GwBwsuxrB3v6N52+BeXVP0OrCUPyiL4zRUT+aPny5bjvvvvw4osv4vzzz8ehQ4fw5ptvDok1jD1lRvYKzJ/2JEYlLZct7RYdOcFyOyJsNBLjZiNpxCJMzLgGYSHW+XfSTFugNqrX8R1lYARBC0Gy/qdW7XrGRnBx/VCVSoOwkGTZD+cAzeBMEQjQhsOZn7DSbL40MJZud4VKpUL22BsQHz0NyQmLZO91cKB12dIAbbjSw4c1c5/Om/Y4zpi3BlrJuaDVhuPM+f/EsgUfQhA0vda2dUQQtBDcnDGWZqBt3y/puaK0hJsrBrpEqkYdZLngpVYHIUAyjSAoIBqxkdZkXkzkJAQEWC8aSZdWykz/HWZkr4DGwd+oNAMdGpxkd78AbTiSRiyASqVCcGAskhMWDYtpnkMiYww4vkK9YsUKJCQk4O677wYAXHXVVbjiiivw9ttvY/HixVi3bh0OHDiAxx57DED3h9tVV12Fv//970hLS7Ms15SYmChbgoJouIiLnoqQ4JGobcxDa3tpr4wEdSup+B4mkw6jkpZBrR7YFyLRcHXFFVfgiiuu8HYzfIZaCEBi/CkA5EFXfMw0zJnyENTqYMvnydyc7uVqmloKLftFho+1DDvVKARtAZJg2Xa+pvn5AVi2azQh6NI3uvQaXM0wq1Tq7nVGA+PR3lkJlUrd/Ro9W9gYQPfrEwSNgzarZJn2AG04IsMy0NRaiLDQ/n//TRhzBSaM6T73pcGfdFlMZzPaQ1V68tkoqdiAmZPvx+4DTyE95RzZihcqlRoatXWNd406CCGSjLpa7dr674JKA0Fw79QRaSZYeoEDkAfKahcvGNka6EogaiEQpp5RGBp1sKxtgQHRCAqMxsSx10FQqREemoLm1uOW+2OjslFZu637sT2fKxqF3zUadYilaJpWE4qE2NmoqtuJqIixA2r7UORyYKxSqZCUlISAgADZbU9bvnw56uvr8eKLL6KmpgZZWVmyK9QVFRUQBOvJN336dDz77LN44YUX8NxzzyE9PR2vvPKKZQ1jALjhhhvQ0dGBv/zlL2hubsaMGTPwxhtvDMrrIRps3ZVYl+Fg4RqcLFuP7HHXe7tJPqmovDujzuHmRNQf0sBYow5CSqLyxXbpXMGo8HEoq9oEQLk+SqAkC6TVhPYKjG2zvY6GXruD0JMpDg7qDoxF0ag43NV2rVh30GpCIajUfQ5QFVQam6xlBKZO+ANqG/YhM/23bmmH9PUGSoLh4KB4pd0HVXREJto7qy0Vg90pbeQZWHbqY6ira0XyiMWKw23Vkqyw2iZD7GrGWCVo3D7HWC0EwIDumj0BGvsZY5Wgls1Vd32awsCyqGp1EKZl3Y2d+x9GevKvZBloc3Y4a4y14Jn0cyUhdhbyC97sbkXP54rSMrvBQXFoaSvueb5gzJ32GExGXa8LBv7A5bNMEARs3LjR8m/pbU/r6wr1e++912vb2WefjbPPPtvu8VQqFe68807ceeedbmsjkS9LSzqrOzAuX4+JY6/xaJXHoaippRCNzUcQEToa0RETHD+AiMiGs3MhpcFr6sjTUVW7A+NH/05xX1mQoZDBUgsBst/fGicyciPj50NvaEVtwz6n2mvL/P0hDSKUhmMLggYmo/sDY0eBkkrQICjQOrw/QBuB6IjxHluyMECSMbYtkOQNY1LPx6ik5Vj7/elun/ctHU1l73eENPi1PR9dHkqt0rp9jrF0iLRGEwzpXGDZOa1SQ1BpYDQPZ3YxMFYNMDDuvrh2KhLjZjt1wUtWjCs0DWfOfw+Cytp3Shls6QiHAG041ELAgDPlQ9WQGUpNRAMXGjwS8THTUVO/B9X1e5AQO8vbTfIpRT3zr0clnz0s5soQkRe4UHftnFP/A0BEYEAUFs9+yf4hRWtu1Bx8SrNYanUgYLJ+ZkkDEXtrtGakXYiE2FmoazyAA0dfQ0LcbEt2yRnWzJX1BauVMsaCFjAOfMUOKY0m1GGgJKg0CJIWy+pjvmR/SYMr6ZqtvhAYdw91V0GlEqCQJLRQC0EwmlxbN9uZwFZaJMp2aLlaFjSH9Ln2MdBTfMvNF/Klwb1aCIRWE2IpVCUtxqVSqaESNEBPpWa1OtClSs/9GUotHWVhbqc0KE4beSaKK77FmJTzez1WrQ5E0oiFMJp00GpCoNWkye6Pj5mGipotssy3NHgPDIh2ub3DyZAovkVE7pOexCJcSkwmPYorvoVKpUbayDO83RwiGqJSR54GoLsSryOBAZGyuan2jEk5F8kJp2LxrBeVM8bqQNl26RBIe5kfczGj2KhJWDz7JYSFJCvuZ4/58dKhmUoZ4+6MovKFxuiILKefT5qZ1KpDHAZKgqCR/cj3xLDQ5ITuYcQzJz2AsJBkxEfnICJsjCxT7S3m/nKUsezOljrDGjJonSiyJr0oERQoD7akF26cKYQmCO5frkl6UUMQAnplTc1UPRljpcdJ2cuc9ycwlr4nSqM/crLuwtJT3kDSiPmKj5+b8ygWTH9K8b6M1AsxYcxVWDzrRZj/LkXJxS1/LBwnxcCYyM8kJSyCRh2CsuqfoNO3eLs5PqO8egt0+iYkxs31iR81RDQ0JScsxvzpT2HO1IfddkyNJgSnTF2NuOipltEs0h/iasEmMJYEG/Z+yNtmXF0NPMzPb57fOH3iPYpZXHORLiWjks7C3JzHkOTECgC2c1ZVCtV+pX0iqDRIGrEA0RETMHn8rQ6P3x+jU87B+Uu/xqikswAAC2c+h9Pnvu1yhW9PMPeF6GAIg+17M2ncjYr7See5BwQ4XkdaviSWPDCWZYydGB7cXXzLzUOppRljdYC84JbNUHHB5m9N8Xiy7d19Gh6WLBvt4Szpsm5K/aPVhCI6YrzLxwW6Lxhlj70OMZFZlvdeFE2YPflBJI1Y4PercTAwJvIz3fNVlsBk0qG0cvBqBPi6E6X/A8CiW0Q0cIlxcxAsCQzcyWQuAiTNYqkDIEh+zEszevaq69tmuFzNbJmHUsdETcRFZ2xEevI5dgJjASo7PzdVghpJIxbIsub2AnTp8F2VSqW4fI88C6hFRFg6lp7yGsanX+bUa+oP2yDKtm3uznQ6y9znSsPopRLj5iAmciLm5vwV5y75yuYihfV9k2ZUNU4sByZfHkueYZa+l85mjN0+lFpy8UIQAmTnrvT9E8xDqc3/Vitf9JCeBxMzrsbolHNxwRlvw9CPaQTyit6uVfB2hfncCNBGIHXk6Zib85jfr8bBwJjID5mDv5Pl673cEt/Q2laJytqdCAqMRWLcHG83h4jILtHU/WPW2YyxIEjnUkqCAZuAzdVijNL9LfNZFX5W9pUxVkHd00bpUFXlzKBtFlYevGh79pEEN27OMLpC+tyuFDFSykaqBdcKVZmpepY3UqpCLBUSlIglc/6BpBHzEaCNsBk2bG17oLRSsxM1OFQqFSaOvQ4TM67ttb/0vQwKjLNzBOs5050xdvNQapuCdiaTtUCcNBDuPZRa+jckfZ+t711E2BjMnHQvQkPiHV6YUOJoKLW7jEm9AAAw3k1V2ocDh4Hx1q1bnTqQXq/HH//4xwE3iIg8LyYyG2EhaahvOojm1iJvN8frjhz/CoCIUUnL3P7lS0TkTubPKJOk0rBlDeEe8mHH1h/y0h/ctp91rmaMlQJp5W0CYC8w7gmYZEGuvYDWJsBTSda1Nb92eYDtveHM/Q2MBUGL8em/QfbYG6yPt5OhdHgsy3vRPZTX/hxYm5EDsn61Prczw6dtZY25ClkZVys8pwoj4xcgMW4u4qKnKj5W+l52F99y74UOrWSIsiBoLcuqjU45z6aKs1qW9ZdnmiXvs1o+Z7kvju6XZYydngPuuimZt+HshZ8gPkb5PfBHDj8Fb7nlFvz444997tPe3o4bb7wR3377rdsaRkSeo1KpkJ68DABwsty/i3CJogmHC78EwGHUROT7zD/AjUZrJWGVSrCbDZZu12ikw5EHljFWGtqqlB0T+soY92xXOREYm49t3lcavJgDDacC7EHQ38y1IGgxefwtmDDGujRpf4diW7P3ff/Ut31vZPO0JedOcNAIZI6+ArMmr+xXe2zNm/YY5k9/QjZCQP7c0qHNWlnA7g4ayfBujToE40ZdikUzX8SkcTdAEOSjIaT/FuwFxrKRGdL3vPvij3Qour15ykrPofZgxlgtBCAkOMFjxx+KHAbGp59+Om6//XZ8//33ivfX19fjyiuvxN69e/Hyyy+7vYFE5BlpI88EIKC4/FuYTO5d43Aoqa7bg5a2csRH5yAsJMXbzSEi6pP1R7U0g6qy/4NdtjSO9XbvodTOZIytQ2KVil8pBcYqqO3PMe7ZLssOyrJ1SkGh2Osx1oJk0sDYixljyWtwJeOntMxTf+fWmgNJ84URe0N6bS+IyAtNSS+2BGDSuBvcvmqDSiUftmx9PtuMsXtHc0mLbWk0wVCpVIiPmdprOLlgO5RarTw1wV7GeMmclzEyfgEmj79Zsm+A4r5KxzUY+l7KitzL4afgM888g3PPPRd33XUX1q1bJ7uvtLQUv/3tb1FaWoo1a9bg1FNP9VQ7icjNgoPikRA7E526elTV7fR2c7zGXHRrdOo5Xm4JEZFjoT3LKgUHxlu2GU1dsoBGPqRYWpRLsr6xYD8gskeexXMuY6xSCQ4zxrJgTDb30/p85syWaCk+Jnn+nmHW0ufxbsZYGkg5DoyjwrsrDCuNWupvgG+ev61UTEl2EaVXETbl7Ki9ud8DJR8yrTwEXRC0bn8/pfPwbQuA2QbrKjvLNdkbSi3tq7joyZg37THZ36u8X5WXX5s//SkkxM5GSuISp18TDZzDyy8qlQp//etfERgYiHvvvRc6nQ4XXHABDh8+jBtuuAFqtRoffPABxo4dOxjtJSI3Sk8+G1V1O3GybD1Gxs/zdnMGXZeuCWVVmxGgDUNKwmJvN4eIyKFJ426AKBoxNu0S1DcdxJ6DzyAl4VTU1O+17CPIhk9L5ytKM8a2yzU5ERirNDBB17N/75+QJsXA2HYotQqWbLfCUGpZVlsIAHqq+qYmno66xgNIiJ3d81DrY5TKSzlav9eTpAGTM8WTZmSvgN7QirjoHMu2iRnX4GDhGsRFT0FbR5nLbTC/n0qBl/x9tB8Y25tP606ybKxKC/P4Nek5rFJpXB7q74i88rO8yrZ8NIJgc6EjUHE/23WRbdkLhtVCAPQ2+6rVgUiMm8NioF7g9LiEhx56CIGBgXjggQdw5MgRfPrppxgxYgTefvttJCYmerKNROQhI+PnQ6sJR3nNFnTpGmVLZviDkorvYBL1GJt+AdTqQJhMfVfvJCLytgBtBGZkrwAARIaPQerI06FRB6G8eotlH8FOhksWGPcqvuVMxlgDGHs/h5k1YyzAWvRJnjEWVBqYxO5QwDqUWjmQlLZxVNJZCA8dhaiIcb2fXzQ/lyQYdqJysqeo7b0eldb62lUaiD0F1DSaUMvrMsvK+H3PxY9DTtcCEYQAmEzmgLenbxWKdwmC1vI+9jmUWj0IgbG9jLHNc0vfW5VK3a9qz1LyAlc2gbHN6Au7w8vtDKUODe4dF0lfj9rBHGJHc5DJc1wqQXjffffhhhtuwDvvvIOxY8fio48+YlBMNISp1YFIHXk6RNGA4grlOgLDlSiKKCrrnh6SlXG+l1tDRNQ/5gyrubJsd3V9ba/7u29LgzTX1zGWrc+rUAxJaZiz7TrGKpv7bNuoVitntVUqNUbETpfMDVUKfCXBkxczxtLXqJENX7eXGVfOU2m1YS5lSpWGus+a9GcEB8bLimYJsoJXfRTfkhU480xgLBu2bC8Dq5JXpVbLssn9yySrJe+L1iZjLJurrtLK2yXNGEvnkkuOYRto27ZZK5nfrLxusPfOXX/nMGN8yimn9Fp/TBRFFBYWYtmyZb3237Ztm/taR0Qel568HMdL1uJE6VcYm3axU+sTDgeNzUfQ1FqIqPBxiIvJQn19m7ebRETUb2kjz0JE6GhER2ahuv4Xy3bpSCBZVWrbjDHsDHeWbrVTJMvMXMhRJWgAY3dmtDvbJ8/AGU09x+sJyuwWCLOTTbQl2hlM7QtsL0aY85zSIbS2c1ylHAV+0syz7MJFT9/GRmVj+eLP0NnVIGmHcsEr23/LLlIMQsZYbWfOriBobOaPW4fYCyotjP3IHgdL1k+Wvk7bNtkW/pIXubNuDwyIxJwpDyFEoYBa977W1yMr/KXuvU61dCk2GlwOA+PLL7/cb34oE/mj6IjxiI6YgIbmw6hrzLO7puBwc6Ksp+hWynJ+xhHRkCcIGsRETey+rVIeqqnV9FWVWl4R2DzkV/Ycsqxd70DJ/IM/ODAOre0lPe3SyoY1ywOx7u3S4EBlJxi2zWwqD6WVPo9vfK7Lh4ZLMrCSwK+veciCg2WK1IIWBqOh57b9TKo82JPuZ5sxtvabNNvtseJbKuWLLfaKXHXfJw9OzRdaXBEdMQHjRl0KEWKvc8V2+TD76xjL+9u8FrIS2ZrQsqWbeg91FxkYe43DwPiOO+4YjHYQkReNST0fu/MP43jJl34RGOsNbSiu+A5qIRBpSWd6uzlERG4lX3dVMnxXOqy3V0AkGe4syfjKj9t3Bnf6xHuRd/QVZI+9Ht9tvbp7P5XWZo6xfI1YwHb4tHJVZFvyLHFPVWpJYOyLy9xIg0CNIF1T2v4wdkcZY1n2tI8LCfK1leXLEdmjsTOs3Z1ss7PW2zbrckuCV8HB3Gf7c5CtIyFUKhWmZN7muE0qTR+Vs/uu0i4lDYClGWOVQvsHOn+a+s+lOcZENDylJC6FVhOG0qofZcOthqvi8m9hNHYgdeRpsi8oIqLhwNhTgAmwnQfZe9immUrlOFiSB1e9f9CHhozE3JxHERGWbtmmFgIsSwd1P4/0tkLG2KZQl33WwFgUzVWuu6tXA0B0ZFYfjx08hp6gFbCfDe+Lo4DLdpi60vbu4ygPWe4rKBf6yNq6i721p22Lb9krKGcvMFZ+LufmIws2GWN7Q8/lFyKcD4zlw+sVqrubmDH2FgbGRASNOghpSWdBFA1OV78cqkRRxPGSLwEAY1JYdIuIhh/pD2t59tj+j3dZxlghqwvYZnOdC5RUgrqPY5urUkszw86tRaxVS+flmoNkFWZOuh+zJq9E5ujLnWqfp0kDY+lFCmezgo7nGNvMvbXzOHvrEytlLM2kAbTyPO6Bs1eRXB78auyuJay8HJWdwNjJeee2GWLb5ZuU2u5UZl9hX6X2KxXvosHBwJiIAABjUs4DAJwo/Qqi2I8JO0NEXWMemttOIDoiE9GRE7zdHCIitxsRMw0jYmdi+sR7ZQFFV1ez3ccI9gJglXKW09mhtd3rGEuGwUqDDPNyTQrBMmCvYm83rcJoHxVUEAQN0kae4fXRQOnJ5wAAkkcssmyTXphwtn0uBcYq+4Ga9D3QasIkj7GflZe+3zpdk+PG9oP0vZcGhNL3XmUznFl6n23hLKCPCypOzjuXj57Q2AzrVg5qHQfGGkRHZCFpxEL5xSHJObFkzqtIGrEIEzOucaqd5H5Or2NMRMNbRFg64qKnorZhH6rqfkFi3GxvN8kjLNniVGaLiWh4EgQtFs54FgBQUrnRsl2tsKatWa85xpbt0qDV9aHAEE12j2F5TjsZZaVsmllgQGTvjT5ScAsApk+8G1kZV/dax9gsPGw00pKWISo8o8/jqPocTi6vJi4PJu3nvgK0EdY22VkqynL0nrWRFfvbDaTnmlYaGMuywlpIC6upHRQu63sIvmO2IyOURjl033ZurrbZkjn/gEqlwrGTnyneHxOZhbk5j/SnyeQmzBgTkYV5aPGJ0i+93BLP6OyqR2nVj9BqwpCSeJq3m0NE5HHSICF73K8xJvV8LJ3zWq/9bKtSK27vxxxZk2iQBW/yAKJ7e0RoOsJD0zF21K9tAg/7P1PTRp4BoPt7y1PDfAdCpRIQEjSijznAAtKTz0ZUxPg+jyPP3ivNp5UExnYym7ZkgXEfQaQoGnHGvHeRM+EuJCcs7rOd/SWrRC0bSi1Z91cTJsuwOxxKPcD50PL3SaNYMK77uZ0fSt29j6rX44zGzgG1ldxrSATG5eXluPHGGzF16lTMnTsXTz31FIzGvudmNDY24u6778b06dMxa9Ys/PnPf0Z7u7VC4Y4dO3DLLbdgwYIFyMnJwQUXXID//e9/nn4pRD4tKWEhArVRKK/eivbOam83x+2KytZBFA0YlXR2n0VoiIiGC+mP/ICAcMzIvltxGokzmbDeWTzHTCZDH3OMVZY2njn/XUzNvN0mGLafAY4IG43zlq5DTtb/OZWt8xZ7xcT6Cvplj7dTYVzpOGo7RcxsSYPMvoJIk2hAWEgSMtIudLpwlaukr0mrVh5KrVYH2sxFlmTGlfqkzyy4Y7YFtlR2LxRJ52o73z/Sdatb20sBAJo+1rKmwePzgbHRaMRNN90EvV6Pjz/+GE888QQ+//xzvPzyy30+7p577kFBQQHWrFmDf/zjH9i1axdWrVpluX/v3r3IzMzEiy++iP/85z+46KKLcM899+DHH3/08Csi8l1qIQCjkpcDMOFE6Vfebo5biaLR8prGpJ7n5dYQEQ0O+fBn+wGD/Ae/8hxI+RBcZwNjvU3Bor6DQ2kFa4h9Z4K1mlCoVCrMmvwg1OpgnyyoaHeIOpwLpOwFYlbW48sCxj4CWen87L72G4xlg+wVdOtrqS5HQ5ilS2HJHudk8S1Z+wQNggKjJcdQLr7lysUZjWSOd2zUZADAqKRlLreN3M/nA+Off/4ZhYWFePrpp5GVlYXFixfjzjvvxPvvvw+9vvcaewBQWFiIn376CY899himTp2KmTNnYuXKlfjqq69QW1sLALj55ptx1113Yfr06UhLS8NVV12FhQsX4vvvvx/Ml0fkc7qLcAk4UfoVjMYubzfHbSpqtqO9sxLxMdMRHprm7eYQEQ0Kwcl5kPbm9kq3S4sjuTSU2s7waJXCz1BpUC7CuUKQiXGzcd6S//rkRU/5MHLlJZP6ItgZim05vqywmZOBsdq591E0DUJgbGfpqL6CcqPJ+ttE+jpnT3kIcdE5SE9ernh/v9qn0mJM6gVIG3kWFs96yf5yTU5e6ADkGeMpmbdh1uSVmDz+5gG1k9zD54tv5ebmYsKECYiLi7NsW7BgAVatWoXjx48jMzOz12P27t2LqKgoTJo0ybJt3rx5UKlUyMvLw9KlSxWfq6WlBePH9z3XwxFBGHjhB/Mx3HGs4Yp95Jz+9FN4WBKSExagrGozSqs2YnTKcscPGgIKij8FAIwbdbGsP3guOYf95Bj7iHyRSbQu3dQ9PFV5jVTB3hBRO4WHHBc4EgCYujPGsuCw7zV07QUejvRdRMp77GV8nW2vysEcY2nxKXvrQZtNzLgWLW3FCAiIkhzTfjuk546n2BumrBTQjoyfh4qarYgKH4fSnqJy0v1SE5ciNXEpTpavlx3HGmT3J2OshkYdhFmTHwAAlFf/bLlPNsfYhaHU0vdJqwm1zJcn7/PNTxGJ2tpaxMbGyraZg+Ta2lrFwFjpMRqNBpGRkZaMsa3169cjPz8fjz76aL/bqtEIiI0Nc7yjk6KjOd/AEfaRc1ztp5lTrkLZd5txovTfmDHl17Ir0kNRbf0R1NTvRURYCiZNOFNxLU+eS85hPznGPiJfEh2RiaDAOGSknd/nZ7m99XDtLeNkcjDMVi1oYTR1wWQyyIb4yoJdheBNGjRo1EN/PVdpn0urgju9DrSDCwXBQXFoaDYfXzoHvPdSV1kZVwMAqmp3SY7ZOxQI0EZAp29GcNAIp9o4EPaW6oqLmoyMtIuREGtdIWNuzl9hMulQUrlB8nilLLq8kJwJOvMdLrevs6te3l7ZcG/Xim+ZKS0xRb7Ba4HxSy+95HCesHm+r70P8r4/4HvfJ4qi4vYdO3bg/vvvx6OPPoqMjL7L5vfFYDChubnD8Y4OCIIK0dGhaGhog8nke5UWfQH7yDn97SetMA7REZmoazyCw8c2Y0TsDA+20vN25b0LABiTchEaGuR/ozyXnMN+cmww+ygiIhhare8WHCLfERgQiV8t/rfDkQzy6sbKP/hlw6odBK0Tx16L/Uf/gYy0C3tl8JSe0/rc1oBOO8wKEqkF+dq8zrC3prRZcGC85XZQQIx13z4y0rZrBNs6dfbfcbJ8PcaPusypNg6EWh2IiWOvQ0jgCOgNrdZ2CWrkTPiDbF+VSgW1OtBupW/rfjb391zDUQtaGI3O/U7XasKhN7T0CmKl0wyk97kyxzg4MLbnWAyQfY3XAuMrr7wS553X91yQ+Ph4xMXFIT8/X7bdnPW1zQqbxcXF9coMGwwGNDc393rMzp07cfPNN+P+++932B5nuPPHkMkk8geoA+wj5/Snn8aO+jV27X8UR4s+RVz0dA+1zPM6u+pQUrEBGk0o0pLOttsPPJecw35yjH1EQ5O9jLF8qOvpc9egufUEwkNT+jza+PTfIG3kWQgKjEZxxbeSY0vnZfYO1mXVhzVDP2MspbaXOe+DbO63JBBTq4NhNHYgJXEJVCo1YqOyHWbxzWRrKyu0Izw0FZPG3eDUsdwha8xVAIDjJdalIpXmn5vZWz5J6bHSwD8kKAE6fbNTbTpj3hoUV3zXU3dF8tyy6tjWfnQlY6zRhODshZ8Muws/w4HXAuOoqChERUU53C8nJwevvfYa6urqLEHt1q1bERERgTFjxig+Ztq0aWhsbER+fj6ys7MBANu3b4coipgyZYplvx07duDmm2/GPffcg0svvXTgL4poGElJOBX7j/4DFTXb0NJW6vBHkK8qLPkCJlGPjOQLoR1mP7KIiNxFNuTXTsZYUKkRGT4GkeHKv79smav5yiv5Ks8pVdoWHBjX6/6hTN2vOcbSqtPWwPiMee+gqaUAcdFTERc9FQBQWrnJuXZIA2MfWurKUcVy633ScyS+9/2C8vD/0JAkNLYcc6otwUHxyBz9u17bpe+hdNSEq0W+QoITXNqfBofPV6VesGABMjIysGLFChw+fBg//fQTXnjhBVx++eXQars/uPPy8rBs2TJUVVUBADIyMrBw4UKsXLkSeXl52L17Nx555BGcc845lvnJO3bswE033YQrr7wSZ555JmpqalBTU4PGxkZvvVQinyIIWmSkXghARGHxZ95uTr8YjV09V6AFZKRd5O3mEBENCfaLb/UviLJ7DIXpbdIM9aiks5CevBwLZzzXr+f1NdJso1plfzkiKVlgrLEGtKHBiUgascDuvn2RHseVAmee5qgwm/U+6zmUlnQWJoy5Cqed8qb1flnG2Lrv2LSLER0xATOz7+9/G2WBcf8yxuS7fD4wVqvVePXVVyEIAi677DLce++9uOCCC3DHHXdY9uno6MCJEydkyzc988wzGDNmDK6++mrceOONmDFjBlavXm25f+3atejo6MBrr72GBQsWWP6THpfI341OOQ9qIRBFZV+jS9fo7ea47GT5euj0TUhOWIjQ4JHebg4R0ZAgLzDkjsDYGgDLghaFJW5k2T5BixnZfxrydS6U9KeKtqOiTc6uOywbSu3kXOfB4Gg0gdJ9gqBB9tjrEBUxzrrNzhxkrSYcS095DaOS+79msCww1vhm5p36z3f+GvqQnJyMN954w+79c+bMwZEjR2TboqKi8Oyzz9p9zBNPPIEnnnjCbW0kGo4CAyKRnvIrFBZ/joLifyN77HXebpLTTCYDjpz4EACQmd57OBQRESlT21kPt/+BsZ11jBUzxsM3wJBnMl3PTUkDWiXOB8bSuc6+EwqopBl1haraZg7nGNu5vz99bkvNjPGw5vMZYyLyrvHpv4VKpUFh8efQ61sdP8BHlFZuRHtnJUbEzkJ05ARvN4doyDt8+DD++Mc/YvHixZg6dSqWL1+O9957z9vNIg+wtwxNvwNjKAcnyusY+06g5naSCwH9Kc/naNizs8W33PGeeoI0ey0tVGZLOqpAqUiX7XJNkjsG2EL3FN8i38XAmIj6FBI0AqOSzoLe0IrCki+83RyniKIJh098AACYMPpKL7eGaHg4cOAAYmJi8PTTT+O///0vbrrpJjzzzDP46KOPvN00cjPZmsaSwKK/2Vx5AKw8rNosNqq7aOqI2Fn9eq4hQ3Q9NBZFk4P7nQuMfZU0ey0dsmxLvmxY7wBadvFFOjzbDWGP2s5Q6qDAGKXdaYgZxpfliMhdxqf/DkVlX6Pg5KcYO+oSWWVMX1RRsxUtbUWIjZqMuOgpjh9ARA5dcsklsn+npqYiNzcX3333HX772996qVXkCdIAS57h7WdWTDrH2EHGOCgwFuctXedw2PBQJF+eyv2B8YiY7rnYKYlLHR5r4YznYDTpXG6DJ0mLb6n7CIylF2jUCueJbSV163b3Zoylw71DgkYM+NjkfQyMicih8NAUpCSeitLKjSgq/S/GjrrE8YO8RBRFHD7+TwBA5ugr3PJFSETKWlpaEBkZOaBjCMLA/kbNjx/ocYY71/rJGoCp1ZJAQK3uVz/LAhlZVlBQPF5gQJjLz+EOnj6XZEXIVP15Huv7ovTYsNBEXHj6eqjVwQ6/+xLjZ7r43Fae6ieNWrqGtf1h49JzSK3ufXFFrVYuviUI/Tt/pWSBsdp6bI0mwGY/fi45w9f6iYExETllwugrUFq5EUeKPsLolHP7nP/jTeXVP6Gh+QiiIjKRGDfH280hGrb27t2L9evX91kc0xGNRkBsrHuCoOjoULccZ7hzpp8CA63BRnCQda3W8PDQfr1fQUGSzFqINcMXGxuB4CDvBMF98dS5FBJqHW0VGhbocl8GBVmDL/uPHbz+dHc/mRBhud1X3+hNwX3uZ0S45XZAgLXPoqPDEBHmvv6Jj4/C0rkPIzgoxm57+bnkHF/pJwbGROSUyPAMJCcsRlnVjygo/hyZo31v6KQoGnGw4G0AQPbY65ktJnLCSy+9hJdffrnPfX788UckJiZa/n3s2DHceuutuOOOOzB37tx+P7fBYEJzc0e/Hw90Zxqio0PR0NAGk6k/JY38gyv91N7Rabmt11s/R9va9Kirc70Io05nHZrd1WXNejY0tKM9wLn1fAeDp8+ljnbrsqJdnRqX+zIt8QJUVudjQsYV/Xof3MVT/dTSYu2fvl5ffX1Dn/u1NHdZbhsN1vO3qbED+q6B99uCGU9CBTXq6loRG3mqYjv4ueScweyniIhgaLV9TwdhYExETsseez3Kq3/GkRMfYHTKOQjQhjt+0CAqqdiA5rYTiIuagoThXriFyE2uvPJKnHfeeX3uEx8fb7ldUFCAq6++GpdeeiluuummAT+/u34MmUwif4A6wZl+MpkMltvyIkjqfvWxvM6UINku+OR75qlzSasJx6KZL6KiZisSYue4/ByBAXE4be6bljZ6m7v7SZRUL+/ruHpDR5/7iaJ0yLo11DGJ7um3hNhTHLZR2j5feK98na/0EwNjInJaeGgaRiUtQ1HZ/3Cs6F/IHne9t5tkYTIZcLBwDQAgexyzxUTOioqKQlRUlFP7Hjt2DFdffTUuuOAC/N///Z9nG0ZeZP381KitQ6ndscawtMq1vBjV8HXq7L+juPwbpKf8CmohAPExU116/KxJf0ZrR7nPXYx2N2erRpuLao5OOVf5OLLiXJI1ubkYDznAwJiIXJKV8XsUV3yHYyc/RUbahQgKjPV2kwAAJ0q/QltHORJiZyMu2rUfHUTk2LFjx3DVVVdh/vz5uOaaa1BTUwOgu9BNTAyXKhkO5k9/CocK30HWmKtwovQ/AAC12pox7v9ardZMkHwNXf8IVGKjsi3LUPVHWtKZbmyN73J2uakAbQQuPH2DrLCWlPQcC9BGSLb7x4UY6j8GxkTkkpCgEchIvRDHTv4L+QVvYUb2Cm83CTp9Mw4Wvg1AwKRxN3q7OUTD0vr161FfX4+vvvoKX331lWV7cnIyNm7c6MWWkbskxs3pVbRQvtyNGzLG0mDGTwJjco40iHXEXlAM2AbG4YrbiZQwMCYil00YcyVOlq9HUdk6jE45FzGRWV5tz8HCNdDpmzE65VxERYzzaluIhqs77rgDd9xxh7ebQYNMOkezv4GFKPp3xpicExQYg0UzX0DwANcElp5X0rWRGRiTI/xEIiKXBWjDMWncDQBE7Dv8IkTR5PAxntLcegLHS76EVhOG7LG+M+eZiGg4cE8gaycw5s9QshEfMw1hIckDOoZ07rpsHWMV84HUN34iEVG/pCcvR1REJuqbDuJk+XqvtEEUTdh76HmIohFZGVcjMCDKK+0gIhqupIGFs3NAe7MGxoIbMtBEfZFerJddiBF4vlHfGBgTUb+oVGrkTPgDABXyjvwdHV11g96GE6VfobZhHyLDMpCRetGgPz8R0XAnzRJLl3Fy7RjK85RZDIk8ISQ4EePTf4M5U1bJzjdmjMkRBsZE1G+xUZOQkXYh9IYW5B56TjaPzNPaO6ux/+irAATMmPSnPgtxEBFRf1mD1/5mjLWaMMttgVk78jCVSoXJ429BSuISm+JxDHuobzxDiGhAJo29ESHBI1Fe/TNKKwenMq0oithz8BkYjO0Yn34poiMyB+V5iYj8j/WCp0nsX8ZYy8rA5CUqXjQnFzAwJqIB0WiCLUs27T30HNraKzz+nAXFn6GqdgfCQlKRlXGNx5+PiMhfSUcCqYXAfh0jQJIxZsEtGkwcPk2u4KcTEQ3YiJjpGJ/+G+gNrdie9xCMxi6PPVdD81HsP/oqBJUWc6Y8BI06yGPPRUREJiya+QLGpv0aI+NP6dcRggJjLbe9uYoB+R+OUCBXMDAmIrfIHnsDYqMmo7H5CPYdedkjz9HZVY/tuSshigZMzryFaxYTEXmYKIqIj5mGqRNu73eQkTRiIVITT8MpUx+Bqd+VrYlcx/oj5IohERiXl5fjxhtvxNSpUzF37lw89dRTMBr7/mBtbGzE3XffjenTp2PWrFn485//jPb2dsV99+zZg4kTJ+Kii1jVlqi/BEGDOVMeQqA2CidK/4NjJz9x6/GNxi5sy/0z2jurkDryDFahJiIaBO7I8AqCBrOn/AXJCYsGsOQTkesEZozJBT4fGBuNRtx0003Q6/X4+OOP8cQTT+Dzzz/Hyy/3nZG65557UFBQgDVr1uAf//gHdu3ahVWrVvXar7W1Fffddx9OOaV/w4OIyCo4KB5zpz0GQQhA3pFXUFKxwS3HNZn02JG3CvVNBxETOREzJt7LZT6IiAaFe1cbYGBMg0nFOcbkAp8PjH/++WcUFhbi6aefRlZWFhYvXow777wT77//PvR6veJjCgsL8dNPP+Gxxx7D1KlTMXPmTKxcuRJfffUVamtrZfs+/PDDWLZsGaZNmzYYL4do2IuNmoQ5Ux4CIGDXgcdQXP7tgI5nDoorarYiLCQNc3Meg1rdvwIwRETkGnfPCWZgTIOJSzSRK3z+Mkpubi4mTJiAuLg4y7YFCxZg1apVOH78ODIzey/TsnfvXkRFRWHSpEmWbfPmzYNKpUJeXh6WLl0KAFi3bh2OHj2KRx99FK+99ppb2isIA89imY/hjmMNV+wj53irn1ISF2LOlJXYuf8x7DrwGLr09Rif/huXs7xdukZs3fsgahv2ISwkBafOfgHBQbGOH+gCnkvOYT85xj6i4cm9GWPOMSYiX+XzgXFtbS1iY+U/hM1Bcm1trWJgrPQYjUaDyMhIS8a4oqICf/3rX/H2228jICDALW3VaATExoY53tFJ0dGhbjvWcMU+co43+ik29gJER0fju5/+hLwj/0Bz22GcesqDCAqMcurx5VW78cOOh9DSVo74mCwsW/wCQkPiPdZenkvOYT85xj6i4US6BrE7RIaPAQCEBCW69bhEynihkpzntcD4pZdecjhP+McffwQAu1mmvrJPSveJomjZvmLFClx33XUYP368s012yGAwobm5Y8DHEQQVoqND0dDQBpPJvVdqhwv2kXO83U/hwTOw5JS/Y1vuQygq/QEffrkbEzOuRnrKr6DVhCg+pqWtBIcK/4mT5d8AAFITT8PMyX9CZ0cQOjta3d5Gb/fRUMF+cmww+ygiIhhaLYvKkOcsmfMqSiq+x+jkX7n1uCNiZmL+9KcRHeG+319ERO7gtcD4yiuvxHnnndfnPvHx8YiLi0N+fr5suznra5sVNouLi+s1l9hgMKC5udnymJ07d2L37t14+umnAQAmkwmiKGLixIl47733MGPGjH69Lnf+GDKZRP4AdYB95Bxv9lNk2DicNud17D/2Gk6UfoXcwy/hQMHbSIidhZjIiQgOjIXJZEBreylqGvairvEAACBAG4mpE+5AauLpUKlUHm8/zyXnsJ8cYx/RcBATmYWYyCy3H1elUiExbrbbj0tENFBeC4yjoqIQFRXlcL+cnBy89tprqKurswS1W7duRUREBMaMGaP4mGnTpqGxsRH5+fnIzs4GAGzfvh2iKGLKlCkAgK+++kr2mA8//BC//PILnnvuOaSmpg7glRGRLa02DNMn3o2M1Atw7OQnKKnciLKqTSir2tRr35CgRIxOORcZaRfZzSoTEREREbmTz88xXrBgATIyMrBixQrce++9qKmpwQsvvIDLL78cWq0WAJCXl4cVK1bg3XffRUJCAjIyMrBw4UKsXLkSq1evhl6vxyOPPIJzzjnHMj/Zdgh1bGwsAgIC3Dq0mojkIsMzMHPS/cjJ+j/UNuxDc2sRunT1EFRaBAeNQHTkBESFj+NSTEREREQ0qHw+MFar1Xj11VexatUqXHbZZQgODsaFF16IO+64w7JPR0cHTpw4IVu+6ZlnnsEjjzyCq6++GoIg4KyzzsLKlSu98RKIyIZGHYTEuDlIjJvj7aYQEREREfl+YAwAycnJeOONN+zeP2fOHBw5ckS2LSoqCs8++6zTz3HHHXfIgm0iIiIiIhq61OpAbzeBhpAhERgTERERERG5YkTMdKQnL0di3FxvN4WGAAbGREREREQ07KhUAmZk/8nbzaAhQvB2A4iIiIiIiIi8iYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERuaS4uBjTpk3DnDlzvN0UIiIit2BgTERERE4zGAy49957MWPGDG83hYiIyG0YGBMREZHTXnnlFaSkpGD58uXebgoREZHbaLzdACIiIhoa9uzZgy+++AJffPEFNmzY4JZjCoLKLY8f6HGGO/aTY+wj57CfHGMfOcfX+omBMRERETnU2tqKFStW4NFHH0VkZKRbjqnRCIiNDXPLsaKjQ91ynOGO/eQY+8g57CfH2EfO8ZV+GhKBcXl5OVatWoUdO3YgJCQEF154Ie6++26o1Wq7j2lsbMQjjzyCH374AWq1GmeeeSb+/Oc/IyQkxLKPyWTCW2+9hU8//RTl5eUYMWIEfv/73+Oqq64ajJdFRETkdS+99BJefvnlPvf58ccf8be//Q2nnnoq5s+f77bnNhhMaG7uGNAxBEGF6OhQNDS0wWQS3dSy4Yf95Bj7yDnsJ8fYR84ZzH6KiAiGVms/dgSGQGBsNBpx0003IS4uDh9//DGqq6vxpz/9CYGBgbjzzjvtPu6ee+5BTU0N1qxZA71ejwceeACrVq3CU089Zdnnr3/9K7Zs2YL7778fY8eORUNDAzo6BvYFTURENJRceeWVOO+88/rcJz4+Hjt27EBlZSU+/PBDAIAoijCZTJg4cSKefPJJnHvuuf16fnf9GDKZRP4AdQL7yTH2kXPYT46xj5zjK/3k84Hxzz//jMLCQqxZswZxcXHIysrCnXfeieeeew633nortFptr8cUFhbip59+wr///W9MmjQJALBy5UrcdNNNWLFiBeLi4lBYWIiPPvoIX331FcaMGQMASE1NHdTXRkRE5G1RUVGIiopyuN9bb70FvV5v+feGDRvw9ttv44MPPsDIkSM92EIiIiLP8/nAODc3FxMmTEBcXJxl24IFC7Bq1SocP34cmZmZvR6zd+9eREVFWYJiAJg3bx5UKhXy8vKwdOlSbNy4ESkpKdi4cSOuv/56qFQqLFy4EPfccw/Cwvo/38kdk8d9bSK6L2IfOYf95Bj7yDnsJ8eGex+NHj1a9u8DBw5AEASMHz/eSy0iIiJyH58PjGtraxEbGyvbZg6Sa2trFQNjpcdoNBpERkaitrYWAFBSUoKysjJ8//33ePrpp6HT6fDoo4/ivvvuczjXyh53FhEBfGciui9jHzmH/eQY+8g57CfH2EdERERDj9cCY2eLfQCASqV89d3ednv3iaJo2S6KIvR6PZ588kmMGjUKALBq1SpcccUVqK2tlWWoneWOIiIAJ+w7g33kHPaTY+wj57CfHPO1IiKedtFFF+Giiy7yahuIiIjcxWuBsbPFPuLi4pCfny/bbs762maFzeLi4iz7mBkMBjQ3N1seExcXB41GYwmKASAjIwNAdxXs/gTGgPuKiJiPxR+gfWMfOYf95Bj7yDnsJ8fYR0REREOP1wJjZ4t95OTk4LXXXkNdXZ0lqN26dSsiIiIsRbNsTZs2DY2NjcjPz0d2djYAYPv27RBFEVOmTLHsYzAYUFJSYim6deLECQBAUlLSQF8eERERERERDRGCtxvgyIIFC5CRkYEVK1bg8OHD+Omnn/DCCy/g8ssvt1SkzsvLw7Jly1BVVQWgO/O7cOFCrFy5Enl5edi9ezceeeQRnHPOOZZM8Pz58zFhwgT8+c9/xuHDh5GXl4dHHnkEZ555Zr+zxURERERERDT0+HxgrFar8eqrr0IQBFx22WW49957ccEFF+COO+6w7NPR0YETJ07IlpF45plnMGbMGFx99dW48cYbMWPGDKxevVp23Ndffx3h4eH47W9/i1tvvRVTpkzB448/Pqivj4iIiIiIiLzL56tSA0BycjLeeOMNu/fPmTMHR44ckW2LiorCs88+2+dxExIS8Morr7iljURERERERDQ0+XzGmIiIiIiIiMiTGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NZUoiqK3GzFcmEwijEaTW46l1aqh1xvdcqzhin3kHPaTY+wj57CfHBusPlKrBQiCyuPP42nu+t7kuekc9pNj7CPnsJ8cYx85x5e+NxkYExERERERkV/jUGoiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2Mf88EHH2Dp0qWYPHkyLr30UuTl5Xm7SYPmtddew8UXX4xp06Zh7ty5uP3221FUVCTbp6urC6tXr8acOXMwbdo03HHHHairq5PtU15ejhtvvBFTp07F3Llz8dRTT8FoNA7iKxk8Dz30EDIzM/H+++9btrGPulVWVuLuu+/G7NmzkZOTg4suugiFhYWW+9lPQGtrK1atWoWFCxdi6tSpOOecc/DFF19Y7vfHPtq1axduvvlmLFiwAJmZmfjhhx9k97urT3bs2IELL7wQkyZNwhlnnCHrd3INvzf5vekKfm/ax+9Nx/i92duw+t4UyWf873//E7Ozs8XPPvtMPHbsmLhy5Upx1qxZYl1dnbebNiiuvfZa8d///rd49OhR8dChQ+INN9wgLlmyROzo6LDs85e//EVcvHixuHXrVnH//v3ipZdeKv7ud7+z3G8wGMRzzjlH/P3vfy8ePHhQ3LRpkzhnzhzxhRde8MZL8qiNGzeK5513nrhgwQLxvffes2xnH4liY2OjuGTJEvG+++4T9+3bJxYXF4ubNm0SKyoqLPuwn0TxgQceEM8880xx586dYnFxsfj++++LEyZMEHfs2CGKon/20aZNm8TnnntO/Oabb8Tx48eLGzdulN3vjj4pLi4Wp06dKj7++ONiQUGB+N5774lZWVnili1bBu11Dhf83uT3piv4vWkfvzedw+/N3obT9yYDYx9yySWXiA8//LDl30ajUVywYIH45ptverFV3lNXVyeOHz9e3L17tyiKotjc3CxmZ2eL69evt+xTUFAgjh8/XszLyxNFsfuPMysrS6ypqbHs8+GHH4ozZ84UdTrd4L4AD6qpqREXLVokHj58WFyyZInlC5591O3pp58Wf/vb39q9n/3U7Ve/+pX46quvyradeeaZ4ptvvsk+EsVeX/Du6pOnnnpKPOecc2TPddddd4k33nijJ1/OsMTvTTl+b9rH782+8XvTOfze7NtQ/97kUGofodPpkJ+fj/nz51u2CYKAefPmITc313sN86KWlhYAQGRkJADgwIED0Ov1sj7KyMhAUlKSpY9yc3MxYcIExMXFWfZZsGABmpubcfz48cFrvIfdf//9uPLKK5GZmSnbzj7qtnHjRkyaNAl33HEH5s6di4suughffvml5X72U7dp06Zhw4YNqKqqgiiK+Omnn1BdXY158+axjxS4q09yc3NlxzDv46+f9f3F783e+L1pH783+8bvTefwe9M1Q+17k4Gxj2hoaIDRaJSdFAAQGxuLmpoaL7XKe0RRxOOPP47Zs2cjIyMDAFBbW4ugoCCEhYXJ9o2NjUVtba1ln9jYWNn95j417zPUvf/++2hvb8e1117b6z72UbeSkhJ8+OGHyMjIwNtvv42LL74Yf/7zn7FhwwYA7CezlStXIi0tDYsWLcKkSZNw++234/HHH0dWVhb7SIG7+sTePo2NjdDr9Z5q/rDD7005fm/ax+9Nx/i96Rx+b7pmqH1vatx2JPIIURShUqm83YxB9/DDD+Po0aP46KOPZNuV+kIURYf79LV9KCksLMTf//53fPLJJxAE5eta/t5HQPfrnTx5Mu666y4AQFZWFg4cOICPPvoIp512GgD2E9D9Y/HQoUN4/fXXkZCQgG3btuGBBx5AYmIiAPaREnf1ie0+tseg/uP3Jr83pfi96Rx+bzqH35uuG0rfm8wY+4jo6Gio1epeV4vq6+t7XQ0f7h555BFs3LgR7777LhISEizb4+Li0NHRgdbWVtn+0j6Ki4vr1Yfmf9teaRqK9u3bh/r6epx55pmYOHEiJk6ciLKyMjz22GNYtmwZ+6hHXFwcxowZI9uWkZGBiooKy/3+3k+dnZ14/vnncd9992Hx4sWYMGECrrnmGixevBjvvvsu+0iBu/pEaZ+6ujpERUVBq9V6qvnDDr83rfi9aR+/N53D703H+L3puqH2vcnA2EcEBAQg+//Zu+/4pqr+D+Cf3MzulZYWKBTKngVkb0QEFMWJA5wIivpDRXmcj+B+3PsRBzwouAVciMjeQ2wZZZcySkvbdO+Me39/tEnPTZNmNOnN+L5fL1+WNLk5Oblp7vec7/me3r2xa9cuy208z2P37t1IS0uTrmGtSBAEvPDCC1i/fj2WL1+O5ORk0e/79OkDpVIp6qPs7Gzk5uZa+igtLQ3Hjx8XlYHftWsXIiMjm/zB90cTJ07EL7/8gjVr1lj+S0hIwJw5c/DJJ59QHzUYMGAAzp07J7rt7NmzSEpKAkDnEgAYjUYYDAbI5XLR7RzHged56iMbPNUnaWlp2Llzp+jYu3btCpq/9Z5C35v0vekM+t50Dn1vOkbfm67zu+9Nj5byIi1i3nZi1apVwunTp4XnnnsuqLadeP7554VBgwYJe/fuFQoKCiz/WW87MW7cOGH37t3C4cOHhRkzZtgs+X7PPfcIx44dE7Zt2yYMGzZMeOeddyR4Ra2Dra4pCNRHgiAIGRkZQs+ePYUlS5YIZ8+eFVatWiX06dNH2Lhxo+U+1E+CMHPmTOGaa66xbDvx7bffCr169RJ+/vlnQRCCs48qKyuFo0ePCkePHhW6desmfPnll8LRo0eFgoICQRA80yfnz58X+vXrJ/znP/8RTp8+LaxYsULo1asXbdfkBvrepO9Nd9D3ZlP0vekc+t5sKpC+Nykw9jFfffWVMG7cOKF3797CjTfeKBw8eFDqJrWabt262fzvp59+styntrZWWLRokTB48GChf//+wkMPPSQq7y4IgpCTkyPMnj1b6NevnzB06FDhtddeE4xGY2u/nFZj/QVPfVTvr7/+Eq666iqhT58+wtSpU4XVq1eLfk/9JAgFBQXCv/71L2HUqFFCv379hClTpggrVqyw/D4Y+2jPnj02/w69//77giB4rk92794tXHvttULv3r2Fyy+/XFi1alWrvcZAQ9+b9L3pKvretI2+Nx2j782mAul7UyYIVPGDEEIIIYQQQkjwojXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBDJrF27FqtWrZK6GYQQQohfoO9NQryHAmNCiGTWrVuH1atXS90MQgghxC/Q9yYh3kOBMSGEEEIIIYSQoCYTBEGQuhGEkODz5JNPNhn1fuihh/Dwww9L1CJCCCHEd9H3JiHepZC6AYSQ4DRv3jzk5uaioqICzz//PAAgMTFR4lYRQgghvom+NwnxLgqMCSGS6NChA6KjoyEIAtLS0qRuDiGEEOLT6HuTEO+iNcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEMkolUrU1dVJ3QxCCCHEL9D3JiHeQ4ExIUQynTp1wsmTJ7FhwwYcPnwY+fn5UjeJEEII8Vn0vUmI99A+xoQQyRQXF+O5557D/v37UVZWRvsxEkIIIc2g701CvIcCY0IIIYQQQgghQY1SqQkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDWF1A0IJDwvwGTiPXIshYKD0eiZYwUq6iPnUD85Rn3kHOonx1qrj+RyDhwn8/rzeJunvjfp3HQO9ZNj1EfOoX5yjPrIOb70vUmBsQeZTDxKS6tbfByOkyEuLhzl5TXgecEDLQs81EfOoX5yjPrIOdRPjrVmH0VHh4Lj5F59jtbgie9NOjedQ/3kGPWRc6ifHKM+co6vfW9SKjUhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKDmV4HxypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3btib3OX36NObOnYuBAwdi4MCBuOWWW1BcXOytl0AIIYQEjOeffx7du3fHihUrpG4KIYQQ0iJ+ExivXbsWr776Kh588EGsXr0a3bt3x+zZs+0Gsenp6ViwYAFuvPFGrFmzBhMnTsS8efOQlZVluc/58+dx++23o0uXLvj666+xevVq3HvvvVAqla31sgghhBC/tHnzZmRkZCAhIUHqphBCCCEt5jeB8bJlyzBjxgzccMMN6NKlCxYvXgy1Wo3Vq1fbvP/y5csxZswYzJ49G6mpqZg/fz569eqFlStXWu7zzjvvYMyYMXjiiSfQo0cPdOzYEVdccQUiIiJa62URQgghfken02HRokV4/fXXaTCZEEJIQFBI3QBn6PV6ZGZm4oEHHrDcxnEcRowYgYyMDJuPycjIwL333iu6bdSoUdiyZQsAgOd5bNmyBbNnz8bdd9+N48ePo2PHjnjwwQcxevRot9vKcTK3H2t9DE8cK1BRHzmH+skx6iPnUD85Fkx99NRTT2HWrFno3r17i4/V0v4Kpn5vCeonx6iPnEP95Bj1kXN8rZ/8IjAuKSmByWSCVqsV3R4XF4dz587ZfIxOp0NcXFyT+xcWFgIAioqKUF1djc8//xyPPPIIFi5ciI0bN2Lu3Ln48ccf0atXL5fbqVBwiIsLd/lx9sTEhHnsWIGK+sg51E+OUR85h/rJsUDvoxUrVqC6uhr33HNPi4/lye/NQO93T6F+coz6yDnUT45RHznHV/rJLwJjewRBgExmf4TB1u/Mt/E8DwC4/PLLceeddwIAevbsiX379uG7777D4sWLXW6P0cijvLzG5cdZ4zgZYmLCUFJSBZ4XWny8QER95BzqJ8eoj5xD/eRYa/ZRZGQIlEq5V5/DlqysLHz88cf4/vvvwXEtX43lie9NOjedQ/3kGPWRc6ifHKM+co6vfW/6RWAcExMDuVwOnU4nur24uLjJLLKZVqttcv+ioiLL/WNiYqBQKNC5c2fRfVJTU3Hx4kW32+rJN5XnBfowOUB95BzqJ8eoj5xD/eRYIPfRwYMHUVxcjEmTJlluM5lMePnll7FixQqsW7fO5WN6qq8Cud89ifrJMeoj51A/OUZ95Bxf6Se/CIxVKhV69+6NXbt2YcKECQDqZ3x3795tme21lpaWhp07d2LWrFmW23bt2oW0tDTRMa1Tsc+ePYsOHTp454UQQgghfmzixIno06eP6LZ7770X119/Pa677jqJWkUIIYS0nF8ExgBw9913Y+HChejduzf69euH5cuXo7a21vJFvHDhQrRp0wYLFiwAANxxxx2YOXMmli5dirFjx2Lt2rU4cuQIXn75Zcsx77nnHjz++OMYPHgwBg8ejI0bN2Lv3r144oknJHmNhBBCiC+LjIxEZGSk6DalUon4+HikpKRI0yhCCCHEA/wmMJ46dSqKi4vx/vvvo7CwED179sTnn3+O2NhYAEBeXp5ovdPAgQPx1ltv4d1338Xbb7+NlJQUfPTRR0hNTbXcZ/LkySgvL8cnn3yCF198Eampqfjkk0/cKrxFCCGEEEIIIcQ/yQRBkD6hO0AYDCaUlla3+DgcJ0NcXDiKiip9It/eF1EfOYf6yTHqI+dQPznWmn0UHR0qSfEtT/PE9yadm86hfnKM+sg51E+OUR85x9e+N1teUpIQQgghhBBCCPFjFBgTQgghhBBCCAlqFBgTQgghhBBCCAlqFBgTQgghhBBCPOJCTQEeO/IhTlZekLophLjEb6pSE2JLjakOmWVnkVNTgEpTLWQA4lSR6BTaFp3D2kIuo7EfQgghhBBvy6stQht1DN46/R2OV57DouPL8PVl/5a6WYQ4jQJj4ndMAo9dRUfx18l9+Ft3AgbBZPN+kYpQjNcOxDWJI9EuJL6VW0kIIYQQEhy26jLw6qkVuKrNcNSa6gAAet4gcasIcQ0FxsRvCIKA3SWZ+Pzcb8it1QEAIhShGBHVDZ1CkxClDAcvmFCoL8PxinM4UpGNny/twK+XdmFKm6G4u8NUhCtCJH4VhBBCCCGBZVvRQQDA7/m70SEkAQAoa4/4HQqMiV8o1pfj7azv8HfpCQBAWlQX3NVjMrrLO0ImyGw+ptRQiXX5e/Fj7hb8nr8be0uO4okut6J/VJfWbDohhBBCSECTofFajBfq96OVyWxfnxHiqygwJj7v79ITePP0Nyg1VKKdJh4PdJqOIbE9GjcEF2xvCB6tDMct7S/HVW2G479n12CT7h88fexTPNjpekxtM6yVXwUhhBBCSGDimCBYQENgDAqMiX+hwJj4tFW52/DZuV8hQMBVbYZjTsdroJYrXTpGhDIUC7vehrSornj/zI94/8yPKNKXYVbylV5qNSGEEEJI8OCYjW7MExaUSk38DQXGxCeZBB6fnf0Vay5th5pTYkGXWzAmrn+LjjkpYTCSNLF4/vgyrMz5C3KZHLe1n+ihFhNCCCGEBCc2bZoHX38bzRgTP0NDOcTn8AKP97J+wJpL2xGlCMNrve5vcVBs1jcyFS/1nI0QTo0vL6zDb5d2eeS4hBBCCCHBirOxxpijNcbEz1BgTHyKIAj44MwqrC/cD60qCm/3eQg9Izp69Dl6RaTghZ73QCmT4+PsNUgvO+XR4xNCCCGEBBOZjTXGHIUZxM/QGUt8hiAI+OTsz/ijYA9ilBF4rdf9Xtt/uG9kKv6v843gwePlE1/iUm2xV56HEEIIISTQsTPGJqE+lZpmjIm/ocCY+Iyf8rbi50s7GtKn56K9l4JisysSBuOGpLGoNNXgtVMrYeRNXn0+QgghxJ/UmQx45PD7+OXSTqmbQnycrRljWmNM/A0FxsQn7Cg6hM/P/QY1p8QLPe9Fx9DEVnneuztMRffwZByvPIcVOetb5TkJIYQQf7C/9BiOV57Hx9mrpW4K8XHsjLFgWWNMYQbxL3TGEsmdqDiP1099DRlk+FfX29E9vEOrPbeCk+PJrjMRKlfj+4ubcKLifKs9NyGEEOLL+IaUWEIcYYNgSyo1zRgTP0OBMZFUqaESL55cDr1gxOyOV2NEbJ9Wb0OSJg73dZwGHgLeOfMDpVQTQggJanuKM3G+Oh98Q0osIY6wadOW4ls0Y0z8DJ2xRDImgcd/Tq2ETl+Gy7WDcH3SGMnacmXCEPSN7Iyz1Xn4MW+LZO0ghBBCpJRfV4xFJ5ZhzsE3LCmxhDjCFtoyb9cko+JbxM9QYEwks+LCeqSXnUJKaBIe7nyDpH9AORmH+Z1vglKmwMoLfyG3VidZWwghhBCplOorLT9TWEycxW7NxINSqYl/8qvAeOXKlZgwYQL69u2Lm2++GYcOHWr2/n/88QcmT56Mvn37Ytq0adi2bZvd+953333o3r07Nm/e7OlmExv2lhzFNxc3IFSuwXPd7oBGrpK6SWgfEo9b2l8Og2DEF+d+l7o5hBBCSKszoXFdMaVSE2fR7DAJBH4TGK9duxavvvoqHnzwQaxevRrdu3fH7NmzUVxse//Z9PR0LFiwADfeeCPWrFmDiRMnYt68ecjKympy3xUrVlC6UCvS1ZXhzdPfAgAe73KL1/YqdseNSeMQr4rGzuLDOFTW9FwhhBBCApn4eoiujYKdkTfhUm2Rw/vR7DAJBH4TGC9btgwzZszADTfcgC5dumDx4sVQq9VYvdr2FgLLly/HmDFjMHv2bKSmpmL+/Pno1asXVq5cKbrf6dOn8emnn+KVV15pjZcR9HiBx1tZ36LCWI3piaMlKbbVHLVciXs6XgUA+PTcL1SRkxBCSFDh2RljmjQIeotPLMNd6a/iaMXZZu/HrjE2p1VTxgHxNwqpG+AMvV6PzMxMPPDAA5bbOI7DiBEjkJGRYfMxGRkZuPfee0W3jRo1Clu2bBEdd8GCBXjqqaeQkJDgkbZyXMtHzMzH8MSxfM3qizsa1hUnYnanq9x+jd7sownxA/DLpR04VnEOW4rSMTHhMo8/R2sJ5HPJU6iPnEP95Bj1EQkEbDAsUGAT9PaXHgcAHCw7jV4RKXbvJ2Pm2sxp1ZSNSfyNXwTGJSUlMJlM0Gq1otvj4uJw7tw5m4/R6XSIi4trcv/CwkLLv9955x107doVU6ZM8Ug7FQoOcXHhHjkWAMTEhHnsWL7gVFkOlp5fCyWnwGuD70NSVEyLj+mtPnq83824d+cbWHnxL1zffTSUnNwrz9NaAu1c8pQyfRX2647jok6HWpMesepI9I7piB5RHWibCTvoXHKM+oj4MxOTKUWBDTFTcs2HDOyMsfknGlgh/sYvAmN7BEFodrG/rd+Zb9uzZw/WrVuHn3/+2WPtMRp5lJfXtPg4HCdDTEwYSkqqwPOB8UdFzxvw5MHPYOCNmJtyDWKN0SgqqnT8QDu83UfJSMRl0T3wd+lxfHdsM6YkDvP4c7SGQDyXPOF0ZQ6+ztmAXUVHbKZ6aVVRuKHtWFydOAJquVKCFvoeOpcca80+iowMgVLp3wN2xDeZBJPlZ0qFJWYqWfMhA7uPsflnGlgh/sYvAuOYmBjI5XLodOItdIqLi5vMIptptdom9y8qKrLcf//+/cjLy8OwYeKAZ968eRgxYgS++OILt9rqyYshnhcC5gL0i7O/42z1JQyI6oprE0d57HV5s49mtZ+Ev0uPY+WFvzBeOwgqB6OlviyQzqWWqDMZ8L8Lf2BN3nYIEBClCMOw2N7ol9AJxloBhbWlOFh2GocrzmDJ2V/w66VdeCx1BvpEdpK66T6DziXHqI+IPzMwgbGR+ZkEj79LjuPLC3/i393vstzmaMaYZZ49poEV4m/84kpfpVKhd+/e2LVrFyZMmAAA4Hkeu3fvxp133mnzMWlpadi5cydmzZpluW3Xrl1IS0sDANx222248sorRY+ZNm0ann32WYwdO9Y7LyRIHS7Pwuq87QiXh2BB6i1+k6LaPaIDhsb0wt6So/izYC+mJY6UukmkBYr05Vh0fClOVeUgTK7BnR2mYHLCEGgUKsTFhaOoqBI8L2Bm8iScrb6EZed/x96SY1iY+V880Olaev8JIUHBwBstP5soMA5Kzx7/HACwMme95TaFrPkMFTZtWsYkUxPiT/wiMAaAu+++GwsXLkTv3r3Rr18/LF++HLW1tbjuuusAAAsXLkSbNm2wYMECAMAdd9yBmTNnYunSpRg7dizWrl2LI0eO4OWXXwZQv97Yeg0yALRt2xbt27dvvRcW4GpNeryT9QMAYF6n66BVR0ncItfMSr4Se0uO4ofcLZiSMAwKP19rHKzy64rxxJGPUaAvRe+ITniq68xmz8WU0EQs6n4P/ircjw/O/ISPslejRF+BOzpMbsVWE0JI6xPNGPMUGAczE5MK7WjGmC3aZim+5Z1mEeI1fhMYT506FcXFxXj//fdRWFiInj174vPPP0dsbCwAIC8vDxzXOBM5cOBAvPXWW3j33Xfx9ttvIyUlBR999BFSU1OleglB6csL65Bbq8PQmF4Yrx0gdXNc1iWsHQZFdceBshPYVnQQE+IHSt0k4qIifTmezFyCAn0pxsalYUGXW5xKi5fJZJiUMARtNfF4/vgX+PriBqg4JW5pf3krtJoQQqTBzhgbaMY4qIm3YGq+2r7AbPNlnjGm7b6Iv/GbwBgAZs6ciZkzZ9r83VdffdXktilTprhUcfrEiRNut400dbTiLFbnbUeYXIP/63xDs4XSfNnN7cbjQNkJ/JC7GeO1A/z2dQSjWpMe/z72OfLqijAyti8Wdr0VcgfpYNb6RHbCSz3vw9NHP8X/LvyBJE0cxmrTvNNgQgiRmEGgVGpSj73aYauV2yKaMTYX36I5Y+Jn/GOxJ/E7et6Ad7K+hwABc1OuQZzKv1KoWf0iU9E9PBnZ1Xn4u2E/P+L7BEHAe2d+RFZ1LvpFpuJfXW93OSg26xnREc90vwMcZHg76zucqszxcGsJIcTz9LwRl2qLXXoMmz5toFTqoMZOBJjsBLmnKnNwrOKcKAjmaB9j4qcoMCZeseLCX7hQU4BBUd1xRfxgqZvTIjKZDDe1rS/69n3uZolbQ5z1a/4ubNb9g3hVNJ7uNqvFVcUvi+6OezpehTregJdPfolqU62HWkoIId7x5NFPcFf6KzhXfcnpxxiZGWMe4lnCw+VZqDBWe6x9xLex6dO8nRnjhw+/i0ePfGBzdphmjIm/ocCYeNzJygv4MXcLQuVqPJJ6U0CkHo+I7Y32mngcLj+DE5XnpW4OceBCTQE+P/srFDI5nu12B6KV4R457g1JYzEqti8u1RVjydlfPHJMQvzJkiVLcMMNN2DAgAEYPnw4HnroIZw9e1bqZhE7jlacBQAcLM9y+jFsSiybPptRdgpPZP4XC4586LH2Ef9hK5W6zmSw/EzriUkgoMCYeJSeN+Lt09+BB4/ZHachXh0tdZM8gpNxuC5pNADgl7ydEreGNMck8Hjr9HfQC0bMbD8J3SM6eOzYMpkMD3e+ETHKCPxZsA+7i4947NiE+IN9+/bh9ttvx/fff49ly5ZBr9fjnnvuQW0tZVD4shpTndP3ZfeeNTKFuDLLswEA52sKPNcw4jesswcAQKcvs/xsa3ZY5qBgV7ASBAEfnvkJv+fvlropxAoFxsSjvs3ZgLM1l5AW2QVTEoZK3RyPmhA/CGFyDbYVZaDUUCF1c4gda/K24XjlOXQLS8ZN7cZ5/PhRyjA8mnozAOCj7NWUUk2CyhdffIHrr78eXbt2RY8ePfDaa6/h4sWLOHr0qNRNI82oMdVhQ8EBPHPgC4dBssDMDBqZ4lu1vN5r7SO+iQ11baVS6/SlzO8pldpZOn0ZfsvfjQ/O/CR1U4gVv6pKTXxbVtVFfJe7CRpOFTAp1KwQuRqTEoZgdd42rM3fi9vaT5S6ScRKkb4cKy78BbmMw2NdZrhdbMuRITE9MS5uALYUpWPlhb9wX8o0rzwPIb6uoqJ+kDAqyv0CixzXsu8K8+NbepxAVsPX4fVTXwMAYrlI3NXB/o4dgoyZMYbtwDhQ+5rOJTH2Mo6H0KR/6oTGVGrba4wDvy8rjTVQyhRQy5Wi25s7lwwwNrlfsPK1zxwFxsQjjLwJb2d9D5PAY27HqUjUxEndJK+YljgCa/K24/dLu3Bz2/FQcN4JvIh7lp77HTV8HW5IGouU0ESvPtd9KdOwr/QoVudtx8T4y9ApLMmrz0eIrxEEAa+++iqGDBmC1NRUt46hUHCIi/NMDYCYmDCPHCcQ8YrGALdaVttsn6sLGy/wOSVTfEnROGPoqffMV3nrXPpbdwIp4YnQavxjpw61uvFcCAlVNnnfQ8NUlp8V6sYkVDlX/7OMC+xzRRAETPp1AcIUGmyb+p7N+9g6l4rLG1PQ+TAjVp/bjls7T0SEMsRrbfV1vvL3mwJj4hE/5G5GVtVF9InohKsTR0jdHK9pq9FicHQP7Cs9hl3FhzGG9rP1GUcrzmKj7gBilBG4rf0VXn++OFUk7kiejE/O/ozPzv2KV3rN8fpzEuJLXnjhBZw8eRLffPON28cwGnmUl9e0qB0cJ0NMTBhKSqrA85S6aUt5dWMl6Tq9AUVFlXbvW13dmGpdVdv4c1lN4zGae7w/8+a5dKYqF/dnvI0QTo2fh7/i0WN7S11d44xweWUN7tn6BnqEJ+O+ztMQExOGiorGz25VTeOyIvOWX0aTKWDPFQAwNKzBrzLWokBXDrmscXCguXNJV1Fu+fm5/cuwv+Q4ThTl4Onus1qn4T6kNf9+R0aGQKlsfkKLAmPSYmerL+HrnL+gkinwaOrN4GSBvXT9mqRR2Fd6DD9f2kmBsY8QBAFLzv4MALinw1SEKTSt8rxXtxmBXy7txD9lJ/FP6UkMjO7WKs9LiNRefPFFbNq0CStWrECbNm1adCxPXQzxvECBsR1srwgO+snE/M7AFN+qZdYmB3o/e+pcMgkmPJm5BINiuqOtRgugPq3dX/rPxDdmCRTUleBg2WkcLDuNe1OuBgAYmd+ze16b1xsLQmB+JpeeWwuFjMPN7SZYbiuoLUEbdWyT+9o6l6qNjZ+l3JoiAEB66amA7Ctn+crf78COYIjXmQQe72R9B4Ngwp0dJqNdSLzUTfK6gVFd0U4Tj8yKbJypypW6OQTAnpJMnKi8gNSwdrg8flCrPa+Ck1vW6i09/7vdfR4JCRSCIOCFF17A+vXrsXz5ciQnJ0vdJOJhAlN92MgEO+zWPMQ5pypzcLjiDP53/g+pm+IWA7OntS1spWoTU6it8ffSBzre8H3uJnx9cYPo9evqypp5hBi7Xt+8e0uZscpj7SPuo8CYtMiavG04UXkB3cOTMT1pjNTNaRWcjMPUNsMAAOsK9kncGmISeCw/vw4AcFfy5FbPWBgd2w/dw5NxuuoithYdbNXnJqS1LV68GL/88gveeusthIWFobCwEIWFhbRdk49jt81xVBiTrS7MBkYGG4EPaR67969vlBZyjZ7JGLBVdZoXVTDnm9weiFWpBaYf7O357QgbGEcpfGNtLalHgTFx28WaQiw/vw5KmRyPps4Qra0IdJfHD4JCJsemwgM0ii6xbboMnK25hF4RKbgsukerP79MJsM9Ha4CAKy4sN6lL0dC/M0333yDiooKzJo1C6NGjbL8t3btWqmbRjyEneWjv2ctY2vvX3/CptIbbc0IiwLDxt+bA2LBRjDt79h+0PON138mF97rOhNT4Z0ZqDpQegIPH3oXBXUlLWwlcRetMSZu4QUe72R9D71gxB3Jk71eAdjXRCvDMSK2D7YVHcTO4sOYED9Q6iYFJZPAY0XOegDA3R2mSLZFWP+oLugXmYpD5VnYUXQIY2ntOQlQJ06ckLoJxAm8wLudPSO4OQtGmrI1y+or/i45Dr1gxIjYPnbvw2YMGG2kVbODKGzAaFlj7MKMsYE34kJNATqFJvn0dp960br7xgDX3Rlj9hR55thnAIDl59fhia63tqCVxF3BM8VHPOq3/N04UpGN1NC2uLnteKmbI4nJCUMBAH8U7JG4JcFrZ9EhXKzVIS2qK/pGurddjKeY97X+JmcDrTUmhEjm+4ubcNWef+FSbbHN3zuaxRPPGFP6dEuwM66+Nnv67PHP8cKJ/zV7H3aNOVtcy0ycSs0Exg2zp64MDLyd9R3mHXob23x8SZKB2bu5mmcK0rnwve8oiA7Utdn+gAJj4rJLtcVYeu53cODwaJcZQbuXb1pUFySqY3G4/Axyagqlbk7QEQQB3+VuBgDMYCpDSqV/ZBf0DO+IszWXsKfkqNTNIYQEqaXn10KAgL8K91tuY9cY25vFMwduvI21osQ9tUyqrd5HBxmaC9j1ojXmTYN8e2n3JmaNsa6uDEvP/Y4yQ/PFpTbr0gHA578/2RnjGlNjbQVXZowd3TeYlib6Gup54hJBEPDemR9Qy+txc7vx6BLWTuomSYaTcbgyYQgA4M+CvRK3Jvj8U3YSWVUX0TWsPdIiu0jdHMhkMtzKzBr72uwAISS42AuGTTb+NpkEEx46/C7ey/rB6r6NF/CCn6+XlUIdkzLLzh5LzVYQa4tojTE7e9wQ5POC7arUbPGtV059he9zN+Pj7NVOtY3z8TJl4sDYvVRqUb+h6YAJR+GZZKjniUvWFexDetkpdAhJwG3tr5C6OZK7In4wOMjwV+HfPvWlFwy+v7gJQP1ssa+sRxoc3QOdQ9viVFUOjlSckbo5hBACwPG2OuerC5BVdRF/FOwVF1Rit26i2WOXscWZHG191JpEAbtVu8RVl22nSpuvd9hzxSgKkgXL709V5gAA8mqLnGqbj3yd28W+pzXs3t5OZAT8lLsVGwr/Fs+0800/V5yvd0IAo8CYOC2vtgifnv0FHGR4LHUGVBzVbtOqozA4pidKDZXYW3JM6uYEjeMV53CwPAvtNFoMb6ZwSGuTyWS4Lmk0AGB17naJW0MIIfV4O8GO2cXaxuVA7Iwx7+TMorOOlJ/B0nNrgyZFu44NjJmfpc4oYmc6jVZrh+2lRxtspFWLBlz4pmuMBQiWgNrZZXcyH58xZidBqpnA2NHnQxAEfHbuV7x5+lvHM8YUGEuGAmPiFJPA463T36KGr8PN7SagR0RHqZvkMyY3pFNvKPxb4pYEj1V52wAAN7Yd53NrccZqByBGGYHdJZnIrdVJ3RxCSJBiL63FF+JNg7ISQ4Xt+9pJlXXX45kf4/vcTfin9GSLj+UP2OrDbDAq9exxXTNtEexkDLDFt8zBtHjGuOn5IQiCZaBFKXM2MPat73Rrerb4FrvG2EHBLIOoOBnTb7ZmjH28DwKZX/X8ypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3bNsvvDAYD3njjDUybNg1paWkYPXo0nnrqKRQWUhElW1bnbauvQh3WDrdTCrXIZdE9EKUIw/7SYyg1VErdnICnqyvDjqLDiFSEYoJ2kNTNaULFKXB14ggIEPBz3g6pm0MICWDmIOaP/L34/dIu8e+Ynx0FuOzv7c0YWs8stkQNU803kLH9xwZRUi+9YvvfOjBmZ4HF64ptzBg7yChgsw8UMueyDH19spQdIGDTqh2lUrPbXdlbm23m7lZrrkovO4XXTq4UbTsV7PwmMF67di1effVVPPjgg1i9ejW6d++O2bNno7jY9nYE6enpWLBgAW688UasWbMGEydOxLx585CVlQUAqK2txdGjR/HAAw9g1apV+OCDD3D69Gk8+OCDrfmy/EJ2VR6Wn/8DSpkCT3S5FUpKoRZRcgqM1Q6ASeCxVZchdXMC3u/5u8GDx+SEYVDLlVI3x6ar2gyHUqbA+oL9qDLWSN0cQkgAev74F5h36G1LUcwPsleJfm9r+xzA9hY69rYV8sSMcZG+HBWGatFtzgZJ/o4XBcZsMCpthepmU6ntvOfsOWJZY+xg7To7yOLstaPvF99i0+Mb+8RRKjUbUNeJqpU3HSSRt9LowFNHl2BLUTrWXKKlX2Z+ExgvW7YMM2bMwA033IAuXbpg8eLFUKvVWL3adpW75cuXY8yYMZg9ezZSU1Mxf/589OrVCytXrgQAREREYNmyZZg6dSo6d+6MtLQ0PPfcczh48CDy8/Nb86X5NANvxBunv4FBMOGuDpOREpoodZN80sT4+plLSqf2Lj1vxB8Fe8BBhqsTh0vdHLuileG4PH4Qavg6rCvYJ3VzCCEBaG/JMWRX56GSGXxjg9o60WyW7WDX1m329jEWVah2co2sIAi4/cALuOnvf4tuD5Y1lGyfsQWvpF5jLS6+5dwaY1tBsr3iW2bseaJwMpUaPh4Yi4qQCc4HxuyMcZWx+ewBV/Z/9oScmoJWfT5f5hdDdnq9HpmZmXjggQcst3EchxEjRiAjI8PmYzIyMnDvvfeKbhs1ahS2bNli93kqKyshl8sRERHhdls5ruUfaPMxPHGsllp54S+cqc5Fv8hU3NBurM98mflSHwFA94hkdAhpg1NVObhQm4+OPjKA4Gv91FI7dAdRaqjEqLi+SAyJ9cgxvdVH17UdjXUFe/FH/h7c2G6sz1TOdlegnUveQH1EWgs7y1egL2m8XWBnpWwHYrZm9tjH2Zsxtp6BlsNxoMMG5yypU4lbCxvgsOmqrR34WBMV1bJ6L+xXJWdSiAUjDhZniW5zNGNs6ytQEAQUGyoQp4pkb3XqNUhF3He2B45sYe/rKK3eE+v5XaGrK2vV5/NlfhEYl5SUwGQyQavVim6Pi4vDuXPnbD5Gp9MhLi6uyf3trSGuq6vDm2++iWuuuQahoaFutVOh4BAXF+7WY22JiQnz2LHcsV93At/lbEKYQoOXh9yD+NBIxw9qZVL3EevalBH44Nhq7Kg4hIHJ0u+ry/KlfmqJ3zN3AwBmdb/Co581wPN9FBfXFf3PpeJgSRaykYvBcd09enypBMq55E3UR8Rbcmt1KNaXI1HdeH1TUFdq+Zkt9sTut2qv8I+Z3bRr2F5DahIEyJ0Y/6mzs7WNvYDZnwiC4HDAkw1wREGkjUrErcnegAfQXPG1xp8/zFqFU1U5CJeHWG5zlB5uK3D8LncT/nf+Dzze5VbmOEbsKDqM7y9uwgs970W00rPf9c6qMFZjX8kxjNcOACfjkFNTiDbqGLuVutnPii3sfdnA2FYqtZ43YVfxEfyUuxXPd78LkUrvfKfIZRxMAo9a3oD8umJkVeVihA/t9CEFvwiM7XH0R8nW72zdZjAY8OijjwIAnn32WbfbYzTyKC9v+XpCjpMhJiYMJSVV4HlpRs5K9BV4OuNzCBDwcOcboK7RoKjGdwpL+UIfWRsW1gcfYg1+P78HtyRM9Ilqyb7YT+46VnEOmaVnkRKaiBS0RVGRZ85Hb/bRJO0QHCzJwjcnNqKzrJ1Hj93aAulc8pbW7KPIyBAolc6mJpJAcU/6awCAV3rOsdxWylSUZmclxUFZ8ymfRjsp0/Z+ri805PgSspYp8sTuY6v388CYF3jcf/AtdAhJwLPd77R/P2YQQjQ44UMzxsZmim/Zm1k+VVW/N3GlqYa5r6PAuOnvv8nZAABYk9dYHFfPG/HSyeUNt2/HXR2mNHtcZ6wv2Idu4clICU1y+jGPHv4AObWF4AUeSRotHs/8CMNjeosCR1fWGLNZHlVsYGzjs2AUjHjhxP8AAJt0/2B6wzaQnmY+DWUA7k3/D4yCCW/3eQi9IlK88nz+wC8C45iYGMjlcuh04q1PiouLm8wim2m12ib3LyoqanJ/g8GARx55BDk5Ofjyyy8RHt6ykSlPXgzxvCDJBSgv8Hjj1DcoNpRjUvwQjIsb4LMXwlL1kS1xyiikRXVBetkppJecwsDoblI3ycKX+sldv+XVV1ydljgSguD5fSC90UejYvrhv/I12FF8GEW15YhRub9Mw1cEwrnkbdRHxNsu1TUWHmVnX+2laLJpnLaq59orsmRvZtHk5N/fOlNj2wr1pTbb7I9qTHU4X5OP8zVNa9KYBB5Hys+gT2Rnq6re4qrEJfoKRCnDWq0CMYu3sw0TYL0e3flUYceBYdPfqzkl6niDKDhkMx3YLAN3nay8gLezvgcArBv+ptOPy2nY27vIUI4LNfU/7y7JxLDY3pb7uLLGmL0v+7pspVKzn7VwhXtZrK6QyWSW57xYUxjUgbH0U1pOUKlU6N27N3btatyKgOd57N69G2lpaTYfk5aWhp07d4pu27Vrl+j+5qD43Llz+N///ofo6GgvtN7/rMrbhr9LT6BDSALmdbpW6ub4lcvjLwMAbCw8IHFLAkuVsQbbig5Cw6kwXjtA6uY4TS1X4oqEwTAJPP4spCJchBDPYAMJdpaYveAWp1KzF/ACNhT+jU/P/tL4e95Oyq+9GWMHaaOWtjGp3dUOCg75k2qrgO3v0hP4OHs1eIHH+oJ9+NfRT/D26e9EgxBsv56qysGtBxbj3awfW63NLHvpwID9Qm229ilmOf590/dcxdXvLKEXDcaw2yG1/Dxh9+h2R4wywu4AgStrjO2tx7bVb+znw9n9n91ja1mFtIXhpOYXgTEA3H333fj222+xevVqZGVlYdGiRaitrcV1110HAFi4cCHeeusty/3vuOMObNu2DUuXLkVWVhY++OADHDlyBLfffjsAwGg04v/+7/9w5MgRvPnmmzCZTCgsLERhYSH0+uDdz+t4xTksO78WKpkCT3WdBY1cLXWT/MrI2D7QcCrsKD7kkZFOUm+LLh11vAFjtWkIlWukbo5LprYZBgD4I3+P5JVICSGBgQ04RcGnyfb+tEarC/g3T3+LVXnbUNiwPtnejDG7D629FNvmsAXA2Flif58xZmfmeYHHs8c+wy+XduJoxVkcrzwPANioOyCaWWdTqc27Faxv5QHTHUWHsSZvu+i7qMmMsZ332VHg64itIFfdEBjbq6BuEKQ/Twy80e62VAarvYkPlJ7A2epLdo/T+LPtz5uZqNCZFz8r5p6WMZXAW7vwl6/xi1RqAJg6dSqKi4vx/vvvo7CwED179sTnn3+O2Nj6yrR5eXnguMY4f+DAgXjrrbfw7rvv4u2330ZKSgo++ugjpKamAgAuXbqETZs2AQCuvVY8K/rll19i6NChrfTKfEeJvgIvnfwSJoHHvM7XoVOY82sxSL0QuRojY/tio+4AdhdnYkL8QKmbFBDMFxGTE/zvc5kckoB+kak4VJ6FA6UnMDimp9RNIoT4OXb2lQ0+nZkx5m1UGhZXHHZ8IV5prMEn2T/jmqSRzaZdsrPZor1b/T4wbuxndk9gQIYEVbTlX6IZdyYYyq2xXQjW28xrd+emXGO5rckaYyYwZQdGWhoY23q80jJj3Hg+mJpJ85aCnjfazZxgg9pyYxWeOfYZANsp2wY7AbXNGWOrCuCeVG2qxb+PfYGpbYZb3l+2+lJL32d/5zeBMQDMnDkTM2fOtPm7r776qsltU6ZMwZQpthftt2/fHidOnPBo+/yZkTfhlZNfQacvw8T4QZiaMEzqJvmt8doB2Kg7gC26dAqMPeB01UWcqspBx5A26BHeQermuGVKm2E4VJ6F9YX7KTAmJEgcKT+DoxVncVPb8R7fro0t3lPLrOOt4dnAuPF2e+uGzfcR7c3qRDDyTc4GbClKx5aidJtBwOqGYkpaVZTltub2zvU37Iyxjlk7recNooJborW8zGsuN1Z7t4EOlOgb04utC4E5mybvKlsBl5qrD0PYQRN72QvuqjW5ngVqshooYgdCxDPabKXpxvvUmvQI5cQZl0bRjDE7UNU0ndneZ9cT/sjfgyMV2ThSkW25jZ0xdqe/AonfpFIT7/rs3K84XHEGXcLa4eFON/r9nqtSSovqiihFGA6UnUCZoUrq5vi9dfl7AdQHl/56Xo6I6YMwuQZ7ijNRYZD2gogQ4j1r8rZjV/ERAMDjmR9j6fm1ONGQWmsPL/DIqSl0qaBgFTNj7Mw6XvEa48aLfvNjjXZms+zJqyuy+ztBELDk7C9YcvYXu+nTzqZi+yo2MC5m1rBWm+rsrjtlZ2YFiffqLdKXW362DoS9VTHbVmAsb1g/a29dO+eB73z28+HsZ8w61dlgZw00ez924IctjldQV4LVedtE2RyOZmUNdoJoTyh0sGcxe24HIwqMCTYU/o2fL+1AlCIMz3W/E2q5Uuom+TUFJ8fouP4wCTx2FB2Uujl+rdakx2bdP1DK5Jig9d/Zd7VciXHaATAIJmwuSpe6OYQQL6g21eKTsz/jhRP/E12Alxqa31rum5wNmJ3xH6zN393s/dhjVjHb5Nhbx8sGuOKq1I2Bh3l2yMTbTg+1p8pof2vKCmY2lD2W9VZSv13ahReO/88vC3Gxs4PlzAB4LV8nWhfL9rXRB9KCzYr0jcGR9SCFt2ph2Hr9tgJVcSp3y7mzf7b4s2O0GjiyPYiktxPMPpX5KZac/QXf5W623OYoMG7psoPcWh0u2knXt1WMzNWBsUBGgXGQO1KejfeyfgAHGZ7qNhNt1LFSNykgmCsnb9FlSNsQP7ej+DCqTLUYEdvXaxvct5YrGiqW/1WwX+KWEEK8gQ388pkZI0drBL/KWQ8A2KRrftCMDWAqmcCU3RKpzs62N+JiPkywamvG2JnAuJlZJXY2kp19sp4x/jB7FXaVHMHfpf63rI3tI/F64zqrCsu2i1d5ertBV7HBUZPA2Euz2bYCLlsz5x5PpbazBr857PPqeaNott9emrPezqDUhZoCAMDZ6jybj3P4/G4Eqvekv4Z7M/5j83fs3uKNtzX2kS8N4EiBAuMgllNTiMUnlsEgmHB/p+lIi+oqdZMCRs+IjkhQx+BwxRlL1U/iunX5ewAAk9v4X9Eta93DO6BDSAJOVeWIviAJIYGBDfxKmFniCieX1MQ62OdctA+qnarU9i7O2QDEei0kYF18y/GFeHPptkWGxsC4wmh7Zpt9vpyGwMGTcmt1Xq2uy/Yt+7pqTXrReyCq/izxumrx2nJxNWWW12aMbbx+W+cR78FK2IB4wKrUUIkFRz7CBgdbaopmggWDVcq07cDY3u22OBp8sLevs9me4kw8c/Qz0QCZmb3iYI2apqezA11GwQRBEDyyVZY/osA4SJUaKvHcsc9RYazGDUljcU3iSKmbFFA4GYdxcWkA6rcaIq7LqSnEkYpsJKnj0D8yVermtJhMJsMV8YMBAH8V/C1xawghnlZnJ0AtNToXGEcpwpv9vVG07pGdJbZX+dn2hS07a+bujLFCZv/ysZY5vmhm284a4+Zmn93xZ8E+3JP+Gtbk7fDocVnse8EGXtVWM8biLbPYgYrWZy+Ia60ZY5up1DZnjO3vsewO9nV/c3EDMiuy8ebpb5p9DNtWvVUqtbiInL0Z4xZubSVK5W6aSr3oxDIcKDuBb3I2NPkd+5mrMFZj5YX1WJO33XKbzEZgXGcSD1q9eHI5rtn7ZFCuN25RYFxXV4cLFy6gro72a/Un1aZaLDq+FHl1RRgZ2xf3drxK6iYFpHHmdOqiDGkb4qc2NozoTowfBK6ZizB/MiF+EDhw2KT7J+jTlQgJNGywwa4rZlOdWdbVXx0VGtLbWc/IHkec5mn7edlgxNaMsTOzdLaKZ9WZDKgy1ooCkUo7M8aenhVk/Td7DZTj3n8AAQAASURBVADgl0veC4z1otl7cSVw8Wxy43sgSqW2eg8ueGHW3Jq9tF/ze1lhrMavl3Z6bc23rffZVmBsb/9td7Hn6umqi049prk1xuzn2Trl2owdBFE0FBhzhd5O0Tpr52vym9xWzgzElRoq8VXOenxy9mfLbbb+yojPU95SQNDensyBzKmrzWXLluHaa6/F1KlTsXLlSgDA559/jqFDh2LSpEkYMmQI3nnnHa82lHhGncmARceX4XjlefSKSMETXW4NmKDD13QKTUKHkDbIqrqI89VN/3gR+3iBx0ZdfWB8efwgiVvjOXGqSFwW3R0lhgr8XXpc6uYQQjyIvWAuYwJjg419gfeVHMP0fU/jz4Y92gHHlZrtBTa1dotvOQ4qzGsn2QDEmUDVVrr1fRn/wQ37nxX9rtLUWIirzs6a5zoPbw9j7o8kjdblx2ZV5WL5qT8dphPbmzE2CEa7Bcd4O3sCP3PsM9yX8TrOVOW63F5rgiBgVe42m8di96e23h7paMVZvHziS3yUvRpLzv7S4nbYYisrwdZaa3tr411hEng8ffRTLD+/TrQ+2NlzzSCaMTZYzbbb3naM/Uyer8nHh1mroKstg5pzvaCtoQV9wO6GklPbtACXrXwAe9tlBSOH+xh//fXXeP3113HVVVchOjoa7733HoqKivD5559j7ty56N27Nw4cOIAvvvgCXbt2xdVXX90a7SZuMPBGvHRyOQ6VZyE1rB1e6HEvNHKV1M0KWDKZDOO1A7D8wjps0aXjjg6TpW6S38isyEZBXQn6RnRGoiZO6uZ41BUJl2Ff6TH8Vfg3hsX2lro5hBAPYS+Yqx1Uwl3ZUHDr/TM/Wm5zVH3W3kyko/WIzR+z/iLY1YthvdWFtFwmR0HDfr4FdSWW37EzxrUm22uMna0U3JxLtUV44cRyzEqeZLnNnbWyD2S8BQBQdVFiYsPSF7MqYw3y6orRJaydeL23aMbeaDXb5zgQy2zYT/ZMdS46h7V1uc2sQ+VZ+PRcfWBrvb+0vRTvA6Un8MX53y3/Pl55rkVtsMe8dvVQeRaePfYZxmrTYHK0h6+bQVqxvhz/lJ3EP2UnMSK2j+V26zTxGlMdBAgIlWtEt4tmrQWT3fPVXnr6ypy/UMcbkF5xyq3JJ7ad5iA9uyoP7UK0UDkItCuZqvBsJoIgCJDJZDY/6+zMPTvow27/FiwcBsbffPMN5syZg0cffRQAMHr0aNx///148MEH8eCDDwIAxo0bh7q6OqxYsYICYx+l54147eQK7C89jg4hbfBKzzkIV4RI3ayAN84cGBdlYFbylX67D29rMxfGCKTZYrOhMb0RLg/BvpKjqDTW0OeQkADBXhiza/NsBavm/VvtFUSyxd6McUu2djE1XAS7OivFtrXaVIcIRajl3+zFuL1UamdTRZ31yskVOFOdiw/OrLLcZg6Ma016qDiFSwHK8coLmBg/2BJMAMDH2WuwUXcAj6XeLAoeRDOIvFHUN668thBO7fR97bH1fIIg4FJdsd22FOqb39fWk4yCCUfKz8AgmLCh8AA6hCQ0uY91GrM72CyKS7WNFeLFKex1uDv9VYTKNVg64ElxG6wqixvtzAzbG6wy/3yhqgDh8pZ9xxsEI/7I34P3zvyI29tfgZntGwd/zPUCygxVkAGIVIaJXjtb/NUgGKGSKR0ONpQxqdiVJvvbsrH0vAGlhkokqGOcur8vc/hX4sKFCxg+fLjl34MH1/+hGDpUXCV25MiROHfOO6NMpGVqTXVYdHwpdpUcQTuNFq/2moMoP9/6xl8kaeLQI7wDcmt1OFl1Qerm+IU6kwHbiw5CJVNgdFw/qZvjcSqu/nUZBBN2FB2SujmEEA+ptRMY27q4V9pYd+goiGIvzsUzSrbTPJ1hvkh2NTBmA4waU52oDRdrdZaf7VXMrmJmotj75Nbo8MPFzS7P9hbo62epQ+QqcA2XtjwEFNSV4K70V/DCieUAgIyyU3j/zI+iWW09b8SX59chi1l/Wqwvx//O/4E7019BacPWRublPXtLjokCInb7G71gEKWS17rwftS4+N7ZYmvm77f8Xbg7/VV8d3GTzce4es60hFEwWVVNbnreiVOp3QyMmVl8ds9vNnX7cPkZlBoqkVura7KNExs8GgWT1UCI7c+pvUEpW+uoXWHkTfjywp8AgDV520Wf1RpTHQRBwMwDL+LWA4shCILotesasjiAxj5xNNhQymzl1dx+5eer8/HZ2V+h54146/R3uOOfl3Gy0v+vcx0GxiqVCrW1jX/A1Or6Ea3Q0FDR/ZRKpeh+xDdUGWvw9LHP8E/ZSaSEJuGN3vMQp4qSullBxVKEi6pTO2V3yRFUm+owPLYPwgJ0NnW8diAAYLPuH4lbQgjxFL0oMK6zebuZrdlLPW/A36UnLIUHzX64uBm3/L0I+0uO2XxeNkh2NZXa6GZgzKo21YkCCzaVk71IZwOKKjv7G9+T8Rq+OP+7y4OGbKVdeUPfGnkTdhQdRqmhEntKMmESTHjj1DdYm78HP+Vutdx/Zc56fH1xA1468aXlNgECvr24EQV1JU2qWytkclFAx6ZSG3iTeKDCTuE1W2o8UAFYXCG7/ng/XNwMwP73jXUROG8yCibxnrk2zjtRITg3i2+xwT47CCPeUq0xACzWl8PAG7EmbztyagqbrPEVD4TYfk/tfYZaGhgbBCO4hvM7QhEq6r9qUx3KjFUwCEaYBB4Xa3Wi39sagHI02MCez5XNnJOPHvkAP+VtxfcXN2FrQ5FZc9Euf+YwME5OTsaJE42br8vlcuzYsQM9evQQ3S87Oxtt2rTxfAuJ2y7VFmNB5sc4WnEWPcI74I1eDyBWFSl1s4LOmLj+4CDDVt1Bh8VVSGM16kBMozbrE9kJ8apoHCqnfa4JCRTsxXiNKDCuvxBdk7cdTx5dgjqTQXTx2fh4A145+RXeOP0NDpadttz+xfnfUWqodLj3av1zuZaWbA48WvLdVGOqEw0E2JsNZgMwtn9sFUSqNrm224k5MOYFwVLdu47Xo4TZUzm3tsiyxzJbNdzc13l1RTaPXW2qtRr0qBUHSlZVwUXFt1yZMXbxNTs6hjkIdDQT7UobW8rIm0TnvqMBGXcHbMQzxrbPR7ZIVbGhHF+c+x2fnP0Zn5/7TfT+mgST3WUMzmhuz29nGAWTZV2xgTeKBluqTbXIZTI0zlVfsruk49dLO/H26e9sztKzau38HbNm7lf2+Vsz+8BbHAbGN9xwQ5OqcVqtFnK5OA1o9erVGDJkiGdbR9yWWZ6N+Yffw9nqPAyM6oZXes1BhDLU8QOJx8WqItE/qguKDeU4XJ4ldXN8WrG+HAdKTyBaGY5B0d2kbo7XcDIO47RpECBQJgEhPiSj7BRu3Pccjlacdfmx1hesZnrBgEpjDT45+zMyyk4hq/qizWBEzxssj7O1DYsze7q6ul7XHHi0ZIueGqsZY/a12ytaZGvvZYPVumVXsFtdmVOpa3h9k1lBW+0ykzOz+Gxba0x1qGBmwSuNNaJZNzaV2mBVfMuV2UJXX7MttiqUO5oR9vR2WY6ey7q/muNu8a1aJ94DdnCkRF9hSaXfU5JpNWNsf42xM1o8Y8wboeTqS0LpBWOTATgdM7hebqy2OwD1Q+4WrC/cjzPVzVc/r3VQONAam6Via8DP3zgsvnXbbbc5daAff/zR8Z2I1wmCgHUF+/Bx9ioYBBOuSRyFuSnTLIU+iDTGawcgvewUtugykBbVVerm+KzNunTwEDBeOzDgz9nx2oH4IXcLNuvScVO78VI3hxAC4I1T36DSVIPXT32NKW2GodxQhftSptm9v0ngsbfkKAZGdW2S4mim5w3Iq22cjSzWl9ucJWVnbcuZQMzMuYtU9wLjlswYV5vqRFvSWFf+NTMItmfdzBf67EV8mbExaLGnxlSH97J+xKSEwY0zxmgMYvS8ASX6xuOwRYXY5zI/lp0DKtU3BtSVxhpREbEqUw2i+HDLv623a7K1lZUzWjJjvOz8WhyvOIc+kZ0tt/ni7J1BMIqCp2oH6eNGDxTfsqeYXUtrqrMqYsfMGPPiqtSupp63PJW6cV22njeI2ykYRTPi5cYqu3+HnMWLCpTpkVurQ4wyAiFy28XhxBXaWz64IzXawDaAVBlr8dqplXjvzA8wCQIe6nQ95nWaHvABhj8YEdsXSpkcO4oOubwGLJhsakgVnBjAadRmncPaIiUkEWeqc3G2+pLUzSEkaNWZDPj10k6cr863VIkvN1Zh2fm1+ClvK/aXHMON+57D5sKmazT3FGfihRP/w4LMj8XFpayqUrNpusX6cpsX7tbrdH/P340/8vdabquwESw3eS0uB8YN+xi3YNawxlTr8gWxwcZMMnsRX2qoxNr8PVhw5CO7x16VuxVbitLx9LFPmcDBaLlQ1/NGlDPBcDmTOsv2JQ9e9H8AKGSKFlUaa0TvZ0WTGWP72zW5wtY5YeRN+DZno6hYmDVdXRm+u7gJB8uzRN8l5n5V+NA1oJE3iWYk7Q2imBkatnhyliAIDenGjs9Hdq/xalMtdEx1bnZgxiiYROnHrn7GWpxKzTfOEpsEvsl5wqaElxuqbK4zd9fJqgu4J/01vHDif6Lb2feELdbV0ufzBRQYB4hDZVl46NA72FqUgQRVNN7sMw9XJ46QulmkQbgiBIOje6LSVIMDpSccPyAInanKRVZ1LlJCk9A5tGV7OfqL8fFUhIsQqW3SHcBH2avx6JEPLAX/2CDt3awfUGmqwX9Of93ksaeqcgAAWVUXm6Tfmul5o6iWQLGhwuasE7s1SpmhCh+c+QnvnfnBpdfi6sBrRtlpvHpyRYvWmdaY6lDNuz9TZO4Lts8qDNV4/8yPyKzIRqadtPbzzLZQ5vazgbCeN4iOyaZVs4GxrcC7gpkhrjDViKrz1vF6UaptjdWMsaM1nPboeQMqjNXQ80a8l/Ujnj++FL/n78b/LvyBhw+9a/dxxcw6ajaANvdrS2csPckomFDjwrkiQBANWADAjqJDWJj5X1FqvNmKnPWYvu9pZDsx2MyeA9WmWlFqdVFdY5BsEIyiNjizpIHV0lR1g2C0vJdGwdRkb2H2vC4zVooyBRwNPDhiTi9PLzsFAPi75DjmZLwhSscuYbIrak16bCs6iNdPfd2i5RlSosDYz1UZa/Be1o9YePS/yKsrwsjYvvio/2PoFZEiddOIlXHxVJ26ORuZ2eJg2e95nDYNALC58B+XtychhHhGfkMwUWVntsP6wvZc9SXL57XYKuXWTJReyxtEAVulsdpmIMo+ni1o4wpXZ7N0+jJLRVl3VfN1LUqhrDTVYE7G6/j24kbLbewMe6Gd2VJbhb3YlHCjYBK1q9BqLaal/Q7aXmWsEVXnreMNohlv61RS60DOWTk1hbh5//P4z6mV+KNgD/aWHEV2dR6A+jRwQRCQX1fc5LuCDfDYwLiON9TPoLqZ2u0N9e+Ja4MwNSY9ivTlOFSWhTJDFd7O+h6HyrPwcfaaJvddmfMXTAKP3/J3OTwu+3krMVSI3rciZrChNat222LkTaJgt5T5WwKI10pXGmu9VkzNJPB49vjnOF+Tj+8bKp0D4sC8mq/DKye/wibdPzhSkW33WHreiOeOfW6pDl9QUwJTK651b47DNcbENxl5E/4o2IMVF9ajzFiFKEUYHug0HWPj0oImqPA3Q6N7IYRTY09JJmpMdXbXawQjk2DCJt0/4CDD+IbtrYJBG3Us+kR0wpGKbBytOCtaH0aIL1u5ciW++OILFBYWomfPnnj22WfRr59/7TueUXYKKk4purC0FSSxa1N/z9+ND878hPs6TsMNbccinwng2KCkRrS3rVGUxltqqLQ5i8fedq66afEtZ7gblLVEjdUaY3ecrykQzQDn1xVbfr7E/MxiZ6rsvW42AGZTZatNtfgpdytilREO0z8rjeIZY5PA21wjbj6uu8zZBzuLDzfexuwL+1H2KvyWvxvzO9+IKW2GIbsqD1/l/Ik26ljLfdhzdVXuVrx5+huf2g3DKIhTqZ3xUfYqbG6YUBivHWDpYzaF90TleXQMcW1nHHZAQcfMEAPiQm2tWbXbllpeLxqIKWNed/2/G/9+VRlrLIW6PI3tE7ZmAts29vb82mLAanfYHUWHkaSJRR1vwP7S49hfehx9ojrh0Z0foHtEB7zd+yHJYxgKjP2MkTdha1EGvsnZgJzaQsggw6T4wbi349WIUoZJ3TzSDLVcieGxvbFJ9w/2FGda0mgJkF52GiWGCgyK6h50+2yPjx+IIxXZ2KT7hwJj4hfWrl2LV199FYsXL0b//v2xfPlyzJ49G+vWrUNsbKzjA7SyCzUF+O7iJsxoNwE5NYVYceFPzE+9CU8eXQIAooKIF5ngzJYPzvwEAPjs3K+4oe1YUdBmL4DT80ZRwFJsdWFriyvpplKrMdVZtpPxFHaAoshGyiwgnqmyh50t1THrhoH699AZNXyd6P0D7GcXeKKyNCuLSVn9LX83gPrgYkqbYfj38S9Ea6GtHa4449JzjdcO9PqyHgNvdLh9lLXNTJYd+7O5r09WXsD8w+8j1cUlWOzShSK9ODBmzzlXszA8zfpcYwfyrP9dZapFCLwz6cJW6j9XYztVnR0Yyq3V4VJtMSKVoQiVa3C84hxeOrkcAPBwp+st99tYcAA8BByrOIcCfQniVdGQQSZZgEyBsZ+oNNZgQ+HfWJW7FQUNfwjTIrvgvpRpSA1rJ23jiNPGaQdgk+4fbClKp8CYYS66NSEI+2RMbH/8N3sNtukO4oGU6V4b7SXEU5YtW4YZM2bghhtuAAAsXrwYW7ZswerVq3HvvfdK2jYjb4KCk+PXSzuxJm8HHux0Hdbm78GO4kM4WnHWkqK84MhHlsdkNKyfA1zbHia3VidKz7UXqOl5g2jG2Poi3N9VeyEwZpXoK/BL3g4kqGNQaapFp9BEdA5t61RgDNRXnRYgoLDO/X63Ln7FpuG2thJDBQRBaDYodsf1SWNwsOy0aM2yp7kzY2yP+T3ZV3IMgHgQwVU6q89kmcFxVXSpNAmMjWxgXOO1gPJweeNAizODBduLDuHH3K3oF5WK13rNFS3Z2FZ00PKz+f0D6tePf5OzEUmaOLzV50GoOCVya3UIl4cgspUm/1y+AhMEAR999BFmzJgBrVZr+Tk+Pt4b7RNxNXXrjz/+wHvvvYeLFy8iJSUFTzzxBMaMGSN6Le+//z5++OEHlJeXY+DAgVi8eDE6duzo9dfiDANvRHrpafxVsB+7io9YRj4HR/fATW3Ho29kZ8lTDohrBkZ1Q6QiFH+XnkC5oarVPui+rMZUh53Fh6HhVBgZ20fq5rS6CGUoBkf3wO6STBwoPYFhsb2lbhIhdun1emRmZuKBBx6w3MZxHEaMGIGMjAy3jslxLfsey60txJKDP+NwUTZOV+ZgeGwfSzrqW1nfotxQ3XC/xnW7nlh3+WfBPqeK2xgFk+jilV2XHAhqTHXQyL0XGB8oO4EDZY1FK5UyOZ7oeqvTRY20qigU6ktbNAufb5UNYG/GuDWcqc7FCyf/5/HjquQKKDjvVrCuEwxu7U3cPTwZIXI1MspOW26rNNXg6WOf4p/Sky1ul3VGgLtbbrUG67aKZoyNtVDKvDO47moGgrlOQEbZqSbv08HyLMvPbKbNsvN/wCiYcKoqB5+c/Rmhcg1+zN2CBHUMvhr0TKvEPC73Hs/z+OijjzB+/HjExsZafvZ2YOxq6lZ6ejoWLFiAxx57DOPHj8dvv/2GefPm4eeff0ZqaioA4LPPPsNXX32F1157De3bt8d7772H2bNn4/fff4dKpfLq62nO7uJMbDuTgd0FmZZUkVC5GhPjBuHqxBE0Q+zHFJwco+P64/f83dhRfBhT2wyTukmS21V8BHW8ARO0A6EJ0nXX47UDsLskE5t16RQYE59WUlICk8kErVYruj0uLg7nzp1z+XgKBYe4uHDHd2zG2tO78dO5bZZ/s2s07aXhesJ3Fzc5fd9ifTk4yMDDt4ohtYRGrkKtSY9SvgIR8pBWe16DYMIrJ1c4ff+E0OgWz64WGuofH6bQoMpYK3ml593FmR4/pjY2AmqFEvBmFr/GvfXOUZowxKkjkWE16d/SoFjNKUWzn7GqCJ8fuKoS6rMVQuVqUeq+XMah2lSLEKV3rqPOtWBbSWffJ3awa23+HgD1r3NWl4nQaiPcfn5XuDWswO5f5cr+Yi3haurW8uXLMWbMGMyePRsAMH/+fOzcuRMrV67Ev//9bwiCgC+//BLz5s3DxIkTAQCvv/46RowYgU2bNmHy5Mmt8rqsVRir8fyxpQDqP7BDY3phTFx/jIztC41cumCdeM44bRp+z9+Nzbp/KDAGsKlhb9AJQbB3sT1DYqgwG/FvgiC4NZpvNPIoL29ZWurU2GHoPbIj9FU8IACLji1DpDIU47UD8fm53wAA1yaNxM95O1v0PGbDY3sjqyrXksoZoQh1uMdwtakOWlUUKozVkq9Z9JR4VTTy64pxvrIAEbJQrz/fR/0fRfuQeHx8ZjX+LNjv9ONUgrJJEOGqvOr62a9oRTiqjP6/V6stFaW14Hjvzsjlldpeh++IklciTLA/+BKvcm/wI1oZbqlKDwCxykifD4x1NfWjAxGKUNE5rVVFIb+uBMV13hsMlEGG9iHxuOCgFoOZUiZHWnRXnK8uQJhCg6sTR+D9rB+bfYxWFYV/dbsNa3J3IFyhwW3JVyBJE4eiopant0dGhkCpbD4rwi8Ws7mTupWRkdEkYB41ahS2bNkCAMjJyUFhYSFGjhxp+X1ERAT69++PjIwMtwPjlqaERanCsLjXPYiKCEVXeXsoZd5LT/Jn5n5uaX9LoW9UZ2hVUThSno1iQzm0au8Vm/L1firWlyO97CRilBEYFNMVnARLA3yhj0I5NUbG9cGGwgPYU5KJyxN8b5DAF/rJ1wVDH8XExEAul0OnE28nVFxc3GQW2Vk837IBdo6TYWBcNxShEjwv4MuB9Sl3Rt6EEn0FIhShmJY4Auvy96GON2BGuwn47uKmJrNFzkpQxaBLaDt8lbMeANA7ohP2lDiewYtUhNVXNA6QwFghk6OtJh5nq/NwpmFbIW9KDa3PlhsR29elwFjDqRAmD7EEEZGKUFG16ubEKSNRZCi3pMzHKCNw0c2ttDxhVGxfJKhjkBySABWnxFZdBvaVHnP8QCdw4CCXeTeVukxf5fhONoTIVYhRNs4YmrMvAGDVkJdwuPwMnj++1I3jaqDhVJbK03GqKJxu2LvXV5lTpyMVYU2C+vy6Eq9WIe8e3gFRyjCnA+MoZThe7DHb8m+TwFsC444hbXCupr76fo+oDsgqz4VBMKJ/ZBf0jUhF3+6plse19DvCFX4RGLuTuqXT6RAXF9fk/oWFhQBg+b+tY5p/5ypPpIQBwNVxQ1t8jGARE+Ofa3SnJA/BV1l/YX/NUcxse4XXn89X++nPrD3gIWBq8hAkaKWtRi11H13TeQQ2FB7AjrJDuLnnWEnb0hyp+8kf2OqjrPJcbL6UjuyKS/i/XtejTUiMBC1rOZVKhd69e2PXrl2YMGECgPolVrt378add94pcevqmWeuFZwc96VMs9z+dp+HECJXQ6uKRjuNFp1C2+Lhw+8CAMLkGqfXjWpVURgZ2xcrc/6CRq7CqLh+TgbGoajj9U4XjfJ1Cpkcg6N74Gx1XpPiVC2hlMkt61A7hSYhuzoPfSMaK/b3Zar3D4zqhn/Kmk/T1MjVCFOEWGYU49UxzgfGqijRnraxqki79zUX+fKmdiHxuLvDVMu/M5vZK5YVpQhrsjbVmlwmh8LLgbF1kStnhco1iFE29v3N7SZgV/ERjNWmIVSuQZI6rplH26fhVAiRqy2Bcbwf7IphHliLUDRmaYRwaoQrGmfUnclicVaUIgwauQr5dSWY0W6CU3/rEtQxKKgrwTir7TflMs7yM5sFG6MKx8zkK7BVdxC3tp/okXa7yy8CY3scpW7Z+p31bdb/djcdDPBMShhQP/odExOGkpKqVh0l8Sf+3kfDwvvgK/yF387uwZTo4V57Hl/vp1/O1m8/MSKin0fSZNzhK33UhUtGlCIMewqP4sylS4hStnyQzZN8pZ98mXUfFdSVYH3+fmzVZVhGxgFgfPQAKKJblg3kTEqYt9x9991YuHAhevfujX79+mH58uWora3FddddJ0l7nMXW55iUMET0u46hiaLtSKyxgUWSRou2IVosHfAkABkK9Y1BYXOz0JHKMKeC7xhlRJPgOVYZ6dVqwe6Qy+SYGH8Zvr64we1j9IpIadLvsapIy0zYg52uw8nKHIyK62v5fahcg0dTb8au4iMYEtPTcWDMqRAu11j+3UYdg6xmZgXj1JEoakhH1aqicLKqfi9hDjJEKewPDIbK1V4pytVOE4+LtfUTNuysKQDRHsa2pEV1xcs9Z+OlE19it4OARi7jvF58qyWBcayq8bV3Ck3CXR2mWP7dPiQeIZwaNXydJShzhkauQqhcY/m8WW8XyYGz7JHtboaJp4TLQ0RbTLFbtGrk9VkRZrHKCI8Fxhq5Cu/2+T9crC1En8jOOF7ZOCHJLlFgZ94f7FT/XTA4ukeT413dZjh+y9+Ny7WDkKTWYktROsYk9sPlkYMxo93lHmlzS/hFYOxO6pZWq21y/6KiIsv9zcXCCgsLRcW7iouL0aeP+5VxPXnByPMCXYA64K991DmkLdpr4nGqKgcXqgrQLsS7xet8sZ/OV+fjVFUOOoQkoHNIW8nbJ3UfceAwOq4/fsvfhW2FB3FV4gjJ2tIcqfvJ1wmCgAPFJ/Fz3g7sKc60pPt1Dm2L0XH9MDy2N1JCk/y6D6dOnYri4mK8//77ll0iPv/8c5/cw9iR13s9gK8vbsBVbYZZArREdWyTPYl7RHTE3pKjAICu4fUBdqKmfpaK3bszTB4iuniWyzhLamOEIhTl8sZZO/aim6VVRVku1N/s/SBKDZX47uJGnwuMFTIOSZo4qGQK6AUj5DIOMsiaVItuLqAYF5eG2R2vxsnKC/jk7M8AzGuX6wObTqFJNvd3vzJhCK5MGOJUESqNXIUwZjZtVGw/dAtPRrewZDx97FMA4vdcq46yBMbsDHGoXAM1M8tl/f6FMIGxJ4KowdE9sL/0OCbGD8LyC+sAAEkaq0xIGzPYSpnCUuAtlFNDLpM7tZ2WQiYXzeh5g3l7M60qyqUgOUSuRiwzY9wkgJVx+N/Ap1GsL8dn5351PjDmVAhlanporY4bKldbgtFQuUbSwDhKGS4KjCOYQZpQuRphisbBH60qWjQY2xIKmRwxqgjENAxMRCkaB+1jlZGoNjUO2pgrUbfVaJEckmDzeHd3mIoJ8YPQM7wjxmjTcFXSMIxP6Y/iYvfS7D3NLwJjd1K30tLSsHPnTsyaNcty265du5CWlgYAaN++PeLj47Fr1y50794dAFBZWYmDBw9i5syZ3n1BJOjJZDKM0w7Aipz12KJLx+3Jk6RuUqvbpGsouqUdRNuONRivHYDf8ndhsy7dZwNjYpsgCDhQehIrj/6FIyX16Y3RynBMThiKy+MH2b1I8FczZ84MiO/KflGp6BeVKrqQTtTENQmM63gD7kqeggJ9CRJU4jR49oI0XKERBbChco1l5iZCEYpQZuYyUhnaZE9SAJiUMBja0iiM1w5An8hOAIBVeVtb8CqdYy9Qt0chk0MmkyFeHYOLtYXgwEHJKWA0iQNjpUwBPYw204wVnAK9IlJQxuzz3C4kHkcaUoTZ/rIljPk9O9NuDtYB84xxY2AcptDglvjLYeAbq4O308Rb3vNYdePMJFsDJEyhgZoJMEPkKtEMcX1byxp+p3YriAqXh2Bep+sQIlejb2RnlBoqkaCOsQTG1n9HxmsH4Hx1PobF9sZjRz4EUP93x5w2bk5XVXGOL/flMu+vMTYHTgnqGJcC41C52jIQxUHWZIAAqJ9BjVKGuVSotn79ORNQqqPFz6vQWIJRDSdtAdxoZbglcwAAothUarlaNGMcowqHQiZ3ekuz5lin10cz2WyxqkjkNLQpXh1teX/ZNG9rYYoQ9IpIsRwrVh3hU9eAfhEYA45TtxYuXIg2bdpgwYIFAIA77rgDM2fOxNKlSzF27FisXbsWR44cwcsvvwygPjC544478PHHH6NDhw6W7ZoSExMtwTch3mQOjDfr0nFb+yt86g+Dt/ECbwmMrdegBLOeER2RoI7BkYpsFNSVIEHtn+tQg82pyhx8evYXyz6PncPa4sakcRgV18+pC1IivWgmRXVYTC9klJ0C0LiGtY06Bre0t53mxwZdGk4tmiUOl4cwgXEIQhWNs1PRinCbgXFySAKmJY4U3aZycW9SdtbQWSpOYUmFdIY5iIpUhOIi6veGDuM0qLa6Fldwcih4zub+tYqGGUr2YptNF3b0vSieJWucaQ9ThEDf8HOIXCW6XwhX/x4omc9mh9AEy17JcZrGYFirirb8HC4PEc28hlilTrMzjyGcGqVwb3nQhPiBjc/ZMNN9VZvhOF+T3yR1Wi6T456OV4luYwNjc5vUTswYy2VyyOHdGWMASFLHYWRsn2aXLlgLkWug4hT49rJFKKgrsTlTbiaD89dSGrkKIXzj+xalCBMFlOzAjNQ7w0RbLa+KZWa3Qzg1YlSNv49ShENlY5DKHZ1C29ptR6I6FodQvydxx5A2ONSwP3FzSw58ncvf2DKZDG3btoVKpRL97G2OUrfy8vLAcY0f6IEDB+Ktt97Cu+++i7fffhspKSn46KOPLHsYA8B9992Hmpoa/Pvf/0Z5eTkGDRqEzz77TNI9jEnwaB8Sj65h7XGqKgdZ1bnoEkT7Ux+tOIuCuhL0jeiMRI3/pV96CyfjMC5uAL7P3YStugzc1G681E0izagy1mD5hT/x26Wd4CGgY0gbzOt9LfqrugJC8Ax0BQIVp0CSOg75dSW4qs1wrC/Yj3YhWjzS+WasubQd11gFqix2ezU1p4RCJrcExpHKUNEsCjuTEq+OxtmapnuD2pqZUjoYYGGr9Jpfj8HkWmDsaiCtaLjmYmeUzIEjO/tcn6IrtxMY17+uECbo6BHewek2sGmd8eponKrKAVAfrJuDZHNVajP2/Vqa9iSyqi+CA4fVedsB1K8xNktkAtFQqxlj6/eJDaJC3dxyL0Zle6/Whzvf4PwxmIEF82tVOpVKzVneU2+6ss0Q0YCD/fY0BqhhDa8jWhneJEC05krfazgVDMz7Vp/VobYUZxMNdkiwjSJbiC6mSWAsfp/baRqX5LVRx0ApU6Alm1I/3uVWXKotwkSrrTTZtc3dIzpgfeH+htsb2+fPEz0uB8Ycx2HTpsZN7dmfva251K2vvvqqyW1TpkzBlClTbNy7nkwmw/z58zF//nyPtZEQV4zTpuFUVQ626NKDKjDeWHgAgHhknNQbr60PjDfr0ikw9mH7S47hnawfUGwoR5hcg7s7TMVVScORoI1EUVEleMF/1xAHqw/7PQIB9UHox/0fs9x+e/vmdw7gmHWZoQoNlDIF6lCfRhvJzJxEKEJFQYu9jBC1G4GxmlOhhm+8CFZxSpcLQbm6zYt5xrhTWFscrjiDDiFtLMdQcnLU8Y2Bsb1qx+YZ4+SQBPSKSEH/yC4YGtML96dci57hHR22gZ05ZPuW7XeNXIVwgZkxZgKctiH1hdTMGQIAoGVmjNsyKbtRinCrVGpxoMTOSmtcDKLMmQl3Jtu/ZnUWm6ViDlYczRjLIAMn4yCHd1Kp2TXXSeo4h+czUJ8mby545yilnnVlwhD8Vfg3BkR1RXrD+2pvzbdGroKJGbCJVIQhVK6xBMbs4Af7szPLDtjMEXepORUMDanc7GBCqFzdJGjvENLG8u/+UV3wfe7mFj13sia+SVAMiD9b7MDRlQlDsEn3DybFD27R80qNcrwIkdCYuDR8fu53bNGl454OU0UXWIFKzxuwregglDI5RsX1k7o5PqdTWBI6hrTBmepcnKu+hI6hiVI3iTD0vAFfnPsdP1/aAQAYrx2IOR2nIUYVIck+3MRz2AJN7opQhNZX9jU1/pv9HRu8xTPrGdmZIVspm0oHqdQqTmEVGHv/8s4c7N7TYQqUMjmmJY7Ev49/AUC8LYt1USf2tSoa2imXyfF2n4cs95meNNqpNshkMsxoNwF/l55A59Aky+0RSvH6S3agytbMHzujzM4Ys7OTCepoUSp1mFWwxr7Xrs4Yz0q+Ev/X+UaPZFBF2UhLd1R8yzxA4a1rkDhVFHIb9n9O1MSiwuC4YnK4ItQSGLsyW9snsjM+7vcY4tXRuGn/vy2PNwfGbMBqfW6o5UrRc7EDOuLbORgFQZSlYY3NHHGXRq6yrHFmB2nC5SGiAbQQuRqJmlg8020WjAKPjqGJDv9mOGJv8CJWFYlBUd3ROSxJtEVUvDq6oVK/fwv8q3BCfFi8Ohp9IjtBpy9zab2NP9tXchxVploMienVbIGGYDZeWz+TvkWXIW1DiEhujQ7zD7+Pny/tQIQiFM91uxP/6nqb3fRHEnxqTXWii2l2diXcOjAWzQAxs402ZoxtzSKzlJxCtLbSmSrEA6O6oXt4sqXar6t/j80zxhq5GvelTEOiJtbSAg7WgXFjn7BpvZ6ognx3h6n4qN+jooGNKKt+Zy/gQ2wMPLCvnU0VZQPFMLk4lTpUIQ6MrWepXREiV7U4KE6L7AIAGM0MOJsHSNiBElvnl/n98VZV6jimorSzM8bigQbnZ4yB+joP7OPZ18zWBAiVq5u8V+yAhzgwbryf3Gqwx9a6Zk8UMmPbza4pDlOE2MxeGB3XH+Mb6raw7/nE+MvQP7JxKSnbdvY47M/2sjzkMg4v97oP93a8Gu019cXgLovu7toL82E0Y0yIxMZpB+Bw+Rls1qXb3JYi0GzSNaRRaymN2p5x2jT878If2KJLxx3JV/r1ep1AkV52Ci+f+BKVphr0j0zFE11uE1WsJcEtNbQtsqpz0VYTj6yqXMvt7MxlhCIUWlUUeoR3wDjtANHFfpgixDI7ZiuoYi/K2f1CzeQyDgpZY4ErNjC2Xn9sdl3SaAyO6YlLtcX4LX8XktSx+CB7ldOvWWEjiDI/C5s9oeDkovuqOIWlQFdLZ7VY7Gtmt7IJl4eg2tiYVm4uvsVK1MTipR6zkRyWgF7xybi741QMiqq/2L8jeTK+vLAOA6O7i/aG1XAqq+24GgMuVwcZVLKW7WsOAM90vwN5tUXoFp5s2R+6e8N6beuZblvnD/t/T2O3V4pQhDoVGEcyfWg9O+8qNuALZz5roXKNZUmDOXWfHeCQM2uuNcx5w8lk9YM/DZ83pUxuqYJuFquKQHVNy/a1ZrcHY/8uhMjVogGcEAfLLx7vcgsAYPLuxwHUF/4raqiez6aZsz87le6u0ODnIa96fZuv1kSBMSESGx3bDx9nr8b2ooN4IGV6fRpegKowVGNfyTGEy0MwOKan1M3xWYmaOPQM74hjledwovI8ekQ4XmtHvOeXSzvxSfbP4MHjhqSxuKfjVQF1IUBa7qWe92FdwV7c0HYs9pQcsdweJVpjXF/V+N2+/wcAOFh2WnS/XNSnmtpaD8qmcWrktgJjcYEr9hhKTmFzfaV5RitRE4vZHa/G9qKDzr9g2J9RsnU/uY0CXfVt8NzniD1uFDMgEa4IQawqEkqZAlPaDLU70HhZTA9wXP1a21vbX27Za/y29hNxbeIohCk0ovdMzaks6bIKmVy8FZeLVXnV8pYHxhGKUESE17/u13rNRZmhypKubz3TXWS1J7b5vXT2PXVVqEKNaxNHIVoZDplMZndARAaZZVuvSKXtWXx3sDO6bPZAmFyDoTG98GqvuZYMDva9sD9jzIm2H1NwCugbit091+1ObCs6iMtiuuOt099Z7u9OWrX1Gud2Gi0u1urQRh0jGvyxlWreXNaIRq5CQxkEaDgVylE/4FOfmVL/s7PngifOXV9CgTEhEotUhmFQVHfsKz2G9LKTAR0wbis+CKNgwhhtf9rGxoHx2gE4VnkOm3XpFBhLRBAELDu/Ft/nboZSJsejnWfgigT/LixCvCNGFYFb208E0FhpGQD6RnYGBxm0VutTAfGaZraIlK11nuxska2gQiHjREEmu70TWwyMZR2Uci6urmsuVZSdn1bKFHZTN52ZlXKWmjlWolq8HjNCGYrVQ152uw6AubCWKFCR11cgr4MBSplCVHBLlI5tp1BTCKe2rAuP8PD2NipOKVrDzp4PtmbMvZ1KzUGGBzpNZ9onTu02D/SwM6/s8oEWr31m3vdwedMU7QFRXS23VTHZBew5zr6/cplctDaZzYJIi+qKkXF98XfpccvvQzi1Za2wK8QFtlR4oce9+PLCn7i3w9Wi98rWvs7KZj6f7N8idlbaW59Nf+LwTNu1a5dTBzIYDHjssccc35EQ0oR5L9/NunSJW+Jdmwrr9y6eoG1a6ZCIjY7rDw4cthUdFFXNJK3DJPB4/8xP+D53M8LlIXit1/0UFBOnsDMtscpIfDd4MT7o+0iT+4UzM4zs+kFb2IDMfHyOmQVTyBSi52Uvau1lITUJjF0MPmzNKJlbJDBBg0ausrmlk602tAQbSHVntnwy7x2t4OQtDrDYwQzzjDFQX4WbTWdlZ4yVdvqfDXq8PVDMrodmzwfzOeTtVGrrfmfPTzYYE836e3CwgP2ssYMW1uvEAVhmgjWc+LwNFQXG4oEodrDK/Bh2MMvt7buYtdkRijC0C4nHU91mNlnG0z4kocljmwts7a0rVosG4AI3e7E5Dj8BDzzwALZu3drsfaqrqzFnzhysX7/eYw0jJJgMj+0NNafE7uJM1Jr0jh/gh3JrdMisyEYbdQx60QyoQzGqCAyI6ooSQwUOlmVJ3ZygYuRNeP3U1/ijYA9ilBF4o/c89I7sJHWziJ9gAw8FJ0eEItRmKmg4s4bSlcEvc5DBpgRbpyuLZn7spK1aByvOzKayKanOBlFqTgU50yfWs9mewm5XE6EIxfzON2FOx2s8UgTJLFwhLpJm7meFTCFKZ2WDOnuvsTVn5HpFpDQ+r43+sAy2eCkYss5GYPtEFIwxfdI5rB3+1fV2fJa2sMXPzw5UtAtp3O83WtF0T+T7U65F17D2eL33A6K18aI1xg3bW9lqt3kv6Oa29nIWm0lia/DkxR73YnbHq5FiY/cKW59P8/vcIaTx/uyAUijzGmnG2I6JEyfioYcewoYNG2z+vri4GLNmzUJ6ejo+/PBDjzeQkGAQIldjeEwf1PB12FV8xPED/NBfhX8DAK6IHxwU21J5wvj4+kyCLQGeSeBLTAKPN05/g61FGUhUx+KtPg+iU1iS4wcS0kBlY/bIFnYW6Yr4yyCDDPenXGvzvtWmxq2YbF7wcuIquexsVXPVZUX/diKVmj2WrZno8Q1701+ZMMRym4pTNCm+Za8NLaGRq7B0wJN4p8/DUMuVmNJmKK5vO8ZjxwfE2zqp5UpL8CBAQOewtpbfsUXX2H4SVw5vvcAjQhGKp7rOxLPd7rQ5UOD9GWPxoAs7M6wRDeIw55eMw3jtACTbmA11Fft+hMrV+N+Ap/BCj3ttFlBsFxKPD/o9gm7hyaK+aq4qNdtu8yCA2qpYljvCHWwhNzimJ25sO87Ob5sOdH2WthBPdLkVg2Maq0irRUXrmPOWZoxte/PNNzFt2jQ88sgjWLt2reh3OTk5uPXWW5GTk4Nly5Zh3Lhx3monIQFvYsJlAIC/CvdL3BLP4wUeGxoC44nxl0ncGv8xPKYPVDIFdhQfht5G8RziWbzA492s77G1KANt1DF4o/c8tNVopW4W8TNsINTcrAs7QNgjoiN+Hfqa3f172SDKfMHKZCtDIZOLLmTZWSC2DeIZX/GFrzMDlmxasK0L55vajsfbfR7C3R2mMseVWa3VbH69dEu01WjR04sZSeIUYJWlz3iBR4QiFNckjsSYuP6idby20mwBIDWsPW5rNxEv97zPa+1ljdWmYVRcX1EbzKeQOcizVWncE6y3M2LPI/G56tk0e3PQeE3iSNHzJWriMMSJei5sX2ms1jzbmzE2Z3KwAafGhcCYfd2OAuPmcDYC4yRNHC6PH2T3dbHPF6wTGA7/IslkMrzyyitQq9V44oknoNfrMX36dBw/fhz33Xcf5HI5Vq5ciS5durRGewkJWAOiuiJOGYmMstMorCsVFc7wdwfLs1CoL0X/yNQW79UYTMIUGgyJ6YUdxYewr+Q4RsX1lbpJAUsQBHycvQZ/Ff4NrSoK/+l1f0B9BknrUbgQ7C3qfrdlK6XmdiS4qs1wnK2+hKlthuG/2WsANNQTEszPKbdf4Eq0vrexQrX1DLEzqdTsBbW9mUc2bRcA9LzRqm3MzBvnvxffnUOTLAGfeV3qvE7XAahfOmTGBk1KTgFDQ/VihYzDHR0mt1ZzLdjzzNxu8/vqybRzlnWQy25PpbGTSu2Jttzb4Src3v4KcVV3B3uCs8T7b4szHXjB9hpjW8/D7p3siLnSOVB/XXhF/GUeL8oqWnbBVJUOa0EgHiic/uv9/PPPQ61W4+mnn8aJEyfwww8/ICEhAUuXLkViYtPcdkKIa+QyDpfHX4bvczdhY+EB3NL+cqmb5DHrC+pnwal4kevGawdgR/EhbNH9Q4GxF317cSN+y9+FGGUEXut1PxJtVPkkxBmupCAOi+3t1P1C5GrLXqTmYEwODqaGasfOzhir5I37lLpTlVohWh/s3OusNentzlC5MojgKyYnDMXZ6kvoGt7eMivHVigGxAE/20/iVGFpUlVtPa85WG6t4lvs86SEJOJw+RkA4v7xRFtkMlmTNGZXtsRkZ9AVVm0z2VkeYMYOTnUMbYMdxc49J1tFXsUpsaDhc+8q6y3dWPb+VngrY8CfuPQX6cknn4Rarcann36K/v37Y8mSJYiKar6SIiHEeVck1AfGfxX+jRntJtjdb9GfVBlrsKv4MEI4NUbFUmDnqsExPRAm12BvyTFUGWtoRNcLNhX+g+UX1iGEU+OlnrPRninOQoirvL3HtXnrH07GNc4Yc3Jxmq+dvVjZC/imxbecCIydTBNn1fJ6q7RSx+uffdkjqTdZfjb3mQBxYGw/8PBs4OcOWzOx5hlP9hxg9xRuKetUavbahh2EFFcs98654cp+wnI757uKU4iOY2uAJ1ShwS2dJiBKCBetTW98jBxGG0X3lJwCaLi5JUsNahoKudoa8BLVI2DOT5mLW7YFIoc9PmzYsCYX54IgICsrC5MnN00B2b17t+daR0iQSQ5JQI/wDjheeR7HKs81SUnzR9uKDqGON2BS/BCX1tmQeipOiZGx/bC+cB92Fh/BJJp196iDZafxdtZ34MDh6W4zkRrWTuomET/nyoW3O8yzk5zVbJa9LXDsBcxNt2tyLZXaUWAcJtegylQLAYLditn+PkNlvj5uMmPMpo6zgxTsVkmSzRg37XPzeykXnVMcDB7aKtDWufV2n4fAQYaTlReatMO6LZ5k5I1O31dhZ4ZfxSlRxxxHYWdJwBN9Z6CoqBJHyrKb/E4u4yyBsVzGWf5uiDIMXJjdtlbbULCPLRpmaa+9Nf8teL5A4TAwvv322wNi1ooQfzEx/jIcrzyPDYV/B0RgbC4mRgGd+8bHD8D6wn3YokunfvSgCzUFePHEchgFE/6v840eX8dFgpN5Rtdrx2+4gOasCmmx1bBFayNl4jWujfdpWVVqR7NZL/acjQ/PrMK8lOuwIqdxO0+1n6dSs8zvgPV7bn8gwPuBnyO2ZgXN76v1GnLPBcZNn9N8fZNVddFymzdTzduoY5BfV4KONrY2skf83onPffb9c7QMoWd4R1yTOBI9I1Lwn1MrLccwp0yz64o9tc7anEptqyK2ws752Sm0bZPbgo3Dv0gPP/xwa7SDENJgrDYNS87+jK26DMzteK1otNnf5NQU4mjFWbTVaNE7AIJ8qfSLTEWMMgIZZadQoq9AjCpC6ib5vSpjLRYfX4ZKUw1ubjseU9sMk7pJJEA4s1a3JRpTqRsDYw4yu0GvvZnkpjPGjtNolS7MGPeKSMHH/R8DYP9C3JX1nr6osK4UgHifXMB+KrWn19C6w9bAjfm9Z9vkyfY1N+jC2Tk3PN0/H/Z9FBdqC9AtPNnpx7Bbqll/vtiBKUcJ5zKZzFKYzRwYKzi5KGXaHCQrPTR4MiYuDd/nbsIV8U0H0+V2qoKPjO2D/+t8IwZEdXX7ef2df+ewEBKAIhShGBbbG1WmWuwpyZS6OS1ini2+Iv4yyjxpAbmMw9i4NPAQsK3ooNTN8Xu8wOPN098gp7YQQ2N64q4OU6RuEgkgcapIrx7fHEiw6bsymVVgDHGatZnKyVRqexfkojXGLsz22quYLVVw6CkpDbOPo+P6iW63O2PM9J9Kotly3kaqv/l8sXfetFRz3//suvdQufe2C4pQhrqchRcq11h+DmN+tt6CzJ212PaWJXhqsOiO5CvxZu8HMTP5ChvPbXsARCaTYWqbYUgK4uKT/v0XiZAAZR7h+7Ngn8QtcZ+RN2F9wX5wkNHexR4wXjsAALBZly5xS/zfNxc3YndJJtpptHiiy21Bu18j8Y7OYW29enzzrKNBaFzjKIP9mSbrokGW+8BqH2PYvlhmZ8ZEValduIBng25VAKVpLux6G+5PuRb3drxKdLu9gQCFnbT21mRrDbztGWNmPXQLwwVbe+qasf0TwRSXtFXpubWxacjhilDLzzJwor4SBNcDY9Fn1IUlCs5ScHL0iexkZ1u1xttsFQALZtKfdYSQJgZFd4NWFYX0slO4VFvkl1vH7CnJRImhAkNjetF+sB7QLTwZSeo4HK88h7zaoqAe0W2JvSVHseLCemg4FZ7rfhfCqco38bCJ8YNwsaYQI2L7eOX45pkm9oJW1iSV2vYWQWxQ2rQqtXjNMhpSOzkZB77hudy9gGfjBk9VOvYFcaooTE8a3eR2e/s2qzhfDYzr33sFO3NpNatoa6a5OWxBqeYGH9lzMkLZGHyqXdhv2FvYwJh97wTwos+LezPG7Cxx488aG8WyPM0fq8G3FhomJ8QHyWVyXJkwBAIE/FGwV+rmuGVt/h4AoLWbHiKTySyzxlto1tgthXWlePP0txAgYEGXGZY0SEI8SS6T456OV6FHREevHN+caskGODKZTDSrp3BmxriZNcb21ppq7AQKjvBM4OCpgk7+gg382ArBnpoZdJWtNcbmQRaVnWDNnZR39nxsruK5eMa4MTDW+EJgzNneSaPGpG9xKjX7utl+t16v7g3sc09KGIyBUd2wIHWG15/XH/hFYJybm4s5c+agf//+GD58OF5//XWYTM3/YS0tLcWCBQswcOBADB48GM888wyqq6stv9+7dy8eeOABjBo1CmlpaZg+fTp+//13b78UQpw2OWEoOMiwvmA/jLx/XUjk1urwT9lJxKuicVl0D6mbEzDGMenU7qRuBTOTYMJrp1aiwliN6YmjMTquv9RNIsQttmZ7BEEQF+Oyt81MM2uM5XZSqdmfo5Xhlp9dC+wa/1752/dZS7EFNJUy29totSZbM8a1DXve2ivU5s4Mo7NVm1V2AmNfrIxsDmBrTHXi4ltufB2r7GypFsn0gbfEqiIxN+UavNZrLiIUoXil1xxcQTteAPCDwNhkMmHu3LkwGAz49ttv8dprr2HVqlX48MMPm33c448/jtOnT2PZsmX473//i/3792PRokWW36enp6N79+54//338csvv+D666/H448/jq1bt3r5FRHinHh1NAbH9ECJocLvinCty6+f5Z6cMMTvi6v4kg6hbZAa1g7na/KRXZ0ndXP8yooLfyGzIhtdwtrhHqv1gIT4E1sVng2CCTLYLp7lfFVq5vGwHdS4UpWaxQYOHUPbAADiVdFOP96f2etzpUTprLZSouv4horIbEovM2Przve4KDB2Y8bYFyqWdwhtgwFRXS0FGs2p1TWmOvEaY7dmjNm09cbXGtZKy3uuSxqDtCCuPm2Pz1+x7tixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nQ4AcP/99+ORRx7BwIED0aFDB9xxxx0YPXo0NmzY0Jovj5BmTW0zHEBjWrI/MPBGrC+sL7o1KWGI1M0JOJRO7br0slP49uJGhMrVeLrrLJ8o6kKIu3qEd7D8/+N+j2FwdA/MaDdelCLLXrSr7BR8arrGmJklZoIScYDj3mVjuKKxou/AqG5Y3OMevN93vlvH8jfsDK0vFCFj22MOSusa9rxlswDUTNo3Z+d8ag4nmjF2LjD2hfRpllzG4dVec3FLu8sBANqGeikqTil6L01uLA+Q2Rm8oroX0vL5q4OMjAz06NEDWq3WctuoUaOwaNEinDlzBt27d2/ymPT0dERHR6NPn8bCFyNGjIBMJsOhQ4cwYcIEm89VUVGBbt26tai9HNfyLWnMx/DEsQJVsPTRkNie0Kqi8E/ZSVyqK0LbEK3jBzGk6Ke9xUdRaqjE8NjeaBMS02rP6y5/O5fGxafh83O/YUtRBu5JmdpqFZX9rZ/MSvQVeOPU1xAgYH7qjWgfFu+15/LXPiL+5aZ2ExCtisCImD6IUUXgxZ6zAQCVxhoA9esi2WCWnYFSy+1f9omqUovSqpnqxKJ0befP806hSZafZTIZhsb0cvqx/q7aVGv5WSaq8C39jLGGU6GON1hmjEXroZkglW3r0gFPYWfJYewuO4KM4tN2n4cNhp0tvuWL6dOsJ7vejo+zV2NOx2vwvwt/WG43V6xOVMc6fSy2f9gBieSQBABA17D2LW0ucYPPB8Y6nQ5xceLqq+YgWafT2QyMbT1GoVAgKirKMmNsbd26dcjMzMRLL73kdlsVCg5xceGO7+ikmBjvL8D3d8HQRzd0Go0lJ37D5vJ/8H/tr3frGK3ZT78f2wUAuLXrBI9+HrzNX86lOIRjYFxX/FN0CjmyAgyI69Kqz+8v/WT2n/0rUWyowLUdRuLGHmNa5Tn9rY+If1FxClzVkE3EmpU8CVXGGjzY+XoU68stt4uK/DQTeNjbx9h6reirvebiWMU5dAxxvnjdFQmDcaD0JEZZ7fcbDKqNjYEx18L0W08wz06qOSWmJ43G8gvrMKlhi0h2Cy62OjJ7DmjVUbiu7WjsKTvS7POIB1TsB8bqZiql+5rkkAS82mtuk9tvaXc5FDI5Zne82q3jsjPGYfIQ/DT4JWjkvj1IEKgkC4w/+OADh+uEzet97W0M3tyG4bZ+JwiCzdv37t2Lp556Ci+99BJSU1ObbVNzjEYe5eU1bj/ejONkiIkJQ0lJFXieCuzYEkx9NDZiID7DWqw+ux03aMe5VMq/tfvpdGUO0otPo51Gi27yDigqqvT6c7aUP55Lo6L745+iU1iTtRMd0DqVlf2xn7bpDmJj3j9oo47B3UlTvX4+tmYfRUaGQKmUfg0e8R0poUl4rff9AIAyQ+O5LkqrbmYZgTNVqeUyDgOiumKAi2sTVZwS/+5xl0uP8XdXtxmB3/J3YXRcf/yaXz9gzM7K8xIFxg90mo7a09/j3o5XoVt4MkbG9rXMUqpk7OwtGxjbKPjm4Hns7YVtTXxO+sd3i7Wu4e3xVLeZLj2GHYhSWi1dCGOWHpDWJVlgPGvWLFxzzTXN3ic+Ph5arRaZmeLCQ+ZZX+tZYTOtVttkZthoNKK8vLzJY/bt24f7778fTz31lMP2OMOTF0M8L/jNBahUgqGPYpWRGB3XD1uLMrCx4ACmuLH9UWv106rc7QCAaxJHAYIMvB9VTvanc2lUTF98JFuFbboMzO14TatWN/WXfio1VOKDrJ8AAI+k3gwNp261dvtLH5HAxdlZF1xrsl2bBRCnTyvs7Ins6zN6vuTBTtfh9vZXIEYVYbmNDYBc3RfYU9pqtHijzzzLvzs0FEMDYLUXtu3BEbP2YfHIKD4NDpzNLaDYwE/WzHmjkasxMf4ytNVo0U4TD60qCoOim2aDBhpxWr3tAnmk9UkWGEdHRyM6Otrh/dLS0rBkyRIUFRVZgtpdu3YhMjISnTt3tvmYAQMGoLS0FJmZmejduzcAYM+ePRAEAf36Nabx7N27F/fffz8ef/xx3HzzzS1/UYR4yfSk0dhalIE1edsxOWFos9kSUinRV2CrLh2hcg2uSLhM6uYEtEhlGIZE98TukkzsLTkalOmJjnycvRplxipMbTPM5dktQvwdG3Sxs5Tmdci2iGawZLaLb9EuA86TyWSioBgQryX1xS332NlbNnCzdcXxWO+bEMKr0T+yK5499lmT37MDKvJmZowB4PEut1h+/mrgsz55jWNN5uA1uYLtd6m28SL1fP4v3KhRo5CamoqFCxfi+PHj2L59O959913cfvvtUCrrR1UOHTqEyZMnIz8/HwCQmpqK0aNH49lnn8WhQ4dw4MABvPjii7j66qst65P37t2LuXPnYtasWZg0aRIKCwtRWFiI0tJSqV4qIXb1jOiIHuEdcK4mH+llp6Rujk1r83fDIJhwZcJghMopDcjbrmyo+P1nwT6JW+J7thcdxLaig0hQRePeDu6t+SLEn+l5o+VnNuA171drCzsbzAZw4sCY0vdbQsnJ0S0sGQDQLTxZ4tY0xb7vjmZ8o1RhuC9lmqjglL0tw1zJNPCHoNgTZHaKb9GuCdLy+cBYLpfjk08+AcdxmDFjBp544glMnz4dDz/8sOU+NTU1yM7OFm3f9Oabb6Jz58648847MWfOHAwaNAiLFy+2/H716tWoqanBkiVLMGrUKMt/7HEJ8SXTk0YDANbkbZe4JU3peSN+y98NGWT1adTE6wbH9ECMMgIHSk+gsK5U6ub4jDJDFT48swpAfQo1rdUiwcggsIFx46XerZ0mICU0EU93m9XkMZwolZpmjL1BKVPgzT4P4suBz6BdiPcq5LuLrT7Nng/NhaqcvWCYnXEOkmDXFWyXsCn27Dpv0vr8YliiXbt2+OyzpmkaZkOHDsWJEydEt0VHR+Ott96y+5jXXnsNr732msfaSIi3jYrtB63qN+wrPYYLNQWWYhm+YGPhAZQYKjA8pjeSNLbX/hPPksvkuCL+MnyfuxkbCv/Gre0nSt0kn2BOoZ6SMBQDo1u2/R4h/qqtpj47LlweIgpw2oTE4NMBT9hcAy9OpbY9Y9xcESXimJyTQ8UpkKD2za0M2b2L2WC2ubRh0RZeoiDZdpAdKFr+SaAZY18UeGcqIQFKwclxTeJIAMD3FzdJ3JpGJsFkac+Mdrb3CCfeMakhnXp9wX7JCrn4kh1Fh7G1KAPxqmjM7jhN6uYQIpnkkAS81/f/sHTAk5CL9h62f9nH/k48Y2z7Z+I6T65L9QYVp8DSAU/i28sW2Z0JtsbZSbUXb//l26/bHUbB1KLHi1KpRWuMacZYShQYE+JHrmozAuHyEGzS/YP8umKpmwMA2F50CHl1RUiL7IIeER2lbk5QaR8Sj94RnZBXV4TD5Wekbo6kyg1V+DC7vgr1/NSbKIXaC44fP47HHnsMY8eORf/+/TF16lR89dVXUjeL2NE9vAMilWF2t2GyxtmZwWKrVVMqdeBrq9EiWhkumjHmmglsOTvnh7trjP1Fc+v1naGws6ZfSYNPkgq8M5WQABam0ODapFEwCTx+uLhF6uZAEAR8Z54tbn+5xK0JTlSEq95/z65BqaESVyYMwWVBsNWHFI4cOYLY2Fi88cYb+O233zB37ly8+eab+Oabb6RuGmmGszN/smb2VXXm8SSwiNYINxMu2AugxQFz4AV7tXx9YOzq9kqv93oAPcM7irKa2M8brceWFv2FI8TPXJs4CiGcGn8W7EORvlzStuwrPYbs6jx0D09GWmQXSdsSrEbH9UMIp8aOokPNbsUSyHYVH8FmXTq0qijMoRRqr7nxxhvx7LPPYsiQIUhOTsa1116L66+/Hn/99ZfUTSPNsLencXPE1YkpMA5Gzr7vcpntdcWBPqBiDow1nMrBPcX6RaXinb4PI1HTWM2b/bwRadE7QYifiVSG4arE4fgxdwtW5W7FfSnSBAKCIGDFhfUAgBntLqdRTomEyNUYq03DuoK92KJLx9WJI6RuUquqMFTjgzMNKdSdb0SYIkTiFgWXiooKREVFtegYHNeyvx3mx7f0OIFKwYln7jjOcT0Cds0ju95YwckDup+9fS7JZP5znorXCDODK5xM1E92K5gztysD8Lwxp1Jr5Gqbr82Vc0klb5x1DrR+csTX/n5TYEyIH7o+aQx+yduB3/J34bqkMdCqW3Zh6o6dxYdxqioHXcPaY1hMr1Z/ftLoyoQhWFewF2vz9+CqNsODapDiv2fXoMRQgUnxgzE4pqfUzQkq6enpWLduXbO7RjiiUHCIiwv3SHtiYsI8cpxAEyM09q9cJnOqnyJCGweYNKrGi/aoiFCPvV++zFvnUmioym/6L6xQbflZrWoMF9j2x8SEQWFgUvDljffTKBvPm5ioML953c6qE+oD43CVptnX5sy5FBnR+HkLtH5ylq/8/abAmBA/FKuKxPSkMfg+dxNW5KzHI6k3terzmwQTll9YBwC4u8PUgCys4U96hHdAamhbZFXn4ljlOfSKSJG6Sa1id3EmNun+QZwyEnNSrpG6OX7rgw8+wIcfftjsfbZu3YrExETLv0+dOoV58+bh4YcfxvDhw91+bqORR3l5y5YAcFx9sFdSUmVzG6JgV1RWYflZJVc61U/GusZZZb5xS2TUVOlRVFTp8Tb6Cm+fS9XV/tN/tTUGy88mY2NfFBVVivqpQt/4+ZUxXcY+prKiDkXwj9ftrFGx/bA2fw+GR/ex+Z66ci6VlFfh+rZj0EYd4zfnh6e05t/vyMgQKJXNr3enwJgQP3Vzu/H4o2AP1hfsw3VJo9ExNNHxgzxkQ+EBXKgpQFpkFwyI6tpqz0tsk8lkuDpxJN478wN+vbQzKALjCkM13j/zIwDg/1JvRDilULtt1qxZuOaa5gcW4uPjLT+fPn0ad955J26++WbMnTu3xc/vqYshnhcoMLZBAfGFoDP9pGDWirJVcmXggqKPvXYuCZ47373P9v7EbPt5XhAFw2zBLfYxnBB45839KddiVGw/9ItMbfa1OXMuVRlrMKfjNZb7ByNf+ftN0zyE+KlwRQhuaXc5eAhYdv6PVnveGlMdvrrwJwDgrg5Tgipt15eN1w5AmFyD7UWHUKKvcPwAP7fk3M8oMVRgYvxlGEqp/C0SHR2Njh07NvufXF4fHJ06dQp33HEHpk+fjkcffVTilhNn9I1MxcIut2HFZc86/Ri2iJKGa0yp5eiy0S2Pd7kVKSGJmNrG/eyK1sZu09VcoU97xd0CvWibilNiYHQ30Rprd1Wb6jzQIuIJgXemEhJEpiWORII6BntKMvF3yfFWec5vcjZCpy/D2Lg02rfYh2jkKkxKGAyjYAr4rZv2lhzFhsIDiFVGYi6lULcac1A8YsQI3H333SgsLERhYSGKi31jT3Vi34T4gUhQxzh9f15oTKXWMIWBAjHAaQ0T4wfhk7THEaX0jXWUzmAHvYfF9AYA3Jk8ucn97O1jzGYd0HIr21LD2gEAUlox4480j85UQvyYilPggZRrAQAfZa9Gncng4BEtk1NTiFV5W6HhVJjd8WqvPhdx3dVt6itS/56/GybBJHFrvKPCWI33sxpSqDvfgAhFqMQtCh7r1q1DcXExfv31V4waNcry34033ih104iHmZjA2N4WPCSwsanQt7S7HG/3eQi3tLu8yf1kdqpX29sLmzR6rddcLO5xD8bE9Ze6KaQBrTEmxM8Nj+2DYTG9sackE99e3Ig7OzQd0fUEXuDx4ZmfYBRMuCP5SsSro73yPMR97ULiMTCqG/4pO4m9JccwIraP1E3yuE/P/oIiQzku1w7CsNjeUjcnqDz88MN4+OGHpW4GaQXiwDiwU2KJbeyWXWq50m7tCtFaYma+TcVRpoEjEYpQWgrkY+hMJSQAPNDpWqg5JX7I3YzsqjyvPMfv+buRUX4aKSGJmJ40xivPQVpuWuJIAMCavO0St8Tz9pUcw1+FfyNGGYH7GzIlCCGex2acsGtNKSU2eLCBcXPszRirOZXN2wnxZXSmEhIA2qhjcUfyZBgFE/5zaiX0vGdTqnNrdfj83G+Qyzgs6HILVE5+YZLWNySmJ9pptDhUnoWTlRekbo7HVBprGqtQd74REUpKoSbEW+zNGLO3k8CmlLn+Pc+eKxp2xhgtL1BFSGugwJiQAHFd0mikRXXF2ZpL+OLc7x47bp3JgFdOfoU63oBb2l2OruHtPXZs4nlyGYfr244FAPyUu1Xi1njOp2d/hU5fhvHagRhOKdSEeJWRnTFm1hgb2U2NSUBzdsaYxYlmjCmVmvgfOlMJCRCcjMPjqbcgQhGKny/twIbCAy0+piAI+Ch7FU5XXUTfiM64td1ED7SUeNtE7WWIUoRhe9FBXKr1/4rB+0uOYX3hPsQoIyzF5ggh3sPuC84GNUaaMQ4aLZ0xVssplZr4HzpTCQkgWnUUnuo6Exw4vJf1PY6Un2nR8VblbcP6wv2IU0bi6W6zPLJfH/E+tVyJaYkjwUPA6rxtUjenRSqM1Xg36wcAwMOdb0CkH213Qoi/+bDfo5icMBQ3tR1nuY0TBcY0YxwslG5837PFtzS0xpj4ITpTCQkwA6O74cFO02EQTPj30aU4WnrWreOsy9+Lz879CjWnxHPd70SMKsKzDSVedXXiCKhkCvxZsA/lhiqpm+O2T7J/RpGhHBO0AwOyyjYhvqRLWDs8knoTwqxmjGUNlYdd2QuZ+LcWzxhTKjXxQ3SmEhKArkocgVvaXY5KUw0e2PUu0ktPOf1YQRDwY+4WvHvmB8hlHJ7rdid6RHT0YmuJN0Qrw3FlwhDU8nqs8tNZ413FR7BRdwBxykg80Gm61M0hJCjJZRyWD3waz3e/y+6WPSTwcEy1aWcpmPXobCo1J6NsM+IfKDAmJEDdmTwZM5MnodJYg6cyP8V3FzfByJuafUylsQavnVqJz8/9BjWnxPPd78ZlMT1aqcXE025uNwFKmRy/XNrhd7PGZYYqSxXqR1JvQoSCqlATIgUZZEhQx2A4ZWwEFc6NEIGKbxF/5xdnam5uLubMmYP+/ftj+PDheP3112EyNX+BX1paigULFmDgwIEYPHgwnnnmGVRXV9u87z///INevXrh+uuv90bzCZGETCbDHR2uxAsD7oZcxmHZ+bV46NA72FT4T5PtnEr0FfgxdwvuSX8VW4sykKCKxuu9HsCQmJ4StZ54Qrw6GlcmDEW1qc7vZo0/zP4JpYZKTE4YisF0HhIiGZ4KbgUld4JZDTNLzK4x5uD67DMhUvD5zUhNJhPmzp0LrVaLb7/9FgUFBfjXv/4FtVqN+fPn233c448/jsLCQixbtgwGgwFPP/00Fi1ahNdff110v8rKSjz55JMYNmwYSktLvfxqCGl9VyUPQ1vE472sH3G4/AxeP/013smSIyU0CWFyDYoN5cipKQQPARxkmBQ/BHNSpomqkhL/NaPdBPxZsBe/XNqB65PG+EXxqq26DGwvOoQEVTTu6zhN6uYQEtR4CFI3gUiAcyMwDpc3XjewM8YyN9KyCZGCz88Y79ixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nU503xdeeAGTJ0/GgAEDWuPlECKJDqFt8HqvB/Bqr7kYFdsPak6FU1U5yCg/jfM1BYhVReLaxFH4pP/jeKzLzRQUBxB/mzUurCvFB2d+AgA81mUGwhQaiVtESHATKDAOSu6sMWb/XstpXTHxQz4/Y5yRkYEePXpAq9Vabhs1ahQWLVqEM2fOoHv37k0ek56ejujoaPTp07geZsSIEZDJZDh06BAmTJgAAFi7di1OnjyJl156CUuWLPFIezmu5aNi5mN44liBivrIOeJ+4jAophsGxXQDL/Ao0VeghtcjShkW1Os3g+FcuiV5Av4s2IfVedtwTdJIaNVRLh+jNfrJJPB4/fTXqDTV4Pq2YzAwppvXnssbguFcIsGHFygwDkaRCtezi0LlasvPtK6Y+COfD4x1Oh3i4uJEt5mDZJ1OZzMwtvUYhUKBqKgoy4xxXl4eXnnlFSxduhQqlarJMdyhUHCIiwv3yLEAICbG91MepUZ95Bxb/RSPSAla4rsC+VyKQzhuK70cy0//ie8KNuLfaXe4fSxv9tNnJ37H4fIz6B6VjCcG3AyVXOn4QT4okM8lEnxoxjg4JWni8GjqzegQ0sbpx4TIG2eMOZkMQ2N6AXT+ED8iWWD8wQcf4MMPP2z2Plu3bgVgf21Cc2sWbP1OEATL7QsXLsS9996Lbt08NyNhNPIoL69p8XE4ToaYmDCUlFSB5+kPii3UR86hfnIsWPpoetxorDm7A7+c34UpscPQOaytS4/3dj9llmfj0xO/Qc2psLDzbagorQNQ5/Hn8abWPJciI0OgVFKqIvE+gWaMg9aVCUNcun+IaMZYjsU97vF0kwjxKskC41mzZuGaa65p9j7x8fHQarXIzMwU3W6e9bWeFTbTarVN1hIbjUaUl5dbHrNv3z4cOHAAb7zxBgCA53kIgoBevXrhq6++wqBBg9x6XZ68GOJ5IaAv1D2B+sg51E+OBXofhXAa3J48CR9nr8aS7F/wSs85bhVE8UY/VRiq8erJleDB44GUa9FOE+/X70Wgn0skuFDxLeKsEKpETfycZIFxdHQ0oqOjHd4vLS0NS5YsQVFRkSWo3bVrFyIjI9G5c2ebjxkwYABKS0uRmZmJ3r17AwD27NkDQRDQr18/AMCvv/4qeszXX3+Nv//+G2+//TaSk5Nb8MoIIcQ3TU0Yhl8v7UR62SlsLcrAOK30RQdNAo//nF6JgroSjInr7/IMBSHEuyiVmjiLnTF2p6o1IVLz+bN21KhRSE1NxcKFC3H8+HFs374d7777Lm6//XYolfXrzw4dOoTJkycjPz8fAJCamorRo0fj2WefxaFDh3DgwAG8+OKLuPrqqy3rk7t16yb6Ly4uDiqVCt26dUNICFXkJYQEHgUnx8OdbgAALDn7CyqMtvd2b00rL6zH36Un0CEkAY+k3kTbehDiYyiVmjhLHBjT33Lif3w+MJbL5fjkk0/AcRxmzJiBJ554AtOnT8fDDz9suU9NTQ2ys7NF2ze9+eab6Ny5M+68807MmTMHgwYNwuLFi6V4CYQQ4jP6RaViUvxglBgqsOz8Wknbsrs4E19f3IBQuRrPdb8LoXLamokQX2HO3hge21vilhBfd1u7iUiL6or2IfGW2zjfDzEIaUIm0FCgxxgMJpSWtnwGhuNkiIsLR1FRJa1Ts4P6yDnUT44FYx+VG6pwX8brKDNW4ZWeczAw2nERQk/309nqPDx25CNUm2rxXLc7MTKub4uPKbXWPJeio0MDoviWJ743g/Ez7A5X+0kQBNTwdUE1YEXnknPs9ZOBN2La3icBAF8P+jdiVcG7+wWdS87xte9NGs4hhJAgE6kMw4OdrgMAvHn6W5QZqlr1+Yv0ZXju2BeoNtXitnYTAyIoJiTQyGSyoAqKScspZI1BB60xJv6IzlpCCAlCY7RpmBQ/GMWGcryT9X2rrSOsNtXi38e+QKG+FJdrB2FW8pWt8ryEEEK8i60RIacQg/ghOmsJISRIPdBpOtpptNhTkokfc7d4/flqTXq8cPx/yKrORf/IVCq2RQghAYqKbxF/RIExIYQEqRC5Gk91mwU1p8TS82uxpzjT8YPcVGcyYPGJZcgoP43U0LZ4rvtdUHKS7RhICCHEiyiVmvgjOmsJISSIdQlrhye63AoBAl47tRLHKs55/DmqjLVYdGIp0stOoVNoEl7tNRfhCtoWjxBCApWcAmPih+isJYSQIDcqrh/u7jAVtbwezxz7DCcrL3js2EX6MjyR+THSy04hpSEojlSGeez4hBBCfA9t10T8EZ21hBBCMKPdBNzabiKqTbV48ugSHCg90eJjHq04i/mH38eZ6lykRXbBW73nIVoZ7oHWEkII8WW0xpj4I1rgRQghBABwR/KV4GQyrMz5C88d+wL3drwK1yWNdnmtmIE34sfcLfjqwnrw4DEx/jLM73wjrSkmhJAAd3/KtSjSl9EaY+KX6CqFEEIIgPqtNmYlX4m2Gi3ezfoen537FbuLj+DhzjegU3iSw8cLgoADpSfw6blfcb4mHyqZAvM63YArE4ZQ9WlCCAkC05NGS90EQtxGgTEhhBCRy+MHoVNoEt46/S2OVGTj/oNvYXRcP9zYZQw6c+2gsPrqKNKXYVfxEawr2IesqosAgLSornio0/VoHxIvxUsghBBCCHEJBcaEEEKa6BzWFu/1nY9fLu3E97mbsK3oILYVHYRCJkf7kAREKkJhFEwoqCuBTl9meVzXsPaY0e5yjIztQ7PEhBBCCPEbFBgTQgixScHJcX3bMZjaZhj2lGZid/kRZOhO42x1nuU+HGToEJKAQdE9MCq2L3pFpFBATAghhBC/Q4ExIYSQZmnkKkyIH4ibeoyBTleBcn01KozVUHIKRCnDoOKUUjeREEIIIaRFKDAmhBDiNJlMhghlKCKUoVI3hRBCCCHEY6iWOiGEEEIIIYSQoEaBMSGEEEJccv78eQwYMABDhw6VuimEEEKIR1BgTAghhBCnGY1GPPHEExg0aJDUTSGEEEI8hgJjQgghhDjto48+Qvv27TF16lSpm0IIIYR4DBXfIoQQQohT/vnnH6xZswZr1qzBxo0bPXJMjmvZ9l7mx7f0OIGO+skx6iPnUD85Rn3kHF/rJwqMCSGEEOJQZWUlFi5ciJdeeglRUVEeOaZCwSEuLtwjx4qJCfPIcQId9ZNj1EfOoX5yjPrIOb7ST34RGOfm5mLRokXYu3cvQkNDcd1112HBggWQy+V2H1NaWooXX3wRmzdvhlwux6RJk/DMM88gNLRxixGe5/HFF1/ghx9+QG5uLhISEnDXXXfhjjvuaI2XRQghhEjugw8+wIcfftjsfbZu3Yr33nsP48aNw8iRIz323EYjj/LymhYdg+NkiIkJQ0lJFXhe8FDLAg/1k2PUR86hfnKM+sg5rdlPkZEhUCrtx46AHwTGJpMJc+fOhVarxbfffouCggL861//glqtxvz58+0+7vHHH0dhYSGWLVsGg8GAp59+GosWLcLrr79uuc8rr7yCnTt34qmnnkKXLl1QUlKCmpqWfUETQggh/mTWrFm45pprmr1PfHw89u7di0uXLuHrr78GAAiCAJ7n0atXL/znP//BtGnT3Hp+T10M8bxAF6BOoH5yjPrIOdRPjlEfOcdX+snnA+MdO3YgKysLy5Ytg1arRc+ePTF//ny8/fbbmDdvHpRKZZPHZGVlYfv27fjpp5/Qp08fAMCzzz6LuXPnYuHChdBqtcjKysI333yDX3/9FZ07dwYAJCcnt7i9nsiR97V8e19EfeQc6ifHqI+cQ/3kmL/2UXR0NKKjox3e74svvoDBYLD8e+PGjVi6dClWrlyJpKQkL7aQEEII8T6fD4wzMjLQo0cPaLVay22jRo3CokWLcObMGXTv3r3JY9LT0xEdHW0JigFgxIgRkMlkOHToECZMmIBNmzahffv22LRpE2bPng2ZTIbRo0fj8ccfR3i4e+udPLlWCvCdfHtfRn3kHOonx6iPnEP95Fig9lGnTp1E/z5y5Ag4jkO3bt0kahEhhBDiOT4fGOt0OsTFxYluMwfJOp3OZmBs6zEKhQJRUVHQ6XQAgAsXLuDixYvYsGED3njjDej1erz00kt48sknHa61sscTa6UAWpfgDOoj51A/OUZ95BzqJ8d8ba0UIYQQQpwnWWDsbLEPAJDJbKel2bvd3u8EQbDcLggCDAYD/vOf/6Bjx44AgEWLFmHmzJnQ6XSiGWpXePJiyFfy7X0Z9ZFzqJ8coz5yDvWTY8HSR9dffz2uv/56qZtBCCGEeIRkgbGzxT60Wi0yMzNFt5tnfa1nhc20Wq3lPmZGoxHl5eWWx2i1WigUCktQDACpqakA6qtguxsYE0IIIYQQQgjxL5IFxs4W+0hLS8OSJUtQVFRkCWp37dqFyMhIS9EsawMGDEBpaSkyMzPRu3dvAMCePXsgCAL69etnuY/RaMSFCxcsRbeys7MBAG3btm3pyyOEEEIIIYQQ4ic4qRvgyKhRo5CamoqFCxfi+PHj2L59O959913cfvvtlorUhw4dwuTJk5Gfnw+gfuZ39OjRePbZZ3Ho0CEcOHAAL774Iq6++mrLTPDIkSPRo0cPPPPMMzh+/DgOHTqEF198EZMmTaLZYkIIIYQQQggJIj4fGMvlcnzyySfgOA4zZszAE088genTp+Phhx+23KempgbZ2dmibSTefPNNdO7cGXfeeSfmzJmDQYMGYfHixaLjfvrpp4iIiMCtt96KefPmoV+/fnj11Vdb9fURQgghhBBCCJGWz1el/n/27ju+jfL+A/jnTst77x07sRM7w9kkcRIIIQ2UDSU/9gpQVqFllNUSoIwCYVNICVAgFEqB0FJCGJkQZxPHiTPtxHvJlvfUuN8fsuQ7+U7Lmtb33VdeNRqnR49Ouvve832+DwCkpqbinXfekbx/7ty5OH78uOC2qKgorF692up2ExMT8eabb7qkjYQQQgghhBBC/JPPjxgTQgghhBBCCCHuRIExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCAxnAcx3m7EWOFwcBBrze4ZFsKhQxard4l2xqrqI/sQ/1kG/WRfaifbPNUH8lkLFiWcfvruJurjpu0b9qH+sk26iP7UD/ZRn1kH186blJgTAghhBBCCCEkoFEqNSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBsY/5+OOPsWTJEkyZMgVXXHEFSktLvd0kj1mzZg0uu+wyTJ8+HfPmzcNdd92FyspKwWMGBgbwxBNPYO7cuZg+fTruvvtutLa2Ch5TX1+PW2+9FdOmTcO8efPw/PPPQ6/Xe/CdeM7jjz+OvLw8rFu3znwb9ZFRY2Mj7rvvPsyZMweFhYW49NJLUVFRYb6f+gno7u7GqlWrsHDhQkybNg3nn38+vvrqK/P9gdhHe/fuxW9/+1sUFRUhLy8PW7ZsEdzvqj7ZvXs3LrnkEkyePBnnnHOOoN+JY+i4ScdNR9BxUxodN22j4+ZIY+q4yRGf8c0333AFBQXc559/zp08eZJ77LHHuNmzZ3Otra3ebppH3HTTTdwXX3zBnThxgjt69Ch3yy23cGeddRbX19dnfsyf//xnbvHixVxxcTF36NAh7oorruCuuuoq8/06nY47//zzuRtuuIE7cuQIt3XrVm7u3LncK6+84o235FabN2/mLrzwQq6oqIj76KOPzLdTH3Fce3s7d9ZZZ3EPPfQQd/DgQa66uprbunUr19DQYH4M9RPHPfLII9yyZcu4PXv2cNXV1dy6deu4iRMncrt37+Y4LjD7aOvWrdxLL73Efffdd1xubi63efNmwf2u6JPq6mpu2rRp3LPPPsuVl5dzH330ETdp0iRux44dHnufYwUdN+m46Qg6bkqj46Z96Lg50lg6blJg7EMuv/xy7sknnzT/t16v54qKiri1a9d6sVXe09rayuXm5nL79+/nOI7jOjs7uYKCAm7jxo3mx5SXl3O5ublcaWkpx3HGL+ekSZM4tVptfsw///lPbtasWdzg4KBn34AbqdVqbtGiRdyxY8e4s846y3yApz4yeuGFF7grr7xS8n7qJ6Nf//rX3Ntvvy24bdmyZdzatWupjzhuxAHeVX3y/PPPc+eff77gte69917u1ltvdefbGZPouClEx01pdNy0jo6b9qHjpnX+ftykVGofMTg4iLKyMixYsMB8G8uymD9/PkpKSrzXMC/q6uoCAERGRgIADh8+DK1WK+ijnJwcpKSkmPuopKQEEydORFxcnPkxRUVF6OzsxKlTpzzXeDd7+OGHce211yIvL09wO/WR0ebNmzF58mTcfffdmDdvHi699FL85z//Md9P/WQ0ffp0bNq0CU1NTeA4Dj/99BOam5sxf/586iMRruqTkpISwTZMjwnU33pn0XFzJDpuSqPjpnV03LQPHTcd42/HTQqMfURbWxv0er1gpwCA2NhYqNVqL7XKeziOw7PPPos5c+YgJycHANDS0oKgoCCEhYUJHhsbG4uWlhbzY2JjYwX3m/rU9Bh/t27dOvT29uKmm24acR/1kVFNTQ3++c9/IicnB++99x4uu+wyPProo9i0aRMA6ieTxx57DBkZGVi0aBEmT56Mu+66C88++ywmTZpEfSTCVX0i9Zj29nZotVp3NX/MoeOmEB03pdFx0zY6btqHjpuO8bfjptxlWyJuwXEcGIbxdjM87sknn8SJEyfwySefCG4X6wuO42w+xtrt/qSiogJ/+9vf8Nlnn4Flxa9rBXofAcb3O2XKFNx7770AgEmTJuHw4cP45JNPcPbZZwOgfgKMJ4tHjx7F3//+dyQmJmLnzp145JFHkJSUBID6SIyr+sTyMZbbIM6j4yYdN/nouGkfOm7ah46bjvOn4yaNGPuI6OhoyGSyEVeLNBrNiKvhY91TTz2FzZs344MPPkBiYqL59ri4OPT19aG7u1vweH4fxcXFjehD039bXmnyRwcPHoRGo8GyZcuQn5+P/Px81NXV4emnn8by5cupj4bExcUhOztbcFtOTg4aGhrM9wd6P/X39+Pll1/GQw89hMWLF2PixIm48cYbsXjxYnzwwQfURyJc1Sdij2ltbUVUVBQUCoW7mj/m0HFzGB03pdFx0z503LSNjpuO87fjJgXGPkKpVKKgoADFxcXm2wwGA3bu3InCwkLvNcyDOI7Dk08+ie+//x4ffPAB0tPTBfdPnjwZCoVC0EenT59GfX29uY8KCwtx7NgxQRn44uJiREREjPjB90dLly7Ff//7X3z11VfmfwkJCbj11lvx9ttvUx8NmT59OqqqqgS3VVZWIjk5GQDtSwCg0+mg1Wohk8kEt7MsC4PBQH0kwlV9UlhYiB07dgi2XVxcHDC/9a5Cx006btqDjpv2oeOmbXTcdJzfHTddWsqLjIpp2Ykvv/ySKy8v5/70pz8F1LITjz/+ODdz5kxu9+7dXHNzs/mf5bITZ555Jrdz507u0KFD3IoVK0RLvt90003c0aNHue3bt3NnnHEG9/LLL3vhHXkGv7omx1EfcRzHlZSUcJMmTeLWrFnDVVZWcl9++SU3efJkbtOmTebHUD9x3DXXXMNdeOGF5mUnPv30Uy4/P5/7z3/+w3FcYPZRd3c3d+TIEe7IkSNcbm4u9+GHH3JHjhzhmpubOY5zTZ9UV1dzU6dO5f76179y5eXl3Lp167j8/HxarskJdNyk46Yz6Lg5Eh037UPHzZHG0nGTAmMf89FHH3FnnnkmV1BQwF1++eXcwYMHvd0kj8nNzRX998UXX5gf09/fz61atYqbPXs2N23aNO6uu+4SlHfnOI6rra3lVq5cyU2dOpWbO3cu99xzz3E6nc7Tb8djLA/w1EdGP/zwA/frX/+amzx5Mnfeeedx69evF9xP/cRxzc3N3B//+EeuqKiImzp1Knfuuedy69atM98fiH20a9cu0d+h1157jeM41/XJzp07uYsuuogrKCjgzj77bO7LL7/02Hsca+i4ScdNR9FxUxwdN22j4+ZIY+m4yXAcVfwghBBCCCGEEBK4aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrNmzYgC+//NLbzSCEEEL8Ah03CXEfCowJIV6zceNGrF+/3tvNIIQQQvwCHTcJcR8KjAkhhBBCCCGEBDSG4zjO240ghASehx56aMRV77vuugt33323l1pECCGE+C46bhLiXnJvN4AQEpjuuOMO1NfXo6urC48//jgAICkpycutIoQQQnwTHTcJcS8KjAkhXpGRkYGoqChwHIfCwkJvN4cQQgjxaXTcJMS9aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrFAoFBgYGvN0MQgghxC/QcZMQ96HAmBDiNePGjcOJEyfw448/4tChQ2hqavJ2kwghhBCfRcdNQtyH1jEmhHiNRqPBn/70J+zduxcdHR20HiMhhBBiBR03CXEfCowJIYQQQgghhAQ0SqUmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQ5N5uwFhiMHDQ6w0u2ZZczkKnc822xirqI/tQP9lGfWQf6ifbPNVHMhkLlmXc/jru5qrjJu2b9qF+so36yD7UT7ZRH9nHl46bFBi7kF5vQHt776i3w7IMYmPD0NnZB4OBc0HLxh7qI/tQP9lGfWQf6ifbPNlHUVEhYFmZW1/DE1xx3KR90z7UT7ZRH9mH+sk26iP7+Npxk1KpCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEOKUxx9/HHl5eVi3bp23m0IIIYSMil8Fxh9//DGWLFmCKVOm4IorrkBpaanVx3/77bdYvnw5pkyZggsuuADbt28f8Zjy8nLcdtttmDFjBmbMmIH/+7//g0ajcddbIIQQQsaELVu2oKSkBAkJCd5uCiGEEDJqfhMYb9iwAc8++yzuvPNOrF+/Hnl5eVi5cqVkEHvgwAHcd999uPzyy/HVV19h6dKluOOOO1BRUWF+THV1Na6++mqMHz8e//znP7F+/XrcfPPNUCgUnnpbhBBCiN9paWnBqlWr8Pzzz9MxkxBCyJgg93YD7PX+++9jxYoVuOyyywAATzzxBLZu3WoOZi198MEHWLRoEVauXAkAuOeee7Bjxw58/PHH+POf/wwAePnll7Fo0SI88MAD5udlZmZ64N0QQggh/uvhhx/Gtddei7y8vFFvi2UZlzx/tNsZ66ifbKM+sg/1k23UR/bxtX7yi8B4cHAQZWVluP322823sSyL+fPno6SkRPQ5JSUlIwLmoqIibN26FQBgMBiwdetWrFy5EjfeeCOOHTuGzMxM3HnnnVi4cKHTbXXFB+trO4kvoj6yD/WTbdRH9qF+si1Q+mjdunXo7e3FTTfdNOptyeUsYmPDXNAqIDo61CXbGeuon2yjPrIP9ZNt1Ef28ZV+8ovAuK2tDXq9HnFxcYLbY2NjUVVVJfqclpYWxMbGjni8Wq0GALS2tqK3txdr167FvffeiwcffBCbNm3Cbbfdhs8//xz5+fkOt9OVB3jAd3YSX0Z9ZB/qJ9uoj+xD/WTbWO6jiooK/O1vf8Nnn30Glh39bCydzoDOzr5RbYNlGURHh6KtrQcGAzfqNo1V1E+2UR/Zh/rJNuoj+3iynyIigqFQyKw+xi8CYykcx4FhpK/Mi91nus1gMAAAzj77bFx//fUAgEmTJmHPnj3417/+hSeeeMLh9rjiAA/Ql8ke1Ef2oX6yjfrIPtRPtvnaAd4dDh48CI1Gg2XLlplv0+v1ePrpp7Fu3Tps3LjR4W26qq8MBo72TTtQP9lGfWQf6ifbqI/s4yv95BeBcXR0NGQyGVpaWgS3azSaEaPIJnFxcSMe39raan58dHQ05HI5srOzBY/JyclBXV2d02115YfqKzuJL6M+sg/1k23UR/ahfrJtLPfR0qVLMXnyZMFtN998My699FJccsklXmoVIYQQMnp+UZVaqVSioKAAxcXF5tsMBgN27tyJwsJC0ecUFhZix44dgtuKi4vNjzdt0zIVu7KyEsnJyS5tPyGEEDIWREREIDc3V/BPoVAgPj4eWVlZ3m4eIYQQ4jS/CIwB4MYbb8Snn36K9evXo6KiAqtWrUJ/f7/5CvWDDz6I1atXmx9/3XXXYfv27XjvvfdQUVGB119/HYcPH8bVV19tfsxNN92Eb775Bp9//jmqqqrw3nvvYffu3VixYoXH3x8hhBBCCCGEEO/wi1RqADjvvPOg0Wjw2muvQa1WY9KkSVi7di1iYmIAAA0NDYJCIDNmzMDq1avxyiuv4KWXXkJWVhbefPNN5OTkmB+zfPlydHZ24u2338ZTTz2FnJwcvP32204V3iKEEEIC0ebNm73dBEIIIWTUGI7jxuZEKC/QavVob+8d9XZYlkFsbBhaW7vH7Dy10aI+sg/1k23UR/ahfrLNk30UFRXileJbruaK4ybtm/ahfrKN+sg+1E+2UR/Zx9eOm36TSk0IIYQQQgghhLgDBcaEEEIIIYQQQgKa38wxJmPLoEGPLq0WABClVEFmZT1qQsjY1qfXoVunhZxhEKVQWV2fnhBCCCHEHSgwJh5T29uNTc012KtpQnVPJwxDt7NgMCE8CnNjk/CrpAxEKlRebSchxP2Od7bhx6Zq7Gtrhnqgz3x7sEyOieHRWBCXjMUJaQiW0WGKEEIIIe5HZxzE7Rr7e/Bh5TFsV9eZb4tVBiFOFWy+/3hXG453teHT6uO4NHU8rsiYACXr/4VlCCFCdb3deLviEA60qwEY5/MkB4UiWqnCgEGP2t5uHGhX40C7Gh9WHsNl6eNxUUo25CzN/CGEEEKI+1BgTNyG4zh811iFtafK0G/QI0qhwgUp43BmQhoSg0IEj6vq7cJ3jVX4vrEan9acwM8t9Xg0fzbSQ8K9+A4IIa7CcRy+bajE2tNlGDQYkBwUgkvSxmNBXLIgS0TPcTjS0Yrvm6qxrbkO758+gs1NNXhg4kxkhUZ48R0QQgghZCyjwJi4xaBBj1dPlGCbug4sGKxIz8Vv0scjSCQtkmEYZIVG4LacKbg4NQd/Ky/F/rZm/KFkOx6aNBszoxO88A4IIa6i5zj8veIQvmmohJxhcF3mRFyaNl50FFjGMJgSFYcpUXFYkZ6LN8sP4lBHK+4r+Ql3T5iGMxPSvPAOCCGEEDLWUW4acbku7SAeKS3GNnUdElTBeLGwCNdmTRQNii0lBoXg8YK5uCojD316PZ4q24PdrY0eaDUhxB0MHIfXT5bgm4ZKRCmUeHbqAlyRkWtXanRaSBienjIf12dNgtagx4vHf8HnNSc90GpCCCGEBBoKjIlLdWkH8dihnTjW1Ya88GisLlyI3PBoh7bBMgyuyszDneOnQscZ8NzRfTjaqXFTiwkh7sJxHNZUHMKPTTWIVQbhhWkLMSkixqFtsAyD36RPwOOTz0AQK8M/Ko/iw8qj4DjOTa0mhBBCSCCiwJi4TK9Oi8cO70RFTwemRsbh6SnzEK0Mcnp75yZn4bacKdByBjxVtgcNfT0ubC0hxN3+V3/aPFL89JT5SA4OdXpbM6MT8NSUeQiVK/BZzUl8UVvuwpYSQgghJNBRYExcQmcw4Nmj+1DR3YEpkbH4c8Ecu1KnbbkgZRwuTMlGp24QfzmyBwN6vQtaSwhxt0PtLXjnVBnkDIs/FcxFWkjYqLc5KSIGT04+A6qhkeNNTdUuaCkhhBBCCAXGxAU4jjMvv5IZEo7H8l0TFJvcnF2Awqg4VPV24b3TZS7bLiHEPTq1g3j+2H4YwOGO8VOR5+B0CmvywqPxyKTZkDEMXj1xEAeHln0ihBBCCBkNCozJqH3TUImNjVWIVqjweMFchMoVLt2+jGHwh7wZiJAr8U1DJXa1Nrh0+4QQ13qrvBRt2gEsTUzHsqQMl29/ZkwC7p4wDQZw+OvR/VAP9Ln8NQghhBASWCgwJqNysqsda0+VQc4weKxgDhJ46xO7UowyCL/Pmw4A+Ft5KXp0Wre8DiFkdH5S1+GnlnrEq4Jxa/Zkt73O0sQMnJ88Dp26QTxzZC8GDTTNghBCCCHOo8CYOK1bp8Vzx/ZBxxlwc/Zkl6ZLipkdk4izEtKgGRzAP04fcetrEUIc16PTYk3FYQDAvbmFCHFx9oilm7MLkB8Rg5Pd7XjvFP0mEEIIIcR5FBgTp3Ach9dOlKCpvxdFcSk4PznLI6+7clwBwuUKbKivxCFNi0dekxBin0+qj6NdO4AlCWmYFhXv9tdTsCwemjQLEXIl/tdwGvs0TW5/TUIIIYSMTRQYE6dsaa5FcWsDkoJCcPeEaWAYxiOvG6lU4cZxBeAAvFq6n9YyJcRHVPd04ev60wiWyXHjuHyPvW6MMgh3T5gGAHjlRAnaBwc89tqEEEIIGTsoMCYOaxnow5qKQ2AA/D53usuLbdlydmI6ssMicUjTgh0tVIiLEF/wzqnD0HMcrsrIG9X65c6YF5eMXyVlol07gNdOltAFM0II8VP1fd3o1g56uxkkQFFgTBzCcRxeP3kQPXodLkrNRkFkrMfbIGMY3JxtHJF6/9QRaA0Gj7eBEDLsYLsaB9rVSAsOwwUp47zShluyC5ASHIo9miZsU9d5pQ2EEEKc160dxK37NuOa3d95uykkQPlVYPzxxx9jyZIlmDJlCq644gqUlpZaffy3336L5cuXY8qUKbjggguwfft2ycfecsstyMvLw5YtW1zd7DHlh6Ya7G9rRlpwGK7NnOS1dkyPTsC8xGQ09PdgY0Ol19pBSKDjOA4fVh4DAFydmQc5653DSpBMjt9NKAQA/L3iMDq0lFJNCCH+RDM0FUZHWT/ES/wmMN6wYQOeffZZ3HnnnVi/fj3y8vKwcuVKaDQa0ccfOHAA9913Hy6//HJ89dVXWLp0Ke644w5UVFSMeOy6deso9c4ObYP9ePfUYbAwVpxVyWRebc9dk43LN/279iQt1UKIl+xra8bxrjaMC43AgrgUr7ZlcmQszk3KRKduEGtPlXm1LYQQQhzjoXI1hEjym8D4/fffx4oVK3DZZZdh/PjxeOKJJ6BSqbB+/XrRx3/wwQdYtGgRVq5ciZycHNxzzz3Iz8/Hxx9/LHhceXk5/v73v+OZZ57xxNvwa2tPlaFHr8MFKdmYGBHj7eZgfGQ0FsQlQzM4gO8bq73dHEICjoHjsG5otPiazIlgfeCs5oZx+YhRBmFLcy32a5q93RxCCCGE+Am5txtgj8HBQZSVleH2228338ayLObPn4+SkhLR55SUlODmm28W3FZUVIStW7cKtnvffffh4YcfRkJCgkvayrKjPzE0bcMV23KVkjY1tqnrEKsMwrXjJnq9babXvyorDztaGvB57Umcm5IJBevdUWxf44v7kq+hPrKPWD/ta21CRU8HcsOjcEZckseq01sTrlTirglT8WTZHrxRfhBrZi9BkMwzhzralwghhBD/5ReBcVtbG/R6PeLi4gS3x8bGoqqqSvQ5LS0tiI2NHfF4tVpt/u+XX34ZEyZMwLnnnuuSdsrlLGJjw1yyLQCIjg512bZGY0Cvx1v7DwEA7ps+G+mJ0V5u0bBZGalYWJuKnxrrsLO7GZeMm+DtJvkkX9mXfBn1kX34/fSfstMAgJUFUxEXF+6tJo3w69gJ2N7WgK31NfhfSxVuy5/m0denfYkQQhynp2mNxMv8IjCWwnGc1REKsftMt+3atQsbN27Ef/7zH5e1R6czoLOzb9TbYVkG0dGhaGvrgcHg/R+Jf1YeR013F2ZGJ2CaKhqtrd3ebpKgjy5LzsFPjXX4x9HDWBCeBJkPjFr5Cl/bl3wR9ZF9LPvpWKcGB1qMhfjylVE+8bvAd336ROxsrMdHx49gQUQSkoPdH6x6cl+KiAiGQkEZMoSQsUPH0SojxLv8IjCOjo6GTCZDS0uL4HaNRjNiFNkkLi5uxONbW1vNj9+7dy8aGhpwxhlnCB5zxx13YP78+Xj33XedaqsrT4YMBs7rJ+qNfT34V/UJKFkWv82ZAo6DTxUqMxg4jA+LwtTIOJR2tGCnugHz45K93Syf4wv7kq+jPrKPqZ8+ry4HAFySlgNwxvnGviReGYzfpE/AuqpjeLv8EB4vmOux16Z9iRBCHKen303iZX5RfEupVKKgoADFxcXm2wwGA3bu3InCwkLR5xQWFmLHjh2C24qLi82Pv+qqq/Df//4XX331lfkfADz22GN44okn3PE2/NJ7p49Ayxnwm7QJHhlxcdbFqdkAgP/Ujaw6TghxrbrebuxsbUC0QoWzEtK83RxJl6blIDkoBHs1TdjT2ujt5hBCCLGCRoyJt/lFYAwAN954Iz799FOsX78eFRUVWLVqFfr7+3HJJZcAAB588EGsXr3a/PjrrrsO27dvx3vvvYeKigq8/vrrOHz4MK6++moAxvnGubm5gn8AkJKSgrQ03z3R86TS9hYUtzYgXhVsHBXyYbNiEpEaHIqyTg1OdrV7uzmEjGnr6yrAAbgwNRtKHy54p2RluDVnCgDg76cO07JuhBDiw/hzjGm+MfEGvwmMzzvvPDz00EN47bXXcNFFF+Ho0aNYu3YtYmKMywY1NDQICmvNmDEDq1evxr/+9S9cdNFF+O677/Dmm28iJ8e3Azxfoec4vHPqMADghqx8j1V1dRbLMLgoxThq/BWNGhPiNj06LbY010LFynBuUqa3m2PT7JhEzI5JRGN/L76spd8GQgjxVXreiLGeRo+JF/h2tGPhmmuuwTXXXCN630cffTTitnPPPdehitPHjx93um1jzQ+N1Tjd04lJEdFYFJ/i7ebYZUliOj6sOoafW+px82ABYpRB3m4SIWPOpqYaDBj0WJaUgTCF0tvNscut2ZNxoK0Zn9ecxLKkDPptIIQQH6TjjRLrDAafzkgiY5PfjBgTz+nRafFR1VEAwC3Zk31ibVJ7BMnkOCcxA3qOw4+N1d5uDrGhT6/DofYWbGmuxc/qelT2dPpUYTcyEsdx+KbeuETTeclZ3m2MA5KDQ3FBSjb6DXqsqzzm7eYQQggRwR8l1hpoxJh4nl+NGBPP+Ff1CXRoB3F2Qjpyw31nzWJ7LE/KxPq6CmxsrMJl6RNo6SYf1NjXg4+rj2NHSz0GLQ588apg/Do5CxekZEMloyvFvmZ/SxNqeruRFx6N8WFR3m6OQ1Zk5GJTUw1+aKrG+SnjkB0W6e0mEUIIwfBqJzpeVWotpVITL6ARYyJQ39eN/9afQhArw3VZk7zdHIelhoRhamQcmgf6cKCt2dvNITwGjsNnNSfx2/2bsaW5FjKGxfzYZFyeNh4XpmRjUkQ0Wgb68I/Ko7j7wFYc7dR4u8nEwhenTgIAzk/J8m5DnBAmV+CqzDxwANaeKqPsBEII8QEGjsPNe3/Ek0f2CApuUYVqzznYroZmsN/bzfAJNGJMBN47fQQ6jsNVGRMQq/LPeXjnJmeitKMF3zZUYVZMorebQwAM6PV44fh+7GpthIqVYUXGeFySmjOiqFttbzfePV2GvZomPFy6A7+bUIglieleajXhax3ow7b6GkQolFgQ5x91BywtT8rE/+pPo7SjBXs1TZgTm+TtJvmdNWvW4Pvvv8epU6cQFBSEmTNn4v7770dWVpa3m0YI8UODBj2aB/rQPNCHhbxjC6VSu9ep7g7EKoPQOtiPRw/thJJl8eWC873dLK+jEWNidrBdjV2tjUhQBeOiVP+t3n1GbDKiFErs1TSiZaDP280JeP16HZ48shu7WhuRGhyK1YULcWVGnmil87SQMPw5fw7uGD8VBg546cQBbBia00q868emGug5DuckZvhtQRQ5y+Lm7AIAQxcB6cTLYXv27MHVV1+Nzz77DO+//z4GBwdx0003ob+fRhsIIY4TjhIP/01JPe7To9Pidwe24erd36GhvwcARkxtC1QUGBMAxh+mtafKAAA3jsv36/mdCpbF0sQMGAB8T0W4vErPcXjx+C842N6CcaEReH5qEbJCI6w+h2EYnJechT8XzIGcYfFWxSFsV9d5qMVEDMdx+GHou7QsOcPLrRmdWdEJKIyKQ21fN75trPJ2c/zOu+++i0svvRQTJkzAxIkT8dxzz6Gurg5HjhzxdtOIiL2aJqw+/gtdBCI+i79v8otvGUCRsbv06LTmv9sHB7zYEt9DqdQEALC5qQanezoxMTwaRX6aJsn3q6RMfF5bjk1NNfi/jFywVITLKz6sPGoeKX56ynxEOLC8z6yYRDw4cSaeO7oXr5w4gNTgMORQwSSvONqpQX1fDybHxCE9JBwGg/+esDAMg5uzC/C7X7bhk6rjOCs+1W+WnfJFXV1dAIDISOe/myw7ut9n0/NHu52x6Imy3QCAmTEJWDp0UYv6SRrtS/ZxZT/pmeHjiSAYZvz7c/DlfYnjNYm/8ow32upr/USBMUG/XmdenmlldoHfLM9kTXJwKAoiYlDWqUFZRyumRMV5u0kBZ6+mCV/UliNMrsCfC+Y6FBSbzI9Lxo3jCvDu6TI8c3QvXi1cREGMF/zYVAMAOD8z28stcY1xoZE4JykD3zdW4181J83p1cQxHMfh2WefxZw5c5CT49z0G7mcRWxsmEvaEx0d6pLtjEU6xXD/UD/ZRn1kH1f000DP8N+qkOHje0RkMGKjXPPb4E2+uC/1dA+PzEeED9cTctVvsTN8pZ8oMCb4srYCmsEBLIxLwcSIGG83x2XOTkxHWacGm5prKDD2sLbBfrx64gAA4N7cQqQGO/9je3FqNo53teHnlnr8/dRh/CFvhquaSezQr9fhp5Y6qFgZzknLxEDnoLeb5BLXZk7E9uY6fF1/CucmZyJlFPtooHryySdx4sQJfPLJJ05vQ6czoLNzdLUgWJZBdHQo2tp6/DqbwZ1aOnvR1tZD/WQD7Uv2cWU/qXu7zH93dg//FrS196JV778Xwu3pI3V/H/ZoGvGrpEzs0zQhQqFCfqT7z8M1vcNXI3q6h1Op65rb8fzR/Tg3OQuzYz1TvNaT37mIiGAoFNanilJgHOBaB/rxRW055AyL68f53/JM1hTFpWBNxWHsaKnHb3OmiBZ7Iu7xZnkp2rWDWJ6UiTNik0e1LYZhcNf4qTjS2YrNzbVYEJeCuVRN2GN2tNSjT6/HWQlpCFMoMYCxERhHK4Pwm/QJ+KjqGN4/fQSP5s/xdpP8ylNPPYXNmzdj3bp1SEwc3QmUq06GDAaOghkJvTqtuW+on2yjPrKPrX56/eRBcODwuwmFko8Z1BtE/9YZDFa33TbYj3C5EnLWt8slWeuje3/ZhjbtAAwGDm9VHAIA/G/hhW5vk47f57w53t81VGNXayN2tTZ6pB18vvKd8+29ibjduqpjGDDocWHqOCQF+UYag6uEyBU4IzYJfXo9drY2eLs5AWP30I9qUlAIVrooRTVMocRd46cBAN4sPygoHEHc64ehNOpzkvy76JaYi1NzEK8Kxs7WRhxqb/F2c/wCx3F48skn8f333+ODDz5Aejotp+YP+vQ6bzeBBKDvGqtsFkHlF98aNOjNf1tba765vxfX7v4efyzdMfpGelGb1jha29jf69HX5c/llur/QEWBcQA71d2BH5uqESFX4or0XG83xy3OHloDd9PQyT1xr369DmuGrnq6epR+TmwSzkpIg2ZwAP+qPuGy7RJpjf09ONzRigRVMKaOwekIKpkMN2QZM2XWni6DgdYHsemJJ57Af//7X6xevRqhoaFQq9VQq9W0XJOPo8CYeJq1wJZPy6tEPaDnBcZWnnO6pxMAcLyrzam2+ZogD68Ewx+Y1XFUsZ6PAuMAxXEc3j1dBg7AVZl5CJMrvN0kt5gWFY9YZRAOtrdATWsau92/a8rRPNCH+bHJmBXj+vkpN47LR7BMhv/Wn0Jdb7fLt0+EtjUbl8k6KyF9zFZ2XxSfirzwaFR0d2BzM11As+WTTz5BV1cXrr32WhQVFZn/bdiwwdtN8wkDer1gXVZfoec4fFZ9Ajdt2UgZN36oorsD+9uavd0Mu3xecxJrKg4JAl5rFx2lRiytPcfTgaS7qVhPB8biI8a0rBsFxgFrX1szDra3IC04DMuTMr3dHLeRMQzOSkgDB2BLc623mzOmaQb78VVdBZQsi1tyJrvlNWKUQbgiPRc6jsPa02VueQ1ixHEctg2tH31mQqqXW+M+DMOYU/4/rDxKI2s2HD9+XPTfpZde6u2meZ2eM+Cy4m9wz4FtAICtzbV44dh+jwfK3TotDrarR4zY/eP0UZS1tWJ9bYVH20NG754D2/D44V3o1+vQ2N8jWO/X1/yj8ii+rj+NPt3wb6m19vJHLPnzXQ0chy9ry3GsUzPiOUoPB5LupuC9H09kLgkCY17/aykwpsA4EOk5A947ZQwqbhyX7/OFC0brrIQ0AMB2Cozd6tPqExgw6HF+yjjEq4Ld9joXp2YjMSgEezVNONLR6rbXCXSVvZ2o7u1CdmgE0kPCvd0ct5oUEYNF8anQDA7gi5pybzeH+ClTIFA5lOb54vFfsE1dhzIP/049XLoDjx7aKRhh5C/D2DZIae/+an9bM1bu3YS/Ht3v7abY1K0fzkywFnBpJUaMj3e14b3TR3D/wZ9HPGesTXvR8t63J+b58ucY80f2OasJ7IFhbEdERNR3DVWo6evG1Mg4zHFDuquvyQyNQFZIOCp7u1A1dMJCXKu+rxvfNVYhVCbHb9ImuPW1FKwMV2XkAQDWVR1362sFMlMa9eKhC0tj3Q1Zk6BgWKyvq6BpF8Qp/JFhT5zo9ui0okGuaf7lia52t7wu8Z59GuPFjmI/KCjKT9nXOjFibC17h/9d8+XRc3vxLw64atRWZzDgcEeraP/oBanUFAzzUWAcYHp1WnxcfRwMgJuzCwRXkceyRaZRY3W9l1syNn1cdRx6jsNlaeMRrnD/uoNnJqQiNTgUpR0tKKVqwi5n4KVRL4ofu2nUfAlBIbg4LQcDBj0+rDzq7eYQP6TjnWy28gJWd41urdj5La7d/b1kkaPRHN2b+nvRq/OvaQX9ep3dBZ/8lczHz9n4/S8IjK2OGA8/h38RyVo2Iz+Ytmc/3d3aiMa+HpuP85ZBfgEyF11I+7DqKB4q3YGPRQYQpFKpfbE+gqdRYBxgPqs5iQ7tIM5OTEdOWKS3m+Mxi+JSAADb1bVj/sDpaXV93fhJXYdIhRIXpmZ75DVlDGseNf646hh9pi52tFMD9UAfJkfEujUt3tf8Jm0CohQqbGmuHTPVTonn8EdmOrXD630bXJyeaBlo6zgOm5pq8IPlsjiM6J82dWgHcPPeH3Hbvk3ON9LDSttbcHnxBvyv/rS3m+JWtgJjrUGPp4/sQXGLdwYB+CPD3bzA2FrlY+GIMX+5JunX0UsEdmJOdXfgqSN7sNKH92d3ZJj8NDQQJFZfR6r4lquCcn9GgXEAqevrxld1p6BiZbgmc6K3m+NRScGhyAuPRkN/L052t3u7OWPKF7XlMAC4KCXbpcsz2VIUn4qMkHCUdWpwiOYau5RptHjxGC66JSZELse1WcbfxndPldEFF+IQnUQVXlcWtHn26F5ctWsj+vXCwkYvnziAV0+WCB7LSITDtvbq+qGRNdMaq/7g9aH3/o8xnu0h9ZmaFLc0YmdrI545us9DLRIa5C23JAiMraTrSo1YWgsQ9YLvmvU2NQ94do1gW2p7u/F2+SHBxTPhPGsDWgb6BN9xZ5gqXWtF+lGwjrFEKnugosA4gKw9VQYdZ8CKjFzEBdAokMmieNOocZ2XWzJ2tAz0YXNTDYJlcpyXMs6jry1jGPwmfTwA4MtaKpjkKjqDAT+r6yFjGCwYyrQIJEsTM5AVGoEjnRr87KVRF+KfhPMeh//u17tuFGZHSwO6dVqUd3eYb+uWWH6JH0I5ks7tj0u2mIKM5OBQAECXdtBnL2xxHOd00NNvsP48A7z72Q3w9h3hHGPp74BB4nujFVRLNj7fVJWbH2hLZWQcam9BY1+PzcDZ0x49VIz/NZzGB7yLOPyAVDPYjxv2/IBb920e1esohlLRxYJd/ldDZ+fFiEDhV4Hxxx9/jCVLlmDKlCm44oorUFpaavXx3377LZYvX44pU6bgggsuwPbt2833abVavPDCC7jgggtQWFiIhQsX4uGHH4ZarXb32/CKvZom7NU0ISkoBBd7KN3V1xTFpYKBMb1krFU09Jb/1J2CjuPw6+Qsr6yFvTAuFfGqYOxra6bCai5S0q5Gp24QM6ITEOGB+eK+RsYwWDnOuHzTP04fpRMFYjepka9+N+xD/NGmFl6xOMFIGsQDDluHP2uFknyWKcWY47CjpR5X7tqIH5qqrT/HS1Yf/wWXF29A64Dj1cFtzadlvXxaz/+95F8QsjZiLAyMxYtQ9Qy97zt/2YqVezcJRoHFikt1DA7g4UPFQ+nTvnW+Z6o/0Nw//B74/VbT2w3AGCCPhmlJK7FjmGDEmJ9KzfvMAnW+sd8Exhs2bMCzzz6LO++8E+vXr0deXh5WrlwJjWbk+mYAcODAAdx33324/PLL8dVXX2Hp0qW44447UFFhXL+vv78fR44cwe23344vv/wSr7/+OsrLy3HnnXd68m15hNZgwNpThwEAt2RPHnPrv9krVhWEKZFxaB3sxxGRdfGIY3p0WmxsrISCYXGRly62yFkWF6YYX3t9Ha3N6QqmeUmBUnRLTGF0PObEJKJpoBdf0ZqvxE56g3h6oq3RwZaBPrx3qgztg/anLnfy0pxbeAGWVHVb/omwrTnPWou1ZP9x+ojPFznkj46/dqIEAPBJ9QmvtMWWrUNZa6Ud9vUpf+SbX6m5ZaBPsCQX4P3iXPw5qvy/xdJ5TSRHjPn78tD3qWkomGzgFdISG+jo442s+9qIsQl/aST+e+3Vi2eAOEo5NGKsE+kfg8TIPP8zM/jjBTIX8JvA+P3338eKFStw2WWXYfz48XjiiSegUqmwfv160cd/8MEHWLRoEVauXImcnBzcc889yM/Px8cffwwACA8Px/vvv4/zzjsP2dnZKCwsxJ/+9CccPHgQTU1Nnnxrbvd1/SnU9fVgxtDJXiAzpVNvozWNR+3Hpmr06fU4KzEN0cogr7XjV0mZCJXJsbW5VjByQhynMxiwW9MIOcNiboD/VtycXQA5w+JfNScFV/YJkSIMhnkBgo1U6meP7sOXdRV4Z+gCtj16eQESfy7woB2jP7ZSpfnbLmlX4/PacjxyqNjutnmKnjPgo8pjOMVLK+cA9Ay1P8OH1l9vHxzA7tZGp9K7+Z8d/7O598A2PH54F452avB9YzXKfWB5rkGJwFgsODORymzgb0tvsc/yK1YbOOBguxpdvCwKYaqwbwZ4/ICd/177XFQN3togmNTvgaDPA3TE2HOVckZhcHAQZWVluP322823sSyL+fPno6SkRPQ5JSUluPnmmwW3FRUVYevWrZKv093dDZlMhvBw539MWXb0V+tM23DFtjQD/fik+jhkDIPbxk+BTOY310KscraPihJS8VbFIexobcAduVMhY8ZGf0hx5b7EZ+A4/K++EgBwUWqOy7fviDClAuelZOHfNeXY2FiF68ZNcuj57uojf3S4vRXdOi1mxyQiTClMow60fkoPDcfl6ePxafUJvHPqMP40ea7N5wRaHxEhnWBeMa84lo0RWlMFdEcu7AkD7+HXEqSyCkZ/ONG/xfTx5oZ28IINT+rWaREsk6NbN4g/HPgJF6fl4AKLOhY/NNbgXzUn8K+aEwgfmsrDf2e+9C184OBPaOjvxZ/y55hvs7d9/MCOP2LcPvTZbFfX4euhatx3jZ82+saOgtSFGWsF6KQqTPOfo+M4wUUF/uscaGvGmlOHkRocijWzzh6xndZRpiS7C3/EmP9+uiRqBjhKYWW5K6nlmgYtskUCkV8Exm1tbdDr9YiLixPcHhsbi6qqKtHntLS0IDY2dsTjpeYQDwwM4MUXX8SFF16IkJAQp9opl7OIjQ1z6rlioqNDR72N1/eVok+vx1XjJ6IwPdkFrfItjvZRLIDZ8UnY1dyAaq4Xs+KS3NMwH+OKfYnv54Y6NPT3YEZcAmZler9A0zXBk/FFTQW+b6rGXTNmQOHEdAFX95E/2ldVBgD4VdY4yd+yQOqn2yOnY1tLHXa2NuLoYAeKku1LLw+kPiLD9BIBjOVolxRba8DrJQJv/smscF6n+EmurZGgPsGokedH2zSD/bhu9/eYHhWPaVFxaBroxZqKQyMC49q+LvPfYtWafem0vmEo66SCN7ptb2AsTC8emX1Q19dt/lvNu7jCcRwYK6nVb548iF69Dg9MnGlnS2zj72eCVOpRFt/ScQZBMS/+xaBjQxeW6njp1fyg2lczfqRGtTs8UA1eqiq1VGX9QOIXgbEUW196sfvEbtNqtfj9738PAHjsscecbo9OZ0Bn5+hTOVmWQXR0KNraemAYxeSIkjY1vq0+jWilCpckZqO1tdv2k/zEaPpoTlQidjU3YENFBcaxrruQ4YtctS9Z+uexIwCAcxMyfWK/UgCYE5uIXa2N+Pr4SSxOSLP7ue7qI3+j5zhsrasBCwaTg6JHfK6B2k+3jpuMJ8p244UDe5AtWwKVTPqiiyf7KCIiGApFYNaL8FX8AkP2ppHy2SpgKEi3lBol5t0ulaJqK7WUH1B7o0L10aEaIAfa1RgfHiX5uB4bKae+eGLPb5O9rbO1nI6GN8ec//kPGPRWl1D8ttE4sOTKwFgvOV/V8eJbg4LvkEGQRj5gI+WX32f8gNpW3OBJBsGI8fD76R3lMk3WfNdYhQ0NlVielGm+jf+7xb+IR6nUPiw6OhoymQwtLcJCBRqNZsQosklcXNyIx7e2to54vFarxb333ova2lp8+OGHCAsbXaDkypMhg4FzenuDBj3eOHkQAHBr9mQEs/IxeTLrTB/NjU4EC6BY3YBbs6d4vViFJ4xmX7JU29uN/W3NiFcFY05Mos/sV+clZ2FXayP+V3caC+McLxzlyj7yR2UdrWjXDqAwKg5hMoVkXwRaP82OScScmETs0TThs+oTuNqONeADrY+IkWDkRXCCaV9wGWxjHXj+GrH9EnM5ewXrG4sX3LJ1wuvuitq28E/Ue62klfIDnuGi1PzA0/e+g3qJ9Fmrz7GxJjb/wgu/6JS1CzJai6yA0U4rUw/0oUM7IGirvRWO9RL7Jv+96g2ccNsWQbMl/vevR68TPFbB+MYFRf4FgUGJonmjIdblrw/FBVt4dXa0EhfxbBXpM9nSXIOMkAjkhEU62VLf4hcTLJVKJQoKClBcPFz8wWAwYOfOnSgsLBR9TmFhIXbs2CG4rbi4WPB4U1BcVVWFf/zjH4iKinJD673j3zUnUd/Xg5nRCSgKwLVIrYlUqjA5Mg5t2gHzlWliv28ajHOZfp2c5VNztAuj4pESHIqyTg0qaekmh+0YWrN3Pv1ejHBrzmSoWBk+rylHfZ/3MySIb9JLjOxJBQWOFmIakBwxFq+ArZdIi7Q1kspvb4+L5jvydQwO4MY9P+DrulOi90uN9lnir+lrurzNf2e+eG1KGAzZd9FBJ6jObH3pnX69fWnwnVp+WvLoA7GVe3/EvQe2o41XWZ3fVrHvwF+P7sMLx/ZbzHcV7x8dZxDsFwMSUwbEtsN/rL0XIzyB3yOC4NRVgbGVwNZy/rb5dokl56TU93Vj9fEDuOfANidb6Xt856zWhhtvvBGffvop1q9fj4qKCqxatQr9/f245JJLAAAPPvggVq9ebX78ddddh+3bt+O9995DRUUFXn/9dRw+fBhXX301AECn0+F3v/sdDh8+jBdffBF6vR5qtRpqtRqDg94pNuEqtb3d+HdNOVSsDLePn+IzaSO+pCjOON+6uKXByy3xL4MGPbY010LOMDgnMcPbzRFgGQbnJWcBAL4ZKkRC7GPgOOxsaQADYF5sYMy7d0RSUCiuSJ8ALWfAGydLnaosS8Y+R04wj3VqsGLnt9jT2mi+zdZuxT+pl0ql7pMoeKS1YwRba9CD4zjB/e4ovrVNXQf1QB/WSFThFs55lO4UsXnFfD45YiyRamz9OdZHjPmBZZ9ExoDJpqZqfFx1DF264c/V2lJK9jK9Vnl3u/k2QYquSFt+aqnHNnWdYE1uvcQ+axkY99sYMZZagsiX1qU3SHyujganUqw9U1DkjP96Dhbfcmfat7f4RSo1AJx33nnQaDR47bXXoFarMWnSJKxduxYxMTEAgIaGBrC8CmwzZszA6tWr8corr+Cll15CVlYW3nzzTeTk5AAAGhsbsXnzZgDARRddJHitDz/8EHPn2q5A6osMHIc3yw9CxxlwTeYkJAVRERgx8+KS8VbFIRS31GNldgFYunhgl+KWBnTrtCiKS0GkUuXt5oywNCEdH1Uew5bmWtyUXWAzNZEYnexqR8tgPwoiYry69JYvuzRtPLar61Da0YLvGquwfOgiDCEm1uZHWlpTcRi9eh2ePbrPfJvN9YU5/lxi8eWg+KOo/JPtQRtznvv0OnPBq6Sg4QKk7hgxDpFb/13mvzdrx2bhfca/+cGw74XFwkBi0MYyXia2LhTwA5h+G4Hxy0NrPGeHDqe9DrqwwBq/EJi1AI9/cbGcV5BMuFyT8H0L5vDrxfdnncGANu2AXyxBJAzYJS4IGAyQWalrYY21wJbfD3qLCxBij5HkO93pMn511njNNdfgmmuuEb3vo48+GnHbueeei3PPPVf08WlpaTh+/LhL2+cLNjZU4lBHK7JCwnFxao63m+OzopVByI+IQVmnBie62jAxIsbbTfIL3zdWAwB+leRbo8UmYQolFsQlY3NzLX5W1+McH22nr9nRSmnUtihYFvfkFuL+kp/w7ukjmBmTiHhVsLebRVysZaAPX9efxqVpOYhUOHbxj3/irrUx8mIK6qSqw4rRG/hBg/gc436pEWMbJ7x7WpvQp9ehuLUBF6Vki27PVWzN8ezVDwfj1tIaR4bFxvN0Zuj/fTGzo5ufwuzEiLGt+wWp1FZScvlLGNkboNujz46q6IBwX+fPI+dfXBLMgzZYpFIbxPfzJ4/sxi9tavxfeq7o/b4UGPMvYvAveo2oEq0HlCzrcPantVR6y9H44b9tT7ngOA5vlJciKyQc2bx5xTqDAa+dLMGCuBTM9ePMM79JpSa2Nfb14L3TR8CCwb150wULoJORFgwFATsondou9X3dKO1oQYIqGNOi4r3dHEnLhqot/tBU7eWW+AeO48xTCiiN2rrc8GhckjYefXod3jx50CdPvMnovHjsF3xRW443T5Y6/FzhSb34iaeJqeijwWK0y/r2xQPvQUGQwF8ix/5Uav4SMcJRO9fPfbRVUXjAiUCNHzOYUqztLR7kSQMWn09xSz1qerusPMN2MCc1b9na89r4gbGVpZQcJVUUy2Cxzwn2X/7j+I+xCNikCnvx08d/aTMuybqvrclmm7xN+B0W/662DQ7gsuJv8Pyx/aLb2K9pxvraCtH7dFYm2QtTqcWrgkvtP53aQXzXWIU1pw4L+na7ug6bm2vx1JE9kq/rDyhyGiMMHIdXTpag36DHFekTMD4syttN8nnzefOM6QTXth+aagAA5yRl+HTqeUFEDJKDQnGkU4PaXiqUZMvpnk409vdiQlgUEoKcW8M9kFyVkYfU4FDsa2vGZl5lTzI2mNbGrex1vICfI3OMxYpF2QqApOYF8k+qpeZTWgZMzf29ONnVLnG/+Em6qwoX8degFZvfKrWWrbXHmXDccJBsLTDwJE4icK3t7cYzR/fh9v1brD7f5vJaDqTwm/CLZA26oPiWiVZiJNfys9JKjAzz6SwuLkkVIesTmec6KHHhyJeW8JL6jeDfXtbZCsA4H1vM42W78O7pMtGLK9Y+f6liX1red0bqwpJg/jbvAoWGd7HFn1FgPEZ8U38ahztakRUagRUZubafQBCnCkZeeDSaBnpRwZvjQkbSGQz4sbEaLIClPlZ0yxLDMDgnMR0AjRrbw5QxsWDoQhGxTiWT4Z4JhWAA/L3iEJr7e73dJOJCCtaY5uvMkimSaaBWUqn5bL2mcMRYPJVaquCWZZBy094f8fuS7egeSmMV3M87IXZH4aJ+G6PQgiJLVkaPhSPfwyPwphFjXxkdFFZaHm5Tp52FzaylRFtu01o1dH6A3sbLEHBlQapBiUwJvUWQpRVczBF/f3qLkUyp9ZzFvjdS+62v7BOAdAaGzsZ7E9Pc3zfiNmsX2gQp75ap2zaeL5i64aPzt0eDAuMxoKqnE/+oPAoZw+APudOhoBRqu5mCgZ8lrsYRo31tTWjTDmBGdIJfzKtckpgOFsCmphqXpf+NVcXmZZooMLZXfmQsLknLQY9ehxeP/2L3OrXE9ymHjp9agx4fVR7FW+X2p1QLRowtCuhYEquobHOOseRIru0gWRgwDf/dPRScDUiMqmktgoqD7Wp08EYbnSGYBy3ynvkn2Pz5xoAwuOP3t+l2PWcAax4xNm67V6fzajViqbmx9qZ6W6vMDdg/Siu1DJcri29JLaNk2RadPSPGgmkGnGTQJrYPCS4c6W0He87gOM78/XGGVDYEv+38KQ7WNPT3jLiN319HOzXYr2k2/7et6QyA9Og6/zPmX9zxxprn7kARlJ/r1+vw12P7MWDQ45rMiYKJ8MQ2/jxjSqeW9uNQGvUyPylmFacKxozoBLRrB7C/rdn2EwJUTW8Xavq6kRUagZTgMG83x69cmzkJOWGRONKpwWc1J73dHDJKpgJAphHjQYMB/6o5iW8aKu2e8ypYakbkJL6hrwfbhtLvxYJg24GxeOA9IFlwS3xUSFCsaehkViqI5gdNu1ob8eihnfhz2S6r7RSjMxjwxsmD2NPaKFo5m+M4vHeqDD+p6yRHjE91d+CCn7/G10PL8YkFXjqLEePDHa34v50bJOdoeoJwCSLxFGBrF3BtXXjj3yuVEt822C95AWW0xbck56QLRnylR4ylUvSF+6xBMjVerO/4o9D8CxCuDIw3N9fi/3ZtxLbmOpuP7dfrcPcvW/GP00dstoX/btp5F6EG9Hoc7dTgjv1bUNnTKXjfYssm8bf/wMGf8biD31vJwJj3GfPTp7t4QbI/n0+PKjAeHBzE22+/jYYGKl7kLWtPlaG6twvTo+JxWdp4bzfH7yQGhWB8WCQa+ntwusfxOWWBoFM7iH2aJoTJFZgdk+jt5tjNVJGa0qmlmYpuLYil0WJHKVgWD+TNhIqV4ZOqEzjaqfF2k4iTfmlrxhU7v8U/Th8xjxjzT9ab+ntR2t4iqCIrxlqxK47jcMu+TXjh+C+o6e0yn/TLeCnVOgOHjsEBtAyMTIs0bkd8lEyYlioeJPOJrXvLD2gE1XJ529jZavy9cGbq0XZ1HTY2VuHJI3tEA/m6vh58WVeBvx7bL1l9++Mq40oiayoOAbDsD/3QbcJ+OdapgQHGoN5bpOaD9+mG+5m/rrBJcUs9bt23CaUdrXa/lljxre8aq3Dt7u+xvm64SBP/Mxjt3HGpZcqsFXxzdKqCluMkLxyJZQNIXczSGgzY3FSDxr6RI6yO+qTauD/+rfwgyrva8dDBHZJB8sH2Fpzu6cTnteUOvUY7b8S4SzeIJ8p2o7q3C3+vOGyeBgGIv9/Rpo3rOQM6tYMjglypecX8fdifR49HFRgPDAzg1VdfRV2d7aslxPV+VtdjY2MVohQq/CFvuk8XRPJlplHjYqpOLepndR10HIeFcSnm0RR/MCcmCRFyJfZqmuxORwo0pn2e0qidkxYShltzJsMADs8f2z/qFFPiHaZA7/PacigY42kR/6Tys5oTeORQMV449suI5+oMBmxoqES3Tis5cqbnOMEJbod2UDQw0HEG/LlsF27Y84OganBTfy+2NNcKRoXEgkLAvpE4fvDcOxScaSVGafnvo2kU8+mrecWBxIqI8YNxqbmklumiYo/jVy/Wc5wgeLB1YcPVenVa7NU0WcwxFh8xVg/0YVtzreCixTNH96G+rwc7HTg34X/ipn74V/UJAMAnQ/8PWKbSji6AEixNJmiL9NI/jgZtes4g2U6xsUmp7f+r+gReOnEAbw1dXBmN9JBwAECPXod/1ZzA4c5WvHe6TPSx/PWdHcH/zg8Y9Ob9ecCgF6TDDxhERoxHWXxuQ0Mlrtq1EV/yLqiYXtuE//3q0loP1P2FzXWM582bJ3kfx3HgOA6333475EMLtu/cudN1rSOSanq78OrJEgDAfXnTEa0M8m6D/Nj82GR8UHkUxa0NuCZroreb43NMlXeXDBW08hcKlsXC+BR801CJn9X1+HXKOG83yac09vWgoqcDacFhyBg6wBPHLUvMQGl7C7ap6/Dc0X34W+I53m4ScZCttL/dmkbB//N911iFtyoO4X/1pzErJsF8u+Vczw5emmGPTmtOg+S/ttZgMAfpJe1qnJVg/M1dffwXHOnUSH5PpapSS43K8U+oe4bm8PJPZPmpzvYu/2ML/wRarCiYVNA/IFIkyDQEIJZKbeA489JAeo4TvNeWgX6khYSB4ziH14R1xqqy3TjSqcF1WZPMtwlG5nl/v3T8AGr7ulHf34MrM/IE27GcZ20vvfmig/F1WAwHrrYKUg3o9SjvbkdBZKzN17Gnjoe1VGp76AwGQcVkZx1oNy7n5IopVnLePmR6P/z1oTmOw6p9xYiEQqSigH34F6ks528PGIT3cRyHj6qOoVenwy05k0c9YrxVbRz0LG5pEGSk8tvEv9gkmLdu54hxc38vKns78evYCaNqqyvZDIzb29sRGxuLyy67DAqFQnBff38/1q5di6VLlyI1NdVtjSRC3TotnjqyB316Ha7MyMX06ATbTyKSUkPCkBkSjqreLtT0dpmvAhLj2sXHutqQHBSCieHR3m6Ow85KSMM3DZXY3FxLgbGF4tbh0WJPnCSOVQzD4O4J01Dd24WD7S34W1kJrk6hlQH8CT+wFDv1DpYpBFVc+UwjwaYpTWLbNKUkmvTqdeaRUqkRth5emu2RoTT9Bon0T6mRaqniTvy22R4xHr7dVb8SYssL8ftHavkh2VALOPPjRr4/PWcw96mOMwhHtHSD+KDyKLY21+IvU+Yh1c11FUyf24muNvNtAxJLI9UOjShuaqrBRSk5I1LsnWHqH9NFB5ZhzRcNhBccRm7/uWP7sFfThEcmzcL8oaw6KdaW1DKxHDF2NDDWc5zPFTnkvyOxY2i3Totvq43z4c9OcG5gQZDdwQtCe/Vai+XYDKjv7zHXu1iamO6yCtwDFpkWgqrU/MDdjotyAFDd04WdrQ24PH08/nJkD071dEIVqsT0YNsXYTzBZmD8xRdf4KmnnsLGjRvx4IMP4uyzzzbf19XVhbVr1+LSSy/F7Nmz3dpQYqTnOLxwbD/q+3pwRmzSiCuLxDnz45JRVd2FnS0NSM+gwNhky9Bo8ZkJaX4ZPOWFRyM5KATHu9pQ39dNBaZ4TMs0zaf5xaMWJJPj0UmzcW/Jdnx88ijS5CFYGEcXi/0F/wSTEwkm5VZ++/hTmKSWPdFxnDAw1mlFTxz5t4mtzWpPFWNHAw7T6LBUii8/6LZVHdnq6wgKTY0sItbNm5/YrRUfebJ8/2KBkmXBJ35g3KvT4d9DgcMXteX43YRCR9+GU4J4U5BsfYYd2gFcsXMDohQq8238VHlHmIJR077IMjBHc4IRY5F9Zq+mCQBQ1qGxGRjbO2J8uKMVQTIZxodFORy06TjDqPY/d+A3RybyG8EPZGudTKUesEi3N+nR6UbUFuDXJijvbndZf1l+UsLAWCd6u7WLJY+X7YJ6oA8Mw+DUUG2fH2qrMH2CbwTGNucY5+fn45NPPsHtt9+OVatW4cYbb0R5uWOTx4lrcByHtacOY39bMzJCwvGH3Bk0r9hFzNWpW2mesQnHcdg6FBiflZDm5dY4h2EYnDnU9q12VI4MFC0DfTje1YZEVQhyqJK9SyQFh+KhSbPAgsFLxw7gsAMFc4h38U/oxM4l+cGVJX76oFTVaD1nQCcv8OvR60QDWP62xAJje1KZHV2WyNSOQT1/xFh8Lu5o5uhKrStrOoHm9zG/JgS/lyz7xNaJv44zCIKTHl5K8mgrMdvCT5HvsrL/WDJlJvDnpEtlK9hiGXxKzQW2FqSGK5Q2X8eeEeNBgx4Ple7AvQe2j2iLPXRWim95i63vGn+ftnfNakv8742aN8e/V68TVIwfMOjROjCcxq0e6LO5/rW9LEf7+cF6v0SQbK1vTAH+L7zlo3xpWU27i29dfPHF2LhxIyZOnIjLL78cTz31FNrb293YNGLp89pyfF1/GpEKJR7Ln40Quc0Bf2KnzJBwpASHoqK7A40i68EFomNdbWjo78XE8Gi/Hmk1BfVbmmv9egkBVzIVc5kXl+SXmQC+akZMAv4wbSa0nAFPHdmD6p4u208iXieYqydyQscPrix/Q/gpzwMS8zb1HGdeDgoYGjEWOcm3DIy7tYNWg3IxjlYYNp3ADnLW+wAQnvg6Ot+Yn3LJv0hgCpD4rykVSPZZnHjbOpnWc5xooTHAvmBuNPjb5xdS8yTTZ8RapKBbsnaBQWpfMJHKfrDEH+3s1A46XnzLYHBZoOcqUhd7THot0videg3e96aNd7FExxkEVc0H9HrB/OYenc6FI8YWgbE9I8ZWPiuWt5waX3FLPd4qL3X4oomrOVSVOjQ0FH/84x/x5ZdfoqqqChdddBGdVHnIj03V+KDyKIJYGVYVnOHXgYovYhjGnFJK1amNNg+tXeyvo8UmKcFhyAuPRkN/D050tXu7OT7BlBmxwEaKHHHcb3Ly8Jv08ejRafF42S40j6KSL3GvDfWnsbmpRhBM9tgIRDu1g3in4rA5bZGfAtwjUWBKz3Ej5uKJBXX9FkHc/+3aiGt3fefAOxrFiLEd1az5tzr6OsIAdWQ/CQuIiY9M80dOjVXAbZ9A8wMLfhEr/ufR3N+LRw8Vo7ilAV/XncIV338tWD/WGfygpd1LqyKY+kcszZfPcl8UjHZbGenc1dSAy3dswH/rT9lsSzMvMK7u7XJqxNjdFzPsMWjQY2NDJfr1OosR0pFt41/UcvQClwn/N8Fy1Jm/X1lWqe7R2/f9sMfIEWP+tAvxegT725rxlyN7RFdqMAXa/IxXA8fhL2V78U1DpV37kzs5tVxTdnY21q5di5dffhkPPfQQMjIyXN0uwrOluQavnSiBjGHwSP5sTAiP8naTxiRatmmY1mDATy31kDMMFsb7/1xJ/qhxoGsfHMCRjlbEKIOQ54cF1fzB9ePycVZCGtQDfXjkUDEFx15m4DjU9Rrn+PXqdNiraYLWYMDfKg7hpRMHBEGercD4lZMl+E/9Kbw4tHQTf8SY/1zhiLEBfQbhyIqtk/zmAeM+42gw4Hxg7NjzHE1F7hcUDuIvzWTcjqAqth3b7tFp7RoR448y90qsG/zayRIcbG/BR5VH8Vb5IVR1d5rnIjurT1Ct17PLRJmYRoxt9VJlTyeu3fUdNtQbC0UNWAnG+D44blya6Mehi+jW8NOAK3s6Hd6vjcs1uT7jq1+vc2i7b5UfwhvlpXj3VJlkGrEpKJRaj9wR/LZZfhYdFoGx5TJKruotjjNmPRwdKiYnlRnD91nNSexqbcTr5Qfteg1+/9W7YI3p0RjVOsaLFy/G9ddfj8TERFe1h1j4sakaLx0/AIDB/XkzMIMqULvN+LBIJKiCcayrzSU/aP5sn6YJ3TotZsUkIsKOOUa+bmFcCmQMg+3qOp+ay+INu1obYAAwLzaJahS4CcswuDe3EEVxKWjs76Xg2Mu+bajEbfs34/vGKrx4fD+eKNttXtsVADT8FEQb82gPDi33UtFjXFapR2JUSFC0ysAJR1nsCJRMRWkcNeBkKrWjI3i2UmwB48ijKUDkBxH8oFFrMKBLO2hRAM22bp3WrnRcqYCcv+aqKXW7aWD4OzqaNZstX8uevnKHI50a/K281GY/HepoQZt2AH+rOIQ/HdqJmt7hQlH9EqP3AByazsf/Xr1dcQinhpYls5eWM7j82F3V04n/2/ktHjz4s93P2TR0EeBQR6vgAg7/u//44V3Y1dqIT6pOjHj+aFimY/Nfc0CvF3yvOlyYpWAAh4dLi/HAwZ9xqrvDof25ysrvGP83kX/xyNPrjVsaVWBM3OvrulN49UQJWIbBQ5NmjomRO1/GMAzmxRnTqXe2jlyvMpBs8fOiW5YilSrMiE5Ap24Qv7hg/UJ/Vkxp1B4hY1g8MHGGOTj+Y+kOqycJxPVMI4SfVB8HALxz6jD2DFXb3dQ8PMrFDwRsMc2PM6UX2pMuqQcnHEG0Y11aWyPXUrSOjhhzzo0YV/Z04r6Sn7DLSsHKn1vq8ZviDdiraZJcAupQRyuu3LUR3zdVO/T6xlRq2yE0PyDvkkh7t/xMTbY21+KFY/udOlEXK57mad83VmNDQ6XNx/H74kC7Gn89ts/83/16PY53tokGsiqZbMRt9jrY3uLQ4/UGzuVVqfdomqDjOBzvarM7dd50LVnJsiNGaC25OoXecsTYct1gfqDZ4WSxLzEd2gFzVe2drQ12ZXSYWF7K4Kd38/uszwWFylyFAmMfpOc4vHRwH94qPwQZw+KRSbNtlssnrrHAPM+43sst8Z5unRZ7NE0IlSswO2bsZINQOjXQrR3EwfYWRMiVKIiM8XZzxjxTcGxKq37w4M/mEUfiXv+pq8AVOzfgZ3U9VKxxZEvBDJ/I87OCHAliTIHWgEEPPWdAt96OwNhgEJxEuzO11tHiW419vdjUVO1wYPzC8f043tWG908fkXzMG+WlAIC/lZeOWAvVZJvaudUCnBkR459wd+sGzYGw6WICPzDu1Wnx4vFfsE1dh6/q7J/zuE/ThJ/UdT4RGNvLco9p5I2W9+i0eOxwMX53YJt5He2f1HW4a98WVHU7fqEvK8S4HGbzgGMj8jrO4PJ1jI/z1peu6rXvvTBDF1H69DrBPu3sHGJHWAaMllkJ/ItA3S4MLvm/KUc7NQ6NGFsrVtimHc7U4S/R5q05+SYUGPsYjuPwTNke/KviOCIUSjwzZR7mxiZ5u1kBY2JEDKIVKpR1tIoWDQgExS0N0HEGLIhLhpJ1/oqwr5kbk4RgmRy7NY2C4i+BZLemCXqOwxmxSZAx9PPvCTKGxR9yp2NFei569Dr8+fAulI+BInAff/wxlixZgilTpuCKK65AaWmpt5sk8M4p4/zHna0N5hFafnVVV4w9qfv7BL8lUieMOo6zmOvqO78/hztb8fKJEoeXBDI9vs7KfMAQmfGCxIBe7/J0YmeKY1kuA/VFbTmKWxrMqdT8sItfLOr0UNr8xoZKPFy6wxwgWlIP9GFV2W789dh+h7IQfFljf6/5sz4yNMf0r8f241RPJ8o72h3eXnxQCADHL+Do3VB8iz+XtaGvFxwnnPJgUtPbhaqeTvTqdOa09A7toMfXVe63+A5ZS6V2dokvW051d4r2kRTLKRrCUe7h+zS8paZcmQbuDDoz8jF9eh32apqRFR6Bl6cvQn6kbyx4HSjYoXRqA4BdmsBMp96mNo6oLh5jqfsqmQzzY5MxaDBgZ4CuV20qLDd/aMoA8QyGYXBt1kTcM6EQ6cFhfj+3e8OGDXj22Wdx5513Yv369cjLy8PKlSuh0Wi82q4+vQ67WxsFRZaqejrNJ5CuHtU51dNpV4Bt4AyC9ENb85j9jdRFZFMKspxlXB5EOJNuaZle+kHlUTxzdK9gmRsTftB0uqcTPTot3igvxaGOVvyr5gS0BgM2N9UIUowPtA1ng1hLMfcn/AsatX3dox6JTFSFOPU8HWeA3uDafUjNG7VuGejDuqpjuLz4G/ynrsJ8e+tAP+7+ZRvu/mUbjnQOr03f68XvcPBQCrugCj5nEATGlkssuUqnblCw3JotXbpBrKk4hFdOHMA7pw6bU7Kt6dAOoq63G388+DNeOLbf4WyW0aKFcH1MiFyBf5xxDrISo9HZ1geDi38IiG3zY5OxoaESxS0N+FVSpreb41GawX6UtrcgRqnC5Mg4bzfH5c5MSMWm5hpsba7D2YmBVU2/V6fDL23NCJXJMS0q3tvNCUjnJGXgnCT/3+/ef/99rFixApdddhkA4IknnsDWrVuxfv163HzzzV5pE8dxePzQLhzuaMUZvCyryl73rSVdYWcBIQMsqxT7zoixK5zsbsfM6AQc6mhF62A/vm2oxJyYRPNIrMYN2VeOpFsGy+To0+ucXoKpoa8Hpbw5sQfbW/BjUzXeLC8FA+NF5JkxCTjBS82tduN+5y3HOjU4MsqVDKKVKqeepzMYoGNdO2LMH1Vt6O/BjpYGcADeP30ESxLScbqnE/vamsyjxN82VLn09Z0VLleiT9834nfEdLFIybIOj8g7os6BbAgdx+HroWrnAPCdHX2o5zi8erLEnKEwPiwKl6TlON5QJzk8YsxxHN544w2o1WrB357gaOrWt99+i+XLl2PKlCm44IILsH37dsH9HMfh1VdfRVFREaZOnYobbrgBVVXe3/FjlEFQjKEUVn8zJSoWEXIlDrarPTJvxJf8pK4HB2BhfKrNtQ/90dSoeEQrVDjYrkabyCjBWLavrQlazoA5sUlQsJQsRJwzODiIsrIyLFiwwHwby7KYP38+SkpKnNomyzKj+nekU4MVP/wPhzuMIzq7PFQ88VSP/ZV1e+xIufZXn9WcxNunDuGRQ8VYffwXHOnU4B+VR936mo6MWoXJFQAcX/rKhAMExcHUA334rrHKfN9WdR1WHz8gmC/d5YfnDg9OmokohXTgeqijFU8e2TOq14h0MjDWg3PLck0m+9uazQGwjuPw6OGdeORQMb6sHR493usjWYThQyuFWAbGHdoBMBje391lNCntlungUkxBMWDMYhztMcL0zx4Onx0ZDAa8+eabaG5uFvztbo6mbh04cAD33XcfLr/8cnz11VdYunQp7rjjDlRUDO/k77zzDj766COsWrUKn332GYKDg7Fy5UoMDnq3IhrxLhnDYm5sEnQchz0BVp3alEZ9ZvzYqEZtScYwWBSfCgOA7erAKrBmTqOOpTRq4ry2tjbo9XrExQkzSmJjY526SC6Xs4iNDRvVv3ZGi6ruTnN1YU85xhshtKVHrx1zFxszwyIQHxSMI50afFNfCWB0lYod0WVlGSFL0UFBTr+OKQjZO1TNPCciEgBQPpQtkBkWYX6sPxXcEjM7PQWJoaFufY2UmAjbDxLByFgwCtdf0DV9vqZBkIVJxilk/BT5tFBjwTBfWegxJjgYwMgpGYMGA4JkcgQr3BMYO7I8lyW5EzVNpsTEIT0sHOXdHRgIwqiPE7GxYVAobP8+ObWX8auMWVYccxd+6tb48ePxxBNPQKVSYf369aKP/+CDD7Bo0SKsXLkSOTk5uOeee5Cfn4+PP/7Y3O4PP/wQd9xxB5YuXYqJEyfi+eefR2NjIzZv3uyR90R8l2kOZvEYmSdkj/q+bpzoakdyUCjGh0V6uzluc+ZQdeqtAVSdul+vwz5NE4JYGa2FTtyC4zgwTgR+Op0Bra3do/q3ICIRaxcvw5o5S3BxarZ52+G8kZNgFwZsueFRYAB0OTDfsl+vR6hMMaaC41iFCi9PX4SrMvMwPiwSj+TPxvqi87Eyu8BtrxkzNOLY0G1/OqcSrNMXTWbwpp0oGBZL49PN/70gLhlvzTwLb89aYr6tMMp/pyD1dQ4gWCIsODc5E5FDQeToXkTv1CfRN6hF34DrB61ilCrB78TCmBTMHDpGLoxPwSvTF+GVwoWCxyi8XLgyyOIzUvIywFSsDKybwrJ4VbDTz3122nykBjt20SUjKAzzY4zTYv686+dRHydaW7uh1doesfaLOcam1K3bb7/dfJut1K2SkpIRc52KioqwdetWAEBtbS3UarUgHSw8PBzTpk1DSUkJli9f7lRb7R2qt2cbrtjWWOXuPpoRE48QmRy/tDVjgNMjWOYXX5URHOmnn4aWqDorMQ0y2dhNtc2NiEJqcChOdrejob8H6WHGq8Fj+ftWolGj36DHwvgUBCuc25fpd8m2QOij6OhoyGQytLQI1yHVaDQjRpHtNdpaGizLYEpsPFpbu5EfEWNeXmdBXAo2DqW85oRFmVOtRytGGYTU4DBzIZlIhdKudUODZLIRRXL8WahMgSi5Cldl5OGqjDwAxs+ykBdMTgiLwsnudpe9ZmJQCDq0jhUAUjAsgmQyc8GkCLnS7ufPiI43p0jnhEViKq/2xpyYRBgMHNKCw5AcFIqG/h4UxaXieFeb26oCu5MMDEIl0nBnRSfi6oyJuGHPD+aUY2fIwSBoaM63I3QGw4gKx64QLldCDhZdOuMIcXZIBP44cRYOtDdjZnQCgobO/TJCwlE2lN6bGx5l/tsbwmTCzyhMroRmaGpYkEwGJeOerI0EVQiqepybO58ZHIEYZZDVKvYAECpXmFPEs0MjkR8Rgy9qytE62A+93uDUxVdH+cXZvrXULak5wS0tLYiNjR3xeFOql+n/XZUOBgynhLlKdLR7U1rGAnf20aKUNGysqcSxwQ4sTfPvIly2+onjOPz0izEwvih3AmLDXbcf+6LzsnLwztFS7O5qxtR04xXJsfx923fK+Jt27rjsUf9GjeV+cpWx3EdKpRIFBQUoLi7GkiXGkTKDwYCdO3fi+uuv93LrgLmxybgkNQfhcgXCeCNcueHDgTELZlRVW4NlcuSERZoD42iFys7AWI4Bgx59/hcziZIKorJCI3B52ngAxjm4rgyMVawM8apgwVq7tshZi8BYMTIwDpbJzMFsckgoGnqNJ/AFEcPnkTOiE5AZGoGrM/PQ3N9nzj4CgEfzZ+N4VxvOSczAf+oqUGNH9V1fo2RlCJOLjwqHyhWIUqqwunAhVKwMv93vXGalgpUN9bVjgbHeDVWpAeNFkkRVCCqG6gUkBoWAYRgsiEsRPG5caKQ5GB7v4cBYxjCC+dURFiP3YXLFcGDMyiB3Uw2RhFGMGIfI5YL56zHKIHOb+VKCQs2/FzmhkUgPCceHc38FFSvzSFAM+ElgLMVW6pbYfZa3Wf63s+lggDElrLOzz/YDbWBZBtHRoWhr66Gq1BI80UezIuKxEZXYePoUpgf757JZ9vZTRXcHKrs6kRMWifBBGVpb/e+g7oi54fF4B8CGqlO4LCkbMTFhY/b7pjXosa2+FkqWRZ4y0unPln6XbPNkH0VEBNs1X8odbrzxRjz44IMoKCjA1KlT8cEHH6C/vx+XXHKJV9rDJ2MY3DyUynuUd/I6KzrRXEgnJTjUrmVDpITI5IhVBQNDI4mpIWF2Vb8OksnQp7f9mfGDNE8KYmV2F8cBrBf5uWFcPgDgy9py822hMrl5XqSCYZ0q4qNgZYhUqBwKjBUMCxWvoGl+ZAxq+7qRFRJu/twmhEWjtMOYBTE5Js4cGMeqgnBLdgFK2lvMq1RcOTQ6zpcVGoGsUOP82ThVsDkwlgoAfJGSZSU/U9PtOUPTrBzdV0wULDs0CutYhXCtG6pSA8Y5xoVRcdjUXIOliemS5/9nJqTifw2nsTAuBTFK5+esOyNUphBcyLG8eMH/zFQyuSC12pUcTaWeH5uM1sF+zB1aJSCKV3gtXhVs/l6EyRXmOd4ZIeHmwDhzaG635YUAd/OLwNiZ1K24uLgRj29tbTU/Pj7emOqjVqsRExMj2ObkyZOdbqsrT4YMBo5OQG1wZx8VRsZDxcqwt7UJfVqdx4qKuIOtftrSVAPAuOxEIOxzSapQ5IZH4URXO451tGF+TNiY/b7tb21Gn16HebFJUDGyUb/HsdpPrjTW++i8886DRqPBa6+9BrVajUmTJmHt2rWCY6kvmBgejWVJGQiRyZHMm9/GH+11RrBMjoyQ4cyLjJBw7IDtehRBrBxK1na14gi5Cn16YeAXpVCifZRryNri6Ch6uB0nrPx5qdHKIPQM9XuwTA6tA+nQJgqGRYiDU5uULAsV7zkTw6Pxm7QJSAgKxkU//w8AMC40whwY50VF44daYzaigpXhotQcXJRq/3IxCUHDa/XGejkwzgmNxO/zpuPT6hP4uUW64CQLBjJGGBjz9znLgPmZafOx5tRhBDMylLQLz7WtUbAsglnHQ48+vXvOwcLlChTFpWDC7CgkWFljeWJEDN6aeRaSgkKxaeh8CXD/0kiAsaCdXM+aU9jDFZap1MJaCjI3zYGO5/WP5Si2mGilCo/kzzb/N/+CQizv72ilyhwYnxGbhMzQcCQFhXhtdR6/mEjIT90yMaVuFRYWij6nsLAQO3bsENxWXFxsfnxaWhri4+MF2+zu7sbBgwclt0kCS5BMjlkxCeg36FHS7pklybzBwHH4SV0PBsCi+FRvN8djTJW3t4zxIlymAnKWqWGEjMY111yDLVu24PDhw/j3v/+NqVOnertJIzAMg99NKMTK7MmCNL6zhlJgM0LCndpusEyOCWHG9VzD5QpkhthXaVclk0Fpx8leGO/E99bsybggZZxxhNrN7DnBFwZOtpfeieA9hj9iFOxkhVvFUFq0Y8+RIYjX7yrWeKFExrD4fe50zItNMo9qAcCFWeNxTdZEvFS40Kk2xqmGT/odbaurKWUsskIjbC7RZxpl5KfHR/I+u0iLz3piRAw+PPs8ZDtYqFPJypzqkx69Fjo3FPsNVyjBMAySgkLB2sgWTQ8Jh8JiVJ3/t7sSfeUMI7goEG5lxDhIJnfbcowJQcO/QaEy25WvVRa/dfziW+m8395oXpAcrlDi0rTxmO/F8xW/CIwBY+rWp59+ivXr16OiogKrVq0SpG49+OCDWL16tfnx1113HbZv34733nsPFRUVeP3113H48GFcffXVAIwHzOuuuw5/+9vfsGnTJhw/fhwPPvggkpKSzPOmCDEtbbPDypVWf3ekUwP1QB8KImMR54GTL1+xMD4FLBhsb66Dzs1XfL1FazBgZ2sj5AyLOTGJ3m4OIV6jYFm8MeNMrJ19NmbFJOKlwoV4dNJs208UESyTI1YVhA/nLsPrM84UnJhaqzodxNoZGPO2d2FqNm7LmeLUcieOsidVkp/WGGXHmrSCEWNecMUf9Y1XBePZKfNx13jbF1eUrMzhYpiWwTT/77MT0/Fo/hykDJ20h8kViFSqcFVmHnLDox16HZPJQ/OS58Qk2vV5m9vlhhEyxVAhJtuBsfFxggsfvM9X6vmWwY/t9rDmglb2CpMr0KfXo7Kn06HnWWuDiWWQaY9Q3kUdfloz/+KBK9OZ5QwL1dD2ZAwzYv/ntyGIlbmtajb/9yHaju++ZQ2C1ODhLBt+kM0fSQ4dxZJQruJwCxiGQUpKCpRKpeBvd7OVutXQ0ACWtyPOmDEDq1evxiuvvIKXXnoJWVlZePPNN5GTM5wOc8stt6Cvrw9//vOf0dnZiZkzZ+Kdd97xyPsh/mF2TCLkDIvdmiZoDQa3XYnzpm1DI6aLA2i0GDBepSyMjsMvbWrsUzdigty59RV9WWlHC3p0WsyOSUSIlfmAhAQC0xxQAMgNjxYsN8mf52aLaT1P0wldM2++q5JlJecHG0eMh48hcoYVrfBbFJcCBcPiYl76rjtOdhfFp8LAcbgmcyK2NNciJTgEL58osfqceFUw6ocqy9ozYhwpNWLMO7lXsTJMiYqza8RawbJQOjimY5xjPPx6YiOWcapgvDZ9MeKDR39xeEpUHD6ddy5ULIu/Httv9/NmxiTgZFc70kLC8Euba7LUTOcstvYf037JD4ztuVDiaJCrZFmHL2y4eomzULkC7VrjHOcIJ9b85Qd84RYXEkzbnRebjG3qOtwyaQreOXpoVO2VsyxUnHGflTHMiKCb34ZQucJtVe/5+0acKhhVInUV+KnlloFxRkg4rsmciHGhERjgzU/nB9n2jES7m8OBMcuygnV+Pbnm7zXXXINrrrlG9L6PPvpoxG3nnnsuzj33XMntMQyDe+65B/fcc4/L2kjGlhC5AtOj47FX04TSjhbz+nZjhc5gwI6WBshEqjAGgjPj0/BLmxrf1VRiwjjfSwUdreIWYxp10dC63ISQYfxCOxEKpdXAmF9EyTIg5M+FU7LCwln8uXgqixHjIJkM3bqRwWBGSDjOTc4S3CazsQSYZTEreypvn5WQhtlDmSTXZk3EXk2T1ccDxn5YGJeC0o4W8yirNfwRY376pGVgDAByO5Y5UzCswxeoLUeMpUY5s8MiXbbUmimI4H/etj6TMLkS7805B+2DA7hm93cuaYcp08BWnylERowvTMnGj001VqdY8VN85QxjM93ZmVR4eyq+OyKMFxg7N2LMC4wtMiIqh/4+LzkLd+dOQ3piNN49egijyUmTM6z585Ex7IgsBP5nFiJX2Jz76yz+RRCp/SlEpsCgwdi3loExwzD4v4xcABD81vBHjH3hAv7YG/4ixMUWDAUVpiBjLDnQrkanbhAzohM8XvnPF5wRmwwVK8PW+hr0j5G1RU30nAE7hy56zI1Jsv0EQgKYrRPkZF5BJcsUYv5JouVJK390J8iiYqzUyJnYciu2UqmVMunXlWI5EmfPyJyCZXH/xJn4cO4yu0b+gmRyXJAyDldm5GIcb8Sen0qtlBnbKvUeWd7sTQUrLL5lTyqvgmUFAZyjo5yjwR+ptVU8yvRYfjqpPaPyVrc5tB/YSukWGzHOCo3Ap/POxe9zp0s+j9//IXaM9skZx0eMk4Ncu/xdmGDE1/HzHv46wvyCXfyRzxC53BzkjXailoJlYRgKdhUWgbGMYQT7c6jFHGN3pVXz15Tm/25E8c4jrVWt5+8DgsDeg99NKRQYE2LD3JgkyBgGu1ob3HYlzltMadRnBlgatUmIXI4zYpPQq9Nhd6vt0RJ/crijFZ26QUyLihOs50oIGal9cHj5GLETd8HcWotgRSkIjIWnVaY5noDIiLFEsCJ2MmtzxM8iqOW/jlwi4LUMRKUCU/6zFQwLGcM4VPn2tpwpuDpzoqBN/PczPGI8fBv/NfkB5fByP0ZSQRa/DxWsTJCi6Y65vFLE3qcU00gqPwMhxo65nJYEn5fdqdTG1+SP8rEMgzC5wuq+x/9sbM0PVTAsGItAzp69aFXBXIeDaUv8iyvJwaGYHhWPuTFJSA1xPOjmj2rmhA1f7OFXbU4Ldq6wnxg5w5oDUQXLCn5jVKzM4jMQfl6uruT9zJT5yAwJx7VZE823BQm+18N/W7vMxv9Nmh2biJSQMKzMLrBZAM0TKDAmxIZwhRJTI+PQoR1EWUert5vjMv16HXa1NkLFygQVOQPNmYnGCrVbx1h1alOGQyCmyBNir0vTjPN4zxyqVA2IB1usYFTEMjDmB6GsZFBnWZVaarkjsUDE1oixbChgFduGVGBj74ixVEDrKH5wJhcZZReMrrIyyb/5n0+IRDDGH0FXMKygrz259CK/72y9rljg7MyauZb7IyC1Tw1/3qagPFyuRH5EDM4dWrPZFkdGjIdHr4fbwtpxgSU5OBS/5k0tYJ2o/2wZTD41ZR7+VDDHqaWN+H3JHzGOUqrw/NQFWDvrbJfWo5GzDLSc3vzaltMx+NMVQmQKKHkX4xwp/maPqVFxeHPmWUjjFdLiL4UmYxjzqK+1Yq5pwWFgwWB2TCJilEFYv/wiXJo+3qVtdZb3x6wJ8QPz45JxoF2N4pYGTI0SXzvb3+zRNKHfoMfi+FSPppb5mpnRCYhUqrBP04RO7eCYSCnXcxyKWxrAAjiD0qgJkXRjVj5+nTwOndpB/KvmBABjOp/G4nEsGPx91hL06nQjUp35J8FyhgXLm1ccZBHU8edXSv3WiAXB/CCGAUbMVJUxDOQMC/3QCbRSkE4pQx9GFgSzNmLMny+qYmXmYjmOViHmU0qkeJpHjBlhsNxvek2ZDBia/q2SyYWBscSxS8Wy6DG9FssimOEHE5473lkGZPzbLYuN8QPnS9Ny0DogXP/Ych65tdc0fV7mEWNBCr9xHjzLMIBpPx3qE5Zh8Py0IrveGyBMRZa6SGGaW23qi2CLQEpnIxGPZRjBkj4yhjGnFtuLvz+5opjXS4ULwYIRfA9VrAz5kbEjHnt2Yjo2NdVgdkyiXfP4LckZ1hzAtw0OWOxTcsHFk3CFxYjxKAP0+bHJqOvrxnKLmgf87yr/N03Osnh71hJU93QJih1aClMo8dn8cz1Sbd9RvtciQnzQGbFJYGBcE9bRH2Rfta25DkDgVaO2JGdZnJ2aAT3H4ecxsizX0U4N2rQDmBwZh0gnUvEICRQMwyAxKEQ48iVygt+n1yElOAzjw6NG3CeY88cyghEtfhAWJBOm9ErNwRMbbVKy1keBZEMB+fA2hCerYiwLevH/WyEx0jmawFhucQHBcvv84ltSr6liZYI1kKVGKRUWQSg/RdgXUqnFPkN+u24aV4AHJs4cEUw7+poK84jx8HbEMiKcXV4om5dKLDU6ORycG+8/JzED06LicGVGrs0g1fRdOicxAwURMbgvb7pT6baCizIuGM3NDY/G+PAou4q6/S63EK9NXyw413LkHcgZFjdkTQIAXJKaM2LEOJYXGGeGCNesFvtMHJm3HqFQ4s2ZZ+GClHGC2/mfG/99yxkGMcogFEbH29x2kEwu+dvkTTZbVFxcbNeGtFot/vCHP4y6QYT4omhlEAoiYqEZ7MeJrjZvN2fUurSD2N/WhHC5AtPHWKVtZ/wqPQvA2EmnNs0dXxRPadSE2EMwT48XbJlO/zp10pVxBSnCFinNlgEeP+jmj7bJGfGg0cRWOrNxxNh2KjW/bdZGjKXmTVsW+XKEUiI4M72u3K5UamHxLalRSpVFf/EvZzMenMfIbwf/QohYICqWai3IRrA7MB55UUQhGOEb2WfOjtyFyBU4KyENC+NSbM5RN72XULkCT0+Zj6szJ9oOjBnT68jx12lFOCshXfQ5ttKrlS66uGNJsG/KxN+/gmWRHRZp8Z2y3gZ+XypYFosT0vD2zCVYkTFB8P6DZDLBnOdYVdCIKvkmr89YjPfnnGPX+uMmUp8PI5KGb3y87wW6jrL5Dm6//XZs27bN6mN6e3tx66234vvvv3dZwwjxNfOHqlOPhVHFHS310HEcFsSljMm1mR01NTYeCapgHOnUCNYk9Uf8Jbjm0/xiQuzCP8FNCOJXmjWOxgxIrE0MCE8eZQwjGNGyDPD4I5z89Uct0xFHtE9mfeTQWBCLEX2MVGVka3OMpUaoRxNU8ANayyJPgGV1b/E2q2TCdPQQQYAt3u9KVoZ5sUlYHJ+KVQVznW6/M/jBMD91XiyA4K+1PHwbv5iRfQF9sMgos6BvRV57NOnF9+XNwB8nzZJcbst0UUKsAJjtwHjk/WLP4QelYvuokrE/KHWEI9kUjszVt1zvHADSQsKgYGWCoNT0mh/NXYZ1c3814rn8NoXLlYhXBds9Sg/YdzEmiLffjoXzSZvvYOnSpbjrrrvw448/it6v0Whw7bXX4sCBA3jjjTdc3kBCfMWCuBQwALar6/2+OvXmoRHFJbyCM4GMZRhz8Z2t6jovt2Z0Dra3BPQSXIQ4g3/Syl+f99H82UgOCsVdE6ZJPpexGKllJUZTVDKZoHIvvyCUoLKr6IjxyBNlwQkswwoKGVmOmA63YeRIrdh/S6Vjjiao4J9k8wNj84gi7/X5FxCsFd8SrIcssYyTkpVBwcrwwMSZmDW0brOnhPGyAoIF1ZhHBidi5xX8/uZsrEttwu9b02sK0/2N/cx/OVvrD9uDv/+Y3h+L4fcltu/YCvbF+kksWOZXfxerwi5W7M0VLANPa5QiFywA8bRqe1O/TRdYopVB5pFgqQthptttBcaWNRNssXaxzR/ZfMcvvvgiLrjgAtx7773YsGGD4L7a2lpceeWVqK2txfvvv48zzzzTXe0kxOtiVUGYEhkHzWC/X1enbujrwZFODZKCQjApIsbbzfEZZ/GqU3N+fOFjm5rSqAlxFH/EaWJ4tPnvvPBovDP7bLt/K0NkCuEcY95oShArF5wc80cTVbZGjHnPMwUG/AE6GStMpZYKZoPsHDG2p0L0aARbLDEDCN93iFy8wJbKYuklfhqpMK3VPamzjuJ/xoIgQyR+6NNrR9zGTwG297AktpxVQaRx/01QBYsGmxqLQl/O4O8/w/soAz03vNSQJVtxlFgQzA+6TVQ20nmFWRyuG9VUsTKcEZuEJQlpyA6LtPpY4fQG66PHUunQlsRq3kj9xphex1bwKlULQIrlBTp/Z7M0H8MweOaZZ6BSqfDAAw9gcHAQF198MY4dO4ZbbrkFMpkMH3/8McaP940y24S405kJqSjtaME2dZ3fVqfe3FwDAFiSkO7RuVa+LjM0AuNCI3C6pxOVvZ0YF2r9IOeLBvR67GxthJJlMTcm2dvNIcRv8E+mx4VGYFlShqCojb2CZfIRcwBNVDIZMpXG9U3PiE2SDDjFTlyVNu4fMbdZYgTaWgAhlxil4o9yu2qpIwNnLPy4TV2HZUkZxtdn+K85fEIfHzS87ItKJhee7EtUx5VKJ/U0qQsR/E9wVnQC9rU1u+xCtTBjwfjZRSpUeG/2UjAMg7+U7QFgLHY2PjQaRzvbEKkcfXYR//MzVZtmedXNxYMmx1OpTTfJeZW9bc3FFsyfd+FyXQzD4LH8OXY9VpDFYFFTYBDCauP2jhiLncLxH8/PGjMHxjbGRPlrokutgc5nrW6BP7K7Zv3jjz8OlUqFRx55BMePH8e///1vJCQk4L333kNSEi0HQgLD/Nhk/K38EHa01OO3OZMFV/X8AcdxlEZtxZkJaTh9+gi2Ntdh3Dj/C4z3tTWhT69DUVyKZFEaQoh1IXIFfjeh0KnnMozl6JQw+E0KCsW6ub9CuEKJQ+0t5vtCJSpUm7fL+1tsRMw4x1gihVIiSLQ86RUE9PyRbt4IpFiatzPC5Arcm1uIW3MmI3KoSi7/9S1HiU10nAEMwyBCrkSnbhBxqiDRx0mNHnuaZcVyE34K8WP5c9CuHRBd93VArzP/bRBJpZbxlgbj32bCT9E3zZ03bYcBg4cmzsbntSdxWdroB7eEI8ZD/897n2Jz46VCZc58/8jAzPR2+QGlUuJCkNhru3ptX3vxv4dhCgXQZ/xbLJi0rKouhb+Osgn/Ygz/4p55CoatEWOJKRVS+NvzxSrTjnLozOmhhx6CSqXC3//+d0ybNg1r1qxBZKT/nTwS4qwwhRKzYhKwq7URv7SpMTfWvy4KHenUoKm/F/kRMUjizaMjRovjU/GP00ewXV2H67MmObUshDdtH5ofTWnUhDjuo7nLRr0NrcEgDIxlIwM001xAlUg6sRTTurSAeDAhZ1jJVGr+yapgxNjiJFZsCSVAGPDw2+GMv05dgH1tzZgeHQ+WYRDJLy7Fe51QQQVnGa7OzMMOdT3GDa2N+tass9DU3ysICoWj83Le8713sj4uNAK/Ts5CfkQMqnu7zbdbFlsTC4oBoJ9X9E0skzpUphhRMZ0fTIqOuPK2F6sKwm05U2y/ETvw9zNzurONY6jURR7TKLNEPS/z40wi+YXNrD0J3ssg4L9uhHy4MrRYMKmUSLs2uSV7Mj6oPCJ6QYM/lz2Wd+HI9P1yZI6xPRcRZA6OMPs6m4HxGWecMSLdkuM4VFRUYPny5SMev3PnTte1jhAfdGZ8Gna1NmJrc63fBcY0WmxdnCoYkyNjcaijFWUdrZjiR+nyvTot9mqaECKTe7zADCFjQbQTqdOWBvR6i1Rq/hxj4UkmPziSWtPYpI8XIJmCCX6gJGMYyVEmYYVn8SrOpm2YWC6nFKcMQstgPxKDRo5QOaIgMhYFkbE2H2e5fu9vUifgyow8822RChUiFSrB8on8UW5fGCEEjMHI7eOnAgA+qz5hvj1GGYTTPZ02nz/IuxAhVvsiRC4fERjbCnxM5/SurqUhrM4+cnRSrLiYWAwrY1joOP2I51t7vWje2ryhImtb81/ZW8VTpVKcxS7c2BoBvyg1GxemjBOdDscvXBerHHnBxdbFCntHq034FzcCYsT46quvpnmIhPDMjklEsEyGPZom9Op0fpOyOmjQ42d1HRQMiyJaxkfS4vg0HOpoxVZ1nV8FxrtaGzFoMGBhQqpXTwQJCWRaTjhiHCQ4yRR+Ly0rJ1tjGvkJlsmGCxuBgX7olF/OstLFfSTm4Y6YYyw5X1eG12ecifq+HmQNjdi6Gz90sTZlSSp9PMTKBQlv4c9tjZcYIbZ0Wfp4HGhX44asfLx6sgSAMWPANCNVbE1ivmCR+02jua4ODwVVqUVSqbWcwfIpovGFICVbLJVa9PUY/GPOOWgZ6MO/a8qttm20WQ/O4n/Hwy0yIizxv7NSwalUbMY/J+WPGJvYunASIsi2cHTEOAAC47vvvtsT7SDEb6hkMsyLTcbm5lrs1jTgrIR0bzfJLntam9AzNP80jJbxkVQUl4y3Kw7hZz+bR24qqrYoIdXLLSEk8Nw0Lh/vnT6C81PG4Z2Kw+bb+ZVqLUdT+EGNeqDP6vbPScxAj06L+XHJeOHYfgBDIz9DUYKMYQQnpfzRYIXEfFt75xgrWRbhCiXyPHjc4PeUtVErqYJj6SHhw8/34hxjPn6QsSQhDRsbqzDbRnZPUlAo1s5eCgB49eQBAMKiU1J98/SUeTjQpsYUkdF5U5eJVTQeDctA1fT/pkBeZxgZGMtEAl/+dqwNzPG/TzLGmI4epwpGRmg4dmsaBY/lXzRypqieK0hNbxD7DKVqBNiDH9hGDC0hxb84ZGvEmB9YWwuMTb95v07JwsbGKgABEhgTQkZanJCGzc212Npc5zeB8SZzNWpKo7YmTKHE7JgE7GxtxO7WJhT5wXxd9UAfDra3IEYZhMKoeG83h5CAc2naeCxPykSIXIH3eCee8apgPD1lnug6sfxA7tLUHPzS1oy7JdZLVrAsfpM+AcBw8SF+GqqcsTJiLJFKbRl08P87aBQn5q4gqJDNWBsxFk9b54/Iuqpg2GjxlwnKj4zF32ctQbxI8SQphqHPPYiVY9BgTJ8We28cgGlR8ZgmcSxgzCPGrg2M+VvjzzGWMSwMnEEildr6OsXW5kjz7+PvBxemjMP25jr8OiUL750+AsDYT2tnnY2jXW2iFws8QS4xEm5rxNjRi/P835VgmRyfzTtPsiK6GKkpCZYuTRuPi1KzhanUYyDDmAJjQpxQGBWHKIUKB9qa0TrQL5qu4ks0A/3Yr2lGpEKJGdEJ3m6OzzsnMQM7WxvxQ1O1XwTGW5pqwMF40cNWmhQhxD1Ma+panrBLBSj8E9jc8Gh8teB8u6aumdKn+SfXxjnG/GBS/G97KzSrLFKpPeWpyWfgf/WVWJ6UaQ5qnBkxljMsnpu6AP16nc9MB1SxwlPulOAw57YjkwFDxarFLlrYCnj5xbdcScdLlR5O9weyQiNwsrtdNH1c7Hhlbyq1sFI7b76xMgjvzjGOsg/vQzIkBYd6tegowzB4b/ZSKFkZvm2oNN8uVgxMrJCZI6/D345lporY586vbs7//bL13becjiFVRM6fUGBMiBNkDIsliWn4srYCm5trzFfyfdUPjdUwgMPZCeljojiCu82MSUCMMgi/tDWjub/XvMyFL+I4Dj8OZQOcnegf2QuEjGW2RrxMLNMp7Q3gDCInsAwYyVRNW2u8ilFJjDi72/ToBEy3uHhrrVgSv3q1YP40yyAvzDsjg1JG24+mgJc/b9iZqT6m/cbVxbe0vFRp/r788KRZ+LK2AisyRp4nie3zlushS2FsVN/m80bWgxjTuQS/vWJt49/WoR1w+HUeyJspuFBhi5xhoRcpeGZvRffXpi/GjpYGLEn0/4xE39hTCPFD5yRmAAB+aKp2+QHGlQwch++G5n8sS8r0cmv8g4xhcU5iOjgYP19fdqyrDfV9PcgLjxbMqyOEeIegOq+doz2OjGqajjf8wIBhLOYVS6xF2qvT2vUa/JEgpZdTka2d4IfLh+c98+dRjsXMGVMqtUqisJq12/jOHJpOdUFKtusaB+nPKSEoBL8dP0W06rtp3rFg9Few3rN9/CUwNpHZGJVVMKx5CaoYJ+ZEL05IlbxQLna6KhyhFr/dmuywSFybNVF0+S1/4xfvoL6+HrfeeiumTZuGefPm4fnnn4deb72qXHt7O+677z7MmDEDs2fPxqOPPore3l7z/bt378btt9+OoqIiFBYW4uKLL8Y333zj7rdCxpD0kHBMDI9GfV8PjnZqvN0cSfvUjWjs78XkiFikhTiXuhWITBc+fmyq8dryDvbY1ESjxYT4ElvryPI9PWUenpx8hkPbN6eSWmxaOAolXnyrW2tfYCxYN9mHA2PhexamUvua0R5HxJY2El0D10a6/LlJmXhjxpm4KTt/VO2xxC+uZW9Aa/ps+cGhzIHvj4mtlF9fmWduwn9fYvNyWYbBq9MX454JhZgXl+zS1xZLtZdLZLn47pmP+/jWniJCr9fjtttug1arxaeffornnnsOX375Jd544w2rz7v//vtRXl6O999/H2+99Rb27t2LVatWme8/cOAA8vLy8Nprr+G///0vLr30Utx///3Ytm2bm98RGUuWmkeNa7zcEmn/OW1cuuBXyRlebol/SQoOxbSoOKgH+lDSpvZ2c0QN6PXYPrQE1yJagosQn2BvKjVgLJLkaN0H02gTP9Bihv5nIucVrOJXqS2INqYXF0TEWH2NPr3O/LfegZRMV7pwaERzpp39w+9qXxwxHm2xK1Pgz1/bWHQNXCvFygBjdkJWaITLR/f4yzGZdk1bmRCm9GuVxGi//YGx+HvJC48GAJ9belFszWc+jjPO1z0nKcMj+7JYRXFjOwIvNPb5wPjnn39GRUUFXnjhBUyaNAmLFy/GPffcg3Xr1kErceWzoqICP/30E55++mlMmzYNs2bNwmOPPYavv/4aLS0tAIDf/va3uPfeezFjxgxkZGTguuuuw8KFC/Hjjz968u0RP7coPgUqVoaf1HWCEwlf0TE4gK31tQiTKzA/lgInRy1LNKaem1LRfc3O1gb06nU4IzaJluAixEcIT3pdf1JrOonlB6wMhKN0/BFj/pzUxSnpeKGwCI8XWB+l7tMNH88cmavoSrfmTMZ/is4XTcHle2TSbFyUmo2skOE1ln1xxHjyUDXkZYnOXaQ2pbTzA9Bzk7MQrwrGHTlThh8n8857548YG0QKxInRiiw7JZMI0qyR+ryfmjwPf526ALN8rOgo/z2KXTAxuHGsVqxPBanUDIMbx+WjICIG48Oi3NYOX+XzxbdKSkowceJExMUNX+0pKirCqlWrcOrUKeTl5Y14zoEDBxAVFYXJkyebb5s/fz4YhkFpaSmWLFki+lpdXV3Izc0dVXtZsVwXJ7fhim2NVb7SR2FKJYriU7CpqQY7Wut9bg7vpuYa6DgDliRmIVjh8193r7C2Ly1ISMbbFQrs1jSiQzdg8wTN00xrB/4qOdPt3wVf+c75MuojAlimSbo+SDHNwdQaeCfPjHDuoDCtmF+llkFBZCwMBvET75nRCdjf1oyCyBj8r+E0AIguNeUp9oxqzo9Lxvy4ZBxqbzHfZm9A5UmRChW+WnC+0wUwTfNk+UWuohQqvD/nHADA3yoOARCvcuwJprmwUQoVr8Kx9eeYU6ktCqeZiAfWI/dHqQtQIXI5Cry0PJM1QTbS3V29xjQf/0KZCb+OAAsGl6WNx2Vp493WBl/m82fKLS0tiI0V7tSmILmlpUU0MBZ7jlwuR2RkpHnE2NLGjRtRVlaGv/zlL063VS5nERvrujmc0dHeKyvvL3yhjy7PzcOmphpsVtfiyoICbzfHzMBx+H6/sXDUiokTERtJ84utkdqXLsjKwT/Lj2FbewNunjRF9DHeUNHRjsMdrUgLDcPZ48d57ETQF75zvo76KLCxgqJYnhkx7tZq0TLYZ/5vhcSomzHQlD7pfnjSLJzu6cTE8Gj8FftHbMuX8QNOXxwxBuwvZiRGKZJKLRZAeXJ5Lb4rM43n4+clZ+GPpT8DsH1hY3jEeHSp1L76eUsRC0753DliHCIWGPMCdV+8qORJXguMX3/9dZvzhE3zfaUOLNYOOGL3cRwnevvu3bvx8MMP4y9/+QtycnKstskanc6Azs4+2w+0gWUZREeHoq2tR/KqbqDzpT7KYEKQFhyGUk0L9lTWIic8yqvtMdmnaUJ1dxemxsYj1qBEa2u3t5vkk2ztS2fHpOETHMMXFSdwflymzyx39c+TxvUZf5WYiTZNj9tfz5e+c77Kk30UEREMhcI7J8DEOnefWJqCAA7AWQlp2NJci2lRcQhXKPH8sf343YRCyfm2xr+l980gmRyThuYf/2XyPGxsrMKyJP+oT2GroJG/448Y3zyuAMe6NEgSWUpQbL1gTwiTK3BLjjFT0/TzZ+tTiFMFo7avG4mqEFT2dAKwLF5n32v74pxya4JsBcZuHDEO4S1xZqJkhSPGgcxrgfG1116LCy+80Opj4uPjERcXh7KyMsHtplFfy1Fhk7i4uBEjwzqdDp2dnSOes2fPHvz2t7/Fww8/bLM99nDlyZDBwNEJqA2+0ke/Ts7CmlOH8XXdafwut9DbzQEA/Kf2FADg/3LyfKaffJlUHyWqQjArJhF7NU34WV2PRfGpXmidUJ9eh01NNVAwLM5OSPfoZ0v7km3UR4HN3Sfp/O3/Pnc6zk5IR35kDBQMi8Iz4hGhUGJ/W7P5MY4UA+MrjI5HYXS8axrtAbFDqbwKhoXKRuDhj0yB8aDBgEvScgAIB3Jenb4Ye1obsdAHjlGm3czWr+Bj+XPwWc0J3DAuH7t3Nw4913oqtdhPq78tE8QftRXrI7cGxiLfDUcq6Y91XtuToqKikJmZafWfTCZDYWEhjh07htbWVvNzi4uLERERgexs8TXYpk+fjvb2dkFAvWvXLnAch6lTp5pv2717N2677Tbcf//9uOKKK9z3ZsmYd3ZiOoJlMmxV16JTO+jt5qC2txv725oRpwrC4hRaxme0LkgZBwD4X/1pL7fEaFtzLfr0OhTFpyCCim4R4lPcPmJsUSinMDoeSlYGhmHMvwd63jxUftDgbymnjohTBeOdWWfjndln+9y6ta4wYagQUq5EVlpOWCSuzMzzidFTU6BlKyU4LSQMf8ibIVir11aQljg0Sp4QNDwyLvezug625oG787LqlKE519mhw8XqGCdG6ccqn//lKCoqQk5ODh588EEcO3YMP/30E1555RVcffXVUCiM6QClpaVYvnw5mpqaAAA5OTlYuHAhHnvsMZSWlmL//v146qmncP7555vnJ5uC4muvvRbLli2DWq2GWq1Ge3u7t94q8WMhcgWWJKRj0GDAD03V3m4Ovq43jhafnzLOZ1J//VlhVDzSgsNwpFOD8u52r7aF4zhsaKgEYJzLRQjxLe5ORcy1ESABwnRJfntkY/ysNzk4FHFeSiV2txvG5ePGcfl4eNIsbzfFJtOorzPL/fBjYUbku3TjuHyclZCG+/JmmIOYlCD/quvAv3DTrRu5wo47R4wnRsTg5cJFeG7qAvNt/MrY/jb67mo+/+5lMhnefvttsCyLFStW4IEHHsDFF1+Mu+++2/yYvr4+nD59WrB804svvojs7Gxcf/31uPXWWzFz5kw88cQT5vvXr1+Pvr4+rFmzBkVFReZ//O0S4ohfJxtHFTfUVwrWl/S0bp0Wm5pqoGJlWE6Bk0uwDINfD40af13n3VHjQx2tONXTiezQCEwcWqOREOI73D1id3n6eNw5fir+lD9H8jEFETG4NnMiXphWZHPNVOIfgmVyXJY23udWRxBj2uecmVEiuJAj8l2aGhWH+/JmIFKhwjuzl+LhSbOQ74OVp63hFxur7e0CAETIlbg+axIA91/0nhAehRC5QvQSntSa0IHCLyZhpKam4p133pG8f+7cuTh+/LjgtqioKKxevVryOc899xyee+45l7WRkIzQcEyNjENpRwv2tDZiXlyyV9rxfWMV+g16/Copk9JsXejshHSsqzqGrepaXJM10WsFTtbXVQAALknLcUvFW0KIb1OwMpxr48SZYRisyDAuP1nq48sYkbHH3lRqMfxd1Nb+mhgUYk6t9icJqmAUxaVgfFgkdByHdVXHsCIjFxelZuPClGyobCzn5Gr8T8lby335isC+LECIi12Uapz3/nltuVMpRKM1aNBjfW0FGAAXp4rPwSfOCZHLcX5yFvQch69qK7zShuqeLuzVNCFOGYSFcd4vsEIIGcmdS604g58mGeijQcQzTBn7zmTPBUIhKIZh8NCkWbg8fQKuSJ+AN2aciQuHstI8GRSL9W6gT78L7HdPiIvNjklEZkg4jne14VBHq+0nuNiPjdVo0w5gXmwy0kPCPf76Y92FKdlQsTJsbKxCh3bA46//ZV25sR2p2QF/8CKed+zYMfzhD3/A4sWLMW3aNJx33nn46KOPvN0sn+PFmTSiunjTzCjLhHgCa06ldmbEmLcOuMta5LtYhkFWaITPfDdlAdHr0ujMihAXYhkGl6dPAAD8u+akR19bZzDg81pj4HRFxgSPvnagiFSqsCwpAwMGvccrVLcM9GFrcy1CZHIsT8r06GsTAgCHDx9GTEwMXnjhBfzvf//DbbfdhhdffBGffPKJt5vmUzgfGzGeFZOA2TGJeDR/trebQgKEqWiWM9+FwA7LPG1kb4/VUXp7+cUcY0L8yaL4FKyrOoYD7WqUd7VjvJXKoa60TV2L5oE+zIxOwPgwz7xmILokNQcbGirx3/rTuCglG2Eemsf9eU05dByHi5OzBBVnCfGUyy+/XPDf6enpKCkpwQ8//IArr7zSS63yPb62hHWQTI7HC+aCHeMVqYnvGM2IMX9JMR/7Ko1Z/AsYFBgTQlxKxrC4LDUHf6s4hI+rj+Pxgrluf02twYBPqk8AAK5Ip9Fid0oICsE5iRnY2FiFL+oqzFUk3Uk90IeNjVUIlslwSVqO21+PEHt1dXUhMjJyVNsYbcBmer7PBH784kG+0ib4YD/5IOoj+9jqJ35g7GhfWq5B7a+fhT/sSwyDoasP/CXdWI+22df6iQJjQtzgnKQMfF5bjr2aJhzuaMVkNy8l8F1jFRr7ezEzOgEFfrZsgT/6v4xcbG6uwX/rTuGClHGIcfPyGZ9Vn4COM+CylAmIVKjc+lqE2OvAgQPYuHGj1VUjbJHLWcTGhrmkPdHRvrGWaVRIEDBUYsJV782VfKWffBn1kX2k+mllwRQ8tmcH7pwy3eHvQHDQcEaUXOG63wdv8Yd9SS4fvhgRHhbklT73lX6iwJgQN1CwMlybNRGrjx/AP04fwQvTitxWWKFPr8On1cfBAB4ZvSRAnCoY56eMw5e1FfhX9QncPn6q216rrq8bPzRVI0Qmx8WpNFpMXO/111/HG2+8YfUx27ZtQ1JSkvm/T548iTvuuAN333035s2b5/Rr63QGdHb2Of18wDjSEB0dira2Hhh8II9ZoR/+rW9t7fZiS4R8rZ98EfWRfWz104zgOHy+4DyEyBUOfwcGBnTmvwcH9T71HXKEP+xLpl8qrVZvvq2/Z8Cjfe7JfoqICIZCYb3qNwXGhLjJ4vg0fFlbgWNdbditacQZse5Z1/iLmnK0awdxZnwqssNGl9JI7PebtAn4rqEKGxurcH7KOLdVAX/3VBl0HIer0icgnNalJm5w7bXX4sILL7T6mPj4ePPf5eXluP7663HFFVfgtttuG/Xru+pkyGDgfOIENFQ2fGrlC+2x5Cv95Muoj+xjrZ+CWPmo+9DA+f/n4A/7krB1jFfa6yv9RFWpCXETlmFwQ1Y+AODdU0cwaNDbeIbj6vq68XltOVSsDNfRaLFHhSuUWJGRCz3H4a3yQ25Zt/pAWzP2aJqQGBRC61ITt4mKikJmZqbVf7KhtTVPnjyJ6667DhdffDF+//vfe7nlvimCLmAR4jT+sZSWJfScS9NyIGMYzIxO8HZTvIr2OELcaEZ0PGZFJ6Chv8flyzdxHIc1FYeg4wxYkZGLhKAQl26f2HZhSjYyQsJR2tGC7ep6l25ba9Dj7xWHAQA3jcuHkrWe/kOIu5mC4vnz5+PGG2+EWq2GWq2GRqPxdtN8yrKkTBRExOD+vBnebgohfk0W4BWS3U03dBEiWCbDTeMKsH7B+QF/YY8CY0LciGEY3D5+KlSsDP+uOYma3i6XbXurug6/tKmRFhyGS2juqVfIWRZ3DM0vfufUYXRoB1y27U+qT6CmrxuFUXGY76Y0fEIcsXHjRmg0Gnz99dcoKioy/7NcxinQBcvk+Ou0IpyZkObtphDi1/hLNxH3CZMbg+FAX6oJoMCYELdLDArBVZl50HEcXjp+AFqDYdTbbO7vxVvlpWAA3DVh2ojlDYjnTI6MxbLEDLRrB/D6yYMuSaku72rH5zXlCJbJ8LsJhW4r3EaII+6++24cP358xL/Nmzd7u2mEkDFITsc+jwiTK2w/KEDQ2TQhHnBxajbyI2JwsrsdH1YeHdW29JwBq4//gl69DpeljXf7UlDEtltyJiM5KAS7WhvxXWP1qLbVq9PixeO/wAAON40roBR5QgghAYnmGHsGFfYcRnscIR4gY1jcnzcDYXIF1tdVYGdLg9PbWnuqDGWdGuSERuLqzIkubCVxVrBMjvvzZoIFgzUVh3C007k5lwaOwysnSlDb1405MYlYnpTp4pYSQgghvoufcyWjVGq3uiBlHADgrHia9mFCexwhHpIQFILf504HALx4/BcccyJ4+rruFL6uP40IuRIP58+iFGofkhcRjVtyJkPLGfD0kT2o63NsHUCO4/Du6TIUtzYgOSgEf8ibQSnUhBBCAhalUrvXrdmT8fn885AR6p7lJv0RnVUT4kFzY5Nw87gCDBj0eLxsN450tNr93K/rTmHNqcNQMCwezZ+NpKBQN7aUOOOClHE4P3kc2rWDeLi0GLW99gXHHMfhg8qj+E/dKUTIlfhzwVya80MIISSgUfEt92IYBkG8ddcJBcaEeNwlaTlYkZ6LHp0Wfzq8Cz82VVst2KQ16PFWeSnWnDoMJcvisYI5KKB5xT7r1pzJWJaUAc1gP+47+BP2tDZafXzP0Jziz2vLESKT44nJZyA9hK7eEkIICWw0x5h4Gl0mIMQLrs2aiAiFAu+eKsMrJ0rwk7oeV2bkIi882pw+qzUYsLu1ER9WHUV9Xw8iFUo8NHEWpkTFebn1xBqWYXDX+GmIkCvxeW05njyyB0VxKfi/jFxkhUaYHzdo0GO7ug4fVR5D62A/4lXBWFUwF5m8xxBCCCGB5sqMXHxSfQJLE9O93RQSYCgwJsRLLkrNwYSwKLx04gD2tzVjf1sz4pRBSA0Jg9ZgQGVPJ3r1OgDAjOh4/G5CIeJUwV5uNbEHyzC4YVw+8sKj8XbFIfzcUo+fW+qRGBSC5KAQDBj0ONXdiQGDHgBwZnwqbsmZjEiFysstJ4QQQrzr6syJWJGeSyPGxOMoMCbEi/IjY/HWzCXY1FSD75uqcLKrHS2D/QAAJctiTkwifp0yDjOjE7zcUuKMeXHJmB4djw0NldjcVIPK3i409fcCAIJlMhTFpeDClHHIp9R4QgghxIyCYuINfhEY19fXY9WqVdi9ezdCQkJwySWX4L777oNMJpN8Tnt7O5566ils2bIFMpkMy5Ytw6OPPoqQkJFrgv7yyy+45pprMHHiRHz55ZfufCuEjKBgWSxPzsTy5Ez06XVoHeiHnGEQHxRMSxWMAUEyOS5NG49L08ajR6dF++AAFCyLWFUQfb6EEEIIgJvG5eO900fMSwgR4g0+Hxjr9XrcdtttiIuLw6efform5mb88Y9/hEqlwj333CP5vPvvvx9qtRrvv/8+tFotHnnkEaxatQrPP/+84HHd3d146KGHcMYZZ6C9vd3N74YQ64JlcqSFhHm7GcRNQuUKhFK1aUIIIUTg0rTxuCAlm5ahJF7l83vfzz//jIqKCrzwwguYNGkSFi9ejHvuuQfr1q2DVqsVfU5FRQV++uknPP3005g2bRpmzZqFxx57DF9//TVaWloEj33yySexfPlyTJ8+3RNvhxBCCCGEEGKBgmLibT4/YlxSUoKJEyciLm64Em9RURFWrVqFU6dOIS8vb8RzDhw4gKioKEyePNl82/z588EwDEpLS7FkyRIAwIYNG3DixAn85S9/wZo1a1zSXpYd/WLkpm24YltjFfWRfaifbKM+sg/1k23UR4QQQoj/8vnAuKWlBbGxwsI0piC5paVFNDAWe45cLkdkZKR5xLihoQHPPPMM3nvvPSiVSpe0VS5nERvrujTY6OhQl21rrKI+sg/1k23UR/ahfrKN+ogQQgjxP14LjF9//XW88cYbVh+zbds2ADCv62pJ6nap+ziOM9/+4IMP4uabb0Zubq69TbZJpzOgs7Nv1NthWQbR0aFoa+uBwcC5oGVjD/WRfaifbKM+sg/1k22e7KOIiGAoFNIFKAkhhBDiGK8Fxtdeey0uvPBCq4+Jj49HXFwcysrKBLebRn0tR4VN4uLiRswl1ul06OzsND9nz5492L9/P1544QUAgMFgAMdxyM/Px0cffYSZM2c69b5ceTJkMHB0AmoD9ZF9qJ9soz6yD/WTbdRHhBBCiP/xWmAcFRWFqKgom48rLCzEmjVr0Nraag5qi4uLERERgezsbNHnTJ8+He3t7SgrK0NBQQEAYNeuXeA4DlOnTgUAfP3114Ln/POf/8S+ffvw0ksvIT09fRTvjBBCCCGEEEKIP/H58m9FRUXIycnBgw8+iGPHjuGnn37CK6+8gquvvhoKhXHZk9LSUixfvhxNTU0AgJycHCxcuBCPPfYYSktLsX//fjz11FM4//zzzfOTc3NzBf9iY2OhVCqRm5uL4OBgr71fQgghhBBCCCGe5fOBsUwmw9tvvw2WZbFixQo88MADuPjii3H33XebH9PX14fTp08Llm968cUXkZ2djeuvvx633norZs6ciSeeeMIbb4EQQgghhBBCiA9jOI6jiVAuotXq0d7eO+rtsCyD2NgwtLZ20zw1CdRH9qF+so36yD7UT7Z5so+iokLGRPEtVxw3ad+0D/WTbdRH9qF+so36yD6+dtz0+RFjQgghhBBCCCHEnSgwJoQQQgghhBAS0CgwJoT7EWkvAAEAAElEQVQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQohDqqurMX36dMydO9fbTSGEEEJcggJjQgghhNhNp9PhgQcewMyZM73dFEIIIcRlKDAmhBBCiN3efPNNpKWl4bzzzvN2UwghhBCXkXu7AYQQQgjxD7/88gu++uorfPXVV9i0aZNLtsmyjEueP9rtjHXUT7ZRH9mH+sk26iP7+Fo/+UVgXF9fj1WrVmH37t0ICQnBJZdcgvvuuw8ymUzyOe3t7XjqqaewZcsWyGQyLFu2DI8++ihCQkLMjzEYDHj33Xfx73//G/X19UhISMANN9yA6667zhNvixBCCPEb3d3dePDBB/GXv/wFkZGRLtmmXM4iNjbMJduKjg51yXbGOuon26iP7EP9ZBv1kX18pZ98PjDW6/W47bbbEBcXh08//RTNzc344x//CJVKhXvuuUfyeffffz/UajXef/99aLVaPPLII1i1ahWef/5582OeeeYZ7NixAw8//DDGjx+PtrY29PX1eeJtEUIIIT7h9ddfxxtvvGH1Mdu2bcOrr76KM888EwsWLHDZa+t0BnR2ju64y7IMoqND0dbWA4OBc1HLxh7qJ9uoj+xD/WQb9ZF9PNlPERHBUCikB1Xx/+zdd3hb1fkH8O+9mpaXZMmOY2c7ew9CSAgEAqWBAmWVlEKgQICyftBCKbS0rFIoqxRoC4VCIQQoLYRRAmWEDJKQhJBBduIMJ/GU5KU97v39oeFzZcmSbMm6kt7P8/DgaFwdHV3pnveM9yALAuOvvvoKtbW1eOWVV2AymTBu3DjcdttteOqpp3DTTTdBpVJ1e05tbS3WrFmDd955BxMnTgQA3Hvvvbjhhhtw1113wWQyoba2Fm+++SY+/PBDjBgxAgAwePDgfn1vhBBCSKYtWrQI559/fo+PKS8vx4YNG9DY2Ig33ngDACCKIgRBwPjx4/HHP/4R5513Xq9eP1WNIUEQqQGaAKqn+KiOEkP1FB/VUWLkUk+yD4y3bt2KsWPHwmQyhW+bO3cu7r//fhw8eBBjxozp9pwtW7ZAr9eHg2IAmDNnDjiOw/bt2zF//nysWLECgwYNwooVK7B48WJwHIdTTjkFd955J4qKej+tKxVz5OU2316OqI4SQ/UUH9VRYqie4svWOtLr9dDr9XEf949//ANerzf87y+++AIvv/wyli5dioEDB6axhIQQQkj6yT4wNpvNMBqNkttCQbLZbI4aGEd7jlKpRGlpKcxmMwDg6NGjOH78OD7//HM8/vjj8Hg8+P3vf4+777477pSyWFK5VgqQz3x7OaM6SgzVU3xUR4mheoovV+to+PDhkn/v2LEDPM9j9OjRGSoRIYQQkjoZC4wTXdMEABwXvfc91u2x7hNFMXy7KIrwer344x//iKFDhwIA7r//flxxxRUwm82SEepEpWKtFEDrEhJBdZQYqqf4qI4SQ/UUn9zWShFCCCEkcRkLjBNd02QymbBz507J7aFR38hR4RCTyRR+TIjP50NHR0f4OSaTCUqlMhwUA0BNTQ2AQBbs3gTGQOrWSoWORQ3QnlEdJYbqKT6qo8RQPcWXL3V00UUX4aKLLsp0MQghhJCUyFhgnOiapqlTp+KFF16AxWIJB7Xr1q1DSUlJOGlWpGnTpqGtrQ07d+7EhAkTAABff/01RFHE5MmTw4/x+Xw4evRoOOnWoUOHAABVVVV9fXuEEEIIIYQQQrIEn+kCxDN37lzU1NTgrrvuwp49e7BmzRo8/fTTuPzyy8MZqbdv344FCxagqakJQGDk95RTTsG9996L7du3Y/PmzXjooYdw7rnnhkeCTz75ZIwdOxa/+c1vsGfPHmzfvh0PPfQQzjrrrF6PFhNCCCGEEEIIyT6yD4wVCgWef/558DyPhQsX4pe//CUuuOAC3HrrreHHOJ1OHDp0SJIt84knnsCIESNw1VVX4frrr8eMGTPwwAMPSI7797//HcXFxbjssstw0003YfLkyXjkkUf69f0RQgghhBBCCMks2WelBoDq6mq8+OKLMe+fNWsW9u7dK7lNr9fjySef7PG4AwYMwF/+8peUlJEQQgghhBBCSHaS/YgxIYQQQgghhBCSThQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJa5woimKmC5ErBEGE3y+k5FgqlQJerz8lx8pVVEeJoXqKj+ooMVRP8fVXHSkUPHieS/vrpFuqrpt0biaG6ik+qqPEUD3FR3WUGDldNykwJoQQQgghhBCS12gqNSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBscwsXboU8+fPx6RJk3DppZdi+/btmS5Sv3nhhRdw8cUXY9q0aZg9ezZuueUWHD58WPIYt9uNBx54ALNmzcK0adNw6623wmKxSB5TX1+P66+/HlOmTMHs2bPx2GOPwe/39+M76T/33XcfxowZg9dffz18G9VRQGNjI+644w6ceOKJmDp1Ki666CLU1taG76d6Amw2G+6//36ccsopmDJlCs4991y899574fvzsY42bdqEn/3sZ5g7dy7GjBmDL7/8UnJ/qupkw4YNuPDCCzFx4kR873vfk9Q7SQ5dN+m6mQy6bsZG18346LrZXU5dN0UiGx999JE4YcIE8T//+Y+4f/9+8d577xVnzpwpWiyWTBetX1xzzTXiO++8I+7bt0/cvXu3eN1114mnn3666HQ6w4/53e9+J86bN09ct26d+N1334mXXnqp+JOf/CR8v8/nE88991zxpz/9qbhr1y5x5cqV4qxZs8Snn346E28prVasWCGef/754ty5c8UlS5aEb6c6EsW2tjbx9NNPF++++25x27ZtYl1dnbhy5UqxoaEh/BiqJ1H89a9/LZ511lnixo0bxbq6OvH1118Xx44dK27YsEEUxfyso5UrV4pPPfWU+L///U8cPXq0uGLFCsn9qaiTuro6ccqUKeIjjzwiHjhwQFyyZIk4btw4ce3atf32PnMFXTfpupkMum7GRtfNxNB1s7tcum5SYCwjl1xyifjggw+G/+33+8W5c+eKL730UgZLlTkWi0UcPXq0uHnzZlEURbGjo0OcMGGC+Mknn4Qfc+DAAXH06NHi9u3bRVEMfDnHjRsntrS0hB/zxhtviCeccILo8Xj69w2kUUtLi3jqqaeKe/bsEU8//fTwBZ7qKODxxx8XL7vsspj3Uz0F/OAHPxCff/55yW1nnXWW+NJLL1EdiWK3C3yq6uSxxx4Tzz33XMlr3X777eL111+fzreTk+i6KUXXzdjoutkzum4mhq6bPcv26yZNpZYJj8eDnTt34uSTTw7fxvM85syZg61bt2auYBnU2dkJACgtLQUA7NixA16vV1JHNTU1qKqqCtfR1q1bMXbsWJhMpvBj5s6di46ODhw8eLD/Cp9m99xzDxYtWoQxY8ZIbqc6ClixYgUmTpyIW2+9FbNnz8ZFF12E999/P3w/1VPAtGnT8MUXX6CpqQmiKGLNmjVobm7GnDlzqI6iSFWdbN26VXKM0GPy9be+t+i62R1dN2Oj62bP6LqZGLpuJifbrpsUGMtEa2sr/H6/5KQAAKPRiJaWlgyVKnNEUcQjjzyCE088ETU1NQAAs9kMrVaLoqIiyWONRiPMZnP4MUajUXJ/qE5Dj8l2r7/+OhwOB6655ppu91EdBRw9ehRvvPEGampq8PLLL+Piiy/Gb37zG3zxxRcAqJ5C7r33XgwZMgSnnnoqJk6ciFtuuQWPPPIIxo0bR3UURarqJNZj2tra4PV601X8nEPXTSm6bsZG18346LqZGLpuJifbrpvKlB2JpIUoiuA4LtPF6HcPPvgg9u3bhzfffFNye7S6EEUx7mN6uj2b1NbW4q9//Svefvtt8Hz0fq18ryMg8H4nTZqE22+/HQAwbtw47NixA2+++SbOOOMMAFRPQKCxuHv3bvz973/HgAEDsH79evz6179GZWUlAKqjaFJVJ5GPiTwG6T26btJ1k0XXzcTQdTMxdN1MXjZdN2nEWCYMBgMUCkW33iKr1dqtNzzXPfTQQ1ixYgVeffVVDBgwIHy7yWSC0+mEzWaTPJ6tI5PJ1K0OQ/+O7GnKRtu2bYPVasVZZ52F8ePHY/z48Th+/DgefvhhLFiwgOooyGQyYcSIEZLbampq0NDQEL4/3+vJ5XLhT3/6E+6++27MmzcPY8eOxdVXX4158+bh1VdfpTqKIlV1Eu0xFosFer0eKpUqXcXPOXTd7ELXzdjoupkYum7GR9fN5GXbdZMCY5lQq9WYMGEC1q1bF75NEASsX78eU6dOzVzB+pEoinjwwQfx6aef4tVXX8XgwYMl90+cOBEqlUpSR4cOHUJ9fX24jqZOnYo9e/ZI0sCvW7cOJSUl3X7ws9GZZ56JDz74AO+99174v4qKClx//fV4/vnnqY6Cpk2bhiNHjkhuO3z4MAYOHAiAziUA8Pl88Hq9UCgUktt5nocgCFRHUaSqTqZOnYq1a9dKjr1u3bq8+a1PFbpu0nUzEXTdTAxdN+Oj62bysu66mdJUXqRPQttOvPvuu+KBAwfE3/72t3m17cR9990nzpgxQ9ywYYPY3Nwc/i9y24nTTjtNXL9+vfjdd9+JCxcujJry/ZprrhF3794trl69WjzppJPEP/3pTxl4R/2Dza4pilRHoiiKW7duFceNGye+8MIL4uHDh8V3331XnDhxovjFF1+EH0P1JIpXXHGFeP7554e3nXjrrbfE8ePHi++//74oivlZRzabTdy1a5e4a9cucfTo0eJrr70m7tq1S2xubhZFMTV1UldXJ06ePFn84x//KB44cEB8/fXXxfHjx9N2Tb1A1026bvYGXTe7o+tmYui62V0uXTcpMJaZJUuWiKeddpo4YcIE8ZJLLhG3bduW6SL1m9GjR0f975133gk/xuVyiffff784c+ZMccqUKeItt9wiSe8uiqJ47NgxcfHixeLkyZPFWbNmiY8++qjo8/n6++30m8gLPNVRwGeffSb+4Ac/ECdOnCiec8454rJlyyT3Uz2JYnNzs/irX/1KnDt3rjh58mTx7LPPFl9//fXw/flYR19//XXU36FnnnlGFMXU1cn69evFH/7wh+KECRPEM844Q3z33Xf77T3mGrpu0nUzWXTdjI6um/HRdbO7XLpucqJIGT8IIYQQQgghhOQvWmNMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCMmY5cuX49133810MQghhJCsQNdNQtKHAmNCSMZ88sknWLZsWaaLQQghhGQFum4Skj4UGBNCCCGEEEIIyWucKIpipgtBCMk/d999d7de71tuuQW33nprhkpECCGEyBddNwlJL2WmC0AIyU833XQT6uvr0dnZifvuuw8AUFlZmeFSEUIIIfJE101C0osCY0JIRgwZMgR6vR6iKGLq1KmZLg4hhBAia3TdJCS9aI0xIYQQQgghhJC8RoExIYQQQgghhJC8RoExIYQQQgghhJC8RoExISRjVCoV3G53potBCCGEZAW6bhKSPhQYE0IyZvjw4di3bx8+//xzfPfdd2hqasp0kQghhBDZousmIelD+xgTQjLGarXit7/9LTZt2oT29nbaj5EQQgjpAV03CUkfCowJIYQQQgghhOQ1mkpNCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvKTNdgFwiCCL8fiElx1Iqefh8qTlWrqI6SgzVU3xUR4mheoqvv+pIoeDB81zaXyfdUnXdpHMzMVRP8VEdJYbqKT6qo8TI6bpJgXEK+f0C2tocfT4Oz3MwGovQ0eGEIIgpKFnuoTpKDNVTfFRHiaF6iq8/60iv14HnFWl9jf6QiusmnZuJoXqKj+ooMVRP8VEdJUZu102aSk0IIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYSQXrnvvvswZswYvP7665kuCiGEENInWRUYL126FPPnz8ekSZNw6aWXYvv27T0+/uOPP8aCBQswadIknHfeeVi9enW3xxw4cAA33HADpk+fjunTp+PHP/4xrFZrut4CIYQQkhO+/PJLbN26FRUVFZkuCiGEENJnWRMYL1++HI888ghuvvlmLFu2DGPGjMHixYtjBrFbtmzBHXfcgUsuuQTvvfcezjzzTNx0002ora0NP6aurg6XX345Ro4ciTfeeAPLli3DtddeC5VK1V9vixBCCMk6ZrMZ999/Px577DG6ZhJCCMkJykwXIFGvvPIKFi5ciIsvvhgA8MADD2DlypXhYDbSq6++ilNPPRWLFy8GANx2221Yu3Ytli5dit/97ncAgD/96U849dRT8ctf/jL8vKFDh/bDuyGEEEKy1z333INFixZhzJgxfT4Wz3MpeX5fj5PrqJ7iozpKDNVTfFRHiZFbPWVFYOzxeLBz507ceOON4dt4nsecOXOwdevWqM/ZunVrt4B57ty5WLlyJQBAEASsXLkSixcvxtVXX409e/Zg6NChuPnmm3HKKaf0uqyp+GDldpLIEdVRYqie4qM6SgzVU3z5Ukevv/46HA4Hrrnmmj4fS6nkYTQWpaBUgMFQmJLj5Dqqp/iojhJD9RQf1VFi5FJPWREYt7a2wu/3w2QySW43Go04cuRI1OeYzWYYjcZuj29paQEAWCwWOBwOvPTSS7j99ttx11134YsvvsANN9yA//znPxg/fnzS5UzlBR6Qz0kiZ1RHiaF6io/qKDFUT/Hlch3V1tbir3/9K95++23wfN9XY/l8Ajo6nH06Bs9zMBgK0dpqhyCIfS5TrqJ6io/qKDFUT/FRHSWmP+uppKQAKpWix8dkRWAciyiK4LjYPfPR7gvdJggCAOCMM87AVVddBQAYN24cNm7ciH/961944IEHki5PKi7wAH2ZEkF1lBiqp/iojhJD9RSf3C7w6bBt2zZYrVacddZZ4dv8fj8efvhhvP766/jkk0+SPmaq6koQRDo3E0D1FB/VUWKonuKjOkqMXOopKwJjg8EAhUIBs9ksud1qtXYbRQ4xmUzdHm+xWMKPNxgMUCqVGDFihOQxNTU1OH78eK/LmsoPVS4niZxRHSWG6ik+qqPEUD3Fl8t1dOaZZ2LixImS26699lpcdNFFuPDCCzNUKkIIIaTvsiIrtVqtxoQJE7Bu3brwbYIgYP369Zg6dWrU50ydOhVr166V3LZu3brw40PHjJyKffjwYQwcODCl5SeEEEJyQUlJCUaPHi35T6VSoby8HMOGDct08QghhJBey4rAGACuvvpqvPXWW1i2bBlqa2tx//33w+VyhXuo77rrLjz55JPhx1955ZVYvXo1Xn75ZdTW1uLZZ5/Fjh07cPnll4cfc8011+Cjjz7Cf/7zHxw5cgQvv/wyNmzYgIULF/b7+yOEEEIIIYQQkhlZMZUaAM455xxYrVY888wzaGlpwbhx4/DSSy+hrKwMANDQ0CBJBDJ9+nQ8+eSTePrpp/HUU09h2LBh+Mtf/oKamprwYxYsWICOjg48//zzeOihh1BTU4Pnn3++V4m3CCGEkHy0YsWKTBeBEEII6TNOFMXcXAiVAV6vH21tjj4fh+c5GI1FsFhsslunJogimpw+OP0CdEoe5VolFD0kQEsXOdeRnFA9xUd1lBiqp/j6s470el1Gkm+lWiqum3RuJobqKT6qo8RQPcVHdZQYuV03s2bEmGTW7jYXPjrWjm8tTth9Qvj2IiWPE8t1uGCIHkOL1BksISGEEEIIIYT0DgXGpEctLh9e3GvGBnOgR1/NcxhbqkGxSgGb148DnR6saLBhRYMN368uxtUjjShQZs3SdUIIIYQQQgihwJjEtsXiwBM7mmHzCRigVeLS4QacMqAQGkVX4Ov0Cfi8vhP/PtyK/x3vxHetLtw3tRKVBaoMlpwQQgghhBBCEkdDeySqL+o78eDWRth8As4bXIJnTxqEM6uKJUExABQoeZw3pBTPnDQYJxh1qHd48atv6nHE5slQyQkhhBBCCCEkORQYk24+r+/As7tbwHHAzyeUY/FoU7eAOJJercCvpwzA96uL0ebx44GtDWhx+fqpxIQQQgghhBDSexQYE4n1zXY8t9sMBQf8atIAnFZZnPBzFRyHG8eYcObAYljcfjy4tQEuvxD/iYQQQgghhBCSQRQYk7CDnW78aWczAODOiQMwq7ww6WNwHIebxpowtawAdXYv/rbHDNoRjBBCCCGEECJnFBgTAECH14+HtzXCLYhYVFOG2RXJB8UhCp7DHRMqYNQosLLRhpWNthSWlBBCCCGEEEJSiwJjAlEU8dfdLTC7/Th1QBEuGlra52OWqBW4Y0IFOAD/2GdBm8ff94ISQgghhBBCSBpQYEzwWX0n1rc4UFmgxI1jTeA4LiXHnWAowNmDStDpE/DSPnNKjkkIIYQQQgghqUaBcZ5rcHjx0j4LeA74xYQK6JSpPSUW1ZTBqFFgTZMdWy2OlB6bEEIIIYQQQlKBAuM8Jooi/rbXDLcgYuEwA8aUalP+Gjolj+tGmwAArxywwk+JuAghhBBCCCEyQ4FxHlvVaMM2qxODC1W4eJg+ba9zUrkO40o1OGzz4MsGSsRFCCGEEEIIkRcKjPNUh9ePf+y3AABuGlsOFZ+adcXRcByHq0cZAQBLD1rhpr2NCSGEEEIIITJCgXGeeqO2FR1eAd+vKsZ4feqnUEcaU6rFnIpCWN1+fFrfmfbXI4QQQgghhES3t92Fv+81wyvQMscQCozzUJ3Ng/8d70CRkscVI8v67XUXBqdrv3ukDR4aNSaEEEIIISQj7vqmHh8d68CnxzsyXRTZoMA4D71ywAIBwMLhBpSoFP32usOKNZhVroPV7ccXtNaYEEIIIYSQjGpy+dDu8WNXmyvTRck4CozzzLcWB761OFFVoMLZg0r6/fUvHWYAEBg19tPUDUIIIYQQQjLG7hVw89dHcc/mehzsdGe6OBlFgXEe8YsiXg4m3PrpqLK0JtyKZWSJBlPLCtDs8mGD2d7vr08IIYQQQggJsPv86PQGljjW2TwZLk1mZVVgvHTpUsyfPx+TJk3CpZdeiu3bt/f4+I8//hgLFizApEmTcN5552H16tUxH3vddddhzJgx+PLLL1NdbNlY3WjDUbsXE/RanGjSZawc5w8uBQB8WEdrGgghhBBCCMkUu68r70++ZwDKmsB4+fLleOSRR3DzzTdj2bJlGDNmDBYvXgyr1Rr18Vu2bMEdd9yBSy65BO+99x7OPPNM3HTTTaitre322Ndffx2imNvTen2CiLcOtQIArqgpA8f1/2hxyDRjAap1Kuxqd2F/R35P2SCEEEIIIaS/hWaOOv1dMVCOh0NxZU1g/Morr2DhwoW4+OKLMXLkSDzwwAPQaDRYtmxZ1Me/+uqrOPXUU7F48WLU1NTgtttuw/jx47F06VLJ4w4cOIC///3v+MMf/tAfbyNjVjR0otHpw7Sygn7ZnqknPMfhvOCo8X+Ptme0LIQQQgghhBBAQH5HxspMFyARHo8HO3fuxI033hi+jed5zJkzB1u3bo36nK1bt+Laa6+V3DZ37lysXLlSctw77rgD99xzDyoqKlJSVj4F63ZDx0jFsQDAK4j41+E2AMAVI8tSdty+OKO6GEtqrfiqyYZrRhth0CR3Kqa6jnIV1VN8VEeJoXqKj+qIEEJItmGvWPmeFzcrAuPW1lb4/X6YTCbJ7UajEUeOHIn6HLPZDKPR2O3xLS0t4X//6U9/wqhRo3D22WenpJxKJQ+jsSglxwIAg6EwJcd5Z78ZZpcPc6tLMHuEKf4T+sm5NWX4114z1rd7sGicvlfHSFUd5Tqqp/iojhJD9RQf1REhhBC5i7aMlALjLCaKYo9rZaPdF7rt66+/xieffIL3338/ZeXx+QR0dDj7fBye52AwFKK11Q6hj2eo2y/gle8aAQCXDi6BxSKf/YPnlRXgXwDe22fG2eUFSa17TmUd5TKqp/iojhJD9RRff9ZRSUkBVP24Dz0hhJDcxLa+RZpKLX8GgwEKhQJms1lyu9Vq7TaKHGIymbo93mKxhB+/adMmNDQ04KSTTpI85qabbsKcOXPwj3/8o1dlTWVjSBDEPh/vf8c6YPX4MaeiEEML1bJq0FbrVBhXqsHudje2W52YZChI+hipqKN8QPUUH9VRYqie4qM6yl9NTi90Sh7F1GlBckBthxsGjQJlSS53I9kr3y9dWZF8S61WY8KECVi3bl34NkEQsH79ekydOjXqc6ZOnYq1a9dKblu3bl348T/5yU/wwQcf4L333gv/BwD33nsvHnjggXS8jX7nE0S8VxdIbrVwmD6zhYnhrOoSAMCnxzszXBJCCCGk9zx+AdevO4orVkdf4kVINml1+/CLTcdx9Vd1mS4K6Uf5npU6a7qArr76atx1112YMGECJk+ejFdffRUulwsXXnghAOCuu+7CgAEDcMcddwAArrzySlxxxRV4+eWXMW/ePCxfvhw7duzAww8/DCCw3jhyDTIAVFVVYdCgQf33xtLoqyYbWlw+zDAWYFixJtPFierkikK8uNeM9S12dHr91MtOCCEkK3nyfaiF5BSz25fpIpA0C/9iMXOpKSt1ljjnnHNgtVrxzDPPoKWlBePGjcNLL72EsrIyAEBDQwN4vmsAfPr06XjyySfx9NNP46mnnsKwYcPwl7/8BTU1NZl6C/1KEEW8c6QNAHDxUH1Gy9ITjYLHvMpifHy8A6sbbfhBcBsnQkjiLC4f9na4YPMKKFYpMLZUk3Smd0JI3+R3c5LkGj+d0HmDXWOc7597VrWcrrjiClxxxRVR71uyZEm3284+++ykMk7v3bu312WTm80WB+rsXowp1WR83+J4Th9YhI+Pd2BVEwXGhCRjd5sLSw9a8V2rq9t9M4wF+MmIMowskedsEUJyDdugdPsFqHkOHkGERpEVq9YIkfDTDIicF+0T9uX5555VgTFJ3DvBfYsvHqpPKttzJowu0WBggRJ7291ocHgxUKfKdJEIkTWvIGJJrRUf1LVDBFChVWKGUQe9WgGr24dvLA5stjixxXIclw7X48fDDbL/HSAk2wnM4jybV8Df9pqxyezAklOHooSWCZEs09uRww6PHx5BhElLIUY28lJgTHLNrjYXdre7MbhQhZkmXaaLExfHcTitshhvHmrFqkYbfjzCkOkiESJbLr+AP37XhG8tThQqeSwebcS8yiIomMDXJ4j4rL4Trx6w4K1Dbah3+PB/48uh4ik4JiRd2ECi0ydgk9kBADjQ4cZ0o/yvxYSwkl1rGtpCddGaQPK59+YPpw5ZuQt+xOynlO+BMc3vyUGh0eKLhurBZ8mP0rzKIgDAqkZb1A3HCSGBC9bD2xrxrcWJwYUq/HnWIMwfWCwJigFAyXM4e1AJHjuhGuVaJVY32fDc7hbJiBYhJLXY75dXEMJ/09eOZCOfEP8xIX/a2YyfflUnmYab72tVs1VvPraDnW4srbXmxPR7CoxzzOFON76xOGDSKHDqgKJMFydhA3UqjCnRoN7pxf4Od6aLQ4jsiKKI53a3YHurC8OL1HhkRhXK40xVG1KkxqMzqmDSKLCy0YY3Drb2U2lJrnrhhRdw8cUXY9q0aZg9ezZuueUWHD58ONPFkgW2Tcj+nf1NRZKPkhk5XNloQ5vHjyaXN3ybn3qEsgbHjBn3Jrb9+cbjePtwG75szP6tVykwzjHvBvctvmCIHsosmzYZGjVe2WjLcEnyk8cvYH2zHS/vt+BPO5vx/B4zPq/vQIfHn+miEQAfH+/AykYbTBoFfju1MuGtzUxaJe6bOhCFSh7/PtyGby2ONJeU5LKNGzfi8ssvx9tvv41XXnkFHo8H11xzDVyu7gng8g0bCEgDYwoQSPbpzfZjHmaY2EenvexF+4j68ntldmV/e5HWGOeQJqcXa5psKFby+F51caaLk7S5A4rwj/0WfNVkw7WjjFBkWWCfrQRRxCfHO/DWwVa0eyPmTh0H1LwF368uxk9GlEGnpL60TKizefDKfisUHHD35EoYk9yKaUiRGreMM+GP3zXj6Z3NeGbWIOhpOyfSC//4xz8k/3700Ucxe/Zs7Nq1C9OnT89QqeRBOmIcPUgm+UkUxazLUM4uB0iUiwmMc2Faba6L9gn15WPLhVkC1DLKIe/XtUMQgXMHl0KbRT++IaVqBSYbCrDF6sTONhcmlxVkukg5r8Pjxx+/a8KONhd4ALPLCzGrXIdyrRIdXj+2WZ1Y2WjDh0c7sKHFgd9MqcSwInWmi51XfIKIp3Y2wyOIuLKmDKN6uf3SnIoiLKh24pPjnfjHfgvumDggxSUl+aizMzB1rrS091vt8X3sBA09v6/H6SuRfXlm3b+IzJcNkFE9iSK+bLBhokGLigJ57UKRrjr6224zlh/rwF9nD8bgLLmGepkYJ7I+YtWTw8+srecyf65lkly+b4kQI/72A3D4BJSqk8um70fy71du9USBcY5o8/jxWX0nNDyHcwaXZLo4vXbygEJssTqxrtlOgXGaNTu9uG9rI+odXgwvUuP/xpdjRLE06JpTUYTLhhvw/F4z1rc48KtvjuM3kyvps+lHHx1rxyGbBxP0WlwwtG/7fF810ohNZgdWN9lxWqUDM7Igaz2RL1EU8cgjj+DEE09ETU1Nr46hVPIwGlOTD8NgKEzJcXrLzHV1SBcVa8N/a3SalL3HVMh0Pa053o4/7WyGTsnj80smZbQssaS6jpYfqwUAbLF5MXVoWUqPnS7Klq5lN7HO38h6EjRdHR3FpToYC7OjEyCdMv19i0YQRWlyXkXX3xqtCr/YdByHO9xYfuGEpGaXKTXKXv/WyaWeKDDOER8dbYdHEHHe4JKs3i9xlqkQf+XMWN9ix3VjjN2y7ZLUaPf4cd+WRtQ7vZhl0uGOiRUxp3jpNUr8atIAvH24DW8cbMXD2xvxwLSBGFuqjfp4kjoWtw9vHGyFggNuHGvq8/dBp+RxwxgT/rC9CS/tt2BKWUHW5SIg8vHggw9i3759ePPNN3t9DJ9PQEeHs0/l4HkOBkMhWlvtEDI4fdPa3rXOupV5T5YOJyyWzI+MyqWe9jcFZhk4fAIsFnnlFEl3HTkdHtm951g6bF2JUCPLHKuejlu7gmmz1Q6ly5P+gsqUXL5vkSwuH3665ohka1S3t2ttsMPpxeFgEtydx9owVp94W8/ei/O7P+uppKQAqjgxEgXGOcDhE/DRsQ4oOOCHQ/SZLk6flASnU2+1OrGrzYVJBhqZTDWvIOL324JBcbkOv5o4IO56bo7jsHC4AUqOw2u1Vvx+ayOePLEaA2Q2DS7X/HO/FS6/iIuGlmJwinreZ5UXYmpZ4Dv2WX0nzh6UvTNMSOY89NBDWLFiBV5//XUMGNC3afmpagwJgpjRBqhkqxpmraXbJ8iqYZzpemK7YOVUL6x01ZEoZrbuk8GuEbZ7/Njb7sKUsgLJ3sSR9dTq9oX/9vjldd5nSqa/b5FWNQQ6pt5idqlgM5Cz+RF6Ol8tbh82mx04Y2BXTiNvH96rXOop+xaikm4+Pd4Bu0/AvMqiuNu3ZIOTKwLTKdY22TNcktz02gEr9nW4MaZEgzsmVCSV5OziYXqcN7gEnT4Bf/yuCR5/8sk5SGIOdrqxuskGg1qBS4cZ4j8hCVeNLAMH4M2DrXAks1klyXuiKOLBBx/Ep59+ildffRWDBw/OdJFSaqvVgavWHMHe9uSzbEuSbzGr9pLZ9iZXiaKI9+vacKDDndezVLLpTGDLuqTWivu2Nsbd8s/JtAloH2N5ckX5YNhOPTZ/Vk/f1Hs3N+Ave8z45HhH+LZcaBJSYJzlvIKI948Gtmi6MMtHi0NOKi8EzwHrW+w5keFOTjaZ7fjgaDuKlTx+OWlArzJk/nSkEeP1WtR2erCU9sVNm6W1gbpdONyAghRnAx9RrMFplUVo9/rxQXCLN0IS8cADD+CDDz7Ak08+icLCQrS0tKClpSVntmv64/YmtHn8+Nsec9LPZa9X7LY1vdn2JtdssTrx8n4r7th0nJZIZQl25HCrNbA04O3DbT0+x81mpab2myy5o2Qb98fo1OtJvTOwZ/UhW9d0eV8OfOYUGGe5VY2dsLr9mGXSYUiWZDqMp0StwER9Ado8fuxuy43GlhzYvH48tzvQ2Lt1fHmvZxcoeQ53TqhAoZLHB3Xt2NOLkRXSsz3tLnxjcaBCq8SZVenZeu2yEQbwHPDfo+1w0qgxSdCbb76Jzs5OLFq0CHPnzg3/t3z58kwXLSVC00R7841g4182GKYRY+AI03hW5HFcnE1xA3vaGhLMTuySjBjL6822uHxY15wd67vTyRllg2m/GH3EOJFRf/bxvhz4rcv+ebd5zC+KePdIYLTn4mH6zBYmxU6uKMT2VifWNtsxkdYZp8Trta1o8/hxxsAizCrvW/Y/o1aJa0aV4dndZjy7qwV/OrEa6izcIkyultZaAQA/Hm6AKk3TDgcUqDBvQBG+bLThf8c7cMFQfVpeh+SWvXv3ZroIaRX+tvWiUc82LtmRsxxoK/ZZm6cruQ9Nsc0O7MeUaEcR2wkkh/7WOpsHa5tt+NEwA362rg4+EfjDdAUm5HG7Mt6IMfu5JzICzI4wy60zpDeoJZvFNrY4cNzhxUS9FmNyLEPwSRWF4AF83WKXTOchvbO33YVPjnegWMnjpyONKTnmGQOLMa2sAMccXnxwtCP+E0hCdre5sL3VhSqdCqdVpneLl4uH6cEBeK+undaLE4KuwDiVI8aJTk3MZe1MYEwj6NlBkIwcJvaZ+SKec7jTjcOd7thPSLP/23AMbx1qw/+Od4TL1uTy9fykHOeO0jPlj5F8K5ER4GRHmOWOAuMsJYoi/hNc63FRDo706NUKjNVrYXX7UZvBH9VcIIoiXtxrhgjgqlFlKElyw/ZYOI4LbqkF/PtwqyQbJem9ZXVtAICLh5YmlRitNwYXqnFSeSFaPX6sbKQpZoSElr/2pj+WDR6kWV77Wqrcwo5C5cIIUzIEiFjbZMMftjfKtoNgi8WBg51uiEjsHGYDKTbA8okibtt4HLdtPJ6WciYiVJpmJhjO49xvAKJ3TPkl38mu2xMbMe6SC1VLgXGW2tbqxIFON4YXqTHdmJtTQmaZdACAr5lN5knyVh1rx952N0YUqyVp9VOhWqfGDwaVwuUXKRFXChx3eLCxxQGDWoF5lelZWxzpgqGlAICPjnVAzLNGKiGR+tKwizXClm/BXzRsvq187jTwCiIe29GMDS0ObGyR384bbr+A+7c24ucbj0uzrPdwDgsxAik5TKUOYc85ZZ4nf4v27mMFw4l8hpJzIweqlgLjLPXO4a61xVyOfslD62DlePHIFn5BxPPbGwEAV9aUgU/DubJwuB7FKh6f13fiqN0T/wkkpvfr2iECOHdwadrWFkcaU6JBTbEah20e7KJkdyTP9S35Fo0YJ0Ky33OedRp4hegjc3LhjnHe9nQOxxptZLcCzHSnK3vOUVb07mLlR0hkVkOu/b5RYJyF9ne4sL3VicoCJeb0MYmSnA3UqTCkUIU6uxcNDm+mi5OVVjR0oq7TjcllBZhalp6ZBUUqBS4ZqocI4O1DNGrcW20eP1Y02KBVcFhQ3T+jxUAgEDh3cGDU+L/HaK04yU+hhmFX8q3eHCPW3znWcuwFNhTxxQik8gEbaGQqPnP4BPzncBusUZY/eWOsNe1pxFgy2sg83+aTT8I1L30Hu0Q579jPxxMxHT4eCoxJxrFri9O9BjHTTgyNGptp1DhZflHEvw+1AQCuHFmW1pkFCwaVoFSlwJomO40a99KnxzvgFUR8r6oYRarUrANP1NyKQpSoeHzdYkdLnicmIflnd5sLl3x5CCsaOsPBigAR/zrUipf3WxI+jhBj+nS8hmOn148P69phl9Pc0xTjmNZ4rOAr17j8Ana1uSKSGXXdn6kG+JJaK5bUWvHod03wCyL2tbvC5yv72bCfTE+fUqzz3ubterOZXk+dz7MUEsHWiJtJxJlQ8i3m2bkQkWRVYLx06VLMnz8fkyZNwqWXXort27f3+PiPP/4YCxYswKRJk3Deeedh9erV4fu8Xi8ef/xxnHfeeZg6dSpOOeUU3HPPPWhpaUn32+iTo3YPvg6uQZyf4vWickTrjHtvXbMdDU4vThhQlPas5VoFj4uGlgZHjdvS+lq5yC+K+LS+EwBw9qCSfn99tYLHWVUlEMRAgE5IPvmysROCCPx5V4ukYffGwVa8X9eecEOaDWu9STTE/7SzGS/tt+DVA4kH4dmGzczNBoeZHklMp0e2N+GezfX4qqmrY5+th3QsbUrE4eCe0nvb3XjzUCt++U19uBPdE2ObsZ4D466/2azUnWxgnOFgVLqNVA6fdCnA1lUiHRq5VptZExgvX74cjzzyCG6++WYsW7YMY8aMweLFi2G1WqM+fsuWLbjjjjtwySWX4L333sOZZ56Jm266CbW1tQAAl8uFXbt24cYbb8S7776LZ599FgcOHMDNN9/cn28rae8eaQMA/HBI/61BzKSRJRqUaRTY0+ZCB7PdA+mZKIp4Jziz4MpxFf3yml2jxjYco1HjpGw2O9Di8mFKWQGqdeqMlOH71cXgAHzR0Ek96iSvVGhV4b9DV1X2K+BMcCQ31ihxvLblZosTAHDUlrtLhmIl98nlEeOt1sDnuru9K3dDb7ZASqdPgstn1jQFdiVgp9Gy+932VFTJGuMYU6kzPWLsZNfNyqDeMyle5OCL8V1NRDIPr3d4E/5t7U9ZExi/8sorWLhwIS6++GKMHDkSDzzwADQaDZYtWxb18a+++ipOPfVULF68GDU1Nbjtttswfvx4LF26FABQXFyMV155Beeccw5GjBiBqVOn4re//S22bduGpqam/nxrCWtx+bCq0YZCJY/vV/f/qFIm8ByHE006CAA2mWnUOFGbLU4csnkwqkSDGQPSuxduiFbB44LgqPEHR9v75TVzxSfBUdqzM/i9rihQYXJZASxuP7YFG3SE5AO2oRhacsK272wJNt5iZedNdFS0SJU1TbKk+WOM2OXyiHGITtn1ubIdAR4ZjFy6gmXQKgJlZANYFzt63MMxYnV6sEsDMj1K65CUJYMFyQKxpv7Hfjzzd4Kv0eLy4cb1R3H7xmPwiyJe29WEQzLZmlWZ6QIkwuPxYOfOnbjxxhvDt/E8jzlz5mDr1q1Rn7N161Zce+21ktvmzp2LlStXxnwdm80GhUKB4uLeT1HmUzCKGzpG5LECU7oCGWuLUrQXbTY4qaIInxzvxEazA98LTjONVUck4L3gXrgLRxjAcVy/1dOCQSX416FWfNlgw6KRRpRmwXma6XOp0enFtxYnyjQKnFRRmNFz+ntVxdhmdeKLhk6cEJHYL9P1lA2ojrJTtDVybDPe7hWABHIX+sXowV+io6I5HRjHGEHP5RHjEJ2i63ONlagqU7zhwDhw5rOjxC5mrak/Rlm9ghh7D9wkp+Smky/GdzMfxfvKsfWTWPKt5H/rzMFcJo1OH7ZYHOHdU94/Y0RCz0+nrAiMW1tb4ff7YTKZJLcbjUYcOXIk6nPMZjOMRmO3x8daQ+x2u/HEE0/g/PPPh06n61U5lUoeRmPqRucMhq6GqdXlxaf1HdAoOFw5pQoGbVZ8dClxml4H3XdN2GJ1oLBUBy3T+8rWEQmobXPiu1YXqovUWDAmMI26v+rJCOC8GiP+vc+MVRYXrp44oF9eNxUydS79a1s9RAAXjjKhojyzeQN+UKrDC3st2NDigLJIi1JN998Z+s7FR3WUXaJlkGZD1ESTYsWaJhvt2R6/gI1mB6Ybu9obhcrcDYwljWewDenoj9/f4cYArRIlWdC5Go90fbV8gkVW1BFjX88B0tcNHfjFqkO4cEhp+DbJzAAZdQKwxc/3qdTxfs2knVjx6ypWNv6esEtBZfQ1AJAlgXEsoij2mGk32n3RbvN6vfj5z38OALj33nt7XR6fT0BHR9+nIPI8B4OhEK2tdgjBM+Yf+8xw+0VcMKQUgt0FS54laZ5uLMBXTXas2N+CWcFRtcg6IgFLdwU6fxZUFaO9zdHv9XRWuQ7v7AP+va8FCyoKoFbIu7GXyXPJJ4j4b60VPAecYtDCYrH16+tHc8qAQiw/1oFlu5pwHtPgoe9cfP1ZRyUlBVD1c/byXBVtbTDbVDju8OLDo+24ZJi+x0SGkhHjOGtJ3zrUhneOtGFuRXKdKKIoQkD/78Xa6PRiX7sbp1b2rvM/1ohxtLo5Zvfgzk3HUapS4LVTh/bq9eSEnZLMrnWVw1TqEE1wxNgjKWv06ceiKMLlF/HqzmYAwLK6rqVTsUZm+zMYFUQRbxxsxQmmrk4nNhjMdJDeH17aZ4ZHEHHT2HJsMtuhVfCYZAhMe4kX7Ca7DESI8vsZD/u9d0RMuVdmeMZVVgTGBoMBCoUCZrNZcrvVau02ihxiMpm6Pd5isXR7vNfrxe23345jx47htddeQ1FR30Z8U9kYEgQRgiCize3D8qMdUPNcIDDOgy91pBNNhfiqyY4NLXbMZH/sgnVEAmxeP75s6ISG5zC/sihcN/1ZTxVaJWaVF2J9ix0rG2w4syo7sqdn4lza1GJHm8ePmSYdDGqFLM7l+QOLsfxYB76o78APomTIpu9cfFRH2cXPNvqD/2c/vqW1VnT6AiO8PU31k6wxFnpuLG5vDXSib2ByZyQSOzz6XRO+a3Xh1VOG9msCzhvWHQUAlGuVGKdPfpcDtiHsiVM3R4JZk9u9uZFwk93+xsNMVZbTiHGIJPmWnw2Quv7+5wEr3qtrhzHKzEU2kJJmN05xQYM+PNqOz4534NETqsNruVc32fDvw234dzABKRAI5kOSTSiVjT48GshbcuMYE36/LZA3KfTbFS/YTTZBXOQIs18QYfMJPS6l88U4z7wyCIzlPZQTpFarMWHCBKxbty58myAIWL9+PaZOnRr1OVOnTsXatWslt61bt07y+FBQfOTIEfzzn/+EXq9PQ+n7blldOzyCiLMHlcAQZWpjPphuLAAP4BuzQ/IDR6S+aOiEWxBx2sCift8Ll3Xe4EBA9fEx2vqnJ180BLZoOkNGW6+NLFZjkE6F2k4PjjsouzjJfdEaf+xt7MhZz8eJ/vyeRmjY61kiV7avWxyw+wRY3D581+rE2qb+nWVidSe+z3mj04vndrfA4vbFDJii1b2cRlJ7i/1cIxv+0f7OtNA5KtnWKEYw+V5whNgSZc/7WM9J13t9aZ8FR+xerGvu+h4c6OiexIl99VxPvsV+pzqj9EjEHTGO03EFSM/vyGUjv9vSgCvXHEFLlPMj/BrMcdl17XLI1J4VgTEAXH311XjrrbewbNky1NbW4v7774fL5cKFF14IALjrrrvw5JNPhh9/5ZVXYvXq1Xj55ZdRW1uLZ599Fjt27MDll18OAPD5fPi///s/7NixA0888QT8fj9aWlrQ0tICj0c+jcE2jx/LjwVGi9l1HPmmWKXAWL0WrR4/DnbK5/ORE0EUsTwYiJ4zKLPnyni9FkMKVTjQ6cb+KBcpArR7/PjG7ECxipdM+co0juNwSjCT+ZrGPFuzQfIS24APjVWwjWd1giMYgiQQ6Lo92ghNqPHFNluTaRSKInDvtw14bEdz2hqTZpcPKxs7JY1gTRJLY/6wvQmf1Xfixb2WmNmYo9WNnALG3pI2/KNPsZfT+wx9DrEC40TXjkpGG/uxE4Cdoh4tIBMj6v2o3ZNQp5JfEHHP5nq8dbC1230tLh/+sc8iu61E2an7ligdWfE+Cn+MoDfWMSJHjHe0BbYni9ZBEe24bMeRHKa5Z83w4znnnAOr1YpnnnkGLS0tGDduHF566SWUlZUBABoaGsDzXT/Y06dPx5NPPomnn34aTz31FIYNG4a//OUvqKmpAQA0NjZixYoVAIAf/vCHktd67bXXMGvWrH56Zz1bdqQNHkHED4eU5u1occgJRh12tbmwyezAqF5M5cp1W61ONDp9mKjXYlhRZvbCDeE4DguqS/D3fRZ8crwDo0rKM1oeOVrVaINfBE4dUCS7PclPrSzCm4dasarJhoXD9T3mciAk20Vri7FBgYrneowMHD4BBQouZrblaCM0oa88e1cyI1kdzDRjnyBCoUj9d/TOTcfR6vFDw/duDOVocEp0m0faOPcwI/DR6sYdEVD9fa8ZpwwowuSyBFKD9zObN7C93ZyKQsnvJNvAZ7M7xwo8My1UrFjLAWJlpe6Jlz1Wmt8rux9utK8q+9Vy+wXc8vUxAMDLpdqoU8JDjto92NXmwq42F348wiC576kdzdjV7oLZ7cOvJskn0Si7Ztfi7h60x+tIi5UPgMXWZ6w1xj11KLLnFttR5pXBVyKrIq0rrrgCV1xxRdT7lixZ0u22s88+G2effXbUxw8aNAh79+5NaflSrdXtw8c0Whw206TDa7VWfGNx4CcjyzJdHNn5vD4wLVcue1yfNrAYrx6wYk2jDVePLMvo1G45WhGcRi3HNdhVOhVGlWiwv8ON2k4PRpZoMl0kQtKGbSiG/mIDmJ7WvO1pd+FX39RjUU1ZRPKtnqcjRtsvOV7wwI7cHrZ1zZzyCCI0afh5bQ2OhB21d72WO8Fp5UBX41mt4CWBizQxWffnsY/9vL4Tnwb/k8NWLpH+vs+CVY02XDpMj8trutoliYyIZWpwLHQeceg6/0LnXqxR4t7MPu5rYJ0MV5whbTZ4a2FGUTt9AozRnhDUU9KweqcXAHBQJvvvhrDfH3bpgyCK4Dku7nnH3h0riI6VaJA9dk99dT7J94OmUpMEvX2oFe48X1vMGlyoQoVWif0dbrQmsc4pH3R4/NjQYkehksdJ5fKYlluo5HFqZRHcgoiVjZnPtiwnBzvdOGTzYFiRGsMzPLofyykDAtly1/TzGkZC+hvbsAsFDewoRk9NtU+PB5avLKm1Roy2df0dauzZfQJqg9MLo7UZ400jZMvEThf1CiIsLl/UNZ+pwI7gunsR4Kh5LqE9nr2CGM54HHLMLu+lU7uC00Y/isinIZlKzWZ3TmCaarpFiyFDn0msteC94YsRPKVCZAcNmwcg3neLPb/idfSwa3QFMbBn8zdmB7yCGE725ZDZomWHnx0x7vpNCNVBMqX1CiJe2mfGjlbpjjtCjPOE3RO+p8+crTK5TaWmwFimjnW68fGxDugUHC4Zqs90cWSB47jwWszNTCZPEpiW6xOBeZVFstoeaUFw9PqT4x2UNI3xRXB0f/7AItlOU547oAgcAoFxInsZEpKtIoOzSO4eRqMqC1Rdx0H0oCd0yMVfHcEvNh1Hi8sXNdiOFyix6yhtXun03GvW1uGatXU9Pr+32NE+j19Ek9OLbdbEt6ZU81zMhnToLbn9Ai758hAe3t4kqQerzNZvRjIGh+qdEcGRP0ZngnQqdZoLF0OoftlLjzccGKduqrdkxDiF15ANLXb8ZNVhLDvSFr7NK4j416FW3PNNfdRys3XNTm3v6bsNSL9ndp+AVw9Y8dC2Rrxx0Bred1x2gXGMqdShacrJfBbrm+348GgHfvNtg+T2WB1d7PndU6dDrCz1FBiTmF78rhF+EbhwqD4nNrhPldBWTRspMA4TRRGfBaflfk9m03JHlmgwsliDo3Yv9lESLgCBBtOaJht4DphXKa/Pi2XUKDHRoIXF7Q+PihCSS3a3uVDb4ZaOkkVpl/XUwGP3E2aPI5lKjcCaYEfwAWaXL9wAZKcbxguU2ODL7utq8NY7vOG/RTEw6prKxjrb2PUIIq5fdxS/29KAZqe3h2d1UXCxA65Qp8Tx4HvYZHbEbGjLUaxuTelU0dij5U1Ob7egOt1C5xlb9tCU4VRO9falKeD5+14zfGLX8rGQNw62Yle7C83OKNmyY4wYx8uA3sms5e/0CuGdNjZbnFAGKzBTHRyxsO+JLX/ou5TMR+GI6Dj41uLAjeuPoo5ZysF+R20+IertIdusTjQ4vLG/HzKoSwqMZehAhxuf1bXBoFbgfFpbLDFRr4WG57DV4oA3ibVOuay204MjNg+GF6kxolh+a0FDa2i/iLiI5avtrU60ewVMLSuAXuadXnMrAtmp1zVTdmqSvfxiIAutZGskUcTdm+vxi03H4wZiPTXWXDESSUWOlrEjT25B6Bq1Y18nTouVDdDtTAO0ltmpweUX8eI+Cy5bdVjSeO0LtrHL7sNrSzCg84uxp+iGjiCtL/a5Mmgp94BD97XiQOytiti/LW4/rl93FP+34VhayxjS4fXD5vVHXe/r70XQFE+8teS9FToUW8cWyVraaGWJPpIZbyq1M+KxoaDTpFGEXycNee/6xMNUtiuiU0YUxT7NAHtgayPqHV68wWTplpzfPXQ6WNw+/G5LA362/mjEVOroSw0yhQJjGXrtgAUAcNkIA7QymhYrB2oFjyllBXD6RWxtocY60NVrKsckTkBgraqK57CmyZZU4pZctTq4Zje0JZKcnVSuAwdgfYudplOTrPX2oVbc8vUx/O94J9o9fnxR3ymZlpzMuR25JCTW1kORmV3ZEV6XXwzfL8lkHKcc7Gg2GxjbmFEhp18Ir3dd32LH+mY7HvuuSZIJOhFsnbCjTg5f7IYvEAiwdrY6u40yx5p6GbrdKRk1Yh+bVLH7xTuH2/DMruao580bB614Ya8ZbHXHmj7dEBwlb07T2nCWXxCxaPUR3LbhmKRTJrw9mRj6f+p+52PtaZwO7PeB3Rc3/Pqx1hjH6Qlgzz/2fNco+PB3mE/hcqhvzA7c8vVRNMaZjfGN2YGHtzVKvvshkd+9kGd3t+CatXVxE5Ulgn3PksA4xhRpAJJtrSTJ6XJpKnVoyg5JHZvXjy0WJwYXq/E9mWQXlpvQdOq19R1xHpn73H4Bq5tsUHKBLXbkqEilwCyTDg6/iK9b8nsKvFcQ8XWzHSqew0nlhZkuTlx6jRLj9VpY3X7sa6ep8CQ7fVDXDgD477F2/H5bI57Z3YJ3JOsTEz9WZJvSFSOjauTfduZFXD4hagPQLwR2o4i2D2vkMdlGJzttmv1byXF49LsmrG22J50AUTI9kil7E9NgjzYF+N26Nvz62wb8c78lfJvLL0gTk0V0GgDSjgO/ZLRVfpHxa7VWfNFgw+42VziyFBEIzv51qA3Lj3VIRhrlMB18b3Apk9ntl5zDofAmVOepHKGX7HXbj1mpo52XyawxdvgE/HO/BW1unyTQ80Z06IRyCqRyxPihbY04avfirYOtWNVowy1fH0VblHX2D21rxEazA0tqrd3uY38b2MGIrVYnrG5/SjpiChQxAuMYQTkg7byItRY5K0aMv/rqK9hs0h/Uzz//HBdeeCEmTJiAiRMn4qKLLsLKlSvTVca8UqRS4J7JA/DEqSN63CIin80wdgXG+d4xs8nsgN0nYFZ5IUpkvB3SGcHR7NAWRflqs8UBh1/ECcaCcEZLuZtdEQjg1zZTdmqSnQqYJDmhXAdsltVOX+IJnvyiCLdfCF972Ia1RzJtses5gRHjrhucfjHcAGSvYV5RxL3fNmDx2jrJPsVdx4y+Li/y2CHs1dGS5E4OkqzKbBDuZ1+rewCyPrjs4jNm6YzHL0YEu907ECQjfjGmgsoB+3nV2b2SSma37WGDmViBMduJke4p4+znH3otEcy05ChZqVMp3WtH3f7o34Fo2LvdfgENDi9+s7ke79e1AQD+sd+CZXXteHBbY8z9dn2CGP6+p+NKLgJ4amczjtq9WNNDp1adPdBR5fAJ4fOpp+A0leULYX8Fespqzmb4Zr8f7ojfzWanNzybIhPifp7XXXcdDh48GP73Z599hltuuQUajQZ33HEHfvGLX0CtVuOmm27CV199ldbC5os5A4owWIZrReXCqFViRLEax22ecMKOfBWaljtPpqPFIVPKCmDUKLDN6ow5GpIPQhe4bJhGHTI7OLK9rsme9x1RJDuFOqGk27SwU4UTH5XcaHbg0pWH8WXwu+yKEcR1GzFmgiCXXwg3GqWjpyKOBa9pWyzdsz5Lp4NGD1DZYCsycVAyvDFey8UU2Bkl2lEFO/Sl04dFSYM52npidkTdJpkWK6/fHDbocvoFyYgiW/ftbGAc43eT7WSwJfn5xOMTREkZoq079YtdAU7o7nSN7KYy8I92JPZcTOaVXP5AMswdbS68vD8w+hpKKlfb6YkZZLqYzi2O4yCKYtRpzb3FjosVqmKHaqEEYDetP4rr1tZBFEVJOT0p7Olgv7eJ5BeIfG3298jKZMtmv+NNTi+uW3cUv/62vi9F7ZO4gXFkQ+ivf/0rTjvtNLz11lu49tprce211+Ktt97CySefjOeffz5tBSWENdMUaKxvyuOpuTavH5vNDhQqeUw3ymPv4lgUHIfTK4shAvgyT0eNnT4BG80OaBVd245lA5NWidElGjS7fNjXlvgWLYRk0jG7Bw9ubcAxuyc8pVPJNDbZxlhnEg3af+wLTBF+fo8ZgDQZFbu2MXK7JkdEYBytXcnGJOzU4sM2Dz6r75AEZZ4YI8ZsMMSOOie6dq/N7cMnxzoka5LdEcFgtL9DQoFx5CiSpD6Y+0LFYhvzbIAhmWYZ5T3sbHVGHV1PF/ZccfoESeAkCYyZx8Wqevb2aHWZrHaPH98FZ0I8tK0RV645Et7bmq3faK8VCvLSNZU1HWtH2aK6ell/3oj17wAks7nY+vBEdoowW1x9crwTl68+gtVJLlkAgNoON+765njMtlFPWctDU/hbPX7YfAIanD7J8oNUjhg7JR058b9zkR1CNl/03w72O74/OKPH6vZnbAlC0jMA9u/fj4ULF3a7feHChdi5c2dKCkVIPCeWBwKLb8z5m4Dr6xYHfGJgqqsqC6bdz68KjJJ+0dCZlyOPG80OeAQRJ5UXQpNlSfVC06lXHm3PcEkIScxd39Rjs8WJtw61hhtY7O8k2xhLZjQ11KBTB48Ve8S46zmCKEoCcXa0icUGoGySqxf2mvHcbjP+dai167ExAjKbL8YoYYKNzF9/24C/7TXjA+a7ztZVrJHqkGjXIp8gxgwOQ0EJ2wiONa06spH/VZMNv/62Ac/uaon1dlKuIyLRWay13m3u5IL1VIzsPbStEfd+24DNZge2BveZ3tMe2GqP7cCJ9ln4w0Fen4sRVTqOK8k03csgyiOI3abrs3GodCo1E3D6xfDjvIKIz4I5b57a2Zx0GT5v6MTedjeeZs5jdgTcEfE9EyNmKbCz8OrsHumIcQqDS1uMWR2xRHaGuGL8jkh+99jM+/3Y4cVKunVWVFQEna77aEdBQUFeNnZJZows0cCgUWJnmyul01eyyZrgNOpTs2RabrVOjbGlGjQ6fXm5L+6aLMpGHWlOKDA+RoExyQ6h4ErFc+Hgi82kGi2hTSJCjThlODCOPvLhk0yllgY+XkGMOoJmjzGiEvq9ZDPVemIEkpJs1b7oDdGehJYnHWa2eooM6sNliBLtqKJk6PWL3UflQqKNGEvXGEsTf92zuR4bgjtS/O94IBjZaO6/mWPOiKnkvhifQ3uS7RKvIPZ514bQaNsGZsAgNGoXL0AKva10rXVOx3FTMQrtFcRu3+EOyd6/XY9lO6t8Ylfnll8ECoOjzL0pUbTvUaunK9gNdbh0eP0QIqZKO3wCzExgbPMKMRNb9VWHN/q64FgiP3PJzBOmLtnfF3Z0vDNDKekTCowXL16M2bNnY/bs2bDZbNi9e3e3xxw8eBDl5eUpLyAh0fAch9lVxfCLCPeM5pM2tw/brU4Y1ApMNGgzXZyEzR8YSMK1qhfTjbJZp9ePLRYHipWB7cayTWWBCiOK1TjS4U7Z3qiE9AdR7GpAS5M+9e54oRHRUIMzVqIots0uiNJp1l4h+oixJLFVlEZhrDKzr8uO6nRGNGS/szrx2q6mhLan4pgdliOTFYVEC7aiHTlyH2OWEGXEWNrB0PXYp3e1YFebC8/ubgk+t+u+1Y02/GZzfdxtbnpji8WBu785jhaXr9tUcrYOOiTbWiXXqP/oWDsuXXkYO1v73p6RJDkKjlzHG5H2M0FeOiQbxG6zOvHI9kZYoySNCx0qXpKtRLgFQfL9sTNJrABpB1enV5pQjT1nU11t7PfY7hPwjdmBRauP4MOj7ZLyOnyCZHDI5vVLk4SlsGDseZVIwO0TgAMdbrQFP8NYs02kyxGi/5b1J2W8B9xyyy3dbjMajd1u+/TTTzFr1qzUlIqQBJxcVYLlh1rxjdmBuVk4CtcXa5vtEACcXFEIRQr30Eu3kysK8fe9ZqxttuO6MaasmAKeCuub7fCJgZHXbH3PsysKcbDTgw0tdgwaqs90cQhJiMMvhEckersOkRW57650NDX68SNHeQL7+nZ/XOR61RUNnZIkPLFG/ZwxRonZhqXTL+DXmwMJbbQTynF6Zfd979lZf+yIFUsyYsyU54jNg0E6VdR1gb4eRoydfgGvHrBIMjrHmhYbWi8bClzYnTv+dagVxxxe/H2vGb+bOjDq8xMliiL+d6wD4/UaVOvUuH9rI4BA8G3SdjWb2XWmgHR9d7TEZD35oiHQWfzCPguemTWoL8WXlikYNMUbMfaLgfedvuRbyT3+1QMW1HZ64PA146HpVZL7Qu8vFdOEIwNcm1eQdFBJ7mMD5ojOrd78tDQ5vdAq+KidZJL1uD4Bz+8N5DT416E2yVaPDr8o6SDojFj3nkqSnAUJvESd3YM7Nh2HQa3AP08ZGrHsJHqFSaZSB+tgk9kOBcf1Wy6dXgXG0SxZsqTPhSEkGSdWFkPJBbbA8YtiVgWIfRXKRi3XvYtjKVIpMMOkw4YWB761ODArC/byTYU1TYGpbdncgTOrvBBLa1uxscWOiykwJlnC5hXCo7qpGGEKHUJEYF2mO8ZaOZaAyKzA8VvRNp+APye4dpY9GrsuT5LdmXn9fe3uqIExG2hYY6yRZV8r9J7WNdvwx++accGQ0qh14O9hjfGyI+1ojZjWHutjCgXCofvZUcjQFPC+jDJ9dLQdo/Va6PzAc8FR6WXzh4fvb3J5UcRkCHb5pEEVO6IWuS40UdYYuzY8tbMZdTYPnpxZDUWczlV2lDUUoCc29TV9ybf8YmDKMgeEc2xsNjug4ICpUQKeZmfgPZijnIepDPw8gtgtuZwjIigNYc8td8Q5bU9iyzcg0Llz/bqj0Co4TI0yi4wdBXb5xfBeySqekwSYXkGU5hjw+lOaiZqVTJJCIDBaDCD8/ZZOpY7+/XBGvJcDHW78flsTCpU83pg3LMkS9052ZYAhhFGoUmCCoQAdXiG8tiYfNDu92NPuRkUwW3C2mRcMDlfmyXTqVrcPO1oD094nZNG090jDitQYoFNhb3vX1ChC5IhtOLe6/Smf5hjS6RMSGgXxR4wYJxKgsyOoyWCD4cgtokJiBRaR0zfjCb2n0J7F79W1wyV0f15PiZEig+KesNMvBVGaNCkUKvb2sz7u8ODv+yy4c+Nxye8bOwrc4PBK16MKQsykYclOpQ4RERiZ/sbsQKfXj6N2Dzx+AasabThk86DRJZ0q7hVEvLDXjO3MkjLJyHWwvJ4on0skvxh9JkMqeAQRt3x9DL/e3AAg8Pk9uK0R921tjJonJlQMNkjZ3eZChye12Yo9flFyXtl93adWh7CJ7SITdrHfu0TWU4fWBbv83ZN/AdIRWZdfDCf7c/uFbr8z7ZKp1GkcMfYkd05HPppdThLrN1CS+donoCG4NGKGsf+WoMUdMSZEzmaadNhmdeIbswNjS7M36EhGaPTxlAFF4LJwlHymSQedgsMmswN2nxBOWpGrQtPe5w7IrmnvkTiOw9zqEryz34JvLA6cWVWS6SIRImFx+bD8aHs4izqAtG7l0+5JbD2fICY2WsKyJJnVOCRWQCtZhxzjMYkEw6xQsMW2w11RKiFVmXHZ99Dh8UsD5eD/exsUmF1d9b2fSQ55xN6VU6HV45eUwekXJYG4PcZIYzJsPgFPBjMbzzAWYLPFicuGG8L3H7d7Ua1Th/+9qtGG5cc6sPxYR/i29ogp9EBin4FPTF/yrcM2D1pcPrS4fOEp8SF72t0o0yhQoOAxUKcC0LX2PHTJ3Gp14L4tjRhbqklpR5c3YsQ4cqaEPcaIcSTJsgWfgCKVosfXtTCdL+YYswRC3Mxadm+ULNqRHSHp2uUo2RFjli+i3LGKGJkvIXQ+juzHQaDcbpGSnDczuB/spn7MSplpXdmos3MaslrBY05FEbyCiPXNub/d1uoszkYdaW5VKQBgYx7vH07k63ff1uPtw22SbY0S2Vakt+I1aEMCI8Y9b3OUKrEa7+woU0eMUdpk6yoUhNY7ukYxo40Yp6OhbnH7o9Zjp9eP/R1ufFDX3i3IO2zzdAvKNpsd+Ptes+SzrGNG64/au95bm9svqcfIUWH2372dSi0pmyUwChy6hgBAk1Na/mjZ1dnOAadPhBgxYyEWvyD2aq1sItgs599aHWhm6nt3mws/33gcD2xtCN8W6l8JJZf6+97A/uF72lM7O9ATkZXaEjEbKlaW90jsrAir2x+exWj3+qMmqjIzr3PM0XPCOJcgwh78XvvE7tO22ySBsdgva4yT1e6JXg89sfn84Y6KMk3/jeNSYEyyWlWhGtU6FQ7bPGhOQzZKuTlq9+CQzYPBhSoMLVLHf4JMzQuujV7VGH1D+1zR5PRib7sblQXZOe090rSKQhQoOGyxOlO6DQTJPkuXLsX8+fMxadIkXHrppdi+fXumi4S6YBBT29k/mdObEwyMA1mpkxsx7q1Y2xeyIzGxRn6SXSfp9oswu3ySekhmT+i+MLt9cEWpx06vgGd3t+Af+y14v65re7nDnW7ctuEYbt1wTBI4PLitER8d68DnDV3XorqOrhHjo0xA1+kTJO8vcoTdLplO28s3FsVxJnCKDITjtXu2tzpx6crD2JdAQMluQZROL+2zYGdb19TvVcHAv8Hpg9svSEZI7T4BL+6zSOoglTyCKEmU1mNgnGBg+PD2Rty56Ti+Mdvx44/24M6Nx7sFqxZX4t81l0+QlCNyVFuyt7ZPSOnexdLX6f13uy1itkUibF4hvF6+TN3zCHwqUWBMsl4+jRqzexdn4zTqkAkGLYwaBb5rdXXrwc8lXzFJt7L58wpRK3hMN+ngEURsT8G2IiQ7LV++HI888ghuvvlmLFu2DGPGjMHixYthtVozViZ2XWhLP/2mJPo6IqTJt1KRBCwWRwLH7vQK2G514itmJLLd4086cZVXEPHukbZut/UHi9sXtaHtFkQcCQazu5gp0ZssgfaB3Rd47/d8U48lB7rOV/axsUaMAemIbeR7TVdAwjru8OClfWZ8cqwDKxo6JSOPsXgEMaG13OlMvsVy+UV8zEz9Zr9HR+1eSQDm8otp3ZLTI4iSta89BayJfj8ag+fIWwdbYXH5cNjmwY7g9dLjFwJTypPI09Hq8UvW60YG75FTqeU4Ytzq8Se97t7mE8KdAEYtjRhHlWwP9ccff4wFCxZg0qRJOO+887B69WrJ/aIo4s9//jPmzp2LyZMn46c//SmOHDmSzrdA0uDEPAmMRVHEmsau9cXZTMFxOGVAEUR0Bfu5aE0OTaMOCWUSp+nU+euVV17BwoULcfHFF2PkyJF44IEHoNFosGzZsoyV6SAT2PSXFlfio1iR+99mUqvHj99uacDjO5rx7pE2PL/HjCvXHMGKhuRm8HgEEeua7eA5oKa4f2cw1Tu83ZL7RNrX7sLBTje8gohtTHD16gELdrW78J+IoD6EXXN61C6dfZDMZ54O61sc+PBoB/6214w/72oJT7dOBb+Yvmm4Id+vDmRDj5ZtGgDu2HQcbx6UdrC1efyoKlBhgj71eWQCyaxijxizkv3W7mVG6d881IqrvzqCH608jOvX1WFDS+LLyCI7XCJHjCO3CUvbiHGSybdYbR5/0jkM7N6uwNgg5xFjURTx3HPPoaWlRfJ3uiXbQ71lyxbccccduOSSS/Dee+/hzDPPxE033YTa2trwY1588UUsWbIE999/P95++20UFBRg8eLF8Hj6ZxoWSY2xpVoUKXl81+rsdSbIbFDb6UG904tRJZpwgopsdlplbmenDk17H1KowrAsnvYeaYZRBx6BjiihH0YXiLx4PB7s3LkTJ598cvg2nucxZ84cbN26tVfH5HmuT//t63Djli9r479QirUkMx2SaXz306BqQl49YMXHxwOjd9tbk+tcaHL50OrxY2ihut+vSYlMrW33Cvj5xuP4+cZj+K6VTaiVeHDbGWxTVAffX6LT57ORACDdTahxCQS3oT2dWWVaBQrSkKgzchS4p8C4L/a2u8NBniD2bclBaHpxqDbYfHfpHDHuS/KtZ3e3JB2wd/r8sLh9KFLyKFAp+nyd4ONscxaS9FkmCAL+8pe/oLm5WfJ3uiXbQ/3qq6/i1FNPxeLFi1FTU4PbbrsN48ePx9KlSwEEAvzXXnsNN910E84880yMHTsWjz32GBobG7FixYq0vx+SOgqewwyTDj4Rkl7hXNM1+pidSbciDStSY0ihCodsHtTZcq8zKhdHiwGgRK3AOL0WrR4/anu5pQzJXq2trfD7/TCZTJLbjUZjrzrJlUoeRmNRn/470oeRjL5oSCJIcvqF8JYrclGqVmBGRRFGG3q3FUqoI3pEmQ7Gov7JoVAczPa7vyPxa0ZoOvTIPow4jg7utRvq31Bm+LOcU9V9H+q+KiopgJDmtzV6QAm0iuQD3PIiDfS61HcwR24l1pd1tIk4bVBpn4/RFoyE9RHTi/UaRXBqeHoC4/7+lW1x+eEWRJQXqvt8jQj9p4qTLRzo5XZNIjNKIPbDiEGoh/rGG28M3xavh3rr1q249tprJbfNnTsXK1euBAAcO3YMLS0tkl7v4uJiTJkyBVu3bsWCBQt6VdZEeyQSOUYqjpWrIutoVnkhVjXasMniwMmVuRWIAIGtC75qsoEDcGplceI9X7I+lzicNrAYrx2wYnWzDVeWGDNSinTUkSiK4W21Th2Y+OclZ2w9zSovxM42FzaZnRij77/9BeVO3t+39BJFsVfr6H0+AR0dfevQnKPX4KuKIiCYuGdnmqdVDyxQosHpS2o/b7dfRJGShyCKMbd16m+/mjQAk8oC39+b19WFk5clq0AUoEzfrlgSgwpVaHIA1jhrZi+vMaBMo8TgQjWe3tmMNo8fN48x4ecbjgEAVDyHwYUqFCh47G5zxW30V6qkwVyJko9bhnQZVqTG3ePLcX59apNXtljt8KR5yNjncKNcq8BRu/R1lBxww9hyvLCnJer3QyuKEBLYi7m3ChScZO2/VsElnSwqlnmVRVjVaMNtE8pxxsBirDne3qfkbM2OQKdQsZIHO2e2VKVAm9svmVqdzULZwvVKDhZLamYWlpQUxA2Os2If4556qGOtCTabzTAajd0eH+rRDv0/Vb3eQFfPd6oYDLkxMphOoTo6s7gAT+5owmaLE3pDIRQ51jDd0myD2e3H9IpCjK7WJ/18uZ5LP9Sq8doBK9Y02XHbiUPAZzBBVSrraI/VgXqHF+PKCjBpsCH+E7KIwVCI749W4uX9FmxudeK2FP7m5Qq5ft9SwWAwQKFQwGw2S263Wq3drqeJEvo4wlGo5PHc/BpYLDY8uq2xT8dKRLlWiRaXL9yAV3CJZSHWKDj4RA6+NCbfSsYgnSpc94ML1b0OjIuVin4bQdXyHAYVqmH19NyZYtIoMX9gYFT1uZMGQRADwXDImBINHp5RBQC4bm1dj1OkC5V8t6y4xarogTGP9I+s6dUKiGJg3WUiSbUSdd+3DeGp4+mi5jhUaJXdkpqVqhU4q6oYgiDib3sDvy2VBcpwIqsSFZ+yQDUag0YJJzM9X69WhF+7L0HyFFMh/m98ORZUl2BcqQaiCPT2mxIqR6gspUxnjVbBoUDRP9/BQiWf9HrhZLF1blAr+nyNSEZWBMaxxOuhjnZf5G2R/+5trzeQmp5vIDDaYDAUorXV3q8nQzaJVkcTDAXYbnXi60MWjE1DkoZM+u++QGfNbKMuqZ4zuZ9LagAT9FrsbHPhq1ozJvRySl9fpKOOPtwXuLDPMSX3eckZW086QcSgQhUOtLmw61grBhRk/5r3VOjP71siPd/poFarMWHCBKxbtw7z588HEFhitX79elx11VX9Xp5IJUydsI2rVDbmNAoeJm1Xo71QySc0BVPNc/Dw8RvZHAKZrFOlWMmHAx6TVhnes7eUCfYGF6okf0cGLj0pVSt63dhPllbBQ8sEADzXtWa7RNX1ObCBrILjEHrKaZVFWNlowwnBpJ1AoPw9BcYGtSI8hRsIjG7GWu9apErsXEjUsCJ1eA/g0yuL8GWjLZxw9LdTKvFarRXVOhU+YrI8h0wyaHHE5km4POkOioHAd7JCqwIQaCureQ4eQURRsH4HSc5Ddfg7VqpSgEP6RkINaoVkP+4yTdf3u0DBw+VP7rUX1RigVvD40YRKeG0ujGfapJeNKMOSWmv4XExUhVYp6bxif+s0PI8CZoq6iufSttbYoFb0+rf0BKMO31jiJ+4cWBBYZgcEOrn6U1YExr3poTaZTN0eb7FYwo8vLy8HEBg5Lisrkxxz4sSJvS5rKhtDgiDKMpiRE7aOZhp12G51YkOzPSf2jA3xCYFp1AoOOKlc16tzQs7n0rzKIuxsc2FlQyfGlWauQyNVdSSIItY0Bqa9n1xeKNt6761QPc006nDM3o4NzXacO7jv66ZyiZy/b6lw9dVX46677sKECRMwefJkvPrqq3C5XLjwwgszXTSUqLsah2xDsliVusBYyXEo701grOChSuC8KFHxaI84XrzRwchRa7ZToFitCAc95wwvw+t7mvGjYXrJ89mkSKUqBY4i8cC4RMX32/pDrYKDkWkol6kV4QzHFVoVOryBvAeGGI3pW8aV46yqYoxlrjXRgvoKrTIcLBs0CpRIRuf4mOvFEz0XohlVosFhmwcnGHVYH8xaHLoNAG4dX46LhupRHQwea0o0eGDaQHxrcYQD41Lm3DlvcClmlRfiohUHU7qvcl9oFDwqCwKfTaGSD+/pHUrkOKRQHT6Xx5RqwruNlKoVKQ/02OnTkVmPjZquf6t5DkquK8lV5LTrELbuhxapMauiCCUaJSL7xn84pBQzjIFBgHiBMfs9rtCqJIEx27FVoOQknTU6BY92IfUdCSqeQ6Eq8TXiCg64c2JFsEOLhyiKCQXGo0s04cB4RHH/tuezYrsmtoc6JNRDPXXq1KjPmTp1KtauXSu5bd26deHHDxo0COXl5ZJj2mw2bNu2LeYxibyF9jPeaE48DX422GZ1otMrYFqZTtJDmCvmVBRCyQX2/O2vPTDTaXebC2a3HxP02n7de6+/5dP+4UTqnHPOwd13341nnnkGP/zhD7F792689NJLkk7mTGF/I8uZ719xCn871QpOcuxCZWLHVvMcVAnMSGPLevv4clw+wgBTnN8SXURCoyKmkcxOuZxg0uHN04bjsuHSJR5TDAW4cEgpbhlngjrJKZmlaoXk9dJJq+BRxgQtFcxslVDABUDyGJaK5zDBUCBZbjUluM56alnXjCV25DJyxLhIxUumZbNBskYhvS8ZVToVXjtlKO6cWIEzq4oxw1gQHslX8xwUHIchRWooIs6hYubzZc8TTfBz7G150kHNczirugSXjzDg8ZlV4ZHUMSWB/5eoFfjjCVV4dtYgVDGfbYkq9Vmp2ePpuwXGXfWo4jlomO9XIfM89rNnO2Mij8dS8RyGF2ugS+D9sL9nFQXS3wD2HI+cSaFXp+f7WKLiE/oNC1HzHOZUFGG6UYfxem3CSy7YGR1jSvs3MM6aVlu8Huq77roLAwYMwB133AEAuPLKK3HFFVfg5Zdfxrx587B8+XLs2LEDDz/8MIDAFOorr7wSf/3rXzFkyBAMGjQIf/7zn1FZWRmeHkayy0CdCoMLAz1qTU5vzkzvXB3KblyZm+sWi1UKzDDpsKHFgc0WB04qz+73Gfq8Ts3BJHCssaVaFCt57Ahuk5bIRZ7kjiuuuAJXXHFFpovRDduQZIOEkiRGOeJR8Zxkqq5BowASyIOk4bmEghT2u3R6cJ3sljg7LqgVHJT+rlGtYlXXSGqJJKhTQKfoPruN4zj8dFQgL8vmJDu7SlQKuNOYGImlVXCSDscBWiV2Bf8eXarBV812VGiVSXWEXDbcAJNGiSllBfjZ+qMAIAk+dUoeJcznXapSSAKiQiUPT3A0X81zUPdyGqua58Kf/a3jArMavYKINo8fZ1WVxHyeXt1VHyatErWdgZE2DS+v32QFF8jmreQ5XBrsmLlzYgX+e7QDFzMzGEYFg2R2hkSpWoG2FCeVCkw9DhxTp+Qlyy3YwFgZ8b0tZL5bBQoenuDIrFGjwOHgAPDgwvgZtBMNjEMzFwZEdI5FdoKwU6lL1QqglzkDelJZoEoqn4AmosNOmUBQreQCHe//N64clQVKlNFU6ujOOeccWK1WPPPMM2hpacG4ceMkPdQNDQ3gmR+B6dOn48knn8TTTz+Np556CsOGDcNf/vIX1NTUhB9z3XXXwel04ne/+x06OjowY8YMvPjii1Crc2fP0Xwz06TDUXs7NpodOC8Hpne6/QK+brFDzXOYZcrugLEnp1cWY0OLAysbOrM6MPYJItY226HkgNkV2fs+EqHgOUw36bCq0YZtVmfOv1+SHdgpkOzatFTOtlHznKSxlugaOLUiscB4okGLwzYPrqjpGtWN97zQqJYv2LBnR7WKmaCuUKUA4kyxVCewnU5obSgQaITbfekblWTXXGsVvOQzZkfRRhRr8OysQRhQkFzTVsFzWDBIGngWqXhMKyvAFqsTU8t0ko6VErUCKqa9WaDkw0FcKDDuzbw1bZSRehXP4aqRPe/YUK5V4uzqEuxpd2FooRobWgIdG6ERY9lMo45yDhs0SiwaGX2mCRs4GjUKNLtSe46xgWTovAoFxuw0ZSXHSTtCFOxnz6E9GH+Wa5W4fIQB1TpVQltSsa+vZwJ/yTII5rwbWtQVm+gUnOQ7XqDgJSPgpT2MWPdFlU6VVAeFMuIjSyQxrprnwHEczkjDlmSJSDow5jgOVVVVUKvVkr/7Q0891EuWLOl229lnn42zzz475vE4jsNtt92G2267LWVlJJl1oqkQ7x5px6YcCYy/MTvg8os4uaIwLZvby8UJJh0KlTw2mR2wef3hRBzZZmtw2vtMU25Oe480MxgYbzTbKTAmsjBOr8W5g0rAcdKGNTu1MdYawUSpeE4yjTHWtN1I6uBoWTzTynS4YkSZpBEZb/qiKmJUix0xZYO6IhUPuHtu2LIBTKyMvOwoaZGKl6zTZZN9JapAEcg2vb+j+97oBQoOjmAZdEpe0hFRycwMK1byGFLUt/boJcP0+M/hNlw8TI8CnkeD04tJEUkheQ7dRoxDNAqu1/tVFyQQTMXys7GB/Dkf1rWHbwuVQy4TqSNHD+Op0qlQpOQxuawARSpFn+onmgKl9Dxng1kN00mh4iM+b+b7pJN89nx4JDwR7G+BUdMVGBcpu5J9sbMjqnSqcCdRiVohmRGgVXAolXznFSlL4scmtRtSqIbNm/h2eJHJjCMD5WhUGZ7pkPSr8zyPFStWYNSoUZK/CZGD0aUalKh47AxO78x2a/JkWq6K5zC3ohA+EVjbnL1rxMOf14Dc/rxCppUVQMEFpl76+2FPe0Li4TkO140xYfFok2QETromuG8NLxXPSYIzY6IjxhHBa6xRYBXPdRtZiTcTXMVLA7JSZo0h20lXmECHHXucWMEI21Gr4DhJgMBOO04kKCtW8lg6bxiuGBE9qNCySYWUHAwaJaaWFUDDc5jOrAuOlXArGYtGluGziydiaJEGJq1SEhR/LziCNUGvlXx2kdmAVREdC4lKRee3lok8QoGoJk4ZkiljX8QrR6RCJY9/BtdcA9J6Lk5BXemijBgDwES9VtIR1W0qdcRIbUi0EfFEsTPv2YGBYcyU7MjfGbY+tQoeJi3zPVfySNXHynZojChWx/0tYkUWoaffvJBkcxykWu4OQZG8pOA4zDDq4BOBLQlkvpMzu0/ANxYndArpxT9XnRZcS7eyITu3NwpNe9fwHE4s18V/Qg4oUikwXq9Fu1fAgSgjPYRkEtugY9fjJRIc9kTNcxherMbC4XpcPsIgGTHuqW0cGTTFakhHa/OzoyjRGpeRx2Yb0WzQmlBgrIgf2EXezI5+DWNGbdnGOztaxL5FZTCxVKxplmwAEwpE7ptaiX+eMhR6jRIvnTwEj8yoSsn0UZ7jYtbR4tFG/OWkQTh/cKmkjgqZN6bmecl7TmadbypGRKONesY7bqpHYmPpzUi6KnhuANKOg6IU5AxgO3C0Cg7XjzHhzKpi/GSEQfJdUnJcxOcdfcS4NwHd3OBMq1lMm4E9fnmBdK3ztGA263Gl2m4zO9jOv0GF6pTtLc4BeGJmFRaPNmJCRAKteC8ReTe7dl8tKX/Pv2/9iQJjknO6slNnd2C8oSWQpfmkisKE1nxlu3GlmkAilXYXmpypTxqRbpuC095nlesSWl+UK3Ll+0ZyT4U2+jrgvmZQVvEceI7DT0aU4dLhBklDsafkMmpemtE11ghatGOwAao2+Hps+1HFcZLHGJhgvUoXmG5coEhsKjcbzLGjV+zxewpyRhR3BcbsbyH7HGWUv5UxGs0FUQIRnhmlLtcqJfvEpotWwWNQYWAZoSpG+dQRU6mTGzHue0DABrmhDoWbx5mg5jksqom+lre/RozVfZwiywbDxTHOy2SwWzQVqxQo0yhx67hyTDAUSIJcZcRsjNgjxsm/v9snVOCvswdhurErMGZ/nyYZClCo5LGgOjBwcNv4CvxomB6LRxslQblWwWOQTg01z4EHMF6v7Za9vLc4BBKinTe4FBzHSb6nyWSoBqTfe0lgHyPTdybkT+uN5I1pRh2Uwemdvize/md1Y35Ny+U4DvOCU8ZXJbHpvVyEPq9T8uTzCpkZTApH2zYRuWFHLgsljeq+B8YsSUMx4j62za7kpVOiY625jBa8RhsJZJ+t4qVZadnAYZKhAPdNrcSLc4dGfb1IbIDGrltkG/7RtqN5YmYVHpo2ULJ9lSSYjjEqFGpcKyV1E32qslyy38cKlNQ8J3mf2iTKm4os0uyZEzqPppbp8K/ThuGkGDOZetpaKJV0fQz82enTxRH7SvcGu8SgJKIO2M9XHREYs+dggWTqeu9GxKt1ask5xCbZKlTyWHrqUPxsTGANuV6twBU1ZShSKaT7GAeTb/1t9mA8ekIVyrXKhNbzJiIy9mV/n+KN7nZ7LvNv6TruxI+ZbvL4hSEkhXRKHlPKCtDpE7CzLfEkAXLS5vFjW6sTpSoFJhtyfxp1yGkDA0Hll402iFm0ZtXm9WOzxYEiJY9pxvyYRh1SpVOhWqfCEZsHzVk40k9yl0bB44YxRtwyziQZnUg0i3QskSMakuC3W0NQOs1WujY1/nq7EOlobaDpxkWMsLKN68iRnOlGXcJTjUsl2ztFT0g0K7h7AHt9GlWixeSyAknwzwbokhFjyRrO7rexnxebeTrTjeaQWGuMI4MobRLltfn6vh1RrBkBfERmZfbvGSYdfj15AM6uDmTm/n6asgH3dSYVe75LM0r37pzoqbNMsuQhYhZAtFF5oG8jneysgzGl0tkPHMd1S2IVKFf3OjBpleHnJ5IBOhF8xITonjoC4z5XUq989NspMCYk9UIZctdnaSKntU02CCIwd0Bhyn7cskG1To1RJRrUO7xRs5PK1foWO3wiMKeiUDYNt/4Umk5No8ZEbs4ZVIrvVZVIRvHOCgYAY0o1vTpmZAM42rTgaP+OzEodKwlY9KnUTLKrKE9T8tJ1kL0ZvQqJ3Kqmqwxdf58xsBj3Ta3EryZVRC1LiCRYl4wKdX+8goveaFbzHH4ywoBRJRoM0nVloc6knqbWSgJj5j72Y2M/nsuGG1Ck5DEzBZ2qkwxaLKox4MmZ1T2WWRVxXs4qL8R1o43486xB3bauSpVUTJF9ZEYVFtWUYVRJ13e3t8n02GA4cheJyE6EWGv82YC2L9859j1UaJPvuKsu7P69SGTP4EREHiaZ0d2BOul7ibVcIplR6HSLezatW7cuoQN5vV784he/6HOBCEmFWaZC8AC+brFDyKKRx5DVwezG83I8G3U0pwff88osmk69ujHQAZPr2cNjocCYyB07cje0SI0X5wzGryYOSPj5saZSAhGjnxGtyMhghJ0uyzaGo02BlRxHEfs1QsdmA8vxei0uGlqKB6cNjPZ2eiTJOB1j6reS5zDdqIu6tR47Ws0GH7ECs9D7iQzW2PsXDjfgiZnVssm3Eet80Cn5mCOz7OfKflY/HmHAklMDicT6iuc4XDLMgJEl3Tt9VDFGN/lgWRQ8h2FF6rSNmKUi3hmv1+KSYXrJ96E4yjmYyDTi8foCGNQKVOtU3YIx6bnIS6b5s5+jdMS49zWnVfA4u7oEV40sw+BCFS4eqsddE7t3OkUKze4YWdz9805ZYBx5XOZtxgpiQx0XFw/VS26XLi2J/t3I9BrjuN/CG2+8Ec888wzmzZsX8zEOhwM333wzNm3alNLCEdJbJWoFJhi0+K7Vhb3tbozrh8QcqdLk9GJPuxuVBUqMjnJxy3VzBxThH/stWNNkwzWjjCnLrJguLS4fvmt1wqhR9EsCGDkaV6pFkZLHd61OOH1CTu+5TbKTgufw6Iyq8NTgigIVvEwOChXPSf4dqUTFwxzc/zcyiy/7z+7bLEkbfOyaRHYtrobZLzhaY9PD7CUculvBAaHFC0qOQ4vbxzyGw1UjjTHfT08MMUaME53iyAaKRcroU6mjBYxso1kjWZssv2sA+xvHrk/VKbmITgxI/vbEOB6foiCmJ7HqP7J601UWhy91gxTxthRT8xx8UfbfVnBA6OZCJY+/zxkcda9fSV0pOGgEdsS463F9XWPMCu1FDQBXjoyeKC3Sn2dVw+YTom5Vlqo+pO7rhOOP7i6qKcOwInW35RscF+u7kUUjxmeeeSZuueUWfP7551Hvt1qtWLRoEbZs2YLnnnsu5QUkpLdmB9dArcuy6dSrmb1wo60ryXWlagWmG3Xo8ArYYpX/COSqxk6IAE6rLE5ZFshsowiOHvlEYKvVmeniEBLVOL0Wg5l9QdmGWbxRCjb4icwezDbqeHRPisX+zTbi2TWObNAZbbTL5RfCf4fid/Z1OA6YbAh0zJ3bx6mwAwpUuGtiBf48a5CkYzLRDi+2kc6+R+lepczoczj5FjttO3rdyAWbOdgQkQQp2mgsIH3/mXhH7HmlkgTG0tKksrrZQzl8QszHJUsZEbhGUsUYvY18r2oFHzUJXuS2auzMh1hJ7tht2/qLQaOU/KaxUjViHFk7saY9R/7uxctpIB0xlj43k+L+yj3xxBM477zzcPvtt2P58uWS+44dO4bLLrsMx44dwyuvvILTTjstXeUkJGknBdcZf91iz5pETqIohjMy5+u0XAA4LfjeV8h8T2NRFMNlnD8wfz8voGs69Tc0nZpkicjkVT1h1yB2GzFmjqPgOckIS+TIkzZG4p5YiWhChgQz1Q7SqeAPXs8UEQH5D4fo8cC0Slw7uncjxayTBxRhWJFaMi060f1u2UBRkrFZIQ02QkIxB9uQl+wPK8fAmAmU2DWhganUzFT0GFNHM9GHyp7v7OeSzhFjngNODrbFxupTNwNOMi0/amKqvr2HyORbPxxSiillBbh3ygBJ3bHnelWBPNa/h7C/D4+dUIUHplX26jiRAzSqGJ090qUCyZUv1jKDTIg7lZrjOPzhD3+ARqPBL3/5S3g8HlxwwQXYs2cPrrvuOigUCixduhQjR47sj/ISkjCjRokxpRrsbXejttMTdc2N3ByxeXDU7sXwInXMXsB8cKJJhyIlj40tdrR7/AlnU+1v+zrcOO7wBpLC5PHnBQDTjQXgOeAbiwOCKPbL1MBsI4oijtq9GFyoysvZIHLGNqR5AJFjW2wgFxkgsiNxPAKBRSh4jVxXK5lKHWP9bbSG4ckVheAnVmCCoQC/3lwfeC1OGmipeA5Ty1KbFb83e+sWxxglVsUY5Ys2YixZuynDqdTsFHF2uyNFRPZn9jNK1QheKpRplAACCS4jf6tj9UMoOSDZ2dA8x+GWceU40aQLJ0VNBXWMZFjXjCrDfw634cyqYrxxsLXXx+clnWY8ilSK8Hr9Y/auCfGlagVuHmtCsUohu990dhQ2MtN1Mtx+6a9hrPXAKp6DJzidJZHrP3ueSTr5MlyNCa/0v++++6DRaPDrX/8ae/fuxb///W9UVFTg5ZdfRmVl73ohCEm3OeWF2Nvuxvpme1YExquaaLQYCExvOq2yCP891oGVjZ344RB9posU1YqGTgCBDK35rkilwPhSLXa0ubC/w92nC3Gu+s+RNrxe24rfTqnECab82tZL7jQRIx+eiPXGbGMtckpx5GgH267rnlAqevKteCNcPMfh5OAe6aGEkmyZ0hV0sZ0AiW7/zHMcLhxSCo6LvUY53hpjaaeB/HIWSBKncRwKFBycfhFlGgVEZtVqrBHjTDNppcE8SzJFHwi/G2WMdbs94REYRT8txddI9nvFfhY/HKLH+YNL8UXw2gxI30NvPoHIGQuFEcnWQlnu5aavvwlVBSrUO72YGLFlKPs7IE2i13V7In1Z7E+skpdPYJzUr83dd9+N6667Dv/85z8xcuRIvPnmmxQUE1kL9VCuy4Lp1IIoYk1TYD30KQPyOzAGgO8F91L89HinLD87j1/AmiY7lFxgWy1C06l70ub24T+H26DkgMFRttYgmaVWRB+BCuE4DiOK1VBy3fdNjRztYJ/OjnYGslJHb9AnOk05VBYgcM24eawJo0s0OKMf9p5NZh/an44y4qqRRkkDOVomaqCrUcw2jmNls5aL0GcXKtvzswfjsROqMKhQjQ5v1whbrOmimgwH+wZ117hYZPWyo32xPr/Qb/2wop5nSqXro2PPiQuGlmKyoQB3Twpkmec4LqXJnDq80v2lJYGxTLKkR9PTVp+J7P188zgTbh1nwmUjDJLbY2XhT3Y6NLtjjPQ3VOZTqU866aRu0wNEUURtbS0WLFjQ7fHr169PXekI6aMBBSqMKFbjYKcHdXYvhsb5Ec+kPe1utLh8mKDXorwX+9jlmmHFGowq0WB/hxt7ZJhZfKPZAbtPwMkVhVG3i8hHM8t1eOWAFZvMDlxek1hWzXzxr8NtcPlF/HBIKQbIbC0aiZ/8igPwxMxqCGL3hlvk2rqekm+xDUlJIq4kMrmHyuoWRJxVXZLWESu23Z9MYBwinXbJbgPVvb7ZxrGWT3w0PRMUPIdX5w4Jd6joNcrwdkvnDy7FYZsH144y4vP6rpFLdm1mpU6J9nZpwNUfFlQX47DNI0kUFRk4SmYiMKPE7Ln74xEG3Dd3GN7d2YSX91uC93dNtQ79na71omxXebFKgYemS7clU0R870IzQJIpzi8nVuCfB6zhNdIhbCdaT8FnpvW0CkLDd2XBZ0fUWSqew5lV3X9bYiXfUkX8DsYTaxOAyoLMtn/jvvrll18uu3nzhCTj5IoiHOy0YnWTDYuK5NtY/zI49edUGi0OO6uqGPs73PisvkN2gXFoGvV8mkYdVq1To0qnwiGbBy0uH3XwBDU7vfj0eAcKFBwuGabPdHFIFJHBQLT7FRwXtcHH3sZzXLDNFGj1RU4fHl2iwU1jTZhaVoA2T1dgFC0zbiyh0bKetpdKFZ6ZfJrIKFOkyORjXcftEm/f5n54m70Sa9/hgToVHplRBaDrOgFI13xOL9Nhb3Bbxv5049hyAMDqxq7ElpFTbqUjxl3nsiQDMcehTKuKGUQrOA4+UUzbiHG8UzHWqGYyxZk7oAhzY7THrhttzHiSqHh6GnmN7MyLtnY85lrzWEsiup03PYv8Xk82aLG91YVZ5ZmdgRf3G3nrrbf2RzkISZtTBhRiSa0VaxptuGKEQZYdPW6/gK+abFDxHE3LZYT2NP6qyY7FowVJptJManZ68a3FCYNagWllBfGfkEdmmnR4v64d35gdOLuP28bkin8dboNPBC4eUirJbkzko52Z/hptbV5PV43Iqac9jRhzHIfvB0d4ncz2NVZmD+J4QkFjkss9e4VtHJ9WWYSlB1vxoyQ6dyKT80Q7bry1kJHrvbOJIkaAdmplEQYUKLut3+wvsaZIA5GfTfTHhf5m35+K4+AKBtFKnoNbSF8SxtElGlwzqgwT9NHrT7r9T9ffFVoljti93Z+QpHMHl/b5GOnWU80rIoJYn9h99JiPcYRY09Rjfb9jKY5IWnDv1IHo9PhhynCHujxamYSk0YACFcaWatDk8mFfhzvTxYlqfYsdDr+Ik8p1KKKGc5hOyWNuRRHcgijp4c60z+oDexd/r6pY1lOpMiG09myTObv2D0+XBocXKxo6UaTkcX4WNKbyVTszehttTWKi2XgVHCddY8zHXivLjhKPLg0kh5xhjB8o9eea21C2/UIlj4oCFd49fTiuSGKZBDvym8j+viFuJuovSTTrlwzFmomg4IDTBxZnbFZNT/XP1rZkynuUkcJYycVCAXW6TlWO4/DDIfqYSVUVMd7fNGPg+lQkk072dOqpTyL22uD4z2erTpJdPsk1xvqI3UYKlHzGg2KAAmOSJ0LTk1fJKLhihfbCpezG3X2vOpiEq74jwyUJ8AkiPqvvBA/INhtlJo0r1aJQyWN7qwsuf+SmN/nnrUOtEETgwqGl1OklQzePNQEALhmqD98WLVBL9FxWKzjJrKRYIyqANFA8u7oEv5tSGU4g1JPQiPOFQ9Lf0TKsSI0/TB+Iv540CEDyayo1MToG2MNEO6RbEPDMrEFYPMqIqVk8KydWgJbpBEOSgDaiKLG2mGIfF/os+RgBVuj2TAUZsUY15w8sxk1jTfjjCVWZKFa/6nHEmPlgIpeCRPubxa6Vl+zFnuAa41BnELtzhZzmhFBgTPLCyQOKwHPA2mY7/DKbltXi8mG71QmjRoHJWdwASJcxJRoMLVShttODve2uTBcHm8wOtHr8mG7U0RraKJQ8h+nGAngFEduszkwXJ6PqbB6sarShVMXjB4NotFiOzqouwbunD5fkMIi25tWV4LxlDS/drkkdZZQt/Fim9ahV8Jhh0kkS+8Qyq7wQL88dgqtG9k/OjAmGgpjraeOJ9f7ZaZrspgMjigMj1COKNBhapMZ5Q0plufwpUWyAwK7RzvREo1gBe+C+6H9LOjkUUUaMo4w2ZqoDIFaCKJ4LdCyFZkLksp5qPtZ64Mg92aM+l6lPXYwt53oaMX54+kDcNNaE0wfKM58OBcYkL+jVCkwxBJKdfNcqr8b6lw2BabmnDyyWfTKHTOA4Lrye579HMz9q/MnxQBkWDKLR/VhmmgLr5Dfm+bZNbx1qhQjg4mH6bnvfEvlQ8JykQRjtb3eiI8Y8Lwl6ehoxZqdSq5NMbGXUKLMiYIzcriok1pZWD00biIemDcT0BKaUZwP2ms4GlpmeOyKZ9txtjXGMoCnKuRxvSnymOgBiraHOdIeEXMSaPh259Vw0bH0WMD+WmgSzdQ8oUOH71SUxZxtkWlZcqevr63H99ddjypQpmD17Nh577DH4/T2nuW9ra8Mdd9yB6dOnY+bMmfjNb34Dh6OrkbZhwwbceOONmDt3LqZOnYoLLrgAH330UbrfCsmgUyuD06mb5DOdWhRFJruxPHvP5GBeZRGKlDzWNttgSSJJTao1OLzYanXCpFFgenCtEuluurEAPAdsNjskexXmk2N2D9Y122FQK7CAptzLXuT2LiGhbZQSHTFW8ZykwRcrMASiT03NNez7KmXWFLJvl515U6QKzJzKhqA/Eez7ZIMIPsOft7aH8zJWxnB2qXfXVOrojw397GfqXcZMCpWxEvW/aEnrpgRnJU4yRJ8hw/52xVxjHGMqtTZGPoFEDJTRCL7sA2O/348bbrgBXq8Xb731Fh599FG8++67eO6553p83p133okDBw7glVdewd/+9jds2rQJ999/f/j+LVu2YMyYMXjmmWfwwQcf4KKLLsKdd96JVatWpfkdkUw5qbwQap7Duma7JBtoJu1ud6PB6cO4Ug2qdfL5YZAbjYLHWdXF8IvA/45nbtR4+bHAa59VXUKj+z0oVikwrlSLVo8ftZ3yTHiXbsuOtEMEcP6Q0qS24iGZwTb22D2FQ8tbaooT+30WIEoaVrGyMgOQBH+ZXnOaLuy6Q3bvXPb3c1AOX/uUUTpZgMx3hLB7aKsizj22aOxoYrTkabGybodCskx1cMRe252J0mRGtMD4vimVeGXuEAxhAlFJhmrmxytmVuoYW7CxMyJ62kM5mokyGmiQ/dX6q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXm/0lOu1tbVYs2YNHn74YUyZMgUnnHAC7r33Xnz44Ycwm80AgJ/97Ge4/fbbMX36dAwZMgRXXnklTjnlFHz++ef9+fZIP9IpecypKITLL2JtszxGjUNB3hlVNC03nrOrS8AD+ORYZ7/s3xnJ7hPwWX0HVHzXdisktlB26o0t+Ted2uzyYWVjJwqVPI0WZwk2AGCTpN04thyLRxlxwxhTQsfxCaJkpGVEcVfW3GjB76kDCjE7w/t2phO7Zlqv7hoZVvEc7ptaiYXD9RhbGj2zcC5gOwY0PQSj/Y1d2hE5jZWLMZVaxXcPGWJNWRaDQ8YZS77FvDC7RV6udkBF4wnvKd11m4LnUKZRSn6jlJKOkPidCLEez64xTrRD5KmZ1bhyZBlOl9GODbLPHLN161aMHTsWJlPXRWnu3Lm4//77cfDgQYwZM6bbc7Zs2QK9Xo+JEyeGb5szZw44jsP27dsxf/78qK/V2dmJ0aNH96m8qZgeEzpGpqfayFlv6+is6hKsbLTh83obzspwMpx2jx9fNdlQqOQxb2BxWj7vXDqXKgvVmFVRiPXNdqxptuHMqtQEHInW0Wf1nXD6RZxVXYyyPEy6ley5dGJFIf55wIpvLA4sGmVMZ9FkI1Q379cF9i2+cHAJitSZXk1IEsFOpWb31yxU8jgviezPPlE60mLUKPD0idUxt3u6Y2L8LNTZLFamWhXPYbpRl/NLUrSK6KPEmd7mr6ep1CzpjIfu98daJyqE7+99GfuCHb02xJjCn+tCI8bRZiewv1GKGN/RWJ0I0qnXXbdrk8yTAAA1JRqM0mtltXRC9q07s9kMo1HaqAoFyWazOWpgHO05SqUSpaWl4RHjSJ988gl27tyJ3//+970uq1LJw2hM3TpRgyF3e5FTJdk6mldWiEF7zdjd7kKnUolhTLr4/vbx7uZA43lEGaor0juqlCvn0qKJlVi/ohbvH+3AjyYOTGnvb0915BNELF9bBwD46eQqGDN43mRaoudSWZmIQUVNONjpgb9AjYocni7Janf78L/jnVArOFw1pQplWlWmi0QSwI58FCl735nhE8SIrYg4DC/O3RHReBQ8hwuGlKJMo+gxE3Ku0vRh3WU6sQF7T58Fe1+0BEmxslKHJnXJYYQ22f11c4U7HBh379GQTpePscY4xnF5yd/s+S37ScgJyVhg/Oyzz8ZdJxxa7xurJ6GnHoZo94miGPX2DRs24J577sHvf/971NTU9Fimnvh8Ajo6+p7xmOc5GAyFaG21Q5DZ1kJy0Zc6ml9ZhNcOWPGfXU24enRmRrIEUcS7+1oAAKcbC2CxpGdqd66dS4MVwHi9FrvaXPhodxPmDOh7R1QidbSqoRNNDi9OMOlQ7POl7fOSs96cSzPKCnDM5sGn+1pwtoymSqULz3NYdrwTTp+AcwaVQLS7YbGnZ411SUkBVLQvcsqwjfriaENjCfJGTKXOjaZi31wdnDHS6e1KmprpqcT9hQ1A5ZR5VxVjlDBSvGC+mPkNkowYh6ZSZ+gts+u5Y+1pnOs8wUz6migfMHtLrO25YlWVlqlbScdIjvzYZSwwXrRoEc4///weH1NeXg6TyYSdO3dKbg+N+kaOCoeYTKZuI8M+nw8dHR3dnrNx40b87Gc/wz333BO3PIlIZfAhCGJOBDPp1Js6Om1AEV4/YMUX9Z24fIQhIxerby0ONDp9mKjXolqnSvvnnEvn0o+G6fHA1ka8fagVs0y6lE3BiVVHgiji34fbAADnDy7NmXrsrWTOpROMOrxf146NLY68WJft8gv49z4zeA64YAidK9mEHTUp7cX096oCFeqdXpRrlWhyduU/yZP4LyHqOKOPuainfazloqdRXTaQLFMroeY5jGf2/B5S1DUTiA1AQz99mXrHRSoFnpk1CKVqBb6o7wzfrpLnR5AWFw7V48V9Flw0VN/tPskU+BhrymPFuVoFj6dPrEaxSgEzs0sIjRj3kV6vh16vj/u4qVOn4oUXXoDFYgkHtevWrUNJSQlGjBgR9TnTpk1DW1sbdu7ciQkTJgAAvv76a4iiiMmTJ4cft2HDBvzsZz/DnXfeiUsvvbTvb4pkBaNWielGHb6xOLDRbMeciv7fJunjYHbjswflfrCQatPKClBTrEZtpwdbrM60r1H7usWOIzYPxpRqMNmQv1Ooe2O8XotCJY/trU64/ULOZ2f+9HgH2j1+nFZZhAEFNIU6m7CBml6twA8GlaBMk3gT6f5plfj4WAcuGabHvd+6wrfn9hmfHOkWOhksSD9KZAQuUxaPNsIVZ39uNuuwWsHhrXnDJO9Dp+Rh1Cig5jlJUNW1xjhzb3poMGiPNx08V507uBQnVxTCEOV3TDKVOsk1xgDCy0NaPWxgnBt1K/ufprlz56KmpgZ33XUX9uzZgzVr1uDpp5/G5ZdfDpUq0PDYvn07FixYgKamJgBATU0NTjnlFNx7773Yvn07Nm/ejIceegjnnntueH3yhg0bcMMNN2DRokU466yz0NLSgpaWFrS1tWXqrZJ+tGBQIAv0f4/2/9Y/DQ4vNpkdMKgVmJXD2UjTheM4XDJMDwB462BrOPtlOgiiiH8dagMAXDbcIKsEEdlAyXOYVlYAjyBiq7Xvy0zkzCeIWHakHQBwcfD8JNmDbRAWKnlcP8YU/p1JxIACFX46yogilUI6lZp+M8JiJWrKZex7ltuW7ucNLsWPhhl6fEzklGsFz3W7Dr548hA8e9JgyXco01mpWewU33z7PkYLioHYW3KxnRuJVBW7xjhXpqnL4ZztkUKhwPPPPw+e57Fw4UL88pe/xAUXXIBbb701/Bin04lDhw5Jtm964oknMGLECFx11VW4/vrrMWPGDDzwwAPh+5ctWwan04kXXngBc+fODf/HHpfkrhlGHQYWKLGzzYWD/bzP6vt1gf1NfzC4JGd+SPrbSeWFGF6kxt4ON75O43ZA65vtOBwcLZ4a3M+UJCe0bdM35tzetml1kw1mlw9zqooxLI+TLWUrtsFc2MfFcuyvep61wxOWL2uMs/0Sz06zjRVUKjguZltGDn0B1M7qjmOzUnPSzo+QRDoR2MeXqGUfUiZE9lmpAaC6uhovvvhizPtnzZqFvXv3Sm7T6/V48sknYz7n0UcfxaOPPpqyMpLswnMcfjC4FC/ts+DDo+24bXxFv7xuu8ePLxo6oVVwtL9pH/Ach6tGluH+rY14rdaKE026lG9/4RVEvFZrBQD8ZASNFvfWdJMOPIBNZgcEUczJHntBFPHukTYAwKJx/fNbQtKnr4FxIpld812+jBjXFGswtlSTE9tSxduNhw2CFRwHnyjCL4Nh8nzphEkG+/WLtS9xIrXG/tZNMRRgUY0BU7J8ECE3wntCeuGMgcUoUHBY3WhDm8cf/wkp8PGxDngEEWcOLJZkcyTJm1pWgMmGAtQ7vPiUSa6RKsuPtaPR6cMMYwGmlmV/oyZTSlQKjNVr0erxo7bTk+nipMUmswNH7V6M02sxpbz/cxaQ1FL3cS28ZDsTapTnNSXP4Y8nVGPh8J6nLGeDZLY6CnV8+DMfF9OIcRTsb1SsbdQS2ZaYPSUCy9wMGFWS3blYKDAmeUun5HFmVTF8IvDxsfa0v57bL+CjY+3gOeD8Ibm/dU26cRyHq0eVgQewpNaa0s6NDo8f/zrUBp4DfjoyM1t65ZJZwenUXzfbM1yS1BNFEf8JZi1PZk1qNtqzZw9+8YtfYN68eZgyZQrOOeccLFmyJNPFSplTBhRibkXf8z5I9zHu8+FykhxGEvtbKBlUZUFWTNbsJpkR49B575NBZv5UzybLBWyHnYKPHhgnUmty+HxTjQJjktfOG1wKngM+PNoBh6/n7Ix9tfxYBzq8AuZWFFLG2hQZUazB2YNKYPcJeGW/JWXHfWm/BXafgO9XlUi2oyC9MzsYbKxttqU1WVom7GxzYV+HG0MLVTjBlNszC3bs2IGysjI8/vjj+O9//4sbbrgBTzzxBN58881MFy0l7pw4AL+cNKDPx+FoKnVcOdiejmtQoRrPzhqEP504KNNF6ZV4sx/Y3/bQ2mQ5dIDQd7A7TjJ9uutvdolDIrNdvDn4Rc7ObitCUmRAgQqnVxbhiwYblh9rxyVxMjT2lsMn4N0jbeCBnJhSJSdX1JRhXbMdKxttmFdZ1Oe1XBtb7FjVaINRo8CikWUpKmV+G1CgwshiDQ50unHY5glv9ZAL3gmuLb5omD7np81ecsklkn8PHjwYW7duxWeffYbLLrssQ6WSn1jTFEmXHGxPJyTbOlrZzynewKt0jXHg/3KYSk26Y3+j2ARr7JZLifx0DS/WoKpAhZnludMpTIExyXs/GmbAlw02vFfXjh8MKkVBHxOvRPPRsXZ0eAWcVlmEQYXZdWGUO52Sxw1jTHj0uyY8vbMFf55VHXOLgng6PH78ba8ZAHDT2PI+J+EhXeZUFOJApxvrmu05Exgf7HTjW4sTFVolTsnAfuhy0NnZidLSvi0N4fs41TH0/L4eJ1XYcigVnGw6TORQT1eOLMPHxzows1wnm8+LJYc6khWmGlQ8361+pPXUfTsuvyhmvC7Z719/lkXO55JC0f2zAiL2Gk8g14KG5/DC3CF9Kovc6okCY5L3BupUOLWyCCsbbfjwaDsuTfGIbofXj2VHAmuLf0yjxWkxu6IQ368uxv+Od+KpnS24f1pl0iM1flHEkzubYXX7MX9gUc5Pi+1vcyoK8VqtFWub7TmT5TuUifqCIaV5uY5ty5Yt+OSTT3rcNSIepZKH0ZiaTgWDQR77wmuYxIrlpuIMliS6TNbTz4xF+NkJGXv5hMnlXMo0NdPJXFSs6fZdZetJrTZ3/a1UAPBBAJey73dvFbu68o9koixyPJcMIrM9na5rsKaY+bu/60ou9USBMSEIBKxfNdnwzpE2nFlVjLJejjhG80ZtK+w+AWdXl2CgjtYWp8u1o4zY0+bC9lYnXtpnwfWjjQkHX6Io4pV9Fmy1OjG0UIUbxpjSXNr8M1CnwohiNQ52elBn94YT0WSrBocXa5vsKFUFkvhls2effRbPPfdcj49ZtWoVKisrw//ev38/brrpJtx6662YPXt2r1/b5xPQ0eHs9fOBwEiDwVCI1lY7BBnM0fX5uhriFostgyWRkls9yRHVkZTT5Q3/3druCp/P0erJ5fF1PVEI5Gzx+oWMfwc6O1zhv/uzLHI+l9g68bq7PmMf8xn2V131Zz2VlBRAFWdHGAqMCUGg0X7u4FK8V9eOpQdbceu48pQc91CnG/873oEiJY+f1NBocTppFDzumVyJX31Tj+XHgnWewMikKIp4ZWcT3q9rR7GSx92TK6Ht43YtJLqTKwpxsNODtc02DC3K7vXb79W1QQBw7uBSaLL8fFm0aBHOP//8Hh9TXt71m3jgwAFcddVVuPTSS3HDDTf0+fVT1RgSBFEWDVD2bJBDeSLJpZ7kjOooQGBykrr9Qrc6YeuJzbP1/eoSvLjPgh8MLsl4PQ4KDkgY1IqMlEWW5xJTHAU7BZ5pLvV3meVSTxQYExL0o2F6fNHQiS/qO/H9qmKMLu3bXmyCKOKFvWYIAH4ywoAS2rc47QbqVPjd1Erc+2093j7chjaPH9eNNsbcl9QriHhxnwX/O96BAgWH+6ZVoopG9dNmTkURltS2Yl2zHT8Zkb2Bcavbhy8abNAqOJwzqCTTxekzvV4PvV6f0GP379+Pq666ChdccAF+/vOfp7dgWYqjPLgky2kVHFx+EQZNV7vFEydoYbNS/2BQCaYbdRgog62pBupU+POsQTBpqA0Wwq78UUjWkdNvV3Z3cxOSQkUqBa6sKYMI4M+7WuDx9237pv8e7cDudjeGF6mxoDr7G8/ZYmSJBn+YUQWDWoFP6ztx+8bj+MbsgMBctEVRxLcWB+7YdBz/O96BMq0SD82oyvqN6eWuSqfC8CI1jtq9qLN5Ml2cXvvgaDu8gogF1SUoyqMOr/379+PKK6/EnDlzcPXVV6OlpQUtLS2wWq2ZLpqs5MDyeZLnHj+hGucPLsXFQ/Xh2zxJpJjmOA5VOpVsckkMK1Ln1W91PJKs1EwwTFn0acSYEInvVRVjbbMdW61OvHmoFVeNNPbqOEftHiyptULJAbdPqMjLxDyZNKJYgydmVuMve1rwrcWJh7Y1wqBWYERxYF3rYZsHFndgHeBEgxYPzR0Opcsji2k8uW5ORSEO2TxY12zPuq1LAMDuE/DJsQ4oOeD8IX3LxpxtPvnkE1itVnz44Yf48MMPw7dXV1djxYoVGSyZvNDPPcl2Q4rUuHZ0oP1TqlKg3etHZZzRX7p6Zg+2w0Ih+TsTpZEXCowJYXAch1vGleP/vj6KZUfaMUFfkHR2YodPwCPbm+ARRCyqKcOwLGz85wKTVonfTanEBrMDH9a1Y1e7C5stgSQ/PIDxpVqcO7gEcyuLYCpUw+LK3hHMbHLygEIsPdiK1U02LByul82IQqI+PtYBh1/EWVXFMKYwSV82uPXWW3HrrbdmuhiyR1PxSC7504nV+K7NidkVPWcNNqgDv4fFKvoGyB3beaeU/J1d1+N0yK+rOiEJKNcqccu4cjy2oxlP7mjCYzOrMTjBvYe9gogndjThuMOLmSYdLhqaXyNKcsNxHE4qL8RJ5YVw+AQ0u3yAKKK8QBXeozjbArNsV61TY1SJBvs73DjQ6cGokuzZ09jtF/BBXTt4ABcyUwwJYcll32JCUsGoVeK0yviZ9y+vMUCAiHMHUbtH7thfKEWM0eN8Rd06hERx8oAiXDpMD4dfxG+/bcAxe/zRRK8g4skdzdhscWKQToXbx5dTA0lGdEoew4rUGFasCQfFJDPmVQb2R1zV2JnhkiTn8/pOtHv9mFNRSEnaCCGEUaxS4Kax5Vm5RCbfsG1TNjcpTYenwJiQmC4bYcD3q4vR6vHj7s312Gx2xHys1e3Db7+tx/oWOyoLlHhw+kBK9EBIDKdUFILngNWNdvizZF23TxCxrK4dAHDxMH1mC0MIIYT0Eh9j+rRIoTEFxoTEwnMcfjbGhB8OKUWnV8CD2xrx1M5m7O9whTMcm10+/PtwK275+hh2t7sxqkSDP0yvyru1h4QkQ69RYlpZAdq9fmxrdWa6OAlZ3WRDi8uHGcYCjCjOnunfpP9R05IQImexplKL9ONFa4wJ6QnPcbhmlBHjSrX42x4zVjXasKrRBjXPQckBjuD2BTwHnDe4BFfWlMXcM5cQ0mVeZTE2W5xY2WjDdGNyCe76myCKeOdwGwDgkmGGzBaGyJ5IrUtCiIyxU6m1TCrqvm1SmhsoMCYkAbMrCjG1rACfN3Ti62Y7jtg98AsihhapMcVQgAWDilGto3U1hCRqVrkOWgWHr5vtcI4RUCDjdd8bWhw45vBivF6L8Xra65r0jBqXhBA5M6gVGFWiwegSDfRqWvbHosCYkAQVKHmcN7gU5w2mjIuE9JVWwWN2eSG+bLRhbbMNZ1aVZLpIUYmiiH8fbgUA/IjWFpNE0IAxIUTGlDyHJ2ZWAwC2WbuWMxXJuIO6v2RFDdTX1+P666/HlClTMHv2bDz22GPw+/09PqetrQ133HEHpk+fjpkzZ+I3v/kNHI7oyZO+/fZbjB8/HhdddFE6ik8IISSK71UFtgD533H5ZqfeZnWittODEcVqTCsryHRxSBaguJgQki18TALM0wcW4weDSvDHE6oyWKLMkn1g7Pf7ccMNN8Dr9eKtt97Co48+infffRfPPfdcj8+78847ceDAAbzyyiv429/+hk2bNuH+++/v9jibzYa7774bJ510UpreASGEkGjG67UYpFNhX4cbhzvdmS5ON6Io4q1DgdHii4fqac9rkhAKjAkh2cLH5ERQ8RyuH2PC2NL8XTIk+8D4q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXq836nNqa2uxZs0aPPzww5gyZQpOOOEE3Hvvvfjwww9hNpslj33wwQexYMECTJs2rT/eDiGEkCCO43BWdWDU+NN6+Y0ab7M6sbvdjSGFKsypKMx0cUiWoNxbhJBs4acfLAnZrzHeunUrxo4dC5PJFL5t7ty5uP/++3Hw4EGMGTOm23O2bNkCvV6PiRMnhm+bM2cOOI7D9u3bMX/+fADA8uXLsW/fPvz+97/HCy+8kJLy8nzfRxRCx0jFsXIV1VFiqJ7iozpKTLrqaX5VCV47YMXKRht+OtoIrUyyuouiiDeCo8U/qSmDMoFy0blEAEBBHz8hJEsMLwpsPzhIp8pwSeRB9oGx2WyG0WiU3BYKks1mc9TAONpzlEolSktLwyPGDQ0N+MMf/oCXX34ZanVqsgkrlTyMxqKUHAsADAYaoYiH6igxVE/xUR0lJtX1ZARw+mA9Pqtrw3a7D2cPL0vp8Xvr64YO7G13Y6Rei3PHDZBsbxEPnUv5Tc4Z1gkhhDVQp8LzswejTEPZqYEMBsbPPvts3HXCq1atAoCY67p6Wu8V7T5RFMO333XXXbj22msxevToRIscl88noKPDGf+BcfA8B4OhEK2tdggCTXGIhuooMVRP8VEdJSad9XR6uQ6f1bXh7T3NOLEk89ueiaKIv22pBwBcOrQUrVZ7Qs/rz3OppKQAKhU1ZOSoQCazHgghJBEDabQ4LGOB8aJFi3D++ef3+Jjy8nKYTCbs3LlTcnto1DdyVDjEZDJ1W0vs8/nQ0dERfs7GjRuxefNmPP744wAAQRAgiiLGjx+PJUuWYMaMGb16X6lsDAmCSA31OKiOEkP1FB/VUWLSUU/jSzUYUqjC3nY3drU6M574Y5PZjv0dbowoVuNEoy7p90vnUn4rUNJcakIIyUYZC4z1ej30en3cx02dOhUvvPACLBZLOKhdt24dSkpKMGLEiKjPmTZtGtra2rBz505MmDABAPD1119DFEVMnjwZAPDhhx9KnvPGG2/gm2++wVNPPYXBgwf34Z0RQghJBsdxOH9IKZ7bbcYHde0YOylzgbFfFLHkgBUAcNlwA2WiJkmjEWNCCMlOsv/1njt3LmpqanDXXXdhz549WLNmDZ5++mlcfvnlUKkCQ//bt2/HggUL0NTUBACoqanBKaecgnvvvRfbt2/H5s2b8dBDD+Hcc88Nr08ePXq05D+j0Qi1Wo3Ro0ejoID2qiSEkP40b0ARSlU81jfb0eSMvuNAf1jR0Ikjdi/G67WYadJlrBwke1XTtERCCMlKsg+MFQoFnn/+efA8j4ULF+KXv/wlLrjgAtx6663hxzidThw6dEiyfdMTTzyBESNG4KqrrsL111+PGTNm4IEHHsjEWyCEEBKHWsHjnEGlEAD892hHRsrg8gt442AgE/XVI8totJj0yuyKQlw9sgzPzBqU6aIQQghJAieKtIFVqni9frS1Ofp8HJ7nYDQWwWKx0Tq1GKiOEkP1FB/VUWL6o57aPH4sXlsHBQe8ePIQlPRzcqm3D7Vi6cFWnFxRiLsmDUj6+f15Lun1upxIvpWK6yZ9hxND9RQf1VFiqJ7iozpKjNyum7IfMSaEEJIf9GoFvldVDJdfxPt17f362la3D+8caYOSAxbVyGPLKEIIIYT0HwqMCSGEyMbFQ/VQcsB/j7ajw+Pvt9d9Zb8FLr+IcweX0tYVhBBCSB6iwJgQQohsmLRKnFVdApdfxHv9NGq83erE6iY7yjQKLBxu6JfXJIQQQoi8UGBMCCFEVi4eqoeK5/Dh0Xa0uHxpfS2vIOKFvYF9768dZYROSZdFQgghJB9RC4AQQoismLRK/HBIKTyCiCW11rS+1tuHWnHM4cWUsgKcXFGY1tcihBBCiHxRYEwIIUR2Lh6qh0GtwKpGG/a2u9LyGvs7XPjPkTZoFRxuGmui7ZkIIYSQPEaBMSGEENnRKXlcEcwO/bc9ZnhTvI2D2y/g6Z0tEETg6pFGVBZQwi1CCCEkn1FgTAghRJbmDyzCBL0Wh2wevHO4LaXH/sc+C445vJhuLMD3q4tTemxCCCGEZB8KjAkhhMgSz3G4dVw5NDyHtw+34mDn/7N33+FxVPf++N9ndtW7JVnF3XLvhWZjUxziryFAaIHLpaVwISHhS+4FfCHhJiYkIaGFhHAvJAF+XCDwvbnBJCRAEjDVBgPGRu5FLpItWV2WZLXdnfP7Y7SrmdWOdrbPat+v5/EjeTU7e/bs7Mx8Tvmc/qjs9836TvytvguF6Q58Z3Yph1ATERERA2MiIrKviuw0XD9tDDwS+Pn2RnS7IlvbeHdHH57Y2wpFAGvnjUVxhjNKJSUiIqJkxsCYiIhs7Uvj87GsNAfHe914eGcT3GHONz7c1Y/7Pj8OlyrxjenFmFuUFeWSEhERUbJiYExERLYmhMD/nVOKCTlp+Ky1F7/c1QSPDC04PtzVj3XbjuOkW8UVkwpx4YSCGJWWiIiIkhEDYyIisr1sp4J1iyowNtOJ9xpP4oHtjejzqJae+1lrD+7eUo/2AQ/OH5ePa6uKYlxaIiIiSjYMjImIKCmUZDpx35IKVGal4aPmHqz95NiIaxx3uzz4zd4W3LvtOHo8EldNKcTNM4uZbIuIiIiGYdYRIiJKGuVZafj5qZV4aEcTPm/rxb9/Wo8lxVk4qzwXVXkZcAqB470ufNrSg7ePd+OkW0WuU8G3Z5dg+djcRBefiIiIbIqBMRERJZX8NAfuXVSOtxq68MLBdmxp7cWW1t5h2ykC+D+VefinqUUYw+zTRERENALeKRARUdIRQuC8ynycU56HT1p6sKO9F7UnXVClRGmmEzMKMrCsNAdFDIhjora2Fl/+8peRnp6OzZs3J7o4REREEeMdAxERJS2nIrBsbA6Wjc1JdFFShtvtxp133omlS5di+/btiS4OERFRVDAwJiIiIssef/xxjB8/HmeeeWZUAmNFiSwZmvf5ke5ntGM9Bcc6sob1FBzryBq71RMDYyIiIrLks88+wyuvvIJXXnkFb731VsT7czoVFBdHJylaURFHDVjBegqOdWQN6yk41pE1dqmnpAiM6+vrsW7dOmzevBnZ2dm49NJLcfvtt8PhcJg+p6OjA/fddx/efvttOBwOrF69Gt///veRnZ3t20ZVVTz11FP4wx/+gPr6eowdOxZf/epXcf3118fjbRERESWN7u5urF27Fj/+8Y9RUFAQlX263So6O4cnTguFoggUFeWgvf0kVFVGpVyjEespONaRNayn4FhH1sSznvLzs5CWZh47AkkQGHs8Htx8880oKSnBSy+9hKamJvz7v/87MjIycNttt5k+74477kBzczOeeeYZuFwufO9738O6devwwAMP+Lb56U9/io0bN+Luu+/GtGnT0N7ejt7eyC7QREREyeSxxx7Dr3/96xG3effdd/HLX/4S55xzDs4888yovn60boZUVfIG1ALWU3CsI2tYT8GxjqyxSz3ZPjD+4IMPUFNTg2eeeQYlJSWYPXs2brvtNjzyyCO45ZZbkJaWNuw5NTU1eP/99/HHP/4R8+bNAwDcc889uPnmm7F27VqUlJSgpqYGL774Il599VVMnToVADBhwoS4vjciIqJEu+6663DxxRePuE1paSk2b96M48eP4/e//z0AQEoJVVUxZ84c/PznP8dFF10Uj+ISERHFhO0D423btmHWrFkoKSnxPbZixQqsW7cOBw8exMyZM4c9Z+vWrSgsLPQFxQCwfPlyCCFQXV2NVatWYcOGDRg/fjw2bNiAG2+8EUIIrFy5EnfccQdyc8Of7xSNyeN2m4huR6wja1hPwbGOrGE9BZesdVRYWIjCwsKg2z311FNwuVy+/7/11lt4+umn8cILL6CioiKGJSQiIoo92wfGLS0tKC4uNjzmDZJbWloCBsaBnuN0OlFQUICWlhYAQF1dHY4dO4Y333wTDz74IAYGBvDjH/8Yd911V9AhZWaimUQEsM9EdDtjHVnDegqOdWQN6ym40VpHU6ZMMfx/x44dUBQFM2bMSFCJiIiIoidhgbHVOU0AIETg1nezx83+JqX0PS6lhMvlws9//nNMmjQJALBu3Tpce+21aGlpMfRQWxWNJCIAJ+xbwTqyhvUUHOvIGtZTcHZLIkJERETWJSwwtjqnqaSkBDt37jQ87u319e8V9iopKfFt4+V2u9HZ2el7TklJCZxOpy8oBoCqqioAWhbscAJjIHpJRLz74g3oyFhH1rCegmMdWcN6Ci5V6uiyyy7DZZddluhiEBERRUXCAmOrc5oWLVqEJ598Eq2trb6gdtOmTcjPz/clzfK3ePFidHR0YOfOnZg7dy4A4KOPPoKUEgsWLPBt43a7UVdX50u6dejQIQBAZWVlpG+PiIiIiIiIkoSS6AIEs2LFClRVVWHt2rXYs2cP3n//fTz66KO45pprfBmpq6ursWbNGjQ2NgLQen5XrlyJe+65B9XV1diyZQvuu+8+XHjhhb6e4DPPPBOzZs3C97//fezZswfV1dW47777sHr16rB7i4mIiIiIiCj52D4wdjgceOKJJ6AoCq666irceeeduOSSS3Drrbf6tunt7cWhQ4cM2TIfeughTJ06FTfccANuuukmLF26FPfee69hv7/5zW+Ql5eHq6++GrfccgsWLFiA+++/P67vj4iIiIiIiBLL9lmpAWDcuHH47W9/a/r3008/HXv37jU8VlhYiIcffnjE/ZaVleHxxx+PShmJiIiIiIgoOdm+x5iIiIiIiIgolhgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQhpZSJLsRooaoSHo8alX2lpTngcnmisq/RinVkDespONaRNayn4OJVRw6HAkURMX+dWIvWdZPHpjWsp+BYR9awnoJjHVljp+smA2MiIiIiIiJKaRxKTURERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgbDMvvPACVq1ahfnz5+PKK69EdXV1oosUN08++SQuv/xyLF68GMuWLcN3vvMdHD582LBNf38/7r33Xpx++ulYvHgxbr31VrS2thq2qa+vx0033YSFCxdi2bJleOCBB+DxeOL4TuLnhz/8IWbOnInnn3/e9xjrSHP8+HHcfvvtOO2007Bo0SJcdtllqKmp8f2d9QR0d3dj3bp1WLlyJRYuXIgLL7wQr7zyiu/vqVhHn3zyCb75zW9ixYoVmDlzJt5++23D36NVJ5s3b8all16KefPm4Ytf/KKh3ik0vG7yuhkKXjfN8boZHK+bw42q66Yk2/jrX/8q586dK//3f/9X7t+/X95zzz3y1FNPla2trYkuWlx8/etfl3/84x/lvn375O7du+W//Mu/yHPPPVf29vb6tvnBD34gzz77bLlp0ya5fft2eeWVV8p//ud/9v3d7XbLCy+8UH71q1+Vu3btku+88448/fTT5aOPPpqItxRTGzZskBdffLFcsWKFfO6553yPs46k7OjokOeee66866675Oeffy5ra2vlO++8IxsaGnzbsJ6k/N73vidXr14tP/74Y1lbWyuff/55OWvWLLl582YpZWrW0TvvvCMfeeQR+be//U3OmDFDbtiwwfD3aNRJbW2tXLhwobz//vvlgQMH5HPPPSdnz54tN27cGLf3OVrwusnrZih43TTH66Y1vG4ON5qumwyMbeSKK66QP/rRj3z/93g8csWKFfJ3v/tdAkuVOK2trXLGjBlyy5YtUkopOzs75dy5c+Ubb7zh2+bAgQNyxowZsrq6WkqpfTlnz54tm5ubfdv8/ve/l6eccoocGBiI7xuIoebmZnnWWWfJPXv2yHPPPdd3gWcdaR588EF59dVXm/6d9aT50pe+JJ944gnDY6tXr5a/+93vWEdSDrvAR6tOHnjgAXnhhRcaXuu73/2uvOmmm2L5dkYlXjeNeN00x+vmyHjdtIbXzZEl+3WTQ6ltYmBgADt37sSZZ57pe0xRFCxfvhzbtm1LXMESqKurCwBQUFAAANixYwdcLpehjqqqqlBZWemro23btmHWrFkoKSnxbbNixQp0dnbi4MGD8St8jN1999247rrrMHPmTMPjrCPNhg0bMG/ePNx6661YtmwZLrvsMvzpT3/y/Z31pFm8eDHeeustNDY2QkqJ999/H01NTVi+fDnrKIBo1cm2bdsM+/Buk6rn+nDxujkcr5vmeN0cGa+b1vC6GZpku24yMLaJ9vZ2eDwew0EBAMXFxWhubk5QqRJHSon7778fp512GqqqqgAALS0tyMzMRG5urmHb4uJitLS0+LYpLi42/N1bp95tkt3zzz+Pnp4efP3rXx/2N9aRpq6uDr///e9RVVWFp59+Gpdffjm+//3v46233gLAevK65557MHHiRJx11lmYN28evvOd7+D+++/H7NmzWUcBRKtOzLbp6OiAy+WKVfFHHV43jXjdNMfrZnC8blrD62Zoku266YzanigmpJQQQiS6GHH3ox/9CPv27cOLL75oeDxQXUgpg24z0uPJpKamBv/5n/+J//mf/4GiBG7XSvU6ArT3O3/+fHz3u98FAMyePRs7duzAiy++iC984QsAWE+AdrO4e/du/OY3v0FZWRk+/PBDfO9730N5eTkA1lEg0aoT/23890Hh43WT1009Xjet4XXTGl43Q5dM1032GNtEUVERHA7HsNaitra2Ya3ho919992HDRs24Nlnn0VZWZnv8ZKSEvT29qK7u9uwvb6OSkpKhtWh9//+LU3J6PPPP0dbWxtWr16NOXPmYM6cOTh27Bh+8pOfYM2aNayjQSUlJZg6darhsaqqKjQ0NPj+nur11NfXh1/84he46667cPbZZ2PWrFn42te+hrPPPhvPPvss6yiAaNVJoG1aW1tRWFiItLS0WBV/1OF1cwivm+Z43bSG183geN0MXbJdNxkY20R6ejrmzp2LTZs2+R5TVRUffvghFi1alLiCxZGUEj/60Y/w97//Hc8++ywmTJhg+Pu8efOQlpZmqKNDhw6hvr7eV0eLFi3Cnj17DGngN23ahPz8/GEn/GR03nnn4c9//jNeeeUV37+xY8fipptuwhNPPME6GrR48WIcOXLE8Njhw4dRUVEBgMcSALjdbrhcLjgcDsPjiqJAVVXWUQDRqpNFixZh48aNhn1v2rQpZc710cLrJq+bVvC6aQ2vm8Hxuhm6pLtuRjWVF0XEu+zEyy+/LA8cOCD/4z/+I6WWnfjhD38oly5dKjdv3iybmpp8//yXnTjnnHPkhx9+KLdv3y6vuuqqgCnfv/71r8vdu3fL9957T55xxhnyF7/4RQLeUXzos2tKyTqSUspt27bJ2bNnyyeffFIePnxYvvzyy3LevHnyrbfe8m3DepLy2muvlRdffLFv2YmXXnpJzpkzR/7pT3+SUqZmHXV3d8tdu3bJXbt2yRkzZsj//u//lrt27ZJNTU1SyujUSW1trVywYIH8+c9/Lg8cOCCff/55OWfOHC7XFAZeN3ndDAevm8PxumkNr5vDjabrJgNjm3nuuefkOeecI+fOnSuvuOIK+fnnnye6SHEzY8aMgP/++Mc/+rbp6+uT69atk6eeeqpcuHCh/M53vmNI7y6llEePHpU33nijXLBggTz99NPlz372M+l2u+P9duLG/wLPOtL84x//kF/60pfkvHnz5AUXXCDXr19v+DvrScqmpib57//+73LFihVywYIF8vzzz5fPP/+87++pWEcfffRRwPPQr371Kyll9Orkww8/lF/+8pfl3Llz5Re+8AX58ssvx+09jja8bvK6GSpeNwPjdTM4XjeHG03XTSElM34QERERERFR6uIcYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIgS5rXXXsPLL7+c6GIQERElBV43iWKHgTERJcwbb7yB9evXJ7oYRERESYHXTaLYYWBMREREREREKU1IKWWiC0FEqeeuu+4a1ur9ne98B7feemuCSkRERGRfvG4SxZYz0QUgotR0yy23oL6+Hl1dXfjhD38IACgvL09wqYiIiOyJ102i2GJgTEQJMXHiRBQWFkJKiUWLFiW6OERERLbG6yZRbHGOMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExECZOWlob+/v5EF4OIiCgp8LpJFDsMjIkoYaZMmYJ9+/bhzTffxPbt29HY2JjoIhEREdkWr5tEscN1jIkoYdra2vAf//Ef+OSTT3DixAmux0hERDQCXjeJYoeBMREREREREaU0DqUmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmnORBdgNFFVCY9Hjcq+nE4Fbnd09jVasY6sYT0FxzqyhvUUXLzqyOFQoCgi5q8Ta9G6bvLYtIb1FBzryBrWU3CsI2vsdN1kYBxFHo+Kjo6eiPejKALFxbno7OyFqsoolGz0YR1Zw3oKjnVkDespuHjWUWFhNhTFEdPXiIdoXDd5bFrDegqOdWQN6yk41pE1drtucig1ERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGltKQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee++9YdscOHAAN998M5YsWYIlS5bgn/7pn9DW1hart0BERDRq/PCHP8TMmTPx/PPPJ7ooREREEUmawPi1117D/fffj29/+9tYv349Zs6ciRtvvNE0iN26dStuv/12XHHFFXjllVdw3nnn4ZZbbkFNTY1vm9raWlxzzTWYNm0afv/732P9+vX4xje+gbS0tHi9LSIioqT09ttvY9u2bRg7dmyii0JERBSxpAmMn3nmGVx11VW4/PLLMW3aNNx7773IyMjA+vXrA27/7LPP4qyzzsKNN96Iqqoq3HbbbZgzZw5eeOEF3za/+MUvcNZZZ+HOO+/ErFmzMGnSJHzxi19EXl5evN4WERFR0mlpacG6devwwAMPsDGZiIhGBWeiC2DFwMAAdu7ciW9961u+xxRFwfLly7Ft27aAz9m2bRu+8Y1vGB5bsWIF3nnnHQCAqqp45513cOONN+JrX/sa9uzZg0mTJuHb3/42Vq5cGXZZFUWE/Vz/fURjX6MV68ga1lNwrCNrWE/BpVId3X333bjuuuswc+bMiPcVaX2lUr1HgvUUHOvIGtZTcKwja+xWT0kRGLe3t8Pj8aCkpMTweHFxMY4cORLwOS0tLSguLh62fXNzMwCgtbUVPT09+N3vfofvfve7WLt2Ld566y3cfPPN+N///V/MmTMn5HI6nQqKi3NDfp6ZoqKcqO1rtGIdWcN6Co51ZA3rKbjRXkfPP/88enp68PWvfz3ifUXzujna6z1aWE/BsY6sYT0Fxzqyxi71lBSBsRkpJYQwb2EI9DfvY6qqAgC+8IUv4IYbbgAAzJ49Gx9//DH+3//7f7j33ntDLo/braKzszfk5/lTFIGiohy0t5+EqsqI9xeIlMAIVWd78aij0YD1FBzryJpUqadIzo3xrKP8/CykpTli+hqB1NTU4D//8z/xP//zP1CUyGdjReO6mSrHZqRYT8GxjqxhPQXHOrLGbtfNpAiMi4qK4HA40NLSYni8ra1tWC+yV0lJybDtW1tbfdsXFRXB6XRi6tSphm2qqqpw7NixsMsazQ9VVWXU9ud2Acf2A8cPC3S1A6pHICNborgCmDBToiBwNdpeNOtoNGM9Bcc6sma01ZPqARoOAfUHBTpbAI9bID1ToqgMGDdNorgy9EB5tNWR3ueff462tjasXr3a95jH48FPfvITPP/883jjjTdC3me06mo013s0sZ6CYx1Zw3oKjnVkjV3qKSkC4/T0dMydOxebNm3CqlWrAGg9vh9++KGvt9ffokWLsHHjRlx33XW+xzZt2oRFixYZ9uk/FPvw4cOYOHFibN5IgjTVArs/Fujv0e7unOkS6RkSfb1AfY1AfY1AxVSJ2adLOJlDhYhSxIkWYMdGgZMntHOjwymRmSPR3ws0HhFoPCIwplxi7nKJrOjNkklq5513HubNm2d47Bvf+AYuu+wyXHrppQkqFRERUeSSIjAGgK997WtYu3Yt5s6diwULFuDZZ59FX1+f70K8du1alJWV4fbbbwcAXH/99bj22mvx9NNP4+yzz8Zrr72GHTt24Cc/+Ylvn1//+tdxxx134NRTT8Wpp56Kt956C5s3b8add96ZkPcYbVICNZ8LHKzWbvrKJ0tMniuRN0brAXEPAA2HJQ5+LtBwUKCzFVh6nkSmPYb5ExHFzPHDwI4PBFRVYEyFxNQFEkWlgFAAjxtorpOoqRZoOy7w0V+BxaskCksTXerEy8/PR35+vuGxtLQ0lJaWYvLkyYkpFBERURQkTWB8wQUXoK2tDb/61a/Q3NyM2bNn43e/+x3GjBkDAGhoaDDMd1qyZAkefvhhPProo3jkkUcwefJkPP7446iqqvJts2bNGnR2duKJJ57Afffdh6qqKjzxxBNhJd6yGymBPR8L1O0VcKZJzF8pUTreuI0zHZgwAyifJLH9A6DlmMAnfwdOXc3gmIhGr4ZDwPb3BSCAmaeqmDjLOFza4QTKpwBjJ0rs2wLU7hH49O9acFxckbhyExERUewIKWXiB3SPEi6XBx0dPRHvR1EEiotz0draHfZ4+wPbtJ7i9EyJU1ZL5BaOvL2qAtXvCTTVCuSNkThtjYTDxs0m0aijVMB6Co51ZM1oqae248CWNwWkBBaeJVE2KfhzDu8E9m1R4EyTOHWNRF5R4O3iWUeFhdkJSb4VbdG4bo6WYzPWWE/BsY6sYT0Fxzqyxm7XzchTSpLtNB4BDlZrPcVLzwseFAOAogALzpIoKpPoahPY9VESp6wmIgqgv1drAJSqwOzTrQXFADB5LjB1gYTbJbD1LYGBvtiWk4iIiOKPgfEo09MJ7NgkAGjDp/PGWH+uNzjOyJZoOChw/HCsSklEFF9SAjs3CQz0CYybLjFhRmjPr1ooUT5Zoq9HYMcmrceZiIiIRg8GxqOIlFpQ7HEJTJ2PYXOKrcjIAuadqd3x7d4s0B/5ssxERAlXf1DLo5BTIDHzlNCjWiGAOcsksvMlWo4KHN0Xg0ISERFRwjAwHkXq9gAdTdoc4akLw+/OKK4Axs+QcPUL7P+MQ6qJKLm5+oF9n2rnsrnLwl+WzpkGLFgpIYTEvs8E+iJPKUFEREQ2wcB4lOjtBvZtFRBCYt5yCSXCT3b6Eom0TIn6Gm0ZJyKiZHVgm4CrX2DcNInCsZHtK78YmDQH8LgEdm/mkGoiIqLRgoHxKLH/MwHVLTB5HkKaV2wmLR2Yvki749vzCW/+iCg59XQBR/cBzjSJ6UuicyKrWiiRlSvRXCfQciwquyQiIqIEY2A8CnQ0AccPC2RkSUyZF70Idtw0ILdQoqNJoK0harslIoqbms8FpBSYNFciPTM6+3Q4gZmnaufafVsEVDU6+yUiIqLEYWCc5KQE9gzOnZu2JPy5c4EIRVuiBPDeXEZv30REsdbdATQcBNIyJSbNju6+S8cDRWUSJ08IHDsQ3X0TERFR/DEwTnLNdUBni5Zwq3Jq9PdfNgnIKZToaBZoOx79/RMRxcqh7QKAwNR50W00BLQs1d7s1jXbBNyu6O6fiIiI4ouBcRKTUuvJBYBpiyREDBJICwFUzddu/g5WM0M1ESWH3m7g+GEgLV1i3PTYvEZ+MVA+WWKgT+Do/ti8BhEREcUHA+Mk1lwHdLUL5JdIlIyL3euUTQKy8yTaGwU622L3OkRE0VK7W5tbPGEWot5brKdNN5E4vEPA447d6xAREVFsMTBOUvre4qqFsekt9hIKMGGW1mtcu5u9xkRkb64B4Oh+QFEkJsyMbXKE3EKt8XCgT6BuX0xfioiIiGKIgXGSaj6q6y2ujP3rjasCHGkSDYeA/t7Yvx4RUbjqawCPW6CiCsjIiv3reZMUHtoBeNzMUkhERJSMGBgnqSO7tJ7bqfNi21vs5UzXlm+SKufSEZF9SQkc3aedFCfGuLfYK68IGDtRor9H4NBujqcmIiJKRgyMk1BnK9DeKJCdJ1E6Pn6v673JPLafSzcRkT11NAEnT2ijafLGxO91J8/RTop7trh4fiQiIkpCDIyT0OHB3uKJsyVEHD/B7Hxt3c6+kwJtDfF7XSIiq7y9xROmxzc6LSgFCkokTrRKtPL8SERElHQYGCeZvpNA4+HBJUimxf/1xw3ebB47wCRcRGQvA31A4xHAmSZRNjm+ry0EMHmu9vvhnfF9bSIiIoocA+Mkc2RwCZLxMwGHM/6vXzZRu+lsqgVc/fF/fSIiMw0HAVUVqJga2yWazGhL2wm0HBPo7oj/6xMREVH4GBgnEY8bOHYAEIqMW1IZfw4nUD5Fu/lsOJiQIhARBVR/UBvJMm5aYs6PigLMXKy1WNbu4agaIiKiZMLAOIkcPwy4BwTKJgIZ2Ykrh/em81gNb/yIyB66O4CuNoGcgvgm3fI3bX4aHE6J+oPaesqUfPi5ERGlpqQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee+89023/5V/+BTNnzsTbb78d7WJHjTepzPgZiU15ml8M5BRIdLUJnDyR0KIQEQEAGg5p58eKqfFZws5MeqZAxRRAdXNUTTKq3Q28/ZLCz46IKMZcA8CJlkSXwihpAuPXXnsN999/P7797W9j/fr1mDlzJm688Ua0tbUF3H7r1q24/fbbccUVV+CVV17Beeedh1tuuQU1NTXDtn3++echbb6+RmcrcKJF6w0pKktsWYQAKqZo9eW9GSUiShQpgYZD2u8VUxJbFgCYMFP7eXQfl7ZLNge2ade0Qzt5bSMiiqWPXxf48C8Crcc9iS6KT9IExs888wyuuuoqXH755Zg2bRruvfdeZGRkYP369QG3f/bZZ3HWWWfhxhtvRFVVFW677TbMmTMHL7zwgmG7AwcO4De/+Q1++tOfxuNthE3fW5zI3hCv8snaz+OHwRs/Ikqojiagr1ugcKxEVm6iS6ONqskbI9HdIWzXGk5ERGQHJ09oAU1jnZrgkgxJQF7j0A0MDGDnzp341re+5XtMURQsX74c27ZtC/icbdu24Rvf+IbhsRUrVuCdd94x7Pf222/H3XffjbFjx0alrIoSedTq3Yf3p3tA6w1RHBLjpwkoNmjOyC0E8oslOlu17KsFxfF9ff86osBYT8Gxjqyxcz0dP6z9rKxKbPm8r+1wCEycKbHzQ61Rc0yCR/kQERHZVV+PfXrYkiIwbm9vh8fjQUlJieHx4uJiHDlyJOBzWlpaUFxcPGz75uZm3/9/8YtfYPr06Tj//POjUk6nU0FxcfS6K4qKcgAA+7a54HEPoGqeE+WVGVHbf6SmzXPhs3cH0NGQjqkz0hNSBm8d0chYT8GxjqyxWz2pqkRTbQ+EAOYszkFGVuID96KiHOSeIrF3Sw8ajwjkrslGRmbiy0UWeD8m+9ynERHZVmerlhA4Iyv8ffT32ueEmxSBsRkpJcQI44oD/c372EcffYQ33ngDf/rTn6JWHrdbRWdnb8T7URSBoqIctLefhKpK7NkKAAJjJ7vQ2uqKeP/Rkj/YyX5o1wAmzh2I6xBv/zqiwFhPwbGOrLFrPbU2AP29AsWVEt09J9Hdk7iy+NdRxRSgbq/Ajk9OYvKc6L5Wfn4W0tIc0d0pERGRRX09wEd/1Yaxrr4+/OHQDIxDVFRUBIfDgZYW42Sttra2Yb3IXiUlJcO2b21t9W3/ySefoKGhAWeccYZhm1tuuQXLly/HU089FVZZo3nDqKoSHS0SXW0KcoskcoskVPsMw0d6FlBUJtDeKNDepKKwNP5lUFVpq5t0u2I9Bcc6ssZu9XT8sNYiN3aifc6P3joaN10LjOv2ARNm2iM/BI0s0g5jKcHPmYhSQr+uIVpK4OB2oLgCIccD9rmjSJLkW+np6Zg7dy42bdrke0xVVXz44YdYtGhRwOcsWrQIGzduNDy2adMm3/b//M//jD//+c945ZVXfP8A4J577sG9994bi7cRlvoD2hV2XJU9b6rGTtQO56ZaGxaOiEY1KYGmWgCQGDsh0aUZLn+MloTrZIdAZ2uiS0OWRBAZSwl89BeBHRt5PSSi5ON2AZ+9JdB81Nr2+pxHbQ1AzTYFH7+eFKGlqaQp/de+9jW89NJLWL9+PWpqarBu3Tr09fXh0ksvBQCsXbsWDz/8sG/766+/Hu+99x6efvpp1NTU4LHHHsOOHTtwzTXXANDmG8+YMcPwDwAqKysxfvz4+L/BAFSPlnRLCImKqYkuTWDem9GmWmanJqL4OtGsDaMuKotsflMsjavSToz1NQyWRjv3ANDVLvhZU8qTUpt7apdRPGTNsQNAyzGBrRushYdCt9lAf4wKFWdJMZQaAC644AK0tbXhV7/6FZqbmzF79mz87ne/w5gxYwAADQ0NUHRNF0uWLMHDDz+MRx99FI888ggmT56Mxx9/HFVVVYl6CyFrOgq4+gXGTpBIz0x0aQLLytV6RLraBE6ekMgtTHSJiChVNA6OVCmbaN9WufIpwN4tEg2HgBmnAA5OC7YdtwtoPAyMnZTokhCNDod3Avs/UzBpjsTMU+x7fiZNdweQmaN1yIVCP5LVjqNaw5E0gTEAXHvttbj22msD/u25554b9tj5558fUsbpvXv3hl22WDi2X/tZWWXvk0rZRC0wbqoFA2MiigspgcbBRQnsHNCkZwKl47XpJs110rcGPNnHoR0Ch7YLNNbKoaHUYdCPmuJcY0plDQe1g//YAWDmKQkuDI3o5Alg058VZOVKTJgZWrwRzZGiUtUaKZ1p0dtnOJJmKHWq6T2pouUYkJ4pUWKPkd2mxk7UfjZynjERxUlXG9B3UqCgRCIzO9GlGdm4adrdw7EDPEfaUU+n9rPlmBiaYhzmHGMvt30WkCCKO+93IZQznqtfa+zk8Ov46u7QfvZ2i5Ab8/TnvEgbAj/bAGx4UUF/5Iv7RISBsU0d2uWBlAIVU42T2+0opwDIztd6jXu7E10aIkoFTXVD2ajtrrgSSM+SaG3Qlrcge8kpiM5+pO6G3j0QnX0SJbUQ7l+3vi3w+bsKju6LXXFoOEU/vSfUwDiMRgwpAVeA82PzUe3F24+Hvs9osnnIlZqkBA7u1Jqb7T6MGtBaifRJuIiIYq3lmPaz1OYjagCtcbNyKgAp0FCT6NKQP8Wh7/YY/Blhj3GgG79kI6XWi0cUKm/AFEovYkeTtnFHM0fWxJO+8y3UmjdMH7EYJO/5WODtlxR0tgX+e6IbjxkY21BnK3CiVSK/WCKvKNGlsca3bNNRntCIKLb6eoDOVoGsXBm13r5Y8zZyHqsRSZ3B/8knn8Tll1+OxYsXY9myZfjOd76Dw4cPJ7pYthDOTaKd7dgo8Pb/U9BlcgNLZMY3lDqMW0LeRcZXRD3GunOex2Lirrq92ot456H76+tJ7BHAwNiGjg4m3Ro3LbHlCEVBCZCWKdHRODpayonIvvS9xcmS4Ci3EMgvkejpFDjRkujShO/jjz/GNddcg//5n//BM888g4GBAXz9619HX19foosWFZEcTv7Jt5Kd98bV6pqmRF7ewz9JTs8pLaLM0vrAOMS8Ch534MdDzYwdbQyMbca7drHigG3XLg5ECKB0HCClQGt9oktDRKNZ8+D84tLxyRV9TJotAciEX/gj8dRTT+Gyyy7D9OnTMWvWLPzsZz/DsWPHsGvXrkQXLaoktGHEoSSC0fcSSwl0NANHdke9aPHH6IZC5f0uMMqwvUga8SJJOGjXPAxJtVxTKlBV7Ro0da4T6RmupMrOVzJOor5GoOWYQPnk5LphJaLk4HEDrccBh1OiqCzRpQlNxRQtmE/0chTR1NXVBQAoKAh/TLuiRBZ5eZ8f7n6EyX/e/n/aXf2ar1q7nhl6XiDw8evaA2PKJApKwipaVIVbT4oibJ8ENFoiPZZSRbB68n5jFBF6XYownmNHyXIsCZMTYKjllmpozzXrMQ7ntaOJgbHNONOAc64ESsemo60tudZ7KK4EhJBoPsY1HGPlZCfQWq+l1Xc4gNxCieJxQFp6okuW2k6eAFobtM9FcQB5RRIllYCTn0vUtTUCqltg7ERpnBuVJEZTUCylxP3334/TTjsNVVVVYe3D6VRQXJwblfIUFeWE9bz6rAEA2vVWURQAEo7Bn979WrlRE24PAG1IeV5elu/3zPRMFBfb53bLej2dBADk5maguHgUHbgWhHsspRr/eurvlUjPBAR6AUg4nAqKi62up6cdbxmZaehscmDHhwM476pMZOUkd6uM3Y8l18mh81ZWVgYArSvXynlZ/9z09HR4z6MjP1f7nCEdGBpaMCQzMw3FxRnWCh8D9jlTk4/DCYgkjCrT0oHCsUB7o8CJFonC0kSXaPTo7gD2firQWu9/XAg4nBLjZwBVC0dXT1Qy6GrTPpe244E/l4mzganzJRw800ZNy9HkHEY9Gv3oRz/Cvn378OKLL4a9D7dbRWdnZAtXKopAUVEO2ttPQlVDPy5OngS8PSVSVQEIeDyq77HmxpOWGrlOdAzt58SJXt/vnZ19yGgNuVhRF3o9aeXv6elHa2tqpKeO9FhKFYHqqfkosOVNganz5WAiJgFVVdHaanUdT+146+93YdNrWnfi1g96MPOU6Jc/Hux+LB3ZDZxo8U7bHDxXdfT7fh/pczt2AMjK9a45PXieODng+72luRvCpD1DCG3apcvlQaB5Gn19LrS2xqZjMD8/C2lpI7eo83aNoqp0vER7ozacurDUfieCZHR0H7DnEwHVI5CZK1E5Bcgp1OYptjcKHD8MHNkl0FQLLF4lkVuY6BKPflICdXuAvVsEpCqQlSdRMQXIKZBQ3UBbo0DjEeDQdu1zWXSuRE5+okud/KT0JgKSKBmX6NKktvvuuw8bNmzA888/j7KyyMa0R+umUVVlWPtSdUMAAz17YEBCsXC35A0GAED1yKHfVWmraVHW62lo7So7lT8ewj2WUo2+nur2acfLwe0CaenetNShfL8HG6f8Mh0n++dgx2NpoA/YvVmLXPOLhxoB9clzzcrsGgC2f6A9d8kXhp6rHxrtdpt3CEgZoOPPL6N/IuuLgTFFVel4YN8W7eZ12qJElya5SQkc3A7UbFMghMT0xSomzTWuOTdumsT0xcDuzUBTncDHr2tB2JjyxJV7tJMS2LdF4MguAaFIzDxFxYRZfp/LdO1z2fkh0FovsPk1YOl59phnmMy6O4C+kwIFJRIZWYkuTWqSUuK+++7DP/7xDzz33HOYMGFCoosUOTn8d/2grZHmwhl2M8qyUvsIoKdLW0qyfHKiC0N2pb8GRisrdTInKrQz/TlNnzRQX99mUyL9t/E9rhp/N++X1Xaq37edzpfJPXCfbCc7H8jKlehqEwlfpDvZHd6pBcWONImlqyWmzEfABCgZ2cDCcySmLpBwuwS2vi3QaYNhe6PVga1aUJyWLnHaGolJcwJ/Lpk5wJJVEpPmSLgHBD57S6C7I+7FHVW8y8ZwGHXi3Hvvvfjzn/+Mhx9+GDk5OWhubkZzc3NSL9cUMKANJzD2y0rtNRp6Wz9Yr6D6PQUdTYkuCdmVfuhstCYDjob1wO3INKA1CXot7Uf/3BA/N2mjyJiBMUWVEFqvMTC01iiFrqkW2P+ZgOKUWHqexJggIxWFAKYtkqhaqMLj0oIwNkxE37Ea4NAOAWe6xCmrg/cACwWYsVRi0mwJV7/A1g0CrtSYqhcT3jn2HEadOC+++CK6urpw3XXXYcWKFb5/r732WqKLFrZg92Th9Bjre6FVi8+3K/2NM68rZMbQuzj4ezjxjn4/o6FRyY7MAlrVpHHP8FyzBsAQg2rD8WKj0TYcSk1RVzJOonaPNs94/HT7tAIli95uYMdGAUBg/plqSEnMpi4A+nokju0XqH4POG1NzIqZcrragF0fCgghsfBsibwx1p4nBDDjFInek0BTrcCOTcCicySztofI7QI6moC0TOt1T9G3d+/eRBch+gJcpqI5lNqTRMNBO5qAw7sE5pwx9AakrvzJmAme4sOwXFkEgbEeh1LHhmH4tC7HwrBe3wDfd7Pg2XCeCyWFAczPnYnAHmOKuqIyQHFItDWwtS9UUgI7Ngm4XQKT50qUTQrt+UIAs06TyBsj0dEkcLA6NuVMNaoH2P6Blmhr+lKJ4orQni8EMG+5RHaeRHOdwLH9sSnnaNbeqCXtKK7gUnAUXYFuxAw3fBEGxsl0c//xGwqaagUO79TdLOuu4wyMyYxhKHUEgbEh8OI9ZEwYzlUmQ6lNn2vy+VjpbdbTX8bt9JkzMKaocziBorGA2yXQ2ZLo0iSX2j1A+3GB3EKJaYvCazZzOICFZ0soTomaauBEK68skTqwTaC7Q6CoXGLS7PD24UwH5q+UgJDYt0Wg72R0yzjaeYdRF1dyFApFV8DAOMSbxZGeYzWwthNjcp6hW1i2SZEZQ66NoYTmITMLtih6IpljbLp9iEOpYdOh1AyMKSaKx2lHdsuwdXfJTH+vFoAJITF/hYyoZT47T5tzLFWBj/7Wn/ATTTLragcO7wIcaRLzlkc2BLqgBJg8R2s02vMJvxuhaKnXfobaW08UTLAeY6lqOTPcwZbWNOllTqYeYy99759/tlmiQKLWY5yE35dkY9aIZ6XnVv+4R3dODLXH2LBPBsY02nlvXlvrE1uOZHJgq4DHJTBxFqIyh3LiLCC/WKKlQcVRDt0Ni5TAno8FIAWmLZLIyo18n1ULJTJzJJpqBdqOR76/VNDbDfR0aiMpMrMTXRpKRiMGdEF6jI/uE/jsLQWfvzNyY5ZqEhjre1yThb73z2xpFyK9aE1x0QdGnDYTG2ZDqa0Epfpzqem5wUpwaxIMJ/ocw8CYYiK3EMjIljjRCmbhteBEC3DsgJZYaOrC6DSXKQowd5n2+4GtFno7aJjGI0B7o0BOocSEmdHZp8MJTF+ifcZ7PxUJbx1NBq0N2s/iysSWg5JTfQ3w5vOKb9SBP8NN2eBP/c1fR7N2d97aEOQuPYJlT+xG3/vnHhj6nT3GZEYEGkodBsP3hYFxTJgNpbYSJBt6jN1DH1Covb5m2yf6fMnAmGJCiMFeYyl8N7Vkbv9WLQv19EUSaenR229BCTB5lgP9vcZkKhScqmpLZgHArFNlwLWKw1U+GSgo0db7bjgYvf2OVr75xRVJGGFQwu36SDt+DmwNfA4MtMySoddCWDvujDebgZNXJQtDVu4I1iel1GG2/M5ITnZqq3D09wZ+bjLctTQeQdKN/opouSazKSMh9jwzMI6CF154AatWrcL8+fNx5ZVXorp65JS7r7/+OtasWYP58+fjoosuwnvvvef7m8vlwoMPPoiLLroIixYtwsqVK3H33Xejubk51m8jZZQMJslp5TzjEbU3Am0NAtl5EpXTor//hSvSIRSJw7tgvPjQiOoPAL3dAsWVoWehDsa7hBMA1FSLpLxxjhepaj3GiiJRFGQ9b6JAvI1a/t+zpjrt2Ap0U2bIxGzxEhbJmp52Y7hZNrlxpvjq7wV2bhI4eSLRJQksnON829sC9TUCuzeH3/OYSKoKfP6ugk//rti+rAYWeozNGjesDKWOKDDmUGprXnvtNdx///349re/jfXr12PmzJm48cYb0dbWFnD7rVu34vbbb8cVV1yBV155Beeddx5uueUW1NTUAAD6+vqwa9cufOtb38LLL7+Mxx57DAcOHMC3v/3teL6tUW1MBQBItNbb/+SWSAc+1y4IUxdEt1fSK7dAwaTZgOpmr7FVqgc4uF2rq3CzgwdTNFbrAe3tEjh+KCYvMSp0tgHuAYHCsdowdKJQicFEht4bLu/1aNvbCrb8Qwk4101/cyYsnpfNbgwTfaMXDrMbXgbGibPnY4FjBwS2brDndTzQ8e/9aTaVy7s6Q2/X8Of6/24nh3cBR3Yb33N/T+LKEyqzJZes1L3pEk2hJt8ynCN166Yn+DNPmtuMZ555BldddRUuv/xyAMC9996Ld955B+vXr8c3vvGNYds/++yzOOuss3DjjTcCAG677TZs3LgRL7zwAn7wgx8gLy8PzzzzjOE5//Ef/4GvfOUraGxsRFlZeF0TitWmZQv7iMa+EikzWxvKe6JFoLdLm3ccLaOljtqOa8sz5eRLVFaJqAfG3vqpmi9Qu0fi6D6gaoFAemZ0XyeZBTqWju4D+k4KjJ0gUTQ2dsfYtEVaj9XB7QLjqqzfgCdCor5zbYNTMUrG2f/7PlrOS6ONr8fYAzQcBHZtFjhtTeAbsaHgWbdEkdXAeBT1GJsOkWRgnDC93drPvh4tL0lvF1A+ZejvJ1qAplotUWQiriWBpiRAAnV7gd2bFSw4S0X5ZONzFAXwwLzBxa7H275PtQoeVzVUwN5uIDMnUSUKjem5KsQ5xqbDp60k8bLpUOqkCIwHBgawc+dOfOtb3/I9pigKli9fjm3btgV8zrZt24YFzCtWrMA777xj+jrd3d1wOBzIy8sLq5xOp4Li4iikrR1UVJQk37ARTJg2gBMtLvSeyMCkqrSo7z/Z66j6vT4AHiw4MwOlpdGvH6/ycTmYvqAfe7e60XgoDYtWRHEi8yjhPZY8bol3d/QCkFh6dhbGFEewblYQxcXA4R29aKxT0d2agcmz7H9Kjvd37rPmXgAqqubE9rOIpmQ/L402+qHU2z/Q/nNg29Dfg/XuWm2wNM30atOb+5GYDZ9Ohh5jKUdnNmNvY4XDAWx+TTsoi8pVZGRpj3sfyymQqKyKf/kCBTdSAnu3aB/GoR0C5ZONUY93WUqzeeyqDRuVzALDZPhueJmuY2whMDZrKAt1frLZuseJPl/a/y4MQHt7OzweD0pKSgyPFxcX48iRIwGf09LSguLi4mHbm80h7u/vx0MPPYSLL74Y2dnhrQfidqvo7Ix8EqeiCBQV5aC9/SRUO54VQpBTBAACR/b1o3RS9NJTj4Y66u4A6g8KZGRL5JX2o7U1+um79fVUMU1i3+fAns8GUD51AGkZUX+5pOR/LB3dr80tHjtBQjp70doa29efMBtorBPYsbkPuSX2vaFLxHfO7QKajwHpmYCqxP6ziFQ86yg/PwtpacnRUJAIUgKdrUD+mKGbb2vDB8P/Appmek2SS5Qx22zgxxN90zoSqQJb3hIY6AOWfSkxvaax5A0eFSeAwUzhHvfwhgDv8OR4MxtK7Q2AAjUweac5qPrjLcSex3jTfzdcuoztdv5u+LMyHNqs7s3WQLY0DFt/jmSPcfRJKSFGuIsM9LdAj7lcLvzrv/4rAOCee+6JqEzRvBlSVZm0QZ9XXjHgSNOGDLtcEo4o38clcx0dGpzvO3GWVv5YtjaqqkR6lsS4KoGj+wWO7FExdX7sXi8ZqaqExyN987AnzZVxaQEuKtOmGZxoEWhvVFE4NvavGYl4fuda6gEpFRRXSEgpE37BtCqZz0ujRc3nAgerBWYsHfoSm/aS6G7uAgn2d9/+I5lvZwOGbLNJ2GPc1a4lsgQAt0uOusZfVddj7DXQC2z+q8DUBUMfnraETvwPOrMeY29jkxLg/s8bLHts2nsYiCEw1vVnhPLdkCqw+Q2BwlJt1Yt4M+u5NQtW9Ux7mK2c88x6jG10vkyK9rSioiI4HA60tLQYHm9raxvWi+xVUlIybPvW1tZh27tcLnz3u9/F0aNH8fTTTyM3N3pDoUk76RWXA6pHoKMp0aWxj4E+oKEGcDglxs+I3+tOmqudcer2MBNyIK31QHeHQEGJRGFpfF5TCGDSbO1zObLbpt3FCeJbpqkySSILso2D1dqx01g7tFa4vgfRrHc0EKvnSitrg9qZ4YbXtMfYvueoZAngw+UNHvVJCOv2CbgGBPZ+qgzbLt4C9jbql14KcOgoQXqM7di+6I5Cj3FPN9DZIlCboGt+tNYxjmQotf6zNZvnnAhJERinp6dj7ty52LRpk+8xVVXx4YcfYtGiRQGfs2jRImzcuNHw2KZNmwzbe4PiI0eO4P/7//4/FBYWxqD0VMxlm4ap26utczluOqK6bnEwOflAyXiJ/l6BxsPxe91kcXiXdoxOnivjOqS5fCqQlinRWDuUYIXgWwM92stlUerIyR+60dJ/p82WHAlE9ZifDFRVW8fUNTDCHOME39xLCdTu0abvBNvOy5B8y2TpJrsJZRRAMvK+J30DT6D36THJAB0rUtXKYdZj7BWox9j7zdJPYVADBdg2Eo0eY/dA8G1iyUo+hEh6jBtqBN5/WQwb1m/2uqqNslInRWAMAF/72tfw0ksvYf369aipqcG6devQ19eHSy+9FACwdu1aPPzww77tr7/+erz33nt4+umnUVNTg8ceeww7duzANddcAwBwu934v//3/2LHjh146KGH4PF40NzcjObmZgwMJPiIHWWKK7WfrfWJLYddqCpwdL9xGHU86XsnE30CspOuNm0YXlauxNgJ8X1thwOYMAOAFKjdwwYkQGsg6OkUyC2UyAgv7QMRFAci7jEeydF92jqm1e8K2/YYd7UBez5W8MErAnKEk76VpEJSBQ7tADa/LmwXfCbLXOhwea8MwRoq4t1j/P4rApteFcb69/4M0mMcqEfYbIitXZgFxqGU1RX9lDIhiWiOselQ96EP+NgBgd5ugf1bjR96JL3N8ZI0c4wvuOACtLW14Ve/+hWam5sxe/Zs/O53v8OYMWMAAA0NDVB0M/uXLFmChx9+GI8++igeeeQRTJ48GY8//jiqqrRUfcePH8eGDRsAAF/+8pcNr/Xf//3fOP300+P0zka/7DwgO0+iq12gv1f6MiimqpZjQH+PQHGFRHZ4CdAjMqYcyC2U6GwVONEsbT+nNV5q92g/J85KTNKWCTMkDm0H6muA6YsDt66nEl9vcWViy0HJTZvjqP2uv0ULpcd4JF3t2l5bGwQKx+p6PWyUWVe/hqzHDRyr0a4D/tdi06Q6fjet+z/TTpDdHRL5xhynCTHQB/T3Dr/R7mjWek9HzTlk8AA2fJ4BguB4Nli4XUBft1aw/DHDj39DEBVoB1L/i7YfwxDbAE/q6dKuD+OmWc8YH03684X+swilx3hAFxi7XUDzUaB8UvyWbDRbrklf3x631ghWNgmGe9VQ1jXXr0897HUtnG8SIWkCYwC49tprce211wb823PPPTfssfPPPx/nn39+wO3Hjx+PvXv3RrV8ZK64EujZq61JWjE10aVJrKP7tJP/+BmJuVvyzmnd+aHWO6m/mUtVrn6J+oOA4pConJaYMmRkA6XjgaY6gaY6OWy9x1Tjm19cweOTImBhnlwogbF/BuDM7KEberPhoIm+0dMHTwd3ubH9fYGMLODsrxgrx6yX2Kw3xy4Z9N97WUB1C8xZNlRQ1QN8/LoWZXzxOtU2ZT26HygoAfKKwnjy4HvQD5VWAxy78XyvJ0/oyhLomDdJtjRsO12+sGA9/7s/EmhtEOjtkpixNP7XB8M0A/dQZVv5nm//QPvuaecNzb4tAkf3CXQ0Scw+PT7vxyxAhe4ctusjgZMnBNobJZZ8QQbcPth77u8zf1279hgnzVBqSm7em9uWFJ9n3Nut9RinZ0mUxnm4rl75FMCZrs1pHegLvv1od2i3Gx63QMWU+M759jdusLHE23iSqqSq9QgoikRRWaJLQ8lMVTF0w6274QrW62bG/6ZNP7LDrnOM9b0xPZ1aYfp7h59jrMw71A8BTVSSJ3/e4GRAt1pmj66nyi5DvjuagV0fKvjwVeu33t5lxzyeoREP+uRPZj127gHzOeU9XcAnfxPoCLx6aUj6dXVurGdvY5Hu7wHK6u2hNBvNEahhq30wkWvz0RAKGkX6AN9j4bPQ/73hoMDhncbkp97P4ei+6JXRTGeb1gtsZdrByRPap9LTaXw8lB5j/88vkqRf8cLAmOJiTDkghERrQ+IP+kQ6tl8AEAkbAuTlcAKVU7UMo8cOJK4cdiAlsO9z7S45Ub34XiUVQGaORNtxYbixSzWdbYB7QKCwzJiBlShUUh26+dbffOmT3+h7fazsT89j0mNkpx5jfcAyUsOflTnG+obUSIagR4v+vXl0SdL0PZnuOCejMhPOvNKmOuCjvyrY/r7w9QTrM4ObfQYf/VVg05+VgNeR3ZsF2hsFtm6IvAE2+MgLASG0L2CghpRA341g0xD01wS3y/hZx9KJFu31DNMwQhgCbBZEZ+YMPj+CNdSt+ugvCvZ/pqCp1iTZWQD+07r0x1/I5zZD41vg95vo8yUDY4oLZzpQUAoM9IqgmTFHK1XFYBAqMX564lsHvEHgsf2pnYSrowk40SKRXyxREHj1t7gRCjBu2tDnkqq8ifo4jJoi5fEM3WgZ5xWH9/3yP1ca5saF0GPs8QANB7UA3ePWViqIVaCpL6NrhNyi5r05ukDMZhmq9T2W+iHGblfw4DHe9AGda0DrtT1+eOTneNdlbqoVxm5V735Mgu2eLm3j7vYAzxk8BqLRYKCa9J4GEmgodaAe4VAalT75m8DGPykxua/0uLVrkZTaz82vKdj2jjHJmNmyZmb783L164LLGH2PPB6g+Vjg72mvLlt0sCXY/D+iSJZFs3Kvmej7UQbGFDfem9xUzU7d2qANXyuuBLJssFx2biFQOFaip0ug7XiiS5M4tYOpBibOSmw5vMZNAyAkjh0YnWtxWtE6eDNYMlqS5lDCqLrAOBo9EaoHaGscutnU3+yGkpX64OcC2z9QsOsjgW3vCOzerKDm8+g2hvX3auXQ3xgP9AeeKziszCY366EEQvGgL4/bFfh3O5QTMB4HtXuA9kaB6vdGvg13pg39HujoCNTQYQgsAj3JO3w5CoebWe+pgRi+7bAimc1FDhIkdbVpOz8RhWHh/ra8KbDlTQXNR4euSW0NYliCKi9V1UZUmDU46Lc1NOjEKDCu2Saw9S1lWGZoIPDcdFP+w6FDCIz9P75RHRjX1dXhnXfewbvvvovjx1P4rposG1q2KTV7wo4f0t535VT79IJ5e65TdU7rQB9w/DCQlgFUTEl0aTSZOVpAONAn0HIs0aWJP7dL68VPz5TIDSdBDZGOPjCORnbowzsFPv2bgn1bhG//+tfyCtZj7M263lQ7dE2M5vSJvh7g3T8o+PRvwq/HOHDmbP//mw3rTJbA2GPDwFgfAJ3sMF/GRs+Rps92NvzvgXr7gjXKBFrXO1yqSe9pwG0DDaX2/abrQdUnsbP4nY1FI3JH09AcW2nSaGTMUC3wzv8o2Pgnk++OSWCsr5eOZmDbO8Lw93B552Af2z/8b54I6stKA9rQBn7/tfC6th9K/dRTT+Gpp57y/b+7uxv/+q//itWrV+Ob3/wmbr75ZnzhC1/AD37wA67/SyPKL9YSPrU32edCFS8et3YDpDgSm3TLX9kk7TNpqkNUTsTJpuGQdmMxZbbTVnNZK6u0q0nDwdRrsGg7rt0YFVfYJ+stJRf/pUgCzTEOlzcng/enocfIZNkT7+vu/VRg05+FaY9SVk7k5fPyzrvsaPYLjHVDb/0DFSs9NZ4wA2NXP1D9nkDjEevPsUJ/k27oMdaVzePSyvrZW9F//VAYkqDpGkH2fybw5gsCfT1BdmDxfGg2l9739wDreofLSkOJ9/UCDr0PcswF/M4GWg85hsP6HU6/KQT6HmP9aIzB+ff9PSLgEHdDED0Q+PGPX9fm/x7aEfnFL31wOTb9tAKvUHqM/c8LwRKqhbIvs22kqmXwPrwrtP1HQ9CvxYsvvojCwkLf/3/yk59g06ZNuP/++/Huu+/inXfewX333Yc33ngDjzzySCzLSklOUbQkXKpHoKMp0aWJr+Zj2py20vHGoVGJ5nAClVVacFhfk+jSxF/9Ae2CUTXPRlExgNIJgDNNorlu5DmBo5FvmaZK+4ysoOQi/Yd3DvZABZtLZ4X3JtabkMYsUPTvMR7oA47sEujuEIZkQbE6yvXJHfVJqfQ9xv43tVYaDlSThoBg9m8VOH5YYO8n0W3tstpj3HwUaDkm8Pm7iZtBaDY/+9AOASkFmusCPEc3F95qzQVaZ9ft0ubjfv7uUE6RaHwSw75rATcaHF0xuK2rX2ukOLQj9KzGZqKdYM0/g70+kJUmn6P+mDPM4ZVax4P+czH7PdC+wjVSor2QciyM0OsbamOj1cC4q13rGNj3qRL3lVOCniGampowceJE3///8Y9/YO3atbjkkktQVlaG8vJyXHbZZbj99tvxl7/8JaaFpeRXUpmayzZ5h1FXTLHfzb53OHV9TWol4epsA7raBfKKJIrG2ivdgsOh9earqkDj4USXJr68Q0yLKxJbDkpeoQzvDHnfg0GmNzBWTW5w/QNj/YgcQy9eBL0vI9GXRX9jqW9oC6fHOJSh1F3twMdvaBn2vWXo64nOtb+zFTi8y2+Oq8nwabcbMavnUJglavMKFMgYjimLr6PvrXQNDM6NPa7NaW48InyNJvpANdxrv2GUhMWh1McOaI0U+z9Tgr5uoKHU3iNI/1zv+4wWQ+DqEsYGMF1DU6BGCMBYL/u2aNMamuoCPy/Q98hhow6UkZJvhZpJ21JgrGoZwL3ivUJH0LvB4uJiwxxil8uFysrhGVEqKirQ3d0d3dLRqDNm8GbXe/ObClwDQMtRrQewZFyiSzNcbiGQXyxx8oRAZ2uiSxM/9TXaCX3cNEDYcMyudzh1fQoNp+7tBno6BXILJTKyE10aSjbengbDTWeshljK4fs3W45FqubBqf7UE83hoOaBsbXkW2aMc6pHPjd98jeBjiaBPZ+IqE+L+OivCvZ9qhhGn+kbHPyDlAH9+stxXr6p7bh2c2/IYBwoG3Og7OW6slrNXhwo6DL0qHqXfQJwdD/w9v9Tws5nEUqQ5N3WrAEpkJH+7j9lIpr8G1ZUkwB4WANMgMe9w6Lr9uoC4yBz4KOxnGfU5uoOjnjx3h+GtN9h2besPEkYGtDCWeYsEkGr/oILLsB//dd/ob1dy/n+xS9+ES+88AI8uquB2+3G73//e8ybNy92JaVRITsPyM6T6G4X6A82n2aUaKrTev7GThy+Hpxd+IKwmtQIwtTBpVKEkKiYmujSBFY4FsjMlehoSp01jX3LNDEbNYVhzyfAh68qqN0du6V6hKKdK703x2ZBeKCh1F5ul+7v+iHPUSyr2XxGlz4rtX+PsZXAWDccPVAg3d0BbPqz0NZ8HezFC/eq0nwU2LFR+DJr+4YFG97P0N7NAhbVrSUzDPS3WOvrAT79u4IP1iumidq89O9r3xaB7R+IsBp5As17Nwvsdn2oHYCHdwX/lKQEtr0tcGCbtm1/nwyp912q2qg0w9rfweYYj/B39wijHyJl7DE21r1hfrDJUOpg5fEEaWCKylJaus/m+BEtE3q4PvmbwEd/1ZbFCukzH2F+8kj058t4D6UOOrHu1ltvRXV1NdasWYM1a9agqqoKv/3tb/HFL34RixcvBgB89tlnOHnyJJ555pmYF5iSX3El0LNX6zWurEp0aWLPO4y63IbDqL3KJwN7P5VoOATMOEUbyjuaNR/TbqhKJ0hkZCW6NIEJAVROAQ5u15KEVS1IdIliz7skBucXUziODN7ct+iWBIz2UGrvPGXvja3ZUFL/HmOXPjAeGHq+/pY40oCtqx3YuUmgfLI0JBPU92Tpe6tHykptRaCb/x0btXnU294Zeiwtw9hjC2iNYHljgPRM8/1v3aAFbSXjJOprtCz95/6TxIBuWLr+plkfcPkHlPpep3gGxgOGZXkC9xgGeuzwzsFzoW4td6tz5AMFxsY1dLWf+r1ZSfzW3ws01Qk01WmrBuz5uAfZeZaKZChPKD3GkAJSSgihrSBRUDLU6Wg2dDka/Oeum81lV/0CaK+WYwI1nwNnrPZAKHLYZxfsswyUNC1U+nqujmBuvZTAyRNaeTuaQztP+I+CsBwYm3zH4yFoTWVmZuLZZ5/Fd7/7XezatQuPP/44enp6UF9fj7/+9a/YunUrVq1ahVdeeQVz586NR5kpyXlver03waPZQB/Q1qBdRMaUJ7o05tIzgdLxWgt/oAQgo4036da4KnsHYBXe7NQpMP9bqlpjmaJIFI1NdGkomRmGJ0ch4VZA0tv7NfTQSHOMjcGpCHgjH+mw74aDAp2tAvu2KJZ6ssKZY6wXsNdz8LX8k3Tp66alHtjypoJP/2490Gs5JgBoicv0N8pmqyn4B4dmaxx7SQns+ST6WasNr6sf6h0gOHcPBvb6z0GfxMkqfQ+kLzA29HgOfx0rgaW+cWHPx94lxkL7fqmqf/1b66luqgWq31PwyRvCN6RcH1x63EDjEa0RORr8G1b8e5ADbaf/TOv2at/Fv7/YF9aKF26XVle9EcxQjVYDkP77drJDhNZjHMaoFP/X1I8KiQdLH5eiKLj66qtx9dVXw+VyoaOjA6qqoqCgAJmZIzT3EQUwpkwbwtpar53wbDi9M2oaj2jzbsomyajMGYmlcdMkmmoF6mu0HofRqr8XaDkGpGXYc863Xk4+UFAicaJFoLNVoqAk0SWKnc427YZtTIW01dJZlHxiNq/Yj9tviKXxRtS4Fqt/b6bH15MXvSG+ZkG62bBM7w1uZytQUy1QNDa0837AG2TvLnTX9YF+Y3naBhvFuzuE7gl++9bVa1e7Pqu2Meg2603SB02qR5jWjVd3B1C7W6B2NzB7scTxw1qPdlZu4P1bpe8p10+JCdRj6A2c9Z9XJIERoBvZECALsVkvqL/Du4ADWwXmnBH5fYF/I4kVbQ3Atne0G6i+HgHFMbwcvd3wZRwvKlORGWGOCv+GFcOSZyaBvenc9TCqzeMGPv27Nkd/2UUq8orC20c06BtaerpC7DH2H5USxlDqeC/vGvLtR1paGkpLS2NRFkoRznSgoFRbPL27XSJvTKJLFDsNSTCM2qu4UuvZbq0H+nswapMfNRzSGisqpkrbzvnWK5+iBcbHDwsUlNj/OAqXb35xxeh9jxQ7UnfHFa9kLa5+86zUelL160H1S+bje9yjBSF9JwVmniJDbjTWD5P2uILfsB+sFtj9sdYLBGhJIkPhDRZcA0DNNoGJs2XADkD90HEAhvwiZo3j+veiX95qoNcYpJj1GOt5POa9fB3NQHsjDI2OR/Z6sO0dAcUBnHeNHFbOw7u0JIGzTw/+GemPxWBDQj1uoPp9YZjeE+kSY4F6jIcYGxzM7PtUCzgP7YioKL7yhJr8bOsG/2HIw7fRrwHd06ldT0rGIeypUv6BsdkIDEO5TJKPhXNFc7uArjZvAxISGhjr9XQD6RnWt1dVbSQGpJZjp9Bi45vbr/7jie3ylBAllVpSoZbBeUajUd9JLfjPzJEoTIK2JEUBKqZq8/QaDklMHoUzI6RMnmHUXmWTgL2faD0YM5aO3hEW3iXcSph4i8IQaA5lrPkHfGY3cFL63Vh7Am+reoaCkOIKidLxwcsgVW1o8phy4zxmffBp1hvYdtwv4Ahx6RXve9j/mcDRfQJtQwuYGHqGPB5jQ4C+F9Q9oM1B9urr0aZUFOoCVf17Gegz9kK5LSzT499LqQ9sPn5dq+/Jc4cK3HbcM/g8bX7rjo0Cxw8Dp58vkVc09BmVTpAoDTLqyLB0UpDjsqnO2vsJxdDIhJG3s/KdGbDQCBGMqgYeRj4S/+My0HGqr7e9nwp0tQkUlUucunr4db6/d/CYk8C2d7TnLV4l0dUGfP6uwKQ50hD8qX7Hb8iJscK41dAf81YafwKJRWA80As4Q1lKSmqjMLyyLE5VCJa1O5ZsPriTRitv1tnRPM/4+GHtZ/nk5Alm9NmpR+Oc1q42bfheXlHyjFTIzAaKyoD+HmFYmmQ0cQ8AJ5q1EQu5YbSMEw30hZ6kKPLXBKC7STftMVKHD20OfHM/9Ht3h7Uy7PpIYOsGBXX7jMN2jXNTrdWHECEOpR4MurxrjnZ3DA1Z9u8hN1s+yr8Xdcs/BHZuVAxL2/T7zTcc6A09gPdPQLbnY+EbpQJoicu8OlqNow8aDgpIVaCxVqBb13vd1aZNl3r/ZYGutsCvrZ8f6Z+AzF+0g2IgcPKtQEbqMR7aJvLyhdNjHGjo9Ei8Pa3tx4eX90SLtqbw/i1ax0zLMYGWYwJ9J4H9WwV6uwX2fyZG7DEONTAOZ9kkfRb1/hDW/u5s1e49pYzNsmSugciWgerttvZeVJO1ouOBgTElRP4YwJku0dEY/4M+XpJpGLVXXhGQN0aiu8P8Qp/MvMtRVU5Lns8EgG/O9/HDSdLCEqK241qgUFyZPI1IZC/9cc5cChiHb47EP0mXWe9cvy7gs3oDeWxwBExTrTAO2w2jlynk5FuDN8je4FZRpO9mXPVLjKR///0mGWf12W+bdevqunRBgtsV+ogAj9sYJBw/IlC7R2DLm0O3wPrrXUfL0J2/voGis8XY293Xra3R3NstsH1j4M/LMFfSFf+T24lmgS1viqBzld39g0niXMDm1wR2faSVNdrDWP0biaxQPQLpWRJ5RZFft73Zvo/sNt7jnGgBegfngHvcwnCMetx+ib5C/BwDrU8dCqs9xn09wMdvCFS/p6C+JvQRIJZIEfd1hRkYU0oQClBcoV082xsTXZroO9mptVrmFMiw5oYk0mhd01j1aPOLhZComJLo0oSmbJJW7sYjoa0hmCy8w6i5TFPyeOGFF7Bq1SrMnz8fV155JaqrqxNaHn2PcbxYvWH1Dwas3Fj2dgHV7wns3CSwf6vAe38U6GzTAi1vQK4PZKVq7JEMr6Eg9J7Yk51DPVqqKuAOEDT4B8b6hGMDJkONe02yHbsHQn9v/kOp+wM0aOh76Hq7hyrW2xsOaImH9M/t7R4KfP3njB87oM1zjXcQEUhrvZbEaSRSCnhcQONh4ESLNjTe4wl/GK8Z/957q9IyEFZOkGP7gY/+OhTo6gN9byMMoH22PbrGg+4OXWNMpEsnRRig9vdqx1lT3fDe2oPbh9YNb64b6mltqo3d/Vu8l0+KVzJFLwbGlDCjedmm44NLBpRPDj2BSqJVTNGCsIZD8U96EEst9dqwtpJxI6+daUfpmdocwoG+0dmQ1Nqg/SyuSGw5yJrXXnsN999/P7797W9j/fr1mDlzJm688Ua0tSVumElCAmPLQxyFocfSSrDU2qAl3Dt2QODQdoG+kwI12wQ2/llg45+0oZ/6G9SeTmPm4Xj0TqoeLVtxMFogHHg7/bxoKxmY3a6hnj2r/IOxvhCWQDrRoguYTxp78ntPDvUkar9rj7cdB3ZuUrDlTSXuQUQkXANAly4g7GqLQWCshjfE1+EAlDCyIu38UEFnq8C7fxjsOdd99vrh852twhDA6v9mZZh5LPX3ADs2CWx7W8HeT42jJw5sVdDdIXBkt7Y8lFdHc+zK4wmQ4TwWFKd2To/2WvRBXzfUJ0gp8etf/xrNzc2G3+Mh1Bbq119/HWvWrMH8+fNx0UUX4b333jP8XUqJX/7yl1ixYgUWLFiAr371qzhyJMqL2JEp702wfp7PaCClfhh1ggsThvRMoGS8FkS2HAu+fbLw9oBXJEnSLX/eIfnHDyVZS0sQPV1a71BekQw7gyjF1zPPPIOrrroKl19+OaZNm4Z7770XGRkZWL9+fVj7UxQR8b/+BATGoQxXdofYYxxI81EBV5+AxyXw3h8VvPdHfVbh+J8XVI92/XY4ZdjZ5FsbtIBl5ybhG+Y6kp5OLWu3UKy/npb8y7h8k1Wdrbr/SGEIOHo6dfPLVYG6vQIf/UXg078ruucnz/naPSDQ0zn0/60bBBqiPHJM9YiQ6t9LcWjBcfgEWusFunVLf+l7jPUjAwBtJIT+uYnU0wm0HNXKcHSflkW+vkb4EokC2pJW+mH/8V77NxbS07WfHk90rhGKYq1OQm5/UVUVjz/+OM4991yMGTPG93usl3DytlDfe++9WLhwIZ599lnceOONeOONNzBmzPAsOlu3bsXtt9+Of/u3f8O5556Lv/zlL7jlllvwpz/9CVVVVQCA3/72t3juuefws5/9DOPHj8cvf/lL3HjjjfjrX/+KdO8nQjGTlQtk52vzWft6ZMTrztlFV5t2wcwbI5GTn+jShKdyqkRznUD9QYGxE5MzkNRz9QPNR7V57VYyvdrR2InAro8kmmqB2aeHN6zMjnzLNDEbdVIYGBjAzp078a1vfcv3mKIoWL58ObZt2xby/pxOBcXFkS0Wq3okdh6J/5hVd78DgLW5DapbgTc9bbTm/sUryZiZk4OBYWmlgrwiBa0NoXftNB4J7T30DA6xLqlwoPmYxbp3DdV9qPpOaq+XWyDQfUKOOCR5zyfJHYzs+lDBCUPiMYG6fdF9jYy0DAChd8FmZDqQniEAxGYYm3f0R0bWYC95LObnhk3XqKMKbPzz8C0G+gQG+rSM0emZAj1d9rpvc6aFnrQsPVNBf6+EVBUUF8cvQAhruSb9eoEyTqlr9S3UAHDvvffinXfewfr16/GNb3xj2PbPPvsszjrrLNx4440AgNtuuw0bN27ECy+8gB/84AeQUuK///u/ccstt+C8884DADzwwANYvnw5NmzYgDVr1sTlfaW64orBNecagHFViS5NdHgTJFUkUdItf6XjgbR0ieaj2nC9ZBt67O/4Ee0msnyyjLDVOXHS0rWljJqPCrQ2JG+A74/zi5NLe3s7PB4PSkpKDI8XFxeHNeLK7VbR2RnZeM1D2wWO7I1oF2Hp7PDAam/SQL+qbStkWDfdQkhfQD1tkUT9QWOPZSKlZXqgwnpdBFJUJtHeaP35GTnWX6+3R7W8rZmiMhXduh7GnAJp6HH0yiuSKJ+s9XIdrLbH52OVNygWioxZo0tbaz/C+Sw8Hg/cHoT13OJKrePl2IHhz80vluhqH2pkyhsj0X/Mnp9b+WSJpsF5xN7PKDNHorhi6L3lFEgAEjCZox8JZ7oMO3P69CUSuzcDoX1+KhQn4BqQaG21MM/Cgvz8LKSljXwTmBTrGIfTQr1t27ZhAfOKFSvwzjvvAACOHj2K5uZmnHnmmb6/5+XlYeHChdi2bVvYgbHVrnor+4jGvuyudDxQtxdoaxCYMN368+xaR1IOLdNUMVVASfAs/nDrybumce0egcYjwKTZsShd/DQc1H6OqxpeF3Y9lgKpmKr1fDceESibGN/XjkU9qao2H09xSBSXJ/77EqlkOpaiTUoJEWZCBTXCtK3a3MP41XlWrkRvtwjpJtE9oB3nihK85yQtU/oyMc9YqqKnS8CZBhzeqf198jyJMRXAx697e7mkL6N1eqY0JJKKB2cGkJYhEe5nMHaixNzlEh++CuQWaj123iV3zOTkW38977DScOtGCImiMom6fYPfb4c2GuzkiaHye5MdTVusNVq21MNy+ewmtxCorFJx8HMR9SH64a6FrCgI+/pQOl77TAIFxpk5WgK4vsG4K78YtppCpm+kqJgqMW2xNkImOw9orJUoKtPK631vuUXRWW86kLT08BOROZwSikOElLdGKNrweddA5NeII0iSSQABAABJREFUUCRFYBxOC3VLSwuKi4uHbe+dD+39GWif4c6ZjsaQML2iopyo7cuu8vMktr7dg7YGgTFjskO+sbJbHTUd86DvZB9KxykYP9E+EybDqac5Sz2o3dOHxsMOLFlhn/cSqq4OFR1NvcgtEKiabX6M2e1YCiQ/T2Lnph401QkUFmTD4Yz/jVc066npqAceVx8qpzhQOjbJhyXoJMOxFK6ioiI4HA60tBgn5bW1tQ27nsZLvm42VXae9A23jZWMbKD35FDPr74315yAwzmYjDFIYFw0FmiqBcZOkJg8FwAkTrRoS81UVmnBdUEJUFAqMdALlE4Aandrz83MjX/W2LQMifSM0J6TWyR98z3zx0ikpQMrL9NufrduEAiWXyu7IPRypmca60ZRtHXTT54YOaFQZg6Qo3u97DwgXXdJLB2v5UdwOLVRPQCQrbsVjGUPbFToRjFkZkvMOUOioATILZTY8g9vY580LMEVrlASn+kpjhCnD+neU1au9hl6ZeZI3xD5zOzBTO++wNjY4OJwSt+x4UyTAbOux1J23lADTN4YGKYcelfXKB039FjpeG0aXCykZVhLkBeIM037/EIJjBWH9p0a6BNQVRm3hvOkCIzNBGuhDvQ3/8f8/x9Jq3c0hoQBWm9DUVEO2ttPxrWVJFEKS4H2RoHD+08ivzj49oB962jvNgAQKJ3gidrQj0hEUk/Sqd0MtDWqOFLTjdzC2JQx1vZvBQCB8ikq2tqGX5XteiyZKR2vDdffU30S5ZPi97qxqKeDuwFAIL/UbYvvS6TieSxZGRIWC+np6Zg7dy42bdqEVatWAdByj3z44Ye44YYb4l4eACgcC8xfloYB9wCa67SEbrHkcAIZmUMZe53p1hJqOZzW1ukeP11i6nwtaPMqKAHOvERF1mDAJQRw6moJKbVRV96b+excbb1dqwrHSpRNkti3RYQdvKWlA2kW2rXSMqSv9zYtXetpba7TRsIAQ3WTpguy9UGlvgEiJ89qg8SQjCxjgqIv/LMEBPD+y2LYWqn63uWsXCArb+hv2flARvZQAJWZDYybZvy+6wMxfXBjR/ljtCRjxRUSS7849D4KSoD0LInCUm2JsFCOKzPhBlbeIMmq3EKgezCzdGaOdmx5h+tPmCGxf6v3s5UY0CWqyikwBsDpWUNZ0NMyQp8nG6mScdqxI4R5Hp6MbGDROSpcA9r9gX8isWhJiyD1kjNd6/0NJQuB/jNX3YASp9RPSREYh9NCXVJSMmz71tZW3/beZGHNzc2G5F1tbW2YN29e2GWN5s2QqsqkuFGPVHGFFhg3HzPeCFhhpzpSVS1gEUJi7ERpq/Vmw62nyqnA/q0CR/cDM5bao55DIeVQNuryKSN/JnY6lkZSNkk7zhoOaj1K8RbNemoenF88ptxe35dIJcuxFK6vfe1rWLt2LebOnYsFCxbg2WefRV9fHy699NKElEcIYMHydLS2DsRllQNF0W5GfYFxmvXA2MroWmcaAjYS+ydz9Pag6XNA6AM4K3ILtakyNZ+HP0wyPcNaHor0zKF6cqYB886U8Li0uvTfziszZygwycge6nHMzNHev39A608fWOt7eZ3pEmKwByotfXC/ul7GnIKh3uWsXK28JeMkWo4JjCmXht7LQHWu/3t6ZmIC4zEVEu6B4JmxiyuB+StVQy83oL3nsy7XzmOfvRWdXsiO5sHh/9kyhOXOQu8xzh8zFBh7e/sXni3R2y2RluFtMAdyCo1LUmXlaseZe/DzSs80BsbhBvbhqpgikZ0ng3YajdVNrUrPHGq00fd4RyotxFEhes600JfbUnRLdHk88QtYk2JGl76F2svbQr1o0aKAz1m0aBE2btxoeGzTpk2+7cePH4/S0lLDPru7u/H555+b7pNiw5uNtrXexkONLGg7rg35GFOR/MmqvLSWfImGg8MXlk8GHc3aupOFpdqcnNGgZJx2sWs+Fv/W62ga6NN6IDKzpWGYItnfBRdcgLvuugu/+tWv8OUvfxm7d+/G7373u4ArRMSb+c1z9BoqhALD0mLONGvPczj9lpwRgcvksLg/L/25raBEv8/g79lbnkiy3KdlwDCUWptvPPx3/XXRkabVm39QDGi9eL7fdT2v+sDWaqDk1PUy6V9f3/slBvej783X/11LaKQF8qesVjFhpjbcfai8gV978lzteRNmJqaRrGKKxBlfkkGXtnI4tTnTIkBE4J3ba/UYtyrUc76iAA6H9XrMLZKomCox81TVNwQ3PVPrBc/K1UZKOJwS+WO0hGmAtkqKovg1oOiisZB7TE2+36FwpgMTZmrltipDf5xH8V7UGWGPcajnGEUZOj8FawCLpqToMQaCt1CvXbsWZWVluP322wEA119/Pa699lo8/fTTOPvss/Haa69hx44d+MlPfgJAG0J9/fXX4z//8z8xceJE33JN5eXlvuFhFB/5Y7QMyO1N2sEfynAZO/GuL5vM2aj9ZeZoPfqtDQKtx6Vv/lSy8K7BWJmkaxcH4nACYydoa2U3H5W+eUbJpq0BAASKK6Wl4aVkL9deey2uvfbaRBdjGLOs8w5n9G6uFAVw6m8+LfakKA6/4CtNSyzjL9QgJF9306yf8pKWEbwn29sjE2lgrL8B1/cM63/X19NI71EfaOobCfxPEw5H0OnaWm/+YM9vWvpQT5rhM5ND+/deKYSiDU9tqReYOGvovYwp137PzgemzJPIzDE/f01fLDFxdvzmRvrzvm6wxWOsrNQQzeUBS8ZLlI6XaGsIscfYwr3h7NNVHN0nMK4KSJsT+I0LAZyyWutNT88EyqcAHo/qC9Yz/RpgvPTHjOKQg/Nlzd+Dw8KIhsDlG5oiEE4vrT6wT88Ymj8dqYh7jEP8HuiHUts6MBZCoLKyEunp6YbfY+2CCy5AW1sbfvWrX6G5uRmzZ882tFA3NDRA0dX6kiVL8PDDD+PRRx/FI488gsmTJ+Pxxx/3rWEMAP/yL/+C3t5e/OAHP0BnZyeWLl2K3/72t1zDOM6EAoyp0DLttjdKlIwL/hy78Xi0ZCmKQ2LshESXJroqqiRaG7QF5UuSaEkdj0fLEK4oEmVxnIsbD+VTJBoOCTQeFknbEMNlmigW9Dey2s3rYPKgaAbGDi0TtPemOMNibkL/Rl9neuDAONTGYUUBzvyyNqRHH3BaCYwdTu37F8kydmkZxtfNLRwaOpyRNfS7vsd2pMC4uEJrYPYOXfYqKtPmT2bmaGUOFqwJIQ11qe/xMgY5Q3/3Dp8WQhueOnaieXA1fcnI5y6haPOPQ0k4FE2+HmBvkjj9fG3d75aC3ghP0/r55RWTZci7G2mEgCNNwjM4J3jCTGs99IoydDwKAYzXrYpiPIcM/a4/foQyOPLeO5IuwDJsaenhnXOcGUONOeH01KeH0Whnhb5hKVSjOjBWFAUbNmzw/V//e6yN1EL93HPPDXvs/PPPx/nnn2+6PyEEbrvtNtx2221RKyOFp7hSovGIQGu9QMm45LtRbjkGuF0CYyfKiIab2NHYCdrNU1OtNgctWd5fc532mZRNklG9ONhBcYU2R675mHZjHUlSjESQUvvOCCF9UymIosFwI5sGDAwGJVZ6Fy2/hmK8+UyPIDAe+ps++23oZfL2dumDMP15z2yuoW8odYg3rf69Wvpe06Iy7XoOGJNQGW/Yza/zigOYv1L7e2vD0ONVCyWkqjXWAsF7EIVirHOzHuu5yyS2btCGPu/6SCt3XhRnBeiHKAeb86k4JVS/v4ebEdr/M1UUwDMYyOnnxVvpic0enN8e7pJXmTlDr5dTEHqCPEWRfo03xt5/TwymFaVlSPMeY0Urgrc+Hc6hMsw8Veu1njQb2PWR9lgoGa3T0ocC43BGU+m/Z9l5QGvouwgokvuMkLOKQzs3SW/yrTg2LiXpoFUabYortJ8tDcDMxBYlLN5h1OVJ2ns3EmealvCpvkbg+BFpaFm1s4aDQ2v/jTaKAyibqK1d2FwnUVkV/Dl20tmqzccvKpNJF9STvelvvhxpAAZvMKM5RUf4zUPUJ7sZicMJQ8+bf8+Ot1ckkmGrZjfyzrSh/RuC8PRArxn8/TjShpJ1eet28SoVrn7j8GdDYKxb69hqHg795+ZwAjNPHapAfZm9PaCGUQKK8Wbev8fPK6cAWHGptt/MbImWo05Mmh29Lip9cOPU9SIGyqpdUALMXabNi33vj1ohHU5ADSMxmvc9entU9UOq9YGxldECU+drQ4eLKyTcLomD1QIZmQ60NFhLPpKVC3S1ab/nFGhZrkPhH1il6UZbpKX5vuZRMW2RhNul/Ty8a+jz0a/V7e0x9nI4hgLjcdOASbO1DNi+52ZazwmSnQf0dIZffv33vqBEom6vVo6ySRIdTdrj3nXPw91vOALNYQ+2vfczj2ePcVIk36LRLytXS3BxskOEvc5dorhdQPNR7eJTmoTDwK3wztH1Bpt219+r9UimZSTn0HwryiZrn8nxw8nxmeg1H9XKnIyjQ8jeDENndb9Hc46k4jAmuNEPpR6W6Eh39+xwGnvn9M+LxagW/f71wWqgoZZKiHWlr2dv4Fc6HqisMs4Rzsobev9mvccj8Sa+ClgGfSOIbq60GKxz4RiecMs7DNvs9cdOBFZelBn1ZFNe/kPdveavUFEyTmLBCi1RpL6uRJjHrrfH2Hus+o+m8LKS7E1xaCtTFFdqDeVnfhlIzwxtqSzf6zkjG1YLGBs5oj2KLSNby2CdU2A8xvSNLIowvgd92byPp5kM3R8S+Nj2XhcLS8O7PgqhfW/SM42JLeevlDjrChlycj8vp98yasHLYdwm1M/ckSxDqYlipbhSm4vUfAyYMCPRpbGuuQ5QPQIVk2TSJg4LpqhMu6FobxTo6bJ/hufjhwEptfm3iUp8EmtjyrXAv7VemxeXTJnQW45pP0vHJ7YcNPooDt1SJfqb/yiemxVFG2pbXKFNndFnVtYPV/X+X9UN59b3mui/s7EYCqoPfswCIW82af8gM9jQxZESOuXqbsb1WaX1r2v1vDx+OtDdIVE+efgLGuaCKkOPqR5AerTgRR+QZGRp84Kb67Qe0ETw79H3zmkeO3H46KaMLIn+XoHMHGCgFyHzHmvzV0psfx+YdZr0Lbuk/yycYX43VI/1OhQKcNYVquFzCoU3O7aXPhguGafdm4QbSI74uiaBsXAYx1QYGoqU4WUMVMdmCQGzcoGzr1DDDmABYNlFEpBDxxcwVH+h9tx6GRoGHMbzXCAOp7GXXP/5ma5BrpurrTikr9WNPcaUkkrHaye15rrk6gFrGMXDqL2EgG+4bsPBxJYlGCm1IcbA6MpG7U9RtJZ7KQWaahNdGuv6e7V1NTNzuUwTRZ/DrFcsij3G3rmrS78osfBsY+Ob/02n4hdwGpYvyhr6vahM+2mW7CkUzjRtH7mFxt5qX5l0ZfT1GAfofR3JSHMftTnCKhasVA3Bf0YWsOQ8FRNnSV9252AUBzDnjMDbG4ZSD5ZHUeCLWBSHsb4zc4CKKcCCs2TCGhKFSXAXqM5PO19i6gKJCTOsHxOKrifPWz8FJdpQcX0+B6sZwkcSytrzQmiJyNID9F6bP8f4XhSTHuMx5cDpF6hYcl5sA2P/hh39Z6kEGEGhL2NRWYCGHUMwrXuvg+ukRzJqQRkchhzoOFfCvMUOlLBuJN4lpvLGDI7g0NeXyfMVv228yQEZGFNKKirTLuhtx+P7JYjEQB/QWq9dfL3zpEerysHW7PoaEXT5h0TqbAW62wXyiiTyixNdmtgqT8Lh1L7e4nHhJRYhGonZcFErCYYsv4bfMELDDZ/fXZU+IFecxkSA+uGy46Zpa+QuOCvyk+sZX9LWb9XnHvC/4fTyzTE2GRZqJlgm7oop2jI4/omASiq1nstwe62CEbo1lxQHkFek/Z5XZI9l4Qy9bkHqICtXm+eqP06CCRSgBfp/tsmSWKGomKQdSLlFVobVGv9vZcSAfgi54hhhWLNDC8JiMfxdcZg3LukDzEANb2npwLipDkyaLVExVXtMPzVA/5z0EINOqxSHlqV76oKh1w33u5ceYmNKZg5w1uUqTjt/eBZ5S4Gxbh3jeCbfClo9mzZtsrQjl8uFf/u3f4u4QJS6FEUbTq16hCETpZ011Wo9dmWTQp8/kWyy87U5L73dwpfAwY68vcXjpts4eo+SorHacLu2Rq0nNhl4l1/h/GKKBbMenuEZbaPzGsDwmzk9/+RR+ht6fXDiTNd6vqJxHcnOBybNNgYj/sOOTztf69H1Brih9hh7ex+9vUFm/AOYaArUQCvE0OOKQ5uusfgLKuatsMf5Rt9QUFiqNYgsWDly12uwY8I0eBuhvvXBbLjTDGafmoYlqyTmLbcQGI8wksLs++j/vTJt9IrhvZfh++v3HRFBGpOEAM65NBOzT9cahc78sopT/0/getevAx7JEOpAZp8uMW2RsUc6HGbDys0IRQuOA2W+NyuDf2OIt6HHVj3G3/rWt/Duu++OuE1PTw9uuukm/P3vf49awSg1lU4YHE591AZNuxakwjBqPe/Q5Poae34+Hjdw/JDWo1MxJdGliT2hAGWTAUiBxiOJLk1wqqqNsFAc1odSEoXCNMFQFBNx+d/k6/+v/R44c7LDaZ4EK9bL4Pn31hSWaj26gf5uJVCaOEti3pkqlnwh+Fq+Z12u4uyvhDDu1iJ9oGIohTcwHvxcSscN9Rwnmr6n3ZkuMXe5NHwOgQQ7Xg0BW4B514EUlurKEWYg5nAIjJ1o7dgd1mNsGElhsn+/76whkDTJMB5t+l5S/0Yu45zZ4PvKKTD/zutfJ9YrNUSjvqwcM8NGLIQ1lFr7faQlzqItaPWcd955+M53voM333wz4N/b2tpw3XXXYevWrfj1r38d9QJSaimpBCAkWo6OnNzDDvp6gPZGICNbomhsoksTH2WTtaCz8Yg9h7s3HvGuJx2bLK92lEzDqTuatM9nTHl0kyEReQXKVAz4BX4RBsb+AYf+BlAI4//9e5yKK4Dpi1Usv1iNyjzPcAQKmMzqzRhy6oZjDuadCDakGtB6jaxsFyrD/Elv0YTuVxuN4iqu0EpVMn6oDq1+5sHeh1mjRqDnzV+hYtoi1bcusf/zw2FpWPQIGYrNvo/+31/D9yU9cONTtOlfM92QfT7y48ssa3Ws712iMaXAUh6CEUYJhB4Yh1a+SAT9WB966CFcdNFF+O53v4vXXnvN8LejR4/i6quvxtGjR/HMM8/gnHPOiVU5KUWkZ2otmf29wrfmnV0dPwwAAuWTU2euZFq6lj3T7bJnD2UqDaP2KijRMoZ3NNl/qTNvYr3S8anz+VB8GXuMAwchkc439g8EhiXfMhnC7HBq14op84HcwtB7aSOhb2gOdFNqtlyTWS+PHaYOmS7lNJjV1k7X5UXnSiy7SMWYsqHHrH7mweraMKQ3yBDjiqnA1AVa3UxfrGLK/MjnXps+XxcMWw2ShDAfFm74DsfpWDRrvBJ+yzWFc0UzW3M81ueCaDQYWZnzO9K8crPPzP9z9TaaWF0DOhqCVo8QAj/96U/xla98BXfeeSdeeeUVAMCePXtw9dVXo7+/Hy+88AIWL14c67JSivBlpz6a4IIE4V3TtyJFhlF7eYPOo/tsdNcBoKcTaG8UyMpNrWG6QgDlk7Xfj9uwscJLSqCpTvu9dEJiy0KjV65uyKxxvnH0epj8A2vDUOqReoz9nye0Obq5hfFNDBXoxlg/T9UwN9nkZtYOvbHjpwMTZ0ucdr461Etsr8uSj8M5fDi31bIag4jh9xv6/ThDGGI8ZT4wfXHk9y9mr6NPTjVSkOQwaYgJNCzce5xm6pZIi2UPq1mvvsfj977DqEZ9neiHUsf6GI5GQ4InjMDYcJ602GOsjWyQaG8MtYThs9wu8cMf/hAZGRn43ve+h7179+IPf/gDxo4di6effhrl5Sl0F0oxVzoe2P+ZNs+4aqE9g86TJ4CuNoGcAom8MYkuTXyNKQey8yQ6mgW62qVt5m75lmiaZo/so/FUPlni8E6B44cEJs+x53emux3o7RYoKJGGmxqiaMrMBs74kgqPBzjZMfR45Es36dZHDhIYw2JgDGgZpOMt0OnRLOhVFMB7DywcAFzDt0kUxQHMOnWw/kwScdmZ1U/ef1kg1W9Yqf59psUpKZXh9UdKpDQ4tXykOcb+2Z59634HGMWw8jKJ3m5pqLxYfs7Z+VpWZ+8ayYpDQvUIuPqNAXmkU/+0ZcXic8CG8t11OGXA+b2GHmPd2sN6w0bW6NaYN02+5RcYZ+UCM0+VcPXF78scUof9XXfdhYyMDPzmN7/BwoUL8eSTT6KggAtRUnTlFABZuRKdrQJ9J0NbqiBe9L3Fdr/4RpsQwPiZEvs+FTi6T2D26YkPxFQPcOwAACExriro5qNO3hitsaKzVaCnSyI7L9ElGs7bWzx2QuKPFxrdvMu09XQOPeaMMDuyMx1wD2i/+wfW/kGlaTZok8y18ZAV5Dpq6LXT9/SZDFm1w1DqoGx+bXZaHUrtNz9+WGBssjZyvBovDMeLIiHVweBH6BpVRug91M8VN8v07K2DjCztX7xGFAoBwz1OWrq2AoRrwG/efISXNYcTWHmZaovcG0JIyMFAt2wS4OqXqBhMvDrnDBW7PlIwZZ7E5+8Ofc6q7/0PBb/CYawUsyXjgm0zabZ3v/ER9CM444wzIPyOaCklampqsGbNmmHbf/jhh9ErHaUkIbR5rEd2acshTZyd6BIZSQk0HNJ+D5ZNcrSqnAoc+Eyi/iAwfUl8E8cE0lgLDPQJjJ1gz4aUWPMOpz64XZv7PnV+oks0XFOtdh0ZOzHBBaGUYQgYTOYnWpWmD4xH6DGGMMZjwXqMY83bw1VUJnFk92DJAgSM+uViTIdSxzDJUcR0ybe87NpovfQ8FY21AqXjrW3vP+zYf7qllUzsseTfYOLx9hKPMPRe/9nkF8O3RKfZetr+DTGFpdAawqeFXeywzDpNCwhnLJGoPzj0JsJphND3MovB3lE7EAogB1s0nGnAvDOHCjp+BlA5TYWrX7e9fmSAAsjB3xW/75+VeeF2yGMQ9GtzzTXXDAuMiWKtbJLEkV0CjbUCE2fbq4fpRIs2JLSw1J49c/GQnqllqG44KHD8kMT4GYktT90e7Rw1Yaa9jpV4Kp8icXC7QMMhgSnz7DWSoacL6GrXph7kcJARxYn+xizSdU/1PXGB5grrX9OsxzgRgfGyCyU6WmTQBqmCkqHfrcwxtiupWxXKritbFFcCxZXWC+c/lNpfdh58yUozsnQ9dnG6BvgPf/VmEB42xcDP1AUSQvFeq8Sw5+i/L/5LQqVlAOddI+N+TJZNAs67RoXiABoODj1eMUWivQmYf6b1z1XGaTh4qPTD2QOVS/EfFaMbGWBoGPFrSDNbJUA/ysDKkk6xFvQ0feutt8ajHEQGBSXaMkjtjdqwlVgs9RAu7zDqVFm72MyEmRINBwXq9gmMm564QKyzFehoFsjOlxhTkZgy2EFuoZbIp6tNoKtN+oaT2kGzbxh1YstBqUUfRBgyyoYTGI+Q1Vrx6zE2nWOcgBu9nAL4GqO88wUDJSvKzgPmLFORmQ001QXuCbNzYJxbpC2fqLq14LC/V6CvO9Glig6zXlQvb8LSwlKJ9ATkb7CUrC3A/cG0RVq5D+0weX6Q0RaJOh4DBWwVU7VcH1bOLRNmStTtFSifLH0rNfTbaEWJkXr6fY+bTLcY6XxhNnpG6JZYs8MIFRuf5iiVCQGUTQQAgabaRJdmiKpqQ1WFkL5MwKmqoATILdICsRMtiStH3V7tDD1xpr16SROhcqp2edEP8bID7412KecXUxzp5y7ql7EJZ+rHiNmlR5hj7NDNs0v0/MGl5wFV852Dc/aGGz8dKBnnP2dU97uNh1IvWCkxplxi7nKJJedJZOZIzDxtdJxv9J+Bfu3bxV9QMW66RPkUYOHZEpPmGHvME8EsSBopYDQ73vyDJ7uz2uA261SJMy9RUT55aH1rOyVxDdbTr/1h6Fez7OMjBcb649gsGGZgTORn7CTthNF4xD5nxNZ6wNUvUFxpvOlKRUIAE2dpn9GRXYn5jFz92nxvh1OiMgWTbvkrn6I12jQc0hpx7KC/R+vJyciShuGaRLGmH2mk760tGRd6wGQMds3/Nmy5pgh7qqNpTDlwxuqMoFOAzG5u7RycZGQDp6yWKK7UlkU663KJ0nGJLlV0GLJO63r7S8cBc5cZhxMnOjAOpcfY9zezXsbR0a4xjFCAnHytThadK3H6BSqKK+P3+sEa6BSThgo9Kwn6/J9rNjTe7PNP2IiAxLwsUXBFpUB6pjaceqAv0aXR+LJRTx2lZ+wQVUzVPqPGWm0eabzV7QNUj0DF1OFzkFJRRhZQPA5w9Qm0HEt0aTSNRwBAoHyyvW+safTRB8b6m6+yScCs01QsXjUURQgx8jndECyOcGOpOGDoTSkqAybNkZh9upo0x79prw8vewkX7DoXyzV9rVDMeoxHCozNRiikQITicGqj7+J5bgg2Ysb4uQX+0ltJ0DdSj7HZuul2mGOcAocdJSuhaBlspRS+pV4SydWvZcl2pknOlRzkcAz2GksR915jjweo3S0ASEyy6dq9iVA5uKxCfY097sKPH+acfEoMxaGtD5qdJ4fN05w4C4acBEGHCQttDu7UBXLEucIOh1+PsROYeYrEhJlhvYXEMOkNosQLNk+9ZBxQtVDF6Rckpus4rB5jkyCrsFRi8lyJJV+wyfAnP3ZN7hZMoMYVoegCVQufm+nw9xFGyJgtCWc2fJqBMVEAZd7h1IcTf5OvDU8VKJ+S+LlidjJ+htb6d6wmvj37DTWDSzRN1IYlkaZ0POBMl2g+CsOSConQ260lRsvKtVcyMEodZ39FYvmXZcCbvZHmw/kTQpuD600YZEbxC4wTf+UKndmw8VTowbO7YFNkhACqFiJh01bMhtKOOMd4hOfMWCpRYtMh8d7l25JtKIUzbXh5zRo0TINTCwnXhp1TLcxF1k9R5FDqEdTX1+Omm27CwoULsWzZMjzwwAPweDwjPqejowO33347lixZglNPPRXf//730dPT4/v75s2b8a1vfQsrVqzAokWLcMkll+Cvf/1rrN8KhWhMGZCeJdF6XJurmEjHDmjf5HHTkuskGGvpmcC4aYDqFji6Lz6vKVXg8E7t85gyj5+HnsOhrWksVeFbbztRjh/WfnIYNSWKogwuLxLgbsd0CGeQYdUjcfgNpU7GyNhsOGOi16unxM8hDsY0+dYI34NwepntwDUYGKcl2TSuksH5zN7EX8DIjROB+OdVCPi733P1w/zNtisoGSxTBOfgSNk+MPZ4PLj55pvhcrnw0ksv4Wc/+xlefvll/PrXvx7xeXfccQcOHDiAZ555Bv/1X/+FTz75BOvWrfP9fevWrZg5cyZ+9atf4c9//jMuu+wy3HHHHXj33Xdj/I4oFEIBKqYAkAINhxNXjs5WoKtNILeQPV+BTJojASFxZLeA2xX712usA3q6BIrKmdApEO9wam9jTqJwGDXZhaJoCeCKygPPbQt2Q271Jn1Yj7HNb+4DMRvmmGwBwGjkTRw31qYZ/s3WCx+px9gwzUE/FNfm3x1vj3Gy5TfJGwOsvEzF4lWBA2OHheHMpue4EUbhZGYDS7+oYsWlqum5V1GAs7+i4qzLGRib+uCDD1BTU4MHH3wQs2fPxtlnn43bbrsNzz//PFyuwHfgNTU1eP/99/GTn/wECxcuxCmnnIJ77rkHr776KlpatHVlvvnNb+K73/0ulixZgokTJ+L666/HypUr8eabb8bz7ZEFFYM31Q0JXIJG31ts95N1ImTnaQ0Yrn6B2j2xfS2pAjWfs7d4JAUlQG5hYpfSOnlCa0zKKZDILUxMGYi8hADOukLilC+aJJOJUtIfKUdDYKxbYkrfY5xkAcBoUlCqNT6XTgBWXKpiwdn2vPaZZYIfaVisPvgym4dqR9mD64MnY+N8Vq7ffF6TtdctDWc2mToSaA52cYV2vwiznmWhHUOZCViP28v2MyW3bduGWbNmoaRk6MhbsWIF1q1bh4MHD2LmzOEZLbZu3YrCwkLMmzfP99jy5cshhEB1dTVWrVoV8LW6urowY8aMiMqrKJF/k737iMa+RgP9Tf7JE9pSDPGsI48bOH5IS04wbppI2LyHcMSznqYtAo4fkjiyU2DS7Nj1LtQfBk52CBSNlSgdJyK+eI7W79uEmcDuzcCx/QJFYyPfX6j1VF+j/aysAhyO0VW3ZkbrsTRaWB3OGUlgrKownUuXLEx7jBOc8TiVnbZGQkrtOA223FYiGeaIWpyfbljuRx+V2Py7M3+FRN1eYPIoSP5p9hlYud816zEeKTmZ2RJNdjhf2j4wbmlpQXGxceyqN0huaWkJGBgHeo7T6URBQYGvx9jfG2+8gZ07d+LHP/5x2GV1OhUUF+eG/Xx/RUU5UdtXsps2bwDbPnChvSEdk6cNRVzxqKODO11wDQxg4gwHKsYl5+LF8ain4mJg6rx+1Gx3o+lQGhYsj35krHokNlb3ApBYem4WSkqil7ZwtH3f8k6V2LelBw2HBJatzkZ6ZnSuOFbqSVUlGg71QgiJeadkIzsviVqTomC0HUupIFpDqVWP3/28DW70QmU2x3hMucTBaoG8ouQPBJKN//rYdpWVI+E96EdaukfPP2O8l93fb2Y2MH1xsn8XtM/L0GOsb9CwcItlNkJGHSEVlCGWZmCseeyxx4LOE/bO9xUmNWX2uNnfpJQBH9+8eTPuvvtu/PjHP0ZVVdWIZRqJ262is7M37Od7KYpAUVEO2ttPQlWT/UsXHQWDy2rU7BjA+FkDcDrjV0e7PgUAgbIpbrS2dsf0taIt3sfS+JnAwZ3Ark8HUDJhABlRHg5Tuwfo6hAorpRwZvWitTXyfY7m71vFFODofoEdn57EpNmR7SuUemqqA/pOCpSMk+gd6EFvFD6nZBDPYyk/PwtpaVxLJ1qCDaW2ujSL6kn+odRmw1nHlAOn/h8VuUXxLxPZ28KzVZw8AWTperOt9hgn61Dq0cTs/Bdqj7H/UnVWnsMe40HXXXcdLr744hG3KS0tRUlJCXbu3Gl43Nvr698r7FVSUjKsZ9jtdqOzs3PYcz7++GN885vfxN133x20PFZE82ZIVeWou1EPV0YWUFwp0Fov0FSnonyS9nis6+hEC3CiRUFuoUThWBl0qQS7itexlJENTJylrWm8d4vEvDOj95oDfcD+z7R1i6cvjv5nMRq/b+NnaIFx7V5g/IzozI+3Uk9H92svVDkteb8zkRiNx9JoF+zmbKTeD8N2o2AotWEopV/bS1FZfMtCyaFs8J6so2noMatr0hqTbw31OCfjdyfpaLdUxodCWMYOGD5H+JTVKlqOCRRXjvAks4ZIG3zmCQuMCwsLUVhYGHS7RYsW4cknn0Rra6svqN20aRPy8/MxderUgM9ZvHgxOjo6sHPnTsydOxcA8NFHH0FKiQULFvi227x5M775zW/ijjvuwJVXXhn5m6KYmjBDorVe4Og+4QuMY612j/YtnTCLSbesmrpAouEgUF8jMH6GRGFpdPZ7YJuAa0DbJzODW5NfDOQXS3S2CrQ3Sowpj/1rDvQBzXVAWrrE2PGxfz2iaAjWuxVkhUhkZkv09QhkZPotLZiE1w1jVtqhQIUoGLPlvUac32+2JBgPu5jzxsVmw5lHatAw7ET365hybdrFiE+xcY+x7Sd+rVixAlVVVVi7di327NmD999/H48++iiuueYapKVp36Dq6mqsWbMGjY2NAICqqiqsXLkS99xzD6qrq7Flyxbcd999uPDCC33zkzdv3oybb74Z1113HVavXo3m5mY0Nzejo6MjUW+VgigZry230XIM6OmK/ev192rrsDrTpLZkFFmSlg5MX6KdFHd/JCz3tIykoxk4uk8LtqYtYk9cKCbO0urryK74XHGOHQCkFKiYavGiSmQDhiVDwugxXrpaYsJMiWmLZfIPpdZ1mTj4HaYQGINcGfDxkZ7DodSJYXbOiiT5luXXY2AcGofDgSeeeAKKouCqq67CnXfeiUsuuQS33nqrb5ve3l4cOnTIsHzTQw89hKlTp+KGG27ATTfdhKVLl+Lee+/1/X39+vXo7e3Fk08+iRUrVvj+6fdL9qIowLjpACBwdF/sX+/oPkCqApXT/FoxKajKKqCoTKKrXaCmOrIznccN7NgoAAhMXyoNWS8puPLJQEa2RPNRLat7LKkqUOcdZTGTDRiUPESwHmP3yM/PyQdmn66dn5I9MLY6BJbIn1nvr9XkW4LHXkKYDmcO8fxl9Xxn2ittg/Ol7bNSA8C4cePw29/+1vTvp59+Ovbu3Wt4rLCwEA8//LDpc372s5/hZz/7WdTKSPExfrrEwe3A0f2AZ1XsbrzdLqB2t4AQEpNm8wY/VEIA886U2PQqcGgHUDIOYS8ZtG+LQE+nlshp3LToljMVKA6t13j/ZwKHdwnMXRa747mpDujr0ZKj5RTE7GWIok4xCWaFIiHVEEe+jKLAOJKlqyj16INcw1Bqi8m3DCM3GBjH3uBYakMsHOI5y5CYMJweY5udL3nKo6SSmQOMnQAM9Akc2h2kCT8Cx/YDrgGB8inaQugUuqxcYNapEpAC1e8K9PUEf46/YweAur0CaZkSc5Zxnne4xs/Qkpo01GhTBGKldrf2AU1kY9KotGfPHvzbv/0bzj77bCxcuBAXXHABnnvuuUQXKyrcQwPODDfxzsHug1ACY7NhgsnCUP7EFYOSkGFYtG7FxhF7jE0CYw7jT4xQ77PCCqpNeoztcI+XhKdsSnWT5w7OX/3EZXkJjVCoHuDw4HxM72tReCqrgHHTJPp7Bba9LeAesP7c1gZtjrIQEgvPksiM8tJPqSQtHRg/HVBVEbO5xidagI4mgex8iZKRslFS0tqxYwfGjBmDBx98EH/5y19w880346GHHsKLL76Y6KJFzBAY674iJYMJ5ApDGfFisx6QUBmCed4lUghMk29ZHUrNHuPEi2D4dFhDqW02xzgphlIT6RWWavNX2xuBplqgdEJ093/sANDfI1AyXiKP6zVGRAht3l1PF9DeKPDpP4Cl50mkZYz8vNZ6YOvbAqoqMPt0NS7ZlEe7SXMk6vZqa0FPmqMtgRZNBwfnkk+ew5790eqKK64w/H/ChAnYtm0b/vGPf+Dqq69OUKmiQ99op785n326xJhy6VuOxopkP/7ZY0zhCmeOscOpNaBn50nT3mOKDW9Wav/R0NMWq2iuE9ZWAAnjJGE6qsYGJxwGxpSUps4HtjQCB7drLfrRuhFxu+BLFjVtIXuLo0FxAIvPlfhsg9aj+OFfgQUrAy/jJFXg8C5g/1YBSIEZp6iYMDP+ZR6NMrOBCTO17NSHdgwOc4+Szlag+ahAZrZEZVXUdktJoKurCwUFkU0oVwKlgQ7j+eHsJyNLG9GSlgGgy7u/ob+nZwhMmBHaPo29ITa40xtktZ7yx2j1MnaicVs7vZdYieRYSiVm9eT/3fFyOMWI92nzVwCAQFvj0GMOZ3J/Bsl0LBmGQyvAtIUC0xb6/yUwQ48vrL1f45B5Yfg90Q0iDIwpKWnJnBS0N6loqg2tNX8ktXuAgV6B8slcKzeanOnAki9I7NwENB4R+Ph1LVtyxVQtSZPHDXQ0afOJuzsEFIfEnDNUBllRNmWexNF9QN1eYNLs6M2f9/YWT5kvOfwthWzduhVvvPHGiMkxg3E6FRQXR+dALCrKCfk5q/9Jxe4tLkya4cRb/9sHAMjKcaId2qTicMqWkdEHRPD8WLNST5d/S0IIgcN73AD6AdjzvcRKOMdSKgpcTycBAKVlOQC05CIlJdaOHTngAaB9D0fL8WbnY0koJwEVcDodAFQAQE5uOoqL00d+IgDv55yR4YT3fJeW7kRxcfClQwa6hj7nrOw0ANpclqIx2cjNT2xkzMCYkpIQwOKVadjwx37s/0ygdIKMuJWpvxc4vEOb08q1cqPPmQYsOEvi2AGJ/VsFjh/W/vkrHCsx+3QOY4+F9ExtGPXBaoF9W4CFZ0d+nHc0AU11AhnZzBqerB577DH8+te/HnGbd999F+XlQ3Ma9u/fj1tuuQW33norli1bFvZru90qOjsjywinKAJFRTlobz8JVQ39mJ62BOhqd8HbO6Kqbt/vra3dIe9PWzky/OfHSjj11N0N2PG9xEqkx1KqGLmetOPlxImTCPXY6eoaen6yH2/JcCxpeXoE3G4PvPXePzCA1lYrCWG07QcG3IbfrXxuXbrzysDAUIKHjo4e9LsCPyca8vOzkJY2cus9A2NKWhWTnSiu6ENrg8DRfRITZ0W2v/2fCbhdAhNnSWTnR6eMZCSElgSqfLJEU61Ea4NA30ltWE1uEVA2UaKgNPnn6NnZ5LkS9Qe0nvvWeoniCBJlSQns+WRw6sFi9hYnq+uuuw4XX3zxiNuUlg7NfThw4ABuuOEGXHnllbj55psjfv1o3TSqqgx7X94bRECb86jfZ+iGTmB2vCEOpZ5yiwBAIDsv/LpNRpEcS6kkcD1px7+ExFBjk8W6FEPPHy31b+9jafCzkvpHJFTV+nMNpLXPTX++hRg6TqS0+tqxw8CYktrMU4BNr0oc2CZQNkmGnVCorRGorxFIz5SoYm9xzDnTtIzVlVWs63hzpgEzTpWofldg98cCyy6SYS+LUV8DdLYK5BdLVE6NbjkpfgoLC1FYWGhp2/379+OGG27AJZdcgn/913+NbcHiSJisvxrWvkZRw15OPnDmJWrUk/XR6OVd+1sIYOVloUU5o+m7kxQC1HfIS8xFmHzLblmpmfONklp+sZZQyD0gsOfj8L5R7gFgx0btuTNPkUizMrWCKImVTQSKKyR6OgUObA3ve9N3Etj7iZbTctZpzESdCvbv34/rr78ey5cvx9e+9jU0NzejubkZbW1tiS5axPTHryPCwNgOmVWjKSc/8sYCSh2r/kni3KtUCKHlsQgll0UsluAkc6rbmyBs6LGQ1zHWbW/14zPLSm2H+wj2GFPSm75EorlOGxpaXxNaVlwpgd0fC/R1C4ydKFE+JXblJLILIYC5yyU2vaplqS6uDG3tYakCOzdpUw8mzQmcYZxGnzfeeANtbW149dVX8eqrr/oeHzduHDZs2JDAkkXOEBg7h4b2RbovolTjcBqnI4SC353EyMjW/SeCwNj6k4Z+tVuPMQNjSnrONGDeColP/wHs+kggr0gib4y15x7eCTQc1BIHzTmDvV6UOjJzgDlnSFS/J1D9nsDp52sZwq04sE2gtUEgp4CJ6lLJrbfeiltvvTXRxYgJ/bk/0t5R9noRhSc7HyifIlFYyi9RPOmnSoR8H6zf3upUct1zDKM0bXAPzqHUNCqMKQemL5ZQPQKfvSVwsjP4c+prtIRbikNi0TkS6cEzzBONKuWTtWRc7gHte9NrIQlo3V7g0A4BZ5rEonNl2D0DRHYSzcCYiMIjBLBgZeTJVMmaMRVaJDt24lBEa3WOcWaO9pzcAkPmLkvMpq7YoXOKgTGNGpPnAuOmS/T3Cnz6N4GO5sDbSQkc2g7s2Kj4TsIFJfEtK5FdTF8iUT5Zordb4OPXBU60BN5OSmDHRwPY+aGAUCQWnC2Rw+ztNFroh/Y5gPRMicKxYfZasbOLiJLA4nMlzrhQxZihlfgsB6en/h+JmaeqmKBrxAgnsDXMN7ZBYMy2fho1hNCGhgoAR/cLfPIGMGEWMGGGtvySVIG249oarh3NWk/xwnMkSscluuREiSOENhXB4QSOHRD4+HUtod2EmX7fm+1AR5MLDqcWFIcyJ5nI7vxvzs7+SvjRLYdSE1EycDiBfL+ph1aD06xcYNJs42OKxe5Wl26ZZAbGRDEkBDD7DIm8MRL7PhOo3a39UxyDa6NJ7VuXWyQx/0zrc5GJRjNFAeYs031v9mj/FIeEVAE5+L0pKlUwZ7nH8lxkomRhGD4o7HGDRkQUb5Gc+6w+NztP+5mVJ00zVCcKA2MadYTQerzGTpQ4uk+i+ahAbxeQlgHkj5EonyJRPskeX0AiuxACmDgLKJuk+96c1ILmvCIt2/vcpZlobz+pNTIRjSLGrNSR7Ys9xkSUrEJZXsuf1fvqrFxgxSUq0rOArtahk68dGiQZGNOolZEFVC0EqhbyLoXIKrPvjaIIKIoNrlpEMWAIjB2JKwcRUSKc+WUVHS1AUVn4+wglsM0ezFEy0B/+68UCA2MiIiJKafobOoU9xkSUYnIKEPE0qdEwEpOBMREREaW0aPYY22E4IBFRvIVz7iubBMxY5ERRhSv6BQpDUsT29fX1uOmmm7Bw4UIsW7YMDzzwADwez4jP6ejowO23344lS5bg1FNPxfe//3309PQE3Pazzz7DnDlzcNlll8Wi+ERERGRnUZxj7EyP7PlERMkonB5jRQFO/UJGREO4o8n2gbHH48HNN98Ml8uFl156CT/72c/w8ssv49e//vWIz7vjjjtw4MABPPPMM/iv//ovfPLJJ1i3bt2w7bq7u3HXXXfhjDPOiNE7ICIiIjszDKWOsMc4jYExEaWg0TBaxvaB8QcffICamho8+OCDmD17Ns4++2zcdttteP755+FyBe52r6mpwfvvv4+f/OQnWLhwIU455RTcc889ePXVV9HS0mLY9kc/+hHWrFmDxYsXx+PtEBERkY0xMCYiCt1oCIxtP8d427ZtmDVrFkpKSnyPrVixAuvWrcPBgwcxc+bMYc/ZunUrCgsLMW/ePN9jy5cvhxAC1dXVWLVqFQDgtddew759+/DjH/8YTz75ZFTKG42srd59MAOsOdaRNayn4FhH1rCegmMdjQ6RDqXOypUwjM0mIkoBTL4VBy0tLSguLjY85g2SW1paAgbGgZ7jdDpRUFDg6zFuaGjAT3/6Uzz99NNIT49O867TqaC4OIIFwPwUFeVEbV+jFevIGtZTcKwja1hPwbGOklukvR4VVcCJVonyyUxPTUSpQ1GS/5yXsMD4scceCzpP+N133wUACJOrlNnjZn+TUvoeX7t2Lb7xjW9gxowZVosclNutorOzN+L9KIpAUVEO2ttPQlWT/yCLBdaRNayn4FhH1rCegotnHeXnZyEtjQvu2pGiAHPO4HeEiFILh1JH4LrrrsPFF1884jalpaUoKSnBzp07DY97e339e4W9SkpKhs0ldrvd6Ozs9D3n448/xpYtW/Dggw8CAFRVhZQSc+bMwXPPPYelS5eG9b6ieTOkqpI3oEGwjqxhPQXHOrKG9RQc6yg5nXOlmugiEBElnYwsif5egdyiRJckcgkLjAsLC1FYWBh0u0WLFuHJJ59Ea2urL6jdtGkT8vPzMXXq1IDPWbx4MTo6OrBz507MnTsXAPDRRx9BSokFCxYAAF599VXDc37/+9/j008/xSOPPIIJEyZE8M6IiIgo2aRnJroERETJ54wLJTqaJUrHJ7okkbP9NOkVK1agqqoKa9euxZ49e/D+++/j0UcfxTXXXIO0tDQAQHV1NdasWYPGxkYAQFVVFVauXIl77rkH1dXV2LJlC+677z5ceOGFvvnJM2bMMPwrLi5Geno6ZsyYgaysrIS9XyIiIiIiomSQkQWUTRwdQ6ltHxg7HA488cQTUBQFV111Fe68805ccskluPXWW33b9Pb24tChQ4blmx566CFMnToVN9xwA2666SYsXboU9957byLeAhEREREREdmYkFJyIlSUuFwedHT0RLwfRREoLs5Fa2s356mZYB1Zw3oKjnVkDespuHjWUWFh9qhIvhWN6yaPTWtYT8GxjqxhPQXHOrLGbtdN2/cYExEREREREcUSA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIqKQ1NbWYvHixTj99NMTXRQiIqKoYGBMRERElrndbtx5551YunRpootCREQUNQyMiYiIyLLHH38c48ePxwUXXJDoohAREUWNM9EFICIiouTw2Wef4ZVXXsErr7yCt956Kyr7VBQRledHup/RjvUUHOvIGtZTcKwja+xWTwyMiYiIKKju7m6sXbsWP/7xj1FQUBCVfTqdCoqLc6Oyr6KinKjsZ7RjPQXHOrKG9RQc68gau9RTUgTG9fX1WLduHTZv3ozs7GxceumluP322+FwOEyf09HRgfvuuw9vv/02HA4HVq9eje9///vIzs72baOqKp566in84Q9/QH19PcaOHYuvfvWruP766+PxtoiIiBLusccew69//esRt3n33Xfxy1/+Eueccw7OPPPMqL22262is7M3on0oikBRUQ7a209CVWWUSjb6sJ6CYx1Zw3oKjnVkTTzrKT8/C2lp5rEjkASBscfjwc0334ySkhK89NJLaGpqwr//+78jIyMDt912m+nz7rjjDjQ3N+OZZ56By+XC9773Paxbtw4PPPCAb5uf/vSn2LhxI+6++25MmzYN7e3t6O2N7AJNRESUTK677jpcfPHFI25TWlqKzZs34/jx4/j9738PAJBSQlVVzJkzBz//+c9x0UUXhfX60boZUlXJG1ALWE/BsY6sYT0Fxzqyxi71ZPvA+IMPPkBNTQ2eeeYZlJSUYPbs2bjtttvwyCOP4JZbbkFaWtqw59TU1OD999/HH//4R8ybNw8AcM899+Dmm2/G2rVrUVJSgpqaGrz44ot49dVXMXXqVADAhAkT4vreiIiIEq2wsBCFhYVBt3vqqafgcrl8/3/rrbfw9NNP44UXXkBFRUUMS0hERBR7tg+Mt23bhlmzZqGkpMT32IoVK7Bu3TocPHgQM2fOHPacrVu3orCw0BcUA8Dy5cshhEB1dTVWrVqFDRs2YPz48diwYQNuvPFGCCGwcuVK3HHHHcjNDX++UzQmj9ttIrodsY6sYT0FxzqyhvUU3GivoylTphj+v2PHDiiKghkzZiSoRERERNFj+8C4paUFxcXFhse8QXJLS0vAwDjQc5xOJwoKCtDS0gIAqKurw7Fjx/Dmm2/iwQcfxMDAAH784x/jrrvuCjrXykw0k4gA9pmIbmesI2tYT8GxjqxhPQXHOiIiIko+CQuMrSb7AAAhAre+mz1u9jcppe9xKSVcLhd+/vOfY9KkSQCAdevW4dprr0VLS4uhh9qqaCQRAThh3wrWkTWsp+BYR9awnoKzWxKRWLvssstw2WWXJbQMRERE0ZKwwNhqso+SkhLs3LnT8Li319e/V9irpKTEt42X2+1GZ2en7zklJSVwOp2+oBgAqqqqAGhZsMMJjIHoJRHx7os3oCNjHVnDegqOdWQN6yk41hEREVHySVhgbDXZx6JFi/Dkk0+itbXVF9Ru2rQJ+fn5vqRZ/hYvXoyOjg7s3LkTc+fOBQB89NFHkFJiwYIFvm3cbjfq6up8SbcOHToEAKisrIz07REREREREVGSUBJdgGBWrFiBqqoqrF27Fnv27MH777+PRx99FNdcc40vI3V1dTXWrFmDxsZGAFrP78qVK3HPPfeguroaW7ZswX333YcLL7zQ1xN85plnYtasWfj+97+PPXv2oLq6Gvfddx9Wr14ddm8xERERERERJR/bB8YOhwNPPPEEFEXBVVddhTvvvBOXXHIJbr31Vt82vb29OHTokGEZiYceeghTp07FDTfcgJtuuglLly7Fvffea9jvb37zG+Tl5eHqq6/GLbfcggULFuD++++P6/sjIiIiIiKixLJ9VmoAGDduHH7729+a/v3000/H3r17DY8VFhbi4YcfHnG/ZWVlePzxx6NSRiIiIiIiIkpOtu8xJiIiIiIiIoolBsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUoTUkqZ6EKMFqoq4fGoUdlXWpoDLpcnKvsarVhH1rCegmMdWcN6Ci5edeRwKFAUEfPXibVoXTd5bFrDegqOdWQN6yk41pE1drpuMjAmIiIiIiKilMah1ERERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBjbzAsvvIBVq1Zh/vz5uPLKK1FdXZ3oIsXNk08+icsvvxyLFy/GsmXL8J3v/P/s3XmYHFW5P/DvqaWXmcksmQmEsIVMSMi+sERCILKIAQHZLqhsgiyCcuF3wVxQroCIKAiioheURYQIohAUBa5KCASygJAQEgiQAGFJgMyW2Xqp5fz+6GWqerqne2Z6qZ7+fp6Hh0lPdU/16eqqes95z3u+jffff9+1TSQSwfXXX4958+Zhzpw5uPTSS9Ha2uraZtu2bbjwwgsxa9YsHHzwwbj55pthWVYR30nxXHvttZg8eTIefPDB5GNso5hPPvkEV1xxBQ466CDMnj0bJ598MrZs2ZL8PdsJ6O7uxnXXXYdDDz0Us2bNwnHHHYfHH388+ftKbKOXX34Z3/zmN7FgwQJMnjwZzz77rOv3+WqTNWvW4KSTTsL06dPxhS98wdXuNDi8bvK6ORi8bmbG62Z2vG72N6Kum5I84+9//7ucNm2a/POf/yzfeecdec0118gDDzxQtra2lnrXiuK8886Tjz76qHz77bflm2++KS+44AJ5+OGHy1AolNzm+9//vly4cKFcuXKlfP311+Vpp50mv/a1ryV/b5qmPO644+TXv/51+cYbb8jly5fLefPmydtvv70Ub6mgli1bJk844QS5YMEC+cADDyQfZxtJ2dHRIQ8//HB51VVXyddee01+8MEHcvny5XL79u3JbdhOUn73u9+VRx99tHzppZfkBx98IB988EG53377yTVr1kgpK7ONli9fLm+77Tb5f//3f3LSpEly2bJlrt/no00++OADOWvWLHnTTTfJzZs3ywceeEBOmTJFvvjii0V7nyMFr5u8bg4Gr5uZ8bqZG143+xtJ100Gxh5y6qmnyh/84AfJf1uWJRcsWCDvvvvuEu5V6bS2tspJkybJV155RUopZWdnp5w2bZp8+umnk9ts3rxZTpo0Sa5fv15KGftyTpkyRe7YsSO5zR/+8Ad5wAEHyGg0Wtw3UEA7duyQhx12mNy0aZM8/PDDkxd4tlHMLbfcIr/61a9m/D3bKeZLX/qSvPPOO12PHX300fLuu+9mG0nZ7wKfrza5+eab5XHHHef6W5dffrm88MILC/l2RiReN9143cyM182B8bqZG143B1bu102mUntENBrFxo0bccghhyQfUxQF8+fPx7p160q3YyXU1dUFAKirqwMAbNiwAYZhuNqoubkZ48aNS7bRunXrsN9++6GpqSm5zYIFC9DZ2Yl33323eDtfYFdffTXOOussTJ482fU42yhm2bJlmD59Oi699FIcfPDBOPnkk/GXv/wl+Xu2U8ycOXPwzDPP4NNPP4WUEitWrMBnn32G+fPns43SyFebrFu3zvUaiW0q9Vw/VLxu9sfrZma8bg6M183c8Lo5OOV23WRg7BHt7e2wLMt1UABAY2MjduzYUaK9Kh0pJW666SYcdNBBaG5uBgC0tLQgEAigpqbGtW1jYyNaWlqS2zQ2Nrp+n2jTxDbl7sEHH0Rvby/OO++8fr9jG8V8+OGH+MMf/oDm5mbce++9OOWUU/C9730PzzzzDAC2U8I111yDvfbaC4cddhimT5+Ob3/727jpppswZcoUtlEa+WqTTNt0dHTAMIxC7f6Iw+umG6+bmfG6mR2vm7nhdXNwyu26qeXtlaggpJQQQpR6N4ruBz/4Ad5++2089NBDrsfTtYWUMus2Az1eTrZs2YJf//rXeOSRR6Ao6fu1Kr2NgNj7nTFjBi6//HIAwJQpU7BhwwY89NBDOPLIIwGwnYDYzeKbb76J3/zmN9h1112xatUqfPe738XYsWMBsI3SyVebpG6T+ho0dLxu8rrpxOtmbnjdzA2vm4NXTtdNjhh7RENDA1RV7ddb1NbW1q83fKS74YYbsGzZMtx///3Yddddk483NTUhFAqhu7vbtb2zjZqamvq1YeLfqT1N5ei1115DW1sbjj76aEydOhVTp07Fxx9/jBtvvBGLFi1iG8U1NTVhwoQJrseam5uxffv25O8rvZ3C4TB+9rOf4aqrrsLChQux33774dxzz8XChQtx//33s43SyFebpNumtbUV9fX10HW9ULs/4vC62YfXzcx43cwNr5vZ8bo5eOV23WRg7BE+nw/Tpk3DypUrk4/Zto1Vq1Zh9uzZpduxIpJS4gc/+AH+8Y9/4P7778eee+7p+v306dOh67qrjd577z1s27Yt2UazZ8/Gpk2bXGXgV65cidra2n4n/HJ01FFH4a9//Ssef/zx5H+77LILLrzwQtx5551so7g5c+Zg69atrsfef/997LbbbgB4LAGAaZowDAOqqroeVxQFtm2zjdLIV5vMnj0bL774ouu1V65cWTHn+nzhdZPXzVzwupkbXjez43Vz8MruupnXUl40LIllJx577DG5efNm+T//8z8VtezEtddeK/fff3+5Zs0a+dlnnyX/S1124vOf/7xctWqVfP311+Xpp5+etuT7eeedJ9988035/PPPy8997nPyZz/7WQneUXE4q2tKyTaSUsp169bJKVOmyLvuuku+//778rHHHpPTp0+XzzzzTHIbtpOUZ555pjzhhBOSy048/PDDcurUqfIvf/mLlLIy26i7u1u+8cYb8o033pCTJk2Sv//97+Ubb7whP/vsMyllftrkgw8+kDNnzpQ/+clP5ObNm+WDDz4op06dyuWahoDXTV43h4LXzf543cwNr5v9jaTrJgNjj3nggQfk5z//eTlt2jR56qmnytdee63Uu1Q0kyZNSvvfo48+mtwmHA7L6667Th544IFy1qxZ8tvf/rarvLuUUn700Ufy/PPPlzNnzpTz5s2TP/7xj6VpmsV+O0WTeoFnG8X885//lF/60pfk9OnT5bHHHiuXLl3q+j3bScrPPvtM/vd//7dcsGCBnDlzpjzmmGPkgw8+mPx9JbbR6tWr056HfvGLX0gp89cmq1atkl/+8pfltGnT5JFHHikfe+yxor3HkYbXTV43B4vXzfR43cyO183+RtJ1U0jJih9ERERERERUuTjHmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJqKSefLJJ/HYY4+VejeIiIjKAq+bRIXDwJiISubpp5/G0qVLS70bREREZYHXTaLCYWBMREREREREFU1IKWWpd4KIKs9VV13Vr9f729/+Ni699NIS7REREZF38bpJVFhaqXeAiCrTJZdcgm3btqGrqwvXXnstAGDs2LEl3isiIiJv4nWTqLAYGBNRSey1116or6+HlBKzZ88u9e4QERF5Gq+bRIXFOcZERERERERU0RgYExERERERUUVjYExEREREREQVjYExEZWMruuIRCKl3g0iIqKywOsmUeEwMCaiktlnn33w9ttv41//+hdef/11fPrpp6XeJSIiIs/idZOocLiOMRGVTFtbG/7nf/4HL7/8Mnbu3Mn1GImIiAbA6yZR4TAwJiIiIiIioorGVGoiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiaaXegZHEtiUsy87La2maAtPMz2uNVGyj3LCdsmMb5YbtlF2x2khVFSiKKPjfKbR8XTd5bOaG7ZQd2yg3bKfs2Ea58dJ1k4FxHlmWjY6O3mG/jqIINDbWoLMzBNuWedizkYdtlBu2U3Zso9ywnbIrZhvV11dBUdSC/o1iyMd1k8dmbthO2bGNcsN2yo5tlBuvXTeZSk1EREREREQVjYExERERERERVTQGxkRERERERFTRGBgTERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGJejkA2x0wK4LhoREREREdGwaaXeAcqRJaGtCUNfFYLymQUAkD4Bc5YfxpFVkA0DL1hNRERERERE6TEwLgOiw4L/gU6oH5kAAHuMChkQUD4xob8chvZaBJH/GAVrpr/Ee0pERERERFR+GBh7nGizEPjfDiidNqy9NERPGgV7XPxjC9nQl/dCfy4E/x86EQ3XwDwoWNodJiIiIiIiKjOcY+xlvTYC9+yE0mnDnONH+KL6vqAYAIIKjGNqEDmrFlAA32PdUDdFSre/REREREREZYiBsUdJKeH7UxeUFgvmVB8i/zEK0ETaba1pfkT+YxSEBPx/7ILotIq8t0REREREROWLgbFHWc91Qd0QgT1aQeT0UYCaPihObj8nAOPgAERvLKCGZMVqIiIiIiKiXDAw9qIuG9E/tUIqQORrtUAgt48p+qUa2Luo0N42oK5nSjUREREREVEuGBh7kP73biAkYc0Pwt5TH8QTBSIn1gAAfE/2AAZHjYmIiIiIiLJhYOw1IRvaK2GgVoVxdPWgn243+2BO90HpsKGv6C3ADhIREREREY0sDIy9JiAQ/XIN/P+5KxAc2scTPbYGUgH0FSEgYud5B4mIiIiIiEaWsgqMlyxZgiOOOAIzZszAaaedhvXr1w+4/VNPPYVFixZhxowZOP744/H888/322bz5s246KKLMHfuXMydOxdf+cpX0NbWVqi3kJ0QsBZUQZ0QGPJLyEYV5mw/RK+Evjqcx50jIiLqc+2112Ly5Ml48MEHS70rREREw1I2gfGTTz6Jm266Cd/61rewdOlSTJ48Geeff37GIHbt2rW44oorcOqpp+Lxxx/HUUcdhUsuuQRbtmxJbvPBBx/gjDPOwMSJE/GHP/wBS5cuxTe+8Q3o+iDm9XqUcUQVpAD053s515iIiPLu2Wefxbp167DLLruUeleIiKhM2TsMwPRGrKKVegdydd999+H000/HKaecAgC4/vrrsXz58mQwm+r+++/HYYcdhvPPPx8AcNlll+HFF1/EkiVL8P3vfx8A8LOf/QyHHXYYvvOd7ySft/feexfh3RSeHKPBmu6D9noU2voIzP2HPgJNRETk1NLSguuuuw6/+c1vcPHFFw/rtRRl4OUIc33+cF9npGM7Zcc2yg3bKTu2UW7UT0yEb/0M/gk6Ihc3lHp3yiMwjkaj2Lhxo+viqygK5s+fj3Xr1qV9zrp16/oFzAsWLMDy5csBALZtY/ny5Tj//PNx7rnnYtOmTdh7773xrW99C4ceeuiQ9zUfX4B8fZmsQ6qgvR6FvioE+8DgsPfLS3jCyQ3bKTu2UW7YTtlVUhtdffXVOOusszB58uRhvY6mKWhsrMnLPjU0DL5gZSViO2XHNsoN2yk7ttHAzI2diAJQ3jXydi0YjrIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7b79ixAwDQ2tqK3t5e3H333bj88suxePFiPPPMM7jooovw5z//GVOnTh30fubzAg8M/8skR0uEn+iB8qGB+k4N6j4jb9SYJ5zcsJ2yYxvlhu2U3UhvowcffBC9vb0477zzhv1apmmjszM0rNdQFIGGhmq0t/fAtr2RjudFbKfs2Ea5YTtlxzbKjQYDiQmsra3dBf1btbVB6LqaZX/KmJQSQmTumU/3u8Rjth2r1nzkkUfinHPOAQBMmTIFL730Ev74xz/i+uuvH/T+5OMCD+T3y6Qe5IdvqYGeJ9tgfKV22PvmFTzh5IbtlB3bKDdsp+yK2Ua5XOALYcuWLfj1r3+NRx55BIqSnzIl+Wor25Y8NnPAdsqObZQbtlN2bKOB2f6+WM0L7VQWgXFDQwNUVUVLS4vr8ba2tn6jyAlNTU39tm9tbU1u39DQAE3TMGHCBNc2zc3N+Pjjj4e8r/n8UPPxZbLn+KE/2QP1tTAix1cPeQkor+IJJzdsp+zYRrlhO2U3ktvotddeQ1tbG44++ujkY5Zl4cYbb8SDDz6Ip59+uoR7R0REZcVjM4/KIkry+XyYNm0aVq5cmXzMtm2sWrUKs2fPTvuc2bNn48UXX3Q9tnLlyuT2iddMTcV+//33sdtuu+V1/0vKr8Cc4YcwAW1DpNR7Q0REZeyoo47CX//6Vzz++OPJ/3bZZRdceOGFuPPOO0u9e0REVE6cfchW6TuUy2LEGADOPfdcLF68GNOmTcPMmTNx//33IxwO46STTgIALF68GLvuuiuuuOIKAMDZZ5+NM888E/feey8WLlyIJ598Ehs2bMCNN96YfM3zzjsPV155JQ488EAceOCBeOaZZ7BmzRpXleqRwJzrh/7vMLRXIzBHWBEuIiIqntraWtTWuqfl6LqOMWPGYPz48aXZKSIiKk92ys/FnyHkUjaB8bHHHou2tjb84he/wI4dOzBlyhTcfffdGD16NABg+/btrvlOc+fOxa233orbb78dt912G8aPH49f/epXaG5uTm6zaNEidHZ24s4778QNN9yA5uZm3HnnnUMqvOVl9j467HoF6rsGRLsF2VDio46IiIiIiCqbLP0osZOQ0mN7VMYMw0JHR++wX0dRBBoba9Da2p23eWr60z3wPduL6BerYBxR/hVTC9FGIxHbKTu2UW7YTtkVs43q66tKUnwr3/Jx3eSxmRu2U3Zso9ywnbJjG+VGezsK/z07AQA9NzQBvsJNOs7lulkWc4xp+My5fgCAto7zjImIiIiIyEM8MFbLwLhCyF002GNVKJ9aEDvMUu8OERERERFVMpnh5xJhYFxBzOnxUeMN0RLvCRERERERVTQGxlQqicBYfZ3p1EREREREVAK9NmBLd1VqBsZUTHKsCrtRhfqxCdFulXp3iIiIiIiogohOC9XXtyLwm50cMaYSEgLmDB8AQN3AUWMiIiIiIioeZXtscE59z3AX3GJgTMVmJecZMzAmIiIiIqLikQHHkkwcMaZSsvfQYNcpULaaQLed/QlERERERET5oPcFxsIRDAsu10RFJwSs/XwQElDfZnVqIiIiIiIqkkzp06WPixkYVyJrv9g8Y20TA2MiIiIiIioSZwAc5RxjKjFrog9Si48YWx44ComIiIiIaORzzOQUIQbGVGo+AWuCDhGSUD4wS703RERERERUCVzp0wyMyQMS6dTqW6xOTURERERERWBn+JmBMZWKNTm2bJPKecZERERERFQMzlFijy2Qw8C4QskmFXaTCnW7BdFhlXp3iIiIiIhopHOODNvOVOrSDxkzMK5g1uR4OvVmo8R7QkRE5AG2hNhuum/WiIgof1yBcYbHS4SBcQWzJuoAAHUz06mJiIj0p3tQdXs7tBWhUu8KEdGIJDLNMfZAWjUD4wpmNeuQCqC8E/VE+gIREVEp6avDAABtbbjEe0JENEJlSqX2AAbGlcyvwN5Lg9ItIT7hPGMiIiIiIiogx2CcYCo1eYk1MTHPmOnURERU4USpd4CIaIRzBsPOcTkGxoOzZMkSHHHEEZgxYwZOO+00rF+/fsDtn3rqKSxatAgzZszA8ccfj+effz7jthdccAEmT56MZ599Nt+77Wl9gTELcBERUeVRPjYQ/EkrlC1RBsZERIWWIZVaMDDO3ZNPPombbroJ3/rWt7B06VJMnjwZ559/Ptra2tJuv3btWlxxxRU49dRT8fjjj+Ooo47CJZdcgi1btvTb9sEHH4Ss0Dm29l4apE9AfTcKmJXZBkREVLl8f++B0mYj8Nudyce8cINGRFQO1PURBP63HQjnWD0rY1Xq0p94yyYwvu+++3D66afjlFNOwcSJE3H99dfD7/dj6dKlabe///77cdhhh+H8889Hc3MzLrvsMkydOhVLlixxbbd582b85je/wY9+9KNivA3vUQWsZh0iCigfcNSYiIgqi6yK3QoxGCYiGrzAkk6o75vJ4oVZZapE7YFzsFbqHchFNBrFxo0bcfHFFycfUxQF8+fPx7p169I+Z926dfjGN77hemzBggVYvny563WvuOIKXH311dhll13ysq+KMvw8rMRr5OO1cmHv6wPejELbYsCc6C/K3xyuYrdRuWI7Zcc2yg3bKTu2UXmSdWUzRkBE5F1GjpGtc2TYWZWagXFu2tvbYVkWmpqaXI83NjZi69ataZ/T0tKCxsbGftvv2LEj+e+f/exn2HfffXHMMcfkZT81TUFjY01eXgsAGhqq8/ZaA7EP9CH8127437NQl8f9L4ZitVG5YztlxzbKDdspO7ZReZFVjo4M9mkQEQ1NrusQZ0ylzuO+DFFZBMaZSCkhROarWLrfJR5bvXo1nn76afzlL3/J2/6Ypo3OztCwX0dRBBoaqtHe3gO7GOt7+SUC1QLWexG0bu8CfN6/Myh6G5UptlN2bKPcsJ2yK2Yb1dYGoetqQf9GxUh3yeMhTkQ0OLle9xzBsNeWayqLwLihoQGqqqKlpcX1eFtbW79R5ISmpqZ+27e2tia3f/nll7F9+3Z87nOfc21zySWXYP78+bjnnnuGtK/5vBmybVm0G1Brgg7t9SjwXjSWWl0mitlG5YztlB3bKDdsp+zYRkREVGmElX0bIKWeg8dSqctiYo3P58O0adOwcuXK5GO2bWPVqlWYPXt22ufMnj0bL774ouuxlStXJrf/2te+hr/+9a94/PHHk/8BwDXXXIPrr7++EG/D06wJ8WWb3mUBLiIiqnAeuEEjIiorOQbGLL6VB+eeey4WL16MadOmYebMmbj//vsRDodx0kknAQAWL16MXXfdFVdccQUA4Oyzz8aZZ56Je++9FwsXLsSTTz6JDRs24MYbbwQQm2+cOgcZAMaNG4c99tijeG/MI6x9dACA+m4UBjg/joiIKpD3ZxIREXlTrplSruJbGR4vkbIJjI899li0tbXhF7/4BXbs2IEpU6bg7rvvxujRowEA27dvh6L0DYDPnTsXt956K26//XbcdtttGD9+PH71q1+hubm5VG/B0+SuKmSVgPKhGasqp/PugIiIKkDp78WIiMpfriPGmVKpAaibIoAJWNNLs0pO2QTGAHDmmWfizDPPTPu7Bx54oN9jxxxzzKAqTr/11ltD3reypwhY++jQNkahfGDAbi6fecZERERDxsCYiGj4ch4xdj7H/XPgvk4AQM9PxuRttwajrAJjKixrQiwwVt9lYExEeWBIaK+Eob4Vhei0IYMCdrMPxkEBoLosSlzQCCA+NeH7Zy+ix1VD1qep5J3uXo7BMhHRoIhhLtckunN9gcJhYExJ9gQfgB6o7xpgCS4iGg71rSh8f+6C0plyoXvHgL6sF9Hjq2EeGAAGWHKPKB8Cv9sJpc0GDInIuXX9N3AeojwciYiGZkjFt/qiZKXF8QJSluT+gIExJdljVciggPKBwXnGRDRk2gu98D/RAwAwp/tgzA9C7qJB7LSgvRKGtjoM/6PdUD61ED2umsFxGbnrrrvwj3/8A++++y4CgQD2339/XHnllRg/fnypdy0j0WW7/t8PR4eJiIbPGnzxLecoswilFOVKk+BTaMxloz7xecbCBJQPOWZMRIOnrQzB/0QPpAaEz6hF5Kw62M0+yFEK7D10RL88CuFv1kNWC+gvhKD/X0+pd5kG4aWXXsIZZ5yBRx55BPfddx+i0SjOO+88hMPhUu9aZkq84yXTPZvjJo0xMhHREOWaCZ1puSY7Q7XqIuKIMblY++jQ3ojPM57AecZElDv1rSh8f+2GVIHweXUZaxXYe+sIXViP4J0d8D0bgj1WgzU7UOS9paG45557XP/+8Y9/jIMPPhhvvPEG5s6dW6K9yiI+BCAyFYbhHGMiouJxnl+tDMGwLVGKuS0MjMnFnpBYz5jzjIkod6LTgv/hTggJhP9jVNYCfnKshvDXahG4dyf8S7sRGq+nL4xEntbV1QUAqKtLM3c3R4oyvJufxPMzvk4iN85Ov41w3JcJIQBIQAx/v7wmazsR2yhHbKfsKrGNRI7nTVe6svP86wiMFSn6sn2KiIExudjjNEh/fJ6xKQGtcr7QRDREUsL3526IXgljfhDWnNxGf+1JPpgLgtBXhOB7tAuR8+o437iMSClx00034aCDDkJzc/OQXkPTFDQ21uRlfxoaqvv2LWrDWtsLdXYVQqoCwIIq0v+taCACEyEAgIjfiKlK/vbLa5ztROmxjXLDdsquEtqoF58BAHw+DaNyOG8aQQMGYtOoVCiQ8apdfl1L1u8aXVcNUVv8znIGxuSmCFjjdWhvRaF8bMLeWy/1HhGRx6nrItDeisIeoyJ6zOBuAqJfrIa6KQrtbQPmG1FY0/wF2kvKtx/84Ad4++238dBDDw35NUzTRmdnaFj7oSgCDQ3VaG/vgR1Pl9b/3AltTRjmgiBUSAgAlmGhtbW73/P13mjyZkha8W1tG52/2gbRbSN6fv2w9s8r0rUTubGNcsN2yq6S2igY/380aqI7zTk2ldYTRSK6sE07mTAdCRnJc3FbSzdg5Dcwrq0NQtcHfk0GxtSPPV4D3opCed9gYExEA4tK+J6M9fxGTqkBfIMc8dUFosfXIHDvTvie7EFoso+ZKmXghhtuwLJly/Dggw9i1113HdZr5eum0bZl8rXUf8eKgYn3DUglPlPNTv+3pHNeW6IQlwC0V2KvYZt2SVL6CsXZTpQe2yg3bKfsRmobiQ4L6sYozM/1ZYhJ5HY+l455xdKWfTOJnas1mRKyBO3GwJj6scbH5xm/b8BcWOKdKVOiw4L6egTKdhPCAuwGFdZkX6zTgamiNILoy3uhdNowZ/ph7zO0gn3WZB/MSTq0tw1oL4Vhzg9mfxKVhJQSN9xwA/75z3/igQcewJ577lnqXUpLxG+wZL0C0RuPfDNVOZVZbr5MAKxFSZWkx4a6OQpruh+iV0J5z4A1w8f7F0oK3NURWx/eGbzmenhkmFfMqtTkSfaeOqQKqFuNki2wXbZCNnxP90BbE3YVdAEAPNsLaw8N0RNrYO/JkXgqf6LTgv5cL6QGRI8d3jwq45gaaG+3Q1/eC/OgAEeNPer666/H3/72N/z6179GdXU1duzYAQAYNWoUAgHvVRaXNUrfaK8tIXZaUDdEYB4UBPQsyzglROXgMyGIyljg3p1QPzIROVFCf7YXyk4b4bNrOdWFkpS2WOSqfGJl2TINZ9BrZXi8RKPsDIypP13A3l2D+oEJ0WJBjuFhkgvxmYnA/Z1QWizIoEB0XgD2BB+kD1C2W9BeDkP9yETg1x2IHl/DUTEqe/ryEIQJRD8fhGwY3lwge5wGc4oP2ptRaGvDMA/k98OLEvOJzzrrLNfjN910E04++eRS7NLABJKjGAJA4O6dUD6zIMIS5tx4B0yWkQkRlVy9iSqK+pEJAFA+MqHsjAdALRaGEAKVniXhf7gL5jQflwUsAGHlfnYUHRZkUHF3RsoMo8Txg03ZakCEbFj7FadThhEPpWXto0P9wIT6ngGTgXFW4hMTwbs6IHolzKk+RE4dBVT3FaS39wHMzwWgrQnD90Q3/H/phohIGIdXlXCvRzaxw4S6KQqlNXZ2tceosPbzQzZySaB8EJ0WtDUhSB0wDs3PcWwcXgXtzSj05SGY+wdG1LzOkeKtt94q9S4MjkTyZksKAeWz2PlA+cxC1Y/bAADGgVlulqMMi6lCOdbVkXp5no/VzQa09RFo6yPoYWCcf7n2lvTaqLqpDbJGwDjA8Tm4guG+c62wY6dv/5JOiKhE73UMjKmE7PE68FwIyvsGcBBHbgYi2i0E7t4ZW6pmQRDRL1Wnv6FXBMyDg7DHagjc2wHf0z2QfsGR4zwTrRZ8T3RDezPa/5d/7YE5zYfocTWQoxkgD4f+fHy0+LAgUKNkf0IO7L31WKfcewbUdwxYkzmxk4ZJom9EItNhKjP8HCcMjhhTfmivhmHtoUHuUia3385bGX95BsYw+e0tKGf7DtDUIp55ILqleztHYNxvvnG3DWWnDXts8e7X8nM3QyOOtXeiAJdZ4j3xOFPC/2AnlC4bxoEBRI/LEBQ72PvoCJ9bB6kBvie6oWxJE8DRkKhrwwje3gbtzSjsOgXRI6sQPqcW4bNrET28CnatAm1jFMGftUPdGCn17pavXhva6hCkBhiH5TfrwTg41pOsrRreEj5EAGI3YIkRDecdT7pK1Intnf8HOGJMeaFsNeD/Yxeqbm0v9a7kzjliXCaxPBWZc8RYAuqbEfj+3NV/jrBwb5dkZwisLUDZEc/4K2JHEgNjSq9agT1GjaWhdpWoNFwZ8D3VA/UjE9beGqIn1eRcqMye4EP05FEQNhBY0sk2zgPt+V4EHu4CTCB6ZBVCi0fDOLoa1lQ/rGl+GIuqEVo8GtHDqwBDwv9AJ7TVDL6GQns5DGEglu48Kr+XEWuaH/YoBeqmKERbWc5oI69J3Gw5D9V0wbDzZ2fVVAbGlAeiowzPZ857Gn4NKA3XHGMJBH7XCf3lMNS33IM+ztFgkSlLx075OT4aLYtY/JCBMWWUXLZpq1HiPfEm5T0D+gshyCqByNdqAXVwX1xz/wCMeQGIHgn/0q7sS4ZQRtrqEPx/74HUgcg5tTCOrk5f1VgXMBZVxz8vwL+0G+racPF3uJzZEnp8NNc4pADTADQB86AAhAS0l9hxQcMk0Tci4bzJz3aT5kwPZGBMQyUlfE90Q10fKc8VPhxRgijX/nt+fQtCJg5nV1VpR2On9gNlSrnOMMcYtuwLuos4842BMWVk7xMPjN9jYNyPKeF/tAsAED2+BrJ+aN/a6JdqYI+OpfeqrzG1dyjUt6LwPd4NqQLhc+tyqlxozfQjcmYtpALof+yE9Q6D41wpG6NQ2m1Y++qQuxYmvck8KAApAO3fEfeFkmiwbNmXweeMS5w3Y84ZQ4nDLdMSIkSDoGy3oL8QimWGlbtcBry7be918vP7WxiJCNIR8Lo6GVMjTNMd9CYNNGKc+PcgB56Gg4ExZZQYMVbeZ2CcSn8hBGWHBWtfHeacYVTK84tYBWsAvr/1ABGPXVA8TnRa8D/cCSGByGmjYDfnXqzJmuJH9Ms1EBYQvfNToIdXz1xoL/YCKNBocZysV2FN1KF02VA38/xDQycspB8xcna4uEYyZPx5GW72iAbDw9kG6obI4DKmsqwrq74ZQfUNrdD/r2eYe5Yfot0CwjYEi28VRmI8KGWOcVJKhCmcl/JIhvOrM5PHkn2vzRHj9JYsWYIjjjgCM2bMwGmnnYb169cPuP1TTz2FRYsWYcaMGTj++OPx/PPPJ39nGAZuueUWHH/88Zg9ezYOPfRQXH311dixY0eh30bZkKMV2KMUKNtMT5/ci67Hhv5sL6QCRL6c+7ziTOxmH8zZfihdsdelHNkS/j92xaqBzw8OaX1Cc14A5twAZLsF3586vdfT7TH2x1GoWwzYjWrBK0abc+NFuJjqTsPhKrLV96NrvpuRZvSCI8aUD3b/ThevCDzQGavLMZA068pmor0cO1f7nvXAFJiQjaoft8WWZDO81e4jh3D9D4D7eEktROscWQ6n/0yE8/tiI9mBKRkY9/fkk0/ipptuwre+9S0sXboUkydPxvnnn4+2tra0269duxZXXHEFTj31VDz++OM46qijcMkll2DLli0AgHA4jDfeeAMXX3wxHnvsMfzyl7/E5s2b8a1vfauYb8vbhIA9XoOwAeUDjtok+J7thQjLWLpnntZ4jh5TDakD+opeiNYyLNBRAtqqENTNBuyxKqLHVg/tRYSAcXINxC4a1I1RqK+zQvhAzBWxmyhjXuHXGLam+yF9sVENZlLQkFkZAhNXKnWax1PnurVaWUfMvEx86o0ObvXtKHxL01SsHakcl3PhpUU+pPv4zsgZVHptWoshM3Y2iJDs+7+HR4yVrQb8D3cCYRv6k93QVnqgUyFnado1U7VpwB0YZ7qmp6RSi+SKAkyl7ue+++7D6aefjlNOOQUTJ07E9ddfD7/fj6VLl6bd/v7778dhhx2G888/H83NzbjsssswdepULFmyBAAwatQo3HfffTj22GMxYcIEzJ49G//zP/+D1157DZ9++mkx35qnJQtwMZ0aQCw1R1sZgvQB0aOGGIylIetVGAurIExA/5c30pC8THRa8P1fbNQ+/JVaQB/GSdOvwHf2GACA76/dQIjDQ2mZEubKLkilbzS3oHwC5nQ/hAFoXFqLhip1zlryZ8eNmePylhxJdgQ06sYoqm5ug29pdwF2sPDEpyaqbmuH/47SLxMUuGcn9NX9K9aOVK6K5l4K0JxB+gB98c5siqzFt4pZW6zbRvU1LfD/IcOIt6uqvONxjwX3wV93QFsbgf5CCL7nQvD/pYzOMema0tlRkXJcuTqGMh1LqYW4SlB8qyxWJYtGo9i4cSMuvvji5GOKomD+/PlYt25d2uesW7cO3/jGN1yPLViwAMuXL8/4d7q7u6GqKkaNGjXkfVXy0KuReI18vNZwyX18AHqgbjVheWB/EkrVRvqKEIQFGIdXQanL7zfVWlgFuSoEbW0E1pEWZB7WbfPSsZRP+t97ICISxmFBiN31YV2PFUVAnRqEdUAA6r/D8P+zF8aJQz8HjFTaxgjQbcOe7s/7sZ+JvX8QeDUC7bUI7AMKN6c5X0bq962sWbLvBs550+UMhtMELM55b9qm2J21/lIY0VPK79ygtMfuUJXtJqRX0nk9MHpdFJkCYylLW6U6krJfmTqXnSPGHuozVj+KfYG19RFEzkizgbNGwE5HhGahqEFWzryUTTBYmVKpUztccsk+SE2lLkHxrbIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7bZ5pDHIlE8NOf/hQnnHACqqqqhrSfmqagsbFmSM9Np6EhfyOSQyXrJUL+DqhbDYyur4Yo4sGZi2K2key0EHp5B+ATqD1+DMSo/J9djWNtGH9qQ/WKKPwX1uftdb1wLOWL9VYIkXURiAYVtafvChHMT+JLzZm7IrTxQ2irQ6j5UiOUsYWdQ1tuwmu7YAMIHlGPUY3FOZ7kQRKhP3RCfSeK0cEqiKrySHIaSd+3cidsZF+beITOQRSdFmSVAulcus4r7zWXewkpY4Glvzy+9+k4U0ZdxYdMAHrRdyfJNcdzoKDMcAfQgZ+3w95Lg3lKbZoXzdvuZSUDWY4JZwp7pyNaMyRQxDVxcxbw4D5lk+ZU4jqvpga/6aaspHLWfijRHOOyCIwzkVJCDNDjlu536R4zDAP/7//9PwDANddcM+T9MU0bnZ3Dnx+gKAINDdVob++B7YF5OL49NaibDbRv7IDcvYRncodStJH2dDf0qIS5IIi2aAhoLcAfma0i8JQCc003ehb4hr0cjteOpWGTEr6HO6ACiCyqRm9vLzDMemWJNuqwwlA+H4T+VA96HtqB6Nl1ednlEaHDQmBDCKJORdceEnZr8dK99Kk+aC+HsfPFNljFSOEehmJ+32prg9B1Lw59eIxz1MH5kURyDAwGSbRakAEBVJc2mBMdFqpuaoO1hxZb1z3B6yUsTAnRYUE2afA/1AXttQh6rxoN2VCmx7ozUIikdMYMZwrQMIlIXwQiTJlxqV9nMC/aLajbTKjbzPSBcVEjY+fP/UffnVXlncG9sDK/11KSzt03JaCVUaDsbFDH8Z46p17kkr6fOt2lBFWpyyIwbmhogKqqaGlpcT3e1tbWbxQ5oampqd/2ra2t/bY3DAOXX345PvroI/z+979HTc3wRnzzeTNk29ITwYw1Xoe62YB414C1m7cOmaK1UcSOzS1WgOiCIGSh/qYGRBcG4f97D9TlvYj+R37S9rxyLA2X+mYE6lYD1m4qjJm+vBZwsW0J85Ag1JUhqK9HgPeisPf2RkdQqekvhyAkoM2vQUjk9zyXjTktFhgr68MwZg9jabQiGinft7Llmucmk+cJZ8VT90jewJ+VVHKYXwkAhkTVzbGCoD0/GZP7/haAsj12F6p+ZMKwU9rDCzK0uf/BTmhvRhG6uB7aa7HaAuq7Bsz9yzMwdqbpC2f9ilKnJbtGjFM+C5n+d5m+A+racKxIkiOWE9tNBB7uROSkUbDHF+A66jyOQxKoSq2A7NiXXOa2lphI7UAph8A4TSaOK+BNPdc409tzSaW2HMW3uI6xm8/nw7Rp07By5crkY7ZtY9WqVZg9e3ba58yePRsvvvii67GVK1e6tk8ExVu3bsXvfvc71NfXF2Dvyx8LcAHaS2GIkIQ5x1/wnmvzoACkX0BbG4bo9Hr3fhHZMrk+ovHF6sJUKdQFjC/ERldYBC1OSmhrYzeo2oLiz6+09vVB+gXUt6OVMy+Rhie14Fa6GzhjgMAgVa6nfC9UTzcTqYeO86PV//cl4Qi4RFRCtFhQ3nEX4dLejP1b3dL3uPRWf/zgONve2RlT4o4zV2dQasZEpnmi6Y7vkI3Aw13w/6nLFRj7/9gJ5RML/j905mFv+3N1OKS7TcowYuzVwNg1qu2F88hgZKr2n9rWOSyBJ1Kfn/gcixitlkVgDADnnnsuHn74YSxduhRbtmzBddddh3A4jJNOOgkAsHjxYtx6663J7c8++2w8//zzuPfee7Flyxb88pe/xIYNG3DGGbFZ+qZp4j//8z+xYcMG/PSnP4VlWdixYwd27NiBaLQyqiXmyt5Lg1QA5X3Dc+vwFYUtoa+Orc9nHDq0+eeDElBgfC4AYaHMSvcXlro+AnW7BWsvDdZ+hZv/a871wx6tQHvbgPJR5XYGJYhPLCg7LNi7a1B2K8G8a03AmuKDMFAxlWxpmFJv7O3+j7vXMc7yejl2whVt3rIloa4NA73xNxG/kVbfjKDqmhaor4Xdd3eOIEGWsq/V+fWNSgRvb0Pw7p1QPu7/AUhnmnE5jJ5l4jzOou7RsJJy7le/EeP0v0sXsCkfOodmHT/2Dj2gEe0WEM4SwTrbL2TDf+9OqI7VC0SmziAvBMaGjN1PW+6OoqRofG59mWQdOdvaNRKcelzlkrnifNiVSs3iW/0ce+yxaGtrwy9+8Qvs2LEDU6ZMwd13343Ro0cDALZv3w5F6fsGzp07F7feeituv/123HbbbRg/fjx+9atfobm5GQDwySefYNmyZQCAL3/5y66/9fvf/x7z5s0r0jsrA34F9m4a1I9NiHYbcnR5pjQNlbLZgNJiwRqvQRYpldw8JAh9RQj66jCMw6vKuvhIXkgJ37OxycTRL1YXtpqnKmAsrIJ/aTf0Zb2IVPhcY2197GbDmlW6NGZzmh/augi0DRFYM8ojnZpKyHljb8v0VakHI9cbVOf8uk4bsrEw10p9RQi+p3pgNeswZ/rhX9qN8Bm1sSwjCQT+0IXw1x1zQFPXbC7VnZ9zVMyQyQ4J9R0Ddmr9Ej3DiHe5sVICngSJWHtoKE116kzreKf+LtOIceJ9Zci8SAZ6gy10FbJR9eM2yCqB3mvTT5VM/Vv66jC0t6LQ3or2TWFwBp2uVOrSB5v+R7ugrY0g8mXH1E3nuaPLRtXP2mHtoyP8zfri72CuErvsSp/u+7HfSH6G7Vz6dWqy+NaAzjzzTJx55plpf/fAAw/0e+yYY47BMccck3b7PfbYA2+99VZe928ks8frUD82ob5vwKywwFhfHRu1NQ4u3nIxsk6FOdsP/dUItH+HYR5ShJFqD1PfikL5xIK1pwa7ufDzfs0DAtCf6YW2MYroJybk2LI6VeaPlH2B8czSFb6y9vNBaoC6KRq74fFYdXzyGGcwYjuWXhpqxlOOxblca772Fi4wVrYk0o0NqFviy9ZsjEA6C345b7QdAY3sMOF7uB3G54Owpha3k8mVPuwYPRY70/RYZBi1LDeuzATHcaR8aiLwk05EDw/CWJS/1Uxy5gqMU36XYdRPpBYPS9020r8TQA4yMBY9sR1Ljjhn4gys0o0ue3jEODk1yTnC7fi+Ktvi9QHeK5OMNStNh0nqz0gJlDNWpXbPaU8+p4hLIFb4MBTlKjHPWCmXL2qeiHYL6htRyBoBa3pxbyLMeNq2vipcmSnsDvryeOfE4VXF6V3XBIzDYh0hvuXDLHtdxpTtVixbYg+tYDf5OfEJWM0+iLCEsrWyzkGUO+XdKII3t7pT7nO5GctC5Hr6LVKqbGq1VyCeeizTbyN6+964+Wwn1K0GAvcXZu7ngJyjSa5U8/jPzjnI3SlL7JSrDAGa9mLsmuZ7trjTpbRVIfie6HYHIAOkUmcLfEWGVPFkQDPYytvZOqFCNsQnpjvFO91znCPGhjvY8gznvjg7inq8tJMDSDdiPNA6xs5jLmPxrZTtE69RxLEJBsaUE3ufyizApb0US00zDgoWfZ6TPU6DtZcGZYcFZUtltbuT8r4B9T0D9hgV1pTizXE15wUhgwLq+kjFFkFTk6PFpU9fTswr5zxjysT/vx1QWm3oL4X7HrSKN1rkCvYKWf05UWDLeQcn4e5Ade6L8/KRJVARXTa0l0N53X91XTj2vc1UmCdNqrtrnd1yC4wtCfXNiKsieuzxvh+Vz0pzTfE/3g39hRBEl7PjIWUj5+eQoTMjGQRb6Y+z5PJDg0xddo1Kp8kUCN7ajqqftUO02Wm301aHEPxpW+b3F5Xw/a07Nse31JwdWc4R404PBMa9sQ6IXDiDXFfHQ7+q1Bl+dko9RySOHxbfIq+RoxTYjWrsZF4uvVnDZUto/w5Dilil6FJIpG/rqyq3CJf+fGzE1vh8VVHTaeATMA6KF0FbHc6+/UjjSKM2PTCv15ocC4y1TQyMKYsMoxY5j/wOlXPUJ49rI/eTeG1nEoeU7iJi0TRBDADhG/i2L3BXB/x/7ob2Sp7OebZE4KEuBO7dmdJJkabDIkN6bNbiaB6jvRpB4Hed8P9up/v4c45yhksb7CvO9PWU4FVkKpLkGjFO/N7xPGcHhtL/9zlxVu7utaG8G4XY2fciSjzgVdodL+z4rvmXdkPZYUFf4zh+nfORn+2FviKEwN0dg9yxAnBNLXDXJyi1qlvaYh0QuQwKZJjq0G90PnU0ON1zXNkKSH62kss1kRdZ42O5DGqFpDKqmw0onTbsZr3gSzRlYs3wQ1YLqG+4Lw6VQrTFUtntGgGzBGvYmgcHIQWgrwmVdpmTElC2mVBa42nUHqgrIBtV2GNUKJ9YsaqlRJk4U3LzPXI7wAiYu+pw4c4XyQDLmcWUKOaUug3guumWWar9Kjti3y3Rnqebc+dImPM1040eWRkCx2wjxobsq9BdROITM3kuEi1mMsNGiY+0aW8b7uOlkJ0lgyQ6+j6AAQMYZ+CbbjTQ+TmmC4wH+bG4Rk4/NhG8ayeCN7XFXyt99kfadcid3wXHPqrx5cE80dmSqWJ5iZYlFJ+a0F4KxTrZ4nO8XSPzqdunS6V2SnmqGGz2ju3IuCjiLQgDY8qZXWHzjBM95sYBpSs6BF3AODAAYcfSuiuNtjoEIWNpzaVYskM2qLCm+SC6JbTXItmfMIIkbvJMD6RRJzCdmgYt38HIQDd0rlTqPP9dp8SdmzMV005dLsrxO+d+hTOPFDrJagHtpRCCN7cCXUMPOp0BiPjM8WGkm+PqDMJC7pRa/ekeBH/WljZIDvxvB6qvbwXCdqxwUTECC0ui6mftqPpxLGiruqUdgSWdULaZkIG+a5UrmHR2VpS4n1V0ODspUnYmQyq16/ndNsznOyFcI/uO10mM8A0jlTqRDp0MwJwFuUKOnUw3+p6pM6X0g7F9nLvoHDF27nsR68sEf9YO/6PdUN5x5sRnasf0HQ+ZtgEwcMXqNFzFt7w0YtzS0lKM/aAyYFXSPOOQDXVDBNIvYE0rbWBgzouNWmprwoWdt+Y1hoT+chhSAczPla5zwjgkls6uvRCqnCJormrU3gmMzURgzHRqGshA89yGa6AbOmfgU8BztVTSBB2m7LccUpLjZ+kMIgboNBAWYjfJrTa0dcPolM1QHTtdwJhplFsYgO/ZXiifWFA+S9lpW0L9OF7Fd6uJ4M/bUfWj1oKfq10FkuyUgM11HDie48o6KsG1xBnMOI+DgUaMM/At6UT0dy3Qnu7pe9B5zMUP0VwCIJdohuPTlO7jx7H/ItR/hz0xIpyFyOH7Wswsg0QHhLqt74+mTfmXMrfDN5HFkvguDnapLAt951EvjRgfeuihOPnkk3HPPfdg+/btxdgn8ijZpELWCCgfF6lHtoS09REIEzBn+Qe/Dl+eydEqrEk+KF12RY2UaevCEL0S1nQ/ZG3pUnntfXRY4zSo20woWz2UC1dAyscmlDYb1p5ayaYRpGOP1yF9AurmaPkV5KHiyZBGmRepAa8hof+jB6LTchcqMgH9yW4Ef9Ka/+tluvmbJtzfiUypmc4R437ViDPMJx3ONTCa4TVT9z3lMZGyrmtSanqmY66saI2nNYdk+lHEPBLdjv1z7kNYQjgv05lSqUtx+nL+feex0i8wzr5ziSDV1cGRLhgdZAeRyNSR0m27v9fOwDjdtSDTvFcvXTZCGb4bzuPHkEDKey801xznlO+Ruj6Cqh+0Qvkw+72Q6LZRfU0L/H/oij0w2NF6Z1VqLy3XJKWEYRi47bbbcOSRR+JrX/salixZgra2tmLsH3mJELDG6xAWoHxYBt1xw6D9O9ZDbu5fwjRqB/PA2H5oL1dIOrWU0FbGU9kPKd760WkJkRyx1l6qjCJoXkyjBgBoAtZEHcIAlA9G9jmIhk4Usv8w5eZOf64Xvmd6Ebijo9+Ise+5EJQ2Oz9LjNkS+nO9seAv8Wdca+S6i2+5ggpnZqQz9TW108AZmEbycyPuCnRco5RpAhtXhWPH752js/H9Ut+MwPdYl+vG3bmdKHTnvWM5KWfNA9Er3Z0BmbIXHD8qb0fh+2Nn3upYaKtDEJ+mCVwyjVAOkEo9GO7CSfF/DLYv2dkGzk6cqEyZEpCh4yexL2VQhsJVjC1DZoHSZqH6htZY8bpi7Zejno1rSgOAwJJOiF4J3z96Up/WTyK7NJF9NujpJTaSx5H00ogxANx444147rnncNVVV8G2bfzwhz/EYYcdhm984xtYunQpuru7C72f5BGJ9YxHcjq12GFC/cCE3aTC3ruIi6cNwJriixXh2hR1956PUMr7JtRtJqxxmic+A3O2H9IXP8GnSdsaUZxp1B6oRp3K2jeeTv3OyD0H0eDJTEsV5ZnSbsF//87kfNlEsKfstDMuR9Jvndgh0P4dhu/JHgRva+srYuMcRDFl5grCmeYYp+6X89+O81zqzfGgOIOxTCPGaQo5ZSpGJCIyVun6d53Q14RdxUBdAXSBA2Pn31Kc83VDdsYUWdfa0o6fg/fshP5qBOqG4dexUN6Nwr+0G1W3tfff50zpunbfY+pb0fys9Rv/WAZd/M7ZRs5Oj6jMfCyV66Ug0zHqLEAWz1JT3y3im3R1ZqU/GGQu61OnvL9BHwu2IyPBa4ExADQ1NeHss8/Gww8/jGeeeQb/+Z//iba2Nlx99dWYP38+vv3tb+Opp54q5L6SByQLcI3gwDi5RM0cPyBKm0adpAmYc+JFuF4d+aPG+urYyKw5P+CNz8CvwJwdgDAAbd3ILsKlfGRCabdh7eWtNOoEa2K8c25z5UwroBxkCqryzP9wF7Q3ogg80AkArkJLrqrKjirJonv4kUaySqyJ9KNwBgYOKuLkQIGxc8S5J8Po3CCJDKnU7iAt/limEeOU13B2Dmdq50LPMXWNfnendCJkSh/PJg8FhgY89jOsba102PD/bieCN7chcO9O6M9kHw3Muh+JP5XLKKEtEfh1O/wPd7q/Q6704pSMCGfw5qX06AEoWw2INsdobIbRdNfosfPckWbevPjUhPp2+muh8oGB4I9boXw8uC+D69zRKxG4syOZRZmk5/A6qbs12ArlliOV2kvFt9IZN24cLrzwQixduhRPPfUULrjgArz77rv4r//6r3zvH3mMPU6D9MWKXAx6In2Z8NLarU6GM516JBeB6rGhvh6BDAiYs7yRyg70rWWtrRnZRbg8m0YdJ8eosGsVKB+ZJVmihTwqmj6oyjelJT6PNT5i6LqJdN7QOoO3PGT5uEZorP7zO4Ul3YFlxhHjDHNekZLa6RwxzrLEU/odjr9WhjmjrscTf9c1B9bxszOgjkpX0O6a69ud/vULwrn/Ifd7FJlGNrPJRyp1mqJmypYoqv97B9Q3+iIVZzCpvhOF9mYUSnxuqbYhj52OubynXgl1qwltbcQdLKZ27uR7yURbQnslDKUInaziMxPBX3cgeHv/kfyBKK2Ok0pIQnRa0J/sTl77qm5rR+Cencn59U7+hzqhtNvwL+kc3L462l1dH4H6ngH/n7rcGw2ls2wII8aeLL6VzT777INLL70UTz75JJYuXZqPfSIvUwXsvXSIiISyfeQVIhKfmVA+sWCPVSF3LX0Kr5Mcq8HaU4OywxrRRaC0dWEIKz5iX+LCZ072Hhqs3VSo261YUDYSeTyNGkCs1sG+OoQscnoZeZsxwNzZApCJc5Mr0MwQEOWhEJSr8m4uI8ZRmfZn1xJPA6RSu0ZEhzDfOPCLDgTu7HD/bWeAbaRpN+dooXM/U4PrTKPEztG1QqdSO4Pf3pS/Gx3aZ5+2AvBgpTnu/I/Eghr/kxlGggtZqCyXZXmcn2GnY0TVtZY18t7hpbxvwP9IF4K/3VnwgZ5E4dTBzt13tU2vhP/+TvieC8Xm+Do66AeqY5DTcSUzHLPOpzrrAgwlC2bQc4z7Royll4pvjRs3Dj6fL6cX22+//Ya9Q+R91ghOp/bqaHGCGV9TuV9ay0ghJfT4es2JgmOeIQTMg+JLN43QNaWVD00oHTas8RpkvffSqBP65hkznZpiZJ6KReUqEay51nENpb+5zEchK9fIdCTNTakl3SMymapSO6WOGDsv6dmq/g6k24a6zYT6npGxHVx/K74fmVJLXcFeRLqLbDkDB+fjhoS2ohfa872D2/dcOYP13pS2ypQGnkU+AmMR6f+3sx1/+Sq0lva1bWQNOl3ztXc4oqfUTIE8B8aurI40gZ62JhRL7x5KxkSc8fcOqC+Fhj5P35mNELahxjvllQ9N17rOSluaqFOLB5MD9eNHY1X1lY/TL9Hk6jzLsFxWTkw5+KJuFvqOHS+NGC9btowBL7kk1zN+b+SNmmmvezuN1Jzlh9QB7bXIkHrxvU75MDZib+2uwd49h0ksRWbOibf/ugiQ7ua0zGkeT6NOsCfGA+PNI69zjoao2Mt3Jeb8Om94nenHg7yJFDtMBH/UCt9fMxQzdd4gp+sPMqU7lTuaIQh1SrP0VPI5KaN12ith+O/fmVM6q/JJ372BMxU0Yyp1jw3/AzuhZlgvOXXNY1cg2uUeUUtQtxjw/60H/r/35C0FV/nYgP50N0SH5W7flBFj1+czmABiGNcUZZsJdV04fRtnCc4LGRgDgPpmFFU3tGRczcQ11aDHHQgmRWXei2y5UvJ39m97/2Pd0NZGoG7KoQNWSqibIq6KzgjZMB5tg+9PXa7vxKD20dnx5jzWQ7ZrWSXnsZ+U+PUAyY/+R7vge6YXvqV95x2RqdOnO/35LScRCTHYUXnbkf3j9TnGVNnsPXVIJT5iPILmWopPHWnUu3grjTopqMCc4YeI9qW8jiSJkdjEfF7PcbX/CButtCXU9RFIAVjTvR0Yy1EK7LEqlBbLtVQKVS5Z6DmlKYRE7GbdObqSaV3SHG4i1XcNKDtt6C+mXxIu7Six8/ep7z+H9hCmdF/DM6SCi14b/kdiRcdyWr+0K8MIYIZRaGHG5rXqr2a/psXmGKcfJXZt95ljBKwzP52Y/ke64Hs2BP2ZXneQ5gweUlKpB1MYKlMHivjUHHh+ZsRG8OftCDzUBeFo72Qbl3hGUuD3nRDdMvOx7ez0ydC5hJSq1PngCjQ7Uo6RTOtoZ6C9EELgvk74nnAEmI5AcuiBsWNU2Dmq2yXd7RNvN+U9o68DIl31+hTKe7Ft1RymhyltQ5+qEJsjPqinxFOpPThiTNSPX8Aep0HpsiHaRs6omddHixOS6dSvjLB03ogN7bUwpB4bGfeqZPuPsOrgyocmlJ027PE6ZJ1306gTrIlMpyaHaPGvRaLL7lfBNflzOP3PqbTVIWgv9rqD6nQjnFkO89RR5FyW3PE91YPgj9qgbDXge6I747xB52iacw5oxn1xBjrOKrzOpw61I8Nwj/QhQ4qq4tznjkF0nhkSdkssWFA+NGKp2KYEbAnlk3jhtS7bPaoWShkxHmoA53hNdUME2sthKFuiqLqtHb5HuzI+TWl1BGAtjveaeL0izs8ciMywG65OmAGKb+U9lTolDV99K4rAHe1QN0bcnS85BMZqPMDUXncUOHOOSLcP8fwUzvBdiqZWZ5cQrRYCd3UgeEcHRIvV164DfdcG03HTkb2idkaGHHTxLWGhb15yEaNVjw6LkdfZ43WoH5lQ3zdgNnr/JjoXZZNGuo8Ou0GB+p4B0WpBjpT2fy0CEQWM/f1A0Lt9dsn2fze29IIcPULav0yO/wRrXx36CyGoW4zk3G+qYMVOpUYsSHSNcDkDJOcIb6YRY1PCH09hNA7oy5IR3Xa/Of75DgoAJAO94K87AADq6PTnXVcAkSblNEFb0Qulw4YM9kVAGYPtISZ6pFYnztQB4BwBHGifU+lPdCO8ageU8+qg/asH6gcmhCFdNS9Epw1Z29dWrkA9ZY7xYIiQhP/3O2Hto8P/t1ihLGNe7O/qr0QQPQ2xEf7UJQx703cCJIN3j6wgoqSOyiZkGil3HiOGzHtw5C5sZUN7NQz1QxPiiW5EzqhN/i5RrVt0WJCjlL603oiEtjacrLuTfK2dVmwJpeq+7/BQ14Z2Pk9JCa5d0xR6baibo8kMBe31vul2IorY+UgCCKQ04iCOjX6j6oMgjKGMGAOwAKmg/zFfQN69+yRPS8wzTqRhlDvxqQnlUwvWbirkGI/3FykC5v4jrwhXMo36QI8HOYqAOXeEjdq70qhzK7ZYatZ4HVIAyrsja0pHuViyZAmOOOIIzJgxA6eddhrWr19f0v0pdio1EA+4nDf1Kcv29P2c/oZS+bTvTlF7sy+NWH3HQPBnbdCf6YGy1YD6RqTwyw8hcwDpDFCUTGnJtoT/bz3QXwi51nrP+3rChsyYPu3kGtFNBEADnSdCdqwq/6pYuq+2KgT1g3iho22mq22U1DnGzp/DcshBv/ZGFNrGaDIoBgDls74X05f1oOrqFqjx7DbRFlu6x5li6wye1I1R+H+3c/CjewWSdtpLVOY0X1WkrGOcl/1xjrj2yGTav9Juu78LPTa01SFU3dQG/em+z0Z/rhf+pd3wP9LlyhYJ/GYn/H/uznvht9TMB1cnSK90TVtQPjFdx2Hwp+2ovrYV6LZdFazT1ivI8e8PShT9q+BnY8fnJRd57IGBMQ1JoodMHSGVqZNL1JTJaFkyMH4l7Jne4OEQ202oH5qwx6iwx3u8YwLoC4xfHRntr3xgQum0Ye+jQ9aWyQh4QIG9uwal04ZoHXpPNg3ek08+iZtuugnf+ta3sHTpUkyePBnnn38+2traSrdTJQiMlTbLXfDKsQvOm/hEKrX6dhTCMdfQNR/UMeqorQxB+cSC7x+9CP66A4H7O93rmRZKDoMyroAh2jdH2bmOqmtecZ4JQw56XWjRIyE+NRG8uQ36P/svWaS+GUHVDa3wPdH3O7HNEWx+Yrnfd0hmPN6GtIzNAFTH4IPv/3ohZF+HbOD+nfA9F8q4DJP+chjam96ZaiI6bFc6rf/hTlRd2wLlgxzuIwsxx7jbPdLuDG6dSzKKHgltTazNfc+Hktf8xJKl6semu7J2PJ1dzfPAUeqIrbv4lu2e07zN3RuS6NCquqkVwV93xOYhG3JQVdMzjvjnwpCDL4JnIzbKXMTCWwADYxqqGgV2kxq7AOb5QlAKXl+mKZUcrcJq1qHstKFsKf/OCf3l2EXHOChQ1JSZoZJNKqzxGpQ2e0QsW1ZuadQJdqJC/rveufmrBPfddx9OP/10nHLKKZg4cSKuv/56+P1+LF26tHQ7VYI5xsqnOQaAEQl1XRiBe3Yi+Mt2iM9MiHarX2pkgrqt/xDfkJd7GYRcRhZFpwXREUsVrbquBYF7dgKWhLK9SEXwwtLVoZAL0W1Df64XSpsN3796+82T1v/ZC2HBVRzKNUe5zV3kT9jIXPSrCJcD0WEBsm/Oc76Ez62FrCrc9VfIvuBOtFrQ1kYg7NwKP4koClp8K/W7rDqCddFrQ3F+/omR5e2O4Lml8Md/Iq1axscOUjtrnIGyM9PA9RrxXVY3RgbdiTOcEWNhyMGvY5xYrsnrI8ZSStxxxx3YsWOH6+diGGzq1lNPPYVFixZhxowZOP744/H888+7fi+lxM9//nMsWLAAM2fOxNe//nVs3bq1kG9hRBkpo8biExPKZ2WSRu2QKAKll3s6tRGbpyPVvpHYctA3al/m1cHLqBp1Kqs5ERiX9zmonESjUWzcuBGHHHJI8jFFUTB//nysW7duSK+pKGLY/8kSzDHOdWRUmIC+MpT8uerWdlT9uA36P9KP9HmZ+r6J4I/bELhnJ4QVS/v2/as3bTBfCMr2WIqonWE+dNrn9Niuc0Tg/k4EfrcTwVvaUHVDK9SPB953YQPaB+5t8lXpeijU7RYCv92Z/xdu0CB9he2Y1t4z4H+0C1U3Dy67RBgy7ynhztdL/S47R7GVdtvVMeV/ohvBO9pdHVtDnUM8FLIhFik6pzUI2fceZA5fDd+zIfgfzlzQLZ3hzDFWjMG3kbDjwbQ6/OtD4r+c9nWwb862bfzqV7/CZ5995vq50AaburV27VpcccUVOPXUU/H444/jqKOOwiWXXIItW7Ykt/ntb3+LBx54ANdddx0eeeQRBINBnH/++YhGOfqQi+RoTZnPM05Uoy6XNOoEc7of0i+gboi41s8sN+obEYheCWuKD6gpnyQWc0Z8TePXizP/r1CUrQaULhv2BD1WWKSMcJ5x8bW3t8OyLDQ1Nbkeb2xsHFInuaYpaGysGdZ/DQ3Vxf0O+mM3WDmPGANQt5qAJoC64RfkKbVkyniNAvgE9GW90J/N73zKjH873uTauNyv1+qHpiuIUT4yob4ZjS33luOoWTKwjgeOpZ63qxYgU6y+sQqqv7DDc74/dSXriQyGLhX4RBGGDuNTiQYa+VffMXJatqxQtDGxOiCpnTOi0wZ8AsoYPd3T+hnsoNZwzle+hzoH/RxVKBA2oOjDv0Yk/tP17MfQkIbHpOMGRBbpZsSZugUA119/PZYvX46lS5fiG9/4Rr/t77//fhx22GE4//zzAQCXXXYZXnzxRSxZsgTf//73IaXE73//e1xyySU46qijAAA333wz5s+fj2XLlmHRokVFeV/lbKQU4CrXNFL4BMyZ/tg8ovURmPM8XrQqg0QatbPqZ1kIKrCm+aGti0DdEIFVRqPdTmV7/ANAUIG9mwZ1mwnRbo+YCuHlSEoJMYRpEKZpo7Mz/fqmuVJMILi2eKOvdoMSS2Md5Jw5a6IO4+RREB8Y0J/tdRVNKjfR00bBmumHaLHgu29nMvVYKsUJ+KM1g7iBjafMmvODsbTvD0yYC4Owd9fhW7IT4jML9hQf1I3xQRG/SFb0tffSoHxgJqeM2buqJQ2KCqmjOwSfsAsyx9J5XBgLqyCbVMh6Bb57d+a01rPZa0JaIu9ZtVIHoIhkATBrTxXqxr4OL+nv+505yw/ttb4MManEV2gpcsZStFq6jn1ZqySDZLtGAH45IubJWmELCgBLSLS2dmfdPhe1tcGswXFZ5I0mUrcuvvji5GPZUrfWrVvXL2BesGABli9fDgD46KOPsGPHDlc62KhRozBr1iysW7duyIFxrkP1ubxGPl6roJpU2HUKlG0mlIgs6hI7+WqjRBq1PU6D2EXPpfaIp9gHBoCXw9D/HYZ9cFW/33v9WBLtFpTNBmSdArmfvyT7OZw2sg4MQlsXgf5qGPKAMuyYsCW016OQArBnBgZsA68eS7JZB7aZ0N4zYDWV9pLm1TbKp4aGBqiqipaWFtfjbW1t/UaRc2UPs4Cd9mwv7M3Fm9IggwpksC+90nnzPBBrVxVWnQLM8AMdFvwfm7BrlbSVnmWVcBUD8hojPpUEu2mIfGUUAks6EV1YBX112FWIq1Ds+tzuN+wGJTlabI7XYM1yd2CGLm2IzSH9xEoGxurMKlgvxzpazGYffPE0aikAa1ctGRindgJIgZyCvOEwDgjAHq/BHqsBAtCf7YW2IT9ZjraQkFphzl3mHD+gCshRCowvVCVrieijlNzS0sP5X64JAGRAAfS+KvLWXnpfBwkAexcVavzztsdpiOytQ303iugJNZCKgLYxUvDAWKruyvB2nbsh7HoFarwNZa0CGVQGbKre/9cAdasB/2OxYHOwx22xzk3JwmDK8K8Rg1EWgfFAqVuZ5gS3tLSgsbGx3/aJVK/E//OVDgb0pYTlS0NDdd5eq1AiU0OwVnWjbocKbU7x93e4bRRd0QYTgP/gUajJ42dXLHK0RHjXHigfGGiI+qDsln6pHa8eS8YL7TAkoB1ai+oxo0q6L0NpIzlPIvznLqibDTSIAJTRZXFKTbLeCiHSZUOZEkDj3rXZnwDvHUvmbIHoihCCH0v4F3njO+y1Nsonn8+HadOmYeXKlTjiiCMAxKZYrVq1Cuecc06J9644pAbYo9Xk3FQ5SoGIpA8GnTedckzfSIU5PwhZq8Aer6PqR7EpYfYYNTlP0Jrsg7Z28MH+YG9yrYk6jAMD8P+lO+vNrr2LCuUzC2bKkm72BB96r2kEhIhVQU4JjAsximzXK1nfq1QAe08dSnt8utTENNdHTUDWqrA0ARkUsHfR4JvVFxhbE3Xg2fjr1SuQNX2Bo6xW3BWyqwTQk/8beBkUfZ0w9YprScPEfNOMz60SMPfzQWmxkstPZdxWFYWLCoIKosf3Pz/LOgXIITAWLRYwpgAZQQEB6RdAW3zEdawK6YsV+5IiVmgTicC4XoE1OwDzEEf7O9azltXCvaZ1nsgqBeix+4pvpXQKydEqkOi8qVFi7yfxO0enXfiMWshGBXKsBnOsBu21CJT3DFj7+aC9kVvnilRjgbnaW4Rie0bf3yym8rqLS5EtdSvd71IfS/33UNPBgPykhAGx0YaGhmq0t/cUtZdkKNQ9BXyrgN51nTD2Kt6+5qWNpIR/dRcUAF0TBWSeUjWKTZvjg/60ga5/tcE81n3h8fSxZEv4n98JBUD3NKVk7T/cNtLm+KEv60XXv1phHlleAZG+ogsagPAUHT1Z2t+zx1KTjYAAjDd60V3i73Ax2yiXlLBCOffcc7F48WJMmzYNM2fOxP33349wOIyTTjqpJPvjujlNGV0pCF1AjlaARGBcqwDxqrSpwZocrSZHUG1ncUdV9Bu9tBv7AmN7Nw3R0SogAN+/BjF/1y/caytnYTeqsGYHIJ/uyRoYR4+Nnd+s5jQBZvy+KW3xpmD+A0ZZo8TuYAcarPMJGAcFoG6MwDgsCFQPMI5WpaD3e41QfALV4di0ElklYO/e95nJRtWdGVctAEf9IlmlQPTEjwNHMDtUUo/NdbV3UWNz1BEPJJ3bZKnLYe2pI3p6LfwPdiK29s0AVAAFynaRmaa96rn9PSEBkaHS8nDIQKxDJPnvUUrsOxuv+O1sX1nf/3zrPPdYe+nJ5bHsUQqUQS4rlpEOICCA+PfTrnPvh+3oHJH1qmvZNVmrJKto23tqro6U8NfrIEI29BW5xy2yQY3VSiiGxFSVImdglUVgPJTUraampn7bt7a2JrcfM2YMgNjI8ejRo12vOX369CHvaz5vhmxbeusGNA25jw4fALHFKMm+DqeNktWox2mwRqtlux6tMccP7f96oP47jOgXqtKu+ebFY0l5Jwql3YY1QfdE+w+1jYy5scBY/XcY0c8Hy2K5KQCALaGsD0MKwJjmy7n9PXcsBQTssSrU7RZkq5l1BKUYPNdGeXbssceira0Nv/jFL7Bjxw5MmTIFd999t+taWkzOonGyOsfUzOHQhKsqst2ouoszOdKq7SY1uQaxnWXEKzG6p26OwmrWYe8RiyYSgXEuKdvSJ5LrJuckHsjKgCM40NIXl5J1KuxxA982it40aeE+EVtOJo8fi6xRYkFVSjXyREVeYcf+rr2vD703NuV2XtYFIASUPXyIfLMe5i7uQNjaU3O3U0C4RsNltQDiCYdDDYylX0A2KLDrVFhTfFDfisL4QhWCv+gAANi7uNvfnOyD76kemFN8yaDMleoaHz3MGJg6qaJwo3MZAuBEoD9Qeq4zkyLfZEC4OkzsOjWZTi6kOzC2m9IExo5zj723DsQ/A+OoKugvhRE4ugHR+4a5co8mIAOA6JWxpZpSltSSDY59qFdc3117nNZXrbo2pRPFJyB9qvuYzpLdYe2lQWkrztJsyf3w+nJNpeBM3UpIpG7Nnj077XNmz56NF1980fXYypUrk9vvscceGDNmjOs1u7u78dprr2V8TepPjlZjc3i2m0CaC6KXJYoOlVs16lSyXoU1UYfSZUN9p3wqqieWmSq7olsp5BgtdrFosWJFWsqE8p4BpVvCbtbLqhp4OvaE2AgWl20qnjPPPBPPPvssNmzYgD/96U+YOXNmyfbFOYqWbQQtL39Pi48eJv7tuGFOHTG1d3Pc1Q00YonY8iuRr9ei97qmZFDs+ru5LKXjH1zHXPI1nemXjmDQ+TedN9CZmAfH0kyjixzZMz6R8ebWnJF++k82cpSSfj6sCiARXyX2dwidlXazL/l5RU6pgV2rwJwdcI8uBhRXwCcdn68MDPE4VIDQZQ2InFcH8+AgIl+vg71737Fg7+puSLmbht6rRiNyRt9UGNcoZ6INcjl2VKTtWM8HmSEwjh5ZBWN/P0Lfqu/bNuUYjpxcwCkyASWWqpxQJWDNiN0TGgcFksuSAkh7nXS2tTVeh3FIEMahQZgHBRC5fDS0Q4c/RUzqom+UVhfuQFZ3p9PLetW1FrU10bH/GT5bV3unWcfadgT/1r6+4o0YJxTomMykLEaMgeypW4sXL8auu+6KK664AgBw9tln48wzz8S9996LhQsX4sknn8SGDRtw4403AoilUJ999tn49a9/jb322gt77LEHfv7zn2Ps2LHJeVOUG2uCDv2VWAGCslkHVcq+arwzymSfB2AeEID2jgHt3xFY+5XB++m1oW6IQPoFzHI5ZgZg7h+A+kE3tH+HEd07t6USSi1RXbMsq1GnsCbo0F8MxZZt2r+8O1po8OQ4DfpZTeiJRKC+UoR13TUB2xEYu0aSNHc6tzXZh8gYDdakzOeF6BFV8C3rhTk7EAvi9P6/15f3wprph/LiwGmPqUFFVokRY1/KzXE8RVgGRbIITi6vbc7xx0ZWm1T4no7N05W6gND6j+4CgLW3jsipo+D7ew/0LMv4SF/fvqCqfzsBAHQBEf87uQTyuTAPCsI8KD6vdKdjACAoYunO8angruXugkP72zIo0qaOhi5riA0+pClympolI2sVIJF27O8LqLJSULjRuUwjxmM0RE+rhXO5vdTMCHu8jujhVfAVYEmw1FRqKALGYUHYY1RYk32ACkSPrsqcKaEKhC5rgPK+AXtvDdF9CnD915FMo5a6gPQ7Oj6qFFh79O2bvbfm6qCXoxT0XtkwcHDp7BSrUiC6U0aEFSB8Xh2UzVFYKZW5B8tZDC9nXp9jLITAuHHj4PP5XD8XWrbUre3bt0NR+g6WuXPn4tZbb8Xtt9+O2267DePHj8evfvUrNDc3J7e54IILEAqF8P3vfx+dnZ3Yf//98dvf/rYo72cksZt9wCsRqFvKJzAWn1hQdliwdtdcvf3lyprmhwx0Q30jErt4Vnl7BFBbF4EwAWN/f2492R5nzvLD90Q3tNcisQIjXn9PloT2egRSGRkdQ1ZyTfXyyZigPBIC+uGjYLV2Q1lbpMB4Lx3mFF+sIJMjlRGqiP1nyeS25gEDd9YYR1fBmu7LePNtfLEaxheqoHxsQs8SGA96xDixvWOEMzbyGU+/rBLAzvgvcgn2hIAck/I+grEU3bTP1kTsbztHXuPFj/rtqyNIhyJSnhP7ndQFRGLIuADnYedonAwq8b8RD1qcc90HGRhb++pQ3zEQ/WL6OhXZUthd++gc1Y6PYmcasU1upyLWKZPH0TnXfPtsgblzVN8ZqMXnPZsHBaAv74VxRBX0Zb35q/4dELD29UGuCsE4KP49VQSsaX3XRSNL7RB7nDbg55NYTinX6vX9ODp7hCX7MiEQPx6rFEQXVUMqgKxVIev7Ak+7Qe3/fUzdP3/K66VSYx181mRf8t+5klp8LnOvDfVDE9Y+OgK/H9yaxrLIt7ODDowVRcGyZcuS/3b+XGhnnnkmzjzzzLS/e+CBB/o9dswxx+CYY47J+HpCCFx22WW47LLL8raPlchqjt+Uvls+N6XJNOoREBQAAHQBc7Yf+uowtHWR2HqNHqaV69rFmQQVWNPjaxpvjMCa4+33pW42IHolzP18nu9EyUm1kqyYKzotyNry7+yiISpC2p3UAegCka/XAQDEZ44pFCpid1aJy2EuaYdCuNJl01KEK7hxzW11BJK5pFs75xAnA6dMN8fBviB5qEVwpC4gVEcA6SyQpiS2cTzBJ4BomgAi5c+7Uql1xNrc2UYFOBb6Bb+as92UtNvlInp0NeSX03QqDGUfnSOKiWkG2Y4LNeX/+aD3fY65zHFOBNKuYzj+GcrRamyuuALoz/VmrSOWKxkQsMfr6P3+0Jaay0Xkonqoq0Owm1T4lw6+QKTUBYx5Qfie6YVxYMAducWPOePwvuU6nfPQ5egcPlB/+mM4o8GkUquxef4AYM0ClM05Vr92znUucur2CLgjolKT9SrsRgXKJxbQXQbzjGVstAwYGWmkCYlRCe3fRRgxGQblYwPqNhP2WBX2HmUzmyMrM57Cq3u8/QFAfS22j9askXP8J+aCKe+XzzxvKoBi3NWk3qg5gzFNuAIymc9TnJ5+VM0V9DhvcjMkv7nmwlZnmWOchznbwpDuNnO+D8fcyeTfdO6L88/Hg2mZ+HW6UUjn9gXoH3PN3w0K9xxs50jtIDvnpH/4QXGiuJs1pe+DT3QeZD0OEwFoPkeMMx2jmSh9/0/urzOgVoVrVFsOcVedx9RgR/aH9Pd20RA9rsbdcZLl8HC9N03A+EIVQhfUxQJgx+h62kwAX6yInzVRz6ndXd83Z7Gx+PHUL1V/MIdp6vvMtbmdf6PIkSoDY8oLq4yK37jSqBtHzsiSvYcWW9bhYxNiu3eDg0TgbhwQKJ8KzjmwJuqw6xQoWwyI9uJUbRwSU0LbEIXUAHPqyJk2YifSqd/3/jmICqgYp/SUG0PXzama8vt8jnY4ggTX6LFzhNCXQzDiHOVMM2LsDDjt+jzcJkak63Nx7Xvi8QxFrJzvIdmRqg8Q7AnAjq81XJBCbM5OjzGq+7N2prg6C8LlcgjkuGzRQMLn1yF8Vi2s6f7YyCL6Mvqc7Ziu3WQhRowdl5ec5r4nmszGwIF68pgZ4n4592WoRdKG+3ezBazOz0tHLKtkoi/n/Y2cW4fwBfW57ZeWPjAOn1EL49AgIiekFD8bROdJv88v58C4f9ZAsTAwprxIplNv8X469UipRt2PELFgEx4etTQktLURSBUwPZ5uPGiKgDk3ACEB7VWPtj8A9a0oRETC2i/3i2w56BsxZmBc0YqRSt1vxDjl7zv3IY8jxjLDiLGryJTz8XQBKOAOfuLPdY0aOfY5MdfSGj/4NxKNp3eacwP9054T4unZrtHWqvSBfvTLNTCn+hA+J16B2dnOiWQ1AUTOqIWxvz+2dnEBRE6uQXRhMDbn0tG5azc5iiA5U6kzNJ0zvVhmqVieC1mvJuu8RE+pQc9NTcnK2q5jIfGZC0fQnmjLPAbGrk6aXK41iVR9W/ZFJ2mD+Ph2Q5xDnrrkVrG4vmPOwDfNLmTr4Ep8H/NxH2vvoSF6RBVCF9W527taxEa6x6Z8CNrA++6S+rHnOB3DlXXj9eJbROnYycDY4zelI6wadSprbgDy6R5oa8OIHltd9IXRs1E3RCBCEuZ0X9kvEZSOub8fvmd7ob0ShnFElSdHxJPVqGeNrI4J2aDArlWgbDOBiA34R97xRdm50iQdc1ldhYCGKzUwdo1uwD06mtcR4/Tpxq6RykyjUvG1hGP7KBD+yigo203I+ni6pCuQcwR7u2voXTwasmbw78M4ugrWjFhRMc1ZLdyVSh3fb+fcxgyj17JWQeScur7fOdcKj/8oRWz5tuiEwmXDmPMcAbezmnJTbOlE9Ep37YY06y0DsZR1YcQj+sFWE89GCPfonPP1NQEgHnymrhWbz44lX4bjMgvX93SA74/09RVakzogBrj9dM1rz9SpVGiZgl0NQOq+O9suTWAcOaMWygcmrGl5OM6FgBEv+qZ86KhonWl5J1dGDPrv+4B/K8ftnMFwke9jeedAeSFr1eQi7GKnd9NIle0WlJaRl0adIEcpsCb7IHok1E3eG73XV8cqqhqf83ZxsKGSYzRYe2tQWm1vznWNSqhvRCB9iI0YjyRCwN5bh5Aoq/WkKc+U1AAgLp+n+9QhBdV9o+26ocxnYOwMuJ1zXTONROnpf4YGWHMCMI7tS5G0ZvpjaZP/McrdVok1m4fS0aTEi4oJ4R5lcqWex0cvndWene/TeZpKuVEXzpImiWCqRJ2RiZGz8DfqEP7PelfwkLFzpIhDU5ZzGcF034Vk6nL+/qZrrnouAajZtyRR8nkD7Y9IH2imHcV0Hn8ZOpUKzfU9rUvpOBlg23QjxrI2nh2Q7+M9TadVP5nqBeQi181z2Y8CyXqmW7lyZU4vZBgG/uu//mvYO0Tly4pXnlPf9u6osTpS06gdvFqES2w3ob5vwm5SkxkGI5FX2x8A1DcjEAZgTR0Zy2SlsvaJXUE5z7iCpQR1fY/n73gfqPKz9IvM+zBczqI71Y6fnTf3wQw31K45pmn2X42lTZoHBNyvl68bb2ebpC7Hk7qvOXYsuD6HZGA85D0cmtR6o4rov+yRK0h2/FzMFQFqFITPqo2loTs6jxKjs8n9Gub3xNWp4VwKM4cR4+SIri76Ps9c/26GAnRJznZ3rDftWnu6wJzBrl3f1zbpC2g5nlfMa3Uu58zhZMTk2Nyu9+y1EeOLL74Yzz333IDb9Pb24sILL8Q//vGPvO0YlR9rUjyd+m3vjVQCGPFp1AnWfj7IKhEbMfZQlXB9TXy0eF7Acyne+WTO8EPq8bns6ZYcKSFtXSKNemQe//Z4FuCqeM5U6kKNGA90kx9Q3MFcgc51rsJSrnVN08/PdS+Bk+W1CxAsyEwjdvF9cQXjzhvvAUb0nFlf9i5qv8eKIrHs1ZiUv+v8pytt1hEc7aoi/JVR6L28oXD752BN98Oa6u8Lgp2Xp8RxmjIVYdCc78/5WQwigJK+wQfGyJQdkXjMmdVRoyB0UR3C59UVd2k/5/fR0bGVdkQ4lyJ6BdCvkGA6zs8yW8df6q7n+lbSnCOKJevZ76ijjsK3v/1t/Otf/0r7+7a2Npx11llYu3Yt7rjjjrzvIJUPq9kHqQLq5qh77o9HKNtMKK0WrD1GZhp1kiZgzglA2IDqlSJQEQnt1UisEvL+I2tuaz/xNY1FVELbECn13vTptqFuikJWCViTRlgadZw9VoP0CSgfGIDlvXMQFUGG0cbhLkPjGukb6EZVQXFu5JwBsLMqtXPE2LU2sOPnLG3hTIHNG9coev+OA9mkIfrFKoTPdY9oDtQJET28CtYeGsJfGYXI6aMQXRhE9ItVGbcvhOhx1bD20RE+t871uKsjIHU+aYIiYM0JQO5W7FzR+P44T5GJY2W41YCdb8UnYE71wZwyuOuNK2jMMWMhYxune0wVsCf4YsXTiilN0Tkgw/xrPcPxU2jOr36GtpfDycTJ9fPMUAywGLKe/X7605/i+OOPx+WXX44nn3zS9buPPvoIX/3qV/HRRx/hvvvuw+c///lC7SeVA19soXTRK6F87L05fuprI3u0zCmZzvtyCFKWPkDQ1oUhIjK2bnQeqm96nZFsf490TADQXgtD2IA525/feY9eogrYe2sQUUDx8JJlVDiuUS5Xtehhvm51huJQqUIyvwW3Mu1PpuJbVemLaLmCzWwjxoXoOHbti/Pxvh+NI6ph7efPvfBOtYLwpQ2x4HIXDcaxNZBNxb2Ltpt9CH+zHnJ05hFj102+mvvnUDDp/m5iCawMn02uo8euDgENiJxTh8jX6wZ4Rp/QhXWwJugwFlXn9secf7cmw3Gf5rFiB1pJQqD36tHo+X5jxqkFSY5gOG9FA3MwUAGzpEz1AnKQ89rTJRoxB3KY/SKEwI9+9CP4/X585zvfQTQaxYknnohNmzbhggsugKqqWLJkCSZOnFiM/SWPsyb5oG4xoL4dhb2nh+aROtKoR/L84gR7nAZrdw3qxybst8NAUwl3Rkpoq2MBoqua5whmT9Bhj1agvmtAfGpC7lr6BQC0V+IdQyN8xN4ar0N9x4DyvgF7Dw+dg6g4MqZSD3PEuFoBdsampgw0giMKnKlgNyhQ2m3YjtTdTHOMXUFOphHbNGSjivBZtbCb8he5ueaeun5Ol/bq+IcHs89y4mzjfhWh40o1pShN33Tyc3AFkH1Vn6ECiM8BDl1YB98LIQSmVMN4tB3mdB+0DfEpdM5AaZBBk93sQ7h5EKO4zinmo9JPIUhyBfyl6xhOVIF3dZykS6XWM3yPCy2Sw/dtMMvRDTGVOuM0kCLI+W7t2muvhd/vx3e/+1289dZb+NOf/oRddtkF9957L8aOHVvIfaQyYk3yAU/1QH07CuPIwff6FYryoQml3Ya1t9Z3YhrhzEOCUB/pgvmvTuArpfsslK0m1G0mrN1U2HuXPkAsCkXAnBeE76ke6GvCiJ5Qk/05BSQ+MWOdJLuosHcf2Z+B5ZhnbC4o8c5Q8SkZbtqGe9rPUiU2dGEdfH/rQfSoKvj+0j3MP5ZZ6IrRQFRCmI5lguoypFJnGKnMZfQvsR5u3qgZAsIBRi/7bVtOMgU+ecxiGC7XSGTiEMq03rUmkjUz7GYfovv6UdNQja49AbtKQNvQBgCutZmHFYAmOpgGeomU/e/9rwYoO6y0mVqukUovXALVLB0ImkDvd0ZDez0Cq4hZjvY+sQ/QHGDVCvdyTfkvviUFSjpiPKh+iKuuugoXXHABfve732HixIl46KGHGBSTiz1WhV0jYsulhL1T+EmroDTqBHOmH7JawFrbA9FRuiW09Bd6Y/szP+jJdX0LxTggAKkC2qvhkhfhSqwhau4fGPGfgb2XDqkgtlyWB6YRUJFlGBl1jVIOZQQmQ2psgt3sQ/iyBsgmzb2MUL7pAqhWXCNk9i6a+/fJ/XS8UdfocYnPAa7gK81omXOZn+oyPV9lmCft6qAo8ZQWV7CYaHLXMjkDz9EXioDcXU9ZCsyZZjv0fROJomZVubeR3FXL3KGjeKfdAfc5KH1qt4RsUmEcXlXUziF7nIbeq0cjcnZt5o0ypKXnlCad4zayVFW5kUO/yec+9zmIlBspKSW2bNmCRYsW9dt+1apV+ds7Kj+KgL2vD9raCNQtBqxpHghEbQl1fQRSANYIrkbdjx4btdSX9UJdFYL1xeKPGos2C+qGKGR1rCBYRalRYM3wQ1sXgfZaBOaBJXr/loS2Nnb8m3Mr4Pj3CdjjNKgfmRBt9sgutEf9ZboBTp3bOcjg1RVMZ7tRK0Z/jPN9NihpH3cXenL8XIqvhLNNMs03TnAEVEVd0qhAXB0prtG2ou9KZokiaK6OFWcRrAGeq6UPjPOSslwzwOfvfHnX8ZVlWw8ExlnPISUcV8qaVelsXz3lu5w6BtMvlTqHthcpr+u1wPiMM87oFxgTDcScFA+MN0U9ERgrW00onTasCXpxS/N7gHlwEPryXmhrQogeUTX4xdiHSX8xBCGB6MHBov9tLzDmBWKB8ZpQyQJj9e0olC4b5qTKOf7t8TrUj8xYOjUD44riShPOFISoAjAGGb2qAr1XNECEZPYR1yLd1PZeNTo2J1ARiPzHqIHn46o5BjmF4hxx1zN0XqR5zJrmA57phblvGdcLcKVSD30ObkEljh1nMweydGAkZMqmyEMAmvM8d0db2qlLZwEZC76VStbK76VL8svKXUAupcMxZb9lIOV95tLPJTw+x/jSSy8txn7QCGJN9kEKxNbRtWXJ5whp6+NppBVQdKufehXq3GpY/+6Bti4M88AiFr8K29BeDkNqgPG5yii6lcreR4e9iwr1QxPKxwbs3Yt/c6etiR//B1XOZ2CN16G/EILyvgGM8GJjlCJTkanBFIxJRwHkLlpOg8HWPjrU9wxYuxW2U0Y29L1+YiUC9waZnliY/RmIrHfcEWebZ+tcC3d3Hb3faSjv2iCO9nZVqC5VYJxmsEvEiy65AhJ/joGxMy24yvn+hryHCF1cD+2lEIzD+i+/JZtUoMuGvasKpSUWiTlTb80DgvA9G4IxPwB9ZXy+cZZ1josta4q4l4vOOdOnXZ0nAqknF5nasZFrKnVtjqsAFED556iQ91QrsMfrUDptKNtKvGSKLaG+Ho2lkVZSGrWDdnRsqQT9uVBRT7bay/ElmmYHgFEVeqoRAsbn4ks3rSr+0k2i3YK6KQp7lAJr6shcuzgd21GAiypMhlTqbJWQs79u7psaR1Uhekw1oqcNME+vwtjj+u6ms1ULT72Zlk2aN9Jfh0iEHNddbZgdNHmWnCKQqEbsDCCdQc9AmaPO32VaLmyQ7PF67PuTZrQw8h+jED089h1Lcu53k4qeG5oQPb6v6KXMMq+96IID70NB6xQMl5rhGHG0sTk9dr9hHJ7SsZFTYCxcHWFp13kuoAq9W6VCM+M34erGaEn3Q9lsQOmyYU/UB56rMoKpEwOw9tGh7LCgvlGkz8OQ0J8PxX48tHJGKtMx5wYgfQLa2jDQXdyrnbYmDCEB86CAN24GikSOUmA3qlA+s4AeL99hUN5lSpkc9vqxg/j+qALG56tcwWAxGfFpG16YypRgTfYhcnw1Qv9Z704hTvNZ2OM0hM+pRe9/jy7a/hWSa+TUObrqgZHLxGhccsQ409zOHHfVNWJcoM4M2ajCWFQNOcbR2ZIaQPtEynz74X7/88vZziLcf8CiqEs0DZbztOZcHs5xjjUOq0LPjU39z4G5plI7Mkz6jToXmJebnspYYnRKfTNS0v3QX42nkc6t7HRK84hYr53+bG9RKvVqL4ehdNowp/kgx3qgW7yUggrMAwMQJqCvChXv75oS2suhWLZEqQp/lZA1PnbcqVs5alxR1Aw3w5mC5Fx5IIbJVfSUGvRc2+i+KZWxNZCBWAXtohMC5oKq2HSSHD4La6ofcrQHIphhCH27HuYcP4xD+0bN3GtLl/6gMg6KXRvMRDVnZ4CpDCEwds4pLealP1sng/Nc4IH5u86q8qIr1nlr1ysInV8Ha08NxtHeWe40lSsTx/l5O7+uCtJnDORSs0oBZJ2KyPHVCJ9bW/TpmBV+x0qFIps02GNUqNstiDarNBe4iIS6IQLpA0wP9ZyXgj3ZByteqVd5x4A9qYA3RqaEvjy2RJNxlHdP7sVkLAhCWxmCvioE4/PFKYKmboxA6ZYwp/hccxErhT1eB16JQHnfgDW1sr//lSTTMijugk9pnqcCYqAb5nIaRhACSDOHMfr1OtR2aQhNQknmGSd4YqS0COw9dUS+ors7o8Xgg828E33/N75YDWuKD/ZesWFt12fj3L8cLyGuubNF/JxlloxA13fe8sD83aCC3ssbgCoB0WXD95duRE4fBdmkIbyvx6c9ZepwdAawGT6OwSzpZC7oP7+8GMriVL9t2zZceOGFmDVrFg4++GDcfPPNsKyBu3w6OjpwxRVXYO7cuTjwwAPxve99D729vcnfr1mzBhdffDEWLFiA2bNn48QTT8Tf//73Qr+VipJMp36zNOnU2oYIhBHvCS3yHAXPEQLG52Mpzb5nego6aqz9Owxlpw1zqq9kqYReI0ersKb7IHpkLKW64H9QQl8RG502D67MVHZrH84zrkiZim85R8LSjdSVxd3Q0MmggBynQ5s/quRrmQ/YATESOdvbmVZdogJLkS/XwG5UET6vDlAF7H18fd8JZ2eSs5Mp19HtoOhLay5Cf2zowjoYC4LZa2hoHuiQSCF30yDrVNh76Ah/K7YGellwjQxnSFHPdI4ZRGBcKp7/FCzLwkUXXYSmpiY8/PDD+Oyzz/Df//3f8Pv9uOyyyzI+78orr8SOHTtw3333wTAMfPe738V1112Hm2++GQCwdu1aTJ48GRdccAGampqwfPlyXHnllaipqcHChQuL9fZGNGuqH3guBG1jBOYhxb8515hG7WLN8MMe2wv1fTO2lNaUAoyiGRL6svho8ZGl6e3zKuPQKmivR6E/H4pVkC1gepDyvgH1QxP2WBXWpDJe5mQYZJMKWS2gfGTGluapkFGqipcplTp1vc1UaSqqupT54eOp9YBND4zYlYrzmCxRM8ixGkKLM8zfDgiYs/2xJY+cS5rlePjIgILe7zfGPuMidMDYzT5Ec5kaoAmEz6qF9koY1nRmEA2HK5Xa1Xni+DnTR5/DIZHTqHIBeehMmd4LL7yALVu24JZbbsGUKVOwcOFCXHbZZXjwwQdhGOlHArZs2YIVK1bgxhtvxKxZs3DAAQfgmmuuwRNPPIGWlhYAwDe/+U1cfvnlmDt3Lvbaay+cffbZOPTQQ/Gvf/2rmG9vRLP30mCPUqC8awBdxS2AIzosKFsM2LUK7ObKDAz6UQSii2Kpzb6newrSW62v6I2NFk/3wd6D7e5k7633FUFbX9i59/pz8cJnh1WVfHSoZISAtbcOYQHKhxw1rhiZUqmzFRLKclNX6pu14cq6PEwxDXYN6RHElapc4qUs0xICka/WxqZBOa4dIsfPTPpFrBMq2zq9RSY1wJruR+ScurKucO4JqXOJkz/nsLyX8/ycMXgu7efj+RHjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX4/p06cnH5s/fz6EEFi/fj2OOOKItH+rq6sLkyZNGtb+Knk40SVeIx+vVVKKgD3LD+2FEPQNEViH5G8EMVsbaa9FYtV45wagaN46QRdTajvJqX5Y43Wo7xvQ10VgHZDHkfxOC/ryEKQKmF+qKZvjt5jfN/OL1VDv7IDvmV5EZhdm1Fh8akJ7MwpZp8CeE8jb+yrH85Kc4APeiELbasKcWPhRgnJsoxHHVZU69wq7UhUQiSE8Bf0K9Hh6+ZQBSB0QBjw1rcWa4Qf+1oPoERWYVaQA4a+MgvZq2PtL6Dm+S3atAuUTK7kMTyayzlv3W/ZoBUqbDXt37xz/ZS+oIPzVUZD1KsROx4kyU8DslDrHPl1/C1OpB9bS0oLGxkbXY4kguaWlJW1gnO45mqahrq4uOWKc6umnn8bGjRvxwx/+cMj7qmkKGhtrsm+Yo4aG8i9cZC3UEHkhhMBGE4ET8tc2CenaSEqJ8CvtkABGHTkaSqPHLz5F4Gwn62s6Ij/aBt9TvQgeOhqiKj8TgSJ/3QErIqEdXYfqyfV5ec1iKsr3rREILw8Dm8Ko2wxoB+f/OxH506ewAPi+WI/qXUfl/fXL6bxkzdIQ+Vs3/B/bqMvjuTmbcmqjkca15qVzFDhTtd0026a9MSvTUc7Q/xsN5UMD9kSfZ1IEZb2KnpuavDliWmgCsOYEYM0pgylejo8neuIo2K+FXRW2nXq/OxqiR7rXMfaA8MX1UN41YM1i+nQ+WbNjx6+6wdFj6JzGksscYwVAug7HSg2Mf/nLX+KOO+4YcJvnnnsOACAyNHCmxzP9TkqZ9vE1a9bg6quvxg9/+EM0NzcPuE8DMU0bnZ3DX45FUQQaGqrR3t4Du0TFGfKmTsLfoADvhNG6ZSdQn58gbKA2UjZH4f/UgDVeR3sgCrSWdi3lUkrbTg2AfkAA2r/D6PrDZzBOGn7wpGyOwr+iC7JaoOsQHWjtHvZrFkuxv2/K5wPwbwoj/HgbIs3I65IdYpuJwEs9kKMUdM5S8/o5lOV5qUYioAPWO2G07ugq+I14MduotjYIXa+8auPZ2HvpMCf7YgUGRfoR47QVbPsVlEn5/KJlcsynkI0qrEYPHieVGBSXG2faa4MC44jMHX6yToWsK8I+DZKsVWHN9uDxP1JkqlyeQyp1xroOJe5bKVlgfNZZZ+GEE04YcJsxY8agqakJGzdudD2eGPVNHRVOaGpq6jcybJomOjs7+z3npZdewje/+U1cffXVWfcnF/m8GbJtWT43oAMwZ/rhey4EZV0Y5mH5TZ1K10aJtWLNgwIjov3yIbWdIsdUQ90YgboqBGOOP7lUw5BEJfx/7oy97pdrYAdEyaptDkexvm/2Pjq0iTrUzQaUVSGY8/OXzu7/RywQjh5eBVtDQT6HsjovKbFASd1iANvMoqWTllUbjTSqQOS82B269kpfBXjpOMUZ8wMQrRbsfXToL8Q7szNVV43LdY4l0YihZMmyIHLVdMih8ncuS4BVavGt+vp67L333gP+p6oqZs+ejU2bNqG1tTX53JUrV6K2thYTJkxI+9pz5sxBR0eHK6BevXo1pJSYOXNm8rE1a9bgoosuwpVXXonTTjutcG+2wiVSWLTXCltwCADQbUPdGIEMCpgzmTqTUY2C6JeqISTgf7gTiAx9Ap3vqR4orbHlmSy2eU6iX6qBFIDvHz1AT34mLyrvG9A2RmHXKTDnlUGaXpFY42MRkcJlmyqOs2Kqa8S4WkH4PxsQ/ZJjBCzbaEflJh5RhZIcaKVsnB0mzn7nXAJjjxbf8tZkgDQWLFiA5uZmLF68GJs2bcKKFStw++2344wzzoCux2541q9fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45PzkRFJ911lk4+uijsWPHDuzYsQMdHR2leqsjlj1Ogz1GhfqRCfGJWdC/pb8ShrDiSzRxeZYBmQcEYE7zQWm14X+se0hrG6uvhaGvDEFWC0RPrCn5Ca1c2OM0mPMCECEJ3z978vCCEr6/xEaLjUXVrLrpYMcDY/U9BsYVx7kyjnOOceLa4Py9Y0qDVJw/xzct01Rq8phyOjX7ymlnqRRkpmKHGYtvYXDblIDnA2NVVXHnnXdCURScfvrp+M53voMTTzwRl156aXKbUCiE9957z7V8009/+lNMmDAB55xzDi688ELsv//+uP7665O/X7p0KUKhEO666y4sWLAg+Z/zdSlPhIB5YGwES385nGXjYbAltDXxZWoO4ohZVkIgcsoo2HUKtHUR6M/2DurpyocG/H/ughRA+Cu1kHXsXh6M6BeqIYMC2uowlGEGbdrqMNRtJqy9NZhzOGrvZO2tQYr4iPEQOn+ojDlHM5wjxsnAOEP6tOPOyJoWK95oTeDyc1RhOLhA2WRIpZaZUu9Fhm1yGUkuEs9XpQaA3XffHb/97W8z/n7evHl46623XI/V19fj1ltvzficH//4x/jxj3+ct32kgRlzA9Cf7oH2ahjRYwozoqW+GYXSasNq1iHHlsWhXXrVCiJfr0Pgfzvg+79eyICS05xXsd1E4N6dEFEgekw17Ems/D1oNQqix9fA/0gX/I90InT5aMA/+O+FaLHge7IbUgGiX+aofT9+BfY4DerHJkS7DTmaHTgVwxHLukeM02yrph/tiH55FMxpUVjT2OFEQ2c3KFDabdi7lc+9iWRgTNm4RowdP+dy6CgpPydWfuKIMVWEUQqsqT6IXgl1Y2HmGuvPx0Y8jUPzuDZvBbDHaYicWQupAf6/dEN/ugewMo+sqZsiCP5vB0SvhHFoEMZCtvdQmXP9sXT2Nhu+vw4hnd2S8D/SCWEAxuFVsHfnqFY6yXRqzjOuKDLouMVx3uSn65jtVy01/hp+EVtah2mlNAyhbzcgfE4trCll1IlcRrtKJSLc58qkXPqfnefcDB2TpcDAmIommU69Jv/p1MqHBtT3TdhjVFiTeTYfLGuyD+Hz6iB9Ar5nexH4dQfUt6OuqsZihwnfI50I3NcJEZGIHlUVK17DEcqhEwKRk0fBrhHQ/x2GtnJw3w3fE91Qt5qwdtdgHJnfiu8jSbIAF+cZD8umTZvwX//1X1i4cCFmzZqFY489Fg888ECpdysjGUiTPg2kXSJNZiq+xbskyocaBdZUf1ldL2UelxKkEcp53gxk6XxMpaQPhiVTqalSWJN8sEcrULcYUD428jq6pT8XHy1eEOSyAkNkN/sQuqwB/j92Qv3AhHrPTsiggN2gQvTaUDpi1ZNljUDkxFGwZjC1MC9qFETOrkPgNx3wPdENWS1gzc4+R15/rhf6qnDs8zirNq/rIY809j4cMc6HDRs2YPTo0bjllluw22674dVXX8X3v/99aJqGr371q6Xevf6CgxjBUDNsy68VVSrOOqFsnAUMA47odkgjxvGBmBJ3HjEwpuJRBIxDq2LpuitCiHwlP4Gx2G5Cez0Ke5QCc38W3RoO2aQifHE91Ncj0F+KFYVSt8UqiVu7qbBm+mEcHASCHEbJJ3tvHZHTRsH/UBf8D3chGpIwPxdIf4GwJfR/9sK3rBdSB8Jn1UE28A5mIHKUArtRhfKZFVseq5rH71Cceuqprn/vueeeWLduHf75z396MjB2pVJn+4o4RywyjGQQVRQOMlA2zmPEmUqdS3DrPLey+BZVKvOAAHz/7IH6WgTii1Zebuh9/4otd2McXsUqivmgCFizArBmBWKp1CEZO+FxCaCCsmYFEBEC/oc64X+8G+pbUUQXVfcVkpMSyscmfH/vgfquAekXCJ9bl5w/SwOzxmtQWi2oW41YSiPlRVdXF+rq6ob1Gsowb8ATz+/3Oo6PWdGUftu7OM5vwnHDpqgjJzLO2E6UxDbqIxz3U6ntwXbKrhLaSDjPm1rm4yUt5zaq+/xbyjZjYEzF5RMwDg7C90wv9BUhRE+oGdbLiY8NaBuisGsVmFyiKf8UAVSP3JO611gz/Qg31MP/UCe0N6PQ3ozCblIhaxWIDgtKWyyd3R6rIvzVWlZfHwR7vA68EoHyHgPjfFm7di2efvrpAVeNyEbTFDQ2Du86kNDQUN3vMeM/LEAVCO5ag8jUbii76q6/14vPAAD+Kh0WYoUhtYAKG7FMmXztm5ekaydyYxsBMmgjhHaIvX0Zvwdsp+xGchvZkSjCaAMA1NQFEEUngIHPm4lzrubrO88KJZlIDc2noqaE513eVVHRGfOD0Ff0QlsdgnFocMijxlJK6H/rjr3mERwtppHB3lNH6PLR0FaHoL8cjqX/tsTWMbDGaTDnBWAeEOAI/iBZjnnGnGns9stf/hJ33HHHgNs899xzGDt2bPLf77zzDi655BJceumlOPjgg4f8t03TRmdnaMjPB2KjCw0N1Whv74Ftp1R2Pyh+m9PWA5w7KvZza3fy14ma+hHTTN4QGZpMZl63OrYtdwO2EwFgG/VzQxOgC/SmfA/YTtlVQhuJDhOJIamu3kgySWeg82binGvaVl82tWPE2DBt9BTovFtbG4SuDxxzMDCm4qtRYBxaFRs1/kcPoqfXDullrFd6oG42YO+icrSYRhafgHlYFczDqoBeG6JXQtYIIDBy0jqLTTapkNUCyscmEJVcfsfhrLPOwgknnDDgNmPGjEn+vHnzZpxzzjk47bTTcNFFFw377+frptG25ZBfy1kJ1bnm8Ui8oR1OO1UKtlFc4ruQoS3YTtmN5DZSjL73JdH3cy7vV2aq/i9K214MjKkkjMOC0FeHoK2NwDzYgL3XIOdJhm0Yf+wAAESOr2FFXhq5qhRIrsQ0fELAGq9D2xiF8qEBu5nLuiXU19ejvr4+p23feecdnHPOOTjxxBPx//7f/yvsjhWTYxDBtR4nERGlJx0B7HBiWec9fImrUnP4gUojoCC6qBpCAv5HuwBzcN8o/a/dkK0mzJl+2JN4g0tE2VlctmlY3nnnHZx99tmYP38+zj33XOzYsQM7duxAW1tbqXdt+DJVVyUiorTs3TSYc/yI/Meo4QXGmSpUlwBHjKlkzAMD0NZFoG4xoP+zB8YxuU22V9dHoL0cBmpVGCePKvBeEtFIkajgrTAwHpKnn34abW1teOKJJ/DEE08kH999992xbNmyEu5ZHkQdKYEMjImIslMEIl+JTYdU10cG91yRvip1qYdsGRhT6QiByCmjEPx5O3zLQ7B312HNHLharPKRAf8jnZACCJw3BqFqO+PcFyIiJ3ucBqkD6lYzdt4YwctoFMKll16KSy+9tNS7URAiwsCYiGjI5CDvxVOyp2Wax0uBqdRUUrJRReRroyAF4P9jJ9S3ohm3VT42ELh3J4QBmMfWQJ3JiZdENAiqgL23DhGRULabpd4b8pKw3fdzgIExEdGg5GmOsWRgTJXO2s+P6Ak1ECbgv38n9OW97jnHloS2OoTA/3ZA9EgYC4IwFwYzvyARUQYW06kpDRFyjBjHl/6za3mLRESUC7lLLAlZ5tqx6AykXXOMSxsZM5WaPMGcHwR0Ad/jXfA91QPthRDsCTogAOU9A8pOG1IBosdUw1gYhFLiLw4RladkAa53DZiHlHhnqOSMQ4LQXwzBnOmH+mE8i0ABem5o4tABEVGO7HEaQhfVwd5l4NBSCkBIZE69ZvEtohjzwACsvTT4/q8H6htRaK/1TeQ399VhLKqGvccgl3UiInKw99Ih1VhgzHnGFD2uGsb8IGRAwP/3ntiDAlznmohokOwJQ1wlRmHxLaK05K4aImfXAb12cg6gPVYDqtl1T0R54BOw99KhvmdAfGpB7sbLYEVTBGSTCvTY2bclIqLhEYilUcuUx9L9XAKMNsibqhTYzT7YzT4GxUSUV9aEeDr1lszF/qjCuG7MOFpMRFRQDIyJiIhKz2pOBMYswEVxzpsx3hkRERVGusCXgTEREVFp2HvpkBqgvmdwHXSKcVVFLdleEBFVBteIsUj/cwmURWC8bds2XHjhhZg1axYOPvhg3HzzzbAsa8DndHR04IorrsDcuXNx4IEH4nvf+x56e3vTbvvqq69i6tSpOPnkkwux+0RE5CV6fD3jENczpjimTxMRFZxIhG/OAoceytjxfGBsWRYuuugiGIaBhx9+GD/+8Y/x2GOP4Y477hjweVdeeSU2b96M++67D//7v/+Ll19+Gdddd12/7bq7u3HVVVfhc5/7XIHeAREReU1inrHCdGoC3Ddmasn2goioIshMgTFTqQf2wgsvYMuWLbjlllswZcoULFy4EJdddhkefPBBGEb6G5otW7ZgxYoVuPHGGzFr1iwccMABuOaaa/DEE0+gpaXFte0PfvADLFq0CHPmzCnG2yEiIg9IzjN+l4ExwXUzJnWOHhMRFZQ/fWAsuY7xwNatW4f99tsPTU1NyccWLFiA6667Du+++y4mT57c7zlr165FfX09pk+fnnxs/vz5EEJg/fr1OOKIIwAATz75JN5++2388Ic/xF133ZWX/VXysCZm4jXy8VojFdsoN2yn7NhGuRlx7bS3D1KPzTNWJACV5+6K5vzINH5+RESF5B4xzjB6XAKeD4xbWlrQ2NjoeiwRJLe0tKQNjNM9R9M01NXVJUeMt2/fjh/96Ee499574fMNcUHqFJqmoLGxJi+vBQANDdV5e62Rim2UG7ZTdmyj3Iykdgrv2w37jRDqe3So+wTy9rojqY0qhiswLtleEBFVBkdgLFzFD0sbGZfs9P/LX/4y6zzh5557DgAgMjRSpscz/U5KmXx88eLF+MY3voFJkyblustZmaaNzs7QsF9HUQQaGqrR3t4DmxVT02Ib5YbtlB3bKDcjsZ20vRTobwDdr+yEWTv8IlzFbKPa2iB0nZNh88aZyscRYyKigpACEBKwmxzXLw/NMS5ZYHzWWWfhhBNOGHCbMWPGoKmpCRs3bnQ9nhj1TR0VTmhqauo3l9g0TXR2diaf89JLL+GVV17BLbfcAgCwbRtSSkydOhUPPPAA9t9//yG9r3zeDNm2HDE3oIXCNsoN2yk7tlFuRlI7mRN06ADE5ijshVV5e92R1EYVw9mZzjnGREQFEbq8Adr6CMyDAvA/3t1/g0oNjOvr61FfX591u9mzZ+Ouu+5Ca2trMqhduXIlamtrMWHChLTPmTNnDjo6OrBx40ZMmzYNALB69WpIKTFz5kwAwBNPPOF6zh/+8Af8+9//xm233YY999xzGO+MiIjKgb2HBukTsfWMTcm5pRTDVGoiooKQYzUYY1NOslyuKXcLFixAc3MzFi9ejE2bNmHFihW4/fbbccYZZ0DXY1VF169fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45P3nSpEmu/xobG+Hz+TBp0iQEg8GSvV8iIioSVcCaqEMYgPI+q1NTDFOpiYiKyEOnXM8Hxqqq4s4774SiKDj99NPxne98ByeeeCIuvfTS5DahUAjvvfeea/mmn/70p5gwYQLOOeccXHjhhdh///1x/fXXl+ItEBGRR1n7xoovqu9ES7wn5BkMjImIisc586hSU6kHY/fdd8dvf/vbjL+fN28e3nrrLddj9fX1uPXWW3P+G5deeqkr2CYiopHPmhQPjN82YBxT4p0hbyiLOyMiohGoxOU5PD9iTEREVCiySYU9WoG6zQS67FLvDnkB16EmIqpIDIyJiKiiJUaNNaZTExERFZeHFnFgYExERBWtL52agXEli3y5BpETa0q9G0REVCKcSUNERBXNatYhlXhgbEum0lYocz5XpCAiKqkSX345YkxERJUtoMDeW4fokVC2m6XeGyIiIioBBsZERFTxrEk6AEB9i+nURERElYiBMRERVTxzih8AoL7BwJiIiKhoWHyLiIjIO+RYFXaDAvVDE4LLNhERERUf1zEmIiIqMSFgJUaN34yUeGeIiIgqj/SXtvoWA2MiIiIA5tT4sk1MpyYiIio6WVPa0JSBMREREQB7Hx3SL6C+EwWiHpr0REREVAkYGBMREXmAJmDt54MwEQuOiYiIqGjsegbGREREnpBMp97IecZERETFEDmvDtGFQdj76CXdD62kf52IiMhDrMk+SA3QNkYRNSWglbYQCBER0UgmJWBP8cOe7Cv1rnDEmIiIKCmowJrsgwhLqG8znZqIiKhSMDAmIiJyMGfFlm3SXmM6dSYffPAB5syZg3nz5pV6V4iIqIyJoHfCUe/sCRERkQdYU/yQvvg8Y1an7sc0TXznO9/B/vvvX+pdISKiMieqvROOemdPiIiIvMAnYE31QxiA+iZHjVP96le/wh577IFjjz221LtCRETlzkOBMYtvERERpTBn+aGti0B7LQJrVqDUu+MZr776Kh5//HE8/vjjeOaZZ/LymooyvAJniecP93VGOrZTdmyj3LCdsmMb5U5Uq55pp7IIjLdt24brrrsOa9asQVVVFU466SRcccUVUFU143M6Ojpwww034Nlnn4Wqqjj66KPxve99D1VVVcltbNvGPffcgz/96U/Ytm0bdtllF3z961/H2WefXYy3RUREHmVN8kEGBdRNUaDbBmq806NdKt3d3Vi8eDF++MMfoq6uLi+vqWkKGhtr8vJaDQ3VeXmdkY7tlB3bKDdsp+zYRplFZnfDWtcLdWYVGhpKu0xTgucDY8uycNFFF6GpqQkPP/wwPvvsM/z3f/83/H4/LrvssozPu/LKK7Fjxw7cd999MAwD3/3ud3Hdddfh5ptvTm7zox/9CC+++CKuvvpqTJw4Ee3t7QiFQsV4W0RE5GWagDk3AP3FELRXwjAXVmV/Tpn65S9/iTvuuGPAbZ577jn8/Oc/x+c//3kccsghefvbpmmjs3N4111FEWhoqEZ7ew9sm3PCM2E7Zcc2yg3bKTu2UQ6+Wg3lpGpU7aoXpZ1qa4PQ9cyDqkAZBMYvvPACtmzZgvvuuw9NTU2YMmUKLrvsMtx222245JJLoOv9exi2bNmCFStW4NFHH8X06dMBANdccw0uuugiLF68GE1NTdiyZQseeughPPHEE5gwYQIAYM899yzqeyMiIu8yDooFxvrLYZiHBQHhjVSvfDvrrLNwwgknDLjNmDFjsGbNGnzyySf4wx/+AACQUsK2bUydOhU/+clPcPzxxw/p7+frZsi2JW9Ac8B2yo5tlBu2U3ZsoyyqYtdVr7ST5wPjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX58MigFg/vz5EEJg/fr1OOKII7Bs2TLsscceWLZsGc4//3wIIXDooYfiyiuvRE3N0NO68pEjz3kJ2bGNcsN2yo5tlJuKbKdxOuy9NCgfmNC2mrAn+AbcvFzbqL6+HvX19Vm3u+eee2AYRvLfzzzzDO69914sWbIEu+22WwH3kIiIqPA8Hxi3tLSgsbHR9VgiSG5paUkbGKd7jqZpqKurQ0tLCwDgww8/xMcff4x//etfuOWWWxCNRvHDH/4QV111VdaUskzyOVcK4LyEXLCNcsN2yo5tlJtKayfzSBvR+1pQ9aoB/4Gjc3rOSG2jffbZx/XvDRs2QFEUTJo0qUR7RERElD8lC4xzndMEACJD+lqmxzP9TkqZfFxKCcMw8JOf/AR77703AOC6667DmWeeiZaWFtcIda7yMVcK4LyEXLCNcsN2yo5tlJuKbaeJAoEqAfPlHvQcuROyIfP8pGK2US5zpYiIiCh3JQuMc53T1NTUhI0bN7oeT4z6po4KJzQ1NSW3STBNE52dncnnNDU1QdO0ZFAMAM3NzQBiVbCHEhgD+ZsrlXitiroBHQK2UW7YTtmxjXJTce2kAcbBQfie6YX6fC+ix2fPCqqUNjr55JNx8sknl3o3iIiI8qJkgXGuc5pmz56Nu+66C62trcmgduXKlaitrU0WzUo1Z84cdHR0YOPGjZg2bRoAYPXq1ZBSYubMmcltTNPEhx9+mCy69d577wEAxo0bN9y3R0REI4QxPwj9uV5oL4UQPbIKqOLSTURERCON56/uCxYsQHNzMxYvXoxNmzZhxYoVuP3223HGGWckK1KvX78eixYtwqeffgogNvJ76KGH4pprrsH69evxyiuv4IYbbsBxxx2XHAk+5JBDsN9+++F73/seNm3ahPXr1+OGG27A0UcfPeTRYiIiGoFqFJgHBiCigP4il/QjIiIaiTwfGKuqijvvvBOKouD000/Hd77zHZx44om49NJLk9uEQiG89957rmqZP/3pTzFhwgScc845uPDCC7H//vvj+uuvd73ub37zG4waNQpf/epXcckll2DmzJm46aabivr+iIjI+4zDqiBVQH++F+iyh/YiUQl1bRgwR36aNRERUbnxfFVqANh9993x29/+NuPv582bh7feesv1WH19PW699dYBX3fXXXfFr371q7zsIxERjVxytApzfhD6ihB8/+pB9KRRg34N39Iu6K9GENYErBn+AuwlERERDZXnR4yJiIi8IHpEFWRQQFsThvKhkf0JDsqWKPRXI7BHKbAm6gXaQyIiIhoqBsZERES5qFIQPbYaQgL+R7pyT4nutWPbA4geVw0EeeklIiLyGl6diYiIcmQeGIC1rw7lMwu+v3YDMktwbEv4H+2C0mHDnOWHNYsp1ERERF7EwJiIiChXQiBy6ijYoxToa8LQVgxQpVpK6E/1QNsQhT1aQeSkGkCI4u0rERER5YyBMRER0SDIehWRc2ohNcD/9x7o/+gBrJSRY0PC92g3fM+HIKsEwl+vYwo1ERGRh5VFVWoiIiIvsffUEf56HQK/74TvmV6ob0RgzQvC3EtA29wDdXUISpsNe5SCyLm1kLvycktERORlvFITERENgb2vD6Fv18P/aBfUrSbUx7sRRTcSNafNqT5Ev1wDWa+WdD+JiIgoOwbGREREQyR31RC+uB7K+ya0zVEETRUhvw1jig9yN15iiYiIygWv2kRERMMhBOx9dJjNPvgaa9DV2g1p57iUExEREXkCK4EQERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGBMREREREVFFY2BMREREREREFY2BMREREREREVU0IaXkYot5YtsSlmXn5bV0XYVhWHl5rZGKbZQbtlN2bKPcsJ2yK1YbqaoCRREF/zuFlq/rJo/N3LCdsmMb5YbtlB3bKDdeum4yMCYiIiIiIqKKxlRqIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjD1myZIlOOKIIzBjxgycdtppWL9+fal3qWjuuusunHLKKZgzZw4OPvhgfPvb38b777/v2iYSieD666/HvHnzMGfOHFx66aVobW11bbNt2zZceOGFmDVrFg4++GDcfPPNsCyriO+keK699lpMnjwZDz74YPIxtlHMJ598giuuuAIHHXQQZs+ejZNPPhlbtmxJ/p7tBHR3d+O6667DoYceilmzZuG4447D448/nvx9JbbRyy+/jG9+85tYsGABJk+ejGeffdb1+3y1yZo1a3DSSSdh+vTp+MIXvuBqdxocXjd53RwMXjcz43UzO143+xtR101JnvH3v/9dTps2Tf75z3+W77zzjrzmmmvkgQceKFtbW0u9a0Vx3nnnyUcffVS+/fbb8s0335QXXHCBPPzww2UoFEpu8/3vf18uXLhQrly5Ur7++uvytNP+P3vnHdZU0v79b0CkCIKAAqIICicgCAiKropiw7K6K5a1LPayoq69rq6yumvvYMWGvXewKzZURMGKIEoRpEkRkBbIvH/wnvMQkkASgujP+VxXLuXMmTlT72n33PMbGTZsGOdeXFxM+vTpQ0aNGkVev35NgoKCSJs2bcjGjRtrIknVys2bN8kvv/xCOnToQA4cOMA9p3lESFZWFuncuTOZP38+efbsGYmPjydBQUEkKSmJe4fmEyF//fUXcXd3JyEhISQ+Pp4cPHiQWFtbk0ePHhFCfsw8CgoKIuvXrydXrlwhDMOQmzdvirgrI0/i4+OJg4MDWbFiBYmOjiYHDhwgNjY25P79+18tnf9XoP0m7Tflgfab0qH9pmzQflOc/0v9Jp0Yf0MMHDiQLF26lPu7pKSEdOjQgezatasGY1VzpKenE4ZhyJMnTwghhGRnZxNbW1ty+fJl7p3o6GjCMAx5/vw5IaS0cdrY2JC0tDTuncOHD5NWrVqRoqKir5uAaiQtLY107NiRvHnzhnTu3Jnr4GkelbJmzRoydOhQqe40n0r5+eefyfbt20Weubu7k127dtE8IkSsg1dWnqxevZr06dNH5FvTp08nEyZMqM7k/J+E9pui0H5TOrTfrBjab8oG7Tcr5nvvN6kq9TdCUVERXr16hfbt23PPVFRU0K5dO4SHh9dcxGqQnJwcAICuri4A4OXLlxAIBCJ51KxZMzRs2JDLo/DwcFhbW8PQ0JB7p0OHDsjOzsb79++/XuSrmQULFmD48OHg8/kiz2kelXLz5k3Y2dnhzz//xE8//YT+/fvj3LlznDvNp1JatmyJGzduICUlBYQQ3L17F6mpqWjXrh3NIwkoK0/Cw8NFwmDf+VFlvaLQflMc2m9Kh/abFUP7Tdmg/aZ8fG/9Jp0YfyNkZmaipKREpFIAgIGBAdLS0mooVjUHIQQrVqyAi4sLmjVrBgD49OkTNDQ0oK2tLfKugYEBPn36xL1jYGAg4s7mKfvO987BgweRl5eHMWPGiLnRPCrlw4cPOHz4MJo1a4Y9e/ZgwIABWLhwIW7cuAGA5hPLokWLYGZmho4dO8LOzg5TpkzBihUrYGNjQ/NIAsrKE2nvZGVlQSAQVFf0/89B+01RaL8pHdpvVg7tN2WD9pvy8b31m7WUFhKlWiCEgMfj1XQ0vjpLly5FVFQUjhw5IvJcUl4QQip9p6Ln3xPv3r3D1q1bcfz4caioSF7X+tHzCChNb4sWLTB9+nQAgI2NDV6+fIkjR46ga9euAGg+AaWDxYiICOzcuRNGRkZ48OAB/vrrLxgbGwOgeSQJZeVJ+XfKh0FRHNpv0n6zLLTflA3ab8oG7Tfl53vqN+mO8TdCvXr1oKqqKrZalJGRIbYa/n+dZcuW4ebNm/D394eRkRH33NDQEPn5+cjNzRV5v2weGRoaiuUh+3f5labvkWfPniEjIwPu7u5o3rw5mjdvjsTERPz333/o2bMnzaP/j6GhIZo2bSryrFmzZkhKSuLcf/R8KigowIYNGzB//nx06tQJ1tbWGD16NDp16gR/f3+aRxJQVp5Ieic9PR16enpQU1Orruj/n4P2m/+D9pvSof2mbNB+s3Jovyk/31u/SSfG3wi1a9eGra0tgoODuWdCoRAPHjyAo6NjzUXsK0IIwdKlS3H16lX4+/ujcePGIu52dnZQU1MTyaOYmBh8/PiRyyNHR0e8efNGxAx8cHAw6tatKybwv0e6deuG8+fP4+zZs9yvQYMGmDBhArZv307z6P/TsmVLxMXFiTyLjY2FiYkJAFqXAKC4uBgCgQCqqqoiz1VUVCAUCmkeSUBZeeLo6Ij79++LhB0cHPzDyHplQftN2m/KAu03ZYP2m5VD+035+e76TaWa8qJUCfbaidOnT5Po6Gjy999//1DXTixZsoQ4OzuTR48ekdTUVO5X/toJNzc38uDBA/LixQsyePBgiSbfx4wZQyIiIsidO3dI27ZtyYYNG2ogRV+HstY1CaF5RAgh4eHhxMbGhuzYsYPExsaS06dPEzs7O3Ljxg3uHZpPhHh6epJffvmFu3bi6NGjpHnz5uTcuXOEkB8zj3Jzc8nr16/J69evCcMwZP/+/eT169ckNTWVEKKcPImPjyf29vZk1apVJDo6mhw8eJA0b96cXtekALTfpP2mItB+Uxzab8oG7TfF+b/Ub9KJ8TfGgQMHiJubG7G1tSUDBw4kz549q+kofTUYhpH4O3XqFPdOQUEB8fb2Jq1btyYODg5kypQpIubdCSEkISGBjBs3jtjb25M2bdqQlStXkuLi4q+dnK9G+Q6e5lEp165dIz///DOxs7MjvXv3JmfOnBFxp/lESGpqKpk3bx7p0KEDsbe3J7169SIHDx7k3H/EPHr48KFEObR582ZCiPLy5MGDB+TXX38ltra2pGvXruT06dNfLY3/16D9Ju035YX2m5Kh/Wbl0H5TnP9L/SaPEGrxg0KhUCgUCoVCoVAoPy70jDGFQqFQKBQKhUKhUH5o6MSYQqFQKBQKhUKhUCg/NHRiTKFQKBQKhUKhUCiUHxo6MaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhVJjBAYG4vTp0zUdDQqFQqFQvgtov0mhVB90YkyhUGqMy5cv48yZMzUdDQqFQqFQvgtov0mhVB90YkyhUCgUCoVCoVAolB8aHiGE1HQkKBTKj8f8+fPFVr2nTJmCP//8s4ZiRKFQKBTKtwvtNymU6qVWTUeAQqH8mEyaNAkfP35ETk4OlixZAgAwNjau4VhRKBQKhfJtQvtNCqV6oRNjCoVSI5iZmUFPTw+EEDg6OtZ0dCgUCoVC+aah/SaFUr3QM8YUCoVCoVAoFAqFQvmhoRNjCoVCoVAoFAqFQqH80NCJMYVCoVAoFAqFQqFQfmjoxJhCodQYampqKCwsrOloUCgUCoXyXUD7TQql+qATYwqFUmNYWFggKioK169fx4sXL5CSklLTUaJQKBQK5ZuF9psUSvVB7zGmUCg1RkZGBv7++288fvwYnz9/pvcxUigUCoVSAbTfpFCqDzoxplAoFAqFQqFQKBTKDw1VpaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkyhUKqdR48egc/nY/jw4TUdlWolISEBfD4fXbp0qemo1AgfPnzAtGnT0LZtW1hbW4PP5+P69etVDvdHqT+U/5vMnz8ffD4fp0+fVmq4w4cPB5/Px6NHj5Qa7vfMggULYGNjg+joaKWEd/v2bfD5fGzevFkp4UnCx8cHfD4fPj4+1faNHwman5SqUKumI0ARZ/jw4QgJCRF5pqmpCW1tbTRq1Ah2dnbo0aMHWrduLTWM06dPY8GCBSLPeDwetLS0YG5ujs6dO2PkyJGoW7eumN+UlBT4+/vj3r17+PDhAwQCAerVq4f69evD3t4eLi4u6N69O9TU1ET8lZSU4MyZM7h48SLevHmDnJwcaGtrQ19fH5aWlmjdujW6deuGhg0bypwXrGD7888/ZfZDofzIPHr0CCEhIXBxcUGbNm2+2neLioowcuRIJCYmwsDAAI6OjuDxeNDT06vU7759+5CTkyNVJv2IRERE4Pr167CxsUG3bt1qOjqUr8z3Xv5lxyCTJk3CtGnTKnyfz+eLPatduzYMDQ3h4OCA33//vcIxDwC8efMGZ8+eRc+ePWFpaVlpHKOjo9GvXz8IBAKYmpri5s2bYu906tQJDg4O2Lt3L4YMGYIGDRpUGm5ZEhIScObMGZiamqJ///5y+aVQKF8fumP8DWNiYgInJyc4OTnB0tISmpqaePbsGQ4cOABPT0/0798f7969qzCM2rVrc2E4OjpCS0sLr169gq+vL/r164ePHz+KvP/o0SP07t0bu3fvxtu3b6Grqwtra2toa2sjMjISR44cwYwZM5Ceni7iLzc3F56enli4cCEePHgAQggsLS3RsGFDpKWl4erVq/jvv/9w9uxZufLA19cXvr6+cvmhUH5kQkJC4OvrK7a4Vt3cuXMHiYmJsLe3R1BQEI4ePYojR46gVatWlfrdv38/fH19kZ2d/RVi+n0QEREBX19fpey4U74/vvfyL9vXnzt3DoQQmfwxDMONWZo0aYJPnz7h0qVLGD58OHbv3l2h33Xr1kEoFMLLy6vS7xBC8Pfff0MgEFT6rpeXF/Ly8rBlyxaZ0lCWxMRE+Pr64syZM1LfqVevHiwsLFCvXj25w6eIQ/OTUhXojvE3zIABA8R2SnNzc3Ht2jX4+Pjg1atXGDRoEI4cOSJxtRUA6tevjyNHjog8u3PnDmbOnInExEQsWbIEfn5+XNjTp09Hbm4uOnTogMWLF6NJkyacv/z8fNy7dw8nTpwAj8cTCXP16tV4+vQp9PT0sGLFCnTu3Jl7hxCCiIgIXLhwAbq6ulXOFwqF8u0RExMDAHBxcUHt2rVrODYUCqWm+PjxI0JCQqCiogJNTU0kJibi8ePHcHFxqdTvokWLRDRdsrKysGjRIly7dg3r1q1D165dYW5uLuYvNjYWd+/ehZ2dHRiGqfQ7R48exdOnT9G1a1fcuHGjwnc7duwIQ0NDnDt3DnPmzIG2tnal4cuDp6cnPD09lRrmjwzNT0pVoDvG3xna2trw8PDA6dOnwTAMvnz5gmnTpqGkpETmMDp27IjJkycDAO7du4esrCwApWdpMjIyUKdOHfj4+IhMioFSde7u3btj586dMDIy4p4XFxfjwoULAErP93Tp0kVk4szj8dC8eXPMmzcPv//+u6JJp1Ao3zCFhYUAAA0NjRqOCYVCqUnYHeK2bduid+/eACC3thgLu9iuqamJkpISXLt2TeJ7x48fByEEffv2rTTMtLQ0rFu3DtbW1jLZLVBVVUWvXr2Qn5+P8+fPy50GCoXy/UB3jL9T9PT0sGrVKnh4eCAmJgZXrlzhOiBZYM/qCIVCxMfHQ09PDx8+fAAAWFhYQEtLS+aw0tPTkZeXBwCwtbWVIxXS8fHxEVGhLr8jfuPGDTRq1AglJSW4desWbt68iefPnyMlJQWFhYUwNjaGq6srJkyYIDKJZ5k/fz7OnDmDFStWoFWrVti0aRMePnyInJwcmJmZYdCgQfD09ISqqqrE+KWmpmL37t24ffs2kpKSoKqqCoZh8Ntvv8HDw0NsR51Nz5QpU+Dp6YktW7bg5s2bSE1NRceOHbF161YAQFhYGPbu3YunT58iMzMTWlpa0NfXh52dHX755Rd06tRJpvxTRr64urpi8+bNCAoKQmZmJndGaty4cVLz5ezZszhw4ACio6OhoaEBJycnhc+HJyQkoGvXrtzZr8OHD+PYsWOIjY2FhoYG2rRpg2nTpqFZs2Zifrt06YLExETcuHEDHz9+xK5du/D8+XNkZWXB19eXO7OXkpKCHTt24M6dO0hJSYGmpiZsbGwwePDgCtvT7du3sXPnTrx+/Rq1atWCra0tJk6ciEaNGkl8/9GjRxgxYgRcXFxw4MABie+wdTwyMlLMraSkBOfPn8f58+fx+vVrfPnyBfXr14eVlRV69eoFDw8PkTAA8WMIHh4eWLlypdQ0laW4uBjHjx/HuXPnEB0dDYFAgEaNGqF79+4YO3asyDng8m217HcrSi8gbguha9euIu779+8XOydNCBGpC1paWmjXrh1mzZoFU1NTid8pKCjA4cOHERgYiJiYGAgEAjRu3Bi9evXC6NGjUadOHTE/irTF2NhY7N69G8HBwUhNTYWGhgZsbW0xfPhwsbRVBFt/AeDMmTMiaphl8zQtLQ1XrlxBUFAQYmJikJqaCnV1dVhaWuLXX3/F4MGDoaIivv5dtq4FBgbC398fUVFRUFVVhaOjI/788084ODhIjd+DBw9w8OBBhIeH4/Pnz9DT04OLiwv++OMPidpLsrTH4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD5fZPoUy8uXevXvYsWMHXr9+DaFQCDs7O0ydOlXqOdfs7Gz4+Pjg2rVrSE9PR4MGDdCzZ09MmTJFpjhLyi+g4vIvS2xsLDZv3owHDx4gNzcX5ubm8PT0xODBg6V+5+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxMRyCkce7cOQBA37590ahRI5w4cQJXrlzB4sWLFVo409HRgbm5OSIiIpCQkCDxncDAQACQyfDhv//+i9zcXPzzzz/cgl5ldOnSBQcOHEBAQACGDRsmk5+y9mJCQkJE2kbZM81lxwdl+0tWPnp4eOCff/7Btm3bEBAQgJSUFDRo0AADBgzAhAkToKqqisLCQvj5+eHChQtISkqCgYEBfv31V0yePFnMHgyLsuQVy/nz53HixAlERkbiy5cvqFu3LgwNDdG6dWsMHToUVlZWYn6qQ5ZIy08WecdviqaN8n1CJ8bfMc2bN4eDgwOePXuG27dvyzUxlnTeh1UPio2NRVZWlkxGcwCgTp064PF4IIQgPDxcKQKCPV/99OlTAICTk5OIu7q6OoDSAdDkyZOhoqICAwMDNGrUCEVFRUhMTMTBgwdx6dIlHD58WKLqFQDExcVh5cqVyMvLA8Mw0NTUxNu3b7F8+XI8ffoUGzduFBOSoaGhmDRpEj5//gx1dXWYmZkhPz8f4eHhCAsLQ3BwMNasWSNRuGZkZGDAgAFISkqCpaUlmjVrhlq1SpvhzZs3MWXKFJSUlEBbWxuWlpYQCoVITk7GxYsXkZubK/PEuKr58vHjR3h4eCArKwtWVlaoVasWYmNjsX79eiQmJmLp0qViflauXIm9e/cCAIyNjWFgYICHDx/i/v37mDRpkkzxlsayZctw8OBBGBsbo1mzZtxi0N27d7F37144OjpK9BcYGIgNGzZAW1sbZmZm0NTU5NxevHiBcePGISsrC+rq6rCyskJWVhYePnyIhw8f4t69e1i+fLlYmAcOHMC///4LADAwMICJiQlevXqF0aNHY/bs2VVKpyRyc3MxadIkzvKssbExGjVqhJSUFNy5cwe3b9/mJsZOTk5ISkpCUlISTExMYGJiwoUjrazLU1hYCC8vL9y/f5/zp6Wlhbdv32L79u24ePEi/P39uUUAtq1K+m5lKo0GBgZwcnLCy5cvUVRUBDs7OxE1bB0dHTE/c+bMwYULF2BmZgZzc3O8f/8eAQEBCA0Nxblz58TOlaWmpmLs2LHcxM/ExARaWlqIiYmBj48Prly5gv3794v4U6QtXrlyBbNnz0ZRURG0tLRgYWGBrKwsPHjwAA8ePMDEiRMxY8YMmcrAzs4OampqiI2NhYGBgYj2Ttk8PXHiBDZt2gR1dXU0aNAAfD4fmZmZIrJo8+bNEmURAOzZswerVq2CgYEBmjZtivj4eNy9excPHjzApk2bJBp9WrVqFfbs2QOg9CyflZUVEhMTERAQgGvXrmHz5s3o3LmzxO9V1B5nzZqFy5cvAwAaNmwIAwMDZGVlISoqCq9evYKDg4PME+Oq5suxY8ewZMkS6Ovro0mTJoiLi0NISAhGjx6Nffv2iU0aMzIyMGzYMMTExEBFRQVWVlYoLi7Grl278OjRI5iZmckUbxZZy5/l9evX8PLyAiEEFhYWSE1NRVRUFBYvXozPnz9jwoQJYn4OHDiA5cuXQygUQkdHB5aWlkhNTcWtW7cQFBQEb29vDBkyRK54A8CzZ88QExMDdXV1uLu7o06dOmjYsCE+fvyI69evo0+fPnKHCZQe5QIgcdH+w4cPSEpKgp6eXqV5HRQUhMuXL2Pw4MFwdHSU2aJ3ixYtwOPx8Pz5cxQVFcl0XIRhGK4Oa2tri5Rd/fr1ZfouAAgEAowaNQrh4eGwtLSEsbEx4uPjsXHjRiQlJWHhwoUYOXIknj17hmbNmsHExARxcXHYtm0bUlNTJfZjypRXQOlxOvYMeP369dG4cWPk5uYiPj4eUVFRMDU1FRsbVpcsqQhFxm+KpI3yHUMo3xyenp6EYRiyefPmSt9duXIlYRiG9OjRQ+T5qVOnCMMwpHPnzhL97d69mzAMQ6ytrUlGRgYhhJCYmBhibW1NGIYhv/76KwkICODcKmPo0KGEYRji6OhItmzZQqKjo4lQKJTJb0UwDEMYhpHqnp2dTU6dOkXS09NFnn/58oX4+voShmHIqFGjxPzNmzePMAxDbG1tiaenJ/n06RPndu/ePeLo6EgYhiGHDx8W8ZeamkratGlDGIYhGzduJHl5eZzbmzdvSM+ePQnDMOTIkSMi/jZv3kwYhiE2NjZk4MCBJCEhgXPLz88nhBDSp08fwjAMWb9+PSksLBTx/+LFC3L27Fmp+VAd+TJp0iSR8r969SpXP969eyfiLygoiDAMQ5o3b07OnDnDPc/JySF//vknsbW1JQzDEE9PT5nT8OHDBy5MW1tbcv78ebFw2TrO5iFL586dufzesGEDKSoq4twKCgpIXl4e946XlxfJysri3G/evEkcHBwIwzDk6NGjIuG+efOGNG/enDAMQ3bs2EFKSkoIIYQUFhaSpUuXcuks3+4ePnxYafql1XU2nW5ubuTx48cibsnJyWJygq1rssgPSaxatYowDEN++uknEhYWJvKt3377jTAMQwYPHizmryrfZcviw4cPEt3Z/LO1tSXt27cnT548EYkX23bWrVsn4k8oFJJhw4YRhmHIpEmTSFJSEueWkZFBvLy8CMMwZMaMGSL+5G2LkZGRpEWLFsTW1pYcOHCACAQCzi0kJIS0b9+eMAxD7ty5I3OesDJ83rx5Ut95/PgxCQ4OFvkeIYTExsZyMvncuXNi/ti6ZmtrS3bt2iVSj5ctW0YYhiHOzs4kNTVVxN/x48cJwzCkY8eO5Pbt2yJuR44cITY2NsTZ2VlEnhJSeXt8+fIl983Q0FARvwUFBSQgIIC8fv26gtxSbr7Y29uTY8eOcX1YYWEhmTFjhtS6P23aNMIwDOnduzeJi4vjnr948YK0b9+ekwunTp2SOQ2ylD87VrC1tSWLFy8W6Y/27dvHpSU7O1vE37179wifzyfOzs7k/PnzIn311atXScuWLYmtrS2JjIyUOb4sS5YsIQzDkGnTpnHP1q5dSxiGIWPHjpXqj837hw8firm9e/eO2NjYEIZhRPoXljNnzhCGYciYMWMqjNuXL1+Im5sbadu2LcnMzCSE/E+2SBsrlcXd3Z0wDCMmhytCFtkvTXaydcDW1pb07t2bxMbGcm7BwcHE1taW8Pl84uXlRXr37k1iYmI49/v373P1Ljo6WiRcZcur9PR0YmNjQ5o3b06uXbsm4lZcXEyCgoLEyrW6ZAkh0vNTkfGbImmjfN/QM8bfOcbGxgBKV6xl5e7du5zqbvv27bmdEnNzc26FMCIiAjNmzEDbtm3RrVs3zJw5EydOnJBqNdbb2xv6+vrIy8vDpk2b0Lt3b7i4uGDkyJHw8fFBVFRUVZIpFR0dHfTv3x/6+voiz7W0tDB58mQ4OztzakKS4PF4WL9+PQwMDLhn7du359Tfdu3aJbK7vmfPHmRmZmLYsGGYNm2ayColn8/H+vXrwePxuJ3T8qiqqsLHx0dE5ZNVLYuNjQUAjB8/Xmw12s7ODr/++mtl2cFR1XzR1dXF6tWrRXbRunfvzqmp3blzR+T9Xbt2AQAGDx6Mfv36cc+1tbWxevXqKhkrKS4uxpAhQ0TOjrHh1qtXD4mJiZwaXXlcXV0xffp0EVUydXV1BAQEIDExEXp6eli7dq2IUbjOnTtzVk137NghUv579+5FcXEx3NzcMGHCBE4ds3bt2li0aBEsLCwUTqckXr16hStXrkBNTQ27du0S26kyMjJS6lVmubm5nLG+RYsWiezEGxkZYcOGDahVqxbCwsJq5O5UgUCAhQsXimiQGBkZcVfB3L59W+T9oKAghIaGwsbGBhs2bODkJVC6Q7F27VoYGxvj0qVLSEpK4tzkbYu+vr4oLCzE9OnT4enpyWmBAKXHVv755x8AkCoXFKVVq1b46aefRL4HAE2aNOHU5lm1Vkm4urpi7NixIvV44cKFYBgGOTk5OHr0KPeuQCDApk2bwOPxsHnzZnTs2FEkrCFDhmD48OHIycnBiRMnpH5PUntk87tt27ZwdnYW8aOuro7evXvDxsamktz4H1XNl/79++O3337jdo3YfFFTU0NYWBg+f/7Mvfvhwwdup3vFihUiO5Z2dnZYtGiRTJaPq4KFhQWWLFki0h+NHDkSzZs3R0FBgVhbXbduHQghWLZsGfr27SuyO9a9e3dMnz4dAoGgwmMQkigqKsKlS5cAQERes+0lODgYaWlpMoeXnZ2NO3fuYPLkySgpKYGZmZlEzTj2do3KrlLauHEjPn78iLlz58qsEVcWNvzyt3lUN8XFxVi5cqWI5sBPP/2E7t27gxCCmzdvYuXKlSJaQe3ateM0Pu7evSsSnrLlVXx8PEpKSsAwjJiWiaqqKjp16iRyJKY6ZUlFKDJ+kzdtlO8fOjH+zmHVir58+SLRPS0tDUOHDsXQoUMxZMgQuLq6Yty4ccjJyYGxsTG8vb1F3p8wYQIOHTqErl27ckLmw4cPCAgIwKJFi9C5c2ccP35c7DsMw+DixYsYO3Ysd3Y1OzsbDx8+hK+vL/r27YsZM2YgNzdXian/H6GhoVi1ahUmTpwIT09PLs3sgOvNmzcS/bm7u0tUaRo8eDDU1NSQkJDAWdsFgKtXr3LukrCxsYGpqSliY2ORkpIi5t6uXTuRwXlZWPVTdmChDBTNl59//lniuUv23CF7Hh0A8vLy8OTJEwCQaAlSQ0MDAwcOrFI6JBltKxvuvXv3JPpjVYzLww4UBg0aJFE1b9iwYVBTU0NiYiLev38v5k9SOnk8nsxnz2SFNTTTpUsXiWeplc2TJ0+Ql5eHBg0aoEePHmLuDRs2lDrY+hro6uqiV69eYs/ZehkfHy/ynG2vHh4eElUf2fPJQqEQjx8/5p7L0xaLiooQFBQEFRUVDBo0SOI7nTp1gpqaGkJDQ1FcXFxpmPKQl5eHU6dOYcGCBRg7diyGDRuGoUOHYt68eQCkt3FAcrsqW4/Ltqvw8HCkpaXB2tpa6vljtm5IWzSR1h5Zmfjs2TOlTTqqki+S5Dt7JAUQlX93794FIQSOjo6wt7cX8+fu7i733bfyMnDgQIlnplu0aAFAtF0kJSXh1atX0NPTk9jGgcrLURpBQUHcMSxXV1fuuaWlJWxsbFBSUsIZ6pTGiBEjwOfzwefz0bp1a4wfPx7v379Hx44d4e/vL7EdsxsDFd168fLlSxw8eBCtWrWSWg8rgw1fno0IZWBjY8OVZVmaN28uk3vZ+lod8oqVl7GxsRW2K5bqlCUVocj4Td60Ub5/6Bnj7xx2QixtR66oqIg7pwuUDgRtbGzg5uaGUaNGSVw1bdWqFVq1aoWioiK8fPkSL1684M6d5ebm4u+//4aWlpbYWSEDAwPMnTsXc+fORWxsLF68eIFHjx7h5s2bSE9PR2BgILKzsyu9i1AeBAIB5syZU+kAlrW8XZ6mTZtKfK6trQ0jIyNuYty0aVPk5eVxhj+8vb2lnk/LzMwEACQnJ4sZuJL2PQAYPXo0vL29sWjRIuzZswcdOnSAk5MT2rRpI7bzWxlVzZfyFslZ2HiwxtaA0nPaJSUlUFNTk3qO1dLSsvJIS0FNTU1qfNhwyy5elEXaZJJdGJAWLx0dHTRo0ACJiYmIjY1Fs2bNkJ2djU+fPlXoryrplAR7T7m0M9TKhs1HCwsLqQbWrKyscPnyZS4PvyaNGzeW+JzV+ChbLwFwmionTpzgdvXKw07EkpOTuWfytMW4uDgUFhZCTU0NEydOrDD+hYWFyMrKgqGhYYXvyUpkZCT++OMPkd3u8khr44D09iGpXbF5mZycjKFDh0r0xxoyKpuXsnyvZcuWaNmyJcLCwuDu7o42bdqgdevWaNWqFRwdHcV2fiujqvki7ZyqgYEBYmJiROoZm0fS0qaiosKd+60upMlHSe2CNe4nEAik3hLBaslIK0dpsEbCevToITaB/eWXXxAREYEzZ85gzJgxUsNgGAba2toghCAtLQ0JCQlQVVUFn88XsZlQlqKiIgDSdwxLSkqwePFiqKioiG0GyAMbvqwGu5SFNLnHyiJ55GJ1yCsjIyP07t0bgYGB8PDw4GSls7MznJ2dxQyuVacskYai4zd500b5/qET4+8ctuOXNnEqa/lQXmrXrg0nJyc4OTlh5Po355AAAHFKSURBVMiRePPmDcaNG4e0tDT4+PhUaETD3Nwc5ubm6Nu3L/Ly8rBw4UIEBgbi3r17ePr0qZgxLUXZtWsXLl26BENDQ8yePRutWrVCgwYNuA5s7ty5OHfunNRVz7Iq1OUxNDREQkICt/iQk5PDuYWFhVUat4KCArFnFVn7Hjp0KHR0dLBnzx68evUK79+/x/79+1GrVi107doVf/31l9Td5vJUNV+kGbJgdyXKqhez+aOnpydx1wKoOJ8rQ5ZwpWlMSEsHO1CorPwTExO5sMsOLqT5q0o6JcFqWEgyQlUdsGmsaCBUWZ5XJ9Laj7T6wbbZt2/fVhp22cGuPG2RPV4iEAhEFiGlIUkuKEJJSQmmTZuGpKQkdOjQAePHjwfDMKhbty5q1aoFoVAIGxubCnd8KqvHZcuYTWdmZiY3eJSGtIlDRXLFz88PW7duxblz53Dv3j1ut7pevXoYM2YMxo0bJ7Wcy6KMfKmsnpWVf7LKkupEHnnNluOXL18qra/yTAAzMjI4LZJffvlFzL1Pnz5Yu3YtoqKiEBERIVU1vvw9xk+fPsWUKVPg5+cHHR0d/PHHH2J+2AX+siruZTl06BBevXqF8ePHV8lIEht+eQN/1Y20+shO7ipzl1T+ypZXq1atgqWlJU6ePInQ0FCEhoYCKDXOOmTIEEybNo0bf1SnLJFGVcZv8qSN8v1DJ8bfOawKa0VXaygLa2treHl5YenSpYiNjcXnz58rVF1i0dLSwrJly3D58mUIhUI8f/5caRNj9pzY8uXLJVpsltZRslSkEsXuDrIqxWU7n2fPnlXLSmGfPn3Qp08fZGRk4PHjx3j06BECAgJw5coVxMbG4uTJkzJZw6xqvsgDmz9ZWVkQCoUSB6/p6ekKhy9LuJLUviuCLcuK4lVR+aenp0vcvZAWnqQBSlnK73SysJogZTv16oRNI5t2SSia5zUBmx4/Pz+xc2yVIWtbZPPB0NCQs+T9NXjx4gViYmLQsGFDbN26VWxgVtGOKEtGRobExTZJZczmZe/evbFhw4YqxFwyOjo6mDdvHubOnYu3b98iNDQUt2/fxu3bt7Fu3ToAkGhduTzKyBd5kEeWfAuw8XVwcJB4LEpRAgICuLPU0naiWc6ePSvzmXEnJyesXLkS48ePh4+PD37++Wexa/HYjQFp/drr168BlGqOlL36CgAX56SkJLRv3x5A6VlxSfKCDV9eDa5vieqSV7Vr18bkyZMxefJkxMbG4smTJ7h79y6uX7+O3bt3Izc3l7vNorpliSSqMn6TJ22U7x96xvg75tWrV3jx4gUAwM3N7at8s6zKjjwGRbS1tbnOhFV7Ugasakx5gy1A6c7By5cvK/TPqqqWJzc3lztjwqoH6+jocKrRsuxAVQV9fX306NEDixcvxoULF6Cjo4PIyEg8f/5cJv9VzRd5MDMzg6qqKgQCgVT1Wmn5LAsCgUDs7Gj5cGW9ioiFfV9aOebk5HCqj+y77L2FABAdHV1hfMrDrm5LGzxLSx+r0hoeHi7RXRLSVMRkgTUe9v79e5SUlEh8h80zefO8JmDzryrttbK22KRJE6ipqSE9Pb1KC0Dlqawc2TZuZ2cncbdCFlkhrb5KalfsTlt1yz4ejweGYTBs2DDs2LEDf//9NwDIPIlTRr7IA9tmpOWlUCiUetSjIqrSjiuCLcf3798r9bw7O+HU0dGBoaGhxB+7s3vx4kWp8kUSHTt2RLt27SAQCETuTGdhz9JKk8ssWVlZ+PTpk8iPnewKhULumaQxCiGEK0f2e7JQXeWoKNUlr8pibm6OAQMGYOPGjdiyZQuA0juZ2fr2tWRJWZQ1fqssbZTvHzox/k7JysrC/PnzAZR2zO7u7lUOMyMjQ+qOFgurglK3bl1uoltcXFzpDmRcXBwnhOWx3Muu6klT52HdJa3IX7x4sdKV+qtXr0p85/jx4xAIBDA1NRU5F8zm8759+2SKvzJo0KABt0Iu6zm1quaLPNSpU4fTADh8+LCYe2FhIU6ePFmlb1QWbllDL7LAvn/y5EmJu7VHjhyBQCBAo0aNRMq/Q4cOAEpV8yQh7Tl7ZjEhIUGilkJZ679lYevbzZs3ZV5cYCcDiqjsOjs7Q0tLC2lpabhy5YqYe1JSEm7cuAFA/jyvCLa+KvvsHmtc6NixY9w9qFVBUlvU1NSEq6srCCHw9/ev8jdYKitHNs+kWfmVRUZJalfA/+px2TJ2dnaGgYEB3r59K9XYXXXALu7JK/uqki/y4OrqCh6Ph/DwcIkLjteuXVPofHFV2nFFNGnSBHw+Hzk5OTh16pRSwnz37h1evXoFoLRO3b9/X+Lv5s2b0NLSwqdPn+SuQ+x52AsXLogYkwJKd7/V1NTw7t07ifJ85cqViIyMlPjbv38/gNJjZ+wzSfd3v3//Hjk5OWjYsKHM92kDlY9hvjbVJa+kwY4NBAIBp61RU7JE2eM3SWmjfP/QifF3Rm5uLs6ePYv+/fsjKioKWlpa2LRpk0xnryrj/Pnz+OWXX3D06FGxwXt+fj78/f3h5+cHoNQiIPvNvLw8dOnSBatWrcKbN2/EJtchISGYMmUKCCEwMjLiJheywO5Qh4SESHRnr69ZuXKliMXrmzdvwtvbu9JzH4QQzJo1SyS9Dx484Falx44dK7LiO2HCBOjr6+PixYv4559/xM7H5ObmIjAwECtWrJA5jay/6dOn48GDByIr6YQQBAYGIioqCjweT+aV6qrmi7yMGzcOQOkEr6zV0dzcXMybN69KqsC1atXC4cOHERAQwD378uUL5s2bh4yMDJiamkq8wqMi+vTpA1NTU2RlZWHOnDki15Ddvn0b27ZtA1Ba3mXLf/To0ahVqxZu3bqF3bt3QygUAijVgvjvv/+k7gzp6urC0dERRUVFWL58ObcjQQiRqN7HYmNjg169ekEgEGD8+PHc0QmWlJQUsR0Uts2EhYXJvYqtra3NWST+77//8OzZM5FvzZgxAwKBAC1btlTqFRWVtXNF6datG5ydnREXF4fx48eLLS4UFxfj4cOHmDVrFlcmirTFadOmQUNDA35+fvD19RU7f52ZmYkTJ05w1+TJApsnL168kDipZ41ShYWFiSw85efnw9vbW6bzg7dv38a+fftE6vHy5csRFRUFbW1tEeut6urq3HV+M2fOREBAAOePJT4+Hlu3buWsv8rK+fPn4evrK6Y5kZuby/U5tra2MoWljHyRh8aNG3MD7gULFohM2l6/fo1///1X5EoZecIFpJd/VZgzZw5UVFTw33//4dChQ2I7pCkpKfD39+eubqsMVn41b94cDMNIfa9OnTrcpPPs2bNyxblNmzZo2bIliouLuTrBoq6ujtatW6OkpEQu7Rp5YGWvPOMXANxCWnR09Fe3Zi0NZcurBw8ecIsPZSksLOTCMDEx4c7hV6csqQhFxm/ypg0ALl++jC5dunDXW1K+L+gZ42+YU6dOITg4GMD/dmU/fPjACRA7OzusXr1aade48Hg8REVFYcmSJViyZAlMTU2hr6+P3NxcJCUlcSueHTp04IQa6y83Nxd79uzBnj17ULduXZiamkJFRQVJSUlcZ6Cnp4fNmzfLZTShV69eePv2LSZOnAg+n8+duVy/fj3q16+PqVOnIjg4GLdu3YKrqyssLCyQkZGBpKQktG3bFg0aNMD58+elhj927FgcOXIEnTp1gpWVFXJzcxEXFwegdHWxvMXEBg0aYMeOHZg0aRIOHz6MY8eOoWnTptDS0sLnz58RHx8PoVAo95lvoVCIS5cu4dKlS9DQ0ECTJk1Qu3ZtJCcnczsfEydOlFl9tar5Ii9ubm4YMWIE9u/fj9mzZ2PdunUwMDDgVHKnTJmi8FkiIyMjdO7cGTNnzsSaNWu4cPPy8qCpqYk1a9bIfd5bQ0MDGzduxLhx43D9+nXcu3cPlpaWyMrK4lQxBwwYIHatg7W1NebMmYMVK1Zg9erV2LNnD0xMTBAfH4+cnBzMnj0bq1evlvjN2bNnY/To0bhw4QJu3bqFJk2aICUlBenp6Vi6dCmnMlqef//9F+np6QgJCcGwYcNgYmICQ0NDpKSkIC0tDYQQ7t5toLR96urq4smTJ3Bzc0Pjxo1Rq1YtuLq6ynRGc+rUqXj9+jWCg4Px22+/wcLCApqamnj79i23i7527VpZs1omevXqhaCgIHh7e+Pw4cOcyuVff/0l1/215eHxePDx8YGXlxceP36M3r17o1GjRjA0NEReXh5noRUoPY8PKNYWra2tsWnTJsycORM+Pj7YsWMHLCwsoK6ujvT0dHz8+BGEELkWcGxtbWFubo7Y2Fi4ubnBwsICampqsLa2xsKFC2FoaIjRo0fDz88PCxcuhI+PDwwNDfH+/Xvk5+fj33//xcKFCyv8xsyZM7FixQr4+flx9fjz589QVVXF8uXLxa4ZGjRoELcYM3PmTHh7e8PMzAyEECQnJ3NaQfJa/s3IyICPjw98fHxQv359GBsbo7CwEPHx8SgoKICOjk6laWFRRr7Iy5IlSxAZGYmoqCj06NEDVlZWKC4uRnR0NFq0aIHWrVuLLOzJQmXlXxVcXV2xdOlS/PPPP1i6dCnWrl0Lc3NzqKqqIjU1lTtGNH78+ErDEgqFXF9S/n5vSfTr1w/nz5/HjRs3kJOTI5dhwT/++AMTJ07E6dOnMXnyZJFbHwYNGoTg4GBcvHgR7dq1kzlMWWHLT96rB/X19dG2bVs8fPgQ3bp1g6WlJdTV1WFoaPjVzteWR9ny6suXL9i7dy/27t0LPT09mJqaQigU4sOHD8jNzYWampqYJejqkiUVocj4TZG05eXlITExUWnxpnxd6MT4GyYpKYmzOq2hoQEdHR04ODjAzs4O7u7ucHFxUer3hg0bBmtra9y7dw9PnjxBcnIyZ1bf0NAQzZs3R58+fdCjRw8RIaCjo4MrV67g3r17uH//PuLi4pCYmIi8vDxoa2vDyckJHTt2xJAhQ+S25jhhwgQIhUIEBAQgOjqaW9lmB7PNmzfH4cOHsWnTJjx58gTv3r1D48aNMWPGDIwdO1bqZIOlSZMmOHnyJDZt2oQHDx4gJycHlpaWGDRoEIYPHy5xJ97e3h4XL17EwYMHcfPmTcTGxkIgEKBBgwZo06YNOnXqJLdqe506dbBmzRoEBwfj+fPnSE5OxpcvX6Cnp4fOnTtjyJAhcp0jr2q+KMLChQvRvHlzHDhwANHR0cjPz0fbtm3x559/Vtl41N9//41mzZrh2LFjiI6Ohrq6Otzd3TFt2jSFr0iyt7fH+fPnsXPnTty+fRuRkZHQ1NSEi4sLhg4dKnVQMGrUKDRp0gR+fn6IiIhAbGws7OzsMHHiRDRq1EjqxLh169bYs2cPfHx88PLlS8TExMDW1pYz9CKtTLS1tbF3716cOXMG586dQ2RkJNLT01G/fn106tRJ7F5fbW1t7N69G5s3b8bz588RHh4OoVAIU1NTmfJFXV0dfn5+OHbsGM6dO4e3b9+ipKQEjRs3Rvfu3TF27FiZjO7JQ79+/ZCdnY2TJ08iLi6Okztld/IVxcDAAIcOHcLZs2cREBCAiIgIpKSkoF69erCxsYGLiwvc3d05LQpF26KbmxsCAwPh7++Pu3fv4sOHD5yWTMeOHdG5c2d0795d5nirqKhgx44dWL9+PUJDQ/H8+XOxc5mzZ8+GiYkJDh8+jLi4OBQUFKBly5YYO3Ys2rdvX+kEasyYMTA2Noa/vz+3E96hQwdMmTIFLVu2lOhnypQp6NixIw4dOoTHjx8jKioKGhoaMDY2xk8//QR3d3e5DZ316NEDxcXFePDgAWJiYhAVFQVCCBo2bIgOHTpg7NixcqmvVjVf5MXAwADHjh2Dr68vrl27hnfv3sHIyAjjxo3D5MmTFTLMI0v5V4VBgwbB2dkZ/v7+ePjwId6/fw9VVVUYGRnB3d0dXbt2lWnH68GDB0hJSUGtWrXQt2/fSt//6aefYGRkhJSUFFy+fFnqXbqS6Ny5M6ytrfHmzRv4+flh0aJFnFu3bt2gr6+Pq1evYsmSJUrVikpJSUFISAj4fL5Chk7XrVuHdevW4f79+3j16hWKi4tllsfVhTLllbOzM/7++2/cv38fb9++RUxMDDcmcnd3x5gxYyRaA68OWVIZ8o7fFE0b5fuFRyo7VEqh/B9k/vz5OHPmDFasWIH+/fvXdHQoEkhISEDXrl2rdOUYhUIRh8/nA4CYeiCF8j2zZ88erFq1Ct7e3lLvx1WEtWvXws/PD5s2bULPnj2VFi6FQvn2oGeMKRQKhUKhUCjfNZ6enmjUqBF27typtNsvMjIycOjQITg6OtJJMYXyA0BVqSkUCoVCoVAo3zW1a9fGqlWr8ODBAyQlJaFJkyZVDjMxMRFjxoyR6xgEhUL5fqETYwqFQqFQKBTKd0+rVq24WxmUQYsWLdCiRQulhUehUL5tqCo1hUKhUCgUCoVCoVB+aKjxLQqFQqFQKBQKhUKh/NDQHWMKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkzB6dOnwefzMX/+/JqOitK4dOkSBg4cCEdHR/D5fKVaqaSIw+fzwefzazoaHF26dAGfz0dCQkJNR4XynUHrDuVb4fXr1xg/fjxat27NydiIiIgqh/u99fnfW3y/dWh+UqrK8OHDwefz8ejRo5qOitL54a5revToEUaMGAEAqFevHq5fvw5tbW2J77ID/Rs3bqBRo0ZV/vbp06eRmJgIDw8PpYQnKz4+PgCAP//886t9syIiIiJw/fp12NjYoFu3bkoP/+7du5g+fToAoFmzZtDV1UWdOnWU/h15SEhIQNeuXQFIr09xcXEYOXIkkpKS0LJlS+zatUtq3awqaWlp2LJlC+7cuYO0tDTo6uqiffv28PLygrm5ebV8U1k8evQIISEhcHFxQZs2bWo6OpVy/fp1REREoFu3brCxsanp6PzQfG9152tSU/0TRTKfPn3CyJEjkZ2dDWNjYzRr1gw8Hg9aWlqV+v3W+vyKyM7Ohr+/P3R0dDBq1Kiajg6FQvnB+aF3jDMzM7F///6v9r0zZ87A19cXiYmJX+2bAODr6wtfX9+v+s2KiIiIgK+vL65fv14t4R89ehQAsGDBAgQGBuLIkSPYtWtXtXxLWbx//x6enp5ISkqCi4sLdu/eXW2T4vfv36Nv3744cuQIsrKyYGVlBYFAgLNnz8LDwwNPnz6VO0wLCwtYWFhUQ2zFCQkJga+vL0JCQr7K96rK9evX4evrq5SdHkrV+N7qztekpvonimQCAgKQnZ2N7t2749atWzh69CiOHDmCJk2aVOr3W+vzKyI7Oxu+vr4VjsV0dHRgYWGB+vXrf8WY/d+F5ieFIp0fbseYRVVVFSUlJdi7dy88PT1Rt27dmo4SRUnExMQAAFxdXWs4JrLx9u1bjBo1Cp8+fUK7du2wdetWaGpqVsu3hEIhpk2bhszMTHTp0gVr1qyBtrY2ioqK8O+//+LYsWOYOnUqrl27JlccLl++XC3xpVAolB8Rth9r164dVFR+6D0MdO/eHd27d6/paPyfgeYnhSKdH1baGhsbo3Xr1sjOzsbevXtrOjoUJVJQUAAAUFdXr+GYVM6bN28wYsQIfPr0CR07dsT27durbVIMANeuXUNUVBR0dXWxevVqble6du3aWLx4MczNzZGWlobjx49XWxwoFAqFUjGFhYUAAA0NjRqOCYVCofw4/LATYwCYNm0aAMDf3x+ZmZly+SWE4OLFixgxYgRat26NFi1aoFu3bli2bBlSUlJE3n306BH4fD6nvjdixAjOkAafz8fp06dF3i8oKMCePXswcOBAODs7w97eHj///DN8fX3x5csXmePo4+MjYhCp7DelGZcpKirC1q1b0aNHD7Ro0QIdOnTA4sWLpeZPcHAwli1bhn79+qFNmzaws7ND586dsWDBArx//17s/S5dumDBggUASlX3ysZn+PDhMqdNEqzRHFYVsGvXrlLz+O7du5gwYQLatm0LOzs7uLm5YcGCBdwqfXnKGhp48+YNpk2bhvbt28PGxgb79u1TKL6vXr3CyJEjkZGRgS5dumDLli3VPpm/evUqAKBnz57Q0dERcatVqxb69+8PQP4dYGnGt8oaMnr+/DkmTpwIFxcXODg4YODAgbh27Zrc32FVBH19fUXqjzRDIop898GDB5g8eTLat28POzs7dOjQATNnzkRkZKTMcU1ISACfz8eZM2cAlKr2l40vew6Q5fPnz1i/fj169+4Ne3t7ODs7Y8iQITh69ChKSkrEwmflyvDhw1FcXIzt27ejV69esLe3R/v27bFgwQIxWSQLZcssJCSEayfW1tYixx9SUlKwdOlSdOvWDS1atICLiwtGjhyJwMBAsTBv3rwJPp+PcePGiblt3bqVy5P4+HixPLG2tkarVq0k5oE8fE91R9Ewi4qK8Ouvv4LP52PNmjUSw5ozZw74fD5GjRoFQojM/RNbn7t06QIAOHHiBAYNGgQnJyfw+XxkZ2dz30hNTcWKFSvQs2dPODg4wMnJCUOGDMHp06dBCBGLE9tX+fj44PPnz1i2bBnc3Nxgb2+P3r1748iRI9y7nz9/xsqVK9GlSxe0aNECPXr0qFQGv3z5ErNmzUKnTp1gZ2eHNm3aYOLEiQgNDZX4fn5+PrZt24Z+/fqhZcuWsLOzg6urK4YMGYJNmzbh8+fPFX6vPAUFBdi5cycXXsuWLdGvXz/s3LmTW8hlmT9/vki+l5UblRlL+hp9PlCq/rx582b88ssvaNmyJRwdHdG/f3/s27cPAoFA5nyZP38+Z3sjMTFRLL4s0oxFlZWBQqEQe/fuxc8//wwHBwd06tQJq1atQn5+PoBSban9+/ejb9++cHBwQIcOHbB06VLk5uZKjZ+89bgybt++jfHjx+Onn36Cra0t2rRpg969e2PhwoVSjzDJW3dlGatUZnxLkfJVJG2SKCgowMWLFzFr1iz06tWL+36fPn2wYcMGqW1P1jFaSUkJTpw4AU9PT27s3r17d6xYsQIZGRkyx5MlKSkJ3t7e6N69O1q0aAFHR0d06dIF48aNw8GDByX6kSd/161bBz6fj4ULF0qNQ2ZmJuzs7GBjY4PU1FQRN3nTK4+cL8+AAQPA5/MljgFYLl68CD6fjwEDBkh9p6b5YVWpAaB169Zo164dgoODsXv3bsyePVsmf4QQzJ8/H2fPngUAmJqaonHjxnj37h0OHjyIgIAA7N69G7a2tgBKz3M4OTkhKioKubm5YBhG5PyogYEB9//U1FSMHTsWUVFRUFVVhYmJCbS0tBATEwMfHx9cuXIF+/fvR7169SqNp4mJCZycnDih5OTkJOJefhImEAgwduxYPH78GBYWFjAzM0NMTAyOHTuG8PBwnDx5ErVr1xbxM27cOJSUlEBfXx9GRkYASju406dP4/Lly9i1axecnZ259+3s7KCmpobY2FgYGBiInJdiGKbSNFWEnZ0djIyM8PLlSxQVFcHOzo6Lb9k83rRpE7Zu3QoAqF+/Pvh8PmJjY3H69GkEBgbCx8cHHTt2lPiNx48fY8eOHVBVVUXTpk1Rp04d8Hg8ueP6/PlzjB07FtnZ2ejRowfWrVsHNTU1BVItH+Hh4QAgUiZlYZ+/ePECJSUlUFVVVcp3b9++jRUrVkBTUxONGzdGYmIiXrx4gSlTpmD9+vX4+eefZQrHyckJSUlJSEpKgomJCUxMTDg3SUbDFPnuqlWrsGfPHgClBvqsrKyQmJiIgIAAXLt2DZs3b0bnzp0rjau6ujqcnJwQFxeH9PR0mJubQ19fn3MvG/cPHz5g5MiRSExMRK1atWBlZYX8/HyEhYUhLCwM169fx9atW8XaH1Aqj/7880/cvHkTZmZmsLS0RFRUFE6fPo27d+/i0KFDMp1LLE9gYCA2bNgAbW1tmJmZiWgyvHjxAuPGjUNWVhbU1dVhZWWFrKwsPHz4EA8fPsS9e/ewfPly7v3WrVtDRUUFT548QXFxMWrV+l/XU/a876NHj2BmZsb9/fjxYxBC4OzsXOW6+D3VHUXDrF27NtauXYsBAwZgz5496Nixo4iRscDAQJw/fx66urpYuXIleDyeXP0Ti7e3N44cOQIjIyM0bdoUHz584NxCQ0MxadIkfP78Gerq6jAzM0N+fj7Cw8MRFhaG4OBgrFmzRqLczM7Oxm+//YbExERYWVmBx+Ph3bt38Pb2Rk5ODgYOHIhhw4YhISEBlpaWIIQgNjYWK1aswJcvXzB58mSxMA8cOIDly5dDKBRCR0cHlpaWSE1Nxa1btxAUFARvb28MGTKEe7+4uBijR49GWFgYAMDMzAy6urpIT0/HixcvEBYWxk3KZSEzMxOjR49GREQEeDweLC0twePxEBkZiYiICFy+fBl79+6Frq4ugNK6KE1uVGYY8Wv0+e/evcPYsWORlJQENTU1mJqagsfj4c2bN3j16hVu3boFPz8/ibKqPObm5rCzs8PLly9Ru3Zt2NnZVepHGjNnzsSlS5dgYWEBU1NTxMbGYs+ePYiKisKuXbswffp0XLlyBebm5mjUqBFiYmJw6NAhvH//XuLCSlXqsSQOHTqEpUuXAgD09PTA5/NRUFCApKQkvHv3jusvyiJv3S2LomMVRcpXkbRJg10IUFVVhaGhISwsLJCXl4e4uDhs374dly5dwtGjR0X6UlnTnZubi0mTJuHRo0fg8XgwNjaGiYkJ4uLisG/fPly5cgUHDhxA48aNZYprYmIiBg4ciIyMDKipqcHMzAwaGhpISUnBvXv38OTJE3h6elYpf/v27YudO3fi6tWrWLJkicR2dfnyZQgEArRr1w4NGjTgnlc1vRXJeUkMGjQIL1++xKlTp9C7d2+J77AbBewmzDcJ+cF4+PAhYRiGdO7cmRBCSFhYGGEYhjg6OpJPnz6JvMswDGEYhnz48EHk+cGDBwnDMMTBwYHcvHmTe/7582fyxx9/EIZhSNeuXUlBQYGIP09PT8IwDHn48KHEuAmFQjJs2DDCMAyZNGkSSUpK4twyMjKIl5cXYRiGzJgxQ640s+mQxqlTpwjDMMTW1pb06NGDvH37lnN7+/Yt6dChA2EYhhw9elTM75EjR0TiSQghRUVF5OjRo6R58+bE3d2dCIVCid+bN2+eXOmQlc6dO0ssN0IICQoKIgzDEBsbG3L8+HEubgUFBeTvv/8mDMOQ1q1bk7S0NBF/bNnZ2NiQBQsWkC9fvnBu+fn5lcbpw4cPXDmcP3+eODk5EYZhyMyZM0lxcXGFflNTU8mQIUMU+pWlsLCQWFtbE4ZhyNOnTyV+Kzk5mYtnfHx8pelikVbH2LKwtbUlvr6+pKioiBBCSElJCVm5ciVhGIZ07NiRlJSUyPytzZs3E4ZhyObNm6W+o+h3jx8/zrndvn1bxO3IkSPExsaGODs7i8mKipg3bx5hGIacOnVKortQKCQDBw4kDMOQwYMHk+TkZM4tLCyMtG3bljAMQ9atWyfij5Vltra2pGXLluT+/fucW1paGidLfvvtN5njSsj/8s7GxoZs2LCByztCSttJXl4e946XlxfJysri3G/evEkcHBwkyot+/foRhmFIeHg496yoqIg4ODgQV1dXwjAMmT17toif//77jzAMQ/z8/ORKgzS+t7qjaJj79u0jDMOQTp06kc+fPxNCCElKSiKtW7cmDMOQgIAAsW9V1j+xMszGxobY29uTK1eucG6FhYWkpKSEpKamkjZt2hCGYcjGjRtJXl4e986bN29Iz549CcMw5MiRIyJhs+Via2tLfv/9d5KSksK5nTlzhuujx4wZI+Z++vRpwjAMadGiBZdWlnv37hE+n0+cnZ3J+fPnRfqiq1evkpYtWxJbW1sSGRnJPb9y5QqXd9HR0SLh5eTkkBMnTpCEhASJeSSJqVOnEoZhiLu7u0h40dHRxN3dnesHylOZ3KiI6urz8/LyuDj//fffJDMzk3NLSEgggwcPJgzDkLVr18ocV7ZesWOyiuJbfsxQVgZ26NCBPH/+nHOLiIggLi4uhGEYMnnyZDH3169fc+2hfNtStB5LQyAQcN86dOiQSJ8vFArJo0ePyLVr10T8KFJ3CZFtrCItPxUpX0XSVhEJCQkkICCA5OTkiDzPzMwkS5YsIQzDkIULF4r5kyXds2bNIgzDkKFDh4q0xby8PG78J09/uWzZMsIwDBkzZoxIXhFCyMePH8nevXtFninafvr27UsYhiFXr16VGA+2ry8vKxRJryxynhDJ/UVOTg5xcHAg1tbWIuMYluTkZGJtbU3s7OxExg3fGj+0KjUAODo6ws3NDXl5edi5c2el7xNCsHv3bgDApEmTRFb/69ati3Xr1kFPTw8fPnxAQECAXHEJCgpCaGgobGxssGHDBhgbG3Nu9erVw9q1a2FsbIxLly4hKSlJrrBlobi4GKtXr4alpSX3zNLSklN/vH37tpifIUOGiMQTANTU1DB48GD07t0bsbGxePbsmdLjqihsGQ8aNAiDBg3iVhLV1dXh7e2Npk2b4vPnzyKqe2WxtLTEsmXLRK7MkPcM2Pz585Gbm4t+/fphzZo1le6EFRYW4unTpwr9ypKbmwuhUAgAUo3NsbsWAORWF6yIdu3aYfLkydyuuIqKCmbMmAFDQ0MkJydXSc1UWd8VCATYtGkTeDweNm/eLKY1MGTIEAwfPhw5OTk4ceKE0uL48OFDPH/+HGpqatiwYQOneQGUyidWherAgQMS1f4EAgGmTp2Kdu3acc8MDQ2xfv16qKmpITw8XKG7Bl1dXTF9+nQRTQZ1dXUEBAQgMTERenp6WLt2rUid6dy5M7y8vAAAO3bsEFE3dHFxAQCRuDx//hz5+fno06cPTExMxKxFs3+zfr8mNV13qhLmiBEj0KFDByQlJWHJkiUQCoWYO3cuPn/+jF9++UXqar4slJSUYOrUqXB3d+ee1a5dGyoqKtizZw8yMzMxbNgwTJs2TUTLgM/nY/369eDxeFLteqiqqmLt2rUiux79+vWDg4MD8vLyEBoaKubu4eEBe3t7FBYWitXzdevWgRCCZcuWoW/fviI7Zt27d8f06dMhEAhw4MAB7nlsbCwAoEePHmjWrJlIeNra2hg4cCBMTU1lyqu4uDhcuXIFALB69WqR8Jo1a4aVK1cCKLVAXdluTHUgb59/6tQpxMbGolOnTli6dCn09PQ4N1NTU2zatAlaWlo4dOgQd0b6ayAQCPD333+L7OJbW1tj0KBBAEpta5R3t7Gx4dzv3LkjEl5V63F5MjMz8fnzZ+jq6mLYsGEifT6Px4OLi4vY1ZWK1N2yKDJWUaR8FUlbRZiamqJ3795it3Lo6enB29sbxsbGCAgIQHFxsVzpjoqKwoULF2BkZIRt27aJtEVNTU14e3vDzs4O4eHhMqt+s0fvhg0bJpJXQKn2RvnrxxRtP3379gUAXLhwQSwOSUlJePLkCdTV1UVkclXTW5Gcl4a2tjZ69OgBoVCIc+fOibmfPXsWQqEQ3bp1Exk3fGv88BNjAJg6dSp4PB6OHDlS6Zm8d+/eITExEWpqahg2bJiYe506dTjd+bt378oVD/b8p4eHh0R1CS0tLbRr1w5CoRCPHz+WK2xZsLa2hr29vdhzBwcHAJDacUdERGDDhg2YNGkShg8fjqFDh2Lo0KFcHL+Va2q+fPnCCQD2LuuyqKiocGov0sru119/VZp6cVpamlThXpZGjRohMjJSoV9ZygpaaWpuZZ+XP/tWFX777TeJ37K2tgYAsbOlNfHd8PBwpKWlwdramqvz5WE7eGVeas/Wte7du4uo97L06tUL9evXR15ensQOTE1NDQMHDhR7bmRkxFkevXfvntzx8vDwqDC+gwYNknin6rBhw6CmpobExEQROwOtW7cGIKo6zcqINm3aoHXr1khOTubKJDs7G5GRkahTpw53LOVrUtN1pyph8ng8LF++HHp6eggMDMT48ePx6NEjmJqaYvHixTJ9vyKk1Q22Dxs8eLBEdxsbG07NVVJf6+rqKrbQCgDNmzeXyb1sH5WUlIRXr15BT08PPXr0kBgfSfnHhv/gwQNkZWVJ9Ccr9+7dAyEEDg4OEsuwZcuWaNGiBQghCrXRqiJvn8+Wr6S2AZTKnBYtWuDLly94+fKlkmMrHV1dXZEBPAtbL6S5s3Kl/Nnrqtbj8ujr60NdXR3Z2dm4f/9+pe8rWnfLoshYRZHylTdtskAIwe3bt/Hvv/9iwoQJ+P3337lxZW5uLqdaLQlp6S5rX0XSpExFRYXb6JJVRrP99fXr12Uayynafvr06QMej4egoCCxxfGLFy+CEAI3NzeRxQRlpFeanK8IdixS3q5P2WfftBo1fvAzxiy2trbo1q0brl27hh07dlQ4cGBXk42MjKTeM2tlZSXyrqxERUUBKD3sLs340cePHwEAycnJcoUtC2XP9pWFPWMmyfDX8uXL4e/vX2G4VR1cKIv4+HgIhULUqlVL6p27lZVd+R0ERVi2bBn++ecf3L9/H1OnToWPj89XOV9c9nxZUVGRxHfKPlemNVRpZ1zZupWXl6e0byn6Xbb9JScnY+jQoRL9sYsLymx/bF2TVrdUVVVhYWGBtLQ0xMbGiu0cGhsbS5VFbJjSjMpVhLT4sPEtu8tUFh0dHTRo0ACJiYmIjY3lwmHPGT99+pQ7ZxwSEgJVVVU4OzsjNTUV58+f584ZP378GEKhEE5OTkpbjJKHmq47VQ3TyMgIS5cuxdSpU3Hv3j2oqKhg1apVYkb35KVevXoSz/fl5eVxEwxvb2+p5xlZo07Jycki2hEApJ51Y78nzV1SmbALgwKBAL///rtEf6xGQ9n86969Oxo3bozIyEi4ubmhXbt2aNWqFVq3bg07Ozu5bEpU1raB0j7nxYsXco8XlIG8fT5bJ7du3cppzpWHTYcihv8URdF6w7qXTacy6nF5VFVVMWLECPj5+WHMmDGwtbVFu3bt4OTkBBcXFzH5rWjdLYsiYxVFylfetFVGbm4uvLy8Kr1rXtq4Ulq62bTdunULL168kPhOeno6ANlltKenJ86ePYvTp0/jzp07cHV1hbOzM9q0aSOxbSnafkxMTNCqVSs8fvwYV69eFZlYsrvIv/zyi8RvKZpeaXK+Mlq3bg1zc3PExMQgLCwMLVu2BAA8ffoUsbGxMDIyQvv27eUO92tCJ8b/n6lTp+LGjRs4fvw4xo0bh4YNG0p8jxWghoaGUsOqaCJZETk5OQBK77WtjOpQU5K0+wNAasdw/vx5+Pv7Q1NTE7Nnz0b79u1hbGwMDQ0N8Hg8zsiVLCtpXwO2POrVqydVHaSyslPGVUouLi7w9fWFl5cXbt26hTlz5mDdunXVPvjX1taGiooKhEKhVMuCZdWnlanqIi3f2HIgClj4VPZ32TzJzMys1Eq9MtsfO5ivSKawbpLqpSTjSLL4qwxpecfGt7LvJiYminxXV1cXDMNwRkZsbW0RFhaG5s2bQ1tbmzMSFRISgkGDBnG7yTWhRg3UfN1RRpiOjo7Q1NREfn4+LCwspBrdkwdp/QTbfwHgDFdVhCSNlMr6oMrcJZVJWU0haZTNP01NTRw+fBibN2/G5cuXcePGDdy4cQNA6QB18uTJnApuZcjSthUdLygDeft8toxfvXpVadjK1DiqjKrWm7Ioox5LYubMmTA2NsahQ4fw6tUrLg/V1dXRt29fzJs3jzvipGjdLYsiYxVFy1eetFXGypUrERISAnNzc8yYMQOOjo7Q19fntNl+//13hIaGSh1XSks3m7b4+PhKNdRkldHW1tY4fPgwfH19ERwcjDNnznDGpezt7TF//nwRmVuV9tO3b188fvwYFy9e5CbG0dHRiIyMhK6urtiCeVXTK63NyMKAAQOwbt06nDlzhpsYs/nSr1+/b/5edjox/v8wDINevXohICAAW7duxb///ivxvTp16gAAPn36JDUsdhWGfVdW2Iro5+cn1SrytwR7hmDu3LkS1cqVeUZVGbDlkZmZCaFQKLFxKlp28uLq6oqNGzdi2rRpuHTpEtTV1TkrseVJS0vD1KlTFfpO2bPStWvXRsOGDZGQkID4+HhOYJWFVZ1TU1OTujj0fxW2/fXu3RsbNmz46t+tSKawbpLqZUVXTFTkT1HY+LJtRZ7vtm7dGm/evMGjR48gFAqRl5fHTXzNzMxgbGzMTYhr8nyxvFRH3alqmOT/356Qn58PFRUVvHv3Dn5+fvjjjz+UEr/ylB1IPXv2rMbv32Xj4+DgIPe97A0aNMC///6Lf/75B69fv8aTJ09w/fp1PH78GIsWLYKWlpZMlvRladtfq89RBlpaWsjOzkZgYKBStKe+RaqrHrNHtTw9PZGUlITQ0FAEBwfj8uXLOHnyJFJSUrBr1y6ROChSd6uCouUrT9oqori4mLPNs3XrVolxUHRcyeapt7e3VA0cRbC3t8fOnTs5i+UhISEIDAzE8+fPMW7cOJw7d47bPa5K++nZsyeWLVuGhw8f4tOnTzA0NOR2i3v06CF2PK660isLHh4e2LRpEwIDA/HXX38BAHeFkyLq2V+bb3va/pX5888/oaqqijNnzkhdYWGvS0hJSZF6/x2741vZ1QrlYVUTZdkx/hZg1Y2k7UJIM7qlyPVGysDMzAwqKiooLi6WqlqqaNkpQrdu3TjjW2fPnsWSJUskvqcs41vA/86OPXnyROK32Od2dnY1or4qC9VVf1g1emW3v8riy9a16Ohoie4lJSVcfZVUL5OSkqTuNrFnfJVZn9mwpOVTTk4Od5di+e+W3RWWtCPcunVr7nzdmzdvoKWlVaUrXMrzPdWdqobp7++P4OBgmJqacteX+Pj4yLRboQg6OjqcSum30Iex+ff+/XuFtZZUVVXRokULjBo1CgcPHsTYsWMBQObJSmVtG/i6fU5VqY4xSk2NB6TxNeqxiYkJ+vbtixUrVuD48ePg8Xi4e/cuZ1RVGXVXEZRRvpWlrSIyMjKQl5cHPT09iRPH7OxshY4FAdU/vtbU1MRPP/2EadOmISAgAC1btkReXp6IwayqxEFXVxeurq4oKSnhJpkXL14EUHoGuTw1OZ+oX78+OnbsiJycHFy7dg1Xr15Fbm4unJycpB5j/JagE+MyWFhY4JdffkFxcTG2bNki8Z1mzZrB1NQUAoEAhw8fFnPPy8vDqVOnAJTuCpaFXXmUpnrDGlk4duwYdym9Mqjsu1UNV9JqeGhoqFTjG+xZ16+pagWUrsizd+nt379fzJ0QgkOHDgEQL7vqonfv3vjvv//A4/Fw7NgxrFixQuwdZRnfAsAZILl8+bKIyhhQulrLGkfo2bNnNaRWOVRX/XF2doaBgQHevn2rVEM4lcWXrWvXr1+XOHi4fPky0tLSoKWlJfEuSIFAgJMnT4o9T01N5QxwKLM+s2GdPHlS4tnwI0eOQCAQoFGjRmjatKmIW6tWrcDj8fD06VMEBwdDVVUVrVq14tzZifPWrVtRUlICJycnkTuPq8r3VHeqEmZUVBTWrVsHFRUVrF69Gh07dsSECRMgEAgwZ84cielXRj/ByhdJ98J+bZo0aQI+n4+cnByuT64qbPtjF34qw9XVFTweD8+fP5e4UBweHo4XL16Ax+OhQ4cOSokjUH19PjtG2b9/P3fDQVWprrhWha9Zj62srLhz/2y9qo66KwvKLl9JaasIti7k5uZKHAMfPHhQ4YUCNm0XLlyoUNtJGdSqVYszalc23VXN37LWqZ8+fYqEhAQYGxtzhi3L8jXTKwn2uElZ9fJv3egWC50Yl4O9nkOSWXSgdHWTvcpg27ZtCAoK4txycnIwZ84cZGVloXHjxmKqVqwBCGkWpbt16wZnZ2fExcVh/PjxePfunYh7cXExHj58iFmzZkk1niQJ9ruVGTOQF3ZAu2HDBpHJ8dOnTzF9+nQRY0+S4vPixQupCwAJCQng8/ng8/lKtQA8YcIEAKUGzk6ePMmdSSssLIS3tzfevXsHXV3dr6p64uHhwe0W79u3r1rVeN3d3WFlZYXPnz9j7ty5nNZDUVERli5ditjYWNSvX1+q1cRvAbb+hIWFKXU1XV1dHTNmzABQemYqICBArPOKj4/H1q1buQmnPPENDQ2VeJa6bdu2cHBwgEAgwIwZM0SMbjx//hzLly8HAAwfPlyiIRM1NTX4+PjgwYMH3LP09HTMmjULAoEA9vb2SlVH7tOnD0xNTZGVlYU5c+aInFe/ffs2tm3bBqC0rZXfDapXrx6srKzw5csXPHz4EDY2NiJpYuPJnumU1OEDpdYtWfkgD99T3VE0zKKiIsyZMwdFRUUYN24cJ6enTJmCFi1a4N27d1izZo3Y9yrrn2RhwoQJ0NfXx8WLF/HPP/+InY3Ozc1FYGCgxAXA6mDOnDlQUVHBf//9h0OHDon1mykpKfD39xc5crJ3717s3btXzHhURkYGt6Aqq5V0MzMzbpFx3rx5IlbaY2JiMH/+fADAzz//LNVAlCJUV58/ePBgmJub48mTJ5g+fbrYQl5RURGCgoKwYMECmcPU19dHnTp1kJ6eLjbmqSmUXY+jo6OxaNEihIeHi/QBJSUl2LdvH7Kzs6GhoSGyS6pI3a0qipSvImmTRt26dcEwDIqLi/Hff/9xaSaE4MSJE9iyZYvUcWVlNG/eHH379kV2djZGjRqF58+fi7gTQvDs2TMsWbJE5qvTFi9ejIsXL4ppbL158waXLl0CABGNp6q2ny5duqBOnTp4/vw518/+/PPPEo8FVkd65aFTp06oX78+Hjx4gIcPH0JTUxO9evVS+neqA3rGuByNGzdG//79cezYManvDB06FM+ePcPZs2fxxx9/oFGjRtDT08O7d++Qn58PPT09bNq0SawB9+7dG4cOHYKfnx+uXbuG+vXrg8fjYfz48ejYsSN4PB58fHzg5eWFx48fo3fv3mjUqBEMDQ058/TsIXl2sCwLvXr1wtu3bzFx4kTw+XxuILp+/XrUr19fgVwqZdy4cQgICMCLFy/QpUsXWFhYID8/H3FxcbCyskLfvn2xZ88eMX+2trYwNzdHbGws3NzcYGFhATU1NVhbW3N3tlYXnTp1gpeXF7Zt24aFCxdi06ZNMDIyQmxsLHJycqChoYG1a9dWaCylOhg6dCgKCwuxYsUKbN++HRoaGtx9sMpERUUFmzZtwrBhw3Dz5k107NgR5ubmSExMRFZWFjQ1NbFx48YqGV6objp06ABdXV08efIEbm5uaNy4MWrVqgVXV1du4UNRBg0ahJSUFPj6+mLmzJnw9vaGmZkZCCFITk7mVl69vb1lDrN79+7YsGEDAgICEB4eDhMTE6ioqMDDwwP9+/cHj8fDunXrMHLkSISFhaFr166wsrJCQUEBN5Du0KEDpkyZIjF8R0dH6OjoYNSoUWjSpAm0tbXx9u1bFBUVwcDAAKtXr1aquqKGhgY2btyIcePG4fr167h37x4sLS2RlZXFHa8YMGCA1KtOXFxcEBUVBUKI2IS9SZMmMDY25qxkKvt88fdWdxQJc8OGDXjz5g2aN2+OP//8k3teq1YtrF27Fh4eHjh06BDc3NxENAkq659koUGDBtixYwcmTZqEw4cP49ixY2jatCm0tLTw+fNn7mYAaddPKRtXV1csXboU//zzD5YuXYq1a9fC3NwcqqqqSE1N5Sa/48eP5/x8/PgR+/fvx8qVK9GwYUOR/lcgEMDIyAjTp0+XOQ5LlixBbGwsIiIi8PPPP3MqjtHR0RAKhbC1tVXKFVplqa4+X1NTEzt37sSECRNw5coVXL16FU2aNIGenh5ycnIQHx8PgUAgV//J4/HQs2dPnDp1Ch4eHrCysuL6H2l39FY3yq7HAoEAJ06cwIkTJ6CtrQ0zMzPweDyu3+XxePjrr79EFgkVqbtVRZHyVSRtFTFr1ix4eXnhxIkTuHr1Kho3bozk5GR8+vQJHh4eSExMVHjBZ9myZcjJyUFQUBAGDRoEIyMjGBsbo7CwEPHx8ZwGlKTrPCXx7NkzHDt2DKqqqjAzM0PdunWRmZnJHcV0cXFBv379uPer2n40NDTg7u6OM2fOcHdvl7dGXZ3plQdVVVV4eHhg586dAEp3sOW1UF5T0ImxBLy8vHDmzBmpu7I8Hg8rV66Eq6srjh07hoiICKSkpMDIyAhubm6YMGGCRPP9rVq1wrp16+Dv74/o6GjOLHvZw+gGBgY4dOgQzp49i4CAAC7sevXqwcbGBi4uLnB3d5dr1WzChAkQCoUICAhAdHQ0l66qWtY1MTHBsWPHsH79ejx8+BDv37+HiYkJxo0bBy8vL+zdu1eiPxUVFezYsQPr169HaGgonj9/jpKSEpF32B1odXV1pRv5mD59OpycnHDgwAE8f/4cb968gYGBAbp164YJEyaIqX9+LUaNGoX8/Hxs3LgRGzduhKamptgF8cqgWbNmOH/+PLZu3Yrbt28jKioKenp66Nu3LyZPnvzNnwHR1tbG7t27sXnzZjx//hzh4eEQCoUwNTVVSvhTpkxBx44dcejQITx+/BhRUVHQ0NCAsbExfvrpJ7i7u8tlHM/MzAzbt2/Hjh078Pr1a3z8+FFsUti4cWOcPn0au3fvxrVr1xAdHY1atWrBwcEBHh4eGDRokFSVYnZBzc/PD+fOncPbt2+ho6ODjh07Yvr06RLvfa0q9vb2OH/+PHbu3Inbt28jMjISmpqacHFxwdChQ9G7d2+pflu3bo2DBw8C+J/qdHn3CxcuQFNTEy1atJAYBisf2HtKZeV7qzvyhvno0SPs27cP6urqWLNmjZhBFnNzc8yfPx+LFy/GggULcOHCBdSrVw+AbP2TLNjb2+PixYs4ePAgbt68idjYWAgEAjRo0ABt2rRBp06dJN4pW10MGjQIzs7O8Pf35/opVVVVGBkZwd3dHV27dkWXLl2494cMGQI9PT08fPgQ8fHxiIiI4K74c3Nzw5gxY7g8k4V69erhyJEj2L9/PwIDA7n7VxmGwc8//4wRI0Yo3VBZdfX5QOni1dmzZ3Hs2DFcvnwZ7969Q2JiIurXrw8HBwe0a9dO7qM4CxcuRJ06dXDjxg1ERkZCIBBUOZ5VRZn12NzcHP/++y+Cg4Px+vVrxMfHo7CwEPr6+ujVqxdGjBgh8ZiMvHVXGchbvoqmTRpubm7YvXs3tmzZglevXuH9+/ewsLDA5MmTMXTo0CpN4jQ1NbF9+3ZcuXIFZ86cwYsXL/D69Wvo6urCwsICTk5O6NGjh8xjoAULFuDWrVt4/PgxkpOT8eHDB2hqasLJyQl9+vTBb7/9JnYVZ1XbT9++fTnVZEtLS1hbW3+19MpL//79uYnx92B0i4VHquueFAqlCuzevRurV6/GsGHDpBqlolB+ZB49eoQRI0bAxcWlxnZWaoo//vgDQUFB2Lhx43ejnkWhUCgUyo/C48eP4enpCVNTU9y4ceObM7QnDXrGmPJN8vTpU9SqVQtjxoyp6ahQKJRvCEIIwsPDYW5uzhkYoVAoFAqF8u3AGgUdMGDAdzMpBujEmPKNEhYWhl69einVIAmFQvn+effuHbKysjBu3DiJRkcoFAqFQqHUHBEREQgICEDt2rU5C9XfC/SMMeWbJDg4uKajQKFQvkEsLS0lXkVGoVAoFAql5pgxYwYSExPx+vVrCAQCjB07Fg0aNKjpaMkFnRhTKBQKhUKhUCgUCkVhnj17ho8fP6JBgwb49ddfMXXq1JqOktxQ41sUCoVCoVAoFAqFQvmhoQe0KBQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxpUbw8fEBn8+Hj4+PUsJLSEgAn89Hly5dlBLet8D/xTRRJKPs9kChKIv58+eDz+fj9OnTNR2Vb4IPHz5g2rRpaNu2LaytrcHn83H9+vUqh/vo0SPw+XwMHz5cCbGkUCiU75/hw4eDz+fj0aNHX+2b/2cnxtevX4ePjw8iIiKkvrNv3z74+PggOzv7K8bs2yEhIQE+Pj50wKMgstSxijh9+jR8fHyQkJCg5JhRqovTp09Xulhx48YN2NnZgc/nY9myZaD2DSnfKhEREfDx8VHKxO5HoKioCCNHjsTly5ehoqICR0dHODk5QU9Pr1K/P/p4QxrZ2dnw8fHBvn37ajoqFEqN8y22h0ePHsHHx+erTk5rkv/TE2NfX98KJy379++Hr6/vD9tRJSYmwtfXF2fOnKnpqHyXyFLHKuLMmTPw9fVFYmKikmNGqSmuXr2KadOmQSAQYMyYMfj777/B4/Eq9VevXj1YWFigXr16XyGWFEopERER8PX1rXBiXL9+fVhYWEBHR+crxuzb5M6dO0hMTIS9vT2CgoJw9OhRHDlyBK1atarU748+3pBGdnY2fH19sX///pqOCoVS43yL7SEkJAS+vr4ICQmp6ah8Feg9xhQKhaIEAgMDMWfOHBQXF2PixImYMWOGzH49PT3h6elZjbGjUBRj1qxZmDVrVk1H45sgJiYGAODi4oLatWvXcGwoFAqFomzoxJhCoVCqyLlz57BgwQKUlJTgzz//xJQpU2o6ShQKRckUFhYCADQ0NGo4JhQKhUKpDr75iXFBQQGuX7+OW7du4fXr10hOTgYhBI0aNULXrl0xZswY6Orqcu8nJCSga9eu3N8LFizAggULuL+nTJkCU1NTkWdl3wdKVZ7atGnD/Z2dnY19+/bh+vXr+PDhAwghaNq0KX755Rf8/vvvUFNTE/F/+vRpLFiwAB4eHli6dCl27dqFc+fO4ePHj9DV1UWXLl0wY8YMMbXJsv5Wrlwplhds2kxNTXHz5k0Rt2fPnuHq1at4+PAhkpOT8fnzZ9SrVw9OTk4YO3Ys7O3tRd4fPnw4pxYREhICPp/PuUkK/+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxUNbLCwkLs3LkT58+fR3JyMurVqwc3NzdMnz5d4vvK5PDhwzh27BhiY2OhoaGBNm3aYNq0aWjWrJnYu2zaIyMjJYbF5hVbL2SpY3/++afUuD169AgjRozg/i77fwBYsWIF+vfvL+YvICAA+/btQ3R0NFRVVeHs7IwZM2bA2tpa4nc+f/6M3bt34/r160hISICamhqsrKzQr18/DBo0CKqqqmJ+wsLCsHfvXjx9+hSZmZnQ0tKCvr4+7Ozs8Msvv6BTp05ifmJjY7F7924EBwcjNTUVGhoasLW1xfDhw8XaVlUJDg7GjRs38OTJEyQlJeHLly+oX78+2rZti/Hjx6Np06YS/Z0/fx4nTpxAZGQkvnz5grp168LQ0BCtW7fG0KFDYWVlpXCcTp06hUWLFkEoFGLWrFmYMGGC3GH4+PjA19dXrO4oKktYcnJycODAAVy/fh1xcXEoLi6GsbExHBwcMHDgQLi4uHDvdunSBYmJibhx4wY+fvyIXbt24fnz58jKyoKvry+6desGoFQmHz58GIGBgYiJiYFAIEDjxo3Rq1cvjB49GnXq1BGLx9cstwcPHuDgwYMIDw/H58+foaenBxcXF/zxxx8ico4lKysLfn5+uHXrFnfeX19fH40bN0aHDh0wevRopewOlpUj2tra8PX1xdOnT1FQUABLS0sMHz4c/fr1k+r/7t27OHDgAJ4/f47c3FwYGhrip59+woQJE2BhYVHh93R1dbFt2zaEhoYiIyMD8+bNw/79+7ljHGfOnBE5UuPi4oIDBw4AKDW+debMGalyqSrxMjIywubNm/HgwQPk5ubC3Nwcnp6eGDx4sJi/4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD0fDhg0rLYey4R0/fhznzp1DdHQ0BAIBGjVqhO7du2Ps2LGoW7cu9y7bPll8fX25v8vmlSTYNsxS2XgDAAghIn2YlpYW2rVrh1mzZsHU1FTidxRpl5UhT5hPnz6Fp6cnVFRUcOLECdjY2IiE9enTJ/Tt2xcZGRlYtWoV+vXrx9UtoPRoV/n2yfbJZeWjp6cntmzZgps3byI1NRUdO3bE1q1bOT/ytv+yci8lJQVbt27F8+fPQQiBg4MDZs+ezaUlLCwM27Ztw7Nnz1BYWAh7e3vMmTMHLVq0kJh/JSUlOH36NM6dO4fIyEgUFBTA2NgYXbp0wR9//AF9fX0xP9HR0di5cyceP36MtLQ01K5dG/r6+rC2tkaPHj3Qt29fWYoOgGJytzrzuiLS0tJw5coVBAUFISYmBqmpqVBXV4elpSV+/fVXDB48GCoqkk9/lpSU4Pz58zh//jxev37NpdPKygq9evWCh4eHmJ+IiAj4+/sjJCQEaWlp0NLSgqmpKdzc3DBkyBA0aNBA5P2vMQ+QtT1UJpOlzSVKSkpw69Yt3Lx5E8+fP0dKSgoKCwthbGwMV1dXTJgwAUZGRiJhlY1DWbkHQOJc5fLlyzhx4gRevXrF9Qeurq74448/0KhRI7G4AkBKSgo2btyIO3fuICcnB6ampujXrx/Gjh0r8f3q5pufGL98+RKzZs2CqqoqDA0NYWFhgby8PMTFxWH79u24dOkSjh49ygkYdXV1ODk5IS4uDunp6TA3NxcRPiYmJjAwMICTkxNevnyJoqIi2NnZiQx8yp6levfuHcaOHYukpCSoqanB1NQUPB4Pb968watXr3Dr1i34+flJHDgJBAKMHTsWjx8/hoWFBczMzBATE4Njx44hPDwcJ0+eVJo61uzZsxEfHw89PT3Ur18fDRo0wMePH3H58mVcv34d69evR48ePbj3GYZBVlYWoqKioK2tDYZhOLf69euLhH3gwAEsX74cQqEQOjo6sLS0RGpqKm7duoWgoCB4e3tjyJAhIn4KCgowZswYPHnyBADQrFkz1KpVCydOnMC9e/eq1dLysmXLcPDgQRgbG6NZs2aIiYnBlStXcPfuXezduxeOjo5VCl+WOlYROjo6cHJyQlRUFHJzc8EwDLS1tTl3AwMDMT8bNmzA9u3bYWxsDHNzc8TExCAoKAihoaE4efKk2AD0w4cPGDlyJBITE1GrVi1YWVkhPz8fYWFhCAsLw/Xr17F161aR+nfz5k1MmTIFJSUl0NbWhqWlJYRCIZKTk3Hx4kXk5uaKTYyvXLmC2bNno6ioCFpaWrCwsEBWVhYePHiABw8eyK1SXBnjxo1DSUkJ9PX1OQGemJiI06dP4/Lly9i1axecnZ1F/KxevRq7d+8GUFq3GzdujNzcXMTHxyMqKgqmpqYKT4yPHj0Kb29vEEKwYMECjBo1qkrpk4YisiQ6Ohrjx4/Hx48fwePxYG5uDi0tLSQkJODcuXNISkqSOKAPDAzEhg0boK2tDTMzM2hqanJuqampGDt2LKKioqCqqgoTExNoaWkhJiYGPj4+uHLlCvbv3y82Uf9a5bZq1Srs2bMHQOm5bSsrKyQmJiIgIADXrl3D5s2b0blzZ+793Nxc/Pbbb4iLi4OKigqaNGmCOnXqIDU1FaGhoQgJCcGgQYMkDmAV5enTp9i2bRtUVVXRtGlTfPr0CS9fvsS8efMQGRmJefPmifnZtGkTNyCtX78++Hw+YmNjcfr0aQQGBsLHxwcdO3aU+L3Hjx9jx44d3Pfq1KkDHo8HOzs7qKmpITY2FgYGBmjSpAnnp2x/UBFVidfr16/h5eUFQggsLCyQmpqKqKgoLF68GJ8/fxZbYJo1axYuX74MAGjYsCEMDAy4PuzVq1dwcHCQeWJcWFgILy8v3L9/HwC4tvH27Vts374dFy9ehL+/PzeQMzExgZOTE5KSkpCUlAQTExNOzleWV/KMN1jmzJmDCxcuwMzMDObm5nj//j0CAgIQGhqKc+fOibUvRdtlRcgbppOTEyZMmIBt27Zh9uzZOHXqlMjO+oIFC5CRkYGePXtyC0Dm5uaws7PDy5cvUbt2bdjZ2VUYp4yMDAwYMABJSUmwtLTkxhUs8rb/sty8eROrVq2Cjo4OGjdujLi4ONy7dw/Pnj3DsWPHEB0djVmzZqFOnTowNTVFbGwst8h98uRJsUX33NxcTJo0CY8ePQKPx4OxsTFMTEwQFxeHffv24cqVKzhw4AAaN27M+Xnx4gWGDx+O/Px8aGpqwsLCAqqqqkhKSsK1a9cQGxsr18RYEbn7NfJaEidOnMCmTZugrq6OBg0agM/nIzMzE+Hh4QgLC0NwcDA2b94sZrOjbD4DgLGxMRo1aoSUlBTcuXMHt2/fFpsY+/v7Y+XKlRAKhdDS0oKVlRW+fPmCt2/f4tWrV2jUqJHIhPNrzQPkbQ/ykpaWhsmTJ0NFRQUGBgZo1KgRioqKkJiYiIMHD+LSpUs4fPgwzM3NOT/S5B4bX5bi4mLMnTsXAQEBAMAtTMTFxeH48eO4fPkydu/eLbZJFxcXh2HDhuHTp09QU1MDwzDIzs7G+vXr8ezZs5oxXkq+cRISEkhAQADJyckReZ6ZmUmWLFlCGIYhCxcuFPM3b948wjAMOXXqlNSwO3fuTBiGIR8+fJDonpeXR9zd3QnDMOTvv/8mmZmZIvEaPHgwYRiGrF27VsTfqVOnCMMwxNbWlvTo0YO8ffuWc3v79i3p0KEDYRiGHD16VKK/efPmSYzPhw8fCMMwpHPnzmJuZ86cIbGxsSLPSkpKyNWrV4mjoyNp1aoVyc3NFXF/+PAhYRiGeHp6SvweIYTcu3eP8Pl84uzsTM6fP0+EQiHndvXqVdKyZUtia2tLIiMjRfytXr2aMAxD2rdvT16+fMk9j42NJb169SK2traEYRiyefNmqd+WBzZvmjdvTmxtbcn58+c5t5ycHPLnn39yeZefny/il2EYwjCM1LA9PT0JwzDk4cOHIs9lqWMVIS3c8mmytbUljo6O5Pr165xbdnY253/mzJki/oRCIRk4cCBhGIYMHjyYJCcnc25hYWGkbdu2hGEYsm7dOhF/ffr0IQzDkPXr15PCwkIRtxcvXpCzZ8+KPIuMjCQtWrQgtra25MCBA0QgEHBuISEhpH379oRhGHLnzh35MqYCjhw5QpKSkkSeFRUVkaNHj5LmzZsTd3d3kTqanp5ObGxsSPPmzcm1a9dE/BUXF5OgoCCp+S8Jto127tyZHDhwgPD5fMLn88nBgwerlK7NmzdLbA+KypLc3FzSpUsXwjAMGTFiBImPjxdxf/XqFTl06JDIM1Ye2tjYkA0bNpCioiLOraCggAiFQjJs2DDCMAyZNGmSSDlkZGQQLy8vwjAMmTFjhlj6vka5HT9+nDAMQzp27Ehu374t9n0bGxvi7OxMPn36xD3fs2cPYRiG/PLLL2LxS09PJ/7+/mJyU1HY9mpra0umTZsm0qedPXuWNG/enDAMIxb3oKAgrlyOHz/O5VNBQQH5+++/CcMwpHXr1iQtLU3i92xsbMiCBQvIly9fODdWBlbW5xAiXc5VNV62trZk8eLFJC8vj3Pbt28fYRiG2Nvbk+zsbO75y5cvCcMwxNnZmYSGhoqEV1BQQAICAsjr16+lpqE8q1atIgzDkJ9++omEhYVxz5OTk8lvv/3Gyc7ySGunslDZeIPtj21tbUn79u3JkydPROLFyufycrsq7VIaioYpEAjIgAEDCMMwZOnSpdzzAwcOEIZhiKurq8g4ipCKxzUsbL7b2NiQgQMHkoSEBM6NrcuKtH9C/lcutra2ZMeOHaS4uJgL948//uBkqLOzs5j7+PHjCcMwZPr06WJxnjVrFmEYhgwdOpRER0dzz/Py8rj28dtvv4n4Yb83b948Mbnz7t07cuTIEal5JAl55S4h1ZvXFfH48WMSHBwsMo4gpHTMOHToUMIwDDl37pyYP3Zs5+bmRh4/fizilpycLNZWb926RRiGIdbW1mT79u0iY53CwkJy4cIFkXC+9jxAlvZQ2dhTmlzPzs4mp06dIunp6SLPv3z5Qnx9fQnDMGTUqFFi4cki99avX08YhiE///wzCQ8P554LBALi4+PDpalsfguFQjJo0CDCMAz5/fffRfqKu3fvEkdHR26uIM84rap88xPjyujYsSNxdHQUa0zKmBizwnz8+PES3ZOTk4mjoyNp2bIlKSgo4J6zlZLP55Nnz56J+WM7fy8vL5HnVZkYV8SGDRsIwzDk4sWLIs9lmRh7eHgQhmFIYGCgRHd/f3/CMAxZtGgR9yw3N5c4OjoShmHIpUuXxPw8e/aMm4wqe2LMMAxZtmyZmHt+fj5p06aNxDrxrU+MGYYhfn5+Yu4RERHcYLEswcHBnED++PGjmL8LFy4QhmGIo6OjyODczs6OMAwjtgglDbZDkhQ3Qgi5fv06YRiGjB49Wqbwqsrs2bMJwzAiA92wsDDCMAzp16+fUr7BtlF2EsMwDDl27FiVw61sYiyvLGEnfO7u7mILQdJg5eGECRMkut+8eZMwDEN+/fVXsYUTQko7144dOxJra2uJ9U4ayii3oqIi0r59e8Ln80U65bIsX76cMAxDtm3bxj1jB6j+/v4yx1dR2Pb+008/ifQXLP/8849EecxOUBYvXizmp6SkhPTs2VNi3WG/17dvX24wX56qTIyrGq8+ffqQkpISMb/9+vUjDMOILIhcvHiRMAxDJk+eLDWespKTk8P1TwEBAWLuiYmJXPsuL5u/xsRYWn977do1bhGnLNXRLqsSZkxMDJe/QUFB5O3bt8Te3p7w+Xxy//59sbDkmRjb2dmJTfQIUbz9E/K/cvnjjz/E/ERHR3NlUpF7+T44MjKSWwjIysoS81dSUkL69+9PGIYRWQDp0aMHYRiGRERESM4IJSJJ7hJSvXmtKHFxcYRhGDJmzBiR5+yCma2trcjiQ0WU3QCQha89D6jOiXFlsAsQKSkpIs8rk3vp6emkRYsWxNHRUWwRnmXy5MmEYRiRTauyi4FlN3BYdu3axbW/rzkx/i6uayKE4Pbt2/j3338xYcIE/P777xg6dCiGDh2K3NxcTrVa2Vy9ehUA8Ntvv0l0NzIyQosWLfDlyxe8fPlSzN3a2lpMbQAAHBwcAJSquyqTuLg4bNmyBVOnTsXw4cO5PLp06RIAyH2tUFJSEl69egU9PT0RNeyysOcOy95vFhoairy8PDRo0ADu7u5ifuzt7bk8qA5+//13sWcaGhoYOHAgAODevXvV9u3qQtKZO2tra6irqyMnJweZmZnc87t37wIAunfvLlGtu1evXqhfvz7y8vLw9OlT7jn7LltfKqKoqAhBQUFQUVHBoEGDJL7TqVMnqKmpITQ0FMXFxZWGKSsRERHYsGEDJk2aJFLPHz9+zLmzsGmKjY3FmzdvlBYHUka9JykpSWnhSkNeWXLt2jUApec55TUUJOk8FvA/eejh4SFRZYw9BykUCrmyKEt1llt4eDjS0tJgbW0tVbZIklXsd27fvo38/PxKv6MMBg4cCHV1dbHnrNx68uQJ8vLyAABfvnzh2mh5WwQAoKKiwlkzZ9t9eX799VeJ9gSqgjLiNXDgQIlnBtnzmvHx8dwzY2NjAKW2ND5+/FiluLP526BBA4n9WsOGDbm6Ii3u1Ymuri569eol9pyt12XzBah6u5REVcI0NzfnjgP89ddfmDlzJgoKCjBixAi0a9dOpu9Lo127dlxdKIui7b8skvqxZs2acfKzIvfyfTCbfz179hSxgcOioqLCqRlLkkdXrlxRmgqpPHK3LNWZ19LIy8vDqVOnsGDBAowdOxbDhg3D0KFDufpUvi9g+7kuXbpItB9THvYYTq1atWQ+v/q9zQNkITQ0FKtWrcLEiRPh6enJ1YnY2FgA4vlcGXfu3EFhYSHatWsncjSgLJLqxJ07dwAA7u7uYmebgdJxb/mz21+Db/6McW5uLry8vCq9PysrK0vp346KigIAbN26lTvrVh62IqWkpIi5mZmZSfTDniH98uWLEmJZyp49e7Bu3boKJyDy5hF70F8gEEicbAL/myAkJydzz9grLZo2bSrVWEKzZs3w7NkzueIjC2pqaiJn5cpiaWkpEr/vhXr16km9Q1RfXx9JSUnIy8vjznqxdVJaR6GqqgoLCwukpaUhNjaWOwM4evRoeHt7Y9GiRdizZw86dOgAJycntGnTRuyMZVxcHAoLC6GmpoaJEydWGP/CwkJkZWXB0NBQnmRLZPny5fD396/wnbL13MjICL1790ZgYCA8PDy49Dg7O8PZ2Vlh67LGxsYYMmQI1q1bh61bt0JTU1Mho1uyIq8seffuHQAodJ5eWr1h5eGJEye4s57lYSctZeUBUP3lxsYtOTkZQ4cOlRg+a1G4bNwGDBiAvXv34t69e3B1dYWrqytatWqF1q1by3zOVl6kGRqzsLBArVq1UFxcjPj4eFhbWyM+Ph5CoRC1atWSaMgKAHfOmm335ZFlwCgvyoiXNDnN1ml2cQAAWrZsiZYtWyIsLAzu7u5o06YNWrdujVatWsHR0VHk7GNlsPKfPb8pLe6XL1+WGvfqRNrAUlK+AFVrl9KoaphDhgxBUFAQbt26hU+fPsHKykopV35JazuKtv+ySJOx+vr6+PjxY6XuZftgNj63bt3CixcvJPpLT08Xi8+oUaPw4MEDbN26FefOnUOHDh3g7OyMtm3bSpw4VIa8crcs1ZnXkoiMjMQff/xR4UJz+bjK289FR0cDKE1bWeN6FfE9zQMqQyAQYM6cOZVufig6V3j58qXUOpGTkwNA8lxBWh+lra0NIyMjzijm1+KbnxivXLkSISEhMDc3x4wZM+Do6Ah9fX1uFfP3339X+o4UC1uQr169qvTdgoICsWdaWloS3y1vPKCqPHnyBKtWrYKqqiqmT5/OWa7W0tICj8fDyZMnsXDhQrnzKDs7G4Do7oA0WEEI/K/jlmREikUZkyRJ6OnpSZ2M14QgUgbS6hEALq1lV5fZ/K8oj1m3snkxdOhQ6OjoYM+ePXj16hXev3+P/fv3o1atWujatSv++usvbgWZrRsCgaDSugFIbh/ycv78efj7+0NTUxOzZ89G+/btYWxsDA0NDfB4PM4QUPl6vmrVKlhaWuLkyZMIDQ1FaGgoAKBOnToYMmQIpk2bJnEHrzImTJiAgoICbNmyBevWrYOmpiaGDx9e5XRKQl5ZkpubCwAyd/5lKWtsqyysPHz79m2lYZSVB1+j3Nj6mJmZKbJzU1ncGjRogGPHjmHTpk24desWAgMDERgYCKC0s541a5bSLatLk4sqKiqoV68e0tLSuHbJ/luvXj2F5Zq08qwK1RkvSTJNRUUFfn5+3ITh3r17nOZPvXr1MGbMGIwbN05qXMoii3ysyb5CWluXljZF22VFKCPMtm3b4tatWwCAvn37KiRjyyMtbxRt/2WRVh9ZGVuZe9n6yuZffHy82A5/RfHp1KkTdu3ahW3btuHp06c4duwYjh07Bh6Ph59++gl//fWXzIYiFZW7LNWZ1+UpKSnBtGnTkJSUhA4dOmD8+PFgGAZ169ZFrVq1IBQKYWNjIxZXtp+TtnFQHnnfB76feYAs7Nq1C5cuXYKhoSFmz56NVq1aoUGDBlzbnDt3Ls6dOyf3XKHspLeyxRBF5gp0YlyG4uJizsLZ1q1bJa4qfP78udq+r6WlhezsbAQGBlbLqnt5JAnYskhT9Tt37hyA0h0/Ly8vMXdF84ht0A4ODjh+/Ljc/tgVUUl8+vRJoThVRlZWFoRCocRBBBsfaddWEEIkCqvyK/TfOmz+V5THrFv5vOjTpw/69OmDjIwMPH78GI8ePUJAQACuXLmC2NhYzoIi68/Q0JCz7FrdsPV87ty5GDZsmJi7tHpeu3ZtTJ48GZMnT0ZsbCyePHmCu3fv4vr169i9ezdyc3OxdOlSheI0depUFBQUYPfu3fjvv/+goaEhVbX8a6KtrY2srCxuEKMM2Hrl5+cn1dKwJL5GubFx6927NzZs2CBXuiwsLLBx40YUFRXh+fPnCA0NxZUrV/D69WtMmTIFhw4dgpOTk1xhVkRGRobE50KhkBtosu2L/TczM1NhuVYd1ES8dHR0MG/ePMydOxdv375FaGgobt++jdu3b2PdunUAIJPWhizysSbyVFEUbZfVGeb79++xceNG8Hg8EEKwfft29OjRQ8SKrTKpSvuvDtj4eHt7S91Bk0aHDh3QoUMH5OTk4MmTJ1wfHBwcjNGjRyMgIECienZ5FJW7lVEdef3ixQvExMSgYcOG2Lp1q9giirQdTPY2D3ZiVhnyvg98/XmALFR1rrB8+XKJV29WtU6MHz8es2fPlttfTcwVKuKbPmOckZGBvLw86OnpSayQ2dnZUtVilbEaw6reyrJqqgzYFUlplUTaOWr2LkppZvelqSxXlkfsyuT79+/lWkFiVetiYmIgFAolvvP+/XuZw5MHgUAgdYWWVbsp3zlX1jilhVcTK36ywKaPVRsqT0lJCddupA1U9PX10aNHDyxevBgXLlyAjo4OIiMj8fz5cwClapBqampIT0+vUKgpE3bVUN56XhZzc3MMGDAAGzduxJYtWwCU3vlXFY2TuXPnwtPTE4QQLF68GOfPn1c4LGXByq7w8HClhymvPPwa5cbKqqrI6tq1a6NVq1aYOHEizpw5g169ekEoFOLkyZMKhykJabIvNjYWxcXFUFVV5dTvzMzMoKKiguLiYql9HZtmRSYdisqw6o5XRfB4PDAMg2HDhmHHjh34+++/AUDmxVu2f3r//j1KSkokvlNdca8OqmOcUpUwi4uLMWfOHOTn52PkyJEYMmQI8vLyMHfuXIlyVhn9qDLavzJRRpno6OjAzc0N8+bNw6VLl9C4cWOkpaVxu/CVoQy5K4nqyGs2rnZ2dhI1C9hxR3nk7efKjmllXTT+2vMAWdqDonOFiupESUmJxDPSssRJ0TrBymJ2bF6e3Nxcierp1c03PTFmz5Hl5uZKXAE5ePCg1AEt27gqUuFkw5em7sEa5ti/f7/UCZ4yYQdDb968gUAgEHM/duyYRH9sWiWtrMTHx0sVpGz6peVRkyZNwOfzkZOTg1OnTlWegP+Ps7MztLS0kJKSguvXr4u5v3z5UqkD9vIcPnxY7FlhYSE3wHV1dRVxY890SRK+gYGBUgWoLHWsIirLf0Vh03f9+nWJ53UuX77MXWgvy05YgwYNuPs8U1NTAZQKZldXVxBCKj3DpCzY/JJUz0NDQ6UKdWmwaRcIBFW2UbBo0SIMHDgQQqEQ8+fP5wx21BTdu3cHUHoHuazqbJXBysNjx47JZajqa5Sbs7MzDAwM8PbtW6UZ12vZsiWA/9V5ZXHy5EkUFRWJPT906BCA/8lPoHTHkk3v/v37xfwQQjh/5eWaLCgqw6o7XvLADvJkLSc2f9PS0nDlyhUx96SkJNy4cQOAcuNe2XhDURRtl9UVpo+PD16+fAmGYTBr1izMnz8fFhYWePbsGbZt2yb2vjL6wepo/1WBzb8LFy4oZeG4Tp064PP5AGSv58qWuyzVkddsXNPS0iS679u3T+Jz1rjrzZs3pU6uytK4cWNYW1ujuLhYapjl+drzAFnaAztXkHR+PTc3l9O0lRa2pDpx8eJFqbuzlfUTbm5uqF27Nu7duyd1Q0YSrHy9evWqxHp9/PhxiXOh6uabnhjXrVsXDMOguLgY//33HzeYIITgxIkT2LJli9RzK+xkJzQ0VKq6AfuONMNegwcPhrm5OZ48eYLp06eLTTJYy7wLFixQKH3lsba2hpGREdLS0rBx40Yu3sXFxdiyZQsePHgg0V+rVq0AADt27BDZ3YyOjsbEiROlrvawk53o6Gip6n1z5syBiooK/vvvPxw6dEhsQJeSkgJ/f38cOXKEe6atrY0hQ4YAAP7991+8fv2ac/vw4QPmz59foaW5Ll26gM/nw8fHR+o70qhVqxYOHz4sIhi+fPmCefPmISMjA6ampujdu7eIH1alZOPGjSKrU2FhYfjvv/+kxlWWOlYRrH9ZLYXKStu2beHg4ACBQIAZM2aIpOn58+dYvnw5gFKLxaxqUW5uLqZPn44HDx6I7KIQQhAYGIioqCjweDw0b96cc5s2bRo0NDTg5+cHX19fsfN4mZmZOHHiBLZu3SoWRz6fDz6fj9OnT8ucLraeb9iwQUSAP336FNOnT5coCx48eICVK1dyxiFYCgsLuXiZmJhUeMZFFng8HpYtW4Y+ffqgpKQEM2fORFBQUJXCrAqDBg1C48aNERsbCy8vL06rhCUiIkLiAlJFdOvWDc7OzoiLi8P48ePFBiLFxcV4+PAhZs2aJSInvka5qaurY8aMGQCAmTNnIiAgQGwQEx8fj61bt4osWqxfvx7Hjh0TWxhJSEjAiRMnAAC2trYibj4+PuDz+ejSpYuUnKqYz58/Y8GCBSLt5cKFCzh69CgAYNy4cSLvs+rBJ06cwMmTJzlZU1hYCG9vb7x79w66urpyq2wC/5NBL168kHsCVJ3xKs/58+fh6+srpr2Tm5sLPz8/AOLlJA1tbW1OtfS///4T2TlLSUnBjBkzIBAI0LJlS7Rp06bKcWepbLyhKIq2y+oI8+nTp/Dz84OamhrWrFmD2rVrQ1NTE2vXroWamhq2b98utlOpr6+POnXqID09XabJjSQUbf/VRfPmzdG3b19kZ2dj1KhRYovuhBA8e/YMS5YsEbFKPH36dNy4cUOsnB4+fIjg4GAApbuqsqCI3JWF6shr1oBeWFiYiIZOfn4+vL29pdoxsbGxQa9evSAQCDB+/Hg8efJExD0lJQW+vr4iz2bOnAkA2LZtG/z8/ETyuqioCIGBgZw9C+DrzwNkaQ/shPLGjRsim09ZWVmYN2+eVJVotk6sXLmSO28NlC4seHt7VzqfCgsLk7gZWb9+fYwZMwbFxcUYN26cxAWTyMhIrFmzRqSM2rRpgxYtWkAgEGDWrFkii0jBwcHw9fWVOv6+fPkyunTponA/XBHf9BljAJg1axa8vLxw4sQJXL16FY0bN0ZycjI+ffoEDw8PJCYmSuxounfvjg0bNiAgIADh4eEwMTGBiooKPDw80L9/fwCl19YEBQXB29sbhw8fhp6eHoDSKwZsbGygqamJnTt3YsKECbhy5QquXr2KJk2aQE9PDzk5OYiPj4dAIFCaISkVFRXMnTsXs2bNwq5du3Dy5Ek0atQIHz58QF5eHhYsWCDxLORvv/2Go0ePIi4uDr1794aFhQWEQiHevXuH+vXrw8vLCxs3bhTzp6+vj7Zt2+Lhw4fo1q0bLC0toa6uDkNDQ+7siKurK5YuXYp//vkHS5cuxdq1a2Fubg5VVVWkpqZyk67x48eLhD116lSEhYUhLCwMHh4esLS0RK1atfD27VvOou+BAweUkm9lMTIyQufOnTFz5kysWbMGBgYGeP/+PfLy8qCpqYk1a9aIWbQdM2YMzp07h8jISHTt2hVNmzZFQUEB4uLi0LdvX6SkpChcxyqid+/eOHToEPz8/HDt2jXUr18fPB4P48ePr9JZMR6Ph3Xr1mHkyJEICwtD165dYWVlhYKCAk6Ns0OHDpgyZQrnRygU4tKlS7h06RI0NDTQpEkT1K5dG8nJydwq7sSJE0VUC62trbFp0ybMnDkTPj4+2LFjBywsLKCuro709HR8/PgRhBCxhQhFGTduHAICAvDixQt06dIFFhYWyM/PR1xcHKysrNC3b1/s2bNHxM+XL1+wd+9e7N27F3p6ejA1NYVQKMSHDx+Qm5sLNTU1eHt7K0WdT0VFBatWrUJRURGuXr2KqVOnYseOHfjpp5+qHLa81KlTB9u2bcO4ceNw//59rl5raGggMTERWVlZcHFxkXj2TBo8Hg8+Pj7w8vLC48eP0bt3bzRq1AiGhobclXnsbhi7+AJ8vXIbNGgQNxCaOXMmvL29YWZmBkIIkpOTuU7X29ub8xMdHY0dO3ZgyZIlaNSoEfT19ZGdnY24uDgIhUJYWVnJfK2HrEyePBlbt27FzZs30bRpU6Snp3ODrREjRoid/erUqRO8vLywbds2LFy4EJs2bYKRkRFiY2ORk5MDDQ0NrF27VqF+yNbWFubm5oiNjYWbmxssLCygpqYGa2trLFy4sEK/1Rmv8mRkZMDHxwc+Pj6oX78+jI2NUVhYiPj4eBQUFEBHR6fS+JZl6tSpeP36NYKDg/Hbb7/BwsICmpqaePv2LQQCARo1aoS1a9dWOd5lqWy8oSiKtktlh5mbm4u5c+eipKQEs2bNgrW1NReenZ0dJk+ejI0bN2LOnDk4e/YspxXB4/HQs2dPnDp1Ch4eHrCysuLc5BkjKNL+q5Nly5YhJycHQUFBGDRoEIyMjETqLWu7pOx1Z/fu3cOlS5egpqYGc3NzaGpqIi0tjZMPffv2lfnKK0XkrqwoO68NDQ0xevRo+Pn5YeHChfDx8YGhoSHev3+P/Px8/Pvvv1Lb97///ov09HSEhIRg2LBhMDExgaGhIVJSUpCWlgZCiMhYp1OnTliwYAFWrVqFtWvXYuvWrbCwsEBeXh4SExNRVFSEFStWcJPIrz0PkKU9NGvWDIMHD8axY8cwefJkmJqaQk9PD2/fvoWuri4mTpwocWNp6tSpCA4Oxq1bt+Dq6goLCwtkZGQgKSkJbdu2RYMGDSQeBevQoQN0dXXx5MkTuLm5oXHjxqhVqxZcXV25BdJp06YhPT0dJ06cwNixY6Gvr49GjRqhuLgYiYmJ3GS97GIjj8fD6tWr4enpiZCQELi5ucHKygq5ubmIi4tDly5dkJOTI3HziC2v6uCb3jEGSrfod+/ejVatWqGoqAjv37+HkZERlixZghUrVkj1Z2Zmhu3bt8PFxQWfP3/GkydPEBISIpKR/fr1w8KFC8Hn8xEfH4+QkBCEhISIqM42adIEZ8+exYIFC+Do6IiMjAy8evUK+fn5cHBwwNSpUyWqkilKnz594OvrC3t7e+Tn5yM+Ph729vY4dOiQxMPyQOkK+OHDhzFgwADUrVsXMTExyMvLw+DBg3HmzJkKzfyvW7cO/fv3h7a2Nl69eoWQkBCxFd1Bgwbh/PnzGDJkCBo0aID379/j/fv3qFOnDtzd3bFq1SoxoyeamprYt28fJk2ahMaNGyMuLg6ZmZkYOHAgTp48KdV4RHFxMWeApuzupDz8/fffWLJkCXR1dREdHQ01NTW4u7vj5MmTEs9W1KtXD4cPH0afPn1Qp04dxMTEoHbt2li4cCHWrFkj9Tuy1LGKaNWqFdatWwd7e3ukpqbi8ePHCAkJUYqxgcaNG+P06dOYMGEC/l979/fSZB/Gcfztr0DcKrADTaMSEyxIM1IGsq1OFrQDFYMOMkqqURqW1JFoHkywogM7apYIoeIvFAqiv2EHFkUzt4nBJHVYZCT2C9bBQyNbPc8m88fTPq/j3V++7N5973t9r/u+rtzcXPx+P7OzsxQVFdHa2orL5VrWnzIjI4Nbt25RWVlJTk4Os7OzjI+PEwqFOHz4MC6XK7xL/DOr1crjx4+pra1l586dBAIBfD4faWlpmM1mWltbI/7Qfn5cKpZznJ2dzcDAAEePHiU9PT0c5J89e5b+/v7fVn88ePAgzc3NHDlyBKPRyNTUFH6/ny1btlBVVcXo6ChWqzXqOfyX1NRUbt++jcVi4fPnz1y8eHHZ7vNa2rNnD48ePaKuro6CggJmZmaYmppi69atVFVV0dDQEPOYmZmZ9Pb24nQ6MZlMfPz4kZcvX/L+/XsKCws5f/48w8PDy3ae1/K81dfXMzg4SEVFBUajEa/XSyAQIDMzE7vdzp07d6ioqAh//sKFCzgcDoqLi/n06RMej4dgMEhhYSGNjY0MDg5GVPb+8ftd6f2ppKSE/v5+ysrKmJ6e5t27d+zbt4/29vY/Lv4uX74cLoT05csXXr16RUZGBpWVlYyOjq54Iy05ORmXy4XNZiMlJYXnz5/jdruj7mO5WvP6lc1m49q1a5SXl7Np0ya8Xi+vX78mKyuLkydP8vDhw6gzafBP1uvevXu0tLRQVFTE3Nwck5OT7NixA4fDwcjISPiJqniJZr2xUiu5LuM9ZltbG4FAgNLSUs6cORMxnsPhCGehf127NTU1cerUKbZt28bExET4u4lVrNf/akpPT+fu3bt0dHRgtVr59u0bHo+H+fl5du/eTU1NDT09PcvanbW3t3PixAny8vKYn5/H4/GwtLSEyWTi5s2b/7oe+dVK7ruxiPd3ffXqVVpaWsjPz+ft27dMT09z4MABurq6qK6u/uNxBoOB7u5unE4nhw4dYnFxkYmJCdLS0rBYLNy4cSPimNOnTzM0NITdbmfz5s14vV4WFhYoKCjg0qVLEa9QrHUcEM31cP36dRobG9m1axfBYJBgMIjdbmdkZITt27f/dty9e/fS19eH2WwmKSmJyclJDAYDV65c4f79+39sX2cwGOjq6sJsNvP161eePXuG2+1eVi8jOTkZp9NJd3c3NpuN1NRUxsfHefPmDdnZ2Rw/fpzOzs6IREFeXl54E8BoNOLz+UhJSQknXNajlk9SKF5dxEXi4MWLF1RXV4cX9Ru1wJWs3JMnT2hoaMBisdDZ2bne0xGJid1ux+fzMTQ0xP79+6M+rqamBrfbzYMHD+L6iK6IiIjEx4bPGEti+fEuyblz5xQU/6V+nONoWquIbCQfPnzA7/djMpliCopFRERk41NgLBvK2NgYOTk5HDt2bL2nIqtkbGyMkpKS8Ds8Iv8XT58+JRQKaVNHRETkL7Thi29JYuno6FjvKcgqi3dfWJG1YrFYIipli4iIyN9BGWMRERERERFJaCq+JSIiIiIiIglNGWMRERERERFJaAqMRUREREREJKEpMBYREREREZGEpsBYREREREREEpoCYxEREREREUloCoxFREREREQkoSkwFhERERERkYT2HRSRoKqf7C0rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(8, 2, figsize=(11, 27), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + " axes_rows[0].plot(lc_ar4.time, taper, color=palette[idx])\n", + " axes_rows[0].set_ylabel(f\"K = {idx}\")\n", + " axes_rows[0].set_xlabel(\"t\")\n", + " \n", + " axes_rows[1].plot(lc_ar4.time, tapered_data, color=palette[idx])\n", + " axes_rows[1].set_xlabel(\"t\")\n", + " \n", + " idx += 1\n", + "axes[0][0].set_title(\"DPSS tapers\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Tapered time series\", fontsize=18, pad=15)\n", + "fig.tight_layout()\n", + "txt=\"DPSS tapers and product of these tapers and the AR(4) time series.\\n\\\n", + " Note that, for K=0 in the top row, the extremes of the time series are severly\\n\\\n", + " attenuated, but those portions of the extremes, as K increases, are accentuated.\"\n", + "fig.text(.5, -0.025, txt, ha='center', fontsize=18)\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "b373cc2c", + "metadata": {}, + "source": [ + "#### Now let's see their frequency domain representations (here PSD)\n", + "\n", + "We can have a good look at the leakage properties of these tapers (and the resulting time series) from their PSD representations." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eb8f5358", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAp2CAYAAABbLXaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gU1dfA8e9sSU9IhdBD2xASQi/SOwhYAAELior6qoCCvYu9YIefDUERsaKg0hUBQTqE3gkJJBAgjfRky7x/JLvsJptKSAI5n+fhIZl65+5kZvbMvecqqqqqCCGEEEIIIYQQQlQxTXUXQAghhBBCCCGEELWTBCWEEEIIIYQQQghRLSQoIYQQQgghhBBCiGohQQkhhBBCCCGEEEJUCwlKCCGEEEIIIYQQolpIUEIIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIB6GhoYSGhlbLvrdu3UpoaCh33nlnle3zzjvvJDQ0lK1bt1bZPsXV5ZlnniE0NJTffvutuosirhIHDx7k/vvvp0uXLrZr6qFDh6q7WNUuNjaWiIgIHnvssUrb5rhx4+jSpQupqamVtk1RPr/99huhoaE888wzV8V2a6uaXJ+66i6AEOVx5513sm3bNodp7u7ueHl50ahRIyIiIhg6dChdunQpdhu//fYbzz77rMM0RVHw8PAgJCSE/v37M3HiRHx8fIqse+7cOebPn8/GjRs5ffo0RqMRPz8/goKCiIyMpGvXrgwePBi9Xu+wntlsZvHixSxdupTDhw+Tnp6Ol5cX/v7+tGzZki5dujBo0CAaNGhQ5rqYNWsWAFOnTi3zOuLq8NtvvxEfH8+oUaNo1KhRdRdHiGuGs3uIM6NGjeLtt9+ughKJivrmm29IT08v9n5dnRITE5k4cSJpaWkEBwfTokUL23NGTaGqKoMGDSIuLg53d3c2btyIl5dXscvPmjWL2bNnO0xTFAUvLy9CQkIYOHAgd955Z4nbAHj//fcxm808/PDDZSrn448/ztKlSwF46623GD16dJFlJk+ezAMPPMBnn31W5PmuLOSeWz3S0tKYP38+3t7e3H333dVdHFHNJCghrkr169enfv36ABiNRi5evMiePXuIiopiwYIFhIeHM3PmTFq0aFHsNlxcXIiIiADyb85xcXEcOHCAAwcOsHjxYr777juHIMHWrVt5+OGHycjIQKPRUK9ePQIDA8nMzOTIkSMcOHCAH374gfXr1xMcHGxbLyMjg/vvv59du3YB4OvrS8uWLdFoNJw+fZro6GhWr15NRkZGmW/SgO3hQIIS157Fixezbds2unbtWusekNzd3WnWrJnt71uIK8H+HuJMSEiIw+9BQUE0a9YMb2/vK1wyUVbffvut7YtkTQtKLFu2jLS0NAYPHswnn3yCRlPzGibv2LGDuLg4ALKzs1m1ahVjxowpdT0vLy8MBgMAFouF+Ph49u3bx759+1i8eDHff/89gYGBTtfds2cPq1atYujQobRs2bLUfW3cuNEWkChJ3759CQ8PZ+HChUycOLFcL3igdt9zq1NaWhqzZ8+mYcOGxQYlvL29adasGUFBQVVbuGtUTa5PCUqIq9KYMWOKfBnPyMjgr7/+YtasWRw4cICxY8fyww8/FNsMPSgoiB9++MFh2r///stjjz1GfHw8L7/8MnPmzLFte9q0aWRkZNCrVy9eeuklmjZtalsvOzubjRs38ssvv6AoisM23333XXbt2oWvry9vvfUW/fv3ty2jqiqHDh3izz//pE6dOpddL0Jc7SIjI1m5cmV1F0Nc45zdQ0ry+OOP8/jjj1/BEolrycmTJwHo0aNHjQxIACxZsgQAHx8f0tLSWLJkSZmCEm3atGHBggUO09atW8e0adOIjY3l3Xff5d1333W6rnU9Z60dCsvJyWHGjBm2F0AHDhwocfnRo0fz2muv8dNPPzF9+vRSty+uDoMHD2bw4MHVXYxrRk2uz5p5pRSiAry8vBg1ahS//fYbBoOBzMxMHn30Ucxmc5m30adPHyZPngzkR+it/RPXr19PcnIynp6ezJo1yyEgAflvdwcPHsyXX35JvXr1bNNNJhN//vknAM8++ywDBgxwCFooikKbNm14+umnueOOOyp66EIIIYSoIXJzcwFwc3Or5pI4l5OTYwv+zpgxA0VR2L59O2fOnKnQ9vr168fEiRMB+Ouvv5w+d6WmprJ69Wr8/Pzo2bNnqducNWsWp0+f5vnnn8fT07PU5YcPH45Op+O3334r13OfEKJmkKCEuOb4+vryzjvvAPlvK1atWlWu9a35KCwWC6dOnQLg9OnTADRr1qxcfUKTkpLIysoCIDw8vFzlKM6sWbMcWn9YE2hZ/1mbY5rNZv7++2+ee+45Ro4cSZcuXYiMjGTIkCG89tprnDt3zun27RO6nTp1iscff5yePXsSGRnJyJEjmT9/fok3/PPnz/PWW28xbNgw2rVrR8eOHbn11lv57bffUFW12OOZNWsWKSkpvP766wwYMICIiIgyd2c5fvw4Tz31FP379yciIoKOHTsyaNAgpkyZYgsKWdkn+cnKyuLdd99l4MCBtG3bln79+vHmm2+SlpZW7L5ycnKYN28et9xyC506dSIyMpIRI0Ywe/ZsMjMzi10vPT2dTz/9lNGjR9OpUyfatWvH0KFDeeqpp2x93K1JHq2/33XXXQ6frTXJXlxcHKGhoQwYMACAX375hbFjx9KxY0dCQ0Nt5T99+jRz5szhrrvuol+/fkRERNC1a1cmTpzI8uXLy1S3ZTF16lRCQ0OdbnPw4MGEhoZy++23F5n3zTffEBoaymuvvWabVlyiy8LHvGzZMsaOHUuHDh3o3Lkz//d//8fhw4eLLeO5c+d49tlnbefy9ddfzxdffIHJZCrx2EwmE99//z3jx4+3fd7Dhw/nww8/LHKeqKpK9+7dCQ0NJTEx0WFeQkKC7XP86KOPiuzn4YcfJjQ01OF6ZTKZ+O6772z7joiIoGfPnowePZp33nmnwl8gRPmVlujy119/ZfTo0bRr147u3bszefJkDh8+XGri1rS0ND755BNuvPFGOnToQPv27Rk9ejTffPMNRqOxyPL216+8vDw+/fRThg4dStu2bW2t+FJSUpzuKyoqikceeYRevXoRHh5Oly5dGDp0KI8//jjr1693WNb+upyUlMRLL71Enz59aNu2LUOGDGHWrFm2L96VcVxWFy5cYObMmdxwww106NCBDh06MHz4cF5++WUOHjzoUAfx8fEADBw40OE6aU1Ya1/3JpOJuXPncuONN9K+fXs6d+5s2+fRo0eZNWsWt956K7179yYiIoLrrruO//u//+O///4rtqzOFD5Pnn32WVu5CieWO3HiBM8884zt2ty9e/cS91kZ90qrv//+m4yMDBo2bMjw4cPp0qULqqry+++/l2s79tq2bQtAVlaW03Pw77//Jjc3l969exfJu1XY4cOH+eabb+jTpw9Dhw4t0/79/f2JjIzk/PnzZcobA2W/50J+15OZM2cyZswYevbsSUREBL179+bRRx9l7969Trdf1c8bZT3nAWJiYnjxxRdt5enSpQt33303a9asKbY8ZrOZ+fPnM3LkSCIjI+nZsydPPPGE7Rm5PJ555hkGDhwIQHx8fJFnWaviEjPaH6vFYuHrr79mxIgRtGvXjr59+/LOO++QnZ0N5D/Pf/vtt9xwww20a9eOXr168eqrr5KRkVFs+cr7LFua9evXc//993PdddcRHh5Ot27dGD58OM8//7yte3dh+/fv5/HHH6dv375ERETQrVs3HnzwQXbs2OF0efuk3YcPH+bRRx+lZ8+ehIWF8c0335RYn1YVuXZX5Nicke4b4prUpk0b2rVrx549e1i/fj3Dhw8v87rOLjbWxE0xMTGkpqbi6+tbpm15enqiKAqqqrJ7925atWpV5nIUp379+nTs2NH2h96xY0eH+a6urkD+w93kyZPRaDQEBATQqFEj8vLyiI+P57vvvmPFihV8//33RfpOW8XGxvL222+TlZWFwWDA3d2dY8eO8eabb7Jr1y4++uijIl1VduzYwcMPP8zFixdxdXWlSZMmZGdns3v3bqKioti0aRMzZ84ssh5AcnIyY8aM4ezZs7Rs2ZIWLVqg05V+idq3bx933nkn2dnZtnwEWq2Ws2fP8tdffxETE8MNN9xQZL28vDzuvPNO9u/fT4sWLWjWrBnHjh1j/vz5bNiwgYULF+Lv7++wzvnz55k0aRJHjx5Fq9VSv359PDw8OHnyJLNmzWLVqlV8++23+Pn5Oax3/Phx7r//fs6cOYOiKISEhODh4UFcXBy///47Z8+eZcGCBXh7e9OxY0eOHj1KRkYGBoPBIWlYQEBAkeOYMWMGP/zwA/Xq1aN58+YODweff/45ixYtwsPDg7p16xIaGkpSUhJbtmxhy5Yt7N69m+eee67UOi5N165dWb16NVu3bnX4Wzt37pwtsLd3715ycnIc3hxaHwRLSkzrzIcffsjnn39OcHAwISEhnDx5knXr1rFjxw4WLVpEs2bNHJaPjY3l9ttvJzExEb1ej8FgIC0tjQ8++IA9e/YU+4CRm5vLQw89ZPuSYP3cjh07xueff87SpUuZP3++rQ+yoih06dKF1atXs23bNoe6sB/Zo/ADs6qq7Ny5s0hdPP7447a3mQ0aNCAgIIDU1FSOHj3KgQMHaNeuXbn7TovK9+qrr7Jw4UIg//ocEBDApk2b2Lhxo63lnTMnTpxg0qRJnD17Fr1eT8OGDVEUhcOHD3PgwAHWrl3LnDlzcHFxKbKu0Whk0qRJbN++nWbNmtGkSRNOnjzJTz/9xO7du1m0aJHDev/88w9TpkzBbDbj5eVFy5YtsVgsJCQksHTpUjIyMujbt2+R/aSmpjJ27FgSEhJo2bIlXl5enDhxgtmzZ7N582bmzZtXpDVARY9r+/btTJ48mYsXL6LVamnRogUajYa4uDh+/PFHcnNzefvttwkICKBjx47s37+fvLw8IiIiHLZVOO+HqqpMnjyZdevW0ahRI1q0aEFSUpJt/ptvvsnmzZvx9vYmKCiIoKAgzp8/z7p161i3bh3PPvtsmZPwhYSE0LFjR2JjY0lKSiIkJMR2H7G/165bt45HHnmE3NxcvLy8CA0Nddjn1KlTmTJlitN9VPReac/adeOGG25AURRuvPFGtm3bxu+//85DDz1Urm1Z5eTk2H52d3cvMn/79u1Afhe9klgsFl566SW0Wi0vvfRSucoQGRnJrl272LFjB9ddd12py5fnnvvEE09w6tQpfH19CQoKom7dupw5c4aVK1fy999/88EHHxQbQKnK5w0o/ZxftWoVTzzxBHl5eXh4eNCsWTNSU1PZvHkzmzdv5sEHHyzSBUZVVaZPn24LnDdu3BgfHx9WrlzJv//+6/TFQ0lCQkKIiIhg//79DjneKuKxxx5jxYoVNGvWjIYNGxITE8O8efM4evQoX331FdOmTWPVqlWEhITQqFEjTp48ycKFC4mOjrZ9Wbd3Oc+yzixcuJBXX30VyH9xGhoaSk5ODmfPnuXEiRO4uroWeZZfsGABb775JhaLBW9vb1q2bMn58+dZu3Yt69atY8aMGdx6661O97d9+3a++OILtFotzZs3t30XKU1Frt0VObZiqUJcRSZMmKAaDAb1k08+KXXZt99+WzUYDOrQoUMdpv/666+qwWBQ+/fv73S9uXPnqgaDQW3durWanJysqqqqnjx5Um3durVqMBjUm266SV22bJltXmluu+021WAwqO3bt1f/97//qcePH1ctFkuZ1i2JwWBQDQZDsfPT0tLUX3/9VU1KSnKYnpmZqc6ePVs1GAzq3XffXWS9p59+WjUYDGp4eLg6YcIENTEx0TZv48aNavv27VWDwaB+//33DuudP39e7datm2owGNSPPvpIzcrKss07fPiwOmzYMNVgMKg//PCDw3qffPKJajAY1LCwMPWWW25R4+LibPOys7NLrYf/+7//Uw0Gg/r000+rGRkZDvNOnDhRZH/Wzz88PFzt3bu3euDAAdu82NhYdfjw4arBYFCnTZvmsJ7FYlFvv/121WAwqA8//LB69uxZ27zk5GT1oYceUg0Ggzp9+nSH9TIyMtQBAwaoBoNBveuuu9RTp045zD9w4IC6cOFCh2nW83zLli1Oj/n06dO2OouMjFRXrVplm5ebm6uazWZVVVV13bp1alRUVJHz7eDBg7bPY8eOHUW2X9q5VdihQ4dUg8GgDhs2zGH677//rhoMBrV3796qwWBQN23aZJtnsVjUrl27qgaDweEc27Jli2owGNQJEyY4Pebw8HC1ffv26t9//22bl5aWZquzxx57zGE9i8Wijh07VjUYDOodd9yhXrhwwTZvw4YNavv27dXw8HCn9f3OO++oBoNBve6669SoqCjb9ISEBHXcuHGqwWBQx48f77DO/PnzVYPBoL700ksO059//nlbXYSHhzuc29b6Gz58uG3a/v37VYPBoHbq1KnIZ5STk6MuW7ZMPXjwoCrKpzz3EHvW6+Kvv/7qMP2vv/6ynZfLli2zTc/IyFAfe+wx27lV+HzOyspShwwZohoMBvXFF19UU1JSbPPi4uLU8ePHqwaDQX3vvfcc1rO/fg0dOlQ9duyYbd6xY8fUXr16qQaDQf3xxx8d1hs5cqRqMBjUDz74QM3NzXWYt2/fPnXJkiUO06zX5fDwcHXkyJEO1639+/erPXv2VA0Ggzpz5sxKOa6zZ8+qXbp0sV177a8Jqqqq27ZtK1LG/v37qwaDQT19+rTqjPVaEhYWpnbr1k3dvn27bZ7939+KFSvUQ4cOFVl/69atas+ePdU2bdoUu4/iFHe+qKqqnjt3Tu3UqZOtjqxlsVgs6s8//2x71vj3338d1rvce6XV+fPn1bCwMNVgMKjHjx9XVTX/Gtq2bVvVYDCou3fvdrqedf+Fz2WrJ554QjUYDOrAgQOdzh84cKBqMBjUXbt2lVi+b7/9VjUYDOr//vc/2zTr362z+rT3559/qgaDQZ04cWKJyxVW2j1XVVV18eLFakxMjMM0s9msrl69Wm3fvr3auXPnIs8gVf28UZZz/siRI2rbtm3V8PBwdcGCBarRaLQts23bNtvfduHzb+HChbZn2Q0bNtimX7hwQb399ttt17qnn3662DoszHpfL+55XFUv1WHh7VqPNTw8XO3Vq5e6d+9e27xDhw7Zni8mT55cZP7Bgwdt15v169c7bLeiz7LFMRqNtn0tXLhQNZlMtnkWi0XdunWr+tdffzmss3HjRjU0NFTt1KmT+scffzg8w61evVrt0KGDGh4erh45csRhPet5HBYWpj777LNqZmambZ718y+uPity7a7IsZVEum+Ia5Z1BIzk5OQyr7NhwwY+/fRTAHr27GmLQIeEhNiixocOHWL69Ol0796dQYMG8dhjj/HLL78U2wRvxowZ+Pv7k5WVxccff8zw4cNtTehnzZrF0aNHL+cwi+Xt7c3o0aOLRN89PDyYPHkynTp1YtOmTZw/f97p+oqi8MEHHzi8KejZs6ft7c1XX33l8IZ53rx5pKSkcPvtt/Poo486vCkJDQ3lgw8+QFEUvv76a6f702q1zJo1i4YNG9qmlaU/bkxMDAB33313kX6nzZs3LzaSbDQaefHFF2nTpo1tWpMmTXjrrbcAWLFihUOrA+ub+LCwMD788EOHEVb8/Px47733CA4OZsWKFZw9e9Y27+effyYuLo6QkBC++OILGjdu7FCONm3alPsNg5XZbOaRRx5hyJAhtmkuLi62xGp9+/alffv2RSLkYWFhtjdQl9Nc1yo0NBRfX1+io6Mdui1YWwTcf//9gGNrgSNHjpCamkrLli2dtgApjtFoZPLkybZmn5B/rj///PMARZqhb9u2jT179qDX63n//fcdssL36tWLKVOmOG2SmJGRYUuE+8ILL9C+fXvbvHr16vHhhx+i0+mIiopyOK6uXbs6HLt9OQICAhg9ejRGo5GoqCjbPOv61nXh0nndvXt3OnXq5LAtV1dXhg8fTlhYWDG1JEoze/bsIs2FnXUBKM3cuXOB/HPcvmWMp6cnb731lsN1wt6vv/5KTEwMffv25dVXX3VofdewYUM+/vhjPDw8WLhwodNuEiaTiXfffddhBIOWLVty3333AUX/Dqzn0/3331+khUJERAQ33XST03IajUbefvtth+tWeHg4L7zwApD/lsy+GXlFj+urr77i4sWLdO7cmffff7/INaFLly7FlrE0ZrOZGTNmODRft7+3DBs2jNatWxdZr2vXrjz66KOYTKZK7e72ww8/kJ6eTsuWLXnllVdsZVEUhbFjxzJ27FgAvvzyS6frV/ReafXHH39gNptp06aNbYQyb29v+vXrB1xqRVEWZrOZU6dOMXPmTP744w8A/u///q/Icqqq2u6LdevWLXZ7CQkJfPjhh4SEhNjO5fKwjihwJbq23XzzzUXyiWk0GgYPHmwb/nXdunVO162q5w2rks752bNnk5uby7Rp05gwYYJDK5suXbrwyiuvADg8q6mqyldffQXAlClT6NWrl21eYGAgH3zwQTG1duVZ69bafQigdevWtr+jv/76q8j8sLAw2/x///3XYXuX+yxbWEpKChcvXqROnTrcfvvtaLVa2zxFUejatSuDBg1yWOf9999HVVVee+01W2smq8GDBzNt2jSMRmORhLNWLVu25LXXXnPobl7aNaIi1+6KHFtJJCghrlnWP8bi+vlfuHCB2267jdtuu83Wl/S+++4jPT2d4OBgZsyY4bD8Aw88wMKFCxk4cKCti8Tp06dZtmwZL7zwAv379+fnn38ush+DwcDSpUuZNGmSLQlmWloaW7ZsYfbs2dxwww1Mnz69xL5tl2PHjh288847PPjgg0yYMMF2zNaH1OL64Q8ZMsTpkEHjx49Hr9cTFxdnyzAOsHr1att8Z8LCwmzN6pzls+jRo0exD/AlsQ7rt2rVqnL186tXr57DF1uryMhI2rVrh6qqDn17rcc3atQop82pPTw86NGjBxaLxdZMFfJviJDf1+9KJD0bNWpUifNTU1NZuHAhTz75JPfccw+33347t912G++99x5Q/OdfHoqi2B5+7L+Mb9++nYCAAG655Rb0er3DvIp23QDn51jr1q1xdXUlPT3doT+z9YFjyJAhDklo7bflrH/zzp07ycrKom7duk6b5DZo0MB2s92wYYNturMAzblz54iNjaVLly5069YNcAzQWM8X+7qw/i3s2bNHckdcAdZucMX9K8vQn5mZmezevRuAW265pch8FxeXYr9IW68n48aNczq/Xr16tG3blszMTPbv319kfuvWrZ02g2/Xrh1AkT7e1uvkihUrijka5zp06OA0H9KQIUOoW7cuWVlZDn2GK3pcf//9NwD33XdfpY9W4eXlVWq2+XPnzjF37lymT5/OxIkTbffJb7/9Fsh/GVFZrNeLCRMmOG1SfddddwGXrkGFVfReaWXfdcPejTfeCMDy5cvJy8srdv1t27bZgndt2rRh8ODBfPXVVwQEBPDSSy/ZvuzZS0tLs+XvKWmksVdffZXMzExmzJjh9D5bGuu2y/MyqjxiY2P53//+xyOPPMKdd95pO0+sf1fFnSdV9bxhVdw5n5eXx7p169BoNE4/J8h/maHX69mxY4ftM4uOjiY+Ph69Xu/0/luvXr1qG9GhTp06Di9mrKwBoOLmW69r1jxsVpf7LFuYv78/rq6upKWllSlHzdmzZzlw4AC+vr7FdgeyPnsUFzy/6aabHAIEZVGRa3d5j600klNCXLOswQj7/oH28vLyHB6mPDw8CAsLo1+/ftx9991O80Z07tyZzp07k5eXx/79+9m3bx8bNmxg8+bNZGRk8OKLL+Lh4cHIkSMd1gsICOCpp57iqaeeIiYmhn379rF161b++ecfkpKSWL58OWlpaba3bpXBaDTy5JNPlvoQah1hpLDmzZs7ne7l5UW9evVsQYnmzZuTlZVlu7BbM3k7Y/2ymJCQUOQLYnH7K83dd9/N5s2b+fTTT/n999/p1asXnTp1onv37k6/hFo1a9as2IffFi1asGfPHoegi7VFyy+//FLskJXWL48JCQm2aSdOnABweNNeWfz8/Iq0hLG3efNmpk2bVuxnDMV//uXVpUsX/v77b1teifPnzxMTE8OwYcNwd3cnMjLSIa+ENShh3zqgLPz8/Ir9wujv78/Zs2fJysqytXKyfobWN4KF2Z/P9qzrWXOUONOqVStWrlxpC/BBfoCmU6dOrFmzxpZXwv5YO3To4BCgUVXV9lBpXxfWJH9RUVEMGTKEbt260aVLFzp37kz79u3L3YdcOCrvkKDOnDp1ytbf1/6ttT1nb+Dh0vXk008/Lfa6bz2vnD34NmnSxOk61hYGhYPx99xzDzNmzOCFF15g3rx59OrVi44dO9KtW7cSryHFXZc1Gg3NmjXj/PnznDx5kt69e1f4uDIyMmxve6/EdTIkJKTEB/SlS5fywgsv2JLiOVNZ10m4dPz2rVzsNWvWDJ1Oh8lk4tSpU0XOoYreKwEOHjzI0aNH0Wg0jBgxwmFe37598fX1JTU1lXXr1jn9Igf510yDwQDk55GIiYkhKysLHx+fYoPM9q1irC91Cvvrr79Ys2YNI0eOLFM+CGesgX/7/BaVZd68ebz//vslJkcu7jypqucNq+LO+djYWHJzc9Hr9Tz44IPFHgfkf2apqakEBgbayhYcHFzsM3Vx99grrXDrUyvrda20+fbXysp4li1Mq9Vy1113MWfOHO69917Cw8Pp0aMHHTt2pGvXrkXq88iRI0D+M3xxo/JZX8A5++yhYp9FRa7d5T220shTjbhmWR9yinvgatiwIf/880+Ftu3i4mJ7ozZx4kQOHz7Mfffdx4ULF5g1a1aRoIS9kJAQQkJCuOGGG8jKyuL5559n+fLlbNy4kV27dpU9IUwpvvrqK1asWEFgYCBPPPEEnTt3pm7durYHgqeeeorff/+92BtsSU3qAwMDiYuLs13M09PTbfPsm6UXx9kDQ3lGNbHXt29fvvrqKz777DN27drFTz/9xE8//YSiKFx33XU899xzThOMlnZ84Hizsh7jsWPHSi2T/QOYtQWMj49P2Q6oHEqqs4yMDFtA4oYbbuCOO+6gefPmeHl5odVqOX36NIMGDSp19ImysrYAsH7ZLhx06Nq1Kzt37iQqKoru3bvbskeXt6VEScdsfeizbzFjfdNYlvPZnnU9++4ehRX3BbBr166sWbPGFqCxBh26deuGm5ubQ4AmNjaW1NRUmjdv7rAvjUbDnDlzbMG2jRs3snHjRiA/MHPvvfdekbfKouysn3tJwxUWN896PTlw4ECp+ynP9bK4h+jbbrsNb29v5s2bx4EDB4iOjubbb79Fp9MxcOBAnnvuOadv3yt6nSzPcdmvX9XXydOnT/PMM89gNBqZOHEiN910E02aNMHT0xONRsPmzZu5++67K+06CaVfk7RaLb6+viQmJjpt6VnReyVcaiXRtWvXIl+m9Ho9119/PT/88ANLliwpNijRpk0bh2bjmZmZzJw5kx9++IFJkybxxx9/FEm+aP+SJy0trcixZ2dn89prr+Ht7V3sqABlcfHiRQCnyR8vx86dO3nnnXfQarVMmzaNgQMH0rBhQzw8PFAUhUWLFvH8889X+HkKKud5w6q4c8TazdhoNJZpVITCf6NlOY6qVtq1sDzXysp4lnXmscceIzg4mIULF3LgwAHb9dHV1ZUbbriBp59+2nbts35GmZmZpX5GxY2A5CzRbGkqek8qz7GVRoIS4pplzWZvbc56JbVu3ZqHHnqIV199lZiYGFsfq9J4eHjw2muvsXLlSiwWC3v37q20oIQ1V8Cbb77pNKu69eZdnJKaP1qbpVsfuO0v+nv27Knysdl79epFr169SE9PZ+fOnWzdupVly5axadMm7rnnHpYtW1bk8yjP8cGlY5wzZw59+vQpc9m8vLxITU0tcdivK2H9+vWkpqbSvn17p1miK/PNH+R3W6hTp46t24I1KGENVnTr1o3PPvuMrVu34u/vT0pKCs2aNXPaRagyWT83+8zjhRUevtN+PWfzrKzbLPzFs3BeCesxW9+M2gdojh8/DjgPznh7e/P000/z1FNPcezYMXbs2MH69etZv34977//PpDfrUxUD+vn7qyJvVVx3Qc9PDxIS0tj+fLlVfaGceTIkYwcOZLk5GS2b99uu06uWrWKmJiYIiN2QMWuk+U9Lvv109LSKv0LZUlWrFiB0Wjk+uuvdzoSUWn3yYrw8PAgPT2dpKQkp60ezGaz7fpcUsCrvEwmE8uWLQNgy5YtDsMuFvbvv/+SkpJSps/C09OTl156icOHDxMVFcUHH3zgMMwz5L/I8fb2Jj09ndTU1CJfbpOSkjh37hwuLi7cfPPNRfZh/RzeeOMN3n//fVq1auV01ARrvZXU+qcirM9T99xzj9PRSSrzeQoq/rxRGus+AgMDy9Xc3rpeee+jV5sr9Syr0WiYMGECEyZM4OzZs+zYsYNNmzaxcuVKFi1axLlz52w5O6xlaNeundMu4VdKRe9J5Tm2UrdV0cILUZMdOHCAffv2AdiSN11p9k3EShqHvTAvLy/bDbSkfpzlZX3zWzhJHuQ/9Djrp2zP2u2gsIyMDFvTLesQZ97e3ra3LmWJ7F8p1mRdTz/9NCtWrKBx48ZcuHCBtWvXFln25MmTWCwWp9uJjo4GHIdws36hLO/xWdez9j2vKtbPv0OHDk7fCBQ3rnpFaTQa27m2bds2tm3b5vBF3L7bgrPuCleKdXjQspzPztaLjo7GbDY7Xdd6LhQeVrd169b4+PgQHR3NoUOHiImJcQg6WI9769atDq0oiqMoCgaDgdtvv50vvviCF198EaBKH1hEUU2aNEGj0ZCWllZs3g9rU9zCKno9qQz+/v4MHTqUl156iT///BNvb2+OHDni9JpQ3N+NxWKxNem+3Oukl5eXbWjb6rpOOrtPQv4Xk8pmra/i6ujkyZOYTCa0Wm2x3XQqYsOGDSQmJqLVagkMDCz2n4uLC0aj0RbAKAuNRsOTTz4JwG+//UZsbGyRZayJeYs7pyD/GSgxMbHIP+szVUZGBomJiQ55g+xZt22fULIyxMfHAxU/T6rqeaM0TZs2Ra/Xk5SUVGKAoTDr/TAhIaHY/GfW4yiPsg6pWVWq4lm2fv363HDDDbz11lv8/PPPKIrChg0bbK27rS17o6OjK7WFVmkq45wr7dhKI0EJcc1JTU21Nf9r1qxZsU0QyyM5ObnUJIrWpl4+Pj62IIPJZCo1gm4dz9xa3rIqre+kdb6z6PXSpUtLjWqvXr3a6TI///wzRqORhg0bOrzlsdazs7cX1cHT09P2JsjZCCMJCQlOu+/s37+f3bt3oyiKQ4Zpa8Khn376qcS+x4VZkz8tWLCg2KZ2hVVGv1hrN50LFy4UmWc0Glm4cGGFt10c65ftZcuWcfLkSYcv4m5ubrRt25a9e/fakk9WRVDC2td99erVTs8D6/lcWKdOnfDw8ODChQu2cdntnT17ljVr1jjsw8o+QDN79mzAMejQsWNH9Hq9Q1CiPN1YrNsubuQcUTU8PT3p0KEDkJ+5vDCj0WgbkaAw6/Xk22+/LfbLSlWoW7cujRo1ApyfT1FRUU6T9/3111+cP38eDw8Phy9qFT0ua+K2efPmlTlhsfU6WdbrqjPW66Sze93FixdZvHhxhbddHOv1YuHChU6P1Zpc03oNqizWrhuDBg3iv//+K/afdbSk8ozCYS1v165dMZlMfPHFF0XmW5MhOwt+NWrUiCNHjhT7z3qveOuttzhy5Eixo0ZZt20/6kRZlHbPLek8OXXqlNMXH/aq6nmjNO7u7vTu3RtVVZk/f36Z12vevDkNGzbEaDTyyy+/FJl//vx5W6LE8riSOUAqqiqfZVu1amXLkWW9/jZt2pTQ0FDS09Od3leulMq+Jzk7ttJIUEJcMzIyMliyZAmjR4/m6NGjeHh48PHHH1dKn+s//viDG2+8kR9//LFIM7zs7Gzmz5/PnDlzgPxsydZ9ZmVlMWDAAN555x0OHz5c5AFk27ZtTJkyBVVVqVevnsNNqTTWlhmFhx60st6U3377bYfI9j///MOMGTOKTTZlpaoqjz/+uMPxbt682fYla9KkSQ5R7gceeAB/f3+WLl3KK6+8UuRNRkZGBsuXL7cNgVVZpk2bxpo1a4q0MtmyZQubNm0C8oe8K0yv1/P66687jD5x+vRpnn32WSD/Am3f+mXQoEF06tSJ2NhY7r///iJve0wmE1u2bOHxxx93KMvYsWNp3LgxMTExPPTQQ7Y3LlaHDh3i+++/d5hm3a+zrNplZf38V61a5TA6RGpqKtOnTy+SQ6EyWL9YW7+sF37737VrV4xGoy0oUZGRN8qrW7dutG3bFqPRyOOPP+7wdmjTpk3Mnj3b6egbXl5etqFa33jjDYc3YefOnWP69OkYjUY6dOjgtJWD9SHaWhf2ARhrgCYqKork5GRCQkKKDJP3xx9/MHv2bE6dOuUwPSMjw3atcTYqgqhakyZNAuCLL75wSEiXlZXFc889V2wLivHjxxMSEsLOnTuZNm1akTdJ1iz51uvR5bDml9m8ebNDqx9VVVm+fDlHjx5FURSnb5f1ej1PP/20w2gehw4d4vXXXwfyc1XYNzuv6HHdd9991KlTh23btvHEE08Uuc/u2LGjSICntHtgWVivk99//71DX+qzZ8/y0EMPldg1p6Ks+T2OHz/OjBkzHIIqv/76K4sWLQIqt2tWWlqa7YtzaUOrWrtP7Nu3r8RWDc5YhwP9448/ipz71ucba9fayqaqKlFRUWg0Gnr06FGudUu751rPky+++MLhmnz8+HEefPDBUt/4V9XzRlk8+uijuLm5MWfOHGbPnl2ki1lKSgq//PILn376qW2aoii2a92sWbNsz1aQ36Xj8ccfL1cZrPz9/fH09CQpKanc59qVUtnPssePH+eFF15g9+7dDt8BzGYz33zzDWlpabi5uTl0mXjyySfRaDS88cYbLFy4sMhnfO7cOebPn28btrwyVOTaXZFjK4nklBBXpV9//dV2UbS2Rjh9+rQtuhcREcG7775baX11FUXh6NGjvPzyy7z88ss0bNgQf39/W9Zwa5S3V69eTJ8+3WG9jIwM5s2bx7x58/Dx8aFhw4ZoNBrOnj1re/Dy9fXlk08+KVdymuuvv55jx47x4IMPEhoaasty+8EHHxAUFMQjjzzCpk2bWLt2Lb1796ZZs2YkJydz9uxZunfvTt26dYt9iwf5D9s//PADffv2pVWrVmRkZNiaZA4ZMoTbbrvNYfm6devyxRdf8PDDD/P999/z008/0bx5czw8PLh48aItU31l5/jYuHEjK1asQK/XExISgru7OxcuXLBdUG+44QanDyhDhgwhNjaWm2++mRYtWqDT6Th27Bhms5mQkBBeeuklh+UVRWHWrFk89NBDbN++neHDh9OoUSMCAwPJysqyZbWG/DweVp6ennz22Wfcd999/PfffwwcOJDmzZvj5uZGfHw8qampdO3a1fYFGGD48OEsXLiQOXPm8NdffxEUFISiKNx///1l7l8aERHB8OHDWb58Offddx+NGzfGx8eHY8eOoaoqL7zwAi+//HK567skbdq0sfUbhqItIbp168bnn3+OqqqEhISUmrW6MiiKwrvvvsuECRPYtm0b/fr1czifBwwYQHp6utOH0UceeYSDBw+yadMmxo0bR7NmzXB3d+fYsWMYjUYaNWpkG1q1MOuxq6rq0I3Ffr41iZWzFiPJycnMmjWLWbNmERQURHBwMLm5uZw6dYqcnBy8vb15/vnnL7d6ai37e4gzISEhZXroHDhwIHfccQcLFy7k0Ucftd0bTpw4gdlsZsqUKXz44YdFguPu7u58+eWXPPDAA6xatYrVq1fTtGlTfH19SU9P59SpUxiNxkpJHmexWFixYgUrVqzAzc2Npk2b4uLiQkJCgq0l1YMPPlikGxLkP6iuXbuWoUOH0qpVK0wmky0PSocOHYqMYFLR46pXrx6zZ89m8uTJLF26lJUrV9K8eXM0Gg1xcXFkZGQwatQo27CVkH8PXLduHTNmzOD777+3JVN87rnnbF0FSjNo0CDbKDe33HILISEhuLi4cOzYMdzd3XniiSd44403ylrVZVK3bl3ee+89HnnkEX788UeWLl1qG8nE2pVs6tSpRVpgXY7ly5eTm5uLn59fqfeQJk2a2Ork999/57HHHivzfnr16kVERAT79+9nzpw5DveYTp060aJFC6Kiojhz5oyty05l2blzJwkJCfTu3ds2BG5ZlXbPHTduHD/++COxsbEMHz6cZs2aYbFYOHHiBEFBQTz00EN89NFHxW6/qp43yqJ169Z8/PHHPPbYY8yaNYsvvviCZs2a4erqSlJSEmfOnEFVVYYPH+6w3m233cbmzZv566+/uOeee2jatCleXl62l4CTJk3i888/L1dZFEVh2LBh/Prrr4waNYpWrVrZWgfZJ1OtSpX9LGttXfLLL7/g5eVFkyZNUBTF9vynKArPPfecw0gVvXv35tVXX+WVV17h1Vdf5b333rONqGJ/nbC2aqoMFbl2V+TYSiJBCXFVOnv2rO1Lp5ubG97e3rRr146IiAiGDBlS6c3Cb7/9dlq3bs3GjRttNz7r8DmBgYG0adOGkSNHMnToUIeIube3N6tWrWLjxo38999/xMbGEh8fT1ZWFl5eXnTs2JE+ffpw6623lju51wMPPIDFYmHZsmUcP37cFkm13qjatGnD999/z8cff8zOnTs5ceIEjRs3Zvr06UyaNMnWL704TZs2ZdGiRXz88cds3ryZ9PR0WrZsydixY7nzzjudtkCJjIxk6dKlfPfdd/zzzz/ExMRgNBqpW7cu3bp1o2/fvpXSncbe22+/zYYNG4iKiuL8+fOkp6fj5eXFddddV+Qh1p6LiwsLFixg1qxZrFq1ivPnzxMUFMTgwYOZOnWq00SlAQEBLFy4kCVLlrBs2TIOHTrEuXPn8PPzIywsjK5duzJkyJAirVBatWrFn3/+yTfffMPff/9te+tYt25dBgwYwJgxYxyW79y5M++//z7z58/n+PHjtmGYRo0aVa66sQbmlixZQkJCAllZWfTp04cHH3zwiiSTs3ZbWLdundMv4ta8EkajsUpaSVg1b96cX3/9lY8//ph///2XY8eO0ahRIx577DEmTZrEPffc43Q9V1dX5syZw08//cTvv/9ue4hs3LgxgwcPZtKkScUmtA0LC7MFaLp06VLkTZo1QAPOW4wMHToUk8nE5s2bOXnyJEePHkVVVRo0aECvXr2YNGlSpT/U1yb29xBnyvOG/MUXX6RNmzYsXLiQEydOkJmZSbdu3Zg6dartS7+zh7KmTZuyZMkSfvrpJ1auXMmJEyeIj48nKCiIdu3a0aNHD4YNG1b+gyvE09OTmTNnsmnTJvbu3UtCQgKZmZn4+vrSv39/br311mJzL/n6+vLLL7/w8ccfs27dOpKTk2ncuDE33ngjDzzwgNNEcBU9rq5du7J06VLmzZvH+vXriY2NRa/XExwcTLdu3Rg3bpzD8jfffDNpaWksWrSI2NhY2z25PEmFtVotc+fO5ZNPPmHlypWcPn0aX19fhg8fztSpU4sdcu9y9evXj8WLFzNnzhw2bdrE4cOH8fT0pG/fvtx1113lajVZFtauGCNHjnTaMqywm2++maioKP744w+mTZtWrhanDz74IFOmTOHXX3/loYcecmgFNm7cON566y3+/PNPW6uKymJ9yTJ+/Phyr1vaPdfLy4vvv/+eDz74gHXr1nHy5EmCgoIYP348U6dOtbX+K05VPm+URb9+/Vi+fDnz589nw4YNnD592tZit0+fPvTv39/W9dRKo9Hw8ccfs2DBAn755RdOnTqFj48PQ4cOZdq0aRVu2fn888/j6enJmjVrOHLkSLlysl0plfksGxISwuuvv86mTZs4ePAgp06dIjc3F39/f66//nruuusupwnux44dS6dOnZg/fz5btmwhOjoarVZLvXr1GDJkCAMHDmTAgAGVetzlvXZX9NiKo6hl7bwnhKgVnnnmGRYvXsxbb73F6NGjq7s4le63337j2WefZdSoUbz99tvVXRwhxDVs3rx5vPPOO0ycONHp6A411axZs5g9ezZTpkwp0hpCiIrKyspiyJAh6HQ6Vq9eXWS0l4pKTk5m4MCBNG7cmCVLltSYoZLleUOIsqsZf7VCCCGEENcQs9lse0NdXNZ+IWoTDw8Ppk6dytmzZys1id+8efPIysriiSeeqDEBCSFE+Uj3DSGEEEKICpo/fz4dO3akbdu2tmkpKSm8+eabHDlyhODgYPr371+NJRSi5rjllltISUlBp6u8ryD+/v4899xzZc65JISoeSQoIYQQQghRQWvXruXNN9/E09OTJk2aYDabbWPMe3h4MHPmzEprpi7E1U6r1fLggw9W6jbvvffeSt2eEKLqSVBCCCGEEKKC7rzzTnx8fNi/fz8xMTGYzWaCg4Pp0aMHkyZNcjqqhRBCCCEukUSXQgghhBBCCCGEqBaSDUYIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIIYQQQgghqoUEJYQQQgghhBBCCFEtJCghhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCghJCCCGEEEIIIYSoFhKUEEIIIYQQQgghRLWQoIQQQgghhBBCCCGqhQQlhBBCCCGEEEIIUS101V0AcXWwWFTMZstlb0en02AyXf52rkVSN45Onz5F48ZNbL9L/RRP6qZ4UjfFq4y60Wo1aDRKJZVIWMk998qTuimZ1E/xpG6KJ3VTssutn2v5nitBCVEmZrOF1NSsy9qGRqMQEOBFWlo2FotaSSW7NkjdFHXnnXexZMlyQOqnJFI3xZO6KV5l1Y2vrwcajbYSSyZA7rlXmtRNyaR+iid1Uzypm5JVRv1cy/dc6b4hhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCEl0KIYSoNKpqwWKxoNaAHFcajUJeXh4mk0mSbhVS1rpRFNBotCjKtZntWwhxdaque43cV4ondVOystRPbb7nSlBCCCHEZTObzaSlJZObe3kjBlS2xEQNFosMT+ZMWetGUTT4+9dFr3etglIJIUTxasK9Ru4rxZO6KVlZ6qe23nMlKCGEEOKyqKpKUtJZNBotfn510Wp1QM2I8ut0CiaTvLFxpmx1o5KRcZHk5PPUrduoVr69EULUDDXlXiP3leJJ3ZSs9PqpvfdcCUoIIYS4LBaLGYvFjL9/PXQ6fXUXx4FOpwHkrY0zZa0bL6865ORkYrGYC74ECCFE1asp9xq5rxRP6qZkZamf2nrPrT1HKqqdy4r15Ow+iIdGA1otasH/6DSorq6obi6obq6obq7g5orF0wPVxwuLtxeqjxeqlwdoJDerEDXNpT69tSeiX7vkf641IU+IEFctoxG3P9agScsga+JoeZ6pALnXiNqhdt5zJSghqozq6Q5enmAyg8WMYjJBbh6KxQKkl76+oqB6e2Lx98US6IclwBdLQP7/qqdHfnYYIYQQQogaxmXHfvRHTwKgSUrFEuRfzSUSQoiaQ4ISosoY+3TFZ9QAkpIyHLPOWiyQk4eSk3vpX3YOSmYWmrQMlPTMgv8zUNIy0KVlQEycw7Ytnu5Ygutirh+EOTgIS/26+S0rhBBCCCGqmeZc4qWfLyRJUELUOHPnfsGmTRuZO3dBdRdF1EISlBDVT6MBDzdUDzdKbalkMqFJvogmKRVNUkr+/4nJaBJT0J2IRXci1raopY435iYNMDVpgLlJA1Rfnyt6GEKIq8sbb8xgxYqlRaYvXfo3vr6+VV8gIcQ1S5OSeunnC8nVVxBR5d54YwbZ2Vm8/vq7tmnLl//JzJlvMn36U9x446hybzMt7SIffjiT//7bgEajoV+/ATz66BO4u7tXuJy33XYnt9wyvsLrX61uueUGbrttAmPG1L5jr0kkKCGuLjodlroBWOoGOE43mdCcT0J79gLahAtozp5HcyEZ/b4j6PcdAcDi44W5aUNMLZpiatYI3GrXUDtCiKJ69OjN008/7zCtTp06Dr+bTCZ0OrldCiEqSFXRJF+0/SpBidrtl19+5NNPP+aFF15h4MAhFdrGK6+8SFJSIh9++D9MJhNvvfUK7733Fi+++GqFy+Xh4QFIK2NnTCYTWq22Vo2GUdUky464Nuh0WBrUw9gpgpwR/cm6bzwZ0+4he8ww8rpEYq4XiJKWgX7fEdyXrMbr429w//4P9Nv2oNg9KAghahcXFz0BAYEO/8aOvZFvv53Hq6++yODBffj44/cB2LMnioceupcBA3oyZsxIPv30Y/Ly8mzbSkpK5KmnpjFgQE/Gj7+ZdevWMGLEQJYv/xOAXbt20KtXZ7Kysmzr/PffBnr16uxQpn//Xcfdd9/OgAE9GD/+ZhYunO8wrnmvXp1ZunQJTz01jYEDe3LnnePYs2e3wzZ2797Fww/fx8CBPbn++gE8+eSj5ObmMn/+XO655/Yi9XDrraP44YfvLrs+hRBFKZnZKHlGLF6eAGgyskpZQ1yrvv56Dp9/Pos335xZ4YBETMxJtm7dxDPPvEh4eATt2rVn2rQn+euvlSQnJxW7XlpaGm+99SojRgxk6NC+PPbYFGJjY2zz5879gkmT7rT9bjKZ+PDDdxk6tC8jRgxk7twveOGFp3jjjRm2ZXJzc5k160NuumkYgwf35v7772H//n22+cuX/8mIEQPZtGkjt946miFD+vLCC0+RkZFhW2bt2r+5885xDBjQgxEjBvLYY1Ns97w33pjBCy88xdy5XzBixECGDevHJ5+8j9lsLrYMDz10r0MZoPh74pQpD5CQcJYPP5xJr16dbfdja7n//Xcdt98+hgEDepCamsqUKQ8we/ZHDtueNOlO5s79wvZ7r16d+eOPxTz22FQGDuzJXXeN5+jRwxw/foxJk+5i0KBeTJ8+mZQUCU7ak1c/17jo6Giee+45MjIycHFx4bnnnqNz586lr3gtcHfDZGiGydAs//fsHHQx8eiOx6A9cQpdbDy62HhYswlz3QBMbVpiDGsp3TyEEHz//bfce+8DTJr0fwDEx8fxxBOP8n//9zDPP/8KSUmJvPfeW5hMJh555HEg/+EpNTWF2bPzH04+/HCmQwCiLPbs2c2bb85g2rQnadu2HadOxfLuu2+g17swbtxttuW+/vorpkyZxtSpjzF37he88srz/Pzz7+h0Ok6dimX69MncfPMtPP74MwBs374FVVUZPvwG5s37kmPHjhAWFlawzyjOnj3D0KHXX3a9CSGKUi6mAWAJDkRzPBMlJ7eaSySqmqqqzJr1AUuX/s7778+iffuODvO//XYeCxZ8XeI2Fiz4heDgYPbv34uPTx1atw6zzevcuSuKonDw4AF69erjdP2XXnoGd3d33n9/Nh4e7vzyy09Mnz6ZhQsXOe32sXDhfNasWc2LL75Kw4aN+eGHBWzfvpU+ffrblvnoo5nExsbw2mtvExAQyJo1q5k+fTLff7+IoKC6AGRlZfHrrz/z2mtvkZOTw4svPsN3333Dgw9OITExkRkznufhhx+hT5/+ZGZmsmvXdodybN26BVdXN2bPnsPp06d4661XCQwM4vbb73Jahr/+WulQhpLuiW++OZO7776dUaNuYfjwGxz2m5WVxY8/fsfzz7+Cp6cnnp6eJX4+9r755iumTp3OtGmP89FH7/Hqqy/h7+/PlCmP4ubmycsvP8uXX37K00+/UOZtXuskKHGNc3V15c0336R58+acOHGChx9+mFWrVlV3saqHuxumsBaYwlqAxYLmzPn8PBRHT6I9n4T2fBKu67ZiblAPY5uWmNq0zB/VQwhxzdqwYT2DB/e2/d6v30AAOnfuxrhxl1oUvP32awwbNoJbbrkVgEaNGjN58jReeOEppk59jNOnY9m2bQvz5n2HwdAagMcff5r77rurXOWZN+9L7rrrXoYNGwFAw4aNmDjxXhYt+skhKDFy5E307z8IgHvvfYDbbx9DfHwcTZuG8N1339C2bTseffRx2/ItWrQEwM3Nja5du7Ns2Z+2oMTy5X9y3XU98fcv1C1OCFEplOz8IITF2wtVq4HcvFLWEGXltvQfdAWjmlQVc2hzTCP6l76gnU2bNmI0Gpk9+8siAQmAm28ew4ABg0vcRmBgIADJyUn4+zsmStXpdHh7+xTbUmLPnt0cOXKYP/5YhV6vB2D69Cf599+1bNq0kYEDi+77119/5q677qVXr74APPnkc2ze/J9tfkJCAsuX/8nixctt9497772PjRv/ZfXqFdxxx0QAjEYjTz75HMHBwQBcf/1Idu7MDzwkJSViNpvp23cAwcH1AWjZspVDOVxdXXn66RdwcXGhWbPmxMWd5qefFnL77Xc5LcPdd9/Hpk0bbWUo7Z6o0Wjw8PAgICDQYb9Go5EnnniW5s1bOK3Tktjfo2+77U6mT5/MAw88TIcOnTCZLIwceTO///5rubd7LZOgxDWuYcOGtp+bN29Oeno6qqpKnyiNBkujYPIaBZPXtxuaC0noDh5Hf/A42jPn0J45h/rPZkytmmJs3wZzs8Yy5KgQ16DOnbsxffqTtt89PDx44IG7Hd5AARw/fowTJ46xcuWlxJgWi4Xc3FySkpKIjY1Br9fTqlWobX5oaJjt4a+sTpw4yr59e/j66zm2aWazBVW1OCzXvHlL28/WB9WUlGSaNg3h+PFj9OnTr9h9jBhxI++99xaPPjqd3Fwja9eu4YUXXilXOYW4ZpnMYDaDq0ulbVLJzgFAdXdDdXVFyZWWErVNy5YGkpOT+Oqrz3nvvU9wc3NzmO/jUwcfnzrFrO2Ms2fS4p/vjx8/SmZmBsOHD3CYnpuby5kzcUWWz8jIIDk5ibCwcNs0vV7vEDCIjj6O2Wxm/PibHdbNy8tzWM7T09MWkAAICAggJSUFyA9AdOjQibvuupXu3XvQtWt3+vcfiKenl235Vq0MuLhc+nuMiGjLp58mkpGRUaYylHZPLI6rq2uFAhIALVpcOn5rsKRZs+Z20/xtdSDySVCihtu+fTtz585l//79XLhwgc8//5z+/R2jswsXLmTu3LlcuHCBsLAwXnjhBSIjI4tsa82aNYSFhUlAwglLUAB5fQPI69MVzdnz6A8cQ3fgGPojJ9EfOYmljjfGdmEYI1ujepe9+ZYQomZzd3ejUaPGTqY7NmXNzs5i9OixjBo1tsiyvr6+qCqlXls1Gmsap0vjDJlMJodlsrKyuf/+h+jdu2+J23JMvJm/X/u8EyXp1asv7733Nhs3/ktmZhYuLi706NGrTOsKca1zXbSCvVE78XnobuqHNK2UbV4KSriCmwtKVjaYTCAJdC9bzsgBpS9UyXQ6DZjKdr21qlevHq+88iZTp/4fTz75KDNnfuwQmChP9w1//wBSUhxbRJhMJtLT0/Hzcz7UbHZ2FkFBdfn448+KzPPxKb7bcuH7mqpeun9lZ2eh0+mYN2+hbTmtVsFsVh26OhROFK0oii3QrtVq+fjjz9i3bw9btmzihx8WMHfuF8ydu8D2Zb64e6uiOC+DVXm6WzhTOHAE+fdx+zqAovdxcDxma7EcpylFXjbUdnI1rOGysrIIDQ1l9OjRTJ06tcj85cuX89Zbb/HKK6/Qrl075s+fz3333cfKlSsdmnbFx8czc+ZMvvzyy6os/tVHUbA0qEdug3rk9r8O3dFo9LsPoos9g+u/23DZsB1TWAvyurXHEhxU3aUVQlSRVq1COXky2mkAAyAkJIS8vDyOHTti675x5MhhjEajbRlfXz8AkpKS8PDIf1g6fvyow3YMhlBOn44tdj9l0bJlK3bt2sHdd9/ndL5Op2Po0OEsXfoHOTk5DB16vYwuIgSgZGWz6u+V/Hs6GuWTFKa8+FKxX/LKtd2C7hvWlhIASk4eqpf83dUmDRo0ZNasL5g69f946qlpvPvuR7YvvuXpvhEREcnFixc5cuQwoaH595tdu3agqipt2oQ7XddgaE1i4gX0ej316gU7Xcael5cX/v4BHDx4gIiI/BedRqOREyeO23JFtGplwGQycfFiqm0ZnU6DqZwBG41GQ7t2HWjXrgP33vsAN9wwmK1bN3P99SMBOHr0CHl5ebbWEgcO7CcgIBBPTy+nZSis9HuiHrO5bGX29fVz6CKTlZXltKWJKD8ZfaOG69u3L9OnT2fIEOcZer/++mvGjx/PmDFjaNmyJa+88gqurq4sXrzYtkxGRgYPP/wwL774Ik2bVjzqr9Eol/2vsrZTJf9cdFgiDOROuJmsB28nr3t7cHNBf/A4nl8vwuP7P9BHn0Kj1MK6qYJ/hetD6qfsdVVdZbiW3XHHXezeHcVHH73HsWNHOXUqlvXr/+F///sYgCZNQujcuSvvvPMGhw4d4NChA3z44bsO3TcaNWpM3br1+Prr/GRda9f+zbJlfzjsZ+LESSxf/ifffPMVJ09Gc/JkNKtXr2D+/LllLuuECXezb98ePv74faKjj3PyZDQ///wDOTk5tmVGjryJLVs2ExW1k+HDbyzTdmvj5y5qF/PhE2w9cwoA9cBRti5bjuZ8Eq7/bEJJyyhl7eLZWkq4uaJau4VIF45ayRqYOHMmnqeemma7Lvv41KFRo8Yl/rMGj0NCmtGtWw/eeec1Dh7cz969u/ngg3cZPHhosbmBOnfuSps24Tz77ONs376FM2fi2bNnN//738cOI3DYGzNmHN9+O4///ttATMxJ3nvvLfLycm0tEpo0CWHgwMG8+uqL/PvvOs6ciWf//n18/fUcoqJ2lqk+DhzYz7ffzuPw4YMkJJxlzZrVZGdn06RJiG2Z3NxcZs58k5iYk2zYsI4FC75m7Nhbiy3DgQP7HcpQ2j2xfv367N69iwsXzpOamlpieTt06MR//21g69bNnDwZzdtvv4bzrjSivCREexXLy8vjwIEDPPTQQ7ZpGo2GHj16sHv3bgDMZjOPPvoo48aNo1evijfP1ek0BAR4lb5gGfj5XYXdHwK8wNAI9aZ+mHccwLx+O9rYeLSx8Sj1AtAN6IamYxsU7eXF+a7KurlC9HptkXNO6qd41Vk3eXl5JCZq0OmU/GatNUxxZVIUBUVxXmaNxnF6WFgYn376BZ9//ikPPXQvGo2WRo0aM2LESNtyM2a8xhtvvMrkyfcTEBDI1KnTeOedN23b0ulceOWV13n33be4++7b6NChI5MmPcBbb71m20bv3r15990PmTfvSxYs+Bq9Xk+zZs0ZM2acQ3m02kvls/6v1WrQ6TQ0b96Mjz76H599Novff/8VNzd3IiPbMWbMLbZlW7VqSWhoaywWM6GhhlJqUEGj0eDn5+HQr1c4l52dzfDhwxkxYgRPPPFEdRdHlEP80aPkmk009fHjVHoKB9et50avurgcOoF+z2Eypt9boe0qObmk5mSjcdGjd7NrKVGZhRdXDfsWE08/PZ133vnQaVeBkrz88mt88MG7PProw2g0Cv36DWTatCeLXV6j0fDee5/w+ef/4/XXZ5CWdpGAgEA6dOhUbPeNO+6YSFJSIq+88gJ6vY7Ro8cRGdne4T7wwguv8vXXc/jkk/dJTLyAn58/ERGRDBo0tEzH4enpye7dUfz88/dkZWXToEEDnnrqecLDI2zLdOvWnaCgujz88H2YzSauv/4Gbr11QpnL0KRJU95/fxZffPE/2z2xbdtIbrppNACTJj3IzJlvMn78zeTl5bFx445iyzty5E0cPXqEl19+Djc3N+699wHi46WlRGVQ1MIdY0SNFRoa6pBT4ty5c/Tp04dffvnFIYfEu+++y65du/jxxx9Zu3YtU6ZMoWXLS0nRFixYUGL/MWeMRjNpadmXVX6NRsHPz5OUlEwslqv8tLNY0B6NQb91N9q4hPxJ/nXI690Fc5uWoCnfF7Nrqm4qyY03Xs8ff6wApH5KUhPqxmQycf58HIGBDWtcN4CKNCWtTCNGDGTy5GlFhhqrbhaLhXHjbuL22+9i9OiieTLsmUwmEhPjqVu3UZHP18fHHb1eeyWLetX58MMPiYmJoXHjxhUOShiNZlJTyzecbGEajUJAgBdJSRly3SykuLr574NPWLNqJTe2DOdAYgLHXOChdtfR0pj/JjT96f8r9/0dYPcb7/HHv/8QNLgvU1t3xn3fUbLGj8TcvOLdtK6kmnruWK9F1X2vqe77SnUxmUyMG3cTY8fexm23TXC6TGXXzRtvzCA7O4vXX3+30rZZncpSPyWd576+HtfsPbdmPT2KSmE/ukb//v05cOBApWy3sm5MFotao25yFaNgMTTDaGiG9vRZXDZuRxcTj9vvf2PeuIO8Xl3yhx4tZ1LRa6NuKk/hupD6KV511o18JleX5OQkli//k4yMdIYNG17m9eTvr3QxMTFER0fTv39/oqOjq7s4opxOnT0DQHD/3mjWbeRYUhwHTx6nZaOCTPp5Riho6VBWJpOJ1Xvz37yeSbzA/nPxdAEZgUPUeGfOxLNr13YiIzuQm5vLTz8t5OLFVNtQl0JUpprXzlaUmZ+fH1qtlsTERIfpycnJtmQ44sozN65P9m03knXHTZga10eblIr773/hMfdntNGnq7t4Qgjh4MYbh/LTT9/z3HMv2RJuivzRrh588EF69epFaGgoa9euLbLMwoULGTBgAG3btmXcuHHs3bvXYf4777zDY489VlVFFpVIVVVOnz+LVqMQ3KI54QHBKEYjh+JP27LtK7l55d7usWNHyc7OyX9HodNy+Fx+4EPJKf+2hKhKGo2GpUv/4P7772LKlPs5e/YMs2Z94TC8pxCVRVpKXMVcXFwIDw9n06ZNDBiQPySSxWJh8+bNTJw4sZpLV/uYmzQg+46b0MbG47JhO7q4BDx+WoqpRRNyB/TAEuhX3UUUQlSxZcvWVHcRirD2l62tTZCLc7mjXf3999+EhITQrFkzoqKiquEIxOVITEwkOzuHZt5+aP398HZzp5HGhfjsFM5lZRDs6Y2SV/48EHv37kYxmxnTpiM/aiwcTYhHDfaBPAlKiJotOLg+n38+r1rL8PzzM6p1/6LqSFCihsvMzOTUqVO23+Pi4jh06BCBgYEEBQVxzz338NRTTxEeHk5kZCTz588nJyeHUaNGVWOpazFFwRzSiOymDdEdPYnrP5vRnTiFNvo0xo7h5PbqAh7lS2YkhBDiyuvbty99+/Ytdr79aFcAr7zyCuvWrWPx4sVMmjSJPXv2sHz5clatWkVmZiYmkwkfHx8eeOCBqjoEcRlOn44Fs5kmfkFYfLwBiPCvS/zFFA4mJhDs6Q25xlK24igvL48jRw7jioZ2TZqx0SOXuPO7SczOxCevfNsSQohrmQQlarj9+/dz11132X5//fXXAZgyZQpTp05l+PDhJCcn88knn3DhwgXCwsL46quv8Pe//HG1xWVQFEyhzTG1aIp+5z5c/9uJy8796A8cJbdvN4wdwsudb0KIq82LLz7Dvn17S1+wkrRtG8lrr71dZfsTtUdZRrt6/PHHefzxxwH47bffiI6OvqyAxOUOuWo/XLBw5Kxu4uJOg8VCUx8/FC93VL2ONgHBrDp5hP1JCQxo2gptXh7KxTRc1m7B1C4Mc4smRTeenYOSm4fq68PRo4cx5uXSMaAuLu7uNGoURPyevcSlXyTcZKqxn01NPXdqWnmEuJJq29DbEpSo4bp168aRI0dKXGbChAlMmOA8C66oZjotxm7tMbUNxWXDdvRRB3FbtQH9/qPkXN8XS5Dz8aSFuBZIgEBcK1JSUjCbzUXyNQUEBBAbG1vp+6v1w3BXEfu6SUpKQCkISvgH+5Hr4Ub9PG8C3D04nZbKxdxsfLfvQY3OH/5Pd+gErq9OQfHycNhmzsvzIT0T19emEh19GDe9lnZBDdC6u9KmjYFda/4m7mIqnbUKPpX0GV8pNe3cqUnDT1f3/msyqZuSlV4/tXMYbglKCFEFVA93cof2wdguDLcV69HGn8Nj3iLyurUjr2dncNVXdxGFqFV+/fUn5sz5jOXL/0FTMMRfUlIiN900jN69+/HWW+/Zll21ajlvv/0aK1euxdW1Yt2v1qz5i5dffpZ+/QY4Hdrs5Zefo1mz5tx993306tUZFxdXfvzxN+rWrWdbZsqUB2jdug1TpkyrUBlE5bMf7cre6NGjL2u7JpNFhuG+ggrXTU5ODidPniJQ54KPtw/JKZm4u7qgURTCA4P5Nz6GqHPx9HN1d9hOasw5LPWDHKZ5pmcCEH8gml3bo3DVaAn1r4tJo8XDw488k0p8+kVy0rNJS8qosmMuj5p67phMJiwWCyaTClRfPhzJx1M8qZuSlW1IUBWLxUJKShY6nWPumWt5GG4JZQlRhSzBQWRNHE3OwB6g1eC6OQrPr35CExNX3UUTolbp0KETGRkZHD16qSXa7t27qFu3Hnv2RNmy7Vunh4WFVzggce5cAv/730dERrZ3Ot9kMrF162Z69uzjMP3rr+dUaH+i8lXHaFfWIVgv519lbeda/GdfN6dOnUK1qDT1rIPqos+f7po/9GeX4Caoeh3bEk45XBcA1Owcx+3ajahx6Muv0WzbQ2TDJmg1GlS9nsDAIPSuLsRnXETNzav2Orgazx0haovadv5LUEKIqqbRYOzajsz7b8XUsima1DTcF/6BcfEaMJqqu3RC1ArNmrXA19ePqKidtmlRUTsZNmwEer2e48ePOUzv2LFzhfZjsVh4/fWXmThxEg0bNnK6zO7du/Dy8qJVK4Nt2pgx41i+/E9OnYqp0H5F5bIf7crKOtpV+/btq69g4rJpY+KI37kLLBZCvH3BJb/louqWH5QI9vSmSd1gLmRlEn0xCdXVhbwO4QAoObkO29KkXMxfV1XZcfQQAN00+d07VBc9Go2G+vXrk2MykZSSXBWHJ4QQVwXpviFENVHreJN9y/XoDp3AbdW/mDfsxP1QNNk3DMQSHFT6BoQQFaYoCu3bdyQqaie33Zafk2f37l08+ujjxMefJipqJ61aGUhMvEBc3Gk6dOgEwIQJ4zh37myx242M7MD7739i+/3777/Fzc2Nm24azf79zpN+btz4Lz179naY1r59R06cOM6XX37G66+/c7mHK8pARruqhcxmPH74k4S9W6BpEE3rBKBa+3DrL3Wr7N4mktOnT7Em9hgh4RGoBXkkNGfPo8/KtiWvtgYloi8mcSYjjfpePjRWCx61C4Id9Rs04gxwJvE8l8KQQghRu0lQQojqpCiY2rQku0l9vFb/C0di8Jj/G3m9O5PXvQNopDGTEFdKhw6dmDPnUywWCxcvphIXd5qIiHacPn2a7du3Mm7cbezatRMXFxciItoC8N57H2MyFd+iybWgyTfAkSOHWbToJ+bOXVBiOf77bwNPPfVskekPPjiZ++67i8OHD9K6dZsKHqUoKxntqvbRXEjGolqITUtBT10aePqgFuR4Ul0uPSJHtg5j7b9rOZaSyImsNJoUtKJw3bI7f1lXV0zhrVAupgOwJja/pVX/xi3RJabkL1MQ5GjYuDE7gTgJSoga6qGH7uXWWyfQt+8AAI4dO8rbb79GdPRxmjZtxieffMaECeOYO3cBQUF1q7m04lohQQkhagDVxwv9/WNJW70Fl3824bp+G9oTp8i5cRBqHe/qLp4Q16SOHTvb8kqcORNPaGgY7u7utG/fga+++hxVVdm9eydt2kTY8kkEB9cv07bz8vJ49dUXmDbtCQICis85cOLEcdLSUunQoWj3EIOhNf37D+Tzz2fz0UefVuwgRZnJaFe1jybhAmcy0sgxmWjiF4DWosHopKWE4leHQU0N/Hg4iiX7d/DwdV0dt5OY3xVDyc7hYGICx1ISCXT3pF3dS9cLa5CjQdMQAE4nXbiCRyZqil69Su76d8899zNp0v9VSVkOHz7EV199xuHDB8nOziYwMIiIiEieeeZF9AXn+4YN68jMzKRPn/629T77bBZ169bjjTdm4u7uho9PHa6/fiRz537BM8+8WCVlF9c+CUoIUUMoGgVTl7aYQhri9scadHEJeHy9iJwbB2Fu3ri6iyfENadZs+b4+fkTFbWTs2fjad++Y8H0FigKHD9+jN27dzFw4BDbOmXtvpGUlEhsbAwvv/ycbZ7Fkp9xu2/fbixa9CdBQXXZuHE93br1QKdzfju+//6HueOOW9i5c3tlHLIQwo4mIZHo1CQAWvj4Q6oZClpBqPpLf5PmuoF0rNeQ7QmnOJqRxoodmxlrtx0lzwhA5sU0Fh/bB8CNLcPRKHatHQu6bwTVr4+rVseZlCQsFott9B9xbfr995W2n5cv/5PFixcxZ8582zR390tDyqqqitlsLvZ+cDlSUpKZPn0yffr048MPP8XDw4P4+DjWrl2DxWIG8s/PRYt+5vrrb3AYVSg+/jRjx95KcHCwbdqIETdw9913MHnyNLy95eWZuHwSlBCihrEE+JF11yhc/9mMy459uP+0lLxencnr1RmcDD0nhKi4Dh062YISDz/8KJCfbyIysj1r1qzm1KlYWz4JKHv3jaCgunz77Y8O8+bM+YycnBymTp2On19+k/+NG/9l7Nhbi91eo0aNGTnyJj7/fFaFR/8QQjinSU7lREFQorm7F6ReRHUtaCnhYjdUt4seRVEYG9qOj+IPsWlfFL7ZWgY1NaAoCkp6JhkZGfz41zJSc3PoWK8RYQH1HPZl7b6haDQ0rOPHifRkLlw4T716wYhrl31LOQ8PDzQajW3arl07eOSRB3nvvU/44ovZREef4PPP5/Hbb7+QnZ3lMHz0Cy88hbu7B88/PwOA3NxcvvzyU/7+exVZWZm0bNmKyZOn27oaFrZv315yc3N46qnn0Wrzh5Rs2LARXbt2ty2TkpLCrl3befzxp23TrC09PvroPT766D1by44mTUKoWzc/sH799SMrp7JErSZBCSFqIq2W3MG9MDcMxm3FOlw37kAbf46cGweieriXvr4Qokw6dOjEp59+TF5eHpGR7WzT27XrwNy5XxaMunDpIa+s3Td0Oh3Nm7d0mObl5Y1Wq7VNT0pK5NixI3Tv3rPEbd1zzwOMH38TqorklhCiEqnJFzl5MRmdRkMI+cEIa1BCteu+oep0GCMMBOw/yu23TuCbtStYfWg/h5PP0y6oARkpZ/jv6HZyEs/RvI4/txgii+7LLsjR2D+Q6NQk4uJOS1DiMv36688cOnSwSvcZERHBzTffUmnb++KL2UyZMp169YKpU8e3TOt89NFMYmNjeO21twkICOSvv1Yyffpkvv9+kdM8D/7+/uTl5bFx47/06dPPoSWE1d69u/Hw8KBx4ya2ab//vpL775/IqFG3MHz4DQ4tO0JDw9izJ0qCEqJSSFBCiBrM1KYlWfUCcPttFbqTp/H4ehHZo4ZiaSCJhYSoDB07diY7O5vWrdvg6ellm96+fSeys7No376jQ/LKyvTffxto27YdPj4+JS4XGBjILbfcysKF80tcTghRdqpFJeHsGbJNRlr4BuBSkKRSddJ9A52WnOH9yOsQTqOG9bi/eRP+OPI8p9JSOZWWCjotxo7hdGsYwhi/huRNGofRbMbtt1VoMrPzt2EXlGjkHwjHDxEfd5pOnbpU1SGLGur++x8u13mQkJBQ0BVkOf7+AQDcffd9bNq0kdWrV3DHHROLrBMREcntt9/FSy89g7e3N23atKVLl24MGzbC1v3i3Lmz+PsHOAQsAgIC0Wg0eHh4FMmPFBgYyIkTxytyyEIUIUEJIWo4S4AfWRPH4LZiPfqDx/BYuIScEf0xtWlV3UUT4qrXtGkIGzfuKDK9deswp9Mvh7XZrdXGjf/Sq1efIss52+9DD03loYemVmp5hKjV0jM4lngOgJZ+gWiycoBLQQn7IIKq04FWi6VRfquGeiEhTO/UhxOpScSlp+Ki0xPSticNTsQBkFvHBzzcCpJl5gcl7FteNArMf7EQZzcEraiYMWPGVfk+dToNJpOl0rbXunVYuZaPjj6O2Wxm/PibHabn5eXRsmXxz4YPP/wIt902gR07tnHgwD4WLpzPwoXz+eqrbwkMDCI3NxcXl7IH4V1cXMnNzSlX2YUojgQlhLgauOjJuXEg5vpBuP6zGfff/yY3MYW83l0kz4QQV6l27dozYMDg6i6GELWSmpLGoaRzqDotrf3tWh866b6BXuu4slaLpUE9WioKLf0K3h4XBCTyt1EwrKjWbj27lhe+3j54ubhw7uwZTCbTFUlsKK4ebm6O3XIVRUFVVYdp9rmMsrOz0Ol0zJu3sEg3DE9PzxL35efnz+DBwxg8eBj33fcQt946iiVLfuW++x6kTh1f0tPTylzu9PQ0fH39yry8ECWRlL9CXC0UBWPXdmSPvR7VRY/rfztxW/IXGItPuieEqLnuuGOijPEuRDXJjDtLTFoy3r6+NPSqY5tuS3RpF0RQnQQNssdeT167sEvL27MGI3SXghKq3c+46Gni7YfFZCI+Pg4h7Pn6+pGcnGT73WKxEB19wvZ7q1YGTCYTFy+m0qhRY4d/1iTKZeHl5UVAQADZ2fmteQyGUBITL5CZmVGm9WNiTtKqVWiZ9ydESSQoIcRVxtyiKVl3jcbi643+8Ancf/wTsqX5nBBCCFFWh7bvRFXBYGjt8LbZllPCfvQNnbbw6qieHuQO74e5Qb0i82y0do/ZdoEN1cuTZnX8UXLyiIk5WfGDENekDh06ceDAfv7+exWnTsXyySfvc/Fiqm1+kyYhDBw4mFdffZF//13HmTPxHDiwn6+/nkNU1E6n2/zvvw289tpLbN78H3Fxpzl5MprPPpvFyZPR9OzZG4BWrULx8anDvn17Sy1jbm4uR44cchi9Q4jLIe3FhLgKWYL8yZo4Bvefl6OLS8BjwWKyx49ErSNjRQshhBClObAn/4uXoX17OHgpt4NqTWxr331DWzQoYVvezUlLCes8rfOWEub6QTTzDUC5cIKYmJP07du/nKUX17LrruvJHXdM5KOP3kNVLYwdextdunRzWOaFF17l66/n8Mkn75OYeAE/P38iIiIZNGio022GhDTDxcWFjz9+n/Pnz+Hm5kbTpiG8/vq7dOyYP+ynVqtl+PCR/PXXSrp371FiGf/7bwN169YjIqLoSDNCVIQEJYS4Sqke7mTdfiPuS/5CdyIWj29/I3vcCCz1AktfWYhKdOklo1rSYuKqlf+5Svoaca0w5uVx4NhR9DodzTq2dwxKuFlzStg9Ipdw8jvtvmFlH8ywaylhCQ6ikVcdXGNziI2NwWw2oy0h8CGuDWPGjGfMmPG23zt27FxsQuX/+7/J/N//TS52W3q9ngceeJgHHni4TPtu2LARTz/9QqnLjRt3BxMnjufChfO27oWLFv1ZZLlffvmBiRPvK9O+hSgL6b4hxNXMRU/2LcPIaxeGJiMLj4W/o4lLqO5SiVpGo9ECCnl5udVdFHEFmM35eWvyP2chrn5H9u0lNzuH1k2b4eJRKDGgNdGlffeNkriUFJSw775h11IiOAiNi57mFh2m84mcORNf1qILcUUFBgby1FMvcO5c8c+SaWkX6dWrD4MHO2+VIURFSEsJIa52Gg251/dF9XTHddMuPH78k+yxwzE3bVjdJRO1hKIoeHr6kJaWDFAwpFhNea2uYDJJCw7nylI3Kunpqbi6ehTJ8i7E1WpfVBQA7Zq3cggcqBoNaAp+15ctKFG4pURun66X5jl037B75HZ1Ie+6jrQ4cZjDFy8QE3OSxo2blPcwhLgiSutO5ONThzvumFhFpRG1hQQlhLgWKAp5fbuBix7XdVtx/3kZ2aOGYm7ZtLpLJmoJr4Ls9fmBiZoTBNBoNFgslTee/LWkrHWj0Wjx85NRQkQNlZuH259rMHaJLFMwPicnhyOHDuKq1WEIaY7ZvtuEfcsGrQZTy6ZYfErO1WQflMgZ1BNjF7s+9g7dNxxbGplCGtHCLxAunuX48WP07t231LILIcS1SoISQlxD8q7riKrX4/bXRtx/XUnOqCGYDM2qu1iiFlAUBW9vX7y86mCxmFFrQFxCo1Hw8/MgJSULi6UGFKgGKWvdKEp+UEJaSYiaymXzLvTHYtAfiyH92YcuzTCZUPKMqB7u+b+rKsrFdPYePYQ5N5e2QfXReXlidghE2AUOFIXsscNL3b99UEL1cHOcab9tjWOPadXDjcbedfDQaImJOUlubi6u1iSbQghRy0hQQohrjLFzW1S9Drfl63BbvJrs0UMxtwqp7mKJWkJRFLTamnFr0WgUXFxc0OnyJChRiNSNuFZoMrKcTnf/bTW6E7FkPDwBtY43rmu3oN8Sxc7cBDCZ6d6gKaq7a36XjQJqRZJNOoyq4Tg8qP2IG4WTZaru7mgUDaG+QeywmImOPkFYWJvy778WkaTKonaoncmlJdGlENcgU7swcob3Q7FYcF+8Cu2J2OoukhBCCFH58vKcTtYV3Pe0BcmfXbbu5nR6KucPHqZ+HT+aePuCm1uxySjLyhLgB4A50A/Vv47jzJKSw7q5oCoKrev4A3Ds2JFy77u2kaTKojaorcmla8brLCFEpTO1CyPHouK2cj3uv64i+5brMTdvXN3FEkIIISqNJiO76ES7/mNKQdBC1WrYevYUmC10axGKciEb1d3VscuGtvzv6iz1Asm8axSWuk6G4y4pyKEoqO6uhJp8ITeLI0cOo6qqdJUqQc1JqiwJlIsndVOy0uqn9iaXlqCEENcwY4c2YLHgtnoD7r+uJPu2kZgb1a/uYgkhhBCVQkm5eOkXkxl0WpSsS4EKbfw5VL2edFR2nYvDxcOdDg2awoXDqG5uDm2kK9R9A7A0DC6mcCWvp7q7452VQ+P6DTl9No4zZ+Jp2LBRhcpQW9SEpMqSQLl4UjclK0v91Nbk0hKUEOIaZ+wUAWYzbms24f7LcrLuuBlL3YDqLpYQQghxeVTVIQChZGah1vFGSUmzTdPvO4J+3xHWnzyMyWKhV/0muBV8KVDdXR07blcwKFF8+UqZ7eEGSRDRoiWnz8axf/8+CUqUorqTKksC5eJJ3ZSsLPVTm5NLS1BCiFrA2LUdSlY2rpujcP9pKVl3jkL19anuYgkhhBAVZzI7NEawBiU0qWkOi+WaTGyKj0GrUejToBlKVg4Aqnvh0TIqOyhR8hcz6/4jQlqwYuM6DhzYx5Ahw2rlF5Lyqq6kypIkuHhSNyWT+imZJLoUopbI69uNvPZhaDKy8PhxKUqm84zlQgghxNVAMRodfy+4r9m3ngDYfCaGbJORDnUb4ado0cbGg06H6uPlsJyqq+TH4tJe47voAfBz96RRo8akpCRz5kx85ZZBCCGuAhKUEKK2UBRyh/bBGNoMTcpF3H9ZAYUe6IQQQoirhtHk8KuSnT8qg5J7aUSOHJORdadPoCjQv0nL/PkmM9peHcDN1XF7Vd19wzocqdlCREQkAAcO7KvcMgghxFVAghJC1CYaDTk3DsLUKBjt2fO4/flP6W9yhBBCiBqoSEuJnKJBifWnT5BpzKNzcGPqelxqGaEEFx0to6KJLotXyv21YLQPzbkLdIhPBYvKnj27JVGgEKLWkaCEELWNTkfOmGFYfH3QH4nGZd3W6i6REEIIUX55hVpKFApKpJny+DcuGp1Gw5CmoY7LFm4lAaCp5FwOpQX9C1pKuK3dQr0TcbTSu5OWdpHo6BOVWw4hhKjhJCghRC2keriTPW44qpsLrlui0O8+WN1FEkIIIcrF2lJCLcjNoOQUtJDIzQ9OLI07Tp7ZTI+GIfi6uTuu7ObibIuVW8AyBiWsOoeGA7Bz5/bKLYcQQtRwEpQQopayBPiRPXoYqkaD66oNaE+fqe4iCSGEEGVXkFPC4p3fLcO+pUR0ahK7khLwdnFlcFNDkVUVVyctJap40AtV6/gYHt6oKa6ubhw8eICsLElGLYSoPSQoIUQtZm7akNyhvVEsFtx+W42SllHdRRJCCCHKRCkISlhH0bAGJSxZOfx2bB+mpg0Z3rMvbjp90ZWroKWEMbI1ALk9OjpfoFBLCb3JTLt27bFYzOzZE1WpZRFCiJpMghLXuEceeYQuXbowffr06i6KqKGM7duQ16ENmqxs3BevApO5uoskhBBClK6g+4bF2xO4FJRYd2gv5zLTaRYWhuHpRzE1bVBkVcXVSVCikltKWBrUI/2J+8jr2835AoUSayo5eXTpkr/sli2bUCURtRCilpCgxDXujjvu4J133qnuYogaLndwL8wN66E9cx7XvzZUd3GEEEKIUtlaShQEJcjJJT4+jr+P7EOv03HjzWNQFAXVxUkAoipySgDonbTSsCrUUkLJzSU4uD4hIc1JTk7iyJHDaI+dxGP+ryhZ2ZVfNiGEqCEkKHGN69atG56entVdDFHTabVkjxqKxdMDl92HJPGlEEKIGs+W6NLDHVWjwZSZxaJFP6GaTIwIa09gYMGwn85aRTgLVFRzTgklO7+lR48evQDYvPk/PBatRHvmPLp9R6q2cEIIUYUkKFGNtm/fzoMPPkivXr0IDQ1l7dq1RZZZuHAhAwYMoG3btowbN469e/dWQ0lFbaB6e5I9emh+4svVG9GcT6ruIgkhxFUlOjqaW2+9lZEjRzJ69Gh27NhR3UW6Jimpaei3RKGNzU/QrLroUd1c+HPPNpKiTxLqG0j3FpeGAFV12qLbcDr8ZxVHJYq0lMgfPSQ0tDV+fv5EHz/G2Yy0/Jk6HVgsuC39B93ew1VbTiGEuMIkKFGNsrKyCA0N5aWXXnI6f/ny5bz11ltMnjyZxYsXExoayn333UdycrJtmZtuusnpP7NZ8gKI8rM0Cia3XzcUsxm3Jashz1jdRRJCiKuGq6srb775JkuXLmXmzJk8//zz1V2kq5LmQlKJ3RXcVqzDbe0WdNGn8ifodWxWctl69hR1LqQyLrQ9uNmNrqEpGpRwqopjEkWCEgU5MTQaDd2794CsbNadPpE/LzsH7Zlz6PcdwX1Z0ZdYQghxNdNVdwFqs759+9K3b99i53/99deMHz+eMWPGAPDKK6+wbt06Fi9ezKRJkwD4/fffq6SsABqnbxXKv/7lbudaVJPqxty9PabYeHQnTuH210bybhhQbWUpXC81oX5qGqmb4kndFE/q5spo2LCh7efmzZuTnp6OqqooitRzWSlZ2XjMWwSqStY9t2CpF1hkGU3yRYffTyclsvjMCbSKwl1NwvBxdcPoX+fSAtqyvoOr4s+pcLkKghIAnTp1YcOvv7H7fDyDQwz4ZGZDdk7Vlk8IIaqIBCVqqLy8PA4cOMBDDz1km6bRaOjRowe7d++u8vLodBoCArwqZVt+fpLjojg1pW7UiTeS+97X6PcexqNtC7Sdwqu8DHq9tsg5V1PqpyaSuime1E3xpG4cbd++nblz57J//34uXLjA559/Tv/+/R2WWbhwIXPnzuXChQuEhYXxwgsvEBkZWWRba9asISwsTAIS5aRJTEGxWABwXfMf2bfdCPZ1aLGgpGfafk3Nyeb7lX9gspi5uUUbmtfxz1+s7qVghqqtmS0l1EItJTTZOegOHcdkaIarqys9I9rzz/7DrIk9xuiOkWgu2g3bbTYXGb1DCCGuVhKUqKFSUlIwm82XkjQVCAgIIDY2tszbeeCBB9i7dy/Z2dn06dOHL7/8ktatW5e7PCaThbS0y8v8rNEo+Pl5kpKSicUiw1zZq4l1o7lhEG4Lfyfvl9Vk1/FF9atT+kqVyGg0k5SU/wBWE+unppC6KZ7UTfEqq258fNzR66+dL0bWbpWjR49m6tSpReZbu1W+8sortGvXjvnz53PfffexcuVK/P39bcvFx8czc+ZMvvzyy6os/jVBk3KpFYQu9gzeb39O9sgBmNrm54hQ0jNRCobKzDYZmbtvK6khwXTo0oWeJ9Ns65rrBlzaaKEWCebG9Z3vvKoDSJqiLTjcl/yFqXkTsseP4DpDGFv0enadi6Pf+fP4eV8K1CuZ2ag+lfOySAghqpsEJa4y5W0GWpkPRJX1UG+xqPIFoRg1qW4sTRqQ17MTrv/txOWPNWTfcZPTB6grWoZCdVGT6qemkbopntRN8aRuHFVGt8qMjAwefvhhXnzxRZo2bVrhstTWLpPWoISxrQH9vqMAuBw4iqVd/gsVTXp+sNpkMTN//3YSMtNpGTmYUaNuQfnw60sbqhdgO3bFLtFl5mP3onF3xRMndaMoVVpfSjEBPV30KTRGI65o6N2oOatOHmHt3l3cEhRkW0abmYXF1/uKlOtqPXeqgtRN8aRuSib1UzIJStRQfn5+aLVaEhMTHaYnJycXaT0hxJWS17MTuuOx6OIS0G/fi7Fb++oukhBCVIuydKs0m808+uijjBs3jl69elV4X7W5y2ReRiYWwLN/F9SOYRjn/4425aKtPswnjWRbzMzfv4MTqUk09K7D1EcexkWnJ9duO34NA1Bc9ACYgv0xFUwPaHTpGcpaN9ZMDW5ebnhXUr2XhbmOJ8Wlk/bTg1mj0qthMzbGnWRX7An6nonH2sbDR7GgvcJlvdrOnaokdVM8qZuSSf04J0GJGsrFxYXw8HA2bdrEgAH5iQYtFgubN29m4sSJ1Vw6UWtoteTcMACPrxfhun4b5hZNsAT6l76eEEJcY8rSrfLff/9ly5YtJCYm8vPPPwOwYMECfHx8yrWv2txl0u1CClogRdFDo4a4B/qhSUwh6fQF8HBHOZXA9/u3c0hnoX4dX+547lkyMoyAEQ9FsXXtSE7LAaUgTNGsKS7d2mEKa0lmUkaRutHcfgMuG3eS1aU9alJGsWWrbNrMXNyKmXfxXCq61EzcdHoGhxhYcnw/f0Zt44EW7QDIOJOIqUEx3VAu09V67lQFqZviSd2UrDLq51rrMmlPghLVKDMzk1OnTtl+j4uL49ChQwQGBhIUFMQ999zDU089RXh4OJGRkcyfP5+cnBxGjRpVjaUWtY0lKIDcPl1xW7sFtz//IeuuUZJcSwghCth3q+zfvz8HDhyolO3WmC6TqgomM+ir6JHRmN92wKLXg0XFHBSQn/zyfDLZ9QL4+Y9fiU6+QGD3ztzx5FO4eXldOj6dFowmVL0Oi1pQdgBFQ86AHvk/29WFtW4sTRthatqoyPwrTVEudYlUNRpbgk8ANScPcvMA6F6/Kf/Fn+ToubMc8atPqH9dyMm94l/8pHtX8aRuiid1UzKpH+ckKFGN9u/fz1133WX7/fXXXwdgypQpTJ06leHDh5OcnMwnn3xiy/L91VdfOSTTEqIqGLu2Q380Bm18Ai6bo8jr1bm6iySEEFWqtnardF27BZetu8n4v9tQ/X2v+P4UY0FHi4I8EKqnOwA5m3bw3e+/EJecRLCnNxPuuQ8PL8fuC6pOh2I0oequksdbuwScqpsrSpZd65g8I0pBUEKr0TC8eRjzD+1i6YmDtPILBGs9CSHENeAquWpfm7p168aRI0dKXGbChAlMmDChikokRDE0GrJHDsBz7s+4/LcTU1gLLAF+1V0qIYSoMrW1W6XL1t0A6A8cI693lyu/Q1NBUKGg9Ynq5sr5rAy++vFbUrKzaO4bwMTwzpjrBxdd15rQsqpadVwujWNQArughJKbB3n5QQmLuxvhAcE09/YjOjWJ/+Jj6GZsnz88ak4uqod7VZdcCCEqVdWm0hdCXLVU/zrk9e6MYrHguvLfS81ihRDiGpGZmcmhQ4c4dOgQcKlb5YULFwC45557+PHHH1m8eDEnTpxgxowZtadbpV3XgitJMZouBReAAwnxzNq1gZTsLNrXbcD9kd3w0LuAq0vRla23pSoeKaqiVPtyurk6zFPsWkqoHu4oisLNLSPQKAqrTh4h9WIqLhu24/XxN2jOXqjKYgshRKW7SkLJQoiaIK9LJLr9R9GdOoNu3xFMka2ru0hCCFFppFtlIXaBCE165pXfX0H+CtXNFYvFwpo1q9nwzwp0JhMDmrRkWLPWJQ+LbsshcZUMuWfffcO9cFAiDyUvP7+G6uEGSVDfy4e+jVuw9tRxlm/bxN2++XkwXLZEkTNqSNWVWwghKpkEJYQQZafVkjOsLx4LFuP6z2bMLZtKs1EhxDVDulU6UtIujUShpFyslG1qzifhunoDOdf3Qw3wdZxptqCoKkl5uXz39RxiYk7i5u7BnRFdCA/M765hcXfD2CHc+cYLghLq1RiUKNRSgtz8lhKqix7scmQMatqK3efj2Rd7goMmHW0Cg9EmnL+0ydh4NAkXZAhvIcRV5epo3yaEqDEsjYIxdmiDJjsH17Vbqrs4QgghrhDNxfRLP6ekVco2Pb5bgu70WVzXb0G5mO7QFVDNM7I94TQfbv6LmJiTBAc34OF77rMFJFRFIfPRu8nr29X5xq+ylhJq4ZwSdpTc/NE3VBcXVLvuLHq9Cze3jEDJzuHXo3vJMuahSU2HnPzhTz2+/wO3fzajSUypmoMQQohKIEEJIUS55fbtjsXDHf3ew2hPnanu4gghhLgCFLsuG0pB0sXLoTt8wpYnQXcsFq9Pv8Nlw3YAUlKSWfj9t/x8eDd5FpU+ffrx4IOTCQiub1tf9XArMeCg2IISl13UqqG5FGwoEpRIS0dR1fxj1jku1yYwmM6+dUnLy2XxsX35m0pMccz1lHv5n5cQQlQV6b4hhCg/d1dyB/bA/c81uP79H1l3j7lqEosJIYQoG6Xg7TsAJnPFt1PQDcR11b+XphXkq9Bu2MbW5ctYnZVMnquO+u6ejOk3lHqDhwGOX9ZVd7dS9nR1tZRw6L5RKHGnJjW/ZYrq4Q5au6CEe/4oHTe3jOBESiK7z58hIrA+hqQUVF8f23JKds4VLrwQQlQeCUoIISrEFN4K8879aM+cQ7f/qCS9FEKIa4z9F1tFVfMTX1YgAO31vwVFpqmqyt4LZ1l58jCJ2ZloNQoD7p/E9XXOoNRrgHVwTIegRGk5jKwNBa6WoIR9XdoFHuBSdxnVw92h+wZu+YEZN52eca3b88XRKH47tpcpp/rg6e9rW0yxG15UCCFqOnm1KYSoGEUhZ1APAFzXb4WCLOFCCCFqFuViOp6zv0W/Y1/51rNvKQFFW0sYTfl5IUpidlzHXL8ux1Iu8MmuDXx3cCeJ2ZmE+gfxeOd+DOzWE71Wi6q3e2dm93PhESqKsI4WcpUEJRyGBNU6PpIrJlP+Mh5uRVtKFGjlF8R1kR3JMhr5afUy1KRLeSSkpYQQ4moiQQkhRIVZGgZjbNMSTUYWLluiqrs4QgghnNDvOYQmPRO3vzY6DPNZmsJBCesXZSv3H//E69PvUEpIgmndhqqqHExM4H97NvHlvm3EpV+kkXcdHmjXnfsiuxNQv/6l7esdG/IaIwxYfL0xti2lRd7V1lLCvvuGi4vTRVRPd8ecEi56h2DGsL4DaODlQ8yZOP75d51tui0oYbGgZGZVbrmFEKKSSfcNIcRlye3XHd3Rk7hs3YOxfRtUH6/qLpIQQgg72vhzl34+fRZz04ZlWs8WUNDrUIymIi0ldHEJALhsjUKbkEj2Ldejenk4LGO6mM72hNOsP32Cc5npmBsFE+znz9B6TYkMqo9SEEBQcvPAWNA6QOfYlSHnhoFlO9CrbPQN++4bplYhGNu0xNSqGe6//2Wbrnq42+oFyB8eVK+zJbLU+vsxIbwzH+3bzLqo7RgCQwj1r4uSlR+UcNm4A9f/dpJ51ygsDYOr5riEEKKcpKWEEOKyqHW8yevaDsVkwnWdDBEqhBA1jTY+wfazklrK0J5GU/4oGSlptmEmVc+CQIN9UMKuFYVL1EG0Z8+j333QNu3cuQSWLfuTdz9+j58P7+ZcZjohdfy5Y9ztTB92M+3qNrAFJCA/AKLkFmxTr6/YgV5to2/Yd9nQ68i5aTCmNi1R7btreLjnByKsv2u1qPa/u+gJCAhkbPNwsFj44VAUKTlZtpwSrv/tBMBle/m67gghRFWSlhJCiMuWd11H9HsOoz9wjLzuHbDUDajuIgkhhID8vA92b9o1WSXnGnBftAJdTBymJg1sLSUsXh5oUtNQzGZbDwnt+aQi66Yac9mz+T/27t1NXNxpAHRZWbQPakCXQQNp3LcX5pBGWDZsB7vWG7ayFeSnKNxSoqyMkaG47D6EydC8QutXOfucEvatO/Q6Wy4Oi4c7SqHgBYVybqjenrQPrE+0l57NCZv5ev92/i+ksUNXHenCIYSoySQoIYS4fC568np0xO2vjbhs2E7OmGHVXSIhhBAUTXhofYOujYnDZdtecvt0wRIclD9TVdEWdMnQxiWguruhKsqlUS+sLSVUFU1yKqqqkpidyZHk8+y9cJbjsVFYgvwBCAgIpHPnrnTRuBO4fge5rQzkNWucv5nQ5rY3+A5ls7bi0Ffs8TR3cG9M4QbMja7ubgqqXncpn4e7q2NLCZ1jIlBVq83vMnMObmgSSuKRYxxLSeTnrRsYO/JStxftmfP5LUmulq4tQohaRYISQohKYWwfhsuWKPRHT5KXcOHSQ64QQohqY80toLq6oOTmoWRmQ3YOHj/8CYDF1wdTeiaum6PIGXCdLdmkUpAg0eLuZku0qJhN5O7YS8IPizjkAicOHSQp+9IbeN9GQYT17ENERFsaNmyEoii4FAQfVA8323KWeoFk3zgQ9z/WOJRVk2ptKVHBx1OdFnOTBhVbtwZR7bqvqC4ujsOFarUOQQr0OiwFeTx0aelMaNOJWbs2cuDsaQJWLOfGgsUUkym/y437pc/BKYsFl+X/YmreANqEVtIRCSFEySQoIYSoHDodeT064bbqX1w3bCd77PDqLpEQQoiClhKWAF+0Z86jZGWjPXvBNluTlIzHzvx8Ax6/LHdYNc9s4mxOJqdPHiPu8G6OzznDxS2OLRwaePkQ6l+X8MBg6t04DON1HcFiQRsbj7lJA1tLDbXQl2FTuAEKghKqTodiMqG5eHktJa5G2SP6F2294GLXEsLVxaE7i9OWEgUtWZScPDz0LtzTtiuf7N/K2q3/UV/nT5fg/BYqGmuQqQTamDj0ew5h2nNIghJCiCpTe676QogrztiuNS6bd6E7HovmzHksDepWd5GEEKJWU2xBCb9LQYmES0EJ49nzJGamk5qTRXJONqm52STo4PzZMyRlZ6HW8UZ1dUFzPglLXjr1PDxp4uNHK98gDP5BeLu42raVW9C9Q7f/KO7L1mIMa4GSnglQZFQOe5Y63miTUlCsLSW0FcspcTUyRRYd5tS+pQR6nWNLCZ3OMRGoXgcujolB63p4MaFtF+YknmTRkT146vS0CQxGyciCQP8Sy6M/cMz2s5KeCZ7Ff25CCFFZJCghhKg8Wi15PTvhtmJ9fmuJ8SOqu0RCCFErxcfHsW7dAdJ2HkI5fIAcSwocOkH2Ycjc5krumQQyjUaMFnN+wkW7pIjmBnXRZmcR4O5BQCsDwb7+tEhIpWkdfzz1LsXu05pQUxedn+RSf+hE/vYC/TA3qFdkeVOLJuhOnMIU0Qrt+m2XBs3Q1vLB4exbiiiKrfsMADotqtulQJCq1eZ38Sgk1DeQseEt+PXEPL47uIsH2nWnXhmSXWrOJTr8bG7epGLHIIQQ5SBBCSFEpTK2Dc1vLRF9Ck1cAparPOGYEEJcjTZv3sThw/vIOxGHJiEBsxtoUi+gmMyo7q5o8nJwC/DHLysPX1d3/Nzy//m6euB9y0iartuBq05HzvB+KCkXcd0cVeo+NReScV25Hk1SisN0Y7swx5EmCmSPGYaSmY2Snokr2y7NqEUtJZwpnFOj8BChqvuloAR6HWqhlhKqooDZTPuQlhhbhvP76WN8vX8b98Zdh3+4ocR9a9IzLv18LhGsQYk8Y36wRBJlCiGuAAlKCCEql1ZLbs/OuC9bi+t/O6W1hBBCVIORI2+kT5/ryF7+H24HjmEa3g+37fvwSMvE3cUVdxdXzOGt0O89XGTdzObNcd24GwCLjxfatEtfVHP7dcd13Ran+9RFn3I63VK/mK58Wi2qj1f+qBD2nAQwajW7lhLmhvUcWjOg0xbpvqG6uaLJzkExmujdqDkpvl5s2LGVr5f8wsROkQQGBjrfT24eSk6e7Vel4HPXxsTh/ssKjB3DyR3Yo/KOSwghCshVXwhR6UzhrbD4eOW3lnAylr0QQogry83NjbCwMAx+gTT3DaBRs+Y0CK5PoLsnnlod+HihuhbTFcNVT/aNgzBGGPJHs7B7c2/x8Sx3Wcz1ivkSXED1dHf8vZZ331DsutIA+a0UCqieHo7dN3S6op9jwe9Kbn6AYWjPvnSr34T0i2nMm/clSUlF78tuS1bj/cHc/G0WtMRQMvK7e7gvWoFiMqHbd+TyDkwIIYpRu6/6QogrQ6slr2s7AFy27K7esgghRG1W8MVUdXVxGAHD4uVRbFBCdXHBFN6KnBsG5rdmsB/9wce7TLs1hrfK34+PV5E3+UUU/mKtqd3dN7A4thyxJo02RuR3vbAPSqDTOnTfULWXRudQcnLzJ3p7MsYQSZcmzUlPzw9MXNy8A21svG09a/4PAHP9/PwfSkYWqKotV0jhEVSEEKKySFBCCHFFGNuFobq5ojt4DOVienUXRwghaiXFmP+WXdXrHd+we3uWEJQoFESwC0pYyjgag6lZYzKmTiRz0rgyLe9QllreUqJwdxbV04P0Jx8gZ0T//N/tgxIaDdgnutRrL+XkKAhKqK4uKIrCmA7d6NChE2nJycx/600yv/o+fznjpZYYAJb6QaCAkpEJBQEJAE2Wk0SZFgsu67ehsRvRRQghyquWX/WFEFeMi568ThEoqorLjn3VXRohhKh1TP/uQBtT8DbcVQ92CRJVL0/HL7f2CucosE88WVqrhwLmxvXzhwEtbh+F2SdzrO05JVRL0Wk67aVcG+6OderQUkKns7VssbWUsHbnsKjcfPMYOrQwkJqbw6e7/+Ns3GmUtEyH7VkaBYOnB0pmFordiB1KTh4UDPtqK9axGFw37cTz60UVOlQhhAAJSgghriBjxwhUjQb9nkMOfWKFEEJcYbl5mJb8Y/tV1esdu294e9q+rAJY7JvmlxAUUO2Gq7QU05w/65ZhqL4+5SqufReR2j76RuHuG4Wpbo717jAkqE5na9liDUrY5lssaDQaxnbtTY+GIWTk5TH38085dfiQbfW8Dm0wt2iC4u2JYragSUp12JdSeFhR+/wXhROWCiFEGUlQQghxxaheHpjatETJzUO/XxJkCSFElTFdanavQv7QkXZfZi3+vg5dJlT/OsVuSrFrwo9dUEL1Kxp4UN1cMLdqVv7y2nfZqOXdN0yG/PrLa9/G6XzVrXBiS7uWEnqdLaij2HXfAGwBBG3KRW5uGcGgpq3IS0vnmx8WcDjpHLk9OpI7rC8oCoqPV/6yhZJVK5nZjvu2OzcUu1FahBCiPGr3VV8IccXldW4LgH7HPnmLIoQQVcQhkOCiB0WxjaoAYKkb4BCUsJSUwNI+54BdKwqLb9FARuG3+GVm3zqilgcljJ3bknnnKHKH9HI6v0i3G/uWLfbdN7Jz8pe3dd/ID0poklNRFIWhzVozoksPTNk5fL1/O1tPn7y0He/83CGaxGSHXRVuKWHrIgJo7YcqFUKIcqjdV/0S5OXl8dlnn3H4cNHxu4UQZWepXxdzw2C0SakOmb6FEKI0ci++DPZBiQKqa/GJLlXv4of6VP19gfwRO+xZnHTRKDZPRSlUySlxiaLk53UorhuLTkfmvWPJeHhCkVmq7lKiS1tgqlBLCetQnwC9m7ZkXLfeKAos3ryeVatWoKoqSsEwrZrElPxVPfKDTdZAh62o2ZeCEtgFKIQQojxq+VW/eC4uLnz++eekpaVVd1GEuOrldQwHQB91sJpLIoS4msi9uOIU+9YNBTkKVBed3QKKQxLKwgEHe6ZWIWTfNIisu29xmK76Fm1dYZ9zoly0klOiPCz1AlHrXKp/S8FnoXp7Fqk/taB7h5JnxO3XlejiEmzzlOxcOjZpwQOR1+Hu7sHGjev5/vsFGAuSZ1qDEtYcIUqh/FD2LSWUQkkwhRCirCQoUYLIyEgOHDhQ3cUQ4qpnat08f3jQoyeLJskSQogSyL24guxbShS8Ibc0qEfO4F5k3pMfXHBoKVFM0koAFAVTm1ZFWlPYr5MzsAeqVoO5UXDFymvfZaO2t5SogJwhvckZ2IOcYX0dk4ZyqYWMJvki+qMnHeYpRiOK2Uxz3wAevGMi/v4BHDx4kP+t+J3UnGwUc36gwWINgJgcW+DYByUKzxNCiLKqYDi75jp27BjR0dG2tyo+Pj40b96cVq1alXtbTz75JE888QR6vZ6+ffsSEBCAoigOy7i7u1dKuYW4pul0GNuG4rJ9L/q9h8m7rmN1l0gIcZWQe3HFKE6CEigKxoI8PwBotRgNzWxJiY0nYjFGhJZ5H6qrCxkP3gE6Daq3F8YO4baRH8rL/ou0WstzSlSEuUVTzC2a5v+iLVSXJdVnntE2PyCoLg888DA//vgdcQf28/GxKCa06UQL30DUgpwjhVtDSEsJIURluGaCEosWLeJ///sfCQkJqIWS6SmKQv369Zk8eTJjxowp8zbHjRsHwOuvv84bb7zhdJlDhw45nS6EcGTs0CY/KLH7EHndO+Q3HRZCiFLIvbiC7EdFKGGxnDHDLv08amiZNp3XrT26IycwN6jnMBoHFe26AaCxC2ZIS4nLouoKfSYl1KeSZ7zU5UanxdPTk3vvvZ91v/zAhgMn+HLPFkY0D6PL4IKkm0ZpKSGEqHzXRFBiwYIFvP3224wbN44RI0bQvHlz6tTJzwh98eJFoqOjWb58OS+//DI5OTnccccdZdrum2++WeRtjBCiYiwBfpgaBaOLS0AbdxZz4wbVXSQhxFVA7sUV45BTopLlDriO3P7dKze4rJPRNyqNXf2puoKRVxQFxe6lnarXoRhN+TkirB9jwWeg1Wq55ZaxNPjvAL8e3cuf0Yc48d8/3G7SoBQOPNi3lMjJxXXZWpTcXHJuHFzhVjNCiNrnmghKfPPNN0ybNo3777+/yDx/f3/8/f3p3Lkz9evXZ968eWUOSowePbqyi1otsrOzGT58OCNGjOCJJ56o7uKIWszUNhRdXAK6fUckKCGEKJNr5V5c5ZyMvlGpKjlQpEpOicpjHwywtoLQasC+e4VWA0byh3stqHv7FhaKpzudgxtT38uH+Uf3sPfEURJPX2Bs8wYE2O1Kyb0UlHDZud/2szE+AXPThpV5VEKIa9g1cdVPTEwkMjKy1OUiIyNJTCz/GMrHjx9nyZIlfP7551y4cAGA2NhYMjIyyr2t6vD555+XqX6EuNKMrVugarXoD5248g/MQohrytVwL/77778ZOnQoQ4cOZfny5dVbmKvtGquV7huVxT64YMvVUahO1YLuMkqe8VIuCPtgRkES04ZedZgyYDihLVpxPiuDT1csZtOmjbau0sXlkdDGn6uMQxFC1BLXREuJ0NBQfv75Z7p06YKmmBuZqqr8/PPPhIaWPYFTZmYmzz33HKtWrUKn02E2m+nduzdBQUF88MEHNGjQgKeffrqyDuOKiImJITo6mv79+xMdHV3dxRG1nZsrJkMz9IeOozt2ElOb8iegFULULlfLvdhkMjFz5kwWLlyIVqtl/PjxDBo0CBcXl9JXvgLsE11m3zSoWspQLjIMaOXROmkpUeT5WEXVavMTXRaMwqJq7VpKaDWoWi2K2YyXSWXC2NvYfTSeP1LiWbFiKcePH2P06LF4mYsLSiQ4nS6EEM5cE6Hop59+mn/++Yfhw4fzwQcfsGTJEtasWcM///zDkiVL+PDDDxkxYgRr167lmWeeKfN23377baKiovjmm2/YtWuXQwLNvn37smHDhssq9/bt23nwwQfp1asXoaGhrF27tsgyCxcuZMCAAbRt25Zx48axd+/ecu3jnXfe4bHHHruscgpRmYxtDQDo9x2t5pIIIa4GV/peXFn27NlDaGgogYGB+Pn5ERkZyc6dO6uvQKb8nBI5Nw26KgLAqgQlKo/9SCYFQQm1UFDC1KoZqos+P/eINU9EoRwQ5pb5o3koeXkoej29GjVnSt/rCQwM4tixI8ye/REHz51xWgTN+aTKOhohRC1wTbSU6NSpE7///jtfffUVf/75J//P3n3HR1HmfwD/zMz29EYgobcQQgJIR7qiiKdgPxV7ORunnvUsd+p5ds9T7jxFEevpTz3LqQgcKhaa9E5IaCEJ6X37zjy/P2ZndjfZTXaT3WzK9/16+TI7OzvzzJMlM/Od7/N9Tp065fN+v379MHPmTNx4440YOHBg0Ntdu3YtHn74YUydOhVis0hwRkYGSkpKOtRui8WCrKwsXHjhhVi6dGmL91etWoWnn34ajz/+OMaOHYt33nkHN954I1avXo3k5GQAwKJFi/xu+7PPPsMPP/yAwYMHY8iQIdi5c2eH2kpIuIhDBkAyGiAcLwasNjVFlBBC/In0uVixdetWrFixAvv27UNlZSVee+01zJ0712edDz74ACtWrEBlZSWys7PxyCOPqMMjKyoqkJ6erq6bnp6OioqKsLStPdRMCa02am0ICRW3DBvv6VWhcf/+lboReh1s586Fa8gAaI4Xg7PaPN+VZkEJx4JZgM0Gx+Rx6pCQjNh43HrdZVi16its3/Yr3t67FxP69sei4WNg1GjBeB4s1gSuoUkOdmg0AGM04xYhpFU9IigBAAMHDsQTTzwBQC7s2NDQAACIj49v9/zldrsdiYmJft8zm80QOhjVnz17NmbPnh3w/ZUrV+Kyyy5TpzF9/PHHsX79enz++ee44YYbAABffvllwM/v3r0bq1atwpo1a2A2m+FyuRAfH4+bb765Q+0mpEN4Hq6sIdDtOghNwXG48kZFu0WEkC4s0udiRTgeFHQpDvlGk3Vkms7ORDM1hA3zGjLEtL41JZhOC1fWUPVnAOCsNrnQaLPAAYs1wXqF/PCLa7LI/3e6oNPpsHjxRcgekYVvdz+K7RUlKKytwsUj8zByyDBIyYnQNDSBr2sEX1IGw5qfYbn+Ykipvv9OhCNF0G3bC+vi+eoQEkJI79RNzlShMRqN7Q5EeMvNzcWXX36JWbNmtXhvzZo1GD9+fIf3EYjD4cD+/ftx6623qst4nsf06dOxa9euoLZxzz334J577gEgZ04cPXq0QwEJnu9YlFv5fEe30xP1tr4RRw8Hdh2E9tARSOOyA67XvF96S/+EgvomMOqbwLpT33TWubijDwr69OmD8nJPcb/y8nLMmDGj3e3p6O9GmbqR12u7xe/ZOygR6fZ2p+9/e3AGrxt8bbPfP8d5XitBCacLTK9r/Zyrk28ZONGlLs8eMRKjJ83BlycPY0fRMazY+ytOEy1YOPdMJAAQ6hpgWLVe/vjmnXCc71vbxPTxN/J7h4/BNTa4BxTCkSJICXFgqUlBrR9uPf270xHUN62j/mldjwxKhMudd96J6667Dtdeey0WLFgAjuPw448/4u2338aaNWvw/vvvR2zftbW1EEURqampPstTUlJw4sSJiO03EI2GR0pKbFi2lZQUE5bt9ES9pW9YYhbsX66D5lgxYgwCuJiWQUStVmjxnest/dMe1DeBUd8E1h36JprnYkUwDwry8vJw6NAhVFVVQRAE7N69G3/961/btb9wnHMdHIMEIC45DnyYzt+R5Io1QCnNGa7rjbZ0h+9/e0iWBDjcPxvijIhLiYVNuSESPN8tR4wBkns9Tqdt9ZzLXEbYAQiSpK7HmnjYtTpcMWkG8uJT8Z/De7CzsgQF67/BQjEGU+wWKAOu9DwHw8ZtELcfAJ81GLA51H3HJhghBPE7Z2Yr7B99LW/vhXvBRXGWlp763QkH6pvWUf/4R0GJVkycOBFvv/02XnzxRfzlL38BYwzLli3D2LFjsXLlyqhMs8kYA9eOcXkdnefd5ZLQ0GDt0DZ4nkNSUgxqa82QJNb2B3qR3tg3uhFDoN11AA1b9sE1tmW2hNMporpanuqvN/ZPsKhvAqO+CSxcfRMfb4RWG9m0+65wLg7mQYFWq8W9996LK664AgBw1113Qa/Xt2t/4TjnGmwOCAAabC6I1V1n2tRANGYHlN6qjnB7e/rfBs7qgsn9s01kaKhuglGUwAOQmKd/9eDVGwGJ51s/5zIGE8dBsjnV9biGJpgAuDQa5KT2xZCEZHwFM7ZUFOP/CnZhy9siLjGkoo8pFg6zDfyJU+AbmiBt3efT3qbKBriC+J1zlTXqcdX/egDiiMHt7qP26unfnY6gvmldOPqnM8650UJBiTZMmDAB//73v2Gz2VBfX9+hGhWhSEpKgiAIqKqq8lleU1PT4qKos4TrD4wkMfpjFUBv6htn1lBodx0An38MUq7/tM3mfdGb+idU1DeBUd8E1l36Jlrn4rY0f1Bw1lln4ayzzgrLtjv6e3FOyoNuQF+IifHd4nfs3cLOam93+f6HivOqIyIJgnyMXrPWKMfMvIqgMmU9Ly36h+PAN5mhXfsL7GeeDs4l50EotSlMWh0Wz5qBXJOAb//yNI6dOI6/Ne7D3AHDMTMzHQa7A37Z7EH9HgSLJ1DHF56Ac9igNj8TKT31uxMO1Deto/7xj0odt2LTpk2wWuU/gAaDAenp6Z12EaTT6ZCTk4ONGzeqyyRJwqZNmzBu3LhOaQMhkSQOzADTaaE5XuyZjowQQpqJ5rlY0RUfFLRFHDoQ2vPm0KwHvZB3oUsoAQolKOH1fWDexSWDKDTKSfKAC93WPeDqGgBlNhyvYrMsxogBY3Jw14RZOGfQSPDgse5EAV5c/Rl2nzjiM6Wvc/Rwebs2e1DHxVk962kPFMozfBBCegTKlGjF9ddfD0EQkJ2djYkTJ2LChAmYMGECkpLCU1zHbDajqKhIfV1cXIyDBw8iNTUVaWlpuO6663D//fcjJycHeXl5eOedd2Cz2XDBBReEZf+ERJVGgGtwf2gPH4NQVApxaPDT9RJCeo9In4uD4f2gYN68eQA8DwquueaaTmtHj0bBk/DxypRQpvKEnwezzBBaUMKbJv8oxCED5BdeQQkpxgRoteAS4jBPEDB2UgJWHT2AvdXl+Hd1DTamnMTC0+egzyXngzNboT1QCNjswU0barWpP3I2O0zvfwHzrVfSd4eQHqBHBiUYY/jnP/+Jyy67DKmpqerPaWlpIW1n48aN2LZtG7Zv345ff/0V7777LiRJwtChQzFhwgRMnDgR559/frvbuW/fPlx99dXq6yeffBIAcMcdd2Dp0qVYuHAhampq8Morr6hzor/55ptdc+oxQtrBNXwQtIePQVN4goIShBC/In0uVtCDgiij+8rw8b5JV4ZouDMUWIBMCTV4EewubHZAlDMnmOBJvGYxctUHKSkBmkYzUo0xuDpnEo7UVeHLwv045rLh5bJ8jPv5O5ydOwEmALo9h6A9dASWKxZB6hf4Wp3zCkoAAF/fCK6mHiwlMaS2E0K6nh4ZlJAkCf/85z8xd+5cJCcnqz+HGpRISkrC/PnzMX/+fADyHOabN2/GypUr8fHHH+OTTz7p0IXQlClTkJ+f3+o6S5YswZIlS9q9D0K6MtE9HlRTeAL2+TPoaQchpIVIn4sV9KAg2ujvfyQwJQPCz/ANGLwKsYaYKcE5nP6Hb5gM8v9jfWcYGJaYirsmzMQmI4dV9mrs2rUD+7dtw9wqG+YMGAYTAP33G2G9clHgfbqHedjnToVm32EIlTXQHC+Gk4IShHR7PTIoAcBnzJr3z6Eym83YuXOn+pRmz5490Ov1mDNnDiZMmBCOphLSa7FYE8R+fSCcqgBfVQspjS7uCSEtdca5mB4URBnFJCKjebDf6yXzmh0mmEwJy5WLoN2xH9qDhYDDqdaYgMBDMhrAW21gsXKmBNO13B7P8ZiUm4eRMybgp59+wMaffsQPRYXYXHoCcwcOx9TkBM+6JWUwfrkOYnoqbBctkJvuzpQQ01Igzp4C06ffgq+sDqobCCFdW48NSoTDhRdeiPz8fKSkpGDixIlYsGABHn74YWRlZbVrWk5CSEuuoQMgnKqAcOwkBSUIIS3Qubh3YEZDtJvQM7kDB5y/QpfeNSWEtjMlxIEZYIIA7cFCn0wJJvAw37ZEXqYENwIEOZjJCIPBgLPOOgdTJ0/F5rsfwq+nirDq6EH8XFmM6eOGYuLESTBu3AG+vhF8fSNs7noTSqFLZjR4jivIIpmEkK6NghKtyM/Ph0ajwbhx4zB+/HicdtppdBFESJiJg/sDG7ZDKCqFc/LYaDeHENLF0Lm4d3CNHAL7tPFwDR8c7ab0LEowoo3ZN1hMkDPauKf/lIMS7kwJXgB0WnVqUAA+P/s0xyv4FJ+YhAvHTMCs/kOx9ng+dlWV4euvv8Avv/yI+TVOTDElQsMLgNMF6LRqpgQzGsC5AyKcLcA0o4SQboWCEq3Ytm2bmi66du1avPjii9BqtTjttNMwceJETJo0iabnJKSDxIx0MI0ATVGp/OSDp5mKCSEedC7uJTgOjjlTo92KnkeZHtRvUMIzfENKjA9qc2qwwelUAwMQ/Jy3A2VKaH2XM4MeaaZYXDl6AuY01eOLEekoOHwIX2zfh/U6PWYPGI6chkZoUpPBOd3Th+s0YEzeDmVKENIzUFCiFUajEdOnT8f06dMBAE6nE5s2bcIbb7yBF198ERzH4eDBg1FuJSHdnEaAmNkXmhMl4MurIPXrE+0WEUK6EDoXExI6y5WLoDl4BK6sIYFX8hq+ISUlBF7PC3PP5sFX18L42Rp5oZ+hH82DD6pmBTW9MyoyYxNw9VXXomzzr9hwrAL7q8rxZeE+rP77C5hxzjmY7XTACIDxvDrtaaSDEsKJEojpqb5FQQkhYUdBiTbU1NRg27Zt6n/5+fmQJAkjRoygQpeEhIk4KBOaEyUQTpRQUIIQ0gKdiwkJjTgwA+LADM+CtjIlkoLLlIDeHZSweKbnZP4yJbQBhm80z6DQ6XxecmYLRqzfgRFjJqO0qQHfnyjAjoYGrF79DTYePoHTE/ogz2xGbGqKPLNIBIMSfGk5TP/+L6TEeJhvvTJi+yGEUFCiVWeffTaKioogCAKys7MxZcoU3H777ZgwYQISExOj3TxCegxxkHzhpDlRCufU8VFuDSGkK6FzMSFhoExE512LxStrgSUEGZQQBDCe98y84V7WYnfBZkrofYMSfEWN+nPfAQOwJDYeM2aMxfdlRTi0rwDrThRg7csvYtyECTjDaUc/ickBl1ZqzHBmC3Q/boFr5FCIwwcFcZDuttQ1uv/fANgdQLO2EkLCp0cGJTiOQ0ZGBnQ6nc/PoTr33HPVsapGY5AFgAghIRP79QHTaiAUn5KreQdRBZwQ0jvQuZiQMFAzJXwXO07Lkd/ThHDe1Wl9MxT8Zkp4bjF8ghgtghK+GRV8lRyUcIwdBSklCYbvN6GvIRaXXPJb2EuasGnfLvysEbB9+1bs3puPbGMCJubPxpBWit8a//1fCFW1ECpqYAkhKAGXy3OIRSUQR7QyFIYQ0iE9MijB8zy+//579bX3z6H4/e9/H64mEUJaI7jrShwvBl9ZA6lvWrRbRAjpIuhcTEgYMDVVwmex/exZoW9Kp/Wp5cD8Zkp4zcRhNIAzW9zrNit02eyhoVBRLS9PiFdn6lBm3UjWG3HesBxMvfMabN+5HVuPleJQZQX2vvUG+gwYgClTpmHs2HHQew1LAWMQqmrl7dhDG+rhfYzKdKSEkMjokUGJcDp58iTefPNN7NixA3V1dUhMTMSECRNwww03YMCAAdFuHiE9hpjRB5rjxRBOVVJQghDig87FhHRQgEyJdm2q+XSf/mbN8s6UMBkAd1CiRUZGs23xlXKmhJQQpw7t4JT6Fe5jMBiNOP30mZh7sg4HNm/BurQ4lFSU4auvPseaNaswfvwETJo0BYO/2+z5LCBPLRoCn6BEiJ8lhISGghKt2LdvH66++mro9XrMmTMHqampqKqqwtq1a/HVV1/h3XffRU5OTrSbSUiPoBS45E9VAONHR7k1hJCugs7FhISB+4aetVJ7IWjNi1i2UVNCyXgAIBen9F4vQFCCJcSqdTA4p1P+QZLk9ruPgTcaMT49E1mXLcIJXsSWLZuwd+8ebNmyEVs2b8CoglJMyxiMMal9IfA8OIu1zfoT3ji7w/OzwxnUZwgh7UNBiVY8++yzGD16NN544w2fcaxWqxU333wznn32Wbz77rtRbCEhPYfYT86OEE5VRLklhJCuhM7FhHSclJ4KobwKUnJih7fVPJDgb/YN1jxTQtE8U6JZlgUnigAAKTZWHfIB0V2PQmIA7zV7iMkzvKN/1lD07z8ACxaci507t+PXX37Gkbq9OFJXjVidDqel98fE9AGIdTiDLljpM90oBSUIiSg/+VZEsXfvXtx4440tCmsZjUZcf/312LNnT5RaRkjPw+JiIcWa5KckTjr5E0JkdC4mpOOsFy2Afdp42OdN7/C2fIIMgP/Mg2Y1JdSfm9WUCJi1oNN4AhjuQAUkySeIwWJN8iaaLOqymJgYzJgxC/dc9zvcmDcFOanpsDid+OnkUfxt2494/dVl+PXXLbBa3VkTXtkQzfkO34jMdQl/qgJ8cVlEtk1Id0KZEq3Q6/Woq6vz+159fb1vIR1CSIeJ/fpAW3AcfHl1tJtCCOki6FxMSMexhDg45kwNy7akpASf15xLbLm/AMM3WmZK+A9KMK0WnHtYiJI9wTUbeiHFtAxKqJu12pCV3AdZyX3Q6LBje9lJbC07ieKiEyiuqcSqVV8hTxuLaXUO9Lv7d0BGestGeAcsIpApodl3GMavvgPTatB09/UthsFo9uaDc4lw0pBW0gv0iEyJjRs3BrWe0+nEH/7wh6C3O2fOHLzwwgvYtm2bz/Jt27bhxRdfxNy5c0NqJyGkdUqBSxrCQQhR0LmYkK6leVDCb3ajd6aEwStw2MbwDc/nNZ5hIW1lSpjNLT7OWazqvmPj4zFj5izcO2kObr3ockycOBmCIGDfTz/hjT2b8cIjD+Gbb77CyZNFYOosJZHPlNDuOuDetgtcfaPvm5IE49ffw7D6R/AllElBer4ekSlx66234pVXXsHs2bMDrmOxWHD77bdj69atQW/3wQcfxG233YYlS5YgJSUFKSkpqKmpQXV1NcaPH48HHnggHM0nhLiJ7mKXwqnKKLeEENJV0LmYkK6FJcX7vPaXKQHvOhPeGQDNghCSyXdYFgAwjUbOiFA+p2yfMTDvmhKxMfImm6wttqHMumGfNh7OKeOg++lXaE6UYmBCMjJmTMM55/wGx6sex86KYuSbzdi8eQM2b96ApKRk5OWNRW7uOAz1Dko4nBCOnICmrBJs0ZyWxxsquwNCSbn6kq+ph+hV74OrrVd/1u3YD1tm347vk5AurEcEJc4880zccccdeOmll3DmmWe2eL+mpgY33XQTjhw5gn/84x9tbs9ms+HHH39ESUkJLr/8cixZsgTHjx9HZWUl0tLSMHbsWMyYMSMSh0JIrya5i13ylClBSK9H52JCuiYp0TdTQkqIbbkSx8GZPVwexuFndg6Fa8xIOCprwAx66H/6FYDX0A+NMnxDKXQpAZxXpkSMHNDwmylhdmdKmIwAx3mmF3UPydAJAib07Y8JffujXifg19PHYO/e3SgqOoEff/wBP/74AwbmF2FscjrGpPZDitMJ08er5G1OHgPoWwZTQiGcqgAnSeprvrYe3qEdwT0LCQBwTS2Pj5CepkcEJV544QU8/PDDuOuuu/Dcc89h4cKF6nvFxcW44YYbUFdXh5UrV2L8+PGtbuvkyZO49tprUVJSoi6LjY3FSy+9hJkzZ0bsGAgh8sWDFBsDvrbeM6c6IaTXoXMxIV0XizXBNSgT4Hm4sobAlT3c73q2xfMBAJo9hwJvjOdhP2M6+NJyNSgBd1CCCc0LXTaffcMIxnHgq2qh3X0QzpyRnkCG1SsoAQAajc+2uDrPcIkEh4ipU6Zh6tTpqKmpxt69e7Bnz26c2roXpxrqsPpYPlKP70eeMQFj0vphSG090LdjQQmuoUluTloyhMoa8DV1vt3iHZRwZ30AAFfbIAdYmhcbJaSb6xFBCY7j8NRTT0Gv1+O+++6Dw+HA4sWLcejQIdx0000QBAEffPABhg/3/0fT2/PPPw+e5/HBBx9gzJgxKC4uxmOPPYbHHnsM3333XSccDSG9m5ScAE2T2ZOuSQjpdehcTEgXxnGwXnF+8Ou3kimh0nmm6WRKPQrvmhKMgWMMzHv4B8dBSkqAUFMHw6r1YFotXKPla33OKt/Iq0U2lWCF+9qCr2/w3b/DCb6qBgO++B/SzjsDs2fOhrncgT2N1dhffAKllZX4HpX4vqgQKS/WYOicWRg1KgeDBg0GH6guRiv4Rjn7QRzQTw5KNKsp4T20Q6mPAYcTMW99DEgSzDdfDpYQF/J+uyybHTD0wKLFzYqzksB6RFBC8ec//xl6vR4PPfQQ8vPz8cknn6BPnz5466230LdvcGOxdu7ciQcffBATJkwAAAwbNgxPPPEEFi5ciIqKCvTp0yeSh0BIryclJwJFpeBcrmg3hRASJXQuJqQHCeKejBk8QQklUwKCZ/iGpuC4e1u+G3NMHQfjqvUA5CEQuh+3wDF5HDi7uzCle7tMyZRwX1twzWbT4BwOGP/7HfiGJhi++QHmGy5F35g4pA0ciLP6Dka11Yz9VWXYW1WGospKbNy4ERs3boDRaMLw4SMwalQ2hg8fCZPJFFyXNMqZElJ6qvza6smGgM0O4UQJJKMB4NyZEoyBr61X263dfRCOWZOD2ldXp911APpvf4RjxkQ4Zk6KdnPCxvD5GvA19bBcc1HLAq+khR4VlADkglh6vR7Lly/H2LFj8frrryMhIaHtD7pVVlZiwIABPssGDhwIxhiqqqroQoiQCJOS3f9enRSUIKS3onMxIT1IEKMxvacNVWtK8Lw8PKOuAcb/rJbfa5aV4MobBfHX3RCqatXhH0JRqVqvgSkZGM0yJZpfY3B2p2e2DY7zPBjRasC0GqQgBrMGDMOsAcPQNKQvfh3WD/v378exY0exd+9u7N27GwCHgQMHYuTIUcjKGoX09L7gAjwlV6YxFdOS5ddeQzQ0BcfBSRJcwweBL6sEb7EBNgf4Gk/xS857utIO0G3YDq6hEfYFs6PzRF8UoVu/BRwA/S/b4BybDRbvp0ZJdyNJ0B46CgDQ7s2naV2D0COCElOnTm3xj54xhiNHjmDBggUt1t+0aVNnNY0QEiIlKEGZEoQQQkhPEERUwnuIh9d0ohAENbsBgE9NCQByQc1xoyGs26Au0hSXQUxJlPfsLnDJms3kwTV/8OFwqFObMp1WXY9pBDCd1mf9OLuEKVOmYdKkqbDb7ThypBCHDx9CwZ49KPnuRxTlH8a6dWsQH5+AESNGYtiwERg6dBhiYmI8h+EevsES4+Xte2VKaPflAwCcOSOga2wCKuUhHHxtnVd7OzBFKWPQ/bzVp7ioc9JYSKlJ7d9mO/FlVeC9jl04VQFXDwhKcPVN6s+agmMUlAhCjwhKXHnllQEjke1x4403QvAz/u3aa69tsZwCHISEF1OmxKJMCUJ6NToXE9JDhFi3mnlPJ6rhAe/LAX/1G/z8neDsTjCO8wwFUQtdujfm8pMp4Z7lg2k1nmsQjcYdJPGadtQrS0Gv12P06ByMHp0DU6kVZcOM2GfksS8tBqe++wm7tu/G9hGDAXDo1y8Dw4YNx7BhwzG6rgE8z8vFOk0G8HWN7toZgHC8BJLJCHFQJthuuUgob7X6Zko4/QQlGANfWg4pI73VrAfN3nzoN2z37cJjJ0MOSghHTkC3ZTds550BFhfT9gf84KtrAQCS0QDeagNfVglkDW3XtgC5qKpu535YzzvDcz0ZBXxNrfqzdxYMCaxHBCWWLl0atm3dcccdYdsWISR0UmI8mHfqJCGk16FzMSG9F+dV6JoJgm9JiuaZEpCzGZrjm8xgBr3n5rzZ8A0l84FpNeCcLs/QDQDCqUp5FjD355RsC3V//rIUbHYI9Y3IjE1A38x0zB6TBbHchcLaKuydMA6FRwpRlp+P8p278Ut6Kozb92FQn77o/9NIjLaaMUiSwFntABg4AFJCnDx8xaRMe2oFX1nt6SM/bdAcOgrjF2vhGJsN+8I5LduorHf4WItlQlEpnJPyAn6mBYtNnSJVu/sgHDMmBv9ZL0pQwpUzArpteyGUVbZrOwr9z1vBNzTB9OFXMN9+VdCfE06Wgj9VKfdBGB5089V16s/e3y0SWI8ISoQTXQgREmWCIFeUFiU5PVGnbfszhJAehc7FhPQcIc8S4f1QonkWBOcvU8L/7BfewQQ1cKEEPNz7YDFGcHWNPkMjOFGE6RP5hptpNUCzoIQydEIoOA79hu2wXnwOuAbP7BlcTT2EolIYtDqM7ZOBoeeeDzRZYH/pDRRIldjftz9OCgdR2FCDQ+vWYH3+MegaLegb68DgAYOQXVuJzIH95P27C3XyNfUQyqrA4K4b6i8oceQEAEC3+yDsZ0xv2W6lfdaWT+75hiY/awamOXZS/Vk4Xgy0MyghVLmDEllDodu2F5zXLCRCwXFwDgdcOSOD2xhjaq0Nrsmiznyh27QDfGUtbOfNCxhwML3/JQBA6pMCcXD/dh2LN+/ZVPz1N2mJghKEkC5HqSvB19arlakJIYQQ0v2IA/rBuuhMiP3SW12PCQI4UfSt99A8KOEnUyLQlKM+GQ6BMiVMJqCuEVyjxX+jBKHlwxGHE2AMpk+/BQDoNm6HOKCfp4lWG5hXVgNfKxfqjDPGINUYgwmj8qBp4FCUaML+MUNQYv0WJw8exLGjR3Hs6FH8fOgIUJKP9KYSDLUxjKqqRP+9B6EH4MoeDu3BQv/DN0RPhglfXQcpw39BYH9P7jlzgOMPQCj3ZDQIxWWAJAF86DNM8DV1AAAxPVX+/XvdwCv92zQgI6jil1yTxROUkOQHW0J5FfTrtwAA7POmgsXGAHYH+MoaSJnuYS5ew3E0h4+HJSjhMwTZZm93//QmFJQghHQ5knscIAUlCCGEkO7PNXpE2ytpBfnG2itTgjXLgmg++4a8TttBCRagpoQUY4QAgDOb/W9Dq5GfuHtth3O5fAIAnMXm82Qc8GQAAIDh6+/B1zWon9UUHAfP8cjMyETKrDnQO7TQJA/EsZmn4cSpEpRUW1BgElBcfBKlFdXYdLwE2L8NqQYT+motGFZcjgG8iARR9Kmvw9d5PZ1vZciAvyf3nNmqZhYEgy+rkvuD48AxJgdqQpj2UvfDZkAjgGs0y9kgeh2Y0SAHRxjz6V/tvsNwTD+t7TZV1fgek8UK4WiRZ4HdCcTKQzx0W/fAMWUc7POm+QwZEU6WBn0MrfEegswBgM0BxBrDsu2eioIShJAuR0pyZ0q4I+iEEEII6dmYRgMODrXgJAA/wzf83DRrAtzO+MmU4KtqYfzwK3DK7BcxJnl5k7XFx5X9M51nnyzGKA8x8Bo+wZkt4NwBASkxzic4AABCuXwDb77pMsT+6wPwdQ3ytgwGdZs8x2NgTROGlJnB50yEbcZEnMoegpPf/4jSb9agqKEWlRYzyk4ew74jR8GK8iFZTiEjIwP9+w/EgAEDMOLUKaQxDhzHgbMFGDLAmLt2hYeUECcHVax2wGTw/7lm+IpqMEGAlJ4CobRCrnER7GdPVUK/eaf6WkyQC2wyox58kxmwO3xrfJSUAYxBOHoS4uBMaLfvg27jDliuu9hnaJBQXOazH85s9dkO53CAARBOngIA6LbskoMSpeWedcJV/0GZvUWvA2d3yIEgCkq0ioIShJAuR82U8Ko0TQghhJCey3bBWTB8uQ6238z1LGwxfMNP/QhNEDUlBPmWh2+ygG/yDFVgMUohSTlIIcWYAK3GEzjQanzulliMEahv9Ak8CBXVamBEzOjbIiihtIUlxHkyCwAw9028lBgPANAeKPR8wGREamoq0sefBtORCgCAxelA/rkzUbnyQxQ11OCIXo/i4pMoLj6JzRskaLfvg0GjQUZsAvrESkizNyAjIxNpaX3AK/3mcMpDG7xIKYng6xvBmy2QggksSBJ4qw1SfCyYXi/3n8PRxoc8tHsO+vZNrDxzBzPK++asNp/fEWe1Q//DZjmIMH0C9BvlmUO0O/bBMXeaup5S58I1MAOaolLwFqtPAEYpDqrU6ZBfMPAlXkEJu+9xaPbmQ3ugELazZ4K5f0/BUDIlpLgYCHZH4CARUVFQghDS5bAEeewg1xTaGEdCCCGEdE9i/34tZkxoMbOGv9k3Qqgp0WIdd6YE586UcOWMgDNnBGJWfur+nMZnn0p2g3DQE0DgbHZwTXJQQ+yXBu2Bgpb7UWYC0evkGgPw3IRLfm52mVG+2YfOcwxGrQ7Dx43F2FH7wDVZ0Hj/zaiprUVxcRGKD+WjqqAEpU0NOFpXjYJd2yFVyDfpgqBBenpfZGRkICMuEUPra9A3Jg4Gjda3D8wWIC25WUOY/J93MEi5udfrwPTueht2PzUuAuDrfYtqsliTT39wVpvanwAAqw3aLbsAeIp5KuupnE7wpRWQYk0QB2VCU1QKzmL1DQa4Ayecd1udLgil5WA8L2c1WG3qMBaurgHGr78H4M6qOHtWm8fGmS3gSys8mRKxMUBVLTirPdSZcXsdCkoQQroc5UKCplEihBBCei+foRxAgNk3AgQcTF7p8oGCEsqUmy7PFKHKzbHyOab1KnSpk2+ddJt3+TbLIgc1lOGnLfbjvq5hBp16beMJSrT8jDq0w2vfLDZGHk6i1YJnDJwkISUlBSkpKRif3h8xR2shMQmVFjNODE7H8cxUnDpVirKyUygtLUZpaTFgtkK7Xw6aJOoNSI+JQ7LGigFlVUg8chTJGX2g8wqEaPbmw/jNDzBffaFcGBKebAKm16lBE87p9LnpFk6UQDheDMfpE1oMr2meNSD5yZRQhtco66thIa/giOCuayGv4wDHmJy9oQZZmg3fcAcjOLtnGV9dB95shdg3FRDlDBA4nIBe5zMjiebgEdjPPD3gd00+AIbYV96Rf9TKx8ziYtRjoqBE6ygoQQjpcpR0QNiDTwckhJBoO3r0KB566CE0NTVBp9PhoYcewsSJ7ZsqjxACwO77cIL5m30jQMDBe0YM8DwYz7cYuqA+6VfotHJWg/K+RgPmNfuGd5BAio8FMxkhlFWCs9jAOC7g9KdqUEKvByAP71CDH0Z9yw8oBT692qfOQOFuD+dwqgU81WEHCfFI53gk9x2A7HPmyZ9jDPX1dSgtLUX5jt2oLW9EqY5DbVk5qmM0wOEDEIpKIZrLIa1fhaSkZPTpk460tD4Y8M2PSDPGInHtemiuvVSuV6HsS69X+4ZzeIIS2u83QbdJrhkh9u8HcdhAn0NrXmjTkynhHgpitcu1Jdx4i2d93qsoJV9V6ynO6Z6NhGm1XkNymg/fcLfbK1NCOCUPjZHSUsDV1qt9yfQ6n2tQ3mqD5kAhXLlZCEQo8hTJVGZ3kZS2+JsthfigoAQhpOtRpu6yU6YEIaT70Ov1eOqppzB06FAcOXIEt912G9asWRPtZhHSbTUf4++vpoT38A0p1qTWIxAzm01BqhEAR7OghFdWAOAOOnhPAaoRfPep9dw6MZPRc1MuSWA6rXqD3aKN7kCHdz0D5lW/gRn04Gx22ObPgFBcBrF/X3f7vIIg7qGt6jKHE1AyPdwZAVJivPyE3ztDgOOQmJiExMQk5DEdjCfr4ZgyDk2nn4aqmmpUbdqGum/XoSQ9AaVJcaitrUFtbQ3y8w9Cm79H3ufRPeCLDyA5OQV9eC0yjx1CoglI5jOR6XR4hqTUN6oBCcD/TB9oVmhTCbZ4Z0o0X0fdntdMKJwoyoEDg94zjaxWA0nJTmhsalboUsmU8Ao2uKc2lVISIbizXTi7HQyxahBDzEyHUFIO7Z5DrQYl+IrqlguVIUQuseV7xAcFJXqwvXv34pFHHlFfFxQU4D//+Q+ys7Oj2CpCgsBxAM+3vBghhJAuLDMzU/156NChaGxsBGMMXJDT7BFCfLUMSrSeKcES4uBKSoCUkghofbMgmCCAQ7Mn1vrmQQmNzwwfrHlNCe+sCb3OJ52fabW+Qz/87EfNBIVX5gMA802/BWezQUpNhnNirtf+dC3XdwdGfIZMKEGBxHigqNR/MADwGTqi1evRr18G+k+cCFN+CZw5I2E7/ww4HA5UVJSjqqIC1gobKi1NqBCAUwDKykpRXteAgyeOQ7JWg+3RQyg+BU3FYSRkj0SmKCG+sBDJBhOSDEaYTp5E7LABMBrdQ2kYazE01zW4v9omwD18wx1k8Jfd4nM8Zosc8FHW12rVbBW+ps73+2N3AKLoM12nMgRESk4EXy4HFZTPKMM9XEMHgi+tAF/bevF1vrGpxTK1EGjzYUikBQpK9GC5ubn48ssvAQAlJSW46qqrKCBBug+eA+cS5eiyjv5UEUI6buvWrVixYgX27duHyspKvPbaa5g7d67POh988AFWrFiByspKZGdn45FHHkFeXl7I+/ruu++QnZ1NAQlCOoBzNE97b73QJTMaYL1kof+N+RnmwZpPJ9oskAFJ8v2cd6aEXuc7Rak7oOEalAnNiRLfmTaUISHeQ0O8al6wWJP/LAuv/Unx8s22GqjwGobgnSnh/bo5JVjBvIaMqEMMzHKGid7uwMj/bcbQUcOgHyxnBjCNgMY/3ACz1YLajVvR+PVanBqYjiqHHfW1Tah0uVBWVobaomJIZdVgiXHg6hohlR8F+/QDaAdmIjElFYkxMeiTvxvxphjEa3SIyRsNQ10N4uLiEacMRXG61OEOLD4WnHsmFH94sxViSpJnfXdNEKbVQKiq9T12h7NFQU6hzJMpoWax2NxBCXemBDMawGJNcvF1UQxYV8K7Dgbg/l4q3x2RMiXaQlf6vcTq1atx9tlnR7sZhASNudMlObudghKEkLCwWCzIysrChRdeiKVLl7Z4f9WqVXj66afx+OOPY+zYsXjnnXdw4403YvXq1UhOlqvSL1q0yO+2P/vsMwjui9WSkhI8//zzWL58eeQOhpDeiPkpF9gsKBFQ8wAE4KndoHxe26woo9MFl7smgnP0CJ9MCeh1Pu1RPmtbPB/67zfBOXYUTO/LDwfVmhLe+wsmYMnzYFoNOKfLM8xBr9Rx8GQBcO4baSkuRs4uaDMo4TV0xHv2DQDafQUQyqp8C0m6ROg37YTpeDGSB/SDvt8g2KdPhhQXCyOXANu08WiYnAv7KytQk1KJ8nFZMK/fiFqbBTW1ZlRJxSh3OVFus+No6QmwuBi4RgwGju0D/rEPAKBrsiLlWCliqo4igXFIqLfAmNkP8XWNiNXqEavVIUYn/1+blAih0ay22TN8QwtwHKTEeAiVNfLxuYNDnN0RcOpSKTHeU2RdrT3hDkrotGDxceAbzeCaLAHrhjQPSkAjeAJmFJRoE13pR1FnPrFZvXo1Hn300XA1nZDIU8Zw2hyAe3ygZs8hCAcKwbRauEYOhitnZBQbSAjpbmbPno3Zs2cHfH/lypW47LLLcNFFFwEAHn/8caxfvx6ff/45brjhBgBQMxADaWpqwm233YZHH30UgwYNandbeX9p6u34fEe30xNR37SuK/WP2CcFgtdYfQ6sZbu8H1wYDYHb7SdTgm+2jNNrfT7PiS5wcTEwP3AzIAjQ7jzgWVmvkzMpFFr3Z2NNcJx/hu92BQE8z4F3eoYOBNu/TKeVb7oT48DzHDj3zTPvcKqFP3l3DS7OZACMerlYJAeA48CfKAHX0AQxNwu8EqwwefWTUQ+mEcA3WSBU14JvlpmgDKHQ/7wVAKA5eUp+w6AH584uEFwi4p0iDEyLzLyxGHnGDBhLGtVtiKlJqLryPDQVHIH93f+gpl8KaiaMRkNDA+rr69HQUI8mZymqrGZUlpUCNrscALDVgKuqa9EnQlIC4ix26BtPwjhqBGKq6xB3+DB0egc0Jgnx1acQW1ENo0YLfWZfxNQ0QNvUCI2fWmVMI4DXacG5s1h4h1P+XSk1KAx6ear6EkBobIKU1HIKVwDgm2dKaDTgtPL3ixfFLvXvqiuioEQUdeYTm5qamnYFMwiJGvcTBHXqKVGE7n8b1Oi/puAYzJl95fGThBDSQQ6HA/v378ett96qLuN5HtOnT8euXbuC2oYoirjzzjtx6aWXYsaMGe1ui0bDIyUltu0Vg5CUFBOW7fRE1Det6wr9w265FOLeArg+XwcA0GkFxPr5t6FUUDCmxCMuwL8du0aQazDotRAm5YJLiEVSSiy8b1MT0uLBp8TCdf5cuP63CfEzx4Pzqv0gJsepVSkMibGA0wnlGbjWpEdMs32r7XLaEZ8SCweToIQxgv03bjcZwMxWJA7uCy7GCFdSHFwAYrUcNO5tKNuN75MIZ4wRzGxFcrwBnE4L21/lQKp+6hg4XS5IABL6JYP32r89Phasph6m5R95dizw4PqkgI+PgZR/XK6tIXkyQ2JT4oH4WDgBGDgGrqoaLgDaUUNg6JsE75wEwe7AoEF9IVoscKb2hTAhD9pLF/gcp3SyDOYXVqJpeCbqSk6hseQUrLnD0bB5J5qcDpgdDjQ57WhyOmBJSkB9XRG4ynLwsRpIpyohlZ4Ar3OCt1VDOloM6WQZAIAXh0PaXwju8DbwO9aD21sAvaCBThCgEzTQmYyI+cgATVEZNAcOwxjjgLGpFNzO3RCOn4S+oD+Eygqg5BgMu7dB5xoBjUYDvr4J2HkQhnnTIJiMqDxZJGdkQC4uygsStPZG1DQ1QNNUh1S9fF3bFf5ddUUUlIiiznhiAwBr1qwJy9ANemoTOdQ3frgzJXiHA+A5SIUnwdnsEAdnQkpPhXbLbhh++hX2xfOj3NDoou9OYNQ3gVHftFRbWwtRFJGamuqzPCUlBSdOnAhqGz/99BM2b96MqqoqfPzxxwCA9957D/HxoQVPXS4JDQ3WkD7THM9zSEqKQW2tGZLkJ+W9F6O+aV3X6h8OGD0SMe6ghMPuQmN1y4KCym2emXFw+XkfAHT9+kB7qhKugZkwz54qL6y3wvsWsc7iBKtuAnKzgTGjYHYC8NqeRqOFUo3BKgEQAaUUpQNci7Zpp46DbvMuNA0bDKm6CZq+adDvL4Rr5BBUB2hnc8L0CeBrG2C2iYCtCRoJ0AOw7SmEfdBAQKeFvr4JGgB1Dgl6rRYCgNqSarC4GPX4akuqoW9oggCgzi7Jx+mmT0qApsZTyJHpdbD84Xr5vc/XyjeMzb4LjU4JzOaCEYC90QIcK4EGgDUpES67BO8KGazJgurqJggVdTAAsPICGpodP2d1wiQIiIcGCTGJ4NM42MdOhL7M0qJP7PNPh3btz2gYNgA186bCuWUHJP1mNJw2Gk3DB8Da2ATHoQJYJQmWWCPEklpYTAZYdEaIGg0cogizU3noZYdr70HwVTUQKkoh7XRBrCyDpuAYuNoGuNYxcGYLhOMlkCyVEDfLM6NoDhTI2Rxf/xfi4Exodh6QhwO5i1oyox5S8QEI+ccgndgL7d5f8dxzT8Nsdrb731V8vBFarf+aFt0dBSW6qHA8sVGEY+gGPbXpHNQ3HkpKZbyOh5AUA+d3GwAA+im5EMaNgv1AITT7C2A6ayp477nIeyn67gRGfRMY9U3bQpk9Y+7cudi/f39Y9huum0FJYl3gxrJror5pXZfsH0lqtU2SQR/wfdtZM2GflCfXUFDWafZvWxI0YN6fb1bDQozzXAtLWq3PzBBMq2mxb/ucqXBMzAWLiwUkBseEXEgJ8fKME0H2rTR6hPsHpu4XADSHjkCKNcE+f4anpoROB2aQ60WwJguY90wiZis4i5y7Ier1Pvu3LZgN/feboD1YCABwjRwCyV1UtEUxUK/jV99zOMG5Z69w9UmB2GxWE47J3yXBvX9J3/L3xAnKtlyA0wnG85C8pk2V4mPl6U4hz9ihMxiQcPwUNDojtMlp0Kekw5adA+f4HPkDZ8gPrTizBbFlDoj9+sAxMRfGmO8gGQ3gLFY4RBHWtETUXbIQ0v7D4Fd9D/OYEWg6LQfcf/8HVlqGpoVnQjRboFv9I+x9U2GdMQEulwhtgwixoREiGCxDRkBbUg9XSiL4qlowMLjiY+AcPgzaKgtcffsgccJEaLVaSJKj6/276gIoKNFFheOJDQCUlpaipqYGubm5ba/cCnpqE1nUNy0pp/mmynpINU0w7isA4zjU9+sHNDmgmTER+m9/hGXNJtgvOKvtDZqt4MurwEkSxKED/M513h3Rdycw6pvAwtU3PempTVJSEgRBQFVVlc/ympqaFudiQkiUtPHnSrkh94vjwJITfZfxzQtdNpt9o/n2vWbIYHqtbwFDfzfvHCcHJBSCAFfW0Fb30SavG35Bqe/g8CrK6J5ZI2blp75NsdrA2exyQc5mtTRYfCxsi+fDNaQ/tAcKYZs33fNegD5hGsEzXarEwFdUA1oNWFICAE6uheE9e4rd4bfQpro9pYio0ynX0HDPpKGQkhPVoIQUHwdnbhZ02/ZCKCr1TAnq53fAePexSpJnRo24GPBWG/QaDYSEBAgpKdD07QtjQjIc6Rmwj86BactBCEyPpmnTwfR6xOafAtPpYJ43H+A4GCvtan0N28TTYaiR4JgyDrotuwAAYmZf2OZNQ4xZB2f2MDgWnk2zMbWCghLdTKjznWdkZGDdunVh2Tc9tYk86hsPpXgTs9mB4jKgwQxpUAYko0F+2jB6BHRrfgZ/vBiSKLVaxVq3eSd0P2xWJxIT05Jhnz8D4qDMTjiSzkHfncCobwKjvvHQ6XTIycnBxo0bMW/ePACAJEnYtGkTrrnmmii3jhACwP/sG95ve025GZTmDyj8FMP04T0dpFYL6DxBibYCGuHCvIISfGUN4PJMoQmdNmAfcBYbYLOrs3j44xqbDdfYbN+FugDHxfFgnHumNIsVnM0OLqOP3KcSAzMafIISnMMJzuqu4OFvlhT37CWcwwk4XWAmg29QIiUROF6srqtOf2q2eGbf8NdWZcYTUQTnnhJUnnFEzuxQZ0ZRvgvu4RdqAEOvAzQCpD6pEE5VgKtvBEuMB2fxPKzVFB6XP5qSqC5jGt7zfXLR7Btt6RmPCnsgemJDej1lSlCbA8Lh4wDg+3RBp4WY0Qe8xSaflAPQ7jwA/Q+bAa0GzpyRcPXvC6GyBsaPvgZfXBbJIyCEdDFmsxkHDx7EwYMHAQDFxcU4ePAgKivlueqvu+46fPTRR/j8889x5MgRPPbYY7DZbLjgggui2WxCiKKtoESgG+hAOM5niEPzKUJb5XD6PpnXds6zXu+gBCdJ8jWQw+nOXOADBiX4ugZwCD1w03yaVM8GOTVTQilK7p3FIcU1Gx7odHllSvhpgyDIgQG7Qx4Wo/UNsEjeWS4cp2at8GYr4A7K+G2rcj0pSYB79g3m3Ta9Xt2/vCNRbS8D1AwY5XiUguu82VPrQnP0pLzdpATP1KJNFnWbHE0J2iYKSnRR3k9sFMoTm3HjxkWvYYR0FiX6bneAr6oFAEiZ6T6rKJkOwokSv5vgT1VCv/pHMIGH9eJzYDv/DFiXLIbtjOngJAnGL9aqc1wTQnq+ffv2YfHixVi8eDEA4Mknn8TixYvx0UdyxfmFCxfiwQcfxCuvvIJFixbh4MGDePPNN9UZrwghURYgKMHcT6RZ8xvhYHhnSwQxtJPPGgwAEDP6gHlNRxrw5j3MmM63XoNQVgnO4VIzNfwNjQAArl6eopM1q/fQ9v4CBHp43pOl6s5U4LyG8zX/XXBOJzhb4OEbAACdFrwSuNBqfIIXklcWAqBkOzTLlPAblFCGmEhqpoSUnODZjtIf7oAU586UgCT5BqkEr6wHl0ut46Fuh+MgpSZBSpK3zdfUgymfoaBEm2j4RhSZzWYUFRWpr5UnNqmpqUhLS8N1112H+++/Hzk5OcjLy8M777xDT2xI76FG3+3gvMYQehMHZQIbtkM4UQLnpJZT3mp37gMHwDZ3GsTB/eWFHAfnpDwIFdXQ7s2HfvVPsF20oMVnW+VwQnugAJr9BfL4zNgYOEcNhSs3q8fUqiCkJ5oyZQry8/NbXWfJkiVYsmRJJ7WIEBIa/0GJpjuuAWe3Bx5q0BqBB0RRvoEMYoi09saLUHuySr4prvfMINFZQQkYfIMK/KkKcC4XWIxRbkegTIn6BvmHUPsomEwJZfiIV+ZIi8CD06UO3whU+4NpNWomAjQaeYiM8l5sDOyzp0ByDz+R3MfLmS1qoMbvEBqel781ElMzOsS+aZ7tKsM3BN/hG5CY7zWdGrQQIRyXH4Z5181wnpYDZjJCSkqQA0WMqcM3OJenICrxj4ISUbRv3z5cffXV6usnn3wSAHDHHXdg6dKlWLhwIWpqavDKK6+gsrIS2dnZ9MSG9Brq2D67A3xjkxyhjjH6XI+ImelgGgGaolI5ou198rA7oD1QCKbRwJmb5btxjoPt7FkQjhdDe/gYHFU1kFKD+3fF1TfC9NFX4L2mzkJFNTRHiyBu2wvbojOD3hYhhBBCQhBo+IZR739IQDCUJ+lBDt3gBEHOApCYbyCis2pKNMuU0BTJxRaVtoj9+/r9HK9kSuhCzJQIVOiS49SsVvjJVGi+H762vvXhG/DNyvDOQpHboYFj+mme10qmRJMFiOPVdfxSpupU6kR4B0yUukrNshq4ZteVSjYORBHG/6wGALiGDYLUJxngODgmjQUAOCaPhfZgIezTT/OpZ0FaR0GJKKInNoS0wn2RwDdZwJmt4FIS5ScY3hckGg3E/n2hOV4CvrwKUr8+6lvag4XgnC45IOHvqYFWA8ekPBi+3wTtr7thXzi3zSZxtQ0w/ftL8A1NcA0ZAMfpEyCmJkGorIHuxy3QFJfB+OFXsCxZ7K4+HQZ2h3zMoRbvIoQQQnqaCBTmZTwv11oQQp9JiCV6MjhDLrLZXl7FOCWjAXyt+yGJ+4aeJcaj6ebfInb5Rz4f4+qUoESIwZPWhm8omRKs2Y29n88Zv/7es/9Afe0dAGk+k0bzgINeByYI4MxWT12IQIEhnncP31CKV3p+V3yT2d32lsM3fGqGKPUhmizqVLCO0ydASvN9ECVl9EHj3dfL9TWUQp8UlGgTBSUIIV2TOzrNV8v1JJAY53c1cUAGNMdLIBSX+QYldsuF7JzNq0h7cY7Nhv6XbdDuOwzHrCk+U321wBgM33wPvqEJztEjYPvNXPUEJQ7MgHXJYujX/ATdzgMwffgVLNdeBGYyhnLEHnYHdBt3QHuwUH2yIcXFwJU1FI7pp6lPBwghhJDegAHyDFptFLpsF+VpeHuCErExaLr1SmiOF8M1ckiYGxYAx8Fy8QJAo4H++02Akn3gnWWQkgTn6BHQHijwfEz5IdSaEgGHb/C+RULhW1OiRaFLZXuB6kk025eSoWG5chH42vqW1z7uYpd8fSNEpQ8CHRvPg/MKSkCvhX3OFOjXb4Fj3Gj5s3yz+g+S5MmiAdTvh1AlF1d3jhzSIiChMvgWz+Ro9o02UVCCENI1uU90ylg9LkBQQi0o1Gj2fNRsgVBaASkxPmAaIwDAoIdz3Gjoft0N7a4DcMyYGHBVzeFj0Jw8BTE1Cbbz5rWsHcFxsJ81E5zNAe3BQujWbw4q+6I54XgxDF+uA2+xginHx8lZGrpte6Hdcwi2s2fBNWZkyNsmhBBCuqXmmZLh3jYQ2swbXlhiPJzuG9vOIo6QAyDMsMPTjmZZAs2HP3iWhylTguNa1uDwyixw5YyAo7gMfG29PMzWLVCwovm+1OEoAzMgDszwuzqLMQL1jXLQopW2Mp4H53Sp03gyvQ6OqePhmJDr+Yzy+5f815RQhm8oM76xpPjAx6Gg4RtBo6AEIaRr4jgwvU6NanOJ/v/4K9WduSZPUIKvrgMAiP36tFm0ypk3Crpfd0NztChwUMIlyk8jANjPOD1wMUuel2tVnCiGbvchOMeNhpSR7n9dfx8vLoPx02/lYSdjRsI+ZwpYnFzQibNY5eyJbXth/Oo72Kw2v8U9Q8YYhMIT0B4+Br60HJwkQYoxQRzcH868Ua3OZ04IIYR0CndQgovA8A2ffXQzPlkHzW/Imw9/UD4TYlAiUE0JefhGs+shre9wB/vCOdBu2eUTlGhteKtP24Ko0SHFmCBAHj7C9LrAv0OBB2d1gWt0qW0D4Ntn3lkNjMnb9Cl06RuUkJIS22wfOE4uoElBiTZRUIIQ0mX5BiUCZErEuoMSjS2DEs2nj/L7+dQkSDEm8KUVcv0GP6l/mgMF4Osa4Bo2EOLQAa1v0KiHfc5UGFeth2HtL7Bcc2FQFzpcTT1MH38DzumCbe5UOKeO93mfmYywn3k6XIMyYfxiLQzrNoAZDZDysgJssW18VQ30q3+C5uQp3+U19dCcPAXdL9vgmDZeDta0I62VEEIICQvlPBqJbAllm908KNEyUyLATX3Yhm/4y5Twc63QrF3e03G22JdXcUymbzso4T2ko9WpToOZGU3NlBA92RLen1MyJdzXm1JqYtvbBABBAEdBiTZRUIIQ0mV5n2C4AGlySh0I3idTQq5DISUntr0TjoM4OBPa/QUQikohjhjcYhVt/lEAgGNicJkJrrxREHfsg3CqAkJxGcQB/dr8jOG7DeDsDjimjG0RkPAmjhgM68XnwPjR1zCs/RnWQRlASujZDHxpOUz/9w04mx1iWrJctHNgBphOC76uEZr9h6Hbvg/6jTugOV4My6XnAq2MAw2J3QHd9n0QjhZBKC2XUyT1WrgGZsKVNRSu0cNpalVCCCEeWo172s4InBsiNSykE/jMYtE8CBEgmBBypkSAOlaM431rLgDg/GRnNA9qSAn+HzIB8A2YBBE8UaZBBYIPSkgB6n2phU5FSQ1KMK/j8y6EKvbrA7F/29d2yuc4ZXYSEhBd9RFCuiyfoESATAnotHJGRZNFXcTX1AEILlMCAFyD+wMANMeLW77pcEI4Xgym10Ec5H9MYwscB+f4HACAds+hNlcXjhZBU3gCUmIc7LMmt7m+OGQAHFPHg7M7oP9yHViI6ax8WSVMH34FzmaHfeo4WK6/BK7s4fKFh1YLKS0ZjjlTYb7+UogZfSCUVsD0ySpAmYe8AzR78xHz2r+h/3GLnKGh1cqBJZcI7eFjMH71HUxv/wd8cVmH9xUIZ7FCc/gYtLsPQrM3H3xZZbe+KCWEkJ7Octm5EDPSYV84J/wbd//9b160sTvwzZRoNoVmwOEboWVKBAwO8FzLBwh+MyWatauVYaG+U4IGE5TwCpi0sr73MAzrlef7X0mdfUP0zPLiZ/gGALgGZwafWaMRaPhGEChTghDSdXlNr8UlxgNW/5FmKTYGQnWtOvxCHb4RTKYEAHFQJgBAOFHS4j3NsZPgXCKcI4aENITBmT0c+nUboDlYCMyfEbhQlCRBv24jAMA+b3rAMaDNOWZNguZoEYSTpyDtLwQygovYw+WC4b/fgXM4YZ8xUR6aEeDEypLiYbn8fJg+/ApCSTkMX66D7aIF7UtxZQy6n7dCv2E7AMA5ZiQck8dC6pMib8/lgnCiFPoN2yGUlMH0wZewnTcPrtEjQt9XAELxKeh+2gqNn9+zZDLCOTEXjkl5gX9XhBBCokLKSJeHQ0aCEpPu7kGJ5ueuQNcsQQyLCIq/4Rt+sjO8h5XYzpjeaoaB98OooIZvxAY5fMMrw0aKCVBoUwlAeGVK+Ct0CSC06wRBkKdMVbZJ/KKgBCGky1JOMEyrAYz6gEEJFmcCqmvBNZnlNLn6Rrm6c5AnDZYQBykpAUJlDbgmi89JTlNwHABCn+pLr4Nr1DBo9+ZDc+gIXHmj/K4mFJVCqK6Fq3/f0PYhCLDPmgzTp9/C9d1mYMnioD6m+3mbvL8hA1oNSHg+oIXl0oWIefczaAuOw7W/oF0zf+h+3AL9pp1geh2sFy1QA0EqjQbisIGwDB0A7c790K/9BcYv18HmdLU6rWtQRBH6NT9Dt/MAADl11DUoEywhTg6GlJRDKC6D/qdfod2xD7bF8yEOCDIrJgR8abk8TOh4sTzcSJTkGWIy+8KZNwpSRtuFWQkhhIQXp9aUiG472sXr4U0whSGBdmRKBMLJN+yM4zx92EamhHPy2Na3GXKmROjDN6AJXKyccRwgSuD81ZTwCmwELP7pr41KcIimBW0VBSUIIV0W08snWxYfC66VmzXmLnbJN1nAJLlishjk0A2Fa3AmdLX1EIpPwTVqmLxQkqApOA7G83ANGxhy+515o6Ddmw/t3vyAQQnNgUJ13VBvSMXhgyD1SQZfdAr8iVJIAabMUvBVNdBt2QWm08J2zuzg92c0wHbuXJje+wL6dRvgGjoQMAVfX0I4WiQHJAx6WC4/D1LftMArcxycp42BFBcD42droV/9E8S05JBmMfHGbHYYPvoawvESSDFG2OdOgytnRIuUU662Afoft0B7sBDGD7+C7Zw5cOW2v4ioz7Ybm6D/3y/Q5h/ztEurAXgeQmUNhMoa6HYdgGtQBmznzA1umrH2cLkgFJVCc7wYnMUKp0kPnD4J0Ovb/iwhhPRY3bnQpefvt5jZ7DwZ4Ml8KDfU6qYS48HXNfguVOot8Bwgyn3ot6ZEkBmgQLNARBA1JaQ4z1CQoIMSrWW9Cu6hFn6DEp7PhVSXQwnU0BCOVlFQghDSZTGDO1OijWkpvWfg4Gx2eVlyUkj7klLk9Tmvky5fWQPOZodrUGbI1aoBQBzQD5LRAKGkTI6QN3+CIIrQ5h+Vgx5ZQ0PePjgOjmmnwfDlOmg37YCrjaCEdutecIzBNmOinCUQArF/PzjGZUO36yD0P22BfcHs4JposcLw9Q8AANvCOa0HJLz3N2II7GdMh+F/v8D4+VqYr78k9EKbjMH5728gHC+B2CcF1ksWBvwusaR4OUNiYAb0a3+G8evvYdXrQs+QaYYvLoPpk2/A2RyQEuLgmDwWrlFD5UAaY3J9i/xj0G7bC82JUsSs+D/Yzp0HV/awDu3XhyhCu2M/dBu2g7faPIsB8FnDIWX2Dd++CCGku+nGwzfElGQwgx7O7GEtz6+BaiW1o1io9eIF0K/9BUJpBTiXO2tV6S+OB+C+ifdXXDOEYQveQzaCufH3Oaf7y9JQeAcXWiukreHlLAl3TQmfQpfewZWQhm+4a1VQpkSrqNAlIaTLUqLeUhtBCRbnDko0mUOaDtRnG+598A1es3i4AxRSamgBDhXHQcpIBydKcjHFZoSjJ+Wgx7CBvimYIRBHDwfiY+VtWayBV7TaoN13GEyrafdwCPucqWA6LbR78lvflxfdj7+CN1vgyBsVcuDFOWEMnNnDwTc0Qf/z1pDbq92wHdK+QkjJCbBcuajN4BYAOE/LgW3xfACA4avvwFdWh7xfhXCiBKaPvgJnc8AxIRfmGy+Dc2KumtkDjgOLMcF5Wg4sN1wC+4yJgEuE4cv/QbPvcLv3641raILpnc9gWLcBnM0O54jBsC2cA+uVi6D7402QgpgZhhBCerRuPCUoTAY03Xkt7GfPavEWSwyQddeO45TSUmC9chGk9NSW2/GegcNPYEA59waVMeFTUyKIh0Fex8LVNwZcLdhZWxjvzpQQ28iUaM/wDcqUaBUFJQghXZZSVZklBZ7TGvCeFtQS2nSgXpTAB9fgOakpWRNSoBN7EJR0SqG0vMV72oPy0A3X6OHt3j54HkLOMHAAhCNFAVfT7jkEzuWCc0xWuwMgMBrgzB0FThSh3d32rCJcoxnavYfA9DrYz5ge+v44DrazZoLpddDuPACutqHtz7jxZZXQ/vgroNPCdvE5IR2za9Qw2GdOAudwwvD52nZdSHB1DTD+ZzU4pwv2OVNgP6uVYqcAIAhwzJwE2/lnApADIq39PoPBV1TD9M5nEMqr4BrQD5brL4Ht4nPgHJsNaXAm+LR2BtsIIaQn6c41JQD5xtlPoME1YjBsC2aj6ebLm63f/gNl/j7rvW9/hS7jY2G+7mKYb7uy7e17D98IMhvBNWyQ/NnWrvuCnWZc4OWaEsxPUMK7FkWIhS4BUFCiDRSUIIR0Wa5RQ2FbOAfO03JaXc97+Eao04Eq1EyJxiZ1GV8nBygCPm0IghqUKGkWlGAMwtGTYAIP1/DB7d4+APA5clBDU3jC/wqMQbd9HwDAOXFMh/blnOCe6nTHvjZTMnVb94ATJTjG57Q/EGIywDFlHDhJgv6nX4P+mH79FnAANOfNAUtLDnm3jtMnwDW4P4TqOmjdfRc0SYLxv9+BsztgnzoOjmmnBf1R1+jhsJ13BjgAhq+/95nqNhSc2QLjx9+AbzLDkTcK1svPk2c6IYQQEkB3jUoEwHFwjh8NlpzQYnlHttnaMi5AvQapb5rv9J0B+EwJGuSwWesF82E7eybsMycFXinooIR7pgxlqIX37BvtzJRQs0do+EarKChBCOm6tFp5qEEbtQSU4Rt8RTX4U5WQTIagUvV9tmEyumfu8A5KhCFTol8fMI5rkSnBma3grTZIqckdnoKSHz4QTKOB5miR30g8X1ULvr4RYma6vL8OkFKS4BrcH3xDU+AgCADY7NDu3A8mCHBOyu3QPh2T8iDFGKE9UADOnQnTGuF4MTTHTkJKToAwNa99O+U42M88HYzjoP9lW9DDVQBAt3kXhJIyiH3T4Jg1OeRdu3JGwDF+NHiLFYavvw88LjgQUYTh87XgG81w5mbBvnBOSNPZEkJIr9Kdh28Eg+PgfRZhwd6g++Pnsz7ZE/5qSoTAJxAR7HlLq4XztDGt7zvI7BBlmAfXKA/l9Tk2n0KXIRTvdH+Oo0yJVlFQghDS7SnRd6GmDhxjcGUPD/3iguPA4mLkQoBOuYiTOnwjxKKQPvQ6SGnJ4BuawHlnYbhrFXQ0SAAAnE4LcUh/cA4nhJOnWrwvFJUCgFywMwyUzBWNe/iJP9oDheAcTjhzR3pqKLSXTgvnBDmwod1X0Obq+h+3AAAcc6YEfGoTDCktGc7TcsDZHdBt2B7ch2x26DbvBON5WM8/s93BAPsZp0NMTYLm2EkIrQV//NBt3gXNyVMQ+6bCdvasnnuhTQgh4dDdh28EwzuYEO5MCZ8hDh2cQ8H7IU04z13Bxvbdx2L6ZJXPawC+9TLaNXwj+IKfvREFJQgh3Z9GgOSVTeHMGdmuzUgJSl2JJoAx8PWN8nbbMfOGN39DOPjKGnmf7Rha4HcfIwYDADQFx1u8pwQlxDZm5wiWa3B/OfvjRGnAp/iaI/KNtGv0iLDs05kjb0d7oKDVzAG+qgZCaQXE1CSIozo+g4VjxkQwgYd2b74arGqNbvs+cHYHnHmjwEIcQuRDq4F97jQAkIt8BpktwZktnqDIorM6/NSKEEJ6vG48+0bQvI+tQ5kSbdWU6GBWniBAzOwLZ1bHZr5qKchzaPPzPA3f6DQUlCCE9AjKEA4pKQFSRp92bsNTV4JrMoMTxQ7Vk1CIGYGDEmK4ghKD5SwI4VSzWT4Yg1BUCsbzEMM19aNeBymjD3izp7CoD5cI4UQJmE4LsX949skS4yFm9gVf1wC+eX0OL5r97uKhOSPCcoHJTEa4Rg4FZ3dAk3+09ZUdTuh+3Q3GcXBMHd/hfYvDBkLs1wdCeRU0h48F9RndL9vkDJUJY1qOIyaEENKSGvTtwUEJ72BCV86UAGC5ajFsFy7o8HZ8BBvYbz5UM8DsG6FkStDwjeBQUIIQ0iMoM3A4O3AzKsXLwzS4hqaw1JNQt5uS5N6uZ2YPIcyZEiwhTq6J4S70qeCr68BbrJD6pXW4doU3ZSiIcLykxXvCyVPgnC55nTDWMlCzJfYHGMLBmJxJAcCZHZ4MDQBwjpOnUNXuPtjqeto9h+QpXnNGgCV1/HsDjoN9lly4S7ex7eEjXG0DtDsPyLOdTJ/Q8f0TQkhv4L5hZT04JuGbKdGR2Tf83Dp6F7r0MyVoyCKRsSIFGZRwOH0XePUV8z62ULJN3J/jauvBQq0R1YtQUIIQ0iO4hg2CFB8LZ96odm9DnYGjoQmce+YNKbED9SSU7bqHlnBWm3sBA19VA6bThlyQMyCeh5QUL9fEsNjUxWo9iTAN3VCIg/vL2z/RMiihDN0Qhw0M6z5d2cPAeF6uZeHnxM6fqgRf1wAxo094ggJu4qBMSIlx0BSVgquuC7ie5tARAIDjtI7NcOKz7yEDIKYlQyirAl/VepFP7d5D4BiDY1IeYGq9OCwhhBCZetvZW4ZvdOQ42xq+0WWLKrcvGMACZUqEsg335/Rrf4G0bX+7ttEbUFCCENIjOCfmwnz7VWAdKEopxbunFvXKlAjH8A1PUMIu/7+uEZzTJWdJhPEiSJkGlffKlgh3PQmFmJkOphGgKSppMTWocLQIAOAaGt6gBDMZIWb0AW+1gaupb/G+1l1405k9PKz7BcfBmSsHu7T5R/yvY7FBKC6DFGtq9/ChQPt2uY9HCXr4xRi0+w8DAJy5WeHbPyGE9BYUlGgX3xkquuitZXszFAIVugyFV58wc/um+e4Nuug3hxBCOh9zD9/gwzx8AwYdGMepmRJ8lTzzhpiW0vFte5GSE+XtewUl+Ar3vtx1LcJGo4HYvy84mwN8WZW6mGtoglBdBzE1qUMBokCkvmkAAKGsosV7StaGK2to2PfrGjJA3oef2U0AOTuEYwyu4YPDfsHnHCUfT2uznQglZeDrGuHq3zcsgTRCCOl1enBMgrnPS4zjwh986Q6ZEu0dNeEdlOB5WM87A5bLfhPaNnxm7ehY4fSejIIShBDiJsV7Zt/gwhmU4Dgwox6cxSYXngxzPQmF36CE2QKm1QAGfVj3BQBihlzEUqjwBCV49/AGJXgQ9n32k7MQWhT0FEXwVTWQjIbwDYnxIvVNBdNo5GKlUstpvTQFciFKl3sWlHBiKUkQ+6RAqKpVC6S22P8+OUvCNaZ9M88QQkhvxZQn2WEo0thlKdkMHagnEXjb3kMcuuitpZ/ztj+WSxb6LmjWX64xIyEOHRDSrr1n7eDCWNurp+mi3xxCCIkCvQ5MrwNf3wihqgaM48J2g8uMBrnystMFvlKuDSClJoVl2wp1+IZS98AlgrPZwWJMYd2PgiV6CoMq+PowBnP8kPrJwQ6+zDcowVfXgRMlSOmpkUnBFQSImX3A2R0tAwMuFzRHT4JpNeosKOGmDuHwly0hSdAePAIm8HCGYRpUQgjpTSxXLIKrf1/Y5s+MdlMih+N9/99e/jIOvAtddmS60Qji3O1mbVwfiMMHQUrymrkqHMfTzlk7epuu+c0hhJAokeJjwblc4GwOuLKHheeEBN9il1yjfBMvJYT3xl1KloMcSqYE5x67GKmghKROoWpWl6kZJhEYugHI2SBMp4VQVunz5IMvl7M1pPTwDonxJvbvB6DlEA6huEyebWTIgIg9aVMyMJQaId74yhpwNjvEAf0AIxW4JISQUEj9+8J61QVhLZDc5UQyU6I71OJQakoE0Vbv4pYsHJkf3sM39BSUCISCEoQQ4kUcmAmm18F21kzYzj8zbNv1DkrwTe5gQWyYgwVGPSSTAXxtPSBJ4MzyfNtSrDG8+3FjXsNdFLx71pKIXdxxHMS+aeCcLt+Cnu6ghNgnNTL7BeSbfshBCG/KrBhSvzAWuGxGSkkE02ogVFS3KNglnJLra4gR3D8hhJBuTLkZj0QAIRKBjrALPijhczxh6C/f4RtUUyIQCkoQQogX+/zT0XTXdXBOGBPek7fXDBxckxnMoAO04X+qLiUnghMlcPWNkc+U8BuUUDIlIvfESalXwXvVlVAKekrpEQxKZKSDcZycKeEVGOCr3UEJ9/CZiOB5SGkp4OwOdbpa9S33UJZI1fEghBDSzUUwm4F10SEbPpRTdlBBCd7/z+1FwzeC0g2+RYQQ0ok4LmxDNrwxo1xokm9wTwcaExP2fQBexS6r68BHOCgBnRbMoAff0KTepHP1DWACDxYXmeMDALGfMgOHOyjBGITyKjBBiGxgQK+DlJ4KvskMrt4TGFAyNiK6bwCie2iKd2FRwFP0kzIlCCGE+KVmSkRw210Zcw/3DKapPrOJhHn4BgUlAqKgBCGEdAJl+IbyRD/sQzeU/SjFLmvq1OEbEQtKwFODA1Y74HCCt9jkqVUjeJEiprszJdxDNrhGMzibXZ7NJMJPbMQ+cmCAr6lXl/HVdWAcBykxIdDHwkJqdtwAAJcIvqIakikys46Q0FmtVsydOxcvvPBCtJtCCCEAABbJIRbdYfiGkikRzDWCd02JMFxTeNel4KimREAUlCCEkE6gBiWq5JkbIhWU8J4WlHPXrohUTQnAU1eCb2zyDN2I0Mwb6j7dfcdZbfK+lXoSERy6oe47Ru5LZWgM7A7wjWawxHjfpyERoGZKeAUl+MpqcJIEqW+f7vG0qhd47bXXkJeXF+1mEEKIR9jOD36m3/A3I0cXo1wbiUFMxc7CXFOChm8EpwdPyEsIIV2HJ1MiwkEJr0wJZpD3yUwRzJSIU+pKeIYzSImRmXlD5a7FwTldAACh0l1Pok/kZt5QKFknSlBCyZiI9NANAJDSksE4zidTwjN0g+pJdAXHjx/H0aNHMXfuXBw9ejTazSGEEJl6cx2B4DXr+lEJ+1kzICXFw3namLZXDndNiebDN8zOjm+zB6JMCUII6QRqUMKizIgRoZoSifHyjWt1vafQZYQCIIBXpkSD2TPzRoQzJcDzYFoN4JBP7JxFzpiI5HEqlEwJ3j00hq9xF7l0P4WJKK0WUkoi+EYzOPf3iFdn3qCgRFu2bt2KW265BTNmzEBWVhZ++OGHFut88MEHmDdvHnJzc3HppZdiz549Ie3j2WefxR/+8IdwNZkQQro+d1CCdeFsPWYywjF7SnD1rrwDEWGoKeEz+0Z3KAoaJZQpQQghnUAJSqivI3UDLQhgifHytKDKhUJM5IZveM/AwbnkzIVIzryhYFotOLtdfuEOTrBOSIv0ZEq4gwLVdQA6J1MCAKQ+qRCqasGXV0Mc0l8dykEzb7TNYrEgKysLF154IZYuXdri/VWrVuHpp5/G448/jrFjx+Kdd97BjTfeiNWrVyM5WU75XbRokd9tf/bZZ/jhhx8wePBgDBkyBDt37ozosRBCSEgimM3AsRCm2+wOvIdvhHv2DRIQBSUIIaQTtAxKRG52CiklEXxtPXizBUyvAzSR+1PvyZRoBOcODkS6pgQAQKeVswVEUd0v64T5v1sO36gD0IlBifQU4EAB+Eo5KMFZrGAcF9HvU08xe/ZszJ49O+D7K1euxGWXXYaLLroIAPD4449j/fr1+Pzzz3HDDTcAAL788suAn9+9ezdWrVqFNWvWwGw2w+VyIT4+HjfffHO72st3sHic8vmObqcnor5pHfVPYN21bziv2Tc60nbvT6rbaRaU6G5904JXIIIT+A4fD6f1DUp0+/6JEApK9BC///3vsWnTJsyYMQMvvfSSunzdunV4/vnnAQB33nknFi5cGK0mEtKrKVOCKqRIzoiRnAjgRMT3AzTLlLA75GWRrikBr6wIhwucQ95vZxSQkpRCl5bmmRJJEd+3vH/fIp+c3QHotT3nCVWUOBwO7N+/H7feequ6jOd5TJ8+Hbt27QpqG/fccw/uueceAHLmxNGjR9sdkNBoeKSkhGc2laQkClgFQn3TOuqfwLpb39gFHgzy8IGO/G1x6DRwT66pbsezbfk81N36pjmHQaseY2y8EUIH/xZLThscXq+7e/9ECgUleogrr7wSixcvxldffaUuc7lceP755/HBBx9AEARcdtllOPPMM6HrhKeJhJBmBAFMp/U81Y9g/QPv+gaRrrPA4mLAAAiVNYDTBWbQAwZ9m5/r8H7dAQjO6ezU4Rsw6MF4Xp7ZhDF3QVF9i0yYSGHuvuVsDkCSwDmckBIiHwTq6WprayGKIlJTfWdwSUlJwYkTJzq9PS6XhIYGa4e2wfMckpJiUFtrhiR1/UJ0nYn6pnXUP4F1174xihJ4AExiqK5uavd29A6XevOobMfgcEGAp6ZEd+ub5vQuST3GRosTYgf6CwA4mwjvK7GO9E98vBFabc8cDkJBiR5iypQp2LJli8+y3bt3IysrS73IysvLw/bt2zFt2rRoNJGQXo8ZDeAcTrlIoz5ywUHvoQSRrCcBQA62xJrAu6cftc2Y2DlP7ZWghMPRqcM3wHFgMUZwTRZwdQ3gXKI8FWlnZSoY5GPk7HbAnZnCOiEI1FsxxjxpzyG48MILO7zvcF3USxLr1jcIkUR90zrqn8C6W98wpcYUOva3xbs0hbqdZsM3ulvfNMc43utnruPHEmOC9aIFYMkJMKD790+kUAnQTtAZFb/9qaioQHp6uvo6PT0dFRUVHd4uIaR9lKfpkR7/75MpEeHhG4CnroQzZyScE3Mjvj/Ae/iGUx02An3nzP/NYozgGINQXAag84ZuAADTezIlOJs7KBHBAFdvkZSUBEEQUFVV5bO8pqamRfYEIYR0O51xD9xThhF61XxgYar/4Bo5BKwTpi3vzihTohNEuuK3QFVdCekWlKCEFOkhFTFGML0OnN0R+UwJAI6p4yEcOwn7GdM776JEq2RKyMM3mMB3WoVrZpJ/f8LJUgCdNB2osm8lK8JuV2cfoaBEx+l0OuTk5GDjxo2YN28eAECSJGzatAnXXHNNlFtHCCFdmOSuwNBDYhK+U4LSPVZnoaBEJ4h0xe9A+vTpg/LycvV1eXk5ZsyYEfJ2FFQJPHKob/xr3i/dvn9M7roDcTFhOxb/fcNBSk6EcKoCiA3fvgKRsodByh7Wual37htx3umSAxM6XYvjjNT3RqnToSk6Jb9OTeq876a7YCpvd4B3D1uBUR/y/nvMv6kQmM1mFBUVqa+Li4tx8OBBpKamIi0tDddddx3uv/9+5OTkIC8vD++88w5sNhsuuOCCKLaaEELCKBJ/8pUsDK5nJOD7ZEdQUKLTUFAiysJR8TuQvLw8HDp0CFVVVRAEAbt378Zf//rXdm2LKoF3DuobD61WaPGd6+7940yKgwhAn5qA2DD9e1I07xtH/z6QTlUgtn9qhytHd0XOhBiIAOK0HJwuF7j4mIB/o8L9vXGmJkAEwNfWAwDih2WA76Q+ZozBznHgHQ7E63g4ARgSYhHXzv13939Todi3bx+uvvpq9fWTTz4JALjjjjuwdOlSLFy4EDU1NXjllVdQWVmJ7OxsvPnmm2rGIiGEdF+RG7/BMTlTgvWUGLdXpgTTUFCis1BQIsrCVfH75ptvxp49e2C1WjFr1iwsX74co0aNwr333osrrrgCAHDXXXdBr29fQTSqBB5Z1DctOZ2iWtm5p/SPlhOgA2DV6NDQwWrOikB9w00eByEhHuaUVCBM++pKtCKDDoC5rAY6AC6NBk3NjjNS3xuNoIHyl5TxPGo5Taf2scmgAyw2NFXWQw/AyriQv0/h6pvuVAl8ypQpyM/Pb3WdJUuWYMmSJZ3UIkII6WwRiBz0sEwJn2GolCnRaSgo0UWFWvF7+fLlfpefddZZOOuss8LSJqoEHnnUN76a90V37x/n8EHgjxfDOWxQ2I+jRd/Ex0GcNFa+WGDdt88Ckdw1JdBoBiAXvgzUp+H+3khGT50OlhgHieOBTvxeMr0evLUBzCIHiiW9rt3H193/TRFCCIky1oNrSlCmRKehoESUUcVvQnoPqW8arEsWR7sZPYIy+wbnnopUmSK0U/btVTxU7MSZN9T9u4td8vWN8msqdEkIISRalLg230MyJbyHbwh0q9xZesi3p/vyrvitUCp+jxs3LnoNI4SQrkyZfaNJyZTovBtz72lWWSfOvKHu0+Au8ukOSsDQvmF5hBBCegl1iEXHNiOlyw9MxX59vBYqmRI9I1XCp9Clhm6VOwuFfzoBVfwmhJDwUjIleHemBItapkRip+1X3b+7NhBHmRKEEEKCwIUpKuGYOh4s1gTXyCGehWEKeHQZlCkRFdTTnYAqfhNCSJhFc/iG0QDG8+AkCVJUhm/4ZkqwdhYwJoQQQkKiEeAcN9p3mVK3qodkSvgcB9WU6DQUlOgEVPGbEELCS60p4XK5X3ditgDHgcUYwTWaIUVh+AaUTAmHEwBlShBCCIminhaU8K6NIdDwjc5CQQlCCCHdTovhGvrOy5QAAPusyeAbzYDJ0Kn7BTyFLlUGCkoQQghpRSQnWerJQYmeUryzG6CgBCGEkO6nWVCiM2tKAIArb1Sn7s9b88wIypQghBASlAjEDbgeF5TwOo6eckzdAIV/CCGEdDtM2zwo0XtuzL0zJZhWAwg05pUQQkh0MKOcMciikDkYCYyyI6KCep0QQkj3o9X4ZqN2cqZENHlnRlCRS0IIIW1ikRu/Yb14AZwjBsP+m3kR20enouyIqKDhG4QQQrofjpMDEUqxx14UlIB3pgQN3SCEEBK08N9wS6nJsF18Dni+h9zMU1AiKihTghBCSLfkHYjoXcM3vI6VilwSQggJFt1vty2CWSUkMApKEEII6Z68syM6efaNaPIeskHDNwghhJAwoqBEVFBQghBCSLfkmynRi4ISNHyDEEIIiQxJinYLeiUKShBCCOmWvGfg6E3DN6DVgLnHvDIavkEIIaRN9PQ/WBxlSkQFBSUIIYR0T96BiF6UKQGOU7MlaPgGIYQQEkYSBSWigYIShBBCuiVlyAbTanpftWxl2AZlShBCCAlWbztXtgcN34gKCkoQQgjplphO4/5/77sxp0wJQgghQaOH/8GjTImooKAEIYSQ7kkJRvSmoRtunqBE7wvIEEIIIRHDKFMiGigoQQghpFtSCl32xhtzpcAlFbokhBBCwkgQot2CXkkT7QYQQggh7aLUlOiFmRJi/37QHC+BlJYS7aYQQgghPYZjUh6E0go4Jo+NdlN6FQpKEEII6ZbUYEQvDEo4J+XBOTGXipYRQghpmzLNJZ0z2mbQw3rZudFuRa9DwzcIIYR0S+rsG72w0CUAurgkhBBCSI9AQQlCCCHdkxKU0Pe+TAlCCCEkWMxokP9voBmbSNdEQQlCCCHdkmtABpwjBsOVMyLaTSGEEEK6LOuiM+EaPgjWRfOj3RRC/KKaEoQQQronkwG2i8+JdisIIYSQLo2lJMF6ycJoN4OQgChTghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhUUlCCEEEIIIYQQQkhUUFCCEEIIIYQQQgghUUFBCUIIIYQQQgghhEQFBSUIIYQQQgghhBASFRSUIIQQQgghhBBCSFRwjDEW7UaQrk+SGERR6vB2tFoBTqcYhhb1PNQ3vg4fPoSRI0epr6l/AqO+CYz6JrBw9I0g8OB5LkwtIgo650Ye9U3rqH8Co74JjPqmdR3tn558zqWgBCGEEEIIIYQQQqKChm8QQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkqQoH3wwQeYN28ecnNzcemll2LPnj2trv/tt99iwYIFyM3NxXnnnYeffvrJ533GGF5++WXMmDEDeXl5uPbaa3HixAmfderq6nDPPffgtNNOw6RJk/Dwww/DYrGE/djCobP7p7i4GA899BDmzZuHvLw8nHnmmfjHP/4Bp9MZkePriGh8dxR1dXWYNWsWsrKyYDabw3ZM4RKtvvn+++9x0UUXIS8vD9OmTcMDDzwQ1uMKh2j0ze7du3HVVVdhwoQJmDx5Mn73u9/hyJEjYT+2cAh3/6xduxY33HADpkyZgqysLBw+fLjFNrrT3+TeINzfgZ4klL4pKCjA0qVLMW/ePGRlZeH999/vxJZGRyj98/HHH+OKK67ApEmTMHnyZFx//fXYu3dvJ7a2c4XSN+vWrcNFF12EiRMnYty4cVi0aBG++OKLzmtsJwv1b45i+fLlyMrKwrPPPhvhFkZPKH3z2WefISsry+e/3NzcTmxtF8QICcI333zDcnJy2KeffsoKCgrYI488wiZNmsSqq6v9rr9jxw6WnZ3N3njjDVZYWMj+/ve/s5ycHFZYWKiu8/rrr7MJEyaw//3vf+zgwYPslltuYWeeeSaz2+3qOjfccAM7//zz2a5du9jWrVvZ/Pnz2X333Rfx4w1VNPrnxx9/ZA8++CD7+eefWVFREVu3bh2bNm0ae/755zvlmIMVre+OYunSpeyGG25gI0eOZE1NTRE7zvaIVt+sXr2aTZo0iX300Ufs6NGj7PDhw2zNmjURP95QRKNvGhsb2aRJk9hDDz3Ejh49yg4dOsR+97vfsTPOOKNTjjkUkeifzz//nC1btox9/PHHbOTIkSw/P7/FdrrL3+TeIBLfgZ4i1L7ZvXs3e+aZZ9jXX3/NTj/9dPbee+91cos7V6j984c//IG9//777MCBA6ywsJA9+OCDbOLEiay8vLyTWx55ofbNr7/+ytasWcMKCwvZiRMn2Lvvvsuys7PZhg0bOrnlkRdq3yj27dvH5s6dy8477zz2zDPPdFJrO1eoffOf//yHTZ48mVVUVKj/VVZWdnKruxYKSpCgXHzxxeyJJ55QX4uiyGbMmMHefPNNv+vfeeed7He/+53PsksuuYQ9/vjjjDHGJElip59+OluxYoX6fkNDAxszZgz79ttvGWOMFRYWspEjR7K9e/eq6/z4449s1KhRXe4fbjT6x5833niDnXXWWR05lLCLZt988skn7Le//S3buHFjlwxKRKNvnE4nmzlzJvv444/DfThhFY2+2bNnDxs5cqTPhfaOHTvYyJEj27zo6mzh7h9vJ0+e9BuU6E5/k3uDSH4HurtQ+8bb3Llze3xQoiP9wxhjLpeLjR8/nv33v/+NVBOjpqN9wxhjixcvZsuWLYtE86KqPX1jsVjYOeecw3766Se2ZMmSHhuUCLVvlKAE8aDhG6RNDocD+/fvx+mnn64u43ke06dPx65du/x+ZteuXT7rA8CMGTPU9YuLi1FZWemzTlxcHMaOHauus3PnTiQmJmLMmDHqOtOnTwfHcUGni3WGaPWPP42NjUhISGj3sYRbNPumqKgIf//73/Hcc8+B57ven7po9c2BAwdQXl4OjuNw/vnnY8aMGbjlllsCDn+Jhmj1zZAhQ5CYmIhPPvkETqcTVqsVn3/+OXJzc5GcnBzWY+yISPRPMLrL3+TeIFrfge6gPX3Tm4Sjf6xWK1wuV5e63giHjvYNYwybNm3CsWPHMGHChAi2tPO1t2+eeeYZTJkyBTNnzuyEVkZHe/umqakJc+bMwezZs3HbbbehsLCwE1rbdXW9K3XS5dTW1kIURaSmpvosT0lJQWVlpd/PVFVVISUlJeD6yv9b26a/bWg0GiQkJKCqqqr9BxRm0eqf5oqKivD+++/jt7/9bbuOIxKi1Tculwv33Xcf7rzzTgwYMCAsxxJu0eqbkydPAgBeffVVLF26FK+++iq0Wi2uvvrqLlMbIFp9Exsbi3feeQefffYZxo4di/Hjx2PXrl149dVXw3Jc4RKJ/glGd/mb3BtE6zvQHbSnb3qTcPTPiy++iH79+mHq1KmRaGLUtLdvGhsbMX78eIwZMwY333wz/vSnP2HatGmRbm6nak/f/PDDD9i8eTPuv//+zmhi1LSnb4YOHYqnn34ar732Gp5//nlIkoTLL78c5eXlndHkLomCEqTdGGPgOC7g+/7ea76s+evm2/S3jbb221V0Rv8oysvLceONN+Lcc8/FhRde2M4Wd55I981rr72GpKQkXHLJJWFobeeKdN9IkgQAuPXWWzF//nzk5eXh2WefRUNDA9avX9/B1kdWpPvGZrPhkUcewdSpU/Hxxx/j3//+N/r164fbb78dLpcrDEcQWeHon7Z057/JvUFnfAe6K/qeti7Y/nnjjTewatUqLFu2DDqdrhNaFn1t9U1MTAy++OILfPrpp7j77rvx1FNPYdu2bZ3YwugJ1Dc1NTV49NFH8dxzz8FoNEahZdHX2vdm3LhxOP/88zFq1ChMnjwZy5YtUzM1eytNtBtAur6kpCQIgtDiSVhNTU2LqKAiNTW1xfrV1dXq+mlpaQDkp5feadE1NTVqarC/bbhcLjQ0NLR42hNN0eofRXl5Oa6++mqMGzcOjz32WEcPJ6yi1TdbtmzBtm3bMHr0aADyiQEAJk2ahN///ve45ZZbwnB0HRPNf1eAPFRBYTKZkJGRgdLS0g4eVXhEq2+++uorlJeX45NPPlEvJP72t79h0qRJ2LhxI2bNmhWeA+ygSPRPMLrL3+TeIFrfge6gPX3Tm3Skf1asWIHXX38dK1euxMiRIyPZzKhob9/wPI9BgwYBALKzs3HkyBEsX74cEydOjGh7O1OofVNQUIDKykpcfvnl6jJRFLF161a8//77PWr2lnD8zdFqtcjOzu5SQ2k7G2VKkDbpdDrk5ORg48aN6jJJkrBp0yaMGzfO72fGjRuHDRs2+CzbuHGjun7//v2Rlpbms82mpibs3r1bXWf8+PGoq6vD/v371XU2b94Mxhjy8vLCc3BhEK3+ATwBiZycHDz99NNdrnZCtPrmqaeewpdffokvvvgCX3zxBZ588kkAwEcffYRLL700fAfYAdHqm9zcXGi1Wp8Tn81mQ1lZGTIyMsJzcB0Urb6x2Wzged7nyYbyWglsdQWR6J9gdJe/yb1BtL4D3UF7+qY3aW//vPnmm3j11Vfx5ptv9tipC8P13WGMweFwRKCF0RNq3+Tm5uKrr75Sr8O++OILjBkzBhdccAE+++yzTmx55IXjeyOKIgoKCtQHKL1Sp5XUJN2aMtXNZ599xgoLC9mjjz7qM9XNfffdx1544QV1/e3bt7Ps7Gy2YsUKVlhYyF555RW/0/NNnDiRrVu3jh06dIjdeuutfqcEXbx4Mdu9ezfbtm0bO+uss9i9997beQcepGj0T1lZGZs/fz67+uqrWVlZmc+0Ql1JtL473jZv3twlZ9+IVt888cQTbPbs2WzDhg2ssLCQ3XPPPWz27NnMbDZ33sG3IRp9U1hYyMaMGcP+8pe/sCNHjrBDhw6xpUuXsmnTprG6urrO7YA2RKJ/amtr2YEDB9j69evZyJEj2erVq9mBAwdYbW2tuk53+ZvcG0TiO9BThNo3drudHThwgB04cICdfvrp7IUXXmAHDhxgJSUl0TqEiAq1f5YvX85ycnLY6tWrfa41uto5NRxC7ZvXX39dnZq9sLCQrVy5ko0ePZp9+umn0TqEiAm1b5rrybNvhNo3y5YtU783+/btY3fffTfLy8tjR44cidYhRB0N3yBBWbhwIWpqavDKK6+gsrIS2dnZePPNN9U06FOnTvk8pT/ttNPw4osv4u9//zv+9re/YfDgwfjnP/+JYcOGqevcdNNNsFqt+NOf/oSGhgZMmDABb7zxhs8YxRdeeAF/+ctfcM0114DneZx99tl45JFHOu/AgxSN/tmwYQNOnDiBEydOtEgrz8/P74SjDk60vjvdQbT65oEHHoAgCPjDH/4Ap9OJ8ePHY+XKlTCZTJ138G2IRt8MGzYMr732GpYtW4ZLLrkEGo0GY8aMwZtvvtnlqsxHon++//57/PGPf1Rf//73vwcAPP3002qtmu7yN7k3iMR3oKcItW8qqurRcwABAABJREFUKiqwePFi9fXy5cuxfPlyXHDBBXjmmWc6u/kRF2r/fPjhh3A6nerfBMUdd9yBpUuXdmrbIy3UvrHZbHjiiSdQVlYGg8GAoUOH4vnnn8fChQujdQgRE2rf9Cah9k1DQwMeffRRVFZWIiEhAWPGjMH//d//YejQodE6hKjjGOtCOamEEEIIIYQQQgjpNXpnOIsQQgghhBBCCCFRR0EJQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhWaaDeAEEJas2zZMvzjH/9osXzatGl4++23O79BhBBCSA9F51xCSDRQUIIQ0uXFxcXhzTffbLGMEEIIIeFF51xCSGejoAQhpMsTBAHjxo1rcz2bzQaDwRD5BhFCCCE9FJ1zCSGdjWpKEEK6peLiYmRlZeG///0v7r//fkycOBG33HILAKCurg5/+tOfMH36dOTm5uK3v/0tdu/e7fP5hoYG3HPPPRg3bhxmzJiBf/3rX3j22Wcxb948dZ1ly5ZhypQpLfadlZWF999/32fZJ598gnPPPRdjxozB3Llz8cYbb/i8/+CDD+LCCy/Ehg0bcN5552HcuHG4/PLLUVBQ4LOeKIp4/fXXcfbZZ2PMmDGYNWsWHnzwQQDABx98gPHjx8NsNvt8ZvPmzcjKysKhQ4dC7EVCCCGkbXTO9aBzLiHhR5kShJBuweVy+bxmjAEAnnvuOcyfPx8vv/wyeJ6Hw+HAddddh4aGBtx///1ITk7Ghx9+iGuvvRZr165FWloaAOCPf/wjfv31Vzz00ENITU3FW2+9haKiImg0of9ZfPPNN/HSSy/hxhtvxOTJk7F//368/PLLMBqNWLJkibreqVOn8Nxzz+HWW2+FXq/Hc889h7vuugtff/01OI4DAPzpT3/Cl19+iRtuuAGTJ09GfX09Vq9eDQA477zz8Oyzz2LNmjW48MIL1e1+/vnnyMnJwahRo0JuOyGEENIcnXPpnEtIZ6KgBCGky6urq0NOTo7PsieffBIAMHbsWPz5z39Wl3/yyScoKCjA119/jcGDBwMApk+fjgULFuCtt97CAw88gIKCAqxbtw4vvfQSFi5cCACYMmUK5s6di9jY2JDa1tTUhH/+85+49dZbcccddwAATj/9dFitVvzrX//C5ZdfDkEQAAD19fX48MMP1XYxxnD77bfj6NGjGDZsGI4cOYJPP/0UDz/8MK6++mp1H0ob4+PjcdZZZ+Gzzz5TL5DMZjPWrl2Le+65J6R2E0IIIf7QOZfOuYR0NgpKEEK6vLi4OKxcudJnmU6nAwDMmTPHZ/mmTZuQk5OD/v37+zzpmTRpEvbt2wcA2Lt3LwD4pI3GxMRg+vTp2LNnT0ht27lzJywWCxYsWOCzv6lTp+LVV19FWVkZMjMzAQCZmZnqxREADBs2DABQXl6OYcOGYcuWLQDg80SmuYsvvhjXXnstTp48iQEDBuDbb7+Fy+XCb37zm5DaTQghhPhD51wPOucS0jkoKEEI6fIEQUBubq7PsuLiYgBASkqKz/La2lrs2rWrxVMeABg4cCAAoKqqCjExMS0KdDXfVjBqa2sBAOeee67f90+dOqVeIDWvXq7VagEAdrsdgPx0ymQytfrkaMqUKRgwYAA+++wz3Hnnnfjss89wxhlnIDExMeS2E0IIIc3ROdeDzrmEdA4KShBCujVlXKgiISEBY8aMwWOPPdZiXeVJT2pqKsxmc4vK4dXV1T7r6/V6OJ1On2X19fUt9gcAr7/+ut8LrCFDhgR9LImJibBYLGhqagp4kcRxHC666CJ8/PHHWLRoEbZv396iwBchhBASCXTOpXMuIZFAQQlCSI8ybdo0bNiwARkZGQGfwihPgL7//nt17KjZbMbGjRt9LkzS09NhNptRXl6O9PR0AMCGDRt8tjV+/HgYDAZUVFS0SGsN1dSpUwEAX3zxhU+xruYuuOACvPLKK3jooYeQnp6O008/vUP7JYQQQtqDzrmEkHCgoAQhpEdZvHgxPvroI1x11VW4/vrrMWDAANTV1WHPnj1IS0vDtddeixEjRmDevHl47LHH0NTUhLS0NKxYsaJFaunMmTNhMBjw0EMP4brrrkNxcTE++ugjn3Xi4+Nxxx134K9//StKSkowadIkSJKE48ePY8uWLfjnP/8ZdNuHDh2Kyy67DM888wyqq6sxadIkNDQ0YM2aNXjppZfU9dLT0zFz5kysX78ev/vd79SiXoQQQkhnonMuISQcKChBCOlR9Ho93n33Xbz88stYtmwZqqurkZycjLy8PJ8iW8888wwee+wxPPXUUzCZTLjiiiuQm5uLNWvWqOskJyfjlVdewXPPPYfbb78dOTk5ePHFF9UnPYqbbroJffr0wTvvvIOVK1dCr9dj8ODBLdYLxp///GdkZGTgk08+wRtvvIHk5GS/T2XOPPNMrF+/vtUCXYQQQkgk0TmXEBIOHFMmHiaEkF5OmY/8+++/j3ZT2nTnnXeisrIS//73v6PdFEIIISRkdM4lhCgoU4IQQrqR/Px87Nu3D//73//wt7/9LdrNIYQQQnosOucS0jkoKEEIId3IrbfeitraWlxxxRVYsGBBtJtDCCGE9Fh0ziWkc9DwDUIIIYQQQgghhEQFH+0GEEIIIYQQQgghpHeioAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkoQQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQpNtBtAugdJYhBFqcPb0Wh4uFwd305PRH3j6+TJIgwYMFB9Tf0TGPVNYNQ3gYWjbwSBB89zYWoRUdA5N/Kob1pH/RMY9U1g1Det62j/9ORzLgUlSFBEUUJdnaVD2+B5DikpsWhosEKSWJha1jNQ37R01VVX44svVgGg/mkN9U1g1DeBhatvEhNN4HkhjC0jAJ1zI436pnXUP4FR3wRGfdO6cPRPTz7n0vANQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBhS4JIYSEDWMMkiSCdYEaVzzPweFwwOVyUdGtZoLtG44DeF4Ax/XMat+EkO4pWucaOq8ERn3TumD6pzefcykoQQghpMMYY2hqqofZ3ACg61yMVFXxkCSansyfYPuG5wWkpPSDIPTMit+EkO6jK5xr6LwSGPVN64Lpn956zqWgBCGEkA5TLhLj45Oh0+kBdI0ov0bDweXqOkGSriS4vmGoq6tCQ0MNkpLSOqVdhBASSFc419B5JTDqm9a13T+995xLQQlCCCEdwhhTLxJNpthoN8eHRsMDoKc2/gTbN3FxiaitrQBjEjiOSlERQqKjq5xr6LwSGPVN64Lpn956zu09R0oIISQiJEkEwNxPrUhPIwjy8wtKySWERBOda0hv0FvPuRSUIIQQ0iGeQmNdY8gGCTf599oVipcSQnovOteQ3qF3nnNp+AbpVSSnBa6GIrjM5ZDsdZBstRBtdWCiA5CcYJILAMBp9OAEAziNAbw+HoIhBYJR/k8TlwFOoCg9IYQQQgghhHQUBSVIj8VcdtirD8BRsQf2qn1w1Z+AaKkIw5Y5CDHp0MQPgDZhCHTJWdClZEGIzeyVU/gQQgghhJDubcWK17Fx4y9YseK9aDeF9EIUlCA9imirhfXkT7Ce+AH2qn2AO/MBAMDxEGIzoI0fBE1sBnhjMgRDInh9opwZwWkAXgOAAxPtYKINzGWDZKuDaKuBaK2GaKmEq/EkRHM5RHMZ7Ke2ejavi4M+LQ/69PEw9D0NmoTBvapADSHdzV//+hi+/fbrFsu//nodEhMTO79BhBBCepy//vUxWK0WPPnkc+qyVau+wvPPP4W7774f559/QcjbfOedFdi0aQMKCvJhMBjwzTffdbidl19+FS6++LIOb6e7ufji83D55Utw0UW979i7EgpKkG6PSSKsxT/DXPgV7OU7ASYXhuH1CdD3GQtdWi70ffKgTRgctmEXzGWHs/EknLVH4Kg5BGd1Phy1BbCVbICtZAPqAfCGJBgyp8GYOQOGvhPAaWjIByFdzfTpM/HAAw/7LEtISPB57XK5oNHQ6ZIQQkjHffLJR3j11ZfxyCOP44wzzmrXNlwuF+bOPQM5OblYvbplcL09TCYTAFNYttXTuFwuCIJAGdERRFdZPdzRo0fx0EMPoampCTqdDg899BAmTpwY7WaFBXPZYT62Go0H/w9iUykAORBgHDgHpoFzoUsbE7FMBU6jhy5pOHRJwxEz9Gy5PaIDjqoDsJXvhL18OxxVB2A5sgqWI6vACXoYMqfBNPgsGPpNAidoI9IuQkhodDotUlJSfZZdfPF5OP/8C3D8+DH8/POPWLDgXNxzzwPYvXsnXnttGfLz85GUlIQzzpiPG2+8FTqdDgBQXV2FZ599Etu2bUVaWhpuvXUpnn/+Kdx++11YuPA87NixDb///S1Yu/Yn98UfsGHDz3jggbvxyy/b1P3/9NN6vPXWchQVHUdaWh+cf/4FuPzyq8Dz8t+zGTMm4sEHH8FPP63H9u1bkZGRiXvvfQhjx45Tt7Fr1w4sX/4q8vMPQqfTY8yYXDz55HP46KP3sX79d1i58t8+x/zb316ARYsuwuWXL4lENxPSrdjKd0ITkw5NbEZYtidaq1G+6jrEZl2M+DFXh2WbpHtaufINvP/+23jqqecxbdqMdm/nhht+B0DOuAhWQ0MD/vnPv+OXX36Ey+VCTk4u7rzzXgwaNBhAy+EbLpcLy5b9DatXfwONRoMLL7wUx44dgdFowsMPPwYAsNvtWL78VaxbtwYWixnDh4/E7bffhTFjctX2/fOff8fDDz+OV175G2pqqjF58hQ8+OCfEBsrT+v6ww/r8NZby1FSUgyj0YisrGy88MIr4HlezTIZMmQYPvvsY4iiiIULz8Ptt98FQRACtGEEbr/9brUNQOBz4j33LEVZ2Sm89NLzeOml5wEAv/yyTW33Aw88itdeW4bi4pP48ss1ePTRBzBq1GjcccddXr+LqzB9+gz1dzJjxkTcf//DWL/+e+zevQOZmf3xyCOPg+cFPP/8X3HkSCFyc8fiT3/6C5KSkkP8zfdcFJTo4fR6PZ566ikMHToUR44cwW233YY1a9ZEu1kdwiQRlqPfon7PCki2WgCAPv00xGZfBkPfieB4ISrt4gQd9OnjoE8fB+A6SPYG2Eq3wFqyQf5/0XpYi9aD18fDOHAeYoafB13SsKi0lRDSun//+11cf/3N6kVGSUkx7r33Tvzud7fh4YcfR3V1FV544Wm4XC78/vf3AJBTdOvqavGPf7wOAHjppedhsVhC2u/u3bvw1FOP4a677kNu7lgUFZ3Ac8/9FVqtDpdeerm63sqVb+KOO+7C0qV/wIoVr+Pxxx/Gxx9/CY1Gg6KiE7j77tuxePHFuOeeBwEAW7duBmMMCxeeh7feWo6CgnxkZ2e797kTp06V4uyzz+lwvxHS3YmWKlR9dzcAoP8V68OyTWvRj5DsDWjY8xYFJXopxhiWLfsbvv76S7z44jKMG3eaz/vvvvsW3ntvZavbeO+9T9C3b992t+FPf3oQRqMRL774D5hMRnzyyf/h7rtvxwcffAqj0dhi/Q8+eAfffbcWjz76BDIzB+DDD9/D1q1bMGvWXHWdv//9eZw4cRx/+cszSElJxXffrcXdd9+Of//7U6Sl9QEAWCwW/Oc/H+Mvf3kaNpsNjz76IN5//23ccssdqKqqwmOPPYzbbvs9Zs2aC7PZjB07tvq0Y8uWzdDrDfjHP97AyZNFePrpJ5CamoYrrrjabxv+97/VPm1o7Zz41FPP49prr8AFF1yMhQvP89mvxWLBRx+9j4cffhwxMTGIiYkJuq/ffvtNLF16N+666x78/e8v4Ikn/oTk5GTcccedMBhi8Oc//xHLl7+KBx54JOht9nQUlOjhMjMz1Z+HDh2KxsZGMMa6bfqRo7YQtVueg7PmMADAOHAO4rJ/C13KqCi3rCVeHw/TkPkwDZkP5rLDWroJlmP/g610M8wFX8Bc8AV0qTmIGbEIsYPnAIiNdpMJ6XV+/vlHzJ8/U309Z84ZAICJE6fg0kuvUJc/88xfsGDBubj44t8CAPr3H4Dbb78LjzxyP5Yu/QNOnjyBX3/djLfeeh8jR8p/j+655wHceGNoNyBvvbUcV199PRYsOBcAkJnZH9dccz0+/fT/fIISv/nNIsydeyYA4Prrb8YVV1yEkpJiDBo0GO+//zZyc8fizjvvUdcfNmw4AMBgMGDy5Kn45puv1KDEqlVfYdq005GcnBJSWwnpiVyW8rBvU7RWqT9LTgt4LaXIh0vNpqdhLf6lU/dpGjgTSVMeDOkzGzf+AqfTiX/8Y3mLgAQALF58EebNm9/qNlJTU1t9vzW7d+9Cfv4h/Pe/a6DVytm6d999H3766Qds3PgLzjij5b7/85+PcfXV12PGjNkAgPvuewibNm1Q3y8rK8OqVV/h889XqeeP66+/Eb/88hPWrv0WV155DQDA6XTivvseUgMq55zzG2zfLgceqqurIIoiZs+eh759+wEAhg8f4dMOvV6PBx54BDqdDkOGDEVx8Un83/99gCuuuNpvG6699kZs3PiL2oa2zok8z8NkMrXImnQ6nbj33j9i6NDQHyB6n6Mvv/wq3H337bj55tswfvwEuFwSfvObxfjyy/+EvN2ejIISXdzWrVuxYsUK7Nu3D5WVlXjttdcwd+5cn3U++OADrFixApWVlcjOzsYjjzyCvLy8Ftv67rvvkJ2d3S0DEoxJaDzwIRr2vAUwEbqU0Uic+PsuGYzwh9PoYRo4B6aBcyDa6mA5/j+YC/4LR9V+OKr2o37nv+AafwWE/ucAWgpOENJZJk6cgrvvvk99bTKZcPPN12LUqGyf9QoLC3DkSIHP2F1JkmC321FdXY0TJ45Dq9VixIgs9f2srGz14i9YR44cxt69u7Fy5RvqMlGUwNy1chRDhw5Xf1YuVGtrazBo0GAUFhZg1qw5Afdx7rnn44UXnsadd94Nu92JH374Do888nhI7SSkp2KiA6LEwHtdKjHJhfrdb8I4YCb0qTkhb9NRW+j5ufogOF4LXepocDxdhvcWw4ePRE1NNd588zW88MIrMBgMPu/HxycgPj4hwKc7rrDwMMzmJixcOM9nud1uR2lpcYv1m5qaUFNTjexsz/ddq9X6BAyOHi2EKIq47LLFPp91OBw+68XExPhkeKSkpKC2Vs50Hj58BMaPn4Crr/4tpk6djsmTp2Lu3DMQE+O5Fh4xYqQ6TBIAxozJxauvVqGpqSmoNrR1TgxEr9e3KyABAMOGeY5fCZYMGTLUa1my2gdERn8NuziLxYKsrCxceOGFWLp0aYv3V61ahaeffhqPP/44xo4di3feeQc33ngjVq9ejeRkzzilkpISPP/881i+fHlnNj8sJEcjajb+FbbSzeAEPeLH3YbYkRd025ktBEMi4kZdgtisi2Ev3wlzwRewnvwZpzb9E5zmLcQMPw9x2ZdBMNJTS0IizWg0oH//AX6W+6ayWq0WXHjhJbjggktarJuYmAjG0GbAV6kJATB1mcvl8lnHYrHipptuxcyZs1vdlm/hTXm/kiT5X7mZGTNm44UXnsEvv/wEs9kCnU6H6dPbP7aZkJ7kcH4+3v26BH0Tdbiyzx8QN2gmBGMKmg5+hKaDH7VrSIer/pj6c82GJyDZ6xE/9ibE51wZxpb3TsnT/tjp+9RoeLhcwf29VaSnp+Pxx5/C0qW/w3333Ynnn3/ZJzAR6eEbVqsFaWl98PLL/2rxXnx8fMDPNT+vMeY5f1mtFmg0Grz11gfqeoLAQRSZz1CH5oWiOY5TA+2CIODll/+FvXt3Y/Pmjfjww/ewYsXrWLHiPfVmPtC5leP8t0ERynALf5oHjgD5PO7dB0DL8zjge8xKs3yXcS0eNvR2FJTo4mbPno3ZswNfnK5cuRKXXXYZLrroIgDA448/jvXr1+Pzzz/HDTfcAECOdt5222149NFHMWjQoHa3hec7lmGhfD6U7bjMFaj8/j44649DEz8QabP+Am3i4A61o+vgYMqYAFPGBIhNJbAV/gfVB75C06GPYS74ErFZFyI+53II+shFzru65t+Zjn4He6Ku0De94fcyYkQWjh076jeAAQCDBw+Gw+FAQUG+OnwjP/8QnE6nuk5iYhIAoLq6GiaTfLFUWHjYZzsjR2bh5MkTAfcTjOHDR2DHjm249tob/b6v0Whw9tkL8fXX/4XNZsPZZ58T1OwiPM/1it816b0YY1j93Q9wiUBxtQM7fv0JYyt3IHnGYx3YpgTRWqO+luz1AABb8S8UlOhlMjIysWzZ61i69He4//678Nxzf1dvfCM9fGPkyFGoqqqEVqtFenrbgY3Y2FgkJ6fgwIH9GDNGzr52Op04cqRQrRUxYsRIuFwu1NfXqeu0J2DD8zzGjh2PsWPH4/rrb8Z5583Hli2bcM45vwEAHD6cD4fDoWZL7N+/DykpqYiJifXbhubaPidqIYrBtTkxMQk1NdXqa4vF4jfThISOghLdmMPhwP79+3Hrrbeqy3iex/Tp07Fr1y4AgCiKuPPOO3HppZdixoz2PwnTaHikpIRnWEFSUnCRS3vdSRT87w44m8oRP+h0DF74NARdx6KeXVZKFjDoIfSb+jtU7HgPlXs+RuOBD2Eu/C/6jF+CPhOugqBtWYSoJ9NqhRbfuWC/O71RNPvG4XCgqoqHRsNBo+l6GUyB2sRxHDjOf5t53nf51Vdfi5tuuhavvPIizjtvEfR6PY4cKcS+fXuwdOndGDp0KCZNmoLnnvsr7r//IQDA3//+HLRarbqtwYMHok+fdLz99hu44YbfobDwsFo5XdnX9dffhPvvvxt9+/bF3LlyfYv8/EM4daoU113nuaASBE/7lP8LAg+Nhse1116PK6+8FMuWvYjzz78APM/j1183Y9GiC2AwyH9HFi++AEuW/BaMSbj77nvb+L1x4HkeSUkmnxRaQnqa8lPFqK7y1H84UGTB2CGx4ATP9z7UulzM0QQwscVyTfzAjjWWdEtKYOL3v7/FJzAR6vCNsrIyNDbWo7y8DKIooaAgHwAwePBQv8MGJ06cjNGjc/DHP96DW29diszMAaisrMQvv/yI3/xmkToDh7eLLroU7777FjIz+yMzsz8+/PA9OBx29fs/cOBgnHHGfDzxxKO44467MXz4CDQ01GHTpo0YN+40jB8/oc3j2L9/H7Zv/xWTJ09FYmISdu3aAavVioEDPe2x2+14/vmncOWV1+DkyRN4772VuOKKqwK2oba2Fr/+ukltw5Il1+Kaa36Ll1+Wz98cx2Pr1i04//wLYDAY0K9fP+zatQNz554BrVaHxMTEgO0dP34C/vWvZdiyZRP69El3D7WkYH04UFCiG6utrYUoii0ipykpKThx4gQA4KeffsLmzZtRVVWFjz/+GADw3nvvtZqq5Y/LJaGhwdqh9vI8h6SkGNTWmiFJrNV1XZZKlK+5A6K5HDFDz0bC1PtR18gANHWoDV2V0jdNDgMMo29ExuALUL//PTQVfIWyLa+jcs9/kDj+ZpiGzO+2w1ZC5XSKqK6Wf9+hfHd6m67QNy6XC5IkweViALpWOmJrT20YY2CM+X1fknyXDx06Ai+//BreeONfuOmma8HzAvr3748FC36jrvfww4/jmWeewC233ICUlFTcdtvv8cILT3ttS8Cf/vQXvPDCM1iy5DKMG3carr32Rjz77JPqNiZPnoann34Rb7/9Jt5++y3odFoMHjwUF154iU97RNHTPuX/oijB5ZKQkTEAL764DK+//k98/vl/YDAYkZubh9/85gJ13QEDBiMraxREUcTgwcNafbLlcjFIkoTaWgs0GofPe/HxRmi10ZnxqKuyWq1YuHAhzj33XNx7773Rbg4Jkmirw/aVF8BeUYfJI+NwuMSCkhoHGiwu/D975x0dR3X24Wdmtquuqi25994bxrhRY0hoiYHgUAIhoSW0jxBKgISE0BJCQkIoIZCYECCUUE017rj3blm2ei+r7bsz3x+rXe1KK2nVZek+53DYnblz7ztX452Z332L1dPw7KG6a1BMyW3ot4ryWi+r91QzPNPEzFEJAEi6/rXQIGgg3GPi5z+/ncce+0PUUIGWeOml5/j444YcR9deG/C6efPN/zFwYNNStrIs8+STz/Dcc8/yyCMPUVtbQ2pqGtOnz2z2neDKK6+moqKchx++H70+UBJ0ypRpEeL0/ff/ipdffoFnnnmK8vIyrNYUJk2awllnnRvTecTFxbFz5w7eeOM1HA4nWVlZ3H33fUycOCnUZu7ceaSnZ3DTTdfj9/v41re+zeWXN5Svbs2GIUOGhu6J773XcE+88MJLALjuup/wxBO/5bLLLsLj8USU6G7MBRdcyOHDh3jwwXsxmUz88Ic3UFAgPCU6A0lrHBgj6LWMHTs2ItFlSUkJCxcu5M0334xIbPnYY4+xc+dO/v3vf3fa2F6vn+rqtpW2a4wsS6SmxlNRUdfiy5PqtVP66c34anIxDz2TlPn39fkX8ebmxmcvpmbn8zhPfAmAPnU81pk/xZA2vrmu+gwXXbSMd9/9CIj92umP9Ia58fl8lJcXkJaWHVMYQHfSHlfSzuT888/k5ptva1JqrKdRVZXlyy/k+9+/iksuaZonI5yW/r7JyRYhSjTiD3/4A7m5uQwePLjdokR33nP7I9Hmxpm3lpVP38zekw4umpdKQYWbLUfqWDolmcWX3kHtzkBOroxzn2s2ybY952MMqRPQJzWEyrpLd/GH+y6n1GFC9dj4wZIMMpMNWEacR8q8tlVw6C5667XTW+41PX1f6Sl8Ph/Ll1/I9753BVdcsSJqm86em9/85iGcTgePPPJ4p/XZk8QyP/31ntu33/T6OFarFUVRKA9zNQSorKzsUNxZT6JpGlWbHsNXk4tx4BxSTvtFnxckWkIXN4DU039J+tl/Qp8yFm/FAUo/vYnqrc+gejv2wCoQCPonlZUVvPbaq9TV2TjvvGU9bU6fIjc3l5ycnBZzQQl6J5LeQmFlwBMoK8XAqIEBT4ajRU5UR8Nzls9eHPV4b00uVZseo+TDqyMS4RXlH6O42otsCHhIHCoIeJ1q3o55nwoEXU1hYQEffPAuJ0+e4MiRw/zud7+mpqY6VOpSIOhM+u/bXh/AYDAwceJENmzYENqmqiobN25k2rRpPWdYB6g79BbOvDUo8Vmknv6AKJdVjzF9Mhnn/hXr3P9DMsRTd/htSj64qttrcwsEglOf73znXP7zn9e4995fhhJuCgIluH/yk5+wYMECxo4dy1dffdWkzcqVK1m6dCmTJ09m+fLl7N69O2L/Y489xh133NFdJgs6EXtdDZV1PpLjFCxGhYFWAxajTH65m7rqolA7zRcQE+qOvo+zYFNou+qxhT57Kw6GPu/etROAGVMD7ui5Ja76flxddi4CQWcgyzIffPA/fvSjq7jllh9RVFTIn/70t3ZXABEIWkK88fVy7HY7J0+eDH3Pz8/nwIEDpKWlkZ6ezrXXXsvdd9/NxIkTmTJlCq+88goul4uLL764B61uH97afGp2Pg+yntQFD4dWFQQBJEkmbuT5mLJOo3r7szhPfEHFmvuxDDub5Fk/FfMlEPRCPvzwi542oQnBeNn+6oLcHB0twf35558zbNgwhg8fzo4dO3rgDAQdIb/+WSsrxQgEQhhGDjCx54SDw0dyGFOfg7Du0H/RxQ2kevNTAGRf8VWgvF+Y96Kn8hCGtPF4ak6y/ev/ALBo4WIO7/yC0hovTrcfg1+IEoLezYABA3nuub/3qA333fdQj44v6D6EKNHL2bt3L1dddVXo+yOPPALALbfcwq233sqyZcuorKzkmWeeoaysjPHjx/Piiy+SkpLSUya3C03TqN76B1C9JE79EYaU0T1tUq9FMaeQevoDuIafQ9U3T+DI/Qx36U6s836OacCsnjZPIAjxwAP3sGfP7tYbdhKTJ0/h17/+XbeNJ+hbdLQE965du/joo49YtWoVdrsdn89HYmIiN9xwQ7vs6Yky3P2FaHOTX1gABEI3gowaaA6IEsfzGTMtUNHAW3WUsi9uC7VR6/LRJw0Bf1g4huZFliVOHlxPtd1PVoqBtIFDGWA1UG13UlLtJXGgs9f+bXrrtdPb7BEIupL+VoZbiBK9nLlz53Lo0KEW26xYsYIVK6InnDlVcJ74EnfxNnSJQ0kYt7ynzTklMGXNJfP8l6ne+kccuZ9T/uVdxI/9LknTfoykNC0HJRB0N0IgEPQVYinBfeedd3LnnXcC8Pbbb5OTk9NuQaInynD3R8LnpqSsFIDs1AZRYkiGCb0ikZNXhm/yQHRK0xcEnf0gqSMmQHGD15HZGEgUebi+TOO4QRayJixkQLKBg/lOSqo9jNXcnfY37ip627XTm8pP9/T4vRkxNy3T+vz0zzLcQpQQ9Dia6qNm90sAWGffLl6o24BsSCBl/v2YBi2gevPvqTv0Fu6yvaQueBBd/MCeNk8g6LX897//4YUX/spHH32JLAceECoqyrnwwvM444zFPProk6G2q1Z9xO9+92s++eQrjMa2lW0L8sUXn/Hgg79g8eKlUbOIP/jgvQwfPoJrrrmeBQtmYTAYef31t8nIyAy1ueWWGxg3bgK33HJbu2wQtJ9YSnB3Jt1dhru/0XhuVFXleG4BBp3EsNlX4K/NxVW8Db0iMSzTxJFCJ8dLXIzOalrGs7r4GFJWHbXVVaFtjjo7ZWW1bNu5HwmYd/G9VNV4GHfW7Wwoep2SmpP43I5Q2eveRm+9dnpL+WkR+tY8Ym5aJrbqG/2zDLcQJQQ9jjNvDf66QowDZmLMnNbT5pySWIYsxpA6gcr1v8JTvpeSj39Eymn3YB60oKdNEwh6JdOnz6Suro7Dhw8xblygxO7OndvJyMhk164daJqGJEmh7ePHT2y3IFFSUsyzzz7NlCnTou73+Xx8881GVqy4JmL7yy+/wM9/fn+7xhR0D+HXSTiXXHJJh/vurJfBwEt373mx7E0E5ybv2G5shTsZkm7EkDoWR83xUJsJgy0cKXSy94Q9qiih+X2Bfjz2hn59bo4cOUJtTQ1DM4wkJA9AVTWGzfwuxk/2UpKfi+pz9fq/S2+7dnqTLQJBV9Pb/v11NcK/RtCjaJqGbd9KABImfL+HrTm10cVlkH7W08SPvxzNW0fFmvup2fUimiYUa4GgMcOHjyQ52cqOHdtC23bs2MZ5552PXq/n6NEjEdtnzGhfvhZVVXnkkQe5+urryM4eFLXNzp3biY+PZ/ToMaFtl166nI8+ep+TJ3PbNa6gc+mLJbgFDex+82YAslMMyDoz0PAiMGKAiTijTE6xC5vD1+RYTfMDoIaV+NT8XrZt24LmdzNpaByyMREAk8lEamoatU4Nh713ekkIBAJBTyBECUGP4i7agrf6GPqUsRgzZ/S0Oac8kqwjefpPSF30WyR9HLZ9/6JizQOoXnvrBwsE/QhJkpg2bUaEKLFz53amT5/BtGnTQ9vLy8vIz89j+vSZAKxYsZyzzz6j2f/uvPOnEeO89tqrmEwmLryw+ZXzdevWcPrpZ0RsmzZtBjNnzuH55//aWacs6AB9sQS3IICmqRSU1gIwMMWApDNFiPnG5KFMHBqHBmw7FkVIUANCheZrqL5hq7Nx4MB+jIqfUQPNyMak0L6srGwkWUdJpRNNbSpyCAQCQX9EhG8IehT78U8ASBi3PKoLrKB9mLPnk3HuX6n4+j5cBesp/fRm0hb+Bl1Cdk+bJhD0GqZPn8kLL/wFVVWpqakmPz+PSZOmkpeXx5Yt37B8+RVs374Ng8HApEmTAXjyyT/i8zX/ImE0GkOfDx06yFtv/YeXXvpni3asX7+Wu+/+RZPtP/nJzVx//VUcPLifceMmtPMsBbHSn0pwCxrw1eRSWOkGYGCKEUkXGaJhSB3PzJHH2XbUxq7jduaMScBibIjp1tSAp0R4SdBNO46gqulMGZ6ATnGghIkS2dmDQNZRUuNB8zmRRDlvQS/jxht/yOWXr2DRoqUAHDlymN/97tfk5Bxl6NDhPPPMX1mxYjkvvfRP0tMzethaQV9BiBKCHkPzuXEVbERSTJgGnd7T5vQ59IlDyDj3L1Ss/xXuoi2UfnojqYsexZg2sadNEwh6BTNmzArllSgsLGDs2PGYzWamTZvOiy8+h6Zp7Ny5jQkTJoXySQwYEFsCWY/Hw69+dT+33XYXqanNu/cfO3aU2tpqpk9vGh4yZsw4liw5k+ee+zNPP/2X9p2kIGb6SwluQSRVJblU2/2kJegwG2QknQlCnhISuvgs4kwKU4fHs/1YHWv31XDujLC/eb23g1rvKWFz+Ni8aQ36tEnMnGgEzYVkaKiykZ09CEnWUVzlQPU5kYUo0adZsKDl0L9rr/0R1133426x5eDBA7z44l85eHA/TqeTtLR0Jk2awj33PIBeH0gyv3btaux2OwsXLgkd99e//omMjEx+85snMJtNJCYm8a1vXcBLL/2Ne+55oFtsF/R9hCgh6DFcRZvRfE7Mgxch69qXQE7QMrIhgbRFv6Nmx1+oO/Rfyr+4g5QFD2LOnt/TpgkEPc7w4SOwWlPYsWMbRUUFTJs2o377SCQJjh49ws6d2znzzHNCx6xYsZySkqJm+5wyZTpPPfUMFRXlnDiRy4MP3hvap6qBF51Fi+by1lvvk56ewbp1XzN37nx0uui34x/96CauvPK7bNu2pTNOWdAC/aUEtyCS3Lw8AAalBbycAs8j9TklJAnFElgJPm1cIgfzHew54WBstoVhmYHnFk2rD9/wOtE0jS92V+P1a0xPysWkJiEbk5CkhmjpQPiGQnGVB83n7qazFPQU7733SejzRx+9zzvvvMULL7wS2mY2W0KfNU3D7/c3ez/oCFVVldx++80sXLiYP/zhL1gsFgoK8vnqqy9QVT8QECXeeusNvvWtb0d4LxcU5PG9713OgAEDQtvOP//bXHPNldx8820kJAhhTdBxhCgh6DGceV8DYB6yuGcN6eNIskLyzFtRLBnU7PgrFWvuxzr7DuJGXdDTpgkEPc706TNDosRNN/0MCOSbmDJlGl988SknT54I5ZOA2MM30tMzePXV1yP2vfDCX3G5XNx66+1YrYGV1nXr1vC9713ebH+DBg3mggsu5Lnn/tTu6h8CgaB5TpzIB2BwvSgh6cygBRNdSihxAVHCbJA5c0oy72+p5IOtFVy2IIP0JH2Dp4TXwaZDNo4WuUiOUzhtbOBFTdbHR4xnMBhIT46nqKAUW20NKYmDu+EsBT1FuKecxWJBluXQtu3bt/LTn/6EJ598hr/97c/k5Bzjuef+zttvv4nT6YgoH33//XdjNlu4776HAHC73Tz//F/4/PNVOBx2Ro0azc033x4KNWzMnj27cbtd3H33fShKIPwoO3sQc+bMC7Wpqqpi+/Yt3Hnnz0Pbgp4eTz/9JE8//WTIs2PIkGFkZASE9W99SzxPCjqOECUEPYLm9+DM3wCKAVPW3J42p1+QMP4yFHMalZsepWrzk/jdNSROvLKnzRIIepTp02fyl7/8EY/Hw5QpU0Pbp06dzksvPV+f4LDhIS/W8A2dTseIEaMitsXHJ6AoSmh7RUU5R44cYt68lsPXrr32Bi677EI0DZFbQiDoZHJPBkSJQRGiRH34RpinBMDYQRaKqz1sOVLH62tKWTgpiSlpLqio4OMNh9l5oBaDTuI7c1LR6wLeEZIhrsmYAzOSKCqA/IJ8UgZN6uIzFPR2/va3P3PLLbeTmTmApKTkmI55+uknOHEil1//+nekpqbx2WefcPvtN/Paa29FzfOQkpKCx+Nh3bo1LFy4OGoet927d2KxWBg8eEho23vvfcKPfnQ1F1/8XZYt+3aEZ8fYsePZtWuHECUEnYIQJQQ9grt0N5rPgWnQGch6S+sHCDoFy7AzkU1WKtbcR+2uF9D8HhInXyOSjAr6LTNmzMLpdDJu3ATi4hpWNKdNm4nT6WDatBkRySs7k/Xr1zJ58lQSExNbbJeWlsZ3v3s5K1e+0mI7gUDQNmy2WiqqqkmJ1xFnCqweS4oxrCCohM4S+YK3cGISOkVi40Ebn+2s5qsjGzCvfYK6I0VYjDLfnpNKRrIh1F7WNxUlstKT2A4UFhYypWtOrd/w3/++wYED+7t1zEmTJnHRRd/ttP5+9KObmDlzdszti4uL60NBPiIlJRWAa665ng0b1vHppx9z5ZVXR7F5Ct///lX88pf3kJCQwIQJk5k9ey7nnXd+KPyipKSIlJTUiGfC1NQ0ZFnGYrE0yY+UlpbGsWNH23PKAkEThCgh6BE8lYG4XWN6dDczQddhGjCDtCVPUr76bmx7XwHVQ+LUG4QwIeiXDB06jHXrtjbZPm7c+KjbO0LQ7TbIunVrWLBgYZN20ca98cZbufHGWzvVHoGgP6F6HUg6c8S97ujRo6CpDE43Yso6jfixlyDJCklTr6P8y7tImfdzJF2kKClJEqePT2LkADPbj9VRUl1OvFzChJEmZo7LxKK4IttHWXgZmGEFoKCwsAvOVHCqMW7c+Da1z8k5it/v57LLLorY7vF4GDVqdLPH3XTTT7niihVs3bqZffv2sHLlK6xc+QovvvgqaWnpuN1uDIbYRXiDwYjb7Wq9oUAQA0KUEPQI3qqAsqpPaf7HU9B1GNMnkr70Kcq++j9s+/+N5veRNOMmIUwIBN3I1KnTWLr07J42QyDo83hrTlDy4dXEjbwA69y7QtsPHz6IpqkMzzRhSJ+EaWBgtdo0YBbZl3+BJAe8JzKX/R1vzQkq1z8cOnaA1cCyWcEqHMeBJAypw/FUHIgYW9Y19ZTISElEkaGgsAhN08S9twNceunybh9Tp5Px+dTWG8aIyRRZhlaSJDRNi9gWnsvI6XSg0+n4+99XNrl24uKaXm/hWK0pnH32eZx99nlcf/2NXH75xbz77n+5/vqfkJSUjM1WG7PdNlstycnWmNsLBC0ht95EIOh8vFVHADBYR7XSUtBVGFLHkX7m75GNSdQdepPaXS/2tEkCQb/iyiuvFjXeBYJuwHlyNQD2Yx8AAa8JZ9VJjhw5jCzDkHQjkhy5ThcUJAD0ySMwxFBOW5c4pMm2aJ4Sit5ARpIBp9NJZWVlW05F0A9ITrZSWVkR+q6qKjk5x0LfR48eg8/no6ammkGDBkf8F0yiHAvx8fGkpqbidDoBGDNmLOXlZdjtdTEdn5t7nNGjx8Y8nkDQEkKUEHQ7qteBz5aPEjdA1OfuYQzW0aQt/T2SPh7b/pXU7lvZ0yYJBAKBQNCpqF57xPfiD6/j898vw2GrZFhWGgadjCTrW+yjsWgRjWiiRLS8WZKsIyvFAJrKiRPHW+1X0L+YPn0m+/bt5fPPV3Hy5AmeeeYpamqqQ/uHDBnGmWeeza9+9QBr1qymsLCAffv28vLLL7Bjx7aofa5fv5Zf//qXbNy4nvz8PI4fz+Gvf/0Tx4/ncPrpZwAwevRYEhOT2LNnd6s2ut1uDh06EFG9QyDoCCJ8Q9DteIKhG1YRutEbMFhHkrbkccq/vIPaXS8g6y3Ej7m4p80SCAQCgaBT0LyOiO++ukJySlz43bWMHDIUOABhnhHRkJSWRQsAXcKgpsdFSXSJpDA43cj+fI3jx3OYMWNWq30L+g+nnXY6V155NU8//SSapvK9713B7NmRleruv/9XvPzyCzzzzFOUl5dhtaYwadIUzjrr3Kh9Dhs2HIPBwB//+BSlpSWYTCaGDh3GI488Hrr+FEVh2bIL+OyzT5g3b36LNq5fv5aMjEwmTRKpWgWdgxAlBN2Ot7I+dEPkk+g1GNMmkLroUcq/upvqrX9E0scRN/ycnjZLcIrQENKqtdRMcMoS+LuKsHfBqUq4p4Q9ZxWapnGk0AnJKqOHZMBJWvWUIAZPiWBOiojDonpKKGSnGqFelBD0Dy699DIuvfSy0PcZM2Y1m1D5xz++mR//+OZm+9Lr9dxww03ccMNNMY2dnT2In//8/lbbLV9+JVdffRllZaWh8MK33nq/Sbs33/w3V199fUxjCwSxIMI3BN2Opz6fhPCU6F2YMqeTesavQFKo2vQYruLtPW2S4BRBlhVAwuNx97Qpgi7A7w8kWJNbWUkWCHor4Z4SVZsepbTGS1Wdj6zMVJLM9QkLWxEdWhMtrPN+Hl2A0JmbNpZ1mA0yGanJ1NRUU11d1fpJCATdQFpaGnfffT8lJcXNtqmtrWHBgoWcfXZ0rwyBoD0ITwlBt+MJekoIUaLXYc4+DeucO6n65nEq1j5AxjnPok8a1tNmCXo5kiQRF5dIbW0gYVugpFhvWVaX8PmEB0d0YpkbDZutGqPRIioECHotmupDddegmFOj7ld9kTklDuYHRIohvg3UHQoI8K3mjJAaRLmEiSvQfE7qDv0XAEPGVOJGfKuZ45qu/0lSYKyh2Rnkr/6AHW+Xs+SHItm0oHewaNGSFvcnJiZx5ZVXd5M1gv6CECUE3Yrm9+KtyUU2WZGbeXgQ9CxxI5fhqyvEtu9flK/+ORnn/KXZBz2BIEh8fBJAvTDRe0QAWZZR1c4r3daXiHVuZFnBahVVQgS9l9o9/8C271+kLXkiaghFuKeEpmkcyq+vNjCg4TG41USXYaKcedAC9CljQ6KEJBuaP1CL8ntY73U00FiG31HO0X2bafk1UCAQCPo2QpQQdCt+jx1UH4o5Vay69WISp/wQX10RzhNfUP71vaSf9UdknamnzRL0YiRJIiEhmfj4JFTVH/U5vLuRZQmr1UJVlQNV7QUG9SJinRtJCogS4vda0Jux7ftX4P/7/x1VlAjPKZFX7qbW6WdQqoEES9hjcFvCk2R9xL+JlpJgRg3pqPeUSPfsQJYgt8SF6vcix5BMUyAQCPoiQpQQdCuaVr8qJ4nY5N6MJMmkzPs5ZY4yPGW7qd78JNbT7hMvJoJWkSQJRekdtxZZljAYDOh0HiFKNELMjaAvIZvTUJ3l+Gx5UfdrXmfo8+7jAYFi8rDIqhitJroMb9tIPIh2bOLU6/E7yjBlnxbF4MAzkMkgk5ViIL/CQ2FeDoOGjY3Zhv6ISKos6B/0z+TSItGloHvR/EDgpVfQu5EUA6ln/ArFkoEj93Psh9/paZMEAoFAIGiCPnEwAH5HWdT9mt8DgMPt50iRE6NeYkx2Iw+GGKprBGksQkTzlLAMPRPr7Nuj5qqQwrwyhg8IeCEePLA35vH7KyKpsqA/0F+TS/eO5SxBv0FThafEqYRiSib1jF9R+tmtVG9/Fr11FMYMUZNaIBAIBL0HKSxEQtO0Jl59mhZ4yN930oFfhanD49ArkW1aTXTZUtuwnBIZ33oRny0fXfzAFjpoOH5Epom1+2o5euQAZzWTK1MQoPckVRYJlJtHzE3LtDY//Te5tBAlBN1LKHxDeEqcKhhSx2GdfXugIse6B8k87wUUS1pPmyUQCAQCARBIoh1C9YBirP9oC3hJqD5UVWPX8ToApjQK3YCGPA/tIdxTwmAdhcE6quX2YaJGWqKeeJPMybyT1NXZiI9PaLcd/YHekFRZJFBuHjE3LRPL/PTX5NJClBB0K5oI3zgliRu5DE/FAexH36di/UOkn/l0m1aVBAKBQCDoCvzOSlRnRei75nMjKUZ8tgLKPv8Zfmc5AIcLnVTb/QxNN5KWGCV/RAy5cCSdGc3nRDYkRm5vQz4KICJURJIkRmeZOej1sm/fPubOnde2vvoZPZ1UWSRQbh4xNy0Ty/z05+TS4q1C0K00hG8IUeJUI3nmrXgqj+Ap20vt3n+SNOXanjZJIBAIBP0Yb20+JR+siNim+d3U7nmV2j1/b9imaWw+bANgzpjongixeEoMvPi/aD4nks4YuaONsd9SoxDWsdkWDub42Lt3txAlYqSnkiqLJMHNI+amZcT8tIx4MxR0L/WeEiKnxKmHpBhIPf1+JJ0J275/4i7d3dMmCQQCgaAfY9v/rybbKjc9HiFIAJwodVNa42VAsp4h6cYmxwAQg7eDrLegmFOj7YnF3LDmkc9A2akG4sx6cnOPU1dX17a+BAKBoA8gRAlBt6KpInzjVEaXMIjkWbeBplK54TeoHltPmyQQCASCforfWdlkm7t4S8R3TdPYcLAWgNmjE5p1i5Y6kOm+ra7WjcMfJUli3PABgMb+/fvabYdAIBCcqog3Q0G3ogUTXfazMjd9CcvwczEPWYLfUULV5t+jdXdAp0AgEAgEgOZzttrmWLGLwkoP6Ul6xmSbm23X5rwQkQe3sX3TZ6CxwwKJ7fbs2dl+OwQCgeAURYgSgu4lFL4hLr1TFUmSsM65A8WSifPkVzhyP+tpkwQCgUDQD9G8jhb3q6rGun01AJwxIbFlj4aOJG9u4zNNhKdEvRgyON1CUlIyubnHqaioaOZIgUAg6JuIN0NBtxJMdCnCN05tZEMCKfPvBaBm25/xu6p62CKBQCAQ9DfUVjwl9pywU27zMSjNwPBMU4ttO1ZRqo2Z8sPGUizpAPhqjjN17CAAdu7c1gFbBAKB4NRDvBkKupdg+IZIdHnKY8yYStzoi1A9tVRvfaanzREIBAJBP6Ol8A2H28/a/TVIwOJJya3nfeiAKNHWhZbw/BVBUcJVuJHskudA9bF9+zbUYLUygUAg6AcIUULQrWgifKNPkTTtRyiWDJwnv8KZv76nzREIBAJBP0LzNi9KrNlbg8ujMW1EHAOshlb76pCnRBsTXYYvzOgsGaHPiRYdg9P01NbWcOzYUdylu/FUHmq/XQKBQHCKIN4M+zg//elPmT17NrfffntPmxJAE+EbfQlZH0fy7DsAqNryB1SPKGUmEAgEgq5HU/1oflfUfXnlbvaedGAxypw+Piliny5pGAnjL0NntkYe1BEPzg7klFDiMiP2TRwYeE7atGkDZZ//lNJPfozPUdp+2wQCgeAUQLwZ9nGuvPJKHnvssZ42I0SwJKjwlOg7mLPnYRl2NqqznJqdf+tpcwQCgUDQD2hOkPD4VFZtD5QKXTw5GZMh8nlDMadhnXkT+oRIMaCtZT0jaWNJUCk8p0RGxL6RaR4SEhI5fHAvVXVeAOoOvd0B2wQCgaD3I94M+zhz584lLi6up80I0SBKiJwSfYmkGTcjG5OxH30fT8XBnjZHIBAIBH2c5ipvfLW7mmq7n9FZZsYPilYCNCAgdKgEaOMe27rQEiWnRGiX6mHu3NNQ/R62Hwt4H3qrc/C7azpsp0AgEPRWhCjRg2zZsoWf/OQnLFiwgLFjx/LVV181abNy5UqWLl3K5MmTWb58Obt37+4BSzsREb7RJ1FMySRNuwGA6q3PoGlaD1skEAgE3U9OTg6XX345F1xwAZdccglbt27taZP6LNEqbxwpdLLnhIM4o8w505pJblm/SVY6T5RoHILRGuHhG7I+cuFI87mYNWsOMir7Tjpwe1XcRZsp+u+FnWKrQCAQ9EY6Uv9I0EEcDgdjx47lkksu4dZbb22y/6OPPuLRRx/l4YcfZurUqbzyyitcf/31fPLJJ6SkpABw4YXRb1Jvv/02itL7vBFCiS7l3meboGNYRpxH3eF38VTsx5n7OZbhZ/e0SQKBQNCtGI1Gfvvb3zJixAiOHTvGTTfdxKpVq3rarD5JY0+Jqjovn2wLhG2cO8OK2djcc0YUT4l2LpRknv8KrqLNmIcsbtuBYd6ikj7Sm0P1OYmLi2PqhJGsO6axJ9fOrNEJgX1eB7Le0i5bBQKBoDcjRIkeZNGiRSxatKjZ/S+//DKXXXYZl156KQAPP/wwq1ev5p133uG6664D4L333usWWwFkuSPxlvXHBz0lZLnD/fUlgnNxas+JgnX2rZR+eis1u57HMvQMZF0019nYaTwvp/b8dA1ibppHzE3ziLnpGrKzs0OfR4wYgc1mQ9O0DuYrEEQj3FPC41N5b1MFbp/GvLEJjBjQ+r3HOvZcbHnfYBl2Nslz7myXDfqkoeiThrb5uPCSoNE8JQDmTB3N+vdhyxEbU0fEo1ckPJWHkPXxGFJGt8tegUAg6K0IUaKX4vF42LdvHzfeeGNomyzLzJ8/n507d3a7PTqdTGpqfIf7qa4IeEqYzaZO6a+vYbX2nvwf7SJ1Pp7cc6k+vApfzlsMPO3G1o9pBr1eaXKNnPLz04WIuWkeMTfNI+Ymki1btvDSSy+xd+9eysrKeO6551iyZElEm5UrV/LSSy9RVlbG+PHjuf/++5kyZUqTvr744gvGjx8vBIkuIlgOVNM0Vm2votzmY1iGkfnjEls8Tqr3lEiZ8B08xmEoCUM6Vg60PYSNJ+kiPR+CokRqgp4x2WYOFTjZnVvHzJEJlH8RqKSW9b2PhMeEQCDoUwhRopdSVVWF3+8nLS0tYntqaionTpyIuZ8bbriB3bt343Q6WbhwIc8//zzjxo1rsz0+n0ptbfP1wGMh3FPC5fZTUSHKRwaRZQmrNY6qKjuqemrnY7BMvI6aY6sp2fYqctZZ6OIHtqsfr7fhGulL89PZiLlpHjE3zdNZc5OYaEav7zvheJ0RVglQUFDAE088wfPPP9+d5vcrtHpPiTX7ajhU4CTJonD+rJTWvX/qRSJJkjBYR/bIb0N49Q25UfiG5nehaRqqt455YxM5VOBky2EbU4fFo1MCthe+uYy0pU9hGjCzW+0WCASCrkKIEqcYbXUD7cwHos64ccv1ooSGLF4SoqCq2ik/L7I5g/jxl2Pb+wpVO14k9fT7291X47noC/PTVYi5aR4xN80j5iaSzgirrKur46abbuKBBx5g6NC2u/YLYkP12tl2zMaWI3WYDBKXzk9rIY9ELyPcM0M2RO7TVFA9aJ460pP0jM4yc6TQye5cOzNGNngPVqx9kOzvfdBNBgsEAkHXIkSJXorVakVRFMrLyyO2V1ZWNvGeOJUIlgQV1Tf6NgkTLsd+9H84T3yBZ8IVGKwje9okgUAg6BCxhFX6/X5+9rOfsXz5chYsWNCh8Tolj1Mn9NNb2b13H6t316DTKVw8L4WUBD2DLl9FwX8vjkiCaRl2Jn57Ke6yPYENktTzc6M0PH4rikzixCup3beyYb/qRvMGPAXnj0vgaKGTTYdqmTTUgkFX//ykervM/h6fn16MmJvmEXPTMmJ+WkaIEr0Ug8HAxIkT2bBhA0uXLgVAVVU2btzI1Vdf3cPWdYB6T4n2ZroWnBrIOjOJE39A9bZnqN31ImmLH+1pkwQCgaBDxBJWuWbNGjZt2kR5eTlvvPEGAP/85z9JTGw5z0FjOiuPE/TuvCGa6sPnrEIfl96m47Zs2cKHX25CkuDaH91CpncnA+ZcjzUzDet1H+F3VrP/lYsAGDDlOyQNX8COPwZCHYwmc2hOempu/G7Ir/+cmhpPypm34z/9h+S8fwf2ol1IpWvRS4HcEpPO/DHjjzzF/jwHWw7bOH1CEgCa6u3y3Fy9+drpacTcNI+Ym5YR8xMdIUr0IHa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3INWd4ygp0R4OSxB3yRu1AXYDv4HV+FG3GX7MKZP7GmTBAKBoNMJD6tcsmQJ+/bt63CfnZXHqbfmVNH8Xio3P4X92McADLzgFfTJw3CXH6B6+3MkjP8e5uzTIqpUBNm+fStvv/0WPq+bb89JZeTYGVgG/xQV6vMQSYCVjDN/j7NgA96EKVRU1JFx1h+o3v4ccZNvoKrK3qNzo6l+JH0cBuvIsPxaOvwEQjnyv34i1FbKPIOLbhrJofuuYctRG1OGxZFg0YGmdllurt587fQ0Ym6aR8xNy3TG/PS1PE7hCFGiB9m7dy9XXXVV6PsjjzwCwC233MKtt97KsmXLqKys5Jlnngll+X7xxRcjkmmdamiaCN/oL0iKgcRJ11D1zWPU7n2F9CWP97RJAoFA0G66O6yysx7qe2PekOqdL4UECQBH0VYSEofiyFuHu3Qn7tKdAKQuehRz9mlAQPxZv34tn3z4Lv7aHC5aMJzBsgt0lqjnZ8icgSFzBpoWONaQMZ2M8/4GNMxtz82NTNal74GkRI6vmCJambJOQ0kcTnrCUBYsXsbadWtZf6CW82YGngO72vbeeO30FsTcNI+Ym5YR8xMdIUr0IHPnzuXQoUMttlmxYgUrVqzoJou6gWD4RpTVD0HfwzL8bGr3voK7aDOeioMYUtte+UUgEAh6A302rDIGNL+b6m1/xjL8XIzpkzrcn7toc+QGvycwjuqN2Fyz46+Ys09DVVU+/PB9Nm/eiL9yD+eNqWWwXA2ArD81y4tHK0Pa2DMkbvR3Al44ksK3rn2cXQcvY9/JfUwdEc9Aq6HJ8QKBQHCqIparBd1KQ/iGuPT6A5KsI2HilQDU7n21h60RCASClrHb7Rw4cIADBw4ADWGVZWVlAFx77bW8/vrrvPPOOxw7doyHHnrolA+rjAXb/n9jP/o+ZZ/d0mRfxdpfUrX5qZj60XxuSj6+Hm/1scjtfnf9/z0R23WJQ3E6nbz22j/ZvHkjcXFxXH7mSEYObCijKRv6Tny26okMx9Anjwh9NplMLJ43GQ34bEcVqqrhd1Z0s4UCgUDQNQhPCUH3Uu8pIcI3+g9xw8/FtvefuAo24Kk6JipxCASCXkt/DKuMBU/V0ajbNU3FmbcGgOTZd7RastxVuhNvlL5CYkQjUaLMBv987s9UVlaQlpbOD35wDVLOv7AfPhhqI+ksbTmVXo3qro34rlgyIr5PnzyWLasNFFR62JFTh+6j68i69N1utFAgEAi6BiFKCLoVLVR9Q4Rv9BckxUD8uOXUbP8zdQffIOW0X/S0SQKBQBCVfhlWGQP+uqLAB1kfEBBkHZIkhzwcAFR3NYrJ2vRYZwXusr2YBy+MGrIA4HeU48xbg+qr95jQNPaecPB17nr0mXMYP34il1zyPUwmE1XHImOxZcOpGb4RDdVTE/pszJzRROSRdSbOmmbln1+VsP5ALWOyyhmo+pqdV4FAIDhVEMvVgm4lmOhShG/0L+JGLkPSx+M48QV+R1lPmyMQCASCNuCrFyUkxUDBf86h6psngUA4RhBXwQY85QeaHFu66kYq1z1Iwetn4sxfF7V/R+6nVKz9Jc4Tn+Nw+/msbC6rdlTh87o5a9F8LjxtIEajMTCm3xVxbF96ITcPWQJA/PjLSVv8WJP9kmIkPUnPzFHxeHwan+6sxlub36SdQCAQnGqIN0NB96KK8I3+iKy3ED/6O6D6qDv8dk+bIxAIBII2oPkcgf977QA4cj4KfA/zlKj65glKP72xwSOyHr+jtL4TFfvhd5ofQ9M4XOjgH1+UcOREKclxCt8/cxRjXW9RtfERnLmf19viaraPU52kKdeRfubTJE29HknRN9kvKQFhZv64RKzxOo6XuNiy4bOINpqmUvblXdTsfrlbbBYIBILOQLwZCroV4SnRf4kfcwnIOuqO/A/V5+xpcwQCgUDQAXx1hZSu+kmT7aqrqs19Vdt9vLOpgv99U4nDrTJ71iyuWppJllXGV3sSAHfpLqBvixKSoseYOa1Z7w9JFxAl9DqZy66+DQn4eNUqKisbEl76HeW4i7di2/tKd5gsEAgEnYJ4MxR0L6HqGyKnRH9DsaRhGbIYzWvHmftFT5sjEAgEgliJspBQvfWZqAJEW0L0PD6VDQdqefnzYnKKXSTHKXx3fhrfufBSDDoZzeto6NdVCTSIEnrrKBKnXNfWMzmlCXpKAAwdOYE5YxLwOOt455230LRgrg0t+sECgUDQi+k7gXiCUwJNVN/o18SNvghH7ufUHXkXy8jzW83ULhAIBIL2oWkaaid4FWiaGqqcFY6rcFPU9n5HKaSOa7FPv6qxO9fOpoO12N0qihwISZgzJgGdIiHpTEg6C6rXDrIOVB9+Z0CUCJ5T2uLHUcx9u+pJYySdqeGzYmL++ETyfWZyc4+zZs1q5o1Poezzn4XaaH4PkmLoCVMFAoGgTQhRQtCtNIRvCE+J/oghbSL65JF4q47iqdiPMW1iT5skEAgEfZKqrc9QmPs5Ay98HWIsm+l3ViIbk5DkwD1a9dRRs/P5No3ra8FTwufX2J/nYPPhWqrtgeeBcYPMLJiQRHJcwyOppBiQ9Rb8rkoUcyp+Rxlq0FOiPtFl+At6f0GSG/JMSDoTiizx7TPG8sZ2A59//imG3esYnNrwfOV3V6NrVFZUIBAIeiNiuVrQvYhEl/0aSZKIG3MxAPbD7/WwNQKBQNB38dny8btrYw6n8NacoOidS6hc/3BoW82uF7Ef/V+bxo02ntursvmwjRc+LeLTHVVU2/0MyzBy1ZIMLpidGiFIAEiyAUlvAU1FqhdU/I5S6o6+Hwrf6I+iRHhoRvD80xIVvv3tCwGNDzaX4HD7Q21UV03jDgQCgaBXIt4MBd1KKCu3ECX6LZZhZyLpzDjzvg645goEAoGg0wm67VfvfAFPxcFW2wfDMZx5a0LbvNU5bR43XJQoLi7i851VPP9JEWv21WB3qYwaaOL7C9P57unpZCRHCy2QQNYh6eOAyMSWzrw1ge+Kod8vbgRFCc3nZvr0mUyfPhO7S+WjrZWoakC8aE/SUYFAIOgJRPiGoHsJhm/IInyjvyLrzJiHLMGR8xHOk6uJG3l+T5skEAgEfY5gUkRn/jqc+evIOPc5DC3ketD8nibbVI+tzePa62zkbPmGbdu2UFCQj+24HUWGyUMtzB6dQEpC01KXkXYbkCQJWWcO2OCubrDHVYXmdyH3Sy8J0CePBMA8eCGSUi9K1IezXHDBhez/8AFyS92s3V/DoknJuEt3oUscjC5+YI/ZLBAIBLEgRAlBt6KJ8A0BEDfiPBw5H2HP+USIEgKBQNAFNE5wWLP776QvebzZ9prqbbotRlHC6VE5VuTkYL6DAsdGTIMC9/j09Axm6ZOYMNiC2diwGCEbEpENCfjqCpp2Vp83IWi/5neHdvkd5Wg+N7IhMSa7+hqy3kL25Z+DpKB6aoEGTxIdbi6cm8bKr0vYcqSOtEQ9E1mJbf9KBn1/NT57Cbb9/yZp6vXIhviePA2BQCBoghAlBN1LKNGlECX6M4b0ySjxWXjK9uCz5aNLGNTTJgkEAkGfIrx8JIC7eCuqr3kvA83TEE5Xtfkpkmffgeqpi95W0yiu9pJb4uJEqYvCSg/1EQMkpEjMnj2XKVOmMXToMAr+3TQnRcr8+7Dt/3dIlDCkTcRTvq/ebkPwBCKOUSzpodCQ/plPIoAkBx7d5bDwDc3vwVdXiDVex3fmpPLW+nI+3VFFcpyO7FQjmt9D6ac3oTorkGSF5Jm39uQpCAQCQROEKCHoVkROCQHUJ7wcfh61e/6O/finJE35YU+bJBAIBH2KJqUgNRVv1TGM6dGrHvnrq1sA2I++T+Kkq0KhAV6fSnG1l8JKN0WVHgoqPDg9DWVCLUaZUQPNjM02M3LCNAacc3ErtkUKJulnPUPB62dG2h3+nCDJKJYMIUqEIxsACZ8tj4I3zw+FaAxJN7F0SjKf76rmvW8q+P6iDDLtpajOCgA01deDRgsEAkF0hCgh6FY0VZQEFQSwDD+L2j1/x3nyKxInX4skST1tkkAgEPQZwkUJJT4Lf10h3spDLYoSPr+Gzemjwubj0Fefc2RzBeU2L5U2X8gTQjYmoujjGZxoY1imkeEZJtKT9KHfcJmw6g/NhH9IihHCfvMDJUglQAvZLYXlnpJkA4o5Nex4IUpIkoSkMwbCN1QvvtqToX3TRsRTXutl53E7/91Qzg9HvkRwthWTtWcMFggEghYQooSge6kP35CEKNHv0cVnobeOwVt1GF/NcfTJI3raJIFAIOgzaJKe4ioPflXDYBqEvSQH/Y61GJ3DcDqdOJ0O7HYHVcc3UG33UHZ0Pbba6tDx5oLPcRY4AYgzygxMMZCVYmTExAWMWfpTKlddF33c+twUmuqj8K1vR20j6YxNNyp68HsaFi3CPSUUPYo5LfRVnzS0DTPRd5F05ojqJOEsnZJMncvP0SIXK//9OsvPSMegk1F97qjtBQKBoCcRooSgWwkmuhThGwIA85BFeKsO4zjxFUlClBAIBIJO45O1e9i4uhQA04ATuIrLkQ2ridvXIAhoqkrd4bcBUHQGkuMUEsw6UhJ0DJs3GWPePtIS9ViCSSplPRln/RR90jCMGdNwl+5sOnC9R2RLlTuahJYAOksmPlsefkfA5vCE2JKsxzLyW7iKtwEqiVOvb8tU9Fkah8GEI8sS589O5b/ry8iv8PC/byq4+LQ0NJ+jGy0UCASC2BCihKBbCeaUENU3BACWIYup3fUCzpOrSZzyQxHCIRAIBJ3EhLEjqTxsRpIgedIMXMeLkLw1WEdZSB21BLPZjFFyU7duLYkWHXFGGVlu+A1OHJ1CrashTMI8ZAkpp/8y9DudftbT5L+2uMm4wZwFLYsSTV+mdQnZ+Gx5aF57sFFYez0G62gGXPAKmqaJe0U9reXW0CsSF81L4/W1peSWevhoayXfGyZECYFA0PsQooSgexHVNwRh6BKyQyEc3uocDNaRPW2SQCAQ9AlGDh+KdU4gD0P62edj21eNq3Aj8CXZ836BpOjxVB2h9ED01XafozjiuyQrTcQA2ZiE6q6J2BYM31DdbRUlBgObwhuFjd3gWSEEiQbCc2skz7kTxZhExdpfRrQxGWQunZ/Om1t8HCoo439fbeea+SqyLJ7DBAJB70H8Igm6lYbqGyKnhCCAechCAFwFG3rYEoFAIOg7hIdISDojcWMuCn1X670RVFd1s8f77SWRG+Sm61iZy/5O2uLHIzeGwjdqmzcuSviGaeCswC5LRsDm8MWLKGMLInNzmLPmYco+PWq7BLPCigvPINGssO9oEW+//SaqqkZtKxAIBD2BECUE3YsaTHQpLj1BAFPWPABchd/0sCUCgUDQdwj3RpAUI+asuRgzZwCgeuoA8LuqIg+S9aGPjUUJSWoqDCjmVExZc0hd9DsM6ZMDxzlKKPviDlR3dZP2qWf8iuTZdyBHCTswZc0lddGjpJ/953pbIsM3BE2RdeaGzyZrRMWSxiQlxrP8jHQSzTK7du3gnXfeCgkTfmcFtftWovm97balds8rVKx7CE3T2t2HQCDov4g3Q0G3EvKUEG6Dgnr0ySORzWl4KvajultYWRMIBAJBzER4StS7+cuGeAA0b0CUaOwpETfiPDLOewEAnz0yfKMlbwVz9jwyzv5TaBx3yXY8FQebtDMNOoP40d9poZ/T0MVl1BsdnuiyqWeFAHy2/NBnqRVvEsuwc0iO03HZksEkJiaxc+d23njj3/j9fko++iG1u16g7sh77balds/LOE+uDl1bAoFA0BbEm6Gge9FE9Q1BJJIkYcqaA5qKq2hLT5sjEAgEfYJIUSLwWaoXJYKeEqo70lNCNiahmKyBL/UJK0N9tLAK39BBQxu/s7ypTW3IByFJwlOiNcxDlwKQesavm28zeBEDvr0ycJ8Fkowq1113A1ZrCvv27eGf//wHbnv9ddDobx6O6qnDcfyzJt4U9pxPsB18K/Rd83vaezoCgaAfI94MBd1KMCu3JHJKCMIwixAOgUAg6FQic0rUe0ro60UJbzB8ozriGNmQgGxORQoLC2jY2XpeByki/KMsYl/CpKtisjuss7CxhSgRjcTJ15J16f8wDz6j2TaS3owuIRtJkpF0JjSfk5SUVH70o5+QkTGAI4f28Ob6cpweNSRaRcN28E0qN/6GinUPRWyv2vQ7arb/OfRd87k6fF4CgaD/IUQJQbciEl0KomEcMBMkBVfR5oZrRCAQCATtJjKnRECgkJt4SkRWzpCNiUiShC5xSNP+ouSUaEKYcOGzF0XYkjTlhxFN40YFwjiaFSuEp0SrSJKEbExsuU2YoCPpLKi+QEnQhIRErrvuBgamWiis9PCftaXUVFc1Od5TeYjKTY/jrT4GgKtgPZrfDYDqbVpeVBWihEAgaAdClGgGj8fDX//6Vw4ebBoTKegAqgjfEDRF1sdhSJ+E6q4OPfgIBAKBuBe3nwhPifp7btBTQqsXJbT6l0p9ypjAfkPgBVcfRZSIzVOiQUjQPA0lQYNlQsOxDF3CwIvfJnHyta32JQlPifYT9neTdWZQffgdZbjL9mCxWFhxydkMyzBSXuvjpdc/pqAgP+Lw0k9+jCPnI1z560LbQolSo4ToaH4hSggEgrYj3gybwWAw8Nxzz1FbKxLvdSaaJqpvCKJjzJgKgKd0Tw9bIhAIegviXtx+wj0lQtsMkeEboVXzCd/HNGgBxszpAM14SrTu4diseNCMB5xiTmk+z0REokshSsSKZEiI/B7uKaGPA6Do3e9R9tmt+Byl6HFz8WlpTBkWR53DwYsv/o39+/e1OEZQZPI7K5ru87k7egoCgaAfIt4MW2DKlCns29fyD7OgjYhEl4JmMKZPAcBdJkQJgUDQgLgXt49oIQ+Nwzc0nxMAc9ZppC18BFlvAaKLEsSS6JLYE1m22lP4c4II34iZgd95jczzXwl9D6/K0TjUo/jd5VRt+h2KLHH2tGTOnDcBn8/Hylef55X7zyb/rYujjqH5A/nB1KiihPCUEAgEbSeGAMH+y//93/9x1113odfrWbRoEampqU0UfbM5SjIoQbNoasBTQuSUEDTGkDYBJBl32R5R51wgEIQQ9+J2EiXcIhi+4a08jKt4G6rXGVgkUCJLbkYL32it5CTQrEdEuwjPKSFKgsaMbEhADveWCPOUkI3JzR4nSRLzpgxl0MzTef2lR/l03W7yBps5Z5oVva7RQlJLnhIifEMgELSDfiVKrFq1ittuu40DBw7E1H758uUAPPLII/zmN7+J2ibWvgQBgkkMRfiGoDGy3oLeOgpv5WH8YQnSBAJB/0bci9uHbEjEOm4ZqmlQwzZjEgCeiv2Uf3knEHDpbyzy6BKym3YYw327UxMVR4Rv9KvH1U4lfO4UU1KLbTW/l4nTJvGDixfxzxe2ciDPSXmtj+/MScUa39CPCN8QCASdjfiVb4Hf/va3baqpLYgBEb4haAFj+mS8lYdxl+7uaVMEAkEvQdyL24ckSQw799dUVNShqgHvM13iEJS4gRHCbzBkI+JYJYpnQiwebM2IEsaMaTHZHGFDeLiIyCnRbqQYPSUA6g69BZLMQGscP1iSwYdbKjlR5uZfq0s4f1YKIwYEPJKCooTqaZrrJRgSJBAIBG2hT4gSv/jFL2JqV1hY2KZ+L7nkkvaYI2iBYKJLIUoIomFInwKH/otH5JUQCAT1iHtx5yFJEmmLH6Xkw2satumaihIApoFzcRV9E7YllrC6SFHCmDGNuDEXYRowsx3GhodviJDPdhOeU8KU3GrzuoNvAGAxKlw6P421+2vYcqSOdzZWMG9sAqeNSwQ1kFOCYEhuGMFyoQKBQNAW+oQo8e6775Kenk56enqL7dqbvfvo0aPs3buX4uJiLr30UtLT0zlx4gSpqanEx8e3q8/uxOl0smzZMs4//3zuuuuuHrUlmFNCPGAIomFMnwyIZJcCgaApp8K9+PPPP+eJJ54A4Gc/+xnLli3rYYuaok8ahnnIYpwnVwMg6aLn40hd/Ciaz0nhm+fH3Hfj8A3ZZMUyZHH7DBXVNzqF8ISnirHl8I3GyLLEoknJDLQa+GR7FRsP2ThZ5uYHcyoZkBG20BSGGpboUtNUXAUbMKRNQolBEBEIBP2XPiFKDB06lClTpvD444+32O6TTz7h9ttvj7lfu93Ovffey6pVq9DpdPj9fs444wzS09P5/e9/T1ZWFj//+c87an6X89xzzzFlypSeNiNAKHxDiBKCpijmFBRLJr7aPDStaTk7gUDQ/zhV7sU+n48nnniClStXoigKl112GWeddRYGQ+9L0hheLjRa+AYEcj8FS0gGiMFTovHKeQfu9RElSEVOifYTJu60Fr7RHGOyLaQnGfhwSwUFlR6ee+k1Ll2RSlaUcJ3wRJc1O56j7uAbxI36DtY5d0Ttu+7wO/gdZSRMuCIyQadAIOhX9Akf+mnTprFr165W20mS1Kas/r/73e/YsWMH//jHP9i+fXvEsYsWLWLt2rXtsrc7yc3NJScnh0WLFvW0KUB49Y0+cekJugB98nBAE2XFBAIBcOrci3ft2sXYsWNJS0vDarUyZcoUtm3b1tNmRUXSmRo+62OsXBLT41PkS6qvNjdmm5oQ4SkhFjI6g454nFjjdVyxKIPZo+Nxu1288cZrfLT2AB5f5N88PNFlMBTEU3Gw2X6rt/0J2/7XqNn5fLttEwgEpz594s1wxYoVXHnlla22mz17Nq+++mrM/X766afcddddzJs3D0WJvCFmZWVRUFDQZlvD2bJlCz/5yU9YsGABY8eO5auvvmrSZuXKlSxdupTJkyezfPlydu9uWwLAxx57jDvuiK5O9wii+oagFfTJIwCRLEsgEATo6ntxkI7ek0tLS8nMzAx9z8zMpLS0tFNs62wiPCWaCd9ojEbrlTU0NbJN/Njvts2wMCKECEl4SnQGeutI9MkjUCwZ7TpeqQ/n+P7F5xAXF8+uw0W88kUJJ8vCQjbqPSXUsHu4PqmhxKyn6hjFH/wAd2n9YmL9c6HqrmmXTQKBoG/QJ94MJ02axFVXXdVqu5SUFObMmRNzv263m+Tk5Kj77HZ7k4ejtuJwOBg7diy//OUvo+7/6KOPePTRR7n55pt55513GDt2LNdffz2VlZWhNhdeeGHU//x+P59//jnDhg1j+PDhHbKzMxGJLgWt0SBKCE8JgUDQ9ffiIJ1xTz5VCBclmkt02T4C7hR66ygGXPgGluHntr8rURK005EUA5nL/k7yzFuabSObUkKfFXNq1DYjhmRyyy23MWaIlRqHnzfWlfPFriq8PhXN58JTdZTCN74Vaq+FhfVUbfodvto8KtY+GNFntPwUAoGg/yB+5Vtg8uTJvPfeeyxcuLDJvlWrVjF9+vQO9b9o0aIWwypefvllLrvsMi699FIAHn74YVavXs0777zDddddB8B7773X7PG7du3io48+YtWqVdjtdnw+H4mJidxwww3tsleWO1aSTZYlqF9FkRWdKPEWRnBuOzrHfQGDtUGUaDwvYn6aIuamecTcNM+pNDddfS8O0tF7ckZGBiUlJaH2JSUlLFiwoN32dMo9t5l+ZL0p7LMlprGkWGwKK/ttSMhsuW0ryGGeErKi79Rr9VS6/juKLDU9z/C/f9KUa0HWh8IndHGZeFwBoU0xp+B3VjTpU9J8JCQmcPGiMYyIK+LzXVXsyLFzvMTFd4ylDKx8IKK95ndRtfkJLIMWoPkc9Z3IkXap/lPi79Gfrp22IuamZcT8tIwQJVrgZz/7Gddeey3XXHMN5513HpIk8fXXX/OPf/yDVatW8a9//avLxvZ4POzbt48bb7wxtE2WZebPn8/OnTtj6uPOO+/kzjvvBODtt98mJyen3YKETieTmtrx7OYFmgpIpKWJZEbRsFrjWm/Ux1GTJ1AsK2h+Z5NrTsxP84i5aR4xN81zKsxNT96Lg8RyT54yZQoHDx6kvLwcRVHYtWsXv/nNb9o1XmfdcyH639ifmEjQWT4uKanFsU7W/99i0bdqU169KKHXt962NaTyOIKvw/GJcZ02H+GcCtd/ewn+3eLiTE3mrs5lpaz+8+DZlyEpevbUixKWlEF4Kg4AYLAk4YniCGQxB67PKr3MuEEWBqcZ+WxnFUeLXLz+yU7GptaxcFIyZkPA28VVsBEA+9EP0ccFKuXpjGZSUiwhO/U6uuRv3FX05Wuno4i5aRkxP9ERokQLzJo1i3/84x889dRT/PrXv0bTNP70pz8xdepUXn755S6taFFVVYXf7yctLS1ie2pqKidOnOiycZvD51Opre1YjL8sSwH3PEmmoqKukyzrG8iyhNUaR1WVHVWNPRlrX0WfOATNf4DSgjwUk1XMTwuIuWkeMTfN01lzk5hoRq/v2iSEPXkvDhLLPVmv13PXXXfx/e9/H4DbbrsNo7F9VYQ6657b3N/Y2ZCLELff3OI9WbGk43eU4TMMavXeHXTB9/m1Dt/n7XZPw2eHDzrxuaE//TbU1bmQGs2d296Q+6PapoLUMNd+fUPIhp/olWPqbHbkijo8nsCFFGdSuHBuKgfynaw55GbPCQfHil0snpTE+MGWCM9YnydwXWuSgYqy6tB2j9vd6jVTe+AN3CU7SVv0SI/lJutP105bEXPTMp0xP91xz+0phCjRCjNnzuS1117D5XJRU1NDYmIiZnOMmaq7AE3T2hX2cMkll3R47E75gVFVkBTxY9UMqqqJuQF0SSMBcFcewzRgZmi7mJ/mEXPTPGJumudUmZvedi8O0viefM4553DOOed0St+d9XeJ9jfW5LCcEvqEFsfKOPdveCr2Yxg4r3WbwsI3Omq/pjW8dGqSrkuu01Pl+u8ImqY2PUe5IXwjcC007JeN1tBnSTERDW9NHva8DRGJTSVJYsJgCyOyjazZ5WN3rp2PtlWx54SDs6clk5IQqPyheeuFB8WE3+dtsEP1t/q3qN72bGB8WxG6+KwW23Y1/eHaaS9iblpGzE90RLbBFti4cSNOZ0DRNZlMZGZmdttDkNVqRVEUysvLI7ZXVlY2Wak5ldA0v6i8IWiVQFlQ8Fbn9LAlAoGgp+nJe3GQvnZPjqi+YUxqsa1iTsE8aEFsCyIhUaLjK3nh1TdEosu2I+kDoRD6xKFN9+nCRClZifh76RKHIptSSB59dkTp2HDsR96l4utf4ClrWhHOJLs5Z7qVKxamk5aoI6/czStflvD13mrc3gYRQ1aMoPoaDgz/HAXN7wn7Il7oBIK+hviVb4Ef/vCHKIrC+PHjmTVrFjNnzmTmzJlYrdbWD+4gBoOBiRMnsmHDBpYuXQqAqqps3LiRq6++usvH7zJUP4h644JWCFbg8FYf72FLBAJBT9OT9+Igfe2eHP6yKRsTO69fxYTmd0WIHu3vLGwBQ5QEbTMDLngFT+VhjJnTmuxr7AERLjjJhniyL/0vqakJ5Hz5TNsGlfWgBrwfslON/GBJJluP2th00MaWI3XsO+lgwYQkJg2xgKJHCxMiWqu+4bM1lP6NECgEAkGfoE/+ymuaxrPPPstll11GWlpa6HN6enqb+tmwYQNbt25l27ZtbN68mVdffRVVVRkxYgQzZ85k1qxZfOc732m3nXa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3O4xexpNU5E6YQVF0LfRJQwGwG8v6mFLBAJBT9PV9+Ig/emeLEd4SnSeKJG29ElqdjyHddbPOtxX+LOC8JRoO4o5FXP2aVH3SUr0XBEQEKwkSUaSJBInXI639iSaz4WrcFOrY0qKEU1tCMnQW1KYO0ZiwuA41u2vYd9JB5/uqGJnTh3nLqnA2gZPCZ8tL/RZU4UoIRD0Nfrkr7yqqjz77LMsWbKElJSU0Oe2ihJWq5Wzzz6bs88+GwjUMN+0aRMvv/wyb7zxBm+++WaHHoT27t3LVVddFfr+yCOPAHDLLbdw6623smzZMiorK3nmmWcoKytj/PjxvPjii6SkpDTXZa9H0/xIsr6nzRD0chRz4BqPVopMIBD0L7r6XhykP92TIzwlDJ0nShjTJ5Fxzp87p7PwBQzhYdmpSDozusQh6JOGNdkn6xpCo2RDHKkLHsJ+9INWRQnFkoGmqaGcEfFjLiFh4gqK3rmEBLPCt2amMG1EPKt3V1NQ6eG1T/ay3/0fpni9pCbo8TvL8daeRJ84JGr/wlNCIOjb9ElRAgLeEtE+txW73c6OHTtCqzS7d+/GaDSyePFiZs6c2XoHLTB37lwOHTrUYpsVK1awYsWKDo3Tq9DUTok1FfRtZL0FJBm/M0otMoFA0O/oyntxkP50Tw5fKZd0PZ8wNCph4RtiMaNzkSSJzPNfiZonJFoeCfOwM7HnfoZiTMKZt6bJ/pTTf4kxczpln91KMGuEpDM1EZMGWg1cvjCdg/lO1h+TOXDwINuPlzBxiIX5432oH1xF1vKPI4SRIOFChOYPeGM4TnyJbd9K0pY+hWJKbsMMCASC3kafFSU6g0suuYRDhw6RmprKrFmzOO+887jvvvsYO3ZsuypgCEBTVWSR6FIQA5KsR/PWofncYIiebEsgEPR9xL248wnP+dBb51Akuuxamvu7RwvtkHVmMs76I66iLVFFCVP2fGSdKfK60pmjhutKksT4wRbGjckix7KQT179jL0nHRzIdzBteDzfObuYpPThTY6LyD/h96BpGpXrfwWAu2gLluFnt37SAoGg1yLeDlvg0KFD6HQ6pk2bxvTp05kxY4Z4COoomj8yeZVA0BxK4CHU7xLeEgJBf0bci7uAU+E+HG6jCN/ochKn/gjLsHNCVTui0ow4FBQfwr0sJJ252fYAOsnLabOnc/05AzhtbAKyJLHtWB1PP/MnvvjiU+x2e+QB4YkwVQ/eqqMNY+ktLZyZQCA4FRDScwts3bo15C766aef8tRTT6HX65kxYwazZs1i9uzZTJs2rafNPGXQwuqXCwStEXTX9TsrIbFn65ELBIKeQ9yLOx8lbgBxo76NIXV8T5vSPOHhG6L6RpeTOPHKVts0G0ZT/7eKyFWij+4pEUTzu9FUH0a9zOkTkpg+Mp5Nh2wc8bpZvfpLNmxYz5w58zj99DOIj4+PqM6h+T346sJyTLSSJFMgEPR+xK98C5jNZubPn8/8+fMB8Hq9bNy4kRdeeIGnnnoKSZI4cOBAD1t5ClEvSojqG4JYCD78qC6R7FIg6M+Ie3HnI0kS1jl39rQZLRLxrCBySvQKmg2jCYoSYaVGJaVpTolwNJ8nouKGxaiwdEoy5865ks0Hyti2bQvr1n3Nxg1fM3vOfKYmNHhOaH4P+BuqfLRWuUMgEPR+hCjRCpWVlWzdujX036FDh1BVldGjR3dacq3+gqbWq9zCU0IQC/UPP9GSXWpqIAxIuG8LBP0DcS/uh0SUBBWLGb2CcHFIUkIhucF7saQLyymhNyO18LwX8JTwNtmeFKdn2dmLmGLezo7CRNZ99DyrC7ezVqcwLqGKmaMS4JvHiRt9UUNfQpQQCE55hCjRAueeey4nT55EURTGjx/P3Llzufnmm5k5cybJyck9bd6pR73rnXi4EMRCQ/hGpKeE31lB6ae3gOYnftz3iB/1nYgHIYFA0LcQ9+L+iUh02fsI/zsoJit+Z3mkeNQ4p0T4sfo4NG94nggNzedsMobmc1K7+yWU0q+ZpYPx5wxk69FS9lUNZOdxO7uO2xmVZWZWxX/ITjUGD+qcE2yE6nUA9RXBBAJBl9Inf+UlSSIrKwuDwRDxua2cf/75oVhVs7mXlsw6lRA5JQRtIPjw4w8L39D8HirW/hK/vQiAmu3P4inbS+oZD/eIjQKBoOsR9+J+SkSiyz75uHrKESEORQmpkcPCNxqX9ZT1FvzeyOSVtXteadKH6nPhd1WFvseZFBZNSuaM1Mls3lDCjmN1HCl0cqTQyUCrgdmj45nl8zTppzMofHMZAIO+v7pL+hcIBA30yV95WZb58ssvQ9/DP7eFn/70p51lkgCR6FLQRhQ9oKGGhW9U73geT/k+DKnjSZ59GxVrfokz72tcxdswDRAu3AJBX0Tci/sp4YkuhSjR64j2N4kI34jiKQFlEdu8VUea9KH5nFFzj+lsB5k3NpFZoxI4kOdg21EbRVUe/re5km+q3mXRBelMmzYDi6XzvRp8tnxUrwNDyphO71sgEAQQv/KtkJeXx4svvsj27duprq4mOTmZmTNnct111zF48OCeNu/UQiS6FLSBQPiGJyKnhOPEVyDJpJ7xaxRLGkkzbqRy3UNUb/sTmd96UTy4CgR9FHEv7n9EJroUv+29AV1CNgmTrsaQOo6anX8LbAwuOFGfgLIexZIWcaysi00sqN7yh6jbVU9twAZFYvKwOCYNtZBb6mbrERvFNTY+/vgDPvtsFVOnTmPOnHlkZWU36UPTtJhzUWlhiTSL318BQPZln4Hcds9rgUDQOuJXvgX27t3LVVddhdFoZPHixaSlpVFeXs6nn37K+++/z6uvvsrEiRN72sxTB00kuhTEjiQrIMn4XQFRwueqxe8sR5c4NPSwYx68CGPGNNylO3HkfkbciG+1aYy2PKAIBIKeQdyL+ymiJGivJGnKtQDU7n6pfosW2ifp4wHQW0cj6+MijpMafe8okiQxPNPE8EwTzuwzOVCTxc6dO9i2bQvbtm0he0AG08cNYOai5eh0OlyF31C54TekLvotxvRJzfZbu/ef2HM+Jv3MpuKI6qlF0adFOUogEHQU8SvfAo899hgTJkzghRdeiIhjdTqd3HDDDTz22GO8+uqrPWjhqYUI3xC0DQnZlILqqkRT/bgqcgDQJw9vaCFJJEz6Ae4vd+I8+XVMooTfVU311qdxl2xH9dSht44hcfJVmLJOEwKFQNALEffiforwlOjdRBGKEsZ9F9kQT9zIZVGaN3gYJEy6Gtu+fzUsVnWQzJR4Ri+6mHPO+RY7d25n8+ZNHN7wKgdX1/Hpl+uYteB8svKfJDVOo3rrH8n81gvN9hUUW5z565rsUz02iBOihEDQFYi3wxbYs2cP119/fZPEWmazmR/+8Ifs3r27hyw7RQmFb4jLThAbiikFNBXVXYOr4hgA+qThEW2MGVOR9PG4ireFMmU3h6fyEKWf/AjnydWoXieyIQFv5UEqvr6X6i2/R9O0Fo8XCATdj7gX908iqm8IwbjXEfr7hN03ZUMCCeO+18RLAiLDcYzpk0ie1Xm5Ymr3vEzNzufx5r7PvHnzufXW2/nuHBNjssw4aorZsGEtL3+ax79Wl7DzaBVOZ9OqH43RPLYm21R3bYfsDA9vEQgEkQjpuQWMRiPV1dVR99XU1GA0ijKEbSLkKSFySghiQzGn4K0Cv6sSd70ooUsaFtFGknWYsubhPPE57uKtmAcvjNqX5ndTsfYh/I4yLMPOJnn27Ug6M66CjVRteQr70feRDYkkTftRV5+WQCBoA+Je3E8RCxi9m5D3Soxifng4js6EYsnsVHNs+18DwDJ0KYo5lSHpJoakm5BHn88x1yi+yn+X4iovn27JZ2PFb5gwYSIzZ85ixIhRUUUvNZooEWVbrDjzN1Cx5l7MQ88iZf59zQptzoJNuAo3kTzz1ghhTiDo6/SJX/wNGzbE1M7r9XLHHXfE3O/ixYt58skn2bp1a8T2rVu38tRTT7FkyZI22dnf0dR6Nz25T1x2gm5AMacC4HdWNHhKJA9v0s48aD4Azvz1zfZlO/gmfnsRpuz5WE+7F1lvQZIkzIPmk77kCSR9PLb9K3GcXN1uezW/G2feWmp2vUjtvn/hOPk1mto19dMFgv6CuBf3T0RS7N6NRFu9VxraS4oJxZjUuQbV09ibId5i4owzFnHtWZl8f2E608YMQFEUdu34hr+/+BeefPJ3rFr1MUVFhRHekqqnrmnfnvZ7SrgKAu8qzhOf46s53my7iq/vwX7kXVxF37R7rFhQvQ4q1j2Mq2RHl44jEMRKn/CUuPHGG3nmmWdYtGhRs20cDgc333wzW7Zsibnfe+65h5tuuokVK1aQmppKamoqlZWVVFRUMH36dH7+8593hvn9h/rYQfGgIYgV2ZQCBEQJZ8VRkA3o4rOatDNlzQVZh6twI5rqa1KFw+8oC8SvynqSZ9zUZIVCnzyC1NN/Sfnqu6nZ8TfM2fORlLZl2LYf/5Tqrc+geSMfZBRLOomTr40aYysQCFpH3Iv7KcJTonfTkZAaSUI2JnaeLWH4XVXoCV+80OqHlMhKNTJs3GCSFt7Lmr+cz+7DRVTJ32Lduq9Zt+5r0tMzGFhey7hBFkxRQjVUd/s9JTxh5U+9NSfQJ49osb3msTe7z1W0FUfuZ1jn3NnmZ5Ug9mMf4jz5Fc6TXzHo+6vb1YdA0Jn0CVHirLPO4pZbbuEPf/gDZ511VpP9lZWV/OhHP+LYsWP8+c9/brU/l8vF119/TUFBAVdccQUrVqwgNzeXsrIy0tPTmTp1KgsWLOiKU+nTiESXgrYSrLLhLNiE31WD3joqatlPWR8XqMJRvBVv5REMaeMj9tcdeQ/N5yJ+/BXoEgZFHcuUNQdT1jxchZuoO/wuCeOXx2SjpmnU7noh4DoqyZgHL8SUNRdN9eEq2IircBNV3zyOtzqHpOk3CndMgSBGxL24nyOeFXo57RclJEluVpSIG30h9iPvNTpAjig92hKqswLVG/ZCr6movoYcEqq7Fr3sY3ymj/GZ6WjDhnNCnczu3bsoKiog52At6w/UMujgN4xOtjEmy0yCJfDc0V5PCU314a3OCX331Z6I3i7MU8PfwljlX90FgDFzOnEjzmuXTbHOp0DQXfQJUeLJJ5/kvvvu47bbbuPxxx9n2bKGFcn8/Hyuu+46qqurefnll5k+fXqLfeXl5XHNNddQUFAQ2hYfH88f/vAHzjjjjC47h36BECUEbcQ8aAE1O/6G8+TXQPTQjSCGlLEBUaI2t4ko4SoMuEHGjTy/xfGSpt+Iq2gztXtfJW7U+VGTdTXGfvR/2Pa/hqSPJ3XBQ5gGzgrtix99Ie7S3VSsvZ+6Q2+h+d1Y59zZap+t4S7fjyPnYzyVh1E9tVQmDUROHodl1IXo4jo3Tlcg6AnEvVggvCp7OW31lJAkkmf9DHfpbnRJ0e/lhtQJmLLmNhElZJMV1VkR0zCVG38TuUEDv6PhWNVdg+quaTAr7z3mfft7LFiwkLKyMr58ZhUH850UllSRn2fjqz01DLQaGJ1lZmp6EdZgt6oP24H/Yh58Brr4gS3a5LcXg+oNfa/d8w9MgxZgsI6KNNXXkKzb7yht9Vy1VpJ7t4SkM7X7WIGgK+gTb4eSJPHb3/6W733ve/zf//0f7777LgAHDx7kiiuuwO12s3LlylYFCYAnnngCWZZZuXIlu3bt4sMPP2T8+PE89NBDXXsS/QERviFoI4o5laSp14e+G1pwd9QlBjwgfLX5Edv9zkq8VUdQ4rPQJWS3OJ4+aSiWoWeheetw5q1t1T6frYCaHX8FSSZ96ZMRgkQQY8YUMs75C7IpBfvR93HkftFqv83hd1VTsfZByj69CfvR9/FWHsJfV0RdwXZq971G8f+uoHrrn9D83tY7Ewh6MeJeLEB4lfVy2p5TIn7MxaQueBBJkqInepQkZH18k82yISH02ZQ1r43javgdxaFvqqcWv6uqYbffg/PEVwCkp6dz+vgkfnhWJlcuSmPWqHiS4xSKqjys2VfDX//9Bc888wc++eQTjm38F9Xbn6V01U9atSCYn8KQPim0LThmOH5HedjnsjaeZ9sIFzTCPUkEgp6iT3hKBHnwwQcxGo3ce++9HDp0iDfffJOMjAz+/ve/M2DAgJj62LFjB/fccw8zZ84EYOTIkfzqV79i2bJllJaWkpGR0ZWn0KcR4RuC9hA3+kIcuZ/iqTiIvtGqQji6hCEA+Gx5EdtdxYHkeKaBc2IqK2cZfg6O3E9xnPiiRbdITdOo/OZxNJ+LhElXY0gd14Jtg0iZfx/lX95F1eYnMaSNj5oboyX8zgrKvrwTX00uijmNhMlXYxo4B70lhXh9LQU7/kfdoXeoO/xfPBUHSF3461Ci0M7AXbYv4IlSfQyQkM0pmAbMxpQ1J2pIjUDQEcS9WCDJOtLP+mPEC6mgF9HmnBIxtJckZENTUUJSGirsWE/7BUX/vRAA2ZDYakiFpqn46orDNqj4bYUA6FPG4q08hDNvLQnjLwszQyIz3kvm5GQWTUqirMbLkUInObUSJSUlrFq1iuqT27G4ihk5oIb5044wbNgIFCW6kBZ86dfFZ6NLGIQj5xM0v6tJO3+YN4jz5GrUOXeBJOPMW4NiSceUGbm4qtUv9rWH8BAXv70EuVFlM0H70VQftXv/iWXoEvRiXmOmzz1J3nPPPRiNRp5//nmmTp3K3/72N5KSYs/wW1ZWxuDBgyO2DRkyBE3TKC8vFw9CHaFelJCEKCFoA5KskL74tyi1u9AyZoeXRI8g6CnhrW0kShRuBsA0cHZM4xkzpyGbrLiLt+F3VaOYkqO285Tvx1O6C13SMBIn/aDVfk0DZpIw8Ups+/5Fza6/k3r6/THZA4FVlrLPb8Nny8M4cA6pZzyMrDMDIMkSJuswkqf+EMvI86lc+xCeiv2Uf/2LwAN9fbv24qk8RPX2v+Ap3dVkn/3wO8gmK0nTfoxl+LkxiT4CQSyIe7EAwJgxtadNEDRL237vY7s9SEh6S8QW2ZiMpOjD+ml48ZdN1tbzPKjeQPhEGN7ak0DguUB11+Ip34u7bC/ust1R7JbISDaQYTVxhsmK4Yw7OLb7Cza688jdf5Btx+o4/I+XMBiMjBo1mjFjxjJmzFgSEhpyZmjegCgh6cyYsk+rFyU8TcbyOxs8JdBUane/hGxMpnb3SwBkLf8EOSzsIlqFkFgJFyV89hLx8tyJ2I/8D9veV6g7+AbZyz/uaXNOGfqEKDFv3rwmD8OapnHs2DHOO6/pSufGjRu7yzRBOMJTQtBOFHMqqYO+Q0VFXUQiqIg2xiRkYyI+Wz6a6keSFTRNxV28BWQdxszWw7cgsDpnHrwI+5F3ceZ9TfzoC6O2sx97H4D4sZfG7CmQMPFK7Effx3nyS7yTr0KfOCSm42p2PIfPlocpax6pZ/yq2WzbOksG6Wc9TdlX/4endBdVGx8lZcFD7RYCHblfULnpd6B60SUOJm7UhRhSx4Kk4LcV4DjxZSCR56bf4Tz5NSmnP4Dc6IGyI2iahrt4G86TX+GtPYHqrkE2paBPHoFl6JkY0iYKIUQgEAh6gLaXBI2lUzkil9PAS95FkmQq1j3U0EYOFyWSoZmkkUE0vxu/q7q+vRXVVRXyqJSNySROvpqqTb+jauOj+OoKmu1HF5+Fz5aPuWo92cXP8d2xYBs8gJwSF1VDx5OTc4z9+/eyf//egO0Dsxk7diyjR48lxRcQD2S9Gbne68N+9H2MmTOwDG0oaeytOgqAeehSnCe+xHFyNebs+aH9qqsKKcwDUvO0vxpIeHUPzdt8pQ9B2wmKXpoIi2kTfUKUuPLKKzv1wfT666+P6oJ1zTXXNNkuBI7YCbmZiZwSgi5ClzAYT/k+/I5SdPED8VYdRXXXYMyc3qaXZcuwM7EfeRdH7hdRRQnVY8N54isknQnL0DNj7lfWmYkffxm1O5/Htm8lKaf9otVjXMXbsB/7ANlkxXraL1ot/yUpBlIXPEzppzfhzFuD/dhHxI+6IGYbg9iPfkDV5idBkkmacTPxYy6JrBySNgHL8LNxl+2hatPjuAo3Uv71L0hb/LsOe2dAIFyk6pvHm2Ypr83DU7oL++F30KeMxTrnLgwpozs8XnNomobfURJakdInDEbSGVs5StAZiHuxQNCL6YTwDb11DN6qw2EtJGRDAtbT7kVnyQh5KkpyuKdEw6tLtFCPxmh+D/66IgAMKeNwFW7EV//SqBiTMA6YAdCiIAGBMEyfLZ/afStD2xIsOqYOjyf7iqvw+/0cP57DoUMHOXz4IEVFBRQVFbB69ZdIjjwyvOWMp5DxZjuapiFJEpXrH44QJdwlOwBImno9qrMSd+lO3KU7Q/tVd03EM4DaAVEi3FNC87vb3Y+gKdFCcwSt0ydEiVtvvbXT+rrllls6rS9BI9T6RJey8JQQdA26xIAo4avNQxc/EJ8t8JCht7btpdWQNhHZZMVTvhfN746IZwVwHP8Mze8mbuQFbfYMiB99EXUHXseR+xmJU65FF9d8vhtN9VO95Q8AJM/6GYoxtlA0xZRM6um/pHTVT6jd9SKWIYtjengL4qk4SNXWP4KsI/WMRzBnN59YzJg+mYxz/0LZl3fhKd1FxZoHSFv8WLtLn2qaRt2B16nZ9QJoKoa0ScSN/g7G9EmhDOyu4m3Yj36At/IQpat+TNL0G0kY9712jdccfmcFtv2v4cxbh99R0rBDUjCkjid+zEWYhywW+TS6CHEvFgh6Ox0XJdLP/D2eqiOUf3F7fZPA82Hc8HMiG4aFb0R4Suhar5DlrTmOp/IQkj4evXUkrsKNoZVs2ZiEbEoBxQBRwinC0SUMBjZFTUCp+Rzo9HGMHj2G0aPHoGnfpry8nMOHD3L06BEObzvG0SIXeev38cXOUuSiIoZmmBiabiTJVktCQiKqx4a36iiKJRMlbiC6hGzcpTvx1QsqEEh2LYWJ/h0TJRpCP6KFkvRWHCe/RjFZMWZM6WlTmkXzCZGnPYinqUaIB6EuJBS+ITwlBF1D4KEBfLZ8YA5qfYZtxWRt4aimSJKMIWUsrsJNeKuPN0li6cj9HIC4dnggyHoLcSPPx7b/3zhPriFh/PJm27qKtuCz5WPMmIZ58KI2jWNIHYdlxLdw5HxM7d5XSZ5xU0zHqR4bFWsfBNVL8qyftShIBJENCaQvfZKyz3+Gu3grdYfeikga1hbqDvyHmp1/Q1KMJM/6KZYRyyI84eSEQcQnDCJu5AXYj75PzY6/UrP9WTSvk4RJP+iw15ymadgO/BvbnlfqV48k9NbRKJb0QK35qiN4yvdSWb4X3d5XSJn/yy7z1PDZS3AVbMBdtre+hJ2ELiEbY/pkTINOj4gt7muIe7FA0MtpR0nQxsiG+Mjkjc30Gekp0bCwJRkiRYmkGTdTs/3ZiG2eskA4RcL45Ui6+kUE1RcY35SEJEno4jLxNcpHFY4+ZQyKpfnE0X5nVUTYiSRJpKenB6p5nH4GFVNUDq3Jo8I6jbwqiSPHVfaddLDvpIM1j/2W9PR0sq0yiYV1jJpan5Q76BFRbyuA6q5GDVtg6EhOifDqG5rv1FjZ99aepHLdgwAM+v7qmI/T/F5KV/0YU9Y8kqbd0EXWhY3XgVKt/RkhSgi6DVF9Q9DV6BMDokRwFcTvqgQCcaRt7ss6ClfhJjxVRyNECc3vxVN1BNmYiD5lbLvsNA9aGBAl8te1KErYj7wLQNyYi9r1sp009XqcJ7+m7vDbJIy/LKZqHLb9r+N3lGAesoS40RfFPJZsSCBl/gOUfHIDNbtexDRwNvoWSrhGw3H8M2p2PoekmEg78ymMaRObbSvJCvFjLkKfPILy1fdQu+fvyMZE4sfEbnNjNL+bqm+eCIhOioH48VeQMH55hKilaRru0p3Y9r6Ku2QHpZ/ehHX2HcSN/Fa7x22M31FGze6XcRxfFSqlHMRdvAX7kXeRjUnEj/seCeOWtxrSIxAIBJ1PV+Tzif582NxvXLgQkLYkUJbbby+h7tBbEe10ScNIGHcZzrw1kcfXex8qlgHRRQlZT/rSp9Anj8Ce80mzVjtyPsRdto+UeT+PWnpc0TwMSTcxbcECjGmTyElaRX65mxOlLqpSkik+eYCCg2V4yqsw5O4nfe+jZJBDmqeOQWlGUuJ1SJIUECWMDQk0eyJ8Q1P9OE+uxpR9GrLeguZ3U/71fViGnUnCqGUA+F1VlK/9FQkTv49pQNNS6e3FfvSDCJvDvVg9Vcdwl2zHW3WUhAlXRCTu9Nbk4K0O/NcdokR4wlJ32R6qtzxNyvz7MKaM7PKxT2WEKCHoPkT1DUEXo0sIVOAIeErQbk8JaAj58FYdidjurT4Gqhd9yvR2r8rrU8eimNPwlO3B76qKap+vrghX4TfI5lTMgxa0axzFnErcqAuoO/gG9uOrSJzw/Rbb+13V1B3+L8h6kmfc1Obz0ycPJ2nq9dTs+CtVW/9Ixll/jPlYn6OUqi1PgSSTsuChFgWJcIwZU0hb8gRlX/yM6u3PYkifiKGN4ToQEE0r1j+CK38tiiWTtMWPRhVVJEnClDkdY8Y06g69Rc3Ov1H1zWNIsg7L8LPbPG5jXMXbqVz/K1R3NZI+nrhRF2AaMBMlLhM0FW/VMZz563DmfU3trhdx5q0h9fQHoz4ICwQCQZfRCZ4STds0sznMUyJie1j4ZCjXT5S25sGLkHTGkAgRJPhdFz+AaK/lijklFCbQUqiebf+/AeoXGpp6CQYTHso6M5LOiNkgMzrLzOgsM2lLz+bERx9SUOEmLzGOqsQRVNTWUlZWhKeiOmC/QSYrxcAIxxaGjHZh8aoY9XJECEZb0DQNzdO+8A1n/loqN/waJT6Lgd95DWf+etzFW3EXbw2JElVbnsFdsh132W4GXf55u2yMRjARKIDPVog+eXjoe+nH14U+u0u2M/CiN8OObHjv8NUVUb76HpKm3YB50OkR/Wt+L868rzFlze1QKeLw0q7lX9+L5rFR9c2TDPjWX9vdZ39AvB0Kug2R6FLQ1QRezKTQioe/XpSQTSlt7ivoku+tjBQlPJWHAvsbhXS0BUmSMQ1aAGi48tdHbWM/9iGgETfygg7lLYgbeT4AjmMfNVu5JIht/2toPhfxo7+DYklv13jxY7+LLnEIntJduMv2xHxczfa/oPlcJIy/LKaQkXCM6RNJmnoDqF4q1/+qXfGctn3/CggS8VlknPuXVr08JEkiYdz3SF3wMEgylZseDZWfbS+OE19S/tVdqO5q4kZfxMCL/kPy9J8EvE4Sh6BPGoZl2JmkLniQARe8iiF9Mt7Kw5Ss+gmeqmMdGlsgEAjaRsdzSjRt0cxrSaN7YNLMW9ElDiVuWIMQHPSmiHa/DHoJymFeBigGJCUQAtdcyfDw/A2NbYiG314a+d1VTcnH12M/+n6ov8ZeH96qY8SZFMZkWzhzqpWbb7mDe+/9JZdfcAZzxiSQlWLA41M5Vuxi9aZd/OvND/jzB4X84/NiPv6mgM2bv6G4uAhVVVu1DwKCRM22P0eUUm1L+EYwaai/rhBv7cmo3hqeevGgs3MuaWqDeBJcfIpqY6O8H+GJJ2v3/RNf7Qkq1tzX5Djbgdep3PAIlRt+0yE7I/J11M+PKiqctIoQJQTdhwjfEHQxkmJEicvE7yipLwPWfk8JJW4gkj4Ob3UOmtrgQu+pOAAEsnh3BPPgM4DAyko0nPViRUfDAvRJQzGkTcRny8cTpQZ7ENVjw37kPSTFSEIrHhUtIclK6HhbWJbylnAVbcV5cjWKJYOESVe1a9z4cd/FOHA2vto86o7+r03Hukp2ULv7ZSSdibSFj8QU5hLEPOh0rPPuAU2lctPvUN21rR8UBXfpLio3PgqAdd4vsM6+LcI1uTG6hEGkn/kH4sdeiuaxUf7VXXhrm39IEwgEgs6kS8oxK814RDR6kU8YeykDLngF2ZAY1ibgKRHNq6JBlGjwlFCMSaFzMA9eSPrZzzY5zm9vSHIcS/Jmn70o4rvtwOsRq/uS3gJyo1CUiGdiCV18FmazmVEjBrNwYhLfX5TBLRdkc8XCdJbMyGL88AEkmBXKbT725tbw/vvv8Oyzf+SRRx7ixRef48MP32fHjm0UFxfh9/vxu6obwqcJVPioO/xfZGMySdMDuabaEr6hhgkYvpoTUV+2g9VNdIlDW+zLXbo7prwYdYffpWrL02i+2ESJkK2eOorfX0HtnldD21patAhWOnEVbgICi1Cu+ooo3uocij+8ttXFFk1TI/KAhLar3lbt7e+I8A1B9yHCNwTdgC5+IH57MT57KWoop0Rym/uRJAm9dRSe0l34bPnokwI3V0/FQQAMqe3LJxHEmDEVSR+Pq3gbmt+LFPYwpnps+GpyUeIGtFidI1biRi7DU74P+7GPMGZMjdrGVbAJze/GMuK8Nr2UR8My7Cxqd7/ckJPDOqrF9rV7Aw8MSTNuanc5UUmSSZ5+EyVFP8S2byVxI89HNraemV3TVGq2/RnQsM6+s815MCCQKd5dsgNHzsdUb382plKv4fgdZZSvuT+QXHT27cSNODem4yRZR9KMW9D8XuxH/0fFml+Qed6LomSpQCDoBjrPUyL9zKep3vFcswmZmwvfCK/EERIuoogHSr23pGJu8JpsHMphTJ8YEAjCXuDDPQbDS5FG9B2fhYSEr64gVClDU304jn8aIUhAINF1YzFH8zUkRZRN1tCzQPg5GwwmslMlhmdYMaZNxDZwL3aXn2KbgmfCYvLy8jhxYCOHt+0kN3VCKFJG8juxlH1K9sjJjFlyB1lZWcTbA56k8WMuwpAyJmCD34Pmc8d07wgkXQ7gd5Y3SeoYLlqEi0meqmMo5pTQIpGreBvlX96JPmUsmef9rb6/Smp2vUjChMvRJw4JbHPXUL316UB/Ycmd/Y6GvA3N4SrchM+WHyFghNvrrclFsWQ0W0Wt9JMfA5B9xZdUffMEvprjVKy5n6xL32t+0ObEh1OowklPIUQJQbchwjcE3YFS/xLvryvC76pCNia224XQYB2Np3QX3qoj6JOGonod+GpOoFgyOvziLsk6DCljcJdsx1dXEJGUyV2+H9Awpk/q0BhBzEOWULXlaZz569E0Naow6MxfG2g7aGGHx5NkHfHjl1Oz7U/Yj36AYfZtzbb11pzAU7YbJT4L8+COja1PHo5l2Jk4cj+n7vA7JE9e0eoxjtzP8VYfw5A2EfOws9o9dvKMm3AVbcZxfBWW4edgGjAz5mOrt/8FzWMjfswlxI++sE3jSpJE8uzb8NtLcBV9Q83ul2KutCIQCATtps05JZrfZcycRuZ5zzV/aDMeFOHPk5IcDN9o2lauv1+HJ0YMhm406U9T0SUOwZgxjfixl4Z1Ev05In3pkyhxAyl883z89iI0TcNVsIGqbx5v2n0U0T3cu04OqyYS/kIvm1ICfftcqPUv1XEmhVHxZrLPPg+Ak//6F9V2H77Jiyit1SgqKuTE/rUUV3sp3radw/Z3gUBeBou9mMHFO8garqLLd5Ba+wG2Y5+QufRxTFlzo54nBEIQIkQJR1nIniDu6qYCgLtsH2Wf3YxxwCzSlz4JNCzweOtDYgGqt/8Z54kv8VTsZ8D5/0Dzuan4+t6G/sIED9XXeoWLULWVMIL5PQBKPrwG06DTSVvYcriG5nOFPB1Udw0+Ryk6S0b0tv7ookR46IkgOkKUEHQf9fFukiw8JQRdR9CzwFuTA34PcnxWu/sKJrv0VB3BMuwsvJWHAa1D+STC0SUNDWSLrsmNECU89e6BhvTJnTKOrLdgSB2Hp2wPvpoTEcmhIODO6CrcjKQzYRoY+8t0S1iGLqVm259xFaxHm/WzZl19g9m040Zd0CleVAmTrsFx4kvqDv6HpAktlyXV/G5qd70IQNL0n3TIHVk2JJA842Yq1/8K275/xSxKBEJXvkKxZJA49fp2jS1JMta5d1H84TXUHXwT8+CFnSZoCdpGTk4O9957L3V1dRgMBu69915mzeq87PMCQe8htt9L06AFuPLXYRrY/MtuqzSX6DLsNzu4yh81p0RYCKekj0fz1qF6apq0kyQZjcCKvHXOHZH7wvqVZB1avYu+pBgDZUUTsvBWHUV1VTa7ii9HeUkOFyUiSp+GfVbMqQFRwu9GC09uWe/V4XdWIMsSKQl6UgaZmTFkMQDOgkkc//gYpTVe1OlnUlhYSO7uE5SX+LDnFHGk2IPjeMCjVJEhbfM9DJ9/PZmZA8jIyCQ9PYM4tRhzygjcJTuoWPtAhO1+R1mTJJnu6pMN51YvStTu+UdgX/HWhvOLUlHFVx+C6KsrDFS6qtiPp3xfk3YQW9nNaCE3wbDeIJF5vaJf043HKn53ebMlSZtLGtqWZKL9FSFKCLoPkVNC0A0EPSU85YHcD+3JJxFEbw248vtqTgT6rAwo+/pOEiWCQoS3+jjUP0QAoZhFQ1rnvVga0yfjKduDu3xvE1HCVbwVze/CPGRxxEpSR1BMVgzpE/GU7cVbdRhDlPKpmt8dKHsp64gb0TklNfWJgzBlzcNVsAFX8TbIaN77wZm/Ab+jFFP2fIydIACZBy9CF5+Nu2QHnoqDrYpXmqZSve0ZAJJn3tKsC2ksKJZ0kmfeQtWmx6jZ+RwZZ/+53X0J2o/RaOS3v/0tI0aM4NixY9x0002sWrWqp80SCDqfGEXc1NN/ibf2BPrklsP4WhwqhnwOQU+JaHkpwj0tFGMSPm9dxIp/WMPA/7UoSSPDbFDMyfjs5fWHBO6ZeutovFVH8VQcip6jQdZDlBfxCDukcOEjXJQIhJ2Ee0oAoVwR4S/u3uocHKof2ZCAJOtItAT+y168BEnWUbPLS9mOAnyjv021z8qhjzZQYfNRXuulwubHsW8Pu7Z8FRJeXCdXY03NJNnsJ8ngxBqvJyVeR3K8Dr29DIlGZavDRAm/vQh32R58dQWBKQgXh6LMRdCbQJIN1O56Edv+5vNSRcxDFO8Eze+Nmsehcd6PiGPCvCi0sLwQbUlS2VzuCCFKtI4QJfowe/bs4f777w99P3LkCP/9738ZP358j9gjwjcE3YEuvl6UqE9IKXdAlAgm0QrekHy2QoAIr4aOoE8KiAO+2hOhbZrqw1txEEkf12njABjqV849ZXth1Lcj9gVrt5sHndFp4wGYsxfgKduLM399VFHCmb8B1VOLecjiDolHjbEMXYqrYAP23C9gSvOihCP3MwDiRl7QKeNKskL8+Muo3vJ7bAf+Q+qCB1ts7y7ehq/2JIb0yZg6Ye4tw8/FduA/eMr24i7dHSplJ+g+srMbSrOOGDECm82GpmldkxRQIOhRYrumJcXQrjLNkcSwmBWl+oYhfTLWuf8X0cw87Exse1/FlB1ZDrL+4MD/o4gS4TkldKakBlGiPs+BIXUcjpyPcZz4ot6rEhKnXh/yxpPDEmuG4w+rghERphL2WdLHg6yvFyXCXpDrn6vdYaKEp3Q3tvo8TamLH2sYx1mOLm4Ams+JySCTOmQYo1PHM6ggTCjIPhv3wAvZ98Y1lNd6cSTPorhMobKihGqdpUnIhM74NdYEPUl6B0kWHaPWr8VcsgWtxkOiRYdRL1P22a3hs9hgelgoRvA3MvjiLimGCEFClzg04jkpcHy4KNG0eojqrokuBDTeFrZQqrqqGz6HzXMsXhkNtjSTU0JTW62A1t8RokQfZvLkybz3XiAZS0FBAT/4wQ96TJAARKJLQbcQyinhCJTm6sjLbvBhI3jzDNUa18d3xMQQuvrkmd6a3NA2b+URNL87kAgzhtWhWDHWe11EyxztLtkBktxiLGl7MA06nZqdz+HKX0/SlB9GGXc7AOYwL5FOGTd7PpJixJm/DrWZTNt+VzWuwm+QjYnNloNrD3HDz6V2999x5n2Nz16KLi563ClA3ZFAlZD4MRd3ykurJMkkjL+Cqk2PYtv/mhAlorBlyxZeeukl9u7dS1lZGc899xxLliyJaLNy5UpeeuklysrKGD9+PPfffz9TprR9Lr/44gvGjx8vBAlBH6Ubr+sYnhuD/84iEkRaR4cSJgZJnHQ1+uSRmLLmRBkmEL6hRfOUCBMJdObksGMCr1JBzzjniS9C+/TJI5EUE5rfhRJejjSMcE8J65w7w/oNyymhMyPrzGh+F1r9y3Kg38D9zVO+P9TWHV5lK6xymN9eUi9KBJ5nJJ2pSWJLi9lEirkKw4jAM078uJnUHTyG16dS4zFTWVVFVZ2PareeSpuHqlonZeU2ggU4D3/4Hu6ib/DUBp6/TAaJRLOORItCkkVHUqKPUfv3kZiYCFUVqKqGLEtoPieS3tIgImiR3hf65BEhUULSx6F57RGeEmqYh0PofN1VMXknhOf58LurI+arof82lPNsIXeE5qkDEmLvq58hRIl+wieffMK558aW0b3LEJ4Sgm5AMafWJ6sKXG+yKaWVI5onWAkieBNXw27mnYFiTEI2WfHV5oUqcLjL9wJ0ek4A2ZiILmkYvppc/M6KUKJO1evA7yhFF5+NbOgcsSWIPnEwusQheKuP4asrQhc/MGJ/UCDpjNCJcGS9BVPWPJx5X1Obux6sTR8+nXlfg+bHPGRJ80nU2oGkM2IZcS51B/6Dq2AD8WMuitrO7yjDVbAe2ZjcqR4qlmFnUrv7pfrKJ8cwWEd2Wt99AYfDwdixY7nkkku49dZbm+z/6KOPePTRR3n44YeZOnUqr7zyCtdffz2ffPIJKSmB35ILL4yejPTtt99GUQL3t4KCAp544gmef/75rjsZgaAH6U6xraXFrIxzn4t0mQ/PKREtlENWsAxZ1MxA9c+nqr/prrBnV12Uil5KlMSHsiEeTWvIPRGNoChhnffziOpP4feloICgOmyoHnuob7/TRe2+f+Ep2xPIleF3R1Z/0BpCEIJ5LsKfYxrbpHodgbDH4OH1L/56nUyazk2aJRBiGLTTW52Dy6NSbfdR6/Chm7WEws05lORVYnP4qHb4KK3xUloTtKmOzY5/IkmBMtjeygIsJpms0j+QnD4Y77584vUe4k124k0KcSYZs1HBEtfggSYbk/B77RHeC+FeF6HzrSuOqdSp5rUHQjU0LST4AKFKKuHzEHFcfUJTn70Y1VVF4qSr8FQeCS2IRUON4tEhaECIEj1Id67YfPLJJzzwwAOtN+xCNJFTQtANSLIOxZKBvz5usENhAbIeJDnkIRH8f2eJEhAI4QivwOG3B25oukarO52BMW0Svppc3GV7Qw9loXriSS3XE28vpoFzqas9ibtsT4QoobprA2VP47M6XMkkGuahS3HmfU3Vkc9JnNNUlAiGbliGnd35Y2fPrxclNjYrStiPfQiaStzIZZ0risg64sd+l5odf8GR+5kQJRqxaNEiFi1q5oUEePnll7nsssu49NJA1v2HH36Y1atX884773DdddcBhDwQm6Ouro6bbrqJBx54gKFD2//vSpY79tIXPL6j/fRFxNy0TCzzI+sbVpi7eh4lpUEQaDyWKT3SA1gOzx+ht7TJNiksfKPxcbIurF9TQznRUDtD08oaOmMiBBNiyrqotgRfhGWdKWK/rAvzlDCY66uFaKju6kByzfpwlWB4iDF9Et7aE/jDXqYJfwnWvIH+67cpenPEGIEmdbhKdzV8b+QhYEgZS9zI8zBnn0bl5j/grc7BZJAZYDAwwGrA4H2fSbMH4hhcEThe03B6VGocfmrtAZHCNGsOtTY7xepRKp0KdpefgoITFFfUYjsSPUGoacdnUFmAxaAQn+zHLNkxm1wMTfocneM4iu0waokLo0HGpJcx6SVKv74fy4BpUfsDSJhwBc789YFnIJ+9ybuJ5m5IiKn5HNAo9KLg35Hva357Sei5ojmkepFI/O5ER4gSPUh3rthUVla2S8zoVET4hqCb0MUPCIkSHckpIUkSks4ccg0MqvFylLJe7aVxBQ61Pr60cQ31zsCQPhn7sQ/whIkS3qAokdg1okQwqWZQ/AgSjIE1dmIyz3ACIRkSjqLdNHaaVb12PGX7UCzpGNImdvrYhrSJSPp4XCXbUX3OqNdLMI9H3MjzO31885BF1Oz4C66C9TD9J53ef1/F4/Gwb98+brzxxtA2WZaZP38+O3fujKkPv9/Pz372M5YvX86CBQvabYtOJ5Oa2jmeS1ZrXOuN+iliblqmpflJXHQLJ9wlDJhzPfGddK02hxZvJviK2Nq/C50tgeCrbXxySpv+HRUpOvyALGtNjnP4Ewg69MuKnoGn3YhiTAy10zQL+ZHdkZqZSVAi0BuNobblmRNxlERWlUiyJpEUNqbdm0RwzT0+KRmPyYLPVr84IikoOh2+sOOHLv4p+V89hj1MlDDpG0IJ4swKqanxVEoBrwVrWiomawJ5YX24Cr8JfZYUAwqRngZp488hc9ZVALiPDMRVGJoQUP14yg8QHrwgSRIWo4LFqDDQGhBAJl9+ITpzMsc/zqf6cDmqqpG++Pt49Bns+Ndq6px+7C4/Nqcfh0fF4fZjGjiQ/DKNyjofNtWN3+tB9dooiPuasp3/pjkMukKMehmjXgqIFQYZo15Gr9cxbsRYynNW46uyUb1nE+a4ZE4WOtErEnqdBJVFVNX50MmQ7KvD47Hj82vo5OheQt7yXVEsiCQxPvDaLX53oiNEiR6kO1ZsAFatWtXzoRsITwlB9xHMKwEd9JQg4BURTH7UNZ4Sw4CGChxBV85gks3OJOhyGcyEDQ1iQeO4284iKHZ4ayKTVDWUPe0aUULWW9AlDsZTexK/uxZJ3xDH6a08QqC0a9fE+0uyDlPWXJwnvsBdvB3zoMiEan53Dd7qHJT4LHQJ2c300n50cZnoraPwVh3FW3sy6t/WXX6AY2v/SfyM25DN6Z1uw6lIVVUVfr+ftLS0iO2pqamcOHGimaMiWbNmDZs2baK8vJw33ngDgH/+85+BGOo24POp1NY2jZNuC7IsYbXGUVVlR1VFgrVwxNy0TGzzY8S68HHcgLuirpk2nYPd3hCSUNHKWK66hld1p0dptX04qha4H/h9vibHeWobXrclRY9x9BWoqhbRTlKMESED1faG512fXw61TVnye/T7/0PN7r+H9tscKr6wvjy2sPNwy/gJ86jT/PjD0l6kzr8Pp5yNqk+OsLmuqiL0Oe/L32CrqsDjDIxRU6diV5ufG83vxW2PrFDi1WeHzsGnNDxbGdMn4y7Z2Wxf4ZQXFeA48S9qDgeqEsmyhG3/m3jK9zFqYPQFn4xzrqP00514fSq+xPHU1VRQW55HwqLzOe79EKdbxe1VcXk13F419J/Lq1Ln9GNr9FMqKQaOfbgKV2Ex3toaNtveQtaZqTvWMF+Gvf/DU1kcOL/t/8RTeSSUo0KWQJZBkaWw/4qQJQlJqs+2IitIqEgQ2jZSfZ0bb7uH6mpHu393EhPN6PV9MwxeiBK9lM5YsQnSWaEbHXU3kgj8gsqKIlyXGiFcSaPTeF5inR99fIMoobOkdGheZZ0JVfMjab6Qp4RisCB10t/KUO9J4K89gSxLIU8JnTkpJrvbMjc6S+AhQnVXh9oHk0cZkod2yfVntA4NjRPev6c+d4Ypc0qXXffGlNH4ak/iqz6KMXNGaLu3KpAZ3ZA6tsvGtgw6DeeJL3AVbiRuSOSKuSt47hldd+7mQafjrTqKu2ADxuSmXjB1h9/BfmI9plEXYWohGaeANlXPWLJkCfv27Wu9YQx01suyqmrixbsZxNy0TG+ZHy0sqWZr9mhhVTLQWdpmf/2imaapTY7TUMKa6aLOjaSLFCU0KUxIkJSG9rIRfWqjxPOSIaK/iGMVc0T+h4RJV4W87QAkU0ogaWSjHFp+d23E9+odz6ELVvWSja3MjYbfWRGxRUkaFjpGNgfEWyVuYJRFFAlT9vyAt14j7Ce+pnb3yxHbwkuaRkPSBTwL9DqZ+IQ4Ek2Qri8nc1QmGWMaxtanjifltF9Q8sFVDWehaXg0PS6nKyRU+PVpJJ9xOeU7PdTm1mKZMAWfLoUy1uD1qXh9GpI1kbr6OVJS4nB4JFS/DlXT8Pk1/GrgWnR71QiBKGSzIjepxOE/chSv19tr/l31NoQo0UvpjBUbgMLCQiorK5k8uWOJ5DrDldRn0lEFWOLMneaW2tcQLl0N6PVKk+sk5vkZMIya+gTU6VmDkHXRE0zFQpkpHp8NkhMVilQXkqInLT253f01xmseTymgOYtITY2npD6GM33gQOQ2eGTEMjdqspFCAG9NaG5L7QGH04zhE9AZu+LfZTzFcWn46gqwJhuRFT2qz0NexUEUYwIDRkzsspAu36BJ2HO/QHHmkpq6MLTdZs8BIG3YVBK76LcoKW4pFRsexVP0TZPr2LkvkCk9dcTcLvstNE88m9o9r+At2UTqwh812V9cERBGMkfOQGcWv8cAVqsVRVEoL4+Ma66srGxyLxYIBN1IW+4RYVWrZH3bnqkM1lE46wpD5bojTdCFfY6eByiQ9yGsxGe4mNmomlbjPE6NK2FEJroM5pQIkDTlh7jy14UbB9AkP5PqtjWx0Vdf7Svo8Wk97V5UZyW1e/4RKq0ZqnDhqoo4VjE3/A4qcZlAoOqIGla1ImC7kdTTf4m35jilqyJDCJsIHZZ0/I6yhmN15pBXamhbWMUzTfWF8mmUfHRtRDvTgJnoE4eQNOMWarb/OXCsJJG18EEkQzzlX9wOgC4pjQGTp1Irz6BW2UbSxIGYBsygxJ7c0FfWcFyFgYAdy4gpOHIKaQ5N01C1QNoJTdPQANmSgd9eihoo54IGDP7WNRgMBqD1qiD9ESFKnGK0td55VlYWn3/+eYfH7QxXUoc9cLzD2dQtrr8jXEmb4vX6Q9dJW+fHpQU8AiR9PFU1XqCZutExoBK4+VWUluP3OJAUc6dev5qmA0nBU1dORUUdXmcgiVVVjQ9ofZy2zo1kiMdrr6Siog5N9eGqOolsSqGmToK6rvl3qSQMwWcvpzT3EPrkYXgqDqP5Pegzp1FZGXv977biNwUe+mry96Eb1nButqKAKODSD8HbZb9FCvqkoXircygtyEcJy9Zec2IrAL64cV32W6gpg1DMadiLdjcZ3+cox1NTgCl1JDaXHtXRfhv6kiupwWBg4sSJbNiwgaVLlwKgqiobN27k6quv7mHrBIJ+TBtEiXDBQNJb2jRM8uw70CUNJ350lHxt4aKEEv31KUJYqLfZOvduqr55nMRJP4hoq5jTkU3W0It/40oY4ech681NK7CGzUmwMkgwR5NsTER11+KpPBDVTmR9SGSJG34OALYDr6P5XUj6eHRxGXircyK8PiSdKUKYMWbOIGn6jZgHnU7FuoeazIOkM4bKpIYTXgIVQJ8yNkKUMKZPwVX0TUQb2RAfmH/VB6oPT8V+ohEs72kaOIvwUSTFEHld1Isa+qQGT06tUQltNczLJNy+qONKEkro7xP4oDMn4PNECtyKLJ7vW0KIEr2U3rhi09GXZS1UYkkWL97NIFy6Imk8F7HOj2wJKPiKydrx+axfnfB7HGg+F7IloZP/RlKgxJWrGr/Ph+qxoZhT2zxGrHOjGK34bHn4PM5A6SrNjz5xSJded7qEIbiLt+OuzkVJHIrXWRmwxZLZteNaRwHgrjwcGkf1OvDV5qHEZSLpE7v4vAfjrc7BU3MSoyGQuFT11OGpOoJiTkOyDOjS8Y0DZuI4vgp3+UFMWXND210lgYRc8VnT+t1vjt1u5+TJhqSr+fn5HDhwgLS0NNLT07n22mu5++67mThxIlOmTOGVV17B5XJx8cUX96DVAkH/xpAyFgj8prZG+ItzWz0lFFMySVOujbovFk8JaBAKBl78NgBxI5dhGXFeE49ASZIwpIzFVbgp8L1xyVA5siRo07KXYf0FRYnMaWQt/5jaPf+g7sB/8NXmEY1oebGC3g76pGFoatOV/HBPjYD9MgnjLwsc67E1ahtZ1SMc58mvIr7rk4aHvD4GfHsltoNvRrHXjCTp0PChqT5MA+c2ES6gIQl5k7+PYoj8+9XbF57zqnGoRfg5ucPKpMaKHEUQiyhdK2iCyDjYSwlfsQkSXLGZNm1azxnWEUSiS0E3oVgySJhwBQmNVibaQ/DmHVD3tU5NchlEMVkDiavsRYFSZF2Q5DKIXF/KTHVX46tPPtlV5UCDhK9GBMauT+bZBRVGwlGMSegTBuCrzQtVUPFWHQW00ENuV6JLDDxAhz8Yusv3gaZiyJjaJUk2wwklUW1c+aQ+yWhc1rQuHb83snfvXi666CIuuugiAB555BEuuugiXn/9dQCWLVvGPffcwzPPPMOFF17IgQMHePHFF0MVrwQCQfejTxpK5vmvkHHe31pv3AFPiRaRInNKtGiCMTnCO625EEV9ypiw7iNf5MO/B0IagqKEFDQiav+yzoysa/m8NU/TsI7g+cWPvSSq6NLSOTeu3tVYwGgJXXgOsITsiFKzcaMvJOX0BwP3yvrxNdWLdd7dEXmigpgGzQ98aFRmW1IMkfMp14sS8QNB1geeTdTGokRtsHFomzFjGpbhsRUOkKL8DTS/L0pLQRDhKdGD9LcVG02r95SQ+oarr6D3IkkSSdN+3Cl9BZV3vyuwui91YjnQ0BimFOAY3prA74Fs7EJRwlif7NJVHVYOtGsqbwRpWI04GRo7YEvXihIAloxx1NiK8VYdw5g+CU/lISDyYbCrCM6rN0yUCCb0MmZ0fYnm4Lz7Glc+KQ0kXInPmo6tny3czJ07l0OHDrXYZsWKFaxYsaKbLBIIBLGgj1E874inRKz9SkpznhJBYvM+CxfHWwzfCBMlggsjEUKH3MgLox1iTPqZf8BbnYN5yBLqjkSp7NeCKJEy7+dUb38W54kv621sPY9X4tTriRv1bTzlkaEY4c9Y5sGLMA0IiA+SokfzAqoPxZxKwsQrcZdsb7D/nGfR1VdeC4oOoT4VY6PwG0N9Ox26+PqFi0ZCTfC73joKb+Xh0Bw08WhphmieEo2FD0EkQpToQfbu3ctVVzVkiH3kkUcAuOWWW7j11ltZtmwZlZWVPPPMM5SVlTF+/PhTe8Wm3lOiq5LaCQRdQchTIhj32VWeEoC3NhfomnKgDWMlA+B3VXd5OdAgDZ4SuUD3eUrw/+zdd3gUVdsG8HtmW3pvEHoLIYXem6AoYkNQrC8WbIiIvig29BO7YkGwIILYsAv6qgiK0qRID4SeBAgJpPe6bb4/NrvZze6mbkty/66Li2R2ypnDsjPz7HOeA8A7PAbFqVugKTgFVXi86eZCGdzb6cdW1KQaa0trg8+6CsPM83L/Ts4/fqAxKHLWtEyvLjVMR+obCWVAB4D1fYioDbGoHeDILxEshm845vFJaZEpUXf4htnxbAQlLAIRde6rjVNX1uUXcwNEpV/tDBxmVBGJpmC5rfOzP2TFUGAzeOh/a4MS9QzfqN0mHDJVILw6Dodf3xnwihpi2NYsw8C8TwRTpoS25rXaezHRKxiqsDirdWv3Y7umBFBbRLO21oUAQDI9s8i8QkxVyQRR3oiAlHG/1gExDt+oH4MSbtTuvrHh8A1qhYw3ADrjt/vOyJTwNgQljN9oOzVTwss4LWghtGWZAJz/gCx6hUBQ+EFbct4w1VrNxV/mgqCEV3A3AIC23DDfuLa05pyDrKurO5qt4RvGyuMyL+cHl2W+NampxemmIsnq/JMAJKjC451+fCIilzN/mHfg/abQiEKXaOKQPNFsNou6mQjmw/sEuReUYf2gLcs0Pbybj8AX6mQgm4Ye1G2eTIWAhDsbbJfNAEQDgRhB4WsYOqPX2PzyRhUxANU5h8zaUpOtIIgIGvRg7WHMMgwsMi6Mbap5sBfMZzOpc/51AweCTAlBsM6UMJyW4Z6u7NS6mvPwgaQpN71ucX8kymBdcdQ282Eoxn5hUKJ+fDokl5H0NUEJkW87aj2M37TUZko4PighqxlSoTEGJZyZKaEKAmAYQqEtuwgIMsh8wp12PMBwc6UI6AxJVw1dRR50LsyUkNVMcyppDLN86LWGv0Wlv9OPLSr9IHoFQ1t2wfTtjt5Y5LPO1G3OIIgyQxFTdYmpiFltpkbDBeOIiFobQXTSEOEm1JRo9C4FoaZWxsf11hgSRDmChsxD0JBHEDT0kZptrQtdGvnH3Gh7P438lt9WAKKhcxYEwZSJaWuIgyD3gq/ZrCb22mI+9MR8P3L/aAC1U5Fa/HvUHRZeJ6giiErLOhMWmRKGezpNUWrNpj7mG0Lu19HsOPLaL1gbYJ7xISpr7kNYU6JefDok16mpKWH14UHkwURTpoTzghLG7AVjIUhXZEpoy7Ogr8w3zELhoBus+hgDH7rKXJcO35DV3Azoa775kDTlgCA2qRBXS8gDugB6LbRlhkwNXVWBYTo2FwRFTMdHbRaOsTaKzLuVDgMkIqpHY8f8N3m/5pkLDrxmKgK7QhliezhhQMLd8I83DPMWlX7w6zO1tk6GYH/4hswnDAGJd1vvsJ4hGOZsD99o+JyN9xc2h29IkkWtB3vDQcyzUc0zJUKGL4Bvr2sQMmphzfbmmRJ1ZzYRrWpIWAzfEK0zJUyvmQ27kPlEWGZ9iPLa+njmbbZxz2Ye3DD9m9mY1YRqcfgGuYzE4RvUCtXNlBCdWFNCqpkhwrlBiSAAgDrfMH+53C/aaccyJ/OuCUpU5NUGJcyqkzuLqDTcDBj7Vq+pgCD3cfrMF0YK/85Q5yRBW5oOuV8U9FVFhhsdVx0/sCsqAWhKzkEVOQD6SsP72PieIyJqSwSZEpFXfWb6dto5x2hkxkELBSTMtP+indk3al+2MYNGI2o9GLa18XjYiICGzCsIGti+T5KgtxyOYact5pkSotmXBzKfcAQPm2+2onnmivWXnYIoN6s/UaeIqMXMJpYFKc2DFHK/jta1RGxkSggKP6C6zpAZ8/bV1K0wtods49MhuQ6DEtQK1daUKLD43ZGMNSVMv7tg+Iam0JCqKPfr4LRjWRzXxzB2VleZZxhKIFO6JFtBVnODo9eUQ5L0kDQVtqtiO4l5XQlDYEtyaZZC7QwchmKbzJQgorZOEdjVqUPkGs4aaNzsGy1shO2fjWxlOzQyKGErANGYTAmZKVPCRraKVCcYINoJStgpdGndHvs1JSz3XzOdqEXmhFkBTUXdTIna48t8Iy2zu0WZzaCErQCYef0I05cjOtaUqA+fDsl1OHyDWqHa2TeKan53Qk2JOkUPXTF8w/j/0Xy8pDPJagp66SpyoFeXQqYKdEm2gGhWU8JQvVxy7Nz1DTDWbtCWnDcFBEQX1JMwMs58oimpO3zDdW0gImpL7A09MD24N3KYRIvaYDElqK2HcluBheZnSigCGy4ObZxy3PyhX9VhmOHv8HjLoISdbBOLLw3qC6KYt9FWUKZm/4LCkBlpMfzGotBlnUwJs+EboiqwTuFUeW3Wt51tbDbVlCnBoER9GJQglzGNw2JQgloRYxBCqimQ6JRMiTq1FZyZKSEq/S0u4HJ/1wQlxJpMCU3RGUDSu6SeBFAnU6KmroQj565viLGmg6Yk3aUzb5iO798JEERTvRJjoU2RwzeIiJrF3uwbwSOehCKoB0LHvOCKRtT+aDNTwFamRNMLXao6DENAwp0I6D+rwc1qC13WPvSHjn4WISOfgX+/W+pM8WknsGNeU6K+4p8NDd+omW3D1hdJlsM36mRKmP0uKv0sZ10R5bb71Wwbn+5XQBEaC9/ul1vsBwDA4Rv1Yk0Jcp2a6KIjp2gicra6RZCcMSWoIMohqgKgrxmT6MwHdkGUQVQFmmpkyFw1fKOmpoSmKA2Aa4pcAobzNczxXgF9zQwcLs2U8IsyTMtZchY6F868YSTIlJD7doC2LBN6bSV0VQUQ5D5OqY1CRNQe2BvKoAzuhcgpn7ioEWYP7I0cvtH4Qpe16yn8OzVqGlEAUNRMtW0+LFRU+sOn+yTDfpuaKVFvI+sfvmH8ItTWkBWLdijqyZRQWAYlIMoREHcbNMVnEZBwB/L+fsy4F9Mqvj2vgioi0WKohrF4pqRjocv6MChBrsOaEtQK1c2McMbwDQAQvUJqgxJOLNAFwCIo4bLhGzWZEvrKPFMbXEWQexumxXRDpoQgyqEI6AJNUSo0hSmG47t46ITMPxraskxoi85C0pRbzrtORERN4glfrgkN1JRwWKHLxtahAODVcTj63fkzSjWBkGyU1bCoEWGv0GWj616YZ4rY+PeomemioX6wnn2jzlSeFpkSMsi8QxExaZndZpmOZ7adaUpQZkrUy/3/q6jdkPQ1QQmRbztqPVwVlDAViFL4On2KTuOxRFWgyx7QRbmXqQK18diuIip8Ab3WUGAT1tW2nU1eMxa3Ons/ANcO3wBq53evzksGwKEbREStXgPDN2wXumz68A17wyxsNkkQoArsZHfYheXwDfvBhw5Tv0eHaT/VfyyLDAYbmRI1mQo2gxzm04PWU+hSqJspITR8b2asG2HeB6wp0Th8OiTXYaFLaoWsgxLOSXsXzQIFzibWzMDhqiwJI2O2BFA7C4grGNNBdRW5Fr+7iiKoGwBDsUvA9TNfGKd9VeceMRzfxUERIqK2xTVTOtffhGZkSjSj0GWjMxcaoxHDNwDD9J+yhqYMb2j4hq6eTAnYLnoJWBa+FJV+FoGIxnxhJNq4vhqHb4BBiXpx+Aa5DodvUCtkldrnpKCEKXtB6e+U/ds6lszVQQnvcGiLzwJw8fCNmum4dBWGoSOCC4dvANZVy10984UpU6ImKCFyOlAiolbNYjaJRhe6bGxQwiyToLHZFY3Zr8WUoC3br9BQpoixuL6t9ptncugtZ9OoO3zDMGuXcYH9x+aoa7+CpjgdigDr4ZGm4RucErReDEqQy0gMSlArJMgsgxDOKHQJ1EbXnTkdaO2xggC4N1PCpcM3ar750FW6KVMisJvZb4LLh08YgxKm4qYcvkFE1HwekChhmSlgf0pMy00aW6/BPDvAcZkSFsdv6bSpYv2ZEqaXbLbfbGiFV53Zz8xn31D4QafXme3L3nEkyP062r2nMg6TZU2J+vHpkFyHs29QKyTIFJYXaKdlSgQBAESl8x/WvaJHQR7YDd5dxjn9WOZk3u4JSgh1hm+4OlNC5tfBNJZWVAU6vWZIXXLfKJjfhHH4BhFR0/nF3gy5fzS8w2Lc3ZRGDN9oyewbzSt02eB+zWtK1DPdZ6P2ZXbO9oMFdjI9zI6tDIlB0LD5tS+Z15RQ1l9Twjg00vi33TYojUEJZkrUh0+H5DLG6Xnqi2gSeSLzbAlnFbqsvbhFOWX/5pTBvRB11adQBvd2+rHMuS1TQmE5fMPVmRKCIEIe0BWA64duAIZvp2S+EabfOXyDiKjpggY+gI7XfQVR7sA6C83U4OwbNooyNr7QpfnwDecEJRyqvkwJm+23DIj49brG9LN5TQlBprIIeNQN9IRNfBP+cf9BQOJdNo8dNGQe/ONur72HZFCiXhy+Qa7DQpfUSolyL+g0ZTU/OycooYzoj7BL34EyxAO+gXES80wJmUuDEsbhGzU1JVw8+wZgmL9dU3jKZhEsV5D7RUNXng2AmRJERK2eeaaArawDmY2gRCNmjzDsunmzbzS4X0cWzbTYsf3v2G21v94vByxqdQiWdSTEupkSHRDYf5bdXfn1uR4AoC3PAsCaEg1hUIJchzUlqJUSFN5AJQzvXSddVAVBgFfkQKfs21NYZko4v3aGkTEdU9KUG47t4kwJoLauhKtn3jCS+0ejOvsAANvVwYmIqBVp4F7aZjChkUMmBKdlSjjp/qme4RvmtTUirvwY6txkKMMT7K4u6XUIm/Cmqa0WfdHMoZfGfXD4Rv0YlCCXMRW6FBmUoNZFkHnX/O3V4nGQ7ZkxU0JQ+DrvGxMbxDo1JFxdUwIAVFGDAUGEMizO5ccGaotdAmh4qjUiIvJsDQYlah/xvLtOhL6qsPFFls2zMOSOG3LhtHpKNjKwVVFDUJ21D15RQ0zLlMG9Gxy2KsiUUIXHmS+o/bG5QYma+x3jNKVkG4MS5Dp6Y6FLDt+g1sVY3NJZRS7bC9ErGKJXMGQ+EQ2v7Mjj1smMcEemhDKkDzre8KvTapI0xFizRFQGuDQgREREjic0VBbQ7Bv+oEFzmlTPSFTVTk2uCrOfVdBUgsIPPj2mQBHQ2WH7BGwX0A8d+wI0haehDE9s1D7CJryJ6twjUAT3stx3PcM3Gt2+mpoSFtOLkhUGJch1TIUumSlBrYsxGOGsehLthSCIiLxypUPHqDbquHUyI+pmTriKO4IhRsZMCVdPR0pERE7QhEyJphaYV0UMQPCIJ+DVYZhjMyUEASEjFjhsfyY2hm+ICh+oIvo3ehdeHYbAq8MQ6xfM62s080tVQaYABBmDEg1gUIJcRmJNCWqljMEIZkq0nDtmn6gbDBDcGBxwF3lAF6g6DGvSTRoREXmohoZCWxSrbNrDtCDK4dvjyua0yk2c91zhiEwJwHD/qNcxKFEfBiXIdSTj8A0GJah1MQ3fUDBTojWyCELIlM4b1+rBBFGO8AlvuLsZRETkAA3dS1tkJLb5YdOS83btgJoSht2ooFeXOqJFbRafDsl1TJkSbf3DkdoaYx0AY8FLal3Mh2u4a+gGERGR4zR++EZTMyVaH+cFJSyKm7cwUwJ6DSS91gGtapsYlCCXkWpqSrDQJbU2ppoSzJRolcyHb4jy9jd0g4iI2piGso5bUFOCbGvJ84tYcx+p13AIhz0MSpDrsNAltVLGi4mxgjK1LubDN9wxHSgREZFDNTR8w/z1th6UkJw4fMNcC4dvAICexS7t4tMhuYyp0GVDxXmIPIzAQpetmiDzMt3AsS4IERG1fo1/ELcYgkDN1qKaEjX3kXpNpaOa0+bw6ZBcR89Cl9Q6sdBl6yYIAoSaYRusKUFERERN1dJClwAzJerT/kqQk9sogrpBJhMBUeHUQrlEjib3jzb87dfRzS2h5hIVvtBpyqymByUiImqLZH4dIbWHh2BXDd9owTAY45dbem0VoGhg5XaKQQlymbBxLyA02BsFRdWQXPUBQuQAXlFDEHXdN5D5RLq7KdRMxiwX1pQgIqJWrxH30VHXfOm6B3aqlykooalkUMIO5tGTywiCCEHG/4nUOsl9ozgusxUzDttgpgQ5W2VlJSZMmIA333zT3U0hojar4WCDIIjtYDpQoDWkX5uGb3D2DbsYlCAiojbPOAMHMyXI2ZYvX47ExER3N4OIqJ1oBUEJ8+EbZBODEkRE1OaJxkKXcmZKkPOcPXsWaWlpGD9+vLubQkREDmHIkpV5BTd7D6Jp+AaDEvYwKEFERG2eMUNC4PCNdmvv3r144IEHMGbMGMTExGDz5s1W66xZswYTJ05EQkICZsyYgcOHDzfpGK+//jr++9//OqrJRETUAGeXzegw/SdEXv05RFVAs/chyJgp0RAWuiQiojZP5h1S83eom1tC7lJRUYGYmBhMmzYNc+fOtXp9/fr1ePXVV7Fo0SL0798fn332Ge655x5s2LABISGG9891111nc99r167F5s2b0a1bN3Tv3h0HDx506rkQUTvHApZmnNsXMlUgZKrAFu1DkNdOCcqMANsYlGgjHn74YezatQtjxozBO++8Y1q+adMmLF68GAAwb948TJkyxV1NJCJyG//Ym6AMiYEqcpC7m0JuMn78+HqHVaxevRo33XQTpk+fDgBYtGgRtmzZgnXr1mHWrFkAgJ9//tnu9klJSVi/fj02btyI8vJyaLVaBAQE4L777mtWe0WxZYV1jdu3dD9tEfumfuwf+zylb8zrbru7LUbu6htB8Jw+sMcrIh4ynwj4RPSF1sPb6i4MSrQRt912G6ZOnYpffvnFtEyr1WLx4sVYs2YNZDIZbrrpJlx22WVQKpVubCkRkeuJSn94dx7r7maQh1Kr1Th69Chmz55tWiaKIkaNGoVDhw41ah/z58/H/PnzARgyJ9LS0podkJDLRYSG+jVr27qCg1nc1R72Tf3YP/a5u2+qvZUoqfnZUZ8VjuKqvkmv+VuplHtcH1gJHYQOvX93dys8GoMSbcTw4cPx77//WixLSkpCTEwMwsLCAACJiYnYv38/Ro4c6Y4mEhEReaTCwkLodDrT9dIoNDQU586dc3l7tFo9SkoqW7QPURQQHOyLwsJy6PVM9TbHvqkf+8c+T+mbykq16ef8/DK3tcOcu/pGXa3xmD6ojyP6JyDAGwpF25zmlUEJF9i7dy9WrVqF5ORk5ObmYvny5ZgwYYLFOmvWrMGqVauQm5uL2NhYLFy4sMVTiuXk5CAyMtL0e2RkJHJyclq0TyIiovZCkiQIQtNTbadNm9biYzvqpl6vl/hgaQf7pn7sH/vc3TeSpLdoiydxdd9IUut6n7r7veOpGJRwAWcX15LJ2mbEjIiIyBWCg4Mhk8mQl5dnsbygoMAqe4KIiIgci0EJF3B2cS17IiIikJ2dbfo9OzsbY8aMafJ+jFh0y3nYN7bV7Rf2jzX2jX3sG/vYN5aUSiXi4uKwc+dOTJw4EQCg1+uxa9cu3HHHHW5uHRER1SWqgqCvLoLMJ9zdTSEHYFDCzRxRXMuexMREnDhxAnl5eZDJZEhKSsLLL7/crH2x6JZrsG9qKRQyq/cc+8c+9o197Bv72lPflJeXIz093fR7RkYGjh8/jrCwMISHh+Ouu+7CggULEBcXh8TERHz22WeoqqrC9ddf78ZWExFZ44ygQPikpShP+RUBCQwctwUMSriZo4pr3XfffTh8+DAqKysxbtw4rFixAn379sVjjz2GW2+9FQDwyCOPQKVSNaudLLrlXOwbaxqNzlS4iP1jH/vGPvaNfY7qm9ZUdCs5ORkzZ840/f7SSy8BAB566CHMnTsXU6ZMQUFBAZYuXWqq77Ry5UrTMEoiIvIcioAuCBr0oLubQQ7CoISHampxrRUrVthcfvnll+Pyyy93SJtYdMv52DeW6vYF+8c+9o197Bv72lPfDB8+HCdPnqx3ndtvvx233367i1pERNRc7eNzm9oP0d0NaO9YXIuIiIiIiIjaKwYl3My8uJaRsbjWgAED3NcwIiIiIiLyQMyUoLaFwzdcgMW1iIiIiIjIEUSlv7ubQORQDEq4AItrERERERGRI/jFTIe2NAO+va5xd1OIHIJBCRdgcS0iIiIiInIEUe6NkBFPursZRA7DmhJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbmFIEmS5O5GkOfT6yXodPoW70ehkEGj0TmgRW0P+8bSqVMn0KdPX9Pv7B/72Df2sW/sc0TfyGQiRFFwUIvIiNdc52Pf1I/9Yx/7xj72Tf1a2j9t+ZrLoAQRERERERERuQWHbxARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMSlCjrVmzBhMnTkRCQgJmzJiBw4cP17v+77//jsmTJyMhIQHXXHMNtm3bZvG6JEl49913MWbMGCQmJuLOO+/EuXPnLNYpKirC/PnzMWjQIAwdOhTPPPMMKioqHH5ujuDq/snIyMDTTz+NiRMnIjExEZdddhnee+89aDQap5xfS7jjvWNUVFSEcePGISYmBuXl5Q47J0dxV9/8/fffmD59OhITEzFy5Eg88cQTDj0vR3BH3yQlJeE///kPBg8ejGHDhuH+++9Hamqqw8/NERzdP3/88QdmzZqF4cOHIyYmBqdOnbLaR2v6TG4PHP0eaEua0jenT5/G3LlzMXHiRMTExODLL790YUvdoyn989133+HWW2/F0KFDMWzYMNx99904cuSIC1vrWk3pm02bNmH69OkYMmQIBgwYgOuuuw4//fST6xrrYk39zDFasWIFYmJi8Prrrzu5he7TlL5Zu3YtYmJiLP4kJCS4sLUeSCJqhN9++02Ki4uTfvjhB+n06dPSwoULpaFDh0r5+fk21z9w4IAUGxsrffzxx1JKSoq0ZMkSKS4uTkpJSTGt89FHH0mDBw+W/vzzT+n48ePSAw88IF122WVSdXW1aZ1Zs2ZJ1157rXTo0CFp79690qRJk6THH3/c6efbVO7on61bt0pPPvmktH37dik9PV3atGmTNHLkSGnx4sUuOefGctd7x2ju3LnSrFmzpD59+khlZWVOO8/mcFffbNiwQRo6dKj0zTffSGlpadKpU6ekjRs3Ov18m8IdfVNaWioNHTpUevrpp6W0tDTpxIkT0v333y9deumlLjnnpnBG/6xbt05atmyZ9N1330l9+vSRTp48abWf1vKZ3B444z3QVjS1b5KSkqTXXntN+vXXX6XRo0dLX3zxhYtb7FpN7Z///ve/0pdffikdO3ZMSklJkZ588klpyJAhUnZ2totb7nxN7Zs9e/ZIGzdulFJSUqRz585Jn3/+uRQbGyvt2LHDxS13vqb2jVFycrI0YcIE6ZprrpFee+01F7XWtZraNz/++KM0bNgwKScnx/QnNzfXxa32LAxKUKPccMMN0gsvvGD6XafTSWPGjJFWrlxpc/158+ZJ999/v8WyG2+8UVq0aJEkSZKk1+ul0aNHS6tWrTK9XlJSIsXHx0u///67JEmSlJKSIvXp00c6cuSIaZ2tW7dKffv29bj/uO7oH1s+/vhj6fLLL2/JqTicO/vm+++/l26++WZp586dHhmUcEffaDQaaezYsdJ3333n6NNxKHf0zeHDh6U+ffpY3GgfOHBA6tOnT4M3Xa7m6P4xd/78eZtBidb0mdweOPM90No1tW/MTZgwoc0HJVrSP5IkSVqtVho4cKD0v//9z1lNdJuW9o0kSdLUqVOlZcuWOaN5btWcvqmoqJCuvPJKadu2bdLtt9/eZoMSTe0bY1CCanH4BjVIrVbj6NGjGD16tGmZKIoYNWoUDh06ZHObQ4cOWawPAGPGjDGtn5GRgdzcXIt1/P390b9/f9M6Bw8eRFBQEOLj403rjBo1CoIgNDpdzBXc1T+2lJaWIjAwsNnn4mju7Jv09HQsWbIEb7zxBkTR8z7q3NU3x44dQ3Z2NgRBwLXXXosxY8bggQcesDv8xR3c1Tfdu3dHUFAQvv/+e2g0GlRWVmLdunVISEhASEiIQ8+xJZzRP43RWj6T2wN3vQdag+b0TXviiP6prKyEVqv1qPsNR2hp30iShF27duHMmTMYPHiwE1vqes3tm9deew3Dhw/H2LFjXdBK92hu35SVleGSSy7B+PHj8eCDDyIlJcUFrfVcnnenTh6nsLAQOp0OYWFhFstDQ0ORm5trc5u8vDyEhobaXd/4d337tLUPuVyOwMBA5OXlNf+EHMxd/VNXeno6vvzyS9x8883NOg9ncFffaLVaPP7445g3bx46d+7skHNxNHf1zfnz5wEAH3zwAebOnYsPPvgACoUCM2fO9JjaAO7qGz8/P3z22WdYu3Yt+vfvj4EDB+LQoUP44IMPHHJejuKM/mmM1vKZ3B646z3QGjSnb9oTR/TPW2+9hQ4dOmDEiBHOaKLbNLdvSktLMXDgQMTHx+O+++7Dc889h5EjRzq7uS7VnL7ZvHkzdu/ejQULFriiiW7TnL7p0aMHXn31VSxfvhyLFy+GXq/HLbfcguzsbFc02SMxKEHNJkkSBEGw+7qt1+ouq/t73X3a2kdDx/UUrugfo+zsbNxzzz246qqrMG3atGa22HWc3TfLly9HcHAwbrzxRge01rWc3Td6vR4AMHv2bEyaNAmJiYl4/fXXUVJSgi1btrSw9c7l7L6pqqrCwoULMWLECHz33Xf46quv0KFDB8yZMwdardYBZ+BcjuifhrTmz+T2wBXvgdaK79P6NbZ/Pv74Y6xfvx7Lli2DUql0Qcvcr6G+8fX1xU8//YQffvgBjz76KF555RXs27fPhS10H3t9U1BQgGeffRZvvPEGvL293dAy96vvfTNgwABce+216Nu3L4YNG4Zly5aZMjXbK7m7G0CeLzg4GDKZzOqbsIKCAquooFFYWJjV+vn5+ab1w8PDARi+vTRPiy4oKDClBtvah1arRUlJidW3Pe7krv4xys7OxsyZMzFgwAA8//zzLT0dh3JX3/z777/Yt28f+vXrB8BwYQCAoUOH4uGHH8YDDzzggLNrGXf+vwIMQxWMfHx80LFjR1y4cKGFZ+UY7uqbX375BdnZ2fj+++9NNxJvv/02hg4dip07d2LcuHGOOcEWckb/NEZr+UxuD9z1HmgNmtM37UlL+mfVqlX46KOPsHr1avTp08eZzXSL5vaNKIro2rUrACA2NhapqalYsWIFhgwZ4tT2ulJT++b06dPIzc3FLbfcYlqm0+mwd+9efPnll21q9hZHfOYoFArExsZ61FBaV2OmBDVIqVQiLi4OO3fuNC3T6/XYtWsXBgwYYHObAQMGYMeOHRbLdu7caVq/U6dOCA8Pt9hnWVkZkpKSTOsMHDgQRUVFOHr0qGmd3bt3Q5IkJCYmOubkHMBd/QPUBiTi4uLw6quvelztBHf1zSuvvIKff/4ZP/30E3766Se89NJLAIBvvvkGM2bMcNwJtoC7+iYhIQEKhcLiwldVVYWsrCx07NjRMSfXQu7qm6qqKoiiaPHNhvF3Y2DLEzijfxqjtXwmtwfueg+0Bs3pm/akuf2zcuVKfPDBB1i5cmWbnbrQUe8dSZKgVqud0EL3aWrfJCQk4JdffjHdh/3000+Ij4/H9ddfj7Vr17qw5c7niPeNTqfD6dOnTV+gtEsuK6lJrZpxqpu1a9dKKSkp0rPPPmsx1c3jjz8uvfnmm6b19+/fL8XGxkqrVq2SUlJSpKVLl9qcnm/IkCHSpk2bpBMnTkizZ8+2OSXo1KlTpaSkJGnfvn3S5ZdfLj322GOuO/FGckf/ZGVlSZMmTZJmzpwpZWVlWUwr5Enc9d4xt3v3bo+cfcNdffPCCy9I48ePl3bs2CGlpKRI8+fPl8aPHy+Vl5e77uQb4I6+SUlJkeLj46UXX3xRSk1NlU6cOCHNnTtXGjlypFRUVOTaDmiAM/qnsLBQOnbsmLRlyxapT58+0oYNG6Rjx45JhYWFpnVay2dye+CM90Bb0dS+qa6ulo4dOyYdO3ZMGj16tPTmm29Kx44dkzIzM911Ck7V1P5ZsWKFFBcXJ23YsMHiXsPTrqmO0NS++eijj0xTs6ekpEirV6+W+vXrJ/3www/uOgWnaWrf1NWWZ99oat8sW7bM9L5JTk6WHn30USkxMVFKTU111ym4HYdvUKNMmTIFBQUFWLp0KXJzcxEbG4uVK1ea0qAvXrxo8S39oEGD8NZbb2HJkiV4++230a1bN7z//vvo2bOnaZ17770XlZWVeO6551BSUoLBgwfj448/thij+Oabb+LFF1/EHXfcAVEUccUVV2DhwoWuO/FGckf/7NixA+fOncO5c+es0spPnjzpgrNuHHe9d1oDd/XNE088AZlMhv/+97/QaDQYOHAgVq9eDR8fH9edfAPc0Tc9e/bE8uXLsWzZMtx4442Qy+WIj4/HypUrPa7KvDP65++//8ZTTz1l+v3hhx8GALz66qumWjWt5TO5PXDGe6CtaGrf5OTkYOrUqabfV6xYgRUrVuD666/Ha6+95urmO11T++frr7+GRqMxfSYYPfTQQ5g7d65L2+5sTe2bqqoqvPDCC8jKyoKXlxd69OiBxYsXY8qUKe46Badpat+0J03tm5KSEjz77LPIzc1FYGAg4uPj8e2336JHjx7uOgW3EyTJg3JSiYiIiIiIiKjdaJ/hLCIiIiIiIiJyOwYliIiIiIiIiMgtGJQgIiIiIiIiIrdgUIKIiIiIiIiI3IJBCSIiIiIiIiJyCwYliIiIiIiIiMgtGJQgIiIiIiIiIreQu7sBRET1WbZsGd577z2r5SNHjsSnn37q+gYRERG1UbzmEpE7MChBRB7P398fK1eutFpGREREjsVrLhG5GoMSROTxZDIZBgwY0OB6VVVV8PLycn6DiIiI2ihec4nI1VhTgohapYyMDMTExOB///sfFixYgCFDhuCBBx4AABQVFeG5557DqFGjkJCQgJtvvhlJSUkW25eUlGD+/PkYMGAAxowZgw8//BCvv/46Jk6caFpn2bJlGD58uNWxY2Ji8OWXX1os+/7773HVVVchPj4eEyZMwMcff2zx+pNPPolp06Zhx44duOaaazBgwADccsstOH36tMV6Op0OH330Ea644grEx8dj3LhxePLJJwEAa9aswcCBA1FeXm6xze7duxETE4MTJ040sReJiIgaxmtuLV5ziRyPmRJE1CpotVqL3yVJAgC88cYbmDRpEt59912Iogi1Wo277roLJSUlWLBgAUJCQvD111/jzjvvxB9//IHw8HAAwFNPPYU9e/bg6aefRlhYGD755BOkp6dDLm/6x+LKlSvxzjvv4J577sGwYcNw9OhRvPvuu/D29sbtt99uWu/ixYt44403MHv2bKhUKrzxxht45JFH8Ouvv0IQBADAc889h59//hmzZs3CsGHDUFxcjA0bNgAArrnmGrz++uvYuHEjpk2bZtrvunXrEBcXh759+za57URERHXxmstrLpErMShBRB6vqKgIcXFxFsteeuklAED//v3xf//3f6bl33//PU6fPo1ff/0V3bp1AwCMGjUKkydPxieffIInnngCp0+fxqZNm/DOO+9gypQpAIDhw4djwoQJ8PPza1LbysrK8P7772P27Nl46KGHAACjR49GZWUlPvzwQ9xyyy2QyWQAgOLiYnz99demdkmShDlz5iAtLQ09e/ZEamoqfvjhBzzzzDOYOXOm6RjGNgYEBODyyy/H2rVrTTdI5eXl+OOPPzB//vwmtZuIiMgWXnN5zSVyNQYliMjj+fv7Y/Xq1RbLlEolAOCSSy6xWL5r1y7ExcWhU6dOFt/0DB06FMnJyQCAI0eOAIBF2qivry9GjRqFw4cPN6ltBw8eREVFBSZPnmxxvBEjRuCDDz5AVlYWoqOjAQDR0dGmmyMA6NmzJwAgOzsbPXv2xL///gsAFt/I1HXDDTfgzjvvxPnz59G5c2f8/vvv0Gq1uPrqq5vUbiIiIlt4za3Fay6RazAoQUQeTyaTISEhwWJZRkYGACA0NNRieWFhIQ4dOmT1LQ8AdOnSBQCQl5cHX19fqwJddffVGIWFhQCAq666yubrFy9eNN0g1a1erlAoAADV1dUADN9O+fj41PvN0fDhw9G5c2esXbsW8+bNw9q1a3HppZciKCioyW0nIiKqi9fcWrzmErkGgxJE1KoZx4UaBQYGIj4+Hs8//7zVusZvesLCwlBeXm5VOTw/P99ifZVKBY1GY7GsuLjY6ngA8NFHH9m8werevXujzyUoKAgVFRUoKyuze5MkCAKmT5+O7777Dtdddx32799vVeCLiIjIGXjN5TWXyBkYlCCiNmXkyJHYsWMHOnbsaPdbGOM3QH///bdp7Gh5eTl27txpcWMSGRmJ8vJyZGdnIzIyEgCwY8cOi30NHDgQXl5eyMnJsUprbaoRI0YAAH766SeLYl11XX/99Vi6dCmefvppREZGYvTo0S06LhERUXPwmktEjsCgBBG1KVOnTsU333yD//znP7j77rvRuXNnFBUV4fDhwwgPD8edd96J3r17Y+LEiXj++edRVlaG8PBwrFq1yiq1dOzYsfDy8sLTTz+Nu+66CxkZGfjmm28s1gkICMBDDz2El19+GZmZmRg6dCj0ej3Onj2Lf//9F++//36j296jRw/cdNNNeO2115Cfn4+hQ4eipKQEGzduxDvvvGNaLzIyEmPHjsWWLVtw//33m4p6ERERuRKvuUTkCAxKEFGbolKp8Pnnn+Pdd9/FsmXLkJ+fj5CQECQmJloU2Xrttdfw/PPP45VXXoGPjw9uvfVWJCQkYOPGjaZ1QkJCsHTpUrzxxhuYM2cO4uLi8NZbb5m+6TG69957ERERgc8++wyrV6+GSqVCt27drNZrjP/7v/9Dx44d8f333+Pjjz9GSEiIzW9lLrvsMmzZsqXeAl1ERETOxGsuETmCIBknHiYiaueM85H//fff7m5Kg+bNm4fc3Fx89dVX7m4KERFRk/GaS0RGzJQgImpFTp48ieTkZPz55594++233d0cIiKiNovXXCLXYFCCiKgVmT17NgoLC3Hrrbdi8uTJ7m4OERFRm8VrLpFrcPgGEREREREREbmF6O4GEBEREREREVH7xKAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRW8jd3QBqHfR6CTqdvsX7kctFaLUt309bxL6xdP58Ojp37mL6nf1jH/vGPvaNfY7oG5lMhCgKDmoRGfGa63zsm/qxf+xj39jHvqlfS/unLV9zGZSgRtHp9CgqqmjRPkRRQGioH0pKKqHXSw5qWdvAvrH2n//MxE8/rQfA/qkP+8Y+9o19juqboCAfiKLMgS0jgNdcZ2Pf1I/9Yx/7xj72Tf0c0T9t+ZrL4RtERERERERE5BYMShARERERERGRWzAoQURERERERERuwZoSRETkMJIkQa/XQfKA4aSiKECtVkOr1XJ8ax2N7RtBAERRBkFom4W1iKh1cte1htcV+9g39WtM/7Tnay6DEkRE1GKSJKGsrBjl5SUAPOdmJC9PhF7PSuC2NLZvRFGG0NAOkMnaZnEtImo9POFaw+uKfeyb+jWmf9rrNZdBCSIiajHjTWJAQAiUShUAz4jyy+UCtFrPCZJ4ksb1jYSiojyUlBQgODjcJe0iIrLHE641vK7Yx76pX8P9036vuQxKEBFRi0iSZLpJ9PHxc3dzLMjlIgB+a2NLY/vG3z8IhYU5kCQ9BIGlqIjIPTzlWsPrin3sm/o1pn/a6zW3/ZwpERE5hV6vAyDVfGtFbY1MZvj+gim5ROROvNZQe9Ber7kMShARUYvUFhrzjCEb5GiGf1dPKF5KRO0XrzXUPrTPay6DEkRERERERETkFqwpQeQgOl01ikpPo7g0DZVVOaiszkVFVS602jLoJR30eg0kSQ+5zAsKuS/kcj+olIHw9e4If99o6NALki4CosC0RCIiIiJynVWrPsLOnf9g1aov3N0UaocYlCBqJr1ei7zCw7iQsw35RUdRXJYKSdI1f4dJACAiwK8bQgL7IjgwFhEhQ+Dn09FRTSYiMy+//Dx+//1Xq+W//roJQUFBrm8QERG1OS+//DwqKyvw0ktvmJatX/8LFi9+BY8+ugDXXnt9k/Z38eIFfPrpShw4sA/5+fkICwvD5MlXYebMuyGXN//R7pZb/oMbbrip2du3VjfccA1uueV2TJ/e/s7dkzAoQS6l02sgteJBUpIkIb/oMM5d2IgLOf9ArSk2vaZShiAksC+C/PvA17sDvL3C4e0VDoXcD6KogCjIIQgitLpKaLTl0GjLUVVdgPLKC6iovAi19iJy8k6gpCwNJWVpOJu5HgDg6x2NyLCh6BA2EhGhQyCK/G9L5CijRo3FE088Y7EsMDDQ4netVtuiGz0iIiKj77//Bh988C4WLlyESy+9vMnbnzt3FpIk4fHHn0Z0dCecOZOK119/GdXV1Zg9e26z2+Xj4wPAp9nbt2VarRYymQyCwHomzsK7rDYuLS0NTz/9NMrKyqBUKvH0009jyJAhbmnLnsOv4NyFDRAEGZSKQPh4hcPftxuCAnojPHgAAv17euzUN5KkR2b2Fpw4swbFpSkAAEGQITJ0GKIjL0Fk6BB4e0U06sNKJlNBpQyyWCaKAkJD/ZCfX4byilwUlpxEftFhZOfvQ3FpCtLOZyLt/E9QKgIRHTkOnaImIjx4gMf2F1FroVQqEBoaZrHshhuuwbXXXo+zZ89g+/atmDz5Ksyf/wSSkg5i+fJlOHnyJIKDg3HppZNwzz2zoVQqAQD5+Xl4/fWXsG/fXoSHh2P27LlYvPgVzJnzCKZMuQYHDuzDww8/gD/+2FZz8wfs2LEdTzzxKP75Z5/p+Nu2bcEnn6xAevpZhIdH4Nprr8ctt/wHomj4/z5mzBA8+eRCbNu2Bfv370XHjtF47LGn0b//ANM+Dh06gBUrPsDJk8ehVKoQH5+Al156A9988yW2bPkLq1d/ZXHON998Pa67bjpuueV2Z3QzEREBWL36Y3z55ad45ZXFGDlyTLP2MWLEKIwYMcr0e3R0J6Snn8P//vdTvUGJkpISvP/+Evzzz1ZotVrExSVg3rzH0LVrNwDWwze0Wi2WLXsbGzb8BrlcjmnTZuDMmVR4e/vgmWeeBwBUV1djxYoPsGnTRlRUlKNXrz6YM+cRxMcnADBkhLz//hI888wiLF36NgoK8jFs2HA8+eRz8PMzTOu6efMmfPLJCmRmZsDb2xsxMbF4882lEEXRlGXSvXtPrF37HXQ6HaZMuQZz5jwCmUxmpw29MWfOo6Y2APavifPnz0VW1kW8885ivPPOYgDAP//sM7X7iSeexfLly5CRcR4//7wRzz77BPr27YeHHnrEtO9Zs/6DUaPGYNas+wEYrtELFjyDLVv+RlLSAURHd8LChYsgijIsXvwyUlNTkJDQH8899yKCg0Oa9R5oixiUaONUKhVeeeUV9OjRA6mpqXjwwQexceNGt7QlwK8rAvw6Qa2pRLW6GNXqAhSWnET6RUN7vJQh6BQ1EV07TkZQQG+3tNGW3IKDSDqxDMVlqQCAIP/e6NH5ekRHjoNS4e/w43l7hcHbKwwdI0YjAUBVdT6y8/YiI3sLsvP34kzGLziT8Qt8faLRo9N16BZ9JZSKAIe3g6g9++qrz3H33feZbjIyMzPw2GPzcP/9D+KZZxYhPz8Pb775KrRaLR5+eD4AQ4puUVEh3nvvIwDAO+8sRkVFRZOOm5R0CK+88jweeeRxJCT0R3r6ObzxxstQKJSYMeMW03qrV6/EQw89grlz/4tVqz7CokXP4LvvfoZcLkd6+jk8+ugcTJ16A+bPfxIAsHfvbkiShClTrsEnn6zA6dMnERsbW3PMg7h48QKuuOLKFvcbERFZkyQJy5a9jV9//RlvvbUMAwYMsnj9888/wRdfrK53H1988T2ioqJsvlZWVoaAgPrvBZ977kl4e3vjrbfeg4+PN77//ls8+ugcrFnzA7y9va3WX7PmM/z11x949tkXEB3dGV9//QX27v0X48ZNMK2zZMlinDt3Fi+++BpCQ8Pw119/4NFH5+Crr35AeHgEAKCiogI//vgdXnzxVVRVVeHZZ5/El19+igceeAh5eXl4/vln8OCDD2PcuAkoLy/HgQN7Ldrx77+7oVJ54b33Psb58+l49dUXEBYWjltvnWmzDX/+ucGiDfVdE195ZTHuvPNWXH/9DZgy5RqL41ZUVOCbb77EM88sgq+vL3x9fevtX3OffroSc+c+ikcemY8lS97ECy88h5CQEDz00Dx4efni//7vKaxY8QGeeGJho/fZ1jEo0cZFR0ebfu7RowdKS0shSZJb0o/69rgNo4fej/z8Muh0OlRV56O47AwKi48hJ38/8ouPIiX9B6Sk/4Dw4AHo22MmIkIHu7ydRmpNKZJOvIv0i38CAEIC49Cv192ICBns0v7zUoWia/RkdI2eDLWmBJnZ25F+YQPyig7jyKkPcDRlJbp0mIQ+3W6Bv29nl7WLqC3Yvn0rJk0aa/r9kksuBQAMGTIcM2bcalr+2msvYvLkq3DDDTcDADp16ow5cx7BwoULMHfuf3H+/Dns2bMbn3zyJfr06QsAmD//Cdxzz8wmteeTT1Zg5sy7MXnyVQAM34Ddccfd+OGHby2CEldffR0mTLgMAHD33ffh1lunIzMzA127dsOXX36KhIT+mDdvvmn9nj17AQC8vLwwbNgI/PbbL6agxPr1v2DkyNEICQltUluJqHF0erWp0DU51r7kV3Eh5x+XHjM6cgwGxz3VpG127vwHGo0G7723wiogAQBTp07HxImT6t1HWFiYzeWZmRn48cdvMW/eY3a3TUo6hJMnT+B//9sIhUIBAHj00cexbdtm7Nz5Dy691PrYP/74HWbOvBtjxowHADz++NPYtWuH6fWsrCysX/8L1q1bb7p+3H33Pfjnn23444/fcdttdwAANBoNHn/8aVNA5corr8b+/YbAQ35+HnQ6HcaPn4ioqA4AgF69LL+YVKlUeOKJhVAqlejevQcyMs7j22/X4NZbZ9psw5133oOdO/8xtaGha6IoivDx8bHKmtRoNHjssafQo0dPu/1qj/k1+pZb/oNHH52D++57EAMHDoZWq8fVV0/Fzz//2OT9tmUMSni4vXv3YtWqVUhOTkZubi6WL1+OCRMmWKyzZs0arFq1Crm5uYiNjcXChQuRmJhota+//voLsbGxHjEeShBEU82FqLBhiO15J6qqC3A+62+knl+L3MJDyN1/CFFhI9C/71z4+XRyafvyCg9j75GXUFGVDS9VGBJj5qBT5AS3951SEYDuna5C905Xobg0DWkZPyP9wh84m/kbzmb+jk5Rl6Bv99sR6N/0D1Ci9mjIkOF49NHHTb/7+PjgvvvuRN++sRbrpaScRmrqaWzYUFsYU6/Xo7q6Gvn5+Th37iwUCgV6944xvR4TE2u6+Wus1NRTOHIkCatXf2xaptPpIUl6i/V69Ohl+tl4o1pYWICuXbshJeU0xo27xO4xrrrqWrz55quYN+9RVFdrsHnzX1i4cFGT2knU1lVW5cJLFeaQ6/76rTdAp6vC1Mv+cEDLqDXq1asPCgrysXLlcrz55lJ4eVkGqAICAhEQEGhna/vy8nIxf/5cXHrp5Vbf9JtLSTmF8vIyTJky0WJ5dXU1LlzIsFq/rKwMBQX5iI2NMy1TKBQWAYO0tBTodDrcdNNUi23VarXFer6+vhYZHqGhoSgsLARgCEAMHDgYM2fejBEjRmHYsBGYMOFS+Pr6mdbv3buPaZgkAMTHJ+CDD/JQVlbWqDY0dE20R6VSNSsgAQA9e9aevzFY0r17D7NlIaY+IAMGJTxcRUUFYmJiMG3aNMydaz1ObP369Xj11VexaNEi9O/fH5999hnuuecebNiwASEhteOUMjMzsXjxYqxYscKVzW8SL1UIene9Ab26XI/M7K1IPv0xsvJ2I3fnIST0eQA9Ok91SVDgbOZ6HDj2JiRJh85Rl2JA7KNOGabRUoH+PTAw9lHE974Paed/xumz3yIj629kZP2NTlETEd/rPvj6dHB3M4k8mre3Fzp1ss4wqpvKWllZgWnTbsT1199otW5QUBAkCQ1+PhlrQgC1xX61Wq3FOhUVlbj33tkYO3Z8vfuyLLxpOK5er7e9ch1jxozHm2++hn/+2Yby8goolUqMGtW8sc1EbU1ZWSm+/n4xiirX45rJj6Bvj5bVWZEknakotiTpIAgyRzSTagyJb1rGgiPI5SK02sZ93hpFRkZi0aJXMHfu/Xj88XlYvPhdi8BEc4Zv5OXlYu7c+xEXl4DHHqu/HyorKxAeHoF33/3Q6rX6hn3Uva6ZF6uvrKyAXC7HJ5+sMa0nkwnQ6SSLoQ51C0ULgmAKtMtkMrz77oc4ciQJu3fvxNdff4FVqz7CqlVfmB7m7V1bBcF2G4yaMtzClrqBI8BwHa9bsL/udRywPGdjsyyXCVZfNrR3DEp4uPHjx2P8ePs3p6tXr8ZNN92E6dOnAwAWLVqELVu2YN26dZg1axYAQ7TzwQcfxLPPPouuXbu6pN0tIQgydIqaiA4RY3DyzFc4kfY5Dp1YgvyiZAyOWwCZTOW0Yx9L/RTHU1dDEGQY1O8xdIu+2u3ZEQ1RyH0R0/1W9OwyDWczfsXJs18hI+tvXMjejp5dpqNvj9s9MqhC1Jr07h2DM2fSbAYwAKBbt25Qq9U4ffqkafjGyZMnoNFoTOsEBQUDAPLz8+HjY7hZSkk5ZbGfPn1icP78ObvHaYxevXrjwIF9uPPOe2y+LpfLccUVU/Drr/9DVVUVrrjiSs4uQlRj1afPY9eenwAAwcGrWhyUqKqu/TZUq62EQuGHMxm/4kLOdowc8DJn1GpHOnaMxrJlH2Hu3PuxYMEjeOONJaYH36YO38jNzcHcuQ8gJqYvnn76/8yC3rb16dMXeXm5UCgUiIy0XZfCnJ+fH0JCQnHs2FHExxuyrzUaDVJTU0y1Inr37gOtVovi4iLTOs0J2IiiiP79B6J//4G4++77cM01k/Dvv7tw5ZVXAwBOnToJtVptypY4ejQZoaFh8PX1s9mGuhq+Jiqg0zWuzUFBwSgoyDf9XlFRYTPThJqOpftbMbVajaNHj2L06NGmZaIoYtSoUTh06BAAQKfTYd68eZgxYwbGjGnZN2GiKLT4T1P2o5CrEN/7Lkwc8SF8vCJxPmsTtu17FFpdmUPaUvfPibTPcTx1NeRyX4wb8iZ6drkWMpnolGO1tG9s/VEqvNGn+424cuxXiOs1C4Iox+lz32DjP7ch/cIGCIJj/g3d1R+Oeg+2xT+e0Ddt3W23zcShQwexZMmbOH36FNLTz2Hr1r/x/vvvAgC6dOmGIUOG4fXXX8bx40dx/PhRvPPOGxbDNzp16oyIiEisXm0o1rV58yb89tv/LI5zxx2zsH79L/j005U4cyYNZ86k4Y8/fsdnn61qdFtvv/1OHDmShHfffQtpaSk4cyYN3333NaqqqkzrXH31ddi9excOHtyPKVOubdR+2+O/O7UvZWVl2F0TkACAM6ebVqjWlsqqHNPPGp1hfweOLUZW3m4Ulpxs8f6pdTEGJi5cyMSCBY+YPpcDAgLRqVPnev8Yg8fGDInIyEg89NAjKCoqRH5+HvLz8+wed8iQYejXLw5PPTUfe/fuxoULmUhKOoT3338X586dtbnN9Okz8Pnnn2DHju04e/YM3nzzVajV1aYv67p06YZLL52EF154Ftu2bcGFC5lITj6C1as/xsGD+xvVH0ePJuPzzz/BiRPHkJV1EX/99QcqKyvRpUs30zrV1dVYvPiVmhmxtuCLL1bjxhtvttuGo0eTLdrQ0DWxQ4cOOHToAHJzc1BUVFRvewcOHIwdO7bj33934cyZNLz22oswZitSyzA824oVFhZCp9NZFb4JDQ3FuXPnAADbtm3D7t27kZeXh++++w4A8MUXXzRYobcuuVxEaKhfwys2QnBw09KpQkOHILrDl9i4bT6y8w5j56EFuHriB1ApHfftf/Kp73A0ZRUUch9cfen7iAyzHW11tqb2jW1+iIycg8GJN2Hv4Q9xPOUn7E1+FZm5f2LcsGcQFOD52TIAoFDIrN5zjumftsmdfaNWq5GXJ0IuFyCXe16s216bBEGAINhusyhaLo+NjcUHH3yE5cs/wOzZd0MUZejUqTOuuupq03rPP/8iXn75BcyZcy9CQ8Mwd+4jeP31V0z7ksuVWLToJbzxxqu4885bMHDgIMyadR9effVF0z7Gjh2LN954B598sgJffLEaCoUC3bv3wPTpMyzaI5PVts/4t0wmQi4X0aNHdyxZ8j4+/HAZfv75R3h5eSMxsT+mT7/BtG7v3r0QE9MXer0OMTF9GuhBAaIoIjjYx2JcL9lWWVmJKVOm4KqrrsJjj9kvPEeeJz39HCQAnbp442JmFTIzqiy+oW2Oyupc6PUSMtMrkdM3E107196zyUT+f2qPzDMmnnjiUbz++js2hwrYs2fPbmRknEdGxnlcf/0Ui9fMp5c2J4oi3nxzKZYvfx8vvfQ8SkqKERoahoEDB9t9JrjttjuQn5+HRYsWQqEwTAmamDjA4v/DwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllVzTqXHx9fXHo0EF8991XqKioRMeOHbFgwTOIi4s3rTN8+AiEh0fgwQfvgU6nxZVXXoObb67NYGqoDV26dMVbby3DRx+9b7omJiQk4rrrpgEAZs16AIsXv4KbbpoKtVpttw8BQ0D/1KmT+L//expeXl64++77kJnJTAlHEKS6A2PIY8XExFgUuszOzsa4cePw/fffWxS2fP3113Ho0CF8/fXXDju2RqNDSUlli/YhigKCg31RWFgOvb7pbzuttgLb9j2O/KIjCAtOxPih70AUm1ZEzpbcgkPYuvdRCBAxbujbCA/p3+J9NlVL+6Y++YXJ2Hd0MUrKzkAUFOjX6y707XGLx49rvfbaK/G///0OwLn909p5Qt9otVrk5GQgLCza44YBNCeV1JGuuupSzJnzSL0FyNxBr9djxozrcOutMzFtmnWdDHNarRZ5eZmIiOhk9e8bEOANhcKzP0tc7Z133sHZs2fRuXPnZgclNBodiopa9i29KAoIDfVDfn4ZPzfrsNc3Gzb8ik+/mofBI4KRfaEK2RdkePrxrxEb269J+z+W+ikC/XogOnIcTp/7AZ9+8QJST5WjT/erMO+R+diy1zArz4RhHyIkqGn7dgVPfe8YP4vcfa1x93XFXbRaLWbMuA433ngLbrnF9rAmR/fNyy8/j8rKCrz00hsO26c7NaZ/6nufBwX5tNlrrmfdPVKTBAcHQyaTIS/PMl2roKDA7rRBLeGoC5NeLzVrX6LojdGDXsf2fY8ir/AwDh1/DwNiH2lRWyqr8rDr4HOQJB0GxT2G0KBEt16Am9s39QkOjMOlI1bi9LnvcCx1NZJPr0BW7m4MSXgGvt4Njyt0p7p94Yz+aSvc2Tf8N2ldCgrysX79LygrK8XkyVMa3qAG//817OzZs0hLS8OECROQlpbm7uZQE505axhOERqmhFwmIOeiDsePH21SUKKyOh/HUw0FC6dfvhWFRRk4k2IIMJWVl+LfPX+Zsr11eo293RC53YULmThwYC8SEweiuroa3367BsXFRaapLokcyfPybKnRlEol4uLisHPnTtMyvV6PXbt2YcCAAe5rmBMp5L4YMeAlqBRBSD2/DukX/2z2viRJwqET76BaU4Qena5Dt+jG35y3NqIoR0z3W3HpyJUI8u+DvKLD2LTr7hb1HxG1TtdeewW+/fYrPP30c6aCm2SYgvuBBx7AmDFjEBMTg82bN1uts2bNGkycOBEJCQmYMWMGDh8+bPH666+/jv/+97+uajI5UGnZBaSkHoZCISIgUI4O0V6QyeQ4efK4aWabzOxtOHX2W5vbazRl+GPHTBw9XTudb7W6GKdOpUGvl+AfIEdh8XH8ueUt0+t6Se3ckyJqAVEU8euv/8O9987EQw/di4sXL2DZso8sZgAhchRmSni48vJypKenm37PyMjA8ePHERYWhvDwcNx1111YsGAB4uLikJiYiM8++wxVVVW4/vrr3dhq5/LxisCwxP/D9v3zcej4EkSEDIGXKrjJ+7mQsw0Xcv6Bj3cHJPSZ7YSWep4A366YMPwDHE35BKfOfo29R15CXmES+vd9mGNbiZzgt9/+cncTrBjHy7bXFGR7WjoF96ZNm9CtWzd0794dBw8edMMZUEt887/pyMzOQVQHLwiCAIVSQMeOQaioqMDWncsQGRWA42mfAgC6d7oaCnltQE+SJGTl70Fp+TmUlp8zLS8qOYWUU5kAgAFDgrBrWx5ysw1ZR6IoQKdjUII8V1RUByxf/olb2/DMM8+79fjkOgxKeLjk5GTMnDnT9PtLL70EAHjooYcwd+5cTJkyBQUFBVi6dClyc3MRGxuLlStXIiQkxF1NdomI0EHo2fk6pJ5fhyOnPsTQhKebtL1WW4lDx5cAAAb1ewxyubcTWumZRFGBhD73IzJsKPYcfhFnMn5BcWkqhvdfBB+vCHc3j4jILVo6BXdSUhLWr1+PjRs3ory8HFqtFgEBAbjvvvua1Z6Wzm5iPjMPWbLVN/l5hgBBaHhtgL5r91CcTxGwefsn6D84yLRcr6+CKNYWYk5N/xkHjr1tdZyL2cnIzMiHt7cMEVEqhIarkH2xCsWFGgSHKgFoPfLfx1PfO57WHiJnam+zXDEo4eGGDx+OkyfrnzLq9ttvx+23t2we7dYortc9yMzeivSLG9Et+qomFahMy/gZVeoCdIqaiMjQIU5speeKCBmES0eswO6k51BQfAx/774PI/ovQliw6wt9Utv07LNP4siRww2v6CAJCYl48cXXXHY8aj+MU3DPnl2bVVd3Cu758+dj/vz5AIC1a9ciLS2t2QEJd8541Z6Y901+bjUAICTMPCjhj7xMBdIyqpA4SDJNhRgQIEeAf+2/z/cbrAMSAJCamgJBkNCpq7ehKHGIAtkXq1BYYAhKePs47t/ZGTztveNJMz25+/iejH1Tv4b7p33OeMWgBLVaCoUfEmIexN4jL+F42qcID3mnUdtpdVU4dfYbAAJie9zh3EZ6OG+vcIwb+i6STizDmYz/Ydu+/2Jo/FPo3IFFjKjlGCCgtqIxU3A7klard/uMV22Zrb7Jz1NDgKHIpZFMoUNISAQOn9CiuEiLoGDDjF95+YXQqIMaPE5S0mlodVp07uYDAAgOMWxfWKAG4IuSklLk55c59NwcwVPfO1qtFnq9HlqtBMB9Q8849M0+9k39Gjf7hgS9Xo/CwgrI5ZZDvNryjFcMZVGr1jlqInx9opFbcACFJfVnlBidyfgfqtWF6BQ1AQF+3ZzbwFZAJioxqN98DIydD0nSY8+RF3HyzNfgbMHUlv3447eYPPkSUwE7AMjPz8OYMUPw1FOW0zhu3LgeEyaMRHV1VbOP99dff2LMmCFYuHCBzdf/7/+exqefrgQAjBkzBBMnjkZOTrbFOg89dB/ee29Js9tAjidJtd+em5s2bVqzpwM1Ms520pI/jtpPW/xj3jeFhQWoKNchIEiBXt1qi17rdNXo188w88a5tHLTcq22yrStTqe1OcV2WakWFzNz4eenQEioIRhhGLIBFOZravZT7fZ+aG3vHaL2or29/xmUoFZNEGTo0/UmAKjJfqifJOmRcu4HAEBsj5kNrN2+9Oh8LUYNfBky0QvJp5cj6cS7kCSdu5tF5BQDBw5GWVkZTp2qDWYeOnQAERGRSEo6aBGUO3ToAGJj46BSeTXrWNnZWXj//SVITBxg83WtVot//92F0aPHWSxfvfpjm+uT67l6Cm5yrbPnUgEA0Z06Ykj8UxjR/0UAgF6vRmJiAgQBOJtWAZ3O8LlQXHYGF3J2AADKK7NN18qI0KG1+0wth17SoEevYFPgysdXBqVKRHGRxvCQIXFKUCIigEEJagO6dpwMlSIIGVlbUF55sd5184uSUVGVjbDg/gjw6+6iFrYeHcJHYdzQJaYpV/ceeQV6vdbdzSJyuO7deyIoKBgHD+43LTt4cD8mT74KCoUCKSmnLZYPGtS82jN6vR4vvfR/uOOOWYiO7mRznUOHDsDPzw+9e/cxLZs+fQbWr/8F6elnm3Vccqz2OAV3e5KefgYAEBEZCACIjhwHUVRCp6uGt48SHTt5Q12tR8Y5w5Ca/Udfw65DT6OyKhcVVVkAgC4dLkff7rcBMHzDeTa1AnpJix69A03HEQQBwSFK6PUSSoo00OsZlCAiAhiUoDZAJlOhe+drAeiRkWU9r7y581mG6fk6R7Fmgj0hgbG4ZPgH8PGKwvmsTdib/DIDE9TmCIKAAQMGWQQlDh06gIEDB2HAgIGm5Xl5ucjIOI+BAwcDAG6/fQYmTRpr98/8+Q9bHOerrz6Hl5cXrrtumt22/PPPNowePdZi2YABgzB48DCsWPGho06ZGlBeXo7jx4/j+PHjAGqn4M7NzQUA3HXXXfjmm2+wbt06pKam4vnnn2/zU3C3F+nnDEGJqKja6cVlohI6vRp6vQa9+xqKUR5PLrFIodZoy6HTGYZ1yeU+UMgN650/W4nKSh2iOnrD28dyeI+xrkRBgYZTgpJHmj37bmzd+rfp99OnT2HWrP9gwoSRuPPOW1FSUoxrr70Cubk5bmwltTUsdEltQnTkeJxI+xwXcrYjpvutNtfR67XIyNoMQZAhOtL+tG8E+PlEY9zQd7Ft3yPIyPobkqTDsITnIIr8yKC2Y+DAwfj44w+g1+tRXFyEjIzziI/vj/Pnz2Pv3n8xY8YtOHBgP5RKJeLjEwAAb775LrRa+0E6lUpl+vnkyRP44YdvsWrVF/W2Y8eO7Viw4Cmr5Q88MAf33DMTJ04cQ9++/Zp5ltRYnIK7fdJoNMi8kAmlSkRwsL9puUymQlV1PvYffR3hkSqER6iQm1ON9DMV6NbTMCuFJOlMgQWZqIJC7ge9XsLx5BIAQGxcgFU2hKmuRJ6awzfagTFj6s+yu+uuezFr1v0uacuJE8excuWHOHHiGCorKxEWFo74+EQ8+eSzUCgMwbLt27egvLwc48ZNMG334YfLEBERiZdfXgxvby8EBATiyiuvxqpVH+HJJ591Sdup7eMTBrUJgX494eMVhYLiY6iszoe3KtRqnZz8fVBrihEVNhIqZaCNvZA5X+8ojB+6FNv2PoLM7K34V3oewxOfZ2CC2oxBg4aY6kpcuJCJmJhYeHt7Y8CAgVi5cjkkScKhQ/vRr1+8qZ5EVFSHRu1brVbjhRcW4pFHHkNoqP2aA6mpKSgpKcLAgdY3rn369MWECZdi+fL3sGTJB807SWo0TsHdPp0/nw6tVo3wCBXk8tq6MaJoCB5k5+8BAMQPCMDmP3KRdKAYHaK9oPKSQa/XQKc3TCUqE5VQKHyRcqIMpSVahEeqEBwmWQUljEUvC/LV0OmZKdHW/fzzBtPP69f/gnXrfsDHH39mWubt7WP6WZIk6HQ6yOWOv88qLCzAo4/Owbhxl+Cddz6Aj48PMjMzsHnzX9DrdQAM78sffvgOV155jUUB38zM87jxxpsRFRVlWnbVVdfgzjtvw5w5j8Df37/u4YiajE8X1CYIgoCOEWOQkv4DLubsQI/O11qtk5mzDQDQucOlrm5eq+XjFYHxNRkTF3K248CxNzE47gmb1eaJWpvu3XsgODgEBw/ux8WLmRgwYFDN8p4QBCAl5TQOHTqASy+93LTN7bfPQHa2/do1iYkD8dZbS5Gfn4dz587i//7vadNrxpk+xo8fjh9++AXh4RH455+tGD58lN2b0HvvfRC33XYD9u/f64hTJqI6zp5NgyTpEB6pgkyszXQy/xkAwiJU6NHbF2mny7F7ewHGXhoGvaStDUrIVMjOKkByUglEUcDAoUHQaiusAvnePjJ4eclQXKSBurpl076S5zMPSvv4+EAURdOyAwf24eGHH8Cbby7FRx+9h7S0VCxf/gnWrv0elZUVeOmlN0zbLly4AN7ePnjmmecBANXV1Vix4gNs2rQRFRXl6NWrN+bMedSU1VfXkSOHUV1dhQULnoFMZpgtJjq6E4YNG2Fap7CwEAcO7MX8+U+YlhkzPZYseRNLlrxpyuzo0qUbIiIM17Arr7zaMZ1F7RqDEtRmGIMSF3K22wxKFBQdAwBEhAx2ddNaNW+vcIwd/Da27JmDcxd+h5cqBPG973N3s4gcYuDAwaagxIMPzgNgCHImJg7AX3/9gfT0c6Z6EkDjh2+Eh0fg888tZwT6+OMPUVVVhblzH0VwsCHl/59/tuHGG2+2u79OnTrj6quvw/Lly5o9+wcRWauozMe2vU/h6LFAU1BClClNr2u0ZVbbJA4KRH6uGjnZ1dixJR/D4ktNwzeyLhZj9/YvoNNJSBgYiMAgBfSSBlptBQABgKEWhSAICA5V4GKmDrm5Ba44VXAULycAAQAASURBVPJwH330Hh566FFERkYhMDCoUdssWbIY586dxYsvvobQ0DD8+ecGPProHHz11Q8ID4+wWj8kJARqtRr//LMN48ZdYvPLpcOHD8HHxwedO3cxLfv55w249947cP31N2DKlGssMjtiYmKRlHSQQQlyCAYlqM0IDUqAUhGAnIID0GorIJfXfnBqtOUoKT8LH68oeKk4/repfLwjMWbwYmzZMxcnz6yBShmM3l1vdHeziFps4MDB+OCDd6FWq5GY2N+0vH//gVi1akXNrAu13zw1dviGXC5Hjx69LJb5+flDJpOZlufn5+H06ZMYMWJ0vfu66677cNNN10GSwNoSRA5yIHklLuTsxa59F9C982UIDJJDJtYGJaqq86y2UShEjJkQiu1/5yPrQhU+/GA1wiPlOHs+F9BuRZB/T/SK8UNMPz8IggySpINWVwmF3M8iyBESpsTFzCpkZTEo0VI//vgdjh8/5tJjxsfHY+rUGxy2v3vvfRCDBw9teMUaWVlZNUNB1iMkxDBc+c4778HOnf/gjz9+x2233WGjzYm49daZeO65J+Hv749+/RIwdOhwTJ58lWn4RXb2RYSEhFoELEJDwyCKInx8fKyGIoaFhSE1NaU5p0xkhbNvUJshinKEBiVCkrQoKTtr8VphyUkAEoID+7qlbW1BgF93jB70GmSiCodPvofzFze5u0lELTZo0BBUVlaid+8Y+Pr6mZYPGDAYlZUVNfUkVPXsofl27NiOhIT+CAgIqHe9sLAw3HDDzVCrq53SDqL2SKHwQX6uGnq9hOjoCAiCYBGUsMfHV46JV4SjZx8/ZFzcjuPHjiI3pxoBAf64/vobMGBIIARBgCDITNvU3W9ITbHLbAYlCEDfvrFNWj8tLQU6nQ433TTVYvankyePIzMzw+52Dz74MH766XfMm/cYOnbsiDVrPsN//jMDeXmGGYaqq6uhVDb+eqdUqlBdXdWkthPZw0wJalMC/brjYu4/KC47g5Cg2m8UC4sNU7yFBPJbxpYIDYrH8P7PY+fBZ7Dv6Ovw8+nEQA+1al27dsM//+yzWt63b6zN5S1hHAts9M8/2zBmzDir9Wwdd/bsuZg9e65D20PUnnmpgpB1wfBA1alzODQw1IUwCvTrieKyVJvbKpQiBg0LQsJAPUqK1ZDLInHpmFvQNXoIMjcHQa0pRnjIQGTn/QsAEEWFxfYJ/S7H9r+/Qk52kVPOrT2ZPn2Gy48pl4vQavUO25+Xl7fF74IgQJIki2XmwwYrKysgl8vxySdrrIZh+Pr61nus4OAQTJo0GZMmTcY998zGzTdfj59++hH33PMAAgODUFpa0uh2l5aWICgouOEViRqBmRLUpgT4dQcAlJSdsVheYApK8AG6pTqEj0JizIPQ69XYdWghqqrz3d0kolapf/8BmDhxkrubQdQuabXVuJhpCEqERRoeMEWzjIYxg9/CuCFL692HQiEiNEyJwGAFFArDg+XksV/jijFfY2j8M6b1zIMS0ZGXYGDcffDzl6O4qByVlSx2SZaCgoJRUFB7b6XX65GWVhsg6927D7RaLYqLi9CpU2eLP8Z6RY3h5+eH0NBQ03uwT58Y5OXlorzcup6KLWfPnkHv3jGNPh5RfRiUoDYlwK8bAKCk3DooIQgyBPn3cUOr2p5eXW5A146TUVmdi91Jz3FaM6JmuO22O2wWJCMix8vM3or//X0V8gqTkHLuR2RlnUNJsQYBgQrIlEUALGfc8FIFIzykv529WTNuq5D7ws+nI1TKQKiUhgdECbXfeouCHKKoQEioEpKkx/nz6Q44O2pLBg4cjKNHk7Fp00akp5/D0qVvobi4yPR6ly7dcOmlk/DCC89i27YtuHAhE0ePJmP16o9x8OB+m/vcsWM7XnzxOezatQMZGedx5kwaPvxwGc6cScPo0WMBAL17xyAgIBBHjhxusI3V1dU4efK4xewdRC3B4RvUpvj7doEgyCwyJSqrclFVnYdA/16Qy73r2ZoaSxAEDIz9L0rKziG/KBmHji/BoH6Pc6pQIiLySLuTngMAbN37MAAg5aTh2+AO0V6orDKMqZfJGq4pYY+tbY21JPQ688C9BJmoQFiEEtkXdDh7Ng19+vDbZqo1cuRo3HbbHViy5E1Ikh433ngLhg4dbrHOwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllV9jcZ7du3aFUKvHuu28hJycbXl5e6Nq1G1566Q0MGmSY9lMmk2HKlKvx558bMGLEqHrbuGPHdkRERCI+PtExJ03tHoMS1KaIogJ+Pp1RWn4W1epiqJSBZkM3mlZIiOonk6kwcsBL+Hv3vTib+RtCgxLQLfpKdzeLiIioQRcyDEM3LIISYvOL2oo2imQal5lnE0qQIIpKhEeqAKkaZ86kNfuY1LpMn34Tpk+/yfT7oEFD7NYuuv/+Obj//jl296VQKHDffQ/ivvsebNSxo6M74YknFja43owZt+GOO25Cbm6OKZPvhx9+sVrv+++/xh133NOoYxM1BodvUJsTaKorcRYAUF55EQDg79vVXU1qs7y9wjC8//MARBw68S5Ky+1Xfaa2qzZBRqpvNWq1DP+uTISi1sx8NoyqKh1ysqqgUokIDVeioioLgO3Agrn+MfaLzdoKaBizJ/TmQQlJD5mohH+AHCovAZmZmaiu5sw65BnCwsKwYMFCZGdn2V2npKQYY8aMw6RJtrMyiJqDQQlqc+rWlTDODa6U+7urSW1aWHB/xPb4D3S6Suw98gL0eo27m0QuJooyAAKnrGyjdDpD1XfDvzNR6yQKtcUmM9MrIUlAp64+EMXaaJsg2L8tju99H3p1vQEj+r+IHp2vt3rdfOYO0zIbmRKQJIiiAoIgIDxSxboS5HHGj59Q77CMgIBA3HbbHRyySw7F4RvU5gT49QBQOwOHWlMKAFAoGJRwlr49ZiKn4ADyi47gaMonSOhzv7ubRC4kCAJ8fQNQUlIAADXznHvKzYoArZYZHLY1pm8klJYWQaXy4Q0otWqiqIBObxiycf6sYbaBzt0s60zJZfbrTuklHQAgOnIcqtWFVq/bypQwZl5INdsCgAQ9BEGEIMgQHilDfgZw5kwqevXq3cQzIiJqOxiUoDan7rSgmpqghFLh57Y2tXWiKMfQhIX4a9csnDr7NSJDhyAidLC7m0Uu5OcXCAA1gQnPCQKIogi93nHzybclje0bUZQhOJizhFDrlZbxP2i0hnuBinIt8nKq4e0tQ1h47XCNyNBh6Bgx2u4+JH1tYEEUrW+f6yt0abEfSarZhxLhkRLyM4DTp09j0qTJjT8hIqI2hkEJanP8fDpCEGQoqzDUN1DX3IgoOHzDqXy9ozCo33z8e3gR9iW/ikmjP4dC7uPuZpGLCIIAf/8g+PkFQq/XQfKAuIQoCggO9kFhYQX0eg9okAdpbN8IgiEowSwJ8nQ6vRoHj72F6MhL0CF8JABAr9fgbObvOHj8LdN6Z1IqIAHo2sMy+yehzwMWdSfqklAbwBMEG0GJejIlLOlr1lfCx68awcEhuHgxE2VlpfDz430KEbVPDEpQmyMIMigVgVCrSyBJklmmBC/2ztYpaiIyc7YjI+tvHEtZhf597RcFo7ZJEATIZJ5xaRFFAUqlEnK5mkGJOtg31Naknf8Z5y5swLkLGzD98q0AgNTz63D45PumdfR6CWdSyiEA6N7L12J7H69Im/tVyP2g0ZbBxyvKtEwUFVbr2QpA2MqeqM2UUEDSlqF37xjs2bMLp06dNE3NSLaxqDK1D+2zuLRn3DkSOZhKEYhqdQG0ukpToUvWlHCN/jFzkZ23BynpP6Jzh8s4FSsRETldftERq2XGYZxGWReqUFmpQ1QHL/j5W94CK+wM8Zw44mNczN2Brh1rZxoQbWRK2Momsjl8oyZTQhQVkCQdevfuxaBEI4miDKIoQ1FRHvz9g2oC4O54cmOtIvvYN/VrqH8klJUVQxDEdldcmkEJapOUykCgHFCri6HWlEEQ5C2af5waz0sVgoQ+s3Hg2GIcOPYmJg7/yOb4WyIiIkcpLD4JwHKoZt1hFqmnygEA3Xv7ml4f0f8Fm8EDIz+fjujd9UaLZY29pvXqcgPOXdiA+N4PIPn0csPCmkwJ4zG7dO0MmUyOlJTT0Ol0kMna14NIUwiCgNDQDigpKUBhYY7b2sFaRfaxb+rXmP4RBBEhIRHtbtgknxSoTVIpDEX3qjVF0GhKoVT4t7v/3O7ULXoK0i/+gbzCJJw+9z1iut/i7iYREVEbVlmdBwDw9eloWmZeI6K4SIOsC1Xw9pahYycvAIZpPOsrbmmP+fSiPTpfjwDfrjbXCwrojesv+wuiKIdKGYD9R99A3x7/MeyjZgiIXA706tUbJ08eR2pqCvr0iWlye9oTmUyG4OBwSJIeer3e5fWLWKvIPvZN/RrTP+25jhODEtQmKZWGoERlVQ70koZFLl1MEEQM7Dcff+2cheOpq9Ep8hL4+nRwd7OIiKgNqazKRUHxcURHjoMgiJAkQNJrTa+bD7M4ecxQX6pPPz+IouGGXy5rXgaleaZETPdb4eNlf3Ya47rdoq9C146TTYESY6aETq9BfHwCTp48juTkwwxKNJIgiJDJRJcfl/V47GPf1I/9Uz/X/28mcgFjpoRxBg5OB+p6Ab5dEdPjduj01Thy6kN3N4eIiNqYTbtmYXfSs8jO32t62NfpNabXjcvKy7VIP1MBpVK0KHApE72adVzzYSH1Df2w3q42c8OYKaHXq9G3bz+IogwnThyHTqeztzkRUZvFoAS1ScZMibKKTAAscukuMd1ugbdXBDJztiK34JC7m0NERG2IWlMMACguTYNQU/BQr1ebXjemQJ86VgZJAnrG+EKhqL31lTkgU8LWTByN24cxU0INLy8v9O7dB5WVFUhLS23W/oiIWjMGJahNssqUkDNTwh1kMhUSet8PADh88j1IEosfERGRY6Wd/xlaXQUAoKIqGyVlZwEAer0GZaVapJ0uh1wuoHeM5b2AlzK4WcczD0Q0JVPCnMyUKaGBVleFuLh4AEBy8uFm7Y+IqDVjUILapNpMCUNQgpkS7tMp6lKEBPZDUelpnM/6y93NISKiNqa8MtPsNwl/7rwDlVW50OmrcexwCfR6CTFx/lB5Wc5s4eUV1qzjmdeqqDvDR6P3UROUKCo5jZ//ugI62XbIZHIkJx+BWq1uYGsioraFQQlqk4yZElXV+QAAJQtduo0gCIjv/QAA4FjKaujNipARERE5Q0HxMWRn5SH9TAVUKhG9+xqyJCaN+sy0jrcqtFn7Nh++0dwq+cYMi7OZvwEAzmWtQ1xcPNTqahw9esRqfUmSILl6qgkiIhdhUILaJGOmhBEzJdwrPKQ/IkOHobwyE2cvrHd3c4iIqI0rLj2D7VuPQgIQ1z/AVEvCW1WbHaFUBNrZun7mU4I2l7GmhEZbblo2ePAQAMDOXX+ioioHlVWGaU7VmhKs3zYdx1NXt/i4RESeiEEJapNUdW40OPuG+8X1vgcAcCL1c+j0TE0lIiLn2bN3O7KzChEcorCYccN8BgxlM7+wEMTmDdkwZxy+odVWmJZ1794T/v4+2L77Y3z/2/VYv206CktOoqgkBVXV+Tie9hk0mrIWH5uIyNMwKNHGPfzwwxg6dCgeffRRdzfFpWQyb9O3EACg4PANtwsOiEGH8DGorM5F+oWN7m4OERG1UdVVOuzacQySpMegYcEQxdohFuZDLxTN/MJCFGQNr9TQPmqCEuaZEoIgoF98TwDAmRTD8pRzP1oE8rPy/m3xsYmIPA2DEm3cbbfdhtdff93dzXA5QRAssiWae+NBjtW3x+0AgJNnvmJtCSIicoqDe4tQValGr5hghIRZzo5hninh6x3l6qaZGGtKGGcNMRo4IAGCAKSdLodWq0duwQGLdcyDGEREbQWDEm3c8OHD4evr2/CKbZB5XQkWuvQMIYGxiAgZjPLKC8jI3uzu5hARUSslSTqby9PPVOD8uUr4+MowcEiE1euCIGLiiOUYPWQBQgJjm3VspSIQHcJHo2+Pmc3aHqitKWF+Hn/suAMX8n9B564+UKv1OJdWgcrqXIshHjp9NbLy9iCJ02wTURvCoIQb7d27Fw888ADGjBmDmJgYbN5s/ZC2Zs0aTJw4EQkJCZgxYwYOH+b81Y2ltMiUYFDCU/Tt8R8AwKkzX7OSOBERNYtOV221rKJciwN7igAAI8ZEQSY3ZOR1jrrUYr3QoH5IiLm52ccWBAGjBr6CuF6zmr0PmWhdLLO0/Cwu5Gw3zRRy+kQZJEmyyI7Q69XYceBxpJz7Htn5+5p9fCIiT9LySj3UbBUVFYiJicG0adMwd+5cq9fXr1+PV199FYsWLUL//v3x2Wef4Z577sGGDRsQEhICALjuuuts7nvt2rWQyVo+5rE1U5lnSjAo4THCggcgyL8PikpPIa8wCeEhA9zdJCIih0hLS8PTTz+NsrIyKJVKPP300xgyZIi7m9VmSJKElPTvERoYD1+fjhav6fUSdv9TAI1Gj959/eAXVIzS8mIAgFzu447m1ku0EZQAAK2uEiFhSoSGK5Gfq0b2xWpUdy8yvW4ejKlWFzq7mURELsGghBuNHz8e48ePt/v66tWrcdNNN2H69OkAgEWLFmHLli1Yt24dZs0yROd//vlnl7QVgEWhqJZs39L9NFZtUEKEUuHb7LnEXcHVfeNeAnp3uwF7j7yC1PM/IDJsoN016/ZL++ifpmHf2Me+sY994xwqlQqvvPIKevTogdTUVDz44IPYuJGFfVvq36TnodaUIK73vTh88n0AwOSx31qsk7S/GPm5aoSEKpEw0HIGLnsBAHcyL8ZtS+++fsjPLcCJo6UYOijHtFynrw1KaHWVTmsfEZErMSjhodRqNY4ePYrZs2eblomiiFGjRuHQoUMub49cLiI01DHFIoODXVPjIijQMBe5SumPsLDWkSnhqr5xt6Cga5F8+iNcyNkBhaoEAX4drdZRKGRW77n20j/Nwb6xj31jH/vGsaKjo00/9+jRA6WlpZAkyaOD4q2BsQZRdOklpmU6XZXp53NpFUg5WQalSsTIcSGQySz7WxQ873bX1vANc9GdveEfIEdudjXOnEmB3Nuw3HwmDvM+ICJqzTzvU5oAAIWFhdDpdAgLC7NYHhoainPnzjV6P/fddx8OHz6MyspKjBs3DitWrEDfvn2b3B6tVo+SkpZF5EVRQHCwLwoLy6HXO7+WgE5rSNeUy/2Qn+/Z83q7um88Qffoa3As9VPsP7wGiTGzrV7XaHSmf7f22D+Nxb6xj31jn6P6JiDAGwpF2xkquHfvXqxatQrJycnIzc3F8uXLMWHCBIt11qxZg1WrViE3NxexsbFYuHAhEhMTrfb1119/ITY2lgGJFigsOQm5rDZwlleQZPrZ+HCur+qJfbu3QQAwcmwIfHytb20FDwxKNFRTSRQFxCYEYM+OAuzdcxIjx6sAWA7f0GqZKUFEbYPnfUpTvZr6jcuKFSscdmxH3dTr9ZJLHhCU8oCav/1azQOJq/rGE3SLvgbHUj/H2cyN6NfzHou5443q9kV76p+mYt/Yx76xj31jyRG1ngAgMzMTixcvdug1uL3R6qrw9+77LJblFx0x/azTVaG4SIO9289Ar5cwYEgQIqK8bO7L1vXF3SJCByPAtzsgCCgpS7O5Tueu3jh2WI6M83nIywlDWIQKerNMCQ7fIKK2wvM+pQkAEBwcDJlMhry8PIvlBQUFVtkTZJtxSlDOvOGZvL3CEBU2HFl5u5CVtxsdI8a4u0lE1M45otZTWVkZHnzwQTz77LPo2rVrs9vS2uo4NZVer0VW3r+ICBloKkSp1VYiM2c7OkdNRHlFutU21eoi089FxfnY/nceFEIn9I3zN81YUdek0atxIXu76XdRFDyib/x9O+KKsZ8BADbtvBeFJSet1hFFAbHx/ti7qxDJh0owflKY5fANfaVTzsET+sdTsW/sY9/Uj/1TPwYlPJRSqURcXBx27tyJiRMnAgD0ej127dqFO+64w82tax38fDoDEOHv09ndTSE7ukVPQVbeLpzNXM+gBBF5tMbUetLpdJg3bx5mzJiBMWOa/5nWGus4NdX+Iyux9/AH6NXtSlw2+mUAwNoNDyInPxleXhLkMpXVNsYij+XlWnz3zY+orNBh0Kie6NBda/c4PbomoKh0j+l38371lL5Rqbztvtaluw9OHitDbk41LmZWoWu0zvSaKNM47H1ii6f0jydi39jHvqkf+8c2BiXcqLy8HOnptd8EZGRk4Pjx4wgLC0N4eDjuuusuLFiwAHFxcUhMTMRnn32GqqoqXH/99W5sdevh6x2FK8d9Cy9lSMMrk1t0CB8FlTIYWXm7UVmdD29VqLubRERkU2NqPW3btg27d+9GXl4evvvuOwDAF198gYCAgCYdy9PrOEmSDtv2PYawoATE9b67Wfs4fXYTACAt/S/k930KWl0VcvKTAQC5+eeh19sONJSXa7H1zzz4KC6iUxdvjLtkIFLST9k9TkFBBSoqa7ML8vPLPK7ejKS3X/RSFAUkDgrEP5vzcPhAMRLiamtklZcXOaVmlqf1jydh39jHvqmfI/qnrdVxMseghBslJydj5syZpt9feuklAMBDDz2EuXPnYsqUKSgoKMDSpUtNBbVWrlxpMW6V6ufjFeHuJlA9RFGOLh0ux+lz3yIj62/07nqju5tERNQk5rWeJkyYgKNHjzpkv55cx6m49Axy8vcjJ38/Ynve1ax9aLTlAABFTd2n/MJjptcEyGzWWSgp1uCfv/NRXq5Fv8Eh6BITAoXCp97j6PUSIAmWv5v97AkPT6JonRViLqqjChFRKuRkVeP4sUxE1EzyotaUOrX9ntI/noh9Yx/7pn7sH9sYlHCj4cOH4+RJ6zGE5m6//XbcfvvtLmoRket1jppYE5TYzKAEEXks1nqqpdFWNGl940wTyac/Qml5OkYOeBlajTEoYUhlLi2vzRzVaCuh1hRZ7CMvpxo7tuRDrdajSzcfjLmkGzKyT1lMrRkdeQm6dJiEk2fWoKD4GFoLmUxZ7+sdwkfiwXuuwaKX7sDB/ecxMcIHCoUeak2pi1pIRORcDEoQkVsFBcTAxysKBcVHUVGZDR/vSHc3iYjICms91TJmOTTWtn2PQK9XmwIFOl0VNDpDYKOs4jwu5u60CEpodeVQa0pMv58/V4E9Owqh10voE+uPxEEB0GiLAACiWPtAr5D7oWPEGKSkr23uqbmFzG6mhICrxq+FShkMnb4aXXv44GxaHo4c9MWgYcHQMChBRG2E6O4GEFH7JggCOkVNAABkZG9xb2OIqF0rLy/H8ePHcfz4cQC1tZ5yc3MBAHfddRe++eYbrFu3DqmpqXj++efbZa2nulkM9mi1FUg+vQJ5hYcsMhf0ktZiasudB5+qkylRDrWmDHq9hMMHirF7ewGkmmk/+w8OhCAIqFYXAgBkZkEJUTCOta6bGu3Z1e5lMttTmQKAlyoEgiBAJiqRMCgQSqWItFPlKMhTQ62trSchSRKOpqxCbkGSK5pMRORQDEoQkdt1irwEAJDJoAQRuVFycjKmTp2KqVOnAjDUepo6dSq++eYbAMCUKVPw5JNPYunSpbjuuutw/PjxdlPrSaerRlHJaeQVJmFf8qum5ZKks7vN8bQvcPLMGqvler3GallxaYrpZ422HCUlhdj2Vx5OHiuFQiFi9IRQi2k/q2qCEuaZEoIoMzbKYt/Gmh+eSiGvvy4GAAiCCC8vGRIGBUICsP/fQmi11dDpDDOS5BTsw4m0z7Ft38NObi0RkeNx+AYRuV1QQAx8vDugoPgYKqpyWKCUiNyCtZ7sO5H2BU6c+cJq+do/J2Ly2G/g693B6rWyivM296Uzy5IwqlIXmH5OOXUGm//KRHW1HkHBCowcFwo/f8tbVuPwDvOaEgIMQQmplWVKeDVh5qnuPX1wNrUc+blqnD5RBvWEMnjLVKisynViC4mInIuZEkTkdoIgoEP4KABAdt5eN7eGiKjtqKzKRUbW3y3eT0r6D3ZfO5vxm83l9rIoqqrzbC4XJD/s3VWIP35PRnW1Hj16+2LiFRFWAQkApuEf5pkStcM2Wldley9l44MSgiBg8PBgiKKA5EMluHDhDADDUBkiotaKQQki8ghRocMAANn5e9zcEiKitqGo5Cx+3TId/x5ehJyCAw2uX16ZheTTK6DWlEKSJOw98gpOpBmyIwL8utvdrqT8nM3lejtBiWOpqy1+lyQJGemV+HN9Ic6mlkOp0mHMhDAMHh4Mmbz+LAeZaGPmCqmVBSWakCkBAIFBCsT1D4BeL2Ht2rXQ6XSmwqFERK0Rh28QkUcICxkAUVQiJ38f9Hqtu5tDRNSq6fUafP/LNNPvjZmpYeueh1BZnQtBkKF31xlIv7gRANC3x39QVV1gdzvzIpXm7GVK5OTvM/1cVqrFwb1FyLpQBR+vKHTtHoj+g32g8pLZ3LYu0Ww6TeOwjdrhG0Kdvz1TU4MSANAn1g8XMipx8UImtm7djPBOTZsRhYjIkzBTgog8glzmhbDgRGi0ZSgsOeHu5hARtWqaOun8kqRvcJvKakNdAr1eazElp06vRqWdIRcAUFp+DpKN7ASpngBzVZUOB/cWYeMv2ci6UAU/fzmumToMYyd0aXRAAqibKWE5fEMQWsdtrrdZUEKpCLC7np9PF9PPoihg2KgQiDI9tmz5GxkZF0yvSZKE4tJUmwVFiYg8Uev4tCaidiHSOIQjj0M4iIhaQqevtvi9bpCiLvOggq9PB4ugRHFJCiTJMsAQ4NfDfGv8svlqq2wKW8M31Go9jiaV4PefspBysgyiCMQPCMDlV0eie/eupqk+G8uipkTNOdQNkHj67Bsymcr0s62CoUaXjVxp8bufvxyjx8ZBkvT44/d9UFcbAk9ZebuxadfdWL/tRmg0ZbZ2RUTkURiUICKPERVmrCvBYpdERC1hnCrSSGun5kBZxQVs2H4LTp/71rRMgGARlMgvPmq1nVLuZ/G7RluGzJxtFsvMh29UVuhw+EAxflt7EceOlECvB3r39cOVU6MQGx8AmUyAUhGI6Jopor1V4QgJ7NfgedqsKWHMlKi5zTUWUu7S4YoG9+cu3qpwAMCguAV21zEELyxv3fvERiI+PhElJWXYu6sQkiShojILAFCtLkRx2RmntZmIyFFYU4KIPIa/bzd4KUNQWHISkmTrRpOIiBqj7rSb9mZnOHj8bZRXXsCRUx+alkmSZBGUKCo5bbWdeS0H0zF11SgtPw9/384ADMNACvLVSD1VjvQzFVDIAqHXA917+SI23h++fpa3oTKZCsMTn4NW9wQUch8cOrEUBcXH6j1P80wJ0+ANY6ZETYaEv28XXDvxd8hl3vXuy50mj/0aer0GcrkPwoL7I68wyeZ6giBY1PHUastx3XW3YOfeFbiQUYnTx8sgCEtMr2u0rDVBRJ6PmRJE5DEEQUBwYD9Iks7ut3pERNQwna7K4netrgJ6vRbH0z5HflGyaXlRySmrbSVJZxGUKC0/CwBQKYJMy0RBYbXdkVMf4I8dt+Nsxhbs2fMvfll3FH/9noOzqeUIDY7BqNEjMGVqFIaMCMbgxLutttdoyyAIMijkPgAAmWh9jLps15QwDGMQzApcKuQ+Hj2MQxQVkNecd32zhwiCZb0Nra4SXl5eGHNJR4iigMMHi5GTVZslo9Vy+AYReT4GJYjIo4QGGdJ1Gxr/TERE9hmHb6iUwQAMn6kp6T/iWMoq7DjwhGk9tabYalsJEtRqs6BERQYAQKkMNC0TzQIGowe+Dq1Wj/PnKrBrWz7eeOM1/PLLOuTlliIwSIEBQ4Jw591XYNSYeHj7GB6qo8JGWB03LCjR4nfR5tAM1FnHOnBR+0jvuUGI5hLq3Lobg0/efhUYPDwIkgTs2paPslJDDRA1gxJE1Apw+AYReZTgwFgAhpRUIiJqHmOhS5UyCNXqQmh1lTh3YQMAQ0YCALvTL0uSHmptbVDC+HkcFTYcpeXnEB4yGIChTkTWhSoUZe7A39suQqczhANUqvO47JK70CN+L/yDNBAEAV7evhbHMM9w6NfzbkSGDUNIzee/ka2AQ10yG4Uuo8KGo6jkJDpFTWhwe48k2J/KVLB4TYJWV4lqdRGq1YXo1tMXxUUanDpehh1b8jHxinBeS4moVWBQgog8SnBAXwACMyWIiFrAmCnhpQxGCc5Aq62ARlMKwJCBIEmSKThhTW+RKWEkF6PQK/J1ZGbmYPM/H+B8xkUAQPfodAgC0KWbDzp19UZURy907pQC6aIOxgdrmai0mJbUvCaFXO5tFZAwbtMQ88CFVJMjEdtjJkKD4hEePKDB7T2SZDm1qTnj8A2ZqIJOXwWtrhLFZWmm1xMGBqKkSIusi1X4d0cBYntZ/zsSEXkaBiWIyKMo5D4I8OsOvf4UKqvy4O0V5u4mERG1OqbhG6oQAIZCl8bil3q9GmpNMdR2povU63UoLMpF1oUqlBRpUFigQX6eGtu91sHftxMAoCC/HH7+ckR19MJt0+7FkTMHIZMLiOl+G06eWYOi0tOwGEghiBb1EGSiyuyItkcT28qUCPDtjpLyMzX7lEEUrW9lRVGBqLDhdnqmdRMEQ1/JZIagRG7BAeQWHDC9LooCRowNwV8bcnAxswqb/96LxJgHGl1PQ6/XNipDhYjIkRiUICKPY/jGbCMKio8h2mucu5tDRNTqGIdveCmDABgLXWogSRK0WgkXs0+jorwcFzOrUFGuRUW5DhXlOpSXa7Fz0zrk5J2CRltqsc8enSPQr+8QdO7cBXnlVSivPggAiI2Nx7HzQs06U3HyzBqLQpmAYUYMmVl2hHkWhPFBuy7zh+OOEWMRHjIQQf69sHXvw1b7aFPqG75RE8Cp79wVShFjJoRh88ZcJB9Ow+bNf2HixMsAGP4dSivS4e/T2arfM7I249/Dz2PckLcQGtpKh74QUavEoAQReRzj3PQFxccRHcmgBBFRUx1NPok/fsvGweB/cTE3C3KxAlXVJdBodNDrJfz791IIghwXcvKsto0I1cA/QIOgkGD4+usRFKxASKgSl4+9G6FB8QCAfw78gPLaSR4wJP4paLQVUMj9AADVausCmuZBBpmsNlNCsFOQUibUPnh7q8LQq8t0FBafMNtf3Qdz+7NWtCZdOkxCXmESene9wfrFmkCCrSlZzfn5yzF2Yii2bsrBV9++CG9vGUaOnICU9O9x+OT76NtjJuJ6zbLYZs+RlwAAR06tQL8YBiWIyHUYlCAijxMc2BcAatJ/iYioqXJy8lBcpIFKrEZ5mQ5yeSUAHZQqEUqliMgof/j5BkEV4AsfXxl8fGTw9ZPDx1eGfn1G49yFAoQE9kNRaQr0NcM+FHKzYpV1pq3s2nEygNphI5JUt4imZDGNqExUwte7I8orLyAooI/NczB/8BYEwy2rYDZcw5gt4OfTGWUV5xHg16PxHeTBukVfjbDg/vDz6WT1mmkYRiPiL0EhSowc54/tf2fisy9fQ0BAODKLfgMApJ3/2SooYfw381KFmpYZhnPwcYGInIufMkTkcYw3YuUVmW5uCRFR6zR8VB94h3TEsMQ7kXxaA4220OL1+N5joFT448CxHVbbVlQZPnsNQYOLqFYbghJys6CEBL3VdgDqfYA1f00Q5Jg44iOUlJ1DaFCczfUth3gY6lGIZnUpjJkS44a+i+y83ejS4Qq7x25NBEGAv28X26/VDN+w1f9eyhBUqQsslkVEeWHY6GAk7S3Bd999ja59ixAYan/IDAB41wQlikvP4I8ddyChz2z06XZzc0+HiKhB9j+RiIjcRC7zgigqUFGVbXfKOiIisk+nq4ZCIUKl9IGvT4TV61pdpd1Cl2Xl5wEAvj4dTcMxAEAh8zH9LEm2v6oXBJlFQUvT+pAgMxu+IQgClIoAhAUn2D0H8+EZoiir2c46U8JbFYpu0Ve1i2/0TX0rWQclZHJvm+t27uqDwcP8oNfrsfWvdFzMrETdehW2ZkY5fe57AMCRUx86qvlERDYxKEFEHkkmU0KSdKioynJ3U4iIWh1joUuZTAUfr3Cr17W6SqtClkaV1bkAgCD/XhZDNuTmD702HoqNRME8I8LwYNylw+UQmjirg/kMHcYMAcEiU6L9zRJhzHCQbPS/eRZJbI874e1VG4zq0EWN4E7bUa0uwc6tBbiYaTntdlV1bYaFcQiOxk7QiojI0RiUICKPZLwZLeMQDiKiJjM+WMpElcXDqZFWW9ngQ2doUILFg795QECqp6iBed2H+N73YdqkzfD1joJMaGJQQlb/8A1ZA8Ue26SamhKSpLN+CYa+Ucj90a/XXfD1irJ4vWt3GQYPD4ZeL2H73xdw/PgxAEBJ2RlUVdcWPNXpqgAAajtBKyIiR2v7eW5E1CoxKEFE1HymoIRMBW9VbVBCJqqg01dDp6uE9WNtLV+faHipQkzfoPt6R1u8Ht/7XmzZMxfDE5+12tY8U0Iu96mtX1BPHQNbLDIljMM3zAIe1rNvtH0+XpEor8iEt1d4nfoRtX1rLIapUPihrh69fSFJEo4cUOPrr7/EhEv7o6D6A8hltVkw2pqghDFoJTYxmERE1FTMlCAij2ScLo7FLomIms7e8A2lMhAAcD7rL5zP+svu9j4qwzbxve9FWHB/jBu6xOL10KB4TJv0NzpFTbTa1jy7wrwORVOn7DTPhBBtZUq0w6DEkPin0LXjZAxLfN5i+WUjV5llrxiCEnKZl8199Ozjh1HjDEGm77//AqdPlEGrqzS9bsqU0BgyJWwFN4iIHIlBCSLySMabTWZKEBE1na5mGk+ZqIKXKsy0XKUIbNwOah7+O0VNwPihS+FjYwiIaXrKOiwzJcxm7KinDoUt5pkSYE0JAICPVwSGxD8FP5+OCPDrDgAYNfB1BPr3QN2gj7dXpN39dOsZhNtumwlB1OPQviIcTSoxFS/V1mTZqDUlAGCzcCkRkSMxKGGHWq3Ghx9+iBMnTri7KUTtkilTopJBCaL2itfi5uscdQm6dBwDP59oi2KVSkWA1boqZbDVMrEFD6Lms2Ao5OYzdjQxKCGrDUoYZ99o75kS5sYNeRejB72BqLDhAGpnRBFqMiX6dr8dXTpcjgnDrGfPEAQRMTF9MfnqRCgUIo4dKcHenYXQ6STo9FXQ6dTQaA3DN7TaCqvtiYgciUEJO5RKJZYvX46SkhJ3N4WoXRIEGVSKIJRXXLRZ0KuqugCHTryL1PR1rBBO1EbxWtx83TtdjSkTlkIU5RbZCsbhG0aCIINC7m+1vdDE+g/mzGsQWBxbYX2cevcjWhe6tMyUaN9BCZUyEFFhw60zVmp+l8u9MTThGYQE9bPa1jibSUSkFy65PBzePjKcO1OB7X/loby8HFXVxaZ1tbpKu1PAEhE5AoMS9UhMTMTRo0fd3QyidsvXJxp6SYPKqjyL5TkFB7Bp1yykpq/FoRNL8Nu2G5CVu9tNrSQiZ+K1uOXMMyUUcsv6AKKohMzGMIgWBSXMMiXM6xqEBiUgrtc9GD/0vUbtR2YjKGG+7/aeKWHNsqZEfYyBDK2uEkHBClw6OQLBIUrk5lTj9/+dwI49n1rsV6erRGr6Ouw5/CL0eq1hqaRHZXW+Y0+BiNolBiXq8fjjj+Prr7/Gl19+ifPnz6OiogKVlZUWf4jIefx8DIW4yioyTMvUmlLsPPAUqtUF6BY9Bd2ip0Cnq8SeIy+ivOKiu5pKRE7Ca3HLmQ+hMB8SAQCQJNODvvkMDC0JSghmNSVkFvsU0LfHfxAWnNDI/dS2oXbYhtmy9jglaD0kGIbH2Kr1Ed/7vjpLDP1oLHDp7SPDJZeHIbqzNwoLS/DOO28h60KVaW2NrhKHTizB+axNyM7fAwDYl/wa1m+dhoLi4044GyJqTzglaD1mzJgBAHjppZfw8ssv21zn+HF+EBM5i68pKFFbV+JCznbo9FXo2nEyBsc9AcAwRvrU2W+w+/D/YcKw99tl8TOitorX4pYz/0y0zi6QTMMgFHI/00NqS4obWmRKiKp61mw8Y4BCEAQIggySpGOmRF2mERbWQYk+3W5FUWkKMrL+NqxhzJQwqxchl4sYMTYERw6W4NTxUvzzdx7iBwQiJs7PYr2cggPoED4K6Rc3AjBcl0MCY51zTkTULrSZoMTmzZvx6aefoqCgAD179sRtt92GoUOHWqyTlJSEm2++udE3L6+88ordytJE5HzGau/mwzfO19xQdelwuWlZXK97kV90FPlFR3D+4l/oGj3ZtQ0lIqfhtdix6tZhkCCZghYKhR8qq3MBtDQoYRYEsTMtZVNZ1JIQ5NBJunZfU8KaZaFLc4IgwNe7Q+3vdTIljERRQP/BgQgOUWD/v4U4cqgYBflqjBlUaFqnsNiy8Kwk6VGtLsKWPXPQOeoy9Ot1l8POiIjahzYRlNixYwcefPBB9O/fH0OHDsWhQ4cwc+ZM3HHHHXjiiSeafTMzbdo0B7eUiJrCOA5aU/MNTbW6CLkFB6BSBiMsuL9pPVGUI67Xvdi272GknF+LLh2vaNL/+9LydOQWHEJ5ZSaC/HsjPGQQvFQhjj0ZImoWXoudTJJMU3ia15sQWjDC13xKUPOsiZap/Uw3BiiYKWFJQv3FKM0LkMKspoQtXbr7IDBIgZ3b8pF5vhKrVn6GDj01CAxSmKabNR1X0uPU2W9RVpGB42mfMihBRE3WJoIS7733HqZOnYpXX33VtOyHH37Ayy+/jPPnz+Ptt9+GStX89MGUlBQkJycjKysL06dPR3h4OM6dO4fQ0FD4+fk1vAM3q6ysxJQpU3DVVVfhsccec3dziBpNXjMOWqsrBwBkZG2FJOkQHTne6kY3LDgRgX49UVRyEgXFRxEaFN/g/vV6LZJPr8Dpc99aLBdFJeJ734teXW5o0bhqInKc1n4t9hR6vQb9es3CsZRVAAx1CMyHbxg5aviGo5jPwlRb9JJBCQvGGTLsBOVlZjU4TJkSWvs1WQKDFZh8TXfs2HoeubnZOHYqBwOGBGHAAI3FenpJg+zcnS1sPBG1Z23ibvv06dO49tprLZbdcMMN+OKLL5CUlIQ77rgDRUVFTd5veXk55s2bh6uvvhoLFy7Eu+++i5ycHADA22+/jffff98RzXe65cuXIzEx0d3NIGoyucwQlDBmSmRmbwUAdIqcaLWuIAjo2cXwjWpK+o8N7luv1+CfAwtw+ty3UCoCENP9NgyOW4Duna4BJAmHT76PXYeeMVUZJyL3aE3X4k2bNuGKK67AFVdcgfXr17u7OTbp9RrE9piJkMA40zJjEEGhMA9KOGZKUEfRS7Wfxcb22po1hGwP3wAsh9UIggBJkqwyJeoGo/z9wjH6klAMG9ELer2E/f8WYstfZ1BRUVtjoqq6AGUV5wEAAX49HHUaRNSOtImghEqlsvhwNIqPj8fXX3+NgoIC3HzzzcjIyLCxtX2vvfYaDh48iE8//RQHDhywmKN5/Pjx2L59e4vb7mxnz55FWloaxo8f7+6mEDWZcfiGscBWeaVhdo2QwL421+/c4TIo5P7IzN5qCmTYc/Ls18gt2I8Avx6YOHwF4nvfh27RV2FQv8cwccRH8PPpgou5O5F0snFT1zWGJOlQVV0ASdI7bJ9EbV1ruRZrtVosXrwYa9aswTfffIMlS5ZArVY3vKGL6WtS72O63wYASIyZY3q4t8yUaMEtohNqgJgHiJkpYZtx9g17U4Ja9pcIra4CqDPkw0sVavo50L8XukVPgSAIiEsMxYQrIuDrJ0f62UK8997byM2pBgDkFSaZttHrLbMoiIgao00EJWJiYrBt2zabr3Xu3Blff/01fHx88OSTTzZpv3/88Qcee+wxjBgxAjKZZeS4Y8eOyMzMtLNl4+zduxcPPPAAxowZg5iYGGzevNlqnTVr1mDixIlISEjAjBkzcPjw4SYd4/XXX8d///vfFrWTyF2MwzeMAQaNthyioLCe0s64vswLUWHDIEk65Bcdsbvf0vJ0nEj9HKKoxMgBL8LXp4PF64H+PTFm8GKolMFIO78OZzJ+afY5SJKEzOyt2PzvbPz012T8tvV6/PzXldi6Zy4u5Pxj8YBFRNacfS12lKSkJMTExCAsLAzBwcFITEzE/v373d0sK7qah8aOEaNx7cT16NVluulhVemg4RvmQy0cxXyfxpoVrClRR0PDN+pkSqg1JVbreKvCTD8PjnsMKmUgAKCiKgehYUpMmhKBrt0DUFiYh61/5OLwgWJUVBaYttHrGw7Enb+4Cf/sfxzJp1egrOJCo07NXLW6GPlFyU3ejog8V5sISlx++eXYtm2b3SEaoaGh+PLLLzF06NAmPQBUV1cjKCjI5mvl5eVWN0dNVVFRgZiYGDz33HM2X1+/fj1effVVzJkzB+vWrUNMTAzuueceFBTUfvhfd911Nv/odDps2rQJ3bp1Q/fu3VvUTiJ3UdQM39BqDTUlNJpyi/RiW8KCBwAAcgsO2V3n0Il3oZc06NfzTvj5dLK5jq93FEYOeAmCIMORU8tt3rw1pFpdjG17H8bupOdQUHwMMlGFQP9eEEQZ8ooOY9ehZ7B170Ooqs5v8r6J2gtnX4uNWvpFQU5ODiIjI02/R0ZGmoaZeAKF3B8A4G32TbgxG61Lh0noGDEWYSG1BYQ9LShhM1NCxqBEU5hnSkiSDmpNqdU6XmZBCbnMC0pFAACgsiobAKBQihg5NgJXXX0Z5AoRJ4+VYtNv2SjIMwQj6hbBtGXPkReRnb8HJ8+swa5DzzT5PP7aNQtb9sxBUcmpJm9LRJ6pTRS6vPnmm3HzzTfXu46Pjw8++eSTJu03ISEBP//8M8aNG2f12saNGzFw4MAm7a+u8ePH1zusYvXq1bjpppswffp0AMCiRYuwZcsWrFu3DrNmzQIA/Pzzz3a3T0pKwvr167Fx40aUl5dDq9UiICAA9913X7PaK4otS8c0bt/S/bRF7BvblEpjoctKaHXV0EsaKOS+9fZTZKjh/2VeYZLN9corLiInfx98vTsgpvvN9e4rPCQB3TtdjbTzP+PU2a+QGDO70W2vVhdh+/7/org0BYH+PZEYMxuRoUNN43iz8nYj+dRK5BclY/O/D2LskDcQ4Net0fs3svfeqVYXI6/wMKrVxRAEEcEBvRHg190pBeg8Ff9f2dea+sbZ12Ij4xcF06ZNw9y5c61eN35RsGjRIvTv3x+fffYZ7rnnHmzYsAEhIZ4/W8+E4R/gbOZv6NPN+n4pPGQgwkMGorDkpGlZS4Zv6J2SKWEdlJA5oXZFW2Bv5hTzzBK9pIPGRlDCPGgll3mZglkVldmm5RL06NuvKyZdHYH9u4uQfbEKx/b3QmiHFPSJK8CZjF/RvdPVjWprWUXThlYDME1bW1J2FkEBfZq8PRF5nvZzd9oM8+bNw1133YU777wTkydPhiAI2Lp1Kz799FNs3LgRX375pdOOrVarcfToUcyeXfsQJIoiRo0ahUOHDjVqH/Pnz8f8+fMBAGvXrkVaWlqzAxJyuYjQUMdUNw8O9nXIftoi9k0thUKGsLBAyOXe0OoqoFaXAQC8vQLqfS+GhMTC2ysUhSUnEBAgQqHwsXj9fPYuAECfHlciPDyowXaMHvog0i9sRMq5HzG0/3/g5xvV4DZ6vQ4//zkHxaUpiI4ahsnj34FC7m2xTljYJMT2Ho/Nuxch5ezv+Gf/Y7hhytfw9gpucP+2GN87RSXp2JP0Hs5mbLEq0unrE4mB/e5A317XQ25nCExbxP9X9rWGvnHVtbilXxREREQgO7v2wS07Oxtjxoxpdnsc/UVAoH9X9O/7YAPb1D7MioKs2W2wGGrRwvNQyP2g0ZbBz6ej2TkZghJyuapZ+29NQbmmMNaUEATb52Y++4Yk6aDR2QhKeIWbflYofOClMgQlqjVFFttqdaXw9ZXjppunQqoci81/78KJoweQfk6HwvyXcMv1/eCjCodSGVBvm/19uzT730EURZf/G/4/e/cd3lT5xQH8e292d5tuWgpllNJBy17KEBBxAoqiiLhFQFSciHsibpwM+TlwobgREBVUluxZCi3QvZuO7HV/f6RJk2Y0adOktOfzPD62N3e8923IzT33vOftqu8db6C+cY36xzUKSrgwdOhQ/O9//8Prr7+O559/HhzHYeXKlRg0aBDWrVvXoTNayGQyGAwGREZG2iyXSqUoKCjosOM6o9cb0dDgfNood7Asg/DwQMhkChiNNI7eGvWNPZ3OgJoaOfg8CbTaBkuaKcNIUFMjd7ltZNggFJX/idNn9yA2crjNa7n5m03rhI5tdT8mEvTrNQs5+Z9i76H/ISt1Yatb5BVsREX1MYSHDMCIjBfRUG8A4PhYWSmPQac1oqB0CzZvfxQXDV3hUdq09Xsnv/BXHMp5GwaDCgJBMHrGXYRASRz0BhVq606iSnYY/+5/Fcdzv8fo7OcRGBDv9nE8odbUQK2RwcjpERyYaEkR9zX6d+Wct/omJEQCgcA7wyec8ee12MydBwWZmZk4deoUqqurwePxcOTIEbz44ottOp7fHgSwzccMCBC3uQ18q2+X7T2PWVd8jeKyPRjQ5ypL9oZAYLq5Dg8Pbdf+L4SgnCfYploSPB7PYb+otKGWn7U6GfYcfsZ2e5YPaURz4D0yUgqN1tEQGQPEYlMAJDa6H0ZkXYdxF0/Cg4//jsKCCvy1tQqyqsVI6luHrPRZuHj4UputQ4N7or6xEAAQHBjZ5r9hULDEa/9OPNXV3jveRH3jGvWPYxSUaMWQIUPwxRdfQK1Wo76+HiEhIZBIJK1v2EE4jgPThqrWM2bMaPexvfWl3mjk6AbBCeobW0YjBz4vEGquFiq1qZYKnxfYah9Jw01BicqaQ4iOGGZZLleWQtZwCkEBCQgOTHa7r3snXIOc/M9RVP4nMvrf4zJooFJX49iZ1WAYHgYPfAgMI2z1OFmpD0LWcAYVNftx6uxXSOl9o1vtsnb63Hc4lPMWABapyfOQ0vtGu4KgdY15OHJqJaplh7Ft910YM/hVRISmenwsRwwGDfIKN6Ko7HfUy/OtXmEQGpSM5J7XICl+ql8K09G/K+culL7x97XYnQcFAoEADz30EG680fTv9/7774dI1LaMJH89CKhvVFt+1qgNbgZu7TXPOsK0eR/NghEdPhm1tc0zKhkNpu9BcrkBNazn+++qAUuD0RQoMBg4h/0ulzfPjKHW1Nm9zmPF0Gqabw0aG/TQ6e2HghiMesjqTNdknZbfdCwBLrk0GSeO63D4QB2OHTmLnJNalJV8itTeC22ycBg0/7tQqeXIO3sAx/PWYnjGUoiEYW6fr0Ku8cL7yzNd9b3jDdQ3rnmjf3zxIMBfKCjhwu7du5GVlQWJRAKxWAyxWOyzY4eHh4PH46G6utpmeW1trd2XIkK6MkHTDBxyhSktWthKoUsAiGoqdlkts52tpqRiOwAgIWaCR8E9iUiKqIgsVNUeRLXsKKIinI9hzzn7P+j1CvRLmoWwkH5u7Z/PE2PEoGewbdetyD23Hr0TrrAUF3PHuaLtOJTzDlhWiDHZyxEtHexwvbDgvrhoyOs4dvpD5BVuwK5Dj2PCiA8RKGl9SIorlTUHcfDkCihUpirqpqBPTwBAfeNZ1Mvzcejk68g9ux7DM5+CNCytXcdzhuM4KNXlaJAXwGjUQCQMRVDQIHSRms7dlj+vxa1p+aBgypQpmDJlilf27Y8HARxn/bnItrkN5qFjDMPrkJsTc2CYgaBd+79QgnLuM58L4/C8OM71ZyGPJwKf13yN5TgGDIRgGQGMXHNAw2jUQ6c3Bc14rNhyLB5PhKTkAMT1EOPkUS3O5Fbjv121WHx2EMaOS8fooXejR8w4ywwwAKDXq7Bt950AgJ/+vAqjsl5CfPQYt87WaDTi9LkN0BvUGJA8x61tvKXrvXe8h/rGNeofxygo4cJtt90GHo+H1NRUDB06FEOGDMGQIUMQHt62Md+eEAqFSEtLw65duzBx4kQApg/f3bt345Zbbunw4xPSWfCbZuCQK01BCb4bQwGCAxPBMDwoVGU2yytrTdPzxcdc5HE7EmMvQVXtQRSWbXMalNDrVSgq2waWFWJA8lyP9h8SmIRePS7HueKfcPr8V0jv5179F5W6Gn/uWgaAw7D0pU4DEmYsy0dmygIYjBqcK/4Juw49hgnDPwCf37anzsXlf+G/Yy+A4/SIixqN9H53ISTIdsaf2voc5OR/gvLq3dixbxGyBtyP5MSr2nQ8RwwGDc6V/IqzRd+jUVFo89o/+/mIjBiEfknXIzZyhNeOSXzHn9dis+7yoMC6uGV7Zt8wF7pk27EPV8xTW/J4nSdA1Sk0zTDnLObeWjCexxPbzXDFMAwEgmBotM0zv3GcHvqmqbrNU3cDzYU0hSIW2cOD0COJwcG9dagoV2Dj13tx+NBxLH1gt02AQ2dozoABgN2Hl2LmlB2tnKiJwajBkdyVAODzoAQhxLsoKOHCrl27sH//fhw4cAD//fcfPv30UxiNRiQnJ2PIkCEYOnQorrqq7V+sFQoFCgubv0AXFxcjJycHkZGRiIqKwq233opHHnkEaWlpyMzMxCeffAK1Wo3p06d74/QIuSCYgxCKpqCEgN96pgTD8CAWRkClqYHRqLfMOCFXFANgEBLYy+N29IgZh0M5b6KkYgeyU+8Hy9pXfS+p/Bt6gwqJcZMhFAR7fIzU5LkoKN2MvIJv0afnTJsq6M4cP7MaOr0S/XvNQkLsBLeOwzAMsgYshkJVisqa/Th17jO3gyDWSip2YO/R5wAAgwc+gt4JlztcLyI0FaOzX8a54p9x5NQ7OJTzuumJWvylHh+zpbqGM/jv2AtoVJwHAIQG90VYcD8I+IHQaGWokh1EZc0BVNYcQEzkCAxJe9Stfm0LubIEpZX/olFRAK2uHkJBCIICEhEXPQYhgUkdcszuoKOvxe7oLg8KbIMSbc8wMhe6bE9gw5WU3nMgDc9EgDim9ZW7kYiwgSir2oXwkAFub5MUPxWyhlw0yM+Bz4otDwKstRwKCAC6pqm6+bzmgLbtlKN6REWLMPnyaOTlynHyaCPyTyvw1luvIUBagYReHPh8EdTqart9u0ujrWvztoSQzqVLBiU4jsN7772H66+/HpGRkZafo6KiWt/YSnh4OCZPnozJkycDME0XtmfPHqxbtw7ffPMNNmzY0K4vQsePH8fcuc1PU1944QUAwMKFC7Fo0SJMmzYNtbW1eOedd1BVVYXU1FSsWbPmgph6jBBvMc9aIVeWN/3uXoEgiTgKKk0VNFoZJOIoGIxaKNWVkIijHH7Bao1QEIzYyBEoq9qJqtrDiIkcZrdOQclvAExf8tpCIo5Cn8RrcKbgGxSUbMKA5Jtdri+rP4XzJb9BLArHwD7zPDoWy/IxJO1RbP33Zpw+/zWS4qchODDB7e0VqjLsP7EcAIcRmU8hIXaiy/UZhkFy4lUIEEdj1+GlOHBiOcSiCMRI7fvRXWVVu7Dn8FMwcjpES4chvd9dCLeaHs40flOC46e24kju+6io3ovte+djdPYrCA1ObvNxW6pvPIujue9aMnFaOn7mI0jD0pHRfz6kYeleO64zBoMGjcoigOMg4AchQBLbplpEnUVHX4vN6EEBYD3UqT1BCfMT844qchsTOczhZ3B3NyTtMRSWbUWv+Mscvs4ytl/7oyOGYGj64/hrr2lWFh5PZJP5YMZzEITX6U3Fp23Xt09JZ1kG/VODkdQ7ACeONkCtVuPknnLkHOcwZHg8pDFajz6frGeVkitLmo/MGTosCEYI6XhdMihhNBrx3nvvYcKECYiIiLD87GlQAjB9STl06JDlKc3Ro0chEokwfvx4DBkypF3tHDFiBHJzc12uM2fOHMyZQylppPsyZ0rIPciUAACxyJRSrdJUQyKOahrKYURQgPs33i1FRQxGWdVOyBpO2X0hVqjKUCU7BIk4GtERrodQuNKrx+U4U/ANisr/aDUocTxvDQBgeNYCCARBHo9RDBBHY0DyzTiRtxpHc1dizODlbm1nNOqx79iL0OsV6N/rxlYDEtZio0ZiyMBHsP/Ey9h//GVMGf2pXbqwO6pqD2PPkadh5HTI6H8v+iVd5/AmimV56BFzEaKlw3HgxKsoKvsdO/Ytwvjh7yEkqJfHx7XGcRxOn/8SJ/LWguP0CBDHIin+UoSHpkIsDIdG14DauhMorvgLNXXHsf2/Bejb8zpk9L/Hkr3jLQajFkVlv+Ns0c+oazxtMyWjSBiB2Mjh6Jc0C6HBfbx6XF/pyGuxGT0o8N7wjSFpj+LgydeQNeA+bzSLuEkkDEW/pOucvh4W0h89osehpNI0PMI8/MX8ecTjSSARSZGZMh/xsdYBXvsCxVpdAwDbTAnrzx27tol5GDw8HGMHLcYrb25BRZkC/2yvRGi4DhnZoYiKdv2wQKWuxtniH9GrxzTLMoVVUMJo1IPHo6AEIReqLhmUAExfFh397IkZM2YgNzcXUqkUQ4cOxdSpU/HEE08gJSXlgn7qRMiFxFJTQmEOSribKdEUlFBXAaGpTUM30K6ghPkpvKzhtN1rpZX/AgB6xk1p1xPGkKBeCA3qg3p5Puobzzp9oq9UV6KyZj8k4igMSL4aMlnbKvX36zUL50t+RXn1HtQ15iEsuG+r2xSUbkZN3TGEhaQgre9tHh8zqcdUVNYeQGHZVhw78xEGD1zi0fYKVTl2HV4Ko1GLQQMWo2/P1mcX4rFCDEt/AmJhOM4UfIPdh5/AhBEftmmYDWC6rhw7/T7OFHwDlhUio/8C9O050+5GLjZyOFL7zEVh6e84evp95BVuQKOiACMHPevwiWRbVNUewf7jL0KpNv0bEQsjEBrcFywrgFpTg7rGMygo3YyC0s1IjJuM7AH3QyRq23n7g6+uxfSgwHtBiZCgXhg//F1vNIl4EcOwGJn1HL7bOg6Aqcgy0JxBwW/KIkzpPRtSaZBlZguWsc+UME/Tbf05ZjQ6D0qYxcTE4uJJUagoDcfJoypUVlZg+9YqxMaLkZEdirBwAYxGnd0Qyd2Hl0HWkIO6hjOWZfKm4sqAqY4JhSQIuXBRSXIXcnNzwefzkZWVhezsbAwePJgCEoT4mHn2DbVG1vS7e0/VJSJTZpRKYxqvKleagxI92twW0w07gzoHQQlZg+lmxjzzR3skxl0CACgu/9PpOkVl2wBw6Bk3GSzb9q9iPFaIPk039eeKfmp1faNRj9xzXwAAslMfcFhbwx2ZKQsgFITiXPFPqKk77vZ2HMfhUM4bTTOc3OBWQMKMYRhk9J+PuKixkCuLse/Yi20OWp/IW40zBd9AKAjFhOHvo1/SLKc3cQzDQ1KPqZgw4kMEB/ZCRc1/TcVBW/8C35rcc1/g7/33Q6muQGzkKIwf/h6mjduIsUNWYHT2S5g48iNcOeEXZKYsglgUiaKy37Ftzx2oa8hr97F9ha7FvsN4afgGuTCYMyUYS6aE48KhjjK7dDpTwMLdTAlrHKdHYlIorp45CMNHRyAwkI/yUjV+/7UCe/+tRVl5gd02soYcALApZqxSV9rs0xG9QY1q2RFwnNGtthFC/IOuOC7s378fH3zwAfr27YutW7di9uzZGD58OO6++26sXr0ahw8f9ncTCenyWj5NFgjczJRoGr6hbgpKmNM825MpwecHIDgwEUp1OTTaepvX6pqCEu5OA+pKQoxpOERR+R8Ob5o5jkNB6RYA8EqxyKT4S8GyQhSWbYVOr3S5bknFDihUJYiOGIKI0NQ2H1MkDENG/7sBAKfOfu72dkXl21BRvRdBAYltytJgGBbDMp5AUEAiyqt3o6xqp8f7KK/+D7nn1kPAD8ZFQ99w+28eFBCP8cPfRVBAIsqqduLY6Y88Pra10+e/xvEzH4HHE2Fo+uMYM/gVSMPS7W7WBfwA9Eu6FpNH/w89osdBqSrDjn0PoLYuv13H9xW6FvuO9XuHghJdn2X4RlMmBN9pUKJ5+IY5+Ko115SwKozpTlDiSO674Dg9WEYAoTAQSckBmHp1DLKHhUEs5qHwvBIrV76FDRu+QmVlpd32zgLhzrI0/jv6PHbsuw9F5X+02jZrGm09Kmr2e7QNIaTt6IrjgkQiwejRo3Hffffhs88+w759+/D6669DqVTi9ddfx+zZs/3dREK6PAHPNgjh7vANsWX4hulLjTcyJQAgLNg0hKOusTlbQq9XolFRhABxDETCsHbtHwACA+IQEToQClWpZVYJa3WNZ9CoOI+w4H4IDe5tvwMPCQUhSIiZAL1BhaLybU7X4zgOuefWAwBSvDD9Ws+4SyERRaG8ejcaFUWtrm806nDs9AcAgMEDH25TwVLAdJM+qGms+9Hc92AwaNzeVqtrwIETrwAAhqQ94tZwF2tCQTBGZ78CoSAEZwq+RkXNPo+2Nyss+x3HTr8PHivC2MGvulVcVSgIxohBz6Jvz+ug1dXjlz/mQ62pbXU7f6Nrse9YZ/tQ0cCuz1yQ1Jxtx2Mdf6ZaF7o0Z0boLMM3mjMljG4EJfIKNjQdk2/ZF8sy6JsShMuuiUF6VggEQgb/7NyIt95+BV99tR7l5c3Tezsqugk4z5QoqzINrayqPdhq26zt2Hcf/j2wBOVVezzajhDSNl22poS31NbWYv/+/Zb/cnNzYTQa0a9fP68V1yKEOGeXKeHp8A21efhGCQAGgZL4drUnLKQ/isq3oa7hjGXmiLrGPAAcwqxmfmgvaVgmautPQtaQi5Ag28BDScV2AEDP+CleO15y4lUoLNuCgpLfkJzgeCYDWcMp1MvzER4yAFHh2e0+Jsvy0afndBw/swp5hd8iO/UBl+sXV2yHWlODuKgxiIoY1K5jx0YOR2zkKJRX70Ze4XdI6X2jW9sdO/0h1JoaJMVPRY+Yi9t07ODABAwe+BD2HHkKh3PexqTRH1tuDtyhVFfi0Mk3ALAYmfUCIsMz3d6WYRhkpiwAx+mQX/QjFMpSCEPD23AWvkXXYl+hTInuxJx1YK4p4Xz4RnMggMcTQ6eXw2DUAGBtAhmeDEljGYHN0A8A4PNZpKaHIFCixKEDeSg6V4ETJ4Q4ceIYlMYaDEgPRkSok0wJJ0GJ5nPwLIhtfiBQU38CsVEjPdqWEOI5Ckq4cOmll6KwsBA8Hg+pqakYMWIEFixYgCFDhiAsLMzfzSOkW2h7UKJ59g3zdKAB4ug2P103Mxe7tK4rYS586c2gRHjTkABZw2m7p+C19aaxtdERQ712vIjQNIhFUsgacqHTKxxmpJRX7QYAJMRO8Np4/t4JVyIn/1MUlGxGWt87XBaezC/cCADo2/Narxw7M2UByqv3IK/wO/RLmtXqjBhKdSUKSjdDwA9CZsrCdh07PvpixEiHo6LmP5w5/w0GuJl5wnEcDp18HXqDEv17zUZs5HCPj80wDAanPYiLRz4AeSPj8awtvkbXYt+xKXRJZQO7PHMwwhx0cD58wzpTonkdPl9icy1oGZTg8yQYkvYI5MoSnGiaLcp6nwHiaIfHU6jy0H9gMPqmMEgMvwp//70dZ46rUFKkQl7Pk0hIViGuh9jm2EajAbX1OZCIoiyFrq05ywJpjcGgbdN2hBDPUFDChcsvvxzDhg1DVlYWJBJJ6xsQQrzO+uaYx4rcnkqRz5dAwA+CSlMNhbIUgBGB7Ry6AQBhwc3BAjNzgCI82HtBiTAHwQ/AdFNa13AaLCtEcGBPrx2PYRhEhWehqPwP1MiOOXwyVFZtSmONjfTeUyOhIASJcZfgfMmvKKva5bRGRm3dSdTWn0RIYG9ERbQ/SwMAggMTESMdhoqa/1BevRfx0WNcrn/m/NfgOAP69JzR5lk7zBiGwaABi7Ft1zzknvscfXpOd2toUknFDpRX70FQQCIG9rm1XW0QCYMhh7xd+/AFuhb7ju3sG5Qp0dWZgw3moTrOMiWsM7ms1xHwbB8atAxKsKzQMmV0QelmyzBK02t8BAUmumxfgCQcI0eOxuDB2Xhr1Xc4nSNHaWkdCgrlCA7ho39qMJKSA8DjMZAri7Hr0KNgWSGuuWQr6lpkGbIsH3kF36Ky9gBGZb3g9vAkg1EDvV6J3YeXISF2Avr0dJxJSAhpny55xWEYBvHx8RAKhTY/e+q+++7DqFGj6EsQIX5knd7pbpFLM7EoEgaDynJj354il81tCEJgQA8oVCXQ6RUAmgMH3syUCApIAJ8nQV1jnk3VcIWqDDq9HGHBfd0O0LgrMiILAFAlO2z3mkpTg7qGXARK4hEcmOTV48ZFmYIBFdX/OV3nbLFpZpA+STO8OutC74QrAQDnin92uZ5GW4dzxT+Dx4rQt+dMrxw7ODABiXGToDeoUFi6tdX1OY7D6fOmmU+yBixud9bPhYKuxb5jPfsGSzUlujzL8I2m/zvLJmAd1JQAbOtJAEBavzudbse2GKLGsoJWA+vCphpNemMj+vQPwqVXxmDE2CBERovQ2KDHgb0y/LqxDCePNuDP3Q8BAIxGLY6ceht/7r0beU3ZdYApuHAkdyXKqnahXn7O5XGtGQxq5BV+h8raAzh48jW3tyOEeKZLZkqwLIs//2yeSs/6Z08VFRVhzZo1OHjwIOrq6hAWFoYhQ4bg9ttvR2Ki6wgvIaT9rJ8euzt0w0wijkSj4jwqakw3u+0tcmnZr1AKhbIEWl0DGLBoUBRAIoqCWBThlf0DpqeUocF9UVN3DHJlseXLW0cEQMzMdSKqZUfsXjMX+4qNGuX1qRijI7LBMHxU1OwDxxnsnmBxHNf0N2SR2DQzibfERY2GWBiB8uq9liE+jpwv+Q0GowZ9es70SjFTsz49p6Og9DfkF32P5MRrXPZttewoZA25CA3ui2ip94buXAjoWuwblCnRvViGb7RWU4Jpvl2weVDAt80Y6xk3GQJ+EHYdesxuO0d1c4IDXP/bNQfGzEU1WZZBXAIfcQlRqKnW4vTJRpQUqnDiaANyjjcioacEffoHguM2gmEYVNYesOxLr1dZfjYadS6Pa81g1KC8eq/b67dG1nAaBoMaKnUVEmIn0tTGhDTpkkEJbzl+/Djmzp0LkUiE8ePHIzIyEtXV1di6dSt+/vlnfPrpp0hLS/N3Mwnp0qxrSngclGiqK1FYZpoKzFs3crymp0MGgxqNuiIARoR6OAuDO8JDUlBTdwx1DaebgxJNs36EeXGoiFlQQIJVXQklBFZ9X169CwAQFznK68fl8wMQGZaBKtkhyBpO20012qgogFpTg4jQgRAIPHsPtIZl+UjqcRlyz61HUdnvSOl9k8P1zFOHujPLhSfCQ1IQEToQtfUnUSU7hOiIwU7XPVPwDQCgX9J13eqLLF2LfYeCEt2LOZPBHGg1XzPt13M8fMPRMDbrZbYFMm2zMIxGfauf59qmYITBaFvXQSQMhzRShlEXSyFv1CMvV47z+UoUnjf9FxomQN+UIIQGNQcidE1TmFrvtyWjUY9q2RHLlNuAqaaErGnK79CgPi7b2xqNth5/7mnOJhEKQywFswnp7igo4cLy5csxcOBArF692iZtVKVS4a677sLy5cvx6aef+rGFhHR9tk9lPBu+YZ6BAzAiRjrc4+kbnbfJ9KVMb1BDbzB96REJQ72yb2thlmKXZ5AYN6np56b6FU2veRPDMIgMH4Ti8j9RU3cMsZEjLK9Vy46CZYWIbOesF87ERA5HlewQKqr/swtKVNUeAgCv1ZJoKT5qLHLPrUdl7SGHQQmNth41dScgFkVaaop4U3LiNaitP4lzxT87DUoolGUoq9oJsUiKxNhLvN6Gzoyuxb5jG5Sgr4hdnXkIYN+k6yANy3A6k4/t8I3m4ILAQVDCOiPCeohhy+Eb5voTl4/7ARptLbbtvs1uX9qmQELLaZsDxLHQaGUAgKBgPrKGhiE9KwSF51XIz5WjTqbDgb0ynDzyL3okAcl9AxEWUm7ZXqdrgF6vQknFDsREDrdkOZ7M/9gy7bWZwaiBsSko4iyTxF2NigKb3+XKEgpKENKEwuAuHDt2DHfccYfdOFaJRILbbrsNR48e9VPLCOk+GIa1BCY8fUouEUdZfnb2BLwtzO3R61WWlFAez/vj3c3ZEHVNT2ksRS4Zgd00od7iaAiHVtcAra4BQQE9PJq60hPmAEhFzT6718wpuNERHTP1Y1hIf/B4EtTUHYfRaD+tXHn1HgBGxHXA0BUA6BEzDiwjQGXNfpv6IdbKqncB4JAUP9XmBqE7oGuxL1GmRHfCMs2zbkRFZDn9m/NsakM0/yx0kL1oHXww79+0D9trh3kKT7EoHBInw+b0egU4zmCXKSFoMSsXYJpONLlvICZNi8bEqdFISg6ARqtAXq4cW3+twPcb9iL/tBxarREqTTV+/Xsm9p94GblNdXoAoKTiH7v9Gq0CIlwr0462RqWusvmdodswQizoX4MLIpEIdXV1Dl+rr6+HSNQ9iowR4m/8pgwJjzMlxDEAgIjQgYgM994TfnMAQm9QwWBQm9rYAUGJ4MCeYFkh6uVnAQAqTRW0unqEBCd32I1paLApPdW6SrpcWQLAezU5HAkJSoZYGIGauhPQN/UpYHqaVlV7CCwrhDQsvUOOzbJ8SMPSTUVRG8/YvW6eCjUuanSHHJ/PE0MalgatrgF1jXkO16moNgVrYqQjHL7eldG12Hesg24UlOj6ggLdK/5sHWiwzqBxnCnR/O/RNlPC9pplHQB2FezW6uSWTAXr9vCdfB9gGAbSSCGGj47AFTNikTk4FMEhfFRXyXHwvzr8/G0Z1q5bjpKiGnAcB7Wmxmpr++mRDcbmoISxxewinlKoylo0tl27I6RLoSuOC+PHj8drr72G/fv32yzfv38/Xn/9dUyYMMFPLSOkezE/FfG0pkSMdCgG9rkVQ9OXevUJt3n4hsFq+Iaz+d3bg2X5EAqCodObpm2sazDdMHtrGIoj5uwSlbrasswcoAiUtH/2EmcYhkFIcB8AxqYpXE3qGs5Ap5dDGpbeobNNRDUFrVoW+TQadSiv+Q8sK0SUi3oP7T6+1JQFUllzwO41g0GDqtpD4PMCIA3rfrUT6FrsH/QUt+uaetFXGJX1IsJDUtxa32YWDatCxI5qSrA86+Ebzdu1LC5pnXXgKsiu0zfaDd/gsUKHWRoticQ8pAwMxqVXxmDi1Ggk9w0EywIF5xrw9x/V2PRDOf7bk4uqqiqn+9DbZEq0PSjBcRwqWhTMZCgqQYhFlxgwuGvXLowe3foTLJ1Oh0cffRRvvPGGW/t97LHHcO+992LOnDmQSqWQSqWora1FTU0NsrOz8eijj7a36YQQN5iLXXo6JSjL8pHaZ57322OpKaFqDkrwO2a6Qh4rAscZYDTqodU1AHBejMwbxMIIAAzUmuaghMIHmRIAECSJRyVMT5NCg5MBANV1ptR8VwUgvcGcSVNVexj9e91gWS5ryIVer0Bs5MgOCTyZRUcMxkmsRVXtQaT0nm3zWnXdMRiMasRHj/X6NLAXAroW+wfD0pSgXVWgJA6Bkji317eeRcMmU4LfSk0Jq3XNU2ibWWdKuMrK0eoa7YZvsKyg6SFFhc1yAT/IEsS3Zs6ekEYKMWhoKIoLVDh/VomqCg0O7juLyqLXERsbDy1bhchYPQICrdvdXBSzPUGJ8yW/WK5nhBB7XeLbzfz58/HOO+9g3LhxTtdRKpVYsGAB9u2zH6/cklqtxo4dO1BSUoLZs2djzpw5OH/+PKqqqhAVFYVBgwZh7Nix3jwFQogLAl7bMiU6SvPwDetMiQ4KSjRlBxiMGstQkfYW23KFZfkQCcOh0tSA44xgGNYnwzcAIDAgHgCgUJVYlilUpuJkwYFJHXrs8NABYFkhauqO2UxLai5M1hFTsNocP2QA+LwAVMuOwmjU2Tw5rKg2TWnb3YZu0LXYvxhQUIKY2GRKsK4zJayvhdbb6VrMeGF0sz5Dg/wc9HqlzTIeT+iwxlSfxOk4de4zu+UMw7MEFPh8Fr36BKJXn0DIG/WoqQgDXx+N8vJSnC8ph04vR1S0CIm9JEjoKQHLNFi1uTkoceTUexDwgzEg+WaX7Vepq1FQ+hsKy7Y5eJWykQgx6xJBiUmTJmHhwoV48803MWnSJLvXa2trceeddyI/Px/vvvuuy30VFRVh3rx5KClp/lIcFBSEN998ExdddJHX204IaV1ba0p0FPOXLoOhudBlhwUlmsbnGgway9Oijio2aSYRRUKjrYVGWw+xKNwSlAjs6KCExBSUkFsN3zAXBrMuWtoReKwQ0tCBqJIdRr38nGWITKPCNHQlKKDjhq4ApmBQVEQWyqp2oabuJKKsZjmxBCUiu0+VdroW+x/VlCDNrGuNNAclHGVK2NaRsM44sM1gcDfr4MCJ5fbHYAQOH1I4yliUiKLAwdiidoRJUDAfMdEhuHTsA6ioKMe6L/bhzBkVqio1qKrU4NC+OsTEitGjpwTxCWIEiA1NbTfi9PmvAcBpUEKvV4HHE2PHvvssgfaQoN7QG9RQNtWWMI8q5TgOSnUFAiWxbvQIIV1Tl7jivPbaa7jyyitx//33Y9OmTTavFRcXY/bs2SguLsa6deswfvx4l/tasWIFWJbF+vXrceTIEfz6669ITU3FM88803EnQAhxqbmmRGcJStgP3+iI2TdM+/VtpgQASMSm4SFqjSkgoFCWgGUECOjgwIA5E8M8XASwCkqIOvbYABDaNM2qXFFkWSZXmn4ODkjs8OOba1ZU1zXXtdDrVWhQnEOAh+nWFzq6Fvuf9c0n6d6sSzJZD8kQtjIjlvVsQi1rSjia6chdLCtEgIMbeD7PflaOwIB4Jw8NGPBYEXR6BRiGQWxsHLKHxWDaNbEYPyUKffoHQiBkUV6mxoG9MvzyXRm2bjqHnTv/RVVVmYP9NauqPYwf/5yKc8U/2WT+hYek2MxkYs68yMlfh83/XI+C0s1u9gAhXU+XCEowDIOXXnoJ1113HR5++GH88MMPAIBTp05h9uzZ0Gg0WL9+PbKzW5/j/tChQ7j//vsxZMgQiEQi9OnTB8899xxKS0tRWVnZwWdCCHEkNnIEQoOTEBGa6u+mAAB4/ObhGwYf1JQAzJkSpoJbHVnwEQDETTUrVJpq6HRyaHR1CAyI6/CbFPNNt0JllSmhqQLD8CAWhXfosYHmwIfK6oma3Jwp4WaV+vYICewFADaFPs3V2n0RFOlM6Frsf5QpQRxhrLIfAppmuHJGZzXsYnjmMwgOTLJkOLTnOsbjCTGwzzzER1+EGOlwy3JHwYdAieOgBJ8nhoAfCJ1eAY4zz7rBgWEYREWLMHh4OK6cGYdxk6LQNyUIYgkPleUKbNr0C557/nls21SJnOMNqKgot9re5NjpDwEAh3Jsa9hJxNE2M5mYAzM5Zz8FAJwr/qVp6KRpfy1radTWnUR+4ffudBEhF5wuMXzD7Omnn4ZIJMLSpUuRm5uLDRs2IDo6Gh9//DFiY91LiaqqqkJiou2Xv549e4LjOFRXVyM62vFcyoSQjtMzfhKyM65BTY0cRqP9lF2+5nj2DV9kSjQFJdiODUqYC2mq1NWQNwUIAiUdO3QDMBU0FQkjoFCVg+MMlunaAsTRPnlqKxFJAcBS5JPjDJCrSiAUhEIoCOnw4wdITF/wlerm4m3moER3ypIA6FrcGVBQgjhiPSuLo7oOgClz0DS8sbm4ZVTEIEwZ8ykaFcU4ePJVZPa/t81tYBkBhIIQjMp6Abnn1qOixjTEzdHDgaCAHjbZd2Z8ngR8fiDU2loYjVqUV++1CYgDAMsyiI4VITpWhKyhoZA3iNEjbBxyTu1DTp4Wslot3pW9hdDQMPTvn4L+/QcgObmPJcOupQBxtM3wy5bZIzV1x7Bpxwxk9J8PjbYep89/gcmjP0FIUC8AwF//zQcAREVkISSot/sddgFTaWpQUPIb+vac2WEPf0jn0KWCEoCpSrdIJMKqVaswaNAgfPTRRwgNDfV3swghXQjfUujS1zUlzJkSvhq+Ue2zmTfMAiVx0GhroVRXNU2XxnV4PQkz6wwRAFCqK2E0ahHcwUUuzcxPHZUq66BEU1CoqQgoIb5CwzeII9oWBSsdEfADYDCo7GbcAIDgwASMG/aO3fKJI1ehqvYwjp1+HwAgFIRCq6t3uH/rAprW71OHwzck8ZbsRtt9CC1DQ3V6JfYcedLlOTEMg3ApH5dOugyTp2Yi6IvfUFKkQmRgPEpLy7Bv317s27cXPB4PderziOshRlwPMQKDmm+1TJkSzqdJNTuZtw4Go2m4ZmHZ70jvd6fN67L6XFTWHkSfxOmdJnhoMGjAst7/bnL89EcoLNuCmrpjGDPYvr4I6Tq6RFBi5MiRYBjbuX45jkN+fj6mTp1qt/7u3btd7u+OO+4Aj2d/MZ43b57d8tb2RQjpesxBAb1e5btMCYNVTYkOzpQQW4YxVFtSTTu6yKVZUEA8autPQKEsBa9pvntf1JMAmoMSarUpKCH3UZFLMx5PZJr5RF1pmfmkOVOi+wUl6FrsXywFJYgDKk3rw6cE/ECoNTUOgxLOhIekQCgIdSsoYb42ALZTlFovN2ERFpKC0sp/7PbBwQh+01CSksodbrWRM5pqQBgMaoSGCxAaLkBG/2jESeciLy8fubmncPr0CZSXqlFeqsahfUBwCB8xcWJEx4rAGxJq016jUecwyGPkdFbr2Nfe2H/iZQCAkB+MnvFT3Gq7zf5bzPDUXueKf8XBk69idPaLkEov89p+AUBvMA0BKq/eA47j7O73SNfRJYISN910k9fepAsXLvTKfgghXVfz7BtWwzc6qqaE1fANfdPwDX4H15RoHr5RBcA0XMZ3mRJNxS5VJZbCpr7KlJCIIgA015RobErB9VVQAjBlS8i0Mqg1tZCIIy31Jbrb8A26FvtfZ3kCS/zPepaN5uC486fifJ7ps7vljButsb5RFglDIFc6WY+xmqLUKnhmfcOfnHgNUpPnQiyS2lyf+fxA6PUKcJzBkilxOOdNt9pnnjHEulbGsdMfQNmzAtnZi5GdPQSNijKs3/gnykrUKCtRo6Feh8YGOfJy5ag8vxZa7jgCQ+sREyuG0bgOOWf/5/Q4pp/1Tf+3H7paULYFiXGTPboHqqo9hL/334/s1AeRnHi129u5cuSUKfMlJ/9TZA70blBCIm4eqqfW1lqGWbaXwaDBoZw3kRR/KaIiWq85CABVtUdQUbMXaX3voM/HDtAlghKLFi3y2r7oixAhpDWOZt/ouOEb5voVvit0aR6+odJUQ6EqBwCfjV81D1OQK0shEoY1tcc3QQk+P8A0xrhp+IbcEpTwXZHJAEkMZA2noFSXm4IS3bSmBF2LOwH60k2axEePQb+kGxAfPRpCQSg02noMGuD8u3d46ADIGnIQGtTHo+NYBxiEAudDr62LRdpOQSqw+VncdANrPTuWgBdgCkoYDR4PUTLPlmEetmmWX7gRWQMWAwA4ToOoGBGiYkTIHBwKldIATpsOVWMsZNUCnMqXo7CwETnHGsHnM4iMFlnWD48QgGWZFsc0BSXM3zWsVdbsR2HZFiTF22eFO5OT/wkAUxFOR0EJnV4BpaoCocHJDrdXaWqg1dZB1nAaSfFTwTCMJYjSEUO+rIe4aDTuBSU4jkN94xkEByY5/b5UUrEDBaW/oaD0N8yc4l6mzN/77wMAhAX3RULsRLe2Ie7rEkEJQgjxJR7PevYNNRiG79VUSNtjmTMl1FaFLju2poSAHwyWFaJRUQCOMyA0uC8CxL4pLGiZFlRVYklhlYh8V9RQIopEo6IAOr3SMnwjONCHQQmruhIRoWlQqEohFIQ4LShHSEdhQMM3iAnD8JCZMt/y+4QR77tcP73fXRAJQtGrxzSPjmN9HXVVXNjZ8A3roAZrU2vCOlMiANCYAgxJ8Zeipu64JRDdOiM4zgidzj6Fw2jUg2X5dsEDSQAPQ4dPR1L8peA4Dj/9XoScU/tQUaZGVYXGMtTDdF4MpJHCpkCFEBGRQsvwjZZDWcJDUiBryEW17IhHQQld03AI68AOAMgaciFXFOPU2c/QoDhnU2DT+hy37rzZUsA0ODAR0rB0S+CkY4ISzTOQaLR1bm1TUbMPOw8+jBjpcIwdssLhOtazyHhq79FnUS8/h7S+t7u1fqOiEApVOeKjR7T5mN0BBSUIIcRDfEudBzX0elWHZUkAsFTqNhi0zUEJu3Gz3sUwDCSiKMv86nFRozv0eNbMtRMa5YWWZb7KlABMdSUaFQVQa2ogV5qCEr6qpwFYBSXUFZaq8IHdpMo66Vxo7DZpKwE/AAP73urxdqxVgEEkdJEpwVgXumzO6LG+0bQOVlhfo82BD44zIC5qNCaNGohftrs/jIHjDNDp1XbL9QYlhGwI9Hr7gIV5GlSGYRAeEYB+A4LQb0AQjEYOtdVaVFdqUVWpQU2VFpUVGlRWaIBjAMMAfXrvQnXxbwiN4KBSGiAJMN34B4hjIWvIhdFosDueK+aAgtGoRV1jHkICe8HI6fHnnrts1muQn7ULSuj0cpsZVRrk5yENS4d5mCfr4Y1+XWMeTp/7EtkDH7QM12zJelpUtbbW5f7OFGxAcEAiautPAoBlVhZHrN9rHOd51syps5+6HZTYuvNmAMAV478DQA8YnKGgBCGEeIhheOCxIugNSugNqg69aTYX1TQYNZZq3B09+wZgmh7THJSIjx7b4cczEwnDERTQEw2Kc9DqG0xt8WFQwpwaKlcWQ6Eqh0QcbRmu4wsBEtP01UpVuVU9ie5X5JIQ0v1Y39S6Hr5hlZloVWvBttaEVVDCqqaEeUpT85ADT6+nRs5gU1PCTKdXQCgIcTjMwhyUMB2/Gcuahm9ERoswAMEwGjk01OlQValFdaUGVRUaVFTU4d9/d0ChqkBpZRkkATxII4UYOKAKWmgQK9XaHU+jrbOZXcS2nc1t/2P37QgO7Am5gylTrYM6Zi3PzRy4t5yP1Y29waCBQl2OkMAku/1YHx8wXeMz+t/jcB2b4Rtamc1r5oLQptfqcDT3XQBAZkrrw/rNw2EBQKmqRGCA7RBJjjNAoapAkBdnvnI306O7oqAEIYS0AY8nhlbXAIDr0JvW5ilB1TAYtDbLOpK4qa6ERBSFsGDfTIkJmJ4kJcZdgpz8dVBragCwEAsjfHZ88wwcpZX/AjAiPCTFZ8cGbDMlaDpQ4l+UKUF8y/pptbMn54BttiAHo+Vn2/oSjjMlzMcw14fw9HrKcQa7mhIALBkSzZkSLNDUNqHV8Dv7cpXNWJZBWIQQYRFC9BsQBI7jECwaBmnQDBw5vhmKg7vRUKdDcaEKctl51DVW4eDOHTiydyUSEnqgRvEz+vcZjtLaLyEShuCqib84aKftjCiNikK7dWzPw3qZqul8TDOjnD7/pc3QEeu/36GcN1BQuhnDMpYhIWaCyywKZ1Ojtnzt2OkPEBLUG7GRI6BQlWPzP7OR3u8OpPS+yWY9V+8dM3PmKWAKrrQMSuw/vhyFZVswJns5KmsPobJ2v8v9cRwHo1HrsuYXxxmdvkYoKEEIIW3C50ksYzw7dPhG05cvg1ELg1ENhuF5nCLZFuZpOOOiRvs8jTsx1hSUMLVD6pPzNTNnSpinkJOGZfjs2IB1pkQFlN20yCXpHBgKShA/YllB082sEIVlW2xfY6yCEjaZEtbDN3gOl8dIh0LWkIP4qDFN67l+nwv4QTaziHBGZ5kSpnXMNRvCgvugrvEMANOMH23BMAyCQlgMHTwcYVGFCIuPgU5nhKxGh0DBIBw+VgStiofS0hKcO38MReV/Ywv+BssyCA2rgrHhO8TF9UBcXBxiY+MgFAptMgRc0TqYOcWcKREW3BeVtQcAAMfPrLZqb3OfF5RuBgDsO/YCautOICv1fgCmYEB+0fdIjL3Esi6fH4CSyn8gq89BWt87bf4mhhYBi5N5axEbOQIFJZsAGHH8zCqk9L7JZpiH9VS0pZX/Iiykv11dLPMsMoB9vQ4AlvdcSeXfOF/yq93rLe0+/ATKqnbiygm/QCgIdriOq+ALoaAEIYS0iU3hrA4NSljNvmHQ+GToBmAaslFevddrU4Z5Ijgw0VLEy5dDN4DmTAnzlxRpWJpPjy/gB4HPC4BSXQ550/CNAApKEH+gmATxI5YVYMSgZwDAPijBWo//bz1TAlY3uQP6zDU9bY8a6VY7xg9/D2eLf0JF9T7IlYUwcnqHNSV0LTIlQq2CEu48uW9uKg9hwf0ha8hp2p8CRqMe+UU/mvYlYBEdK0JmymAESndDGpaK6urTkNUaEBARDFmtFnUyHWS1Whw4sA/APvOeERkZiZKaWoSGCRAazkdIqAABgTyHgRmdrtFumTkoYQ6em867OXhhHRhgGL5lOtP8ou8tQYlT5z7HqbOfIr9wo82x9hxeBgCIlg4FAx6iIgYBsC10acJCq2u0CVZU1R6xzIwBwBLQB0zBggBxLC67+GubvVi3VaWpxvEzq9C353UQCAKhUrde+LRlhk1Z1U4AQH1jntMpRvUG+/cNaUZBCUIIaQPr4ACvQwtdmi58ppk+NBA4icB7W2R4JqaM+cQnx3IkIfYSU1BC5NughHk6VMBUnTwsxHdDVwDTk7EASQwa5OcsT6KopsSF4+zZs1i6dCnkcjmEQiGWLl2KoUOH+rtZbdKyOj8hvmSd3TA840motTJLzQBzXQjAvUwJ66wfHitEYlzzU/rWhAT1QtaA+7D9vwWQK83DN5xnSphv3EOD+wEwZQtYByWcxfqEglAYjTr0iLkYyqapuAFT5oVCVQq50naYhXmfdQ2nwfDViIgGIqJNdTg4zlQUMyP5KpSVlaK2RonS0hJUV1ehsMC27Xw+g5BQAUJC+QgNEyAkTIDQMAE0uga7NlpPgT5++PvY/t+9NsMVZA25+HbTjcjovxCBknibNv+9bzFiIkegvjEPgGmIopnGKlPhn/0PAADGD38f0rA0u+wCWUMO/th9B+KjL7Is23nwYZt1FFZBCdOxylFbdxJ7jjyFoelLES0dbDN849jpD0zbKUuh1Teissb1UA3A+ecjw7AordwJlhUgNnK4zWuO6o2QZhSUIISQNrAunGX9s7c115RQwcjpXI5X7Ep69ZiGmrrj6J14pU+Pa86UAExTrvH8cGMWII5Fg/wc1JpqxEaOouEbFxCRSISXXnoJycnJyM/Px7333ostW7a0vmEnMirrJTQqCixDmQjxB+tilolxkwDAEpSwznwwF6wEbGffsA5QsF64blrXonA0fKO5pkRTNoHVcAHrGUKc1ZSIixqN7NQHwLIC7Dz4qNV+VQ6fsAv4pgcU5gLYtm1lEBDIR37F4wAL3HTTDgBAQ0MVPtv4Fxrqdaiv06OhXoeGOh1qa7SorbHNSNgd/isyB/IRGRkFqTQSUmkk1Poi6HRG8HkSiIThAACttjmgoNM1olp2Cv/sfxihwX0ht+qmKtlhVMkOI0Zqe6MOwCYIY1Zbn2MTlLhi/I+WWVKU6nKbDIqWQ1LM9Zis/fWfaUrbAydewWUXf+Ow3xrk59GgONdiqeO/GI8nQlnVHhzNXYnR2S9bvcJi9+GlAICZU3bY1JGgoIRrFJQghJA2sC5u2ZHDN8zTj2qbUil9UeSyMxAKgjEq63mfH1csai6q6euhG2YhQUkor96NhNiJGJa+lKZmvID06NE8fWxycjIaGxvBcdwF9TeMjx4DYIy/m0G6OUezPzS/Zn2T7yxTovnnuMhRiI++GAkx49vRHlNQoqTib+gcFLo01zHQN9WU4PMlmDzmU5vZQVzh8cSWhw7WWR56gxIGc4YCP9BSqNKTISFGox4sy4eRqUdsvBix8c3fXziOg1JpQEOdHtAnQKMKQd7ZPdDpNCguLkJxcZFl3brGfFTVluJQwh9ITmpEQYUMUukZCMQqBAbxERjIg0DIQm9QoabumMO2qDT2QyNkDbkO2mwKNJiHabT8nmVsGhriiKPZRMysh8S2ZDOrSxNnxSl5rAi7DpmCR8fPfGS1vu0UrdbDRAw0fMMlCkp0YceOHcOyZcssv585cwbfffcdUlNT/dgqQroGno+CEjxLUMJcVLN7BCX8hccKLZXFfV3k0mxA8lxES4ciOmKIzZdv0n779u3D2rVrcfz4cVRVVeHDDz/EhAkTbNZZv3491q5di6qqKqSmpmLZsmXIzMz0+Fh//PEHUlNTL6iABCGdhat/N9Y35ImxlyD33Hr0S5pl83lpXXeCZfntDnKbAwVHTr0Lidg+i8gSlGjKmODzAlxOh9mS9bXd+tx1egX0TTfQQkFIm4ISOr0cImEY5Ioiu9cYhkFgIB+BgXzERaVg0ID7sPmf6xEekor+PW+CRiVGdXUNyisK8Pee3xGk40Ol0qOgsBhnixQ4m6eEdTaBUMgiIJBnClIE8RAcEgixRI/AQD4CgnhokJ+1a0PLG3kA0OoaUFN33DIEpGXAwNUNvjmLYnjGk9DqGnH41Fs2r+8+/CQaFQV22zkKSjjLbrCeAcam3XrbWhzWwQ9Hs7aQZhSU6MIyMjLw44+mwjglJSW4+eabKSBBiJf4qtAl25QZYR7f6atCl91ZcGAiZPVKSMPS/XJ8AT8QMdJhfjl2V6dUKpGSkoIZM2Zg0SL7uew3bdqEl19+Gc8++ywGDRqETz75BHfccQc2b96MiAhTFs3VVzsu/rpx40bweE1PU0tKsGLFCqxatarjToaQbmbcsHdQ33gWQQEJlmUiYSguH/ed3bqsi0yLtmCtshdU6hq719WaahgMGtTL8wEAAqtpQK2l97sTf+09YLecx1pf25uDK0aj1vJQQiQIsRRx5PMd79+RX7ZfjYkjV0GuLHa5Hp8fYJk5QtaQg73HF+KiIW+gT5+R2H98O0aLgwAEIWvAPASLh+DrX/6BvEEPuVwPhdwApVwPhcKAOpkOdTJThoOAz0BndaMuELCQBPBM/0mafxZLzMt4EIlZKNWV2P7fAgCmgBDDsBiZ9YKlIKZaK2v1vFlWCEmLWTcaFQUOAxKA4+CIs0CCbdZq89/LukAoxxlshpZQoUvXKCjRTWzevBmXXnqpv5tBSJdhE5TowJoSzcM3moIS3WT4hj8NTX8CWm0dRMIwfzeFeNm4ceMwbtw4p6+vW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wHAEux3Ri6X495778WTTz6JpCT3n5S2xLLty7Awb9/e/XRF1DeudYb+YRnW7vjR0ixES7Pc257H90r7m/vC9S1TQelmMAyLRkUhIsMzERrU02G2R2T4QEyftBnfb5tqs5zPFzvtd3XTkAfra5JIGODReew//jIa5C3rJdgS8AMgFATCdJNtGrZQXPEnYqOGQqFqHhIhEQchNjYOPRKDLTNsmHEcB43aCIXCAKXcCMYYjYqqAijlBigUeqiUBlMti3rn02MyDBAetgUcI4NIxEIkYRFg+BVBQcGoKguH3lgKZcNpcKweIjELPt9xRiGfL4TYg9o4jUr7TBJ3MiWs/8x66+ljoQfHWde+MAUl6HPHMQpK+JEv00g3b96MJ5980ltNJ6Tb8/nsG00pm92l0KU/BQXEAwE040V3o9VqceLECcyfP9+yjGVZjB49GocPH3ZrHwaDAYsXL8asWbMwduzYNreFz2chlbr/JNSV8HD307y7G+ob1/zZPyEh4nb9GwgNCfLKvyHzPsSi1q+9pVX/AAAG9r8KkZEhTtczGO33FRoSYjmWSGg7NIBj6gAAwUERKK82tyus1fZYay0gYdp/CCIjgyEUBECra7q5ZpSQSoMQFhKHatlRAEB4eDik0iAIBBJotbbDFRiGgVhiynyQRgIhQSFIkIc3nwvHQa8z1bFQqwwYMnAJNGoWCoUWv//9ElRNy2WyCpsSkweFewEAeQVlUKpqADRnq/D5DAQCFgIhC6GIhUDAQChkwVMfQFRkMk7nNEIoNL0uELDgCxjw+eb/TL+zLGP5nmXLcXaDWNwcFOLxmutO8PjN64eGCsAXNGfY8Pn6pv6jzx1HKCjhR75MI62trW1TMIMQ4pivCl22DEJQpgQhHUMmk8FgMCAyMtJmuVQqRUGB43Tflv7++2/s2bMH1dXV+OabbwAAn332GUJCnN+gOKLXG9HQ0L7xxyzLIDw8EDKZAkaje8X2ugvqG9c6Q/80NKpRUyNvfUUnFHJ9u7Y3M+9Dp3PeD+n97sDxM2ssN+g6jcjlsTkHxS/VasayjVZrO4xAVlfStF3zjXBdXfPNL8PwMTr7eew8+Hhrp4PUPrcgJ9/xdN+NjXWoqZGDx0oAmNoiV8hQUyMHg+bPMJXS1FaWEQFodLgvy3lpTK8HBfSARlsPnV4OgZBBqJBFaJgAQ4dcAQE/EAaDBkq2uWCk0chBqzVCozb9d9Hga6FQyBF46BQqqlSm5RojNGoDNGoj1CoDVCoDrLM8jKpDEIuKcKag3kHLbDGMKRjM5zOWoAWPz0IsUsNglINlGbAswPIY8FgG58PPoa6xDjweg5JzZ9AgbwDDMGio2ofyqkaAAX75ZTO0ujrk5cpN+zeew9hhaNe/q5AQCQRWgY6uhIISfuSLNFIA2LJli1eGblAqacehvnGsZb90pv4R8Ju/HAgFAR3WNoYRgGF4lrGO1imeQOfsm86C+sY56hv3eTJ7xoQJE3DixAmvHNdbN4NGI0c33k5Q37jmz/5hIGjnsXlubx8gjoFSXeHwNcs+GOc3ghGhtg/9BPxgj9vOMiKrbWw/b5SqKtN+ecGWZRxnXdRTgNjI0egRMw4lFTtcHidQ4jwLUKGuhNHI2WR/VtUewuZ/5iBAHNu8IsdrWq/1hyTmAqB8fhCEglDU1p+0arcQLCOB0ciBYZqzQ8TCCKi1tRCLeRCLTf2enm7qY4PwV5RV2f+tzBkYLBOGRnkNdFojBqVcDRE/Dlv+2Qqd1hTk0GmN0Ou5pv+M0Os4GAxNv+uMUKuM4KziwQyjd1hrokJSDoXKFLgRiwqg1piG2J4LOAa50hQEqSv7DXqDEiUVdQCAMyf24eZZGvrccYKCEp2UN9JIzbwxdINSSX2D+qaZQMCze891pv6plIVZfjanMnYUPk9kmRc9MNBxSmpn6pvOhvrGOeqbZuHh4eDxeKiutp2yrra21i57ghDSMUZkPouKmr2IDPdddu+YISvwz/4HLbUbHHF0Y2rWcjYOoaD1zKipF30FtaYW2/+7F0CLItYtgqCyhlNN+20OSlgX3jQX9TQanddpMOOx9rNGRIVnoUp2GAkxpiHkghZ1shoVhWhUFFp+FwpN58dnWy+8HR89FiUV2xEfNRpKdYVNUELID7IJ+Kb2uRU5+euQ1GMacs997nB/1lmqEaFpqK03BYEZhoFAyCAkKBI8gSlAMDB1IEKD+yA8+jnIGnJRWPa7ZXpVZziOg9EI6HVG6A0cjAYORgNgMHLgjKbXDAYOfJ4Qao0URgMHsSgGcoUBHMchPDgBNfWm7JAhaeOgVtfg6OlDAAck9ewDkUgEubz1v1N3REGJTsobaaQAUFpaitraWmRktG9qO0ol7VjUN/Z0OoMllbEz9o9a3XwhVSrglTRRZ1hWCMAUlNBpWZtjdca+6Syob5zzVt90pVRSoVCItLQ07Nq1CxMnTgQAGI1G7N69G7fccoufW0dI95AQOx4JsePbvR8O7n+uhQQmYWjaY/j34ENO1zFPM+mIWNgyKBHa6jEDJXE2wzFtCifCcWaWRBKDjP73Ijgw0TJFKdBchNPgoo3N69oHJTJSFoBhWIQG9QFgms7UmQG9b7bMfmKdKREoiYdCVWq3/pCBD6NHzDj0iL4IeYW2s6TwW0xrmpp8CyLDMyENTYOsPgeVtfazlFgXFheLIuxeF1n1vXmKz94JV6A3rkB51W6oWglKMAwDHg/g8XhwnQeiAyBpOiYDjc50LuEhQYhoMD04GjosE0pVGbRNwaRIegjgEgUlLjCepJECQHx8PLZt2+aVY1MqacejvrHVsi86U/9YT9/FY8Ud2i7bY4kcHqsz9U1nQ33jXHfrG4VCgcLC5id+xcXFyMnJQWRkJKKionDrrbfikUceQVpaGjIzM/HJJ59ArVZj+vTpfmw1IaTDtfLd2tAiCyEkqBeE/BCk9L4JfL4EfH6gpVCiOZOgNeabZsD2Oh8S1Nvh+nxWjP69rrduNADOo0wJR0EJluEjNDi5+Th850GJ2KhRzW22yloIDkxyGJQQCIKQGDuxaZ1eNq+1PA7DMIiOGAwAGJX1Iv458KBNZkXLYzoKngiF1kEJ23NVaUzDYEKCertV+NNdGl2d5WetvsHys9GohcHQPCVofWM+dE6mGCUUlOi0KI2UkM7NdvYNz6bm8vxYzRdWlgpdEtJmx48fx9y5cy2/v/DCCwCAhQsXYtGiRZg2bRpqa2vxzjvvWGa9WrNmjaW4NCHkQuFZsJWB42klzYwG2yyEAEksxmQvt/wuFkohN8+S5eDG3xHr9fhWWQf9kmaBZYXgOAOOn2ku/mgzxKOp1QBnCW64N3xDYLeMYW2z3VwFJazbbJ3pERzYE+XVu10eOzgw0eZ3gYsi4Xy+BNHSoXZBCeu/E9+uP2wzJRydKwBIwzKgVJU7ne6zPXS65kxWWUMu6hvzml/Ty3Gu6C9IQy72+nG7AgpKdFKURkpI52Y94waf33GzbwC2T1AcXYQJIe4ZMWIEcnNzXa4zZ84czJkzx0ctIoR0Cq0kIRs5vc3vLWfdCg9NgVxZCE/YZErYPOgQoX+v61FRs6/FMVs+lDA27cd0O5fW9w78c+BBDM94EgajBjV1J6HR1qGs6l+rYzrOlLD93fmQPJZnHUixzpTo6XQbs0BJHOKjL0JppWnqVFfBD8BxcMd6GI2j714iYVhzW1tsLxJGQKOtRXz0WAwasAglFTuw79gLrbbbVvPsHo5odc2ZEkdOvWP5OTnhaqg0VYgM7w8X5Um6NddhQdKhFAoFcnJykJOTA6A5jbSqypRedOutt+Krr77C999/j/z8fDzzzDOURkpIJ2ETlOjAKUEB23Gb1lkThBBCCHHAwbSbrri6EQfsa0q0zEqICs/26HgAwDDNt2H2WRBAdMRQpPe72+U6pv2YggrR0iGYPukPJMZNQq8el2NI2sPITn3AZl2HmRKtnLvt9laZElbfTSTi6Fa3ZRgWo7KagwCualeY9m9/vtbDaAR8+6Lf1kVG2RbnOn74Sowc9DxiI0eAxwpdfHezvT0ekfm01T5be57v+H0XEtQbY4e8goiwvq1s331RpoQfURopIRcu23GNHTukwjZdkjIlCCGEEEfM00kGByZ5tF1EaBqiIoagykFxRcC+iKRCaVs/oWfcJBSV/4EY6VDPGtyE52BoJsMw6Jd0nWUIh7OghPXNd8ub5pbZle5kSrjbTuvjSkMH2q07IHmu3TLbtjgeXmEWFmy6gbcuHGodDGpZKNO0rDnQ0TIAExSQYCnSCdgGhawJBcHQ6uotv1tPo8qyApdFT51x1O/EFgUl/IjSSAm5cJkv9DxW7NFThrZomdZJCCGEEHtTxnwGlaYagQFxHm3HsnxcPPQNfLd1nGVZSFBz8ceWmRHmabrNeDwRLh76RhtabOJsaKZtMUzH139XQYWWgQxHN8f232Gcj2WxfkgSFzUGNXXHMbDv7RAIgjBj8u84efY9nMr/AZeOXW8TAHDY7laCElER2RiV9RLCQ/pblgVIYgAAElEUBA6CEtbn29p3M2evtwxKBEhim/fPCKB3tFErnNW3IM0oKEEIIW1gTvvzRY0H2+EbFJQghBBCHBEIgiAQ2Kf1eypaOgxD0x+3/G4dlIiKSEV6v4XtPoY1V0/SgwJ6Qq4sdHgTbtrW+Q0vy/LBskLL031HdRpaZle4muXPuqZEXNQoxNnMxiHC+JFPYWCfhWDQ+k1460MhgPjoMTa/p/S6EQCQFD8VDfLzdusLm6bfdIfzoERIi9/tpxkFgABxLJTqcgCm90tlixog1loLwBAKShBCSJuwrBCBkh4IEEd1+LGcVbsmhBBCiPf1SZwOiUhq+d1cyyAoIBEzL1uPmhq5V6ZTHpaxDFpdg8tAwOTR62A0ap3exLdWD4PPE0PbFJRwdHPsSbYny7R+c81jhW71jSfDRsz4fAnS+t4OAFCpm2coTE64GgzLQ2T4ILf3ZT18g88LgN5gyn6xDkJcOeFnm7+Ndf8xDAuG4YHjDBjYZ14rQQkavtEaCkoQQkgbMAyDSaM/bvXLgDfYDt+gmhKEEEKILw1KWYD/jj2PzJR7vLrfnnGTW13HlO3g/JattaACjycGmmaFcJgp0WL73glX4XzJJgj4QdDpm6e4ZFmhy+CJp5g2BCWsCQTNmSOJcZMRGZ7h0fbW583nNwclBvaZB4WqFKl95tllTbQMSky7+LumPnIdhHEnK6S7ox4ihJA28tX0nNbZETR8gxBCCOkYKb1vwvniXxEVYTubRmLcJPSIGQc+vxM+8W4lUGA9y4Q7mRIRoam4+pIt0Onk2PT3TMtyRwGN9mjvjbr1cBbr70bjh7/nVlap9XkL+AFQa0w/B0jiMGXMp61uwzAsxKJwiEXhUKjKXB6Lhm+0jqYEJYSQTs6mpgQN3yCEEEI6RHq/u3D5+B8g4NtPV9lZbyyZVm7nbKfJtA8EOMq04PPEkIgjMWXMessy7wcl2tef1lOCWrdNGpaOsJB+rW5vG5Sw2pebD38YNG/fWt94u++6IgpKEEJIJ2cdiPBVdgYhhBDSHXlziIIvtNbelkMQhmc86fb21t85vFUXIbpp2tToiCHt2o914KgtQ1ttakrYTCXq6DzN6zYP07DevrW+aUv9jO6GeogQQjo520wJirYTQgghxMyzoERi3CTU1p9CXuGGVvfMs5ptw1vDR0dnvwylqhzBgT3btR/rTIe2ZJHaZkoEWi23f2bPMjwYOaNN6QjbQpkSu21stu+kWTadCWVKEEJIJ0c1JQghhBDiSGuZEiJhqN0yd2fcYG1m//LOQxEeK2x3QMJunzzP28Y6CUo4Yg5AcE4zJfjguQhM0OwbraOgBCGEdHLmQATLCDyauosQQgghXZ3r2znregmWLVj3vkvwrJ7wd8Yb6/CQAWBZYduGttpkOrgXlLAdvmHbh0JBsNPtKVOidTR8gxBCOjlzpgRlSRBCCCHEWmuZEo6GFrRWHLN539bTZroeouAPE0Z8AI4ztOmBjXWmRGvfr5r37zhTAmiuv9FyKlWAghLuoKAEIYR0cuaLZVsKORFCCCGkK2slKOEgmNCWm/hASZzH23Q0hmEd1oBwa1t4MnzDtC5nXVOiRWCHaSpmaT3Ew4xHQYlWUVCCEEI6OUtQgqYDJYQQQogVprWgBM9+etO2zDASKIn3eJvOjLEawiIWRWBI2qNOz9Hx8A3boIR5hg3OqLfbnmUoKNEaCkoQQkgnR8M3CCGEEOJQq1OC2he6bItASaxX9tNZWGc6sAwfifGTnK9rKXRptFrIa7GO6Xcj5yAoQZkSraKgBCGEdHKUKUEIIYQQR1qrDxEVkYVePS5HjHR4u44jEUe3a/vOxnoIS2vDWcx9zHHNQQm7TAm2KVOCM4DHk8BgULm9f0KzbxBCSKdnTr3k8+1TMAkhhBDSjbWSKcEwLIakPYKE2PGWZfZVD1oXKOnRhq06L+sZSBjW9XP65poSBqtlLYdvNO9v4ogPbWYractwme6GMiUIIaSTC5TEIbXPrYgMz/R3UwghhBDSibRWU8Ihzv2wxCWj1kKlroZYFO75cTox2+EbrWRKWIISVpkSLQtdWgU2QoJ6YVDKQhzKecMbTe0WKChBCCGdHMMwGNhnnr+bQQghhJBOpm2zT7gflAgL7ouw4L5tOEbn5tHwDUdBiRbbDOg9B5U1+5E14H4AzcM5iHuotwghhBBCCCHkgkRDA9rCOphjnjmjtXVdDd+IisjGNZN+B69p2AbNuOEZqilBCCGEEEIIIRegttQr4NpUVaJr8SxTovWgBABLQMLZ68Q56i1CCCGEEEIIuSBRpkRbeBKUkIijAABikdRqG9e30RT48QwFJQghhBBCCCHkAhIc2BMAENoF6z34gnWGSWv1HwYPfAg946ZgVNaLVtvTNJ/eRDUlCCGEEEIIIeQCcvHQt1BevRc946Z4vrEHs290B60FGALE0RiW8YTtNvRs36soKEEIIYQQQgghFxCxSIpePaa1aVsaWmCrtSlBHaGaEd5FvUkIIYQQQgghpFtqy1AMCkp4F/UmIYQQQgghhHQblClhjWllSlDH27gOZAj4gW1tTrdEwzcIIYQQQgghhHRLLNuGTIlWZj2JjRyJfknXIy5qVFub1a1QpgQhhBBCCCGEdBNxUaMBAD1ixvu3IZ1Em2bSYFwHJRiGRWbKvYiKyG5jq7oXCkoQQgghhHiJSqXChAkT8Nprr/m7KYQQ4pA0LB3TLv4WIzKf9ndTOoW2FLpEK5kSxDM0fIMQQgghxEs+/PBDZGZm+rsZhBDikkQc5e8mdBptKnTZAe3ozihTghBCCCHEC86fP4+zZ89i3Lhx/m4KIYQQt1GIwd8oKEEIIYSQLm/fvn245557MHbsWKSkpOCvv/6yW2f9+vWYOHEiMjIyMGvWLBw9etSjYyxfvhwPPvigt5pMCCHEB9o0vWcrNSWIZ2j4BiGEEEK6PKVSiZSUFMyYMQOLFi2ye33Tpk14+eWX8eyzz2LQoEH45JNPcMcdd2Dz5s2IiIgAAFx99dUO971x40b89ddf6NWrF3r37o1Dhw516LkQQghpv/R+d6NRUQABP6gNW1NQwpsoKEEIIYSQLm/cuHEuh1WsW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wEAP/74o9Ptjxw5gk2bNmHLli1QKBTQ6/UICQnBXXfd1ab2smz7vvCat2/vfroi6hvXqH+co75x7kLsm9Q+N7V5W4bx7FwvxP7xJQpKdBH33Xcfdu/ejbFjx+LNN9+0LN+2bRtWrFgBAFi8eDGmTZvmryYSQgghnZJWq8WJEycwf/58yzKWZTF69GgcPnzYrX0sWbIES5YsAWDKnDh79mybAxJ8PguptC1P7uyFhwd6ZT9dEfWNa9Q/zlHfONdd+kYiFrbpc7q79I+nKCjRRdx000245ppr8PPPP1uW6fV6rFixAuvXrwePx8P111+PSZMmQSgU+rGlhBBCSOcik8lgMBgQGRlps1wqlaKgoMDn7dHrjWhoULVrHyzLIDw8EDKZAkYj56WWdQ3UN65R/zhHfeNcd+sbtVqPmhq52+t7o39CQiQQCNoyfWnnR0GJLmLEiBHYu3evzbIjR44gJSXF8iUrMzMTBw4cwKhRo/zRREIIIeSCwnEcmDYUM5sxY0a7j+2tL/VGI9ctbhDagvrGNeof56hvnOsufcNxbfuc7i794ymafcMHfFHx25HKykrExMRYfo+JiUFlZWW790sIIYR0JeHh4eDxeKiurrZZXltba5c9QQghhFCdS++iTAkf6OiK3zxe10zjIYQQQnxBKBQiLS0Nu3btwsSJEwEARqMRu3fvxi233OLn1hFCCCFdGwUlfKCjK347Ex0djYqKCsvvFRUVGDt2rMf7MaNK4B2H+saxlv1C/WOP+sY56hvnumPfKBQKFBYWWn4vLi5GTk4OIiMjERUVhVtvvRWPPPII0tLSkJmZiU8++QRqtRrTp0/3Y6sJIYR0RgylSngVBSX8zBsVv53JzMzEqVOnUF1dDR6PhyNHjuDFF19s076oErhvUN80Ewh4du856h/nqG+co75xrjv1zfHjxzF37lzL7y+88AIAYOHChVi0aBGmTZuG2tpavPPOO6iqqkJqairWrFljyVgkhBBCmlFQwpsoKOFn3qr4fdddd+Ho0aNQqVS4+OKLsWrVKgwYMAAPPfQQbrzxRgDA/fffD5FI1KZ2UiXwjkV9Y0+nM1iqGlP/OEd94xz1jXPe6psLqRL4iBEjkJub63KdOXPmYM6cOT5qESGEEEIACkp0Wp5W/F61apXD5VOmTMGUKVO80iaqBN7xqG9stewL6h/nqG+co75xjvqGEEIIaQvKlPAmmn3Dz6jiNyGEEEIIIYRcONowWzRxgYISfmZd8dvMXPE7KyvLfw0jhBBCCCGEEEI6GA3f8AGq+E0IIYQQQgghXQWlSngTBSV8gCp+E0IIIYQQQkhXQUEJb6KghA9QxW9CCCGEEEIIIcQe1ZQghBBCCCGEEELc5MksiaR1FJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIcRtNHzDmygoQQghhBBCCCGEEL+goAQhhBBCCCGEEOImhjIlvIqCEoQQQgghhBBCSCuyBtwPPj8QvROv8ndTuhS+vxtACCGEEEIIIYR0dn16TkefntP93YwuhzIlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AXDcRzn70aQzs9o5GAwGNu9H4GAB53O4IUWdT3UN7ZOnz6F/v0HWH6n/nGO+sY56hvnvNE3PB4LlmW81CJiRtfcjkd94xr1j3PUN85R37jW3v7pytdcCkoQQgghhBBCCCHEL2j4BiGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/oKAEIYQQQgghhBBC/IKCEoQQQgghhBBCCPELCkoQQgghhBBCCCHELygoQQghhBBCCCGEEL+goAQhhBBCCCGEEEL8goIShBBCCCGEEEII8QsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBHHb+vXrMXHiRGRkZGDWrFk4evSoy/V/++03TJ06FRkZGbjyyivx999/27zOcRzefvttjB07FpmZmZg3bx4KCgps1qmrq8OSJUswePBgDBs2DE888QSUSqXXz80bfN0/xcXFWLp0KSZOnIjMzExMmjQJ7777LnQ6XYecX3v4471jVldXh4svvhgpKSlQKBReOydv8Vff/Pnnn5g5cyYyMzMxatQoPProo149L2/wR98cOXIEN998M4YMGYLhw4fj7rvvRn5+vtfPzRu83T9bt27F7bffjhEjRiAlJQWnT5+228eF9JncHXj7PdCVeNI3Z86cwaJFizBx4kSkpKTg888/92FL/cOT/vnmm29w4403YtiwYRg+fDhuu+02HDt2zIet9S1P+mbbtm2YOXMmhg4diqysLFx99dX44YcffNdYH/P0M8ds1apVSElJwfLlyzu4hf7jSd9s3LgRKSkpNv9lZGT4sLWdEEeIG3799VcuLS2N+/bbb7kzZ85wy5Yt44YNG8bV1NQ4XP/gwYNcamoqt3r1ai4vL4976623uLS0NC4vL8+yzkcffcQNGTKE+/3337mcnBzunnvu4SZNmsRpNBrLOrfffjt31VVXcYcPH+b27dvHTZ48mXv44Yc7/Hw95Y/+2bFjB/fYY49x//zzD1dYWMht27aNGzVqFLdixQqfnLO7/PXeMVu0aBF3++23c/379+fkcnmHnWdb+KtvNm/ezA0bNoz76quvuLNnz3KnT5/mtmzZ0uHn6wl/9E1jYyM3bNgwbunSpdzZs2e5U6dOcXfffTd3ySWX+OScPdER/fP9999zK1eu5L755huuf//+XG5urt1+LpTP5O6gI94DXYWnfXPkyBHulVde4X755RduzJgx3GeffebjFvuWp/3z4IMPcp9//jl38uRJLi8vj3vssce4oUOHchUVFT5uecfztG/+++8/bsuWLVxeXh5XUFDAffrpp1xqaiq3c+dOH7e843naN2bHjx/nJkyYwF155ZXcK6+84qPW+panffPdd99xw4cP5yorKy3/VVVV+bjVnQsFJYhbrr32Wu65556z/G4wGLixY8dya9ascbj+4sWLubvvvttm2XXXXcc9++yzHMdxnNFo5MaMGcOtXbvW8npDQwOXnp7O/fbbbxzHcVxeXh7Xv39/7tixY5Z1duzYwQ0YMKDT/cP1R/84snr1am7KlCntORWv82ffbNiwgbvhhhu4Xbt2dcqghD/6RqfTcRdddBH3zTffePt0vMoffXP06FGuf//+Nl+0Dx48yPXv37/VL12+5u3+sVZUVOQwKHEhfSZ3Bx35HrjQedo31iZMmNDlgxLt6R+O4zi9Xs9lZ2dzP/30U0c10W/a2zccx3HXXHMNt3Llyo5onl+1pW+USiV32WWXcX///Tc3Z86cLhuU8LRvzEEJ0oyGb5BWabVanDhxAmPGjLEsY1kWo0ePxuHDhx1uc/jwYZv1AWDs2LGW9YuLi1FVVWWzTnBwMAYNGmRZ59ChQwgLC0N6erplndGjR4NhGLfTxXzBX/3jSGNjI0JDQ9t8Lt7mz74pLCzEW2+9hVdffRUs2/k+6vzVNydPnkRFRQUYhsFVV12FsWPH4p577nE6/MUf/NU3vXv3RlhYGDZs2ACdTgeVSoXvv/8eGRkZiIiI8Oo5tkdH9I87LpTP5O7AX++BC0Fb+qY78Ub/qFQq6PX6TvV9wxva2zccx2H37t04d+4chgwZ0oEt9b229s0rr7yCESNG4KKLLvJBK/2jrX0jl8sxfvx4jBs3Dvfeey/y8vJ80NrOq/N9Uyedjkwmg8FgQGRkpM1yqVSKqqoqh9tUV1dDKpU6Xd/8f1f7dLQPPp+P0NBQVFdXt/2EvMxf/dNSYWEhPv/8c9xwww1tOo+O4K++0ev1ePjhh7F48WIkJiZ65Vy8zV99U1RUBAB4//33sWjRIrz//vsQCASYO3dup6kN4K++CQoKwieffIKNGzdi0KBByM7OxuHDh/H+++975by8pSP6xx0Xymdyd+Cv98CFoC190514o39ef/11xMXFYeTIkR3RRL9pa980NjYiOzsb6enpuOuuu/DUU09h1KhRHd1cn2pL3/z111/Ys2cPHnnkEV800W/a0jfJycl4+eWX8eGHH2LFihUwGo2YPXs2KioqfNHkTomCEqTNOI4DwzBOX3f0WstlLX9vuU9H+2jtuJ2FL/rHrKKiAnfccQcuv/xyzJgxo40t9p2O7psPP/wQ4eHhuO6667zQWt/q6L4xGo0AgPnz52Py5MnIzMzE8uXL0dDQgO3bt7ez9R2ro/tGrVZj2bJlGDlyJL755ht88cUXiIuLw4IFC6DX671wBh3LG/3Tmgv5M7k78MV74EJF71PX3O2f1atXY9OmTVi5ciWEQqEPWuZ/rfVNYGAgfvjhB3z77bd44IEH8NJLL2H//v0+bKH/OOub2tpaPPnkk3j11VchkUj80DL/c/W+ycrKwlVXXYUBAwZg+PDhWLlypSVTs7vi+7sBpPMLDw8Hj8ezexJWW1trFxU0i4yMtFu/pqbGsn5UVBQA09NL67To2tpaS2qwo33o9Xo0NDTYPe3xJ3/1j1lFRQXmzp2LrKwsPPPMM+09Ha/yV9/s3bsX+/fvx8CBAwGYLgwAMGzYMNx333245557vHB27ePPf1eAaaiCWUBAAOLj41FaWtrOs/IOf/XNzz//jIqKCmzYsMHyReKNN97AsGHDsGvXLlx88cXeOcF26oj+cceF8pncHfjrPXAhaEvfdCft6Z+1a9fio48+wrp169C/f/+ObKZftLVvWJZFUlISACA1NRX5+flYtWoVhg4d2qHt9SVP++bMmTOoqqrC7NmzLcsMBgP27duHzz//vEvN3uKNzxyBQIDU1NRONZTW1yhTgrRKKBQiLS0Nu3btsiwzGo3YvXs3srKyHG6TlZWFnTt32izbtWuXZf2EhARERUXZ7FMul+PIkSOWdbKzs1FXV4cTJ05Y1tmzZw84jkNmZqZ3Ts4L/NU/QHNAIi0tDS+//HKnq53gr7556aWX8OOPP+KHH37ADz/8gBdeeAEA8NVXX2HWrFneO8F28FffZGRkQCAQ2Fz41Go1ysvLER8f752Tayd/9Y1arQbLsjZPNsy/mwNbnUFH9I87LpTP5O7AX++BC0Fb+qY7aWv/rFmzBu+//z7WrFnTZacu9NZ7h+M4aLXaDmih/3jaNxkZGfj5558t38N++OEHpKenY/r06di4caMPW97xvPG+MRgMOHPmjOUBSrfks5Ka5IJmnupm48aNXF5eHvfkk0/aTHXz8MMPc6+99ppl/QMHDnCpqanc2rVruby8PO6dd95xOD3f0KFDuW3btnGnTp3i5s+f73BK0GuuuYY7cuQIt3//fm7KlCncQw895LsTd5M/+qe8vJybPHkyN3fuXK68vNxmWqHOxF/vHWt79uzplLNv+KtvnnvuOW7cuHHczp07uby8PG7JkiXcuHHjOIVC4buTb4U/+iYvL49LT0/nnn/+eS4/P587deoUt2jRIm7UqFFcXV2dbzugFR3RPzKZjDt58iS3fft2rn///tzmzZu5kydPcjKZzLLOhfKZ3B10xHugq/C0bzQaDXfy5Enu5MmT3JgxY7jXXnuNO3nyJFdSUuKvU+hQnvbPqlWruLS0NG7z5s023zU62zXVGzztm48++sgyNXteXh63bt06buDAgdy3337rr1PoMJ72TUtdefYNT/tm5cqVlvfN8ePHuQceeIDLzMzk8vPz/XUKfkfDN4hbpk2bhtraWrzzzjuoqqpCamoq1qxZY0mDLisrs3lKP3jwYLz++ut466238MYbb6BXr15477330KdPH8s6d955J1QqFZ566ik0NDRgyJAhWL16tc0Yxddeew3PP/88brnlFrAsi0svvRTLli3z3Ym7yR/9s3PnThQUFKCgoMAurTw3N9cHZ+0ef713LgT+6ptHH30UPB4PDz74IHQ6HbKzs7Fu3ToEBAT47uRb4Y++6dOnDz788EOsXLkS1113Hfh8PtLT07FmzZpOV2W+I/rnzz//xOOPP275/b777gMAvPzyy5ZaNRfKZ3J30BHvga7C076prKzENddcY/l91apVWLVqFaZPn45XXnnF183vcJ72z5dffgmdTmf5TDBbuHAhFi1a5NO2dzRP+0atVuO5555DeXk5xGIxkpOTsWLFCkybNs1fp9BhPO2b7sTTvmloaMCTTz6JqqoqhIaGIj09HV9//TWSk5P9dQp+x3BcJ8pJJYQQQgghhBBCSLfRPcNZhBBCCCGEEEII8TsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBCGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/4Pu7AYQQ4srKlSvx7rvv2i0fNWoU/ve///m+QYQQQkgXRddcQog/UFCCENLpBQcHY82aNXbLCCGEEOJddM0lhPgaBSUIIZ0ej8dDVlZWq+up1WqIxeKObxAhhBDSRdE1lxDia1RTghByQSouLkZKSgp++uknPPLIIxg6dCjuueceAEBdXR2eeuopjB49GhkZGbjhhhtw5MgRm+0bGhqwZMkSZGVlYezYsfjggw+wfPlyTJw40bLOypUrMWLECLtjp6Sk4PPPP7dZtmHDBlx++eVIT0/HhAkTsHr1apvXH3vsMcyYMQM7d+7ElVdeiaysLMyePRtnzpyxWc9gMOCjjz7CpZdeivT0dFx88cV47LHHAADr169HdnY2FAqFzTZ79uxBSkoKTp065WEvEkIIIa2ja24zuuYS4n2UKUEIuSDo9Xqb3zmOAwC8+uqrmDx5Mt5++22wLAutVotbb70VDQ0NeOSRRxAREYEvv/wS8+bNw9atWxEVFQUAePzxx/Hff/9h6dKliIyMxMcff4zCwkLw+Z5/LK5ZswZvvvkm7rjjDgwfPhwnTpzA22+/DYlEgjlz5ljWKysrw6uvvor58+dDJBLh1Vdfxf33349ffvkFDMMAAJ566in8+OOPuP322zF8+HDU19dj8+bNAIArr7wSy5cvx5YtWzBjxgzLfr///nukpaVhwIABHredEEIIaYmuuXTNJcSXKChBCOn06urqkJaWZrPshRdeAAAMGjQITz/9tGX5hg0bcObMGfzyyy/o1asXAGD06NGYOnUqPv74Yzz66KM4c+YMtm3bhjfffBPTpk0DAIwYMQITJkxAUFCQR22Ty+V47733MH/+fCxcuBAAMGbMGKhUKnzwwQeYPXs2eDweAKC+vh5ffvmlpV0cx2HBggU4e/Ys+vTpg/z8fHz77bd44oknMHfuXMsxzG0MCQnBlClTsHHjRssXJIVCga1bt2LJkiUetZsQQghxhK65dM0lxNcoKEEI6fSCg4Oxbt06m2VCoRAAMH78eJvlu3fvRlpaGhISEmye9AwbNgzHjx8HABw7dgwAbNJGAwMDMXr0aBw9etSjth06dAhKpRJTp061Od7IkSPx/vvvo7y8HD169AAA9OjRw/LlCAD69OkDAKioqECfPn2wd+9eALB5ItPStddei3nz5qGoqAiJiYn47bffoNfrccUVV3jUbkIIIcQRuuY2o2suIb5BQQlCSKfH4/GQkZFhs6y4uBgAIJVKbZbLZDIcPnzY7ikPAPTs2RMAUF1djcDAQLsCXS335Q6ZTAYAuPzyyx2+XlZWZvmC1LJ6uUAgAABoNBoApqdTAQEBLp8cjRgxAomJidi4cSMWL16MjRs34pJLLkFYWJjHbSeEEEJaomtuM7rmEuIbFJQghFzQzONCzUJDQ5Geno5nnnnGbl3zk57IyEgoFAq7yuE1NTU264tEIuh0Optl9fX1dscDgI8++sjhF6zevXu7fS5hYWFQKpWQy+VOvyQxDIOZM2fim2++wdVXX40DBw7YFfgihBBCOgJdc+maS0hHoKAEIaRLGTVqFHbu3In4+HinT2HMT4D+/PNPy9hRhUKBXbt22XwxiYmJgUKhQEVFBWJiYgAAO3futNlXdnY2xGIxKisr7dJaPTVy5EgAwA8//GBTrKul6dOn45133sHSpUsRExODMWPGtOu4hBBCSFvQNZcQ4g0UlCCEdCnXXHMNvvrqK9x888247bbbkJiYiLq6Ohw9ehRRUVGYN28e+vXrh4kTJ+KZZ56BXC5HVFQU1q5da5daetFFF0EsFmPp0qW49dZbUVxcjK+++spmnZCQECxcuBAvvvgiSkpKMGzYMBiNRpw/fx579+7Fe++953bbk5OTcf311+OVV15BTU0Nhg0bhoaGBmzZsgVvvvmmZb2YmBhcdNFF2L59O+6++25LUS9CCCHEl+iaSwjxBgpKEEK6FJFIhE8//RRvv/02Vq5ciZqaGkRERCAzM9OmyNYrr7yCZ555Bi+99BICAgJw4403IiMjA1u2bLGsExERgXfeeQevvvoqFixYgLS0NLz++uuWJz1md955J6Kjo/HJJ59g3bp1EIlE6NWrl9167nj66acRHx+PDRs2YPXq1YiIiHD4VGbSpEnYvn27ywJdhBBCSEeiay4hxBsYzjzxMCGEdHPm+cj//PNPfzelVYsXL0ZVVRW++OILfzeFEEII8RhdcwkhZpQpQQghF5Dc3FwcP34cv//+O9544w1/N4cQQgjpsuiaS4hvUFCCEEIuIPPnz4dMJsONN96IqVOn+rs5hBBCSJdF11xCfIOGbxBCCCGEEEIIIcQvWH83gBBCCCGEEEIIId0TBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF/w/d0AcmEwGjkYDMZ274fPZ6HXt38/XRH1ja2iokIkJva0/E794xz1jXPUN855o294PBYsy3ipRcSMrrkdj/rGNeof56hvnKO+ca29/dOVr7kUlCBuMRiMqKtTtmsfLMtAKg1CQ4MKRiPnpZZ1DdQ39m6+eS5++GETAOofV6hvnKO+cc5bfRMWFgCW5XmxZQSga25Ho75xjfrHOeob56hvXPNG/3Tlay4N3yCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiF1TokhBCiNdwHAej0QCuE9S4YlkGWq0Wer2eim614G7fMAzAsjwwTNes9k0IuTD561pD1xXnqG9cc6d/uvM1l4IShBBC2o3jOMjl9VAoGgB0ni8j1dUsjEaanswRd/uGZXmQSuPA43XNit+EkAtHZ7jW0HXFOeob19zpn+56zaWgBCGEkHYzf0kMCYmAUCgC0Dmi/Hw+A72+8wRJOhP3+oZDXV01GhpqER4e5ZN2EUKIM53hWkPXFeeob1xrvX+67zWXghKEEELaheM4y5fEgIAgfzfHBp/PAqCnNo642zfBwWGQySrBcUYwDJWiIoT4R2e51tB1xTnqG9fc6Z/ues3tPmdKCCGkQxiNBgBc01Mr0tXweKbnF5SSSwjxJ7rWkO6gu15zKShBCCGkXZoLjXWOIRvE20x/185QvJQQ0n3RtYZ0D93zmkvDNwjppDiOQ7W2HhUaGRr1SjTqlZDrVWAZBgKWDyHDRwBPjGhROGJFEQjiS7pltV5CCCGEENI+a9d+hF27/sXatZ/5uymkG6KgBCGdhNqgxT7ZKRyqO4N8RQnOKkpRr1e4vX0AT4xeAbEYENQTA4J6IjW4F6JEYR3XYEIucC+++Ax+++0Xu+W//LINYWFhvm8QIYSQLufFF5+BSqXECy+8alm2adPPWLHiJTzwwCO46qrpHu/z8ccfwunTpyCT1SI4OBhDhw7H/Pn3ITKy7cURZ8++Gddee32bt79QXXvtlZg9ew5mzux+596ZUFCCED/iOA6H6s9gW/V+7Ko9DrVBa3lNwPDQJ7AHEsRRCOEHIEQQiCC+BBwHaDkddEY9GvVKVGhkqFDXolxTi5ON53Gy8bxlH70ksRgZkYZR4WnoF5QAthsVzCHEHaNHX4RHH33CZlloaKjN73q9Hnw+XS4JIYS034YNX+H999/GsmXP4pJLprRpH9nZQ3DTTXMRGRmF6uoqvPfeW3jyycfwwQdr29yugIAAAAFt3r4r0+v14PF4lJHcgehbFiF+YOCM2F59CBtK/sJ5VTkAQMwTYqw0A0NCU5AS1BOJkmgIWPf/iRo5I0rU1TjVWIBceSGONOTjvKoc50vK8VXJH4gWhePS6OGYEjWMMigIaSIUCiCVRtosu/baK3HVVdNx/vw5/PPPDkydejmWLHkUR44cwocfrkRubi7Cw8NxySWTcccd8yEUCgEANTXVWL78Bezfvw9RUVGYP38RVqx4CQsW3I9p067EwYP7cd9992Dr1r+bvvwBO3f+g0cffQD//rvfcvy//96Ojz9ehcLC84iKisZVV03H7Nk3g2VNQcWxY4fisceW4e+/t+PAgX2Ij++Bhx5aikGDsiz7OHz4IFateh+5uTkQCkVIT8/ACy+8iq+++hzbt/+Bdeu+sDnnG26YjquvnonZs+d0RDcTQggBsG7danz++f/w0ksrMGrU2DbvZ9as2ZafY2PjcNNNt+CJJx6BwWAAj8dzuE1DQwPee+8t/PvvDuj1eqSlZWDx4oeQlNQLgP3wDb1ej5Ur38Dmzb+Cz+djxoxZOHcuHxJJAJ544hkAgEajwapV72Pbti1QKhXo27c/Fiy4H+npGQBMGSHvvfcWnnjiWbzzzhuora3B8OEj8NhjTyEoyDSDyl9/bcPHH69CSUkxJBIJUlJS8dpr74BlWUuWSe/efbBx4zcwGAyYNu1KLFhwv+U87dvQDwsWPGBpA+D8mrhkySKUl5fhzTdX4M03VwAA/v13v6Xdjz76JD78cCWKi4vw449b8OSTj2LAgIFYuPB+y75vv/1mjB49FrfffjcA0zX6kUeewPbtf+LIkYPo0SMBy5Y9C5blYcWKF5Gfn4eMjEF46qnnER4e0eb3QFdDQYku7uzZs1i6dCnkcjmEQiGWLl2KoUOH+rtZXqM2aJCnKEGpugY12npojXowAIL4AYgShSJJEosekijwOlGGwJH6PHx4/kecU5YBAAYE9cRVcWNwZb+RUNXrYTS2rbINy7BIlEQjURKNydHDAAAlqirskZ3ArtoTONF4Dp8VbcH6oq0YFj4AM+LGITOkD0V9CXHgiy8+xW233WX5klFSUoyHHlqMu+++F0888Sxqaqrx2msvQ6/X4777lgAwpejW1cnw7rsfAQDefHMFlEqlR8c9cuQwXnrpGdx//8PIyBiEwsICvPrqixAIhDZfQtetW4OFC+/HokUPYu3aj/Dss0/gm29+BJ/PR2FhAR54YAGuueZaLFnyGABg37494DgO06ZdiY8/XoUzZ3KRmpradMxDKCsrxaWXXtbufiOEEGKP4zisXPkGfvnlR7z++kpkZQ22ef3TTz/GZ5+tc7mPzz7bgNjYWLvlDQ312Lp1MzIyBjkNSADAU089BolEgtdffxcBARJs2PA1HnhgAdav/xYSicRu/fXrP8Eff2zFk08+hx49EvHll59h3769uPjiCZZ13nprBQoKzuP551+BVBqJP/7YigceWIAvvvgWUVHRAAClUonvvvsGzz//MtRqNZ588jF8/vn/cM89C1FdXY1nnnkC9957Hy6+eAIUCgUOHtxn0469e/dAJBLj3XdXo6ioEC+//BwiI6Nw441zHbbh998327TB1TXxpZdWYN68GzF9+rWYNu1Km+MqlUp89dXneOKJZxEYGIjAwECXfx9r//vfGixa9ADuv38J3nrrNTz33FOIiIjAwoWLIRYH4umnH8eqVe/j0UeXub3Pro6CEl2cSCTCSy+9hOTkZOTn5+Pee+/Fli1b/N2sdqnS1GFHzWH8W3MUp+XFMLYy328IPwDZof0xPjILw8JSwWedf2B3JKVBjdXnf8ZvlXsBAAODe+G2ntOQHpIMlmUQwBdDBblXj9lDEoWZkvGYGT8eJaoqbKn8D79X7cdeWQ72ynIwMLgXbuwxCUPCUig4Qbqlf/7ZgcmTL7L8Pn78JQCAoUNHYNasGy3LX3nleUydejmuvfYGAEBCQiIWLLgfy5Y9gkWLHkRRUQH++28PPv74c/TvPwAAsGTJo7jjjrketefjj1dh7tzbMHXq5QCAHj0ScMstt+Hbb7+2CUpcccXVmDBhEgDgttvuwo03zkRJSTGSknrh88//h4yMQVi8eIll/T59+gIAxGIxhg8fiV9//dkSlNi06WeMGjUGERFSj9pKCCH+9lreV9hde9ynxxwjzcCDfTyrP7Br17/Q6XR4991VdgEJALjmmpmYOHGyy31ERtpm9b3//jvYuPEbqNVqpKdn4tVX33S67ZEjh5Gbewo//bQFAoEAAPDAAw/j77//wq5d/+KSS+yP/d1332Du3Nswduw4AMDDDy/F7t07La+Xl5dj06af8f33myzXj9tuuwP//vs3tm79DTfddAsAQKfT4eGHl1oCKpdddgUOHDAFHmpqqmEwGDBu3ETExsYBAPr27WfTDpFIhEcfXQahUIjevZNRXFyEr79ejxtvnOuwDfPm3YFdu/61tKG1ayLLsggICLDLmtTpdHjooceRnNzHab86Y32Nnj37ZjzwwALcdde9yM4eAr3eiCuuuAY//vidx/vtyigo0cX16NHD8nNycjIaGxvBcdwFeQNaqKzAlyV/YEf1YUsgIkIQgoHBSUiQRCNKGAoRTwgjx6FRr0S5ugbnlGXIlRdiR81h7Kg5jAhBCK7rMR6Xx4yCkBX4tO3Pn/4ERapKhPIDcW/v6bhYOsinf4cekijclnQ55iZOxT81R/BVyR842Xgey06tQf/ARNzd6yqkhfT2WXsI6QyGDh2BBx542PJ7QEAA7rprHgYMSLVZLy/vDPLzz2Dz5ubCmEajERqNBjU1NSgoOA+BQIB+/VIsr6ekpFq+/LkrP/80jh07gnXrVluWGQxGcJxt8DU5ua/lZ/MXVZmsFklJvZCXdwYXXzze6TEuv/wqvPbay1i8+AFoNDr89dcfWLbsWY/aSUhXlq8owQu5n2J63EUYFp6KOLH7AbuDdaeRryjBdT0mtL4y6Tb69u2P2toarFnzIV577R2IxWKb10NCQhESEupka8duvHEurrjialRUlOHjj1fjpZeexSuvvOFw3by801Ao5Jg2baLNco1Gg9LSYrv15XI5amtrkJqaZlkmEAhsAgZnz+bBYDDg+uuvsdlWq9XarBcYGGiT4SGVSiGTyQCYAhDZ2UMwd+4NGDlyNIYPH4kJEy5BYGCQZf1+/fpbhkkCQHp6Bt5/vxpyudytNrR2TXRGJBK1KSABAH36NJ+/OVjSu3ey1bIISx8QEwpKdHL79u3D2rVrcfz4cVRVVeHDDz/EhAm2F7r169dj7dq1qKqqQmpqKpYtW4bMzEy7ff3xxx9ITU294AISSoManxdtxY/l/8LAGRHMD8DU6OEYH5mN5ID4Vs9HbdBgf91pbK38D/vqTuGj8z/h+9K/cV/ytRgaPqDD23+o/gyeO/U/qIwaDA9LxZK+NyBU4H4KmLfxWR4mRA3GuMgs7K49gS9KtuG0oghLTryH8dJs3J50OdWcIN2GRCJGQkKig+W2qawqlRIzZlyH6dOvs1s3LCwMHIdWP4vMNSGA5iFaer3eZh2lUoU775yPiy4a53JftoU3Tcc1Gl1njZmNHTsOr732Cv79928oFEoIhUKMHt32sc2EdCUcx+GtPZ+hmCvD+5ofgPM/YPOo11rd7ryyHAq9CktzVgEARkWkI0EShT+qDuDzoq1YkXYvIkWe3XSS1j3U9wafH5PPZ6HXu/d5axYTE4Nnn30JixbdjYcfXowVK962CUy0ZfhGWFgYwsLC0LNnEpKSemPGjMuRk3PCJpBgplIpERUVjbff/sDutZCQEKfHbHld47jm65dKpQSfz8fHH6+3rMfjMTAYOJuhDi0LRTMMYwm083g8vP32Bzh27Aj27NmFL7/8DGvXfoS1az+z3Mw7u7YyjOM2mHky3MKRloEjwHQdt+4DwP46Dties7lZtssYu4cN3R0FJTo5pVKJlJQUzJgxA4sWLbJ7fdOmTXj55Zfx7LPPYtCgQfjkk09wxx13YPPmzYiIaC6eUlJSghUrVmDVqlW+bH67nVWU4sXTn6FEXYUAngg3JkzGFTGjIOaJ3N6HmCfCWGkGxkozcF5Zhk8Lt2CX7DiWnVqDy6JHYn7vayD0oKCkJ3bXHsdLpz+DjjNgTsIU3JgwqdPMgMEyLMZIMzAqIg1/VR/CxwW/YnvNIeyWHcechCmYET+uU9XiIMSf+vVLwblzZx0GMACgV69e0Gq1OHMm1zJ8Izf3FHQ6nWWdsLBwAEBNTQ0CAkxflvLyTtvsp3//FBQVFTg9jjv69u2Hgwf3Y968Oxy+zufzceml0/DLLz9BrVbj0ksvo9lFCGmyc+c/OLVxFyqYBsTMHASeWIBqTX2rAYV7jtgGLjRG02xaK/K+BABsqtiNuT2ndkyjyQUhPr4HVq78CIsW3Y1HHrkfr776luXGty3DN6yZb5S1Wp3D1/v3H4Dq6ioIBALExNjXpWgpKCgIERFSnDx5AunppgedOp0O+fl5lloR/fr1h16vR319nWWdtgRsWJbFoEHZGDQoG7fddheuvHIy9u7djcsuuwIAcPp0LrRarSVb4sSJ45BKIxEYGOSwDS21fk0UwGBwr81hYeGora2x/K5UKh1mmhDP0R1HJzdu3Dg88MADmDLF8ZRB69atw/XXX4+ZM2eib9++ePbZZyESifD9999b1pHL5bj33nvx5JNPIikpqc1tYVmm3f95sp/dsuO4//g7KFFXYUT4QHw8+DHMSpiAAIG4zcdPDorHMwNvxdMD5iFcEIzfKvfg8ZMfol4v98r5Wf93pCEPL57+DHrOiPuSZ2Ju0qXg83he6Rtv/sfn8TA5Zig+HvIYZidcAiNnxNrCX/HwifdQqqn2S5sc9Ye/+udC+K8z9E1Xd9NNc3H48CG89dZrOHPmNAoLC7Bjx5947723AQA9e/bC0KHDsXz5i8jJOYGcnBN4881XbYZvJCQkIjo6BuvWmYp1/fXXNvz66082x7nlltuxadPP+N//1uDcubM4d+4stm79DZ984v40b3PmzMOxY0fw9tuv4+zZPJw7dxbffPMl1Gq1ZZ0rrrgae/bsxqFDBzBt2lVu7bc7/t1J92IwGPDPP9shZPkwqrRQnDTNjnVKXujxvhjY/vsQ84RO1iTdiTkwUVpagkceud/yuRwSEoqEhESX/5mDx6dOncSGDV/hzJlclJeX4eDB/Xj22WVISEjEwIH2WRIAMHTocAwcmIbHH1+Cffv2oLS0BEeOHMZ7772NgoLzDreZOXMWPv30Y+zc+Q/Onz+H1157GVqtxpKR0LNnL1xyyWQ899yT+Pvv7SgtLcHx48ewbt1qHDp0wK3+OHHiOD799GOcOnUS5eVl+OOPrVCpVOjZs5dlHY1GgxUrXmqaEWs7PvtsHa677ganbThx4rhNG1q7JsbFxeHw4YOoqqpEXV2dy/ZmZw/Bzp3/YO/e3Th37ixeeeV5AHQt9AZ6NHIB02q1OHHiBObPn29ZxrIsRo8ejcOHDwMwXWAXL16MWbNmYezYtqfn8vkspNKg1ld0Q3h46+lUm4r34oXcT2HkONyXOgNz+07x6rCTq6SjMKpnKpb89wFO1J3H46c+wqrRDyFc5J1zzG8oxfO5n0DPGfDEoDmYkXRR6xvBvb7pOEF4KHoWZva7CE8dWoeTdQWYf+R1LEqdgRt6T/D5sB+BgGf3nvNv/3Ru/uwbrVaL6moWfD4DPr/zxbqdtYlhGDCM4zazrO3y1NRUvP/+R/jww/cxf/5tYFkeEhIScfnlV1jWe+aZ5/Hii89hwYI7IZVGYtGi+7F8+UuWffH5Qjz77At49dWXMW/ebGRnD8btt9+Fl19+3rKPiy66CK+++iY+/ngVPvtsHQQCAXr3TsbMmbNs2sPjNbfP/H8ejwWfzyI5uTfeeus9fPDBSvz443cQiyXIzByEmTOvtazbr19fpKQMgNFoQEpK/1Z6kAHLsggPD7AZ10scU6lUmDZtGi6//HI89NBD/m4O8UBxcRGUSiVCIsIAZTmU+dUIzk7AaXkhxkozWt3eGgfbFG8JQ/92iIl1xsSjjz6A5cvfdDhUwBmhUIR//92BdetWQ61WQSqNxIgRo/Dccy87rWPEsixee+0dfPjhe3jhhWfQ0FAPqTQS2dlDnA7fuOmmW1BTU41nn10GgcA0JWhmZpbNdWDZsuewbt1qvPPO66iurkJ4eATS0zMxadKlbp1LYGAgDh8+hG+++QJKpQrx8fF45JEnkJaWbllnxIiRiIqKxr333gGDQY/LLrsSN9zQPH11a23o2TMJr7++Eh999J7lmpiRkYmrr54BALj99nuwYsVLuP76a6DVam2m6G7piiuuxunTuXj66aUQi8W47ba7UFJCmRLewHAtB8aQTislJcWmpkRFRQUuvvhibNiwwaaGxKuvvoqDBw/iq6++wl9//YWFCxeib9/momifffaZy/Fjjuh0BjQ0qNrVfpZlEB4eCJlM4XLayz21J/F0zsdgwOCR/rMxMcq+SrG3aAw6PJf7P+yTnULfwB54NX0+gvj20yJ5QmXQYP7hN1CqrsbshEm4Nan1afbc7RtfMXAGfFX8Jz4v2goDZ8SYiAw81O8GBPLdv2i211VXXYaffvoNQOfrn86kM/SNXq9HZWUxIiN7dLphAG1JJfWmyy+/BAsW3G831Zi/GY1GzJp1NW68cS5mzLCvk2FNr9ejuroE0dEJdn/fkBAJBAL/zGjUWb355ps4f/48EhMT2xyU0OkMqKvzbDrZlliWgVQahJoaOX1utuCsb3bu/AebN/+K+oFi/HNkF3RVckRPH4QrBkzAg31nudzn1N22f+u30+9DSnBPTN39EFQFtUg+xGJK1nhcMv1yhAqCIOL5rti2pzrre8f8WeTva42/ryv+otfrMWvW1bjuutmYPXuOw3W83TcvvvgMVColXnjhVa/t05/c6R9X7/OwsIAue83tXN8eiVdYz64xYcIEnDhxwiv79daFyWjknO7rnKIML+d+Dg4cHut3E8ZJszr0gihg+FjW7xY8dWoNjjTkY8XpL/FUyrx2ZQV8ePYnlKqrMSI8FXMTLvWo/a76xpcYsJjdYxKGhaXixdxPsbP2GAqOlOPJlFuQFND6WERvadkXnaV/OiN/9g39TS4stbU12LTpZ8jljZg6dZrb29G/v9adP38eZ8+exYQJE3D27Fl/N4d4qKjINExDEhMCSS8pdFVyqApqoeqvdrmdwUHBOh2nh4EzgjNykO06Cw2/Jw4cO4APeX8hPSUN7w16sEPOgRBvKS0twcGD+5CZmQ2NRoOvv16P+vo6y1SXhHhT58uzJW4LDw8Hj8dDdXW1zfLa2lqXxXA6K7VBg+dyTbNUzE2cinGRWT45rognwFMptyJeHIndshP4ofyfNu9rr+wkfqvcgzBBEB7oM+uCm+mkpb6BPbAy836MCE9FsboKi4+9g39rjvq7WYSQdrjqqkvx9ddfYOnSpywFN4lptqt77rkHY8eORUpKCv766y+7ddavX4+JEyciIyMDs2bNwtGjtp+Hy5cvx4MP0s3mhYjjOBQUnAfDsOBHBkKSFAGpKBTq87VQGTQut9Ua7YsLao16NOoV0JQ3wKjQokJTi80Ve6EulCFfWdpRp0GI17Asi19++Ql33jkXCxfeibKyUqxc+ZHNDCCEeAsFJS5gQqEQaWlp2LVrl2WZ0WjE7t27kZWV5b+GtdEnRVtQpqnByPA0zO5xiU+PHcgXY2n/myFgeFhT8AvOKco83ofeaMBH501F6+5Pvg5hgmBvN9MvgvgSPJ1yK25OvBQaow4vnv4MP5b96+9mEXJB+PXXPzrd0I1//92Pn3/eiokT6WmXNfNsV0899ZTD182zXS1YsADff/89UlJScMcdd6C2thYAsG3bNvTq1Qu9e/f2ZbOJl9TX10Eub0RMTCy0rAGCMAnGJA2BrlYBmUzmcluNg6CEjtNDppVDddb04EiVYfpOoC6us5tSkJDOKDY2Dh9++DG2bNmBLVt24L33VmPgwPTWN/SiJ554pssM3SCuUVCik1MoFMjJyUFOTg4AoLi4GDk5OaiqqgIA3Hrrrfjqq6/w/fffIz8/H8888wzUajWmT5/uz2Z7LKexAD+U/YNAnhiLkmf6JcOgb2APzOs5DQbOiI8KfvL4S8Omyj0oVVdjSGgKRkY4rn58oWIZFjclTMaTKbeAz/Dwwfkf8L/C3+iLFSGky2jvbFdHjhzBpk2bMHHiRCxfvhxffvnlBTcNd3dmHrrRs2cSVEZTZkRmmqm4ZUW+60J2jjIl9EYDajT1UJ6rAXgsggbEQCANhKFRDYNCi/fP/QADZ/DyWRBCyIWJakp0csePH8fcuXMtv7/wwgsAgIULF2LRokWYNm0aamtr8c4776CqqgqpqalYs2YNIiIi/NVkj3Ech4/O/wgOHO5MuhJSoWdFOL3p6tix+K1iDw7Xn8Fe2Um3gwtKgxrri7aCAYPbky7v4Fb6z+iIdLw08E48c2odvir5A7XaRizuMxM8pmsW3SHt8+STj+HYMd8N98nIyMTzz7/is+OR7sOd2a6WLFmCJUuWAAA2btyIs2fP4q677mrzMds75ar1dMHElqO+KSoqAMAgKSkJasMpAMCwjKHA90B1fonLftRyDoISMKA4/xw4jR7ipAiwIj6EUUHQ1SigrZbjp6B/kR7SC+Ojsr17cl7QWd87na09hHSk7jb1NgUlOrkRI0YgNzfX5Tpz5szBnDmOq+BeCA7Vn8EpeSGSA+JxafRwv7aFz/JwV6+r8NSptVhd8DOGhaeCx7SeULSl8j/U6xW4JHIIkgPjfdBS/8kI6YPX0hbgiZzV2Fr1H3ScDg/1ne1WP5HuhQIEpKuQyWQwGAx29ZqkUikKCgq8fjxfT8PdXVn3TU1NBSQSAbKyBkJz4BfwGBbDB2dCGChBY3kNJBIWAQEBDvdTxa+1WyYK4ON83hkAQEAf0/tGEBkEoAK6agXQS4oCfbnX/s4dobO9dzrT9NP+Pn5nRn3jWuv90z2n4aagBPG7L4u3AQBuSLikUxSGHB6eisyQPjjakI/9dacwInygy/U5jsOmij0AgJnx43zRRL/rHRiHN9IX4pET7+Ov6kMQsUIsTr62U/z9CHHHd999jdWrP8CmTX+CZU1fEGpqqnH11VNx0UXj8fLLr1nW3bJlE1555Xls3vwXRKK2TYv7xx+/4+mnH8f48RMdjo99+uml6N07GfPm3YGxY4dCKBThq682Ijo6xrLOwoV3YcCAgVi48P42tYF4n/VsV9ZmzJjRrv3q9UafTcPdHbXsG51Oh7y8cwgICATHCaHQqSFhRZDJlAjrFYPqk4XYsWMXhg8f6XB/lQ31dsuqamXIPXoKjIAHcWI4AEAoNd3ka6vlAICTNQWoqZF30Fm2XWd97+j1ehiNRuj1HAD/TcnZXacEdQf1jWvuTQnKwWg0QiZTgs/X2rzWlafhplAW8avjDWdxrPEsEiXRGBOR4e/mWFwVOxYA8Ev5rlbWBE40nkORqhIDgnp2+SwJa7HiCLySdg8iBCHYXLkXH57/kWpMkAtGdvYQyOVynD7dnIl2+PBBREfH4MiRQzbv5cOHDyI1Na3NAYmKinK8995byMzMcvi6Xq/H3r27MWbMxTbL161b3abjEe/zx2xX5ilY2/Oft/bTFf+z7puioiIYjUYkJvaE0chBbdBAzBPCaOQQndoTRs6IPf/tcbovtcF++MbfB3dBpVGbhm403USERIZDwBdAV60Ax3Go0Mj83g8X2nuHkO6iu73/KShB/Gpz5V4AwHXx4ztV+v+oiIGQCkKwvy4XZeoal+v+2pQlcVmM4ycoXVm8OBKvDLwbofxA/Fj+L9YV/ubvJhHilt69+yAsLByHDh2wLDt06ACmTr0cAoEAeU1p1+blgwcPbdNxjEYjXnjhadxyy+3o0SPB4TqHDx9EUFAQ+vXrb1k2c+YsbNr0MwoLz7fpuOT/7J13eBv1/cdfd6dpee+R7STO3hBGSAibsKEFWiijjDJLB6UL2kIpLQV+pbS0zFIoUMpKgQJhQwgESMh2tp043tuWrS3d/f6QJUu2ZMuOLcXO9/U8PEg3vzorurv3vT/vz9Ay2rpdCcL5cvcG1rXu5FNpF1du/D0qGmbFCEBWYS66jCQOVB2gpqY64vqRgi4/+PIjtraXYSnJDU7LNqeTkp2O6vTgs7mFkC8QCARdHDp3gYLDDrfqZW1LKXpJx5KsOYkeThiKpHB63lFoaLxZvzbqcp1eB2uat5CkmFiWNTeOIzx0GJeUx+9nfI9kxcyLNR/ydv2XiR6SQNAvkiQxb96CMFFi06YNzJ+/gHnz5genNzU1UlVVyfz5CwG49NILOfnk46L+9+Mffz9sP88//wwmk4lzzolu51+zZjXHHntc2LR58xawcOGRPPbY34fqIwv64XDpdiXozXs71lDlaGCnqYE6lz8fwiz7RYkknYnkaXl0eO3c+9+HcfhcvdZ3+cIt1u5mG+5aK0qqCWN+d3h3mj6Z5Fx/KYenyYaawBIEgUAgOJQQmRKChLGxfTc2n5NjMmeRpAzOFj2cnJ63mOeq3mN182auGndGxLrhze178WhelmXOxdT1VOVwZJKlkF9Pu4Kfb3+Mv+57hSJTNnPSihM9LIGgT+bPX8jjj/8NVVVpb2+jqqqSWbPmUllZybp1X3Lhhd9iw4avMRgMzJrlLy+7//4/4/V6o27TaOz+Hdi1aycvv/wfnnzyX32O47PPPuW2237ea/p1193I1Vdfxs6d25k2re9sG8HBczh0uxJ0s9dazQ3rHuTGCefRXF0PsoQxuzt00qz4A+aSFCOWkjw+27QBdYOHv298kR8t+g4A7R4be21VuHo4JTo2+x0VKbMKw64d0nQWUvP83xd3UyfqVOGUEBx6XH/9d7n44ktZtuwEAPbs2c0f/vBbysv3Mn78RB566O9ceumFPPnkv8jJye1nawJBbAhRQpAwVjdtBmDpIeowyDKkMclSSJmtmlpXM4Wm3nXDm9r9Fu95aVN7zTvcmJ1azE0Tz+fB8pe4e/fT/Hn2LRSYshI9LIEgKgsWLArmStTUVFNSMh2z2cy8efN54olH0DSNTZu+ZsaMWcE8ifz8gpi27Xa7ueuu2/nBD24lKyt65kBZ2V6s1jbmz+9dHjJ16jSWLz+RRx75Kw8++LfBfUhBzBwO3a4E3Ty26380u63c8dXfMTgcGHKSOangSN5vXA8QfNDg8LmRdDIpcwtp/2I/n6x6j7OnLWevrZr/VH9IrauZJZndbk9XQweOfc3IZgOWqeE3bBmGlKBTwt3YiaoJp8RoZ8mSvkv/rrzyGq666ntxGcvOnTt44om/s3PndhwOB9nZOcyaNYef/ewO9Ho9AJ9++jE2m42lS5cH1/v73/9Cbm4ev/vdfZjNJlJT0zj99DN58slH+dnP7ojL2AWjHyFKCBKCW/WwtrUUg6Trt7tFIpmfNoUyWzUb2/dEFCU2W/cCMC91cryHdkhyWt5iKhz1rKxdza93/oM/zboZi+7Qc8EIBAATJ04iIyOTjRu/pra2mnnzFnRNL0aSYO/ePWzatIETTzwluM6ll15IfX1t1G3OmTOfBx54iObmJioq9vPrX/8iOE9V/Tcgy5Yt5uWX3yAnJ5c1az5h8eJj0Okin46vueYGLrnkG3z99bqh+MgCgaALg+z/N+eqtaLXNIwFaaTqult+Bso3jsyYzhZrGcnT87HvbsRa08zlz99GyuzuYOudnf62sJpXpXVNGWgaaYvGIfVo/ZepT8GYYQFFxt3UiVfzDffHFCSY115bFXz91ltvsHLlyzz++NPBaWZz93dO0zR8Pl/U88HB0Nrawg9/eCNLlx7Pn/70N5KSkqiuruKjjz5AVX2AX5R4+eUXOf30s8IcPtXVlXzzmxeTn58fnHbGGWdxxRWXcOONPyAlJWXIxys4/BCihCAhbLPuw95VumE+hMse5qdN4eWaj9nYtocz8o4Om9fsbueAo4ExphyyjWkJGuGhx9Xjz6DSUc/6tl08sPcF7ii5XLQKFRyyzJ+/MChK3HDDLYA/b2LOnHl88MG7HDhQEcyTgNjLN3JycnnmmRfC5j3++N9xOp3cfPMPycjwW7jXrFnNN795cdTtjRkzljPPPIdHHvnLoLt/CASC3iR1CeauWitJGhjzU0kJFSW6yje+UXg8a1tKKe3YR8bSYni3ivavKlCSDCQV+x9WuFQPmk+l+aPdeFvsGIvSSZqa02ufmYZUJEXCkG3BXd+Bq90Wh08qSCShTrmkpCRkWQ5O27BhPd///nXcf/9DPProXykvL+ORR/7Bq6++hMNhD2sfffvtt2E2J/HLX/4GAJfLxWOP/Y33338Hu93G5MlTuPHGHwZLDXuydesWXC4nt932SxTF3w2mqGhMWJvb1tZWNmxYx49//NPgtIDT48EH7+fBB+8POjvGjZtAbq5fWD/99DOH5mAJDmuEKCFICLttlQDMTp2U4JH0zcyUieglhc3Wvfg0NaxDyOb2MgDmpU1J1PAOSRRJ4edTLuWmLQ/yees2Xq/7jHMKliR6WAJBRObPX8jf/vZn3G43c+Z0l5LNnTufJ598rKvrQvdFXqzlGzqdjkmTwh1UyckpKIoSnN7c3MSePbs46qhj+9zWlVdey0UXnYOmIbIlBIIhQkND0zRctVY0KRVDXgrJOnNwfmhOVIEpk9KOfRiykyk6aR4Nb3xEy0e7cVa2Yp6Yhc3dQOfWWjwtNnRpZjKXT4koxmcaUtE0DUN2Mu76DhwNHXH5rKOZV155kR07tsd1n7NmzeLcc78xZNt79NG/ctNNPyQvL5+0tPSY1nnwwfuoqNjPb3/7B7KysnnvvVX88Ic38vzzL0fMecjMzMTtdrNmzWqWLj0+4vdzy5ZNJCUlMXbsuOC0115bxTXXXM55532DFSvOCnN2lJRMZ/PmjUKUEAwJovuGICGU2fwhUMVJRQkeSd+YFAMzUibQ4bVTbqsJm9edJyFKN3pi0Zn5xdTvoJcUnqh4g722yG3UBIJEs2DBIhwOB1OmlGCxdIfczZu3EIfD3pUnMTxurs8++5TZs+eSmpra53LZ2dl84xsX43b3Tv0XCASDw+qx4213ojrcKNlJyHolzCmRFCJKZOi77en6CRlknTIN2azHvreR5vd20vrJXjwtNgwFqeSsmIli0kfcZ6Y+FQ0w5Ph/axwN7cPz4QQjimuuuYGFC49gzJixMZVC1NXV8dZbb3D33fcyZ848iorGcMUVVzNx4iTefTdya/ZZs+bw7W9fxq9+9TPOOutkbrvth7z00gt0dHQLY/X1tWRmZoUJFllZ2ciyTFJSEllZ2SQldf8byc7Opq4uejmjQDAQhFNCkBDKum7wiy2F/SyZeOanTWWztYyN7buZkjwmOH2LtQwJiTmpostEJKYkj+Gq8WfyyP7XuG/P8/xlzg8wyJEv1ASCRDF+/ATWrFnfa/q0adMjTj8YArbbAGvWrGbJkqW9lou03+uvv5nrr795SMcjEBzOdLjtuKrbAHDn6DBAmChhkg3B15YQB0WbpwPz2AyMFy7AXtaEp6kTSadgGpOOsSitz3LFTEMqKhr6LlHC2Wgd2g91GHLBBRfGfZ86nYzXO3QhpdOmTR/Q8uXle/H5fFx00blh091uN5MnR3fv3nDD9/nWty5l/fqvKC3dynPPPc1zzz3NE088Q3Z2Di6XC4MhdhHeYDDicjkHNHaBIBpClBDEHZvXSY2ziQJjVtiJ/lBlWorfxrbPXhec5la91LlayDVmkKq3JGpohzxn5x/Ll63b2di+h6cPrOKaCWclekgCwSHD3LnzOOGEkxM9DIHgsMTqseE40AqAVugXI1J13efz0LwrJcRY3ObpBEDWKyRPywPyALhq3Bl4NB/PVHYHG/YkXZ+MpqnoUk1IRh2upg58Pl+wxl9weGIyhV8LS5KEpoW3iw3NMnI47Oh0Ov7xj+d6iWAWS9/XpBkZmZx88mmcfPJpXH319Vx88Xn897+vcPXV15GWlk5HR+xCWUeHlfT0jJiXFwj6QpRvCOJOsHRjBLgkAPKM/kC6BldrcFqTu80/zyB+jPtClmR+VHwRFsXEq7Wr2d6xP9FDEggOGS655HLR410gSBCtNiuuOiuSUYch12+Zj5YpkRRDIHeKLolvFZ3I76Zf02ve5WNP46pxZ6BIMhr+m05DdjI+r0p9fV3vjQkOa9LTM2hpaQ6+V1WV8vKy4PspU6bi9Xppb29jzJixYf8FQpRjITk5maysLBwOBwBTp5bQ1NSIzdYZ0/r79+9jypSSmPcnEPSFECUEcScgSky2jOlnyUODbEMaElKYKBF4nWNMT9CoRg45xnS+N+FsNDQeKnsZrypaoAkEAoEgsTRU1IBPxVSUjiT7nzYnK92ihDmkfOPEnEUszujbYp+iS0KSJApMWb3mnV+wjG8WLQf8AZsAxrwUQGPfvvKD/SiCUcb8+QspLd3G+++/w4EDFTz00AO0t7cF548bN4ETTzyZu+66g9WrP6ampprS0m089dTjbNz4dcRtfvbZp/z2t79i7drPqKqqZN++cv7+97+wb185xx57HABTppSQmprG1q1b+h2jy+Vi164dYd07BIKDQZRvCOLO3hHmlNDLOrIMqTS72/GqPnSyEhQlco3CKRELJ+ccwfuNX7PFWsYrtZ9wUdEJiR6SQCAQCA5TVE2leV8diqTDNLb7PB6aexRavmFSDNw57Sp+v/tZPmneFHGbAZeF2sN2799u9+V2YL6hwB9wu29/902hQABw9NHHcskll/Pgg/ejaSrf/Oa3OOKIxWHL3H77XTz11OM89NADNDU1kpGRyaxZczjppFMjbnPChIkYDAb+/OcHaGiox2QyMX78BO6++48sWOBv+6koCitWnMl7763iqKOO6XOMn332Kbm5ecyaNWdoPrTgsEeIEoK4U9YZECUO7c4boeQaM2hyt9PkbifflEl9lyiRJ0SJmJAkie9P+gbXb36A56ve44TsBcJlMoroLmntfTEuGA34/6595PcJBCOKTrcDx/5mkvUmMifk48Lv4NPJ3dkO5gglGyl95GAFQjKzDX6xwSQbcKpugB51/11OiZwUUGT27d+Hpml9BmQKRgcXXHARF1xwUfD9ggWLogYqf+97N/K9790YdVt6vZ5rr72Ba6+9IaZ9FxWN4ac/vb3f5S688BIuv/wiGhsbguWFL7/8Rq/lXnrp31x++dUx7VsgiAVRviGIKx7VS4Wjngx9CpmGvtvgHUrkdmVHBBwSwikxcMaYc7igcBku1cOTFW8mejiCIUSWFUASLStHKT6fP2BNlkUYn2B0sHPvTlSnh8zxecEWhzISitR9WRzqbgiQooseIhgQJUyKkVeO+C1Pzf95xOVunfwtcg3pSDoZQ04ydrtN5EoIDhmys7O57bbb+/xOWq3tLFmylJNPjuzKEAgGg3BKCOJKp8eJT1PJGkGCBHSLDw1uvxjR6GoLmy6IjYuKTuDdhnV83LyRszuOZUbKhEQPSTAESJKExZKK1doC0NVS7FB56ifh9QoHR2RiOTYaHR1tGI1J4kmuYNSwZcsmAPKnjsfXlR3R8/stRfgNC20Z2ntet4vCojNj0iLnJ01PGc8zC2/ne5vuo73gAFqtPzAwP79goB9DIBgWli1b3uf81NQ0Lrnk8jiNRnC4IEQJQVzxdZ2kQ59GjATyukoNAmUbgf/nGNITNKKRiVkx8t3xK7h/7ws8tv8N/jTrJnGjM0pITk4D6BImDh0RQJZlVHXo+smPJmI9NrKskJEhuoQIRiZbrWW8WfcFPyj+BibFiNfrZfv2UlBkCiaPo1HrAMCn+f8tFCcVUmavCXbeCiVV3y1KjDHlUOVsDL43hgRjAiiSwuVjT4vaNlyWZIwFaWi1GmVle/ut4RcIBILRjBAlBHHFGxQlRpYNOOiUcLWiaipN7jbSdBZMiqGfNQU9OSF7AStrVrOzs4Kv2nawOGNGoockGAIkSSIlJZ3k5DRU1UeErLe4I8sSGRlJtLbaUdVDYECHELEeG0nyixJCPBSMVH5S+ncAJicX8Y3C49m+fRsOpwPzuAySzRY6nM6w5R+acwtOnxuLztRrW6FOie9P+gayJHNb6d9IUkwR/418a8xJUcclSzLGvBT0ej1lZXvxer3odOKyXCAQHJ6IXz9BXPF1PZUbaU6JUFGi1dOBR/OJ0o1BIksyl407jV/v/AdPH1jFEenTkEfY90EQHUmSUJRD49QiyxIGgwGdzi1EiR6IYyM4HHi34avga4fPn3mzbt2XeDUflpI8TIoBUwSHgyVKoGWoKDEleQxmxch/F9/DYMrVFGQkRWbcxIlU7i2nomIfxcVTBrydwwkRqiw4PDg8w6XFnYAgrgScEroR5pTICxElROeNg+fI9OlMSx5Pub2GNc3998MWCAQCgWAg+DQf/1f2YvC9hERtfS17yvdgTkvGWJSGSTaijxBoGQ2z3N2RI9CdwyDrI4Zi9kdAjJ80pRiA3bt3D3gbhxsiVFlwOHC4hksfGo+zBIcNIzVTwqQYSdNZaHC1dedJCFFi0EiSxGVjT+UXOx7jP9UfclzWXGEPFwgEAsGQ4VHDgyYlSeKKl35Gdd0erjznO+yUyjAphgGVk05IyufSMacwPWX8QY9P7jrnTSgu5hPeY/funZx++hkHvd3RzKETqiwClKMjjk3f9Hd8Dt9waSFKCOKKVx2ZmRLgL+HYY6tiT2clIJwSB8v8tClMsYxhj62Kje17WJA+NdFDEggEAsEIQdM09tlrGWfOQxfyRHGvrZo6Zwtz04rDlve63NRs3weKTMa0MdDsFyV0A3hIIkkSl449ZUjGH3g4k5yWQm5uPg0NdTQ2NpKTkwNAh9feZ7ePw5VDIVRZBChHRxybvonl+Byu4dJClBDElUC69UhzSkC3KLGpfW/wvWDwSJLENwuP5549z/JSzUdClBAIBAJBzLzXuJ7/K/sPp+cu5pbibwJ+oeKmLX8C4LG5PwlbfuembWguL0lTc/Ea/TezJnlgTomhROmqoH684n8cPXMGDQ11bNu2heXLT+Sz5q38dvfTXDXuDL5Z1Hd7xsONRIcqiwDl6Ihj0zexHJ/DOVxaiBKCuOLtEiVGWqYEdIsQ5fYaQDglhoJjs2ZTcCCLje172NNZxZTkMYkekkAgEAhGAF+1bgfg7YYvg6LEbltlcH6rpyP4WvOp7F6/FYCUOYW0e2wAmBRDwoKWA/v9rGUrU/L8T0W3bdvK8uUn8lrdGgCePPCmECWikKhQZRESHB1xbPpGHJ++GXmPqwUjmu7yjZH31TsxZyHz0qawOGMGl4w5mUlJhYke0ohHkRTOLTgOgDfr1yZ4NAKBQCAYKSRHKG3Y2LYn+LrDaw++tu9torOjE9P4TPTpSd2ihGxI2PWIHPIk1JkCOTl5wRKOkfjgRiAQCA6GkXdnKBjRjNSgS4DJliL+MON73Dntu3xn7KmHpbVqODgpZyFGWc/HTRuxeZ39ryAQCASCw56UCG07WzzW4OuAKKH5VKwbK3GrHlLmFgHQ7ukE6Aq6TMz1SOh+nT43s2bNBmDbti1ClBAIBIcdI+/OUDCiGclBl4LhwaIzsyxrPk7VzUdNGxI9HIFAIBCMACwRRImAAwLA2iVKdO6sx9fpQj82DWNuin85b7dTIlECgBxyCe5S3cyaNQeALVs2ISeko4RAIBAkDiFKCOLKSA66FAwfZ+QdBfhLOLR4p1YJBAKBYMQhRbhxDzggAKweG6rbS8fGKpAkzAsKgvMaulp7J9IpEZpl4VTdfOrdwRZdNW/v+ZSa6uqEjEkgEAgShbgzFMQVb1f5hrAmCkKZmjyW4qRC9tlr2WsTF2MCgUAg6JvA9QT4yx8A2rzdTokOrx3rxipUp4ekyTm4UnuLGGbFmLjuGyGihMvn4fGKN2geq1HlaGDzRuEaFAgEhxdClBDEFd8IDroUDB+SJHFCzgIAVjdvSuxgBAKBQHDIEygHBWjr6rRhDSnfqKurpbO0lolpReQcOSniNjL0yQkrlQgt33CqflElaVI2KDL2siZUjy/aqgKBQDDqEHeGgrji1USmhCAyS7PmAfBJ82ZRwiEQCASCPvFpoaJEJ5qmYe1ySmiaRumH60DVmHbsfDLTMnutf/XUM0jTJ3Ny7hEAXFx0YnwG3kVY940uUUI26jBPzELz+HDsa47reAQCgSCRCFFilPP973+fI444gh/+8IeJHgoAXpEpIYhCjjGdGSkTaHC1srPzQKKHIxAIBIJDGE+IKGHzObH5nMEHH/bdDbRU16PPtDBx3nTGmfN6rX9k9jQAJiTl8/riP3DFuNPjM/AuQjMltnfsD75OLvGPtbO0Vgj0AoHgsEHcGY5yLrnkEu69995EDyNIwG4pMiUEkTi+yy0hSjgEAoFA0Bde1Rt8bfM5gyGXXquTti/249Z8pC+ZhFGnZ3xSb1EiRd/dvcMg64Z/wD2I9nDGkJ+CPsuCp9mGu74jGBAuEAgEoxkhSoxyFi9ejMViSfQwggROrrJwSggisCRrDjISnzZvSfRQBAKBQHAI4w25Wbd5ndh9LjRVo2P1fjSPD9PcPIy5KegkHeOT8nutn6JP7LWRHOUSXJIkkmf5O4V0ltbi9LniOSyBQCBICOLOMIGsW7eO6667jiVLllBSUsJHH33Ua5nnnnuOE044gdmzZ3PhhReyZcvIvlkTTglBX2QaUpmaPI4md3swTV0gEAhGCuXl5Vx88cWceeaZnH/++axfvz7RQxq1eLVup4Td50DVVDo2V6M22tDnJJM8txAAnawwIaIoYe41LZ4oUvSAzaRJ2chmPY79LdQ01cdxVAKBQJAY4u9XEwSx2+2UlJRw/vnnc/PNN/ea/9Zbb/H73/+eO++8k7lz5/L0009z9dVXs2rVKjIz/aFN55xzTsRtv/rqqyjKoXfj79NE9w1B3yxMn8rOzgo6vPZED0UgEAgGhNFo5J577mHSpEmUlZVxww038M477yR6WCOGr1p3UGwpJMuQ1u+yPZ0S5Xv3Yt1QSbophdRlxUiK/zrDIOmYmFTYa32LzoQLW6/p8ULu4+GMpMhYpufTsaGSzz5fzZTzJ8RvYAKBQJAAhCiRQJYtW8ayZcuizn/qqae46KKLuOCCCwC48847+fjjj1m5ciVXXXUVAK+99lpcxgogywfXNkuWpWAIlV5WDnp7o4nAsRDHBBZllPBc1Xt0+hy9jos4Pr0RxyY64thERxyb4aGoqCj4etKkSXR0dKBpGlIfT8UFfra0l/GrnU+SqU/l+UW/irjMl63baXK1cUb+MWFOicaWRjb8dwNoGiUnL6I63Rmcp5OViJkRif6b9OWUAEienk/n1ho2fL2eb5xyHsnJKWHz/1HxJnmmTM7IO3o4hykQCARxQYgShyhut5vS0lKuv/764DRZljnmmGPYtGlT3Mej08lkZSUf9HZ8Tf4nG6nJ5iHZ3mgjI+PQyf9IFMdkzMCyw4TN68CSbsCkGILzxPGJjjg20RHHJjri2ISzbt06nnzySbZt20ZjYyOPPPIIy5cvD1vmueee48knn6SxsZHp06dz++23M2fOnF7b+uCDD5g+fXrCb35HCjs7KwBo8VijLvPrnf8A4LisufhU//WE6vbyxbsfkukwkjy7kJIZM2hq2YpL9QCgl/yXuuPMeRxwHDqlENEyJQIoZj2WaXl4ajx8+ulqTj/9jOC8VncHL9b4S36FKCEQCEYDQpQ4RGltbcXn85GdnR02PSsri4qKipi3c+2117JlyxYcDgdLly7lscceY9q0aQMej9erYrU6BrxeKKFOCafdS3Nz50FtbzQhyxIZGRZaW22oqmgBNi91ChvRWL1/KwvTS8Tx6QNxbKIjjk10hurYpKaa0esPvVLBwTIUZZUA1dXV3HfffTz22GPxHP6Ipt0TeylFq6cDj+ZF86k0f7AbrVnHrJmL2T/XglE2MD1lApva9wDdGVYPzLyRP5e/zJqWQyObS45BrEqZXYjU4GPdui857rhlJCf7H+bUuVqGe3gCgUAQV4QoMcIYqA10KC+IhuKiPpApISOLm4QIqKomjguwIH0qTwHrW3YxP3VqcLo4PtERxyY64thERxybcIairLKzs5MbbriBO+64g/Hjxw96LENRMjkU24kXnb7uHKH+xtzm7cSjemn5tAxXdRv6wnGceMEZrC1/Fp0sMzetOChKGBQ9siyRZrRw3aSzWdOyhSxDakz7GU5iuZZTkgxMnT+J5i2VfPZZt1ui3t0tSgzHZxhp3514Io5NdMSx6RtxfPpGiBKHKBkZGSiKQlNTU9j0lpaWXu6JkUSg+4Yium8I+mBe6mQASjv2JXgkAoFA4CeWskqfz8ctt9zChRdeyJIlSwa9r6EqmYSRU6LjLOvuuNTfZ3cZXFSs2YpjbyNKspHxZ80nPSsFysFiNjE9axwc8C+bkWoJbi+LZF5e/huyTen+eQk8Noa62C7BF524mC8qWti8eT0rVpxMZmYmbU0dwfnDWQo7Ur47iUAcm+iIY9M34vhERogShygGg4GZM2fy+eefc8IJJwCgqipr167l8ssvT/DoBk8gLVt03xD0RaEpGwWZclsNPs2HLH6qBAJBgomlrHL16tV88cUXNDU18eKLLwLwr3/9i9TU1AHta6hKJkdS+VKjrT34urm5E03TsHptvFKzmuOy5vBUxVuA3zH63xdWUr2pDNlsIPu0GTj1Km1Wf/mH1+VD79QHt+W0ecLKRVNJwetVIYOEHhub3RXTcg6fysKFR/Hhhx/wn/+8woUXfouy1prg/OEohR1p3514Io5NdMSx6ZuhOD6jrWQyFHGln0BsNhsHDhwIvq+qqmLHjh1kZ2eTk5PDlVdeyW233cbMmTOZM2cOTz/9NE6nk/POOy+Boz44Ak4JnRAlBH0gSRJmxYhb83LA3kBxSu92bgKBQHAoEFpWuXz5ckpLS4dku0N1UT9SSnSsXZkSqbokVFXjnt3/YnXzZgBeqPoAAE3VaPu8nNJKHbJZT87JxejTzXR6HXjU7vLQdF23e0CHEvXzJ/LYqCEtTb8z9lT+VfkO35twNhOSCvj59keD81w+D0uPOY4vv/yCzZs3cfTRS6hzdpdvDOf4R8p3JxGIYxMdcWz6RhyfyAhRIoFs27aNyy67LPj+7rvvBuCmm27i5ptvZsWKFbS0tPDQQw8FU76feOKJsDCtkYYv6JQYnSqfYOgwK0YA9tiqhCghEAgSzmgtq0wEG9p2s6Ozgm8XnRQUdDq8/kyJwG9/QJAIoHp8tHyyB+f+FtTscUw8/QhqjVaSFCM2rwOv6m8RKksymYZuZ4ouQjvQQwGN7puSS8aczPkFSzErRvbb68KWc6kejEYjJ510Civ/+wpvvf0/mhZ0u0p8mircpwKBYMRzaP5SHyYsXryYXbt29bnMpZdeyqWXXhqnEQ0/ge4b4gQq6I/AheleWxVwZGIHIxAIDntGa1nlYGh1d9DssTLZUjSo9X+xwx/CfWzmLCYkFeDTfFi7RAlfiIMggM/hofm9nbgbOtClmRl79ny8FgkcVjL0KVT7mrB6/U4LnaQEzx/Q3RL0UEPt8TkDYy4yZZOhT6HV48+NcHe1Np0/fyG/+u8DvLduHRbzBIyT/A+oPKoXJaR1tkAgEIxExJ2hIK74NBF0KYiNoFOisyrBIxEIBIcLNpuNHTt2sGPHDqC7rLKxsRGAK6+8khdeeIGVK1dSVlbGb37zmxFfVjkYLttwNzdt+RMtbutBbcfVdcPd6u4MOgc8XY6HAO5mGw1vbMXd0IEhL4Wcs2ZhNbmD5RoZ+hQAWtz+m/ieDz00eoschwI+LbJ9Wy/reH7hr7h18reA7mP0WetWHAvSsHudNK8tR3X5j5NH80bcjkAgEIwkDk35WDBqEZkSglgxyDoUxUS5vSbikzOBQCAYag7HssrB4Ol6wNDm6QwrlYiFwMMJAJvXCUCzp7scIfQm27a7gdbPysGnYp6UTebSyUg6mWa3lXS9PzcivUuUaPf6Ax91PR56dHbt41AjtHyjJ5IkYewqOwmINFut5RgLUkmamot9dwPt6w+QcewkXqj6gCvGnY7+EC1TEQgEglgQv2CCuOIT3TcEMSIhMdlSxBZrGZWOBnIZ2IWvQCAQDJTDsaxyoGghT/gH85Q+4GgA6PQ5uqZ1Oy48qg+n00nL6r3YdzeALJG2eALJswqC+RMaGq2eDnSSQqo+CfC7LcCfKQFw2djTeK9hHXPTigc8xnjQs3yjJwbZ30Ek4JSod7UCkHbEeBwVLdh21pM0JYdX+AS7z8ktxd8c3gELBALBMCLuDAVxRQRdCgbCFMsYQJRwCAQCwaFCQEgAsPtia2sZSpO72xXR6fVvqzlElOisaeHhh/+MfXcDstlAzukzSZldGBQkQtFJCqk6C0AwgyHw0OPbY07iqQU/J0kxDXiM8UDtp6wkIEq4g6KEv+OGYtaTfuR40DRaV+9F86q83fDl8A5WIBAIhhnhlBDElUD5hnBKCGJhQlI+AJWOhgSPRCAQCAQQLiDYB1Ea0RwmStiD21Q9PqxfV9JZWktzfjrmiVmkHzsJxaSPui2dpJCi63JKdIkSPcs3DlXUKJkSAYwhTglN06hzdbcBTZqai31fM66qNtrXHyD9qAnDOVSBQCAYdoQoIYgrge4bI+WiQZBYso3pADS52qMus7F9D6/UfIxB0jPGnMuFRctJ1pnjNEKBQCAYHXzdtguX6uGYzFl9LhdaamH3OVE1lTXNW5iTNjmY89AXPZ0Smqaxa/t26t7aiGpzIxl0VMyDzMKpEd0RoehkhdQuUaLN4y/fGCkPPfrKlIDuriEe1Uu71xYs4wB/5kTmcZOpe3UTnaW1mMcfXpkmAoFg9CFECUFcEU4JwUDINqQB4U/WAmiaxr+rP+Bfle90X9y1wqfNm/llyWWDblUnEAgEhyO/3PE4AG8fdV+fYkCLp1uUcPhcfND4NQ+U/YcJ5nwemXdrv/txhJR8VNdU888Pn2TD16tRHW7MxdmkL55Ac5KKRN+CBIQ7JQLngZFyfRGrU+Lz1m1MqR/Ta75iMZBx9ERaPt5Dy+q92E630ahZeaLif1w/4VyKzDnDMm6BQCAYDkbGL7dg1CAyJQQDIasr1b05Qtu5L1u380zlKoyynlsnX8xDs2/h2MzZ1Lqa+cm2v1HjbIr3cAUCgWBEEtoRo7/wys3te4Ov7T4XZbYaAPY76nD4XGxs3xMWhtkTt+rFa3XS/OFuPn3uTcrL92JITyJ7xUzyT5iOkmSIedw6SSHXmBE2baRcX/TXVSqQKQHwdOWqXvP1koK5OBvzxCx8HU5W/vcVfrPjKda37eLP5S8P+XgFAoFgOBGihCCuBMo3RsqTDEFiSVJMJCnGMLtvgFdqPwHgtinf5qScRUxNHsvtUy/jgoJlOFQX9+35d9iFtkAgEBxu7LVWc/FXd7K2pbTP5awee/C13Rc9J6LZbeW9xvVhy4aez2/d9jA/3/4oL9V8FHH9+vp61r39CXUvb8RR3gQmhbPOOo8ZFy3FVJhGcpfroS8CZQ3gFyWKTDlhroqRcn0xPikPgAnm/IjzDf20+ExSTEiSRMaSYpRkI1u3bWH/Fn/nmFZPB/+uej+iy1AgEAgORUbGL7dg1OBTRaaEYGBkGdKw+5xhgWp7OqvYai2n0JTNURkzgtMlSeLKcSuYahnLjs4KXqyOfGEsEAgEhwN3bXqGFo+Ve3b/q0/3QiCPAfruqGH12ACCIsCLNR/xZev24Pwyu9818Z/qD3GrfseFpmns37+PZ599mr/+9U8cKN2DpFdIXTSOogsXkjtrPG7Jv6wlhk4Zern7+kEnKRgVPTld+UMwckSJi4pO4LoJ5/C7GddGnG+Uowd8Ali6spNko47ME6aCLNG0tgx3s41KRwNPV67irl3/ZFfnAZw+95CPXyAQCIaSkfHLLRg1CKeEYKBk6f0lHA3OtuC0lbWrATi34LhgT/oAOlnhtinfRi/peLH6I2xeBwNF0zTWt+3iyYr/cdeuf/KX8ld4r2FdWC20QCAQHOpU2vydizyal59tfyTqcoHOFdC3KBE4h6eGOBqqnI29lrP5nNRY63n9kzdZ8rOz+PlDv2LXrh2kpKQy+bi5FFy8kNR5Y6j1tXLd5vvZ2VEBxPbAIrQ8I1DiMMbUnZ8wUh56GGQ95xYcFyxTjDS/L0IFHGNuCseduBx8Ks0f7EJ1+UWeXZ2V3LL1Ie7a9c8hG7dAIBAMByLoUhBXujMlhCghiI2srrDLBkcbKXIybtXD6ubNWBQTJ+csirjOGHMOJ+YsZFXDl6xq+IoLCpfFvL8aRxMP71vJ1+27wqa/Wb+Wfx54m6vGn8ny7Pn9psILBAJBogkty9hsLYu6XHuIU8IRUr6x11ZNkmKk0JQNdOdNpOottHttvbaj+VScNe04ypq457Xfsr+jhnZnCzuzXFy24jJOOfIE/q/8RbY3fR22ntoVUtlTZI5EqOgQcBMUmrLY0FWpEMs2RgKRxBUJKRjo2dNJMffIRZg/zcKxv5nmD3eTfep0JNl/ntrQvnv4BywQCAQHgRAlBHGlu/vGyHiSIUg8AVGiydlGcdIYapzNeDUfs5MnYVaMUdc7t+A4VjV8yWt1azi3YElM37l6Vwu3lv6NFo+VIlMO3yw8nvFJ+TS521jTvJVPmjfxx73Ps9dWxTXjzxLChEAgOGTxqL0DKzVNi/i71ebtXb5h8zq4acufAFh19P1A9zk8JcQpoXlVnLXtOPY146hoQfGAV/WyVt9CUnE2uSVz0GdbSC8pQFEU3Jq/tWWSYgxzZSiSHBQn+kIfwSkRei4YLdcXkiTxu+nX8ErNJ0FRwaKY6PT53X89RQsfPjKWTcZjdeCqbqP9y/2kHz0x7uMWCASCwSBECUFcEU4JwUDJNoSUbyQR7KpR1PXkLhoTkvJZkDaVDe27+axlG0uz5va5fIfXzh07nqDFY+WUnCO5edL56INBY+M5LmsuZ7Qfzd27n+bV2tV4NZXrJ5wzZMKET1OpcTahIJOmtwTrhQUCgWAwhOZEBHCpHkxK7+4WkTIlKhz1vZbzaj40TUNvVenYVoOzqg1XnRV8XZ0kFJnxUybTWgimcRnI+u4b58A+AlkTZjlclDDLRjyqp9/PpURwShjl7s+kG0XXFwvTS9hnrw2KEim6pKAo0dMR4lF9yHqF7JOn0fDaVjpLa9FlJJE8LS9sObfqRS8pQlQXCASHFEKUEMQVrwi6FAyQYPlGV6ZEtcNfvxxLD/ZzCpawoX03HzVu6FeUeKLifxxwNHBk+nRuKb4g4tO2OWnF3Dvjen62/RFer1vDtORxnJCzYICfKJxyWw3PVr7LxvY9ONTuC/SZKRM5KWcRp+QeIUQ8gUAwYCKJEk7VHVGUCARYAjh8Ljo8dnZ3VgKgurzs2LOd+uo6Ptn5BTVb1mHQVTDVkMaezmbcioxpXAamcZmYx2dw6rhlvF73Wa99tHftI+Dg6HlTbFIMQcGiL0KDLg1BUaK7lGG0/V6aQgQXi84EXaeJnp9zW0c5ALoUE1knltC4ajttn5ejSzZiGpMO+LulnP/V7SzOmMGd074bl/ELBAJBLAhRQhBXRNClYKAEQsAaA6JEl1OisB+nBMD8tKkYZT2brXvxqj50cmQxrMbRxHsN60lWzPx0yrf7tP9OtBRwe8ll3Fb6CH/bt5I5qcVkG9MG+Kn8zojH9r/O63WfoaFhkg3MTpmELElUO5so7dhHacc+3q7/gh9NvpAJSQUD3odAIDh8ieyUiNyFodNlx9PuwNfp4ovmtdy19348rXY8rXZUm5tv8hUn5S6iw2NH86pkjc/lO0ecxzrjAT5kezC7AGBiUmHYtk/PPYq3G75gn70Wj+rF3eWGuLjoRP6679XgckbZQKfXTn9ECro0hggto6V8I4AppDQlWel20PV0Sjy6//Xga2NBKhnHTqJ19V6aP9hFzoqZAOy31wGEdUwRCASCQwEhSgjiSkCUkEXjF0GM9HJKdCW9F5n6d0oYZB1zUotZ17aTnZ0HmJUaub722ap3UVH5RtHxMZVNzE4t5ryC43i1djV/2fcyd067KsZP48er+rhv77/5pHkTqbokLh17KqfnLg6Wi6iayvaOCp6oeIOdnQf4wda/cPf0q5mVOmlA++kPh89Facd+ahyNuDUv2YY0piWPI9+UNaT7EQgE8aeqsYaO0lo0rwqqhqaqvNu4ilTNhMPhwGaz4XA46Ozs4KPKL6h3tgDwgf4AnQFBQ5bQpZvRZ1rImlXMkgklVHW8y3FjT+CE8SdTdWAVUvWOsP1OTMoPe78ovYS3G77gk+ZNWHSmoBtiSdZssgyp3NnVGcKkGGj1WPv9XOFBl/7fzFA3wWh76BHulOg+P/X3OS1Tc/HZ3VjXH6Dp3R00HdOEZug/s0MgEAgSgRAlBHHFp6ookixqGQUxk2lIQUYKOiVqHE3IyOQbM2Naf2F6CevadvJ1266IokSVo5GPmzaSprNwTv6SmMd1xbjTWdtSypetO9jTWcWU5DExr/tQ+St80ryJfGMmf5jxvV4igCzJzEqdyAOzbuL5qvd4ruo9bt/xxJAJE22eDp6v+oD3G9djD0naDzAjZQLfKjqRIzKmH/S+BAJBYvj8409oX7svbNoXlZ+RaUgJmyZJMkqKCWNGGkqyETnFTGZqAbqMJPTpZiTFf/P7GZVUaW4kRUYn+S8fDUp4Bwi9pJDZo8VlaMvLt+q/CLq+9JI+zAFmkvsu30jVJWH12vn2mJOCQkbAKWEKK98YXU4Jc4gLJDlElIilDDZlbhE+hwdbaS3/fPpJjvvW6cMyRoFAIDhYhCghiCtezSfyJAQDQpEU0vUpNDnbsXmdNHusFJqyo5Zi9GRB2lQANrTv4nJO6zX/0+bNqGicnX9sn908emKQ9XyjcBl/2fcqL9Z8yC+nXhbTel+0lPJu41dk6lO5f+aNfZZ+KJLMd8aeilHW848Db3H37md4ZO6PSdenRF2nPza07ea+vf+m1dOBXtKxNGsukyyFmGQDdc4WvmgtZXvHfu7Y+STLs+dz08Tzhy1006epVDsacfhcyJLMOHMexh43OQKBYHAUHVlCGnuQZMlfXiHLHFd8Mqta17OsaCFnj1vKNlcFX9l2MdGWieSo63ebgfDLQJhkz7aUafpkDHL4pWXA7RYgEGZpkHWk6izB6SbZwI0Tz+fP5S9F3PcZecdw6dhTcISEYxojlG+MpqBLCHdKhJZvxCK+SJJE+uIJqA4Pjc2NrHzuP/gWelDMep6o+B/fHbdi1LRQFQgEIxshSgjiik9TR521UjD8ZBvTaPFY2dGxH+i/80YoY825ZBvS2N1ZhdVjI1VvCZu/vm0XAEdlzhzwuE7KOYJ/Vb3LZ81bqXE0UWjue1wdXjsPlb8CwC3F34g5i+LCohOodTbzdsOXPFj2Mr8uuWJQbqPVzZv5/e5n0dA4LXcxV45bQVqP4/G9CWeztrWUv+1byUdNG6l0NPC76df2Wu5gOGCv54XqD1jfthNrSA25jMy0lHGcnX8sSzLnxCw8CQSC3ngsEikzw7NoqnOc1MlO/uP8jCuzzuP3a38/qG3ruoQHQ09RQmcJuigCpOuTw943uduRkNBJCjql+9+4LEmcnreYE3MW8o2vbsethbsmZElCkeQw0SPg1DCOaqdEt1geKhBfPvZU9tlqUGSFMlt11PUlWSJz2WSKdo5j884tNL1dQfaKGbxc8zEL0qayIH3qsI5fIBAIYkHcHQriilf1jboLBsHwE7D/bm7fC8QWchlAkiQWppegobHZujdsXqfXwY6OCjL0KUzqEc4WC0ZFz7n5x6GisbJ2db/Lv1T9ES0eKyflLGJxxowB7evaCWdTaMrmi9ZSPmj6esBj3Wot4749zyMBt07+Fj8o/mZEoUGSJI7JnMWjc29lTmoxe23V3Fb6Nzq9jgHvsyce1cvf9q3kus3382HTBuw+F7NSJrIkcw5Hpk8nXZ/M9o79/GHPc9y45f8ot9Uc9D77wqf52NVxgC9aSvm0eTN7bdXBED6BYKRj9fQOjQxtwXkwBByPkZwSPd2QOknhqIxu0delejDIOiRJQpIkMvX+3/eN7XsAgvMCnFdwHDmGdM7IOzps36H7D20JqoyyS9twp4Qp+DrflMUj827lmJBjm6UPL50JICkyb5bsZ0/DQAs0AAEAAElEQVRKC54WG01vb0d1ebH7XDy+/42wkEyBQCBIBMIpIYgrPs3X6yJGIOiPceZc1lLKG3VrgdjagYYyNXks7zR8xQFHQ9j0Te17UFFZmF4y6JyTFXlH8UzlKj5r2cb1E8+NaoV1+Ty83fAliiRz5biB1/WaFSM/Kr6IW0sf5tnKdzk+a37MToI2Tyd37Xoaj+bjxonncVLOwn7XsejM/Hba1dy165983b6LB8te4pdTvzPo49ThtfPbXU+zxVpGsmLmW2NOZEXe0WFPATVNY2P7Hv5d9T5bO8q5ZetD3FL8zZjGOxBqnc08V/Uea1u2YeuRqWGQdCzNnsc5+UsGlBMiEBxqnJp3JIWpmaysWBOc5uhDlDDKelwxinL6qKKEJaxlp05SkCSJ30y7kicq/sfLNR93rd99+XndxHO4Z/e/uKBwWXBaIAy72FLE9yacw/cmnNM9L+Q3NiBGhDkl5FEmSoRlSiT1mq8LcY48Mf+nnPfVLyNuR9LJmJaPx/ieA1dNO41vleIsdvBK7ScAXDv+LJH3JRAIEoYQJQRxxav60OmEU0IwML5ZdAIfNm8Mhl0OpHwDoMDoD5KsczaHTQ+UbixKLxn02FL1FmakTGBbxz7KbDVRb2Q/bt5Ih9fOsqx5vWqsY2VW6kQWpE1lQ/tuPm7eyEk5i2Ja76kDb9HhtbMi7yjOyj825v0ZFT2/mHopN275E2tatvBm/VrOzD9mwON2+Tz8Yvtj7LFVUWwp4q5p3414DCRJYkH6VOalTWZl7af848CbPLD3BRRJZnn2/AHvtyc+TeXZynd5qeYjvJoPg6RjYVoJReZsZGSqnY1ss+7j/cb1fND4NefkL+GKcaeH3RQMJQ6fiy9aStltq6LB1Ype0pFlSGVOWjHzUqeIfA3BQbEkazbnZB0dJko4e7QENUi6YJlEsmIOihJFphyWZM1mq7Wc7V1lc6FEK984Pns+MjISEhpaWLmmOeSJf+h6S7PmMmleIbnGjOA0uevmWNP67hbRHXQZ6pQYXdcYob8/kX6LQgUek2wI+5v2RNYrZJ08jeZ3d+Kqbef1f/0H7xFudMlGtnWU49NU5qVNAfzH3uXzhG1fIBAIhgvxSyOIG6qmova4SBEIYiFVn8Rv5l3OjV/8GRi4KJFv8nfqqOtqeQf+C671bTuRkYJhmINlccYMtnXs44vW0oiihKZpvF7rvzE4ewCiQCS+PeZkNrTv5t9VH7A8ewFyPxfgOzsqeKfhK9J0Fq4ct2LA+7PozPx8yqX8qPSvPF7xBkdnzgpL0+8PTdP4y75X2GOrYmbKRO6efnW/gaKyJHNB4TLyjBncs/tZ7tvzb1J1SSw8CPHI4XNx757n+aK1lCTFyCWFJ3NuwXG9xmL3OXm/8WueObCK/9Z9yibrXn4//VoyDIMPF+2Jzevk2ap3eKv+i4hPpl+p/YQkxcgFhcdzQcFSTAMIYBUI+iJUYHD5PGE3r6HOq3R9MleOW8Hvdj8TcTuRyjd+O+2qYMcenaTg0bxhpRahN9Q9wzDH9HC/SfhFCZW+RYlAS9BQAW+0XWOElqboI5S/hjpTJEnCIOtx+6J3MZH1ClmnTKPlw93UNdbR+L8ask+fwU9K/w7AC4t+TaYxld9teZaVFWv45/xfBM+hAoFAMFyMrl9uwSGNT1OB0RdCJYgPR+XO4PqJ53JW3jHkxdgONECuIQMZmVpXt1Oiwd1Kk7udYktRr/DLgRLIh/iydXvE+XtsVZTZayi2FDEjZcJB7WtW6kTmpBZT7Wzkq9Yd/S7/RMX/APju+DNIiWD9jYWSlHGcV7AUl+rhhar3B7Tue43reL9xPVn6VG6fetmAOpwsyZrDjyZfhIrKA3v/g9VjG+jQAX/Z2G93Pc0XraUUmXL4y+wf8K0xJ0UcS5Ji4uz8Y3l03k+YlzqZ/fZabtv+d5rd7YPad082t+/lmk1/ZGXtp0hInJi9kJ9OuYQ/zbqZ+2fewI+KL2JJ5hw8qpd/Vb7DNZvuY09n1ZDsWyAIxeoN//fk9HW7KAJOBYMU2a0TuDkOdTxMTR7XPb/rRjlMlJCjixI9Cexf7bpuiIYhQqbEaOvwFSqy9HSmAL2CRfX9HFvoEiZOKiF9cj6+TheN/9uGu9n/fdjeUQEQdNh81db/eQb8v7N373qa9xvXx7S8QCAQhCJECUHc6BYlxNdOMDjOKzyOGyedP+C6V52skGtMp8ndHgwybHT5bzIHEpoZjbHmXAqMWey1VdPk6n3zuqkrwG1p1twhqdk9syvwbU3zlj6XO2CvZ1vHPopM2ZwcY6lHNC4sXE6SYuTthi/DHCd94fC5eOrA2wD8Yup3BuU2OClnISflLKLFY+Wv+17t184dicf3/48N7buZYM7nwdk3x5RJkmVI5a7pV7E4YwaVjgZ+s/MpPGr0p4+x8FnzVm7f8TgtHivLsxfw1Pyf85Mp32J59nymp4xnVuokTsk9gttLLuOxebdxbOZsGt1t/HjbX1ndvPmg9t2TNc1b+NFXf4v4fRUcHvQUJRw+F2NM/n8bgd/FaL9XitzbKdEzSwLCH0KEtu3U95MtFciN0PpxSgT2Eyp4jOYWl7GU/sUqykiKTO7yaVim5/tbhr5ZirOqja3W8vAFY/zN3dVZyZqWrdy/94WYlhcIBIJQRu8v90Hidrv5+9//zs6dOxM9lFGDT/MBo+8phmBkkG/y50rUu1oBaHK3AZA9yHyHUCRJCrol1rX1/s0IXOTNTp100PsCWJQxDb2k48vW7X3eKL/T8BUAp+QeedAX6ql6C+cVLMWr+fh3dWxuiVdrV9Pq6WB59nxmpk4c9L6vn3AOuYZ0VjdvDib0x8rHtZt4tWY1qbokfjPtygG5RQyyntunXsaMlAnssVXx1IG3Bjr0IOtbd/K73c/g1VRumng+P53y7T5FmgJTFrdPvYxrxp+FV/Pxh93PsaFt96D3H8CnqTy2/3Xu2vk0q+u20OrpOOhtDifiXHzwXDPhzIjTQ9vxArg1L3dPv4az84/l2vFnd02NfEMaySkRmj0QECNCS0LCnBL95BQEyzf6uSEOLBe6n9H44ON7E87mkjEnM8acw8+mXMLf5/w4OM/bIz/CEyFP4tkFd5AUwRnW5G4n/ZiJpCwYi+b20vTuDtZ+9XnYMrHKwCJ7QiAQHAyj75d7iDAYDDzyyCNYrdZED2XUIJwSgkRS0FXyUdsVdtnUZcfPMaYPyfZnpk4AYJ+9Nmy6T1Mp7diHUdYzxTI03RySFBML0qfS6XOwub0s4jIe1cv7jeuRkWMOxOyP8wuWYZT1fNK0CWc/rQXbPJ28XP0xOknhsrGnHdR+LTozV084C4Dnq96LeT236uX/Sl8C/G1QA8LUQNDLOn4+5VJSdEm8Wrt6UMJAo6uNP+59HhWNH0++OOawUEmSuKBwGT8svhAVlbt3P8P+Ht+vgaBpGn8tf5VXa1eTokvioaNuOuQ7jIhz8cHzzaLl/GP+z3pN//n2R3tNyzdlcsPE87Do/K0no4kCkRwKoQ8cAmJBaHvOAZVvEFv5RiQnx2h88HFewVK+M/ZUwB8mOtFSEJzn63GM2jydvdbPMqRGdAU2uNuQJIm0BWPJWDYZJIldH3zN22+/GXSl9edWCaDSPY7BONoEAsHhjbg77IM5c+ZQWlqa6GGMGkSmhCCRBG5Ig6JEl219KJwS4C/hAKjq0Xa03FaD3ediesqEmGp9Y+XYzNmAvyQgEl+27qDda+OIjGkDCqbsC4vOxDGZs3Cqbr6Ikp8R4J2Gr3CoLlbkHUXBIMSAnhybOZux5ly2dexjqzWyENOT/9Z8SrW9icUZ0zmyK4BvMOQY07ll0jcAf0ZHfzdKofg0lT/seQ6r1845+UsG1d705Nwj+HbRSdh9Tv6w53m8qm/A2wD4d/UHvN3wBRn6FP4y5xaOyZ01qO3EG3EuPngKTdn8qPiiAa8X7YY0UveNUIEgUtFHaBhlfx1tYi3fkCPsST7M2lrGUlYmSRLJirnXdHtIS2TLlFxyTpuBV6+xZs2nNH+wC9Xji1mU8IT8Ltn7Ea0FAoGgJ6NelHC5XFRWVuJyDfwH8ic/+Qn//ve/efbZZ6msrMRut+NwOML+E8SOt6t8QzglBIkg4JSocwWcEm3A0IkShaZsZCQqe4gS2zq6SjdSBl++EImjMmYgI/N5y7ZeT8oAPmvx502cknPEkO73+K7WnB81bexzuY+75q/IO2pI9qtIMhcXnQjA8zGEbXZ47Txf9R6KJHNNl8viYDg2czbTk8dTbq8ZUL7Dx00bKe3Yx2RLEVeNj2yjj4XvjD2V2amT2G+vZWXt6gGvv6W9jGcqV5GkGPnt9KspNB98lkq8EOfioSFDnxxx+ik5RwJw1bgzes2L9sBbH+y+EVlojeRgMMnd5QMpur7DhQPrR+u+MT15PAATkrodA2flHcPRGTNHdaZEJEJLVwDum3k935twdi9nXlKX+6UvjAWppJ85jYzMDJz7W2h4fSttza0xjSO0bKTtEC8LEwgEhx6jpgDsqaee4r///S8ej4dLLrmESy65hCeeeIK//vWvuFwuDAYDV1xxBT/84Q9j3uaFF14IwN13383vfve7iMvs2BFbKrGg2ykxGq2VgkOfgi7ram1XSGOT228HjyU4LBYMsp48Yya1rmacPlewjWMgT2LWEOVJBEjVW5iZMoGtHeXs76gjnXA3xM6OAwDMSSse0v0uTCshVZfE12276PDYSdH3zmiosNexz17LBHN+2E3DwXJ89jyeqVzFxvY91Dlb+mxT93HTRuw+F+eOW8K4pDxU9eDsxJIkceW4Fdy2/e88U/kOSzLn9LoZ6IlX9fFs5bsAXDfhnH4t6/3t//uTvsH1mx/g2ap3WZo9N+YuNG7Vy0PlLwNw88QLmGwpGvQ4EoE4Fw8NZiXyTemctEncNOn8iN/PqE6JCJkS/RHqjugv26W/8o37Z92Iw+ciWdf99P/GSefHPJbRxGm5i9nUvjcYgDw7tZjZqcW8U+/PFArkd1ii/P17oqSZuOTqK3nu/o9xVbXxzjOvctSVU5g+fUaf64U6Nlo9HTEFCgsEAkGAUSFKPP/88/zxj3/kjDPOID09nT//+c80NzfzxBNP8L3vfY+ZM2fy9ddf8+STTzJlyhTOPDO2p1X33HPPkCTlC/z4hFNCkEACN7B1zm6nhIxE5iA6QkRjrDmXWlczVc4mJluK0DSNUus+dJLCtK4ne0NJsaWIrR3l7O2oZpGpW5Ro83RQ62pmnDl30G1Ao6GTFY7Lmsub9WtZ07KF0yM4IT5u2gR0uyqGCkVSWJY1jxdrPuKzlq1cULgs6rLvNfjb0p07fgnEXm3RJ3PSilmQNpUN7bv5snU7x2bN7nP5dxq/otbVzMK0kiERpcaac/lG4fG8UP0B/6n+kO93lZT0x4vVH1LlbGRhWsmQ/03igTgXDw2Rgg4BzLIxqmDWX/mGLMkUmrLJ0oeLooFMidD1QzMlUvsTJQLlG1GsGookhwkShzNmxcid077ba/p+Rx0A45Pyge7SxVhw61WyT5mOdWMlrj1Onn/+GZYuPZ4TTzwFWe6+htvdWckHjV9z1fgzwkSJlhicEts79pOkGIdUuBYIBCOXUSFK/Pvf/+baa68NuiCOO+44rrvuOm688UZuvPFGAI4//nhcLhfPPvtszKLE+eePDtXd4XCwYsUKzjjjDG699daEjUNkSggSSYouiWTFTK2rGZ/mo8XdQaYhdUi/j2PMOXzVtoNKRwOTLUW0e220e21MSioMq6ceKgIXm2XWahaZujMTAi6J4RBCwF/K8Gb9Wja17+0lSmiaFizdWJY9b+j3nTW7X1Fiv72O3bZKxppzmZU+gZYWW8TlBsMZeUezoX03HzVt6FOUUDWV/1R/CMAV404fsv1fULiMlbWr+aDxa64cuyKiUyWUTq+Dl2s+xiDpuGkQ7XQPBUbLuTjRmKOJElGmQ19Bl903pk/Muy0oQvQkVJQIbR/an1ga7L4Rc+8HQTQmdJ0nZqVOYlvHvpjWaXF3IMkSaQvHMbtkHIYvW1i9+mMqKytJWzqJ6XnFzEiZwPe3/hmAiUkFYU6YSGGboaiayo+2/RWAVUffP5iPJRAIRhmj4pF1ZWUlRx99dPD9EUccgaZpLF68OGy5Y489loqKigFvf+/evfz3v//lkUceobGxEYCKigo6O/v+0T1UeOSRR5gzZ06ihyEyJQQJJ9+UiUv1UG6rRUUdsjyJAD3DLtu7Lswy9EPnxghlYtfF5t6OmrDpOzu7RImU4RElAh0b9tiqes2rcNRT62qmJHnskARc9mSqZSw5hnR2dFTQ7I7ckeG9hnUAnJp7xJDfhB+RMZ1kxcyXrdvp9EbPMtjRUUGDq5XZKZOGtMNFii6Jk3MW4VI9rGr4st/l321Yh1N1c2LOomH5e8STkXAufv/99zn11FM59dRTeeutwbeQHQ6iiQ992fqjZcLoQto/ypIc9d9ZqKQwoPINKbbuG4LoBIItF6RNBeDiohO4a9pVTEoq7HfdRld3jkTqxByuu+4mcnPz2bpnG3f+6S6uf+uusOX/tm9lWCcot+rpc/uB60GBQCAIMCruDg0GA05nd4Kw0eg/8SYlhZ/09Hp92HL9YbPZuOWWWzjzzDO5/fbb+fOf/0xDg/9m4//+7/94+OGHh2D0w8v+/fspLy9n2bLoNud4ITIlBIkmIBqsbdkGDF3IZc/tB8IuA0+L0vR9h7oNloBTYq+1Omz6jo79AExLHjcs+03RJVFoyqbG2dTrxnyvzT+WWSlDm6ERQJIkjs2cjYbG5y29O48EnBoyEicOotNFfxhkHUuy5uDRfKxp3hJ1uU+6wjCXZs8d8jGcU3AcAK/XfRYsi4uET1N5o+6zrnWOHfJxxIuRci72er3cd999PPfcc7zwwgs8+OCDuN3uRA8riFkeuFNiQfpUXjnit72m93cejyRR6EOEjFgzJWLt/CDozZ9m38wtk74ZLNkyKUaOzJjOD4svDGsPGulBUZ2rJfja6XOTnZ3N9dffxMxF81CdHprf3cmbb76B5vNf17k1L283fBFcpz/RIbRTR3/tpQUCweHBqBAlxo4dy65du4LvFUVhzZo1TJs2LWy5ffv2kZeXF/N2//CHP7Bx40b++c9/smHDhrDaxmXLlvHpp58e1LjXrVvHddddx5IlSygpKeGjjz7qtcxzzz3HCSecwOzZs7nwwgvZsiX6RXAk7r33Xn70ox8d1DiHCuGUECSauamTAXi/6Wtg6EIuA4zpIUq0e/1lA+lRUu8PFrNipMCURbW9CUfXhZ1PU9nVWYlJNgRFi+EgkOy+t4dboqxLlJhk6f9p3GBZ0lU2sbald5vIelcrzR4rxZYisoxD+/cNsDzYgWRDxPk+TeXT5s3ISCzJHHqX2lhzLgvTSmh0t7GxbU/U5da17qDW1czc1OIRXbc93OfioWLz5s2UlJSQnZ1NRkYGc+bM4euvv070sIJEy43oS5QAsOjMvLDo1/xz/s+D0/T9hLwScE6E/K1C3RT9iRL6kMwKweAYa87l9LzFvVwsU5LH8I/5PyPHkA5AkmIK/qYt7mqdXGGvDy7vVP3Cmk6n4+iTjyfr5GlIRh3vfPouDa9txd3cuzzO10/b4lDRor9SD4FAcHgwKn7tL7jggl5hSNnZ2ShK+Elz5cqVHHnkkTFv99133+XWW2/lqKOO6rWtwsJCqquro6wZG3a7nZKSEn71q19FnP/WW2/x+9//nhtvvJGVK1dSUlLC1VdfTUtLt4J9zjnnRPzP5/Px/vvvM2HCBCZOHNpWhINFDWZKjIqvnWAEsiDdb2Nt6LKmDrVTIk1nIUWXRLWjEVVTQ5wSwyNKQHe98H67P9Sswl6HU3VTkjx2WP+tBUs4OsNFifIuUaJ4GDs8TE8Zj17SsddW1eu3f2dnRXCZ4WJ26iSy9KlssZZji1DCsc1aTqungzlpk8kYwiDVUJZk+cWOr9t3RV3m3a4ylrPzlwzLGOLFcJ+LAxzsg4KGhoawBx95eXlBR8ehQLQSi6QYujKk61PCur2Elm9E3FfX/6P5HFL7yUL5cfHFFCcV8puSK/sdm2BwBIJCPaqXHxZfyJ9nfZ+Li04CYJ+9Nric09ft9rH5nJjHZ5J//jw+0+3F02Kj4fWtWDdVoYV0OPL2U3bjDWsfKkQJgUAwSoIuv/3tb8e03Msvvzyg7bpcLtLT0yPOs9lsvS6OBsqyZcv6LKt46qmnuOiii7jgggsAuPPOO/n4449ZuXIlV111FQCvvfZa1PU3b97MW2+9xTvvvIPNZsPr9ZKamsq11157UOMeLN1OCVG+IUgMucYMikzZVDubAMg2pg/p9iVJYqw5l+0d+2lwtQUzJYbLKQEwIamAtS2l7LfVUmIZFyyfKBmm0o0AAafEbltlcJqmaZTZajBIOsYOYzs4RVIYZ86lzF5Di8ca5njZ1ZWnMZyfX5ZkZqZOZHXzZvbYqpiXNiVs/qddpRvLsoa+dCPAovQSAL5uiyxK+DQfm6x7Mcp6jsiYHnGZkcJwn4sDBB4UnH/++dx888295gceFNx5553MnTuXp59+mquvvppVq1aRmRlbe9ZDEXNI1kNfhIoa/Zdv9F1+Ecg7iMZESwEPzz00XJ6jlUA3FKfqxiDrKUkZR7vH73qocjQGlws4JcAvSgAoFgPZK2bQWVpL+/oDWNcfwFHRQuZxk9FnJuHVvHhVHzafM2L5Ymj5xpv1aylJHjciQ3gFAsHQMSpEieFi9uzZvPbaayxdurTXvHfeeYf584evtZrb7aa0tJTrr78+OE2WZY455hg2bdoU0zZ+/OMf8+Mf/xiAV199lfLy8oMSJGT54E4YgRRtvawc9LZGG4HjIY5LOD2Py1AcnwXpU6mu84sSucb0IT/mY8w5bO/YT42rCWugfMOQPGx/20nJflt+haMOWZaC+8w2pg3r92lqyljA75QI7Kfe2Uqnz0FJ8lj0yvCeXiZaCimz11DhqCPHlB6cHgj5nJE6YVj/XZWkjA2KEgsypobN297l1jgqc8aw/Q3yzBmMM+dxwFFPk6eNXGNG2PxdHdXYfU4Wpk/FpOvd+WUk/ebE61x8sA8KcnNzqa/vtr3X19ezZMngXSoH+7eJ9De+fuI5/H1f+MMM3SBEHYOi63N8oTeYocvdNuXb1LtaSDEMbavigTKSvv/DRWjwaOA4pBssJClG7CE5D07VjYrKSzUfU+fsdupKkkTKrEJMYzNoXV2Gu95K/WtbSJ0/Bk+el0cqXuN/dZ/z6LxbmWgJLx9TpW4nxXuN6zkxd2HQyXioI7470RHHpm/E8ekbIUr0wS233MKVV17JFVdcwWmnnYYkSXzyySf885//5J133uHZZ58dtn23trbi8/nIzs4Om56VlTWoDiIHi04nk5V1cE97zV7/hXGSyXjQ2xqtZGQMTyDiSESvV3p9T4bi+Cxzz+WNus8BmJJXSJZlaL+LE5vyoAHsegd2yf9UaXx2LlkZw/Odn2eYBDuh0t1AVlYyaoP/CVR+esaw/jvLIpnxyXlUdNajpPiFl621ewGYkTV+2P+Nz8wZz/uN66mnObgvt89Dma2aNIOF2UXjgzdGw/Hv6githMf3/4/97tqwz+pRvRyw15NpSGFKQeGwPv1bUjCL58vr2eWpYHrh2LB5O5v3+5cpnNXn32Ik/OYk8lwcIJYHBXPmzGHnzp00NTWhKAqbN2/md7/73aD2NxTn3AChf+Ors1bwXNV7WD324LSB7GdRdgn7OmrJz0nrM+9Bkf3zJFkK2/5FWYkP3Q5lJHz/h4sUkxna/a9D/0ZjLbnssnY74Dyal3/WvsWLFR9H3I4+zUzOGTPDXBNrW9/mwAwNY14qq60bWTQu3E3Wam0Pe+82uEfcdeHh/N3pD3Fs+kYcn8gIUaIPFi1axD//+U8eeOABfvvb36JpGn/5y1+YO3cuTz31VELabGqaNqiL3IPt8+71qlit0dvfxUJ7h/8iyOtWaW4WNYShyLJERoaF1lYbqirSxgE8Hl/wezKUx2eSXISMhIqGbNfR7Bza72Kyz3+y2ddcR6PNf+El2WWa1eH5zqdKySiSTLm1lubmTho7ui72nPKw/zsrNhdR0VnPlwd2sSijhI11/pZwY5S8Yd93Hv72lqWNFTRn+Pe1s+MAbtXLPMsUWlpsw/rvKteXiYTElubysM9aZqvBq/mYmFRAS0vvALihZIbJnxf0SdUWjkueFzbv8xp/COhU/fiIf4uhOjapqWb0+uEtyTsUzsWxPCjQ6/XceuutwZLSH/zgB8FuYANlKM650f7GN008n3t2dws5A/m3+rup16Ci0dpi73O5wP58vkPzfC/OuXBU6kxW12/hhJwFYX+jHH06u+gWJZw+D+9UretzW5IskTLb75po+6yc5romGstqsUzLY09SCc0F4d+Bps6OsPet1s4Bf0+e3P8mGYYUzi/s7aAaTsR3Jzri2PTNUByfeJxzE4UQJfph4cKFPP/88zidTtrb20lNTcVs7rsWcijIyMhAURSamprCpre0tPS6KIoXB/sD41H9wUYysvixioKqauLYhNDzWAzF8UmSTXx7zMm4VDc6lCE/3oFE83pXC20e/4VXqmIZtr+rLMukG5Kxum34fCodHv+NTJJsGvbvUoHRLww0udpQVY2yTn+excSkgmHf93izP+Cz3FYb3NcOq//msMQyNmz/w/HvyiQbGWfOpcJRT7PTGgy03NvhD/6cmFQ47MdgVvIk9JKODW278fh8wWBTp8/F9o79pOiSmGju+28xUn5zEnUu7o+eDwpOOeUUTjnllCHZ9lD9XXr+jZdmzWPWwkl8++u7BrUfCQlVi20djUP7+zVSvv/DwfKsBeQbsyhOKgo7Bvldv+sBfKov5tas+nQz2Stm0L63CflLPbad9XxYvZIN2kI848xMsBSQY0zH7fOGrWf12Af0d1A1lf9UfwjAufnHxbzeUHI4f3f6QxybvhHHJzJClOiDtWvXMm/ePMxmMyaTCZOp/4TqocJgMDBz5kw+//xzTjjhBABUVWXt2rVcfvnlcRvHUOIT3TcEhwiXjh2am4ZI5Br8tf3+oEsbBkkXDBQbLtIMFppdVlyqG5vPL0oEktWHE0tXWF2n11+mUmavQUJiUhzaT2bqU0jTWah01ONVfehkJZgnMW0YO2+EMjV5LBWOenbbKllsmAFAub0GgOKk4WuJGsCkGCi2FLKz8wDN7vZgrsS2jv14NB9HpU0eFS0VE3kuDnAoPig4GDINqfx51vfJNKQOy/ZFxfShjyRJzEiZ0Gt6gTE8tNWnqXg0b6/l+tquZUoO5nEZtH1VgW1PM39//lHW6SqYunQeR0yeFxQ5JCQ0tGCAZqyEthQVCASjAyFK9MF3v/tdFEVh+vTpLFq0iIULF7Jw4UIyMjL6XzkGbDYbBw4cCL6vqqpix44dZGdnk5OTw5VXXsltt93GzJkzmTNnDk8//TROp5PzzjtvSPYfb7xdacu6/vqbCwQjmGyjvxNEnbMZq9dOtiFt2FPFU7vSza1eO51dLSr7S7cfCiw6/82hzedA0zSaXG1k6lMwKYOzrA8ESZKYkJTPZmsZVc5GJiTlB1u9jhnGzh+hTE0ey3uN69ndWcnijC5RwuYXJSZZhl+UACgwZbGz8wC1zuagKBHoQDI7ZVJcxjDcDPe5OBZG44OCkpTh7NAjZImRSr4p3CnhUt3BoPKBIBt1ZB5XjDo1n86tXtz7rWx7aTXlU3aStmgcisVAuj6ZVk9H8LwVKwHnrUAgGD2MSlFC0zQefvhhLrroIrKzs4Ovc3IGdqH6+eefs379er7++mu++uornnnmGVRVZdKkSSxcuJBFixZx9tlnD3qc27Zt47LLLgu+v/vuuwG46aabuPnmm1mxYgUtLS089NBDNDY2Mn36dJ544okR23rMR5dTgpH/5E4giIZB1pOhT6HB3QYMbzvQAGkGvyjR4bXTGXRKDP/T5IBTwuZ1Yve5UNHi4tAIMDGpkM3WMvbba5mQlE+H11/nnqqLT4jU1GR/uGRABAi0RNVLurgJI4ESmlpnM3PTJgMExZlC08h7gh+J4T4XBzjcHhQMJwFJIlbbv+DQoSCkfCNTn0qLx9prmbPyjuGN+s9j2p6cZyFv0ngyNjhpX38A+54GHPubSZlbxLgjF9DKIEQJ4ZQQCEYdo1KUUFWVhx9+mOXLl5OZmRl8PVBRIiMjg5NPPpmTTz4Z8Pcw/+KLL3jqqad48cUXeemllw7qQmjx4sXs2hW5x3yASy+9lEsvvXTQ+ziU8HU5JRThlBCMcnKN6bR25UlE6tE+1KTq/e31OrqcEjpJwTjMJSPQLXx0+hx0+uxd0+LX6m9Ckj9XYr+9DvB/fr2kDHu5TIBx5jwA6rtEgCZ3O50+B1MsY1Ck+PzOBZ5q1rqag9MaXW0A5BjT4zKG4Wa4z8UBDrcHBcNJwB2mxZg9ITh0yDNlckzmLGZmj+f1im7hoTipkHavDafPTZ5pYN/5XfZKLCV5mCdmYd1UTWdpLdb1B6jY58E+w0LnEb1DgasdjWxs38MZeUeHuQ3LbTX8cNtfBv8BBQLBIcmoFCUg/ER4MCdFm83Gxo0bg09ptmzZgtFo5Pjjj2fhwoVDMdTDBpEpIThcyDFkBNPL4+OU8O8jUL5hUUzDXjIC3U4Ju9eJrStXIp5OifyuC+MmdxuaptHhtZOiS4rLZwcwyQb0khJ0aJTZ/EGf8SrdACjsEiXqnC3BaQGnRKCcYzQQj3Px4fagYDgRxRsjF0WS+c30K8nKSubNA18Gp6fokvjT7Jtx+Nysbdk2oG0Grv9kg470I8eTPC2P9q8qkOp9tH66ly932dl2ydHMnDkr+Pt91aZ7AX/+SUnyOLK68k/+XP4SLtUzFB9VIBAcQoxaUWIoOP/889m1axdZWVksWrSI0047jV/+8peUlJTE7aJ3NBEIJtIJUUIwyskLuRlM08VBlOhySrS4rXg0L8m69GHfJ3RnSnT6HMEb83hkWQQIHNt2jw2n6sar+UiJo1NDkiRSdBbavZ1omsZ+h9+xMTEOQZ8BCkzd5RvgF+Eb3W2k6JIwxyHbIx6Ic/HI47yCZfy5/CUuLDoh0UMRHAShD5GMigGDrA/+1x8L0qZi97nY2VnRa54u1UTWSSUsZzovvvkyHY1t/Oc/z1FYOIZTTjmV4uIpwWXv3vU0Khq/m34NC9NL8HYJHAFUTeWVmk9YlD6NiZYC3qj7jDXNW/jt9GswyIO7zdE0jQpHHWNMuSIHTSCIE0KU6INdu3ah0+mYN28e8+fPZ8GCBeIi6CDodkqIH3jB6CbUNh8Pp0RqV6ZE4MY0Xm6FYKaEz9kdsBlHp0SgNKbN04nV67f/psZRlABI0Zlp8Vix+1y0uv0lO9ldbWHjQYY+BYOkC5ZvtHttuFQPY0zxybSIB+JcPPI4PW8xR2fOIF2fkuihCA4CXcj1WmhZXCyiRLo+GbWHgNCTojFjyTtjFrp6N0kH0ti6bzs1/6xiwoSJONPaMBamoXb9M/+4aSML00uC15IBVjdv5skDb/LkgTf56ZRLeHjfSgA2tu8OBhAPlI+bN3Hvnuc4OWcRP5588aC20ReBjlECgaAbIUr0wfr164N20XfffZcHHngAvV7PggULWLRoEUcccQTz5s1L9DBHDD7hlBAcJoTa5uOTKREuSlji5FawKF3dN7yOkIDN+IkSgUBLq9dGR5coEk+nROj+Orz2oDCSHoe/eQBZksk3ZXHAUU+n1xHMkxhNpRviXDwyEYLEyCfMKREmSvR/+6CXdWHihVk24lBdvZZJ1plx5it8nNuEI9vBWfXj2b9/H0012zHkpZA6fyzGorTgOmqPkMtAphDAvXueC75+oeoDSpLHDerBwGfNWwF4r3H9kIsSm9v38tPtj3DzxPM5I/+YId22QDCSEaJEH5jNZo455hiOOcb/o+HxeFi7di2PP/44DzzwAJIksWPHjgSPcuQQrCkUTgnBKCdclBh+p0R6wCnhiq9TQicrGGV9mFMinqKATlZIVsy0e2zB8pF4ixIBYaTDa6fdYwubFi8KTJkccNRT62wO5knkjCJRQpyLBYLEEOpsNSndAoMxBqeEXtKFiRfJOjMOd7gooZMUTIoRq9eOJEkkTczivLMu4eONa9C9vh53fQdNq7ajz0mmaXkRWrGGr0dOXOC3vyc7Oiv41Y4nuW/mDRiV/scbynCasP5T/SEAf9n3qhAlBIIQhCjRDy0tLaxfvz74365du1BVlSlTpoigywEiMiUEhwu5Ifb99DhkSgTKNwJhh/F0KyQrZlo9ncELw4B7Il6k6S1UO5to6nIIxFuUSA5xSrQHSkji6JQAKDD6W3/WuZppcrcD/g4wowlxLhYI4k+oUyK0fEMfg1PC0MMpEUk8iNQtaZe9kpf168k7fy6OihY6Nlbhaexk8//W8PAehZasKrSxeiTFP7Z2T2fUMey2VXLOVz/nvIKlfG/CwXfoGQpkUXYmEEREiBJ9cOqpp3LgwAEURWH69OksXryYG2+8kYULF5Kenp7o4Y04RKaE4HAhRZeEUdbjUj1xcUoESkQ8mheIb9ikRWem2WMN3gzHsyUo+J0o1c4mqpyNAKTo458pAV3lGx4bElLchZFAF5JaZzOtXRfoo6l8Q5yLBYLEEJopEeqOiMkpIevClkvWmXG63eHbl3WYlXBR4utWfwccSZJImpCFeXwmzspWajdW8d7uz6hxNuIyaSTPKPB38fD0bifak5W1qwckSkjD2D9GRjyYEwgiMSpFCUmSKCwsxGAwhL0eKGeccUawVtVsjt9F/mhFZEoIDhckSWKsOZcKez0ZcairTjOEP5mPp1Mi4Iyod/ldGilx3DdAWlepRJWjS5SId/mGvjvXwuq1kaIzx73tcXcHjhY6utwauXEM2xxuxLlYIEgMYU4Jpf+gS72k4Om61vOXb3Qvd8fUy3m26l3KbTU0e6xAV/lGD6fEurbwUixJkjCPy8Q0NgNrXQdJ21Uc+2qwrqugY1MVhllWvFOT0KXE16U3WGRxDSwQRGRUihKyLPPhhx8G34e+Hgjf//73h2pIAoRTQnB48bMpl9Lu6RxwLetgMCtGdJISLJGyxLN8o2tf9V1ZBvEK2QwQcKJUORqARHTf8O+v0dWOS/UkxKFQYOwSJVzN2L1OYHRlSohzsUCQGJQwp0RI+YYU+fbBKBvwdIUe+4Muu5ebmjyW306/mp+U/i0oSuglJUzsAIKiRk8kScJYkAoFqeS15dFZWottdwM1m8twb/JiHp+JZXoexsK0g+7MM6xOCVG+IRBEZFSKEkNJZWUlTzzxBBs2bKCtrY309HQWLlzIVVddxdixYxM9vBFFtyghVGLB6GeMOYcx5vi0ZZQkf8lAq8ffkjKe5RtJXU6JJlegfCPeooTfqVDjbAIS0X3D/3mru8pH4h1yCZBvysIkGyi1lqOTdOglhYw4lA3FE3EuFgjiTzSnRLTyDb2sgy5NoWemREAoMEjd03Sygkk2Dnhc+nQzGcdOInXBWGw76vDuqMOxvxnH/mZ06WYs0/OxTM5BNh56tzmifEMgiMyh96/1EGLbtm1cdtllGI1Gjj/+eLKzs2lqauLdd9/ljTfe4JlnnmHmzJmJHuaIIfAUVzglBIKhJ0yUSIBTQkXtGkd8RYmACBB4upao7hvVXeUjaQkQJQyyjgsKl/Fc1Xt4NB8FxqxRZREW52KBIDFEy5SI1hJUDnEY6CVdRPEidF2dpAtzYAwUxawndcFYUuYW4djfQuf2Otz1VtrX7sP2dRXGSZlYpudjyIr/73I0DvbBnFf1oUgyr9WtwSjrOT3vqCEamUCQWIQo0Qf33nsvM2bM4PHHHw+rY3U4HFx77bXce++9PPPMMwkc4cgi4JQQmRICwdCTqk8Cv2s2vkGXId02dJJyUBeYg6FnkGi8nQoBEaS6y6mRFufOGwG+WXg8b9d/SYvHOuo6b4hzsUCQGEJvoA1hokRkp0Ro2YRe1hGpEiN0Xb2k9Aq6HAySIpNUnE1ScTbuZhv5FQrufa3s3LkP28569DnJfKV8yezZc2LKpTlUyzc8qpdzv/oFs1ImstlaBiBECcGoQdwd9sHWrVu5+uqre/2Amc1mvvvd77Jly5YEjWxk4gs6JcTXTiAYakIdAvHMlAjdl0UxHXQt70BJ7yFCxNupETjugc4n8W4HGsCkGLls7KkAjDHnJmQMw4U4FwsEiSH0ei3U9aCXdZyeexRTLeGlU6EOLb2kCz6MCkUvd7svdHLvTImDxZBlYczxM1lx3cWkHz0RXXoSnsZO3nhjJffe+ztefPHflJXtQdO0Xuvu6Kig2d2Ot+v3PBSP6mWbtTx4LTsQOr0O2ro6I8VavlHnbEHtcfzaPJ34NDUoSAgEownhlOgDo9FIW1tbxHnt7e0YjQOvgzucEUGXAsHwESpKxLV8I8QpEe92oBDulNAnwKnRs1wkTZe4LIdTc48kw5BCSfK4hI1hOBDnYoEgMYRer/V0R9xS/A3WtpRy566nupcn1Fmhi3gDrw/NlJB0vbpvDAUu1U2KOZnkmQVYZuTjbuxkoXYEW7duYevWzWzdupm0tHQWLFjIvHkLyMzMos7Zwg+3/QWDpGNu2uRe2/zHgTdZWfspV4w7nZuzzx3QeC75+i5cqoc3j7o3JqfEFy2l/GbXU5yeu5hbir8ZnO6NcDw1TYv7wwCBYDgYFY+sP//885iW83g8/OhHP4p5u8cffzz3338/69evD5u+fv16HnjgAZYvXz6gcR7ueIVTQiAYNsKcEkr8WqMlhQgg8XYpQHi5RIrOEveLM6OsD0uiT5RTAvzW6cUZM0gfZSGX4lwsECQGXQ/nQ0963mCHvlckBTWCGyE0UyJS942hwOlzB50dkiRhzE3h9LPO5qc//SUXXHAhEyZMoq2tlQ8//IA//ek+Hn30Yd799D18djduzYtH7e2UeLv+SwDWNA/MmeX0uXGpHgDsPhdSyK3Xhrbd2LyOXut80rzZv8+GL3ttqyeR3CgCwUhkVDglrr/+eh566CGWLVsWdRm73c6NN97IunXrYt7uz372M2644QYuvfRSsrKyyMrKoqWlhebmZubPn89Pf/rToRj+YUN3poRwSggEQ02gFaZR1vsT0ONEqFMi3u1AITxDIhGiSKDzSUtXi7u0BLhFRjviXCwQJIZwp0QEUaJH9kJoFoMsSRFvmMOCLmUlqnt2QdpUNrTvHvCYAZyqG2MPscOhOkk3pFA8cxprUvexefwuMithbmseVVWV1OzdRG3rdoyFaVTPllFzvcgGv9tDkRTcXUJFz/OrW/Vwz+5nOSlnIUuy5vQayz57bfC1zevApXYLC7/Y8RizUyZx36wbeqzVW8wJfK6euFQPOllcVwtGPqNClDjppJO46aab+NOf/sRJJ53Ua35LSwvXXHMNZWVl/PWvf+13e06nk08++YTq6mq+9a1vcemll7J//34aGxvJyclh7ty5LFmyZDg+yqhGOCUEguEj4JSId/eJ0EyJeLcDBX+bOqOsx6V64v7ZA6SGihKjzKWQSMS5WCBILDo5ctBlgJ5dfkLfy0gszZ7LizUfclbeMcHpYc4ynSVitgPA4owZgxYlrhl/dq9ciDaPjXR9Cn/Y8xxft+8Ci0T9NJg4/iiUqgOY9jaw7vM9uKrbKG/YRLtqxzw2g6/NG5g7fU6ww5Shh2NkdfNmvmgt5YvWUlYdfX+vsey1VQVf/2z7o9S5WsLmb+0oB+A/1R+yu7OSX079TtTP5fC5ek1zqx4sxM8dKRAMF6NClLj//vv55S9/yQ9+8AP++Mc/smLFiuC8qqoqrrrqKtra2njqqaeYP39+n9uqrKzkiiuuoLq6OjgtOTmZP/3pTxx33HHD9hkOB1SRKSEQDBspev8NeTxLN3ruLxFOBfALAQ2u1rh33ggQKoYkagyjDXEuFggSj0w/Tok+RAlJkplsKeKVI+4mSenOfVFCnupnG9LQQlwBOknBq/mQkAbVqW1B2lTunPZd9LKOtS2lYfOu23w/j8+7zS9IhPBoxesArDjqKArGL8RV246zrBlpvxPH/mZeevHfvGV4jSZpJ+YJmTB7Qtj6gdKMaOzoqAi+7ilIBFA1lacOvAVAk7udKDpNmMsigFvre//DQYW9jjHmXPGQUTCkjIpvkyRJ3HPPPXzzm9/kJz/5Cf/9738B2LlzJ9/61rdwuVw899xz/QoSAPfddx+yLPPcc8+xefNm3nzzTaZPn85vfvOb4f0QhwHCKSEQDB+BG+N4h02GlmzEs+tHKGldQkAigjYhXJRIVEvQ0YY4FwsEiadfp0SP8o3Q94HXFl14V6ZWtzX4WpKkMFEicH2ok2TkQT7ACpRXGCOM98mKN6Ou927DOiRZwlSUTvrSYgovWUTWSdOYNnsWer0e54EWWlfvZcNT7/K3v/2NL774HKu1nagKAv4Qys3te/sd8357XfB1p9cRdkxCcUTIlHBHyL8YTja07eZ7m+/nwbIX47pfwehnVDglAvz617/GaDTyi1/8gl27dvHSSy+Rm5vLP/7xD/Lz82PaxsaNG/nZz37GwoULASguLuauu+5ixYoVNDQ0kJs7ulqtxRORKSEQDB+ZhlSAuIccJutCum8kIFMCuj9zopwaAZeKYZiS5A9HxLlYIEg8YZkSUu+b/J4PmUKDLqOFDje628PeT0seD8AUyxiqnU2AB0VSDvoBVqQAzd2dlVGX79nZQlJkzBMyOXnuGRQZs3nv1UocFS0o9RJ79uxhy5btvPHGa7SleGi3VGEem9GrE0aNs4lmj7XnrsKwKCZKO/YF33d47VGXjZYpMRD+Wv4q45PyOCv/2AGtF2BLVzvS9xrX8+PJFw9qGwJBJEaVKAH+QCyj0chjjz3G3LlzefTRR0lLS4t5/cbGRsaODe+7PG7cODRNo6mpSVwIHQTeYPmGcEoIBEPNeHMet0z6BjNTJsZ1v0bZgCLJ+DQ1YU6FgDshUZ0vAk6JVH38u3+MVsS5WCBIPGHdNyKEKfYq30AOZvwUGLMibvPbY05id2clP+hqdTk9ZTwPz/khhaZsLt/wu679RhYlflNyJY3uNh7et7LfsUdySrT0IxBEwqV6UCUN05h0TGPSydVn0O5MYnpjFs3ltZRXl9LRXknHhkru3f47pk4tYerUaRRNHMcnrZv73X6yzkxziHukI0I3Dk3TUFGjZkrESqu7g//V+zsWRhIl6l0tPLrvdb4z9lQmWgoibiPHmB62vQxDSsz7Fwj6YlSIEkcddVSvC0FN0ygrK+O0007rtfzatWvjNTRBCGqXCi2cEgLB0CNJEqfnHZWQ/VoUE1avPWFOhUCOQ6KCLgP7FSGXAoFgNBFaQtFTgIAI5RuSzNMLfkmjq418U2bEbZYkj+Pfi34dNq3YUgR0OzMUSY64vyMypqNIclRRIrT7hzHEtXbb5G/zx73PR1ynP6xeG9YQ90KDp5UGpZWKse1cfeyZGKvGs3/dazgqW7Hb7Wzc+DUbN37NmpatWDNUTGPTMRalo89MiihaJ+uSwtwOHV57r/KNO3Y+QbmtltPzFvdaP5Io0ehq465d/+Q7Y0/lyIzpwen9tQ99bP8bfN66jT22Kv618PaIy4S2S91nrxWihGDIGBWixCWXXDKkT6euvvpqFKX3jfMVV1zRa7oQOGIn4JSIdKIRCAQjF4tixuq1JyxT4pjM2ezoqGBe2uSE7D/QjjVNhFwOKeJcLBAklv7CJnsHXUqk65MHXUYYcEf0LN9YkDaVS8eeEtVpK+HPpjCHBGqGOiWOyJiGQdLh1gaev7CxfQ85hvRe09s8ndxf9gIAKXOKSJlTxM/n3cHevXvYvXsnr320FrXWg6u2HbNSh0uvYixMw1iYhqkwDV2qv/QxSTaGBVh2RijfWN/mD+esjxCUGSpo2H1O/lP9IeW2GvbYqvjVzifDOoJEy6roue9Gd1vUZUJFiaYepTgCwcEwKkSJm2++eci2ddNNNw3ZtgTh+AJOCdFPWSAYVVh0JnAlLlNiVupE/jR76M4DAyVYviFEiSFDnIsFgsTTX7ltT1FCOcj8/ICTVpaksG1NthQxI2VC8P281MlssnYHSD4w60aerXyX7004OzgtNN/HKOtJ0plwezpjHsvc1GI2W8v4qnU7J2QviGkds9nM7NlzKJk5nccKvsTTZMNZ3UZWs559B/bhKG/CUd4EgJJqwlSYRuMUA+kTu8+dHV47akh4pjMk3PKr1h299hkqEty75zm+jLBMcNkIokyru4Pf7PoHJ2YvDHOXPLb/dU7NPZLxSfm4VQ/f3/oQ+cZMdnZ2dxOJVZTwaSqKJKNpGnft+ifjk/K5YtzpMa07UlE1lWa3NazcRdA3o0KUGErEhdDwEcyUGB1NXwQCQRe5xgzKbbVkG2LP7xlNTLYUkayYmZ02KdFDGTWIc7FAkHj6a+Heu3xjaFzLElKYINKz7Pd3M67l97ufZU3LFgCmJ4/nnhnXhi1jVLqdEnpJh1k20kZsooRe0nHvzOv51vo7qXY29QrB7I8Kez2SJGHIScaQk8zynCNx1azFXd+Bs7oNV3U7nhYbNquTvWV2apRtNJhsGPNT2TU9DymvO0A61LVgjeCiCHVKBBwV0fCq4Z/jP9UfBluR7uqs5LisOcF5r9au5n91n/P6UX+gtGM/++217LfXhq3fHCJK/LvqfbZYy/j7cT/ErXrQdd1ivtuwjv8r+w/3z7yR8Ul5rG0tZW1r6aBEie0d+9lqLefCwuVIkkS5rYZXa1dz9fgzqXe2MDl5TPB7s7l9Ly/XfMxtk78dDKOOJ38uf5l3Gr7i7unXsCi9JO77H4kIUUIQN4RTQiAYnXx/0jf4VlHbYVtbmm/K4sUj7hSlaQKBYFSh9tHuEiKVbwzNb6CGFratQJvPAIokBztOQeROH3pJFzY/KaS047yCpaxt2UZdVznETRPPp8HVxo6O/WztKGdcUh7g7+zU6unA6rENaPyb2veEvS8wZSLrlWBYJsBfp97Md1f9mrQmGbXejre+CW+bg4371+DRvLTo7RjzU/nEuRqP04EuzRTxc4a2BO0vM6KnUyIgSASQeohMgXIXLcr3INQp8XTlKgAuX/17dlkreW7hHWQZ0vi/sv8A8HzVe/x8yqV9jq8/frTtr4DfKVOSMo5bSx/G7nPxfuP64DIXFi7nu+PP4KfbH/Hvt/r9MAdNgI8aN+BD5aScRTHte23LNgpMWTxY9jIFpix+OuXbfS7/TsNXAHzWvEWIEjEiRAlB3JieMp5UYxJ6SddXW2eBQDDCOJga4tGCECQEAsFoQ+3nJrdneUfPm9qDoS+nRKR996TnDXyS0u0+uLjoRL434Wy2WffxYdPXnJSzCJNioN7Vwj8PrOI7Y08BusOL+2vrGSDQEnR1c3jXjXxT704kRen5JE3KpmBmLun6FNx1O3DVWcm0WmitbsRX14Z9byPvNP2P+rbdSEYdhpxkjLkpGHJTMOQkIxt1waDL/v5W0Nsp0ZPOCJ0/IHLZB3SLEnafMzhtl9XfdnVj+15OylkYnH7AUc+PSv/a7xijEdp5xKG6uvbbuxvJizUf8d3xZwTfhwpKqqYGz9X3dgWfxiJKNLrauHPXP4Pvd3ZW9CtKBAh8T7dZy8kxpZPF4X2t1BdClBDEjZ9M+RaZmRZaWmxRVVeBQCAQCAQCQeLx0feNbs/yjaFs+a704ZSItO9I/LrkiuBNaGgIZiCceFbqRGaldrfRzjNmht1spuv8N5Cv1HwS05i9mg9N09hjqyLbkBa8ac+IINoHhBavpuJS3ShJBpImZZOVVEiWNBmtpQJXfQdF3kmUltbibrLhqmrDVdXWvY00M48U1ZN7rIScnYTmU5GU6GJOT3Eh0L41QI2zKeLnsnudEac3ulrRNI0D9voIny/8u3AwoZh2n5Pzv+ruBtI+AOdKIER0U/sefrb9UaZYxoR1KtM0ja3WcorM2WRFKUHtiFA288c9z+NWvdxeclmf+5clmSZXO7eW/g2Ar4sejXnshxtClBDElaHskiIQCAQCgUAgGB76e/oeqfvGUNAzU0If0SnRfynw0Zmzgq9DO0/Eei2apveHFx9w9L7pjoRb9QZv/DP0KZxXsBTQgplqoQRFCdWLyxfeEtSoGJCNOszjMsjNmULupFY0n4qnxc5J0kz+u+19XA0deNsdVLaX8UjNk/g0H9WdZegzktBnWTBkW9BnWtjXXs3ENH/LVU+PbIxkxRwmStRF6O4B0OmL7KCweu1ct/l+Ts49IurnGwhftJSSa8xgkqUwOO3L1u1hLgmA9n4CS0O/t4HP93jF/wDYY6tiT/nLwfm7bZXctv3vZOhTerWq7YsPmzZEnN7m6aTcVhN8r0hyVLFHEI4QJQQCgUAgEAgEAkEY/WUU9BQhQnMcDhY5JBRdF8kpMUABJFCaMJASk4GWJXo0D46ubhkmxcAFhcsA2NVxoNeykiShk5Qup4T/xtksG+nwOiDks7V2lY5IiowhJ5kL55zP6mx/Bwyf04O7sZMp8ix27t+NvE/B09SJp6kTe1fm5Vn/u5BrZp9PQUEh7clenPY29FkWnjmwKuayFFsEp8S05HHs7DxAhaM+ipNkYH8ffxeQpwCCbUy3Wsv49c5/9Fp2n72uz+9mqIgRKG+JJGxBdzhoq6cj6vbcIcJNT0JLQgBu3fYwVc7G4HsZGVsUUUcQjhAlBAKBQCAQCAQCQRj9OiVChINkxczV488asn2HOyV6364MNL8iYMFP0cXeujpVP7A2z1dtvJc/zLgOICxYc2ryWG6YcC4Af9v/3+B0RZLxal5Q/c6CdH0yta5mFG/3Z28JuVmelzqZ4qRuF4Fi0mMem8FRk5dSNxUKOpPw2dx4mm14mm24u/5f31hPU1MjNc5mmlq2A3C/eRP69CR0mUno081+h0VGErIx/FhrmhbRKTHZUsTOzt5iS4BoORShqJpKu8dGhiEl4j6qHI1h70/JOZJ3G7/i7YYvKDBlRt1uh9feJfj4cHUFgUZzbkQqPQnFp/ko7dgfdb5b9WJSuluphgoSAC0eK60DaEV7OCNECYFAIBAIBIIhoLy8nF/84hd0dnZiMBj4xS9+waJFsaW7CwSHGv07Jbpvnv8y5wfk93GjOFBCyzMidW0LLceIhcBnydDH3iWq5xPyJMUYMVwxgM3nDN6UmuRuUUKSJM4uWEKZrTpseb2kw+FzoeLEKBtI1pnBFV4uEVjnb3N+xBhzLpIkccfUy/nt7qeDy3hULw6fy+++SDaiSzZiHt/9t7hu2g/xtHTy9o7VbNlSj6fVjrfdiau2HVdtO5MsRZTbygGQLQb06X6BQpduZlfuLlpsLcEQzwCn5B7J/+rXAmD19s546MtdAH5B4pnKd3ih+gPun3kjyTpTr2V6Ck9z04p5t9Hf1eL5qvejbrvD68Ao6/H6fMFMiUi5JACfNG/qc5xPVLzJytrVUed7VC8e1cuqhi85LXdxr/kfNW3ko6aNfe5D4EeIEgKBQCAQCARDgNFo5J577mHSpEmUlZVxww038M477yR6WALBoFD7CbpUQm5ShypPonvbfWdKDFSUuHXyxfy5/GVui7FrAsDi9Bk8yuvB99mGNA44Gvpcx9ZVJhLqlAjQ0/GhSHIw58Eo60npCuCMRJ4xE0PXjfWxWbN5ffHvOfvLnwPgUT19iiVeg0Zx8RSmpVrJytoBgOZT8XY48bTYOc58BLXbV/nFCqsTl60NV3UbAI/vfpStHeXUelvQpZrQpZnRpZmo1e3jQsPRvNDxKRh73066+hElvJrKC9UfAPBuw1eckXd0r2V6ZpZMCnGJTE0eyxZrWcRtd3jtGGQ9Np8Tt+rhrfov2NijTWtPzLKRl6o/osicwzEhWST/q/usz/Vcqoe/7HuZL1t3UG6v7XNZQd8IUWIUs3XrVm6/vTutds+ePbzyyitMnz49gaMSCAQCgWB0UlRUFHw9adIkOjo6ej1hFAhGCtOSxwMwxTIm4vzQ8o3Q10NBqMgRqXxjoF3cZqZO5LF5PxnQOoXmbL4z5hT+VfUuAFkxiBKBbAJTBFGiZ3eS0Kf3dp+zT1HCHFIiAGCQ9Vw/4Vz+vv+/uDW/U0IvKb3CLKG7dMWjdpdUSIrsd0SkJ3H01OP4oGAf4BcrPG0OvG0OPO0OJqVOZXdZA9S1BMtCAN6seY1aVzM1Xe1KdakmdMlGlC6nRoW3jHppMqrHh6zvLSp5Q8o7TIoBZ5ejIZSeokSuMSP4Ot+YyRYiixKdXntQwHGpHh4KCbaMhkv18OSBN4HuTAvov0zIrXnY1L4XgAP2un73I4iOECVGMbNnz+a1114DoLq6mu985ztCkBAIBALBYcu6det48skn2bZtG42NjTzyyCMsX748bJnnnnuOJ598ksbGRqZPn87tt9/OnDlzBryvDz74gOnTpwtBQjBiWZI1m3umX0tJ8tiI80NvGoeiHWio+6G/8g11gE6JwWIJyaCIpfSjrSs/IJJTwtxjWugxc6mePkWJnjfoQNiNt1N1h7UhDaW9q7zCGyXnIXRckiJjyLJgyPLnaSydeQq79rtxd+ajOjx4rU687Q6W5h/PVxWb2bqnCq/ViaexE09jd3bCJ9tW0ZCynZqaL5FNepQUv1ihWIwoFgOrlc9w1VlRkgw0pbbiTI8gSoQIAgZJh0VnYlnWPD5p3oRPU5GRwr4HgXmrGr6i3tUK0KtzRzSiuYJkSaavr5pb9QRdIb44fSdHK0KUOExYtWoVp556aqKHIRAIBAJBwrDb7ZSUlHD++edz880395r/1ltv8fvf/54777yTuXPn8vTTT3P11VezatUqMjP9NdrnnHNOxG2/+uqrKIr/5qm6upr77ruPxx57bPg+jEAwzEiSxIL0qVHny2HlG0PrlFBCu28MgVNisISWjhSZsrl07Mk8W/le1OVb3V1OCdnQa16mIZUbJpxLkTkH6P0Uvi9RIuLYukSJDo/fCWFRTLRJnXh7uCXKbTWMNeXiUXu7KKC3WBJKvasVh+rPq1CSDChJBoz5qZx+1AqyWyfx1a42NE3zCxadLnwdLrwdTsYYiilWJqCzrcPb6ULtIVq8sPt5Glv9pSQvsoHt2Z9Qp1ajJBl4te4lXEaNZrkTe3MTitmA0ZKCzWbjnPwlfNK8Ca/mQ5Zk1JDPmmlIBWBD++7gNJuvd+eQgdDf99od4j7xqv2HewqiI0SJBBLPJzarVq3ijjvuGKqhCwQCgUAw4li2bBnLli2LOv+pp57ioosu4oILLgDgzjvv5OOPP2blypVcddVVAEEHYjQ6Ozu54YYbuOOOOxg/fvygxyrLB+ewCKx/sNsZjYhj0zexHh+dFu5mONjjGXqTrlO6t21UdL23HfJ2OP+OOkUX9vqScSfxeds2yjsi5we0ef2ihEVnijiuc4uOC77uKR6k6rtFieOy5pBlSOO/tZ8CkT+jUdEDYPX5nRBJOhOGroDHUF6o/oAXqj/goqITIo7ZEhIy2TPMs9LREHQCjDHnBDti6BUdZp1feAkIFpbkZJy5fsfDjMIj+O7Ec3jhsx3dokWHE5/Njc/uZkrKTErLG/HZ3fhsbra1loFPxdti5/n2V9nZUYFJMeLsGkuHYuQPa+6mzdtJTccWvsysp4EWNKOCbNYjGxRMU22ktPpoUNuRjAqyQYdsUJCNOiS9ErNr7ZH9r3H1hDMxyLqw3JRIhHYZ6fn3jIb43YmMECUSSDyf2LS0tAxKzBAIBAKB4HDA7XZTWlrK9ddfH5wmyzLHHHMMmzZtimkbPp+PW265hQsvvJAlS5YMeiw6nUxWVvKg1w8lI2NgbQ0PJ8Sx6Zv+jo/b1x1mmJ2VQoo+9nabkZAVKfj/rMzu7392RgpZaeH/Hoy13bcwQ/VvJRLp9m6hINViIiPDglHWB6f9YMY3eHB7d2ZBe5dAkJOW2u+4fD1KBsZkZMF+/+vs5FTSQlqSRtpWlsdfTmLH7wZINSYh9e6sGaTO19xr2lVTV1CY3Z3VkGNKp8JWH7aOR/NiVPTce+S1XPLJ74LjyZPSw7aVbkymztECgKTvHnOoyyLAp9SQNb7bhaNpGprbh8/mpsnuJsM+GZ/Dg87pQXV4SNfMTC6awIGWWtRmH/a2dlwOK74Q98felk3M16XwxoGtQfdIEElCCggUOhlZp/iFCp3sf69XkHQKkl7mGd0LPKt7kVvmfhN7eRN21YkkS0iyjKTIIEv+94qMw2nF2+lCkiXcmhOfy+MXPyT/PgOfHwkMOv/3RvzuREaIEgkkHk9sAN55550hKd0QT22GD3FsItPzuIjj0xtxbKIjjk10xLHpTWtrKz6fj+zs7LDpWVlZVFRUxLSN1atX88UXX9DU1MSLL74IwL/+9S9SU1MHNBavV8Vq7ePuIgZkWSIjw0Jrqw1VFbXOoYhj0zexHh9fyJPh9lY7biW2J8VRt+fz70tTwdrWbbu3Wd00ezvDlrU7ujMImpvD5w0lTlu38OK0e2lttWEMCZ1ckXE0D0srgwGTzU4rAD5H/+MKFXUuG3sqBnf3dvVePTq63SKRtuXs9K/fZPfvU6fqsHmjlyvsaq0Me//aUfdgVoxYrd0tPdOVZCroFiXK2mtweF0YZD1Oa7croLm5E6ctvFzhyPTpvO7wd6uwOuw0NXVEHUuA+WlT2Ni+B0mSkIw6ZKMOfWbvMpZJlkKunHcdlfYG1mzoYF7SJLY3ltFp60R1elHdXo6feDKyF75Kr8NnbUB1e1Fd/nma24fq8uKz9j4+OlkXsfTij+seQtVUXL7eeRcBHvn4r9S1lALQGuLsiIQxzYLnNA+dne5B/+6kpprRRwgOHQ0IUeIQZSie2AQYitIN8dQmPohj041er/T6zonjEx1xbKIjjk10xLHpn4F0z1i+fDmlpaVDst+hullWVU3ceEdBHJu+6e/4hMU6qBKqdLDHskuU0DQkrfvfnILSaxxqyM6H828Y2lVEQUZVNSpt/g4cEhKqqnHjxPN5sPwlgGAXCaNs6HdcgW4YUyxj+PaYkzlg7xYDLIqZ03KPYk3zNs4pWBJxW7qu2zhrV7hmzw4dPalztYS9N0r+MRql7vUy9OECaoOzFa/mI1lnxiB1O0RUVQt7LyNx9fgzkfTw2oHPcPk8uHz9ZywUmrL7bdcJ3cdeQUaSJDS97L/JT+7++xx95BKSFBOvZ+/A2RlZSNZUDc3rQ/OoqF4fmlclVTPR5uxA9fj887wqmsfHGF02LU4rHW4bmk9FUzVQta7XKqganSYJgzEVfBoKCnpV7/+HoXUFt2oE3xvSk1AURfzuREGIEocoQ/HEBqCmpoaWlhZmz559UOMRT22GF3FseuPx+IJPBsTxiY44NtERxyY6Q3VsRtNTm4yMDBRFoampKWx6S0tLr3OxQCAIDwGUh7jLTGhnCp3U+zdG0yJ3SxhqQvcdGFPgc59b4C/ROi1vMQ7VxaP7Xw8ua44QdNmTQAaBoascJBDUCJCsM5OsM/Pg7N7l3QEC3TcC3TXMcvTAyr4IbU2aaejuMKKXdLi7MhOMsr7X38EY8hmNsgGTYuDiicv9ooTqwa166I9IXUoiEcgbCYSeRspvCLSODf08vbYjS0gGHRgI+lBSDek43b2/Y7mWMShuK4rHGnV7bUAus4Jj1NCQkSN280hSjMjy0AbCjiaEKDHCGGi/88LCQt5///0h2bd4ajP8iGMTTq8nI+L4REUcm+iIYxMdcWy6MRgMzJw5k88//5wTTvAHwqmqytq1a7n88ssTPDqB4NBmqLtvhDoUIt1kanFqvxguSvhf/37h1azat57LxnaXRicr4XkafXW0CBBoZxno8GFRugMnU5T+8zn0IS1B/fs09bV4TIQKI2bFgMfrFyUMsj7YHaQ4qRAI7zASCN0MlLa4YxYlYhtzQPQKtId1+dy41PCyisDfSh+hW0tf6KKIGO1eW0yfIUDgO1loyqLK2dhrfuh3WtAbIUocoognNgKBQCAQDC02m40DBw4E31dVVbFjxw6ys7PJycnhyiuv5LbbbmPmzJnMmTOHp59+GqfTyXnnnZfAUQsEhz4yQ+eUkAh3SugjOCXUOIkSSgSnxPysKYyjIEzQNfUonUjVxV4aFxAXQh86GvspxYBuh0WA/so3YiEtZNwm2YAVf2CkUTagkxVeX/z74DExKd37D4R/BsQJt+qN6YY+FvEGup0Sge9Cmb0mbL5e0gWPn6EPp8SJ2Qv5oOnrsGm6KIJag6s1prH1pMicHVGUEPSNkGwOUUKf2AQIPLGZN29e4gYmEAgEAsEIZdu2bZx77rmce+65ANx9992ce+65vPDCCwCsWLGCn/3sZzz00EOcc8457NixgyeeeCLY8UogEERmIC7e/tDoWb4RwSmhJc4pEQlTj3KNgKtgoPsIEMvn6ynWmBUjR2XMjHm/kQh1W+jlUNHB/zcwyPrg3yb0eAQ+f6Cko7RjHw+Vv9Lv/oyyISYHQeD7Fem74B9r91hCxZpz8pdwdMgxiSTcRNpmun7wOXpjzXkRp0cq6RB0I5wSCUQ8sREIBAKBIH4sXryYXbt29bnMpZdeyqWXXhqnEQkEgkiEiRJy75v2OanFvN3wJfPSpgzrOEL3He2JOoTnKyQr5ohjjmUfN0w4lw+avo7pc+l7OCWSFBN3lFxOp9fBRet/HfP+AY7JnMUXLduZbCkMTgv9Gxj7ycgIzA91T2xo393vfg2yDr2s4FLDb9iz9Kk0R8hyiHZcfSEZI6ECxfUTz+Xt+i9Y2+oPIJYjCECRRKGBlG305Mj06QC8XPNx2HQ1TkLaSEWIEglk27ZtXHbZZcH3d999NwA33XQTN998MytWrKClpYWHHnqIxsZGpk+fLp7YCAQCgUAgEAhGLRLhGRVKBDHg+Oz55BjTmWwpGtaxKGFhnn04JUKewKfqB9bVKDQD4eyCJZzdFaDZHz3LFFJ0ZhRJJm2A+we4Y+rl+DQVt9Z9Mx762XuWivQk8PcyKH0v1xO9rEMv6XARLgJkGsJFiUD5RqTvAnTnakDvTInQsUcKSI20TXuP1p53Tvsuv975j4j7ztCn0Orpbn9qVoycV7C0tyghnBJ9IkSJBCKe2AgEAoFAIBAIBN0lAP3dAIPfzj8rddJwDynsBrcvp0Ro+cZA8iT82x3c7VjPm29LDOGY0ZAkCZ2kENrVNdwpEflvUmwposxWTaY+JbjO8uz5fNS0MbhMkSmbYzNn82LNR73WN0g6v/uhRzONLEMae2xV3eMbwGfJM2aGjT907L4QYWB59nxOyT2Spw+83e82+yrHyTSkhokSJsUQOQdFOCX6RIgSAoFAIBAIBAKBYMA8Me+nqEPUnvPnUy/lL+WvctPE84dke0OB0o9jI0CoUyJNH1ueRI4hnUZ3G+OTImcQ9EfPriTJusGLEgEUSeGsvGPIMqSxtnVbcLoxigPigZk38FHTJmalTgxO+3nJpSzLmsdvdj0FwDcKj+f0vKMiihIBp0RPskK6gMDAMkvOK1hKu7eTk3OOAMJFrlBh4KdTLgHgKe2tXtu4Z/q1/G3fSqqcjXxnzCkRSzwCZOpTKAt5b+oKBe2JECX6RogSAoFAIBAIBAKBYMCMMecM2bYmJBXwwKwbg+8z9Cl9dlKIB7EGXWYZ0oKvzXJsbS7vn3UDnzVv4+z8Ywc1NkWS0UkKXs1vM4j0ND9Dn4JH9fLHmdfjVN38YfezNLjb+tzujZP8otBXbTuC06I5JUyKkdPzFvferyEl+Dqzh8AQikHWRbzh77mONACvhFHR870J53S/DxMlegtokdrLLkifyhPzfxp8v89WG3V/Y8y5rGvbGXxvUgwR3S+ifKNvhCghEAgEAoFAIBAIDimeXXg7AzPuDz2RWoJGXq57Xp2rJaZt5xkzOb9w6eAHh7+EIyBKWHS9xZDjsuZy/YRzgk6DGSkTaWje2Gu5SCjEHnTZk0x9asTXPdFLurBgSoBcYwazUiaGTZuUVMhgCf0b+iKIErG0l43kfJhqGcuC9KnMSS1mZe3q4HSTbIj6XYlX15iRiGgJKhAIBAKBQCAQCA4pFEnpUwiIB7E6JQDOzDsaIKyUYbgJOElkZMyysdd8ifDSh0iugGgMJOiyJ2khLTV7lmKEYpD1wfINGZmH5/yQJ+f9lKSQ1qSn5h7J5eNOG9D+Q5FDPv/U5LEATEseF5wWS/lRpIyIh+bcwhXjTu9V4qOXdWFBraFEEkUEfoRTQiAQCAQCgUAgEAh6EGtLUPC3n5yTNpnF6TOGe1hBArkSFp0pYu5Cz7KHgZQQyGFBlwO7ZQwtuwkVKHqil3VBsUeRJIq7uqmEZnRcVHQCZqW34BIrocfgzPyjSdNbWJA2NTgtFvdCz/yOUEJFCVM/jpKBiEKHG0KUEAgEAoFAIBAIBIIeDMQpoUgKS7PmDveQwsg2pNPkbqfDa484v6dOMZDygfDuGwMr3wC4feplOFV3n24XvaQL3qjLUW7uIwVhhnJh4QnMT58SdX5qSNaGIikcnz0/bH5M5Rs9xvDrkiuDr+UBHCfhlIiOECUEAoFAIBAIBAKBoAe6GLtvJIpx5lx2dlb0sURPp8RARIluEWag5RsAS7Lm9LuMXtYFxyQTuQVpX50v7pt5PbNTi/vcR5E5hx8WX8gEc37E+bG4F0LHcPPE8zk6c2bwfagTI9ThEYmh6lQzGhGihEAgEAgEAoFAIBD0INagy0QxyVIIjdHn9yzoGKxToq/yhYPBIOuCN+qh2Q+hjoNo+z4z75h+BYkAp+YeGXVeTJkSIWOQe4gkoeM29OPqEG1BoyNECYFAIBAIBAKBQCDowUDKNxLBabmL2WotZ1mUspHemRKDFCX6udkeLHpJFxRK5LBgze79RXNKDJVIFItQEOqY6ZktEurwUEIySMyyEYfq6rEv4ZSIxqEn+QkEAoFAIBAIBAJBggkNj+wv6DIRmBQDd5RcztLseTEtf8XY00nTWbh96uX9LhvulBg6QcYS0lnDX77R5ZQIEVBCj3u0fUfrcDFQYinfkMPKeMLHE9Z9I+TW+oVFvwkTLGBgotDhhnBKCAQCgUAgEAgEAkEfHIpOif7o2ZFjoqWA/xxxZ0zrKmHugIP/7H+Z/QN2dOznrPxj/5+9+w6PotweOP7dmt4bIYQSIKGEEHoHwY4NG9Zr74rlei3X3rvXggVRRK+9oV79KVZQqtI7IQXSIL3Xze7O749kN7tJNnWzm3I+z8OjmZ2deefNZmfmzHnPy6mb77Luw2QdvtFykKHpjX1L7euKjgYKmu7XNhvFrjioRoeP1tOuCGl9pkTPC271BBKUEEIIIYQQQohWOOvJvCs1nyS0/dTYTofa9aDESN9BjPQd1Gy5ZfhE05v9cyPnUWqsbHGq05bW76yODqloGpxS22XT2L/WtIaHWVG69DvpyyQoIYQQQgghhBCtcMaNuas1rSnREd1Z6HJCwEhrBoRl+EbTtl479IzW2+ekjINBXuEUGErbvX7TYIi6AzO0mBUzGnrf58gVJCghhBBCCCGEEK3oibNvtM05QQlnB2SeGn2dNQPCUaZEWzROqnNx14gLWXX0T3aVpZBSmd3m+uommRu2wZG2smlMiiIhCQd641+XEEIIIYQQQrhMbwxKNL2B7ojuDErYDskwt1FToqnbYs4jVB/AqeHTnNKWEH0A1w49g0Cdb6feb3ssbX1GFGT2DUckU0IIIYQQQgghWuGo4GJPdF/sP/gs6zcWRc7p9Da6c/iGLUuhyfYONTk1YjqnRkx3ejvaMTNow3r2K6rtghJNako0KaJpau9O+iEJSgghhBBCCCFEC+4ZeQn5tcV4aHTubkq7zQ0Zz9yQ8V3aRndmStiyZEpoupDV4UpNAw22wao2MyU6WFSzP+k9IT8hhBBCCCGEcKH5oRNYHLXA3c1wOdun/t0ZlJgaNBqASYGjum0f7TEuIAaAqYGjW13P3CxTwnFQomlehGRKOCaZEkIIIYQQQgghrOyHb3RfUOLmYWczNWg004LGdNs+2uO8yOMY5BnOhICRra7XPFOitZoSSpOfJFPCEQlKCCGEEEIIIYSwUtsN3+i+W0ZPjQdzujjUxBm0ag2zQ8a1uZ65aVDCLlOi9eCNZEo4JsM3hBBCCCGEEEJYuaqmRG8Tqg+w+1ndyuwbTWMQZqkp4ZBkSgghhBBCCCGEsNLgmuEbvcWKxHtIqshkjN9Qu+UdKXTZtB6FaCRBCSGEEEIIIYQQVrZDEXrTdKjdJcorjCivsGbL7TIlaFro0j4IIZkSjsknTAghhBBCCCGEle1Tf1Uvma7THewzJVrPKGlaj0I0kqCEEEIIIYQQQgirtoYiiHqt1pSQTIl2k0+bEEIIIYQQQggrCUq0j/3sG1JTorPk0yaEEEIIIYQQwkqCEu2jpjFTQt1mUEIyJRyRT5sQQgghhJNUV1czf/58XnjhBXc3RQghOq2tG2xRT9XK8I2mTBKUcEg+bUIIIYQQTrJs2TISEhLc3QwhhBAupm1S6FJpMlyjaY0J0UiCEkIIIYQQTnDkyBHS0tKYN2+eu5sihBBdIvUPOq5ppsRJ4VPsfpZMCcckKCGEEEKIPm/Lli3ccMMNzJ49m7i4ONasWdNsnY8++ogFCxYwbtw4Fi9ezO7duzu0j2effZZ//vOfzmqyEEK4jTzV77imQYkbhi7iP/G3cGr4NKB55oRopHV3A4QQQgghultVVRVxcXGcc845LFmypNnrP/zwA08//TSPPvoo48eP5/333+eaa65h9erVBAcHA3DWWWe1uO1Vq1axZs0ahg4dyrBhw9ixY0e3HosQQnQ3yZToOE2T4RtatYYxfkP5PX87IJkSrZGghBBCCCH6vHnz5rU6rGLlypVccMEFnHvuuQA8+uijrF27lq+//pqrr74agG+//dbh+3ft2sUPP/zATz/9RGVlJUajEX9/f6677jrnHogQQriAZEp0nKPioJbl0qeOSVCij7j11lvZtGkTs2fP5qWXXrIu//XXX3n++ecBuO2221i4cKG7miiEEEL0SAaDgX379nHjjTdal6nVambOnMnOnTvbtY0777yTO++8E6jPnEhLS+tSQEKtVrW9Ujve39Xt9EXSN62T/nGsf/VN4w10e463f/VNy7RqTYvHr2mYocOkmPt1/7RGghJ9xCWXXMKiRYv47rvvrMuMRiPPP/88H330ERqNhgsuuIATTjgBvV7vxpYKIYQQPUtxcTEmk4nQ0FC75SEhIaSnp7u8PVqtmpAQX6dsKyjIxynb6Yukb1on/eNYf+gbr7LG+4WOfB/1h75xJMDXq8W+8j7mAYBZMffr/mmNBCX6iGnTpvHXX3/ZLdu1axdxcXHWi6yEhAS2bdvGjBkz3NFEIYQQoldRFMVuDvr2Ouecc7q0X6PRTFlZdZe2oVarCAryobi4ErNZUoZtSd+0TvrHsf7UNxWVNdb/LyysaHP9/tQ3jlRX1bXYV4ZaI1Bfp6Mr/ePv74VOp2l7xV5IghIusGXLFlasWMHevXvJz89n2bJlzJ8/326djz76iBUrVpCfn8/o0aN54IEHujzPeV5eHhEREdafIyIiyMvL69I2hRBCiL4mKCgIjUZDQUGB3fKioqJm2ROu4qyLerNZ6bc3CG2Rvmmd9I9j/aFvNDTe/HbkWPtD3ziiUdQtHrtKqQ9umxVzv+6f1khQwgW6u+K3RtM3I2ZCCCGEK+j1esaOHcvGjRtZsGABAGazmU2bNnH55Ze7uXVCCOF6C0InsrloH6dETHN3U3qNplOCWlgKXZql0KVDEpRwge6u+O1IeHg4ubm51p9zc3OZPXt2h7djIUW3uo/0Tcua9ov0T3PSN45J3zjWH/umsrKSjIwM689ZWVkcOHCA0NBQwsLCuPLKK7n77rsZO3YsCQkJvP/++9TU1HD22We7sdVCCOEenho9j42+2t3N6FUczb6hojFTQrRMghJu5oyK344kJCRw8OBBCgoK0Gg07Nq1iyeffLJT25KiW64hfdNIp9M0+8xJ/zgmfeOY9I1j/alv9u7dy2WXXWb9+YknngDglltuYcmSJSxcuJCioiJeffVV61DKd955x5qxKIQQQrSu5UC/WmUJSkimhCMSlHAzZ1X8vu6669i9ezfV1dXMnTuX5cuXM2rUKP71r39x8cUXA3D77bfj4eHRqXZK0a3uJX3TXF2dyVosSPrHMekbx6RvHHNW3/SmolvTpk0jKSmp1XUuvfRSLr30Uhe1SAghRF/iKPdQLZkSbZKgRA/V0Yrfy5cvb3H5SSedxEknneSUNknRre4nfWOvaV9I/zgmfeOY9I1j0jdCCCGEczi6d7PWlJCghEMtD3wRLtMTK34LIYQQQgghhGg/lcPhG1Losi0SlHAz24rfFpaK34mJie5rmBBCCCGEEEKIdlE7ypSQ4RttkuEbLiAVv4UQQgghhBCi/5FCl22ToIQLSMVvIYQQQgghhOi7HA3fUCE1JdoiQQkXkIrfQgghhBBCCNF3qduaElRqSjgkNSWEEEIIIYQQQoiukJoSnSZBCSGEEEIIIYQQogtaDkk0zr5hkpoSDklQQgghhBBCCCGE6IK2pgRVJFPCIQlKCCGEEEIIIYQQnTDYKxyAId4DWnx9qPcAPNQ6YvwGurJZvYoUuhRCCCGEEEIIITrhtYR/Um6sIkTv3+LrY/yG8s30JwkPDaCwsMLFresdJFNCCCGEEEIIIYToBL1a6zAgYaFRaVzUmt5JghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItVIqiKO5uhOj5zGYFk8nc5e3odBrq6kxOaFHfI31j79Chg8TGjrL+LP3jmPSNY9I3jjmjbzQaNWq1ykktEhZyzu1+0jetk/5xTPrGMemb1nW1f/ryOVeCEkIIIYQQQgghhHALGb4hhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCgh2u2jjz5iwYIFjBs3jsWLF7N79+5W1//xxx855ZRTGDduHGeccQZ//vmn3euKovDKK68we/ZsEhISuOKKK0hPT7dbp6SkhDvvvJOJEycyZcoU7r//fqqqqpx+bM7g6v7JysrivvvuY8GCBSQkJHDCCSfw2muvUVdX1y3H1xXu+OxYlJSUMHfuXOLi4qisrHTaMTmLu/rm999/59xzzyUhIYEZM2Zwzz33OPW4nMEdfbNr1y7+8Y9/MGnSJKZOncr1119Pamqq04/NGZzdPz///DNXX30106ZNIy4ujkOHDjXbRm/6Tu4PnP0Z6Es60jfJycksWbKEBQsWEBcXx4cffujClrpHR/rn888/5+KLL2bKlClMnTqVq666ij179riwta7Vkb759ddfOffcc5k8eTKJiYmcddZZfPPNN65rrIt19DvHYvny5cTFxfHss892cwvdpyN9s2rVKuLi4uz+jRs3zoWt7YEUIdrh//7v/5SxY8cqX375pZKcnKw88MADypQpU5TCwsIW19++fbsyevRo5e2331ZSUlKUl19+WRk7dqySkpJiXeett95SJk2apPzyyy/KgQMHlBtuuEE54YQTlNraWus6V199tXLmmWcqO3fuVLZs2aKceOKJyl133dXtx9tR7uifP/74Q7n33nuVdevWKRkZGcqvv/6qzJgxQ3n++eddcszt5a7PjsWSJUuUq6++WomNjVUqKiq67Tg7w119s3r1amXKlCnKp59+qqSlpSmHDh1Sfvrpp24/3o5wR9+Ul5crU6ZMUe677z4lLS1NOXjwoHL99dcrxx9/vEuOuSO6o3++/vprZenSpcrnn3+uxMbGKklJSc2201u+k/uD7vgM9BUd7Ztdu3YpzzzzjPL9998rs2bNUj744AMXt9i1Oto///znP5UPP/xQ2b9/v5KSkqLce++9yuTJk5Xc3FwXt7z7dbRv/v77b+Wnn35SUlJSlPT0dOW///2vMnr0aGXDhg0ubnn362jfWOzdu1eZP3++csYZZyjPPPOMi1rrWh3tm6+++kqZOnWqkpeXZ/2Xn5/v4lb3LBKUEO1y3nnnKY899pj1Z5PJpMyePVt55513Wlz/tttuU66//nq7Zeeff77y6KOPKoqiKGazWZk1a5ayYsUK6+tlZWVKfHy88uOPPyqKoigpKSlKbGyssmfPHus6f/zxhzJq1Kge94frjv5pydtvv62cdNJJXTkUp3Nn33zxxRfKhRdeqGzcuLFHBiXc0Td1dXXKnDlzlM8//9zZh+NU7uib3bt3K7GxsXYX2tu3b1diY2PbvOhyNWf3j63MzMwWgxK96Tu5P+jOz0Bv19G+sTV//vw+H5ToSv8oiqIYjUZlwoQJyv/+97/uaqLbdLVvFEVRFi1apCxdurQ7mudWnembqqoq5dRTT1X+/PNP5dJLL+2zQYmO9o0lKCEayfAN0SaDwcC+ffuYNWuWdZlarWbmzJns3Lmzxffs3LnTbn2A2bNnW9fPysoiPz/fbh0/Pz/Gjx9vXWfHjh0EBgYSHx9vXWfmzJmoVKp2p4u5grv6pyXl5eUEBAR0+liczZ19k5GRwcsvv8xzzz2HWt3zvurc1Tf79+8nNzcXlUrFmWeeyezZs7nhhhscDn9xB3f1zbBhwwgMDOSLL76grq6O6upqvv76a8aNG0dwcLBTj7EruqN/2qO3fCf3B+76DPQGnemb/sQZ/VNdXY3RaOxR1xvO0NW+URSFTZs2cfjwYSZNmtSNLXW9zvbNM888w7Rp05gzZ44LWukene2biooKjjvuOObNm8dNN91ESkqKC1rbc/W8K3XR4xQXF2MymQgNDbVbHhISQn5+fovvKSgoICQkxOH6lv+2ts2WtqHVagkICKCgoKDzB+Rk7uqfpjIyMvjwww+58MILO3Uc3cFdfWM0Grnrrru47bbbiI6OdsqxOJu7+iYzMxOAN954gyVLlvDGG2+g0+m47LLLekxtAHf1ja+vL++//z6rVq1i/PjxTJgwgZ07d/LGG2845bicpTv6pz16y3dyf+Cuz0Bv0Jm+6U+c0T8vvvgikZGRTJ8+vTua6Dad7Zvy8nImTJhAfHw81113HQ899BAzZszo7ua6VGf6Zs2aNWzevJm7777bFU10m870TUxMDE8//TTLli3j+eefx2w2c9FFF5Gbm+uKJvdIEpQQnaYoCiqVyuHrLb3WdFnTn5tus6VttLXfnsIV/WORm5vLNddcw2mnncY555zTyRa7Tnf3zbJlywgKCuL88893Qmtdq7v7xmw2A3DjjTdy4oknkpCQwLPPPktZWRlr167tYuu7V3f3TU1NDQ888ADTp0/n888/5+OPPyYyMpKbb74Zo9HohCPoXs7on7b05u/k/sAVn4HeSj6nrWtv/7z99tv88MMPLF26FL1e74KWuV9bfePj48M333zDl19+yR133MFTTz3F1q1bXdhC93HUN0VFRTz44IM899xzeHl5uaFl7tfa5yYxMZEzzzyTUaNGMXXqVJYuXWrN1OyvtO5ugOj5goKC0Gg0zZ6EFRUVNYsKWoSGhjZbv7Cw0Lp+WFgYUP/00jYtuqioyJoa3NI2jEYjZWVlzZ72uJO7+sciNzeXyy67jMTERB555JGuHo5Tuatv/vrrL7Zu3cqYMWOA+hMDwJQpU7j11lu54YYbnHB0XePOvyuoH6pg4e3tzcCBAzl69GgXj8o53NU33333Hbm5uXzxxRfWC4n//Oc/TJkyhY0bNzJ37lznHGAXdUf/tEdv+U7uD9z1GegNOtM3/UlX+mfFihW89dZbrFy5ktjY2O5splt0tm/UajVDhgwBYPTo0aSmprJ8+XImT57cre11pY72TXJyMvn5+Vx00UXWZSaTiS1btvDhhx/2qdlbnPGdo9PpGD16dI8aSutqkikh2qTX6xk7diwbN260LjObzWzatInExMQW35OYmMiGDRvslm3cuNG6/qBBgwgLC7PbZkVFBbt27bKuM2HCBEpKSti3b591nc2bN6MoCgkJCc45OCdwV/9AY0Bi7NixPP300z2udoK7+uapp57i22+/5ZtvvuGbb77hiSeeAODTTz9l8eLFzjvALnBX34wbNw6dTmd34qupqSEnJ4eBAwc65+C6yF19U1NTg1qttnuyYfnZEtjqCbqjf9qjt3wn9wfu+gz0Bp3pm/6ks/3zzjvv8MYbb/DOO+/02akLnfXZURQFg8HQDS10n472zbhx4/juu++s12HffPMN8fHxnH322axatcqFLe9+zvjcmEwmkpOTrQ9Q+iWXldQUvZplqptVq1YpKSkpyoMPPmg31c1dd92lvPDCC9b1t23bpowePVpZsWKFkpKSorz66qstTs83efJk5ddff1UOHjyo3HjjjS1OCbpo0SJl165dytatW5WTTjpJ+de//uW6A28nd/RPTk6OcuKJJyqXXXaZkpOTYzetUE/irs+Orc2bN/fI2Tfc1TePPfaYMm/ePGXDhg1KSkqKcueddyrz5s1TKisrXXfwbXBH36SkpCjx8fHK448/rqSmpioHDx5UlixZosyYMUMpKSlxbQe0oTv6p7i4WNm/f7+ydu1aJTY2Vlm9erWyf/9+pbi42LpOb/lO7g+64zPQV3S0b2pra5X9+/cr+/fvV2bNmqW88MILyv79+5Xs7Gx3HUK36mj/LF++XBk7dqyyevVqu2uNnnZOdYaO9s1bb71lnZo9JSVFWblypTJmzBjlyy+/dNchdJuO9k1TfXn2jY72zdKlS62fm7179yp33HGHkpCQoKSmprrrENxOhm+Idlm4cCFFRUW8+uqr5OfnM3r0aN555x1rGvSxY8fsntJPnDiRF198kZdffpn//Oc/DB06lNdff53hw4db17n22muprq7moYceoqysjEmTJvH222/bjVF84YUXePzxx7n88stRq9WcfPLJPPDAA6478HZyR/9s2LCB9PR00tPTm6WVJyUlueCo28ddn53ewF19c88996DRaPjnP/9JXV0dEyZMYOXKlXh7e7vu4Nvgjr4ZPnw4y5YtY+nSpZx//vlotVri4+N55513elyV+e7on99//51///vf1p9vvfVWAJ5++mlrrZre8p3cH3THZ6Cv6Gjf5OXlsWjRIuvPy5cvZ/ny5Zx99tk888wzrm5+t+to/3zyySfU1dVZvxMsbrnlFpYsWeLStne3jvZNTU0Njz32GDk5OXh6ehITE8Pzzz/PwoUL3XUI3aajfdOfdLRvysrKePDBB8nPzycgIID4+Hg+++wzYmJi3HUIbqdSlB6UkyqEEEIIIYQQQoh+o3+Gs4QQQgghhBBCCOF2EpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hQQkhhBBCCCGEEEK4hQQlhBBCCCGEEEII4RYSlBBCCCGEEEIIIYRbSFBCCCGEEEIIIYQQbqF1dwOEEKI1S5cu5bXXXmu2fMaMGbz33nuub5AQQgjRR8k5VwjhDhKUEEL0eH5+frzzzjvNlgkhhBDCueScK4RwNQlKCCF6PI1GQ2JiYpvr1dTU4Onp2f0NEkIIIfooOecKIVxNakoIIXqlrKws4uLi+N///sfdd9/N5MmTueGGGwAoKSnhoYceYubMmYwbN44LL7yQXbt22b2/rKyMO++8k8TERGbPns2bb77Js88+y4IFC6zrLF26lGnTpjXbd1xcHB9++KHdsi+++ILTTjuN+Ph45s+fz9tvv233+r333ss555zDhg0bOOOMM0hMTOSiiy4iOTnZbj2TycRbb73FySefTHx8PHPnzuXee+8F4KOPPmLChAlUVlbavWfz5s3ExcVx8ODBDvaiEEII0TY55zaSc64QzieZEkKIXsFoNNr9rCgKAM899xwnnngir7zyCmq1GoPBwJVXXklZWRl33303wcHBfPLJJ1xxxRX8/PPPhIWFAfDvf/+bv//+m/vuu4/Q0FDeffddMjIy0Go7/rX4zjvv8NJLL3HNNdcwdepU9u3bxyuvvIKXlxeXXnqpdb1jx47x3HPPceONN+Lh4cFzzz3H7bffzvfff49KpQLgoYce4ttvv+Xqq69m6tSplJaWsnr1agDOOOMMnn32WX766SfOOecc63a//vprxo4dy6hRozrcdiGEEKIpOefKOVcIV5KghBCixyspKWHs2LF2y5544gkAxo8fz8MPP2xd/sUXX5CcnMz333/P0KFDAZg5cyannHIK7777Lvfccw/Jycn8+uuvvPTSSyxcuBCAadOmMX/+fHx9fTvUtoqKCl5//XVuvPFGbrnlFgBmzZpFdXU1b775JhdddBEajQaA0tJSPvnkE2u7FEXh5ptvJi0tjeHDh5OamsqXX37J/fffz2WXXWbdh6WN/v7+nHTSSaxatcp6gVRZWcnPP//MnXfe2aF2CyGEEC2Rc66cc4VwNQlKCCF6PD8/P1auXGm3TK/XA3DcccfZLd+0aRNjx45l0KBBdk96pkyZwt69ewHYs2cPgF3aqI+PDzNnzmT37t0datuOHTuoqqrilFNOsdvf9OnTeeONN8jJySEqKgqAqKgo68URwPDhwwHIzc1l+PDh/PXXXwB2T2SaOu+887jiiivIzMwkOjqaH3/8EaPRyOmnn96hdgshhBAtkXNuIznnCuEaEpQQQvR4Go2GcePG2S3LysoCICQkxG55cXExO3fubPaUB2Dw4MEAFBQU4OPj06xAV9NttUdxcTEAp512WouvHzt2zHqB1LR6uU6nA6C2thaofzrl7e3d6pOjadOmER0dzapVq7jttttYtWoVxx9/PIGBgR1uuxBCCNGUnHMbyTlXCNeQoIQQolezjAu1CAgIID4+nkceeaTZupYnPaGhoVRWVjarHF5YWGi3voeHB3V1dXbLSktLm+0P4K233mrxAmvYsGHtPpbAwECqqqqoqKhweJGkUqk499xz+fzzzznrrLPYtm1bswJfQgghRHeQc66cc4XoDhKUEEL0KTNmzGDDhg0MHDjQ4VMYyxOg33//3Tp2tLKyko0bN9pdmERERFBZWUlubi4REREAbNiwwW5bEyZMwNPTk7y8vGZprR01ffp0AL755hu7Yl1NnX322bz66qvcd999REREMGvWrC7tVwghhOgMOecKIZxBghJCiD5l0aJFfPrpp/zjH//gqquuIjo6mpKSEnbv3k1YWBhXXHEFI0eOZMGCBTzyyCNUVFQQFhbGihUrmqWWzpkzB09PT+677z6uvPJKsrKy+PTTT+3W8ff355ZbbuHJJ58kOzubKVOmYDabOXLkCH/99Revv/56u9seExPDBRdcwDPPPENhYSFTpkyhrKyMn376iZdeesm6XkREBHPmzGHt2rVcf/311qJeQgghhCvJOVcI4QwSlBBC9CkeHh7897//5ZVXXmHp0qUUFhYSHBxMQkKCXZGtZ555hkceeYSnnnoKb29vLr74YsaNG8dPP/1kXSc4OJhXX32V5557jptvvpmxY8fy4osvWp/0WFx77bWEh4fz/vvvs3LlSjw8PBg6dGiz9drj4YcfZuDAgXzxxRe8/fbbBAcHt/hU5oQTTmDt2rWtFugSQgghupOcc4UQzqBSLBMPCyFEP2eZj/z33393d1PadNttt5Gfn8/HH3/s7qYIIYQQHSbnXCGEhWRKCCFEL5KUlMTevXv55Zdf+M9//uPu5gghhBB9lpxzhXANCUoIIUQvcuONN1JcXMzFF1/MKaec4u7mCCGEEH2WnHOFcA0ZviGEEEIIIYQQQgi3ULu7AUIIIYQQQgghhOifJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxC6+4GiN7BbFYwmcxd3o5Wq8Zo7Pp2+iLpG3uZmRlERw+2/iz945j0jWPSN445o280GjVqtcpJLRIWcs7tftI3rZP+cUz6xjHpm9Z1tX/68jlXghKiXUwmMyUlVV3ahlqtIiTEl7KyasxmxUkt6xukb5r7xz8u45tvfgCkf1ojfeOY9I1jzuqbwEBv1GqNE1smQM653U36pnXSP45J3zgmfdM6Z/RPXz7nyvANIYQQQgghhBBCuIUEJYQQQgghhBBCCOEWEpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hhS6FEEI4jaIomM0mlB5Q40qtVmEwGDAajVJ0q4n29o1KBWq1BpWqb1b7FkL0Tu4618h5xTHpm9a1p3/68zlXghJCCCG6TFEUKipKqawsA3rOxUhBgRqzWaYna0l7+0at1hASEolG0zcrfgsheo+ecK6R84pj0jeta0//9NdzrgQlhBBCdJnlItHfPxi93gPoGVF+rVaF0dhzgiQ9Sfv6RqGkpICysiKCgsJc0i4hhHCkJ5xr5LzimPRN69run/57zpWghBBCiC5RFMV6kejt7evu5tjRatWAPLVpSXv7xs8vkOLiPBTFjEolpaiEEO7RU841cl5xTPqmde3pn/56zu0/RyqEEKJbmM0mQGl4aiX6Go2m/vmFpOQKIdxJzjWiP+iv51wJSgghhOiSxkJjPWPIhnC2+t9rTyheKoTov+RcI/qH/nnOleEbQvRRiqJQWmeg0FBDeZ0Bk6KgU6vRqlToNRrC9F746/T9ssKvEEIIIYQQomeQoIQQfYTBbGJPaSE7i/M5VF5MWmUZ1SZjq+/x0WiJ9PJhsLcf4wJCSQgMJcLT20UtFkIIIYQQPcGKFW+xceN6Vqz4wN1NEf2QBCWE6MUUReFAWRE/52awoeAo1SaT9TVPtYYYH3/CPLzx0+nQqtQYFTN1ZjO1ZhM5NVUcq64kpaKUlIpSfs/LAiDC05vpwQNYEBFNjI+/ZFKIPuvJJx/hxx+/b7b8++9/JTAw0PUNEkII0ec8+eQjVFdX8cQTz1mX/fDDdzz//FPcccfdnHnm2Z3edllZKZdffhH5+Xn8/POfeHt3/sHSRRf9g/POu6DT7++tzjvvDC666FLOPbf/HXtPIkEJIXqpbcV5fJKexMHyYgA81BpmhkQyKTicMf7BRHn5om4joKAoCkWGWlIqSthdUsDu0gIOV5bx7dE0vj2axhBvP46PiObkAUPw0epccVhCuNTMmXO455777ZYFBATY/Ww0GtFq5XQphBCi67744lPeeOMVHnjgUY4//qQubeu5554kJmYE+fl5XW5XfUBDsmVbYjQa0Wg08qCuG8lVVh+XlpbGfffdR0VFBXq9nvvuu4/Jkye7u1miC3KqK1mWuoetxfUnoMHefiyKimF2aBTeHbxxUqlUhHh4EuIxgGkhAwAoNtTwR342v+dmklZZxruH9/NZxiFOHxjDmVHDCNBJ1WvRd+j1OkJCQu2WnXfeGZx55tkcOXKYdev+4JRTTuPOO+9h164dLFu2lKSkJIKCgjj++BO55pob0ev1ABQWFvDss0+wdesWwsLCuPHGJTz//FPcfPPtLFx4Btu3b+XWW2+we5q1YcM67rnnDtav32rd/59/ruXdd5eTkXGEsLBwzjzzbC666B+o1fW1qWfPnsy99z7An3+uZdu2LQwcGMW//nUf48cnWrexc+d2li9/g6SkA+j1HsTHj+OJJ57j008/ZO3a31i58mO7Y77wwrM566xzueiiS7ujm4UQQgArV77Nhx++x1NPPc+MGbO7tK3vv/+WwsJCrrnmBv76a2Ob65eVlfH66y+zfv0fGI1Gxo4dx223/YshQ4YCzYdvGI1Gli79D6tX/x9arZZzzlnM4cOpeHl5c//9jwBQW1vL8uVv8OuvP1FVVcmIEbHcfPPtxMePA+ozQl5//WXuv/9RXn31PxQVFTJ16jTuvfchfH3rp3Vds+ZX3n13OdnZWXh5eREXN5oXXngVtVptzTIZNmw4q1Z9jslkYuHCM7j55tvRaDQO2jCSm2++w9oGcHxOvPPOJeTkHOOll57npZeeB2D9+q3Wdt9zz4MsW7aUrKxMvv32Jx588B5GjRrDLbfcbt321Vf/g5kzZ3P11dcD9efou+++n7Vrf2fXru1ERQ3igQceRa3W8PzzT5KamsK4ceN56KHHCQoK7vwHoI+RoEQf5+HhwVNPPUVMTAypqancdNNN/PTTT+5uVo9VYzKSVlFKdnUlJXW11JnNeGo0BOk9GOLtzxAfPzRumjNYURR+yc3g7bS9VJtMRHp6c+WwscwIGeDUyG2Q3pNFUcNZFDWcw5WlfHf0ML/nZvJZ5iG+zU7lzKgYFkePxFMjXx+i7/r44/9y1VXXWS8ysrOz+Ne/buP662/i/vsfpbCwgBdeeBqj0citt94J1KfolpQU89prbwHw0kvPU1VV1aH97tq1k6eeeoTbb7+LcePGk5GRznPPPYlOp2fx4ous661c+Q633HI7S5b8kxUr3uLRR+/n88+/RavVkpGRzh133MyiRedx5533ArBly2YURWHhwjN4993lJCcnMXr06IZ97uDYsaOcfPKpXe43IYQQzSmKwtKl/+H777/lxReXkpg40e71//73XT74YGWr2/jggy8YMKD+AVJ2dhZvv/0mb7zxDrm5Oe1qw0MP3YuXlxcvvvga3t5efPHFZ9xxx8189NGXeHl5NVv/o4/e57fffubBBx8jKiqaTz75gC1b/mLu3PnWdV5++XnS04/w+OPPEBISym+//cwdd9zMxx9/SVhYOABVVVV89dXnPP7409TU1PDgg/fy4YfvccMNt1BQUMAjj9zPTTfdyty586msrGT79i127fjrr814eHjy2mtvk5mZwdNPP0ZoaBgXX3xZi2345ZfVdm1o7Zz41FPPc8UVF3P22eexcOEZdvutqqri008/5P77H8XHxwcfH5929TPAe++9w5Ild3D77Xfy8ssv8NhjDxEcHMwtt9yGp6cPDz/8b5Yvf4N77nmg3dvs6+Suoo+Lioqy/n9MTAzl5eUoiuKW9KNtRXnsyTqIuk4h3MObEb4BDPHxR+PmVKgak5F1+UdZk5fF/rJCjK3MweOl0TA1eADHhQ9iUlB4m8MjnMVoNvNm6h5+yklHDVwQHcuFg0eiU2u6db/DfAK4dWQiF0bHsiorlZ9z0/k8M5k1eVlcGxPv9ICIEK62bt0fnHjiHOvPxx13PACTJ09j8eKLrcufeeZxTjnlNM4770IABg2K5uabb+eBB+5myZJ/kpmZzt9/b+bddz8kNnYUAHfeeQ/XXHNZh9rz7rvLueyyqzjllNMAiIoaxOWXX8WXX35mF5Q4/fSzmD//BACuuuo6Lr74XLKzsxgyZCgffvge48aN57bb7rSuP3z4CAA8PT2ZOnU6//d/31mDEj/88B0zZswiODikQ20VQgh3eylpB5sLj7l0nzPCIrl95IQOvWfjxvXU1dXx2mvLmwUkABYtOpcFC05sdRuhofVZfUajkccee5BrrrmBqKhB7QpK7Nq1k6Skg/zvfz+h09UPx73jjrv48881bNy4nuOPb77vr776nMsuu4rZs+cBcNdd97Fp0wbr6zk5Ofzww3d8/fUP1vPHVVddw/r1f/Lzzz9yySWXA1BXV8ddd91nDaiceurpbNtWH3goLCzAZDIxb94CBgyIBGDEiJF27fDw8OCeex5Ar9czbFgMWVmZfPbZR1x88WUttuGKK65h48b11ja0dU5Uq9V4e3s3y5qsq6vjX//6NzExw9vs36Zsz9EXXfQP7rjjZq677iYmTJiE0Wjm9NMX8e23X3V4u32ZBCV6uC1btrBixQr27t1Lfn4+y5YtY/78+XbrfPTRR6xYsYL8/HxGjx7NAw88QEJCQrNt/fbbb4wePdptN5FfZCazu6TAblmgzoOZoZGcMXAY0d5+Lm2PwWzi+6OH+TwzmQpjHQD+Wj3xASFEe/sSrPdEp1ZTbTJSWFtDSkUpSeXF/JGfzR/52Qzx9uPiIXHMDIns1j6tMRl5cv8WdpTkE6Tz4L4xUxjt79p0r3BPb24YMY5zo0fwTtpeNhQc46kDW5gcFM7NI8cT5tE8wi5EbzB58jTuuOMu68/e3t5cd90VjBo12m69lJRkUlOTWb26sTCm2WymtraWwsJC0tOPoNPpGDkyzvp6XNxo68Vfe6WmHmLPnl2sXPm2dZnJZEZRzHbrxcSMsP6/5UK1uLiIIUOGkpKSzNy5xzncx2mnnckLLzzNbbfdQW1tHWvW/MYDDzzaoXYKIYRovxEjYikqKuSdd5bxwguv4unpafe6v38A/v4BDt5t77//fZfAwEDOOGNRu/efknKIysoKFi5cYLe8traWo0ezmq1fUVFBUVEho0ePtS7T6XR2AYO0tBRMJhMXXGDfDoPBYLeej4+PNSABEBISQnFxfT20ESNGMmHCJC677EKmT5/J1KnTmT//eHx8fK3rjxwZax0mCRAfP4433iigoqKiXW1o65zoiIeHR6cCEgDDhzcevyVYMmxYjM2yYGsfiHoSlOjhqqqqiIuL45xzzmHJkiXNXv/hhx94+umnefTRRxk/fjzvv/8+11xzDatXryY4uPHGNTs7m+eff57ly5e7svl27hszhQxzJceKy8msLCepvJh9pUX8cOwIPx47wszQSK4eNpZwF0xJebCsiBeTtnOspgo1KuaFRXFq5FDG+Ae3mv1QYzKypSiX/x1N40BZMU8f2Mq04AHcNCKBEA9Ph+/rLIPZZA1IDPXx5+Gx09waAAjz8OLfo6ewrTiPZSn1dS1u3b6W22MnWGtSCNGbeHl5MmhQdAvL7f/OqqurOOec8zn77PObrRsYGIii0GZw0lITAhqzsYxG+2l7q6qqufbaG5kzZ16r27IvvFm/X7PZ3PLKTcyePY8XXniG9ev/pLKyCr1ez8yZXRvbLERfkZ2dxZdffoYh0B/t9EncGpvotmGbom13xE0AOpa10FVarRqjsX3ftxYRERE8+uhTLFlyPXfddRvPP/+KXWCiI8M3tm/fyu7dO5k3bxpQPzQE4NRT53P11ddz2WVXNXtvdXUVYWHhvPLKm81e8/f3d7jPpuc1xSabuLq6Cq1Wy7vvfmRdT6NRYTIpdkMdmhaKVqlU1kC7RqPhlVfeZM+eXWzevJFPPvmAFSveYsWKD6w3847OrSpVy22w6Mhwi5Y0DRxB/XlcaZJR3fQ8DvbHbGmW/TJVs4cN/Z0EJXq4efPmMW+e44vTlStXcsEFF3DuuecC8Oijj7J27Vq+/vprrr76aqA+2nnTTTfx4IMPMmTIkE63Ra3uWjZAoNaDYUHBFHtVYjbX/0GX1tXyW04mq7JS2FBwjO3FeVwdE8+pkUO6JftAURS+zkrl3bT9mFGYEhzBNcPHtjtLw1utY17EIOaGR7GjOJ/Xk3fzV1EOh3YW8/DYacT6B3WqXZa+te1js6LwQtJ2dpTkM8zHn2fGz8JPp3e0CZeaEhLB+KBQ3kvbzzfZaTy+/28WRcVwZcwYpw4padovXf0M9kU9oW/6w+9l5Mg4Dh9OazGAATB06FAMBgPJyUnW4RtJSQepq6uzrhMYWP/9UFhYiLd3/cVSSsohu+3ExsaRmZnucD/tMWLESLZv38oVV1zT4utarZaTT17I99//j5qaGk4++dR2zS6iVqv6xe9a9G/fffcNBQX5fLPrL0JVNUwLGcDM0IHubpboAwYOjGLp0rdYsuR67r77dp577mXrjW9Hhm/cd9/D1NRUW5cfOLCfp59+jGXL3mXAgJY/q7GxoygoyEen0xER0fZDJF9fX4KDQ9i/fx/x8fXZ13V1daSmplhrRYwcGYvRaKS0tMS6TmcCNmq1mvHjJzB+/ASuuuo6zjjjRP76axOnnno6AIcOJWEwGKzZEvv27SUkJBQfH98W29BU2+dEHSZT+9ocGBhEUVGh9eeqqqoWM01Ex0lQohczGAzs27ePG2+80bpMrVYzc+ZMdu7cCYDJZOK2225j8eLFzJ7d+SdhWq2akBDftldsh6CgxshlCL7EDAjhH+PiWXlwLx8c2s9rybvINlbyr/FT0Kqd93RCURRe27uDD9MO4KHR8M+EyZw1dHingx8nhvoxZ9hg/rN7K98eSeWe3Rt4ZtocZg6IavvNDtj2zXsH97Kx4BjRvn68MfdEgluI2Lrbv8NmMPtYNI9t28Q32WkcqirluelzCfPqeraLTqdp9pmz7R9hz519YzAYKChQo9Wq0Gp73hNFR21SqVSoVC23Wa22X37ZZVdw7bVX8OqrL3LGGWfh4eFBamoKe/fuZsmSO4iJiWHKlGk899yT3H33fQC8/PJz6HQ667aGDh1MeHgE7733NldffT0pKYf44Yfv7Np41VXXcvfddzBgwADmz6+vb5GUdJBjx45y5ZWNF1QaTWP7LP/VaNRotWquuOIqLrlkMUuXvsiZZ56NWq3m7783c9ZZZ+PpWZ8BsmjR2Vx66YUoipk77vhXG783FWq1mqAgb7sUWiH6mqKiQrKzG28wKpNTqDaZrD+nVZRSUlfLxKDwTu/jt9wMhvoEMNy3fan6om+xBCZuvfUGu8BER4ZvDBxof51ZUlICwJAhw6wzOzU1efJUxowZy7//fSc33riEqKho8vPzWb/+D04//SzrDBy2zj13Mf/977tERQ0iKmoQn3zyAQZDrfW6efDgoRx//Ik89tiD3HLLHYwYMZKyshI2bdpIYuJEJkyY1Oax7Nu3l23b/mbq1OkEBgaxc+d2qqurGTy4sT21tbU8//xTXHLJ5WRmpvPBByu5+OJ/OGxDcXExf/+9ydqGSy+9gssvv5BXXqk/f6tUarZs+YszzzwbT09PIiMj2blzO/PnH49OpycwMNBheydMmMSbby7lr782ER4e0TDUUoL1ziBBiV6suLgYk8lkjZxahISEkJ6eDsCff/7J5s2bKSgo4PPPPwfggw8+aDVVqyVGo5mysuq2V2yFWq0iKMiH4uLGTAlbiweMIME7mMf3/s3Xh1M4WlbB/WOcF5h4O3UvX2el4qfV8di4GcT5B1FUVNnl7V43eCxhak/eSdvHvZvX8WTCTMYEdKzmQ9O+2Vmcz1v7d+Gh1nDfqMkolUYKKyu63NbuMEYfyNIJx/Hsga3sLy7kit9/5OH46V2+4KqrM1FYWH/MbX12+rOe0DdGoxGz2YzRqAA9Kx2xtac2iqKgKEqLr5vN9stjYkbyyivLePvtN7n22itQqzUMGjSIU0453bre/fc/yjPPPMYNN1xNSEgoN910Ky+88LTNtjQ89NDjvPDCM1x66QUkJk7kiiuu4dlnn7BuY+rUGTz99Iu89947vPfeu+j1OoYOjeGcc863a4/J1Ng+y39NJjNGo5mBA6N58cWlvPXW63z99Vd4enoxblwCp59+tnXd6OihxMWNwmQyMXTo8FafbBmNCmazmeLiKrRag91r/v5e6HTdW3C3t6murmbhwoWcdtpp/Otf/3J3c0QHZGTUXztNmzaT737IpuZoDlWVjdcJt+74A4AvZi7EqwMzUFVUlLNmze/4Rg3kpcr6oozfzznTiS0XvYltxsQ999zBs8++1OJQAWdSq9W88MKrLFv2Ok888QhlZaWEhIQyYcIkh/cEl1xyOYWFBTz66APodPVTgiYkJNoFpx944DFWrnybV199kYKCfIKCgomPT+CEE05uV7t8fHzYuXMHn3/+MVVV1QwcOJC7776fsWPjretMmzadsLBwbrrpGkwmI6eeegYXXtg4fXVbbRg8eIj1nPjtt43nxLPOOgeAq6++geeff4oLLliEwWCwm6K7qdNPP4tDh5J4+OH78PT05KqrrrMLZIrOUylNB8aIHisuLs6u0GVubi5z587liy++sCts+eyzz7Jz504++eQTp+27rs5ESUnHprZrSq1WERLiS2FhRas3T3k1VTy0dzNZ1RWcEBHNbSMTuzyUY/WxI7yWsht/rZ6nEmYy1KdjQZn2+CY7lXfS9uGr1fFi4hyivNqfWWLbN1V1ddy0bQ15tdX8K24ix4UPcnpbu0Od2cxrybv4LS8TL42Wh8dOIz6g89X8Fy1ayDff/AC0/7PTH/WEvjEajRQUZBMaGtWuYQCu1JlUUmc67bTjufnm25tNNeZuZrOZxYvP4uKLL+Occ5rXybDV2u83MNBbghJNvPTSSxw5coTo6OhOByVcec7tjxz1zf/+9zVbtvzF4sUXc/2Pn1N+8BA3XvgPbjrpDKpNRs7fWH9OWjn1xA7Vd3rvvRWkpiZTUmfg0OyJ6AL8e3RQoqd+dnrKucbd5xV3MRqNLF58FueffxEXXXRpi+s4u2+efPIRqqureOKJ55y2TXdqT//013Nuz8uzFe0WFBSERqOhoMB+RouioqJm2RO9SbinN4/FTydU78mvuZl8npncpe0dKCvizdQ9aFUq7hszpVsCEgCLooZzTtRwKox1vJi0HVMnC9h8lplMXm01M0Mie01AAkCnVnN7bCIXDY6l2mTkob2b2FqU6+5mCSGaKCoq5OOP/0tFRTmnnLLQ3c3pU44cOUJaWlqrtaBEz5WRkQHA4MGD8Rpcf/7NTE6pf62y3LpelbGu+ZsdKCoq5I89O/irMIejVRVUHa7Pxnj50A6+zkp1VtOFcLqjR7P5/vtvyMhIJzn5EM888zilpSXWqS6FcCYJSvRier2esWPHsnHjRusys9nMpk2bSExMdF/DnCDc05tH46fjodbwUXoSyeUlndqOwWzilUM7MSkKNwxP6NKT+/a4fNho4vyCOFRewucZHQ+mZFaV83VWCp5qDdcOj2/7DT2MSqXikiGjuC4mHoPZzJP7t7C9OM/dzRJC2DjzzJP57LOPue++h6wFN0X9FNw33HADs2fPJi4ujjVr1jRb56OPPmLBggWMGzeOxYsXs3v3brvXn332Wf75z3+6qsnCiWpra8nNzcHPz5+AgEA8BwxArdORfSQNg8HA4cpS67pVpubV9gGMZjPJ5SWYbZKQd+3ZzdbiPErCgjhUUUJ19lEAfs3NZMXhfd17UEJ0gVqt5vvv/8e1117GLbdcy7FjR1m69C276T2FcJaelWcrmqmsrLRG7gGysrI4cOAAoaGhhIWFceWVV3L33XczduxYEhISeP/996mpqeHss892Y6udY4iPP1fHjOWNlN28mLSdVybMw0PTsZSlzzKSyaquYFJQOCcPGNxNLW2kUan5Z9wEbt3+B59kHGJOWBSDvNs/jOPT9EMYFYVLh8S6derPrjozKgatSsUbqXt4Yv/fPBY/o9sDQkL0RP/3f7+5uwnNWMbL9tcUZEe6OgX3r7/+ytChQxk2bBg7duxwwxGIrsjOzqTSaCDbQ0WpoRaVRo3XoIGYiypJSUkmx6txGGnToERaRSkDvXz4IP0g32ancV1MPGdGxQCwdutmAAInJWLIL6Q2Lx9zXR1qnc51BydEJwwYEMmyZe+6tQ333/+IW/cvXEeCEj3c3r17ueyyy6w/P/HEEwDccsstLFmyhIULF1JUVMSrr75Kfn4+o0eP5p133iE4uGOFFnuqUwcM4a/CHLYV5/FtdiqLB8e2+73ZVRV8mZWMp1rDzSMSumWK0ZZEefly0eBY3jtygE8ykrhrVNvVhwGOVVXwR142flodpw8c1s2t7H4LBw6jTlF4O20vj+/7i2fHz+62oTOiZ3rwwXvZs2d32ys6ybhxCTz++DMu25/oW7o6BfeuXbv44Ycf+Omnn6isrMRoNOLv7891113XqfZ0dfrVnjBdcE/VUt9kZmaws7gA45BwnjqwBQCvwdEoxQc5eHA/NeNHWdetNhmt791TUsA9uzaQEBjK7pL64bQbCo+xKHo4ubm5JGWmow8KRB8UhEdEGFXpmRgKi/AcENGsDT1FT/3s9LT2CNGd+ts03BKU6OGmTZtGUlJSq+tceumlXHppywVnejuVSsX1w+O5YesaVmWnctrAYfho2/d04ausFEyKwiWDRxLu2fUpKjvi9IHD+CY7jT/zszk/emS7bsY/ST6IGYXTBw7DswNVvXuys6JiKK2r5fPMZB7eu5n/JM4lxKPnTW0quocECERf0Z4puO+8807uvPNOAFatWkVaWlqnAxLdNQ23sGfbN0VFuShq8AgLY19ZEQBegwaiPZBMZmYa2glx1nUVDxU/FGYwzM+fTFP97ByWgARAoJcHISG+/P33OqoUE97D6h806ENCmgUlnPV77g497bPTk6afdvf+ezLpm9a13T/9cxruvnHnI/q0gV6+nDAgmp9zMvgmO5VLhoxq8z0FtdX8npeJt0bLaW7IOvDUaFkcPZLlaXv5OD2J+8ZMaXX98joD/zuSil6t5vTI3p8lYesfQ0Y1/D6yeOrAFp5JmIlO3TcrB4ve46uvPuPtt9/khx9+R90w7XBhYQFnnXUKc+Ycx9NPv2Bd96effuCZZx5n9eo1eHQyqPbbb7/w8MP/5rjjFrRYRfzhh+9j2LAYrrjiGmbPnoxe78Gnn64iPDzCus4tt1zHqFFjuOWW2zvVBtF57ZmC25lcMQ13f9a0bxRF4cCBZHx1HphDghrX0+s5oFMTnJOHPjkVvOrPXc/urM+kCPPw4uIhcc22rzOrKSgoZ8OGzdTU1eE9bAgA+pD6LFZDQaF1XcvU1z1JT/3s9JTpp2Xom2PSN61r3+wb/XMabglliV7hwuhYtCoV32SnUdmOqtdfZ6diVJQOZVY42ymRQwjUebC58BjFhppW191UcIxqk5H54dEE6D1c1ELXUKlULBk5nji/IJLKi3kzZY+7myQEEyZMoqKigkOHGjPRdu7cTnh4BLt27cB2tuydO7czevTYTgckcnNzeP31l0lISGzxdaPRyF9/bWLWrLl2y1eufLtT+xOuoyhKi0MDzznnnE5PB2phNitd/ues7fTFf7sL88msKMdsVsjLy+e3zFSOeelQNald5R0zlF9zM0nf27woZX5tNXpV8xsET7WGI0eOUFBQgEdYKDp/PwD0oQ1BicIip/6eu+NfT22bEP1Ff/v8S1BC9Arhnt4cFz6IapORDQXHWl23xmTkp2Pp6NVqznRjbQa9WsO8sCjMwJ/5R1tdd2PDMc0JG+iClrmeTq3h/jFTCNZ78HNuBr/nZrq7SaKfGzZsOIGBQezYsc26bMeObZxyymnodDpSUpLtlk+cOLlT+zGbzTzxxMNcfvnVREW1PMXvzp3b8fX1ZeTIxpo55567mB9++I6MjCOd2q9wrr46BXd/VW0ycu0fP3PtlvpCtJmZ6eTVVuMR1vx36T1kCGqdjrzUVEy1tXavqVFhbGH679U56Xz2568A+Iwcbl2u8fRE6+NDXWkZ5rr2TysqhBB9nQQlRK+xIDwagLV5Wa2ut704nxqziWnBAwjSu7d+wXHh9TchrbW5ymhke3E+fjo9CYF99+I2WO/JXXGTUANvpOwmu6rnpayK/kOlUpGYONEuKLFz53YmTJhIYuIE6/KCgnyysjKZMKG+YO2lly7mxBPnOPx355232u3n44//i6enJ2eddY7Dtqxf/yezZs2xW5aYOJFJk6ayfPmbzjpk0QV9eQru/shgMtn9nJlZP8uZR3hYs3XVOi0+w4dRaail4qD9VN9qFdSZmwclzLUGPlr3O1qtDt2QaLvXGrMlirt0DEII0ZdITQnRa4wNCCFE78me0gIKa2scFkzcVFifdTAr1P1ZByN8Axjo5UNyRQnZ1RVEeTUvaLWtOBejYmZ2ZBRatbpPp2eNCwzlwsFxfJyRxAtJ23khcTYalcRGhXtMmDCJt99+A7PZTGlpCVlZmcTHjyczM5MtW/5i8eKL2L59G3q9nvj4cQC88MIrGI1Gh9v08GgcfpWUdJAvv/yMFSs+aLUdGzas4+67/91s+Q033Mw111zGwYP7GTVqTCePUrRXf56Cu79pmt1wOP0IAB7hLT8Y8Bs7mqMHD1G77wB+Y+Ks03kqQF0LmRLlB5MwG42MHTeenaqGFRs0FrssxHNAuDMORwinuvHGq7jwwkuZN28BAMnJh3jmmcdJS0thyJBhvPrqm1x66WJWrPiAsDD5DAvnkKCE6DU0KhVzw6L4OjuVdQXZLIoa3mydOrOZvwtz0KnUTAp2/xelSqViXlgUn2Qc4o+87BYLYlmGbswfGN3stb7ogsGxbC/O42B5MV9npXJe9Eh3N0n0UxMnTrbWlTh6NJu4uNF4eXmRmDiBd95ZhqIo7Ny5jTFj4q31JAYMiGzXtg0GA4899gC33/4vQkIcZ0ClpqZQVlbChAnNh4fExo5i/vzjWbbsNV5++Y3OHaRot/4+BXd/YpvdUFFRQXbOMbR+vmi8W56pS+fvh0/MUCrTjlC2ex+BkxIBMCkKBrN91oW51kD5voOoVCre9qxFp+jx0miobsjOsGZK5Bci+r7Zs1sf+nfllddy9dXXu6QtBw8e4J133uTgwf1UV1cTGhpGfHwC9977ILqGQNu6dWuprKxk7tz51ve9+eZSwsMjePLJ5/Hy8sTfP4BTTz2dFSve4t57H3RJ20XfJ0EJ0ascFz6Ir7NT+SOv5aDE7pICKk1GpgUPwKuHTKs5J7Q+KLGjJK9ZUMKkmNlanIeHWsO08EgqS1sviNkXaFQqbotN5Nbtf/BhehLTQgYQ7e3n7maJfmjYsBiCgoLZsWMbx45lk5g4sWH5cFQqSElJZufO7Rx//EnW91x66WJycx3XtUlImMCLL75KYWEB6elHePjh+6yvmRtuhObNm8aXX35HWFg469f/wbRpM9FqW/6+uvbam7jkkvPYtm2LMw5ZtKK/T8Hdn9hmSqQcSaPObMYzovUHGYGTJlCdkUXZnn14DxuCPrh+lo6qJsW3i7dux1Rbi+/I4ej86s9tnmqtTVAiBLCfgUP0Xd9+u9r6/z/88B1ff/0lb7/9vnWZl1djIExRFEwmk8PzQVcUFxdxxx03M3fucbz00ht4e3uTnZ3FmjW/YTabgPqgxJdffs6pp55hV8A3OzuT88+/kAEDBliXnXbaGVxxxSXcfPPt+PnJNZzoup5x1yZEO8X4+BPu4UVKRQlVxjq8m8yssbFh6MbM0AEtvd0tBnn74qPRklZRhkkx2w1XOFpdSbXJSEJAKJ5aLZVubKcrRXv7ccmQON47coA3U/bw5LgZLVawF6K7TZgwyRqUuOmm24D6DKeEhER+++1nMjLSrfUkoP3DN8LCwvnvfz+1e+3tt9+kpqaGJUvuICio/mnp+vV/cv75Fzrc3qBB0Zx++lksW7a007N/CCHs2WZKHEpNoU4x4xEZ0co7QOvrQ/jkCeRs3kL+b2sZcPopaLy8qLT5PqhISaPiUAoaTw8CJ0+wLi8zNk7rp/HwQOfvR11ZebPCmaLvsc2U8/b2Rq1WW5dt376VW2+9gRdeeJW33nqNtLRUli17l1WrvqC6uspu+ugHHrgbLy9v7r//EQBqa2tZvvwNfv31J6qqKhkxYiQ333yHdahhU3v27Ka2toa7774fTcMMM1FRg5g6dbp1neLiYrZv38Kdd95jXWbJ9Hj55Rd4+eUXrJkdgwcPJTy8PrB+6qmnO6ezRL8mg7lFr6JSqYj1C0IBUipKm72+p7S+MvqU4J4TlFCrVAz3DaTWbCKjqtzutcOVZQAM8/V3R9PcalHUcAZ7+7G7tKDNGVWE6C71QYmtZGSkk5Aw3rp8/PgJfPXV5w0FDhsv8gYMiGTQoGiH/yzja7VaLTExI+z++fr64ePjQ0zMCLRaLYWFBSQnJzF9+qxW23jlldeRlpbK/v3NpyQUQnScbVAiNS0Vo9mEZ0TrQQmA6MREfIYNwVhRSc53q6k5lkOF0YDZaKRszz6K1m9CpVIRMmcWGs/GIKLJZophNfV1JaA+W8J2+mHRP7311mvccssdfPTRlwwaNLhd73n55ec5cGAfjz/+DO+99wnTps3kjjtuJj8/r8X1g4ODMRgMrF//p8PP3O7dO/H29iY6urEN3367mvDwCK6//ma+/XY1F130D+trcXGj2bVrRweOVAjHJFNC9Doj/QJZX3CUQ+XFdrNV1JiMHKuuJMzDC3+d3o0tbC7WL5DdpQUkl5cwzCfAuvyIJSjh0/+CElq1muti4nlg7yZWHN7H5OBwPHvIkBvRf0ycOJnq6mpGjRqDj09jIdrExElUV1eRmDjRrnilM23YsI5x48bj79/6339oaCjnnXchH330fqvrCSHax1Kc0lRby7HcY5i8PNH6NS9E3ZS3RkvInJmAisrDR8hd/Su/bdpGdkUZismESq0mZM4MvAY5LrStVqk5O2ESHx4+gqGgEDMKGiRTsLO++upzDhzY79J9xsfHs2jReU7b3rXX3sSkSVPavX5OTk7DUJAfCA6uD3BdccU1bNy4np9//pFLLrm8hTYncPHFl/HQQ/fi5+fHmDHjmDJlGqeccpp1+EVu7jGCg0PsMldDQkJRq9V4e3s3q48UGhpKampKZw5ZiGbkDkD0OiN9AwFIriixW55RVY4CDO2BN/gj/QIBOFRewkkDhliXWzIlhvbDTAmAxKAwZoZEsrHwGN8dPcz5UvRSuNiQIUNZv35rs+WjRo1ucXlXWNJuLdav/5PZs+c2W6+l/d544xJuvHGJU9sjRH9lyZSozckjs6qcY/4htGdCbk+NFpVGQ8i8WXgNHkT5/oPUllehUqvxio4iIHEc+qCgZu97JmEW9+7eANTXVbowcRrf/N//MOQXYlYUNBKT6NdGjRrdofXT0lIwmUxccMEiu+UGg4ERIxxfR910061cdNGlbN36N/v27eGjj97no4/e5513/ktoaBi1tbXo9e0Pwuv1HtTW9v1aaMI1JCghep0RvoGogOTyErvlPTnrwBJISWkSSDlSWYYaGNyPCz1ePmw0mwtz+CorhVMjh+LbpE6IEH3V+PGJLFhworubIUS/YwlKVGdlk19RSmhUfLve56nRoFGpMAE+MUPxiRnKEG8/0psMzbR16oAhjPFvnKFFo1IRGTkQtUpFdX4BRrMZnVrTpePpz849d7HL96nVqjEam08F21menl52P6tUqmZDLGxrGVVXV6HVann33Y+a1ePy8fFpdV9BQcGceOIpnHjiKVxzzY1ceOHZfPPNV1xzzQ0EBARSXl7W7naXl5cRGNg8CCdEZ0hNCdHreGu1RHv7kVdbTamhsUjUkcr6i4Ih3j0vKBHm4UWATs+RyjLqGqYPqzDWkV9bzUAv3349bCHKy5cTIqKpMNbxbXaqu5sjhMtccsnlMse7EC6WUlHCw3s3oygK1ZnZAHhGOR5uMcqv8abLU6NF0+QmsMrkuPAtgLdWh9rmPRqVCr1ej1dwMKaaGkpKm9fHEv1bYGAQRUWNs7OYzWbS0hqvj0aOjMVoNFJaWtKsrpGliHJ7+Pr6EhISQnV1NQCxsXEUFORTWVnRrvcfOXKYkSObT3UvRGdIUEL0SpbMg0M2mQc9OVNCpVIx0jcQo6KQ1tBOS3t74nATV7twcCxalYpvslMprzO0/QYhhBCiE549sA2AuqIiTNXVeISHoXFQN+b48GgW2wwr9FRrmgUl8mur7X4e4RvA8eHR1p8t05OrG+pGWN7v2zAFaUbGkS4cjeiLJkyYxL59e/n115/IyEjn1VdfpLS0xPr64MFDOf74E3nssQf588+1HD2azb59e1m58m127NjW4jY3bFjH448/xKZNG8jKyuTw4TTefHMphw+nMWvWHABGjozD3z+APXt2t9nG2tpakpIO2M3eIURXSFBC9EqNNRqKgfq5nY9UlqFVqYnybj11zV0sbU5pGHZyWIISVuGe3pwQMZhqk4mfctLd3RwhhBB9VE1DZkN15lEAvKKj8NZoWzwXm1HQ2wyt8NXq7ab1bsn88Ghui020/mwJSliCEeqG9/s3ZGccPpzWySMRfdWMGbO45JLLefnlF7jxxqsIDAxiypRpdus88MBjnHDCybz66otcfPG5PPDA3aSlpRIaGtbiNocOHYZer+eVV17ksssu5Oabr2X37p088cRzTJxYP+2nRqNh4cLT+eWX1W22ccOGdYSHRxAfn9D1AxYCqSkheinLDX5aRf2NfXFdLWVGAzE+/m1eMLhLpGd9sKTIUF8UqCdndrjDoqjhrM5J57ujh1kUNdzdzRFCCNEHWabnrMrIBOqDEmEeXpw5MIZXk3farVteZ0Cvbrym8NE2H77RlE6tthuuYc2UUKlAaQxO+A+sD0qkHznSpeMRvce5517AuedeYP154sTJDgsqX3/9zVx//c0Ot6XT6bjuupu47rqb2rXvqKhB3HPPA22ut3jxJVx++QXk5+dZhxd++eV3zdb74otPuPzya9q1byHao2fevQnRhhB9/fzf5cb6VP/ekHVgqRtRbaqvKZHe0OYhPv23yKWtQd6+TAmOoNBQw/qCo+5ujuiAxuvvluc+F71d/e+1jXsxIXoFMwp1pWUYCovQBfijCwxEq1bbTcppuTguN9ah1zRmSvhodW0HJZo8GPFoyLSwvMvyfk8fH3T+fuTn51FR4bhQphCuFBoayt13P0Bubo7DdcrKSpk9ey4nnniyC1sm+jrJlBC9knfDDX6VsQ7oHfUZvK1BifrU0bKGgIolwCJgUVQMW4py+TZb0ll7E7Vag1qtoaSkAD+/QDQaLdBT7mBVGI0SLGlZe/pGoaKiFJVKjVpmCBB9gFlRqDpcP0zQe9hQVCoVOpUatc1Xlp9OT2mdgXKjwRpUAPDW6NrMxtSp7V9XGoJ6lr+0xmEcKjwGRKCUGjh8+DDjxkkavOgZ5s2b3+rr/v4BXHLJ5S5qjegvJCgheiVL1oGl6nVOdSUAg7x83damtng1CUpUG41oVSqZCsxGQkAog739SK4owdhGRXPRc6hUKkJCIikrK6K4OM/dzbGjVqsxm503dVtf0t6+UanUBAeHN5t6TojeIK+miu3FeZw4YEj9dJ5mM5VphwHwiRkC0JAp0fj59tM2BCXqDE1qSuiYEzaQVVmOZ4pqGpQwN5na0RLU0KhUeA6IQCnN4MiRNAlKCCH6NQlKiF5JrVLhpdFagxKVDf/11erc2axWNQtKmIx4a3pue91BpVKxIHwQ7x05QHFdbdtvED2GRqMhKCgMRTFjNptRekByglqtIijIm+LiKszmHtCgHqS9faNS1WfCSEBC9Fa37/iTMqMBL42WeeGDqCkspK60DH1QILqAAKB+yEWwTdbi1TFjeXTfX1w/fFyzmhL/GDKaiYHhrM3P4tfczGb7swzfSAgIZXdpAaP97adoVNtkSngOHICSlMGhQ0koiiJ/Z0KIfkuCEqLX8tZoKTbUoigKlQ3DOHx6cFDCs2FcarXJiElRqDGbCNC1PA1ZfzY/PJr/HjlAiaEWk2LusYVLRctUKjUaTc/4nanVKvR6PVqtQYISTUjfiP7CMlQyt6YKgNKDhwDwjR1hXUerVjM+MJSrho1hfGAYw30D+HrW6ejUauswUQBvrQ6dWk1iUJjDmaIsmRKPj5tOaZ3BGuywDOOwDt9AhcbLi/DISEryCygoKCAsrOWZE0Q9qV8k+of+WcepZ1w5CtEJ3hotZhRqzSaqTD0/KGFbU8IyJZmXRoZuNBXi4cn4wDCMipmdJQXubo4QQoheZktRLplV9sUjPTRaamtrqUg9jEqtxnv4MOtrOpUalUrFOYNGMNy3IXuiIbhgN3zDJrvxzKiYFvdtGZKpaZJ9Yckes5TUtAQnMv29SS4vITk5qVPH2p/U17VRYTBIJqXou0wN9wj9rY6TZEqIXsu7IQBRbTJSaaz/A+7JwyG8tI1BCcuwE+8eHERxp+MjovkYWJObyaSgcHc3RwghRC9RWFvDo/v+AuD7OWdal3uo1ezevROT0YjPiBg0Ho2Zik3rQNjS2rzmrW28bB7tH8x7U0/kir9/sVu/6ewbTVmeflqGcST76skpKyIp6SAzZ85u4+j6N5VKhY+PP2VlRQDo9R64p6iyFFB2TPqmdW31j0J5eQkeHt79bjiXBCVEr2XJPKg0Gqk01qGmZ2ceaFRq9Go11SYj1UZLpoT8CbZkWsgAVKjYWpyHSVFQ95iZHIQQQvRkBrOpxeU1JhPfr1sDgF/cSLvXtO0cJtg0GzOwhSGYjgIcltsQS0FNS1BCHxaKWq/ng63rOeXc84j0D2xXW/or34ZMlvrAhHtufqWAsmPSN61rT/+o1RqC+uEDObkjEr2Wl3UGjjqqTHV4a3U9PqroqdZSY2ocbuItQYkWeWm0+Gh1VBjrOFRezNjAEHc3SQghRC+gtrkOqLGZxendTWs5vHc7+pBg9GGhdu/RtpIpYUvfJJ26pfe1lnVh186G4IRKrcZ78CDyU9J4ee2PPHvmRe16f3+lUqnw8wvE1zcAs9nk8qLKUkDZMemb1rWnf/pzcWm5IxK9liWNstxYR7XJRIRHzy8a6aXVUlZjsA43kUwJx/wankhtKcqVoIQQQohWvZa8i4Laaq4bHm9dVmJTe+DYzp0A+I8b2+yCv60hF8+Pn02dg6ebK6eeiAqswzgcb6vp1KCNbfAeNoSKlDSykg612g7RSKVSoXHDNZQUCXZM+qZ10j+tk0KXotey1I8orK2u/1nb82/wLUGIQkON3c+iOT+dHoCtRblubokQQoiebnVOOluL8zDYBA+yayoBqM0voOZYLl4BAVwz94Rm79WqW38qOdo/mITA0BZfC/PwItTDy2ZbbQ3fqGeb0eEZGYlar6MgPYPK6ioe3LOJj9IPttomIYToSyQoIXoty9CH/IagRE+eecPCUvOiqCEo0RsCKe7iodYQ6elDWmUZBQ2/YyGEEKI1tlN4ZjXMwFG6aw8AE6ZN55Kho5u9p701Jdqj3cM3bIISKo0a78HRmM0m1u7Yyo6SfD7JkKwJIUT/IUEJ0WtZbugLautv8H168MwbFpbMiCLJlGiXycH1hX62FeW5uSVCCCF6gyqbOhLJ5SXU5ORRnZmN1teH+PGJLb6nvYGE9tCpWi643bT2gabJEBLvYUMwKwo79uxyWluEEKK3kKCE6LUsmRIFvXD4hjVTQoISrUoMDAPgQMP0X0IIIQRAaV0trybvJLMhG8LCNihxoKyIkm07AAiYMJ5AL28Awm2GW0DbNSU6QudwKEh9VKLplKAWnpGRaDw9STp0EFN1/XWNSZFZDIQQ/YMEJUSv5dWQGWEdvtGLMiUKayVToj1G+AYC9U+7hBBCCIv3jxzg55wMHtizCbNNGoJtLYbDhw5Rm5ePPigQn5ih1lpFy6Ys4OuTz7Ku197ZN1pzyeA4TowYjE7d+tTk1ilBm0x1rdKoCY4dQUWdgcqUNADK6+qavV8IIfoiCUqIXsuSGdG7akpIocuOCPHwJFjvQXplud3UbkIIIfq34oaZNQoNNXYZBdnV9cUtzXVGiv/aAkDg5Imo1GrrrE6eGi0DfXyt73FGpsRFQ+K4LTax3es3Hb4BEBQbS5XRSEVyKoqiUFZn6HK7hBCiN5CghOi1LEMfas0mAHx60fANyzRl3r0gkOJuI3wDMaOQXFri7qYIIYToIWxv6luarrN01x6MlVV4DxmM16CBAPhp9W1uy1WaDt8AyNSrKPT1pK60DEN+AWVGCUoIIfoHCUr0cbfeeitTpkzhjjvucHdTnK5pDQnvXjR8w9wwtlQyJdo2smEIx8Hiwnatn1dTxcGyIirkCZMQQvRZrQUlDMUllO/dj1qrJXbObOtyy/ANd2hS57LFoASAT+wIAMoPHqKsrrabWyWEED2D3BH1cZdccgmLFi3iu+++c3dTnK5pEMK3F2QdeDYJQlimCBWOjfALBOBAcRELAqMcrpdUXsx7h/ezp7QxeDHWP5gbRyQw1Me/u5sphBCiG5UaavmrKIf54YPQqTV203jW2QzfUExmCtdtRFEUAickEBEcQnF5MeA4U6JpwKA7WPZhCUVocBCUiBlGydbtVB1OJ6e4CEIHuqB1QgjhXpIp0cdNmzYNHx8fdzejWzSduaI3zL7h3SQI0RuyO9xthG8AAAdLHGdKHKks46E9m9hTWkiYhxfTQwYQ4eHNvrIibtvxB/939LCrmiuEEKIbPLb/b15N3sWqrFTAPtPAaJMpUbprD4bCIjzCw/AbM4pAvYf1NT9dy+dcVwQlLKyFLh1kSqh1WnxjR6KYzezY+rcLWyaEEO4jQQk32rJlCzfccAOzZ88mLi6ONWvWNFvno48+YsGCBYwbN47Fixeze/duN7S0Z2o69KE3zb7h6GfRXJDek1APTw6XlbVY7LLIUMMjezdTaTJy3qARrJhyAg+MmcryKQu4NiYejUrFm6l7WJOX6YbWCyGEcIakhmyH5IoSwH7IhiVTojYvn7Lde1FrtYTMnYlKrbbLonSUUenKoIRFa3Us/EbHoVKp2Lt9O0Zjy0Weiww1/GvnOnaXFHRXE4UQwmUkKOFGVVVVxMXF8dBDD7X4+g8//MDTTz/NzTffzNdff01cXBzXXHMNRUVF1nXOOuusFv+ZTCZXHYbbaNVqPGym3uoNmRK2QQiNSoXeCdOQ9QcjG4pdplWUNXvti8xkCgw1zA8fxOVDR1ufPmlUas6KiuHeUZNRo+KlpJ3sLW1fXQohhOiMtLQ0LrzwQk4//XTOOecctm7d6u4m9TmW2T+rbYLUv+VmYqquIX/NnyiKQtC0yej8/ID6BxaRnj4E6PRoHM2yobgwLNEQi3CUKQHg4++P1+BoispL2bVrR4vrrMpK4WB5Mfft2dgdrRRCCJfq+Xdxfdi8efOYN2+ew9dXrlzJBRdcwLnnngvAo48+ytq1a/n666+5+uqrAfj2229d0lYAtbpr1akt7+/qdmx5a7TW2Tf89Hqnbrs72M624aXRotHUXyB1R9/0BZb+iPL2hULIN1QzRh1sfb3GZOT33Ey0KjXXDY+39qet6WGRLIkdzyuHdvJ6yi5emzQfXR8KBslnxzHpG8ekb7qHh4cHTz31FDExMaSmpnLTTTfx008/ubtZfYrSkNdgmzn3RcYhCtauw1RVjc+IGHxGDre+5qPVsWzy/FbjDq4dvlFP7aCmBMAgL1+qxo0lLyOLdev+YMKESagbzlsHyopYn3/Ueu0jhBB9gQQleiiDwcC+ffu48cYbrcvUajUzZ85k586dLm+PVqsmJMS37RXbISjIeTUufD30FDdUp44OD2xWSLKnidQ2XkT56nTN+tSZfdPb6XQaa/9EFflDJtRozHZ99t2RVCpNRk6OHkpMZIjDbV0UPIZNJTn8nZfD6sIMrhgV36k2Gc1m/jiayY8Zh0kqLabGZCTU04vJYQM4Y0gMsYHBbW+km8hnxzHpG8ekb5wrKqqxGG9MTAzl5eUoioLKDVNO9lWWAEKNTUZoydYd1OTkog8OInjGVLv+9tHq6jMkWvkVuOPaodVpSFUQM2QoBQPCOZqXy+7dO0lMnEh5nYG7dq0H7AtlV9QZ8HXjzCJCCNFVPfsOrh8rLi7GZDIRGhpqtzwkJIT09PR2b+e6665j9+7dVFdXM3fuXJYvX86oUaM63B6j0UxZWXWH32dLrVYRFORDcXElZrNznkt4NIxA0qpUVBRXU9nDL/xqaxqnqfRQaygsrAC6p296u7o6k7V/PE31v+eskjLrMoDPkw8CsCA4ym55S64dMpYd+XmsOLiHmf4RhHh4dag9x6oreebAVpLLS4D661u9WkNaWSlpZaV8kZrE8RHRXDM8Hn8XXhzKZ8cx6RvHnNU3/v5e6HR9ZxahLVu2sGLFCvbu3Ut+fj7Lli1j/vz5dut89NFHrFixgvz8fEaPHs0DDzxAQkJCs2399ttvjB49WgISTqY0pDxUm+uD/OUHD1G27wBqvZ7QBXNRNxnK6dPK0M6nE2byW24m88MHdV+Dm1C1Fh2xUCDKy5eAxAR+/PFndn2yko9HjaLKJjui2iYok1FVzpgAx4F5IYTo6SQo0ct09InL8uXLnbZvZ13Um82K07Zlmb3CW6NDURovVnoqT1XjxbuXWtusH5zZN32BpS+CdPXV04tqa6zLMqvKOVReQrSXL2P8gtvst0hPH84YOIxV2an8cPQIlwxpf3AuqayYh/ZuotJkZJRfEOdHj2RSUDhatZr82mo2FRzjs8xD/JqbycGyYh6Nn06Ep3cnj7pz5LPjmPSNY9I39iy1ns455xyWLFnS7HVLradHH32U8ePH8/7773PNNdewevVqgoMbM6Wys7N5/vnnnXoO7q+yqirYXHjM+rPl01ptNFKVnknRpr9RqdWEHT/PWkfCls5RHQlgfFAY4wJCHb7enYytXK8oKER5++I5IBzPAREczcnl3v/7gttOOL3F9WtkKIcQopeToEQPFRQUhEajoaDAvqpyUVFRs+yJ/sxS3NLHQUXtnsY2RbQ3FObsKYIbpnQrMtRYl6VWlAIwKTi83YG6hQOH8nV2Kj/lpHNBdCzadtSWKDLU8OSBv6k0GTln0HAuGzLa7n1hHl6cGRXD8RHRvJi0nb+Lcrlr1zqeGz+bAZ7OS403KWYyqypIryxDo1Ljr9Mzyj8IT7V8joRwFmfUeqqoqOCmm27iwQcfZMiQIZ1uS0+s4+QOS7avtc6uYaFWqyjOzqJg7ToAQufNwnNARIvvV6lVzfrAnX2jUtXv19RGJYtB3vVDFQMSx1GzOpdtf/7JG4OjWlzXqJhRVPVDDD00Xc9c6iufne4gfeOY9E3rpH9aJ1ezPZRer2fs2LFs3LiRBQsWAGA2m9m0aROXX365m1vXc1hms2gtPbMn0anVaFVqjIpZpgPtgGC9JwDFhlrrsqyq+uEa0d7Nn4w5MsDTh8nBEWwpymVzYQ6zwwa2ur5JMfP0gS0UGWo5KWIwVw4d4zAA4qPVcf+YKbyWvJtfcjN4+sBWnh8/G726axeIlcY6vjt6mP9lp1FmNNi95qnWMC10AEsSJ+HdnpRgIUSntafWk8lk4rbbbmPx4sXMnj270/vqiXWcygy1bMnPZV7koHYFdJ2laUBCq9NQUHiUzNW/opjNBE+bjPdQx8GfAUF+DvvSHTVV9DotISG+6I85vgZQa9WMGRAGSeAZOYDL587n/T/XsHfbdvzHNs/y8/DRc/P2NWRUlLPx7IsczzLSQVJzxjHpG8ekb1on/dMyuStyo8rKSjIyMqw/Z2VlceDAAUJDQwkLC+PKK6/k7rvvZuzYsSQkJPD+++9TU1PD2Wef7cZW9yzeDTf2lmEcvYG3RkuZ0SBBiQ7w0mjx1GjsMiWyquuDEoO8OnbhflrkULYU5fL9scNtBiXW5mVxoKyYkb6B3DBiXJsZGRqVmltGJnCsupK9ZYW8lbqXJSPHd6h9tpLKi3ly/98UGWpRoyIhIJQYX39UqDhWU8nO4nz+yMtmwy/HOD96BBcNjmt1mjkhROe1p9bTn3/+yebNmykoKODzzz8H4IMPPsDf379D++qJdZz+tWMd+8uKuGHEOM6Miuny9praV1pItcnI5OCWMx4s8tKO8NInX2M2mRg0YxqaUSOtr431D2ZfWf206ROCwoj29mWk1r9ZzSF31pupqzNSWFhBeWWNw3WMRjN+dY0B7UtOXcRXG9dTunM3viNiUHvY1y0qKq0ko6IcgJz8si4X7pR6PI5J3zgmfdM6Z/RPX6vjZEvuitxo7969XHbZZdafn3jiCQBuueUWlixZwsKFCykqKuLVV1+1FtR655137Mat9neWKTZ9e8nwDQBPjYYyY+8KpLibSqUi1NOLrMoKDGYTerWGzKr6CzBLimt7TQwKJ8zDi72lhZQaagloGBrSlEkx82lGMgDXDY9vd8aDRqXm7tGTuG37H/yUk86C8EGM7UQBso0FR3n+4HbqFDNzw6K4bMgoBnjZR9drTEa+O3aYzzOS+STjEBlV5fwzdqJT0neb7mdLUS6pFaUUG2rx1GiI9PJhYmA4g33an6kiRF9kW+tp/vz57Nu3zynb7Wl1nPY33OwnlRVjjnRO2xRF4d7dGwj18OKP/GwAvpt9hrU/f83NsFu/6kgG+zdvY2JAKEFTJzF6yhT8tHq2FecB2H33TQoKZ1HUcFDA7KB+g7tqqpjNCnVmc7PlU4Mj+Lsol1i/QHw1OmaFRuKv1RMZEcmYxAn8vfVvSnfvJWjKRLv31doUvawzmdGretZnpy+SvnFM+qZ10j8tk6CEG02bNo2kpKRW17n00ku59NJLXdSi3sfHkinRS4ZvQOOQE8mU6JjghqBEsaGWUA8vsqsr8dfqCdC1HFRwRK1SMTEonJ9y0tlVWsDcsJbH6P6Rl82xmkoSA0MZ7d+xQGCw3pMrh43hP4d28O7h/bwwfnaHCtSmVJTwQtJ2TIqZa2PiOXPgsBbf76nRcsHgWE4fMYIl635jQ8ExakxbeGjstNanm2unapORT9KT+OHYEQeF1PYx0jeQK4aNZnxgWJf3J0RPJrWe6jkzFyu3tsqa2WBhVMzoVBrK6wy8fGindXnZvgMU/72NYL0nx51yCgdUlXiqtTwaP53T1/0PwC54rOnhQ9paKnR5e+wE1uZlcUJENAD/Hj3F+trc4xawded2yvcfxDd2BLqAxuwbg02Aw9TDC34LIURLXDcoUIhuYBm+4dOLsg68emEgpScI9ayfwrPIUENeTRVGxdzhLAmL8YH1NxC7SgpafF1RFD7PrM+SuHBwXKf2cVz4IIb5+JNUXswmm8rxbSmtq+XJ/VswmM1cOWwsZ0XFtBnQGOznz0sT5jLY249txXn898iBTrXZVlJZMTdtW8Oq7FQUYF5YFHfETuCJ+BncN3oKlwyJY5CXL8kVJdy/ZxP/SdpOjcnY5f06Umc2cbCsiDV5maw+ls6mgmPk1lR12/6EaMq21pOFpdZTYmKi+xrmYl0dIlZjMrI+/yi1JhNJZSXNXk8uL2FbcR4ZDdlwislM0V9bKP57Gyq1Gu+501ntWx98aC2439OHspmU5pkS/jo9Z0bFWLNAbUUEBeOfEI9iNlO06W+72cYMNkFjy3ZzaipZm5fV42clE0IIkEwJ0ctFNqSzD/TqPUVjJFOicyxBiWJDDRXGOqDjQzcsxgdYghL5Lb6eVV1BVnUFw30CiO/k3O9qlYorh43hob2b+Tg9iRkhke3Kllh5eD/5tdXMC4tiUQfGbQfoPXhgzBTu2LmOr7JSiPMLYmZoZKfavre0kEf3babaZGJWaCTXxYwjxMPTbp2ZRHJhdCwbCo6xPG0Pv+dlkVNTxUNjpuKr0zvYcscV1FbzVVYKa/OyKG/4vdsa6uPPGQOHcUJEtNOKu4n+S2o9tU3VxQyEt9P28VNOOmcMHGb9Lrd19+4NAFw5bAymqiry166nNjcPjYcHYScchyY8jMOVZUD9cEhHnJEt1h0s/WdsYfhGa/x0evzjx1CZmkbNsRyqDh/BJ2YYgN1QEEumxG3b/6DSZMRfp2diULiTWi+EEN1D7opEr5YYGMbbk48nwtPb3U1pNwlKdE6IZ/1NcZGh1vpUqKNFLi0C9B4M9fHnSGUZOTWVzabu3FpUPz55ShsF19oyMSic4T4BpFaWklpRygi/wFbXz6wq5/fcTPy0Om4akdChIR8AA718+VfcRB7d9xdvp+1lYlBYhwuepVSU8PDezdSaTVw2ZBSLB8c6XFelUjE7bCDjAkN4dN9f7C8r4v49m3h2/KwuF1pTFIWfctJ59/B+qkxGNCoVk4LCGerjj6dGQ7Ghlt0lBRypLGNp8i6+zU7jzriJDPcN6NJ+W1NprGNvaSHpVeXUmU14arQM8/FnlF+wZD71EVLrqW1dvdff0VD/4bujh1tdb9P+vRz79gdMNTXoQ4IJmz8XrZ/9d37T86ht7Qh1DwtSPhY/nbdS93Dd8Hig48Ms/LR6VBo1wTOnkfvjLxT/tQ2vqCjUHnq74XXGhkyJyobMtSOVZRKUEEL0eHIVJXo1lUplzZboLazDNyQo0SGNmRK1FDfMwtGR6UCbSgwM5UhlGbtKChgwwP4ztK04F4BJwV2/kFsQEU1qWim/5WW2GZT44MhBzMD50SPx6WTx1inBEcwMiWRj4TG+zkrloiHtH35SYzLywsHt7QpI2ArQefDkuJk8uvcv9pYV8nrKbv4ZO6HDQRULRVF4J20f3x5NQw2cHTWc8waNaLEoaVJ5MSsP72dvaSF371rPHbET2pxVpaOyqir4LPMQf+RlY6b5jYSXRsO8sEGcFz2iWYBL9C5S66ltageZEibFbJetZFsA1JZHG0WDFZOJkm07+ePgIUwmE76xIwiePgVVC1kRTYMStn+dPS1TYmJQOG9NPt7687zwKNYVHG33+/0bMtA8B0TgOyKGipQ0yrduJ2DWdCptMk6aBjtqTC3VAxJCiJ6lZ4WRhegHZocNZIx/MKP8g9zdlF7FdvhGZ6cDtWUpzNi0rkS1ycje0iL8tDpi/br+O5oXFoVGpeKPvOwWq61bHK4sZWPhMUL0npwWOaxL+7xq2Bh0KjVfZqVQWOt42rmmVh7eT1Z1BZOCwjk/emTbb7DhpdFy7+jJhOo9WZOXxeqc9I42G6i/kXkrdS/fHk3DX6vnufGzuTpmrMNZUuL8gnh63EyuGDoag9nEMwe3sq6hin9XKYrCqqwUbtq2hjV5WfhotcwPH8T1MfHcHpvIVcPGMCd0IGYFVuekc/O2tfwvO81hpX9nOFRezNupe7l39wau/vtXrtv6G/fu2sB/jxwgubyk2/Yr+rZak4mUipJ21R9oqVbD55nJnLX+e9IbhlXsLS3kos2r2d6QFWFSFL7KSmFp8i4yqyuavd/CUFhEznc/UrbvAAa1mtC5swiZNb3FgAQ0H76h2GVK9KygRFPTQyJ5b+qJXNzOukV+2sZhcYFTJqLx9MSQeoTqzGyqbOr5mJpU9a/uxlo/QgjhLPKoVggXmxIc0eVhAf1RiE2hy6yqCrQqNeFdGLYzqiHgcKThItpid0kBRsXMhKBIpzxpC9R7MCkonL+LctlWnMv0kJbrPKzNq7+RPisqpstTeg7w8uGMgcNYlZ3K6pwjXDJkVJvvOVxZyv8dO4K/Vs/tsYmdynII1Hvw79FTuGvXet47vJ+ZoZEdnh3lt7xMvj92mECdnifGzWSoj3+b71GpVJwXPZKBXj48c2Ar/0naQYjek/igzs+IYDSbeTFpO+sKjqJXq7lo8ChOHzisxWFXFXUGvs5O48usZJan7SW5ooTbYxOdWuMipbyEN1J3c6iFwMPR6kr2lhXyeWYyCQGhXDlsDCPbyMoR/U+d2URmVQXDfPyb/X0/dWAL24rzeGTsNCY3nJ/K6wzk1VY3GxLV0jeDpbjuz7kZXBsTz57SAiqMdSSVFzMxKJw/87NZeXh/i+0K0XuSX1FGyY5dlO+vz1LxjBxAyJwZaH1azzyy/D1ODxnA5sIcJgVHsLUhENLTMiVaEurh1e51/XWN2XMaT0+CZ03HtG4Thes3UTKy8Tve2KSAZkldbdcbKoQQ3UwyJYQQvUJIw8XbzpICyowGRvgGdOmi01erw1ujJa+myu7p2tai+qEbk504BndBeP30bhsKWp6FQ1EU1jek8c5xMEVpRy0cOBQV8EtORotV3pv6IjMFgIsGxxKk92xjbcfi/IM4NXIIlSYjn6Qf6tB7j1ZX8FbqHtTUT4XXnoCErZmhA7l2+DjqFDNPHdhCeZ2hQ++3UBSF11J2sa7gKBGe3rwwfg7nR490WAfGV6fnH0NH8VLiXMI8vFiTl8WzB7a1q9/b05ZPMpL45851HCovYYi3HzcOH8ebk+bz7ezTWTXrNF6feBzXxsQT6enD7tIC/rVrHV9mJndrxobofV5M2sGtO/7g74bvOFvbGm7kd9tkjv1z5zpu2/EHGZXlduu2VuhS1xCIs2RoVZuM5NVU8XlGy98FKgU8s45xdNV3lO9PQq3TETxjKuEnH99mQAIagxL3jJrEqxPmMcumuG9vCEp0hK7JsBfvwYMYMjYeU00NB9autS43K4rd335BbbWrmiiEEJ0mQQkhRK8Q6OGBRqWyPgW6bOjoLm1PpVIR7ulNjdlkN6tDSkUpAOMCO/+UvanEhm0dKCtq8fXUylJya6qI8wsirANPzlozwNOHCUFhFBhq2NZQuNORo9UVrM/PJkCn58QBg7u874sHx+Gt0fLDsSNkVTlO1balKAqvHtpFtcnE4uhYxnZy1hPLTBwldQbeTWv5yWxbPs08xK+5mYToPXkmYRYx7SyeGeMbwLMJsxjo5cPGwmN8cORgp/ZvoSgKy9P28lF6Enq1mptGJPDaxOM4beAwor390KjU6NUahvj4c1ZUDMsmL+DG4ePQqFS8d+QAS5N3SWBCWFkCn3tLCx2uYzvk4VhNZcP69kPcWrvX11qCEg11f2pMJpbs+KPZkA1FUajOPkr5j79w+Lc1mKqr8Rk+jIHnnonfqNh2Z2pZCurq1BpimgSq+1pQwpalLseUBfXBm9zkFCpSUoH6TAnbIRsFHRjCJ4QQ7iJBCSFEr6BWqQhsGAowJ3QgCU4IGkR41A//yKupsi7Lr61Cq1IR0oVsgaZ8dXqivXzJqamixNA8ldaSQTGrk1N4OnLKgCEAbdZ3+CorFTNwVtTwLs+aAfWzmyyOHomZ+poM7bG7tIC9ZYUM9vbjwnYW2HTk6mFjCdDp+SknnR0FrQdkmkqrKOWT9EN4aTQ8Gj+9w0GicE9vHhs7HR+Nli+zUvi7MKdD77e18vB+vjt6mACdnhcS57AwcmirN2salYrTBg7jP4lzCdZ78ktuBm+k7G5XnQDRf4R6OP5ua+lGPt9gf1Pb2sdJo65/f1HDjXCJodauCKOiKNTk5JL306/k/fw72pIyggYMIOLUEwmdOwuNV8f+3ryaDHXT2gyZclSQs6dRWiie64hvQwFkyxTNEf4BhMydiVFRKN60BUNxCSZFsevzalPzaVeFEKKnkaCEEKLXGOkXiK9Wx1UxY52yvfCGOhW5tfVBiVqTiZI6A6EeXk4vkhbXUNj0YLl9toSiKKzPr3+COSvUubNGTA0eQKDOg61FuZQ5GMpQZzbxZ34WHmoNp0UOddq+T40cil6tZl1BNjXtKLT2aUN69wXRI9Gqu3Zq8tPpuSamftq9V/dsb/dNuUlReD1lN2YULhs6psPDRywGePlwe+wEAF4+tJMKY8dvCv4uzGFVdir+Wj1PtbO2hsVQH3+eHjeTIJ0Hq3PS+eHYkQ7vX/Qttn8DrU1H3dL3XtP0f9uaBX/mZ/Povr+sP1uHbxjq37Ox8Jh1/1XpmeT+30/k/vgLNcdy0fn7sWDROcy84AI8B7SvztKJEfaZXJ5q+2Oxz5Toe5e47045kfemnkhAw0wcwXoPPAdE4DdhHGajkYK166iprbX7zqlTFGpMRv69ewNr8jLd1XQhhGhV3/vGFkL0Wf8eM5l3Jh/vtCEOEQ2FMnMbMiUKGi6knbV9W6P8ggE4WFZstzy/tppjNZXE+Phb2+MsWrWaycHhmHGcsr23tJBqk4kJQWGdnoa0JT5aHbNCB1JtMrGhjWnv9pUWsqe0kCgvH2Y7qabGcWFRDPXxZ39xIfsdDJtp6pecdJLKixnpG8jCLgZoZoRGcmLEYMqMBr7MTO7Qe4sNNbySvBOA22ITGdKJ4EiUty8PjZ2GRqVixeF9ZFaVt/0m0WeVGRuDksZWgnQtzRCU30pQ4rmD29hiU6NCrVKRXF5CSUMQ1FRTQ9m+Axz7+jvyf/+D2vwCdIEBhMyZQeTZZzB5/AQ82pmd9VzCLBIbZk2yaFoU2DYQ0VuGb7RWo6Mpb62WUA8vazDGktHnGT8Gr6hI6kpKWbv6BypsgtBGs5k1eVnsKS3kxaQdzm28EEI4iQQlhBC9hk6twVenb3vFdgq3Dt+ov+jOr+nGoIQ1U8I+KJHecLM4wjfQ6fsEGNdQm8FRUMJS9G5qN8wIY3mq+XNORqvrfX/0MADnR4902o2ESqViUVQMAN9mpbW5vllR+Cqrfkz2jSPGOaUdlwyJw0Ot4X9H05rd2LXm3cP7Ka0zsDByKNNCBnR6/yP9ArlkyCgMZjMvJG3HJMM4+q1Mm9ouxiaBB9u6I9UmIzuL8/kpJ936NL6oyfCNpu+39WH6QW7fvpaaYzkU/LGe7M9WUfz3NupKy/CICCf8hPlELjod3xHDUanVRHv7otc4vhSNb/j+GuUXxJiAECYFheFvMzVm0ywo27/bnj4lqEVHhm9YnB89ksXRI631blQqFSFzZqHx9uLgnt1s+XuzdV2jYrarmySEED2RTAkqhOi3rJkSDcM38hpuHC3BCmca7O2Ht0ZLcnkJJsVsfaKX3jAlabS3n9P3CRAfUF97o2mxOqi/oLcEJSZ3Q1AiPiCEAZ7e7CsrIru6gigv32br1JlNbC3OxUOtYU6oc7IkLI6LGMT76QfYWHCUvJqqVqeQ3V6cx7GaSuL9Q4htmC62q0I9vFgUFcNnmcl8kp7ErbGJbb4nu6qCP/Ky8NfquXLYmC634dxBI/irMIek8mLW5x9lXrhz+1j0Dl83BNyg+ZSRtsOryuoMPLB3E9BYr6HObLabScaSaWEbEFAUhdrcfIqOpFN1JANTdf13qVqnwzd2BL6xI9CHBNvt96yBMYzyC2J7seO6L9fFxJNeVc7EoPoMCV+dno9nnML5G/+PapOJsCZ/0+peGJTojITAUBICQ+0KWmq8PAmbPw/1lt2s/Wk11VPH4RU1sFmNCSGE6IkkU0II0W9FNGRE5DcM38hvCE6EeTo/U0KtUhHnF0St2cThhkAEND7BHOzTPUGJCE9vwjy8OFxZZpfSC5BVXUFuTRUjfAMIdmJhTwu1SsW8huEY24vzW1xnd0nj8JGmqdhdpVdrOGdYLGbgp3Zma5w+cJhT23DuoBF4aTT8kZ9NVTtuDD7PTMYMnD1oeKtj/9tLo1Jx2dBRAHySkSTZEv1QlbGOLUWNBVeLDbV8lnHIekNrW39gnc1Qq2qTCQCD2YTBbBuUqP//nNJiKtOOULhuI9mfrSL3x58pP5CEqboaz8gBhMyeQdQF5xI8Y2qzgATAedEjUKlU6NWO/+4HevkwP3wQAQ1Fji3emXwCr0yY12pWW28ZvtEV+ib1dzzCQ5l5yqkUG2ooWLuOutL6c42jmkJCCNFTSFBCCNFv+Wh1eGm05NZWoyiKNcU+vBuGbwDWJ/Ap5aXWZRkNwzeGdFOmBNRnLCjAvia1FSxZElO6IUvCwjK1p6PpUDc1FMKb3oVhCq05JXooAFuLcx2uc6y6km3FeYToPZ3eDm+tjtmhUdSaTdYpGVtrx5q8LPy0Ok6LdF5wJCEglPiAELKqK1iXn+207YreIbm8BNvciK+zU/kg/SAfptdPWdvW0KL6oIQJY2UVVUfSObRuPcuWvcZTzzxBwR/rqUhJqw9EDIggeMZUBl14HhGnnIDvyOGodY4Da7qGYERrQQlHswEF6D0Y3sZUvf0hKNFSMc+hY+LRjYnDbKijbM06TLW1EpQQQvR4MnxDCNFvqVQqIjy8OFJVToWxzlpbIqwbhm/Ub7c+2FFcVz9G26woZFSV463ROnUK0qbGBYSwJi+LvaWFdjUKLIGCiUHh3bbvUX5BqKkvZqkoit2UlmZF4e+iHNR0X2Ak2tePAZ7epFaUUmyoIaiFfl5XcBQFOGnA4C7P/NGS4yOi+SU3g19zMzmpYZrWlvyel4kZhTMHxuCtdd7pWaVSccngOP69ZyNfZ6VyXPggp21b9HxJDXVshvsEkFrZGBDNrqqgzmzint0b7NZXTGbqysqoKy6hrqSUguISXlm3g+yk3fUreHiRHRqJ2ssL39gReA6MxHPgADQe9tkMbbHM1OHh4G9uWCdnv7Hoi7NvtEeVqY66sbGEFxZiyMom/9e1FJ93rrubJYQQrZKghBCiXwv39OZIVTm5tVWNwze6KVPCv6FwnOWpVV5tFbVmE6P8guxu1p0t3kGxy6PVlUD31bOA+kyBYQ03Q/m11XZ1HZLLSygy1BLvH9IsPdtZVCoVk4LD+b+jR9henM/xEdHN1tldUj+0pLsCI2P8gxng6c3+siKOVlcwsIXaGgAbC+qzRuZ2Q92HcYGhDPb2I7WylOyqCqJ9u+93LnqOmpoakvNzMVZWEe0dxMHSUsy1dZgNtRzNLeK/WfmUHNyBsbwSY2UlpspKjJVVzbZTHAH6oED0YaEMGzaCWxecwY8VBaRmdWxmGVu6hmCErkmmRJiHFy9PmIu3pmuzAan7fqIEAOcMGs4qm5ohx6orQa1m2mmnsfObbynJymTv6p/RzZmOqhuCrkII4QwSlBBC9Gu204Lm19YQoNM7vbaBRUCToERGZf3QjcHdGBQAiPT0wUOt4VhNpXWZWVE4Vl2Jv1aPrxOnAm3JmIBgUitL2VdWZBeU2FtWHySZHNx9mRoAk4MiGoISec2CEnVmEwfKivHRaNtMB+8stUrF8eHRfJSRxB952Vw0JK7ZOtlVFaRXlTPE26/FgqDOMDt0IB9nJLGu4CgX+zZvg+hbfv55NR//8j3b8nMxA3/5BXHUZvafCo2WbA8vSqvKSQgIZXdDMVwvHx8Uf190QYHoAgPRBwVy+dxTST64FYBAvyAUPx92Zh/oUvsshSg9bIISJw0YzJVDx+DnhFmWNP1khPJVw8baBSVyGmokDfDzZ8xpC8n59BPyDh/GS6Mics4sdzVTCCFaJUEJIUS/ZplpI6m8GKNi7rYsCWieKWGpJ9FdRS4tVCoVwXpPjtVUUmsy4aHRUFBbTZ1iJsbLp1v3DfWZAt8dPcz+0kLm2wwdyGoo8jnMp3uCARYJQaFoVSp2FOdjUhS7seZJ5SXUmk0kBg/o1nTvaSED+CgjyRqIacpSW2NmaGS3tWFOWENQIj+bi4dKUKKv8wsOZpfJgDYkGJVGw6DwKNKLPVHpdGg8PFB76AkKCqXSbOCW6SfwyOHdaL19GBcU1uxzWmcTqE0qL+aqLb8CEKL3JNzTiwNl9lMdTwoKZ1srs2rYsi3WOD4g1CkBCeg9s2/MDYvik4xDnDUwxinbswSfwzy8yPf2Jvyk48n5v9VUJKdS4uWNMuu0bs3ME0KIzpCghBCiX4tquClfk5sFdM90oBbWoISxPiiRXuWaTAmAEI/6oESRoYZILx/rhetAFwQlRvvXV95vWuwyq7r++Ad5d09mgIWXRssY/xB2lxaQUlFCnM2Un7sahm4kBIZ0axuG+PjhqdZwqLy4WWAEYGNDUGJGSPcFJaK9/Rjq7ceRqnIyKssICenefhfuFTcugcizTrP+fGbcBJKTdtitU6fR4msyMmZ4LHOUanJrqgjxaF53pcLBzDERnt7WDDCLBeGD+GfcRC7dvJqSdhRYjLHJUDLjvNlhesttd7S3H6tmndZqwc+OsGRKhHt4c0hdgtbXh/CTFpD7w88U7t7LK6s+IXhiImdGDQfqv5dndGMwVAgh2qN/5LYJIYQDk4LDGe4bQHFdLdB99SQAfLV6VDRmSmS6MijRUOCx0FBfZPNYQz2JgZ7dH5QI9fAiwsOb9Kpy67SYiqKQWVWBXq3u1j63GBtQHxg5XFFqt3x3SX3KekJgaLfuX6NSE+sXRLXJREZVmd1rRYYaDpWXEOHp3eXifm2Z0zBF6/r8Y926H+F+NWaj3c8+LdRoqGyYFtRbq+OBMVNZOvE4a60HW0erK1rch5dGy7gA+78dy3CM1yfOJ7AdWQ+hHl7MCR0IODdrqjdNfuusgARgneo1zMPLWkxUHxRE+MkngE7Liv/7huXffcXX2ancuWsdTx7Ywrai5lktX6Ye4pq/f7UGboUQojtJUEII0a9pVGqWjByPuuG5Wrhn990ga1Qq/LR6a1DiWE0VHmpNt868YWENSjRM/2cpchnpgkwJqM/IUGgMipTVGagw1jHQy9cladaWjJCjNnU1akxGksqL8dfqGeLdvcEAgNH+9RkaTVPdUxsCJeMCQro9rXpSw0wrjqZoFX1Hjclk97Oj2jEeao1dIELbwjCmlCbBPAsvjZbTBg7luLDG4qz6hqEeAXoPRjVkSVmc0/B0vqm7R03ivaknMtSJQTmlV4UluuakAYObLQvz8LL7vXqEhhB+8vGodTpKd+7h/35ZTW5DVkVLQafVmYc5Wl3J/Xs2dV/DhRCigQQlhBD93gjfQC4YPBKAWJvU/u7gr9NTazZRYqil0lhHmIeXS8b3WlKyLUGBoy4cvgEQqK+fXaPYUJ+RktlwERzdTUUdm4psyAjJqW6cWSC9shyjojDaP9glgRHLDdrBJgGB9Mr6zAlXBEaG+PihUalIc3CTKfoOyxNzC09NyyN2fZoEK1oKSiSXl7T4Xi+NFo1KzRlRjfUQPG2e+jf9q3KUEaBSqQh1QcZUX3XziATOGWQf8PHV6pr9Lj3CQgk/6XjUWi1JmzdTvHUHiqJQ3sLwHINNUEtR+k+ARwjhHhKUEEII4JIho/h0+inW+gfdxVJXIq2y/qawpfHb3SFEX3/BX1jbEJRw4fANgKAmQQlLkcvuridhYQlK2GZKFBjqs0YiPLuvjogtSy2LppkSrip4CvXTL0Z7+1FcV0tBdXW370+4T22TTAnbG9RgfeMUvE0zKLQtzKVZ0jC8rSmvhkCHzmbberughP229C6YknJ26EA81RoGuOjvuifQqNTNhgF6arRoW+hvj/BQwk8+AbVeR9mefRRt/Iu86spm6xU1nCsA9pQWSmBCCNGtJCghhBANfJ1U9b011qBEw5PqUL1rng5agh9FhhrMikJOTcN0oC44ZoBAXf1NkOXmxlrk0kWZEv46Pd4aLTnVldaL64KGi+5QFwWG/HV6ohqKjJYaGm/yLEGJIS6oLQIwoqGwYFKpDOHoy5pmStgGG2yzEny09hkULWVKAPhrm39XWIIStoVbW5tSWefE2gmO3Dt6Mp/PXOiSffUktrMHaVUqdGo1Wpvfi21GjEd4KBELT0Lj6UnFoRQ2fv8dpiaZEcW1jd9R9+3ZyNZ2zqYihBCdIUEJIYRwIUtQ4nBDyr6rUpaDbQpdFhpqMJjNLqsnARDUsP/ihuEjjZkSrrkRV6lURHr5UGM2WQMjlvoaIS4KDEHjTCSHKkoAMDcU/PTWaF1SWwQgpqGY4KGS4jbWFL1ZTdOghM1Nq20wtGkBzJYKXULLwQavhmW2T+TtMiWaJF24IlMCes90oM5kGxiyDNWx/V3aBpU0KhX6oCAiTjsZrZ8vmYcO8cEH75FZUsTLh3ZwpLIMo2K2237TOjT1xYrLMTVZTwghOkOCEg4YDAbefPNNDh486O6mCCH6EMuFoaW4oaue0luDErU11pk3Il2Y3hzULFOiPigR5cLAiGUIh+X4CwyuzZSwbUN+Q0Akr6aKWrOJwd5+LqktAo1TMB4s6fmZEnIu7rwas/3wDdsb1DC7TIm2a0pAywEF74abX9v3eNgEJdRNhm/4uygzqz+yzYrwauH3Ytv3lt+/zt+PiFNPwuTvS0pKMne99AyrUw9y87a1zbYfoPOw+3lT4TFu3LaG11N2O/MwhBD9lAQlHNDr9SxbtoyysrK2VxZCiHayXBhmN9yUuypTQqdWE6DTU2iosQYEBrpo6ATYF7o0mE3k1VQR5uHlsPhed7BkhhxrqCtR0BAYcGWBvYCG339pQ3Am3TJ0o5unArUV07Cv3pApIefizms2fMPmBjXMs5WghINshpaKVHq2EZSYGhJht/6koHDOHBjDo2Ont9V80UG2wzcsxUZtA1EBLQQlALQ+3oSeciLRw2IoKcgn57sfqS0obLZ97ybf1b/nZQHwc06Gcw5ACNGvSVCiFQkJCezbt8/dzRBC9CGWC0NLyTBXPqUP0XtiVMyszz8KwEi/QJft2zZT4mh1JWZcV0/CwlrssmEGDkvRz2AXDZuAxqeNlmlhrUUuXTSMBcBbq2Oglw9HqyqoaKHqfk8j5+LOaTolqG2wwbbArblJAUPbAINtnoNerWF6yAC7G9rGJ/It15Q4LmwQzyXMsv6sU2u4bng8k4LDO3g0oi0tDd+w/V3aBp/CmgRi1R56Fl5wAf5xsZhqasj94Weq0jPt1mk6nKPKaB/0EkKIrujzQQmDwcCyZcs4duxYh99711138cknn/Dhhx+SmZlJVVUV1dXVdv+EEKIj/JukwLqq0CVASMOF6O7SAjzUGhICQl22bz+dHjUqig21Lp95w8Iy/WlOTSVmRaHQUE2gzsPhGPru0JgpYR+UcFWRS4vhDUM4esPUoHIu7pzWakp4arS8NvE4JgWFc2rkULv1dI6KI6o13D96CiumnGBdZg1K2NWUsAlqqFR2Mxpp+2GtB1fRtDB8w/a7zXaGFNsZhyzvqjCb8J42iaDJE1FMJvJ//4PKXXushYHrzPZBiUpTfUDTkpVxqLyYvwpznHdAQoh+xXV5s25SW1vLK6+8wuTJk4mMjOzQexcvXgzAE088wZNPPtniOgcOHOhyG4UQ/YftuF4PtabZdHzdybaQYkJgaKtV8p1NrVIRqNdTYqgls+FGPNrFmRKWKQKPVldSWleLUVFcmqkCjZkSluEbGZWumw7U1pTgCDYWHLNLte+p5FzcOdXNpgRtvGnVq9UM9fHn0fjmwyhsAww+Wp01m8ZDo0Glsp/k0/IdYjf7RpPPlG2tFFfVTemP7IZvWH8vjcuqbIJUXjZDMcI9vcmtqaKgtpoiQw3+48ag9fej8M8NqPcdIj+vgJC5M6lrkilR2fC58G6YveX15N0cqSrjsxmnunRYnhCib+gT3xozZsxw+JqiKCiKwo033oi24Ytz06ZN7druU089JSdQIYRTBdhUQA/x8HTpd4ztMIUpQa5Pnw7UeVBkqOVAeX2BRVfNvGERrPfEQ60hp6bSOnTDlTNvgE2mhKEWRVHIqq7AR6uzDm9xlRMGDOasuFgqS2swm5W23+BGci7unKaZEiq7oITjYJRtRoWvRkeu9T3NM4osW9Q5mH1DuE5LhS5tZ8awFPjVqtR2v6MIj/qgxKHyEixrew+JRnfGqcxMyuR/B3aT+91q/p+9+w5vqmz/AP49J6tN9y6lZUMplNKyZQooIqggKDgQUXAgICqKijhwC27UVxDEhfo6UF/9IShuBRRkll0KhQLdO02adX5/pEmTNmnTNm06vp/r8rI5OeM5T0JOzp37uZ/ckA5AbA/bdtbhG9bZW8pMBpgkCSUGPYMSRFRvbeJTo6ioCGFhYZg+fToUCsdfHXU6HdatW4dLLrkEHTt2rNd+p02b5slmEhE5ZEo059ANwBIEsRoUGlXLmk0jROkDaEpwuNgalGjeTAlREBDto0ZGeSnSNc07+4mVn1wBmSCg2KBHiVGPCrMJMb5+Xrnp9pHLoWn2o9Yfr8UNUz0oYa+2DBn7TIlgpQrWN4mzYIM10Gk/y4azDKxlCYNRVUmHmoKs2vAcADDa1Qsprxxu0Unt7/BaRvr4AsXAv4U5AIDeASE4WloIRXAQli66BsYN7+Drf/7Ezxs/xjCZGsnJAwDYDd+oPJZ1eEep0QBWDCGi+moTQYkvv/wSTz31FLZs2YKlS5di/PjxtudKS0uxbt06TJs2DYMHD27Q/tPS0pCamoqsrCxMnz4dERERyMjIQFhYGPz9m/dLdUNotVpMmjQJkydPxv333+/t5hC1a74yOeSC4JWhA9bhG53VAYhsxulArYIrswF0ZhPUMnmzZwcAQK+AEGSUl2JbtqWIW1gzzrwBWH6tDlIoUWzQI6/COiVp87ahtWoN1+Jt27Zh1apVAIDFixdj0qRJXmuL/Q3pgh5JDs8paxm6JXdRe8A+kLFu8Hhk68ptnyNCLcM3AGB4eP2Gz1L9yUT7QpeW18BoVwdica8UrDl5EA/0HuhQSyZKZXkNrfVtRkbE4GipZWYeP181Lpk2Db+aymA8dhpffvkZ0tJOYPiEy2Cy1pqozMawHqvUoMc5bRlePrYXt3Ttg8SgsKY6ZSJqQ9pEUKJPnz745JNP8PXXX+OJJ57ARx99hEceeQQ9evSoe+NaaDQaLFu2DFu3boVcLofJZMKoUaMQERGBl19+GTExMXjwwQc9dBZN5+2330ZSUlLdKxJRkxMEAYEKFQr0uma/Ge0TGIrEwDBM7NC5WY9rFaKsCkJ09PX3SnbA0LAo/Jh9BodLLNka4c0484ZVYOUwlgyNZZrL6pXwyVFruRYbjUasWrUKGzduhEwmw8yZM3HJJZdAqVTWvXETuDauJwZGR2NyeCcIkuO/tdoyJeyHYkS7CEpE+/gh2m4GD3f3TU3Hvq6HdfpO+zoQiUFhWD3gYgCwFRsGgN6BIQ77GRQShdhEf3SLDAVMlgyZoKREDE5Mgfyfffhm+2949o8fEDZmBFQR4aiorF1ikCz/LzXq8WbqAVzQabAuPRWvpoyx7bvMoIe/wvHfg9FsdjkNLRG1H23qU2Dq1KnYsmULevfujWuuuQZPPfUUioqKGry/559/Hnv37sV7772HPXv22CoQA8CYMWPwxx9/eKDVTev06dNIT0/HmDFj6l6ZiJqFdQhHcwcl1HIFnu8/AhdHxjbrca2C7YISzT10wyo5OMJhbLw3shSsdSVOVv5a6Y3ASGvSWq7F+/fvR3x8PMLDwxESEoKkpCT8+++/XmtPYnAYbumd6JDWb+WsPoSVfW0C+0yJ2rIrHPfNoIQ3KISqfrcGhozVZsywsn8tO/r644vhkzC5QxcMD+uAGF8/DAmLRnywZdYUa5AqICYGCxYsRnZYEAylpcj+v60oOXgIFZUFL63DN4oMelzQWcb8BNjVUPr+wmlct3MLfss5Z1u2MeMopv71Hc7ZBUmIqH1qU0EJAPDz88ODDz6ITZs2ISMjA1OmTGnwr3E//PAD7r//fgwbNgyyahfjmJgYnDt3zsWW7tm1axfuvPNOjBw5EvHx8fjll19qrLNx40aMGzcO/fr1w4wZM3DgwIF6HeOFF17Afffd16h2EpFnBVZ+UWtvN6P2wzWae+YNKx+ZHMnBEbbHYc08hAaomoHDFpRgpkStmvpabNXYa3JOTg6ioqpqtURFRSEnJ8cjbfMUawFEdwtdOgQl3Pw12931yLM6+vrZphaOqByS0aNy6t9ufoEO69pns6hEGXxkcszvkYRlfQZDrPad2fpeMZjNUKvVCBs7GqEXDQEEAYW79+Lkt5uRk5trGy6UrauqVGOyCyB+nHEMAPBhRtVMOZ+cOQ4A+D3XM/+Giaj1ahPDN5zp1q0b1q1bh99++w2nT59Gp06d6r2PiooKBAcHO31Oo9HU+HJUX+Xl5YiPj8e0adOwaNGiGs9v3rwZzz33HFasWIH+/fvj/fffx7x587BlyxaEhloi2FOmTHG6702bNuGXX35Bly5d0LVrV+zdu7dRbSUiz4lT+yO1OK/Zp4H0tpaQKQEAw8Ki8U+BZU6BMC8EhmyZEhoGJdzR1NdiK09ck1u6j4ZeBoNkrnHjac8+ld5+aFFdwzJmxPVEiUHPmVK8RBAEvJYyBqc0JeheGYwYFdERPjI5+gQ6vj/tA0d1ZcBYMyUMkhkHi/JQajIgoHcvqKIikf/Hdmiys/HGm6+iJDoIAX3iUaCvsG1bZKj6O0zlg0JDBXJ0WmzPu4DBoVXlMNXNODU2EbVMbTYoYTVmzJgGD13o168fvvnmG4wePbrGc1u3bkVKSkqTtm3Dhg2YOXMmpk+fDgBYsWIFfv31V3z11VeYO3cuAOCbb75xuf3+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1F5RbNwXDev2jd1PW8S+ca56v7SV/rm9Rz9c26mnR4pNtqa+sc9K6OQX0ORtdtU3Q8OjIZzYjwCFEmpF838ZDqoMzmgrZ0eI8lU3++vXmt43TX0ttmrsNTkyMhLZ2dm29bOzszFy5EiPtM1TVDIZVKjjJtR+SlC79Pu6hmXM7pLQuMZRo8lFET0Dgm2PRUHA0LDoGuvZv5Z1va7W94PBbMLDB7dXbRcSjOjJE1Fy8BAMOaUo/Gc3tBlncP7ySba5YovtghKWmVqKYYaEZ4/swgi74qd+8jZ/O0JEdeCnQC0WL16MW265BXPmzMHEiRMhCAJ+++03vPfee9i6dSs++uijJju2Xq/HoUOHMH/+fNsyURQxfPhw7Nu3z619LFmyBEuWLAFgyZxIT09vcEBCLhcRFuaZXzZDQpwXxyL2jT2FQlbjPdeW+icagXWvVA+toW/k/pYAgEwQ0LdjlNtj1Buret+EwR+PDboIfnKFxz7X6qNjseNr37NDuNNpFJtDa3jfePNabOXONTkpKQlHjx5FXl4eZDIZ9u/fj2eeeabBx/TWDwEKu/eiQub4i3prCGK5ozUF5ZqCr10QwP41trLvH6W8sj6FVHNKV0EmIii5H27slIgfVr8AXXYO/vnkU8j7JSCgTwJKoIckSJAJYo2hcn/lXajajyC0mteivb93asO+qR37p3YMStRi0KBBeO+99/DSSy/hqaeegiRJWL16Nfr3748NGzY06YwWhYWFMJlMCA8Pd1geFhaGjIyMJjuuK0ajGSUl2kbtQxQFhIT4obBQA7OZ85XbY9/UZDCYkJ9vKX7F/nGtNfWNJEno4OOHcJUPSosa93nijtr6ZqifJXXY+h5rTnJ9VVuCFEqUFWnR3K3w1PsmMNAXCkXTBlS8eS22cuearFAocP/99+OGG24AANxzzz1QqRo27a03fwjIlxlsf9u3wVet9EoQrym1hqBcUzBrqwIRtb2mISF+iFBYZtUoMRtcrtehexyir7gcxQcOQnPwMIy790Jz8hRCLxoCmb8CYT6+8PFxnZWm9PVOgLgx2ut7xx3sm9qxf5xjUKIOAwcOxMcffwydTofi4mIEBgbC19d7438lSWrQeM1p06Y1+tieuuExm6UWf/PkLewbR9X7gv3jWmvpm9dSxkAUPPd54o6W1jf2FenDVb5ebVtL6xtXWtq12Kr6NXnChAmYMGFCo/frzR8CikqrChXaB+2Ky7ReCeI1hdYUzG0KGoPe9rez19S+fzTlOgBARkmxy/19eDgVgkxEcEp/+HXrgoLt/0CXlY2szT9grdkXs66aBo1W73L7wtLyVvPeau/vndqwb2rnif5pjh8CvIVBiVrs2LEDycnJ8PX1hY+PD3x8mq8gWkhICGQyGfLy8hyWFxQU1PilhoiotVBz7LCt0CXgWEiQnPPmtdjKG9dkb/0Q0EUdiInRndE/ONxhO4PJ3OZuNFpLUM7T7OuG1Hb+ZrMEWWWBCJ3Z5HK9bdlnq/YdFITIiZdAczIdRf/swe7d/yAvPR05vbpACguA4GR2Fr3J1Opeh/b63nEH+6Z27B/n+O2wFrfeeitkMhkSEhIwaNAgDBw4EAMHDkRISEiTH1upVKJv377Yvn07xo0bBwAwm83YsWMHbr755iY/PhERNY0gu6lRvTH7R2vjzWuxVXu6JguCgIU9+9se+8kV0BgNiPZAYV5qGZSiDHO6JLg184+iWiHMjr5+OKfVuFjbQhAE+PfoDt/YjuiWVYrS4ydw+KefkeurRMjQQfCJjnJY32A2AwCydeX4KOMobuwcj2gfxxT3YkMF/OVKyDi7C1Gb1CaDEpIk4c0338TMmTMRHh5u+zsiIqLuje1s374du3fvxr///ot//vkHH3zwAcxmM7p164aBAwdi0KBBuOqqqxrcTo1GgzNnztgeZ2Zm4siRIwgPD0dERARuueUWLF26FH379kVSUhLef/996HQ6XH311Q0+JhEReZe/XAERAsyQmCnhhqa+Flvxmuzc6pQxOFicj2FOZnGg1uuauJ5urWefVQEA46M64YPTR9zaVubjg+RLhyG1RxfkfbMJ+pxcZH//I9SdOyF4cAoUAZZpsfWSJSjx+ol92F+Uh/NaDV5KHmXbT5ZOg3m7fsLwsA5Y1mdwncf9JecswpS+SApmZjFRa9EmgxJmsxlvvvkmxo4di9DQUNvf9Q1KhISE4NJLL8Wll14KwDKH+c6dO7FhwwZ89tln+Pzzzxv1RSg1NRWzZ8+2PX766acBAAsXLsSiRYswadIkFBQU4PXXX0dubi4SEhKwbt26VjMfOhER1SQKAgIVShQZKtz6pbK9a+prsRWvyc5F+qgxnlkS7Zai2nCLCJV72V1yQYBRkqAxGvCzUYOoSRNQfuo0inbvRXnGGWjPZiKgT28EJvWFvnJoSKHeMoXoOa2lvoS1Zss/+ZapdrfnX3B+sEpakxHbss9izcmDAIDvRjX+c4GImkebDEoAlg8yZ3/Xl0ajwd69e22/0hw4cAAqlQoXX3wxBg4c2Kg2Dh06FMeOHat1nVmzZmHWrFmNOg4REbUsQQxK1EtTXouteE0mqkkUBMgEAabK79LhyqrPLB9R5rLWRIjSB7kVWpQZLbN2CIIAv25d4RsXh5LUwyhNPYyS1MMoO3YCxy4ugT62F1SVQ0UqTJZ9Lju4HaIgoFeAe0O11pw86FDfwiRJHO5B1Eq02aCEJ0ybNg3Hjh1DWFgYBg0ahIkTJ+KRRx5BfHx8g2bAICIiAoBoHz+cLS9FjC+nBqsLr8VE3qUQRJgkS6DAfshZnDoAJ8qKnG4TolQht0KLQoPOYbmokCM4JQmrrr4BW3/6EZv++BlH/9qOlzMuoCguElLHSBgqy1gcLM6vccza/JXnmElRoNdxiBxRK8GgRC2OHTsGuVyO5ORkpKSkYMCAAfwSREREjbawZxKydD0QykKXdeK1mMi7FKJoy4gIsxu+0dmvlqCEwrJejq7c6fNDYrsi8OprsCPcD2FpZ6DJL8HZP08gXylDUHI/mEeYbeuer6OwppXWZHR4nK0rZ1CCqJVgUKIWu3fvtqWL/vDDD3jppZegUCgwYMAADBo0CIMHD0ZycrK3m0lERK1MiNIHIQxIuIXXYiLvstaVUMvkDrNxxPr6O6wnALAOmA5RWmYZytZpne5TJghQiCIUQYGIn3ApbgnpiGPvv43s40eR/8cOvFpoQFmQHH7du+FkWTEAQOlkOtHa5OjKgaCwem1DRN7BoEQtfH19MXz4cAwfPhwAYDAYsGPHDrzzzjt46aWXIAgCjhxxrwIxERER1R+vxUTeFa7yRYG+AuXVMhH85Ap08wtEuqYEAOAjk9uyFaqCEs4zJQDL1KQAYJDM6NAhBj0mTURB904o2X8QOzJOIr+0EMX7DiIwqS/8e3aHSRBsxS+rc1Y/rrZjE1HLwqBEHQoKCrB7927bf8eOHYPZbEbPnj09VlyLiIiIXOO1mMh7uvsF4XhpUY3lClHEayljcOWf3wKwFL60BSUUlqCEGa6LzVszMAyVQ0O0JiN8oiPhEz0eRTl58D1wENqz51Cw4x8U7z+IwMQ+KBs4HgG+NWeDKa0sqGmv+nAOV1KL87E+/RDu7z0AHatlfzSV33PPQSXKMJRT7RIBYFCiVpdddhnOnDkDmUyGhIQEDB06FAsWLMDAgQMRHBzs7eYRERG1ebwWE3nX+Kg4fJ+VgYEhkQ7LFYLokLXgI5MDBsu0noEKFUQItQclBEtQYl9RHr7MTHMIIqgiwxF5yVjo8wtQvP8gyjPOovCff7Ey51mMGjYCw4YNR2BgkG39UqO+xv7P6zTI0ZUjso4pbR868BcA4P1TR7Csz+Ba1/UESZKw8ui/ADhtKZFVmwxKCIKAmJgYKJVKh7/ra/Lkybaxqr6+LJRDRETU3HgtJvKu3oGheHPAxTWmMJYJjjUefGVV9SYUogh/uQIlToIF1uCG0q4+xYZThxGssHxXjw8IwbHSQss6YaGIGDcG+sJClKYegbZcjz/++A3/98s2GOJicOvEKzGoWy/onUxNujM/Czvzs9y+8W+u6UM1bmZwELUnbTIoIYoifv75Z9tj+7/r4+677/ZUk4iIiKgBeC0m8r7OfoF1ruMjq7qtUIoi/JwEJb4aMRnyymBG9cKVRQY91DI5etsFJWz7CwlB2KjhmNNjAM4dTMXSTR/CnH0W544cwdQBw9ChXz9IZjMEJ8UwXdWhqM5PrqhzHU8oqcwmIaIqbTIo4Ulnz57FunXrsGfPHhQVFSE4OBgDBw7E3LlzERcX5+3mERERtXm8FhO1XBdHdMSvuecwNjIWh0sKAAAKUQZ/Jzf59rN3KJwEEHQmE2J8/VweS+anxkVjx6GjXAPNiZOQZ5xHenoa/j5yEOd1JfCP7wn/nj0g862a3UhnNsFXVvctj9qNdTyh1FCz/oW7TmtK8HjqTtzVI4n1KKhNqd/cOu1MamoqpkyZgh9++AGJiYmYOnUqEhMT8cMPP2Dq1Kk4dOiQt5tIRETUpvFaTNSyLe6VjJeSR+Gy6M7wqQw6WIdv1EZuN/zDOnTDDAn+ctdDrrUmI4oNFRAVCgT06Y0BN1yP666bhQ6dO8NYpkHRv/tw7rNNyPv9L1Tk5EGSJGicFMF0RmU3/KQpORvS4q5PzxxHvl6Hpw7/48EWEXkfMyVq8cILL6BPnz545513HMaxarVa3H777XjhhRfwwQcfeLGFREREbRuvxUQtm0KUIT4gBAAQoFBCV6G1Dd+ojf2QikGhUdiWfRZA7bUddCYjig1VN/W7inIwoc8QXDrzOmzvHIHSo8ehOZEOzclT0Jw8BWVoCH40+mDUgMGIDQ6tsT/7qUSNTqYVrcsLR3ajzGjAU/0ucnubUrv2mySpXrUs3Mn4IGqNmClRi4MHD2LevHk1Cmv5+vri1ltvxYEDB7zUMiIiovaB12KilsnZ8IvAyiwHheB8+IYrF0fE2v4Wa7lHt2ZKWBklCSsO/Y0ifQUUQUEIHToYHWdOR+jwoVCGBENfUIhnP1qPSfffhU8/+wS7jqRCYxcUsJ/xw2BXLPPP3PN4+vA/0NVRlPKPvPPYW5TrENyoi32mhNFsdns7AAhoproXRM2N4bZaqFQqFBUVOX2uuLgYKpWqeRtERETUzvBaTNSyPNR7EP7KO19jilAAiFX746y2FMFKlVuFI+MDQlCkr0BySAQeThiEON8AnNeVuVy/wmzGeW1xjeW7CnNsf4sKOQLie8K/Vw/oc/NRdiIN5emn8e++PXhmy1fwDQjA81OuQ0rKQGh9qoaKGCoDBGfLS/H80d0AgMMlBRjg5DwBAMzzhgABAABJREFUS5aDlVEyQyG4N/zDMVPCDMD9YSMGqSqIYTSbIXcSGGqI7XnnkVZWjFmde0NspllIiOy1iaDE9u3bMXz48DrXMxgMePDBB/Hyyy+7td+LL74YL774ImJjYzFo0CDb8t27d+Oll17C2LFjG9xmIiIiqhuvxUQty8iIGIyMiHH63D29kjHP2Bf+cgX83BhqsLL/SFhvgUeEW/aZXVHucv09hTnYmZ9VY/muguwaywRBgCoyHKrIcIQMGYRRqjD8+n9fQJuVjV9++Qm//PIT1B2iUao0Qd2lk+2GP62syLYPawDhtKYEG04dxvye/VChAXbmZCI5KMK2nsFsdijiCViyLSRIGBXR0WF5iV1Qwj7IAFiGkzx9eBeifdW4rVtijXMqs6uPkVehRXQtRUHr49kjliDM0NBoxAeGeGSfRPXRJoIS8+fPx+uvv44xY8a4XKe8vBwLFizArl273N7vQw89hLvuuguzZs1CWFgYwsLCUFBQgPz8fKSkpODBBx/0RPOJiIjIBV6LiVoPhShDiNJyc+7OgAZn9RREuP6l3llAwt68bn3RRR2I5ak7HPepkKNbYiKizMUwlJTiYp8I7NnzL9JPn0ZB3nkU7tyF3Ql9cXCCgLIgtW07awDhsdQdKNBXYN3JQ/i3MAcGsxkLe/S3rWdwMgzDmm1RPShhH1gwVRv2YZTM+LvAco7OghLlxqrhJIWGCo8EJeyHsBwqyWdQgryiTQQlLrnkEixcuBCvvPIKLrnkkhrPFxQU4LbbbsPJkyfxxhtv1Lk/nU6H3377DefOncP111+PWbNm4fTp08jNzUVERAT69++PkSNHNsWpEBEREXgtJmrt9PWsl2DlrKaEUhShN5vhJ1fUOpuGWiZHuMrX6XPW7RSBAbh45CUYN+5SbD6wG/u+/wrlp8/g4OFUvJtXhFyjHnlBvvDr1hVFHbsDAAr0ljoWAqoCECfsMir01TIeTHaPJUmCIAiQJAlrTqbij7zztueq15SoHqSocQ6mqnOvMJlqWdN9pzUltr8PFudjWmwPj+yXqD7aRFDixRdfxCOPPIJ77rkHK1euxKRJk2zPZWZmYu7cuSgqKsKGDRuQkpJS677Onj2LOXPm4Ny5c7Zl/v7+eOWVVzBq1KgmOwciIiKy4LWYqPWLVTfsV3xnNQ2Uogx6s7nO6T2VogxyFzUR7DMUygwGBClViIiNQ9iIYQgdNgTac+exI/00uhZL0KSfhib9NL769yDkQ0ehXF8An5gO2GGXqWHfFvsimYBjRoO13sQ5rQbfXTjlsJ6xWjCjrhlAyu2OmVuhtQU8GuOUXVCiQK9r1L6IGqpNzL4hCAKeffZZXHvttXjggQfw9ddfAwCOHj2K66+/HhUVFdi4cWOdAQkAWLVqFURRxMaNG7F//3783//9HxISEvDEE0807UkQERERAF6LidqC0RGxuLtnMm7sHF+v7WRCzduT6rNbPNF3qNNtlaLMZaFG+yBCaeXfuspggiAToe4Ui/CLR6J40jiEjxkBdVwsdAY91v78PXJ//g2Zn3yO3J9/g+bkKZgr9Cizm0Wj+vAN+wCINaMhx0mtjOqZESa7/aw5eRBvpTnOLqSxG2rx2ol9WJ223+m51kehXSDCYDZjXXoqNmWm1brNybJinNLULDhK1FBtIlPC6vHHH4dKpcKyZctw7NgxfP7554iMjMS7776L6Ohot/axd+9ePPTQQxg4cCAAoHv37njyyScxadIk5OTkIDLSeQVeIiIi8gxei4laP5kgYEJ0J/yUfaZe2zn7xbT6QBC1iyKaKlFWI6jRNzAUh0oK8E9BVZZDqVGPz84cxwcZR2seXyGHX7eu8OvWFYnqQPx96CD8Ms5Ae/YcyjPOojzjLARRhNClC8qiwuEb27FGwUr7AIjObII/LJkN1VUPZthnSnx73pJVcVePJNuy8mqZIj9kncHdPZMdlunNJnx25gR8ZDJcHdvdaZDHXoVdlofebMLX59IBwOkwjk2ZaYjyUeO5ysKY/xt5JWfrII9oU0EJwFIQS6VSYe3atejfvz/WrFmDoKAgt7fPzc1FXFycw7JOnTpBkiTk5eXxixAREVET47WYqO0YEhoNP5kcV8Z0c2t9Zze51TMl1C6mG1WKokPxzMGhUYhQ+eJQSQH2FeXZlpcY9E4DEtWVQIJf187w69oZkskE3fkslGecgfZMJnJOZ0CXbrmBf//QKYxKSkGvXr3RqVNnp5kSWTo3MiWkmnU4rEM0jpcW2jI8arMj7wI+PXscANA7MBSJQWG1rq83VR3TftiJZUaRqoBGmUGPd08ddtg2W1eODpXFNjVGA/zsMjnOactgNJvR2S+wzjYTtYmgxLBhw2qMp5IkCSdPnsTEiRNrrL9jx44ay4iIiIiIyLMCFEp8etHlbtc+cBqUqPbY1y5TQiGItkwFpUzmEJSQCwKUYs1MgVK7oRe1OVNeavtbkMngG9cRvnEdIZnNqMjOgfLsOWgzzyE3Jxt//PEb/vjjNxTADERFoMxPAd+OMbZMhCytpsb+q9eUcFbo0ihJUAgC/pN2sM72/pOfhVXH9tge11WDA3DMlLCfiaPIUIEIu6KhOnPNwpony4rRwdcPOpMR127fjJ5BIXgteTQA4I7dPwMAvht1VZ1taE1ydOX4tzAHE6I7O509hhqmTQQlbrzxxkYXebE3b948yGSyGsvnzJlTYzkDHERERJ7HazFR21Gf7+nOghIdfP0cZomwH77RwdfPFjyoPnxDLohQiTU/R149vs/t9gBVs39YCaIInw7R8OkQjZAhAzGzYzx8c/Jx+OhhfPPnNkjnTtvWfT81HX4xHfCXzABzWChERVXbSwx6FBsqEKRQAagZpACAs+WlMEhmZGot55gSHIG9RblO2/nk4X8cHuvcmKHDPihhPwyloELnEJRwNtvH8bJCnNeWIaxyvRPFhTBJksOkriZJarab90K9DsEKFQRBwG85mdAYDZgU0xUA8Hd+Fv7Oz8L8HkkOGSD1tXDPryg3GeErk+PiyFhPNb3daxNBiUWLFnlsXwsXLvTYvoiIiKj+eC0mar/sb2C7+wdhVHgMQpQ+eOX4Xtty+0yJWF9/W1Ci+vANURCgdBKUqK9wlS/OO8l0sLUnKBDDusWjZ8oAfNEpFLoLWdBlnoP2/AUcPXMah1Mt2QuCKEIVGQGfmGj4dOiAJ807IYgiXksZg+7+QU4zJe7e+5vt746+frg4MtZlUKI6vZPshupcTS1afSYOrdlYY51NmSdrLLug1SDGp2rmFYPZBJmLGiAbTh3GweI8JAWF4+rY7rbgTENsvnAab6UdwN09+2NCdGdbxsjlHbpAEAQ8VRmwiQ8MwWXRnRt8nPLKbJL8esxUklehxYbTh7Gg/wD4t415JjyuTQQlPIlfhIiIiLyL12Ki9ku0+5092keNa+J64q+887ZlKlEGuSjiod6D8N+zx3Fb90Rsz78AwDL7huPwDbHBQQl/ucJWGyKijqCEtWBlmVEPUSGHulMs1J0sv6InqQKQdWAPdOcvoOJCNnRZlv+A/RAVCqiiI/HymSw8NHoiKgJrn0Y12sfPaeaHVXxACI6VFtoeV9QSlEgvK8b/zqej2FDh9PkaQQljzaCEMyfLihGlUle1wWSCj0wOrcmIAr0OHX39bc99WTnLx/HSImTryvFgwiC3jlFdjq7cNlPJ9rwLmGAXdDBDgszuPXWspLBRQQkrP7tAiyRJeOX4XnT1C8LVsd1rrLsj7wJ+yzmH5KwoXBYaV+N5YlCCiIiIiIhaCPvhG9YAhX2gwZolMTIiBiMjYhy2VQiOmRIyQYCqWqp+sEKFIhc34tXXsw9K1MYalHBWiFLy90NAfE8ExPeEJEkwFBRCd/4CdOezoMvKhvbsORzJLsBbh0/imLYE2b5yqKKi4BMVCWVEuMNwjygfNVROhrVZWQtlXt+pFz45c9whKLHh1GHsLsjGKymjoRRl+Pb8KWzLPmt7Xi4IDrN/FOgrbPt8+djeWgMc9jLLS2EIqSpGbN3uzRP78Ufeebw/ZAKClTUzImoL+tRlbXqq7e8QpQ8M9kNSzGbIZFXvgZOVU5nuKsjG2pMHsSJxGGLsAiXuss/WKTHq8XNOJoBMW1CiWF8BvWRGhMoXBZXvt2BVwzNB2joGJYiIiIiIqEUQqw2/AByzJ9TymrcvM+N6Ia2sCAEKpUP9CpkgQFntJj7KR+1WUCJQoQQqZ/EMU9YRlKgMBjgrLGm/TBAEKMNCoQwLRWC/vpBMJujz8hFeUo7cwhKcPJ4Jc5EBugvZKLauHx4GVWQElBHh8A+LhaJafQaj2YxSox7FBr0tOOJfOTuJdWhGmdFgy0r437l0HCopQKnBsdinn1yBYrtl/z17HOe1ZZge1wO/5Z6rq7tsyk1GhwCG9e88vQ4mSUJehRbBSlWNGVUaM7WofUBDYzRAY5fVYTSbARnQRR2A0+WlttokKw79DQB4J/0QHu871OW+z2nLkFehRf/gCJftdTLqBjf+vRWAZdrUwsqsk3Cf2t9H7RmDEkRERERE1CLYp9pbb/zsi1f6ijVvX27q0tv5vpwM34jyUTsMcXDYT+fe+LByqlAfu2BGsEJZa5t1JhPKjUans3qU1zLsQZDJoIqKRGkUUAogdlAiDIVF0GXloCI7BxXZ2ajIzUNFrmU605/3H8OBoGDkmsqhjAiHKjIcB/Ky8Nix3QCAoMp2WoMS1poSf9oFFd47fcRpW6oHJQDgj7zzGB3RsdZzr05rMjoUBbUGJaxZHBqTobJtjkU9rRkuH54+CrVcjumxPWznYJIkh8yE6krs2q0xGWzHAKoCRtb3kEmSHAIydc1QYp1F5IOhExxqXthnlRicFCi1PWc2o7Ay6yRM5Qu4Nwqm3WFQgoiIiIiIWgSxWqaDZVnV8/J6zJwgE4UaNRgiaxmK0dkvwPa3j13wI7COAozvpKfinfRU3NS5ZnCk3FT3tJxWgijaMinQtzckSYKxpAQVuXnQ5+YjTuaPkrxclGdnovxsJgDg5i3boAwJhjI8DKVhoVCGhkDR3XLDbA0I/JRz1uUxrfxkCqfLT9nNeuIOrdEIvV3xTOvfRrOlTdYsBvvpRwHL6240m/Hfs8cBAFfFdINCFHHP3t9xprwUX42YDEW119IkmfHq8X0OmS/lRqNDIMgaPLAPHJzWlECEADOkGu1wJb9C5zA0yFy5v90F2XiiMusCsARR7ANhFWaTQ6aEscz990N7wqAEERERERG1CPZBCQE1MyXk9UjzlwlCjSBGlI/axdpw+CXcvnZDUB2ZElYZlbOA2NO4WSDSGUEQoAgKgiIoCOjRHbcPHAuT3oBDP26CvjKDQp+XB31hEfSFRcCJkxAh4ON/DuK8QYNdXXsiJvEC9uSegjI0BDIfH6fHUYkyl9NkplfWYHCXq+Eb1qCANUhTPVgjEwSHTJPTmhJ08w+yzaxSZjQgROkYlDhYlI9fcizBmWgfNbJ05ZZMCbvsB2NlRobJLiiRrimBKABmyVIkU5Ikh2E/zqYxLTcZUGqounW2Bjuss3xYPXZwJ1YkDnM4/wJ9BeSCgEClEgVgUMIZBiWIiIiIiKhFqD6lp/3/Lc+7nykhF0SYqw3495croBBEpyn3UT5qXBzREbHqAORVaG3Lg5TuBSWczWThbEhHQ4UofaCVyeETHQmf6KpikkZNOfT5BdDnFwCFRQiS+cGQfgHnjh3DN2cykVOQDQCQ+/lBERoMRXAwFMFBUIYEQx4UCIWPAnIX/ZpeVv+ghMFuaIZ1mIY1OFCVKeFYOFMUBIfhI8dLCx0yIAxmM85oSuErl+OTM8cACbgovIPt+TClD/IqdCg3GhwCHsbK19l+uMWewhzbY43JiL8LsjAoJApyUcSx0kI8cmA7bunaB5Njutq2KTboHTIgTGbndURSS/IdanBojUaUGCoQpvJ1CHyQIwYliIiIiDwgPT0dy5YtQ1lZGZRKJZYtW4ZBgxo2xR1Re2Vf1NJ6m+wwzadYv0wJY7XaBQpRhEomg8FYtXxet77wEWUIVfrg/t4DAQDr7GZ0sM+gmNKlB/4v46TDTa6VfSDDykkNxAbzk8lrBFkAQO6nhtxPDXWnWATKlbi930U4sGMr+pjlCNJokXpoP/QFBTAUl8Co0UB71rFwpTIwEOaOsShSiFCEBEMREgRFYCAEmQw5Ts6pNtpqmRI66/ANa6ZE5U189WETMkFwqA2xuzAHuyqDKYAl2LFwz68O2yQGhdn+VssV8JPLoTEaHbJTDNWCIgDwb2GOw36ePrwLF4VFI11TgmxdOQBgY8YxTOrQxbZOsb7CYSiQs9e/qq1VgYrcCi3McD/bpr1iUIKIiIjIA1QqFZ599ll069YNJ0+exF133YWtW7d6u1lErUpds2/UJ1NCJojoZFcnAgAUgqzyF++qG8eBIZGIUzuuZ19TQm1XZLFXUAh+kslt04Xau6Atd7ttDSEIApR11NRQiCJUogwyHx+ogyMgl8kRHhGAnv7BOFaYB0NxMQyFRTAUFcFQWAxDURH0JSUo0p9Gsc6x/fIAfygCA+AbFAwE+EEeGAh5UADkfn4QqrUjPiAEx0oLLTUl7IIS1r9tmRIm50EJEY5BifPaMofnnQV8LuiqZt2oMJmgllmKddpnrFgzYkxOMmOCFUoUVR5zR36Ww3N9gkKhszuP/cV5GCjaZafUUtzSvohnocFST8JP7rxmB1kwKEFERETkAR07VlWp79atG0pLS2uMVSai2jkbvuGQKVGPf08igI6+/nhrwFjctecXAFU37fYUTgId9jUl7AssKmWiy/oLZo/mRThnP4QgztcfZ6vdvCtE0Ra4sNQzsNwUd/cPwomyIqjCw6AKt2QYBMgVKDUaYNbrkSL64K/04zBU1qcwlpTAWFoGY2kZfHIKUGh3oy+IYmXAIhDREZEYGNcVUyO6Y1lmBjQQHYIS1qwJa2ZBucmIvAotMssd2727MMfhxr16LQ5nQYlPzhy3/a0zG+FXOV2sfXaHNRhSPbMhTOmDPoGh+CPvfI39ApYgiX3gZGd+Fk7aDWUx1ZIpkW93/KLKmTdqmz2EGJRo0w4ePIjly5fbHp84cQJffvklEhISvNgqIiIi79i1axfWr1+P1NRU5Obm4u2338bYsWMd1tm4cSPWr1+P3NxcJCQkYPny5UhKSqr3sX766SckJCQwIEFUTw6ZEmhcTQlUbmefLWEdvmHP2Ywe9hkJ9kERhSirMc2ovQiVL+IDQtA/OBxvph2os4lKUawxPaYzSyuHlTgUAnXy+aIQqs6vwmyyBQWcDR/oGRCMPYW5EJVKhEbGwF/u2A6zwQhjWSkGy/zw++njMBaXwFBSCmNJCQzFlv80OfkwZBfh8937kHXhNDIlMz6I+R1ZFaWQ+fth95lcRPToi+IzZ6D3UaLYPxQ3//2D07bb12KoXggzr0JXa/8IEGwZLbn2QQmp5vANwNLv6lqyFwySGdpqgRH7/ZokySH44qqt1mAOgxK1Y++0Yf369cM333wDADh37hxuuukmBiSIiKjdKi8vR3x8PKZNm4ZFixbVeH7z5s147rnnsGLFCvTv3x/vv/8+5s2bhy1btiA0NBQAMGXKFKf73rRpE2SVNwLnzp3DqlWrsHbt2qY7GaI2yunwDSfThDaUs0wJZ0EGs4sfwpV2mQjOpIRE4O6eyTjt5lSackGEHrUHJW7oFI/REVWZWKsHjIFcEPHCkd011rU/vwqTCQazGSIAlZOb4p7+lqAE4DxbRFTIoQwJwZBufXHDyLF45OB2W8aBuUIPQ0kJ+ogqXBISg+LiIuzcZ0J+QT7KteWoKMgH8vJxKL8UpqMnkHn+FIyShF9Vvsg16iFXqyFT+0Jm/b+fGjK1GvLKZWZfH4jyqjbn6WuvbTG/ez98dvYEAOCCtmpYh3Uq0uqZEgpRBr9aAgVGsxlas+uZU0yS2ZYFUZ19W63rqOW87a4Ne6ed2LJlCy677DJvN4OIiMhrxowZgzFjxrh8fsOGDZg5cyamT58OAFixYgV+/fVXfPXVV5g7dy4A2IL9rpSVleGuu+7Co48+is6dOze4rWI9ivnVtn1j99MWsW9q5+3+kcMuQ0EUIIqO03oqRNHttglCzfNwFpRQyWU11rMfimH/XF2ZEp39AiGKQo1sDFdqGwZgpZbLHdrQPSC4sl01AwkKUQafyhtgvdkEg2SubHPNdcdExeK/Z08gPiAECpnrQMvgsCjEqgMwq0tvvHfqiOXYKiVUEeGIiYjB2D6DIYoCfu4ShrTiIgyK6oSc9KMwlZUh2T8Mo/1C8MtfP0Cv0UBhAoSCfBhKS2EorTmFqj1RLofo6wOZjw8+9lFB5uMD0ccHMh+V5f+Vz60ZfhlilD4IUVoKkmbaDWkxwQxBqFkDQiWTQa2oPVOiwkUmBACcLS+DxkXQIt8uU8Ja38KalcHPHecYlPCi5kwj3bJlCx599FFPNZ2IiKhN0ev1OHToEObPn29bJooihg8fjn379rm1D5PJhMWLF2PGjBkYOXJkg9sil4sIC/Nv8Pb2QkL8PLKftoh9Uztv9Y/97BJqXyXCwvyhUVXdUPpVLnOHWl1z3cAgX6iUjrdA0eGBNYZw+ORW3bDa70Mpk8FX6fpmtnNYEMLC/KH3dauJbgUlwgLVTs9ZIa8Z+FCrFIgID7DMMAIzjJIZKpkMwQGODbolPhEDO8Xg0+ArEK32w9uH9zs99g09eqN/nGXqzZBCdY3nVSqFrW3W4Q4/ZJ+xzQgS1z0eVycNxAuwZI50CQiEvLQEkskEY3k5TBotTOXllv805TBptTCWa2HWamHS6Wx1LWqz8dBJiIKAw4X5OFtaBFGptP33S/p5FMV0ROGBf6Hy8YFRJkKQy1EeHgGdwQTt+QsQ5QoIChkEudzyt1wOsyBBrra8T4KUKhRXy4r4M+889hfnOW2P/VSmpWbLMJRQf0v/83PHOQYlvKg500gLCgoaFMwgIiJqDwoLC2EymRAeHu6wPCwsDBkZGW7t4/fff8fOnTuRl5eHzz77DADw4YcfIjAwsF5tMRrNKCmp3zR81YmigJAQPxQWamB2lYfeTrFvateS+qdCZ0R+fhlKtHY1AvQm5OfXfpNqpS3X11i3qFgLs9HxV/OiAk2NGgeioerc7fehFEWItYy2UFRY1i+rowaC1dioWPyYdabWdYw65+dsNtVsiGQ0Iz+/DCpBhnKDESZJgkohg0Hr+Kv+lRGdkZ9fhkDIUF6sg6mi5q/+Uzt2w6yO8bZjG7U11zFUWF4jURSQp635uVVSrkN2XlVGRJHOcsMuyGRQBARAEVBV70MuiHhz0MW4Y9fPVedjMsOk08FcUQGTVlv5fx3MOh1MugrM6dAdCpMJWq0WgQYDUFwIY5kGgGUIx9EKCcUnTqHk/CmH+h0nVL7Qqf2RUzl8xUoEYAZQqlShICgMZ4tyUaTyQZnZCEEmgyCKlplHRBFZ1scyERBEDAyNtAyHEYTK/4A8QQAg4FB2CaT4RBQVlTf431VgoC8UCvcycFobBiW8qDnSSAFg69atHhm6wVTSpsO+ca56v7B/amLfuMa+cY194776zJ4xduxYHDp0yCPH9dTNoNksef3GsqVi39SuJfSPWNkOQbJfJrjfLqnq39LCHknYX5SHzr4BsP8XPSo8BpJk+bdu75LIOJwuK8HYyFiH48lEwWn9BasguQpmswQZan5uRKh8MTG6M0aEx+C/Z49jUocu6OYXhGiVGh9mHHW5zwilr9NzdvbJZKx83QIVStswBoUg1pi1RJAc+1FmN2ymb2AojpYWYnKHrg7rODtvCVV9vHzgMDy66y+H53VGI/SmqmEQJXZZBFM6dkOkyhfvpFs+N2/q0hsxKsdMAqVcDoOfGvBTAwhxeM5HlOGOEZNtj/8tzMGZ1J2QzGaY9XqY9QZc1rEH+voGYsff2xACEXnlZZAMRnT29UeiXxCOnzoKs9EIyWCEZDRibGgHbDt/CjJBBsjlgADITCaYdboa75HqCkq00JcW1qhfAQDHSrTQ33pri/h31RIxKNFCeSKN1MoTQzeYSto82DdVFApZjfcc+8c19o1r7BvX2DdVQkJCIJPJkJfnmI5bUFBQI3uCiJqHs9k35PWZfcPOxA5dMLFDFwCOM3g8mDDI6foKUYb5PWpmGQsQXE4JCsBW18DZjB6+MjlmduoFAFgSP8C2fHREx1qDEj38g5wuF5yEJQyVtRNClKqqoIQoQiE4/sJevWCo/TlNj+2BQaFRDv1ubX/NNlSZENcFHxw9hBOlRbZlR0sLYbCb+cL6V4TKF/O69oUgCLaghL9cAUEQHDIa1HI5ig162/Z3du+HXQXZSAmJwEVhHRzaElrZ94IoQuZjqTcRFBWFTuEd4JfTGR39AqGvLEAaHx6Di6M64ZdDoQ77uD5xGA6n7gQAxIVGIasgGynBEdhblAvJbIZkNgNmMySTGZLZZHlsMkOSzLgsrhdii/JxsDgXkgRYol0AJDOuHzgSKpUKZWWOs4qQBYMSLZQn0kgB4Pz58ygoKEC/fv0a1R6mkjYt9k1NBkNVqiL7xzX2jWvsG9c81TdtKZVUqVSib9++2L59O8aNGwcAMJvN2LFjB26++WYvt46ofbLeFMs8OPuGZb8N31YAatys27NOS1mf4EkHXz/c2ysZrxzfBwAYGBKJfwtzbM/7uJglwtl5WKe+DFH62JYpBNEh6ODsHGoUE3VyjgFOphWtsU61aTazdOX4pyDL6XrVs9D8ZJZtlaKsKighU9iCEnf1SMKkDl1wRUxXp8cOtTtnK6PZbKvbYV+gVCGKkFDz+ucjk0OAJZawqyAbABBYed62oRsuRERFY3RkJI6l1xxWEx4S6mQLsmJQopWpTxopAMTExGDbtm0eOTZTSZse+8ZR9b5g/7jGvnGNfeNae+sbjUaDM2eqxm5nZmbiyJEjCA8PR0REBG655RYsXboUffv2RVJSEt5//33odDpcffXVXmw1UfslOJ0StGGZEvZqCyq4tb3TgRMW1jZXHy5Rl/FRnWxBiXGRsVjYsz9u+edHTIjuVK922DIlFCrbMoUocwhKOAvs2A/NULiYXSRQ7k5Qomqd6+J64dOzx/F15ska6zl7Ha0zlliCB5aMAvupNHsHhNTYpq72GSSzLVBj/5ooRZnTIIaysq/0dtkd4Sr3qpYqBAHdA8KcPucsy4SqsHdaKKaREhEReVZqaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26b9WrdunW24tJE1Lyst632N7D1vdl3pjGBjUhfNdxpgiAIkAtijako3SETRESofPHl8MlOh4HYH6M6o93wDSvL8A37oISzqUTtghIu+ieglik0rfzt1rkypiu2ZGXgdHnNqT+dBUas05aq7NpifzNf1429IAhY2KM/3krbj3CVL3IqtDCazbY+sT9vpSiim38QlsSn4NXj++yyKSx9pUf9gxJyUURHX+fDItUMStSKvdNCMY2UiIjIs4YOHYpjx47Vus6sWbMwa9asZmoREdXGmtFgnxEgq+Um3e39NmCbDUMuRZ5eiyi1n0Omhb9cgTKj5Vf9l5JHOWyjEAUYq2o81lko0UpeOS7DmjngirNMiarhG45BCfuhC84yRfoFhTus74y/k0yE6vuyz5QIVCjRwVftMEWmlbOgRFBldod9W9X1CEoAwMQOnTEyvAO252fh9RP7KjMlLP1uf17WY4yNjMP3FzJwuKTAtk71YE+kXVBCLghOC1kClmCOWu48cFNbHRJiUMKrmEZKREREROSczElNCU9kSjRk+EaEyhdRvmrL9nbBgGf6DcdHGUcxv3s/RPqoG902wP1MDmenYc0KCK6lpoSzgECs2h8P9R6Efwqy0NkvoMbzgHs31vZ9KwgC1DLnN+n25/hsv+FIKytCFz/L9Mn2wRj7oIT9UI7a+CuUtrYaJckuU8J5bRJ/u0CCQpDZsiasgu2GwihFGYymmlOjAjWLmyYFhSNfr8U5rcbtbIv2ikEJL2IaKRERERGRc4KT2TfqM/TC1dCHxtalsL+n7+4fhMf7DnW6XlOX7HGeKWE5aJBdxoJCrDsoAQAjI2IwMiKmUW0qNzresLvKbpDbVelMCg5HUnBVpoZDpoRDwMD91826rn2hS/vio/Y9YJ/doRRFmKoNubF/H6lEGcpdBSUq9+8rk0FrMmFoWBSujOkGvdnkslgpWbB3vIhppEREREREzjmbfcOdTImHEwbhu/OnMCGqs9PnGzuDR22FLu2Z3RyuUZ27wzzsTyNKpUZ2Rbkty8HXLqtA6Uahy/oaGBKJ46WFmBnXy2F5Jz/LdO6xvpb/uwpK1BYYUtkFJey3r0+x/6pMiaqaEo5BKrtMCbs6GApRtAV2qtpqVyBTJrPW4HR5zFeTx+DnnExcFt0ZoiAwIOEG9hAREREREbU41lvB+mZKjAiPwYhw17/4DwqNxJasDAwLi25Yu9y8OXY25aR727nHPjhyZ49+OF5aiMs7dAFQNb0mYC10WXWj74kZTIaGRmFF4rAayy+N7gRJAgaFRAFwXeCxtsCI0i544FNHXQ1XrFkLf+Sex5nKQpv2x7Q/usPwDVEGs90r0Ccw1GE7lYuZSeyP2VHtj5u69G5Qu9srBiWIiIiIiKjFcXZzbp/231BDQ6PxesoYxKn9G7S9+5kSDdq92xkW9sGRQLkSN3auuhH2s8uUkFerKdGYKVGjfdTI0pUjVu287oRMEHFZdFWGiuPsGZZhDdY2uWI/fEPmZl9XZ32fFBkqUFRUUesx7Ydv2AcgIlW+eCrxIuTptbZltQUlGv/ObL8YlCAiIiIiolbBE7/yC4KAbv5BDd7e3Zv6hmdKuLedfXCkepMUdjfPltk3PDN84+Xk0UgvK3aoAVEb++KUapnCFpSorQ0qFzUl6sNZAEIuOO+vABfHiFX7QyWTOWZK1JK50cQlRNo0BiWIiIiIiKhV8EQ9hMZyN1mj+k2quzet7q5n3xW1ZW9Yako0PvsAsEzzmRwS4fb6vi6m9KztdbRfr7t/EGZ37o1eASH1aqezIqeuCp86m+rU0kbR4f9A7ZkS1HAMShARERERUYvjdPhGCwhK2NdnqI9OLoY8WN3VvR9+ysm01WOoi2OmhOt+EVBtOkw3pvb0FF8XU3rWlvHiuJ6AGZ16uVzX5XHFmre5roZv+LvIlJA7KbSqrKXvGpoZQwxKEBERERFRK+GJ4RuNNbNTTxwvLcS1cT3dWr+zOgDDwzvgipiuta43KaYrJtWxjj37OERtoRqD2XGKy+bMNlE3IFPCzy5IUFvtidoEKWtmP8gEAUlB4ThQnIekoKrhJy6nLbVlSrhX6LKuoBO5xqAEERERERG1PE4KPjb0JtWTgpQqrOw/0u31Q5U+DkUoPcU+U6K2Ohd6s8nhcXMGJRwyJWSOxTddUVebOaQhApwMyZAJIh7vOxQXdBp08QusWlfhPFOiakpau+EbTgIYK/oOQzf/QIQofRrUVmJQgoiIiIiIWomWUFOivpqqyfaBiNpqShgkS6aETBBgkiS3Zw/xBN9qhS6tansd/eXuBS9q4yxIk1ZWBJVM5hCQAIAQpQ/u7pmMaB+1w3JnmRLOhm/4yGQMSDSS90ONREREREREbnBVrLAla6oggP1eawt8WIdvWG+yTW5OOeoJ9tkRPexmPJHVUi3U3eBFfY2O6OjyuQnRnWrMKGJto0M9DiftaY3vyZaGPUhERERERC2Os1vn1pkp0URBCXczJSqDEtbsAXMzBiWiffxwSVQc7uiWiOHhMbbltdUGsa8p0dDhG/YGh0Zh7aBxuDgy1q31H04YhI6+frguzlJg0/495yxzQ9EChhS1dhy+QURERERELU5bmcugqTIlHGffqPn8rM698VHGUVzWoTOAqtkkjJK55spNRBQE3NMrBQBQYtDbltc2i4raA8M37BnNZsT4+ru9/ojwGIywC6DY97OzYIonAiftHYMSRERERETUKrS+PImmqylhv19ngY/rOvXClTFdbZkHMi8M37BnX4+htkwJf7vhG54YGtHYIIxQx/ANZko0HnuQiIiIiIhaBaEVhiWaasYQd2bfsB8KIfNCpoQ9hUNQorZMCfspQRv+et/VIwkAcI2bU7e6Qy4I+M/AsXhjwMVVy5gp0WjMlCAiIiIiolahNZWUWJE4DBtOHcacLglNsn/7QIQ7dSu8UejSnn12RG1BCYWbGRV1mdShC8ZFxsLHyTSeDSUTRcSpAxyWMVOi8RiUICIiIiKiFqjmzXNrypQYGBKJgSGRTbZ/wcXfrlhnkzB5KVPCnrvBBlcZIO7yZEACcJG50Xreki0WgxJERERERNTiOPs9vzVlSjQ1+xt2d27eZZV3z0az90uI1jUsY1X/kdCZjM3UGvfZB1MGhkTieGkh/O2Gm1DDMChBREREREQt2vCwDtiZfwGx9ZhFoa2zzxpxL1OicvhGC5jXpK5MiYTA0GZqSf3YDzt5ou9QmNE6p6ltaRiUICIiIiKiFiNArkCp0YA436qx+8v6DIZJkngDaKeu2Teqs/adyez94RtiK30Z7YMpgiBA5sW2tCUMShARERERUYvxxoCxOFZagAEhEQ7LGZBw5M7sG/aqZt/wfqZECxhB0iAyvgWbBIMSRERERETUYoSpfDBcFePtZrR4DZ19w9wCCl2aW8AQkoZhVKIpcP4SIiIiIiKiVsZx+EbdrJkS3g9JAOYWkK3REAxJNA0GJYiIiIiIiFoZ++Eb7mRKtKThL602KNFyurBNYVCCiIiIiIiolbEPRLhzr+wrk7u9blNrvcM3qCmwpgQREREREVErY//rsjtZELd1S0SxQY/ZXRKarlFuaq2ZEi0jpNP2MChBRERERETUygj2wzfcuFmO9FFjZf+RTdkkt7XWoARDEk2DwzeIiIiIiIhamfrOvtESDAqJBAD0D46oY82WqXX0cuvDTAkiIiIiIqJWpr6zb7QEj/YdggJ9BSJUvt5uCrUgreX9S0RERNTiabVajB07Fi+++KK3m0JEbVx9Z99oCWSCyIAE1cCgBBEREZGHvP3220hKSvJ2M4ioHWgtgYi2JFip8nYT2iQGJYiIiIg84PTp00hPT8eYMWO83RQiagd4I9d8XksZg9u69UVSULi3m9Im8b1MREREbd6uXbtw5513YuTIkYiPj8cvv/xSY52NGzdi3Lhx6NevH2bMmIEDBw7U6xgvvPAC7rvvPk81mYioVsyUaD7d/YMwpWN39nkTYaFLIiIiavPKy8sRHx+PadOmYdGiRTWe37x5M5577jmsWLEC/fv3x/vvv4958+Zhy5YtCA0NBQBMmTLF6b43bdqEX375BV26dEHXrl2xd+/eJj0XIiLAsaYEUWvGoEQbcffdd2PHjh0YOXIkXnnlFdvybdu2YdWqVQCAxYsXY9KkSd5qIhERkdeMGTOm1mEVGzZswMyZMzF9+nQAwIoVK/Drr7/iq6++wty5cwEA33zzjcvt9+/fj82bN2Pr1q3QaDQwGo0IDAzE7bff3qD2imLjbjas2zd2P20R+6Z27B/XWlrfyOza4e02tbS+aWnYP7VjUKKNuPHGGzF16lR8++23tmVGoxGrVq3Cxo0bIZPJMHPmTFxyySVQKpVebCkREVHLotfrcejQIcyfP9+2TBRFDB8+HPv27XNrH0uWLMGSJUsAWDIn0tPTGxyQkMtFhIX5N2jb6kJC/Dyyn7aIfVM79o9rLaVv/Aurii566jOjsVpK37RU7B/nGJRoI4YOHYq///7bYdn+/fsRHx+P8HBLQZakpCT8+++/uOiii7zRRCIiohapsLAQJpPJdr20CgsLQ0ZGRrO3x2g0o6RE26h9iKKAkBA/FBZqYDZLHmpZ28C+qR37x7WW1jfacr3t7/z8Mi+2pOX1TUvjif4JDPSFQiHzcMtaBgYlmsGuXbuwfv16pKamIjc3F2+//TbGjh3rsM7GjRuxfv165ObmIiEhAcuXL2/0lGI5OTmIioqyPY6KikJOTk6j9klERNReSJLUoKJm06ZNa/SxPfWl3myWeIPgAvumduwf11pM39g1oUW0By2ob1oo9o9zDEo0g6YuriWTtc2IGRERUXMICQmBTCZDXl6ew/KCgoIa2RNERC0FZ4KgtoJBiWbQ1MW1XImMjER2drbtcXZ2NkaOHFnv/RAREbVlSqUSffv2xfbt2zFu3DgAgNlsxo4dO3DzzTd7uXVERM5x9g1qKxiU8DJPFNdyJSkpCUePHkVeXh5kMhn279+PZ555psH7YyXwpsO+ca56v7B/amLfuMa+ca099o1Go8GZM2dsjzMzM3HkyBGEh4cjIiICt9xyC5YuXYq+ffsiKSkJ77//PnQ6Ha6++movtpqIyLV29BFObRyDEl7mqeJat99+Ow4cOACtVovRo0dj7dq16N27N+6//37ccMMNAIB77rkHKpWqjj05x0rgzYN9U0WhkNV4z7F/XGPfuMa+ca099U1qaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26r77Ru3TrbMEoiopZGYKYEtREMSrRQ9S2utXbtWqfLJ0yYgAkTJjS6PawE3rTYNzUZDCZbJWn2j2vsG9fYN655qm9aUyXwoUOH4tixY7WuM2vWLMyaNauZWkRE1DjMlKC2gkEJL2tNxbVYCbzpsW8cVe8L9o9r7BvX2DeusW+IiFozRiWobRC93YD2zr64lpW1uFZycrL3GkZERERERC0WQxLUVjBTohmwuBYRERERERFRTQxKNAMW1yIiIiIiIk+qR/k5ohaNQYlmwOJaRERERETkSRJLAlEbwZoSREREREREROQVDEoQERERERERkVcwKEFEREREREREXsGgBBERERERERF5BYMSRERERERErQxn36C2gkEJIiIiIiKiVoazb1BbwaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShAREREREbUyMoG3ctQ2yL3dACIiIiIiIqqf4eHRGJwbhYsjYr3dFKJGYVCCiIiIiIiolVGIMjzed6i3m0HUaMz5ISIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxCkCRJ8nYjqOUzmyWYTOZG70ehkMFgMHmgRW0P+8bR8eNH0atXb9tj9o9r7BvX2DeueaJvZDIRoih4qEVkxWtu02Pf1I794xr7xjX2Te0a2z9t+ZrLoAQREREREREReQWHbxARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxLkto0bN2LcuHHo168fZsyYgQMHDtS6/vfff4+JEyeiX79+uPLKK/H77787PC9JEl577TWMHDkSSUlJmDNnDjIyMhzWKSoqwpIlSzBgwAAMHjwYjzzyCMrLyz1+bp7Q3P2TmZmJZcuWYdy4cUhKSsIll1yCN954AwaDoUnOrzG88d6xKioqwujRoxEfHw+NRuOxc/IUb/XNzz//jOnTpyMpKQkXXXQRHnzwQY+elyd4o2/279+Pm266CQMHDsSQIUNwxx134OTJkx4/N0/wdP/88MMPmDt3LoYOHYr4+HgcP368xj5a02dye+Dp90BbUp++OXHiBBYtWoRx48YhPj4eH330UTO21Dvq0z+fffYZbrjhBgwePBhDhgzBrbfeioMHDzZja5tXffpm27ZtmD59OgYNGoTk5GRMmTIFX3/9dfM1tpnV9zPHau3atYiPj8cLL7zQxC30nvr0zaZNmxAfH+/wX79+/ZqxtS2QROSG//u//5P69u0rffHFF9KJEyek5cuXS4MHD5by8/Odrr9nzx4pISFBeuedd6S0tDTp1Vdflfr27SulpaXZ1lmzZo00cOBA6ccff5SOHDki3XnnndIll1wiVVRU2NaZO3eudNVVV0n79u2Tdu3aJV166aXSAw880OTnW1/e6J/ffvtNeuihh6Q//vhDOnPmjLRt2zbpoosuklatWtUs5+wub713rBYtWiTNnTtX6tWrl1RWVtZk59kQ3uqbLVu2SIMHD5Y+/fRTKT09XTp+/Li0devWJj/f+vBG35SWlkqDBw+Wli1bJqWnp0tHjx6V7rjjDmn8+PHNcs710RT989VXX0mrV6+WPvvsM6lXr17SsWPHauyntXwmtwdN8R5oK+rbN/v375eef/556bvvvpNGjBghffjhh83c4uZV3/657777pI8++kg6fPiwlJaWJj300EPSoEGDpOzs7GZuedOrb9/8888/0tatW6W0tDQpIyND+uCDD6SEhATpr7/+auaWN7369o1VamqqNHbsWOnKK6+Unn/++WZqbfOqb998+eWX0pAhQ6ScnBzbf7m5uc3c6paFQQlyyzXXXCM9+eSTtscmk0kaOXKktG7dOqfrL168WLrjjjscll177bXSihUrJEmSJLPZLI0YMUJav3697fmSkhIpMTFR+v777yVJkqS0tDSpV69e0sGDB23r/Pbbb1Lv3r1b3D9cb/SPM++88440YcKExpyKx3mzbz7//HPpuuuuk7Zv394igxLe6BuDwSCNGjVK+uyzzzx9Oh7ljb45cOCA1KtXL4cv2nv27JF69epV55eu5ubp/rF39uxZp0GJ1vSZ3B405Xugtatv39gbO3Zsmw9KNKZ/JEmSjEajlJKSIv3vf/9rqiZ6TWP7RpIkaerUqdLq1aubonle1ZC+KS8vly6//HLp999/l2bNmtVmgxL17RtrUIKqcPgG1Umv1+PQoUMYMWKEbZkoihg+fDj27dvndJt9+/Y5rA8AI0eOtK2fmZmJ3Nxch3UCAgLQv39/2zp79+5FcHAwEhMTbesMHz4cgiC4nS7WHLzVP86UlpYiKCiowefiad7smzNnzuDVV1/FypUrIYot76POW31z+PBhZGdnQxAEXHXVVRg5ciTuvPNOl8NfvMFbfdO1a1cEBwfj888/h8FggFarxVdffYV+/fohNDTUo+fYGE3RP+5oLZ/J7YG33gOtQUP6pj3xRP9otVoYjcYW9X3DExrbN5IkYceOHTh16hQGDhzYhC1tfg3tm+effx5Dhw7FqFGjmqGV3tHQvikrK8PFF1+MMWPG4K677kJaWloztLblannf1KnFKSwshMlkQnh4uMPysLAw5ObmOt0mLy8PYWFhLte3/r+2fTrbh1wuR1BQEPLy8hp+Qh7mrf6p7syZM/joo49w3XXXNeg8moK3+sZoNOKBBx7A4sWLERcX55Fz8TRv9c3Zs2cBAG+99RYWLVqEt956CwqFArNnz24xtQG81Tf+/v54//33sWnTJvTv3x8pKSnYt28f3nrrLY+cl6c0Rf+4o7V8JrcH3noPtAYN6Zv2xBP989JLL6FDhw4YNmxYUzTRaxraN6WlpUhJSUFiYiJuv/12PPbYY7jooouaurnNqiF988svv2Dnzp1YunRpczTRaxrSN926dcNzzz2Ht99+G6tWrYLZbMb111+P7Ozs5mhyi8SgBDWYJEkQBMHl886eq76s+uPq+3S2j7qO21I0R/9YZWdnY968eZg8eTKmTZvWwBY3n6bum7fffhshISG49tprPdDa5tXUfWM2mwEA8+fPx6WXXoqkpCS88MILKCkpwa+//trI1jetpu4bnU6H5cuXY9iwYfjss8/w8ccfo0OHDliwYAGMRqMHzqBpeaJ/6tKaP5Pbg+Z4D7RWfJ/Wzt3+eeedd7B582asXr0aSqWyGVrmfXX1jZ+fH77++mt88cUXuPfee/Hss89i9+7dzdhC73HVNwUFBXj00UexcuVK+Pr6eqFl3lfb+yY5ORlXXXUVevfujSFDhmD16tW2TM32Su7tBlDLFxISAplMVuOXsIKCghpRQavw8PAa6+fn59vWj4iIAGD59dI+LbqgoMCWGuxsH0ajESUlJTV+7fEmb/WPVXZ2NmbPno3k5GQ88cQTjT0dj/JW3/z999/YvXs3+vTpA8ByYQCAwYMH4+6778add97pgbNrHG/+uwIsQxWs1Go1YmJicP78+UaelWd4q2++/fZbZGdn4/PPP7d9kXj55ZcxePBgbN++HaNHj/bMCTZSU/SPO1rLZ3J74K33QGvQkL5pTxrTP+vXr8eaNWuwYcMG9OrVqymb6RUN7RtRFNG5c2cAQEJCAk6ePIm1a9di0KBBTdre5lTfvjlx4gRyc3Nx/fXX25aZTCbs2rULH330UZuavcUTnzkKhQIJCQktaihtc2OmBNVJqVSib9++2L59u22Z2WzGjh07kJyc7HSb5ORk/PXXXw7Ltm/fbls/NjYWERERDvssKyvD/v37beukpKSgqKgIhw4dsq2zc+dOSJKEpKQkz5ycB3irf4CqgETfvn3x3HPPtbjaCd7qm2effRbffPMNvv76a3z99dd4+umnAQCffvopZsyY4bkTbARv9U2/fv2gUCgcLnw6nQ5ZWVmIiYnxzMk1krf6RqfTQRRFh182rI+tga2WoCn6xx2t5TO5PfDWe6A1aEjftCcN7Z9169bhrbfewrp169rs1IWeeu9IkgS9Xt8ELfSe+vZNv3798O2339q+h3399ddITEzE1VdfjU2bNjVjy5ueJ943JpMJJ06csP2A0i41W0lNatWsU91s2rRJSktLkx599FGHqW4eeOAB6cUXX7St/++//0oJCQnS+vXrpbS0NOn11193Oj3foEGDpG3btklHjx6V5s+f73RK0KlTp0r79++Xdu/eLU2YMEG6//77m+/E3eSN/snKypIuvfRSafbs2VJWVpbDtEItibfeO/Z27tzZImff8FbfPPnkk9KYMWOkv/76S0pLS5OWLFkijRkzRtJoNM138nXwRt+kpaVJiYmJ0lNPPSWdPHlSOnr0qLRo0SLpoosukoqKipq3A+rQFP1TWFgoHT58WPr111+lXr16SVu2bJEOHz4sFRYW2tZpLZ/J7UFTvAfaivr2TUVFhXT48GHp8OHD0ogRI6QXX3xROnz4sHTu3DlvnUKTqm//rF27Vurbt6+0ZcsWh+8aLe2a6gn17Zs1a9bYpmZPS0uTNmzYIPXp00f64osvvHUKTaa+fVNdW559o759s3r1atv7JjU1Vbr33nulpKQk6eTJk946Ba/j8A1yy6RJk1BQUIDXX38dubm5SEhIwLp162xp0BcuXHD4lX7AgAF46aWX8Oqrr+Lll19Gly5d8Oabb6J79+62dW677TZotVo89thjKCkpwcCBA/HOO+84jFF88cUX8dRTT+Hmm2+GKIq47LLLsHz58uY7cTd5o3/++usvZGRkICMjo0Za+bFjx5rhrN3jrfdOa+CtvnnwwQchk8lw3333wWAwICUlBRs2bIBarW6+k6+DN/qme/fuePvtt7F69Wpce+21kMvlSExMxLp161pclfmm6J+ff/4ZDz/8sO3x3XffDQB47rnnbLVqWstncnvQFO+BtqK+fZOTk4OpU6faHq9duxZr167F1Vdfjeeff765m9/k6ts/n3zyCQwGg+0zwWrhwoVYtGhRs7a9qdW3b3Q6HZ588klkZWXBx8cH3bp1w6pVqzBp0iRvnUKTqW/ftCf17ZuSkhI8+uijyM3NRVBQEBITE/Hf//4X3bp189YpeJ0gSS0oJ5WIiIiIiIiI2o32Gc4iIiIiIiIiIq9jUIKIiIiIiIiIvIJBCSIiIiIiIiLyCgYliIiIiIiIiMgrGJQgIiIiIiIiIq9gUIKIiIiIiIiIvIJBCSIiIiIiIiLyCrm3G0BEVJvVq1fjjTfeqLH8oosuwnvvvdf8DSIiImqjeM0lIm9gUIKIWryAgACsW7euxjIiIiLyLF5ziai5MShBRC2eTCZDcnJynevpdDr4+Pg0fYOIiIjaKF5ziai5saYEEbVKmZmZiI+Px//+9z8sXboUgwYNwp133gkAKCoqwmOPPYbhw4ejX79+uO6667B//36H7UtKSrBkyRIkJydj5MiR+M9//oMXXngB48aNs62zevVqDB06tMax4+Pj8dFHHzks+/zzzzF58mQkJiZi7NixeOeddxyef+ihhzBt2jT89ddfuPLKK5GcnIzrr78eJ06ccFjPZDJhzZo1uOyyy5CYmIjRo0fjoYceAgBs3LgRKSkp0Gg0Dtvs3LkT8fHxOHr0aD17kYiIqG685lbhNZfI85gpQUStgtFodHgsSRIAYOXKlbj00kvx2muvQRRF6PV63HLLLSgpKcHSpUsRGhqKTz75BHPmzMEPP/yAiIgIAMDDDz+Mf/75B8uWLUN4eDjeffddnDlzBnJ5/T8W161bh1deeQXz5s3DkCFDcOjQIbz22mvw9fXFrFmzbOtduHABK1euxPz586FSqbBy5Urcc889+O677yAIAgDgsccewzfffIO5c+diyJAhKC4uxpYtWwAAV155JV544QVs3boV06ZNs+33q6++Qt++fdG7d+96t52IiKg6XnN5zSVqTgxKEFGLV1RUhL59+zose/rppwEA/fv3x+OPP25b/vnnn+PEiRP47rvv0KVLFwDA8OHDMXHiRLz77rt48MEHceLECWzbtg2vvPIKJk2aBAAYOnQoxo4dC39//3q1raysDG+++Sbmz5+PhQsXAgBGjBgBrVaL//znP7j++ushk8kAAMXFxfjkk09s7ZIkCQsWLEB6ejq6d++OkydP4osvvsAjjzyC2bNn245hbWNgYCAmTJiATZs22b4gaTQa/PDDD1iyZEm92k1EROQMr7m85hI1NwYliKjFCwgIwIYNGxyWKZVKAMDFF1/ssHzHjh3o27cvYmNjHX7pGTx4MFJTUwEABw8eBACHtFE/Pz8MHz4cBw4cqFfb9u7di/LyckycONHheMOGDcNbb72FrKwsdOzYEQDQsWNH25cjAOjevTsAIDs7G927d8fff/8NAA6/yFR3zTXXYM6cOTh79izi4uLw/fffw2g04oorrqhXu4mIiJzhNbcKr7lEzYNBCSJq8WQyGfr16+ewLDMzEwAQFhbmsLywsBD79u2r8SsPAHTq1AkAkJeXBz8/vxoFuqrvyx2FhYUAgMmTJzt9/sKFC7YvSNWrlysUCgBARUUFAMuvU2q1utZfjoYOHYq4uDhs2rQJixcvxqZNmzB+/HgEBwfXu+1ERETV8ZpbhddcoubBoAQRtWrWcaFWQUFBSExMxBNPPFFjXesvPeHh4dBoNDUqh+fn5zusr1KpYDAYHJYVFxfXOB4ArFmzxukXrK5du7p9LsHBwSgvL0dZWZnLL0mCIGD69On47LPPMGXKFPz77781CnwRERE1BV5zec0lagoMShBRm3LRRRfhr7/+QkxMjMtfYay/AP3888+2saMajQbbt293+GISFRUFjUaD7OxsREVFAQD++usvh32lpKTAx8cHOTk5NdJa62vYsGEAgK+//tqhWFd1V199NV5//XUsW7YMUVFRGDFiRKOOS0RE1BC85hKRJzAoQURtytSpU/Hpp5/ipptuwq233oq4uDgUFRXhwIEDiIiIwJw5c9CzZ0+MGzcOTzzxBMrKyhAREYH169fXSC0dNWoUfHx8sGzZMtxyyy3IzMzEp59+6rBOYGAgFi5ciGeeeQbnzp3D4MGDYTabcfr0afz9999488033W57t27dMHPmTDz//PPIz8/H4MGDUVJSgq1bt+KVV16xrRcVFYVRo0bh119/xR133GEr6kVERNSceM0lIk9gUIKI2hSVSoUPPvgAr732GlavXo38/HyEhoYiKSnJocjW888/jyeeeALPPvss1Go1brjhBvTr1w9bt261rRMaGorXX38dK1euxIIFC9C3b1+89NJLtl96rG677TZERkbi/fffx4YNG6BSqdClS5ca67nj8ccfR0xMDD7//HO88847CA0NdfqrzCWXXIJff/211gJdRERETYnXXCLyBEGyTjxMRNTOWecj//nnn73dlDotXrwYubm5+Pjjj73dFCIionrjNZeIrJgpQUTUihw7dgypqan48ccf8fLLL3u7OURERG0Wr7lEzYNBCSKiVmT+/PkoLCzEDTfcgIkTJ3q7OURERG0Wr7lEzYPDN4iIiIiIiIjIK0RvN4CIiIiIiIiI2icGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxC7u0GUOtgNkswmcyN3o9cLsJobPx+2iL2jaOzZ88gLq6T7TH7xzX2jWvsG9c80TcymQhRFDzUIrLiNbfpsW9qx/5xjX3jGvumdo3tn7Z8zWVQgtxiMplRVFTeqH2IooCwMH+UlGhhNksealnbwL6p6aabZuPrrzcDYP/Uhn3jGvvGNU/1TXCwGqIo82DLCOA1t6mxb2rH/nGNfeMa+6Z2nuiftnzN5fANIiIiIiIiIvIKBiWIiIiIiIiIyCsYlCAiIiIiIiIir2BQgoiIiIiIiIi8goUuiYjIYyTJDLPZDKkF1LgSRQF6vR5Go5FFt6pxt28EARBFGQShbVb7JqLWyVvXGl5XXGPf1M6d/mnP11wGJYiIqNFMJhNKSgpQUdG4GQM8LS9PhNnM6cmccbdvBEFEaGgkFApVM7SKiMi1lnCt4XXFNfZN7dzpn/Z6zWVQgoiIGkWSJOTnX4AoyhASEgmZTA6gZUT55XIBRiN/sXHGvb6RUFZWjIKCHERGxrbLX2+IqGVoKdcaXldcY9/Uru7+ab/XXAYliIioUcxmE8xmE0JDoyCXK7zdHAdyuQiAv9o4427f+PsHQafTwGw2Vd4EEBE1v5ZyreF1xTX2Te3c6Z/2es1loUsiImqUqjG97Sei375YXteWUCeEiNovXmuofWif19z2E34hojpJkoQivQl5FUYU6U3QmyRIAHxkIgIUIqJ85AhSts8CPERERERE5HkMShC1c5kaPXblleNAoRYnSipQaqg9rcxPLqJbgBIJQT5IDvVF7yAfyEQGKYiIiIhaq/Xr12D79j+xfv2H3m4KtUMMShC1QwazhN+yyvB9ZgnSSitsy+UC0NVfiWhfOYKVcihlAgQAWpMZxXoTcnRGZGoMOFiow8FCHT47XYQghYjhkf6Y0DEA3QLaV6Vgat2eeeYJfP/9dzWWf/fdNgQHBzd/g4iIqM155pknoNWW4+mnV9qWbd78LVatehb33rsUV111db33ec01VyIr64LDsjvuWIibbprT4HZef/1NuOaamQ3evrW65porcf31szB9evs795aEQQmidsQsSfj5Qhk+Ti9AfoUJABCrVmBklB9SwtToEaCCvI6sB5NZwlmNHgcLdfg335Jh8f25Enx/rgTxgSpM7xKMIeFqDvGgVmH48FF48MFHHJYFBQU5PDYajZDLebkkIqLG+/zzT/HWW69h+fIVGD9+QoP3c8cdCzBp0pW2x2q1X6PapVarAagbtY+2ymg0Qibj8OWmxEKXRO1EpkaPB3efx+ojucivMGFouBrPD4zBG8NicX23UPQO8qkzIAEAMlFAlwAVruwUhCdSOuC9UZ1xW68wxKoVOFZSgWcPZGPJrnNILdQ2w1kRNY5SqUBYWLjDf9deexU++OBdPPnko7j00tF47bWXAAD79+/F/Pm3Yty4EZg+/Qq89dZr0Ov1tn3l5+dh6dJ7MG7cCMycORW//voTJk8ej82bvwUA7NmzGyNHDkJ5ebltm7/++gMjRw5yaNPvv/+KOXNuwLhxwzFz5lRs3Pi+w7zmI0cOwnfffY2lS+/B+PEjcNNNM7B//z6Hfezbtwd33TUP48ePwOWXj8MDDyxGRUUF3n9/PW655YYa/XDddVfjk08+anR/EhGRaxs2vIO3316NZ59d1aiABGAJIthfu3x9fWtdv6SkBM899yQmTx6Pyy4bg/vuW4iMjNO259evX4O5c2+yPTYajXjllZW47LIxmDx5PNavX4Ply5fimWeesK1TUVGB1atfwZQpE3HppaNw2223IDX1oO35zZu/xeTJ47F9+5+47rppmDBhDJYvX4qysjLbOr/8sg033TQD48YNx+TJ43HffQtt17xnnnkCy5cvxfr1azB58nhMnHgxXn/9JZhMJpdtmD//Voc2AK6viQsX3o6srAt45ZVVGDlykO16bG3377//ihtumI5x44ajqKgICxfejjfeeNVh33Pn3oT169fYHo8cOQj/+99XuO++RRg/fgRmz56J48ePIi3tBObOnY1LLhmJe+9dgMLCglpfr/aGP/20cenp6Vi2bBnKysqgVCqxbNkyDBo0qO4NqU35+UIp3j6ahwqzhB4BKtweH4b4IB+P7DtQIcMVcUGYHBuIXXnl+O+pIqSVVuCRPRcwMtIPt/UKQ7CKHzXUunz88Qe49dbbMXfuHQCAc+cycf/9i3HHHXfhkUdWID8/Dy+++ByMRiPuvnsJAMuXp6KiQrzxhuXLySuvrHIIQLhj//59ePbZJ3DPPQ+gX7/+OHMmAytXPgOFQokZM663rbdhwzosXHgPFi26D+vXr8GKFY/gs8++gVwux5kzGbj33gWYOvUaLFnyEABg166dkCQJkyZdiXffXYsTJ44hISGh8ph7ceHCeVx22eWN7jciIqpJkiSsXv0yvvvuG7z00mokJw9weP6DD97Fhx9uqHUfH374OaKjox22effdtYiMjMKECZNw7bXX1ZrV99hjD8HX1xcvvfQG1GpffP75f3HvvQuwceMXTgMaGze+j59++gGPPvokOnaMwyeffIhdu/7G6NFjbeu8+uoqZGScxlNPPY+wsHD89NMPuPfeBfj44y8QEREJACgvL8eXX36Gp556DjqdDo8++hA++ug93HnnQuTl5eGJJx7BXXfdjdGjx0Kj0WDPnl0O7fj7751QqXzwxhvv4OzZM3juuScRHh6BG26Y7bQNP/64xaENtV0Tn312FebMuQFXX32NQ9aJtd2ffvoRHnlkBfz8/ODn534mynvvrcOiRffinnuW4NVXX8STTz6G0NBQLFy4GD4+fnj88Yexdu1bePDB5W7vs63jnUIbp1Kp8Oyzz6Jbt244efIk7rrrLmzdutXbzWrT8iuMOFqkw7lyA4r0JkgA1DIRHdQK9AhQopO/EmIzpX9JkoSP0wvx2ekiiAJwQ7cQXNMlGLImOL4gCBgS4YdB4Wr8ma3Be2n5+DNHg30FWtzVOxwjovw9fkyixvrjj99w6aWjbI8vvng8AGDQoKGYMaMqo+D555/CxImTcc011wEAYmPjsGDBPVi+fCkWLboPZ89m4J9/duLddz9Cr169AQBLljyIefNm16s97767FrNn34qJEycDADp2jMXNN9+KL774r0NQ4oorpmDs2EsAALfeejtuuGE6zp3LROfOXfDRR++hX7/+WLx4iW397t17AAB8fHwwZMgw/N//fWsLSmze/C0uumgEQkPD6tVWIiJve+1wDv7OrV/wt7GGRfrh7oSIem2zffufMBgMeOONtTUCEgAwdep0jBt3aa37CA8Pt/09Y8b16NWrN/z9A3Dw4H6sWfMmCgvzcdddi51uu3//Phw7dhT/+99WKBQKAMC99z6A33//Bdu3/4nx42se+8svP8Ps2bdi5MgxAIAHHliGHTv+sj2flZWFzZu/xVdfbbZdP269dR7+/PN3/PDD97jxxpsBAAaDAQ88sMwWULn88ivw77+WwEN+fh5MJhPGjBmH6OgOAIAePXo6tEOlUuHBB5dDqVSia9duyMw8i//+dyNuuGG20zbMmTMP27f/aWtDXddEURRtWSf2DAYD7r//YXTr1t31i+KC/TX6+utvwr33LsDtt9+FlJSBMBrNuOKKqfjmmy/rvd+2jEGJNq5jx462v7t164bS0lJIktTqx0RJkgSN0ZLa5SMT3Rp20JQqTGb8fKEMP10oxYmSilrXjfCRY3SUP66IC0RoE2YQSJKENcfy8f25EqhlAh5OikZSaO2pfZ4gCgJGR/tjULgaH54swObMEqxMzcFlhVrc1iscCs7UQS3IoEFDce+9D9geq9Vq3H77HPTuneCwXlraCZw8eQJbtlQVxjSbzaioqEB+fj4yMk5DoVCgZ8942/Px8Qm2L3/uOnnyOA4e3I8NG96xLTOZzJAkx1lxunXrYfvb+kW1sLAAnTt3QVraCYwefbHLY0yefBVefPE5LF58LyoqDPjll5+wfPmKerWTiIjc16NHLxQU5GPdurfx4ouvw8fHMVs1MDAIgYFBLrauyT5o3qNHTygUCrz44nO4/fYFTrMl0tKOQ6Mpw6RJ4xyWV1RU4Pz5zBrrl5WVoaAgHwkJfW3LFAqFQ8AgPT0NJpMJM2dOddhWr9c7rOfn5+eQ4REWFobCwkJb21NSBmL27OswbNhwDBkyDGPHjoefX9UPWT179oJSqbQ9Tkzsh7feykNZWZlbbajrmuiKSqVqUEACALp3rzp/a7Cka9dudstCbX1AFgxKtHC7du3C+vXrkZqaitzcXLz99tsYO3aswzobN27E+vXrkZubi4SEBCxfvhxJSUk19vXTTz8hISGh1QYkjhfrsD1HgwOFWpzVGKA3S7bnon3l6BmowkWVv9SrZM1TLkWSJPySVYaPTlYVjuzgK0dSiC+6BqgQrJRBJgBlRjMyNQYcLtLiSHEFvswowrdni3FlXBCu6xoMH1Hm8bZ9nF6I78+VIEQpwxMpHdDFX1n3Rh6klou4Iz4cQ8LVePVwLraeK8XpMj0e7heFEA7noBbC19cHsbFxTpY7BvC02nJMm3Ytrr762hrrBgcHQ5JQ52erKFo/l6o+u4xGo8M65eVa3HbbfIwaNabWfTl+6bQc177uRG1GjhyDF198Hn/++Ts0mnIolUoMHz7SrW2J2jq9Xo+//96BmJgYhxsLapkW94ls9mPK5SKMRvc+b62ioqKwYsWzWLToDjzwwGKsWvWaQ2CiIcM37PXpkwij0Yjs7Cx07Bhb43mtthwREZF47bX/1HguMDDQ5TGrX9ckqer6pdWWQy6X4913N9rWk8kEmEySw1CH6kESQRBsgXaZTIbXXvsPDh7cj507t+OTTz7E+vVrsH79h7abeVfXVkFw3gar+gy3cKZ64AiwXMft+wCoeR0HHM/Z2izHZUKNHxvaO94ZtHDl5eWIj4/HtGnTsGjRohrPb968Gc899xxWrFiB/v374/3338e8efOwZcsWhIaG2tY7d+4cVq1ahbVr1zZn8z1iX345PkovdMhA8JOLiPaVQxQEaIxmZGmNyNIa8Ue2BgFyEdO7BGNSbGCTBidK9Ca8fiQXu/IsaYMXRahxdedg9ApU1Xpzkqsz4ruzxdicWYIvM4qwO78cD/SLRFiY54Y3/Hi+BJ+dLoJaJuCJ5OhmD0jYSwlT49UhHfHsgWwcK67AA7vPY0VKNDqqvdcmovrq2TMep06lOw1gAECXLl2g1+tx4sQx2/CNY8eOwmAw2NYJDg4BAOTn59uqpKelHXfYT69e8Th7NsPlcdzRo0dP7NmzG3PmzHP6vFwux2WXTcJ33/0POp0Ol112OWcXIar0/fffYffufyAIIhYsWIyoqKg6t9mdV44PTxZgef9oRPg4/lvSmczwaaYfSqhli4npiNWr12DRojuwdOk9WLnyVduNb32Hb1SXlnYcMpnM5XTWvXr1Rl5eLhQKBaKinAc27Pn7+yM0NAyHDx9CYqLlh06DwYCTJ9NstSJ69uwFo9GI4uIi2zoNCdiIooj+/VPQv38Kbr31dlx55aX4++8duPzyKwAAx48fg16vt2VLHDqUirCwcPj5+TttQ3V1XxMVMJnca3NwcAgKCvJtj8vLy51mmlD98VtICzdmzBiMGeP6F7MNGzZg5syZmD59OgBgxYoV+PXXX/HVV19h7ty5ACwpWHfddRceffRRdO7cucFtERuZdm/d3t39lBpM+M+RPPyRbanQG+enwOWxQRgYrkYHX7nDjb/GYMLBQh1+zSrFjmwN3ksrwNZzJXigXxR6eqigo73z5QY8+u955OiMiFErcG/fSPQOdu84UWoF5saHY0rnYLx6KAf7C7R44J9zeMlXhc6KxmexnCnTY+2xfIgCsDy5A7o1wfnXV5ivAs8NisFrh3Pxe1YZlv17ASsGdEC3AFWt21V/zzT2PdgWtYS+aQ+vy403zsYdd9yKV199EZMnXwWVSoVTp04iNfUgFixYjE6dumDQoCF44YVncP/9lkJar776osPwjdjYOERGRmHDhndwyy23IS3tOP7v//7ncJybb56Lhx9egsjIKIwZY0mzPXHiGC5cOI+bb57rVltnzZqDm2++Dq+99hKuvHIKBEHErl1/46qrrrZ9Ab7iiimYM+cGSJLZVqizLqIotIvXmtovnU6HvXv3AAAkyYx//tmBK6+cWud2T+3PAgB8kl6Au+1+uT9erMMDu89jRpdg3Ng91NXm1I5YAxN3332nQ2CiPsM3UlMP4PDhVKSkDIJarcahQwfx+usvY+LEyQ7DHuwNGjQEffr0xcMPL8H8+YvQsWMccnNz8eefv+GKK6agc+cuNbaZPn0GPvjgXXTsGIuOHWPxyScfQq+vsH3/7tSpC8aPvxRPPvkoFi68Fz169ERJSRF27NiO5OQBSEkZWOe5HDqUin///QdDhgxDcHAI9u3bA61Wi06dqtpTUVGBVauexY033oyzZzPw4YcbcMMNN7lsQ2FhIf75Z4etDXVdEzt06IB9+/Zg7NjxUCiULgM7AJCSMhD/+c9q/P33Dtv13JqtSI3DoEQrptfrcejQIcyfP9+2TBRFDB8+HPv27QMAmEwmLF68GDNmzMDIkQ1Pz5XLRY/9kh8SUnc61eliHZbuOIvMMj0ifRVYPCAGF8cGucxACAPQKToIkxOicLpEhzf3XcBf50uwdPd5LBnYEVO6e66AW3qxDsv+zUC+zojxnYLx8OBYqBX1H34RBuDNmCC8m5qNdw9l497f0rFqdFcMigpocNsqTGa8/M856M0S7kyKxsU961eIqak9GxGAV/acw5cn8vHYngt4c3wPl0EThUJW4z3nznunvfJm3+j1euTliZDLBcjlLe8XQVdtEgQBguC8zaLouDwhIQFvvbUGb7/9FubPvxWiKENsbBwmT77Ctt4TTzyFZ555EgsW3IawsHAsWnQPXnjhWdu+5HIlVqx4GitXPoc5c65HSsoAzJ17O5577inbPkaNGoWVK1/Bu++uxYcfboBCoUDXrt0wffoMh/bIZFXts/5fJhMhl4vo1q0rXn31TfznP6vxzTdfwsfHF0lJ/TF9+jW2dXv27IH4+N4wm02Ij+9VRw8KEEURISFqh3G95JxWq8WkSZMwefJk3H///d5uDrnp2zPFOHr8GEwmI7p374n09JNITT2ASZOuhExWdY3P1Rnx0ckCzOoeWiMrQqq2zx/OlwIA/nuqEBf7lCMsLNxpSji1L/YZEw8+eC9eeOGVer0vFAoltm37Ae++uxYGgwEdOnTEddfdiJkzb3S5jSiKePHF1/H222/i6aefQElJMcLCwpGSMtDl8I0bb7wZ+fl5WLFiORQKOaZNm4GkpGSH68Dy5U9iw4Z38PrrLyEvLxchIaFITEzCJZdc5ta5+Pn5Yd++vfjss49RXq5FTEwMli59BH37JtrWGTp0GCIiInHXXfNgMhlx+eVX4rrrZrndhk6dOuOll1ZjzZo3bdfEfv2SMGXKNADA3Ll3YtWqZzFz5lTo9Xr8+edul+294oopOH78GB5/fBl8fHxw662349w5Zkp4giBVHxhDLVZ8fLxDTYns7GyMHj0an3/+uUMNiZUrV2LPnj349NNP8csvv2DhwoXo0aOqKNqHH35Y6/gxZwwGE0pKtI1qvygKCAnxQ2GhBmaz67fdqdIKPLz7PDRGMy6K9MM9fSOhrueNjiRJ2JxZgnXH8mCUgDviw3FFJ/cLCLlSpDfi3r/PIU9nxGUdA3FXQrhHZtL45kwx1h3Lg59cxCtDY9FBXb/ieFb/TS/ERycLkBTqi6cGdGi2WT7qQ5IkvHs8H1+fKUaoUobnB3d0er5XXXU5/ve/7wG4/95pj1pC3xiNRuTkZCI8vGOLGwbQkFRST5o8eTwWLLinxlRj3mY2mzFjxhTccMNsTJtWs06GPaPRiLy8c4iMjK3x+gYG+kLRgKBsW/bKK6/g9OnTiIuLa3BQwmAwoaiocTMKiKKAsDB/5OeX8XOzGmd9M+WndBTu+wsjClIx5UrLjceJE8cwZ85ch9oSt/91Btk6I0ZH+WNJYqRtWwAYG+2Pe/pWZUq8cSQXP54vRdGBHRhdcBChoWFYuPCeehfAbW4t9b1j/Szy9rXG29cVbzEajZgxYwquvfZ6XH/9LKfreLpvnnnmCWi15Xj66ZUe26c3udM/tb3Pg4PVbfaa27K+PZJH2M+uMXbsWBw6dMgj+/XUhclsllzuK0trwGN7LkBjNGNqpyDc3CMUoiA06NiXdwxElI8czx7IxppjeVCKAi6JaXgWgsEs4bn92cjTGXFxtD/mx4cBEmD2QFxvSqcgaAUBG4/m4pn9WVg5KKbeY1ALK4z44nQh5AJwV3y4x9rWFOb0CIXWaMbW86VYsfcCVg6Kgb+TD9nqr3tt7532zpt9w9ekdSkoyMfmzd+irKwUEydOcns7/vur2+nTp5Geno6xY8ciPT3d282heqrIPQ8dzIiL6wS5XI4TJ47hyJEjDkGJbJ2lqJ1SVjPo7+xfh9loQHHq30CMGgUF+Th4cD+SUwa2yB8NiOydP38Oe/bsQlJSCioqKvDf/25EcXGRbapLIk9qeXm25LaQkBDIZDLk5eU5LC8oKKi1GE5LVWEy46l9WSjSm3BZxwDMqQxINMaAMDWWJ0VBFIA1x/JwqrT26Tpr8+mpQhwu0qF7gBJ39Q73+CwmdyR1QP9QX2SU6fFxev2nCdqYXgidScIVcUENzrRoLoIg4I7e4Rgcrsa5cgNWpubAyJsdomZx1VWX4b///RjLlj1mK7hJltmu7rzzTowcORLx8fH45ZdfaqyzceNGjBs3Dv369cOMGTNw4MABh+dfeOEF3Hfffc3VZPIgyWxGRd4FGEUFoqM7VE4LLODIkUO2avv5uqoq+75OghLOaM+ehGQ0wMfHMqPP1n8P4uqfT2FvfuMyYYiamiiK+O67/+G222Zj4cLbcOHCeaxevcblDCBEjcGgRCumVCrRt29fbN++3bbMbDZjx44dSE5O9l7DGuj9tAJklhswIMwXd8R77qY/OUyN2d1DoTdLeOFgNsobkFaWqdHj64wiqEQBD/WLapJZPeSigCWJkfCVCfjubDEyNXq3t71QbsC286UIUIi4tkuwx9vWFGSCgPv6RqKLvxL7C7QNCsQQtXT/938/tbihG3/+uRvffvsDxo3jr132rLNdPfbYY06ft852tWDBAnz11VeIj4/HvHnzUFBQAADYtm0bunTpgq5duzZns8kDJEmCoTgfkqECfhHRkMlkUPr6IbhDR6Rl5yP9rGXMeLHBZNtGZ3IvkK45fRQAcNVVUyGKMny26wAksxkfnizw/IkQeVB0dAe8/fa72Lr1N2zd+hvefPMd9OmTWPeGHvTII0+0maEbVDsO32jhNBoNzpw5Y3ucmZmJI0eOIDw8HBEREbjllluwdOlS9O3bF0lJSXj//feh0+lw9dVXe7HV9be/QIv/yyxBgFzEooQIyDychTC1UxAOF+nwT145vswowk31qIItSRLWVNamuLF7CCJ9my4LIUQlx4yuIXg/rQDrjufj8eRot4IzW86VQAJwZVyQ02EQLZVaLmJZUhTu/eccvswoQr8QH6SEqb3dLCJqhxo729X+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1J7mnvGqPaneNwazZegGAKgjYyCKAh7bnYWdhnAU5h7CM1u34707roPWLhChM0lO+9Z+mU6nRfm5dIhKFRIT+2HXrr9hPr0XhpICxMZ0abGvTUt977S09hA1pfY24xWDEi1camoqZs+ebXv89NNPAwAWLlyIRYsWYdKkSSgoKMDrr7+O3NxcJCQkYN26dQgNbT1TT5klCeuOW4ag3NE7HKEqz78tBUHA7fHh2FdwFv87U4yJHQNrVM12ZVdeOQ4U6hDnp8BVcY0vllmXK+OC8OP5Uuwt0OJQkQ6JIb61rl9hMuOn86WQCcCERtTM8JYoXwUW9A7HytQcvHIoF6uHxSJI2XoCK+Tao48+hIMHD9S9oof065eEp556vtmOR+2HO7NdLVmyBEuWWKZX3bRpE9LT0xsckGjuGa/aK2vflOlNVUGJjp0RFuaPI8U6qDv1QOGe33Dg0CGEhflD1FZlShgri0HaU6rkCA31w+t7zyMhVI0Lp04AZhPUnfsiMjIIcd27Ar/thT4/Cz6qnthZrMeIjoEIboLvPZ7Q0t47LWmmJ28fvyVj39Su7v5pnzNetcxPQbIZOnQojh07Vus6s2bNwqxZzqvgtgbbczQ4ozGgT5APRkY23QUwwkeOqZ2C8NnpInx4sgD32VXIrs03Z4oBADd1D4W8GSKWClHAtV2C8drhXGzOLKkzKPFXjgalRjNGRvohpIV+sanLiCh/XFqgxY/nS/HuiXzc6+ZrQy0bAwTUVhQWFsJkMtWo1xQWFoaMjAyPH89oNDfbjFftUfW+Kaww2oISv2p88fepfACAIjAUisBQGApzceJEBrJ0VZmSJVoD8vPLHPZbUWFEamYR/lv5Q4vxwF4AgF+X3sjOLYXJJ9iyXkEOtmYUYmtGISZ0DMCiPi3rmtdS3ztGoxFmsxlGowTAe7NftNfZN9zBvqmde7NvSDCbzSgsLIdc7jiUuy3PeMVQFnmVWZLw6SlLLYHruoV4vHhkddM6ByNYKcNvWWXI0hrqXD+9tAKpRTp08JVjcHjzDSsYEekHf7mInbkaFFUYa113S2YJAGBSbP2meW1pbukZhhClDL9mlWEPC4BRE/vyy/9i4sSLYTZXfTnIz8/DyJGD8PDDjtM4bt26GWPHXoSKCl2Dj/fTTz9i5MhBWL58qdPnH398Gd57bx0AYOTIQRg3bgRycrId1lm48Ha88carDW4DeZ79bFf2pk2b1uDpQK2ss5005j9P7act/mffNwUlpTCUFEAeEAyZjxrfnSmyvQ7qzr0AAHv27EGZvurzQmsyw2yW8GdWqcP7QV95w2EsL0Pm6VMQff3gExWHz9IL8fo5y3tFn59l2yZTY/B6X7Sm9w5Re9He3v8MSpBX7czV4GxllkRSiE+TH89XLuLyjpab923nS+tYuypL4sq4oGadvkslEzE+JgAmCfjxgut2FlUYcaykAlE+cvQJbvr+a0p+chF39rb8Cvn20Ty00NlMqY1ISRmIsrIyHD9elYm2b98eREZGYf/+vbZq+9blCQl9oVI17N9YdnYW3nzzVSQlJTt93mg04u+/d2DEiNEOyzdseKdBxyPPa2uzXZGjjDNnAQCqiBgAwE8XqjIg/LtbCvvt2bMbpfqqHwm0lcGHFw7mOOzLWPnZoUk/DEhm+HdNgCCK+ORUIeSBIRAUSugLciBVBkSj3BxKSkTUljEoQV71c+WFf1qXoCbPkrAaHxMAAcBPF0phqiXqWGow4c/sMvjJRYzr0Py1Gqz1IX44V+pwg2RvX4ElvXdAmLrZ+q8pDYvww+BwNbJ1RuTXkSFC1Bhdu3ZHcHAI9u7917Zs795/MXHiZCgUCqSlnXBYPmDAoAYdx2w24+mnH8fNN89Fx46xTtfZt28P/P390bNnL9uy6dNnYPPmb3HmzOkGHZc8q63NdtWe7c4rR1a5Y6bkmbOWIThdOnWusb4iMAQ+0Z2QU1CIU2lVQUytSapxbZZgCVZIkoSytIMAAP8e/WzPC4IAZWgUJKMBhhLL7BvuzuJBRNSWMShBXlNmMGFvfjkC5CJSQptvaESEjxzJob4oqDBhT4HrYQJ78rUwSsDwSD/4eqFoT6yfEvFBKuTojDijcT7UZG9lUCI5rPa6E63J7O6hEAHk6owos5t+jciTBEFAcvIAh6DEvn17kJIyAMnJKbbleXm5yMw8i5SUgQCAWbNm4NJLR7n8b8mSux2O8/HHH8DHxwdTpkxz2ZY///wdI0aMcliWnDwAAwcOwdq1//HUKVMdNBoNjhw5giNHjgComu0qNzcXAHDLLbfg008/xVdffYWTJ0/iiSeeaJWzXbVnF8oNeGp/Fm77q2pWs4wyPQ6ePAUA6N6li9PtAnoPgM5kxuG//7AFInQmM6rHEyTJEqzQZp6EoaQAqogYKIMdM2lUYVEAAH1+tm0/RC3J/Pm34rfffrY9PnHiOObOvQljx16EOXNuQElJMa666jLk5ubUshei+mHOGHnNztxyGCVgWKRfsxSQtHdpTAD2Fmjx47lSDA53Xlzz38q6BoOasZZEdf1DfHGsuAKphVp09neswCtJEvYVaCEKQL86imG2Jp38lbgkJgAHJQlfZhTh5h5h3m4StVEpKQPxzjtvwWw2o7i4CJmZZ5GY2B9nz57Frl1/Y8aM67Fnz79QKpVITLT82vnii6/BaHSdxaNSqWx/Hzt2FF988V+sX/9hre34668/sHTpwzWW33nnAsybNxtHjx5G7959GniW5K72MNtVe1dRLQAgSRIW7cjAmdQTEBRKREREAdmaGtup43rAP3c/jqVnwnz+FNQdu0FnklBerWCdSQK0RhOKD+4EAAQlDkWQQgaVTMCk2EC8l1YAZVi0pS0F2fDv3hcVzJRo00aOrD3L7pZbbsPcuXc0S1uOHj2Cdev+g6NHD0Or1SI8PAKJiUl46KFHoVBYirj+8cev0Gg0GD16rG27//xnNSIjo/DMM6vg6+uDwMAgXH75FVi/fg0eeujRZmk7tX0MSpDX/JltGboxMqr5p5waEuEHH5mAfQVaGM1SjaCISZKwJ78ccgFI8uINf2KILz47XYSDhVpMrjYdaUaZHkV6ExKCVPBrY9MvXdctBK8KAjZnlmB652AEttJZRahlGzBgkK2uxPnz5xAfnwBfX18kJ6dg3bq3LYG/ff+iT59EWz2J6OgObu1br9fjySeX45577kdYmOuaAydPpqGkpAgpKTW/uPbq1Rtjx47H22+/gVdffathJ0luaw+zXbV39rf/JXojCipM0OdnQzIa4BvTFSqFDFM7BeHrynpSVoIgYMCo8dh58j0U//0TfK6KgyhXYNme8w7rGSUJR1L3oyLvAhQhEfCN7Y4PRluGhKQWWjIbVZVBCX3lbB86MzMl2rJvvtli+3vz5m/x1Vdf4J133rct8/Wt+uFLkiSYTCbI5Z7/zlNYWIB7712A0aMvxiuvvAW1Wo1z5zLxyy8/wWw2AbAEJb744jNcfvmVDkOCz507i2uvvQ7R0dG2ZZMnX4k5c27EggX3ICCg9U1HTy0Pv+mTV5ToTdhfqEWQQkS/4Oa/6VeIAnoH+WBfgRbppRXoFeRYwO54cQVKDWb0D/WF2os3/L2DVJALQGqRDmZJcii2aR26kRLmvUyOphKmkiNYKYPOJOGH86W4pmuIt5tEbVDXrt0QEhKKvXv/xYUL55CcPKByeXcIApCWdgL79u3B+PETbNvMmjUD2dkXXO4zKSkFL730OvLz85CRcRqPP77M9px1po8xY4biiy++RUREJP788zcMHTrc5ZfQ2267CzfeeA3+/XeXJ06ZqF0z2kUlMkoqkF9ugC7bUuTSJzoOSlHALT3D8MuFUhQbHIMFcT16wz+uB/JPHEX+zh8QPmISzlYbWllWXIST274HAIQNucThxs76XUIeEAxR5YOKwhxIZhNrSrRx9kFptVoNURRty/bs2Y27774TL774OtaseQPp6Sfx9tvvYtOmz6HVluPpp1fatl2+fCl8fdV45JEnAAAVFRVYu/YtbNu2FeXlGvTo0RMLFtxry+qr7uDBA6io0GHp0kcgk1mmlOzYMRZDhgyzrVNYWIg9e3ZhyZIHbcusmR6vvvoiXn31RVtmR6dOXRAZabmGXX75FZ7pLGrXGJQgrzhYqIVZAoZG+EHWzEM3rPoEW4ISh4t0NYIS1qEbA71cq0ElE9EryAeHi3Q4U6ZHl4Cq1PBDRZbpCb2ZydGUwlWWi+a3Z4sxpXOwdxtDbVZKykBbUOKuuxYDsPwqmpSUjJ9++gFnzmTY6kkA7g/fiIiIxAcffOrw3Dvv/Ac6nQ6LFt2LkBBLyv+ff/6Oa6+9zuX+YmPjcMUVU/D226sbPPsHEVmY7ApTZpToUFJugC6rMigRZQlKAIBSJgIGM8JUMoyK8sfXZ4phNEsIHHIpFOfPISwnDQX/bEPo4HEQRMu1ylBahAPbv0GArhwBCQPhE+VY2NYalBAEAYN7dEVJ5imUFOWhwjemOU6dWrA1a97AwoX3IioqGkFBwW5t8+qrq5CRcRpPPfU8wsLC8eOPW3DvvQvw8cdfICIissb6oaGh0Ov1+PPP3zF69MVOi6MfOLAParUacXGdbMu++WYLbrvtZlx99TWYNOlKh8yO+PgE7N+/l0EJ8ggGJcgr0kv1AIBeQao61mw6fSun0DxcpMPUagW397SAehJW/UIsQYmDhTqHoMT5yurh1WtNtBUqmYjB4Wr8k1eOP7LKcG0E0wPJ81JSBuKtt16DXq9HUlJ/2/L+/VOwfv3aylkXqn55cnf4hlwuR7duPRyW+fsHQCaT2Zbn5+fhxIljGDZsRK37uuWW2zFz5hRIElhbgqgRjHYzbhVWmJBVpoMu9xwEuQLKsCioZJYbNZnd/Zqs8uZNa5JQKvNBwuUz0Cf1e2w6vh/nzp+GOq4nzIYKaE4fRZBgQteEPtD2u7jGse2zLgf26ILM0vPYXZAFXaR7nynk3JdffoYjRw436zETExMxdeo1HtvfbbfdhYEDB7u9flZWVuVQkM0IDbXU3ZozZx62b/8TP/zwPW688WYnbU7CDTfMxmOPPYSAgAD06dMPgwcPxcSJk23DL7KzLyA0NMwhYBEWFg5RFKFWq2sMRQwPD8fJk2kNOWWiGtrWQHRqNU6WVgAAugd4LyjRM9AyNOJwsWVohJVJkpBRpkeAQkSMr8Jr7bNKrBzecrByPCpgaWO21oBAhejV4SVN7crKOhrbzpd4uSXUVg0YMAharRY9e8bDz8/ftjw5eSC02vLKehJN8zn1119/oF+//ggMDKx1vfDwcFxzzXXQ6yuapB1E7YXR7lqvMZiQduYsJIMeqoiOEEQZlGJlNkPlOhKqAhTZWssPAZ1iYnDnnQsQ1bkbjKVFKDm8C2UnDkAymxDZ/yL0u/waCGLN67JaVrUsNjYOAGAqzKlRfJPan969E+q1fnp6GkwmE2bOnOow+9OxY0dw7lymy+3uuutufP3191i8+H7ExMRg48b3cdNNM5CXZ5lhqKKiAkql+9c7pVKFigpdvdpO5AozJajZSZKE9NIKyAUgzs97v/KrZCJ6BKpwtLgCmRoDOlVmHOTqjDBKQEe1wml6W3OLr8wmydDobcsKKkwwSkB0CwiaNKXEEB+Eq2Q4WKhDlkaPtn225A2dO3fBn3/urrG8d+8Ep8sbwzoW2OrPP3/HyJGja6zn7Ljz5y/C/PmLPNoeovbGfrKMHedLcKKysKlvB0u6pHX4hlAZlpAkSw0qAMiqDEqE+8gREhKKlKtuhOnUWejzsyHIFfCJikNkaCAqXJSIsC+o3TmuE3YCMORdgFGC04Lb5J7p02c0+zHlchFGo+eCST4+jsNwBUGwTT1rZT9sUKsth1wux7vvbqzxPdXPr/bi8SEhobj00om49NKJmDdvPq677mp8/fWXmDfvTgQFBaO01P0fgUpLSxAczJpf5Blt9ydWarEKKkwoNpgR56e0Xey9pY/dEA4r67CIjuqWcQuskonwl4soqDDZLlIXKtvY1oMSoiDg4mhLWuEPGYVebg2RZ/Xvn4xx4y71djOI2g37mhIninQ4n34cAOAb2w0AoKxMi7De51kyJSwPLmgtN4URPpbf8/wVIpTB4fDv3hd+nXtB5uMLoyRBa1dN09U3nIjgQAQEBMJYnA+z0QAdsyXITnBwCAoK8m2PzWYz0tNP2h737NkLRqMRxcVFiI2Nc/jPWq/IHf7+/ggLC4NWa8nE7dUrHnl5udBoytza/vTpU+jZM97t4xHVhkEJanYtYeiGlTUocbykKihxrvKGP0bdcmo1hKlk0JslaCoj89ZfbKJ9236y08UdLCn1358urPHLAVFrduONNzstSEZETcO+poRJq4E+Lwsyv0Aogizj8qsyJSwkSYJ1hOSJEst3F1tQwsnQySytETtyNbbHrpIt5YKAuLhOkAkSKvIuoIIzcJCdlJSBOHQoFdu2bcWZMxl4/fWXUFxcZHu+U6cuGD/+Ujz55KP4/fdfcf78uf9n777j26jv/4G/7k572bK87ezhOE6cnZABGWU1tMwCLaRQyigrpS2F9keh39JSRoEOKDSsUgp0QBugtDRhQyEBsnecOE484ynL2vPu94d00kmWZNnWsJ338/HgQSydTh99LOt073t/3m8cOLAfzz//DHbt2hF3n59++j/84hc/xdatn6KlpRnHjzfgD394HMePN2D58tMBANOmVcFgyMO+fXsHHKPH40Fd3aGo7h2EDMfYP6MhI86x0IF9sj73J/0lqmCmgdkTCN820jIlAMColKHR4YPZE4BOzqE9dMWmbASNMVPGaRWYqlei3urBMZsXk8doYU9CCCGZJW0J6mxtAABoKieHU+BVXHSgQZopIRILYOvkA1/Xq47p7HXLjEKcsHtRoOQwYcJEcMzn8HS0wEWZEkRi6dLluPLKq/Hb3z4CQeBx6aXfwKJFS6K2ufvun+P555/BY489iu7uLhiNBZg1qxZnnnlO3H1OnDgJCoUCv/vdo+js7IBKpcKECRNx332/wvz5wbafHMdh7dqv4J13NuG005YlHeOnn/4PxcUlmDWrNj0vmpzyKChBsk7svDF5BGRK5CuCrbws3v5BifIRdMJvCrXHNHv8GK9TSDIlRs4YM2l5iRb1Ng92dDspKEEIIWRIpMs3XC3BdHh15ZTwbcbQdwJxZakgBLMaRGvKdDApg1+dtTIu6XOtm2LEmWXRXaPOrogUtZ00aTJkDAN7RxNlSpwiLrnkclxyyeXhn+fPX5iwdtF3vnMLvvOdWxLuSy6X44YbbsYNN9yc0nNXVFTiRz+6e8DtLrvsSlx99eXo6uoMZ/L94x9v9tvu1Vf/iquvvi6l5yYkFbR8g2TdMZsHDICJI+DkUidnwTL9gxIMRtbSCPFLUE8oo+NUWr4BAHNNwStTe8zOHI+ExBP5zk5frMem4O91BNT9JWRYxOUbvM8LZ2sDGLkC6tLx4fvzQxcAxMwJAYB0lYa0Dla85Rvh/Sg4XDrRCKMy8TG6pKQUapUK7q42dDiogwEZGQoLC3HnnXejo6M94TZWax9WrDgDZ50VPyuDkKGgoATJKqcvgC63H2VqOdQjoJUlyzDIV3Do8wXACwI8AR5dbj+KVDIoudyPT1QQ+mJj9vohCALaXX4oWSZ8VWesm6xXIE/B4ZDFTQXBRiCW5QAw1LJyjAoEgsvFgr9nQkaH7d1OPHGoKyo7QmwJ6myuBwIBaMZPA8NFAgd58lBQIvRz7PINueTf+iTLN74+aeCOBCzLYva0KUAggPcP1afykgjJipUrVyddlmEw5OHKK68eER3qyNhxalxmJSOGK1SoUZvCWsxsyVdwMHsCsPl4WLwBCBhZSzcAoCB09abHHYDNz8Ph5zFBOzJalmYDyzBYWKLDe819OGhxY34oc2IgPR4/3mqxotnhhdUbwHidArPy1VherAVH7dfShmEYaLUGWK1mAAj1OR8p88vA76cMjvhSmRsBNpsFSqXmlPm8IWPDL/YEr/QuKtRgcVGwTaIY03acOAwA0E6cEfUYWUyhS14QooISYncOANDL+wfptDIWP59Xhikp1sxaMbMK//piN7YfOgKsWZDSYwghZCyioATJKl8odVI+gr7cGiV1JUZiPQkgOlOi/RRpBxprYake7zX3YbfZNWBQQhAE/KPRglePW+CRVFs/1OfB5lYb/nZcjm9PM4ULlpHh0+nyACAUmBg5QQCWZcHzlF0TT6pzw7IcjEbqEkJGJ3eoXsNBixu93gACbhdcbSfAKlVQl02I+xhpS1BpUqe0vkRenEzFF0+fMKiA9+yqaZCzDLqaGlJ+DCGEjEUUlCBZJQYlZCPoKrX4xaLX60erM1iEcyR13gCkhS4D4c4bpSNsjJm2uCRYMGy32TXgtn893ou/H7dAzjK4eEIelhVroZNxaLB5sKnVir29bvxiTzu+NbUAF47PoyvAacAwDPT6fOh0eeD5AEZC91aWZWA0atDb6wTPj4ABjSCpzg3DBIMS9DdCRgtBECANtTEMsKvHiZ/tDmZO2Bv2A3wA2omzwSRYkiR9t0sDEdKaEoY4GZ+DzcArKyuHXK2Fs7MNLpcLarV6UI8nhJCxgoISJKu8odzJEbR6I6oDR+sIzZTIU3BgmWD3jWZHMHBSdoplSpTpFChTy9Bo98LmC8RNnQWAd9qs+PtxCzQcg/sXlGOSpMtLmUaOZcVabO1y4LcHuvCnejPsPh7fnFqQrZcx5jEMA44bGYcWlmWgUCggk3kpKBGD5oaMVb/a34kvuhzhnwUB2NbtDP1bgP3IXgCAftqchPtQh2pKKVk26iKKNCghPQYVKjncM6d00GNlGAZ54ybDeXgv6uuPYPbsxGMiVFSZnCpOzeLSI+ObIzlljMRMCaMi+GfQ5w2g1REMSoy0TAmOCRa17PUGsKc3mCkwIy/3LVWzbbJeiZMuP5odPszM7x+UsPkCePZIDzgG+H+1pVEBCRHDMFhWrEOhUoaf727HPxotmKBT4IxSXTZeAiGEkAza0unod1uXO5hh6Olsgc9qxsTx44GC4JKkr44zQM4yWFkSOQbcUl2Exw914dvTCuCU1F2RBiWk32O+Pc2EiUNsc54/bgpOHt6Lw0coKDEQluXAshwslm7o9fmhAHguvk9SraLEaG6SG2h+BNjtfWAY9pQrLk1BCZJVI7GmhJgp0esJoMXpg4JlUKQaeX8aBUoZejwB1PV5kCdnMWEEtFTNtnE6BdDpQLPDi5n5qn73/7u5D+6AgC9XGFBbkDwNdnqeCj+cVYx7d7fj94e6MEGnSNuc2n0BHLcHi2tq5SzGaxXhuiCEEEKyx8cLOGYLdgayHdkDALhw1em48+tzcKilFyZF/+VJ5Ro5HlhQDgA40BtZMijPwAWV/HETAYbFkSOHIQgCLZVKgmEYmExlsFrN6O3tzNk4qFZRYjQ3yaUyPwzDoqCg+JT7LKBvySSrvKGCU5k4sA+VGJQ4bvfC4ecxSacAOwI/CMQOHAAw26gekWPMtPHaYNBAXMIi5fTz+HezFRwDXDQhL6X9zTVpcOUUI1481osNh7tx/4KyYR0EDve58crxXuzo6V/3osqgxHnj8nBGifaUO9AQQkg2eOK0jLb7A+jxBOC3W+E4UQdWqcK06hoAQLFaPuDypUTLN6RcgaFfGVapNFCVVMBq60Nj4wlMnDhpyPs6FXAcB6OxCILAg+f5rNcvolpFidHcJJfK/JzKdZwoKEGyyseLNSVGzh+bGJQ4ZHEDAMZpR9bSDVGBIvLnOmeALICxSvzdNIeW2UhtbrXC7uexpkyHkkHU27hoQj7+1+HAwT43tnY5sKx48Ms4AryA5+t78GazFUAwgFSdp0KBkoPDz2N/rxt1Vg/qDnTirRYlvjezGGUjbIkQIYSMZt1uP679tKnf7SedwaUb1kPbAYGHvmoeVMrUl1pIW4LKEpwo+IZxAiZjGWgmVIFv/hwHDuynoESKGIYFx2W/QBnV40mM5iY5mp/kKChBsiq8fGMkBSVCGQhi68hK7chcFmFSRTIlBlqaMFZVaBVgET9TYmuosNn541LLkhBxDINrphXg/3a144V6MxYVagf1/vQGeDy4rwM7elzQy1l8a6oJq0p1UVfXBEHAvl43nq/vweE+D+7c3oq7aktRHWcJCiGEkMHb2eOMe3uL04uA2wXb0b1gOBkMM+YnDC7EI5NsGnts+N7MIrzZ3IfTS7RDGrO4T+346RBavsCBA/uwdu1XTsmrpISQUxsFJUhW+Ubg8g2djIWMAcS6M5Uj9Aq2KVSToFglQ+kp1nlDJGcZlKrlaHP54PTz0IQayHsCPI5ZPTDIWUwcQl2IuQUaLDCpsaPHhQ/bbTir3JDyY5850oMdPS5UauS4Z25p3N8NwzCoLVDjkUUVeP5oMKPip7tO4hfzyzAjL32BCV4QcNDixmddDrS7/LD7AshXcKjUKrCsWItJOgV92SWEjEneBFceWxw+WA/vBBPwQzt9LjiVZlDFtrkkyzdWl+mxukw/tAGHyBgGnFqLivETYW5tRFNTIyZMmDisfRJCyGgzghozklOB+KVhMFcpMo1lGOQpIlkIIzVTQly6sKhQk+OR5FZkCUckW+KI1QO/AFTnq4Z80n3JhHwAwDuttpQf8/5JG95usyFfweEX88sGDBZxDIPrphfi6qkF8PICHtzbge5QVfjh2tnjxC1bW/CTnSfxZrMV27qdONTnwdYuJ149YcH3v2jF7dtaw8uUCCFkLEkUlOi22mA9tB15SjkMNYsAANwgDhPS7yuZuKAitkifMmMWAGD//n1pfw5CCBnpKChBssoXGHk1JYBIXQkWwarbI9E0gwoPLyzH1VMLcj2UnBoXLnYZqStxMHSiXTOM5RAz81Uo18hRZ/Wgyd5/eUgsizeAp+q6wTLAHbOKB9Vd46LxeTinQo9ebwAP7utAYBhrCwO8gF9ta8H/7TyJNpcP1XlK3DyjEL9eVIFnlo3DrxaW45qpBZikU+CYzYsf72jD03Xdw3rOVHkCPNwBPivPRQg5tXkTFJu07PsMgs+LmvmLINcFl/cN5jtIKoUuh0MMekyqmgmGYbFv324EAoG0Pw8hhIxktHyDZFU4U2KEBiVK1fIRFzCRmp7GVP/RKl6mhBiUiNcmNFUMw+Cscj1eqDfjnTYbrp1uSrr9640WuAMCvjrOgFnGwdX4YBgG108vxAm7F3V9HmxqteK8QdbCAIIBid8e7MLHHXbkKzjcWFWIpcXRa5uL1XJU5alw/vg8fNxuxx+P9uA/LVa0u3y4Y1YJ1LL0xqYP97nx3xYrDlnc6AhlgXAMMFmvxLwCNb5caaD2qISQtItXbNJn74OtbjcYuQKLl69CS0fwuMENIqOOi6opMexh9iN+H1JotJg+vQp1dYdQV3cYM2fWpP/JCCFkhKJMCZJVkUKXOR5IDDEoUTFCO2+QCDFToiWUKRHgBRzuc0PFMZisS72iejxrSnXgGOCDdlvSauoWbwBvtVihYBlcHFr2MVhylsFNVYVgAfyloRdW7+CvjP2hrhsfd9hRplXg0cUV/QISUizDYFWZHg8vqkClRo4dPS48eqATgTT1U+ty+3HPzjb8aHsbPmy3o8PtR6lahnFaOXQyFketHrxywoLrP23Cs0e647buI4SQVO3oduK4zRP+Od7yDfO29wE+gLyZi1BqjNQKGkwsNmr5RgaWnooXQvy8AN2UWfjgpA3vbP0Mn3bYcf+ednjps5IQcgqgy1Ukq7wjdPmGMdRuc6S2AyURYuCozRUMShy3e+EOCJhToI4qSDYU+UoZ5hVosL3Hibo+d8IMiDeaLPDwwSyJ4Vz1n6RX4pwKA/7basXLDWbcNKMo5cd+1uXAO202FCg4/H7NFCjcqbWYKlHL8eDCcty5vQ3bup146ZgZV09NnhUykC+6HPjtwS44/DwqNXJcMD4Py0t00Ia++QuCgFanD++22bCp1Yo3m63YY3bhztkl4SBTOgV4AXt6XdjS6UCb5yQ6HF6oWAYmlQxzjGosLdaO2GVahJCBeQI8fr6nHQDw+ppJ8PEC9vW6orZxNtfD1VwPmS4fhppF4YsPwODqWkkzOzOR5SmOxR0Q8Ee7AQ5OhY/37Mc7JYvBqbX4pNOBVqcPDh+PG2cUpv35CSFkJBhh16tJun33u9/FokWL8P3vfz/XQwEQvBIAjLygRI1RBRbAAtOpXURyNFBxwW4pLn8wwHXUGrxSVp03vCwJUW1BcAnI/t74BSF5QcD7J+1gGQw5S0LqyilGqDkG7520w+pLLVuizxvAk4e6AADfrSlG2SBP7PVyDvfMKYVOxmJjY1/CVnqp2NHtxEP7OuDw87hofB5+u6QSZ1cYwgEJILhcpVKrwLemmfDk0nGYW6BGk8OHu3a0pVS/YzC2dztx82fNuHd3O95ps+FAjxPdbj9anD7sMbvw52Nm3Ly1Gb8+0IkOl2/gHaaJIAhwB3gIacpMIeRU5pEEYI/ZvHhgXweOSz5LeL8vmCUBoGDJl8DK5ChQRoISgwlgRy/fyEBQIvRRecLuBcNy0E2eCZ7nYasPFrx0+Hj844QF/221gqfPD0LIGEWZEmPclVdeiQsvvBBvvvlmrocCIJJemYkUyOGYb9Jg45pJ1C5xlFBxLFyhrBtb6ETelKY6BTX5weyIAxYXAGO/+49aPbB4A5iVr0pLbQS9nMPqMj3earHivTYbLkoh0PGXBjP6fDzOKddjwRC7sZRr5Fg/swgP7O3AU3XdeHxJJRTc4OLUdX1uPLivA34BWF9diDNTaKVaoJTh/+aW4tkjwdoW9+w6iQcWlA87c8HPC3jycBfeO2kHANQaVTizwoAVk0xgXR64fTxanD5s63ZgU4sNH7Xb8UWXA7fNLE667GU4WhxefNhuxxfdTpx0+uDlBciYYJ2P+QVqnFGqQxXViSFk0KRJYbvMTuzsic6SsOz6H/z2PmjGTYOmYjIAIF8R+bweVKZExrtvBPcpBqX10+fAfWIPbHW7kFezCA5/ZPmGOyBAI6PvKYSQsYcyJca4JUuWQKvNzBfuofAFRmamBAAKSIwiKo6BJyCErj4LodvS83E2Sa+AhmNwuM8Tt67Etu5gVsHiovRl1Xy5IngyvymFK2EWbwDvnbRDxTG4apidWJYUarDApEa7y4/Xm/oG9VhPgMdvDnTCywv49rSClAISIpZhcP10E75cYYDFG8Aj+zuS1vAYiDvA4/697XjvpB0mJYef1JbgF/PLsbpMj1KtAhzDQC1jMc2gxBWTC/DUsnH42oR8uAICHtzXgX+csAz5ueMRM1nWf9aCV09Y0Gj3QskyqNDIoZWxaHP68O8WK+7c3oZf7G6PKtqaKbwgoK7PjQ9O2vBGkwXvtlmxv9tBmRtkVJLWwoltc+xqb4L10A6wCiUKFq8J3y7N3hpMTQk205kSoe8e4mew3FAAVfkkBJx2OBuPolHy+eCi+hKEkDGKMiVyaNu2bXjuueewf/9+dHV1YcOGDVi9enXUNi+//DKee+45dHV1obq6GnfffTdqa2tzNOLh8/HBA+pI675BRhcVx0JAAF4+mBIfvC097ymOYVCdr8KOHhfqrR5Ux3T0EIMSiwrTF+wbr1OgJl+FAxY3dptdmJ9kGdF/mvvg4wV8eVwedHIu4XapELuA7P08ePJ8bqUBhhT3+ZeGXpx0+bGoUIPzh9A5hGEYXF9lQqPdi4N9bvylYWi1LQRBwG8PdGJHjwvjtHL8bG4ZClXJD21qGYtvTi3AjHwlHt3fiRePmaGXszinIvXASiINNg/u29OOHk8AehmLCybkYUWxDmWSTBCzx4/Puhx4o6kP23uc2NvrwvrqIpxRqhv288ey+gL45wkLPmy3wxJbTPVAF365oByzhtG1hpBckMYw213+yO1eD7o/eQsAYFpyNmTayN+0QlobYhAXIZgMZ0rE+z6krJoP1B+B9dB2NMycFb7d5ecBZTAQc6jPjYvG59EFFULImECZEjnkdDpRVVWFn/70p3Hvf+utt/DAAw/glltuwWuvvYaqqipcd911MJvN4W0uuOCCuP+N1B7X3hGcKUFGDzErwhUQwleO0pUpASBc4DK4hCOi0+XDCbsXFRp52gslnhs6If6o3Z5wG3eAx39brGAZ4Kvjhn8CDQBlGjnOKtfDywt4t82W0mOO2zz4V1MfNFywg8hQvxRzDIPv1RRBwzF4rbEPR63x63gk86/mPmztcqJULcP9C8oHDEhILSrU4q7aUsgYYMPh7mHV1gCAfb0u/L8dbejxBLCqVIcNy8bh0onGqIAEEFzCsrYyD78/bRzWTTHCzwt49EAnXj3RO6znj/Vumw03bmnG6019sPoCqDWqcMmEfHx7WgEun2TEuuoiTDWkpxYLCWpoaMDXv/51fOUrX8HFF1+M7du353pII16AF/Cf5j50uf0DbxwizSgTjwGCIKB76yYEnDaUTpuJJy5dA3GlA8tEn/wPpiWoVCa7b0g5Cyohzy+Ep/skGpuawre7AgLsvgB+vKMNL9Sb0WDLfJYVIYRkA2VK5NDKlSuxcuXKhPc///zzuPzyy3HJJZcAAO699158+OGHeO2113DttdcCAN54442sjDVdxBTtwVylICSWmBXhDvDh5RvqNK6zrcmPFLv82sTI7ZEsifQXRJ1vUoMFsLfXBUEQ4p7ob+10wObncUaJFsXq9AVF1lYa8FaLFf9tseKC8XkDfmF/rakPPIArphTANIggQDwlajmunmrCH+q68deGXvx0blnKj22wefCnejPkLIMfzS5JOctDqrZAjdtmFuPRA514/FAXHl9SOaQMlJNOHx7c2wF3QMCVk424dGL+gMEaOcvg0olGTNUr8at9HXjpWC/yFRzOGsRSmHgCgoDnj/bgzeZgAOvLFQZcPikfRkkNFJZlYDLp0NNjT6lrC0mNUqnE/fffj8mTJ+PYsWO4+eabsXnz5lwPa0R7u82Gp4/04J+NFvxxxYSUHhOQvGWdoZoL1gPb4Gw8ApkuH+OXn4OqPBX0cg693kA4S+JXC8vR4/FDPZj1GxLD7fAUT7zvQwzDwDBjPno+ext9+79A8eoLAQA/2t4a9dobHV5MMSjhC9WroawJQshoRUGJEcrr9eLAgQO46aabwrexLItly5Zh9+7dORkTO8yDMcsy4UKXShk77P2NJeJc0JxEi50X8f/iF0rp8g2NjEvb/E3LU0HBMjhq9UTt86gt2OljXqEm7b8rg1KGqQYljlg9aHP747bK3GkOZm6sLNMnnJuhmKBXYk6BGnvMLuwyu7C4KPHSlB63H5902KGTsTin0pCWeTi70oCNTRbs6HHhiNWDGSkuJ3ih3gxeAK6bbsLUOAUjU52bVeV67DQ78cFJO/5Ub8Z3a4oHNX6nn8d9e9th9/O4eEI+vj5lcLU+FhRpcdfcUvxs50k8ebgbpWo55gyxE5AgCHjqcDc2t9qgl7O4a05p3Na29JmTGRUVFeF/T548GTabLWGQkQS1hGom9HhSz/CUZkq4AwJcJxvRu+tjMJwMxasugEIVfM+rZSx6vQGIsz8SC8smio/optTAsncLnM1H4e3tgsJYFBWQAIBGuxfNDi9u/awFX5+Uj29MHl6dIUIIyRUKSoxQvb29CAQCKCyM7kltMpnQ2NiY8n5uuOEG7N27Fy6XC2eccQaefvppzJgxY9DjkclYmEzDX+/s54NtDAuNGpgKqP1mLKNx5BQlzTW5nOv3nhPnx6BRAHBCoVPBH/qyX1aog2mQrTGTKdUq0GTzQG1QQxO6ct7tOwkAmFWeD5Mufc8lOq0iD0esnTjm4TF3fPRr5wUBe3tdkLEMVk4pDI9JNNz3ztdnlmDPJyfwbocDX55RknC7V/ecREAALpxmQkVxepaQAMB1s8vwyy+a8UpTH343pXDA7be127Db7MI4vQLr5pQnrVOTytz86DQV9vy3Du+02fC1mSWYPYiaIX/d3YYWhw9Ly/T4/pLxQ7qausakg0cmwy8+b8bvD3fjpS9X9fsdpzSWw13Y3GqDSSXDH740FZX65Msz6DMnWjprPb333nuorq6mgMQABpunIwgCmh2Rdr6+PjO6Pv4XIAgwLT0HioLicBtPdegfsSfzg/W7xRXwZSihKFHmKMPJkFezGOZt78OydyuKV57fb5smhxf/abYCAP523EJBCULIqEVBiVFmsFdcnn766bQ8r9/Pw2p1DbxhEizLwBu6qu20udAjUBVpEcsyMBq16O11UCp1iM8XQE9PsL5C7Pyw/uAVtQ6zA7bQOmS3zYUed/rW1+bLWTQBOHqyD5WhYEez1QMZA3BuD3o86V/LO10dPAnd0mzBqoLoK3pH+9yweAKYbVTBZXVB/GtM13unWslCL2exrd2G1k5r3Bod3gCP1+q7wTHAlwo14d9POizSy1GmlmFbhx17m8yoSBJgEgQBj+9sBQBcMcmIvl5H3O0GOzffnGLE7w504dndbfjpvNSWkbQ6vHilrgtqjsGN0wpgSTCWVCw2KLC8WItPOx14bFszrq8aODgjddDiwu93t0HBMvhJbQnUXh96enxxt03X+8ZgUEM+zIKrI4lY6+niiy/G+vXr+90v1nq69957MWfOHLzwwgu47rrrsGnTJhQURE4IW1tb8fDDD6ftGDyWDfbd99KxXvyj0QIA8Dvt6HjvH+A9bsxbsgy9k2cCCHb4ASIn/IFhdpmZOEBwbzhia0poZWy4DahuWi0s+z+Hs+kIvJZuKPKjPxNaHL4R12KdEEKGgoISI5TRaATHceju7o663Ww298ueyJZ0nCyLNSU4MHTyHQfPCzQvErFzIc6PWFPC6ePDRc7kTHrfUyZFKDvC5Ue5Wg6nn4fFG0C5Rg5GwICtO4eiyqCEgmWw1+yCL8BH1XbYEapnMa9AE/d1Dve9wwCYbVRjS6cDB8wuzIuzfGCf2QWbj8eSQg0KFFxa55sBsKpUj78e78XH7XZcPsmYcNvDfW7UWz2YrFdgaWH8+ZBKdW5OL9bhpXoztnU7cdzqwYQUsmGeqeuGXwCumGhEvnz4c3L9dBN2m114s6kPq0t1mJziyVCAF/CHQ90QANxYVYgpemVKY6HPnGjpqPVkt9tx880345577sGECanVSIgnHUsm07GfTJOeUw801v29rnBAgvd60Pn+P+G390E7cQYuO/98PFXXAyBYyJJlmXAGVUCI3vdImhtFTAC4QMmFgxKsTI68msXo3f4BLHs+RfHKC6K27Xb7o1qdpuv1jKT5GWlobhKjuUmO5ic5CkqMUAqFAjU1NdiyZQvWrAn22eZ5Hlu3bsXVV1+d49ENnS8gFrrM8UDIqCZexfeECl3KmPR3dDGFigJ2e4KZGO2u4BXnMnXmPjYVHIsZeSrs7XWhwebFNElnhF09wdyIeab+9QHSZW5BMCixO0FQYneopkWylqXDsaJEGw5KXJakUOTHoQ4lZ5Xr05oaL2cZXDg+H88d7cFrjRZ8b4DaEg02D3b0uFCqluH88YNvixqPUSnDFZONeOZID15r7MPts1Krb/HfVitO2L2Yma/CmrL0txYlqdV6CgQCuO2223DZZZdhxYoVQ36udC2ZBEb+Eh2l0hL+90Cv+ekvghlSvNeDjndfhdfcCVXpOBQu/zKMhshnoyK0/E+liHxex9v3SJgbnTU6665Up4xanqKfPgfWg9vhbDwCd1crVEWRuiU8gOP24OO18vS9Z0QjYX5GKpqbxGhukqP5iY+CEjnkcDjQJGn11NLSgkOHDqGwsBBFRUW45pprcOedd6Kmpga1tbV44YUX4Ha7cdFFF+Vw1MPj5UNXtSlKSIZBzJRwBYKFLtVpbAcqMqmCmRLmmKBEaRq7XsRTkx8MStRbPeGghNPP47DVjXwFh4kZqGUhmlsQ/FK/xxx/qZZ4+9wMBUYqtQpM1ivQYPOi0eGL+1oDvIBPOhxgGWB5cfpPvs8q1+OV4734uMOOb08zwaBIvDThnVAL1fMq89L6mXZWuR5/a+jFJ512XOUuQNEAHU6cfh5/aegFywDfmW6iGgYZkkqtp48//hifffYZuru78corrwAAXnzxRRgMg6u/kq4lk5leFsgLQnipxFC53JET8IGWhPW6fOGAhKf7JJRF5ShedREYTgaPM3JyLwT4YGcZSXt06b5H0pJJc0wrZL3ks8So4NALwDhvBbo//S96t3+I0nOvAMMw0MtZ2HyRZbAOH4+OLlvS+jqpGknzM9LQ3CRGc5NcOuZnrC2ZlKKgRA7t378fV111Vfjn++67DwBw6623Yv369Vi7di3MZjMee+yxcEGtZ599Nmrd6mgjLt+goAQZDjFTwhXKlNCr0v8BHc6UcAe/1La7gsGJsgwHJUpCmRhdoVoZQLA6PS8AVXnKYZ8AJH9uOUrVMhy3e2Hx+JEvaSFp8fhx3O5FqVqW0cDM6SU6NNjM+F+HHRN1/T/r9va60OcLYL5JjbwkAYOhUstYLC/RYlOrDdt7nFhTpo+7nSfA46N2O2QMsKo0vcERJcfiy5UGvHLCgn839+Gaaaak23/cbofDz2N1qS6ja99JfNJaT6tXr8aBAwfSst90fanP1BKdgxY3/t+ONtxeU4wzhvE3EJCMbaBxBtxOtL/7Crzd7VAWV6DkS18DKw8GL6UZmAwT3BeHyI2ZWPaWDm5/dH2tAmXkc61YJUOvNwDt5BpYD+2Ap6sNzqYj0E6oQqVGjkN9nqjH9nn8Ua1/h2skzM9IRXOTGM1NcjQ/8aX/8iJJ2ZIlS1BXV9fvP2lxrXXr1uGDDz7A/v378eqrr8at8D2aUFCCpIMYlOjzBgMGYoX1dBKDEmKmxElnKFNCk9lYbrFKDEpErh6KAYriAa6Yp8McMVuiN/rqnfizeH+mrCgOpjV+3hW/YOTHHcGrnWeUZG6JwuJQ540vEowBALZ2OuDw8zitSJs0m2Ko1lYaIGOAza3WcNvbeARBwKbWYPX9L1emrxsK6W8k1nrKpRePmQEAjx7oHNZ+3Cm2xujp6cGxN18MBSQqowISQPT3CvHLbQaS6NLOw8cEJSSfJ+JnC8MwMC5YBQDo3fExhIAfFZr+mWR9PiogTggZnUbBxzUZS8I1JSgoQYZBDEL0hoIS8TpFDJcpdLWqf02JzGZKiKn6nZJMiY7Qv0tUmX1uAJhjDAYdDliiU8d3m4OFNudmOChRrJajWCVDi8PX72RcEARs73ZCxgBLijK3JnO2UQUVx2CX2RXuGBTr3ZPBpRtnVcTPpBguo1KGJUVauAIC9iZYTgMAR60eHLd7MUmnwHQDZUlkkrTWk0is9TR37tzcDSxXBnmh76jVg1/t6wgHk0Ueyd/Yzh4nrvr4BI5aIxkAJ50+/PHz/XjqqSfgsVqgGTcNJWdGBySA6KCEmFCWqN3mSLJE0n744gl5yJcEJVSSgLu6bALUlVPgt1vQt/+LuJli1pi5JYSQ0YKCEiSrvDwPlkFUVwFCBksZCkL0ejIXlMhTcOAYwOyJLN9gEFzikEkmpQwsE718Q/x3UQaLbIrGhVpxistVRPt73WAA1BozG5QAgMl6BQQAx23RBeC6PQFYfTwm6BTQyDJ3+FJwLOYVqOEOCNgXkzECBE+iDlrcyJOzGZ2PRYXBgqLbQ51X4hGzJM6pMFAtiTRwOBw4dOgQDh06BCBS66mrqwsAcM011+Bvf/sbXnvtNRw7dgw/+9nPRn2tp+FK9V139842fNrpwEuhDAuRW5LG/LuDXejz8XhkfweAYCDyyhf+jd9t2ICGnj7oZsxH0crzwcr6fw7Hy8DMQBJd2o3XKfDXlRPx+ppJuHqqCWrJZ5sytjPHojUAx8Gy/zP4bebYXcHmo6AEIWR0oqAEySpfQKCe2mTYxEwJi9cf9XM6sQyDAqUMFm8ALj+PLrcfJiWX8aVHHMvApJTB7AmElzt1urK3fEOsadHpiiwf8fECutx+FKpk0GWhwNKUUF2EY7bo9dINoZ+nZKFuwuJQJsbn3f2XcBy1ehAQgBn5qozW+Fhg0oABsL3HCSFOC1peEPBFVzBzZGWa61qcqvbv348LL7wQF154IYBgracLL7wQf/vb3wAAa9euxY9//GM89thjuOCCC3Do0KFRX+tpMARBCNeAEEKpEqn+BYjLNMRAb/h2SU0FMdjY6fLD5/Phb/94FT2fvQ0IAmpXnQvjojVg2PhfXaWfzeKfy4w8Vej/IzuLSCNjw0FFacB1figzTcygk+vzkV+7DAgEcOCD//b7XPDQOnVCyChFhS5JVvl4gZZukGETMyPCyzcydNXcpOTQ5fajrs8NAUCZJvPLJ4DgF9Autx/dbj/KNHJ0hupLZCMooeRY5MmDr1usrG/2+CEAKEpjAbVkBgpKTM5CUGJhqO1pvE4kh/qC2RPVoROeTDEoOEzPU6Kuz4MTdi8mxbzuJocPNj+PmnxVRjNHTiViradk1q1bh3Xr1mVpRCPLj3a04YTNi7+tmjjY1Rth23uc+LzLEV6CJc2U0IXexy5zB+79zT/R3tEOTq1F0coLUDCzBjhhSbjfeBc8zq00IE/BoTbDy87SSdpNalmxFj+fV4Z8BYfvft4CAMirWQRHw0F0txyHQ3cQuik14e29KdbnIISQkYa+xZCs8vICFbkkw6YKlVkX26GpMpSjKxa73G8JnoRmuh2oKFLs0g9BENDp9kPDMVnJUgCC2RJ+IXJFU1w+UpiFoAgATNEHl5Aci1m+If48WZ+5tqgig4JDsUqGDpc/as07ABwKvR+q8zMblAAiwZHtPf2XcBzoDQZMarIwDkIAoK7PAw8vwCM9+R3Cx+/9ezvQaA/+PUszJfo8Plj2fYaTb72MNw804IiyGOVfuRqq4gp0SLK34om/fIPBihIdDKOohZ40vsgwDOYUqGGQR25kWA6m086CjGFg3v4+/E5b+D4fZUoQQkYpCkqQrOEFAX4KSpA0UMWk76ozVGJdDEq80xb80peNZQNAdLFLmz/Y9rQ4SwERIBIUEYtthmtaZCkoka+UwaTk0OzwRgUEGmwesAwwUZf5oAQAjNPKIQBodUZOhnhBwOE+D+Qsk5X3w8IkdSUOhIIjNUYKSpD+NrVY8f0PGzJyouqXLBuId0R3+Xn4Y55XEXPs/+7nLfj57pPhQr4ecwf2vv4iLLv+BzDB+gn5a74GTh3MqIitcxNrrHy3MCqCn7PS1qCxGaaqknGYt3gpeI8bPVs2h5dx0PINQshoRUEJkjXihZWx8sWB5E7sco3MZUoEvxRavAFoZWzW1u1L24J2ubIbEAAixTzFK5PZDkoAwSUavACcCF1NtXgD6PEEUKmR9yv+limVoaKfTY5IxkaLwweHn8c0vTIrn2WTdApoZSyO27zgJSeCgiDggMUNjomsmydEaluXA5+329Di8A688SB5A0LC5RtWbwBf/+gEfh3TKjTe38uOHhd4rwc9X7yHk/95Ea6uNigKS1HxlW/BUL0gqnjrUDIlRiONjMWfVozHhqXjwrfF6yKy+kvnQG4ogKvtOOxH9wIIFhMnhJDRiIISJGvEqzVj5YsDyR1V7FWjTGVKSE7Cz6nQZ23dvjRTQcxWyEY9iXjPD+QmKBFZwhGsI5HNehKiylANkRZH5GRIrCcxIz8742AYBuUaOTy8EFUgsNXpg8UbwFS9MmPvfzK65YeCqr2e1DoyeAI8XqjvweE+N5x+Hq81WuD0xz/J9fJCuCVo7BF9b2hZ0aed0UVipZkSlRo5hIAf1kM70PL6s7Ad3glWroDptLNQdu6VkOf1LxzaF1qup0zwHWIsfbcwKmVRwdd4tbgMaiUKV6wFGBbm7R/AZ+2lmhKEkFGLvsmQrAkHJaj7BhkmjmWivuBmLCgRWr7BMcB5lXkZeY54xNafXW5/uMhlSRbagYrE58p1pgQAnAjVkchm5w2R2B5VeqX5SF9wHJkucilVEQqOtEmWkRykpRtkAOIygF5v4mUPfd5IwGJDXTc2Nvbh94e68LfjvfhTvRn37WkHEMzM+bwrEmRItiRErBUBAEetkZa64om1wPNY6WtB17//BPO298F7XFi0YCEqLrwO+ulzE3bXECX6vB9LQYlYsjgvTckyUBaWIW/2aRD8PnR9/C+4vImzSY5ZPbhnZ9uAGSeEEJILFJQgWUOZEiSdlJIlG5loCQoAE3QKmJQcvjouL2tFHoFIl4tOlz/cDjSbAYFide4zJcT11LbQlVrxRGdSFopcisZpg8GAZkmmRI8nOBfZKnoKAOWhoIS0tkVdKDgyk4pckgSMA2RKfNphx1X/a8Q/T1jg8PN4/6QdQLCdZm/ofS7WLdnY2If793aEH+vlEy/fOGqNdM354ba2SEFLrw+2I3vQ+q8/YstbGyE4+qCumIzy867CjVd8A5xKk/C1SJfoJVquF9USNOGeRicmzsUc8fXm1y5FXtl4eM2d2Pfx2wn38VRdN/b2unHv7vaMjZMQQoaKWoKSrBGDEtS5jqSDmmMj3Tcy9KbSylg8t3x8RvadjIJjka/g0O3xh4vAFauyWehSrCkR7P7R5fZDK2Oz2nZSLF4qpo9bQ79royJ7VfR1cg5GBYeTLh/8oXbGfb7gCV5eFscRCUpErkB3h04aS7L4viCjS37oPdrrDSAgCNjV48L0PCV0MhYsw+BfzX0AgJeOmaNO6E0qWdTnjSfA48/HzFH7/l+HHUes0S17RWIQU7TxSBsc9ftx+IMP4XMGsy1m1M6FfWktunQlAID5JjVYBkiUgDFVrwx3QUoUlIiXTTCWiZknDMti8przseeff8SJfduxb98czJ49p9/24vtBGtwkhJCRgoISJGsoU4KkkyoqUyJzJ8vxrlBlQ5FKBos3gL3m4PrsbNaUkLMMCpTBoEifNwAPL6BMk92TXzEAIgYlxP9nMzACAJVaOfb1BnDS5cM4rQJ93gAYADp59sYRb/lGbyjtXlqhnxApo6RQ7892ncTeXrG1sSyqiCIA7A/VgQCCx2qPpGBip7v/8o/Xm/rC/xY/Ix872Il9vW50hloZu9ubYDuyB39qrgf4AMAw0EyYju9f+GVcNn8G/t+ONnSFAg0sw2B9dRF+d7Ar7muZYpAGJeL/7eXqszpXpMUv8/PyULTiPPBbXsfrr29EcXEpSkpKorYvliwBdPl5qOkKESFkBKGgBMkaCkqQdJJ+Mc1U941cOr1EiwabBx5eQJ6chT6LJ8EAUKKSwewJ4FBomUA2l24AwSwVoH9QQpvtoIRGgX29bjQ7vKjUyGH18dDLWXBZPAEqU8cJSnj8kLNM1ueDjB75oZoSTXZvuIsNEGyt6ZIWRGSAZsl7y8cL8Ejudw9QPFH8S3i3zQavuRPOxjo4TtTBb7cAAFiFEtopc2GomotJpSW4bH4wIBL7sb2mTI8ytRxtTh8eOxQdnJDWkslW952RTlr8Ui1joS6fiMIFK+Bt3ImXX34B3/nOLdBqteFtpDVLXQEKShBCRhYKSpCsEfuax6siTchgZStTIlcuGJ+Ps8oN2N/rQqFKlvWrgMVqOQ71eXDAEryCmu2ghIJlwDKAMxD8Ju3w8+CY6Ar+2SDWlWhx+OAqEODjBZRmsegoEDzhMCk5dLj98PECGASXsxTn4H1BRg9xqZM0ICFySM5QeQFod/mgZBl4eAF+XogKRCTqwAEAAh+Aq6sd77xTh9Y3PoLfZgnfpyyuhH5aLTQTpoOVBf+OpLWA4r1zq/NVUa1vRZWSTK1UagiNtZoS8UiXq2hCx8DSectRo/PhwIF9+NvfXsaqr30TD+3vwtcnG+GTzGuyQqWEEJILFJQgWUOZEiSdxnqmBBBcqrC4SDvwhhkgnniLbf2yHZRgGAYajo3KlNBwbNZPwsMdOJw+WMV6EvLsL5ko18jR4wmgw+ULv/ezWV+DjD5qGQu1jIUrTlDB4YsufskLwCSDAof7PP2Wb9gl2wqCAF9fDzydLXC1noCrvQmM34uPxxngt/VBUVgK7cQZGDetGhdXj8c5FQZsbrXiT/XBmhSpBJBjL1yoOSaqhku8TIm8UCYZg1MjIAFEL1cRl7X5eODiiy9FT08Pjh9vwN//8CJUC7+EPx7twQJTpJAoBSUIISMNBSVI1lBLUJJOUUEJSkNNuzPL9Hir2QpzqHJ/oTL7hwuNjEVnKDvAwwvhQm3ZJAZjutz+cPtEQw7GUa6RY1+vG61OX7iOhJHqSZABFKhkaB0gU0I0UScJSgQECIIAv70Phw73wLKnDp6uNri72iD4IgUuGU4GbcUkrF27DPu7NOC1wdbJxXolLpqQDyB6yZUyhQBy7N+5Rha9fC1eELo4i91wRiJNKG3CywtQKBRYffE3cOW9D4Fv3gWj2gDZ7MVRv3M/L6AzFODMxecZIYTEoqAEyRrKlCDppB7jyzdyrVgtx52zS/Cz3ScREKKLpGWLePVPbMOZ7SKXAMKtYLslQYlcZErEK3ZpVNAhnCRnShCUsPt5BHgBvNeDgNsJv8MKpxvoq2uBy21Dm6MXLe0dEPw+vJungqUvWGQSHAdlcSVUxRVQlU2AqrgCSrkcS5dOguyD4/CGjvNqWf+r+EDiIpVSJWo5flBTjF8f6AQQDGooueT7yHYm10gjzrE4/40BJUpWX4T2t/+O3p0fgVNrsE2YFd7ewwu4bUszAOCNL03O/oAJISTGqf0pTrIq0hKUghJk+MQvqRxz6rWCy5baAjVurynGzh4XpkkKzWWLuE66O1T9PxdFHeUsg3wFB7PHD0s4UyL746jQBJeRtDp94RMQypQgydTXH0XL+++ho9sGIRAAhACEQAC814MbX3WD87nh80eWZhwwaWA1u8AyoUAvI4OyqBylU8ejI6CFsqgcCmMRGDb6fSfWi5LWgpAGDqRBCenfsHiBIt7n9xklWvz6QPDfOln088W7sNGvO9EYX53ww1nFUT+LgXkxKOHwB6AsLMOCtV+D+ot/439bNoNVaaCpmBy6P3GdEEIIyQUKSpCsoUwJkk5iCq8qB3UGTiXLS3RYXqLLyXOLJzNiUCIXmRJAcOmKxRtAkyN4xTmXmRLNDm94KQ3VlCDJ7Nu3F+aGw3BZ3f3vZDkwShXkOjVYpRoynQFnzJ2Ejg4/WK0BxYVF6GLVYBgGU8r0OH7SlvB5eAEICAISNemQBiIKJcGDa6eb0Lu/E9dOM/V7jPQzXRvTecgfpxDmPJM6+DiM+XgElhRpcHrMZ7KMZaBgGXhDhYHtvuD/r14+H4YpOux4/Dl0ffQvlJx1KVRFFUmLlxJCSC5QUIJkjZ+CEiSNxHZmY7XIJYmsk+7O4fINAChUcai3AcdsoaBEDoIBJWoZVByDJrsXE0LFNylTgiRz/vkXYl/RDHjbbMHsBo4Dw7JgFSowXP/OLV9dMR4fftEKqy8AXsGBCdWTsfkD8XYfxccLUcEAadxA+ncrrU1ToVHgN4srB9y3Lubv3iuJftww3YQKrRxzCzRR2whjODQRJyYDIPjdSsyUsIeCDjo5i7lz52P8acdx+JN30fHuP1F69mVw+gvj7FfAX4/3YrZRjTkmTb/7CSEkk2ghNskasR0VBSVIOojBCKonMXapw5kSwZOiXGZKAECDLVjgz5CDTAmWYTBOq4AzIOCINTgOqilBkuE4DgXFZVAYiyDPK4BclweZRg9WJo+bXWZUcJCzDAICojp2iFfdk/HEpElIgwKaBJkSqdLFZEpIO4PkK7h+AYmxLl5MQhCC7ZLDQYnQ70wM6IyfexryapdC8HnQ8c4raG5tDT9WXHZzwOLG349bcPfOk5l9AYQQEgd9mydZQ903SDqJa5ZTKZxGRiexpkRXrpdvhE6k3KETr1xkSgDABF0wQ+J4qHAhZUqQgdw0pxTTDErcN78s6XZ6OQuWYcIXDVySIIPdN3CmhCcQHbiQxiiil28M/j0r/t0bQsEJ6fIpji5yhCm5YEDJxwtwhLJbdKG5UrAM8ucsR96sJeC9Hrz36p/hMXcAAN5qseLtVmu4kC8hhOQCfZsnWUPLN0g6RWpK0PtprArXlPDkrtAl0P/qbp48N+OYGApKAMG18/k5yNggo0uxRoFfL6nEbKM6YS2U04o0eHhhBYD4x2dbCvUH/t1ijfpZejVfKdnnUFoLK9jg39sDC8rxlUoDvjYxP3xfv7/EU+BwEG/5hgCgNNQW9YTdE1m+EfrMVHIMGIZB/rzTYahZDIfTiY53XoWnpx3PHOnBE4e7w9mshBCSCxSUIFkjZoBSUIKkg5ghoc7RiSrJvHBL0FCmRK6W6sSeSOlzFAwQa0kAwSUkdJWYDMb9C8pwwfg8LCmKLHc4r9KA/1dbirJQIdV4x+dUlm+80dQX9bM0ACJdKqIcwt+wGNSo1CpwfVVh+Oo/AHAJMi/H8ul1onoZNfkqAMBBizv8OxMDuYrQHDIMA+P8M1AxZwl4jwvtb/8drvYmANG1OgghJNvo2zzJmkhL0BwPhIwJ4pfeXHRCINkhBiXEK7UjIVNCL2NzFgyQZkoU0NINMkiVWgW+Pc2E/ze7JHybeHVdJF1eKbbqFOsUxNqwdFy/2xQsg5WlOnx7WkHU7S+fMQF/WTlxSONWJMmGi/1TPHXDdAKqQ0GJQxYPHH4eao4Jf1ZJg0EMw6Bs8Wrkz10BwedFx3v/gLO5Hm1OX05GTgghAAUlSBZRS1CSTpP1CvxwVjGumGzM9VBIhsTWkMhVTYkCBRc+WOaqngQAGBRcuA1oPrUDJUMkzVwoUUdnAckkx2fDAO+xMo08KlAGBOue/KCmGMaY7CKdnBtyUFGR5DtDbKbEsmItAGBOgXpIzzUaxIsRCQAqQ9kuHW4fHH4+KqMkdg6dAQH5tUtRsPhMIBBA54dv4MUPtvTb78YTFvw3ZmkOIYRkAgUlSNb4qfsGSSOGYXB6iQ6mIVRzJ6ODJibVO1eZEhzLhItKDnSilmlisUsqcknSITa4JS2XkigLTcky4SyJu+eU4rxKQ/i+TJT4EZeWxBP7fLdWF+EntSW4dOLYDVYnWmRhCAVPm0KFcKWtVPsFJULZZ4YZ81C44jwAQPenb8GydwuE0He1AC/ghfoe/LXBnPLYetx+PF3XjZ5QHSBCCEkVBSUS8Hq9+MMf/oDDhw/neihjBnXfIIQMRmy9kFxlSgCRJRy5KnIpEoMSBadIO1A6FmfGbTOLcHa5HtMMyqjbpRcNEtVOWVqsDQcKilSycHYCEGxdmy5PnFaJ788swow8VcJtYp9PxbFYXKQ95S5+CEIwa8Sg4OAPRS3KJcGc2FoeTknxUt3kmShecxEYuQKW3Z+i+9O34PP5YPUGwAuAI4VCp6LfHuzEf1qseOJQ1/BeECHklENBiQQUCgU2bNgAq5XS1tKFlm8QQgYjNjMip0GJUDp6rjMlFhdqwDHALGPiE7WxhI7FmbGmTI9bqov6ndRLj8/5itT+3qRLKNKZKVGpVWBVmT59OxwjpMs3poeCSmI9CaPk86lSGwlKxGZKxAYaNBWTUXbON8Bp9HA0HMRzzz+HVnOweKlfiHx/4wUBj+7vxNut8f8emx3BuhRUn4IQMlgUlEiitrYWBw4cyPUwxoxIoUsKShBCBqaJOcPJZVCiKJwpkdugxCyjGv9cPQnzTJqBNx4j6FicPdKgRJ6CwwJT/9oMsUs+pH+WibphkOETPw6l8/2L+WX49aIKzDYGf0/S302lJlLvI/Z7lzNO9oOioBhla9dBYSpFw/EGbPj9Y/BaugEArtD2jXYvPu6w44nD3XHHKAZMmFO45CghZGjGfFBCEITw+rjBuuOOO/DXv/4VL730Epqbm+F0OuFyuaL+I6mjTAlCyGBIl28wANSZWLCeovGhdpzlSda3Zwtzip340bE4e6THZyXH4ns1xeGfvz4pH1+uMOCySdH1GqSBiGwf3k+lJpa/mFeGaQYlbpheGL5NxbGYIlmCI601I82UiP29JJo3mUaH0nO+jilVM3Gyswsn33oJjsY6OAPBoESCRiyS/QY3OMU+ogghaTAmFqV+8sknmDt3LnQ6Xfi2d999F0888QTq6urAMAyqqqrw3e9+F6tWrUp5v5dddhkA4L777sMvf/nLuNscOnRoWGM/lVBQghAyGAqWAccAASEYkEjnevXBWlWmwwSdApP0ioE3JmlFx+LskdZ8UnEM9JLA4GS9EkuKtP0eI4tavkHH90ypMarxyKKKpNu4A5GowTht5LNqMPFcViZH3unnY6axBFv/+S90ffQvbC7w4Zvnf2XAYIMQzpQghJDBGRNBieuvvx5///vfUVtbCwB45513sH79esydOxe33357+Labb74ZTz/9NFasWJHSfu+///5T7opUJtHyDULIYDAMA42Mhc3H53TpBhA82ZoaUxSQZAcdi7MnKlOCZaPmPVHBQ2kNxaxnSgwxE3asWlGsxZZOB75TZYr6XbKDDBO83NCLFdMWoniNDN2f/Aeff/ox3N0nsfwrX0v6OPG3QX+uhJDBGhNBidiD0pNPPolVq1Zhw4YN4duuvfZaXH/99diwYUPKQYmLL744rePMFZfLhbVr1+K8887DD3/4w5yNg1qCEkIGS8ONjKAEyZ2xciweDRRcdKaE+H93QIAhQT0VaabEYE9+SXotK9bixdMn9CvIm2qQYFkoqAEAuzvtwQKYa78J7H8HT/5vN14/cAKBBWdDXTah32NtvkA4KOHjBRzodWGqQdmv8wchhMQzJj8pjh49issvv7zf7ZdffvmQimXV19fj9ddfx4YNG9DVFWxz1NjYCLvdPuyxZsOGDRvCWSS5RC1BCSGDJQYjKChBRsOx+N1338U555yDc845B2+99VauhzNo0sCDeDL5+9PG4Xszi+IWvQQy130jFZQnEY0JtQWNleq1IGmXDrsvmBkj1+fDtuwS6KbORpvZgo53X0Xvzo8RCATC2758zIx1HzeGs2naXX7ctfMkHjuYWmvQFocXfzjchf29LtyxrRVNdm9qAyaEjBljIlMilk6ng0bTvzK5Wq0eVKqfw+HAXXfdhc2bN0MmkyEQCOD0009HUVERfv3rX6O8vBw/+tGP0jn0tDtx4gQaGhqwevVqNDQ05HQsVFOCEDJYYjAitj0oOXWMlmOx3+/Hww8/jJdffhkcx+Hyyy/HmWeeCYVi9NQhkXZvEDMlilQyrE7SmlMmOaRzWTq+XzYxH592OsItMUlyqWaw+BJUsrQKLAqXnQt12UR0f/Y2+vZ/jmeesePSS78Bk8mEV05Y4j7uk04H7kjhee/c3gaHn8emVhsA4IV6M+6ZW5rSmAkhY8OY+ZZ33XXXYenSpVi6dCnsdnvcolcNDQ0oKipKeZ8PPvggdu3ahT/96U/YuXNnVEBj5cqV+N///jesMW/btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/GBY40wXCkoQQgaLMiVIpo/F6bJnzx5UVVWhsLAQRqMRtbW12LFjR66HNSh5CmmmRGrHai6qdkF2XDmlAE8uHQcFLQ1IibQrRzKJ6oaItJNmoPwrV0FZWIaWlhY8+eRj2L79i0HX9jhq9WBjoyX8uNjnNaU4XkLI2DEmMiVuvfXWfreZTKZ+t7399ttYsmRJyvt9++238ZOf/ASnnXZaVJoaAJSXl6O1tXXwg5VwOp2oqqrCxRdfjPXr1/e7/6233sIDDzyAe++9F3PmzMELL7yA6667Dps2bUJBQQEA4IILLoi7740bN+KDDz7AxIkTMWnSJOzatWtYY00HjYyFTs5GpQcSQkgy6tBJh4ZOPk5ZmT4Wi7Zt24bnnnsO+/fvR1dXFzZs2IDVq1dHbfPyyy/jueeeQ1dXF6qrq3H33XeHl0d2dnaipKQkvG1JSQk6OzvTMrZskWZKKNnU/uY46r4x4i0q1OCKyUZM0inwy70dcbe5ZUYh3m6zDbgvuT4fped+AzsOfIaq9n14442N6PQXwLT0bMi0hpTG88Ntwb/ZSToF5pn6ZzbHW4JCCBnbxmxQIp4XX3xxUPv1eDzIz8+Pe5/D4QDHDe9Dc+XKlVi5cmXC+59//nlcfvnluOSSSwAA9957Lz788EO89tpruPbaawEAb7zxRsLH79mzB2+99RY2b94Mh8MBv98Pg8GAG264YUjjZYcZTPjJ3DLItErIAwHwAzW7PsWIczvcOR5rYueF5qe/sT43Wnlo+YacG/RrHOtzMxyjaW4yfSwWpeNCwWiXF2f5xkCilm+M/LfTKYllGFw+yQg/L4AFEJsPcd00E86uMOC1xr6U9sewHBSzl+Pk+KmY1LwFrp31aP3Xn1CwaDV0U2ZFdW0RBCFh95xebyBulkWiZSSEkLFrTAQlMmX27Nl44403cMYZZ/S7b/PmzZg3b17Gntvr9eLAgQO46aabwrexLItly5Zh9+7dKe3j9ttvD7dE3bhxIxoaGoYckJDJWJhMuiE9VtQ/d4XEMhr794A/VcnlXL/3HM1PYmN1bkx6KwCg0KAa8mfQWJ2bdBgNc5OtY/FwLxQUFxejoyNyFbqjoyPlbl/xDDdgNJTAk/QKtTrFQKCciWRUsCwzKgJdoykol04KlkG+koPZEwAL4NoqE/553IIVpTqwLIMVpVq8ctyS8v7ceSVYf+H38I9H/gzrwW3o2bIJzsY6FCw5C3JdHgDAFuBh8/Ko1MoREIBf7Yv8jQgA7IE4QQlBGLG/m1P1vZMKmpvkaH6So6BEErfddhuuueYafOtb38K5554LhmHw0Ucf4U9/+hM2b96Ml156KWPP3dvbi0AggMLCwqjbTSYTGhsbM/a8ifj9PKxW17D2wbIMjEYtensdlCkRg+amP58vgJ6eYFV9mp/ExvrcyPzBdH2Zzx9+P6RqrM/NcKRrbgwGNeQJWkWmSy6PxaJULhTU1tbi8OHD6O7uBsdx2LNnD375y18O6fnScSFANNTAU2mhDia1fFCP0aoVaRt3NoyGoFy6mdRymD0ByFgG18yrxLfmVoQzGW41arFmciEe3dGCoxZ3avsrykPBgpXQjJ+K7k//C1frcbT963nk1y6DYeYCfPOj4HfWp8+cih6PH1tDLUcB4Km6bhj0qn77ZOWyEf8+OhXfO6miuUmO5ic+CkoksXDhQvzpT3/Co48+il/84hcQBAGPP/445syZg+effz4nbTaTpcElk44+7+n6Us/zAp0gJEBzEy12Lmh+Ehurc7OqRAenj8fSYu2QX99YnZt0GA1zMxKOxalcKJDL5fjhD3+IK664AgDwve99D0rl0LpDjIQLAR6rCz1Oz6Ae4/P4Bh08zIVTOWDpkxSVjPe7qmAHd3Jwoj245ENVVIGKr34Lln2foW//F+jd+RHsDQdgOu1sqIorcLzThkMxgQ5PQMB9nzf326fN5R2x76NT+b0zEJqb5NIxP9m4EJArFJQYwIIFC/CXv/wFbrcbfX19MBgMUKvj9+pOJ6PRCI7j0N3dHXW72Wzu96WIEELGKqNShiunjI31+mTocnUsHkjshYKzzz4bZ599dlr2nasLAc+vGA+rj4eSZQY9BgbpG3c2jIagXLqJNRxYJvHvarxWjkMWN/RyFjZf8o4cvZ5I8VmGk8E4dwV0k2ai+7O34eloRvumv0A3rRZHys7Hfzq8KY3RGxj5v5dT8b2TKpqb5Gh+4qNy5kls3boVLlfwSoVKpUJJSUnWvgQpFArU1NRgy5Yt4dt4nsfWrVsxd+7crIyBEEIIybVcHotFp9KFggKlDBN1iiE9lrpvjHz60FVWY5IOF9+aZsLl0wvxywXlA+6vzxvod5s8rwClZ1+OwuVfBqtUw350L/7w2KPo3r8NAt9/+1hDLXQpCAJ6Pf4hPZYQkluUKZHEt7/9bXAch+rqaixcuBALFizAggULYDQa07J/h8OBpqam8M8tLS04dOgQCgsLUVRUhGuuuQZ33nknampqUFtbixdeeAFutxsXXXRRWp6fEEIIGekyfSxOhfRCwZo1awBELhRcffXVWRvHSEfdN0a+784swhOHu3HdtMTlx3VyDrfNr0B398AtQjfUdce9nWEY6KbMgrpiCix7PoHtyB44t38A+5E9MC5aDU3F5IT79MYEJZ470oMejx93zCpOuoT5i24n7t/bgeunm/CVcXkDjp0QMnKMyaCEIAh44okncPnll6OwsDD876KiokHtZ8uWLdi+fTt27NiBL774An/+85/B8zwmT56MBQsWYOHChTj//POHPM79+/fjqquuCv983333AQi2OF2/fj3Wrl0Ls9mMxx57LNwT/dlnnx0zrccIIYSQgWT6WCyiCwXDR0XlR74StRw/n1eW0rap1DBrc/oS3ndmuR7tThX2q86CfvpcmLd/CM/JE+h8759Ql0+CceEqKPL7Zxr5JB05eEHA5lYrPLyA9QEBalniMb3VEuzW9MyRHgpKEDLKjMmgBM/zeOKJJ7B69WoUFBSE/z3YoITRaMRZZ52Fs846C0Cwh/lnn32G559/Hq+88gpeffXVYX0RWrJkCerq6pJus27dOqxbt27Iz0EIIYSMZpk+FovoQsHwMaCoBIlYXKhBs8OH/RY3FMYizFh7OZwtx9Cw9T242o7D9eYJ6CbXIH/Ocsh0hvDjpJkSPZ4APKGfrb4A1LLEK8/HaeXYbQ4u9XL6eWiSbEsIGVnGZFACiBTyif33YDkcDuzatSt8lWbv3r1QKpVYtWoVFixYkI6hEkIIISSJbByL6UIBIcOn5hi4QpkOHMNELemp1CrQM3EaPEXjYT28C337PoP92H7Yjx+Cvmou8mefBk6lgU/yvb3FESmOafXxKElSTsYp6Sxy0OLGwkINAODzLgcs3gDOqTAkeighJMfGbFAiHS6++GLU1dXBZDJh4cKFOPfcc/GTn/wEVVVVQ2rLSQghhJDBoWPx6CGAKsqf6tQyFq5AsJglxwAyyd+oTs6i18uAYTnkzVwI/dTZ4I7tQuuez2E7tAP2+n0wVC9EyYKl4ce0SJaH2HzJi2TaJUGJQ5KgxP17OwAAS4u08AkCTMqhnf4EeAHOAI/E1TgIIUNFeU1J1NXVQSaTYe7cuZg3bx7mz59PX4IIIYSQLKJj8ehBXe6IhoucWnAME1VnRMZEL/BhFUo8d91l+MP/3QND9QIIgQD69m7B/r//Ae+//y6cTidaHZGghDVOpw8ph6R96cE+d7/779zeim9/0gTLAPtJ5HeHunDtJ01wDBAcIYQMHmVKJLF9+/Zwuujbb7+NRx99FHK5HPPnz8fChQuxaNEias9JCCGEZBAdiwkZPaQ1H2QsA5kkKiGLUwlVLWOh1+tQsGgNDNULYdm7Bb4TB/HBB+9iy5ZPcMQ0HYHxc8Cp1LD6eHS4fNDKWOy3uKHhWNQWqNHi8MKklMEmyZRodwWDGZ5A5LaTrmC70CN9biwu0g76tbU4vHD6eTRaPSgZ9KMJIclQUCIJtVqNZcuWYdmyZQAAn8+HrVu34plnnsGjjz4KhmFw6NChHI+SEEIIGbvoWDx6UKIEUUdlSgSzJUQyhkFsgpOKY8JLPGQ6AwqXnQvZvGVYxB/Hjh3bUbftE3i2fwb99LloLFiD5472QMEy4WKYv15UgR9sa0VNvgp2XwAMgHwFhz5vALwgwCrJnhAds3mGFJTwhGpldDi9KNHQKRQh6UR/UQMwm83Yvn17+L+6ujrwPI9p06ZRoUtCCCEkC+hYPDoMo644GaGumGzEXxp6cWaZHu+etA24vbRlZ2yhS45Fv/4sLMOAi82g0Bhw/pqLsGj5Srz39D/hProH1oPb8K/GvXCWVyFv5iLI84Jdb/b1BrttHLC4oeIYaGUsjEoOvd4A7D4efXGWanzS4UCFRoEzSnXh2/b1unDS6cPZcYphegI8frLzZLi+RbvDh1oKShCSVvQXlcQ555yDpqYmcByH6upqLFmyBLfccgsWLFiA/Pz8XA+PEEIIGfPoWDx68JQrMeZcPsmIi8bn4YN2e2pBiYEyJeI8RhZzo18AeEGAXa6BafGXMHHBcjTu2grviQOwH90L+9G9UFdMhqFmEXrHRYII7oCAUjWHfAUHALB4A7DGqf/Q4vTh0QOdMCo5zDYG23ncvfMkAOC0Ii1+tb8D47UK3FBVCADY2ePCUasn/PgOpxdApA2IxePHh+12nFNhSNqylBCS2JgMSjAMg/LycigUiqh/D9Z5550XXquqVifpQUQIIYSQjKBj8ehBmRJjk4Jjo7poJKORRRe6lGZKxNaU+PHskvB2sXy8ALMnGFCYUmSEbeFq6BesAHNgF6yHd8DV2gBXawNeP/gp7JPmQjthOhiWg1bGRgclkhS17HT5AWP0bX2+APb1urGv1x0OSvAxb+x2SZtSAHhwXwcO9XnQ7fHjuumFCZ9vpNrf68Ljh7pwV20pJugGf75ESDqMyaAEy7J4//33wz9L/z0Y3/3ud9M1JEIIIYQMAR2LRw+KSYxdXJIEgEsm5OOfjRYAMZkSbHQgIlhTIvizVsZiaXGwrkO8Apg+Xgi3AC1QBoMMLlaOvFmLYZi5AI4TdbAe3IbWtlb4WlrQu10L3bQ5kC1ejPyCYPCy1xuIW1NCJD6tIAk62CTb/+ZAJ26eUdjvfd0uaVMKAIf6glkUJ+xeDEaP249POu34yri8uIGZqOewuPHI/g7cMbsEM/JUg3qegfwklCWysdGC79cUp3XfhKRqTAYl0qm5uRnPPvssdu7cCYvFgvz8fCxYsADXXnstxo0bl+vhEUIIIWMeHYsJyS15kpNmpSQdQlpTQsYw0cs3JDUlpIGA2OUbAODlI0UqTcrg6Yo/9BCG5aCbPBPaSdVwtzfBeiiYOdG3dwv21G8HZs2CK38aeqcaYfMnDpWJQ3MGIttIa1B82G7HdIOy35KMDkf84MNgmxTftLUZHl5AnoLDqlJ90m3/UNeNbk8AD+3rwPMrJgzymRILSH4Phaqhnxa2OLzo8gRwtkk38MaExEFBiST279+Pq666CkqlEqtWrUJhYSG6u7vx9ttv480338Sf//xn1NTU5HqYhBBCyJhFx+LRg6dUiTGrXzFKCenqBoVkOzZ2+YYkQCF9q8TbtycQyZQQgxKxGIaBumwC1GUT4LNZYD+6F8q2Q+g6dhgdPTux8fD/UD5rAQKGieAUweyCYpUMne5ga1Dx/Spd4hFbg8Lh5xGba9HnDcAd4KHoF6hJPSzh5wV4QgNwJwmciMQgjrikxe4L4NEDnVhVqsfK0qEHAt6X1AmJXaYyGLd81gIAmF2RD1oAQoaCghJJPPTQQ5g5cyaeeeaZqHWsLpcLN9xwAx566CH8+c9/zuEICSGEkLGNjsWjh0ALOMas2JoSDCKBBR4CzizX45jVg7xQPYfgY2IKXbLxgxLSfas5Bq6AAIs3EF5KIS7fSEauz4dx/hlYec7ZmGprxoHX3kZ7VxfMH21Cs5uHdvx06KbOhm7aVHSGHiO2+LRJAhGx3ToEAE5//yUgnS4/KjXyqNuky0G+6HZillENrYyFIAj46/FezMpXo7ZADU+Ax6edjvDjAnGCAUKonWmegoMgCOiVjMviDeCQxY2dPS7s7HFhkk6B8SnUgmiweVBv9UR1GNnY2Bf+d7zXOVjtTi/GD/zrIqQfKhGbxL59+3Ddddf1K6ylVqvx7W9/G3v37s3RyAghhJBTAx2LCcm92CUWDICvhjpfLC/WYX11EX67pDJqmQfHxrQEZSIn7lLSbUrUwRP9Ho8fdklNidiHxQYERGqFHGctWYSyL1+J0vO+ieLqeWBYDo7jh9Dxzis49PcN6N39KXz2PrgCPLrdftyxvS38+NhMCR8vwBHnZL0rlG0Rz2tNfbh/bwc2HO4CAOzrdePvxy24Z1ewdsM9O0/idwe7wtvH7t/PC3jicDeu+l8jjlo96JUEaIBgEKXHE3n+Zslykh6PP2ppjNT3v2jFE4e7cdwW6STSK9mPM4WMjXg8gcjYumLqbRCSKsqUSEKpVMJiscS9r6+vD0qlMrsDIoQQQk4xdCwe+UpUMnS4/RivpcTtsapfMUoGuHaaCVdOLoiquSDdjmOYfoUuRdLzZuntJSoZTti96PH4wyfiejkHOcvAG1rucFqRBt+eZsINW5r7jVPBslDLWBQqOZhhwqzl56Br+jI4G4/AfmwfPL0n0bd3C/r2bsG7dTOwdUoNeG0lWHnwvRtbGNPqCyAQ51y90+2DtC0oEAy4tDi8eKHeDAD4rMsZ3odUnaS9KBAdlAjwAq746ER4acf/OuxYFioIKnIHhKighLjt510O3L+3A9dPN+Er4/L6DzqkLzQePy/AJXlxrsDQMiWkAZp2pxfQxw8YEZLMmMiU2LJlS0rb+Xw+/OAHP0h5v6tWrcIjjzyC7du3R92+fft2PProo1i9evWgxkkIIYSQwaFj8cj34MJy3DazCF8qT16sj4xesUEJBqGaDjFFIKOWazDBuhIiOctgXChwNUkfCWBJd12sDl4v/eNRMxpDGQB6OQelZKOZ+aqoZSJSYtHNSq0CPIB6qwesTI5VixfhD3d+D3O/cSPyapeC0+jR3nQcH/9nI5pe+T06P/oXHE1H0euKDhjs7HHh3TZbv+cRazvEzsmzR3rCP4tBOumSkHhZDNJlE40ObzjIAAAuP4+emKwMb4BHtzuyT3EZyj9PWAAAz0jGkIw99LwGOdtvHIPRKQ1KODKTKbHX7EKHa2RnYXgDPP7bYoUlSRtaktiYyJS46aab8Nhjj2HlypUJt3E6nbjllluwbdu2lPf74x//GDfffDPWrVsHk8kEk8kEs9mMnp4ezJs3Dz/60Y/SMXxCCCGEJEDH4pGvQCnDmjIKSIxlsS0rE5V0lC7zYBkm6meOYXD9dBNK1DKcI6lrwERlSkSustt8PFgG0HAM5BwDhM59FSwbFaTgGISzGcRCmzX5Kuw2u8KdNb47swh5Cg6v6o0wzl2B/NplmC+YYfliGzwnjsDZWAdnYx3+t20zfOXToJ04A6qScQmXabgTnMAfkWRBiC+rW5LV4IqTdiHNlKiPyaJwBfioxwNxMiVCGQ6xAaKEQkMQl8cUq+Sw+jwpByX+09yH15v68Mv5ZShWy9Hpioylw5l6W1Snn8dBixsLTOqo90CsDpcvvPTljS9NjrwMQQDDMOj1+KGVsVAk61ubBa+esOCVExZ83GHHAwvKczqW0WhMBCXOPPNM3HrrrfjNb36DM888s9/9ZrMZ119/PY4dO4bf//73A+7P7Xbjo48+QmtrK77xjW9g3bp1OHHiBLq6ulBUVIQ5c+ZgxYoVmXgphBBCCAEdiwkZSeSxqzcSnERyMcGC2EKXOjmHKyYXJHyeEnX0qUmJSgaGYaK6eig5Jur5i1QytIdOjMVMidVlevyloTdcUFMVul0sxsqwLHSlE2FaXoTSpWdD09OEA/v2wH3yOFxH98J+dC84tRaaCVXQjJ8GVXElGDZy0uuOE1zw8QLK1HLUh2o2iF09pIENs6d/kMPp5yEIAny8EBXUEO/r8YhdSDj0eIKdP2KXbwR4AScl9Rys3gAMCbJJdppd+LjDHg4kFqlkqLd5Ul6+8XQoE+PpIz24e04p9vS6wvd1DqKmxG8PduLzLidumG7CeUmWm/TEyUrp9fhx+7ZWzDaq8VG7HavLdLhtZnHKzw0Efy9bOu34coUhLQEN8Xd30OIe9r5ORWMiKPHII4/gJz/5Cb73ve/hV7/6FdauXRu+r6WlBddeey0sFguef/55zJs3L+m+mpub8a1vfQutra3h23Q6HX7zm9/g9NNPz9hrIIQQQkgQHYsJGVli23YmzpSIaQnKSu8b+HlK1HIUq2RQcwy+NtGI6vxgK8+ooETMWLSSDAFFKHBQpJIhX8GFu1Yo4lTYdAeCgQCDUoHT589Fl2kSOL8HlhNH4Dh+GO72RtgO74Tt8E6wSjU046ZCM34a1GUT4Ob7n8B7AgK8odtZRGpJSIMSvXFS+x1+Hj/ZeRIHLG5M1UfXyHH5BRy3BbMPKjQK9HhccIYKdEqf99EDneiQ3Nbt8cOg4BAQBDTavZgs2e8bTcGOG+LSmnwFBwXLRGVK7DW78FZLH26aUdRvqUy+goPFG8BeswtOP49t3U5oOAbOgIC+OEGXRD4P1dzY2uVIGpSI16r0/ZN29HgC+LDdHv5ZDEps7XRAyTGYb9Ik3Kc7wOO6T5sABFvOriiJtFVtc/rAMZGiq/E4/Tx+ta8D51QYsDSm5gcZmjERlGAYBvfffz+USiXuuOMOeL1eXHjhhTh8+DCuv/56cByHl19+GVOnTh1wXw8//DBYlsXLL7+MWbNmoaWlBT/72c/ws5/9DO+9914WXg0hhBByaqNjMSEjS2xL0ERiz/0TtQRNRMkx2LB0HISY7eWSfyu46P2oJZEPpeQ+g5wNBwHiZXY4/DyE0L7F/QdkSuinzoZ+6mwE3E44m47C2XQUrvYm2Ov3wV6/D4xcgV3V1dgXWIbJU6eF9+fhhXAxzkKVDJ1uP3y8EFV/ojfOVX+nn0dLKMPguD06U+JgX+Sqe4VGjr29Lhzt80DaKCO2xSiA8Dg2HO7G22023DOntN/z+kPb6OUsNDI2vJwDAH53sBPdngB4dOG8yjx0u/3hmjGRrBOEX2OtSY1jNi8s3kDC7h+xlCwDDy/0Ky4ai4+zO3mc99InHXYsL9biwX0dAKKXekh1uHx4/mik7kbsEp2btjYnfTwAvN5kwS6zC7vMrvB28cZ50unDyw1mXDfNhIIkQQ4yRoISov/7v/+DUqnEXXfdhbq6Orz66qsoLi7GH//4R5SW9v9jjGfXrl348Y9/jAULFgAApkyZgp///OdYu3YtOjs7UVw8uNQgQgghhAwOHYsJGVliAwqJ4guxwQtpUCK2LkWix8dmZQDRmQ4KNjrVXlpLQZpFoZdzAKKXE1Tnq3CoL3jib/NFsihix/3k0kr83652dKnmQD99Di4tV+OFT3dgofck/rt9L9qOHMArlhPgwaLdq4e6cjL6pkyHoDOCZQCjgkOn2w+rNxDVfaPPFz9TQhSv04eoTBM8bdsXWh4wzaDEUasHbl5AqTq4hGWCToFGuxfegABBEPB2qEjn512OfvsTx6KTs9BwLCzeAHy8EHXC/3mXM5zRcFqxFloZG16WwiAS2FCwDAzy4D5cAQGq0D4+73Jgsl6JIpUMO7qd2NnjxLXTTWAZBgYFh67QHCXDo/+kcHHeSg/v78SUpeMijxOEqEKroju2taJPEgiR/n4CksiCWLMinpa4BT37j/Pnu9vR5vLBzwu4a25Z3H2RoDEVlACCBbGUSiWefvppzJkzB0899RTy8hKnBMXq6urCuHHjom4bP348BEFAd3c3fREihBBCMoyOxYSMLKksvQD6L/OQPi6VOoyJgh3SNf9igGJ1qQ4ftNuxslSHbd3O0HaRHWjjPOHXJxmhl3N4od4cDkrIJJkSIg3HRgVCVo034coZ56HHG8D+KcfgajsBj6cV+w4dhtvSBHd7E5y7PgKny4emcjL81dUQlEXo9vij6k9440Qd4i3piPXDWcXhgpZtoayKWfkqHLV64A3w8PICWAaozlMGgxK8gGbJibM7Tr0IMWtDL+egDv2inH4eeQoubnDE7gsEl3mE7gwIAvyhrAgZywSXeTh86PMGoFLJsLXTgQf3daBcLccflo3Dz/e0AwCWFmsxSa8ML8uw+QJJAwDx5ixewVAAUR06utx+qDi23/KTvpjMjI2NfeAYBuumFETV1XAFBGhkDAK8gN8f7kJNvgpnlhtCz9N/mYo0U6LT5UOxWo620HioI8fAxkRQ4rTTTuv3RhYEAceOHcO5557bb/utW7dma2iEEEIIIYSMarHBhmkGZdztYoMX0uwIeQqZEom2iC10CQDrZxbhyikFUHPxsyhil3kEH8vivEpDKCjBh/cdmwmikbFRS0EUbLC4popjwcrk0I6fhjpMg3zKGSjraYeztQGBtgY4ezrhP7QTR07sRYsHePFoDaxCAVRlEyDPM8ETpxZFKrQyFrGrIiaG2qp6AgI8AQFKlgm/fi/Po11ygt4c58q+WHRTJ2OhCgV93AEeGp6NGyix+3jcub0p/HNAiGRKyBgGBnnw5N/qC6BEJcMX3cHsjLaYVp5eXsA3Pz4RDnz4hWBxyBqjOu5r98ZZF+HwR8YnFgAFooti3rAluAzj9TWTknb3AIKdM9ZNKYgKINl8AWhkLD7vduD9k3a8f9KOxYVaPH6oK1zM1CgJeEiHef2W5qjlH6lkCZ3qxkRQ4sorrxzwzTYY1113HTiuf8Xab33rW/1upwAHIYQQkn50LCZk5JAub5hvUuO26qK428WefEV140ihpoQqQReEqJoSoX9zDIMilQw+ydmgNJAQr+6A+HgGwRoQ4nbyqAKdwW0UcZ5TFRPoYFgWyqJyKIvKwc5bAa/DBlVXEwotzWg5WIcjdYdhDtWF4NRafFIzA3ZlCVRl4yHT6MMFIgciY5h+z10cap8q1rKQZnd4eQFWybKQZkf/Vp1ixoBRKQvPmycgRBXRlOp0+6Ou+AuIBAxkLANVKDNFXI7RaA8+Z+xvwccL/TIxNrVaEwYlPAO0UZ2sV6LWyOKDdntUVxKRmPEARC/PiEeaKWH1BVCilmOvOVLX44V6M74IZeXEbu9I0r2k1xuA08/DlPTZT21jIiixfv36tO3r1ltvTdu+CCGEEDJ4dCwmZGSRZkBcNtGIfGX8U4jYjAPpeXSyYplPLRuHPm8gqj6EVHSmRPQ28QIWsbdLiS1GpUEJ6bi1HBvaJvI88tBzxttniUqGDrcfvADINHqUVs/FaUXLcXJ2D2bCgva9hyB0NMLaeRInDu5Fd2j5hTy/EOMnTYEjrwyq4gpwqsTdIoLPG/26TcpgcNbl5+HjBSgVTDg7xBsQ0OuNnKD7k5yLFyi4cC0OD8+j1xt/43gn/GLAQJopIdaqOBEKSozXKaIeE6/YZ5szcdcOb5w6Dw7JEgwFy4SDWfHGKGY8AIA5yTIKQRCilrmImTRiVgQAtDqjgzvugAA/L0DGMlGFQgFEBctanT78bOdJPPdlQ8LnP9WNiaBEOtEXIUIIISS36FhMyMgSlfGQJOEh9q6o7htJHleqlqM0SXcCabAhXq0IUeySi2T7i8qUkGwrBkbi7SteZvYTS8fh9i9a0BhaIqHgGKhkDBiWgze/Asa5JkzSrcExsw2T3J2wHj4Cd9sJ+CzdsB/uQ1doeYM8zwRVSSWUxZVQlVRCpo2cwMpYRBVt1MvY8Im2WKhRyTFRmRLmOCf/sRgEW3yKgR5PQIhaGiEV74RfPImXsYBBEdxHnzcAqzcQzoaI/b13uKOXc7BAVABF5PTzePmYGZ2SzI3PupwwKrmoTImrpxbgrRZraIz9xy5mPAD9O21I/bvFignaSABFnNfwa2T616MAALufR74iekzBsUQ/1yFJJxXSHwUlCCGEEEIIIQlxUcsbUl8yHZUpkcLyjUSkj9QkCUpEZTckC0pwDOCPbCc9cRb3Lw1qJAuoyCVLF8THiW1KxcKLhSoZjiuUUBROhckQLOLrd1gxn+/B+/vq4O5sga+vB76+HtiO7AEAcFoDVCWVUBVXom+SDKaikvBzGBRcODtAWhtDGpQQ60LIWSbqqr1UnoIDxzJRyzfi1XAAIssxAKBIJUOX2x/OlJCzDMaFTugP9LoxXhM5uY997pMxWRF5Cg4Wb6Bft4z/23USR6zRLVLFdp9iTZM/rhgPk1IWXtpijhM4+X87TuLZZeOQr5ShN3R/VZ4S10w1Yb/FhZeO9QIAnj3Sg+umRRZY2LzBefWGC3si7tIWuy8AnYyNqkcBRLq7kNRQUIIQQgghhBCSkmSxhdjiktKTzOEEJTqTXOGOej7Jv8+pMGBjYx+unlrQb7vYZR7SAIYmTqbEQLXrtFFBiUjhyO7QlfvC0HIX6YmqTGvAvKkTsVc/CQDgd9rh6WyBu7MV7o5m+CzdcDQchKPhIF5q3AKVUol2jw5KUylKJ02E25EHFsEr9cHxslHLN8QT9FK1LG6hSyBSqFHJRgpdikEEo4KLKni5o8cFINj1pMnhRZcb4cKdMobBbKMaegWHXT1OlGsiWS9eXkBAUqVTWoCTZQCjMvg8zx7pgcPP45IJ+SjTyPsFJKSaQgESXWjew/Pt7h8I8PECXjhmxm0zi8M1IOYVqFGdr0J1vgr1Vg8+C7U9ldbMEDMlxCCNtIaGlMPPR9WWCN8ek1VRoOhfI4lEUFCCEEIIIYQQkpJknQQMcg43VRWiVN3/FGM4HQjEFox6efwsiTPL9ThscSNfGTnxK1XL8dqaSXEzO5IGJUInuEo2cUZGLI2kzoWSY6I6ggDAOG3wJN2e5ERVptFBNnEGtBNnAAACHhc8na1wd7ZivN6F7vY2uE82wn2yESeO7cSv9mxCWy/AmcqgKCyDe+pEMEVTAASDBZ1uP2RMMCCSKChREJovMdPAwwvhzABlgnU6Ko4N1wcRswNkoboc84q0+LjViu2SYpA+XogqVim2NJ2oU+D7M4vw52NmAMB/Qksw9vW6sD5BIVWRhxcgY6QFSENLRxJkJzTZfbB4A+FWomrJ70u65EMalBAzUBJljoh2m124L9TuVMoWChatLNXho3Y7tAneuySIghKEEEIIIYSQlAyU8HBuZfxifvJhNMpbWarDX4/34uIJ+XHvX19dFC6CKJVoqYmCi15uIYvKlGBC26Q+YG3s8g3JzywDzMxXAYhkNYhUSZaicEo1NOOmQjNuKr65fDz0HLDr9e3wdLehyN2DIs4OvrUeblsfHCcO4+ABOWzvKdDqUeKV0jI4dIWonTQOnLY84XPki5kScZZvqBN0QlFxTDjAFKm3EPxZH9pfhyQbwstHF5AUa3n8eHYJyjRyGBXRp6M9ngAe2d+ZcMwiZaggqXT8idTbPLj+0yZcOjE/9Boir22yToGjoawMaW0LccyJghJiJslfGnrDt80tUKPT7Ueb0xcOQOWFCoCm0GTllEZBCUIIIYQQQkhKhprxkEpL0EQunZiPhYUaTNYrEm4z0BILKXmSTAkxoJCsW4hIPOHUJKgpAQATtAro5P1T9/MVXNyUfhnTv1uGnAFUchnWzJiETzqLcd6kfHxjcgGOf9qAA8cb4elqQ6nfAoPLDN+xNrRYg9kH1kY1jrn9OCmooDCVQGEshsJYBIWxEDJdfvjkXMwK8UiWb3ypTI/tPU5M1iuwsbEvPBYVx0J8eeHuG6GftaHXKR2/zcfjmk+aol7P0iINykJLPKTZLaeXaLG109EveBOP9HcW2y41Hi8vhItRSoNG35pmwuY2G4DoTAkvL0AQhH41MSbpFPhSmR4ylsGGuu6o+1SSLJkPTgb3KQaseIGiEslQUIIQQgghJA0aGhpw1113wW63Q6FQ4K677sLChQtzPSxC0mqosYVUTvIT4VgGU0PFDdMhdvmGdGziSeRAw63OU+K2mcUAYoISHBN1kjxFrwy33BR9pdKAa6aZIGMZ/KS2BB+027Gl0xEejz/msrqYyfGDmmIsK3ZgrinYPvSbM0pxrxtQl03AwnI9VpXqcGRrA7zmTnjNnViQ58WWoyfQ0nISrmYbXM31kZ1yHLZOrICxehKaWT2cNjnMpqmQ6/IABJfK3DuvDN1uf0xQIpIpIXazEOdPGxN8yQ8VsYw1WR/5XZZLuq7U5KuxqFCLJw93YVmxFv/rcCQs0iktPirNfJhvUmNnqP5FLLEDhvT3o5GxuGh8Hl5r6usXlIiXJTFJr8BXx+dhh2SJikgpWdpSF8q+iAQl4g6JhFBQghBCCCEkDZRKJe6//35MnjwZx44dw80334zNmzfneliEpNVQL/gOp9BluimTZUqETnATjfava6vwyXEzzirThbMzki3fKNXI+i0FmahXhOdjcZE2ql3kGaU6bG61RW0vbsuxDJaX6MK3z8hTRb0mBcuAU6qhLpsAddkEfG3pOGharLAf74a3txOnyZ3gbD3494Hj8PV1w9Hdib17+9Di8KGzx4nffQCU6tUwK/Kw5cQkCJMrUFhYiGuLNHimLQBWroCSY8NdVb4InZiL8yetm6CTsQkzGKTzIy5tAYJdPRYWarCiRAuOYbCjuxF9fPw6EbKoTInI/r46Lg9XTC7AWy19sPl4bJMED+r6goGC2KUp4uOl9SUSBSXExxap+p9Gq1imX0aQWsaABaKKfZL+KChBCCGEEJIGFRUV4X9PnjwZNpst7jp3QkazoZ5aDaJEQ8ZJgxDBmhKR+8Sr+ImGO8Gggq7SAF5ywirNlFBKum8AQIlKHvV8ZWoZ1pTqo/YpXRKzvFiHC8bn4e/HLfio3Q4gcZZJ1PNyTFQGiHi/gmPAyuRQFVVgbW0J5CyDHePaIQgCLi5XYpHShQ+ONOLIjqPwWbrRYemBYGvHiUM2uE4cBBAsVtnUYgWn1uKj6eNxUqZDn6CBPK8AMn0+EMgLPV8kU8Kg4BK2UpUWBpUWRS0MLeUQ50MtY9AXv0Zn1JxIgx9FKhnGaRW4bWYxTti9UUEJkTpmYPFqUvgStEcVAyrxghLSTInI2FiwDGVKDISCEmPYvn37cPfdd4d/Pnr0KP75z3+iuro6h6MihBBCcmPbtm147rnnsH//fnR1dWHDhg1YvXp11DYvv/wynnvuOXR1daG6uhp33303amtrB/1c7733HqqrqykgQcacwa6N//HsElh9gYRFJ3NBmrkgYxhoJSfT803qQe8vdvmGtPtGiVoWFXSo0Cj6XU2XnsjKWQYVGkVUNkcqAR0fL/TLyNDI2Kj9SDMEGIZBnsGAKZWVsOVX4E3FZACAIAgIOG24oEKGQr8dPT3d6OrqxDvWevhtfehqbUSHw4deSTHLv36qwa4SIxwaAzq7eMj1+TCWFILRGOBjNeC0erAyedS4pOO4qaoQB/vcGKeLrhmiSlBsU5wnkTImKBF5vYk7iAz0PB6eD3cikRLnUC1joZWx4ToVwf1EB7jEfbMMQ5kSA6CgxBg2e/ZsvPHGGwCA1tZWfPOb36SABCGEkFOW0+lEVVUVLr74Yqxfv77f/W+99RYeeOAB3HvvvZgzZw5eeOEFXHfdddi0aRMKCgoAABdccEHcfW/cuBEcFzyxaW1txcMPP4ynn346cy+GkCxjEMySyItTnDGZpcXajIxnOGJrSuQrONw9pwQVGkU4eDKY1SbS5RsGORe1/xJJzQQg0vFCSnpOLF7Ely5PSCW4afXxULDSjI3gshTpCbtWxkZd/RfvU8YEK2RaAyZPKUe1ZGnFxsoGCHwA35yoxKa6JriPt8FvNcNnsyBfG4DL5URvnx3O1mD9iZPH5LD7AuGilaxaC5lGD06jw7aOSngrimEwGGAwGDBPZ8CqKXmIDQ0kK2ApnR9p+1ZpgEGdoLtJ7PIN6RzdWFWIDXXd8PL9i1wGHxvZtlglw3G7N2o/sZkSao4BR5kSA6KgxCli06ZNOOecc3I9DEIIISRnVq5ciZUrVya8//nnn8fll1+OSy65BABw77334sMPP8Rrr72Ga6+9FgDCwf5E7HY7br75Ztxzzz2YMGFC+gZPSI79+YwJsHoD0MfpJDHaSE/exQDCosLo4AmTcAFHf9Ir/7ONqqggQp48+gQ4blBCsr14sj3YwqBWbyAqGCKOSXrCrpGx4P2RugmqcFCi/3PJ40RlGJZDYWERSrwq5KkjrUa/UVuCxUUa1PXZcOQ/u+G396Fa5cPR9i74zb3w2/vgd9jgdTmAHuCItx1dh/rPg1yugMFggF5vgE6nQ1unDxY/B06lAavSglOqwak1YFUayBAplqkLzXHs8pVkbU0T/VwQWkLi44Vw+1Ip6e/6x7Ul+P7nLXCGMiqC9TbiLd+gTImBUFAih7KZRrpp0ybcc8896Ro6IYQQMqZ4vV4cOHAAN910U/g2lmWxbNky7N69O6V9BAIB3HbbbbjsssuwYsWKYY2HHWZRQPHxw93PWERzk1yi+clXypCvHBunDkpJTQGFjI37XpBeZY+dk9jtpV0nxukUYBgG9y8InrRzMSfG+Uqu3+OjalxwwfFIl2Ike69eMjEf/zxhwRmlOqgkY9bJg/uJuk3BwSs5OVaFXnu8jAJVgnnh0b9oqYJjIZNxKCssgKqkEiipxOlTC2BrsUIW6tCh4wCLzY6Ay45Lp+ug8TlhtVrD/9lsfejr60NPTw96enoAAC0ddlg8/riv261R4uEPS6DRaKDRaLCWlcOg1WDTpgNQqdRQq9VQqdRwNneBVajAKlVgFUqwMgXUHBP12qRzVKCSgWOAXk8AP9zW2u95NfLI769cq8ALKyfi0vePAwi+Z2KDORp5sDCo2CaVPnfiGxufLKNUNtNIzWbzkIIZhBBCyKmgt7cXgUAAhYWFUbebTCY0NjamtI+PP/4Yn332Gbq7u/HKK68AAF588UUYDIZBjUUmY2Ey6QbeMAVG48hLnR8paG6SG8vzk3/SEf63KU8d9+/tCoMaR50+XDTV1O/+2LkpKBBw5QwXqk0aFBYGi1iuSvA3XJKv6be/PHOk+0ZRgRYmvRKGNntkjEk+D75n1OJrM0swXq+MWiKQp5LDZNKh0Bk5qR9XrAfriCw3KDZqYTLp4FJ4+u232KSFSRfJRshXcrB4Aqguz8M2S/T2BfkaGI1auCX7nlVmwL9brACA8XolfrFsAq7efAQyjQ4rl89EkSZ6WYvI6/Wir68Pdrsdzf/dB6bbgoDbgYDHDd7lQMDjQsDlgFoeQCDgQV+fC319wSBGD4DjMfvrrOsCEFl+BAAP7SqCTCaDQqGAQqFAjw9oa7SBkcnxSdc4mOvM8DEyMDIZGJZDiV6FTjcPhmXRLBsHfaceMpkMHMeB4zg4TjQADAub0Q57txPONivAsmDAwNnLwd3eBK8q+L4Yy39Xw0FBiRzKRhopAGzevDktSzfoqk3m0NzEN9CVCUJzkwzNTWI0N6kbTPeM1atX48CBA8N+Tr+fh9XqGtY+WJaB0ahFb68jqksAobkZyKkwP35PpEijz+lFT4897nZ3ziwCgPD9yebm6+MMUdsmwrv7P5/bGTmZt/U50eP1weuOjHGgfeoAmM3RGQVuXwA9PXZ4nZEAgtXihMMZ2a/H7kYPBygEAfNNauzsiXzuOPpc6JHM0xOnjUO3xw+lxwe/N/q5XHY3ehUMtNpIEMMo8PCI9SQEAU5bZN9umws9rv6BEBHLqmEwqMGUToa+IH5L0CVFGvy/OaVwuVxwu11wuVyhf7tDP7vhcjnxFk6A93owXsGjwWwD7/NCrdbD6/XAZnPC6+1Dn9cPb2iO6/b1wXnSBo+kyGWBToG+UO2I90/qsCcmY6iryQIAeOugFu0uHzoldSaePZKHpjYrPAILz7olcDr9Q/67MhjUkI+B5VPxUFBihEpHGqkoHUs36KpNdtDcRMjl3IBXJkgEzU1iNDeJ0dxEGI1GcByH7u7uqNvNZnO/7IlsSNfJIM8LY/bEcrhobpIby/Mjl8QZi5XcoF/ncOZGxTH9HsvF/JvnhaiKFoN5rlK1DO0uP046feB5AXJJUJXnhajnkjNM+Ln+b24Zbv2sGc2OYCBCxkQ/r07GQidTgOeFfgUp2dC+9ZIuJoUKDv7Q4zkm+qRTwaT2mmySzhbifsRYAccwEARApQou08jPj7+Px5kGAMAdc0rx8z3tAIDvf2ly+H5BEHDC4kDDlhPgfV7cdloZmrY2otvhghDwQ+B5LCpWY6bHh709dlw60wQlA/j9fvj9fvB8AB/uaAUEHnMnGVFncaG3xwlAAAQBi2uKsLuuGy6VAQqFAna7b8z+XQ0HBSVGqHSkkQJAW1sbzGYzZs+ePazx0FWbzKK56c8XivADND/J0NwkRnOTWLrmZixdtVEoFKipqcGWLVuwZs0aAADP89i6dSuuvvrqHI+OEJJO0noNJlV2ToeumGzEZ10O1OT3bzka1X1jmBlsk3RKtLv84cKKsQEE6f5jCz4Gi5gGgxKxRSMT7QOIBHlkLIMrJhuhkUUXd5SxTNT+Um0Pe1NVIR471IWrpxbg/ZM2XDfdhP/bFQwspFoIdH11EeqtHsw3qXHHrGIYYo5ZDMNAp1aBU2nAqTQoKy1Dfqk/KqOkfHwevjW1AALQr5AlEAl8rJxfBkWnA42hZSu/nF+GWUY1/vtpEzrcfurAkQQFJUaZwaSRAkB5eTnefffdtDw3XbXJPJqbaLFzQfOTGM1NYjQ3iZ1qc+NwONDU1BT+uaWlBYcOHUJhYSGKiopwzTXX4M4770RNTQ1qa2vxwgsvwO1246KLLsrhqAkh6Sa9AB/vJDMTLp9kxOWTjHHvk55gD7brRqzvVJlg9wdw2cTgcwViPuKjWmnGFOE0SjqDxOu+IYqdM+k+vzGlIHxcEYs7yhlmSMGWL5XrcUapDnKWwcUT8hGQHK8SdPvs58xyPc4sD9ZzWFESP+s79rXGBmQcPj6lQIqA6LmoCbVUFeeLpw4cCVFQYoQaaWmkhBBCyGi3f/9+XHXVVeGf77vvPgDArbfeivXr12Pt2rUwm8147LHHwl2vnn322XBxaULI2NCToKNDrsRrCTrU0IRRKcN98yPtOkvUwdM9DSe2Go1sG5spUamNFJ9MdhIe20E0UcBhTZkO75+047QiLVShAEi8lqjJyKMyLOLfPlz5Cg6XT8rHOK0CQJyghD9+XYtYehkbFVQSLySLu4sNEJEICkqMUJRGSgghhKTXkiVLUFdXl3SbdevWYd26dVkaESEkFxaYNHj1hAVnlulzPRQA0Vf9ZWlO3ChRy/HoogoUhZapSAMIsSf24kn5QPplSiQIYNxUVYgzy/SYka8CxzB4+YwJ/bIzBoNJY0ZJrCsmR4LPfMx9Dn/yaMIjiypwzOrBRL0SW7oc/e7nwkEJikokQkGJHKI0UkIIIYQQQrKrOl+FP64YH7VcIZe4OFfX02mqIdIVQ/pcsdkQKQclYuIKiTIlFByLGmOkhoYujTWI0pkpEcvmi2RG5Mk5XD01ebbcNIMS00JzHC9YIs4zBSUSo6BEDlEaKSGEEEIIIdlnUo6c06B4J7JZKnURpUIjH3gjxMuUyMRokkt3poSUzRfMlZigleN3SyoHFSiKV6NEjJ+cQiWcBm3k/DWegiiNlBBCCCGEkFNbbI2GTHtkUXnck2c5y+D++WVQD1BFMna8mcxaSCTVQpdD4QhVQtXLuUFnrgjoH3kIZ0pQVCIhCkoQQgghhBBCSI4Mtw3oYE0zqBLeJ11ukUhsQCNbHUyy/Zz6ISw3iRd34CSZEhmMpYxqNC+EEEIIIYQQkiPxTrDL1MGlFLGdIEYC6Xn3lZONWQ+qZNqKYi0A4PQSbVr2J2ZK+KmmREKUKUEIIYQQQgghORLvlP60Ig1umVGIOQUDZy5km/Tc+rJJxtwNJENum1mECyfkYapeOfDGMZJnSlBQIhEKShBCCCGEEEJIjsQ7VWUYBmdXGLI+llSM9ZNrBccmXeKSTPKaEsMa1phGyzcIIYQQQgghJEdG2yk+nVsnFi9Tgg3fN9p+09lDQQlCCCGEEEIIyZnRdbJKJ9eJxQvYiDVDAjRvCVFQghBCCCGEEEJypEgVLGqpynZv0CGizpZJxMuUCP1aAzRvCVFNCUIIIYQQQgjJkXwFhyeXViJvCC0oc4GCEomVaYIBJoM8cu2fCl0OjIIShBBCCCGEEJJDFRpFroeQsnjFHEnQ6jIdfLyAhYWa8G0sLd8YEAUlCCGEEEIIIYSkRCsbHRkducAxDL5caYi5Lfh/XkD8/q+EghKEEEIIIYQQQlJzToUeTQ4vzizXZ/25qwxK1Fk9qM4fWsvOXBAzJfy8AFA8Jy4KShBCCCGEEEIISYmSY3FrdVFOnvvn88vQ4vBhqkGZk+cfClaaKUHiou4bhBBCCCGEEEJGPBXHjqqABEA1JVJBQQlCCCGEEEIIISQDqPvGwCgoQQghhBBCCCGEZAAbqm4Z4HM8kBGMghKEEEIIIYQQQkgGiDUlaPlGYhSUIIQQQgghhBBCMoCjmhIDoqAEIYQQQgghhBCSAdR9Y2AUlCCEEEIIIYQQQjKAMiUGRkEJQgghhBBCCCEkA8I1JShVIiEKShBCCCGEEEIIIRnA0fKNAVFQghBCCCGEEEIIyQCWlm8MiIIShBBCCCGEEEJIBlCmxMAoKEEIIYQQQgghhGQAZUoMjIIShBBCCCGEEEJIBoiZEhSUSIyCEoQQQgghhBBCSAawCGVK8DkeyAhGQQlCCCGEEEIIISQD2HBNCcqUSISCEoQQQgghaeJyubB69Wo88sgjuR4KIYSQEYBqSgyMghKEEEIIIWmyYcMG1NbW5noYhBBCRgiDPHjKrZVzOR7JyEVBCUIIIYSQNDhx4gQaGhqwcuXKXA+FEELICHFakRb3zS/DVyYX5HooIxYFJQghhBAy5m3btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/CBdQyaEEDIGcCyDOSYNlBydeiciy/UACCGEEEIyzel0oqqqChdffDHWr1/f7/633noLDzzwAO69917MmTMHL7zwAq677jps2rQJBQXBq1sXXHBB3H1v3LgRH3zwASZOnIhJkyZh165dGX0thBBCyFhCQQlCCCGEjHkrV65Muqzi+eefx+WXX45LLrkEAHDvvffiww8/xGuvvYZrr70WAPDGG28kfPyePXvw1ltvYfPmzXA4HPD7/TAYDLjhhhuGNF5WLNc+ROLjh7ufsYjmJjman8RobhKjuUmO5ic5CkqMEd/97nexdetWrFixAr/5zW/Ct7/77rt4+OGHAQC33XYb1q5dm6shEkIIISOS1+vFgQMHcNNNN4VvY1kWy5Ytw+7du1Pax+23347bb78dQDBzoqGhYcgBCZmMhcmkG9JjYxmN2rTsZyyiuUmO5icxmpvEaG6So/mJj4ISY8SVV16JCy+8EG+++Wb4Nr/fj4cffhgvv/wyOI7D5ZdfjjPPPBMKhSKHIyWEEEJGlt7eXgQCARQWFkbdbjKZ0NjYmPXx+P08rFbXsPbBsgyMRi16ex3geWpDJ0VzkxzNT2I0N4nR3CSXjvkxGNSQj9EOHhSUGCOWLFmCzz//POq2PXv2oKqqKvwlq7a2Fjt27MDSpUtzMURCCCFkVBEEAQwz+FTbiy++eNjPna4v9Twv0AlCAjQ3ydH8JEZzkxjNTXI0P/FRCdAsyEbF73g6OztRUlIS/rmkpASdnZ3D3i8hhBAylhiNRnAch+7u7qjbzWZzv+wJQgghhKQXZUpkQaYrfnPc2EzjIYQQQrJBoVCgpqYGW7ZswZo1awAAPM9j69atuPrqq3M8OkIIIWRso6BEFmS64ncixcXF6OjoCP/c0dGBFStWDHo/IqoEnjk0N/HFzgvNT380N4nR3CR2Ks6Nw+FAU1NT+OeWlhYcOnQIhYWFKCoqwjXXXIM777wTNTU1qK2txQsvvAC3242LLrooh6MmhBBCxj4KSuRYOip+J1JbW4vDhw+ju7sbHMdhz549+OUvfzmkfVEl8OyguYmQy7l+7zman8RobhKjuUnsVJqb/fv346qrrgr/fN999wEAbr31Vqxfvx5r166F2WzGY489hq6uLlRXV+PZZ58NZywSQgghJDMoKJFj6ar4fcMNN2Dv3r1wuVw444wz8PTTT2PGjBn44Q9/iCuuuAIA8L3vfQ9KpXJI46RK4JlFc9OfzxdAT48dAM1PMjQ3idHcJJauuRlNlcCXLFmCurq6pNusW7cO69aty9KICCGEEAJQUGLEGmzF76effjru7WeffTbOPvvstIyJKoFnHs1NtNi5oPlJjOYmMZqbxGhuCCGEEJJr1H0jx6jiNyGEEEIIIYSQUxUFJXJMWvFbJFb8njt3bu4GRgghhBBCCCGEZBgt38gCqvhNCCGEEEIIIYT0R0GJLKCK34QQQgghhBBCSH8UlMgCqvhNCCGEEEIIIYT0RzUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEIwiCkOtBkJGP5wUEAvyw9yOXc/D5AmkY0dhDcxPtyJHDmD59Rvhnmp/EaG4So7lJLB1zw3EsWJZJ04iIiI65mUdzkxzNT2I0N4nR3CQ33PkZy8dcCkoQQgghhBBCCCEkJ2j5BiGEEEIIIYQQQnKCghKEEEIIIYQQQgjJCQpKEEIIIYQQQgghJCcoKEEIIYQQQgghhJCcoKAEIYQQQgghhBBCcoKCEoQQQgghhBBCCMkJCkoQQgghhBBCCCEkJygoQQghhBBCCCGEkJygoAQhhBBCCCGEEEJygoIShBBCCCGEEEIIyQkKShBCCCGEEEIIISQnKChBCCGEEEIIIYSQnKCgBEnZyy+/jDVr1mD27Nm47LLLsHfv3qTb//e//8W5556L2bNn46tf/So+/vjjqPsFQcDvfvc7rFixArW1tfjWt76FxsbGqG0sFgtuv/12zJ8/H4sWLcJPfvITOJ3OtL+2dMj2/LS0tOCuu+7CmjVrUFtbizPPPBO///3v4fP5MvL6hiMX7x2RxWLBGWecgaqqKjgcjrS9pnTJ1dy8//77uOSSS1BbW4ulS5fiRz/6UVpfVzrkYm727NmDb37zm1iwYAEWL16M73znOzh27FjaX1s6pHt+3n77bVx77bVYsmQJqqqqcOTIkX77GE2fyaeCdL8HxpLBzM3Ro0exfv16rFmzBlVVVXjppZeyONLcGMz8vPLKK7jiiiuwaNEiLF68GN/+9rexb9++LI42uwYzN++++y4uueQSLFy4EHPnzsUFF1yA119/PXuDzbLBfuaInn76aVRVVeGhhx7K8AhzZzBzs3HjRlRVVUX9N3v27CyOdgQSCEnBf/7zH6Gmpkb4xz/+IRw9elS4++67hUWLFgk9PT1xt9BTcM0AAQAASURBVN+5c6dQXV0tPPPMM0J9fb3w29/+VqipqRHq6+vD2zz11FPCggULhHfeeUc4dOiQcOONNwpnnnmm4PF4wttce+21wvnnny/s3r1b2LZtm3DWWWcJd9xxR8Zf72DlYn4++ugj4cc//rHwv//9T2hqahLeffddYenSpcLDDz+cldecqly9d0Tr168Xrr32WmH69OmC3W7P2OscilzNzaZNm4RFixYJf/vb34SGhgbhyJEjwubNmzP+egcjF3Njs9mERYsWCXfddZfQ0NAgHD58WPjOd74jfOlLX8rKax6MTMzPa6+9Jjz++OPCK6+8IkyfPl2oq6vrt5/R8pl8KsjEe2CsGOzc7NmzR3jwwQeFf//738Ly5cuFF198Mcsjzq7Bzs8PfvAD4aWXXhIOHjwo1NfXCz/+8Y+FhQsXCh0dHVkeeeYNdm6++OILYfPmzUJ9fb3Q2Ngo/PnPfxaqq6uFTz/9NMsjz7zBzo1o//79wurVq4WvfvWrwoMPPpil0WbXYOfmn//8p7B48WKhs7Mz/F9XV1eWRz2yUFCCpORrX/ua8POf/zz8cyAQEFasWCE8++yzcbe/7bbbhO985ztRt1166aXCvffeKwiCIPA8Lyxfvlx47rnnwvdbrVZh1qxZwn//+19BEAShvr5emD59urBv377wNh999JEwY8aMEfeHm4v5ieeZZ54Rzj777OG8lLTL5dy8+uqrwte//nVhy5YtIzIokYu58fl8wumnny688sor6X45aZWLudm7d68wffr0qC/aO3fuFKZPnz7gl65sS/f8SDU3N8cNSoymz+RTQSbfA6PdYOdGavXq1WM+KDGc+REEQfD7/cK8efOEf/3rX5kaYs4Md24EQRAuvPBC4fHHH8/E8HJqKHPjdDqFL3/5y8LHH38srFu3bswGJQY7N2JQgkTQ8g0yIK/XiwMHDmD58uXh21iWxbJly7B79+64j9m9e3fU9gCwYsWK8PYtLS3o6uqK2kav12POnDnhbXbt2oX8/HzMmjUrvM2yZcvAMEzK6WLZkKv5icdmsyEvL2/IryXdcjk3TU1N+O1vf4tf/epXYNmR91GXq7k5ePAgOjo6wDAMzj//fKxYsQI33nhjwuUvuZCruZk0aRLy8/Px6quvwufzweVy4bXXXsPs2bNRUFCQ1tc4HJmYn1SMls/kU0Gu3gOjwVDm5lSSjvlxuVzw+/0j6vtGOgx3bgRBwNatW3H8+HEsWLAggyPNvqHOzYMPPoglS5bg9NNPz8Ioc2Ooc2O327Fq1SqsXLkSN998M+rr67Mw2pFr5H1TJyNOb28vAoEACgsLo243mUzo6uqK+5ju7m6YTKaE24v/T7bPePuQyWTIy8tDd3f30F9QmuVqfmI1NTXhpZdewte//vUhvY5MyNXc+P1+3HHHHbjtttswbty4tLyWdMvV3DQ3NwMAnnzySaxfvx5PPvkk5HI5rrrqqhFTGyBXc6PT6fDCCy9g48aNmDNnDubNm4fdu3fjySefTMvrSpdMzE8qRstn8qkgV++B0WAoc3MqScf8PProoygrK8Npp52WiSHmzFDnxmazYd68eZg1axZuuOEG/PSnP8XSpUszPdysGsrcfPDBB/jss89w5513ZmOIOTOUuZk8eTIeeOABbNiwAQ8//DB4nsc3vvENdHR0ZGPIIxIFJciQCYIAhmES3h/vvtjbYn+O3We8fQz0vCNFNuZH1NHRgeuuuw7nnXceLr744iGOOHsyPTcbNmyA0WjEpZdemobRZlem54bneQDATTfdhLPOOgu1tbV46KGHYLVa8eGHHw5z9JmV6blxu924++67cdppp+GVV17BX/7yF5SVleGWW26B3+9PwyvIrHTMz0BG82fyqSAb74HRit6nyaU6P8888wzeeustPP7441AoFFkYWe4NNDdarRavv/46/vGPf+D73/8+7r//fmzfvj2LI8ydRHNjNptxzz334Fe/+hXUanUORpZ7yd43c+fOxfnnn48ZM2Zg8eLFePzxx8OZmqcqWa4HQEY+o9EIjuP6XQkzm839ooKiwsLCftv39PSEty8qKgIQvHopTYs2m83h1OB4+/D7/bBarf2u9uRSruZH1NHRgauuugpz587Fz372s+G+nLTK1dx8/vnn2L59O2bOnAkgeGAAgEWLFuG73/0ubrzxxjS8uuHJ5d8VEFyqINJoNCgvL0dbW9swX1V65Gpu3nzzTXR0dODVV18Nf5H49a9/jUWLFmHLli0444wz0vMChykT85OK0fKZfCrI1XtgNBjK3JxKhjM/zz33HJ566ik8//zzmD59eiaHmRNDnRuWZTFhwgQAQHV1NY4dO4ann34aCxcuzOh4s2mwc3P06FF0dXXhG9/4Rvi2QCCAbdu24aWXXhpT3VvS8Zkjl8tRXV09opbSZhtlSpABKRQK1NTUYMuWLeHbeJ7H1q1bMXfu3LiPmTt3Lj799NOo27Zs2RLevrKyEkVFRVH7tNvt2LNnT3ibefPmwWKx4MCBA+FtPvvsMwiCgNra2vS8uDTI1fwAkYBETU0NHnjggRFXOyFXc3P//ffjjTfewOuvv47XX38d9913HwDgb3/7Gy677LL0vcBhyNXczJ49G3K5POrA53a70d7ejvLy8vS8uGHK1dy43W6wLBt1ZUP8WQxsjQSZmJ9UjJbP5FNBrt4Do8FQ5uZUMtT5efbZZ/Hkk0/i2WefHbOtC9P13hEEAV6vNwMjzJ3Bzs3s2bPx5ptvhr+Hvf7665g1axYuuugibNy4MYsjz7x0vG8CgQCOHj0avoBySspaSU0yqomtbjZu3CjU19cL99xzT1SrmzvuuEN45JFHwtvv2LFDqK6uFp577jmhvr5eeOyxx+K251u4cKHw7rvvCocPHxZuuummuC1BL7zwQmHPnj3C9u3bhbPPPlv44Q9/mL0XnqJczE97e7tw1llnCVdddZXQ3t4e1VZoJMnVe0fqs88+G5HdN3I1Nz//+c+FlStXCp9++qlQX18v3H777cLKlSsFh8ORvRc/gFzMTX19vTBr1izhF7/4hXDs2DHh8OHDwvr164WlS5cKFosluxMwgEzMT29vr3Dw4EHhww8/FKZPny5s2rRJOHjwoNDb2xveZrR8Jp8KMvEeGCsGOzcej0c4ePCgcPDgQWH58uXCI488Ihw8eFBobW3N1UvIqMHOz9NPPy3U1NQImzZtivquMdKOqekw2Ll56qmnwq3Z6+vrheeff16YOXOm8I9//CNXLyFjBjs3scZy943Bzs3jjz8eft/s379f+P73vy/U1tYKx44dy9VLyDlavkFSsnbtWpjNZjz22GPo6upCdXU1nn322XAa9MmTJ6Ou0s+fPx+PPvoofvvb3+LXv/41Jk6ciCeeeAJTpkwJb3P99dfD5XLhpz/9KaxWKxYsWIBnnnkmao3iI488gl/84he4+uqrwbIszjnnHNx9993Ze+EpysX8fPrpp2hsbERjY2O/tPK6urosvOrU5Oq9Mxrkam5+9KMfgeM4/OAHP4DP58O8efPw/PP/n737Do+ruhY+/NszI416GxVb7nKRi9wrxtiYjumQC4EQSiAJNYSPBAghCeRCEiCkQAqhhJCEkAsJhJDQe7Ex7r1KLpJs9S6Nyszs74+tadJIlqwyKut9Hj+WppyzZ2ukM2edtdd6lpiYmP578ccQjrmZOHEiTzzxBI8//jj/8z//g81mIycnh6effnrAVZnvi/l5//33+d73vuf7/lvf+hYAP/3pT321agbL3+ThoC/eA0NFd+empKSECy+80Pf9k08+yZNPPslFF13Ez372s/4efp/r7vy88MILtLS0+P4meN1yyy3ceuut/Tr2vtbduWlsbOTHP/4xRUVFREVFkZWVxSOPPMKqVavC9RL6THfnZjjp7tzU1NTwgx/8gNLSUhITE8nJyeH//u//yMrKCtdLCDul9QDKSRVCCCGEEEIIIcSwMTzDWUIIIYQQQgghhAg7CUoIIYQQQgghhBAiLCQoIYQQQgghhBBCiLCQoIQQQgghhBBCCCHCQoISQgghhBBCCCGECAsJSgghhBBCCCGEECIsJCghhBBCCCGEEEKIsLCFewBCCNGZxx9/nN/85jftbj/hhBP405/+1P8DEkIIIYYoOeYKIcJBghJCiAEvPj6ep59+ut1tQgghhOhdcswVQvQ3CUoIIQY8q9XKnDlzjvm4xsZGoqKi+n5AQgghxBAlx1whRH+TmhJCiEGpoKCA7Oxs/v3vf3PnnXeyYMECbrjhBgCqqqr44Q9/yNKlS5k5cyZf/vKX2bJlS9Dza2pquOOOO5gzZw7Lli3j97//PQ899BCnnHKK7zGPP/44ixcvbrfv7Oxs/vrXvwbd9tJLL3HOOeeQk5PDypUreeqpp4Luv/vuu7n44ov57LPPOO+885gzZw6XX345+/btC3qc2+3mD3/4A2eeeSY5OTksX76cu+++G4Dnn3+euXPnUl9fH/Sczz//nOzsbHbv3t3NWRRCCCGOTY65fnLMFaL3SaaEEGJQcLlcQd9rrQF4+OGHOf300/n1r3+NxWKhubmZa6+9lpqaGu68805SUlJ44YUXuOaaa3j77bdJS0sD4Hvf+x5ffPEF99xzD6mpqfzxj3/k8OHD2Gzd/7P49NNP88tf/pLrr7+eRYsWsWPHDn79618THR3NlVde6Xvc0aNHefjhh7nxxhux2+08/PDDfPvb3+Y///kPSikAfvjDH/Lqq69y3XXXsWjRIqqrq3nzzTcBOO+883jooYd46623uPjii33bfeWVV5gxYwZTp07t9tiFEEKItuSYK8dcIfqTBCWEEANeVVUVM2bMCLrtgQceAGD27Nn86Ec/8t3+0ksvsW/fPv7zn/8wfvx4AJYuXcpZZ53FH//4R+666y727dvHu+++yy9/+UtWrVoFwOLFi1m5ciVxcXHdGltdXR2//e1vufHGG7nlllsAOPHEE3E6nfz+97/n8ssvx2q1AlBdXc0LL7zgG5fWmptvvpm8vDwmTpxIbm4u//jHP/j+97/PVVdd5duHd4wJCQmcccYZvPzyy74PSPX19bz99tvccccd3Rq3EEIIEYocc+WYK0R/k6CEEGLAi4+P59lnnw26LTIyEoCTTz456PY1a9YwY8YMRo8eHXSlZ+HChWzfvh2Abdu2AQSljcbGxrJ06VK2bt3arbFt2rSJhoYGzjrrrKD9LVmyhN/97ncUFRUxatQoAEaNGuX7cAQwceJEAIqLi5k4cSJr164FCLoi09aXvvQlrrnmGvLz8xkzZgxvvPEGLpeLc889t1vjFkIIIUKRY66fHHOF6B8SlBBCDHhWq5WZM2cG3VZQUACAw+EIur2yspLNmze3u8oDMHbsWADKysqIjY1tV6Cr7ba6orKyEoBzzjkn5P1Hjx71fUBqW708IiICgKamJsBcnYqJien0ytHixYsZM2YML7/8Mrfddhsvv/wyp556KklJSd0euxBCCNGWHHP95JgrRP+QoIQQYlDzrgv1SkxMJCcnh/vuu6/dY71XelJTU6mvr29XOby8vDzo8Xa7nZaWlqDbqqur2+0P4A9/+EPID1gTJkzo8mtJSkqioaGBurq6Dj8kKaW45JJLePHFF7ngggvYsGFDuwJfQgghRF+QY64cc4XoCxKUEEIMKSeccAKfffYZmZmZHV6F8V4Bev/9931rR+vr61m9enXQB5OMjAzq6+spLi4mIyMDgM8++yxoW3PnziUqKoqSkpJ2aa3dtWTJEgD+9a9/BRXrauuiiy7iscce45577iEjI4MTTzyxR/sVQgghjoccc4UQvUGCEkKIIeXCCy/k73//O1/96lf52te+xpgxY6iqqmLr1q2kpaVxzTXXMHnyZE455RTuu+8+6urqSEtL45lnnmmXWnrSSScRFRXFPffcw7XXXktBQQF///vfgx6TkJDALbfcwoMPPkhhYSELFy7E4/Fw8OBB1q5dy29/+9sujz0rK4vLLruMn/3sZ5SXl7Nw4UJqamp46623+OUvf+l7XEZGBieddBIffvgh3/zmN31FvYQQQoj+JMdcIURvkKCEEGJIsdvt/PnPf+bXv/41jz/+OOXl5aSkpDBr1qygIls/+9nPuO+++/jJT35CTEwMV1xxBTNnzuStt97yPSYlJYXHHnuMhx9+mJtvvpkZM2bw6KOP+q70eH39618nPT2d5557jmeffRa73c748ePbPa4rfvSjH5GZmclLL73EU089RUpKSsirMqeddhoffvhhpwW6hBBCiL4kx1whRG9Q2tt4WAghhjlvP/L3338/3EM5pttuu43S0lL+9re/hXsoQgghRLfJMVcI4SWZEkIIMYjs2bOH7du388477/CLX/wi3MMRQgghhiw55grRPyQoIYQQg8iNN95IZWUlV1xxBWeddVa4hyOEEEIMWXLMFaJ/yPINIYQQQgghhBBChIUl3AMQQgghhBBCCCHE8CRBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIUEIIIYQQQgghhBBhIUEJIYQQQgghhBBChIUEJYQQQgghhBBCCBEWEpQQQgghhBBCCCFEWEhQQgghhBBCCCGEEGEhQQkhhBBCCCGEEEKEhQQlhBBCCCGEEEIIERYSlBBCCCGEEEIIIURYSFBCCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFrZwD0AMDh6Pxu329Hg7NpsFl6vn2xmKZG6C5ecfZsyYsb7vZX46JnPTMZmbjvXG3FitFiwW1UsjEl5yzO17Mjedk/npmMxNx2RuOtfT+RnKx1wJSogucbs9VFU19GgbFovC4YijpsaJx6N7aWRDg8xNe1/96lX861+vAzI/nZG56ZjMTcd6a26SkmKwWKy9ODIBcsztazI3nZP56ZjMTcdkbjrXG/MzlI+5snxDCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIoUshhBBCCCHEoKG1xuNxo/u5nqLFomhubsblckkxxzZkbjrXlflRCiwWK0oNzQ4bnZGghBBCCCGEEGLA01pTV1dNfX0NEJ4T37IyCx6PtL0MReamc12ZH4vFisMxEqt1aHbZ6IgEJYQQQgghhBADnjcgkZCQQmSkHej/K8o2m8LlkkyAUGRuOnfs+dFUVZVRU1NBcnJav41rIJCghBBCCCGEEGJA01r7AhIxMXFhG4fNZgEkGyAUmZvOdWV+4uOTqKwsQWsPSg2f8o/D55UKIYQQQgghBiWPxw3o1gwJIYYmq9XkDAy3ZTCSKSGEOG5ag7MO6mug2Qlul7ndFgGRURCTANFxpnCPEEIIIcTx8he1lA8VYigz7+/+LuIabhKUEEJ0S3MjFB+C0kJFZTG4Wzr/cGC1aZLSwTFSkzHOBCmEEEIIIcTA8cwzf2D16k955pm/hHsoYhiSoIQQokvqqiBvm6L4EGiPCURYbZqkNE1sItijwRphwrquFkWzE+qrobYSyo8oyo8o9m6A5AzN2Kma9DEwjJbKCSGEEGIYevDB+3A6G3jggYd9t73++ms88shPuP32Ozn//IuOa7uffvoxf/rT0+Tl5RITE8OSJUu59977j3ucl1/+Vb70pcuO+/mD1Ze+dB6XX34ll1wy/F77QCJBCSFEp5obYe8GxZFcAIUtQjNysiZjnCYpDSwhOxb5c848Hqgp05QWKI4ehMpiRWWxIiZBM3muJn2sLO8QQgghxPDw0kt/53e/+zX33ns/p556xnFt48MP3+Ohhx7khhtuYe7c+bhcLvLzD/VoXDExMUBMj7YxVLlcLqxWK0o+sPYZCUoIITpUchh2rFG0NCkiozQTcjyMngLWbvzlsFggKR2S0jWT5kJZoebgDhOY2PKRInmEZvoSTWxC370OIYQQQohwe/bZp/jrX//ET37yCCecsOy4tuFyufj1rx/l5pu/xbnnXui7PStrYqfPq6mp4be//RWffvoRLpeLGTNmcttt32HcuPFA++UbLpeLxx//BW+++V9sNhsXX3wpBw7kEh0dw/e/fx8ATU1NPPnk73j33bdoaKhn0qQp3Hzzt8nJmQmYjJDf/vZXfP/79/PYY7+goqKcRYsWc/fdPyQuzqzn/eCDd/njH5+ksLCA6OhosrOn8fOfP4bFYvFlmUyYMJGXX34Rt9vNqlXncfPN38ZqtXYwhsncfPPtvjEAbN68kSef/B179uwiMtJOTs5MHnjgYe6441aKio7yy18+wi9/+QgAn3663jfuu+76AU888TgFBfm8+upb/OAHdzF16nRuueXbvm1fd91XWbp0Gddd900Ali1bwJ13fp8PP3yfLVs2MmrUaO69934sFiuPPPIgubn7mTlzNj/84f+SnJxyXO+BoUiCEkNcXl4e99xzD3V1dURGRnLPPfewYMGCcA9LDHDaA/u3KA5sMxHh0VM0k+dpIiJ7tl2lIG00pI7SVBzV7FmvqCxSrHkNshdoRk+RrAkhhBBCDC1aax5//Bf85z+v8uijjzNnzryg+//85z/yl7882+k2/vKXlxgxYgR79+6mtLQEUFx99eVUVVUydeo0br31/zF69JgOn//DH95NdHQ0jz76G2Jionnppf/j9ttv5vnn/0F0dHS7xz///HO8997b/OAHP2bUqDG88MJfWLduLcuXr/Q95le/eoRDhw7yv//7MxyOVN57721uv/1m/va3f5CWlg5AQ0MD//zni/zv//6UxsZGfvCDu/nrX//EDTfcQllZGffd931uuulbLF++kvr6ejZuXBc0jrVrP8duj+I3v3mK/PzD/PSnPyY1NY0rrrgq5BjeeefNoDEcPnyI22+/mQsv/BJ33HE3AOvWfY7Wmp/85BGuueYKLrroS6xadV7QfhsaGvj73//K979/P7GxscTGxnb68wn0pz89za233s63v30Hv/rVz/nxj39ISkoKt9xyG1FRsfzoR9/jySd/x1133dvlbQ51EpQY4ux2Oz/5yU/IysoiNzeXm266ibfeeivcwxIDmMcDOz5THD1glmrMPEmTNrp396EUODJhyTmagzs0uVsUu9ZaqCzWzFiqu5WJIYQQQggxkK1e/SktLS385jdPtgtIAFx44SWccsrpnW4jNTUVgCNHCgHvie//Iz09nb/+9U9861s3dBhg2LJlM3v27Obf/36LiIgIAG6//bt8/PEHrF79Kaee2n7f//zni1x11ddYtmwFAN/97j2sWfOZ7/6ioiJef/01XnnldVJSHAB87WvX8+mnH/P222/wla9cDUBLSwvf/e49jBgxAoCzzz6XDRtM4KG8vAy3282KFacwYsRIACZNmhw0Drvdzl133UtkZCQTJmRRUJDP//3f81xxxVUhx3DNNdezevWnvjH89a9/YubM2dx22x2+bU6cOAmAqKgoLBYLMTExOBypQfttaWnhO9/53jEzUEI599wLWLnyNMDU6rj99pv5xjdual1q4+Hccy/k1Vf/2e3tDmXy0X+IGzVqlO/rrKwsamtr0VrLmqgBrKXZFIhsrDff2yIgNhGiYvs+i0B7YPuniqKDiqhYzfzT+3ZZhcUKWbMgZaRm68dQdFDhrIe5K4dZHyQhhBBCdNv2zxQlh/t3nxnjYMbS7j1n0qQpVFSU8/TTT/Dznz9GVFRU0P0JCYkkJCR2aVsej/mMdPXV17FihclauPfeH3P++WeyevUnIetU7N+/l/r6OlatOiXo9qamJo4cKWj3+Lq6Oioqypk2bYbvtoiIiKCAQV7eftxuN5dddmHQc5ubm4MeFxsb6wtIADgcDiorKwETgJg7dz5XXfVllixZyqJFS1i58lRiY/2t2iZPnkJkpD9VNydnJr/7XRl1dXVdGsP+/ftYvvzkdq/xWOx2+3EFJAAmTvS/fm+wZMKErIDbUnxzIAwJSgxw69at45lnnmH79u2UlpbyxBNPsHLlyqDHPP/88zzzzDOUlpYybdo07r33XmbNmtVuW++99x7Tpk2TgMQA5GqB3RtbyN0BVSWhW1LYYzQZY2FMtul20Rf2bWoNSMRpFp6h+619Z1KayZrY9D5Ulyq+eNNkbAghhBD9ra6ulqioaGw2+ZgsekdGRgb33/8Tbr31m3z3u7fxyCO/DgpMdGf5hsNhTnLHjh3vuy86OpqMjBEUFxeFfK7T2UBaWjq//vXv292XkNDx1ae25wxa+y8aOZ0N2Gw2/vjH532Ps1oVbrcOWurQ9vdIKYXWntbHW/n1r3/Ptm1b+Pzz1bzwwl945pk/8Mwzf/GdzHd03qJU6DF4dWe5RShtA0cAFoslaA7A1N5oK/A1e4cVfJt/DoQhf20HuIaGBrKzs7n44ou59dZb293/+uuv89Of/pT777+f2bNn89xzz3H99dfz5ptvkpLiL55SWFjII488wpNPPtmfwx/QmhqgoRaam8BqhchoiEsyhRn7i/bAod1wYBu0NDUDCnuMJtEB0XGmZWZzo2nHWVMOh3crDu+BzCyYMl8T2f7v5XE7mgcHdyhskZoFp/VfQMIrMgoWnKHZ8jGUFShqK8xr783XKIQQQnRm69bNvPTS/5GWls4NN9zsu0LbWG8+J/TnZwRxbDknajixf/dpsylCnIceU2bmKB5//A/ceus3ufPOb/Pww7/ynfh2Z/nG1KnTiIiIoKDgMLNnzwGgqamR0tJiMjJGhHzulClTKSsrJSIiosPHBIqLiyMlxcHOnTvIyTEXOltaWsjN3e+rFTF58hRcLhfV1VW+x9hsFlyu7p1sWywWZs+ey+zZc/na177Beeedztq1azj77HMB2Lt3D83Nzb7fxR07tuNwpBIbGxdyDG1NmjSZjRvXc80114e832aLwO3u2piTkpKpqCj3fd/Q0BAy00R0nwQlBrgVK1awYsWKDu9/9tlnueyyy7jkkksAuP/++/nwww955ZVXuO666wCTgnXTTTfxgx/8gHHjxh33WCyWnmVYHN6t2FjgxGJTxCaamgLJaebEu780NkD+big6BPXV7V+P1aZJGQFjsk1Bxr5MKmmoha2fQFWJAgUTptsYOdFFfEro/TY1QGGu5sB2OJKrKD8Ks5dDyrGPLV0ay441gNLMORniksKTTWOJhHkrYeP7GrcLNr2vWHQWWGxmPD19Dw5F3jmRuWlP5qZjMjdCtKe15u233wQ0paXFrF//BUuXLqO2Eta8ZiF1lGbeqT1bXlhTDps+UMxarklO751xi8HDG5j41rduCApMdGf5RmxsHOeffxHPPPMH0tMzSE/P4LnnniE2No6lS08K+ZwFCxYxffoMvve9O7jxxlsZNWoMpaWlfPrpR5x77gW+DhyBLrnkUv785z8yatRoRo0azQsv/IXm5iZfRsLYseM59dTT+fGPf8Att9zOpEmTqampYs2a1cyZM4+5c+cf87Xs2LGdDRu+YNGiJSQlJbN580acTmdQFkhTUxOPPPITvvKVq8nPP8Rf/vIsV1zx1Q7HUFlZyRdfrPGN4corr+Hqq7/Mr3/9KOeddwFKWVi3bi3nn38RUVFRjBw5ks2bN7Jy5alERESSlJTU4Xjnzp3P73//OGvXriE9PYNnn30KkONob5CgxCDW3NzMjh07uPHGG323WSwWli5dyubNmwFwu93cdtttXHrppSxbdnyth8BEPh2Onl0631nRSEmBu/U7Re4WiEtUZM+LYPIsG1Zb3/1Su1o0W1e3sGdTC57WISQkK5LTLUTFmIh3fY2HsiMeSgugtAASUxVLTreTmmnt9fFUlLhZ+3ojTU5IybCw9Gw7iQ4LYO/4SQ7IHANzTtCs/6CZvB0u1r0Fy861M3bK8f8qa63Z/H4jHreHmSdEkD2zhy02esGpl2gifqyoLlPs22Bl6dlmXpKTe5aKN5TJ3HRM5qZjMjdC+BUVHaW6uorISDvNzU1s3ryJpUuXUXHU3F9WqICuByWanCYAMXGWv2D03g2KpgbFujcVZ1wl6dvDUWDGxF133c5DD/0y5FKBztxyy+1YrVbuv//7tLS0kJMzm1/96nchi1yCOT/4+c8f44knfssDD9xHTU01Dkcqc+fO73D5xle+cjXl5WXcf/+9RESYlqCzZs0Jqu9w770/5tlnn+Kxxx6lrKyU5OQUcnJmcdppZ3bpdcTGxrJ58yZefPFvNDQ4yczM5M47v8+MGTm+xyxevIS0tHRuuul63G4XZ599Hl/+8pVdHsPYseN49NHH+cMffsurr/6TqKhoZs6cxQUXXAzAddfdwCOP/ITLLruQ5uZmPv10fYfjPffcC9i7dw8/+tE9REVF8bWvfYPCQsmU6A1Kt10YIwas7OzsoJoSxcXFLF++nJdeeimohsTDDz/Mxo0b+fvf/84HH3zALbfcwqRJk3z3/+Uvf+l0/VgoLS1uamqcPRq/UooISzSlxU4qizUl+VBRZAIRcUmamcsgMfUYGzkONRWw+QNoqFVYIzRjs00mREx8+8d6PFCaDwd2tGYwoJk4CybN7b2siapSWP82uFoUY6dqpi4EW4QiOTmWysp6XwGjY8nfCztWm3HNPQXSO+4C1anC/bDtU0Vckmbpeab45EBw3rlnc8fVb9BYr5i2COad1L35GS4slu6/d4YLmZuO9dbcJCREExExQP5oDBBOp5NVq1Zxzjnn8J3vfOe4ttHS4qaqqqFH47BYFA5HHOXldfL+b6Ojufn88zX897+vcvLJp7B9+zbKykq57bbvUF+ayp51Jq2zO4GEfRsVB7YryioOU2H7J1OmTCEzdhVHclW3t9WfBup7x+VyUVZWSGrqqLDW+zieJQpDgcvl4tJLL+B//udyLr/8ypCP6e25efDB+3A6G3jggYd7bZvh1JX56ex9npQUM2SPuZIpMQQFdtdYuXIlO3bs6JXt9vTAZLFAfJKFZrcmPkUzdhrUVmj2rFdUFCk+/69pB5l5fIVuQ6oogs0fKFwtitTRmulLNFEx5r6OCimmjYHU0XBkvxlb7laFs14z/QTd47WkjfWw8T0zngkzNZPmaFD+sXg8usvzPKo1zrRjtYXNH2pOOLf7BTDdbnPVBmD6kuCxhJuywJyTNWvfgN3rYcJUDx5L1+dnuOnOe2e4kbnpmMxN73viiSdCFpsWA19+/iEAxowxS10//PB9du3awbjUjpfRlhaYiwOpo9rfZ7FptIbVm14keWwJxcVHOWXxNMBU4fd4pEaFGLiOHClk48Z1zJo1l6amJv7v/56nurrK1+pSiN4kfwoHseTkZKxWK2VlZUG3V1RU+IrhDHTxKTD/dM3UReZMePtnFg7t6p1tVxbDhndNACBrlmbuSn9A4liUglGTYdHZGnuM5kiuYsdqRU/yitxu2PyhorlRMXqKZvJc3ePsi1GTYNIcDx63Yusnyrc0pasK90GTU5E+VpM0ANe2Jjhg8lyN9ihWv97Y7dcnhBD96eDBg+Tl5XVaC0qEX20lHNjVvlJhfr7pLTl69BimTp0OwO7dO3F3cOzRGja9b2Hje6E/TlssUF5VQE1dqe/zw/7c7b77G+t68CKE6GMWi4X//OfffP3rV3HLLV/n6NEjPP74H4LaewrRWyQoMYhFRkYyY8YMVq9e7bvN4/GwZs0a5syZE76BdZNSMHYqzFmpsVg1e9ZZKD7Us20660wAQHsU2Qs9TJpzfAGAuCRY3BqYOJqnONyDgEneVkVNuSIpTTN1Ye9dmZyQA0npmtoKk9XRVR636bYBkDVz4F4pHTcdUkZoqso0B3on6UcIIdpZt24dN9xwA8uWLSM7O5sPPvig3WOef/55TjnlFGbOnMmll17K1q1bg+5/6KGH+H//7//115DFcfrsVcXq15uorfTfVldXS2VlBWlp6cTExJCZOYqEhER2bj3M1tX1vscFXpxwNbffdkuzyZ5ocoKrWXGocAsAixaaAoSH8vf5n38cHRyE6C8jRozkiSf+yFtvfcRbb33Eb3/7FNOn5xz7ib3o+9+/b8gs3RCdk6DEAFdfX8+uXbvYtcucDRcUFLBr1y5KS0sBuPbaa/n73//OK6+8Qm5uLvfddx+NjY1cdNFF4Rz2cUkbDbOWm6P99s8UdVXHtx2P2yzZaGkyNRvGTevZuKJiYW5rwGTvBkVlSfe3UV8DB3eYVM6ZJ+lerdugLDBzmcZi0xzaabp0dMXRA9BYr0gdpUlw9N54eptSMGOpueKUt9V0UBFCiN7mbcH9wx/+MOT93hbcN998M6+88grZ2dlcf/31VFRUAPDuu+8yfvx4JkyY0J/DFj3Q3Oj/+vBhkyUxZsxYwNTBGj1iOuVHoLDYf0UiMBDRFFBqyxus2PqRYtP7FrZ+rGhu0hws3AJKMTfnJFJT0yirKMHZWAuAR4ISQggBSE2JAW/79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899hilpaVMmzaNp59+mpSUlHANuUfSx8DEOR5yN1vY+jEsObf7dRwO7YLaSkVyhmbKgt7JAEhwwLRFmh1rLOxeC0vO0V1uZao17F5rsjYmzfEQ3bMmJiFFx8HYbJP5cGA7TF107NdduM9kSUzIGbhZEl6xCTB1fgQ717Wwb6MJwgghRG/qaQvuLVu28Prrr/PWW29RX1+Py+UiISGBb3zjG8c1np62a5W2r8dmsSjfZ4yCgsOAYty4cVgsZjlkc0kO8Dn5RTuZNG4RAPs3KSbMNMWyWwKCGmiFxWouQoBptV1efQBnYw0ZqVno5kTGjBnLzk1lVFQXMipqKh6PGpA1JQbqe2egjUeIvmT+Pg2f97wEJQa4xYsXs2fPnk4fc+WVV3LllaGr4A5GWTOh4qimslhRsFczdmrXn9tYD7lbFcpiilr25sE+cxIU7tdUlSoK9mnGZHfteZXFUH5UEZPQ86yNzoyfocnfAwV7YXwOndbPcNZBVakiKnZg1pIIJWdJBLnbmzmapxg/QxOfHO4RCSGGi6604L7jjju44447AHj55ZfJy8s77oBEb7Th9pK2r6GY5Rjx8VE4HCZ1saKiGLvdRkrMFJKTY6mv0WQ4soiIiOJoyT5crmZstkjy9ypczVaWn2/no3848bYITYiPNS3GW8y2PW7F/gPbABg/ag4N1TamTZvEO69toqKqkFEZU4mNjsLhGLgfxQfae6e5uZmyMgs2m8JmC280J9z7H8hkbjp37PlRWCwWkpNjgtqvDnUD9y+hGLaUgqkLNWv+C/s3K0aM10R2sX3z3g0Kj8t0tuhuJ4oujWuR5vP/mislIyZoIrrwt+LQLhPlnDird5dttBUZZVqdHtxhal9Mmd9xNoG3ZseI8b3X6rSvRUQqJuTA7nXmNUq2hBCiv1RWVuJ2u9sVkXY4HBw61MMiSCG4XJ4et+GWlridMQe+6upGbDGaumo3X3y2H3dzBHvWJuFqrMcxEiwWK6MypnKwYDP5RTuZMHoOADUVLjZ+4sJZ5z+AlpXWExll6kgANDnd7N67BaUsjBmZQ3GBi6xRKbhcmvKqAgAO5zZiTxg4rbi9Bup7x+Vy4fF4cLk0EL5WYcO1JWhXyNx0rmstQTUej4fKygZstuDCNUO5DbcEJcSAFJ8CY6ZA/h6zHCG7C8swnHVQdAgio3SfFW5McEDmRDiSqziad+wsjoZaKM2HyGhNxrg+GVKQsVM1B3coig7B5HkdBxyKDpo7RkwYOB82umL0FMjdoik6AJPm0CdLYYQQoqsCW3AHuvjii3u87d46GZS2r6GYn5mrxczNG38/QtkRNyPTJ6KUoqxQExOvAUXWmHkcLNhM7uF1vqBEkxOaGoO3aLbl33Zh8S5q6xoYlTGdhMQYmhoUaWkj0RoqqgsBOLBd0eTU5Jw4MH8+A+29M5DGIkRfG2i/f31N8mvEgJU1S6MsmsL94O5CMajDuxVoxegpYO3DcNvYqeYPRP7eY7cIzd+jAMWYKX2bJeEVFQuJaZrGOkVNeejH1NdATblZTjLYlkDYImDsNI3Wytc5RAgh+tpQaMEt2vO2mS4sMEUu01LM1QOlzHJQgBGpk4mNTqKodD8jppQSFadxtSjf/V5uV3DhzP2H16PdMHn8AuzR5jYLkSTGpdPgrKaxyfQDPZIrxzIhhJCghBiw7NGQMdakQhYd7PyxrhYo3A/KohmT3bdRxQQHJDg09VWKqk46cXg8/jGNntKnQwqSMc68/uJDoT/olBd6Hzd4lm4EGpMNFqvmSF7XglVCCNFTQ6UFt6A1m8HwHkNKK01QIjXZ23kDnPXmADn/dDhp5QISHHCw5GOiW8ssVJcGb9ft9gclauvLOVK8B7s9lnFjs7HZze2uZkhJHA3gW8IhhBBCghJigBs9xZxgF+zt/Oz56AETvBgxHt8Vib40Zoo/W6IjVaVmTI6R/TMmrwzzmYriQ4TM5KguN2NOTh+cKWGRUaZLi7tFUZIf7tEIIYaK4dSCezgLbMPpzZQoqzgESvmCEi4XNLR20YiOhQsvP4GMMZFs2LCeZncVAE1OhVKazInat93m1jIgO/d/hNYepk44kehYq6/+VN42RXy0CUpUVBX26esU4njdeOPX+Oij933f79u3l+uu+yorV57ANddcQU1NNeeffyalpZ1cmROim6SmhBjQkjMgNlFTXaaoKdckOEI/rqQ1K2D05P450R4xAfas15QcAvdSsIZYmlFeaMbkyOzfk//oOEhI1dSUKWor2s9ZdWv2cUdzORiMzNIUHVQczVOMPI66GFqbeSg+qGiohZbm1nlL0Saw1UnnEiHE0DTcWnAPV2538NeVlRXUO6tITswkMsJU1W6sNzWhrBGa2ARQlhhOOGEpH330AV9s+S8zRpmOZ1GxZlkhtC7faIKaulIOFK4jIiKK7KylRMfiC0ocyVWkJo0BoKzKRNUt1sF5gUB0zbJlCzq9/9prv851132zX8aye/cunn769+zevROn00lqaho5ObO4++4fEBFh3siffPIh9fX1LF++0ve83//+cdLTM3jwwUeIjo4iISGRs88+l2ee+QN33/2Dfhm7GPokKCEGNKUgc6Jm30ZFaUHoE2m3y7TdtEVqEtP6Z1xWGySPgNJ8RXWpJmVE+8eUHTH/p47qnzEFShttghKVJcFz1tIMDTWK6LiudzQZiByZEBGlKT9i0mW781oaamDbp4rqsuAsl6oSOJqn2LvRBCamzNf9muEihAiv4diCezgKXPbnccGBA3kAZKRm+W73dtBIGalRrTnFJ510Mps3b+JA7lbi2Mq4UbOIivV3znC7oblJ8/nmf2KxeZg+/mQiI6KJivVvAyA5MROlLJRX5qN1/9SbEuHz6qtv+r5+/fXXeOWVf/DUU8/5bouO9l8F0Vrjdrux2Xr/9KyysoLbb7+Z5ctP5pe//B0xMTEUFhbwwQfv4fG4AROU+Mc/XuTss88LKuBbWJjP//zPlxkxwv9h95xzzuOaa77CzTd/m/j4+F4frxh+ZPmGGPAcI83/FUWhl0pUFoPHo1rbd/XfuFIytG//bTU5obbCnPzHhOFvtbeAZV1l8Jx5i18O5iwJMD/nkeNBa0XRga4/r+QwrPmPCUjEJWumLvKw5BwPyy7yMP80D+Oma6w2E5xY85oJhAkhhBg6PG0yJQ4eNAeRDMeEdo/1HucB7HY7F1xwMbYIxepNL1JSfgB7NFht5jGuFs2Hn7xGSfkBRo4cwfRJywGIitVERPq3Y7XaSEoYQWNTHQ2N1RKUGOIcjlTfv5iYGCwWi+/7Q4cOcsYZy/n889Vce+0VnHzyEvbt28ODD97HvffeGbSde++9kwcfvM/3fVNTE48//ksuuOAsTj/9JG688Wts376tw3Fs27aVpqZG7rzz+0yePIVRo0azaNES7rrr+9jt5spOZWUlGzeu48QTT/I9b9myBRQWFvCrX/2cZcsW8MwzfwBg7NjxpKen8+mnH/XibInhTDIlxIAXn2KyIKpLzRWOtp01yo6EZ5lEcmvAuKJIMXF28L7LA7IkwlFM0heUqAq+vaZ16UZi6uBPFx0xQXN4t6KkQDF22rFfT3UZbP1Y4dGms0vWLB0UxIqJN++hibNh7wZTx2TTB5BzoiYzq+PtCiGEGDzcbWpKHDiQB0qR7jB/6DMnakZN1jjrTP2iQJMnT+H0M87mhWff4N3VT+GJWcn06TmUlDex+98fsHvXbuyRMVxx5ZXkbzHRhqjY4K4cAKnJY6isPkJZZT6O1MS+fLlD3j//+SK7du3s133m5ORw4YVf6rXt/eEPv+GWW24nI2MEiYlJXXrOr371CIcOHeR///dnOBypvPPOm9x++8387W//IC0tvd3jU1JSaG5u5tNPP2b58pNDtjLeunUzMTExjBkz1nfbq6++yde/fjUXXfQlVq06LyizIzt7Glu2bOLss8/t/osWog0JSogBTylIGQElhxVVpdqXOeHlCwBk9u+44pMDgiXu4LoSZWGqJ+EVFWvWwtZVmfoJ3mOPt8hlwhDoYJfgMK+xqtRUU+8sS6axATZ9oPB4FNkLPYyb1vFjbREwfYkmJUOz7VPF9k8VIIEJIYQYCgKDEpUVlZSVVpIUn4k90pxsRdghOd38C2XlKcvJ3WBn/fbX2LDlHTZsfYfKIkVSuiYhLpW5c77KiBEO8reYx0dGgfYEb8ORNJp9rKWiqgCLNacPXqUYTL7+9ZuYP39hlx9fVFTUuhTkdVJSTOrrNddcz+rVn/L222/wla9c3e45OTmzuOKKq/jhD+8mPj6e6dNnsnDhYs466xzf8ovi4qOkpDiCAhYORyoWi4WYmBgcjuAPj6mpqeTm7j+elyxEOxKUEINCSoam5LCiskjhGOk/0W+sh/pqRWyiJiq2f8eklCnEGaquRG2l+b+jDzX9Mba4JKguVTjr/EtIasoApUkYAnXZLBYzv2WFpghqUif1RPZuUDQ7FaMma8ZO7dr2R0wAZdVs/Uixc40iPln7MlB6g9bmfVJXCS1NYI0w2RqJaaELpwohhOi5wEKXGz7fT+E+RXaWP+psi+z8YoI9GqZMOIGR6VNojlnD0aICYrSd+SdMZmzGAqqKorDazNLAiiLzOaGsTaONJStH8/lmKKvM79dlp0PRJZdc2u/7tNksuFyeYz+wi6ZO7eRKSQh5eftxu91cdtmFQbc3NzczadLkDp93003f4vLLr2T9+i/YsWMbzz//HM8//xxPP/1nUlPTaGpqIjLS3uVxREbaaWpqPPYDhegCCUqIQcG/VCL49orWeg5tsyf6S0qGpjRfUVmMLyihNThrIcKuiej63/ZeF59k+qjXVZqT3SYnNDYo4pK0r1r4YJecoSkrVFQU0WFQoq4Kig6YwpjZC3S3ltNkjIXJ8zR7N1jY8hEsOafnc+fxQP5uOLxb4axrPxhbhCZjPGTN1ETH9WxfQgghggW2BC0s3g3AqIxs323H+hvvPYbExzqYd9oqXE2w9RML46draivMfVYbxCb66zcFfhaIT9FMnZOOzRpJRXUhbvfgX04peiYqKriqtlIK3aanu8vlf+M6nQ3YbDb++Mfn2y3DiI3t/ApdcnIKp59+FqeffhbXX38jX/7yRfzrX//k+utvIDExidrami6Pu7a2hqSkXrxaI4Y1ic+KQSEuyZxUVpeBq8V/e0ON+WMclxyeg3pyhvm/qsR/UGhqMIU3w1HgMpB3TmqrzPdNDeb/cI+rN3nnv7K440hD3lYFKCbkHF9AYdx0SB2taahR7N/UswIhtZWm0Oae9RacdYqEVM2EHE32Ag9ZszTpYzQeNxTuU3z2qiJvW/u0XyGEEMfPmynhdrs4WrofmzWSDMdE3/1dOU5Ex5nja2wCWFov7zXU+rMk29a+8rYE9d4XEWEhJSmTlpZGKipLjveliCEqKSmZiopy3/cej4e8vFzf95MnT8HlclFdXcXo0WOC/iUndz0VNi4uDofDgdPpBGDKlGzKykqpr6/r0vMPHjzA5MnZx36gEF0gQQkxKCgFiQ7TbaGh1n+7s/XvZriuKMckmP8bG/y3eccX7pP/uDYdOFqazfe2yA6eMAglOEzl86oSk4HQVn01FB2EyGjNmCnHtw+lYMYJGmuEJn+PaSl6PCpLYN2bivoqRfIIzQnneViySjN5nmbcdJg0RzNnpWbFpaYIJxr2b7Kw5WMVtAZaCCHE8fNmSpRUHMDlaiIjbSLWgChCV4ISS87RnHiBh+g4fwCi5LCiudEcb9sGJWxtghLWCEhLGQ9AUUk3WkiJYWHu3Pns2LGdd999i8OHD/HYY49SXV3lu3/s2PGceurp/PjHP+Djjz/kyJFCduzYzrPPPsWmTRtCbvOzzz7hf//3h6xZ8xkFBfkcOJDH73//OAcO5Pm6bUyenE1CQiLbtm095hibmprYs2cXixYt6ZXXLIQs3xCDhrdmRFMD0BoIdoY5AGCLMMUWmwKDEq0nrdFhDkrEJ5n/vR04XK1BiYghFJSwWCApHcqPhK4rUXwYQDEm29PuQ2J32KNhwgzN/s0W9m2C2Su6l5lTUw4b3lF43IoJMzWT5nS8jCQi0gQoRk6ATe+bD7ob3oX5p+terTWhtVnnXHRQUVVq6rOgwR5jgj0Z4zQZY5F2dUKIIcWbBe9fuhFcaKgrQYkIu39JRlRM+/uPlSlhscD5V49n5w/haMkBYHEXRy+GgxNOOJGvfOVqfvWrn6O1h//5n8tZuDD4PXLvvT/m2Wef4rHHHqWsrJTk5BRycmZx2mlnhtzm+PETiIyM5Ne/fpSSkmKioqIYN248DzzwMPPmLQDAarWyatW5vPPOmyxZsrTTMX722Sekp2eQkzOrd160GPYkKCEGjagYDShz8tSqoQ6U0thDfCjoL/Zos4zE1WKWBzTUmrPNmPjwrhONsIM9RlNfY6qN+zMlhtb61eQMTfkRRXVp+7oS3i4oaaN6vp9x0yF/j6b4kAmAeNcKH4urpbUVqVsxaY6HrC4ev2MTYdHZmo3vmeVBO1bDzGXdq4nRkaoS2LlW+bJoACKjzLYb66GxXlFyWLEnWjNlnmZkVnha2wohRG9rrDfr9fOPbAfaByWs3VzmF+rzh2qThxwY3PUGlydMGIfFYjIltNYhWzSKoeWSSy7jkksu830/b94CPv10fcjHfvObN/PNb97c4bYiIiL4xjdu4hvfuKlL+x41ajR33XXvMR936aVf4eqrL6O0tMTXWvQf/3it3eNeeukFrr76+i7tW4iukKCEGDTsrZkSjQ2mRaPbBc1ORUy8Dmv1anuMyY5octIalDC3e5d2hFNsAjQ1mA4criG4fAPMawRvMMgfcGlpNoU+I6M18b3QbcRqgwk5mt3rFAX7FNMdXQvu7P5C0VCrSButmTCze/uMjIK5p2jWvg5FB0wHkAk96B6nNRzcAfs3KbQ2NS3GT9M4Mv1X/VwtUFWiyd+rKM2H7Z9ZKD6kyVmm+zTLprnRZJQ0maWtRMWY1rVDKbNHCBEegW27G+ugtOIQ9c4q0h3jiY1OCnpsd2sPhXp8Z/EFbw2KqKgoUlNGUVxSSFlZOWlpQ6BXtxj0UlNTufPOeykuLvIFJdqqqalm2bLlnH566KwMIY6HBCXEoOFNkfQulQh3PQkvb9HkpgZzguxdUhLucYE5qQXTcrKl2XxKGmoned55drapy1R+xNQgSc3snewCgJFZsHeDpugAZC9on6LbVnUZHMlV2KM1M5Ye3zjs0f7ARO5mRfpY7QvEdNf+zYoD2xQWq2baIg+jJrX/8GyLgNRRkDpKU1kMO1ZDaYFiwzsw71Tte0/1Bq2htAAO7TLtfkNxjNSMnaZJHSXZGkKI7juw3QRiJ+TApLkaZx0cOrKF0ZOszJrcPnWtzwP3AfHskRlZFJcU8q8/HWDVRamMmtTH+xaiC1asWNnp/QkJiXzlK1f302jEcCGFLsWg4Q1KeItKejMSwl27wZu62eQ0J1kNtabORG+evB0v79XvliaGbKaE9+ffNijhXbqROqr3lqtE2CF9LLhaFMWHjv140/kDJs7u2fshPhmyZmk8HsXuLxT6OF7S4V1wYJvCFqFZdJZm9ORjn+QnZ5iCbskZmppyxfq3VVD3m55obICN7yk2f2ChskgRFaMZOcEU+cyapRkxXmOP1pQfVWx638LGd1W7n3Ff0Brqa0xQq6wQairA4+77/Qoh+kZthckMy9umWn+/PeQf3UpcooVZc9qnr/V1y+zAosyjRpquH4fzc9mxWj6SCyGGL8mUEIOGvW2mhC8jIbw1EuyttS6aGkwKutuliE/pvavzPREqKDHUMiUiIk2dDGe9OaFUyvxffgRQGsfI3t3fqMmaooOKwv2KzIkdv/dqK0yGgT1Gkzmxw4d12fjpcCTX1M8oOazJGNf159aUw+71JkNi7ildr4cBJog171TNpg+g4qhi5xqYeVLP3t815bDhXUVLkyI20XQgSRvVfh22xwOlBZr9mxTlRxVrXoM5KzUpI45/3x2pr4HDuxRFB6GlKfjFKYsZ3+hs834aCL/bQoiuCQwCtDRBfuFeWjx1ZGfnEB/f/qrG8RRFTs7QnbamDhTY5nnUiAlYLFaOlu7FE6qFlBBCDBMSlhWDhi0CbBGaxtaTT2edt6BkeMdl9y7fcKoB0w7UK9JuTpqbm4ZmS1Cv6DjwuBTNjeb7Jqf5eSSk+AMzvSVlBETFmQ+gga1g2zqw3bw/J+ToXulgYbHC1IXat+2uZkt4PLBjjQKtyF6gSc7o/r6tNpi9XBMVawIy+Xu6vw2v2grTiaSlSTF6imbJOZr0Me0DEmAq1GeMhSXnasbP0LhaFBvfU5QWHP/+2/K4Ye8GxWf/UuTvMZkgiamazImaUZM0jpEaqw1K8hUb37Ww4d3gtsR9paUJSg63pp5vVhzaaTI3eitTRYjhIrClcmM97Dv0BVYbLFmyJOjvji3StPk8nqDjnJXmb0VXBMYe7FF20h0TaG52Ul6V3/0dDzP+n83QKtgtRDDz/h5uF0AkU0IMKvZYqK8ynS4aBkjthsAMjnC3KG3LnymhhmymBJj3QG2FWcJhj8bXocXbRrY3KQWpmVCwFyqLYeSE9o9xu6Ak3wTRenONsCMT4pLMUorqsvYtUEM5vNukLyelaUZPOf59R9hhzsmatW/Avo2KjHHaF5DrqiZna4ZEs2L8DJMh0ZWDrtUKU+ZromI0u9dZ2PKh6UzSnYyPjsaz8T1FbYVZ1jI+x8OYKe0DWR43FB/W5G1VVBxVrH7NBGnSRvds/6HUlEPeNkVJPqADJ8d8bbGaLJkJOZq4pN7fvxBDTeDyq/KyKgqKd5HiiGXmzJlsX+f03RcTb7oeHY+ISMicZJabdWc8FitkpmdTVLqfI8V7gDHHN4BhwmKxAorm5iZsfb3ORogwcbdGUi3DrCe7BCXEoBIVA/VVrQEAb6HLAZIp0dhgWoMCRIe5HahX4PKNoZ4pAeY9kZTmX+LTF0EJgJQMTcFeRWWxYuSE9j/r8qPgcSvSx+jjSgXuiFIwdppm5xrF4V0m0NAZtwsObFUopZl+Qs+XFCU4YOxUOLRTsX8zzDih6+9zrWHXWkVzo1n20tWARKCx08Dj8bB3g4UtH5l6F8ebCdPcCOvfVtRXK5IzNDkn6g4DnBarCT5ljNXkbTO1QjZ/ADNO1GRmHd/+2/JmbBzebSYlMkrjyNQkODQ2m8l2qq0wWSJH8xRFB0yb2klzeicTR4ihKjBTYuPG9aA107IXYLVag353etrFK30MJKVrMrNC/10cN11zaGfwMcNiNS1JN+74L4XFu4HTejaIIU4pRWxsAjU1FQBERtrxBmz7eSS4XAPjc97AI3PTuWPNj6a2tgq7PWbYtQmWoIQYVLzFLp315gQ0wt63bQq7IrDQZVWZ+To+OXzjCdS2poRSvXuSPFCYuiL+QojeZRVRMX1zYExqXQJRWRz6/tICcyBJG937+x85AfZt0BQfMhkhnWXlFB00XVcyxvXeVfWsmZoj+6FwvwlQdPW9fjQPSg4rouM0Uxcdf4Bk3HSoLtMUH1Ls/Bxmr+j+HLvdJmOjvlqROkoz5+SundhbrCYIEBOv2bFasf0zhT3KtFTtieZGk7FRU66IsGsmzdFkTvK3MPTTuFqgYK8md4vi4A5FdZnJYOntZUpCDBXezAS328WmHV8AMCN7IUDQ732oJWTdYbXBorM6/ns0Zb5mTHZw8NNqhYS4NOJiU6ioLmTv1iqmzErq2UCGuLg4k85iAhPhOfm1WCxSA6QDMjed68r8WCxWkpNDt2Mdyobg6YkYyrwBgJoycyU6Lin80VirFSIiNU0N5gq9NUITnxLuURneE5XmJmhpMVkSQzHw6uvAUasATWO9eZHe90tvi4qBmHhNfbWiuTG4s4bWUFaAKbLZw5PVUKw2yJxkshWKD2smzAj9OK3xXXUfO7V3O5BkzdbsWWfhwDaYtfzY23a7Ye9G87PJOVH3qLq9UiZDo7oUig8pKou7Xycjd7NZspGUrpndxYBEoMyJgNJs/9TC1k9MxsbxLiNrafYHJJLSNLOW604zfGwRMH4GjBhvio9WFiu+eNOcDElgQoj23K1BiQMFm6ipqWH0iBkkJ6cCwdkRfZ1xpFT7ILLFaq7+jx05k537P+KNf+5gQvaJ8rvcCaUU8fFJxMUl4vG4j6sbVU9YLIrk5BgqKxvweML/GXQgkbnpXFfmRykTlBhuWRIgQQkxyETFmiviBXvNL2tianjH42WPgbqq1haUI3SP00B7i/dkudlpCkHao4fmQSImYPkGBCzf6KOgBJh2mQ21JlsisBNGbYUpspmU3ndtYdPHmDTg8iOqw6BEValJ949P1iT1csB99GTI3awpPmyu8h/rdR7JhWanIn3s8RXabMsWCZPnabZ9qtizXrF4VdczLyqK4eAOU+9j1kk6RDZC12RmQU255vAuxdZPTFCgu58htAe2fGgCEskZmnmndj2TKSoWFp6p2fIhlB9VbPkI5p02cP72CDFQeFygtWbn/o/ArpiRfbLv96Q3l28cD+/+x2aaoMShI1uprTyxTzoMDTVKKaxhSP20WBSRkZHYbM1y4t2GzE3nZH46Jx9fxKAS5VsqYT79j5o0MH6pA6/IJ2cMjDGBuaquLKZdJgzNIpcAUW2CEn1Z6NLL+3OuLAk+E/V2huiLpRteiWnmpLqiKHi9dKAj+824xkzt/fa0VhuMmADaozh6oPPHejxwMKATSW8ZMQESHKboZ9HBrj3HW9cCFFMXd56R0BVT5mviUzTVpabGQ3cd3g0VRSZwNHdl95dW2SJg9smauGRNRZFi7/rhd2VFDF+5W8wSNbc7uHhkW243FBTtoKaulBHpE0hLGecLBvRnpkQo3n06kkYTG5NMWcVhjh6u6v+BCCFEmElQQgwqgSf/CY6eV9/vLYFdCHrjSnBvUcqk22uPOVkZikUuwSyhsUebdrEej7emRPe7Q3RHcgd1JWrKzVz35ZUuiwVSRpolTB3VtagoAjDtNvvC6MkmwFC4r/P2pCWHTPvelJG6VzOblDLZEuBfpnIspfmme09img7ZNaW7LBZ/m9a9G1W32nXW18C+TQpl0eQs08f9u2mLgLkrNRF2zeHdiqrS49uOEINJkxNyt1jY+rGF95638OFLHf8NcLdotux+F4BZ01YA/mBAb9aUOB7eoIhSirGZMwHYvHmHtP4VQgw7EpQQg0pgOv6oyQMnI8EbLLHaBk6gxCtwbepQzZQA04FDa0VjvVm+ERndt1e+omJNtoK3Na2X9/uYhL7bN0Bqpnn/lxa2v89ZZwIB8cnHXlpxvBIcEJ+iqatS1JR3/LgjeeZkYfz03v99TRlhantUlyrqqjp/rNaQ15qxkTWz97JHkjMgY5ymqUFxeFfXn7f7C4XHrZg4S/e4MG50nMnaANj1uUJqjImhrm1mhKs59C+01pCXv4WqmqOkpYxjZGo24A8GBGVKhHH5BsC4zFkArP9iC++/YKG5sf/HI4QQ4SJBCTGo2CJNxw2rTTNyfLhH4+et1ZCUHp4PNp2JDAhKDOW23t5ilxVFJjjRl/UkwFypt8eAu8V/hVxrcNb2T1cYbxHNshBBCZMlAcl9vC7Z29qu7Ejo+90uMxZbhCZlZO/vXyn/Eq7C/Z1HGSqKoKZMEZesSR3Vu+PwZmzk7+1aQKCmHMqPmE4k43N6ZwyZEyEpTVNbqSjY2zvbFGKgOlZxw5ZmU9+nucnNlt1vAzB3+tm4WszfiVCZEuEI2lut/hfiSBpNQlwa5ZX5VNUU8+GLFnas7jwTTQghhooBdvokROeUgnmnahaeefzpzn0hOQMs1o77k4dTYKbEQJqz3pacbub+6AHzobOvgxLgX7bjLazZ1AAej+q0TWdviY6D2ETTAcRZH3wmXFHkXULSt+9H7xKVyuLQAYHyo2aJSeqovgvWZU40rW6P5NFpQKBwX2tdixm9X2MjJh4cI022RKggUVsHd5gBjJvee4UplYKpi83P++BOhZZsCTGEhaohUZIPrhbT/vrDFxVr/mPh3y99Sl19BaMyppLumEBLs3lsqJoSkVH9f/wOWj6iFBPHLgAg9/A6wARbj5UFJoQQQ4EEJcSgk5jKgFsiEZ8Mp16hGZkV7pG0F7R8wz7wgia9xZsVUNmaJdBX7UADeffR2BqU8C3d6IegBOBL+6+p9P9ctW7NlFC90+miM3HJpgVuVWnogEBZQWtHmj4s+mmPgdRR0NLYcUDA4zYZJRarJq2vamxMMa+xYF/nEQ9nHRQfMr+Loyb17hgSUkwgqrFOhVzWI8RQESoosfkDC++/YOHjfyq0R1HvrOKTT9/DYrEyb8Y5ALiazGNViO4bfbXUrTNtlxhOGDMPpSzkFWzE0/oiW5r6f1xCCNHfJCghRC8ZqC2Fh8vyjZh47zKa1kyJ2L4PwPi6wXiDEjXm/+h+Ckp4gx91lf6IQEMtNDUoElL6Ph3ZYoGkNNNutm1dCa1bO5EoTWpm344jfWxrJ5Si0L+ElcXgalGkjOy734G0MeZKa1mhv/tLKAV7FVorxmTT7W4bXTF2aveKfwoxGLk76bbhXaKxfttrNDW2MG3ichLj04PuC7V8I7IPCyN3pG1QIiYqgcyMbJqa6iksNkVqpOilEGI4kKDEEPetb32LhQsXcvvtt4d7KCJMArMjhnKhS6WCO170y/KNGDO3vqBErfnAG5PQPxkp0a37qa3y76+qxPzfX11gfK1R23QBqa0wrXuTUvv+CqSvE0pJ6PtL8s3/6X2YsWGxmKUkaEXxoY4f520Zmzmxb8aSNhqi4jQVRyXtWwxdnbUABSgo2kn+0e1E25OYOeWUdvf7ul4EfAoOzCrsL6GKMU8auxCA3XmrAXB3EpRwu+DAdijc3xejE0KI/iNBiSHuK1/5Cg899FC4hyHCaLjUlABIDqih0B/LN6J8yzdMMKK/l2/ExJn/a6v8mRLeq/Sx/RQY8QcEgq/Me1tTOjL7fhzRcRAZramtaH9VUWvtC0qkje7bcaSOMq+1ooMaG846qKtSxCbqPnuPKAuMae1MVHSw42yJqhJ47yUnzrq+GYcQfamzoERjUz2fb/4nAAtnXoDNFoktIvjvUOiaEr09ymOzhghKjMqYRlxsCsVluVRWH+00U2L/ZsW+jRZ2rZXMKCHE4CZBiSFu8eLFxMbGhnsYIoyCa0qEbxz9ISUgOyCqH9723sBHk9P87+zvoERr29G6gEyJJqcKGltfS3SAxaKpKiaouGJDjRlHbGLfj0EpSE43XVeqy4Lvqy7XOOsUCQ7d53OSmGbmorI4dHcAb82L3u7+0VZqa/Cl/GjHjzm4C4oOe6iv6duxCNEXOlq+obXmi62v0NhUx6RxC8lImQa0X5oRcvnGAKgpkeDQ2CIUUyecCMCeA591GpTwZsZ53OqY2SNCCDGQSVAijNatW8cNN9zAsmXLyM7O5oMPPmj3mOeff55TTjmFmTNncumll7J169YwjFQMZhHDpKYEmFoO0XEai63vT0AhuNCl1iZTwhah+y34ExkFVpumtsrjOwn2Ft3sr6CExQoJqWatdkPAVXdf1khC/4wjqbX7SlWbJRwlheaTel/XtQBz1TMxDVzNirrK9veXFbYW/hzVt9kjcUmmvkpNGb5uA4G0hoqjJqsiKa1PhzLs5OXl8eUvf5lzzz2Xiy++mPXr14d7SENSRyfgefkbOHxkG5ljU5ifcx4et7cTUfDvnW/5RkCCQTiOj22DEpFRkL1AkzV2ATabnbz8TdTUhC5Ss2e9orrM/wKkIKYQYjDrgzJboqsaGhrIzs7m4osv5tZbb213/+uvv85Pf/pT7r//fmbPns1zzz3H9ddfz5tvvklKSgoAF1xwQchtv/zyy1hD5QWKYSew0OVQrikB/paxLc2h02J7W2QUoDRNDdDcCG6XIj6l91tOdkQpk5VRW2k+kNoi/fUt7P1YtC06Fqow+45tDUJ4i372V9ZIsqlj17qMxH/yUVNh0jfikvtvOUtlMVQUQ3yK/3a3G8qLTLcS71j7ilKQMhKO5ikqijQZY4Pvr6uE5kZF2igLtgh3p61URffY7XZ+8pOfkJWVRW5uLjfddBNvvfVWuIc16GkdHEDwuNo/pryqkLVbXiE6TnHdDV/iwFr/wS8uUZM6yh8YDAwGjJyg+6TobFeEqilhtUFkRBQTxy5gT95nbNnyOTOXnBq01MTjhkM7gw80Lc39F4wWQojeJkGJMFqxYgUrVqzo8P5nn32Wyy67jEsuuQSA+++/nw8//JBXXnmF6667DoBXX321X8YKYLH07EzL+/yebmco6su5CTw5jYxSQR9sBrq289KV+fG2yewPFouZ32YnOFuLXMYm9O97PDZRUVsJzjpFYqoZi1KaqBjVb8ER7wfhlkbz/vJ4TP0Ee7Qm0t4/g0hwmKyR6lIAMw6LRVFTYYIR8Un98953jIS8rVBVopgww397RZHpUpIxzqRn97W0UXA0DyqOKkaOD76vorVt7shxViwWiUj0plGj/GtzsrKyqK2tRWuNGqjtmQaBA9th30YLyy7y+IKcbTMlGpvq+fiLP+PxuDjzzHPImjSBA2vNfbZITeYkgjoEBQYDZp4UvlbZbYMSSoG1NWNjataJ7D2who8//ozUqGWc/CW7//WH+LWVTAkhxGAmQYkBqrm5mR07dnDjjTf6brNYLCxdupTNmzf3+3hsNgsOR1yvbCs5WWpcdKQv5sbj0UADFiukpccOmg/HERHWdu+5gfjeiUtwUt7gobE2AmjBkR6Jw9F/KSkpac0UHWxBue0kJ1tpcjYQE69ITe2/S2YpaS0cpBmrsuNwRFBT6UFrJ4kOCw5H/6VspGY6KT7sIdISTaLDRCBqKkzqyOjxsf0SDEhM0Gx4p4GqEkVKSozv9630UAvQTOa4/nl/xER52PqJk6piCw5H8HthS1kj4GbEWCvJyUM8faqb1q1bxzPPPMP27dspLS3liSeeYOXKlUGPef7553nmmWcoLS1l2rRp3HvvvcyaNavdtt577z2mTZs2aP7mDlT7Nprf5cL9islzTQAhsKaEx+Pmsw0vUO+sYtyo2SyYf2JQADIu0SzNCFyeMVCC8+0y+hTYWj+Zx8c6mDBmLnmHN7A793NmHllBTHb7bdhjNE0NSoISQohBTYISA1RlZSVut5vU1NSg2x0OB4cOddJvro1vfOMbbN26FafTyfLly3nyySeZOnVqt8fjcnmoqXF2+3mBLBZFcnIslZX1rSfKwquv5ybBYT6EVVSEXps6ELW0uCkvN0UKBvJ7xxoJoNi7uRlQ2OObKS8PsZC/j1gizQlPydEmIuM0oIiI8vjmrj+4PQCKirImysubWrtdKCKj3f06DnOFUVF8tAEXoD2K+hrTnaO6g3XZfSEh1WRKHD5QT1xroc/So2ZsWPvv/RGfbJb25B+sC7rCXFIAtgiFY4Slx79TCQnRREQMnaWCvbGsEqCwsJBHHnmEJ598sj+HP6Qd2Gb+1k2ao32ZElprPt/8T46W7iMpYQRL5lyCzRacJebN5ArsPhVq2UQ4dJYpATBzyikcyN/EztyPaG5ZApglKd4aQnHJmoyxmtwtEpQQQgxuEpQYZLqbBtqbH4h662TQ49ED7sRyoOiruVl0tnf7vb7pPtV2Lgbie8cebX4fG+sVEZGalBG6X+c5Og5AUV+jcdaboIQ9uvd+X7siIsqMobHB7Le+2nwfHd+/cxEZ5f1ZmP2aYpOmBWd/zkdMvKKqBBpq/a0/61u7kUTF9d+cJDjM0p7aKu3rRlNZAm6XhbQxGotVDcjfqXDqjWWVdXV13HTTTfzgBz9g3Lhx/TLu4eLANkVCivYVsNy6+x3y8jcQE53IyiXXEmGzY7UF/4L5ghIDMFOio5oSXvGxqUwYPZe8/A1s2LCGiTknA/5OR0r5i1k3S1BCCDGISVBigEpOTsZqtVJWFtzfrqKiol32hBDHMlA+gA1F9hgTCADIGNf/V+BiAgpLhqPIJbRvjdrQWl+jvzpv+MYRbX4WzY3m+7pq839cUv+OI8o7Hw3+27ztYqN7ZxVcl0S3Zs549w3+AqQJKSGfIjrRlWWVbreb2267jUsvvZRly5b1aH9Sxym06jKF1rBz/8ds2/seERFRrFzyNWKjkwCTBRR4zIu0mzkIbPnpXcoV7rmxtfkUrhTYbMFjypmykgMFm/h83Yecd+kiYmNjfZkgSvmDsa6W3qubM1TfO71B5qZjMjedk/npnAQlBqjIyEhmzJjB6tWrOeWUUwDweDysWbOGq6++OsyjE0J4BVY7HzGh/684R8WYK2v11dBY7x1T/47DGwRp9gYl+rnzhpf3pKPJaTpw1LcGJWIT+3cc3kCVN0gTWPizP9sOegMgjfX+jiTOevNhKHrglWcZ8LqyrPLjjz/m888/p6ysjBdffBGAv/zlLyQkdC9CJ3WcAgUvvXLWWNl76CM27vgvNmskJy+6muSEEb77k1OicTisvuclJJlaN4HbSk4xf7TCPTeuFlPzyctut5GWHgn4l8smxKUxefxi9h1cw6cffcoVX70EZ70HcBIRacWRGgE0YSUCh6N3+1GHe34GMpmbjsncdE7mJzQJSoRRfX09hw8f9n1fUFDArl27SE1NJS0tjWuvvZY777yTGTNmMGvWLJ577jkaGxu56KKLwjhqIUSgqNYTcnuMJjmj//evFDhGWCgp8FB+tHVM/dwWzhZhWl16MwPqawF0/wclvMGR1kyJ8AUlzP9NDSYY0FgPWitiEvo3WBTdOv/OgLIe3sBVVD9mbAx1gcsqV65cyY4dO3q8TanjFCj4quKHH73H7vw3sVkjWbnkWjJSs4Lur6t3Yiv3P6+p2dS6CdxWba2TmLjwz42pDeF/fS0tLhqaXOScaDo5NdZDfQ00Np1GXv5Gnv/jh8xfNI+46DRA4Xa5aWh0A4q6uhbKy1t6ZVxD573T+2RuOiZz07nemJ+hVscpkAQlwmj79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899pivyvfTTz8dVExLCBFeiamQmKoZNUn3WwvOttJGWSkp8FB2xHzf38s3vPtsqFG0NGka6yAqNnhtdH+NAfzLSLxBibj+Dkp4x9EapAlX5og3GyJkUEIu1HRbfy+rlDpOXuYPq9aajTv+y67cT4iJiwgZkABQFlO3JWWkaYmbnBFYx8X7R9rMx8CYG/+BQ2PGlDnRfJ+YBg21sH9zHDmTV7J515u88fqbXHzhleZ5CiwWk5nlbun9WkIDY34GJpmbjsncdE7mJzQJSoTR4sWL2bNnT6ePufLKK7nyyiv7aURCiO6yRcLiVeE9uKSPtrBjrek2AcFLSvqLCUpARTGAIia+/+fEu3yj2WkKwdXXmNsi7P5q9f3Bm6nS6A1KeOtJ9POcREaDxapDBiVk+Ub3DcZlleH+4NvkNHV2InrYedbtdvHZxv+jqHIr9sgYls25mnTHeN/9I7M0R/PM3z9vMHTeqZqWRh3093DeqR6cdWCLHJhrusdNa//z8haynDpxGXsPruGtV3YQUb+fpOgpKAWW1tcb2CZVCCEGGwlKCCHEIJc20gpKgw5vUAKg5LAZQ2IY6vFG2EEpTXMjOOvB41YkZlhQyt2vQYnIKDOOdoU/+zlTQimTEdFQo3C1aKw2E5SIsOt+z2IZLIbSsso96+HoASfLLgxPC0ztgY9esqAsmkVnmV/Ajv4u1FXBkVzFxNnt35sNzmo+Xv9XyioOM3ZiMnPGX0dCXFrQY6zW9l9bLO3/FqaO6sEL6iOnXmHSOJQldFFqbx0amzWC+Tnn8cm6v/LR6lc59+TbUcrqmy+Pq58GLIQQfUA+lgghxCAXYVfEJ0NtBVhs/VtM0cv74b803/yfmNb/V2hNJXpTU8K7dCMhxQL07yVEZTFZCt6MjXAt3wBT7LKhxizhiIwCj0cRGytpox0ZSssq66pNe9yG2v7vQAPgaj1J1h7F2tdNYO6Mq0L3w/38PwqPR2GL1GTN9N+el5fL6x+/QGNjPanJY7nxpq+y4+P2RUNVwMm8ZZB9sj1WgDBwWeDYkTlkZmRzpHgPO/Z/yMmjT/UFYdwSlBBCDGKD7E+3EEKIUJLTTVAiKpqw1LbwtuN0tZidJ6V1/vi+Ehltum9UlZjvTVCi/9mjTaHL5kbtW74RrqAEmKCEpzU2I0s3OjaUllV6l0y4mrv3PFezWQrQ09o0nhCxQO0JDiD4Htu69KzogOJILsxe4Wbj1o947713aGzUTBm/hPk555GSGvr3OXCb1iFYAy5nmYftn1pQSrFw5gW8VvoLtu/9gLnzZ2G1mfQTWb4hhBjMwvNpTQghRK/ydv4Ix9INCD6BiUnQvvoO4RqHqW0BCSnhWTseWFfCZClobD1cV388ouNaW4HWSZHL4cb7fmtp6vxxba19Q/HRSxZcPWzkEOrKfeA2tYbcrfDFG/7f0boqRfHRch558EneffctLMrKCXMvZdHsizjhXEvIgAaYQKwt0rzXO3rMYJaZBfHJ5vXFxzqYlX0aHo+Lj9f8E40HlJZMCSHEoCaZEkIIMQSkZpoPreljw5OaHxgMCVeWBPiLXda0NkhITLHQHDpjvE9556OiyKSvh6PwJwRmSihftc+oWJPVIoY2b6ZESzczJeqrVev/Xa8N42oxy4QSHK3bqIEN77R/j7U0+ws3VhyF3M3+CILH42H/obVs3PE6tqhm5p4wmgvOu4zt72cQn6JJSvO3+21LKVjxPxrtCV8XpL4WGNScPmk5h49so6jkIGvWfIrVukJqSgghBrUhGE8WQojhJ8IOJ5ynGTctPPsPzJRICkM9ibbj0FqhLJrYxPCcodhjzBwcyTX792ay9LfA5RuN9WYskikxPBzP8o3AAIa3Lovvviaz/CKUnWsUn//XQvEh8/22T5Tv/dZ2G3nboKrUn7kDUF5VwJuf/JYvtv4Lt8fFjEmnMTX1JjxOE+H0LsnoMFPCYh4Tjno6/SWwg4nFYmXpvMuw2qy8885b1DYUy/INIcSgJkEJIYQQPRYUlEgP3zgio/wBkdgEsFjCFJRonQ/vVWdHZngzJRrrTEcSkKDEcGE7jkyJwPaxdVX+352GWvjwJUXuVoXHA5XFwW12iw6axx5pbctZVxl6+2WFsH+ThS/esODR4GysZe2Wl3nj499QUVWAI3kMZy2/hWnjT6fFaWPnGvMx1RLQUSOUoZodEajt8q+khAwWzT0Tj8fNpxv+D1eLp1+7DAkhRG+S5RtCCCF6zBrhDwjEJoZvHJEBwZFwjiMqYDmL1abDtqQlwm7231ALntYTFglKDA/HkykRFJQIyJSoqzTLkIoPmZad+zZayJqpmTTXW8dBoz2KxtbnewtXtuVtj9vc0sinqz/knXc/w+VuJjIymrnTzmbSuEWoEBEGb0eNjjIlLJahfzYeEaImzewZy3BF7WBN7iE27XqT091nd9rNw+06drcPIYQIB/nTJIQQoseUgvmnm/Xc4bxqGZixERfGoERgjY2UEf4rvf1NKUgdBcWHFPVV5uSxp10VxODQ00yJZmfA163FMuurFfl7zdd525QvKBEda7IpApdkhFJX28C2vWvZnfsJMcn1eLSNaRNPYsbklUTZO46W+ZZvdPC3ZThkSkREta8FY7Va+NKXLmPjZ4+xa//H7NwxnpmzQ6/hO7AN9m1WLDpThzWbTQghQpGghBBCiF4RnxzuERDU9SOcmRKBQYlwLd3wmr5EU1MBzlqFPWZ4nMCJ4yt02dTgf3MEdu0I+jqg2KT3yntklAlKtDQrXC3t3+/1zip25X5Cfula6mtaQCkWTJ1P+qwziI059h8O79V9pfxZGYGGYseNtkJmOClISkrm5BMv5T9v/JmXX3mJMeNuJSnJzKnWZs6cdbBvk5mkyhIJSgghBh4JSgghhBgyArMAYpPCNgxsEWCxajxuReqo8I0DzBKOuSs1694Mb2cU0b+8XS68yzeaG/23dRSYClzqERjMaGnyP8Ht8n/d1AAxCQQVWXTWmv+11hwt3cu+g19QULQTrT1YLDYmj1/M9EnLmbcsxXeifCyBmUYWC7jbFNwcDoG2UEEJ7+ueOH460yaeRHXDx/z9789z/fU3kL/bxqGdiqXna3Z+7p8gWb4hhBiI5E+TEEKIIcMW6b+SGpsQvnEoBWOyoaVJExMfvnF4xSXB8i/psC0jEf3Pt3yjCWoq4PP/mABAXJJmynyNI7P9yXxgIMLVrEyLTUvHrTi9j3cHtKP88N9l7N23jf2H11HfYCpe2iNjmDRuMVOzTiQ6yvxCeDpq5RGCNeB9GyorYjhkSkR3EpSw2mDu9LPZW3mQwsLD/PvfrxBbeylKKYoPa6pL/c/xSJcOIcQAJEEJIYQQQ4ZSkJkFHo8Oe3vA7AUDq/ieXCEdXmwR5mfe2GC6XnjVVSk2vmfOZuee4iFttP8+7zINa4TG3aJwtZjsCt/yDaVB+yMZ3syKyqoy9u3fzqEjW6msPuK7PyM1i8njlzBmxAysbd6AbZdgdMYa8LscqgPHcAhKBC4J8/IFJaymTehF51/JC//8DZs2bcChRjJ90nI8bnC1+Ofa0/VYkBBC9Bv5iCKEEGJImbHUGwwYBjndQnRAKYhNUNRUAIQOkG1638JJF3vY8I5i0hztCzLExEFtpQlGRNj9hS6TM6CyCFpcTRSX5VL81h7KqvayeU0FuvUKfEJ8OuNHzWb8qNkkxHW8XqijRImYeO3r0uFli/CP33si7l0eFXjbUBayHap3Llo/zUdHJ/CVr1zF00//gY3bXicxPp2sxuygp5g5G1gBUyGEkKCEEEIIIcQQFJtgoabCHVQToq28rYqGWsXWTxRRMRrQRMe3BiWaTW2IqspqDhfmc7TxAJu/yKey+ggej5uUkRqLBRJjMxkzcgbjMmeRlJARcj9Wmw6qR6F958XBXSWi40zRzEChsp5sEdDcGggZDpkSAKMnawr2+ecqcPkGmMyVUeNHc/HFX+KRrX/n0w0vMGn6DcBI33O6sWpGCCH6jQQlhBBCCCGGoNgEc9Ya2OozUHScpqH1Po/HQ0VlFQ2NlVTmlbB/Vwm7y45S31TEnk1OtIbMLE1FlSIyMpaRaZNZtGwSrspsYqKOXcAlwh5ce8Jb28BiDa5zkDJCU1EEOmCZSKighCXgE6xlGGRKAEw/QZM6SrP5QxOF8QYlElJMYGfrxxYa6z3MnDmbmdllbNvzLi//5xlOmn0TCfHJeNxKakoIIQYkCUoIIYQQQgwxTU1NFJXncvhII8U1Luqq3Hg8LppbnDS3OGlqbsBDA/X1ddTVV9HQWIPWHmwRpqNGTTmkNmnik60kxY1kRMY4zrpsDOmOcbjqU9j9hZWRIzRHnV2LCETYobHe/319jfm/bVAiMhpO+4qm6JBm2yfm5NsaKigRsNvhsHzDKzArxPu6R4yHPes1LU2KvK2KcdM1s7JPw9lYzeGSdby35hkuPPtGcMcds6aExxPchUUIIfqDBCWEEEIIIYaY1157lbWfbeHoQbdZHdFZGQGliLbHExeTjCMtkfGTUqkvyWThinRmzHfwwd9txCZq5swxGynJN0+rq+r6eNpmO5QfMWfUbWslWG3mxDuwLuaxitYOl+Ub0CYA46uvAYtXaT59ReFqUThrNUopFs26GPe2Og4c3MUHnz/LslnfxOPufDLXvaWoLlVccqPUnRBC9B8JSgghhBBCDDFLlpyAxRPPTqsbq8WGRVmxWKxERERhj4whMiIae2Qs9sgY4mMT8X4kdIzUjJig2bHagqtWU1thTk4DsxW87UY7CkqMm6Y5tCs4faGjdrRtb/cGI4KCEpGdv9ZhlSnRQYZITDyMn6E5uENRWWJus1gsLJl1BXU1T1NRfYgPv3iOy7OuJvDj/7ZPFUpBzonm51xdajZaXuSmttYEfFJG9PWrEkIMdxKUEEIIIYQYYkaPHsPI86YQ09B4zMemjtK+tqG2SFNsEqCiSFFRZE5SbQGfGCNagwSBdR8AFq/yEJNg7i/YD+6AVpQdtaRtG5Twft+dTInh1Ggn1PINL3uMqS0RuPzCqiI5efE1rN//Bw7s289/3/kzM5ddhc1mo8kJR/PMRrxBCa+WJtjwrgIUZ1wl1TGFEH1rGCW8CSGEEEIMHxHHyDDwiozyf221+YMSgQKzFToKEiSm+ve57ELNwjP9J7MhW1qGuD1UpkRHAQ2v4dRRoqNMCfDPpbtNMUt7ZAyXfek6khJGkF+4j7/97S+4XC4qizveT3OTLN8QQvQfCUoIIYQQQgxBtsjgs1arLfSJZmDAwWqDqJgQjwkIRNijwRbR+UmrPRqSA7qDdjVTwheUCLj9WJkSxyreOJQE1c9oG5RonTOPu33qSEpaHKct/TpJCens27eHF174K2VHO27F0eT0/3zbBjmEEKK3SVBCCCGEEGIIimgTlOjo5D4i0n8C6i002VZgUMFihSnzzXNSRmgS0zRzT+k8MtBRTYm2Y/IGIyxt9tcZyZQwvPPkbmn/vOhYiLLHcc6pXyctLZ29e3fzymvP0uJqAkC3iTHV1/pv6KwbR3UZVJWar+uqYON7ivrqLr4YIYRoJUEJIYQQQoghqO3yjY4KRgZnSujW5+oOHwMwegosv8TD/NM1i8/WpI0Ove2xU812RmaFzqyYMFOTnOG/zxJi+caxDKtMiaCgRPCceoMSLW2CCMqifUt0oiLj+drXvsGIEZnkF+Ty7uqnaGyqbxeUaKg5dlDC44G1r1v44g1zOrH5A0VZoWLX2mFU5EMI0SskKCGEEEIIMQRZbQqLxX9yGZiVYLH6b49os3wD4ITz2gQlQizXiIo9dueLqYs0p17hIcER+n57NCw8MzhTI/D/ruioXsVQ1FmhS29QwtUmU8Ie5b+vqlSRvyOe6677BumO8ZRX5vPOZ3+guio4veHoIf+ajbZBDq1N69A1r/kH0FADDbXm++EUJBJC9I5h9GdcCCGEEGJ46ahAZUctN723R8VCgqN9sOB4WG0dBw7aLhXxLd+wwKKzPZx4QcdnuPNO9TBigmbE+OMf22ATFIhoE5Twzl3J4eA7IqODl8Dk71FERUVx2rKvkZmRTXVtMU89/XuKikJXvmybKeF2QWWxor7av59P/+X/QQYWThVCiK6QoEQHmpub+f3vf8/u3bvDPRQhhBBiWJJjcc9ZI479dUfBio4CF72p7dX+wCBFUhrEJnb83NRRMOskfcyaE0NJp5kSHXyqj4wOfZ/yRHLyoqsZP3ouVZVVPPnk7zlSsrfd4wIzJZobOebyDAlKCCG6S4ISHYiMjOSJJ56gpqYm3EMRQgghhiU5FvecrZvBh7YFLUM9tzd5T5aXnu9h8SrPMZeD+AzTsgVdKXTZVlRM6PtcLWCxWDlx3mUsX34qjc5GPvj8WfYdXBv8uICgxO4vFEfzhunkCyH6jAQlOjFr1ix27NgR7mEIIYQQw5Yci3smKCgRuJSjC0GJoEyJPgpKeE+s45IgMbVv9jGUdDcoER2nGT9Dt3usxwNul2rdjuLkFadzwXn/g1KKtVteZsP2/+BpLQ4RWKOiofbYY/R0o4VowT44LIlQQgx7PVghOPDl5+eTm5uLUors7GxGjBjRred/97vf5Tvf+Q4RERGsWLECh8OBavNXPTo6ujeHLIQQQogAcizuma5kSgSezHYUlIiw93wsC87w0OSExnrYt9FcFwvVflR0LGi+jhGUSErXLDyzfUAC2rcN1R6YmTOfU09w8PH6P7Mr9xOqaoo4cf7luJpjAN1+/x3oTlBi5xqzwTHZ3ciSEUIMOUMiKPHMM88AcN111wFQV1fHD37wA9588010a48jq9XKJZdcwr333ktkZNcWRl566aUAPPDAAzz44IMhH7Nr166eDl8IIYQQHZBjcc8EBhNMBw1z5teVQETg171RJyCl9drQoZ3+2447KBG6w+iQ151MCber4+4obTt0aA1uN2SkZnHeaTfz7id/5WjpPt746DESRn6VyfMyzT668PNydzEoEdiG1O3qu2wcIcTANySCEi+88AI33nij7/sHH3yQ1atX89Of/pQTTjgBrTWrV6/mZz/7GTExMdx9991d2u5PfvKTdldjhBBCCNF/5FjcMykj4Eiu+bqjmgPWwABFB9kUvZEp4RU4DvnRdk+nQYk2AYO2XTM6u097/BkOjpRUzjrpZtZs/geHCrfwj1d/R0Lmhcybt6BLPy+P69iPgeCMipYmCUoIMZwNiaBESUkJY8eO9X3/zjvv8L3vfY8LL7zQd9vFF19MS0sLjz/+eJeDEhdffHFvD1UIIYQQ3SDH4p5JzfR/3dFVbksXCl125Qp5VwVmR/TmdoeDTrtvtAk6tc2G6Ow+b6YEgM0ONlsky+ZfTmryGHbn/5dXXvkH+fmHyYg8DwiOUC0808O6t/wD87Tp4trSDF+8oWioNR1V5p+usViCx9DSBNFxHY9XCDG0DYlDgcPhoKioyPd9S0sLmZmZ7R43cuRI6urqur39/fv3869//YsnnniC0tJSAA4dOnRc2woHp9PJypUr+fnPfx7uoQghhBDHZTAci999913OPPNMzjzzTF5//fVwDweAqFgYN12TNVMHndAGps4HBgYCgxJ9tUSiJ5kSMQnB/w83QfN1jKCE7uTn56wP/r74EFSXmK8jIrz7UkybeBLnnPZ1YmPjWL/+C15543Eqq48GPTc5I3hb7jaZEqX5UF+t0B5FZbGisa7941qaOh5rdxzeDeveVl1eQiKEGBiGRKbEqlWr+P3vf8+yZctITk7m9NNP5/nnn2fRokVYW3MSXS4Xf/vb38jJyenyduvr67nnnnt46623sNlsuN1uTjrpJNLS0vjFL35BZmYmd911V1+9rF7zxBNPMGvWrHAPQwghhOi2wXIsdrlcPPLIIzz//PNYrVYuu+wyTjvttC7XsepL2QvM2enRvGM/NjAo0fbksrcEBkG6W1Ni5kmagztgQs7wLCrRaaZEm7mcc3LHc7R3Q/CTc7f4n2xr85bNcGRx8vm38c9/vsSn7+3jjY9/w7wZq8iesDTk0iqPGyqKoOigYuQEzfbPggfmzZAILLbZ0uwfV9EhWHqubjeOtvs4tAsyxkFMvP/23V+YfZUf0aSP6fj5QoiBZUhkStx66604HA7OOussfvSjHzFx4kRWr17N6aefzh133MEdd9zB6aefzsaNG/ne977X5e3+7Gc/Y9OmTfzpT39i48aNvqKZACtWrOCTTz7pi5fTqw4ePEheXh4rVqwI91CEEEKIbhssx+ItW7aQnZ1NamoqycnJzJo1iw0bNoR7WEGCAgAdnK8Gntj2R1Ciu6JiYOpCjX2YNlzprKZEoOlLPL7Col4pI/0/9GanIipOM2J8+zdC2/ohbjfExcVz1VXXsmj2OYBm/bZ/8+EXz+FsND1Cx07VJKZq3+PXv22hYK8KWtbh5Q1AtF2+AVBRDI11ipqKjl8bmIyIfRstfPFm6Elo6aSehhBi4BkSQYmoqCiee+45vv3tb7Nz505++9vf0tDQwJEjR/jvf//Lpk2bOOWUU/jXv/7FjBkzurzdt99+m+985zssWbLEl3HhlZmZSWFhYY/GvW7dOm644QaWLVtGdnY2H3zwQbvHPP/885xyyinMnDmTSy+9lK1bt3ZrHw899BD/7//9vx6NUwghhAiXvj4We/X0mFxSUkJGhj+PPSMjg5KSkl4ZW68JOH9reyq6eJWHhWcGFwPoq3adqoOCm+LYuhqUsIbIhZ5/miYq1v+Tj7SH3kbbDAVv4UqlFNMnncSZJ91EfFwqhUW7+M8Hv2Dbtq1MXaRZdLYGpY9Z6NIXlHCFuK31/4aazrfhrDMDb3aGnoRmp/9rrSFvK1QOsF9HIYTfkFi+AWCxWLj88su5/PLLaWlpoaqqCo/HQ2JiIlFRx9fHqqmpiaSkpJD31dfXt/tw1F0NDQ1kZ2dz8cUXc+utt7a7//XXX+enP/0p999/P7Nnz+a5557j+uuv58033yQlJQWACy64IOS2X375ZT744APGjx/PhAkT2LRpU4/GKoQQQoRDXx+LvXrjmDzg6Q6+BhJT2z984ixNYz1kzerdpRJS3PL4dVZTIlCooIRS7QuZhgo8te2CEVifwd0CjqTRrFrxLTbtfIO9B9bw4ot/Y8eObZx77gVYrfFBXTWU0mitiIzWREZBXaXC1eTflldLkwK0LzhRX22+BygtgOYmGDUxYLshxh1YQ6Ox3v/8ymLYv9k84YyrPO2fKIQIuyETlAgUERFBWlpaj7czc+ZMXn31VZYvX97uvrfeeou5c+f2aPsrVqzodFnFs88+y2WXXcYll1wCwP3338+HH37IK6+8wnXXXQfAq6++2uHzt2zZwuuvv85bb71FfX09LpeLhIQEvvGNbxzXeC2WnvXt8j6/p9sZimRuQms7LzI/7cncdEzmpmODaW76+ljs1dNjcnp6OsXFxb7HFxcXs2zZsuMeT18cczvsvtHBvqLjYMHp0OnZ73GwBZ4Yh+E9OJje/52xWlWHP1NrROj7AothWm2h3xPaEzwvHpd/rrxLeiJsdhbNupCxI3Mo5SV27NjOoUMHSLddyOiMHNq+Z2adBPXVsGstuFrM2DxtCl0qpfyZErX+fW563/w/aqL2jTeoLolSNDmDW9s21vufrwPiEPJZtu/I3HRO5qdzQzIo0Vtuu+02rr32Wq655hrOOusslFJ89NFH/OlPf+Ktt97ir3/9a5/tu7m5mR07dnDjjTf6brNYLCxdupTNmzd3aRveehpgMify8vKOOyBhs1lwOHqnV1NycmyvbGcokrnxi4iwtnvPyfx0TOamYzI3HRsMcxPOY7FXV47Js2bNYvfu3ZSVlWG1WtmyZQsPPvjgce2vr465dWUuwFymjoiwAuZsrbf21WUtbqAxPPsOMBje/6GZ1hnxCVE4HG0/ypv7khKjcTjaZxFFRjrx/tyjo21ExyjARAdmL4vg4G4Xk3Ps7N/c6HuOx6NwOMxcuV31RMVA6kgrBbluRqRN4pZbfsC///1vVq9ezSebnycjZRqLZl5AbEwyWpsTsMTEaOw2DTRhs0TicERSGtkCtEYhPDaSEu1oTwMAzloLDkdM8GtKiEVZTEAiJqYFMKkWVUfsrH2nmemLIny3NdZbcDXYUQrsEWa/AMoVzfoPmpm3IpLUkcefZTV43zt9T+amczI/oUlQohMLFizgT3/6E48++ij/+7//i9aaxx9/nNmzZ/Pss8/2aUeLyspK3G43qanB+ZQOh4NDhw712X474nJ5qKlxHvuBnbBYFMnJsVRW1uPxDM+q2R2RuWmvpcVNebnpGybz0zGZm47J3HSst+YmISG69eS274TzWOzVlWNyREQE3/nOd7jiiisA+Pa3v43dbm+3ra7oq2Ou6Z5qThJbWty+r71/a/tLTa1/HP29bxgKfxvM3NXVNlJeHvq+2jonEe3uA7fH/xiXx0VTk//7uJRmTjgXlKUx6DmuFk15eR1Hck2AQlk0Hlz+cdS1cMopZzN27CR+feBfFBbt4rXSXGZmn8q0iSdhsViprXW2ZlkoaqqbKS9vpro64LVUuyg+GrDNGg8lxXWty03MbUeP1PPJywrHSE1Smv/2PZubAMXOL/zrQWorPbz7onkdUxdq32Pf+Ku57ZPXnCy/pPNZbjA1PIO6ewz+907fkbnpXG/MT38cc8NFghLHMH/+fP72t7/R2NhIdXU1CQkJREeHr+Sz1jpk+6Vjufjii3u87976A+PxaPlj1QGZm2Bt50Lmp2MyNx2TuenYYJmbgXYs9mp7TD7jjDM444wzemXbfXHM9QSckAauvw/Pe0CFcd/49j0Y3v/ttf4M0a0/0/b3oULdB6rtcp6gGhWBz/HfoT2K2ioPWz8xayacdYqkdP+8eecwK2sSZy69nR17P2DH/g/ZtPMNDhRsYtGsi9CMbS2gqSjYq8ia6cHV7N9HoxOam/zBA7SirtpDfLJ/LFWl5v7yo4qkdI/v9rgkqCrtYB6A+hBFM7Xu/L2nNax9Q9HUoDjhPO84/Abve6fvydx0TuYnNCk11Ik1a9bgdJorFVFRUWRkZPTbh6Dk5GSsVitlZWVBt1dUVLS7UiOEEEIMVeE8FnsNlWNyZEDdbx3Gz8THcW1FhBBqHnNO9DAyS4csXArBtRistjbdPDo5K/jsX/47R03WxCaaN1B0XPAbyWaNYPa0Mzjn5G+T7phAVU0Rb3/6e/7z3xdpaKr2PS5/rwpqCdrcaIpZBmrbgcObudDWsVrX1oTIGIk8xp+QJic0NZjJObBN3rBC9DXJlOjE1772NaxWK9OmTWPBggXMnz+f+fPnk5ycfOwn91BkZCQzZsxg9erVnHLKKQB4PB7WrFnD1Vdf3ef7F0IIIQaCcB6LvYbKMTk5A7IXekhOh93r/FfU+52c4/WKUEGJzImQObHjn2lg4MFiDQ5SWLqQFW6P0UxfYjIqLBYPGeOC709M1VSXKRLj0zn9xG+Sl7+RjTv/y7YdG8k7tJ24lpVMm7Qct8sWHEzQioYa3TpGjfYo6qsJyvaoq/S/4JaALIu2QYm00ZrSAv/9NRXm/3HTNYd2mtsjj7Gyqr7K/7X3+UKIvjMkgxJaa377299y2WWXkZqa6vu6ux05Vq9ezfr169mwYQNffPEFf/7zn/F4PGRlZTF//nwWLFjA+eeff9zjrK+v5/Dhw77vCwoK2LVrF6mpqaSlpXHttddy5513MmPGDGbNmsVzzz1HY2MjF1100XHvUwghhBhM+vpY7DUcjslKwbhp5mvvCagtDJ8EJVOidxzPPLbNlOjovo5Ex7a2FrXC+Bnt7597iuajl0BrhVKKiWPnM2bkDFoS32Pztk8prHuL/e99wVmRZzNu1CzAtAttdqrWNqAQn2yyG+prFB63P8BS50+0oLHe/7U3KDFruYlgJKfDR/8IXn4C4BjpD0oEti0NJXBfDTXgamnfKrUrTDtSxcyTNFExHT/O4zbLRZx1kJACk+ZqEhzSPlcMH0MyKOHxePjtb3/LypUrSUlJ8X3d3aBEcnIyp59+Oqeffjpgeph//vnnPPvss7z44ou89NJLPfogtH37dq666irf9w888AAAt9xyC7feeiurVq2ioqKCxx57jNLSUqZNm8bTTz89ePqhCyGEED3U18dir+F2TJ6+WLN9NWQv6P9MiahYiE3SJKf3+66HveDMCN3aLrO1VWEXMiWOtewhMgpGT4H8PQG3RUSx4pSzWb5yES+/+DqfvLuTN997gTTHaiaPPIvsaRNodpqWoQBJaa1Biergdp71VQE1KBr8t7c0+58X1UFjA4tVkzICMsZpig8FLx0BE9gIDNL4szJMHYv9m70FM7tn/TsK7VHs2wg5J2r2blDEJWtGTTS1LqJjzbzXVUFthdlnRRF88YYiOUOz8EypPSCGhyEZlACTLRHq6+6qr69n06ZNvqs0W7duxW63c/LJJzN//vwejXHx4sXs2bOn08dceeWVXHnllT3ajxBCCDGY9eWx2Gu4HZNjEmDRWeE54bFY4MTz5WQrHAKXb1itEJgw0KXlG10o55K9QON2wZHcwIIV4EhxcNmlX8XuPMD6ba9xMO8QB/P+QH7lFLLSzyYqdiQA8ckaq81kKHSU0RCYKdHc2qgmMKiQvcDDnvX+Fzv3FI3FCjOWtg9KHMmF7asVWTNh0hxNYz0Utza6mzhHk7tZcXgXTJrTftlHSxN8/l/FmGwdMnPEm6VhalTQmqmhiI71sP5tCyOzNDOX6ZB1MSqLFTXlJmMCzPPLjpjgS2wirUtoQuyz9VdLMpLEYDJkgxK94eKLL2bPnj04HA4WLFjAWWedxfe//32ys7OPqwOGEEIIIbpHjsVChHY8YZ2gTAlbcM2Grvw62aOPvVeLFSbP1UFBCe+2rTYYkTqRc06+jYOFm9my+22OFO9l9869jBs1m9lTTycy2kFMgskccNaH3l+z07/tpkb/tr3GTYexUz0c2gVpYyA2Ifgx7oCgRGmBAq3I2wqjp2g+/qeZpNgkzcRZUJqvqSlXOOs0kXaorfJQmAsjxsPRA6Ybyd4NivEzgtudBGZ5NDkJCoSUHG5tc5qnmLlM0xzchdWnvhpfUGLH54qyguAf0tRFHsZO9X/v8cCa18xSmIRUzbxTdFCB26Gu/KiZ2+wFuktBNjFwSFCiE3v27MFmszFnzhzmzp3LvHnz5EOQEEII0Y/kWCxEB44jKtE2U8IT8H3gr9Syc+3s2thI+ZHg37OuZEpA+3oV3v1aI7z7UkwYPZdxmbNojlnLf/71HocKt3D4yDaa4+cxLnUlkErB3uD9O0Zqyo8G36Y9CqV0u+4hytK+7oVSYLVpXC6zZONoHhQf8m+vstj/2JETzAQnpprlJPs3KeauhP/+1YnbZbIn7J3UiWio839dX20CE74xt/nZdRSUcAZkhDTWtb//0E7F2Kn+jVWX4qvNUVOmOJIbOoOjrZJ8qClXTJytB22GhasZNrxj3gSOkZr0sWEekOgWCUp0Yv369b500bfffptHH32UiIgI5s2bx4IFC1i4cCFz5swJ9zCFEEKIIUuOxUL0nrbdNjo6AR2XbSMuFY4e8LDlI/+T4rtYQqVdUEKFvt1isbJo8RJsdQvYfeAzduz7kG071rGNDdib5jKjdiWJ8f7iI/Ep5mp4qP119WTaFmGCAPs3K1/hS6/KYvN9ykjNhNaT+eh4U1eitECxe71/qUV1Wcc7LD8KWz4KuF+bTAuvuqrAfbZvh+q1f5OFjLEeYhNDPyY2Kfj7ssLgMTnrFKDRGmorTRHRUPO0+QPzMx4xXhPXuk3tMUtbYhLpdv2Xgn2Qt0Wx4ExNTHz3nns8tAd2rPG/sIoiRfpYWSI2mEhQohPR0dEsXbqUpUuXAtDS0sKaNWt46qmnePTRR1FKsWvXrjCPUgghhBi65FgsRGjHc8ql2nTfaJtd0FbGOJh7iodN75sHek9Yu7Ifi1XjcZsTRe+JcKhuL/YosNkiyZm8kinjlxAz/lM+X/sZ+7ZuJC9/E+MyZzFzyqkkJWSQ4DABgrbaBjs6Y40A7VRUl7WfQW+mhGOkP/MiOs5//+HdHW83sEOH94p9IBMgMKrL/beve8vC6Ckd/zQ3vKM46RJNSxNERmnmn66xWOCzVy142tSiKC0I/j5/j6K50Z8NMnqKJjldkzYabJHt99XYYH7Gh3fD7i/8r2HhmR6SMzocYhCtYeca89zCfTB5Xt8HB/ZuVBQfUr52suVFXXuex23G2533Tyh1VaZwaYZkZxw3CUocQ0VFBevXr/f927NnDx6Ph8mTJ/dacS0hhBBCdEyOxUKEcBznel3NlOjw+d1Yp68s+CppevcTKggSEVA8MiY2ilNOPZUTly3j2V99zoYtn3CocAuHCrcwZmQO4xYuAya020Z3Tiq9gYPaCvP/vFM91FbCvo0W39KH6ICr+zEBQQl0xxPW5Oy8bWjg8guPK3g73s4jk+Z62L8peJIaGxRulznZjrBr4pP9S0EC61Q466CuShGbqFl6vubjfyianCpoeUrBXkXBXsWkOR6yZpnbvN1LAIoPKlJG6KCABEDRQdMN5Fi01uxa6/8+MPgS+vGmeGd8UsedU9qqrzbLZgLnuuig+X/p+Zq1r5tOLfs3Q9Ys3a4YqKvFBBGS0kyR0voaOPWK9o/rjtX/Nk8+4VxPyGwitwuUnHV3SqanE2eeeSaHDx/GarUybdo0Fi9ezM0338z8+fNJSkoK9/CEEEKIIU+OxUL0nraZEiGSDtpxjDStNDPGdS8KEhTw6GQ/EQFX7L1FGe12OwvmnszYtBPZd2gtO/Z9SP7R7fzl+W04S8YxLWsFo0dMx9J6JtndTAkAt0thj9akjmofnAkMRMSnwIylHvK2qqBsh7aaGvwFNUNxtqkJkTxCU1nUWv+hNUCSNgr2bwp+nMXmL4TpnR9fwc7WTAlXCxTuM9vyvp75p2s2vg+NIcbc2GCWdUBwJ5PC/SaoEROvaagNXA4R+jUd3m2Kjk6aq6mvgQ/+r4Emp8Jq07hdiqri9u1WA+VuVuRt845bM2elPzjgDbjYIkwGR95WExjZ9okFi01zwrma2ARvZxMz7tgEM0euZvN4i1WTNTN4n9s/U5QcVsw91UNda5vZliaNPdrUDik7AuOnmyyKL95UjJjQfhsdqatuv8SppQk+fEkxYjycclHXtjMcDcmghFKKzMxMIiMjg77urnPOOce3VjU6uouVfYQQQgjRa+RYLETvsVj9yx8s1vYFF0M/B2av6H5aRmAApLOMDFtApkRgIc0Iu1nWMW3iSUwZfwIHCjbiSvyYzbmH+XjdX4iPdZCddSKTxi7E2lmKQhtRAcUpvWMMLFhpi9TEJQc/Z9Qks7SjbWAhkDd7wRPchAN7tKbJqdo9N2ep5uAOs8TC3WJO5GMSYMp8j5kHBds+seBx+wtherNKTEBJ+07ct31ial4ApI0xP6u4JDjhXJO5UHQg+AfQElCfIjAoAaYjiDcjZmSWprrMFM9sbgzu5OFq8S/xGDddcyTXPwfzTtUc2mU6YVSVaByZ7efL44aDASvvygoVH/wdFpyhSUyFta8rXM2w/Euaz/+raHYqX+FTj0uxf5N5X3oDOt4uJZF2aGjdZn2VP/gCJivE2/lk03v+N2hLk3nv7VitqK1UVJdqRk/R1FUp9m9SpI/xdLh0KTBbpfigqR0yIce857WGokOmGOvRvNDPF8aQDEpYLBbef/993/eBX3fHt771rd4akhBCCCGOgxyLhQitKwGFtgKDA5F2jq8wRRdZAvbVWVDCGrAkxHtiCcHLOqxWG5PGLeL0r87nlfi9rPn8E4rLclm/7d9s3fMOc+csZNLiRaSkBGygA5PnaYoPgcetfEsGYgIyHJLSCJnKH6oGw/IveTiaC/s2WXyBg7rK4MdEx7VezXeqdrfbY/xBosnzNFZbcMeQw7s01WWKuiodNCdKmfoc3tampQGtQpPS/M+PiIQZS01xziYnaDfUVpqTfa+2wRJ7jMkYUBZNzomarR8rGmrMsonAoERg9sTeDWYZBMD80zTJGVBXpSk5rNizXjFqsmbsVDPefZtMx5CmxvbLWNwuxZaPYeEZ2reUpqpEB7WA9SrJN4GNvC2q9XW3zlFU4PaCn3M0t91mAH8RUe8ymtICFTSnxYdMJsr4HN2uA03g/JXkK0ryFbEJHtLHwpE82PW5/82kj+eXdpgYkkGJ3pSfn8/TTz/Nxo0bqaqqIikpifnz53PdddcxZsyYcA9PCCGEGPLkWCyEX3yyprZSkdDFThiBnAEp+VGxxxfY6CrVxaBEoMC6BYFBCf92FFOmTCXOOo2K6iPs3P8xhwq3sHXXxxT98mOmTMlm8eITmDx5Sodtg6Ni4ORLNQe2mUwAMEGIxas87FmnmDQn9KRERLYvsmmPhsjWLIuWRoX2aD7/b3BEIzoOqkqDtzVjqUmnCMzQCFUkMSoWqsugtsLsNzIwUBNhAg1HAk60sxd42gVUrFaYu9K8piYnfPSS8tWR2Pm5P/tg9BRNwV7l6+BhjzbtQWMTzWPrqwkqdhnYLrZwv/naFgmpmSbWlTLC3FdXpdizTpGc4eHwLsWRXEVlCWS0dsfw7tfL1QQVAa1ZA2tieCllamwUHzJBm7hkTeZE2s2R93U2OU12ycFdZlszT/Kw7ZOATIlG2LVW4fGY+2MT/UERgNwt5rHlRbD0vOD3h7O23fDY8pGFKQs8VBQFj72jLitCghKd2r59O1dddRV2u52TTz6Z1NRUysrKePvtt3nttdf485//zIwZXWj+K4QQQojjIsdiIYItPkf71sB3V2KapmCfInOiObHq06BEF5dvgDnhb2lWba7yBwcBFp1lTuS92Q0piZksm/9l5k0/m5bYteQVrmXv3t3s3bub5OQUFi5czLx5C4iNbV9B0RbRvitEYiosOrvjCYkIkSmhlP8kuLkJ3O72jwns3pE+VjN7hQ7ZjSQwQOHlXWriXaIQYfePz2oDtGL7Z2ZjjkzNuOkdDj/oNXgzJYoOmP+zZmkmzg4ODngzDmITzc+hrtq/FEJ7TLCkLccIC8riRnto1wq06IDytXNtavB3I8kYq8mcqPniDfOGsdigutQ/jpL8EPvJhLJCk5kAJhDirVsRGMxy1pmlL5+8ooiJM/U14pI1IyeAUh62fmz2WVmiyN9jthWfrBk3Q7P90/Zv2rpKRcE+TVWJoskJc07WVJWGfnPvXW9pzYQJHI/uUh2X4UiCEp146KGHmD59Ok899VTQOlan08k3vvENHnroIf785z+HcYRCCCHE0CbHYiGCWSwcV0ACIDMLYuI9JKW33tBPmRKBJ2I5J3rY/lnw5fwTzte4W4JrFgSeXE6a6x9zVMCSh9krPLQ0xzN68mm43SvZtWsna9eu4eDBPN5++w3ee+8dpk+fwfz5C8jKmtRh9kRXBNa+cGRqZiw1k+cdc3Nj++UCAFFx/vGOnaqD5iU5wwQaRk8Ovc+oWPNc70l64DKTtmU0IkNklrRlsZq6Ii3NphaCq8UUiAyVHeJqvarvzZQ4vEuRmaUpPwq5W1W7pRcASQ5/y5W2nVaKDpiClOZ1+etkREYHB26anQpnrX88jfVt9qM0KSM0ZYWKksPeMYZ+IzfWK4oOajwuRV2VuS26NUY1Yjy0NHnYtdYSFPhocgYvgWnL2+4UYPMHJgtGWUyQsO1YmxoU8cmaBIfJJnHWeYiMb7tFAdCD5idD37Zt27j++uvbFdaKjo7ma1/7Glu3bg3TyIQQQojhQY7FQvQeZTEnwt4T437LlAj4OnMijBgfvOOoGP/Jr1dgUCJwSUJg68iMcfhO6K1WKzk5M7nuum9wyy23s3jxUmw2G9u2beFPf3qGRx99iPfff4fKyorjej2BmRIJDn8Wg3ecLU2mxgFAUroO+bzAk28wAY2TL9VMmhv6B9E2eyKw5oa1TVCi7fcdiYg0mRLeApdRITI0wNuhw9uu04yv/IhpD+oNSLTNBEh0BJ9aep8XuD0wtSUCO4rYIuDkSz2+5TvlR1v3ndJ+XuzR+IpOau1dbuG/X7cpNNq2vWng+8f7swvsUOIY2f7n1JHyowq3SzEmG+aeEvpnmJjm/zk21ElNiY5IUKITdrudqqqqkPdVV1djt3chJCmEEEKI4ybHYiH6TthqSnQhYSHwZNkSUAwzqv1qjHYyMjI499zzufPOe7jkkksZPz6L6uoqPvjgPX7xi4f54x+fYsuWTTQ3Nx97Y60CgyRxASfBvkyJgKCE1Qor/sfDii95gjIaQi3RUKrj5S2BrzUyWgfNia1NvvvE2V37Ydrs5mT+izf9WQtei872EB1ntjNygvlfWfBlUtRWKV+3ifgUTc5SzfzT/FGA+OTgU8u5p5hWshNygsfWUKuoKTfLQbzzGhkF2QuCHzd+evvXFJ/Svu1mYFAiIbXzeQgMlATXLdFkL/QwdbHJZll2kYel53uwRXa+vcgoTfYCTXwyrPyyp939SWma6NZ9urr+dht2hsTyjdWrV7N06dJjPq6lpYW77rqLX/ziF13a7sknn8zPf/5zRo8ezYIFC3y3r1+/nkcffZSVK1ce95iFEEIIcWxyLBai71j78Eygs5oSXVlFEbhUoaNMiWOJjIxkzpx5zJkzj4qKcjZt2sDGjRs4cCCXAwdyiYy0M336DGbNmsPEiZOwhGq70Sow4yGw4KPVZtL3Wxr9NSUsVv8Sm4aAQoidbD6kwCBEYpvGIoHBjuyFni4v6fFmSLiavUEJ/0l3UhqcdLGmolgHFVL17iuwtejis7UvWJQxTlNaAI4MCzUB3Sjik03bzuLDECoSZYsMnpMEhwl2eAt7hmolmugIrqcSHaeDfjYjxoPV6iExDQ7tNK1WYxPx1Y8ICvQEBCXSxsC4af7vvTUxomKgrjWYkL3Qw5517QuZ+mqEhMhWSUo37wWtNeOn2ahrkGqXoQyJoMSNN97IY489xooVKzp8TENDAzfffDPr1q3r8nbvvvtubrrpJq688kocDgcOh4OKigrKy8uZO3cud911V28MXwghhBAdkGOxEH1n1CSoLNaMntz7KROdZUp0JSgR6gTPe/voKRp7dPfGnJLi4NRTz2DlytPIy8tlw4Z17N69i82bN7J580ZiY2OZMWMms2bNYezYce3qTwReVY+O82eZeItdNjeCp7WmRGCwp6vLKkIJPPlOGRn8egO3G6pdaUfcLcGvK9TyjZSM4O/bvgZbhA7KXpl1kkYpRYRdQZsWowD2qPa3gTcwEvy67NHgjeNERvk7YYwYryk6qBiZZe5TSqO1CgpemdshvbWTyZT5/m1v/dj8HxjAiE00S23qqmDctNDvJ8dIfPUokjPa3x84D0rByss8oCB3s6KxwR+0GDsV7NGKuobQczHcDYmgxGmnncYtt9zCL3/5S0477bR291dUVPD1r3+d3NxcfvOb3xxze42NjXz00UcUFhZy+eWXc+WVV3Lw4EFKS0tJS0tj9uzZLFu2rC9eihBCCCGQY7EQ/cFqM1ey+0LbQoeBRk/WHMlVZM3q2r6d9cEnr9OXHP+YLRYLkyZNZtKkyTQ1NbFr1w62bt3C/v37+OKLz/nii89JTExi1qzZ5OTMYuTITJRSREbB1EWaEaOjUKoxaOlLZDQ0OZXprkDwiWpCCkw/wUNiavfHGjiH3habXvaAgp+hOoN0ZPoSDzs/92+47Ul9KG0DRG1/tsrSeRZIZDcKs7bN3lm8SuNxa2wRMG2xf7nH7JM1e9ebn0lXTJ7noeiA8hd5xfycFp3V+fPHzdAU7If0MeZnGR2ncdYpRk3SFO5XTG5TD8Q7vq6OSxhDIijx85//nO9///t8+9vf5uGHH2bVqlW++woKCrjuuuuoqqri2WefZe7cuZ1uKz8/n2uuuYbCwkLfbXFxcfzyl7/kpJNO6rPXIIQQQghDjsVCDH6dZUMkpcMpl3s6zIbwShutKS1QJB6jTsDxstvtvuUd9fX17Nixna1bN3Ho0EE++eQjPvnkIxITk5g+PYfp02cwfup40tJslJcHbychBWor/AUaA4MSQIfdNbpi2mIPDTXKV9zRKzpgGUJ3MiVGT4HmRg/7N5soQleCJW1/TqG6jHQmsKtK1ixNVQlUFIV+g7QNStgigNb9B85r+hhIH9P198WEHNrVtuiKqBhY8SXtG9cJ52qqyzQpI2HqYo3V2vnzRdcMiaCEUoqf/OQn2O12vvvd79Lc3MyFF17I7t27+frXv47VauX5559n0qRJx9zWI488gsVi4fnnnycnJ4eCggLuu+8+7rvvPt57771+eDVCCCHE8CbHYiEGv2PVTzhWQAJg1nJNXZUO6jrRV2JjY1m0aDGLFi2mqqqS7du3sXPndvLzD7NmzaesWfMpcXHxLF48nzFjJjJ+fBbW1jPS5BHmqnn5EbOt3jxRHZMNoXq3BnaI6E6mBATPfdsASihtl2943O2XXXR1f3FJmqyZsGc9jMxqv40JOZqjeQMr08DWZqmMt9aFBCR6z5AISnj96Ec/wm63c88997Bnzx5eeukl0tPT+eMf/8iIESOOvQFg06ZN3H333cyfPx+AiRMn8uMf/5hVq1ZRUlJCenr6MbYghBBCiJ6QY7EQg19X6kYci9XWtSv5vS0pKZlly5azbNlyamqq2bVrFzt3bufgwTxWr16N0/kRUVFRTJ48hezsqYweOQWIp8nZminRD2dYPQlKZE6CqlLN6Cld7NjRi6/HajOBkGmLQ+87NhFO/+rACUiI/jGkghJgCmLZ7XaefPJJZs+ezR/+8AcSExOP/cRWpaWljBkzJui2sWPHorWmrKxMPggJIYQQfUyOxUIMfp3VlBhMEhISWbx4CYsXL8HpbKCo6BCrV3/Bvn372LZtC9u2bQEUzuJxZKZPY1TGVLIs6XSp72kPBBbB7M7yDTBX/mct7/qJf9tMiRH/n737jo+iTv8A/pmZLemk0nuHQAClSBEExYIFlRMbZwMLKnr8vFNP0VPPXs7CnQVBDhX1UFFPD8VeaIrSpJMEAqGm120z8/39sSXZZDekbHY2yef9evEimZ3d/e6TbfPM832+PZvS06PRV6VWrFUkJU477bRaHXKFEMjKysK5555ba//169eHa2hERERERG1OKColIo17isdo9OkzGDabHdnZWdi7dzf27NmNw5k5OFGQgy27vsDWg/EYc2Ag+vUbgF69eiM6ugGdHutJkt2rYKguqVmXdgX8/5btuwsMHtvwpMTQCTpOHJKQVL/idWpjWkVS4uqrr66VlGiKOXPm+OaIVXfdddfV2s4EBxERUejxs5ioZWstlRLBWK1WDBo0GIMGDYYQAl99cAy/b92DI8d3o9KWg19//QW//voLAAldu3ZFnz590bt3X3Tv3gOmEM2HmPgHAaGLsCaAOvQQ9eoHUlOn3oF7SBABrSQpMW/evJDd1u233x6y2yIiIqKG42cxUcvXGislgpEkCd26dwZsXTC0/xT0Hl6GCrEXmZn7kJWVidzcQ8jNPYQffvgOJpMZPXv2Qp8+fdGnT1907Nip0SdXG5McaCo2d6Tm0CqSEqHEL0JERETG4mcxUcvX2islaoqOE/D2kYiNi0Xf3iMwbNgICCGQl5eH7OxMZGVlIjs7C5mZe5GZudd9vegYdO/eAz169ETPnr3QuXOXgFVikaKt/V0pPJiUICIiIiKikGpLlRKA/2oY1VffkCQJ7du3R/v27XHaaeOg6zpycw95EhSZOHToEPbs2YU9e3YBAMxmC7p16+5LUnTt2g0WSwM7WTYja+jbYxAxKUFERERERNQU0fFVP9dV6CDLMrp374Hu3Xtg8uQzoaoqcnMPISfnAA4c2I+DB3OQne1OWLj3V9CpUyd07dodXbt2RbduPZCcnBzSfnr1MfZCHWWFQEJKWO+W2ggmJYiIiIiIKKTadKVEA2ZfmEwm9OzZCz179sKkSZOh6zqOHTuKAwf248CB/cjJ2Y/Dh3Nx+HAufv7ZfZ2YmBh06dINXbt2Q7du3dGlS1fExMSE9gHVEJ/k/kfUHJiUICIiIiIiagJztRkWDUlK1CTLMjp37oLOnbtg3LgJEEKgsLAQhw8fwqFDh5CbexBHjhzBvn17sG/fHt/1UlJS0bFjJ991O3bshLi4uDruiShyMClBREREREQUIpoautuSJAkpKSlISUlBRsZwAICqqjh69Ahycw/h0KGDyM09hIKCfBQU5GPHjt99101IaIdOnTqjc+fO6NjR/X+7dolhn/pBdDJMShARERERUUi1xePe/qfqOJIlITGtee/HZDKhW7fu6NatO8aOHQ8AqKysxLFjR3D06FEcOXIYR48eRV7eCZSWlviaaAJAVFS0p/FmB7Rv3wEdOrj/j42NY7KCDMOkBBEREVEIZGdn47777kN5eTksFgvuu+8+jBw50uhhEVGY9EwHeqYLQ+47JiYGvXv3Re/efX3bnE4njh8/hiNHjuDYsSM4cuQITpw4joMHc3DwYE6t63sTFe3bd0RaWhpSU1MRH5/AZAU1OyYliIiIiELAarXi8ccfR+/evZGVlYVbb70Vq1evNnpYRMbgcazhLBaLr6LCS9d1FBUV4cSJ4zhx4jiOHz+GEydOIC/vhK+5ZnVmswUpKalISUlBamqq52f3v9jY2HA/JGqlmJRoxX7//XcsWLDA9/u+ffvw4YcfYtCgQQaOioiIqHXq0qWL7+fevXujrKwMQgieZaQ2ic/6yCTLsq9HxaBBg33bdV1HQUGBJ0lxHPn5eSgoKEBBQT6OHXNXWtQUHR2DlJQUJCYmITk5GT17doEsW9GuXTISExNhMvFQk+qHz5RWbOjQofjkk08AAIcPH8Yf//hHJiSIiKjN2rhxI5YsWYLt27cjLy8Pr776KiZPnuy3z/Lly7FkyRLk5eVh0KBBWLBgATIyMhp8X9988w0GDRrEhAS1XXzqtyiyLCMtLQ1paWkAhvq2CyFQUVHhSVLke/4VID/f/XNu7iHk5h4CIGHjRjNsNhcA9xSWuLh4JCUlITExCUlJSUhISERCQgISEhLQrl07xMTEQpZlQx4vRRYmJdqIL774Auecc47RwyAiIjJMZWUlBgwYgEsvvRTz5s2rdfmqVavwxBNP4OGHH8awYcOwbNkyzJkzB1988QWSk5MBANOnTw942ytXroSiuNcBPHz4MJ555hksWrSo+R4MEVEYSJKEuLg4xMXFoWfPXn6XCSFQWlqCoqIilJQUQ9ftyMk5gsLCQhQXF6G4uBjl5WU4dOhgkNuWER8f70lUtEN8fIIvaREXF4/Y2FjPvzjf+yu1TkxKGCicZ2y++OILPPDAA6EaOhERUYszadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwA8FUgBlNeXo5bb70VDzzwAHr06NHoscpy004ze6/f1NtpjRibuoUqPtWLhFpLrPncqUlCUpK7CkKWJSQlxaKoqAK67q6U0HXdl7QoKipCaWkJSktLq/1firIy9/9Abp33FBVlRVxcHGJj43yJiri4OMTExCA6OgbR0dGIiopCVFQ0oqOjEB0dA7PZHDHVanzu1I1JCQOF84xNYWFho5IZREREbYHT6cSOHTswd+5c3zZZljFu3Dhs2bKlXrehaRruvPNOzJw5ExMmTGj0WEwmGSkpcY2+fnVJSWxEFwxjU7emxicqygFABYCQPZ8jBZ87wdWMTVpaAoBuQffXdR1lZWUoKSnx+1deXo6ysjKUl5f7/lVUlKKiorTeY1EUBdHR0X7/rFYrLBaL7/+6fjabzTCZTFAUBYqiwGQy+X73/t/QpAefO4ExKWGgcJyxAYDVq1dz6gYREVEdioqKoGkaUlNT/banpKQgJycnyLX8/fjjj9iwYQPy8/OxYsUKAMBbb72FhISEBo1FVXWUltoadJ2aAp21JDfGpm6hio/DAXgbSxQUlIdmcAbjcye4psVGQWxsMmJjk9G5c/C9XC4XKirKUVFRgYqKcpSXV6CiogJ2uw02m63a/3bY7TZUVtpQVFSKvLyiJj22OkeuyFAUBbIsQ5ZlX5LC/b/k29a+fRrmz78DJSW2Rj93EhKiYTa3zmksTEpEqFCcsfEK1dQNlpI2H8YmsJpxYXxqY2yCY2yCY2zqryGrZ0yePBk7duwIyf2G6oBH1wUPnoJgbOrW1PgIUfW6aW1x5nMnuOaMjaKYPM0yExt0PVVVPQkLO5xOB5xOp++fy+Ws9rsDTqcLLpcTDocDmqZB0zSoqgpNUz0/a57tqme7+3dd16GqGoQQAf9ZLGbous7nThBMSkSoUJyxAYAjR9zNZoYOHXrynevAUtLwYGyqmM1Krecc4xMcYxMcYxMcY1MlKSkJiqIgPz/fb3thYWGtz2IiOrkImcpPBJPJhLi4eMTFxRs2BlmWuERqHRiZFqah65137twZX3/9dZPvl6WkzYuxqc3l0nzlnoxPcIxNcIxNcKGKTWsqJbVYLEhPT8e6deswZcoUAO65zuvXr8e1115r8OiIiIhaLyYlIlQknrFhKWnzY2z81YwF4xMcYxMcYxNcW4tNRUUFDh6sWpouNzcXu3btQmpqKtLS0nD99dfj7rvvRnp6OjIyMrBs2TLY7XZccsklBo6aqIVipQQR1ROTEhGKZ2yIiIhCa/v27bjmmmt8vz/66KMAgNtvvx3z5s3DtGnTUFhYiJdeesm3FPfixYt9K14RERFR6DEpYSCesSEiIgqfMWPGYM+ePXXuM2vWLMyaNStMIyJqvVgoQUT1xaSEgXjGhoiIiIhaJWYliKiemJQwEM/YEBERERERUVsmGz0AIiIiIiIiImqbmJQgIiIiIqKQ6tjTvbJP5z5tZ4UfImocTt8gIiIiIqKQapcKnDFTh9lq9EiIKNIxKUFERERERCFniTJ6BETUEnD6BhEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQTEoQERERERERkSGYlCAiIiIiIiIiQzApQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIYwGT0Aaj2EENB1DUIEvlyWJTidTqiqCl0PslMbFYmxkSRAlhVIkmT0UIiIiIiIqJViUoKaTAiB8vISVFSUAqj7gDo/X4au6+EZWAsTmbGREBubgLi4dkxOEBHVg81mw7Rp03D++efjz3/+s9HDISIiinhMSlCTeRMSCQnJsFisAIIfvJpMElQ1MioBIk3kxUbA6XSgtLQQABAfn2jscIiIWoBXX30VGRkZRg+DiIioxWBSgppECOFLSMTExJ10f5NJBhBp1QCRIRJjYzKZAQClpYWsliAiOokDBw4gOzsbkydPRnZ2ttHDISIiahHY6JKaRNc1AMJTIUGtkftvKzx/ayKilmnjxo245ZZbMGHCBAwYMADfffddrX2WL1+OKVOmYOjQoZg5cya2bdvWoPt46qmn8H//93+hGjIREVGbwEoJapKqppY8g956uf+2wRqYEhG1BJWVlRgwYAAuvfRSzJs3r9blq1atwhNPPIGHH34Yw4YNw7JlyzBnzhx88cUXSE5OBgBMnz494G2vXLkS3333HXr27IlevXph8+bNzfpYiIiIWhMmJVqJO+64A+vXr8eECRPw/PPP+7Z//fXXeOaZZwAAd955J6ZNm2bUEImIiAwzadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBL0+lu3bsWqVauwevVqVFRUQFVVJCQk4KabbmrUeGW5acl+7/WbejutEWNTN8YnOMYmOMamboxP3ZiUaCWuvvpqXHzxxfj0009921RVxTPPPIPly5dDURRcfvnlOOuss2CxWAwcKRERUWRxOp3YsWMH5s6d69smyzLGjRuHLVu21Os27rrrLtx1110A3JUT2dnZjU5ImEwyUlJO3qepPpKSYkNyO60RY1M3xic4xiY4xqZujE9gTEq0EmPGjMHPP//st23r1q0YMGAAUlNTAQAZGRn47bffMHbsWCOGGHEee+whfP75Z7W2f/bZ10hMTAz/gIiIyBBFRUXQNM33eemVkpKCnJycsI9HVXWUltqadBuyLCEpKRZFRRXQdc6/q46xqRvjExxjExxjU7dQxCchIRpmsxLikUUGJiXCYOPGjViyZAm2b9+OvLw8vPrqq5g8ebLfPsuXL8eSJUuQl5eHQYMGYcGCBU1eUuzEiRPo0KGD7/cOHTrgxIkTTbrN1mbcuNNxzz33+21r166d3++qqsJk4kuFiKitEUI0atWhSy+9tMn3Haov9boueIAQBGNTN8YnOMYmOMamboxPYFx9Iwy8zbUefPDBgJd7m2vddttt+OijjzBgwADMmTMHhYWFvn2mT58e8J+mcUWEprBYzEhJSfX7d9llF+HNN9/AI488gKlTJ+LFF58DAGzduhlz596AKVPGY8aMC/Dyyy/C6XT6bqugIB933/0nTJkyHpdffjG+//4bnH/+mVi1yj2lZtOmXzFhwkhUVlb6rrN27U+YMGGk35h+/PF7XHfdVZgyZRwuv/xiLF++DLpetVTohAkj8dlnH+Puu/+EM88cjz/+cSa2bt3idxtbtmzCrbfOwZlnjsd5503BX/5yJxwOB5YtW4Lrr7+qVhyuuOISvPvu202OJxFRS5SUlARFUZCfn++3vbCwsFb1BBEREYUWT/+GQXM31wqmffv2OH78uO/348ePY8KECQ2+Ha9AjVlaa7OWd955EzfccBNmz74ZAHD4cC7+/Oc7cfPNt+L++x9GQUE+nn32CaiqijvucM8hfuyxh1BcXIR//vM1AMDzzz/jl4Coj61bt+Dxxx/Cn/70FwwdOgwHD+bg6acfg9lswcyZV/r2W7p0MW6//U+YN+//sGTJa3j44fuxYsUnMJlMOHgwB/Pn34aLL/4D7rrrXgDAxo0bIITAtGkX4o03FmHfvj3o12+A5z434+jRIzjnnPPqHJssS2H/e9dsCtRan29NwdgEx9gEx9j4s1gsSE9Px7p16zBlyhQAgK7rWL9+Pa699lqDR0dERNS6MSlhsFA01womIyMDu3fvRn5+PhRFwdatW/HYY4816raCNd1yOp3Iz5dhMkkwmepXeFPf/ZqbJEn46acfMHXq6b5tkyefBQAYPfo0XHXVLN/2xx57BNOmnY8rrnBXGfTs2QN33DEff/3rXzB//p9x8GAOfvllA5YtewcDBgwEANx9919x/fWzIMvu2CiK+3GbTLIvBooi+bYBwNKli3DddbNxwQUXAgB69OiOvLw5WLHiXVx11dW+8Vx00cWYOvVsAMBNN92CmTMvwbFjh9GzZy8sX/5vZGQMw113/cW3/4AB/QEAcXExGDNmLD7//DMMGjQIAPDFF59h3LgJaN8+LVikIMsykpJiwtok1WxWaj3n2BwoOMYmOMYmuLYUm4qKChw8eND3e25uLnbt2oXU1FSkpaXh+uuvx91334309HRkZGRg2bJlsNvtuOSSSwwcNRERUevHpITBQtVc66abbsK2bdtgs9kwceJELFq0CAMHDsSf//xnXHWV+0D6T3/6E6xWa6PGGazplqqq0HUdqioA6LWvWIPJJENVT75fOAghMHLkGMyfX3XwHhMTg5tuug79+w/0G+e+fXuRlbUPq1ZVNcbUdR0OhwPHj+chOzsbZrMZvXv3812vb98BMJvN0HUBVdWhae7tqqr79tE04dtmMsnIzNyLbdu2YsmSRb770TQdQuh+4+nZs4/v98TEZABAfn4BunbtgX379mHixDOCxnnatAvx7LNPYO7cO6BpGr755mssWPBw0P1VVUDXdRQVVcJkcgbcpzm4XBoKCsoBsHlSXRib4Bib4EIVm5bUdGv79u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJ199p8eLFSE5ONmrIREREbQKTEhGqoc21Fi1aFHD72WefjbPPPjskYwr0xbWlf9GPjo5C167dAmyP9vvdZqvEpZdehksuuazWvomJiRACJ/17ybK3QqQqZqqq+u1TWWnDjTfOxemnB5/uA6BG4033/VbvO1GXCRMm4dlnn8S6dT/BZrPBYrFg3LiTT+sxojFPzftjc6DgGJvgGJvg2lJsxowZgz179tS5z6xZszBr1qw69yEiIqLQYlLCYGyu1TL06zcA+/dnB0xgAEDPnj3hdDqxb98e9O/vnr6xZ89uuFwu3z6JiUkAgIKCAsTEuEumMzP3+t1O//4DcOhQTtD7qY++ffth06Zfcd11cwJebjKZcM450/C//30Kh8OOc845j6uLEBERERGRISJjcn8bVr25lpe3udbw4cONGxj5ufrqa7Bly2a88MKz2LdvLw4ezMEPP3yLf/3rRQBA9+49MXLkaDz11GPYtWsHdu3ageeffxpms9l3G127dkP79h2wdOnrOHToIL777mv873//9bufa6+djVWrPsW//70Y+/dnY//+bHz55edYtmxJvcc6a9Z1+P33rXjxxeeQnZ2J/fuzsWLFu7Db7b59LrhgOn7+eR02b/4N06Zd1MToEBERERERNQ6TEmFQUVGBXbt2YdeuXQCqmmvl5eUBAK6//nq89957+Oijj5CVlYWHHnqIzbUiTL9+A/DSS69i//5szJ17A+bMuQbLli1BWlp73z4LFjyCpKQk3HbbjXjwwb/iiiuuRkxMjO9yk8mEBx/8O/bu3YNrr70Sn376Ca6//ka/+xk7djyeeOI5rF+/FrNn/xFz596AlSvfR6dOnes91u7de+C55xZi587tmDPnGtx224347bdf/KaX9OrVG/37D0S/fgPQp0/fJkSGiIiIiIio8SQhRNuYTGqgn3/+2a+5lpe3uRYAvP3221iyZImvudYDDzyAjIyMcA81KJdLQ3Fx7eUtVVVFfv5hpKZ2qdcUgEhqdBkO559/Jm677U+YNu3Ck+4bztjouo6ZM6fjqquuwaWX1u6TUV1D/8ahcvHF0/Dxx6sAuJvypaTEoaCgvM3Mf68vxiY4xia4UMUmMTGmxTS6bEmCfeY2BJ//wTE2dWN8gmNsgmNs6haK+LTmz1xOJA8DNteiSFJYWIBVqz5FeXkZzj13mtHDISIiIiKiNoxJCaI25qKLzkFSUjLuuWeBr+EmERERERGREZiUIGpG//vfN0YPoZY1a341eghEREREREQA2OiSiIiIiIiIiAzCSglqNg88cC9+/32b3zZJApqjterQoRn4+9+fDP0NExERERERUbNhUoKaTaAkQaSsvvHhh//B66+/glWrvoUsuwuGCgryMX36uTj99DPwxBPP+vZdvXoVnnzy7/jii+9gtUY16v6++eYr/O1vf8UZZ0zBo48+Xevyv/3tPvTp0xfXXHMDJkwYCYvFivfeW4n27Tv49rn99pswcOBg3H77nxo1BiIiIiIiokjD6RvUJo0YcSrKy8uxd2/VqihbtmxC+/YdsHXrZlRfKXfLlk0YNCi90QmJ48eP4V//egEZGcMDXq6qKn7+eT1OP32i3/alS19v1P0RERERERG1FExKUJvUq1cfJCYmYfPm33zbNm/+Deeeez7MZjMyM/f5bT/llJGNuh9d1/Hoo3/DtdfORpcuXQPus2XLJsTFxaFfv/6+bTNmzMSqVZ/i4MEDjbpfIiIiIiKiloDTN6hNkiQJw4efgs2bf8OVV84C4E4O3HnnXTh8+BA2b/4N/fr1R35+HnJzD2HEiFMBALNmzcTx40eD3m5Gxgg899xLvt/feedNREVFYfr0S7F9+7aA11mz5keMH3+637bhw09BVlYmFi16BY8++lRTHy4REREREVFEYlKC2qwRI07F66+/DF3XUVJSjNzcQxgyZBgOHTqEjRt/xsyZV2LTpt9gsVgwZMhQAMCzz74IVVWD3qbVavX9vGfPbnzwwX+wZMlbdY5j7dqfcPfdf621/ZZbbsOcOddg9+6dGDhwcCMfJRERERERUeRiUoLarFNOGenrK3HkyGEMGDAI0dHRGD58BBYvfhVCCGzZ8hsGDx7i6yfRsWOnet220+nEI48swJ/+9GekpKQG3S8rKxOlpcUYMaL29JD+/Qdi8uQz8eqr/8QLL7zcuAdJREREREQUwZiUoDarV6/eSEpKxubNv+Ho0cMYPvwUz/Y+kCQgM3MftmzZhDPPPNt3nfpO3ygoyEdOzgH87W/3+S7TdfeqI5MmjcEHH3yKtLT2WLPmB4wZMw4mU+CX4o033oqrr/4DfvttYygeMhERERERUURhUoLatBEjTvUlJW699U4A7n4TGRnD8c03X+LgwRxfPwmg/tM30tLa48033/O77PXXX4Hdbse8efORlJQMwN1P4rLLrgh6e127dsMFF0zHq68ubPTqH0RERERERJGKSQlq00aMOBUvv/winE4nMjKG+bYPGzYCS5YsgsViQXr6UN/2+k7fMJlM6N27r9+2uLh4KIri215QkI99+/bgtNPG13lb119/Ey6/fDqEAHtLEBERERFRq8IlQalNO+WUkbDZbOjXbwBiY+N824cPPxU2W6Wnn4S1jltovLVrf8LQocOQkJBQ536pqan4wx+ugNPpaJZxEBERERERGYWVEtSm9ejRE2vW/Fpr+8CBgwJub4r773/I7/c1a37EhAkTa+0X6H7nzp2HuXPnhXQ8RERERERERmOlBJFBhg0bjilTpho9DCIiIiIiIsOwUoLIIFdffa3RQyAiIiIiIjIUKyWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBTSJJ3p+EkcOgZuX+21b9rYmIiIiIiEKDjS6pSWRZgSwrKC7OR3x8IhTFBKCuo1cJqsoERmCRFhsBTVNRVlbs+zsTERERERGFEpMS1CSSJCElpRNKSwtRVHTipPvLsgxd18MwspYnUmNjtcYgKak9JJZKEBERERFRiDEpQU2mKAqSktIghA5d1yGCnOyXZQlJSTEoKqqErkdSRYDxIjE2kuROlEgSZ3kREREREVHzYFKCQkaSZChK8ANYWZZgsVhgMjkj5sA7UjA2RERERETUFvEUKBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAhJiGBtCYmq6LqApjV9ZQizWYHLpYVgRK0PY+Nv797d6N9/oO93xic4xiY4xia4UMRGUWTIMlfmCTV+5jY/xqZujE9wjE1wjE3dmhqf1vyZy6QEERERERERERmC0zeIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgupt+fLlmDJlCoYOHYqZM2di27Ztde7/+eef49xzz8XQoUNx4YUX4scff/S7XAiBF198ERMmTEBGRgauu+465OTk+O1TXFyMu+66C6eccgpGjRqF+++/H5WVlSF/bKEQ7vjk5ubivvvuw5QpU5CRkYGzzjoL//znP+FyuZrl8TWFEc8dr+LiYkycOBEDBgxARUVFyB5TqBgVm2+//RYzZsxARkYGxo4di3vuuSekjysUjIjN1q1b8cc//hGnnnoqRo8ejZtvvhlZWVkhf2yhEOr4fPnll5g9ezbGjBmDAQMGYO/evbVuoyW9J7cFoX4OtCYNic2+ffswb948TJkyBQMGDMDbb78dxpEaoyHxWbFiBa666iqMGjUKo0ePxg033IDff/89jKMNr4bE5uuvv8aMGTMwcuRIDB8+HNOnT8fHH38cvsGGWUPfc7wWLVqEAQMG4KmnnmrmERqnIbFZuXIlBgwY4Pdv6NChYRxtBBJE9fC///1PpKeniw8++EDs27dPLFiwQIwaNUoUFBQE3H/Tpk1i0KBB4vXXXxeZmZnihRdeEOnp6SIzM9O3z2uvvSZOPfVU8dVXX4ldu3aJW265RZx11lnC4XD49pk9e7a46KKLxJYtW8TGjRvF1KlTxV/+8pdmf7wNZUR8fvjhB3HvvfeKn376SRw8eFB8/fXXYuzYseKZZ54Jy2OuL6OeO17z5s0Ts2fPFv379xfl5eXN9jgbw6jYfPHFF2LUqFHivffeE9nZ2WLv3r1i9erVzf54G8KI2JSVlYlRo0aJ++67T2RnZ4vdu3eLm2++WZx55plhecwN0Rzx+eijj8TChQvFihUrRP/+/cWePXtq3U5LeU9uC5rjOdBaNDQ2W7duFU8++aT47LPPxPjx48Vbb70V5hGHV0Pj83//93/i7bffFjt37hSZmZni3nvvFSNHjhTHjx8P88ibX0Nj88svv4jVq1eLzMxMkZOTI958800xaNAgsXbt2jCPvPk1NDZe27dvF5MnTxYXXnihePLJJ8M02vBqaGw+/PBDMXr0aHHixAnfv7y8vDCPOrIwKUH18oc//EE88sgjvt81TRMTJkwQixcvDrj/nXfeKW6++Wa/bZdddpl4+OGHhRBC6Louxo8fL5YsWeK7vLS0VAwZMkR8/vnnQgghMjMzRf/+/cXvv//u2+eHH34QAwcOjLgXrhHxCeT1118XZ599dlMeSsgZGZv3339fXHHFFWLdunURmZQwIjYul0ucfvrpYsWKFaF+OCFlRGy2bdsm+vfv7/dFe9OmTaJ///4n/dIVbqGOT3WHDh0KmJRoSe/JbUFzPgdauobGprrJkye3+qREU+IjhBCqqooRI0aI//73v801RMM0NTZCCHHxxReLhQsXNsfwDNWY2FRWVorzzjtP/Pjjj2LWrFmtNinR0Nh4kxJUhdM36KScTid27NiB8ePH+7bJsoxx48Zhy5YtAa+zZcsWv/0BYMKECb79c3NzkZeX57dPfHw8hg0b5ttn8+bNSExMxJAhQ3z7jBs3DpIk1btcLByMik8gZWVlaNeuXaMfS6gZGZuDBw/ihRdewNNPPw1Zjry3OqNis3PnThw/fhySJOGiiy7ChAkTcMsttwSd/mIEo2LTq1cvJCYm4v3334fL5YLNZsNHH32EoUOHIjk5OaSPsSmaIz710VLek9sCo54DLUFjYtOWhCI+NpsNqqpG1PeNUGhqbIQQWL9+Pfbv349TTz21GUcafo2NzZNPPokxY8bg9NNPD8MojdHY2JSXl+OMM87ApEmTcOuttyIzMzMMo41ckfdNnSJOUVERNE1Damqq3/aUlBTk5eUFvE5+fj5SUlKC7u/9v67bDHQbJpMJ7dq1Q35+fuMfUIgZFZ+aDh48iLfffhtXXHFFox5HczAqNqqq4i9/+QvuvPNOdOvWLSSPJdSMis2hQ4cAAC+//DLmzZuHl19+GWazGddcc03E9AYwKjZxcXFYtmwZVq5ciWHDhmHEiBHYsmULXn755ZA8rlBpjvjUR0t5T24LjHoOtASNiU1bEor4PPfcc+jUqRNOO+205hiiYRobm7KyMowYMQJDhgzBTTfdhAcffBBjx45t7uGGVWNi891332HDhg24++67wzFEwzQmNr1798YTTzyBV199Fc888wx0XceVV16J48ePh2PIEYlJCWo0IQQkSQp6eaDLam6r+XvN2wx0Gye730gRjvh4HT9+HHPmzMH555+PSy+9tJEjDp/mjs2rr76KpKQkXHbZZSEYbXg1d2x0XQcAzJ07F1OnTkVGRgaeeuoplJaW4vvvv2/i6JtXc8fGbrdjwYIFOO2007BixQq888476NSpE2677TaoqhqCR9C8QhGfk2nJ78ltQTieAy0Vn6d1q298Xn/9daxatQoLFy6ExWIJw8iMd7LYxMbG4uOPP8YHH3yA+fPn4/HHH8evv/4axhEaJ1hsCgsL8cADD+Dpp59GdHS0ASMzXl3Pm+HDh+Oiiy7CwIEDMXr0aCxcuNBXqdlWmYweAEW+pKQkKIpS60xYYWFhraygV2pqaq39CwoKfPunpaUBcJ+9rF4WXVhY6CsNDnQbqqqitLS01tkeIxkVH6/jx4/jmmuuwfDhw/HQQw819eGElFGx+fnnn/Hrr79i8ODBANwfDAAwatQo3HHHHbjllltC8OiaxsjXFeCequAVExODzp0748iRI018VKFhVGw+/fRTHD9+HO+//77vi8Q//vEPjBo1CuvWrcPEiRND8wCbqDniUx8t5T25LTDqOdASNCY2bUlT4rNkyRK89tprWLp0Kfr379+cwzREY2MjyzJ69OgBABg0aBCysrKwaNEijBw5slnHG04Njc2+ffuQl5eHK6+80rdN0zRs3LgRb7/9dqtavSUU7zlmsxmDBg2KqKm04cZKCTopi8WC9PR0rFu3zrdN13WsX78ew4cPD3id4cOHY+3atX7b1q1b59u/a9euSEtL87vN8vJybN261bfPiBEjUFxcjB07dvj22bBhA4QQyMjICM2DCwGj4gNUJSTS09PxxBNPRFzvBKNi8/jjj+OTTz7Bxx9/jI8//hiPPvooAOC9997DzJkzQ/cAm8Co2AwdOhRms9nvg89ut+PYsWPo3LlzaB5cExkVG7vdDlmW/c5seH/3JrYiQXPEpz5ayntyW2DUc6AlaExs2pLGxmfx4sV4+eWXsXjx4la7dGGonjtCCDidzmYYoXEaGpuhQ4fi008/9X0P+/jjjzFkyBBccsklWLlyZRhH3vxC8bzRNA379u3znUBpk8LWUpNaNO9SNytXrhSZmZnigQce8Fvq5i9/+Yt49tlnffv/9ttvYtCgQWLJkiUiMzNTvPTSSwGX5xs5cqT4+uuvxe7du8XcuXMDLgl68cUXi61bt4pff/1VnH322eLPf/5z+B54PRkRn2PHjompU6eKa665Rhw7dsxvWaFIYtRzp7oNGzZE5OobRsXmkUceEZMmTRJr164VmZmZ4q677hKTJk0SFRUV4XvwJ2FEbDIzM8WQIUPE3//+d5GVlSV2794t5s2bJ8aOHSuKi4vDG4CTaI74FBUViZ07d4rvv/9e9O/fX3zxxRdi586doqioyLdPS3lPbgua4znQWjQ0Ng6HQ+zcuVPs3LlTjB8/Xjz77LNi586d4vDhw0Y9hGbV0PgsWrRIpKeniy+++MLvu0akfaaGQkNj89prr/mWZs/MzBRLly4VgwcPFh988IFRD6HZNDQ2NbXm1TcaGpuFCxf6njfbt28X8+fPFxkZGSIrK8uoh2A4Tt+gepk2bRoKCwvx0ksvIS8vD4MGDcLixYt9ZdBHjx71O0t/yimn4LnnnsMLL7yAf/zjH+jZsyf+9a9/oU+fPr59brzxRthsNjz44IMoLS3Fqaeeitdff91vjuKzzz6Lv//977j22mshyzLOOeccLFiwIHwPvJ6MiM/atWuRk5ODnJycWmXle/bsCcOjrh+jnjstgVGxueeee6AoCv7v//4PLpcLI0aMwNKlSxETExO+B38SRsSmT58+ePXVV7Fw4UJcdtllMJlMGDJkCBYvXhxxXeabIz7ffvst/vrXv/p+v+OOOwAATzzxhK9XTUt5T24LmuM50Fo0NDYnTpzAxRdf7Pt90aJFWLRoES655BI8+eST4R5+s2tofN599124XC7fe4LX7bffjnnz5oV17M2tobGx2+145JFHcOzYMURFRaF379545plnMG3aNKMeQrNpaGzakobGprS0FA888ADy8vLQrl07DBkyBP/5z3/Qu3dvox6C4SQhIqgmlYiIiIiIiIjajLaZziIiIiIiIiIiwzEpQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBAmowdARFSXhQsX4p///Get7WPHjsW///3v8A+IiIioleJnLhEZgUkJIop48fHxWLx4ca1tREREFFr8zCWicGNSgoginqIoGD58+En3s9vtiIqKav4BERERtVL8zCWicGNPCSJqkXJzczFgwAD897//xd13342RI0filltuAQAUFxfjwQcfxLhx4zB06FBcccUV2Lp1q9/1S0tLcdddd2H48OGYMGECXnnlFTz11FOYMmWKb5+FCxdizJgxte57wIABePvtt/22vf/++zj//PMxZMgQTJ48Ga+//rrf5ffeey8uvfRSrF27FhdeeCGGDx+OK6+8Evv27fPbT9M0vPbaazjnnHMwZMgQTJw4Effeey8AYPny5RgxYgQqKir8rrNhwwYMGDAAu3fvbmAUiYiITo6fuVX4mUsUeqyUIKIWQVVVv9+FEACAp59+GlOnTsWLL74IWZbhdDpx/fXXo7S0FHfffTeSk5Px7rvv4rrrrsOXX36JtLQ0AMBf//pX/PLLL7jvvvuQmpqKN954AwcPHoTJ1PC3xcWLF+P555/HnDlzMHr0aOzYsQMvvvgioqOjMWvWLN9+R48exdNPP425c+fCarXi6aefxp/+9Cd89tlnkCQJAPDggw/ik08+wezZszF69GiUlJTgiy++AABceOGFeOqpp7B69Wpceumlvtv96KOPkJ6ejoEDBzZ47ERERDXxM5efuUThxKQEEUW84uJipKen+2179NFHAQDDhg3D3/72N9/2999/H/v27cNnn32Gnj17AgDGjRuHc889F2+88Qbuuece7Nu3D19//TWef/55TJs2DQAwZswYTJ48GXFxcQ0aW3l5Of71r39h7ty5uP322wEA48ePh81mwyuvvIIrr7wSiqIAAEpKSvDuu+/6xiWEwG233Ybs7Gz06dMHWVlZ+OCDD3D//ffjmmuu8d2Hd4wJCQk4++yzsXLlSt8XpIqKCnz55Ze46667GjRuIiKiQPiZy89conBjUoKIIl58fDyWLl3qt81isQAAzjjjDL/t69evR3p6Orp27ep3pmfUqFHYvn07AOD3338HAL+y0djYWIwbNw7btm1r0Ng2b96MyspKnHvuuX73d9ppp+Hll1/GsWPH0KVLFwBAly5dfF+OAKBPnz4AgOPHj6NPnz74+eefAcDvjExNf/jDH3Ddddfh0KFD6NatGz7//HOoqooLLrigQeMmIiIKhJ+5VfiZSxQeTEoQUcRTFAVDhw7125abmwsASElJ8dteVFSELVu21DrLAwDdu3cHAOTn5yM2NrZWg66at1UfRUVFAIDzzz8/4OVHjx71fUGq2b3cbDYDABwOBwD32amYmJg6zxyNGTMG3bp1w8qVK3HnnXdi5cqVOPPMM5GYmNjgsRMREdXEz9wq/MwlCg8mJYioRfPOC/Vq164dhgwZgoceeqjWvt4zPampqaioqKjVObygoMBvf6vVCpfL5betpKSk1v0BwGuvvRbwC1avXr3q/VgSExNRWVmJ8vLyoF+SJEnCjBkzsGLFCkyfPh2//fZbrQZfREREzYGfufzMJWoOTEoQUasyduxYrF27Fp07dw56FsZ7Bujbb7/1zR2tqKjAunXr/L6YdOjQARUVFTh+/Dg6dOgAAFi7dq3fbY0YMQJRUVE4ceJErbLWhjrttNMAAB9//LFfs66aLrnkErz00ku477770KFDB4wfP75J90tERNQY/MwlolBgUoKIWpWLL74Y7733Hv74xz/ihhtuQLdu3VBcXIxt27YhLS0N1113Hfr164cpU6bgoYceQnl5OdLS0rBkyZJapaWnn346oqKicN999+H6669Hbm4u3nvvPb99EhIScPvtt+Oxxx7D4cOHMWrUKOi6jgMHDuDnn3/Gv/71r3qPvXfv3rj88svx5JNPoqCgAKNGjUJpaSlWr16N559/3rdfhw4dcPrpp+P777/HzTff7GvqRUREFE78zCWiUGBSgohaFavVijfffBMvvvgiFi5ciIKCAiQnJyMjI8OvydaTTz6Jhx56CI8//jhiYmJw1VVXYejQoVi9erVvn+TkZLz00kt4+umncdtttyE9PR3PPfec70yP14033oj27dtj2bJlWLp0KaxWK3r27Flrv/r429/+hs6dO+P999/H66+/juTk5IBnZc466yx8//33dTboIiIiak78zCWiUJCEd+FhIqI2zrse+bfffmv0UE7qzjvvRF5eHt555x2jh0JERNRg/MwlIi9WShARtSB79uzB9u3b8dVXX+Ef//iH0cMhIiJqtfiZSxQeTEoQEbUgc+fORVFREa666iqce+65Rg+HiIio1eJnLlF4cPoGERERERERERlCNnoARERERERERNQ2MSlBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQJqMHQC2Drgtomt7k2zGZZKhq02+nNWJs/B06dBDdunX3/c74BMfYBMfYBBeK2CiKDFmWQjQi8uJnbvNjbOrG+ATH2ATH2NStqfFpzZ+5TEpQvWiajuLiyibdhixLSEmJQ2mpDbouQjSy1oGxqe2Pf7wGH3+8CgDjUxfGJjjGJrhQxSYxMQayrIRwZATwM7e5MTZ1Y3yCY2yCY2zqFor4tObPXE7fICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgo0uiYiIiIioxRBCQNc1iDD3U5RlCU6nE6qqspljDYxN3eoTH0kCZFmBJLXOFTbqwqQEERERERFFPCEEystLUFFRCsCYA9/8fBm6zmUvA2Fs6laf+MiygpSUTlCU1rnKRjBMShARERERUcTzJiQSEpJhsVgBhP+MsskkQVVZCRAIY1O3k8dHoLg4H6WlhUhKSgvbuCIBkxJERERERBTRhBC+hERMTJxh4zCZZACsBgiEsalbfeITH5+IoqITEEKHJLWd9o9t55ESEREREVGLpOsaAOGpkCBqnRTFXTPQ1qbBsFKCiMJLF5BKdUjlOuAQ7tSoVYaeKAMxzJMSERFRbVVNLdteE0BqS9zP73A3cTUakxJE1OzkIyqUHQ4omU7IR1RIzsD7iVgJWncztL5mgHMSiYiIiIhaPSYliKh5aALKVgfMP9mgHFF9m4VVgtZNgUiQIaIkSDoAu4BcpEHK02Da5YRplxPKQRVRrxfDNSEaYjBLNYmIiIiay5Ilr2HdujVYsuQto4dCbRCTEkQUcspeJyyflEPO1wAAekcF6ogoqAMsEB0UQA5SeukSkHNdUHY6Ib4ElEwXlEwX9G4maFeZgNQwPggiIiKiJnrssYdgs1Xi0Uef9m1btepTPPPM45g//25cdNElDbq9TZt+xR133BLwstdfX4ZBg9IbNc4rr/wj/vCHyxt13ZbsD3+4EFdeOQszZrS9xx5JmJQgotBxCFg+LoN5kwMAoPUxw3lWDPReZkCqxxxQswS9l8X9b5EZ9j8mwPxtJZRDKhxPHYV5TBQc58cCVvaeICIiopbn/fffw8svv4gFCx7GmWee3eDrDx06DJ988oXftsWLX8Wvv/6CgQMHN3pcMTExAGIaff3WTFVVKIoCqT7fZalRmJRo5bKzs3HfffehvLwcFosF9913H0aOHGn0sKgVkvJVRL1ZCvm4Bj1BhnN6HLQhTZh2IQHaECu0wRaYtzlh+V8FTD/bIe9zwn5NO4hOfPsiIiKilmPp0tfx9tv/xuOPP4OxYyc06jbMZjNSUqpKR1VVxZo1P2LGjJl1HjSXlpbiX/96AWvW/ABVVZGePhR33vln9OjRE0Dt6RuqqmLhwn/giy/+B5PJhEsvnYn9+7MQHR2D++9/CADgcDiwaNHL+Prr1aisrEDfvv1x221/wpAhQwG4K0L+9a8XcP/9D+Oll/6BwsICjB49Bvfe+yDi4tzLun733dd4441FOHw4F9HR0RgwYBCeffYlyLLsqzLp1asPVq5cAU3TMG3ahbjttj9BUZQgY+iH226b7xsDAGzZsgmLFr2MPXt2wWKxYsiQoXj00adx113zcOzYUTz//DN4/vlnAABr1vzqG/c99zyAV19diNzcQ/jkk9V44IF7MHDgYNx++598tz179h8xbtwEzJ59MwBgwoSRuPvu+/H9999i69ZN6NKlKxYseBiyrOCZZx5DVlYmhg4dhgcf/DuSkpIb9RxojfitvpWzWq14/PHH0bt3b2RlZeHWW2/F6tWrjR4WtTLyERVRi4shVQio/c1wXJkQupU0ZAnaKVGIHpOE8tePQtnhRPTLxXBcFQ9tEHtNEBERUWQTQmDhwn/gs88+wXPPLcTw4af4Xf7mm2/grbeW1nkbb731Pjp27Fhr+5o1P6CkpBjnnXdBndd/8MF7ER0djeee+ydiYqLx/vv/wfz5t2H58g8QHR1da//ly5fhm2++xAMPPIIuXbrh3XffwsaNP2PixMm+fV544Rnk5BzA3//+JFJSUvHNN19i/vzb8M47HyAtrT0AoLKyEh9+uAJ///sTsNvteOCBe/H22//GLbfcjvz8fDz00P249dY7MHHiZFRUVGDTpo1+4/j55w2wWqPwz3++jkOHDuKJJx5BamoarrrqmoBj+OqrL/zGcPBgDubPvw0XX/wH3HXXvQCAjRs3QAiBxx9/BtdddxUuueQPmDbtQr/7raysxHvvvY37738YsbGxiI2NrTO+1f3734sxb958/OlPd+GFF57FI488iOTkZNx++52IiorF3/72Vyxa9DLuuWdBvW+ztWNSopXr0qWL7+fevXujrKwMQgiWH1HIyEfcDSmlSgHX+Gg4L4gN3jOiCaQEBc5r20H5ugKWLythfbMUjqsSoA1lYoKIiKgtsqwohWlHkCW9mok+xAr1svgGXWfdujVwuVz45z8X1UpIAMDFF8/AlClT67yN1NTAjbU+++wTjB59Gjp0qJ2w8Nq6dQv27NmN//53NcxmMwBg/vy/4Mcfv8O6dWtw5pm17/vDD1fgmmtuwIQJkwAAf/nLfVi/fq3v8mPHjmHVqk/x0UerkJycAgC44YY5WLPmR3z55ee4+uprAQAulwt/+ct9voTKeeddgN9+cyceCgryoWkaJk2ago4dOwEA+vbt5zcOq9WKe+5ZAIvFgl69eiM39xD+85/luOqqawKO4brr5mDdujW+Mbz99r8xdOgw3HnnXb7b7NOnLwAgKioKsiwjJibGr/rEO+4///mv6N27T9C4BnPBBdMxefJZANy9OubPvw033XQrRow4Faqq44ILLsYnn3zY4NttzZiUiHAbN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkKGSkUg3WN0ogVQo4J0XDdV5s/XpHNPoOJbjOjIVIUmBZUQbrO6VwXJ3QtGkiRERERM2ob9/+KCwswOLFr+LZZ19CVFSU3+UJCe2QkNCuwbd74sRx/PLLBjzyyBN17peZuRcVFeWYNm2K33aHw4EjR3Jr7V9eXo7CwgK/pplms9kvYZCdnQlN03D55Rf7XdfpdPrtFxsb61fhkZKSgqKiIgDuBMSIEafimmuuwGmnjcPo0adh8uQzERsb59u/X7/+sFgsvt+HDBmKl1/OR3l5eb3GkJm5DxMnnlFnfAKxWq2NSkgAQJ8+VY/fmyzp1at3tW3JvhiQG5MSEa6yshIDBgzApZdeinnz5tW6fNWqVXjiiSfw8MMPY9iwYVi2bBnmzJmDL774AsnJVfOUDh8+jGeeeQaLFi0K5/CpNXMJWN8shVymwzUqqvkTEtWop0RBALCuKIP1vVLYb0mE3tUclvsmIqLWq7CwAKtWfYauXbth0qTJPJET4ZwzExDeOgnAZJIBVW/QdTp06ICHH34c8+bdjL/85U4888yLfomJxk7fWLXqUyQktPNVMwRjs1UiLa09XnzxlVqXJSQkBL1ezee/EMLvNk0mE954Y7lvP0WRoGnCb6qDyeR/uClJEoTQPfsrePHFV/D771uxYcM6vPvuW1iy5DUsWfKW72A+2GtQkgKPwash0y0CqZk4AgBZlv1iALh7b9RU/TF7h+W/rSoG5MakRISbNGkSJk0K/kazdOlSXH755ZgxYwYA4OGHH8b333+Pjz76CLNnzwbgznbeeuuteOCBB9CjR4+wjJvCSBeQD6lQdjogH9MgF2sQEoBoGVo3E/Q+Fmj9zCGfUmH5ogLKIRVaDxOcF8eFLSHhpZ0SBVeZDsuqCliXlcI+LxEiQQnrGIiIqHX5738/RlbWPuzZswtdu3arVUreUFKpBmWfC+oIa7NMbaSWo3PnLli48DXMm3cz7r77T3j66Rd8B76Nmb4hhMD//vcpzj33/FoH/jX17z8Q+fl5MJvNdU7z8IqLi0Nycgp27tyBIUPc1dculwtZWZm+XhH9+vWHqqooKSn27WMyyVAbmLCRZRnDho3AsGEjcMMNN+HCC6fi55/X+3pk7N27B06n01ctsWPHdqSkpCI2Ni7gGGrq27cfNm36FdddNyfg5SaTGZpWvzEnJiahsLDA93tlZWXAShNqOCYlWjCn04kdO3Zg7ty5vm2yLGPcuHHYsmULAEDTNNx5552YOXMmJkxoXJffqttu2oep9/pNvZ3WqFGx0QWUbQ6YvqyAnKcF2EGDku0CfrBBT1GgTomBNioqJMkDKccF01obRLQE5x/bQbY0zxKdNeNSMz7aGTFQj2sw/WaH9cNyOG9oF/bkiNH4ugqOsQmOsSGqraysFFlZ+3y///rrL01OSkQtKnF/RusC6qjazQSpbfEmJu644xa/xERjpm/89ttGHD16GBdcMP2k+44cORqDB6fjr3+9C3PnzkOXLt2Ql5eHNWt+wAUXTPetwFHdjBkz8eabb6BLl67o0qUr3n33LTidDl9FQvfuPXHmmVPxyCMP4Pbb56Nv334oLS3G+vXrMHz4KRgx4tSTjmvHju347bdfMHr0aUhMTMKWLZtgs9nQvXvVeBwOB5555nFcffW1OHQoB2+9tRRXXfXHoGMoKirCL7+s941h1qzrcO21V+DFF5/DhRdOhyTJ2LjxZ1x00SWIiopCp06dsGXLJkyefCbMZgsSExODjnfEiFPxyisL8fPP69G+fQcsXfo6AH6OhgKTEi1YUVERNE2rlTlNSUlBTk4OAODHH3/Ehg0bkJ+fjxUrVgAA3nrrrTpLtQIxmWSkpMSdfMd6SEpqWjlVpBAuAVGoQpRpkMwSpCQTpCaeqa9vbPRCFc4lJ6DvtQMA5L5WKKPioPSPgpTqflmLYg16lh3qhnJgtx2W98sg71RhuSENclLjX/rCJWBfmQshAMsVqYjt3bBmT/VlNiu1nnOB4iNujIX98GEou51ot1PANLF5xhPpWsvrqjkwNsExNqFns9kwbdo0nH/++fjzn/9s9HCoAQ4cOAAAGD78FOzatRO7d++C3W6vKuPWBcyfV0DvZYY2+CS9jHQB2AXkPA1OzYl1X/+ELp0Ho0uXrs37ICjiVa+YuOee+XjqqecDThU4mc8++wRDh2agZ89eJ91XlmU8++xLePXVf+HRRx9CaWkJUlJSMWLEqUGPCa6++loUFOTj4YcXwGx2LwmakTHcr7/DggWPYOnS1/HSS88hPz8PSUnJGDIkA2eddU69HkNsbCy2bNmMFSveQWWlDZ07d8bdd9+P9PQhvn3GjDkNaWntceutc6BpKs4770JcccWseo+he/ceeO65hXjttX/hk08+RFRUNIYOzcD06ZcCAGbPvgXPPPM4Lr/8YjidTqxZ82vQ8V5wwXTs3bsHf/vbfYiKisINN9yEw4dZKREKkqg5MYYi1oABA/waXR4/fhwTJ07E+++/79fY8qmnnsKWLVvw7rvvhuy+XS4NpaW2Jt2GLEtISopFUVEFdL0RTztdQCrWgXJ3iZVIkIEEObzlkJ7qBOU3O+QsJyRXjYtTFWiDLdDGx0Ak1z9B0ZDYyNlOWJa5m0vqnUxwXRQHva+lzutIOS5YVpRCPqFBT5ThvCUJIqVxCRRlbSUsH5dD62uG86bEZqtMuOii8/Df/34O4OTxkQ66YP1nEWCRYP9zMpDYdqZxNPl11YoxNsGFKjYJCdEwm9vO660+nn/+eRw4cADdunVrdFLC5dJQXFzZpHHIsoSUlDgUFJTz+V9DsNisWvUZ1q9fg0svvQxZWZnYunUzLh/7B5xa0A+Oy+Ih56qIfr0EAFDx91SYf6yEemoURFLt14D17RKYfnd3O3gn8yNslndDHhqH+fP/jPj4hp0YCrdIfe6oqor8/MNITe1y0ukKzakxUxRaA1VVMXPmdFx22ZW48spZAfcJdWwee+wh2GyVePTRp0N2m0aqT3zqep4nJsa02s9cVkq0YElJSVAUBfn5+X7bCwsLgy4b1BSh+mDSddGg25KznTD/bIey1wmp0v96erwMbaAF6tgo6F2at9GhsscJy3/LIee7p0oIqwSttwkiTgZcAnKhBvm4BvlHG0xrbFDHRMF5Xhxgrf9B+8liI2c7YXmjBJILcI2LhvP8WMAkuc/I1KWbCbY7kmD9sAymzQ5YXimC/ebEhicmVAHrt+4vys7z49x324x5zZqxCBqfria4JkbD8oMNptUVcDZwqa7WoKGvq7aEsQmOsQmtAwcOIDs7G5MnT0Z2drbRw6EGOnTIXWXarVsPWK1R2Lp1M7KWbMKYvj2gd7JBVEt4Wz4rd3832e2E/fakWrflTUiUucqxtXAnkCTB5XJi27atGD/+9PA8IKImOHLkMDZt2oiMjBFwOBz4z3+Wo6Sk2LfUJVEoMSnRglksFqSnp2PdunWYMsW9xI+u61i/fj2uvfZag0fXdNIJFdaV5VD2u8sRhAJo3U0Q7WRAAFKxDvmICvNGO8wb7VDTLXBOj4NoF+IMoiZgWVUB8xp3pYjWxwzXpBhofczuhED1MRdrMG20w/yTDeb1dihZLthnJUB0aPpLTT6iImqpOyHhPC8WrjNiGnYDZgmOmfEQMmD+zQHr8lLYb02s9RjqYtpoh1yqQx1sgd45st4+XJNjYN5oh+k3O1ynR0N0jKzxEVFkC8US3E899RTuvvtubN68OdzDpyZSVRVHjhxBTEwMUlJSkJCQAEUxYXdxJjRdg1Su+00dN//smT55rHbn/eq2FeyCEAJd47siB/nYt28vkxLUIsiyjM8++y8WLnwegHtZ04ULX6u1AghRKPBbe4SrqKjAwYMHfb/n5uZi165dSE1NRVpaGq6//nrcfffdSE9PR0ZGBpYtWwa73Y5LLrnEwFE3nWmjHZZPyiC5AL29AufkGGjp1tpVB5U6TFsdMH9XCdMOJ5QDRXBcngBtQN3TGepNFbC+WwrTdidEtATHjHhoQ4PPIxWJClxTY+EaGw3rf0ph2utC9CvFsN2cCNGpCS83h4B1eSkkJ+CcGtPwhISXLME5Ix5ygQblgArzVxVwnVfPXiGagPk7d5WE66xG3n9zipbhnBID62cVsHxeAcf1DV/vOxApX4V8RINcpEGYJYg4GVpvMxDXPM09icgYTV2C++uvv0bPnj3Rq1cvJiVaoMOHc6HrGrp16wFJkmCxWDCwshv2aDuRVZaDXq7BkPJrN5UWCXV/Fmwt3AEAuKD3VCwxfYwDB/bD5XLBbOYy1hTZOnbshFdffcPQMdx//0OG3j+FD5MSEW779u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJd+Zm8eLFSE5ONmrITWb6sRLW/1VAyIDzHM8BeLC+ETEy1LHRUEdGwbKqHOZ1dliXlsBxdUKdyYN60QWs75TCtMMJPUWB/cZ2AeeNBhQnw3F9O4hVFTD/ZEPU4mLY5yZBpDauisPycRnkfA3qIAtcZzYxIaBIcFyegOgXimD+wQYt3Qq9+8m/HCn7nJBLdKj9zM0+Vaax1LHRMK+1wbTbCecxtfHVEkJA2eKAea0NyqHAZ8G07iZ3xcxgC5d5I2oFmroE99atW7Fq1SqsXr0aFRUVUFUVCQkJuOmmmxo1Hq541XwCxcbdrE5Cjx493Ns1gaF5vbAHO7GzaC96uwb5pm/63VaBDvN6G7TxtT+bixwlOFCWi2RrO/SM7ooenXtgz549OHHiGLp1695sj6+pIvW5E2njIWpOsiy1qec8kxIRbsyYMdizZ0+d+8yaNQuzZgVuONPSmNbZ3AkJM2C/vh30PvWseDBLcE6Ph97VDMv7ZbC+WwqHpV2TKibM37qrL/RUBfab2jV8WogsuXs+uATMG+yIeqsEtnlJDZouAQByphPmTQ7oCTIcl8WHpLGkSFbgPD8W1pXlMH9VAcfsxJNex7TZAQBQT214h+iwMUlwjYuG9X8VMG+wwXlxw3tLSKUaLB+Ww7TbPR9YT1Og9bNAT5YhaYBUoEHJdEI5qEJ5qxRaNxMcVyQ0OuFERJGvPktw33XXXbjrrrsAACtXrkR2dnajExJc8So8qsemsPAYoqPNyMgYhJSUOIhKHYOT+kM6sAo7i/Zi+nY7JC3w56/l43JET0uDVO3zvRInsLXAXSUxLCUdSrGOfomdkKPuQ0VFEVJSBjfvgwuBSHvuOJ1O5OfLMJkkmEzGVisaff+RjLGp28njI0GWZSQlxfitdNLaMSlBEUM+4ILlv+UQJsB+XQMSEtWop0YBmoD1w3JYl5fCNj+p/tUN1ceS7YT560oIC2C/NqHxfSokCc7pcZDzNChZLpi/qYTrnAZ8yOvufhYA4LwgFogN3Ru9OjIK5u8rYdrrguuQC3q3OqofHALKDgeEBe5pNBFMHRkFy+oKmH5zwHleLGCtf8ykYg1RrxZDLtKhpypwXBoHvbe5diJICCh7nDB/VQnlkIroFwvhuCwBWkZkx4aIGqc+S3CHkqrqxq941YrVis0xF3Z//DscnVTExiajoKAcKNUQZ45Fj7guOFCWi9ySo+gW1znobRbtLvGbphlllbDFk5QYnpIOaECHX2Oh7i3HzpF7MXDgsGZ/nI0Vqc8dVVWh6zpUVQAwbvWLtrr6Rn0wNnWr3+obArquo6ioEiaT0++y1rziFZMSFBlsOqzvlUISgOPi+JMucVkXdXQ0pHwNlh9ssL5fBvucdg0rr3cJWFeUucdySTxE+ya+TGQJjj/EI/r5Ipi/r4SWboHetX7TH5RtDiiHVWhdTaE/4FUkuCbHwPphOczfVMJxXfAeDMoOh3vFj1OsgCXCS8liZKjDo2D+1Q7TJgfUsdH1u16ZjqjXSyAX6VAzrO6qlGCPVZKgDbRC62eB+dtKmL+phPWdUji0eGgjIriShIhCSggBKUD12qWXXtrk2zZqxatWTQj3sazZnaz2xsbxXA4qMovRLb8TzHkS9E4Ckt0ds2HJ6ThQlotf87eiW1xnCAsgOQPc9mEX9A5VBwtHtTwcqTyODtFp6BjdHgDQNdad1Mg9mNsi/iaR9tyJpLEQNbdIe/01N9bXUESw/K/CfTA41Ap1ZNMPvl1nx0LvqEDJcsG0wd6g65rW29xjGWyBekpoDjBFsgLntFhIOmD+qp5rzwsBy1fe5TdjQzJtoyb1lCjoiTJMu5yQCmrPlfUybXbHsKUccKtj3eM0bazn314IWN/39O1It8BxRR0JieoUCa6psXBclQBIgPU/ZVC2O5ow8uCkUg3KdgfMX1XAvLoC5m8roOxyABU8I0HU3MK9BDc1j6jXShDzcAGg+X/Rz8l3NxTvYe2CmBeKIBVoiHqlCAAwInUITLKCzfnb4dScQSsn5aP+/Yc2Ht0CABiZluFLXCWY4xBvjkXB74ehHXcANr5/ExEBTEpQBJDyVJh+tUPESHBcGheag2+Tu5mjkADLNxWAs56ZRpsOy3eVEBLgPDe0cynV0Z4EwG4npKN1LyEGAPJ+F+R8DVp3E/TezTSnzCRB9SQalB1BDqY1AWW/C8IquZdBbQH0rmboKQqUwyqkkuDJFi9lqwOmPe7+IY4rEwClYc9BLcPqvh7grrIJ0AytseQcF6xvliD68UJEvVUKy9eVsHxbCcvqSkT9uxRRj+TD8epxSLmukN0nEfmrvgS3l3cJ7uHDhxs3MGoQZb8LkkMADv/vBAfLDwMAesR1AQBYV5ZBLnfvE2OKxpCkgbBrDvyWv803a0DU+JiQynXAJaDsckB1uLDl2O+QJRmnpA6FHifBdkciRJoJXWM7AdlOlDyyGzFPFEI+xPduIiImJchwlq8rIQnANSkGiAndU1Lv7J7yIJULmH6p39xc8082SJUC6qlREB1CPLtJkeCa6O7Obfn+5NUSpl/dZ/nVUc1bnaCluxMepp2B6lHdZ38kl3u1iYYerBtJG+h+XMqewI/Lp1KH9b/lAADHjDjA3LjHqGVY4ZocA8khYH27BHA1seROFTCvKkfUK8Uw7XBCxEpwjY6C45I4OC6Ph+OiOPd0GqsE7ZcKWF8qguXT8von4IjIT0VFBXbt2oVdu3YBqFqCOy8vDwBw/fXX47333sNHH32ErKwsPPTQQ61iCe42o3oZdI3355zyXABA97iu7g3VKtCECRj12DnQOyv4qssmOEa6k/Ouif5TAyUVsKyqQNS/S7H11Z9Q4ahAelJ/xJvjIOmA3sUMES2hS2wnAEBuxRFIDgHTzw2r5iRqbnPn3oAffvjW9/u+fXsxe/YfMXnyWFx33VUoLS3BRRedg7y8EwaOklob9pQgQ0nHVChbHe4DrnH1nPvfAM7JMTBtdcD8gw3qadF1r3yhCZh+sUNIgOusJi67GYQ6KgqWbyqgbHVAOkeDSA7SrMahw7TNAWEG1GHN2zxR72KCniBDPuACynUgzj8xJOe4qzr0Hi2jSsJLHWhxL+m52wl1dPDnlnmDDVKFgGtUVJMrUlxTY6AccEHJdsG8xgbX5EY+j5wCUW+UuCtUoiQ4psW6m7jWev5GQ1WBhN0Czg8KYF5jg5zlhGN2IkR8M+acNQH5uAZU6pBUAT1JgUhRGryyDFEkaYtLcLclUnlVokGqlpRwOBw4Unkc8eZYJFsT3ZdXK3ZTR0Wh88A09Dl3KPbt24O11q0Yf+dp0NsrsPxQ7YSHKqDscUDVVaz56ntAAGd2nuC+zHt/EtyVEgAOVRzBWADy8ZNXTlLLNWHCyDovv/76GzF79s1hGcvu3buwePEr2L17J2w2G1JT0zBkSAbuvfcBmM3u73g//fQ9KioqMHHiZN/1XnllIdq374DHHnsG0dFRSEhoh/POuwBLlryGe+99ICxjp9aPSQkylHmDzd1QclJMszRQFJ1MUNMtMO1wwrTJXufBqZLpglymQ+1nbtSKHfVikeAaHQ3Ld5VQfndAnRT4oNW01dNY8lRrg1aPaBRZgpZugXm9HaZdDqij/GOk5LhLS1taUkLvbYawAMo+J6CKwAfMetVZKtekECTFZAmOGXGIfq4I5m8r4RoZBTQ0OeASiFrmTkhoXUxw/DGh7uejRYJ5cjxKewpY3imFkuVC1MtFsN+YGDzp1UhyrgvmH2xQ9jjdJdDVCLN7ZRbX6KhGrZxDZLS2tgR3WyOVVevfUC0PcPBgDnSho3dCD1/vB6l6pYTnu8nZZ5+LzMx9+PrbrzD4jiFoZ0r0vwNVQCQo+GbrGhSXlyA9qT86x3Z0X+ZNckjwreCR06kAwgJ3gleIZukbRcb75JMvfD+vWvUpPvroA7z++jLftujoqu+BQghomgaTKfSHZ0VFhZg//zZMnHgGnn/+ZcTExODw4Vx899030HUNgPs73gcfrMB5513o18D38OFDuOyyK9CxY0fftvPPvxDXXXc1brvtT4iPb/jy60Q1cfoGGUcT7moA2b2MY3NxjXcfbCrb6m5AaNrkmS5xapimS+wKPq1A2eEMy1i81MFWv/utTs5xQUiA1q2F5TBNErS+FkhOd3+OQJQ9TsjFOrS+Zoi00Dw+kWqCOi4aklPA8mVFg69v+W85lEwXtE4K7HPa1T9BlqDAfkM7qEOtkAt1RC0rqTVvutFsOqzLSxG9sBimbQ5AE9D6muEaGQXXqChfrxHTFgeiF5XAuqwEUmHo+moQETWVX1KiWqXE/v1ZAIA+8T2q9q2o9t7pmdLXsWMnjB9/OpxOB9555204nf6fl3KpjswT2fjuyDpYZDMu7HF21e1571oC4s1xSLQk4HhlHmzJGiSHgFTChpetVUpKqu9fTEwMZFn2/Z6TcwBnnz0RGzasw/XXX4UzzjgN+/btwWOPPYQFC+72u50FC+7GY4895Pvd4XBg4cLnMX36uZg69XTMnXsDtm//Peg4fv99GxwOO+6++37069cfXbp0xejRp+Gee+6H1er+rllUVIRNmzZi/PjTfdebMGEkDh/OxQsvPIsJE0ZiyZLXAADdu/dE+/btsWbNDyGMFrVlLewog1oTOcsFqUJA7W8GYpsvP6b3NEPESFCyXO5O19EB7suuQ9nhgLBI0NLDMF0iXoac4wIq9dp9NHQB5YALwhy+6gS9txnC7G4CVv2MjVSiQS7WoXdUAsctwmkDLTDtdMK0xwlnv9pn731VEqeFduqQ88wYmDbZYdpoh2tKTL0TC8oeJ8y/2CHiJNjnJDa8x4pJguOqeOANHaZ9LlhXlMIxK6FJZ+Ckoyqi3iyBXKhDbyfDNSXGnSyr2XvDKWD63b06iGmnE8r+IthnJTRped86qQLKXieUXU7I+Rqkch0iWoJIVKD1NUMdZAWCdMknorZHKg08fWP//mwAQK+EHrWuA8CvivOss85Gbu5BHDiwH2+8sQjX2c9GSlQShBDYuXMn/pP9CXShY3qvab6pIP6DcN9W17jOKEAWci0n0B+dIB9ToSXy/aqteu21f+L22+ejQ4eOaNcusV7XeeGFZ5CTcwB///uTSElJxVdffYH582/DO+98gLS09rX2T05OhtPpxJo1P2LixDMCLmW8bdsWxMTEoFu37r5tn3zyBW688VpccskfMG3ahX6VHQMGDMLWrZtx3nkXNPxBE9XApAQZxrTVXbmgDW/magBFgjrYCvOvdii7nQGXtTTtcLqnS4y0Nss0Ej+yBG2gBeaNdih7ao9HOq5Bsgtovc3hm6NvkqCnmaAcUYFyAcS779fbT0JrYVM3vLzjlo8EmLNbpkPZ7YQeL0MbHOID5xgZrjHuaTqmjXa4zq7HSi42HZYPywAAjkvia/X2qDdZguOqBMgLi2Da7oS2se5pS3WR8lREv17sTh4OscDxh/jgySmLBPXUKKgZVlhWV8D8kw1RS0rguDw+tK9x3d37xfJlhf/ZTK8cFaatDlhM5dDGREPMaBnL2BJR8wpUKeFwOHD48GG0M8egfVRKwOuJaglYRVFwxRWz8M47b+LgwRw8s+0VdI3tBJtqQ569EABwbrfJGJU2PPAgPG+f3WI7YSuycBDH0B+dIB3XgIFNfoht0ocfrsCuXTvDep9DhgzBxRf/IWS3d+ONt+LUU0fVe/9jx455poKsQnKy+3l73XVzsG7dGnz55ee4+uprA4w5A1dddQ0efPBexMfHY/DgoRg1agzOPfd83/SL48ePIjk5xS9hkZKSClmWERMTg5QU/+WPU1NTkZWV2ZiHTFQLkxJkDFXAtMMBoQBqqA8IA9CGWGD+1Q7TdkfApISc5S7D9E6taPbxDHYnJUw7aycllAPuqQZaz/AmAkSaAhxRIeep0OM9K1ccbJn9JLxEqgIhA1KARmJKjguScDfEbI5VRdTRUTB/70lKnBlz0vswr7dBLtGhDrdCG9LEap0YGY6rEhD9z2JYvqiAOsTa4KoLqVRD1JISdxPQ8dFwXhhbv4oLswTnBXHQO5pg+bAM1hVlsMfLIekzIZXpsC4rgXJIhZDc7x3qMCv0LiaIeBmSXUA+pkLZ7YTpNwdMa22wbc2FPDMe+oBmfG1X6DBtdUA+5IKcpwECgFVyrwDU1wytvwWQOV+cyEjVKyXgmdF38OABCKGjd3zPgGeOAdSqCouNjcX119+In376Ab+t/8q3nGjnmA44p9sZGJTYr45BuP/rFtsZ0IBDzqMARsC6qgKigwJtYPNWalJkGjhwUIP2z87OhKZpuPzyi/22O51O9O0b/Pl366134MorZ+HXX3/Bjh2/Y/nyZVi+fBkWL34TqalpcDgcsFjq/xy0WKxwOLh6DIUGkxJkCHm/C5JNuBMSYZgWoPW1QFgk9/KQLlHrS4Zy0FMR0D08B99aXwuECVD2OgFN+B2wKJ7+B3qv8CYC9DR36ah8QoPe273N2xdAb99Cy0pNEkSqAvmE5l7irdo0IbmZG3iKZAVaPzNMe13uipjBdXzQuwRMa20QEuCcWo+qinrQu7l7Pph/tcPyVSWc0+Pqf2UhYPmwHHKRO0nivKCeCYlq1JFRgCZgXVmOqDdLYZuXBJHa+OeRdExF1NISdw+QbiY4L46D3tX/byeiAC3R/cXeOTUW1q8rYVpng/WNEkjTYt3LDodShQ7L5xUwbbZDClCMo2S5YP7JBj1JhuuMGKijo8KXnNAFYBOQdEDESkyKUJsnFVebvqG6KyX27t0D6EC/dr18l6kjrDBtrupBJQLkM00mEyZPPhPnfz4URc4SWGQzYk0xwRMbvjt2/9c1tjOkMgm5tmO+iywfl8N2L5MSDTVjxsyw36fJJENVQ9cHJCqqxvKykgQh/CsBVbXqQ8Zmq4TJZMIbbyyv9ZyLja37O0RSUjKmTj0XU6eeizlz5uKKKy7Bxx9/iDlzbkG7dokoKyut97jLykqRmJhU7/2J6sKkBBlCyfUkAXqH6cDbLEEbYIbpdyfk/S7o/at9y6jUIedp0JPlxpfMN5RFgt7dDCXb5T7w7+C5XyEg7/c0luwe3penN/Eg51U1KPQuoSbCFZdmoHcwQT6hQT6hQu9V9Xf3riqi9Wi+OKtjomHa64LpZ3udSQnTZjvkcvcUiaYcuNfkPC8Wpu0OmDbY4JoYXf/eFtscMO12Qk9R3FM2GnlAq46JhlSowfK9DdYPy2C/qV2j+ltIZTqilpRALtWhjrC6x3SyqU2xMlyXxCPm1AQ4XjsBy6oKd1Pd00OTmFB2OmD9oAxShYCwSnCNtkIbaIXeQYEwSZAqdCiHVJg226FkumD9qBymLQ44ZsaHfFUUnwod5p/dy+DKh1Rfcz1hAvROJqhDrdBOiWre5WKJIpRUUq35rktACOFebUUXGFitukHrZPJLStT1XiNJUuDeEUEIz01FmaxITUzFicoilLsqEGeOhWiBfZuoeSQmJuHQoRzf77quIzs7C8OGjQAA9OvXH6qqoqSkGEOGZDT6fuLi4pCSkgKbzb20bf/+A5Cfn4eKinLExp78RMaBA/txyil1L3lKVF98ByRDyIfdSQm9S/gOvL1nVWuuCa4c8owlTFUSvvGkBUgCFOmQS3XonUxAVHhfnt7VJ6QTVfFpHUkJT5yPV194XkA+rELESCFNAtSkDbJAREtQMp1+3d79Byhg/sn9hcA1McRn8uNkuMZHQ9IB0wZb/a5j02H9bzkAwDEjrnZDywZyTY2F3lGBku2C6ZdGlHm6BKxvuhMSrlOscFxej4RENaYRsXDe0A7CDFg/qzjpKjz1us2NdljfLHVPbRkdhcq/JsM5PR7aAAtEogLEyRAdTFBHRsF+YyJs8xKhdTZB2e9C1MvFkI4GKKtoClXA/GUFYp4sgGV1JZQcFYiWoHU2QetiAiwSlEMqrKsqEP1UAcxfVQDOEK3MQtRCyMX+PSXy8vJQUFCATqmd0M5StaShNsACdVC1ExdNOCGut1eg9TbDNrude0O1pGy3Dt0ACdh7kefMtOBrktxGjDgVO3Zsx9dfr8bBgzl46aXnUFJS7Lu8e/eeOPPMqXjkkQfw44/f48iRw9ixYzuWLn0dmzf/FvA21679CX//+4NYv34tcnMPYf/+bLzyykLs35/tW22jX78BSEhoh99/33bSMTocDuzZswujR58WksdMxEoJMoR8xFM63ymMSYlAB6cA5IPeM+ZhTkp4DoalPA3eryLyAWOmbnjHI6SalRLus8BNPTA1kt7B/RyrnoySD6uQVEDta27esnZFgtbLDNNOJ+SDroB9FeSjKuQTGrRupmaZSqKOiYL5u0qYN9rhOiv2pH9L8wY7pHIB16nWkPSBgEmC4w/xiPpXMSyrKqAObVh/C/PXFVAOqtC6m+C8NL5RlRZ6HwscsxIQtbQU1pVlsHU3uZMHjWD61Q7rB2UQMmC/Mh7asJM30tS7mmG/PRGWj8th/sWO6FeLYb85EXrnpr//ScUarMtLoRxUIUzuJZBdo6IgOipVsRIC8lENpt/sMG2wwfJ1JfQdTujzo3zl5EStmfW9Uki2qoN+yQXs3Olujjig1wDgRLWdoyU4rmsH0z157t/1xicLRJQE+82JVRuqvd56du6J34q3IasiByOkToEb91KbNHbseFx99bV44YVnIYSOyy67EqNGjfHbZ8GCR7B06et46aXnkJ+fh6SkZAwZkoGzzjon4G327NkLFosFL774HE6cOI6oqCj06NETjz76tK/aQVEUTJt2Ab766gucdtq4Ose4du1PaN++Q5MqNYiqY1KCws+mQy7QoaeEd5nJQAenQFVSQg/zdAlRrVLCt4R5gaeHQwcDejhYJIhE2T3v1ikACZAcwpc8aakCJaOq+kk0/99c6+tOSihZgZMSyh5Pk9Vmavgq2inQ0q0w/e6AaZvDvZxn0MEKmNZ7qjYmh65qQ+9mdidHNthh3mCDa0r9+mZI+RrMP9kgzIDj6oQmJce0gVa4To+G+ScbrP8pg/3Gdg1OSMlHVFg+cickHNckQBvUgPnfigTnpXEQMZJ7OsubJbDNS2rScshSkYaoV4ohl7j7bDiuSgg8NURyN910do6Da3w0rB+UQclywf7IYUh3JAHtWm4lFNFJCeE/HQMAXALbt2+HVKBi2PrOfnXDwrMCl95OhlyiQ2/f8M8JIQGSAFCzKKraW06vLj2BncCBnANAzFhIlbrfktzU+syYcTlmzLjc9/spp4zEmjW/Btz35ptvw8033xb0tsxmM2666VbcdNOt9brvLl264p57Fpx0v5kzr8a1116OvLwTvqVFP/jg01r7vf/+u7j22jn1um+i+uA3EQo77/KMoThL2BAiUYYwew5OvWWSunB38jcBescw93DwJiXyq1UmeJYsEwnGvDT1NAWScI/JN5a4lv0FSaQqEIp/MkoJY3WM5klEKJ4VXmpS9nrG0oyrQ7jGuRMRJ5vCoexwulcAGWDxTecJ2RgmxkBIgHmtLfhUlhos/yuHpAGuKTGNrmyoznluLLRO7qkkyvbAf4+gHALW5aWQVHevjgYlJLwkCa5zY6FmWCEX6bC+W9r4s7DlOqIWl7j/XiOssN+SWK9eFSJZgX12O6inR7vL0itD16yNKCJVm6qkJ7k/W0tKS5CdnY2UzCh0lzr57291f+bZ/pQE2+2JEHVUdHo/x2uJct+Gt6GmT7WP9qSEJCQktMPRo0dQaXa6m+W66veQiJpLamoq7r57AY4fPxZ0n9LSEkyYMBFTpwauyiBqDCYlKOwkA/pJAABkCXoHEySH8HXhlvI1SDYBvaupQfPUQ0EkeZarDJSUMKgRnfCcEZLyVEgVLb+fBABAkSDSFEjlwr0CBwA5172kZM3VG5qD6KBAxEqQD6qAo8YXVLsOOccFESs161QmvZcZepIM+ZDqi0Eg5rWVAAB1fHTQfRpLpCjQhlohlQuYfjt5bwk5xwXTTqd75YoQNaeESYLzfHfzLstXFQ1KCJi/rYCcr0EdaIE6oQnxkdzTWfQOCkz7XDBtakSPCyEQ9V6pezyDLXBc1rA+G1AkuC6KR/RLPSC6tMzlfonqSyp3v861LiY4p7lf/79nbYcQAhnJg3yrF+gdFNivS6iqoIqRoXer+/VhuzUPMMtVAAEAAElEQVQRtpva1drurbZAzaREtZeppMjo2bMXAIH9zkPubXW8PxOFy6RJk+uclpGQ0A5XX33tyVebIWqAFn60QS2RfNhTOh/upASql/K7EyOyb8lLA2YyKRJEigK5TAfsni8iZcYmAqovCyoZPJZQ8v59vX93qVwHoiXfGbFmJUnQ+lgg6YBywP80mJLlgqQDWn9L8/a2kCRofS2QBNxNNwPtUqhBOaBCT3EvZdocXJPcB/PmtSdvumn6udo0khD2NNH7mqH1MkM+oUHZWr+EgFSmw7zWBmECnJfGNf1vZZXgmOFurGf+ogJwNOxAxPSrHco+F/T2ChxXJQBK48YjcZlQagMkTzWQSJIBz1vb7/u3AwCGp6T79tP6WRpeARUjB+69400S1qx8kPx/7tXLvf52Vrl7pQXvMtxERG1Nyz/aoBbHu/KGFubpG0BVXwnJ21+g0n0WQ8Qa8+W8erNLAJDK3P8blpSotixoa1h5w8v3uPI1QBOQXO4GZOGi9fWs/FJjCoey1/272r/5pm74xuC5D2Vf4Ppgb7JCG9x8CRK9qxlaZ/cSrVJeHStQ2HSYtjkgLIA6vBHTJOoiSXCe7a68sHxTWa+O9+bvKiG5AHVsNES70PRY0XuYoY6wQi7TYf62st7Xk0o1WD6rgJDgrpBowU1oicKh+meZMEvIsxfgUN4hpKSkoEts1dQNX3VDKHiSH5JWs1KieqkE0KdPXwDA3uJsAED0opImNdYkImqpWv7RBrUowqVDOqFBbycDBhzsihqVEr4zKA1YDSCUqi8LKoSAVKZDxEhhn0pSNR7v9I3WlZQQnmaCkk0Adk8iKoxLrupdPZUaJ/zPgimZnn4S4UhK9DFDSJ5ESIADcW+ywptAabZxeJbaM+0M3tPBtNXhTgIMiwKsof876b0t0LqZIOdpviRpMFKpBtMGG4QFcJ4R2iVbnefGQpg9lSO2+lVLmL+rhGQXUMdHh30ZY6KWyLuqhYiVAZOEjSe2QCrVMerUUf7l5yFMSgjl5NM3IAFJSclITU3DMZGPIkeJe7uNSYlgqv5cjBG1Zu7nd1ubHdPyjzaoZanUIQkDGzn6VuDwVCZ4KiXCuQpIdcJXKaECds8ZfCOTAHESRLQEOU81vL9FKIlozzu7TUDyJCUQxkoJ3dOkUSqulpTQBaRCDXp8mBJ0sTL0LibIJbpfHxPvWJQsJ4QMaL2aN0HiXWVE2Rl86oRpo7vnhDrq5MttNpa3AqNWV/4alC0OSBqgjo4O+d9JJCpQR0RBcp18HACACh2mjXYIM+CcEtoECVFr5euPFCtDlVRszNsC2S5hpHmI334ihNP5XKe7p6q5zqyx0lD1u/C8nfTvPxCikwm7Yg/4jZdqk2UFgASnsxG9eIhaCE3zTDGXW/bqdw3FJUEprIT3gDCUZZINuf9EGcIquSsldFFVKWHU9I20qukbotQzdcPIJIAkQU9ToBxUIee63xRFE5YsjBjeTuh2HZKnf0c4p28gRnKv/FJc9WVTKtUh6VXd4MNB62eBkqtC2euCWm11DfmYBqlCQOtlbvY+G3oXE/QEGXKOCpTrtQ70pWINSq4KPVVp1mV6tQwrxGcVULY5gPNjg05ZMXn6TqinhHgaiYc6JgrmX+ww/2yDOjaqzlMj5g02SC7ANTaqSUuJErVauoB0QnNXRXpfSxVVn/M7cnaiQrUhPWkAov9bYypbCKdCaSOiUNHPUjuR6Vcp4f6lf//+WLfuJ+wuy8K46GGQKnTWAQQhSRJiYxNQWloIALBYrPAPathGArVmFQx5MDZ1O1l8BMrKimG1xrS5RqJMSlB4eRq6hfKMRINIEvRUBcphFagU7nJ+AMKoSgnPgaGcp0GUREBSAqidlIhv+W+K3r+v//SNMD4uSYJIVCDnae6mplEypCLP3zspfJlwra8Z+M7dcLP6Chuyt59EM0/dAOBuujnYAvMGO0x7nFBP9a+GkHOqTSNpxg9kkaBA72OGkumCvN8VsFmdVOBJkKQozbaEsd7VDK2LCcphFXKOCr1nkL+BS8C8zgYhIXSrkRC1MpZVFTD/ZINjehy0wRbIxzVfRaSIkfHLr78CAE5rf4o7KVqNCHWRWIDKKlF9k+ftrUePXjCbLcgs3g+X1eWbbkKBxcW5VztxJyaMiZUsy9B1VrQEwtjUrT7xkWUFSUntwzSiyMGkBIWVcBhbKQFUTY+QyvSqMygxBlVueKZLSCdUiGLVb3xGcS8L6oDkec80ejyh4EtA2I2ZvgG4KyLkPA1SsQ7RUYZUpPu2h4vwNPys2eHd19uib/P3tgDcfSXMG+xQAiQllBxPI9wezZ8gUYdZoWS6YNrqgDNAUsK0zeHbrzkTJOqYKCgry2HaaIczSFJC2eeEVC6gplsgUtpWSSdRfZnWu1ftMW2yw/K/ckhqVaPj3PxcHMjJRurIjugv96595XB8L6n2PiI8P5pMJvTvPwC7sjZhT3E2+lUkNf84WjBJkhAfn4i4uHbQda0+vYpDSpYlJCXFoKioEjqbkvphbOpWn/hIkjsp0daqJAAmJSjcvJUSBnaMF3GeUv4yvapSwqBGl5Ak6B1NUPa7oO9zz6OPhEoJL2FCeJbNbG7e6Rs23ZeUCGejS8DdPwBwQS7WoHU0QTagUkLEyRAm+O7bSz6iQsiA3i08HwlaN89qJMdrN5mUPcumBq0YCCF1kBVWlNdaqtVL8SYlMppn6oZvHBlWWD4qr2pCGuDLiLLbU80ypHnHQtSied/WdUDyvL14V7f6adNPAIDTT5kAaWvt11hIV98IJkBPCQBITx+KnV9vxrbCnehfMaL5x9EKSJIERQn/YYwsS7BYLDCZnDzwroGxqRvjU7eWfwqUWhRfpYSBB7reg36pXPf1lIBBlRIAoHtWBNF2us/wGJ6UaF8tKREnt4r2v/7TNwzoKQFAeCoivBUS3v/DmZSALEEkKe7yYE+CEKqAVK5DtJMBJUwxiZUhYiX3wUL1JfMcAvJRFXq87ItXs4qXobeTIZ3QAGeNLwgVOpQj7t4WomMz/42iPU1IS3VIBQHKOoWAsscJIYVn+ViiSCcVar5pZ368vWGqfeGXBJBnL8COrJ2IjY3DiPRTAt9oiJISjotig18oBf55wICBMEdZsKt4H7TSwElSIqLWjEkJCi9vpUQkTN8o1yFVCnd/i3AdjAWgd3Rn+sVR9xcRo5MSIlnxzXttDVM3AAAWz1xee1UfkXBP3xA1VuDwViuEc/oGAOjJ3ikcnuRIqWdFnHZhHkd7EyTNfyqJnOtyN//saQpbMkzvaoIk3NUi1clHVd/l4RiL1ttdGaJk1z7Qko5rkIt191hay2uSqAlinipE9Osltaaieb/VSjU2f3dkLQQExo2bAJMl8Nn1UHwvcZ1ihTq+jp4vQZISFosF/fsPgENzYl/23iaPg4iopeG3GwqriOgp4Tnol0vcpfxG9ZPw0muchTU8EaBIvjnrho8lVCQJiJJqTN8Ic0+JRM/zrrhGpURiePsDiGTPODxf5iVvg9V24R2Ht0JIPlF19OCdRhGOfhK+cXT1NJvN9T876U1SNFeDy1rj8CUlap8lVfZ4pm4MYJUEUXW+HkEeotr0Da9jlXn4Lf93xMTEYvTo04KfhGjC9xLXOHdvHG34SZYxDrD6hld6RgYAYFv29kaPg4iopWolRxzUYkRSpYRnnqlh/SQ89A7+Bz26wZUSQNUUjlaTlADcDUVdALxTdgzpKeGplNAFpGLN3d8kzK+FqkoJT1LCkyTxJk3CNo72tZMSsqfJZTj6SfjG0dWTDMj1r5RQvEmJTmHqs9HTDCEBcpYLNTu3mbxJiYFMShBVJ2q+bQWYvrE69zsIITBp3BmIioqCCJJ/bcr3EudFcai8P/nkicMAq294DRg4EFbFgh2Hd8Futzd6LERELVHrOeKglsFXKWHcEHyVEic8ByEGV0ogRvaVzgsJQKzxPRy8zS5bw3KgXt7GlnKRQT0l2skQkrtCQirXIWmAHs5+Et5xeJISsmf6hlziiUe4KyU8y+FKJ6qSAXJeeBMBAKB18VZKBJ6+oYVrLMH6SmgC8gEXRIwEvQt7UxP5+uEAkNQavWC8b2OeXfaXHcSOor1IsrbDmJGnefYJfaUEJAkioR7vodWrI2p8AzfHWTEseTBUVcXO19ZD2cLEBBG1HUxKUFiJCKqU8B2cRhv/MvD2lUCcXHWmx0DaQCuECdB7t6Izs9GeFTg8PR3CnZSAIkEkyO4eDvmeMYR56gZQveFmzekbYa4cCTB9Q6oQ7r+LKYx/m1gZerLs/pvYqzX/PKG5q5bCWLkUqK+EVORJYHUwRcR7A5HRpNLqSbsaF1abvqELHR8d+BwAcE7XSVW9JILl9sKR8wvSUwIAYJYwKm04pEodW776BVHvloVhQEREkcH4ozFqWyKgpwSiJb+STxEJlQneZpcRMHUDAPReZlQ+lgatFXX69yYhvNMVvEmKsI4hSYYkAMU7TSE5/H9v7/QNucB/+oYI8/QNkSBDWCV3xZIu3IkAhzDk9ah38W92KR9X3Q03O4W5esTb3+J4tSktnr+TnhL+BBZRJJLKqiUlalZKeBJ3kiaw9vhGHKvMQ+/47hiRMtT3jVcEq5QIR3PdOpMSQPe4LkizpOBQ+REcq8xr/vEQEUWIyDgComZzxx13YNSoUZg/f77RQwEQGZUSkCW/XgmRUCnhXXKwNfVwiDS+ZUE932dFmHtKAFWVEbLnTHhYlwP1ipbd/TWKNEAISAZN34AkQW+vQHICUknV8rxG9Hjx9pWQD3uSEkc8iYAwNbn08v4Nqp8JljxJCZHC9wYioMbro3qlhBC+6Rsl5aX4MvcHyJKMi3ueB0mSqpIRAV7WWpgSkKKORpeQJXe1ROowAMDPJzaFZUxERJGA33JauauvvhpPPfWU0cOo4q2UsBpbnVC9IsHo1TcAQO9jASxSWBv8tTnVpmsIGYABofY2k1QyPcu/hrk6wTeOZMXd9LNcQC7RIBRjKob8ml1WeFZFiTUgKZHgSVh5xuBbDjSMvS0Ad/UIAEilASolklkpQQTUnL7hfs0qm+yIfqwQUpEOIQQ+3PMpHJoTEzuOQceYNPe+3reWGpUSQgHsdySFYeTwq44Qgd5yPVM4TLKCjXlbYKusDM+4iIgMxqREKzdmzBjExsYaPQwfX6WE2eCkRPWKBINX3wDcZ8yjX+oB9cw61jenJhHVp2tESeEp1a1BG2iFiJMg6e7xeM/Qh5u3r4R8QoVULtz9JAzoVyDaVzW7rKqUMOC9wZMklRwRkpQoqXYm2LNKikhlUoIIqOoHBQDw9KeN+k8Z5DIdkkNgw4nfsKckG2nRKZjadWLVvkqN//1uNEzvO3VN34D7u1GsOQanpmbAqbuwaeOv4RkXEZHBjD8aa8M2btyIW265BRMmTMCAAQPw3Xff1dpn+fLlmDJlCoYOHYqZM2di27ZtBow0hCKhpwTgXorR+3MEVEoAgGSJjCaXrVX1aTphb3Lpofcyo/KBVFQ8lorKBSmG9RDx9idQDngqNsI9dcM7Dm9ypET3VSnAgEoJ4a3c8iRNvXPWRbirE0wSRKzkPhPsWRaUlRJE/ryJOgAw/WKrWuYZQJ69AP87+A1kScaVvafDLFdL/Ho+X0U4G+nWVP0zPtAwPN+NxncYDQDYsG4ddF0PsCMRUevC9cUMVFlZiQEDBuDSSy/FvHnzal2+atUqPPHEE3j44YcxbNgwLFu2DHPmzMEXX3yB5ORkAMD06dMD3vbKlSuhKJH3JdZXKRFR0zeYm2sLqicijOgn4cfIL8UAhKexqmmje8m5cK+84RuHtzKgTI+MSgmnJzFiF+4pPgZ8QurtFCgVqns6S4z7AExESxFR0UUnl52djfvuuw/l5eWwWCy47777MHLkSKOH1arI1ZMSe12QlpcCAJyaE2/t+wBO3YWpXSeia1znGlf0/G/kV6Pqb28BXtLCk0PpGJOGfu16YVfBUezatRPpvQcj+uVi6J1MkAo1aOlWuCazspKIWg8mJQw0adIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBKWsQKA3MSz+LIs+Sol5CiDqwKqrScuxclNfmxN5b1/o8cRaWrGpSnxkaof1EVJrSbWjYmNPiwK4rPyqmVxkxRD4iF5GzuW6ZBtnoRAXOjGUt/YSJ4kleRw7ys5hfs5ohiQCGgnA0cApUyHEDIkF6B3CP3fh+85zcNqteLxxx9H7969kZWVhVtvvRWrV682elithxB+lRKAu0ePEAIf7P8fjlXmoV+7Xjiz84Ta1w3SUyKsTjJ9A9Wmtp7ecQx2aR/hxx+/x5DY/pBPaL4llJVDKpMSRNSqMCkRoZxOJ3bs2IG5c+f6tsmyjHHjxmHLli1hH4/JJCMlJa7Jt2Nz5AMykNw+DpIBc/q91I6AE+UAgKQu8ZDiI6OqJCkpcvp/GM1sVmo955oSH62DCQ6UAAAs7cyID8HzOZI0NDaus1S4PikCAMR0jobZgHiIOB02FMJUDiiaAhVAXMcYmFJC+zo4WWx0SYUdhTDrEuKSYmFznICUYgrJe15DOTvYoO5yop2wAi4JDgDmzlbENdNY+J4TWl26dPH93Lt3b5SVlUEIYejnXWsilemQ1Nrb1x7fiC0FO5BkbYer+lwCWfJPKAoZVX2Ean7c11hVtFnVtfoG4De1dUC7PugU1xFHjuRiX9ZeDEOH5h8fEZFBmJSIUEVFRdA0DampqX7bU1JSkJOTU+/buemmm7Bt2zbYbDZMnDgRixYtwsCBAxs8HlXVUVpqa/D1qpNlCVaHDmGRUFhY0aTbaipZcsIKd/frQnsl4DS+UiIpKRZFRRXQ9XB+Q4pcLpeGggJ34igU8ZFcKqI8PztkHeWe227pGh2b4Qqi/gdIKlBuUqEbFI+oKAmiWIWrwAkTgDLNAb0gNK+BesfGpiMagFquouJIGaIBaGbhe/6Fk8miwwygLLcCUAALAHucCPnzNVTvOQkJ0TCbIyOpGwobN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkQsC00Q75kCtg89mdRXvx6cGvYJIV/LHvDMSaA1QQVM9RGFkdVI9Gl76LJQnnHRqNN1I/w3drv0GGuNL/uaQLyAdV6F1MfhUWREQtEZMSLUxDz7gsWrQoZPfd5INlIdzTN+Jkww+8ffPWoyToABAhiQBdF4bHJpLUjEVT4iNZqn4WVqnVxbnBsYmR4Do9Bua1ldC6KBAGxUMkyJBPaJAK3ac/tWgp5GM5aWy8vfCcAsJW1ffGiOeInuB5byrWfGdw9eTme8/ke46/UPR6AoDDhw/jmWeeCelncIvjcDewDUXDWMtn5ZDsVc9Tvb0C+YSGg+WHsTxzJYQQuKz3hbX7SHjVlYgwrFIiwOU1kgvpSf3RyZKGQ0dzsVfPxoDEPr7LTL/ZYf2gHOpQKxyzEppnvEREYcKkRIRKSkqCoijIz8/3215YWFireqLF0ADogDB45Q2gqtFlpKy8Qc0vElbfiDSuc2Lgmhpj6BxrkSADJzTIxzxLXxqw+gZkCcLsWRLU0/fGqGa8wtPvRirRIbncY/GulkLNLxS9nsrLy3HrrbfigQceQI8ePRo9lpD0cQrB7TSWZUkplBwX7H9NaVpiQgi/hAQA6D3NyMs5jqV73oNLV3FB97MwInVI8NtQ6o5DuGIkVXuvlRQJUs37rfH9SJIkTBk3Be9+9A5W536P/u16+05MmXY63f//7oCLPWfChrEJjrGpG+NTNyYlIpTFYkF6ejrWrVuHKVOmAAB0Xcf69etx7bXXGjy6RvIuB2rwyhsAgFgZzonREGn8st9mWNzziiWdSQkfSTK2Ez2qEoS+gw6jEoVWCbBXO/gxaIUW3bMSilSqQS7xVG2k8n0qEtSn15Omabjzzjsxc+ZMTJgQoNliPYWqjxNgXN+QypwTAICEIgWmfg1/LHqhCilJAVwCNuRVXWCVUNq+Aq/tehMVqg2ndxyNiZ1Oq/O2JJPkF89KnKi6DAhb/xhXrAoX3NNXk1NiISX6fw13xtuhwu637bRew7EB3yGnIgdbCnb4ki9mVYZ3sdDmGj97zgTH2ATH2NSN8QmMSQkDVVRU4ODBg77fc3NzsWvXLqSmpiItLQ3XX3897r77bqSnpyMjIwPLli2D3W7HJZdcYuCoG8+73F4kVEoAgOv81tXokE5CkoAoCah0r6xAkUFPqFHBYlDVhrBKkMsFJJuxyxZ7l0lVDqmQbAJ6e8VXPUHGqk+vpx9//BEbNmxAfn4+VqxYAQB46623kJDQsPL6UPVxMqxXkS4Q7fmx/EgltIJq4/rdDtHJBJEa/Cuo8osNlvfL4DovFuroaEQD0Lua4LiuHY4fOoo3Fr8Ou6sSYzucigu6Tz3pcIQEvx4x0dUvA8LWP8Zkc/pmixUWVwKaf/LTpKu+y71cS/IxTZ6EV/Am/he9BuldhsByGFBLXL5WGQUF5UC5jqgXCqGOioJ6TtO+37DPVXCMTXCMTd1CEZ/W1sepOiYlDLR9+3Zcc801vt8fffRRAMDtt9+OefPmYdq0aSgsLMRLL73ka6i1ePFiv3mrLYonKcGGTGQUES1BqhSslIggonpSwsDpVMIqA9AhlXrOPRpV0RXtmUriWSJVHWo1ZhxUb9V7PU2ePBk7duwIye2G6kt9KPuGSHkqJLuA3q3moXON/Yqqlu2UTqi++5cPu2B9sxQAUPFUWtDrW9a6EzKmbyrgynC/BoRFwsGSw3jrk6Ww2SswscMoXNTj7Hr12RJy8HhKInSxPhm9WgMLXYha/axEtW/lepLsW7a5V3x3pCcNwDZbNtYc/gVTMBpSuSeB6nls5p9tkEp0mL+uhHNqaM7EsudMcIxNcIxN3RifwJiUMNCYMWOwZ8+eOveZNWsWZs2aFaYRNTNnBE3foDZJRLkPPI0qzafaqlcBGNJPwsvTCNWblDCqUgKSBJGgQCpwH9QxKRE5WmWvpwaKeda9jHDFY6mAKfhrxPv8BQA5r1qCokQPtHttnrcFyQmYv3JPd9hRuAdvL/kMqurC+BHjcdG+cfVv/B0pb/kna3RZ7X1HRMtAUVW8pnWfgu22A/j2wBqM6jIYcZWeagjPN3k51xX68RIRhUmkvE1TGxBp0zeoDYp2P/dYKRE5vD0lAGOTEu5KiaqDJiOfI8LTV0JPVSA6ts4yzZaoeq8nL2+vp+HDhxs3MCO46j7LJxdWS0TkV/0c8EA8kGpPe9Nvdqw9thFvb1oBVXXh3HPPx3mTz2vYUquR0liu+pgDvN35vQdG+485LSoFYzNOg0M48NnBryF5/wQmCbDpUDLdSQl+vhFRS8SkBIWPt9ElkxJkEK23GXq8DJ0NTiNGpEzf8J6hNHz6Bqpiog61+h/EULOrqKjArl27sGvXLgBVvZ7y8tyNFq+//nq89957+Oijj5CVlYWHHnqoRfd6ajSt7oulyqqkhVyiV1VK1jsp4d7RqTmxIvtTfJKzGrJZwcyZV2H8+NMhmRr49TVS3vJPUikhYqtVSgR4P5xy2pmIj0vA5vzt2Fey372fIsG8xuZr0is4RZaIWiBO36CwYaUEGc11ZixcU2J4oBdBqiclEGNkpYR/UsKw6RsA1HQr5MMq1FFRho2hrWpzvZ4aSXIKmP9bDr2LCeqpAZ6nDv9KCjlfg97ZVO/3XqEA+fZCvLXvAxytPIFESwIun3o1Og4d6N6hgd9eRaScgqs+jgCxEHHVkrTRtQcdFRuF80efh/9kv4OPD3yO+UNvgmy2QD6sVt2sk3PViajlYVKCwsfJSgmKAExIRBaz5G5AahN+ZwnDzuJNSnhOARtYAq1lWGHLYC8JI7TFXk/yYRf0jiYgwEFwMMrvDpg9zSgDJSW8Z+31ZBlyoQ4pTwU6myDq8bISQuCX3E1Y9fsqOHUX+ib0xFV9L4GlUxq8XRNEQ1fpqTF9Q09T/HpdhM3JKiXi6q4cEyYJQ/qkY2tiH+wuzsLXh3/C2R3OgnzcnZQQ0e6ljSEEP+uIqEWJlNwxtQVMShBRAN5qCREJlRIVwu93otbM8mk5ol8tQfSrxQ26nnmTve4dHO6KI72Le5UO2dNXQjrJSfyyslK89da/8dG2T6EKDWd1OR1zBl6FOHOs/5SqANMxRF2n2Wrs75ifDKlD3SuINIuTTt84SeWYWQKiZUzvcS4sshnfH12PQ8W5kAt16MkyRLzsjjF7XhJRC8OkBIWNb/oGv+wTUTXeZpeGrr7hTUp4D5qs/Hik1s+bLJCPae6z69UvO+yCab0t8PWOVVUZmNbZai1t6auU6OrOFPiqErTAWQld17Fhw3q8+OI/sG/fHqREp+C2wdfh7K6TIEue94fqJzQCrfxR1wmPmi9nswQp2YBGE9WHGOgtptpjENEBHo8JEIkKUqKScGGPqdCFjhW/fQyX7oLe3lQVIwencBBRy8LpGxQ+vkaXxg6DiCKLnqpAyXRBJBlfKRHsd6LWRNnrdC8haau2RKdNANFwl/9Hy4h+qRgAoHcyQe8ZvKrA+kk5oAuoE2J82yTP573WzZOUyHEh6sUiiOQar3EhkLv/ID5d/SmOHMkFIGHs2Am4oMNoRB+q8RqsnnQItHKFWYKEIAfjDZ3u0VyqT6k4yZACvQcJkwThadQ8Om0EdhTtwe7iLHx+6FucN+oiSC5PctUhIOJDNmoiombHpASFTVWjS56BJKIqzrNjoQ22Qu9i4EdSzaQEl9WjVixqSUmtbVKZDmWLC9ZPymGf3a5qe6EG1JGUAADzWpsvKSEfcFUtT5mmQJgBuVAHoANHqq6Tn5+PHx77BNs3b4M6Ogrd+vbAhRdejE6dOsOysAiA6ncffgfpgV6eDamUCHojzewk0zeqCzidzSxBJHqWL5YkzOh1AZ7//TWsObYRffPS0T+ut/sypwiWniEiikhMSlD4OFkpQUQBxMrQBhj7xlDrrCQrJagVUjbbIZfqAS+TynR31QMA87eVVdvrMRXAnXQAYNMR/Uqxb7uIlt2VUEerpnsUOUrw3ZG1WPfsbsibK9HOEo9Jp5yH4ZeNheUnOzTNFXgFiWpvESKq9gF7oKUwhRmQXICQI+P1LE6y+gYA2OYlQj6qQXQIML3EDL+qj3aWeFzScxqWZ67Ef35diTsm3owUWH09PYiIWgomJSh82OiSiCJU9aSEUBB4zjpRCxf1XlnQy8y/VmteWa33g3xchbLZDm3YSVaEEQLmH2v0oDABIs0EHNVwtPIEfji6HlsKdkAXOmILo3BGt8kY32EUtJFpkH91wPJ5BYSpqs+M381X/+5glVA5Pwnm9TaYN3jGHSivaZUAlwjYGNOIQon63Kfe1Qy9q9l/ao2H8LwvOc+MgWmLHXKBjmEpg5FdloO1zq14b9NKzI2+vF6JJCKiSMKkBIUNG10SUcSq/r7EqRvUSgghIB1XgWT5pH0VTJsdVb9UWy3TvN4O83o7bEl1N4aUD6sw/1Dpt00XAjtM2fhtz4/YXZwFAIgxRWFsh5E4veMYxJiiAQB2DVB2OwEAkgrAJSBMgN7FBCXHM42jxgkN0dEEUW1MIsAJD2Hx9JkINH0jQpMSPoFO4HiqQVxnx8J1dixiHs6HVClwYfepyLYfx/7CHHwpfsC5Syej4qEUQAdQVwNhuw75mFZnzxAionBgUoLCh5USRBShqh/QMHFKrYX2awWiXimEa3QUnDPq3/lQKq99ll4KMu3Dy/JBGSQN0JNklB4rxsb8LVj73F6U5hXDVGxHoiUBp3cag9Fpw2FValRdaALyIXfyQcRKgBPu7wrVX5dBpmf4BLrc+1qOkOkbwaZsBORJIgkFkLxJohp5IWFyJ11MsglXTbwc//r4FXx7ZC26xnbG4IWDIRVrcMxKgDY4cJVL1L9Loex3wT67HbT+nFtLRMZhUoLCxltOGOhsBhGRoaxMSlDro21xVy6Yf7HDeUlcwH3U/u4je9Nel29boASEZK87KVGeU4xtJbuwKTobh7dkum+7VzT6DO6PsT2HYNj+HlDkINUWKiB5pisIkwSpUoeIliGqV3cESDr4TbMK9N3Cu82A1T8DauBbS8VDKYAiIfaBfPeGmsmVat/iUxJTMOOKy/HeP/6N97I+xm1RiegU0wHW98tQ+bfASQllv/tvLmc6mZQgIkMxKUHhw0oJIopQfomIAE30iFoiqfoKDmrgfUSSAuel8dB+scH6obvRpRSgJYFk898ohMCRymPYU5KNPcWZOFCeC2ESUJOtSLO2w4iUIUiffyaSk1Pc13+8ACgJnNhQ9rvc0zbgrtKQhOcERrVvqQFPaFRLSgSbvgHUaDBppIZ+/Yl2D7zy/uTAf7/qSRsF6H/hcEx2nI9v//kZ/r13Beal34BYLc79/auO714BG4sSEYURkxIUNnpnExSzwqQEEUUeTt+g1qh6P4FgB56eqQHqqVGQ8jWYf/x/9u47vKmqjwP492Z1l07KFMpIKaWl7FX2UnABDkBApoKAoCgqL25EFHEAInuKCwQRGUVkKHuvsjctUDopnVnn/aMkbUjSmTalfD/Pw0Nzx7nnnntzxy9nZFgNShjSdLiVHotr96JxJfUGLty9jFRtTh8SXipPNHisPtTj2qBGWgCEvwLCJ1cVhTy+V8o9OR1kGpsqCKVkXhPCWvOMXE+xBmujVeTVfKOs9ymRi/C0XtUj9/4bAxQRvTsj8ecrOJYQhRUXVmNEvZfg+kE8sobm0URDa30yEVFpYVCCSo22nyc8fNyRnpQGGBiVJ6IyRC6Zhg/kcKBUXkiqnKDEg7+Ga1s7Q3ZLD10L5+wJcgnaHu6Qx+hgOJ+OOxnxuJ0eh9iMOMSk38bVm7HQ3sgJQsjkMtTyeAxqr9pQewaiqltliAAFMqr7wFp9CFHYDmSV90fCyfXZcpmcNPV1VMjsJ4PiaBYU9zvNFGWt+Ya9a2zkqilhrA0iyWR4+vUXkTB9Lq7cu4FfLq1D/zq94LzoLjJeqQBDbcvAhJRpgBSng+KUBsrt6dAMqQD42jmvRER5YFCCSo8kQSornU0RET1IlT18IGtKULmhywlESJkCBmFAhi4T92rokByajozgTKTG30PyxSQkJycjKSkJaf/eRnJ0IoQwD2IoXJxR27MGarhXQw2PaqhZMxAuyeaPkYY8akJa+14JFSBp8lg+d/MEa88PuecrJOjDnSG/nqudg6mmhM1slS57X1pyF3+uWiVS+wp4sfIILJo0Cyfiz8D9mhueqdEdyl0ZyLISlFCc0kBxKudAqJbeBZr72DmzRES2MShBRESE7JcgKU2wpgSVC/v27cHu5VugOZ8GvdBD85kCUlQmhK8MejcnYIn19eQZGvioPBHg4odKLhVRydUflVwqwq9hVagu5owVqvdRAskP1PvPq3mmlZoSwkUGSWOjA00nWb5PqWajbxhrQ+QKQBiqKCCcJBiqWalm4ZDmG3beqFnQxnyWm9oHw1oPxNxNC7An9hA8lO7oUKtjzgJ51FiVMlmblYhKF4MSREREyPklt9DVzInKII1GA40m+9dvJ7kKTpILnJycofR1g6qWD1xcXODq6gpXV1dUqOAFb28fVKjghYp/y+B63DJQoM8y/14IK00i8hpdSzhZVlcQrhJw19byD9SUsCZ3R5fGITRzByUCFEj/yNdqLQuZrwIGAIYKpViNws6XFrNjYKWsfLx9MSyoH+aeWYHI6B1w3++K8NC20LVxBfIJPAgrQQvprh5SkgGy2zrowpwA17JSBYWIHnYMShAREQGmGhJsvkHlQbt2HdAztSV021MAAJr2LlDtzIC2pTM0vTxsrqd0vgcg02L6g6NvWP2WWOv3wchasM9VBlNPmw8qyPcwd0eYxhf03KvJYL3ZBwBlHx9k6nXQtHTOfzt2IuzefCN3UMbKfJWEqm6VMaju81h87mesuboJ8kVyNHCPMNUeMXjIILtnGYQSSZbHxXVqoulveVQWRAU5tG1cICoX/3VCuqWD7J6BQ5MSPaIY4iQiIkKuX3kZlKByQmhzXjaNQYW8ajMAMH/Rz0XKyElL28YFsPJDe941Jaw13zCfpquf80IqnCSr2zBbP3cQxJjv3EGIPJ5yJTc5tE97QPiV4u9zJRiUsFZTwljmdSsEYkD95yCDhFVX/kLUd7uh+jN7+FdDdRv7n/lAoOLBPkbOa6E8mAmXWUlFz38urt8mwXnRXSDDRnMeIirXGJQgIiICstuwgzUlqBzR5uro0ljTIZ+ghLBV2+F+dX9dfRU0T7tbDxjkFZSw1qdErur/WS94QF8n18adJVgdxiO3/GpK2LsPh+Kyd/MNsyFBrSyQ63gEV6mHAXX7QIKE366sx4ldh7LTcLGeKfFgUCLNeoRIslHRpaikdPZnQfQoYlCCiIgI99u3AxBuvDVSOZE7KGF8yVTm82ZsY77p5dP48lvImhLWaiAZv3NA9stx7u+ecJLyHT5cKKzUisj19RVl7atckjUlrOzrgwGmEO8gvFSnNyRI+PXyehy4cxRwsVFIWeZlL4vPI/qgs3GcsgyApgBBhlzHWUplTQmiR1FZu1wTERE5hLadKzQ93GAIzKthPNHDQ+QKSqCYzTdM8hraO4+Ah9UOZHO9EAulBOH+YFAi76yY9YxmrBWR+8m2jFWUsLvcx9Jap6C5Dr90/8U/1KceXqrTGzJIWH1lA3bG7rWatMgyL3xZgu2ghCw2ZxhW+eksqNanAgYBl5nJcJ2aAPmxTEi3dTbXR67aEVIagxJEjyIGJYiIiAAIPzm07V3z7/Gf6GGhK0rzjfyCEtn/6WtkB+909XJ1TJhXQCOfmhJQmteUQEGCEtbyKuVde6A8yX2srHV0KeUuv1wxhVCfehgS1BcqmRIbo/7G5hvbIR7oM8JUU0IjILuhhXTHdlBBSsrZkPOyFCh3ZUAepYEsXg8pQ8D553twmZ1ks+ZL7toRDEoQPZrK+eWaiIiI6BFlpfmGzT4jjPLp99HYJELb2RVZL3ogq2+ukTz0tqvqC2crQ4LmnqYE8GBNiQdflB9krR+F3JvJq1ZHeZD7WOZTUyL3sckc4gl1hVoYUe8lOPu4YtvN3VhzdSMMwgCD3/1CvX++OP2YApfZyVDtyLCZDemuZSBBflFjvowWpto6Fuun5Q5KsE8JokcRgxI2aDQa/PDDDzh79qyjs0JERPRI4r24eMyabxiryOfTkWv+NSXuz1dK0DV2Nu+TII8a+rmbb2g6uULb3BmGijlRBaGUzGtOOEnmv/RbY6UjS7NhN8t5TMLsWFkL0JgFJe7/V00BvVoFfU0FqnSojWEjXoVrrQrYf+coFnj/iXtN7q96v/mG4px5cMEaKcWyaYfsmhYAoG3iBOGenU9b/UWY1ZSI10OKy+NEIqJyiUEJG1QqFebOnYuUlBRHZ4WIiOiRxHtxMeWuKXH/z3xHl8ndJMBaU4+8nhzzqCmROxiia+YMTR8P8+YXSsns137hJEHbwhkAoOniajPZ9Pd8kDbZN2dC7pfz8v6Uq8q7qYq+Wna1F31leU5TGBkAmYTMUd7QvOCJSpUqY/j0cfB5/DGcS7+E+ZsXISnrrkVHl9YIt+zty+4aACGg/DvNNE9+KztQIXzk0Kmzm/jYCkrk7q9CeTATrl8lQUq287AeRFSmlffLdbGEhYUhKirK0dkgIiJ6ZPFeXAxaKy+WTvk8+uVqviE8ChaU0FfOjgQYqthu+2HW0aUxjVwBBIsaGnIJhkAV0j7xg7arm+10veSAR65MPUJ9SpgFkKw039CHOyFzoCcyR3hB2z27DLURLhbLefv6Yvi411C7dl3cvnsHs6MW4+r6s3D6NtE8vZrmx1d//3hLKQbIrmqh2ppukbbwkgP3+wqx1jRDStZDFWm5nuwma0sQPUryaTn4aHv77bfx1ltvQalUon379vD19YX0QFVBFxfLizsRERHZB+/FxWAlKJFfTQmzzhPdZEDCA79uW+mnIXOEF+RXtNDXV1nMM8m1XeNQnmZDet7/1T+rhxvk17QQXjKL9Qok95CgVpp3lCf5Nt+QSdA3cAIAaDu4QNvM2azfjtxcXFwwcOBgbExbjSPn9mDOviV4LrAnGvmFmpYx+MqhecodLrOSsz9XVQAXtJDuGiAlW68FYfCSQUq9H5SwUlNCdst68EHKawhSIip3ykVQIj4+Hn5+fnZP94UXXgAATJkyBZ999pnVZc6cOWP37RIREVE23ouLThQhKJF7BA3hYuUF1to7rZvM9PJrk0yCUAGSJlcauZ9C7/+ta++aV9cU+cu9e+W+pkSuv/MbNUiSAPe8l5HL5Xi6+7Oost8VG278g58vrcONtJvoWb0L5DI5oJRgqJazUeEug3CVICXrId2zHpQQbjLTqCpO61JheExhloaUkr2epqsrZNe0UJzP7otCdsc8KCGl6KHYkwltexfzfkyIqFwoF0GJtm3bIjg4GD179kSPHj1QuXJlu6Q7depUi19jiIiIqPTwXlwMVptv5NenRK6/rbz7WRt6sqCEkwySxpDzAp27poS9RsrInedyftqY1ZSw03u65CxDu8otUdk1AD9dXINdtw8iJu02BtTtAyfVAzWSVBL0dVVQHM+C4liW9QSdJVNHlwDgvPAu0j/0NTWzMQYlhKcMWf09ITakQXkwE/JLGqhW3YNwl6B9wh3O3ydDlmwAJJiaohSGPCoLwl0GQ3UF5FEa6INU+Q6Pa8YgIIvWATXyG76GiIqiXAQlhBDQarX4+uuvMWPGDISHh6Nnz5544okn4OPjU+R0e/fubcdcEhERUWHxXlxEQlgEJYQM+T/55de/YTGCB8JLBpElcvJQjACHTTL7v6iXWUrLJjHFZQx01K0QiNcbDMeKC6tx5d4NfHdqIV5o/BKqon7Osu4y6MKcoDieBXmM9fotwlkyq3EjZQhIdw0QXnLIz2lM/VAITxngIoOmtzvkV7SQxeshS8wEAOhauGQHJADIEq0069AIyC/dDzQYj79eQEozQHjKId3WwXm5eWe52rYu0DzpXuByUf6dDtW2dGiecQee8ch/BSIqlHJzuf7ss8+wc+dOvPvuuzAYDJgyZQratWuHYcOGYe3atUhNTS1y2hcvXsQff/yBuXPnIi4uDgBw7dq1YqVZmjIyMtCxY0d89dVXjs4KERFRkTwM9+KtW7eie/fu6N69OzZu3OjYzBhgGWBQSVaH0czNrENKa4rx5Jj1kicyXvPKqSlRAjVgzIYEtVftizJK5DP6RpHkqknj7VQBr9V/Gc39w5GiScWCf5Zg27atSH/ZHdqWztAHqyC889mwkwTDYwpoWzpnB8UASPeHp3VaejdnXzzvR6hkEjIHeJpGDgEA+amcWhiKY1lQHMwEsnKaiyj/SYPz0hS4vRcPZWT2CCCq3+/B9bNESPE6yK10mik/baNmhw3K7dnBE9W6VOj23CvUukSUv3JRU8LIz88PgwYNwqBBg3Dz5k389ddf2LRpE9577z18+OGHaNeunakGRUGkpaVh0qRJiIyMhEKhgF6vR9u2beHv74+vv/4aVapUwTvvvFPCe1V8c+fORVhYmKOzQUREVGgPy71Yp9Nh+vTpWLlyJeRyOV588UV06dIFKlUenT+WpKL0JwFA+CmQ2c8DhgAFVJFplgsU4+VXeFtWjUh/2zv//hAK4xFqvlGoPiUKSLhIEFLOELIKmQLP1XoSNT2q43flNmzfvhVXal7Cc8+9iAoyyfqwsbndDwxpenkAOkB5KBNIux9QkME0VKnBM+fAicoKZI71htOiZCjOa6H8N8MsSafV9yDdc4W2U3YzDsWJnACDals6tF1doTycPU1+TgvpbnbtCm1zZygPZNe+KGxATMr1ddIsjIO8lzsMLdnBLpG9lJuaEg+qUqUKXnnlFaxduxabNm3CiBEjcPnyZbz55psFTmPatGk4evQoli5diiNHjkCInCtS+/bt8d9//5VE1u3q6tWruHz5Mtq3b+/orBARERXaw3IvPn78OIKCguDn5wdvb2+EhYXh8OHDjsuQtcELCjiShT7cGaKywvpLvZ1rHwg/hdVgRZE9Uh1d5jP6RlE4yaAZXAGqURWR8Zk/MkZUAAA09W+IMc+/hkqVquDq1Sv4/vuZiIo6Zd4vSD6E2/1+JNKzIxGGSrl+G3W1TMdYe0J2vxNNffWc5WVXdVDuSIeUqLcIMMjPakx/Syl60wgfupbOSJ/oA6EEpAQ9lJtSId3WQbX6HuRnrdSc0Amo/rgHpx9TLGYpI9OAdOude9qNEJAfz4SUzJFIqPwr75drAEBgYCDGjh2LjRs3Yu3atQVeb8uWLXjrrbfQsmVLyOXmV/sqVaogJiamWPk6ePAgRo4ciYiICAQFBWH79u0Wy6xcuRKdOnVCaGgoXnjhBZw4caJQ2/jiiy8KFYghIiIqS0r6XmxU3HvynTt3EBAQYPocEBCAO3fu2CVvRaIrWk2JfJX1J8fcQZMyVlNC+GWfv4Z8RsEocHol0NElABjqO0HRzD27uY9LzjZ8/f3w6quvoXXrtsjISMcvv/yI1ZtWI12XkUdqubjeHxo0LfvclO6fo1kveFgNdolctSc0HVyQOaIC0t/0BgAozmmg2pQG5yV3ISXqYaggg75WdtUR52U5QQTVjgwozmshZIChogLCVw59HRUkkT3PZU4ylAcz4bwkBfJzGjj/kATZVS2Uf6dBcSATyr2ZUJx8IGAhz26C4rQ21er3zF7kZzRw/ukenOcl50zMEiW6TSJHKeu3lgKpUqVKgatH1qtXr8DpZmVlwcvLy+q8tLQ0i4ejwkpPT0dQUBA++OADq/M3btyIzz//HKNHj8batWsRFBSE4cOHIzEx0bTMM888Y/WfXq/H1q1bUbNmTQQGBhYrn0RERI5S0vdiI3vck8sS6f6Pq2Z9LNghKCHK+pNj7vyVsT4lhKcc6RN9kDHR1z4JmvUpUTL7ahb4UElQKBR44omeGDRoKDw8PHHs1FF8c3I+ziZfzD+t+7UhFMcyofrjHpAmICRA18j6cLLCPedgaru7AU4yiACF2Qgwsjt6SAIwBMhh8M+ZkftvADBUU5hqlmiedENWTzcY/OSQsnJe8J0X34X8qg4uPyRDtTUdTuuy+6sRLhK0bXKaajiNrQThLEFxIguqzfebOBkElJtTIT+emW85WNALwGAeaJAS9JBfvD88aqIhexmNgMuXCXBekJyzvEFAdlED1Z+pgI1hWQFkN5nR52xDtfoeXL5KhDyqcH1rEJWUctGnxLZt20ok3dDQUKxbtw7t2rWzmBcZGYlGjRoVK/327dvn2axiyZIlePHFF9GnTx8AwMcff4wdO3Zg7dq1GDZsGABg3bp1Ntc/fvw4Nm7ciMjISKSlpUGn08HT0xOvvPJKkfIrK+YNz7h+cdMpj1g21j1YLiwfSywb21g2tj1MZVPS92Kj4t6TK1asiNjYWNPysbGxiIiIsEveisT4a6qTBGRm/13omhKl0HzD7sp49oSvHZuqlMToJQ/KPcJHrr/r1lVjzJjx2LTxL5zasxuLz/2Cpv5hePqx7nBW2AgyuGUHGeTXdJBfy25SIZwk2+eUjU5L9WFOUBzNgnCSTEEFQ6DSLH/6xxQweMmguJD9Yp+7qYjwU0DXTgG4yeD0W/6dVmYO9IShtgq6hk6Qx+rhGuaKrFe84DwzCYpDmdlpGwRU27NrjGS6yKBXq0xNQvT1rJcHAEjJerh8kwRtc2fo1SoIbzlkd3RmtT0AwPXDeOjCnCBLFUCqDopDmdA1d4HT8hQozmQ3V5HSDcjq6wmkGyBlCVOzKClFD5fpiTBUVCBzWAVIOgHlwezgifPyFBg8ZdB2cYWuRTH7yMgyQPtnEhAmB9zK+BeRypxyEZQoKePGjcOQIUMwePBgPP7445AkCTt37sTSpUsRGRmJH3/8scS2rdFoEBUVhVGjRpmmyWQytG7dGseOHStQGhMmTMCECRMAAGvWrMHly5eLHJBQKGTw9S340El58fYu/PjSjwqWTQ6lUm5xzrF8bGPZ2Mayse1hKBtH3ouNCnJPDgsLw9mzZxEfHw+5XI7jx4/js88+K/I2i/1DgPFHUVVOUAJOskKlK1npDFCSl+1glpSrw0db+XyYgnJ5y39fiyJ3+Riccg3n6Wx+/ri7u+H5F15E47+rYO3ljTgUdwIX7l7B0zW6o4F3ECRJMltecresZiNcJJt5NzR1hv68Bro2LmbLaHt5QNfBFVBIcJ6eXVPJEOxkVusB/gpo+7rBsC8DynX3oG/jarEdQ2NnGHamQ4rXm2oWWVVZmb1uoAqi9v1+MWqooK+ngvysBk6rzAMbikOZEDWVcF6SHVjI+MQPcLFexUgepYGUKaD6NwP413YzGEkLU+edAOD0eyoUR7Mgv6zN2e7RLOgbZEG1LhVSigHanu7QdXCF/LQGkgaQR+vg9nGCRdqyFAOUO9JhaOWaRyHkT7krHdrNaVBFO0Pzomex0ioUvYDskhaG2srCd/iaaQCcS6H6lxCQ39JBeItycN0pGQxK5KFp06ZYunQpZsyYgU8//RRCCMyaNQsNGzbEkiVLSnREi6SkJOj1evj5+ZlN9/X1xbVr10psu7bodAakpBSwzaANMpkEb283JCWlwWBge7jcWDaWtFo9EhKyq06yfGxj2djGsrHNXmXj6ekCpbJkf6515L3YqCD3ZKVSibfeegv9+/cHAIwfPx5OTrZ/Ic2LPX4I0KdkIQuAzEUOkZJdrdvZWwXPQqSbpUq16C/T3dMZCjv9SFES9F4yZCF7qMn8yvBhCMrlR/t8do0D1xI4Jt7ebhAuBmQgHgDg5e8Gma9lc2kX7yAEhlbHumuROJYQhRUXVqO+d108U+NxVPWtZVrOoNEgE8lm68rdFXkfp7dtvNxWy/4vMyQDyDLAO9QL0Ahk3E/fLdAt+zzt6Q7Rww9uNkbbEB+6AQLIGH01Oz8t3aHfl2uYYU85fGtY5sHb2w2G/kpkzboNEWc+5KjieBYUuYYxrRAtg6Jlzj7qjqZB92cSZKGuMFzSIa/uMuWNXSEPd4NmcVzOtPt5NAYk5M3cIG/pDs2sWDityNWfxu4MeD7jj6yz96xuQznID5JCgmZxHGRpAu5/pENWyxnKjtn7K7QC2vVJkDd0hby2M/RR6TBcyoLiKS9IkgRDtAa6HSlQ9PSC5CVH5vEkCADyY1nwGeQCyd32vUFoBfRR6ZDXcobhRhZk1VSQKhTstVR3NA26HSlwGlERcJVB80Ms9IfToRzkB2UHjwKlIYSAdk0SdJuSoXzRF8quFQq0XkEJrQAUOYFd3aFUaOYkQj9EBu+2pRiweYgwKJGPJk2a4KeffkJmZibu3r0LT09PuLg4bgggIYTVXy7y07t372Jv214P9QaD4AuCDSwbcw+WBcvHNpaNbSwb2x6Wsilr92KjB+/J3bp1Q7du3Yqdrj1+CJAnaaECoFcKUzcLGZIO9xJS81rNjEqjt2ghkJqRBX0h0ihtslQNjKGgBBv5LFcBy+b3H+XteEzMykdngPGblpyeAZGgsVjeRQBuSlf0r9MLTf0bYu2VjTiddAEXMq+h3dqn0KZNRHbfL1k5aRnphcHmcSqQwdkvoWmJ2X07GNNPkWshCpGuoqcbpBgdsurJ4bQvV/4qyszyZ1Y2LgJ42xvOH8RDyhQwVJTDUFkBxfEss9FvNPPvIP1ECrS9PQBJguqvJMivaWG4pskefvWBvBiqKSCLzg50ZLkJaIMl4CM/KHZnwFBZDkOoM2RqOZyWZwffMisI6B4TcMq1HgCIZD3u/hUH1ZmM7BFHcipVQCiAe1UFhI8MTpUVkN3SQb87FfrdqUgJlQBJgmJbGpSb0qDdehdZb/jAeUZ2LYt7NQBRVQGn2YmQ3dFDt+2B0Ul0AilbEqBrb73mhWL9PYthXg1VFch63dtqUx4pXgdkCsji9NCHOsFlVnaAJv3t62a1YzJ338W96gLSDR0MDVSAHlD+mQp9iAqGICcg1QDl5lQYAhSQn8yC/Ep2gWh/TkBKPcnUEWuRaEV2J6TuMkh3dHD6JhG6zm7QdckOfCpP3st+6VbKinXdKY0fAhyFQYk87N27F+Hh4XBxcYGzszOcnZ1Lbdve3t6Qy+WIj483m56YmGjxSw0REVF55ch7sZEj7snFfVmWae/3I5GrM0SDk1SodAWsjOChKeuBrJy85ZfPhyUo5ygGgzD7hd2gAEQ+5aWuUAtvtBqJrdIBbE/dh8jIjTh69Ah69nwKtarWslwhxWDXY5AxogLkV7TQV5NbdB6ZF0277Bdo6YFaD4YAhdX85T53sl70gNPqe8h6wQOGAAV0YU5QHMuEvrYKym3pkKUYoNiXCW1zZzj9eg+y2JyIhSQAXX0VFKezgz0Zr3nBUEMJxZ4MKP9Jg6aNS3aZu0jQdLn/km8QMISoIAZ6Qrk1DdpmzhAGAW2YE5zuByU0HVyg2pGR3QEmAG2ES06fF4M8oa+jBJxk2Wn5ySC7lbNv4rYOIkAB+YHs5aVMAfn2tJw8R2shtAKyO5ZtXuSt3aHfkwr53gxo2jhDflaT3cloloBqSzpkt3VW15PF6OD8QTyyXvKEoaIc0AsojmRBOEtw2pCzbW3TnOu/MSAhnKXsPF7SQjYtAZIeyHrGHcJNgmJvBhR7M5D2hT+c1t2D4ph5x55Cyj4Giq1pMPjKoa+pzB4O2QrF/gzIz2igr62EPFoHTRfX7D5iZBKcfroL+VkNNL08oFp7D5Iue9hY2cms7D5Q/ssuS1lVJQwGLa87VjAokYehQ4dCLpcjODgYTZs2RZMmTdCkSRN4e3uX+LZVKhVCQkKwZ88edOrUCQBgMBiwd+9evPzyyyW+fSIiorLAkfdio4fynmzsaT/3CA022rUXhpSaV2XzMqCsjw7yEBMFG+gOCncntH/rGQTfaYX169fi6tUrWLJkAerXC0GvzBbwdc757sryGjGiCAx1VDDUKWBGrTB2DmlKr1L+v0rr6zsh/YOcplr6Bk7QN8j+bKiigMucZACwCEgY6Zo6A04SZFe1MFTJfjXTtXaBrnXetcFyb8e4DpQShJsEfX0nKPdnQsoQ0NVVQtfaBcJTDvk5DfRqlVkHpoaKCgA5NWBcZiUhY6w3ZAk5x0a5L2dUEVmMzlQTxOAhMx1DIQOUvX2guZVdC0H5dzpU29JhqCi3CERoI1wgj8qCLMkAXQMVFKc0kLIEnBffNQUKrFEeshzdJP0j3+wOP09rTH2DGEdOMeX5mhayq1qzaZqO2WXitC4VyvtBA4OHDBnv+gAK8xobsmgtnNZkp2nsWNQY4DAGRQBY9C8iv6mD/GZOoEuqpAJSzPNB2RiUyMOePXtw6NAhHD58GAcOHMDy5cthMBhQq1YtNGnSBE2bNsXTTz9d5PTT0tJw/fp10+fo6GicOXMGfn5+8Pf3x5AhQzBx4kSEhIQgLCwMy5YtQ2ZmJnr16mWP3SMiIirzSvpebFTu7sn3n4Nzj7ghXArX/FNfJ/tlQResyunhv6wHJYrQxJUKSFHAsr3/QlmxYkUMHfoKTp06gc2bN+L02ShcOnUE7QJaolOVNnCSO1kM3elwCglpn/pBtSUNit0Z0NdQFis5Qw0lMgd7wnlpitWABADo1Sro698PpBTn/FVKZoGMzFe8AK2A4f4+2Ap0aCNcAEV2cMLppxRIWsBpffYLuMFbBlmS+Xdefkmb3VwBgPYJNyiOZEJfWwlDQ2e4+Sigb+0C+RUtVNvSAcBqQELzlDvQzRXyy1ro66mgSRVw/jYRkh6QMvKvRaAPVEJK1kPb1hWQJGT194TYkArl3szsoWf1MGvaYQwMmaUR4mTWdkZfTQF5tA6KvRkw1FZByADhJYPiRJbZPuhrKAAdII/JvsgaAxIPMlSQQXbXvOwkJa9PtpTLoIQQAt9//z1efPFF+Pn5mf729/cvVDre3t7o2rUrunbtCiB7DPN9+/ZhyZIl+O2337Bq1apiPQidOnUKgwYNMn2eMmUKAGDMmDEYO3YsevTogcTERMycORNxcXEIDg7GwoUL4ePjU+RtEhERPUxK+l5sVO7uyVZqShQ2KKFr4QyDnxyGGkoY/kmDakcGdA2L1nlnqWFNCbvTtnWBdM9Q8JENRM5LmiRJCA1tiKCgYOze/R/2HdiE7Tf34GDicXR+5nE0fK5V2RvFVSVB87gbtBEuEF7FD5roa+UENoQC0DVzhqG6Ek6/3YMu2LzWgj0Za13ky1UGbafsvg8yX/GCyw/JkN8fSlXb3hWqDamQtIBOrYSkEZBf1UEWl/2Srn9MAV0TLwA5o7bow5ygPesE5eEsCBkgPRDHNOXLSQZ9cPb1RHhIyHjHF1AA8gtaOP14F3p1dlA0NyED9A2doOniBuGX69goJWiecYeuiTMMVRSQ4vVw/jEFUpLerC8NXagTNN1dAT0gKikAIZD1lBsM1ZWAAnD+PhlOf6UBSIM1GeO8s/MvRHbNC4UE2W0dpGQDFMezTOWSMbwCRIAcLl8lAVqRHXiKcEHxxjcp38plUMJgMOD7779Hx44d4ePjY/q7sEEJIPuXk6NHj5p+pTlx4gScnJzQoUMHNGnSpFj5bNGiBc6dO5fnMgMGDMCAAQOKtR0iIqKHWUnei43K2z1ZMtYYdipG8w2ZBEPd7F9wtY+7QdvB1S5NQEpUGc/ew0jzZOFG9tDXtKxdoFKp0LFjZ7TeXgtbTv+DIykn8fvNjdj500F07twNISENitSRe4lRSHYJSAAAnGTQNnaC8kgWtO1coe2eHQAwVJLfbzpRdhhqKGDwlEF2f8QefS0lsvp4QH5NC21HVwi5BJc5yZAl6CHkgPCxUkYyCZrnPbJrIiglQABSoh6KE9lDmOoDbdQ+uR9A1QepkP6xHyCToI3RApIEl++SIJwkpL/vazuII0nZwQUAIkCBjDe8AZHddMNlXnanoIaqCgh/hdk6uoicUIGuhTOUeyybiACAUAKGAHnOtgKzr43GbUpJesji9DB4y0zXzfT3fbOXV9oe+payla1vgh2JXFHa3H8XRu/evXHu3Dn4+vqiadOmePzxx/G///0PQUFBZevCSUREVE7xXlxEesuOLgtbU8KMJAHFWb+0PARZLK/0NRXQNXHOszaNl5sn+tZ+Bq3QHH8G7seVK5fw668rUaVKNXTt2h21a9cpl99rTW8PGOqozMrGULV4TUNKhCRlj/5xv+NNUVEOfYAC+kY5HUxmvloBil0ZEP5y27VnJCk7KJGLrrETpDRhPZDxoPsv8MYyyhjrBeEpK1ytEmMaNZXQdHQFIKBtmXdHyYZqSgDZQYmsp90gi9dDflEL2R19dl8cedQW0vR0h6TH/W3dx+YaBVZugxL2cO7cOSgUCoSHh6NRo0Zo3LgxH4KIiIhKEe/FRWSsKZE7KOHMMqOSI5xl0DXPZ6je+6dgdY+qGDp0BC5duoAtWyJx82Y0li1bhJo1a6Fr1+547LEaJZ/h0qSUoGtS+iMHFYXhMSVwWgODr9xqHxeighzanoWrPQMAcJJBFLH1V3awoIhkErSPuxVsO7lG3tCHOEF3v7aMlKyHcMunGpabDFn9PIuczUcdgxJ5OHTokKm66JYtWzBjxgwolUo0btwYTZs2RbNmzRAeHu7obBIREZVbvBcXkbFPidydEzoxKEElqCCn1wMvubVr18XIkXUQFXUK//yzBVevXsaCBT+gVq066NChEwIDrQwjSiVK29YFEAK68IcjiGJPhoo5tThEhZwghN2a8pBNDErkwcXFBa1bt0br1q0BAFqtFnv37sWCBQswY8YMSJKEM2fOODiXRERE5RfvxUUj6e4338j9pMc2zVQC9FUUkN/Umf3KbJPxFHygM8wGDUJRv34Ijh07gp07t+Py5Yu4fPkiatYMRIcOnVCrVvls1lEmKSRTx5ePHIWEjFcrZDfT4PlWqhiUyEdiYiIOHTpk+nfu3DkYDAbUrVvXbp1rERERkW28FxeBcQQ7hYSMVyqwA0gqMVlDPCE/ngVdy3yabuQiWenuTSaToXHjpggPb4yTJ49j587tuHr1CpYuXYRq1aqjQ4fOUKvZdItKlqGWytFZeCQxKJGH7t274/r165DL5QgODkaLFi0wevRoNGnSBF5eXo7OHhERUbnHe3ER3a8pATlgqM2HbCo5wlMOXdsCDnZoqilhexGZTIaGDRshNLQhoqJOYceObYiOvoEff1wKf/+KaN06AuHhjaFQ8DWGqLzgtzkPPXv2NLVVdXEpePSXiIiI7IP34iLKVVOCqMwozOAJMhlCQ8PQoEEozp49g127duL69WtYt24Ntm6NRIsWrdG8eUu4uT2iTQ2IypFyGZSQJAlVqlSBSqUy+7uwXn/99RLIHRERERUU78VFY+pTgv2zUVlSgJoSFqtIEoKD6yM4uD5u3LiO3bv/Q1TUKWzb9jf+/XcHGjVqjFatIuDv718iWSaiklcugxIymQzbtm0zfc79d2HduHEDCxcuxJEjR5CcnAwvLy80adIEw4YNQ/Xq1e2RXSIiIsoD78VFYBwS9BGrKWG430u+KMYIglQKChGUyK169cfQt+9LSExMwJ49u3HkyCEcPLgfBw/uR2BgbbRo0QrBwfUhk7ETFaKHSbkMStjLqVOnMGjQIDg5OaFDhw7w8/NDfHw8tmzZgvXr12P58uUICQlxdDaJiIjKLd6Li8g4JKj80QpKwE2G9Ik+EK6P2H4/JEQRakpY4+PjiyeffBqdOnXBoUMHcODAPly5cglXrlyCh4cnmjZtjmbNmsPDw7PYeSaiksegRB6++OIL1K9fHwsWLDBrx5qRkYFXXnkFX3zxBZYvX+7AHBIREZVvvBcXkammhENz4RDCl21WyizjyBnFDEoYubq6ol27DoiIaIcLF85j//69uHDhPLZv34odO7ahfv0QNGvWnEOKEpVxj+CtquBOnjyJb7/91qJjLRcXFwwdOhRvvPGGg3JGRET0aOC9uIj0xj4l+CJGZZGdohL3yWQyBAXVQ1BQPSQmJuDgwQM4cuQgoqJOIirqJCpU8ELjxk3QqFETeHv72HXbRFR8DErkwcnJCcnJyVbn3b17F05OTqWbISIiokcM78VFY+zokk96VJYYHlNAflMHfa2SG6bWx8cX3bs/gc6du+LUqRM4fPgQrl69jO3b/8H27f8gMLA2mjRpivr1G0CpZOcjRGUBb1V56NChA7766itUq1YNTZs2NU0/dOgQZsyYgY4dOzowd0REROUf78VFZBwSlDUlqAzR9HCHIUABXcOSDyYqFAqEhzdGeHhjJCYm4OjRwzhy5LCp7wknp3UIDQ1DWFg4atYMZPMOIgcqF0GJPXv2oHXr1vkup9Vq8c477+Drr78uULrvvvsuXnvtNQwYMAC+vr7w9fVFYmIiEhIS0KhRI7zzzjvFzToRERHlgffiIro/+IBw5osWlSFOEnStXfJfzs58fHzRuXM3dOzYBZcvX8Lhwwdx5sxpHDp0AIcOHYCHhydCQxsiLKwhqlSpygAFUSkrF0GJUaNGYebMmWjfvr3NZdLT0zF69GgcPHgw3/QyMzOxc+dOxMTEoF+/fhgwYACuXr2KuLg4+Pv7o2HDhoiIiLDnLhAREVEuvBcXj7anO1zaKpDhBcBg3/b7RA8rmUyGOnXqok6dukhPT8fp06dw/PgxXL16BXv2/Ic9e/6Dr68fwsLCERYWDj8/P0dnmeiRUC6CEl26dMGYMWPwzTffoEuXLhbzExMTMWLECFy6dAmzZ8/OM60bN25g8ODBiImJMU1zd3fHN998g7Zt29o970RERGSO9+LiExUVUAS7Awmpjs4KUZnk6uqKpk2bo2nT5khJuYtTp07ixIljiImJxvbtW7F9+1YEBFRG/fohCAlpgIoVAwCwBgVRSZA5OgP28NVXX+Gpp57C+PHjsXHjRrN50dHR6NevH6Kjo7FkyRJ06NAhz7SmT58OmUyGlStX4vjx49iwYQOCg4Px0UcfldwOEBERkQnvxURUmjw9K6B16wiMHDkG48a9hY4du8DfvyJiY29h+/atmD37W3z33QxERm7C9evXIQRrHxHZU7moKSFJEqZOnQonJye8/fbb0Gg0ePbZZ3H27FmMGDECcrkcK1euRJ06dfJN6+jRo3j33XfRpEkTAEDt2rXxySefoEePHrhz5w4qVqxY0rtDRET0SOO9mIgcxc/PD506dUGnTl1w584dnDkThdOno3DzZjT+/XcnDh7cA5XKFfXq1UdwcDBq1qwFuVzu6GwTPdTKRVDC6MMPP4STkxMmTZqEc+fOYdWqVahYsSIWL16MSpUqFSiNuLg4VK9e3WzaY489BiEE4uPj+SBERERUwngvJqKyoGLFiqhYsSLat++IpKREnD17BteuXcDp0+ewf/8e7N+/ByqVE2rXrgO1OghqdRA8PSs4OttED51yFZQAsnvpdnJywvz589GwYUPMmzcPFSrw4kBEREREREXj7e2DNm0i8PTTj+Pq1Vs4fToK58+fw6VLF3HmTBTOnIkCAFSqVAX16tWDWl0PVatWg0xWLlrLE5WochGUaNmypcXQPUIIXLp0CY8//rjF8nv37s0zveHDh1uthjV48GCL6fmlRURERIXHezERlVUeHh5o1qwFmjVrAZ1OhytXLuPcubM4f/4sbt++idu3b2LHjm1wcXFFrVq1UatWHdSuXQe+vr6OzjpRmVQughIvvfSS3cYTHjNmjF3SISIioqLhvZiIHhYKhQJ166pRt64aQjyF+Ph4nD9/FufOncW1a1cRFXUSUVEnAWTXtqhduw5q1aqDWrVqw83NzcG5JyobykVQYuzYsXZLiw9CREREjsV7MRE9jCRJgr+/P/z9/dGmTVtoNBpcv34Nly5dxMWLF3D79k0cOnQAhw4dAJDd1CMwsBZq1gxEjRo1GaSgR1a5CEoQERERERGVJSqVCnXq1EWdOnXRvfsTSE1NxZUrl3H5ck6Q4vbtm9i7dxcAwN8/ADVr1jQFKSpU8HLsDhCVEgYliIiIiIiISpi7uztCQ8MQGhoGAEhMTMDVq1dw7dpVXL16BXFxsYiLi8XBg/sBAF5e3qhRoyYee6wmqlevjoCASuw4k8olBiWIiIiIiIhKmY+PL3x8fNG4cVMAwL17Kbh69aopUBEbexvJyUdx/PhRAIBCoUTVqlVRrdpjqFatOqpXr87aFFQuMChBRERERETkYB4enmY1KdLT03H9+jVER1/HjRs3EBMTjWvXruLatatm61SrVh3VqlVH5cpVULlyFbi7uztoD4iKhkEJIiIiIiKiMsbV1RX16gWjXr1gAIAQAnfu3EFMzA1ER9/AjRs3EBt7G2fOROHMmSjTeh4enqhSpSoqV66MypWz//fy8rbbaIVE9sagBBERERERURknSRICAgIQEBBgavKh0WgQExONW7du4ubNGNy8eRNxcXdw7twZnDt3xrSui4srKlWqjEqVKqNixYoICKgEf/+KcHZ2dtTuEJkwKEFERERkB5cvX8akSZOQmpoKlUqFSZMmoWnTpo7OFhGVYyqVCoGBtRAYWMs0TaPRIDb2Nm7duoVbt2Jw69ZN3L59G1euXMKVK5fM1q9QwQsVKwYgIKASKlasiIoVA+DvXxEqlaq0d4UeYQxKEBEREdmBk5MTpk6dilq1auHSpUt47bXXEBkZ6ehsEdEjRqVSoXr1x1C9+mOmaXq9HvHxcYiNvY3Y2Nu4c+cO7tyJRWJiIu7eTcaFC+dypSDBy8sLvr5+8PPzh6+vL/z8/OHj4wtvb2+OAEJ2x6AEERERkR1UrVrV9HetWrVw7949CCHYjpuIHE4ulyMgoBICAiqZTddoNIiPj8OdO7GIjY29//9tJCcnITk5CZcuXTBbXiaTw8fHB76+fqZ/Pj4+8PHxRoUKbApCRcOgRDl28uRJTJ482fT5woUL+P333xEcHOzAXBERETnGwYMHsWjRIpw6dQpxcXGYO3cuOnbsaLbMypUrsWjRIsTFxSE4OBiTJ09GWFhYobf1zz//IDg4mAEJIirTVCoVqlSpiipVqppN12q1SExMQHx8PBIScv7Fx8eZ/pmT4OKihELhDG9vb1So4AVvb294eXnD29sHXl7e8PLygkLB10+yxLOiHAsNDcW6desAADExMRg4cCADEkRE9MhKT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YN5HI5gOx77vTp0zF//vyS2xkiohKkVCqt1qwAgMzMzFxBingkJyfh7t1kZGWl4datO7h3LwXANavpuri4wsPDE56enqhQoQI8PT3h7p7z2cPDE25ubgzoPmIYlHhEbN68Gd27d3d0NoiIiBymffv2aN++vc35S5YswYsvvog+ffoAAD7++GPs2LEDa9euxbBhwwDAFOy3JTU1Fa+99href/991KhRo8h5lcmK90BuXL+46ZRHLJu8sXxsY9lkc3V1gatrdVSvXt00TSaT4O3thoSEe0hOTkZSUhKSkrKbgGT/nYiUlBTcvZuMO3eym4nYIpfL4ObmDjc3N9P/7u5uZtPc3XP+VqlUZT6IwXMnbwxKOFBpViPdvHkz3n//fXtlnYiIqFzRaDSIiorCqFGjTNNkMhlat26NY8eOFSgNvV6PcePG4YUXXkBERESR86JQyODr617k9XPz9nazSzrlEcsmbywf21g2tvn6esDX1wNAdavzhRDIyMjA3bt38/yXmpqK5OQMJCfH57tNmUwGFxcXs3+urq5WP6tUKjg5OZn9b/xbLpeXeHCD5451DEo4UGlWI01MTCxSMIOIiOhRkJSUBL1eDz8/P7Ppvr6+uHbNejXkB/3777/Yt28f4uPj8dtvvwEAVqxYAU9Pz0LlRaczICUlo1DrPMj4q2VSUhoMBlGstMoblk3eWD62sWxsK2zZqFQe8Pf3gL9/NavzhRBIT09HWloa0tJSzf5PTU1FenrO/xkZmbh7NxXx8cnF3ofsIIUTVCol5HIFFIrsf3K5HDKZHAqF/IHPCigU8vsjkkiQJPN/MpkMkiShYsWK6NChTbHOHU9PFyiV8mLtY1nFoIQDlUY1UgCIjIy0S9MNViUtOSwb6x4sF5aPJZaNbSwb21g2BVeY0TM6duyIqKgou2zXXi88BoPgy5MNLJu8sXxsY9nYZs+ycXFxhYuLK/z8/Au0vE6nQ2ZmBjIyMpGZmYHMzExkZKSbfdZosqDRaKDVapGVlQWtVoOsLA20Wg00mux/2SMnGeyyD0aSJKFVq6Y8d2xgUKKMskc1UiN7NN1gVdLSwbLJoVTKLc45lo9tLBvbWDa2sWxyeHt7Qy6XIz7evKpwYmKiRe0JIiIqexQKBdzdPeDu7lGsdIQQ0Ov10Ol00Ov10Ot19/82QK/XPTAv+28hBAwGA4QQAASEMP/n6+sLJycnpKZq7bOz5QyDEmWUPaqRAsDNmzeRmJiI0NDQYuWHVUlLFsvGklarR0JCKgCWT15YNraxbGyzV9mUp6qkKpUKISEh2LNnDzp16gQAMBgM2Lt3L15++WUH546IiEqLJEmmZhv2wpqJeWNQ4iFTmGqkAFClShVs3brVLttmVdKSx7Ix92BZsHxsY9nYxrKx7VErm7S0NFy/ft30OTo6GmfOnIGfnx/8/f0xZMgQTJw4ESEhIQgLC8OyZcuQmZmJXr16OTDXRERE5RuDEmUUq5ESERHZ16lTpzBo0CDT5ylTpgAAxowZg7Fjx6JHjx5ITEzEzJkzTaNeLVy40NS5NBEREdkfgxJlFKuREhER2VeLFi1w7ty5PJcZMGAABgwYUEo5IiIiIgYlHIjVSImIiIiIiOhRxqCEA7EaKRERERERET3KGJRwIFYjJSIiIiIiokeZzNEZICIiIiIiIqJHE4MSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMoHJ0BKj+EMMBgMEAI6/NlMgkajQY6nQ4Gg42FHlFlsWwkCZDJZJAkxi6JiAoqIyMDPXr0QM+ePfHWW285OjtERERlHoMSVGx6vR4pKYnIykrPd9n4eBkMBkMp5OrhU1bLxsnJFZ6ePpDL5Y7OChFRmTd37lyEhYU5OhtEREQPDQYlqFiEEEhIuAWZTA5v74qQyxUAJJvLKxQSdLqyUROgrCl7ZSOg1+tw714yEhJuwd+/KiTJ9rElInrUXb16FZcvX0bHjh1x+fJlR2eHiIjoocCgBBWLwaCHwaCHj08AFAplvssrFDIAZa82QFlQFstGoVBCLlcgPv4mDAb9/aATEdHD5+DBg1i0aBFOnTqFuLg4zJ07Fx07djRbZuXKlVi0aBHi4uIQHByMyZMnF6rWwxdffIGJEyfi6NGj9s4+ERFRucU3DCqWnP4j+At6+ZV9bG31FUJE9DBIT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YNtm/fjpo1ayIwMJBBCSIiokJgUIKIiIjKvfbt26N9+/Y25y9ZsgQvvvgi+vTpAwD4+OOPsWPHDqxduxbDhg0DAKxbt87m+sePH8fGjRsRGRmJtLQ06HQ6eHp64pVXXilSfmWy4gX7jesXN53yiGWTN5aPbSwb21g2eWP55I1BiXLi9ddfx969exEREYFvvvnGNH3r1q2YPn06AGDcuHHo0aOHo7JIRERUJmk0GkRFRWHUqFGmaTKZDK1bt8axY8cKlMaECRMwYcIEANk1Jy5fvlzkgIRCIYOvr3uR1n2Qt7ebXdIpj1g2eWP52MaysY1lkzeWj3UMSpQTL730Ep599lmsX7/eNE2n02H69OlYuXIl5HI5XnzxRXTp0gUqlcqBOS07PvvsI2za9JfF9L/+2govL6/SzxARETlEUlIS9Ho9/Pz8zKb7+vri2rVrpZ4fnc6AlJSMYqUhk0nw9nZDUlJamRlquqxg2eSN5WMby8Y2lk3e7FE+np4uUCrL52h4DEqUEy1atMD+/fvNph0/fhxBQUGmh6ywsDAcPnwYrVq1ckQWy6TWrdvinXf+ZzatQoUKZp91Oh0UCn5ViIgeNUKIIo061Lt372Jv214P9QaD4AuCDSybvLF8bGPZ2MayyRvLxzqZozPwKDh48CBGjhyJiIgIBAUFYfv27RbLrFy5Ep06dUJoaCheeOEFnDhxotjbvXPnDgICAkyfAwICcOfOnWKnW56oVEr4+vqZ/Xv++aexfPlifPLJ++jatR2++24GAOD48aMYNWooOnVqgz59nsScOd9Bo9GY0kpIiMfEiePRqVMbvPjis9ix4x/07NkZGzdm1145cuQQIiKaIj093bTO7t3/ISKiqVme/v13BwYP7o9OnVrjxRefxcqVy2Aw5IzKERHRFH/99QcmThyPzp3bYODAF3D8+DGzNI4dO4LXXhuOzp3b4IknOuHtt8chKysLy5YtwpAh/S3KoW/fXvj55x+LXZ5ERA8jb29vyOVyxMfHm01PTEy0qD1BRERE9sWgRCkw9vj9wQcfWJ1v7PF79OjRWLt2LYKCgjB8+HAkJiaalnnmmWes/tPr9aW1G4+Un35ajnr1grF06U/o2/clxMRE4623xqFz525YvvwXfPDBp9i7dzfmzp1lWuezzz5CfHwcZs+ehw8/nIKVK5ebBSAK4vjxY5g69SP07fsSVqz4DePHv43Vq3/F6tW/mi23ZMlCPPHEk1i69GfUrl0XH3/8P+h0OgDA9evX8MYboxEUFIz585dh9uz5aNKkGYQQ6NHjKVy+fAkXLpzLtc2juHXrJrp3f6IYJUZE9PBSqVQICQnBnj17TNMMBgP27t2L8PBwx2WMiIjoEcA66aWgpHv8tqVixYqIjY01fY6NjUVERESh0zGy1lvsw96D7H//7UTXrm1Nnzt06AwAaNq0BV54IadGwbRpn+Lxx3viuef6AgCqVauO0aPHY/LkiRg79k3cuHENBw7sw+LFP0KtrgcAmDDhHQwfPqhQ+Vm8eD4GDRqKxx/vCQCoWrUaXn55KFav/hUvvNDPtNyTTz6Djh27AACGDn0F/fv3QUxMNGrUqIkff1yK0NCGGDdugmn52rXrAACcnZ3RvHlLbNiwHuPHBwEANm5cj1at2sDHxzfPvMlkUqkf7wd7Kn7Yz7eSwLKxjWVj26NYNmlpabh+/brpc3R0NM6cOQM/Pz/4+/tjyJAhmDhxIkJCQhAWFoZly5YhMzMTvXr1cmCuiYiIyj8GJRzMHj1+2xIWFoazZ88iPj4ecrkcx48fx2effVaktGz1BK7RaBAfL4NCIUGhKFjFm4IuV9IkSUKzZi0wYcJE0zRXVzcMGzYI9euHmOXz0qULuHjxAjZvzukY02AQyMrKxN27iYiOvg6lUong4GBT++OQkBAolUrIZNllI5dnp6dQyExpy+WSaVr2ds7j1KnjWLJkQa7tGGAwGMzyU7duXdPngICKAICUlCQoFLVw6dIFtG/f0WY5P/XUs/jyy88wbtwb0Ot12L79H3z44Sd5HBcJMpkM3t6updpJqlIptzjn2GOxbSwb21g2tj1KZXPq1CkMGpQTKJ4yZQoAYMyYMRg7dix69OiBxMREzJw5E3FxcQgODsbChQvh4+PjqCwTERE9EhiUcDB79fj9yiuv4MSJE8jIyEC7du0wf/581KtXD2+99Rb698/+xX/8+PFwcnIqUj5t9QSu0+lgMBig0wkABssVH6BQyKDT5b9caRBCwNnZGZUrV7OY5+TkZJbP9PR09O79PHr1et5iWXf3CtDpDJAkyfS/MX0gO3ih0xlw/yN0Or0p7aws7f1p2UGH9PQMjBgxCm3bWtasyZ0fSZKbPuv12QlrtXrTdozbtKZ167YAJPz7705kZGRApVKhRYs2NpfX6QQMBgOSktKhUGisLlMStFo9EhJSAbBH57ywbGxj2dhmr7J5mHoCb9GiBc6dO5fnMgMGDMCAAQNKKUdEREQEMChRZhW2x+/58+dbnd6tWzd069bNLnmy9uD6qDzo160bhCtXLqNatepW59esWRMajQYXLpwzNd84d+4stFqtaRkvL28AQEJCAlxds3+dvHjxvFk6anUQbty4ZnM7BVGnTl0cOXIIgwcPtzpfoVCge/ce2LBhPbKyMtG9+xMFGl3EEb0FP7g99lhsG8vGNpaNbSwbIiIicrSyUY/+EcYevx8OL700CMeOHcW3336FCxfO4/r1a9i5cxu+//47AMBjj9VE06bN8cUXn+HMmSicOROFb775Ekql0pRGtWrVUbFiAJYsWYAbN65j+/at2LDhT7PtvPzyMGzcuB5Lly7ElSuXceXKZWzZsgnLli0qcF4HDBiMkyeP47vvZuDy5Yu4cuUyfvvtZ2RmZpqWefLJZ7B//x4cPXoYPXo8XczSISIiIiIiKhoGJRyMPX4/HOrWDcLMmXNx5cpljBo1FMOHD8KyZYvg71/RtMzkyZ/A29sbo0ePwAcfvIe+fV+Cq6urab5CocAHH3yK8+fP4eWX+2H9+nUYMmSE2XZatWqDzz+fgb17d2PYsIEYNWoo1qxZhcqVqxQ4r489VgMzZszC6dOnMHz4IIwePQKHDx8wq3kTGFgLanU91K0bZOoEk4iIiIiIqLSx+UYpYI/fZdP//veR1emrV6+3Or1Bg1B8990cm+n5+fnhq69mmk376qvPzT6HhzfGjz/+ZjbtqaeeNfvcqlUbtGrVxuZ2du06ZPbZ1dXVYlrjxk0xb94Sm2lk9xGRiP79Czc6CBERERERkT0xKFEK2OM3lSWJiQnYuHE9UlPv4fHHezg6O0RERERE9AhjUKIUsMdvKkuefro7vL198M47k00dbhIRERERETkCgxJEJWjDhn8cnQULDzb1ICIiIiIichR2dElEREREREREDsGaElRi3n//XZw8ecJsmiQBQth/W6GhYfj002n2T5iIiIiIiIhKDIMSVGKsBQkUChl0OoMDckNERERERERlDZtv0CPp999/xeOPd4DBkBMgSUiIR0REU7z33ltmy0ZGbkTHjq2QlZVZ5O3988/fiIhoismTJ1qd/+GHk7B48UIAQEREU3Tq1AZ37sSaLTNmzCuYPfvbIueBiIiIiIiorGFQgh5JjRo1QWpqKs6fzxkV5dixI6hYMQDHjx+FyNXG5NixIwgODoGTk3ORthUbexvff/8twsLCrc7X6XTYv38v2rZtZzZ9yZIFRdoeERERERHRw4JBCXokBQbWhpeXN44ePWyadvToYTz+eE8olUpcvHjBbHrjxk2LtB2DwYApUz7Eyy8PQ9Wq1awuc+zYEbi7u6NuXbVpWp8+L2DjxvW4fv1qkbZLRERERET0MGCfEvRIkiQJ4eGNcfToYfTrNwBAdnBg3LgJiIm5gaNHD6NuXTXi4+MQHX0DjRo1AQAMGPACYmNv2Uw3LKwRZsyYafr800/L4ezsjGee6Y1Tp05YXWfXrn/Rpk1bs2nh4Y1x6dJFzJ//A6ZM+aK4u0tERERERFQmMShBj6xGjZpgwYI5MBgMuHs3GdHRN9CgQUPcuHEDBw/uxwsv9MORI4ehUqnQoEEoAOCrr76DTqezmaaTk5Pp73PnzmL16l+xaNGKPPOxe/d/mDjxPYvpI0eOxvDhg3D27GnUq1e/iHtJRERERERUdjEoQY+sxo2bmvqVuHkzBkFBwXBxcUF4eCMsXDgXQggcO3YY9es3MPUnUalS5QKlrdFo8MknkzF+/Fvw9fWzudylSxeRkpKMRo0sm4eo1fXQsWNnzJ07G99+O6doO0lERERERFSGMShBj6zAwFrw9vbB0aOHcetWDMLDG9+fXhuSBFy8eAHHjh1B587dTOsUtPlGQkI8rl27ig8/nGSaZxzpo337Fli9ej38/Sti166daNGiNRQK61/FESNew0svPYfDhw/aY5eJiIiIiIjKFAYl6JHWqFETU1DitdfGAcjubyIsLBz//LMF169fM/UnARS8+Ya/f0UsX/6L2bwFC35AZmYmxo59A97ePgCy+5N4/vm+NtOrVq06nnzyGcydO6vIo38QERERERGVVQxK0COtUaMmmDPnO2g0GoSFNTRNb9iwERYtmg+VSoWQkFDT9II231AoFKhVq47ZNHd3D8jlctP0hIR4XLhwDi1btskzrSFDXsGLLz4DIcC+JYiIiIiIqFzhkKD0SGvcuCkyMjJQt24Q3NzcTdPDw5sgIyP9fn8STnmkUHS7d/+H0NCG8PT0zHM5Pz8/PPdcX2g0WSWSDyIiIiIiIkdhTQl6pNWoURO7dh2ymF6vXrDV6cXxv/99ZPZ5165/ERHRzmI5a9sdNWosRo0aa9f8EBERERERORprShA5SMOG4ejUqaujs0FEREREROQwrClB5CAvvfSyo7NARERERETkUKwpQUREREREREQOwaAEERERERERETkEgxJULJJk/Es4MhtUorKPbc6xJiIiIiIisg8GJahYZDI5AInDVZZj2cdWun+siYiIiIiI7IcdXVKxSJIENzdPpKQkAgBUKicAef2kLkGnY60K68pa2QhoNFlISUmEm5snJFaVICIiIiIiO2NQgorN3b0CANwPTOT9Ui2TyWAwGEohVw+fslk22UEn4zEmIiIiIiKyJwYlqNgkSYKHhxfc3SvAYNBD2IhLyGQSvL1dkZSUDoOhLNUIcLyyWDaSlN08hzUkiIiIiIiopDAoQXYjSRLkctunlEwmQaVSQaHQlJkX77KCZUNERERERI8idnRJRERERERERA7BoAQREREREREROQSDEkRERERERETkEJIQtrolJMphMAjo9cUfGUKplEOr1dshR+UPy8bc+fNnoVbXM31m+djGsrGNZWObPcpGLpdBJmNnuPbGe27JY9nkjeVjG8vGNpZN3opbPuX5nsugBBERERERERE5BJtvEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKUIGtXLkSnTp1QmhoKF544QWcOHEiz+U3bdqExx9/HKGhoXjqqafw77//ms0XQuC7775DREQEwsLCMHjwYFy7ds1smeTkZEyYMAGNGzdGs2bN8L///Q/p6el23zd7KO3yiY6OxqRJk9CpUyeEhYWhS5cumD17NrRabYnsX3E44twxSk5ORrt27RAUFIS0tDS77ZO9OKpstm3bhj59+iAsLAytWrXCO++8Y9f9sgdHlM3x48cxcOBANGnSBM2bN8err76KS5cu2X3f7MHe5bNlyxYMGzYMLVq0QFBQEM6fP2+RxsN0TX4U2PscKE8KUzYXLlzA2LFj0alTJwQFBeHHH38sxZw6RmHK57fffkP//v3RrFkzNG/eHEOHDsXJkydLMbelqzBls3XrVvTp0wdNmzZFeHg4nnnmGfzxxx+ll9lSVthrjtH8+fMRFBSEL774ooRz6DiFKZs1a9YgKCjI7F9oaGgp5rYMEkQFsGHDBhESEiJWr14tLly4ICZPniyaNWsmEhISrC5/5MgRERwcLBYsWCAuXrwovv32WxESEiIuXrxoWmbevHmiSZMm4u+//xZnzpwRI0eOFF26dBFZWVmmZYYNGyaefvppcezYMXHw4EHRtWtX8fbbb5f4/haWI8pn586d4t133xX//fefuH79uti6dato1aqVmD59eqnsc0E56twxGjt2rBg2bJhQq9UiNTW1xPazKBxVNps3bxbNmjUTv/zyi7h8+bI4f/68iIyMLPH9LQxHlM29e/dEs2bNxKRJk8Tly5fF2bNnxauvvio6d+5cKvtcGCVRPmvXrhWzZs0Sv/32m1Cr1eLcuXMW6Tws1+RHQUmcA+VFYcvm+PHjYtq0aeKvv/4Sbdq0EStWrCjlHJeuwpbPm2++KX788Udx+vRpcfHiRfHuu++Kpk2bitjY2FLOeckrbNkcOHBAREZGiosXL4pr166J5cuXi+DgYLF79+5SznnJK2zZGJ06dUp07NhRPPXUU2LatGmllNvSVdiy+f3330Xz5s3FnTt3TP/i4uJKOddlC4MSVCDPPfec+OSTT0yf9Xq9iIiIEAsXLrS6/Lhx48Srr75qNu35558XH3/8sRBCCIPBINq0aSMWLVpkmp+SkiIaNGggNm3aJIQQ4uLFi0KtVouTJ0+altm5c6eoV69emfviOqJ8rFmwYIHo1q1bcXbF7hxZNqtWrRJ9+/YVe/bsKZNBCUeUjVarFW3bthW//fabvXfHrhxRNidOnBBqtdrsQfvIkSNCrVbn+9BV2uxdPrnduHHDalDiYbomPwpK8hx42BW2bHLr2LFjuQ9KFKd8hBBCp9OJRo0aiT///LOksugwxS0bIYR49tlnxaxZs0oiew5VlLJJT08XTzzxhPj333/FgAEDym1QorBlYwxKUA4236B8aTQaREVFoU2bNqZpMpkMrVu3xrFjx6yuc+zYMbPlASAiIsK0fHR0NOLi4syW8fDwQMOGDU3LHD16FF5eXmjQoIFpmdatW0OSpAJXFysNjiofa+7du4cKFSoUeV/szZFlc/36dXz77bf48ssvIZOVvUudo8rm9OnTiI2NhSRJePrppxEREYGRI0fabP7iCI4qm8DAQHh5eWHVqlXQarXIyMjA2rVrERoaCh8fH7vuY3GURPkUxMNyTX4UOOoceBgUpWweJfYon4yMDOh0ujL1vGEPxS0bIQT27t2LK1euoEmTJiWY09JX1LKZNm0aWrRogbZt25ZCLh2jqGWTmpqKDh06oH379njttddw8eLFUsht2VX2ntSpzElKSoJer4efn5/ZdF9fX8TFxVldJz4+Hr6+vjaXN/6fV5rW0lAoFKhQoQLi4+OLvkN25qjyedD169fx448/om/fvkXaj5LgqLLR6XR4++23MW7cOFSvXt0u+2JvjiqbGzduAADmzJmDsWPHYs6cOVAqlRg0aFCZ6RvAUWXj7u6OZcuWYc2aNWjYsCEaNWqEY8eOYc6cOXbZL3spifIpiIflmvwocNQ58DAoStk8SuxRPjNmzEDlypXRsmXLksiiwxS1bO7du4dGjRqhQYMGeOWVV/DBBx+gVatWJZ3dUlWUstm+fTv27duHiRMnlkYWHaYoZVOrVi18/vnnmDt3LqZPnw6DwYB+/fohNja2NLJcJjEoQUUmhIAkSTbnW5v34LQHPz+YprU08ttuWVEa5WMUGxuL4cOHo2fPnujdu3cRc1x6Srps5s6dC29vbzz//PN2yG3pKumyMRgMAIBRo0aha9euCAsLwxdffIGUlBTs2LGjmLkvWSVdNpmZmZg8eTJatmyJ3377DT/99BMqV66M0aNHQ6fT2WEPSpY9yic/D/M1+VFQGufAw4rnad4KWj4LFizAxo0bMWvWLKhUqlLImePlVzZubm74448/sHr1arzxxhuYOnUqDh06VIo5dBxbZZOYmIj3338fX375JVxcXByQM8fL67wJDw/H008/jXr16qF58+aYNWuWqabmo0rh6AxQ2eft7Q25XG7xS1hiYqJFVNDIz8/PYvmEhATT8v7+/gCyf73MXS06MTHRVDXYWho6nQ4pKSkWv/Y4kqPKxyg2NhaDBg1CeHg4Pvroo+Lujl05qmz279+PQ4cOoX79+gCybwwA0KxZM7z++usYOXKkHfaueBz5vQKymyoYubq6okqVKrh582Yx98o+HFU269evR2xsLFatWmV6kPj666/RrFkz7NmzB+3atbPPDhZTSZRPQTws1+RHgaPOgYdBUcrmUVKc8lm0aBHmzZuHJUuWQK1Wl2Q2HaKoZSOTyVCjRg0AQHBwMC5duoT58+ejadOmJZrf0lTYsrlw4QLi4uLQr18/0zS9Xo+DBw/ixx9/LFejt9jjmqNUKhEcHFymmtKWNtaUoHypVCqEhIRgz549pmkGgwF79+5FeHi41XXCw8Oxe/dus2l79uwxLV+tWjX4+/ubpZmamorjx4+blmnUqBGSk5MRFRVlWmbfvn0QQiAsLMw+O2cHjiofICcgERISgs8//7zM9Z3gqLKZOnUq1q1bhz/++AN//PEHpkyZAgD45Zdf8MILL9hvB4vBUWUTGhoKpVJpduPLzMzE7du3UaVKFfvsXDE5qmwyMzMhk8nMftkwfjYGtsqCkiifgnhYrsmPAkedAw+DopTNo6So5bNw4ULMmTMHCxcuLLdDF9rr3BFCQKPRlEAOHaewZRMaGor169ebnsP++OMPNGjQAL169cKaNWtKMeclzx7njV6vx4ULF0w/oDySSq1LTXqoGYe6WbNmjbh48aJ4//33zYa6efvtt8VXX31lWv7w4cMiODhYLFq0SFy8eFHMnDnT6vB8TZs2FVu3bhVnz54Vo0aNsjok6LPPPiuOHz8uDh06JLp16ybeeuut0tvxAnJE+dy+fVt07dpVDBo0SNy+fdtsWKGyxFHnTm779u0rk6NvOKpsPvnkE9G+fXuxe/ducfHiRTFhwgTRvn17kZaWVno7nw9HlM3FixdFgwYNxKeffiouXbokzp49K8aOHStatWolkpOTS7cA8lES5ZOUlCROnz4tduzYIdRqtdi8ebM4ffq0SEpKMi3zsFyTHwUlcQ6UF4Utm6ysLHH69Glx+vRp0aZNG/HVV1+J06dPi5iYGEftQokqbPnMnz9fhISEiM2bN5s9a5S1e6o9FLZs5s2bZxqa/eLFi2LJkiWifv36YvXq1Y7ahRJT2LJ5UHkefaOwZTNr1izTeXPq1CnxxhtviLCwMHHp0iVH7YLDsfkGFUiPHj2QmJiImTNnIi4uDsHBwVi4cKGpGvStW7fMfqVv3LgxZsyYgW+//RZff/01atasie+//x61a9c2LTNixAhkZGTggw8+QEpKCpo0aYIFCxaYtVH86quv8Omnn+Lll1+GTCZD9+7dMXny5NLb8QJyRPns3r0b165dw7Vr1yyqlZ87d64U9rpgHHXuPAwcVTbvvPMO5HI53nzzTWi1WjRq1AhLliyBq6tr6e18PhxRNrVr18bcuXMxa9YsPP/881AoFGjQoAEWLlxY5nqZL4ny2bZtG9577z3T59dffx0A8Pnnn5v6qnlYrsmPgpI4B8qLwpbNnTt38Oyzz5o+z58/H/Pnz0evXr0wbdq00s5+iSts+fz888/QarWma4LRmDFjMHbs2FLNe0krbNlkZmbik08+we3bt+Hs7IxatWph+vTp6NGjh6N2ocQUtmweJYUtm5SUFLz//vuIi4tDhQoV0KBBA/z666+oVauWo3bB4SQhylCdVCIiIiIiIiJ6ZDya4SwiIiIiIiIicjgGJYiIiIiIiIjIIRiUICIiIiIiIiKHYFCCiIiIiIiIiByCQQkiIiIiIiIicggGJYiIiIiIiIjIIRiUICIiIiIiIiKHUDg6A0REeZk1axZmz55tMb1Vq1ZYunRp6WeIiIionOI9l4gcgUEJIirzPDw8sHDhQotpREREZF+85xJRaWNQgojKPLlcjvDw8HyXy8zMhLOzc8lniIiIqJziPZeIShv7lCCih1J0dDSCgoLw559/YuLEiWjatClGjhwJAEhOTsYHH3yA1q1bIzQ0FH379sXx48fN1k9JScGECRMQHh6OiIgI/PDDD/jiiy/QqVMn0zKzZs1CixYtLLYdFBSEH3/80WzaqlWr0LNnTzRo0AAdO3bEggULzOa/++676N27N3bv3o2nnnoK4eHh6NevHy5cuGC2nF6vx7x589C9e3c0aNAA7dq1w7vvvgsAWLlyJRo1aoS0tDSzdfbt24egoCCcPXu2kKVIRESUP95zc/CeS2R/rClBRA8FnU5n9lkIAQD48ssv0bVrV3z33XeQyWTQaDQYMmQIUlJSMHHiRPj4+ODnn3/G4MGDsWXLFvj7+wMA3nvvPRw4cACTJk2Cn58fFi9ejOvXr0OhKPxlceHChfjmm28wfPhwNG/eHFFRUfjuu+/g4uKCAQMGmJa7desWvvzyS4waNQpOTk748ssvMX78ePz111+QJAkA8MEHH2DdunUYNmwYmjdvjrt372Lz5s0AgKeeegpffPEFIiMj0bt3b1O6a9euRUhICOrVq1fovBMRET2I91zec4lKE4MSRFTmJScnIyQkxGzalClTAAANGzbEhx9+aJq+atUqXLhwAX/99Rdq1qwJAGjdujUef/xxLF68GO+88w4uXLiArVu34ptvvkGPHj0AAC1atEDHjh3h7u5eqLylpqbi+++/x6hRozBmzBgAQJs2bZCRkYEffvgB/fr1g1wuBwDcvXsXP//8sylfQgiMHj0aly9fRu3atXHp0iWsXr0a//vf/zBo0CDTNox59PT0RLdu3bBmzRrTA1JaWhq2bNmCCRMmFCrfRERE1vCey3suUWljUIKIyjwPDw8sWbLEbJpKpQIAdOjQwWz63r17ERISgmrVqpn90tOsWTOcOnUKAHDy5EkAMKs26ubmhtatW+PEiROFytvRo0eRnp6Oxx9/3Gx7LVu2xJw5c3D79m1UrVoVAFC1alXTwxEA1K5dGwAQGxuL2rVrY//+/QBg9ovMg5577jkMHjwYN27cQPXq1bFp0ybodDo8+eSThco3ERGRNbzn5uA9l6h0MChBRGWeXC5HaGio2bTo6GgAgK+vr9n0pKQkHDt2zOJXHgB47LHHAADx8fFwc3Oz6KDrwbQKIikpCQDQs2dPq/Nv3bplekB6sPdypVIJAMjKygKQ/euUq6trnr8ctWjRAtWrV8eaNWswbtw4rFmzBp07d4aXl1eh805ERPQg3nNz8J5LVDoYlCCih5qxXahRhQoV0KBBA3z00UcWyxp/6fHz80NaWppFz+EJCQlmyzs5OUGr1ZpNu3v3rsX2AGDevHlWH7ACAwMLvC9eXl5IT09HamqqzYckSZLQp08f/Pbbb3jmmWdw+PBhiw6+iIiISgLvubznEpUEBiWIqFxp1aoVdu/ejSpVqtj8Fcb4C9C2bdtMbUfT0tKwZ88esweTgIAApKWlITY2FgEBAQCA3bt3m6XVqFEjODs7486dOxbVWgurZcuWAIA//vjDrLOuB/Xq1QszZ87EpEmTEBAQgDZt2hRru0REREXBey4R2QODEkRUrjz77LP45ZdfMHDgQAwdOhTVq1dHcnIyTpw4AX9/fwwePBh169ZFp06d8NFHHyE1NRX+/v5YtGiRRdXStm3bwtnZGZMmTcKQIUMQHR2NX375xWwZT09PjBkzBp999hliYmLQrFkzGAwGXL16Ffv378f3339f4LzXqlULL774IqZNm4aEhAQ0a9YMKSkpiIyMxDfffGNaLiAgAG3btsWOHTvw6quvmjr1IiIiKk285xKRPTAoQUTlipOTE5YvX47vvvsOs2bNQkJCAnx8fBAWFmbWyda0adPw0UcfYerUqXB1dUX//v0RGhqKyMhI0zI+Pj6YOXMmvvzyS4wePRohISGYMWOG6ZceoxEjRqBixYpYtmwZlixZAicnJ9SsWdNiuYL48MMPUaVKFaxatQoLFiyAj4+P1V9lunTpgh07duTZQRcREVFJ4j2XiOxBEsaBh4mIHnHG8ci3bdvm6Kzka9y4cYiLi8NPP/3k6KwQEREVGu+5RGTEmhJERA+Rc+fO4dSpU/j777/x9ddfOzo7RERE5RbvuUSlg0EJIqKHyKhRo5CUlIT+/fvj8ccfd3R2iIiIyi3ec4lKB5tvEBEREREREZFDyBydASIiIiIiIiJ6NDEoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJEdtapUycEBQUhOjra0Vl5KJWV8ps1axaCgoIwa9asAq+zf/9+BAUFYeDAgSWYMyqsNWvWICgoCO+++26pbC8oKAhBQUGFXu/dd99FUFAQ1qxZUwK5Kp6BAwciKCgI+/fvd3RWAJTtsiqoolxjiMob3jeJCGBQgorJ+KAaFBSEefPm2VzO+PBlr5eC6OhozJo1q9QfSPfv349Zs2aVmQdzIqLyxlHXd6I1a9Zg1qxZDg+Kl0XR0dGm5z1b5XPt2jV06NABQUFB6Nu3L1JTU0s5l0T0sGJQguxm8eLFpXYDiomJwezZs7F27dpS2Z7RgQMHMHv2bBw4cKBUt0sPBxcXFwQGBqJy5cqOzgrl4uHhgcDAQPj7+zs6K3ny9/dHYGAgPDw8HJ0VC5UrV0ZgYCBcXFxKfFuOur6XNm9vbwQGBsLb29vRWaH71q5di9mzZyMmJsbRWXnoXL58GQMGDMCtW7fQvHlzLFq0CO7u7vmux/smEQGAwtEZoPJBLpcjOTkZS5cuxZgxYxydHSKHCAsLw+bNmx2dDXpA165d0bVrV0dnI18TJkzAhAkTHJ0Nq7788ktHZ6HcGTBgAAYMGODobBAV24ULFzB48GDEx8ejdevWmDNnToEDmLxvEhHAmhJkJ08++SQAYOnSpbh7966Dc0NEREREJe3s2bMYNGgQ4uPj0a5dO8ydO7dUalQRUfnCmhJkFy1btsTt27exf/9+LF68GG+88Uah1o+NjcW8efPw77//IjY2Fi4uLggODsaLL76IHj16mC07cOBAU/OJAwcOmHUoV7VqVWzbts1s+VOnTmHJkiU4dOgQEhIS4ObmhkaNGmH48OFo2rRpgfOYezuzZ8/G7NmzTZ979eqFadOmWaxz4sQJzJkzB0eOHEFWVhbq1q2LV199Nc9fbffu3Ysff/wRx44dw927d+Hl5YXmzZvj1VdfLXTnecayWr58OXx8fDBr1iwcOHAAWVlZCA4Oxrhx49CiRQsAwMWLF/H999/jwIEDuHfvHoKCgvD666+jbdu2FuneuHEDmzdvxn///Yfr168jPj4erq6uNo8ZkN0etXPnzqZjtGrVKvz222+4dOkS0tLScPDgQXh6eua5P6tWrcIHH3wAFxcX/PDDD6a8A0U7zllZWZg/fz7+/PNP3L59G97e3ujQoQPGjx9fiFLOsX//fgwaNAjNmzfHihUrbO77hg0bsHTpUly8eBFyuRxNmjTBG2+8gXr16llNV6/X488//8Sff/6J06dPIy0tDf7+/qhbty6eeOIJ9OrVy7Tsu+++i7Vr1+Lzzz9H8+bN8f3332P37t2Ij4/HSy+9hP/973+mZTdv3oxVq1YhKioKqamp8PPzQ9u2bfHqq6+iWrVqFvk4f/48IiMjsXv3bsTExCApKQkeHh4ICwvDoEGD0KZNG6v5P3r0KJYsWYIjR44gKSkJrq6u8PHxQYMGDfD000+jffv2FutcvXoVixYtwp49e3Dnzh04OzsjJCQEAwcOROfOnQt8TIDsduLvvfeexfc09/Favnw5fvrpJ/z666+4evUqXF1d0bp1a0yYMAFVq1Yt1PZy27hxI5YtW4bz589DLpcjPDwcY8eORcOGDS2WzX3sevfubZqemZmJrVu3Yvv27Th9+jRu374NIQSqVauGzp07Y+jQoahQoYJFehkZGVi6dCkiIyNx7do1aLVaeHt7o2rVqmjVqhUGDx5sdT1rcl9Lcn/vcue5bdu2mDlzJnbs2IGkpCRUrVoVvXv3xvDhwyGXywu1HaBg13cAiIuLK/R27Xl+FTXNWbNmYfbs2RgzZgzGjh1rMX/r1q1YvHgxzpw5A4VCgQYNGmDkyJGoWrWq2fXkQZmZmfjpp5+wceNGXLlyBVqtFtWrV8cTTzyBIUOGwM3NzWz54nwPLl68iPnz5+PgwYOIi4uDSqWCj48P6tWrh+7du+Opp54yLZv7e/jBBx9g9uzZiIyMxJ07d+Dr64tu3bphzJgxNu8Dhd0vo3v37mHFihXYunUrrl27Bp1Oh0qVKqFhw4Z47rnn0Lx5c1MZGOX+G4DpO1nQ+1hR7pH5Kc3rb0FFRUVh6NChSE5ORqdOnfDdd99BpVIVKg3eNx1339TpdPjll1+wfv16XLx4EVlZWahQoQICAgLQokULDBw4EFWqVLF98IjsiEEJsptx48ahf//+WL58OV5++WX4+PgUaL2TJ09i+PDhSE5OhpOTE+rWrYvk5GTs27cP+/btw65duzB16lTT8mq1GsnJyTh//jzc3d2hVqtN8x5sM75ixQpMnToVBoMBHh4eqFOnDu7cuYPt27djx44d+Oijj9C3b98C5bNx48a4desWbt26hcqVK5u1f6xZs6bF8jt37sTnn38OFxcXVK9eHTExMTh58iTGjBmDr7/+Gj179rRY54svvsDixYsBZLc3rlu3LmJiYrBhwwb8/fffmDlzJjp27Fig/OZ28uRJzJ49G3K5HDVq1EBMTAwOHz6MYcOGYfHixZDL5RgxYgQkSUKNGjWg0+lw4sQJjBw5EosWLULLli3N0ps7dy5Wr14NV1dXVKxYEUFBQUhISDAds2PHjmHSpEk28/PRRx/h559/RkBAAGrVqoUbN27kuw8LFy7E9OnT4eXlhYULFyI0NNQ0ryjHOTMzE0OHDsXhw4cBALVr14ZCocCqVauwa9cudOrUqTBFXGDffPMN5s6di0qVKqFmzZq4cuUKduzYgUOHDmH16tUIDAw0Wz41NRWvvfaaqXPVSpUqoVq1aoiNjcW///6LnTt3mj1cGV25cgWff/45MjIyULduXXh4eEAmy64cp9PpMHHiRGzYsAEATA9q165dw2+//YbNmzdj0aJFCAsLM0tz6tSp2Lt3Lzw8PODv7w9/f3/cuXMHO3bswI4dO/Dee+9h8ODBZuts27YNY8aMgV6vh7u7O+rUqQODwYDbt2/jr7/+QmpqqsXDVWRkJN566y1oNBq4uroiMDAQycnJ2Lt3L/bu3YuRI0cWOvCZn7fffhvr16/HY489hpo1a+Ly5cvYsGEDDh06hHXr1hWp3f/ixYvxxRdfwNfXF7Vq1cL169fx33//Ye/evfjuu+/QpUuXAqVz6tQpTJgwAXK5HH5+fggMDER6ejquXbuGuXPnYtOmTfjll1/Mrrk6nQ5DhgzB0aNHAQCPPfYYKlSogISEBJw8eRJHjx5Fp06dzL5HxXHz5k306tULycnJqFu3LhQKBa5evYqvv/4aMTEx+OSTTwqUTmGu70XdbkmcX/ZOc9GiRaYmM35+fqhcuTKioqIwZMgQvP322zbXu3PnDoYNG2YKglWuXBmurq64cuUKZs2ahcjISCxfvtzm+VyY78HJkycxcOBAZGRkmPoFkMvluHXrFv7++29cvXrVLChhpNFoMHDgQJw6dQq1a9dGYGAgLly4gGXLluG///7DypUrLZ4firpfFy9exIgRI3Dz5k1IkoSaNWvC1dUV0dHRWLduHW7duoUVK1bAw8MDjRs3xvnz55Gamgq1Wm3WH4Kvr6/FfuR1HyvuPdKa0rr+FtSJEycwbNgwpKSkoHv37pgxYwaUSmWR0soP75slc9+cMGGCqelMlSpV4Ovra7r+RkVFoWHDhgxKUOkRRMUwYMAAoVarxe+//y6EEGLo0KFCrVaLadOmmS03c+ZMoVarxTvvvGM2PT09XXTs2FGo1WoxatQokZycbJq3bds20bBhQ6FWq8Uvv/xitt6+ffuEWq0WAwYMsJm3Xbt2iaCgINGkSRPx559/CoPBYJq3ZcsW0ahRIxESEiLOnTtX4P017sfMmTNtLmPcn5CQEDF79myh0WiEEELo9Xoxbdo0oVarRbt27YRerzdb77fffjPN27lzp9m8n3/+WQQHB4smTZqI+Pj4AufXeHxCQkLEp59+KjIzM4UQQuh0OjF58mShVqtFr169RMeOHS3mT5o0SajVavH8889bpLtjxw5x9OhRszIVQojTp0+Lxx9/XKjVanHo0CGzeTdu3BBqtVoEBweLsLAwERkZaZqXlZVlKg9j+d24ccM0/6uvvhJqtVq0bdtWXLx40Szdoh7nL7/8UqjVatGmTRtx6tQp0/SrV6+KJ554QoSEhOR7rB9k67w07ntISIgIDw8XW7duNc1LSUkxHac333zTIs2xY8cKtVotOnToIA4ePGg27/bt2xb5e+edd0zl/Morr4iEhATTvIyMDCGEEF9//bVQq9WiZ8+e4tixY6b5Wq1WzJo1S6jVatGxY0eRlZVllvamTZvEmTNnLPK4f/9+0aZNG1G/fn2z4yaEEE8++aRQq9Xi66+/tkjv5MmT4o8//jCbdu7cOREaGipCQkLEihUrhFarNc07cOCAaNOmjVCr1eLff/+1yIctv//+u9Xrj/F4hYSEiDZt2ojDhw+b5t2+fduU9xkzZhR4W0IIoVarTekuXLjQdG5nZWWJTz/9VKjVatGkSRNx584ds/WMx854PTWKjo4WGzZsEPfu3TObnpSUJD788EOhVqvF//73P7N5kZGRQq1Wi/bt21t8Z+7duydWrVoloqOjC7xPxnN03759VvMcEhIiXnvtNZGYmGiat2XLFlGvXj2hVqvFpUuXCrytglzfi7rdkji/ipqmrfvJqVOnRHBwsFCr1WLJkiWm80ej0Yhp06aZrk0dO3Y0W89gMIj+/fsLtVotXnvtNXHr1i3TvMTERDFq1CihVqvFG2+8YbZeUb8Hr776qul7lZqaajbv0qVL4ueffzabZvwehoSEiLZt24qoqCjTvGvXrokePXoItVotxo8fb5f9Sk1NFZ06dRJqtVoMGjRIXL9+3Wx+VFSUWLlypdk0W+e5UUHvY0W5R+anNK6/eTHuu1qtFn/++ado3Lix6b6l0+kKtS+58b7pmPvmqVOnTPeiB8/FzMxMsWHDBnH69GmLfBOVFAYlqFgeDEocP35cqNVqERYWZvbAbSsosWrVKqFWq0Xz5s1FWlqaRfpz5841Xehz39wL8tDaq1cvoVarxcaNG63OX7ZsmVCr1WLy5MkF3t/CBCVGjBhhMS8rK0u0bt1aqNVqs4u9RqMRbdq0EUFBQWY3u9ymTp0q1Gq1+OGHHwqcX+Pxefrppy2CIHfv3hWhoaE25ycnJ5vm5w4W5WfPnj1CrVaL999/32x67geahQsX2lw/d1BCr9eL999/X6jVatG1a1erL1FFOc6pqakiPDxcqNVqsWnTJot1jOexvYMSarVaLFiwwGK9M2fOmB4OcjM+NISEhFi8WNpifLhq3bq1xYuCEEIkJCSI0NBQER4ebvGQbjR69GjTg2dBGYNq8+bNM5veoEEDoVarLV6obTE+TForJyGE2Lp1q1Cr1WLIkCEFzlt+QQlb58/ff/9t+n4UhjHNkSNHWswzGAymB05bD8YPBiXy065dOxEeHm72IDpv3jyhVqvF1KlTC5WWLfkFJWydb6+99prp5bqgChOUKOx2S+L8Kmqatu4nEyZMEGq1Wrz99ttW0zO+oD8YlNi2bZtQq9XimWeesXiREUKItLQ00a5dO1GvXj1x8+ZN0/Sifg+6d+8u1Gq11Rcua4zfQ7VaLbZs2WIx33jdDQoKMrs2FXW/Fi9eLNRqtejWrZvpxTI/BQ1K5Hcfy4ute2Rx2Ov6m5fc+16/fn2hVqvFxIkTLZ4dCov3TcfcN//66y+hVqvF6NGjC5xfopLEji7JrsLCwtCpUydkZmZi3rx5+S7/33//AQCef/55uLq6Wszv378/lEolYmJicPny5QLn49atW4iKioKXlxe6d+9udRlj1Wlj9T57e+GFFyymqVQqU/vH69evm6YfO3YMcXFxqFevntW25kDx8tunTx9TFUQjT09PU/tHa/MrVKhgakNsrXlFcnIyVq5cibfffhtDhgxB//790a9fP3z11VcAsju/ssVatckH6XQ6vPnmm/j1118RFBSEn376yaJNc1GP86FDh5Ceno6KFSuiW7duFuuEhYXZPA7F9eKLL1pMq1evHpycnHDv3j0kJSWZpv/9998AgE6dOqF27dqF2k737t2ttrH+999/kZWVhdatW6N69epW183rXIuNjcWiRYvwxhtv4OWXX0a/fv3Qr18/LF++HABw5swZs+WNzZw2bdqUb541Gg127NgBmUyG559/3uoy7du3h1KpxKFDh6DT6fJNsyAqVKiAJ554wmK68RzI/V0tjJdeeslimiRJ6N+/PwBg165dBU5LCIGdO3diypQpeOWVV/DSSy+Zyj41NdXUnMOoUqVKALL7qElOTi5S/gujZ8+eVs83YxkWpIlWSW+3JM6vkkhz9+7dAIDnnnvO6vw+ffpYnb5lyxYA2ddXa+36jf1DGAwGHDx40GJ+Yb8Hxu92ZGQkhBC2dsdCQECA1fbtxuuuEMJUBsXZL+P1c+DAgXB2di5w/goqv/tYce6RtpTk9bco4uLi7HYdzgvvm7YV9RpkvEccP34cN2/ezHc7RCWNfUqQ3Y0bNw7bt2/Hr7/+iuHDh5sufNZcvXoVAFCnTh2r8z08PFCxYkXExMTg6tWrBb7BnDt3DgCg1WqtvhgAMD1E3b59u0BpFlaNGjWsTje2TU1PTzdNO3/+vCkv/fr1s7peVlaWaZnCeuyxx6xO9/HxwaVLl2zO9/X1xeXLl83yCmS/6IwfPz7Plx1b87y9vQvU38ibb76JqKgoNGrUCPPnz7fa+VlRj/OVK1cAALVq1bIIxhjVrl0bx48fzzefheHt7Q0PDw+r83x8fHDr1i2kp6eb2kVfunQJABAeHl7obdn6rhjL7NSpUzbPtXv37gGwPNf++usvTJ48GRkZGTa3++BxHzJkCD766CNMnjwZixcvRkREBBo3bowWLVpYnAfXrl1DVlYWlEolRo4cmef+ZWVlITk5GX5+fnkuVxC2HjKtfVcLw9YxMF7vjOdhflJTUzFq1ChTB5C25C77rl27onr16jh37hw6dOiA1q1bo2nTpmjWrBkaNGgASZIKthMFZOt6ZzzGRS1De263JM4ve6eZkpKCxMREALDZgZ+t6cb7yKpVq2wOsWh8+bB2Hyns92Dw4MHYu3cv5syZg3Xr1iEiIgJNmjRBy5YtERAQYDUtAAgMDMz3upv7u1HU/SrO9TM/+d3HinOPtKWkr7+F8emnn+Ljjz/G7t278frrr2PWrFkl1p8E75slc99s1KgRGjVqhKNHj6Jbt25o0aIFmjVrhqZNmyI8PBwKBV8RqXTxjCO7M/a6vXnzZsyZMyfPDs6MDznWOpEy8vPzQ0xMDNLS0gqch5SUFABAWloajhw5kueyxpd9e7M1JJbxYSz3L0vG/CYlJZlF/K0pSn5t5cX4YpLf/Nx5TU1NNT1sPfXUU3jppZdQq1YtuLu7Qy6X48aNG+jSpYvNX0+s1Yixxvirb40aNWw+kBT1OBf0vLO3vPbd2nmRmpoKADb3Py+2jmnuB6f8Aly5y+zGjRt49913odVq8fLLL+OZZ57BY489Bjc3N8hkMuzduxeDBw+2OO79+vWDh4cHFi9ejKioKFy+fBnLly+HQqFA586dMWnSJFPg0ng8tVptvscTyO6s1B5sHRdbL04FZev8Mk4v6DVt2rRpOHDgAGrWrIk33ngD4eHh8PHxMf1q/NJLL1n8Cu/i4oKffvoJM2fOxObNm/HPP//gn3/+AZD9K9zo0aNt/qpWFIW53tlTUa6z9jy/7J1m7hd/W6NJ5DXKBABcuHAh33xYu48U9nvQvn17LFy4ED/88AOOHDmCX3/9Fb/++iskSUKrVq0wadIk1K1b12K9glx3c383irpfxutnfqM6FUVe1/Li3iOtKY3rb2E0b94cs2fPxqhRo7B9+3a8/fbbmDFjRoFH2SkM3jdL5r4pk8mwYMECU1Bx165dptp73t7eGDp0KIYPH17s+yBRQTEoQSXi9ddfx5YtW7BmzRq88sorNpcz3mwSEhJsLhMfHw/A9oNYXuk2bNgQv/32W4HXcxRjfnv06IFvvvnGwbnJ286dO5GcnIzw8HBMnz7d4hdXe1UVnzlzJt555x388ccfUCqV+PTTTy22VdTjXJjzzpGMvb8bH4jswbjvI0aMwFtvvVXg9TZt2gStVosnnnjCaq/xd+/etbnuk08+iSeffBKJiYk4ePAg9u/fjw0bNiAyMhJXr17F6tWroVKpTN9xPz8/s+rbD6vExESrD/zG864g1zSdTmfq7X3OnDlWf8mzVfYVK1bElClT8PHHH+P06dM4fPgwtm7dioMHD2Ly5MlwdXW1OgpQeVUS55e908z9ApaWlmb1hdpWMMu47oIFC9CuXbti56UgIiIiEBERgXv37uHw4cOm7/aePXswZMgQbNiwwWLYWWNNEGus3e+Lul/u7u5ITk42vbSVlpK4R5bG9bew2rZti2+//Rbjxo3Dpk2b4OTkhGnTptm9FlZh8b5ZcB4eHnjnnXcwceJEXLhwAYcOHcLOnTuxc+dOzJgxAwDyfIYnsieGv6hE1K5dG08++SS0Wi2+//57m8sZh9K09QvIvXv3cOfOHbNlAeR70zP+OnP58mW7tncsqZutMb8F+SXI0aKjowEAjRo1sloeJ06csMt2atSogeXLl8Pf3x+rVq3CRx99ZLFMUY+zcfiwK1euwGAwWF2mMH2YlBRjNf9jx47ZLc2inmvG496kSROr8wvS1MXHxwfdu3fHBx98gPXr18PDwwPnzp0znTM1atSAUqlEQkJCngGjh4WxGrGt6daGEn5QYmIi0tPT4eXlZTUgkZKSkm8zELlcjtDQUAwePBg//vgjhg0bBgBlNmBbUtfZkji/7J2mp6enqSaBscr4g2xNN14vHHEf8fDwQIcOHfDOO+9g06ZNqF69OuLi4rB9+3aLZQty3c393SjqfpXE9bMgSuIeWRrX36Lo0qULpk+fDrlcjj/++AMffvhhkdOyF943C0+SJKjVavTv3x/z5s3D+++/D6Ds3iOofGJQgkrMmDFjoFAosG7dOlPfEQ9q27YtAGD16tVW2xz//PPP0Gq1qFatGmrVqmWabuy0ylZV2Bo1aiAoKAj37t3D77//Xsw9yeHk5JTndouqSZMm8PX1xYULFwrV+Z0jGMsgLi7OYp5Wq8XKlSvttq1atWph2bJl8PX1xS+//IJPP/3UbH5Rj3OTJk3g6uqK2NhYbN261WL+qVOnSv1B1hpjJ5zbtm2z+YJbWB06dIBKpcKuXbtw8eLFAq9nPO7WapDcvXsXa9euLVQ+KlasaOpo1Rh4dHFxQdu2bSGEwLJlywqVXln0008/WZ1u/I4Yr395MV7rUlNTrbZJ/vHHHwsdeG3cuDGAnHIva/K7vhdVSZxfJZFmmzZtAMDmNW3NmjVWpxs7+/3111/zbL9e0tzc3BAUFATA+jl2+/ZtbNu2zWK68borSRIiIiJM04u6X127dgUArFixosDNHu1x7pXEPbI0rr9F1aNHD3z22WeQJAm//vorPv/882KlV1y8bxafMYhSVu8RVD4xKEElpkaNGnjmmWeg1+tt9iD85JNPomrVqkhOTsbbb79tVs1y586d+OGHHwBkVx/L/YuD8aJ88eJFm1VB3377bchkMnz22WdYuXIlNBqN2fzY2FgsW7YMP//8c4H3ydgR2NGjR+1aA8PJyQlvvPEGgOwOHjds2GDxS9L169cxZ84cU0/kjtK0aVMA2T2uG0dPAbKrpL7xxhumXwbspXbt2li2bBl8fHzw448/WjzwFOU4u7u7o2/fvgCAKVOm4PTp06Z5xjagJdVpV2EEBwfjiSeegFarxYgRI3D48GGz+bGxsZg9e3ah0vT398fQoUOh0+kwfPhwq0Gwc+fOYfr06WbbMx73n376CVFRUabpt27dwqhRo6wGFY1tq/fu3Qu9Xm+aLoTAxo0bcf78eUiShPr165vmjRs3Ds7OzliwYAFmz55tUVU9KSkJq1atwpw5cwq1346wc+dOLF261PRd1mg0mDp1Ks6fPw93d3erPco/yNPTE2q1GjqdDp999pnp/BZCYNWqVfj+++9ND765LVmyBEuWLEFsbKzZ9MTERFOP7yEhIcXdxRJRkOt7UZXE+WXvNIcMGWL65XnFihWm9vJarRbTp0/H0aNHra7XpUsXNGnSBNeuXcOIESMsXsh0Oh327duHCRMmWFwni2L8+PH4559/LNLat28f9uzZAwBo0KCBxXpKpRJTpkwxG33ixo0beO+99wBkByFyd7pZ1P16/vnnUb16dVy9ehWjRo1CTEyM2XpnzpyxCBwat2ttdJKCKol7ZGldf4uqV69eploSS5cudWgzVN43C3YN+vPPPzF79myLUXVSU1OxYMECAJb3iKVLl6JTp042O/skKg72KUElavTo0fjzzz+h1Wqtznd2dsa3336L4cOHY+vWrdi1axfq1KmD5ORk0427T58+Fg/vPj4+aNmyJfbt24cuXbqgTp06cHJygp+fn+lm2LZtW3zyySf4+OOP8cknn+Crr75CzZo1IZfLcefOHdPD+ogRIwq8PxEREahQoQIOHz6MDh06oHr16lAoFGjbtm2x2909//zzppvlm2++iY8++giPPfYYhBC4ffu2qVqetWYMpalBgwbo0aMHNm7ciOHDh6N69erw9PTEhQsXIITA5MmT7V6Fs27duliyZAlefvllLF26FHK5HBMnTgRQ9OP8+uuv4+jRozh69Ch69eqFOnXqQKFQ4MKFC6hUqRL69u2LFStW2HU/imLKlClISEjAgQMH0L9/f1SuXBl+fn6IjY1FXFwchBAYM2ZModIcN24cEhISsGrVKgwbNgw+Pj6oVq0adDodYmJiTO1cW7RoYVqnS5cupp66n3vuOdSsWRMqlQoXLlyAi4sL3nrrLXz22Wdm2zEYDNi0aRM2bdoEZ2dn1KhRAyqVCrdv3zb9ijhy5Eizqtr16tXDd999hzfffBOzZs3CvHnzEBgYCCcnJyQkJODmzZsQQqBHjx5FLNHS8+abb+Lzzz/HggULULlyZVy/fh13796FXC7H1KlTUbFixQKlM2HCBIwaNQqrVq3Cli1bUL16ddy+fRvx8fHo1asXYmJiLEbmuHnzJpYvX45p06ahSpUq8PPzMw0bqtVqERAQgPHjx5fAXhdfQa7vRVUS55e906xfvz7efPNNTJ8+HVOmTMG8efNM509KSgreeustfPnllxYd0EmShFmzZmHUqFE4ePAgevTogWrVqpkde2ONgalTpxa80GzYtWsXNm3aBKVSiZo1a8LFxQVxcXG4desWAOCpp55C69atLdbr1q0brl27hmeffRa1a9c2XXf1ej1q1qyJDz74wC775ebmhh9++AHDhw/H7t270blzZ9SqVQvOzs6IiYlBcnIymjdvbhqiF8j+1X/lypVYsGAB/v77b/j7+0OSJIwYMaLA/VmUxD2ytK6/xdGvXz9kZWXh888/x9y5c+Hs7IxRo0bZJe3C4n0z/2tQYmIiZs2ahVmzZsHf3x+VKlVCVlYWrl+/jszMTHh4eOB///ufWd7u3btnEdwjshcGJahEVa1aFc8991yetRHCwsLw559/Yv78+di5cyfOnTsHFxcXNG/eHP369bP5IDdjxgzMmDEDu3fvRlRUFHQ6HapWrWq2zPPPP48mTZpg2bJl2LdvHy5fvgy5XI6AgAB069YNnTt3RqdOnQq8P+7u7li0aBFmzpyJEydO4NixYzAYDBbbLaoxY8agXbt2WLlyJQ4ePIjz58/D2dkZlSpVQqtWrdCtW7dS68AsL19++SVq166NP/74A7dv30Z6ejratWuHkSNHmoblsrd69eph6dKlGDx4MBYtWgSlUmmqXVKU4+zi4oKlS5di3rx5WL9+Pa5duwYfHx8899xzGD9+vF2boRSHu7s7lixZgrVr12LdunU4d+4cEhIS4O/vj/bt2+OJJ54odJoymQxTpkxBjx498Msvv+Do0aM4c+YM3NzcULlyZXTr1g1du3ZFq1atTOvI5XLTub9582bcuHEDXl5e6NGjB8aOHWu1R3I3NzdMnz4de/bswYkTJ3D79m2kpaXBy8sLHTt2RN++fdGhQweL9Tp06ICNGzdi2bJl+O+//3Djxg0IIRAQEIB27dqhY8eOpqrZZdnQoUNRqVIlLFu2zPTrVkREBMaMGYNGjRoVOJ0OHTpg0aJF+P777009sQcGBmL06NHo168fBg0aZLFO37594eXlhX379uH69es4c+YMFAoFAgMD0aFDBwwdOrTEvqv2UJDre1GVxPll7zSHDx+OmjVrYuHChTh79iyuXLmCkJAQjBw5En5+fvjyyy9NHfrl5uvri5UrV+KPP/7Ahg0bcObMGcTGxsLb2xvBwcFo3rw5unXrZrV2TWFNmzYN//33H44ePYo7d+7g3r17cHd3R6tWrdCrVy88/fTTVtdTqVRYsWIFZs2ahcjISNy5cwf+/v7o2rUrxo4da9ExZnH2q27duli/fj2WLl2KrVu34saNGwCyq8F36tQJffr0MVu+adOmmDFjBpYtW4aLFy+amp726tWrUGVj73tkaV5/i2Pw4MHIyMjAt99+i2+//RYuLi4YPHiwXbdRELxv5n8N6t69O3Q6Hfbu3YsrV67g/PnzEEKgSpUqiIiIwLBhw1ClSpVClxNRUUmipMbpIiIiIiK7ioyMxOuvv44uXbrk2ZF0WbNmzRq899576NWrF6ZNm+bo7BARURnCPiWIiIiIHhLGji5t9ehPRET0sGFQgoiIiKgM+f3337Fv3z7krsyanp6OL774Ajt27ICbm5vN5hFEREQPG/YpQURERFSGHDlyBJMmTYKLi4upQ+VLly4hKysLCoUCn376Kfz8/BydTSIiIrtgUIKIiIioDHn22Weh0Whw7NgxxMTEQKPRwNfXF02bNsXQoUPL7HCuRERERcGOLomIiIiIiIjIIdinBBERERERERE5BIMSREREREREROQQDEoQERERERERkUOUeFAiOjoaQUFB6NSpU0lvqkA6deqEoKAgREdH2y3NxMRETJo0CREREQgODkZQUBCWLl1ql7RnzZqFoKAgzJo1yy7pOcr+/fsRFBSEgQMHlsr2Bg4ciKCgIOzfv79UtudI5eUcKaw1a9YgKCgI7777rqOzUuauc4WRnp6Ozz//HJ06dUJISAiCgoLw2WefOTpb9Agrift0WXLjxg2MGzcOLVu2RL169RAUFIStW7cWO93Svs9S6QoKCkJQUJBDtu2Ic+tReo7T6XTo3r07OnbsCI1GY7d09+7di4EDB6JRo0am8yclJcVu6dOjbfz48QgJCcGVK1fskl6BRt8oykWwatWq2LZtW6HXexiNGjUKx44dg6enJ0JDQyGXyxEQEIDo6GisXbsWVatWRe/evR2dTSqGNWvWICYmBr169UK1atUcnZ1HgjHIMnbsWAfnpHybPHkyNmzYAFdXV9SrVw8qlQrVq1d3dLaonNq6dSvOnDmDLl26IDg42NHZKXUajQYvv/wyYmJi4Ovri/DwcEiSBC8vr3zXXbp0Ke7du4eXX34Znp6eJZ9ZMsPnACopv/zyC65evYqPPvoIKpXKLmmeO3cOI0aMgFarRfXq1VGvXj0AgFwuz3fdB9/7JEmCm5sbPD09UatWLTRs2BBPP/00atasaTONd999F2vXrjWbJpPJ4OnpiaCgIDz11FPo06cPZDLL38dPnjyJlStX4tChQ7hz5w5kMhl8fHxQuXJlNGnSBG3atEGLFi0s1rt79y5WrFiBHTt24MqVK8jKyoKXlxd8fHwQEhKCFi1aoGvXrnBzc8u3DADwPS4fo0ePRmRkJGbMmIHZs2cXO70CBSUaN25sMS01NRXnz5+3Od/f37+YWXs4nD17FseOHUPlypXx119/wd3d3TRv//79mD17Npo3b86T+SG3du1aHDhwAM2bN+fDSCkxXuAYlCg5d+/exaZNm+Dq6orNmzcjICDA0Vmicm7r1q2mhzxbQYnq1atDpVJBqVSWcu5K3r///ouYmBiEhYVh5cqVhXoBWb58uemlmEGJ0vcoPwe4uLggMDAQlStXdnRWyp309HR8//33qFixIvr06WO3dH///XdotVoMGjQI//vf/4qUhlqtNr3XZGZmIiEhAbt27cKuXbswZ84c9OzZEx9++GGe1yNfX1/UqFEDQHZQ9vr169i/fz/279+PzZs344cffjC7Di5atAhfffUVDAYDVCoVKleujAoVKiAhIQGHDh3CoUOHsGnTJvz9999m27lw4QKGDBmCuLg4AEBAQABq1qyJrKwsXLlyBefOncOaNWtQrVo1NG3atED7HxMTw/e4PNStWxddu3ZFZGQkjh8/joYNGxYrvQIFJX7++WeLafv378egQYNszn9UXL58GQAQHh5uFpAgIirrrl27BoPBgDp16jAgQWXGsmXLHJ2FEmOs5tq8eXO7/SJKVNLCwsKwefNmR2ejXNqwYQMSExMxdOhQu14TjNeaiIiIIqcxefJkixoJsbGx+P333zF//nz89ddfOH/+PH7++Web70Dt2rXDtGnTTJ/1ej2WLFmC6dOnY9euXVi2bBlGjBgBADh27BimT58OIQSGDh2KUaNGmQU8EhIS8Pfff2PPnj1m2zAYDBg/fjzi4uIQEhKCzz77zCzordFocODAAaxZs6ZcBrsdqVevXoiMjMSKFSuKHZRgR5fFlJWVBQBwdnZ2cE6IiAonM/P/7J13WFTH18e/CyxNUAQpBkEQuStNQMQKFuxYIkYU7IpdVGxRYyMxdsGoBDuKiopdEZWiYgNEFFQQKUoTaaJIhwXu+wfvvb9ddhd2FxCT7Od5eBLv3Zl77tyZM2dmzpypACDRXxIkfC8kNoMECRI48ff3BwCMGzeuWfNtqf5dU1MTixcvxrlz56CoqIikpCTs2LFD6PTS0tKYO3cuBg8eDAC4desWfe/q1asgSRJ9+vTB2rVreTww1NTU4OTkhAMHDnBdf/36NVJSUgDUednW98KTlZWFjY0NPD09mzxwlsCNjY0NVFRUEBwcjG/fvjUpr+8+KREYGAhHR0dYWlqiZ8+eWLBgAd69eyfw9zU1Nbh06RKmTZsGa2trmJmZYdiwYdixYwe+fPnS7PJFRERgyZIl6N+/P0xNTWFjY4OVK1ciMTGR63f1g+xdu3aNDiJjZ2eH6dOn054kUVFR9L2mBMMrKSnBrl27YGdnB1NTUwwePBi7d+9GeXk5z29ramoQGhqK3377DWPGjIG1tTW6d++O4cOHY+vWrcjNzeX7jHXr1oHFYuHq1avIz8/Hpk2bYGtrC1NTU4wYMQJHjhxBTU2NQBmvX7+OX375Bebm5ujduzcWLVqEt2/fivW+9YMHnjt3Dj///DOd97Jly/D+/XuR8yVJErdu3cKMGTPoOjV06FC+5UIFd4qKigIAzJgxg+tbXr16lf5tSkoKfv31VwwePBimpqbo0aMHhg4dCldXVwQEBIgkY0xMDJYtWwYbGxuYmJjA2toaI0aMwKpVq/Dw4UOB6USpIxSvX7+mn0XV+eXLl+PNmzc8v925cydYLBaOHj3Kc2/WrFlgsVgYOHAgz73Q0FCwWCwsXLiw0XenAndScJa3oOB3VVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FficoqIiHDhwAOPGjYOlpSUsLCwwYcIEnDp1Cmw2u1E5ReHbt2/w9PSEvb09unfvDisrKzg5OeHChQs87SkxMREsFgujRo3iyefGjRt0OURERHDdI0kSvXr1Qrdu3RrVjfWDltXXURScAQejoqIwf/58OjgfZ2C+iooK+Pj4YOLEibCyskL37t0xevRoeHl5obS0VKAcsbGxmDt3Lnr27AlLS0s4OTnRq3H8groJE1C0sSCJd+/ehYuLC/r06QNTU1MMGjQImzZtEvh7TjmePHmC6dOnw8rKCpaWlpg+fTqeP38uUBagru4vXLiQ7lNsbW0xY8YM+Pn50QHNli1bJrBdUcTExIDFYsHGxqZBHSxI9tu3b2Py5Ml03zt37ly8evVKYNrq6mqcO3cOkydPpr+pvb099u3bJzBQGufzQkJCMH36dPTq1QssFgsJCQlgsVj0HuP169dz1TnOQL0NfcOmyiXON2yOMqofkNjLy4uWq7HggZS9kZWVBQAYMmQIV9nxCwRIkiT8/Pwwbtw4dO/eHX369MHKlSvpPPghbjsWhCh9IqdNVVZWht27d2PIkCEwMzPDoEGDsH379gYD9Ikre3FxMby9vTFhwgRYWVnB3NwcI0aMwK+//kr3+8LaAfX106VLl+Do6IgePXpwBRjMzMzEsWPHMGPGDAwaNAimpqbo1asXZs6cidu3b4tczoJYunQpWCwW3zyHDRsGFouFKVOm8Nw7deoUWCwWtm7dSl8TFOiy/juLauPn5uZi/fr16N+/P7p3745Ro0bhyJEjqK6ubvDdRGl71CCXxWLh8+fPXPdycnLo7/jXX3/xPGfx4sVgsVgICgrievbZs2fpZ5uamqJ///6YMGECdu3ahU+fPjUoOyeZmZl48+YNtLS0GoyxI4oNQQUI5VdfmzMgurGxMZYvXw6gzjYRNK4QRK9evQAAaWlp9DVK5xsbG4uUV2ZmJgCgffv2+Omnn0RKKwhhx3FFRUW4fPkylixZguHDh8Pc3ByWlpaYMGECjh49Sk9E14ezn4uIiMCsWbNgbW0NS0tLTJ06tUFbHwDi4uKwatUqDBw4EKampujduzcWLlyI6Ohoge9D9Rfv3r3D8uXL0b9/fxgZGXEdznDz5k267zYxMUHfvn0xduxY/PHHH0hOTubJl8lkwtbWFpWVlTxbakRFqO0bzcW+fftw+PBhaGlpQU9PD6mpqQgLC0N0dDQuX74MfX19rt+XlJRg8eLFePbsGRgMBrS0tNCxY0ekp6fj1KlTtLtIcwVl27VrF3x8fADUVWxDQ0NkZWUhMDAQISEhOHDgAD2zp6amhh49euDLly9IS0vj2jOlrq4OdXV1FBYWIikpCUpKSiAIgn6OOPE2iouLMXnyZKSmpsLAwADa2tpIT0/HiRMnkJSUhOPHj3P9Pj8/H0uWLIGUlBTU1NTQqVMnVFVVISsrC2fPnsWdO3dw7tw5gUFqPn36BAcHBxQWFsLQ0BAyMjJIS0uDp6cnsrKy8Mcff/Ck2blzJ06ePAkA0NLSgpqaGiIjI/H06VMsXrxY5HfmZOvWrTh79iy0tLRgYGCA1NRUBAUF4fHjxzh58iQsLCyEyockSaxbtw7Xr18HUBeQVUdHB+/fv8fZs2cRGBiIEydOwMTEBACgrKyMHj16ICkpCSUlJVz764C6egDUBeWZPn06ysvL6b2X0tLSyM7ORkhICNLS0jB27FihZLx//z5cXV1RU1MDJSUldO3aFbW1tcjJycGtW7dQUlLCd+Avah0B6oymzZs3o7a2FioqKrThe/fuXYSEhGDr1q1cexx79eqFkydP0gNUCjabjdjYWAB1nXxGRgZ0dXXp+5TRbG1t3ej7d+zYET169MDLly8B8MaskZOT4/o3m82Gi4sLnj9/Dn19fejq6iI1NRX+/v6IjY3F5cuXeVwi379/DxcXF2RnZ4PJZEJbWxsMBgPv3r1DfHw8Hjx4gGPHjjWLK2VmZiYd2E5GRgaGhoYoLy9HTEwMYmJiEBoaCm9vb/pZBEGgffv2+PDhAz5//owOHTrQeVFGBlBXpn379qX//e7dO3z79g2GhoZQVVVtUCaqXlOxgerrqPrcvn0b+/btg5KSEnR1daGgoEDfy8vLg4uLC5KSkiAtLY2OHTtCUVERqampOHjwIIKCgnD69Gm0b9+eK8+QkBAsX74cNTU1dPCsjIwMLF++vEVOVKmursavv/6KwMBAAHV62NDQEOnp6bh48SLu3r2LEydOoHv37nzT+/v7Y8uWLVBVVUXnzp2Rnp6OqKgozJ49G6dOneLZo8pms/Hrr7/SAwI1NTV069YNBQUFeP78OZ49e4aBAweiU6dOcHR0RFBQEK5du8bVrjihBvPjxo0TKlAZJz4+Pti1axfU1NTocn78+DEiIiKwf/9+DB06lOv3lZWVWLRoEZ4+fQoA0NPTg6KiIpKTk3H48GHcunULvr6+AvfVHzt2DHv37oWqqip0dXWRk5ODyspK9OjRA+np6SgoKICenh5XPRVmr3pT5RL1GzanLJRey87ORnZ2Njp27Ei/c0NtD/ifvREXF4eqqiqYmppy6SZlZWWeNGvWrEFAQAB0dXWhp6eHDx8+IDAwENHR0bhx4wZPexS3HQtC3D6xqqoK06dPR1xcHAwMDKCvr4/k5GT4+vri8ePH8PPz49Fv4sqekpKCefPm4dOnT2AwGPQ3/PjxI27cuIHs7GycOXNGaDuAE3d3d5w/fx6ampro0qULPWgCgMOHD+Py5ctQVFSEhoYGWCwWCgoKEBkZicjISMTGxuK3334TqpwbolevXggODsazZ89gb29PX8/NzUVGRgaAukWJiooKrtV0qp8Rpr/mRFQbPz09HVOmTMHnz5/BZDJBEASKiorg6emJV69egSRJvs8Rte0xGAxYW1sjODgYUVFRXGXBOaHH2b8CdfbiixcveMpi1apV9OT5Tz/9BDU1Ndrej4+Ph7m5udADY+qZgvodQDwborq6mm99be6YIBMnTsTevXvBZrPx5MkTkWJiUN+XwWDQ1yg5X79+LZIcVLqvX78iPT2dHo81BYIghBrHPXjwABs2bACTyYSGhgYMDQ1RVFSExMRExMfH4969ezhz5oxAe/Lu3bvw8PCg7avs7Gw6dsbGjRv5TlqfOXMG27dvR21tLZSVldG1a1fk5eXhwYMHCAsLg7u7O5ycnPg+7/nz5zhy5AikpaXRpUsXtGnThv4Gu3fvxokTJ+h31NHRQUlJCTIyMpCUlARtbW0YGhry5Nm9e3cEBAQgOjoaEydOFL6Q60OKSWRkJEkQBEkQRIO/y8zMJAmCIE1MTEgLCwsyNDSUvldUVEROmzaNJAiCXLlyJU/aVatWkQRBkM7OzmRKSgp9vaysjNy0aRNJEAQ5adIkkeQePHgwSRAEmZmZyXX94sWLJEEQ5IABA8iHDx9y3Tt//jxpZGREWllZkZ8/f+a6d+XKFZIgCHLt2rU8z6LKaNq0aSLJyMmBAwfo8ps8eTL56dMn+t7z589JCwsLkiAI8vHjx1zpioqKyCtXrpAFBQVc10tLS0kvLy+SIAhy1qxZPM9bu3Yt/bzFixeTX758oe8FBweT3bp1IwmCIN+/f8+VLiwsjCQIgjQ2NiavXbtGXy8uLiaXLl1KmpiYiFwWVN0xNjYmTUxMyJs3b/LkSxAEOXjwYLK8vJwrLVWvIiMjua6fPXuWJAiCNDc3J+/fv09f//btG7lgwQKSIAhyyJAhZEVFhVD5UVBp165dS5aUlHDde//+PXn+/Hmh33vMmDEkQRCkp6cnWVlZyXXvzZs35PXr17muiVtHEhIS6O/i5eVFstlskiRJsrq6mjx48CCdZ2JiIp3m27dvZLdu3UgLCwv69yRJktHR0SRBEKStrS1JEAR58eJFrmf9/PPPJEEQ5KtXr4Quh8b0C9X2TExMyBEjRpDJycn0veTkZNLGxoYkCIK8cOECV7qysjJy+PDhJEEQ5KZNm8ivX7/S9z5+/EhOnjyZJAiC3Lt3r9CyUnV18ODBXNdra2vJiRMnkgRBkJMnTyZzcnLoezExMWSfPn1IgiBIDw8PrnRLliwhCYIgAwMDua4PGzaM7N27N2liYkI6Oztz3Tt16hRJEATp7u4utNyN6ShKXxoZGZH79u0jq6qq6HsVFRVkbW0tOWXKFJIgCHLx4sVkdnY2ff/Lly/kokWLSIIgyBUrVnDlm5eXR1pZWZEEQZBbt26l63lNTQ155MgRul7W//6CypmfzPV1vKenJ0kQBDl69GgyNjaWvs5ms+n6PnjwYJ42R8nRvXt30t/fn6ytrSVJkiQrKyvJFStW0N+2Pjt37iQJgiCtra3JkJAQOh1JkuTXr1/JEydO0Pq5pqaGHDRoEEkQBBkTE8OTV0VFBV1enPW8MSjZTUxMyOPHj5M1NTW07Fu3biUJgiCtrKzIvLw8rnS7du0iCYIg+/btyyVPTk4OOWnSJIHvzPm8s2fP0s+rqamhy5XqY65cuSJQbkHfsKlyifoNG0JcWSh9feDAAZGeR5KCy4WCas8mJiZk//79yRcvXnDJRfUt9fWNuO24IUTtEzn1ua2tLRkfH0/fS09PJ+3t7UmCIEg3N7dmkb2kpIS0s7MjCYIgZ8yYQWZkZHDdj4+PJ/38/LiuNWYHUPrJyMiI7N69OxkUFETfq6yspNtDWFgYGRMTw6UTSJIk3759S44cOZIkCIKMjo7myV8Ym5uThIQEkiAIcuTIkVzXb9y4wdVfh4eH0/dqa2vJXr16kQRBcNm7gvoKcW382tpa0tHRkSQIgpw6dSqZn59P33v8+DFpYWFB9wP1y1uctufr60sSBEFu3ryZ6/qGDRvosjAxMeGyJanys7e3p6/FxcXRerP+N6qoqCADAwPJt2/fksKyfv16kiAI8vDhw3zvi2tDkGTj9bUhqLomTFoHBwfanuKE0vX8xkck+T8dMW7cOPoaNRYjCIJ0dXUlw8PDeex7fhQVFdG27pAhQ8iLFy+Subm5jaZrDGHGcQkJCeT9+/d5xg05OTmkq6srSRAE6e3tzZOO0ucmJibktm3buOygo0eP0uOfd+/ecaV78uQJyWKxSCsrK/LmzZtceiQ4OJi0tLTksd1J8n/1wcjIiFy/fj1ZWlpK3ysvLycLCgpIIyMj0tjYmAwJCeFKW11dTYaFhQmsDy9fviQJgiCHDh0qsJyE4btt32Cz2ViyZAmGDBlCX1NWVqYjwtZ3U0lKSkJAQAA0NTVx6NAhGBgY0PcUFBTg7u4OU1NTxMbG0iuqTZFt//79YDAYOHDgAAYMGMB138nJCdOnT0dxcTEuXbrUpGeJi5SUFDw9PblmOXv27AlHR0cAvOWnrKyMCRMm8KwoKCoqYsmSJbCyskJ4eDjy8vL4Pq9du3bYvXs318rCsGHDaJelR48ecf2eWoWfPHkyxo8fT19XUlLC7t27mxQEtLq6Gk5OTlyrKlS+7du3R1ZWllAujyRJ0jOAixcvpr1eAKBt27bw8PCAiooKMjMz6dVUYaHcz2bNmsVz1FCXLl0Ezlg2lNe8efN4ZlZNTU3x888/800nah3x8fEBm82Gra0tlixZAhmZOscpaWlpuLq6wsbGBmw2m/YeAurKqVu3bigrK0N8fDx9nZrtp4IVca44UDPGbdq0oT1QmpPq6mrs3r0bXbt2pa917doVc+fOBcD73leuXEFaWhoGDhyIP/74g+soPm1tbezfvx+Kiorw8/MT6HYnLJGRkXj9+jWYTCb27dvHFUzSwsKC1n9nzpxBSUkJfY9ya+RcxcnNzUV6ejp69+6N7t270ytcFFSZU2mbE1tbW7i5uXEFiJKTk6NXwYyMjLBv3z5oaWnR99u3b4+9e/dCS0sLd+7cQXZ2Nn3vwoULKC4uBkEQ2LBhA13PpaSkMH/+fPTv379Z5f/y5QtOnjwJRUVFHDp0iGtPqYyMDFxdXTFs2DBkZWVxuelyMmHCBEyaNIleUZCVlaVXR2JiYrj2Uubl5eHMmTMAgL/++gtDhw7lWg1SUVHBnDlzaP0sJSUFBwcHAODaEkYREhKC4uJimJubc9VzYbG1tYWLiwt99BolO0EQKC4uxoULF+jflpSU0MGrN27cyOWFpqmpiX379kFGRgYxMTF8tw0AwKRJkzB16lT6eVJSUk32OmoOuUT5hi0tS0vCZrOxYcMGLi8zTU1N2tW6vk4Utx03hLh9IpvNxqZNm7jct3V1dek963fu3OHyOhBX9osXL+Ljx4/Q09PDkSNHeDxujY2N+W5tEIaamhosW7YMw4cPp6/JysrS7WHgwIH0UbCcGBkZYfPmzQDq3OGbCovFgoqKCu11R1G/v+aso4mJiSgsLETXrl35eoAIQlQbPyoqCq9evQKTyYSHhweXR6CNjQ1cXV35bqMUt+1R/WJ9b4ioqCioqalhwoQJYLPZiImJoe9R6Tn7VKpe9+nTB1ZWVlx5ycnJwd7eXqSjjqmtHhoaGnzvi2tDfE8om1PYLfU1NTU4fvw4Hjx4AAAYPXo0fc/BwYG2zYODgzFr1ixYWVnh559/xubNmxEaGsq3XigrK+P333+HjIwMMjMzsXHjRtja2mLgwIFYsmQJTp8+TZ/K0dx069YNgwcP5vHi1dTUxJ49e8BkMhtszwYGBvjtt9+47KB58+Zh0KBBqK6upj3QKTw8PECSJLZu3YqxY8dy6ZFhw4bBzc0NbDabtkHq07VrV2zduhWKior0NXl5eWRkZKCmpgYEQfB4T0pLS2PgwIF8j2EF/uc5Imz/IIjvGlNi8uTJPNe6desGOTk5FBcXc+3/Dg4OBgCMHDkS7dq140knJSVFV9ymdvqxsbHIz89Ht27dBAZAoT5QaxgYQJ1Ryc8djJKXs5PmJDo6Grt27cLChQsxbdo0ODs7w9nZmVasgvb6jR49mu85vvyeV1ZWRru4TZs2jSeNvLx809x5AEydOrXBfJ88edJoHu/fv0dWVhaYTCZfY6NNmza069njx49Fko9SykFBQQJdDkXN686dOyKlE7WOUGVG7ZmrD3W9fllQboycbeH58+eQlpaGg4MDOnbsyNXxP3/+HLW1tbCyshLZ7VwYunXrxtf1UdB7U7pl0qRJfPPT1NSEmZkZSktLERcX1yTZqLIbNmwYX7fJUaNGQV1dHWVlZVyTq/wMKM5Jh169enEZUCRJ0vsIRXW5FQZqwFwfqiwdHBz4DjoVFRXRr18/1NbWcu3bpyY1p06dymOYU9ebk0ePHqGyshL9+vUTuN2vMR3Pr/+itsYB3PXs4cOHYLPZMDExQb9+/YSSccKECWAwGLh9+zbPZBg1USHukWT8ypPBYNB6kFN/vnjxAmVlZdDQ0MCIESN40v300090WQnSk4LqS1NoDrlE+YYtLUtL0q5dO74xaSidSLnuU4jbjhtC3D5RU1OTa2BL0b17d5ibm4MkSdptvymyU3ufp0+f3iJBRxtrA4WFhfDz88OaNWswe/ZsTJkyBc7Ozti7dy8AwbaZKDAYDHpLUv0+WU1NDRMnTgSTyeTbz4jTj4hi41N9wPDhw/me/DR58mS+pySI2/b4TdBQE/3W1tb0YKu+XQNwlwU16fXq1SuRYkcIghrI8xvncL6DqDbE94TazikodsujR4/oscfEiRPRp08f7NmzBwDQt29fzJo1i/6tjIwMvL29sWvXLlhYWEBKSgrV1dV49+4d/P39sWTJEtjb2/N913HjxuHKlSsYO3YsPeDOyclBaGgotm3bhiFDhsDb27vJNjo/2Gw2bt++jc2bN8PFxYVuz7NnzwaDwUBaWhrXIhIngiY/qX6bs3/Ozs5GfHw8VFRU+NZ/oHFb5ueff+Zri1P1Ky0tTWT9Qy3usdnsBmP/NMZ3iynRvn17vvseAUBVVRXZ2dkoKyujV+aTkpIA1O3V4RdwD6g7Ggaoq3RNgXpWTk4OnJ2d+f6GMhKb+ixx4dyfzwm10lZfGbDZbKxZs6bRgW1hYSHf64L2Y1HPKysro6+lp6ejpqYGTCZTYIwKcVb3KJhMpkB5qHypo48agpqI0dTUFOi5Qe2V4gy8IwyzZs1CREQEvL29cePGDdjY2MDKygp9+vQR+ajF2bNnw93dHRs3boSPjw9sbGzQo0cP9O7du8FYAaLUkaKiIrr9CPo21PXPnz+jpKSELrNevXrB19eXjitBDY6NjY2hpKQEa2tr3Lx5k44r0RQjRxgEvTe1ylO/bVDt3dvbm/acqQ/1/UUN3CQoH05PL06kpaWhr6+P/Px8pKWl0V5a9Q2oDh060OXYu3dv5Ofn49ChQ3RcCWp1q0uXLlwrTs2FIPmpsrx06ZLA4+Iow41Td1LttbG611xQgYrj4uIE6vji4mIAgnV8Q/UsNTWVSydSAXgtLS2FlrFTp07o168fnj59ipCQEIwZM4aWJyIiAnJyclwrSqIg6Pvx05/U/1MxAPhhaGiIu3fvCtSTgp7XFJpDLlG+YUvL0pIImnijdGL99xS3HTeEuH2ivr4+7VFQHwMDA7x69YqrvoorO9VGhY1HJQrt27dvsK+OiIiAm5ubQPsLEGybiYq1tTVCQ0PpuBJ5eXlIS0vDyJEjoaCgwOV1Jy8vL7bHnag2PvUNBekKJSUlaGpq8gS7FbftMRgMWFlZ4d69e3RcCc53tbS05JqgIUmSnpTgLAtLS0tYWloiJiYGw4cPR+/evWFtbY2ePXvCwsKC9jgVFmpsUX+VnUJcG+J7QukTQXZ1QUEBbW9KSUlBWVkZvXr1wujRo+Ho6MjzHaWkpDB+/HiMHz8e3759w+vXr/Hq1Ss8ePAAcXFxyMjIgIuLC65du8Yz5ujWrRv27t1LT2S8efMG4eHhePToESoqKrB//35IS0tjwYIFzfb+ubm5mDt3Lq2LBPHt2ze+E6CN9c/5+fm0DU7ZMmw2W+DiDTXpIkhXC3qepqYm7O3tcfv2bTg4ONDjDisrK1hZWTU4ectZfysqKnhOTRGW7zYpwekmUh+qA+KcvaIMxIyMDJ5Z/fo01cWamtX5+vVrg9H6m+NZnFy+fBlXrlzhub5w4UKeQIaCyk9Q5338+HHcuXMHHTp0wOrVq9GzZ09oaGjQFefXX3/FjRs3BEY45gxkx+95nN+KGvSpqKgIlEcUN8D6CJOvMJHBqd80NGgTJT9OBg4ciOPHj+PQoUN4+fIl/P394e/vDwaDgb59++K3337jGxyGH87OzlBWVoaPjw/i4+Px4cMHnD59GjIyMhgyZAh+++03LhdVClHqCKdRKqg8OK+XlpbSHU7Pnj3BYDDw8uVLVFdXIy4uDmVlZXTH3atXL9y8eRPPnj2Drq4u3bELcvtqKoLem98KPPA/3cK5/UQQgma2hYUq54bqHHWPs84JMqDU1NTQtWtXdOrUicuA4mc8NSeC9AFVlvwiMteHU3dS5SLIcG/uiRXOCYfGBlWCdHxj7YtTJ1JutIKMdEFMnDgRT58+xbVr1+hJievXr6O2thbDhg0TOT8KQfqXn74Tps42picb6u/FpSXl4vcNW1qWlkRUe0HcdtwQ4vaJDdkK/HSluLJTbVRc47khGqr/JSUl9ITE2LFjMXXqVHTp0gVKSkqQlpZGZmYmhg4d2ujpE8JC9btUX1F/0qFXr1548eIFYmJi0KdPH7E97kS18ak21Nj3rj8p0ZS216tXL9y7d4+eoOG0TeTl5bkmaNLT0/lO9EtJSeHYsWP0ZNuTJ0/olez27dtjzpw5mDt3rsC2Vp/27dsjLS1N4NYxcW2I7wnlsi+oP3dwcMDOnTvFyrtdu3awtbWFra0tXF1dcfv2baxatQplZWU4ceIE1wkxnMjIyMDU1BSmpqZwdnbGx48fsXDhQiQnJ+PIkSOYPXt2swQyB+pOLUxKSoKZmRmWLl0KY2NjqKio0J4+gwYNQnZ2tsBT3YSxgygbnBqvlpaWNuoZI0hXC7LngLoDH7p27YrLly/TwTaBOk9yJycnLF++nO8EGmf95dwSLSrf9fQNUaAUnLu7u8CVreZ+FnWc0PciOzubb6WiZhSbArV/afv27XxPamjqWbKcUNs8CgsLUVtby1cZN+WdhMmX31YTQXLWPxJK3PzqY2NjAxsbGxQXF+PFixd49uwZAgMDER4ejtmzZyMwMFCgi159xowZgzFjxuDLly90pP7AwEAEBQUhLS2N74kSosBpQHz+/Jnvtg/OcuIsDxUVFRAEQUcW5lzB5/xvVFQURo4ciYSEBCgqKrZIPAlxUFRURFFREW7fvt0iK7r1nwU0XOeoe/XrHKcB1bNnT3p1CwCPAdWS8SQagnq/Y8eOibRCo6ioiOLiYnz58gVdunThuS+ovKiJpoYGj/xWuyk5582bh9WrVwstp7hQE3jUgElYhg4dChUVFYSHhyMnJwdaWlr0qRvibt0A6lyE+U1k8tN3wtTZpuhJcfmR5PqRZGkOxG3HjSFOn9jQvnR+ulJc2ZWUlFBYWNgkV2NxePjwIQoLC2FhYYE9e/bwTJ43l4cEBYvFQrt27WivO379NeV1p6qqiq9fv0JfX1+sU+JEgfpuDdmG/NpXU9pe/W2R1DtTK9KcEzQpKSkA+E/OKCsrY+3atfj111+RnJyM6OhoPHz4EA8fPoSHhwcACDxFqT7UgFSQTd4UG+J7UFxcTHsICNr+3pzY29vj7t27CAoKavBI6/p06tQJq1evxoIFC1BaWoqUlBSRjx3lR15eHsLDwyEvL49jx47xPZ2osfGWMHYQ9W2p+mBubo6LFy82RXS+yMrKYsmSJViyZAnS0tLw4sULPH78GKGhoThx4gRKSkr4nr5IvaOysnKTxibfNaaEKFBKQpjZ76ZCzdY397MErdRSLF26FImJiTx/TTE+KajZ5fqBeIC6IDNN3SvPia6uLqSlpcFmswW6qlKukuLAZrMFestQ+QraNsIJ9Zvc3FyBAYGoOiBMfoJQVlbGoEGDsHbtWty5cwc6OjrIz8+ng/qIgqqqKkaMGIHNmzcjICAAysrKSExMFPm4pPq0bduWXk0QVO+pTrlDhw48bnmcgRijoqIgLS1N1zVdXV1oaWnh+fPniI6ORm1tLXr06CGyW2NL8T11C1WPqLKsT01NDe2OWr/OcRpQ/DwhrK2twWaz8fLlS757X78H4pYldTScoHIRpC+oGX5Bhmz9fcsULaXjBUGVC2fQNGGQlZXF2LFjUVtbi+vXr+PFixdIS0tDx44duY5/FRVB5clPf1Lf5sOHD6ipqeGbril6srF+URAtLdc/VZbmoKV1oih9YmpqKmpra/nm8+HDBwDcZSqu7FQ66ijr7wVlm1laWvJtC03t2+sjJSVF981RUVGIioriGohzbltoaY87Tqg2JEg3lZSU8N0+2ZS2161bN7Rt2xYfPnxAQkIC0tLSuPpMTrtGGA9PBoMBgiAwZcoUHDlyBJs2bQIAkQaL1MBYUDk0xYb4Hly+fBnV1dVgMpnNHqBaENQ2PEGeB4Lg3NYmbNrG+qusrCwAdVsi+E1IJCcnN7otkNJr9aHqhLq6Om2DU7bMhw8fms2bShB6enr45Zdf8Ndff+Hvv/8GUBffit9zqfrZ1ImeH3ZSggrgERAQ0CyeAw1hZWUFNTU1JCcnCxUwUVio/TdNdQFvyrP5za7eunWrwVlXUWnTpg0d5fvcuXM89ysrK3H58uUmPaOxfG1tbRvNw8DAANra2mCz2XzzKysro7fT1M9P3G/Zpk0bsFgsABB40omwaGho0AHZmpoXULeKBUBghN7Tp08D4F+2VOcdERGBly9fwsjIiGviwtraGtnZ2fT3EcfIaan2Q+mW06dPCzR+mwuq7EJDQ/lGJb579y7y8/OhqKjIFSkf4DagqNNlOMuRMpb8/Pzw9etX6OnpCYzg3VJQZenv74/y8nKh01Hl4ufnx/e+oOvUvuXKykp6byUnnKdIcDJo0CDIysriyZMnAo275oR6Xnx8PCIiIkRKS52Wc+3aNdpLYvz48UK7A/ODn74D/lfOnG3cysoKioqKyM/P53sSSXZ2Nu7du8eTTlgo109R23VLy/VPkIXSic25jRQQvx2LQ2N9Yk5ODu7fv89zPS4uDrGxsWAwGHTfBYgv+7BhwwDU9X/Clmdz9ElU/ed3EgCbzRao+5oC1W8EBgYiNTWVayAuLy8PMzMzvH79mg4++T0mJah2ERwczLceXLx4ke/AsSltj3OCxsvLCwD3pEOPHj3AZDK5JiVEmein8hbFPqPSCJqMaooN0dK8ffsWBw4cAFC3RUPU+Gn8EGa8R032c07CfPv2rdFBOpVOSkpKYNyd+jTW5jnHWvw8OE+dOtXoMxrrnzn1XefOncFisVBcXMx3+39LQdUtNpvN15uLqr9UYF1x+WEnJYyNjTF27FgUFRVh1qxZPA2WJEm8evUKW7ZsETpitiDk5OSwYsUKAMDKlSsRGBjIM1jJyMiAt7c3HelZGKgBZEpKitBH5TQXVMXYuXMnl1fA/fv34e7uLjCojrhQxy9euHABAQEB9PWSkhKsXbtWZDdmTmRkZHDu3DmuYzpLS0uxdu1afPnyBdra2rC3t280HwaDQct56NAhhIWF0feKi4uxZs0aFBYWQkdHhyegHKXABEUed3Nzw71791BVVcV1PTIyEuHh4QDqjvNsDGq/aUREBNcqAEmSuH37NpKSksBgMJrF7WzOnDlgMpl4/PgxvL296efV1NTg0KFDePLkCZhMJubMmcOTloorERERwRVPgoLq6CnjQJwVfKrM6x/h1VQmT54MPT09vHjxAm5ubjwdfVVVFcLCwrB+/fomP6tPnz4wNzcHm83GihUruFZ+Xr9+je3btwOoiwBf3xuF04C6d+8eVFVVufZgUytcVBl/760bQN12AysrK6Snp2PevHk8qz3V1dWIjIzEqlWruNqGk5MTlJSUkJSUhO3bt9P3amtrceLECYGTwwwGg3bR3rFjB49u8/b25uuRo66ujjlz5qC6uhpz587lm39iYiL27NlDnyTUFDp06ECfXuPm5sYzyCosLMTJkyf59gssFgtmZmZIS0trlq0bQJ3L+KlTp+h+raqqCtu3b0dSUhKUlJS4ouYrKSnR0cC3bdvG5SKbm5uLFStWgM1mw9LSUqw4MVS7jo6OFikKekvLJQqtJUtL6URx23FDiNsnMplM/Pnnn1zR3zMzM2l9PGLECK4BhbiyOzo6QkdHB2lpaVi0aBG94kmRkJDAM1hozA4QBso2CwoK4jodorCwECtWrOCJodAcUP0v1VfUr5PUaU7UpMT38Ljr3bs3zMzMwGazsWrVKq7BaHh4OLy8vPievtHUtkf1k/z6TWqCJiYmBl++fOE70X/z5k14eXnxeO+WlJTg2LFjACDSVlVLS0soKSkhISGBb0yIptgQLUVubi68vb0xZcoUlJWVgSAIrF27tlny3rx5M+bPn4/Q0FCeScbc3Fxs3ryZjnNAnZYH1LXJESNGwMfHh8emY7PZuH79Oh3Xws7OrsFAtJw0No7r2rUrVFRUkJubi7///pvuY9lsNry9vXH16lW+9ZiTlJQU7Nq1i8sO8vHxwYMHDyAjI8N1OgkArFmzBlJSUti2bRv8/Px4dGxubi58fX3po3OFJSIiAjt37uRZ8KmsrIS3tzeAuhM6+MWBoewmzgkUcfgx/KkFsHXrVhQXFyMsLAyOjo7Q1NSElpYWKisrkZGRQbvECDrSUBQcHR2Rm5sLLy8vrFy5Eu7u7tDV1QVJksjJyaEVpru7u9B5qqqqok+fPoiMjMTQoUPRtWtXyMnJoUOHDi0eu2LZsmUIDw/HgwcPYGtrC319fXz58gXZ2dno06cPNDQ0cPPmzWZ73qBBgzBjxgycPn0aq1evhoeHB9TU1GgXO1dXV7HfWVNTE4MHD8bKlSuxZ88eOt+ysjIoKChgz549Qh/p5ezsjFevXuH69etYsGABOnXqBBUVFbx//x7l5eVQUVHB/v37eSZt7O3t4efnh2PHjiEkJATq6upgMBiYN28eBgwYgCdPnuDOnTv0CSQKCgrIz8+nlePYsWOFOhqwtrYWd+7cwZ07dyAvL4/OnTtDVlYWOTk59MrKwoULm8VNr1u3bti8eTO2bNmC/fv34/Tp0+jUqROysrLw5csXSElJwd3dHQRB8KSlBsjUXkJ+Rg5QN5mioKAAMzMzkeUbNWoUkpOTsXDhQrBYLLrD9fT0bNJ+VwUFBRw9ehTz589HUFAQgoOD0blzZ6ioqKC4uBgZGRlgs9nNEmyRwWDAw8MDM2fORExMDIYMGQJDQ0NUVFTQLnvUmez86NWrFx48eACSJHkMRapcqbg0rTEpwWAwcPDgQSxatAjPnz+Hvb09OnXqhA4dOqCsrAzp6en0KiRlPAF1Xj/btm3DypUr4evri+vXr0NXVxefPn1CQUEB1q1bJzAw1tKlSxEWFoaIiAjY2NigS5cutG5buHAhAgICeAYYALB8+XIUFBTg0qVLcHFxgaqqKjp16oTq6mpkZWXReyKbaxDp5uaGrKws3LlzB4sWLUKHDh3QsWNHWlYqeCU/42jixIl48+YNqqurYW1tLfDUCGFZuXIlduzYgWPHjqFjx47IyMjAt2/fIC0tje3bt/MY3suWLcPbt28RHh6OSZMmQV9fHwoKCkhOTgabzUanTp3oowtFZdiwYdi3bx8CAwMRGxuLjh07QkpKCg4ODo1OvrSkXKLSGrKMGjUKYWFhcHd3x7lz5+iAYr/99huMjIzEzlfcdtwQ4vaJw4cPR3p6OsaPHw8DAwPIyMggOTkZNTU10NPTw+bNm5tF9jZt2uDQoUOYO3cunj59iiFDhqBLly6Ql5dHVlYWCgsL0atXL67j+hqzA4TB1NSUjnA/d+5c6OjooG3btkhOTgZJkti4cSO2bNkiVF7CYmxsDGVlZXpxiN8iwuHDh0GSJPT09JplxbsxGAwGdu/ejWnTpiEqKgqDBg2CoaEhSkpKkJ6eDjs7OxQXF/OdAGpK2+O0TTi3sXDeb6hP/fLlCw4ePIiDBw9CXV2da0xSUVEBZWVlbNiwQehykJeXx5gxY3DhwgWEhIRg/PjxPOXUFBuiqfz555+07VVZWYnPnz/TEyMMBgNjxozBli1bmnVChIrPISMjAx0dHSgrK6OgoAA5OTmoqakBg8HA/Pnz6aMvKT5+/Ihdu3Zh165d0NDQgIaGBiorK5GVlUWPF42NjfnGRBBEY+M4JpMJNzc3uLu74+DBgzh37hw6duyIzMxMfPv2Da6urrh27Rpfm4TCzc0NHh4euHLlCnR1dZGdnU17s69ZswbdunXj+r2trS3++OMP/P777/jjjz+wd+9e6OnpQVpaGnl5efT3mTdvntDvCdQt9p48eRInT56EiooKtLW1UVtbi8zMTJSUlIDJZMLd3Z1nS8unT58QGxsLAwODJnvr/NCTEgoKCjh8+DCCgoJw7do1vHnzBm/fvkW7du2gr6+PHj16YMSIEfQes6bi6uqKAQMGwM/PD8+fP0dSUhLk5eWhpaWFvn37Yvjw4SIHgfLw8ICHhweePn2K+Ph4VFdXQ1tbu1nkbQhjY2OcO3cO+/fvx4sXL/D+/Xvo6OhgxYoVcHFxofe+NScbNmyAsbExzpw5g5SUFJSXl6NPnz5YunRpkzwlAGDTpk0wMDCAv78/UlJSICcnh+HDh2P58uUiHR/IYDCwc+dO2Nrawt/fHwkJCcjNzYWmpiYGDRqE+fPn8+2Qe/bsCQ8PD/j6+iIlJYWOnUGdRb5z5048fvwYMTExyMvLQ3FxMZSUlNC3b184ODhg3LhxQsnXpk0b7NmzB+Hh4Xj9+jVycnJQWloKFRUVDB48GE5OThg0aJDQ79sYkyZNAovFwokTJxAdHY2EhAT6/OO5c+eie/fuAtNaW1sjKSkJ0tLSPC5bnTt3hpaWFnJycugVfVGZP38+amtrERgYiJSUFHo2uDlclzt37ozr16/D398fd+/exfv375GVlQV1dXWYm5ujX79+dFDJpqKjo4OrV6/ixIkTCAkJQUpKCmRkZGBubg4HBwc4OjoKjLfBOREhaNWnNSclgLpI535+frh+/ToCAwPpNtW+fXsYGRmhV69eGD58OM9E38iRI6GhoYG///4bMTExeP/+PVgsFjZv3oyRI0cKnJTQ19fHuXPn8Ndff+H58+f48OEDDAwMsGLFCvz8889cnlqcSElJ4c8//4S9vT0uXLiAmJgYJCQkoE2bNujYsSOGDx+OYcOGNSl2AydMJhP79u3DyJEjcenSJcTHx+Pdu3dQVVVF7969MWLECIHbbcaMGYPt27ejsrKS1jFNYc6cOdDS0oKvry/tbUUZsvyOLZWTk8OxY8fg7++PGzdu0INCHR0dDBs2DC4uLkIH7a2Prq4uDh8+jCNHjuDt27f49OkTSJIUqv62pFyi0hqyjB8/HkVFRbh8+TLS09PpSeHmCNYobjsWhLh9oqysLM6cOYODBw8iKCgIeXl5UFdXx7Bhw7B06VK+ZSqu7IaGhggICMCpU6cQGhpKe91qaGjAzs6OayUWaNwOEJbdu3fDwMAA169fR05ODsrKyjBgwAAsXLiQ7770pkJ53YWFhfEdiFN9NJvN/q5xibp06YIrV65g//79ePToEZKTk9GpUyesXLkSLi4umD17Nt90TWl7RkZG9ASNtbU1zwCLmqAB+HuMjBgxAtXV1YiIiEBqaiqSkpJAkiR++ukn2NjYwMXFhW/g8IZwcnKivYzrT0oATbMhmgqlYxgMBhQVFdG2bVvY2NjA3Nwc48aNa/Y4Frt27UJERAQeP36M+Ph45ObmIjMzE7KystDT00OPHj3g6OjIE1TTzs4OFy9exOPHjxEVFYXs7Gy8f/8eNTU1UFFRgbW1NYYPH46ff/5ZZHu0sXGcs7Mz2rVrh+PHjyM5ORlVVVUgCALTpk2Dvb097fEoiJEjR8LExASHDx9GfHw8ampqYGVlhfnz5wu09x0dHWFlZQVfX19ERkbiw4cPkJaWhqamJoYPH44hQ4bAzs5OpPe0srLCpk2b8PTpUyQnJyM1NRVsNhsaGhoYPnw45syZw/fEpFu3boEkSUyaNEmk5/GDQYriPylBwnfk48ePGDJkCLS1tfnuMZUgQcK/F2rfOb/YEf92Pn78iKFDh0JBQQFPnjwRO6r6f7kMJfyzuHr1KtavX9+k4wMlSPinsnDhQjx8+BABAQEiLbRJ+OdiZ2eHrKws3Lt3j94m8k+jqqoKI0aMQFVVFYKDg5t8AswPG1NCggQJEiRI+C9y9epVkCSJUaNG/SOOlJQgQYIECeKzZs0aMBgM+pQDCRL+CVy5cgWfPn2Cq6trs9gqP/T2DQkSJEiQIOG/RHZ2Nh11e+rUqa0sjQQJEiRIaGkMDAywfft2ZGVloaqqCrKysq0tkgQJjSIjIwM3Nzf61LAm59csuUiQIEGCBAkSxGbbtm148+YNEhMTUVZWRu8zlSBBggQJ/374xZOQIOFHprkmIygkkxISJEiQIEFCK/Pu3TvExMRATU0NY8eOxa+//traIkmQIEGCBAkSJHwXJIEuJUiQIEGCBAkSJEiQIEGCBAmtgiTQpQQJEiRIkCBBggQJEiRIkCChVZBMSkiQIEGCBAkSJEiQIEGCBAkSWgXJpIQECUJw9epVsFgsrFu3rrVFEYqDBw+CxWLh4MGDIqV79uwZWCwWpk+f3kKS/fMRt2ybi48fP4LFYsHOzk6kdNOnTweLxcKzZ8+4rrf2+wiDuO/8b0XQt2wNfrRv0xo6TND3WLduHVgsFq5evfrdZPk38qPVMTs7O7BYLHz8+LG1RWl2WCwWWCxWa4vRYrx9+xbz5s2DtbU1/a4JCQlNzvdHtBEjIiIwffp0WFpa0u9aVFTU2mJJkCCQ/2Sgy+nTpyMqKgqurq5YunQpz/2amhqsXbsWAQEBUFRUxOHDh9G7d+9WkLRhnjx5gpMnTyIuLg4VFRXQ1dXFmDFjMHv2bJGPE0pISEBoaCiMjIwwdOjQFpKYF2E7v6VLl8LV1VXs5zx79gwzZswQOZ2DgwN27twp9nNbgqKiIvj6+kJZWRmzZs1qbXH+VXz8+BHXrl2DtrY2JkyY0NriSJDwn0Oi35qPf4o+u3r1KrKysuDg4IBOnTq1tjj/Wv7r5fz582fMnDkTRUVF0NLSgoGBARgMBhQVFRtNS03a8xsz/IgkJiZi3rx5YLPZ0NHRQbdu3QAA0tLSrSyZBAmC+U9OSjREdXU1Vq9ejTt37kBJSQlHjx6FlZVVa4vFg4+PD3bt2gUA0NbWRseOHZGcnAxPT088ePAAp06dgry8vND5JSQkwMvLCw4ODt91UqJHjx4C75WXl9Mz2BYWFk16jrKyMt9nZWdnIzs7G0pKSiAIgue+np5ek57bEhQVFcHLywva2trNbrQrKChAX18fHTt2bNZ8/ylkZWXBy8sLvXr1EmjEt2/fHvr6+mjfvv13lq5l+Ce8D5PJhL6+PjQ1NVtbFAktTFP124+kw9TV1aGvrw9lZeVWeb4w+uxH4Nq1a4iKikKvXr3+k4Pl74Uw5ayvr/+dpfp+BAYGoqioCMOGDcOBAwcgJSW8s7iXlxeAf86kxJUrV8BmszFjxgxs2LChtcWRIEEoJJMSHLDZbKxcuRLBwcFo27YtTpw4ge7du7e2WDy8fv0au3fvBoPBwPbt22ljIyMjA3PnzkVMTAw8PDz+EYro/PnzAu+dOXMGf/75JzQ0NNCvX78mPcfY2Jjvsw4ePAgvLy8YGxvjzJkzTXrGv4Hu3bvj7t27rS3GD820adMwbdq01haj2fgnvI+mpqakXkoQih9Jh61atQqrVq1qbTEkSBCaH6XttASpqakAgH79+ok0IfFPhHpXGxubVpZEggTh+Xe3ShGoqqrC0qVLERwcDBUVFZw6deqHnJAAAG9vb5AkiQkTJnCtfujq6mLbtm0A6gb7BQUFrSVis3D9+nUAwNixY//1HYgECRIkSJAgQYKElqGyshIARPIi/qdSUVEB4L/xrhL+PUhGeqhTVIsXL8aDBw+gqqoKX19fmJiYtLZYfCkpKcGTJ08AAJMmTeK5b21tDT09PbDZbNy/f1+oPO3s7LB+/XoAde59VEAcfsHCqqurce7cOUyePBlWVlbo3r077O3tsW/fvmYNoPP+/XvExcUBAMaPH99s+TYHVVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FZimqKgIBw4cwLhx42BpaQkLCwtMmDABp06dApvNFvrZ69atw5AhQwDUueZyfitB8TlKSkqwa9cu2NnZwdTUFIMHD8bu3btRXl7O81tBQeLqBxoLDAyEo6MjLC0t0bNnTyxYsADv3r0T+j2Ki4vRvXt3dOvWDZ8+fRL4ux07doDFYsHd3Z3nXlpaGjZt2oQhQ4bAzMwM1tbWmDVrFu7du8c3L86gcx8/fsT69esxYMAAGBsbY9u2bZg+fToddyQqKoqrXDkDrDUWGDI/Px979uzB2LFjYWlpCUtLS9jb22PLli14+/Yt12+TkpJw8OBBODk5wdbWFqampujbty8WLFiAp0+fNlaMzYKg9+EM3NWadR5oONAdZ91/8uQJpk+fDisrK1haWmL69Ol4/vy5SM/iJCIiAkuWLEH//v1hamoKGxsbrFy5EomJiXx/n5mZiWPHjmHGjBkYNGgQTE1N0atXL8ycORO3b99u8FmVlZU4ffo0nJ2d0atXL5iZmWHIkCFYtmwZQkNDBaZLS0vDypUr0bdvX5iZmWHs2LHw9/cX+V0560FBQQE2b96MAQMGwMzMDMOHD8fBgwdpo14Uvn37Bk9PT9jb26N79+6wsrKCk5MTLly4gJqaGq7fiqPf6tNSOiw3Nxfr169H//790b17d4waNQpHjhxBdXW1wDSNBbrMyMjA77//jhEjRsDc3Bw9e/bE2LFjsWvXLqSlpXH99tWrV9izZw9++eUXuj7a2tpi+fLleP36NU/ewuoziri4OKxatQoDBw6EqakpevfujYULFyI6Opqv7OXl5Th06BDGjx8PS0tLWh4nJyfs378f3759E1guFNS3ioqKAgDMmDGDS05B5Sbqt6upqcGlS5cwbdo0WFtbw8zMDMOGDcOOHTvw5cuXRuUUBXFtpJqaGly7dg2zZ89G79696b56/vz5uHbtGtdvi4qKcPnyZSxZsgTDhw+Hubk5LC0tMWHCBBw9epSnnYpSzg21tYqKChw9epT+5paWlhg/fjyOHj1KD4I5aW67QVxZ6rfD9evX0+/ZWGBKSi9S1NdJ/IKdtmZ/SQXd5fetqT6es28vLy/Hvn37MHLkSHTv3h0///wzV36i6gWgri87ePAghg0bBjMzMwwYMACbN2/Gly9fBNobjenKxgKJ5uXlYceOHRg5ciTMzc3Ro0cPODk54erVqyBJkuf3nHKIYiNTCGPnJScng8ViwdrausG+08XFBSwWC35+fgJ/81/hP799o7y8HIsXL0Z4eDjU1dXh6+sLAwOD1hZLIAkJCWCz2ZCVlYWpqSnf31hZWSEtLQ2xsbFwdHRsNE9TU1MwmUykpaVBTU0NnTt3pu9xxlmorKzEokWL6MGSnp4eFBUVkZycjMOHD+PWrVvw9fVtlj2hN27cAFC37YJfrIfWgs1mw8XFBc+fP4e+vj50dXWRmpoKf39/xMbG4vLlyzxBRt+/fw8XFxdkZ2eDyWRCW1sbDAYD7969Q3x8PB48eIBjx44JFZxUT08PpqamiIuLa7AOUBQXF2Py5MlITU2FgYEBtLW1kZ6ejhMnTiApKQnHjx8XuQz27duHw4cPQ0tLC3p6ekhNTUVYWBiio6Nx+fJlofakKisrY9CgQQgKCsKtW7cwf/58nt/U1tbSA7mxY8dy3QsKCsLq1atRVVUFRUVF6Ovro7CwEBEREYiIiMDChQuxYsUKvs9OTU3Fjh07UF5eDkNDQygrK0NKSgoEQaCwsBBJSUk8MUbU1dWFKpvnz59jyZIl+PbtG6SlpWFgYAApKSl8/PgRFy5cQGVlJVfg1O3btyMiIgLKyspQV1eHuro68vLyEBYWhrCwMKxfv77Vg/21dp0XFn9/f2zZsgWqqqro3Lkz0tPTERUVhdmzZ+PUqVPo2bOnSPnt2rULPj4+AOribhgaGiIrKwuBgYEICQnBgQMHMHjwYK40hw8fxuXLl6GoqAgNDQ2wWCwUFBQgMjISkZGRiI2NxW+//cbzrNzcXMydOxdJSUkAAB0dHXTq1AnZ2dkICgpCXFwc31g/b9++xaJFi0CSJPT19ZGXl4ekpCRs3rwZ375949uuGqOwsBCOjo7IyclB165doaSkhPfv38PLywsRERHw8fERevUtMzMTM2fORFZWFmRkZGBoaIjy8nLExMQgJiYGoaGh8Pb2puuBqPpNXETVYenp6ZgyZQo+f/4MJpMJgiBQVFQET09PvHr1iq/R2xh37tzB2rVrUVlZCVlZWRgYGKC6uhqZmZnw8fGBoqIi1/711atXIyMjAyoqKlBXV4eGhgY+ffqEu3fvIjQ0FJ6enhgxYgT9e1H02ZkzZ7B9+3bU1tZCWVkZXbt2RV5eHh48eICwsDC4u7vDycmJ/n11dTVmz56NmJgYAHVemu3atUNBQQHevHmDmJgY2NnZwczMrMEyoGI9JSUloaSkBARBQElJib6vpqbGk0bUb1dSUoLFixfj2bNnYDAY0NLSQseOHZGeno5Tp04hKCgIZ86cgY6OToOyCoO4NhKnjACgpaWFTp06ITc3F48ePcLDhw/h4OBA//7BgwfYsGEDmEwmNDQ0YGhoiKKiIiQmJiI+Ph737t3DmTNn6HYlTjnX5+vXr5g9ezYSEhLAYDDQtWtXMBgMJCYmIiEhAXfv3sXJkyfRrl07vumbw24QVxY9PT306NED6enpKCgogJ6eHlRVVel7DdGxY0f06NEDL1++BMAbB01OTo7r363dXxIEgerqar7fun6cnYqKCkydOhXx8fHQ19dH165dwWQy6fui6gUqzzlz5uDFixcAAAMDA8jIyODSpUt48uRJi5ygEx0djcWLF+Pbt2+Qk5ODrq4uysvLERsbi5iYGISHh2PPnj1gMBg8acWxkYW18wwNDWFhYYHY2FiEhoZi9OjRPHnl5uYiPDwcsrKyfO//5yD/g0ybNo0kCILcuXMn/f8DBgwgP3z40KR8Dx06RDo5OYn8d+nSJaGfcfHiRZIgCHL48OENykEQBDllyhSh871y5QpJEAS5du1agb/ZtWsXSRAE2bdvXzImJoa+npOTQ06aNIkkCIKcPHmy0M8URG1tLTlo0CCSIAjy5MmTTc6vIQ4cOEASBEFOmzatwd9R5WNiYkKOGDGCTE5Opu8lJyeTNjY2JEEQ5IULF7jSlZWVkcOHDycJgiA3bdpEfv36lb738eNHcvLkySRBEOTevXuFljkzM5MkCIIcPHhwo+9lYmJCTp48mfz06RN97/nz56SFhQVJEAT5+PFjrnSRkZF8y4N6pomJCWlhYUGGhobS94qKiuh2tHLlSqHfIzg4mCQIghw7dizf++Hh4fR71tbW0tcTExNJMzMz0sTEhDxz5gzJZrPpe1FRUWT//v1JgiDIR48eceW3du1akiAI0sjIiJw/fz5ZUFBA3ysvL2/w/TmhyvbAgQNc17Ozs0lra2uSIAjSzc2N/Pz5M9f9qKgo8vr161zX7ty5QyYkJPA849mzZ2T//v1JY2NjMjMzk+ueMN+fH9Q3ioyMFOp9/il1niAIkiAIsnv37qS/vz9dVyorK8kVK1aIpZcoPTtgwADy4cOHXPfOnz9PGhkZkVZWVjzfOCwsjIyJieGqryRJkm/fviVHjhxJEgRBRkdHc92rqakhHR0dSYIgyHHjxvHUh9TUVPLYsWNc16hvaWJiQm7evJksKyuj7506dYouj6KiIqHfmVNnjBkzhszIyKDvxcXF0e1qz549XOkEfZva2lpy4sSJdPnn5OTQ92JiYsg+ffqQBEGQHh4eQuUnLM2tw2pra+nvM3XqVDI/P5++9/jxY9LCwoI0MTHh27YonXPlyhWu6/Hx8XSarVu3ksXFxfS9mpoa8sGDB+S9e/e40ly7do1MS0vjulZTU0MGBweTFhYWZM+ePcmSkhKhyoKTJ0+ekCwWi7SysiJv3rzJVXeDg4NJS0tL0sTEhExMTKSvBwUFkQRBkAMHDiRTUlK48isuLiYvXbpEfvz4UeAz6yNIN1E0pf9ZtWoVSRAE6ezszCVrWVkZuWnTJpIgCHLSpElCy0qSJDl48GCSIAge3SyujbR06VKSIAhy0KBB5PPnz7nu5eTk8OjmhIQE8v79+2RFRQXPb11dXUmCIEhvb2+e5zRWziT5P31an2XLltG2J2c5pqSk0Pq+fvm3hN0griwkKbg9CoOgcqH4kfpLkmz4W1OyGhkZkUOHDuVq25QtJI5eIEmS3L17N0kQBNm/f38yLi6Ovp6WlkaOGjWK1nv163Rj30bQGCUvL4/s3bs3SRAE+ddff3H1he/evaP73fPnz3OlE9dGFtXOo2yJOXPm8H2vw4cPkwRBkMuXL+d7/7/Gf3r7xunTpxEVFYWOHTvi7NmzTY46nJaWhpcvX4r8l52dLfQzKJdIQbPRANC2bVsAaNbtFCUlJXSgyI0bN3KdhqGpqYl9+/ZBRkYGMTExPGe1i0pkZCQ+ffoEGRkZnhXy1qa6uhq7d+9G165d6Wtdu3bF3LlzAQAPHz7k+v2VK1eQlpaGgQMH4o8//oCKigp9T1tbG/v374eioiL8/PzEco1uDCkpKXh6enLNkPfs2ZP2oKkvb2Ow2WwsWbKEdrEG6lZhqKCqouQ3cOBAtG3bFomJiUhOTua5f+vWLQB1XhKcM9xeXl6orKyEm5sbpk2bBhmZ/zl8WVtb4/fffwcAnDx5ku9z27dvD09PT3qlBGiefZfHjx/Ht2/f0LNnT3h4ePCsPllbW/O4Ro4cOZI+qouTXr16Yfny5aiurm7U7b+l+afU+QkTJmDSpEl0XZGVlaVXE2NiYoRyJwfq6vj+/fvBYDBw4MABDBgwgOu+k5MTpk+fjuLiYly6dInr3sCBA2FhYcGzImNkZITNmzcD+J8XGEVoaChevXoFFRUVnDhxgqc+6Onp0WVdH319fWzZsgUKCgr0tZkzZ8LY2BgVFRVi6WI2m42dO3dyrRybmJhg48aNAAA/Pz+UlpY2mk9kZCRev34NJpOJffv2cZ2cYmFhQeuMM2fOoKSkRGQ5xUVUHRYVFYVXr16ByWTCw8MDHTp0oO/Z2NjA1dVV5O1IBw4cAJvNxtixY7Fx40auVWspKSkMGjSIZ0Vx/PjxXF6M1G+HDRtGH3MYFhYmkhwA4OHhAZIksXXrVh5dO2zYMLi5uYHNZnMFgqa2lowYMYLHs1RJSQkTJ06Etra2yLI0hqjfLikpCQEBAdDU1MShQ4e4ZFVQUIC7uztMTU0RGxtLr4SLi7g2Unx8PIKCgsBkMnH8+HEejy5NTU2eEx+6deuGwYMH86zSa2pqYs+ePWAymTx6pimkp6cjKCgIALB7926ucjQwMKC9/wIDA5GZmcmTvjnthqbK0tL8U/pLoG7LkKenJ5cXFWULiaMXSktLce7cOQB1bYBzG3znzp2xc+dOkXVlY/j4+ODr16+YMmUKli9fztUXslgseHp6gsFgCLQHRbWRRbXz7O3toaioiPDwcOTm5vI8n9qa9SOfjvQ9+U9PSlCUlpaiuLi4yfns3LkTiYmJIv+JcsQQpZQ4XazqQ7l48dvjJy4vXrxAWVkZNDQ0uFxEKX766Sfavfjx48dNehbVmdra2grlVvg96datG98AqObm5gDA0wkGBwcD4B//A6gzIszMzFBaWkrH0GhObG1t8dNPP/FcFySvMEyePJnnWrdu3SAnJ4fi4uIG901yIisri+HDhwP43wQERVVVFV12Y8aM4boeFhYGKSkpgVuTBg4cCCaTiejoaL77vUeMGIE2bdoIJaMoUPv+586dK1Jg1tzcXJw4cQIrVqzAzJkz4ezsDGdnZ5w+fRoA6GNxW4t/Sp3nVy/V1NRoV2lh63psbCzy8/PRrVs3+h3rQ+k6foP+wsJC+Pn5Yc2aNZg9ezamTJkCZ2dn7N27FwB49lCHhIQAqDNKOAe8wjBx4kS+dY1ym8/IyBApPwCwtLTkG1Np+PDh0NDQQFlZmVADOKofGDZsGN/jOUeNGgV1dXWh82tORNFhjx49AlD3/vyOpJ08eXKD/XF9Kioq6LhQom6vSU9Px99//41ly5Zh+vTptK64c+cOANF1RXZ2NuLj46GiosK3Xwf413UtLS0AdTFXCgsLRXpmUxHl21G6aOTIkXwXcqSkpOgtWE1dTBHXRqLav52dnUhbh9lsNm7fvo3NmzfDxcWF1jOzZ88Gg8FAWlpas9mAT548AUmSMDc356sTLS0tYWZmBpIk6bpdn+ayG5pDlpbkn9JfAoChoSHfLVbi6oXo6Gi6DVC2HSfdu3cX2KeKC1V+/OoXULcgoK2tjbS0NL6TAqLayKLaeW3atMHIkSNRW1tLB++nePnyJVJTU6GpqYn+/fs3mtd/gf90TInp06fjxYsXeP36NebMmYMzZ87A0NCwtcVqEGpmvKHZxqqqKgDNG3WXOl5IX18f0tLSfH9jaGiIu3fv8gToEoXy8nJaydRfVf4R0NXV5Xudmjypv4JI7RH39vbGiRMn+KalyoufwmwqguSlvASEWfHkpH379lBWVhaYZ3Z2NsrKytC+fXuh8hs7diwuX76MgIAArhgQDx8+RFFREbp168bVJtPT01FZWQkmk4mFCxc2mHdlZSUKCwt5BnotETOmpKSE9njiXCFrjFu3bmHjxo0NBlT63kZ/ff4pdb4hOVNTU1FWViZUPpT8OTk5cHZ25vsbanI4JyeH63pERATc3Nwa/Gb1771//x6AaPWGov7KOQX1bYR9Z066dOnC97qUlBQdtyI1NRW2trYN5kN9Y0HtTVpaGvr6+sjPz0daWhqPR0pLIaoOo/o+Qe+hpKQETU1NvgHv+JGeng42mw1FRUWR4iX5+PjAw8OjwcCaouoKKmArm83G1KlT+f6G/P94GZx1fdiwYdDR0UFiYiIGDRqEfv36oWfPnrC2toapqSnfvdvNgajfjmrLDx48wJs3b/imo04pq9+WRUVcG0mc9l8/Bo0gvn371ix2YGNtGah7tzdv3vC1/5rTbmiqLC3NP6W/BATrenH1AtUGunTpInDAbmBggFevXoktMydlZWW03nV3dxeod6gJr5ycHJ6JZVFsZHHtPEdHR1y9ehXXrl3DggUL6OuUl8T48eMF6oz/Gv/pSYk2bdrg+PHjmDlzJhISEjB79mycPXu20cA3rQk129+QKzK1bYPaxtEcUMZtQyt5gpSuKISEhKC0tBRt27blcvX7UVBUVOR7XZAypDxw4uPjG827OT1bKATJK+4Rq4Ly48yTFCHoW69evaCpqYmsrCy8fPmSDiIVEBAAgDfAJVW32Wy2UKur/MqU072vueCsf/JqHwAAqVdJREFU88K2u8zMTKxbtw5sNhszZ87Ezz//DF1dXbRp0wZSUlKIiIjArFmzGhyEfA/+KXW+sboubL2k6tjXr18bXb3jdKctKSmhJyTGjh2LqVOnokuXLlBSUoK0tDQyMzMxdOhQnu9JbV0QR18LqsvitEWKhrzTKP0vjI4Xps8QJb/mQlQdRr1HY+Ui7KSEON/7xYsX2LVrF6SlpeHm5oYhQ4ZAW1sbioqKYDAYuHz5MjZs2CCyrqDqemlpaaP6lLOuKygo4Ny5czhw4ADu3r2Le/fu0acedezYEUuWLBEqyLaoiPrtKF2UkZHRqNdQU13jxbWRqPogaNDOj3Xr1iEpKQlmZmZYunQpjI2NoaKiQnvsDBo0CNnZ2c3mKt9U+6857YbvZYuKyz+lvwQEyyquXhBWVzYXnB7uVNDdhuBXfqLYyOLYeUBdcNQuXbrgw4cPiImJgaWlJSoqKmgPN84gtv91/tOTEkDdIN/HxwfTp09HSkoKZs2ahbNnz4p1gsThw4dF3qMPAL/88gsmTpwo1G+pCZNPnz6hurqaaz89BdX5NufkCtVwP3/+LPA31IpDU1zjqa0bo0aNatbI/K2FoqIiioqKcPv27R/6VJfWQkpKCqNHj4aPjw9u3bqFHj16oKSkBGFhYWAwGFxbN4D/1a0OHTp8tyMzhYGzzhcVFQm14nPnzh2w2WyMGjWK74kMwsZA+NH4p9d5StdRx/gJy8OHD1FYWAgLCwu+kb4FrWJT8QSaMwZQU2joiERK/wuj44XpM0TJr7Wg3oPq3/jR0DvWh/reomwZpfrF2bNnY9GiRTz3xdUV1LuZm5vj4sWLIqXV0NDAn3/+id9//x1v377FixcvEBoaiufPn2Pjxo1QVFRs9Wjy1Pu5u7sL9Hpq7meJaiOJWh/y8vIQHh4OeXl5HDt2jG9f09x9x/ey//5psjQHP2J/Ka5eaIqupPpLQZNT/LxJOScUXr161aze4fwQx86jmDhxInbv3o2rV6/C0tISwcHBKC4uhqWlZZPjGf6bkMSUQJ2bzsmTJ9G5c2dkZ2dj1qxZYrlJfY9Al0ZGRmAymaiqqhK4v4w6ikeUvVuNuVtSjebDhw88Z8tTUMEKxZ0MycvLQ0REBIAfc+uGOFDBjvgFchSXlnKNbS0ob4g7d+6guroaISEhqKyshLW1Nb13maJz585gMpkoKChosOMTF3HLVklJid6XGBsbK1QaamXVysqK7/3mcnH83rREnf+eUNuFRJWf+p6WlpZ869Hr16/5pqPKS9h609JQ7uT1qa2tpd1zhdHx1G9SUlL43q+pqeGb34+m36i+T1C5lJSUiGQv6OnpgclkorS0tFH3e4qsrCwAouuKxsqSqusfPnwQ2yNLWloaZmZm9IKOi4sLAIg8ydESfE9dJK6NJGr7p+qCgYEB30FRcnKyWNu2GqKxtkw9l/O3LcWPJEtz8CP2l+LqBaoNpKamora2lu9vPnz4wPc65fUnyK5LT0/nuaasrExvx/ge5SeOnUcxfvx4MJlM3LlzBxUVFfTWjV9++aW5xfxHI5mU+H80NDTg6+sLbW1t+mx1UQc93yPQpZKSEh0QhV+n//z5c6SlpYHJZIq0/YGKVSHIPczKygqKiorIz8+nIx9zkp2dTbtvNrbXWBABAQGoqamBrq6uQOPrnwYVJOj06dMClbSoULPBLbHdozUwNjaGgYEBvnz5gqdPnwrcugHUdVy2trYgSRK+vr7NLktTypYK/OTj4yOUKyrV5vitHHz79o3utP5ptESd/55YWVlBTU0NycnJIgVKo75nfn4+zz02mw0/Pz++6aiAYFevXm3QS+F7ERMTwzdgYkhICPLy8qCoqCiUfqb6gdDQUL4T73fv3kV+fj4UFRXpbVvAj6ffqPcIDg5GXl4ez/2LFy+K5CYvJydHx88QtIecXxqAv67IyMjAgwcP+KZrrCw7d+4MFouF4uJiXLlyRShZGoP6lvzKShAt9c0pXRQQENAik9iciGsjUe3//v37Aie+OKHK6vPnz3z7mVOnTjWaVtRytrW1BYPBwOvXr/lOgMXGxuLNmzdgMBiwsbERKW9RaS1ZWrqO/kj9pbh6gWoDubm5dEBITuLi4gQO5qnYDvxiv5SUlCAwMJBvOqr9NFTvmxNR7TwKNTU1DB48GMXFxTh9+jQiIyOhoKCAUaNGtZSo/0gkkxIcdOzYEb6+vtDQ0EBqaipmzZrV6kHm+LFo0SIwGAw6cApFRkYGfcSSk5OTSCdXUMe/vXnzhq+blJKSEqZMmQIA2LZtG1dnkJubixUrVoDNZsPS0hK9e/cW670oF1VhvCRycnJgZ2cHOzu7H2aFkR+TJ0+Gnp4eXrx4ATc3Nx7jnDpNYv369ULnqaqqijZt2qCgoEAoI+afADUBQSlrJpMpMOrz8uXLaddVLy8vnn2jX79+xaVLl+Dt7S2yHNS2rZSUFJEHiHPnzkW7du0QFRWF1atX86SPjo7GzZs36X9TR7+dO3eOaz9pdnY2Fi1a1OyrXd+Llqjz3xM5OTk66OrKlSsRGBjIYyxmZGTA29ubDsoL/O97BgUFcUXXLywsxIoVKwTGHLCzs4OFhQUKCwvh4uLCs3qelpaG48ePN8u7CQOTycTatWu5oo4nJCTgzz//BAA4OzsL5Rbdp08fmJubg81mY8WKFVzeBK9fv8b27dsB1AWc5jwS80fTb71794aZmRnYbDZWrVrFNbgNDw+Hl5eXSKdvAMDSpUvBZDJx/fp17Ny5k+tI1NraWjx8+JBrooGqW0eOHOGKjZCSkoKFCxcK9IgQRp+tWbMGUlJS2LZtG/z8/OhA2RS5ubnw9fWlj7sE6o5bPnnyJI+HyJcvX+hTg/id4CIIyv54/vy50GmEwdjYGGPHjkVRURFmzZrF461EkiRevXqFLVu2NPn4SHFtJCMjI4waNQpsNhvz5s2jPV0503p5edH/7tq1K1RUVJCbm4u///6b1k1sNhve3t64evWqwPoobjnr6upi5MiRAIC1a9dyrXanpqZi3bp1AIDRo0dzHSXcErSWLFReUVFRzZYn8OP2l+LoBSUlJTg5OQEA/vzzT7x9+5a+R8XQElQ3qYm6e/fucU1oFBYWYu3atQK3JM2fPx+qqqq4desWfv/9d544UCUlJbh9+zZ27NghwtsLRlQ7jxNqm/7+/ftRW1uL4cOHc/V9EiQxJXjQ0dHBqVOnMH36dCQlJcHFxQW+vr4/VMWxsLDAqlWrsHfvXqxbtw4HDx5E27ZtkZycjOrqapibm2PVqlUi5WliYgI9PT2kpaVh0KBB0NfXB5PJRLdu3eiJjmXLluHt27cIDw/HpEmToK+vDwUFBSQnJ4PNZqNTp070sXeikpCQgMTERDAYDKEmJaqrq2k3xuY+u7k5UVBQwNGjRzF//nwEBQUhODgYnTt3hoqKCoqLi5GRkQE2my1S8B8Gg4GRI0fiypUrcHBwgKGhIb23jvPM6H8SY8aMwV9//UWvTA8ePJjvEW5A3ZFb+/fvx8qVK3Hw4EEcOXIE+vr6kJOTQ0FBAT59+gSSJGFvby+yHKqqqujTpw8iIyMxdOhQdO3aFXJycujQoUOj8QU0NTXh5eWFJUuW4NatW7h79y4dhfrjx48oKSmBg4MDxo0bB6Buxt3S0hIxMTGYOHEi9PT0ICsri+TkZCgoKGD16tXYtm2byO/Q2rREnf/eODo60oOBlStXwt3dHbq6uiBJEjk5OfTA1N3dnU5jamoKe3t73L59G3PnzoWOjg6tl0mSxMaNG7FlyxaeZ0lJSeHAgQOYO3cu3r59i7Fjx0JXVxdt27ZFdnY2CgoKoK2tTZ9z39JMnjwZDx48wIgRI2BoaIjq6mraVdrS0lJozz4GgwEPDw/MnDkTMTExGDJkCAwNDVFRUUEPJGxsbODq6sqT7kfSbwwGA7t378a0adMQFRWFQYMGwdDQECUlJUhPT4ednR2Ki4tFGugZGRlh9+7dWLt2LU6ePAk/Pz907doV1dXVyMzMRHl5OVxdXenjKidNmoQLFy4gPT0d9vb20NfXR21tLd6/fw91dXUsWrQIf/31F89zhNFntra2+OOPP/D777/jjz/+wN69e6GnpwdpaWnk5eXREw/z5s2j8/306RNOnz6NnTt34qeffkKHDh1QVlZGnyyiqakJNzc3ocvD3t4efn5+OHbsGEJCQqCurg4Gg4F58+Y1+VSWrVu3ori4GGFhYXB0dISmpia0tLRQWVmJjIwMevJ3xowZTXoOIL6N9Oeff6KgoABRUVGYMmUKOnbsiA4dOiA3Nxf5+fkgSZJuJ0wmE25ubnB3d8fBgwdx7tw5dOzYEZmZmfj27RtcXV1x7do12j7ipCnlvGXLFqSlpSEhIQGjR4+mtx2kpKSgtrYWJiYm2Lx5c5PLUBhaQ5ZRo0YhOTkZCxcuBIvFoscEnp6eUFdXFzvfH7W/FEcvAHVtICYmBjExMXBwcEDXrl0hIyOD5ORkaGlpwcnJia8eNzAwwOTJk+Hv748lS5ZAW1sbKioqSE5ORrt27bBw4UIcPHiQJ52GhgaOHDmCxYsX49y5c/D390eXLl2gqKiIb9++ISMjA7W1tc12FKmodh4nNjY20NTUpMtuwoQJzSLTvwnJpAQfDAwM4OPjg5kzZyIuLg5z586Fj49PgxGEvzfz5s1Dt27dcPLkSbx58wafP3+Gnp4exo4dizlz5ogcJFJKSgpHjhyBp6cnoqOj8fr1a559kXJycjh27Bj8/f1x48YNJCcno6amBjo6Ohg2bBhcXFwEDiQbg/KS6NGjR4vPtH9vOnfujOvXr8Pf3x93797F+/fvkZWVBXV1dZibm6Nfv370zL+wbNiwAW3atMG9e/eQmJjYbFG2WwsdHR16gA6AJ8BlfQYNGoTbt2/D19cXjx8/RmZmJkiShKamJgYMGIDBgwdj2LBhYsni4eEBDw8PPH36FPHx8aiuroa2trZQaXv16oVbt27Bx8cHDx8+RHp6OphMJrS0tNC7d2+us8ilpaVx4sQJOoJ9ZmYmVFRUYG9vj6VLlzb5iLrWpCXq/PfG1dUVAwYMgJ+fH54/f46kpCTIy8tDS0sLffv2xfDhw3kM+d27d8PAwADXr19HTk4OysrKMGDAACxcuLDBoFiampq4dOkSzp07hzt37uD9+/fIzc2FhoYGrK2tMX78+BZ+2/+hoqKCS5cuYf/+/QgLC8OXL1+go6ODcePGYf78+SIFE9PR0cHVq1dx4sQJhISEICUlBTIyMjA3N4eDgwMcHR35Bmv+0fRbly5dcOXKFezfvx+PHj1CcnIyOnXqhJUrV8LFxQWzZ88WOU97e3sYGRnBx8cH4eHhSElJgYKCAnR1dWFra8s1Oa+kpIRz587B09MTYWFhSE1Nhbq6OiZPnoylS5fi0aNHAp8jjD5zdHSElZUVfH19ERkZiQ8fPkBaWhqampoYPnw4hgwZAjs7O/r3Tk5OUFFRQWRkJDIyMpCQkAAZGRno6+tj0KBBmDNnjkhB4Hr27AkPDw/4+voiJSWFPgKxOaLSKygo4PDhwwgKCsK1a9fw5s0bvH37Fu3atYO+vj569OiBESNGNEuwOXFtJCUlJZw8eRLXrl3DjRs3kJiYiIKCAqirq2PgwIE8Lt7Ozs5o164djh8/juTkZFRVVYEgCEybNg329vYCt/41pZzbt2+P8+fP4/Tp07h9+za9x58gCIwePRozZsxo8UCDrSnL/PnzUVtbi8DAQKSkpNCeA82xKPaj9pei6gWgrr2dOnUKR44cQUBAANLT06GqqoqJEyfCzc1N4DZGoG6ySVtbG1evXkVWVhaqqqowZswYrFixosGtlN27d8etW7dw9uxZ3L9/H2lpaWCz2dDQ0EDv3r0xcOBAeptHcyCKnceJtLQ0HBwccPjwYWhra4vtVf5vhkGKc2aYBAkSJEiQIOFfw8GDB+Hl5QVXV1eR4hxJkCBBggQJwvBf72fWr1+Pq1ev/mffvzEkMSUkSJAgQYIECRIkSJAgQYKEFqCkpAR3796FlJRUs3iB/RuRTEpIkCBBggQJEiRIkCBBggQJLYC3tzfKysowcOBAOgixBG4kMSUkSJAgQYIECRIkSJAgQYKEZiIhIQHbt29HXl4e0tLS6EC1EvgjmZSQIEGCBAkSJEiQIEGCBAkSmomioiJERUVBVlYWJiYmcHNzQ7du3VpbrB8WSaBLCRIkSJAgQYIECRIkSJAgQUKrIIkpIUGCBAkSJEiQIEGCBAkSJEhoFSSTEhIkSJAgQYIECRIkSJAgQYKEVkEyKSFBggQJEiRIkCBBggQJEiRIaBUkkxISJEiQIEFCM/Hs2TOwWCxMnz69tUWR0AAHDx4Ei8XCwYMHW1sUCa0Ii8UCi8VqbTEAANOnTweLxcKzZ89aWxSRuXr1KlgsFtatW/fdnnnnzh1MnDgRFhYWYLFY6NmzZ7Pku27dOrBYLFy9erVZ8vueiCt7c/dbzZ1fa9SvH4Hq6mp4e3tj+PDhMDU1BYvFwuLFi1tbrBbjX3X6RmZmJoYOHQoAePToETQ1NXl+ExUVRTeSpUuXwtXVlW9ew4cPR3p6Ov788084Ojq2nNAiUlFRgcePH+P169d4/fo14uLiUFJSAm1tbdy/f1/ofJYsWYLQ0FDcvHkTLBYLOTk5CA4ORnh4ON69e4fPnz9DVlYWenp6GDp0KGbMmAElJSW+ednZ2SErK0vgs8zNzXHx4sUG5YmKisK5c+fw8uVLfPnyBW3btoWuri569+6NpUuXQkbmx6yqVVVVOHnyJAICApCZmQl5eXmYmppizpw56N+/v9j5vn79GseOHcOLFy9QXFyMn376CcOGDcPChQsFfgcAKCkpweHDhxEcHIzs7GwoKyvDysoK8+fPh5mZGd80/v7+ePnyJd6+fYvPnz+jqKgIbdq0QdeuXTFq1ChMnjwZsrKyAt///PnzCAgIwPv37wEAurq6GDt2LGbMmCEwHZW2KWUXGhqKy5cvIy4uDoWFhVBRUYG+vj4GDhyIuXPnNpr+R6CyshJjxoxBRkYGAODevXuNnl+9fft2+Pr64tChQ7Czs8OzZ88wY8YMAED79u0RGhoqsI5QxrcwzxGGjx8/YsiQIQAAJpOJoKAgaGtr8/0tpSdOnz6N3r17N/nZoaGhSEhIwNChQ2FkZNTk/ITl1KlTKC4uxsyZM9G2bdvv9lxBfPz4EdeuXYO2tjYmTJjQ2uI0O1evXsX69esb7OPu3buH5cuXg81mY9q0adi4cSMYDMZ3llTCj0Zr6QgJLc/jx4/poxUNDAzQrl07tGnTptF0/3Z9KeHfxf79+3H06FHIysrC0NAQ8vLy6Nq1a2uL1WL8mCM9MdHR0YGWlhZycnLw4sUL2Nvb8/wmOjqa/v8XL17wzSc/Px/p6ekA0Gwzr81FamqqwIkUYamqqkJ4eDi0tbXpQcrkyZORk5MDoG5gQxAEvn79irdv3yI+Ph5XrlyBr69vgwMZU1NTvoNQQ0NDgWlIksT27dtx+vRpAICGhga6deuGb9++IT4+HjExMZg/f/4POSlRXl6OmTNn4tWrV5CRkYGhoSGKiorw5MkTPH36FOvWrcOsWbNEzvf27dtYs2YNqquroa6uDkNDQ6SkpODYsWMICQnB+fPnoaqqypOuoKAAzs7OSE9Ph5ycHAwNDZGXl4fg4GDcv38fnp6eGDFiBE+6PXv2oLi4GIqKitDQ0EDHjh3pNvTixQtcu3YNJ0+eRLt27bjSlZaWwsXFBTExMWAwGOjSpQtkZWWRnJyMPXv2ICQkBKdOnYKCgkKzll1VVRVWr16NoKAgAIC2tja6deuGL1++4OXLl0hKSvrHTEr8/fff9ISEsISFhUFeXh79+vXjuff161ecPn26VWbS2Ww2vL29sW3btu/yvNDQUNq4/J4DjtOnTyMrKwsODg4/xKREVlYWvLy80KtXr/+kkR0cHIyVK1eCzWZjzpw5WLt2rVDp2rdvD319fbRv376FJZTQWrSWjpDQ8ly4cAEAsH79epHsrH+7vlRXV4e+vj6UlZVbWxQJTYQkSfj7+4PBYMDf3x/GxsatLVKL8+ON9JpIz549cevWLTx//pzvpAQ1EdGpUyfExsaiurqaZ8BLTVx06NAB+vr6LS+0CMjIyMDCwgJmZmYwMzNDdXU1fvvtN5HyiIiIQFlZGZdClpOTw9SpU+Ho6MjVeb9+/RqrVq1CRkYGVqxYgUuXLgnMd//+/SKvvh44cACnT5+Gvr4+tm3bBisrK/peRUUFnj592uBqe2uyZ88evHr1Cp07d8bx48ehq6sLoG5l77fffsOuXbvQs2dPmJqaCp1ndnY21q9fj+rqari5uWHBggWQkpJCQUEBFi1ahFevXmHjxo3w9vbmSfvbb78hPT0d5ubmOHToENTU1FBbW4vDhw9j//79WLt2LSwsLHg8iFxdXWFlZQVTU1Ou1cWHDx9i5cqViI+Ph4eHB/744w+udNu3b0dMTAw0NDRw9OhRut7k5ORg8eLFiI2NxY4dO3jSNbXsNm7ciKCgIFhaWuKPP/4AQRD0vZKSEkRFRQld3q1JUlISfHx8MGTIENy7d0+oNO/fv0d6ejoGDx4MeXl5rnvS0tKoqanByZMnMW3atO8+YJaWlsb169exYMEC+ntKkNCScE7gLly4ECtWrBA67bRp0zBt2rQWlE6CBAktRWpqKgDA1ta2lSX5sVi1ahVWrVrV2mJIaAa+fPmCb9++QU1N7T8xIQH8C2NKUJ4NnB4RFDU1NYiJiUGXLl0wePBglJWV4e3btzy/oyYufjQvCaDO68Df3x8bN27Ezz//LJYL9oMHDwAAgwcPpq/5+/tj8+bNPKsJ3bt3x549ewDUTVAkJCQ0QXpukpOTcfToUbRr1w6+vr5cExIAIC8vjyFDhoDJZDbbM5uL/Px8ekvK9u3buQZhEyZMgIODA2pra3Ho0CGR8j1+/DgqKirQp08fLFq0CFJSdU1UTU0NHh4ekJaWxr1793i+Q1xcHMLCwiAtLQ0PDw+oqakBAKSkpLB48WL07t0b5eXlOHHiBM8zZ82aBTMzMx5354EDB9Ir7qGhoVz3vn79iuvXrwOoW6ngrDdaWlrYuXMnpKSkcPnyZZ6tPU0puydPnuDGjRvQ0dGBj48P14QEACgpKcHOzo4n3Y9GbW0tNm3aBBkZGWzYsEHodJT7OmfbpdDS0oK1tTWKiopw8uTJZpNVWMaMGYPq6mp4eXl992dL+O9x48YNrF69GtXV1Vi6dKlIExISJEj4Z1NRUQGgbkFNgoR/I1Qdr78A9W/mX+cpYW1tDaBuwEvtM6d4+/YtSktL0bNnT1hZWeHMmTN4/vw5unfvzpXH8+fPufL6txEWFgZFRUX06tWLvtaQC6uFhQWUlZVRXFyM1NTUZnODPHv2LKqrqzFlyhS+8T9+ZO7fvw82mw19fX2+k1eTJk3C1atX8ejRI5SWlgq115EkSQQHB9Pp66Ojo4O+ffviyZMnuHv3Ltd3oNL17dsXOjo6fOV59uwZgoKCRPKsoTyFysvLua6/fv0a1dXVkJKSouO4cEIQBLp06YKUlBQEBwdj9uzZ9L2mlN2pU6cAAAsWLICioqLQ7/Gjcf78ecTGxmL16tUCYzDw48GDB2AwGBg0aBDf+8uXL8e0adPg6+uLGTNmfFfXdFdXVwQGBiIgIAALFiyAgYGBSOkfP36MM2fO4PXr1ygpKUGHDh3Qt29fzJ8/n8tjjTOOBVA3KbZ+/XouOZYuXUr/u6amBlevXsWNGzeQmJiIiooKaGlpwc7ODgsWLOC7FYofVGwDCk4ZAPCNlUGSJM6dOwd/f3+kpaVBUVER/fr1w6pVq/h+91evXiE4OBiRkZHIycnBt2/f0L59e/To0QMuLi48fdX06dNpz6CoqCiugH2ixhkSRHh4OO7du4cXL14gOzsbpaWlUFdXR58+fTBv3jx06dKFb7qbN2/i0qVLSExMRGlpKdq2bYsOHTrA2toazs7ODW7ra4wrV65g48aNqK2txapVqzB//nyR8zh48CC8vLx46gv1nR0cHPDHH3/g+PHjuHHjBj59+oR27drBzs4OK1asENi2iouLcebMGYSGhiI9PR3V1dXQ0tKCubk5Jk6cyNXvUnFW7t27h0+fPuH48eN4/fo1CgsL4eXlRevWiooKnDt3Drdv30ZqairYbDZ0dHQwatQozJ49m2//8j2/W0REBM6ePYvY2Fh8+/YNKioq6NWrFxYsWMA3iGRhYSGOHTuGBw8e4OPHjwAAVVVV6OjowMbGBrNnz26Sh6SoOoLiyZMnOHLkCN6+fYva2lqYmppi2bJlDdqCd+/exaVLlxAfH0/rLVtbWyxYsKBZ4vZwEhcXh5MnTyI6OhoFBQVo06YNLC0tMXfuXK6+tLa2FoMGDUJubi78/PwELrCdPn0a27Ztw4ABA3Ds2DGue3l5eThx4gQePnyI7OxsSEtLgyAITJo0CQ4ODs0asyU3NxdHjhzBo0ePkJubCwUFBRgZGWHy5Mk8Hs/1Y5hxfucdO3Y0uCVDHH2Zn5+PAwcOICwsDF+/fqVjUcydOxfS0tJ8n5OWloYTJ04gPDwceXl5kJeXh4mJCaZPn87TbwiDKG1y3bp1uHbtmsCyuH79Os6cOYOUlBTIy8ujR48efNtCfYqKinDq1CmEhoYiMzMTJEmiS5cuGDduHKZOnSry4qEo37w+ZWVl8PLyQlBQEPLy8qCmpobhw4fD1dVVoIeoODo0JiYGJ0+exMuXL/H161coKipCVVUVpqamGDduHAYOHCjSO79+/RrHjx/Hy5cv6fGplZUV5s6dyxXzrb7+ysrK4qqrzRUT7EfkXzcp0bVrV6iqqtL7yzlXTSkPCCsrKy6PChcXF/o3xcXFSEpKAvBjeko0lYSEBGRnZ2PEiBFCd/o1NTWorq4G0PCMnbe3N/Ly8lBTU4OOHTvCxsYGI0aMEKi4OT02EhMTcenSJXz48AGysrIwNjbGL7/8ItKA7XsSGxsLADzeHRRmZmaQlZVFVVUVEhIShKpL2dnZyMvLazDfHj164MmTJ3j16pVI8lDXc3JykJOTAy0trUblAYCXL18CAExMTLiuf/v2DUCdISmoHmlpaSElJQUxMTFckxLill1FRQUiIiIA1NWZly9f4tq1a8jMzISioiIsLCwwceJEoQeZrUVubi48PT1haGgo0l7Yr1+/IjY2FsbGxgIn8aytrdGvXz+Eh4fjxIkTWL16dTNJ3Ti6urpwcHDApUuX4OXlhX379gmddv/+/fSWJHV1dbBYLKSlpeHq1au4ffs2Dh48iAEDBgCoWxnr0aMH0tPTUVBQAD09Pa5v3rFjR/r/S0pKsHjxYjx79gwMBgNaWlro2LEj0tPTcerUKQQFBeHMmTN8J/Lqo6amhh49eiAuLg5VVVU8MXT47eFds2YNAgICoKurCz09PXz48AGBgYGIjo7GjRs3eAa2q1evRkZGBlRUVKCurg4NDQ18+vQJd+/eRWhoKE9cGIIgUFhYiKSkJCgpKXF5Dqmrqzf6TsIwd+5c1NTUQFVVla53WVlZuHr1Ku7evYvjx4/ztOXdu3fTXlnq6urQ0dFBSUkJMjIykJSUBG1tbbEnJS5cuAB3d3eQJCnyfnJRYLPZcHFxwfPnz6Gvrw9dXV2kpqbC398fsbGxuHz5Mo/uS0lJwbx58/Dp0ycwGAzo6elBUVERHz9+xI0bN5CdnY0zZ87wPOv27dvYt28flJSUoKuryxWHJy8vDy4uLkhKSoK0tDQ6duwIRUVFpKam4uDBgwgKCsLp06d56tL3+m67du2Cj48PgLrFDUNDQ2RlZSEwMBAhISE4cOAAl2dXSUkJJk2ahPT0dEhJSaFz585o06YN8vLyEB0djaioKDg6OjZJj4uiIyj8/f2xZcsWqKqqonPnzkhPT0dUVBRmz56NU6dO8fTh1dXV+PXXXxEYGEiXl6GhIdLT03Hx4kXcvXsXJ06c4JlIFJczZ85g+/btqK2thbKyMrp27Yq8vDw8ePAAYWFhcHd3h5OTE4A6D8nRo0fDx8cHAQEBAu2PW7duAQDGjh3LdT06OhqLFy/Gt2/fICcnB11dXZSXlyM2NhYxMTEIDw/Hnj17mmVi4s2bN5g7dy4KCwvpWFiFhYWIjIxEZGQknjx5gu3bt9O/NzU1haamJl89THmICkJUffnp0yc4ODigsLAQhoaGkJGRQVpaGjw9PZGVlcV3a2pQUBBWr16NqqoqKCoqQl9fH4WFhYiIiEBERITI28yaU5fu3LmT9qLU0tKCmpoaIiMj8fTp0wbjUL1//x4uLi7Izs4Gk8mEtrY2GAwG3r17h/j4eDx48ADHjh0Tekwh6jfnpKqqCtOnT0dcXBwMDAygr6+P5ORk+Pr64vHjx/Dz8+PRHeLo0Pv378PV1RU1NTVQUlJC165dUVtbi5ycHNy6dQslJSUiTUpcunQJmzdvRm1tLVRUVMBisZCVlYW7d+8iJCQEW7duxS+//ALgf/qrqqoKcXFxkJWV5drK/K/2DiL/hSxZsoQkCILcuXMn3+sZGRkkSZLkkCFDyF69epG1tbX0b8LCwkiCIEhra2uu640RHx9POjk5ify3dOnSJr1rZGQkSRAEOXjwYKF+7+XlRRIEQV65ckXoZ4SEhJAEQZDGxsZkQUEBz/3BgweTBEHw/RszZgyZnp7OkyYvL4/+zalTp0gTExOetKampmRAQIDQclKI8x2cnJzIvLw8kZ5BEAR5+PBhgb8ZPnw4SRAEeenSJaHyfPr0Kf3egurezZs3SYIgyIEDB3Jdt7W1JQmCEFhetbW1dBmHh4c3KEdVVRWZkZFB/v3336SRkRFpYWFBvnz5kus39+/fJwmCII2MjMjKykq++djb29N1gBNxyy4mJoYkCILs1asXefDgQZLFYvHUmZ49e5IRERENvl998vLyxK4z4uDq6koSBEFGRUXR1yj5MzMzBaa7du0aSRAEeeDAAa7r9XUAVU4WFhbk58+fuX4rzHNEITMzk86TJEkyKyuLNDExIVksFvnu3Tuu31J6IjIykus6pXONjIzIixcv0nW/oqKC3LRpE62P8/PzudKtXbu2UV22atUqkiAI0tnZmUxJSaGvl5WV0XlPmjRJpHem3kNQGVLfw8TEhOzfvz/54sUL+l5OTg45ZswYkiAI0sPDgyfttWvXyLS0NK5rNTU1ZHBwMGlhYUH27NmTLCkp4fu8adOmifQewnL+/HkyOzub61pVVRV54cIF0tjYmBw+fDiXviooKCCNjIxIY2NjMiQkhCtddXU1GRYWxlMHGuLKlSt0/T5z5gzJYrFIFotFnj17tknvdeDAAb7tiXqeiYkJOWLECDI5OZm+l5ycTNrY2JAEQZAXLlzgSldSUkLa2dmRBEGQM2bMoO0Mivj4eNLPz4/rGlWXjIyMyH379pFVVVX0vYqKCrK2tpacMmUKSRAEuXjxYq7v8OXLF3LRokUkQRDkihUreN7ve3y3ixcvkgRBkAMGDCAfPnzI83wjIyPSysqKSw/5+PiQBEGQ48aN45GvoKCA9PX15anj4iKMjqD0V/fu3Ul/f3+6TCorK8kVK1aQBEGQkydP5knn6elJEgRBjh49moyNjaWvs9ls8uDBg3SdFdQ/8mPatGl8deSTJ09IFotFWllZkTdv3uT6bsHBwaSlpSVpYmJCJiYm0tfj4+Pp/pKzXlFkZGSQBEGQ5ubmZGlpKX09Ly+P7N27N0kQBPnXX3+RZWVl9L13796RI0eOJAmCIM+fP8+VH9Vu1q5dK/T7lpWV0W1g0aJFZGFhIX3v/v37pLm5Od+2RpKN62FBCKMvqXpjYmJCLl68mPzy5Qt9Lzg4mOzWrRtJEAT5/v17rnSJiYmkmZkZaWJiQp45c4Zks9n0vaioKLJ///4kQRDko0ePhJJVnDYpqM5T/ayxsTF57do1+npxcTG5dOlS2j6sXy5lZWW0PbZp0yby69ev9L2PHz+SkydPJgmCIPfu3cuVTlA5i/vNOfWyra0tGR8fT99LT0+n7U03NzeudOLqUKqf9vT05GnDb968Ia9fv04KS0JCAl2+Xl5edL2orq6mdUX99kuS/7OvhB3f/Rv418WUAP7n4VD/dI0XL15AU1OTXhXr2bMnCgsLkZycTP+GikXRo0cPkWaBi4uL8fLlS5H/4uLimvq6IvHgwQNISUkJdP+uT0lJCXbt2gUA+OWXX/iuXlhaWmL79u24e/cuXr9+jYiICOzatQsaGhpISkrCnDlzUFxczJUmPz8fAMBgMLB79246VsabN28QEhKCMWPGoKqqCuvWreMb96MhxPkOL1++RGVlpdDPKCoqAoAGgwlS96jfNgblfdC2bVuBdY/Kk/qtsPIwGIxG5dmwYQNYLBZMTU0xdOhQ7N+/H0OGDMGFCxdgaWnJ9VsqKGZNTQ3fII3Jycl0IKr6zxO37Kg6U1JSgoMHD6Jv374ICAjAmzdvEBAQgH79+qGoqAhLly6lT5IRhsrKSrHrjKjcu3cPwcHBmDBhgsjbw/jFguGHhYUFBg0ahLKyMhw9elRkGZvCTz/9hEmTJoEkSRw8eFCoNJSMjo6OcHR0pOu+nJwc3N3d0aVLF3z79g3nz58XSZakpCQEBARAU1MThw4d4tpOoqCgAHd3d5iamiI2Nlasb9kYbDYbGzZsQI8ePehrmpqaWL58OYC6QLL1GT9+PDp37sx1TUpKCsOGDcPMmTNRVFSEsLCwZpe1IZycnHg8q5hMJu1mm5aWxuW5lZGRgZqaGhAEwbO1S1paGgMHDhTrSNjc3Fxs3boVJEnijz/+wNSpU8V7ISGprq7G7t27uY5f69q1K32yT/3vd/HiRXz8+BF6eno4cuQIj/eNsbExpkyZwvdZtra2cHNz43KBlpOTQ1hYGKKjo2FkZIR9+/ZxfYf27dtj79690NLSwp07d5Cdnc2VZ0t/Nzabjf3794PBYODAgQO0JxPn86dPn47i4mKuANlUv/DLL7/wyKeqqooZM2YItd2xuZkwYQImTZpE6x9ZWVls2LABTCYTMTExXH3uly9fcPLkSSgqKuLQoUMwNzen78nIyMDV1RXDhg1DVlYWfUpUU/Dw8ABJkti6dSvGjh3LZR8MGzYMbm5uYLPZXF44xsbGMDAwQGFhIZ4+fcqTZ0BAAIC67Q+cWyF9fHzw9etXTJkyBcuXL+fy2mGxWPD09ASDwWiWuEWBgYHIysqCiooK9u7dy3XC1+DBg7Fo0SIAwJEjR0CSZJOfJyrt2rXD7t27uVbQhw0bRntgP3r0iOv3Xl5eqKyshJubG6ZNm8YVRN/a2hq///47AAhdds2pS48fPw6g7qS98ePH09eVlJSwe/dugceIX7lyBWlpaRg4cCD++OMPri3x2tra2L9/PxQVFeHn5yeUDd3Ub85ms7Fp0yauwI+6urrYsWMHAODOnTvIzMyk74mrQ9PS0gAA8+bN4/EAMTU1xc8//9zou1L4+PiAzWbD1tYWS5YsoeuFtLQ0XF1dYWNjAzabTXuc/Zf5V05KUMZ+fHw8ysrKANS5H3358oXLjY1yXaRiSAD/m5Tg3PcpDL1790ZiYqLIf82x51dY8vPzERcXB3Nzc6FcI0mSxNq1a5GRkYGffvpJoCu4h4cHfvnlF+jr60NOTg6qqqoYP348zp8/j7Zt2yIzM5M+8pOC+i4kSYLJZOLo0aOwsLCArKwsdHV1sXfvXpiYmIDNZuPw4cMivac43yExMVGkPVqU8m1oHx2lyKhgNc2ZZ33l3xzydO7cGT169ICJiQnd8URGRuL27duora3l+q26ujqGDx8O4H+ncFBkZmZizZo1qKmp4fs8cWWl6kx1dTU0NDRw+PBhEAQBWVlZEASBQ4cOQUNDA0VFRfD19RWYd306deokdp0RhdLSUrpTX7NmjUhp2Ww2njx5Ag0NDZ6tNPxYtmwZGAwGzp8/j9zcXJGe1VQWLFgAOTk5hISEID4+vsHflpaW0hMCM2bM4LkvJSVFn5Dw+PFjkeSg4qyMHDmS5zhbKm9qgufZs2ci5S0M7dq1w6hRo3iuUwMYQUfBpqen4++//8ayZcswffp0ODs7w9nZGXfu3AGAZg02LCwJCQnYt28fFi9ezCUT1XdyykS5xqelpeHdu3fNJgOngVp/AN4SdOvWja/rPfX9OA1fAAgJCQFQt29d1MBkDg4OfK9TddjBwYGvazQVo6S2tpbLjqFoye8WGxuL/Px8dOvWjWtQzgk1kOJsX9RzHj58yBOrqDWZPHkyzzU1NTXaLuD83o8ePUJlZSX69esncOsXv3cXh+zsbMTHx0NFRYXvkd4NPWvMmDEA/jcBwQm17aT+1g2qzvErDwAwMjKCtrY20tLSmty3UDrd0dGRb4yoKVOmgMlkIisrCx8+fGjSs8Rh9OjRfCfI+OmAqqoqhIWFQUpKCo6OjnzzGzhwIJhMJqKjo+kt0Q3RXLq0rKyMXqTld+KQvLw8Jk6cyDdtQ3HOgLqJdjMzM5SWlgq1yNrUb66pqck3Lkf37t1hbm4OkiS5JuHE1aFU2VP9blN48uQJAP42Dud1UW2cfyP/upgSQJ0xoaSkhJKSErx69Qp9+/alJxs491BSK1gvXrzA1KlTUVlZiTdv3gD4d8aTCAsLA0mSja60Uvz5558IDQ1F27ZtcejQIZGPGOzUqROcnZ1x5MgRhISEYMmSJfQ9zj1Ro0eP5tnPx2AwMGPGDKxduxZPnjxBbW0tfRLFjwAlP5vNFvibqqoqAMJHzhUlz/p7yuTk5FBeXt4keebPn88VMO7hw4dwd3fH4cOHUVhYSM/yU2zZsgVJSUlITU2Fk5MTtLW1IScnh7S0NDAYDIwdOxYBAQE8nbq4Zcf5zs7OzjxlIC8vDycnJxw4cACPHz/G2rVrBebfGuzbtw85OTnYunWryPulnz9/jpKSEowePVooDy4TExMMHToUISEhOHLkCDZv3iyu2CKjqakJZ2dnnDp1CgcOHMCRI0cE/jYjIwO1tbWQkZERePwytV+WWrkQFio20IMHD2i9Xp+CggIAEMmzRlgEDVaofc/UJBsnPj4+8PDwaNBgLSwsbBb5hGX79u2NTvJxyqSpqQl7e3vcvn0bDg4O6NGjB3r37g0rKytYWVmJHUlcS0sLTk5O8PDwgLe3NxQUFMQKcCksgo61pb5faWkp1/X3798DqPNUEhVBQWGpOnzp0iXcvXuX728+ffoEgLcOt/R3o2TLycmBs7Mz3/ypCWhO2X755RecPHkST548ga2tLWxtbdGzZ09YW1vznKb0PWnoe6empnK1V2pCOi4uTuC7U96hTdUt1LPYbLZA7yBqwq7+s8aOHYv9+/fj/v37KCsroweBb9++RUpKCtq3b4/+/fvTvy8rK6MDj7q7uwvsa75+/Uo/rylByimdzumNxImysjI0NDSQlZWFtLQ0kYMnN5X6XmsUVP/NWSfS09NRWVkJJpOJhQsXNphvZWUlCgsL0aFDhwZ/11y6ND09HTU1NWAymdDT0+P7G0HfgGrn3t7efE9vA/73HYWZpGrqN9fX1xc4FjAwMMCrV69obyxO+UXVobNnz4a7uzs2btwIHx8f2NjY0OUviv1WVFRE2xmC3pm6/vnzZ5SUlAj0Wvkv8K+clJCWloalpSUeP36M58+fC5yUMDAwQPv27enZsVevXoHNZkNRUfFfeSZsQ8cJ1mffvn04e/YsFBUVceTIEXTr1k2sZ1IGWnp6Otd1zpVLQR0Ndb20tBSFhYU/VABDYbZmCLNNgROqTIqKikCSJF+DgMqz/spv27ZtUV5eLlAekiRFlmfgwIH466+/MGnSJFy8eBHz58/nCjyqpqaGy5cvw8fHB0FBQcjMzISsrCztovby5UsEBARAQ0ODR1bOd+EHP1lFqTOUYfWj8PbtW/j5+cHCwkLgKkpDiNJ2KZYtW4Z79+7h4sWLmDt3Ln766SeRnysuCxYswMWLFxEWFobY2FiBAzVqYNe+fXuBhoagQWBjUIOCjIwMgV4JFKJs3RIWQafDCHrPFy9eYNeuXZCWloabmxuGDBkCbW1tKCoqgsFg4PLly9iwYYNQK2zNxc2bN+Hr6wsFBQWsXr0a/fv3h5aWFuTl5cFgMOgApfVl2rVrF7p27YrLly8jOjqa7n/btGkDJycnLF++XKxgXfPnz0dFRQX+/vtveHh4QEFBAdOnT2+Wd62PoO8naKBWUlICQHj9ygmnizwnVB3m3GIqCM46/D2+G6Wjv379Sg9ShZFNQ0MD/v7+2L9/Px48eIDbt2/j9u3bAOr096pVq8Q6oaCpNNZeOT11OCccGpt0aKpuocqZ06tM2Gfp6OjA0tISMTExuHfvHu0VQXlOjBo1istjkXObLaf3oyCE9QIVBDWobyhAZYcOHZCVlSWy/m8OBLVLfnWC+k5sNluo7YDCll1z6FKq7FRUVBrtZ+tD1YnGvB4B4d6pqd+8sXQAt60grg51dnaGsrIyfHx8EB8fjw8fPuD06dOQkZHBkCFD8NtvvwkVMJ5z4krQJBTn9dLSUsmkxL8Ra2trPH78mG7AL168QNu2bXlm4nv06IF79+4hMzOTK54E514wYXj79i22bt0qspzq6uo4cOCAyOlEpbKyEhEREdDW1m50NeLo0aM4fPgwZGVl8ffff3PtiRYVqhwpV34KalWdmlnmB6erVf30DSFo5aIxDhw4IHTEej09Pbx8+VLgYIfNZtOzr4JmpvnlCdR5CeTm5vJVeNTz6uepp6eH3NxcgfLk5OTQngmCVqT5YW5uDhUVFRQWFiIhIYHnNBQlJSUsW7YMy5Yt40lLrdLV324gbtlxHmHXWJ0Rpb7k5+fzlV8YhI1z8O7dO9TW1iI5ORk2NjYCfzdx4kRIS0tj0qRJdOwBoG61X15eHn379hVaNoIgMGrUKAQGBsLb2xt//vmn0GmbiqqqKqZNm4ajR49i//79AvfQUl40X79+FegNRa0yiLrPnBpkuLu7i60Tvic3btwAULdCQ+2r5aR+HJnvASXTr7/+yjcegiCZZGVlsWTJEixZsgRpaWl48eIFHj9+jNDQUJw4cQIlJSV8I9cLw7Jly1BRUYETJ05g27ZtkJeXF2uir7lRUlJCYWGh0DGEhIGqw8eOHeOJ2dAQ3+O7UbLZ29uLdNIOUNcH/fXXX6iqqsLr168RHR2NoKAgvH37Fq6urvDz82uS3dHSUO8+b968Fj/hiHqWubk5Ll68KHL6sWPHIiYmBrdu3cLYsWNBkiQ9CVR/6wbnxMyrV6/E9moSFup5lI7nx+fPnwGIrv+/N5R8HTp04BvDQ1yaQ5dSshUWFjbaz9ZHUVERRUVFuH37drN4qjT1m3/58kWkdOLqUKBu+9OYMWPw5csXPH/+HM+ePUNgYCCCgoKQlpbG9wSm+nC2qc+fP/NdHKLkri/7f5Efxx++maG2X7x69QoZGRnIyspCjx49eBoj9bvnz5/Te67E2brxowe6jIiIQHl5eaMrrWfOnIGHhwdkZGTw119/oV+/fk16bkpKCgDwDLClpaXp/br19+ZSUNdlZWUFngnPj+8R6JLaU1g/mCoFdVyVrKwsjIyMhMqzY8eO9KSIoHypGfj6e3gbk4e6rqmpKfRxoBRUPIn6cSUaory8nA4Ex3ksrzCyCio7TU1NWqE3VmdEecfvGeiytLQUnz9/5vmj+Pr1K+3CR5GcnIyPHz+ib9++IhuJS5cuhbS0NK5du9aot0Bz4+LiAiUlJYSHh/Pd7w7UuUxLSUmhurqay+WSE2qFo/5EXGPbWCiXSGFWSH4EsrKyAAg+Krf+McAUzXEsnyAojyNRZeJET08Pv/zyC/766y/8/fffAICrV682yePj119/xbRp00CSJDZv3oybN2+KnVdzQdU36sjj5sxT1Dr8Pb4bta2qKe1LVlYWPXv2xMKFC3Ht2jWMGjUKtbW1uHz5sth5ctJSbaM53l3UZ3348EGsNjNq1CjIyMjg6dOn+Pr1K54/f46cnBxoa2vzBLBWVlamt2N8j3ejdLqgZxUXF9PHpAu7uNMYLVUnOnfuDCaTiYKCggYH3E1BXF2qq6sLaWlpsNlsgdsgqe1n9WnufrSp3zw1NVWgLUrFoOBM1xzyq6qqYsSIEdi8eTMCAgKgrKyMxMREvH79utG0bdu2pb07BMlAjZM6dOjwn/aSAP7FkxJmZmaQl5dHRUUFTp06BYB/B01de/bsGe2uJmpUfODHD3QpjPv3lStXsG3bNkhJSWH37t1NdqEsLy/HhQsXAIDvCi8VBO727dt8JwSuXr0KoO57iOK58j0CXdrZ2UFGRgapqam0hw0n1IqGra2t0DOfDAaDDh7Jb0UkMzMTERERAMAT8IpKFxkZyXfATkU/FxQoSxCRkZH0yp+wkysAcPjwYZSUlIAgCJ6JraaU3ciRIwEA169f5/tc6nqfPn2ElvV7BLqcMGGCUPncu3cPiYmJ2LBhA31N2FM3+KGvr49x48ahurqaNmK+FyoqKpg1axYAYP/+/Xx/06ZNG3pFtH4wXKDOPdbPzw9AXX3ghHJZFeQyStX1gICAZjUSqYmh5t7yQb0P5yQVRUZGBl0PBMnTVFfqhvLmJ1N0dLTIk+rUt2az2U2OjbFx40ZMnDgRtbW1WLduHR3QrLUYNmwYgLqJ/eaqG1Qd9vf3Fyko5Pf4blZWVlBTU0NycjIdyK2pUINkalDSVBrTEeIyaNAgyMrK4smTJ/SAoqXo3LkzWCwWiouLceXKFZHTq6qqol+/fmCz2bhz5w69daP+KR4UlC1B2c0tCaXTL1++zDfGzvnz58Fms9GpUycuT8mm0FL6UkFBAba2tiBJUqRA2+Iiii7l7GfPnTvHc7+yslLgRCClg06fPi3SwpQgmvrNc3Jy+I6b4uLiEBsbCwaDweWNKq4OFYSGhgY9VhBWT1HycJ6Owwll+9S3cf6L/GsnJWRlZemVeKqx8ZuUMDY2hoKCAu7cuYPS0lLIycnxjbj9TycsLAxt2rQReKpIUFAQNm3aBKAuwOXo0aOFytfHxwfnzp3jcVnNzMzE/PnzkZ6eDgUFBbi4uPCknThxIrS1tZGfn48tW7bQnQQ1ELl37x4YDAbmzZsnyqt+FzQ0NOhoxb/99hvXKvTVq1dx7do1MBgMvm7Yu3btgp2dHVasWMFzz8XFBXJycoiMjMShQ4foTqCgoACrVq1CTU0NBg8ezBPzxMzMDLa2tqiursbq1avpQVhtbS28vb0RGRkJeXl5nu9w584dnD17lmfQVltbi3v37mHlypUA6gbE9QP3JSYmIjQ0lCtgZXl5Of7++28cOXIETCYTW7du5TF8mlJ2c+fOhZKSEt6+fQtPT096haC6uhqenp54+/YtZGVl6cHwv4H79++DwWAIfYxvfZYsWQImk8k3AjtFbGws7OzsYGdn16xBH2fNmgUVFRV6dY4fVLDCS5cu4fLly/Q+3crKSri7u+P9+/do164dzxYMqj5GR0fzPTrM2NgYY8eORVFREWbNmsWzqkGSJF69eoUtW7YI9LzhB/XcqKgoodMIA+Whd+TIEa42kZKSgoULFwpc4aMMpJSUlAZdW1ksFlgsFj3ZK4pM+/bt4xrgvnz5Em5ubnz3MkdERGDnzp08k3aVlZXw9vYGUOcV1tDeYGFgMBjYunUrxowZg5qaGqxcufK7H5fKiaOjI3R0dJCWloZFixbRni8UCQkJfAcEDTF06FBYWVkhPT0d8+bN41nNrK6uRmRkJFatWkUHBwa+z3eTk5Oj+7CVK1ciMDCQZ9CSkZEBb29vrgkjT09P+Pv78wykPn78SE+e19/yd/DgQbBYLB6vu8ZoTEeIi7q6OubMmYPq6mrMnTuX76RMYmIi9uzZI9AjUBTWrFkDKSkpbNu2DX5+flzfGqgLMOjr6ytwOyG1TeP69ev0t6i/dYNi/vz5UFVVxa1bt/D777/zxAspKSnB7du36SMYm8KYMWOgra2NwsJCrFmzhsuOfPjwIQ4dOkTL1FweDsLqS3FYvnw55OXlcezYMXh5efHERPj69SsuXbpEt6fGaE5dSh1lfOHCBS5boKSkBGvXruWKJ8LJ5MmToaenhxcvXsDNzY3n5CPq1JH169cL9U5N/eZMJhN//vkn12kkmZmZ9PNHjBjBZauKo0NLSkrg5uaGiIgIrq3A1NanpKQkMBgMoWMPzpkzB0wmE48fP4a3tzedZ01NDQ4dOoQnT56AyWRizpw5QuX3b+ZfG1MCqFthj4qKQmVlJeTk5GBmZsbzGyaTCTMzM9rA7N69e6N7hFobBwcHes89NSjLzs7mOq94zJgx9CRDfHw8cnNzMWLECIHvRg1427Rpg8uXLwucNV24cCEGDhxI/zs7OxunT5/G1q1boaOjAxUVFRQVFSEtLQ0kSUJRURGenp58I1vLycnBy8sLM2fOxLVr1xASEoIuXbogJyeHnoFcuXKlSPvovydr165FfHw83rx5g1GjRsHQ0BBFRUW0Mbp27Vq+de7r16/Iysriic8A1MXa2L59O3799Vf89ddf8PPzg4aGBlJSUlBZWQldXV1s27aNrzw7duyAs7MzPcA0MDBAXl4e8vPzISMjgx07dvBsa8jNzcWOHTuwdetWaGtrQ01NDTU1NcjMzKQ7C0tLS+zatYvneZmZmViyZAnk5eXpGCGpqakoLy+HoqIi9uzZIzDAobhlp6amBk9PT7i6uuLIkSO4ePEidHR0kJmZia9fv0JGRgZ//vnnd4/S3VJ8+fIFr169grGxsdhRznV0dDBhwgT4+/sL/E1lZSVd9s0ZSFFZWRlz5syBp6enwDgfAwcOxKJFi3Do0CFs2LAB+/fvh6amJtLS0lBcXAx5eXns3buXJ0jUsGHDsG/fPgQGBiI2NhYdO3aElJQUHBwcMGHCBADA1q1bUVxcjLCwMDg6OtLblyorK5GRkUGv1Ag6qosfo0aNQlhYGNzd3XHu3Dn6+NzffvtNJG+i+kyaNAkXLlxAeno67O3toa+vj9raWrx//x7q6upYtGgR/vrrL550qqqq6NOnDyIjIzF06FB07doVcnJy6NChg8h7/eszd+5cBAYG4s2bN7Czs4O+vv7/tXfeYVEd3/9/LwgIgiAoJXSFu1QVEIhGVIyiYokl9hIrxm40+dqVmKKxRkEsxAKIhmBXUKzYACmiiCC9iRQFaSJ17+8Pfvdml92FZUHRfOb1PD7qnZ07c6fPmXPO4P3798jKyoKpqSlGjx4tdLf6u3fvcPz4cRw/fhxqamrQ1dUFj8dDTk4OKioqICcn16Rn/5YgIyODP/74AzU1Nbh+/TqWL1+Ow4cPt8uc0alTJxw8eBDz58/Hw4cP8fXXX6N79+7o2LEjcnNzUVJSAgcHB5E+HsTB4XDg4eGBRYsWISoqCq6urtDT00PXrl1RWVnJevwHGm7bYPhY9TZx4kQUFBTA09MTq1atgru7OwwMDEDTNPLz81lht7u7OxsnNTUVhw8fxpYtW6Cnpwd1dXWUlZUhKysLPB4PpqamIg8xpEGSMUJaVqxYgaKiIgQGBmLevHlQV1eHnp4e6urqkJuby/rt4F+XSYuTkxO2bt2Kn3/+GVu3bsWuXbtgZGQEWVlZFBYWsrceiDvAGTJkCJSUlFizHXNzc7E3AWhqauLw4cNYvHgxTp06hYCAAHTv3h1KSkooLS1lb0wSdw1sS+jYsSP+/PNPzJ8/Hzdv3sSDBw9gYmKCkpIS1gRpwoQJYq8nlYYPOV6amZlh3759WLVqFTw8PHD48GEYGxtDQUEBRUVFePXqFWiahqurq0Tva8uxdNCgQZg1axZ8fX3x448/Yvfu3dDQ0EB6ejrq6+uxdOlSkd+vqKiII0eOwM3NDSEhIbh+/ToMDQ2hpqaG8vJyZGdno7a2ttmbRBhaW+cuLi7IysrC2LFj0aNHD3To0AEpKSmor6+HkZGR0E1j0oyhPB4PV69exdWrV9GxY0cYGhpCXl4e+fn5eP36NYCGvZCkJkVmZmbYvHkztmzZgn379sHX1xd6enrIzc1FcXExZGRk4O7u3q63D30q/OeFEgzW1tZiN+R9+vRhhRKfw1WgpaWlQqcMPB5P4Bm/hFYS9W/mtLs5D8+NT9RHjhzJnjjm5eXh1atXkJOTg6mpKfr374+ZM2c26fXfwsICV65cgZeXF+7du4fExER06tQJgwYNwuzZsz9ZgQTQ4MDm1KlTOHr0KK5cuYL09HR07NgRX331FebOndukQ8OmGDVqFAwMDHD48GE8fvwYKSkp0NbWhouLCxYtWiTW5qxbt244f/48Dh48iBs3biAlJQXKysoYMmQIFi5cKFIDaMiQIaiurkZkZCQyMjLYwV1dXR12dnYYOXIkRo4cKdIxEpfLxZQpUxATE4O8vDzU1dVBW1sbTk5OmDt3bpP13pqyGzhwIC5cuIBDhw4hPDwciYmJUFVVxYgRI7BgwQKhU7bPmbt374LH47X4hLAxixYtwvnz54VO2D4GM2fOxIkTJ5o8lVq5ciVsbW3h5+eHuLg4vHjxAhoaGhgyZAjc3NxEqnEaGBjg0KFDOHz4MBISEtgFH782mKKiIg4dOoSQkBCcP38ez549Q0JCAlRVVWFsbAxbW1sMGzasRc5fx44di7KyMpw5cwZZWVnslWOtdXCorKyMU6dOYc+ePQgNDUVGRga6deuGyZMnY9myZbh3757YuLt378bu3bvx8OFDPH/+HHV1dQJCT2YhBaBFN0vp6OggICAAe/bsQUREBNLT06Gjo4P58+dj0aJFIh2Y2tnZYdOmTXj48CFSUlKQkZGB2tpaaGpqwsXFBXPnzmXt5NuCDh06YPfu3Vi6dCnu3r2LxYsXw9vbu13mclNTU1y+fBknTpzAzZs3WQ0cTU1NDB48GBMmTGjxOzU0NODv748LFy4gKCgIiYmJKCgoQJcuXWBubg4HBwe4uLgIaD98zHpbunQpBgwYAH9/f0RFRSE5ORkdO3aEtrY2+vbtCxcXFwEHc4sWLYKJiQkiIyPx8uVLVrvN3Nwcw4YNw8yZM4VuwmDab0tvRZNkjJAWGRkZ/Prrr3B1dcXff/+N2NhYdv2io6MDFxcXDB06tM3WMBMnToSdnR18fHzYOpWVlYWWlhZcXFzw9ddfi50nlJSUMHjwYFy5cgVAwxqjKXr27IkrV67g5MmTuH37NjIzM9m24OjoiIEDB7JmHq2lZ8+euHTpEo4cOYK7d+8iKSkJioqKcHBwwNSpUyXewLeE5sbL1jBo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2fW1Ks52nos3bBhAywsLODn54fU1FS8f/8eX375JZYtWyZWUwJoMCG6cOECAgICcO3aNaSlpSE3NxfdunVDr1690K9fP9a0VhJaU+fy8vLw8/ODh4cHQkJCUFhYiG7dumHo0KFYtmyZ0M10QMvH0E6dOmHnzp0ICwtDXFwc8vPz8e7dO6ipqcHZ2RlTpkxpsebqpEmTwOVycfToUURHRyMxMRFqamoYNmwY5s+f/5/U0JcGDt2WOm2ET5Lx48cjMTERDx8+/KSu1SQQCE2zfPlyhISE4Ny5c/8pYQvh43Lt2jWsWLECAwcOxJEjR9o7OwRCixg1ahRSUlIQGBhIFu8EAoHwH+U/61OC0EBBQQESEhLQq1cvIpAgED4jampq8ODBA2hqarb4hJBA4IfRfmP8dxAInwtlZWVITU1F3759iUCCQCAQ/sP8p803CA3XKPI7hCEQCJ8H8vLyUl07SiA05vHjx7C1tf0szBMJBH5iY2NB0zQRqBEIBMJ/HGK+QSAQCAQCgUAgEAgEAqFdIOYbBAKBQCAQCAQCgUAgENoFIpQgEAgEAoFAIBAIBAKB0C4QoQSBQCAQCAQCgUAgEAiEdoEIJQgEAoFAIBAIBAKBQCC0C0Qo8T/K4MGDweVy8fLly4+e9suXL8HlcjF48OCPlubatWvB5XJx7ty5j5ZmezJr1izY2NiguLi4zd6ZkJCABQsWwN7eHlwuF1wuF4mJiW32fsL/Njt37gSXy0VERMRHTXfmzJngcrl49OjRR01XEtpznCb8d3n06BG4XC5mzpwpFMaM7YT/LmRcEc+n3P6lnavOnTsHLpeLtWvXtkk+2vp9Hh4e4HK58PDwaJP3tYb22J+0JZ/yekYSyJWg7cTNmzeRmJiIIUOGwNzcvL2zQ/gPcefOHTx69AgLFiyAurp6m7zzzZs3+O6771BWVgZtbW306NEDHA4HSkpKzcYdPHgwcnNzBZ4pKSlBRUUFhoaG6NmzJ0aOHAkLCwux7/Dw8ICnp6fAMw6HAxUVFfTo0QMuLi6YPn06FBQUhOKmp6fDz88PERERyMvLA4/Hg7q6OrS0tNC7d284OjqKnICqqqrw999/4/r160hNTcW7d+/QuXNnaGhogMvlwsHBAUOHDpW4jMvKyuDj4wMVFRXMnj1bojj/S8ybNw+nTp3Cjh07cPbsWXA4nPbOEoHwWcIs7pctW9bOOWmaEydOoLy8HN999x06d+7c4vjM3LJt2zaMHz9eKPz9+/dYtGgRwsPD0bVrV5w4cQKmpqZtkfVW8+jRI8yaNUui3/r5+cHBwUHi90ZGRsLBwQGOjo6tySKBQCB8VIhQop24efMmzp8/D11d3f85oYScnByMjY2hpaXV3ln5z0HTNHbt2gUFBQXMnTu3zd4bFBSEsrIyDB06FPv374eMTMuVrIyMjNgNfHV1NUpKShAZGYnIyEj89ddf6N+/P37//fcm24WysjIoigIA1NfXIycnB7GxsYiNjcWlS5fg6+srsLi9cuUK1q1bh5qaGnTo0AHa2tpQV1dHaWkpnj59iidPnsDPzw8JCQkC6RQUFGD27NlIT08HAFYQUVdXh+zsbKSkpODKlSvo2LEjvvnmG4m+v6ysDJ6entDV1SVCCRGoq6tjypQpOHbsGK5evQpXV9f2zlK7o6+vD3l5ecjJybV3VgifEYwAV5xQQlFREcbGxtDR0fmY2RLC19cXubm5GDdunFRCiaZ49+4dFi5ciKioKGhqasLHxwfdu3dv0zRag4qKCmxtbcWGFxYW4uXLl1BQUGjRGjEyMhKenp5YunQpEUpIgbGxcXtnQSw6OjowNjaGoqJie2eFQPggEKEE4aOjpaWFa9eutXc2/pOEh4cjNTUVw4YNazMtCQDIyMgAAPTr108qgQQALFy4UOg06+3bt7h8+TK8vLzw4MEDfPvttzhz5oxYwYSFhQX8/PwEnl28eBHr169HYmIi9uzZA3d3dwBAbm4u1q9fj5qaGnzzzTf48ccfoampycYrLy/H7du3cfbsWaF01q9fj/T0dOjp6WH79u2wt7dnw+rr61khCFkctC3jx4/HsWPH4OfnR4QSAHx8fNo7C4T/ID179vxPz8EVFRWYP38+YmNjoaOjAx8fHxgaGrZ3tgSwsLDA6dOnxYYvW7YML1++xNdffw0VFZWPmLP/bT7lfrFjx472zgKB8EEhPiUIhP8QAQEBAIAxY8a06Xurq6sBAB07dmzT93bp0gWzZs3C2bNn0a1bNxQWFmLNmjUtesc333yDqVOnAgCCg4PB4/EANGh3VFdXw8jICNu2bRMQSAANJ1XffPMNfH19BZ4XFhbiwYMHAIA//vhDQCABALKysujTpw+2bt0KFxeXFuWV0DSmpqbgcrl4/PgxUlNT2zs7BALhM6OsrAxz5sxBbGws9PT0cPLkyU9OINEcpaWlCA0NBQCMHTu2XfNCIBAIH4vPRlMiLy8Phw8fxsOHD5Gfnw9ZWVmoq6uje/fuGDRoEGbMmMH+lrHVc3BwwPHjx/HXX3/h4sWLyM3NhYqKCgYMGICVK1eKPY2tr6/HuXPncPHiRSQlJaGqqgra2toYPHgwFi5cKPYEurq6GgEBAbh69SrS0tLw/v17aGpqwtLSEmPGjMGQIUNYyTfDunXrsG7dOvb/S5cuZVUuGWc7SUlJuHHjBnx9fZGUlITS0lJcuHAB5ubmeP36NUJCQhAaGoqMjAwUFhZCQUEBJiYm+OabbzB58mSpT7b52b59O44fP47Vq1fDzc1NIGz27NkIDw+HtrY27t69KxB28+ZNLFmyBM7Ozjh06BAAsGWgq6uL27dvC/ye/5sfPHiAw4cPIyEhATweD1ZWVli+fLnQJpGhrKwMHh4euHHjBoqKiqCpqYnhw4dj6dKlTX4bTdMICgrCP//8g8TERFRVVUFLSwsDBw6Em5ubUDsZP348nj9/jn/++Qe9evVin9fU1MDe3h5VVVUYM2YMdu7cKRDvt99+g6+vL9asWSNgWnHp0iUEBgYiKSmJ9VvQtWtX2NvbY+rUqRLbwFZVVeHWrVuQk5ND//79m/ydr68vgoODkZWVBQAwNDSEq6srZs2aJSB4WLt2Lc6fP8/+n7+9jhs3Dtu3b5cob82hq6sLd3d3LFmyBOHh4YiLi0PPnj0ljm9vbw8/Pz+Ulpbi7du30NDQQE5ODoCGNiUrKyvxu/idfzXl56Il8Jdjbm6ukCOtpKQkAA11c/PmTdy5cwcJCQnIz88HTdPQ09PD119/jblz50JVVVXo/TNnzkRkZCR8fX2hrKwMT09PPH78GFVVVTAxMcHMmTObXNxmZmbi6NGjCAsLQ2FhITp27AhLS0vMnDlTYLxq/D3btm2Dg4MDDhw4gIcPH+LNmzeYPn06NmzYAAC4e/cuTp48ifj4eJSVlUFZWRkaGhqwsbHBhAkTRKovOzs7IykpCUFBQVixYoXEZVxWVobr16/jzp07SElJQUFBAWRkZGBsbIzhw4fju+++E+lzRBx1dXX4+++/cfnyZaSmpqK6uhqqqqrQ0tKCo6MjZs6ciS+++EIgTkv6liQwNvO3bt2Cnp4e+5y/vrW0tLB//36Eh4ejoqICRkZGmDFjBiZPniz2vYmJifDx8UFkZCRev34NJSUl6OrqYtCgQZgyZQorwGs8l/r4+ODixYvIzs5Ghw4dEB0dzb6zpW1I2voqKSmBt7c37ty5w/ZVdXV16Ovro3///pgzZw7k5eUF4lRVVeHUqVMIDg5GRkYGamtroa+vjxEjRmDOnDno1KmTUDqxsbE4fvw4Hj9+jLdv30JJSQnq6uqwsrLCmDFjMHDgwGZqrwHGHw7/3M4Pfxnza4HxP/f19cWpU6cQEBCAzMxMKCkpoV+/fli9ejV0dXWF0mJoPM4w7UhcmtLS0nXIuXPnBNY9jduHr6+vVKYHJSUlmDt3Lp4/fw5DQ0P4+Pi0u4mKNAQFBaGmpgZdu3Ztci5vDH99e3p6CrQFcfN1XFwcvLy88PjxY1RXV8PU1BQLFy7E0KFDxaYTHh6OkydP4smTJygtLYWamhocHBywcOHCFjuJ5B/L1NXV4eHhgcjISFRXV8Pc3BwrVqxg20JqaioOHDiAyMhIlJeXg8vlYvny5XBychJ6b05ODq5du4b79+8jOzsbb968gZKSEszNzTF58mSxmnj8a1B++Mfi4uLiFpeZKFo6x/CXVeP+UV9fj5MnTyIwMBDZ2dlQUVFB3759JZpDCwsLcfToUdy9exd5eXmQlZUFRVGYNGkSxo0b12L/TmlpafD29kZERATevHkDZWVl9OrVC7NmzcJXX33VZNyioiLs27cPoaGhePv2LXR0dDB69Gi4ubmJnb/Lyspw4sQJ3Lx5Ezk5OaBpGt27d8eYMWMwffr0NjV/bMn+8P79+5g/fz4MDAxw48YNse8cN24cEhISsHfvXqF22ZZ97XPgsxBK5Obm4ttvv0VxcTHk5ORgYGCAjh07oqCgAA8ePEBMTIyAUIKBpmksW7YMt2/fhoGBAUxMTJCcnIxz587h/v378Pf3F5KgV1RUYPHixXj06BE4HA60tbWho6ODrKwsnDhxAiEhIfDz84O+vr5AvIKCAsyfPx/JyckAGmyB9fT0kJeXh5CQEMTHx2PIkCFQUFCAra0tsrKyUFRUJGBnD0DkBOrt7Y1du3ZBXV0dBgYGyM/PZ8MCAwOxb98+KCgoQFNTE1wuF2/fvsWTJ08QGxuLsLAw7N+/v9VO45hFaWRkpIBQora2Fk+ePAEA5OfnIzs7GwYGBmw44wFWnCBBHAEBAdiyZQvU1dVhaGiIrKwsREZGYs6cOThx4gT69Okj8Pvi4mJMmzYNGRkZkJGRgampKerq6vDXX3/h0aNHAnnih6ZprF27FhcuXADQsDnW19dHWloaTp48iaCgIBw9ehSWlpYCZfH8+XM8evRIQCgRFxeHqqoqAA12nY1hnvGXxY4dO3D06FEAQLdu3aCvr4+KigpkZ2cjOTkZurq6Egslnjx5gtraWlhaWord/Lx9+xZz5sxBYmIiOBwOTExMwOFwkJSUhMTERFy7dg3Hjx9nN75GRkZi26uRkZFE+ZKUwYMHQ1NTE4WFhQgNDW2RUIKmafbfTFtXVlYG0LABq6mpEdqoiIOJBwBPnz5F3759Jc6HOIyMjGBlZYX4+HjIy8vDyspK5O/i4+OxevVqyMrKomvXrjA2NkZlZSWysrJw6NAhXL16FX///bdYwejjx49x8OBByMrKonv37njz5g3i4+OxZs0aJCUlidRCCQkJwY8//oiamhooKSnB2NgYJSUlCA8PR3h4OL7//nv88MMPItPLyMjAtm3b8P79e5iamkJFRYXdfPj7+2Pr1q0AADU1NXC5XFRVVSEvLw9paWnsWNgYpt75N7yScOfOHWzYsAFycnLQ1NSEqakpysrKkJSUhOfPn+PWrVvw8/OTuB2sXr2aVeX94osvoKGhgZKSEiQnJ+P58+fo1auXwIKxpX2rLUhISMCiRYtA0zSMjY1RWFiI5ORkbN68GaWlpUICZKDBJGT79u3g8XhQUlKCqakp3r17h5SUFDx//hx6enpCZlY0TWPJkiUIDQ2Fnp4eevTogaKiIjZcmjYkTX1VVFRg0qRJyMrKgoyMDAwNDdGpUycUFhYiOjoakZGRmDhxokD/KCwsxLx585CcnAxZWVno6OhASUkJGRkZ8PDwQEhICHx9fdGlSxc2zu3bt7F06VLU19dDWVkZJiYm4PF4yM/Px5UrV1BRUSGxUKIt+Omnn3D58mUYGBjAyMgI6enpCAoKQnR0NC5evMjmXUdHB7a2tnj8+DEACPWvlgjlWkJL1yEaGhqwtbVFfHw8ampqYGVlJVDP0pgrFBcXY86cOXjx4gW6d+8OHx8fIe24z4VLly4BAEaNGtUigbqtrS3y8vKQl5cHHR0dgfWkqPn67t272LZtGxQVFaGvr4/c3Fw8e/YMS5cuxZ49ezBy5EihOH/88QeOHTsGoEHT0dTUFLm5uQgKCsKNGzewf/9+ODs7t/CLgWfPnsHT0xOysrIwNDREbm4uYmJiMG/ePBw7dgyysrJYsGABOBwODA0NUVdXh7i4OHz//fc4evQovvzyS4H3HTp0CGfOnIGSkhLbJouKihAREYGIiAg8efIE69evb3E+pSkzcbR0jhEHTdP44YcfEBISAqBh/9G5c2dcu3YN9+7dw7Rp08TGjY6OxuLFi1FaWgoFBQUYGBjg/fv3An13586dEu8hQkNDsXz5clRXV0NZWRlcLpdd04WGhmLZsmViDwpLSkowceJE5Ofnw8TEBMrKykhLS4OnpyfCw8Nx7NgxobVtWloa5s2bh7y8PMjJyUFXVxccDgcvXrzA8+fPcefOHXh7e0s87zdFS/eH/fr1Q9euXZGdnY2nT58K7BcY0tPTkZCQgE6dOgk5XP9Qfe2Thv4M+OWXX2iKoui5c+fSb9++FQh79eoVffz4cYFnERERNEVRtKWlJW1jY0M/fPiQDXv9+jU9bdo0mqIoetKkSUJprV69mqYoip46dSqdmprKPq+srKQ3bdokMl59fT09ceJEmqIoesyYMXRiYqJAeEZGBu3t7S3wbM2aNTRFUfTZs2fFfjdFUex3nDx5kq6vr2fTq66upmmapqOiouiwsDC6trZWIG5mZiY9depUmqIo+uLFi0LvdnZ2pimKonNycsSmz09paSltZmZG9+7dWyCt6OhomqIo2snJiaYoiv7nn38E4n3zzTc0RVH006dP2Wc5OTk0RVG0s7Oz2G/u2bMnHRAQQPN4PJqmabq6upr+4YcfaIqi6MmTJwvFW7FiBU1RFO3q6kpnZWWxz589e0Z/9dVXtKWlpcjyPnnyJE1RFN2rVy/69u3bAt+7cOFCmqIo+uuvv6arqqrYsJs3b9IURdHz5s0TeJeXl5dAWfDno6SkhDYzM6NtbW3puro6mqZpuqioiDY3N6ctLCzoGzduCLyrrq6ODg0NpSMiIoS+VRyenp40RVH0pk2bxP5m+fLlNEVRtIuLi0D7Tk1NpV1cXGiKouhVq1YJxZOkvYqDaWuSxF22bBnb1/nZv38/TVEUPWPGDJHxtm7dSlMURdvb27P9JCwsjG1PM2bMoG/dukWXl5c3m4f6+no2z3379qVPnDhBZ2dnS/ClTdNUu2d4+fIlHRQUJJTPt2/f0lu2bKEpiqI3bNggFG/GjBnsWLFixQqB+BcuXKAtLCxoiqLou3fvCsRLSkqira2taUtLS9rPz0+gb0dGRtJfffUVTVEUfe/ePYF4THswNzen3dzc6KKiIjbs/fv3dG1tLW1vb09TFEX7+/uzbZ6maZrH49GPHj0SavMMBQUFNEVRtLW1NV1TUyO2rBqTmJhI3759W6Cv0jRN5+fn00uXLqUpiqK9vLyE4jFlx9/X4uPjaYqiaDs7Ozo6Olrg91VVVXRQUBCdkJAg8FzavtUU4sZp/vrevHkzXVlZyYadOHGCHUPLysoE4t25c4emKIo2MzOjDx06xM4jNN0wxl6+fJmOiopinzFzqbm5Oe3o6CgQ9v79e5qmpW9D0tTXsWPH2Hk2Ly9PIKyoqIj28fGhKyoq2Gc8Ho+d7xcvXiwQp7i4mF60aBFNURT9ww8/CLxr1KhRNEVR9J49ewTKiKYb5pQLFy7QksKMXfv37xcZzpRx47GNfx3z1Vdf0TExMWxYfn4+m8fdu3cLvZMZ98QhLk1J4oriY61DxMU/fPgwPXLkSJqiKHrUqFH0mzdvpHofw9atW+kpU6a0+E9oaGir0qXphjJj6qDxGCMJzbU3mv633CwtLWlPT092nK2vr6e3b99OUxRFDxgwgJ1LGf755x82rPFccvr0adrc3Jy2s7NrUfnzj2W//PILOx7U1dXRGzdupCmKoseNG0c7OzsLha9fv56mKIqeOHGi0HtDQ0Pp2NhYdg3JkJCQQA8fPpymKEpobKdp8e1f2jIThzRzjKi5iqZp2t/fn6Yoiu7duzd9//599jmz32HWv2vWrBGIV1hYSDs6OtIURdF//vmnwDzy4sULtpxOnz4tEO/s2bMi31dQUEDb2dmx61BmjuDxePQ///xDm5mZiZwLmDZraWlJjxo1SmC9FR8fz84hO3fuFIhXWVnJzq2bNm0S2B++fPmSnjx5Mk1RFL1r1y5aUppap0mzP2T2r7/88ovI9P7880+RZSltXxPXRj4XPgufEoyTvWnTpkFNTU0gTEdHR6wn+9raWixfvhz9+vVjn3Xt2hV79uyBnJwcnjx5InCXa3JyMi5fvgwtLS0cPHgQPXr0YMMUFRXh7u4OKysrPHnyhD2JABpMFJ4+fQo1NTUcPXoUZmZmAvkwMjLC/Pnzpf18TJo0CdOnT2dPIGVkZFipX58+fdC3b1906CCo9GJoaMiq6l28eFHqtBk6d+4MMzMzVFZW4vnz5+xz5vR/wYIFAv8HwJ56derUSUDTQBLGjx+PSZMmsdJZeXl59lQtNjYWpaWl7G8ZNT0A2LZtm4BWhJWVFTZu3Ija2lqhNGiaZrUUFi9eLCBx7Ny5M3bv3g01NTXk5OQgKCiIDbO3t4eMjAxiYmJQV1cnUBaysrKsaQZ/24qKigKPx4OdnR178pGdnY36+npQFIUhQ4YI5E1WVhYDBw5skQrrq1evAEDs6VBWVhYrSd+xY4dA++7RowfbXoKCgljTh4+NtrY2gIZTL0m5ePEi/v77bwDAiBEj2H7St29f1tdEZGQkFi1aBHt7e4wYMQJr167F5cuX8f79e6H3ycjI4LfffoOSkhKKiorw+++/Y8iQIejbty8WLFiAI0eOfLDy0dXVhaurq4C2BtCgaeDu7g5tbW0EBQUJtDt+OnfujD/++EMgPqM+DTRoXfHj6emJ6upqrFy5EjNmzBAYR+zt7fHzzz8DAI4fPy4yvS5dumDPnj0CJ9MdO3bE27dvUVpaClVVVUybNk3gtI/D4cDBwUGozTN07doVMjIyqK6ublE7MDMzg7Ozs9BpsJaWFnbu3Ak5OTmJx8LMzEwAwJdffgk7OzuBMAUFBbi6ugp4xG+vvmVsbIwtW7YIOFz97rvvYGFhgaqqKqG7ynfv3g0AcHNzw8KFCwVOj+Tl5TFq1CghLTSgQWXV3d1dIIw5sZK2DUlTX8xaYMKECexYwaCuro5Zs2YJmGKEhoYiOjoa5ubm2Lt3r0CcLl26YNeuXdDW1sbVq1eRl5fHhjH1v2DBAqETNisrK4lv3GkLamtrsWHDBgGtBy0tLVYtu7HJZHvwsdYh4ti3bx9SUlJgZmYGX19faGhotOp9ycnJePz4cYv/8GsPSQujtcnlcj/4zWz9+vXDkiVLWPV2GRkZ/PDDD+jatSvy8/MFTBhqa2uxb98+cDgc7N+/HwMGDBB415QpUzBz5kyUl5cjMDCwxXnp0aMH1q9fz44HsrKy+Omnn6CgoIDnz59DRUVFKPz//u//oKCggKdPnwqsCQFg4MCB6N27t9AJv7m5OTZv3gxAujbZkjJripbOMeKgaRp//fUXgAbzb35zH2a/I45jx47h7du3mDZtGlasWCEwj3C5XOzZswccDkfs/N+Y06dPo7y8HCYmJvj555/ZOYLD4WDixImYOHEiAODIkSMi49fW1mL79u0CmuiWlpbYuHEjgAbty3fv3rFhZ8+eRWZmJgYOHIitW7cK7A91dXWxb98+KCkpwd/fn/WLJi3S7g8Z/25Xr15FfX290HuZvcXo0aMFyuFD9rVPmc/CfINRQbt58yYGDhwoNPGJQ05ODt9++63Qcy0tLQwdOhTBwcF48OABu/G7fv06AGD48OEiVWxlZGTg7OyM+Ph4PHr0iF0kMLZC48ePR9euXVv+gc0wbty4JsMrKytx9epVREdHo7CwEO/fvxdQZ3/x4kWb5MPe3h4JCQkCZgtRUVGQlZXFuHHjcPToUQGhhKiNuKSIsofW0NCAnp4eMjIykJOTw9bR/fv3QdM0evfuLVLl38XFhTUL4CctLQ25ubmQk5MTqd7WqVMnTJgwAUePHsX9+/dZlebOnTuDy+UiMTGRVbFjzFgsLCwwePBgbNu2jVUlZsqCKUMGpl1nZmbixYsXQsKslsJs4MSphz948AA0TaNXr14i1chsbGxgbW2NZ8+e4cGDB+yG/mPCTIr8Ew8/CQkJbL6YK0GZ76YoCqtWrRL4vbu7OwYMGABfX19ERUWhrq4O6enpSE9Px/nz59GtWzf8/PPPQjbNffv2xaVLl/DXX3/h2rVrKCkpQXFxMe7du4d79+7hzz//xNSpU7FmzZo2UQvkh6Zp3Lt3j7WFfffuHeu8s6KigjXn4J8UGb799luRKtrTp0+Hv78/YmJiUFlZCSUlJdTU1CA0NBQyMjJsO23MwIEDIScnh+joaNTV1QmNvcOGDRNpj6+urg4FBQWUlZXh4cOHzdqR8iMjIwMVFRWUlpaiuLi4RVcH19bW4saNG4iIiEBubq7AWMjhcJCZmYmqqqpmfTswm9enT5/i1atXzarQtlff+vbbb0X6DLK2tkZCQgKys7PZZ4xJWIcOHTBv3rwWpaOsrCzSXrq1bail9cWMmXfv3sXEiRObvf2GmdPHjRsnsp8yvhnOnTuHqKgodgHJqORevXpV7Hd9LFRVVTFixAih50w746/j9uRjrUOaorS0FJWVlQKmONLQFn42pIGmadZ042M4uJw0aZLQM3l5eZiZmeHBgwfIzs5mN8ZPnjzB69evYW5uLnKMA4AhQ4bgxIkTePToEb7//vsW5WXChAlCY1nnzp2hp6eHtLQ0keGqqqrQ1dVFenq6wJqQoaSkBEFBQXjy5AnevHmD6upq0DSNmpoaANK1yZaUWVO0dI4RR3p6OruOFbVu5t/vNIYZH8X5HzI3N4euri4yMzNRUFDQ7Fx8//59AMCMGTNEmnvMmjULAQEBAusQfmxsbEQeYPKv4R8/fsz6EGHyL6pOgIZvt7a2xqNHjxAfHy8k/GkJ0u4Pe/bsyZqgR0RECKyF4uLikJWVha5duwqYH33ovvYp81kIJWbMmIELFy7g3LlzuHfvHpycnGBnZwdHR0exvgKAhk7f+MSRgVnQMycvAFh/EHfu3MGzZ89ExmMk4fx+HdLS0gAAvXv3lvyjWoCozQdDUlISFi5cKHDK05iSkpI2yYeDgwPrHM3NzQ21tbWIjY2FhYUFlJWVYW9vj0uXLrF+JUT5UJAUcfWqoaGBjIwMVFZWss+YOhRXTozztMZCCUZSraWlJbadMP4cmN8y2NvbIzExkRXQPHv2DJWVlXBwcICBgQF0dHQEBDTMvx0cHNhnWlpacHV1RXBwMMaNGwdbW1s4OjrCzs4OdnZ2LXaKx0y04uyGmW9oqj2Zmpri2bNnQt/7sWDqVVx9VFRUsFJoDofDOlBycXHBjBkzRJbZ4MGDMXjwYLx79w7x8fF4+vQp7t+/zzr5W7ZsGXx9fYVOiPX19fHzzz/D3d0dKSkpiI+PR1hYGEJDQ1FeXo6TJ0+itraW9ZvQFlRUVGDRokUifZLwI65Pd+/eXeRzY2NjdOjQAXV1dcjOzoaZmRmysrJQXV0NOTm5Zie16upqlJSUCAldxbUlWVlZzJo1C97e3pg7dy4sLS3Rr18/2NrawsHBQWz9MjBtmPHRIgmN/fqIo7S0tNm+ZWNjAxsbG8TGxsLFxQWOjo6wt7dHnz590Lt3byHhTHv1LXG3CjAnxfzjJHObSffu3dG5c+cWpWNkZCRSsNyaNiRNfU2YMAHHjx/HgwcP4OTkBCcnJ/Tp0wf29vagKEooLvPuwMBAsVf9MRpm/HP6nDlz4O7ujo0bN+LYsWPo378/Oz635VXLktDYfxWDqDpuLz7mOkQUy5Ytw9mzZ5GdnY3Zs2fj5MmTLRJmfirExMTg5cuXkJWVFTg5/VC0ZPxg+lJ+fr5YoSpzGs3flyRF3JpPXV0daWlpTa4J09PThfpBeHg4Vq5c2WS7k6ZNtqTMmqKlc4w4mPWvJPsdfiorK1lHwe7u7mJ9Rrx9+xZAQ50216eYuc3ExERkuKh1CD/i1i/8a/iMjAxWKMG0SS8vL1brWVyeCgoKmsx7c0i7PwQafMMcOHAAly9fFhBKMAJIV1dXgfn1Q/e1T5nPQihhZmaGU6dOwdPTE2FhYTh//jzryb5nz55Yu3atSAlYUyp8zMKI/0S2vLwcQMPJQ3OnD/yqQBUVFQDQ4oWepDSWJjLU19djxYoVyMvLQ//+/bFgwQJQFIXOnTujQ4cO4PF4MDc3F6vq3VL69OkDDoeDx48fo66uDvHx8exGHGjYcF+6dIl1LMloB0jjRVvcNzOScv4TGGYSkKS++WHqvintFuadjU/uHR0d4evrywpoGn8rv4CmS5cuePHiBZSUlISkwH/88QdMTExw5swZREdHs879OnXqhClTpmDFihUSOydjVNcaqzEyMOUkzfd+LJhFrbiFf2u8xXfq1AmOjo5wdHSEm5sbW3fv37+Hl5cX61CoMRwOBxRFgaIojB8/HsXFxVixYgUiIyMRGBiIxYsXC6mSS8v27dsRGRkJIyMj/PDDD+jduzfU1dXZU97p06ezJ86iENcHZGRk0KVLF7x+/Zqt27KyMgANp9X86obiECUgaOqketWqVdDW1oa/vz+eP3/Omn0pKChg9OjRWLNmjdgxk2nDLTnxXLt2LZKTk2FtbY1ly5bBwsICampqrJrtoEGDkJeXJ9KUqzEyMjLw9vaGl5cXLl68iAcPHrDXxHbp0gVz587F/Pnz2fGovfqWuPIXNU4y85Q0TgTFjcetaUPS1JempiYCAgKwb98+3LlzB8HBwewJYI8ePbB69WoBrSdmTk9JSWk2b/xz+tSpU6GiooJjx47h+fPnSE9Ph6+vLzp06ICvv/4a69evb7M+3xzNzYXtzcdeh4hCU1MTJ06cwIwZMwQEE6014/jYMKYb/fr1Q7du3T54ei0ZP5i+/vbtW3ajKg5pVOXF5YXZLDcX3nisYwQSo0ePxvTp09G9e3coKytDVlYWOTk5GDJkiFRtsiVl1hQtnWPEwcwnLV3/MmMj0HDTUHNIckDQ3FpcVlYWampqePPmjch5UNo9G79JuThacsAhCmn3h0CDacaBAwdw48YN/Pzzz1BQUEB9fT0rKG8sgPzQfe1T5rMQSgANwocjR46wXmEjIyMRHByMuLg4zJ8/HxcvXhSSpDZlj/zmzRsAEFA9ZiZ/d3f3FqnXMtJJpiF9LJ49e4aMjAx88cUX8PLyEtq8tvXJhJqaGiiKYr2jM6e5zEac+TsyMhLDhw9HYmKiyI14W8PUW1P2nEx988PUvagwBuadjVXUGwtoGH8SjHCMX0CjoaEBHo8HW1tbIem3vLw8lixZgiVLliAzMxMxMTG4f/8+bt68iaNHj6KiokLik3hmIy9OKMGUkzTf+zHg8XjsTS7iVNbaEgcHB0ydOhXHjh3D06dPJY6nrq6OzZs3Y9SoUeDxeHj27FmbbFDq6upY+0IvLy+Rpxvi6pZB3JjH4/HYyY2pW+bvrl274uHDh1LnWxwyMjKYMWMGZsyYgby8PERHRyMsLAzXrl3DmTNnUFBQwNrC8lNdXc1OtJKeShcWFiIsLAwdO3aEt7e3SGFGc2XXGBUVFaxZswb/93//h5SUFERHR+Pu3bu4e/eugG8G4NPvW8C/8xT/YrS1SNuGWlNfxsbG+PPPP1FTU4O4uDhER0cjJCQECQkJWLp0Kfz9/VnVWaZevL29hexym2PUqFEYNWoUiouLERUVhUePHiEoKAghISHIzMzEmTNnJDLdErVp4keUX5vPiY+9DhGHrq4uTpw4genTpyM9PR1z5syBn5+fVLfd/PLLL0hISGhxvO+//17qW1mqq6vZTcrHMN1oKUxfcnV1xd69e9s5N01z9+5dlJSUoHfv3iJvjvhYbbI5WjLHiIMZg1u6/uUXdj59+rTFmrmiUFJSQnl5OYqKikRqPdTX17NlL2oelGbPVlZWhuDg4Ca1FNsCafeHQMOcxdy+dufOHQwfPhwRERF4/fo1jIyMhMzOP6e+1tZ8GqL2FqCoqMjevRsUFAQbGxtUVlbi8uXLQr/Ny8sTeyqVnp4OQPCaJEblSJJTFX6YeMyGShJae0UnAFb1ysrKSuRpelxcXKvTaAyjFfHo0SOhjbiBgQG0tbURFRWF6OhosRvxtsbY2BjAv2Y0jeHxeAJmOgxM3RcUFLCniI1h2kLj67QYAc27d+/w9OlTPH78GObm5uzCnymnyMhIiTVGjIyMMGHCBPz55584cOAAgIb73CWV5ltYWAD4V01b1PubCgfEf+/H4ObNm3j9+jUAfLTr9hhBpiSn56LitSRuc32+uLgYlZWVUFNTEznBlpWViWzH/DDjWmMyMzNRV1cHWVlZNu+GhoaQk5NDUVFRmzhoawrmrvFt27bhn3/+AYfDwf3790WqezNtUE9PT2Lts9zcXAANp+WiNrgpKSlSq7kzmjLTpk3D4cOHsWnTJgDAP//8w/7mU+9bwL+maOnp6W0mQJe2DbVFfcnLy6NPnz74/vvvcf78eYwYMQI8Hg9nzpxhfyPtnM6Puro6hg0bhs2bN+Py5ctQUVFBUlKSxPMrc7IqrnyysrKkztunQHusQ8RhaGgIHx8fqKurIykpCfPmzRM7tzdFezi6vHXrFsrLy6GsrCzWCbAktMXaUhTM+NGavvSxYNqkjY2NyPL4mG1SEiSZY8TBrH/z8/PFtnVR6wIVFRXWHKOt6pSZ28S9LyMjQ2gdwo8ka/i22LNJQ2vTYrQhrly5IvD3qFGjhH77OfW1tuazE0rw06FDB1bC1NhfANCwWeBfoDAUFhayTksY2ySgwWkbAFy+fLlFk4uLiwuAhg2kpN7ipbGZbgwj2WQ2co05ceKE1O8WB7PZDg8PF9qIAw1mC3l5eWy58/tQ+FA4OTmBw+HgyZMniI+PFwq/ceOGyPbRo0cP6Orqora2FqdOnRIKr6ysxNmzZ9k0GsN827FjxwTMWICGxREjoGE84LfEtwZz0ldbWyuxVJ/xiSCqDJhv4HA4iIuLE6kZ8OTJEzx79gwcDkfAg/PHIDc3l9UI+eqrr0Q6LG0pkvRhRm2Rf6KrrKxs9vSSX1Vd0k0m01/F9XkmvKKiQmT6J0+ebFZAdebMGda3CD/+/v4AADs7O1YKr6ioCCcnJ9A0DR8fH4m+oS0wNTVlTQhE9UtmwSjqFghxMGX35s0bkSfSbTkWMkJY/rx/yn2LQV9fH2ZmZqirq2uz8pC2DX2I+rKxsQEgWC/MnB4QENAmGgmamprQ09MTSqcpmMW3KDvk+vp6kWuU1tLcWPMh0pJmHcLEbUsV5B49euD48eNQVVXFs2fP4Obm1mKBpJ+fH5KSklr8h3GGLQ3MTRDDhg1r1al1W6wtRWFnZwcNDQ2kpKSwZgafKkwZiGqTtbW17Hz4qSJqjhFH9+7d2XWsqJsY+Pc7jWH2Lm01HzDrZH9/f5Hjuq+vLwDBdQg/sbGxSExMFHrOrOGVlJQETPWZ8d3X15d1Bv6hkHZ/yODq6goZGRncvXsXr1+/ZutElFDic+prbc1nIZTYvHkzrly5IqT18OLFC1y9ehVAg5S+MXJycvDw8EB4eDj7rKioCKtXr0ZtbS169uwpsJG0sLDA6NGjUVZWhtmzZwtJU2maxtOnT7FlyxaBa90GDx6M3r17o6SkBPPmzRNy3JWZmSmkpsw4r4qOjpbYBq0xjDOc2NhYgYXN+/fv4e7uLpGNb0thzBbCw8OFNuLAv9oAt27dAiCdk8uWoq+vzw6u69atE6ibhIQE/Prrr6ydMj8cDoe9qvXgwYMIDQ1lw8rLy/HTTz+hpKQE+vr6GDlypFB85tuYb22sCcEIaBISEqCkpCTURsPDw7F9+3ahK6Sqq6vh5eUFoOGEWVK7WH19fRgZGeH169ciT98MDAwwfPhwAMCaNWsEpOcZGRlYu3YtAGDkyJFinau1NW/fvoWfnx8mTJiA169fQ1NTE9u2bWuTdx86dAhTp07FpUuXhFTWS0tLsW/fPtbR0IQJE9iwrKwsDBkyBJ6enkKaCTRN4/bt22xZWVhYsBoqzaGuro5OnTqhqKhI5IlA586dQVEU6urq8Ntvv7HCBZqmERgYiAMHDjTrX6S0tBTr1q0TGCsvX77MXpna+GriFStWsCr0np6eQmPs27dvERgYyLZHSUlNTcXGjRvx5MkTgfGtvr4eJ06cQFlZGTp27ChSIyQmJgYAWrR5NzExgZqaGgoKCnDgwAF2gVJbWwsvLy+cO3dO5BggjkuXLsHT01PIdrSiooK9VpXfLO1T7FuiYG6nOXjwILy9vQUEWDU1NQgODmb92kiKNG1I2vras2cPAgIChAS1L1++ZBfk/PUyZMgQ2NnZISsrCwsWLBDqd3V1dYiIiMDq1avZsmDs0cPDwwWucKNpGsHBwUhOTgaHw5G43zs6OrLXGvJvht6/f4+tW7c2q/0kDUwba85hblvQmnXIh8qnmZkZ/vrrL3Tq1AkxMTFYvHjxJ217XVRUxG4+Wmu6wZRpbGxsm/rxUFBQwA8//ACgYRwJCgoS2ghmZ2fDy8tL7Cb4Y8EItENCQtgbIYAGs40ffviB1aRoT1o6x4iDw+Gwtyl5eHggLCyMDWP2O+Jwc3ODuro6rly5gp9//lnIf0FFRQWCg4MlXpMxvnhSU1Ph7u4u0OfOnj3Ljg/iTFLk5OSwZs0agTV8YmIifv31V/b9/OYbkydPhpGREWJiYrBy5UohzUvmdqh169ZJlP+mkHZ/yKCpqYkvv/wSNTU1WL9+PSoqKmBtbc1quvDzOfW1tuaz8Cnx9OlTBAQEsCo/nTt3xtu3b9nO7ODgIHIg7927N1RUVDB79mwYGhpCWVkZKSkpqKmpgYaGBnbs2CGk2vXLL7+gvLwcoaGhmDhxIrS0tKCtrY3q6mpkZ2ezEvdZs2axcWRkZLB//37Mnz8fCQkJGD16NJvPvLw8FBUVQVdXV2BDMHToUOzdu5e9rkhHRwcyMjIYN26cxNL2rl27Ys6cOfD29saGDRvg4eGBrl27Ij09He/fv8evv/6KDRs2tLS4m0RdXR2mpqas4KXxRpwRUtA0DUVFRVhbW7dp+uLYsmULkpKSkJycjGHDhsHU1BR1dXVITU2FtbU17O3tWXt9fqZOnYqnT5/iwoULWLhwIfT09KCmpoa0tDS8f/8eampq2Ldvn8jNoL29PTgcDmiahqysrNDJrqOjIy5fvgyapmFjYyO0yH737h2OHz+O48ePQ01NDbq6uuDxeMjJyUFFRQXk5OSa9IosigkTJmD37t24cuUKlixZIrKcMjMzkZiYiJEjR7IqaampqeDxeLC0tGTv8G5rDh8+zG4campq8PbtW1aNG2jQkNi2bVubeU1nfH48fvwYHA4H+vr6UFNTQ2lpKV69esWaXYwdOxYzZswQiPfmzRt4eHjAw8MDXbp0wRdffIG6ujrk5eWxqu+6urotsvfjcDgYPnw4zp49i3HjxsHU1JQ9LWCcd65evRqLFi1CYGAgrl+/Dn19feTn5+PNmzcYN24ccnNzm1zAL1myBF5eXrh9+za6d++OoqIidqKeNWuWkFmMmZkZ9u3bh1WrVsHDwwOHDx+GsbExFBQUUFRUhFevXoGmabi6ukr8nQDYU5vAwEAoKyvDwMAAHA4Hubm5KCkpAYfDwfr164W8hVdVVeH27dtQVVVlBY2SICcnh5UrV8Ld3R0eHh44deoUdHR0kJOTg9LSUixduhTnz58XaG9NUVxczNZ/t27dBOaAqqoqqKioCI2t7dm3JGXgwIFYt24d/vjjD+zatQteXl4wNjZGZWUlcnNzUVNTg23btrVIS0WaNiRtfaWmpuLw4cPYsmUL9PT0oK6ujrKyMmRlZYHH48HU1FTgulMOhwMPDw8sWrQIUVFRcHV1hZ6eHrp27cpercssnH///XcADarCV69exdWrV9GxY0cYGhpCXl4e+fn57Mnr999/L7GGVOfOnbF06VLs3r0bW7duxcGDB6GlpYX09HRwOBz8+OOPbSaIZRgxYgRSUlLw/fffg8vlsv1sz549be5AsTXrkBEjRiA0NBTu7u44deoU66x5/fr1El2r2BSMH7L58+cjPDwcy5Ytw4EDB1oknPxYXL58GXV1ddDV1W31QU7//v2hqqqKmJgYDBo0CPr6+ujQoQOcnJya9U/QHBMnTkRBQQE8PT2xatUquLu7w8DAADRNIz8/nz1Bdnd3b1U6rcXKyoq92Wz+/PnQ19dH586dkZKSApqmsXHjRmzZsqVd8yjNHCOOqVOnIjw8HDdu3MCcOXPY/U5ycjKUlJQwb948HDp0SCiepqYmDh8+jMWLF+PUqVMICAhA9+7doaSkhNLSUmRnZ4PH40ns40tTUxO7du3C8uXL8ffff+PKlSvsrRnM7RfLli0TqXkMNAgZ7ty5I7SGBxo04ZYtWybwe0VFRRw5cgRubm4ICQnB9evXYWhoCDU1NZSXlyM7Oxu1tbVNOqBuCdLsD/kZPXo0wsLCcO/ePfb/4vhc+lpb81kIJdatW4c7d+4gKioK+fn5yMnJgaKiImxtbTFq1ChMmjRJ7Em4h4cHvL29cfHiRaSkpEBFRQUDBgzAypUrRTqnU1RUxKFDhxASEoLz58/j2bNnSEhIgKqqKoyNjWFra4thw4YJSbe0tLQQGBiIU6dO4erVq0hLS0NBQQE0NTVhb28vJDQxMDDAoUOHcPjwYSQkJLALt5aaO/z444/Q0dHBqVOnkJWVhaqqKtjY2GDevHn46quv2lwoATRsxpOTk0VuxBmzhfz8fJEb8Q+FhoYGAgIC4OnpiRs3biAtLQ1aWlqYP38+lixZItZZJIfDwfbt2+Hk5ISAgAAkJiay9zEPGjQIbm5uYjfJ6urqMDExQUpKipAZCyBouiJqoWFnZ4dNmzbh4cOHSElJQUZGBmpra6GpqQkXFxfMnTuXtS2TlAkTJmD//v24fPmySKFEly5dcPr0afj6+iI4OJjVqKAoCiNHjsSsWbPaxOGRKDIzM9nrmZSUlKCiogIHBwf07NkTI0eOlPjkUVJWrVqFr776Cg8ePMDTp09RWFiIxMREdOjQAV988QWsra0xbtw4oRN5MzMz1ht2eHg4Xr58iczMTNTU1KBz58748ssvMXjwYEycOFGsZ3xxbNiwAZ06dcKtW7eQlJQk5I9i0KBBOHr0KA4cOMB6/Tc2NsaSJUswdepUsZMdg62tLf7++294eHggNjYW79+/h6WlJWbOnIlx48aJjDNo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2cMHTq0Rd9pZGSEX3/9FWFhYUhISEB2djaqq6uhrq6OESNGYNasWayJEj+3bt1CZWUlZs6cKfGtMwxTp06Fqqoq/vrrL1b4TFEUZsyYAVdXV/bGJkkYNmwY6urqEB4ejoyMDCQnJ4OmaXzxxRfo378/5s2bJ3SvfHv2rZYwe/Zs9OnTB8ePH0d0dDSSk5OhoqICiqLg7OwsdsHYFNK0IWnqa9GiRTAxMUFkZCRevnyJhIQEyMvLw9zcHMOGDcPMmTOF+qSGhgb8/f1x4cIFBAUFsWN8ly5dYG5uDgcHB7i4uLDtrVOnTti5cyfCwsIQFxeH/Px8vHv3DmpqanB2dsaUKVMwaNCgFpWPm5sbVFVVcfLkSXacd3JywsqVK8WaPbQGNzc38Hg8BAUFITU1ldUC+VDaAtKuQ8aOHYuysjKcOXMGWVlZ7GFHW/k86dOnDw4ePIiFCxfi7t27WL16Nfbu3Svyetv2hNHYGzNmTKt9QigrK+Po0aPYv38/4uLi8OTJE/B4POjq6rZFVrF06VIMGDAA/v7+iIqKQnJyMjp27AhtbW307dsXLi4uLXYq+yHYsWMHevTogQsXLiA/Px+VlZUYMGAAvv/++xbd6vShkGaOEYeMjAz27dsHPz8/BAYGIjs7G507d8awYcOwcuVK1q+ZKHr27IkrV67g5MmTuH37NjIzM9l1qKOjIwYOHNiiA4JBgwbh/Pnz8Pb2RlhYGF68eIFOnTph4MCBmDVrVpMakGpqaggMDMS+ffsQGhqK4uJi6OvrY8yYMXBzcxM5fxoaGuLChQsICAjAtWvXkJaWhtzcXHTr1g29evVCv379WC3G1iLt/pDBxcWF1SCRlZVt9rDnc+lrbQmHltZ24BPm0aNHmDVrVquuDyQQPld++eUXnDx5UiqP84TPk5kzZyIyMhK+vr5SXcH7qTB58mQkJiYiJCQEOjo67Z0dAoFAIBAIBMJH4LPwKUEgECRnyZIlUFZWZm/wIBA+B+7du4cnT55g1qxZRCBBIBAIBAKB8D/EZ2G+QSAQJEddXR07d+7E8+fPUVxcDHV19fbOEoHQLJWVlVi2bBm+++679s4KgUAgEAgEAuEjQoQSBMJ/kMGDB2Pw4MHtnQ0CQWLayu6TQCAQCAQCgfB5Qcw3CAQCgUAgEAgEAoFAILQL/0lHlwQCgUAgEAgEAoFAIBA+fYimBIFAIBAIBAKBQCAQCIR2gQglCAQCgUAgEAgEAoFAILQLRChBIBAIBAKBQCAQCAQCoV0gQgkCgdBiBg8eDC6Xi5cvX36wNGbOnAkul4tHjx59sDQ+JB+jjD4GL1++BJfL/Si3uXh4eIDL5cLDw+ODpwUAjx49ApfLxcyZMz9Keh+Lj1lnkvBf6QvtBZfLBZfLbZN3fWpt42OO88z4wv8nMTHxg6f7OXLu3Dmhsvpc52ICgfB5QIQSBAKBIIKbN2/Cw8ODLFoJnxznzp2Dh4cH2eR/Jpw4cQIeHh4oKytr76wQAOjo6MDW1ha2trZQUlKSKM6+ffvA5XIxd+5csb9Zt24du4F/9eqVyN/ExMSAy+XCysoK79+/lyr/DM7OzuByubh8+bLI8JqaGvTs2RNcLhezZs0S+56NGzeCy+Xixx9/ZJ9paGiwZaSsrNyqfBIIBIIkEKEEgUBoMfr6+jA2NoacnNwHS0NHRwfGxsZQVFT8YGk0xc2bN+Hp6UmEEoRPjvPnz8PT0xO5ubntnRWCBPj6+sLT05MIJUTQHuP8hAkTcPr0aZw+fRqGhoYSxbG3twcAxMbGoq6uTuRvoqOjRf6bn5iYGACAlZVVq7/Zzs6uybTi4uJQXV0NAHj69Clqa2tF/o6Jz3wjAAwcOJAtIwsLi1blk0AgECShQ3tngEAgfH74+Ph88DR27NjxwdMgEAgEQvvxuYzzNjY2kJOTQ2VlJRISEtCzZ0+B8MLCQmRnZ0NfXx85OTmIjo7GmDFjhN7DCAD69OnT6jzZ29vj8uXLzQpAmDzFx8fDxsZG4DfFxcXIyMhoszwRCASCtBBNCQKBQCAQCAQCQQyKioqsxgCz2eeHEQxMnDgRnTt3Fiko4PF4ePz4MQBBrQRpYYQIaWlpePv2rdg8MSYnovLEPNPQ0ECPHj1anScCgUCQFiKUIBAILUac47r379/j4MGDGDt2LGxsbGBlZQUnJydMmTIF+/btQ2lpqcRpiHOA1pxjtKacJV66dAkzZ86Eg4MDLC0t0bdvX4wePRpbt25FSkoKgH8dwZ0/fx6AoJ2wtE4Yw8PDMXv2bNjb28PGxgbTp0/H3bt3Rf62rKwMZ86cwZIlS+Di4oJevXrBxsYG48ePx5EjR1h13Mbw10lkZCTc3Nzw5ZdfwszMDDdv3mR/V1VVhWPHjuHbb7+FnZ0devbsiZEjR8LT0xPv3r2T6HtSUlLA5XJhb28vNj8AMG/ePHC5XPj7+0v0Xn6KioqwefNmDBgwANbW1nBxcYGHh0eT6ZWVlWH//v0YM2YMbGxs0Lt3b4wfPx4nTpwQq7rcFAUFBdi6dSuGDBkCa2trODg44LvvvkNwcLDQb2/fvg0ul4v58+cLhXl5ebHtJzs7WyCstLQUZmZm6NOnD+rr65vMD+OYMzIyEgAwa9YsgbZ57tw5kfGCgoIwceJE2NjYoE+fPli4cCFevHghNp36+noEBgZixowZsLe3h7W1NYYOHYpt27ahuLi4yTy2lLq6Opw6dQqTJ09m26Orqyv27t0rZO5A0zS+/PJLcLlcvHnzRiAsPz+fLYc///xTKJ3FixeDy+UiJCREKCw+Ph6rV6/GwIEDYWVlBUdHR3z//fdiT6AlHecYZ4GMmc3XX3/d5o4Dq6qqcOTIETYvNjY2GDt2LI4cOYKqqqpm4586dQrffPMNevXqBUdHRyxfvhxpaWlNxrl27RrmzZuHL7/8ElZWVhg0aBA2bdoklY8TceP52rVr2Tb9+vVrbNq0CU5OTrCyssKwYcNw+PDhZvtLW8MIAaKiooTC+E0gbGxskJaWJtRXkpKSUF5eDhkZGdja2rY6Pz169ICGhgZomhYSlPB4PMTGxsLIyAjDhw8XyCM/zLcQLQkCgdDeEPMNAoHQJtTV1WHOnDmIjY0FABgYGEBVVRVFRUV49uwZYmNjMXjwYFhbW7dL/nbs2IGjR48CALp16wZ9fX1UVFQgOzsbycnJ0NXVhampKRQUFGBra4usrCwUFRXByMgI6urq7Ht0dHRalO61a9ewe/duKCsrw8DAAHl5eYiOjkZ0dDQ2btwodPPDnTt3sGHDBsjJyUFTUxOmpqYoKytDUlISnj9/jlu3bsHPzw/y8vIi0wsODsbevXvZ9PjtlgsLCzFv3jwkJydDVlYWOjo6UFJSQkZGBjw8PBASEgJfX1906dKlyW8yNTVF79698eTJE9y8eRMjR44U+k1BQQHCwsIgLy8vMrwpSkpKMHHiROTn58PExATKyspIS0uDp6cnwsPDcezYMXTs2FEgTlpaGubNm4e8vDzIyclBV1cXHA4HL168wPPnz3Hnzh14e3uLLbfGPHv2DPPnz0dJSQkUFBRgamqKkpISREREICIiAg8ePMDvv//O/t7e3h4yMjKIiYlBXV0dOnT4d3plhAhAg2DBwMCA/X9UVBRomoadnR1kZWWbzJOKigpsbW2RnJyMiooKUBQl4IROQ0NDKM7evXtx6NAhaGtrw8jICBkZGQgNDUV0dDTOnDkDY2Njgd9XVFRg8eLFePToETgcDrS1taGjo4OsrCycOHECISEh8PPzg76+vkTl2BTV1dVYtGgRHj58CAAwMjKCkpISUlJScOjQIVy5cgU+Pj7Q09MDAHA4HNjb2+P69euIjIyEq6sr+y7+TS1/eQMQ2LQ1PqH28/PD77//Dh6PBxUVFZiYmKCwsBB37txBaGgo3N3dMWXKFPb3LRnnGGeB8fHxqKmpgZWVlUD7U1FRaVX5vX37FnPmzEFiYiI4HA5MTEzA4XCQlJSExMREXLt2DcePH4eqqqrI+L/88gtOnjwJbW1t9OjRAxkZGQgJCcH9+/dx/Phx9O7dW+D3dXV1+L//+z8EBQUBaBhHTU1NkZWVhX/++QfXrl3D0aNHhUwbWsOrV68wbtw4lJSUwNTUFB06dEBmZib27NmD3NxcbN26tc3Sag57e3scPXoUMTExoGkaHA6HDYuOjoaCggKsrKxgZ2eHu3fvIiYmBkOHDhX4DQCYmZm1uu4Z+vTpg5CQEERHR2PIkCHs8xcvXqC8vBxDhw6Furo6jIyM8PjxY/B4PMjI/HseyfQLIpQgEAjtDk0gEAgtxNnZmaYois7JyWGfhYSE0BRF0QMHDqRTU1MFfl9eXk4HBgbSL1++lDiNGTNm0BRF0RERERI9Z9i/fz9NURS9f/9+9llRURFtbm5OW1hY0Ddu3BD4fV1dHR0aGir0vjVr1tAURdFnz56VOM/8MGVkaWlJ//bbb3R1dTVN0zRdX19PHzlyhKYoirawsKBfvHghEC8xMZG+ffs2XVVVJfA8Pz+fXrp0KU1RFO3l5SU2PXNzc3rv3r10TU0NG1ZVVUXzeDx62rRpNEVR9OLFi+m8vDw2vLi4mF60aBFNURT9ww8/CLw3JyeHpiiKdnZ2Fnj+zz//0BRF0XPnzhX5/YcOHaIpiqJXrFjRfGH9f5i6s7S0pEeNGkVnZ2ezYfHx8fRXX31FUxRF79y5UyBeZWUl7eLiQlMURW/atIl++/YtG/by5Ut68uTJNEVR9K5duwTiRURE0BRF0TNmzBB6H1OeixYtoktKStiw27dv07169aIpiqL//vtvgXhjx46lKYqinzx5wj6rqamhe/XqRTs5OdEURdE//vijQJzffvuNpiiK9vb2lricmusDTJ1ZWlrSvXv3pm/evMmGlZWVsfFXrVolFHf16tU0RVH01KlTBfpxZWUlvWnTJpqiKHrSpEkS55WmRY8XNE3Tf/zxB01RFN23b186NjaWfZ6fn09PmjSJpiiKnjx5skAcHx8fmqIoevPmzQLPN2zYQFMURTs5OdGWlpb0+/fv2bDExESaoija1dVVIM6DBw9oLpdL29nZ0ZcuXaJ5PB4bdv36ddrGxoa2tLSkk5KS2OfSjHPivl9SKIqiKYoSer58+XKaoijaxcVFIC+pqalsf2hcx0zbsLCwoC0tLelLly4J5H/ZsmVsf+cvQ5qm6T179tAURdEjR44UaOO1tbW0h4cHG48Z6yRBXFtmxl9LS0t68eLFdHFxMRt2/fp12szMjKYoik5LS5M4LVFzQ0soLS1l001OThZ6Pn36dJqmaToqKoqmKIr+7bffBOIz9fXrr79Klb4omP4wfvx4kc/PnDlD0zRNr1u3jqYoik5MTGR/U15eTpubm9MURdEJCQli02huvCEQCIS2gJhvEAiENiEzMxMAMGzYMCHbVGVlZXz77bfQ1dVth5wB2dnZqK+vB0VRAqdJACArK4uBAwfC0dHxg6Tdo0cPrF+/nj0hlZGRwYIFCzBo0CDU1dXh+PHjAr83MzODs7MzFBQUBJ5raWlh586dkJOTw8WLF8Wm5+TkhJUrVwrcjKKgoMCejpubm2Pv3r3Q1tZmw7t06YJdu3ZBW1sbV69eRV5eXrPf5erqCiUlJYSFhaGgoEAonDF/GT9+fLPvakxtbS22b98ucBpvaWmJjRs3AgD8/f0FTE3Onj2LzMxMDBw4EFu3boWamhobpquri3379kFJSQn+/v5Nmn8wBAUFITc3F2pqati1a5fASbOzszMWLVoEADh8+DBommbDHBwcAAie2sfFxeH9+/cYNWoUdHR0hE7xmf8zcduS2tpaLFmyBF9//TX7TEVFBRs2bAAAIROi5ORkXL58GVpaWjh48KBAP1ZUVIS7uzusrKzw5MkT1jZeWioqKnD69GkADVcS8p/Ka2lpYe/evejQoQNiY2MFypMpJ1HlqKGhgfHjx6O2tpbVZAD+rY/GZbx7927QNI1ffvkFo0ePFjj5Hjp0KFauXIna2lr4+fmxzz+VcS4rK4s1RdmxY4dAXnr06IHt27cDaGjLOTk5QvHr6uowZcoUjB49mn2mrKyMHTt2oEuXLsjNzRUwUyouLsbx48ehpKSEgwcPolevXmxYhw4dsHTpUgwdOhS5ubkiTWSkRVVVlc0Tw9ChQzF48GAAwL1799osrebo3LkzKIoCIGgKwWggMLdh9OzZE/Ly8kLmEuK0dVoD867ExESBMbGxQ03mb/48xcbGor6+Hp07dwaXy22zPBEIBII0EKEEgUBoE5hNbnh4OEpKSto3M41gTC4yMzObtKX/EEybNk3k8+nTpwMAHjx4IBRWW1uL4OBgbN68GfPmzcO0adMwdepUzJkzBxwOB5mZmWLtxceNGyfy+fXr19lwUSYMSkpK6NevH3g8nkib6cZ06tQJw4cPB4/Hw4ULFwTCHj9+jIyMDGhpaeGrr75q9l2NsbGxgaWlpdBzFxcXaGpqorKyUmBTzHzbpEmTRL5PS0sL1tbWePfuHeLj45tN//79+wAanNYpKSkJhU+bNg1ycnLIzc1Feno6+5zZIPBvmJmydHR0hL29PfLz81m/EoxZTqdOnUR+b1swefJkoWdmZmZQUFBAeXm5gIM8phyHDx8uUuVfRkYGzs7OANBqfwgxMTGorKyEpqYmhg0bJhT+xRdfsAJEpj4AgMvlQk1NDenp6axfiYKCAmRlZcHe3p4VLvLnj6kD/s1gXl4enj9/DjU1NZHpA2DT53/XpzLOPXjwADRNo1evXgICAgYbGxtYW1uDpmmRYwzw7xjET8eOHfHtt9+yaTDcu3cP1dXV6Nevn1jTHVHl1VpGjhyJTp06CT1nvlmUwOVDwrQhUdd/Mht/eXl5WFlZ4cWLF6ioqADQIER6/fo1OBxOm5pKcLlcqKiooL6+XkAQFxMTg27durFXnjICE/6xncm3nZ2dgEkHgUAgtAfEpwSBQGgThg4dCn19fSQlJWHQoEHo168f+vTpA3t7e1hZWQmcQn5stLS04OrqiuDgYIwbNw62trZwdHSEnZ0d7OzshPwTtCXiPJqbmJgAAF6/fo2KigrWN0BBQQHmz5+P5OTkJt9bWloqMt/i0mPeFxgYiGvXron8zatXrwA0OA2UhIkTJ+LcuXM4f/48Fi5cyD5ntCTGjh3brJ8EUXTv3l3kcxkZGRgbG6OwsBAZGRlwcnIC8O+3eXl5sX5DGsOccIvS6hD3W6aOGqOiogJNTU3k5uYiMzOTLXPGr8Tjx49ZvxKRkZGQlZWFnZ0dCgsLcenSJdavRFRUFHg8HmxtbaUqp+bo0qWLWNt1dXV15OXlobKykj2FZsrxzp07ePbsmch4RUVFACRvI+JgriE0NjYW++2mpqa4du0aWx9Ag18JOzs73Lp1i/Urwa9twlzdyDyjaZrdiPFrSiQlJQFoEACK2pwzcQHBb/1UxjmmTJq6McHU1BTPnj0TKD8GOTk5dsPaGKbdM3UE/Fte8fHxmDp1qsh45eXlAFrfNvgRl0fGz09lZWWbpSUJdnZ28PPzExJKyMjICFy3aWdnh8ePHyM2NhZOTk5sG+zRo4eAj6LWwjjNvHv3LqKjo9G/f39kZGTgzZs3AsI2Q0NDdOvWTcAhZlteT0ogEAithQglCARCm6CoqIhTp05h//79uHbtGm7duoVbt24BaNBUWLJkCSZOnNhu+fvjjz9gYmKCM2fOsI4mgYYT/ylTpmDFihVCJhNtgbgFaNeuXdl/v3v3jhVKrF27FsnJybC2tsayZctgYWEBNTU11hxj0KBByMvLE3ubBL9jS36YDQNzy0hTSGLiAAC2trbo3r070tPTERsbCxsbG1RVVeHq1asAxGttNIcoh40MTLnxqyoz3/b8+fNm3y3JjQTMRqe5fOTm5grkQ1VVFRRFsc41LS0tERsbCwsLCygrK7On+JGRkZg4caLIzXJbIkrLg4E5GeU3P2HKMTs7W+iWkMZI2kbEwZQxfz9oDFP+jW+FcXBwwK1bt/Do0SO4uroKaKN07NgRPXv2RFxcHKqqqpCVlYWSkhJ0795dIC3mZo937941a4rC/62fyjjXmvIDADU1NbGn46Li8QscmhM6tLZt8CNuPBPVflvLmTNncPbsWaHn33//PQYOHAjgX02J/Px85OTkoFu3boiPj4eZmZmA01k7Ozt4e3sjOjoaTk5OH9ShZJ8+fVihBCBe2GBra4uQkBBkZmbiiy++YAWPbWlOQiAQCNJChBIEAqHN0NTUxK+//oqff/4ZCQkJiImJwc2bNxEVFYWNGzdCSUmpxTcxiEPcYlTcyZm8vDyWLFmCJUuWIDMzEzExMbh//z5u3ryJo0ePoqKi4oN4ci8uLhZ58s9/pSGjnlxYWIiwsDB07NgR3t7eIm/BaMm1qvwwG1Rvb28MGDBAqneI4ttvv8WOHTtw7tw52NjY4Pr16ygvL4eNjY3QzQ6S0tS1k0y58at0KykpoaysDMHBwU2eHEsKU1aMVoCk+QAaFvgvXrzAo0ePwOPxUFlZyQodDAwMoK2tzW6iP6Q/CWlgvtvd3V3saXhbp9X4ak9+mPJvXMaN/Uo8evQI6urq7Am/g4MDYmJiEBsbi9TUVADCGy8m/V69euGff/5pUd4/5jgnjtaUH9Bww03jmxiaisekt2DBAvz444/SZ/wTJi8vT6SAin8c6Nq1K4yMjNg5REdHB7W1tax5BIOtrS04HI6QoOBDCACYd8bFxaGmpkasAIQRSkRHR8PIyAjV1dVQUlL6YKZjBAKB0BKIERmBQGhzZGVlYW1tjdmzZ+PkyZOYN28eALR48S8KZnEsbuPa3Akv0HD14IQJE/Dnn3/iwIEDAIBz586hrq6O/U1bqWHz+xzgJy0tDUDDtXrMCVtubi6ABhVfUQKJlJQUqdWVmQ2bJJoSLWHs2LGQk5PD1atXUVVVxZpuTJgwQep3MmXTGB6Px6qUGxkZsc/b+tuYd4t7X3l5OQoLC4XyAUBAG0KUJoS9vT3rz+DFixdQUlKClZVVm+S7tXyoNiIKRmCVnp6O+vp6kb9h8tG4jM3MzNC5c2ekp6cjMTERmZmZAps9foej/FoU/JiamrLp8/f7lvAhx7nmYMqEEbqIQlz5AQ1mK+LGSqb/8cdjyutjtI32YtmyZUhKShL609hZL9PWoqKixGolqKqqwtTUFHFxccjJyWHL+kMIJaysrKCoqIjq6mrExcUhOjoaysrKQs4r+Z1dMoKL3r17C1xfTCAQCO0FEUoQCIQPjq2tLQCwG7nWwDhZi4uLEwp79eqVgFO8luSttrZWwHEdY8ohibp/U5w6dUrkc39/fwBA//792WeMj4g3b96I1AQ5ceKE1Plg7IsDAgLw/v17qd/TGA0NDTg7O6O8vBy+vr6IiIiAoqIiRowYIfU7Y2NjkZiYKPT8xo0bKCwshJKSksDJJPNtvr6+4PF4UqfLwPiqOHPmjEgh0OnTp1FbWws9PT0hLZg+ffqAw+Hg8ePHCAsLg6ysrMCGhdkce3l5ob6+Hra2ti3eFDDtpLVtszFMOV6+fLlJLZG2wM7ODkpKSnj9+rXI2xry8vJYswimPhhkZGTY+vf09AQgKHSwtbWFnJycgFCi8WbQ0NAQXC4X5eXlIlX2pUHcOMfUV1uaNTg5OYHD4SAuLg5Pnz4VCn/y5AmePXsGDocjMMbwI2psqq6uxpkzZ9g0GAYNGgR5eXk8ePCgSUHI/wL8m3t+Z5GNsbW1RU1NDXvDkr6+PrS0tNo8P3Jycqzjz+DgYOTk5KB3795CvlrMzc2hpKSE6Ohotl8QfxIEAuFTgQglCARCm3D8+HEcP35cyJFgcXExfH19AaBN1EQZ297AwEABb+P5+flYtWqVyE1peHg4tm/fzjprY6iuroaXlxeABntwfh8CjPAjOjq6VXbLqamp+OOPP1BTUwOg4bT/2LFjuHPnDjp06IDZs2ezvzUxMYGamhoKCgpw4MAB9ltqa2vh5eWFc+fOCVz12RKGDBkCOzs7ZGVlYcGCBULaCHV1dYiIiMDq1avZvEoK461/37594PF4cHFxEbCvbilycnJYs2aNgGf9xMRE/PrrrwCAqVOnCqiWT548GUZGRoiJicHKlSuFrjStqalBaGgo1q1bJ1H6o0aNgq6uLkpKSvDTTz+x/geAhms0Dx48CABwc3MT0qjp0qULTE1N8e7dO0RERMDc3FygLJhTfGbDLc3JKdM2JbklpSVYWFhg9OjRKCsrw+zZs4UEfzRN4+nTp9iyZUurbz1QVlZmb6b57bffBDbWBQUF+OGHH1BbWwsbGxuR1/U2Lkd+bZSOHTvC2toasbGxKC4uhpGRETQ1NYXe8dNPP0FGRga//fYb/P39hdp9QUEBfHx82KtLAenGOaa+Gl9j2hoMDAwwfPhwAMCaNWsENLIyMjKwdu1aAA23V4i6LaNDhw44deoUgoKC2Gfv3r3DmjVrUFxcDF1dXbi6urJh3bp1w9y5c1FXV4f58+eLvNEjKSkJO3fuFHCm+F+E6bOMCQfjRLIxjKCCEfI01dc9PDzA5XLZq06lzROTlihhg6ysLHr37o2cnBy2LbZGc+PEiRMYPHjwBzf1IhAI/xsQnS0CgdAmvHr1Cr6+vti+fTu++OILdO3aFZWVlcjKykJtbS20tLSwcuXKVqfj5OQEJycn3L9/H1OnToWhoSEUFBSQmpoKY2NjTJs2DT4+PgJx3r17x24m1NTUoKurCx6Ph5ycHFRUVEBOTg7u7u4CG8yhQ4di7969CAoKwpMnT6CjowMZGRmMGzdOSJ23KVauXIndu3fj7NmzMDAwQF5eHmsH/tNPP8HMzIz9rZycHFauXAl3d3d4eHjg1KlT0NHRQU5ODkpLS7F06VKcP3+eNfNoCRwOBx4eHli0aBGioqLg6uoKPT09gXpiTnJ///33Fr27f//+0NLSYjdqLSkfUUyePBl37tzBsGHDYGpqirq6OvZ01sbGBsuWLRP4vaKiIo4cOQI3NzeEhITg+vXrMDQ0hJqaGsrLy5GdnY3a2tomnQLy07FjR/z555+YP38+bt68iQcPHsDExAQlJSV4+fIlgAbzFFHXbQING+Tk5GTQNC3kL8LQ0BDa2tqss0Bp/Em4urrC398f3t7euHHjBrp16wYOh4MFCxa02l/IL7/8gvLycoSGhmLixInQ0tKCtrY2qqurkZ2dzWqOzJo1q1XpAMDy5cuRkJCAsLAwTJo0CcbGxlBUVERKSgqribJr1y6RcZlyo2lawJ8EfzjjH0BcGTs5OWHr1q34+eefsXXrVuzatQtGRkaQlZVFYWEh254XLFjAxpFmnBsxYgRCQ0Ph7u6OU6dOQU1NDQCwfv16mJubt7jcGLZs2YLMzEwkJiZi5MiRbBmkpqaCx+PB0tISmzdvFhlXS0sLzs7OWLVqFXbu3AkNDQ2kp6ejsrISioqK2Llzp9DtPitWrEBRURECAwMxb948qKurQ09PD3V1dcjNzWX93YgSIv2X0NXVxRdffIFXr16hurpapJYE8K9QghlXP6RWAvPu5tKys7NDWFgYqqurIS8vL/I6WUkpLy+Xai4iEAgEURChBIFAaBOmTJkCNTU1REREIDs7G4mJiejQoQOMjY0xaNAgzJ07V6SfBGnw8PCAp6cngoODkZubi65du2LGjBlYvnw5qyrLj52dHTZt2oSHDx8iJSUFGRkZqK2thaamJlxcXDB37lzWZprBwMAAhw4dwuHDh5GQkIBXr16J3GQ2x/Dhw2FpaYlDhw7h+fPnqK+vh52dHdzc3DBo0CCh30+dOhWqqqr466+/kJKSgpqaGlAUhRkzZsDV1ZX12SANGhoa8Pf3x4ULFxAUFITExEQUFBSgS5cuMDc3h4ODA1xcXFp8C4msrCzGjRuHQ4cOQVdXt9WbEjU1NQQGBmLfvn0IDQ1FcXEx9PX1MWbMGLi5uYm8CtXQ0BAXLlxAQEAArl27hrS0NOTm5qJbt27o1asX+vXrx54sS0LPnj1x6dIlHDlyBHfv3kVSUhIUFRXh4OCAqVOnCpwiN8be3h4nT54EIHqDZm9vj8uXL0NRURHW1tYS54mhT58+2L17N3x8fJCamspe+SjtbSf8KCoq4tChQwgJCcH58+fx7NkzJCQkQFVVFcbGxrC1tcWwYcOkdmLKj4KCAry9vREQEICLFy8iJSUF9fX10NfXx9ChQzFv3jyoqqqKjGtubg4VFRWUl5fD3t5eSGPF0dERhw4dAtD0afDEiRNhZ2cHHx8fREREID09HbKystDS0oKLiwu+/vprgdNraca5sWPHoqysDGfOnEFWVhZ79Sq/Bo40dOnSBadPn4avry+Cg4ORlZUFAKAoCiNHjsSsWbOavO5406ZN6NGjBwICApCamgoFBQW4uLhgxYoVIq/DlZGRwa+//gpXV1f8/fffrJlVp06doKOjAxcXFwwdOhR9+/Zt1Xd9DvTp0weXLl0CINp0A2gQXujo6LCaW021w9evXwNo0FaSht69e0NOTg61tbWQk5NDz549Rf6OP6/W1tYf5MYpAoFAkAYO3Zb3KREIBEIbMX36dERHR8Pf35/YvX4GrFu3DufOncPSpUuFNBkIBAKhvWGE2Z/iGDVq1CikpKQgMDBQrEChvZg5cyYiIyPh6+v7n9eCIRAI7QfRlCAQCJ8kzCmiuJNSwqdDRUUFrl27xpq3EAgEwqfK2bNnERYWBgDYvn07DA0N2zU/ZWVlSE1NRd++fT8ZgcTdu3dZTSNGs4dAIBA+JEQoQSAQPjnS0tKQnp4ORUXFdl8wEprHy8sLlZWVcHZ2hp6eXntnh0AgEMSSl5fHmlRIe8VyWxIbGwuapuHm5tbeWWEpKipifbIQCATCx4CYbxAIhE+GhIQEbNy4Eampqaiursa0adOwZcuW9s4WQQSJiYn4/fffUVhYiMzMTMjJyeHMmTMCjjsJBAKBQCAQCITmIJoSBALhk6G8vByJiYno2rUrXF1dsXr16vbOEkEMZWVliIyMhLy8PCwtLbFy5UoikCAQCAQCgUAgtBiiKUEgEAgEAoFAIBAIBAKhXZBp7wwQCAQCgUAgEAgEAoFA+N+ECCUIBAKBQCAQCAQCgUAgtAtEKEEgEAgEAoFAIBAIBAKhXSBCCQKBQCAQCAQCgUAgEAjtAhFKEAgEAoFAIBAIBAKBQGgXiFCCQCAQCAQCgUAgEAgEQrtAhBIEAoFAIBAIBAKBQCAQ2gUilCAQCAQCgUAgEAgEAoHQLvw/eJh9b9OJAqgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "fig, axes = plt.subplots(8, 2, figsize=(11, 28), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "\n", + "freq = scipy.fft.rfftfreq(lc_ar4.n, d=lc_ar4.dt)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + "\n", + " w, h = signal.freqz(taper, fs=1, worN=np.linspace(0, 0.01, 200))\n", + " h = np.multiply(h, np.conj(h))\n", + " axes_rows[0].plot(w, h, color=palette[idx])\n", + " axes_rows[0].axvline(x=NW/N, color=\"black\", linewidth=0.6, label=\"Frequency\\nW=4/N\")\n", + " axes_rows[0].set(\n", + " ylabel=f\"K = {idx} \\nPower\",\n", + " xlabel=\"Frequency\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[0].legend()\n", + " \n", + " fft_tapered_data = scipy.fft.rfft(tapered_data)\n", + " psd_tapered_data = np.multiply(fft_tapered_data, np.conj(fft_tapered_data))\n", + " axes_rows[1].plot(freq, psd_tapered_data, color=palette[idx], label=f\"K={idx} eigenspectrum\")\n", + " axes_rows[1].plot(freq_analytical, psd_analytical, color=\"black\", alpha=0.56, label=\"True S(f)\")\n", + " axes_rows[1].set(\n", + " xlabel=\"Frequency\",\n", + " ylabel=\"Power\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[1].legend()\n", + " \n", + " idx += 1\n", + "# fig.suptitle(\"Left: DPSS taper spectral windows \\n Right: Eigenspectra for AR(4) time series with given K\", y=1)\n", + "axes[0][0].set_title(\"DPSS taper spectral windows\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Eigenspectra for AR(4) tapered time series\", fontsize=18, pad=15)\n", + "\n", + "text=\"Note the marked increase in bias in the eigenspectra as K increases.\\n\\\n", + "The left-hand plots show the low frequency portion of the spectral windows (of DPSS tapers)\\n\\\n", + "K = 0 to 7. The thin vertical line in each plot indicates the location of the frequency\\n\\\n", + "W = 1/256 = 0.003906 = 4/N. Note that, as K increases, the level of the sidelobes of\\n\\\n", + "spectral windows (of DPSS tapers) also increases until at K = 7 the main sidelobe level\\n\\\n", + "is just barely below the lowest lobe in [-W, W].\"\n", + "fig.text(0.5, -0.06, text, ha=\"center\", fontsize=18)\n", + "fig.tight_layout()\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "1948275f", + "metadata": {}, + "source": [ + "### Summary of Multitaper Spectral Estimation\n", + "We assume that $ X_1, X_2, ..., X_N $ is a sample of length $N$ from a zero\n", + "mean real-valued stationary process $ \\{X_t\\} $ with unknown sdf $ S(\\cdot) $ defined over the interval $[-f_{(N)}, f_{(N)}]$, where $f_{(N)} \\equiv 1/(2\\Delta t)$ is the Nyquist frequency and $\\Delta t$ is the sampling interval between observations. (If $\\{X_t\\}$ has an unknown mean, we need to replace $X_t$ with $X_t' \\equiv X_t - \\bar{X_t}$\n", + "in all computational formulae, where $\\bar{X_t} = \\sum^N_{t=1}X_t/N$ is the sample mean.) \n", + "\n", + "- __Simple multitaper spectral estimator__ $\\hat{S}^{mt}(\\cdot)$ \n", + "\n", + "This estimator is defined as the average of K\n", + "eigenspectra $\\hat{S}^{mt}_k(\\cdot),k = 0, ..., K - 1$, the $k^{th}$ of which is a direct spectral estimator employing a dpss data taper $\\{h_{t,k}\\}$ with\n", + "parameter $W$. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in\n", + "distribution to $S(f)_{\\chi^2_{2K}}/2K$ \n", + "\n", + "- __Adaptive multitaper spectral estimator__ $\\hat{S}^{amt}(\\cdot)$ \n", + "\n", + "This estimator uses the same eigenspectra as $\\hat{S}^{mt}(\\cdot)$, but it now adaptively weights the $\\hat{S}^{mt}(\\cdot)$ terms. The weight for\n", + "the $k^{th}$ eigenspectrum is proportional to $b^2_k(f)\\lambda_k$, where $\\lambda_k$ is the eigenvalue corresponding to the eigenvector with elements $\\{h_{t,k}\\}$, while $b_k(f)$ is given by \n", + "\n", + "\n", + "
\n", + " $\\large{b_k(f) = \\frac {S(f)} {\\lambda_k S(f) + (1-\\lambda_k)\\sigma^2\\Delta t}}$\n", + "
\n", + " \n", + "The $b_k(f)$ term depends on the unknown sdf $S(f)$, but it is estimated using an iterative scheme. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in distribution to $S(f)_{\\chi^2_\\nu}/\\nu$." + ] + }, + { + "cell_type": "markdown", + "id": "83e9db1b", + "metadata": {}, + "source": [ + "This summary, by no means, is an exhaustive explanation of the multitapering concept. Further exploration of the topic is highly encouraged. Use the references as the starting point." + ] + }, + { + "cell_type": "markdown", + "id": "be873c7c-f961-435d-a490-9311a917eb4b", + "metadata": {}, + "source": [ + "## Creating a `Multitaper` object" + ] + }, + { + "cell_type": "markdown", + "id": "be421421", + "metadata": {}, + "source": [ + "Pass the `Lightcurve` object to the `Multitaper` constructor\n", + "### Other (optional) parameters that can be set at instantiation are:\n", + "(Given here for completness, feel free to skip as they are later showcased)\n", + "\n", + "`norm`: {`leahy` | `frac` | `abs` | `none` }, optional, default ``frac`` \n", + " The normaliation of the power spectrum to be used. Options are\n", + " ``leahy``, ``frac``, ``abs`` and ``none``, default is ``frac``. \n", + " \n", + "`NW`: float, optional, default ``4`` \n", + " The normalized half-bandwidth of the data tapers, indicating a\n", + " multiple of the fundamental frequency of the DFT (Fs/N).\n", + " Common choices are n/2, for n >= 4.\n", + " \n", + "`adaptive`: boolean, optional, default ``False`` \n", + " Use an adaptive weighting routine to combine the PSD estimates of\n", + " different tapers. \n", + " \n", + "`jackknife`: boolean, optional, default ``True`` \n", + " Use the jackknife method to make an estimate of the PSD variance\n", + " at each point. \n", + " \n", + "`low_bias`: boolean, optional, default ``True`` \n", + " Rather than use 2NW tapers, only use the tapers that have better than\n", + " 90% spectral concentration within the bandwidth (still using\n", + " a maximum of 2NW tapers) \n", + " \n", + "`lombscargle`: boolean, optional, default ``False`` \n", + " Whether to use the Lomb (1976) Scargle (1982) periodogram when\n", + " calculating the Multitaper spectral estimate. Highly recommended for\n", + " unevenly sampled time-series. Adaptive weighting and jack-knife\n", + " estimated variance are yet not supported. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bf507678", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "print(mtp)" + ] + }, + { + "cell_type": "markdown", + "id": "7e7342a5", + "metadata": {}, + "source": [ + "### The results" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "041fb778", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3hUZdrH8e+cKZlMekLvPfQiTQFFUSxgBRuKFdeOrmUtu+6+uvZ1Lauuupa194K6gtgLKioIiPTeQkvv08/7xyQDMYWUmTR+n+vyksyc85x7wsmQe+7nuR+LaZomIiIiIiIiIg1gNHUAIiIiIiIi0vIpuRQREREREZEGU3IpIiIiIiIiDabkUkRERERERBpMyaWIiIiIiIg0mJJLERERERERaTAllyIiIiIiItJgSi5FRERERESkwZRciohIq2CaJpMmTSI9PZ2tW7dWev6nn34iPT09/N+oUaM444wz+Pzzz6scb8WKFYwePZqioqIqn7/yyitJT0/nlVdeqfD4pZdeyr///e9axZyRkcGf/vQnjjzySIYMGcLEiRO54oorWLRoUa3Oj7TvvvuOF154oUmuLSIiLZ+SSxERaRWWLl1KRkYGAHPnzq32uH/+85+8+eabPPjggyQnJ3P11VdXmcw98sgjnH322cTHx1d67rvvvuPXX3+tcvxLL72UF154gYKCghrjzc/P56yzzmLDhg1cf/31PPPMM1xzzTUYhsHSpUtrPDdavv/+e1566aUmubaIiLR8tqYOQEREJBLmzp2Ly+Wib9++zJ07lyuvvLLK49LT0+nXrx8AY8aM4cgjj+TDDz9k9OjR4WO2bNnCggULuO222yqd7/P5uPvuu/njH/9Y5fOjRo0iOTmZDz74gPPOO6/aeD/55BOysrL44IMPSEtLCz8+ffp0TNOs9etuCoFAgEAggMPhaOpQRESkGVHlUkREWrxAIMD8+fOZNGkS06dPZ8OGDaxZs+aA58XGxtKtWzd27dpV4fE5c+aQnp5Ojx49Kp3z0ksv4XQ6mT59erXjHnvssbz//vs1XrugoAC73U5SUlKl5ywWS/jPt9xyC9OmTePzzz/n+OOPZ8iQIcyYMYMNGzZUOCcYDPL0008zefJkBg8ezHHHHcecOXMqjf3ZZ59x+umnM3ToUMaOHcsf/vAHMjIyeOyxx/jvf/9LRkZGeOrwLbfcUimGqVOnMnToUJYvX85jjz3G2LFjK13j99OFJ02axP3338/TTz/NhAkTGDlyJPfddx+mafLNN98wdepURowYwZVXXkl+fn6N3zcREWm+VLkUEZEW78cffyQrK4spU6YwcuRI7rzzTubOnUv//v1rPC8YDLJ7924GDRpUabwRI0ZUOj4zM5MnnniCp556CsOo/vPZESNG8Nxzz5Gfn19l8ggwaNAgvF4vN910ExdffDEDBw6sdsydO3dy7733cu211+J0OnnssceYNWsWn376KTExMQDceeedvP/++1x55ZUMGjSI77//nj//+c8kJydz1FFHAfD+++9z8803M3XqVK688kpM0+THH38kJyeHM844gy1btvDTTz/x+OOPA5CamhqOISMjgwceeIArr7ySNm3a0KVLlxq+s5XNnTuXoUOHcs8997By5UoeeeQRgsEgixcv5tprr8XtdnPnnXfy4IMP8ve//71OY4uISPOg5FJERFq8jz76iMTERA4//HAcDgfjxo1j7ty5XH/99RWqgBBKKP1+PwUFBTzzzDOUlpZy/vnnh583TZNVq1Zx8sknV7rOAw88wIQJEypMoa1K//79MU2TFStWMH78+CqPOeyww7jwwgt58cUXmTt3LnFxcYwfP54ZM2Ywbty4Csfm5ubyxBNPcMghhwChxHTy5Mm89957zJgxg61bt/L6669z7733ctpppwEwbtw4MjMzefzxxznqqKMIBoM8+OCDTJ48mYceeig89tFHHx3+c7t27XA4HAwfPrxSvHl5ebzwwgsMGDCgxtdenZiYGP71r39htVo54ogj+OKLL3jllVf45JNP6Nq1KwBr1qzh/fffV3IpItJCaVqsiIi0aF6vl88//5xjjjkmvAZw6tSpZGRksGzZskrHn3LKKQwaNIjDDjuMF154gfvuu49evXqFn8/Pz8fr9ZKSklLhvKVLl/LJJ59w0003HTCm8nMzMzNrPO7WW28NjzlmzBgWLFjAxRdfzOuvv17huLS0tHBiCdC5c2cGDRrE8uXLAVi4cCGGYTB58mT8fn/4v8MOO4w1a9YQCATYvHkze/fuZdq0aQeMvyrt27evd2IJofWtVqs1/HX37t3p3LlzOLEsfywnJwev11vv64iISNNR5VJERFq0b7/9loKCAiZOnBju0Dp27FgcDgdz586tNL314YcfpmvXruzatYtHHnmEW2+9lSFDhtC+fXsAPB4PQKVmNffccw9nnXUWCQkJFTrBut1uCgsLSUhICD9Wfm5tkqTu3bsza9YsZs2aRU5ODrNmzeLhhx/m7LPPDldd92/4Uy4tLS2cvObm5hIIBBg5cmSV18jMzCQ3NxeAtm3bHjCmqrRp06Ze55VLTEys8LXdbq/wPSt/zDRNfD6fmgWJiLRASi5FRKRF++ijjwC49tprKz338ccfc+utt1aomPXp04d+/foxZMgQ+vfvz5QpU3jiiSe44447gH1Vx99vJbJ582aWL1/Oiy++WOHxBx54gIceeohVq1aFHyssLASodr1ldVJTU5k2bRp33XUX2dnZ4YQuOzu70rHZ2dn06dMnfB2bzcbrr79eaRpw+bjFxcXAgaupdRETE4PP56vwmBryiIgcvJRciohIi1VcXMzXX3/NiSeeyJlnnlnhudWrV3Pvvffy008/VVrDWK5bt26cccYZvPvuu1xzzTWkpaXhcDjo1KkTO3bsqHDsU089RSAQqPDY+eefz3nnncexxx5b4fHyc6vqNlsuJyenQsOcclu3bsXhcFSo6mVnZ7NkyZLw1NidO3eyatWq8BTXQw89lEAgQGFhYbVrPHv27En79u15//33mTRpUpXH2O32cOW2Ntq3b09xcTF79uwJV36///77Wp8vIiKti5JLERFpsb744otwQ55hw4ZVeO6QQw7hySef5KOPPqo2uQS45JJLePvtt3n55Zf54x//GD535cqVFY4bNWpUlef36NGDMWPGVHhsxYoVJCQk0Ldv32qvO2fOHP73v/9x6qmnkp6ejt/vZ+HChbz22mvMmDEj3AUWQtXUm266Kdwt9tFHHw1XOQF69erF2WefzfXXX8+sWbMYMmQIHo+H9evXs2XLFu6++24Mw+BPf/oTN954IzfccAMnnngiFouFH3/8kalTpzJkyBB69epFVlYW7733Hn379iUlJaXGrrCHH344TqeTP//5z1x00UXs2LGDN954o9rjRUSkdVNyKSIiLdbcuXPp0aNHpcQSQlW4E044gblz53L77bdXO0bnzp056aSTeP3117n00ktxuVxMnjyZW2+9FbfbjdPprHNcCxYsYPLkyTVuVzJx4kR27NjBW2+9xa5du7BarXTr1o3bbrutUhW2U6dOXH755Tz44INkZGQwePBgHnzwwQoJ6P/93//Ro0cP3n77bR599FHi4+Pp06cPp59+eviYk046iZiYGJ566imuueYaXC4Xw4YNC1dQTzjhBH766SceeOABcnJyOO2007jvvvuqfQ2pqak8+uij/OMf/+Cqq65i0KBBPPjgg0yZMqXO3zMREWn5LKZpmk0dhIiISHPi9XqZOHEif/vb3zjhhBPqdG5hYSHjxo3j+eefr7baWRe33HIL69at47333mvwWCIiItGkrUhERER+x+FwMGvWLF566aU6n/v6668zfPjwiCSWIiIiLYmmxYqIiFRh5syZVW4zciDx8fH85S9/iWJkIiIizZOmxYqIiIiIiEiDaVqsiIiIiIiINJiSSxEREREREWkwJZciIiIiIiLSYGroU0vBoEkgEGzqMCqx2Qz8/uYXl7QOur8kmnR/SbTpHpNo0v0l0dQc7y+r1cAwLDUeo+SylgKBIHl5JU0dRgWGYSEtLZ6CglKCQfVlksjS/SXRpPtLok33mEST7i+JpuZ6fyUnuzAMa43HaFqsiIiIiIiINJiSSxEREREREWmwVj8tdtCgQfTp0weAwYMHc/fddzdxRCIiIiIiIq1Pq08uk5OT+eCDD5o6DBERERFpJUzTxOfz4ff7m9WaOGkdDMOC1+tt1PvLYgHDsGKx1Nyw50BafXIpIiIiIhIJpmlSVJRPcXEBe/ZYCAabVzdPaT2ysowmuL8sxMUlEh+fVO8ks1knl4sWLeK5555jxYoVZGZm8tRTT3HUUUdVOObVV1/lueeeIzMzkwEDBnDbbbcxdOjQ8PP5+fmcdtppOJ1OrrvuOsaMGdPYL0NEREREWoHyxDIxMRWXKxa/X1VLiQ6bzdLI95eJ1+uhoCAHgISE5HqN0qyTy5KSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NRWAL774gvbt27NhwwYuvfRSPvzwQ+Lj4+sVz4H2dWls5fE0t7ikddD9JdGk+0uiTfeYRJppmvsllvHYbAagyqVER1PcXzabHYCCghwSE5PrVb1s1snlxIkTmThxYrXPP//885x11llMnz4dgDvuuIOvv/6aOXPmMGvWLADat28PQJ8+fejXrx+bN29myJAhdY7FZjNIS6tfUhptKSlxTR2CtGK6vySadH9JtOkek0jx+Xzs2WPB5Yot+8Wf8P9FoqEp7i+XK5aiIgtJSU7sdnudz2/WyWVNvF4vK1eu5Iorrgg/ZhgG48aNY9myZUBoSmxsbCwOh4M9e/awbt06unbtWq/r+f1BCgpKIxF6xBiGhZSUOHJzi7WYXCJO95dEk+4viTbdYxJpoeYqwbKpikFsNgO/X5VLiY6mur/8fpNgMEhOTjE2W8VUMTExFrvdWuP5LTa5zM3NJRAI0KZNmwqPp6WlsXXrVgA2btzI3/72NwzDwDAM/vznP5OcnFzvazbXf5yCQbPZxiYtn+4viSbdXxJtusckUnQfycGkvu+dLTa5rI5pmuH5wYcccggfffRRE0ckIiIiIiLS+rXYieIpKSlYrVaysrIqPJ6Tk1OpmikiIiIiIg23ZMliJkwYRUlJSY3HnX76Sbz77puNFFXz9dxz/2HWrPOaOoxG02KTS4fDwaBBg/jhhx/CjwWDQRYuXMjw4cObLjARERERkWbi7rtvZ8KEUTz88D8qPXfHHbcxYcIoHn/8kXqPP2/e/5g69ehKjz/zzEtMnXpK+OsJE0bx/fcL6n2dlqCq1zhjxnk89NBjUb/21Vdf2qC/x0hp1sllcXExq1evZvXq1QDs2LGD1atXk5mZCcBFF13EG2+8wZw5c9i4cSO33347breb0047rSnDFhERERFpNtq1a89nn32C1+sNP1ZcXMSCBV/Trl37qFwzJSUFp9MZlbEbyufzNdq1XC4XSUnJjXa9ptas11yuWLGC888/P/z1XXfdBcDVV1/N7NmzmTJlCjk5OTz66KNkZmYyYMAAnn322fAelyIiIiIiB7uBAwexefMmvvvuWyZNOgaAzz//lH79+mMYFWtNEyaM4v77H2b8+MOB0L7zxx57BI8++hSHHDKqwrFLlizmnnvuCJ8HcNFFf2DWrMs4/fSTmDFjJtOnn8Xpp58EwM03XwdAhw4deeed/7F9+zYef/xhVq1aidvtplev3lx55bUMGza8Qjw33ngr33zzJb/+uox27dpx7bU3cNhhE8LHbNq0gccf/xfLly8lLi6Oww6bwNVXXxfe2/7qqy+lT59+gMmnn85n0KDBPPDAv6r8Xn344Rxef/1l9uzZTadOnZkx4zymTj0ZCCWljz76EN988yVFRYWkpbXlrLNmcPrpZ1f7Gp977j/88MN3PPfcy0CoklxaWkLv3n159903CQSCnHfeRZx++ln861//5LPPPiEpKYkbbriJQw8NvUa/388//nE3S5YsJicnh44dO3LWWedy8smnhcdctmwJy5Yt4Y03XgHg7bc/pGPHTgf83kRas04ux44dy9q1a2s8ZubMmcycObORIhIRERER2WfOq7tZ81txo12v/5A4Tju3Q53PmzLlJObN+zCcXM6b9z9OOulU5s+fW+9YhgwZxjXX3MALLzzLyy+H1lfGxroqHffMMy9x0kmT+etf/86oUWMwjNB2FiUlJYwbdziXXXYVNpudDz54j5tuupY33/ygwg4Pzz77FFdeeQ3XXfcnPvzwff7yl5t4/fX3aN++A4WFhVxzzRWceup0/vjHGygpKeWxxx7i7rtv5957/xkeY+7cDzn99LN46qn/Vvt6Pv30Y55//hmuu+4m+vTpy+rVq7j//rtITEzk8MOP5O233+D777/lzjvvp3379uzcmUFBQX6Nr7EqP//8E23atOOJJ55l0aKfefjhf7B48c+MHz+B5557mXfffZM77vgr7747F5fLRSAQoH37Dtx11/0kJiaxdOkvPPjgfXTo0JExYw7l2mtvZPv2bfTp04+LLroEgOTklFp/byKpWSeXIiIiIiLScMcfP5XnnvsPWVmZFBcXs2nTBiZNOqZByaXdbic+Ph6LBdLSqm+omZKSAkB8fEKF49LT+5Oe3j/89ezZ1/HNN1/y008/cNxxU8KPH3PMcUyZEqoMXn31H/n554W8//67XHbZVbz77psMGDCQSy65PHz8TTf9hXPPPZ3c3BxSUkIzGrt378Fll11V4+t57rn/MHv29RxxxJEAdOrUmXXr1vDBB+9x+OFHsnfvbrp27cbQocOwWCx06NDxgK+xKsnJyVxzzfUYhkG3bj149dUXiYlxMH36WQBceOEfeOedN1m/fh3Dhg0nJiaGWbMuC5/fqVNnli1bwpdffsaYMYcSHx+PzWbD6XRWuHZtvzeRpORSRERERKSe6lNFbAppaW0YNWosH388l8LCAiZOnITLFdekMZWUlPDcc/9h4cLvyMnJJhAI4PF42LNnd4XjBg4cXOHrQYOGsGXLZgA2bFjPokU/MXny4ZXGz8jYEU6g+vcfUGMspaWlZGTs4O67/497770j/Ljf7w8nkccfP5U//vEqzjlnOoceOp4JE45g5MjRdX7dvXr1rjAdOTk5hR49eu33dTJWq5W8vJzwY++++xZz537Inj278Hq9+Hw+RowYWeN1avu9iSQllyIiIiIiB4GpU0/iqacep6SkhP/7v7uqPMZisWCaZvhrv98ftXj+/e9H+OWXRVx55bV07tyFmJgYbrzx2koNd8q2sK8UJ4SSwsMPP7LKqmTbtm3Df3Y6Y2uMpbQ0tLXKn//8f6SnV0xEbbZQytS//0DefvtDfvzxexYt+olbbrmBY445lptvvu3AL7aK8fZ/Lb9/DEI7YQB8/vknPPHEv5g9+3oGDhyEyxXH888/zZ49ew7wmmr3vYkkJZciIiIiIgeB8eOP4IEH7iU21lVt1Ss5OYWcnOzw1xs2rKtxTJvNTiAQPOC1bTYbwWCgwmO//fYrU6eeHJ6GWlBQQGZm5YRp5coVTJ58fPjrVatWMG5cqBrXr186CxZ8Q8eOnbBaq1/neCCpqWm0adOWnTszOProY6s9LiEhgcmTj2fy5OMZO/Yw/v73v/KnP/0ZwzCqfI2R8NtvvzJs2AhOPXV6+LHt27fjcDjCX9vt9krXjtT3pi6a9VYkIiIiIiISGTabjTffnMOLL74Wrvz93ogRI3n33bfYsGE9v/32K88880SNY3bs2JHi4iKWLFlMXl4ebre7yuM6dOjE4sU/k52dRUFBAQBdunTj66+/ZP36daxbt4bbb/9LlY1wvvjiUz7++CO2bdvKE0/8i23btnLKKaFEa9q0M8jNzebvf7+NNWtWkZGxg4ULv+P++++uy7cGgAsvnMVLL/2Xd999k23btrJhw3o++OA95sx5B4A333yVL774lG3btrB16xa+/fZrunbtFp7iWtVrjIQuXbqxatUKFi36kW3btvLvf/8rPC24XIcOnVi5cgW7d+8iLy+PYDAY0e9NbalyKSJSZtcON78tKSIny4sZBNOE7r1jGT8ppalDExERiYi4uJq3oLj66j9y9913cPnlF9GpU2dmz76O6667utrjhwwZximnTOOvf72Z/Pz88FYkVY37+OMP8/7779K2bTveeed/zJ59HffcE7pWSkoqF1wwi/z8vErnzpp1KfPnz+OBB+6hbdt23Hnn/XToEFrr2rZtO5544jmeeuox/vjHK/H5fHTs2JnDD59Yt28McOqpp+N0xvL666/w+OOP4HK56NOnH+ecE9oa0emM5eWXXyAjYztWq5WBA4dw113/qPE1RsIpp0xj3bo1/PWvt2AYVo499gSmTj2Z9ev37aoxY8ZM7r77ds4993Q8Hk94K5JIfW9qy2LuP6laquXzBcjLK2nqMCowDAtpafFkZxcRDOqvUSLrYLu/Vi8v4s3/7qryuatu7U7b9o4qn5P6OdjuL2l8usck0vx+P1lZGbRp0xmbzYbNZuD3H3g6qDTM7/fdPFg01f31+/t8f8nJLuz2mqfXqnIpIgc90zT5en5ofcmRx6fSd2AchmFh5dJCvvsil58X5DH19HZNHKWIiIhI86Y1lyJy0Nu0roQ9O7107BrDxONS6dzNSccuMYyblILNbmHZzwWUlkR+gb6IiIhIa6LkUkQOej98lQfA+EkpFRocuOKsDB2VgM9rsurXoiaKTkRE5OD13XeLD7opsS2ZkksROai53QE2rSshLt7KgKGVmxz06B3aFysny1fpORERERHZR8mliESd2x1otk0Ptm4sxQxCr3QXVmvltuyJyaGl6QV50dtEWkRERKQ1UHIpIlGVnenlX3du4dWndzZ1KFXatLYUgF79Yqt8XsmliIiISO0ouRSRqPF5g7z1/C5Ki4NsXl/aLJvibFoX2mKoZz9Xlc8nJIaSy8J8JZciIiIiNVFyKSJRUVoS4LVndrJnpxcsgAlbNpQ2dVgVFOb7ydztJa2tneQUe5XH2B0GsXEGBfl+tC2wiIiISPWUXIpIxG3dVMrTD21n8/pS2ndycOzJbQDYvL6kiSOrqDyeXulVVy3LJSbZ8PtMSkua57pRERERkeZAyaWIRIzXE2Teu3t5/rEd5Gb5GDA0jouv7cqgEaEurJvXN6/KZfmU2F7VTIktp3WXIiIijeOKKy7mm2++DH+9fv06Zs06j6OOOowLLzyHgoJ8Tj75ODIz9zZhlFIdW1MHICKtg2mavPREBju2unG6DE6Y1pahIxOwWCzExBiktbWTudtLYYE/vI6xqePdtK4UiwV69Km6mU+5xKSy5DLfT4fOMY0RnoiISINNmDCqxucvuugPzJp1WaPEsmbNap599knWrFlFaWkpbdq0ZfDgodxyy1+x20NLUxYs+Jri4mKOOOKo8HlPPvkY7dq15+67HyA21kliYhInnHAizz33H2655a+NErvUXtP/hicirUJpSZAdW90kpdi45LqulRLIXukusjPzmfvOXk4/vyM2W+VtPxpT9l4fBXl+OnWLIdZlrfFYVS5FRKQl+uCD+eE/z5v3P+bMeYdnnnkx/Fhs7L6ZO6ZpEggEsNkinx7k5uZw3XVXccQRR/Lww0/gcrnIyNjBV199QTAYAELJ5TvvvMUJJ5yExbLvd4SMjO2cccbZdOjQIfzY1KknceGF53LVVX8kISEh4vFK/WlarIhERG62D4AOnWOqrEwePjmV1DZ21iwv5uN3m34qS22nxIKSSxERaZnS0tqE/3O5XBiGEf5669YtHHvsEfz44w9cdNE5HHnkoaxfv5a7776d2267qcI4t912E3fffXv4a4/Hw2OPPcwppxzP5MmHc8UVF7NixW/VxvHbb8vxeNzcdNNf6Nu3H507d2HMmEO5+ea/EBPjBCA3N5clSxYxfvzh4fMmTBhFRsYOHnnkn0yYMIrnnvsPAN269aBdu3Z89903EfxuSSSocikiEVGeXKakVd11NTHJxoVXd+HRu7ewclkRJ57ZrsInk41t0/raJ5cJSUouRUSkagmzL8fx8dxGu573hKkUPvZUxMb7z38e5+qrr6N9+w4kJSXX6pxHHnmArVu3cOed95GW1obPPpvPddddxWuvvUPbtu0qHZ+amorX6+W7777liCOOrPLf/+XLl+FyuejatVv4sQ8+mM8f/nABp512OlOmnFSh0pqePoBff13KCSecWPcXLVGj5FJEIuJAySWEKoAdOsWwY6ubnCwfaW0djRVeJbszPAB07eE84LHllUvtdSkiIq3NH/5wJSNHjq718bt37y6bYjuP1NQ0AC688BJ++OE7Pv30Y84994JK5wwePJRzzjmfv/3tFhISEhg4cAijR4/l+OOnhqe17tmzi9TUtAqJZ1paGwzDwOVykZbWpsKYbdq0YePGDfV5yRJFSi5FJCLyapFcAnTqFkoud27zhJPLYNDEMBq3iukuDeKIsWB3HHh1QHharJJLERH5nUhWEZtC//4D6nT8pk0bCAQCnHXWqRUe93q99OnTt9rzrrzyGmbMmMnixT+zcuVvvPrqi7z66os8++xLtGnTFo/Hg8NR+6Z5DkcMHo+7TrFL9Cm5FJGIKK9cJqfV/LbSuZsTyCdjm5shIxP46ds8vpyXzUWzuzRaJ9Zg0MRTGgxPdz0Qp9OKI8aiabEiItLqOJ0VO6ZbLBZM06zwmN+/79+/0tISbDYb//3vq5Wmt8bFxdV4rZSUVCZPPp7Jk4/nkkuu4OyzT+P999/lkksuJykpmcLCglrHXVhYQHJySq2Pl8ahhj4iEhG5OaF/eJJTD1S5DE1D3bk99GnjupXFeNxBFnyWE90A9+P1BjFNiHHW/i3QFW/F4w7i95sHPlhERKSFSk5OIScnO/x1MBhk06aN4a/79u2H3+8nPz+PLl26VvgvJSW11teJj48nLS2N0tLQHtj9+qWTlZVJcXFRrc7fsmUzffum1/p60jiUXIpIgwWDJvk5PuITrTgOMM00ra2dGKfBrh0eAgGTzD1eAFb9WsR3X+Qw7929eL3BBscUCJgs/DqX7ExvpefcpaHxnbG1fwuMiwttV1JSHGhwbCIiIs3ViBEjWblyBZ9//gnbtm3l0UcfJD8/L/x8t249OProyfz973/l22+/ZufODFauXMHzzz/D0qW/VDnm998v4M47/8bChd+zY8d2Nm/exJNPPsbmzZvC3WH79k0nMTGJ335bfsAYPR4Pa9euZsyYQyPymiVyNC1WRBqsIM9PMHjg9ZYAhmGhY9cYtqwvJWOrOzzV1DTh8/+FPilt1zGGUeOSGhTTiqWFfPJ+Fgs+y+W8KzrTscu+Kbf1SS5d8WXJZVGAxFpOpxUREWlpDjtsPOeeewGPPPJPTDPIGWfMYPTosRWOue22v/P888/w6KMPkpWVSUpKKoMHD+WYY46rcswePXricDj4178eZO/ePTidTrp378Fdd/2DQw4ZBYDVamXKlBP57LP5HHrouBpj/P77BbRr157Bg4dG5kVLxOg3JBFpsPB6ywNMiS3XpZuTLetL+WVhPgDdejkpyPNjtVrIzvSxYmlhg5PLNctD02pKigO88lQGf/y/HtjtoWTSE04urbUeL64suSwuUuVSRERanunTz2L69LPCXx9yyCi++25xlcdedtlVXHbZVdWOZbfbufTSK7n00itrde3Onbtw8823HfC4M888lwsuOIvMzL3hLU3eeed/lY57++3XueCCS2p1bWlcmhYrIg2WVTa1tTaVS4Ce/ULNA1YsCSWA3XvHcu1fe3DVrd1JSLKyZUNpg7b98HmDbFhTgiPGQuduMRQXBcjL2TeeuzSUINatchn6LK5EyaWIiEhUtGnThptuuo09e3ZXe0xBQT4TJhzB5MlVV0mlaSm5FJEGWb64gPnvZwHQuVvtur127RmL1WohEAg1x2nb3oHFYsEwLAwangBmaA1mfW1cV4LPa9J3QBxtO4Riys/1hZ+v15pLVS5FRESibuLEo2qc7pqYmMS5515QqVOtNA9KLkWk3kzT5KO3MwkGTY47tQ39BtXcgrycw2HQtZcz/HV5Aggw+JDQZsqLf8gPJ591VT4ltv+QeJJSQhXH/Nz9K5d1nxbrUkMfERERkRopuRSRevN6TLyeIG3aOTjsyJQ6fYrYq68LAIsF2rTbN522c7cYuveOJXO3l2U/136/q3Ied5BVvxZhs1voO9AVTi7336OyPtNi4/Zr6CMiIiIilSm5FJF6K6/ilVf16qJ83WVKmh37ftuXWCwWjj2lDQBfzsvG66l5WxKPJ8irT2eEp9EuX1yA12MyeEQ8zljrfpXLhk2LLe8WW6zKpYjIQWnf56fa71has9D9Xd9Zx+oWKyL1Fk4u4+ueXHbu5mT0hCQ6d3NW+dyAYfGs/rWITetK6D8kvtpxtm4sZf2qEtavKuH6O3qy6PtQB9pR45MBSEoOVUUrTIt11yO5jFPlUkTkYGYYVgzDSl5eFgkJyYADv1+JpkSLpZHvL5NAwE9hYV74Xq8PJZciUm/liZYrrnKSZmzfhhkXh5maVuW5hmFh6untqh27T38Xq38tYvsWd43J5f7J3jMPbacw30/HLjHh5kKJ5ZXLvIatuVRDHxGRg5vFYiEtrSMFBTnk5u7FMAyCwZpn14jUV1PdXzExLlJS2tW7YZKSSxGpt+qmxboeuJe4B+4l0LUbuV8swExOqfPYXXuEKprbN5fWeNz+yV5hvp/EZBsnTGsbflN0OAxi4wwK8vyYponFYqnXmktHjAWrzaLKpYjIQcxqtZKS0haLxSQpKZacnGKCQVUvJbIMw0JKiovc3JJGu78sllBCa7E0bNWkkksRqbeqkktLVhauRx8CwLp9G65/3EPxPQ/Ueew27R3EOA12bvcQCJhYrVV/glZUGKpIHnVCKqltHQwYGofNVvGNMSnFzu4dHkqKA8TF2+q15tJisRAXb6Ug308waGIYaoEuInKwslgM7HY7NptNyaVEnGFYcDgc2GzeFnd/qaGPiNRbVWsunW+/gcXjwT3tDEybDeecd8Dvr26IahmGhS49nPh9JrszPNUeV1wYiqFbr1iGHJJQKbEESEquuB1JeXIZ46zbegJXvBVMKC1R9VJERETk95Rciki97VtzuS9Js3/7FQCll1yGd+JRGNnZ2L/7tl7j75sa6672mKKy5DI+ofqJGL/f69JdGsBmt2Cz1a36GBendZciIiIi1VFyKSL1VmlarN+P/acfMV0u/MNG4D1+KgCOb7+u1/hde4aSy28+zeaT9zMJBCpPDSkumxYbl1B9FTIpZV/HWNM08ZQG6zQltpxLe12KiIiIVEvJpYjUW0lxaHppeXJpW7UCo6gQ36ixYLfjm3A4APYfFtRr/O69Y+k70IW7JMjCr/PYvqVyBbOoMIBhhVhX9W9n5dNi83J8+LwmwWDdOsWWU8dYERERkeopuRSRevv9mkvryhUA+EccAkCgVx8C7Ttg+3UZlqLCOo9vsxmce2lnjjw+FYA9OyuuvQwGTUqKQk16amqZ3b5zaFuSjG3uejXzKafKpYiIiEj1lFyKSL2VFAWw2iw4HKHEzrZ6FQD+9P6hAywW/KPHYgkEsC3/td7XadcxlBzu3VUxuSwtCWCaEF/DlFiAtLZ2nK5Q59niotA02vokl6pcioiIiFRPyaWI1EswaFJSEsAVZw1XDW1rVwPgTx8QPs43PFTFtC1bWu9rte/kAGDvLi8Apmmy5Mf8cKOfmtZbQlnn2e5OAn6TLRtC+2bWq3JZNv23vGIrIiIiIvton0sRqRePO4gZBFfcviTNunYNpmEQ6Nsv/Jh/+AgAbMt+qfe1klPt2B0W9u7yYpomO7a4+fCNvcQ4Q9eOiz/w+smuPZxsWF3C+tUlgNZcioiIiESaKpciUi+/X29pKcjHujODQI+e4HSGj/MPGw6AvQGVS8Ow0LaDA487SH6en8w9oQqmxx1aP1nTNiTluvSIBWDT2lBymZJmr/C8ddMG4m+5AeuqldWOoTWXIiIiItVTciki9fL7PS6ta9cAENhvSiyAmZSMv1dvrFs2Y8nNqff12nUoW3e500v2Xl+F5w40LRagc/cYKOv506a9g9ETksLPWXKySZ5yDLH/fYbk06Zg2bOnyjFUuRQRERGpnpJLEamX3+9xaStLLv39+1c61l++7vLXZfW+3r51lx6yM70VnjtQQx8Ap9NKl25OrFYL089rj8Ox7+3P+fqrGDmhxNfIzcX53ttVjxFrYDG05lJERESkKkouRaRefp9cWteEOsUG+g+sdGz5ukv7siX1vl55x9jdOz1kZ/6+clm75eNnX9KRK2/pRscuzgqPO19/GYCCx54CIOaDd6s832Kx4IqzUlIUwDTNOsUvIiIi0topuRSReikpDq13LF+HGK5c9quhctmAdZedusZgscDWjaXkZPpwxVtp2yFUzUxIrF1znvgEG2ltHRUes2RmYlu3Fn/vPnjOnEGgS1fsS37Bkp9X5Rhx8VaCQcL7ZYqIiIhIiJJLEamXSmsuN28GINCrd6VjfYOHYlos2H6tf3IZ67LSqWsMhfkBAgGTtLZ2pkxvy1FT0sJJZn3YF/8cinHMoWCx4Bs9Bqg+EQ439dHUWBEREZEKlFyKSL1UmBbr9WLs2EagU2eIja18cHw8gX7pWDN2YMnMrPc1e6W7wn9Oa+ugZ18XE49NDe+zWR/2RT8B4B89NvT/ESMBsFUzhTcuTk19RERERKqi5FJE6mX/5NK6fSuWYDC0DUk1/EOHA2BfXv/qZa9++yWX7ew1HFl75cmlryy59I0YFXp8SdX7cmo7EhEREZGqKbkUkXrZt8+lgXVL2ZTYnr2qPb68qU9DOsZ27enE7ghVKX+/drJePB5sy5YQTE4m0LcfAIFBgwCwrl1d5SnajkRERESkakouRaRewmsuXVaMzZuAmpNL37CGN/Wx2Qx6p7uwWKBD54Ynl7bffsXi8eAbNQaM0NuhGZ9AoHOXUMLsdlc6R5VLERERkarVrn+/iMjvlBQHsDss2B0G1lokl/7BQzANo0FNfQBOPrs9udk+Uts0PLm0Lwo18ylfb1mufH2odeMGAoMGV3hOlUsRERGRqqlyKSJ1FgiYlJYG9+sUW5Zc9qg+ucTlIpDeH+uunVj27Kn3tV1xVjp3cx74wFqw//wjsG+9Zbny7VRs69ZUeX1Qt1gRERGR3zsoksvS0lKOOuoo/vnPfzZ1KCKtgrs0AOa+KaLlyWWwZ/UNfQD8w0LrLhvS1CdiTBPbop8wrVZ8ZR1iywX6pQNgXb+u0mmqXIqIiIhU7aBILp966imGDh3a1GGItBolRUGgrIoXCGDdtpVgm7aY8Qk1nucbNhxo2LrLSDG2bcW6dw/+wUMhLq7Cc+Vdb8sbFe1Pay5FREREqtbqk8stW7awadMmJk6c2NShiLQa+29DYmTswOLz1bjeslx55dK2fFk0w6uVfVNix1R6rsbkMs4KFlUuRURERH6vWSeXixYt4vLLL2fChAmkp6fz1VdfVTrm1VdfZdKkSQwZMoQzzzyT5cuXV3j+/vvv5/rrr2+skEVahdxsH888tI1N64uqfL7CHpe1aOZTzj9oCKbV2iwql+X7W/rHHFrpuWCnzph2e5XJpWFYcDgseL3BqMcoIiIi0pI0626xJSUlpKenM23aNGbPnl3p+Xnz5nHvvfdyxx13MGzYMF588UUuueQS5s+fT2pqKp9//jk9evSgZ8+eLF3a8F9mDcPS4DEiqTye5haXtHzrVxWzfYubzz/awxkXdqj0fGlJKLmMS7BiK0vAgr16H/hejHMR6D8A28oVWPfsxuzYMeKx15Z9cahTbGDsoZXjNmwEu3XHunEDRnERJFSc7mu3G3jcQf3sNYDevyTadI9JNOn+kmhqyfdXs04uJ06cWON01ueff56zzjqL6dOnA3DHHXfw9ddfM2fOHGbNmsWvv/7KvHnz+OSTTyguLsbv95OYmMill15a51hsNoO0tPh6v5ZoSkmJO/BBInXg9+YDsPq3QuLiemI1LLz76g7Wry4kJsZKatvQNiDt2rmIX7oDANfQgbhq8zMydgysXEHq5jUwuG/UXkONCgpg1Uro0oWUof2rPqZfX9i4gbT8vdCjYhIc47RSXBQgJSWuRb7xNyd6/5Jo0z0m0aT7S6KpJd5fzTq5rInX62XlypVcccUV4ccMw2DcuHEsW7YMgBtuuIEbbrgBgPfee49NmzbVK7EE8PuDFBSUNjjuSDIMCykpceTmFhMMmk0djrQie/eE7nWvJ8jP3+9l2c8FrF6+b4rs5g3FAJj48a5agwPIb9MRf3bV02j3F9N/CPFAyTffUzruqGiEf0D2r78mMRjEM2osRdXE7OrcjVigcNkKvF16V3jOGurpw57dhThimvXqgmZL718SbbrHJJp0f0k0Ndf7KzExFrvdWuMxLTa5zM3NJRAI0KZNmwqPp6WlsXXr1qhcszn95e4vGDSbbWzSMhXk+8N/fvuFXfj9Jqlt7Uw7twPPPrI9/JzTZWCUrbn0de+JWYv70HdIaNsP26Kfm+y+tf60r5lPdTEEunUHwLJpc6VjbI5QtdLjCWCzq3LZEHr/kmjTPSbRpPtLoqkl3l8tNrmsjmmaWCyVf9mbNm1aE0Qj0jIVliWXFgv4/SYdu8Qw4w+dSEyy0aFzDLszPAC4XBasWzYTTErGTEmt1dj+gYMJxsWH1jz6/WBr/LehfZ1ix1Z7TKBHqEFRVU197GUJpc/bst7wRURERKKpxc7nSklJwWq1kpWVVeHxnJycStVMEambogI/doeFk8/qxJgJSVw0uwuJSaEksHd/V/i4hKK9WEpLCfQ6cKfYMJsN/8jRWEqKsa38LdKhH1gggO2XxZguF/5BQ6o/rIbtSOz20Funz6fkUkRERKRci00uHQ4HgwYN4ocffgg/FgwGWbhwIcOHD2+6wERaOJ8vSGlJkIREG8ee1IETz2xfYV1hn/2Tyz1bAAj07P37YWq+xtjQ9h/lFcTGZF2zGqOoEN+IkWC3V3tcoHuP0PFVJZeO8sqltiMRERERKdesk8vi4mJWr17N6tWrAdixYwerV68mMzMTgIsuuog33niDOXPmsHHjRm6//XbcbjennXZaU4Yt0qIVFYS2GUlIqnq6ateesThjDRKSbNi3hhKvQK+6JpeHAWD7qfGTS/tPC0Mx1DAlFoDYWAIdOmJkbA9N391/DIcqlyIiIiK/16zXXK5YsYLzzz8//PVdd90FwNVXX83s2bOZMmUKOTk5PProo2RmZjJgwACeffZZUlNrt/ZLRCorLAglUgmJVXcDs9ksXHh1F7CA9ZmNQD2Sy0NGYVqtoUTPNEOLOxuJfeH3oRgOG3/AY4PdumPdvQsjYwfBskomEG7io8qliIiIyD7NOrkcO3Ysa9eurfGYmTNnMnPmzEaKSKT1KypPLqupXAJ06BwDgHVT/ZJL4uPxDxmKfdlSrJs2EOjdSPtdmib2hd9jWq34R4854OGB7j2w//wj1q1bKiSX5Q19/KpcioiIiIQ162mxItL4CvND02LjEw/82ZN1c1ly2bMODX3K+I4I7XFp/+brOp9bX9bNG7Hu3YN/2HDM+IQDHl++HYl1W8XtjcLTYtUtVkRERCRMyaWIVFA+LTaxhsolAMFgaBuSlJRab0OyP+8RRwLg+OarOp9bX/YfyqbEHnrgKbGwX1OfrVsqjlM+LdanabEiIiIi5ZRcikgF5Xtc1jQtFsDYtROL2133KbFlfGMOxXQ6sX+/oFLDnGgJr7ccV7vksnwqrLFtS8VxVLkUERERqUTJpYhUEO4WW01Dn3Lh9ZZ13IYkzOnEN/YwjIJ8bL8urd8YdWGa2L/7FtMw8I05tFanqHIpIiIiUntKLkUkLBg0yc32AQeuXNa7mc9+vBMnAeD4+st6j1Fb1jWrse7aiX/ESMzklFqdE+zQEdPhqGLNZXm3WFUuRURERMopuRSRsMXf55OT5aN9JwcxzprfHiKSXB49GQDHJ/PqPUZtOb78PHTNScfU/iTDINC1G0ZWFhQVhR+227XPpYiIiMjvKbkUEQDycnx89r8sDANOPac9lgPsPdmQTrHlAv0HEOjRE/uypRg7M+o9Tm3UK7kktNclVOwYu69yqWmxIiIiIuWUXIoIAJvXl+Lzmowcl0THLs4DHm/dvAloWOUSiwXP8VMBcMyPYvWyqAj7Tz8QTE3FP/yQOp1a1bpLW1nlUvtcioiIiOyj5FJEAPC4Q1W45FT7gQ8u34YkLQ0zKblB1/VOORGAmI8/atA4NXEs+AaL14t34lFgrblR0e8FuvUAwLpfx1hVLkVEREQqU3IpIgB4PaFE6UBrLQGMjB1YPJ76d4rdj2/0WIJpadi/X4AlJ7vB41Ul5n/vA+A94cQ6nxvoHpoWa+w/LVZrLkVEREQqUXIpIsC+ymVtkkvrhvUABHr3afiFrVY8J5+Gxe8n5v33Gj7e77ndOObPw3Q68RxzXJ1PD1YxLTZcuVRyKSIiIhKm5FJEgP2Sy5gDvy3Y1q8FwN83PSLXdp85AwDn269HZLz9Ob7+EqOoEO8xx0F8fJ3PD1TV0MeuabEiIiIiv6fkUkQA8NRhWqx1bSi5DPSLTHLpP2QU/l69sf+yGOvG9REZs1zMB6FqqOfkU+t1vpmcQjApOZRcmqFKpd2habEiIiIiv6fkUkSAfZVLRy0ql9b15cllv8hc3GLBU169fP3VyIwJWPLziJn3P0xXXL2mxJYLdOuOpaQES2YmoMqliIiISFWUXIoIULeGPrb1azEdjnAn1Uhwz5iJabPhfOUFKCmJyJgx77yJpbQU9/Qz6jUltty+dZebAbCVJZfaikRERERkHyWXIgLUvqGPJTsbIzs71MzHZovY9YMdO+E56RSMnByc777V8AFNk9iXngfAff5FDRrq9+suLRYLNrsFn1fJpYiIiEg5JZciAuyfXFpqPC7SzXz2V3rplQDEPvMkBBs25dT+00Jsq1fhGzYC/7ARDRorUE3HWJ9P02JFREREyim5FBEg1NDHarVgs9X8tmBdF9lmPvvzjxyNb/RYbGtWE/PhnAaN5XroHwCUXnJZg+Oqbq9Ln9fENFW9FBEREQEllyJSxuMO1q5T7ProJZcAxbf+FQDXfXeB31+vMWyLf8bx9ZcEuvfAM/3MBsdU016Xfr+SSxERERFQcikiQCBg4veZOA4wJRbAtnYNEJ1psQC+CUfgPeIobJs24nz5hboPYJrE3Xc3ACXX/Ski60IDXbphWiy/2+uybDsSrbsUERERAZRcigj7dYqt1TYk6zANI9TQJ0qK/3YHpmEQd9ftGLt21uncmPffxfHtV/j79MV9xtmRCSgmhmDHThgZO8DnA/ZVLrXuUkRERCREyaWI1LpTLEVFWDN2EOzWHZzOqMXjHzqc0suvxigsIP7Ga2vd3MeSm0P8bbeEQn3gEbDbIxZToFt3LMEgxo7twL69LrUdiYiIiEiIkksRqXVyaduwDgB/lNZb7q/4pj/j79WbmM8+wfXAvQc+we8n8Q8XYWTuxX32ufjGHx7ReILl25GUrbu0OzQtVkRERGR/Si5FBE8tp8WGO8VGab1lBS4XBS++TjAhkbgH78f53NPVHxsIEH/z9aHpsAMGUXjPAxEPJ7wdSdm6S1tZ5dLn1bRYEREREVByKSLsq1w6DlS5XL0KAH96/6jHBBBI70/BMy9gOhwk3Hoj8bfeiKWwoMIxxp7dJF54DrEvv0CwTVvyX3od4uMjH8vvK5flDX00LVZEREQEgIa3URSRFq/W02JXrQDAP2hI1GMq55t0DPlvf0DiBTOIfe5pYt5/F89xUwj06oN180acc97BUlKCv09f8l97J7xtSKQFuvcEwAhPi1VDHxEREZH9KbkUkVp3i7WuXIFps0Vtj8vq+A4bT+43PxJ3z9+Jeet1Yl97OfycGRNDyVXXUvLHGzCTkqMWQ6BXbwCsmzYCWnMpIiIi8ntKLkUOIsGgScBvhhOjcrWpXFoyM7Hu3YN/wECIiYlqnFUJduxE4WNPUXT73dgXfo+xZxfB9h3xjZ+AmZIa9eubbdsSjE/AtmkjmGa4W6zWXIqIiIiEKLkUOYi8/9oeViwpZNCIBI4+MY3klNBWHbVJLsNTYgcOjn6gNTDT0vCeeHLjX9hiIdC7D/Zfl4bWeSa7AMjN9jd+LCIiIiLNkJJLkYPI9i1ugkH47ZdC9uz0cOKZ7fj+i1xKigMAOGqYFmtb2TySy6YU6N0b+69LsW7cQNtOowDYu9vTxFGJiIiINA9KLkUOIkUFfmKcBp27O9m0toT//mtHhedrVbkcdBAnl736AGDduIF2h4wDIHOXtylDEhEREWk2tBWJyEHC4wni85okJFqZfl57EpNtYAGr1RI+psbkcmXjd4ptbgK99yWXzlgrick2crJ8WncpIiIigpJLkYNGcWFobWB8oo24eBuX3diVq27pTvrguPAx1XaL9XqxrltDsE0bzHbtGiPcZimcXG4OdYxt18GBaULWXlUvRURERJRcihwkigpD6yrjEqyh/8fbaNveQb9B+yWX1VQurRvWY/H58A8cAhZLlcccDMLbkWzcAEC7jg4A9u5WcikiIiKi5FLkIFFUEEou4xMqLrXuO/DAyaVt5W/Awb3eEsBMTCLYpi3WLZvB76ddx9CWLHu17lJEREREyaXIwaKofFpsWeWyXFy8lWGjE+ja01lDclneKXZQdINsAQK9+2Dx+TC2b9tXudyljrEiIiIi6hYrcpAoLpsWG59orfTcaed2qPFc22/LgYO7mU85f+8+2H9aiG3TBtoc3gMskLlHlUsRERERVS5FDhJFBaHKZVxCHT9TCgax/boUMzaWQP8BUYisZQlvR7JpIw6HQXyClYJcP8Gg2cSRiYiIiDQtJZciB4nyhj6/nxZ7IMbmTRgF+fgHDwWbJjvsvx0JQFKKnWBw35pWERERkYOVkkuRg8S+5LJuCaJt6RIAfMNHRDymlqhychn6fubn+posJhEREZHmQMmlyEGifJ/LuDpWLsuTS//wQyIeU0sU6NET02KpIrn0N2VYIiIiIk1OyaXIQcA0TYoKA8TGGVitddun0vZrWXI5YmQ0Qmt5nE6C3bpj3bEdiopISrYDkKfKpYiIiBzklFyKHAQ8niB+n1nnKbH4/diW/0owIZFAr97RCa4F8pc1NrKtX6vKpYiIiEgZJZciB4HyZjN1bebD6tVYSkrwDxsOht4uygX69QfAunYNyalKLkVERERAyaVIq2eaJhtWFwN1X2/J4sWA1lv+nj89lFza1q4hKSU0LVYNfURERORgp30FRFqxbZtL+erjbDavKwWg/+D4ug2waBEAvhFKLvcXKEsurevWEOsysDss5OepcikiIiIHNyWXIq1U5m4vLzy2g2AQ0traOemsdvTo46rbIGXJpX+YtiHZn79vOqbFgm3tGiwWC0nJNrL2+vC4g8Q4NSFEREREDk5KLkVaqa0bSwkG4ZDDEpl6ers6d4mlpASWLSPYpg3Brt2iE2RL5XIR7Nod67YtoY6xKXay9vrIz/XRrmNMU0cnIiIi0iT0EbtIK7VnlweA3umuuieWlO1v6ffjH3MoWOp+fmvn71+27nLDOnWMFREREUGVS5EWyeMJ8sOXuezd7SXWZTD19Hb4/SbrVxazd7eXIYcksHeXF4D29ayk2X9eCIBvzKERi7s1CaQPgE/nY12zmsTk7gBadykiIiIHNSWXIi1MTpaP15/dSeZub/ixEWMT+enbPFYsKQJgx1Y3e3d5sNospLSx1+s6tp9+BMB/6GEND7oV8vdLB8C2bi2Jx54IQGG+kksRERE5eGlarEgL8+Gbe8jc7aV3uovBI0LdX/Nz/ezZGUo2HTEGm9eVUFoSpG17R72mxBIMYlv0Mzid+IcOj2D0rUeg/wAArGtXk5AU+pxOyaWIiIgczJRcirQge3d52LK+lJQ0O+de1okuPZxAKLnMz/XhiDHoPyQO0wwd366jo17Xsa5bi5GfB6NHg6N+Y7R2/j79gNBel4llyWWBkksRERE5iCm5FGlBFn2fD8Co8UkYhoWklNCU1z07PXg9JsmpNtIHx4WPr29yaf85NCWW8eMbFnBrFhdHoFsPrNu2kmgPNU9S5VJEREQOZkouRVqIrD1efl1UiM1uYcTYRAASk0MVs22bSgFISrHRu78Lwxo6p77bYii5rJ3yjrHxW9ditVkozA80cUQiIiIiTUfJpUgLsG1zKc88vB2vJ8jIw5JwxYWyx/ItMPJyQhWz5FQ7TqeV9MHx2B0WOnVtYHI5blzDg2/F/IOHAGBftYLEJBslxQH8/mATRyUiIiLSNFp1t1iPx8O5556L1+slGAxywQUXcMYZZzR1WCJ19u0nOXjcQcYfncLRU9PCj8fFW7HaLAT8oUWWSWWVzNPOaY/bHSQ+oe4/4pY9e7Bu2Yy/Xzq21FTILorMi2iF/IOGAmBb+RsJnY8hN9tHYX6AlDR9biciIiIHn1adXDocDl588UXi4uIoKSnhpJNO4rjjjiMxMbGpQxOptWDQZPsWN3aHhUlT0jCMfd1fLRYLSck2crJ8ACSlhtZgOmIMHDH1S3AcPywAwD9uQut+g4gA/6DBANhW/EbCwH1NfVLS6rf9i4iIiEhL1qo/XrdYLMTFhZqbeL1eTNMkGNSUNWlZ9u7y4nEH6dzdWeW2IuVTYwGSUxqeDtq/+xYA34QjGjxWaxfs0ZNgXDzWVStJTAi9naqpj4iIiBysmnVyuWjRIi6//HImTJhAeno6X331VaVjXn31VSZNmsSQIUM488wzWb58eYXn3W43J598MkceeSSzZs0iOTm5kaIXiYzyZj3desZW+Xx5Ux/YV7lsiHByOf7wBo/V6hkGgYGDMIqL6ODZCSi5FBERkYNXs04uS0pKSE9P529/+1uVz8+bN497772Xq666ijlz5pCens4ll1xCTk5O+Bin08mHH37Il19+ybx588jKymqs8EUiYtvm8uTSWeXz5duRGFaIT7A26FrGju3YNm/CP2AgZtu2DRrrYFHe1Kf93jWA9roUERGRg1ezXlI1ceJEJk6cWO3zzz//PGeddRbTp08H4I477uDrr79mzpw5zJo1q8Kxqamp9O/fn0WLFnHCCSfUK57917o1B+XxNLe4JLK2b3ZjsUC3XrFV/l2nlFUrk5Lt2GwN+7wopmy9pe/wibq/aikwJNTUp83ONcAoigoC+p7Vgu4viTbdYxJNur8kmlry/dWsk8uaeL1eVq5cyRVXXBF+zDAMxo0bx7JlywDIycnBZrORmJhIUVERP//8c727xdpsBmlp8ZEIPeJSUuKaOgSJkq/m7yU/10/nbrF07pJU5TFdugeBPbRtH9Pwe3TRQgBiTziW2LL7SvfXAYwfC0DajrXQFgpyAyQkuHA4mvXEkGZD95dEm+4xiSbdXxJNLfH+arHJZW5uLoFAgDZt2lR4PC0tja1btwKQnZ3NTTfdRCAQwDRNZsyYQf+yTc/ryu8PUlBQ2uC4I8kwLKSkxJGbW0wwaDZ1OBJhi7/P48M392KzWzjqhBSyq9kSJDHFpGOXGNKHuKo9plZMk+TPv8CwWMgdMhJLbrHur9ro2INUw8C6cjnWo2HrphJuuXw5J89oz5BDEpo6umZL718SbbrHJJp0f0k0Ndf7KzExFru95iVYLTa5rI5pmlgsoRJy3759mTNnTsTGbk5/ufsLBs1mG5vU37pVxQCccUEH+gyIq/bvOMZpcNmN3YCG3aPGpo1YM3bgGzqcQGIyRtlYur8OwBlLoHcfbOvXcd6Zsfy8ysrq5UW8/cIuigr9jD08uakjbNZ0f0m06R6TaNL9JdHUEu+vFjtvKyUlBavVWqlBT05OTqVqpkhLVJAXagzTqVvVjXwizbHgG0BdYuujvKlPX+9GzryoIzP+0AmLAQs+yznAmSIiIiKtR4tNLh0OB4MGDeKHH34IPxYMBlm4cCHDhw9vusBEIqQg349hQFx8wzrA1pbjy88B8E46plGu15r4Bw8DwLb8VwD6DYyjXQcHRQUBbU0iIiIiB41mPS22uLiYbdu2hb/esWMHq1evpk2bNrRt25aLLrqIm266iUGDBjF06FBefPFF3G43p512WhNGLdJwgYBJUWGApGRb43QK83qxL/gG0+XCN/aw6F+vlfEPHwGAbdmS8GMdu8SwZ6eXXTs8JCSF3moDAZM3nttJh84xHD1VMyxERESkdWnWyeWKFSs4//zzw1/fddddAFx99dXMnj2bKVOmkJOTw6OPPkpmZiYDBgzg2WefJTU1talCFomIwgI/mJCY3Dg/ovZFP2EUFeKZfBw4G2cabmviHzYcAHuF5NLJsp8L2bXDTb9BoW5vu3Z4WL+qhPWrSkhKtjNqfNUdgEVERERaomadXI4dO5a1a9fWeMzMmTOZOXNmI0Uk0jjK11smJjXOj6imxDaMmZiEv3cfbBs3YMnJxkxNo2OXGCCUUG5aV0JCko1d293hc+a9t5de6S5S29ibKmwRERGRiGqxay5FWrNwctlIlctwcnmUksv68g8/BADbsqUAdOgcAxbYuLaEl57I4K3nd7FzuweA1DZ2ggHYuc1d7XgiIiIiLY2SS5FmqLwJTEIjVC6N3buwrfwNf89eBHv1jvr1Wiv/iFByaf81lFw6YgzatHPg84ZaiGfu9rJ2ZWh7mYHD4gHIz1OzHxEREWk9lFyKNEONWbm0f/0lAD5NiW0Q3/CRANiWVmzqA2Czh5oylRQFiE+00qVHaF1rXo6vkaMUERERiR4llyLNUGMmlzGffQJovWVD+QcPwbRaK3SMPXRiMkNHJXD6+R3Cj3Xq6iQpJfT3mp+ryqWIiIi0HkouRZqhgvxGaujj8WD/8nNMlwvvhInRvVZr53IRSB+AdfcujN27AOjczcm0mR3oNyiO+MTQfqWdusaQlBJq4pOfq8qliIiItB5KLkWaoYI8P1ggPjG6yaXju28wiovwTpwEsbFRvdbBwDeiYlOfcoZhYcDQ0DrLbr1iiXUZ2B0WVS5FRESkVVFyKdLMBIMmhfl+4hOs2GyWqF7L8fE8ADwnTI3qdQ4W/mEjALAt+6XSc5NPasOFV3emVz8XFouFpBQ77tIgbnegscMUERERiQollyLNTElxgGAQEqJctSQYxPHJPEzDwDv5+Ohe6yDhHzkKAPvixZWec8QY9OjjCn+drHWXIiIi0soouRRpZryeIADO2Oj+eNqWLcG6Zze+MYdipqVF9VoHC/+AQZiuOGy/LIJAzRXJcFOfHCWXIiIi0joouRRpZsr3RSzfviJaHJ+EpsR6j9eU2Iix2fCNHIVRXIR19aoaD01KVVMfERERaV2UXIo0Mz5fKLm0O6L74xkz7yMAPMdPiep1Dja+0WMAsC/6qcbjyiuXeZoWKyIiIq2EkkuRZsbnDU2LtUexcmldsxrb2jX4Bw4m2Kt31K5zMPKPqm1yqcqliIiItC5KLkWamXDl0h69H8+YD+cA4DnltKhd42DlGzkaOHBymZoWSi53bvdgmmbU4xIRERGJNiWXIs2M31dWuXREr3IZ87/3AfCcfGrUrnGwMlNS8fdLx7p1C5Y9e6o9LjHZRufuTnIyfWzb7G7ECEVERESiQ8mlSDMT7YY+4Smxg4YQ6N03Ktc42PlGjwXAvvjnGo8beVgiAEsW5pO5x8ubz+/iyX9spahQ6zBFRESk5VFyKdLMRLuhT8wH7wGqWkaTvzy5PMDU2EEjEnDEWPh1cSH/vncrq38tYs9OLyuXFjVGmCIiIiIRpeRSpJmJakMf09SU2EYQrlz+/GONx8XEGBxyaBKYkNrWHq5krlmh5FJERERaHltTByAiFUWzoY91xW/Y1q3FN3iopsRGUaBPX4Jpadh+XQolJeByVXvs5JPbMG5SCgmJVkwTVv9WzNYNpZSWBIh1WRsxahEREZGGUeVSpJnx+6K35tL51usAeM44O+Jjy34sFnxjx2Hx+Q647tJqtZCYZMNisWAYFvoNjCMYhPWrixspWBEREZHIUHIp0syEp8VGulus34/zvbcxDQPPtNMjO7ZU4hs/AQD7D9/V6bz+Q+IAWLdSyaWIiIi0LEouRZqZ8m6xkW7o4/jmS4zMvfiOnESwfYeIji2VeQ8rSy4Xfl+n83r0jQULbNf2JCIiItLCKLkUaWZ8vug09IkpmxLrPnNGRMeVqgUGDiKYnIx9yWJw1z5RdDqttG3vID/Xry1JREREpEVRcinSzESjoY+lsICYj+cSjE/Ac/zUiI0rNTAMfIeOw+LxhBLMOujczQlAxlZVL0VERKTlUHIp0syEG/pEcM1lzP8+wOJ24znplBo7l0pk+eo5NbZz9xgAMrZ5Kjy+bmUxhQWqZoqIiEjzpORSpJmJxj6XMW+/AYBHU2IblW/ceADsP9QtuezSPVS53LFf5XLHVjevPbOTZx/eztaNpfz4TS652b7IBSsiIiLSQNrnUqSZiXRDH2PzJhzfLyDQpSu+w8ZHZEypHf/goQQTErEv/gm8XnA4anVeu44x2OwWdm5zEwyaGIaFbZtKAcjP9fP8YzuAUNOfMy7sGLX4RUREROpClUuRZibSDX1iX3kRAPc554GhH/lGZbXiO2wcltLSA+53WfE0Cx27xOAuDfLykxns3e1h57ZQFbNLdyeJyTawVKxsioiIiDQ1/aYp0syEG/pEYs2l14vz9VcwrVbc557f8PGkznwTjwLA/s2XdTrv6BPbkJRiY/P6Uj58fW94/eW5l3Xi+tt7qqOsiIiINDtKLkWaGb/PBEuoetVQMR9/hJGViXfy8QQ7dopAdFJX3omTAHB881WdzuvRO5Zr/9qDlDZ2dmx1k5vtI62tnViXFYBOXUNNf3b+rumPiIiISFNRcinSzPi8Qex2CxZLw5NL50vPA+A+/8IGjyX1E+jbj0CHjtiWLcWSl1uncw3DwuAR8eGvO5c1+tn/zxnbNDVWREREmgcllyLNjM9nRqSZj3XTBhwLviHQpSveo46JQGRSLxYLvolHYQkGsX+3oM6nDzkkIfznTl33Sy67KbkUERGR5kXJpUgT83iCrF9VTCBgEgya+H1mRJr5OF8ua+Qz8wKwWhs8ntSft2zdZV2nxkKoc2y7jqEus132q1y27+TAsIamxZqmGZlARURERBpAW5GINCHTNHnr+V1sXFNC/6FxnHJ2eyACnWLdbpxvlDXyOee8CEQqDeE9ojy5rFtTn3KnntOe7ZvddO4eE37MZjPo0DmGnds8ZO/10aZ97bY5EREREYkWJZciTei3JYVsXFMCwJrlxWDuAcDWwGmxMXPewcjOxnPiKQQ7aB/Epma2a4d/4GBsq1ZgbN1CsHuPOp3fqauzwpTYcr3TXezc5mHdqmIllyIiItLkNC1WpImsXFbIvHcyATjjwg4ArF8dSjQbVLk0TVz/eQKAksuualiQEjHhqbHffh2xMdMHhZr9rFtZHLExRUREROpLyaVIE/j+y1zefmE37tIgRxybyqDhCbjirQT85Xtc1v9H0/7dt9hWrcA3fAT+MWMjFbI0kHfikQDY67HusjqdusUQl2Bl66ZSSksCERtXREREpD6UXIo0gsICPyXFoV/+c7N9fPVxNlabhfOu6MSkKWkAJCbvm6XekMpl7NOhqmXpZVdBBLYzkcjwHToe0+HAseBrCEQmETQMC/0GxmEGYUNZ1VtERESkqSi5FImwHVvcPPvwdvbsDG1u7/ebPPWPbTz7yHb8/iDz52Ti95lMODqF3ulx4fOSIpBcWjdtwPHpfAIdOuI56dQGvQ6JMJcL39hxGLm52JYsjtiw/QaF7qFVvxZGbEwRERGR+lByKRJhX36czY6tbr6anw1A5m4vxUUBcjJ9vPb0TtauKCY51caEo1MqnLd/5dJmr9+PpvPZ/2AxTdwX/wEcavDS3HgnHwuA4/NPIjZm34EuYl0Ga1cUU1Toj9i4IiIiInWl5FKkgYoK/eH1bll7vWxaW9b99bdicrJ87Nqxb5P7TetKsVjgtHM7VFpXmZi0X+XSUffKpSU3h9jXXsF0Oik9/6L6vBSJMu+xxwPg+OzTiI1psxkMG51IMAi/LlL1UkRERJqOkkuResrP9fHfR7fzz79u5ukHtxMMmiz+Ph+ApBQbmPDzgjx27QhNj01JswNw+ORUuveOrTRehTWX9WjoE/vsf7CUFOOeMRMzNa0+L0miLNCrD/5evbGvWI6xMyNi4444NBGAJT/mY5pmxMYVERERqQsllyL19M0nOWzb5MZiCTXp2bimhGWLCjCscM6lnbDaLCz9qYCtG0sBmPGHjpx/ZWeOPD61yvEa0tDHUlRI7DNPYlqtlFx1bf1flESdd/JxADg+j1z1sn3HGDp0iSF7r4+8HE2NFRERkaah5FKkHjyeICuWFmKzWzh6aqhK+L+39uIuCTJwWDztO8YwcFg8HneQvbu8OGMN2rZ30KufC8OoOnFsSHLpfOkFjLw8PNPPJNite/1fmESdd3L51Nj5ER23fcfQGtucLF9ExxURERGpLSWXIvWwcmkhXo/JoOHxDB+biMUCBXmhitHoCckAjDwsMXx8xy4xWA6wLcj+ay7r1NDH7Sb2yccwLRZKrrm+9udJk/AdOo5gfAKOBd+A233gE2optU1o2nWukksRERFpIkouReph6U8FABxyaBLxCbbwGsp2HR106+kEoHvvWNLahn7h79jVecAx7Q6D2Dij7M+1r1w633wN657deKecRKBfep1ehzQBhwPfxKOwlJRg/2FBxIZNbVNeufRGbEwRERGRulByKVJHhfl+tm92k5xqo1uvUNI4YmyoSjl+Ukq4QmmxWBhftt1I3wGuWo1dXr2s9bRYnw/XY48AUHKtqpYthaesa2zMp5GbGptSVrnUtFgRERFpKrYDHyIi+1u/uhgIbV5fnkgOG51Iz76uCusmIVTZHDQ8gRhn7T7HSUy2sWent9bdYp1vvIp12xa8Rx2Nf/ghdXgV0pS8kyYDZU19TBMOMGW6NlKVXIqIiEgTU+VSpI7WrdqXXO7v94lludomlgBt2oemNsYnWA98sMeD66F/AFB8y221voY0PbN9e3yHjMS6bSvWlSsiMqYrzorTZZCT5dN2JCIiItIklFyKHEBRoZ/5czLJyfLh9wfZuKYEu8NCjz6V96psqInHpXLBVZ3p0uPAazSdr7yANWMHnuOn4B8xMuKxSHR5ppwEQMy8/0VszNQ0O36fSWFBIGJjioiIiNSWkksRIBg08XiClR43TZOnH9zOj9/kseCzHLZsKMXnNemd7sJmi/yPj9NppWdf1wE7y1JSguvhfwJQfNNfIh6HRJ93allyOTeCyaU6xoqIiEgTUnIpB72svV6euG8rD9+xmV07Km4NsXxxYXiLkeKiALt3eADC3WGbSuwLz2Hduwf3KdMIDB7SpLFI/QR698XffwC21SuxbtoQkTFT26pjrIiIiDQdNfSRg1pBnp9nH96OuzRUtXz5qZ244qwUF/pxxVvJ3ruvAlRcFCA3J/R1eYWoKVgK8nE99hCmYVDyp1ubLA5pOM+Uk7CtWY1j7keUzv5jg8dLSVNTHxEREWk6qlzKQW3z+hLcpUEGDY9n1PgkSooCZO3x4vWaZO/10aadnVPPaY9hQH6uj7zsUBUzObXpkkvXow9jZGfjOXOG9rVs4TxTTwYgZt6HERmvvKlUkdZcioiISBNQ5VIOanlllciefV0cclgi6YPiSGvnIDnVRnFRgPgEKxaLha/nZ5OX48dqDU03TE5rmuTS2LGd2P/8GzM2luJb/9okMUjkBAYPIdCtB/ZfFmPszCDYqXODxot1hT4vLC1VcikiIiKNT5VLOajl5ZRXIm0YhoW+A+NIbWPHMCwkJNrCjXWSUkLJZH6uH1eclZiYpvnRibvn71g8HkqumE2wY6cmiUEiyGLBM+VEABwff9Tg4ZyxoS1s3CWVm1OJiIiIRJuSSzmolVcuDzTNNTl1X5E/Oa1pCv62X5fifOdNgm3aUnr1tU0Sg0ReeGpsBLrGhiuXJapcioiISONTcikHtfLKZVJKzQljeeUSIKUp1luaJnG33wZA8c1/wYxPaPwYJCr8o8cQaNce+w/fYdm7t0FjxTgNsECpKpciIiLSBFp1crlp0ybOPvtsTjzxRKZNm8bixYubOiRpRoJBk/w8H3EJVuyOmn8UKlYuGz+5jPngPRzfL8Cf3h/3uec3+vUligwDz8mnYgkGifnogwYOZcHpNHBrzaWIiIg0gVadXMbExHDPPffw0Ucf8cADD/CXv2iz+YNddqaXFUsK8biDFBb4CQZq1/m1KSuXlqJC4v72ZwCK7nsQbOrD1dp4Tj0dAOecdxo8ltNl4PWYBAJmg8cSERERqYtW/Vtq5877Oi/26tWLwsJCTNMMN2mRxuMuDWAxLE3WCAfANE3een4Xe3Z6sTssjB6fBFSsSlZn/2mzjb3m0vXgP7Du3oX7tOn4xh/eqNeWxuEfPYZA127Yf1qIkbGDYOcu9R4rNtZKHn7cpQHi4lv1W7yIiIg0M826crlo0SIuv/xyJkyYQHp6Ol999VWlY1599VUmTZrEkCFDOPPMM1m+fHmVY33xxRcMGDBAiWUTCARM/vPP7bz07x1NGsfuDA97dnqJdRn4vCY/fJUHQHJKbSqX+35JT2nEabHWdWuJ/c+/CcbFU3z73Y12XWlkFgueU6YBEPPBnAYN5Qw39dG6SxEREWlczfpj7ZKSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NTV8XEZGBg888ABPP/10g+IxjOaVmJbH09zi+r2MbW5ys33kZoPfb+KoZn3jymWFJCTZ6NYzNipxLF9cCMDE49JYvriAnds9QChZPND3MCbGSlKKjaKCACmpBz4+IkyT+D//CYvfT8lfbobOnRv106CWcn+1Ft5pp+N6/BGc77+L5+pr6j2OyxXajsTjDjbrvzvdXxJtusckmnR/STS15PurWSeXEydOZOLEidU+//zzz3PWWWcxffp0AO644w6+/vpr5syZw6xZswAoKiriyiuv5K9//Svdu3evdyw2m0FaWny9z4+mlJS4pg6hRosWFIb/7PfY6NjRFf46Y1sJMU4rFgu8+d9dpLV18PdHBkc8hkDAZMWSIgwDjjimA4mJTt56cTsA3Xok1Orv9uKre+FxB2jfITHi8VXp7bfh26+hf3/i/nwTcQ5H41z3d5r7/dVqHDkO+vXDtmwJaTm7oG/feg2TnBIDFGG3OZrte9b+dH9JtOkek2jS/SXR1BLvr2adXNbE6/WycuVKrrjiivBjhmEwbtw4li1bBkAgEODaa6/lzDPPZMKECQ26nt8fpKCgtEFjRJphWEhJiSM3t5hgsPk27/htaV74zxvW5eFKCE3XK8jz8cjft5CQZGP8pBQg1HBn04bcCg10ImHj2hIKC/z0HejCH/DQq78Dq9VCIGBitfvJzi464BgpbQGstTq2oSx5uSRffTUGkH/PA/gLvYA36tfdX0u5v1qT2FOm43rgXkqef5nSG26q1xgWI/TztXdPMR2yrZEML6J0f0m06R6TaNL9JdHUXO+vxMRY7Paaf7doscllbm4ugUCANm3aVHg8LS2NrVu3AvDtt9/y448/kpWVxVtvvQXAyy+/TGJi/SpPzekvd3/BoNlsY/N6gmzbvC8pz9ztDcf64zd5+P0mudk+vvk0O3zMlo2lDDkksrfm+lWhhDB9UDzBoIkz1mDCMSls31xKcpq92X3/Em67FWPvXtxnn4t3wkRowvia8/3V2rhPmYbrgXtxvPc2xX+8EeqxRjwmNjR5uqQ40CL+3nR/SbTpHpNo0v0l0dQS768Wm1xWZ/9usEcddRQrV65s4ogObls3lhIMQGKyjYI8P1l7QtU3ryfI4oX54eMK8/fty7d9cylDDkmIaBwb1pQA0Lv/vim5R52QFtFrRIr9qy9wvvEqwbbtKLpDTXwOJoF+6fgGD8W+Yjm2FcvxDxlW5zFiY0OfKO7e4eGxu7cw+ZQ29B/c/KfHioiISMvXrLvF1iQlJQWr1UpWVlaFx3NycipVM6XprFtVDMDoCaFtP7L2hpLL5b8U4i4J0n9IHHZH6MOAjl1iANi22R2x62/fUkrmbi97d3lJbWtv1E6v9VJURMKN1wJQeP9DmCmpBzhBWhvPmWcDEPPma/U6v7xb7PJfCsnO9LH61+hP4xYRERGBFpxcOhwOBg0axA8//BB+LBgMsnDhQoYPH950gUlYMGiy5rdisMCIsYnEugyyM31lj4d+4T10YjKDhoeqKqPGJ5GQZGNPhgePu+HbKGzfXMpzj+zgPw9uA6DPflXL5irunjuwbt+G58RT8J54clOHI03APe1MTKsV53tvg89X5/Njy5JLvy80jSY/1x/R+ERERESq06yTy+LiYlavXs3q1asB2LFjB6tXryYzMxOAiy66iDfeeIM5c+awceNGbr/9dtxuN6eddlpThi1ldm7zUJjvp3uvWOITbLRp78DvM8ne62PLhlIcMQZde8Zy7CltOfHMdgwfk0i3nk5MEzauLW7w9Zf/EupSW/5Ldu/05p1c2n/8gdjnniaYnEzhvf9s6nCkiZjt2uGddAxGVhaOrz6v8/nO2IoL7fNy656gioiIiNRHs04uV6xYwamnnsqpp54KwF133cWpp57KG2+8AcCUKVO45ZZbePTRRznllFNYvXo1zz77bIU9LqXprC6rTvYfEmqj3KZ9aCuNxT/k4/eZ9EqPxWq14IqzMmpcElarhaGjQmstv5ibjd9f/wXMwaDJql+LsBgw5vAkevaLpVe/5ptcWgrySbjqUiymSdFd92O2b9/UIUkTcp91DgDON1+v87mxrorJZUGuv8U1AxAREZGWqVk39Bk7dixr166t8ZiZM2cyc+bMRopI6mLN8lByOWBoaNprl+5Olv5YwE8L8gDok155755+g+Lo1S+WTetK+e7zHCYelxpu0FQXWzaUUlwYoFe6iynT29X/RTSS+Fv/hHX7Ntwnn4bnjLObOhxpYt5jTyCYmITjk3lY8nIxk1NqfW75tNhywSAU5vsjvr2PiIiIyO8168qltFyF+X6yM3207eAgOTX0S+3wMYl06+WEsiJK7yrWQFosFo6f1hbDgK/n5/DSkxnk12Na36plocR28Ijm3yUz5v13cb79BoEOHSl64OF6bT8hrYzTieeUaVi8XmLef69Op8Y4DfjdLZSndZciIiLSCJRcSlRs3xLq+Nq1pzP8mNVqYfp5HYiLt9K5u7Pazq3tOsRwwVVdaNvBweZ1pTz1wDa2bCip0/U3rw8dnz64cnW0OTF2ZhD/p+sAKHzsKXWHlbB9U2Pr1jXWMCw4naG39vLOsfk5WncpIiIi0afkUqJi+5ZSALr2iK3weFKKndl/6c6FV3Wu8fzuvWO57MZuHDoxmdKSIB+/l1nraxcXhaqmaW3txMU345nfgQAJsy/HyM+j5PKr8U08qqkjkmbEP3oM/l69sf+yCOua1XU6tzyp7Dsg9OGKKpciIiLSGJRcSkQU5Pl575XdZGeG9rHcvrly5bKcM9aK3XHgW89ms3D8aW1JSrGxZ5cXd2mgVrHsq5rGHuDIpuV6+AEcC77BP2AQxX/+W1OHI82NxYL73AsAcL76Yp1ObdvegdNl0G9QKLlU5VJEREQag5LLVqao0M9LT+xg8ff5jXrdn7/LY/niQua+k4nPF2TXdg+xcQZpbRveRKRrj9A6zR1b3bU6vqbEtrmwf/MVrgfuJRgXT8GzL4Kz+cYqTcd91jmYNhvOt14Hd+3uf4BpMztwxU3daNcx1KG5qsrl7gwPX32czf/e2qPtSkRERCQilFy2IsGgybsv7WbTulK++TQH04zM9gM5WV5efiqDrZtKqz1m09qS8P+//yKXQMCka4/YenV6/b3yCuSOLW62biw9YIOf7ZvLpuQ20+TS2L2LxCtmhbYdefBfBPr2a+qQpJky27XDe8KJGLm5xMz9sNbnxbqsJCXbSS7rEPv7yqXfb/Lykxl880kOv/xQwC8/NO6HUSIiItI6KblsRRZ8nsvm9aHEqjDfz87tngaPGQyavP/aHjauKeGnb/KqPKakOMDOHR4sZXfT1/NzAEKdYSOgS4/QOEt+LOD5x3bw5n93VXus32+Ssc2D02XQpp0jItePKL+fhEsvwsjKovTCWXimndHUEUkzVzqzbGrsK3WbGguhzrFOl0FOto/3X9tN1p7QtPUNq4spLgqQkBTaEzN7ryqXIiIi0nBKLluJkuIA33+Ri9VqYdT4JADW/FZU7/FM02TrxlLmz8lk26bQdLzNG0qq3Ix98/oSMGHoyAS6944lPtHK+KNTwnE0VIfOMdjsFgryQlP7dm73sGtH1VME9+7yEPCbdOnmxDCa35YecXffgePHH/ANG0HRnfc1dTjSAvgmHkWgW3cc3y/AunF9nc/v0t1JMADLfi5k3rt7AVi2qACAIyaHuhPnZCm5FBERkYZTctlKLPw6F68nyCGHJTLuqGQA1vxWXO/xtmwo5fnHdvDzgnwMA5LTbJQWB9m7y1vp2I1lU2L79I/jotlduPHvvZh8UhucTmu9r78/q9VC526h6qUjJpQwLv2poMpjy39JbtO++VUtY959C9e//0UwKTm0zjImpqlDkpbAMHCfez4AzldeqvPpZ8/qxOV/6kZqGzub1pWyenkR61YWE+syGHFoIo4Yg+xMb8Sm0YuIiMjBS8llC7dyWT6P3r0lXLWccHQKqW0ctOvoIHO3lz076zc1tnxK7cDh8Vx6QzeGj04E9u0fub8tZVNxe/aLXnfWQw5NpG0HBzMv74xhheW/FOLzBisdl5sdSi6r20OzqdiWLSHhuqsxDYOCp58n2L1HU4ckLYh7xkxMqxXnm6+Ct/IHPDWx2Sx06BzD4ZNTAHjzv7sIBmDIyARstlDTLZ/XpKiwdt2YRURERKqj5LKFy9rrJXuvF7vDYOJxqSSVNfAYPiaUDH7/ZW69xs3eG/oFdtjoBDp0jqFnXxcAm9ZVTC6DQZO8HB/xiVbiE6K3p+Sw0YlcdUt3uvWMZcCQeNwlQd55aTfffJLNnFd34/WEEs28ZphcGnt2k3jBOVjcbopvvwvfUUc3dUjSwgQ7dMQ7+XiMrCwc8+fWa4yhoxJD3ZstMHRUApOmpAGQWtbROSdTU2NFRESkYZrxDvNSGxOPbcuA4U5+35R15LgkFnyWw29LCjnqhLQ6J1vZZb9oljfF6dzdid1hYevGUgIBE6s1dMHSkgDBICQkNt6tdPxpbdm908PaFcWsXRGa+tujTywjxiY1v8qlx0Pihedi3bUT99nnUnrZVU0dkbRQ7vMuIGb+XGJf/C/ek0+r8/lWq4WLr+2KzxskOXXfz0dqm9CfszO9dO/dvPeGFRERkeZNlctWoDzR219MjMHYI5Ixg/BjNV1ea5K11xtaa1n2S6jNZqFbr1i8HpOd2/c10ynMD02lS0hqvOQyIcnGhVd1oU9/F30GhCqqK5eFmhflZoea/iSnNoPPTYJBEq69Evsvi/CNHE3hA49Q6VMAkVryTpocauyz4Busa9fUa4y4eGuFxBIgrW3oAyQ19REREZGGUnLZig0rWye5fzJYG+7SAMWFAVLa2Cskrj37hqoa5dudQGjLE4CExMg076mthCQbMy/vzIxLOhEbZ7BpbQnFRX7ycn0kJFmxO5r+1o675+8433ubQJeuFLzwqhr4SMNYrZRe9AcAYp/7T8SG1bRYERERiZSm/w1coiYx2YbFgLycuv3SmLW34pTYcuXrLjfvt+6ysKAsuWzEyuX+rFYLA4fGEwzCT9/mYwabx5RY5/PP4nr0IYJJyeS/8R7B9h2aOiRpBdznzMSMjcX51htYCvIjMub+02JFREREGkLJZStmtVpISrZRmB/A76/cWbU65b9kpv0uuezYJQZnrMG2zW58vtB44cplEyWXAINGJADw84I8gErT/hqbY/484m+9EdPhoOCl1wn0S2/SeKT1MFNScZ9+FpaSYpyvvxKRMePirThjDbL2+sJrlkVERETqQ8llK5dcVsXLy/HX+pzsssplWtuKSZphWOjRJ5aA32THltBU2/Cay0Zs6PN7PfrEktbWjrs0lPA2ZeXS9vNPJF52EZZgkMLHnsJ32Pgmi0Vap9KLLwXA+d9nIFj7D42qY7FYGHN4MgG/yXuv7CYQ0H6XIiIiUj9KLlu55JTy5LL2FYmssm1Ifj8tFvZNjd2yIbTuct+02MZdc7k/w7Aw/uiU8NdNlVzafvuVpHNOx1JaStHtd+M57fQmiUNat8CgwXgPG49t8yYcX30ekTEnHpdKp64xbN/sZv6cTExTCaaIiIjUnZLLVq68a2ptK5eBwL6qZJv2lZO0zt2cAOza4QH2TYuNb8LKJYT27SufmpvSpvGTS+v6dSSddRpGQT7F1/+J0itnN3oMcvAoveQyAJzPRqaxj9VqYfr5HXDFW1n0XT4fvbWXkuJARMYWERGRg0cz2K9Boqm8ipdXy7VUq5cXUZDnp3d/F3HxlW+Pdp0cWCywO6MsuSzwYzFC67aaks1mcNq57Vm7opiuPZyNem1j21aSTj8ZIyuLkksuo+Tm2xr1+nLw8Z5wIoFOnYn54jOsmzYQ6NWnwWOmtXVw/pWdefHxHfyysIBfFxeSnGJj8CEJHHl8WgSiFhERkdZOlctWrry5TW2mxZqmycKvcgE47MjkKo9xOAzS2topyPNTXOSnqCBAfIINw2j6/Rt79XNxwrS2jRqLsWM7ydNPwrprJ+6zz6X4rvu1l6VEn81G6UWXABD79JMRG7ZDpxguv6kbYw5Pwmq1kLXXx3df5GqarIiIiNSKkstWLjktVH3MrcW02F07PGRs89C2g4Pe6a5qj+vQObRf48a1JZhm0663bErGtq0knzoF69YtuE+ZRuFDj4GhHylpHO7zL8J0uXC+/gqW7OyIjZuUbGfK9Hbcel9vOnaJwe8zKSrUFFkRERE5sDr9Juz1ennyySdZs2ZNtOKRCEtItGFYa1e5LG/SM3RkApYaqm/lyeX6VSXhaxxsjM2bQonltq24p51O4ZPPgu3g+z5I0zFTUik95zwspaXEvvBsVK6xr9u0tigRERGRA6tTculwOHjqqacoKCiIVjwSYYZhITnFTnFhAJ+35m0LMraGGvl07l7zmsXy5HLD6mKgafe4bArWTRtCieWO7bjPOJvCfz+jxFKaROmlV2IaBrHP/Qfc7oiPn1LeECy79lsZiYiIyMGrznP4hg4dysqVK6MRi0RJeffUd1/ZTVFh9b8kZmxzgwU6dYupcbwOXULPl5aEktWqtixpraxr15B0ypTwGsvCR58E68E5LViaXrBHTzwnnoKRlYXzrdcjPn5d1myLiIiI1Dm5/NOf/sTrr7/OK6+8wvbt2ykpKaG0tLTCf9K8TJqSRlKKjTXLi5k/J7PKY4oK/eTl+Gnb3oHTWXOyFJ9gIzE5VNEYOiqBkeMSIx5zc2T7+SeSTzoW657dlJ53IYWP/FuJpTS50quuASD2yccgWPPshLpScikiIiJ1Uee5fGeeeSYAd911F3fffXeVx6xevbphUUlEde7m5IqbuvGPv2xi8/pSTNOstKYyY1vZlNgDVC3LnXFBB4oKA/QfElfj+szWwvHJxyReeiGW0lJKZl9H8W23qyusNAv+ESPxHjYex8LvcXzyMd4TpkZs7PJ9cmvTEExERESkzsnlPffcc1AkE62NM9ZKh84x7NzuITfbR2qbilNZM7aG9q3s3K12e0R27Rkb8RibK+drLxN/wzVYAgGK7ryX0suuauqQRCoovfIaHAu/x/XEoxFOLlW5FBERkdqrc3I5bdq0aMQhjaBrz1h2bvewfbO7UnK5fUtoOvOBmvkcVEwT18MPEHffXZh2OwX/fhrPtDOaOiqRSryTj8Pftx/2nxZi++lH/GMPjci4jhgDV7yV/Bw/waDZLPazFRERkear3pvybdiwgffff5+nnnqKzMzQOr6tW7dSVFQUseAksrr1CiWO2zZXXBdbkO9ny/pS4hKstO9Uu2mxrZ7bTcKVfyDuvrsIxsWT/+rbSiyl+TIMSmZfB4DrkQciOnRyqo1AwKSoQHtdioiISM3qXLksLi7mz3/+M5988gk2m41AIMDhhx9O27Zteeihh+jUqRM333xzNGKVBiqfyrp9c8UtC5YvKsA0YdioBKxWVSYse/aQdOE52H9ZRKBLV/JfeoPA4CFNHZZIjTzTzyTwwL3EfPEZtl+X4h82IiLjpqTa2bnNQ16OL9zIS0RERKQqda5c3nfffSxdupQXXniBJUuWYJpm+LmJEyeyYMGCiAYokZOYZCM51cbe3V5KS0JVCNM0WfpzaN/S4WMPjq6vNbH+tpyU44/C/ssifKPGkDv/KyWW0jLY7fuqlw//M2LDlq+7zNW6SxERETmAOieXn376KTfeeCOHHnoo1t9tw9CpUycyMjIiFpxEXpfuTjBh145QA59dOzxk7/XRuVsM7Toc3FNiY+a8Q8pJx2LN2IH7jLPJe+8jzHbtmjoskVpzn30ugQ4diZn3P6xrItO1OyWtLLnMUnIpIiIiNatzcunxeEhOTq7yueLi4koJpzQvHbqEEsjdGaHksnwLkj4D4pospibn8RB/640kXnYxlJZSdNvtFD7+H3CquZG0ME4npVfOBsD1SGSql2ntQslldqaSSxEREalZnZPLIUOG8MEHH1T53CeffMKIEZFZ5yPR0bEsuSyvXO7Z6QWgQ+eDs2ppbN9G8inHE/vc0wTT0sh/cw6l11yvPSylxSo97yKCaWnEvP8u1k0bGjxeatvy5NLb4LFERESkdatzcnnttdfy6aefcuGFF/L2229jsVj45ptv+NOf/sT8+fOZPXt2NOKUCOnQOVSNK69c7tkZ+n/7To5qz2mtHF98Ssoxh2Nf8ktofeUX3+E7clJThyXSMHFxlFx+NZZgkNh/PdTg4RISbdgdFrL3+iqssRcRERH5vTonl6NGjeKFF17A6/Vy5513Ypomjz32GNu3b+f5559n6NCh0YhTIiQu3kpiso2sPV68niB7dnqxOyzhph0HhdJS4m+9kaQZp2Pk5lJy6RXkvT+PYKfOTR2ZSES4L/4DwaRknG+9jrFpY4PGMgwLqW3seNxBSoq1HYmIiIhUr1595UeOHMlrr72G2+0mPz+fxMREYmNjIx2bREmHzjEU5PlZt7IYrydIl+7Og2ZzdOtvy0m88hJsa9cQTEmh8KHH8U49qanDEokoMyGR0quuIe6evxP34P0U/vvpBo2X1tbBnp1esvf6iIvXdiQiIiJStTpXLhcuXEhpaSkATqeT9u3bK7FsYcrXXS5bFNqC5KCYEhsIEPvEY6ScMAnb2jV4Jx5F7jc/KrGUVqvkkstDay/feRPrurUNGmvfuks19REREZHq1Tm5vPjiixk9ejRnnHEG999/P59//jm5ubnRiE2ipLx5z8Y1JQC079S6m/lY160l+eTjib/9L2CxUHTnveS/OYdgh45NHZpI9MTHUzL7eiymieuBexs0VFrb0AdQauojIiIiNanz/KYffviBxYsX88svv/Dzzz/z0ksvEQwG6dWrFyNHjmTUqFGcfPLJ0YhVIqR3fxcdOseEm/q02uTS58P173/h+ud9WLxefMNGUPivJwgMHNTUkYk0itILZxH7xKM4P3iPkmtvIDB4SL3GSSurXOaocikiIiI1qHPlMiUlhcmTJ3PLLbfw7rvvsmjRIv7973+TmprKW2+9xc033xyNOCWCHA6Di2Z3YcCweFLb2sPTZFsT269LST7uKOLu+TsYBkV//Tt5H3+hxFIOLi4XJdfdCEDcP+6p9zDle11uXl/Cl/Oy8XiCEQlPREREWpd6dWYoLi5m6dKl4Qrm8uXLiYmJ4cgjj2TkyJGRjlGiIMZpcNZFHTFNE0sr2tPRkptD3D134nzpv1hME++h4yh6+DECvfs2dWgiTcI980Jcj/+LmPlzsS39Bf+Iur9Hu+KsdOoWw85tHr79NIe8HB/TZnao8zgeT5APXttDnwEuRo1LrvP5IiIi0rzVObmcNm0aa9euJS0tjVGjRnH88cfzl7/8hfT09FaVpBwsWs3fWTCI89WXiLv7doycHIIpKRT9+f9wn3chGHUu0Iu0HjExlFx/Ewk3XEPc/XeT/8Z7dR7CYrFwyR+7krnbyyv/yWD54kIGDY8nfXB8ncb5/H9ZrPq1iF07PEouRUREWqE6/9a9du1abDYbw4cPZ8SIERxyyCFKLKVJ2X/8geQTJpFwwzVYcnMpPf9ichYuwX3BxUosRQD32ecS6N4Dx5efY//xh3qNYRgW2neK4aSz2gMw951MfL7aT4/dvL6ERd/lA5Cb7aMg31+vOERERKT5qvNv3osXL+bJJ5+kT58+fPrpp8yYMYMxY8Zw2WWX8cwzz7Bs2bIohClSmXX9OhLPP5vkk4/HvnQJvhGHkPfJVxT98xHM1LSmDk+k+bDbKb75LwDE3XEbmGa9h+o3MI4BQ+MoyPOz+Pv8Wp/3yw+hY5NSQhNmtm4srXcMIiIi0jzVObmMjY1l3LhxXHPNNbz88sssWrSIBx98kJKSEh588EFmzJgRjThFwow9u4m/8Y+kHDGWmPnzCHTtRsETz5D38Zf4hx/S1OGJNEueaWfgGzIM+y+LcXz0QYPGOmpKGlhgwWe5eNy1q15m7Q11mj10YjIAWzeUVHje769/wisiIiLNQ70a+uTk5LB48eLwf2vXriUYDNK3b1819JGoMXbtJPaxh4l9+QUsHg/BpGSKr/sTpRf/AZzOpg5PpHkzDIr/706STz+Z+Dv/j5zjpoDDUa+h2nWIYcghCfz2SyFrVxYxdGRijccHgyZZe704Yw0GDovnk/ez2LppX+UyO9PLMw9v55BDkzj25Db1iklERESaXp2Ty+OOO45t27ZhtVoZMGAAY8eO5aqrrmLkyJEkJydHIUQ52Bm7duJ69CGcr7yIxePBdMVRcvUVlMz+I2ZKalOHJ9Ji+I44Eu+kY3B8+TnOl/6L+5LL6z1Wl+5OfvulkIK8A6+dLMj34/eZtO8UQ1KKnaQUG3t3eSkpDp379fwc3CVBNqwuVnIpIiLSgtU5uZw6dSqjR49m+PDhxMbGRiMmEQCsG9YT+9S/cb7xChavN5RUzr6SkitmY7bRL6Ai9VH0tztJ+eoL4h68H8+ZMzATk+o1TkKSFYDC/MABj83a4wWgTdl+mT37xrLs50KW/pRHajsLvy0pDB/n95vYbGoQJyIi0hLVObm85pprohGHSIhpYv9+AbFPPU7Mp/MBCMbFU3rFbEouvxozTY16RBoiMHAQ7rPPJfb1V3A99gjFf/m/eo0Tnxj656Oo4MCVy+yy9ZZt2oWm4Y4al8yynwv58uO9xMZbwAw1dg4GISfTS7uOMfWKSURERJpWvdZcbt++nWeffZYlS5aQl5dHcnIyI0eOZNasWXTt2jXSMcrBoKSEmA/nEPv0k9hXLAcg0KEjpZdcjvu8CzT9VSSCSm7+C8733yX2P/+m9KJLCHbqXOcxEsqSy8JaJJdZe8sql+1DyWWXHk669nSyfbMbgHYdHXTt4eSXhQXs3aXkUkREpKWqc7fYFStWcMopp/Dpp58yePBgTj31VAYPHsynn37KqaeeysqVK6MRp7RS1hW/EX/LDaQNTSfxmiuwr1iOb+hwCp54hpzFv1F6zXVKLEUiLNipMyWXXYXF7Sbu3jvrNUZ8Ytm02IJaTIstSy7TyqbFAow7KgUAR4yFMy/qSKduoaZce3d76xWPiIiINL06Vy7vv/9+Bg4cyDPPPFNhzWVpaSmXXnop999/Py+99FJEg5TWxZKfR8z/PsD5ygvYl/wCgOlw4D5tOu4LZuE7bDxYtOZKJJpKr76W2FdewPnma5Re/Af8I+rW6dtuN3C6DIoK/JimiaWGn9msPT4sBqS22ZdcDhgazylndSKtvUGbdg5Ki0NJ6t5dnvq9IBEREWlyda5c/vbbb1xyySWVmvnExsZy8cUXs3z58ogFJ61ISQkxH7xH4gXnkDaoDwnXz8a+5Bf8fftRdMc9ZP+6lsL/PI9v3AQlliKNwExMovjPofWW8X++KbTgsY4SEm34vCYeT/Xnut0BCvP9pKTasdn2/ZNjGBaOPbkDPfq4AGjbMTRlVpVLERGRlqvOlcuYmBjy8vKqfC4/P5+YGK2VkTJFRTi++YqYuR/i+HguRnERAMGkZNxnnI3nrHPwjT1MyaRIE3HPmInzheew/7KImHfexHPmjDqdH59oJXN3qGOs02mt8pi1vxUDoXWWNXE6rSSl2MjJ8uHzBrE76vzZp4iIiDSxOieXRx55JP/85z/p0qULo0aNCj++ePFiHnzwQY466qiIBigti7EzA8en83F8Mg/Hd99i8YSmuJmxsbhPm47ntDPwHnU06EMIkaZntVJ01/2knHwccXf+H54pJ0F8fK1PT9ivY2zbsmY9y34u4Iu5WYyflMKYw5NZ9nMBAMNGJx5wvHYdHeTn+tm900PXHtrqSkREpKWpc3J5yy23cOWVVzJz5kzS0tJIS0sjJyeH7OxsRowYwc033xyNOOvtmmuuYeHChUyYMIGHH364qcNpdSwF+dgX/oB9wdc4FnyLbfW+hk7BpGQ8J56C97gT8BxzXJ1+aRWRxuE/9DDc007H+d47xP3rwTptTfL7jrGBgMmX87IpzA8wf04WK5YUsWOrm8RkGz37HjhZ7NozlvWrSti2ya3kUkREpAWqdXLpdrv55ptvyMjIYMaMGcycOZMtW7aQmZlJ27ZtGTZsGBMmTIhmrPVy7rnncuqpp/K///2vqUNpFYzdu7D9shj7L4uwL/wO29IlWPZbq+Xv1Rvv5OPxHj8F35hDwW6vYTQRaQ6K/3YnMfPnEfvkY5Secx7Bnr1qdV64Y2x+qBnPmt+KKMjz07m7k4DfZMfW0FYjw8ckYhgHnv7eo3coodyyoYTxk1Lq81JERESkCdUqudy+fTsXXnghGRkZ4cfi4+N5+OGHOfzww6MWXCSMHTuWn376qanDaHlME2PvHqwrV2BbvQrb0l+w/7IIa8aOCocF2nfAd/hEvEcciW/CEQS7aJ9TkZYm2KkzJbOvI+7+u4m//TYKXnytVuclJO2bFrs7w8N3n+cCcOTxqfTs6+K7z3PYsrGU0eOTajVep25ObHYL2za52b65lB1b3Rw6MbnGTrQiIiLSfNQquXzggQcwDINXX32VwYMHs2PHDm6//XZuv/12vvjii6gFt2jRIp577jlWrFhBZmYmTz31VKU1na+++irPPfccmZmZDBgwgNtuu42hQ4dGLaZWx+3Gum0r1i2bsG7ZjHXzJqxrVmNbvRIjJ6fCoabFgn/AIHyjRuMfORrf6LEE+vRVQx6RVqDkymtwvv4KMR9/hP3Lz/FNOuaA55RPi134dR4Lv84DQusme6e7MAwLRx6fVqcYbDYLXXs42by+lBf+nUHAb9Klh1NTZEVERFqIWiWXS5cu5ZZbbmHkyNA+aL179+bvf/87U6ZMYe/evbRr1y4qwZWUlJCens60adOYPXt2pefnzZvHvffeyx133MGwYcN48cUXueSSS5g/fz6pqakRj6c207oaU3k8hmGBQAB8PvD5sLjdWArysRQUYCkswCjIx5Kbi7FnD8ae3Rh7dmPZsxtj1y6MXTuxmGalsU2HA/+QoQQGDMI/cBD+ocNC++AlJFSMoVFeqTSFCveXtH5xLorvupfE888h4dYbyfv2R4itOalLTN73T4grzsq4o1I45NDECluOVKe6+6tHHxeb15cS8Ifel7ZtctO9l6uur0ZE72ESVbq/JJpa8v1Vq+QyMzOTrl0rTnfs1q0bpmmSlZUVteRy4sSJTJw4sdrnn3/+ec466yymT58OwB133MHXX3/NnDlzmDVrVkRjsdkM0tKaUUManw/GjYPffiPF56vXHnUYBnTrBr17V/xv4EAsfftis9uxAerrenBLSYlr6hCkscw8G956DetHH5H2zONwxx01Hp4Qv+9956qb+9Cjd93vld/fX8NHw1cfZ+N0GrjdQXZt9zav915pcfQeJtGk+0uiqSXeX3XuFttceL1eVq5cyRVXXBF+zDAMxo0bx7JlyyJ+Pb8/SEFBacTHrTe/n0RHDPakJIJWG6bdDray/ztjMRMTCSYmYiYmYiYmYSYlE2zfnmD7DgTbd8Ds0IFgm7bVN9wp8ACeRn1J0rwYhoWUlDhyc4sJBitXt6V1Mv5+H8lffAH33UfelFMJ9ulb4/EXXt0FV5yVhGST7Oyi2l+nmvsrOc1k+nkd6NTNyZP3b2Xj2iIyMwtb5Ke30rT0HibRpPtLoqm53l+JibHY7VXva12u1snlJZdcgtVaebALL7yw0uMLFy6s7bD1lpubSyAQoE2bNhUeT0tLY+vWreGvL730UpYvX05paSlHHHEETz/9NP3796/XNZvTXy6GlYIP55OWFk9udlH9Y2tOr0mapWDQbF73vkRVsEs3im+4mfi7bifuT9eT/84HNa6r7tEnNHW2vvdIVffXkJGh6feduzvZurGUPTs9tO+kORRSP3oPk2jS/SXR1BLvr1oll1dffXW044gY0zQrdBZ8+umnmzAaEZGWp/Tyq3G+/QaOBV8TM+cdPNPOaJI4uvUKJZdbN5VGJLn8/stcSooCHHNSmjrQioiIREGLTS5TUlKwWq1kZWVVeDwnJ6dSNVNEROrA4aDo/odIPnUKcX/7M96jJ2MmJTd6GD36xLLgs1y+mZ9DfIKVTt2cJCXb6pUYlpYE+PyjLMwgpA+Jo1tPdaAVERGJtBbb7NPhcDBo0CB++OGH8GPBYJCFCxcyfPjwpgtMRKQV8I2bgPusc7Du3UPc3TU39omWXv1cjBqfRHFRgLee380jd2zhq49zDnxiFdatKsYs6z9Uvm2KiIiIRFazTi6Li4tZvXo1q1evBmDHjh2sXr2azMxMAC666CLeeOMN5syZw8aNG7n99ttxu92cdtppTRm2iEirUPR/dxFMSSH2heew//jDgU+IMIvFwolntOOsizsyaHg8hhV++jYPr6f23bGXLy5gwWc5rFleVDYmrFleRE6WL1phi4iIHLSadXK5YsUKTj31VE499VQA7rrrLv6/vbsOk6s82wB+nzMuO+u7ycbdDQghQUJSnFLcg9OiKW1pgQ9KkeIUtzZYcU8CheAQNEAgriQhns26jMs55/vjzBnZnd0dXeP+XVcuktmRd3cPydz7PO/znnDCCXj11VcBAMcccwyuu+46PPzwwzj++OOxfv16PPXUUzk545KI6NdGKSmB67a7AQD2P10BeLtmYvaYiXacen5fjJucB79PxprlzqQeFwzK+N/r1fj0vTqsX+WGwShgxuxCKAqwflXyk22JiIgoOd36KJJp06Zh48aN7d5nzpw5mDNnTietiIjo18V/yunwz38Dpk8/hu2+u+H++81dtpapB+Zj9U9O/PB1E6ZMc3S493LrJi+CgeiUvRFjbKgYoA4GcjlDOV0rERHRr1G3rlwSEVEXEwS4/vUQZJsdlscegn7Vii5byoAhZpT2MWLvLj+aGjsOhxtXq9XJaYcUYNAwCw44tAAWq3p0ltct5XStREREv0YMl0RE1C65X3+4/3ErBEmC/U9XAsGu2a8oCAL69FMrj4317YdLWVawca0bggjMPLIIF8ztj4FDLJFw6XEnv2+TiIiIksNwSUREHfKddyEC0w+EYc0qWB97qMvWkV+o7uZoqm8/4O7c6oOrWcLAIRZYbbrI7Vab+s+e18PKJRERUbYxXBIRUcdEEa77H4ZiNsP6r7ug2/RzlyxDC5eNDW1XLv0+Ge+8VgUAmLhfXtzHLDa2xRIREeUKwyURESVFGjYC7r9dDyEQQN5VlwNS5we0gkIDgPYrlx++XYO66iBGjrNhyjRH3McMBgE6vQCPh22xRERE2cZwSURESfNediWCk6fA8OMPsHRBe2x+UceVy5/XuiGKwAlnlUMU4yfKCoIAq02E1yNBUZQ2noGIiIjSwXBJRETJ0+vhfHQeFLMZtrtvh27N6k59+Y4ql8GgDFezBEehPm6vZSyLVQdFVttniYiIKHsYLomIKCXSyFFw//1mCMEgHFf8AfD7O+21jSYRFpuIpsZQwspjc/iIEi2EJqKFTk6MJSIiyi6GSyIiSpn34ksROOgQ6Nevhe2eOzr1tQsKDQgFFbhdrfd8akeUaIN/ErFYOTGWiIgoFxguiYgodaII58NPQM5zwPLog9B/t6TTXjqy7zLBWZdNDWq7bEFR25VLS6RyyXBJRESUTQyXRESUFrn/ALhuvxuCosAx9xLA5eqU143su2xove8ymcql1crjSIiIiHKB4ZKIiNLmP/0s+I/+LXTbt8F+0w2d8pqRsy4zrFx6eRwJERFRVjFcEhFR+gQBzn89BLmkBJYXnoXx/fdy/pL5GVYutT2XbIslIiLKLoZLIiLKiFJaCudDjwMA8v50OcQ9u3P6era8tiuPWuBsty02UrlkuCQiIsomhksiIspY4PCj4Pn9pRAbGpB3xR8AKXfBzWxR/+nyeeNfQ5YVNDeGYHfooNe3/c8bB/oQERHlBsMlERFlhfvGWxEaNwHGb76C9eH7c/Y60XAZX7l0NoUgy+2fcQnEDPThnksiIqKsYrgkIqLsMJvRPO9ZKFYrrPfcAf3S73PzMhY1HLYMl40N4f2WRW23xAKAxRY+55KVSyIioqxiuCQioqyRRoyE6/Z7IEgSHJdeBKGpMeuvYTQKEMXWeyadTWq4dBR0EC7DlUsP91wSERFlFcMlERFlle+sc+A7/iTodu6A/W9/AhQlq88vCALMFl2rymXAr/7ZbG7/nzadToDJLMLjkqFkeW1ERES/ZgyXRESUXYIA178ehDRgIMwL58P8wn+z/hJmi4hQUEEoFA2YWrg0mjr+p62gSI+AX4bbxeolERFRtjBcEhFR1in5BWj+99NQ9HrYb7gG+lUrsvr8iYb6+P1qFTKZcFlabgQA1FYFsrouIiKiXzOGSyIiyonQ1Glw3/RPCH4/HBeem9X9l4nCZSqVy5JwuKzZG0AgIEceS0REROljuCQiopzx/uFy+H97PHQ7tiFv7mVZ23+ZaGJsNFwKHT6+tE84XFYF8OT9OzHvvh2QpMzXtnm9Gy/+ezfcrlDGz0VERNTTMFwSEVHuCAKcDz6K0JChMH3wHiyPP5KVp41WLqN7JiPh0ph8W+y6lS7U7A2gtjqIdStdGa/rpyVN2LzBg+XfN2f8XERERD0NwyUREeWU4shH89MvQDGbYbvtJui/W5Lxc0bCpSe9ttiiUiMEEXA1R8Ppd180ZryuupogAGDdisyDKhERUU/DcElERDknjZ8A1133qedf/uF8CDU1GT2f2ZqoLVZtazUlES71egFFJYbIny02Ebu3+/DzOnfaa5JlJRIu9+z0o6EumPZzERER9UQMl0RE1Cl8Z50D3xlnQ7e3EnkXnQsE0w9fCdtiA8lXLoFoa6wtT4ejTiwFALz69B6s+jG9ltamhhCkUHTfZjbabImIiHoShksiIuo0zrvvR3DiZBi+/Rq4+uq0nyfhUSS+5Af6ANGhPsNHWzFpPwd+e2oZFAVY8HIVdvziTXlNddXqsSZ9+psAAN9+1oDaah51QkREvx4Ml0RE1HksFjT/9yXIJSXAI4/A9PILaT1NwmmxKVYux03OQ1lfI/Y/uAAAsN+B+TjutDIoMvDGc3vhcUvtP0ELWkvsuEl2TD0oH26XhOcf3w2vJ7XnISIi6qkYLomIqFPJ/QfA+fQLgE4H21//BP1PS1N+jsTTYhXoDQJEMbnKZZ9+Jlx+7SD0G2iO3DZlmgMT9s2DsymEVT86U1pTXY1apSwuM+Dok0oxcpwNzY0hbN3kSel5iIiIeiqGSyIi6nShAw8CHnwQQiAAxwVzIFRVpfT4RG2xAb+cdNWyLYIgYMI+eQCAvbv9KT22tlqtXBaXGSGKAkaMtQIAqivZGktERL8ODJdERNQ1rrgCvrPmQLe3EvkXzgECyYcwrS3WGw6XkqQgFFSSmhTbkfJ+6l7MqsrUwmVddQAQgKJidQptWV917yXDJRER/VowXBIRUdcQBLjveQDBffaFYen3sF9/TdIPbdkWGwykNsynPY58PcxWEdWVAUiS0vEDoA4TamoMIb9AD4NRXVtZeGBQdYohlYiIqKdiuCQioq5jNqP52Zcgl5bB8vwzMD/zZFIPMxgE6HRCpC3W709tmE97BEFAnwoTpJCC+prkjktZsrgBUIDBwy2R2yxWHRwFetTVBhEMyu08moiIqHdguCQioi4l961A07MvQTEaYb/hGhg+/7TDxwiCALNFjITLgF+tMGYjXAJAeYXa0rp3T8dVR2dzCN981gCdTsChRxXHfaysjxGKDNRWpX+mJxERUU/BcElERF0utP80OB94FIIkwXHxedBt3NDhY8wWEVJIQTAoI5DFyiUAlFeE910mMdTno7drEQwo2P+QfBSG91tqyvqGW2P3sjWWiIh6P4ZLIiLqFvynngH3X/4G0dmM/LNPg1Bb2+797Q49AKBqTyAaLo2Z77kE1GNKgPihPrKswOUMxd1vzXInVv/khKNAj0MOL2r1PJGhPns41IeIiHo/hksiIuo2PNfcAN/xJ0G3YxvyzzsT8PnavO/YSXYAwMqlzZFwaTJn55+10j5GiDpg22Yvqir9WPFDMx67czv+deNWbNusnlsZDMp4741qAMAJZ5XDYtW1eh6tcrlpvTsydIiIiKi3YrgkIqLuQxThfPgJBPfdD4al3yPvT1cASuKJreP3yYOoA1Yvc8Lj1iqX2flnzWAQccjhRQgGFPznXzuw8OUq1IWH+6xb6QIA1OwNwOuRMWyUFUNHWhM+T59+JgwcakZ1ZQALX66C0sbnQkRE1BswXBIRUfdisaDpuVch9R8A8/w3YL3v7oR3s9l1GDnOBp9HxpplTgDZ23MJAIccUYQxk+yQJTUknnp+HwDA1k1eAGo7LgD07W9q8zlEUcDpF/ZFQbEea1e4sGt725VYIiKino7hkoiIuh2lrAxNL74O2Z4H2z13wPTmawnvN3FfBwBgy0a1VTWb4VIUBZxybh9c+Mf++P1fBmDc5DwUlRpQszcAlzOEqvAkWW2ybFtsdj0m7aeus4p7L4mIqBdjuCQiom5JGjsOziefhaLTIe+qy2H44vNW9+k/2Bz3Z6MpOwN9NDqdgIFDLdDp1OcdEj7Hctsmb2TYjzZZtj2lfdT71OxluCQiot6L4ZKIiLqtwG+OgOtfD0EIBuG4YA50q1fFfTzPoYPVHh2kk83KZSJDRqh7K7du8qBqdwA6nYDiso7DZVkkXPJIEiIi6r0YLomIqFvznX0u3NdcD9HlRP6ZJ0PcsT3yMUEQIseGALkPl4NHqJXLtStc8LgllPYxRqqa7SkqNUIQgepOqFxyaBAREXUVhksiIur2PFdfC+8550NXXYX8M06CUF8X+VhsuDTlOFza8/SYuF8efF51Om0yLbEAoNcLKC4xwNUsweuRcrY+WVbwwhO78e97d0CSGDKJiKhzMVwSEVH3Jwhw3X0//EccBf3mTcg/5wzAq05t7dMvGvCyvecykcN+WwKDUX2djob5xCrtq943l/suf/y2Cb/87MXe3X78vNads9chIiJKhOGSiIh6Br0ezf95NnIGpuPSiwBJQt9+0aE+uW6LBQBHgT4SMIeNTny+ZSKl5eF9l1W5CZcuZwifvhut6P60pCknr0NERNQWhksiIuo5bDY0vfA6QkOHwfT+u7D/9SoUl+qhN6iVxM4IlwAw7ZAC/N9dw1DeN4XKZXioT3VlbsLl+pUu+H0y9jnAAbtDh80bPGhsCObktYiIiBJhuCQioh5FKSlB02sLIJX3geWl55H3z39g+GgLHAV6WKy6jp8gS0QxtRZcLVzW5qhyqQ0LGj7GhinTHIACrFvhyslrERERJcJwSUREPY48aDCa3ngbcmEhrI8/jPOaXsbcGwZBr8/9nst0FZUYAAD1tbmpJmoV0bK+RvQbqLYKN9azcklERJ2H4ZKIiHokafQYNL06H7LNDsdd/0Te80919ZLaZTSKyMvXo7E+iFAou5NcFUVBVaUfeoOAohID7Hl6AICrOXeTaYmIiFpiuCQioh4rNGVfNL/wKhSTCXn/91eY3nytq5fUrqISAxQl+xVFZ7MEn0dGabkRoijA7lDbg13OUFZfh4iIqD0Ml0RE1KMFDzoEzU8+B0WnQ97cS2H88P2uXlKbiktz0xpbXekHoLbEAoAtLxwuWbkkIqJOxHBJREQ9XuCoY+B8+AkIkgTHxefC8OXirl5SQpF9lzXZDpfafkt1eq3BIMJsEVm5JCKiTsVwSUREvYL/1DPgvOs+CH4/8s85HYZvvurqJbVSFKlcZndibCRchifSAoA9T4eAX4HfL2f1tYiIiNrCcElERL2G78Lfw3XrHRC8XuSffRr03y3p6iXFKSpVw18222JrqwP45WcPgGhbLADYHepQHzerl0RE1EkYLomIqFfxXnolXDfeCsHjRv6ZJ0O/9PuuXlJEUXF222J3bvXiP//agebGEIaPscJRoI98zM59l0RE1Ml6fbj85JNPcOSRR+LII4/EokWLuno5RETUCbxz/wT39f+A6HYh//SToF/2Y1cvCQBgNImwO3RorA9CkjI7jsTnlfDm83sRDCg45IginHlxBQQhes6nVrnkvksiIuosvTpchkIh3HvvvXjppZfw6quv4sEHH0QgkN19LkRE1D15/vRXuP/2fxBdTuSfdiL0K5d39ZIAqEN9ZBmoq8ns36OP3qlFU0MI4ybbMevoIuh0QtzHteNInKxcEhFRJ+nV4XLlypUYNWoUSkpKUFhYiIkTJ+Knn37q6mUREVEn8fz1Orj//FeIzU3IP/V46Fav6uolYcgIKwDgiw/qM3qerZu8AIBjTy2Lq1hq7HnhymVzCIqSWZWUiIgoGd06XC5duhSXXnopDjroIIwaNQqff/55q/u89NJLmD17NiZMmIDTTjsNq1ZF3zhUV1ejvLw88ufy8nJUV1d3ytqJiKgbEAR4rrsRnrl/htjYiIJTjoN+1YouXdKM2YVwFOixdoULWza6034en0eCwSjAatMl/LhWuVy51Il//nUz1q5wpv1aREREydB3fJeu4/F4MGrUKJx00kmYO3duq48vWrQId955J2655RZMmjQJzz33HC6++GJ88MEHKCoqyvp6RLH1T4a7krae7rYu6h14fVEude71JcD7j1sgyBIsjz2M/JN/B+fr8xHad2onvHZrFosOR51Qitf/W4mfvm3GiDH2hPdTFCVhRRIAZFmBzysjL1/f5tfQka8OD2puVPdcfvpuHcZOymvVPttb8e8wyiVeX5RLPfn66tbhcubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CGVlZaiqqorcv6qqCgcddFBaa9HrRRQXJ34D0NUKC21dvQTqxXh9US516vX1yINAQR7E229H/inHA4sWAWn+m5Cp8ZMNeB2V8PvQ6t8WRVHw4rzt2LTehb/fPRZGU+smI487BEVRW1/b+rfJqDfF/bm+Nohtm4LY/8Ds//C1O+PfYZRLvL4ol3ri9dWtw2V7AoEA1q5di8suuyxymyiKmDFjBlasWAEAmDhxIjZs2IDa2lrodDqsXLkSt99+e1qvFwrJaG72ZmPpWSOKAgoLbWhocEOWuZ+GsovXF+VSl11ff74OFlmE9c5/QjnySDS/+DpCh7T9Q8xc8QdkAICzOYC6Olfcx378phHffanux/x5Qz369je3enxDnXqUicEotHq8JvbrOmaiHetXufDBwj0YNtqY8P69Df8Oo1zi9UW51F2vL4fDAoMh8VYMTY8Nlw0NDZAkCSUlJXG3FxcXY/v27QAAg8GAv/71rzjrrLMAAH/6059gMplaPVeyutM3N5YsK912bdTz8fqiXOqK68v9579BNhhhv/VGOM46BU3/fRnB2Yd16hr0BkAQAa9Hivv8mxqCWDS/JvLn5sYQyitaf33cLrXV1WIV2/36GU0iAn4ZvzujDLu2+1BVGUAoJPfIVqt08e8wyiVeX5RLPfH66rHhsi0t96gcccQROOKII7pwRURE1N14r7wKitmEvOuvQf65Z6D56RcQOPLoTnt9QRBgserg9chxt69Z7kIoGH0j4WxOfEalz6s+zmxp/yfIl/5tICRJgcWqg92hg7MpBI9bikySJSIiyqZuPS22PYWFhdDpdKitrY27vb6+vlU1k4iIqCXfxZfC+a+HgGAQjgvOhvF/Czv19S0WEaGggmAgGjDXrVRbXPed7gDQ9hmVXo96u8Xa/j/jRSUGlJarbbA2uxpE3S6ee0lERLnRY8Ol0WjEuHHj8O2330Zuk2UZS5YsweTJk7tuYURE1GP4zr0AzoceB2QZjt+fD/ML/+2017ZY1bDnDVchmxqD2L3dh4IiPUaMVYc4uNqoXGoVT+05khEJl06GSyIiyo1u3RfjdruxY8eOyJ937dqF9evXo6SkBKWlpbjgggtwzTXXYNy4cZg4cSKee+45+Hw+nHjiiV24aiIi6kn8Z5wNxWaD47KLkXf1HyE0NMD7xz/n/HXN4aqjzyPBka/HhlXqmZdjJtlhd6j/PLfZFhuuXJo7qFzGsoVbYVm5JCKiXOnW4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp57KyRmXRETUewWOOwFNjnzkn3cW7LfdBLGhHu5/3Aq0cc5kNkQql+Eq5OYN4XA5wY48h/oxV1NbbbHhymUHey5jsXJJRES51q3D5bRp07Bx48Z27zNnzhzMmTOnk1ZERES9VXDmLDS+9Q7yzzoF1scegtDYANe9DwL63PxTqe2X1PZPNtSqx4uUV5ig06uhtq3Kpdeb3J7LWNE9l4mfk4iIKFM9ds8lERFRtoX2nYrGtz+A1KcvLC89D8fvzwd8vpy8VmzlUlEUNDWGYLaIMJlF6PUCrDYdXM0SFKX1GHpfuHJpTmXPZR4H+hARUW4xXBIREcWQRo9B47sfITR0GEzvvYP8s0+F4HJm/XXMlmjl0uuREQwoyC+MVkntDh0kSWl1XIn2GCDNyiXbYomIKEcYLomIiFqQBw5C4zsfIjh+IoxffYH83x0NcW9lVl9Dq1z6vDKaGtRWVUdBNFzmhYf6JJoY603ynMtYrFwSEVGuMVwSEREloJSVoWnhewgcPBOGNatQcMxh0G3ckLXnj91z2dSo7rfMLzREPm4PD/VJdNZlZFqsJZ09lwyXRESUGwyXREREbVAc+Wh65S34Tjkdul07UfDbI2D49uusPHd0z6WE5nDlMj/ZyqVHhsksQqdLfpqtXi/CbBHZFktERDnDcElERNQeoxHOx+bB/ae/QmxqRP5pJ8C04M2Mn9YcqVxG22Jj91zm5UfPuty41oWnH9qJTevckGUFfp+cUtVSY7PrEPDLCAZa7+MkIiLKVLc+ioSIiKhbEAR4rv8H5H79Yb/2L3BcciFcu3fDe8Uf0z4LM7LnsoO22C8/qkfAr06MXbvCiX6DzOrjbcnvt9TY8nSoqwnC7ZZQYOTPl4mIKLv4LwsREVGSfOddiObnX4FitcJ+642wX/83QEqvzdSSoHIZO9Cn3yAzTGYxEiwB9aUik2LTrFwCmU2MdTlDCLDySURECbBySURElILAEUejccF7yD/7VFiengdx9y40P/4UYLen9Dx6vQiDUYDXKyEUUgAhPlwWFBpw7R1DAQBVe/z4z792IuCXI0eTpHLGpcZmV58/maE+2vmaQkxldvUyJxa+VIUhIyyYc2m/lF+fiIh6N1YuiYiIUhSasi8a3vsEoWHDYfpgEQqPOxLi7l0pP4/ZooPXLcPZFEKeQ9dqQI8oChBFAYZwC2swqEQmxaZyxqUmchyJU0IwKGPTOjeCwdZVSFlW8NhdO/DaM9HjV9avcuGt5/dCkhTs3OaLhE8iIiINwyUREVEa5CFD0fj+pwgcPBP6tatReMSh0P+0NKXn0AKiogD5BYY272cwqqEzGJDh96th0GROP1w6m0NYtqQZL83bg3/fswM+b3wls742iNqqAH5e6460wP681h35uN8no7mx9RRbIiL6dWO4JCIiSpNSUIimV+fDe+6FEGuqUXDCMSlNko0NiEWlbYdLo1a5DCgIaOHSlPo/4do02qaGIKoq/QCAupog3vjv3rj7VVcGAACyDFTuUu/ncqphsu8AU9x9iIiINAyXREREmTAY4Lr3AbhuuwsIBuG45EJY775dLUd2YPBwC0QdMOUABw7/XUnbLxEOl4GAHBnwY0wjXBaEp9E21YfiKo/bNnshy9H1VoeDJwDs2uYDADib1erm0BFW9T57GS6JiCgeB/oQERFlShDg/cPlkIYNR97vL4Dtvruh27wJzoefACyWNh/2m2NLMPuY4rihOYnodIAgxlcujWkcJZJfpP6z39gQDZbFpQb1eBKnBFueDooSHxx3b1fDpas5BFEEBg234JvPGlCz1w8iIqJYDJdERERZEvjNEWhc9Any55wO89vzoduxDc3/fRly34o2H9NRsNTuYzSKCAbkyB5Igyn18zXNZh3MFhFNDeq5mmaLiLIKE+pqgmisD+L5J3bDlqeDK1ylhADs2u6DLCtwOyXYHXqU9zUCYOWSiIhaY1ssERFRFkmjx6Dhg88QnDYdhuXLUHD4TOi//y7j5zUYhXDlMtwWm0blElD3XQYDCoIBBQVFBhSE92Hu2OpDzd4Atm3yorYqALtDh/K+RjQ3hrB3tx+KAtgdOjgK9DCZRdTsDcS10uaSoihYu8KJmioGWiKi7ozhkoiIKMuUkhI0vvU/eM+9ELrqKhSceAzMzz6V1D7MthiMIiRJiUx2TWfPJQAUFEUHB+UX6iNDfrZscMfdr6yPEf0GmQEAG9eoH8tz6CEIAkrLjQgGFDQ1dM7E2HUrXXjjv3vx2J3b8dqzlZAkHoNCRNQdMVwSERHlgtEI178ehPO+hwFBQN61f4H9L3MBf3p7FQ0GtQ3W5dTCZeptsUB0YiygBs388JCf7Vt8cfcr62tCnwp1MuwvP3sAAPbwUSZlFca423Ptl43q6xiMAtavdGHp140AgG2bPbjr+i1Yt9LVKesgIqL2MVwSERHlkO+c89G4cBGk8j6wvPQ8Ck44GmLlnpSfR2uDdbsyq1xqYRIACor0KAgP+dGqgVr47NPPhNI+aojUhvrYHerHpkxzAAC+/KgeoZCc1jpSsW2LFwBwxkV9IYjA5+/Xo7kxhEVv1cDnkbH8+6acr4GIiDrGcElERJRjoanT0PjJlwhOnQbDTz+i8LBDoP9uSUrPYTCqlUp3+LzJdPdcamFS/b0hLmwCwKnn98Vxp5dhwr55KAsP75HD+dHuUCuXAwZbMHKcDU0NIXzxYT38/twFTGdzCHXVQRSXGjBslA3TDi6A3yfjsbu2R87a3LrJi2Aw9yGXiIjax3BJRETUCeTyPmhc8B68514IsaYaBScdC/PT85Leh2nIQeUyv1APi1WMtNiKItC3vwn7Ts+HTifAZtfDatNF7m/PiwZT9QgV4KuPG/DQP7ehoS6Y1no6sj1ctRw83BJ53bGT7PD71DBZXGZAKKhgxy/enLw+ERElj+GSiIios7Tch/l/f0XepRdCcDk7fKhWuZQl7anS23PZsnIpCEIkcBaVGKDTxT+v1hoLAHmOaNDs08+E86/sj6EjLfC4JKz4oTmt9XREC5eDwuHSaBJx6vl9cPqFfXHKuX0w/dBCAMDmDZ2z/zMdjQ1BbF7v7viOREQ9HMMlERFRJ/Odcz4a//chpP4DYF7wFgqOOBS6DevbfUxsG6wgAHpDeuHSZtfBZBZhsaq/gOg+y5JyY6v7a62xQHTPpWbQMAuOPbUMALB2RW6G6mgVyUHDLJHbBEHAmIl2jN8nD8NHWwEAm9d333D5zitVePE/e1Bfy6NUiKh3Y7gkIiLqAqF99kPDJ1/Cf9gR0G/ehMKjZsH0+itt3t8QU6k0mkQIQnrhUhAEnH5hX5x2Qd/IcxSEK5eJwmVs5VKbFhuruNSI8gojaqsCqK5MbxJuWyRJQU1VAFa7DvkFhoT3UfeN6lGzN9Apw4VSFQzK2P6LOhCptjo3rcNERN0FwyUREVEXUYqK0fzi63DdcBPg88Fx5SWwX30V4PO1uq8hpnKZ7jEkmqEjrRgywhr5c//B6nmWg2Oqg5rScOA0mcW4NcQaNzkPABIeCeJyhvDh2zV447lKBAOphb/a6gBkCSjv2zr0xtIqqh5X9wmXWzd58NmiOuzc6oMUUvfVNtYzXBJR78ZwSURE1JVEEd6rrkbTW/+DXFoGywvPouDYwyFu/SXubrF7LNOdFNuWifvl4U83DcbwMbZWHyvra4IgxO/VbGn0BPVxWzfFD9VxuyQ8esd2LPm8EWuXu/DLptRaV6v3BCJraI/Nrou8XndQVenHy0/uwZcf1eODBTWR25vqQ124KiKi3GO4JCIi6gaCBx6Mhs++RmDGQTCsXonCww6B6e35kY/HVy6z+8+3KAqR1tiWbHYdTr+oL353Rnmbj88vUh/rcceHu5qqAHxeGWJ4ubu2ta7Itqcq3GZbXtF+5VKbaOtxd314CwZlvPp0JYIBtVqpHZcCqIN9iIh6M4ZLIiKibkIu74OmN9+B549/gehshuP358P+l7mA291qz2VnGj3ejn4DzW1+3GgUIOpah8vmRjVMDR2ltuDuTDFcasGsJ1Uud+/wo6E2iMHDLeg3UF23EP52NbJySUS9HMMlERFRd6LXw/33m9H4+kK1TfbF51B4xEwU7twQuYshzWNIckUQBFhtOng9EpSYczudTWrYGzbKCqNJxO7tPkhScud6AkDVHj8gAGV9OqhchsOlpxuEy7pqNRAPGmbBjNnqMSlDR1ohikATK5dE1MsxXBIREXVDwUNno37xEgRmHwb9pp8x7erjMHPja4CidHrlMhkWqw6yBAT80fDY3KhW6vIL9eg3yIRgQIlrE22PzyehqSGEwmJDh59vd6pc1tWoAbKo1ICxk+w48exyHHtKKRyFeriaJQSD3WfoEBFRtnW/f52IiIgIAKCUlqLp5TfhuuUOQJFx2k/34JIvr0ZesKmrl9aKdmam1xMNeM1Narh05BswYLA6iXbXNm/rBydQuTO837KDSbFA96pc1teo4bm41AhBEDBpqgNFJUYUhPelNjWwNZaIei+GSyIiou5MFOG97Eqsf/I9VNsHYOLuL3DyvcfB8M1XXb2yONGhOtGA5wxXLvMKdJHjTtaudEGWE7fGupwhzLt/B775rAGfvlsHABg+uvUE25YilUt314dLrXJZXBo/IKmgUJ22y9ZYIurNGC6JiIh6gOCEybjr6Jfw/eBjYWusQv5Jv4XttpuBQHJtprlmsaoBr2XlUhAAe54eQ4ZbUFxmwLZNXnz8Tm3C59j6sxd7dvjx8Tu12LXdh4oBJuwz3dHha0eCbRdXLmVZQX1NEFa7LvL10GiVSw71IaLejOGSiIioBzAaRfgNNjw/41b8cNkDUGx2WB++H4VHzoJu/bquXh4s4YDndat7CmVZgbM5BLtDB51OgMEo4uw/VMBiE7FkcSPqa1uH4vq6aFVP1AHHnV4GUex4eFF32XPZ1BCCJCmtqpYAkF+ohUtWLomo92K4JCIi6gFiJ8RWzT4JDYu/RWD6gdCvXY3CI2bC8sSjgNx1w2Ks4T2XnnDl0u2UoMhAXr4+cp+iEiPGTrQDAGqrWoeshnDgPOXcPrjy/wajb/+2jz+JZTSJ0BuELq9capNiE4XLgiKtLZaVSyLqvRguiYiIegCDMfpPttEkQh44CE3z34XrptsARYH9puuRf8rvIO7a2SXri1Yu1YAXHeajj7tftD20dbisr1VvqxhoQlFJ64DWHptdB69HTumok2yrq9X2W7YeQmR3qF8Hl7Pr94USEeUKwyUREVEPYIypXBq1oKnTwXvFH9Hw0RcIjR0P49dfonDmdJhefwVQOjdkRfdcqtVTpxYuC1ILl4IYbSFNhTYxNnbPZ2eLVC7LWq/fnhdu3XWycklEvRfDJRERUQ+gNwhAOF+2PPdRGjsODR9+Ds/cP0NwOeG48hI4Lj4PQl1dp61PO4pEmxarnXGZ17JyWaz+uaHFYJtAQIarWUJBoQE6Xcf7LFuy2bp+32X1Xi1ctq5cmi0iRF3X7wslIsolhksiIqIeQBAEGAxq6DKaEoQvkwnuG29B09vvQxo4CKb/LUTRwfvD+L+FnbI+bWKrVjlMtS22ITzMJ9V22Mjrd/FZl4qioHKnH3qDgJIE4VIQBNjserhdUptHsSSjqtKPR+7YhvWrXJksl4goJxguiYiIeght32XLymWs4AEz0PD5N/Cecz7E2hrkX3Qu8i4+D0JNTU7X1nJarNYW27Jyac/TQW8QWoXL+vD5kIVphsuunhhbXxuE3yejTz9Tm5VXW54OihxtHU7HmmVO1FUHsfDlKk6eJaJuh+GSiIioh9D2XRqN7f/zreQ54LrvYTS+8TakAQNhfmcBig7ZH6aFb+VsL6alxbRYZ7P635bhUhAEFBTq4XXL8PuiIaunVy737PQDACoGmNq8jz28xvraAF6atxs/r3Wn/Dq7tvkAAH6fjLdfqUpjpUREucNwSURE1ENolUtDorbYBIIzZ6HhiyXwnn8RxLo6OP5wARwXngOhujr7azOIMBiFSFusqzlcuXToWt03UWusNim2sDi9cGnPU0Oss7lrBuZU7lRDX8WAto9PsYWH+qz+yYlN6zxYNL86pRZZWVawe4cPBqOA/EI9tm7yRva4dmTFD81Yt5KttESUWwyXREREPURpHyOsdl2kBTQZij0PrnseQOP8dyENHAzTe++g6OCpML31etarmBarDj6PDFlW4GqWoDcIMJlbv9XQwmVDTLhsCIfLogRnRCYjv7Brz5Hcs0utXPZtp3JpCwfgHVvVINpYF8LGNclXL6v3BhDwK+g3yIz+g9UQW7XH3+HjAn61yjn/xb3weiR881kDXntmD956YW/S4ZSIKBkMl0RERD3EKef2wVU3DoZen/o/38GDDkH94m/hufgSiA0NcFx2MRznnJ7VczEtVhGKok6M9bgl2PN0EITWVVZtYmxjXTQIZlq5LCjqunApy+owH4Mx8TAfjfZDgard0UD43ReNSb/OrnAo7T/IjPIKNcRW7Ql0+Lja6gAUBQgFFbz3RjU+fqcW61e5sfonJzavT701l4ioLQyXREREPYQoCjC1M8ynQ3Y73Hfci8a330doyFCYPvoARQftD8t/HgOkzCtY2sTY2io18Ngd+oT3a9kWK0kKGhuCsDt0He4nbYujwAAIic/PzLXKXf4Oh/kA0bMutYKx2SJi+xYv6mraD4h7d/vx6J3b8eXH9QCAAYPNKK9QQ2xVZceVy5q90edfs1xtjdUeH/B37nmoRNS7MVwSERH9ygSnH4iGxUvg/tNfgYAf9hv/DwVHz4Z+9cqMntdiDVfmKrVwmbh911EQ3h8Znijb1BCEIqc/zAcA9HoBeQ4dmptCkKTODUxffKiGvon75bV7v9h2ZkEEpkxzAAC2bPBEbnc2h+L2YSqKgvfn16C2KhA5O7T/YDP6aJXL3amFS0Btr568v/ragUD6k2uJiFpiuCQiIvo1sljguf4faPj0awT3nQrDiuUoOOJQ2G66AXCn1yqp7XvUJppqQ3Za0vZhasFGO4Ykk3Cpvr4Bity5Q3127/Dh57VuOAr0mDItv9372mK+HgWFBowcZwMAbA6Hy+2/eHH/TVuxZHFj5H4/r3Vj+xYvSvsYccTxJTju9DLY7Ho4CvQwW0RU7w10OBSoJlxJnnpQPgQROOJ3JZHjbIIMl0SURQyXREREv2LSmLFofO9jOO+6D4rVBusTj6DokGkwfvpRys9VHN5vuG2zGpa0NtCWtNZXrSWzvk4747Lt/YrJKNCG+tR3XrjUqpaHHF4Evb79Kb62mK9HUakBA4aYYTAK2LbZg1BIwYrvm6EowPYt3sj9vvqkAQBw+HElmDGrEPtOVwOsIAgorzAhFFQi4bwtWuXysN+W4IZ7hmPEWFv0exBgWywRZQ/DJRER0a+dKMJ34e/R8PUP8B/7O+h27kD+macg75ILIFQlf5ZiSbkaDp1Nic+41GhVs4BfrZpFJsVmWrnU9nI2dM6+S61qmV+ox+Rwi2t7Yttii0sN0OtFDB5uQcCvYPsWD9avVvdDanswFUVB1R4/TGYRI8ZaWz2ftm9ybzsTY4MBGQ11QeQX6mEyi5EArB1nw8olEWUTwyUREREBAOS+FWh+9kU0PfcKpL4VMC94C0Uz9oXlySeAUMfVwJKy+HDYduVSDTaRttgshcvOrlwu/qAOAHBwElVLANDpBFis6lsv7XMdPlptjX1/fi18nmjYliQFbpeEYEBBYYkh4dTdvv3V40g2r/e0+pimriYIRQFKy+Orwi2rx0RE2cBwSURERHECRx+Lhm+WwnPJ5RA8bthvuBaFhx0C/XdL2n2cza6D2RJ9a9HWtFi9QYAgxLTFZngMiaajyqUsK6iq9Gdl4E9jQxCb1nnUquX+HVctNdq+y6JSNeyNm2KHo0AfmbAriIAsq1NvGzr4uoyZZIPRJGDNcmeb51VqLbGlfeLDpcHYvSqXWzd5sGRxA5qbuuacUiLKDoZLIiIiakWx58H9z7vQ8OnXCBwwA/p1a1D4uyORN/dSCNXVCR8jCPHnPLY1LVYQBBhNIgJ+GYqioKEuCLNVjBxlkq72KpeSpGD+i3vxxN078MAtW/HjN00pPfeenT6892Y1vB41xNWGQ9uQEZakqpaawmI9BAEoC4c9e54eF/9pAPr0N8Fq12HsRDsAoK46iIa69sOl2azDpKkOhIIKln/fnPA+WottcVnLcBk/VKkruV0SXnmqEh8urMUDt2zFpnU8e5Oop2K4JCIiojZJY8eh6e330fzYPMilZTC/9jKKZuwL81P/TtgqW1IeDUI2e+LKJaBWzoIBGc4mCaGggqIMq5ZA+5XL996oxpplLpgtIlxOCR+9UwtFSb6CuWRxI5Z+3YRP3q0FANRprbylqQ0hOubkMpxzWb/IWZ+AejTLH/4yAH/+x2BUDFRbXetqApFw2d7XZupB6oCfLz6sw4KX9raalOtqVsOwo8X+V2Okctn1bbFffVyPgF9GSbkRigz89F1qwZ+Iug+GSyIiImqfIMB/6hmoX/ITPH+4DILLibzrr0Hh4TOh//67uLtqFTKLTWy3omc0iZBloLZaraxl2hILACaTCItNRGN9CKFQNDTJsoIVPzTDZBZx6d8GomKACQG/jKbG5FswtQrgT0uasXuHLzKhtbg0tXUXFhswdGTr4TyiKMBgFFEc3rcaV7ksaTukl/Ux4cDZhZBCwMqlTiz9Oj6YuZzq59iyiqxVLru6LbapIYilXzfBaBJw9h8qIIjqUTapBH8i6j4YLomIiCgpiiMf7tvuVs/GnDYd+rWrUXjcEci7/PcQK/cAQKQtNq+N/ZYabWJsU7jKaGtj+E+q+g8yQwop2LPDF7nN55Uhy0BBkR4FRYZIS2pNZSCp51QUBXXV4WqoAny2qA71tepjizI8PqWlknAltLYmkPRe1MN/V4KL/zwAQPwxJkC0ctnyzNHuchTJLz97IUkKpkzLR2GxAX0qTHA1S2jsxONkiCh7GC6JiIgoJdK48Wh85wM0P/oftVX2zddQNH0fWP91F/oWSRAE9RzH9mhtmc3hY0tM5uy8JRk0zAIA2LY5GrI8LvU1tKNAyvqaAADVe5MLlx63BL9PRllfI0xmEdu3eFFdqYXLzCuusQqKDRBErXIZgiAC+YUdv0Z5hRFmq4hd230IhaLVSK1y2TK8d5eBPlpI79NPDdUDhqhtwbu2+dp8DBF1XwyXRERElDpBgP+0M1H//XJ4/vgXIBSC7Z47MPS46fjLqB9wzEml7T5cq5w5w62pZkt2KpeDh6stp1s3R4/ncIcnqVrD4VKbnFpd2fb5kLG0qmVJuREDh5oRCipoagjB7tBlLRRr9HoBhcUGOJtCcDaFkF+oh07X8cAgURQwcIgFUkjB7h3q56UoClxOCVabrtVziKIAvUHo8splXU383tX+g9VwuXObt83HEFH31evD5R//+EdMnToVf/7zn7t6KURERL2OYs+D++83o/6bH+H/7fHQ7d6Fof+4DAPPOhr6ZT+2+TitLVY7eiL2CJNM9O1vgtEkYOcvXkjhfZda5VKbRhtpi02yclkXs79Sq4wC2a9aavabkR/5fSp7UbW1aa2xfp+MUFBpc2qvNlSpK7XcuzpgsPo5sHJJ1DP1+nB59tln4+677+7qZRAREfVq8qDBaH7mBTQuXITg+Ikw/PgDCo+ajbwr/hDZjxnLaNLaYrMbLnU6tYIXCCjYsVWtXrpbtMU6CvQwmUXUVAUgyx1X7iLHeZQa48JlcYqTYpN1wMyCyOukFC6Hqo/ZEQ6X0f2WicOl0SgiGFCS+hrkgqIoqKsJwGgSI9+bgiI97A4d9u72w+/PbfBVFAWL3qrG689W4oevG7Ny/inRr12vD5fTpk2DzWbr6mUQERH9KgRnHITGj7+A84FHIZeUwvzGq+p+zLtvh+ByRu5naNUWm723JINHqCHr3Tf3IBiUo5XLcIARBAGlfYwIBpSkBsdEWzcN6NvfHNmv2NG+0nSJooCT5pRj3BQ79p2e3/EDwvoOMMFgFLAzPG1VO5bE3sZwJYNB/TxCwa4JVa5mCcGAguJSAwRBXYsgCBg8zAJZbj2cKNuaGkP44asmrFvpwqI3a7B5A8/XJMpUl4bLpUuX4tJLL8VBBx2EUaNG4fPPP291n5deegmzZ8/GhAkTcNppp2HVqlVdsFIiIiJKmk4H39nnqvsx5/5Z3Y95390o2n8yzM88CQSDkbZYraqYrT2XALDv9HyUVxixYY0TC16qalW5BICyvmrVMXaqbFvqYyqXer2A/oPM4T/nJlwC6hCfU8/ri37hcy+TodMJKC03wu+T0dwUgsvZfuXSYNImxnZNa6x2VmjLr+PQUeq+2V82elo9JpucLY6i2bMjuT24RNS29ueE55jH48GoUaNw0kknYe7cua0+vmjRItx555245ZZbMGnSJDz33HO4+OKL8cEHH6CoqAgAcPzxxyd87vnz50Ony94/VID6k8TuRFtPd1sX9Q68viiXeH39SuTnw3vTrfBfcBGsd94G45uvIe+6q2Gd9ziGHPdXfKNMBcIVK4tVl7XrwWbX44K5A/DI7duwdrkTYyfZAajHcWivMWKMDcuWNOPDhTUYMsKKvPzEb4lkWUF9TRBmiwh7ng6CIOCQI4pgsTZhxBh7t7uGS/sYsWenH3XVQbjD4TIv35BwndpQJSnUNf8vNmjhsswY9/rDR6sdZ7/87MnpupzhtuEBQ8zYudWHyl3+pF+vq/8OW7akCSaziHFT8lJ6nKIokSoxdV9dfX1lokvD5cyZMzFz5sw2P/7ss8/i9NNPx8knnwwAuOWWW7B48WIsWLAAF110EQDg7bff7pS16vUiiovtnfJaqSosZNsv5Q6vL8olXl+/EsXjgNdfAVZcC1x7LXQffYTpD12G8uIJWDjlKmwpm4KKijzk5WevElhcDPQbaMHP61zYu1utPPbrn4fiYrVl9pDf2LHzlwC+XVyH9+fX4rK/Dk/4PA11AQSDCioGWlBSor6RL55hx/4zyrO21mwaPDQPK5c64XEKkEJqeOxbYUv4HsZmNwDwwmoxR74unaWxIYDmBrUdd9CQvLj1FRcDZX32oLrSD71oSuoolnRIQbUyOmnfQuzeXomqPYGU3+t1xd9hH72zF2+/VgWjScSBs/okNU0YAL7/qg7zX96NC68cglHjUgul1DV64r+RXRou2xMIBLB27VpcdtllkdtEUcSMGTOwYsWKTl9PKCSjubl7jcUWRQGFhTY0NLi7bDM+9V68viiXeH39Sg0YDrz8FgyLPwP+dj2Gbl2Nv3xyMVb1mwn/ynsRGDcmay8ligJKy034eZ0rMpAnEPSjrk6K3Oc3xxVi6Tf12LLRhbo6V8Ln+eVnNYDkF+ravE93YnOo/922xYlQeFouxFDCtQuC2g5bU+OCySq1+niuVO3x4/G7t0MJL89kkVutb/BwM6r3+vHjdzWYvL8jJ+vYu0fdY2mxKSjtY0TVngC2bW1EXht7VGN11d9ha5Y78fZrlQCAgF/GhrX16NPPlNRjf/quDq7mEJ58cAsu+etAFJVkdyCV26m2YpdXJLcealt3/TfS4bDAYGi/M7TbhsuGhgZIkoSSkpK424uLi7F9+/akn+cPf/gDVq1aBa/Xi0MOOQTz5s3D6NGj01pTd/rmxpLlrpv0Rr0fry/KJV5fv07+Q2Zh9aMfYMdt/8Vxqx7HxN1fQJl1AHxnnQPP1ddC7tc/K69T2idmv6IAmCxi3PWm0wmw5+vRUBuE3y/BYGg9iqK2Sg2mRSWGHnGtFpepVb7qvf7I0CSrXUy4dn14oI/fJ3fq51a5yxcJlnqDgKLS1l/bAUMt+OHrJuzZ6cPE/XJTZWtqVNty7Q49+vQzoWpPAGtXOCEKAvaZ7kiqJbEz/w4LBGR8sKAGADBwqBk7fvFh5zZvZP9wR2qr1WvZ65Hx7uvVmHNpv6ytTZIUPPvoLtTsDeCCuf0xcGjnVsJ7q574b2S3DZdtSbVXfN68eTlcDREREaXDaNFh6ZBjsHzgb3D4jrdwzPqnYXnxOZhffwXe8y6E549XQynPrPW0rE+0gmJtY09nnkOHhtogXM0SCotbh8vYY0h6goIiA3R6ATV7A3AUqG/z7HmJ3+4Zu2igjzZgaZ/pDkw7uAAWa+tKSGGRGpIbG4I5W0dzeKCPo0CPvv3NWLnUiUVvquHNbBUxPsX9jLn27WcNaG4MYewkO8bvk4cdv1Rizw5fUhOFFUVBfa06SEtRlMhE4Wztv1z+fTOqK9X/Vxa+UoXL/jYw8sMN+nXptt/1wsJC6HQ61NbWxt1eX1/fqppJREREPYv2xjOkM2HptPNQv3QV3H/5GxSDEdYn/43iaZNg++dNEOrr0n6N0thwaU/cyqW1QLqaEx9Joh1DolUEuzudTkBJmQFej4zaqiBEHWCxJn67p30Pgv72KyPfft6An9dl75gOj1sNlwOHWNpsocwvUr8vTUkcFZMuZ5M28EiHvgPi17F+ZfdqgVYUBd992QhRBxz+uxL0G6iud/fO5CbcOmOOfSnto04UbmrMztfW75fx+SL1/9O+/U2orwliyeLGrDx3b7T9Fy8evm0bfl7bO4++6bbh0mg0Yty4cfj2228jt8myjCVLlmDy5MldtzAiIiLKmFY1AwCTRQclvwCe625E/dJV8Fw2F5BlWB95AEVTJ8F6750QnM0pv0ZpmUkbRht3DEks7QxIbXJoS1rlMldnWuZCSblaZZUkBX37m9usTmnnXLZXuWyoC+Kjt2vx8rw9+PbzhqysTwuXbQV+QP1+6fRCziqXiqKguSkEq00HvV5E3/4mFBYbMHKcDQajgJ/XuRHsoiNaEmlqCMHnkdGnn7pOR4Eetjwdqvf4k1pn9DgdQ6Sir1UaA34ZO37xIhRK7/Pd8YsXbpeEMRNtOO70MgC5P6O0p/J6JLz1/F7U1wbxv9er4Pd1n2ssW7o0XLrdbqxfvx7r168HAOzatQvr169HTY3aknDBBRfg1VdfxYIFC7BlyxbcfPPN8Pl8OPHEE7ty2URERJQhoykaeMyW6NsRpaQE7ltuR/0PK+G94GIIPi9s996Jov0mwPLwA4A7+Z/2G4xipDW07cqlenuiyqUkKWioDcKWp4PZnN3jzXKprK8aHgpLDDj1/D5t3k8L+MFA25XLpphw99Hbtdi6KfOzJz3htlirre2vqSgKyC/Uw+uWEfBn/w24xy1DCimR68NoFDH3hkE48+K+GDHGhmBAwZYcn7OZiqpKtUJZHv7eCoKAfgPNkGVg7+6Oq5daBb6o1IjyCvWHD9V71Me992Y1nnl4F/5141Ys+64p5bU5m9T/d8r6mlDW1whBjK43m3Zt82HPzo7Ppe3OPlxYg+bGEAxGAc4mCYveqsaenWqLcm/RpeFyzZo1OOGEE3DCCScAAG677TaccMIJePXVVwEAxxxzDK677jo8/PDDOP7447F+/Xo89dRTkTMuiYiIqGcyxuzHig2XGrlPX7juvh/1S5bBe9Y5EJqaYL/tJhTvPwmW/zwGeJJ746/tlbTaEr/liVYuW4fLpoYgZFmt9vQk+0534NCjinDB3P4oaOcYD4Ox48plczg4aEFw+fepV5Bb8rjV12urmqwpKAy3xjZkvzVWC0R5+dE1iKIAQRAwJnwu6rpu1BpbvUetMsYO76kIt/ImEy7rtfbuUkPkhw9VlQG4XRLWLHNBpxfg88r47ovGlNemVf3zHHro9SJKyoxwNUtwu7L3ffP5JPz3sV147ZnKrD1nZ/P7Zaz6yQmzVcTv/zwARpOAlUudmHffTiz7LvP/r7qLLg2X06ZNw8aNG1v9mjt3buQ+c+bMweeff441a9bgjTfewMSJE7twxURERJQNsW2xZnPbb0fkgYPgevAxNHyzFL6TToFQWwP7jf+H4v0mwPLYw4Cr/QCgBUObPfFQm7z8cLhsim+LlSQFddXaG/KeMcxHY8/T49CjiuHIb39uoxbw26tcal+XAw4tgNEkYN1KF3y+zI4tibTFtlO5BBA53zJRa2xzUygykCcdWmhO9DUaMdYKQQS2bPR0m4pS9V41XMbuUS0qCX99ktiXWlcbbe+OVC4r/Vi5tBmSpGDf6Q7Y8nSorQpEj7BJklb1t4eDenk4AG/b7MVbL+zF7h2ZVxs3rnEjFFTQ1BCCJHWP70mqtv7sgSwBI8bYUNbXhAuvGoCpB6nDmFYvc3bx6rKn2+65JCIiot4rvi2245ZTadgIOP/9DBoWL4HvhJMg1NXCfsvfUTx1AiwP3w/BlfjNWcUA9TiStqqPidpi9+7x48Fbt+LVcJWkp1UukxWpXLbTdqoFuOJSA8ZOykMoqGDdiswqem6XBJ1eiLsGEskvTDzUR5YVPP3gTjzzyM601xA7KbYls1mHfgPMcDsl1FblblptR2RZweIP6rD4gzpUhVtYYyuX+SlM1I1WLo2w5+lhtetQUxXAj9+obbD7zshHeYUJshw9siRZkSpwuAtAC8Bv/HcvVv/kxIKXqlo9RvsBQ7LWLo9ecy5n7oY85dKm8FCsEWOsAIA+FSYcfVIpbHk6bN/iTflr0l0xXBIREVGn0+kEiOF3IYnaYtsijRkL57z/ouGrH+A75XQIDQ2w33YzivYZB+t9d0Noaoy7/5QDHDjvin6YsG/iYyVatsXu3ePHfx/dBWeTBClcwSnrpYfCRyuXbYdL7eviyNdj8jQHAOCrTxrg86b3RliWFXjdEqw2XYfHYBS0EZ52b/ehqSGExrpQ2seoRNtiE1d3h4xUz2nU9ph+90UDHr97O7yezgkAkqTgrRf2YvEH9Vj8QT2qKwOw2XVxx8oUtBG+W5Jl9RgSs1WMVIvL+hohS0B9bRCDh1tQ3tcUqThqezGTFdsWCwBlFW1X+r0eCQte2ot7bvgFi96qTqoy7PNK2LIh2gbvamP4VnemKAo2rfcAAjBstC1yuygKGD3eBkVGr5key3BJREREnU4QhMhRGKYUwqVGGjkKzsefRMO3P8J3xtkQnE7Y7r4dRftOgPWu2yA01ANQ37wNGWFNeMYloB7TodMLkTfIHy6ogc8jY8bsQlx27UCccl6fSKWhtzFoA32C7bXFhkNYgR6DhpoxarwNDbVBLHylKq2WUZ9XhqK0vQc2Vn4bey43rY8GDbczvaDRWB+Me42WhoxQv+dbN3lQszeADxbUoroy0Ob+RkVR0FgfjEwXztSa5U6sXe6CKaZlvGVoy8vXQxQ7rlxuXu9BKKigb7/oD0mGj1Y/v0lT83DaBX0BRCuOVXvSqFwKgC1Pa4uN/2FM7A+PFrxUhZVL1S6DH75qwgcLarF6mTPhDwkURcEbz1Xivpu2xrXCtnVsUHdWvTeA5sYQ+g00t9prPGqCusd3w5rus8c3EwyXRERE1CW0fZepVC5bkoYOh/PhJ9TBP+ecD8Hjhu3+e1A4eRxwzTUQKtsfACIIAux5OnhcEnZu9WLrJi+KSgw47LfFKO9rwvgpeVk7aL67MSYz0Kcx2vIoCAJOOKscBcV6bFjlxt7dqQcpbVJsR8N8gGjlsqlFeIo9czPdoNFQpz5nYXHiKtuAwWbodAK2bvbindeibZ3+BC3EHreER+7Yjgdv3YZH79iO9asyDwmV4fMrjz2lFH3CobBlaBNFAY4CPVzNUrvHiHz9qfqDlv0PLojcNmNWIa69YyhOPLtPXDUTSG3Sq6IocDlD6tExOvV6yi/Ux4Vi7XsOAHt2+iCKwJxLKqA3CPj+y0a89fxeLP269ZTa7b/4sHa5C4qirm3MRLXi50rzBwpdaU943+mQEZZWHxsywgKjScDm9Z6E11dPw3BJREREXULbc5fMnsuOyIOHwHXfw6j/fgW8518EBAPAvfeicN/xsP9lLnRbNrX5WK018sOFtQDUN95tVTp7E4MhXLn0J65AyrICZ3N8cLBYdZGqnsederBLdpgPoO6HFIT4gTXNTSHs3RUNP+kGjfraIESx7cqlwSii/2AzfB4ZO7dGB9L4va3f/O/c6kV9TRB5+TooAN58fi92bs3snMfaKjW4l/ZR9+UVlRgwNjzFNpY29Kitibo7t3qx4xcfissMGDU+vh3TYo3/HpT2MUIQUqtcetwyZCm+vVgQBAwdaYElXJ12h8OloijwuCVY7ToMH2PDxX8egP0OVAfaVCcItEvC56r+9tQyXH7tIAwfo65fq6b3JNrXIFEbtsEgYtR4O0JBBRt7QfWS4ZKIiIi6hLbnr71psamSBwyE654H0LBsLXDNNVCMJlhefA6FM/aD48JzoF/+U6vHaEN9dm33wZanw6T9E+/P7G0MpvYrlx63pAaHFkNvtO9boI1Q2h7tTXZb547G0unUylxzUyjS+rl5vTvyMSC9ymUgIMPVLCG/yBB5nkRmHlmEMRNtOOy3xZgxuxAA4Etw6L12huQBMwtx5PElkEIKlixuTHldsWqrA4AAlJQZMGiYBX/8+2AMHNq66lVQ1P5xLSt/VFtQpx/a8Q9MDAYRxaUGOJtCSQ+X0fbkav8PaU4+tw/+eMNgFJYY4PfJCIVk+P1qENV+sNCnwoQZs9Sva8uJt3U1AWxc64bdocP4fdT/H+3a8K0WP1DwuKW09wAn4nFLuO+mrfjyo/osPqd63bT1QxVtT/iaZQyXRERERGnR2mLT2XPZEaVPH+Duu9G4ch1cf78ZSkkpTO++jcIjZyH/5N/BsPgzILxnMPZYlJPm9IlU9Hq7jo4icbZxXIdWcW5vymxbUqlcAsCkqQ5AAb75VK1ibdusVgRHjlOrp+lULhsjLbHtTwEeOtKK0y+swEGHFUWO/UhUuayvjZ4hOWmqOvSopir9vZeBgIzGhhAKivSRfcltiRzXUp9436VWQU1233B5uAV3z87kjg9xtZgUq9HrRVisukj7s9slweNqHbDyC9XqtNamrNm0zgMowD4H5EOvV683bZhR7A8UJEnBv+/dgftv3oovP67PysTV3dt9cDaFsHlD9gbsaK3BbV33w0ZZYbGJ2Lze3eOnxv46/vYkIiKibmfy/nkYNd6GkrLcnSOp5BfA+8e/oO6nNXDe+yCkwUNg/GoxCk47AQWHz4Rp4VsYO8EMR4EeZ17cF8NG9c7hPYloIbGtfV7aGZd5+fFviLUwns6k1ki4TKJyCQAHzFTP11z2XTOam0LYuskLQQDGTlIrPelULuvDQaaog3AZS6uuJ6pc1oeH+BSVGGC16WB36FBXHUj7PMa66gCgIKn/L9qrXPp9MqorA8jL10dCaEcGD1ero79s9HRwT5VWubQ7ErcXR8KlU0r4g4XY6nTsvlGtEql9fkA0wMZOi22sD6K5MYSAX8Fn79Xhvn9sxfvzazI6C1O7Ppqz2H6rTRluK1zqdALGTcqD3AumxjJcEhERUZeYMi0fZ15c0W5rYtaYzfCddyHqlyxD85P/RXDiZBhWrYDjDxdg+gUH4Yby9zB6YM+uGKRKr1cn5foTBCYg+ua6deUy/bbYVAb6AOqb8akHFkAKKXjvjWo4m0Lo09+EknI1LKVTuWwIVxoLS5IPl1p13Z+g/bKuJggI0ecrLTdClqNnS6ZKq3qWlnccLturXO7e4YOiAAOGmJN+7eHhYzI2b0g2XCb+AYQmrnIZDpeWFpOCC0sMgBLfGqv9wCN2MJAtTwcI0UALRFuSh4+xYt8ZjsiQoFef3oNQKL2AqV0fzkYprYnIiUR/qNJ29NIGKrldPfvvIYZLIiIi+vXQ6eA//iQ0fvwFGl9fiMCs30C3cwfsN12PosljYbvxOojbt3X1KjuN2SwmbPUE2j4LMrrnMvdtsQAwfVYB9AYBG9eoFZ0hwy0JWySTpbWxFqUQLtuqXIaCMpoaQ3Dk6yPt1KV91JBQU5XaeZGa2ip1fSVJhMv2Kpc7t6mtrQMGJx8uC4sNKCo1oLoykFTlztlGW6xGO57E45LgbeN7X6idZxrTGqv9wMMU07Ku0wmw2nRwOaOhr65aDeKDh1tw3GnluOzagSgpM2DTOk/Sw3H27vHjy4/qIcvqc2otupKkZK1FNdIWa237uteF23+lNENxd8FwSURERL8+goDgobPR9NoC1H/5PbxzzoMQDMD6n8dRNG2yOvzn++8i+zJ7K5NFhCQpCAbb3kvYcqKqsYNBQO1JJ1za8/TYb0Z+5M+Dh1vVtlqhKyqX8Z9zQ10QUNT9lhqt4lhdmd6+y9oUKpeO8LClRJXLXdvU/Zb9UwiXACKt4VuSqF5q4T7RFFQg+n2OrVy2Cpfh9uTYfZeBcLg0thj2Zc/TQQop8IW/D1rlsrhU/VoVFBow7ZACAEBtdXKV40VvVuOzRXWRVmDtugeA5sYshUu3BINRaHcPrdbBkW7FtbtguCQiIqJfNWn0GLjufwR1y9bBfc31UIqK1eE/xx2BgqNnw7TgTSCYXotjd6e1HbZsjVUUBVs3eSCIQL9B8eEk2habTrhUH2NJIVwC6vEwOp0AUQQGDlPPoLTZdHA1p966qO2p0ypmyTCb1fW2rFxq4Sa2ChqtXLYOl36/HDk7tC3Ve9XHJVO5NBhE2B06NDeGIpU3QP3+7drmg04noG9/UzvP0Nrw0Wq4TGagTVs/gNBolcu4PZctWqILitXHNnTQFgu03nep7XctLot+/YvCQV/7WHucTSHsCB81s2enH4qixIXcbBx7IkkKvF65wx+oaOEyk/2i3QHDJREREREApbQUnr9eh7pla9H80OMIjRkHw7Kf4LjkQhTtPwmWh++HUFvb1cvMqki7Z4uKXPXeAFzNEvoPMkeClSaTPZdaiE31+BlHgR6nX9QXp57fN7Ieu0MHSVJarb09kqSgsT4Im13XKri0J1K5bCtclkaDoBYu9+zw4+N3alG1R22PbWoM4v6btuKxu7a3WfWtrvSjtiqA4jJD0tXd/EIDZDk+CHncErweGSXlBuj1qX2th4ywQm8QsHm9p90qWjAoo3pvAHaHLtKm3JLNrt6uTotNvnIZaYttWbkMH0ei7buM7HeNGc5UVKJ+/WMrkG1Zv9oFhD/FPbt8cDVLCAWjn3M2hvr4vBKgdFytZ1ssERERUW9kNsN/5hw0LP4WjW+8Df9hR0C3exfst92M4iljkHflJdAv+7GrV5kVbYUmrUVw6MjW03ONxvSPIvH7ZAgCYDCmPsRp5Fgbxky0R/4c3XeZfOvizm0+yBLQp19q1TyjUYAgtg7h9bXhyllMW6zNrofVpkNDXRDffNaAbz5rgM8n4fnHd8Pvk+H3tV29XP5DMwBgyv6OpNdWEK4aNsbsu9Qm/ToKEoe+9hhNIoaNssLvk7FtU9utsdWVASgy2q2MRgf6hDpsi+1ozyUQnUrrag4hGFD3uxYU6uOOD8ov1EOnEyLBvz3rVkb3Ze7Z4Y9UtYXw5dlRlTkZiY5gSUQX/laxcklERETUGwkCgjNnofnlN1H/7U/w/OEyKEYTzK+/gsKjZqPgiJkwvfoS4EvuTMDuyNxGW+wvP7cTLjM4isTvk2EyixCEzCcEa1UslzP5ALA+HCZGT7Sl9FqCIMBkFuH3xQfZmnALa1FpfIttxcBo4KqrDmDTWg/qYvYAthxEtG6lEx8urMGqpU4IIiLnZSYjP9ze2xSz77KtSb/JGj1BDfE/fN2E5x7bhRXh0Burcqdake3bv+09nfHTYhOHLJtdB4NRSKpyGft89ZH9rvHtw6IooLBYD49LihxpkkhNVQDbN3thd+hQUmZAc2MIu7er/y9rP3zYvcOHB27Ziu++aGjzeTri8SR3/A7bYomIiIh+JaThI+C+7W7UrdwA570PIjRmLAwrlsPxx8tQPHk0bP+8CeKO7V29zJSZtL2EMRW5UEjB9i1eGIxCq/2WQOy02NTeBMuygoBfTqkdtT2pVi4VRcH6VS5AiIanVJjNIgJ+JbK3UZYV7Nnhg9EktDqT8sSz++APVw+A3iCgvjaI2vBUU3O4UuxsseaP/1eHJYsb4XZJGDHG1uaAnEQSVy7bH7TTkVHjbRBE9czFrZu8+PrT1uGqcpcaxNqrXGqBytPOQB9BUKfA+rxyZP+s3y/DYBQgivE/hNAe6/XIkbDeMtirt7XfGhsMyHjjv5VQFGDaIQWoGKhe52tXqD98GDRMPe9zywYPmhpC+GBB+u3wbbUDtxQJl2yLJSIiIvqVsNvhO+9CNCxegsa334fvdydCaGqC9ZEHUDR1IhznnA7DZx8DcupVva5gjrTFRsPOhtUuBPwKho2yQq9vXWFMd6BPMKDEPT5TqVYu9+z0o7kxhIFDzG0endGelsOPKnd5EQgoqBhobhWCbHYdKgaYUVhsgNcjY+dWdXLr4OFqaGlZuXSHp96OGm/DrKOLU1pXvnYcSX3rQTTphkurTYch4bUC0QnBsSp3hSuXA9oOlzqdALNVjEyL1emEhM+lN0QnpSqKEqlwt2Sxqrd5PVJ0mE+icBkesJSoNVaSFCx8uQrVlQEMGWnBgbMLURH+HLTK5cChlrjHZHIWbzRUt3/dc88lERER0a+VICA4/UA4n3oO9cvWwn31tZBLy2D68H0UnHEyivafBOv990DcW9nVK22XKcFAnx+/aQIA7Ds9P+FjDGnuuWyr1TFdqVYuN61Tp5+mU7UEWn+ttm1WW4f7D2y7LVQLOdu2aOFSbTNuWbkEFJitIs68uCLl6a4FheE9izGVy+YMwyUAHHtqGY48oQRA9AcDGklSULUnAItNRH4H+zptdh2CAQVupwSrPXFLtLZnMhRUEAopkKXW+y2B6JRhj1uKfA3zC1uHSy1wtqxcKoqCBS/txdoVLhQU6XHSnD4QRQEVA6LfwwFDzBg5zhq3L7ikPPnJwi0le/yO9oMctsUSERER/YrJfSvgufYG1C9bi+b/PIPAQYdAt2M7bHfdhqIpY+E490wYP/4AkLJzZl42tazG1VQFsG2zFwXFegwb3Xq/JaDuaTMYhZT3XGY9XLZTuYw9lkOj7elLdZiPxmxRX0/7PLZuVsNqe+dIaiFHltSqW3mF2q4ZW7lUFAXBgBI3lCYV7VUu091zCah7GQ+YWQAIrffk1lQFIEkK+vYzdbh/NrYK2FbA0oJVKKi0e51YreG2WLcEt0v9HBPtZWzrOJLtW7xYs8yF/EI9zr+yf6SC3X+wGYceVYTfnVGGC+b2h14vxgXzQCD9wNfWESwtRfdcpv1S3QLDJREREVE2GI3wn3gKmua/i/rvlsFz5Z+gFBbC9MF7yD/7NBTtNwHWe++EuHtXV680wtxiWuzK8OCW/abnt2r1jGU0iq2qWR3JdrjUzlBsWblct9KFO67dEjcJFIhO/kxngioQU7kMfx7btqjhMtG+VI12LAagnluphRlnTLiUJAWKkt4EXUA9g9NsFdHYEIrsWdSmxWZSuQTCg4xMYqtwqX0tY48AacuEffIiv28zXMa0xWqvZUzUFqtVLj0y3OG9jLZE4bKN40iWf69e3zOPLEJBzDmnoijg0KOKsc8B0es+9jpp+fmngnsuiYiIiCgj0tDhcP/jVtSt2ICmp55DYOYs6Hbvgu3eO1G073g4zj4VxvffA4IdH5eQSy0D057wPrrhY9ufpmo0iQgFlbgWvpVLm/HCv3dj947E03P9/sTHS6Qr0hbbonK5boUToaCCd16tQlNj9iaoRoK4V51Cune3DwVF+nb3b8YOmykpM8Ke3zoQayHdYEh/X19BoQGhoBKpkjU3haDTCR3u80uGySzC75fjqsGRwNRBNQ6I7jMF2m75TFi5THCdaN8Dr1uK7FNNFC6127yeaCj0+SSsW+mCwShg3OS8Vo9pacasQuw7wxGeEpxBuEyyLVbbc9ne2aI9AcMlERERUa4YjQj87kQ0vfE26n5YCc9VV0MuKYXp4w+Rf96ZKJ40GrZ/XA/durVdsjxzeFqsP7yPsLrSD0EESsrar0hpQ1mC4dZYSVLw0Tu12LLBg6cf3IkNq12tHpPtyqXFKkLUta5c7tymhlufV8Z7b9QAUFtPmxtDMJnFtAcKxQbxmqoAFKX9YziAFuGy3AiTSYTBKMRVLiPh0pj+1yVfmxhbH0IopMDjkpCXr8vKkS8mswgo8fsukw1MgFoVjLYDJ+75jFYu5che3kTXiU4nwGwR4fWoA4JEXTRwJnq+YEzr9trlLgQDCsZNzkvqGhw51objTiuHza6DFFLSDn3aESyWZCuX3HNJRERERB2RBw+B+4abUL98HZqefQn+w46AUF8H678fRdGh01Fw2CEwP/VvCHV1nbYmkyUamDxuCa5mCcWlRuj17b9FjE6MVd8Ib97ghtspwZangyxH2w9jZTtcCoIAe54ebrcUeUPe3BhCU0MIxWUGWGwiNm9wIxSS4ffJCAaUtFtigZgzQb1ypGqW52g/MDjy9ZGKVEmZQV2zQw+fR0YwqH49tP+m2xYLINLi2dQQjOznzLQlVtNyXy6Q/D5CzekX9kXfASYcc0ppwo8nu+cSUENawK8OCLLZEwdoURSgNwgIBqNBbVd4EuyYSamdcaqtI5kBVoqiYMtGT2Q/cjAgo646AFFMvnLJcElEREREyTMYEDj2ODS//CbqV26A66bbEBo1GoZVK5B3/TUonjgSjgvPgfGj93PeNhsJDl4J1XvV4SdlfY3tPQRA7FmX6pvoFT84AaithED89FlNtsMlEB7qo0TbNHduix750W+gGbIEVO0JZNwSC8QH8ch+v7z2n08UhcjE2JJy9etqb7FXVAvoxgwql9pwI7dTyvgYkpbMicJlkvsINUUlRlxy9UAMH5042Om1abGhJMJl+DgSRQFs9rY/R4NBiKtchsJBU6vWJytRuG7Lts1evPDEbiz+oB4AsHqZEz6vjDGT7AmP9YmlC38q3HNJRERERGmRy/vAe8Uf0fDl92j4aDG8F/4eis0G07tvI3/O6SiePAa2m27IWdusOabVs7pS3W9Z1ieJcBluiw0E1IrnxjUumK0iJk1V97J5Pa3bH7Ugmq1zLoHW+y53blWrUwMGq+ESAHbv8GUlcMW2ELe336+lw44rxuxjiiMhU9ujqVUYI5XLDPZcxgagyDEkaZzl2d5z+2LOQtUql8l8/smItLF2sOcSiE6M7ej19QYRwaASGXKkhTZdByGvpVTCpTaReOsmDxRFwQ9fqcf6TDu4oMPHcqAPEREREWWHICA0eR+47roPdas3oenp5+E//EgIdbWwPvEIig6djsJZB8LyyINZnTZrMAoQRPWNc3WlVrns+KiOaFusuv9QloBhI62w2nQQhE6uXEKtAoZCcuQ8yQFDzKgYqH4ee3b4Mp4UC8RWLqPHYGgTa9szapwdhxxRFGnf1NasndOYjT2XsT8kiBxDksHnGqvdttgkK5cdSbUtVtPe199gFAAl2maq7ZnsqILYUqLP3+UM4T/37cDqn5xx99UGCFXt9uOXn73Yu9uPPv1NGDCk/b25QO/Zc5mdq46IiIiIssNkQuC4ExA47gSIVXthevN1mF97Cfq1q2Ffuxr2f/4DgekHwn/yafAfdzyUwqK0X0oQBJjD0zBrUmmLjdlzGQqpQcPu0EMUBZjCA1daykm4DFcut2z0YOHLVXC7JDgK9CgqMUReZ/cOPwrDR1Nk0hYbu+cyGG5lTSZcthSpXDpbVC4z2HMZF4DC2cTewX7QtJ47LNW22I7EDvTxtzPQB4i2xXb0+obIUB8Fen00XGajcrl5vQeVO/1Y/EEdxu9jj/zgQAvdsgx89LY6TGrf6Y6kBiuJogBR7PnhkpVLIiIiom4qtm22/vNv4Zn7Z0j9+sO45Bvk/fUqFI8fAcc5p8O08C3A40nrNUwW9czKvbv90OmjewTbY4jZc6m1iGp7CS0WHYIBpdWb5I5CQzq0APX9l41wuyQMH23FWX+oiAz7cRToUVsVQF21GpzzCtIPQ5ZwO6bHLUX2XNrb2fPX9prDZ12GK4zRo0jS/7qYLOGWXZ8Mr1eKW2+mElcuZegNQtZanFOpXFqTrlyqj9e+vlK6lUtT68+/KtxCXlcTxJ6d/sjtsT9UqdqjDvJJ5tgTjU4vQAp1fL/ujOGSiIiIqAeQxo2H+8ZbUP/TGjS+8wG8510ExW6H6cP34fjDBSgeNxx5V/wBhs8+BkLJv0ON7CX0ySjra4wcIt8eozG659Kl7T8Mv9E3hytLLauXHe2lS4dWuVQUQBCAk87pgz4V0bbefgNNUBRgw2o3AMCR33FwbkvscR/RgT5pVC7DZ106m7S22CxULmMCkC/cmmlJcERHWs/dIlzKsgKPR8pa1RKIrVym2Bbbzp5L7eupVYaz2RZbtScQ+f3KpdHJyF53/DU/bLQ1pa+TTiewcklEREREnUgUETxgBlz3PqDuz3zxNfhOOgWCLMH8xqsoOONkFI8fDvtf5sLw+acdTpyNfRM/alxyxzTE7rl0twiXWqjxeeL3XeZyzyUA9BtkbvVGfsgIa2SdAODIoHJpNImw5enQWB+EsznU5hmLHdH2QkYql8Es7LnUvuZeObLf1WzJTeXS61Fbb5M9hiQZ2tE3oaASqXC3VRWNG+jTXuXSkLhymXZbrD82XPohioAgAmuWuSJ7cL0trvnxU5KvWgJquEz3PM3uguGSiIiIqKcyGhE44mg4//0MatduQfPjT6rnZzqdsLz4HApOP1ENmn++EobPPkkYNGPD3tjJ9uReVguXASXyxlqrIprDb/619kxNTtpiY44CGT7a2urj+0x3oLgsWq3MtNpWWGyALKtHfuQ5DEntpWtJC5fNkbbYLE6L9UfbYs3WLFcuw9+/bA/zAaJVxqQG+sR8XjZb+0eRANGvb7Yqly5nCG6nhNI+RoydZIfHLeGpB3ehsT4Y+dr0H2yGLU+HURNSO1NTp1crl9qE256IA32IiIiIegO7Hf5TTof/lNMhNDbA+MEimN5ZAOMXn8Py0vOwvPQ85MJC+I/+Lfy/OxHBg2cCBkNksAwAlPXpeFIsEHMUib91W2xHlcvsHkUSDTiJzlDU60X89tQyPPfYbuh0QlphMFZhsQG7tqnHnaR71IfZrIPRJEYm2GZjWmxsANI+w3Sqqgmfu8Wew2wfQwLE7LkMKQhkc1osopXhbB1FUrVH3WNZXmHCcaeVQZIUbFjlxjefNcDrkSGIwHmX94MkKymfqanTqxNu5Y5PPem2GC6JiIiIehmloBD+M86G/4yzo0HzfwthXPwZLC+/AMvLL0SC5mDPAag27YOBY/KTfv6EbbF2bc9lG5VLnwydXki5ctTROvIL9VAURI4eaWnICCtOu6BvVqanFhZHq6CxVdNUOfJ1qK0Owu+Ts7LnUqcToDcI8IdbYvUGIaMBQbFMMVNygexPigVi9lwG5dQG+rS75zLcFhvZcylDEKJHfiQrGi7Vz1vbb1leYYLBKGLW0cXYsMqN+togvB4JFqsOBqOIdHb39objSBguiYiIiHqxuKDZ1NgqaJ6NF3Cq0YqA8wjI5b9F4LAjoOQXtPucxsi0WAVulwSTWYyEmbYqlwG/nNWWWM0Fc/sDAtodRDR2UnLtvh0pLI6+dc7L4FgTR4EetdVBNDeFYvZcZha6TebwETBZ3g/ZsnIXbYvN3vcytnLp96shsK02Ya0t1mBsf1pt7FEk2nPr02g9brtyqR5vow16qqsOIBRUkF+Y/tdFF/62ST143yXDJREREdGvhJJfAP/pZ8F/+lkQmpvUoLnoXRg//wTGRQuBRQuh6PUIHngw/Ef/FoGjj4Xct6LV82hv6j1uCX6fjKLSaJ0mWrmMhstQSEEoqCAvP/vhsqAo/QmwmbxWniP9143su2wMxey5zOxrYzaLkSpyto4hARLsudQql9lsizXE77k0mcU2W5hNZnWwUkfhPtFRJKm2xGqvB6jhUpYVbN3kBQSgTz+1Um4262Ayi2isV9ucM6noautjuCQiIiKiHkVx5MN/2pnwn3Ym4PHA+OViGN9/F6YPF8H4xecwfvE5cN3VCO6zbzho/hbSiJGAIMAcfsNdvVet4sTufdQqS76Yo0gCORjm0xUKS2LDZSaVS/V51HCZvcqlJlv7LQH1HFQgUeUy+9Nig0EFAb+C/MK2n1sQBFxy9cAOg2KkchlzFIk1jf2+seFy5zYfmhtDGDTMEtcWXVCkj7TLZhLs2RZLRERERD2f1YrAUccgcNQxcIVCMCz9HsZF78L0/nswLPsJhmU/AbffgtCQoQgcfiT0vzkCFn0FGuvUh8fufdOOwIg9liEXZ1x2BUe+HqIOkCXAnkm4zI9OjM3GUSRANAQC2Q2XWgu09j1053DPpVYV7eiHEFrlt/3njB5vIssKZCn1/ZZA/ECjNcucAIDx+8S3WecXGmLCZfpfez0rl0RERETUq+j1CE4/EMHpB8J96x3QrVsL0/vvwvj+ezCsXgn9vCdgnfcE7jBasa5sf6ytOAj6cUcBUNtnI5XL8EAfWVbQWK8egdLTK5eiKKCg0ID62mBGbbF54fM2nXFtsdmsXGYv+ImiurdRC5f1Ner3sr1JranSwqU2uTgb10lkWmxAjlQC0xkmpTcIEEX1hyXrVrggiMDYSfHnV2r7LgFWLhkuiYiIiCgxQYA0bjw848bD89frIO7ZDeOnH8P48YfQff45Ju9ajMm7FgM/3IbgKxMROPwIFEw9DIJcFKlcLny5Cqt+VCs+PT1cAmprbH1tMFw9Sy8EOPLDbbFNoawcRQIg0qoMZFY9S8RkFuFqDmHvbj92bfehqMSAkjJj1p5fC31aVTQbx9VEw6WS9jEkgNqGazKLkbUNH21tNaU2P6aSmpU9l1IHd+zGGC6JiIiIKClyRT/4zjkfvnPOx7a1Dfju1v9h/O6vsX/zEtjWrIJhzSrY8C/caSrA1mEHQd/nBOz4YQgEfQEMBhFDRli6+lPI2OxjijFomAUDh1hRX+9O6zliB/rIcjhcZly5bN2anC0mswhnE/D1p/UAgP0Pzm93Om+qUm2LTYY2ICkYVBAKh8t0psVq69F+WDLlAEerj+cXRqvYmQR7rXIZCvXcgy4ZLomIiIgoZRUj8vFz/+nY0Hc6xPP7YELeXhg//hCGjz+E5ZtvMHHdu8AV7+J2ANUVY2E/+UgEgrMR9B8AmBKfSdkT9BtoxoDBljanmSbDahOh0wtobgxF9kpmWq3L1UCf2Odes8wFo0nA5P1bB6xMaAN9ZDn+9TIR2xYbCZdpnrHqcUfPIh09ofWxNnFtsVmZFpv2U3Q5hksiIiIiSpnRKKKivxm7tvtgd+ghDR0B77AR8F56Je7/y0qM2P0dDpaXofDHL1C2Zx3wyDpYH3kAisWC4PQDETh0NgKH/gbSqNFABkGtJxIEAY4CPRpqg5AVBaKY3rCZWKYctsWKMU837ZCCrFdGW1YUszH4KXIUSTCztlggOu14/D55Cb9P3HMZxXBJRERERGmZdUwR1q10od8gc9ztYoEDP8mzsbPvUaiuuBp/OUdG2aqvYFz8GQxffwnjZ5/A+NknAACpT18EZ85Sw+bBh0IpK+uKT6XTFRSp4dLnkbNSqTNbcjPQBwDGTLTD2RTC7GOKMWHfvI4fkKKWFcXstMVGjyLJtHJ54G8KseL7Zhx6VFHCj+fl6yGIgCKrVel06cLJjNNiiYiIiOhXZ9goG4aNsrW63WzVAfUhVFcGUFBiQN6+g+HbbzR8F/4eCAahX/YTjIs/hXHxZ9Av/wnm116G+bWXAQChkaMQPPBgBA46BMEZB0MpLu7sT6tTFBYbsBVeAJmfcQnEV/uy3RY7Y1YhZswqzOpzxtLp1ImsWW2L1fZcZjjQBwAOP64Evzm2uM19pqIowJGvR1NDiJXLrl4AEREREfUu9phjKsZOtMfvTzQYEJp2AELTDoDn2hsgNDbA8NWXalXzmy+h/3kj9D9vhOXZpwAAoTHjEDjoYAQPPATBGQdCKchdyOlMhcXRITBaEMpE7DmXmQScrqI3CAj41VCVsz2XGbQedzTAaNR4G7Zu8iIvP/14pYXfECuXRERERESqw48rwZARHvQfbMaAweZ276sUFCJw3PEIHHc8AEDcsxuGb76C4ZuvYPz6K+jXr4V+/VrgyX9DEQSExk9E8MCDETzoYASnTYeSX9AJn1H2xYXLbFQuYwf6ZHnPZWfQ60UE/OFpsdk8iiRmz2W602KTcczJZVAUJaNBT5HKJcMlEREREZGqvMKE8or0JsLKFf3gP/UM+E89AwAg7tyhBs1w4DSsXgnD6pXAvx+FIgiQxoxDcNoBCE6bjuC06ZD79c/mp5Iz8ZXLzEOPOYfTYjtDbPDLdltsKJhZW2yyMgmWQHRPKNtiiYiIiIhyQB4wEP4zzob/jLMBRYG4fZsaNL/+EoYfvoN+3Rro162JtNFKAwYiuH80bEqjRsePO+0m4iuXWWiLDQcyQcxO5a+zxQ7bMWYhXGphNRQ30Kd7f12455KIiIiIqLMIAuTBQ+AbPAS+s88FAIi7d8Hww3cwfPctDN9/B936tTDv3AHzW68DAOT8AgT3n4bgtOkI7bc/gpOmALbWQ4g6m8UqwmQW4ffJ2WmLDVcrzRYx4wpaV8h25VIUBegNQlYG+nSW6DmXDJdERERERJ1O7tcf/hNPgf/EUwAAQlMjDD/+AMN3S6D/fgkMy3+C6eMPYfr4QwCAotNBGj0WwX2nIrjvfgjtOxXS8BGdXt0UBAGFJQbs3eXPSuXSaBRhteviKqI9SVy4zFLlVW8QsnIUSWfRKpcc6ENERERE1A0o+QUI/OYIBH5zhHqD3w/9yhUwfL8Ehp+WQv/TUujXroZ+7WpYnn8GACA78hGasg+C+05FaN/9ENxnaqccgVJYHA6XWdhzKYoCLvvbwJwOrcml2OCXjcoloO67dHlDkTbTbl+5ZFssEREREVE3ZjIhtP80hPafpp4qqSgQ9+yGftmPMPy4FIZlP0K/cjmMX3wO4xefRx4mDR6C4D77ITRpCkKTJiM0YSKUPEdWl6ZVGbNRuQSQ0TEYXU0fcxxL1sKlUYCiAH6feoBmt69csi2WiIiIiKgHEQTI/foj0K8/AsedoN4WDKpHnvz0o1rdXPYj9Js3QbdtKzD/jchDQ8OGIzRxEqRJU4BDZkAYPBKwpx84C4vVt+LZ2HPZ02nBT28QIhW8TGkVYZ+3p4RL9b+S1LXryATDJRERERH9uhkMCE2cjNDEyfBdcDEAQGhsgH75MuhXr4Rh5QroV66Afstm6LdsBha8BQAoQrjCOWmK+nitwllYlNTLjhxrw7oRLoyZaM/VZ9ZjaO282Zx0q1WEvR41rfWYtlhWLomIiIiIeg+loBDBWb9BcNZv1HZahAPnqpUwrFoB24Y1kJb+BN3WLWqF8+35kcdKfSsQGjsO0tjxCI0dh9DY8erQIEP8sJ38QgPOu6JnnMuZa1pVMVstsUC0IqyFy+5fueSeSyIiIiKiXwWloBDBQw6FdOgs2IrtaKxzQWlogH71KuhXrYR+1XLo166BbvMmmCr3AJ9+HH2s0YjQyNGQwmFTC51KWVkXfkbdh9bCmtVwGd7H6fOobbGsXOZerw6Xv/zyC66//nq4XC4YjUZcf/312G+//bp6WURERETUSyj5BQgedAiCBx0SvdHng37TRujWroF+7Rro162Fft1qGNasgmHNqrjHyyWlCI0eA2nESDV8jhqN0IhRaujsgedVpksb6JPdcNmz9lzqWbns3kwmE+644w4MHToUW7ZsweWXX44PP/ywq5dFRERERL2Z2YzQhEkITZgEv3abokCoroZ+nRY21eCp27QRxq+/BL7+Mu4p5IICSCNHIzRyFKSRo9TgOXIU5H79e2Xo1IKVMat7LsNtsd4e0hbLymX31q9fv8jvhw4dCqfTCUVRIPTC/yGJiIiIqBsTBCjl5QiWlyM46zfR24NB6LZthW7jBuh/3gDdzxuh+3kj9Jt/huGH72D44bu4p5FtdkgjRkAaOgzSkGGQhg1Xfz90GJSCwk7+pLJHn4u2WG2gj7uHtMWG1xdiuEzP0qVL8fTTT2PNmjWoqanBv//9b8yaNSvuPi+99BKefvpp1NTUYMyYMfj73/+OiRMnpvxan376KcaMGcNgSURERETdh8EAacRISCNGIoDfRW+XJIg7tqvttRs3qsEz/HvDiuUwrFje6qnk4mI1cIbDphY8Q0OGAfbuPZE2FwN9rDYdAMDj7mGVS7bFpsfj8WDUqFE46aSTMHfu3FYfX7RoEe68807ccsstmDRpEp577jlcfPHF+OCDD1BUpI54Pv744xM+9/z586HTqRfU7t27ce+992LevHm5+2SIiIiIiLJFp4M8ZCgCQ4YCRxwdvV1RIO6thO6XLeqvLZvV/4an1hp+/AGGH39o9XRySSmkQYMgDRwEeeBgSAMHQRowUP1z/wGA0diJn1xruahc2vJ0cX/u9pVLtsVmZubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CADw9ttvt/saLpcLl19+OW688UYMGjQoo/WKYve6ILX1dLd1Ue/A64tyidcX5RqvMcqlrr2+BKBfP0j9+kE6+JD4D0kSxN27oPtlC8RftkC3ZQt0v2yGbstmiDt3wPBTDQw//djqGRVRhNy3AvLAQZAGDoQ8cDDkQYMgDRgEuV8/yH0rAJMpp5+VxaoGQZtdl7Wva54jPuoYjWK3/jtB2yMqqV283Xqtbem2ey4DgQDWrl2Lyy67LHKbKIqYMWMGVqxYkdRzSJKEq666CqeddhoOOuigjNaj14soLu6e7QSFhbauXgL1Yry+KJd4fVGu8RqjXOqW11dZPjBlXOvbZRnYswfYujX+17ZtELZuhW7XLuh274JhyTdtPG8Z0L+/+mvAgNa/79cPMJvTXvbBsy0wGAyYOqMINnt2IkpFPwCojPy5uMSG4uL015hrIgIAAAFqqOyW11cHum24bGhogCRJKCkpibu9uLgY27dvT+o5vvzyS3z33Xeora3F66+/DgB44YUX4HA4Ul5PKCSjudnb8R07kSgKKCy0oaHBDVnuueVz6p54fVEu8fqiXOM1RrnUY68vSwEwdor6q6VAQK167tgOMfxLt2MHxD27IVbugbhnN4TqamDZsjafXi4pgdy3H+TycvVXWTmUMvW/cllZ+L/l6v7PBHNQJuxrhc/vg8+f4MnTICmBuD+7XF7o60LZefIccDnVtfl96h7R7nZ9ORwWGAy6du/TbcNlW1KZ9jpr1iysXbs2a6/dnb65sWRZ6bZro56P1xflEq8vyjVeY5RLver60hsgDxqC0KAhiT+uKBBqa6Gr3A1x926Ie3ZDV7kH4u5dECv3QBcOofralcDq9l9KsVohl0bDplxaqv65qAhKUTHkwiIoxcWQw7+H1ZrWp2Sxxu/fFHXd9/08EM3boZDaF9sTr69uGy4LCwuh0+lQW1sbd3t9fX2raiYREREREeWQIEApLUWotBSYODnxfRQFQl0dxOqqmF/V0d/XRH+v274Nuu3bknppxWKBXFgEuahYDZ9FhdEQmp8PxZEPOc8R/r0DisMB2VEAc14edDohMn1VG5jTXWnTbCWpixeSgW4bLo1GI8aNG4dvv/0Ws2fPBgDIsowlS5bgvPPO6+LVERERERFRHEGAUlICqaQE0tgE+z5jBQIQa2vUsFlVBbGuVg2mDfUQ6usg1tdBrI/5fbg6mqr7dCZ4DXZ4jHYUrSsB8h1Q7HlQrFYoVlv4vzG/t6n/RdzHbVAsFihGE2A0qP81mQB9dqOUNs2W02LT5Ha7sWPHjsifd+3ahfXr16OkpASlpaW44IILcM0112DcuHGYOHEinnvuOfh8Ppx44olduGoiIiIiIsqI0Qi5oh9kdepOxyQJQlOjGj7r6iHW10FoqIfY3AShuRlC+L9izO+F5iYEqhph9TXB4asDViQ3tyVZiigCJhMUgxEwGqGYTFCMxrjboNer99PpAEEEdCIUnQ6Iu00Xvk3Aecs9EM0G4McbgSGjs7reztCl4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp56KnHFJRERERES/AjodlKJiSEXFwLDkH/bSvN3YtNYNk+LH9TeUqWHU7YLg8UDwuAGPR/292x25TdBu80Rvg9cLIeCH4A8AwQAEvx8IBCAE/IA/AMHZDLE280lE+2u/eWU4cP0tGT9fZ+vScDlt2jRs3Lix3fvMmTMHc+bM6aQVERERERFRb2Gz69V2XbMFSnk5pPLy3L2YogDBYDRwBvzqETCSBMgyBFlSD7FsdZsUvk3Glx9UQ9TpcNydJwLOQMev2c102z2XREREREREmbDlqUdnaPsZc0oQ1PZYoxGwA+nsnJyxv3rUDYxGAD0vXIod34WIiIiIiKjnsYfDpb4zwiUxXBIRERERUe9ks3di5ZIYLomIiIiIqHey5am7APXd/IzL3oLhkoiIiIiIeiV7Z+65JIZLIiIiIiLqnRwFeog6wJ7HOaadgV9lIiIiIiLqlSxWHS7+0wDkORh7OgO/ykRERERE1GtVDDB39RJ+NdgWS0RERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZYzhkoiIiIiIiDLGcElEREREREQZY7gkIiIiIiKijDFcEhERERERUcYYLomIiIiIiChjDJdERERERESUMYZLIiIiIiIiyhjDJREREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDFBURSlqxfRE8iyAkmSu3oZrRgMOgSDUlcvg3opXl+US7y+KNd4jVEu8fqiXOqO15dOJ0IUhXbvw3BJREREREREGWNbLBEREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBljuCQiIiIiIqKMMVwSERERERFRxhguu7mXXnoJs2fPxoQJE3Daaadh1apV7d7//fffx1FHHYUJEybguOOOw5dfftlJK6WeKJXra9OmTZg7dy5mz56NUaNG4cUXX+zElVJPlMr19frrr+Oss87C1KlTsf/+++PCCy/E6tWrO3G11BOlco198sknOPnkk7Hffvth8uTJOP7447Fw4cLOWyz1OKm+B9PMmzcPo0aNwt13353jFVJPlsr1NX/+fIwaNSru14QJEzpxtcljuOzGFi1ahDvvvBNXXHEFFixYgFGjRuHiiy9GfX19wvsvX74cV199NU455RQsXLgQhx12GC6//HJs2bKlk1dOPUGq15fX60X//v1x9dVXo7S0tJNXSz1NqtfX999/j2OPPRbPP/88XnnlFZSXl+PCCy9EdXV1J6+ceopUr7H8/HxccskleO211/DOO+/glFNOwfXXX49vv/22k1dOPUGq15dm7dq1ePXVVzFq1KhOWin1ROlcXwUFBfj6668jvz7//PNOXHEKFOq2TjnlFOXWW2+N/FmSJOWggw5SnnrqqYT3v+qqq5RLLrkk7rZTTz1VueWWW3K6TuqZUr2+Ys2aNUt54YUXcrk86uEyub4URVFCoZAyZcoU5Z133snVEqmHy/QaUxRFOeGEE5RHHnkkF8ujHi6d68vj8ShHH3208uWXXypz5sxR7rrrrs5YKvVAqV5fb731lrL//vt31vIywsplNxUIBLB27VoceOCBkdtEUcSMGTOwYsWKhI9ZsWJF3P0B4KCDDmrz/vTrlc71RZSsbFxfXq8XoVAI+fn5OVol9WSZXmOKomDJkiXYunUr9t133xyulHqidK+vu+66C9OmTcPBBx/cCauknird68vlcuHQQw/FzJkzcfnll2Pz5s2dsNrU6bt6AZRYQ0MDJElCSUlJ3O3FxcXYvn17wsfU1taiuLi41f1rampytk7qmdK5voiSlY3r67777kPfvn1xwAEH5GKJ1MOle405nU4ccsghCAQCEEURt9xyC6ZPn57r5VIPk8719fnnn+O7777jPl7qUDrX19ChQ3HnnXdi5MiRaG5uxjPPPIMzzzwT7777LsrLyztj2UljuOxhFEWBIAhtfjzRx9q7P1Gsjq4vokwke309+eSTWLRoEV544QUYjcZOWBn1Fh1dYzabDQsXLoTH48GSJUtwxx13YODAgdhvv/06cZXUU7V1fdXX1+PGG2/EY489BovF0gUro96gvb+/Jk+ejMmTJ0f+PGXKFBxzzDF44403cOWVV3bSCpPDcNlNFRYWQqfToba2Nu72+vr6Vj/p0JSUlLS6f11dXZv3p1+vdK4vomRlcn09/fTT+M9//oNnn30WI0eOzOUyqQdL9xoTRRGDBg0CAIwZMwZbtmzBvHnzGC4pTqrX16ZNm1BTU4MzzzwzcpskSVi6dClefPFFTr6mONl4D2YwGDBmzJhu2W3GPZfdlNFoxLhx4+Km2MmyjCVLlsT95CLW5MmT8c0338Td9u2337Z5f/r1Suf6IkpWutfXU089hccffxxPPfVUtx2xTt1Dtv4OUxQFgUAgByuknizV62vChAn43//+h4ULF0Z+jR8/HieeeCLmz5/fiSunniAbf39JkoRNmzZ1y+n9rFx2YxdccAGuueYajBs3DhMnTsRzzz0Hn8+HE088EQBwzTXXoLy8HFdffTUA4Nxzz8WcOXPwzDPPYObMmVi0aBHWrFmD22+/vSs/DeqmUr2+AoFA5FibQCCAqqoqrF+/Hvn5+aioqOiyz4O6p1SvryeffBIPPfQQyXhSuQAACHJJREFU7rvvPvTr1y+yV9xqtcJms3XZ50HdV6rX2Lx58zB27FgMGjQIgUAAX331Fd5++23ceuutXflpUDeVyvVltVpbdVpYrVYUFBRgxIgRXbF86uZS/fvr0UcfxeTJkzFo0CA0Nzfj6aefxp49e3DKKad05aeREMNlN3bMMcegvr4eDz/8MGpqajBmzBg89dRTKCoqAgBUVlZCFKPF53322Qf33XcfHnzwQdx///0YPHgwHnvsMQwbNqyrPgXqxlK9vqqrq3HCCSdE/jxv3jzMmzcPJ554Iu66667OXj51c6leX6+88gqCwSD++Mc/xj3PlVdeiblz53bq2qlnSPUa8/l8uPXWW7F3716YzWYMHToU9957L4455piu+hSoG0v1+iJKRarXV3NzM2688UbU1NQgPz8f48ePx2uvvYahQ4d21afQJkFRFKWrF0FEREREREQ9G3/kQkRERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZUzf1QsgIiLqbh555BE8+uijrW6fPn06/vvf/3b+goiIiHoAhksiIqIE8vLy8NRTT7W6jYiIiBJjuCQiIkpAp9Nh8uTJHd7P5/PBbDbnfkFERETdHPdcEhERJWnXrl0YNWoU3nnnHVxzzTXYb7/9cOmllwIAGhsb8Y9//AMzZszAhAkTcMYZZ2DlypVxj29ubsbVV1+NyZMn46CDDsITTzyBu+++G7Nnz47c55FHHsG0adNavfaoUaPw4osvxt32xhtv4Nhjj8X48eMxa9YsPPnkk3Efv+6663DSSSfhm2++wXHHHYfJkyfjzDPPxKZNm+LuJ0kS/vOf/+DII4/E+PHjccghh+C6664DALz00kuYMmUK3G533GO+++47jBo1Chs2bEjxq0hERL0VK5dERERtCIVCcX9WFAUAcM899+Dwww/HQw89BFEUEQgEcMEFF6C5uRnXXHMNioqK8Morr+D888/HRx99hNLSUgDA//3f/+GHH37A9ddfj5KSEjzzzDPYsWMH9PrU/zl+6qmn8MADD+Diiy/G/vvvj7Vr1+Khhx6CxWLBnDlzIverrKzEPffcg8suuwwmkwn33HMP/vSnP+Hdd9+FIAgAgH/84x94++23cdFFF2H//fdHU1MTPvjgAwDAcccdh7vvvhsffvghTjrppMjzLliwAOPGjcPo0aNTXjsREfVODJdEREQJNDY2Yty4cXG33XbbbQCASZMm4aabborc/sYbb2DTpk149913MXjwYADAjBkzcNRRR+GZZ57Btddei02bNuGTTz7BAw88gGOOOQYAMG3aNMyaNQt2uz2ltblcLjz22GO47LLLcOWVVwIADjzwQHi9XjzxxBM488wzodPpAABNTU145ZVXIutSFAVXXHEFfvnlFwwbNgxbtmzBm2++iRtuuAHnnntu5DW0NTocDhxxxBGYP39+JFy63W589NFHuPrqq1NaNxER9W4Ml0RERAnk5eXh2WefjbvNaDQCAA499NC425csWYJx48ahf//+cdXOqVOnYs2aNQCA1atXA0BcC6zNZsOMGTOwatWqlNa2fPlyeDweHHXUUXGvd8ABB+Dxxx/H3r170a9fPwBAv379IsESAIYNGwYAqKqqwrBhw/D9998DQFxVsqVTTjkF559/Pnbu3IkBAwbg/fffRygUwm9/+9uU1k1ERL0bwyUREVECOp0OEyZMiLtt165dAIDi4uK42xsaGrBixYpWlU4AGDhwIACgtrYWNput1fCfls+VjIaGBgDAsccem/DjlZWVkXDZcsKtwWAAAPj9fgBqhdZqtbZbPZ02bRoGDBiA+fPn46qrrsL8+fPxm9/8BgUFBSmvnYiIei+GSyIiohRpexU1+fn5GD9+PG6++eZW99WqnSUlJXC73a2my9bV1cXd32QyIRgMxt3W1NTU6vUA4D//+U/CcDpkyJCkP5eCggJ4PB64XK42A6YgCDj55JPx+uuv4/jjj8dPP/3UangQERERwyUREVGGpk+fjm+++QYVFRVtViK1Kuhnn30W2c/odrvx7bffxoW68vJyuN1uVFVVoby8HADwzTffxD3XlClTYDabUV1d3apFN1UHHHAAAGDhwoVxg4BaOvHEE/Hwww/j+uuvR3l5OQ488MCMXpeIiHofhksiIqIMnXDCCXj11Vdxzjnn4MILL8SAAQPQ2NiIVatWobS0FOeffz5GjBiB2bNn4+abb4bL5UJpaSmefvrpVm2yBx98MMxmM66//npccMEF2LVrF1599dW4+zgcDlx55ZW4/fbbsXv3bkydOhWyLGPbtm34/vvv8dhjjyW99qFDh+L000/HXXfdhbq6OkydOhXNzc348MMP8cADD0TuV15ejoMPPhiLFy/GJZdcEhkYREREpGG4JCIiypDJZMLzzz+Phx56CI888gjq6upQVFSEiRMnxg3wueuuu3DzzTfjjjvugNVqxVlnnYUJEybgww8/jNynqKgIDz/8MO655x5cccUVGDduHO67775ItVPz+9//HmVlZXjuuefw7LPPwmQyYfDgwa3ul4ybbroJFRUVeOONN/Dkk0+iqKgoYWXysMMOw+LFi9sd/kNERL9egqId2kVERESdTjtD8rPPPuvqpXToqquuQk1NDV5++eWuXgoREXVDrFwSERFRuzZu3Ig1a9bg448/xv3339/VyyEiom6K4ZKIiIjaddlll6GhoQFnnXUWjjrqqK5eDhERdVNsiyUiIiIiIqKMiV29ACIiIiIiIur5GC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBn7f5iPJ8tskQoMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "0c42f301", + "metadata": {}, + "source": [ + "### While it seems decent, lets compare with `Powerspectrum`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d754bfc9", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "ps = Powerspectrum(lc_ar4, norm=\"abs\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e44b8444", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'AR(4) Spectrum')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc5dX38e/MbFOv7r3KnWJjwBgMBtNMCb0TwITQIZDQk4deQkgIJIS8QCgJAULAQDC9N2MbcO9VtmVLVm+rLVPeP2ZndlfNtixbkn0+z/VckXZnZ2eltdBP59znVizLshBCCCGEEEIIIXaB2tEXIIQQQgghhBCi65NwKYQQQgghhBBil0m4FEIIIYQQQgixyyRcCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mYRLIYQQQgghhBC7TMKlEEIIIYQQQohdJuFSCCHEXsGyLKZOnUpBQQGFhYVN7p8zZw4FBQXu/0+YMIGzzjqLTz75pNnzLVmyhIMOOoi6urpm77/66qspKCjgX//6V9LtV1xxBX/961936JqLior4zW9+w5FHHsnYsWOZMmUKV111FfPmzduhx7e3b775hhdeeKFDnlsIIUTXJ+FSCCHEXmH+/PkUFRUBMGvWrBaP+8Mf/sBrr73GY489RnZ2Ntdee22zYe7xxx/n3HPPJT09vcl933zzDQsXLmz2/FdccQUvvPACNTU1rV5vdXU155xzDmvWrOGmm27imWee4frrr0dVVebPn9/qY3eXb7/9lpdeeqlDnlsIIUTX5+noCxBCCCHaw6xZs0hNTWXYsGHMmjWLq6++utnjCgoKGD58OAATJ07kyCOP5J133uGggw5yj9mwYQNff/01d911V5PHR6NRHnjgAW688cZm758wYQLZ2dm8/fbbXHTRRS1e74cffkhZWRlvv/02eXl57u1nnHEGlmXt8OvuCIZhYBgGPp+voy9FCCFEJyKVSyGEEF2eYRh88MEHTJ06lTPOOIM1a9awYsWK7T4uJSWF/v37s3Xr1qTbZ86cSUFBAQMHDmzymJdeeolAIMAZZ5zR4nmPPfZY3nrrrVafu6amBq/XS1ZWVpP7FEVxP77ttts4/fTT+eSTTzj++OMZO3Ys5513HmvWrEl6jGma/L//9/+YNm0aY8aM4bjjjmPmzJlNzv3xxx9z5plnMm7cOA4++GB+8YtfUFRUxJNPPsk//vEPioqK3Nbh2267rck1TJ8+nXHjxrFo0SKefPJJDj744CbP0bhdeOrUqTzyyCP8v//3/5g8eTLjx4/n4YcfxrIsvvzyS6ZPn84BBxzA1VdfTXV1datfNyGEEJ2XVC6FEEJ0ed9//z1lZWWceOKJjB8/nvvuu49Zs2YxYsSIVh9nmibFxcWMHj26yfkOOOCAJseXlpby1FNP8fTTT6OqLf999oADDuC5556jurq62fAIMHr0aCKRCLfccguXXXYZo0aNavGcW7Zs4aGHHuKGG24gEAjw5JNPMmPGDD766CP8fj8A9913H2+99RZXX301o0eP5ttvv+WOO+4gOzubo446CoC33nqLW2+9lenTp3P11VdjWRbff/89FRUVnHXWWWzYsIE5c+bwl7/8BYDc3Fz3GoqKinj00Ue5+uqryc/Pp2/fvq18ZZuaNWsW48aN48EHH2Tp0qU8/vjjmKbJDz/8wA033EAoFOK+++7jscce4957792pcwshhOgcJFwKIYTo8t59910yMzM5/PDD8fl8TJo0iVmzZnHTTTclVQHBDpS6rlNTU8MzzzxDQ0MDF198sXu/ZVksW7aMU045pcnzPProo0yePDmphbY5I0aMwLIslixZwmGHHdbsMYceeiiXXHIJL774IrNmzSItLY3DDjuM8847j0mTJiUdW1lZyVNPPcWBBx4I2MF02rRpvPnmm5x33nkUFhbyyiuv8NBDD3HaaacBMGnSJEpLS/nLX/7CUUcdhWmaPPbYY0ybNo0//vGP7rmPPvpo9+Pu3bvj8/nYf//9m1xvVVUVL7zwAiNHjmz1tbfE7/fz5z//GU3TOOKII/j000/517/+xYcffki/fv0AWLFiBW+99ZaESyGE6KKkLVYIIUSXFolE+OSTTzjmmGPcNYDTp0+nqKiIBQsWNDn+1FNPZfTo0Rx66KG88MILPPzwwwwePNi9v7q6mkgkQk5OTtLj5s+fz4cffsgtt9yy3WtyHltaWtrqcbfffrt7zokTJ/L1119z2WWX8corryQdl5eX5wZLgD59+jB69GgWLVoEwOzZs1FVlWnTpqHruvv/hx56KCtWrMAwDNavX8+2bds4/fTTt3v9zenRo0ebgyXY61s1TXM/HzBgAH369HGDpXNbRUUFkUikzc8jhBCi40jlUgghRJf21VdfUVNTw5QpU9wJrQcffDA+n49Zs2Y1aW/905/+RL9+/di6dSuPP/44t99+O2PHjqVHjx4AhMNhgCbDah588EHOOeccMjIykibBhkIhamtrycjIcG9zHrsjIWnAgAHMmDGDGTNmUFFRwYwZM/jTn/7Eueee61ZdEwf+OPLy8tzwWllZiWEYjB8/vtnnKC0tpbKyEoBu3bpt95qak5+f36bHOTIzM5M+93q9SV8z5zbLsohGozIsSAghuiAJl0IIIbq0d999F4AbbrihyX3vv/8+t99+e1LFbOjQoQwfPpyxY8cyYsQITjzxRJ566inuueceIF51bLyVyPr161m0aBEvvvhi0u2PPvoof/zjH1m2bJl7W21tLUCL6y1bkpuby+mnn879999PeXm5G+jKy8ubHFteXs7QoUPd5/F4PLzyyitN2oCd89bX1wPbr6buDL/fTzQaTbpNBvIIIcS+S8KlEEKILqu+vp4vvviCk046ibPPPjvpvuXLl/PQQw8xZ86cJmsYHf379+ess87ijTfe4PrrrycvLw+fz0fv3r3ZvHlz0rFPP/00hmEk3XbxxRdz0UUXceyxxybd7jy2uWmzjoqKiqSBOY7CwkJ8Pl9SVa+8vJyffvrJbY3dsmULy5Ytc1tcDznkEAzDoLa2tsU1noMGDaJHjx689dZbTJ06tdljvF6vW7ndET169KC+vp6SkhK38vvtt9/u8OOFEELsXSRcCiGE6LI+/fRTdyDPfvvtl3TfgQceyN/+9jfefffdFsMlwOWXX87rr7/OP//5T2688Ub3sUuXLk06bsKECc0+fuDAgUycODHptiVLlpCRkcGwYcNafN6ZM2fyv//9j5/97GcUFBSg6zqzZ8/m3//+N+edd547BRbsauott9ziTot94okn3ConwODBgzn33HO56aabmDFjBmPHjiUcDrN69Wo2bNjAAw88gKqq/OY3v+HXv/41N998MyeddBKKovD9998zffp0xo4dy+DBgykrK+PNN99k2LBh5OTktDoV9vDDDycQCHDHHXdw6aWXsnnzZl599dUWjxdCCLF3k3AphBCiy5o1axYDBw5sEizBrsKdcMIJzJo1i7vvvrvFc/Tp04eTTz6ZV155hSuuuILU1FSmTZvG7bffTigUIhAI7PR1ff3110ybNq3V7UqmTJnC5s2b+c9//sPWrVvRNI3+/ftz1113NanC9u7dmyuvvJLHHnuMoqIixowZw2OPPZYUQP/v//6PgQMH8vrrr/PEE0+Qnp7O0KFDOfPMM91jTj75ZPx+P08//TTXX389qamp7Lfffm4F9YQTTmDOnDk8+uijVFRUcNppp/Hwww+3+Bpyc3N54okn+P3vf88111zD6NGjeeyxxzjxxBN3+msmhBCi61Msy7I6+iKEEEKIziQSiTBlyhR+97vfccIJJ+zUY2tra5k0aRLPP/98i9XOnXHbbbexatUq3nzzzV0+lxBCCLE7yVYkQgghRCM+n48ZM2bw0ksv7fRjX3nlFfbff/92CZZCCCFEVyJtsUIIIUQzLrzwwma3Gdme9PR07rzzzt14ZUIIIUTnJG2xQgghhBBCCCF2mbTFCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mQz02UGmaWEYZkdfRhMej4qud77rEnsHeX+J3UneX2J3k/eY2J3k/SV2p874/tI0FVVVWj1GwuUOMgyTqqpgR19GElVVyMtLp6amAdOUuUyifcn7S+xO8v4Su5u8x8TuJO8vsTt11vdXdnYqqqq1eoy0xQohhBBCCCGE2GUSLoUQQgghhBBC7DIJl0IIIYQQQgghdpmsuRRCCCGEEPsMy7IwTQNrF5ayqapCJBJB1/VOtSZO7B064v2lKKCqGorS+sCe7dnrw+Xo0aMZOnQoAGPGjOGBBx7o4CsSQgghhBB7mmVZ1NVVU19fA+z6L+xlZSqm2bmmeYq9R8e8vxTS0jJJT89qc8jc68NldnY2b7/9dkdfhhBCCCGE6EBOsMzMzMXn8wO7WKHxKOi6VC3F7rHn318WkUiYmpoKADIystt0lr0+XAohhBBCiH2bZVlusExNTW+Xc3o8KiCVS7F7dMT7y+PxAlBTU9Hm6mWnHugzb948rrzySiZPnkxBQQGff/55k2Nefvllpk6dytixYzn77LNZtGhR0v3V1dWcdtppnHfeecydO3dPXboQQgghhOgkTNMArFjFUgjREvvfiBX7N7PzOnXlMhgMUlBQwOmnn851113X5P733nuPhx56iHvuuYf99tuPF198kcsvv5wPPviA3NxcAD799FN69OjBmjVruOKKK3jnnXdIT2/bX6xUddfaJ9qbcz2d7brE3kHeX2J3kveX2N3kPSYSmabzPpD3gxCts/+NKIrSpp+fnTpcTpkyhSlTprR4//PPP88555zDGWecAcA999zDF198wcyZM5kxYwYAPXr0AGDo0KEMHz6c9evXM3bs2J2+Fo9HJS+vfdoo2ltOTlpHX4LYi8n7S+xO8v4Su5u8xwRAJBKhrEzF41Fi7Ybtoz3PJURjHfP+UlBVlZycVHw+304/ulOHy9ZEIhGWLl3KVVdd5d6mqiqTJk1iwYIFgN0Sm5KSgs/no6SkhFWrVtGvX782PZ+um9TUNLTHpbcbVVXIyUmjsrJexmCLdifvL7E7yftL7G7yHhOJ7C0dzNiAlPZZx+bxqOi6rLkUu0dHvb903cI0TSorg3g8kaT7MjNT8Hq1Vh/fZcNlZWUlhmGQn5+fdHteXh6FhYUArF27lt/97neoqoqqqtxxxx1kZ2e3+Tk763+cTNPqtNcmuj55f4ndSd5fYneT95iAzvs73J72008/cP31V/LRR1+Rmpra4nFnnnky5513IWeccc4evLrO57nn/s53333Dc8/9s6MvZY9r68/Ova6Wb1mWO9nowAMP5N133+Wdd97hrbfe4phjjungqxNCCCGEEGLHPPDA3UyePIE//en3Te675567mDx5An/5y+NtPv977/2P6dOPbnL7M8+8xPTpp7qfT548gW+//brNz9MVNPcazzvvIv74xyd3+3Nfe+0Vu/R97Ey6bLjMyclB0zTKysqSbq+oqGhSzRRCCCGEEKIr6t69Bx9//CGRSLxFsb6+jq+//oLu3XvslufMyckhEAjslnPvqmg0useeKzU1lays7D32fHuDLhsufT4fo0eP5rvvvnNvM02T2bNns//++3fchQkhhBBCCNFORo0aTU5ODt9885V72yeffMTw4SPo3btP0rGNq2/BYJDJkyfw008/NDnvTz/9wIMP3kN1dTWTJ09g8uQJPPfc3wG7LfaNN15zPwa49dZfMXnyBPfzTZs2cuutv+Lkk49l2rQj+OUvL2XhwgVNruett97gV7+6hqlTD+Pcc09j9uxvko5Zt24NN910HcccM5lTTz2Ohx++j7q6Ovf+a6+9gscf/wOPP/4oJ554NHfc8esWv1bvvDOT8847nalTJ3HhhWcxa9Y77n3RaJTHHnuEU045jqlTJ3HWWafy3/++2uprfO65vzNjxkXuOR544G7uuusWnn/+GU466RhOOGEq//73P4lEIjz66IMce+wUzjrrlKTvga7rPPjgPZx55slMnXoYF1xwJu+8MzPpnAsW/MSrr/7L/T5s3bplh742nVGnXnNZX1/Pxo0b3c83b97M8uXLyc/Pp1u3blx66aXccsstjB49mnHjxvHiiy8SCoU47bTTOvCqhRBCCCFEVzDz5WJWLK5v02MVBaydXJI2Ymwap13Qc6ef68QTT+a9995h6lR7idd77/2Pk0/+GR98MGunz+UYO3Y/rr/+Zl544Vn++U87SKakNF2H+cwzL3HyydP47W/vZcKEiaiqPdAlGAwyadLh/PKX1+DxeHn77Te55ZYbeO21t5NmnDz77NNcffX1/OpXv+Gdd97izjtv4ZVX3qRHj57U1tZy/fVX8bOfncGNN95MMNjAk0/+kQceuJuHHvqDe45Zs97hzDPP4emn/9Hi6/noo/d5/vln+NWvbmHo0GEsX76MRx65n8zMTA4//Ehef/1Vvv32K+677xF69OjBli1F1NRUt/oamzN37hzy87vz1FPPMm/eXP70p9/zww9zOeywyTz33D95443XuO++3/Hmm7NITU3FMAx69OjJ/fc/QmZmFvPn/8hjjz1Mz569mDjxEG644dds2rSRoUOHc+mllwOQnZ2zw1+bzqZTh8slS5Zw8cUXu5/ff//9AFx77bVcd911nHjiiVRUVPDEE09QWlrKyJEjefbZZ909LoUQQgghhOjqjj9+Os8993fKykqpr69n3bo1TJ16zC6FS6/XS3p6OooCeXktLynLyckBID09I+m4goIRFBSMcD+/7rpf8eWXnzFnznccd9yJ7u3HHHMcJ55oVwKvvfZG5s6dzVtvvcEvf3kNb7zxGiNHjuLyy690j7/llju54IIzqaysICfH/p1+wICB/PKX17T6ep577u9cd91NHHHEkQD07t2HVatW8Pbbb3L44UeybVsx/fr1Z9y4/VAUhZ49e233NTYnOzub66+/CVVV6d9/IC+//CJ+v88dfnTJJb/gv/99jdWrV7Hffvvj9/uZMeOX7uN79+7DggU/8dlnHzNx4iGkp6fj8XgIBAJJz/366zv2telsOnW4PPjgg1m5cmWrx1x44YVceOGFe+iKhBBCCCHE3qItVUTHntwqIi8vnwkTDub992dRW1vDlClTSU3t2D1cg8Egzz33d2bP/oaKinIMwyAcDlNSUpx03KhRY5I+Hz16LBs2rAdgzZrVzJs3h2nTDm9y/qKizW6AGjFiZKvX0tDQQFHRZh544P946KF73Nt1XXdD5PHHT+fGG6/h/PPP4JBDDmPy5CMYP/6gnX7dgwcPQVXjKwuzs3MYOHBwwufZaJpGVVWFe9sbb/yHWbPeoaRkK5FIhGg0ygEHjG/1edasWbVDX5vOplOHSyGEEEIIIQRMn34yTz/9F4LBIP/3f/c3e4yiKFgJvbq6ru+26/nrXx/nxx/ncfXVN9CnT1/8fj+//vUNTQbuxDZxaHKdYIfCww8/stmqZLdu3dyPA4GUVq+loSEIwB13/B8FBclB1OOx486IEaN4/fV3+P77b5k3bw633XYzxxxzLLfeetf2X2wz50t8LY1vA3sWDMAnn3zIU0/9meuuu4lRo0aTmprG88//P0pKSlp9nmAwuENfm85GwqUQQgghhBCd3GGHHcGjjz5ESkpqi1Wv7OwcKirK3c/XrFnV6jk9Hi+Gsf3qq8fjwTSNpNsWL17I9OmnuG2oNTU1lJY2DUxLly5h2rTj3c+XLVvCpEl2NW748AK+/vpLevXqjaa1vM5xe3Jz88jP78aWLUUcffSxLR6XkZHBtGnHM23a8Rx88KHce+9v+c1v7kBV1WZfY3tYvHgh++13AD/72RnubZs2bcLn87mfe73eJs9dUFDAl1/u+tdmT+uy02KFEEIIIYTYV3g8Hl57bSYvvvhvt/LX2AEHjOeNN/7DmjWrWbx4Ic8881Sr5+zVqxf19XX89NMPVFVVEQqFmj2uZ8/e/PDDXMrLy6ipqQGgb9/+fPHFZ6xevYpVq1Zw9913NjsI59NPP+L9999l48ZCnnrqz2zcWMipp9pB6/TTz6Kyspx7772LFSuWUVS0mdmzv+GRRx7YmS8NAJdcMoOXXvoHb7zxGhs3FrJmzWrefvtNZs78LwCvvfYyn376ERs3bqCwcANfffUF/fr1d1tcm3uN7aFv3/4sW7aEefO+Z+PGQv761z+7bcGOnj17s3TpEoqLt1JVVYVpmpxxxjnt9rXZkyRcCiHaVU24mtlbvqVBb+joSxFCCCH2Kmlp6a2utbz22hvJzs7hyisv5dFHH+Syy65o9Xxjx+7Hqaeezm9/eysnnXQML7/8YovnnTNnNqefPp3LLrsAsAf4pKamcuWVl3LHHb/hqKOOpn//AU0eO2PGFXzwwXtccsl5fPnl59x33yP07Gmvde3WrTtPPfUckUiEG2+8mosvPoe//vWJpGmzO+pnPzuTm2++jXfeeYuf//xcbrjhSj777GN3u5ZAIIV//vMFZsy4iF/+8hJqa2u5//7ft/oa28Opp57O4YcfyW9/extXXnkZ0WiU6dNPSTrmvPPs+TEXXHAmJ510DCUlxXTv3n5fmz1JsaydHaK8b4pGDaqqgh19GUlUVSEvL53y8jpMU76Non219f21cNt8FpYu4LA+kxmSPWw3XqHoyuTnl9jd5D0mEum6TllZEfn5fZpdH9cWe3KgT1c1efIEHnnkTxx2WNOhNKJ1HfX+au3fSnZ2Kl5v6y26suZSCNGudMseHmBaFiXBEhZu+4lJfQ4n3ZvewVe2fRvXNbD4p1oqSqOYloVlwcAhKRx5fF5HX5oQQgghRKcn4VII0a6M2HQ0y7LYXLuR4vpittUXk549tIOvrHWLf6rljZeKm9y+YXUDI/dLp0cvfwdclRBCCCFE1yHhUgjRrkzLnnZmYbnj0M1O3n1vmhZffVRBg1rJKScNZdioNDRNYfGPtXzxQQVzvqrilHN6dPRlCiGEEF3KN9/80NGXIPYwGegjhGhXRixcmpbphkrT6txrUlYvr2dt2XqqBn6NOmI53Xv6yevm4+AjsvH6FBb9UEuwvv3HkwshhBBC7E0kXAoh2pWRWLkkFi7p3OFy9hdV1HvKGDwijdWV8T3BUlI19p+YiR61WLqgtgOvUAghhBCi85NwKYRoV0ZsE2DLSgiXnbhy2RA0KFzTQE5qJj172xsa14Sr3fv7D0oBoLJc75DrE0IIIYToKiRcCiHalbPm0sTEioXKuroooYbO2Va6YU0DlgW9B3rdTakLawvd9aKZ2fbS9JqqaIddoxBCCCFEVyDhUgjRrpy2WCx7oE9Ntc7Lz2zi5f+3pWMvrAXrVtn71/YZEJ8Gu3DbfF5e/hKbaze54bK2unOGYyGEEEKIzkLCpRCiXTlDfCwswhGDH76tJho12bQ+RH1d52stdcJlz35e9zZ7GJHJ5rrNZGTZmwXXVHW+axdCCCGE6EwkXAoh2pVTuaytjfLBW6XU1xkoqt0eu2FNQ0deWhPVlVHKt0Xp1tNHSprdEntYn8mcOPhkAKpClXg8KqnpGjVVutsqK4QQQnRlDzxwN3fddcsuneONN17jzDNPbqcr2nu9997/mD796I6+jD1G9rkUQrQr0zLYWhRmwfdbqWkIk9vbwyEFWax9z64Sjt4/o6Mv0eVULQcPT3WHDnlUL3mBPDyqh6pwJWCvuyyuCxOsN0hLlx+bQggh9owHHrib999/FwCPx0OPHj054YSTuPDCS/B42v7foxtu+LX8wXQ3OPPMkznvvAs544xz3NuOPnoahx562G5/7gceuJuGhiD33//73f5crZHfkoQQ7aa+TufbL8pZu7Ga/HAPho1Oocf+OfRP9bMWWL+qc1Uu18WuZ3BBClWxcKkqKoqikOXPpryhjLpoHZlZHoo3h6mp0iVcCiGE2KMmTTqcW2+9k2hUZ+HCn3jkkQfQNI2LLrp0p8+l6zqappGenr4brrT9RaNRvF7v9g/sxPz+AH5/oKMvY4+RtlghRLuwLIsX/lLExg31pKSoHP+zfA4+MhtVVfCnqnTv5aOiLEpVZeeYumpZFutWBlFUGDgk1Z1sqyn2Gsscfw5gt8bGJ8bKukshhBB7ls/nJS8vn549e3LccSdy3HEn8M03XwEQDod58sk/ceqpxzNt2uFcddVlLFmy2H2s05L51VdfcP75ZzB16iSqqqqatMWGwyH++MdHOOmkY5g6dRLXXfdL1q5dk3Qd7777FqefPp1jjpnM7353O3V1dUn3m6bJc8/9nZ/97ASOOupQZsy4iPnzf0w65uuvv+Ccc37G1KmHcdNN1/L2228yefIE9/7nnvs7M2ZcxFtvvcGZZ57MiSdOBeC7777hqqsu4/jjj2T69KO5/fZfU1JS7D7up59+YPLkCcyZM5uf//xcpk49jJtvvp6amho+/fRjzj77VI4//kj+8IeHMYzWB/R99dUXXHLJ+UydOolzzvkZL7/8IqYZ31Ltuef+zumnT+eoow7ltNNO5O9//ysA1157BcXFW/nTnx5l8uQJ7utq3Bab+BpPO+1Epk07gief/COGYfDMM39j+vSj+dnPTuCtt95Muq6//OVxzj33NKZOPYyzzz6VF198zr2u5577O++//y5ffPGZ+9w//fQDACUlxdx1160cd9wUpk8/mrvuuoWystJWvwa7Qv4EL4RoF/V1BqXFEVJ7Kxx6bC69e/qoi0QAsCyTIQWpbNsaYea/Srjgit74/Lvvb1shPUTYCJHlz27xmG1bI9TXGfQbFMAfUN21oqpiX1d2wA6XleFKMrP7AhIuhRBib/Nt0ddsqt3YpseqqoJp7lxrab+M/hzW5/A2PZ/D7/cTjdp/qH388UcpLNzAffc9TF5ePh9//AG/+tU1/Pvf/6Vbt+4ABINBXn31X9x55z2kpaWRlpbW5JxPPfUE33zzFb/73f3k5+fzwgvPcfPN1/HqqzMJBAIsXryQ3//+Qa666noOO+xwvvnmK1588VkyMjLdc7z22r95/fVXuOWWuxgyZCgzZ/6X3/zmBl555U26devO1q1b+O1vb+Pccy/kxBNPYunSJfztb082uZaNGzfw3Xdf89BDj6Gq9n+TQ6EQ5557EUOGDKW+vp6nn36Su+++g7/97R9Jj33hhWf4zW/uQNM07rzzFn7721tJTU3l4Ycfo6SkhDvvvIVx4/bj2GNPaPZru3DhAh588G5uvPE3jB27Hxs3FvL73z+A1+vj7LPP4/PPP+E///k3d9/9IIMGDaGsbBubNtnvnwcffJRLLjmf0047kxNPbH0t6saNhcyf/wN//ONfKCxcz//93x2sW7eWUaPG8PTTz/PFF5/x6KMPM378RHr16g1Aeno6d911D3l5+axatYJHHnmA7OwcTj31dM477yIKCzcQCoW49dY7AcjMzELXdW6++TrGjdufv/3tOUDhueee5tZbb+KZZ150v77tSSqXQoh2UVlu/4cuI0fF61WxLLCw/6JmWAaHT8ulV18/hWsbeOfVkt16LW+s+g9vr5lJSA+1eEziekvAXXOpxMJlUuUyK1a5rJZwKYQQouMsXbqEDz98n/HjD6K4uJj33vsf99//COPG7U+fPn255JLLGTRoMB999L77mGg0yq9/fTujR49h4MBB+Hy+pHMGg0HefvtNrrnmRiZOPITBg4dyxx3/RzQacc/z3/++xqRJkznvvAvp338A559/Efvtd0DSeV599V9cdNGlTJ16DAMGDOSGG26mZ8/evPnm6wC89dYbDBw4mCuvvJb+/QdywgkncfTRxzZ5jYZhcNdd9zBs2HCGDBkKwNSpxzBlylH07duPgoIR3HLLnSxevIht25J/n7jiimsYM2YcI0eO5vjjpzN//o/cdttvGTx4KIceehgTJhzkVvSa849//D8uvvgyjj9+On369OXQQw/j5z+/jHfesauIJSXF5ObmcdBBB9OzZ0/GjBnHCSecBNhhTlVVUlNTycvLJy8vv9Xv5W23/Y5BgwZz5JFHM2rUGCorK/nFL66iX7/+XHDBxQQCARYtWuAef8kllzNmzDh69erNlClTOeOMs/nss08ASE1Nxe/3u1XuvLx8vF4vn376EYqicMstdzJ48FAGDx7CnXfew5o1q1ixYlmr19dWUrkUQrQLJ1ymxJZxWFjusADTMklN07j46j788e71rFpWj2laqKqyW67FqUJGzQgBml/n4IbLguRw6bTFOpXLqnAlfaQtVggh9kq7UkX0eFR03dz+gbvo66+/ZNq0wzEMA8MwOOaY47jssiuYP/9HDMPgnHN+lnR8JBJh6NBh7ud+v5/Bg4e0eP6ios3ous64cfu5twUCAYYNK6CwcD1gVxOPOuqYpMeNHj2WdevWAlBfX0d5eRljx8bPoSgKY8eOo7BwQ+wchYwcOTrpHI0/B+jVqzeZmVlJt23atJFnn/0by5YtpaqqCrB/vygpKaZ79x7ucUOGxF93bm4uubl5ZGVlu7fl5ORSWVnR4tdi7dpVLF68kOeff8a9zTBMd+nMkUcew2uv/Zuzzz6VQw6ZxKRJk5k06fCdrgD27t2HlJSUpGv1+eL7bauqSnZ2dtK1fvrpR7z++qsUFW0mFGpA13V69OjV6vOsWbOajRsLmTYt+X1uGAZFRZsZNWrMTl33jpBwKYRoF1XldvAK2FnNDpfEwyVASqpG734BCtc2ULYtQvee/mbPtSds22q37Pbpb4fPeFusHXhTPCn4NB+1kVoyc6VyKYQQomNMmHAwv/rVb/B4vOTn57tTYhsagng8Hv7xj5dRlOQ/1ia2vgYCOzZMpvE57L8PK+7Hje9vemxz57CI35T4cfy2xgKBlCa33Xrrr+jduw+33/478vLyCQbr+cUvfu62BzsSJ+gqitJkoq6iKK1OyQ0GG/jFL67i8MOnNHt/z549eeWVN5k793vmzZvDww/fx/DhI3jssSdb/fo01tx1Nb0Nt+16yZJF3Hvvb7n88qs46KCDSUtL49133+bTTz9q9XkaGoKMGjWaO++8p8l9ubm5O3y9O0PCpRCiXVSWR7EwSU23K3+WZbqh0vlfgN797dbYLRvDdO/pxzQtGoLtt8VHxIi4Hyc+b2OhBhOfX8Xjcf7DmVy5BPBpPuoidaRn2bdJ5VIIIcSelpISoG/ffk1uHzZsOLquU11dxZgx49p8/j59+uLxeFi4cAFHHz0NsAf8rFmzkmOOsdtWBwwYyNKli5Met3TpEvfj9PR08vLyWbRogVu9tCyLJUsWc8QRRwLQv/9A5s6dnXSOHWnNrK6uYuPGQu644//c1/n999+17cVux/DhBWzaVNjs19sRCAQ44ogjOeKIIzn++On88peXUFJSQs+ePfF4vBhG+1ezFy9eRO/efbjookvc24qLtyQd09xzDxtWwBdffEpubi6pqU3X2u4OsuZSCNEuKsujmBikpjnh0nL/Hmla8clsffrZf0Et2mivh/z6k0oe+916Nq5rn21KgtF69+OWwqVpWoTDJoGU+I/AxgN9ALyqPf5c9Rr4Ayq11a1PmBNCCCH2lP79B3L00dO4997f8tVXX7BlSxFLly7h+eefaTKltTWpqamceurp/PWvjzN37vesW7eWBx64B4/Hy7RpxwNwxhln89133/Daay+zcWMhr776LxYu/CnpPOeeeyH//OfzfP75J2zcuIE///kxiou3cPrpZwFw6qmns379Ov7+97+ycWMhH3743nYrbwAZGZlkZWXx9ttvUlS0mXnzvufpp/+yE1+pHffzn8/gvff+xwsvPMv69etYv34dH330Pi+++BwA77//LrNmvcO6dWspKtrMp59+SHp6hlsF7NWrFwsW/ERp6bZY+2776NevH1u3buHTTz+mqGgz//73P5kzJzmo9+rVy22DraqqQtd1jj32BNLS0rn99t+wcOECtmwp4scf5/GHPzxEbW1tu11fIgmXQoh2UVkexVLNeLhstObS0TvWhrolFi43rA5imvDVxy2vgdgZDXo8pJottL6EQyZYJIVL51glIVx6YuEyakZJS9eIhM09sr5GCCGE2BF33XUvxxxzHE888Rjnn38Gd911C+vWrSU/v9tOnefqq69n8uQjuPfeu7j88ouoqCjnsceedFtqx43bn1//+nZeeeVfXHrp+SxZsojzz7846RznnHM+Z511Ho8//gd+/vPzWLx4IY8++mf3Wnr37sO99z7MZ599zCWXnMeHH77HBRdckrTWsDmqqnL33Q+yfPlSLrrobP72tye55prrd+r17ahDDz2Mhx56jNmzv2XGjIu46qrLePPN192JrWlp6bz11htceeVlXHLJ+axYsZxHH33cHZI0Y8aVFBVt5pxzfsZJJx3T2lPtlMmTp3D22efxxz8+zKWXXsDatau44IKfJx1z8smn0bdvX2bMuIiTTjqGRYsWkJKSwl//+gz5+XncccfNXHjhWTz66IMoitpksFN7UazWGo+FKxo1qKoKdvRlJFFVhby8dMrL63Z6FLYQ27Mz7y9dt3jgN2vwZ0XofdZcAAZlDaY2UktZQyndU3tw/KATAbui+fu71hEJWdz+yBD+dM966mvtiuBBk7OortT52fk93JC6s9ZVreGboq/RdYv01Ydy6PiB9BuUvH6jsjzKn+/bQP/BAS673m59eW/du5Q1lHJWwbmkeOzjPyn8kC11Wzh16Gm8/rdaNm8I8au7B5KV3bU3dO4M5OeX2N3kPSYS6bpOWVkR+fl9mqxta6s9NdBnb/b003/hu+++5qWXXuvoS+l0Our91dq/lezsVLze1n8/k8qlEGKXVVdGsSzIyov/wGluoA/Yi9Z79wtgGBYb1gTdYAkw75tqVi2tZ+G8mjZfSzBWuSwqDPHD7CpefKqINSvqk44Jh+zrCaTEr7e5tth45VInLbaWNFgnrbFCCCFEW7zxxmusWLGMoqLNvPvuW7zxxmscf/xJHX1Zoh3JQB8hxC6rqrCntWXlqDgjbyyr+bZYgH4DA6xdEeSH76oBGDoyFT1qoWoK61YGWfJTLYcemdOma2nQ7Q6DrUVh0rDQoxb/eX4rv753MD5/bDPmBjsgJrbFNjfQx1lzqZtRd1BRvYRLIYQQok02bdrISy89T21tDT179uLSS6/g3HMv6OjLEu1IwqUQYpcVbQwDkJGjUhm7zbRMLOzA5vyvY9DwVL74oIKVi+2KYp/+AY46IQ/LsnjywUKKNoapKIuSm7/z7acNegPRqElZSYTcVBjUM4X1qxuorIjSo5e9riPU4FQuWx/ok7TmMs3eY0Uql0IIIUTb3Hjjb7jxxt909GWI3UjaYoUQu+SbTyr4bFY5AH0GxsNgSwN9APoOCODzK+7t3XvZi8oVRWHMARkALJnftilmDXoDJVvDWBYMKkghJxZQqyvj24jEw2W8SulcS/K0WPvvb1GpXAohhBBCbJeESyFEm1mWxefvV+DxKpx7eS/6DEyc+BZfc2lYyYFM0xT6DfaxOuNDtqTMp1tPH8vLl1ESLGHsgXa4/OHbaqKRnV/I3hANUrzZ3uty8IgAWTlOuIxvtNxcW6xpmUnBEhLaYo2ENZf1Ei6FEEIIIZoj4VII0WahBhPDsMjr5mXEmPSkEGlZllsNbG6/yT7DVKJqAyFPBYGsKPOK57Bw20906+lj5H7p1FTpfP9l1U5fU2VdHcVFYbxehX4D/WRl29XH5iuXyW2xiestIbktViqXQgghhBCtk3AphGgzp4rnbBuSFC5bmBbr6DvYDm7pWQqWage/qGn/7zEn5aGq8PUnldutFNbX6TzxwAZmf1FJ1Iiybm0tlgX9BgVQvRZZOXa4rKlqvS3WsiwURUk6d+JAH5kWK4QQQgjROgmXQog2axIuzXjwMi2zxTWXADndVUbvn87YiWnosceZsXCa183HuAmZRMIm61a2vr/s5g0hKkqjfPhWGYWbqyhca29FMmBwCpZlJrTFJobLpm2xzVcuZc2lEEIIIcSOknAphGgzp4rnBC8nHCqGSc/ZC8hatzl2e9NwaVg6g4enkttdRbfs4JcYTgcNTwFg04ZQq9eQGPae+etqGoIm+d29pGd6MC2LzGz72pLXXDZti21uzaVPswcN6aZOWpqESyGEEEKI1ki4FEK0WdO2WDu0HfvoKxx9w0OcftXDZG4tbzZc6rEWWMMyMBI+dvQbGAuX6xtavYb62vhjdFMnr5uXcRPsoUCmZeLxqKRnatRU65imXUltHC7NZva4BNASKpden4rXp0hbrBBCCNGCq666jC+//Mz9fPXqVcyYcRFHHXUol1xyPjU11ZxyynGUlm7rwKsUu5PscymEaLNgvR3KnHBpWiZZW8oY/dE8APz1IQ77xyzev/PiJo+NmnYl0bAMN1QmhsucPA9pGRrFRWEiEROfr/m/hdXFwuXJ53THyjNZGs1GQXGvByAr20NdjUFdrUFmlqfJmkunYtqkcpkw0AcgLV2jqkLHMCw0LXl9phBCCNGeJk+e0Or9l176C2bM+OUeuZYVK5bz7LN/Y8WKZTQ0NJCf340xY8Zx222/xeu1/1v59ddfUF9fzxFHHOU+7m9/e5Lu3XvwwAOPkpISIDMzixNOOInnnvs7t9322z1y7WLPknAphGgzty02YaDPqI/moVgWiy+Yzog3PmboN4vxhCJN2k6dyqVlWUQNe+uQxAqnoij0GxRgxaJ6tmwKM3BISrPXUF9rnye/hw8jV0MpUvBpPiJGJB4uc7wUbQxTXRm1w2XIvm5/IFa5xNnjsvk1l3osXKbGwmWwziAjS358CiGE2H3efvsD9+P33vsfM2f+l2eeedG9LSUl1f3YsiwMw8Djaf//NlVWVvCrX13DEUccyZ/+9BSpqakUFW3m888/xTQNwA6X//3vfzjhhJOThuMVFW3irLPOpWfPnu5t06efzCWXXMA119xIRkZGu1+v6FjSFiuEaDO3LTY9Hi77zV8NwNrjD2PdpHH4QhEGzl3epDXWCZcAISMMNF2b6bTGblzXcmtsXSzgpmdo7mAgZ8qrExozG21HEmow8fkVt/rYUuXSq9prLiNGvHIJUC97XQohhNjN8vLy3f9PTU1FVVX388LCDRx77BF8//13XHrp+Rx55CGsXr2SBx64m7vuuiXpPHfddQsPPHC3+3k4HObJJ//Eqacez7Rph3PVVZexZMniFq9j8eJFhMMhbrnlToYNG06fPn2ZOPEQbr31Tvz+AACVlZX89NM8DjvscPdxkydPoKhoM48//gcmT57Ac8/9HYD+/QfSvXt3vvnmy3b8aonOQv70LoRos8ZrLmkI0mt5IQ2ZqVQM7s36SaMp+OwH+s9f7QbHxWWLyPJludVAgEgsXCa2xYK9nQjAZ++Vs2F1kHNn9MbnTw6AzprLtAyNkno7PDrh0nIrl/HtSEzTItxgJlUe45XLxuHSG7suPel1yrpLIYTYO2RcdyW+92ftseeLnDCd2iefbrfz/f3vf+Haa39Fjx49ycrK3qHHPP74oxQWbuC++x4mLy+fjz/+gF/96hr+/e//0q1b9ybH5+bmEolE+OabrzjiiCObbNsFsGjRAlJTU+nXr79729tvf8AvfvFzTjvtTE488eSkSmtBwUgWLpzPCSectPMvWnRqEi6FEG0Wr1zaoSxtyXI8UZ0NE0diKQqbxw0FoN+C1TRYJhEjwvySH8kJ5NA3vZ97nnCsLdayrKT22b4DAkw+Jof539ewblUDG9c1MHRkWtI11NXqeLwKfr+KEQt93tiUVyfQZufaIbG8NEIkYmJZyZNiLXegT3K41FQNRVGIxK4vTbYjEUII0Yn84hdXM378QTt8fHFxcazF9j1yc/MAuOSSy/nuu2/46KP3ueCCnzd5zJgx4zj//Iv53e9uIyMjg1GjxnLQQQdz/PHT3bbWkpKt5ObmJQXPvLx8VFUlNTWVvLz8pHPm5+ezdu2atrxk0clJuBRCtJm75jLVDl1pq9YCUDKsLxYWNd2zqOyTT/6GYjaVl6LH/kMWNsJEE9pincol2O2y32/9jj7pfRiSPYxjTsonJVXj43fKKNkaSQqXhmHRUG+SleNBURR36qwziMcJl736+QEoLKyjstauhibtcdlCWyzY1Uunhddp/5XKpRBC7B12pYro8ajoetNp6HvSiBEjd+r4devWYBgG55zzs6TbI5EIQ4cOa/FxV199PeeddyE//DCXpUsX8/LLL/Lyyy/y7LMvkZ/fjXA4jM/n3+Hr8Pn8hMOtbzUmuiYJl0KINgvWG3h9Ct7YJNe0NesBKB/YE8uysCyLLaMGkVNUhnfBfBqmTgUgakTdVlOAsBH/D0x5QxkbqtezoXo9Q7Lt/9B172VXIrdtjYdQiFcQ0zPs0OeEQE+jcJmV7SEjS+PrujfQl2ViMsWdFAstD/Sxz+UhGA3ar08ql0IIITqRQCB52J2iKFiWlXSbrsf/e9vQEMTj8fCPf7zcpL01LS25M6ixnJxcpk07nmnTjufyy6/i3HNP46233uDyy68kKyub2tqaHb7u2toasrNzdvh40XXIQB8hRJsYhkVDgxlfbwlkrNkAQPmgXm5gKxlhr7/wLZjvtp9GzajbagoQ0uOhMXHdpRMWe/Sy/xpasjXiPves/25j6fxaANIyPLHH2uf3xdpinc8VRaHfwBRMTMpKIliK0ahy2fyaS4ivu9RNXSqXQgghOrXs7BwqKsrdz03TZN26te7nw4YNR9d1qqur6Nu3X9L/5+Tk7vDzpKenk5eXR0ODPXBv+PACyspKqa+v26HHb9iwnmHDCnb4+UTXIeFSCNEmoQYDrHirKJZFxtoN6F6Nyj75bqtpcYG9ttK3cGHSNNigHnQ/jpjhhI/jobMqXAVARpZGIFWltDiCaVpsWBNk3jfVfPxOGRCvXDptsY0H+gD0HWi3wxYXRbCwksJlSwN97HPZQTVqRklLs0OsTIsVQgjRGR1wwHiWLl3CJ598yMaNhTzxxGNUV1e59/fvP5Cjj57Gvff+lq+++oItW4pYunQJzz//DPPn/9jsOb/99mvuu+93zJ79LZs3b2L9+nX87W9Psn79Onc67LBhBWRmZrF48aLtXmM4HGblyuVMnHhIu7xm0blIW6wQok2CdXYgcyqXSmkp/qpatg3ujaVpbpAsHdoHQ1MJLFwY2w8r9vhovftxYhUzasSnyFaGKshPyUdRFHr08lO4toGK0ijl2+xjYgVH0jLiW6FAvHKZGGZ7D7ADZ3WVTg9MevUNuPdZlsnAOcs48uWn0H71WyInneLe51Gdltsoqekpsdcu4VIIIUTnc+ihh3HBBT/n8cf/gGWZnHXWeRx00MFJx9x11708//wzPPHEY5SVlZKTk8uYMeM45pjjmj3nwIGD8Pl8/PnPj7FtWwmBQIABAwZy//2/58ADJwCgaRonnngSH3/8AYccMqnVa/z226/p3r0HY8aMa58XLToVCZdCiDZpvA2JZ+VywF5vCfFgp/t9lA/qRfc1RShbt7iPb9Dje1cmhsvEymVFqAKAzbWbKMv7EXPtCEq2hikvjQdQgPRYW2yTNZfEw2Vub1AVMC0YOCzAfgfFN27WCgs57Y5nUE0TLruQim9/wBg2HEje6zI9PR2QNZdCCCH2rDPOOIczzjjH/fzAAyfwzTc/NHvsL395Db/85TUtnsvr9XLFFVdzxRVX79Bz9+nTl1tvvWu7x5199gX8/OfnUFq6zd3S5L///V+T415//RV+/vPLd+i5RdcjbbFCiBYFo0FqI80v0HcClhMuNSdcDuoFJFcNiwvsdZf+BQvd2xLvT5Q4ObYyFi5XV64ilL6FkFbJtq0RyrdFkh4Tr1w602KbVi5NovTo7SMlReXEs/NR1fggg9x/v2oHyxj/f191P/aoseBq6fj8CppHkcqlEEII0Uh+fj633HIXJSXFLR5TU1PN5MlHMG1a81VS0fVJuBRCtOi91e/x/rrmN5eO73EZq1wut8Nl2UA7XCYO5nHCZcqihWxP47ZYy7IwLJ2MLA1dibB1c7xy6Qy6i0+LtZ/TCYSJ4TJsRhh/WBZTp+eRnpHwo8+yyH37XUxVYfaLjwPgf3ume7ezZ2bUiKAoCmnpGsGggWkmT+MTQggh9nVTphzVartrZmYWF1zw8yaTasXeQ8KlEKJFwWgwqX016T63Ldb+MaKtXglA+cAeTY51JsYGFi/Z7nOGEyqXUTNKXbQW0zLJyvGCL0Lh2gaqKqJk5XjoPzgFFOz7aH3NZVgPoaCgqkrS7eqmjfhKtrFtaF9qDhyHPnIUnnVrUYu3AuBVk1tuU9M1sKAhKNVLIYQQQohEEi6FEC1yJr4218IabNwWu34dpqZR3SuvybFlA3ti+rykLF4CVusVv6iZ3PIa1BswLBNNU+jWVyEcMrEsyOvm5bQLenDhFb3JyYuFS3darB0uE6fFJq7rtIhfg3fu9wBsGT0ITdGIjj8IAM/8n2Ln8sauy66WpqXJXpdCCNHVxAtl0nUiROvsfyNtLS5LuBRCtMipBDYbLmOVy7R0Derr0UqKqe2Vj6VpbiBzmF4PDSMK8FRVk1lc0epzRozkYT2mabght8eA+E+6vO4+snO9DB0Z3/TZuV5vc22xCRVR02omXI4ZhKqo6AeMB8ATG8nuaRQuZa9LIYToelRVAxQikfB2jxViX2b/G1Fi/2Z2nkyLFUI0y7IsN5wZloGn0Y+LxGmx2obVAFT37QaApmpuGHPUjxlF2qIl9Fy5kZpmqpsOZ6CPR/WgmzqGZWDGQmN+H9gYOy6vm7fJY3VTR1XU+JrLhL9QR5LCZTx0eufNBexwOVzRiMbCpTcWLp2grDuVy3SpXAohRFejKAppaZnU1Nh/4PT5/MCurvtT0HWphIrdZU+/vywikTA1NRWkpWW2eV2shEshRLMSB/K0VrlMTdfQflwHQFXvbiiKgqo0bYqoGzOS7kCPVZtYdeQBLT6vsxWJV/Wim7obMAHSckxS0zWCdQZ53XzNXrOmaCix52880MfhtMsqtTVoy5cS6tmD2u45qIqKMWwIlqahrVrpXgfE22qlcimEEF1TenoWQCxg7vov7aqqYprNTz4XYld1zPvL/iOM82+lLSRcCiGataPhMiVVQ1sfC5d98tEUrcVwCdBj5Sb3NlVRm5zbCXF+zU+D3oCJ6V5LxIwwbnwG8+fU0Lu/v+k1mwZezes+f+OBPg5nzaXnxx9QTJPqA8a414PfjzFoMJ41q1Fqqt3hQM5AH6lcCiFE16QoChkZ2aSnZ2GaxvZGALRKVRVyclKprAzK9HDR7jri/aUodvv4rk7ylXAphGiWs84RkgfjOIJ1JoEUFU1T0DY4lct8VEVFaabVqHbwAAy/3w6XlgWK4gbIRE4g9Gl+9zqcawnrIU45NZ9pp+SjacnPYW9ZYhBQAk3CpWVZzbbFOustq2LhUlNi+2UOH4FnzWq0VSvxjBoIxCuqzgAjJ1wLIYToWhRFQdN27VdgVVXw+Xx4PBEJl6LddeX31z4x0KehoYGjjjqKP/zhDx19KUJ0GYalux83ri7qukkkbMYnxW5YD0BF71y7LbWZcGl6VOpGDidQ30D2ljIAAp5Ai8/v0+LbizjPHzJCqKrSJFg6x4G9VlON/WizLJNvi77mlRX/oj5a3+T1eOfOsa97nF1VVWN/rdMLCuxzrVyBT9ZcCiGEEELskH0iXD799NOMG9fyhq5CiKYSA2XjcBmstz9P3IbEUhSqeubiUT3NtlSYlkntaDu0Oa2xfq1pa6sjqXLptMUakWZbdCHetqopnqTK5dqqNeimTk2kJvn1GAaeH+dhpaZRUzAYANWpXA4dbp9r7Ro8mrPmUqbFCiGEEEK0Zq8Plxs2bGDdunVMmTKloy9FiC7FCWsARpNwGR/mQyiEWrQZo08fDJ8HvxZods2laZnUxMJlz5X2zFe/1krlUvXHHme0uKVI0vXGKq2aGl/zadJ8EDUtE23ZUtT6OqLjJ6Crdhh2HmcMHGSfa8N6fLE9M539N6VyKYQQQgjRvE4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6/5FHHuGmm27aU5csxF4jFG65Ldap2qWmqWgbC1Esi/CAAQAEPM2Pdzctg5rRdkWw+6pNsWNTWnx+py02kjDlFZIH8ySdP7Yu06PYi9EVRWmxymli4p1nt8RGD5rohlB3zeXAWCVzw3p3WqyztUogRUVRZc2lEEIIIURjnTpcBoNBCgoK+N3vftfs/e+99x4PPfQQ11xzDTNnzqSgoIDLL7+cigp7D6NPPvmEgQMHMmjQoD152UJ0eRvXNfDHe9ayfnUd0LQCGA+X8UmxoQF9Absa2eyaS8ukdmBfogEfPVZtAtMksANtsVEjeb/M7Vcu7SENKk0n0bosyx3mE514iDuwyKlcWvn5mGnpaBvWo2Cv43Sm2CqKgs+nEo10rQX2QgghhBC7W6eeFjtlypRW21mff/55zjnnHM444wwA7rnnHr744gtmzpzJjBkzWLhwIe+99x4ffvgh9fX16LpOZmYmV1xxRZuuR1V3dbPd9uVcT2e7LtH1bS4MYSoGa1bW071PNs5+YME6A49XoSFoh7G0dA+eNXa4bOjfB0WBFG+A2qhKk2WXioWlKZQM60vfxevILSol0DfgHudVvW51EOwKqKKAbkWTzhWxwknvecuyWFGxHJ/mQ1HAq3nsoT+qClioqoLVaN68pVh4583BUhTMgyZi1i5CUcATeywomIMG4VmyGK2yHJ/HR1gPuc/r9Sk01Bvyb28XyM8vsbvJe0zsTvL+ErtTV35/depw2ZpIJMLSpUu56qqr3NtUVWXSpEksWLAAgJtvvpmbb74ZgDfffJN169a1OVh6PCp5eem7fN27Q05OWkdfgtjL6JEqLEzKSsJoigfQePrRTRQXhVAU6DvAbmft3jOVtK/tFldrxEDS0/10z80hpNXSoNrrKT2qB93UycgMYFkWlWMG0XfxOgYUFtPthCyy69PRTZ10Xzp1kTr3Gnrk55BeHSCQppFuxNdmpqRrSf8W11euZ1ntAgDS0wPkZmeQl5dOZkYquqnjtZr+YM4L1qBt2ghjxpA7uC8Z61aSrgfIz8sgLy127uHDYMlicitLyMvKpCpkkp2TgqZqBAIadTUG2VlpaJ6u94O/M5GfX2J3k/eY2J3k/SV2p674/uqy4bKyshLDMMjPz0+6PS8vj8LCwnZ/Pl03qalp2P6Be5C9wWoalZX1XW4PHNG5lZY0YCkGFrB0YRWr/7sGszSfzCwPNdU6mzbY/xYsdCLLV+IDtuRkUVdXRajOoLYuRF29vTbSr/kJG2Eq/XVYWFQO7s1YIHvBGupqIoSCOiE9hDeQSl0ovp6yrjpKXV2IcqvGPRdAcXkF3dV4CC2uKKeuLn5/vS9CeXkdwfpIkz00HcaC2QCEDjyI+vI6KqvrqKsLUVUZRAvZ507t3Y8UoHbBUkIHplDXEGJraQUpnhRULfbcxTUEUrRd/Grvm+Tnl9jd5D0mdid5f4ndqbO+vzIzU/B6W/+9p8uGy5ZYltXsNginn376Lp+7M31zE5mm1WmvTXRNNdU6Vmyd5cql9fSrj3DIfumccm53Hv3tegzdfr8FUlW0dWsBqOyZixWswqv6USwFpxNVVTQsC3TTxLJMto0aCEDvxesp11JRULEs8Che9zGaoqFiPy6iR0jsam2INiS9372qP+l+BTV2f/wacgI5dEvtgWkarKlaTfpP9uCvyEEHY5oWhmlgWaBYqntufYC9Vltdvw7P+P3da/GrATxe+2dMOGzi83fqpeudnvz8ErubvMfE7iTvL7E7dcX3V5f9rSgnJwdN0ygrK0u6vaKiokk1Uwixc2qrdUzFxOezQ9R+E9M54+KeBFI0BgyOt6im+kzUzZswevWmIXasX/MnDfRxJrBalolpmVT3yiPavRs91m6hu5mKR7H/xuXTfPHHJGwn4gzSce53Pm+Jc77E7VACWoBDeh1KTiAXgMz5CwGIHnQwEJ+Gm/gYdzuS9evwqMl7XXq99nF6tGv9wBdCCCGE2J26bLj0+XyMHj2a7777zr3NNE1mz57N/vvv33EXJkQXZ1kWtTU6/oDFEdO6MXFyFocfl42mKRimQeaQKkzsabGZFZtRDANj8BB3ixC/5k/qHvDEprcazn6VikLwoAkohoH3px/QYj2m/oTJsZqi4Ynd7oTJdG8GALWR2qTrbTwR1pMwLdY9nxoPnJ5QhPTlqzDzu2EOGhy7tli4VOOtHkl7XWrJe116Y0E6GmlhGq0QQgghxD6oU4fL+vp6li9fzvLlywHYvHkzy5cvp7S0FIBLL72UV199lZkzZ7J27VruvvtuQqEQp512WkdethBdWjhsEo1YBDKge88APfv4MU07RK2vXsfmjNlU+QpRFEjdsh7ADpexENh4KxI1Vrk0Y5VLgIaDDgLAO2d2bGAQeNV45dKjetyKpzNBNieQg1f1UhmqSJr+alrJ+006z5dYhfQkhMueKzai6oZdtYyFYLdymfAj0ezTF8vjQduw3r0251q8Pvu4qFQuhRBCCCFcnXrN5ZIlS7j44ovdz++//34Arr32Wq677jpOPPFEKioqeOKJJygtLWXkyJE8++yz5ObmdtQlC9Hl1VbbYS0lLR4QnfAV1OvJyNLI6BmmjxLAu8Feb2kMGkLYsCuXAU8ApZlglxguQ264/B7PWfsD4NO8SY9xQqJDUzRyArlsC5ZQE6kmy58dO29ywHOeL+ka3FZZhb6L7GuOHnyoe79hGrH7E/7e5vFg9OuPZ/06AiE7VEZjAdrrlcqlEEIIIURjnTpcHnzwwaxcubLVYy688EIuvPDCPXRFQuz96mp0AFISdt4xY8N9IkYEBYWjT0/nyP590W6PhcvBQwgb1XhVL6qiNlpzaQc207IH+gBER47CTEvH+8NcPMYvAfAltMWqiua2yybelhvIY1uwhPJQuRsujUaVS6edNjEoagmBs++iNfY1TDrMvd8ZXqQ1CrRm/wGwfh3pxWWQCVHT/tq44VIql0IIIYQQrk7dFiuE2PNqq+0AFUjYWsmpOOqxcBW2GlBVxZ0UGx00iIgRcdcmJq65dNperYTKpebzox98CEqwnm7L7NZav9Z8W6x7HlUlPyUPgIqGcvd2p+roaL4t1r5Nixr0XroBPS0Vfcy4Jq8vqXIJGLGJsRlFdit+xF1zGWuLjUi4FEIIIYRwSLgUQiSprbHDWnPh0glXwWg9YE9StRSFYL/egL3eEkiuXMaCnWEZ7uAcRVGJHHEUAL3mLQaS11xqito0XMYqlwAVoXi4dKqqjsT1le5tsYCbtnQ53lCEiv1Hg8e+bXn5MuoidU0eA2AMGAhA6pZiIKEt1hnoE5W2WCGEEEIIh4RLIUQSt3KZGg+IbjtrLFw16A1YoRDq5k2YffoSibWJBjx2a2tzwc60rKTBOZEpdrjsOcfeczLVm+Y+TlM8KIqS3NqqaGT5s/GoHioShvqYjSqXTihVkwKufQ2Z834CoHz8WACKajczr3gOJibjuu3XZI9cY8AA+9o2b7Vfv9sWK5VLIYQQQojGOvWaSyHEnlcbW3PpS43f5qxrjMSmpZqWSXTdChTTxBg0hJARBhIqlwkhzdneI3Ggj6qoGKNGY3brTvai5ZyYfwT5KfloioZpmW610/ncfoyGoijkBHIpDW6jLlpLhi+zyVYkWnOVy9htGXN+AKB8/BjygepINQD7dz+QsfnjaMyMVS4Dm7YAsLFmA5tqC8lQJwAy0EcIIYQQIpFULoUQSeqcttiEcGk2qlwCWGtWAGAMGuzucekM5Ulsi/UkbEXiDM5RFRUUhcgRR6IYBr0XrIrfTuJ01/iPKOfjVI99YSHdDrRNBvooLUyLDYdJm/cjkRQ/laOGxs7RAECaJ5XmGP3tyqVvcxFgV2yD0SCbDHvQmC4DfYQQQgghXBIuhRCuhqDBtuIwKOBLid/uhstY5RLAWmMHQntSrB30AlrTtlinTdUiYaBP7DanNdb36UdJj3OqnYkTY53qo1f1xq4lEru2xluRNDctVrP31AwG2XjgcAyPfUy4UcW1MSs7BzMzC9/GjZDwPDn+HPsaJFwKIYQQQrgkXAohXO+9UUpDvcm48RkoWrzl0wlwieHSsz5xG5JYSPM0Hejjie1fqZu6W2V0gl/kmOOwVBXfh++DGW+HdaqdiUN91FirrVdzwqXToptcufQ1E3A9qgffZ58AsH7iCDfkNsQqlwFPCs1SFIwBA1EbGkipqnNvjq+5lLZYIYQQQgiHhEshBACF6xpY/GMtGVkeTji9W1K7qYmJZVlEEtpifRs2AE64dNpiYxNfk7Yi0VAVFd3UMS0TRVHcNZlWfj7RiYegbd2CZ+F8N0w6VcrkcGl/7FQu9Vi4dK7zsD6TmTbgOFJiQbHxUCHfZx8DsGHiSDdcxkNxfI/NxsxYa2z21viEWi22Wl0G+gghhBBCxEm4FEIAUFZiB8fxh2aSkqolTWG1LDOpagmQUrgZS1UxBgwkrDttsXblUk340aKg4FE9brhUG/3YiZxwEgC+92e5AdKd+JoQLuPB0w6XESM+XAgg3ZdJr/Te7vGJz+Mv3oZnxXLCQ4ZQ0zPPfYyz5jJFa6FySXw7kqwtZfFrccKlbEUihBBCCOGScCmEACAcsoNSIMX+sWBYiW2x8XDp1/x4whFSi0sx+/YDv7/J2sXEHT1URcWreoma0aRJsO7zHn+i/dj3/tckVCYe69zni+2H2bhy2XhfzMTKZfannwMQPOpIAHewUNgI41W9Ta4pkTPUZ1i1x63Mah5nn0upXAohhBBCOCRcCiGAeLj0B+wfC3psT0eIhctYS2x2IMet4hmDBtuPbdRemrjm0qlcAkSMSNJ9AOagweijxuBZtZLctZuBxLbY5KE8AJ5Y2TBqJlcuE4+F5GmxmbPeB6B++nQArNiemxEjQsDT/DAfhzFwIAD9KnQO6jnRfi5PbA2qrLkUQgghhHBJuBRCAPFw6fM7lct4W6xhGe4elymeFLpvstcf6sOG24+Nrbn0q7FwmVC6VBTFbWWF5IqiI3TmOQAM/eAbID7xtbk1l07lMtJooE/j8zoDgNLKqwnMmYPRuw/hA8fHHmO6w3xamhTrMPsPtK9lY6EbWFUnXErlUgghhBDCJeFSCAFAJJxcuUycwppYufSqXvIKSwAwhhUAENJDaIrmTnJNXO+oKgreWCXS/rzpj53wmWdjqSoD3/8axTDdINncmsvGA30ab2/S+HmGfbUQxbIIn3wqaqzqaWK5gTjQyjAfAKNvPyxFQSvc4FZdZaCPEEIIIURTEi6FEEDTtlijhYE+XtVLrhMuC0YAEDEj8UmxNKpcsv3KpdmzF9EjjiSlrJL+P65022I9CaHUaXt1zhU1nDWXZuw5G1UuYz/eRnz6k/36TjnNPca0TEJ6LFy2MszHPiCA2as3atFmND1WJY3lWF0G+gghhBBCuCRcCiGAhHDZTFts4kAfn+Yjt3ArAJEhQ4kYESzLSlq7mLSuUlHcaiM0rTA6QuecD8B+736XMNin6ZpLn7vPpV1JdUJwc5XLvPVb6bN0PcbAQejjD3LPZ1kWIaeVdzuVS7CH+iimiW+LHapVqVwKIYQQQjQh4VIIAUA4oS3WGXjjMInvcem1NLI2FtOQmUo0Lye+3lKLh7TEyqWKmhQuG1cY3ec/6VQi+bkM+XYx+SU1AGgJlUulceUyNnDImfzadM2lyrh3vwOg4eLLQFXd0GtaZsL2KdupXAJmbDuSlM1F9rWoJooqW5EIIYQQQiSScCmEAJLbYp2qpRMK7cqlHS4zikvxRKJU9O+BgUlIT96GBJIDpD3Qp/U1l/YJ/EQv/SWqaZHz4j+BRtNiW1hz2VLl0hPWGfXRPAyvh9C5FyQ9t4Xp7nG5vTWXEN+OxL+pyL3N61WlcimEEEIIkUDCpRACSJ4W64RLZx2lYRpEYmscM9bZ24WUD+iJYRnNVy5b2IoEWm6LBWj4+Qwsn4/Av15EqaxIOtb52KN6UBTFraQaLUyL7fXWewTqGlh3xIFY+flJx5iW6W6fsiOVSyNWuXTCpYWF16fItFghhBBCiAQSLoUQgD0t1utTUFXFrQY6018t4pXLtHWFAJQP6IFpGkScPS5bCJeqojYa6JO8z2Uiq3t3QudfhFpXS+pf/txsuAS7eunsw2laJqqiJrXiEg7T75mXAFhy4YlJ1+I8xt2KZDv7XAIYAwYB4Nu0yX2816tg6BamKQFTCCGEEAIkXAohsAfchENmk21IEttinUphytp1AFTEKpchJ1wmhLTEKqJC8kCfFttiY4I33YKVkkLKs08TKK90b3cG+jjXFTWj7trQxucMvPoyga0lrJ00hqoRQ5s8d1LlcgfCpTnAbov1xdZcmpaJ12efS6qXQgghhBA2CZdCCPSohWk2nRTrVC5Ny3TXOAbW2OGyvH8PDMskrDttsS1sRbID+1wmMnv2omHGL1EaGhj26FPNPsZp142a0SbhUqmpJvUPDwMw++Ljklpyneuxw6WzFckOhMvuPbACAXwb7cqlhYXXa7/GaESG+gghhBBCgIRLIQTJk2KBZgf6RMwoWBa+NWvQUwLUds+211zG2mWTBvq00har7MCPneCNN2P06k2Pdz9i8OwlTYf1uBNjoxiWkXR/2oP3opUUU3raSZQU9MejNtqiBBULi6gZbTJsqEWqitGvP56qKnx1DViW5VYudalcCiGEEEIAEi6FECRPigUwTPtzTdVQFdWeFmtESC+rRq2tpW5gX1BVTNNIqFy23BabNNBHbXmgj8PKzKLu0T8BMO0Pr5FRVp10v1MJjRqRpMql9+svCTz/LGZODptvvdl+PiU5PDqvRzd1PMoOBMsYZ6hPVnG5u+YSZK9LIYQQQgiHhEshRNKkWIivufSoHjeMRcwI+Ru3AVA32F6DmDgtNnFLj8TKJYqCV423zG6vLdYROfYEtp19GukVNUy/42mor3fvc87nVE01RUNdv47Myy9GsSzqHnwUMzYhtrm2WMuyMExjh4Kuw9nrMmtLORYWHl8sXMpel0IIIYQQgIRLIfZplmVRUl9MfTDW2tqoLVZT7MqlhYVu6nTbWApAfVK4tAfj+BKnxSZkSxU1qTVV3YkfO5vuvovN44bQfWUh2WedilJWBsTbdZ2qae6GrWSfeQpqZSXBq64jfMbZbohtEi5RMCwDwzJ2rCU2xug/ELArl5Zl4vXGBvpI5VIIIYQQApBwKcQ+bW3VGj7c8D6zS74E4uHS2ebDaYvVTR3d1Om+bisA9QVDgHi4VBQFX0J1MmmfS6XRtNidqBaq/gBv3zuDbaOH4P1hLjlHT8b/6sv4wnb4jdZWMeHVTzn5ivvQNm0kdMbZ1P/uXgC6pXanb0ZfBmUNTj5nrBILJF3X9jhtsdmxyqXXJwN9hBBCCCES7fif7YUQe53ioB0WN9dtAka402Kd8KUpGkpCGMtbuxmA4IjhwBZM096ixKf6Gk2IbbzmMiFc7sTftDyqh1BWGh/85U7OfuojAq+/Sub1V3Gcx8Ok/EwyymtRo1FMVaH+plsI3nqnWzb1a36m9p/W5JyJbbmN12O2xg2XRWWxNZeyFYkQQgghRCKpXAqxD3OmrDoTT+NtsQmVy9iPCcUwyFm3GTMrm0ivnvbjLLui6WxZ4kieFtt4n0uFHeWG1NQUav/6/6h892PCJ/8MPTOdrOIKoulpLJ12EO+++hjB2+5K7sdtQWK4bDxJtjXGILsCml1UigXxyqWsuRRCCCGEAKRyKcQ+pWhjiM0bQow+IJ30DA+qEy51C5V4uIwY9p6WPs3nhrGczaV4wlEi48e4lchIbL1l46mrSVVMFDRVcwfp7OhAn8TzarHH6BMPpmbiwawsX87com8ZnFfA2qo19E7vvcPnTA6XO/EjMDUVvXdvsrZuhXDYrfKGghIuhRBCCCFAwqUQ+5T3/ruNoo1hPnq7jOlndcMzSCMSMdGjFj7i02LjE2AD7kTVbmu3AKCPHuNWPEN6LFyqLVcunaDpVb1EjEiTPStb41QWG4dAr8eHpWnude5MYE28tp1piwWIDh6CZ8sW0jcXk9Pdfs2lJZGdOocQQgghxN5KwqUQ+5DqKh1FAQuLd1/fRvrYKmavtyewjiZeuQzFKpIBT8Bti+22tggAY/RYNDVW4TSdcJkcGBvvc2kf4yFiRHYqCGb5s9m/+wH0TEuuTDpttk64VXcisCptrVwCxpAh8M3XZBRuofsYezrutq0SLoUQQgghQNZcCrHPME2L+jqD9EwPx5/WDdOAtctDScc44dLZ4iPgCbhrJBMrl06Yc45rbrsPhxMmnUCo7ES4BBjXbX+6p3ZPus3diqQNlcukgT47GS71wfaU3MxNW8nJ96JpCtuKw1iWDPURQgghhJBwKcQ+oiFoYJmQnqFx0GFZHHpUNv0GpJGaFv8x4IbLhLZYJwx2W1uEparoBSPd1tawYVftmrTFJg7WiX2suesnd7zK2BKfZm97EoqF2505Z2K49O505XIYAJkbt6JpCvk9vDTUm9TVGjt1HiGEEEKIvZGESyH2EXU1dgBKz7SH6xx3ajd+dm4vevUNuMf43TWXCW2xikqgup6MsmoaBg2AQCAhXMYql43WLjbXFuuLTZTdmSpjS3ya3ZIaNaM7fc6kgT47uebSGDIUgMyNxQB072VfR2mxtMYKIYQQQki4FGIfUVdrby+Slh4PVJqi0aOPz/3cqVw26A2oiupOi3XWW9r7W+IO+XFCaOP20qSBPglrLqF9wmVACyR9vlNrLhM+3tm2WKv/QAxNJWuTEy7tr922reGdOo8QQgghxN5IwqUQ+windTM9Mx7ELMsiNy/e0upPiVcu/R47wGmKRrd19nrLyKiRQDzMRWJtsU3aS5Wmay6d1tmd2eeyJR7Vk7TOU2tr5XInw6Xi8VLdO5/UihqU2pqEcCmVSyGEEEIICZdC7CPcttiMeKCysFAUhUOPzOaMi3ri86lEjAiWZbnVwcTKZWTUGKDpGsfGIU1N+NGSuBWJ/Xn7/Njxx1pjnWvcUbvSFqsoCpX97OFC2rq1dO8pE2OFEEIIIRwSLoXYRzhtsekZTVtI87v7GDs+A4ivo3TCm6qo9Fi5CQB93DigaaWw8X6RiQN9nLZY53w+1Ud78Ce0xu7MQB+FtlcuASr7xsLl2jVk5XjweBXKSyVcCiGEEELIPpdC7CPqm2uLJb6Fhm7qeFQPDQnbkAB4QhHyCoup6Z6N1qMPEF9z6fA2nhbbzFYkI3JHkeZNp1ejPSvbKuBph8plG8JlVb94uFRVhaxsD+WlUSJhE59f/l4nhBBCiH2X/CYkxD6iriY20CexLTZhf0bDssNn48plzvJ1qKZFcUF/vLEtQBoP0PE0CptJO5HEgmaqN5WC3BFNgmlb+ZLaYtu2FUlbwmV1v56AHS4BsnLsc1RX6jt9LiGEEEKIvYmESyH2Ee5An2baYsGuXAKEdXvyqdN2mrt0NQAlBf3dCmXTNZfJlcvm1ly2t8S22J2pXCZeT+N23h1R3b+H/dh1sXCZa7/26sroTp9LCCGEEGJvIuFSiH1EXa2BpikEUuL/7BPbYo1YuAzFKpcpnhQAsmPhsnTkIDfEbW+gj9LMtNj2FkioXO7Mmks1ac3lzldRg3nZRFL8aKtXg2WRlR2rXFZJ5VIIIYQQ+zYJl0LsAwzDIlhvkJ6pJQW/xLZY3YpVLp222NiaxuylqwCoGDnEPbZxa2tL+1zurqqlfX0JA33UPbfmUlFVygf2RK2vQy3aTFaOXbmsqpDKpRBCCCH2bRIuhdgHBOsMsCCcuZX5JT82e4xuGoSNsNsWG9ACUFFB2qYtVPTtBtnZ7rGqoiYFx8b7XDr3JQ72aW+JW5HszPYmice2pS1WVVTKB9jrLj0rl8uaSyGEEEKIGAmXQnQRpmXyaeFHrKlcvdOPdbYhqUpdzeKyRQSjQSC5Lba4fguvrfg3a6rs8/s1P/zwA+Cst0zeQiSxFbXxfpFOgNud4TLQ5q1I4tfUpsolCuUDY0N9VqwgO1fCpRBCCCEESLgUosuoCldSVFfE+uq1O/W4TRsaePuVbQAE0k0Aoqa9L2NiuCypL056nN8TgHnzACge0R+f1mhoT1J7afNbkezOtlhfW9dcKrsWLlVFpcwJl6tWkOmsuZSBPkIIIYTYx8k+l0J0ERHDDoSGZe7Q8dGoyV9f+I7SZRl4rVT6Dw7gH5OKQZBw7FyJnEE+joCWEC4L+jcJkEmVyxbWXO6uYT4QXxO6s8/jHKsqapuuL7Fy6Vm5HI9HJT1To6ZKxzQtVHX3BWohhBBCiM5MKpdCdBFhw14L6exHuT1zFxby7eZvCeav4ZRzu3PJtX3xBmKVSydcJgz0qY/WA9Avoz8H9zoUTVFh7lwsTWPbsL74GrfFqi2Hy90ZKh2BNm5F4hzblqql8/ja7jmYaWloK1faE2NzvJgm1NXs2PdGCCGEEGJvJOFSiC7CqVyaOxgutxbXAlBwgJcDD8lCVRXMWNUz0kxbrHP+kXmjKMgdgbqxELZupa5gKHrAh1drvnLZXAVwTwz08ageNyCqO9UWu2vhUlEUUBT04QX2xNjNmxKG+khrrBBCCCH2XRIuhegi3LZY0w6X4bDJtq1hqhoFGsOwA+O2bXaba1pOwnYjsb0snXMlbkXicKaweuZ8D0Dd+P0BmlQunUDXXEjbE22xEL/WnRro44TLNkyKBVBiPzYjwwvs86xa4YbLKhnqI4QQQoh9mKy5FKKLiCS0xS6YW8Os/24jGrFQVbjhdwPZvCHE5++VU1Ya5agT8iiLhcvULLtaaVlWk8plc5xBOd65drhUJh1BXko2vdP7Jh2ntRIunVC5Owf6APi1APXR+qQhPdvjBN/Ge3Pu8ONjzxUtsMOltmIFmaMPAqC2WsKlEEIIIfZdEi6F6CLCsUC4Ymkti78sQVEhI0ujttqgdGuE77+somybXcX84dtqKkJhAjkKitcOPIlrNZ01l4ltsQ5nLaNnzmwA/JOPYXqPXk2Oc9ZcNlcBdKfF7sa2WIA0bxoVofKkybHb0x5rLgEiw4bZ51m5nMChBlXeQqoqM9p0TiGEEEKIvYG0xQrRRUSMMIZhsWJpDaoKP7+6D+MPzQKgukqnulJHUaBXPz+11TqmZZKR5XVbYJ2WWICIaYfQxm2xHtWDpmoo1VVoK5bDgAGYvXo3ez2aG9K8Te5zqns7067aFgf1Opij+08jzZu2w49xwqG3rZXLWGAOF9jhUlu5nDJ1PUWpP1JYtbFN5xRCCCGE2BtI5VKILiJihNmyMUQkYjByv3QGDk2lstwOjBVlUWqrdTKyPIwcl87WTWFMDDKyNKKxILkjlUtnDaP3h7kolgWTJ7d4Pa2tuVQVlQN6jCfNk7oLr3j70r3ppHvTd+oxauxvalob11w6Lbh6r16Yael4Vq7El2J/batqG9p0TiGEEEKIvYFULoXoIsJGhPVrGjAVg4MmZwO4g2Q2rW/AsiA710PBaLuKZykGmVkeLMsiakSTpsw66zcbc9pLPbH1lhx2WIvXE19z2Xx1cmz+OAZnD93xF7iHOFXVNk+LjVUuLcAoKEAJ1pNXUwZAXb1MixVCCCHEvkvCpRBdgK6bzP66lOpKnYwsjX6D7MmtTrgs2hiOfe6ley8f2bkeLEwysuz7I2ak+bbYJpVL+7ze2KTY1iqX7prLZtpiOzN1V8Ol4oRLC330WACy1qzB51eor9WbncArhBBCCLEvkHApRBfw6axy1qypxh9Q2H9ipjv1NTPbDkiGbgearBwPiqJwwhndGDshjazY/VEjgm420xZrNQ6XAYhG8c7/ETMzC0aPbvGaWpsW25k5W5G0vS3WfrxpmW64zFixhpQUDd0wCdab7XOhQgghhBBdzF4dLsPhMGeeeSannHIKJ510Eq+//npHX5IQbbJ6aT2mGuGwqblk53jd9ZNer0paerwtNTvHriIWjE5n/OQMt8oWMRu1xbawFYnfE8Cz4CeUhgb0iQeD2vKPiPiay65Vucz2Z+NRPeSn5LXp8c4+l6YVr1xmrFqLP0UFxZTtSIQQQgixz+paJYed5PP5ePHFF0lLSyMYDHLyySdz3HHHkZmZ2dGXJsQOq6/TKdkWJLWP5gbJxOE8WTke6uvsz7Ny4/+kzUYDfBL3nIy0NNBH9eH75jP7MZOPwNfKdbnTYnfzRNj2lhvI49wRF7gVyJ3lfB2Dej0Le5gcCWSuWEvgeJUQJjXVOj377PjWKEIIIYQQe4u9unKpKAppafZwk0gkYm8ib0rLmuhaNq0PYSpRcvObD47OukuIVy4hOYA2XnOpm/ZWJY2XB/o0P95vvgIgeviUVq+rq7bFAm0OlhAf6LO6chU/1q+kYUA/UouKybXCmEjlUgghhBD7rk4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6PxQKccopp3DkkUcyY8YMsrOz99DVC9E+Nq5rwFAi5HaL1xGNhPWTmdnxQJkYNJMG+BgRdCs59DjVy0QpBnjnfo+ZlY0xZmyr1+UM9NG6YLjcFU4wdb5+9SOGAzCobJu0xQohhBBin9apfysMBoMUFBRw+umnc9111zW5/7333uOhhx7innvuYb/99uPFF1/k8ssv54MPPiA3NxeAQCDAO++8Q0VFBddddx3HHXcc+fn5bboeVVW2f9Ae5FxPZ7su0b42rQ9hKFHyuvlwOlstxXS/79m5drhMTdMIpMRbVC1M93jdiuJBI6EzFoMoimol3Za3eCVKOEz06GmoXvvHQ0vvrzRfKooCad7Ufeo9qKn219FER1GgftRw8j/8lIElJXylWdTWGPvU16Ot5OeX2N3kPSZ2J3l/id2pK7+/OnW4nDJlClOmtNya9/zzz3POOedwxhlnAHDPPffwxRdfMHPmTGbMmJF0bG5uLiNGjGDevHmccMIJO30tHo9KXt7Obda+p+TkpHX0JYjdpKoywpZNYQIZJj16prrr/bKyU8hLt9+PfftHgVLyu/uT3qNpFT7SrQAAqRke0n0B0qsD7v3pWT4yoymkh+O39VxoV/59xx+LL/a+aun9lZ2zP32796B3Ru9dajPtarJrU0nXAwT8HtK1ABxoT9QdVFyC1cckFLQ67c+Kzkh+fondTd5jYneS95fYnbri+6tTh8vWRCIRli5dylVXXeXepqoqkyZNYsGCBQBUVFTg8XjIzMykrq6OuXPnctZZZ7Xp+XTdpKamoT0uvd2oqkJOThqVlfWYpuytt7cpK4nwwl83YxgW/Yd7qK8Pu/eVltfgCds/cAKp9jrinHyN8vI695jK6jrq6kP28RVVhHwmdXUh9/7i0kqqa4JJt3k++waAqgMPwaqs3+77K4VsKiuC7fSKu4aamgbq6kIYYZWGaIiS/oMYAHRfuxmrr8maFXW88vx6jpiWm1RJFsnk55fY3eQ9JnYneX+J3amzvr8yM1Pwelv/3abLhsvKykoMw2jS4pqXl0dhYSEA5eXl3HLLLRiGgWVZnHfeeYwYMaLNz9mZvrmJTNPqtNcm2u6rjyuoqdIZOz6DYUc3sKAsfp9hGu73vFtPHxdf3YfuvXxJ7wPdMNyBPWE9QoqmY1n2AB7d1AnrYUzTco/xNoTxz5+Pmd+N6LAC1Ni55P3VmIplgW7YX8+G7vmEszPJL9xKv74q4dUm33xSycol9Zx3eW9y87vWVi17mry/xO4m7zGxO8n7S+xOXfH91WXDZUssy3JbB4cNG8bMmTM7+IqEaJuqiigARx6fyyZrCwA+zWcP5zGTh8YMHp7a5PFGwgCfaMK02BRPCrWRWiJGxN2KJMOXweAFW1B0nfDhR5C0EFMkUWNz0KKm/f2xgOrhg+g+dyGnjG5gwHkDeff1baxZHmTmy8XMuKFfB16tEEIIIcSe02UXSuXk5KBpGmVlZUm3V1RUtHlgjxCdSU2VHQYzszyEY5NJUzwpAJiW3Qq7pa6I77d8536eKPG2iBF1tyYJxM4RMePTYg/pNYlJy2sAiB5+ZDu/kr2LO1QpVvK1sKgqGARA5vLVZOd6Of8XvUnL0CgqDBGO6Ly79h1eXfEynxZ+RNgIt3RqIYQQQogurcuGS5/Px+jRo/nuu+/c20zTZPbs2ey///4dd2FCtAPLsqip1klJVfH6VCKxQBJww6UdFD8p/IhVlSsprt/a5ByJ1c2oGUGPPcYJqFEj4gYkRVHwffYJAJGpx+ymV7V3cPa5dFhYVI4cAkDOsjWAvVaidz8/pglFRXVUhMqJGBGK6or4fsF6SoubbgMjhBBCCNHVdepwWV9fz/Lly1m+fDkAmzdvZvny5ZSWlgJw6aWX8uqrrzJz5kzWrl3L3XffTSgU4rTTTuvIyxZilzUETfSoRWa23bnuBEWfau91aTSqVDa316RhGUl7MpqmEy7tFtqIGW+L9W7ahGfNavSRozB799kNr2jv0WQyrmVRMWoYADnLVrs39+prT+Et2hwfBNYQNJj52maee2ITFWXR3X+xQgghhBB7UKdec7lkyRIuvvhi9/P7778fgGuvvZbrrruOE088kYqKCp544glKS0sZOXIkzz77rLvHpRBdVU11rCU2Fi6dSqVf8wN2cGy87rIx0zLxxEJnxIigx9ZgelXnnJYbLjO/tKfERqZOa8+XsVdqrnJZ17cHofQUsletpzIaBa+XXn3t79XWogaI/UiqqohiECUUNHn1uS384qZ+eL2d+m98QgghhBA7rFOHy4MPPpiVK1e2esyFF17IhRdeuIeuSIg9I3G9JeC2tHo1e/KoYRrURmrc461m1lwapoFX86IpGvXRejeMelX7HE6wBEj/8itAWmJ3ROPKpWXZX8mSgn4M+HEVnhXL0MfuR69+drjcuLaBpZvLyevuxetVMZUoHq/Ctq0RNqxuYNiorreHlRBCCCFEc+RP5kJ0Qm64jFUuDTO5cmlaBrWRWvf45gb6GJaBpmj4NLuVNqTb+1m6LbSWhWVZaBGdtO++x0pNIzrxkN3zgvYiitK0cmlhUVzQHwDP/J8AyMr2kJKmUl4epq7WYNO6EOXbIhiKzvDRdqB0JgILIYQQQuwNJFwK0Qk1CZduS6uz5rL1cOmEUTtc2oE0qNcD4FHsczqhqM/itWjBIJEjpoDfv7te0l5DaaZyCRbFI2LhcuH82HEKvWPrLu3joLJCB0+UYSPtda/Vla23NgshhBBCdCUSLoXohGpjay4zspIrlz6nLdZKbos1LZNVFSv5YP17GKbhbjuiqZo7HTYYDQLg0eLd8JZlMWiuPTArcpS0xO6I5tZcWpZF8YgBQLxyCTBkRCqoJn0H+NFMO7hn5Svk5Nt/JKiqlMqlEEIIIfYenXrNpRD7qsaVS71x5dI0qYlUu8eblsnG2g1sC5ZQE6nGr9kVM03xENBSks7tVC5NywTLYvB3SwCIHHPsbnxFe48may5j/1eXn0UwL4uU5UuhoQFSUjj0yGwG7NefDzZmULYhhE6YrG6QnWN/D6RyKYQQQoi9iVQuheiEGk+LNUwDj+pBUzSgmTWXmO72JKZludNlNVUjxdsoXCZsW5K+YRO5m0sJjR6N2a//7ntBe5EmlcvY2lUUhdIRg1AMA8+SRfaxioIvoOD1qvTumQFAVr5FRpYHRZFwKYQQQoi9i4RLITqhmiodn18lELDDpDOcR1PtzyNmhPpovXu8ZZnuukvDSmiLVVRSPcnh0hnoY2HR+4s5ANQeK1uQ7KiWKpcAJSPt1ljvgp+S7gcYP6Ebffr76d5PQ9MUMrI81FbrFNeW8P3W2W7rsxBCCCFEVyXhUohOJhwyCYdMt2oJsXCpaqixymV1uDrpMaZlueHEskw3XKqKltQW61E9buXNsiz6fDEXgHoJlzusaeUy/nHJiIEAeH78IeF+O/T37pPGhENzQLOrldm5HiwLftq0mFUVKygLle3eCxdCCCGE2M0kXArRyTQE7WCYmmb/8zQt094yRNHcttj6aF3SY0zLxCKhcmnaH2tKclusqqhuOPKXlpO3ZBXVPXIJjxq5e1/UXqS5yqUZS5hbRtqtxd4f5ibdD6Ci4lW9RE17iE9Wjj2cqaLarkAbprTICiGEEKJrk3ApRCcTjdhhxOuz/3nqsdBhr7m0b4sYkaTHmI3aYhPXXDauXDp6fmUHoLWTxjTZXkO0rNE2l254BAinp6CPGIm2sRC1eCsQ3yZGURR8mg/d1DEtk6zYUJ/KmmDScTtjcdki3lv3bpseK4QQQgjR3uQ3SiE6mWjUDgpen51inHCpKR53zaUj4LGnwiaGSzOhLVZT7K1IlFgi0hTN/dhZb7lm8tgmrZ6iZU2CuGUlfe2jBx0MgGfeXPc253HOtN+IEXHDZXVdKOm4nbGpZiNlDaUEE9bfCiGEEEJ0FAmXQnQy0Wiscul12mLjVcjGwSbFk2ofQ3LlMjGQKoqCX7P3WHTWXPrrgnSfs5BwVjpF44a4gVNsX3P7XDpM4uHSO29O0v0qqrtPadSMkB1ri62ps4NhW8KlEduixvljghBCCCFER5JwKUQnE43EKpdeO8Q4wcGjaO4elQ5nEmziEJ/EjzXV/ifuhFBV0VAUGPLNEjRdZ9ORB2N6kquhonVN1lwmVC4ty2oSLuOVSxIql1GycjyYGNTURmLH7XxAdP6IIG2xQgghhOgMJFwK0ck0XXMZn/zaONi4lcvENZemGa92xgYApcTaZ53KZcEX8wHYNO1QoGk1TrSstcolQHTgQMy8PDyLFkBDg70HJnYo9Wl2uIyaEfK6+/BnGlSURgk1GO5QoJ3hDAdqy2OFEEIIIdqbhEshOhndbYuNrbm0Egf6JFcZU2KVy8YDfRKnxdrHpcY+V9GqahjwwwrCWRkUHzgaQNpid0Jr+1wCGLHWWCUaxbNwAWZsiq89LTa+5lLTFEYd6McCNq4PYVgGKxbX8e1nlZjmjoVFZ/sZaYsVQgghRGfg2f4hQog9yRno44mFS9OMVyEbD/RJ8TatXCa2SKpuuEyJncND+kcfoRkm66cegulRIbwbX8xeqOk+lxYkrru0TKITDsb/wXt4583BGjHdfpyiJK25BBhxoBfmw4Y1Qf6zqQhjo/39ys33MnJc+navxfnDgyVtsUIIIYToBKRyKUQn07gtNr5+0v5bUGL1MqA502ITJ5YaSdVOgIATLlWN9HffBWDjMYe655G22B3XuMprYbmtr2CHS31ifN2lmdAWm7jmEiAlyySvm5dwyKKkOExahv29XbkkeR/T5him4T6vVC6FEEII0RlIuBSik3G3IvE23orE/ufqVC99mg+valfCnKmh9seGW8nSGlUuU6rqSP3mG4LZ6ZQcMDJeb5O22B3W3ECfJhNj9zsAy+vFO3c2lmEHP6XRmkuw22P3OyiDkePSOO3Cblx7+wBUDVYurccwWm+N1RO+5zLQRwghhBCdgYRLITqZeOXSmRabXIV0wo1f87sfOwEUYpWz2OdqbFpsXiAPTdEY/tmPKLrOiqMOxPSoSRU3sWMabwfTuHJpWSakpKAfMB61ooLAmrX241DcPwZEDDtcho0Qaekeho5Io1svLympGoOGptJQb7JpQ6jV60j8nkvlUgghhBCdgYRLITqZxvtcNh7O4/yvXwu44dKZGgqxgT6NpsVm+rM4d8QFDJj1OQDLjjsIe6Wg/VzSFrvjmltzmTTQJ7ZGNnLYZACy5v4IJE+LjYfLcJPHFYxNA2Dl4tZbYw1TKpdCCCGE6FwkXArRyejOQB9f8rRYrVHlMuDxu1U0PSFcmpaF0agtFsC3Zg3e+T8RGTqUkuH9kqptEi53XHNbkTRuiwWIHmqHy8y5P7mPc9dcmk3DpfO44aPscLlhTUOr15HcFiuVSyGEEEJ0PAmXQnSADdXr+c/KV6gOVzW5z22L9TYa6BMLik57bGLl0tkLE+ygkThh1hF4/VUA6s88y11jKW2xO6/xmkuaDPSxP44edDCWx0P2jwvAsmKVy9i02IS22Pjj7HCZleMhPVOjZEuYaKTlimQ0qXIp30chhBBCdDwJl0J0gG3BbYT0EBWhiib3uQN9nDWXprPm0g6KColrLpPXZYIdUpxAqjpbl5gm/tdfxVIU6k8/A0iuuMk+lztObTwttvFAH6dFNS0Nff8D8ZVXkruxJGlarBMMw7GQCbjVZkVR6NM/gGnC1s0t7xMjbbFCCCGE6GwkXArRAZw2xubaGeOVSyc4OlXI2FYkscDo9wRQaTrQx7AM93NP7DHeb79G21JEdPIRmH37AbFQZMmay53VbFtsUuUy/j2NTrJbY/stWIOC4lY9nTAY1uOVy8S9KvsMsLeY2VyYPNQncYKsDPQRQgghRGcj4VKIDuCsl2uunbHxQB+n5dUJlc6WJIGkttiEoGEabsBxj33t3wCEzjrXDUeJ1Tax45rsc9lS5RKITDoMgL4L16Aq8XBpxdZXJq25THhc31i4LNoYD5fVlVEeuWMtb/yzGMOwqKoOYZqyz6UQQgghOg9PR1+AEPsiZzJoc+2MeqO2WLPRmsv4tNjmtyKxiLfFaqqGUleL/913sFJTiZx0Svw4S9pi26LJPpdNKpfx76k+8RBMTaXvwrVUJzzWqRo7g30aP653Pz8oUJRQuVy3KkgkbLH4x1rWrw6yqaGQ1APrGTkuPanqKYQQQgjRUaRyKUQHcNZINldxctpiPd7k4BifFhsPl+60WCu5culWOxUP/jdeRwnWEz7lNKz0DDdIWrHNSEDaYndG07ZYWqxcWukZ1IwaTnpFDalrC93HmpZJxIy0GEoDKRr53X1UVejM+aqKaMSkaKNd5dQ8CnU1BqZisG1ruMljhRBCCCE6ioRLITpAa5VLZ0KoO9AnFkCd9ZPDcobTP3MA+Sndkiph7rkt0w2vHkUj8NLzADRcfCmQGI5kK5K2UBpXLhu1NtdH61lZscL9HpceciAAWd/Nia+5xHQnxjp7Xzb+Q8P+EzMAeP/NUt59fZvbInv5jX35xU39SMmwqK0x0A1L2mKFEEII0SlIuBSiAziTQZsd6BNbc+nxJE+LddZP9s3ox5H9pqKpWjPbYtiB1al2BhYtxrt4IfqoMejjDwKSg6RsRbLztjfQZ3nFUuZsnU1R3WYgIVx+O9utGpuW6f5hwWlzbtzaetjUHH5xUz/8AZWlC+ooKQqTlq7Rs4+fPv0D5PXQsCyoqYxK5VIIIYQQnYKESyE6gBP+mq1cRi08XgVVbTQtVtWaHJu4j6XDmRarKiqp/3wBiFUtY8EmMeDImsud12TNZaOBPsFoEIgP66kYV0Ak4CN9zjyIRlEVNSlcelV778vG7wVnS5IRY9PQoxamCb37+93vVW5P+zqqKnT3jxVCCCGEEB1JwqUQHSC+FUnzbbHONiRA0vrJxpqrXFqxfS5Tg1ECM/+LlZpG+Kxz3Puba4GVttgd12RabAsDfaJm1P7c62HzfkPR6oN4f5yHqqhYloUZmxjrrKVtKSCOPTDD/bhP/4D7cW53J1xGZaCPEEIIIToFCZdCdAC90UAfXbfDiWVZ6FHLHeZjHxNbP6nuWLh0KpcjP56HEgwSOv1MrIxM9353oE/iPpdSudxhKq1XLh1GQnW6cEIBAN4vPrPDJZa7DY3zfW2ptXXQ8FRS0+0KtbP/JUB2N/s2u3Ipay6FEEII0fEkXArRAeIDfSy+/LCch25byw/fVmMYFpYVH+aTeGxzLbDQNBhGzSimaTD6na8BCMUG+TRm0XwoEq1rtnLZzNfRrVxaJoXj7XDp+/IzFJSktlhP7PvaUrjUNIWpJ+QxpCCVAUNS4rf7TNLSNerrDIJBvdnHCiGEEELsSbLPpRAdwKk0lW5r4McPK7BMePf1bTQE7dsT22JbW3MJdiXNIF65ihgR+i5cQ97azUT3OwB9/wOTj3cmzGK57bDSFrvjmlaLrWYHI0VjlUsLi/KBPYn26IFn/k+k1DVQk+pxW1mdtliLlltbJxyWxYTDspJuM0ydvO5e6usMNm2sh2G78KKEEEIIIdqBVC6F6ACGadDQYPDVJ+VYJuw/0W5b/fazSgC8CW2xuqk32xLraBx2TMtk/OtfANBwxVUtPi6xnVPaYndc4yDeUsVRT6hcoijUHz4ZxTTpO39VswN9nAr1jk7wjZo6PXv7Adi0IbjzL0QIIYQQop1JuBSiA5SUNPDF+xVUlIXpPzjAKed2x+dXCTUk73EJduWyubWVjsbBMLuolCGzlxLMzyF86uktPqbxIBqxY5yvt7tnZYvhMla5jH2Ng4dPBqDfvOVAwv6lzppLTBaVLuCfy16gNlKz3evQTZ28Hj40DbZsanDX7QohhBBCdBQJl0I0sqpiJfOK5+y28wdDERbMrUHXLUbsn8pFV/ZBVRUys+PVyaCnjLpoHWCHkNYql43XYh7wxlcolsWas08An6/ZxygoEix3gUf1tLiFiMOpXDrtrg2T7XDZZ96y2P12+FQVDUWx12Eu2DYfgOXly7d7DYal49EU8nv4iEQNvl2yjDlbv9+FVyWEEEIIsWskXArRyPKKpSwvX0bUiLbp8XW1Op+9V+6un7Qsi5f+VsR/X9qKZVl89UkpDUGTXn39HHhoBl6f/c8wKxYuDSXCCu1L5mz5zt6L0rJaHOYDyW2x/rogY97/nqjPS+EZJ273Wi0saYltg4N6HsxBvQ4GWg6X0UZ7mVrde6CPHktW0Tayi0rdKcCqotjrZs34utnqcGXSudZXr+PLTZ8nPZcTTnv08mNh8sWSn1hZsdzdZ1MIIYQQYk+TcClEI84v8GYrA1Za88n/yvnqowq++KACgMpynXUrgyz5qY6vPqrg2y/K0TQYvX+6u98l4FYudSWMqlk06CE3QOzomsuxs77HF4qw7NiDMHNzW3yMQrwtVob57LxhOcMZnDUE2H5brHO/qqiEpx0HwKDZSzHM+O2aqmFhkeZNA6CyUbhcWbGCwpoNVCXc7py/Z18faCYb1tfZ04ZlArAQQgghOoiESyEaccNlGzamD9YbLJlfC8D8OdWEGgy2bg6593/+fgWGaTByv3RSUrWk58h0K5dRNE3FtIz4pFhl++FS1Q0OmPkVAD+dOQVPrG2zOYqiuAN9JFzumpbCXLwt1qYoKpFj7HA55Pul7l6nKqq7PYlfs/exDOmhpEpmfaxFOrGa7qzF9fs1evf3EY5E2FoUcqfQCiGEEELsaRIuhWhkR8Olrlt88UE5Tz1SyH9e2Apgr6WMWmgehUjY4qfva9iyKQyAJ7a9yOARAQYOTYk9RzyYOOHSVHQ0zQ4PRqw61dI2JBAPlyM++ZHMkkrWHTyKigE98bTyGKdyCTIpdlc4Ib05iftcgv0118dPIJSVTt+Fa6Gm2j2HqqiYlum2ygJUhOzKt2VZBPVg0jkty0I3dXyavaZ2wDA/pmKwcV1IKpdCCCGE6DASLoVoJB4ujVaP+/pju/V129YIyxbUsW1rmB++tQPDaef3AGDu11Vs2WhXLs+8uCeTj8nh+DPy3Gphc5VLEx3No6CbekLlspVpsagohsnB//4YgDkXTANab6V1AqUM9dk1TsWxOc73zvkaq4oKmkbRpAPQdIOsb793b3fCpdPqClDWUApAUA+654iYkaRz+zV7K5JuPb340yzKt0Wpq4ufQwghhBBiT5JwKUQjTuWntcqlaVrMn2NvFzFuQgYAs/5bSkVZlP6DA4w5MINBw1KoqtBZv7oBzaMwbFQax5yUjzclHuiMZtZcmkoUTVMwLAPd3LG22KHfLCJ30zY27TeULWMHb/cxgLTFtgMFpcW1uc1VLgG2Tj4QgLyvZtu3K6o7sMl5DMTDZX20Pn7OWFusE0I1xYOqqBjoZOXZ5ygvDbfDKxNCCCGE2HkSLoVoZEfaYteuCFJTpTN4eAqHT7MH5xSubQBg4uRsAMYfmuUe37O3D02LVSsT1tIlro/LSmqLVWJtksl7ITZHReHgl5Orltt7jLTFto/EttjGX0enddXZisRpXy4+9ABMVaX7V3PANFFR3fsiRsR9fEOsFdZZbwnxyqWzXtOj2uEyYkRIS7fDZUV5/BxCCCGEEHuShEshGomHy5ZbRn/63m5/PfDQLLr18NG9l732LS1DY8S4dABGjEsjJc3+J9arX8B9rJ6wri6xcukPqPj8ihsudVOPr7lsZSuSvt8vpMfqzRQX9GPLxDHu7a2uuWxlraDYcYlV3+a+R7qpJ7fFAkZmBpvHDcZfUUXPlZtQFRUloe3Z2T8zHAuaiZVL3alcxv7XGwuXpmVKuBRCCCFEh5NwKUQj26tchsMmq5YGCaSqjBhrbx0x+gC7NXbCpCw8HjtweDwqBx5sVy/7D4qHy8QpoInPoSgKmVme2LRY+zanUqW2FBQtizHPzwTsqqVHi0+Iba0tNnErEtF2idXKxC1hnNt1M9qkLVZBZf0howEY/P1SeyuShGCa4rGHPUUMu701MVxGYm2zurMWNxYuATdcVlZIuBRCCCFEx2h9UZYQ+5jEsNfSWrp1K4MYhsWokel4PPYv9odNzSY3z8vI/dKTjj3qxDwGDE1h6IhU97bEiaCNA2xmjhezxh7oA/E2SU8LlUvvl5+TvXAlZQN6suawsWSqXhqw23Nba4t1WFio8jemdpEYEFM9qdRH64maUbf92N0yRlFZd+hopjz9NoNnL2WtoiYFU4/qxaf53PWXiW2xUWegj5ncFgsJ4VIql0IIIYToIPJbpRAJEsNeS/sFrlpqV5KGj05zb/N4VMaOz3CrlvHbFYaPSkNV47cbZvy8RqOJtNk5Hkwl6m5bEo5Vr5oNipZF2kP3AvDdpSeAqibtbend3j6XsmXFLktsi038HqV67feGbhrxymWsmqkqKhX9ulPbtwc9Vm8msLUYVUk+j1f1EjEiWJbV7ECf+BRhzQ21/oCKpkGVVC6FEEII0UEkXAqRIKlyGfvYMCyWLqglFDIwTYtVy+pRVJKqkTsjMVA2bkudNDWHsRNTyOtmr+GMxiqXza3n8334Pt75P1FZMJjVR+wHgDexLXZ7A30suy1WBvq0XeLXrnHlEuJtsU1aZhWFjVMOAiD3ky8bVS41fLEtRiJmpNnKZTywxqueiqKQmq7R0GAQrG99Gx0hhBBCiN1BwqUQCZoLl2+8VMzrLxTz/RdVbN0cpr7WoP+gFFJSWx6Y05qWBvoA5Hf3MeKAgFvpDMfCRJOgaJqkPXw/AMuuuQhiIcebcFxLrbSQsM+lbEWySxK/dmrs660oCimxcBmNhcuk42I/dtcdOR6A3I8+TwqXmuLBp9l/XAhG64kYEffzSJPKpeo+LyS2xsa3NBFCCCGE2FMkXIp9Xjhs8ua/inn+yc3U1sZbCk3LpGhjiGUL7cpR4boGNq231zMOKWhb1RKStyJpbmhQ1IyHT2eoS+PKpf9/b+FZtoTohImUTj7IvT1xiM/2tiJp6fnFjkuqXMaGLvlUnzupV7d0e11rQnh0tyQZ0Z/a/CwyfviJlMpa936P6sGn2mGyMlwJQLY/B2haudQULencaekalmJSUSrhUgghhBB7ngz0EXu9iBEhGK0nO5DT5L5w2OQff95EyRb7l/Z/P1dHYV414bBFKK2E8qUJw3cMqCy3P8/r3vJ6xu1JrFwCTdomdTMeDCLumsuEcBmNkvrIAwDU3/7bpEmyiesst9cW634sbbFtlrTmMrb+MdWb6n4fdENv0nrsbDuiKyZrJo/jgLe+ps9XP7B66jD7PAlDeqpDVQBk+DIobyhzh/yYscpl40mzqeka1VhUlLW87rLx+00IIYQQor3Ibxhirzd7y7f8b93bhPRQk/tWL6unZEuEvgMDDBiSQsmWBjZtCLNta4Tli+qIRk3GH5oJQFVFlKoK+5f77Ny2h8vEgT4Qr0J9v3U2a6tWuxNiIb7XYWLrY+BfL+JZs5rI4UcSPXxK0h6JOzPQx/1Y2mLbrHHl8pgBxzK5zxHu98GZFpvcPutsU6Kz+vBxAPT9dHb8PAltsVXhKsDensSred2BPmbC3pmJw4BSUzXAoroq+Q8Yji82fca7a9/elZcshBBCCNEiqVyKvV5dtA7LsmjQgwQ8gaT7qmJr08YckMH+EzP45NMoGVomaRkaI7x5TBo1iPQMD6uW1VNTraP6DMp8q0nJ6tXm6zEaVS4NyyAUDbGqYgWrSA6FzkAfp8VVqa0h7dEHsRSFurvtNZeJW4kkrrlsbgiQaF/JwVyhR1pPAMoayoD4QJ/E72liS/Lm/Yag52TTbe5C/HVBwumpeFTN/X5Xu+EyFZ/qI6SHMEzDXXOpNmqL9fpULCxCwebbnStC5dRF6jBMw23jFUIIIYRoL1K5FHs9J6DpZtMJmlWVdtDLzvMQSNGYfEw2ffoHyM7xMmh4CukZ9i/5WTleLBPWV2ygPGMJm8Kr3XOU1BeztW4LYAeG7a1jbDzEp/Hx0YS22HCjNZepT/wJtayM8NnnYYy1q15J21jEpsVqitZqu6u0xbaPpK9jM9uS6JbepA3V+Vg3dSxNo3baMai6zqDZy9zHemNrLmuj9lrMFE9KUjXUMONbkSRWtX1+BbBoaGh+Wqw7AdmSabJCCCGEaH8SLkW7Kw2W8ubq19kW3NbRlwLEA1rjiiHQpM3VpOm0WLD3nwQwlCipaSpBPeje98Wmz/i48EN+KJ7LG6v+wwfr30t6jsbtuE4wcEKGYRkYZvNtjJGEabHq5k2k/P2vWCkp1N/+W/eYxAqlUyFrbZgPSFtse2kpmDvfB6eNNfG4xusda48/HoBhXy8E7LZYf6wt1tmqJsWbik9zwmXEfZ82XnPp8apYSsuVS+c9LYOchBBCCLE7SLgU7W5bsIS6SB0lweKOvhQgXgnUmwlwVRWxymUsPJoJ+04m/gKeFQufFiap6RrBhI3tnfC6rHwpDXoDZQ2l7rrJNZWr+c/KV1hXvdY93gm5TgCxWql2OuFCUzTSHroPJRQieNW1mL37uMck7ZEYmxa7vXBJCxU3sXOS11Imtifb31vnjwOJrcuNw2XD5MnoaakMmrscb0PYnhYb2+fSkepJcauZESOK1cK0WK93xyqXEi6FEEIIsTvs1eFy3bp1nHvuuZx00kmcfvrp/PDDDx19SfsECzsQ6UbHb4egm7r7i3TjcGlZFlUVUQKpKoEUu/qT+Et3YuugEz4txSA1TUuqXDpBrntqD7L8WQBUhioAWFK2CIDvt3wXP2+scukMbTEts9mW3UTpPy0g8PqrmN2603DtjUn3OeFCVVRUVU26ppZIoGwfLVUunUm9zrTf5qbFup8HAmw76jC84ShDvluCR9Xwxt4bjhRPqvt+0RPaYlVF+f/snXecJGWd/z9PpY7Tk3c2R5ZlWdhdYEkLSA4CpwQFRUQQ9czhTn96ZzhzOPTEdIcBwYAiqCQBQZKkJe4usMuyOYfJMz2dKzy/P6qfSt090z07w/bsft++fNHTVfXUU9XVvfWpzzf4Q24lBkVDRedSPKzwOvQEQRAEQRBjxUEtLkOhEL797W/jb3/7G2644QZ88YtfPNBTOiQQropeIdTzzcRbedXkBnI5Ez2dBXDOkU6ZMHTuq/zKPeKSl3EuLViIxmSkPc4lAITkEC6YcyHmNs4DAPQVxWV7dBIAv7A1i+MKJ8rk5rA3+8y0MOnLXwEApL7ydfB4g395UVzITHYcMm+/y7JjMsq5HBsqOZdCXOoly6TAz67EJHReeA4A4IjHVtphsZIrLjVZgyIpTs5lwSr4CvqU9ECNMORyFiyLI4h4eMLJuSQIgiAIYhw4qKvFTpvmhg7OnTsXQ0NDJT3niLHHcsSlv9ce5xwD+X40h1vetLkI58iej4E7b9mHzeszmDRFw/Gn2i5jU4v7NfA6l+VyLjmzxWXBLMCwDCiSAotbjlMojk04l97qtDkjh7ASdoSmyKGzOK+YcwkAi//2LEJr1kA//kTk3/mukuVCuDDGnAqgtTiX5GKOnkrnzi2+UyiuVzksVmISBpafgGwiitkvrEN6KA21+FACsIv5AIDm5HEWfK1Igk6oFgIsDuSy9rXqRTzEoLBYgiAIgiDGg7p2Ll988UV8+MMfxqmnnooFCxbg8ccfL1nntttuw1lnnYWjjz4aV1xxBV599dWyYz366KNYuHAhCcs3AREWK3IdOef4zc924ae3PIP7Nt+DnUM73rS5FDyVV/v7cti8PgPGgK69BTz4124AQFOz61xWEpduzqXp3LBnPaGxQmQIcSmcS+8YXZlOAG7OpRAgJjdLqneKEMjIYAqn3Hw/uCQh9d3vA1LpV9YbFitcLGWENhPkXI4Nlc6jyLnMlw2L9Z9vxiQwLYQNb1kK2TDR8vBjCHlyLoW4FKGyumXA4m61WDkgLkMR++9cIO+Sc+6GxZK4JAiCIAhiHKhrcZnJZLBgwQJ85StfKbv8gQcewHe+8x187GMfw1133YUFCxbgAx/4APr6+nzr7d69GzfccEPFcYixxc1xtIVd974Ctm7M4o2NvbAsXhJSKti3J4+B/rHN09Q9YbHrXh8EAJx2bguaW1WINEefc+mtFut5HQpJiMQkcGYhUhSX4jgsbjmCIabGoMkaBvMDxbYkbmiiKHAkhKTmVAS1nBw6QVi2Hc9Tf/k3RIYyyFxzHYyjl5Q9RjcU1i3uMmJYLLmVY8JIrUj0asJiIUFiEtafdSwAoOm+B6BIirNNRIkC8BcJEt8xWZJLnFAtbM8jG8i79OcTk7gkCIIgCGLsqeuw2NNPPx2nn356xeW33HILrrzySlx++eUAgK997Wt44okncNddd+H6668HAKRSKXz0ox/Fl7/8ZcyaNWu/5iNJ9XVDLuZTb/MC42DM7vEnSQxbNmQB2De32bQJDsuZczZjQpYZ9IKFX/1wJ9o7NHzk/+3f5+RF5wUIo2j960lEMA3HnJCAojA89kAvAKC5VXPPYXHuNtx3bi+4pB3PdzdAVW3HMmdmIUkMjIliOva6rZFW7EvvRUpPgnnG6852QpIYLFiQJQmKJNvLGAdnFryGVlgNI/HSSiy+fwUyjTHkv/iVip+zLEtgzBYaMS0KxoCGUHzY64JJcPbnnbuXur2+6gjx+duv3fMoQYYiyzAt074+JOYsE5+XQJHtdXcvmYdUawKxFc+h0N2FsBJC1sgirsUgSQwhRQNjgMl1WMXrRZZkKLLiv3bCDIMA8jnL99mZ3HNtM37AP1e6vojxhq4xYjyh64sYTyby9VXX4nI4CoUC1q5di4985CPOe5IkYfny5Vi9ejUAwDRNfOpTn8IVV1yBU089db/2pygSWlvj+zXGeNHcHDvQU/CRyEQQz4URiShobY1j11bbsePg0AsM8YSG1tY4shkTN3xpLVrbNZx+XjsMnWPvrjxCWhjxhrG5NDstFfF4GD3deQwM5HHk/BgOX9iCtvY4Hn+wF5wDs+cm0Npqu0MDLIJ43HYNGxJh32d+zoVxYEsrtvTbDqga42hpiSEeD6NBizjrzslMR6qrHzySR0MijHihmHcpG2htjSMSVRBBHC1NDYjrYSQaw1ANjviAm585JRLHsh/cAQB44XNX4YzDZlY8xj40ID4YRmM4irlTp+N9Te9BY7hx2LzLxp4oMszeXyIaGfbarrfrq55o7IkiK9nnsakx6juPzYkGp8dpU0PMWSY+L0F7WwJDchyxZBRbz1uGo//4GFoefQAtZ07CYJ5jSlsbWlvjSCvNiA+EEYkrYEYIcSOMttYG5NU44hl3PNaoohOAImu++eSNvHNtNzVF0NpQH79ndH0R4w1dY8R4QtcXMZ5MxOtrworL/v5+mKaJtrY23/utra3Yvn07AODJJ5/Ec889h56eHtxxh32j/rvf/Q6JRKLm/RmGhWQyu/8TH0MkiaG5OYb+/nTZypAHiv7BFFKpHHg+ic7OIWx4fQiAna/Y3ZVDb/8QerUUnnmsD0NJA0NJA5m79zrbv/JyD444emxufLt6B5BK5bB9SxoWC+PwRRH09qYABhx9bAO2bcpC1gz7PQC9A0NIpWxB0K+lnPedYxtIOcv39vRgmmKvzzTNWbeQAVKpHDp7+tGfTTvrp5BDd08Sg0NpaJKGISWHVMo+H1k966wHALNuug1NOzqx9cSFWPuWY3F0YB5eBgftbVWjUJxDCIPZXMX1AWBoKIdU2l4nZGZLjhOo3+urnvCex6TmP4/5jIVUQXz2eWeZ+LwE/X0ZJJP2tfDaaUtw9B8fg/6736Nw0qeRyuSQT3P09qaQSutIpXLoVgZhmPbrwf4shtJ533iQ7BDr7q40envdfOKs4e63t28IWsFfdfjNhq4vYryha4wYT+j6IsaTer2+EokIVHX4uh4TVlxWwlsN9swzz8TatWvHbOx6+nC9WBZ/U+bGOQcHL8nxCmKaFji324Ds2JpFocARjkrgnCOVNKCbOnTdwoonBpxtuva6uZHbN2dx+KKxeVKTM3LgHOjak4fFDMxdEHXO1SXv6QBgf4HFe2Lu4nXwvBqW4SxPFdLu+txzfXAGzgHTsnMpPWmXyBSyMEwTIUkCgwTOAd00oJvuuO2bdmPerXeiENbwj09fAUlShv98i/tjkKq/Djic/XHOht3uzbq+JiTDnEeZKc4yBncZt+C7JsCZ8xnuPWIWjFmzob74App296KrCQhLEVgWhwTZvl4MHRY3nc9cbCvQil1MersKuO0Xu3HaOS2YPjsMw3SvRcM06+YzpeuLGG/oGiPGE7q+iPFkIl5fdV3QZziam5shyzJ6enp87/f19ZW4mcTY8MTOx3DvprucipOVENViDcvAptftojfHnpgAh4VU0oTJLax7NYXkgIHps8MQhU1FYZ0dW8fOIU6mcigULAz0GQjHgEmT3f6B3jw4ga9abJnek95CKBk94xyrtwKoEN8Wt5zlovrnkG67uN6CLZxbTvXP2fGZuPiHf4FkmHj6AxdjaHJLSR/DIN5qsdXiq15KxX1GzXAtXUQBHrFUEPycGJj7HmPIvfNKAMDSR15Fa6QNLeFWAHCqwlqe6sISk8oU9LH/XvlcEuvXpLHyOTuMm/sK+vgLSBEEQRAEQYwFE1ZcapqGRYsW4dlnn3XesywLK1aswNKlSw/cxA5i+nK9SBaSI96YCoFmchNrX7VvbI8/tQmKZiE1ZMAwdTy7ajM2xx/B0jMkHH6k7VKecFoTIjEJe3bkoev7X82ya18ef/j1dvzzoV5wAB3T5RHbbngFZbCCa/C9jJF2hHY5kWHBcs5FVLVzOkX/y6gS9YhQ7pzTZX9+Ai2vb0bu2GOx+pLTAIzcs1KIz5rEJQnKMWE4ka56PjdftVjPa8aY3Z+0+BkyxpC/4ioAwNT7HsZFsy+CWuyHKq4Dg5uePpdyycOHULGLSS5rX3sD/Xbrm0ptdgiCIAiCIMaKuhaX6XQa69atw7p16wAAu3btwrp169DdbfcnvO6663D77bfjrrvuwubNm/HVr34VuVwOl1566YGc9kGLYZXepJZDLE8lTXT3ZDF5egjNrSoammQYBpBMFrB2+3YU1CRiU1M4921tOPmMJhx3ciNmzI7ANDl2bh0+Z7AaXn1xCAZ05LL2jXj7tJGjwEe6Afc6RnkjP6xzaTuSRXFZbCfRl7Ur1EbVGKSiKBB9Llu37sGM//lfcE1Dz/d/AC4LR7I65zLY73A4qM/l2OB7qBA4jYrHuWQVnEvRlkS8pzAF1uw50E88GfKO7VCfX+HZrni9WEHnMiBqQ/6/B/qK/WbhRhyUc+UJgiAIgiD2l7rOuVyzZg2uueYa5+9vfvObAICPf/zj+MQnPoELL7wQfX19+PGPf4zu7m4sXLgQv/rVr9DS0nKgpnxQI4SS9yZ1uPX27srDgoGFi+3iPIlmGRgANryRRC5vonWmBknhaG3RcP4l7QCAhYvj2LA2jcce6MWc+ZFRCx/OOdasHoIJHe2TNaQGDbRPHV6keeduH2fpDbgIX1Ukxc6/dM6FVzwwz1j2ctGrsDdXFJc+59ICz+Vw4bd+D0nXkfrqt8CPWASsf9XZ13CwUYTF+rYnF3PUDO9cuuKyknMZDGmWizHiuSuvgvr8CoT+9AfoJ58CwL0OTG5AXG92b1P/da2FfX9isN+wcza81zY5lwRBEARBjAN1LS5PPPFErF+/fth1rr76alx99dVv0owObQxenXMpBNe+XXm0MQMLF9thr02tMrAVWLM6CcbCmDJFc9xQwZLjG/D8UwPYtS2H1S8M4ZgTa6/sCwB7duYx0GugaS6w7C1N4OCQ1ZFvqHmVzqXMZBR4oXxYrEc0BsNiB/MDxb/dgkUWt3DY//4GkzbvxtCJJyD34Y9B9oQej+RICveL1RSIQIJyLPCe8+CDEKWCuGSsdBvxnhCQ+bddgvh/fg6he+9G6ts3ANGoGxZrGT5RGnyooIb8f5sGRzplwlI9zuUIedMEQRAEQRCjoa7DYon6weKWI6RGKuhjcQuFgoXBAQPxFo72DruIzrwjwog3yHZlVJhon6wVXRgXSWJ462W2i3nP7Z24745O5HO1uyxrVtmFc6bMsnPSZCaXCNlKcy/3WmBapu+GvmxYLErFpXAuvWJTjJF4aSUOu/VO5GNh7P7+dwFJchwswK46OhyJUAJRNYpJ0Y4Rj0/gF8MkNMeCoHOpyRXCYlHqXIq8SaX4WfNEI/IXXgwpNYTQA/c56zLGYFiGcx3JnpxLIT5Vt2aVw2CfQTmXBEEQBEGMOyQuiarwCrOR87U4+nvsPK8psxRHvEgqcNzyRkiKhXgTEE/IZYvmzJobwaXv6UAkKuHlZ5P4+Q92oGtvvqb5bn4jAwBomyZBlVUoklJVhUz/Dbhb9XZj/wbkjBxMbjo3+d71y+XUWZw7YwjnUhBVYpAYg5bO4cj/+BYY53j0U++AOWOmM4bYh1doliMkh/COw6/EorajRjw+gT+ckxgtPkcS1TqXpdeK5HzW7oOE3BXvBgCE//QHd0ymODm6ohhQU7gZUTWKybEp9vgSh1Z0L1XNHnegX/d9b0lcEgRBEAQxHpC4JKrCKy5HyteyuIX+XltcTpom+95PNCo45+3NOPPiZjAwJ9Q2yJLjE/j4f8zG4Yti6OvWce+fuqqeay5romtfAQ3NDKGILb6qdi7L3IDvGtqJFXuewcb+9bC4BZnJjpAQ56JsQZ/i/wDXuRTE1BgkSDj3B7cjsnsfdp59Mtads8xX+TPoZo0llGc59gQdYF8rElaak2u/LopL+MNiAUA//SyYk6dAffIJSDt3OOublgnTMp3rI6bG8I7Dr8RhTfMB2D00I1F7vHkL7OtuoE+nViQEQRAEQYw7JC6JqvCGr5ZzPbIZE4890IuhpB1+11d0Lts94lK4lNEGBjUi2pVUFqqxuIx3f2AK4gkZe3bY/SqrYde2HMCBKbOL7o2kQZEUX5hqJcqFDuqWfSw503UuvcV4gPLOJfeFxUZ8y8NKGB1//DOOeHwVMlMn44X//FeAMShSqbiURnAuRwP1uRwbhnMufa1IvKGwKN0mqsagyRqaQ55iZLKM3FVXg3GO8G2/BQDHgefgJbmWzjUJC00tKhSVYcFRdm7vYL8/LJYK+hAEQRAEMR6QuDzIyOct3HN7J9a9mhrTcb3hq+VyLl94agBPPtyHB//aDcO0MNCnQ1EYGlrddUT1VcMyHLFqjuAmMsYwY3YYlmUX6amGndvsNiaTZ9miTCuGxYp9lyOlp9CX6/UVOhHzdUSmqYNz7nOXrDLOpdPn0pOnqkgKNNlOhoupMSivvYIZ3/pvmIqMlf/9n8g12OLTKxhEOKwyQiuS0UA5l2PP8AV9KrQiKb7WZA3vPPxdOGHKib4xclddA84Ywn/4HWAYzrVXMAslYtb5m3NcclUH3v/J6Zg8zS4dO9Cnlzw4SQ4YWPV8Ek/9ow+ZNDmZBEEQBEHsP3VdLZaoDc457r29E2tXpbB9UxZHHB0bE+GQGjJw/9/2IjnLQKJRKZtzuXm9neP4+uoU2jrSME2gvUOFyXVnHXFza3LTEXnVhOdNnx3BulfT2Lk1i4aEjEHsw87cZpwy7bSybTp2bM0CACbNkLArZzuXBWbPw7AMR+R5+euGOwEAcxrnlp0vAORNW9z6nEsI59LFu4zDdTYjSgQFs4BEDkhcfw2kgo7HPnYpUkfNh1msIust3hMs1DKWkHM5NgznXHqvs3Jh08HX5XJrrZmzoJ9xFrTHH4X2yMOQ5ssV1xf74OBoblXR3Koim7GvXdu5dNc1LBO3/GSXE75umhxnXGA/CUrmBwEAiVDjcIdOEARBEARRAjmXBxEvPTOItatsx7KvR0fXvsJ+j2kL1i6sfmkAm99IF9/zr5PPWXYoapEXnukHALS0KU5IKeCKNYtbjrisJg9yxhzbfXnlhSR+9p3tuOXOF7A9uQ092e6SdU2TY/f2HLQQQ0u7LcpkSXZCFIPVaQG/K1swXXfUO1/AFZe2ABTuZHWtSOxQ2AjAOU797s2Qt23F4HnnYNXlp8PiljMHr9gQolIeZ+eSGCOGcy69P7U+YT/yT3D2vdcBAMK/v9X3oCF4XQRDtQEgHJEQCkvo69HxzON9yGXt62z3ziz6e3WEi7mZPV3ub8Xdm/6Kuzf9dcSq0ARBEARBEEFIXB4k5PMWHn+wD4wBRy6JAwDeeC29X2P29RTw9KP92LA2Dc4sdHcWwMFL8ha3bcrAsuz9tk/WwGRg2swQZs2LQPeIR+EA2mGx9mvL41ym9TRyRg5BpkwPQZYZerp0WBawe1cGqSGjbP5kT2cBhTzHtJlhCGNHguRU4RRid196LwqmfUM9UHQNAaBQRgxzR1zac5OY5At9BSoU9OHcLy7lMI6//TFM/8czMGfOwp4bvgcwZovLouj1igdJ5FyOg7j0QmGxo6fqnEtWPucymDdZjsL5b4XVPgnaIw+joauv4rZOkSm4opAxho6pGgyd44Wn+/HaSrtFz/q19n9POasZANDXrSPIQL5/xLkRBEEQBEF4IXF5kPDi0wPozu1DeMkbeMv5TQCAN/Yj73LXthx+/M3tePRvvQCAcJwjn+NIJc2SsFgREjv/yBg+9G8z8PZ3T8KxJzUiFJZhlBFrABxhZxQdO9My8bfN9+DJXY+XzEVVJUyZHgIASDLAmYmdW3NlQ2p7izfJ7ZM1n7Bzcy5N7B7ahYe3/R3/2P4QAKAv1+tsr5uugxN0LoXwVSTZ04rEnoO/oI8n5xKusznjuddw2i/vgxkOYfCW24Am+8be5KZvroJxDYv1CSESl2PBcK1IqgmLrYiqInfVe8EsC/Pve9KzbTAs1n2o4eVd10/Fuz84BdEGhn27C+jrKWDrpjS0EMMJpzVB1Rh6u/WS7bozpZEBBEEQBEEQw0HicoKzZUMKt/50F/75UB/6wpvQcMQ+IDGAljYVe3fl0dczutDYndvsvMW5h0dw9b9OxRFL7IIzvV2FkkqTWzfa685bEIWqSZAV9yZVN8uLS4EIi82ZOeTNPLoz3WXD8Y46No5wRMIV104BZxZ2bstCN0pDXEUOWXOr6nEVJaedh2kZjlPZm+2x/+sRlwWrsrgUy7zOpZhruRxGDjssljEGZcsmHPeF74Jxjr0/+D7Moxf7RKhhGWCMBcSlaE9B1WLrFeZ1LodpRcIqCEqpStc4+55rAABz73kUzCx9EAH4C0n1ZnuxPbkNABCNyViwKI5jTmoAADz7+AAM08KRS+IIhSS0tKnI5yxk0qbvu9edrb79D0EQBEEQBEDicsKzcV0KWzZkoBc4Zh8pI96gIGfmsOR490ZyNPR22SLthNOacNjCGKbOtm+UezoL4JxjQ996vNq9Gpxz9HXriMZkJJpsAecVkXoZseZFOH/CMTS5ibRe6riedHoz/t+35uKIo+OYPF1BPsfx6AM9eHnFIB65rweGYd8UO+KyTfW4gcwJizW4gYga8Y3dl/U6l64YFq6jcEjFjbfEvM6lOKZSZ0rkXIbSOSSueTeUoRTSn/w3hN75PgCuM2kVnctgDp0o2DIeYbEkKMee0rDY8jmXNTuXAKzZc1B4y5mIdvZg9ovrAJTmXHoL+jy/dwWe3PWE73peuCSKcISBc2DydBVnX9QGAGhptwsP9Xb7K8p2Z0hcEgRBEARRG1QtdoJz3ts6cPhRIWghCfdtX4W0XkDezOP4U5vwzGP9WPV8Eqef14KGxto+6p5uW+y1TrJvPNunyJAkoKdbh2GZeK3nFaT1NOZFjoJpcjQ0uje63pwvb85lOXEphJs313EwP4i41lCyriTZN8+LT4xh90MMa1YPYveL9g1wx7QQjj62wedcZj2hpsVNYViG70bf4pYvt6x8ASK/kyoz2RESZtmwWE9hFd3Ahd/8LZSNG5A/93xk/uPLZdcT/TP9+xm/gj6+ojKUczlqfD0rA+eRMQZFUhxX2tlmFOISALLXXAvtycex5N5nsPWkRSWup/ibcw7dsh8CmdyEClvkSgqw/MwWFPIWjpnj/ia0ttnL+7p1TJ7pXmvJQhI5I4ewEq56jgRBEARBHNqQcznBYYwh0aRCC0nIGnZ4as7IIhqTseyUJpgGx/NPDtQ8bm9XAUyyRRoAMIWjuU2FXuDo2pt3hNfgoC1CveLVKyIr5Vy6y23x6c11HCwMDju3SBxYfmYzWibJmDrDzsVcu3oIOSOHnX17AQDNLaqnTQjzhMX6c0b3pfdWrFjrFB0K5JjKUqlz6QszFaLRsnDaj/+EOSvWwJh/OIb+71eALJeuVxQBlZzL8c65JBdzbCh3HsVnV0lQVlMtVlB468XItbdg7nOvo3FPT6lzGQjHtl+7D0YsbiEWl9Hcqvreb2kvisseveQ7SqGxBEEQBEHUAonLg4SckXMLzxRbZhx7UgIAsHNbaQXW4cjnLQwNmmhuUaEoRYfOMtBWdDF3bM04+0oOlBeXEpPAGHOcwHLCEvA6l664FH32erO9WLHnGV9on9gmFldwxfsn4/2fmo5QWMLG1zN4dvvzWF14FEoiCy0kObmhdkEf+wba4IYvZ1TkpZVDhMEGc0xt57J4rB4BKxBu1sLf34vFdz+JTHMDBv/4F/BEY8k4gC2wOeclfQtnJ+Zganwq2iLtFec4WkhQjg0j5UyK0Njg+RYPI2pxLqGq2PXOt4FxjqV3P1Va0MeTBxzMFwb8D0m877thsYWS7+lQYaj6+REEQRAEcchD4vIgIWtknNeiZUZTiwpTyqOvt7aiPr1dIiTWzRkzuIH24t87tmYc52MwWRSXCVdccs4hMQmqpDquYEVxaYmcS09YbNG53Ni/Hhv7N2B3alfZbUxuYlNyPZILHkfezOHV13rAORBv8YezeqvF6pYO0yoVly3hVt8+3HxIq2TukicslpdxLiUm4fAnVmHZT/8IPazh/u99HNbMWSXHLoSFyEsNOlHTG2bgnFnnQ5O1km3HEgqLHRvKCUVV0souEw8gahKXAPZe8XaYioyjHnweas7/vQ7m+gJ+59L7kMTbAsgbFmsFKjB7Iw8IgiAIgiBGgsTlQYIIiQXssFgAKPAsdkx6CBvyK52CN9UgivkIpxIATMtCY4sKRQF27cxAN+yb0OSgLR6DOZcSkyAzeWRxye0KlXkr77w3WKzmmi86sEP6UMk29pgm9qX3omWGgbyUxOtr7O0Szf5m8oxJTsVV0zJ8Do5oiTI5Ntm3D+EilhOXctGVtZe7rUYE4RdewFu//XtYEsP9X34feo6cW/bYhaslWpyMdz9LL149SS7m6BlJHKpyMd+xJD9ydOLSnNSB9Wceg3Aqi9kP/NO3zFvQx7lmuT8sttzreEKGFmLo7ixgYNAvWCuFjBMEQRAEQZSDxOVBgt+5tEVZWk8jEmfQWRrJgeodiJ4ufzEfADC5AUliaGnXoOscfb32PpJJ+7/BsFgGu5iJEGflelK6Y5u+nMucYbclEY7eUD7pW98rWC1uor1DQ7yJIZuzj7EhIC4lSE5xHMMySsRiSA6hKdTse084neXm7i3oE8y5VF57Ba3vfTcU3cBzn34PNi8/qqKAkJiEkBxyQofHpXBPBUhQjg3l+pt6UYvX0ZiExcJ+6LHq0rcAAOb96X6feHT6XMJ1LIM5l85reLdjOObERhg6x/137vO1IxF9aAmCIAiCIKqBxOVBQkZ3xaVwwixuIhKTwJmF/t7qHQgnLLZdxYo9z+C+zXc7AqhtkgYOC91d9j6SSfv9RJmcSyHQTMus6FwCtuAT1WLFNoP5QRSKobJe59L03Oya3LSrv0oMS5dHYcFe1tAUEJeeuRi8dC7t0Ukl+Y5OAaAy65ct6AMGedNGNF55KaShIax47/l47fIznWWViChuW5Tx6GdZCUbVYseEkc6dyPVlAREprong+yOhMAX7Fs7C3iNmIbF5O9SnnywZ0+KW8z2p5FYGr+lzLm5F+2QNWzalsX5N2nHVTU7OJUEQBEEQ1UPi8iAh4wmLFc6lyU1EozI4LAz0VedcWhbHrh22cGzr0NCV6UR/rh+pgt17srlVAWcWBvvtm86hcjmX4GCMuW5hoIhOEK9zKRzElD7kOpeFpG9d57VlwSyOu2BxBGrEft3QVLzJRqm4NK3SubRH2ksqssoe5zK4vp1z6Rew0b3daHzn2yH19CBz/b/i2eve6tzgD+dOhTxtHmp1sfYHqhY7Nox0HisV9HHCYmv8CRYPQVZeZruXkV/9vGT/nHPn2ue+sFj3tRlwJFVNwjuumQw1DGxcl8H6V/IwDE5hsQRBEARB1ASJy4MEb1isxS3kzbwtLuO1icsNa9MY6DUwa14EDQnFEXNp3RaXiUYVFjORFOJyyABjQKzBvunlnDsFfbx5jsOFxVrcdIRkQ7G/pW7qTj5kRs84N7nem10LrkPDZAuLT4hi+qwQJk1Ti3Px9rmsnEPZFml3nEqBEJu8bM6l6zBasBDrHcTyj3wR8u5dyF3xbqS/9T2AMeeYhxONYdkVlzJ789rOkqAcG3zOZRkXsynUDMYYGrSE730357K2z0FcexvOWIp8azO0hx6AtGO7b0z7gUiZsFhPrjFH6cOejqkhXHZNOxQF2LymgEfu68Hf/rwXK57oL1mXIAiCIAiiHCQuDxJEQZ9E8SY2b+RgWiaiMRmcWRjoq86BWPHEAABg+ZlNAFyHQ4yvqAwNzUAmY6FQsDA0VEA8IUOS3GIigO3IOKGoZfIcvRiW4YTAxtW4PX8z54hLwHUvvdUsLct0/tYtHZOmKTjmxEYwiRfXFeKSOTfeJjcd0ccYQ0SJoC3S7jiVAsUjRs0y4lKMp3Z24YrP/BTx7buRv+AiDN34M0CSIDHJEcLD9TIMe8Ji31TnkpFzORaM5FwubD0SVy64Cq0RfzXi0Rb0cXKBVQW7rngbmGUh8sub7P0XP1NvKKvXreTDhMUKJk/XcNq5LZg3rxGGwdHVncWj9/f6HFCCIAiCIIhK1HRnUygU8H//93944403xms+xCgRzmVjqAmA3evSzrmUwcHR3zuyc7lvdx7bN2fR2q5i/pExACjrODa328KrZ18BFue+kFhvgRs3LNb03eQGMSzXuYwXncuskfPtW/Tb8zqXXqFYMPPOvt1qsm61WNlxddwcylOmnYZL578Dqqz68h1tp7O0rYNAluxqsfHuARx77SfRsrML+844Cclf3gooijNGsNhPOSKesNhgaO6bBeVc7gdViPRyrWRGKy69D0H2vOtS8FAI4d//BmxwwNm/93tTsaBPBXFpcQvxBgWnn92BCy9vR6IFMHSOdIoK+xAEQRAEMTI13dlomoabbroJyWRy5JWJN5WsnkVIDiGq2qIwZ2RhcguRiARIZlVhsVs32gJ18bIGx4ksdxPa0m5fNp378gCskkqxgH3TLHvbf5QZx63IajoupXAu04H2I0JcmoEbZCE2RZ6pvY5fXEoIikX7hlthijMHb1isxCSn0IqF8n0uo529uOIzP0Fs+y5sOuVovPz9LwOhkG+Mcq+DhOQDk3Pp3Rc5l6PH51zWINJHLS49Idl6extyV1wFKZ1C+De/dt15Tz4lr6IViRfx3dFkDZLEEClG8w7UUBCMIAiCIIhDl5rvZhcvXoy1a9eOx1yIUeLkV6pRxwkT7zHGEIlJSCVN6IXKoakAsHu7Xchn+mxX8JRzLhvb7Muma08BFrNKivkAdiio4mv/UZp/GJJDznLd0qHJGkKK/Z4QkwJRMdbg5Z1LUSHXO2chIkXPTfs9y1foR+B1hPzOJS/JTwvv7cZpH/pPNO/uwb6zT8V9/3UtoPrdqWoL5oSVA5NzSYwNoy+MNNpqsa64lJmM7Ec/Ds4YIr+8CSxvP6DZX+cScN3WiP2sp+qcbYIgCIIgDm1qFpef+9zn8Mc//hG///3vsXPnTmQyGWSzWd//iTeXjJ4GAESVqOOE5cyc42BEG+wb2Xv/1IVMunJ42+4dtvs3dYY9hijOE6Sx1b5sCgVbeLW0q84yX1hs0bk0uOtciuqZAKAJcckNFMwCVEl13hPVaRtDjcW/izmXHlfGG+KaM11xKXLLvCKSOTmXlq/Qj8AbksrAKobFNu/oxBHvugbxnXux4S1LsPJ7X4SllopCv3M5nLh0cy5l6cBUiy1XiIaojtG2dNnfarFiDHPefBQuuAhy5z5E7vozAH/oeO3i0v5+qZIKxhjCdiAE+klcEgRBEARRBTVbJVdccQUA4Jvf/Ca+9a1vlV1n3bp1+zcroiaEyxfTGhw3MGdknUqkCxbHkNor47WXh8AYcNnVk0vGSKcM9PfqaJ2kIhIthrNWqPAaigKhMEM+xzF/YQTLljc6y7jHLXR6RVoGrOJrTdacENawM9ecs0zMWey7QWvAYH4Q+WLYrOErVmJ5nEv3oYYQ1V4RKZxLb89Nn7hk5Z1Lb7XYjje247Iv/BzaYBo7LzwT93/mX3CYWr7qZ7VhseIcAP6Qx3GHCvqMCaN1LkcfFqt4XtvXS+Zjn0Lowb8h9n8/Bf73X2F5hvQW8eG+arHlc6CtwPdXi+WRxfg5l+lCGqZlDlv0iiAIgiCIiUPN4vLb3/42FQCpM4TL16A2OGGWeTPvuIQtbTLe94VZuOHLW7BlQwac85LPULiW02cNHxJrv2/g2JMakcuZuGB5K7SQe2NYrrekYZlQJHssxeNcih6PQhiqkgZFUnzFcMKy7ewJR8WbT6ZbhiNmy4XFeoWuIxY9OZTMFxYrgzHmtFGR4HcuZ730Bt725Zuh5Qroff+1WPXxd8Ia3FSxf6f3/A4rLr3O5ZsoLqnP5dgw2qq7+1st1t7W3p9xwonQjz8R6ovPY87z67D15EXOOpVyLoN9Lp33nfB1GYqkIBS1v1fjkXOZM3K4a83dmKRMx8lTThnz8QmCIAiCePOpWVxedtll4zEPYj9IFfMR41rccS7zRg4RRQgzC9GYjMlTQ9i7K4+BPgPNrapvDJFvOW2mR1xWuAE1LANtk+ycrKADIsQWg5vH6A2L9VbOFCGwos2JJttzCskh5z0hlsVcvG0WdE+rEt1ynRUzEBbLgjmXnkI/XhSmQOe6T4ya3MScR57DOd+8BbJh4qkPXoz2L34FbGCDMx5QKhL8Y1cWHZqkOWJaOkDikhg9oy7oU9xu/8Sle71kPvpJNF73Hhz/p8f84rJSWGyZPpfedeSiuAxHpZr65NZC1sjA4hZSgfxqgiAIgiAmLqOORdq0aRPuvvtu3HTTTeju7gYAbN++HalUaswmR1SHCIuNqw2OW2lwE6ZVFFnFG8YZc2yhtmNraV7szm1FcelxLivdgPortvoFqFds+cJiUZpzKUJCM8U2KqpkC8+QJ1RU5JCK7cUxAUDBcsWlfw6Vq8WanjzNYI6jyGdzcjQ5R/v//QLnf/VXYJaFhz77Lrxw1bn2eqxyNV0xRrnXQRhjzvF68+nGG3+u4Ju224OO0TrA4vwPl49bDvvatLfxOt2FCy6EMXceZryyCVNe3+a878+z5M6+K+VTm57CW4qkQFHsvMuBfgOWNba9LsX+K/3OEARBEAQx8ahZXKbTaXzqU5/CxRdfjC996Uv40Y9+hK6uLgDA//zP/+BnP/vZmE+SGJ6UXgyL1Rpct9BToVXcvM2cYzuZO7fmfNsPJQ1s3ZhBNC5j8jRX2JlW+VA4b8GQYP9KX86l5OZu8jLOpVN8qBjSqhaXaT5xGbILlxSdS2/OpVFhfuKG2it0GWNgjBVzLos30EHnUnJ7VKq6gQu+exumf/9H0MMa7v369Vhz0ckAiiG0YCX78MKqFJeAGxpLYbETj/0t6DOacy+uE991JcvIfvLfAAAn/v5h5+1yzqV46FPuwYg/T9ler6EFMA2O1NDY9roUv0uVQssJgiAIgph41Cwuv/vd72LVqlW49dZbsXLlSt/T79NPPx1PPfXUmE6QGJmhQhKarEGTNZ9b6M095JxjxlxbzO0MOJevvjQEbgFLljVAlt2b3Yq98Cyj4jquC8F8Qlc4jr6cy6KYzBadS01yw2IFqqza4lLkXHqc0kriMtjnUtzzy0z2h8Wy0rBYAAgPpHHChz6PRQ+/iPzkDtzxk89g66lLnPUkVioug9TSR1I4uPKb2OeSGBtG7VwWf3prbUUCuOIy+DAi944rkexowbwVazFp4y4A5XMu3f6ypdeueIgjex4ONbTYcxzr0FjxYMobjUAQBEEQxMSm5jubhx9+GJ/97Gdx0kknQZb9NzdTp07F7t27x2xyxMhk9AxMy0RcbQAAX/sPrxAzuYnGJhWNzQo69xaQy7rCc9XzdpuPpSfaHdN3De3Eaz2v+sJfAdeZCVZs9RKsNmmvbzqiUwhIRVIc8enmXNoiyysuvTmJQGU31UtJtVi4xVPs5inuHL3IkoLWrXvxLx/4LzSvfA17j5iJNX/+DfYdNtXnuMpMdgQrL9MzE/ALjWqdyzc153KUjhvhx3fqRtOKZBTi0uuw+9A0rLzqPACue+l1LsW16ojLMuGobkEu2Vmvodk+roHesRaXxe90hcJhBEEQBEFMPGq+s8nn82hqaiq7LJ1OlwhOYnwZytv5lg2aLS5FMRrTMn0FecSN3PTZYYADe3fZ1WH37sqjp7OAqTND6Jhii7pXuldjVefLTv9MgciXLDeuwB8W68m5FH0uiyJNZnJJeJ4mibBYf9Ef4TgC1d2IluRcem7kva1Igq7RYf94Hu/56P+gYXcXOi84E3fc+Ank2loBwKliK+YuxGOlokfV5lwCbi/PiBod8djGCgqLHRve7FYkgDcstvS39o2LTkWqJYHDn3wFrVv3lu1tObxzWRoWm2iyj6uvZ2zFJQ+ErxMEQRAEMfGp+c7m6KOPxj333FN22UMPPYRjjjlmvydFVE8yb7uOcS3uvKdISrFwTakInFLMqRTicvcOO99x/sKYs65RrLxaMP0Fcxxx6R034H44FVrBnJtfwxOiq0qqXYVSCZcUsBGi0udcyipkyRaXnHMYFcScFycsNuBQivDakrDYQgHx//gsTv3yjyEXdKz+yLuw9vtfgxHSHJdW9jg5siQ724p9BIWF5HMGh/+aLWo9GhfPexs6oh0jHttYQYJyjNjfViSjqKkmV3IuAVghDS9deRYA4IQ//KNszqUQjeUe1HhbCYnve6LVPq7ebnIuCYIgCIIYnppbkXzqU5/Cddddh2uvvRYXXHABGGP45z//iVtvvRUPPfQQfv/734/HPIkKiEqxDWrCeU9mMvJm3i8Cizdyk6fbwm3fbltcdu6xBWTH1FDJunkz79uXU4nWE5oaLMbhLQjiFvQxnPdlJuOsmedAlbQSx6I1YruE3oI+qqQF2ohU41xy33Ewj+MIuKG1MpMh7dmNxPXXQH35ReSbErj3S1fDOP1MTPG4ruJ4okrUee3uq3gMLCguq8+5lCUZLeHWEY9rLBltf0bCz2hbkYhrKToKt9rNuSwVl4wxvPIvy3HCH/6BIx5biVe3bQeWzAPgdS7t7csV0rGcnEvZEbHxFntZb3f56syjRcyHCvoQBEEQxMFDzY/Nly1bhltvvRWFQgHf+MY3wDnHT37yE+zcuRO33HILFi9ePB7zJCogKq0mQq64VCQFFregewvvFB2JKdP9zmXnHvu/k6e5oahClOrFVh9CKHmL8TjrBpzEcmGxhicsVmIMk2NT0Bpp9bUCCSthNGj2MfidS83XRqRSER/fnIYJi7WPy3ZgIv94GM1nnwr15RehH7cMj//xR9hx3AJfn0uxLoOEM2achfNmX+AbyxGwJc6lNyy2/sTbaEUR4We0YbFLJh2DSw67DM3hlpr3KfrBenteCiQmwYiE8PI7z4RkcUz9+S3OMruXqlRy7XpxnEtJdkRoOMqhagy9XXrZ9iWjRbiq5FwSBEEQxMFDzc4lABx33HH4wx/+gFwuh8HBQSQSCUQikbGeG1EFR006ClZWQUd0svOeuOkseJxH4UjE4goSTQp6Ogso5C107ilA1RiaWlzhKARjvhgW26A1YDA/iIhS+hmXhMV63EIRfmdUyHMUOZcA0B6Z5LwW4lLkOYrwWpOb+5lzWQzDzWRw9k/vQMu9zwAAstd/CKmvfRt6z0tAfxLM0xdThOFKTEKimBsJuEKikrhkqN65PBCQnhwbRtsvNHg91cLSScdhWnwG4sU8a998itfa6ktOw/G3P4r2u/6Gvs9uhjV3HixuFcPVK4tL8d2X4BbksmChpU1D554CMmkTsfio/tkoIdgyiCAIgiCIiU/NzuWKFSuQzdrVPcPhMDo6OkhYHkASoQQWth7pu8kVos4b1uq9gZs8LQTOgQ1r0yjkLXRMCUGSSluQCHE6o2Em3jL9DBzZdlTJ/iu1ImFgbkEfT+Vab/sEyZNzOcmTbyjCYkUYruwVl0Xncji3bbhqse2bduOdH/w2lt77DKzWVgz+/k9Ifef7gKY5OaCMMY9b6obFehH7545oHs65rO8WI/UoficKB6IwUlukDQtbjyy7TFxrhVgYL155FphpIvb97wKwnUKJSc6Dj2CPWvs9T0EfEXnADbROsiMbervGLu+Sci4JgiAI4uCj5kfQ73//+yHLMhYuXIhly5bhuOOOw3HHHYfm5ubxmB8xCkQ4mwjpBPwO45TpIWxYm8bqF+xiQB1TNd/24mZPiEtVUjG7cQ4G8wMl+wreoLphsSwQFlva/sPnXEY9zqVii0tR4EfyCDlvYaBgwaHg/H3OpWHg6N/fjyU//xMU3cS24xci/ut7wTtcUSvmY7ulzJm7dw6CEZ1Lz/r1KC69DjKFxY6eestd9c5h1eWn48S7nkXoL3cg86l/d8JixUOUsmGxzkMgt6CPbulobbdf93YXMHPu2DxMdHMu7T68dB0SBEEQxMSnZnH57LPP4qWXXsLLL7+MF154Ab/97W9hWRbmzp2L4447DsuWLcPb3va28ZgrUSVC1Hnzo7yNykXe5eb1GQD+Yj6At6CPyLkUrQ/KVKcMuA5esSXyuwzLX9AnOE8AaPUUtIkqUTRoDY6b6RbiMZ0w1ZAcqigunZvWYk6Xum4dEp/5GNpXr4KhKnj8Y5fi1Xechas6/NVZvf0DhfgSAr3k2Is3wo5TO4GdS2L01FvuqncOeiSEnR+8BvO+9yPE/vvbsP79bF9LnbJ9LsX31JNzaVoGWtuLzmWZirE5IwdFUsrmgA4H9+zf4pbvt4EgCIIgiIlJzeKyubkZ5557Ls4991wAQCaTwXPPPYdbbrkFd9xxB+68804SlwcYmZV+rN4byXkLopgyI4S9O21n0isuvQV6REEfN1y0nLgsHxbrFgFSfLmSPudSUjAtPg0xrcHXlkRiEi457HLnRtnNubScMFVV0nzre+fhhNnpBZz0m7+j5bbPguk6uo8+HH/798vRN2syNLn0HDktHuC6NoWAwBaM5FxK9Z5zSX0ux4R6O48skOmw512XYPZv7kDovrvR9i/zkTrycOfatMq09THL5kwb6HCcS7+45Jzj3s13oTnUjHOLxa6qxRv1YHITMkhcEgRBEMREZ1SVGdLpNFatWuU4mK+++ipCoRDOOOMMHHfccWM9R6JGyjkI3nL/qibhuo9Px723d6JzbwFTZnjEpceJFDmbwlEod/McFJc8UERHtEUpV9AHAM6edV7ZYygXVmpxyxG/omImYLuYWcPOA1YlFRa3oDy3Apd/+hto3bIbPBJB6itfx+PnHYa+zJ6Kx+INi3VDAv0Vc535jSQufWGn9edc+uZbB47bRMVf0OfAn8fgHMxQCJnPfA4Nn/83LL/lATzy/SOGrxbryVN2wtq56eRcbt2YwcP39uAt5zYjHJGhWzpyRg4pKVXzXL37p6I+BEEQBHFwULO4vOyyy7B+/Xq0trZi2bJluOCCC/DFL34RCxYsqIubK8J14LwEb960kIR3vG+K83dXpguD+QHMaJjpvOe6dsJBLO9cenMbhRnhdS6zRtbNXRxV03iRI2Z6ci5d51KIS8YYGgYyOOF/70DzQy8AAHYtnY/ITXfAmjsP0s7HnW3KHYvicWiDRZEqFfRxRXMw57K+w2LrLVdwolJv5y44Hw6O3HuuQfQnP8S8FWuxZs1WSCfZ3/FyYbFO4S1JdgtyWQaiMRkz5oSxc2sOzz7Wj2S/jne8b0rNRXlyORN3/b4T8xfGEFtYJtpgnLC4hV1DOzElNhWqXNpSiSAIgiCIsaHmu97169dDURQsXboUxxxzDI499lgSlnWGUiZ3aSRn4OXOF7FizzNI6+mSbYbPubTwyPaHcP+We33biJtccYNayQGsBm+1WMMyIDPZN05ICYOZJo69+xlc9Z4vY9FDL8Bsn4SHv3Qt7vrRZ2DNnVey73LzCMnh4n81qE47l+GdS5HXWtqKpL7FWz3OaSLidy4P/EOE4HXKwQFNQ/LfPwcAWPbLvzoPi8r9Jnhzo71hsQDw/k9Ox8f/YxYSTQrWrErh9VeGHFEY7HdbiYfv6cH6NWk8/WhfwLkcX3G5I7kdT+x8DBv614/rfgiCIAjiUKdm5/Kll15yQmIffvhh/OAHP4Cqqjj22GOxbNkyHH/88Vi6dOk4TJWolnKFMUZyBnLFsNK8mas4XjlBwmGhL9eHglmwqz4Wi+iIG20hTAumXhyr9htw5g2L5SZkSXZzNDnHrGdfxQU33oy2bftgSQwrL3sLpn7nN1i37wHf/kYSl1PiU/GW6WdgSnyqU8hH3FgHz2mpc+kfS6r7arH1LX4nCvV27oIP+YRYTL/jneA/+AamvfQ69jy/GjhMLd/n0pMb7RT04W77n7YODW971yT8/qY9eOAv3bhuXou9H5S2NfGyqX8jBnZpWLnCflgz0GcgmSxApFmOd1isiEDIGplx3Q9BEARBHOrULC4jkQiWL1+O5cuXAwB0XceKFSvwy1/+Ej/4wQ/AGMO6devGfKJE9ZTLuRzp5k04dOUqsMojOJfCtTC5OU7Opeg5aYfFqpIKmcmYtH4nTv/5PZi5aiMAYM/Sw/HCZ96LzTMTuDIRh7XXcnInvcdRaR4SkzC7cQ4Af6VdoNSVcnIuMXLOZV2Kyzqrcjph8T5EGEXI91gT/CTFdWzJEp55/0X4l6/figU//AWe/MlHyrqF3hB3N+/Y8K1z2BExLFoax9rVKbz0TD8wfXjncjA/gGf3PI2Xnx9EMy5Cc5uK/h4de3ZmIc3273e8EOMbgWMhCIIgCGJsGVVBn76+Prz00kvO/9evXw/LsjB//nwq6FMHlMu55J6bq5yZQ1yN+5YXrGHEpVRZXBqWmwdp97MMVIt1nMuiuJRqrwgpRKFh6eCco3lvH479zu2Y/sBjAIDUnJn4xwfOR/+Zp0KSFCDbA9Mynb5+AsknLoefh1eUAqXCQYzriNBhW5HUt3irN/dtIlFv565sWCxscbXhjKXo/ss8tK/dgCMeXQnrfaeVbG9y0y3GJfnDYr2ceWErXn81hWef6sPMyy1AK1nFQRTbSiUNNAM46fQmPPiXbuzZlcP02WK/FvI5C6rGIEljf07F75K39y9BEARBEGNPzeLy/PPPx44dOyDLMhYuXIgTTzwRH/vYx3DcccehqalpHKZI1IpSphWJaDHw/N4V2DywCcunnorDmucDgBPSCrgi04s0TFis7lnf4EZJKxLZcS6L/SJHU9BHOKdbtuD8G/+AI//xIiTTQrq5Ac9e+1ao130MW3pXo13WnDmKUL5KIm8kN1GWZDDGnPMykkActlpsnQkQoD7nNBGpNwc4+Lk6PV+5BTCGlZ98L87/16/itJv/hteu/FDJ9t5+k+J3RDcL6M50oy3S5hxj2yQNi49rwIqVfejcm8f0WZGShzkC0zLBOUc6ZSISlbBwcdwWl7uzmF5cp6szi1/83xYcc2Ij3npZ+1idDs9x2Q/ASFwSBEEQxPhSs7i86KKLnLzKSCQyHnMi9hOljDsobjJ3p3YBAJ7d8zRiagxT4lN9glIfJiyWMeYTXIDf6TQtA3DEmFst1rv/0YSIxnbsxgU3/h4LH10JyTSRT8Sw471X4MGLFkKPhLA8ZLuw3kJGTnXaGnIug6iSWrGgT1BslhT0qfdWJHXWQmOiUm+5qyU5lx7nEgB6jzkSPWedhrbHnsKU3/0J/Z+cgSd3PYGTpixHR2yyX1wWv7vJQhIPbv0bOmKTceq0tyCmxgAA02aGgZUWchnL2UdZcclNZDMWTBNonaQh0aiguU3Fut4Ccjlb9D39WC8K+Ri2bBifnEg3uoLEJUEQBEGMJzXf9X7yk5/EySefTMKyjhmuFUlcbXDeW9e3FgBQKBa7AIB8Weey8g201wkom3MZcFFrEZfK6pVo+PD7cdLFV2PRwy/CiEfx1PUX4a67foJtH3kf9IjdnzMRaoQqqWgKNzshvHoZcTlSzmWQ4dYvFZMB5xITKOeyDkTRRKX+nMtAWCz3i0uJSdj22Y/DkiTM/Pmt6Nu9AYP5Qeehk1cgMsac15qsoTO9D0/t+qczdjyhwGIWcrnh25EY3EBqyP4+thX7Zc6ZHwGHhR1bMhjsN7D+9SEAQG9XAYYx9vmXblgs5VwSBEEQxHgyqpzLnTt34le/+hVWrlyJgYEBNDU14bjjjsP111+PGTNmjPUciRopFxZbrh9df64fgN99HM65BOybU2/xDe+2hmV6bmLtG2054KKOKLRME9rfH0D0pp9CfX6FPafmJjz3jlMx+L73Yb2+B9PiCd+comoU71zwLiiSgsd3PFqciy16vTfb3nxPqQpBpUoqssiWn/cIzmXdh8XWgRA6GPCexnr4nCs6l6LwFJOQnzsLr158Mpbe+wym3/Rr4NqTkTfz4JyXuI/Lp50Ky7Iwu3EO7lj/Rwzk+51lDQkZHKYrLi3Tqf7qxbIspJL2705bh53LfPwpjfjbao431gxB04A4OGSFwTQ4ert0dEwNjd1JgbegDzmXBEEQBDGe1Cwu16xZg2uuuQahUAhnnHEG2tra0NPTg4cffhj33Xcffvvb32LRokXjMVeiSspWi4UIXbNv8qJqFGk9jYJZ8IvLcs6lVJ3jZ1qG25KAlXcuy7VJAQDW34fwHX9E5Fc/h7x9GwDAOGw+sh/6KNaedzxe6H8Z08MSoAOKpPoK8sjMbfjuOpd6yXy9bmJQ9JZD8RT1CRYAGsm5ZDXkdx4IyLkcG+rtPJbmXHLffyUmQWISVrzvAhz1yEpMve3PaDxvPrINMxwB5v2Ozm2c57xWJMX3W9HQqICDI5+xf1PEb0wQk5tIDRXFZdG5nDI9jMnTVazrsp3EudNkHDUjgRefHkTX3sKYi0uTCvoQBEEQxJtCzeLye9/7Ho488kj88pe/9IXGZrNZfOhDH8L3vvc9/Pa3vx3TSRK14Q2LFTmSlqddCAC0htuQ0XegP9/vu2EU/Sh943luNoe7gTa4p1os/DmXYi4+EcY51GefRvh3tyJ0/71geTs8t3DaGch++KMonH0eIEnAwEagH8gX56lKasVwV29lWaBynmUwfLAc3rmPGBYbdC7rPCwWlHM5JtRbWOxw1WLFckmSkGlJYNt178JhP7sFp/3iPjz3vYWuuKzw4EWRFOSMnONuxhMyODORyxX3UaEdiclNpJL+sFgAOHJpDOseBjSN4YLL2mDutQVl5948jkZD2bFGi+WpaE0QBEEQxPhRs7h87bXXcOONN5bkXEYiEbz//e/HZz7zmTGbHDE6ZM8NpihK44TFWnargZZwC3YO7cBArt93w+XNv3TH84jLYW6g7fYf/oI+zeEWZ7kQXNLuXQj95U6E//BbKFs2AwCshgRy774a2fddD3PRUb5xhWuYN3IAbEfROyevCHTFpWgGz0qWeec3HOpw4rKGsNi6FJfEmFDvBX1EgS3uFZfF7+GW916G6XfehwX/XI31L62GOfMce4wKD15Eex7DMqDJGhRFghYF8jkTHLxizqXtXBpgDGhuc6MBps8O4fhTmhGNMcQSEsKwxWXX3tLoif2FWpEQBEEQxJtDzeIyFAphYGCg7LLBwUGEQmMbzkTUjldsiVA2EbJmchOKpDiirz/fj5DkugnlW5FUJ5RM7obFivWmxaejQWuA0bUXhz+xCk2fv83JpQQA/YSTkL36fcj/yyVALFZ2XCEK80Xhq0oKZKlSFVh/WKz3hr/SNpXwhcViBOeypM9lfYmOIN7jqcf5TRTqzbkMfpYlziUkx5ksREJ4498+hKVf+DZOvvEPyLztU/Y6Fb4bMnPbCmmy/ZsRjTOYKcAocOfBUpB0uoB8jiPeIEOW3flxcMw/ogGplO2GTppsj9m1r/QB1/4ihC/nHKZlVhUWTxAEQRBE7dQsLs844wx8//vfx/Tp07Fs2TLn/Zdeegk/+MEPcOaZZ47pBInakT15jpqkIYMMTMttFyAzGc3hZgDAQK4fTcXXAKDvT1isZToOCQODtG8vtIf/jnfc/Qc0PfsipOIczBkzkb/kcuSueDfMBUeMeDziZlcIX0VWnfYewfxSIerKhcWyGt1EnyMq1eZc1nsrEi91oIkmLPXmXAavayEqvWGx4vtscRO7LzgDbbfdjumvbUHX724FlscrCi/h5JueSIdIjAEpIJezfM6lZXFIkn0+Nm9MAQBaPK6ld06ALf60kITmVhX9vTryeQuh0Nh9b7z70i2dxCVBEARBjBM1i8svfOEL+OhHP4qrr74ara2taG1tRV9fH3p7e3HMMcfg85///HjMk6gBv3Np39AJ59KwDITUEOJqAxRJwUC+3+lbB5SGjUlMqro4jWHqiL+xESf9/e84/OVfIvraGmdZujmOzWcuw4z3fxHGsuPtXMoqETfDoq2CwhTnveB83LBY+wbYJyhrzIP0OpdBgThiQZ86K/QSpB5ctoOBCeNceqrFuuLSAmMMj3/iclz9r99Hyw3/jfBvPg85XsG5lIRz6RGXcQCdQD5rOXmNzz81gIfv7sHys5pw+vkteGNtEgAwfU7YN55X8InXk6Zo6O/VsW9XHrPmjV27K8sjfO0HT+HKKxMEQRAEMWqqFpe5XA7//Oc/sXv3brz73e/G1VdfjW3btqG7uxvt7e1YsmQJTj311PGc66j45Cc/iRUrVuDUU0/FD3/4wwM9nTcFr7gUbgPnlq8aJGMMTaFm9GS70Z/rqzhWsLqr3wlkaNjTg1krN2DGyg2Y+8rXEOp1xzJnzUb+/LeicN5b0bdsMRpUDYYar/l4pIDLoHpyLoPzE46EUa7PpeTNHa0x53KksNgJlnNZ7+J3wlAUlPUgLAGU2NClfS6ZEzpuWAYgAV3zp+O1C0/C4vtXYPmtD2LDFxeUHdrJueQB5xJALme3ITIMC08+1AfT5HjqH/14fXUKnakcYi3ysM6lEH8z50awfk0a2zdnx1hc+p1LgiAIgiDGh6rE5c6dO3Httddi9+7dznvxeBw//OEPcdppp43b5MaC97znPbjkkktw3333HeipvGmIdgMWt1znklt2Hzq4Iqs5bIvLgfzAsGM56DraN+zA7NWvYfK67ZjxymY07ut1FluyhN4lC/H6CfMw+YqPomnxKc7N7v7UfgwKO0VyncvSPprVtSIJjlmOYavFBsVESc6lV1zWifDw4JtSHc5voiCEeb0I9OB1XS4sVlyblueB09MfuBgLn3wNS+55Bp1XXg7MLB1bKRMWGy4+K8pl7bDYNStTSKdMzDk8AnBg68YseMTAjNnhMm1SLIi3LG6hN9uLaXPt36ttm7N4y36chyCmT1xSxViCIAiCGC+qEpc33HADJEnCbbfdhqOOOgq7du3CV7/6VXz1q1/Fo48+Ot5z3C9OPPFEPP/88wd6Gm86opCPKLxhcTcnSgiwplBz5e3zBbRs68TU7T2I/WENlNUrob6yCm/PZn3rdR02DTuOPRw7jpmP2BkXYUgDtie34a1zFoyZaAnmO3pbkZQ4l8OIS9nXr3Pkufn7XJJzSZRSb+eupFgsAtViITnVpC1uwuT2BtmmON748Htw9A0/x7E/+DVw5nUlgymSW9BHEI4Wncushc0bUnjtEXs/p5/fiplzwnh5xSD+vl7DlMNKXUhvX8xkIYn7t9yLOYl50ELTsHNrFuvXpLBjSw5nX9zq5G+OFq9zaZBzSRAEQRDjRlXictWqVfjCF76A4447DgAwb948fP3rX8eFF16Irq4uTJo0aVwm9+KLL+Lmm2/GmjVr0N3djZtuuqmkYNBtt92Gm2++Gd3d3Vi4cCG+9KUvYfHixeMyn4mEEFlCIJncdMLZxLIWtRGJfb1o2t2Dxj29aNrTg6bd3Wjbtg9Nu7shWf7qj1aiEXuOnocdC6Zi78LZGFp6FHoi7jqHR0KwDFt8jqWgCgpIRVbdtiYVwnaFu+KrilqhN2Yl1OHEZQ2tSOpNgAD1OaeJiLgO6uUBQknOZTEsVjh3siQ7D1lMboJxd/11l5+FKXfcg0kvvorkPX9F/pLLfWMprIxzGbX/u3VjFve8sg+N+gzMmBPGrLlhMMZw/ClNSE5PYHdqqGSu3ONcDhXs5QUrh5lzwtj0Rga337wXnAPzj4xi9mHR0Z6S4pzdnEsKiyUIgiCI8aMqcdnd3Y0ZM2b43ps5cyY45+jp6Rk3cZnJZLBgwQJcdtll+MQnPlGy/IEHHsB3vvMdfO1rX8OSJUvwm9/8Bh/4wAfw97//HS0tLWVG3D/29+n5WCOZBtDTA7l7EFKhAOg6YOhg2Rxmvr4Z5kAvZkt7Ed23ER15FW2ZP+PtW1ajaSCH5oHPoq2rE0fp5W+0htqb0DN3CpKHz8Xc5ZfCXLwE5vzD8di2+9Gd6QZgh9UyT76mCROM2YaHLLExO1+KrPhMFE1WwMDAGKDKsm8/iiyDMcCE3VdPliVnuVpcBgByYLtyqJ79ypJ/fVmSfXOSZVZxeTX7erORZclzbFLZ+Yn36m3u9YQsSc41Xw/nSZH916UzL8aL30vZ+T5ZsMDBnfXTKODxT78D7/zMTxH/8n/AOOdc8ESjM5amaMXvlukca6TBFdXxJoZLz+vAkUsaIMvu++J3AfCfI+GqMomhYOWdOc2eH8WmNzKiRSd2bM1h7uHl2xRVDXOP0+RGXXxWxPhDv2HEeELXFzGeTOTrq+ZqsW8mp59+Ok4//fSKy2+55RZceeWVuPxy+wn71772NTzxxBO46667cP3114/pXBRFQmtr7cVoxo18Hph/JLBzJ5rKLL64wmZO7iNjwKRJ6J6cwMDUFqRmdGBgWiuS09vRP2cy5JY2ZI0sWiOtWHKk62A09sWQlWyXoSkag65knGWxuArDYojzMNpaE2iOjM35ChcY4nG3uuPk9haYlol4ZxjNDQ2+z6WfJRAfDCMcVhCXwmhujLvLM3nEO+1xWpriI36eKbkJ8QF7/fbWBFrj7vp6KIV4tzun1pYGtEbd5WY44yxvb00gpu3nzfEYI+cM55y2NMfR2lz5XDQ319fc64m8oSIeD0OTtbr4fWjKxRDPutdlQyKM1tY4EmYY8WQYrc0NmNTaiPjuMGJRDaqkIl6snCrJJvpPOxpdl52PSX99CC0//B7w4x87Y7WZCcTTYcQT7rFOmhyBojAYBsdVH5yBtyyaVjKnSJeCOLP34T1H0U4NuSwQi4agykBcCyMeD2HpiW145L4eJJoUJAcM7N1R2O9zG92rQlfsOXjnTxwa0G8YMZ7Q9UWMJxPx+qpaXH7gAx+ALJeGEl577bUl769YsWL/ZzYChUIBa9euxUc+8hHnPUmSsHz5cqxevXrM92cYFpLJ7MgrvllYFuInnoxQezsMJoOrCqCo4KoKhMPYyZJIhhnaOg7DVt6DUOsUTJt/PJ7Iv4Hm2UfipCWXAoqCx7Y/jN1Du9CgJTBUSDrDN2Y5UvkcIlYBvb0p5/3UUB6pdA4Sk5Cy8khlcs6yfpaCxS2kUjkM9GdgZfzVIUdLzsghlXL3M9ifgyZrkPUwYlazb37JpL0uzw8hrecwFMo5ywfzWWecZDKHXi2F4RhKFZz1BwYyUPLu+gOZrG9O/X1pMM9NfX827Szv60sjp5ZvMH+gSObTvmPrtUrPhSQxNDfH0N+fhmXV1/zrhYJpXyOabPmuwwPF4KD/uhxAGr29KfT2DyGVyiE5mEM/yyCVykE1MlAk2fkOp2D/d80nP4AzHn0e7Gc/w+Db3wlz6TH28qR9rN19g+hV7GNNpjI49ZxmqCqDpOplz0H/YAqpfA6KpPi/q0MZQAHSmTxSVvFaNFOIzbNw7cenY9JkDTd+fSs2b0ihq2sIsjz6p7eDQxmkCvY+uvsG0Ssf+M+KGH/oN4wYT+j6IsaTer2+EokIVHX41LKqxOXHP/7xMZnQWNLf3w/TNNHW1uZ7v7W1Fdu3b3f+/tCHPoRXX30V2WwWb3nLW/CLX/wCRxxxxKj2WU8fLsCQuulmhFrjGOxNlcxtxbYH0Zneh1OmnYoXdz+NSdEOxDqOQ+fWNKKN7bAkGbA4GrUm7OK7EJYjSHJXXCpMtcPSuOQbm4GBczt/kUFyQtcAQDftEFvO7f+P1fli3L8fGQokyHjbvEsB+Pcj1tVNvbgNc5dz5o7D2YjzkyBXXF8co/dv33g17uvNxjt/y+LDzm+k5Ycy3Cqexzr5jMX3U2BZFiyLwzRN+3trl/QB54BhGv7rtIje1or0l76Khs99GrHPfgoDDz4GyLKznW7qzrEapoGGRLHQj2lgdecqxLUGzG2c545X/C4y+H9LrOKOucWdORjF+c4uFgCaPieCLesz2LMzh2kzR9+b0jANZx8Fo1AXnxXx5kG/YcR4QtcXMZ5MxOtrworLSnDOfcVWfvGLXxzA2Rw4lEBBH4tbsEQrEk8xm+awnZsaUfzVHEPFKrNyhSqpEpMgBYqHGJbpFDappo9ktQTbjXhbhAQR+zfKFPTxFv+ppgDLfvW5xASqFkutSEZNvZ27koI+EAV9RKVo5ha94iYkXnptSkxC7r3XInz7bVBffhHhW29G7voPOQWuvK08vFVYc0YWr/euBQDMTswp+S4G8W7rvmf6/p41N4wt6zPYtim7X+JS7GvNyiHs1fdh6XW87j47giAIgjgYqL+73ippbm6GLMvo6enxvd/X11fiZh6KxDQ7uzKu2v/1tSLxiLVp8emYGp+Kw5rm+262NDkEoFTYCdHIwEqWmdxw++mN4aXlFWeKpAx7UyiEszhW77pSjdViFdkN6y09Dwj8PbFakXgPgCrHjh6nz2WdCBUWaNEj3EHxvfQuN7npfE9iqpvTITEJkCQM3XAjuCwj9u2vQ+rcV7bPpVcM5s2887on6/4ui33wgEVaXlz635tzuF0l9vEHe/Hs4/3YtikDw6j9Ca7FLeSyJrZuymLTxiFseiMz8kYEQRAEQdRMHd71VoemaVi0aBGeffZZ5z3LsrBixQosXbr0wE2sTljWcTwuOewyNBRFJocrLr1uZEgO4ZxZ52Naw3Sn1QAAqEXnMtjqw+tcssDlY1iG45SMtaAS4w3nWtrrlW9NAvgFZVV9Lj3nI+jE1tLnsh7FWz3OaSIiRGW9nE8xD/EwJOhciu+ALMl2NENRzJ02/QxnDFWyv/vmUUcj+8GPQBpKIvbFz0NmpX0uTZ+4dHM996R2Oa+FcynmIuBlxKUZcC5nzongnItbYZocD9/Tg1t/uht//2v38CehDBa30LmnYL9mBlY83l/zGARBEARBjExdi8t0Oo1169Zh3bp1AIBdu3Zh3bp16O62by6uu+463H777bjrrruwefNmfPWrX0Uul8Oll156IKddFyiSgkSo0XXyLLPkBjOIVxCFJK3sumIdiUl+AcUYDMvwOCRje7Mt5uHtPVkOTfYvZxUcxGrCdn19LkcKiy21Msvut17whcXWiTCaiNSfc1kUl8XvC3ecS+57n4E5vwkykzEpOgnvOPxKHNdxPOY0znXGS/+//4Q5fQbC996Fpn88CiDoXLqCsWC6onN3ajeAyiGx9rYjO5cAcOo5Lbj+UzNwylnNUDWG1S8mkc2YJetV4ulH+rDyhX7s2WWLX6aY2LIhi3278yNsSRAEQRBErdR1K5I1a9bgmmuucf7+5je/CcDOAf3EJz6BCy+8EH19ffjxj3+M7u5uLFy4EL/61a/GpcflREUIGwsWLMu+cavk/imS4oS2OWGxVYhLmcmQmFQUr0XncoyfW7jO5fDiMhzIHfXOw+dcVjE/u1clA+e8RCAGxcRwOZf1IjwqUe/zq2cYYwjJIYTlyMgrvwk438mAc2k5OZfu8ryZh8xlZ92oGsWitqP8A8bjGPr+j9D0rssw6YtfQuhXn4EedQVjJeeyN9uDnJHzDRUUjvbf8rDrCKbPCmP6rDDyOQsvPTuIVc8nsfzM5sonokguZ+LRB7uxI54D4wxaiGHhkWEM/RPY8Hoak6eFRhyDIAiCIIjqqWtxeeKJJ2L9+vXDrnP11Vfj6quvfpNmNPFgjIEx5su5rOTaecWXJsJipSrEpWSLS93Ux8+5lGTAHNm5DMkhSExycz8D7molsVgJVVJRMAul4jLo9lXIuaxH1xKo33lNRC6ce7ETMnqgccJiS5xL//dBLDcsY8TvlH7WOchdeRXCf/oDzvjfu/Hif33CWVYp5xIAurNdTsGwclioXlwKjj+1ES89O4iXnhnESac3jdhcetO6DEzTHlPmIUyayhFNcAwByKSqdz8JgiAIgqgOusM8BJAgwbRMJ0RNqXAjLHscTVHgIyz7n+z7qsV68iCDBULGK+dSHSHnEvBXvg3OQziK1c5P3ITX7FzWubj0QmGx+0eDlkBUjR7oaQDwikv7e8JhCyv3e1nMuXQK/lglxarKkfr6t2G2T8JRf38ek59b7bzvFYMFs+DbRrd0Xwhtac4lLxG2wZzLIB1TQ5g6M4S+Hh39vfqw6wLA+jVpcGbhyCVxHHZYIw47IgZJs+ecSZO4JAiCIIixpv7vfIn9RmISOHjRKaicc+kVUlNiU3HWzHNwZKs/TM5pNQLJcUAVpjihtqLX5ViLKjnQWmU4wsOIS3EjXe38EqFGRJRIyTmrtqBPvQo3rzimsNiDh2Dhq0rOpbfwVTWVk3lzC1Lf+x8AwCnfuwUsNQTALwaD+zBMA4blLi9XLTYYos85961nWiae2PkYdg3tdN5r77CjKgb7K+dzAoBpcmx8PQ1J4Zg1L4KTT2tDU2MIsmrPqZa8TYIgCIIgqoPE5SGACBMVLoIslf/YFY/wYoxhesMMJzxWwDyOnOzcyKqOU2JYxriIFckRl9U4l24/vGBVWK/zWg1nzzwXbzvs0mEL9th/VhCXdSrc6lX0EvuHuNzEdzOYcymXcdSr/S4ULn4bNp5+DBL7ehH75lcB2OIviIgc0C0dBh++x2W577PXDe3KdGJHcjse2/GIs6/GZvsB00Df8M7lxtfTyGUtzDpMg6LY/T0VSQHTiuIyPXwILkEQBEEQtUPi8hDAEZeB0LgglUJAvVQKi3V64HFzzIv5eOdWjXMZUdwQxWB+qXAuq6kWa+9PQUguLfpRrXNZr2GxVC324MTpYym5Ya/e/wYL/tjvjexcCp7+t/cgm4gi8utfQn3u2bI5kiHZfrhjcsMXFguUOqkiX9tLOTcUALYMbgYANLXYvzXDOZdDgwbu+1MXAGDJCXY7JonZvXklpRgWS84lQRAEQYw59XnnS4wprnM5QlhsUSAOFyYnnECJMUdEKpLsuJ5if2PNqHMuA5d4sKDJaKlGkHlFd73hc1Tr1F0laqc05zIg5pycy/JVlEdCb2vB4x+7DAAQ/9RHIWWyJetEVY9zGRSXKA3TDf5eeAWl1/lc0/MqOOdVOZf3/7kL6ZSJZac0Yt5CW+yKqtayzKBoQJZyLgmCIAhizCFxeQjg5EAVm5+PlHM5XIGP8q1IFF+1zAYtsf+TLpmbEJf7mXPpuLP7J6hKCgWVEdTLp56Kk6Ys36/9jBfkVh6cOOJStCIpOoWmU8W5NOeylodBiqRg3bnLkD33PChbt2D5TX8tWUe0ZTEssyQstlwO6HDOpdf5HCoMoSvbVZVzuX1LFrLCcNQ5WeStQnFfsvOwKRxlyGYtWBavOAZBEARBELVD4vIQQAiqQvEmq5J4VKpwLitWi/WM2TJM+4HRIsavqqCP7M25LC8CxyN0N8jsxjmYGp827vsZDb6CPiQ0Dxq817doQQS4uZFyoFqs/boWcakCjKHnv2+A1dKCpXc/hbkvbfCtEy7mPBuWDsMc2bkM/t5wr3NZnLcYc8/QLiSa7N+pgf7yzmUhbyGbtpBt24An9zyGF/c+7+xLnJ9IjAEcyGUp75IgCIIgxhISl4cALOBcVsqxkqrIufRWi/UW2fG2N2kKj9zcvFYYqncuI562EKXisrZqsZWoxrmcKJC4PHgQDw0kSQYDc8ScaElSLueymlYkAkU8qGprweB//xAAcO73bkM4mXbWEZEDhmVUdi7hdS79+/c6l2L7mYnZAIDdqd1QVQnxhIxkv1HWeRSiM5nYBADoy/U6+xK/heEYQ4+2AS/tfrnqYycIgiAIYmQm7h0xUTXihlIX1WIriEu3WuwowmI9uYXNobEXl65zWUXO5TDOpRMWW8MNdTkmuiDzFfShnMuDhkatEZqsoTXcarcgqtCKxPsbwGr4Z0BEDuiWgcxFF2Htuccj3jOAs3/0Z2cdr3NZUtBH9LoszouBDZtzKbZvCbWgQWtAX64XGT2DxmYVlgUMJUtDYwf7DHBwhKL2PkTFa5nJznUfiUjoCW3A6s5XAACv9byKNT2vVX0eqiWZH8TrvWtL2rAQBEEQxMEKictDAHEjqRebnFcKgysXMlcCKxcW6y/o0zweYbE1tCLx5lwGq8Ie3nw45jUdhpgS26/5VGo9MlEgQXlwkgg14soFV2F+8+E+59Lk/rBY7/eiJuey+P0zuAGLW3jsk5cj1dGKIx5biQWPrQQARIvVmg1ulhT0EQxf0McVYmJ7RVYwpRhivje9G03NxbzLvtLxB/p15KVBRGOybwzJU5k2FGUAs5DPmdBNHas6X8bKzpeqPg/VsqbnNby07wV0Z7vHfGyCIAiCqEcm1h0xMSpE8RpdFPSpcDPpVosdJiwWrnOpyraLockhnxMW9vSZHCumxqehKdSE1kjbiOt6e3MGcyvnNh2GU6adtt/iaqI7l4ArMA+GYyFcnM/Vc41b3AJjzHlvtNViRVi6YeowuYlCPIJnv/JhAMDZN96JePeAk/Osm6V9LqvJuSwXFqswBVNjUwEAXZkuNLYUK8aWybsc7DOQUroQiUn+fcEVsuGoPZdCwULGSJeMMVbkzTwA98EeQRAEQRzskLg8BHDDYkW12PLun8ibrLZa7MyGWThpynLMbz4caX38btAAYE7jXLztsEt9bUYOJBPduQRcUUkm5sGLt6CPv4jP6KrFit8G27m0RWD38Yux6p1nIjKUwXk3/BFhye4La3KjtBVJmZxLWQo6l95qsfZrRVIQcsJtDce5HCjnXPbpSKtdiET9v2MSY86DtnCUgcOCXuBIFVJVH3+tiDx3r2AmCIIgiIOZiXdHTNSMyKHUnYI+w4fFDpeD5RT0YRIUScHhLQsQkkPOzZPXNawHCkXnYKw5mNy+g+lYCBcG5og5Du773vvF5SicS0v3uY8rPnQJemd1YM6Lb6Dp5l8DsH9v8oHvHweHYRlO6Ku3yI6gXJ9LWVKcOZvcRGOxHUmyTDuS3v4s0nI3GuIh3/uizyUAhCIMnHEU8haG9KGqj79WRJ47iUuCIAjiUIHE5SFAVLXzC8WNZqW8ReEgDOdcOq1IApfOssknYGp8Kt4656L9nu9YMKNhJgCgJdI6LuP7WnlMUOuPROXBjcQkN+fSMn2ft7egVc2tSGCLJiGYJCYD4Qju/9L7YKgK4t/8L0zdtBeGZTgPd0KyLfQKZh5/WPc7PLL9IWeO4rdEPJjyiUvLDYsV87S4iWjRlcxmS0Xb7sHdgMQxf9Jsv1vry7m03ysUOIYKSWedsS68I5xLi8QlQRAEcYhA4vIQIKZEfX9Xdi5H7nPptjLwjxFX4zhn1vloDDXtx0zHjjNnno2rFr53XMNoJ3rO4kSfPzE83j6XFizfQyPvw6FawmJVR1zqMC17bOEIdh82Dc9+9HIwXcdbv/ZrsFQK+WKuocjD7s/1AwAKxfftsFh7XkKAmr6w2KK49AhD0zIRjtjbBPtUGgbHvtwehCMSZjTO8D1Isx1S+1pXw/Z2esHCUMF1Lp1qtmOEiBYR54ogCIIgDnZIXB4CRD19HxkrLf0vEDeO8jAVWSWnIMj+tfJ4M6imsuz+4OQsTlBx5uZcTsz5E8MjPl+LW+Ccl7h4zutawmKLRbx0s+DPmyyO8cY7z0P+/LeiaVcXzrzxDuSMLAC76BdQ+p1kjDnbhoqFgPwFfYpVbj1hsRY4wlH7NyyX8TuCg/0FDCn7EI0pmBafXlLcS/z2qcVnToWChbTu5lx6XdOxQKecS4IgCOIQg8TlIUDU03ZjuBvJjthkLGo7Ckc0H1Fxnanx6ZjffDjmNM4d0zlORCa6OJuo8yaqw+v0ef8GAjmXNbQi0SRbrOmWActy25s4fWhlFUM3/i/Sbc1Y9PCLmP3gk9Bkzc3VRmkhrISWgMQkNBWjHniFsFiRG2o7l0VxGXAut+zbC0PKYXK8AyE5BFVyxaU3LFYL2w6lnud+53LMw2Ip55IgCII4tCBxeQjgdS6HE5eKpOC4juPRFG6uuE5YCePkqafUTfjrgeRgCSud6PMnyiM+V1EUxy8uPWGxNfwz4IbFFtycS0l2ioApkgre2oqnv/5xcMZwzg/vRPveAecKE26ns28m4bjJx+OdC96FuBa31/EIPDcsVnEErMlNqKoEWWE+cZkzcnh2z1MAgDmJeQAArei02sfsikslZG9XyFu+irbB+VVi88BG7E3tGXYd0zLdsGQSlwRBEMQhAonLQwCfc1mDS0EMz4R3Lif4/InhEZ+rEGhShQqxtfwmOAV9TN3XP9JxLovj9h2/GM9dfS60bB7n/NcvIOu2uAqGnToFduSQ60yW6XMpM9kNiy0uD0ck5LKW4zY+v3cFkvkhJPRpmBOfDwA+51JizBHSFkxoGkOhYPncymqcy7yZxzO7n8Y/ikWJKiFCYgHXPSYIgiCIgx0Sl4cAqqw6uUcTIVdyokCijKhnhHAzrFLnslKI7EgIJ9DrXMqSm8soxKfMFKx43wXYvWgO2t7YimN+/DsAlcWldx7BarEyk3254mJ5OCLBNDkM3W5vsnNoB5ipYmrmWGihYm6lx7lkTHK+s4ZlIhqXYZpANuPur5qcS5FHOhKGV1ySc0kQBEEcIpC4PESIFivGkrgceyZqWGmlPDjiYKHoXHJR1bW8oKylFYnqzbnknpxLR1zaBXtUWQWXZdz/lfch39SABX96EIc/vsqXTwmUF7z+arGm44pKRXFochOGZWBvdBWycj+yWQtdmU5Y3EKCT4IMFVqI+eYr5sk8grshYc81NVRbWKyogDsSPudyjAsFEQRBEES9QuLyEEHkXdbSMJ0YnoMmrHSiz58oy7A5l55QWFaTuPRUiy2GkNq5jLJvuVJsazQ0qRmrvv0FcMZw/g1/hLZ5q2+8cuLSV9CHG74KsxIkmJaJzvQ+DIa2oV/bhlzWxJ7UbgBAwuoAANe59GwrM9kJizW5gYbG4hwHTSQHDQwNGkCZsNihQhLP7V2BnJEDUJ1zyTmH7s3lJOeSIAiCOEQgcXmIIPIuKedy7JjoBX0mvCgmhqXqnMsaHjiJiqu6pTsOI2PesFjF918ASJ62HGs/8E5o2TwO/+TnoGTznnmUFhkS+YmmZYJz7ghVsX8ODoMbUFUGDhO5rIW9abu4Tty0xWXICYv15lxKTisl0zIRb7CPOzmoY8Xj/Xj60X5ksq7bKNg8sAkb+t7A7tROAHbO5XC88NQAvvsfW9C5L+O8R2GxBEEQxKECictDBOFc1hICRwzPRHcuJ3qfTmJ4mBMWO3wrklpD5VVJtcWltxVJcYxy4lKTQ3j9A+/EtmVHILZxC8794R2OQ+h3LkUfS9u5dIr5eJ1LZjuXJjehaBI4LAykUujP9dstTXS7gaVwLjUpKC4lZ2zhXO7dmUehwGEYHKtfTJYcb8G0BadRPN6RnMsNr6eRz1l4ZXWf8x4V9CEIgiAOFUhpHCLEVLvMP+Vcjh0TPWdxojuvxPAEC/pUyrOUanzgpMoqDMuA6ankGizoI/4L2JVgISt44IvvRW7yJBz5j5dw9N9WlOzb7ctp+eatBEJbTW7CtEzbuWQcnUPdAOw+vfmcva2Tc+kp6CN55mlyC5GoBFkGTI/ue+nZAZimPzRWFOYRIj1n5oY9P73d9vpvvD4IDu7bliAIgiAOdkhcHiJEFPuJPuVcjj0T3rmcoPMnhod5QkCByjmXUo2h8iKvMmfki2NJjnB1ci59zqUGxhiyTXGs/Z9vwJQlnPWTP6PjjR1lxaVwLp0el75wXnudglkohsVayBZDWVVJRaEgxGWpcykz2XVzLQOMMcQb3HkmGmUMDhTw1D/6fC1J9KC4NCqLS8OwMNBrrz+YzGGwzz4GyrkkCIIgDhVIXB4itEbaoMka2qLtB3oqBw0T3rmcoPMmqkN8uuUK+rAKIbLVICqwZo1McXvFeWilSEJkuqItJIeca21wyZH454ffDkU38S9fuRlKtxs66rQiKYrhcmGxYh3dKkDVJAAc2awrngs5v7hUJa9zyUrc3HjCHi/eIGPxsgbIKsMTf+/DA3/pdgSmcC5FoaH8MM5lf4/h1ASymIHdO3LFMUhcEgRBEIcGJC4PESJKBFcuuApHty0+0FM5aJjoOYsUFntwIwUK5FQq4lNrHrbodZksDAIAImrUyemOqw3FMf3OpcDiFlZdfjpeP3cZEl0DmPHBfwd03TdfJ+eyOG9ftdjivAumDlVj4MxCLueK50LBVnbl+lzarUzcarEAnLzLSVM0NLdqePcHOxBPyHjx6UGsfM7OvxRVX8V5zHqcy2BfzJ4uu03JgqNigGxg68Ys9u3OV9U/kyAIgiAOBkhcHkJQ+OPY4oizCX5eJ/r8ifK4BX1EbmR5t7LWnEuRTzmYt8VlTIniyNZFePthl6IjNhmA3zHU5JBzjVncAhjDP/79Suw7fAZiK15C7IufL87DnpNbLVaExfoL+gC2c6kUw2JzeY+4zFsAA1RV9Ll05+HNDRXO5cy5Ycw5LIJ5R9jieNLUEK68bgokCXjgL93o3ldw1nXDYt2CPkHR2Ntti8s58yM45dwEOAdefnYQg8nhK8wSBEEQxMECiUuCGCUT3rmc4PMnhkcIOsMq0+dyP6vFAq6wiihRSExCY6jJWUeR/QV9xDXmuJIhDfd+83oY7a0I//qXCP/+N65zyStXixW5ogXTDovl4Mjm3JYo+bwFTWOQJCEuvdVi/QV9ACAUknHUsQ0Ih+1xObcwY04Ep53bAtPgWPdqCrpV8G3jbUVicQsFs+DMubfLdmFb2zXMOlzD7MMisDjQtW/4IkAEQRAEcbBA4pIgRslEdy5VWfO1ZyAONiq3IinXAqRa1EAl2HK9c4XbKDMZiqT4ncsiqUnN6Lzlp+CKgvjn/w2xlauK6xRzLp1qsaUhvLpVKLqTHHnhXMJ2LkVILOAPyZWY5IjcchV0vfObM98ugLZvT95Z1+KmT0iKce7a+Gf8c+fjAFznsnWSBt3S0dxin4f+fhKXBEEQxKEB3VUSxKhhgf9OLE6eshxnzzzXl9NGHDy4lVHdfpTOMk9xm1ofLngFm8i1DCIK+oh1HeeS+9t8FJafiPR3vg+m65jyrx9GrGfQEW9i3v6w2Mo5l9xisEz4xKXE3Eq23gcpIuR2TuNcHNm6CNMbZthjFOfXMTUEAOjcnfeFxQZ7XObMLPJmHil9CADQ06VDlhmaWhQYlo6GRluIDwwUyp6nIBv61uPhbQ9OiL6YBbOAXUM7fZV1CYIgCILEJUGMkokeVtoUbsaU+NQDPQ1inHDyC4vhpSwgIoXoqjUs1tvDMqqUF5cilDUk2yJNfEd4IEdRYhLy174f2fdeC6WrC2/7ys3guZxv3hWrxap2WGwuX8zRtCNSfeIScIv62DmXzDd2TI1h2eQTnD7AImw3EpXR2Kygp6eAbKEYFmuZyAYqxYqiQ5xz9PfqyKRMtLSrkCQG3TIQT8hgDBgYqC7ncsvgZuxL73OKJdUzr/W8gsd2PIKubNeBngpBEARRR5C4JIhRMtHDYomDm2DOZVBECvFZLqx1OLxhsVE1VnadqBLF5NhkzErM9s0lWACHMQYwhtR3vo/csuMxdd12nPTtXwCce8JiSwv6FMwCJIlBVtywWKMoLkMBcdkcakZci0OWZLdabKD3pxCdXheuY2oIFjcwlBRhsRbyRlBcFtuUgOOxB3oBAIuWxp1lsswQjyvIZHVkMyO7kSK/s2BW53QeSDK63YomeE4IgiCIQxsSlwQxSia6c0kc3LihqKU5l4At2kaTc+sVlxElUn7fjOG82W/FkknH+N7n8IdQOvvWNPTdfAuSHc2Y9/enEf2f/y5bLVYI5EJRhCkakM+b4OAwCvbxaiH/9/HsWefhbfMutfcHUdDHLQIEeM+VK347pmqwmIHkgJtzmQsIKb0oLnu683jt5SHEEzJOPrPZt6ylMQbOLHTtG1kwClEpjq+eEccnziVBEARBACQuCWLUkGNJ1DPBthtB53LZ5BNw4pSTax7X51wq5Z3LIOXEm3eOAIBJU3DXtz+EQjSM2Pe+hfb7H7bn7XFWJUlUdbVFqqLZYxo6d8NiNf8/axKTHPczeE7EvII9NgFg8rSQT1ya3EQ+EBZrWgYsi+PlFQMAgDPf2uo4p7qpQ5EUNDeHAQD7dvvzNcshBFvBHF3rEotb2JHcDl2cjBowLANbB7dU3ZNTzNUicUkQBEF4IHFJEKMkeGNKEPWEWxlVOJf+hyGzErMxv/nwmsdVqyjoUzqZ8uLS63zKkoyeuVPx6Nc/DC5JOOrL/42pa7b6w2ID/2TFGu28y54uHYZedC7Dlb+Pwe9qSVGjYFgsDCT7hUNnobM7jZ3bso641S0D619LY6Bfx+zDIjjmxISzvWEZkJnsist9w4tLzrnrXI5CHALArqGdeGLnY3ijfx0sbmHX0E5HSI/E671r8NSuf2JbcmtV6wsBa1rViVGCIAji0IDuiglilJBzSdQz4vo0uehzWVtuZSVUj9iLVCjoUzKXQFuUI1sX4YI5F6E50uysIwTe9pOOQupb/w25oOPtX/4VIrv2OevIkv+frBlzQuCwsGtrFkYxkjToXJabR3Cf5arZtrSpCMeBvl4DWzZk8PSjPbjzd7uw+oUh7N1uH0c6k8fm9RkoKnDJezqc/poWt2ByE5qsobXNFuNrVg06rUrKIZxAYPTOpRCnWT2LHcnteGzHI9jYv6GqbTvT9nlOFYZQMAvYMrh52Eqwbv9Pci4JgiAIFxKXBDFKxG1q0BEiiHqgUvGa/WU0zmWwWmxIDqEj1lGynsQkWNxC7voPYdO7LkZ0IIU51/8r2OAAgNLQ3klTVWgRoHNvAUMD9nGG9sO59OaEShLDeZc1gQFYuzqF7dvSkFR7/n2d9n/3dWbAi/NoanbDhYVQVCQVjYkw5i6IIJM18Idf7EGhUN7p8+ZZ5j0FfXYO7SjJ9ayEEHq6VUBaTxfHGnlbzjl6c3ZBooyRxRt9r+PpXU9iy+CmitsIIUvikiAIgvBC4pIgRgmFwxL1jBMW6ziXYyQuizmXEpMQlsPVzaX4/MURbxUeyMhMdsTKyk+/D1tOPBLhTZuRuP59gK6XiEvGOOYuiIBzYM3LKQCAplV+2FMqLplvPha3kNEzyBb7WU6bo+KoY+NQFIbDj47gkqvbwRjQt88CB0d3ly3cEs3+XrFCXKqSCokxHLk4jpmHaejt1rF9U/nwWN0jKIUr2J3pxuM7HsWr3a9UPCYvIuy4YBacMarJoRzMD3hczwyShSQAoCtTuc2ICLelnEuCIAjCC90dE8R+QiKTqEfcnMvyBX1GiyqpkJmMmBqrOjQ8WNCnUoVlxpizji5Z+NtX3of8EUdAe/JxxD/36ZLtLG5h5jy7l+ZAj71dsM+lf3yp7N8il9PiFv684U+4c/3tAOxzN/uwKC64rA2LjolBDXM0NSsopGWkkia6e+x2HI1NfnHpVLqVZCiSAsYYZi+w59ndWT40tuALixW5l/nisurCZJ1zZxWcvM1ghd5y9GR7nNdZI4tM0fX0vu/FtEznIUC1BYAIgiCIQwO6KyaIUUKikqhnhO4TN/9Sjf0sKyExCWfOPBunTju95m1FTmMlcSkz2eO+6dCjYfT+7o8wp0xF5A+/w9yf3OwfDxaaWmXfmMOKy2DOJSqHxZqW6TiQDAwmN2FaBto6NMhQ0dtVQE+P7UI2NNnbd6b3IVUYgu6IS9XJdW1ps//btbe8uPQ6lyJEVsynWgEnqt0WTL0m57In2+28zhoZJ6R2IN9ftiCQNz+02oJBBEEQxKEB3R0TxKiharFE/RJ0LoOVVveHqfFpaI+2Vz+XQLXYSt8ZkXMJuG6dPHMOBv/4F1iJRsy66RYsvvdpZ33OOWSVIxaXIf45G05cVsq5dIsfuSGeaT0FwyOiLG7B4CbaJmmQuIrufQX09eWgqgyhCEPBLODh7X/Hs3uedrYTLi8ANE2y99W9r7wL6S3iI16LczGSQBQ5mSKn1bB0x/20hinKI+guikuZyUXnMlMcz83F9KJ78kOrGZ8gCII4dKC7YoIYJZXcF4KoByoJqQNBpT6XQZx+k9xCwSwUcxYlmEcuQvI3f4Clqjj7R3/GYU+/6mxjcROJJgWMC+dyuJzL8tVihfA2PS5cSk/5HDrTMmFYBprbVIRVDfv2FKBbOhLFkFjd0sE5R9bIuqHIkuKIy3hCghriWDnwDLYPbiuZW7mwWFdcVs5r3Dm0A3es/yNe63nVWb9/MOuE7PIqcy5DcgiJUKNT6VbQWyY0VveJbsq5JAiCIFxIXBLEKHHzzUhkEvVH8OGHXAfikmN451IIMcMyoFs6VNlTgfWU07D5B98C48CF3/gtpr62xVm3sVkBK/5zFtoP59Ib4pnW0054KwAnLFaWGY47oRUAYMFEolEBL/4PsIWXW9BHccKRTW4i3pFHD9uBlTvXlszNX9BHL44/snP5Stfq4n9X2aK8YOGxhzrx4L12ZdqRci5Ny4TFLYTkECKKW6BJK1YF9obMunP1iG4SlwRBEIQHEpcEMUrEDTM5mEQ9Eiy2c0CdS1ZdQR+Rn1gw8+CcIySHfMsHL7wAj3/sUqgFHZd88Zdo2bYPhlV0LvcjLFY4moZHKA0Vkr6wWMAVfUuPbUYsoeNQpgAAxOxJREFULsNiBhqaFFjc8oSkGo5ItcNiXTe2aZI9Tm9fpmRu3lYkBbMAzrkz5nDicqhY2TWhJWBxC+teSSFXMJA389i1LTeiWyyOSZYUX9/SafHp9lxHcC5JXBIEQRBeSFwSxCgRN8zVVswkiDeTEiE1RgV9RkNJtdgK3xkx52wxh1CVNN9ymclYdfnpeOFdZyMylMHln/8/hDq70NikVFfQp0K1WLcnaNC59IvLvJmHIilQVQXHnpTA9HkKpk63BTDnrnPpVuh1w2INbqCp3X7d11/ajqRg+gv9FKwCRDrjcHmNYo4NWgKdnVns2JqDojAYUhbbN2edPqeVEK1qVElFRIk47zeFmhBTYxgqDJUU7fEK4ZHGJwiCIA4tSFwSxCgh55KoZypVRj0QVO9c2nPMmbb40jxhsd7lT33wYqw993gkugZw/ie/h6Z8BrGYve6wzmXgHIi/g8WPADvnUjiXiqQ485eZDAkSmlpUHLs8DlUrCtOig8c5R94U4tgt6GNZFhJt9ti9w4hL2ePejlTQx/u+JmvYtd0ed/7CKBpbFKSGTOzbm6t4PgB/2xSvcxlVo2gKNQEABvODvm28YbGUczmx0E0dO5LbqYUMQRDjBolLghgl5FwSdU3gupQPoHMpcJ3L8stFCKmofqoFwmKdXp2ShIf/37ux+eRFaN6+F+/4fzfhjJM1LDulEdHYcM5lhYI+wrnkHnHpaSniDc9VJMWzviusvO5i1sgW15V9OZeNrfb+B5Ol4lJUYI1rcQB2O5GRci6THtFncQt9vfYYjS0qZsy28yd37yzdl3+/btsUr3MZU+NodMRlv28bn3NJ4nJCsaF/PZ7Y+Rh2JLcf6KkQBHGQQuKSIEYJOZdEPVNXzmUwLLZSn8uiEMsVxZkm+cWlyMkEAEuR8bf/uha7jjkcHRt34a3/+zFcfFF82Ic9pTmX/u+w17nMGlnky4hcr7islHvoikvXuTS5iVDcAmNAKlUoEYyFohsYV4W4zI9YLXYgP+Dbf3+f3cIk0SgjGrf3m00P34fS685GVI9zqUTRFGou2Q8AGD7n0hbVaT2NTf0bMRhYl6gvRFSAyNUlCIIYa0hcEsQoccQlOZdEHeIVcJqs+SqvvvmTEdViue/vIIpkzzGlpwCUhsXKkv+fLCOk4e5vfRB7j5iJ0AvPo/H9VwMFf+6il5Kw2IBzaQTyB5PFG/CwR1zKzBWX3ONWWmXFpeITlxZMxOIy8nmOZNrvKArnMibEpVVwxq/kXA54HEXDNDHQX4CmMWhhCeGwvd9MdiRx6TqXUY9zGVVjjnMZFJfetimGZWBj/wb8ZcMdeHbP03h2zzPD7o84sIhrPG2UFpUiCIIYC0hcEsQoYYycS6J+8bp0cbXhAM6k1Lms5KJGizl/QsyUK+gTJB/R8Nfvfhj64QugPfYIGj76QcAs7/RVrhZbGhbr3acQvYDtrgb7ZXqPDQCyxRt3xZdzaUI3C4g12H93dflv7gtmARKTEC26hwWz4IbFory47M+54nJwoADDMtFQLG4UCttzzGbcY3q1ezXu23w3/rLhDnRn7BYjwn1VmJtzqckaFEnx5FwO+PbrraLLYaEzs8/5uzfbU1IAaCwwLAPP7V2BgVz/yCsTFREPQbI6iUuCIMYHEpcEMUooLJaoZ7yOeiKUOIAzKRWXlYiqMQBwBESwFUmldiq5xhgG77wH5szZCN97F+Kf/RRQpsJqMMrAqRZbJiy20n4VJpdUnQX8YbE5p9qtAkly8zMNy3YuAaC7239zr1s6VEl1BLXdjsQ+X5Uqsqb0Ied1X18eAEciYRcf0kISGFzncjA/gNVdq9Cf60daT6Mr0+kbW5VUKJKCxe1LsKT9GPs9WS1bMdZb2da0TKfAT0yNweJW2d6Y+8uWgc3Y0PcG7t1895iPfSghPscMOZcEQYwTJC4JYrRQQR+ijvE+9Gg40M5loFpsJZEonEvhpgVDeaUyzqWAT5mKgT/fA7NjMiK3/Rbx//xcicAscS4RDIu1b7xnJmbhiJYjoUgKpsSn+oohyZJS1nn1CkBxnMGwWN0quOKyN+Nb37AMaLKGkCzE5cjVYr0ir7+vAM4sNDTa4pIxBi3MkM0asCyOdX3rAAANmn0tCDfUcS6L7uzSScdiYeuRzrjCvUwW3OJBeqCgj3B8RW9MIVzHEsPjKndlusZ8/EMFR1zq6QM8E4IgDlZIXBLEKAm2MSCIesIrpOrFuXT+rvBARjiXgqBzWS4sFnCP1Zo9B4N/vhdWWxsiN/8CsS9/YViB6bwuzke4j2ElghOmnIh3H3E1zpp5jm+/3oI+XsqFrvoL+tgCUhTa6el1b+6FSFQlDaoQl5buiEonVzWA103s78+Dw0Ki0Z1rOCzD4hYGhjLYMrAJiqTg8OYj7PkWxbAQbaLdSpBEqBEAkMy7BWB0z36FIwsAU+JTAQDdRfGX0lPYNri17Li1Ioo8AcDantfGZMxDEfEgIGfmqB0JQRDjAolLgthfyLkk6hCvoItrB1ZcBqn0QCbqqVYKlOZcVnI8ve+bC47AwF/+Bqu1FdFf/B9i//VFn8D0ritErnhQJMSaaIniLPeKS1ZBXFqlN+pqMOfSKiAWt0VcT58rlgqmXeVVk1VoxWPWrYIjKiuJAMMywMCwcV0au3dmwRhHvNEViaGwBA5gQ+c2GJaBuY3zEFHCvjFF5VelQqsatehoevNRdU9PTotbjvs5KdoBRVLQne0G5xyvdK3Ck7uecPI79wcRagwAO4d2+FxbonpM8cCCc6fwFEEQxFhy0IvLRx55BOeffz7OP/98PPDAAwd6OsRBRLCNAUHUE95nHokDLC6DYqyiuFSiPlezpFrsCM6lwFx4JAbuvBdWczOiN/0UsW/8lyMwfc5lICy2Utiu7PlbruRclhGAMvP3uTQsE5GoBMaAvgH3xj5rui1PhJA1LXPYsFjOOUxuYtsbBt54LQ1IFo47tQGq6s4tFJYAWEgO2eMnQo3O+MJpdZ3L8tWE5aKj6a2kq1s6JCZBkRSYlgmzKMo1SUNbpA0Fs4CBfL8Tetmf6/ONaVhGza0wRAsN8QDCm286Gh7a9iD+ufPx/RpjIuJ1uzNU1IcgiHHgoBaXhmHghhtuwG233Ybbb78dN954IwrDlKkniFqgarFEPeO9LiOeFhP1QKWwWIlJCMth528tGBbrcdd8DmSZ76B51NF2iGxTE6I/vRHR73yjYohscDpBEev9W2ZSWXFpBnpRKpICxlhJzqUkMcRiMtKZHPI5W+DtTe0GALRF2n1C1xqmFYlu6ejv1bH+lTxkGTjzrS2YPd//OYciEjgspNK6c7xOZdyi0yrEhlpJXHrm7923KqmQJbl4XLp9rJKMhGaH0Wb0jNOyJNjK5JHtD+OujX+pqSdmtuhctkcmAQCGCqMXlxa30Jneh73pPaMeY6Lib5lD4pIgiLHnoBaXr7zyChYsWIC2tjY0Nzdj8eLFePnllw/0tIiDBLfP5QGeCEGUIV9HYYMlOZfDPJDx5l2WEzxCHHlzBCuFyxpHL8HgnffASjQiduP3Eb3hO2VzLiv1vxR4Ra0tGkd2LsX8ZEcsmo6QiyVkmMzA1k32zf2O5HYAwKzELCcigsPy5VoGxzcsA+teTUEyVSxa2oBEs+QTDgAQCkngjCOd0p3jdMQr/OJSrpBzqTD7feFOpoqVYzVZc4SnEJuA3cYEAPJW3gn3TRYGfGOKgj9703vL7rMcIueyLdJenEeq6m2DiJBa3dNS5VDB51ySuCQIYhyoa3H54osv4sMf/jBOPfVULFiwAI8/XhrCctttt+Gss87C0UcfjSuuuAKvvvqqs6yrqwsdHR3O3x0dHejqoipzxNhArUiIemZ/wwbHktIWIMOIy2LFWFVSy4pGIWi8wrOSuAQAY8kxGLzjLlgNCcS+/10cf+v9zhxYhYrPQfHIgmGxZf7pDAo7MT/FCSs1HFEzc04EFjPw0N096En1YSA/gOZwMxq0hM+55B5BWSoudWRSJiQomDMvBpObJeuEi87lUFLHru1ZWCZzxhdjO5V5K4hL2dNKZWP/Bvx1458B2K6y+CwMy3BeC7e5YBac4w06l4JaKpbmjBxCcsgpTjW0H9e36NPJOXfaqNTKloFNuGfTX0eVt7ixfwOe2PnYASmo4w+LpYqxBEGMPXUtLjOZDBYsWICvfOUrZZc/8MAD+M53voOPfexjuOuuu7BgwQJ84AMfQF9fX9n1CWIsqXRjShD1wKzEHADAUW1HH+CZlKsWW/mfHuFcCgcsiBBH3uXDiUsAMI5dhsE//RVWvAEn3Hwvlv/6fkjcnVNpjmXlsNhKBX3KhcUCQKgY5pszcs46HdM0TJ0to79Hx/2PrwEAzGyY5ZuLHRbrio/g+AY3oOsWwpodnmpxq6RirV3Qh+O11YNY9fwQVjw2UJJfKoSWcCiDyMwVx725XgDA9IbpWDb5BH+hI+d4hbjMo1BsWZLRM2UL8IwkzDjnWNuzBgO5fpjcRESJOG11UjXmbHopeFqpeF/Xwu7UbgzmB9Gb7al52xV7nsGO5PaawoLHCtMXFksFfQiCGHvK/2tSJ5x++uk4/fTTKy6/5ZZbcOWVV+Lyyy8HAHzta1/DE088gbvuugvXX389Jk2ahM5Ot99WZ2cnTj311FHPR5LqS0SI+dTbvA4VJMkuzCFL0kH5GdD1NbGZHO/AVUdeXVGkvZlIEvOFj0uMVby+4loMjAEhJVT22pNlGcyye2CKMWVJHvE6tU44EUN/vhvhd1yMk3/3MEIFE9JP3wcUcwW981MC46my4izXFAWKLJWGwzPue0+VVUgSQ1gKQZUVZM0MTG6AMVtsLzo+jLXrgA27duOIecCMxhmQJAaluK9UysBgOgvW4I7vnZNuGjAMIBLWoMh2mxMOex2FKdAtHZGI7AuvfX1VBmeeZYfyc1iQJAYLJhgDNEUrew7FsXNmwbLsdRe1HY0p8clQZPe8abK9fVgNgTEgY6QBuOdkSE+iXbVDWsV7OTMLSWJI62ls6t+IWYlZaAo3O/ve2L8BK7texMquF8EYEFEjSIQT9vnRUyN+5pWuMZObzhxMro/qN87gOhgDdF6oafuckXP2zVj1v6/J/CAe3vYQTpp6MqY3zKh5vgLxeQNA1szQ7/t+QP9GEuPJRL6+6lpcDkehUMDatWvxkY98xHlPkiQsX74cq1evBgAsXrwYb7zxBnp6eiDLMl555RV861vfGtX+FEVCa2t8LKY+5jQ3x0ZeiRhzmgsxxDNhNDXG6vbaGAvo+iL2l17EEB90C/W0tTagOWZfV8HraxrasSEdRlu8sez3qqkhBrlgoTWRQFay3avGSLS67+D5Z+HhX38Fb/ngN3Hsnx4F2v4D+PGPETYY4nF3fq0tDb7xWnkD4kl7eVtLI9qjjYjvC/uGjjeEEM96xkgknDEmNbcgmU9CQxghOYS8mUc8bofN5o0C4vEwpk+ahJgWQ1SXoSgq7v7NXqg8irOuURCNKmhujiKmueeqO2u7hrFYCIkGVgwb1aCaQFgJI62nEQ0zgCVtIckA02BY81IW8UVhxBtCaG2NI9KpIi6F0dHeVPZBRE5tRLwvjFhcg24xxI0wJrU1ojUWR3Nv3PkMmmNxtLbGkddaEO8Lg4UN3zllkYJzPloaEyiYBSgRjgHWiUd3PwoAkCIG5k07w9lmrxnyXTeTW1rR0d6ESc0tyBk5NLdEkdEzeGbHMzhu6nFoi7aV/diD11ha6XPmFm/U0Bqv/fc72qsizsOINig1/f7vHOx39t3YHEFrrLptu3t2gYUMdFu7saR1Yc3zFUSiKkJyHHkzDzlsHdT/dr1Z0L+RxHgyEa+vCSsu+/v7YZom2tr8/5i0trZi+3a7OIKqqvjsZz+Lq666CgDw6U9/GqFQqGSsajAMC8lkfYWQSBJDc3MM/f1pWFb5JtvE+DE4mEUqlcPgYBa94dEXl6hX6PoixorBAfu7IujvT0MtpMteX/kUkErlkGMmentLv1eZtI5UPoesZDhjhs1C2XXLsXvmdNzxw4/jHf/+v4j+7GfIDQyh/7+/55vf4EAWvcwdLzmYc5YPDeah5DO+9QGgTxvyvZeRdGdORo4hlbaXqeEoUrkcmGIvS2VzSKUspAZ15KQUckYOK57oAWcRgHP0dGXR0qaiuzeJnOaep117BwAAIUVBOpVFWs9Ak+18uqMmH4ucmcNr3a8UXUsLS45vwMA/Zbz0TD/mzcphgKXR25tC3+AQUoUckv15MFYaIjqYto+9T0lBNwtIpXJIDuQg51JIDeWdY07AQG9vCumsjlQqhz2FbqQK7vnY1rkbbWwaAEDPAqlCDkauD08kn0Eqb6/XyfrQ2+Ce93RS953TQojb57SgIpnuw459nXi9dw3e6F2PoaEczpx5NgCgJ9sN07IwpWFy2Wusc6DfGbezpx9Kvvabt96BQaSyOXT29mOK7M55MD+Afel9OLx5QdmUiQ1d25x9d/UMQs5FS9YpR1fvAFKpHLYUdqK3sfRaX9/3BkzLxJFtiyqOYVj2d0YOhZEpFGDmk1V/b4hS6N9IPwWzUBeRMgcL9Xp9JRIRqGr5tmCCCSsuK8E59/2gn3feeTjvvPPGZOx6+nC9WBav27kdzHBe7GzA6/faGAvo+iL2F4tzXxcQbjHnmgpeX23hdsxsmI25TfPKXncMEjgHFKZ6xpSqv0Y5Q/ecqbj7J5/FlZ+9CeHbfovmbBr46CngsvgHk/nGE/u09yQDnAW7msC0LN97MlOcMcJSxFkWlsPgHDCgQ9UYsoU8GMKQIMOyOLZvzGHv7jxC0MBhIZc1wbkKwzR8cxoqCpRIWIOEPDi3Q2VVScXcxsMAAK91vYqZ80KI51RMmxUGb1KR6mHQDQ7DsscrGAVIkIu/Z6XnUCzTDR26pYNzOHMNnhfL4lAkDZzb1Vw5BxpDjRjMD2IgN+B+5tw+V1k9h6yeg8QkWNxCwdB9x6ibhu+canIYlsURU+LgvBP92X5s7t8MzoGdyZ3I6nbRnyd2PI6CWcBVR15t7y9wjeWNgjNuzsiP6vetYNjnIqf7t39q51PoyXYjq2exuH1pyXY9mW5n38HPdDjyhv0ZD+WHkClkEVbCeGT7QyiYOi6cezFW7nsZhmXgiJYjK44hzieDBJkp0APnmxgd9G8kMFRI4u5Nf8WS9qVlr3ti9EzE66uuC/oMR3NzM2RZRk+PP5m+r6+vxM0kiPHAbUUy8eLhCeLNpLSgT+V1ZUnG6TPOxIyGmeWXF4vIKFVWiw0i1k3OnoaBex6EOX0GYn/9Cy76xm8h6YZvH8F9itfVFfRx5xdRor73NVmDbuqIRGXk9DwU5q677hW7PUQsYRfjyRV7YQYri6aztssYDWu+Ij3BViuLj4/j7ItbwRhDPK6CgaGQc4sFmdz0tXUJ4m+lYhbfE21WSgv6aJLtXAih2hhqAmCLOEHwWKbGi45moLhO8JxGZLuPpyjq83rvGqdQkMUtp6VL3sijYBbKimV7P26F2NFWixVjFKy87/1kYRAAsLprVdlqsN2Zbue1wY2S5ZXwthbqyXaDc449qT3Oa5ObZSsGexGVYhVJgSqpxYcFE+umlahPBvID4JyjP9d/oKdC1AETVlxqmoZFixbh2Wefdd6zLAsrVqzA0qVLD9zEiEMGakVCENVRS5/LkWiPtiOuxRHz9MOUahjP6W3JJFhz5mLgngdhzJ6DBf9cjbd/+WYouUKJeJSCrUiq6XPpEV4RNeK8ViXVubHXonaFV8myxaVlcaxfkwFjwNwFYYBx5LJCXPpFgF9cuvsKikvOOcyiKIzFVDAuoZC3im6y7WAOKy6LPT5t8eKKE+8ycVyAXdjH+8CtQbOFYM5000rEfATT4tMBoKSirGn5xVdYsXMVG4rtSPal9wEAFrUdBQDYOrgZgCvaguJUoJv7Xy1WCDXRy1PQEm5xXm8e2ORbNlRIIu9ZPzi/wfwA9qR2l5+zZ5692R6kdTec1bAMZz6GVVmwivMpM8nXIocg9hfxPQh+H4hDk7oWl+l0GuvWrcO6desAALt27cK6devQ3W0/+bvuuutw++2346677sLmzZvx1a9+FblcDpdeeumBnDZxiMC8Jf8IgqhISR/J/RCXx08+EZce9o6q+1wGkYpzcdy+GTPRd9ff0DurA3Offx3v+Nz/Qh3y9//ztyKRy/a5DAom7/yiiisuhXMJAFKkeCNm2Df6O7flkE5aaGvX0NBk96jMZ+1xg+I1K8RlRCsRlMHXQhTGYioAhnzRufQ6WZVwW5GYJev7HF2P0BTuJQCE5Qg0WUPe41yK6rWCSdFJtptr+V3EoPgKF8/jzIZZWNK+FM3hZkyOTcYxk45DSA6hM9MJ0zIdN66ScNI97+tlWqRUg5hrPrC94bkOdg7t8C3rzvj7bAevmXs23YVHtj+MdJn+k4WAczlUcPt8egXysOKyeD5t51LzHQdB7A/ie1Cg64lAnedcrlmzBtdcc43z9ze/+U0AwMc//nF84hOfwIUXXoi+vj78+Mc/Rnd3NxYuXIhf/epXaGlpqTQkQYwZ4saNnEuCGJ7SsNj9+84wxnwiari+mZXm4hOkU6fj9h99Cpd94eeYtmYrWt51DTJ33gerY3JxXX/4Z3nn0i8UZI9giyquy6p6buxZ1M6b5LotRNe9YrtRU2dEoIVZMSy2mKeI8mGxsejI4lIIjnhchQSz6FxajsPnDeENIoSkyW13TGKSx/0tdS4BOBVxxeuQHMJQYQimZTo9Ob3bNYWaoUoq0nraVzchKJSEc6lICpZMOgZLJh3jW5bP533OYGVx6XUua78Z9o4bdGq8gjh4TXRm7NZobZF2u+hQBWd1qJD0OfP2nN159mR7kPT0+Sz4jrny8XjDmhXJGHF9gqgW8ZCGnEsCqHNxeeKJJ2L9+vXDrnP11Vfj6quvfpNmRBAuU2NTMS0+DdOLIV0EQZQnKCZrcRorIXnGHE3OJYNXnDLkGmO4838+hrd95WbMfmk9tIvPw8Cd98CaPQeyNHJYbFAoqL6cS39YrCbby1jIFpeWbv9TvGu7/XfHlDBUDT7nkhcF2Qt7n0dXphPpnC3sohENxoji0h4jHlcBnkcuZxVzKPXinIZzLothsZZZkp8pB8KFBZrsVmVXZRVhJYKhwhByZg4xKeY7V22RNjDGoMka0nraDhcuOrtGcb2mUBPCShgxpXJVV+Gw5k23uqxZIafR6wIG8zyrwbt9PnAzbfnEpf+BQFdRXE6JTUFPtrui+M0ZOQwVksgZebRH2337TGgJJAtJX/isdz7D5XF6w5otLpzL2sJiTcvE37c9gJmJWTi6bXFN2xIHL45zOcpIAOLgoq7DYgminkmEGnH2rPN8Tb8JgihlPNx9VkFQVbtdubxKPRLC3d/6EJIXXQh5+zY0XXwe5LVrAmGxChhjJYI5mBOpSN6cS39Bn5BsO3BWyA5/tAr2uskBA4wB8bgGReVgslvQR4RQ7hzajr5cLwaKhTPi0ZDfxUXpayEq4g0qGCTXuawmLNaTc2lYhu9cePerMHeMkKcdgXAuAVs08WKuZ0yNYXH7EhzbcTwAOG6uN8TTKh7z8ZNPxHmz3zqs4y2OoWbnchQ3w163L7i9d5/eKyJn5DCYH0RCSyBezEO1uIlkfhC7hnb6xsibeTy160k8vO1Bp+CQcISmFh9m7k7t8q3v7r+8Gwq415DMZKjFBxy1OpdDhSR6sz3YNrilpu2IgxtR2IrCrAmAxCVBEATxJlNLGGslKoWCVrtdcBshgE1Nwd6f/hjZa94PuasTTW9/K6IvvuysJ8RWMO+ypKBPIExUiDJVUh0nU1ftvDmeV2GaHEODBhoaFSiSXSk2HJFQyNtl6C3YgjBj2NVkk3l7W1tcls99DIaX2tViJTvnEpbjWg0XFmsvV6BbOixu+caXK4TF+pxLSUO4KKbzZs45T4qkYOmkY9EaaS1uY2+vl3Hh5GHErztHey45w3UuKwktX87lKG6Gvdt7RToQDIt1rwnhWk6Kdjjn0LAMPL93BR7b8Yhv3lkjg4F8P0xuImOknXmqkoqOWEfJ2Plqw2Kd8yk7n3mtxy/c5MH8IFWaJRzEw4/g94E4NCFxSRAEQYwrY1ktVuATlzX8U+bmXFYO1ZUVDakbfoj0v30OUnIQk696N+Y981og39C/TyEqhMgSgkogKsYqkuK0JtEVO8fSKsgYGrR7EDY2K07fx3DUnqMowJMp5iQCQCZvi8x4rPqcy4YGzW5FkrcryAoh4nUdyyExyXHovOtKUoWCPh5xGZI1J1cyZ+ac8xQ8f2IbrxPoddpGwg2L9VZjreBcmmPnXAL2cQm8os/7ujNjV7btiHW4ocbcdLb1uql9uT7nM8voGXDOUTALUGUV7ZFJJfPxhcVWUdBHZrITCl2ruBQVZy1uYSDfj0e2P4QNfcOnLxEHPwVPS59gqDhx6EHikiAIghhXxrJarMArKMfEuQzmcDKGzBe+jNQ3vgMpl8PbvnIzjrn76bLrA26u3VHti3HKtFMxKdrhWy4Epde5NGTblTJzMgb77Zv2xiY3p1OL2kIyl7NgchMpT/sJXbeXxWOhgNAuzUUVoiIeL7pVORYIix3eufRXhVXKvu8v6OOGxaqy5oQB5428I7hY4PajXFismyM4srh0w2I9OZcVnUvdOTejybkMCjI9IO7EefGKy/5cHwC7mI8Q6KanAq93XW9V2ayRcfanSRqiahRxLe7bv6+gz3A5l5a3WqwIi63NZfIe+/r+9diT2oN1fWthcQsv7nse+9J7axqPqB2LW+hM7xu2p+mbjfcapKI+BIlLgiAIYlwZ62qxgF8c1hJmO1JYbHC87L9+DH0/vxmWLOGMG/+E2Ne/AlhWyfbiRi+mxjCvaX7JMUaL4lKTQ04Ophoqhq3mFQwO2Dftjc2qKy4jtoDMZy1wbvl6GxYKFhgDImG1Yh6kEJpCEESjCiQJKOQ5OLinWuzw4s2bk6lUEJdKhYI+mqQhrIicy6xznuTAPjWpTFiscC6rCIsVYilnjCy0RIipIimjci6D4lI4NZxzWNxyzgX33PyL9iJxtcGXxyrG8obTep2fjJF1BLc4r0H3Mu9tRWJWFotCSNrVYkcZFusRoyLvcjA/iK2Dm7Gu93Ws7XmtpvEORsY7LHTLwGY8tO1Bp69rPeC9ZqkdCUHikiAIghhXxsW59IV/Vj9euWqxwfGCYZj6JZfjrz/4OHINMUR/eiMaPvx+qAW/KybEQaVjO7p9MZa0L0VbpM3pe6lqxbBVr3PZ7HEuw8K5NGFaFrbs6Idp2sJQL3Boml1ltZLQFuddhNIqsoxoXIaeK/atLAoRtQbnUmHlcy7lMgV9NFkDY8x1Ls284/AGxbkqC+fSvTH1hnGOhBBsXuey3E2+cGw1WYMqqaPKuQyOKwSqmK+odiuENOccaT2NsBKGLMme3qGGx7nkZR34rJFxBLfIS50cm+JbJ+/NMx22WqwQ67LHuawxLNYzvleYv9b9KgBbDNcTb3Ze6HN7V+DPG/40rlVTRR6ut9fpgcb7PRpt71ji4IHEJUEQBDGujIdzOdbVYkvCYj1ITMKct74fO+66E+bMWQjf/Vdc/O83Ipx0m92LkMNK4rIl3Iolk44BY8wNkVWLoZkZV1wmmhVH+CpFcdnTpeP2X+/BHX/cgo2vp2GagGUBmiYX80ArOJdljiMWl8EtCYW865qN5Az6QmElb86lO763nYkIcRUCRojLnKegjxyYm1bcRvflXAqnrYqw2HKtSMqExYpjViQVmqyBc+5UZK0WJ0y1KCKFaxMMMxa9SbNFx1b0OxWtbUTvUPu1WTbMMaNnHMEtzuu8psNw6vS3YFHbUQD8YYjmcDmXYn5McdzVWsV1pdYlou9mbhTiknOOPandFT+HgVw/ujPdAOwen6JfaDU8sPVveGLnYzXPabT0Zf8/e+cdJUd1pv2nYufp6cka5ZyQECAhFAgiB2OiCWuc2TUO2Gt7l/U6Ll6vbfCHc8QEYxuDjU02JuckRBDKKMfJuXOoqu+P6ltdVR2me7pbE3h/5+jMTHd11a2qO5r71POGXiSUhKUPaaVhc8ZcBGo0MYd3AxQWS5C4JAiCIKpNtZ3LEv6UsW1zCS9GLjEzwz8TgaVr0f/YM0guOw6tG3fiqut/ipqOXgCAlm48UYzQFXkRsiBDltNhsVEBg/3psNjaTFisM93BpP1QHN1dMST5CKIRBamELkIckpQ+ZuZ6msdudmfZ6x6fCB48orGU4UKV5FyaxaVp/+bXHekCPiyM08UK+qQKFfTRhVNMiWFLz2YEE0PGtoVapdiPHx+m52PGBZRz5nkWA3P7PJIuFu3OJRsLE4uswi/bnglhSwhvHmEVTUWNMTN3l+d4zPLPhlPQHfC4pW/n8NVieZ437nkxfS5VTcVT+x/H1p4tWa4tOydGTImV7BZ2Rjrw9IEnsaVnU873H97zIP6571Gk1BSePfgUnjv4dFH7TSpJ9EZ70BnuKGk85cCEVTR9z6sBu2fmQlKjib2AD4XFEiQuCYIgiKNKKU5j/n3kdxqL+VyhnMtC+9OamjDwwGM4uPpY1B/sxL989sdoeu9Qxrks0pV1i26IUjonMiJgaCATFstCPOsbZcxb5MaseS7MX+JCko9AUYFEQl+8uxwZsZFr7Lm+9/oEQNN7XTJRZHcR7VhyMhUez/yjB9s3hSx5k5bWK2nRxsJjHZZWJPrY7WHJTFzuG9yLtzvfNIQMx3FF3V+hyII+ScMFFI3xvXDoOWzq3jjsMez7YMKKHTPjDApGxV8ARq6sR9IL8fA5QnjzicJoKpLJubQ9BGDXn/UYBIbrc5luA8OJJYXFDsT70R5ux/6hfVnO6JzauZaHE5qm5awWun9wH95oX5/znkTS+ajhVDjrPTMHhvYhloohoSSKymuMKbqLmlATRQveN9rXY//gvqK2zQU792q6iuyejRXn0l4Ui5xLgsQlQRAEUVUq4VTaGWm1WC6PuCypb6bHg2dv+jLevXA1PP1BXPXFn2LW83ovzGLP1SW6wHEcZJlDIh0WK8kcXG7eKMTD8xzmH+PF4mU+LF7uRpKLgE9JEBRdrDllXRzlLeiTI//S4xXAgUM8pg4bFrt9UwgH9kaNsNtEQsWTD/bjpaf68dTDPXkdTb+jFvPqFmBRvR62KQl60aFYKpa3oA9zEdmCmbUtGa5NinF8FhabKtyKxBxiypzAnmg3tvZsKeo4QMY5cqfFYsJWlEfg7eJSF01257JQ2xS35IYsyIimosZDAMlUhde8H0v7loI5lyxs11TQp4iQ4FBCF8cpNWkKK9aP3eKZhEZ3oz4+o6iSNTS2L9aLl4+8iB192/B215tZ+2fXMz6MWNreu934vph2F8wZ1jStqPDfcDKMHX3bsLW3+Llghz0IqKZzyYR1fMw4l/o5s/9vqplvSowPSFwSBEEQVcUuuCrjXI6wWmz6z579M/mqyOaDkyQ8/aUr8MKnPwgxkcIH/+dOrPzTk5ZWIIVgFWNlSYSS4BGLqvDXinmduhQXg8ZpEFMecCldZDgdLCw297XIFeqri0sBibiKjs4QXn2uH4f3ZS8GoxEFf/19O/52V4fx2b3vRdB9RBdQfb1JqKnMuZrFJcdxOGnSKkzxTTVec4gOxJW4IXCyw2KtrlxSSUBRlaLvB3NXzSIipabQG+lFX7TXsl9AF2osz5N9LpIsThCwfRjOZVoUGdVtOdEy7ohNXLLrmbD027SKH6/kg1t0I6WmjM87eIdlG5bzmig2LNaUw8pyZItxLlkLnISSQCotoE9oXoFTppyGZk8LljefiJWTVmFqzTQA1nBNRVXwypGXoGp6heXtvdvQFjqSc1yxHILRnIfaF8u+j4Uwi69ihBjbZzLtjN6/6z681blh2M8xEkrGIa1mYaNynMu9g3vw1/fuQTBPTuibHW/gUPBgSftkTiWb38UIeU3T0BFur3plXWJ0IHFJEARBVJXqV4sdQSuSrD9/+piKKR5j7Ifj8OZVZ+Ch//0UEk4Za2//B6Z96QYgNvyij/W6dEgZgeMP6AIrl1iOaHplSD7lhKjoIoM5l5aCPnkcXfa9r1YEp3GIRlTs3hlEb3cSD/6hB1s3WitPdnckoKlAcDCFWDpaMRxSwEOAw8kDGjDQW3xOJMsPZPmH9uss8VZXLqEmdeeyiH3rY8jOG02pKTy++3E8uf9xQ6QwZ0niRYSS1nMeSgwWdSy2IPYy5zK9uFZNziUHLsu5dDPnMsc52fNDfbLPmCMD8QF9zDYBnsvVNS/WmfiIK3Fs7dlihC8KZueyiMV9xrlMGWGxfocfM/wzAQC1zgDm1y0wxhs1Cau9g3vQH+tHi6cFq1vXAAD2DOy27J+NK5cAzCc+CuX1HRjajyPBwxbxFS9CjLJrkVSTCCdDCCVC6DL1HB0Oc+7uSAobFQsT+Hr15dJ6XbaH2hBLxXDEJvABvXDStt6teLdrY0n7ZOfNfh+iqSje6XwLA7H+vJ85EjqMJ/c/jh192/NuQ4xfSFwSBEEQVaUa1WIx4pxL5lzme724sbHcTY7jsGfNEtzzi3/HUHMAgYcfRe0l54PrLFzRklWM9bqcxmsLlngsYzGTgL5Y5ZMu8OmwWFkSs7Y356LmyiOtDUjgwCMaVhAMx9LbCXj8gW7L8braMwvlvk59ARuPqeA1AbPm6SKivyudw1eMuEz3uowm9fOwC2jZFvLJFufFi8vcQiucDCOuxNGfXuiy9isyL2NO7TxwHIc6Zz0AYCheXIVPJob8Dj+AjLNnbp1SKCw2lzvNCvrUOesxrWY65gUWGGJ0KD5ojHn4c9b3s6NvO/763j04OHQAr7e9irc6N+Bw8LD+Oa60ViRMhCfVpClPN/vY7AGCWdRt790KADiuaTka3Xp/zogtZNQI80xlO5f5XLB8eX2KquClwy/g5SMvWhzUYvIA2X3VzzNp7K9YzMeoZj6kOZS5mPBgM+z3ajCe/SCF3Zd8rmY+2Jzwyj4AwOHgIWzu2YQ3Ol7P+xlWTbea4cPjBUVVcHDowIRycUlcEgRBEFXFrNcqIixhc+hK+VM2TEGfkpxL0/Y9syfj7l99GZHjj4P01psInLsOwubc1S8BvaAPACw7vg6nnF2Hz39tOlasrc07hhTS+WNJATxzLqXCBX1yhcj660Rw4BCJKBgK6QtggecRHFSQSGRckK6OzKK1pyO9+I+q4CBi1jx97L1dxTuXzJlk7pT9nom8NZSUuV98kfcjV96oWcR0pdtXMJdF5CXM8M/Evyz4iNHSYzAxUNSxmMPlFFxwiS6EkiGjfyaQCYs1F/ThOM645+x8c+3TJTpx2tTT0ehuNJxAthC351zmnCdpMfRGu76w39G3LcuRFXihpFYkrCARkAl5lXJcb1YVmAmGttARDMQH0OBqTJ+Pfv4szDcz5oxjaHfi8onffBV+hxKDUDUVcSVuiH7zuAvBrkVKTRlCsVAOa9aYTO6oXTTtGdiFN9rXF72vQpjHVKpDGk2L3qG0G259Tx+z7tzq92hLz2b89b17LG60HXatmLhkdIQ7jAcjdti4lRKcV03T0BXpKln8jnX2D+3F84eexe6BXaM9lIpB4pIgCIKoKmYHrVLFfUYcFstakdj+/JWac2kXlwAQqavB/j//CbHLr4Rw5DACF54N+bFHc36e5Vy2NHtw+vn1aGjKCIdcY0iqCQgCoCZE8OmcS4csZY3BWtzH7Fzqr/tqRHAcj2hEwVA4Co4Dpk7Tw9kG+1PY8k4Qu7aHLc4lE5exmAqnLKJ1mi4iejtYcZzCrUyAjJhKGEWEss/RvJ9MP8zixGWuEFFzDiUTl0yssBxPgRdQI+sOZLGL1sw+ZNQ4/NA0DaFE0FTQhzfuYUpNIZqKwi26C/ZSZfs0PxBwmcQokKtabPY528VQjaMWPrnG+jlOz+2VeKkoccnCYoGMAMn1QMEpWp3LXf07AQAL6xcZn3EIjqzcVvMY7I6fvfotc7jzFSIyO3LmXNtiisyYhSx7MMHuaTGYXUSzGFM1Fa8ceRk7+rYZoq1UUmoKu/t3IaEkLNerZOcyXUF3IIe4NOeJst+FrkgHYqmY8fuTi7gt59LMzv73cn6GXZ9CfVnNdEe6cd/Oe/H4vn/g8X2PDRsOHFfiODC0v6gqwW93vom20BFomoa3OjegI9xueV/TNGzq3ohe03yqJOy6R4vM+R4PkLgkCIIgjhpVEZc5hMpwn8uuFpvb0cwHa6VhX2RzLheCv7wVoa9/G1wkAv/H/wXu//cDQLUuhuqd9Wj1tmJW7Zy8Y7QjCBzUJA8ume4fyVqR8LmFdq7vBYGD1y0hFtUQjiXgdPGor9f319OZwN//2IG/3tmOjiNx8ALgdPPo61SRTKhIpTR4PTIam/Xj9nfqCzfWz7IQTAgxlyOX22wPjQVsbVAKkGu7aA7n0uwuMlh4a65QwVyYK6bWpIXbUGLICKEUTQV97G1IGHbRbFTuNb3uszlB9uucq4VMSk1ZwuskXswbTivyomVbVVPx2N5H8cCuv+HNjjeQUlOIpWIWMcPCmnMJW+a0MgHTG+sBAEz1TTO2cUtuKJpiEZFWsWQXl/p7M/2zsHbKKVjScCyAws4loz/WZ3xfTFisuagSc1dLC4s19VhVU4YANhcwKlZM2dk3uBevtr2MPQO7c+bVFgvb3lyFmMHuLZD5XWC5qkMFHryw/bgElzG3WDXsPQO7cwrBjHNZ3PXdM7gbsVQMIi8imooOW3To3a6NeOHQc9jQ8UbB7Ybig9jSsxmbut9Ff7wPW3u2ZPVb7Yp2YWPXOyW1KxqOlJrCrv6diCtxIyR+IvUHJXFJEARBVBWLc1mpsFizcCrhTxlbvPM2MVJuWKxlPxyH6Be/gsHf/xmqxwvPzd9Dzcc/DC6YWaCJvIgzp5+DWf7ZWfvOV/1WF5civKlmBBIzMcc/Tx+L6fzNnzVfd/M4vT5dbKhIwe0REKjVncg9OyLQVCCZ0BCLqmhsljFlmhNaikdXRzqvyitDdvAI1EsI9Qk4selkLG8+cdjrJaaPn7S1LTDDxJN5jrDFan9vEr+++QD+/scOtB/OXlDnEjvmRXg0FUUwMWS8ZnZJRV6EW3IjlAwVJSZSasr4PAsFHEoMGQtlPt2KBMi4p07RadmH/aEEE1Hm6zLZOwXz6xYaP9vFdy73MKkmjfxS/edUVrEgNhckXoKqqcbiP5qKoifajWAiiG29W9EWOmIJLQUyYiCXW+00CvrEkFSSCCVC8Mk+yziZuxVOhrGpeyOG4oMWx5C5YG2hI9gzsCvTl1SQMcs/G+60459PLJofEJiFSzEO30icy2A8aMwZ+zE6Iu3YO7gH+4cyfTPt96JY2IOSaCpiFZcltCNJKAmL0LM/TImY+owykc5+X/OFt7L9AvrvL5ujU3xTMdk7GXEljs5wR47zYRWWi3Uu9YdDJzSvAKCHGdsJJUPY1L0RSSVpPNjY0bet4DGYeI6loobwtlduNvqwluA67x/cV3DOHRjah9faXsHO/vcMUVlM/vN4gcQlQRAEUVW4PEVmymGkYbFTa6Zhft1CzKyZmXN/xbY1McSl3bk0nV7i/A9g4PFnkZo1G47H/4Hac9ZB2LVz+H3n+dMsiBx4VUIiIqI1ehwavPWWsRT+PjMwny8zZpeHR329Lnx2v2ddPDVNcqB1mhM8BHS16wsln1dfPDa26F89ocmod9UPe072sFi7uAeAKd4pqHc1oN7ZYBq3vt2Wt4PobEtg81tB3Pbjw+jpTBdfSahY/9IAEtHh51VXpDOrTyPDL+vhrcHEkPE1H0k1aXze7FyyRazIiYazne949oI4LOfS3pt05aSTcNrU07Fm8tph9wHoTpu5ZYdiczKBTI9RVjGWiQO7YAslQwglrBV1M8fOvn9OwQmO4xBLRY2wy1pHwLINC/Xd0bcNG7vewba+bZaKtWyB/2bHG3i17RXDyWQPJ5gLW0xYrJliwmLNbmgu5zKUDFlETTAxhL9s/QteOfJS+hj69WP/371w6Dm8fPhF7B3YY3zGHuZbLGz89gqxpeRc2rcdsuUYm0N5mZhk16SQq8+2kQXJuD/NnhZM9uqtiA6HDmWPJe1uq0U4lwklgf5YPzySB3MD8+AUnTgSOpIVXr2r7z1s7HoHh0OHjMq1QCY8OxesiFNMiRnXxy7y2HGKLT50OHgILx5+vqDTyYRqLBU1jjeR+oOSuCQIgiCqStWdyxLEpUt0YeWkk7KKT7Bxlepc2hf8dmGozF+AgSeeQ/zscyHu3oXac9blzcPM7Dt3bp4gcBA0CeFguuKpnD3mYoSmz5dxwNxuAYGA7hgO9FpFSFOLjKZJMjiNR3dazPl9+rYz5ugu1RsvFxdKWkxY7LFNx+GCWRca4ZVA5vru36Mv/OYf44GiaHjs713QNA3PPtaLf/69G68+lV8MsvzWSCqaEYA2582XDo0dSgxhW+9WPLDr7+jMkWeWUlPQNM1waJi4DCWGMq1IuIxzyZwq+/kKNnFt7kFpZ1rNdMyunZv1un0fgC5mzeJSD5PNLcRYaxP2PnNa2DUPJUKGc2me5yIv5vw95jgODsGBaCqKgbjuntY6ai3bsKJGh4O64DAvroHMAjupJqFpmrEIZ04pc7dzuUKapuVtJ1NUn0uTyM3lXD5/8Fm8cuRldEf0ysrdkW6omop9g3sRTAwZY2dzIlc4KAuLDSfDeGTPQzg4dGDYcQGZ+RG2OcnRVBQHhw4U1ZIkyopppeemPe/SXGiJhcEyEV+oTQ8TZS7RDa/sg8AJaHa3YLJvCgBk9TXVP2PtDVuI7nQ7mCZ3M3iOx0z/LGiahiOhw5bt4ip7SGLNSzUXykkoCUtOZebBSgJhU0EjMxnXOFrUdWbXrlCOJnNuk0rSNOdJXBIEQRBEUVRKUNoptQhPIZjTVGpBH9EeFpvjXDV/LYb+cC/C//FV8KGgnof5g+9m5WHa9w1YF/WCCPCaiHBQX5DJjuwx5wuRtYjLmoyw8nglBOqt4Zar19XCWyNg3mIPmlpk8BARj+n5lb60uDxhtR8er4DNbwfR2T58yCEruJMoEBbLMId/CpwARdFwaF8Ukszhso+2oKFJwt6dUTz1SC/eeElf9O7bkX8M3nQoZkpJGgVv7Dma7rSgjStxBNOtN8KJICLJCHb2vWcsKjO5kfr5+Mw5l7kK+qRbn9idWnu+ZK6CPsNhL2LErpu5+IqipfIu4FnF16RNXAacdQCQ7vWoXwu/SSQWegDjEl1QNdUYQ63T6lyy9irsWAklnjPnkl1v5hqJhrhk/TmzF+LhZAgpNQWHKTeV/f4U0+fSLHLNIZCKquBI8LAh2gfToowJaADY1rvNOCdWIAoAljYei5WTVmFazXT9GOn5dyR4GP2xPjx/6NmiQrGZO8iuB5tfu/p34vlDz2b1Ds0FE4H1rob0eVgFYzQVhVN0GiHiKTVl3JuEkshbMTaaikLiJYi8iFWta3D+rA/AI3nglbwIOAMYjA9aIgHM7msxOZedET2sttndAiBzfe0hwez+JdWk7V5mBPk7XW/jyf2P40i6LY957rG+nNniMnPe9jY6uWAFsMzzww67Fwk1YXIuKSyWIAiCIIqiGtVigcqKy8y+ihsfZ4TFWhfaecfC84jc8DUM/uFeqF4fPD+6GTUfuRLc4EDesQDWhbwo8hA0CSG7uDSNwVyF1dKuxVwoxpcRlz6vjJpaEebbsvbMOvzHd2ahudWBukbZIoRqavSFu8PBY+2ZAUAD/nxrG15+pq9gZUZ764tCAsXsKgqciPbDcSTiGqbNdEGWeXzgiibwPPDqs/1QFP2Yvd1JxMOZkzALVFZMJ6mmDHfK7lyyn5Nq0sgzUzQV2/u24vX2V9EeagMAtKXdklpnrXFebsmNcDJsLA5ZNVYgv3OZ3YqEfbaE/GHb3GOiyiwakmoqbzuNzDnr7zPhnxGXYQymHSsmSHKN3QxznZlblc+5ZMSVeM4cQiY6mDBgziVraWNfiD994An8Y+8jAIBW72TjdSZEiivok8j5fUpLYVPPu8bPzMUz57buGdhluLysQBQAzAnMw/y6BUZxJnau5odQuwaywzZfb3sVzx58yviZzUkmbuyVWQsJGQZzCxvS99IcVhpLxaBqKlyiGzVyDTRNQ5+pIJJ+3tnRAYqqIKEkjJxil+gy5g+g5w0DMHqs6seKmj4/fM5ll+Fc6n1SmeOetD0wYC5rSk0ac9ohOJBQEobwZw89DgztB2C9z+wa5nMuAWvRo3ywOZtQEnnzNNk8TyqJnDmXewf3WMKpxxskLgmCIIjqUqAFQzmUmidZiJLDYsEK+thyLocRz4lzz8fAE88hNXceHE89gcCZp0Dc/K5lG4ugNDuXAsBrEuIx/am/7OAsY9HPY/iw2JqajPDyeR0QBA6+Gv04bo8At8csaDnU1WfCVGv9mc8uX+PH7PluDPan8PQjvdi60RqyZzmntBBK5cgttCNbiu0I2L9bX9xNT4fizpjjxr9+eSpaJjvQ2CJjxVp9Md/byYSjaLmGbCGeMjka9oI07Gd9YWrud6gvPpl7wRyi2f5MlV+2GB9ML04FXgCfngfsePbWK/Z5U8x1yYV5fjiETNEgJurM1WMvnH0RLp17ec5zBjJuol/2Q+AEhJMhDMT6wXM86hx1WZ/LxZR0ZdhoKgqe4y2OJwCjIA8jnuVc6mMwnEvW+kTQz9NoRWJyLpNKEm2hNuOzdc56Q+x4JA8ETkAsFYOiKgXDGvOFDw/Fh9Ad6TKuNRNZTFxOq5mOlJpCb1QvIsOufYOr0cj9Yy4zcynNomZLz6asBzP7h/bhcPCwIQATJgcRgCWnECjuoR1zhZnbbj7fqCFa3cb7g7aw2VxFfaJKJiQ2F5N9et7lEVPepbnCbTHOZV+sF7IgG3PJwesPUew5irmcy0DaOQ8ldCeWCchDwYPQNM0yj9hDGU3TLA88zCLcXPQoH2ZBORDLLfozzmVmrMyd1jQNrx15BW93vjXsscYqJC4JgiCIo0YlQ2TZgqqUarH5KFWoTvHpxWea3M22QQ1/fsrceRh4/FnEL/gghAP7UXv+mXD+4U4gvcDk8obFcuCR+VmWhwuLzS3qmbjkAHg8+ve1dfp+G5qzhUNDYybM0F+TETCSxOMjn5mMyz+qh6sVEpf2EM5C7WMkW1jsgXS+JcvzBIBJU5y47j+n4TM3TMPCpfpCu7stXa2V420VSplzmTTlXFrHI5mK27DFnqIpxvZxJY5gYggd4Q54JA9aPJOMz3qlTMVYdq7mPpcAsOWtMH7340NIxNP9O22uIxNYpYrLzLzljJBRIOM0ptLnzHM8As46S66x3U1m7p5DdMAtuRFX4ogrcfgdfmuocgHncl5gvuHc1cg1WefjtjlusVTMIqziKWtYLFuos/kj8vq1NedcBpP6dQ84A1jccAzmBuYZ99wpOiELMuJKHA/u/rvFDbSTLyyRCa86p164iuVXhpMh+B1+i1MKANNqZmBe3QKsaFlpvMauGXOyLZVpkxGEkpnCSbro0d833DSbkHLZRHoxxWBYnp9H8oDjOEvl2qgpb5I54PaiVnaxCWScPHs1ZEajqxGyIKMj3GE4i+Yw03yVXGOpmPEvpaaMMQP5826ZW2l+oOJPF5QKJ0Poj/Ubcy2uxNEV7bLcc/ODB0v7HXNYbJ5elKqmoiPcjpSasoTh5uonys4P0H/n2L0z8mpTYSiakvUgZjxB4pIgCIKoKuMhLLbUViSt3sm4YNaF8MpWB6FYoav5ajB0xx8R+t/vA4oC3398Eb7P/RsQDtvCYk1iUpSMcYoSB55nY87jVsK8n8x5yZKAllYZLZNlOER9//4AE5fZvSabmzOizu/PXkTOX+KB7OCxa1sY8XhuZ2i4wkdmzH0ZeV5A26E4eB5onZrdT5PnOUyb5YQkc+jtUKBBg8iLOdtfJFW90AfP8VlzJuPiZUJnVU0xnJWEEse+wb0AgDm1cy3CnS2smcvG84LxgIDlO257J4IjB2LoOKIviPPNs5E6lwInWEJ9M+JSX2jnCmVlopgVTGGLXAfvsDhjNbJVXEoFxCXP8Ua7iMZ0GKMZh+CwjIUt6NlCOq4koGma8Tobk9ktlXjJUi12KK6LoGb3JJzQvAKyIBv33Ck4jfsTTobRFmrL2xsyn3PJRIxH8kAWZAzFh9CfFn0BV8AIMwVgzL2TJq1Co7vR8rp+DH1uMfHCris7B/YeE0FMnNj7eoqciHNmnGcI2GJarTC3zCm4IHJiTnfOJboMB5w9LGEPC3rSzqxlnwoTl66s9wB9Pkz2ToGqqWgP66HlZrGWy7nUNA1P7H8M/9z3qOEUmsOA2UOUhBLH4eAh3PfeveiL9Vqcy6SahMRLxjwOJUNGexK2r0NDB/IW0TH2pSQtQjOXc9kRbsfDux/Ak/sfx5sdb1juxUC8H4PxAbxy5CW80b4egD7nMznHCeM+pNQUVE1FMD0XmIM8HiFxSRAEQVSValSLBUrPkyxuX6X9WbSL5ZLOj+MQ/fTnMPDQP6G0Tobzb39B4Nx18O7Zb2xiLjzjEDPiirmW9jHn+94eLrtibS2Wr6k1cjFr6/QFW0NTtrhsbHKmP8fB48kWFpLEY/4xHqSSGnZtzR02Fg1pGOzPLNIKXWfJ5MAlIkA4qKChWYYo5v6MKOp9N5WkgFRCg8iJFlGeEZcpKKqSU2iJQibnMmUKi2U5YXE1YYTNmV1LILOwZoKAOZeapiEUiSMSVhAe0sXSQL+1IJAdvsiHGwwmUnVxmdlnraMWIq8LiJSWyluFFsjkn7EFryw4DOeP7UsyCf5COZeA3uPwA7M/aIhMOyzv0jwH2PHiSixn6KpZODsEBxRN0XtIDu4zCjD5TK4su+cO0Wk4XQxztVAz9lw7BsuPE3kRNbIfiqagLZ1DWOeqQ8BZZ1xfey9SBhPkiklIAEBdOj9x0FSN1ZwfytxCe+sVkRfR7GnBlHRFVrv4LHQeLtFpzA0Gc2ddohuutBgPpos5Nbtb4JN96Ip0ZrmXTKi784hLAEbVWFbd1ZpzmRGXm3s2YUPHevTGetNFgILoT+d9uk3zMeNcJtAebkM0FUV3pNsUzp40HqiweRBKhIyw5cUNSwDouZz5HF/maDIxyeZ8Lufyna63DSHOHkCx0OiDQwfw8J4HsWdgN3b0bUPU1E8TyAhh88/suvtsFc3HEyQuCYIgiKpSjT6XQIWdyxHuy779SM4vtWIl+p95GYnTz4T43g4s+9AnsOCpNwFYF/JOKbNwZfmWgLWgT77elpbiPnx2Tufy1X4cv6oGy07Mflre3KyLAZdTNtxSO4uX6Yu/7ZusobGqquHJh3tw+4/a8dJT/QgO5W+5YZybScgM9uqCrbk127U04/EKEDQR8bgKgRctopwJl5TJ0bBjrpyaNIXFMmclnsr0wbOHANp/FjgeUDm88dIg/vL7Qzi4NwpOS7d/6MtdrZYxUudSd8wy51XrCEDgBCRU3QnMdc4eyYMmdzPCyTC6Il1GTp5TdFicIr+j1uJW5hPGZuqc9XmF1mTfFPgdfouz6RBkSLyEuBLP6WaZrxcLm3758It4+ciLhgCpMTk9rZ7JcIkuNLmbLfMJKF1cMrEn8iJqHPoxDgb1FiJ1rjrwHG84xQ4h9zxl14yForJjsVDbIUs1VXORmQFLmCyD3XfmMuYqWDQYH8Bjex81HLPM/HVB5EWommoIeVaMyC25jX2ysFhZkDE3MB8A8F7fe5ZjMFHqFPKLy1bPZHAclxGXSnbOZUpN4d2ud7C9dxve7XrbeL8jrFeK9ZhyOtk1TqqJTHipmmk/Ekvp1WglXjLCwMPJjLicms4LjinRvG41e525rOw+5aoWy0KWHYLDGENDOhw4qSYhcIIhFEOJkOH2AtntapJKwgjzJnFJEARBEHmYiGGx9s/Zx1QqWn09Bv/8N4T/+5vg4wlc8L0/4sxb/gIpnlloOyziMl9VWNPxLTmXuYUmW7TX1kn44JXNlmI+jMYmJ+rqRUyZkj8HaMoMfUHa12tdrHW1J/Dqs/1QUzw0AL1dw7ciMedc9nfp5980KbdQYbi9AjhNQCKuWsJiRV40FqNsoZjLeTMXt2GOjqKpRlhrUk0gxnISBauYtFdAFXgB76wPoqsjgaSSwu7tEaPVzWBf4Wq5pc4/3uxcpr93CA440+4Uc1Pz5UnO8M8EAOwf3GeIGllwWMK9/Q6/5Z4M51wOx4qWlbhozqWW6ybyEhyiwxImaEayOJeZsaiaavTMZMIP0AXsh+ZfhQZXQ1bIKAvPTKkpQ2jai7iYiafS4pITDQE7GB8Ex3Fo8ugCmYXG2l3SzPmxsFg2n/R5wETpkMkRtBaZGcgpekWjeq7+1X6O3ZFu/GPvI+iJdmNH3zYA+vxnvxvmMN2EksCBof164SZnveHEs+shCTLm1M4Fz/HYO7jb5niyBxK5cy7Zew2uRkSSEfTFerNamiiqgq5IpyG0jpj6YrI2JOb8Q5ZTHVfimcI4pqrDTPCKprDYgXg/BhOD8EgeI7w5looZhZLssGseseXbRnJUf2UPDMy5t17Zi3mB+WhyN+OCWRcaUQLB5FDesGxAF8kZ55LCYgmCIAgiJxbnsgphsZWoFsvEV6n7sp9PWeKZ5xH50n9ix12/QTjgw7GPvoozP/qfqN+nL4YtzmXesFiTi5kn5zJfTmc+ZFHCmjPqcMLKurzbuNz6/qNhq+vEQmEDAX3R3Z8Wn/a+j5bjmYREf5e+4GyeNLxzyUNAPK5B4HjjvByCAxzHQeRFY1GX65xFo6CPybk0tfGIpfSFLMdxWe6U0yY2B3tVbHsnAknmwMsqNCDLucx3/iPOuTQJBtZbUrJU3c19n6fXzACgt1hh7pfMy4bby3EcamS/bV/5q8WWglmISbxkajOS7cKJlpxL64OGlJoCx3GWUF4zzB1rcDUi4AwgmAgilAhia89mPLn/cbSH2ox7nus6mcNizQv+hXWLDBHe4NLzK+0uaWb89rBY5lzWgeM4m3OZOf+EkshZFIbdD72Qk5wV3rmjb5tFBCaUhKVlCPsdSKpJvNe/AwklgVn+2fBIHkv4PTsnp+jEFN9UJJQEeqLdhhiPmQoBFWJKuiXJkeBh4/eQ/R6ltFReN5n1jLTfW3bO7N6wViqA9SESe8gSTAShaZohAF2iCyk1lVMsAtl9RX2yD7Ig5+z1mVR0d5L14dTH68Hxzctx7szz4XfUGvnNoUTQEhactS81RWGxBEEQBDEc1XIumRtUiWqxGefyKOZc5iF00kr84bYbsH/5fNTsOYAPX/cjHPvQy3CImQW2OSw2n3As5nt71dJcSLwEgRPyFu0AAEHg4HDyiIStYV5Dg/oCd9ESvShIX2/uvo+W45mcqb7utHPZOoxz6RHAm5xLdl5soWwWDeacTuO19GI9pkQNt0/RlEzrCFWvnMrEqhn7denpUMCBx+RpTsxcoI/b59f3z3IuzdVPzZSaP8zmq8AJhjvJWjaY3cp8RXhcogtuyY1gMohYKgZZkNNCTQ+L9Uk+CLxgE5eluav5cNjcUDaPc7lJ5uuUK9zWK3nzCvNVrasxxTcVp05dh2a3ni/bE+0xKtEOmNxBuwsNZIoKibxk5NJ5JA+WNR1vbDPZOwXTa2ZgbmBezjHYw2JZTp9DcMIreRFJRoy8SrtQZAWXzFhysQWHUQwG0F3YttAR8BxvhB6z/o5uUb+vRhi4ksD23q0AgGPSuYj2hyXs94W5rL3RXrzRsR5/2/kXIyTZVcC5BDJ5l3sH9xitRVjIqqIqaE+Ly1ZvKwBrr1B93Nb7kqloqwsxc4VWdh3YOZqLU80LLEiPV/+dZS1z7L/TKcXqgrolNzySByk1leUSK5qex91kCvO2i2EmFIOJoOH25iKpJBBKBCHxkjHG8QiJS4IgCOKoUUnnssHVAK/sLRiSVSwjDrHlKhMWa99HpK4Gf7/pOmz98rXgFQVn/uQ+fOhnP4Un7WJYwmLz5VmaX8+Tl2lvEZILgRdw9ozzcPLkUwpu5/bo4k5RMq0lhgb0RdqkFje8PgGRkIJ4TCkcFpsWMpqmoa9LhcPJw19beJwerwAOIhJxFQInGufFhIi12mgu51IEx3GWkLWUmjJcr0gykm4yn73gswvOgR4VnMbB6xMwe5EDvhoBJ6wMwOXhMdifgqZpppw5q0tUekEfJlIFBNJtF1o9rcY52bfLBevTqWiKMR6fXIPFDcfg2KbjAOi/t+waFjNnisEcXizxkqkXqlVcMufZvC2gnx+7v4VcnjpnPU6fdiY8kscQQQklk6MXSgaNY9pbfACZ/pAiLyLgrMPq1rU4Y9pZlocUkiDh1KnrMCXd19GOaOvzau63yoQUcy/N1WkBoDuaS1yaHjSZWofs6t+J7mg34kocje4mQwy3hfToBxbWyx48DCYGEUvF0ORuRk16HPZqy8yNrU+HhvbH+3BgaB8SSsIYc6EHT4B+D9ySG4PxQaiaigV1C43fw2gqir5YL9ySG2snn4pF9Ytx0qTVls/bW9iwc2bXM1ehHXaN2HVscDWi3lWfNV5ZkI15z/6WGGGxRhVdN2pk/fps69lifJY5uCIvwu+oNeajxzZeI+cymcm5zJUHHUwEkVSTlpZB4xESlwRBEERVsTqXlfuzc1Lralw857KKCTrz16I/ZzufSjizxhh4Hvs/diXu++V/oL+1AXM2vIH/fuxqzOl8K7+4zJN/aQ2RzS06C9Hobhx2wePy6PuNRjKhscG0c1lb60SgXl9M9femCjrEbNEVCStQkzyaW+VhH0q4vXmcy/Si0RxKmU9oSbxkKbChmvpcstdzFWzhOM7i9gx0qwA4eHwCJKeK086txwkrA6gNSEglNYRDinH+9hy9clqRTPFNxYfmX2Xkd5lFdKE8yZq0ALGP54TmFZjpn2X8zMRUpcJirc6lZFwTu3NnF7PsHjSY+sz6ZKvTlQ/miuuFm/TjhBIhw0l0Cs6se2CEU6fn1JzAXCP0uFjsYbFJNQmO4yDwgiFahtIVY1lYMAu17Yv1Zu/PdE3YddzU/S5ea3sFzx18GoD+kIG5du1hPY/Rl85LZb9jLMzTPq/NP7NrFkhXtj0cPGR5CCPxUlF5uFO8U41rsaBukfGZtvARaJqGFs8kOEUnlreciEZ3k/E7b29fA2SHH4dzhLeyc2RO/vy6+cZ75gJEZpeQ3Qs2N9i9cAoOHN98AmRBxuaeTWgPZfJ22T44jsMxDUsxvWaGEQbL8EhecByHYCKTc5krp5Ld6/EcEguQuCQIgiCqTLVyLoHKOIVAGQV97DmXFWyLon/PoXvRTPzxd/+JPaefiUC0C1985tNY+eTPgFTKOGYucVxMWxKxxPMtBMu7jJjyLocG9e/9AQkNjemiPz3JvPdN0zRs3RiCEhdweH8MvMajZXLhfEsg7VxqAuKxdLVYlnOZDou1uEx5xJH99ZSqZFUutRfzYWRy2QT0difAgYfXl2n3wHM8auv0MQ30pgyH0mEL8Sx1/hmtSNKLb7OzahbRhRb/fpMws4/HjNkxrAT2nEt2TfJVRmWw/L4WzyRMTufysZYew5GpCpww+pmGkiGLk2g/Hsu/K8exzYTFZqqjsuvJBM2g0dMynY+ZdtlY3qH53opCtnPJHE7mfLZ4WuFJ54SyNjrsXrNzjKadOXuouMXZS4/TJbrgEl1Z4r/YyBFWPGph3SI4Radxv1lfR7/pIQfP8Yb7Z3ct9XO2ztPcFYb1cS9pPBbrpp2B2bVzjffMYbwSL5sce13UsTnI7oUkyPDJNThx0kkAgO19Wy3bsWMd07AEp05dl/V3gOd4uEU3IsmIEcJrLkDFjk/ikiAIgiCKoFo5l5VkpMWBzOdTKaFrF4U8xyPpduKtr38Dv1/1v0iILix7/Beoveg88Pv3WT5TqLdlru8rJRQAGJVmo5GM+8fCYmv8Ippb9AXr/t0RdBzOXaVx/+4o/nZXB1785xB2bY9AkkSsOm14l8jjFSFARCKuQTT1fMyExZqFVnHi0tyKhJEv/I8t/AVeQG93EgLPw+Xmjc/zHA9/IJN3mRlfec6lYHIu7YjFOpeyeZGbXygw97dSOZdWcZnJubSLS/t9memfhZMmrcai+mMwLzAfZ00/B7Nr5xR1zEzRoKTRQiKcDBnHlATJOB4bD8vBzfdQohgy1Vn145hb4jBHkAkL5paxMFSGOY/PLHTZdWQiVH9NRoOrISv3zwiL5TIhqfq5WcWaM4dzCcAIKwUyonK4Yj6MFs8kXDr3ciNXlV1fltfo4K2/C760+2cPMWXnNxyiKXqBtR/JjN0cFisZLiK7F+yhEJsjzCmd7psBnuPRHekGAKPgVzG/E0ww9qRboph/75iAZsWbaop04scqJC4JgiCIqlJN57JicCN1Lk3fV0g420UhG5NTdmDDzPPxg/P+jN6ZSyFtWI/AujVw3v0H8Oljm3P2zOMxn1e+78vF5U6HxYatYbGyg4fDyaPGJ2PxMi8UBfj7XZ2Ix9WsfXR16Iu5VFSApgGnntVohNMWwt6KhOesYbFmQZlvIWgXnSk1aQgLhjNHWCyQWawqSQ6RkILaWj2Uly1SBU5AbV1aXPYlje1dojuv8C8GFkqaSzyaC/oUct3MxVPytdLQ36tyWGyenEv78QRewLy6+Uae7CRva9HXjYkS1vMU0MNwWVilxEvGNln9S8t4EGNu/cEK9zBxWeesswiWhCnn0iyizO1hzA9LHJaQbwFrJq/FKVNOA8dxlmI2HMcZIop9PpLSz1vmCzmXmf0HHBmHeGnjMgAoqfCMV/YZfwNEYwxpgWtzT9lYczmX+fqJmin0MMA8ZomXcXzzcpwz4zw0uvSiPMydTagJ/f9gnkUICKhz1iOuxDEUH8xyLgvBzielpiALssWd9KRzfdn/N4EinfixColLgiAIoqqMB+ey0dUIl+gyKiIWizmXsVLCWbAJRLZw9jj0RV63bype/t+/I/zl/wQXjcD3pc/jA1/7Ddx9QwXCYnM7rOUsmO3Yw2LjMRXxmIqa2kxl1JnzXGhqkREOaug4kt1yor9HX6wtmjEVi+c34tTTJhV5bB6y5kI8rsIlutHg1puYN3v1nLxi2nLYC/3Yq0IC+Z1LlnMZC+nX2V9rXWzynIDa+nRYbF8KDa4GrJt2Bo5tXJa3lUwxZHIuc/XuLM659EheY84VCotlC+iqFfRh1WLtOZcVnKNGyxk1YXFIB+L9xvtsG/u9LsexZRVJU2oqS5AIvICAsw5xJY5QImjtN2rK3TMLxVwFfQBdgM6unWu03HCbHl54Ja8hkoywWEPYWe+7wxayzGCiJ+AMYG7tPCyqX4xF9ceUfkFgdk8jWccEMmLMm6PFTKGHIIxCgi9XQZ9mT4vxO2M4zEoyS6SyqrDd0S4jtLoYV9tc8XZFy4mWc3DbzrHWFCI8HqncbyxBEARB5GA8OJctnkn40PyrSv4cl0e0lYNdCLL9uhwOALrgkTwORL76TSTOPAe+z/0bZr6yCR/bsgfRH02DeuElWfvJFyJbSefSHhbL2pDU+DMLWg4campFcBqPgd4kps+yLuD70uLyY+eciUlTstt+5IPnOTQ5psLR68Gc2rkQeAFXL7wG9TVe9PaGiurTaH/dLnKA/I4JW6yGg2nnoS473LXGry+5WJEjFqpXlnNp9LnM/pxoybnMv/jlOA41jhr0x/oLLtpZvl6l8sFkm3OZL+cyXxuVER0zfR2SilVc9sf60+/LxvHs7TXKCYsF9PuhaIopvzNzXg2uRvRGe9Ad7TacS4fggE/2GeGylrBYs3Npumf2e8PaygQTQUsYJpsPrBqq/dwc6XNnrWkYk7yturAMzIfAC1jecmKpl8GAzVlW4MYemjs3MA9JNZGzvUsxYbGF7pfTlnPJYLmsyXRrF0VT4BasYb+s0FJ3pNsICS7mAQgrPjW7dg5m185FZ7jDeM9jEp41ck1FH6iMBuRcEgRBEEeNsSktR041nFirG5oRl25nZhHJqsWmlp+I/mdfwdZL1sE9GEb9pz4G3/XXgRsatFWIFSz7ZFQqfw4wVYtNO5dMRDHnkjkVbo8ADjwG+rLzLpm4rGuQSn4Q4fWKkJO1SGZrQlsrktyLTvuC1Vw5lpGveAkTIpEhJi6t++I5Dl6ffv7hoGJ7L3cl32IwCvrkzLkc3q1lsByvQs7lsqbjcfm8K42WFeXCc7wlJ5ade3ZBn8qE4Zr3FVNilpBnw7kURENs2PNPC7VzKe7YYtq5ZHl6mfNqTEdM9KTbiOih3bwlFNace5iv76dXyq5Aypw/c0Vd9nnmzttDUl3paqpZolNw4MLZF2NB3cJhz3c47HNWto1BFmQsazo+5wMdc6juSPLJXYI159K+36SaMB4u2UVvo8W5ZC708HNjkrcVl877ENZMPlnfr+m4blMLnPEeEguQuCQIgiCOAkwojNWw2JFicWUrdG6Wojx6YCwAwOXILHJk2fTn2+PBnm/fgKd+/F9Qmlvg/MufEThtNdyvv55zn9acyyqExaZbkbBiPj5/phcjoItQDjz6e1OWz6uqhv7eJNweAU5X6aKXOaeRUP7KkUCmpUShbfJhbzCfeT3tXA7kFpcCJ8Dt1Y8bto3PfD9KdS6ZcLAXbgFsfS6HeYgwxTcFPMcbrkwuOI6zLIIrARNGopAJi01WMSyWHc/euoLlxjp4h3GONbZWEeWOQ+RFqJpqtLkwiwuzG5ZUk8Y4zWGxLD9X4ATLPCnkXAKZuWHOrbXPB3trD1ZluRiHcKTYQ/LtIq4Qcp5ztlTULXC/BF4wPdjIHJeJaXOrGrvo9UgeeCQP+mP9hutabKi4OcTXfM3dYubBQaDENjdjERKXBEEQRNVhwmushsWOlHzhpuVgfxLvEvXee16HB4KgXz9zn0sAWNW6Bss+/HX0v/AaYhddCuHwIbReeRVO+8X9EKPxvPmXw4mOUsgbFmvKuQQAr1cCBw4D/VaHKjiYgpLSEGgYmVPlySPegOKcy2LCLx15nEsWFjvQq597Q5MtLJYXIIocnG4eoaBVVJcaFptMqnjjpQGEQwqm1UzHB2dfjDmmNgsMsys93OJ3du1cXLPoY5Z2EEcDr+QFz/Fw8A5jLmacPTZvKulc6kWAMq5UZt9+hx/NnhYc23gczpx+Npo8LVmfLffYABBJ5xiaz6vG4YcsyOiJdkPTNEMwWsSIIGGSZxKaPc2W/ZoFYC5xOdM/C3XOekz2TcmMxTYf7DmXTsO5rJ64zNe/tBgclnPOPAQwV661n5Md9qDIfP04joPIi0gqSaP3aa5rwHIiWXVXUSh9jprHR84lQRAEQZQIZ1QznVh/dizFiioknO2CdVXrWpw78wLIggzJwcRl7mNpdfUI3nonhn59G9SaGpzw9xfwsWtvQs36NzP7NP3pr1RxFiDjXLKwWHMbEiDjkno8rN+jVVyaQ2JHAnMGczqXQuY8i+1zyTCHwuZzLgPOAFqdMyD2TEVdgwS3y1bQJ33NPV4ByYSGhKlSbr6Q5XxsXD+Ex/7ejb/e2Q5V1VDrDOSce2ZXutx8wWqxZvIpOHfmBZAEc86lLvzYda9k6DaQu0ANAJw29XSIvAhZkNHqnZzlKJf7fxe7H5kcQ+vv3iRPq2mMuvAwi0WJl3HG9LNx5vRzLJ/L5+IZ+/W24gOzP2gRqvb5YK8WW+OogSzIqLO1Q6kk9utbyoMus+CztvTIiLTh/m9jD4Ts10LkRYtzaQ8ZBjLXnPWsHMn/o2bn0iE4jfkVcJBzSRAEQRDDkln8TjDnsgp9Lu2LLrfkRkM6J0uS9GPYnUvroDjEL7sC7c+9iN1rlqC2rRczr/4IvP/1ZXChoGURx1cy5zLdiiRiy7nMhMXqXyVRhM8vYHAgBUXJ5L2VKy4LOZeypV1D7oVgPoeMhaw5hPwFhniOxyxlJfzJKZg01WFxh4GMQ2zkXYYU7NoWRjSiWARlMQWWDu7TxcmBPVG88kx/3u0kSyjw2CwQ4pE8xty297mc7J2KFk8LpvqmV/SY5uvik304berpOH/WhVmurWi6F5UIzWUiOWb0lrTOt+k1M4zvmZvmsTiXuZ04s+NnDqMtRFZIao5qsZfPuxInTlpZ1P5GgrkIVanht+ycZUG2VH61OJfD3DMWQms/tszLUDU1b6Eh/fj6gw8mLkfy8IbjOONzrDWJR/LAW6GCWaPJ2PzfhiAIgpiQUM7l8OQLYQUAWU47l/LwQlZrmYSH/vdTWPDs2zjnl4/AdedtkJ9+EsmbbwbSEX+VdC6dLh4cnwmLDaUL13hrWEVT/SvP8aitkxAcVDA0kDL6WLI2JMX0tcyFIS6DhcNi8zlh5twqnuONgj5uyY2+WG/eYj6MtkP6YrR1qhMcF7G8ZziXPv3YOzaH8MSDPZh/jAf+00vLuTy8P53nJXF44ck+rD49YIRLmzELIpEXdCHLA05nZZ3ASmFvRVIj12DlpJMqfhxZkI2cS5GXMK0mt3g1P4SpjLi0O5dW0TLFNzVrW71NSQAJJZF3boi8CK/shWwKLR4Ou/Cy51yax1AtzA95ch2/4Gd5ATP9s+ASXbbcRXPOZeH/R2bVzkZCiWflGRuVdNPhy3ZXFwCcInMu2Twa2bXSW9DEwHM8zpx+DjRow39oHEDikiAIgqg6Ezbnsgo9PO0Ffcw4Xbzl67D74TjsOOMELLj0C5j8P/8H58MPYNLVV+GsC1bhhesuqmjIIcdxcLl1EQMAoaEUwGVEH3OCmLg8tC+Ggb6kISYN57JxZOKS5XYODqSy3hOLyLk0b+MUnUabBp/swxTfFDS6m3N+jtF+SK+82TrVYRRhYrBFP7sWe97T9/3e1jAWr1CM1dhwzmUomEJ/bxINzTJq/AL27oyipzOB5tbsfDWzOyVAxG9+eBBOF49P/8c0BIdS6OlMQJR4TJ3hBM+P/u8lc7JYcZ1KtskxYxZ1uYQDw9xztBIPYYywWCW3c2kWKL3RHuP7s2ecZ6lsm4vzZn6gpP9/7GJoNMKmzUK4mL6Vdk6ecioAYP/gPuM1q3NZ+Jym+qYZ7YDMsDDYSFo45srdZM4lexAyUnF5lklQmqsBj3dIXBIEQRBVZ6JWiy2nR2Ex+7Tn4J1zcSN6uxNGfmOx+9EamxC87S7EH7kU3v/6Epb+4zXMfGM7wv9vEnDeJRUZN6CHxkZCChJxFaEhBR6PYLhqhhvDCaipS+ddmtqR9PWWFxbrD+ifG+zPbnEiWVy84XMunYLL0gPw9GlnDXv8trS4nDTFga6k9b4ZjezTzuWhdGgrNGDXlhimLLNulw/mWk6d4YTTzWPvzig62+I5xaX5nEMDwGB/CoP9wLaNITzy1y7EY7oz+5HPtGL2/NFf2DIxxxzjauVnmx3qQoVYLFWVK+hcRlmF0Rz7PGXKaXjx8PNY2nis8VoxhW7MVVKLwZ6POxoP/cyC3V6RtRTMYa3FVostBPt/gLmSuUSq/Z6MVJxXsqDaWIJyLgmCIIijxoR2Lit0boUE67RZLhy3srg+g7nyQRMXXoSu51/B9jNOgK97AC0f+xh8134MfGdHvt2UBKsY29ebhKJo8NZkL9B5jjfcyoE+3aXSNA193UnIDs5w90ql1hCshZ3LfItOq3OZWTwW46CFQwr6e5Ooa5TgdAl576HHm+4vGMsU9Nm3M4ZUUsva1kwyoeL1F/qx6a0gAGDKDCeaJ+lj7GzL0dgTVkHU350JFX7wnk7EYyqkdIj1YH/29RoN7NeZ56uzRDXf50LhmOZ5UglnTzDCYnM7lwAwwz8TV8y/GrNzVP+tJFIRvw/VxpzvXU5VWrPr6ZJ0ccmqAo8EJlCHEoP62HIIX7u4HKs5zaMFiUuCIAii6hhhsRPMubTmXFbuTyoTGeVcr3wOKNfQhMe+8VHc/71/Q2ryFDgffgCBNSvg/P3tgKrm2lXRMEe1u10XPCzfEsg4FSwsFsg4l5Gw7nYG6kfuojhdPGQHj8H+ZFYYodndyLeYZk4fx3GWBStfhLjc8PIAAGDWXD0sz3zfzKKJ5Vwy5i5yQ0ly6OnKn1MHAM893ofHH+jBto16AZGpM5yGW9nRFs/5GbMz1NeZua+ppAZJ5rBibS0AIBEfG3leWeKySktU2dLXsEAvREtBn/IdJhYWbvRGzOPWDZfbWwnMvwPV7GVZcAxcZcbAQpv1Sr8O4/uRwsJTB+OD6f3nCIsV7c4liUszJC4JgiCIqmOExU4w59Iq4Cp3bmy/5YQGmsdjr0ALAPtWLUbfS68jct3nwYWC8N3wJdR+4GwI27eN+JhMPLUd1hfQXp95gc7EpWCI0FhUFz193eWFxAL6+dbWiUjENaOokPnY5uqMuZCMpuqSTVgUXjhGIwpee34APA+sOUNvI5BvXpjFpdsr4JjjfODAo6sjAYETEA6lcO/tbTiwN2psN9CfxPoXByDJHOoaJUye5kBDs4zGFgk8D3TmE5cmp7i3U3cn69P5rCtPqUWgXn8/mSjvgUKlsIcIVitk0OJIFhA1HMcZ9zFfheGRHFfRdBd5NAUJx3HGHK9mL8tCCKbfkbLEpUlQMsFajtPMWraw8OxCOZcMci6tkLgkCIIgqs6EdS6rUNAHqIy4zLcfjuMy/7w1CH/nexh48nkkjz0O0ptvIHDGWnj+70YgGs2327w0NOkLsf279c/6TM4lEws8xxt9OhNpYZPJtyxvocsc0Vx5l42uJjS6G7NeZ7AFqcRLlsXicK7V6y8MIB5TsWxljRHua77eZqFqFtt1DRJmL3CD13h0dyTAcRzeenUIOzaH8darg8Z2z/+zF0pKw6rTAvjC12fgX788DTzPQRR5NDTLCA0pCIdyhQJnWsB0d+hO8hWfnIQPfKgJp55TZ1QcTowRcWl3iKvmXApm57KwCDFfw3LJav8xyr1H2e9jOfmO5WBxT8sKi5UhcAKcghMOwYEGVyMmeSePeH/m9i/62KqXczlRIXFJEARBHDWqVaRjtDC7UpU8NyZUKyYubX/uefCWsLTU0mUY+OczCP3v9wHZAfdPb0HdqSdBeuG5ko7X0KQvsjoO626aOeeSHU/g+IywSYdkGm1IynAuAcAfyJ93ec6M87Ia0JuReRluyY1aR63FVSkUFhuNKHj9hQHwAnDKWXXG61y+nEtf5prXN0rw+kTUNzgRCSuIhjRs3ajnVPZ0ZfIod++I6K7o6dnN1VlobL68y+k1MzDFOw3dnQnIDh5NLTKWr/FDknhI6XuQTIzNsNhqOZeSJSy2sKhh964S4sFecXa4VhnVJvMwZXScS/PvVSEHefj98Dh92plYM/kUcByH82d9ACdNWjXi/Xlkq7jMNTaRFyuekzuRmFh/5QmCIIgxyUStFgtUJ+TXyLmskLi0L9QneSehxTPJurEoIvrpz6Hv5TcQP+c8CPv3ofZDF8F33SfBd7QXdbz6tHPJUh4tOZemME3ZwcRl2rnsKT8sFijsXA53fziOw0WzL8W6aWcWHRb72vO6a3n8Sr9xbCC/cynLHERJH0ddo36tpkzXC4js3hY1RGJvl543mkjoVXf9dRIczuy50Nyq74NVkbVz6tR1OMZ9EpIJDY0tsuUasII+Y8W5FGxzvdy5nw+zEBguNJXdu0oIXfM88jv8JVd4rTRsPKOWc1nBvM9J3lbUu+rLHRIAwC26Lb8n+VxV5l7yHD/hHpqWC10NgiAIouoYonKC5VwC5pDfylGJgj7mz9sXP6dPOwvrpp2R8zPqlKkY+sO9GLz9j1BaJsF5/98QWHUCXL/6OZDMFm1mAvUSzOtwryUsNiMumbBh+X6VEpeFnMtikAQJPMdbFr75qsXG4ypef2EAgsDh5LOsriJvznc1XRCO44zQWHauM+foTsn+XZncyXhMNSrQAkBdfe7rMm+xXnzknfVDUNXcDiQLiW1qsS6S5THmXKopziJ0q9bn0tyKZBjHiY2hIn0uTfNgScPSsvdXLkIF8hPLO77pocsouae54Dke7iL6ZVaieNBEhcQlQRAEUXUmtHNZoRBWM2zhVe4+JUEa2eKR45C48CL0v/omIp/7Irh4DN7/+ToCp6+B9PKLeT8mCJwlb9KcY+hML8YcglPPGZQ4Iyy2rycJXgBqastbqBVyLgHgvS0h/PaWg3jy4R5DuOWCz9HjMBFXceRgxiHsaosjEVcxZ6Hb6LFpfN60vLJXEWatVlhxnZZJTixb4TMEactk/Tr1diWNMQbyiMumFgdmznWhvzeJ3dsjObfp7tTFZUOzdQFvOJfx0XcuVVXDPb/rxBMP9mD9SwOIxZQsJ7NSmH8fhnPM2L0v1A+zaEwVjGf4Z5W/vzJhInvUxCVfmbDYauCVfQAK9wB1krjMC4lLgiAIoupM1II+QOVcxlz75Mt0ete0noyTp5w64s9rXh/C3/5f9D//GhInnwbxvR2ovfQD8P3bx8G3t+X8TENzZrFqLujjd9TijGln4bimEwAAsoNHIqEiFlMQCSm668mXd76Fel1u3xTCX+5oR/uhOF59th9//M2RvPvJ5Vy+8EQffvejQ9j4xhAAoDdd4dYu2oDCvUpXnlKLY1f4jHxJgRMwdaYLZ3+gCdd8utVwI3u7E0Xlop54ci0A4LnHe7F3ZySrDcvQgH4t2LVhGM5lcvSdy81vB9F+UD/XrvYEdm4NVy3UkOUYchw3rDCopHM52TcVLZ4WnDn97DERRslao4ymsDNCc8dYziJrR1JofjjSLWMo3zKb0Z/dBEEQxITHEJcTT1tWJeeSq5Bgbfa0YIpvatnjUebNx+DfHsLgbXdBmdQK54P3o27VCXD9/CdAwlpMhlWMlWTOqArLmOybArekh5zJDg6ppIbersqExAK6KyhKHAb6sntdPvKXLqgacN6ljfAHRPR1JxGLKjn3Y8m55KztVZ58uAfRiGKE8jIH0owl59KWr7d0eQ0u+XALBMHqeNc1ODFnoQf16aJIPUU4l4AeGtvQLKP9UBx/+NURvLN+yPJ+KKiLS3OIMgBIDmto8miRSql49h+94DQeJ6yqAZB2sqskwOQSHDt27yrhTjkEB86ecR5ay6hkWklYSPBohqSy3zPZVn11tGHtSAo522zMlWhTM9EgcUkQBEFUnYkcFsuwhz+WQ6VakVQUjkPig5eg75U3Ebn+S0AyAe//fguBdashPfeMsRkTl94asaDgZs4ZE1A+f/mLNI7j0NgiIxpRLWGvibiKSFhBfaOElafUYtIUfWHY1ZG7yqqQQxwyERwJKXjhiT70duufZYV5rOMwF/QpfA9ZCC5baNen99fblcjkXBYQ3oLA4VNfnILTztWr1e7eYQ2PDQV1AW0OUQZgqtg7uuJy9/YIBvtTmLfQh9apTrjcPIKDCpK523eWDXMuixGXYgUL+ow1mGCWRqkVCWBqhzKGci6BTDuSQpV0WVjsaF6/scoY+qtFEARBTHQq6e6NFTKu7Njrc1kVvF6Ev3mjHip7yjqIu3ai9spLUPPhD0HYtdMIE7WLGTtM3LCwTZerMgv4GXP0Kpz7d2X6dIZDusBi+Y5Nk/SFYXc+cWkJixWRSKgYGkjB4xPA8cCWd4LoS4fF1ucQfuaHKMPdQ3sINHNCe7uThjtayLkEAJdbwOp1AfA8cGBP1OLahobS4tLuXI6Rgj4sJ3TuAh84jjPOteNQ4eJRI0UWZIi8CHc69LEQTPhPxNDHGocfAOCX/aM2hgZXIwLOujEn0FhYbKEeoA5BD4sVq1R4ajwzBv9qEQRBEBONauQljhWqIQRrHbWQBRlOYXTbFRRCmTsPg/c9iME774YyYyYcTz2BwKknYd6t38ba4zWsOSO7L6MZFjIbHNTFpcNVmes3Y7Z+zfbtzjh4kbAusNxMXKYrp3a153Mura1IWO5jy2QHJk1xIDSkoONIHLKDs/TyZJjnwnCOtr14k8stwOMV0NeTwEBvCm6vkLMNiR3ZwWPSVCfCQcXIBwX0sFjZwcHhsO5DFDnw/Oi3IjFEeqMEgRMMcdl2IPe9KReRF3HOjPOLykU2wmInYOjjkoaluHLBv6DWWfj3tJqcNvV0fGDWB0ft+PmodzXAJbrQbG/XZMIhsoI+Y0sYjwUmvLj8whe+gBUrVuBLX/rSaA+FIAjifc+YdOLKpBohv6ta1+DyeVeOuSf6WXAcEhdciL6X3kDo29+F5nLD87tf48r/OwvLXv9TwdYlrNflUFpcOiskLqfNcgEcsH93xsGLMOfSo4uFxklpcdmRO/bSXtCHhcDWN0qYnhavmgbUNcg5HetCOZf5tjVXqJ05zwVVARRFG9a1NMPGdmCP7tomkypiERVeX25xJMn8qDuXmfBivQ0MCwFu218d5xIA6l31Rl5dIab6pqHe1YC6CvVQHGs4xkCu41iMZnEIDnxo/lUFW8a40g/+RqtP6Fhm4v2Vt/HhD38YN91002gPgyAI4n3OxM25rEZYLDDOStw7HIh+7gvoe/0dRD/6SXCDg/B97QYETlsF+Zknc37EEJcDlRWXLreASZMdGOxPGcKFhcW6vZm8Rp7PHxZrbUUiGPmW9U2yIeAAXRDl/rw557KwuBRyON/nXtIIt8faD7MYps/WQ/WYuAyzfMsc7iqgu8eJhJpV/Oho0teTBM/rbWQETkBNrQhBAA4fSOTt3VlJ9u2KYNu7IQSHsisMz/TPwgWzLhwTIowYWzR7WnBc8wlYVL94tIcy5pjw4nLlypXweIaPqycIgiCqR7UE2FiAnRM/8f+kDovW2IjQ//sJ+p95WW9dsmsn/FdfDv9Vl0LYttWyLeuzmBGXlctdYnmX61/qA5AJi2U5l6LIob5JRmhIMd4zY7SgSAt8w7lskDBtZkZc5qoUCxRuRZK9rbWgDwB4fSIuuroJgsBZxOxwTJupu7ZMXBr5lgWcS03VHdLRIBZTEBrS29AIAgeBF8DzHAJ1MhIxDR1HqlTVJ000ouCPvz6Cv97Zjh//zz50tFX3eMTEged4LGlYCr+jdrSHMuYY1b+EGzZswHXXXYe1a9di/vz5eO6557K2ufvuu3H66adjyZIluOKKK7Bp06ZRGClBEARRDhO5WiwTlRNROI8UZfExeuuSP9yL1MxZkJ99GoF1q+H7wmfAHzkMIONcMsfIWUReYbEsXV4DUeLw2P3tePPVgSznEjDnXWYLCpG35kGyHMb6Jhluj4CmdFhtfY5KsebP6d8XGxZrPf/5x3jx1e/PwvLVxRdccbkF1DdIGOxP6cLNaEOSx7k0KsaOjrhk+ZbMAWYCu6lFF9R734vk/mCFGOhLQU2nnKoqsG9ndY9HEO8HRjXmJhKJYP78+bj00ktx/fXXZ73/2GOP4fvf/z5uvPFGHHvssbjrrrtw7bXX4vHHH0ddnV5y+6KLLsq57/vvvx+CUNkKTuU2d640bDxjbVzExIDmF1FJBJ4DxwE8z4PnuQk1v3ieB8cBQvrcCAaH1PkXYPDMs+C88za4brkJznvvhuPBvyP2r9fBu+jjAAA1bRy6PULFrt/kaU58+F8n40+/PYInHuzBomP1/DqvTzSO0TrNia0bQ3jp6X7MmOO2HFsURHCc3maA5zn0dSchCHolU57ncMzxPrzweB+mz3blHbPA81A1FeIw80JKH0sUss/f4Sx9HdM0SUZvdxK9XUlDVPtqxJxjYO6xktJGZe729+rit6FJBs9zEHn9WrS0OtEJYO/OKE45u3rjYuK7tk7EQF8KHYfjRV+H0f4/bGgwBY7T7y0x8Rjt+VUOozojTz31VJx6av5qXXfeeSeuvPJKXHbZZQCAG2+8Ec8//zweeOABfOpTnwIAPPTQQ0dlrKLIo75++OTv0SAQoLBfonrQ/CIqga/bhSjvRKDWY/m/dCLMr5oOFxQphlq/Z8z+nRh1vnYD8LlPAz/8Ibgf/Qiun/8EF3h/D3Xux/HCvCuQEhyY1OpDbV3limPUr/Hiucf7cHBvBL1duohonexDfb0bAHDuRS5seTuEPTsiWP9CEB+4vNX4rCvJw9vmRI3DA5fTiXBIQUurE42NPgDAJVd58IFLpxQUfzU+N1JqCnUBX8F54Q/MwSDXjQUNC1DvKX/+TJ3hxfZNYURDPJSkPr6W1txz0+ORAMTgdrtQX+8s+9ilEg0FAQDTZujXqLbbg4QYRr3fiaBHwMF9Ufh8bsNhrTRKUg8fPnZ5AC882Y3O9mTJv8Oj8X/Y/j1h/Px7+1Hjl/DtWxYVHTVx5GAELz3TgwsunQSff4wXCyMAjM+/kWP2cUcikcDWrVvxmc98xniN53msXr0aGzduPOrjSaVUDA1Fh9/wKMLzHAIBD/r7w0cl6Z14f0Hzi6gkoVAcoXAMg4NR9EqhCTW/QqE4QrEYhhxR9PaGRns4YxgB+NJXwV31Mbhv/h4cd/8Bl77zE5z23r14ZOlnEAnPhKJVrv0Ez3Noanbg4N4IDh/Qwx2TqTh6ezOtN674eAt+/r39eOXZHqxaV2O8nlJTiIQTcKkadr83AACorRey7m8onP/4kXACCSWBocEYep2F58Ui73FADOiNlT9/fH5daOzbPYREXD9Xjk/lnJscr7/f3RmC5MguaFMtImEFf/5dGwb69LBYp0dFb28I4VACoXAMmiRixhwXtr0bwjtvdGPOwuossNuP6Dcw0MDDHxDR2RZDe9uQEbJdiNH6P6ynM4Hf/fgg4jEV3bE49u0ZgD9QnFD854MdeGf9EA7sDeHjn58KURx/rtj7hbH6N7KmxgVJKhxRMWbFZX9/PxRFQUNDg+X1+vp6HDhwoOj9/Nu//Rs2bdqEaDSKU045BbfeeisWLFgwojGNpZtrRlW1MTs2YvxD84uoBJqqt27QNOv/pRNifmkcNE3/Ou7P5WjQ3ILgLT/D26s/Bvf/3Yhlh5/Hx17/NpLn3ofwt25Ect2ZQIXyVxtb9CqfLK/O5eEt9yjQIMHjExEMppBKqZlQNAhYN/VMuEQXDm3RczLrGuXS7m96XvDgj+q8qG/ShUZXRybE0+0Vco5BlHQRFYurR3WMe94L4+DezAP7QL0EVdXAg4em6bnZM+fq4nL/nihmzXdXZRyD/Zmc1JZ0heG2QzEE6iX4/MUtkY/m/2GapuHhv3YiGlHh8vCIhlUc2h8reqw9XfrDm4N7Y3jyoW6ce0ljRcf3j791Yd+uKD7++cl5i0gRpTEe/0aOu9J2mqaVVDTh1ltvxeuvv453330XL7744oiFJUEQBDFyJnJBH+PcqKBPSaTmzsfvTrkFt5x1O/Y1Hwtp2xbUXnUZaj94LqRXX67IMZpaMi0kZAcPUcxe9vhqBGhqpl0Jo9U7GQFnXaaYT57KsPlgBXq4o9zbtaFZBji9zUrIaEWSe6Evp3Muk3E15/vVgvUddTh5nPXBBtTW6deWFT/iOV4/DwD9vdXrdxlM91itqRUxaYo+V/5yRzt+9D/70HYoVrXjjpQdm8PYvyuKhmYZp5+v9948crD4cfZ1621fOA7Y9m5loywO7Ytiw8uD6OlM4LG/dVd038T4YsyKy0AgAEEQ0NPTY3m9r68vy80kCIIgxjZMdg3XlmE8wk3gHp7VRHbo12tv4zLcfsUfMPj7PyO1YCGk9a+h9uLz4b/sgxDffKOsYzS2ZPIIPd7coVzM9Qnl6HMImNqQlCgu2cOG4fpcVhpZ5o0CNf09SYDLf+4SqxabKCwuuzriOVu2jBQm5M++qAFrTg8YrwuGuBSMUM/B/uqJyyEmLv0iJk11GGPTNGDTm8GqHXekPPtYLwDgnIsbMDXdEqetSHEZiykIhxQEGiTUNUgYGkghGqnMPdU0DY8/qK/XJZnDtndDFRevE4lQMIUnH+o2wsInGmP2r7wsy1i8eDFeffVV4zVVVfHaa69h2bJlozcwgiAIomQmsgAz+lxOQOFcTSRTkRanS0Di/A+g/7lXMfSb25GaNRvyS88jcP6ZqPnwhyBufndExzA7l+48Aou16QgO5V5oZ5zL0ooN5WsxcjRoTLt+kbCCGr8IQcj9e8dyC5OJ/GF3kbCC3/zwIH74zb1oP1wZN48JVbfHek8EPtPzs6ZWBDi9XUi1GBpIQXZwcDh5TJ7mBC+khTgHbN8UgqaNnXDEaERBd0cCdY0S5i70oLFZhiRzaDsULypsss80j5ta9d+Lro7K5Dgf3h/DkQMxtExx4NJrWgAAm98ee+J8LKCqGu7/UydefW4AD9zdOabmWKUY1b+E4XAY27dvx/bt2wEAhw8fxvbt29Hdrdvpn/jEJ3DvvffigQcewJ49e/A///M/iMViuOSSS0Zz2ARBEESJTOTQ0YksnKuJuWiK05X+XhAQv/RD6H95A4Z+9mso06bD8dQTCJxxMmo++REIO7aXdAyPV4Tbw6e/z+NcpkNGWYikGU3T0NuVhOzg8vaKzAfrf3q0nUsgk2vKC8D5l+XPq2OtSAo5l33dSaiKnjd9588PVyRM1RCXtnsimMJiRZGDr0ZEcDAFRan8AjweVxGPqfD5RXAcB69PxKe+OBXX/ec0TJ3hTOdfZvdAHS0623Uh2JIWhoLAYdIUB+Ix1XgAUgi2TV2DhOZ0n9auNv381r80gJu+vgd/u6sdHW2ln3N/2oGbPc+NGXNcln1XkmRCrcpcOJq88dKg0b/1wJ7omHTIy2VUxeWWLVtw8cUX4+KLLwYAfPe738XFF1+Me++9FwBw/vnn46tf/Sp+9rOf4aKLLsL27dtx2223GT0uCYIgiPHBRBZg/AQWztVElnOIS4YoIn7Vh9H36lsI3vxjKJNa4Xj0IQROPQm+6z4FYc+uoo9Tl3Yc7S4Zo1BYbCioIBFXUdcol3x/M87l0Z8Xi5d5MWmqA1d9shULluRvrcHuQSHncsgkuhNxDW+9Nlj2+FjOpcd2T1jOpZC+drV1IjRNdxgrTXAgk2/JmDzNCZ9fxMKl+jUbS6GdTKw1Tco46JOn6WHfxYTG9pnCu5sm6QK1sz0BRdHw4pN9iIZVbHknhMf+1lXy2IKD6X6qfgEut+469/Ukhw23LgVF0fDbWw7h9784XLF9Hm1UVcMLT/aC54HzLtUf+jxwdydu+fZeHNg7tjpSlMOolnJauXIl3nvvvYLbXHPNNbjmmmuO0ogIgiCIapBxLkd5IFXAEM4UFlsSLOcS0MNic28kI/bxTyF21Yfh+sMdcP/kFjjvvw+OB/+O+MWXIfKl/4Qyv3ChvvpGCYf3x/I6l4XCYvtGWMwHyMwHfhScy8nTnPj0V6YNux1zLpMFRABzdFes9WPDK4N4d0MQp59fX1Zz90hYP162c2kNJfYHRBzap+ddBuor25fRnG9pZ+FSL558qAc7t4Zx1oVjo85HZ7suLptbM6HerOhRX0/xzmV9kwx/QD/nrvY4dmwOIRxUMGeBGwf2RtFxJFFy8Uz2YIYVjmpulTE0kEJ3RwL9PUnMnOeCx1ue5DiwJ4qezgR4Xhdp5cy/0eLIgRiiYRWz5rmw8pRaqKqGN18ZRG93EhteHsD0Wa7RHmJFoL+EBEEQxFFjIjqXE7kSbjUxO5cO5zDLEacT0X/7LHo3bELom9+BVlcH5/33IXDKStR86qMQtmzO+9GGJn0B7vEVHxYbj6t48M+deOoRvUhJqfmWwOjmXBaLbBT0Gd65nDLDiVnz3AgOpoywvpESDinguGzH2lzQBwBq00V9cuVd3nt7G+69vW3EYzBXirUTqNeL3ugVd49e/89cHN4fw6F9UXSlw2LNzmVtnT72YooeGWGxjRIC9RJEiUNnWwJvvqo70SeeXIumSQ4k4mrJea7sWrIogOa0M3rf79vxtz90VKR67NaNevioqgLRyNGtblwpdm3Xf2/mLtL7tq46LYBP/8c0iBKHXdsiSKXGd8gvY+z+j0cQBEFMINLCawJal+NBRIxFRIkzpkVWWGw+PB5Er/939G7YjNCN34Pa2ATHIw+i7vQ1qPnoVRA3vp31keVrarHqtFosO7Em5y6ZuGTuSyyq4I+/PoKNbwzh8H493HAkziWbD6ORc1kskqN457LGL2LZiT4AwGsvDIy4EImmaYiEFbg8Qpb7xAr6GM5lHvHU15PAjs1h7NgSHnEOHgu1zdcjcuZc3UXat0sPVzy0L4qnHuk5qj0H3359ELf/9BDu/MVhtB+OQ5I5i4PLKuoO9A8vBvu6ExAlDjV+ETzPoalFRjymYt/OKPwBEXMWutHcqgtX5pIWC3P9fYZzqYtLJlLZNWRs3RjEbT8+hO2bigs7VhQN298NGz/nq+w81tm1TT+HuQs9xmuyg8fs+W7EYyr27y7voc1Ygf4SEgRBEFVnIudcYkKfW/Xgec7os5g3LDYfHg+in/k8+jZsQvB7N+s5mY8/hsDZp6Hm6ssgblif2dQr4JyLG/PmXHp8Ajgus0B+6uEeHN4fw5TpTpz5gXocu8JXMG8x7/mNg4cOkpR2Lgv0uRwyuVILl3hR1yBhz44IXnm2f0THTMQ1KCkt5/0wci55m3NpE087t6YX4RoQDo6sncZgjpxLMzPnuQEA+3ZFEIsquP2nh/HKM/04fODo9L/cvyeKh+/tgqYBqgKkkhoaW2SLIGfhrYPDOI1d7XFEIyrqGyXj861TncY+Lr2mBTzPGY5jZ1tpVWSDabHnS4eYN7Vanf6G5owgfvaxXtz3+w4cPhDD3/7QgV3bwwVborz9+iDu+V2bpRVOcByKy+BgCu2H4wjUS6hvsj6sWrBEF5s7NodzfXTcMXb/xyMIgiAmDBM5dDSTcznxzq3asIqxRTuXdlwuxK69Dn1vvIvgD38CZeo0OJ55CoELzoLv0guBZ58FhnHYeJ6DxycgNJTC0EAKG98IwuHk8eFPt2LtmXW45MMtw4ft5tpvel7w/Nh1Losp6GMUvvGLkGQeV3xyEkSJwzOP9o6ociwTCblyYI2wWNicS1s/QOYAARhx2Gp/Ok8xXy4nq3q6b2cUTz/aa7wei2YLcUXR8Njfu/CL7x/Az7+3H3095bf4YKHHp51bZwhxc74loD8c8PgEDA4kCzqq7EHAsSsy7v268+tx6Uea8dmvTsf02a70/q1VZIslOJiC08Ub7YUammSYp705jPXdDUMAB6w8pRZKSsPdv23DTV/fiy05Wpf09STxyF+6sHuHfi0aW/TxhfK0DRrLHNiju7ezF7iz/lbMW+wBxwE7NoeOqjNeLUhcEgRBEFWHCbCx7OKMFKPPJf1JLRm2GB2xuGQ4HIh97JPoe/0dBH/ySygzZkJ+8XngjDPgP3sd5EceApT8C1JfjQhV1V0VRdGwfI0fLnd5otBwLsfwvGBhsYWqegaHUnA4eeNBQEurA4uXeaFpGFET+EyPy+zrYojLAs5lPK5i/+5MmOVIhUZfb2Fx6fWJaJoko783iTdfyVTIjecQlwf2RPHGS4Po6UygtyuJP/66rWx3radTF6gz57lx2nl6l4RcBV9qAyJUJb+bN9ifxOa3gnC6eJywym+87vEKWHpCDRymlkBGFdkSxGU8piKZ0CzhxYLAGS1TAKu7HAkrcLl5nHdpI867tBEtkx2ABss9Zax/cQCaBpx0ai3+/dszsHyNPv7xGBbL7k9dQ/Z883hFzJjjQmhIMUToeGbs/o9HEARBTBjeF30uJ+C5VZtMWGyFliOShNi/fERvYfKb24GlSyG+8xb8n/oIAmuWw/nH3wOx7LBGVjF24xtDEAQOJ51SW/ZQBF5fbEv8qBbmL8hwzmUspiAR17JCR5mTWyicNh/hUO4elwAg8FZBLjt4uDw8BvtSxrH27YpY8ixH4lwqiobBviS8NYKlsJSd41bWQJI5zJjjwuz5ephsLJYtZnvTbT5OPiuARcd60d+bxPOP92ZtVwrdaXHZ2CzjxLW1+MI3pmPpcl/Wdv46XazkC41967UhqKpe7Xc4B97t0duI9HYnC+bhmmE5ufY+sJd8uAXXXNeKmloRkYgCVdWQTOhC1J1+cLPylFpcck0zgEyvTEY0ouCd9YMQJQ4nnxVAbUAywm5DIwyFLpZUSsODf+7Ezq2VC1PNPFTJ/dBqyQn6vd2cw8Edb5C4JAiCIKrORM65HM1+huOdTFhshUNHRRGJy68ANm7E0F/uR2LNyRD37oHvK19A3fIlcP3sx+CGMm6U2b059dy6vEVeSuHYxmVY0bIStc5A2fuqFqwVST7nMjjA+hdar4dRZTZeeggf63GZa5HtFHRnzilmXK85CzxQFM2oasrCRadM13MGR+JcDvanoKq5XSQzq04L4Os3z8HHPz8F89N5cbmcS9ayprFFxjkX661L2g+XFlpqRlE09HYn4PYKxnWqa5Bztt+orWPubm4XmTlhxxyfLUxz0TRJhqbpPTCLIZNvaZ0jjS0y5izw6FWaNV1cRSLZDxYC6fHbQ6y3bwohEdewdLnPaGPi9YmWYwJ6gah7b2/DXb86XLF82EP7otj4xhBee2FkecW5MMRlnpZIC5d6IQgctr0bGvdVY0lcEgRBEEeNiSguJ3I+abWZNMUBp5s3WipUHI5D8oyzMPjAP9D/z2cQv+CD4Lu74P3ut1F33GJ4vvMt8J0dmDJDFyrHr6rByWdWRgwGnHVYWL+oIvuqFkzc53MgM70grQti43NFultmCuVctnon4/RpZ2Jh3WLjtZPPCgCcnjeYTGRCYplYGolz2d+rC6dSemc6065fLJZDXPawfqgyampFyA4e3R2JEVfU7e9NQlV013I4agsU9VEUDUcOxuBw8kXtCwCmzWRVcourXJpPXDLYfQ6HFERC6f6mpgcLsoOHxytgsC9lyTdk7mTrFKfxmteo7Gwq7jOoYMfmMPbtjOK2Hx/CbT85hB2bi6tCmw8mdFm+cSUwervmcS5dbgFzF7kRi6jY8974LuxD4pIgCIKoOu+HsNiJ2Gal2px3aSO+cuPMyjuXOUidsAJDd/4J/a+8ieg1HwMXj8H9i5+g7oRjcOZ9/42vXBrEhVc0Tcg5mg9J4sDxet5cLuz9Cxkyy9UcQVhsIeeS4zhM8U2FJGREX1OLA4uO9SIcVPDyM/3oak8gUC+V5VwyMTicc2nGkQ7dznWtjB6SDRI4jkNji4xkQjMq0pYKy7c0V1nNByt6lMu57GyLI5XUMHm6M6frmYvZC/Tw3z07ihSXg8zdzlONmYnLoJI3NDRQL0FRNGuv2fR1NofystBbc84lC0lubJFR1yDh8P4Y7r29Ha8821+WuAeAocHKhd8WmvcMVkSqp7P0XOaxBIlLgiAIouq8L8Ji6U9qyXAcZ7TDOFooc+Yi9KOfo+/NzYh8/t+hOV1w/fXPmHX5aai97ELIT/xT79T+PoDjODidfF5xOWTqcWlmOMezEOFhwgNzccrZekGbF57sAwDMmOvKCI2ROJesUmwJ4tLp1I9nrxarqhr6e5JwewSjCBRzCbuLDC21Y863HA5W9CiXc3lonx4mOnWGM+u9fEya4oDbI+DgvmjeeWGGCb18oeQW5zKfuGzIDo3NJS5lmYfDyRttg4CMsF90rBfXf306rvzkJEgyh6ce7im6OE40ouDgvsy27OFDIq7mzLEdCZmw2Pz/34mi/t5Ie7eOFegvIUEQBFF1Jnkmwe/wj+n8s5FCBX3GJ2rLJIS/9R30bdym98qcMRPyyy/C/5ErEVh9Apy33wqEyguvGw84XDySCS3ngpa1APHVHp2cy3y0tDr0XoDpw82c49Jz+TBC53KYSrG5yOdcDg2koCiaxQVlLTOYSCyVjHM5vLjMOJc5xOV+XTCVIi55nsOs+S6oCrBv9/DuZaagTx5xmc6TjJjFpe3BAguL7+8t7FzqxxGQiKvGgw3mXNY36a7xwqVenHqO/jCi7VBxea//uK8Ld/z0MNoO6WKcPXwAMnnH5RIJK+AFa363HUHU/4YolHNJEARBEIWZVTsHF825FC4xu5T+uIdyLsc1mten98p87W0M3nUPEqvX6sV//vs/UH/cIj0v88jh0R5m1WCOXC6X6sBefbFtznsDKpNzWYpzCWTcSwCYMccNSeLhdPFlOZelhMUaOZdRq9hg4qauMYe47Ki+c+l0CnC6eAz0JbPCQA/v1+/f5OnFi0tAL6IEFBcay0St3d1mWHMuc7ehYSJ/OOcSyOR2svve25XJd2UwUc7uTSHicRU7tug5jgfT873PNI6hwfLzLjVNQySswO0RCj6EFNKXkJxLgiAIgngfU++sh8iL8Dv8w29MjF0EAYnzLsDgg4+h/+kXEfvQVeAiYT0vc/kS+D79CYgb1gMjzOMaqzgM0ZTtyPV0JtDQLGe1Iikn55KJhlLbz7ROdeKUs+uw6rRaYzxen4BEXEO8hHFomoa+niRkB1+Se5rvOmXEjUlcpsVNZ3scO7eFEU1XSU2lVPz1znb89paDeQVEcCiF9sNxuL1C1nXPR22dhFRSM4Q7oLdMGehLob5RKrln6+wFboAD3tsSLpi3qKoaOtvicDh5+AO5x+o2ci5TBXMuAWvf1LzOZdqxZqGxfcy5NF3/+gb9+vf1DJ+7uGtbGKmkfo7th2OIRhTEIpl7HKyAuIxFVWjq8G69IJBzSRAEQRDve+YG5uGqBR+G31E72kMhKkRq6TIEf3kr+t7agvC//we0mho4H/g7AhechdozT4HzT3cBkeIKnox12OI9bsst27tTP79Z87KjDcrJuWSioVB/yXycfn49zrm40fiZhWKGS3AvuzsSSCY0NDZLJYWyZ66T9ZwzxYEyzpk/IEKSObQdjOPPt7bhuX/2QlU1/O2uDmx7N4T2Q3EM5Sn2s+nNIDQVWHqCr+jxMWE3YMq7ZOGc+URfIXw1IqbOcGJoIFUwtLS3K4lkQkPLZEfegkFF5VzmcC7Z3JId9rBYVjFWD0fu603C4xMsRcFq60WAy7SIKcS2dzOh722H4lktUfLdp1Io1q03wmLJuSQIgiCI9zesqA8xsVBbJiHytW+h953tCN7yM6QWL4G0+V34vnw96o9dAM83/xv83j2jPcyyYA6i3ZEzxOV8d9Znysm5jMdUyA6+6OqlhfCOIO9y+yZdTMw/xlvSsXieg+zgs65TT1d2WCzPc2hqyYjNrvYEdu+IYMfmTIsJc8VTAOjqiGP7phDeWT8EADjupJqix8Z6XQ72Z4dzjrRn68Kl+vXZ/FYQz/2z1wixNdN+WH9t0hRH1nsMlhsbLpBzWVMrgufzhcVa5wm75+GggsF+vWWL2bUEAEni4a8VMTiQQjKZ/wFINKJg17YwJJmDt0ZAT2cCnW26mGZFhnq7E7j/Tx3YvX3k7UHyiWo7IjmXBEEQBEEQ7wPcbsQ+8nH0P/sy+h95ErFLL9dDZn/7S9SfdBz8V12qV5lVKte64GiRy5HTNA17d0bA8Zn2CGYkFhZbYs6lpukhrHbBMFKYixUcKt5d2r5JFwlMPJWC08UjHleNfoyapveR5HlYxCQAnHdpE865uAEcr1c07WqzOoBBmyC+/4+d+Msd7ejpTKB1mgPNk/ILNjs5nUtW6bfI0Fo7C5bo1+f1FwbwwhN9ePofPVnbtB/Wz2nS1ALi0pMr59Iqsnieg7dGRCioGGG48ZgKQeSMCqoMV/qzkbCSM9+SUd8oARqynEiGpml4+N5OJBMalhzvw5QZTmhaxsmcPkuf9+9uCGLTm0H86bdtec9xOIoVl+RcEgRBEARBvJ/gOKRWnoTgb+5A7zvbEf7qN6C0Tob87NPwf+RK1K1cBtfPfgyut3e0R1o0zhxVUA/ujSE0pGDqDKdR8MdMxrksTVwmkxo0tXDFzFIwnMtgcaK+ryeJjiNxNDTLRtGdUnA4eUDLiOre7gTCQQUtkx2QbGG+U2Y4seq0AGoDEoKDKbSlhRgT63bnkokgp5vHyWfWoRRYtdXB/mxx6ctTxXU46hokNLdmrlEoR+6hIS4LOJeSzEN2cOk+lyo4PjuPEtB7rkLLCCv9IUT2dkygRSOq0YbE7lzq40/nXeYJjX3lmX5s3xRGoF7C2Rc1GEWrWBGj6bMrV3wuElItY8+HkXM5/p5RWSBxSRAEQRAEUSJaUxMiX74BfW9uxuCddyNx8mkQDh6A97vfRv2x8+H79CcgvfTCmO+ZaRSqMYnLDa8MAACOW5k7NDOTc1maw5KvSMtIMeffFcOOzbortXCpZ0THM4R4OjR2/27dBZ1SoNUHC5dlomXmXF205HJbHU4eX/3e7JJdVX8guyBOuWGxAHDmhQ2Yf4x+rZirxlBVDe2H4xAlDg1NhYW6xysiHlMRHEzB5RZyhkSLkv5aKqkhldKQSmo554nZuRwc0M+XhQWbYde9N4e4fPW5fjz9aC9EicOHPt4Cp0tAa9p9VVU9T3TeYg94kxZsmlT6wwgGK+hUrHOZorBYgiAIgiCI9ymiiMQFF2Lw7w+j75U3Ebn209CcLjgf+DtqL7sQgVXH625mV9dojzQnRiuStGAKBVPY9m4IThePxcf5cn5GEDgIIleyc1lxcVmic8n6R06bOTJXyi7E9+/RxWWhVh+s3Uk8pkKSOUyepm9rzxNNJlSjCm+pMOfSLC6ZeB1pWCwAzF3owZWfnAQgOye3vzeJeEwtWMyHYRZm+QSWaBJWbF7ldC7d+mvRcCbMluV1mmFuZl+PtR1Jd0cCTz7UA1Hi8C//2orWqfr9mDbbhdkL3DjupBpcd8M0eLyCxfUtJ1TVCAf2Fp73VC2WIAiCIAiCMFDmzkP4ez9E76b3MPTz3yC5chXEfXt1N3PZAtR84hpIzz49ptxMh8sqmDa+MQRVAZadWFOwoqvs4ErOuTxazuWRgzHc+fPDRtgmg7l5NSOooApkel0yIb5vV9q5LCAuLS0ymmTDSTQ7l4qiQVX1QjQjwe0RIMmcNSx2oHznEmCFjLisdi9MyA7nWgLAkuMzDynsPS4ZYvrcU0ktM09yhE+ztiqRiIJw+qGCJ0cV1nxhse+sHwQAnHp2HWbNyxSrkmUeH7luMi66qtkQlWZhnqsPbLFQziVBEARBEAQxctxuxK/8Fww88gT6Xt6AyKc/B62mBo5/PIzaqy5F3YqlcN9yE/j2kRcJqRQZwaQvgA/t0yuALl5WODRTlnkkE5pR3AYADu+P4bl/9lr6LZrJ115ipHhrcjuXb702iAN7ovjbXe0Wd5W1lagZoeAyC/FUUsXhA1G4PbzhTuaizlRspqFJMgnizJiTaZEuySNzLjmOgz8gIRZVEUu3lBkaVMBxuYVXqTicPOIx1dLzkuURFrP/ecdkwpDFPALacC6Tmb6lhcJioxEV4QLOpa82e24oioZ3NwTB8frDk+FYuNSr551yR0lcCiQuCYIgCIIgiAIo8+Yj/L/fR++772Hot3cgsfYUCIcOwnPT/6HuuEWoufoyOB78OxDLbvVwNLA7l10dehhh0zDVSplATCYylVMf+HMHXniiD7+66YDRpsJMpZ1Lt0cAx2WHmDKB3NudxNOPZqqcBgdTkGTOyJ0sFXMIcXdHAqmUhtZpzoL9KM3Cs6FJhtvDgxesziW7hiN1LgGgNu3GDvaloKoaQsEUvDWCIVjKweHgoal6QSZGOJS7rUguZJk3RGjH4dx9M42cy5RWcJ6Iou6kRsMKwiFdQDM30wy7luZWJLu2hREOKZi70FOUo7t6XQCfuWE6autEJBPaiEVf8X0u9a8UFksQBEEQBEEUxuFA/JLLMXj/o+h7/W1Erv8StPoGOJ55CjX/9gnUL5kH739+CeKbbwDa0VtcOkyhnom4iv7eJGrrxGEFYKaoj754P3wght6uJESJQ2hIwcvP9Gd9ptLikuc5eHwCwsGU4aBGIwq6OxLw+fVQ0XfWD0FVNSQTKqIRFT6/WFAMFiIjxBUE045YbSC/awnoxWZYG9yGZhkcx8HrExEOKYZYYQJopM4lAPhZ3mV/EuGgAk0tPySWkatdTbFuHOOyj7YAAM74QH3O95m4TCbVgmGxgC4mY1EV4aACtyd3gSBB4CAInCHcAWD3dr2o0pITcucS58Nhm+vDEQkrxnxUVQ39vfqDhKKdSxKXBEEQBEEQRLEos+Yg/M0b0fvuDgze/VfEPngJuGgErrtuR+D8MxFYsxyun94Cvu1I1cfiNBWp6e5MANrwriUAo/gMy7vcuH4IALBirR9AxtkyU2lxCQBenwhV1cMkAV3kAsCMOW60TnUimdDQ05nI5FuWIbjMOZfhoL6/XCGZZkSRMwRoY7MeIuurEQANRs6g4VwWyHEdjppa/RjBQSVTKXaEbUjsOFxpxzaXuBymSA1j1jw3vn7zbJywyp/zfUtY7DDzhIXGKopW8PpLslVcsrnqqyktVDiXuM5HR1scN39jL9a/OAAA2LU9jOBgCjPmuArmMAOZa0BhsQRBEARBEETpiCISZ52L4G13oXfzTgRv+hGSx58AcfcueP/vRtQdtwj+Ky6G4+9/BSKRqgzBYepz2dWuhyw2FdED0tzrMplQseWdEASRw4o1uniIRbIX4tURlyy3ThdULCR26kwnJk/TRfKRg/FMvmUZ1VPNIcRGvl8RYaEr1vqxYIkHDWlxyfIuWWgsEz2SNHLn0mkSQKzHZTnnaianc8nO31P8MQqJ52LDYoFMxVigcKipKHGWsFjW4kMUS5t/JYnLw3FAA3Zs1os9vfGiXkDoxJNrh/0sOZcEQRAEQRBERdACdYh94loMPP6cXgTo+i9BbW6B/PyzqPnMtXrY7Bc/C+mF5yraZV2WeYDTW010tafzLVuLEJemXpedbQnEYypmz3cbPQdZbz8zw4U7jgR7gZxD+6MAgKkzXGhNt/1oOxQzBFc5oaJmAZcpJlNc7t5Vn2o1xIPPVuW2Es6lWQBVoselZd+OAmGxRTqXw8EEn9m5zFf4yWUKLy0k7iVZzxVlTiATbfaencORS1wmEyoe/ksnDu2LWrZl8/7IwRi62uPY814E/oBo9AsthNHnkpxLgiAIgiAIolIo8+Yj/M0b0ffONgzcez9il1wGLpmA654/ofZDF6Hu2AXwfOO/IL79Ztn5mTzPweHg085lccV8AFNYbFxFKKSLGX9A1Pfn5LP6IgIoWAV0pLCKsR1H4vj9Lw9j384oZAePpkmy0VPyyMFYhZxL/Vgs3w8YWTVWNuZgWhBXIufSLICY0C41/LOYfTNKzbkcjpKcy2LFJcvjTDvDGeeyfHG5c1sYb782hCce7LFsy65LKqnhyYf0905Y7S+qsBLPc+A4QEkNu+mYhsQlQRAEQRDEWEQQkDz9TAR/eyd6t+7G0M9+jcRpp4Pv6Yb71l8jcO7pqFu5DO4ffBfCrp0jPozTxSMRV9HRFgfH6y0zhsNwLhMZocVCVJ0uXaya25QA1cu5BIDn/tmL/buiqK0XccmHmyEIHGrrRLg8PDqPJNCf7stYVs5lOiw2GlEQTgtq7zA5l7lgjmIlnUs2tlhUMdyzSgm/XOIqHFLAC5W7l0wIppKqUTgnb86lqTpsIeeYXU92fUfuXGbnnHa26Q9iDh+Iobc7YbweDWe22b0jXUDo+OILCAkiRzmXBEEQBEEQRHXRfDWIX/VhDP71QfRu2ong925G8oTlEPbvg+dHN6NuzXLUnnEyXL/6ecmFgNgiPhxUUN8oF5WTlsm51Ixegh6vvtBni3+7e1kVcZl251LpNhmfuH4KFi7Ve3RyHIfJU51QFM2oFFqOc+lPf3awP1WWc8nCYlmobqYVSQWcy7hqiEtnjhYdZe07ff80TUMkrKRbwZTf6gQosaCPKeeycFhspgIt27f5WMVivraMjiOZliqb3gwa39vDwafMcCJQP/zDGoYgcJRzSRAEQRAEQRw9tKYmxK69DgP/fBa96zci/NVvIDV3HqTN78L7P1/XCwF98Fw4b/sN+I72Yfdn7vs4Z4G7qDFYnUtr5VSnO+PwmalOWGxGLDZNkuGvtS7kp85yAdAFIVBeHqLLLcDp5tHfm0QomO6xOAJ3kAlclhtZ0bDYqGqI+pH288y3b9YLNRZVoamVc0aBaofF6mKN5TKKJYr4XDmnnW1WcclCbiO2OV+KawmQc0kQBEEQBEGMIurMWYh8+Qb0v7wBfc+8jMjnvgh1Uivk11+F72s3oO7YBaj9wNlw3fqrvI6meRG/+DhvUcc151zaw2JdRohmbucyX6GWkWAOS80ljFes8Vsqio4kjNVMoF5CKqlhaCAFr0/M2WNxOAxxOVCdgj6sUq/LVRnx57Q5lyyvcCSubT5yFfQZrhUJULgVTOXCYq3nH40oGOxPob5RwvTZLvT3JnH3b4+kQ5L1bQL1EkSJw6Jlxf0+Mci5JAiCIAiCIEYfjoOyZCnC3/5f9L29Ff3/eAqRT38OautkSG+8Du83vor6ZQtRe8FZcP32l+CPHDY+mohnFrNTpjuLOpxsaixvhMWm899YOKbduUxUMSwWAOYszK7I6fYIOOfiBuPnkYhBM4G6jDM60j6SLjcPUeIyzmUlWpGY2qREoywstrLOZTym75e1IRk159JdonOZrGxBH1b4qrnVgcs+0oLmVhn7dkXx8tP9iIYVgAM+9rnJ+NcvTy15jgiiXqPLnq88nqhMjWKCIAiCIAhibMDzSK1YidSKlQh/53sQ334TjocfhOPRhyBtWA9pw3p4v/nfSJ6wAvEPXgJt/3EAmtDQLBedQ2fOuWRhsVnOpa3XZTyughdKX9wXwuHg4XTzUBVg2qzcwnjpCT709yRR11h87ls+zPlzXv/I9sdxHGr8Ivp6kkgm1Io4l6LIQxA4xKMqwAG8UJ5YNWMXV5k2JFUQl0ktEz6dtxVJkTmXUtq5TJqcSw7gS7zM9vNnIbHNrTJqakVcdHUzbr3lELo6EoiEFThdvNGSp1TECdDrksQlQRAEQRDERIXjkDphBVInrED4f74L8Z234HjkITgeeRDSWxsgvbUB/wWgvXEBxA99EMLmD0I5ZgkwjMg051yGQgokmTNeM5zLqC3nMqbC4eQrVgRGPz0OV1/bCo5D3kJEHMfhtHPrK3I8s7gcqXMJ6KGxfT1JDA2mDGdNLiPnEgAcLl7Pi9T0kNhKXWe7uApX0blMJlX9OFz+HFRWMEoQuIIuuFHQx9SKRBS5kq8Lc4XZ+XcwcTlZb9nDhGRvdwLJhFbWvGAhu+M575LEJUEQBEEQxPsBjkPq+OVIHb8c4W99B+K778DxyEOQH3sEk/bsAH61A/jVzVCmTkP83POROO8DSJ60GhCzl4ss5zIaURCLqKitz2yTy7lUFA3JhFYwR26kTE8X7TkaBBoy51muuAT0vMtKOJeAnhvJQlYrFRILHCXnUrSGxTocfN4QZqeLh+zg4K0RCwpFe85lKqmNyDU3F/TRNA0H98YAAC1pcely85BkDr3derubkRR5YrB+mClyLgmCIAiCIIhxA8chtex4pJYdj/A3b4Swayfkfz4Kxz//AemtDXD/7jdw/+43UAMBJM48B/HzPoDEujMAj57XyBbcvV36gtrrzSwpM85lRlwmhgl1HC/UViDnEsj02wwOpiqScwlYcxSdFSrmY95vRlzqXz0VdS5NBX3iasF+pDzP4SPXTYY0zFyy51wqKQ3SCES3+fw72xPo6UygZbIDtQF9LnAcB39AQk+nnovpKkPYG84liUuCIAiCIAhivKLMnYfo3C8j+oUvg+/sgPz4Y5Af/wfkl16A87574bzvXmgOBxKnnIbEmeegcd2ZEEQO3R36gtrsSGacy0xYbDXakIwG/oAEjtOLrvhqRp7D6TM5l4kKOZcOU+sRV4XakACZEGhDXIb0HNtqOJeRsAJow8+TqTOHd6szYbEaNE2DoozQuTT1udzylt7T8pjjrVVg/QHREJflhAtTWCxBEARBEAQxoVCbWxD72CcR+9gnwQWHID/7NOR//gPy00/C8dQTcDz1BHwAvtk4BxsbVmNL61r4TlxrfD6XczlcBdDxgihyqKkVMdifsvTYLBXmzJlzLsvpcwlYXeFKhsUKAgdJ5ox7yHqGViPnkuVzVsLhNsJik5oh1kptQ6LvhwPH6a11trzDxKW1f6U/YAoLd5cfFqsow2w4hiFxSRAEQRAEQeRE89UgftGliF90KZBIQHrjdchPPQH5mSfRuPM9nNW9G2dt/wMSr/qgPnsmEmeeDe+xpwLIOJdPP9KD9S8NABj/YbEAEGiQMNifqnzOpVRmzqXZuSxD4OTCkc7n7O9NYv/uKDw+AQ3NcsX2z0JYWc9UuQIPIYyw2IQ64jYkgB726nDyCKZbx0yd6TRCYhl+089lhcVStViCIAiCIAjifYEsI7n2FCTXnoLwjf+Hg89ux+7/dz+OOfIyFvS+CfnhB+B8+AHUAPjPusU4sP8U8Csvx1sv+5FM6IvmplbH6J5DBVh1Wi1qAxKmz/JgYDA8on2YxSVz1cp2Li05l5UV8Q4nj9CQglef64emASvW+CvaUobti4nLSjjczLlMJTWkkiN3Ltl4YmknftmJNVnv15qcy4qExZK4JAiCIAiCIN5PNK2ahzvmX4EX512BK6/y49jg25CffhLyU09ixuGtmPHqVuD8X+NGuQZHZp+Eug+fC8w9AxrqRnvoZTF/sRcLl/hGLFQAvT8jz+thsSynseycyyoV9DHve8PLg+AF4ITV/orun4XFMqFdCYdbNDmXShnOJZDplcnxwJITfFnvVyos1qiaSzmXBEEQBEEQxPsJp0tAS6sDHUficDX6kDjpXCTOOhf4gYbbr3sKiw+/jBMjG1C3fQPmbX8S+MaTwDeA1MxZSJ66DonTzkBy7cnQaiorVMYDPM/B5xcxOJCCW9VFi1CmHjSLy3JCM3NhbguybEVNWSHBubD3KK2kc5lMamWFxQIwWrwsWuqFnOMhgCUs1lNOWKz+lZxLgiAIgiAI4n3H6nW12LghiNappnBXjsNQ61w87pqJLdP/FZ2L+/HF09rQvPklyM8/C3H7Voj79sL1+9uhCQJSxy9HIi02U8efkLOv5kSktk7P3YyEFMgOvmDPxmJwOjPqtNJhsdNmudB+OI61ZwRw8lmVd55FWxuWiojLHM7lSN3m406qwTuvD+HUc3Kfe02tCHAAtEoV9CFxSRAEQRAEQbzPWLq8BkuXZ+egOV08BvuBwwdi8NZ54bnsHIQvPxdhAHxnB6QXnoP8wnOQn38W0ob1kDash+f//QCqx4vkSauQXHMKkmtPRmrJseVbemOUQL2IA3v078vNtwSqGxZ71oX1WHduXdmhu/kQBA4cD2jpAsOVcS4zrUjKdS4vuLwRZ1xQD68vt3QSBA6+GhHBwRTlXI72AAiCIAiCIIiJhbkH4rzFHosrpza3IH7F1YhfcTWgaRC2b4P8/LOQX3gW0vrX4HjmKTieeUrf1leD5KrVuthcsxapxUsmjNgMNGSqrVZEXLqqFxbLcVxFxlgIUeSMyrkVaUUimVqRlOlciiIPr2+Y3psznDiwJwpvTQWcSxKXBEEQBEEQBKFz6jn1aGgKYuoMJxYs9ebfkOOgLFqM6KLFiH72eiCRgLjxHcivvAjp5ZcgbXgdjicfh+PJxwEAqr8WyVVrkFyzFok1p0BZtBjgx2d7k0B9ZhlebhsSoLrO5dFAlEzisqLOZXmtSIrl8o+1IJXUyrqXhnNJYbEEQRAEQRAEoTNjtgszZrtK/6AsI3XiSqROXAl86T+BeBzSO29BevlFSK++DGnDejge/wccj/8DQFpsnrgSyZWrkDxxFVLLjgOczgqfTXUI1GeKwFTCFXRWsRXJ0UAv6qPHxY61gj7FwPMcZEd5+6ecS4IgCIIgCIKoFg4HkietRvKk1frPsRikt9/MiM2334TjqSfgeOoJAIAmy0gtO14XmytPQnLFSmiBsdn6xCIuK+FcMkHJVUacHW3MRX0qWtAnWX5Bn6MFG1+KwmIJgiAIgiAIoso4nUiuXovk6rX6z4kExE0bIa1/HdL6VyG98brxDz/XN0ktWIjkiWmxecIKqDNnAWVWZq0EHq8ASdZDQct1vIBMnqLTxVtah4wXpAqLS57nIAhcRQr6HC0o55IgCIIgCIIgRgtZRmr5iUgtPxHRz30BUFUIu3fpAnP9a5DWvwZxx3aIO7bD9Yc7AABqXR2Sxy9H6vjl6a8nQKsNHPWhcxyHQL2ErvZExXIuHU4e/trxubw3C79KOa9MvI8X51KknEuCIAiCIAiCGCPwPJR586HMm4/YNR/TX+rsgMjE5lsbIG7eBMfTT8Lx9JPGx1Kz5yB1wgpdbJ6wHKlFxwCSlO8oFcMQlxXIueR5Dp/8whTIFai0OhpUOiwW0MVlKKhknMsKiPhqknEuR3kgZUDikiAIgiAIgpiwqM0tSFx4MRIXXqy/EI9D3LoZ4ttvQnpzA6S334S4ZzfEPbvh/Os9AADN6URqybG62Dx2GVLHHgdl1uyKt0FheZeVcC4BoLnVUZH9jAZm57JSAlmSeGiqgkRczTrGWERIK7NUSh3dgZQBiUuCIAiCIAji/YPDgVQ6LDZ27XUAAK63F9I7b0JkYvOdtyFtWA9pw3rjY5rbg9SSpUguPRbKsuOAU1YDjVMAfuSCs64hLS6r3ENyPMBcRUHkKiYC2XWNRnSxxpzBsUqmWuwoD6QMSFwSBEEQBEEQ72u0+nokzjwHiTPP0V9QVQh790B8+02Im9+F+O5GiJs3GXmcjDqXC6lFx+ju5tJlSC5dBmX+gqJDamcvcKOxRcbs+e5qnNa4goXFVrLSLXOEY1FdrY1955JyLgmCIAiCIAhiYsHzUObMhTJnLuJXXK2/xgTnpo2QNm2Ea/sWaG+9DemtDZDe2mB8VJMkKPMWILVosS4801+1pqasKrX1jTI+99XpR/PMxixM+FVUXNqdy/EiLqlaLEEQBEEQBEFMYEyCM3n5FXDVe9HfPQTs2wdp00aIm9IO59ZNek7n1s2Wj6sNDUgtTIvNxcdAWbQYqXkLAKdzlE5obFEV51K2OZfSGBeXAjmXY5q9e/fia1/7GkKhEGRZxte+9jUsX758tIdFEARBEARBTAR4HurMWYjPnIX4RZfqr2kauK4uiNu2QNy21fgq7NwB+aXnIb/0vPFxTRCgzJ6jO53pKrepeQugzJ4DuFyjcUajhuFcVrDaLeudGQ2Pk4I+1OdybONwOPC9730Ps2bNwp49e/DZz34WTzzxxGgPiyAIgiAIgpiocBy05mYkm5uRXHdG5vVkEsLuXRmxycTnzvcg7nwP5jqvGsdBnT4jLTgzwlOZNx+a13fUT+lowAr6VNK5ZE5lNO1cUlhs9ZnQ4nLy5MnG97NmzUIwGISmaeC4sT2xCIIgCIIgiAmGJEFZuAjKwkWIX5Z5mevvg7BzJ8Rd70F4b4f+ded7EPbvg7B/H/Dk45bdKK2TocydB2XWbOu/aTOOSm/OalGdnEt9Xyzncqw7lyIV9CmPDRs24Pbbb8eWLVvQ3d2N3/zmN1i3bp1lm7vvvhu33347uru7sXDhQnzjG9/A0qVLSz7WM888g4ULF5KwJAiCIAiCIMYMWqAOqZUnIbXyJOsboRDE3TshpJ1NYed7EHbu0EVn2xHghees+xEEqFOnQZk1Gymz6Jw5G+rUaYA4tj0lFsJaybBYt0dvExMJjRPnksJiyyMSiWD+/Pm49NJLcf3112e9/9hjj+H73/8+brzxRhx77LG46667cO211+Lxxx9HXV0dAOCiiy7Kue/7778fQrrR7ZEjR/DDH/4Qt956a/VOhiAIgiAIgiAqhdeL1LLjkVp2POLm1+NxCPv2Qti7R/+3bw+EPbv179Nup/zs05ZdaZIEZcpUqNOmQ5k2A8r06boQTf+sNTRkVbI92lSjoI/XZ+1BOtadSyYuUyQuR8app56KU089Ne/7d955J6688kpcdpkeO3DjjTfi+eefxwMPPIBPfepTAICHHnqo4DFCoRA++9nP4pvf/CamTy+v1DPPj60JycYz1sZFTAxofhHVhOYXUW1ojhHVZFTnl8sJbdEipBYtQsr+XjhsCE9+7+6MAN2zG+K+vcC+vTl3qbndUKZO08Xn9BlQp06DOn06lKnToU6eDK2++uLT6dKFoNsjVOy6emusUkeW+TH9fwJzbxU9indMjzUfY9YfTyQS2Lp1Kz7zmc8Yr/E8j9WrV2Pjxo1F7UNRFHzxi1/EFVdcgbVr15Y1HlHkUV/vLWsf1SIQ8Iz2EIgJDM0voprQ/CKqDc0xopqMuflV7wWmNQOnrsp+LxwG9u8H9u3LfE1/z+3bB/G9HcB7O3Lv1+EAJk8Gpk4Fpkyx/mOvNTYC/Mhdx7XrnFAVAatPq0eNvzK5o62TrQ5gfYMH9fVjt/ULjwQAgIMuKsfc/CqCMSsu+/v7oSgKGhoaLK/X19fjwIEDRe3jxRdfxOuvv46enh789a9/BQD88Y9/RE1NTcnjSaVUDA1FS/5cNeF5DoGAB/39Yajq+LXPibEJzS+imtD8IqoNzTGimozb+dUyXf+XQ3tygwPgDx6EcHA/+AMHwB86COHgAfBtbeDbj4DfuxfYm9v5BPTQW3VSK9TWVqjNLVCbmqE1NUFtajb+aU1NUBsa8xYeWrHWi2Qqjt7eeM73S0XVkpafQ6EoxN4sv3fMEArqY4vH9RzRsTa/ampckCSh4DZjVlzmo5Rqr+vWrcPWrVsrduyxdHPNqKo2ZsdGjH9ofhHVhOYXUW1ojhHVZELNL58fyuIlSC5ekvv9WAx8RzuEtiPg246Ab2uD0HY4LT7bILQdgXDwAISDw5tAan29Ljgbm6EyAdrQCK2uDmpdPdRAHbT69NfaWkAoLGjy4fJYnVSOH7vreSATeZxK6nGx43F+jVlxGQgEIAgCenp6LK/39fVluZkEQRAEQRAEQVQRpxPqjJlQZ8zMv008Dr6jHXxXJ/iurvTXTvDd3emvmdfF3l5g+7ZhD6txHLTaWqh19dACdVDr01/r6qHW1UHz1UDz+6HV1ED16V/Zz063B4LAGa09xnxBH6MVySgPpAzGrLiUZRmLFy/Gq6++itNPPx0AoKoqXnvtNXzsYx8b5dERBEEQBEEQBGHB4YA6fQbU6TMKb6dp4IYGLQKU6+0B39sLvr8PXF8v+L5+/Wt/H/j+Poh7dpc8HI3ncZPkQVj0ISZ50binAaj1Q/N4oXk80Nzu9D8PkP6qWb6avne5AYcMTZL1HNQRuqmFoFYkZRIOh3Hw4EHj58OHD2P79u1oaGhAY2MjPvGJT+CGG27A4sWLsXTpUtx1112IxWK45JJLRnHUBEEQBEEQBEGMGI6D5q+F4q+FMndecZ+JRnXhmRagfF8vuL4+cMEh8END4AYHwQUHwQ2lfw7qr/G9A2gIt+n7WL+zYqegCQLgcECTZUCSobHvHQ5osgOQJGgOB8ALgMDr2/O8Lko5/avG84DAGz+D5/HhN8MQHBKw8evA1DkVG+/RYlTF5ZYtW/DRj37U+Pm73/0uAODzn/88rr/+epx//vno6+vDz372M3R3d2PhwoW47bbbjB6XBEEQBEEQBEG8D3C5oLomA62TUUrU6J9+ewR7tgbhVsL4r/9q0EVoOAwuEgYXiZi+RrJeg/m1aARcPAEk4uASyfTXOBBPgAuHwSeTww+mCFazb+6aAnzjfyuyz6PJqIrLlStX4r333iu4zTXXXINrrrnmKI2IIAiCIAiCIIiJgtcnQOMFJJx+qNPK63lfEE0DEomM4EzEgXgcnKbqjStVVU+mVFVwqmL5GYqa3k7Bi//sBifyuPD7VwDhsVvZNh9jNueSIAiCIAiCIAiiHDw+Xe6IUpWL+XCcHhLrcAA+YKRZk6vW6q1u4HQC4VBFh3g0GHmnU4IgCIIgCIIgiDGMx6sX3hnrlWInCiQuCYIgCIIgCIKYkHh9urgUSFweFUhcEgRBEARBEAQxITHCYgUSl0cDEpcEQRAEQRAEQUxIPORcHlVIXBIEQRAEQRAEMSHx14rgBcDrozqmRwO6ygRBEARBEARBTEhcbgHX/vtU+GpI9hwN6CoTBEEQBEEQBDFhaZ3qHO0hvG+gsFiCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpcEQRAEQRAEQRBE2ZC4JAiCIAiCIAiCIMqGxCVBEARBEARBEARRNiQuCYIgCIIgCIIgiLIhcUkQBEEQBEEQBEGUDYlLgiAIgiAIgiAIomxIXBIEQRAEQRAEQRBlQ+KSIAiCIAiCIAiCKBsSlwRBEARBEARBEETZkLgkCIIgCIIgCIIgyobTNE0b7UGMB1RVg6Kooz2MLCRJQDKpjPYwiAkKzS+imtD8IqoNzTGimtD8IqrJWJxfgsCD57mC25C4JAiCIAiCIAiCIMqGwmIJgiAIgiAIgiCIsiFxSRAEQRAEQRAEQZQNiUuCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpdjnLvvvhunn346lixZgiuuuAKbNm0quP0///lPnHvuuViyZAkuvPBCvPjii0dppMR4pJT5tWvXLlx//fU4/fTTMX/+fPzpT386iiMlxiOlzK+//vWv+Jd/+ResWLECJ554Ij75yU9i8+bNR3G0xHiklDn29NNP47LLLsPy5cuxbNkyXHTRRXjwwQeP3mCJcUepazDGrbfeivnz5+Omm26q8giJ8Uwp8+v+++/H/PnzLf+WLFlyFEdbPCQuxzCPPfYYvv/97+Nzn/scHnjgAcyfPx/XXnst+vr6cm7/zjvv4Ctf+Qouv/xyPPjggzjzzDPx2c9+Fnv27DnKIyfGA6XOr2g0iilTpuArX/kKGhsbj/JoifFGqfNr/fr1uOCCC/CHP/wB99xzD5qbm/HJT34SXV1dR3nkxHih1Dnm9/vx6U9/Gn/5y1/w8MMP4/LLL8fXvvY1vPrqq0d55MR4oNT5xdi6dSvuvfdezJ8//yiNlBiPjGR+1dbW4uWXXzb+Pffcc0dxxCWgEWOWyy+/XPvOd75j/KwoirZ27Vrttttuy7n9F7/4Re3Tn/605bUPfehD2o033ljVcRLjk1Lnl5l169Zpf/zjH6s5PGKcU8780jRNS6VS2nHHHac9/PDD1RoiMc4pd45pmqZdfPHF2s9//vNqDI8Y54xkfkUiEe28887TXnzxRe2aa67RfvCDHxyNoRLjkFLn19///nftxBNPPFrDKwtyLscoiUQCW7duxZo1a4zXeJ7H6tWrsXHjxpyf2bhxo2V7AFi7dm3e7Yn3LyOZXwRRLJWYX9FoFKlUCn6/v0qjJMYz5c4xTdPw2muvYd++fTjhhBOqOFJiPDLS+fWDH/wAK1euxMknn3wURkmMV0Y6v0KhEE477TSceuqp+OxnP4vdu3cfhdGWjjjaAyBy09/fD0VR0NDQYHm9vr4eBw4cyPmZnp4e1NfXZ23f3d1dtXES45ORzC+CKJZKzK9bbrkFkyZNwkknnVSNIRLjnJHOsWAwiFNOOQWJRAI8z+PGG2/EqlWrqj1cYpwxkvn13HPP4fXXX6c8XmJYRjK/Zs2ahe9///uYN28ehoaGcMcdd+Dqq6/Go48+iubm5qMx7KIhcTnO0DQNHMflfT/Xe4W2Jwgzw80vgiiHYufX7373Ozz22GP44x//CFmWj8LIiInCcHPM4/HgwQcfRCQSwWuvvYbvfe97mDZtGpYvX34UR0mMV/LNr76+Pnzzm9/EL3/5S7hcrlEYGTERKPT/17Jly7Bs2TLj5+OOOw7nn38+7rvvPnz+858/SiMsDhKXY5RAIABBENDT02N5va+vL+tJB6OhoSFr+97e3rzbE+9fRjK/CKJYyplft99+O37729/izjvvxLx586o5TGIcM9I5xvM8pk+fDgBYuHAh9uzZg1tvvZXEJWGh1Pm1a9cudHd34+qrrzZeUxQFGzZswJ/+9CeqfE1YqMQaTJIkLFy4cExGm1HO5RhFlmUsXrzYUsVOVVW89tprlicXZpYtW4ZXXnnF8tqrr76ad3vi/ctI5hdBFMtI59dtt92GX/3qV7jtttvGbIl1YmxQqf/DNE1DIpGowgiJ8Uyp82vJkiV45JFH8OCDDxr/jjnmGFxyySW4//77j+LIifFAJf7/UhQFu3btGpPV+8m5HMN84hOfwA033IDFixdj6dKluOuuuxCLxXDJJZcAAG644QY0NzfjK1/5CgDgox/9KK655hrccccdOPXUU/HYY49hy5Yt+L//+7/RPA1ijFLq/EokEkZbm0Qigc7OTmzfvh1+vx+tra2jdh7E2KTU+fW73/0OP/3pT3HLLbdg8uTJRq642+2Gx+MZtfMgxi6lzrFbb70VixYtwvTp05FIJPDSSy/hoYcewne+853RPA1ijFLK/HK73VmRFm63G7W1tZg7d+5oDJ8Y45T6/9cvfvELLFu2DNOnT8fQ0BBuv/12tLW14fLLLx/N08gJicsxzPnnn4++vj787Gc/Q3d3NxYuXIjbbrsNdXV1AID29nbwfMZ8Pv7443HLLbfgJz/5CX70ox9hxowZ+OUvf4nZs2eP1ikQY5hS51dXVxcuvvhi4+dbb70Vt956Ky655BL84Ac/ONrDJ8Y4pc6ve+65B8lkEl/4whcs+/n85z+P66+//qiOnRgflDrHYrEYvvOd76CjowNOpxOzZs3CD3/4Q5x//vmjdQrEGKbU+UUQpVDq/BoaGsI3v/lNdHd3w+/345hjjsFf/vIXzJo1a7ROIS+cpmnaaA+CIAiCIAiCIAiCGN/QIxeCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyEUd7AARBEAQx1vj5z3+OX/ziF1mvr1q1Cr///e+P/oAIgiAIYhxA4pIgCIIgcuDz+XDbbbdlvUYQBEEQRG5IXBIEQRBEDgRBwLJly4bdLhaLwel0Vn9ABEEQBDHGoZxLgiAIgiiSw4cPY/78+Xj44Ydxww03YPny5bjuuusAAAMDA/jWt76F1atXY8mSJbjqqqvw7rvvWj4/NDSEr3zlK1i2bBnWrl2LX//617jppptw+umnG9v8/Oc/x8qVK7OOPX/+fPzpT3+yvHbffffhggsuwDHHHIN169bhd7/7neX9r371q7j00kvxyiuv4MILL8SyZctw9dVXY9euXZbtFEXBb3/7W5xzzjk45phjcMopp+CrX/0qAODuu+/Gcccdh3A4bPnM66+/jvnz52PHjh0lXkWCIAhiokLOJUEQBEHkIZVKWX7WNA0AcPPNN+Oss87CT3/6U/A8j0QigU984hMYGhrCDTfcgLq6Otxzzz34+Mc/jieffBKNjY0AgP/+7//GG2+8ga997WtoaGjAHXfcgYMHD0IUS/9zfNttt+HHP/4xrr32Wpx44onYunUrfvrTn8LlcuGaa64xtmtvb8fNN9+Mz3zmM3A4HLj55pvx7//+73j00UfBcRwA4Fvf+hYeeughfOpTn8KJJ56IwcFBPP744wCACy+8EDfddBOeeOIJXHrppcZ+H3jgASxevBgLFiwoeewEQRDExITEJUEQBEHkYGBgAIsXL7a89t3vfhcAcOyxx+Lb3/628fp9992HXbt24dFHH8WMGTMAAKtXr8a5556LO+64A//1X/+FXbt24emnn8aPf/xjnH/++QCAlStXYt26dfB6vSWNLRQK4Ze//CU+85nP4POf/zwAYM2aNYhGo/j1r3+Nq6++GoIgAAAGBwdxzz33GOPSNA2f+9znsHfvXsyePRt79uzB3/72N3z961/HRz/6UeMYbIw1NTU4++yzcf/99xviMhwO48knn8RXvvKVksZNEARBTGxIXBIEQRBEDnw+H+68807La7IsAwBOO+00y+uvvfYaFi9ejClTpljczhUrVmDLli0A8P/bu5tQeNcwjuM/RxpRaPyZmmnkJSsvZSFvzQYLRSFKTamhJFH2NmZDUsiIkiQWmijZSUo2lIUIGzuFGEyDjBI5Z3GaqTH+Dk0djvP9LO+5e+5rlr+u+7keHRwcSFLIFdj4+HiVlpZqf3//U7Xt7u7q4eFBVVVVIecVFxdrYmJCFxcXslgskiSLxRIMlpKUlZUlSfJ4PMrKytL29rYkhXQlX2tsbJTD4dDJyYmsVqtWVlb0/PysmpqaT9UNAPjZCJcAALwhOjpaeXl5IWunp6eSpOTk5JB1n8+nvb29sE6nJKWlpUmSrq+vFR8fHzb85/WzPsLn80mSqqur3/z9/Pw8GC5fT7iNiYmRJD0+Pkr6u0MbFxf3bve0qKhIVqtVS0tL6u7u1tLSkioqKpSUlPTp2gEAPxfhEgCATwq8qxiQmJio3NxcOZ3OsL2BbuevX7/k9/vDpst6vd6Q/QaDQU9PTyFrt7e3YedJ0uTk5JvhNCMj48P/JSkpSQ8PD7q/v/9twIyKilJDQ4MWFhZUW1urnZ2dsOFBAAAQLgEAiFBJSYk2NzdlNpt/24kMdEHX19eD7zP6/X5tbW2FhDqTySS/3y+PxyOTySRJ2tzcDHlWQUGBYmNjdXl5GXZF97OKi4slScvLyyGDgF6rr6+Xy+VST0+PTCaTysrKIjoXAPDzEC4BAIhQXV2d3G63mpub1draKqvVqpubG+3v7yslJUUOh0PZ2dkqLy+X0+nU/f29UlJSND09HXZN1mazKTY2Vj09PWppadHp6ancbnfInoSEBHV1damvr09nZ2cqLCzUy8uLjo+Ptb29rfHx8Q/XnpmZqaamJg0MDMjr9aqwsFB3d3daXV3VyMhIcJ/JZJLNZtPGxoba29uDA4MAAAggXAIAECGDwaC5uTmNjo5qbGxMXq9XRqNR+fn5IQN8BgYG5HQ61d/fr7i4ONntduXl5Wl1dTW4x2g0yuVyaXBwUJ2dncrJydHQ0FCw2xnQ1tam1NRUzc7OamZmRgaDQenp6WH7PqK3t1dms1mLi4uampqS0Wh8szNZWVmpjY2Nd4f/AAD+v6L+DHy0CwAA/OsC35BcX1//6lL+UXd3t66urjQ/P//VpQAAviE6lwAA4F1HR0c6PDzU2tqahoeHv7ocAMA3RbgEAADv6ujokM/nk91uV1VV1VeXAwD4prgWCwAAAACI2B9fXQAAAAAA4L+PcAkAAAAAiBjhEgAAAAAQMcIlAAAAACBihEsAAAAAQMQIlwAAAACAiBEuAQAAAAAR+wu14s+YjPwwEQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")" + ] + }, + { + "cell_type": "markdown", + "id": "082abc72", + "metadata": {}, + "source": [ + "##### As can be seen, there is improvement in both the variance and the bias." + ] + }, + { + "cell_type": "markdown", + "id": "8d01ad42", + "metadata": {}, + "source": [ + "### Attributes of the Multitaper object\n", + "``norm``: {``leahy`` | ``frac`` | ``abs`` | ``none`` }\n", + " the normalization of the power spectrun\n", + "\n", + "``freq``: The array of mid-bin frequencies that the Fourier transform samples\n", + "\n", + "``power``: The array of normalized squared absolute values of Fourier\n", + "amplitudes\n", + "\n", + "``unnorm_power``: The array of unnormalized values of Fourier amplitudes\n", + "\n", + "``multitaper_norm_power``:The array of normalized values of Fourier amplitudes, normalized\n", + " according to the scheme followed in nitime, that is, by the length and\n", + " the sampling frequency.\n", + "\n", + "``power_err``: The uncertainties of ``power``.\n", + " An approximation for each bin given by ``power_err = power/sqrt(m)``.\n", + " Where ``m`` is the number of power averaged in each bin (by frequency\n", + " binning, or averaging power spectrum). Note that for a single\n", + " realization (``m=1``) the error is equal to the power.\n", + "\n", + "``df``: The frequency resolution\n", + "\n", + "``m``: The number of averaged powers in each bin\n", + "\n", + "``n``: The number of data points in the light curve\n", + "\n", + "``nphots``: The total number of photons in the light curve\n", + "\n", + "``jk_var_deg_freedom``: Array differs depending on whether\n", + "the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a chi2 model of how the estimated\n", + " PSD is distributed about the true log-PSD (this is either\n", + " 2\\*floor(2\\*NW), or calculated from adaptive weights)" + ] + }, + { + "cell_type": "markdown", + "id": "88ba3894", + "metadata": {}, + "source": [ + "### A look at the values contained in these attributes." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e4acf993", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "norm: abs \n", + "power.shape: (511,) \n", + "unnorm_power.shape: (511,) \n", + "multitaper_norm_power.shape: (511,) \n", + "power_err.shape: (511,) \n", + "df: 0.0009765625 \n", + "m: 1 \n", + "n: 1024 \n", + "nphots: -73.38213649959974 \n", + "jk_var_deg_freedom.shape: (511,) \n" + ] + } + ], + "source": [ + "print(mtp)\n", + "print(\"norm: \", mtp.norm, type(mtp.norm))\n", + "print(\"power.shape: \", mtp.power.shape, type(mtp.power))\n", + "print(\"unnorm_power.shape: \", mtp.unnorm_power.shape, type(mtp.unnorm_power))\n", + "print(\"multitaper_norm_power.shape: \", mtp.multitaper_norm_power.shape, type(mtp.multitaper_norm_power))\n", + "print(\"power_err.shape: \", mtp.power_err.shape, type(mtp.power_err))\n", + "print(\"df: \", mtp.df, type(mtp.df))\n", + "print(\"m: \", mtp.m, type(mtp.m))\n", + "print(\"n: \", mtp.n, type(mtp.n)) # Notice the length of PSDs is half that of the number of data points in the light curve, as the imaginary (complex) part is discarded.\n", + "print(\"nphots: \", mtp.nphots, type(mtp.nphots))\n", + "print(\"jk_var_deg_freedom.shape: \", mtp.jk_var_deg_freedom.shape, type(mtp.jk_var_deg_freedom))" + ] + }, + { + "cell_type": "markdown", + "id": "f5b3a490", + "metadata": {}, + "source": [ + "### A look at the different normalizations\n", + "The normalized S(f) estimates are stored in the `power` attribute can be accessed like `mtp.power` if the object name is `mtp`" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f305d250", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc1dXA4d/MVq16sSVXjJswrtgGUwwGgyk2vdcEML2ThBZIvkBCaCEQAwkECJCEEEIPvYVmeje2ce9qVq/bpnx/zM7s7GolSy64cN48PJFmp9xdjeQ9e849VzFN00QIIYQQQgghhNgE6tYegBBCCCGEEEKI7Z8El0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIsR0wTZPp06dTXl7O6tWrOz3+6aefUl5e7vw3efJkTjjhBN56662M55s/fz677747bW1tGR+/6KKLKC8v55///GfK9vPOO4/77ruvR2OuqKjgqquuYv/992fs2LFMmzaNCy+8kM8//7xHx29uc+fO5dFHH90q194U1157Lccee+wWv866desoLy/nnXfe2SLnP+OMMygvL+eBBx7o9NiUKVO45557tsh1N7d77rmHKVOmON/bv3tLlizZ4tf+5z//SXl5+Ra/jhBCbCwJLoUQYjvw9ddfU1FRAcDLL7/c5X5/+MMfePLJJ7nzzjspKCjgkksuyRjM3X333Zx88snk5OR0emzu3Ll8++23Gc9/3nnn8eijj9LS0tLteJubmznppJNYtmwZP/vZz3jwwQe57LLLUFWVr7/+uttjt5QPP/yQv//971vl2iLp0UcfJRwOb+1hbDajR4/mySefZPDgwVt7KEIIsdVJcCmEENuBl19+mVAoxPjx47sNLsvLy5kwYQLTpk1jzpw55Ofn89///jdln1WrVvHBBx9w3HHHdTo+Ho9z8803c8UVV2Q8/+TJkykoKOCFF17odryvv/46dXV1PPTQQxx55JHsueeeHHfccdx3332ce+65G37CW5Gu68Risa09jB3SbrvtRltbG08++eQWOX80Gt0i5+1OTk4OEyZMIBgM/uDXFkKIbY0El0IIsY3TdZ3XXnuN6dOnc9xxx7Fs2TIWLVq0weOysrIYPHgwVVVVKdufe+45ysvLGTJkSKdj/v73vxMMBjMGnraDDz6Y559/vttrt7S04PP5yM/P7/SYoijO13bJ51tvvcWhhx7K2LFjOeWUU1i2bFnKMYZh8Ne//pUZM2YwZswYDjnkEJ577rlO537zzTc5/vjjGTduHFOmTOHcc8+loqKCe+65h7/97W9UVFQ4pcPXXnttpzHMmjWLcePGMW/evE7lj7b0cuHp06dz22238de//pWpU6cyadIkbr31VkzT5L333mPWrFnstttuXHTRRTQ3N3f7um2sL774gtNPP53x48czZcoUbrjhhpSS5/Xr13Pddddx4IEHMm7cOA455BDuuuuujEF0OBzm17/+NZMmTWK//fZjzpw5GIYBwNKlSykvL+ezzz5LOaa9vZ3ddtttg5nhvn37cuyxx/K3v/1tgwH8K6+8whFHHMGYMWOYNm0ad911F5qmOY8/++yzlJeXM2/ePM444wzGjRvHQw895GxfsGABZ5xxBuPHj+eoo45iwYIFdHR0cN111zFp0iQOPPBAXnrppZRrvvvuu5x11lnstddeTJw4kRNPPJG5c+d2O870sth77rknpUTd/m/69OnOMdFolNtvv51p06YxZswYjjzySN57772U88ZiMW666SYmT57MHnvswe9///uU5y+EENsi79YegBBCiO598skn1NXVMXPmTCZNmsRvf/tbXn75ZXbZZZdujzMMg+rqakaPHt3pfLvttlun/Wtra/nzn//M/fffj6p2/dnjbrvtxsMPP0xzc3PG4BGsUsFYLMbVV1/N2Wefza677trlOSsrK7nlllu4/PLLCQaD3HPPPcyePZs33niDQCAAwG9/+1uef/55LrroIkaPHs2HH37IL3/5SwoKCjjggAMAeP7557nmmmuYNWsWF110EaZp8sknn9DQ0MAJJ5zAqlWr+PTTT7n33nsBKCoqcsZQUVHBHXfcwUUXXURJSQkDBw7s5pXt7OWXX2bcuHH8/ve/Z8GCBdx9990YhsEXX3zB5ZdfTiQS4be//S133nknN910U6/OvSFffvklZ555JgcddBBz5syhsbGRO++8k5aWFubMmQNAY2MjBQUFXHfddeTl5bFq1SruueceGhsbO43nD3/4AwcffDBz5szh448/5r777mP48OHMnDmTESNGMGHCBJ599ln22GMP55jXXnuNeDzO4YcfvsHxnnvuuTz99NM888wznHLKKRn3mTt3LldeeSVHH300V111FYsXL+ZPf/pTxvH+7Gc/45RTTuHiiy8mLy/P+eDl2muv5bTTTuOcc87hzjvv5LLLLmPcuHEMHjyYOXPm8Mwzz3DNNdcwefJkysrKAGve6QEHHMDZZ5+Nqqq8//77nHvuufzzn/9k0qRJPfp5nHDCCey7777O9+FwmCuvvDLlw5zLLruMefPmcemllzJ48GBeffVVLrzwQp555hlGjRrl/ByeeuoprrzySoYNG8ZTTz3Fa6+91qMxCCHEVmMKIYTYpl177bXm5MmTzWg0apqmaZ577rnmAQccYBqG4ezzySefmCNHjjS///57Mx6Pm/X19eatt95qTpo0yVy+fLmzn2EY5pgxY8x//vOfna5z1VVXmZdddpnz/ciRI81//OMfnfZbu3atOXLkSHPu3Lndjvv3v/+9WV5ebo4cOdLcbbfdzEsuucT88MMPU/a55pprzJEjR5pffvmls23dunXmqFGjzH/961+maZrmqlWrzPLycvPZZ5/tNN5jjz3WNE3T1HXdnDp1qnnxxRd3OZ5bb73VPOCAAzptt8ewcOHClO1z5swx99hjj077p78uBxxwgHnQQQeZmqY524477jhz1KhR5po1a5xtt912m7nXXnt1Ob6uXHPNNeYxxxzT5eOnnHKKefrpp6ds++ijj8yRI0eaixcvznhMPB43//vf/5pjxoxx7iv753rVVVel7HvkkUeaV1xxhfP9f/7zH3PChAlmW1ubs+3UU081L7300m6fx+mnn+7sc80115gHHHCAGY/HTdM0zT322MOcM2eOs+8JJ5zQ6Tn99a9/NXfZZRezqqrKNE3TfOaZZ8yRI0eajz76aMp+9nb3/fLuu++aI0eONK+99lpnW0tLi7nrrruajz/+eMbx6rpuxuNx8+yzz045Lv2+sH/3unqtL7/8cnOfffYxa2pqTNNM/mw+/fTTlP3cr2FDQ4M5duxY84EHHkgZzyGHHGKOHDky43WEEGJbIGWxQgixDYvFYrz11lscdNBB+P1+AGbNmkVFRQXffPNNp/2POuooRo8ezV577cWjjz7KrbfeytChQ53Hm5ubicViFBYWphz39ddf8/rrr3P11VdvcEz2sbW1td3ud9111znn3GOPPfjggw84++yzeeKJJ1L2Ky4uZuLEic73AwYMYPTo0cybNw+Ajz/+GFVVmTFjBpqmOf/ttddeLFq0CF3XWblyJevXr9/orqqlpaVOxmhj7LHHHng8Huf7nXbaiQEDBjBo0KCUbQ0NDZt1Pmc4HOabb77hsMMOS3ltJk2ahM/nY8GCBYDVbfjRRx9l5syZjBs3jtGjR/OLX/yCWCzWqWx6n332Sfl++PDhVFdXO9/PnDkTwMmirVmzhi+//LJXr/35559PVVUVL774YqfHdF1n4cKFHHrooSnbZ86ciWEYnRpC7b///hmvsddeezlf28129txzT2dbbm4uhYWF1NTUONuqq6u55ppr2Hfffdl1110ZPXo0c+fOZdWqVT1+bm5//etfeeutt5gzZw59+/YF4KOPPqJPnz5MnDix0/08f/58AJYsWUI0GuXAAw90zqWqasr3QgixLZKyWCGE2Ia9//77tLS0MG3aNKdD65QpU/D7/bz88sudylvvuusuBg0aRFVVFXfffTfXXXcdY8eOpbS0FEg2PLEDVdvvf/97TjrpJHJzc1M6wUYiEVpbW8nNzXW22cf2JEjaaaedmD17NrNnz6ahoYHZs2dz1113cfLJJztzL4uLizsdV1xc7ASvjY2N6LreZVlibW0tjY2NAPTp02eDY8qkpKRko46z5eXlpXzv8/lSXjN7m2maxOPxTq//xmppaUHXdW688UZuvPHGTo/bgeNjjz3Gbbfdxnnnncfuu+9OXl4e3333HTfddFOnJjiZnot7n+zsbA499FCeffZZjjvuOJ599llKSkpSSkE3ZOedd+aQQw7hgQce4Kijjkp5rLGxkXg83ulnYn+fPm810/0DpLz+Pp8v43Pz+/3OfWwYBhdeeCHt7e1cdtll7LTTTmRlZTFnzhzq6+t7/Nxsc+fO5a677uKGG25I+fCksbGR2traTuXqgPMBRV1dXcbn1tVzFUKIbYUEl0IIsQ2zG45cfvnlnR579dVXue6661IyZsOHD2fkyJGMHTuWXXbZhZkzZ/LnP//ZCTzsrGP6UiIrV65k3rx5PPbYYynb77jjDv74xz+ycOFCZ1traytAl/Mtu1JUVMSxxx7L7373O+rr651gIdMb9/r6eoYPH+5cx+v18sQTT6Q0A3Kft729HdhwNrU3AoEA8Xg8ZduWasizsXJzc1EUhUsuuYRp06Z1etzOlr322msceuihXHnllc5jy5cv3+jrnnDCCZxyyimsWrWKF154gaOPPjrlPuyJCy64gKOPPrrTPMLCwkJ8Pl+n+8IOuNLvu0z3xMZYvXo1Cxcu5MEHH2S//fZztkcikV6fa+3atfz85z/nyCOP5LTTTkt5LD8/n9LS0m7Xi3X/bhQUFDjbNybIFUKIH5IEl0IIsY1qb2/n3Xff5fDDD+fEE09Meez777/nlltu4dNPP2XvvffOePzgwYM54YQTeOaZZ7jssssoLi7G7/fTv39/1q1bl7Lv/fffj67rKdt+8pOfcMYZZ3DwwQenbLePzdRt1tbQ0JDSMMe2evVq/H5/Slapvr6er776ysnuVFZWsnDhQqfMcs8990TXdVpbWzuVbNp23nlnSktLef7551O6crqlZ+A2pLS0lPb2dmpqapzM74cfftjj438IoVCICRMmsHLlSi655JIu94tEIp2ypZlKUntq4sSJDB06lF/+8pdUVlZyzDHH9Pocu+yyCwcccAAPPPBAynaPx8Po0aN57bXXOPXUU53tr776KqqqZmxGtTlkyupXVFTw9ddfM3LkyB6fp6Ojg4svvpj+/ftnzCbvtddePPLII4RCIYYNG5bxHCNHjiQQCPD22287+xiGwdtvv92bpySEED84CS6FEGIb9fbbbxMOh/nJT37C+PHjUx6bOHEif/nLX3jppZe6DC4BzjnnHJ566in+8Y9/OGtXTpw40ZmLZ5s8eXLG44cMGZLSFRRg/vz55ObmMmLEiC6v+9xzz/Hiiy9y9NFHU15ejqZpfPzxx/zrX//ilFNOcbrAgpWpuvrqq51usXPmzHGynABDhw7l5JNP5mc/+xmzZ89m7NixRKNRli5dyqpVq7j55ptRVZWrrrqKX/ziF/z85z/n8MMPR1EUPvnkE2bNmsXYsWMZOnQodXV1PPvss4wYMYLCwsJuu8Luu+++BINBfvnLX3LWWWexbt06/v3vf3e5/8aYPn06e+yxB7feemu3+7W0tGTsFDpt2jR+8YtfcOaZZ6KqKocccgjZ2dlUVVXx7rvvcuWVV7Lzzjuz9957849//MPplvriiy+yevXqTRr78ccfz+23385uu+3WZZC0IRdeeCEnnHBCp+2XXnops2fP5rrrrmPmzJksWbKEP/3pT5xwwglOZ9fNbejQoZSVlXHbbbdx+eWX097enjJXsqduueUWli9fzu23356yZJDf72fXXXdln332YerUqZx99tmce+65DB8+nLa2NhYtWkQ0GuXnP/85hYWFnHjiidxzzz14vV6GDx/OU089RUdHx+Z+2kIIsVlJcCmEENuol19+mSFDhnQKLMHKwh122GG8/PLL/OY3v+nyHAMGDOCII47giSee4LzzziMUCjFjxgyuu+46IpHIRi38/sEHHzBjxoxulyuZNm0a69at4z//+Q9VVVV4PB4GDx7MDTfc0CkL279/fy644ALuvPNOKioqGDNmDHfeeWdKAPp///d/DBkyhKeeeoo5c+aQk5PD8OHDOf744519jjjiCAKBAPfffz+XXXYZoVCI8ePHOxnUww47jE8//ZQ77riDhoYGjjnmmG6DuqKiIubMmcPtt9/OxRdfzOjRo7nzzjudhjabQzgczpjhTbd27dqMpdFvv/02kydP5vHHH2fOnDlcffXVGIZB//792XfffZ3yyosvvpjGxkb+9Kc/ATBjxgxuuOEGLrjggo0e+0EHHcTtt9/e7ZqoGzJu3Dj22WefThnhqVOnctddd/GXv/yFF198kaKiIs4++2wuvfTSjb7Whvj9fu655x5uuukmLrvsMsrKyrjgggv47LPPnDUse2LVqlVomsbPfvazlO0DBgzgf//7H4qicO+993L//ffz2GOPUVVVRX5+PrvssgtnnHGGs//VV1+Npmncd999qKrKkUceyVlnnbXBDyKEEGJrUkzTNLf2IIQQQvxwYrEY06ZN49e//jWHHXZYr45tbW1l77335pFHHuky29kb1157LUuWLOHZZ5/d5HNtb9auXcvBBx/MG2+8kdJVdnvx+OOP84c//IEPPviAnJycrT0cIYQQ2wBZikQIIX5k/H4/s2fP5u9//3uvj33iiSeYMGHCZgksf+y+/vprDjrooO0usFy3bh1z587lgQce4JhjjpHAUgghhEPKYoUQ4kfo9NNPz7jMyIbk5ORw/fXXb8GR/XgceeSRHHnkkVt7GL1277338tJLL7H77rtnLNUVQgjx4yVlsUIIIYQQQgghNpmUxQohhBBCCCGE2GQSXAohhBBCCCGE2GQSXAohhBBCCCGE2GTS0KeHDMNE142tPYxOvF4VTdv2xiV2DHJ/iS1J7i+xpck9JrYkub/ElrQt3l8ej4qqKt3uI8FlD+m6QVNTx9YeRgpVVSguzqGlJYxhSF8msXnJ/SW2JLm/xJYm95jYkuT+ElvStnp/FRSEUFVPt/tIWawQQgghhBBCiE0mwaUQQgghhBBCiE0mwaUQQgghhBBCiE0mcy6FEEIIIcSPhmmaGIaOuQlT2VRVIRaLoWnaNjUnTuwYtsb9pSigqh4UpfuGPRsiwaUQQgghhNjhmaZJW1sz7e0twKa/Ya+rUzGMbaubp9hxbJ37SyE7O4+cnPyNDjIluBRCCCGEEDs8O7DMyyvC7w8Am5ih8SpommQtxZbxw99fJrFYlJaWBgBycws26iwSXAohhBBCiB2aaZpOYBkK5WyWc3q9KiCZS7FlbI37y+v1AdDS0rDR2Utp6COEEEIIIXZohqEDZiJjKYToivU7YiZ+Z3pPgkshhBBCCLFDSzbv2bRSWCF2fNbvyMY2vJLgUgghhBBCCCHEJpPgUgghhBBCCCHEJpPgUgghhBBCiB+Br776gqlTJ9PR0dHtfscffwTPPPPkDzSqbdfDDz/A7NlnbO1hbFckuBRCCCGEEGIbdPPNv2Hq1MncddftnR678cYbmDp1Mvfee/dGn/+VV15k1qwDO21/8MG/M2vWUc73U6dO5sMPP9jo62wPMj3HU045gz/+8Z4tfu1LLjlvk36O2xIJLoUQQgghhNhG9e1byptvvk4sFnO2tbe38cEH79K3b+kWuWZhYSHBYHCLnHtTxePxH+xaoVCI/PyCH+x6OwJZ51IIIYQQQoht1K67jmblyhXMnfs+06cfBMBbb73ByJG7oKqpeaKpUydz2213sc8++wLQ0dHBwQfvx5w59zNx4uSUfb/66gt+//sbneMAzjrrXGbPPp/jjz+CU045neOOO4njjz8CgGuuuRKAsrJ+PP30i6xdu4Z7772LhQsXEIlEGDp0GBdddDnjx09IGc8vfnEd7733P7799hv69u3L5Zf/nL32murss2LFMu6990/Mm/c12dnZ7LXXVC655Epycqz1SC+55DyGDx8JmLzxxmuMHj2GO+74U8bX6r//fY4nnvgHNTXV9O8/gFNOOYNZs44ErKB0zpw/8t57/6OtrZXi4j6cdNIpHH/8yV0+x4cffoCPPprLww//A7AyyeFwB8OGjeCZZ55E1w3OOOMsjj/+JP70pz/w5puvk5+fzxVXXOX8DDRN4/bbb+arr76goaGBfv36cdJJp3Hkkcc45/zmm6/45puv+Pe//wnAU0/9l0GDBm7wtdkWSXAphBBCCCF+lJ57vJpF37Vv1LGK0vvlGnYZm80xp5X1+lozZx7BK6/81wkuX3nlRY444mhee+3lXp/LNnbseC677Oc8+uhD/OMf1vzKrKxQp/0efPDvHHHEDH71q5uYPHkPVNUDWIHr3nvvy/nnX4zX6+OFF57l6qsv58knX6CgoMA5/qGH7ueiiy7jyiuv4r//fZ7rr7+aJ554ltLSMlpbW7nssgs5+ujjuOKKn9PREeaee/7IzTf/hltu+YNzjpdf/i/HH38S99//ty6fzxtvvMojjzzIlVdezfDhI/j++4XcdtvvyMvLY9999+epp/7Nhx++z29/exulpaVUVlbQ0tLc7XPM5LPPPqWkpC9//vNDfP75Z9x11+188cVn7LPPVB5++B8888yT/Pa3v+bZZ18mFAqh6zqlpWX87ne3kZeXz9dff8mdd95KWVk/9thjTy6//BesXbuG4cNHctZZ5wBQUFDY49dmWyPBpRBCCCGEENuwQw+dxcMPP0BdXS3t7e2sWLGM6dMP2qTg0ufzkZOTg6JAcXFJl/sVFhYCkJOTm7JfefkulJfv4nx/6aVX8t57/+PTTz/ikENmOtsPOugQZs60MoOXXHIFn332Mc8//wznn38xzzzzJKNG7co551zg7H/11ddz2mnH09jYQGFhEQA77TSE88+/uNvn8/DDD3DppT9jv/32B6B//wEsWbKIF154ln333Z/166sZNGgw48aNR1EUysr6bfA5ZlJQUMBll/0MVVUZPHgIjz/+GIGAn+OOOwmAM888l6effpKlS5cwfvwEAoEAs2ef7xzfv/8AvvnmK/73vzfZY489ycnJwev1EgwGU6791FM9e222NRJcCiGEEEKIH6WNySLavF4VTTM242i6VlxcwuTJU3j11ZdpbW1h2rTphELZP8i1u9LR0cHDDz/Axx/PpaGhHl3XiUaj1NRUp+y3665jUr4fPXosq1atBGDZsqV8/vmnzJixb6fzV1SscwKoXXYZ1e1YwuEwFRXruPnm/+OWW250tmua5gSRhx46iyuuuJhTTz2OPffch6lT92PSpN17/byHDh2WUo5cUFDIkCFDXd8X4PF4aGpqcLY988x/ePnl/1JTU0UsFiMej7PbbpO6vc6yZUt69NpsayS4FEIIIYQQYhs3a9YR3H//vXR0dPB///e7jPsoioLpqtXVNG2Ljee+++7myy8/56KLLmfAgIEEAgF+8YvLOzXcUZTM4wQrKNx33/0zZiX79OnjfB0MZnU7lnDYWlrll7/8P8rLUwNRr9cKd3bZZVeeeuq/fPLJh3z++adce+3POeigg7nmmhs2/GQznM/9XNK3ARiG9cHDW2+9zp///CcuvfRn7LrraEKhbB555K/U1NR0e52Ojo4evTbbGgkuhRBCCCGE2Mbts89+3HHHLWRlhbrMehUUFNLQUO98v2zZkm7P6fX60PUNZ1+9Xi+Goads++67b5k160inDLWlpYXa2s4B04IF85kx41Dn+4UL57P33lY2buTIcj744D369euPx9P1PMcNKSoqpqSkD5WVFRx44MFd7pebm8uMGYcyY8ahTJmyFzfd9CuuuuqXqKqa8TluDt999y3jx+/G0Ucf52xbu3Ytfr/f+d7n83W6dnl5Oe+9t+mvzQ9NliIRQgghhBBiG+f1ennyyed47LF/OZm/dLvtNolnnvkPy5Yt5bvvvuXBB//c7Tn79etHe3sbX331BU1NTUQikYz7lZX154svPqO+vo6WlhYABg4czLvv/o+lS5ewZMkifvOb6zM2wnn77Td49dWXWLNmNX/+859Ys2Y1Rx1lBVrHHnsCjY313HTTDSxatJCKinV8/PFcbrvt5t68NACceeZs/v73v/HMM0+yZs1qli1bygsvPMtzzz0NwJNPPs7bb7/BmjWrWL16Fe+//y6DBg12SlwzPcfNYeDAwSxcOJ/PP/+ENWtWc999f3LKgm1lZf1ZsGA+1dVVNDU1YRgGxx130mZ7bX5IElwKITarlmgzH1d+SFgLb+2hCCGEEDuU7OycbudaXnLJFRQUFHLBBWdxxx2/5+yzz+v2fGPHjueoo47lV7+6hsMPP4jHH3+sy/N++unHHHvsLM4++zTAauATCoW44IKz+OUvr+KAAw5k8OCdOh07e/Z5vPbaK5x55im89947/Pa3t1FWZs117dOnL3/+88PEYjGuuOIifvKTk7jvvjkp3WZ76uijj+fnP7+W//73eX7605O5/PIL+N//3qR//wGAVVr7j388yuzZZ3D++WfS2trK7353e7fPcXM46qhj2Xff/fnVr67lggvOJh6PO8uj2E455XQATjvteA4//CBqaqrp23fzvTY/JMU0e9tE+ccpHtdpaurY2sNIoaoKxcU51Ne3YRjyYxSb18beX9+s/4p5td+yz4Cp9MsewMrmFZQX7YJX3bar8OMxg08/aGLl0jBtLRqqqqCoMGR4iIOP7L5znOg9+fsltjS5x4SbpmnU1VVQUjIg4/y4jfFDNvTZXqWvuyl6bmvdX939rhQUhPD5ui/R3bbf7Qkhtjsx3ZrIrxsGSxoXMa/2W7J92QzJ33krj6x7rzxby9efdC6DqVwTZcjwLEbuunW78gkhhBBCbOskuBRCbFa6aXWmMzCIG1agaf//tmrx/DY+/mwt6/t+ygXHHMzYnYZimrBiSQdPP1bN68/XMqw8hMeTeY6LEEIIIYSQOZdCiM3MDiQN08BIVN3r5ubvvra5GIbJK8/U0uKrZNTuHhYZcwlkKYSyPYyekMPQ8hD16+N892Xr1h6qEEIIsV2ZO/cLKYn9kdnhg8uHHnqIww8/nMMPP5y33357aw9HiB2e5gouTdNA100+/7iexfPbtvLIMlv2fQfNjRqDd8qhtH8AgG/Xf01F6zpMTCbvnQfAutWZO+gJIYQQQgjLDl0Wu3jxYl5//XWeffZZYrEYZ511Fvvttx8+n29rD02IHZZmWGWxpmlQVx/hw7cbCVQ3sJYafn5TiEBg2/pM68uPmwHYZXwQe8bld3XzAJhUujul/UYCsL4qujWGJ4QQQgix3di23uVtZsuXL2fChAn4/X5ycnIYMGAAX3311dYelhA7tLgep7E+xluv1PLCE9U0N2koXoNY1GD+V9tWaWlLk8aSBe1k53gYsLO1mHFRsJj+Of0BWNu6hqISH16fQk1lDGmuLYQQQgjRtW06uPz888+54IILmDp1KuXl5bzzzjud9nn88ceZPn06Y8eO5cQTT2TevHnOYyNGjODTTz+lra2N+vp6vvrqK6qrq3/IpyDEj0rFmghvvlrD3LebWLKwDX9QYfSEHA4+pghIZgm3FV9/2oxpwoQpeZiKNS90XJ/xHDj4YILeILXh9WhmnD5lfqIRg5ZmbSuPWAghhBBi27VNl8V2dHRQXl7Osccey6WXXtrp8VdeeYVbbrmFG2+8kfHjx/PYY49xzjnn8Nprr1FUVMSIESM46aSTOP300ykqKmLChAmbtLaRqm5bnSLt8Wxr4xI7ht7eX1rc4J/3V7DeEyY338M+++bTb2gulZEIfQu99CnzU7kmykfvNLLntEK83i133xqmgWZo+D3+rvcxTL7+1CqEnbx3PotjGooCfq8Pj0dlYO4gljctpSZcRWm/IFVro9RWxyks6vqcoufk75fY0uQeE25yHwjRO6qqbNTvzTYdXE6bNo1p06Z1+fgjjzzCSSedxHHHHQfAjTfeyLvvvstzzz3H7NmzATjttNM47bTTALjooosYPHjwRo3F61UpLs7ZqGO3tMJCWX9PbDk9vb9WL28n3GHQp9zLfjNLGFdaQku0hZbmILl5AY44vj+P3LeKN16oo7Za45zLhm6xMT+/6HnWt6/nrAln4fNknmO94Ntmmho0ykfnMnKXItat9JMTD9KnOJ/inBzGKCOp0dbSpjaw8/ByvvmshbYmc5v9O7C9kr9fYkuTe0wAxGIx6upUvF4Fr3fzFe5tznMJkW7r3F8KqqpSWBjC7+/9B+rbdHDZnVgsxoIFC7jwwgudbaqqsvfee/PNN9842xoaGigqKmLhwoXU1tYyduzYjbqephm0tIQ3ddiblaoqFBZm09jYjmHIXDCxefX2/lowrxGAvGKTjvYojU1ttMbaaWuL0OBpZexIPxddsxOP3ruObz5rYu2aZkLZni0y9hU1awBYV7OevEB+xn3efb0GgPG751Bf30ZjUxttbRGam8L4om0EtXza26N8H13GhPxyAFYua6W+XoLLzUH+foktTe4x4aZpGoZhoGkmYGyWc3q9Kpq2ec71Q7v55t8QDnfwu9/dvtHneOaZJ3niiX/y9NMvbsaR7XheeeVF7rvvbl5+uXerVmyt+0vTTAzDoLGxA683lvJYXl4WPl/379222+CysbERXdcpKSlJ2V5cXMzq1aud7y+88EJaW1vJzc3l1ltv3aRrbqv/OBmGuc2OTWz/enp/rV0VwcQgv8iDaYJuGOiGjmlCXNcwDJM+ZX52GZfNlx+18P28NnabkodpmsSiJoHg5vl0LqbHsPvu6IbR5djXrgqjqDByTAjDMInrcUwTVNODYZj41QBZnhBtsTaKB1h/Kqsro/K7tpnJ3y+xpck9JmDbfQ+3ITff/BteffUlALxeL6WlZRx22OGcfvqZmzTV6/LLfyFN6raA448/glNOOZ3jjjvJ2XbggTPYa699tvi1N8cHBm4b+7dzuw0uu2KaJoqSrA9+8sknt+JohPjxqFgdwUCnoNgqQzVMAyPxD5duJBvh7DI2hy8/amHRd1Zw+f4bDbz3egNHnlzKuMm56JqJz7/xgWZzNNk0SDf1jPsYhklbi05uvtcpOdES+3rV5J/FgCdIe7wdX7ZGMKRStz6OYZgyd0cIIcQPZu+99+Waa64nHtf49tuvuO22m/F4PJxxxlm9PpemaXg8HnJyto8qnHg8vt0vIRgIBAkEglt7GD+Y7bZQvLCwEI/HQ11dXcr2hoaGTtlMIcSWFe7Qqa+Nk1cC/kRgaAWXVjmHbibLOnYeESIQVFm+uINY1GDeF60YBjz/RA133biS265fQeXayEaPpTnaBEB7m8Yj967h9edriUVTy0raWq2Mam5esrTDXp/T4woug94AADE9SnGJD10zaZWOsUIIIX5Afr+P4uISysrKOOSQmRxyyGHMnfs+ANFolHvuuYujjjqUGTP25cILz2b+/O+cY1955UVmzTqQ999/l1NPPY7p0/emqamJm2/+DTfccLWzXzQa4Y9/vI3DDz+I6dP35tJLz2f58mUp43jppec59thZHHTQVH796+toa2tLedwwDB5++AGOPvowDjhgL2bPPoOvv/4yZZ8PPniXk046munT9+FnP7uEF154lqlTJzuPP/zwA8yefQbPP/8Mxx9/BDNnTgfgo4/mcuGFZ3Poofsza9aBXHfdL6ipSa4A8dVXXzB16mQ+/fRjfvrTk5k+fR9+/vPLaGlp4e233+TEE4/i0EP35w9/uBVdz/zBs+3999/lzDNPZfr0vTnppKN5/PHHMIzk+4iHH36AY4+dxQEH7MUxx8zkgQfuA+CSS86jurqKu+66g6lTJzvPy/4ZZHqOxxwzkxkz9uOee/6Irus8+OBfmDXrQI4++jCef/7ZlHHde+/dnHzyMUyfvg8nnngUjz32sDOuhx9+gFdffYl33/2fc+2vvvoCgJqaam644RoOOWQas2YdyA03XE1dXW23r8Gm2G4zl36/n9GjR/PRRx8xfbp14xmGwccff8xPf/rTrTw6IX5c1q60gsGywV7sAgp3cKm5Mpder8KIXUPM/6qND//XSH1tnFCOh0iHTmuz9Qf/rRfr+MlFAzdqLM2xJgAWftNGsCpM67omli/u4PxfDMbjsTKOdoCYm5/8E2hnV71KauYSIKpHKerjp2JNlIa6OPmF2/enqEIIISwfVnzA2tY1G3Wsqiq9LhsclDuYfQbsu1HXswUCAeLxOAB3330Hq1ev4re/vZXi4hLefPM1rrzyYv71r6fp06cvYK2+8O9//5Prr7+R7OxssrM7N7n685/nMHfu+/z617+jpKSERx99mJ///FL+/e/nCAaDfPfdt9x++++58MLL2GeffZk7930ee+whcnPznHM8+eS/eOqpJ7j66hsYNmw4zz33NFdddTlPPPEsffr0paqqkl/96lpOPvl0Zs48nAUL5vOXv9zTaSxr1qzio48+4JZb7kRVrQ+sI5EIJ598BsOGDae9vZ3777+H3/zml/zlL39LOfbRRx/kqqt+icfj4frrr+ZXv7qGUCjErbfeSU1NDddffzXjxo3n4IMPy/jafvvtN/z+97/hiiuuYuzY8axZs5rbb78Zn8/PiSeewjvvvMV//vMvfvOb37PzzsOoq1vP2rXW/fP739/BmWeeyjHHHM/MmUd0+zNcs2Y1X3/9BX/8472sXr2S//u/X7JixXJ23XUM99//CO+++z/uuONWJk3ag379rLW3c3JyuOGGGykuLmHJkkXcdtvNFBQUctRRx3LKKWewevUqIpEI11xzPQB5eflomsbPf34p48ZN4C9/eRhQePjh+7nmmp/x4IOPOa/v5rRNB5ft7e2sWZP8hV+3bh3ff/89JSUl9OnTh7POOourr76a0aNHM27cOB577DEikQjHHHPMVhy1ED8urz9fy6fvNwFWcFmV2G6YBmaiaYKRVp46aa985n/VxttvVqHiZdJehUzcMx+PV+HRe9exYkmY5Ys7GFYe6vV4mqPN1NfGqK6MMaZAoY/fz/qqGDWVUfoPsoLF1pbOwaVm2pnLZDYz6LX2j+gRikpyAWioi7PziF4PSwghhNhkCxbM5/XXX+Xww4+iurqaV155keeee4WiomIAzjzzHD76aC5vvPEqp51mJVvi8Ti/+MV1DB06LOM5Ozo6eOGFZ/nVr37LHnvsCcAvf/l/HHfcLN5441WOPPIYnn76SfbeeyqnnHI6AKeeegbffPMlK1Ysd87z73//kzPOOIvp0w8C4PLLf84XX3zGs88+xfnnX8zzzz/DkCFDueCCSwAYPHgIS5Ys5qmnnkgZj67r3HDDjeTlJRvy2ee0XX319ZxwwpGsX19D376lzvbzzruYMWPGAXDoobP45z8f5cUX3yA/v4ChQ4czefLufPXVF10Gl3/721/5yU/O5tBDZwEwYMBAfvrTs3n66Sc58cRTqKmppqiomN13n4LX66WsrMy5Xl5ePqqqEgqFKC7ecBXltdf+mqysLHbeeSi77jqGxsZGzj3XalR62mk/4Z//fJR5875xgsszzzzHObZfv/4sW7aU//3vLY466lhCoRCBQADD0FOu/frrr6AoCldffb2z7frrb+Swww5g0aKF7LrrmA2Os7e26eBy/vz5/OQnP3G+/93vfgfAJZdcwqWXXsrMmTNpaGhgzpw51NbWMmrUKB566CGKioq21pCF+FHRNIOP32vC61XYc/8CRk+MU7XWeszElbk0U0tJhwzPou8gD+83v0621pdho47li9a3GZA7iANnDeapR6t54YkazrxkAEUlG26Dreumk5Vs6Gjku69aAdj7wHyUhmzWV8WornAFl3bmMs8VXBoaqqKiKslP8YJ25lKLUlRi/V1pqI33+nUSQgixbdqULOIP1c3zgw/eY8aMfdF1HV3XOeigQzj77PP4+usv0XWdk046OmX/WCzG8OHJT0EDgUCXgSVARcU6NE1j3LjxzrZgMMiIEeWsXr0SsLKJBxyQGuCNHj3WCS7b29uor69j7NjkORRFYezYcaxevSpxjtWMGjU65Rzp34MVOLkDS4C1a9fw0EN/YeHCBTQ1NUGiTqqmpjoluBw2LPm8i4qKKCoqJj+/wNlWWFhEY2NDl6/F8uVL+O67b3nkkQedbbpuYCbez+y//0E8+eS/OPHEo9hzz73Ze++p7L33vr3OAPbvP4CsrKyUsfr9Aed7VVUpKChIGevbb7/BU0/9m4qKdUQiYTRNo7S0X7fXWbZsKWvWrGbGjNT7XNd1KirW/fiCyylTprB48eJu9zn99NM5/fTTf6ARCSHcmhs1MGHA4CAHH1nCuta1zmMpcy6N1Myloijstm+Ad17WMLPaKegXp2pFFXFD47DxuzJ+91y+/byVR+6p4MKrB3e7ZElTY5w/37qa8jE5HHFyCZ99XkVrs05JXx9DR/mJrLb+WFetizrH2OW3ufnJ8xqmkdLMB5JlsRE9TFGJVQrbUC/BpRBCiB/O5MlTuPLKq/B6fZSUlDhdYsPhDrxeL3/72+MpzSyBlNLXYLBnzWTSz2H15FOcr9Mf77xvpnOYJDe5v05uSxcMZnXads01V9K//wCuu+7XFBeX0NHRzrnn/tQpD7a5O+gqitKpo66iKN12ye3oCHPuuRey777TMj5eVlbGE088y2effcLnn3/Krbf+lpEjd+HOO+/p9vVJl2lcnbcluxzPnz+Pm276FeeccyG77z6F7OxsXnrpBd5++41urxMOd7DrrqO5/vobOz22pZJx23RwKYTYtjU1WH/UC4utPyXuuZWpDX06T54fuquPnRYFKSsJoqEljo+jKApHnVJKPGay8Ns2vvmshb0PKOxyDGtXRohFTb77spX5i6tY6Qnj9yvWMieY9BuYCC7XuoLLTGWxhkbAE0g5dyDR0CeiRSnqkwgua1PXfBJCCCG2pKysIAMHDuq0fcSIkWiaRnNzk1OauTEGDBiI1+vl22+/4cADZwBWg59lyxZz0EEHA7DTTkNYsOC7lOMWLJjvfJ2Tk0NxcQnz5n3jZC9N02T+/O/Yb7/9AasM9rPPPk45x6JFCzc4vubmJtasWc0vf/l/zvP85JOPNu7JbsDIkeWsXbs64+ttCwaD7Lff/uy33/4ceugszj//TGpqaigrK8Pr9aHrmz+b/d138+jffwBnnHGms626ujJln0zXHjGinHfffZuioiJCoc5zbbeE7bZbrBBi62ust4K0giIr8EoNLs0uM5cAcTPKuEl5DNjZS1y3Aja7fFZVFfY7xPpE7ZvPWrr9lNEO9lQPtERaycv3MHmffIJZHnRTp7DYRyCopqxRmd7Qxw6E0zOXTlmsHiGU7SEQVGmoi8vaYEIIIba6wYOHcOCBM7jppl/x/vvvUllZwYIF83nkkQc7dWntTigU4qijjuW+++7ms88+YcWK5dx88414vT5mzDgUgOOOO5GPPprLk08+zpo1q/n3v//Jt99+lXKek08+nX/84xHeeect1qxZxZ/+dCfV1ZUce+wJABx11LGsXLmCBx64jzVrVvP6669sMPMGkJubR35+Pi+88CwVFev4/PNPuP/+e3vxSvXcT386m1deeZFHH32IlStXsHLlCt5441Uee+xhAF599SVefvm/rFixnIqKdbz99uvk5OQ6WcB+/frxzTdfUVu7PlG+u3kMGjSIqqpK3n77TSoq1vGvf/2DTz9NDdT79evnlME2NTWhaRoHH3wY2dk5XHfdVXz77TdUVlbw5Zef84c/3EJra+tmG5+bZC6FEBvNzlzawWXcSJanGKbhZCx1U++0Bm1MjzrHRO2v9eTxZf0DlA0MUL0uSuXaKAMGZy7rqU/MgTzxzH5Ecg3mtRejKqpzfUVR6DcwwKplYerWx+hbFug059IOijuXxVqZy6geQVEUikp8VK2L0taqp8zXFEIIIbaGG264iUceeZA5c+6krq6WwsIixowZx0EHHdKr81x00WWYpslNN91AR0cHu+46hjvvvMcpqR03bgK/+MV1/O1vf+Wvf/0ze+21D6ee+hNefPF55xwnnXQqHR3t3H33H2hpaWbo0OHcccefKCnpA1jzDG+66Vbuu+9unnzycSZMmMhpp525wUBRVVV+85vf86c//YEzzjiRIUN25uKLL+PKKy/p3YvVA3vttQ+33HInjz76EH//+yP4/T6GDBnqBMjZ2Tn84x+P8Kc/3YlpmowYMZI77rgbv9/qDzF79gXcccfvOemko4nFYsyd+8VmGdfUqdM48cRT+OMfbyUe19h33/047bSf8sILyeVKjjjiGL7++ktmzz6DcLiDOXPuZ+LEydx334P85S9z+OUvf044HKZv31J2331PZ8ybm2LKR/A9Eo/rNDV1bO1hpFBVheLiHOrr23rdCluIDenJ/fX036uY/1UbZ146kCHDsviubh5f11iflhYFi2mNtTgB56mjzsCreqkL1xH0BlnbsobPqz8FYHLZHnxR/Rle1cupo85wzv/p+028+mwtpf397LFvARP3zOs0p+Ghu9aybnWEK349hPWs4JOqj8j2ZdMeb2e30kmMLRnHa8/V8sl7TRx7einjJudx+w0riEYMbrhjGIqi0BHv4OklT1KS1YeZQw93zh3RIvxn8RMUBYs5fNiRPPVoFQu+aeOsyway09DOc0JEz8nfL7GlyT0m3DRNo66ugpKSAZ3mtm2sH6qhz47s/vvv5aOPPuDvf39yaw9lm7O17q/uflcKCkL4fF33wQApixVCbIImpyw2kQF0ZR7d3WLByg5qhsbrK19h7rr3ieoR57H2eJuzj2madMQ70AyNcZNz6VPmp6YyxotPrmftquQxtvq6GB6vQl6Bl5hhlcgGvVbgZ69d2W+QlYFcuyqCphl0tOnk5nucQFU37cxl6h9Mv8f6VM8ea3LepTT1EUIIIXrrmWeeZNGihVRUrOOll57nmWee5NBDD9/wgWK7IXVdQoiN1tQYR1UhLzF3MZ7e0IdkcKmbOoZulaq2xJopDCa7lLXH211ft/Hs0qcpDBZyxLCjufDqwbz7WgPvv9HAisUdDN45mTEMd+iE2w36lPlRVcWZu5mVWJ/SLssdVh5CUeGd+V/AKD+wU6dlSKBzWayqqPg9fqds1y7/tcuBhRBCCNFza9eu4e9/f4TW1hbKyvpx1lnncfLJp23tYYnNSIJLIcRGiccM2lqshjmqmpoBtL7WUxrfGK6OsREtQkQLO9+7g8umaBMAjZFG4nocn8fHrhNyrOBySQf7H2otFB0J69Svt4I8e5mQWKIEN+ixM5dWcJuT62VYeYgXKr/jo/khFKWM3Pwc11it/TxK5z+JWd4smqPNaIbmZGibGyW4FEIIIXrriiuu4oorrtrawxBbkJTFCiE2SlNjoiS2OBmQuRv6uDvH2t+7tzUngkhIlsWCFXjaKtsrAOhb5ieYA+tWRYhGDRrq4tzxq5U89VgVAMV97IZCdlmsnblMXm/sRCuYXL64AzDJL0iOW+8icwnutS4j5Bf6Up67EEIIIYRIkuBSCNElzdBSOri6pXeKtfZP7pu+/Ihm6E6GEKAl1uJ87Q4oO7RkFnNd61oA5tV9Te2Q14maYdYsD7NkQTu6ZtKcCPKK+lhzI2NOWWzIGoMrW7rTKBWPB3Qd8gpVdp+an/I8ATxK50nqTsdYLUp+YSJz2SDBpRBCCCFEOimLFUJ06eUlL1PT2MAxw4/v9FhTvRVIFqYEl8mgSzNTAzDD1MF0f5+5A1qHq1x2XetaTNOkPlxHQalK06ImVizpoKEuNeC1M5d2cBvwWgGhO8CNqWHGTsqluVHjp4f3o6gg2YLbHqtH7Rxc2lnQqB7Bl6WSneuhuSmOYZhOObAQQgghhJDMpRCiG02RJtpirWRasaipIbVTLKQ29Ek/Rjf1lExiV8Lx5JI/UT1KQ6QBzdTpW+ZH84SZ92Urq5aF8foUxkzMIZTjoWyAFUzGElnWUIbMZUe8nUFDshizWy7+tCUznbLYDHMu7cxlJNExtqDQi6FDW8uGn4sQQgghxI+JZC6FEF2y51Dqpt4p8GrspizWq3ozzrnsibArcwkQ06PE9ThZIQ/9Rhi0z7eCuqEjszjujDIMAzweJTHexJzLxDxJdxMhd9MgPS1rqiUynN3OuUyU7uYX+ahYE6WpMU5egfwJFUIIIYSwSeZSCJGRbuhO6WqmwNCZc1ncuSzWp/o67a+ZWqdS2UzCmpW5tDOGcSPuBK1DxyXLUHceEUJRFCewBGvOpVf14vXYZbJdBZdp80GdsthM3WLt4NIKemXepRBCCCFEZhJcCiEycnd+zVTO2lSv4fEq5OR6Uo7xqt6McxcNw+jU5CdTAx07cxnyWaWtmhF3gr/s4hj9BllB57BdQhnH7FW9TpbVHrdpmimNgoy0cdj7ZSqLDXqtZU3szGWB0zFWliMRQggh3C688Gzee+9/zvdLly5h9uwzOOCAvTjzzFNpaWnmyCMPobZ2/VYcpdiSpKZLCJFRSnCZlrmMRg062nWK+/hSmtpohobf40fN8LmVbuqYpM7DzPHn0BxtTtlmZ0tD3hCNNBJ3LWHSFm/jpLP6UV0Zpf+g1ImTmqFhmAZ+1e8ErYap81HFXNa1rXUyofZYUsbmLEXSdUOfiJ7IXBZJ5lIIIcSWN3Xq5G4fP+usc5k9+/wfZCyLFn3PQw/9hUWLFhIOhykp6cOYMeO49tpf4fNZH7p+8MG7tLe3s99+BzjH/eUv99C3byk333wHWVlB8vLyOeyww3n44Qe49tpf/SBjFz8sCS6FEBlp3WQumzPMt4zqUQzTIMublbEBkGZonYNLX+fg0hbyZQNWkGsHulE9SnY+7FKU02l/exkSn8fvZE41Q2NZ01IgdbmTTmWxRtdlsUGPnbmMWs9ZMpdCCCF+AC+88Jrz9SuvvMhzzz3Ngw8+5mzLykpW8Jimia7reL2b/619Y2MDV155Mfvttz933fVnQqEQFRXreOedtxOVQNa/i08//R8OO+wIFCX5oXNFxVpOOOFkysrKnG2zZh3BmWeexsUXX0Fubu5mH6/YuqQsVgiRkbvzq5ZWRuo08ylO/iPWFmsDINuXjaJkylxqKQ12ALL9Xf+jkpUoR43qkZRgtT3elnF/Oxj2qz5URUVRlC6703aec2l9n6lM185c2nNBnTmXjZK5FEIIseUUF5c4/4VCIVRVdb5fvXoVBx+8H5988hFnnXUq+++/J0uXLubmm3/DDTdcnXKeG264mptv/o3zfTQa5Z577uKoow5lxox9ufDCs5k//7sux/Hdd/OIRiNcffX1jBgxkgEDBrLHHntyzTXXEwhY/0Y2Njby1Vefs88++zrHTZ06mYqKddx99x+YOnUyDz/8AACDBw+hb9++zJ373mZ8tcS2QjKXQohOdN1k4fxG4oVWiaph6tStj7FicQfNjdZcS0jNXNpBX8iXQ9iVJXTOaWQoi/UlM5CqoqasfRnyWpnLSNq52uJtFAQLne9N0+Tb2q/J8VmBqs9jrV/pUTyd5ngmj0ntFpssi+38J1FVVAKeAFHdylxmhTz4/AptLRJcCiHE9i730gvwv/ryD3a92GGzaL3n/s12vgceuJdLLrmS0tIy8vMLenTM3XffwerVq/jtb2+luLiEN998jSuvvJh//etp+vTp22n/oqIiYrEYc+e+z3777Z+SmbTNm/cNoVCIQYMGO9teeOE1zj33pxxzzPHMnHlESqa1vHwU3377NYcddnjvn7TYpklwKYToZP5XrTz/ZCWRoesZvVsOLz1TzdqvW7FjQ/vfldTg0mqYk+PLoTHS4Gz3qT6r46upYTrHK5imSZY36Dwe8oWc7CdAls/KXNoZQ1tbWuZydcsq5tV+63zvV63gUlXUlHmjbrqRvhRJoiw2Q0MfsLKXzdFm4nocn8dHMMtDW4uGaZoZ/5EVQgghfgjnnnsRkybt3uP9q6urEyW2r1BUVAzAmWeew0cfzeWNN17ltNN+2umYMWPGceqpP+HXv76W3Nxcdt11LLvvPoVDD53llLXW1FRRVFSc8m9icXEJqqoSCoUoLi5JOWdJSQnLly/bmKcstnESXAohOlm3OoKhaNTWxHj3tQYGtTdTlp3HpL3y+PT9ZmJRKzgrdAWXbfFWwCqLVV1lsV7VS9yIo5uGkzHM9+fTFG0i5M12Hg95s53g0qN4nPUl09e9bIu1djt2X2IZEq/qdeZhqoqKqqjk+HJoijZ1buhjdt3QB6yOsc3RZiJ6OBFcqrQ2QyxqEghKcCmEENurTckier0qmmZseMctaJddRvVq/xUrlqHrOieddHTK9lgsxvDhI7o87qKLLuOUU07niy8+Y8GC73j88cd4/PHHeOihv1NS0odoNIrfH+jy+HR+f4BotHOVk9j+SXAphOikpjKKoWiEsj3EYwZTDsjl6IOG4PNDRXgVy+fmoqCmzLlMZi5zUUkGXH6Pn7AWRnc19BnfdzdM06Qsu5/zuD3HEqwA0ZcoUe2IW5nLbF827fF2WmKZGwA5xybW2HTPnyzLLuPAwQezuHERn1V90mVDn0xlsQBBJ9CNkOvPI5hlBc+RsE4gKFPXhRBCbB3BYFbK93ZlkJumJadxhMMdeL1e/va3xztV3mRnZ3d7rcLCImbMOJQZMw7lnHMu5OSTj+H555/hnHMuID+/gNbWlh6Pu7W1hYKCwg3vKLY7ElwKIVKYpklNZQzVr3PECf1ob48xaUAugYDK0sYldOz0DY1f9KfMHEl2TjKAczf0ca9z6U0Ee7qpO3Mqs305lGRZJTK+RBlrljc5F8On+pwg0Z7r2CfUl1jrOqrbq9EMzQkE7axj8tjknEub3xNAUZSUJUrc7IZFXZfF2h1jrSxqMrg0yJd/G4UQQmwjCgoKWbt2tfO9YRisWLGc8eN3A2DEiJFomkZzcxNjxozb6Ovk5ORQXFxMOGz9uzhyZDl1dbW0t7eRnd25o3u6VatWMnFi90utiO2TfOQuhEjR1KARjRgUlCh4PCqqmuyu2hprIRTyMGWmh+N+UpbyqWd7vA1VUcnyZqG4/rT4E0GitQ6lHcS5Hk+UsYZ87uDS7wSltoAnyIDcgWiGRmVbhbM9vZOt32PPuXQFl07AaV03vdFPsiw2c3CZZa91mWgulBWyzh0Ob91yKCGEEMJtt90msWDBfN5663XWrFnNnDl30tzc5Dw+ePAQDjxwBjfd9Cvef/9dKisrWLBgPo888iBff/1lxnN++OEH/Pa3v+bjjz9k3bq1rFy5gr/85R5WrlzhdIcdMaKcvLx8vvtu3gbHGI1GWbz4e/bYY8/N8pzFtkUyl0KIFNUVifUc+yQDQLts1A6u8gZEKB+Wk/J4VI+S689FUZSUOZd291bDlbl0B3F2pjHkKov1e5KZy+R+XkpDO7GqeSVrWlczOG+nlLEl90vOuUyeLzXgtINl0zRZ3bLKKentuiw2kbnU0zOXmbvRCiGEEFvDXnvtw2mn/ZS77/4DpmlwwgmnsPvuU1L2ueGGm3jkkQeZM+dO6upqKSwsYsyYcRx00CEZzzlkyM74/X7+9Kc7Wb++hmAwyE47DeF3v7vdyT56PB5mzjycN998jT333LvbMX744Qf07Vu6SZlTse2S4FIIkaKm0gou812N3eyMo925tTnahGEaThBpL0NiLy2SElw6mctkcOkuP7XLYbP9uc5yJD7Vj0f1pMwd8apeBuQMxKN4WNe61rl+elms35OapQTX8iSqHVxa41jbuob3170LQFGwOGXcbvZal22xNpY2LsEXzAcg0iGZSyGEEFveccedxHHHneR8P3HiZObO/SLjvueffzHnn39xl+fy+Xycd95FnHfeRT269oABA7nmmhs2uN+JJ57GT396ErW1650lTZ5++sVO+z311BP89Kfn9OjaYvsjZbFCiBTVieAytzhZ8mpnB+31Kw3ToDWWnLhvz7fM8VstyVODSyuw003dyRi652SO6zOe/QdNpzRU6mQO7Y6v7uylV/Xh8/gozS4lpsdojDSmjC39eu5rBFSrg136nMumqHWOsSXjmDm067W27DmXy5qW8nHlh9SpKwFrzqUQQgghrOVFrr76Bmpqqrvcp6WlmalT92PGjMxZUrH9k8ylEMKxeEEbyxd1oCiQUwD2IiB6WuYSoDHSSH6gAEh2is32WZ3m1AxzKnVDS5bFujKXQW/QKXG1lw+xA0T3ciJ2oJmdyI5GdSvQjRvpmUu7W6yr9NaT2kE2OYfUWtakNLusy6wlJOdc2hS/NSYpixVCCCGSpk07oNvH8/LyM66lKXYckrkUQgBQtS7Cvx+qIh4zmXFkCYovGThppo5pmk7nVkhm/SB1jUsAJS1zqSgKUT2Klihh9XSxnqQddNpNgNyZS/uYgMfKQtqdW/VEcNk/pz9l2WXk+vM6XcM+xplzmWjo05Yo581NZFy7Ys+5tIWyrOBXMpdCCCGEEEmSuRRCALBuVQTThH2mF7L3AYW8vEJz/kIYhk5Uj2KYhjMP0i5LhdQ1LgFU1+dWHtWDX/UT02N4VW+XTXMguWyJ1+NL+R6SgaZdomqX6NoB67g+u9E31Dd5XVe3WDsTamcn7Qxqa6wFRVGcbGhX7MynM07rdJK5FEKI7USyubnZ3W5CiMTvSNoyqD0mmUshBABtrVagVNzXCqTiRtx5TDd1J1NYktUHSM9cJte4BFBdf5FUVILeILqpEzNiKUFfOjvwtJcO8aV0lbWDS6tE1S6Ltedc+tKC1pSlSJyy2MRSJKaGbuh0xDvI9mV3WxJrO3TnWYws2sW6lpUIlcylEEJsJ1TVAyjEYtEN7ivEj5n1O6Ikfmd6TzKXQggA2tus4DI71/pjohlx7D8rmqERSQRzef48WqLNhLVw8th4G4qiEMow51JVVAKeINCMaZpdlsRCMkD0Zchc2nMog57UNSe1RBCcnhFNXUsz0dBHtRv6GE4pb84Gspa2vqG+tMfbWNKwCJ+TuZTgUgghtgeKopCdnUdLSwMAfn8A2MjUTPKsaJpkQsWW8kPfXyaxWJSWlgays/NS1jLvDQkuhRBAMrjMybX+LMSNOJ7Enwjd1OhINPPJ8mbh8/iIxqKYpomJ2SkDmBpcKs6cR0ht5pPODiaTmUt3WWwiuExkLu01J7XE/ElP2nlT1rlU09e5NJxmPvYczZ6wn5fHb/2xD3dIWawQQmwvcnKsZaSsAHPT37SrqophyIeMYsvYOveX9SGM/buyMSS4FEIA0N5qlZdm53gwTTNRbmoHl4aTKQx6s1xrV2pOkOeet5gaXHqcgBC6buZjnSM75f9TliJJZDPt5joRLZoYmzXuzplLj7PdvqbH1dDHLuXN2UAzn4znlMylEEJsdxRFITe3gJycfAxDx9yE+FJVFQoLQzQ2dmAYkr0Um9fWuL8UxSof39iMpU2CSyEEAO2JOZehHI8zjzHoDdJGBN3QnWVIgt6gkyWMG/FOy5BAardYqyw2mblMzzC67dZ3EsMKhlMYLAJSA0Y749k5c5k5uLSzlCkdZ13rXNrrdOb6eh5cOkGzYuAPqBJcCiHEdkhRFDyeTXsLrKoKfr8frzcmwaXY7Lbn+0sa+gghAKss1h9Q8PtVp5mPHcjppuZkLkPekNMgRzPitNsZQHfmktTg0u8ui+0mc+lRPU5gCellsT7X+fyuOZcaqqJ2asrjNAfy+FPObz0fnbZY7zOX7m6zWSGVaNTY7v7oCyGEEEJsKRJcCiHQNJNI2CA7Md9SSw8u3ZlLjztzqWUM0tIb+thNeIBuu8Wm87oCSnc5bZY3C83Q0AwN3dQzLm9iX8cd2KpOt1i91w19rOOTDYGCWSqYEI1I9lIIIYQQAiS4FEIAHXan2BwreIq7ymLBWksy7J5zmZK57FwW26lbrNdVFtvNOpfp7GxlevAYsDvG6hE0Q8sYsKqqNQa/mrpGpUfxoBs6ES1iBb6u+aAb4g5Og1nWNaU0VgghhBDCInMuhfiRM0yDNlczH0hmLn2qD6/qtYIxM+zMn7QzinEj7mQA3cGlO9hTnKVILJmyjF3xJubEpB9jB4Qd8Q4M08h4TnuOpjtzCVZprGEaaIaWUnbbE/b6nU7mEoiEdaB35xFCCCGE2BFJcCnEj1hduI5XVrxIacc4IM9Z49Kec+nz+PAoHjRDJ2bEyPJmoSiKsyxIakMfd7fYZKcxFdWZowm9K4u1g7/0IDDotTrG2oFtpuDS3scd9FpjU501O7M92Z2O6467IVAyuJTMpRBCCCEESFmsED9qixu+B+CL9Z8CqWtcghXUqarVPdY0TWcZEPdSJB3xjkQ2Mxngde4W655z2fuy2PRjgolsZHtivqc3Qwayb6gvBw85lLEl41O2u4Pb9Kzmhrgb+khZrBBCCCFEKslcCvEjsnpFmJVLOhg8NIudhmU58x9jUROFZFlsVLfWkPR7/E55KUDIZwWXdjAX0cLopk6ON7UpTuqcS4WAJ4CiKJim2W232HR2UOnzdJW5TASXXWRDy7L7ZTinO7jsXTmr4gSXJlkh6+u2Fq1X5xBCCCGE2FFJcCnEj8grT6+npjIGQL9BAfRB7Xy8og4FGEoyuGyLWeWmuYHclC6t6ZlLuyQ2PQOY3tBHURT8qp+oHu1VWWzIF7L+3xtK2W53n7WXQelNkyD38+lt5tIeu27q9B9sjWHVsjC7Ty3o1XmEEEIIIXZEElwK8SNhGCZ16+P4Ayp9Sn1UrIlSuz5MJJgs67TnXNoZwVx/bkpW0G6kY5fA2sFdwLWWJHRe59I+NqpHexUIZvuyOWznw8lNW4vSHkdrrOs5l11RN1NZ7JBhWXi8CsuXdKDrJh6PsoGjhRBCCCF2bDLnUogfieZGDV0zKe3vZ/YVg5h1fB8m7VFEn7JkYOgEl4m5jLmBXNSU9SWtDGLvMpep6032JnMJ0CfUp9NyIXYmM1kW24vMpev6AdXfzZ5dH2uYOv6Ayk7Dsoh0GFSuifTqPEIIIYQQOyIJLoX4kahbb5XDFvfxo6oKu08tYOoBJYwam+yYmp1jBWlt8VY8qoeQL5QSuHXOXCaCS7X7sliAQCK47E2WsSt2Z1rTNBPn7PncSY9rbJuSuQQYvosV5C5b1NGr8wghhBBC7IgkuBTiR6J+vdUBtrhvMhAzMckv9DF0ZBajxucQylaJ6TFieowcn1WK6s70ZXntOZdWxs/uKpteFpveLRaS8yQ9vWjo0xWP6nHGAvSuSVDKnMveZS7Tg8sRo6zAfNn37b06jxBCCCHEjkjmXArxI1Ffa2UuS/omAyoTK/M3ekIuJ+xaiqIozjzKHL+VHXRnGu2ALj2Y67YsNvEZVl4g3zqvL3X+5MbK9uUQ1sKdxrghCu7MZe+CS7Cem27qAJSU+gjleKiqiKJpJl6vzLsUQgghxI+XZC6F+JFwymLdmctEWSlATLcet5vk5CRKT9WUhj6pS5HYOjX0URTX19afmdHFYzh2xPH0DfXdtCeSYAe/0Lu1M92Zy0Avy2Kta3mczKWiKPQbEMDQobY61utzCSGEEELsSCS4FOJHon59HEWBopLUslhb3LCCozYnc2llGO0spaqoTjDmSwsu0zOX7lJaO7hUFMU55+ZgB7/WGDeuoY+vlw19wHoednAJUDbAeu7VFdFen0sIIYQQYkciwaUQPwKxqEFLk4a/uI217auc7amZyzgd8Q6nU6wdvNnBmLtj64aCS3dAqShbplQ0OyW47MWcS3e32I0oi3VnLkGCSyGEEEIIm8y5FGI7EdfjvLzivwwrGM7YPuN7fJymGXzzeQsAzSXf8cE6nX7Z/Ql6gymZy7Wtq5lX+63zvV12apeR2suQgBU0elUvmqEBXTf0Ubfg51fuzGVvymI3ZZ1L63g1NbgcKMGlEEIIIQRIcCnEdqMx2khLrIWq9soeBZfRqM5DT35E3ff5mGFrrmR+HyuYbI+3dwouq9qrUo5Pdou1/kxkpa016VE8aNjBZepjdlDpbuyzubnnXPaqLFZNjik9A9sT7o6xqqJS3MeH16dQXRHFNM0tlqkVQgghhNjWSVmsENuJjsSakvFEtnBDPv5yJe8u/4gq7/eMGpfN6ef3Z+hoK8MY1hLrMrrKYpujTYAVNA7O28kpg82UuYTUTqvpXVfdZbFbirsstjdBol0W6/f4N2p89vG6YXWMVVWF0v4BohGDpoae/WyEEEIIIXZEkrkUYjthL7uhGXE0zWTx/DaaGjRC2R4m7JGLrpusXRmhpVljWHmIJcuaANjjwAAn7d8fgM++11LO5c5c2t1iD9l5JiVZJc52byJzGUzLTtrZQp/q65ShtL/fkplLr+ol6A0S0SJ4NqKhz8Z0ioVkya+Be96ln4rVEarWRSks7n02VAghhBBiRyDBpRDbCXv9yXXr2pnzz1W0NCWzZKX9/XzyXhPzvrCWEdl5RBYr17eiKJBXamXYDNNw5kjamUv33EGbey4jQGl2KUXBYgbkDkrZbi9HkmmtSDuodDfP2RKyfTlEtAjeXlzHnnO5MZ1iIS1zmbhscT+VFm8lNVUF7Do+p5ujhRBCCCF2XFIWK8R2IqyFiYR1PvmgjpYmjfIx2YzY1SpVrVoXZdWysBVMFnhZuTRMezhGUYkPTYkAEDfizrk67MylqywWrMApmDa3sjBYxOHDjuy0PqUvkS3M1BRHVVQURdniweXIwnIG5g4kL5Df42PsMt+N6RQLrjmXrsxla/Yq1mZ/wuKqVRt1TiGEEEKIHYEEl0JsJ5rDrcz7spVoPM6U/Qo45Zz+7DYlD4DliztoadIoKfVzwGHFABhKnD5lfmJ6DN3QiSfKXgHCcStz6S6LBcj2Zfd4PHbmMlOQpioqu5dNYbfSSb17kr00onAk0wfP6FX5bXLO5caVxaqJeZqmK+ubU2R9XVPXtlHnFEIIIYTYEUhwKcR2YOnCdp7592pqKmNk5agcMLMQgNL+VoC0+Dur2U+/gQHGTc6loMiLgU5pP+vxsB5OyVxmmnMJvQsufU5ZbOYgbZeiUeyUN6TH5/uh2MHhxs65TG/oAxDMUvEHFBoboui62dWhQgghhBA7NAkuhdgOvPliHe3xDgYMDrDntHwUnxXYFBb78AcUJ6ApGxDA41E45dz+7Dczl7wCq3Q1HA8TSwkuE5nLtLLYHH9uj8eUzFxuXJC2tdhdb3sTSLu5G/rYTZAM0yA3z1r3s7Eu3t3hQgghhBA7LAkuhdjGVVdGqaxuJa9QZeKe+WTneJ0spL0Mhq3fQOvr0n4BBg9PlquGtY7UstjNkrm051xu3NzFraVfdn8OHnIoo4pHb9TxduZyedMy/r3ocarbqzBNyM23ssXrq2MbOIMQQgghxI5JgkshtnHzvmhFU8IM2CnZaEd3rXVZNiCQ8ev0Mlj394ZpENEipCUuN2tZ7LZKURTKsvs5S6n0lj2/sz5cD0BLtAUDg9w8D6aiU1sjwaUQQgghfpwkuBRiG9barPHdl63EPWEGDHYHjp2Dy8JiH1mhZHdWLa0MNq6nlmuGtY6UjqdgLe3RUyVZfQh4AvQNlfb4mB2BHVzG9ChgZX9N0yAnz8pcrlrawdKF7TL3UgghhBA/OrLOpRDbqCUL2vnPo1VocZP+u0AwK3PgOGhIEBQYPDR1CRF3ABrWwp3WdQxrYdJTl73JXPbL6c9Ju5za4/13FHZZbES3lngxTAPTNMnN92AqBiuXhlm5NEyfMj9Hn1rKgMHB7k4nhBBCCLHDkMylENuoT99vQoubTNmvgKkzrSY0dimnXeKqGRqh4hjn/WwQhx7TJ+X4zmWxVrmmHUCGtY6UOZd+j5+Qd+Oa3PyYKE7mMtnMx8AgEPAwfko2YyflstOwLGqrYzz1WBWmaVLZVsHSxiXUdNRszaELIYQQQmxRkrkUYhtkmiaVayN4vAoHH1XCp9WLAcjz59MQqXcCx9dWvkJDpJ5jR55Ali81Q6alBZexRFlsnj+P9ng7HVrY6Ra738D9KQn1waN6EN3z2N1iE+tcGhjO6zh6Uoj9B5VhmiYP3b2OitUR1q5t5/22t6wMJyaFq/dhQGEZE/fMQ0ksiyKEEEIIsSOQzKUQ26DGeo1wh+EsLRJNzO+zs472GosNEaupTFustdM54kYcVVFRFIWw1uEEm7mBfAAiWtjJXAa9QXJ6Md/yx8yec+kwTSfQtBstKYrCqLHWz2rhd000NsSIhHWa6uP87521vPjkep54qErmZQohhBBihyLBpRDboMo11ny+/oOsZj12SWsoEVzGjTitsRZnf4XOGTDN0PCpPoKeIBEt4gSoWR4rw6knMmldHS8ySw8uDdNIBpem7mzfZawVrH/xcSPvv9nAJ+83UVMZQ1MjeDwKSxa0s3Rh+w83cCGEEEKILUyCSyG2QRVrreDSbgZjN+cJebMAq+R1vWv+njuoAausVjM0fB4fWd4QhmnQFreym87SIabplHMi5Zk9Zjf0sZmJ/wFoRvLnUFLqp6Svj/YOK2Pc2qyzcmmYuBJh96lW9ri6IvoDjVoIIYQQYsuT4FKIbVDlGivocDKXup25tBr7aIZGbUets79maHyz/iueXvIkcT3uzMn0qT5y/FYGrTnaDEDAY3WNNUmWc6ryp6DHlAyZSxLBpW5qKY+N2z0PE4O+/fx4DD+aZhIq0th1vPUzqamU4FIIIYQQOw5p6CPENsYwTKrWRfD5FUpKrUAwZsRQFdXJOsYNjdrweucY3dRZ31FDR7yD1ngLgUTpq1f1kefPs86bCCTtcxjusljJXPZYeuYypSzWSM0gTz2wkMHjB/JOdT4fPq/RrMfoO9ikb3/r51pdaX1oYJqm/AyEEEIIsd2TdIUQ25jWZo1Y1KRvvwCqagUc9vxJn+oDoCPeTmOk0TnGMHWnJFMzdKd5j0/1kp9o4ANWEOlzZS7tsliZc9lz6XMu3RlgLS1zqaoKWTkKHo/CuLF9UBQoG6IQDHooKPbSWBfnm8p5PLn4X7THZf6lEEIIIbZvkrkUYhsTCVuBSig7ueSFZmhk+bPwJoLLunBtyjGaoTvzLnVDI54IgLyqj1x/Mrj0qT4nkEzNXG7BJ7SD6dzQJ7laaHrmEsBMBJ4Tdy+mcFh/vD4rAC3rH6CpXmPRujXEsmO0RJudbsA9FdbCtMfbKckq6f0TEUIIIYTYzCRzKcQ2JhKxgpFgllV+ac+f9Ko+fKr1eVBYCwPJQEc3dWcZDM3UXJlLX0rm0qf6nGOsrKVkLnvL003mMr2xEiQDTq/qJS+UTdyIE9fjlPa3ypMra60MdHrWsyc+rpzLqytfIqJFen2sEEIIIcTmJsGlENuYaCJzGQhav552Mx+/x+9kLm124KibuhOcxI04scQxXtVHwBMgkJhn6ff4UzOXUhbba+kNfUzX66gZnQNEg0TTJMVDVqLbb0QPO8FlTb21pEymrOeGtMfbMU2TqC7BpRBCCCG2vh06uPzuu+846qijnP923XVXvv/++609LCG6FYlYQUYwEVzGEmtc+lQvXjW1kj0vUfJqGLoTnOhGMtC0M515iSDUp/pREzWw7iU0pJlMz3XX0Mf+3s3+uaiKQpbX6vbboYXpNzCApkSpqGgnHjM6dZrtCXvtUm0jAlMhhBBCiM1th55zOXbsWF544QUAKioqOOOMMxg1atRWHpUQ3euUuTTsQNHvNPSx2ZlLzdSckkzN0JwAx27ek+/Pp7ZjPT7V68pSupYiUXboz5k2q0wNfUySAaVmaPgTrztYzZbACkqDXquLbzjeQWlxKeUTVRYvM/ny4xbavq4m1BTAH1A54cx+hLJTg9hM7Az1xpTUCiGEEEJsbj+ad5SvvfYahxxyyNYehhAbZM+5DGSllsX6PH5URU0JbuyMpG4YTkmmZmop61wC5AbynHPYWUp3hk3KYnuuc0OfZFksdC6NNRKPqYrqZC7tObNTDs4imKVQWxNj6aJWKtZEWbk0zIf/a2RD7EZPgDPfVgghhBBia9qmg8vPP/+cCy64gKlTp1JeXs4777zTaZ/HH3+c6dOnM3bsWE488UTmzZuX8VyvvfYahx122JYeshCbzM5cppfF+hOBol0aG/QGCSbWs4wn9gEr0HAvRQJQECiwzuEJpDT0sQMfaRfbc+llsdbr6C6LTS1RtTPKquohZM+5TASXujfM7vsUMHRkFoceW8SFVw/G61P47IMm2lq7DxjtrKX7GkIIIYQQW9M2XRbb0dFBeXk5xx57LJdeemmnx1955RVuueUWbrzxRsaPH89jjz3GOeecw2uvvUZRUZGzX0VFBQ0NDYwbN26TxmOvObitsMezrY1LbJpo1ApUskIeVFXBMDUUBfxeP6qq4Pf4iRsx8gK5eD1eFMUKLu340J675z5mcN5gdu+3B4PzdnIeMxWrW6yigEdVO91Hcn9l5vF4UmNxxQQlGZ8b6KmvmWK9xj7VS8gfQlEgYkRQVYUOrY3CYh+FxT4G9vHTrzTI7vvk8/G7TXzybhMHH9Wny3FoZqzra24H5P4SW5rcY2JLkvtLbEnb8/21TQeX06ZNY9q0aV0+/sgjj3DSSSdx3HHHAXDjjTfy7rvv8txzzzF79mxnv9dff32TS2K9XpXi4pxNOseWUljYu7XxxNa3pnkNH6/9mMNGHEZeomTVZhrWGpZ9S3MoLs4hFPeRkxOkb1EBxcU5FOXnokQ0+hf2pU9xHjm1QQLZKjmmlcXMzvVjYpITDdK3uIDiPOu+3a9kTwDaYm3k5ATJzQlimAZhNUhJcS4hXyjjWOX+SmVmRchZH3S+z8kNEPP6MWPWtvzCLIpDyb8VufEAOa1Bigpz6Jfbh5y6IL4sk+LiHDxNBjk51nG5eQGKi3M4/Hg/n7zXxPyv2zj5rCFdNlvS2zs6Hbs9kvtLbGlyj4ktSe4vsSVtj/fXNh1cdicWi7FgwQIuvPBCZ5uqquy999588803Kfu+9tpr/OpXv9qk62maQUtLeJPOsbmpqkJhYTaNje0YhrnhA8Q2Y37VYirqa1ictZKhBcNSHmtptsodo7Eo9fWwvqGJtrYI7a1x6j1tRDo02joiGFkeWpoitLVFqNOaaYtYy1HUe1sxTYO2tgitzTHq420p5++Id9DWFqHZsJaxaAtHaGhoJ+xN7XIq91dmTRHr9bM1Kx20RMJ0xK1t6+uaUbKTwWd9Y6v1s2iJkGdotLVFqNUbqa9vo7J+PW3hxM/N30J9lvWzGjgkyNqVERZ8W0+/QUHSxeMGL725guqCNnLyvNQ1tFCitHXab1sm95fY0uQeE1uS3F9iS9pW76+8vCx8vu4bDm63wWVjYyO6rlNSUpKyvbi4mNWrVzvfV1ZW0tDQwNixYzf5mtvSD9fNMMxtdmwis5gWxzQhrmudfnaRsDV/zh9QMAzT2deDF8MwUfFgmpDlyUYxVUwTIvEI9vTJuB7HMPXEMZ5O5zdN6z/dMDFN0/re6Pr+lvsrjang6t+DrlvLwKS8/q7Xy3nMVJyfnWboGIZJa7TNdVzyXhg5Opu1KyN8/10bpQOs9TA1zeCdVxsYNCTIyqVh3v24hsiQVvbav5BY2jW3J3J/iS1N7jGxJcn9Jbak7fH+2m6Dy66YpplSRta/f3/eeuutrTgiITpzlpDI0OUz0mkpkkRDn8TyFt5EY58cXw6q6kk5n3XOuLPuYfrSJUBKQx97nUtZiqTnOq1ziZnSLTa9uY7T0EfxOK+z3enVXqcSUu+F8jHZvP1SPYsXtLP/ocUAzP+qjQ/fTnaR1f1x6tbHiYR16RYrhBBCiG3CdvuOsrCwEI/HQ11dXcr2hoaGTtlMIbY1dsCYaX3CaCQ1uLQDR59qBZf9cwaQ68+lOKsEr2J9PuQOaDRDdwWkgU7nt5cdsdZmNFO2iQ1T0te5dAXpAGtb1vDi8udpjbUA1jIxYAWldmCqm7rTMdb+0MD9M+xT6qew2EfV2ih/vm01389rY94X1vk8XutnVdzP2rdiTVTWuRRCCCHENmG7DS79fj+jR4/mo48+crYZhsHHH3/MhAkTtt7AhOiBeCLTZBidl5CIhA38gWT31mSgaGUhdykaxTEjjifoDXbKogFORkxRlA1mLu0lNLpqGiM665S5NI2UpUhWNq+gMdJITXuN9TjWY6qioigKqqKiG7oTTAYSHwC4s4+KojD1oEKyslXWV8V45h/VrFgaJifPw6XX78Tsywey50FWA591q8JougSXQgghhNj6tumy2Pb2dtasWeN8v27dOr7//ntKSkro06cPZ511FldffTWjR49m3LhxPPbYY0QiEY455pitOGohNsxeh9LOOBmGaS07YphEowZ5+clfTTsQ9WYIFD1q5+BSNzViegyf6ssYNNpZSndAJJnLnksvITZMI2NZrF3yan+AYAelHsWDbuqu0mU7c5naUGnSXvlM2iufd16t573XGwAYOymXgkIfBYU+1laY5OZ7aGnWeePlGsaeqhPK7n6SvRBCCCHElrRNB5fz58/nJz/5ifP97373OwAuueQSLr30UmbOnElDQwNz5syhtraWUaNG8dBDD6WscSnEtiimxzBNk8bGKE++XMnyxR0ce0YZQ4ZngZksiQWIJ8pi/YkgxM3OhrmDm5geQzM0cv25Ga9tB5zuUk7JXPZcenBpYjrZSbeobnWBdeZcJj4IUBUV3XRnLq2fa6b5twD7zihi8fx2qiujjN89uWxNzIgxcUo+n3/UzOoV7fzl9tUcc1oZQ0dmXlJGCCGEEGJL26aDyylTprB48eJu9zn99NM5/fTTf6ARCdF7pmny3yfXk5Pr4cBZJRiGybxvGlm6uIXccIgB4VIAnnq0mqNO6QtAMMsVXBpxVEXNmKUEKxPmnnMXTszl82UIRoGUpjJ2UCmZy55LL4s10zKXNidzmchIqolZCB7VQ0yLYSSCS3terJ1xbou3UhQsds7j9Sr85KIBNNbHKeufnEMb06PkFXiZNqOIqm/9tH6t868HK/nZb3aWDKYQQgghtortds6lEFtKXbiONS2rN7xjDzU3aXz9SQsfvNVIY32cfz9cyaKFVnOWgj4qUw8qZMaRJeiayUv/qQXADHQQ163S2bgRzzh30pZp3iUkM2KZKIqC6epyKpnLnrNfK3dznkzs4NJ+3KOqznGmaRJPlEb7XZnLjys/5KXl/6WidV3KuULZHgYMTl3vMpa4P7w+hT2m5bLTOI0Gcx1V66IIIYQQQmwNElwKkeaTyo94f927XZYp9lbV2sSbfROe/FsV3y9oJjvHw34HFzHz+GIOOryEfaYXkpPnIRY10ImzwPs6cyved5as8HcTKHaV0czUKdamoDhdTiWw7L3irBL6hqws84aCSztD6Z5zCclyZ4/ideZhrm5ZBcDC+vkp51rauIS3Vr+O7moAFTNcy5iYOo3F81ib/Slr17Zs6tMTQgghhNgoElwKkSZmRJ2gbmPM/6qVP/x6BSuXdgBQuTbiPFZdEcVQ4ozfI5ecXC+6q5y1/yArMxVXO/D4TdribU52K1MzH1vXmcuug0tVUZ1GNFIS23uH7TyLg3Y6BCAl4HOLpZfFJsqR1cTPK+b8bD14VA+6oZPjtzrAVrVXpZTaLmr4nsq2ShoiDa7zu9c21cgqsO6lyqr2TX+CQgghhBAbQYJLIdLYwUJXGSlbXU2Mfz5QwZv/raNuvfVGv6YqyvNP1NDWovPKM7XouknlGivIKCiypjiPGBuguMQuhUxeY8BgKxjU1Cg+r0rciCWb+XSTufSqmadO+zxdB6QKVlmsYRoSXG4E97Iihtm5mQ9ARLMb+tjBZSJzqaZnLj1O5tL9QUFNRzVgBafN0SbrnLo1n9Y0TWJ6jKDX+kBCNzRC+dZ1qiuTH2YIIYQQQvyQJLgUIo0dVOobyFy++WIdy77v4MP/NfLQ3WvpaNd5+rFqtLhJMKRSWx3jm89aqFwbweNVOOHMfoydlMt+hyU7frqzo3bmUleieP0KcT3uZC59XQSQkAxa0nVbFuvqGCtlsRtPQdnwnMtOS5FYf3ZjifVLVdWDV/VimIbTjAlgVaJEtjHS6ASwdsBqH5vlzQKsebmKTyMQVKivjRKPZw54hRBCCCG2JAkuhUhjv5HvLnNZXRFl8fx28gq8lI/JJtJh8K8HK6mtjrHTsCzOuGAAAK8/X0u4w6Csv58Bg4Mcd0YZwVz3mojJ4LLfoETmUoni8ylohuaUTnbV+RVSy2Ldy2QE1O7nXKaXa4rec2cuM61/GdfjmKQ+npxzGXe+t7PP7lLXpkgjAI2uUtiw1pE41s5oB/CqXiKJZU/yC3zohkFtdfI8QgghhBA/FHlXKUQaO5uYvqi92wdvWm/49zmwkIMOLwFg3SrrDf6Bs4oZMDjI3gcUEItagWR/V6fP9LlytpxcL/mFXjQlitdnZcSiiUyVr9uy2GRw6S6f7a6UVlEUZ86l2HjurK+7PNneHjWinTKXyTmXybJYd/Y525cNQIdmzZ1sSAkurfsh6lr71O4+C5BX4MXEoKZSOsYKIYQQ4ocnwaUQLu75c12VxbY0aSz8to1QjoeJU/LoU+Zn5GgrIBhWHmLwUKtU8aAjSigfY23fKbENUgPK9KZB/QcF0NUoPp/1q9mRyFT5u2no4w5Mgp5kENtdcKkqqrUUCdLQZ1O4Xzv3cjF5fqv0OapFMdIzl4kPA+yGP+7MJUCWN0TAEyAct0pkG6PJ4DKSKJuNG8m5uO5j8wq8mIpBTaVkLoUQQgjxw+t6IpcQP0LuYM8ui21p1vj0/SYm751PYbGPrz9rwTRhtz3y8PmtgOGgI4oxTZODj+zjHK+qCiee1Y+K1REGDnFlLo1Yp2vY9ju4iBU+DyWlVmDYEbeyVz1d5zLgDUIiadXjpUhUCS43lrsU1v0zKggU0hxtJqpH0A3daQAEyZ+XvU6lqqrOPEwAv8dHyBeiMdJIRIuklMXa5a/2fepRvSnBZSik0oBBa/PmWUZHCCGEEKI3JLgUwkU3dUzTpLVFZ/H3LbRk5fPac7U01WtEwwYzj+/D1580AzBxr2Rjnr5lAU47b0Cn83k8ipPJtGmJeZT29dz6DQwyYWoWtR2tQDJz2X1ZbPLX2L38SGADmUv7+n663k90L7Us1gou/R6/s6RIVI+im3pKEGp/bWcfvYoXj5L8GfpUP4pXoZFGasPriekxCoOFiWDTylzawaVX8aQcG8jyYComba3ddzoWQgghhNgSJLgUO7zv6xeyumUVM3Y6xClJdNN1k88+aKKtVWe3/Xx89L9GGuo1lndUkR9P/oosX9zBiiUdNDVoDBmeRXGfjQvK3HMuTdNEN3Q8qocVTcvI9ec7AQQkM5fdlcV6uiiL7a4JkLucU7rFbjw1LeMY8ATIC+Q7WeOoHsU0zZT97GAw5lqKJP0DArukubKtEoCSrD60xlqdbrJ2Iyif6ks51h9UMTFoa8mcuVzU8D1tsVYml+2xaU9cCCGEECIDCS7FDm9l8wrqwrW0xJopDBalPBbu0Pn7nyuoWmfVkn78STsNXo2cXA+jd8mmD3mUlPqZ90ULNZUxXnt5LatDnzBj9+nOOeyun92tK+kWd2UuwcoexrQYcys+AFLnSnbErcylt4dzLt2Zyw019HG+ljmXG8392qmKyuHDjsKrelnTshqw5lXqpp7SuVdNvPb2feBRU4NLn8fnfGBQ3W4Fl3n+fLK8WbTGWtEN3Vkf1SqLTf78vR4FX4AuM5cL6+fTFmtjt76TMn7QIoQQQgixKSS4FJtdU6SRT6s/YY+yKZ2Cua3B7roZSwvqAOZ90UrVuij9BwfQ4iZraprJKlXZ+4AC9t05n/KiUusc7To1lTGW1Kwilr8eZUAFMBiA11a9QlO0kdHFY6jpqCHfn8/eA6YC1hqHdeFaSrPLnGumB5eaoaUsSeLObDoNfXrcLdYKYnyqr9slRjKVaYrec792CqrT6dUO8iNaFMM0UvazA0m7tFVN6xbr9wScYLQ5apVgFwQKCCaCy7AeTpbFqqkltQChXIVotUEsZuD3p/5s7c61mqnhQYJLIYQQQmxe8q5SbHYVbRXUtFezrnXt1h4KpmkmF57XOy/PsHiBFXgecnQfzrxkIHsfmMue0woIBD0p8yGHlYcAMBSNgUOCtGvNzmONkQZM02R+3XfUdqxnWdNS2hPlrAsbFvD6qlf5ovozZ397zmXQa5Ww6qbWKeBM7muXP/ZsnUs7qOkuGLVI5nJz6CpIt38O9rqUXa1Faj+W8gGB6ifkC6Xskx/Id0qeI1rEuYe8SmpDH4CsbOvn2Z4he2nf03aQKYQQQgixOUlwKTY7I/EG1u5suTVF9IizvEhMj1JbE+P7eW3WYxGdVcs6yMpWGTQkSCjbw5T988nJtd6su4PLwUOD+PwKBjqDh2bRGG10HrPf3I/rM56BuYMAnMC6pr0KgIX1C5z97S6hWV6r0Y9maMS7WPbE5lO7LjJQE4GJ19U5dEPBpcy53Fwyv47J4NKaI+kuQXVnKQE8ipoSfPo8PrK8yeDSq3rJ9uU490tEC6OZdrdYT+fgMscaR6Z5l/bvgjtTLoQQQgixuUhwKTY7+w2snTEEK5Bb21jJC8ueTVlaYUuzM0fWeGI88WAlT/6tim8+a2H5og4MHUaMykZNLMfhDijd61x6vSqHn9iX3adlk5vnJaJFnOdnmAZZ3iwm9J3IrsWjAahos4LLgkChc466cB2Q7BKaDC51ND01c5me3eq2W2yiLNLdGKa7ZUjSzy+Zy43XVebSfv3tkmwFd0OftOBS9eBxN/RRAymZy1x/HoqiOJluK3Np3aeZymKzsq1rZZp3aWfCJXMphBBCiC1B5lyKzc4O0KKJzGVrs8YDd66hKW8RIw5roqajJuNczIa6GP6A6mQONwe7IQ7A4kVNNNRZQdrLT6+nqMRqkjNydHansad/DTB+ch4dlVksTSQtm6KNlHn7WWtFJrJWfUOl+D1+qtqqEnMpDef4ZY1LKMkqcUpgA56uy2Kzfdm0xlqd7/09KIt1Z7G62x/SGvpI5nKjdRWk24FgON45c9kpuFS8zgcEYH2QEPQEURUVwzQoCBQAONnMsB52PviwymJTz2eXxbamZS4N172omRJcCiGEEGLzk8yl2OzsoCyiRTEMk+cer6atRaeuLkJrs+4EUppm8OqztXw2t4mOdp3771jDEw9WbtaxhLUw0ahBTWWULz+zMofDR4WIx0xqKmOEcjwMH5XMErkzOrphdDqfOwhsijZhmmbKUhOqotI/ZwC6qVPdXuWUCAOsS2Qz43ocr+p1spGaoTkZJVuuP9f5WlXUbjt7elTr2l7FS0GgkBx/Dv1zOq+56ZaaGZXgcmOld4t1f+33+J3fhZSlSNS0OZdq+lIkfhRFcTLb+YF8IDVgTZbFdj3nsq0lNYB032PpH5wIIYQQQmwOkrkUPWaaJoZpbHAJAztbF9HDfPt5CyuWhFEUMNGprogSHxYjHjN48m9VLFvUgceroGsmsahJxZooLc0aefmb59YMax188WETDXUaBbF8Jvb3c+q5/fl+XhtZIQ8DBgcJBJNv9o2UzGXneWmaO7iMNGJiAqlBRlGwmFXNK2mLt6VkizriHYn5lXECngDeRAbL3uaW488DrEDb180yJJBcN9Gjegl6gxw74oRu97fG6/5agsuNpaZkgFODxoAn4FrL0h14pmcuPSmP282bQr5s2uPt5Pnt4NIKNqN6xNXoqXNZbCCRiG9rTb1/uyr5FkIIIYTYXCRzKXrsnbVv89/lz2GaZrf7mYmAKqpF+fZzq7TzsOP6YCg6NRVRYkac99+u5etlKzAVA10z+d8r9c7xyxd1ZDzvxli1xgoss7JUhozyceTJpaiqwugJuQwdGUoJLIGUMtZM2R139qcx2ugEjymZqUTwoBu6cw47QGyMWMf4VJ+TcTJM3clE5fnzUBWV0lCpc74NNeexg/30csvuyFIkm0d3c1ftYDB9v85lsalzLu2fd3GwBI/ioSTUx9qeuIdiejRZFpshcxkMJTOXlWsjxON2E5+uS76FEEIIITYHyVyKHqsP1xHWrDX2fJ6us2n2G9f2jhhrl7dQkJ/F5L3z+ddcqGjUaG4J8+H8b1mT/TVnHTCLz54PEI8lA9bli9vZbUreRo9z8YI2li/qIB43+bSuBoCRY7KZNDrEgMHBbo9NKR3M0PTE3dW1OVEWC5mDB8PUnXPkBwqoC9eyrnUNAHmBPGc/d0OfcX3GMyh3JyJ62Dmfd4OZS7tbbM+DS8lWbh6pZbGpr2nA1VTJna1MX5ZEURRnm6qoTrA4qXQyY0rGOs197DLquKE5GXNPhjmXdnC5ZEE7Sxa0M+2QIg44rBjDdT+nl2ELIYQQQmwOkrIQPWaXbhp0novoZgdUVRVRdCXK6Ak5qKrCwJ2tN8dffNpATX0zObkehoxRKSi23kyPGpeN6oEVi8MYRjLYrFwboaW5Z2+G11dFeeLBKj77oJmvP2lhXXUTgYDCwJ2CTpfWbsfew7JYv8ePZmiu1yIZWNhz6nRTx0w8bjdlWZsILgsChU62SjOTS5F4VR8+jy8loNxw5tKbOLbnnxW5m/hI5nLjKd1kLrNcmUt3QJmpuU+mJWQ8qiela6zdpCluxJLrXGYqi81K+ZZVy6wPKtz3tiGZSyGEEEJsAfKuUvSIYRo9XsbALhWtXBNBU2KM3i0HgKGjAigKLF3cjK7EKBsQQEdjj6kFAOw+tYDBO2fR0a7z2QdNGIZJ5doID/5xLf9+qGeNfurWWwHkLuOyOfzEvuSXGozZLQ+PRyWqR3vwPN3z0jJlLq039T7Vh2EaGcti7SyVnpa5BKsJEEBBsNDpEKobmhMs2OWz7m6v3a1xCRBMZMjs7rM94V4aQ7rFbryuGvpAeuYy85xLe7sdIHbX5dfnlMXGnN9Fd1mscw0ltWy9ap3VWEtLyVxKcCmEEEKIzU/KYkWPuBvObCjrYZg68ZhBQ51GWZ7OwJ2soCeUqzBoSJD1yzRURaNsgJ+4HmOv/QsYNzmXnFwv7W06q5aFee25Or6f157oxgqVa6PUVEYp7d/9+o2N9dab7p2GZjFprzy+L8gi6Amim7rTXKU7Kd1iE4Fjfbiet1a/zt4DplolwarPeSNvZ4PcQUZyzqXhnMPOXNoKA4XOep/uhj52xtKjepylKHwbWFYkP1DAQTsdnHF5l66kLEXS46NEuu7mXLqDfU8XZbF2FtMube1ufVJFUfB7/MSNOB7Fuj9URaUgWEiWN4virBLWta5FNwxKSv3U1cTIyfPQ1qLTUBvHyJE5l0IIIYTYsiRzKXok7grMNvTGVDd1GuqsYKl0SDKQ0U2dEbtmg0fDn6NTUOQjZsRRFMVZ23LsxFzO/dkgygYGWL08zJoVEew4aN4XrZkul6KpwbpuQZGPiB7BNE1CvmwCnoBVxmpmLum15066n5udHWqI1BPVo9S0V6MZGl7V6wQS9jy2LudcmnbmMt95XFVU8gMFTjmrbuquzGXy8x47I+XbQFksQP+cASllmBvSXVAkeq67xkhZ3qDrMXdw2fleCXqzrN8Df0631/OqXmJ6DN3Unfsjx5fDCeUnM7KwHLDK1k87rz/nXDGI0ROsJW0q10UydottbdF49dlamhrjCCGEEEJsKgkuRY/UNXY4TUS6CtCiESPxuOmUp/YdlAxcdEMjlO1h30Ny2eeQHBRFSQlabQMGBznr0oEM2yWEqsIRJ/UFBeZ92YphmNR01PBx5Yfoho5pmk43TEgGl4XFPjriVtfZLG+Wk/3rKnv53rp3eH7pMxkztHaQ2aF1OJ1e0zOX7mYudjZKN3XnHD6P35k/lx/It9autBv6mHpyzqWrUVKyRLb7hj4bwx1QSlnsxkvJAHdq6OMOLjvfH5D8ACHLm8XhQ49kSr+9ur2e33Ufp3edte9J0zQoLPYxcEiQ/oOsTGjV2mjGbrGvPVfLp+838fkHzc5jdeE6ajtqux2HEEIIIUQmUha7gzEMk+++bKWlWaOg0MeYiTkbHTyYpomiKMz7ooV/PLEcbXQLE6bkpSzXYfvuy1ae+Wc1R57UF72vTv16K0grGpCc/2Uvt5FdAD6PTkRLLbfVDA0FBY/qIRBQOf38/nS0G2TnePjuq1ZWLglz7y2rKd53EXpxFTvnD+WbN7x88l4Tfcr8TJ9Z7JTFFhR5aXY137EzNTE9StAbJKyFCXgCqIo1F3NNy2qAlMyR/Qbc6X4bbwes0lU70LbnrqXOvXMHl9Zr5VE85Pnz6Ih3UBAoTJwnOecynjbn0h53e7x9g+tcbgzJXG4easrc1bQ5l97MZbFqF1/3pKzZncVOb+Bk/0zdH/70SwSXlWujlKd1i123OsKCr9sAqKlMzkd+ZcWLAJy8y2kbbCYlhBBCCOEmweV27sN36njl2UpOOLMfWl4t/3j2c2LzRqEmfrTZuQMYOjK0gbN0tr4qyiP3rGPMxFwWfNOGrsRZtzqKrrfQ+t46jjk8x1nWIxLRee35WjDhf6/UM/iEGM1N1tqS/uzOS3vopo6pW8GZ04HWNHh+2TMUBYuYPngGYGWCsnOsN98zj+3Li/+pYc2KCN+8XsPwfcLU5YT57AMdFKitjvHe6w00NcQJhlSCWR4a2qzreRSPM5ctqsdojDTw4vIXGFYwnH0G7EtF61pnjGEtuQRIsoGR9f9tMass16t6nccMs+uyWPc6lx7FQ64/j+r2agqChYltXuc66Q19rOtYX/ekLLa3JHO5eaR03U0rBAm6g8sMHWLTv+4Jf8r9kfrnW0kLLk3TpKSvH59foWJNhPnftmEWWR8Y6YbOGy8ks5PVlZ2bXa1tXc2wghG9Gp8QQgghftykLHY75/UqNDVo/PvhSuY88h7frl6Kp7iJSXtb60T2ZJ5iJt9+3kq4w+Dzuc10tOkMGOpBVa3Ok6uXd/Dqu9+zonk5AB+80Uh7q47Ho9DWojP3f/UAFJf6iBnJN62pSyFYb4DtMtWOeDsd8Q4q2ioylq72KfNz9mWDOP6nZRhKnK8/beXpxyswDDjgsGLyCrxUV0TR4iaFRb6U66mKx8nAxI0Y1e3VACxvWgbAmsTyIJAaXKZnLu3HfKq3c0Mfd9mj8ybf6harKAqKojAodzAhX4hBOYOAZBMX3bQyl3aDFps9/3KLlMWmNPSRPwMbK2UpkrQgPegqi1UyfPhgfd271979QUP6EiR2cGuYBh9Xfsjzy54BxWS3KXlocZM3XlrP4gVW9n3l8jbWrIjQt5+fkr4+2lp02ttS5ySvaFreq7EJIYQQQsi7yu3cHlOL2G1KHq3NOlUNDRQWeTn8J7nMOLIEr09h4bdtxGPdr0uZyaL5VrlcnzI/+YVeDjgijz2nFTB6Qg6mqvPxuo/5cN0HaJrB5x824/UpnHpeP1Cgvs4KKAcMDhLWIs45My3cbmfsOhKBm2marO+o6XJcY3bLZc/pOfh8Co2NEbKyVfbcr4Ahw61mNgYaBcWJ4NKws4aqE1xG9WhK45uYHqOyrcL5PuIar/1GO33ZBm/GbrGu4EFNLYu1g4mBuYM4fuRJTubSzjxZmUutUybKzlx6t0hwKUuRbA7ubGV6Qx/3MiFdrnOp9jZz6S6LzTzn0jANajvW0xprJabHOOzYPvz04gGoHoOVS8LEYgaffWx1Kp5xRAllA62sfk1lLKVbclV7lVMKLoQQQgjRExJcbucUReGIE/sy5YAcRu3hZZ8DCzEDHQSDHsrHZBOLGk62oqfqamLUr49T2t/PRdcM5tLrh+ANGhT38TN0ZIi+/b10hGO0tsRZs7qdWNRgyLAshpVnc+RJfRkxJosDDi2mb1mAiCtozNQIyM5ShrUOZ1t1exUAjZEGPq36pFNQ2megyv6HFTF+SohjzuhDVGllyPAsaoLzWZz3MqHC1JJVr+p1ymKtTpvJ831fvyBj0At0Kn21WQ19lJR9Mq9zaa2DmR502JJlsbqzxIlbti878f/ddxDdGCllsTLncqOpSvevo73WpSfD2pbW170LLn2ersti3Rlze36zYRooisLOI0IMHx1E00w+eLORpqYoO4/MYviokLO8T01l1DnOVtG6rlfjE0IIIcSPmwSXOwCvT2X3g33sNNRazqAtbmUdx0zMpiLrC15/f6Gz1EZP2MFo+RirGZDXq6SUqg4YEsBUdOrWx1i+xCq7HVpuzeucuGc+u4zPorAgiN/jd47rKoCz51y6M4Z22eqihu9Z3PA9q5pXdjomGPSw+/65NOYv5Pllz1I8WCPsacRQdPx51rl0VzMdp8umEUM3kkHugvr5ABRnlaRcI9lsR+/0htur+pJLkWQsi02dc9lVcGlfww6s04PLCX0mcsjOMynOKs54/KaQOZebR8qcyww/52AiS57+mH2P9HbOpfse6VQW68pc2hlIg+S9Pm6y9WFFR7tOdp7C4Sf0RVEUyvonM5d2JYFhmNRURqmua+nV3w4hhBBC/LhJcLmDaIk2OV+3JhrPFO0cxehTwYKaRcz7smdzL03TZP7X1r67jM2mOdpEdXtVSlfXAUN8GOjUrY+zYpkVyO48Itk0yM6W2Au+G6bR5dqY9hthd+ayIVJPTI/RkSjJqw2vTznGHotuaLTHE012csP4s61r5BSmZxWTcy5jerTTWpZe1cvQ/GEp17DfxOuJeZNuXtWTLItNBKruYM29zqW7LDad3+PHp/pSutCmjMHjozRUmvHYTbWhjJvomZRusRlex6CTuUwLLhMlrenZxw3xqT3oFovp3OOmq1ogp1ChfHSIAYMDHHRUIcV9rHOlZC4TvzMLv2njs7nN/Otva/jrnWtZX9W54Y8QQgghRDoJLncQzdHkOnXticylqWiMmZSLoei88UIdseiG514uX9RB1doopf399BsY4MOKuby1+g0n0APo098LqkltdYy1q9sJZXso7Z9802sHVPYb4bgR75T9c4sZMadZjj0fcn1HjTMPsy6c7GqpGZqTSdEMzVkfMmpE6T9ExeuFotLU+ZAe1eOUJ8b0WKexDModnDIPE3CCUc3QUspowQo87TmL9rlSusUmAgc7CO4uO5Xjz3Wd94dr3tzd+oyi51IzlxnKYhMdY9PLX+37pbdlsX5XWaynm26xyZLu5O+8buqMHJ3DxD3z8QWSx+Xme8jJ81C1Lso7b6xnfVWUNUt1vF6F3BKTqnVRHrhzLdUVEmAKIYQQonsSXO4gmhKZS0WxSlijepS4Eae4xE//nXy0t+qsWRHu9hymafLu61ajj2mHFKEoCmGtA8M0aIg0JHf06AwZloWmmWiGzs4jslBVxTmHYRqJgM6VLeyiLBYgrseczGVpdhkAbfE2Z1tjpNEpr3WX52qGRlyPO9tHTggw46g+BLKt4NNwLQNiZwXjRhwjLRO5c/5QJ/i02XM0jYyZy2RZrJ5hKRL7aye47KZpS64ruNwSjXu6sqGMm+iZlHLXDMFlfqAAgFBi/qwtWRbby26x7sxlWmDqLse2g8rU4NL9dfL3UVEUjj6llEBQ5eP3Gvj0g2Z8RpDRu+Vw6An57D41H10zWdLLudtCCCGE+PGR4HIH0RKzMpd9E2WUbbE2J7jp09/KcKxbHcl8cMKaFRHWrbKWJ9hlrNVExs6AuJfoiBsxRk/MYezEHPJLFHafmu88ZrjmOdpvhGN6vFPHVbe4odERt85fktUnMf7WlHmYdvYybriCSzO5PmRUi6CZcbweBU2316dMdou1O2tqhuZkG0uy+jA4byf65wxwgkmw3mzbWUTd1NEyNvRJZIkMu1tsamDhUTxOINzdUh/u4NLdrGVL29BcQdEz7q676etcAowuHsNRw4+hb6hvyvaNnXPpdy1Fkj5HN/mhRvJ3xHDNl3R/qJL+gcnwUdmce+UgyscHKSj0Uj6ymEE7B4kbcUbuagXGjQ1xhBBCCCG688PV4YktxjANWmOtZHmzKAwUUdNeTWusxXkDWVCi0gysW9V9cDnvyxYApuxX4GQiMzXiielxFBSGDA9xyEEDKM1Ozrd0Z/Lca0tmKv+zG/7EDStzqSoqRcEiwJp36VbbsZ7+OQOcMlh7bHYAbTcxgmSpqnudS69iN+jRnHmSY0rGMjhvp8RY3I1SPCmdXDtnLjOtc9l5Tp2uJ8tyu5LnTwbmP2jmUpHM5ebgfu0yBemqojrZSzf7nujtUiTuzGV6Wax9fXd2P70s1papTL2k1M9BRxXiX1fEiMIBLG1cQtyIOUv7NNVLcCmEEEKI7knKYgfQHG3CMA3yA/lOJqwt3ua8ycwuUPD6FNatjrB4fhtvvFCLYaR2gNR1k++/bUdVYdQ4K2tpmmbGRjwp2cO04NMd0CUzlzGnLNadebGX2ojqUSJ6hKA3SE5i2Y36sBVchnxW4OpkLlPKYuNOcGk3MbK3W2Ox3lh7Va/zRlwzdack0N0QJeVNu+JJWasy05xL+4281kXmMmUOZjeZwZSy2F5msTZFynhlzuVGSwnSe/E62h+2bMqcy64a+rh/J93dYt3b0z8wcbYn7vWgx5orGtWjFBRZ15HMpRBCCCE2RILLHUBduA6wltPI8VvBWVus1XmjaKLRb2CASNjgP49U89E7Taxenjr/cuXSDjradYbtEiKUnSwhzcSdGUkPPt1lsck5lzFnP3fjHDu4bI21YpomQU+WMzfNKenNssoJw4kSWXfX2rihOWNsjbU429PXp7TmXHqdx3TXdps76PWonpSOr+mvg9fjKot1gunOZbG27spOUxv6/HCZS6Rb7GaRkrnsxZ/TjV+KxD3nMnNw6f6ddHeLda/X2lX3ZvvDEq/H51QW+HwqOXkemhs1dH3zLUuiGRpPL3ya+XXfbbZzCiGEEGLrkuByB2Bn9YqDJU7mrz2enHNpmAYDh1iZCPvN4YolyaU/TNPky4+t4Gz0hGSw4w7k3NLnPbq5gy2fJ7m2pB2gpQaX1rXswDDky0JV1JR97MyenY10XzvimgeaOidUSxyT6OSqppbFupcosamK6gR3VuayczBq8yrebhv62OdInrvrACLbm+0cKw19tj8bm7n0OD/z3s1MSP8QpLvxQNdlsV0Hl4msvuIl4AmgGRqGaVBY7MM0oKWp68ZcvdUaa6Eh3EBF67rNdk4hhBBCbF0SXO4A6hOZy5JQHwJOOVssGWSZGgN3srZ7vNYb4BWLreBS102e/1cN33/bRijHwy5jk10t08tBbTE9GXQaRuryJskmOmndYu1yO1fgaAfC9jIqWV6rBDY7sd3aJxdFUZwg1n1td8Of1DGkLsNgl7na57EDYG/am3P7jbs15zKZBXK/QQdryRAlrQSxU0Mf17m7y04piuK8Dj9k5jJ1KZIf7LI7nExdgnvCmXPZy2ZKqqI691OmwLT74DJZJm53dU7nLhm3s6RWaWxi3uVmLI21A9yu/s4IIYQQYvsjweV2TjM0GiINZHmzyPHlpDTRsbN9pmkytDyL4buEOOqUvuTme6lcG6WlSePfD1fy7eet5BV4OfOSAQSzPNSF61jZvGKjMpf2G1i1i26xQY8VXCqKQpbP+ro5sYyKnbG051kCZPmy8CpeJ4hzX7vr8dlzLq1jnCxR4jxOdibtzbn92qlKsixWT5TFuvf1qj6nDLarzKU7W7mhpi12dtbr+eH6a0lDn83D/dr15nXc2DmXkOwqnF4Wa52vm+Ay8TvoXsM1nb0tfSmhwkRTn8bN2NTHbqzVXSdpIYQQQmxfJLjcztV31GOaJsVZJUCyk2lMjzlrQAJ4/AanXzCAcZPyGDoyC9OE+/+whqULOygp9TP78oH0LbOW4/is6hM+WPceHfGOlGv5XXMobemNQQwnuEztFpucc2llUH2qD78rM2I9Zmcuk9nTLG8Ir+oOLjf85tYOKt1ZVEh0cDX0lADYzQ6Gvao3OUdTt8oCg96g88bd51rn0nC6xXY953JD8+oKgoUAhLyhbvfbnDbU5VT0jJqSAd6IOZe97BYLOL836d1ioXOAa2RY29I+PlNprDPnUvE6y/PE9LjT1KepYfNlGe3fna7mdgshhBBi+yPvKrdz69vXA9AnsT4kWMFP3IinlJu530gOLbeCmI42nSEjsjj7soHkFyZLMmOJYM+9vAdAIPFm0x3gpZe0OU10VI8TXEb1qFOqGvAEyfPnURwsduZk2vL8eQCEvMngMugN4lW9GKaBYRopAXNX7HJgJ4hUk2WEuqtBT3rQlyyLVZ3AM2pEnX3t5+9eisTpFttpzqV7Ll73v2ZjS8YzffBBlIbKNvjcNhfJXG4mG9kYyf7wYmNKoe3fG1+G4DI9WHV3i7X/BthBo54hqHOXxQac4HILZS7t4FLKYoUQQogdhqxzuZ1rj7cD0DdU6mzze/y0xlqJaFFnm/uN5KhxOazeK0z/gUEm7pXnrGlps4PHjsS5PYoH3dQJerNojbVmLLVzvnd1YrUzJHEj7ipF9XDEsKNRFMUphwWrJLY02wqu3JnLUCJzCanrWnbHDkDTu8LaZYR28NxVWay7W6y99IlH8bJb37FE9SiKonTqzJneKTR1zmX3waXf42dg7qANPq/NKaWcUyZdbjT3z703GeBRRbuS5c1K+b3tKTv7bweJKeNJL4s1Un9XVUV15hpnzlzaZbFep/w2akQp3JJzLiVzKYQQQuwwJLjczk0om0AwnucEZmC/6WylQ2t3trnfSPr9Kkee1PWbWntfuwPrwNxB1EfqGJgzkNqO9Sn7du4Wa72ZVRQ12S3WtRSJ6lpD0p253Dl/qPPG2G7oE/AEEg1MrNs0bsSdOZeKomCamZdFsLMvhpleFmudxy7D7ZS5VAPOGO3A0y4B9qpehheOcPZNX4okPUBTe1EWuzW4hyuZy42X2tCn569jQbCQCYly6N7ao2xPRhY2pXwI44yB7rvFWs2q7A9rug4u3WWxcT1OXoGX/2fvP8Mjue4zb/iu3Dkg58k5cBLDDEkxU8wSqWxrbclB9jqs/Oxrr9dhvfbK9nqfx3K2pbVkK1tZYhJzTkNyIidjIoBBDt3o3JXfD1WnuqoD0MBgZjDD87suXsQ0qqtOVVc1zn3uf+A4BhOjCnTdBMdd+D1DFqZoWCyFQqFQKFcPNCz2CsfH+9Ad6fG8Jtqhdu5qqnMpmlHuXDb4G/HIqo9hSWRpxbZ6WcXJklvIOs6losvQnAqtpfUMd0jg8tgK52fSq5P0vCThf7qhOdViSZP3apDJKpm8kmO6HVCWYSsEIWlQ764WWxKi3keFCLJSW5OZWpEsvseM8YTtUnE5Xy5HeHFIDNd0uiucS7j7XBq2c2k/T1Wcy1JYLAeJLYXFchyD5Wv8KBYMTxsjwOqpW6ty80yQ45OQdwqFQqFQKFc+i2/WS7lgqoXL1ZvXpBu64wjmNWsSScJJ2SrFR8pD2tyhqAzDQOREK/+zSoVWkRUREAKIiBE0+Bqd1/28Hzd13ozr2m+w9sUS51JznEu/q/hN+YS6VC3WW8mVdwm+am0cyHXjGM7pOUnc2/JcNqYsLLaiFclidy7nWeWU4mWxFUYqL1LlFm2aoXlCvquFo5JFKI7lPTnTALBxm1XV+Mj+jGf/T559HK+cf2nOYy0fG4VCoVAolCufyz8boiw4YlmhHAAwZnEuh7NDODx5yCNCSbVY4jCWh9wBlrhKyykkiwkAgOnqLUneq+iKy+ErTX4ZhsGHV34ED674cMV+l8dWotXORyPH18xSziXJOwO8OZqk8TuAihYi7uqa1YQAcVpZloNk75+EFnNlbR+cnEujRisS1u1cLm5xSRtdzh92kTnAtVqRuHu+snXkXFphsd7q0Gs3hsALDI4fykFVDed3iq4gV1b8qx7c+doXW1yquoqjk0ecxSIKhUKhUCgXByour0KqVaCczbncP7YPB8b2IS2nndeIkCMCrVrbBM3Q8PL5F/Fc3zMASr3ryCSXTFDJpI4v2wfP8rO2Y+A9YbGK1eDdJaCJuBQ5ESInOmF2JAywfD/lPxNIOG6QD8Bnu5gFtVB1eyLOSu5ouXNZOu582k1cbDy5gvRrYN4w82xFcrEoF5dkscfd25U4+NUEnbtaLHHyiXMp+VisXh+EIhs4fdxaeCLfK7OJw7H8mKf69NGDGTz+wxEoiuE57sXifKYf+8b24FSy96Ieh0KhUCiU9zu0oM9VSDXncrbJH3Ho3EWACI64rOLAGaaOnJqDZmjQDM1TuMcaiy3SykJs54K7oI9maJA4ybMfUgBI5ERPXqVu6k7eWPmxq51LW7Ad9y1/EHEpDsUOvy2vOEsorxY7U1jsYhRvi8FluxpgLkPO5UyUL3IQx9L9XJJnxJipWizDQXL1qSVs3BbCsfeyOLw/g3WbQ05orfv7RVEMDPUXsWyVFbqeVbN49txTGD5fRHPvA7jzgSY8/r1xnDdz4Fbm0dLOX3TnUiF55NS5pFAoFArlorL4Zr2UC6ZaziWZSB6ePIRHT/0YA+l+53e6oTsFOUgorBsnLLaKM6PopTYj7qqwTkXYstzFanmbs0EK+siaDMM0bBFZcmcd55KVHCGqGAoM0/C2BPG0B6kucpv8TeDYUk/Lau8FSteC5KdW9rl0H3fxPWbzbaFB8bLYrmOtsFj3IgnnOJfWayTs1XrNCiW38qWtZyCtpDGYOQ9FV7BqXRCixOLk0RzkouHsQzdLudov/WwK3/jnIZw7ZX2XZOxoiIGzRZw/V8TX/mkQctGAyegYGSp6xpLP6eg/s/ACkHxHyfMoPEShUCgUCqV+Lv9siLLgiNXCYu3JW1/qHNJKGq+cfwnHpo4CKLmK5T8TeJe4LHe83NurhlKRc0lcVHcu11whTovjfrKCJ7w2JFiFRiROdISoUqXdiMe5nEXksgzrcYArnUvvdSh3rRZ9ziVD+1wuBJ7ruCicy+rVYknONcewzv2omzpGssP43onv4Oz0aec159m1c5Dzah4vDbyAH5/8AU5nTmDtpiA01UTvkSw0V99Z8oz3HrWiH0aHrGdQNVSYMDGdtLc1AV+ABVgDY0NFmKYVFmuaJv7jX4fxtX8cxORYSfAuBGScsk7FJYVCoVAoFxMqLq9CqlaLtSd+7gkwyT/KecRlpWvgFnLlIZ7u7RVdrchBFFnvWKrlOs4GEbekeq3kCn8FgOZAM7rCXVgRX+VsS9wYtkaF2PLWItVwi8taOZeEmVqRLMZqsZejhcbViHuRYTE4l0yNPpfuiAIndNzUMC1PAwDGCxPWa64iWAzDoNHfBJ7l0RXugmqoODz5HjbZVWMPvJN2WgOR/SUmFSQnrdcS9v9VQ0E+a0BVTLR3S7jzgUZ86lc60NzOo1g0kE5pUDQVJw7nMNhvib/RYXlBr4vjXOoLu18KhUKhUCheaM7lVYhQrVqsSRqWWxO+sBhGSk4hq2RQUOtzLgFrcqrrpVwtdzsB1VCq5Fx6XdT5CC0y2SUVKSXO5wlrlTgfbu+5CwAwlBkEUOrx6Q1PnbmgTzmWMLaOWe4+lofBlrt/i77PJW1FsiAstlYk5Y68YYeqOi1GGN5ZLNINzVlezCppT9Efwn3LHoAJEyzD4oe934Osy1i+JoBonMe5UwU8/VgSw6E8GpoF6IaGM70l8VYSlxpStmvZvdSHm+5sAAC09wg4PgnsfjmJc4+eQRNbEqpTE6WfFwLSZ3c+/TgpFAqFQqHUz+WfDVEWHHdYrNPGw544qoYKlmHRHe4BAAxlh5BTS0V8qjuXM7fwICi64lSLJeIqIkac3zMMM68QTDJhJuMUOclTEdf9MxkrcSjck213WGw9oao+3lUMqEyMVrQewZXlXIKGxS4Ii80BrlUt1nA5l2RhRjM0aLbzmFEyrmI+pXudYRhnnz7eB8M0oEPFf/r1ToQiHI4dSuPowSz2vpmCois421tanCqJSxXTCWvfHd2lFkLtPXaUgWICnAG5aCAQsp6VqfGFDYvVqXNJoVAoFMolgTqXVyFu59LH+6AqpXBVEvbWFe7GsamjGMqeR0SMOtvPVNAHmFkoqYbq5HiRCemy6AqcTJ7EeH7MKfgx5/Oxj0/EpY+THPeFZVivgKzIuXS3IqkeIlsLiStNhMvPu1xIlAs01lXEZz5FjC42bjG8GETRlYqnpcsicC7LFzmqFfQphcXqMGE9k1k161SFrfVskHB7RZfR1BrGL/2XLjzx+hiSp1jkcwbGxgo4e1IGLzAQRRbTCRW6bkLVFSffsqO7tGATb+aw85ZGADru2dyBUKYLko/Fl/7PACYXWFwS4WyYBhRdqVpRm0KhUCgUyoVz+WdDlAXH3X6DCCTNruaoGioEVkBLoBUCK2A0N4qMknG2L1/ZZxm27gm0oiuuwiGWoGIYBjd23gQAiPvi8zof3uW0AIDE+5xQ3fKJMBGiRZ2ExbqL+MzciqQcd+5qrWqxNf/triK6CB8zb0GfyziQKxxPePEiuJC1Cvq4w9VL0QwqdPt5NU0TKTkFoLIXLYEU+JHtfOaGJhE7bg6jo8v6jnn1+QnIRQPLVvnR1CrANIBUUsX4ZB6phAaOA5paS6LOMA0sWxlEc5sIAxp6lvnR0iZCEBlMjavzXoyqhruPJi3qQ6FQKBTKxWPxzXopF4zACc5E18dbEz/d7kMJWAKMZVi0BduhGRqGs0M191Uu3rgaBXIAy9FwJrGuCWpYjOCR1R/DHT13z+t8+LLqtxInOccWyn7H1RkWW6sVifc4M1WLLc+59P7bUzxoMbYi8YjLxTe+KwVy7RaDsAQqw70d59JVLZY8T6quQnVVe03KSXub6s+G5HIuCZqhorHV2t+pXmuRavP2CBqarGfn6Z9M4MffHoKmmYg3CmBZxvXekuDTDQ3Hpo4iKSfQ2CxCLhrIZSv7cM4X97GKGg2NpVAoFArlYkFnlVcpRHT5bOdSN3VnIkkml13hbud3tajMNSxNXstDyxRDdSaz5W5dSAghIATmfB7WGLwTZomTHBFZLi4Fp1pslVYkcxR87rDY8hYqFeJyhuqxizHnkhb0WRjItVss7nR5i5xSWGypWI9T0MfUPKJruph0tqkGed7d0Q2aqaGhSQTDAAajQRAZrNkYREOTLTiP5WFwCtZsDGDr9RHP/oirCgCThQnsHX0X740fRGOL9d7J8YUr6kMKGlnjp84lhUKhUCgXi8UxI6IsOMRlIM6lZmhOpVjSC7Ij1Fnz/UQclYs3t2giYXIEd7XYhXTryie7EudzxF65q0leJ+5EzWqx9TiXfO2w2HK3r6IVyRxDcC81i60QzZUKu+icy+o5l061WJYvOZeG5gkXnZZnFpeS/V3iFpeqoYHnGTQ0CTCgY93mEESJdcQlAHQs5bF6fQg+v/c50F3CNq2k7f0paGy2vlcWsqgPDYulUCgUCuXSQMXlVYpgCz/ivhmmDtVpNWBN/IJC0MmDJCKUQFzG8hA5zlVIp1zYKbpSqkq5gIKqIiyWl5zx+nl/2bbegj6ePpfu9iB1FNlx566WX4eKgj7lzqU753IRisvFlit4pULE3GIo5gPUrhbrtBlh+FJBH0PzOHrJ4ixhsWxlWCwRiB09EsDp2L4rAsM0EHeJy2Xrhapj011tjEixLs3Q0WQ7lwspLmlYLIVCoVAol4bFMSOiLDikv6TfcS51aPbqveDqPdkZ6gIARKWY5/0BPlixLVCqvmpVnfSKJtUdFruAk+1yl9HH+RAUgrij5y5c2369d1t74uwU9HE5qPycnUtXtVh2ZqeyPBzRfW0Wi/Bw4ynoQ53LeeM4l4vkGtZyLt1hse6CPu6cS0LNgj7VwmJt0bZkhR+/+F9asU//GV4aeB5NLSJ8fhY9y32INJL9ep853ajsl6ubGlo7LBG7/500RgYXRgi6xSV1LikUCoVCuXgsvlkvZUHw85bzGBRCAKzJlaqTVgMlwbgksswq7hNo87yfOJdCjf6OLMNWuJOKrjhuxEK6dR5RyJacl85wF0L2+RFKOZfWudYKi63HWXUX9CkXozPlWJb/ezGGxbrDeqlzOX/IfbBYriFT5qQadqsRp4clyzkVoDVDc5xHd/50zbBYp6BPyVEkopUBg6KZQ1bJYjg7jLQxhd/6wyX4+V/rdFqclFd/rZbrrRmWuLzx9jiKeQPf/NIgMmmtYru5kkwW8frzCYyPyrTXJYVCoVAoFxEqLq9StrZuxwe6bkWDz7IN3MU73IKx0d+IR1Z9DJuar/FMMEm4aXmIHBGN1iS1XFzKrqqUCyeoGIZxJryz9acrD6H1FPRh5l/QpzyMttypLBebXlG7CMUlLeizICy6sFj7K508L+U5l6VcZd5acDJUMAyDXR03OeIxKASr7pu05inPuSTktZzz89GpwwiFeQgiHHeU9NQkGDXEJQDc+WAjtt0QQSFn4LXnEnWdezmpaRXf//dhnO8r4OihFKaTGg6+k8apU0l879+H8fRPJjDYT11MCoVCoVAWktljAylXJCEhhFA05LgF7mqx5UV6Si6l4LgSTlhsDbHmzt3iGMsNUQ3VEX8L7dZxDAcNmkfwVSMkep1MtobIq6cViciJYBgGpmnOWi228t+LPCzWJSgX4/iuFBiGgciJs96Xlwpyj4ucaOdAV4bFkv/n1by1cMPw6IksQVe4Gyl5GnFfQ9V9kwJX1cJigVLeJAAMpPuRUdJO7jdQEroE3dDBo6zIjy04GYbBnQ824ejBLPa9lcLOW+OeIkH18NLPpnD8UA795/IYZotgTAaybOLF50awLGeN9dDeNH7/L1fMab8UCoVCoVBqQ2eVVzkMwzghcE5oXA1h5XYFiXtR7gQSIcKxnMdNFDgBqqE6x1howUKO5eOkGbeTOMlxYNzvI2Nyj78eSEXcypYsZedX5mSS/S/GkFiAVotdSO5Zeh9u6779cg8DQMm5JItCxB0shcV6W/gouuLc2yzD1hSWQPWCPporZ9MtLgFgsjDp2bbcudRNveL5cIvVQJDDrtvjUMwivvr3A3jzpWRFaG0tpiYUHNpn9d3MZKwFs40bmhEIcoCg4IGPtyAa51HIG1BkY6ZdUSgUCoVCmQNUXL4P4Fkehmk4uU+1QkuJkGQZFl3hbmxo2og1DWs825DJIMuUwmJFToTIijBN03E1FjoUlEyAJX52hygiRSvGW76fegr6AFbYcEgMVeynohVJ2aPEucKHFyOegj6LJF/wSiXmiyMkhi/3MAC4WwhZz7hRpVos4F1gqpVjWY7ACWAZtqZz6RzDqdisQHGJT7cwNE0Thml42v2Q8bodzk27OGQ3vIRj5it47vEJvP58sq6xvv58AqYB3Hh7HOE4IAgMNm1uxO33NOPOR6LYsSuKaNwaZy5bu88vhUKhUCiUuUHDYt8HcAwHWZc9RT2qIdrikhTN2d56bcU2Ts4lwzmVY0WXU6joykUJsyTCV5zFuQSAiBjBRH4cAMCy1UVfPa1IAOD2nrtgmEaFAJutoA85zmJ1Bd1ieLGOkTJ3SC4wqRZdGRZr3ZfuKtD1iktrv6KnoI9bXBLCYgTJYgKKLnucS8ASlQzDOOGv7tBzgm7oYDnr/iyYGWzbGcH0WhVnnzmFl55i0NwmYt1mb/h7OSeP5cFywAfubsCmmzjEzjYg6Begcz7k1TwAIBguict449xCbikUCoVCoVSHOpfvAziWg2EazqRQZGd2LsvzLL37IgVDXGGxrOAIUwCesNSFot6wWMASl4QLdS6tfp6V25aLyQrxyTAICsFF42iV4xkvdS6vGoijzrNecUkK+pTCYt3OZf3CSuIk6KbuiMpq4pI8f7JeWZm1JHZLhb/Kn0XSMgkAFDvaIhYX0HnLIGQug598e3TGFiW5rIZ8VkdDC4+h4lkwkgyf3/q+It8HhmkgGOSc7SkUCoVCoSwMVFy+DyCTN9L7sZZTQcJlZ3IyiOPFMpwzURM5CYIr1LYj1Hnhgy6DTIbrKZwSrkNcchforlYU8KnyKN2//CHcteSDF3SciwXNubw6cRfcYhimvrDYOeQFk+dP1mWYpgnd1Cu+L8L2goqsy1B1bx9NknfpVJV2LVIRdJdgJQtiAiugtUPEklvGoCom/uMrwzh7Ml91jBOj1nsyzUfwxtDr2Du2xzlncn10Q4cWSCLPTSJPw2IpFAqFQlkwqLh8H0BCWYuaJS6FGs6l4ITFzuRcusJiiQvCiZ5w1YshLslkuDxHqxrRGXIuyX4uNBeyXJBVy1v08b5ZW6dcLmgrkqsTkpPs431gwdasFuuOTuDmGBYLWEV9iGD1leVBR0Tr+ZN1GbJR3bk0XM5l+fHdbihxLjc2b4bACgitHMeG60VkUhq++S9DOPhuumKM46MKTBjIhfoAAFOFSQDWuZPvQt3UcdLcjYHgW8hldewf24v9Y3vrvg71MpGfwNsjux0xTaFQKBTK1Q4Vl+8DyIRSdpzLGjmX9TiXrkI1RLhJrOgJs7sY4pKE2gb4wKzbup3L8tzKlbFV6A73ICRcWLjqbK1IFjtuMXyljZ1SmxZ/C+7ouQsbmzaDZVjHKSxViibPb+l5nSkMvhzJ1euShK+WRxOEJev5U3SlMucSpdZI1ji4iuNrrv6Xqu1cBoUgVsVXwzANrL4jgYc+2QIAeG9vpbicGFWQ4UcQjlrnSO51juWdRSXd1MGIGnRGQzKTx5HJwzgyebju61AvJxLHcDJxAhOF8QXfN4VCoVAoi5GrvqDPhg0bsHLlSgDAxo0b8Rd/8ReXeUSXHiImC1rB/nf1yWQp57L2bcG5Cvq0BloR9zWgI9yFE1PHnG0uRs7lhqaNCIsRtARaZ93WLY7LXbnVDWuwuqwC7nyoyLm8At0/UkiFplxePTAMg85wl/OzOyyWYzhHaHlzLufuXFoFwkjfXKsAGBGwpZzLoqf4DwBP313AzrksWwCqFhYrsRK6I0twbOoo0koau66N4KkfT2B4QIZhmGDZ0k08MapgSjqNFRHec0zeVYTMMHUIovX6eGYCF6ucT9H+zi2/DhQKhUKhXK1c9eIyFovhscceu9zDuKwQZ8Gdv1QNUuinVh9MwNXnkuER88Xx4IoPAQBSxWn0p/uwOn7hwq0aYTGCDU0b5/y+i+XKecJKGeaKbOfBgoUO/YoUxpTZIf1tAbunpEvEuQXlTM97OY5zqcme1iMcw0GDBpZh4ef9TsuSvN37kohPzdTws7NPOBEIVgQEyQPlPMWCADgFgUROcp5l1VDBcQw6uiUMnC1iakJFc6uIM705TIyqODc+jIIwhfaGFchqGc85k31ohgbBXgMbz05g4WMtLIr2+N39QCkUCoVCuZq56sUlBYhJMc+/a4nLavlY5ZTC6ryibVV8NaJStC5n8VLw4IoPYSI/gSZ/00XZPxGUpmleseKMYRjAvDJdV8rssAzrcS4DQimk3B29MFOkQjk+zg8AKOqFUgVaxnIuZV12xKfESZB1GTlbXAaFIFJyClOFSes/WEWKLefSOn5IDCElpzzVYku9eQXnPiXOZmePDwNnixjqL6K5VcTTP57A5LiKgcAxhJo4XNN6DfaN7XVyzTmWd4SsYqgQfdb+Jovjjrg0TGNBF6RIKoJapaouhUKhUChXI4s62WrPnj349V//ddx0001Ys2YNXn755YptvvOd7+D222/Hpk2b8PGPfxyHDh3y/D6VSuHhhx/Gpz71Kbz77ruXauiLipgv7vzMs3xNly3ui4NjODT4G2vuKyJFwTBMhWBlGAatwbZF4+DFfQ0LEv46E6XKuYv6MaoJGfdi+cwoC4vbpQO87XfcC0hzCYslxXuKWikslmd5Z39ucWmYBtJKGjzLO9ET5W1HOJZzfkcKAXnDYknorejkiRKh1rnEet/QQBG6biIxpSIlnEdWGENzNIpl0RXw8/7SeTIl51LVFYii9fOUPOlsQ8T4bGiGVte2skacSyouKRQKhfL+YFE7l/l8HmvWrMEjjzyC3/7t3674/VNPPYX//b//N/7sz/4M11xzDb7xjW/gV37lV/DMM8+goaEBAPDiiy+itbUVp0+fxuc+9zk8/vjjCIVmbsBdC3dez2KAjGe2cTX4G5y8OpETam4f98fxc+s/PWMl1bZQK35u3ac9Tdjfr7AsA8OwGtcvtnujHliGsdwjlq06/nrvL8rihGM5MAygmSoYBhBcz77A8aXvBF6s+zMOiAEwDKAYRRjQwTCAyAvO/iRBAssykAQJjAKYMBASI+BYFgwDmIzhHJdhGXAMhx3tO7A0uhTJYhKD2QEY0J3xqKYChgH8gs8qwsPA+X33Uks4Dg0UkU3rGOd7MR09BtFkcPu6G8BzHAJCANNy0j5PAbw9Ts1UrXFKDIqK7IzJZIxZr4Vu6PjuiW+hOdCC+5Y/UHM7VVeda0SOR7m00O8wysWE3l+Ui8mVfH8tanF5yy234JZbbqn5+6997Wv4xCc+gY985CMAgD/7sz/DK6+8gp/+9Kf45V/+ZQBAa6sVprly5UqsXr0a586dw6ZNm+Y8Fp5n0dg4P1F6sYnHgzP+vsEMIj4ahmqoiEjhRXseVxqRcACKrkDipCvymobDfggag8bGMCJS7fHPdn9RFifR0QAMQUYoKiAU8iEeDDn3aZaLITRtOX9NDZG6718hZCA07oMQAMJRCaGQD42xCHShiCKXRUssjsbGEFqm48gzKQBAW9iKhMgyPkSiPoRCpeqyHMuhs6UZnWjGkfEjCOV8CEVKz5M0yCIqBtHSHIVhGgid98Ev8WhsDKEoDCEQMTE2pCCZKmJcOoYVPWH8yWc/iZ5YDwCgNd2ANKYAAM0NUShCFuOaD8GIdU18fg6paQ2SKMIE8N6eDHbuCiMWr91CKFlIIhTyoYD0jNctI2eccw1FxCvyO+JqgX6HUS4m9P6iXEyuxPtrUYvLmVAUBUePHsV//s//2XmNZVns2rULBw8eBGCFxPr9foiiiLGxMZw8eRLd3d3zOp6mGUinCwsx9AWDZRnE40EkkzkYhjnjtrzmQzKfgagFMTWVvUQjvLrJ5xQUtSI0HlfkNc3lFBTUIpKJPFSxMrR3LvcXZfGRzynIFooYm5xGNltEGKpzn2ayMrJZKx8wk5IxxdR3/6q6jmy2iHEtiSbW2m8uoKJQ0JDNFlEUDExNZVHMGc7+NZ5FUS8gmy1iMpF2XifOJbm/smlrTJPJNKZ4azxTqRQkTnLGnc8p0IsZHD9/Fk+ffRJaZxv04yvx2GvvwGRMrIisQlBvcLZX8qbnPLM56xjjU9bYecFaEU4kCjh9Io9DBwbx0mPT+OgvtGPlOusPekqexuGJw9jetgN+3o+hzJizz5me+8nCpLPdpJjClP/K+4640qHfYZSLCb2/KBeTxXp/RSJ+CMLMveKvWHGZTCah6zqamrwFWxobG9Hf3w8AOHPmDP7kT/4ELMuCZVn84R/+IWKx2LyPuZg+XDeGYc46tqgYx3huAhzDL9rzuOIwGZim9f8r8pqagGkChjnz/VPP/UVZhJgsTNPK+zNNgAXnfI4seNgdOjyvzwbH8GDBIa/koWias18WHEzTqjhtGCYERnD2H+ADKGoFmCag6brzOgwTHMs59xdj70PVVBiGCc3QoBsGBEF0xscxPFRdQ1bOwjSBWKuB0eM69vYdAQNgU/sGz7mIrM9znkzZNRF91qJKalrD+bMFrOR15HMGfvTNUfzuF5aBZRmcSpzC6eQptPhbsTK+Cik57exzpuuWVwrOdop9TpTLA/0Oo1xM6P1FuZhciffXFSsua2H17bNWo7dt24Ynn3zyMo9ocRCTrKI+c6kMSZkZcp9d6QV92MVd14syT8jnS1oQ8Z7elqVVx5mqQ1fDx/uQU3NOJVfe7nMJWC1DAEDiS6GvAT6IJKy8R9LfkkCqTwOlYj+kWmypdVIpRJVneeTVPFS7mFBDC4ez/CSKehFhtR1draXiZQDg590huLxzPMV+vyRZ16j3SBaGCWy/MYJkv4Tz54pITKhoahWddijkmFklg3oglWI13cTrL02gYXMGG7aE63ovhUKhUChXKlfsrDIej4PjOExOTnpeTyQSFW4mBU4FWPekj3JhXOnVVklrhyt1/JSZYe3PlYiiWtViuTkuOPnsCqxZJWvvi3f24bMrv0qs5GwfFILOPeZuM2Idu7L3pm63OFFsUSdxLnFpn0PRFm7xZg46YwtFI4SGJq9Q9vPu9iucczzVFq6SZI0rk9LBMsC2nWF02VVoB/utY5BWJqQ6bqZOcVm0K8UeO5jFyd4UXnhiCqZ5Za0+UygUCoUyV65YcSmKIjZs2IC33nrLec0wDOzevRtbtmy5fANbpLQGWrGr4yZc07zlcg/lqsFpRXKFPkaOOKZ9Lq9Kyp1LzuNczq/PJVByAycK4wCAoBhGULDyE8Oi5cyJLkEYEALOPWYYtZ1LMj7HubTFnOAWl/a4C6qV/86JBqIN1r59Eg9/wJsH4nMtplmtSGxxabuu0QZrf+EIhx03RhEIM+haaovLPktUEueStBPJqiVxWa0dSS6r4cSRLApqEYMDBfSfKcBgNCSnVEyNqxXbUygUCoVyNbGoYyRzuRwGBgacfw8ODuL48eNoampCc3MzPvvZz+K//bf/hg0bNmDz5s34xje+gWKxiIcffvgyjnrxsjK+6nIP4aqCuDFXqvNHncurG6enoxO+WukSlv9cD6QvZUq2qsHGpBia/c3oCHai0Y6QcIu6oBByxlIRFstWCYs1SFisJepIqK17rAUtb+/PQHMHD5wFYrHSdgQfV+pz6QmLtftntrSLuPuhRogSC4ZhYJqG0z9zcMASl6lsDqd6c1h5nYLklIq3dg9DMzWkkyrGfngad/8nEUu7YohKMYwOyfiPrwwjPa0h39mPvqwlRBvaWOA0cOp4Dk2ttSvRUigUCoVypbOoxeWRI0fwC7/wC86///zP/xwA8Fu/9Vv47d/+bdx3331IJBL4h3/4B0xMTGDdunX46le/6vS4pFAuJk7O4hWacxkQAsipuYrG9pSrAwbEuawMi3ULSm6On79bOPp5PyRb/BFhCZScS57lIXKis4BRLi55lgcM8rMl/HQiLm1RLLpcVrJNQSvY2+pobhcscRmvIi7dzqVLXBLBHeADYHylKuC6qSMa4xGKcBgblqEoBg4fSqD3ZA5tbBLnUudxuq/kXCYzOXz1+adw/wdX46amu/G1fxyEXDQQinAYSObAiMC2GyJoCPsxfBo4dSyHnbd680LdjOVGMZobwTUtW2tus1hQdRUJOYHWQOvlHgqFQqFQFhGLelZ5/fXXo7e3d8ZtPv3pT+PTn/70JRoRhVKCTN6ZKzQs9gNdt0ExFI97RLl6KHcuy3MrBVaAaqhzdi7dbmBMilXdhriNJFyWuOR6WRipe2GmFBZLci7tgj7VwmId51LHklUiGk7wWLcxUjEOlmEhcRJkXQbP8OBYb6jwqvhqNPtbcD4zgJPJXhimAYZh0LXEhxOHcxgeKGJ8MgcAOH40hWBmDEKUwZbrIvD5WaRf1nFqRMbIaBZvH52GXDSw9YYIHvhYC/71xf1QA3HE4gJ4BvAHWPSfKUIuGpB81b8z3ps4gNHcKJZEliLmqy1CFwOHJ9/DkcnDuGfZ/WgJtFzu4VAoFAplkXBlzooplEXAlV7QR+REhATa2P1qZaZqse5/z1VcuiuwRqXqAigkhLA8tgJrG9Z7xkJcyfIxAJVhsU7RHVdxIMERl5bbaJg6fEHgxjsasHxF9UqsS6PL0RXuAsdyrpxLy83lWB6d4a5SMSFb2HYvswT00WNJTCetbfMFBbKZR9cSH9o6JMTiAnbcYhUM2vNWEnveSIHlgNvuaQTHMehYziIWFyByIgzoWL0hCF038eLPvEXo3ORVSzTnbfG8mEkraQBAXs1d5pFQKBQKZTFBxSWFMk+u9FYklKubipzLsvDXVfHVWBVfPef7l1SLBYD4DO7aTZ0fwJqGtQDczqU3LNZ97FK1WEtckkI6AldZ2ZYIUN3UnX2ybPXzuL79Btzec5f1fifnUvH8uzwndM0Gy3F9581xmCYgiAwMRoPC5rBkeen8l28Q0NgsIDWtQC4a2HJdBJEYyQstgGd5+DgfDNPALffG4A+yePf1FI4fylYdKxHNRGTOlYySxlNnn8RYbhQAkLbzYuthLD+GJ888Xvd7SBVdvawCMIVCoVDe39BZMYUyT2i1VcpihtyfslMt1hv+vKVlG3Z23Djn/ZKCPgAQrREWWw7jOJeWeAuLYTT4Gj15mkTokWqxxF2U3AV9GO856EZJXNaTO8yVvb9cXJp22G5Tq4imVtFpJ7J8tR+xJgbdq1iEo6XcTQ0Kdt4aw/qtQSxb5cctd1v5/oZpQNEVSJzkhPIGIsBDn7DyE/e+WSngNENzzjmvzc8NHMuNYbIwgYFMPwYz5/Ho6Z/gVPJkXe89OnkIieIU+jP9yCoZ7Bl9xxHh1SjaQlg1qLikUCgUSgkqLimUecKCOJdUXFIWH0xFtdiFSbF3F8mplXNZMRbSisQWgivjq/Hgyg9B4kvCkWEYcAznqhZr51yypZxLd39OwHYubcFaLhyrUS6wyXvI/3XDQE7NIa/msW5zEDpjjaGxWcRtD8Zw871WXie5Booug2EYrNrgxy/+ZheiccEzdonzOdddM1QsWWH3CM1UCrKCKxQ2bwu3nJrDD3q/W7dAJEK7qBWRlJP2Pqq7pG6KWhHD2WEAltt5bOoYjk8dw/Gpo7XfY/caJYKYQqFQKBSAiksKZd7QsFjKYoZFWc7lAlUF9vN+8CyPkBjy9LOccSxl1WJruf0cyzliUbbFi+Q6RnlRIrdzWU9hKqbsWSWhtCQXUzd1/PjkD/Cjk9/Hus0haIwMhrH6YWqG5lxLP2/lWhbt0F3S71LVVZim6Yzdx0sQ7bBe1VDh87NgWCCX9YYHAyVBCQAFOyx2uphEUStiLD8667kBpXDhgpZ3eoGWhyJXYyDd75xDSk5hWk4AAPrS56purxu6cy3K82gpFAqF8v5mUVeLpVAWMzQslrKYIYLOXbxmYfbL4o6eu5xwz3ogCzGaLRxrLcjwLO/kHZL/EyEHVHcuiaCqp6VKucCulXMJANFWHUvW8pBEP3iOgWqoLnFpOZCkF6dpmtANHT859UO0hzqwpmEdAMu5JKJNM3SwLANfyEA+Z72HYRicO5XH2ZN5LL+xFAqbd1XDBUrhxLUYyQ6jyd/sOMNFrYgCZ+/DMGZ6KwDgXPqs83NaKYXspuQUksUE4j5ve6+CXhLC1LmkUCgUihsqLimUeeK0IqHOJWURUsojNAGUekQuBK3BtjltX17Qp6a4ZHhHqOXVPERO9BT0qXYOmiOeZ38Oy0PYy8NiVVeOYUKewi0PhHB00qpCqxu6E2JcLi4N00BRL0LWZSQKU87rIic5zp5mqChqRZyKPg1O6USxsBySj8Vj3x3DdEKD1pIGbB1NKrASYTpT0Zwjk4exf2wvVjeshWSHEBe0AiQ7dNeYxbk0TRPj+TFInISAEESymPD8vi91rkJckmI+1nlR55JCoVAoJeismEKZJ9S5pCxmygXcQoXFzgcyFiJ02Bp/eoi7WtALUA3VEXHO76ucg1xW+XUmyrch+ZBO/0uXCzdVmIRsF/QBLGFMRBXJuSQFfwwYTjGgol503idxouPwqoaKtJKG4DNQ4JLIZXWcOp7DdMISZ6fOlERdUS/CNE3nes0k4I5MHgIADGXOO+Jd1mUn13K2sFjVsEJ5A0LAk0NLFhAGMv0V7ym6QnipuKRQKBSKGyouKZR5QibMNOeSshgpvy8XKix2PpQ7l7V6wxKxl1UyAFAhLsvDYoFSwaJ6zo8tcz5JriXj9AQticlEccopWkPGW9SLEDnROZZiuMJi7XNTdMUJG5U4HwRXQR9ZL0KSWOisjHxWx543SiGoZ84lYcJ09lfQCtAd57J6aKtpmk6obpO/GZpLSGYVS1z2nc3i6MFMzWtSym2VEBEjOLQvg94jWXSHexCTYkjJKWTLigK5nUsaFntloRkaBtL9TkQDhUKhLDR0VkyhzBNa0IeymCkP116oarHzgTwrupNzWUNc2mIv44jLgPf3Vc6hvGflTNRqReKExRqlsNjJwqTTazNgj8M0TQis4LjA7lYdmuEWdtb4JU4E7xT00SBrMkSJhcoUMTIk4/SJPMJRDq0dIqazOWTTOiKiVZE2r+UdwVrLHUy4QlgZhoFRlpspF3W88uwkfvytUeh6dTFBnF+Rk4B8CP1nCjh1LA9RC6M91AEAGM2OeN7jzrkkYcmGaSBZTEDVqdhczPQmTuCV8y958mwpFAplIaGzYgplnrBOziUNi6UsPtyhpyzDVnX9LhVMWcGcWnnKJIQ0WbTaaASEcnFZeQ4XJi690QeKSxgVtaKTfxgUQs7rIic6+/GIS1deZEq2HEnLuSyFxRb1IkQfC5MxcPLENGACq9YFsWZjCBpTxPiIgkZ/EwCr4isR47XyJodzQ87PQ+fzeO9AErJc2rb/TAGaocPQgVRSg2ZomMhPYDw/7jhXxK2VOAnTg9ZYTQAjJ0S0By1xOZIb9hzXGxar42zqDL57/Nt44sxjeG3w5apjXQhoCO6Fk7PzeacKk5d5JBQK5WqFFvShUOYJEZU055KyGHE76g2+xsvqsDthscbMOZdRKYrzGWDUFjOVzmWlgHRakcxHXLJe59IdFgtYYoZneUhcqR+nwIpViwe5W3Kk5GkAlhso2C6fZqjQTR2SZL33XP80gCAaW0QsXemHuruIwbMmwjdGAQB5NT9rzuVI1hKXJky89uIE5DyDnDSFcIRHJMZjfEQGz1jXcGwii1eTLzqu8E1dH8Dy6Aon9FfiJAydE8CYLHhTRO8BFTfc1AaWYTGcHXKq2wLlBX1UDGUGnc9hKDuErJJBSAxXHfN8mSpM4alzT2BD40Zsa92xoPt+P0HceXKPUigUykJDnUsKZZ4wNOeSsohx35ctgZbLOJLKVh+1npmYLw4AmLYnvoEycTlTXmU9fS7Lt2HLWpGQMNiQGHIcx4gY9VSsFTmhamEhd+4h2Y+PlzwFfWRNhuizjpUpWK1CGpoEtHUJiLWaKKYEDPZa+yjUCIvNpDVMjFoCgeRCZtM68gUVot8EyzJITWs431eELJswGStf882BN5FRMk5vUuJgEfdVZEUMnFGwJL8La7kbMdhXRHbayuWUdRlJ2VVwSPO2IiGivCeyBABwNnUGgBVGvFBu43h+DKZp4sjkYZzPDCzIPt+PkM97mopLCoVykaCzYgplnrC0FQllEeMWcM2XWVyWu/u1QsnjUtzzb39ZWGyt0N655JO6r0upzyXJubQEYmeoG59Y+3O4b/mDuL3nTk+lXZGTqgpZvYqIEjnJGbNmaFZYrGT3/GQtQdbYIqCgF7B2UxC84cP+14swDNN2Li1haLgK+vzk26P4178ZQD6nO0IhMaHCYHQsW+PDPY804a6HGrH1ujCWLPdh3ZYAsvwYziTPISgEcU3zVs94iTAsZjikpzWsbO/Grh1LAQC9R7JoDjQDAKbtUGUAjttJzovkba5r3AAAODN9GgDw3sQB/KD3u8go6YprM1fSrn28NfTGrL0/Z6OoFT1hze8XSI5sXs2/L8+fQqFcfOismEKZJywNi6UsYtxFc5r9i8O5dP5dMyw25tk2UFYttlY7lblED7iFqNOKxBaXxGXjWQ4sw6LJ34SAEPC8R2DFqiG4WpnYYRgGIluqLGuJMNkJi9WYIsAA8UYBicIUGppELOmOIZtgMHDOasXiOJeufM7RQRmqYmKw3xIHPt6HqQkFJjQ0tXFgwMDn49C11I/NOyJobhcgs2kUsjrWNqx3KvCSfZN2KuPnrRzMpSv9WLkuCAA405u3Cv3AKkhEyKt5sAwLiZPs87LEZpOvCS2BVmSUDKYKUxjPj0EzNJzPnPdcm6HMIN4deccjmmcja4vLoBC0+omW9eOcK0+efQzP9T1zQfu4EnG326HuJYVCuRhQcUmhzJNSKxIqLimLD7fYKS+Mc6kpX4CpJQZZhnWqpQKVOZccyzmup9vFrCffstpYaj3D5SLWLS5FVqganusWgNZ2IhiGcVqRWGGxxZK4ZIuIxnjwPINDE+8BAB66bQtYk8WpYzkoqua0ILF6XhooFnUU8tZr/QNW7mSAD2BqQoXJ6og1V15XX9AKjc3ldPAs77iu5P4g7VT6TliiY8XqALqW+CCIDPpOF8CZgr2dAlmXcSJxHLIuw8/7IXACdFOHrMvOvpvsgkQZJY2CHT47WlYQ6MWB53EicQzn7PDZeiDO5dLoMgDAZGGi7veWo+gK8moe03Jy9o1roOoqxvPj8z7+Qri580F1uZVuN5pCoVAWCiouKZR5Qiap1LmkLEYWU2XN8jDYmZxGkncpcmLVcFciKn28z3mtnnzL8m1ZhnXGUVnop1xcloSswNVyLr0tOEgRIOL8FbUiinoRvMiAYQCNkdHYLGAg049EcQpN/mbsWLMKazdGUSyYOHE05Wktohs6UonSZ3p+0BInhRQHJc8g3MCA5SudQMnPAJyBQk4Hz3KOcHaHxSqKgcFTOvxBFstWB8DzjFVkSDExOWLtU9NVHJ08jHdH3gYAhMWw81kouuLkcgYEy/XMqTnkVSuvdCw3VtWlnCrM7j6enT6NglZAVs3Cz/udCrYXIi5JzqhhGk5+7Fw5OLEfz5z7GSbnUXX18TM/xU9P/dhTGKkeLjQUGLAWCQjUuaRQKBcDKi4plHnC0oI+M2PUH/JGWXjWNKzFusb1eHjVRy73UCrd/Rnc/pgUA1BZzIdAhJ3ElcRlrXDZmd7vfm7Ln+FyUet2SSVOclqYuCkX80RUBvkgOIZDWklB0RUwYCBKDHRGRkOziDPTpwAA1zRvAQDcencjAODo4TQUrbRPzdSQTJQE7OBwBiePZfHcj1NgwKKpjYNu6mAYxjN+AzoCEROybEJXObC2uHaHxY4OyWB0EeuvCYHjrM9mxRrr+o/02SLUUB0n8prmLbi561awDIezJ/OYHFccMU0+t7SScnJYVUOtKsLSyjSKWhEHxvbhmXNPVRTq6U/34Y2h1/HD3u/BNE1EpKjTqoWIS9M0rWq1cxBeBVfOaMEWwHOFVN1Nz1Gg5dW8I7rzWq7u900VpvCd49/E6eSpOR2vHHcf0tQFOLcUCoVSCzorplDmCRWXtQn87f+HpqVtiN19C9ihwcs9nPclPMvj2rbrEXaFmV4uKsJiZ/jTE7OL+tQK5a3mXLJzCIsl4tLtPpa/v9yZdLdAEVihqqNannPp4y2xxTAMIlLUKZ4SFIKQJBYqW0Rjs4CcLTSa7MI5bW1BtHWIyOVVnDlZEh+6qWN6ytXuJF1A75E8JE7C2g0RrFjvg2Zo4BgOETEKyS4mZJgGghHr+ufTpiPENZdzOTxQBGcK2Li11D5kuS0uh85q9vaqcw5d4R74eT/GBnQcPZjF/rdT4OF1LsvFpDs0lnx20/I0Xht8GYcnD2E8P+YUAiKUO3sRMQKJkxCVosgoGRS1Ig5NHMSLA8/j3dG3ne2Gs0MzVpR1C0p3caK5QBzPnOYVp4niFA5PvFdT7Pan+5yf1TlEF4znxwAAJxLHndcKWsERqr2JEzg+dWzGfRimAd3UEbQ/o/RlCs2lXJ1MFiZpkSgKACouKZT5Qwv6VEV44zUE//cXwBSLEA4eQPi3fx2wG7ZT3qfMISy2LdiO5kALlkaWV/09CVn1cfMLiyVC0v2e8vGU788dFityYlUxWx4WK7p6Y0alqOdnycdBY4poaBaQV3PgGM5x/jiGw/K1AZjQceRgCoZhPTu6oWHadi59fhY6Y03irt/VjC3b4uA4BqqhgmM43Lnkbjyw4kPgWA66oSNgry/kpk1HKOt2jujQSBZTowYiEQlLVpQKKDW3ivD5WUyNGDBNE4quOCGVIidA100c3mM5mXLRxOSQFalAFgVIPiNxook4IucIWC7eaG7UCaktuFqcVIP0zmzyW0L89PQpHJ48BAA4lTyJRHEKAPDm0Ot4ffDVmvtxC8q8Nj/nUraFL2npQtg3ugcHxvfjpYHnq76vL33O+Vmdw0S8YI8zUZxCWk4BAF7ofxZPn3sSAHBgfB/2je2ZcR9k4i9xPoicOO+QYAqlnKnCFJ46+wQOTRy83EOhLAKouKRQ5glxX6hz6SXwT38HAEj/w5egrV4D8Y3XILz84uUdFOWyUu5UzlQES+RE3LvsfqyMr6r6+6AQAMuwCIkh57VqYaq1IMLR7U5WOJVM7bDYmtViywr6SC5xSQQWAPh4P7o7I/BFVHT0WBN8v1ASdRzLoaFJQLyFxfS0jPf2pu1+kTqmk5a4XLMxCI1R4A+w2LKtwRHcpmmCYzn4eB+CghWOq5slcXloTw5Kwbr2r70wia/87QDefXsCnCng7oeawLKlz4VhGDS3iTBVHvmcjrffnMTxo5ZgFDkJB95JI5MwIIrWe3oPqvj+10bQu08DwzAw7QWl1mA7ACCrZJ19k5Bcwpr4WgAlAUVw5wcCcIo9EXG5f2wvDNNwQmX3jVriStZlaIZWM+/Y3aezoM4saGtBBGq+TFwSgTySG8Gp5EnP77JKBhOuIkDl5zecHcLRySNVj+cW3n3pc8ipOSSLSeTUHDRDg2qoMEzDE/ZajupaHPBxvhmvEYUyF0iI9YUUyaJcPdBZMYUyTxxRSavFOrDnByC8/CL0tnbIH/0E8r/3BwAA/9e+cplHRrmczKWgz2zs7LgJ9y57wFNJdi59LrkqRXwqnUrv/twFfkSuVlhsbXEZEaOe1zdtbMZt9zVC4UnF16Dze5ZhwTEctt8Yhi8IDPbJOH0i74TFGtBx7a0htC1lcM21YQRFv7e9iksYk3PsXinAH2DRf1LBd748ikxKQ9+5LAb6s8jndHR2hrFpeykkltDSJoI1eYwOKTh+dBr79yZgGCYmhnQ889MJcBCw46YoJInB1LCJ4+9l8eozSY+rHBEj8PE+ZNWsIzjLQ0ZXxldB4qQKoVfu7BFxuSy6HKvjaxD3NaAr3IUPLr0XPt6HkdwIFF1xigfVCtFzh9uWC9p6MEzD2Xe+LGfT7XKfz/R7fne2rDqupnvvmRf6n8O+sT2OA+vGPc7+dJ9HpBa0vHNtZaO2G6nYwlNgRUh2aPJ8woIN03COR6EApfDw2aIPKO8PqLikUOZJg68BAiug0dd4uYeyaJCe+RkY04T8sU8CPA/53gdgNLdAfP5ZsGOjl3t4lMtEva1I6sHP+9Hob/S4lfPJuWSZmcJiy51Lt7iUqjqXeoW4LAksd1isj/MhYDuVU3Zeor+snyfHcPAFgZs/GAMAnD9XhKarmE6oGI3sxVuZJ3Dbh0JobpUgchL4GkKZ/Mz7dNzywQZ0dgUwNarj8IEMDOhYvUXAyrUB3HRLa8UCAAA0t0lgTQH9ZwrQoUHRZSTGDfzwa2PQVBM33NyIxiYRK9YGIXIS/EEW6WkNRqF07gEhgJAQhmEayNkFbNwub3OgBWExgoAQgG7qHkFIejIyDAM/70dYjGCwr4jzp1Xc0LELD674EG7vuQs8yzsCPaeWHFLVqC4u3RPg+YgrtzgtL8rjPqZbRJumidN28aZ1jevt81OgG3pFbmlKTuFkohfvjrxTMeagEESymMTJ5Annd+7QXGWGUNeScyk6CwCyNrfQWEVX8MPe7+EdV44rheIUqZpngSzK1QUVlxTKPGkNtuGTa38eHaHOyz2URYP4nNWUXL77XvsFEcWHPwLGMCA++fhlHBnlclIu3hYiT5mdIay1nveVu5XuMc4UFkv6V5afU3lxFpJHCFjOJRFvEudDULBcwrG8teBSrZ+nbugIx1hE4zxyWR3nB/IoFHQY0UkU9aKTwyhxPo8Y5lxjZ+w/8YouQxBYXH9TI1hwmBpXYTIGtt8SwLrNIURDXnFLaGkXwYJDPmPAYFTojIaj78pIJTWs2RjElu0xAFZl2f/8X1dg2/WWiE6Nlq6tnw8gbOdK5pSs43qFxTB2tF2HXR032ttZY3A7dMS5vLPnbnx45Ufw+rMpfPXvz+NbXxrG+IhXFImc9RllXeJSqREiWrzAarGy6/1FregRkW5xrLvar4zmRpBVsmgNtjkLkpqh4o2h1/CTUz/0hLNmlQwOjO/DicQxZO2qtAWtAJZhsaZhnb2/0mJd3iMua+dxkt8JrOgUVZLnKK4zSgayLqMvdRamaTphuZT3N+QelHV5QVrmUK5sqLikUC6Aaqv971sKBQi734QRj0Pbca3zsvzQIwAA6fGfXq6R1QXbdw6Bv/trcKcvrNQ/pZJyMcksQJ6yJxR0LmGxTs5lmVvpEqh8mfAkgo1juKo5m0CpQA4Jhw0JpTBTjuUQEqwcUYmXHCdzxK6gWl4Zl+RKGqaO9i5rf+++lYDMZiAFrXBE0gpDKuu7Wc25JLl96zZG4PfzYEwG/hAQbTI9Yy6npd0SyKwpQGMtMafkrOt2ywcbILgEtI+XsGyVJRCTQ6VrazmX1rln1YwjRHiWx/rGDYja+ahEYLtdRdLKROIl9L5XxKvPlvpivvmSN7eLFFBy53bWcvE8OZfzCOMrL4Tjdi/dQsv9MwmJXRVb5YTOKrqKlDwNzdBQ1EvjGMoOOceYlqdhmAaKWhF+3o/l0RUVf3fcFWtnKtJDnEuB5Z3PfK7OLdmHoivoT/fh0VM/xptDrzvnmKEVaC86pmliuri4chsLnmeKupfvd6i4pFAoC4JwcD8YRYF6w40AV5rgajuuhd7eAeHttxZtaCx3shcNt+5C8C//F+J33ATu+Mwl/Slzo9zlW4giWDO1EqnnfeWC1D2myrBYSwwInODaxntMIiS2tmzHvcseQLPdWoRARJSP9zsFfkg4ZKAsLJaMTdEVtHdaIuDMyQyK3DQiUe/YRE4qy7l0O7qssx8A8PtEbNoeBgsOrd2ck5/ndlndBEMc/EEWHHgEghwiUQ6sKWDZKj86un0V/T97lvvBssBYH4PXn0/g3Kk8AnzAqfKaUUrikitzh4lz6a7eSsSlyIo4+K4lWj7y6Tb4/CwO78sgNV1y+4hYyqoZ57XygjmEglaAaIvy+YjL8jBWEgpomiZUQ3Wup+EqXERyJLvCPc7vVUNxxKBbiLor66bklDNGPx9AQAigI9jhOX6uTueSuOsCJzph23MNi3Wf+57Rd6CbOs5nBnAqeRJvDL6GPaPvzml/VxspeRp9qXOzb3gB9KXP4fEzj17048wF9wJLnuZdvu+h4pJCoSwI/LtWDo563Q3eX7As5Ac/BMY0F2dorGki9LufB5PPwQiGwBQKCP6v/3G5R3VVsZAFfZx9sJUiqh6q5VyWj6k8LJZnefh4n6cwT7lzScSByIkVwhIAtrRsxZaWrWjxt3j2A5R6Q5bGYu1bNVSEIjwiUQ4GY6BtjYxV67zbSpzkEcPVwoVJgRuO4XDLBxuwel0EK9b5PK0pqsEwDFrsvMuGJh5dS/3gGQEfuLvBvi6lY4mcBFFi0bXUB7Pow3RSw9AZAyzDOmGxWTXrOLzl7rDjXLqK+pDxyXkWZ3rzCIY4rN8SwrU3RWEYwCvPlJxMInTdQqtaqw9SIdXP++EX/JB12bk+9UIEIblnSC4pEcNEKJOquKquIq2kERJDEDkRAis650f2pRpa1UiYlDztEpfWfkloLKmY7A6LndG5tK+HyIpOH9Z6w2J1Q3fEM4GMyzANvDOy2xnvXDFNE32pcxWinTBVmMKYHQY8nh/HaG6k7n2/O/KO067mUrBn9B28NviK0y7mYkCu8WRh4qIdYy6YpulZpCmvoEx5/0HFJYVCWRAER1xeX/E7+cGHAQDSk49d0jHVg/DObohvvwVt7TpMHTsDvbsH0ovPg+3vu9xDu2ooD4NdiJxLbxhr/WGxTs5lmTh0O5Hl+2MYBg+u+DDu6Lmr5jZESNQSzg2+Rmxu3gKGYRAQAh63sFpBH6AkWHfcGMP9H2vEljsAXihdO5Gz8j/5GteiXGgyDINQmMeWHTHwYilsVGSrO5eAnXdp8og3Cli+2o9PfWYJlq0K2MdyO5fWPm75YAPWrW0EzzOQUyJ03SyFxSpZT1isG3INpoqTeOLMoziXOuv0Du09WIRpAhu3hcFxDHbeGkcgxOHA22nsfiWJn/1oHNkk4xyDoBiVOZckJNbH+x1Bezp5ChP5+ifqRJCR8GbiXDpOKyeBYRjnnkja7RnikiXKSYGoglZwhK2qK1UrsKaUlBNm6LfDp7vC3fj4mk9hTdwSmfUW9CFOrsAJzoJCsY5el4qu4MenfoC3R96qCKMN2gsj5DyyaraqWM8oaQxlBqvufzg7hNcGX8GRGiLwZ2cfx7N9TyOrZvHSwPN4aeCFuqrVyrqME4ljODp5eNZtCSPZ4QsK7SXh6tPzENn1Qj4zcqzLTUEreD4PWjGWQsUlhUK5cAwDwrvvwJQkaJu3VPxau/Y66G3tEHa/CWZicay2Enz/9q8AgPxv/BfA70fxox8HAEiPLe4c0SuJhawWS3C7lXMp6MOxla1IAG8vzmr78/N+T1hsufNJhEW95xZ19b4sL+hT7uoFQxw6lglIFhPgWd5x6UgoKM9Wth8Bqudfurch4Wvu8ypn121xbN4SR9cyPxiGQThYcjk9hY7ssaxYE8Qv/OIaNMT9kNQ4kpMqAkIQDMMgo6Sh2cU+aoXF9qXOIVlM4nxmAIquIJc28dZLlgt0zbWWAxoIcrj3EcsdfvbRSex5I4Wnvz+NbEbzhsVWcS4Ltjvm43zOMd8eeQuvnK+/Fy/ZR4NdmMcRl44zKFh5s/a5JouWwxr3xa3rZgtxt4gpdxBFTgTP8pZzabu57vBpH+9zFijqLehDigaJrDssdnbnciI/jqJWxER+vMIN3tKy1RHZpL9ptkz0jGSH8eSZx/HiwPN4e/itCvFJQqHTs4i6t4ffhKIrdo7q7OMmCw2KrszY/5NQ1Ip4YeA57B5+EwAwkZ+Yc/VTsn1KuXjOJVlAcN/r9aLqquMCV9+3MueCPOTzI847zbmkUHFJoVAuGO5kL9jUNNSt2wGpSnEQloVy/4NgDAPS009e+gHWgMmkIT37FIxQGPKHrMJDTgGiZ352OYd2VXFxxOWF5Vyy5UV7XIV66inUVS5Aycp93eLSDo3lWb4i57GaEztdTEI1VMR9DYjYk3ki6DxhsVVEZOXP1vbExZvJuYw3CrhuZxN4jlS7LW1LjsswjOccfLwPd7U8jLbCZkyMKWAZFkEhiIJWcCbGtZxLQkErIJUpYvfzWWTTOrbtjDjFjQBg49YQtu+KoGupD+uuCUHJcXj39ZQnh1DRZbxw9gW82P+8a795e4x+z2dV0Ap1h3QSIRj3WU4kaX+iOq6sAJZhHRFFxCURo+R6u0NYyx3ERl8jwmIEiq4gISfsa1S+CMFX7Mf9M6mcq+oqzqXOOr8TuFJYbD0ibapotcyxPj9LXG5p2YqNTZuwNLIc17Zdj9UNa7E0sgyAVyRO5Cfw4sDzTi7qyWQvDk+859k/GYO7jQzBLXSGs8POzzMJmLH8GKYKUx7xXt4yphp5LedUwC1oBTzT9zO8PfLmrO8jFLWi41Zn5ItX2MgRl0rl9ZqNI5OH8Gzf0xjMnK/4nazL+MmpH+LtkbfmtE+yuEG+03JqDqeSJz2OejkpeRqPnvpxTTebcmVDxSWFQrlgSEisVp5v6UJ+4EMAAOmJRy/FkOpC/NkTYIpFKA88BPjtPKn1G2A0NYM/uB/I0dyRheBiFPRhZwhjrWcs5XmapG1HeaGeWhB3cb75pMS5DJQJBmsflWNIFKcAWIImIkYAAD7iXDK1CvpUv0a8KywTgKfqazXcDqXgEqIkvLOaOG1vD4EFh4lRS4yE7eq5JFyQCNN3Xp/G1/9pEJkp7znn1CxGhwvQFQ5brovgwY+3eK41wzB48OOt+JXf6cbHfrENXV0h5LI6pqdKDpWiKziXPIfBzHkn7JXk9fl5H1oCrQBKn9noDI6OG+L2Nftb7HOywl7dfSRJxV8AOD04ClUxHOeSY7mK+0R2xmWJ3p7IUqfw05idY1guwKtddyI8jkwexk9O/hAD6X68N3EArw++iv50HwBSLbZ+53LS7scq67Jzz7QHO7GtdQc4lkNHqBM3tO9EzD4/Eq6p6ireGHoVhmlgR9t1uGvJPdb55L3XmYyhmhipJX7dubluNEPDi/3P4aWB5z1taWYSOs6x7HEUtSKyShamaSJf4zjVcAvYche2oBWcZ/hCKWokT1etmadaCzKGoexQ5e8KU1B0BQPpfmdhJKOkcWZ65grqxLls9DcBAPrTfdg9/CZeHnixZj7zUHYIaSXtVMyuF9LK6Goiq2bx+uCrFzVP91JDxSWFQrlghHesYg7V8i0J6g27YDQ1QXjjNTCJhfkje6H4fvQDAEDxIx8vvcgwUHfeCEbTIOx9f1c+XCjc+muh2ve4BdWcwmJdbUU8r9doMVJ7P9Z2buEF1N9mhYQS+oVKcVltDMSlCPB+571ilbDYWjmX3m2s10vOZe2wWMAbNut2KMlnUK2VSUubtd34qDUR9jnVYK0JOMewUBQDLz45hb7TBXzzH8aQSZQmjVkli1RSAwce6zYHZ7xvWJbBho2WsBkdLoVtppUUTFj7JBNk0vLDx/mxOr4G9y9/CLd132GN1VWldSaIyxiRIohKUWSUDPJq3tVHUgDHcjBMA6PDBTzxs7M4fkD2tKcRWAFTkwpU1Zp8E1ex0d+In1/3C1jTsNb5nFP2pLPcuay2KCDbY9g/thcAcHr6lCMO3e8TOREsw1aIt7yaR0qe9kzgp1zvJ6GYUpVjk0UPIqwOjO9HRsmgO9yD9Y0bEPfFwTIskmVtNMi5K7pSEdZbK4c0X8O5HM+PQTM0FLQCxl0iti5xaV8L1VBdbnTtMOOKMblCaN0uuGEa+GHv9/DkmcdnDFueCUVXcHTyCIpaEYpRuiZzzbsk249VKYpEFn5UQ3U+owPj+/Hm0BszFlEizmWT3wpVJ4IyUZzC8anqldfJPaJWyYuuRrKYwJNnHsd/HP8Wfnb2iVmLcOXVPHoTJ+rqwXp48pATKnx44j2M25WdCaZp4tDEQUwVLs68ZSDdj3Ops+hLL57qvxcKFZcUCuWCcYr5XFtbXILjIN/7IBhdh/js05doZLVhx0YhvPEq9NY2qDd9wPM7ZZfV2F3Y/cblGNpVhzssll2gPzuesFi2/n0Sx6jc7eRqvF57P9XFZb3itCXQirgvjp7wkorfVRsDccH8fAAxKW7/bAm2avmU1uvuPNJK0Tkf59ItLiXe5xQoKqfZFpfEuRSc/EBrAs4zPI6/l4UiGwhFOMhFA/0nvBPGVFIDawpo765ezdbN2nXWNRkblpHLasimNU9Rlb70OWiG5ggZiZfAMiwa/Y1oCbSCYZi6q5DKetEKBWZFx/2cKIw7E1nBzrkEgGOnx2BAx/R5CYbr9MaHdLz10jSOHrBEDBE2HMM7Qpo4o4A1we0/rkNRrJ3kczqSowbkojc/TjFkj5sVESNOtV4CcTwlToKsy46Q1AwNj5/5KR47/VN8v/c/kFHSTogoIW2He4pVFhSIuMwoKZimiXOpM2AZFjs7rO9TlmERlWKQdRl5NY+R7LBdMbc0XiJes0oGU4Up5/NqC7ZhaXQZ1jasB1A7LNb9GbrDaKuF3Jbjvm4lN3pm8SNrpevnFpeyLiMtpzBZmMSp5Enn9fnmI55LncW+sT04M33aI1Azav3ht4ZpOG7utDxdkU/qzhMl7jJZ1JpRXNrnFJWizncFceDfmzhQNW81Yy+Y1Cu2D08eclzXRHEKR6eOVGyjGRqGs0MwTRPHpo7gnZHdeLZv5rlGSp7GgbF92D++D1OFKRwY349DEwc824zlR3Fw/AAOju+ra6yAJYZnEsBpOYUnzjyGifyEs8h3NbVwoeKSQqFcEMzYGLj+Pmhr1sKMN8y4rfzg4gmNlX76IzCGAfnhj3r6cgKAuvMmAIDwVv35NpTauEMAFyIkFqgtqGYjJsXAMIynoI57XPWKS7Jdeb4kW6czK3IiHlzxYaxrXF/xu/JiN258vA/d4R7s7LgRG5o2WWOpIhyt/VQv6EPG7hZDM+EOhXWHYkqchLuWfNARD26CIQ7+AIvJcRWGYUKy30eECs/yOPCONTG+7yOW4yEnAmAZFiExBF03kU5pCPhEhCOzf76tLUGEoxwyaR2vPJ3Amy8loekl4aXoCgYz513tV0riSOAENPgaUdAKyChp5NU8jk8dq1nYpKgVIdkVYVsCLcjndLy175yT7ylwovM59A/Z7VKKPoyct35vmiZOHbLGMToswzDMqrmo7aEO3Nh5E8JiGLnRIB775jRe+tkUzvTm8P/98Vl88x/H8NrzCY/LqOgKzmcGPP/O5Io4eTSLdKr0eRfyOjhIME3TqSKbVTLO9VF0BUPZIY9rCZQWOar1Rg27nMtEMQFZl9Hkb4aPLy0OkNDgI5OH8Xz/szg8+Z4T5mmNwRIzrw6+gmf7nnKES9zXgA903Yr2UDuA2hNxd2ize3JfT2GeomufxLlzO18j2WG8M/K2K2Q0g28f+jZePf+yPSavO/rUuSfx1Nkn8O7o285riquw0Fh+rO7iOUQcZ5S0R5CVF0+aibya81yT0bxXMLrdVuLkETE8NoOrT5xLP+93FrzWNq7H2oZ10AwNxxNHK96TsRcRtDqcS1mXcT49AJETcd/yB8AyLA5PvOcJewaA41NH8UL/cxjMnnfOZaowiWNTlccnkO+jtJxC2hbX5dVuyb1QbwXgsdwonjjzGA5NHKy5TX+mH8liAgOZPlc49tUjLutPVKFQKJQqCLX6W1ZBvfFmGPE4xFdfBpNOwYxEZ33PxUKyQ2Llj3684nf62nUw4nEI+/cChYKTj0mZH27ncqHCYlmGdapTlvelnIn2UAc+tfbTFSKy1KKkvn2VwmLLxOUCrNl6HcdS7h5ghXMyDINV8dUVYwFqV46tlYsJzC4uRU9YrNexagu2V30PwzBobhMxcLaIyXEFAl+qbNp7JIvDx0YRTAUQjfNYuymESIyHPrYZ9/R04GjyPQyOJmGaQGvzzCGxBImT0NYhIZPKwzABRTFRLOgIhy3Rk5bTSCspxyUrD+VtCbRgqjCJicIEpotJHJk8jKAQREugFcO5ISyLLAfDMFB0BYZpwGfnLLYEWnHsYAbTAydhyBzQ7XUuR0etCTALHqdP5DA+KiM9rSE1aQI8oComklMqGgOWwOLK7ssVsVVYEVuFpw6NYxwpHDmQQWJShWkCoiCiWDCRy+oIhXmwDAtFV9DvCq+TdRmHDyXQezSP3qN5NLcK8O0ZxYnDWUy0pLH5Th2yLZbzTrEjH4paEYnCFAp83rlexEUkIbXl8CyPgBBATs1h0Ba4naFOzzZkUedUsheAJWjcziUJXy1oeWiGhml7Yk8+r1I/VK9YJBVkSfGhcupxLt3FkIhzqRkaDNNAWk7h5fMvQjM0dIQ60B3uwfn0AHRTR3+mD72JE46AbfA1IlG08hfdhZ2AUpjtaG4Ez/U9g7AYxodWPlJxPU3ThGEazqIQETzlAufg+AEcnzqG23ruREugBTNBQlFFToSiKxjLjWJ5dEXpnItJZxxj+VGYpukIn8n8BHRDr5qTnlEyVpsjIYzmQAtkXcbK2CqYpokTieM4mejFxqbNzmeoG7rzOVdrF1ROX+ocdFPHishKNPgasbZhHY5NHcX59IBncY6IzfJCR8enjmJ94wYAwKnkSbw3cQB3LfkgolLMuedlXXYWUsrzWImjm1NzUHSl6sKKG+Ly9qf7sKVlW9VtyKKAu8jZXPNnFzNz+iuoKAq+9KUv4cSJExdrPBQK5QpDeNfOt5wpJNbZWIB8z/1gVPWyhsZyvScgHDoIbfUaaJuuqdyAZaHecCMYRYFwcP+lH+BVhnvitBA9LglkAl9vER5CNXeS7Ku8DUgtSEEhsayNx1zHUg23+CufyPiFyoWOWoKSrfGzW8CQXpkzwXvCYmcWom6Wr7aEwCvPJCBxEkyY2PPuBE4ey0OVGcQaedxxfyNY1hKinCFBnQ7Cx/uRSlqOUUtLsK5jsQyLVWvCWLLCj1gDD87kkc1YorzBrupa1GQnJ7FcJAftXpwFteCZcB6dOow3Bl/DsF0AhYQ4koq9QT6M6XEORW4ab701hmJBh8AK4FkOhmFibCIHBgBjcnjt+QQe/944XnkmAc4U0NRqXcvR4VIoK18m/MdHZOi6ieEBu0JoWsfJozn4Ayy27rBcwPS0Zp+Dda1GXCGMiqFgMmFN5HkemBhTcexgFqYJ5FMc3nxpGl/5xzN49bmEM+HvDvcAABLFhONYkdeAmRcjomLUERUA0F4mLuN2SDdZMMmpubIKt8TRss6JiDxSgIgUwCp3l546+wR+cvKHME0TXeHu0vFsp7RWjqYb9z7duYyKruDVwZedMZHc3KFsqdLp3tF3MVmYsM+5tODywaX34f7lDznhvORcSR5tRslg39ieirG80P8snjz7mCNMi464tK5HSAw528q6jGHXWGpBzmlpdDkAeHIIi1oRsi4jKkXR5G+GoisYL4w7n5Nu6pgojFfsUzM05NQcgkIQHMthZ8eNeGTVx+Dn/QgIAayMrYJqqDiZKOmGrJpxhWLPLi7PTJ8GYC20AECD324BVOYUk2dI1otOXrTIicipOed3x6aOIK/mcWDc+rvuLgxFigsV9aInGsDt6NbjXibs6tApOVXTWSZCv6DmndZGbufyraE3nJY4VyJzEpeiKOLLX/4y0umLV2KZQqFcWczFuQQA5aEPAwB8P/7BxRrSrPh++D0AQPFjn/RWm3Gh7rgOAMDv23vJxnXV4rrGCxUW697XXFqRzLavesNiSc/BgBDyvF5vQZ+ZKBd/bvxcpbh0b+8Wt+5r7Sno47pes7mWgDcUttypnYldt8URifE4djCL4XMapsZVnD6VgSgx+NQvdeF3/scybN5hhVK2ODmaMgK8H9NJa9LZ1lqfuASAUMCHzdvD6OoMgTUFZNOWGCAtQ4p6ySVwO5eTYwqUnHVNZL3oTPIUXXEmpWkljayaxXsTB8AyLLY0bwUAjA0rEPKWgEkZ4zhxOAvBbkWSzehQdAUNzQICPgGGboUL77wthq07GnCNfe7jQ4ojOtyLA2d68/iX/zOAl5+awuiwt7DNxm1hdC3xgzN5pMrEpWmaaLcdZUWXkUgWwAD469/8LL7wi5/BJ3+lHb/3heXo6ggjl9UxNJrB/t0px91r8jdD4iRMy0lMFibg431ocwkmIvSqsb5xIxiGgazLkDgJjXb7FQKpKEvIKtmyME9rDCRclEzUyedFQmzduYtpOeWZ9K+IrXTyP2NS3BEYT519Em8MvVZz7LWco8nCBFJyyrm+43krv3YsPwqRE7GucT10U3fG0BNeCgBYFl2O5kAzGv2N8NvjLoUdlz7P41PHKsTyeH4cKTnlCEAiQMj745I3BaW8lU01SGuWFrvwjtsxJgIqIkadljnlRX+q9cck+yTXm2VYTwGwDU3W/XBs6qgjzt2VdGvlXE4VpjCRn4Cqq5gsTCAgBNAcsMZNFhjyah6maTruNnmGirrsnFuHvbiRKE5huph0RP1Auh+J4pRT4Asohb+6Q8UBOPt3X6dyksUEjk8dQ07NeaoCk7zf8l6r5LoVtILzfUPyrgtaAaenT2EsV1+BscXInP8Kbt68GUeP1o5fplAo7yPyefCHD8FoboGxbHldb1FuuR16SyuEV14COzK3MuQLgmFAsoWt/JHKkFiCtuNaALBCYykXhDtUdCHFpeNcLoC45OYYFru+cSPuXnoPOoIdntcXJCzWI/5c+Y6cWNUZnUv7kfKfZwvxsravXtBnNkSJxb2PWBPCt17I4HyfNYlavzmE1lavSG52qssqkDgfEhPWRKyjo35xSQRILOoHZ4qOc9loOx2yVkRRK4JjOOca5HM6/vVvBvDEt6wKqbIuOzmAmqE6k9+8lsNxe4K8vnGDI5L6Tuch6REsX+OHymcxNqyAZwRwDI90UoXOKIjGeaxZH4E/wOLnPteBD36oGdfubEIgyCEa45HN6piarMy5PHXMcmZ2vzoNTTXR3i2BRExvuS6Ctk4JrMkjndQgsIJH9PVElgIAcsUi0rkCQkEfOhtasHZ5K9ZuDCEQ5PCxj63CdTdHUYgMIJsuhSoGhSAa/Y0wTAOGaaAt2O5Z1JjJve4Md2Fn+432GJZUuOIhIeRZ0CAFc4hwy6lWr0nimJFQU/LZsgwLH+9DQStgqjBliRDbUVvbsB6PrPoolkSWOgsKYTGMoBCEZmiYLEzg7PQZp+9oOXKNtifkurQEWiFxEqYKkxjODkE3dHRFurDSdtSsayOiOdCMh1d9BDd23ux63Ro/ES3FsvBst3CTddk5/5Gc5ZiXFwLyCwFsa92BJfbnnK+jGi5xLiNSzAmNJRBhHJNiTgEo4sSSa3lq+mSFGEw74jJW9ZhhMYIlkaWQddlx/dOuHqDugknD2SH0pc5B1mU81/c0Xhx4zunx2uBapCD3Sl7L42SyF4+feRTD2SHn85O1ohO+SirYThWnMJDpB1Cq1H1k8nCFqCc4gs92dAnllY4B4N2Rd/DEmcewZ/QdvDH0GnJqzrnvTyZ78XzfM/hB73fx2JmfwDANaIbm3Nd5Le+plqwbunPdydivROb8V/D3fu/38N3vfhff/va3cf78eeTzeRQKBc9/FArl/YFwYB8YTbNcy3pz6Xge8sc+CcYwINkO4qVEeOsNcEODUG68GUZXd83t1M1bYHIc+H2VIUuUucFcJOeSCK16Q1lnYj4FfdqC7RXCdiHOz51D6m754KvhGNVuRVK67lyN1i18Pc6lLSaIIzcX1m4KonOJD8kxYLBPBscB7V2+iuvc0m5NssdHFOQSVkhrNMYjHq0/35lM4BtifnCmgGzamqDHfQ3QVBNFvQjFsCadqmJA00wc3peBIpvITrGYTmj2ZNJ2iQzFyZEjLToAy5Ei9J0uQDSCaO2Q0NAsQFFMTI4YgMlifFRxxOXNtzfjd7+wHJ09PvtaWue/dJV1fqeO2y1aXNdl4Jw1n9I1K0RvxeoAbr+/Edd/IIaObgnNbSJ4CEhNqxA4wSP8O0IdEDkRk8kcDEZHQ7Syou+65jVY3tMAJTSGNMaRzFriIygEPZP59mCHpyjPTM4lAKyMr8LDqz6Ca9uqp0o0B5rBMZwzyQcsUcOzPLJqpmr7CA4SzvTmoKoGAnwQhmng2b6n8GzfU07PxpZAC0K2MCK5wI3+JkeMEHpdIZpuajmXxNGVOKs3qmEaeM+uKNod6UaDv9E5F+KqhcWI51khbp5qizNyLCIO3QVz3EJxODts5T6WCV+JFbGxaROub99pv8crPg3TwLGpo/jpqR854ZXELQuLYesZMFQn7JaE+kalmBNyS1pydIQ6sCy6HHk177S4IaRd+6zFRrvw2LGpIzBMwxkHUBKXiq7glfMv4bXBV/Dm0GtQ7YWdc9NnAJRC24FS3m1ezTkLC4liwhGKec1qC+R2zqcKk06f1xs7P+C8VquITtEJX54GUAqvnpYrFybG7MJIPMs7iwTd4R7wLI9EcQojuREYpoG8mkeimPCcv6Irnvu9oBcwYV/3lsD7SFx+/OMfx8DAAP78z/8cd999N7Zv345t27Z5/qNQKO8PSv0t6wuJJRQ/9WkAgO+73wYucUNkImjlj31y5g2DQWjrNoAbGQY7XNlwmlI/nlYki9S5dAr61CkuS+9jZ/z3fHAX9HG3CanWE9PafvacS7cA94Td1iEuiXsqzCHfksAwDD5wVxycab23rVMCLzAV4tLduuTsEWuy1bnEN6djEhHcEPODBY9sRoPIiRg4buCZn07gdN8UTNOEVhDwD3/Rj3/5q37seWMaAMCbEkYGiyjqJadCMzSo9sQvp+ackE1GCUBVDRiGif4zBQTYMGINgnMOx/YX8Nh3JjA0IAOCioYmETzLg+NKzwEJNe5a4oPfz2JsWEF6WnMWFhTZwMigN9Sxo0fCTXc04N5HmsEwDASBRSzmh1w0YSic44KFxBDCYgQSJyE1bffPjFfpp8py2Nq6HZKPw4TvOJIZ0ku1XFy2O31Kres8u3sdFiM1F2pu6rwFD6x4yOPMSLwPQSFY0ZoEAKYTKr7zT+P41peG8e7rKQTsvGPN0KAZGvpSVgEj0hYGAFbH1+DBFR9Cd7jHCV1v8jeDZ3mcTZ2BrMvoS53Dj05+H2k5Bd3Qa7YdIc6lyAloDbYBsBwskRPRE7VyUcmCQ7W2PAAgsbZzaYtLco49EasVUa2enJOFCU+Oovt6AVaYMMdwFQWLDo7vx97Rd5FRMjg7fcZpQyJyIiROgugaT1/qHM6lzlpFsYLtCNv9WMlY/XwA17ZdD4mTcDLZi5Q8DVVXkVHSSNthpu6FgnIafI3oCnchp+ZwLnXGqcrKMixM04SqqzgzfdoRWYOZUv7oudRZAHDaLwGWiBM5EQWt4LigpNgOUBKEEudz7uPh7BCSxSRiUgxN/ib4eT+yarZm/9NiWQGl7nAPWIatmnNZ1KzWRCtcDnaTvxmbmq9BZ6gTt/Xcgc3NVm2HycLEjL1Ji1rRcS6bZynQtJiZc7XYv/zLv1ywan8UCuXKppRvWUcxHxf66jVQd1wHYe+7EF5/FeoHbr0Io6tCLgfpicdg+nxOW5SZ0LbtgHDkEPh9e6F0dM66PaU6F6+gD2/vfyHEpTWu8oIqs7/vIohLl8voDiGs6Vy6XckaQrPWz7P1uATscFyGQ4CvP0TVzeoNQbS3BXE6B3Qt9dlj8E4/JIlFNM4jmVCRO2BNMtu7JU++5+zjtCuKShIiIR+G8gYkxo+Tx/LgDAkjwzlEGoPY90IW8VTJLYg18EgkRAyel5HdnnUmuVaelDVhzalZFLQCTFnAl/5yCCvWBnDLBxtQLBhYuqIJHMeguVXCceRw6O0C8j6guVvEzu1hmMF0hbtOHGORF7BibQBHDmTRf7YAboN1/wz2F2EawPI1AQycLUBTTXT0VH7+TQ0BjKSBTBIQbHHbbodqi5zktB9paqguepZFliPsC2CSn0Qia6I15IfACU4ocUgMISSGYZqmU52Z0QUMnC1A100sW1V9vzPh433w2WKSIHGSs4jhbjNiGCbefX0ay8ctN2RksIjOtZXHDIkhj7BjGMYJ5+wIdqA/dQ472q7DmelTOJU8ieHsEEayw8ireZzPnMeS6FIAlgNXPvnPljmXgPVM3LX0g/ALfuSRxfLYSpxM9qIj1FX1nMm96eQF2qHXDb5GhMQQksWkk6fqDtU0TMMRz27cEQ0BIYCMkrGL62QR4IM4mey1+4pGkSwmMZDuh2ZojmAh78+pObw98hYA4OauW+DjK6MKyOe1rnE9Do4fwEC6H5OFSQxlB50FjZmcSwDY0LQZg5lB7B/bh6JehMAKCIsRq6quoeBk0nKTm/zNmCxMOJ8DEfzxslzdoBBEsph0Chyl5FK4aqndkAiBExCVok6u5bbWHQCsglyFXAEpOWWJXJgeAU+cZfK+mBR3ruVEfsLJ/yTHE1kRK2Or0GsXsmr0NaI91AE0bQZQSpeYLEx4hHI5eTWHycIkBFaYcbvFzpzF5SOPPHIxxkGhUK40DAP83j0w/f7qFVdnofDLn4Ow9134v/KlSyYufT/5IdhsBsWPfBxmODLr9uqOa+H/5r9D2LcHSh1ilFIdbyuShXMuV8fXYKIwXtMtmAvzdUHLz2dB8j89PTx58CwPzdA87lHt7b1tTErbuENnXdVo6xBvPMvj7qX3wsdLs25bDYZh8MnP9CC7J+y4e9VCmTduC+PNF5OQUzwaVvAIBDjwc3EubTdGYEU0xgIYGgXUrICRwSJ4U0I6VUD/6QIyiQi2rwnANEycO1XArtvjOLQng94kg5GJFGJx65iaoTo5csThGD4pQC4aONubx9qNljjq6YpgmhMRiZmQJAasySMWFbHupihCfhMZpVJME5c1KATR0l4EDgCppOpsN3DWEhir1wew/poQUkkV0VjllK25OQD0AVPDBnqus9pjrGlYC8CaXGfs0ODmplDFewHrs2kNteEsppEvqAgKTQAs5/H69p2OI8UwDCROwmQiix/9cBKhactd+sQvtaO9S8LQQBEbtswsMMoJuoph+TifEyrsDlUcHixCKTJYsiyE8+eKmBxTsdJ+DsJiGDzLI1lMotlf2+XpiSxxHEIScljQCk4xl6nipBNGG5WiFeKSuIKiLbpv7roFjb5GxPwxZ5uQEMJHV3+i5hjI503CrN0tcVoDbcgqpzGWG0VPZIlzvJZAK8bzY+hLV4pLd7XjgBBERslg/9g+nEgcQ0yKQdEVrIithI/3IVlM4njimL3PFs/7ScuUjlCHU/yGZ3mnHQ1QCvXtDvfg4PgBnJ4+5VyjglawetPabmdySsWBd9IY7Ctg521xrFpnPSOtgVbnfADg+s6dOGtXgR3KDCIlp9AcaMEdPXehN3kCS8JL8OjpnzjjiYheZzTAB5BE0lkISlTJoyXubqO/CSk5hRWxlU4l4YgYcUJY/bwfLMMio2QQ98VtoW+de0YpObNLI8uQLCbxfP8zuLX7dnSEOqEZGnRTR4gPodHfiAZfI9JKyqloS2j0W8/VZH7C+V4OiaGKtikjuRFohob2YPsVbeTN+6/86dOn8eijj+LLX/4yJiYsC7e/vx/Z7Oy9hCgUypUPd+I42HQK6tbtgFi/u0CQH/ww9NY2iM89A/bc2YswwjJME/6v/l8AQOFXfq2ut2jb7aI+NO/ygrhYOZerG9Z4imZcCKX8zQsLi12ICYHbiWQZxpmMBGqIS5Zhq+aMukWnt12JyxmtU7w1B5oRFmdfkKlFS4sfS5eHnYWGatf5zgca8elf78A1O6LYstWajNUTtktwckM5EY22U5dPChgbUsCZIjIpDVOTKnhTwm33NuBTv9qBT/1qO3bsimLF2gB4U3JaoACAaoddEjTVxMBxa/zFgoGTRy3B2dohISSEwTAMunqC4DkOt9xtuZnEqSo/X+LSBYUgAkEOHAdkUjo4hoNpmjjTa+XQ9Sz3Y8euKO64v6nqvbVqdRQcB5w+ooIthnDf8gecUECRk5BJaWAYoLmx9gJMZ8QK9ZSLhsdNXNOw1tPHVIAP+3anoOR5dC6xJu7PPzGJf/+HQfzw66NOwaZ68TqXPsfNdec+9p8qgDdF3HpPI3x+FpPjCqJ28ZhV8TVOi4/OcHXHsBzSyqeoFZwKrInClCNo/XygogcqyWckgmxZdLnTiqZeyOet2BVDiUvJMAza7FDbYbsVBnEuiSAmRWTKrxeBiL+zKUuskdDNtQ3r0eizniMiqlsDbfb7rXMhIaQkj5Hgftb99vdO3NeAkBiqEN9h0br3x0Zk/OvfDOC15xI4e7KAJ74/DlUt9fi8pnkLGIbBusb1WB5d4VyTsXwpT1HkRGxq2oyIFHUq0EalWMW9HyjLo61WdZac48bGTdjQtNGTA+w9v4DjvJJFCnJv5F33xabma7CtdQc0Q3NamZR6v1rHumPJXbh/+YMV95CP9yEshpFW0pi0+2mSz8J9jc/bRYeu5JBYYB7iMpfL4fOf/zweeOAB/PEf/zH+/u//HuPj1k37N3/zN/jnf/7nBR8khUJZfMw339JBFFH87K+AMU0EvvxPCziy6ghvvwX++FGoW7ZC27ajrvfoK1bCiETBHzoIqLP346JUxy3AFlJcLiTEgZx7zqW7aM6Fu5ZAqYcm2ScRibWcS6AkXmr2tqxRRbaeViQLhftY1aryMgyDlWuDeOTTbehssyZ/9YTtEsgET2JFtDRbk8+TBxTougnOlKAoJqbGFQiMiPYuCaLIYs2GEFiWQTjKgzNFyMXSZFjWi464NAwTxw9nwRQDIEb8iSNEXIqISNZ4t25vxH/9s2Xo7LIm62TSWy4uiasSFEJgWRbhKA9NM5HPAPveSuP8uSIamgW0dszsFsciPixbGQA0Hq8+53Vv9AKPYsFAKMzBL9beT1fMEpBy0Zgx9PnMYQ3plI4lS8L45c93YekqPxITqtNns+/U3MRlwCVoJF5yFjqKegH9Zwp486UEElMaomE/lq3yo6lVhKaaiGpduHfZA9jQuBGr4qvx8KqPYHl0RV3HJKHlRa3UciatpJ3CND7O50z0/WXPW3lv1LlAxIaiy06uKCmS1BnqBsMwGEj3wTANx7lsD7Z7nhl3Hqw7LJaITkVXwDIsWgKtWBFbiUZ/oxPeTHCH9QJucek915DLVXYLz65Qqd/p6vga64diEM89NoGv/9MgCjkD23dGsGJtAOlpDXvfTDnbt4c68PE1n3JEXmkM1jblEShEYLmL+RAC/OzRKuSzjvni2N56rSdXOFImntc0rENXuNsR9MS5LNrOrCNUmzYhKkUxVZhESp52tTYSnX1FpVjV8ZAc42QxAZ7lPW6704/VXshwL+pcicz5r/xf/dVf4cCBA/j617+O/fv3e2KUb7nlFrz++usLOkAKhbI4EXa/AQBQb9g5730UPvPLMEJh+L7zTbBDszeBvhD8//z31jF/6XP1V7ZlWWjbtoMpFMAfpy2Y5osnLHYBcy4Xko5gJ5oDLRWtRWbjYrRZ8eZQcs6/3RU7yyHika+Vc8lWF5pz6Vt5obgnd9VaqrhZHluJzlAngnPI82zyN0NgBTQFmnHD5hUIGDFMn4oBAHjDOrauA22tIfC897MKhTnwhg+KS1ySiZ5pWnl/facLCPIhXH+ztU9NNcGwVjEiMlmVeAHBEFex0FAuplv8LdjZcSM2NV8DnuERiVq/P3dCwTOPToBlgY/8pzZPEaBqiJyIFesCkAQB+3enkJouLYIl7Z738UZhRmHU3tAEzhAhF/WKyqoEwzAxcMIAA+CBD3eCZRnc9WATGBYI22PvO1O/uDRNE4lhDppdCdfnci7zSgHH3ssiMWmJ1s3XNIJlGSekenJMRXOg2XGz5uKoExFV1AueFhOk5YeP9zvPWbk7Kc3hWSkWdc/8mGOte0LWZVcbklJRnvZgO4paEWO5Uce5DAohjzhsskMr3e8FvC5eg68R9yy7z4noCIsR57mL+xqcn8n9kLLDPssXroiTxzGc57ntiVjisjXYhh1t12FD00YMvNyGt16eRiFn4IZbYnjg4y24+0NNAAO8/nzS+YytcZfuQ/JdRQr8lAtGEqZLiii5KXcuqzHTPe/OEfXzfnSHe3B7z53O60Wt4FTp9fE+j3NKFjLOTp9x7qHZKigDJbHMszx2ddzkedbiLgEtsIKnONWVyJz/Ej733HP43d/9Xdxwww3gOO+XZ0dHB4aGaFVFCuWqxzQhvvkGTI6Det38xaXZ0IjCr/4aGEVB4O+/uIAD9MK/dwDSc89A7+qG/MjH5vRe1XY5+X203+V88YbFLk5x2ehvxL3L7q9o8j4bnmJFC3RunMfpLTmX5aFrbshEzVu4p7SfWkV/ZupZuNC4J3v8LP1ENzZtwh1L7p7TNW0JtOCTa38e3eEedDU14+7uB+DXrc+ztaU0mezqqMwNDIUt57LoEpekmEg+Z2BiTIU/wOKXfm0VNm4ruTpNLSIEgXUmpUQglReZKs8xZRgGq+KrERJC4FneEWi7X0pDU03ceEfcaVsyEwIrQhRZbN4Sh2EAb7867fwuMWJN6uNNQkWYnvfcOQT1ZshFs2b+ct/pAgKJFdjSugWrOqwQ1M4eH37rD5bgN/97DwSRwflzVpGfWqiqgbdfTWJkUMbrcih2PQAAcPFJREFULyTxzX8Yw5mjZHIuOcW0RsYz0DQTDU087vlwE9avtybeza12ReGxyhBIADh3Ko+/+dNzTkhxNYiIIgVwCKN2/p3ES45QiJSJ1nqdy9EhGX/9P87hG/8yhEJed73fav9Bwn7dnwmpNtuXPoecmnMqoja6BKXbuXQLPrcoq9YbkbTjcIdhkmOTnL9y55Lcz+ULWm3Bdnyg61bc2HkzeJbHhug2JM4FEAxx+J3/uRT3PGyJ/tZ2CUuW+5HP6Zieqh71Q/K9yedQPoZl0eX48MpHqrrS7nOuFZUx0z3vXpCo1maHLAKYpgkfVzkuADiXPut8lvVUUF4eXYGNTZtwz7L7sDS6zAnRBoC4q3hPe6hj0Ub41MucRy/LMmKxWNXf5XK5CsFJoVCuPrjTp8BOjEPbsg0IVS8UUS+FX/8tGOEIfN/5JrgzpxZohF4CX/w/AID8f/mvc84P1XbQvMuFgPyxvNL/aJbD1iigcyGUu4zEXZwpFGxT0zXY3HxNnTmXl8m5tIUXwzCzOpfzxS1Gr9lRmkBu3FhyBrq7K8VlMMyBMyXIRb3id8WC9VpDk4Ce9ka0tktOaGxrh3X9wnbBESLWK3Msa4t4ni05l2qBARhgx4315fS1B9vR6G/CXTetBccz2PdWyhE0U8O2uGwUZpz8hiI8muTV8Ofb0RXu8fwuMang1Wen8M5r0/AZUdy7fafnnm9sFuHzc+he5ocimxgdkqsKTF038aNvjOKZn07iK38zgJd+NgUASI9Y18XH+51rNDhkOVnNrT4IYikksamVOJfVxWXvkRzS0xqe+MEYVMXA2ZN5fOvLQ3jmpxPONiRUkoTBknPRDA0Mw6DJ14TucDfCYrgiNHEmseJmzxvT0FQTfacK+No/DkLTrAULkRM9Ya9uUdMdXgKWYXFm+jQUXXGedZIzOZ1U8dN/S+PgGwomzzOez8Dt4jVX6Y1IzqPLlZcqciJM03Tu98qw2LD9euV3ztLoMidstv9MwalqTAphEeKN1j3tdtPdlPfYrXasiBRFYlJFYtLOVZUNqIrhWQRxn3Mt0Vh5bN5xDt3HFTkRLMNaBZ9sBzkglF0bMYwmfzOyStZpG1LPvSFyIra17nAWCdzHjbrEZVeodv/tK4U5/5XftGkTHnvssaq/e/bZZ7F169YLHhSFQlncCG9a4e/qjRdeTMWMNyD/+f8fGFVF6I9+f8H7XvJv74b0zFPQOzqd/ppzQd1KnEsqLi8EEg57tYlL5iLkk3Kegj4strdei50dN85YFXdlfBW2tHj7TNfOuXRVi51DTuOFQpyfhRLhs7F2Uwg+Pwt/gMW69SVxuXRJpXCzwmIlyMUq3z9Fa5IaCAgI8AGIEoumZmtiTHIim/xN6A73YKXd664iLHaGXF6e5RGOWdszJoflqwOIxupzlGO+OO5f/iCWtrRjy3VhKLKJvW+loOsmpkYAnmcQCnMzTn59fhZBM4621HUV2732XBIvP51A75EcOJ7Bus3VwxGXrrAm4N/68hD+3z86i0N703j9+QSe/skEdN3ES09NofdIDpEYD463vgsEkYF/ZAO2N+60W2BY5zw0agm/JW2WsCL3PXEuRwZlDA0UYRjez4qIzukpDX/3hT5881+GcOZEHm+/Ou0UXyJVb0nIaluwDTzLQ85yUPZsxaP/nkXmVAseXvVRT4VSnuXRe7iA7/zrEE4dz1X0nSQosoHD+7PgeAYdPRLGRxScs3NRyUKOO7+TIHIilkWXwzANzzk3BZqhqSb27U5jrA+Qeq/F+HObPCHI7kWnaoVgNjRtwgMrHnLCTAFLDJ06nsfzT0xhYkyuEJcNvkZEpahHkFbjbK81juWrqwhD+x52F8ly4/7uIU5tOYpi4Kt/ex7/968HcL6vgH/8iz7881/1w5QlFAs6VMXr1sZc+Y6zCT7izpafu4/3QdZlJzy53LkESn09E8Up+1izRxmU4+N8rtDusLMg5f6crlTm3Irk85//PD772c/iM5/5DO655x4wDINXX30VX//61/Hss8/i29/+9sUYJ4VCWUQIb1niUtl104Lsr/BrvwHff3wT4ksvQHzqSSj3P7gg+4WuI/wHvwsAyP3R/wSkuRdkMBsboS1bDv7MaTDJBMx4ZXEByuwwDAOYADP/IuWLkotRrKjcZWwONFd1JGajVisSzlPQ59KJS1Kc51KJS1Fi8Tt/vBqp6TyM6BTCUQ4cx6AxXjkRFkQWftGHKTsslmVYZ6LPyWEAo2gIRZzJYEePD5PjKjq6JWf723rucPbHst57YaYwYI7hIUmc1cYEHLZcO7eWHoRdt8Wxb3cab786jSXL/TAVHvFuAQzDzLiIwLIMgmEe2YwGwzDBsiX3N2mHNAZCHDZvD8Pnr/7ZLV1l5zLmrWv2k2+POb9btzmIw/syYBjgs7/dBZYDchkdb7yYxLGDJvzpTqDNcndNmBgdt7bdsXItQn4rHw4AonEevMBgdEjGV/7mPB78RAu27ywJwMkJu3iSwCCX0dHWKWHl2gDeeDGJp386gWWr/RAEFgEh4OTKhcUorm/fiae+n8TxAwqAPCbHFGzeEfaEjHPg8dSPx5FN6zh1LI9wlENLu4Qly0JYvkZy+rceOZCBIhvYtD2M5av9eGxgHCeP5rBqXdAp+pKRLXEplTlr1zRvwRm7PYfTrkII4exhE0pawPqNMaxYG8BTP5rAE98bw/otIbR1Slh/TQgSJ0HkRE8hHufzZVhPSC1gCbvEhALTBI4ezEK8uTSWvtN5HN6fwb0f+jBEaebvtLMnrRDk5aurCLC47VwmrcI+o0My7vtos3N/ud38coFHOHYwi3zOclf//R8GYT+S+P7/ncTurIrGqISbPls656grT3Y2wdcZ6sZkYbKibYjE+ZBX806hoWoOKLnOpAXKfBbpGIZBRIxA1mWInIhrmrdCN7UFaa11uZmzuNyxYwe+/vWv44tf/CK+8IUvwDRN/OM//iOuueYafO1rX8PmzZsvxjgpFMpiwZNvOc9KseVIErJ/+f8h9slHEP69zyNx7fUwWy68FLf/3/4v+KOHoV6/E/JHa/cgmw1t+7Xgz50Ff2Af1NvvuuBxvR95P4TFLpxz6ar4ys5/n6wn59LlXDKXKeeSrR4yejHpXhpAYMrAVN6Hm++0FoZqTTqjgQD6ZBO6biLiDzkOE5MPo0lejS0tq5xt73igEctXB6o6NkA157K2oCZOcvdSP7p8AazdPL9Ug8ZmEes2h3D8vSx++p0xcKbohCbOli8YinDIpDTkczpC4dLnM51QAQb4r3+6DDxfO/+1e6kPD/98K8JRHrpm4skfjoNlGSSnVBw9mEV6WkNrh4h4o3UPRGMCupf6cOxgFuf7ili+OgCe45HP6sjJMmJxHiG/H6viq51jsCyD2+9rxOH9GYyclzHYV3TEpaoYmE5oiMZ5/PznOqCqJjq6JadFxqljeRw9kMWW6yIex9DP+xAWI5gcstp9ROM8UkkN0wkNvqiA5JSCoX4ZjUEBhbSOzh4JhmHlVWZSeZw5kcdLTwPt3RIM3cTYsCVwt14fcQoQnTpmOZ3kM8ioVisPX9lnEhLD6Ah1YDg7jKDtqpmmCf7oDqwyTTz0yVYEgixOHsnh9Ik8Xn8+CY5jsGJNAPcsu29O3z8iJzk9ULPTBk7sV7D1euu6vPTUFAbOFtHcKuKGW2rnoJ87lcfEqILGFgHReOX3COnLmp7WsP/tFDIpHWs3B7FyreV+u8VlrQI9+3bbxX5CHPJZHS3tInTNus7LcDuQAUSzdB3dbvNszuWGpo3Y0LSx4nU/70MSVlVX69+Vz3hItJ5RUg3aNw/nEgDuXPJBmLZi9ieWw9BNmE0mvvkvQ/D5WfzW76+Z134vN/P6ht++fTv+4z/+A8ViEalUCpFIBH5/7RLpFArl6oHkW6rbr73gfEs36u13ovCLvwz/N/4N4d/5DaS//QPgAibW3PFjCH7hf8IUBGT+91/XXyG22ti274DvR9+HsHcPFZcXyJXcGLoaF6NabK3KrnOlVv6lN0T2ErYisVf3L6W4JPh4v1N5tZbLEAn5AdlqyRGOhh1xWcywaC1uxPqOUi5UNCZgy3W1r51ngcDVh7Qa5HqsuyaEX/i5ZfWfVBVuuiOO4+9lkZxS0dgYQMQOVxVncahDYWu8uUxJXOq6iXRKQzjCzygsAeu5vubaUr7b//M/l+H8uQL+7e8HceAd6zoSd4/QvdTu7XeOhI0KmBy3nNKGZqGqIN91WxzrNofw91/o8xT2SUyqgGkVWGpp94qKHbuiOHUsjzO9eUtculwyifNBVQxMjisIRzms2xzC269Oo/9MAWu3+LF/dxr5vIExrYhlAD74cDN6lvmhqgaSkxoS4waefXwUI+ctJzTWwOO6m2NYtsoPhrFCY4cHZEyMKs79n3Ycscp58y1dt+NkshfLY1YRm0LeAIoBtLWLCIas6/Hhn2/F269M43xfEf1nCjhxOIct18VqfjaGYSKX0Z2iUQBgqlabGp4HGEXCu29MY+v1EchFA4N9VpGad99I4bqbYx4nm7D7lSSefdTq17h5e3WnnQjO0WEZmZQlZPfvTpfEpes5rOZcjo/KVkueJgGf+tUO7H4liRtvtwpX7X4liaH+IsaGFRSmS/shzqXAlu6fQl5HYlKtq0AWUMo3Jf03qzmXwTKH2L14k81oeOL749h5awxLV1rC1DBMmCYqqj87bWRkA9/96jB0zcSHf64V504VsGTFlaur5vwNv3v3bmzZsgV+vx8+nw8+3/zUOoVCuTJZyHzLcrJ/+ucQ3nwN0gvPIfjnf4rcn/yvee2HyaQR+bXPgpFlZP/nn0PfuOmCxqVtt4v67KcVY+fL1Zpz6akWu4AhvzzLQzO0CxKX3mJDpT/3bnE3m+hYSCSW5FxeenFJXAye5WuK22g4CEwBusx6QhYLWevejcTqH3etCpbVt+Xr2q4eOnt8uPmuOAp5A7feF8VP+t6ZNSwWgCMosxkNrbCuVXpag2lYgmk+tHdL4HgGmmrlJxIxSWjrsn4/2G/lTwqsgIkRS6Q1t4k1Q4mjcR6CyGBiVIFpmmAYBpPjltBsbKkU/EtW+sGwltNmmqZHLPh4H8ZHFZgG0NYpYckKvyMuFdlAIW9A8jHgMgKWrPCjZ5l1DoLAoq1TwobNIazZ7MN0QrXyWyOcZwFt9foghgdknDyaQ3CT9RmQXL5qDrrACR43LZW0xHasoXReoTCPOx9swpneHL71pQIO78/ANE0EQzxWb6h0AN96OYkXnpjCXQ814cbbLScyNQ4wJoOmFgHFiSDGhmSoioG+03kYduhpYkLFmy8m0dwmYs3GoOe89tj9Kx/+dGtNcRmxw2KJ8AaAE0eyyGY0hMI8BNf9Xk1c7t9tLUpsuyGC5lYRD32i1J7joU+04pmfTmBsWEFuigeC1qIREezkfj/4bhrPPjqBQt7Axz/bhvXXeMeqaWbFwgkJIc4omZpjK2/ZI/ElcXngnTR6j+QwOiTjN/9gCVTFwLe+PIxiQcdv/cHSqgs1p47noCrWc/L498ed875SmfM3xi/90i+B4zisW7cOO3bswPbt27F9+3bE43Mr306hUK5MiLhUdt248DsPBpH+5vcQu/cOBP7p72C0tqLwa785t33IMiKf+TT4E8eh3HYHCv/5ty54WNr6jTAlCfz+vVbBoavMfbsUOGGxV3HO5UJWQF2oMGKO4aCbuke4MIxVbZLBxavaWg2hRiXVSwHLsOiJLJlRrMfDdvibInpyUYspBn6OQSBY/7Via1TqrUa1NjIXwh33l9pXCKxQ1/UORaxjZ9OlarnTiUphMxd4nkVnj4SBs5YT1r3MV/Z7BkuW+3D2pCWQWtdwmBhTwXFWiG+tcbMsg6YWESODMhKTKs6ezCM5ZRWNIRVl3fh8HDq6fRjqL2JyTHUEyOSYgsdfTmL9MsuFauuU0LPc+t3pE3mcPJYDywi44QNhLA13485V1RvbcxzjhPuWs2JNAK88k8DAuSI2b/GOzS1IajGdsM6L5C+6WboygECIw5kTVniuL8Di9/9ieUV0yOF9lkh6/vFJSD4WO3ZFMTGmgDNFhCIc4kwYxqRVKIm0cVm5LoDTx/N40a7qe/9Hm3HtTTEAQC6rIzGhoqFZ8FRkLkeSWPgCrJOHK4gMVMXEob0Z7LotXuZcekNPVdXAe3vTYFlgy/XVj0HCjtMTLHxRHyJiFH7ej85QJ+K+BqSnNTz63THArr30+gtJrNsccq7P6y8k8MozCdzywQbceHvccRXLczCri0uvc0kWzgCg97BVPCqV1PD4d8cwNqJgYtRa/Og/U8CKNZVhtscOZp2fNdWE5GOxYcv8cq8XA3P+q/XWW2/hb//2b7F9+3a8++67+PznP49du3bh/vvvx5/8yZ/g8ccfvxjjpFAoiwFdh/jqSzBFEer1uy7OIVauQvrr34Hp8yH0P/4Agb/+KzhLqbPAZDOI/sInIb7+CtSNm5H+6jcuKLTWQRShbd4Cdnoa3NnTF76/9yHkD/rV5lwyDHNRzo0IjQsVHEQ8lk/Uo1IUUVdlxUtByT28PC3Lbu2+HTd33VLz97GIH22FzVjKbnFcFcMwIec4hGNc1fDAWnA1clyrbssunHNZzge6bp3xnAnBEHEuS+KSVPmcr3MJlNzKQJBDQ1OlALvlHmsi/9LPpjB4VoWmmWhqFcFxzIwVdomwePQ/xvCzH07grZesnMmmluoOLSk4c+5UHn67+ufRgxkMnzXx+vPWe9s6JQRDHJrbRGRSGnIZHctXhBGJ8WhtCdYsZjQTrZ0SGMbK0XTnAAaEwIythQjVnEsCxzHYsKUkcop5wynARJhOqBgbVhAIWcWsnn10AumUhskxBZwpIBTh0NFmibfB/iLO2uLygY+1YNdtMWzbGQHLAs88OomxYdneznJeu5fOHrkYdbn9pL1O32nr/e6oiUCZgDtxKIdCzsCaTSFPDrAbspAwNaHioRUP444eK2XljiV3Y1vrDvSdyQOmddy2Tgkj52Xn2ABw+ngeumbipZ9N4ckfjDuvx6W457u8Wvgyy7BO4R2WYZ2Fs0xKw2B/EcEwB15gcORAFhOjirN403skW7EvRTFw8lgOgshgw1br89y0LTxrMaXFzJxHHo/Hcdddd+G///f/jh//+MfYs2cP/vmf/xkNDQ34wQ9+gN///d+/GOOkUCiLAH7/XrDT01BvuBEIVk/AXwjUG29G6rs/hhEMIfj//iUin/442JHhmcd2cD9i990J8eUXoa1dh/R3fwQzvHBhJaodGsvvpS1J5oPzx/oqdH2JG8ti4c6NCA32QsUlw1XN+bt32QO4Z9l9F7TvuVJqRXLpnct6CIY5NCorEZTbHVelkDfAmqU+lPXCeRztWZxLpvoCwELQGe6q6NdYDce5zJTaRhDnslqxlnrpWW4JkK6lvqr51kuW+7F2UxCppIanf2AVUGlpt3NzZ7hPSFuS8+eKntdrictlqywh0Hs0B9F2mXiBAW+UBFJbp/X6qvXW37Zdt8dx3S5L/Nbb47IcUWTR2CIiPa0hO23iwDspJCYV3Nx1a8UzOXy+6FRfJczkXALAbfc24vb7GrHWbhEz7ApBBeC0YLnm2jBuuDUGVTHx8tNTjnMZjvDoarf+Tr63J43JcRVNrSJiDQLu/lAzHvpEK+54oAm6ZjouJsnJLA9zrob73rnm2gg4jsFgXxGmac5Y0Gf/21bY7fYZQkPJZz05psDH+xyBR+i327UsXenHrttiAKwQYcAqlDQ2IoPjGfiDLN7bk0Y6ZV3rsSEVI708TNNELmPg+D7Z03pmsK+Ik0dz0LPWveMOOe+1r/fGrWF89BfasOv2OD7xS+341f/HytfuPZLD849P4ltfGsJLT01Blg2cPp6HqphYvSGIex5uxs5bY7jlniu7Kv28vslyuRwOHDiAvXv3Yt++fTh06BAkScKtt96K7du3L/QYKRTKIkF86QUAgHLHxS9qo954M6affA6RX/1FSC88B/H6LSj8p89AfuRj0DZuttqK5PMQ9u2B7zvfhPToj8EYBpRbb0f6q9+AGamvCXm9aNutfpfCvj2QP/FzC7rv9wNOzuVVFhYLWMJZN/UFDTF1nMsLdN43N2+BYlQ2nb8coamNvkZsbNqELru1xGKDFLXJZnS02RPfYkEHa/JzFlhzyblcqIWECyEUsZ3LqmGx879XVq0P4q6HmrB6fe3FyLs/1IzRYRlTCRaIAC1tszvcxLkErFzYTEqD5GMRjlZ/T/cyHwJBK4Q0/70ipF0mDI0BB+tzFaVSaOsd9zfi2hujiDcKePqcBCizV9udifYuCZNjCg4+x2HyvITQ6Go03uithq5pBr795WHIRQP/7S+XQ7JdK8e5rHH/BYIcPnB3A/a/ncKJQzmMDMrYuLUUTknEzpoNQbR1Stj/dgoH30lD8rHgGBGhsI7u1gj2MnAq3e7Y5RV0138ghleemULf6Tx03XQEfdeyOpxLWxRzHIPmVhFtXRKG+otITKpobBatPNvJPP7th2P4yEfCWLspBE0z0X+mgECQw/IqIaSEYIhDIMhhalyFrptOWOv4iAx/gEP/GWucS5b7EQhxeOHJKZw6lsf4iAxfgEMxb6CtS8KK1QG8+VIS+3encPNdDfjRN0ZxMscBYQUDx0yMnR2DP8BizcYQBvuK+OrfnQcADIeyuPZhHbFo6TqcOGw5k2s3BbFsVQBrN5Wc5c4lVmj2m7bLfqY3j0zacsgBS5CGIzw++OG5t51abMz5G+ORRx5Bb28vGhsbsWPHDtxzzz34oz/6I6xZs+aqqwJIoVC8iC/b4vL2Oy/J8fQNG5F87lUE/+6v4f/KlxD4ypcR+MqXYbIszEAQTC4Lxl5RNGIxZP/oT1H8T59ZmFDYMhzncv++Bd/3+4FSDuHV93eC/O1byII+3ALl4a1pWLsQw1kQGIbBttYdl3sYNSECK5fRnLYphbwODsKcnUtPzuUsn+HFDIutl5KwdjmXTljs/J1LlmWcIjK1aGgS8Nt/uBTHDqXx1ETUyW2tJywWAG64JYbmVhEcz9SchwoCi1/8zU784GsjGDiRR6hHhlawzisY4rBkhd8Je3bnUJLw6Pn0MSS0dUo4vC+D/uMmVuBOIAvsfXPa0+aj90jO6ec4OaY4lU3JZxCdReB3dFvbj5wvObmaZqDvVAG+AIvuZVa15A9+qBmPfncMxYKBcLMPvJBHNBBCcyuLiVEFDc0CdtwY8+zbyo314/SJPAb7ihgaKEKUWLS0zX5NSFhsU6sAjmPQvdQSWIN9RSev9uzJPMLTIp57fBKrNwSRmFBgGEBrpzhrKHpTq4CBs0VMJyyxuv/tFJ74/jj8AQ75nI6GZsGpknvDLTE899gk3no56Qjw1nYRO26M4s2Xk9j7VgrBMIfEpAq/GMP5c6NIjfvRCODtV6exZmMIx96z8lc5ngGnBZBJZdHdYC08yEUD505a15vk7rpZszGIof4i/EEWH/65Vvz4m2M4tCcDwzARDHNVizFdqcz5m6y3txc8z2PLli3YunUrtm3bRoUlhfI+gJmcBH9gP/TOLuirL2HvpVAIuT/+U+Q/9xvwPfojiM8/C+7USTC5HIzOLmibt0C54y4UP/JxIHDxmg8bnV3QW1rBHz0M5PMX9VhXI1drtVjg4vTwFBzBcelahbzfCbqcS3Ldi3kDrCk4lS/rxR3SOXtYrP1ZX07n0tWKpPdoFq8+m8DwgBViWSskcyHhOAabtkbx3jE/DLvvnzDDvR9rEMDxDHTNxIatIURjsz8nrR0Sdt4axxM/lKHnJHC5ECIxHr/1h0tqtloh94G7YMtcae8qvdcXYCEXDLz6bAJbr49C8lnfGQfeTjvbTIwqGBuWkc/qSCU0cDzjtCGpRXObJa6HB+VSBd0xy9Fb2lNqw7PluggamgU889MJrFqxAj7hLJoCzVixpoCJUQUf/FBT1WuxbHUAp0/k8eqzU1AVE8tW++rKQSaOP2kP07XUB7xq9a98940UQltaketXEYOAxISKY+9lnQI8xMGe8bxbRQycLWL4vNW25PHvWbmTRKgvdbXz2L4zilefTeDQvgz8Ac4ZV7xRwOr1QZw8msPPfjgBAPDrDTg7KCNiWGHR504VMDokO07wlmvDmNgXRDajOSHTp0/koOsmNqwPVbQcAayWOOmk5uSAbt9ZwO5XpgEAW6+LVH3PlcqcvzH27t3rhMQ+99xz+OIXvwhBELBt2zbs2LED1157LbZs2XIRhkqhUC4n4qsvgTFNKLffdVny5syWFhQ+9xsofO43LvmxAQAMA237tZCefhL8ofeg3bDz8ozjCuVqLegDXBxxubVlByYLExUl7ykXj1CYA8NYeW6i3SYinzcQmFfO5TyqxV5G51LyseAFBtm0jkN7M46wBCzX71LBs7zTmH6mnEuOY3DvI83QVLMuYUmINfBgwGLJ1J1Qc0WEejiIYu3za/a3YDQ3gphv/h0RSC4nYBVqkYsGDu3N4OCeNK6/OYZUUsXp3lKu5eiQjH27U05rioZmYVYhx3EMWjtEDA/ImE5oiDcKGLfbupAcVkLPMj8+9197APQAsCIJbr8/gG07IzUF3bJVlkg7e9LKY9x2fX1pJ6s3BLF5Rxg33BIDUOp1SioIo78LnehCc5uIiVEFb7yQxKr1garjrsbKdUHs2221GykWDDAs8LFfbMdrzyUwOiRj6UpXT1Mfa7mULybxzmvTnmM89MkWPPXjCRw7mMXyNQEosg/K0LXw63Gncu4T3x/D1LiK1g4Ry9cEIL0bQjatw28X9jlhV4ldu6n6d3YgyOGBj5fCoa+/JYa3X5uGaQBbr+C2I9WY8zeZ3+/Hrl27sGuXVSlSVVXs3r0bX/nKV/DFL34RDMPg+PHjCz5QCoVyeRFffB7ApQuJXYyo23dAevpJCPv2UHE5R0jIKBWX9dEcaEZz4MrPvbmS4HkWTa3WJFcpWJ9lPmsgBK5q/8SZ4DxhsfWJy8sZFsswDEJhDtMJzWmbAJSqrF4qBFZwxOVsOcw7ds09r56E+A71q2DAIByZ+ZpvaNqI9Y0bLig6LxDkEI3zSCU1rNscgj/A4tDeDN55dRrX3hjFwT0ZwARWrA3gzIk8Du/POMLSPebZ6OjyYXhAxlf/7jyuuykK1e4vWo8DKIrsjNu1dUrw+VkUCwY6eyRs3Baqua0bycfikU+3Of+OxniEo1aObEeP5Cxi3PtIM5756QRGh2RoqmGPe3ZxuW5zCNdcG8Z7e6xw1TseaMT6a0LoXubDicNZbNjqbedx/Qdi2P1KEoadWkzEZSjM4+OfacfEmIJIjMc7r01jsK8bgsjgkU+34d/+7jyG7LGu3hBEU4uIgN6ESGYbNjVthq6bOHUsB45nsGJtfQuCsbiAhz7RClU10Nh86foNXwrm9U2WSCSwd+9e57/e3l4YhoFVq1bRgj4UytWIrkN85UWYPA/1A7OXtb9a0ey8S2HfHhRm2ZbipZSXePWE/hDYq1g4v99o65QwMaogOWZNzAspFgyDqm00ZoKdS7XYBe5zOV+CYR7TCQ3jowpEicEv/063Ey57qSChsBdLaJMQX9J7kVTJnYmFSPv6wN0NOH+ugCUrrBDVJSv86D9TQO+RHA68Y1VGvevBJpzpHXAKvBBidYYlb7k+gv6zBUyOKXjtuaRTqbceB3A2WJbBqvVBHNmfwd0fbp73NWEYBg//fCuSUyq2Xh/BT78zhnxOx9KVfqy/JoTxkQQmx60iRs11jvu+j7Ygm9YRjvJOfm84wuPastxRAIhEeWzeHsHBd9Pw+dmKiARShXjd5v9/e/cdHlWZsHH4OVPTK0jvYuhFRKq0FUWKCoIVEYS1grrrrqvuuoqfih2FtVFFRVlZaSJ2ERUQUTqCIlaqkN6nne+PgWAEhJBMzkzyu69rrmTOnGSegTflyXvOe+L08TvpatkuTjGxdl15XV1Nn/yLigoCSmsTp5QazuD1gg/UU6wzVms+zVJRYUDNW8WULMZ0Mjoe5xqeka7MX73nn3++fv75Z9ntdrVs2VJdunTRzTffrE6dOikpKSkEEQFYzfnF57IdPChP774VenmPSONt31GmzSbHui+tjhJxDpdKowoWsCMzl9aWA5Tf4cVX0vcG5KthylNgU3KqUw5H2cetw+aQL+A74XU9k93JctldOi2m1qnGrhAlRdKUUmu6VKvOqZ9neKocIS6XTpdNcQn2klVxTzRzWVE6dUtUp25HZlq7903STzsLtXDuPnmKTTVsGqXa9dxKTnGWXKuyeasY7fi6oOR6jidSv1GUbr6zkebP2aut6/P0w47gn0BrnuTHn8jgEaep93kpJ53neJqecWS9gkuuPjKrGSx0wcvRJCY7FBV1ct9P3W6brr6x3kk/f/e+Sdr0ZY7qNzr25XGk4L/Z+Lsal/zxIbWmS2PG19e+PcWq3yhY2pOSHcrK9GnL+ly9s+CA7HZD5/SP7EuIVJQyf1UNGjSo5LzK6OjKPVwCgDVcSxdLkooHXWhxEovFxcnfopUcX2+Rbc9uBeqe/A+06i4Uh46GC6MKr4Rb3dSud+jC7Hskf6xLUX5nmQ+JPezwWD/RYbFxrnhdlnal5Qsj/nYWL7WmNQtJOSvhEOGkZOeRclnGc2kryhmtY9Xh7Hht+CJ4OOeZXYPFs2ZtlzLTvXI4DY0YXUffbcvX6Sd5mOVhp7eI1db1wUtiJKc65SrDTNofcUfZ5I4K3eGbp9VxKbmGU5kHvRUy23r853Hr+r83POEiSb8/WqFWXbdq1T3yB5fU01zKyvBp4dz9Mk1p6MhaatiEXiSp7Oum33LLLerWrRvFEqguTFPut96UaRjyXDDI6jSW8x4619K58lOLk0SWKn1YbBUuztXN4V8ef93j1VnOgapf0OWUZ2oOH+Z6Miv+Wl0speB5Z4elWHQOWMnM5QkKeXn89rqdJ3NYbCgYhqFBw09TvYZuxSc61Kp98BzGw+cZ1m8cJZfLplbt48tcDk9vcWRmsOZJnLcYLgzDUMtDi+HUPInzRMujVh13qfF+KmqcFvy39ftMteoQV+r6otXdKf3L/vLLL5oxY4bWrVunrKwsJSUlqVOnTho7dqwaNGhQ0RkBWMi+fp3se3bLe3ZXBWrVPvEHVHGenr0VPWu6nJ99ouIRl1sdJ2Ic/tW5KhawknJZgde5hDXi4h2KT7Tr4K8eHdgTkCGj5JfIsjq8II2VC/WUxW/PrzzV2dryqoyVc3+7QE5lHRZ7LE6XTdfe2kCmaZYcdt2gaZT0oXRGq1NfJTo+0aFadV3av8cT0hnAUOjaJ1n5eX517lH2xZoq22+/Rnqdx+Gwv1Xmr6otW7Zo1KhRcrvd6tOnj2rUqKGDBw/qvffe05tvvqmXXnpJrVu3DkVWABZwv7VEEofEHubt3kOmYcj16QrJNC25LEskqsqze4df04lWt0RkqF3PrR1fF2jbxuChhadcLktmLiNjXMT9pmil1rCmlIR6QR9JSko9UgriLCyXkg5d2/DIz5AzWsXq+r81KHX45alo2S5O+/dkqMGhS39EioREh4ZeFRl/xK5bP/hv27J9nGqX8/+rqinzV9UjjzyiVq1aafr06aUOjS0sLNR1112nRx55RC+99FKFhgRgEdOU681D51sOHGxxmPBgpqTK16adnJs3yvbjDwo0aWp1pIhw+HDYqnheoq0KL1ZUHTVsGq0dXxeULKxy6udcBkulPYSHeFak385cplh0zmXJZVlCuDhWyWGxhk543l1lMwxDdeqXvxCe0z9FTc+IUYMmkVUuI0n9xlEaM6G+6tSnWP5emX8Sbt68WePGjTvqnMvo6Ghde+212rRpU4WFA2CxzZtl/36nvG3aKdCosdVpwob3nODlWFyffWJxkshxuHhVxQLGYbFVS9feSarTIPgLY1S07ZQLyJGZy8gol7GHzkGLibUrJtaa0nV45rIyDouNjbMfmjmseux2Qw2bRofFubxVWaNm0RW2YFJVUuZ/EbfbraysrGM+lp2dLbebBg9UGXPnSpKKhw63OEh48Z7TS5Lk/GyFxUkiR8nMZRUsYEYVPuS3OnI6bbp0dB3FJ9rVLC3mlH9Bj7RzLhOSHEpKdajZbxaEqWyhvhSJFJy5TEhyRNwho0CkKPNXb58+ffT444+rfv36Ouuss0q2f/nll3riiSfUt2/fCg0IwCKBgDR3rkzDUPElI6xOE1Y8XbrLdDjk+vQTzrs8SbaSmcuq929Vlc8nra6SU5269Z4mspdjAs9++FzcCDks1uEwdMs/G1uawVkJq8U6HDbdfFejcv3fAji+Mn/13nnnnbrppps0cuRIpaamKjU1VRkZGUpPT1fHjh31j3/8IxQ5AVQyx8rPpN275TunN9dz/L24OPnOPEvOLz6Xffs2+Vu2sjpR2DtcKqtiAStZ0CeE54mh8jkc5ftDSKwzToZhKMZp3UxgWdls1v7xx2EP/XUuJcnNoYxAyJz0V29RUZFWrFih3bt364orrtDIkSP1448/6sCBA6pZs6bat2+vnj17hjIrgErknv+aJKl4xGUWJwlPnp695Pzic7lWfKRCyuUJVeXDYo/MXFa9WVmcurNrd1WbGm0V6zz1y0pUN3Vi66pRQmM1SWxmdRQAp+ikyuUvv/yi0aNHa/fu3SXb4uLiNHnyZJ1zzjkhCwfAIoWFci1ZLEVFyTOYS5Aci+dP/RX75KNyffC+Cm8Yb3WcsFeVDx09XJir4mJFOHV2m13xrgSrY0SUaEe0ejfg9Cogkp3UT8LHHntMNptNc+fO1caNG/XWW2+pZcuWuu+++0Icr3yKi4s1fPhwXXjhhRo8eLDmz59vdSQgIrjfeUu2vFzpwgtlJoT/xYyt4DvzLAWSk+Vc/ZmUl2d1nLBXO7a24l3xSnQnWR2lwlXl4gwAQFmc1E/C9evX67bbblOnTp3kdrvVrFkz3X///dqzZ49+/fXXUGc8ZS6XS3PmzNGSJUv0+uuv6/nnn1dOTo7VsYCwF/XKnOA7o0dbmiOs2e3y9D1Xhtcr1ycfW50m7DVLaq6hzYdH1PlnJ+vwa4pxcPgjAKB6O6lyeeDAATVo0KDUtoYNG8o0TR08eDAkwSqCYRiKjQ3+sPd4PDJNU4FAwOJUQHizf/+dXJ+ukL9BQ+m886yOE9Y8/c+XJLk+fM/iJLBS69S2GtzsQtWMqWl1FAAALBXWx/CsXbtWN9xwg3r27Km0tDQtX778qH3mzp2rfv36qW3btrr00ku1adOmUo8XFRXpwgsvVJ8+fTR27FglJSVVUnogMkW9HJy1LL56tFir/Y95+v5Jps0m1wfvBS9JgmrJbrMrJSrV6hgAAFjupFeLHTdunOzH+EVz9OjRR21fvXp1+ZNJKigoUFpamoYNG6YJEyYc9fiyZcs0adIkTZw4Ue3bt9ecOXM0btw4vfPOO0pJSZEkRUVFacmSJcrIyNCECRN0/vnnq0aNGhWSD6hyiosVNe8VmXa7iq4Yqap3AGPFMlNS5evUWc61a2TfukX+Nm2tjgQAAGCZkyqX48dbsxJi79691bt37+M+Pnv2bF122WW65JJLJEkTJ07Uxx9/rIULF2rs2LGl9k1JSVGLFi20du1aXXDBBaeUx+rrP/3e4TzhlguRy/X2UtnS01U8aIiMenUlMb5OxNv/fDnXrlHUh++qsF07q+NEDL5/IdQYYwglxhdCKZLHV1iXyz/i8Xi0detW3XjjjSXbbDabunfvrg0bNkiSMjIy5HA4lJCQoLy8PH3xxRcaMWLEKT2fw2FTampcRUSvcMnJLCKBCjJnhiTJPeFmuQ+NK8bXCVw6THrofsW8/45iHphodZqIw/hCqDHGEEqML4RSJI6vkz4sNtxkZmbK7/cfdYhramqqfvrpJ0lSenq67rjjDvn9fpmmqSuuuEItWrQ4pefz+QLKySksd+6KZLMZSk6OVWZmvgIBzvdC+djXfaWklSvla36Gss/sJltmPuPrZNRrqqTGTWT/4gtlbtquQL36VieKCHz/QqgxxhBKjC+EUriOr4SEaDmdf7weR8SWy+MxTVOGEZxCbt68uRYuXFhhnzuc/nN/KxAwwzYbIkfs8/+RJBVed5MCMqRDY4rxdWLFA4co5tkpcr65WIXX3WR1nIjC+EKoMcYQSowvhFIkjq+wXi32jyQnJ8tutx91KZSMjAwW7AHKyLZ7l9yLFyqQnKyiEZdbHSfiFA++UJLkeutNi5MAAABYJ2LLpcvlUuvWrbVq1aqSbYFAQKtXr1aHDh2sCwZEoOiZ02T4/Sq8ZqwUwxqxZeU78yz569SV8/NVMn791eo4AAAAlgjrcpmfn69t27Zp27ZtkqRdu3Zp27ZtOnDggCRpzJgxmjdvnhYuXKidO3fqvvvuU1FRkYYOHWplbCCiGNlZipozS6bTqaJr/2x1nMhks8kzcLAM05T77aVWpwEAALBEWJ9zuWXLFo0aNark/gMPPCApuHrthAkTNHDgQGVkZGjKlCk6cOCAWrZsqRkzZpRc4xLAiUXPnCZbbo4Krx6tQO06VseJWMWDL1L0zGlyL12somuutToOAABApTNM04yss0Qt4vX6lZVVYHWMUmw2Q6mpcUpPz4u4k30RJvLylNqptYycHGWsXqdA4yYlDzG+ysjnU2q7NBmZGUrf9K3MmjWtThTWGF8INcYYQonxhVAK1/GVlBRzwtViw/qwWAChFT1nlmyZmSoeNqJUscQpcDhUNPQSGX6/3IvfsDoNAABApaNcAtVVQYFinp0i0zBUcOvtVqepEoovuVSSFPXG6xYnAQAAqHyUS6Caip7xvGwHflXxRUPlPyPN6jhVgq9jJ/maNJXzqy9l+36n1XEAAAAqFeUSqIaMzAzFTJks0+FQwZ3/sjpO1WEYR2YvF8y3OAwAAEDlolwC1VDMlMmy5WSr6Kpr5G96utVxqpTi4cFy6X7jdYn10gAAQDVCuQSqGdue3Yqe+YLM6GgV/O0fVsepcvxNT5f3zE5y7PxOjq/WWh0HAACg0lAugWom5rFJMoqKVHjdTQrUqm11nCqp6PKRkqSoV1+2OAkAAEDloVwC1Yh96xZFvfaKAklJKhh/q9VxqqziYcNlRkfLvfANKS/P6jgAAACVgnIJVBemqbi7/iYjEFD+HXfLTEyyOlGVZSYkqnjwRbLl5ylqyUKr4wAAAFQKyiVQTbgX/k+uz1fJ17K1ikaPszpOlVd01ShJUtTclyxOAgAAUDkol0A1YOTlKva+4CVH8h5+XHI4LE5U9Xm79Qhe83LtGtm//cbqOAAAACFHuQSqgZgnH5N9314VDRsub7ceVsepHgxDRVddI0mKnj3d4jAAAAChR7kEqjj7tq8V/cIzMmNilX/vA1bHqVaKrhol0+2We96rMnJzrI4DAAAQUpRLoCrz+RR/200yvF7l3/lPBerUtTpRtWKmpqpo2AjZ8vPkfv01q+MAAACEFOUSqMKiX3hWzvXr5O3UWYV/vtHqONVS0djrJEnRM6dJgYDFaQAAAEKHcglUUbbvdyr2kQdkulzKfeoZyW63OlK15GvXQd7OXeT4boecK5ZbHQcAACBkKJdAVRQIKP6vE2QUFangL3+XP62F1YmqtcJx10uSome+YHESAACA0KFcAlVQ9HP/kWvVZ/K1aqOCCX+xOk61Vzz4Ivlr1Zbr/Xdl++F7q+MAAACEBOUSqGIcmzcq9qGJMt1u5Tw3Q3K5rI4Ep1NFo8fKME3FPP8fq9MAAACEBOUSqEoKChR/w1gZXq/y7v0/+Vu2sjoRDikcM05mTIyiXntFxoEDVscBAACocJRLoAqJu/efcuz4Vp5+56po7PVWx8FvmCmpKrx6tIyiIkXPeM7qOAAAABWOcglUEe6F/1P0nJkKpKYq5+nnJMOwOhJ+p/CG8TIdDkXPmiEjL9fqOAAAABWKcglUAfZvtiv+LxNkGoZynpsps1YtqyPhGAL16qv4kktly85S1EsvWh0HAACgQlEugQhn5OUq4dqRMgryVXDH3fL26Wd1JPyBgvG3SZKiX3hG8nisDQMAAFCBKJdAJDNNxf11ghw7vlXxn/qr4C9/tzoRTsCf1kLFAwbKvnePol57xeo4AAAAFYZyCUSwmCcfVdSiBfI3aKjcZ6dLNr6kI0HBX++QJMU89bhUXGxxGgAAgIrBb6JAhHIvXqDYRx5UIDZO2S//V2ZyitWRcJJ8Hc4Mzl7u3qWouS9ZHQcAAKBCUC6BCORY/5XiJ9wg0zCU+8JM+Vu1tjoSyij/73dLOjR7WVRkcRoAAIDyo1wCEca2Z7cSRl0ho6hI+fc9KM95F1gdCafA37adigdfJPu+vYp+ebbVcQAAAMqNcglEECMrU4lXDJd9/z4VjrxGhTfcbHUklEP+3++SaRiKfvpJqaDA6jgAAADlQrkEIkVBgRKvulSObVvl6d1XeQ8/IRmG1alQDv6WrVR80VDZf92v6BnPWx0HAACgXCiXQCTwepUw9mo5166Rt9NZyp49V3K5rE6FClBw579kOhyKefpJGQcPWh0HAADglFEugXAXCCj+lhvl/vB9+dJaKHvufCkuzupUqCD+pqercPRY2XJzFDP5UavjAAAAnDLKJRDOAgHF/f02Rb3xuvwNGir79UUyU1KtToUKVvDXfygQF6/o2TNk+36n1XEAAABOCeUSCFeBgOL+dquiX35R/lq1lf36QgXq1LU6FULArFFDhbf8RYbPp9hJ/2d1HAAAgFNCuQTC0eFi+cqcYLFc9Jb8zZpbnQohVHDdTfLXqauoxQvk+GKN1XEAAADKjHIJhBu//0ixrF2HYlldxMQo/+5/S5Li7vqb5PdbHAgAAKBsKJdAOPF4FH/D2CPFcuFSimU1Ujzicnk7d5Fz80ZFvfyi1XEAAADKhHIJhIu8PCVeNUJRixfI36ixsha/TbGsbmw25U16TKZhKHbS/TIy0q1OBAAAcNIol0AYMDLSlTR8iFwrlsvXqo2ylr6nQJOmVseCBXztOqho1LWyZWYqdtIDVscBAAA4aZRLwGK273cqafB5cq77St4u3ZS1eJkCtWpbHQsWyr/rXwokJyvqpVlybNpgdRwAAICTQrkELOT8fJWSB/5Jju92qHjAQGX9d6HMxCSrY8FiZkqq8u/6twzTVNw/bpcCAasjAQAAnBDlErCI+/XXlDj8QtkyMlRww3jlzJ4rxcRYHQthoujq0fK27yjnV2sVNXuG1XEAAABOiHIJVDafT7H/d68Sxl8v+f3KfXSy8u9/SLLbrU6GcGK3K+/JKTLtdsU+cJ9su3dZnQgAAOAPUS6BSmQcPKjEy4YqZupkBRISlf3q/1Q0eqzVsRCmfG3bq/CmW2TLz1PcP/4qmabVkQAAAI6LcglUEse6L5Xcv5dcn66Qr1UbZb73sbx9/2R1LIS5/L/dKV+TpnK/947cixdYHQcAAOC4KJdAqJmmoubMUtKFA2TfvUtFl1yqzGUfKNC0mdXJEAmio5X3xBRJUtzdf+falwAAIGxRLoEQMjIzlDB2lOL/fpsUCCh30mPKfXY6C/egTLw9e6lw5DWyHTyouHvusjoOAADAMVEugRBxrvxUyX17yL10sfwNGylr8dsqGnu9ZBhWR0MEyv/3/fLXqauo+fPkWrrE6jgAAABHoVwCFc3rVcxD9ytx2GDZ9+wOHgb70Wfyde5idTJEMDMpWblPPSNJiv/bLTL277c4EQAAQGmUS6ACOTZvVNL5fRX71OMyY+OU88w05T43Q2ZCotXRUAV4+/5JhWPGyZaRofi/3cLqsQAAIKxQLoGKUFysmIf/T0nn95VzyyZ5unZX5kefqXjE5VYnQxWT9+//k69pM7nffVtRr75sdRwAAIASlEugnBzrv1Jy/16KffIxyeVW7qTHlL1omQKNm1gdDVVRbKxy//OCTJtNsf+6U7Yff7A6EQAAgCTKJXDKjMwMxf39L0oa0E+O7dvkOae3MlasDi7aY+NLC6HjO+tsFdz6V9ny85Rww7WS12t1JAAAAMolUGaBgKLmvqSUbmcqes5MmUlJyn1iirL/t0SBRo2tTodqouBvd8nbqbOc675S7EP3Wx0HAACAcgmUhWPTBiUN6q/4v4yXkZmpwqvHKGP1OhVdPZpLjKByOZ3KeWGWAolJinnmaTk/et/qRAAAoJqjXAInwbZ7l+In3KCk/r3l/GqtvB06KuvtD5X3xNMyU1KtjodqKtCwkXKfnCpJShh/vWz79lqcCAAAVGeUS+APGNlZiv2/e5XStaOi/vuqzNRU5T46WVlvfyTfmWdZHQ+QZ8hFKhw9VraDBxV/058lv9/qSAAAoJqiXALHUlSk6BeeUcrZ7RUzdbJksyn/r39XxpoNKho9VrLbrU4IlMi7f5J8rdrI9dknin34AavjAACAasphdQAgrBQWKvqVFxU99SnZ9+2VabOpcOQ1KrjjbgVq17E6HXBsUVHKmfWSks7rq5inn5C3Yyd5Bg62OhUAAKhmmLkEpGCpnPasUs5ur7h//kP2fXtVPOhCZX68WnlPTqVYIuz5m56u3GenSZLix18v+3c7LE4EAACqG8olqjUjO0vRU59SSud2ivvXnbLv36fiIRcrY/kq5cx+Rf4WLa2OCJw0z3kXKP+vd8iWl6uE0VfKyMu1OhIAAKhGOCwW1ZLtl58VPe05Rb0yR7b8PElS0YVDVfDXO+Rv1dridMCpK/j7XXJsXC/3h+8r/tablTNjDpfJAQAAlYKZS1QfpinHV2sVf/2Y4EI9Lzwjw+dV4dWjlbHyS+XOmEOxROSz25X77HT5GzaW+81Fip462epEAACgmmDmElVfXp6iFsxX1JxZcm7eKEkKpKSoYMyfVXjtdTJr1rQ4IFCxzOQUZb84V8mD+yv2wYnyn34GC/wAAICQo1yiyrJv3aLoOTPl/t/rsh0698zXqo0KR49V0aVXSDExFicEQsffpq1ynpmuxDFXKeGmccp681352ra3OhYAAKjCKJeoUoz0dLkX/U9R8+fJue4rSZLpdqvo0itUOHqsfJ06c/4Zqg3PoCHK+9dExT1wrxJGXqasd5ez8jEAAAgZyiUiX1GRXO+9raj58+T68H0ZPp8kyXd6cxWNGqOiy66UmZxicUjAGoUTbpNjxzeK+u+rShh1ubIWvc2sPQAACAnKJSJTcbFcKz6Se+kSuZYtlS0nW1LwXMqiocNVNOJy+Tp2YpYSMAzlPv60bD/9KNfnq5Qw4QblTH9RsrGeGwAAqFiUS0SO/Hy5Pnpf7qWL5Xr/vZLzKE2XS8VDLlbRiMvl6Xeu5HJZHBQIM263cmbPVfKAvnK/uUix996t/Psn8ccXAABQoSiXCGu2n36U68P35frofbk+XSGjsFCSZEZHq3jQhSoefKE8/c+XmZBocVIgvJmpqcqe94aSBp+nmBeeVaB2XRXefIvVsQAAQBVCuUR4KSyUc83qkkLp2PFtyUOBuHgVDxuu4kEXBWcoY2MtDApEHn+z5sp+5XUlXTJEcRP/pcBpp6l4xOVWxwIAAFUE5RLWKiiQ88sv5Fz1WfC27ksZHk/Jw76WreTp11+eP/WX9+yuHPIKlJOvU2flzJijhKsvV/ytNylQ8zR5+/SzOhYAAKgCKJeoVMavv8q5/is5vlor1+qVcqz7UobXW/J4ICVFnm495el3rjz9zlWgXn0L0wJVk+fc85X75FQl3HqTEsaMVPbCpfJ1ONPqWAAAIMJV+XJ5yy23aPXq1erZs6cmT55sdZxqxcjLlWPTRjnWfRUslOu/kn3XL6X2CaSkyNP9HHm695C3+znyt2jJKpZAJSi+YqTy9+1V7KT/U+JlQ5W16G35W7ayOhYAAIhgVb5cXnXVVbr44ov15ptvWh2l6vJ6Zd/5nRzbtsq+7Ws5tm2VY9vXsv/8U6ndTMOQr0VLeTt2kq/DmfJ27S5/WgvKJGCRgtv+JiMrSzHPTVXS8AuV9eY78jc93epYAAAgQlX5ctmlSxetWbPG6hiRz++Xbfcu2X/4Xvbvdwbf/nDo7Y8/lDpPsuRDGjWWr007ec88S74zO8nXvoPMuHgLwgM4JsNQ/n0PyCgoUPScmUq85EJlLXlHgQYNrU4GAAAiUFiXy7Vr12rmzJnasmWLDhw4oOeff159+/Yttc/cuXM1c+ZMHThwQC1bttS//vUvtWvXzqLEESgQkJGVKVtmhoz0DNn275V97x7Z9uyRbe9u2ffskW1v8PbbcyNLfYoaNeRt2Vq+Fi3lb9lavpat5EtrKcXFVfKLAVBmhqG8R56QUZCvqPnzlHTJEGW9+a4CtWpbnQwAAESYsC6XBQUFSktL07BhwzRhwoSjHl+2bJkmTZqkiRMnqn379pozZ47GjRund955RykpKRWex2YLrwuOO7/eIu39We7sfJlerwyfT/L5JL9fhtcroyBfKiiQkZ8vIz9PRt6ht7k5MjIyZMtIl5GZKSMQOOFzBU47Tb7GTeRv0lSBpqfL36Sp/E2bKdCkiczEpKP250DXyHd4vIfbuEcI2OzKn/qcjKJCud9crMThFypn8TKZNWqG7ikZXwgxxhhCifGFUIrk8WWYpmlaHeJkpKWlHTVzOWLECLVr10733HOPJCkQCKh3794aPXq0xo4dW7LfmjVrNG/evHIt6GOapgwjjP6Di4qkhATpOLOJJyUqSqpR48gtNVWqU0eqXz94q1cv+LZuXS4BAlQHHo80dKi0bJnUrp30wQdSzdAVTAAAULWE9czlH/F4PNq6datuvPHGkm02m03du3fXhg0bKvz5fL6AcnIKK/zzlkfU408pdtePKvSZMm12yeGQHHaZdrtkd8iMjZMZGyszNlY69NaMjZMZH69ASqoUE3NyT5TrkXT0OZWo2mw2Q8nJscrMzFcgEBF/g0JFeOFFxY+8TK4Vy+Xr1Vs5C5bKPO20Cn8axhdCjTGGUGJ8IZTCdXwlJETL6bT/4T4RWy4zMzPl9/tVo0aNUttTU1P1009HVim97rrrtGnTJhUWFqpXr16aNm2aWrRocUrPGU7/uZJUdNUoxabGqSA979SyhdnrQXgKBMywG/sIIXeUsl+ap8QxV8n10QdKuHigst5YKrNWrZA8HeMLocYYQygxvhBKkTi+IrZcHs/vD1+dNm2ahWkAIAJFRyv7xVeVMPZqud9/V0lDByp7wVIFatexOhkAAAhjEbvuSnJysux2uw4ePFhqe0ZGxlGzmQCAMoqKUs6sV1Q8YKAc3+1Q4kUXyLZnt9WpAABAGIvYculyudS6dWutWrWqZFsgENDq1avVoUMH64IBQFXhditnxksqHjhEjh++V9KFF8j2w/dWpwIAAGEqrMtlfn6+tm3bpm3btkmSdu3apW3btunAgQOSpDFjxmjevHlauHChdu7cqfvuu09FRUUaOnSolbEBoOpwuZQz/UUVXTxM9p9/VNKQ82XfusXqVAAAIAyF9TmXW7Zs0ahRo0ruP/DAA5Kk8ePHa8KECRo4cKAyMjI0ZcoUHThwQC1bttSMGTNCco1LAKi2nE7lPjdTZkKSol+apaSLByp77nz5zu5idTIAABBGIuY6l1bzev3KyiqwOkYpNpuh1NQ4pZ/qarHAH2B84SimqZhJ/6fYpx6XGR2t7NmvyNuv/yl9KsYXQo0xhlBifCGUwnV8JSXFnPBSJGF9WCwAIIwYhgru/rfy7ntQRmGhEq++XO5Fb1idCgAAhAnKJQCgTApvmqDcp56R/H7FX3+tol94xupIAAAgDFAuAQBlVnTl1cqZ9YrkdivunrsU+887JL/f6lgAAMBClEsAwCnxDBysrAVLFUhNVcz055Vw7dVSQXidmw4AACoP5RIAcMp8Z52tzLc+kK9pM7nfXqqkSwbLOHS5KAAAUL1QLgEA5RJo2kxZb30gb+cucn71pZIH/kn2nTusjgUAACoZ5RIAUG5maqqy/rdExUMulv2nH5U08Fw5P11hdSwAAFCJKJcAgIoRHa2c6S+q4OZbZcvMVOKlFytq1nSrUwEAgEpCuQQAVBybTfn3/p9ypjwn2e2Kv/N2xf39L5LXa3UyAAAQYpRLAECFK778KmUtfEuBmqcpes5MJY64SEZ6utWxAABACFEuAQAh4evcRZnvfSxv2/ZyrfpMyef3lX3b11bHAgAAIUK5BACETKBefWUteUdFFw6V/ecflXzBn+RevMDqWAAAIAQolwCA0IqNVe70F5V/57+kwgIl/Hm0Yv55J+dhAgBQxVAuAQChZxgq+Osdyn7tDQWSkxX9wjNSv34y9u2zOhkAAKgglEsAQKXx9jtXmR98Kl+HM6XPPlNSvx5yrl5pdSwAAFABKJcAgEoVaNBQ2Uvfla67TrZff1XisMGKfmaKFAhYHQ0AAJQD5RIAUPmioqQXXlDelGclp1NxE/+lhJGXyjh40OpkAADgFFEuAQCWKb7yamUu+1C+05vL/cF7Su7XQ86Vn1odCwAAnALKJQDAUv42bZX53goVXX6V7Pv2KvGSIYp59CHJ77c6GgAAKAPKJQDAenFxyp3ynHKemSZFRSv28YeVOGywbHt2W50MAACcJMolACBsFI+4XJkffiJv2/ZyrV6p5H495HpnmdWxAADASaBcAgDCir9Zc2Ut+0AFf75BtowMJY66XHF/GS8jL9fqaAAA4A9QLgEA4cftVv6Djyp77usK1DxN0XNfUnLfHnKs+dzqZAAA4DgolwCAsOXpP0AZKz5X8cAhsv/0o5IuGqCYh+6XPB6rowEAgN+hXAIAwppZo4ZyZr+inCnPyYyJVexTjyvpgj/Jvn2b1dEAAMBvUC4BAOHPMFR8+VXKXL5Snq7d5dy8Ucn9eyl66lOSz2d1OgAAIMolACCCBBo1VvbCt5R3z/2SaSru//6tpEHnyr7ta6ujAQBQ7VEuAQCRxW5X4YTblPnRSnk7dZZz/Toln3uOYp54RPJ6rU4HAEC1RbkEAEQk/xlpylr6nvImPiTZ7Yp95EEln9dHjs0brY4GAEC1RLkEAEQuu12FN45X5ser5OnWQ46tm5V0Xh/FTLpfKi62Oh0AANUK5RIAEPH8TU9X9sK3lPvwE5I7SrGTH1dyvx5yrvzU6mgAAFQblEsAQNVgs6no2j8r45PP5enTT44d3ypp6CDFT7hBxsGDVqcDAKDKo1wCAKqUQMNGyv7vQuW8MEuBmqcp6r+vKqVHJ0XNfUkKBKyOBwBAlUW5BABUPYah4qHDlbHqSxWOHisjK0vxfxmvxIsHyr59m9XpAACokiiXAIAqy0xMUt6jk5W17AP5WreV6/NVSu7XQ7EPTpTy862OBwBAlUK5BABUeb5OnZX5/orgZUtcbsU8/YRSepwl96I3JNO0Oh4AAFUC5RIAUD04HCq8cbwyVq5V0UXDZN+zWwnXjQkeKrtls9XpAACIeJRLAEC1EqhXX7nTX1TWwrfka9lartUrlXzuOYr7x19lZKRbHQ8AgIhFuQQAVEveHuco88NPlTvpcZkJCYqePUMp3c5U1OwZkt9vdTwAACIO5RIAUH05HCoae50yVq9X4TWHVpX9x1+VfG4vOT9dYXU6AAAiCuUSAFDtmampyntssrI++ETeLt3k2LpZSZcMUcJVI2T/ZrvV8QAAiAiUSwAADvG1ba+sJe8oe8Yc+Rs2lvv9d5Xcu6vi/nabjP37rY4HAEBYo1wCAPBbhiHPhUOVsXKt8u5/KHg+5kuzlNqlg2KeeITrYwIAcByUSwAAjsXtVuEN45XxxUYV3DhB8nkV+8iDwUV/Xn2ZRX8AAPgdyiUAAH/ATEpW/sQHlfHZWhVdPEz2fXsVf9vNSu7TTa633pRM0+qIAACEBcolAAAnIdC4iXKnvajMtz+Up2t3Ob7ZrsQxVylpQF85VyynZAIAqj3KJQAAZeDr1FnZi99W1rwF8rbrIOf6dUoacZESLxkix9o1VscDAMAylEsAAMrKMOTtd66y3l+h7Jkvydf8DLk++0TJg/or4erLZN+6xeqEAABUOsolAACnyjDkGXKxMld8rpwpz8nfoKHc776t5H49FH/daNm3b7M6IQAAlYZyCQBAeTkcKr78KmWs+kq5kx6TWaOmohYtUHLvroofd43s2762OiEAACFHuQQAoKK43Soae73S125S3v0PKVDzNEUtWaiU3l2VcO3VHC4LAKjSKJcAAFS0mJjgNTLXblLeAw/LX6u23EsXK6VvdyWMGSn7ls1WJwQAoMJRLgEACJXoaBVed5Myvtio3Icelb92HbnfWqKUfj2UcM2Vcmxcb3VCAAAqDOUSAIBQi45W0bgbgiVz0uPy16kr99tLldy/txJHXCTnpyu4TiYAIOJRLgEAqCxRUSoae12wZD46Wf5GjeVasVxJlwxR0oC+ci1dIgUCVqcEAOCUUC4BAKhsbreKRo9Vxup1ynlhlnyt28q5fp0Srx2p5J6dFfXqy5LHY3VKAADKhHIJAIBVHA4VDx2uzI8+U9a8N+Tp1kOO73Yo/rabldK5naKf+4+MvFyrUwIAcFIolwAAWM0w5O3XX9mL31bm0vdVPGCg7Hv3KO7eu5XSoZVi7/uXbLt+sTolAAB/iHIJAEAY8Z3dRTkvzVPGJ2tUdNmVMgoLFPPsFKV0bqf468fIse5LqyMCAHBMlEsAAMKQv0VL5U59Xhnrtir/L3+TmZioqIVvKHlAPyUNPi+4+I/fb3VMAABKUC4BAAhjgVq1VXDXv5W+7mvlPvaUfKc3l/OLz5V47UildOmo6GnPcl4mACAsUC4BAIgEMTEquuZaZX62VtmvzpfnnD6y//yj4v51p1Lat1TsP++Q/bsdVqcEAFRjlEsAACKJzSbPuecr+40lyvhoZfC8zOIixUx/XindOylxxEVyvbOMQ2YBAJWOcgkAQITyt2mr3KnPK339NuX981756zeQa8VyJY66XClnt1f0lCdlHDxodUwAQDVBuQQAIMKZNWuq8NbblfHFRmW/+Ko8vfrK/svPinvgPqV2bKn48dezyiwAIOQolwAAVBUOhzwDByv7f4uVsfJLFYy7XqbTpajXXwuuMtu/t6Jems0CQACAkKBcAgBQBfmbn6H8hx5Txqbtyn3kSflatJRz43rF/+1WpbY5Q3F/nSDH+q8k07Q6KgCgiqBcAgBQhZlx8SoaM06ZKz5X5tL3VXT5VZIZUPQrc5R8fl8l9+upqFnTZeRkWx0VABDhKJcAAFQHhiHf2V2UO+U5pW/6RrkPPyFf67ZybN2s+DtvV2rbMxR/y41yfLGG2UwAwCmhXAIAUM2YiUkquvbPyvzoM2W+u1yFI6+RDJui5s1V8uD+Su7dVdHPTpWxf7/VUQEAEYRyCQBAdWUY8nXspLwnpyp9y7fKffxpeTt0lGP7NsXd90+ldmihhKtGyPXmIqm42Oq0AIAwR7kEAADBczNHjVHWeyuU8dFKFVx/s8zkFLnff1eJY0cptW1zxf3jrywCBAA4LsolAAAoxd+mrfL/b5LSN25X9sv/VfGgC2Xk5yt69ozgIkC9uij6P0/Ltn+f1VEBAGGkypfLW265RZ07d9Zf/vIXq6MAABBZnE55zr9AObNfUfrmb5U76TF523eU45vtirv/HqW0b6HEy4bK/d9XuXYmAKDql8urrrpKjzzyiNUxAACIaGZKqorGXq+s91coY8XnKrjpFpmpNeRa/qESJtyg1FbNFP/n0XK9/RbnZwJANVXly2WXLl0UGxtrdQwAAKoMf8tWyr/vAaVv3K6s1xep6LIrZTqcilq8QInXXBE8P/P2W+Rc+akUCFgdFwBQSSwtl2vXrtUNN9ygnj17Ki0tTcuXLz9qn7lz56pfv35q27atLr30Um3atMmCpAAA4CgOh7x9+il36vNK3/qdsme+pOILBssoKFD0yy8qaeggpXRspdh7/ynHpg0sBAQAVZzDyicvKChQWlqahg0bpgkTJhz1+LJlyzRp0iRNnDhR7du315w5czRu3Di98847SklJkSRddNFFx/zcCxYskN1uD2l+AABwSHS0PEMulmfIxTKyMuV+6025F8yX87NPFPPcVMU8N1W+Zqer+MKLVXzhMPlbtZYMw+rUAIAKZGm57N27t3r37n3cx2fPnq3LLrtMl1xyiSRp4sSJ+vjjj7Vw4UKNHTtWkrR48eJKySpJNlt4/RA8nCfccqFqYHwhlBhfVVxKijxXXyPP1dfItnePXAvfkPt/r8uxaYMckx9X7OTH5W92uoovGirPhUPlb92mwosmYwyhxPhCKEXy+LK0XP4Rj8ejrVu36sYbbyzZZrPZ1L17d23YsKHS8zgcNqWmxlX6856M5GTOKUXoML4QSoyvaiD1DKnNXdI9d0k7d0rz50vz58u+bp1innxMMU8+JjVvLo0YEby1b1+hRZMxhlBifCGUInF8hW25zMzMlN/vV40aNUptT01N1U8//XTSn+e6667Tpk2bVFhYqF69emnatGlq0aJFmfP4fAHl5BSW+eNCyWYzlJwcq8zMfAUCnMeCisX4QigxvqqppFrSn8dLfx4v248/yLVkkdxLFsmxYZ300EPSQw/J36SZii8KHl7rb3fqRZMxhlBifCGUwnV8JSREy+n849MOw7ZcHo9pmjLK8INm2rRpFfbc4fSf+1uBgBm22RD5GF8IJcZX9RVo2Fi+8bepYPxtsv30o9xvLpb7zYVyrl+nmKeeUMxTT8hfv4GKLxgkzwWD5e3aXXKU/dcWxhhCifGFUIrE8RW2lyJJTk6W3W7XwYMHS23PyMg4ajYTAABErkCjxiocf6uy3v1Y6V9uVt69D8jbuYtsu3cpZvrzSho2WKmtmyl+/PVyvfWmlJ9vdWQAwDGEbbl0uVxq3bq1Vq1aVbItEAho9erV6tChg3XBAABAyAQaNlLhzbco6633lb7pW+U+MUXF554nIz9fUa+/psQxV6lGyyZKGHW53K+9IuN3f4QGAFjH0sNi8/Pz9fPPP5fc37Vrl7Zt26YaNWqoZs2aGjNmjO644w61bt1a7dq105w5c1RUVKShQ4damBoAAFQGs1YtFV09WkVXj5aRlyvnRx/IvWypXO+/K/c7y+R+Z5lMm03es7vKM2CQPP3Pl//05lziBAAsYpimdVc0XrNmjUaNGnXU9vHjx5dc9/KVV17RzJkzdeDAAbVs2VL33HOP2rVrV9lR5fX6lZVVUOnP+0dsNkOpqXFKT8+LuOOxEf4YXwglxhfKxeORc+Wncr+9VK53lsm+b2/JQ/5GjVXc/3z5zr9ACUMGKD3PyxhDheN7GEIpXMdXUlLMCRf0sbRcRhLKJaobxhdCifGFChMIyLFhnVzvvS3X++/JuXnjkcdiY+Xp1UfF554vz7nnKVCnrnU5UaXwPQyhFK7ji3JZgSiXqG4YXwglxhdCxbZvr1wfvCf3B+/KtWJ5qcV/vG3aydP/PHnOPV++M8+S7H/8SxJwPHwPQyiF6/iiXFYgyiWqG8YXQonxhVCz2QylxjmV8+Y7crz3jtzvvyv7jz+UPB5ISZGnVx95+/xJnj79FKhbz8K0iDR8D0Mohev4olxWIMolqhvGF0KJ8YVQO2qMmabsO7+T6/135frgXTk/XyXD6y3Z35fWQp4+f5Knbz95u/aQYmIsTI9wx/cwhFK4jq+TKZeWrhYLAABQKQxD/tObq/D05iq8cbyUlyfX6s/k/PgjuZZ/KMc32+X4ZrtiXnhGptstb5fu8vQNzmr6W7VmBVoAOAmUSwAAUP3ExcnTf4A8/QcoX5Ltl5/lWrFcruUfyvnJx3J9slyuT5ZLEyX/abXk7dMveBhtz14cQgsAx8FhsSeJw2JR3TC+EEqML4RaucaY3y/H+q/kOjyrue5LGX5/ycO+ZqfL27O3POf0krf7OTJr1Kjg9Ah3fA9DKIXr+OKwWAAAgLKy2+U762z5zjpbBX+7U0Z2lpyffSrXZyvk/OyT4CG0O79T9JyZkiRfqzbBotmzt7zdustMSLT4BQCANSiXAAAAf8BMTJJn0BB5Bg2RJBn798u16lM5P/tErk9XyPH1Fjm+3iK98KxMm02+9h2CM5s9zpHv7C4y4+ItfgUAUDk4LPYkcVgsqhvGF0KJ8YVQq8wxZvvlZzlXfirXp8GZTfvePSWPmXa7fG3bydu1h7xdu8vbpZvM1NSQ5kHo8T0MoRSu44tLkVQgyiWqG8YXQonxhVCzbIyZpuzffyfnZ5/KufITOT9fLfu+vaV28aW1OFQ2u8nbrQcLBEUgvochlMJ1fHHOJQAAQGUyDPmbNZe/WXMVXXOtZJqy/fiDnGtWy7l6pVyrV5Zc9uTwOZv+ho2Cs5pdu8vbrbv8TU/n0icAIhLlEgAAIFQMQ4EmTVXcpKmKL79KkmTbt1fOz1fJuXqlnJ+vlmPbVtl//klRr78mSQqkpsp71tnyHlpUyNvhTCk21spXAQAnhXIJAABQiQK166j44ktUfPElkiQjM0POL9YcKpsr5di8Se5335b73bclHTpvs3Vb+c7qHCydnbso0LARs5sAwg7lEgAAwEJmcoo8518gz/kXBDcUFcmxcYOcX34h59o1cnz5hZybNsi5aYOiZ02XJAVqnlYyu+nt3EW+9h2k6GjrXgQAiHIJAAAQXqKi5OvSVb4uXVUoBc/b/OVnOdeukfPLL+T4cq0cWzbJ/fZSud9eKkkyHQ75WrSSr+OZ8nXsJG+HM+Vv0VJy8KsegMrDdxwAAIBwZhgKNGyk4oaNVHzJpcFt+flyblwfnNVcu0bOdV/JuWWTnFs2SS+/KEkyo6Pla9NO3kOF09fxTPmbNONwWgAhQ7kEAACINLGx8nbvKW/3nkdmN/fslmP9Ojk3rJNj/VdybFgfLJ5r15R8WCAxSb72HeXreKa8Hc6Ur+OZCtSpS+EEUCEolwAAAJHOMBSoV1+eevXlGXxhcFsgIPv3Ow8VzXVyrl8nx5ZNcn2yXK5Plpd8aCA1Vb427eRr10G+tu3ka9suOMNps1n0YgBEKsolAABAVWSzyX96c/lPb67iEZcHt3m9cmz/Wo716+TYsE6OjRvk2P61XCuWy7XiN4UzNk7+Nm3lbdtOvrbt5WvTTv60FpLLZdGLARAJKJcAAADVhdMZLItt20ujxgS3eTyyf7Ndzs0b5di8UY7Nm+TYslnONavlXLO65ENNlyu4aFDbdsGy2aq1fC1byUxKtujFAAg3lEsAAIDqzOWSv207+du2k3R1cFsgIPsPO+XYdKhsbt4ox5ZNJZdE+S1/3XrytWwlf8tg2fS1aiN/8zOY5QSqIcolAAAASrPZ5G/WXP5mzVU8dHhwm2nKtndPsHBu3Sz7tq/l+HqL7N/vlHvPbunD90s+3HQ45D+9+ZHS2aq1fC1bK1C/AYsHAVUY5RIAAAAnZhgK1K0nT9168gwYeGR7YaEcO76R/eutchwunNu+lmP7Njm2b5MWvlGyayA+Qf4WLeU7I03+5mnyp6XJ1zwtWDpZQAiIeJRLAAAAnLro6OBKs+06qPg3m430dDm2bZVj29ZDxXOrHNu3HXV5FEkyY2LkO/0M+ZufIX9aC/map8l/Rpr8jZtITmflvh4Ap4xyCQAAgApnpqbK27OXvD17HdkYCMj280/Bmc5vv5X92+1yfPuN7Du+Peb5nKbTKX/TZvKf0UK+5ofKZ7PT5W/aTGZCYuW+IAAnRLkEAABA5bDZFGjcRJ7GTaT+A45sN03Z9u+T/dtvjhTOb7+R49tv5PhmuxzfbJf7d58qUKOm/M1Ol69ps0OFM1g6/U2aStHRlfqyAARRLgEAAGAtw1Cgdh0FateRt1ef0g9lpMv+7bdyfLtd9p3fyf79d8G3P/141OVSDvPXqx8sm82aBQvnodlOf4NGrGILhBDlEgAAAGHLTEmVr2s3+bp2K/2AzyfbLz8HL5my81Dh/H6n7N/vDG7fvUv69OPSn8tmU6BeffkbNpK/UWMFGjWWv+TWRGZqKqvZAuVAuQQAAEDkcTgUaNJUgSZN5e3Xv/RjRUWy//TjbwrnofL580+y7fpF9l9+llZ+etSnDMTGHSmcDRvJ3/hwAW0if4OGUlRUJb04IDJRLgEAAFC1REXJn9ZC/rQWRz9WXCz7rp9l++lH2X/8MVhCD91sP/0ox9db5Ph6yzE/baDmafLXr69Ag4bS6U0VlVpLvnoNFKhfX/56DWSmpDDziWqNcgkAAIDqw+2Wv1lz+Zs1l/f3j5mmjIwM2X8+UjaPlM+fZNuzS84Dv0rr10mSYn//4TEx8terr0D9BvLXbxA8BLd+g+D9OnUVqFOX2U9UaZRLAAAAQJIMQ2ZqqnypqfJ17HT0436/bL/ul2PPLiVmH1T+19/KtusX2Xbvkv2X4FvHjm+lHd8e9ykCyckK1K6rQO3awcJZu44CJW/ryF+7rswaNSSbLYQvFAgNyiUAAABwMux2BerUla9ePSk1TkXpeQoEzFK7GLk5su3eHTz0dtcu2Xfvku2Xn2Xbu0e2fXtl37dXjm1bpW1bj/s0psOhQK3aJcXTX/vQ+6fVklmzpgI1T1PgtFoKpNaQnM5Qv2rgpFEuAQAAgApixifI3yJB/hYtj7ODKSM7S7a9e4OFc/8+2ffuCd7ft0e2ffuC2/fsDq54ewKBlJQjZfNw8Tx0M0878n6gRk2KKEKOcgkAAABUFsOQmZQsf1Ky/C1bHX8/r1e2A78Gi+bevbLt3xu8f+BA8O2v+0ved3yzXfpm+wmfOpCYpEBKisyUVAVSU2Umpyhw+P2U1OD7KakyU4LbzeRkyW6vwBePqo5yCQAAAIQbp1OBuvUUqFvvj/czTRl5uSVl0zjwq2y//irbgf1HFVEjI0OOH76Xfvj+pCKYhiEzKelQ0UwJFtOERAWSkmQmJMpMTDryflKSAofemomJMuPiOW+0GqJcAgAAAJHKMIKH4sYnyN+s+Yn3LyqSLTNDRnq6bBnppd43Mg5ty8iQkZFx6P10OXZ+V+ZYps0mMyFBZsKhApqYGCyhcXGHbvEK/Ob94O239w+9HxsnOagskYL/KQAAAKC6iIoKXhKlTl35T/ZjCguD5TMrS7bsLBnZ2cHzRku9H3xrZGeXet/+84+y/1y+yGZ0tMzYYNkMxMVL0dEyo2NkRkcFH4uOCW6Liv7N/ahD+xzaNypKijl0PypapssluVwyXW7J5ZTpDN6nyJYP/3oAAAAAji86WoF69aV69U++kB7m9crIyZEtOzNYRPPyDt1yj7yf/5v38/Jky8uVkXtoW/6hfXOyZTt4QKE+A9S02YKl0+kKlk6XW3K6ZLqcwbdu16H7Lslml+w2mXZ78NxUW/Bt8L7td/ftx97/8KHDhhG8SZLLKV0/TkqpE+JXW/EolwAAAABCw+mUmZoqf2pq+T+XxxMsmkVFMgoLpMLgW6OwUEZRoYzCQqkw+Lb0tgIZv9lXRYUyPB4ZHo/k9cgoPvTW4wk+h8cTLMUFBTKysmT4y1ypy89bJP37wcp/3nKiXAIAAAAIfy6XzJRUmSfes2L5/cGy6SmWPF4ZXo9UXCwj4Jf8geDjfv+h+4dvgd/d/+3jhz4m4JdhmtLhmxRcoMnhUPywIVKgsl9o+VEuAQAAAOB4Dh3GakZFSVLIy63NZkjJcVJ6XoifqeKxPjAAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwM0zRNq0NEgkDAlN8fsDrGUZxOu7xev9UxUEUxvhBKjC+EGmMMocT4QiiF4/iy222y2Yw/3IdyCQAAAAAoNw6LBQAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+UyzM2dO1f9+vVT27Ztdemll2rTpk1/uP/bb7+tAQMGqG3bthoyZIg++eSTSkqKSFSW8bVjxw5NmDBB/fr1U1paml555ZVKTIpIVJbx9frrr+vKK69U586ddfbZZ+vaa6/V5s2bKzEtIlFZxtgHH3ygSy65RGeddZY6dOigiy66SIsWLaq8sIg4Zf0d7LBp06YpLS1NjzzySIgTIpKVZXwtWLBAaWlppW5t27atxLQnj3IZxpYtW6ZJkybp5ptv1sKFC5WWlqZx48YpIyPjmPuvX79et99+u4YPH65Fixbp3HPP1U033aSdO3dWcnJEgrKOr8LCQtWvX1+33367atasWclpEWnKOr7WrFmjQYMG6aWXXtJrr72mWrVq6dprr9Wvv/5ayckRKco6xhITE3X99dfrv//9r5YsWaLhw4fr7rvv1qpVqyo5OSJBWcfXYVu3btW8efOUlpZWSUkRiU5lfCUlJemzzz4ruS1fvrwSE5eBibA1fPhw8/777y+57/f7zZ49e5ozZsw45v633nqref3115faNmLECHPixIkhzYnIVNbx9Vt9+/Y1X3755VDGQ4Qrz/gyTdP0+Xxmx44dzSVLloQqIiJceceYaZrmxRdfbE6dOjUU8RDhTmV8FRQUmBdccIH5ySefmCNHjjQffvjhyoiKCFTW8fXGG2+YZ599dmXFKxdmLsOUx+PR1q1b1aNHj5JtNptN3bt314YNG475MRs2bCi1vyT17NnzuPuj+jqV8QWcrIoYX4WFhfL5fEpMTAxRSkSy8o4x0zS1evVq/fDDD+rUqVMIkyISner4evjhh9WlSxedc845lZASkepUx1deXp769Omj3r1766abbtJ3331XCWnLzmF1ABxbZmam/H6/atSoUWp7amqqfvrpp2N+zMGDB5WamnrU/gcOHAhZTkSmUxlfwMmqiPH1xBNPqE6dOuratWsoIiLCneoYy83NVa9eveTxeGSz2TRx4kR169Yt1HERYU5lfC1fvlyff/455/HihE5lfDVt2lSTJk3SGWecoZycHM2aNUtXXHGFli5dqlq1alVG7JNGuYwwpmnKMIzjPn6sx/5of+C3TjS+gPI42fE1ffp0LVu2TC+//LJcLlclJENVcaIxFhsbq0WLFqmgoECrV6/WQw89pIYNG+qss86qxJSIVMcbXxkZGbrnnnv0zDPPKDo62oJkqAr+6PtXhw4d1KFDh5L7HTt21MCBAzV//nyNHz++khKeHMplmEpOTpbdbtfBgwdLbc/IyDjqLx2H1ahR46j909PTj7s/qq9TGV/AySrP+Jo5c6ZeeOEFzZ49W2eccUYoYyKCneoYs9lsatSokSSpZcuW2rlzp6ZNm0a5RCllHV87duzQgQMHdMUVV5Rs8/v9Wrt2rV555RVWvkYpFfE7mNPpVMuWLcPyaDPOuQxTLpdLrVu3LrWKXSAQ0OrVq0v95eK3OnTooJUrV5batmrVquPuj+rrVMYXcLJOdXzNmDFDzz77rGbMmBG2S6wjPFTU9zDTNOXxeEKQEJGsrOOrbdu2evPNN7Vo0aKSW5s2bTR06FAtWLCgEpMjElTE9y+/368dO3aE5er9zFyGsTFjxuiOO+5Q69at1a5dO82ZM0dFRUUaOnSoJOmOO+5QrVq1dPvtt0uSRo0apZEjR2rWrFnq3bu3li1bpi1btujBBx+08mUgTJV1fHk8npLL2ng8Hu3fv1/btm1TYmKi6tata9nrQHgq6/iaPn26nn76aT3xxBOqV69eybniMTExio2Ntex1IHyVdYxNmzZNrVq1UqNGjeTxePTpp59q8eLFuv/++618GQhTZRlfMTExRx1pERMTo6SkJDVv3tyK+AhzZf3+9Z///EcdOnRQo0aNlJOTo5kzZ2rPnj0aPny4lS/jmCiXYWzgwIHKyMjQlClTdODAAbVs2VIzZsxQSkqKJGnv3r2y2Y5MPp955pl64okn9NRTT+nJJ59U48aN9cwzz6hZs2ZWvQSEsbKOr19//VUXX3xxyf1p06Zp2rRpGjp0qB5++OHKjo8wV9bx9dprr8nr9eqWW24p9XnGjx+vCRMmVGp2RIayjrGioiLdf//92rdvn6KiotS0aVM99thjGjhwoFUvAWGsrOMLKIuyjq+cnBzdc889OnDggBITE9WmTRv997//VdOmTa16CcdlmKZpWh0CAAAAABDZ+JMLAAAAAKDcKJcAAAAAgHKjXAIAAAAAyo1yCQAAAAAoN8olAAAAAKDcKJcAAAAAgHKjXAIAAAAAys1hdQAAAMLN1KlT9Z///Oeo7d26ddOLL75Y+YEAAIgAlEsAAI4hPj5eM2bMOGobAAA4NsolAADHYLfb1aFDhxPuV1RUpKioqNAHAgAgzHHOJQAAJ2nXrl1KS0vTkiVLdMcdd+iss87SDTfcIEnKysrSv//9b3Xv3l1t27bV5Zdfro0bN5b6+JycHN1+++3q0KGDevbsqeeee06PPPKI+vXrV7LP1KlT1aVLl6OeOy0tTa+88kqpbfPnz9egQYPUpk0b9e3bV9OnTy/1+J133qlhw4Zp5cqVGjJkiDp06KArrrhCO3bsKLWf3+/XCy+8oPPPP19t2rRRr169dOedd0qS5s6dq44dOyo/P7/Ux3z++edKS0vT9u3by/ivCACoqpi5BADgOHw+X6n7pmlKkh599FH1799fTz/9tGw2mzwej8aMGaOcnBzdcccdSklJ0WuvvabRo0frvffeU82aNSVJd911l7744gvdfffdqlGjhmbNmqWff/5ZDkfZfxzPmDFDkydP1rhx43T22Wdr69atevrppxUdHa2RI0eW7Ld37149+uijuvHGG+V2u/Xoo4/qtttu09KlS2UYhiTp3//+txYvXqyxY8fq7LPPVnZ2tt555x1J0pAhQ/TII4/o3Xff1bBhw0o+78KFC9W6dWu1aNGizNkBAFUT5RIAgGPIyspS69atS2174IEHJEnt27fXvffeW7J9/vz52rFjh5YuXarGjRtLkrp3764BAwZo1qxZ+sc//qEdO3bogw8+0OTJkzVw4EBJUpcuXdS3b1/FxcWVKVteXp6eeeYZ3XjjjRo/frwkqUePHiosLNRzzz2nK664Qna7XZKUnZ2t1157rSSXaZq6+eab9f3336tZs2bauXOn/ve//+mf//ynRo0aVfIchzMmJCTovPPO04IFC0rKZX5+vt577z3dfvvtZcoNAKjaKJcAABxDfHy8Zs+eXWqby+WSJPXp06fU9tWrV6t169aqX79+qdnOzp07a8uWLZKkzZs3S1KpQ2BjY2PVvXt3bdq0qUzZ1q9fr4KCAg0YMKDU83Xt2lXPPvus9u3bp3r16kmS6tWrV1IsJalZs2aSpP3796tZs2Zas2aNJJWalfy94cOHa/To0frll1/UoEEDvf322/L5fBo8eHCZcgMAqjbKJQAAx2C329W2bdtS23bt2iVJSk1NLbU9MzNTGzZsOGqmU5IaNmwoSTp48KBiY2OPWvzn95/rZGRmZkqSBg0adMzH9+7dW1Iuf7/CrdPplCQVFxdLCs7QxsTE/OHsaZcuXdSgQQMtWLBAt956qxYsWKA//elPSkpKKnN2AEDVRbkEAKCMDp+reFhiYqLatGmj++6776h9D8921qhRQ/n5+UetLpuenl5qf7fbLa/XW2pbdnb2Uc8nSS+88MIxy2mTJk1O+rUkJSWpoKBAeXl5xy2YhmHokksu0euvv66LLrpIX3311VGLBwEAQLkEAKCcunXrppUrV6pu3brHnYk8PAv60UcflZzPmJ+fr1WrVpUqdbVq1VJ+fr7279+vWrVqSZJWrlxZ6nN17NhRUVFR+vXXX486RLesunbtKklatGhRqYWAfm/o0KGaMmWK7r77btWqVUs9evQo1/MCAKoeyiUAAOV08cUXa968ebr66qt17bXXqkGDBsrKytKmTZtUs2ZNjR49Ws2bN1e/fv103333KS8vTzVr1tTMmTOPOkz2nHPOUVRUlO6++26NGTNGu3bt0rx580rtk5CQoPHjx+vBBx/U7t271blzZwUCAf34449as2aNnnnmmZPO3rRpU1122WV6+OGHlZ6ers6dOysnJ0fvvvuuJk+eXLJfrVq1dM455+jjjz/W9ddfX7JgEAAAh1EuAQAoJ7fbrZdeeklPP/20pk6dqvT0dKWkpKhdu3alFvB5+OGHdd999+mhhx5STEyMrrzySrVt21bvvvtuyT4pKSmaMmWKHn30Ud18881q3bq1nnjiiZLZzsP+/Oc/67TTTtOcOXM0e/Zsud1uNW7c+Kj9Tsa9996runXrav78+Zo+fbpSUlKOOTN57rnn6uOPP/7DxX8AANWXYR6+aBcAAKh0h68h+dFHH1kd5YRuvfVWHThwQK+++qrVUQAAYYiZSwAA8Ie++eYbbdmyRe+//76efPJJq+MAAMIU5RIAAPyhG2+8UZmZmbryyis1YMAAq+MAAMIUh8UCAAAAAMrNZnUAAAAAAEDko1wCAAAAAMqNcgkAAAAAKDfKJQAAAACg3CiXAAAAAIByo1wCAAAAAMqNcgkAAAAAKLf/Bwz5f80svhilAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wb9f3H8dfdSbIs75m9ExLIYIUVwmggrDDKKoRRZtlltGVDC20ppfxoKbtll1KglE3Ye4UZsglkO8uO99a48fvjdKfTsGMnTuKEz7OPPrCl0+ksK4nf/ny+n69iWZaFEEIIIYQQQgixCdStfQFCCCGEEEIIIbZ9Ei6FEEIIIYQQQmwyCZdCCCGEEEIIITaZhEshhBBCCCGEEJtMwqUQQgghhBBCiE0m4VIIIYQQQgghxCaTcCmEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohxDbOsiymTJnC6NGjWblyZdr9X3zxBaNHj3b/P3HiRE488UTeeeedjOebP38+e+yxBy0tLRnvv+iiixg9ejT//ve/k24/77zzuPfee7t0zWvWrOHKK6/kwAMPZPz48RxwwAFceOGFfPXVV116fE/75JNPeOyxx7bKc2+Ka665Jul76/z/+uuv36rX89vf/jbtvuOOO45rrrlmK1xV9z3//POMHj2a1tZWAFavXs3o0aN5//33N/tzv//++4wePZrVq1dv9ucSQoieJuFSCCG2cd9++y1r1qwBYMaMGR0e93//938888wz3HHHHRQWFnLJJZdkDHN33nknJ598Mrm5uWn3ffLJJ8yZMyfj+c877zwee+wxmpqaOr3exsZGTjrpJJYsWcKvfvUrHnzwQS699FJUVeXbb7/t9LGby6effsq//vWvrfLcm2r48OE888wzSf+/4IILtuo1Pf/881RVVW3Va+hJ5eXlPPPMM+y+++5b+1KEEKJX823tCxBCCLFpZsyYQSgUYtSoUcyYMYOLLroo43GjR49mhx12AGDPPffkwAMP5OWXX2aPPfZwj1mxYgUff/wxN9xwQ9rjY7EYt9xyC5dffnnG+ydOnEhhYSEvvfQSp59+eofX++abb1JTU8NLL71ESUmJe/vxxx+PZVld/rq3BsMwMAyDQCCwtS/FlZ2dzS677NKlY8PhMMFgcLNez8iRI6mvr+ehhx7aLBXULfE1pAoEAl1+jYUQ4sdMKpdCCLENMwyDN954gylTpnD88cezZMkSFi1atMHHZWdnM3jwYNatW5d0+wsvvMDo0aMZOnRo2mP+9a9/EQwGOf744zs87yGHHMKLL77Y6XM3NTXh9/spKChIu09RFPfja665huOOO4533nmHww47jPHjxzN9+nSWLFmS9BjTNPnnP//J1KlTGTduHIceeigvvPBC2rnffvttTjjhBCZMmMBee+3FL37xC9asWcPdd9/NI488wpo1a9y2Uqd903sN06ZNY8KECcydO5e7776bvfbaK+05UtuFp0yZwm233cY///lPJk+ezO67786f//xnLMviww8/ZNq0aey6665cdNFFNDY2dvq6dZfTDv3xxx9zwQUXsOuuu/L73/8egEceeYTjjz+e3XffnUmTJnHBBRdkbKnu6DXrTFZWFmeeeSb//e9/qa2t7fTYmTNncuKJJzJ+/HgmTZrETTfd5LaidvY1OLfPnDmTCy+8kF122YVDDjmETz75BMMwuO2229hrr73Yb7/9ePTRR5Oe89tvv+WCCy5g8uTJ7LLLLhxzzDG8/PLLnV5nalus0zab6f+OrrwvLcvi7rvvZp999mHXXXflqquu6rAdXQghtgVSuRRCiG3Y559/Tk1NDUcccQS77747f/jDH5gxYwZjxozp9HGmaVJZWcnYsWPTzrfrrrumHV9dXc19993HAw88gKp2/HvJXXfdlYcffpjGxsaM4RFg7NixRKNRrrrqKs4++2x22mmnDs+5du1abr31Vi677DKCwSB3330355xzDm+99RZZWVkA/OEPf+DFF1/koosuYuzYsXz66adcd911FBYW8pOf/ASAF198kauvvppp06Zx0UUXYVkWn3/+OXV1dZx44omsWLGCL774gnvuuQeA4uJi9xrWrFnD7bffzkUXXURpaSkDBw7s5JVNN2PGDCZMmMCf/vQnFixYwJ133olpmnz99ddcdtllhMNh/vCHP3DHHXe44a+7dF1P+tznS/zzfv3113PcccdxxhlnuK9ZZWUlp512Gv3796elpYWnn36a6dOn8+abb5KXl7fB12zAgAGdXs8pp5zCQw89xKOPPspvfvObjMcsWbKEX/ziF0yaNIm7776bdevWcccdd7Bq1SoefvjhpGNTv4ZYLAbAb3/7W0466SROPfVUHnroIS699FKOOuooLMvijjvu4IMPPuDPf/4zu+66q1t5XLt2LbvtthvTp08nEAgwa9YsrrvuOlRV5cgjj+zS633ggQfyzDPPuJ8bhsF1112XdExX3pf/+te/uPfeezn//POZOHEib7/9NrfffnuXrkEIIXojCZdCCLENe/XVV8nPz2e//fYjEAgwadIkZsyYwa9+9aukKiDYgVLXdZqamnjwwQdpb2/n5z//uXu/ZVksXLiQo48+Ou15br/9diZPnpzUQpvJmDFjsCyL+fPns++++2Y8Zp999uHMM8/k8ccfZ8aMGeTk5LDvvvsyffp0Jk2alHRsfX099913H7vtthtgB9OpU6fy/PPPM336dFauXMlTTz3FrbfeyrHHHgvApEmTqK6u5p577uEnP/kJpmlyxx13MHXqVP7617+65z7ooIPcj8vLyztsfWxoaOCxxx5jxx137PRr70hWVhZ///vf0TSN/fffn3fffZd///vfvPnmmwwaNAiARYsW8eKLL25UuFywYEHaLwneeust9+PDDjuMyy+/POl+bxAyDIN9992XffbZh3fffZef/vSnXXrNOpObm8vpp5/Oo48+yi9+8YuMv2i499576d+/P/fffz+apgFQUFDAFVdcwbfffpv0S47Ur+GLL74A4JhjjuHcc88FoG/fvkybNo3ly5e762cnTZrE66+/zttvv+1+b6dNm+aex7Is9thjD6qqqvjvf//b5XBZXFyc9AuIv/zlL6xfv57//ve/AF16XxqGwYMPPshJJ53EFVdcAcB+++3HWWedtV2tVxVC/LhIuBRCiG1UNBrlnXfe4eCDD3bXAE6bNo2rrrqK2bNnp1UgjznmGPdjVVW5++67GT58uHtbY2Mj0WiUoqKipMd9++23vPnmm7z22msbvCbnsdXV1Z0ed+2113LKKafwzjvv8NVXX/Hxxx/z9ttv87vf/Y7p06e7x5WUlLjBEmDAgAGMHTuWuXPnMn36dGbOnImqqkydOjWperfPPvswY8YMDMNgxYoVrF+/nuOOO26D159Jnz59NjpYgr2+1QlPAEOGDKGxsdENls5tdXV1RKPRbq/nHDFiBLfddlvSbf369aOyshKwq2ypZs+ezd///ncWLlxIQ0ODe/vy5cvd/27Kawbw85//nEcffZQnnniCSy65JO3+uXPncuihhya9Noceeig+n49vvvkm6f2b6WsA2Hvvvd2PBw8enHabqqoMGjQoKaw1NjZy99138+6771JVVYVhGID9fd4Yr732Go888gh//etfGTVqFECX3pfr1q2juro6LbBPnTqVzz77bKOuRQghtjYJl0IIsY366KOPaGpq4oADDnAntO61114EAgFmzJiRFi7/9re/MWjQINatW8edd97Jtddey/jx490fqiORCEBauPnTn/7ESSedRF5eXtIk2HA4THNzs9tG6X1sNBrd4PUPGTKEc845h3POOYe6ujrOOecc/va3v3HyySe7VVfvwB9HSUmJG17r6+sxDKPDKZ7V1dXU19cDUFZWtsFryqS0tHSjHufIz89P+tzv9ye9Zs5tlmURi8W6HS6DwSDjx4/v8P7U13Dt2rWcffbZTJgwgZtvvpny8nL8fj/nn3+++33b1NcM7Crk9OnTeeKJJzjrrLPS7q+urk57bTVNo7CwMG39aab3ASS/ts7rlun19r4fr7nmGubMmcNFF13EiBEjyM3N5amnnuLdd9/t3heIXXG+7rrrOOusszjiiCPc27vyvqypqcn4tXX0tQohxLZAwqUQQmyjXn31VQAuu+yytPtef/11rr322qSq0MiRI9lhhx0YP348Y8aM4YgjjuC+++7j5ptvBhJVx9StRJYvX87cuXN5/PHHk26//fbb+etf/8rChQvd25qbmwE6XG/ZkeLiYo477jj++Mc/Ultb64aOTANhamtrGTlypPs8Pp+Pp556Kq0N2DmvMyBmQ9XU7vCu+3P09ECenpL6unz88ceEw2Huu+8+QqEQYK/Z9F5/VyvQG3L22Wfz73//m//85z9p95WVlaV9fw3DoKGhIe39k+l7uzEikQgffvghN954Y1KFPNP1bUhDQwOXXHIJO++8c9q60q68L52KZuprsKEhSEII0ZtJuBRCiG1Qa2srH3zwAUceeSQ/+9nPku777rvvuPXWW/niiy/S1jA6Bg8ezIknnshzzz3HpZdeSklJCYFAgP79+6dt3v7AAw+4rYOOn//855x++ukccsghSbc7j800bdZRV1eXtF7NsXLlSgKBQFJVr7a2llmzZrmtsWvXrmXhwoVuu+bee++NYRg0Nzd3uMZz2LBh9OnThxdffJEpU6ZkPMbv97uV267o06cPra2tVFVVuZXfTz/9tMuP35rC4TCqqiYN/Xn99deT2je78pp1RUlJCSeeeCKPPfYYhYWFSfftvPPOvPPOO/zqV79yfwny1ltvoev6ZttPMhqNpm0l09LSwnvvvdet8xiGwa9+9SsMw+Bvf/tb0i9xoGvvy379+lFWVsa7777L/vvv797+9ttvd+tahBCiN5FwKYQQ26B3333XHciz8847J9232267cf/99/Pqq692GC4Bzj33XJ599lmeeOIJd1jKbrvtxoIFC5KOmzhxYsbHDx06lD333DPptvnz55OXl+euPcvkhRde4JVXXuGnP/0po0ePRtd1Zs6cyX/+8x+mT5/uTjQFu4J21VVXudNi77rrLrfKCTB8+HBOPvlkfvWrX3HOOecwfvx4IpEIixcvZsWKFdxyyy2oqsqVV17Jb37zG379619z5JFHoigKn3/+OdOmTWP8+PEMHz6cmpoann/+eUaNGkVRUVGnU2H3228/gsGg2xK5evVqnn766Q6P3xhTpkxhzz335M9//nOPntcJPtdeey0nnHACixcv5pFHHklqJ+3Ka9ZV5557Lk8//TQ1NTVJj7vwwgs59thjufjii5k+fTqVlZX83//9H5MnT844sbgn5OXlMX78eO69915yc3NRVZV//vOf5ObmdmsLkAcffJBPP/2UG2+8kYqKCioqKtz7dtllly69LzVN49xzz+W2226jqKiIiRMn8tZbb7F06dLN8aULIcQWIeFSCCG2QTNmzGDo0KFpwRLsKtzhhx/OjBkzuOmmmzo8x4ABAzjqqKN46qmnOO+88wiFQkydOpVrr712ozeq//jjj5k6dWqn25UccMABrF69mv/+97+sW7cOTdMYPHgwN9xwQ1oVtn///lxwwQXccccdrFmzhnHjxnHHHXckBdDf/e53DB06lGeffZa77rqL3NxcRo4cyQknnOAec9RRR5GVlcUDDzzApZdeSigUYuedd3YrqIcffjhffPEFt99+O3V1dRx77LGdhrri4mLuuusu/vKXv3DxxRczduxY7rjjjqR1d5uqvb09Y4V3U40ePZpbb72Ve+65h7fffpsxY8bw97//3Z1Y6tjQa9ZVffv25dhjj3UnqTpGjRrFgw8+yF//+lcuueQScnNzmTZtGldeeeUmf42dueOOO7jxxhu5+uqrKSws5NRTTyUcDiftT7ohK1asAOztRlJ9//33QNfel2eccQYNDQ08/fTTPP7440yZMsUN9UIIsS1SLMuytvZFCCGE6B2i0SgHHHAAv/3tbzn88MO79djm5mYmTZrEo48+2mG1szuuueYafvjhB55//vlNPte2ZtWqVRxyyCG89dZbSVNlhRBCiN6s418tCyGE+NEJBAKcc8457j6B3fHUU0+xyy679Eiw/LH79ttvOfjggyVYCiGE2KZIW6wQQogkp512WsZtRjYkNzeX66+/fjNe2Y/H0UcfzdFHH721L0MIIYToFmmLFUIIIYQQQgixyaQtVgghhBBCCCHEJpNwKYQQQgghhBBik0m4FEIIIYQQQgixyWSgTxeZpoVhmFv7MtL4fCq63vuuS2wf5P0lNid5f4nNTd5jYnOS95fYnHrj+0vTVFRV6fQYCZddZBgmDQ1tW/sykqiqQklJLk1N7ZimzGUSPUveX2JzkveX2NzkPSY2J3l/ic2pt76/CgtDqKrW6THSFiuEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohhBBCCCGE2GSy5lIIIYQQQvxoWJaFaRpYm7CUTVUVotEouq73qjVxYvuwNd5figKqqqEonQ/s2RAJl0IIIYQQYrtnWRYtLY20tjYBm/4De02Nimn2rmmeYvuxdd5fCjk5+eTmFmx0yJRwKYQQQgghtntOsMzPLyYQyAI2sULjU9B1qVqKzWPLv78sotEITU11AOTlFW7UWSRcCiGEEEKI7ZplWW6wDIVye+ScPp8KSOVSbB5b4/3l8/kBaGqq2+jqpQz0EUIIIYQQ2zXTNAArXrEUQnTE/jNixf/MdJ+ESyGEEEIIsV1LDO/ZtFZYIbZ/9p+RjR14JeFSCCGEEEIIIcQmk3AphBBCCCGEEGKTSbgUQgghhBDiR2DWrK+ZPHkibW1tnR53wglH8dxzz2yhq+q9Hn74H5xzzulb+zK2KRIuhRBCCCGE6IVuueUmJk+eyN/+9pe0+26++QYmT57IPffcudHnf+21V5g27aC02x988F9Mm3aM+/nkyRP59NOPN/p5tgWZvsbp00/nr3+9e7M/9yWXnLdJ38feRMKlEEIIIYQQvVR5eR/efvtNotGoe1trawsff/wB5eV9NstzFhUVEQwGN8u5N1UsFttizxUKhSgoKNxiz7c9kH0uhRBCCCGE6KV22mksy5cv45NPPmLKlIMBeOedt9hhhzGoanKdaPLkidx229/Yd9/9AGhra+OQQ/bnrrseYLfdJiYdO2vW1/zpTze7jwM466xfcM4553PCCUcxffppHH/8SZxwwlEAXH31FQD07duP//3vFVatquCee/7GwoULCIfDDB8+gosuuoydd94l6Xp+85tr+fDD95gzZzbl5eVcdtmv2Wefye4xy5Yt4Z57/s7cud+Sk5PDPvtM5pJLriA3196P9JJLzmPkyB0Ai7feeoOxY8dx++1/z/havfzyCzz11BNUVVXSv/8Apk8/nWnTjgbsUHrXXX/lww/fo6WlmZKSMk46aTonnHByh1/jww//g88++4SHH34CsCvJ7e1tjBgxiueeewbDMDn99LM44YST+Pvf/4+3336TgoICLr/8Svd7oOs6f/nLLcya9TV1dXX069ePk046laOPPtY95+zZs5g9exZPP/1vAJ599mUGDRq4wdemN5JwKYQQQgghfpReeLKSRfNaN+qxitL97RrGjM/h2FP7dvu5jjjiKF577WU3XL722iscddRPeeONGd0+l2P8+J259NJf89hjD/HEE/b6yuzsUNpxDz74L446aio33vh7Jk7cE1XVADu4Tpq0H+effzE+n5+XXnqeq666jGeeeYnCwkL38Q899AAXXXQpV1xxJS+//CLXX38VTz31PH369KW5uZlLL72Qn/70eC6//Ne0tbVz991/5ZZbbuLWW//PPceMGS9zwgkn8cADj3T49bz11us8+uiDXHHFVYwcOYrvvlvIbbf9kfz8fPbb70CeffZpPv30I/7wh9vo06cPa9euoampsdOvMZMvv/yC0tJy7rvvIb766kv+9re/8PXXX7LvvpN5+OEneO65Z/jDH37L88/PIBQKYRgGffr05Y9/vI38/AK+/fYb7rjjz/Tt248999ybyy77DatWVTBy5A6cdda5ABQWFnX5teltJFwKIYQQQgjRix122DQefvgf1NRU09rayrJlS5gy5eBNCpd+v5/c3FwUBUpKSjs8rqioCIDc3Lyk40aPHsPo0WPcz3/5yyv48MP3+OKLzzj00CPc2w8++FCOOMKuDF5yyeV8+eVMXnzxOc4//2Kee+4ZdtxxJ8499wL3+Kuuup5TTz2B+vo6ioqKARgyZCjnn39xp1/Pww//g1/+8lfsv/+BAPTvP4AffljESy89z377Hcj69ZUMGjSYCRN2RlEU+vbtt8GvMZPCwkIuvfRXqKrK4MFDefLJx8nKCnD88ScBcOaZv+B//3uGxYt/YOeddyErK4tzzjnffXz//gOYPXsW7733NnvuuTe5ubn4fD6CwWDScz/7bNdem95GwqUQQgghhPhR2pgqosPnU9F1swevpmMlJaVMnLgXr78+g+bmJg44YAqhUM4Wee6OtLW18fDD/2DmzE+oq6vFMAwikQhVVZVJx+2007ikz8eOHc+KFcsBWLJkMV999QVTp+6Xdv41a1a7AWrMmB07vZb29nbWrFnNLbf8jltvvdm9Xdd1N0Qedtg0Lr/8Yk455Xj23ntfJk/en91336PbX/fw4SOS2pELC4sYOnS45/NCNE2joaHOve255/7LjBkvU1W1jmg0SiwWY9ddd+/0eZYs+aFLr01vI+FSCCGEEEKIXm7atKN44IF7aGtr43e/+2PGYxRFwfL06uq6vtmu59577+Sbb77ioosuY8CAgWRlZfGb31yWNnBHUTJfJ9ihcL/9DsxYlSwrK3M/DgazO72W9nZ7a5Xrrvsdo0cnB1Gfz447Y8bsxLPPvsznn3/KV199wTXX/JqDDz6Eq6++YcNfbIbzeb+W1NsATNP+xcM777zJfff9nV/+8lfstNNYQqEcHn30n1RVVXX6PG1tbV16bXobCZdCCCGEEEL0cvvuuz+3334r2dmhDqtehYVF1NXVup8vWfJDp+f0+fwYxoarrz6fD9M0km6bN28O06Yd7bahNjU1UV2dHpgWLJjP1KmHuZ8vXDifSZPsatwOO4zm448/pF+//mhax+scN6S4uITS0jLWrl3DQQcd0uFxeXl5TJ16GFOnHsZee+3D739/I1deeR2qqmb8GnvCvHlz2HnnXfnpT493b1u1ahWBQMD93O/3pz336NGj+fDDTX9ttjTZikQIIYQQQohezufz8cwzL/D44/9xK3+pdt11d5577r8sWbKYefPm8OCD93V6zn79+tHa2sKsWV/T0NBAOBzOeFzfvv35+usvqa2toampCYCBAwfzwQfvsXjxD/zwwyJuuun6jINw3n33LV5//VUqKlZy331/p6JiJcccYwet4447kfr6Wn7/+xtYtGgha9asZubMT7jttlu689IAcOaZ5/Cvfz3Cc889Q0XFSpYsWcxLLz3PCy/8D4BnnnmSd999i4qKFaxcuYKPPvqAQYMGuy2umb7GnjBw4GAWLpzPV199TkXFSu699+9uW7Cjb9/+LFgwn8rKdTQ0NGCaJscff1KPvTZbkoRLIUSPaoo0MnPtp7Tr7Vv7UoQQQojtSk5ObqdrLS+55HIKC4u44IKzuP32P3H22ed1er7x43fmmGOO48Ybr+bIIw/myScf7/C8X3wxk+OOm8bZZ58K2AN8QqEQF1xwFtdddyU/+clBDB48JO2x55xzHm+88RpnnjmdDz98nz/84Tb69rXXupaVlXPffQ8TjUa5/PKL+PnPT+Lee+9KmjbbVT/96Qn8+tfX8PLLL3LGGSdz2WUX8N57b9O//wDAbq194onHOOec0zn//DNpbm7mj3/8S6dfY0845pjj2G+/A7nxxmu44IKzicVi7vYojunTTwPg1FNP4MgjD6aqqpLy8p57bbYkxbK6O0R52zFv3jxuuCHRR7148WKee+45dtyx80XBmcRiBg0NbT15eZtMVRVKSnKprW3BNLfbb6PYSjb2/TV7/SzmVs9h3wGTGVYwgvpwPSXZJZvxSnvO2lVhfljQSmO9jqrZr8GQEdmM2zVva1/adkf+/hKbm7zHhJeu69TUrKG0dEDG9XEbY0sO9NlWpe67Kbpua72/OvuzUlgYwu/vvEV3u15zOX78eF566SUA1qxZw+mnn75RwVII0XW6aQ8PMC2L72oX8k3VV0wdcij9cvtv5Svr3Jyvm3jh3+lrRb7+rJEBg4MUlfi3wlUJIYQQQmw7tutw6fXGG29w6KGHbu3LEGK7p1v2gnTTMmnX7Wp/m75xG1RvKZGIyVsvV9OqVXPkIaMZMCSIZcKieS18M7OJmR/Uc8Tx5Vv7MoUQQggherVevebyq6++4oILLmDy5MmMHj2a999/P+2YJ598kilTpjB+/Hh+9rOfMXfu3IzneuONNzj88MM39yUL8aNnuJVLEzPedW+Yvbtt6LP36lnbXkFspy8xd5zNyDE5jNoph4OOLMUfUJj1eROtLZtvnLsQQgixPfrkk6+lJfZHpleHy7a2NkaPHs1vf/vbjPe/9tpr3HrrrVx88cW88MILjB49mnPPPZe6urqk49asWUNdXR0TJkzYEpctxI+a7gmXFvFwafX8aO+eousWX3zUQMzfxJjxuaxqrnC/hlCOxq575aPHLOZ/27KVr1QIIYQQonfr1W2xBxxwAAcccECH9z/66KOcdNJJHH+8Pc745ptv5oMPPuCFF17gnHPOcY978803e6QlVlUzj33eWpzr6W3XJbYPG/v+MjFQFFBUQDFRFFj6QzOFgyIMGBzcDFe6aVYubSPcbjJ0p3xycu1fTK1sXsbQ/OH4NT8jRufw5ceN1FZF5c9aD5K/v8TmJu8x4SXvAyG6R1WVjfpz06vDZWei0SgLFizgwgsvdG9TVZVJkyYxe/bspGPfeOMNbrzxxk16Pp9PpaQkd5POsbkUFXU8klqITdXd91dObYBcK0h+fhArHGHJJ+3UfFXFktA6/nDXuF73D/ybi+zNpnfaJY9Irh1+5zZ+w9zGbzh4+MEMH9kPWEtzo9lr/w7YlsnfX2Jzk/eYAPvnxpoaFZ9Pwefruca9njyXEKm2zvtLQVVViopCBAKBbj96mw2X9fX1GIZBaWlp0u0lJSWsXLnS/Xzt2rXU1dUxfvz4TXo+XTdpaupd+/apqkJRUQ719a0yZl30uI19f9U1NtPSFmbN6ibeequChWuaKcOioT7GnFk1DB6WvRmvuntM02L2Vw2oKpT2V/i+yd482qf60E2dORXfsU+5/XdM5dowtbXSGttT5O8vsbnJe0x46bqOaZrougX0zBwA2YpEbE5bbysSC9M0qa9vw+eLJt2Xn5/949uKxLIsFCVRGenfvz/vvPNOj5y7t/7jZJpWr702se3r7vurtS3Kd3Nb+HrBalr1NkLFGmPGZFP3BSyY3czAIb2nNXb54jZaWwxGjA6h+uqxLNh/4IH0zx3A04uepKqlEq2/Qn6hj4a6GNGoic/Xuyqv2zr5+0tsbvIeE9B7f4YTorfa2L87t9laflFREZqmUVNTk3R7XV1dWjVTCLFlLF7YymsvVrL4uzZ0w2THXXI44NBiJky029IWzm7BsnrPP/DfzbUrkTtOyMWw7N8OaqpGQAtQFCyiNdZKa6yV4lI/lgUNtbGteblCCCGEEL3aNhsuA4EAY8eO5bPPPnNvM02TmTNnsssuu2y9CxPiR0rXTf772Dra22MMHJLFiWeXs9s+efg0hWCOwsChQRrrdWZ/2by1LxWwfyP33dwWUGDMhBzM+ERbTbHbPcpCfQCobltPcZkfgLoaCZdCCCG2fbfcchM33HDVJp3jueee4YQTjuqhK9p+vfbaK0ybdtDWvowtple3xba2tlJRUeF+vnr1ar777jtKS0spKyvjrLPO4qqrrmLs2LFMmDCBxx9/nHA4zLHHHrsVr1qIH6ea9TFiUYvSoRq77pVHTq5GczSxFcle+xWyekUlLz1VRV1NlIOmbb4Og9nrZ7G6eTVHDD8SVcn8O7Q1K8M0NxoMGZFNbp4Poyk5XJZnl/EDi1jftp7i0lEA1FZHARkOIoQQYsu45ZabeP31VwHw+Xz06dOXww8/ktNOOxOfb+N/jL/sst/0qk6i7cUJJxzF9OmncfzxJ7m3HXTQVPbZZ9/N/ty33HIT7e1t/PGPf9nsz9WZXh0u58+fz89//nP38z/+8Y8AXHLJJfzyl7/kiCOOoK6ujrvuuovq6mp23HFHHnroIYqLi7fWJQvxo7V+bQSA3EJ7TaJpWVjxVlPDMhi/ex45eRr/eXAtX37cyIGHlaBpm2f94tzqOQC0RJvJzyrIeMxCT0ssgGHa4VJ1wmW8crm+rYoRZWMBqVwKIYTY8iZN2o+rr76eWExnzpxZ3HbbLWiaxumnn9Xtc+m6jqZp5OZuG9PPY7EYfr9/a1/GJsnKCpKV1XvmTWxuvTpc7rXXXnz//fedHnPaaadx2mmnbaErEkJ0ZP06e6JYTr79uRX/HySC2/AdQgwens2y79uoXLN59r30/ibWO9wr1dJFbQDsOMGuRBrxtlifaofL3EAeAS1AY6SB4lJpixVCCLF1BAJ+Skrsbp++fY9g9uxZfPLJR5x++llEIhH++c/7eOedN2lra2XkyFFcfPEVjBtn75Lw2muvcO+9d3L11TfywAN3s3r1Kl566U3uu+/vSVWuSCTMvff+nffee5u2tjbGjh3P5ZdfyYgRI93rePXVF3nkkQdpampk0qT9ku4De3nao48+yCuvvEhjYwPDh4/kkksuZ9ddd3eP+fjjD7jnnjuprq5ml1125YADpnD77X/ik0++BuDhh//BZ599wlFH/ZR///sxGhsbePvtj/nss0944olHWL58GZqmMWHCrlx++W/o06cvALNmfc2ll17AHXfczX33/Z1Vq1ax666787vf/ZGvvvqCf/zjHpqaGjn44MO44oor0bSOJ55+9NEHPPLIP6moWEFZWTlHH30s06efjqqq7jXOmPEy9fV1FBYWcdhh0zj//Iu55JLzqKxcx9/+djt/+9vtAHzyydfu92DGjHfTvsbHH3+YlpYWjj76p1x00WU88sg/efHF/+H3Bzj33PM58sifutd1zz138sknH7J+/XpKS0uZNu1oTj/9LFRV5eGH/+FWuCdPngjAXXc9wG67TaSqqpK77/4bX331OT6fj1133Z3LL7+S0tKyrr8Ju6FXh0shxLajal0EE4O8AvuvFcsyMeOVS8sz9n3YSDtcLv+hjQGDg+i6SWO9TklZ9/dSyqRVb3U/dkJtJk2NOv6AQkGRHRxT11wCBLUgTUYT+cX2Pyh11RIuhRBie/Lpmo9Z1Vyx4QMzUFWl29M0B+UNZt8B+23U8zmysrKIxex/j+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWTkAbW1tPP30v7n++pvJyckhJyd9ecd9993FJ598xG9/+0dKS0t57LGH+fWvf8nTT79AMBhk3rw5/OUvf+LCCy9l333345NPPuLxxx8iLy/fPcczz/yHZ599iquuuoERI0bywgv/48orL+Opp56nrKycdevWcuON13DyyadxxBFHsmDBfO6//+60a6moWMFnn33Mrbfe4Qa6cDjMySefzogRI2ltbeWBB+7mppuu4/77H0l67GOPPciVV16Hpmlcf/1V3Hjj1YRCIf785zuoqqri+uuvYsKEnTnkkMMzvrZz5szmT3+6icsvv5Lx43emomIlf/nLLfj9AX72s+m8//47/Pe//+Gmm/7EsGEjqKlZz6pV9vvnT3+6nTPPPIVjjz2BI47ofC1qRcVKvv32a/7613tYuXI5v/vddSxbtpSddhrHAw88ygcfvMftt/+Z3Xffk379+gOQm5vLDTfcTElJKT/8sIjbbruFwsIijjnmOKZPP52VK1cQDoe5+urrAcjPL0DXdX79618yYcIu3H//w4DCww8/wNVX/4oHH3zcfX170jY70EcI0busXxfFUg1y4+HStExMK7lyCTBsVAiA5UvsfWPff62Ou29ZyTczG3vkOlqjib0onQmwqQzDItxmkpObCJK60xarJm4LaFkAWFqM3HyNxvqYjLMXQgix1SxYMJ8333yd3Xffg8rKSl577RX++MfbmDBhFwYMGMiZZ57LsGHDeeut193HxGIxfvObaxk7dhxDhw4jEEj+ZW5bWxsvvfQ8F198OXvuuTfDh4/kuut+RywWdc/zv/89w6RJk5k+/TQGDx7CKaeczs4775p0nqef/jenn34WU6YczJAhQ7nssl/Tt29/nn/+WQBefPE5hg4dzgUXXMLgwUM5/PAjOeigQ9K+RsMwuOGGmxk1age3OjplysEccMBPGDhwEKNHj+Gqq65n3ry5rF9flfTY8867mHHjJrDjjmM57LBpfPvtN1xzzY0MHz6SffbZl4kT92DWrK87fH0feeSf/PznZ3PYYdMYMGAg++yzL2eccTYvv/w8AFVVlRQXl7DHHnvRt29fxo2bwOGHHwnYYU5VVUKhECUlpW61uSPXXPNbhg0bzoEHHsROO42jvr6eX/ziQgYNGsypp/6cYDDI3Lmz3ePPPPNcxo2bQL9+/TnggCkcf/zPeO89e7vFUChEVlaWW+UuKSnF7/fz7rtvoSgKV111PcOHj2T48BFcf/3NLFnyA4sWLez0+jaWVC6FEJssHDZorNcpKFXwac6ay0Tl0hvy+g3KIpClUrGsHV23WPydXWmc8b/1zP26mcaGGGdcNJCiko1bY9ESs6fRRqMmr/6vkt3HBRi3a17SMW2tdpAMecKlkaFyGdDsa4iZUQoKfbQ0GbQ0G+QXyF+dQgixPdiUKuKW2uT+448/ZOrU/TAMA8MwOPjgQzn77PP49ttvMAyDk076adLx0WiUkSNHuZ9nZWUxfPiIDs+/Zs1qdF1nwoSd3duCwSCjRo1m5crlgF1N/MlPDk563Nix41m2bCkAra0t1NbWMH584hyKojB+/ARWrlwRP8dKdtxxbNI5Uj8H6NevP/n5yfMSVq2q4KGH7mfhwgU0NDRAfNlNVVUl5eV93ONGjEh83cXFxRQXl1BQUOjeVlRUTH19XYevxdKlPzBv3hweffRB9zbDMN0ZEgceeDDPPPMffvazY9h770lMmjSZSZP263YFsH//AWRnZyddayCQ5X6uqiqFhYVJ1/ruu2/x7LNPs2bNasLhdnRdp0+ffp0+z5Ili6moWMnUqcnvc8MwWLNmNTvtNK5b190V8hOSEGKTVcfXW5b0TQQzC8sTLhOVS01TGDIiyOKFbSxe2Mr6dVE0TcEwLFYutauZMz+o54jjyzfqWlrilcul37ehz25k+TeVrFsdYepRid8gtrbY1+OtXGZqi3UqlxEjSn6RnzUVERrrYxIuhRBCbDETJ+7FFVdcic/np7S01J0S297ehs/n45FHnkybMeBtfQ0GuzbfIPUcdvOR4n7c2RwDZ9xB+jksEjd5P07clioYzE677eqrr6B//wFce+1vKSkppa2tlV/84gy3PdjhnaCrKEraRF1FUTqdktvW1s4vfnEh++13QMb7+/bty1NPPc+XX37OV199wZ///Ad22GEMd9xxd6evT6pM15V+G2631Pz5c/n972/k3HMvZI899iInJ4dXX32Jd999q9PnaW9vY6edxnL99Ten3be5BqDKT0hCiE3S3mbwzcwmAEr6+GiI325apjvQx7SS1z6OHpvL4oVtvPVSDQDjdstl9Dh7ct3z/65k9pdNTDmihGB2xwvuO9ISa0HXLVYuaWegahIMqHz6bj177ldAQaFdiWzLEC6d1t1M4TJqRCgotP9xbmrQu31NQgghxMbKzg4ycOCgtNtHjdoBXddpbGxg3LgJG33+AQMG4vP5mDNnNgcdNBWwB/wsWfI9Bx9st60OGTKUBQvmJT1uwYL57se5ubmUlJQyd+5st3ppWRbz589j//0PBGDw4KF8+eXMpHN0pTWzsbGBioqVXHfd79yv8/PPP9vAozbODjuMZtWqlRlfb0cwGGT//Q9k//0PjA/zOZOqqir69u2Lz+fHMHq+mj1v3lz69x/A6aef6d5WWbk26ZhMzz1q1Gg++OBdiouLCYW2zFZqsuZSCLFJHr5zFbO/bELTFIbvlFjHYXm3IkkZrDN211w0TWF1w1qiagtDRmSz44Qcdto5lwm75xGNWMz6vGmjrqc52kzFsnZiMYsdxofYYaz9l2lNVdQ9xqlchnITv19z22K9ay5VO4xGzSgFRfaxjfUSLoUQQmx9gwcP5aCDpvL739/IRx99wNq1a1iwYD6PPvog3377TZfPEwqFOOaY47j33jv58svPWbZsKbfccjM+n5+pUw8D4Pjjf8Znn33CM888SUXFSp5++t/MmTMr6Twnn3waTzzxKO+//w4VFSv4+9/voLJyLccddyIAxxxzHMuXL+Mf/7iXioqVvPnmaxusvAHk5eVTUFDASy89z5o1q/nqq8954IF7uvFKdd0ZZ5zDa6+9wmOPPcTy5ctYvnwZb731Oo8//jAAr7/+KjNmvMyyZUtZs2Y17777Jrm5eW4VsF+/fsyePYvq6vXx9t2eMWjQINatW8u7777NmjWr+c9/nuCLL5KDer9+/dw22IaGBnRd55BDDicnJ5drr72SOXNms3btGr755iv+7/9upbm5uceuz0vCpRBio0UiJjXrY+QV+Pjl9UMo7ZsIaxaJyqWRUrnMDmmMGOtnZe7HrM2exYBhfl5Y8j++qvyCvQ4oBAU+eKOWqvjemRvibXFpaGti6ff2Os6d98qlrI8deGuqEq0zrc3plUvd1JOqluCtXEbJL5RwKYQQone54Ybfc/DBh3LXXXdwyinHc8MNV7Fs2dJubzNx0UWXMnny/vz+9zdw7rmnU1dXyx133O221E6YsAu/+c21PPXUvznrrFOYP38up5zy86RznHTSKZx44nTuvPP/OOOM6cybN4fbb/+7ey39+w/g97//M++99zZnnjmdN998jVNPPTNprWEmqqpy001/4rvvFnD66T/j/vvv5uKLL+3W19dV++yzL7feegczZ37KOeeczoUXns3zzz/rTmzNycnlxRef44ILzubMM09h0aLvuP32O90hSeeccwFr1qzmpJN+ypFHHtzZU3XL5MkH8LOfTeevf/0zZ511KkuX/sCpp56RdMxRRx3LwIEDOeec0znyyIOZO3c22dnZ3Hvvg5SWlnDddb/mtNNO5Pbb/4SiqGmDnXqKYnXWeCxcsZhBQ0Pb1r6MJKqqUFKSS21ti0ywFD2uK++vmvVR7vnTSoaNyuaMiweyunkV71XYk8v65/anOdpMc7SZbF82J44+Oemx38xZy5+ff4KCQAF3/PpkXlr6AqXZZRwx/Eg+fLOW91+vo7DYxwVXDSYY7Lg9tqlR54G/VLDzHnkcdFQRN/73fpYsamPA4CwuPeEoIiv78Mwj65i4bwFHnmiv43zvtVo+equOY6b3Yde97DHqT333bxRF4eQxp7rnXlz/AzPXfsou5btS3DqGh+5cxY4Tcjjp7P6b9NoK+ftLbH7yHhNeuq5TU7OG0tIBaWvbNtaWGuizPXvggXv47LOP+de/ntnal9LrbK33V2d/VgoLQ/j9nS9ZkjWXQoiN1txoV/GcvS11M1HVS54Wm77f5MARfgYNzaJfWRA9fr9h2Y/f/5Bi1lRE+GFBK4vmtrLLnvlpj3esXhGmrdVg5gcNVNbVs6yiDU2DHXfOxbJMSsvjlcv13rZY+3ly8pKnxWapyb899TttsYanLVbWXAohhBAb5bnnnmHs2PHk5eXz7bdf89xzz3DWWedt7csSPUjCpRBiozU3JYdLJxyCPf/NCZdmhv0mTWLssmcBAc2Pbtotq044VRSFifsW8MOCVr6f39JpuGxqSLS7zl9Qg5ULY3fJJTtbwzBNisv8qGrymsvUgT6WZU+29a63BMjytMXm5GmomrTFCiGEEBtr1aoK/vWvR2lubqJv336cddZ5nHzyqRt+oNhmSLgUQmy05kY7pOXlx8OlmQiRG6pcRk077OmmTiwlXAIMG5WNP6CwZFEbsZiJ3595ibgT9naflE841MaI8hJCOZr7vJqmUFTqp3Z9jHC7QTBbSwz08RwHpK259Gt21TNiRFBVhfwCHw11Orpu4vPJknUhhBCiOy6//Eouv/zKrX0ZYjOSn46EEBst0RZrhzLdSm6LdQb6OJVBr5gRc4+LGvbgHm8I9ftVRo4JEYtaLF/c3uE1OOFylz3z2X1yDqEcjUA8FDrP6bbGxof6pO5z6TyvqqRWLu3HxeJBuKDIbpNtakgPy0IIIYQQP3YSLoUQG60pHi7znbZYT+XR3ookMUTDCXqtsVZiRsytXAK06+H441P2w4zvffnejFoWzWvJeA0N9XZgLCjyo8cfnwiX9ufuxNj4usu2FgN/QCGQpSY9b1rlUnUql/bjEhNjkzdtFkIIIYQQEi6FEJugs4E+3q1IwK4OGqbBy0te4MPV7xEzvOGyzT3GG0jHjM+hrG+AyjURnn54HZVr0rcmaazXUTXIzdPc9tpAfDCPU5EsjYfL9esiGIZFe5vptsRCIoT61NStSFIql/Fw2SRDfYQQQggh0ki4FEJsNGegT66z5tLT1updcwl2dTBqRomZMRojjUmVy7ARdj/WTZ0PV73P4vofCGZrXHDlYPaYXABAxbLk9thYzKS12SC/0IeqKu5goKAvy70GgEHD7H26Fv5QTUXNOiB5j8uO1lyqiopf9RNNqVw6FVshhBBCCJEg4VIIsVEsy6K50SCUq+HzKQDuliKQHi5Ny3BDXMSIuGsuAdpjiT1ka9qrWdm0gplrPwVA0xRG7ZQDwJqKRAiFRAWxoNBeC+lWLrXkymVJWYDiUj+ftrzCc/NfxkRP2obEaadNXXNpnytA1IhiWZYboluaZM2lEEIIIUQqCZdCiI3S3mZi6BZ5+Z4KYMo+l16GZWDGQ5xu6m4rLEC7nqhIOgERoCVmr7McMNiuPK5emQiXVesi7hpKZw9KJ9wmwmXiGpyAunpFGFMxktpi3cqlmjlcgj3d1vlanYqtEEIIIYRIkHAphNgo7jCfwsSORt41l96PwQ6b3rbZ5miz+3GbJ2iG9USAXN9aCdgtrEUl9nYi7W0G6ysj3P+XCp5/ogrwhEunLTYeLi1PuByxox1Q166KYGG6k1/ta8vcFguJoBozop7KpYRLIYQQItWFF57Nhx++536+ePEPnHPO6fzkJ/tw5pmn0NTUyNFHH0p19fqteJVic5J9LoUQG8Ud5pOf+GvEsDqrXCZ/7lQlAXdNI0DEs/6yqq2K4YUjWVi7gLX9PyVQty9rV4WprY6BBZGwfU4nKDqttqltsQB9h4KmgWFAaV8/e+5XkLi2DqbFAgQ8E2Pz8+3qZ7O0xQohhNjMJk+e2On9Z531C8455/wtci2LFn3HQw/dz6JFC2lvb6e0tIxx4yZwzTU34vfb/wZ//PEHtLa2sv/+P3Efd//9d1Ne3odbbrmd7Owg+fkFHH74kTz88D+45pobt8i1iy1LwqUQokNfrvmSqto69u63b9p9qZNiIXkrEW+wy/R5avh0tHsql1XxymVl61qyi2O0aA2sXhmhrjqa9JjCDiqX3uuJEWXUTjk01sU45cS+5OZ5Q3Hnay4BokYEf7ZKdkilpUnHsiwURcn4NQghhBCb6qWX3nA/fu21V3jhhf/x4IOPu7dlZ4fcjy3LwjAMfL6e/9G+vr6OK664mP33P5C//e0+QqEQa9as5v33340vd7HD5f/+918OP/yopH8b16xZxYknnkzfvn3d26ZNO4ozzzyViy++nLy8vB6/XrF1SVusEKJD39d8z+L6HzLelylcpg708TLNxJrLzngrl03RJtpibeimTlGJD10Js2JxG2sq7C1JnJbc4jJnoI99TU7l0nsN7Xobo3bMYeK+hWRlJz+nHq+4pm5FYp8rseYS7Mm4sahFJJI5HAshhBA9oaSk1P1/KBRCVVX385UrV3DIIfvz+eefcdZZp3DggXuzePH33HLLTdxww1VJ57nhhqu45Zab3M8jkQh33/03jjnmMKZO3Y8LLzyb+fPndXgd8+bNJRIJc9VV1zNq1A4MGDCQPffcm6uvvp6sLHvJSX19PbNmfcW+++7nPm7y5ImsWbOaO+/8PyZPnsjDD/8DgMGDh1JeXs4nn3zYg6+W6C2kcimE6JCzbtK0TFQl+XdRzY12UMwr0NKOVxQlab9KSK9cdsQbLgGaY80YlklhsR9/XoQVS9qxgMJiH6dfOICqtVGKSwPx57CfP0sLxq878ZzetZwmycHQWZuZqS02Kx5UndbdvHyN6kpoaTQIBtOPF0IIse3I++UFBF6fscWeL3r4NJrvfqDHzvePf9zDJZdcQZ8+fSkoKOzSY+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWXna8cXFxUSjUT755CP23//AjF07c+fOJhQKMWjQYPe2l156g1/84gyOPfYEjjjiqKRK6+jROzJnzrccfviR3f+iRa8m4VII0SFncqthGqhaSrhsyrDmMh4uvXtDuvd1MVx622Kdc+qmjqIoDB6jUvuZffuAwUFKygKUlAXSrjcrXm1MrVwmzpkcLt2tSDJULv3umku7WuoM9Wlu0intE0g7XgghhNhSfvGLi9h99z26fHxlZWW8xfY1iotLADjzzHP57LNPeOut1zn11DPSHjNu3AROOeXn/Pa315CXl8dOO41njz324rDDprltrVVV6yguLkkKniUlpaiqSigUoqSkNOmcpaWlLF26ZGO+ZNHLSbgUQmSUun7Sjz/p/kzTYp0A6VN9Gx0uncpllpZFxIigm7obWgeMVBLhckgw7bExI4ZP9bkh0UgKlx1XLo1OpsVm+ZzKpR0u8zzhUgghxLZtU6qIPp+Krm/dJRJjxuzYreOXLVuCYRicdNJPk26PRqOMHDmqw8dddNGlTJ9+Gl9//SULFszjyScf58knH+ehh/5FaWkZkUiEQCCry9cRCGQRiYQ3fKDY5ki4FEJkpHsmv2YKhs2NOqpK0n6Ruqnb4U5JX85tWSYpnbKoipq2NjOi2yEu25dth0tLd68lWBijrG+A6sqou/dl0jWbOn7N74ZE73V7K5dWhj04oYNwqSa3xebG97pskYmxQgghtrJgMHmIQKZlKbqe+Pe8vb0Nn8/HI488mdbempOT0+lzFRUVM3XqYUydehjnnnshJ598LC+++BznnnsBBQWFNDc3dfm6m5ubKCws6vLxYtsh4VIIkZF3n0ozdfKrYdHabJBX4ENVE/84GZaBpmgopK/HMEwTi+R/8LJ92bTGWpOPiz9X0BeEiF1Bdaqo7XobR59czorF7QwenhwunX00Q2rIDYmmZVLZuo7GSCNhz1pOI2WwkDNoKPNAHztcRqRyKYQQopcrLCxi1aqV7uemabJs2VJ23nlXAEaN2gFd12lsbGDcuAkb/Ty5ubmUlJTQ3t4OwA47jKampprW1hZycnI3+PgVK5az226db7Uitk0yLVYIkZFhdrxnZWuzgWUlT4o1LbPTyqVhGWkV0GxfKO04hzOURzd193HtejuDhmaz39TitN+4OmHY+/ymZfDWijf4Yt1Md1sT6LgtNtNWJEGfEy7tcOp8zVK5FEII0dvsuuvuLFgwn3feeZOKipXcddcdNDY2uPcPHjyUgw6ayu9/fyMfffQBa9euYcGC+Tz66IN8++03Gc/56acf84c//JaZMz9l9epVLF++jPvvv5vly5e502FHjRpNfn4B8+bN3eA1RiIRvv/+O/bcc+8e+ZpF7yKVSyFERt7KZWoodIf5eCbFOtNYs30hd2qrl2EZaZXLkD8E7ZmfP+jLjl9HLGlqbVgP21XNFM4wH5+auS026VpSKpfOQJ9MbbGJymVyW6xULoUQQvQ2++yzL6eeegZ33vl/WJbJiSdOZ4899ko65oYbfs+jjz7IXXfdQU1NNUVFxYwbN4GDDz404zmHDh1GIBDg73+/g/XrqwgGgwwZMpQ//vEvbvVR0zSOOOJI3n77Dfbee1Kn1/jppx9TXt5nkyqnoveScCmEyMi7Z2XqdNWmhvgwH0/lsl23U2KmVlewq4ip60BCvo7Xd2THA6TTjupo01szhks9Hi79qg9FUVAUJa3i6l5LSuXS7GTNZSA+LTZ1oE9Lo4RLIYQQW8bxx5/E8cef5H6+224T+eSTrzMee/75F3P++Rd3eC6/3895513Eeedd1KXnHjBgIFdffcMGj/vZz07ljDNOorp6vbulyf/+90racc8++xRnnHFul55bbHukLVYIkVEklpj26oSvpgad5Yvb3HDp3YakTbcDZbY/lHEPLMNMb4sN+RNtsamttE5bbGq4bI+llzrXtqxxA61Ptafaaopmb6HSwXChpGtzwmWGNZeKohDQAu51BLJU/AGF1lZpixVCCCEcpaWlXHXVDVRVVXZ4TFNTI5Mn78/UqZmrpGLbJ5VLIUSaiuXt3P3AEooPaGLg0ADr1rXzyiurWL3Sbn3NybVDmHfNpRP6Qr5s6j2BTlM0d71laltslpbl3p+lZbnVT8CtTkaM5FHlbZ6prwCVret4Z+Vb7uf+eLhUFRXDMjJWL82UCmpnay6d62yONmOYBpqqEchSCbdt3fHzQgghRG9zwAE/6fT+/PyCjHtpiu2HhEshRJrlP7ShmwbfftlAzfogcxauIjfaj6JSP/U1MVpb7DCWFC7joS/bF0qaFutTfRiGgWlZbjuqs4elX/W79wd92UnhMiu+1jGsp1QuU8Jlc7Q56XNNta9JVdS0vTYdqRVUo5M1l/a1BGmmmYgRIaSGyMpSaW020HULny+9SiuEEEII8WMkbbFCiDQ162OY6FgWVCwPo/nhiOPL+OV1Q+g3MLFJsnegj3fNpaokh0uwW2udLT8G5Q0mx59DaXYpfs2uNAa1xHnt0Gnf7qx1dNpb2/TkttgsLXnTZn/8+bxBsSxUzl799mFs6bj4taS2xTqTZjsKl8nrLgNB+1qiEaleCiHEtiDxz5LV2WFCiPifkQwrnLpEKpdCiDS11VFMxWDEDjlEowanHtyHCYMKMS2Tsgm1rFmdjYqWNNCnzVO59K5zdNpUvS2qI4pGMWnA5KT7nemwYAdSXzwcOvtT5gXyaIw00hxpTLrW1Cqkty3WkaUFGF08hu/rFmV8jHNdHVUu3Ymxpl0Jzcqyzx0Jm4RyMj9GCCFE76GqGqAQjUbw+fxb+3KE6LWi0QigxP/MdJ+ESyFEEsuyqF0fQwuY7DG5mLbWCKFcO0wtbVhCbck3NAQH0NfagaxgIsAlVy49ay7jlURvuPSGOKdC6QzwsW/zuRVPp7W1JLuUdr2d6vZqd+0jJIYNpZ4v03M415U60MfZiqTjNZfx9Z/x7VYCWfav86RyKYQQ2wZFUcjJyaepqQ6AQCAL2NRlDQq6LpVQsbls6feXRTQaoampjpyc/IzDGbtCwqUQIklri0EkbJI3SHHbW51KX2ushaygxt6H+9mlsE/SXzztehuKopDty8b7D7bTpmqYBhZOuFTT7s/2ecOl3w2l3tvKQ31Y3byKmvZq+uT0BRLBMHE+J0hqabc5z5veFtvxtFjwtsXGK5fBROVSCCHEtiE3twAgHjA3/Yd2VVUxTfl3QGweW+f9Zf8SxvmzsjEkXAohktSut/eLzC9KBEQnjIXjaw5Lh8TYaWiue79lWbTr7QS1IIqiJFUunaqh6ZkW660qaor915C3Ldav+vEpKeFS0eiX05/VzatY17rWDZepLa5OQEy+BvtcSvy29LbYzgf6uG2x8a/fbYuVyqUQQmwzFEUhL6+Q3NwCTNPA2oR8qaoKRUUh6uvbME2pXoqetTXeX4pit49vbMXSIeFSCJGkttquzuV6wqUTxpy20NQJrWEjjGVZZPvsfSszBTu7Ldb+C9Lbx+8M9PEO5vGpmvs473n6xgNlZWtiD62O1lx6q5ABNZB0XU5YjhpRPl/3GU3RJhRF6XharM8Jl/G2WBnoI4QQ2yxFUdC0TfsRWFUVAoEAPl9UwqXocdvy+0umxQohktTEK5c5Bd7KpR3gnGmprbFWdFN373e2Bwn57eqjktQW61QurYxrLouDJWiKRmFWoXu7T/WnhT1N9VGYVUSWlkVNezUxw75Ow3Md3ufTMlRPnfMZ8euoaFrJisblBNQAe/Tdq8Pf1mWpdrhsjjYzr3oOWsB+TmmLFUIIIYRIkMqlECJJ7fp45bIwcZuzD6TTFgvQEm2mMFgEQHvMGeaTXrl02l7tymV6++lOJWMZXTQGTdXQVA3DMJKqj4ZhP8an+FAUhbJQOaubV9EUbaIkuyStcpk6vAfSJ8g6A31aYy0A7NZnIqOKdujwNXHaYlc2rWBl0woUawTQTyqXQgghhBAeUrkUQriaGnVWr7BbP0P56W2xUU+4bI4lWmOdbUhCGcKl37vPZTzUee+HRAurEzqdYT7e1ljnvmB8cqtzLUbKYnfn+bwDfXyac1tyW2zqdXck6EveS9P5VCqXQgghhBAJEi6FEACE2w3+dd8aWlsMJkzMQ/MngpOzVjLiCZdNkSb343bPHpeQ0hYbn7QaM2NuK21HaxudMOkERO9QH188gAbi53OuxbB093ZN0dxr8D5HYs2ls31JPFzGWgEI+TsPlwEtOVyGAvFriGxb6yCEEEIIITYnaYsVQgDw/YJWaqqiDNshm6NP7sM7q3V3RxHTMjBMI2mdZXLlMt4W66y5TGqL1fCrfqJGFE3RUBW1w7WNiXDptMV6Kpfxj53BP862IE5Vdf+BB1KYVeSGz87aYp3HuJVLf06nr40TTt3rDMT3uZTKpRBCCCGESyqXQggA2lrswLXDTjn4fErS/pGGZRB2JqXGw1tzpNG9vz2WXLlUPeFRVVT8mp+YGcOwjA6rlpBYn+n819sW61Qx3W1BTKct1nBv91Ygvc/j62Cfy9ZYKz7VlzSpNhNFUSgP9UmcL541ZSsSIYQQQogECZdCCADa2+yglB2yQ5m3SmlYhrvGsThYDEBT1NsW6wz0SZ8WqyoqATWAZVlEjWjaeksvZ+2lU2n0JU2LTW6Ljaa0xWop5/WuuQxoyZVL07KrsFEjusH1lo7Dhh3BvgMm289ln04G+gghhBBCeEi4FEIA0N5mVwCzQ/ZfC7rlCZem4a5xzPHnEtACSesvE2su7XDpDZAKStKaRe/+k6mcMOkM4Elqi1U6aIuNVy5T98X0Vk9TJ8ialtnl9ZZeTruvzx9fgyptsUIIIYQQLgmXQggA2lvj4TInvhekp3JpWgZhPdEW61f9KftcthP0Bd3w5g2XqqK4lUPoeJiPfWw8XGZqi3Url3a4dK5Hj6+fVFPO632exJpLZ6CP1eX1lknXF/8rU3PCpVQuhRBCCCFcEi6FEEBX2mLtSmFQC7qhzzDt0GlaprveElIql4qK3zMQp7Nw6Y+H0ERbrDdcOpVLZ/pscuUy9bxOhVRRFPex3oE+buWyi22x3se7bbFSuRRCCCGEcMm0WCEEkNwWa1ompmV62kgtIu5Anyy3RVW3dLclNhRviYXkNZepbbGpFUavkYWjMC2TslA50FFbrL3PZepWJKltsU4LqxNU7XMktiJpjV93jj+3w+tJ5VZmNQtVlcqlEEIIIYSXhEshBJBcudTNGOCsb2xLmhabpWW5QU43dc8wn0QFUElqi1UJeANeJ2su++b0o29OP/dzn+qd+Jq8TUkiXHZQuXRabD2h0zvQp3Uj1lw6j7ewCARVWXMphBBCCOEhbbFCCMCuXAayVDRNcVtis3x2xdH0tsX6gm7oM0w9bZgPZJgW6x3o08m02FTetlgnLCqKQkALJA30ybR3pnO8t3KZcaCPrxtrLj2Pz8pSiUUtTNPq8uOFEEIIIbZnEi6FEJimRbjddCfFOq2mzmRWe1psYqCPty22zalc+jOvubTDZdfWXKZy2mIVRUmqeGZpWeimjmmZHe6dqbptsYG02+xw6Qz06f60WNMyCWTZH0ejUr0UQgghhAAJl0IIINweb4nNSR7m41QuDcsgrNttqFmegT66adAes8NlqKOBPigp1cOuh0vneVLDo1MJjRgRDNPI2GqrueEydYsSFcNKhOVgfA1nVzjTYp3KJUA0LJVLIYQQQgiQcCmEIMMel569I1XFHvATNZxwmeWZFutti+1i5bKTNZepnLbY1HDpTIyN6OFOKpfOmkt/0u2aomFaJjEzhl/1p7XTdsZb+QwE7Y9lqI8QQgghhE0G+gjxI2daJm3xPS5D8W1InLZYv+p3K32GYeBTffhUX0pbbDxc+juYFquoBNT0tZNd4QTR1EmwzsRYZ5hQ6v2QCILeYGtfj+K203anammf0/66LEyynHApQ32EEEIIIQAJl0L8qFW3VfP68lcpaR0LFKXtcWkHSY2YoWNYBjn+nPjtiePcyqWWCJeqkrIVSYbtQLrCCY2p4dEfD4zOc2dqtXW2GMkL5CXdrimaOwwoNXhuSPJAH/trjErlUgghhBACkHApxI/a9/XfATCn5mtgKtk5TltsIlyqqoYRX2/prHVMtMUahPWwPeTH0+6athVJF/e5TJVoi03+qyoYP5+zV2WmwFqSXcJxo04g5E+eButt2U1tmd0QNcNAH6lcCiGEEELYZM2lED9iTniLRuyhNB1VLh1OqHPCXsSIoJu6O1XWkbwViZKy5rLrf+1oHVUu4xNgnWFCvg7WceYG8pLCpH09ic8D3QyXiWmxlrTFCiGEEEKkkMqlED8irz9fzZyvmxg5JsT+hxSjotFYrxONmgRIDPRp96yj9IbL1Mpl2LDDnXe7D0gf6KMqKj7Vh27q3WyLtY9N3RszGJ9i295J5bIj3mO7Xbn0TIvNL7Rfg9rqaLfOIYQQQgixvZJwKcSPyKJ5LYTbTObPauH7+a1E+9WwsKEOgLEkKpdOu2mOPycpKGb57AE4TuhzBur4teSQlroVCdjDgXRTT6skdqYgUEhZqJzB+UOTbndCblsnay474m3Z3ZQ1l4OG2mtMVy0Pd+scQgghhBDbK2mLFeJHwjAsmhp1cvM1fnJ4MbGYRW1l8h6NTrhsj8XDZSAnqWqY2hYbdsKl2nG4TJ3amrp+sjOaqnH4sGmMLh6TdLsbLmOtQOZpsR2ec1Mql/GvxcKkvF+ArKDKmoowhiF7XQohhBBCSLgU4keiuVHHMqGoxM8Bh5ZwxkUDmHJYGf0GJKp3TlusUxEM+UOoasdtsU7lMm27j5StSLyP7U7lsiPZ8S1E2jaiLdb7/P5uhFLvY03LRFUVBg4JEotaVK6JdOs8QgghhBDbIwmXQvxINNTFACgosgPVsFEhxu1cyNCRIfeY7Bw7pLXFWlEUhWxfdsaBPk64bItXOFMrgJnaYp3hOd2pMnYk22dfs2XZFUO1g4E+mXi3SfFvQlsswKBhdshdtby9W+cRQgghhNgeSbgU4keioc6eAFtYnBwES8oTn2eHNCzLImyEyfaFUBQl40Af77RYyDB1VfFOi02tXCpsKr/mT2rF9W1k5TKgdi9cOkE5ES5l3aUQQgghhEMG+gjxI9FYb1cuC4sSoczCQlEUDjmmhBOGDMXnU2iLtWFZFjl+uzqYNNBHSx7o40itAKqkr7l0junO8J3OZPuyiUXtr6l7bbGJY7vbFqsoCoqiuOFy4JAgKLB6pYRLIYQQQgipXArxI+FULguKE4HKwm4rzcrSyC9KXm/ptJ4mtcX6kttiHakVwEwDfQblDqIoWExZqHzTvxjs9aCO7rTaeq+tuwN9wA7OTrjMCqoUFvvs7Vwist+lEEIIIX7cpHIpxI9Eg1O59LTFOmsWAWJmDE3V3AmsIbdymQiXTuUydeJr+lYknoE+8VbSAXkDGZA3cJO/DocTflOvcUOS23y71xZrP5fqhnKA0vIADbU6tdUx+g3M6vb5hBBCCCG2F1K5FOJHwq1cFmX+nZJu2uHTmQAb8uUAoKn2XxOKorhhLLVSmLoViXdabE9Mh80k25ftfrwlK5eKoiSF8tJy+zWpXR/t9rmEEEIIIbYnEi6F+BEwTYvG+hg5uRqBQOKPvdPeCXblEhJ7Rzrhzan0eVtfu9MWq/TAAJ9MQv4c9+ON3YokbRBRFx/vfd2cgUg1Ei6FEEII8SMn4VKIbUhLrAXDNLr/uCYD04C2kiW8V/F2UuXNETEiLKlfTH2kDoCceHhzwljQF3SPVRU1KTSmt8WqSf/dHLyVS1Xt+vN4W2g3as2lomKSCJdO5VLCpRBCCCF+7GTNpRDbiHa9nRcXP8ewguHsO2C/Lj8uEjH58pMGAMJ5a1ndbNGqt5Lrz01aO7i8cRmL639wP3fCmxPGnPWWDp/iI2bZ1c7UtlhnK5LNGS5DnjWXPqU7bbGJULzRay4tC8uyJ+0m2mJj3T6XEEIIIcT2RMKlENuIpmgTpmXSEmvp0vGxmMkT//uGVXOCWOEgigLlAzVAJ6yH08JlXbgu6fFO26nbFpsSxDRVc1tp/altsWz+yqV3Wmx32mKdYxVF6dZaTYd3r0tN0cjN1whkqdSsj7qBUwghhBDix0jaYoXYRoTjg3a62hb75ewKXl/0HlW+Rey8Rx4XXzOEgcPsCmNEj+/L6GmPbY42AXaIHFYw3A2TWnxPy2Bq5dITzFKD5+YMlQ7vtFhN7f6ay7Rqazcf76y7tKuXfmJRi6ZGfaPOKYQQQgixPZDKpRDbiHA8EBpW1wLMiooGAHbZ38+xh/QFQI9PjI0Y9rm8lcuoYa8Z/Mngg+kT6uPe3lHl0mlF1RQtLUwqW6At1qf6CGgBokY0bWuUzvRYuPSuu+wTYO2qCLXrYxQUbtx5hRBCCCG2dRIuhdhGOIFQN3WWL27j/ddrqauJEcrROPuygVRXRvniwwYa6nT2+Ukhqyvsqa/5ZYlzOG2sYSMCkHGwT8gzKAcSg3zyAvlJt2vxymXqMB9ItMV6tyTZHLJ92Xa47MZAH2UTw6US/9q8r11JmX2u2vVRhu8Qyvg4IYQQQojtnYRLIbYR7fHK5YK5jcz5eI17e0uTwZqVYT5+u54VS+zW2bdeqqGyvY1AnkIgxw6UupmoeDottt7KpcPbbgowJH8ohw49nNLssqTbnbbY1G1IYMtMiwXI9efSGGnMeA0dcSqx/o0Y5gPpbbEAwaIo67MWUl0zESjcqPMKIYQQQmzrZM2lENuIsN5Oe5vBwnmN+AMKJ/y8L1OOKAGgZn2M6sooqgaDhgVprNcxTIPiUj9R02539YbLSAeVS7/qTxtyoyoqfXL6pq1r9MVDWqbtPFRFRVO0jZrG2h2799mDfQdMJjeQ1+XHJNpiN+53a5naYpuyVlEdXMTSmoqNOqcQQgghxPZAKpdCbCPCRpjv57eimzp7H1DIuN3yWDinGYDVK8K0thiU9Q2wx+QCVi0PY2JQXOInakQxLRPdTGyV4azfTK1cZqe0xHbGaYsNZGiLVRSFAwdNIcsXTLuvJxUGiygMFnXrMW7lshvVTi9nKxPLU7kMFdivY319eKPOKYQQQgixPZBwKcQ2oLXF4KP317FqRZhAlsI+PykAoCS+x+Lihfb6ytI+AXackEt2qBrTMCiKrwUM6+HMlcvUcOnv+npBp8LZUUgbkDewy+fakpxw2FPTYgGygio+n0JDY0S2IxFCCCHEj5a0xQqxDXjjhWqWLm8gkKWwy575+LPs24tL/aBAuN0OOqXlfvx+lcOPK2PU+ABFxfGtR4wwsaRwGa9cWhtfuXSmxW7u1tee5gz0ydTO2xWZwiVY5ORqRKMmba1d2ypGCCGEEGJ7I+FSiF7OMCy+X9AMvhhTDi+hT/8s9Ph2JH6/SmFxogGhtI8d9CZMzGefgwpQVbuCFjEiSVuYOG2xqYJad9piO15z2Zv1DfVjQO4AhhYM26jHO9Nio2aMdS1rMS0T07II5WpYikFdTWwDZxBCCCGE2D5JuBSil1u1vJ3WSDsl5QH8AfuPrOGpQpaUJSqHZX0SHxtmcpiMedZcRgy7fdNMrVz6N6JyuY2Fy5A/xEFDDqE8VL5Rj3cqlz/ULeLtlW9S0bQSC4tQjoaFSb2ESyGEEEL8SEm4FKKXW7ywDUOJ0KdfIjh610+WliduLynPfEzEiCSFS+e2VKl7XHbGXXO5jbXFbionXLbG7HWuUSOKFW+LtRSD+loJl0IIIYT4cZKBPkL0cou/a0VXI5T3y3Jv063Eur6ScrtymF/oIysr8fsibxtsxAin7TkZMcIZpsV2faBPUbAYVVEpDhZ3+THbA+d1jMW3eLGwsCyTUK6GiSltsUIIIYT40ZJwKUQvFQ4bvPVSDevXRcnrZxLKSewzaWSoXJb2Sa4g6kltsZG0tZFhPVO47HrlcmDeIKaPOS1t/8vtnRMuo4YdLk3LxLLibbGKyYLZLaxasYIDDytmwu75W/NShRBCCCG2KGmLFaKX+uD1OmbNbCKUo7H3QckVRcNTuRwyIpu99i9k/0OSK4i6mTgmYoTdQOq0s4aNMKRNi+165RL40QVLSEybddqMrfj/skMq2bmgxyzqqmM8/0QV779euzUvVQghhBBii5LKpRC91KoV9kTXsy8dyEpqqaqBoC+YtGdlWA/THG3m8OPK0h6f2hbrhKEcfw6NkUYiesStXPbN6UvIn0PQF9zcX9Y2TyW5cmlZdrhUVYVjTiljz9JhVFdGefKfa5n5QQP7H1LM0sYfaIk1UxgsYlj+cNkHUwghhBDbJQmXQvRClmVRXRnFH1AoLvPz/To7aOb4c+1wGQ+OLy15nogR4ZiRx1KQVZh0jtS2WKeSmevPtcOlEXb3uRxfujP9cvtvga9s26emBEMT093zUtFMcvN85Ob5GDw8m2Xft1FR0cznbZ8BdpXz22URdug/iPG7523xaxdCCCGE2JykLVaIXqixQScaMSnrG0BVFbdKFoq3rRrxoOhMfM20b2XMjLnrAyNGGN2pXAbsUBP2DPSRSlrXpQ5GwrLckG5hujcPG2mvX122uNm9rbnB4OOP1vLcE5W891qt+zghhBBCiO2BVC6F6IWq19lhsryvPaTHaXF12lZ1U08OlBnCoWEa+FQfCgoRI+JWO7NU55xmIlwi4bKrUsOls+YSkqvFQ0fZ4fK7+c3MmldLcVmAvHwNXbG/tx+9VceoHUMMGtb1IUpCCCGEEL2ZVC6F6IWqq+wAUtbX3n4kFg8tQS0eLi2dhki9e7zpGd7j0C0dn+oj6AvGw2g7kLwvpVs5k8pll6WGS2darP1xohLZf1CQQJbC2tXtNDcZVCxrp3JtBEONMGSEHSgr16TvNSqEEEIIsa2ScClEL7R+nRMu7SDoVMSy4pVLw9SpbU9MIjUsA8uy3DZZw7Q/9yk+suKBtDlqt2cG4pVLSyqXG0VJrVxaltsO653iq2kKg4dnu6+xZUFNVQxTjbLLnnZrcm217IkphBBCiO2HhEsheqHqSjsklrvh0g4h3rbYpMqlZfLFupn87/tnkgb+aKqPHH8OAK2xVgB8mt0Nb3nWCkq47DqVDG2xbuUyuYK8x+QC+gzwMXaXXHym/b0rLLfoO8D+uLY6ugWuWAghhBBiy5A1l0L0MpZlUV0VJZClUFBk/xHVTR1VUd2qo24Z1IWTK5dN0UYMy6BNb3WrlT7VR64/N+n8buWSRAunDPTputTXyvRUgI2U9uTRY3MpGd6fV5dks3q+QaMepri/PQEYoHa9VC6FEEIIsf3Y7sPl2LFjGTlyJADjxo3jlltu2cpXJETnWpoMohGLfoOy3CCjm/b6SZ9q/5GNGVEaI43uY0zLwIhvh2GYJoZiVy59ikZOSrj0q3awsbASW2hI5bLLMg30cV5Hw0pf+2paJqqqMGpkEV8vqqOkv0VWlkpegY/6uhhrmtaxonkJe/Xbx/3+CiGEEEJsi7b7n2QKCwt56aWXtvZlCNFl4bAdVEIhzb0tZsbI8eegKvZt9eE6N9CAPUjGqZoZlo5u2QFIU33kBhLh0qf63DWD3m0wpHDZdWltsRZuDThTuLTi36e9JpWSO7iR/FL76JJyP82NOt+smE+DtpqRhaPok9N3s167EEIIIcTmJGsuhehlohE7jASyElVLIF65tMOlM5zHYViGu97PMA30eND0q353zaVzDqdKacpAn42SNi0W77RYM+1457Ysv5/y0hwiRgTLsiiJt8aur7Mr0N5tTLqqsnUd82rmdvtxQgghhBCbQ68Ol1999RUXXHABkydPZvTo0bz//vtpxzz55JNMmTKF8ePH87Of/Yy5c5N/0GpsbOTYY49l+vTpfPnll1vq0oXYaIlwaf/xjMWH+fhUPz7FbjZwKmSB+LYihmm4t+mW7g4A8qm+pLZYu3JpB0k7WCaql6Jr1NQyr2V1uOYSEuFSUVSCviCWZRE1o5SU2d+7moYW+7EZqp4bMnv9t3xb9Y07rEkIIYQQYmvq1W2xbW1tjB49muOOO45f/vKXafe/9tpr3Hrrrdx8883svPPOPP7445x77rm88cYbFBcXA/Duu+/Sp08flixZwnnnncfLL79Mbm5u2rm6QlV7V3XHuZ7edl1i0+gxO6hkBVVUVcHEQFHAr/nw+/xJLaz5WXn2liSKhYmJooD9UeIxAZ+fkD+bdr2dgBZAUxUUJdEKqyjg07S095G8vzLTNC25jVixIP7amxhpr5el2Pf5VDtcKgrEzAhlfexwWdfUwgAlB0sxu/1ax6xo/Hn1be77JO8vsbnJe0xsTvL+EpvTtvz+6tXh8oADDuCAAw7o8P5HH32Uk046ieOPPx6Am2++mQ8++IAXXniBc845B4A+ffoAMHLkSHbYYQeWL1/O+PHju30tPp9KScnGhdLNragoZ8MHiW1GIGBvT1FQGKSkJBelPUpubpCSgnz6lBaSuyboHtu/sJxIQyt5+VmEIn5UPUheQZY9JTY3SElRPiUlufQrKWN963qKcnIpKc4jtypIXl4QwzLItYIUF+dSGMz8/pb3V7ImNY/c+sT3IC8/SMwfJByf0FtUHEpqnW1Us8mtC1JUmIs/Ci1KPaF8HyNHF2CwkrraCKGcYvILgt3+Oya4ViPXF6SgMJuSUO/8+2lD5P0lNjd5j4nNSd5fYnPaFt9fvTpcdiYajbJgwQIuvPBC9zZVVZk0aRKzZ88G7JbY7OxsAoEAVVVV/PDDDwwaNGijnk/XTZqa2nvi0nuMqioUFeVQX9+KaUp74/aitqYNAMPUqa1tobqtkZaWMG1ajMb6MC0tYfdYM6jR0hKmrqGZxqZWYmaM2rpmNFWlpSVMS1OU2mALZtg+Lg+d+vpWWlrCNCptGJZBS0uY+rpWjKzkvw7k/ZVZY1N70vegwddGU7idlrB92/rqRvya372/tqGZlpYwzdlhooZJS0uYypo6BuSG6DPUYlG9zvcLGhlGHY0/rMfvVxg0LLtL11LX2ETUiFJd2wTtWT37hW5m8v4Sm5u8x8TmJO8vsTn11vdXfn42fr/W6THbbLisr6/HMAxKS0uTbi8pKWHlypUALF26lN/+9reoqoqqqlx33XUUFhZu9HP2pm+ul2lavfbaRPdF4tNi/X4F07SI6lEsCzR8KKh4hrwS8uViWaAb9hAfy4KYoWOY9nEqGqZpEfLluOfAUrAsME3THupjEf8883tI3l8p4q+fw/s6gv36a0rir1Yj/n3BUgioWVgWtMfasSzY+5AQHz4Dc79uYt0HFZRE7VbZsy4dyJDhGw6YUSMW/57Httnvkby/xOYm7zGxOcn7S2xO2+L7a5sNlx2xLMsdWLLbbrvx6quvbuUrEqJ7OhvoY//Xh27qKIpCyBcCQLcMz16LOmZ8Vpezb2KuP8/93JkMmxhDI9NiuyNtWqxlJk2JTR3MY8ZTp6qo+FU7PIb1CADFA0z6Dcxi3eoIeQUqw4tDLPu+jS8/bthguNRN3Z1Sm2mQkBBCCCHEltarp8V2pqioCE3TqKmpSbq9rq4urZopxLYkGrEDgxMudcvZisRuQ9Die11m+7Ld8OhMh4X45Fgz+TH5gXwAsrSg+8sXu9oWj5ey0WWXpYZLCytpz1AzLVwmpsVm+ezW1Yhht9C2x9rZda989ptaxM/OLWf6Of0IhlS+m9tCc1PnW5NEjaj78cZMmhVCCCGE6GnbbLgMBAKMHTuWzz77zL3NNE1mzpzJLrvssvUuTIhNFI2m7HNp2CHD76lcAmT7Qm7QTA0aib0x7cf0zenH5IH7M75sgqdyiexzuRGU1HBpeWvA6XtdOp+rqATjQ38ihl25bNfb0DSFwiI/KBb+gMque+VjGvDt502dXkfSLxQkXAohhBCiF+jV4bK1tZXvvvuO7777DoDVq1fz3XffUV1dDcBZZ53F008/zQsvvMDSpUu56aabCIfDHHvssVvzsoXYoNZYKwtq5rsh0Mtpi83qpC0WIOQLuUHHGzR0b7iMr/1TFIXhBSPI9mW7VUrLSlTcJFx2XXrlMrktVjczVy41VSMrHi7Derxyqbd7Hmd/z3bfuwCA7+a2dHodMc97J7VaKoQQQgixNfTqNZfz58/n5z//ufv5H//4RwAuueQSfvnLX3LEEUdQV1fHXXfdRXV1NTvuuCMPPfSQu8elEL3V93XfMb9mHnmBPAbnD0m6L3XNpeG2xdp/XJ1hMdl+b+UyES5N08DETHqMl3fNpXubtMV2mZryWm24cmkHPxVvW2yicpk4zj5HSbmf/EIflWsihNsNgtmZp7LFzES1OjXQCiGEEEJsDb06XO611158//33nR5z2mmncdppp22hKxKiZzhtrN6KoyPirLkMpFYu4+Eyvo4yxxdCU5xjPEHD0j3Vsk7CpScUSeWy61Q2bs2lqqhuJdmpUnorl84vERRFYciIbOZ900zFsjA7jE3f46q5UeepJyuIDA/Tf1BQ2mKFEEII0Sv06rZYIbZXTmA0UqpckGlabMqaS3egT8gNmrGOBvoo6VUvp63TG4qkctl1qa+VaZlJlcv0abFOuFQ8r719mzdceiueQ0fak2JXLE3cH42YPPvYOuZ+08RbL9ewcnkLSxe1ZXxOIYQQQoitoVdXLoXYXjmVq87WXDoDfRKTX53KZXzNpT+x5jJmeIe76G6bpE/zp51fUaRyuSnS11zS+VYkJKbFOm3MpmWim3rSICbve8ENl0sSbbPfzWthwWz7/wBmQKehXicSNjClLVYIIYQQvYBULoXYCpwWyEwVJ2darD+tLdYOiqXZpfhVP4VZRW5Y8Z7HsEz3MU610yux5tIEtq2NeXuDTNNivZoiTcxZ/60b+L1tsU4wNSyDcHw7Eud75A2oxaV+cvM11q2O8NHbdbS2GCxe2Jr0PDmF9vHrK6NSuRRCCCFEryCVSyG2AqfVNdOUz2jEwudX0LTkyqU/XrGcULYL40onoCpqUuXLYZiGu5az03DpCUWp1TjRsdQ1l0n7hQILa+fTrrdTkFXI0IJhbuuzpmgoioKiKJiWmfi+an5iZsz9hQPY1eUdxuYwa2YT782oZdHcFupqY2g+hVN+0Z/62hirlSqWvAHr10VloI8QQgghegUJl0JsBU74MzKEgmjEdNdbQiKIeofzOGEwUyg0LLvd0qf6Mt7vtsVK1XKjpLfFJk+LddZROhNhLU/lEuyQaZiGW6kMqAHaaEubMjvthHIm7J7HGy/UsHaVfa4RY0KMGB2yz1+homl2uGwPp/+SQQghhBBiS5NyhRBbgbO+zmlnNE3L/a8es9z1lt5jM1UhtQwDewzTIGbGMm5DAinTYmWfy25LC5eWlRYMAaLxCb5mSrhUFRULy61oOu3OqdVHTVMYOjLEIceUureN2tEzOVYz6NM/C123ePV/VTTUp08eFkIIIYTYkiRcCrEVOIExEtV5/t+V/PnaZSz9vs1db+lsQ2IfG19zqWTYViTeZukVNaOYlklADWR8bm/l0h3oI9Niu2xDlUtHzEgOl85aTQW7LdatXGrpay69hu8QYvS4HHx+hTHjE+EyakTZeWI+5X0D1NdFePjOVaxbHdnEr04IIYQQYuNJuBRiC5j7dRM/eAayrFvXymcf1PPMY2uY+3Uz0YjJc09UUrveDpLJbbExVEV1tx1JlVq9dNoxfRkqnZAIR94tNKRy2XXplUszbagPJPYydSuX8b9uNVXDsAx3va0//ksA75rLVCee2ZfLbhxKYXHie6qbMXx+hT0mFzB8pyyaGw3+df9qd9qwEEIIIcSWJuFSiM0sHDZ4/skq/vd4JbGYyeLvWvn0wxpq18doC0fZYWwOO++RR1uLwUtPVQHJ4dKwjA5bXCFzmyYkKmKdkX0uu895vZ3XrKOKY6dtsZblrrf1TotdUr+YV5e+TFgPJ53L51PJy09+DzhrcVVVYY/98hi2QzbtrSbVVbL+UgghhBBbh4RLIVLMqvqad1a+2WPnq6mMgWUP6pn3TTNPP7oK04Sxu+Qy/by+nPKL/hx5YjlqfDgLQLV/Eeta1gJ0un4SMq+7hI4rl2AHnI5Ckdgwn+pz24472gbEaYu1cMKlHUad75ezXYym+lAUBcMy+GztJ9SFa5lTPTvpXKZluhVp9/xmIkSamETKlrAi5yNqqqQ1VgghhBBbh4RLIVJUNK1kbcvajNt8dJUzoAdgfWXih/3Xn68mEtMZNjKb4TuEUNTEnpal5XZYiSltrNbmMbv6WwzTwLKsjMN8HB1tI9LZYxQULOxBNLINSfft039f9um/L9BZ5TJ9n0vvf511t6qiuBNkHevbqpLO9VXllzz/w7NJFU3v+9MwDdpz19Hqq2FtVfMmfW1CCCGEEBtLfqoUIoU7wXUjK3uzv2ziliuXsuQ7e42lt00xFrWwVIPhY+ztJLyBoqyPHS51JYLPp6KbsUR1K8MwH0dHlUu/lnmgD9gtnZnWCYquGVYwnMH5Q4COK5fReKXR9OxzCaDE/9pNfG81t5JcFCwCoD5cl/T+q2xdS8yM0RRtcm/TTd1tzTUsg2CefXxNdXJLrRBCCCHEliLhUogUzg/1HYUGR3ubwXuv1fL9ghYMww5qzU06rz9fjWFYvP9GHZZlUV1ph8uCIjsgjt45SCikxZ8jESDK+sbbLNUYPk1BN3X0+JAXfyfrJzsa9OPvpJXWqVxaWDLMZxMoitJx5TJeWTRSpsU63y9nCrCqqHbl0jKSzlXTXgPY78fmaHP8nM7emRYxM0aWlhU/xiCYaz+2tkbWXAohhBBi65BwKUSKROWy83D50Vt1fPRWHU89uI7H712NZVm89VINkbAJCqxZGWbV8rAdLhU4+uQ+DBmRzd4/yU17LoDyfvFwqUTR/HZlSzecbUgyB0hIVMJSdbQVCXi2I7EsGeazCVQ6Xrsa20BbrLdyqakapmUmtbqua1kDQEu02T1HxLCrkk5LbVALup+rfgOfT6GuNpLUli2EEEIIsaVIuBQihdMuapgdh0tdN5n9VROqCkWlfiqWhZnzVTPzvmkmN1/jsJ/aG9+//0YtjfU6RSV+RowOcdYvB5JfnPhj5w2wZX3sKpShxPD5VAzTcCeCdjacp6PKZWePsZ/blMrlJuqscqmbetJ+lk6o1Nxw6ay51NyWWe/Qnpr2aoCkVtiwbt/vTKL1awE0RSNqRLGwyM3XiEYNmps63tZECCGEEGJzkXApRAqnmmh0suZy0dxW2ltNRo/LYd8p9jq5V59dD8DESQVM3LeA/EIfy39oBxLrKSFRdUr9uLjMj6qBqUTRfIpduYxXtzqfFpv4Y+w9rrOtSBQU2YakB3iDeabvUdSIYqXsc5kY6JNoi1Xj4dK0TDdotseH9zRGGj3niyQ91q/60FTNrYLm5mmA5e6XKoQQQgixJUm4FCKFU2nqbKDPN5/bP/Dvtk8BY3fJRfMp6DELVbVv8/lUjj6p3D3eWU8JiXZISG6L1TSFkrIAhhLF57NDi1PJ2tC2Io6AZ4jPhh5jYclQn03kDebewUqJ7UaiaZXLTAN9vI/NDeSiKAphw/7FRFM0ES4j8Ypl1HDCZSDp+5+T58NSLGrWy7pLIYQQQmx5Ei6F8PAGyo7WXLY06yxf3E5egY8Ro0NkhzR2HJ8DwJgJueQX2BWskTvmsNf+hQAMGhZ0H++tVqa23pb3DcTbYu3QEo6vsetsOI/qCSbedZadbkWiyECfntBR5TIvkAfYIdD5BYLa2UAfT2uzXw2QpWURibfAettiI/FqpmE57dK+5GCap2FhUlctlUshhBBCbHkd/8QqxI+QN+x5q4o166MUl/pRVYVF81rBgh0n5KCqdrjY75BiWlsMDjy0OOl8hx1bysRJBZT2SQQ9b7hMrY5OmlLEYsVHabyNNqzb1avO22I94TI+PRTskNIRpy3WwkJRJVxuLG/lMjlc5tMQaXArl4qiuMeqqWsuVTWptdmv+ghqQcJ6mKgRpTHS4N6XOtBHU31Jz5sVVAGL1pbOh1EJIYQQQmwOUrkUwsMbKJ3g9/7rtdzzp5V8+XEDAN/NaQFgxwmJqa99+mVxxsUDKe+XCHdgh4+yvoGkEOJsL5L6fAADBgeZeEAITYtXLuOVqq63xfozfpzKnRYrlctN4n3tnL1IVUUlx2+/N6KGHS5Vz1+1zi8D3MolalL12af6CfrsSndztJmwHnY/j7jbmxjxcyU/NpBltzu3SbgUQgghxFYglUux3bMsC93UO90r0mFaJm2tBmsqwoS/qaRE8TPvG3uPwaXft7HzHvksX9xGKEdj8PDsjboeZ3sR5/lStwOJeLajaI9XLjtrcfVWLr3Vys4CqROKnKqa2DhqhmFKWVqWG+ydKa7etlcldSsSVUupPgfc49e3VQFQml3K6ubV7kCfRLhMeWyWgqWYtLVJuBRCCCHElifhUmz3vlg3k+WNyzh+h58lDbxxRKMmb79cQ2O9zn5HBfnknToiEYuWtmYKYs2oKqDA6hVhvp/fimnCmPE5bnWxu2Jm8jYRhmXgU3x8VfkFJdmlboCAxJrLjrYbAVDVjtpiNxwuUz8W3eMN5n7Vx/DCEeQH8t1gH423xXoDoFPFjBnJ+1w6fKofH/bjne1I8gL5BLSAO+DJad/2qT583vWafhULs8PK5efrZtIUaeCQoYdv2hcuhBBCCJGBhEux3atpryFmxmiNtRDQktdEhsMGj92zhsrV9g/ti5ZWEcmy6DsgwNF7lNHf34+S8gAvPVXFquVh3ntvFStDX3Hkjgdt9PUYVnq4jMQifFe7EEheuxfuUuXS0xbrOW5DA33EpksK6YrK5AH7A7CkfjEAsXhbrPd7oanOViTOPpdqSvU5sY7SCZe5/jyCWpCmaBOGaXiGBCVXLlVVIZCt0NaaOVyubVlNS7QF3dQ7XccrhBBCCLExZM2l6HHtejuz189yWzq3NmcIStRMn6C5cHYLlasjDBwapKxvgGjUIDtbZZc98xkwJMDocbmUlgcYONRe87aibjXh7PUYpWvdc7xf8S6vLn2ZqrYqZlV9zeL6Hzq9Hj21cmkaSZNpvfc7ay47C4rJay6z3OM7C5Dex3g/Ft3jfe28QdNpwY44ay69r3f8r11vQFSTwqWfLC2x5hLs6bPO9zZiRNzKpZbyWIBgtkIsahGLpW+l4zyus212hBBCCCE2lvxUKXrcyqYVzK2ew/LGZVv7UoDEXpHetY6OFUvsALzfwUWcen5/xu4WYvdJBfj9atKwnUHxcGli0Kd/gDajxb1vVXMFdeFa3lz+GvNr5vHFupluQFzbsoZnv3+a6rZq93hnrZ3TomtaRlrgTD3WGRaTSep6Peh8uqxt81Yu/Z9/RsEJx5Bzw9Vgbr9BJrlymfjY2RLG+cWGN1ymtjjblUvv2s3EQB9Hrj+XoM8Jl+HkrUjU9HAJ0N6a/ro7oTJ1kJQQQgghRE+QcCl6nBOUnD35tibd1N3riZrpG8uvXNoOCgwenk1hkZ9DjyulqMSuOnl/AB841B7eYyk6/QYGaYk1u/d5B7lk+7IxLdNtZ5y9/lva9XbeXPGae7wRv56seCXKsAx0s/Mf9jvb59IJl979EjOtLfXanGsulcYG8s88hcBH7xP65/2E/vqXHj1/b+INlN7XMVFlTA+XSkqlWEtpiw1ofoK+5GFRuR1WLpMfCxDMsa8jU2ushEshhBBCbE4SLkWPc1o8IxnC3JYW9rTm6qbODwtaee+1WkzToqEuRmO9Tp9+AbJD9g/oZtJWJImP8wt8lPUN4A9alPUN0BxtxrIswJ5Gm6VlcdKYUxhXOgGAqtZKAIqDxfFzme7xMTdcBuPXZaStw0zl62TSrdMW6VN9btDobFIspISiHl5/mf3wP1Hr6ohN2AVL08j+x33Q0rLhB26DFDK3FzvTYsN6JO0+NeWvXe8vBSBeufQMZgr6gvhUn/vLiIgRSV5zmfKLh0C86JkpXDqPMzfwywwhhBBCiI0h4VL0OKc64p16ahgWFY0VPL3oyaQW0c0t7J28Govw8jNVfPRWHV9/2mhXLYEhIxJVIu9atNR1aT+/cABHn1qKz6egmzptehtg7xXphIc+OX0AqGqzw6W3PdXZVsIJklnx6qKRoS02tRrl66Qt1nluBcV9XGeVTufYTB/3hKyXXwSg+f6HiBx3ImpjA8EXn+vR5+gtOgrpzpYwYcN+j3lDaGoba+q6Sb+aXLnM9ecBiUp31IiiW4lpsVpKJTQYsj+XyqUQQgghtjQJl6LHpYbLaMTk/r9U8Pi/FhI1otSGa7bYtXhbc5cvb6alyf6h+t0Ztcz+sgmAoSMTP8h7f+hO/QE8r8BHdm7i85b4sBXvXpFFWcUEtAA17TWYlonhCagrm1YCiXWUWfF1dZnWXIb8oaTPu7LPpaZqbpj17neZyeaqXKrLl+FbOB999BiMUTsQPvlUALJeebHHnqM36SikO23JkXjl0hso0yuXyRNffaqfLC3L/aVBXsAJl/b7JWyE3cpj6j6XAFnumsvk96/3lyWGDPQRQgghxGYg4VL0uES4tEPUx+/UUVMVZe2aNsLtyUGqujJKY0MMw7D4518reOWZqh69FqdyBPDd/EYAyvoGiIRNli9uR9OUpMql4WkXNDIMovFee1O0yf3YCRaKolAeKkc3dWraa7A8P8SvbVntnkNTNLcaaWRoi83x5yTOrSid7nPpbG2hKRq5gTxURaUoWNTh8d7rdT7rKYHPPgEgetAhAMT22ReztBT/xx+iNNT32PP0Fh1N3VUVFb/q97SveiuXGdpiU7YigUSlMtdv/0YjEVjDifOqmcKl/d/UymXSe1sql0IIIYTYDCRcih5nxtcWRowwdTVRPnuvwb4dk5rqKHq8crdiSRv3376SJ+5fy+oVYdZWRJjzdTOGYfXYtYT1CBXL2/n4nTqWLWsiK6hy5iUD2HO/AqYcUcJ5vxlETm6ihdTEzPixwxsum6NNbpD2hofS7DIA6sN1SdWillgLlmXZ4VJNtEJmGugT8oTLzqqWkBgQoykauf5cfjZ6OruU79bpY9QOBtFsKt/XXwIQ22Ov+A0+ogcdgqLr+D/5uMeep7foaKAPJA9VUlP2w/TSFC0pcPrjj3NaY3PjlctgvHIZNaLu+9Cn+FDVzJXLtpRpsd5AaUnlUgghhBCbgYRL0WWtsVYaIw0bPM4JZVEjyjefNWEYFv0GZWEpJrXrY+imTl1NjGceWYdpQE1VlC8/sc+rxywq10Q6OXv3tMfCfDenhYY6HcPU2W3vfHJyfRxxfDn7H1JMn35ZScebnmplpqEn3gqjd6iPN1g4w3RMy0wOq5ZJu96Obur4Vb8bKDKtuQz5Em2xqZWpVIlpsV2bFJt6vT3ZFut3wuXEPd3bogf8xL6uD9/vsefpLZJeOaWTcLmBgT6pay4BsuNt005brBM6o2bUHTalKWraetxAMPO02KS2WBnoI4QQQojNQMKl6LIPV73P68tnbHADdieURc0oS7+3h94ccVwZFoYbLj/9cD2VsQpyC+wfhBd869k3cnnPbWGyZGk90ag94fWoU0qYenRp59eetC4t/Qdwb4WxKdqERTxceoKFEyQMy3B/iM+OV6EaInZraEALuKHQtBJtsSMKRzI4fwgD8wa759tQ5dK75rKrOqu4bSylsQHf94swBg/B6tPHvT26vxMu3+uR59lcAm+/QcEJxxB45aUuPyZpi5G0ymXiFxfKBve5TA+XwwtH0j+3v1sJd9pldTPmvje1DbTFVixvJxq139NmJ+uJhRBCCCF6goRL0WWtsRaiRnSDVQ+nWhdu11mzpoWiUj+DhmWTX6zS2mLQ2BTmy2XzWR36kt2mpW9XsnpFe9pt3VFbHWXmB/V8+FYd8+fXATB4WJCsXBNV7TxIGUlbkXTeFtsaa8nYFuv8sG9Zpnu/09pY2brO/tyf524hoZuJymW/3P4cOGiKW7WCDW8rorptsV3/47w5Kpe+b74GIDZxj6TbrfJy9LHj0VYsR12xvEeeq6f5Zs8i/7STCHz0PgXnnO62925IZ1N3A+qGK5eqotprap1fECiae+zwghEcPORQd0iT8z6Imbr7Sw5N8aWt4XQql0sXtfHI31fz6bv2LzQ6G1YlhBBCCNETJFyKLnP3yMuwFtHLCVTVVVFMJcaI0XaLZ3l/+4fkxT80sb62mVCORr/hCrn59g/WI3cMgQKrVmx85bKhLsY9t67kzRdreP+1WipWNeLzKfTpn+VOae3KtUPmH8Cd6k9AC6Cbulu59DZIOusZDcvAir9WeW64rHQ/1zKsuXRaHL2B0reBbUW8waSrNkfl0v/NV0ByS6yjt7fG5txyM4plYQwcBEDovru79LjkinXHbbHe703S5FjnFwNqYq/SjjgVzdTKpZryfQ8kd3qzZqX95yl5mx0Jl0IIIYToeRIuRZc54WxDbbFOZbO6MoqhRN1wOXC4/cP2t1/XYyoxSsv9mBiMHmsPr9lp51zK+wZorNdparQredGIyaN3r+b912u7dI3VlVEsEwYPD7LnfgWYWpShI7PRNIWYmV4lTWUmVS4ztMXG21c1RcO0zIxrLp0WSNNTucyL71XobMOSHyhICpdOW6xbpfKso9vQnpVqyprLrunZvS0hES713fdIu683h0t1xXICH76PMWgwdR9/iVlaSuD1V1EaGzb4WO/+lakV4I7WXCoZJsw63zu/1nGV2udWunXPmsv0ttjUAnZ1lf2+N5LCZc8NzRJCCCGEcEi4FF2im7obpDYULi1MLCy7cqnFGLaDvQistK+PvHwN3dAxFZ2Scj+6GWPKtFKOOKGMnffIZ/Aw+9j/PrKOupoYs79sYuXSdmZ+0ICub/gH4uYmO6QNGxXiiOPLOfykQsbtXIhP9REzNly5TG4dTHydte21mJbpbiPiVJqc18IbLBJrKT3hMl65dF7D/Kz8xHGetljNbYFMBEptA+GyOFjM0IJhjCraYYNfn0PJUGndVNr8eVg+H/pO49Lui+09CSsrC/+nH4HRu6pmwf89A0D4xJMhJ8eebmsY+D/6cIOP7awCnOVZc9lRW2xq1bmz9bXO2syYGUtMi1V97vM4/03989lYrxOJmEm3pw6QEkIIIYToCRIuRZd4W0o31FJnWibtbSaRsEVxPwgG4yEKk6EjszGVeLgsCxAzY+Tkauw5uRBNU9j/0GL6D85i9cowj9y1ik/fs9eLRSMmFcs2vBazqcH+oTmvwIdpmRjECPmz7XDZzbZY5+PVzauYsexlvq9bhGEaaKrmBgkzwz6GiYE+phtQcwP5Sc+TG8hDzTAt1qlYetfhbXCgj6qx/8ADGZg3aINfX+o19hRl/Xq09VUYo3aArKz0A7Kzie25N2p9Pb75c3v0uTdV4I3XAIgcdyIA0Z8cZN/+wbsbfGxySE9Z+9jhQJ/094qzXtavdj7p16f60E0dwzLc90dZqJw9++3NhLJdALsqudf+hfTpH2DYKPuXNTVV0ZSqvGxFIoQQQoieJ+FSdImeFC43vOaysc4OS8V9E7cbpsGAIUH8QYv8EsgOaegpQTW/wMc5lw1ilz3zaWkyaKzX8fntH+B/WNC6wet0Kpf5BT7Cur3WLEsL4lf9dtjcwDCipMpl/Nh23Q61LbFmdEvHp/rcUOBWLkmvXHoH+uR49q3UFI0cX04HbbGJFkenermhyuXG6Ok1l74F8wDQx47v8Jjo/gcC4P/wg01+vp6iVlXinzsbY8hQOxgD0f0OBMD/+Wcbfnyn02K9+1x2XrkM+XPwq34Kg0WdPp8bLuO/5HCuYUzxjm513MTk8OPKuPCqIfQfZA+Gqq6MZlxz2dZq8M4rNW4buhBCCCHEppBwKbok1q1wadFQbx9f3Ff13G7g96sceGQBkw+1K3l6hmqipikcdVI5o8fZgezIE8sB+GGhHS5bY60sa1ya8bmbG+0fmvMKNMKGHQqDviy3ItRR9XJu9Wzer3g3ZV2afS4ncIb1MJZloSmJyqVzX0dbkTivlU/1uduR5AXykiqThmUmpn96gqQTLje05nJj9PS0WN+C+UDn4TIWD5eBjz7Y5OfrKYF33wYgMvVQd59Kq6wMY/AQfIt/2OC6y6SQnrrmMmlarOeXDxkG+gS0ACfscBJ799un0+fzuxNjY2lrLZ1zWZ73cFlf+xqqq6IZp8V++GYdn7xbz1fxfWaBLv0SRgghhBAik57/qVVsd2qrozz+xEqM8RH69M/KOAykoS7GO6/WcOBhJUmVy/yyxLHOD7S+LBNF0yFGh+sgNU3hpLP70VCnU1zq5/MPG6hcE2HmB/UYI+azrGkJ+YECWtaEmP1lM0NGBNlplzy3ApNX4KM13mrqVwP4NftjO8wGk57LtExmr/8WgIF5A9OuN1HBtPfs9K6HNN2BPgnJA30Sg1dy/Lm06+3kxVtk3XBp6mltsd7n2VBb7MbYfJXL9PWWDn3CLpgFhfi/+Aza2yE7e5Ofd1MF3nkLgOjBhyTdHtt9IlrFSnzfziJ24JQOH59pkJN77g7WXCYP9PHsb9nJMB+Hd4pwpv0yIbGuFxLhsqYqeQshwzIIhw2+/aIJgNr1iT+Hry17lZZYMyePOXWD1yOEEEII4SWVy21cW6uetBaxpjrMA7dX8Odrl/LA/1XQ3rZxFQjLsli8sJVw2OC912pZu7aN2V82EYkYxPT0Frp3Xqlh/qwW3ptRi2HqNNTHUFXILUoPl7qpu6HSaQcFWNm0gvVt693PVVWhuNT+YXqv/QsAePPFGma8uBbTtIjoYV7573pmf9nES0+t55Wnq2hu1FE1COVobgVHUzQ3oEVN+4fs2etn0RC213PWticm0UaMxERZp+roBESnPVZTfO6UUCPDmstMA31URXVbY532RdUzFCh1WqzzPN7/9qQer1wu3HDlEk0jNnl/lEgE/1dfbPJzbrJYDP8H72FlZxPbZ3LSXfpuEwHwz57V6Sk6a4vN6mBabOo+l93hT3p/pEyJddYBe7YKKi2PVy4ro0m3G6bJnC+biUbs22qrE+/7unAtUSOa9OdCCCGEEKIrJFxu495+tYqH7lzFrM8b+WLlN1z16P2sWttANGJSuTrConkbXqeYyfcLWnnyn2t56K+rWDC7BUOJEY1afPB6HX+9aRlzvmpyj62ribJgdgsA381rYf36CLGoRX6hD53ED63eyonTnhqLV+yiRpSPVn/Ap2s+yng9u+5VwAVXDabvwCzWVbYyb1Yzy5e2ULs+Rp/+ARQFVixtp7XFIC/fh6oq7vOpquZpJ9RZ0bSMudVzeHnpiwBUtq1znyeiJ/bYNFLaYp1w6VM1N5A5wTPT9FVvW6w3XOYH7KDsVCmdAS2QHBicStZmqVwm11o37WThMNoP32OU98EqK+v00Ggvao31f/k5aksz0cn7p1VR9XETANDiobkjSSE9bc1lonLZ0T6XqdXHDUmqXKb80sFbMTdMg7AeJiuoUlDko64mxjsz1hOL2e9HwzT44qMGAFQV6mpimGZyR8KallXdujYhhBBCCAmX27gJuxeiKPDGCzX86+l5NLdGGTguwknn9ANg8cKNC5dLF9ktoDXrY2DBxP1yyc5WiUYtTMXks7nfs6R+MQCfvlePZUFuvoZlwlef2hXBwmI/USPinjPTWk1nzWXEsNczNkeb3UE8qfr2z+KUc/uTFbKoWBbmlefsULjvQUWU9Q3Q0mSAZbfEgqeqiIo/XkWKGdG0tt71rZXux2Ej8dzO9Trnicarmj7V55kW2/FWJM5AH6c6NaZ4R8YU78SwguHx45wwYLhbnHjP44ufx6f17oE+vh8WoRgGxrhOqpZxsf0PAMD/0dbf7zLw9psARA8+NO0+fcedAPAtXND5STpZc5nV0bRYb9DsZuUyeYuazG2xpmXy4er3eHHJcximwaE/LSMYUpk/u8n9ZdOyJS3U1cQYOiqbvgOziEUtmpv0pD+jq5tXd+vahBBCCCEkXG7jho3MYd8pRUQjJvUtTfQdEGD/I3MYPiqEz6+w9Ps2DKP7G6avWGJX6YbFf/icsGeIyQcXMXlKISgm36z/ipnrPsUwTObPasHnVzj1vP6gQHNTDEWB/oOzktpMjQxbmDhrDcN6IoTWttd0eF35hT72nZpPdrZKOKyTk6ux08659BuY+EHeCZeJqqHithPGzFhSJdAwDaraqtzPoxnaYg0zORRrii9paA/gtsnaz5c80Mf5PDeQx5799nIrkk44MCwjafqnw6lS+TZHW2zSGsBNC5daF4b5OIzhIzEGDMQ3ZzZKfd0mPe+mCrwbX2950NS0+6ziEox+/dGWLIZw5l92QHKLa2pIVxXVDYOZtqpJ/bgr/EmVy+THOhVz55c0USNKzIyx0865XHLtEFTNYvWKMIZhMXdWIwCTDyqipMz+xUtddSypu6Cmvdqt1gshhBBCdIWEy+3AT44oYfd989hxoo+J+xYQpR1/QGXYqGwi4a7tD+nV0qxTXRmluNTPGRcP5PxfDwKfQTBbo6g0QHGZj9a2KO1tOlWV7UTCJgMGB+k3MMjhx5UxYqcgPzm8hJLSgFu5tCwrY+Uy5qlcOmrDdrjUTZ36cHoAyStS2G9qEWN3D3H0yeX4fCr9Bwdp8q2hIjST3PzkllXvmkvd1JP2+1vRtKzDDeWd4OhdqwbxyqXT+mqmT4tNtCdaWFgdBghnmItuGu4WJ17OVhbeClhP6ayds7u6Mswn8WQK0f0PRLEs/J98vEnPuynUlSvwfb8IfcyOmIOHZDxG32ksimni+2FRh+fx5vJM32fne9hxuOxuW2z6wCf3WuLfRwvTs144vs9qno/Bo7LQdYvZXzZRUx2m78AsRowOUVJm/9moXR9L+wXQupY13bo+IYQQQvy4SbjcDvj9KgceE2LIyGwUFNriU01H7ZSDQczdwqOrVi61w+jQkfY6NEVR0D1TXcv7+7EUk4Z6nVUr7ecaMMSewLrXfoWM3TWHgvwsfKrPrQR2tH2JE+y84bImXrlcUDOPV5a+lDTkB+xAmhXU2PfgAvKGNvLx6g/pM8BHQ2Alzf51kNMcf067YqupmrsVSdSIJm03srDWbnv07knofM1OIDZSwqem+lDpeM2ld6CPYRodhjfNDZcxLMtKq1COKx3PxL57Uh7qk/Hxm6InB/p0ZRsSL3dLkvff2aTn3RSBd+ItsVMP6/AYYyc7LGudtMZuKKQ725GopFYZ1aT/dpU3UKYGU29brBMSLRJdCzuMtf88r10VwVJMDjqiBEVR3MplbU0U3Up+r7fG/y4RQgghhOgKCZfbieZos/txW8wOk0PGqPxQMIPXvv2ESLjzvSm9UsMlJAbvAJT192Fh0lAXY/Uq+4fPgUMS1TWnWudTfW5lMlNLLNjh0rKsjG2xDZEGAKraKtMeY59T54f671neuAxfcTOmaj9Xtr3Th2cPStVTuYwlBd36+MTYofnDkp7DOd478dXhU7wDfewf3jNVpgzLwMTscGiLE2idXwZoKZWovEA+O5WM7ZFprqm8p9ykyqVl4VswDysrC2PEyC49JDrlYCxNI+vN18Hs+vuyJ2W99YZ9LVPT11s69J3GAonwnIm6gfZiZ6hPaoh0frGQOvF1Q5IH+nQSLuMVde+el/2G+Alm28fsdUA+o3ayB0yVlCcql6az7U67wbxZzcybXU9bq+x5KYQQQoiukXC5nWiJtrgfO2FFDUXoP9RPc7SJrz5t6NJ5TNNyK51DRmZT015DRdNKd/AOQHk/P5Zi0FCrs7rCDqIDBif2jjQtEwUFv+p3w1lH4RLsEOatXLbr7bTGWt3bnC1DwG6vdcOlaSSqippOTnzbk1Bu8rAdTdHcik/UjKZdS8gfoiyUPOXUCZeGZaQd71MzrLnMMNDHtAwsq7O2WJWgL5g0KGhL6Ym9LQHU1atQGxrsIObr2vVbRcXE9p6EWr0e36yve+Q6uqWlBf+nH2MWFhKbuGeHh+nxymVnQ30yTQn2ctti1eT3gPN+2ZQ1l2ltsZ52bOe9761cKorF3gcUsu+UQoaMSvwyqNhpi61O/NlYMKuZFUva+fCd9dz9pxVULJe1l0IIIYTYMAmX24mWmLdyaYdLw9IZOSYHU9X57P0GYtENV4mW/dBGQ63OkBHZFBT6+XztZ3y4+n3a9ERrbWGZhqJCfW2Mqqo2cvM18gsTP+g6Q2ySW1E7DpcxM0YkvjbT2a6jPlzn3uZdd+k9j2EZ6M4kVzPKoBF+cvM0ivtoSceqiur+kO/d9sMxIHdgUkUIPOHSNJLWaIJTYUxsNwKpIUN1vy5Ib4n0Cvly3I993axibQpvGO5uwPHyzY+vt4xv3dFV0cOOACDrjdc2+rk3VuDjD1GiUaJTpnYaiI2Ro7ACAXwL53V4zIam7jrrZVPfA84vILq75tLfWVts/DksrMR6YU/l0rDsbXqKSwNJtweDGgVFPmrXx/j8k1oa6mOsXwXBbIWhYwK0t5o8fu8aKtdEEEIIIYTojITL7URLLFG5jJkxokYU3dTJy/fRf1AWbS0Gayo6nnrp+OYze4rkxEn2XoxRM4JlWTRGGt1jTHQGDg2i6xamaTJwSDDph2w3XGqeVlSz43CpmzF3KmVJdilgB2RnS5LGaKPb5hfzVFB1yyAWXwsaM2IMHePnJ4eX4As6w0wSA32cllPd1NOupX/ugLS9JJ2waWImTdAEe3qrkhIuM7XFOhXWzsKbE6YhvS12c+qpyqVv3hyg++EycqgdLgNvzOiR6+iOwNsbbokFwO/HGLkDam0tSnV1xkOSvrcZKpfO9zfoCybd7jyu+1uRdDwt1jtkKnWgD5C01jj1FyzHTO+Dz6/w3uvVfPZePT4rix12ymXvKbnsfUAhhm6xZNHGbWskhBBCiB8PCZfbCWfNZUGWHQrb9TY33BSW2d/mqnXRzA92ztGo/z977x0myVmee98VO4fJs7M5J+XVapUTCAWQEIroIGMM2BhjDD4mHfuzwRgbY4x9bB/bOGCCCbKEQAEJaUE5rKRN2iBt3p3dndnJoXN3xe+Pqvet0GG6Z2d2Zlbv77p0qWemuurp6ure9677Cdi/N4dwRMDa861FMRFWOdVZWOqmhvM2xLBoaRAmDCxbFaZ/c6eiusd/1HIuNUOjLmVToInGX3J1miX1l+70XN3QoNsNSBRD8aTLumPhOY42y3E7lxzHISyFMS/SRV1WAondMHTPohzwpsWSmrZKYygccVndnYpIUc9+zxSeWsHTEJqOc1lfMx+CsWQptLXrIR48AGH/vkkfv2FME/KvnobJ81Cuf/eEm2tr1gIAxH2VU2MnauizvuVc3LD4RnSEOz2/n4qGPv7rxUnVduqj3TNd3fWXfjd+2aowPvQ7XWhuF6DrQEsyioVLg9AMFYuWWcI4k2K1lwwGg8FgMGrDxOVZQlbJQOAEtIas2sG8mqeLzHiTLS5P1U5r278nC9MAzrs4BlH01hS6UQ0VHMfhvI0x/NZnu3DxFQn6NyLsrIY+kr29VibQvPvTULJdykQgCQDIqBmP6zJeslJj3WNDdFN3zcksOHMpTb+4FKjLY7hqKK+afw3uWHk3ZEH2pBtaTqdrBmVZWqxQNorE71oJnOA6fo20WMkR5tMxz7IaU9UtVnxrD0yOo/WJjVC84y4AQODnD036+I0ibnsDwkA/1EsuhdnUPOH22tp11vP2v115gwnSiyVBwrxoV9k5npaGPvA65oC35tKfUu5n6cowPvTJTtx8Zxtuv3sBeJ6DYqh0bmw6VXlkD4PBYDAYDAaBicuzAFW3ahYjUgRh0RIreS0HzRY+sSQRl7Wdy8P7rVrNVeudVM1KMyBJ51gOHJItAnjelRJrz4T0d2it1PgmJIbo34t6ESIvIirHADhdXAmjdt2lu2utZmg0PlJn6o7ZnbLqFYu2u8oLVBCIgmvRzgvgQMS1UebyVEqL9btW9dY0usXlGU2LnaBWsK59jI1COHnC6hIbiUz8BB+l2+8EAAQf/ingctimk8AjD1vHfv8ddW2vr7HEZTV31V1L2ch55CbpXNaquSTvqTt13JMW60rv9qd609+bOkSBQ1i2rkvNUBG3xWVmnIlLBoPBYDAYtWHi8iwgrVj1kDE5hrBd45VXnbTYQBiQAzwG+0o4+HYOv3p8GIbhXczruoljhwqQZI6mwVUawwH4U1O9i1S3W0c7tOoKrXOUXemnIVsIK7oCRVcQEAJUcKbtGk+S5ks6xmqehbPjKrrTdokY1F0pumQhrpsGTQ90Oz/umksOHBWjlc6BtT+nMyd5jn8bQqUuogRvWuwZbOjjjneSziWdb3luY/WWBGPxEqgbN0E40Q1x+9ZJ7aMhdB2BR38Ok+dRuvX2up5Cnct9lZ1Lj0hv4DxOvqFP9W6x/lpfwOtc+pv7VIJ8dgKCDI7joOgKonER4JhzyWAwGAwGY2KYuDwLIPWIyWATdcJympMWa0BHR5cMVTHx0Pf68MozY+jp9jb36ekuQikZWLIi5KTEVnE3SBMdoHyR6q25JOM8nDpHd2OTsGQJSSIMA0KQikuyPUmTLdnjOjSPc+mkxeZcDY3I70yX0CWLed1wBGk1cene3qiQFivyjnNpUHe0vOay0mM/EXFm0mIxBc6luGc3AEBbPzlxCQDFO+8BAAQf+PGk91Ev0pZXIAwOQL3yGpjt7XU9x1iwEEYkajmXFdzViWouqzH5msv65lwSqtVZVrppBAC6QVx9ERIvQTM0CAKHaExANq2V3ZQ6HQzTwLPHnkV36tiU7ZPBYDAYDMbMwsTlWQBx9ZKBJB1tkVdzVGQZpoH2eZZjqCrW4rDnuFdckk6Qy1e7UmLNyk6Fx7ksE5eO2HJGkThpsWSoPOA4l0RcBsWAZ2wI4IzqIELZfWxFd2pIi645mSQd2C0iicujm5qrLtTtLjpOq8ALXjHqE9nCBHMuyTGdfVd3p8Iz1C12sumcbsS9tricpHMJAKU77oIZCiHw8IPgspmJn3AaBB56wDrmB+6s/0k8D33NGvC5LPiek+V/rvMmQvnzrHPeeM2lKy2WLz+ePwbDIy4rP3ZDPvPk5pBqqDBNE7G4CMMA8rmpa+qTUdI4PHoYB8cOTNk+GQwGg8FgzCxMXJ4FUOcy0IyALcxUQ3VElqGjoyvgeU6vS1yODqvYsSUNAFixxnHSqqXOuese/fWI7rTYSjWXAY+4tFxKMqMzIFiuZtjl5pFRDkQoay6h5xaUpuluXOKIaisWl1h0OZH+hTgVl5xAa+IqNfQROYE6f0aNbrGVHvvhOZ6ehzPZLdbNZPv5UHHZ4BgSN2ayCcXb7wSfyyLw0P9Mej8TwaXGEXzkYZjhCEq33d7Qc7U11Zv6TNa5pA19KgjEWoi8SG9kVHK6/TFUGkXCcRwM0/B8ZpxtnBsysuu7hDb1mcK6S913E4jBYDAYDMbch4nLswDS/CYRSDgdWnWViizd1NG10BJu8xYEAM5xLnNZDT/8t17ksjo2XplAa4fjGuoVmvlY+6s86sD62VVzKTijSAw73S5Q0bnM2n+zYnSnzobEIHiOpwtQ1eNcVm5QRLZ1d67lOM7aj6G75l96L38ihq20WCfF0O/yiLxInb9qQtXvitaCuJdnMi32tEeRFIsQDh6A3jkPZlvbacVS/M2PAgBC3/vOtDX2Cfz0f8AVCijecRfMWLyh5+r2OBJhX3lTn8nWXJKbF1yDabGAc51Wcj3911qlmksnXb1c1JHaaMvtJ92eXU19prDukojdWjNwGQwGg8FgzC2YuJzjKLqCnJpFXI5DtOukAEB1zX0EgK5FMu75rU7c99tdaO+UkRrTMDqs4Mf/fgqjQyrWnBfBzXdYImEwP4gj44c8LqEbtWZaLGlww7ti0cqcS57j6WOSFhuyRWXI5VwGhCBEXnSNGXEL2yqpfaTmEqT+kwysF6CbzoB5wddAR6TiUiiruXSn6gq8SN0+IlRrOZcTpT4Sp9Yfz3QyWVFEEPe9BU7XG55vWQntwg1QL7gQ4r63ID33zGnvrwzTROj7/wXAEbKNUMu55D3nsf6v08mOIvE8t8L14n8vKzXxIZ/LSp8ferOE5yHTG1UKYsmpH0dCjq8x55LBYDAYjLMGJi7nOGMF4lomATjjNdxjOgBLcK07P4Z4QsT8xZaI+97/60XviRIWLg3izvs76UiRbf1v4JXel1HQ8p5j0TQ5vb5usbXSYiVe8nSTtf5GxGWI7i8gBiFwAn0tbmFbDaOCc0n+bzX0cdJl3bgdIbJw1wwdpmlCFmRnbAnnbujjpBq6aaQWj3TEdb/u6Way6ZwEcecOAIB2wUVTEAyH/Kf/NwAg8vffPP39+ZCeewbi/n1QL7gQ2vkXNvx8Ki4rdIw90w19APd1Wu50lzmXptu5JHXP1ue4knNJbiiJnOiZUxtPWJ+HTGrqhKD/c8pgMBgMBmPuw8TlHGe0YM1/bAo20d+JvAjVUKu6fAtscZke19C5IID7Pt4FSXYuBdWwxJ57diTgLEq1WjWXcFxBp6GP4mnoExSDiMoxT4dWwJn5GHSJrKAQgMALtEZMrZKq64Y2MrJTAnlbKIq8aNVQulL/vK+POJccdaGImHV3v3XPx3Tq2LwfJXfK7USO1jmt5+Hdi9+DjnDnhK9tqphsEx+CtHM7AEC7aMNUhAPlvbdCW7Ua0utbIL368pTsk0AEKxGwjWK2t8NoboZw6ACg+a6/SXbd5V1ueqOI9Dosv67Kai5R3sRHrJUWW7HmUpmWmksnG4GJSwaDwWAwzhaYuJzjjBfHAQDJgCMuyQgBd1qru/PrijVhBMM8zt0Qw0c/vQDhiHeBS8RZUS94fi/zluvoXgyWpcUStxA8HfiuGaqnluu9y27Duxbd4BmrwHM8FVchV81lQAjSWkTN0KrWgXrj9zmX8C7kiXgub+jjci7LthWwKL4Y86PzrRpOexFPjlGzoc8EHzNZkNEVnT+p9NTJ4j7WZNwz0RaX6gVTIy7B88h/9nMAgMhf/BlgVE55bhRpyyuQXt8CbdVqKO+9dXI74Thoa9eDUxQIx456/uTputvA+7covhjt4Q60hFobDkcSGqi59KXFchxnNaRC5VpH2tCHdzosT1/NJfmcsvmZDAaDwWCcLcxMe0rGlNEV60JnZB66ovPp74jDVtQcceheZCaaJHzha8toGqwfKi41a9RHVI4iq2QRlkIY9U4wqTrn0hrtUV5zyfM87QBbcnV77Yx00kUzqbkUOAGSINH0Vd3U60qL9XeLJSmu5P8kDde/OCfnjXPNuVR0x7m8rOsKuq1/pmC5uHQ39DlzorFeTicmLp2CcOgg9EVLYLY2Lo6qUbrjbqjf/mdI27ch8PCDKN39wdPboWEg8tU/BQDkP/NHQIOdWd3oa9YCr7wEYf/b0Feuor/nJulcLowtwsLYoknFsiS+FDw4xOTyxkTl4tJ5rBs6ePD0c1A5LZaMIhEh8yRTwdUtdhpqLplzyWAwGAzG2QNzLuc4i5OLcePSmz0NZ4ioc4/q8Nc1VROWgLPoI87lkvhSbOzchLXN68u21X0OE0nD46rUXLoFndu5nB9dSB+T2sOAGLC3s51LU6NzLmu5beS10pmb1Ll0nBigvCGKu+aS7L/a8Tg6iqRat9jJzT+cCRpNkRXf3AnONKFeNAX1lm54Hrmv/TUAIPIXXwaXGj+t3QUeegDS9m1Qz78QpTvuPq19Vau7dJ+7M3UTYXXzGtyw5KaK11WtOZcmTDulm4jL6g19BN65OaToKoIhHqEwj9EhFUppalxl6lwycclgMBgMxlnD7F71MiYFqR10j+qotJCsBkmhJc6nJMhY27KOOo5u3DVdgMst5HhPWp1Of+8IOnfN5YLYAvqYOJfk/yJxWlypvu6RJtXid6f4uf9vmEbFhXmlUSSKQVxOv7j0jiKp1dBnMnV10w3HTS6dE3BSYrWLLp7SmABAvfRyFO+6F0J/H6Jf+tyk98ONjCD61T8DAGT/8m8A4fTeA6djrHccyWmPdJliysSl6/OpGzo4cJ6Zr36q1VxyHIdlq8PQdRPdh73p8rrd9KpRyHeFaZpVOz8zGAwGg8GYWzBxeRYi+hrlAPW7A+7h6kXNcj5JzWMlQeav23LPfeQ4DhIv2XMuy51LIuZEXvSk+AXFIK5ccDUu6bzU3ld5Wqy76Y9fHDnOpZOiax27tuBz11w6ro2VGux3OWnNZZVRJIInLXb2fcxOp1ustMOut7xw6sUlAGT/6m+gz+tC8OEHEXjogcZ3YJqIffb3wA8NovChD0O7ZNNpx6SvWQMAEPZXdy7PZM1sdbwxeLrFwvA0ozIrOpcklVz03BwCgBVrrJtLh/fnPPt/9MjP8PzJZxuO1C0oNVZ3yWAwGAzGWQGruTwL8XdhBcq7ulbCGtPhbFewnUuyyPSP7gDKRavpE3QiL6Kkl1w1l84+OI7DPavvqyi+liWW08dEqGmGTpt/BF3OZVAI0lhlQfak23nTU2sLPuLU8Lzj2hCB7X/tZaNIajT0aWT+4ZnCE+8knEtTEKCde94UR2VhJpuQ+advI3HP7Yj9709DX7y0IYEY+qe/R+DpX0JbthzZv/jrqYkpkYTeNR/C0SNAsQgEraZTp9sYaaqplhZLbhpZY3asz3OlESBOzaVAay5Jh+YVa6xMgsP7nC7SqqEiq2QnFWulGZwMBoPBYDDmNjO/GmJMORWdywlmyb3a+zIePvQgdeoAoORz7SotnnVTx9sjb2HX4E4AgGE7JWRbiZdgmAbtuup3DINi0FMvWvn1iPa+LeeS4zhIrue4GwCJvOiMIjENz/E8jysMoKciGjwdo0JEqz/usoY+ZWmxlY87W5hsIxq+7xSE/j5oa9cD4fB0hAYAUK++Ftm//BtwpRIS998NcevrdT0v+IPvIvq1r8AMh5H59+8C0eiUxaSvWQvOMCAcOkh/d7rzQqeaammxbhef1CBPlBYr2un1qp1eH0uI6OiSMTqsYnTY+h35rDU6q9I0Tah69a7TU81ocQQPH3wQp7K903ocBoPBYDDe6TBxeRZCRoC4mWjxNlQYRFErIqNkyv5GxFHFtFhTx56hXdg9vMv+2Tv3kTYXsjvP+msX60HgnVEkmqFB4iWPYAtLVoqsJEg0hVc39LLaStF1XioJvvZwB9rDHVgUX0TrVqnA9juXnNe59Ddz4WeZo+VnsqJI3L4NAKBdOEUjSGpQ/NjvIPfZz4EfH0fyrtsQ+MkPve1P3WgaIn/xZcQ+9xmYkoTU934M7bwLpjQep+7SSY31vLezIC227L20z5eTri7Q+ZiVvhPcM2Bl2u3Zqd1esZakxlrupVFnU55DYwcxlB+iPz/zxAj+4/92I5uxUm4rjUWZSkYKI8ipOfTlTk3rcRgMBoPBeKcz+1a9jNNGquAETrT4I+mf7g6zhFo1l7phuYmmaUIzNEds2ZcWEWmk8+xkXDwiSDVDg2Zq1KEkEOdS4iVHiJpambicqA4yIkVw09Jb0BmZR51Lun2DNZezvVusN223flEk2Q6itmF66i395P/4z5D9yl8CxSLin/k9JO54H+RfPgEukwYAcGOjCDz0AJquvQzhf/p7GPEEUv/9ANRrr5/yWLS1FTrGum8izIKvU/9NDndarPV3Z8xOpVR5dxMsyTVKiOBPja3kXGqaif5eJwMiVRrHllOv4D+efwj/+jfHcexQHlueH4eq6ujrtb5v3HN4pwMSp6pPPMqIwWAwGAzG5GE1l2chRAy6IQvJo6kjOJ7qxsbOSxCVY/bfDOrQlVxpsXR/fHVxqboEpeoeOWKLMeJclmzn0i/SGnk9RMRazqVbXNrOJS+7RohYcbnTX72pqrUvfX+qrl84OE1RbCeNq9XQZ+YdLT+TdS6l114BACiXXj7lMVWj8HufhnrxJYj94acgv/IS5FdeAgCYgQC4knO9Kpdficzf/ROMZcur7eq00Im4fHsv/d1sa+hTrebSPQqIdos1yhv6aIZGP+/kJpWqq9ANHQIvYOHSEOQAh2OH8tA0gzYA0k2rYyzHcXhx8yhe3DyKj35mARYtDSGvWkK093gJyikF//2vvTAMwBQNjAyWMG+BRGMxTROmWXtU0mQgr7/S9xuDwWAwGIypY+ZvtTOmHOIWuiGLt7eG9+Bk5gR+duinGC4MA3BcS+txoey5fI202JLL6dQM1WnoA6fmEnDNlpyMc2kLxCJtMCTR1D7AcS5lQaJjS0idmFsUinxt59IN7xql4n8uUMGprCI+gVna0IebhCjKZiHu3gW9vQPG0mXTFFlltEs2YeyF15D63o9RvO0D0JcshRmLQVu+AoUPfRjjDz2K1M+fmDZhCQDa6rUwRRHi7l003XS2jyIxYcVputK33d2XM0oazxzfjNHiCADvmB7y2R0tjuBH+36Al3peQNHMYenKMFTFxImjRY/jSAQc6SY7YLuXZJtM2q6FNgCet2IbHlTs41rPffqRYfzN/3cUuezUpsmS/btTfBkMBoPBYEw9zLk8C6k1ioRziaDdQztx/aIbaMoqABQrOpdeUebu8uh2AlRDLRv/4e9cO7m0WNGOzR6Nwoue/SSDTeA5HnE5gbxmLWwVImb5yo11KjX08SPxEk2n8y/a/W5krYY+syFd0s9knEtp2xvgdB3qZVfMTH2hKEK55X1QbnnfmT82AAQC0Nasg7R3N/iBfhid82adc8mhinPpqqV0N6M6lT2F3mwvmoLNaA62QDd1BHirEzPP8XSUEMdxOJY6ivHSGFasvRYH9uZweH8e53Z5m/KYCo/+Hus7ITVufXY0Q4OmmijkDUTjAmIJEavWRfDkLg7dKQ2KYqXUZzMatr6cgq6b6O8tYvnq8rm6k4V8jks6E5cMBoPBYEwns2/VyzhtKo0iIeLSdA1VH8wPwjRNj3NZ0irUXLocPL/IUlyLNXeKLBFfoq+50GTEJdkHiVMWZFpbCQBRKYo7V92DS+ZdSkUdcS7di23eIzQnvvTdqbFlcfvFZY2ay3qE7JlmMkJIeu1VAIB66WVTHc6cQTvvfACAuPtNAN7LYDY6lwZt6EM+l4Kn+zIRXTk1B8M0ylLJL59/JS7vuhL3rL4PEi8hq2TpvMu3dmaQKzo3lzRDw6meEki2bdolLjMZ6/H8RUF84o8W4bqbW9DaacUxPKBgeKiI7a9awhIAxkentgaTfP8pLC2WwWAwGIxphYnLs5BKziVJCyOLybZwOxRdwXhpzNPEp1ShoY+7PrFWOqmmq56ulEB57eJkhBYRdgUtT/fprisVeREhMeRJZS0Z3jEqgLcWtdLMTj/upj7+7Wulwfp/nu3OZb0NhxxxecW0xDQX0M4l4tLqjux+b2dD4yb/TQOSFusZRcI5zajI90Jey9Nt3DdSFseXYEXTSgSEAGRBhmqoSDaLWH1OBKkxDb94aACH9uUwOqzAMHX0dDvfH6kxR1xmU/b3TqfzmWrttL6ntr2awvf+9QSee2qU/m18dGob7xBxrTDnksFgMBiMaWXmV0OMKcc9ioSIO5IWpxkaeI5HZ7gTgOVeepzLGg19gNoLaCst1luLFpcTdT23FkQgkpmTEi97FsAeoUma/9hdIat1i63HQXXXrvpFsX8R73etJupMO+M06lyWSpB2bIORSNLGNu9EHOfSEpeTnRc6XZTVXNJusU6jLXKziIz2AYC8mqOPqzW7It8lqqHiAx/qQEu7hO6jWezfk8OO19LQDA093U6KPXUuTY3WW7rFZXuXc5x4Mw+YQKLJ+h0RplOFTrrFGqxbLIPBYDAY0wmruTwLcY8ikXgJiq5QR1E3dYi8iPZwBwBgMD+AiOTUNhUqNPSpVyhphkaHtpPtFseXoCnYjLHiqKdWsxEc59KKLSDItKEPx3EVO8IqduMOwZOe2pjL5HYuy+ZcYqKaS5czOAvTYt2OWz2iSHxzJ7hiEcrV11rdWN6haOvOgclxEPfuBjALu8X67hcS59LdLVak43qcesmcmqONd6plF5DPg2IoiIaiuP8T8/HI830YPcSjkDeQSik42V0ExwOyzCM9rsEwTOiGhkzaOlZbh/OZSjQLuPL6FoAzcOP6DrQZi6FrJv7lGyemwbm0jm+YBlRdhVSh6RmDwWAwGIzT5527SjyLcddcBoQgACctTDOsOZFt4XYAlricyLkU6uyyqrq7xXKO+Lu4Y+NkXwoAxzklKW2Wc2n9zj92paxbrGfeZGPOZUAIuJ5bvaay8s+zvKGPp1vsxNtLr9spsZvO3AiSWUkkAn3lKgg9J8GNjMy6eaZ+geufc8m5UscNQ6cC0zAN5FSrGVa1emSSEUE+W00tEjZdG6du5J5d48imdXR2BdDUKkHXTeRz1hxckhbb6hKXhmlg0dIImlslGDDQ0iajpV0Gx01DzaVrDqfCOsYyGAwGgzFtzPxqiDHluMUlSe00TJ027BB5EbIgoynYhJyaw4g9hgBwzW20qdWQx7+Q1Sp0iwWAedEubOjYiCvmXzmp1+MXgrIg07j88VEhapC02MqCsh430e1u+FMFy5zLGg19ZoPo8NNot1j55RcBAOpl73BxCVfd5Z5dM9M1twb+sTflcy55+pnQTA2GS3RllTSA8s8UgWREKK7UUt3UkWy2PidbXx4DAKxYG0Yiae1jZEjFzjfGkM8bCEd4yDLvea7/sSBwiCVEZFIabe4zFeiukSmsqQ+DwWAwGNPH7Fv1Mk4bq2mH9dbKtvtmmAatqSKLxzY7NXasOFphLxZ+YecWSv6utO5RJP5F7vrWc7A8ubLh1wLA0xkWsLvF2nH5F8L+brGe2kzXtnV1i/U09PFuX5YCWcPZ9LueswFPSBPFVyxCeu1VGLE4tAsumta45gLaeRcAsOouiTCfLTcQ/C6537m0ml7Z4tLQPHMq06W0vU3lGy/k86DpLnFpaFRcZvPWZ27l2gjitrj8+Q/78cYW6+ZV18JgxdjIPl879SpOZXuRbBZhmk7N5lSgu46lsLpLBoPBYDCmjdmxImJMOUT4kdROd/MO4sK126mxtfCLN/doD//fVEPz1HZNFX4hKPMydR6rOpe2O3E6DX2kGqNIysTmHGvo04hzKb7xGrhiEeqVVwMiK9OmTX32OOJyNjTzAcpvZDjdYl01l5wzisSdLppRM3SbShAn351WqhkaYgkBggCYnI5QmMeCJUHqXI6PaoCo45obm7H2vKhnf27ncqgwiINjB7B/9G0kmiT7uVMnAj1pscy5ZDAYDAZj2ph9q17GlEAWgqTDo2EaNDWMOBekqU8liCAqdwadS8bt7AH+tNipW2z7Y5CFAF0g+9NVye+JO+EVeY0JPpmv0S32HZQWKz//LABAufb6aY1prqCdcy4AQNq101NbPBson3NJaq1Jt1iR3pjRDN2TLkqcy2ppseTzrrqdS9MAz3NIJEWYMLB8TRg8zyHe5Oxj3mIR8UT5Pk2Xm0iademGjmSzS5hOESwtlsFgMBiMM8PsW/UypgTiXDppsXpZWmxUitJOsf4UV+J4ls13dC2m/emqnoY+U3hp+QWkLEhUIIs+0cfbnUxJWqw7Pde9baPOpf88+NN+azb0mUIXd6rwNvSpLYyk52xxec110xrTXMFMJKEtWw6h+xiEMavOcLbcQCi/UVChW6xrFIk7XTSj1E6LdWouHeeSjPhobpNhcDrWnGO5k4mk830yf1llseo+dl7N09+RNNvU2HQ5lywtlsFgMBiM6WJ2rIgYU45I0mJ5SyTqpu64Fy6xRtzLqOxNWQuKIXs/fufSrjEDXybQqjX0OV38rqHEy4jLCaxIrsTq5rWevznOZYVRJA0KPrmhUSTe585259IdU03ncmgI4p5d0BctgbF02RmIbG6gbbA6IMs7d8xwJF6qOZeVRpHoppMqDzgzIOvtFuve78p1EdxydzNaVmUwXhyjNZeBII/WLt5+vvcGlrvmkhxbMzQ663Kgb+q6urpTcJlzyWAwGAzG9DH7Vr2MKYEsBElarO5Ji60gLqWY5/kh0Wq+IfpEFRFZ1jB27+WjupyQqZzt6B83IgsyOI7D5fOvxOL4Eu+2vrElHpHndi7riE/21FzWdirLay5nt7isez7jr38NwHYtZ0nq52xAtcVlYPt2ALOp5rJKQx/7xpLIC/QzrBkarcV0U7Xmki/vFkuzIUQO7Ys4/Or403jsyCNINAm4/Pom3HJnGwzO2t5/nekVjm2YOuYvCiIY5rFvVxa7t6cnftF14BbRbBQJg8FgMBjTx+xb9TKmhKgcBwDE7P/rhpMW605nXRhbhKZgExYnlngWf8S5LKs1JGmx4Mr+5nEupzIt1nUckRdrijX3wtn9c63H1fA09Ck7D95ta829nMrmRlMGV2fN5a9+BQBQrmUpsW60jZcAAOQdtricJcKbfD7J9WeY3rRYnhOslHZOsLMZrM9JTHZuLlWtubQ/D5pLXLrFKambBICBfD/ec1srzt8Yp8fwjzlyO5cE3dQRCgu4+zc7wXHAYw8MIjV++mmso6MlPPPECAZOleiNJwaDwWAwGFMPE5dnKRd3bMTtK+5A3BaXnppLl9gJS2Hcuvx2LEss96StkZpLf70jWbQKvODpHAt4R5FMtVsn+pzY6tt5U+/ccbgd0HoaDrnTYv01lhM29OHdKbiz72NWl9NmmsDmzTB53uoUy6Boa9fDDIUg7dgOGMascS5JHOTzQrrFOinxTuYBueHEcRyuXXg9/a4IS+GK+6bOpUucaR5xmaePj6QOA/COQCKxECq5pmTb5asjuOy6Jmiqia0vpSZ+4RVQSgaef2oEqTEVh/ZnkM/p2LM9g5GxAn79+DD27MigVCwXuAwGg8FgMCYPmytwliLyIuKBhKfmqlJarBu3w1a95pKn2xI3j8zVVHWVCtSpFlR0bidfW1yG7Lid51VOha2n5tItticcReKfc4m5kxZbLT5h9y6gtxfapkthNjWfqdDmBqII9YKLIG95Ba0nh1BamZjpiAA476XES1B0xTXn0icuOQFFowjOtFzMpmAz3r/iDqSVFBKBZMV9y3YHatXT0Keyc3kifRxKp9chrOxceq89d6rspVcnseX5MWzfksI1NzZDkhv7HG15fgzPPzWKwwdyOJUqgANQKBh45MGTWJReCgBo65TxqS8tbmi/DAaDwWAwqjP7Vr2MKYXneHAc523oU0VcusVUSAhV3JYsTnnOaegj8iJEXrRruKbHuSTHIt1vqxESQ1Wb6ZBz4d5fLTiOo07pxA19KqfFzkZhCdSXxik/9SQAQLnxlukOZ05CmvpcdUrCJZ2XznA0Fv4RQqYvLVZwzYc1TROaodFrm+O4qsIScDuX7lEkTi2jW1xqhobB/ICnvtHvXFauuXScxHhSxLrzoyjkDbz63BgMwyzbvhq6bmL7Fqte88SxHHQd6GiLgeMscbz2vAhCYR5D/Qp0vf79MhgMBoPBqM3sXPkyphSBEzw1l/4GOQR3SmlT0HKqSKocwRFNTmMQiZcg8ZKnhmv60mKlmttxHEfHqwDlotDt3NQDEdxl4pKrnRbrFuGzkXrmXFJxeTMTl5UgTX3m7TuO+bEFMxyNhSMurevWhL9brGj/3fq/YRpVMxn8kBst1ZzLolb0bF/Si9B0d32mNwXVMI2yNHe/4Lz8uiZkpD786qk+fPefeupOYz28L4f0uIZ4UoTBWfu84IJWXHRpHOdsCuHuj8yjI0+KBZYay2AwGAzGVMHSYt8B8BwPw9Ut1j8SgEAWmSIvoiXUgntW34eg3TWWwLnSYnnqJjoLxJLd5n+6xKU0QVosAESkCDJKxoqTr+wo1tMtFgDWtZyDrJqp2tiI/uyvuZzlzqVnFEkFF5Pv7YG4ZxewciWMFasAZu6UoW24GAAgbds6w5E4kFpiySUeAUcEks8D32BzK+s5VraCt+ZSK9suIARQ0ktQdNXTWdaNaZowTbNMXJqmCcM06PUZas9hwXv34a2dWQjHbsWvHhvG++5pnzBW4lre9IE2vLUPGE/JmDcvjIhqxcPzHIJh6xjFgo5IdBY23WIwGAwGYw4yO1e+jCnF3xmymrAiC1KysPMLS8CpJbTqLEnzEImKPs3QpkVQ8XWmxQLesSp+EeikANYX49qWddjYuans99XEpP/n2dLoxc9EzqX89C+tB7fdxkaQVMHonAd9wUII+98Gl5makRmni7+hj1Nz7e2e7HYrq6XJV0ISJDqTEvA6l4SIZM3MVQ3F01nWGw8ZjSKW3dxwjw3Jq3m0tMnYdHUC+UQ3tr2awpEDuQnj7OkuQhA4rD4ngpvuaMElVyYhCtaMTyKOQ2HrXBRyzLlkMBgMBmOqOKvFZalUwl133YXbbrsN73vf+/DQQw/NdEgzgsALMEyDugjV0uBIKl2tNDme1izyrrRYEaJLsFZzRk8HmhZbx77dabH+kShkP6c7HmSihj4cxyEgBMoaDM0WPPFWEI+Bp62UWNx66xmKaG6ibrwEnGlC3Pr6TIcCwJ1Z4O0WS+bPUnE5CecSsBpqGaZBRWWlukny+VN0perYD3dttv/47n0SoRkICui4/AQ0roRHfzKIYrH8uIRiUUc+pyPZIoLnXbM4eZEeyzANhELWuSoUqu+LwWAwGAxGY5zV4lKWZXz/+9/HY489hgcffBDf/va3kU7PDofhTEIWVKq90Kteczmx8HKnlRIHVOJlT7pqW7jt9IP2IZBusfU4l3LUeR5freby9C79iUaRAMBNS2/B9YvefVrHmS5qOZdcJg3plZdgJJuAK64406HNKdRLrfMjb3l1hiOx8Df08afF8rQW2D07tn5xSWa/kkY9ZJSJG8e5VD0upCceV/da/80st7h0u6TtCwS0nzeK9LiGp38+XNZ9ljA2bLu0LWP4yf4f4si4NRaF5wTX/E8DQeJc5pm4ZDAYDAZjqjirxSXHcYhE7LvoimLV8xjvvBQospBU7HrIamlw9TiXNK0UPN2vxEue57SFO04/6LLj1jfnEnAWt9bz/CNEGmvoU40y57KCuEwEkoi6htPPJtyCwB+7/PQvwSkKlBtvAkRWll0L9fIrAQDSqy/PcCQWvKcmmnd1i/WOIfKkxTbkXNrjSFxjTvzjgdzOpepLiyXxuJ1L/1ggwygXl0sS1uiQBZvGEIkJ2Pl6Go/8eACqUv59PjZiCd8TkVehGRreHnmLvk63uOzl96I/uAfFvOGJjcFgMBgMxuSZ1eJy69at+N3f/V1ceeWVWL16NZ577rmybX70ox/h+uuvx7nnnot77rkHu3fv9vy9WCzitttuw7XXXouPfexjSCaTZyj62QNZPJaIczlBzaVQxdkEfM4lrd+SPM5le2jihhuN4jT0aTAt1icCSbdZ8TRTdyequZzteJxLn/MUeOznAADl/Xec0ZjmIvqq1TBaWiC+uQPI52c6HDQFmhASQ2gPt9NGXoCroc9p1lySz43iciUDvmwC8vlTDcXTWRZw0nQN12iU2mmxlricF+lCIpBA1hzFe38zjFhCwK6tGbz4q9GyGMdGNBjQEIyQmB1BTYSsburoNw9jNHAI+ZyGx488gl8ee6Lu81Av3aljePLoL2ijMwaDwWAwznZm9Yo4n89j9erV+LM/+7OKf3/yySfx9a9/HZ/61Kfw85//HKtXr8bHP/5xjI46C45gMIjHHnsMzz77LJ588kkMDw+fqfBnDUT4EOdyorTYWmly7m6x1WouW0Ktpx+0j4BgNRcKSeEJt3U7l35X5ML2i7Fp3mUI17GfWlSqsZxLVHMuuXQK8rO/hpFIQr32+pkIbW7BcVAvvQKcqkLa9sZMR4OoHMPdqz+IZckVlnOJynMu3TeQGnIuyTgSXaHi0p+qTj5/iq6WO5cody79mRJaBedS5EUsS64AAJRivfjQJ+YDAE4e844/AYDRYQUZqY92gHXGI3mdS1G2oknl8xgrjmG4MFT3eaiX4+luDBeGMFJ45/27w2AwGIx3JrM65+2aa67BNddcU/Xv3/3ud3HvvffizjvvBAD8+Z//OZ5//nn8/Oc/x8c+9jHPts3NzVizZg22bt2Km2++eVLx8PzsEhAknonikgTRGh5uKuA4QBKlis+RBRkcB4iCWHWfIi+A46yRBl2xeWhPt2NRYjEOjO6nfWFkceob+pzfcT46ou2YF+2ccFseAo1F4HnPa+mItqMjevrOqsgJnj44As/POYHJ8xxM04TAc/QcyZutlNjSXfeADwbodozqaFdcicATj0F+7VXo11430+FQeI6zxnrwHEwYEAWBvpeS4Fy/Uo3Pu5+AaH1H6NBgcob9fSFAEkQq4mKBKDgO0EwVmqnC3zuK5zmAM8HxnFVzKXg/SyZn0Hh0UwPHWceNyp3gOCCn59AxLwBR5DDYVwLHeW+WjI1oSEknsTLq3a8kCPT7C5wB0U62GM2PQbS3m+prnbx+Ewb7HM0A9f4byWBMBnZ9MaaTuXx9zWpxWQtFUfDWW2/hk5/8JP0dz/O4/PLL8eabbwIARkdHIYoi4vE4stks3njjDdx9992TOp4o8mhpiU684QzQ1BSp+ffm8RjSCIIDBxFBdLQmERDLG+O0mQlEs0E0J2JVX2uLEbO2ScawtGs+lnZ9EAAwbPZiQAuiKdg0TecpigWov1FQNGo5ndGEhJb41MdjmiY9BgC0ts7O2spaxKIhGKaBlpYYmkP2OXriUQBA8MP3I2hfVxNdX+94bnkP8MdfQHjrFoRn0XdEPBaGoitoaYkiFJEQgkQ/my2lOKJF6/ptTlb/vPtpKyVxshREJC4hEQ4iGg2iOR6DJhZo6ueCjjbEekMISDzkMIeoYn33mDDR3BxBT7oHRsBAJBwAz/FIxCIocBl6jEQySD+zobSIqBJER2sTRF5EdCiISFRCe3sMnfOD6DlegCQGkUhKME0Tum5iZCyDrNSP+V3LYHBOQ6GWpjh0uYgsF0SyKYxYwlKXGTWNhfZneaq/uwKDPKIIIpYIoKV59lwb7zTYdxhjOmHXF2M6mYvX15wVl2NjY9B1Ha2t3hTMlpYWHD9+HAAwMjKCL3zhC9B1HaZp4r777sOaNWsmdTxNM5BOF0477qmE5zk0NUUwNpaDYVRvRmEWRWSzTvpYaqwIgS8fbp5JlZDNFpEVFYyMZCvuK50qWNsES55tlgfXIR9Usb713KrPPZOcl9iAY6ljkEuxaYuHnFOO42bFa26UfM5KbRwdzcIMyuDGx9C0eTPM5maMnX8J+LFcXdfXO56upWhKJMG99hpGe4eBYPl82JkgmyuhqBUwMpLFeDqLgBik12k2o9DrNxes/nn3U8joyGaLGBgeAyIystkicryCfEFFQS1CFmSMjuagFAwU8mmYJRHZfBFhKYK8msORUz3Y3G3NUOV4DkKzgGJeQzZbREgKo6DmMTSSQkhNAgBGxtLIZovIjJfAcyqy2SLGuCxGRrJoaRPRcxw48PYolq+O4KHv9aH7SB7HiocRaOKwMLQEB0cP0NTaTLqEbL5E49d16/eDmWE02edieDgzpRkIw+MpZJUihkZTSJpz7ztirlPvv5EMxmRg1xdjOpmt11c8HoIk1S6nmbPishqmadLFwcqVK/Hzn/98yvY9m95cN4Zh1owtIsbgboTIga+4vcCJME1AgFB9fyZn7cvkPNuInIQL2y+m8cw0yxOrsDyxCsD0xcPBapjCVzmfsx7fexl8/DFwqoriLbfCEETAfk0TXV8MDuqllyHw9C8hbN8G9bLZMb6Fs99XXTegG97rlDN5+p1Q7fugEhIvwTSBolaEomswTSsNXYAA07S+BwzDhMCJKGol5JQcTBMICiHklBwUXXG+iwwTPMfTWIJ8CHkzD1XXaDxke4ETLffTBP17W6flPPb3lrB0ZRh7dlju51isG9GIgOWJlTg2fgyKLSI5kwcH61iKpkIUrfrLcWUUpmk91nS9bHzR6VDSSp6YGTMD+w5jTCfs+mJMJ3Px+prVDX1q0dTUBEEQyhr0jI6OlrmZ73Ticpw+rtVttT3cgYWxRViWWF51m47IPHRGOrEwtnhKY5yLkEY4c63WklDWJfZ/fgwAKN1170yEM6dRr7gKACC99MIMR+JAmteQWkjBM9tyct1iSWOtol6iI0PcsypJwx/y/5yagyzI9O+8758cgRMQD8TBczyag80AnE6yAKgwlHjZ6fRqH7d9npXaP9ivQNOsf3jHpG4ofA6dsQ4kAkkar/U6nYY+qqFCkKwa0LSaotuQRkMTUe/YEvc8UAaDwWAw3gnMWXEpyzLWr1+PV191hpcbhoEtW7bgggsumLnAZiGxgCMua92VDwgBXLfoXeiIVG+aE5WieM+Sm9EWrr/+8WyFiLNKMy7nEhw48N3HrIY0ixZDvfTymQ5pzqFcY3XWlZ9/doYjcXALKetn57Pv/h6o1j26EqQzrKKXoNmzMwXXiA8yksg9migkhugnxD1mhMS4oWMj7lp1L/2e0l2ziMkoEvcsXTKzs73LOsbgqRIyKQ3j0nEMxHYgnhDx7nMvAQAEXbXlIidSga0aKjhwkGQOiuqUCBiYWFwapoEHD/wEz5+s/V6ruurMGWXiksFgMBjvEGZ1Wmwul8OJEyfozz09Pdi3bx9aW1vR1taG3/qt38IXvvAFrF+/Hueddx6+//3vo1gs4gMf+MAMRj37iIgROvPO3/afMXnI4n3OOpcu5zX44E8AAMW7Pwjwc/ae04yhr1kLvaMT4s7t4FLjMBPJmQ6Jvr9EoHmcy0mOIgnYjqSil1yzM3m6DzJHlvwfAIJiiMbidwYFXrCuPzFI9+EWoKqhgud4azuTvB5LqCWSIuQAj8F+BWOjJfSHdqNzfhD/++7bsSi+2I7DEZc8zzturm6PUZF4ZEs6dN2EIHBQNR2BCU5HTs2ipJdwIn285nYlw5ltSYQ4g8FgMBhnO7Naaezduxcf/vCH6c9f+9rXAAC///u/j09/+tO45ZZbMDo6in/8x3/E0NAQ1q5di//8z/9Ec3PzTIU8K+E4DjE5hlQp1ZBLwaiPuepcUufVMBF88AEAQPGe+2YypLkLx0G95joEH/wJpJdfgvLeW2c6IjqTVrXFmHsWreBxMeu/mUDEWklXqIMouubcVnIug0IQqp0ealRwLv0xuYWYZmhOSi1njfvRTR1FrYjnTj4DeV4rst3N2HHwKHROxcLYEios3fGS/ZNzQo4hytZnQFUMDI1q+Ob3j+Caa7tw3c3NnptGhmnQWAta+WzNSqi64nodeo0tGQwGg8E4e2hIaSiKgu985zu47rrrJt11tRE2bdqEAwcO1Nzm/vvvx/333z/tscx1YnIcqVKqofoqRm3mfM2lHX9w61YIJ7qhXHo5jKXLZjiquYtii0v5hWdnh7is5Vy6ay4buOEUcKfFEufSnRZrO5vk/wAQEsPQFCsG3edcVhKXpJbTNE2ohoqIFPFsoxkahgqDGMoPAq0G0N2MbYf3AwBWtHjrxYM+cSnQOlQrHlm2flYUE0f259CiaXhx8yiUkoGbPmCl/h9LHcUrvS/hPUtuRnu4HXk1V9e5UlzikqXFMhgMBuOdQkP5b7Is49vf/jbS6fR0xcOYJkhTH5YWO3XQtNg56lyS+GMPWK5l6d7/NZPhzHmUq68DMHvqLmvXXDrfA418J/AcD4mXUNJLNH3V09DHbhgmuxqHhcQgvQFTlhbriom3HVSyX9VVb+ne3jANJzW2WYAOFcdGj0MwRSxv8zYaczf0EXmx7JxItnM5NqJidERDNMFDDnDY+nIKum7VS44UhmGYBsaLYwCsJkX1QOZ+AiwtlsFgMBjvHBourjrvvPPw1ltvTUcsjGkkRsRlA/VVjNqQBbPbfZlLcByHQCaP8OOPwYhEUXo/q1U+HcyODmjrzoHQfQx897GZDqdMSAmetNhyx7BeZEGGoiseR1So4VxaNZde4UiPXaGxEHFEqQB07UvkRWiGRsVlvJlHXhyGAQNRtRPNTd4ZowHXc3lXnCRVmDiXRw/kAQDnb4qha2EQum5iZEjxxEEEYl6rT1zSVGDDxLbXRnHkQH3PYzAYDAZjLtPwqvjzn/88fvKTn+CHP/whTp48iXw+j0Kh4PmPMfsgziVLi506zoaGPuuefgN8sYjSXffCjMZmOqQ5j3Kt3TX2hedmOBKA57wNcNz11pMdRQI4bmBeK9j7Eug+ZLvWUnbXXLqcy0rdYmkcJC3W3sbpFFvefIi4gvFmHgZnbS+aISSavK/FX3PJ+9JiSc1lNqODA7DugjDa55EutIrnWCT2vJqvem7clOy02O7DBezeOY7Njw5P8AwGg8FgMOY+DSuNe+65B4DVXOcv//IvK26zb9++04uKMeV0RDqxsmkVliZYTd1UQWsu52haLGcC5z9ujfIp/OZHZziaswPl2usR/pd/hPzMr1Cc4XPq1Fxa4pL3OJeT6xYLOG4gSRMNCiEqAElNpuTuFis43WLNWjWXvLdbrNOIyJUWax+npFtNdQJBDqEIABOQBAHhiPe1eNNinYY+qj0/Mxh0jr/mvAiicQEd9oiTgb4SzkEMChGXdjzutFjTNKveXFJ1BaWijgN7c5AhY6BPQSGvIxRm2SMMBoPBOHtpWFz+1V/91Zx1at7J8ByPy7qumOkwzirIwniupsXO23UQLScGUNpwMfRzzp3pcM4K1MuugBmOQH7xeaBYBILBCZ8zXfhdOncqrOipuWw0LdYSkKPFEQBATI4hJsdgmibmRxdY27jnXEqhumouieDVy5xLqWz7kkYEn46m9iAwAERjUtm/Te45l+70XbLv+YuDMAygoyuASFSAAcNxLvss51GxhSgR6SQtVlNN9PXl0dXlNBwCgP17sti1LYPkRuv/mmZCEnTABHq6i1i5zrs9g8FgMBhnEw2LyzvuuGM64mAw5hxz3blc9zMrdTP/4Y/MbCBnE4EAlGuvR+DJxyG9+hLU62+YsVCI0FIrdIut9rgeiDupGRo4jkNUjoHneFzceQndxtMt1uVcVqy5NMljuy7Trrkk3VbdY02IEC7azqVuGmhqFYABIBZzRCjBM+fSlRZLXFFJ4rFsVZhuY5oG2udZzxnoswTs8GgeO3alsOAaBcfzOfz66V4Yhol0SsOxsW5c8cESzl/fiXnRLuzbncWD3+uDaQC9h05iXFIQjQlYvTyE4gvAiWMFJi4ZDAaDcVYzacvl8OHDeOSRR/Dtb38bQ0NDAIDjx48jm81OWXAMxmyGzomcg04+39uDJS9sQzEegfL+O2c6nLOK0o03AwACm5+a0ThIEx0nvdRdZynQ67bRmkvZJRwjUqSic0+7xgqy51i6MfEoEjI/s56aS8M0kGy19hGPOXE5ccj02CIvljmXMTlG/0b2FwjwaGqRMD6ioVQ0cGD/OPpOlrD3zRSee6YPI8MqxkbtGLkSHt32PLYPbEMmreHh/+6HaVoptjpUBEMcNl2dRNt8a//Hj9TuSTCQH8DuoTdrbjNbMEwD6VJqpsNgMBgMxiyjYecyl8vhj//4j/H0009DFEXouo6rrroKbW1t+Lu/+zt0dXXhi1/84nTEymDMKjh6b2buicvQf/4beE2H/tFPgg8zJ2UqUd71HgCA/Kunga//LTBDNx/8abG8z6EUOAGaqU3CuXRSfWNS5SZQxLkM2tsS59JAPeLS2oaKYqFCzaVGnEsdi1cE0X5Axrrz4mVxcBwHmZdR0kt2Qx+vm7s0sQwrkiuxd2QvDo7up2m77fNkjI2oGOwrYWzcauBz5FAG4fFRiDEO19zYjECQx6lHDRweVDE+XsKuY2loqolNVydx8x1t0N9IIC+oCAQFSDwQDPHoPVGCphkQxcr3dXcP7kRfrg+L40uQCCQrbjNb2DO0C7uG3sQty25Fa6h1psNhMBgMxiyhYefyr//6r7Fz505873vfw44dO2CaJv3bNddcg5deemlKA2QwZitzdRQJl80g+N/fgylJKH7sd2Y6nLMOs70d6kUbIJw8AWH/zDU3q5UW6/650dm3AVeqKRlx5CcshtEaasOiuDV3knxGDMOXFuuec0nEJUmLNUhabHnNJUmLNU0DgRCw6eokFi6ufJOkJdSCmByzHVTfeBZOQFSO0XpUIi47uqzXePJkFqlxS+RmsiUUzRw658sIRwQIAof1F4cAAAffzmLn69b85w2XW+ck3gIEgoI9m1PHomUh6JqJA3urjyQhr6ugzf6u62nFer05lWUrMRgMBsOh4VXx5s2b8bnPfQ6XXnopBMG7WOnq6kJvb++UBcdgzGbmas1l8Cc/BJ9OoXTH3TA6Omc6nLMS5T1Waqy8+ZczFkN5Qx/v93VUjiEkhhq+OeJOi43KlZ1LnuNxy7L34aKOiwHU51wSkUvTYu1GOrJLXJJtSD2mbupUjApVXsf1i27Abcs/YG9D0mLtDrr2zyQOUhO6aJnluG7fOgJNs26gmpwBjSugc4Hj3K48X4YgAEcO5jAypGLBkiDaOy1hWtJL4DgOQTEI3dRxyVWW6Hz6kWEoJe95IBRtR5b8fzJk1aznpm8jNJLmWtId95jBYDAYDELD4rJUKiGZTFb8Wy6XKxOcDMbZypycc6nrCP3bvwIA8p/41AwHc/ZSuuEmAEDg6RkUlyDi0hZfvPfr/t2L34P3Lrut4f16ncs6Z6PSmkuvEHGPLBF8zmXFUSSc12U1TIMKVn/aL4HneDrmhPc5lLTjs32uyKiURUtD4AWgt9dy5VraJRjQAVlBW6cjrqWggU3XJCHbp+SiSx0nV9EVSLxEndclq4JYd0EU6XENLz8zVjFWUktKHMxG6c/14WcHH8KBsf3QDR3HUkfp2JWJODC6H48c/hl6Mifr2p7M8fS/pwwGg8F4Z9OwuDz33HPx6KOPVvzb008/jQsvvPC0g2Iw5gK0oc8cci7lJ38B4UQ3lKuvY+NHphH9nHOhL1wEadsb4PtOzUgMTlqsJQL8wiwgBBCWwmXPmwi3c1mvuKTOpS3eliaW4eLOS9AWbqPb+OdcVhxF4hPIlnPpFYq14H3/5AmcX3Rajp8c4LFwSQg6Z527rgUBnHdJGJe+OwpR4GhMqqGipVXGdbc04c4Pd+KCS+L0dWqGhoAQoHWimqHhmhubAQAnjpanvSq6Qs9PcZJpsRklAwBIlVI4nunGSz0v4ODYgbqeeyx1FAAwUhhGqjSOV3pfqumgEueSuMAMBoPBYACTEJef+cxnsHnzZnzkIx/BQw89BI7j8MILL+Dzn/88nnrqKXz605+ejjgZjFkHD1JzOUfEpWki/C//AAAofJK5ltMKx6H0XssVlJ94bIZCIM6ltfgXGpxnWQ1vQ5/KNZdlsVBxaQnHZLAJ61vPKXP9BU6g4pLUXLqdS7GSc2nq9LkT4T8H/lm1hmnQlNKlK0MwOOvcxZIiVqwPYvFKS1gH7PmZRLgHIzzOvSgGnrdej3uMCknl1UwNsbj1uJAvd/tKLreyaDuYBa2Ax488gqOpIxO+NhK/dfwScmrOE2MtFF3BUGEQgJVWe2D0AI6MH8bBsf01nwNYr4vBYDAYDELD4vLiiy/G9773PSiKgr/4i7+AaZr4p3/6J5w8eRLf/e53cd55501HnAzGrGOuOZfSC89B2r4N2tr1UK5790yHc9ZTuvX9AIDA45UzPaYbHuXNa6YCkhYbEAKetNZaEA1JhGO1z4zAC1QgEedSdh2D94lDwzToPusRz5zP3eR53vN7AwZ+eewJPHH0cSxdFabOZTwhQjM0mmIq89Y5UOyfScwExRaHsiBBpOm+GoIhHuCAYqG85rKolVyPLedyrDiKseIY+rL1ud/kXJT0oqej7kT05U5RUZ1Vs8goVu3lqSrHNUzDqXtlziWDwWAwXDQ8igQANmzYgB//+McoFotIpVKIx+MIhUJTHRuDMauZUzWXponI3/41ACD3uS8CfMP3lRgNom3YCL1rPqTXXgU3MACzo+OMHp9clo5zOamv+zIEXsDGzk3UvasrFupcmp6fy/bNCU7doS223E6p37nUTZ0KO79wrIQ/LZb87HYuhwvW3OaOlSICMQOJmAhJ4qGbOhW8QZ9zSdgzvBstwRbItgCXXfWpmqGD5zkEg3xF57KoO6mw7jme5HXWA9muqJVQEr37qMWprNOIL6tk6PkYKgxC0RVPKjTguJbW62LiksFgMBgODa8wt2zZgkLB+kcwGAyio6ODCUvGO5S5M4pEevlFSG+8Bm3NWijvbbyJC2MS8DxK77sNnGki8OTjZ/7w/rTYKXIuAWBtyzosSyxvOBYifqp9ZohzaZominoBHMd5Ggj5x6aYptnQ6/PXbBK3U3C5i4ScnsYHPtyCS69N2n/TaZMhInjdIrCoFbFzYDt2Du6Aaosv2ZcWCwBqdBg5JQ9dt4T2M08M41tfPoqxdJ4emziX5HzVapqj6ipe73sNqdI4HfWiGCWaZmvU0Tm2N9tjzQQVZOS1PLL2eBHTNNGf6yvb3p3Cq9chXhkMBoPxzqHhVfFHP/pRbNy4EXfffTe+8Y1v4Ne//jXGxip3vmMwzmYc92X2O5fhb30DAJD/319gruUZpPS+2wEAgV+c+dTY8uY1M/++k/rIam4/FXmmjpJWgszLnm0rvQZn1MrpO5ckhRgAUso4hKAGWbZFuqnRYxFxSX42TIOKx5JedGZ0ChJ1W3VDQ1bN4njkZfSHdqGQ16FpBt54KYVMSsfRI+P02KSRDnEdjRrO5Za+V3BgdB9e6nnRSYvVStT5rfVccoy8mkdEiiAZaIJpmjBNk573U7ny1NiSy7lkabEMBoPBcNNwntSrr76Kbdu2Yfv27XjjjTfwgx/8AIZhYNmyZdiwYQMuvvhi3HYbc0YYZz80LXaWi0vp1Zchv/oytJWrULr19pkO5x2Fdskm6B2dkF55CdzwMMzW1jN27ErNcmaKshEgVe5rko62Ra0A3dQRE73daCul9qp0ZuXE4tJfl+mMKLEb8bjFZXHck/5pmiZ1KgN2miipuTRh0jEmiq64ajNlKLAb3xga8moesswjy+dRzBvoPV5EqWg970RvGskW61glvQTTNKkwrJUW25vpsfev0vOrGioKmuWETpQWq9KuvDJicgyD+QEAwILoQpzMnEBftnx2NakpBVhDHwaDwWB4afhWdlNTE2644QZ86UtfwsMPP4ytW7fin//5n9Hc3IwHH3wQX/ziF6cjTgZj1kEW77M6LdY0Ef7m1wEA+T/8PMDm0J5ZeB7Ke28FZxgI/PIXZ/bQZc1rZu69Jzdg9ImcSzvGnC2MAmLQ+/cKAllroGGRvy6To3XTJIXYEZfjJa+4BCzRJ/ESPZek5tISgo64JCJUEmTqXGqmBkUvQZI56JyKQkHHW29m6b57etOeYxX1Ik1prZV6SsRhU7DZsx3pFpvPq8ikqwtAmsIryIhIEZw6WcRgfwlt4XbE5TgySqZsJIknLZbNuZxzmHWkSjMYDMZkmVSHh1wuh507d1IHc/fu3QgEArj22muxYcOGqY6RwZiVzIWGPvKzv4L8ykvQVq1G6QN3zXQ470hKt96O0H/9BwKP/hzF3/jIGTuuX0j5m+GcSchnhAiRauN7SGprzq75CwpecemvuQSckSV8HeKy6pxL0llXdzmXpXE6BzQgBFDSSzBMw5pdaT/PLT7d7mJes4SdzMvQeUvY6YYOBQokmYfOlZBJ6di/JwdR4hAK8zgxloOqGIiHIyhoBRS1gtPQp4qAy6tOnSbP8WUpsKZp4omfDWBP4ST+8MtLKn5X0RReXoJsRrBjSxqCyOGuDTG0hduRVtIYLgxhQWwhfY4nLZY5l3OK7tQxvHrqZdyw+CbPnFkGg8GYKhpebdxxxx04cOAAWlpacPHFF+Omm27Cn/zJn2D16tWzepHNYEw1xI2ZtWmxuo7IV78MAMj9f3/OXMsZQr30cis19uUXwA/0w+joPCPH9V+XM5kW63SLNTw/+yExEtet3Lks/ydLO520WM5fc+mIpoyaof+mhaWw40byUsUaTd1wXMOsYoljSZCgGCKNUzd127nUcPRQFkrJwKr1EQRDPHbvUzA6rGPhygQKWoGKWQAwUdm5JLMpAe9YFsLIoIp0SkA6r6GQNxCOlF8DNIVXkJEdlGAC0DQTmf4AWtvbcGT8cLm4dDmZmmF17O3N9mAoP4j5sYXoCJ/ZzsiM+hkpDkMzNPTn+5i4ZDAY00LD+XwHDhyAKIq44IILcOGFF+Kiiy5iwpLxjmS2O5eBhx6AuO8tqJdcCuXGm2c6nHcugoDSB+6yUmMffuiMHdYtthqZSTkt2J8RE/YokipCkIjJ8aLVJC4oeMed+Lu9Ao3N8Sxr6FMmLh0XzjRNpErWvMeQ6HREF3mJHstdz+h28Ei3VZmX6bYkLZY0COrpzQAAWtolLFoWgsYpGB1SkQg0AbCa+hCxWG3cx1DeEZdv7Unh+c1DSKecbXtPFGFyVoyZlIaCVsCx1FEcGT9E9+k4lzLSA87Ikf7DPFpDlvgg41kIJcM7imTX4E48d+IZ7B3egy29L1eMdSrIKGmW0nmakGs8q2RmOBIGg3G20rBzuW3bNpoSu3nzZnzrW9+CJEm46KKLcPHFF2Pjxo244IILpiFUBmN2QdyXas1JZpRiEZFv/CUAIPtnf+EMPWTMCMW7P4jwt/8fgg89gMLvffqMHNPtDjYHm8/IMatBay7t9M5qzmVMshr4EDETFL1jriql9hKx4XclK1HuXJKGPuU1lwRZkCHyjjCXBKlK11rXGBOVOJcyRN4Zc6IZGiTZ7sLanwWPKBJJCctWhaA/VUL/CQ5hwUrFLepF2iSoWlOe4cIwAOsc7HxjHLrCIdM9imhMQFOLhL6eEgK26zk8lsOLmc0o2GNODNPEyqZVrrEpEkZOchAMGZIZxJH9JbzrvW0QeRHDhWFPB1m3c6mbGjJqhp7HtJJGqjSORCBZMebJMpgfxFPHnsCSxFJcveDaKd33OwnS3TejpCfYksFgMCZHw+IyFArh8ssvx+WXXw4AUFUVW7ZswX/8x3/gW9/6FjiOw759+6Y8UAZj1mEvtGajcxn6zr9D6O1B6ZZboV2yaabDecejn3MutLXrIL61B8Lbb0Fft37aj+l2Lptmi7icYM5lLBAHAGRsV8Vfc1mrKVE9abH+bbgy59ISl4lAAiW9hKJWRFSKeWo9JV6sWN/pTklVXIKNpPJqhgZFVyBJ1rEKSgERRJFoEpFsEdHcySHVJ6LvmAFErY65/vPmh9R25nM6FNVAOCxBk3hkMzqyGes5su0W7+x7E8a8AmRBhqIrKNpNeUiHXFGQ0NejYFnuWsTiEvp7SshlDDQHWzCYH0CqNI5ksMl+fa5usYZGBeqC2EKcSB9HT6ZnGsSl1cW2O3UM61rOQWvozHVePpsg13iGOZcMBmOamJTlMjo6is2bN+Ov/uqvcO+99+KTn/wktm3bhpUrV+Lee++d6hgZjFkJcSxnW80lNziI8N/9DUxBQO5PvjzT4TAAgONQvOuDAIDgT//njBzSLaRm2rksF3XVnMu45+egr+ayWlOiRupJ3bGQ5zndYi1XpyMyD3ev+iBuWXYrrlv0Ls/+RVfNpZtKAtByLkm3WB2KoVDnUudsIdskoqSXsGRlCIIpY992S6gV9RLdp9u5fPLhQfzr3xyHphlUxKZGNZicjoXLAnj3+1px0+2tOHdDFJ1dMlasC6LEZ3BgdB9kQcb61nOtfdouMhGGRknA+IiGeS1NOO+cdgDA0YN5tISs+ShjJWeedcnXyIgI1GWJ5QCAk5kTAKwxKS/1vFA1rbcR3B1qX+/bctr7e6dC3PmcmmOdfhkMxrTQsHN544034sSJExAEAWvXrsWmTZvwqU99Chs2bEAymZyGEBmM2QldH88y5zLyl18Bn0kj/zufhL5y1UyHw7Ap3Xk3Il/7MgIPP2iJ/mlusOTuyDrjzqXvM1Lthkw84BWXAV/NZaVusUBj44CsrqqG53m0Wyxx8TgBHMdRd8zdSEhy1Vy6qbRQl3lHXOqGt+ZS5yz3L9ksoail0DFPxomIhN4jOsQLNagJBSInlO374Ns5jI9oGOpXoRoqJF7C+FgWJkQkWqztJZnHkuVhLFkeRnFIwt5dg5ALGlY1rUZEilj7tIUrqbkcG7Aczq5FQSxeHsLWl1Po6S5i4WLrPXALRCL0JF6CbuhUsHRG5iEkhjBUGERRK+LA2H70ZE5icXwJFsUXl52velKZCaTJEwCMFIaRVbOIStG6n+9n38jbkAUJy5MrJ72PuYjmupayambKHWYGg8FoWFy+973vpXWVoVBo4icwGGcps7HmUty+FaGf/BBGayvyn/8/Mx0Ow4XRNR/qlVdDfukFSK+8BPXqa6f1eG4BN9MLSL+YrCYGA0KApm0C5TWX1RzKRsWlf3/kd7R+03cckXc7l2JFUeR3LgVOgMALvrRY1XEuecvFDIV5HB3pBcdxuPDcThx8TsDxwwWsX6C75lzqNL5Mynrc35+DGTIRlIJIjakwOA7JFh5+iSuHAAMGCgUDITFMXxvZJ+kWO3zKEtxdCwNYsMRyjHuOF7HEFT9B0RXIgtWsqKgX6fsl8RLmRbtwdPwIRosjdD7mcGHIIy7f6Hsd+0ffxl2r7qXjXiaCiMt5kXnoy/VhvDg2aXFpmia2DbyBgBB4x4lLd4fjjMLEJYPBmHoaXhX/wR/8AS677DImLBnveJxusTMcCMEwEP3jzwOwRo+YieTMxsMoo3i3nRr74E+m/VgFV9OVRsTXdOAXl7VSyWOy4176nUuO4+hrkQWns2kjDpj7XJDH/gY9/v15ay6lit1u/amfpDsvbehjalCMEiTbudQ4BYmktd+DY/sBALdcsQGSKOBkdwHFkgrDNYLEMA0U8gZ0zRKcfX32LE0hgNSYBk4wEImXn9dgGDA5HaWCYQleKi6tfRPnsveoFf+SFWEkkiKicQEDvSVAt7vdGiqKWhF7h/dANVQEhABEXoRpmijpJciCDI7jEBbthkRagTqc/m6z+0ffBgAcT3eXxVuNnJoFx3GYF50PwJum2yglvUTjnmz3WUVXMGDXgU7muTPVrVXziUsGg8GYaia14jh58iS+/OUv49Zbb8VVV12FW2+9FV/5yldw8uTJqY6PwZi1zLY5l8Gf/BDSzh1QL9qA4gc/NNPhMCqgvO82mOEwAr94FFw6Na3HMqrMRpwJ/GmxtcRu3BaXsiBX3I4IPbfwbEQ8u91KEpf/+f6GPe6fJdd4ETeGz7mUeUv8SrYILukKFF2BIFo3pHSuhESThJ7sSWSVLOZF5mFeUzPWnZeApgFHDmRpXSRgpZFmXGNG+gcscankeOgKj3gTT8eOuBFlDpxgolDQIfC8M0bFIGNOVKiqgf4TBiIxAR1dlkhcsDgIwwBGB619qoaKt0f2YsfANgBATHYaHWmGBsnuqEvc5oJWpM7lSGGkooirR9yMFUehGdYYlZAYQkvQqgEl42omA2lIZJomFdeNsmtoJ54+9iRGCiMNP/fxI4/gZ4d+Ss/PmcTvXDIYDMZU07C43Lt3L97//vdj8+bNOOecc3D77bfjnHPOwebNm3H77bfjrbfemo44GYxZh39G3kzCDQ0h8tU/hclxyP7VN4EK8wAZM48ZjaF4+53g8vlpn3m5umkNVjWtxq3L3z+tx6mHshswNez+mGyNIwmJlbNjiDiSXeJyMg19KjmY1fbndi5FXpxwFAngiMqIGAHP8cgoaSi6Ag4cZJmDzilINIk4On4EALC6eS0AYONlSQDAoQNZzw0C3fSKy4HBHEaHFbz8VAYceCRanFpSd/wGdISiJpSSCRgC7bhLay51FcODKnhdwvLVYfC89d4sWGylxg73EhGqUzF0YccGXLPgegiciGJRh6aZLnFpPS+n5qiQUQ0V4xWcxqw9wiSjpLFv5O0yN28gP4DHjzyKp449CdM0EZGitGNtpf3Vi7shUWmSAi+rWONm0kpjN4lUXaUpvgUtX/fz8moem7t/iaH80MQb18B9nWZVNo6EwWBMPQ2vQL/xjW9g3bp1ePbZZ/H1r38df/RHf4Svf/3reOaZZ7Bu3Tp84xvfmI44GYxZB3E9ZoNzGf3TL4IfG0Pxo78N7aKLZzocRg2Kv/ERAEDwh9+f1uPIgoxLuy6f8WY+QLmWrFWnTJzLgG8MCYGkrAZcabGVRoNUo5K49Ke5lolLd0Mfob5usbIttjiOQ0SKUGEmCzIkmbfEZbNEhUaL3Tyoa0EIsYSA0ZEShgeLnv2nXeJydKyAba+kkBnl0NYWxLK1QeimDoETEBAD4DgOAifAMA2EotYbkM+a5TWXhoKh/hJ4U8KKNU79I6m7HDjlcjhJ457wPEiChFIBeO7JEWx/NUXFNEmLHS+Nes4HmckJgArRrJLBW8N78fNDD2Nr/+vYPbTL+xxbSI0WLXcwIkUQEkMIikGkSikYpoGRwggePfwz9GZ6yt6Targ7zxZdY1UaQbUdz0bdx4F8P32sNdCttTfbg/5cP94a2VPx74ZpVJ2HSjBNE5qh0ZRy5lwyGIzpoGFxuWfPHnz84x8vq7kMhUL46Ec/it27d09ZcAzGbIajNZczKy7lXz2F4M9+Cr1rPhs9MgfQLroY2tr1kPbsgrhr50yHc0bwi7dan5lEwHKmSFdTP0ToyZNMi+V9TXwqPV/wOf+86+eq3WJ9C3vJJX7djWdichySzNGaSyJ0yExPSZCwcEkIJmfg0IEsfZ5h6sikHTGiQUWpZGLpshiuvbENgSBHO7Be3HEJLum8FAJvi8uIdb6LWae+lKTxljQFg30KeIhYttoRl10LgwDnci5NjdbrSbaTe+TtIjQNGOxXoJes/ZJ05fHSuHUu7XPlrrsk7mZWzWLvsLNmIHM7Cf6aW3JNNAWaYJgGUqVx7BjYilQphe0DW+l2r/Vtwcu9L6IabnHpftwIxP30u4/7R/fh54d+inSpsqPZm+2lj931jxNB5pL25/qoiDyV7aV1q5u7n8KTR39Rcx/EtQzbjZ1KkxTWDIYf3dDxet9rnptIjHcuDYvLQCCA8fHxin9LpVIIBAIV/8ZgnG3QbrEzmBbLZTOIfuF/AwCyf/N3MKOxGYuFUScch8KHPwIACP7gezMaypmivFtsdXHZEmrBtQuvx4UdGyr+nZ+itFj3c8rTYr2N1EXfKJJKTqnuS4slNZcAEJWdz2VIDCEoSzQtljTDIY4sz/FYsDgAk9dx9FAOum53jHXVXDa3STBgCZMLL26hTYNUQwXP8ViSWIrVzWuocxm0dXouYzjOpe2aHTuahpKzRpdEY87rlAM84gkRuXHAMEzbubSOLwoSVMXAkX2OOOk/rtuvjzT0scRQe9iamZlWnBRMIo40Q0NJL6HJTnUtal6xo/rEV8QW6SQ1dv/oPvTl+gBYYrYnY/V96E4dpenGlfCmxU5OYJG6Tb9A2zW4ExklgyeP/aJinemprOOwamb98z9J+q6iK3QB/+vjm/HCyecAWLWpo8XKta0EOmqHlzxdmRmM02Ug348Do/uwb4SVxjEmIS6vvfZa/O3f/i22bdvm+f22bdvwrW99C9ddd92UBcdgzGZmQ0OfyNe+AqG3B8Xb74DynptnLA5GY5TuvAdmMIjAzx4CstmJnzDHaaRbLAAsii+uOmYiHohD4iWPs1mpBrIa/vEjQHmabq1usSIvVexO66+5dHezdYvLgBDAihVJtC/k0LlQhKIrHodO4AQEggLmLZRRLGrYsz0DEyZ006DicvnqMHROQyIpYtHCqEcM+0WzYRoI2qfy0J4iDN069y89O4zv/OMJ7Nk9Bt6UcP0tLWWvqblVAmcKyOd0bH99FAcPjFuvjZexe3sGWoFDOGIdr/uAiv/5r1N4a2vR40yTtOy8a06l/1wtTSwHUO4i+sUXec+b7X0eGjsIAFgcXwIAeGtkLwBHRPmPQ1BcgnCy7h05ht+5JKM9FF3BwbEDnr9llLQnFdUvnvuyp/B2lcW5O86+bK+nPlUzNE99azV0+3yKvABZkGGYRtVzxGA0AvkcTDYTgHF20bC4/NKXvoSFCxfi/vvvxxVXXIHbbrsNV155JX7jN34DCxcuxBe/+MXpiJPBmHXQxekMpcVKzz+L0H/9B4ymJmS/9jczEgNjcpjJJpRu+wD4XBbBRx6e6XCmnUa6xU7ElfOvxgdW3kXTSBvdH3FN3SLMLxb9TqjgGUUiVkmL9dVcVkmLlXgZS5cmcPEVCRRh3Vhwz/Mk41bOvySCQBg42V1Eb3fR09Bn45UJLFguYP2FUQREuWqKL3m8YJmIUJjH4bcL+Nn3h5DP6+g+kkf30SwKeQPz50exeHl5A6WmVgm8KWJ4UMGeXePYsXXUGuGRB575xQg4CLhwUwySzGH4lIl9u3N45dlxz3sTliIICAHkVUeE+WsDF8UWQRbkMqGn6V6hFBYtcbk4vhTntJ6L1lAbFsYW4aoF1yAoBjGQ64eqq9S9q+bMFT3isvHFsGmadN8FX82l+7X1Zr0d9E9mvD/rvprLXx1/Gtv630DKTil2447zVO4URotOTWtRK9DHtcSl17kM2PtlqbGM04dkHfg/D4x3JuLEm1gUi0W88MIL6O3txX333Yf7778f3d3dGBoaQltbG84//3xceeWV0xkrgzGrIHVDIeHMz3zlxscQ+8zvAQAyf/sPMNvbz3gMjNOjcP9HEHzwJwh+/79Q/NCHZ9HA1KmnUeeyFjzHIygGPam1k2nowzXSLZbzOpeVxKx/FInkTouV3M6ljKC9sE/ZdXn+2kKe48EHTGy6JoEnfzWIE8eKMK7VkUlrSAWOo9sYxfW3JbF/VIbEyzQt1h87eSyFTFz57iaM/TKIYwdK0JoKMDkRXct4pEIBXHJJuWsJAM0tlnPZ31OCAUBRVBQywFM/G0E+p2PdxgSaW/OYNz+A4j4R4IDRIRXz9QAAS/AExSDCUgRjxVEUtSKCYtAjxONyHPFAAkEhiLSShmZo1ClWXa4az/G0k7DIi7iow9u4LCSGUNSKKOqO0NKrpJ2ernPpHl/iFnb+Y/pF9MnMCQDAksRSdKeOVRWCaSUNWQhAM1Q695Us3iVewnBhCP05pzGQe0Gv6gpQpV6ZnE+roZI54fbV2DmwHR2RTnTZM0cZDPK5Y84lA6hTXJ48eRIf+chH0NvrFKJHo1H8/d//Pa666qppC47BmM0siS9FbFmcpmidSaJf+hyEvlMo3nUvlFtvP+PHZ5w+2qZLoa07B9KunRC3vQFt46aZDmna8DuXU9EEi6/hPNbzPL+A5DiOOl5+sepOu5WqiEt/509ZkOjjqBx1/T5Ancox233yj10h6axt80TIMoexYRXFooZsWkem/SD2j4XQHu6w9yf7UmGdx0RAq4aCYFDAuRcm8NqvCjh6IA8JUWy4MoJIIIGWWBiVaGqVwEPE8KAKkRNhcBpOHlHRvzOLeFLEpVe34GC6D+suiGLJ+fMxtieKvTuyyI0KgFUWiaAQREQKY6w4ioKWR0AIwDANyIKMqBTD6uY1AICAGASUNIp6EVE+ap9TS3xtmncZksEmcIaIh3/cj2xGw/2fmA9BcK4jIubdDmk159I9fmQysybd4tT/fLdgdDd5KmpFDOYHEBJD6AzPQ3fqGDRDxWB+EGPFUXoeyGt4ceR5jBVHcefKeyAJEl28L4ovxpHxwzg8ftDZt0tQKzWcS+IEk269AFBqcM5nupTCnuHd6Mn2MHHJoJDPwUzMbmXMPurKJfrmN78Jnufxox/9CLt27cITTzyBtWvX4itf+co0h8dgzF44jkNrqPWMN/QJPPIwgj97CHrXfGS//s0zemzGFMJxKPz27wIAQv/57RkOZnopcy6n4DNTqyFPLarNp3XXXYo1ai7JwtwvTv1psW7nMiSG6D5kQaJpsqSDqt+5JI14TBhoaZdhmMC+t9LQTQ1c2BISZM6jxMtVhTaJkQieNetj4MDDMACT19GxSLBfnyM23DS3SuDAgTME6JwKkzNw/IC1r0uuSiActJ4nSTwWL4nT2ZjZYedcBsUgbfKTV/P0PIXEEN63/DasbFplbWen0rob7JCay+ZgC5qlNvzo309hz/YMjh0s4Mh+b60j6WCbd9VAVhv14WnoMxnnUncLSN0jYlX331zH782ehGmaWBhfDFEQ7fg07BjYhtf7tnhEcVbNYCg/CEVX6CzQkmY1floUX0yfSyiojris1YGWnE+BF2harNpgUx9y7sZLY9AMDQP5AU/sjHcmxME3TIM1imLUJy537tyJz372s9iwYQMCgQCWL1+Or371qzh16hQGBwenO0YGg2HDdx9D9I8+AwDI/OO/wkwkZzYgxmlRvONuGE1NCDz+KPi+UzMdzrRRS8hNxT4b6RYrUOeyehOf8tEklhgQeZG6rn63lKTFNgWbIXAC7YBKIIJS4mXa4GfEnt/on+lJRojoho7WDkvA7duThsJnEQxZsZEFnCxIPkFZnu5LBE/XgjCSTRI4k0OiWYAQsGJ2d7Z109Riz+o0BRicZj8WwXHAeRfHPY2EJEHC/EXW60gNusSlEKKzL/OaIy797jApM3Cn1Wm0RlDAnu0ZdB8q0AZCb76R9jyfCGS30FGruHKnO4pE8QlSd2qs+yaDOy22x57DuTC6kN6gUA2NHt8tCk9le+lzM0oGuqFDNVQEhADmRbrKrnePc1ljYe+MkpHoHFb/a5kIck5N08TR8SN4+tiTePXUSwCAY6mjyCjpWk9nTBFZdXY1gnOnZrPUWEZd/8IPDQ1h4cKFnt8tWrQIpmlieJjNtGEwzgilEuK//RHwmTTyn/kjqFdfO9MRMU6XUAjF+z8CTtMQ/P53ZjqaaaPcuZyKtFi3iJrEKBKfOHTH6G7gAziC1O1g+gUocZLWt6zHB9d8iNbKEYigDAgBWjtIhEBI9IlLl+PY1mEJvxPdeZSEjGdcCGCJ1WouLqlLdRq5iFhzbhQcBDR3CLR2UBIqO5ehsIBQmIcAEeGIgERSBG+KWLYqjHhC9JxDmZfROT8AngdGejlsezWFnhMFWnMJWB1jiZvnF0jEvS26FqbuGsGDb1ndZt9/XzuCIR4H9uaQzzlCjjRQKnicy2o1lwpNJ55MGp/f7SzYMZumCc3QaCwmHHFJnOa2cDsVl5qh0mvALUrHimP0cVbN0uMFhCBEXsS86Dzv8d01lzUb+pBuse6GPo25TO797x5+EwDQn+vH8XQ3Xup5AdsHtlV55jsDRVc8nXyng2Opo/jZwYfQnTo2rcdpBLegZE19GDM3oI/BYDRE5Kt/CmnXTqibLkPui38y0+EwpojCb30cJs8j9IPvAsWz8x/lsprLKRjf4xVU9e+PNvTx/fNXywkVeREiL3pqI/3ikogDjuMr1oCua1mPFcmVaA21lY1ZCVaouQQscRSOWgLPhI7kwhJWrPHWR1ozMt2itzwtlrhgPMfjiuubsHR5BEtXBaHpltio5lwCTsfYRFJAW4cMwZRw0WWWcPbM/xRkSDKP9q4AtLyEvp4SThzUwHO8x7kkDq//HAUqpcUScWgIOHIgD0nmsHxNGOduiEHXTeza6rhkRPgXPJ1Ty4WTYRrUBQyIASiGUnM2ZCX8Aq5gu6UkXiKUiZA2TAMZJYOQGLJFrZMWS8SlZugVb7pklAxduAdFa79k9Aq5TtyCupZzqbqdS1sAV3N3q+7DlfZLXGLDNPBG32t2vLPLuezP9dG5oGeCN/pfw2NHHvFch1MNOcdjro7BM02ROZcMF3V3i/34xz8OQSj/B/MjH/lI2e+3bNly+pExGAyK/IvHEP6Pb8Nobkb63/4LEOv+6DJmOcaChVBuuRWBXzyKwCMPo/TBD810SFOOX0xORZ1yJRHVyPP84qaWuOQ5Hu9adINnvIh/GyIsqr22zsg8dEYsxyksRTwNhPxpsbzLueTAYd35UbSkIli2sYTegrs2VATP8Z5UWKFCQx/rsTXiJJ7kcfFlTcireZdzWV1cNrdK4EYExJMilq2O4MIVHVh3viWO3eeQ1DyuXBvGkYEgOABKRrJfL6m5zFER7k9LJsKppBcxmB9EMpCkaZw9R1Woiok150Ygijw2XJ7A1pdTeOXZMWy4PAFZ5qlAdtdcqnq5c0kWwbLdWCiv5lHSSzQttx6IkxiWwsireeq2kppGyxXM0NeaVTIwTAPxQMJzrhS9RLfRTa2iyM2pGRozuU6WJ1ciLEYwmB/ArqE3PQv7WjWXuuHMuSRpxPXWnB4ZP4REoKmqM0rEVM41z7ReskoGvz6+GRd2bKDC2c2WU68go6Rxw+Kb8PzJZ6EZKm5YctOE+zVMA8+e+DVCYggfWHlXw3FNhrHiKDRDQ6o0Xtaoa6ogNxDy2uyodVV0xeO8s6Y+jLpWqL//+78/3XEwGIwq8N3HEPvspwAAmX/+dxhdrEPf2Ubht38XgV88ivC//QtK9/6vs28syTQ4l5OtuSQuZ1kd6AT764h0en72b+N2ByeOgUdUiiJjp88FxPKGPm66Fgax4eIEjowf8vy+UnOhSg19qj0m9XYSX30psGRFGPwBEW2dJkSRw8K2mFN3yrnFpSXurr+lBWsvX4U/+c5r0MdEFIu6kxbrqrl012sCjnA6kT6O3UO7sL71HCpkju23FtMr11n76ewKYP0FUbz1ZhY//vdTGBpQsOz6EtBuCVhCJSFEXnPQFpcA8HLvC5gXmY/1redUPQ+V9pGQE5a4tIWVU9Mo0o6/gDVaBLDGrgCAaKch5+twHDNKhopXd+OnedEujNvzMD3OZQ0n0j3nkuyrnuYr6VIKr/S+jI5IJ+ZFvCm5y5MrcCx1lL5WRVdo2rGb7tQxDBeGcEH7RZ70cgAYLAwiraTRm+mpKC4PjVmdcXuzPXSci27oE3aJzmt5aIbWkODdMbANraE22jipUYiwyk1jTSR5H6fzGI3gdyqLzLl8x8PEJYMxi+GyGSR+8z7w6RTyn/5DKO96z0yHxJgG1Esvh3rBhZDe3AnpuWegXv/umQ5pSpkO57JS45r6nld5FIlHXNYx2sRf50mcy3qFs1tc+mfl+l09wHK20koaASEAnuNR0Ap0AV9NRFYTzOQxca2qdYsFgA2XxfHBtgUYVHrtbd0zP53HJBaO49CZbMX86HxkBlowNqxh3oIARF60usUalgiplhZLBFNGyUAzNKRHTJzYkgLHOeISAK67uQVv78qi+7Al7F5+OoOl71MhttTunEpGb8hCAKY96/FU9hQG84NY17K+rnpgMu4jHkiiL9dHBYVGnUFLXBIhTeaZxmXLuSTpxLXGpoSlMDRDQ1Zxai796dPk5kLRM+eyRrdYVw0ruRlQj7gcs+tFi1qBbi/xElRDxfLkCuTVHPpyfZAFGYquIKdmIQvOiK7u1DG82PO8fS7Gcd2id3uuTRJzXqstArcPbKWPi3oREb72fE532m5JL5V1ZfaTVbPYO7wHzcEWLIovRn+uD1E5VpbGXg3TNKmwyirTJ/zIezCZ1FtFVzCUH8T82IKqfyfXb72QGktyQ6XEnMt3PKzmksGYrRgGYr//uxD3vQ3lmuuQ+z9/OtMRMaYLjkP+9z8LAAj/8z/MbCzTwHQ09PF2d228oY9/HApt9FPnvqotvupdlJEGPxIvlQmtSuJ2vDQOwzSQDDYh4uo8CwB8lXPBVxHgZBsiSqQa4pLjOERCzqLcvS2p9eQ5vqzZ0eVt70KTuhRjI5ZwCIkhlPQSdf385znoc29LegmZbAlvPJ+Fppq44bZWxBPOMVo7ZNxyZxs2XpnANTc2A7qAnVvSHrdSNVS8ePxFvNjzgrNfV4qpu5urZmhIK6mq58ENdS7tNFeyyHc3zOE5nqa5khq5eMByLp1usU6sfsexKdCEqBSDbuoYtxv8BH3p0+Sc+1+zH8M0MFYc9TmXcsXjViJlC/6iVqT7uGTeJly/6N3ojMzDpV2X48oFV1PX0e0UjhVH8XLvi9Z1JEXQm+3FnqFdnv2TGCqJJfc4FyLSgdp1fVk1i7ya97jYhTrGpZD3VTFKKGgFbO5+Cm/01V/mVdJL9D2fzm6upE52MinIe4d345kTv0JP5mTZ30p6CT879BBeO/VqQ/skzj35PBT1IgbyA1UbagHWZ+KJo4+jP9fX0LEYcwMmLhmMWUr4b/8agScfh7Z0GdL/8T1WZ3mWo7z3NuhLlkJ+6QWIb+6Y6XCmFL/gmoq0WK5Bp9Efi98dJA1+6t1Xte0aFZeVav38zYYAZ4Efl+OIypa4lIUKabFV3Eq3+COxE0fM3x3Xj9etdMQlceD8aY6AM8aEiEuSGpux5zaS2I4fLeClX41ChFdcFtQ8BvuL0FUeF1wSx+XXeUe7AMDGK5N4713tuPamZsybF0E2qyObcsSIamg4OHIQx8aPIG0LE+L6BAQZLcEWz/5G6mz8QkRIU8CKicyipDWNnAiBE6hzSUQrSYsVeKHsBgvZJ3GAOyNdtKswaUjjT5+udN6J8BjI9eOnB/8Hw4Vh7Bt5G48feZR2F5V4kdbZ1uVc2uJWMRS6fUxOYEFsof04jmWJ5dThc4uerf2vwzANXNR+Ma5d+C4AwFDBO8KOvPZK8zKr1YRWq+szTAO/PPoL/Pr4056043pSNclrU3SFxpJX63cH3SNppjNllcxZdTeEqhci0AfzA2V/Gy+NQ9EV9GQd4Uk6INeCvBdJ+/PQkzlpj6h5uepzTmVPYaQwXFHkvtPQDR0nMycmPM9zCSYuGYxZiPz4o4j87V/DiMaQ/sEDMJPlCyvGWYYgIP97fwAACP2/s8+9JHAcNzWjSFz/fDUyN5O4dtVqLut1LomI8y/w/Y5oNchC3N/MB6gsXMmCPSSGELGFGnEuq6XCclWcSxJ7PTWXgPc1up1L0Y7TX18HWF1mAWBs2FoIE9eNuEnkffjFg4N45okRPP7jUcB0roucmkMmrYM3RSxdVbsxCsdxWL7CEm4jQ85iO6/mqDt50l7ElqiIC2B181pcteAaXDH/SgDAcGGk5nEIZHEfk+MIikGkSik6ixJwnEvDNFAs6nj88WM4eazoGU/jd4vJPttCbbh79QexrmU9vYkwWmUeaiXHmezn6e5fIq/msXtoZ1mtrsiLtAFSPXMuyY0N0zSpYJMrHJtcl0RYHU93oz/Xj2QgibUt66izlfGN6iACqaSXPE4lUL2bbTWxmCqNo6AVMF4apzcUgPqa35BrQ9EVKhR1s/4Fvzsmv6v45uAO/Pr40x63fLK4z0mjIpbENVwYKvtb1nbYi1qRbvfm4A48dOCBmk4smbOaDCQBOO9nd+oYRqp8pkjcmqlX/Lsf0zTRn+vDrsGdOJ7urus59eJ+T6bi/WmU7vRRPHfiGRz2fU7nMkxcMhizDPHNHYh/+hMwOQ6ZZzDmAQAAioZJREFUf/1P6KvXzHRIjDNE8d7/BaO1DYFfPAr+6JGZDmfKcI8KmQrXEvA1ruEbEZeVRST5fb3OI9nOv8CvV+iShTZZkLupJHDJgk0WAohKMfuxJRDEqk183IJSLNuGLIZrpcUC/pEjrrRYez9ShVEmzT7nUvJ1JxV4HsODCob6rdf19ptZHD/gLDR1U0cmrYE3RTrrsxZLllpCbGTISQt1ixjSCEahMyNlyIKMpYllaA21AXBE3EQ4+wigJdgCwzQwXhqn3WJFXqDXx6FD4+gfzqDvMO+5tkydx54dGXp+FMPaJ88JCIkhcBxH32dCUPA7l+Xvm1+MRaU4moLNnt+JvASO4yALclka7dHxw9g7vIe6pYZp0IZEAOgMR7HCbNSIz7ncN/I2AODizkto6nRIDCGrZj2LeLf7VtC9TiERy+TcEffXPbLGjXvsiDvlsp4Opu44iMPeiJtU8DiXOZoim1Nz2D20C6eypybd4XWkMIJHD/8Mg/lBT5yV3N5aEFE3Uhgp607s/rwQF3+kOAzVUDFQI321aL8XpBuym11DlbNwyDVSq7uxm4NjB7C5+ynsGnoTL/W8MOEs0VPZXjxx9HGaUl4NRVfw0IEH8Ebf6yjpJTx44Cee2l7Ael8fPPAT7BneXVes9UKuSfIezpYGTVMBE5cMxiyC7z6GxP+6G1w+j9yffAXKjTfPdEiMM0kohMJv/y44w0D4X/5ppqOZMtyCciqa+QB+t67+tFihqnNpxVgp1bAS5Jj+7et9fc3BFly54Gpc1LGhaoyVCAoBtIRaAQAJ2ynw1FnylV3MSjWXZJFaq6EP4BUSbiEaEsOIyTF0hDvLnpP0iUvR13xG4AQc2GstMFeus0aVjA94bzxk0zp4CGhtn1hcLl4SA8cBI4MKxkYUjA4rnsXaUGEQRa1Im/G4x6/E5QQkXsJosXzBXYmSXoLACRB4gQq30eIInRsq8RJ9D0/0W4v0wnAQquIIqp4jKroPF3DwLesckPfCfdNkfmwBvYFgGCZ2vFRALmsdY2xExYlDJWQzXvGjGqrHsQPKa5zJe0ga8JDXXNSKeLn3JewY2IYnjz6OgfwA0qWURwgSAVVpNqrjXFqO8UhhGLIgY16ki24TDyRgmiaySgaHxg4ir+Y9gpgstIftlEnyt+XJFbhj5V04t+08+z2oLBbdqc1uUVxowLkEgHTJeu5E4jKrOELZLWAN08BgYRAnMyewf/Rt+nutRsOlWvTlTiFVSqEv2+u5IdCIWNUMjb5G1VDLaozd7iS50UKEYy1XnziXITFMmyZ1RjoRk2PoyfRUnMdJxGWtBlRujqeP0f0aplFR6BW1Ig6OHoBu6Hh7ZC9GCsN47MgjNd1Ia45sCQP5PowXx+yGR15Xd7gwhKJWRG+mp65YAUvc1nptp7K9ePDAT3Bk/JDHMT9bYOKSwZglcCMjSNx3J/jhIRQ+8jEUPv3ZmQ6JMQMUfuvjMKIxBB/4Ifje+v8xm81w0+BcVhNOE9EebkdTsAmdrgWvex/1ClWBikuvMGsk43dZYrknVdKJpXoMshBAa6gV96y+D+ta1nti8T92nxePu2k/JouuhpxLT0MfAbevuBOXzNtUHqfMIxoXMD6qQtdNWh9K3FKBF7F/j7WYvfLdlkAzU3EEhACagk3QdRP5nI5YJAA5MPH7Gw0FkWwSUSqZePmZcbz2wjjcOtE0TZzK9lCx4hZHHMehOdRC5xMWtSKOjB+quihVDZWKvuZgC0pFHXv2O4t+gRfpezgwaL1GThfR11OisZw4ZMUxOqzAMEznua73LypFcdvyD2Bl0ypgoAvP/yKD554cxaG3c/iHv+jGT787jFeeGfMIYlVX0edymVRDQTpbwOF9ORTyljNMbohInPWeOA11vEJlpDBMu/f6qXTNhF1psSOFEeimjrZQm+fzH7Pd2LdG9mLLqVewZ3g3Sm7n0o5hy6mX8fzJZ+nPEi8hKsdoanA1J3K4St1sfc6lIy6zarm4HMgPYPvAVnpdZJQ0Htj7AJ4/8awndvJ6nzm+Gc+deAZvDe91juESho00/SFimoxXIeQbaOrj39afGut2Lom4JMet5eqTGw4hMUhryJfEl2FVk5V1VSndk9z4qSft2BJ/AwiJIVyz8HrIgowj44fL3Mv9o2/jtb5XcTJzwp41a/H2yFs19k1Gx+RoTP5UcXJeMq6bFbU4le3Fr49vxq6hnVW3ITdBxopjVFyeTfNBmbhkMGYD+TwSv3EvxCOHUbrpvch+/W/PvlmHjLowk00o/PYnwCkKwv/4dzMdzpTgFpRTUW8JTH7OZVOwGbcuvx3t4Xbf/iqPKJno+JNNi62FO83XHw9ZXLsbAU12FEm1n/146yz9Yrr6+9nUIsEwgPS4Rp9X0ooY7C/hlz8dwcnuIuJJEYuWBhFLCIgPnYv3L7sLMTmOXMYSQk1N9Q2il3gJLS6HU9eBUtESAe50TTpKw5fW2Ww7kGOlMewbeQuv9L6MU1lr/IrbgVB1FYZpuMRlM97encWjvziCg/vTNBZy7odHrIU3DxE9x4vIZjQcP1pE2jZzNM06P9W66IalMC7rugKdGcvhPrw/hz077NRUToSimCjkrdfJcRxUQ0Vf7pQTr6Fi394U9u3J4fmnRnHwrSzeeGkc//erx/Dqr7IwDJMeu0g76VoL83QpRest3XW1kp1W64fneISlMPJanjaMafN9zmJ2x9xjqaP2e5KF6hGX1vkq6SUrJdd2EMnxqbis4Fzqho7xUuU0yMk6l7qpWyNGtCKet4UiSbc9lT0FwzRwMnMCPZmT9PmksY1maGU3vkga6FB+CD87+BBeOPnchHEBjquV9gmcE5nj+FX3U3UJn7xLqAPlbmRWyYDnrPRtUitJXtNYcbTqzRYiysJiBC2hVsiCjIXxRViWXA6e43F0/EhZXSOJRa0j7bg3cxKmaWJBbCECQgArm1bBMA302p9PArl+i3rRk2572J6TCljC79kTv/ZsC1jnlzQ78jeRIuKyoBXqSpMmwrGvRioxcW5LeslxLuvo3DxXYOKSwZhpVBXx3/0opG1vQN2wEelvfwcQ6l8sM84+Cp/4FIxIFMEf/QD8qd6JnzDLmQ7nEqg+s3Iy0FrMervF0nrDyaXF1rNvoDzt1j+yA/CPZSlPf/U/9u9/IsHvbehTf9fqji4r1rd3ZemCtncgja0vpdBzVAFM4OIrEuA4zuoua/DIpSxxk0lbi7iW5vKGR5UQeAGLloTR1CKC4wDO5JG3nTpS31rSS9Qh9Kd1hsQw3YYInKJWxL6Rt/HAgR9R54b8P2TPnIzJcaSGgKKQwhtbrLRagRfoezI0YrtZJo/tr6bwd18+hu/9Uw94CAhHrG1GhlQqHqq51kMD1t/HRzW8vSsLQeCw9hzrdWXtc0ViOuVadKu6grGU9Xo0zcSBt/J48uEhjI9qGDhpYN/uLHbvHMNQv0IFWEfESnNOKSmM2K+3PdxB91krdTwiRWGaJhWPbSGfuLSdS7JIL2pFz2KeuGuksQ8RU6SuN2TfVPELgN1Db+K5k7+GYRq0htaKx3JTCw3WXLpdRc3QsH1gKz0mOSeDeafr7db+16nIarXT1gHg6gXX4salt2BVs+XikeuPpIoeT3ejL+vcDCAcGjvoGdlCxBBJeSY3AMaKY+jL9eHI+OEJXx+Jj8y4dLuRmqGhoBUQkSJIBJIoaAVklDR9n4ir78c0TeTVPEJiCAIv4PKuK/GBlXchJIYQEkOYH12Akl6iNc+AJXKJ216PWDthP3dhbBEAICEnAZTfMHDSS0seNzyjZuj1tHd4N3oyJ2mqsvs9J12M/empOdVxSOsR8Sk73Xi8NFY1NZa8FyW96DS0cl2jA/kBDOTKO/rOFZi4ZDBmEl1H7NOfQOCpJ6EtW47Uf/8PEA7PdFSMGcZsbrFqL88S93I6ai4BR1RNxT6rjSipvn3ltNipjAUod9jkCoPgvc16qnSIrTILs54aU6+4nLj+kbDp6iTAAa88OwZTE6AqBra8OATDBK68rgVf+voyXH2D5Rg2u7rLesRlS33OJQA0N4Vw5buasWJVFIIpo5DziktFV1zOpfd1kMW64nISNFPDeMlKOyViYPfQmwCAFcmVAIBC3oCeisLgNPSPD6PvZMlyLsGhVDKQL5YQjvDgOQEjQyoMA4jGBSRiQZxzIWlCpLjqX533plQy8MRPBzE04DQ+AgBNNbFkRQgLFofAmTyytstLBLJmaLTTrGpoSKUtcflbt16Duy69HhdfnsDdH+lESArg6MECfv5QD372o34qwNpC7eA5HqnSOIYLQ+A4zlM3Wak7MKHDFqGjxRFwHOcRegDK0sALWt5TQ0iEvZN6mrGPKdnvE0mLdZrnaIaGNwd34pQt0ha4alWbgk3gOR4FLY9UabxmKqq7jtPttKWVNI6MH6afp1Hb1RuyxWVbuA0ZJYP+XD8A0Ncck2NYGFuEjnAHbcZEHDXNlQ66pe+VslrfHQPbsHNwh8fJdZ+fZNDbQV6vo+sqcctIfJ40YPs8x+QYdfH94qZS59e8lodhGjQ7gOd4+lkCgBVN1ufE3bHY3Um3noY+/bk+iLxIr0GStVH03WBQXLWLxA1vC7fDNE2klRQ0Q6M3BA6NHYRhGh5BR1KqdVP3iF53urC/03EliANqmmbFrryA4yIXtRK97sh7bJomnjvxa7zS+9KEx5qtMHHJYMwUhoHo5z6D4M9+Cn3hIqQefhxma+vEz2O8Iyj8ru1e/vD74PvK72zPKbipT4sFHNHaSEOfajjisj5nbkFsAVpDbR5HxwpqCsasuF6POyWV47iKjVTcabTVHErPY9f2E9Vb+repZ3tCW4eMcy+KIZ/VsW9nAf2nSiiVTHQtDODiy5IIhpyYmlqt1zU6oiIgBJFNW4vl1gbEJRHisWgAvCkin7UEAml8ZDmXStnr2L83i8EevWwb1VDpIjOvFTCQH0Bfrg9xOY4liWUAgL6eIgJGDOGIgCKfQveRgjXnkheQzWgwOBWJZgktLdaC+IJL4vjcV5fh7t9YgLZOGYIAjAy6nUvnvdm7I4OtL6fw9CNDSI9rcN+3WHVOBK3tMnhTRDajg+d4TzfZrsh8+zUoSGdLEHgBN120CffevBHvu6cd6y+I4V03diKRFKELRaTGNOoEhSWrUVNRK6KoFdEUaEZYcm561rrBcF7bBWiyhU8y0FR2cyTuE5dEnJDXTWIg4os0nSE3VSTBapbkrk8jcziTgSRWJFdiZdNqxGXrhkJYjCAkhlDSS3ji6OP4dffTVWNXqrhMxK0iqfRjxVHk1TwyShrJYNKqiYUjSJfEl2J5cgUu67qCft9JdPSL3R3YI+yyHlfQMA0qNIiA9TcwikgRj4irp16PNEuKy3HwHF/RqY1KMYTtmxSj9g0VmuJdLK9nJUKxUtdrAJgfXYCQGEJvtpdum/O5wpU4Mn4Ih8cOIa/moegK4nKC3iAL2g59USugpJdweOwQdEOn9ayKrqCkl8BxHFqC1ppqvDSOwfwAfY8KWgEnMyc8AtUdCzk3VvMpJ95K4tIwDRxNHcGLPc9jMD/ocTdJevhYcdTzHjtpsY5zT/6fVlJQdMXzmZtrMHHJYMwEponIn34JoR/9AHrnPIw//DiM+QtmOirGLMJsbkHxY79zVriX7jrEKU2LtRcbjYwiqQaJsd602K7ofNyy7H100L1/P6eD4BGXzkJe5uWK4twrHBuruZyoU6y1T0dw19tNl0Ccyb1b8xjotRZPC5YEPfsEXKNLbOdyfNRaKLa3NyAu7dcSjwXBQ6RpsUTQqIblEIq8SM9NJq3hf77Th6ceHIdpmvbC1FpY6oZGXbWiVsCxcWs80Dmt59Hn954oQTJCWLIiBMgKxkdV8BDBgUc2rcOAhmhMwMbLmnD+xhhuvtNyjQReBM9zaG6VoWkmhgedZkCEvpPW+Tq8zxIFK9aEIQes93/1+gha2mXwsESsyIseN7Yj0gme45EtFFFQFMSjAfC899rZeO5SXP2eZhTjJ1HI667GLCEqzgArzTPomrEpVxhDQhB5EVcvuBZxOU7dXc97JEieemHi2JH3qKAVYJhGWdqk+6ZKQAxAMRSMFkcwWhyhrvKi+GJcPv9KhMQQdavDUhhBMQTTNKEZGtJK2pPO6qZaB1pyXiJSFDE5hrSSRl/OSj3ujHaiK+r82x0QApAECVfMvwqdkXnO67avTY0KIDIr1fr+GHEJN3fKL3G+/OJR4mXcvPS9uG7Ru+y/e0e4VIKIuogUgcRLHseYiKaoHKONmcZL1nntjHSC4zh0p46WpSNn7ZTRauKS53gsT66AaZo4aqfuep1LR9CdyvaiO3UMeTWPV0+9gi19r9Aa2njAuSlBnUutiAOj+/DqqZdxPNNNBTtJf5d4ic7eTJXGaS3yAjst+Mj4oapzXsnv81re4wpXSot9pfclvNzzIrpTx/B636v0OwYAutPH8Isjj+HxI4/il8eegGZongyKouakxRqmAVVX6c2SJp87PZdg4pLBONOYJiJ//qcI/8e3YbS2IvXw4zCWLJ3pqBizkPwnPw0zHJnz7qVbEE1lWizt8DoF/5RVm385EX6xPNU1l+4aR/eivNr23oY+7vNeeZv6nEsrhnrqM/20dcpYsiKEzBiHvl4FggC0tstl57m5zYpjdFhFbkxAIW8g2SwiEipPA64epyVAErEABFOkabFxWnOp0EUn4cDeHEwTUHICUuNk4eeMa9CouCzSxXlLqIU+/9TJIiQjjGSLiKYWCboOjA7olnOZ1qBzKqJxAStWx/CBD3UiECCNoKxzumCJ9fpOHLXEgfu89PV6F76d8wN4/30duOXONiSbJTS1SBAgImeLS7cAawu1QeRFjKbyMDkDiWj5tbMguhAxOYZSaBh5jCGdt0SsW5wBVhqlOxV2ohsSiUASt6+8E2tb1lX8e2uoFSIvehbPESkCkReRU3O0Ps6NJEjQNMt1CgqWWHzq2JPY3P0UrZVzz/MkGQUtwVZai0roTh2rGFe1URBOx1qZHmP/6H4AlriMSBH6WvzHIoiC9X4TQUfmms6LWg7zSMEZ1+EWikOFIeumh6/Zi8xLiAcStKa1Uk3pQH4Am7t/iTcHrVmTeepMR6zzaWjUySN1glEpSh0z4lw2BZuxMrkKiq7greE9nmMQoRj13WRzszy5AoDTNdYtLsn50AwNL5x8Di/2PI/tA1thmiZM08TJzEkAXsc76EqNJqKYOJyAJS41Q0NACCARTFqvr5RCX9ZqsHNh+wb6u2o3FEr2+SaOLnnfK4lLIoBFXqTCcH50AUReRKqUwmhxhDrFqVLK49yqhupJwS4ZJbq/Zt982rkEE5cMxpnEMBD9488j/C//CKOpCeMPPgp95aqZjooxSzFbWlD4+CfAlUoI/903ZzqcSePpFjsdDX3qdBtrwU1SXJbPy5zabrHuhXylekvrmBM39KmWOivWce6Im9ZISqybCy+NQzCt57Z1yBAErswBbWpxxGXvEcvNaOuU6aK8HoijFo8HrbTYnG4JlmEBrz43hsHRNEzThMhJeOx/BrD50SHs220t9ARTxvCAAsVwXAXd0KHZQqeg5eninNSXAcCpEyXIZhiJpISmFivWU90a3ngxhWMHCzA4DYmkVPZ6ybmctyAISeLQ11NCqWTQ688wTAyc8orLtg4Z6y+I4ZKrkgAAUeQQjwVRLJiAJtJjBMUgonIMsiAjl7EW74l4uejhOA5rW9ZDDvAYDRxGKpezn+8Xl6201hGoPOOyEa6YfzVuXf5+jxiUhQBCYsgS9z4hZRgmXn46g7/6whHs3ZGhTa2IC0SaB7kX4yuSK3H7ijswP7aACr64HAfHcTiePgbTNJEqjWNr/+tUZKlV6v+IcynxIlqC1o2FkcIweI5HV8yqA+yyRWK1G0DknDmpm9Z722nPiHU313G7lCOFYZT0UllNpkS75wbAcRydNUk4mjqCp489if5cP/aP7gNgiTqRFy131Y5HNVRklDSOjB2CwAloC7cjLEbsGBX7GEGc13YBRF7EvpG3PfFNlBYLWDcb2sMdyCgZDOT6kffVvWqGht5sDz3/5P0EgBPpbgBecSnyIiReQlF3bvgUtQK9bjKuJlAJ24EfzA9gtDhi3whoRkAIIK/mqzZ6Iu9P1t7XPNuFzria+zjbWsddFF9Mf9cUbMLq5jVoDrbgukXvojdaxkujND25EiWtREV9MsDEJYPBmAjDQPTzn0XoO/8Oo7UV4z9/Evo55850VIxZTv5TfwAjnkDwh9+DcHTijoCzkWl3Lqek5nJy9Zt+J28qXh/nbujjEnSBKuLSLa7dNaNV02L5xtJiSQyTFZfrzosiFLAWs+12B1n/eQ5HBARDPMZGVJw8ZAm6jk65oWOS1xIOyAgGJRTyOoJiELu2ZTE+aOLo0XEAwNG3FezYksarz43jyP48OJ6ISxVFrUAXueXOZQ48J+DVX2Vw6O0cshkN6XENna0JiCKHJrsp0ZZn0ji4pwhJ5nDRVWHE4mKF8S+2GyzyWLA4CNMEeo8X6XbDgwo01USyxXk/2zrLRV0yYZ3PQtak7iJp2CLxMnJZu6lRovK1syK5EkFZREbqRzqXow1Z4nZHTomXkAgkG3IuJyIgBBCT455UW0mQqeDxp4C++UYaW5/PwTCAY4fzHqELWOmEEi8hKjnuGcdx1LEmTYTWtqzHvMg8FLQCBvL92D+6H/tG3sbx9DGXkCo/T9S5FGSPIN4071LaOGmB3cm00txaoDwtlqRet4bbIPESRosjVEAWdG+zov4KIy2IWOU4DkEhWHbO9o1Y3VBlQbYds3EoukJFIIlH1RW83rcFuqnjvLbzEZEiZbV+QSGIsBTGssRy6KaOU7leHE93Y8upV5Cxm9fUEpeA0wDrwNh+Kp5ISrBmaNRNJte/U4NbsLdNePYXFINQdIV2E84oGef82c+R7RTsoBikvyP1sREpCt3Uq3Z/JeKSOKOJQBIRKYKcmisbyUKyIUg3WwCIywls6NiI9y2/DQtji9Bkj6cZK455nNtKxx2jjjFLi2UwGLXQNMT+4JMI/ff3oHd0YvyRX0Jft36mo2LMAcymZuT/4A/B6TrCX//aTIczKaZjziVgpaDxHH/aTgrgdkEb+2eRmw7n0u1E8gLdZ1Vx2eBsy0bTYgNCAMuTK7CyaXUd0ZcjyTyuur4V0ZiAzvmBshgILW0SNNVEz2EDkswh2SJBrLPBEuC8FpGXkIgFoeuAqViOpGBaQiuT0vDW9iJEiQPR2OdeFEM4JGN0WEG66DgTmqvmMqtmoegKcsMinn9qFL/+xTCG7fEgCzqthW9Ts3V8Jc+DMzlsuiaJxaus3/G+64rEGhACmLfQOiejwyrdrr/HWtyuOSeKzgUBBMM8WtsriMukJbTyKY46Th22GybxEnJZywVuSlRJ17TTU3VORaZYoC5fU7AJYSmMhfFF4DjLaSbOaHrExPNPjeBXjw3TVNXJQLrbAkCAl+n+3XVwxYKO3hMl8LbznRrTqDvIcRy93puCzVW/W9Y0r8W7Ft2A1c1raBppRsnQlMhUKUWPWUkcOs6lhI5wJ5qCzTi39Tw6XgSwuuTesPhGXNB+UcUYRCrmvM5lgA+gOdRi14NaQo0IRSLoe7M9ZftzN0oKiiF7JmgK+0f3YaQwgpHCMOJyHPPtelDiBpIZnMTlT5VSOJU9hZgcw/pW62Z3UAh6vkdIHGREzWBuANsHtuLQ2EE6y9Ht5ldicXwJRF6kNZULYgtobWdRK6A32wOJl3DVgmsg8RLOazvf83x3zSV5zYDTpChbwVEkNytI3WVQDGJdyzl2vNaxNUODLMj0NZL/E/FP0mJjcgyJQAKmaeKtkb30GKROWxIkdEXm0+81t/MPON19x0tj1G2t9G9FVs0ip+YQl+MN17fPJuZu5AzGXCGfR/wTv4XA07+EPn+B1bxn2fKZjooxhyh8/HcR+s9/Q/DRn6HwqT+AdkHlBcxsxZsWO3X3NC/ruhIFrVDWkXIyTLbm0l/vORVpvx6xCB4CJ8AwjbrEZbVRJHyVbfyNdapxxfyr6tquGte+uwMnu5xaxUojX959ayt++oN+ZDMS2jsDtqip/711O6yJWBAYB7SchOEBBbwpI5fNoud4EZzehKvf04xQiMfTjw5jw+UJqIqBXd0ShgaLaO2wFpi6qXnm/AFA/1Hr/R0ZUjE8YAmFto4QhsUQgAJicQFcSsCylVEkm3LOiBGfSCbpyCExjGjMcjLyWZ2+l6TesnN+AFe+uwmqYkKSy89Za4sl0IZO6ViaWAae57EkbtXwy4JEncvmZPXGSK3hVgCnoJYMumgXeRF3rLzbcz3LgoyhwTy2PjmKFrvZS7JFxJLlYXQfztOZpfUSEr3OJTkn7qYxp06WwJsiNlyWwI4taYyNqNTxbA93QOJF9GR6ykZzuBF5kc52DLjmZBKBN14ap2IiIkUwWhzxuFNEwEiCBEmQcOvy91c8zrxoV8XfA46YI52IFV0Bx3GQBAnNwWYM5PoxUhhGIpCkNZfzIl3WHMxceb29+4ZaSAxiDMDOwR04nu6mn4OliWX0O+BoympG1WzXCxPhRZy/ZKCJbstxHMJSmHZJJeeM3LTodjm91r4k+t002FfCq8+N49ihPK67uQUXXBKn525JfCkOjx+CyIu4pPNSvNH/GgDgROY4NEPD0sQyLIovxqL4YuiGjt1Du+j3nv+7L+hzr9OlcgeSPKc52IL+XD/Ob7uQCja3GA4KQQi8AEVXkAw0YTA/4DT0sV3GsBjGeW0XYjA/iJ0D2xEWQ1ieXOmZmysJElY3r8Gw/T66SchJcByHseIY/YwlA02edGgA1KWudT3PBZhzyWBMI9zICJJ33orA07+EtmIlxh/9JROWjMYJh5H//P8BAET+4suAr/5mtsNN0yiSiBTxDCw/Hai4bPBusVvAcRw3Ja/PPzaEOpdV6rncDk7VbrFV5lxKZ+juOHG/KsVDWLoyjE//yWLcfl8HLtpAFsGTdC7j1sKymOIxOqxAMEXksjrS4xoEU8KKNWFsvDKJP/7GcixeFkLngiB1NwmqoXm6WWq6ScWlppo4etASHS1tEl2sLlwcRTQmYuMVTfY+7C6wvpsWRDSHxCDkIA9R5JDNaPRmRe9xy72atyCAaEykNal+lq2IQhQ5HD+sopg3sSyxnL7vJC2W44BkFecSANqj1mdIUUyP4OM53nM9S5yMPTuy4A0R52+0Uhq3PD+OH/5bL5746RBOHpt4HIYbj3MpBGiqsFtc9p0sQjAlXLQpgXBEwPiIhoRsndvliRVY1WS5hwujC+s6JnGmrHmmlkCyUkZLNA7/HE8Sz+lkSFDn0r6eFF2h+2uxv8MGfZ1hSbdZIm7dnandnYGJWCEilFxzy5LLqcghQpHUjJLnE8fPL96ICw6AjrgJS2EkAomyxkckNXh8VMV3/18P3nwjjdSYhmefHIGuO/9WrW1Zh6AYxMbOTYjKMfp+j9sjOlpc3+UCL9A6y7jPBQTKGydVmvNJbjqe13YB3r34PVjtcppJzIBV70vGrxBRV3I1BwKs7972cDuuXXg9AGDfiFXHSuo8yfm8uPMS3LT0ljJXkryeglagaa/uxmDESSXici438wGYuGQwpg3+xHEk33cDpO1boW7YiPFfbIaxaPHET2QwKlC8735oK1ZCfukFSM8/O9PhNIRHgE1hQ5+pZLINfdxacqpeG8/7nEv75wBfvXMqEW7e5j7V5lw2lhY7VbjFZbXa1mBQwIWbEkhErcWe2IArLVLnUkST7dT1HNah61ZNpaqYGB1WIUCi9YtkPEc4zIM3JSiK41ipuuJZtPadLAKK8x4c3m+Ly3aZLg7Xn5vA5766FM3N1nZUXPrENBEwQTu1OxIVoOtAKcfh2KE8ThwtIp4UqYtajUgwgIVLg4AmYPurXvfGUHmUiiYiUQFBqfp+OmJWqqhSMjyCz0/PYR2pcQ3zF0Tw/vs6sHBpEKNDKlJjlmDqPdGYuHQ3v5F4yZMWm0lpOLwvh9ERDbFwEPMXB5BsEaHrJpJmF+5cdQ9WNK3EgthC3L/uN6kzOeExhXLnMqtmabMmWZCp0PILLkmYvLh011zqhg7d1On+O8OWiOzLWuNNSHOe1lCb53PrTrWUXZ9b8pqIG5oIJLAwtggxOV6Wntlsi0vyfMed9IlLyS38nfepwzVeZak96zUsRnDqZBEP/FcfCjkDGy6LY9mqENLjGvbvcZr3NAWbcc/q+2jdo+SLIeg730To+WejAtUbJ7kh51cWZNpwieCuEQ2KAaxsWo0FsQVYZNdNuseauOcLd0XnIybHMFocQV7NQ7VFqFzH92jSVXfJcZynfpfcOCAp2KRueq7CxCWDMQ2Ie3Yhecu7IR45jNKNN2P84cdhNrdM/EQGoxqiiNwffxkAEPnaVwBj8rVOZxq36JrKhj5TSTJgpS0lfelME+FOi52q1+bfJ1lg+heAnudUEMfe+svKtZin25ylEdxCdiIRTzo6+tPfakEWjGEpgrUrrBS+E7vtWlrTWhxqmomWphAkyftehSICBFOCUnI+VwXXSIi+nhL2bM9AMsJYttpaeJNtm1slemwyroWce9JkxC+m20LtWNuyDmub10PgBERi1t/HR3T88meWg3XDba0QhNo3LERexNKVIfAQsfWVcY9TlBm1nhtLijVvIrTHm8GZPBTFrHm+TxywhPb17+kEz3O47NokAOcGS19P5ZmB1fA7l0RclvQStr2awr49Vkri0uVWl1fi3o6NqB5x0MjnjnRcLukl6kqZpknnScpCgG7jryM8HZefXBfWHNWSJ5awFEZTsBkZJYOMkqYdTK2RMEm6D/fjSs4lYAmx96+4g86/jMlxen4iUoSKMirsbOfS34k67HtvCB32iJe4HMfGzk3ojHSi941m/Pu3TqK/p4TFy0O45a52XHadJaRef3G86jkhWSKOe+q99oj4quRcBquMfHEj1XCa3e9tQAhiUXwxrl90A33dVFxqpbL5wvNtl7w320O7/9Zz48HdoOeclnM959g9V5bjOCYuGQyGF/nxR5G89UYIgwMo/MZHkP7uj4Bw9bvBDEa9KO+9FeqGjZD27ELgoQdmOpy68XaLnZ3O5cLYIty35v6yO9wTMR2dcD1jQ+po6AOUd1m0flet5nJmnEv3Ym+iZhVXzb8Gd6y8u6GmFovii/GeJTdhZXIVzlu6FJcKH0BUsd5PtzBvbyv/Pg5HBAim7HEuiQjQVBM7X09B14F3vbsLl1zpLATDUQGhsEAXq+R8+sWkf+SLwAvY2LkJLaEWS1xGrb/veDWHwT4Fi5YFcc6FtZukWPuVEImKWLQogkxKx9EDzpiDtF3OFU+INRe/0aiEoJ6wnEup8r9VuayOQl8C0VAIa5ZbAmPNuVHccFsr7v2Y7bw1IC7zOR3PPJJCetxyPSVBpmmSmXwR2YyOYIjDhZtiuHCDJTJIw6SxkcojQwzDxGBf+dgONwHB6UjrTu8czA/Yfw/QbfwdUOtNizUMEzteS5XFKfGS3STKdrtcrvx8+3unN9tLay6DYhBJe04jAM+NL3/NpbONt1aP53jq/BHXEnClxVLX0CvsSLMdMuqEsCC6EPOj83Fe+wUIikG8Z8nNGNrbDI4DbvpAGz70O10QBA7LV4fR1CLhxNEishkNlSBinaQB+wXjmqa1uLD9IqxuWlP23HpuOsk1sh7c7637e9W5+aBAMzTopl7mki6wXfLebI/LuZz42uiKLoDESzi/7QJc2LHBU+bgbiTVFGguS82eazBxyWBMFYaB8De/jsTHfgMoFJD9ky8j+7f/AIisbxZjiuA4ZL/6VwBs9zKbrb39LGS2psUCEwueSkxHym95Qx8rrlriMiAEPR09/bFVq7mcihmh9eJuvDSRECfNThqB53h0RuZB4AVrhuP6JP3b0iXO4q2jo3xsAhGXqlIuTAoFK7W2rUPGlVd1ebq2trRZMZLFKnmvymquaji1Au84l0f3WwvtTVcn66rfJYvadeckAVhjOwipIeu1xJNiTdctFOER1lugKAaiVbp+HjmQQ3NpOT6w9F5ar8bzHK64vglrzokinhStOaGl6hkV+ZyOx/5nAPv3ZvHkTwex9eU0ju+33NCAq6FP/6D1vdbcKmPB4hDCAeu6J6NeqonLXVsz+JdvnMDWl1NVYyDumH8ERcoeqWGlxVrbuOvygPpd/oNv5fDYA4P4zj+cxOiwE6vES1ANFUWfcwmAdnU9le1BUSsiIATAc7zHrSTjOPyfDbcDXGl8BdmHuz6dXA8kbbu85tLap19YSYKEdy1+D5YlrN4R6XENmZSG9nkyLr0mCTlgj4fiOZp6nkmV10MC5d+3/swMSZBwbtv5FYWWOy73Y/frqOVcBoWgKyOk/PmKXkJRJ117vXF1hDsh8iL6sqdox+F6vqtaQ6344JoP4fz2C+0YnP2662nbbXd4LsPEJYMxFeRyiH/8NxH55tdhRKJI/+ABFD7zR96CLAZjCtA2bkLxjrshDPQj/I9/N9Ph1I27E+HZBMdNfVqsP7U1IFhpWbXq4a5acDXevfhGX4fYanMuK8/RnG7IgtadNjqdrFrniMgVKxy3sbOjXECFInxZWiyhVLR+FwhZXTSbWiWQU9jSRlwu4lxar7F8ruX/3959h0dR538Af8/M9k2y2VQIaYQSMJTQOwhYEGwIds9D8ayg3nk/705PTz0rp6JiBdTz1FMPBVTELooiICq9SYdAgJCezfaZ3x+T3WQhIXWzJe/X8+Qh2Z3sfmb3y2bf+22nCZd1ei5FiBAloFuvpo12ybJko19yf0wc1Bd6g4gdm22wV6tv5svUkZ5qz+Vp3mibzBKSHb2RXj3YH3J8iotc+O6LEmz5VQ18PXrXv59hWoYeigIcPVx/76UsK1jy9lH8uroC7y4sxJb16u05StWeMd+HIwBwrCZcxlvVN9++Xrb4mp7LspL6w2VhgfpGf+WXJXC7ZRw55MCbLx3G8g+O+4/R1fxf8g15rhtw9JIeKaZU5Cb0Rs+EXqc8Fk3tTdq+Sa2/qsKLt14+7N+uxfd/zbcCad3QkmxKgVbUoqCyAF7FW7slTE1PZHmpG+++fAJbVymoLDxp5dQ64chaz0Iw6bHpEAUxYF6qrz34enlPCZf+nsvT9xAW1Cw8lZ516nExNR+YNNRzeXJYb6g3strm9S+0JcsKZDlw+Hbd0Fy3B/B0H8b5VsQ9+X4lUYJG1ATMyT35diRRQrIxGW7ZjWK7ujhPU3u16/79O3k4s0+KKaVJtxXOGC6JWknctxfxF5wL/bIP4c3KRtmnX8N17nmhLouimO3+h6CYTDC9NA/igf2hLqdJfL164TrnsqWCMZ9UPClcDk8biYmZZ592EQuLPv6UNyUNLugTomGxvjeTzV00qaW69jBBpxehN4jomlP75i2tcz09lyZ1zqXbeWrPpehS3wQaDFq1x0MS/L1oiSnqv1aDFd3jeyA3obf6O6fsf9rwOWtEjT9cCoqErt1NMBia9hjpJT3yUwYizhSDvgNj4fUq2PxrJWRZQdlxBRqNAKNZPG0w0htEaAQtjFXpp3z488PXpVixvBi/bbVBlICcnvWH3s4Zattctug4Fjx9ECeOu3Bonx2/rlF7BNeuLMOubdWIT9BAq1PvQ6MVEHu0P8Z2nghdnWGxx0+o4atLshqsfD08dedc1qesRA0xVRVevPH8YSx4+hD27KzGT9+X+0MQEBgEUkwp0IgaSLIOqUUjsfarajiLYjC884iAYCUJEk4cdWPllyWottXfEwcAXq/if6zSswwoOeH2r6Lra/82X7gUA3vys+Ky/T/7/q/H6+OhKAo2/lyJooOAftsIHF3W37/Hqvr41IYUq/7Unstu8T1wde9rA4bF6iQd9u+uxmdLTqC81HNKgLLqrYjRxaBznQV86uN7XLvUFy7jauZUVtT/eNV97Tl51IWPLCuY/9RBvPyvg6iq9OClOQex8JlD0Aq1e53WHQpct7e5sd5E32iDk/9vaEUtXLILTk/94RKoDd8VrrKa+2r+MNa6czlNWrP/dZE9l0QdnG7ZR7CeNRbaLZvgGjMOpZ+vgLdX71CXRVFOTuuC6ll3QnA6EfPgfaEup0lq37RGV8/lyVuRtPVtSoKEWF1cs+eCnnw7DQfN9hu2r23ncKnVibjt7u64+sY0JMQbodcLMBpF/0qyJx+rkwLnXPqILjVQxRlN/ufYNzTWNyxWFESM7DIamXHqiuAn7+N5uiHXoiD5tyMRIKJnn/p7Bxvj21Nww0/qfpBel4Q4iwQBp98vVBQFGM0Sqm3yKfMVy+oEudw8M/SG+t82dk737XPowuGDTiycewivPleAj949jmOFTqxfqw5DvWJmGm79SxZm3pGO7O5G6Dyx0Fapi5f4HqPiUjV89c/qgQEpA9HDmgsAsFg1EASgYL8Dz/xzHw7uswfUULdHs+CAAwajiLx8NWx8/2WJ/7q6H9LEaGMxuev5iPltLL79wI1vPyvBx+8dr6mnzocwkhYfvnMM33xSjBefOICVX5Zgz04bqm2BvXIH99phr5aR08OEvJo5swf2qHX65gDa6um5BIBeibXvHXzB1qyNQeEBLypKZGRmxuDMc1IgKlqs+LQYbpes9uJpDBAFtf3G1BleWdfJr01aUYeioy54PAp277AFDA11u2RUlCi4pMel/iGcDfFtmZOeffqey/IyN44VBvZq1x2S31Av48G9dpSVqENvX32mAEVHXThy0IkfP6/Cuu9s2LNeCRjRUXdY98mP78ni9Wovb+xJj5lBY4CiKKhyVzVYm69n2T+cugUf0gmC4B+eqxW16G7tiW7x3QNW6o1UnAxG1BIuF8wP3QfT/JcAANV33AXbX+7l/EpqN9W33g7D2/+BftmH0K76Hu5RrdvkPtg6RM9lG31eGzgstuWBtaGhsKHY51K9r5pw2Y7zPLv3ikFxMXDcZsOI8VYIAPSa+nsZYgxGFLgUKIoCk9bkHzopOs3QyHp0iq3tURg6xgJBALrl1h8ET+6pbGxYrAABcfESpFIRuXktC5ddsvRIStHiyEF1ZVtJ0SI2Xn3MG3vzazKJqK7ywu1SoNPXtjnfcMTZ92Yh1tJwW+na3Ygz8mNgTdDC4fAGbItSsN+BE8dciImT0KlLbS9kpzQ9dm+vxtHDTqRlGKARJXi8CsoqqmE0ioiPNQfsTShJAtKzDTi0z4GyYg92brYhs6v6Jl9RFJSVuKE3iDj7wiQ4HTIGjYyDRiPg0H4Hdm6x4dgRJ1LT9AGhQyfpEG+worRQDXwQgGOFTrhdckAgd1SKOHzQCa1OQFWFF998UrNaEg7jjP4xOOuCRMgy8OOKUgBAr34xSMtQ7+fgXt8Q3MBhsSeHlro9i75gIwgCXJvOQBe7E5OuT0anND1+XVOOrRuqsH1TFTqn6/GHP2ViRNrIZq38rJO0sNX0wBYWOGGvEGGsGVH75ccnsO6Hctzwxwx0yWx4tITXq+DIIQf0BjFgHrJPTFxNuKzw4oP/HMWRQ07ccV82Ymt6NOv2XDY0/Hbbxtp1BUqL3ZA0AhRZwapvymAWh8EJCfoptfddd1hsY0NVB6QMRLala8DjrtZVM1e0Zl5uffsL+wKt74OClm5TMzJtNNyyG4IgYFjn4f7Ljx1xQpIEJCY2vqhXOOI7YaJmEg8eQNyNM6D99RfICQmofGE+XBPPCXVZ1NGYTLDd/xDibroeMffcjdKvvw/rDzd8n5yH84I+LdHQHMfWqBu+hFbcZsNzLutsRdLMRXNaQ9PAfMT2oJd0dd7U1v9G0GzUQ6kC3G4FJpPZHy491Vr0qDwXY7pk+o/tlmtuMFgC9Szoc5pA7evlHDDMgvPOz/LPLWwuQRCQPzQOXy0rxreflUAUNYhLVM+5seBhNEsA3Kiu9voXZQGAygoPNFoBCUna0/bMa3UiLpuhDqFUFAW9+sTg2BEnvlpWXDNMF0jtfNLCKDVB89gRdYinJGhQWeaGDAVxVu0pK+wCwIxZ6dizoxr/XXAkYHisvVqGy6kgNU2LwSMDt64YMsqCrz8pxq5tNqSm1a4GC9T2bp047oIgAjk9TNizsxrHCl1ITtdg/55q7N1pR0osYAIw5uwEdO9lwv7ddhQecuLAXju2bawKCEEms4Refc0wmiTo9Gq49XqVOtt/qMfWNyR9QuZZWHHoa5yRmAdAHRaqHE9BepwGGdlqkJ44JREfvnMcsgwcPuhEcZEL3ZJ7NPjc1EcSNLDXhEtR1uDn7ytwzkVqD/LuHdVQFGDjuooGw6UsK/jhqxK4XQq69jT494utq3ZYrAeFBU543Ap2brZh8CjLKedvrCfAybKC7ZtsgAAMHBaHX9dUYPREK7weBT98XQqDHK8e56x9Puv2XDY25F8raeud3+gL/b5eyfrmgp7cu9jUOZcnqzsPduUXJfB4FIw5y4rXnitAbJyEB+dG5hZ20fURMlEwKQr07/0X1jNHQvvrL3APGYbSr39gsKSQcV48Da4Ro6DZvhXGBS+Hupwmibaey8BhsW0151L0v5FvTRBrMFyGeCuSUITLk3ur6hNrUt+8u12yf9gbALjsAkRo/OG0Keo+9o2tQuzb788co0FW15b1Wvr0GxLnX0duwJAEfzhobDEak1l9TqqraufHeTwy7DYZsXGaZg35FgQBPc4wo2dND+z+XWpI94VJn9Q0taZjR9ThkhpRg9JidZhpvFVT7zxVSRKQlqneTt1w6fu+vmCemaM+lwUH1SGcdXvJ9JIeDocXVRVeWBO1/uGdhYccgEfCzs022Kq8OH5IBgSg/+BYpGUYMHK8FZfO6IwHnsrD6LOsSE3TIT3bgLHnJODmuzMRE6uBJAnI6GqE26Wg8JDT3/5tpxlumR6bgat6/Q5dLTnqsVVeKAoQG1f7WAwYZsH/PZyDURPVuYa7d1Sfcjt1KYoChz1w3qPHLsHjAQxGAZKiw2/b1NuotnlRUqQ+lts2VkGW69/W5etPirHi0xJotAJGjj91nicAxMSq7froEad/FWbfYkdA4JD8+noHjxx0orLcg8yuBpx/WQqum52OcecmYOL5ibjlL5no1VdtX47y2oXCfKHPt3ATADidMo4eafo2Ob55m0X24/7bOtnJi6vVnd9ZUebBwrmH8NtWm/8yRVFOu0WOvdqLFZ8WY+UXJVi3qhxOh4zUtNMP6w1n0fVXnihIhOJixM28FnGzb4ZQbUP1HXehbOlyyF3SG/9lomARBFQ98TQUjQamOY9CPHI41BU1yNdjGW2rxQZjKxKg/n0rm6spcy7bN1zWvwdke/D1LGhETYOPqdmkvsGVXVLAG3+nrWYT+tim133yir9NObYtQnecRYOpV6fi/MtSMPWyLhBFAYIgNBpwfeHSt9IsULuFRKylZXUlpuggaWr/T3RKC3yTnpisXn/0iLo3pUbU+LfuSEjSNfh4mGMkaHVCQLj0zbesL1x2TtdDEIHDB3xbgNTWoZf0KD6u/m5Sis4/d7SwwImt621wO9X7ExUtuvcywWINvH29QcI5FybjlruzcMOdGZgwORFxdYYPZ9UE2wN77f4h6L79NRuaE1i3l7uqQg3bMSd9sGGOkdCjtxpwdm+34cghB4qOulCfn74vxxP37sWmX2qHKleUKhAUAfEJWsQYjSgucsHjkVGwv3bho6oKL3ZusaGi/NTVXnduVkPiDXdmNLiCsG/Ope/xBYB9u6r9bUx70kq9J/MF0d79YiCKArK6Gf3tObWz3r+olr0mXOrE2m1kfK81+/fY8eLjB/DynIP4bZvtlPuoj2+BIP/+m/X1XJ60J2fdnsvNv1ai4IADny4ugterwOOR8dbLR/DKk4fg9dYfMPftssOXPb+uGXJ9Rv/IHBILMFwSNUr31eewjhteuxrsh5/Bdu8/AG37vSkjaoi3V2/Yb5kN0VaFmL//NdTlNMi/FUmUDYsNxmqxdW+rtbfp+/3AobbqViC+r/aikTSn1NJeBEFAsikFycbkBo+JM6tvIhW3xt+bCACOKnVXKV8AawpRrD/M18f3eLTVc9FvcBwGj7RAK2khCmKTPkAw+noubbULGvmCTXN6bOuSJAGpnWvfdJ/cEyNJAjp30cNRrYYaERJKTrggCEB8orbBQCwIAqyJWjjsMuzV3pr5ljU9ngmn/o5OLyKlkw6V5R5UlNWujOpweLFjvdMfypJStOhcM0/yyCEnfvq+HCIk5A+NxSVXdsH0azs1+zHI6Kq2qSMHHacMQdc3YZ5eZc1Kq3V7Ln3Ss43Q6QXs3WnHgrmH8PaC+j9c3L6pCooMdXGlmh68smI3REULk1lCotUERQaKjrr9q7/65ou+91ohnnlwHw7tr108ye2SUVzkRly8xj+Htj46vRgwxFoQAFkGdm5RQ17d5/fkAKcoCrb5wmUDIcta80GCrVRt4yatGXpJjwRDIjqb0+Cwe/H2K4dRXqq2jV9+DNz/dPcOG9599QhOHA8M5XH6wGHVTeu5rD1m/261F7i02I0tv1bik/eLsGenOre4oa169v5W2/vs9SiQJLX3P1IxXBI1QCguRuxtN8Jy1aWQjh+D/Zrfo3TFKniGDW/8l4nake1Pd8ObkQn9sg+h+/qLUJdTL1+PZbQNi63bExuO4bKhXjGNqGnyvn1tpXa12NC0gUnZk3FW1rkNXm+JMSHW3RnJQjY0NY+XAgVOmwBTjFTvvLKG1F3cqbEwrRGCNxe1f3I++ieffsVPQF3QB0DANhuVvnB5moV8GuMLH5IkICn11PY2cIS6AMvqb8tQVabA6VBgsWqg0QinfTx825KsW1WOR+7e49/ypKH5qr6tMg4fdPh7t7b8WoVvPqzA0v8eA6D2tMZZ1G1hfEHAajXAmqRFcpIZBmPzn5/kTuo5nzjuCgj5vr09G1NZ3vBzoNEI6NrDBK9XgSIDZcWegJ5nQB3a7AuMHreCJf89BkVR1MVxoIUpRkJyohpijhc6UVATIs++MAmd0vWIT9BAloHlHxT5h8geP+qCotQOaz6dmDqh2DdM2rd6bt15wIaTegKPFbpQesKNtAw94q31P6fxNW2gosSLc7LPw5kZ4yEIAs7vdiFGdhmNwgJ1OG6PM0wwmkTs2maDraq2F3bdD+XYsdmGhXMP+WsCAIsuMFzW9zxJohTw+unrufR6FRzY4/APTV/y9jGsX1PbY1z3furyhUtfe8nJNbaovYWL6PorT9QWFAX6D/6HhNGDYVj0LrypnVD+n3dR9fQ8KDH1L/NNFFJmM6oemQMAiPnrnwF7/X/AQql2WGz0/dmpDYLBGBbbujcYDc3dHNVlDEamjW7VbTeX7811Y0M0g0UQhNMOyzaaRGRWj0AG+vprdbsUKF7JP8SvqQLmXDay3YvvOQ7G49I3uT96J57R6HGmmn027bZTh8XG1NNr1lS+eZbJnXSQpFMf+76DYmGOkbB9UxW2rVdftxKSGh8+7QuXq74uhcet+IdeNhQu033h8oCjdsGWMg8kpTYgJKWo8/R8vZfmWAnDRidCgNDiVZXNMRIMRhHFRW5IddbQ7JXQu9F9GIGGh8X69BscC1GqHbJdd/9LQF3wx+NW0DPPjLQMPY4WOLH3NztKS9wQFQ1MJgkpSer7mqNHnCg4oK6Im5ljxM1/zsTtf89GlywDCg/Vbifj6/08Xa+lT93/N75tYXxbkmhOMyx2+8bT91oCtT2XpSVuJBoTA1aKBdTeZwDI6mZEn4GxkGX1AwUf3xBsh13GskXH/ZcbNIaAehraX9hU03upFWsXuyo85ITLKSOnpwndck0QRaBrDyPOu0QdMbF/96l/m8tK3CgpciOlsw7jz1OX7B043HLKcZEk+v7KE7WCePAA4q6ajrhbboBYXAz7tdej9Ief4Jo0OdSlEZ2Wa9JkOCdNgXRgP8xPzwl1OaeI1tVigbbrZayrLeZcAuqbtrqLW/hkxGYiPTajVbfdXL43Y03psQmFuvMOfcNinQ4ZkqLxL07SVFID813rPbZmm5hQLHTkYzT5hsW2bc9lVo4REIDMnPqfc61WxJDRFigKsPobNbwkJPvmxzYeLp2OwH1J6xsWC8C/sNG+XdXQCOrtm80iJKU24CWmqN8PGWVBdg8jfn9bFyQmqD1qLd1qQhAEJKXo4HErKDriwcovSlBY4ER+8sBTjt29wxYwLxI4/bBYAMjLj8W9c7pj4HA1WBWdFC4P1ISZ7O5GjKhZeGf1ilK151JRey47pag9ipvWVcLllNEly+D/IEAUBUy6OAmAun8qAP/QzqYsOFM3FGd3N8FgFHG80AVZVgLD5UkBbsfm2vmWDfE912XFp84JBWoWZQKQlmGo3QN2nXoOsqz23hpNIlLT1D0/j9eE3t07bPhtnXpMZYmCH74sC1jYaPd2Gzb+XAFbSc3q03U+JNhXMyQ2u4cRV9+Uhr893g2/vy1d3RZHK+DgXjveWXgETz+wD4vfOgpblQd7dqq/k9PThDP6x+JvT3Q77XlHgvBdt56oPVVXwzRvLkwvPAvB4YAnpxuqnp4H98j2/WSfqDWqHp0D7fffwfj8M3BeeDE8ffuHuiQ/f89lFIbLYOzh6RtK2dohpKO7jIOseBs/sB3E6S04J3sSLPr4UJdSr9p5h15/z6XTIUNUNM1azAcIHArb1GGxoVjoyMdkridclrduziWg9m7dcnemv5epPiPOtKKwwIltW9wQBCAhsfFhwr5wCai9oiUn3DAYRX9IPllyJx2siVocPujEZ/9zQTNMgduprgIMAAaTCHNN721unxjk9lHf3Gv21S4W01JJqVoUHHBg50oTxOPp8FR1g3hW4GPq9Sp4/42jcDpk9Mwzw2Dw7RF5+p5LIHDI8ck9l/trhmFmdTOiUxc9vrJq/KvLiiYNTGYvUpNjIIi1e5oOGhHYa9YlywC9QURhgRNer+LfOqZJ4bLm/41GKyDWIiE1TY8De+woOeFGUooOWlGLE8XVePX9o5h+aQx6nmGGx6PgeKELsRap3v0zfbQ6ETFxEspL3fB6FX8gdjpkSBp1USZAbYNGk4ikVB0KDzlxvNAJvUGEx60gNU2P3D5mHDtSjK0bqpCUqsMni4pwqFoDQycXDm4DivYVIyVNh159YnBwrx1vvXIEAHDYXIkhl3gRr68z37JmZeSu3U0QRQGiTq1JoxGRnm3A/l12/5zTTT9XQpIEVFWqz7Fv2LBeH/n9fpF/BkStoSjQfbwUCaOHwPzUEwAA211/Qem3qxksKeLI6Rmw3fcgBK8XsbffCrjdjf9SO6kNYFEYLv29sm33J9V3W60NrMmmZKSam78QSbB0MncO2OYjnJhMvqGhsr/XzOWQIaD5w2LrDv9u7AMC3+I/oVjoyMffa1tnQZ/aXrPW9UOkdtYHLOxyMr1BxJU3pGHm7VkYcWY89DXBSmxCzyUA9B8Si+tmp+PqG9MaPF4UBVx7axckJGmxb6sHxwpd8Dpqg2VWjrHeIdO+4bBNGcLaEF9AOvCbC2n2gXAXW/w9cz77d9vhsMtQlMCeuKY+B8k14bJuz6UsKzi0zw6dXkSnLnpIkoAzJyX4rxcVdbsUk8GAxJqhyPEJmlNWKRVFdfsXj1sNfceOOKHRCkhMbvwx8YVi3z6p9W0/c3CfA/YyDVZ+UQIAKC91Q1HUFYMbY03UQpbV7T8AtVd17oP7sODpQyguciM+UQOTWVL3gB2iDv/dsK6yzqrEWv9w3S3rK7F3ZzVKi93Qe2NwrNCF8hNqm9j0cyUA+HsZAUDjNcJW6fX3anu9Cg7us0Onrx1aXVd2N/V1T28QMfPOdGi0ArZuqMLenXYYTSKyuoXn62JLMFxShyVt2wrL9AthmXktpIJDcE65ECU/rEP1X+4FDOE5bIuoMY4ZM9W9L7duhmne3FCX4+cPYNEYLoOwzUpbryBKjTOaaxa1qfb69+Bz+HsumzsstjYYNbrPpdA2vdStUffc7dVe/LbN5n/D3tKtSJorO8eMpJTaN+Wnm6tad/hr915mpGcZkJZx+r/b1kQthoy2QFJ0cNgUyHYDzDESbr83G9N/X/8HML520JotewIWMqp5ifjxm9KAfQ/rhs2SE264XHLN/pseQGh8GxxfgD1xrPYDxfJSD9wuBalptfNdBwyzYNrvOkHSCOiZo84DtOji/XNjh4+z1js31jeseNvGSjjsMlI665q0wJXvQxnfhwG+3s7CAid2bbfBLMWhpEDd6qVgvwPHjzr9+2z65t6ejm+ObVmJGxXlHrw9/wgcdtnfu9o5vbZN9Bus7gG76ecKfw9vQpIWicnqFjTFx934+H/q3Eu9HIeC/XZIsvq4/rbVBofdiwN71Z7J7r1N0MgGVNu80NW0jcMHHXC7FGTmGOt9DPsNjkN6tgHTr+2EjGwjevUxw+WU4fUqyO1jrvd3IhWHxVKHIx48APMTj0D//nsQFAWe3F6oevgJuMeND3VpRK0niqiaOw/WM0fC9PQcOCdfAG+v3qGuqnZeYhR+phmMOZddYrrAI7th0kTucvSRxj80tKrOsFinDI2iadWCPo0Ndw3marFNZfT32nrx/Zcl+HFFGQB1OKPe0I7b1QgauBU1XJzu8dDq1GGGbpfcpFVLfWItGojQIMcxFs4qF0wp0mm3mPGtCNrQnpRNUXdoZ/dcE8rLPDh80IljR1zo1EUPWVawY3PtHoylxW68+dJhVJR5UFnhgTlGajR46PQiLFYNSkvccLtkaHViQO9cXX0HxarhSNcVDtmGWF0cxp3rRGpnPQaPiqvv5v3hcvW3ZQCAzK5N62VLyzAAAvy9cqmd1cfxx29K8cNXpUjN6I20Y9n+D+jWr6nwB8amhEtf7+lv22wo/rYMleUe9MwzY/cOG2QvkJZe+7zFxWuQ09OEPTur8XPNtiQJNb8/cUoi3nu9EOWlHhjNIoxiCoqdKbC4MqE3iHA6ZGz5tQoF+x3QG0Tk5pnxy24D7Lbankv/kNgegduU+CQkaXHDnbXz3PsPicOW9Y3PLY1E0fdXnqgBQlERzPfejYQRA2FY9C6UxERUPfIESr9ZxWBJUcWb0x22v94HweVC7J23At5wmHMXvT2XwQiX/ZLzcUG3i0M6VLKjMRhF6PQCykrc/t5Gh90LEZpmL2pTNxg1vs+lr/2E7rmWJDVEVtu8OLDX4b/c41ba9f9sc+aqXjc7HX/4U2az6vM9j46jcdDJMY3uXdonqS8Gpg5GijGlyfdxMmuSFjVPMbr2NPkXl9n0izrUsrDAicpyjz9AFhY4cGifA+WlHsjepg9LTk7VAQpQXNPzV3KipncuuZ59Gk0StBrJv8JqSic9xp6TAI2m/tcwX7hU2wMwdEx8k2rq1EWP//tnVwwfpx6f3FkH1Ox3CQDHDnkgQYuhYywQRGDjz5UoLvLV3Xi4HDjcAp1ewOpvy/DbVhusSVpcOqMTxk9KhCCqPYx19R+qDo319Wz6Amz33mb84U8ZyO1jxqSLk5HTLRZZttGId2di4pREAMCXH5+Ax60gM0fdnsbojYfDJiCpZu9c/2I+3ZsWvHNyTbBYNTCaReT0rD+QRiqGS4p6QmkJTE88goSh/WFa8DIUnR62//sbSn7aCPsfbgG0LR/uQhSu7DfdCvfAQdD++guMr7wY6nKCsuhNuIjmXtmORBAEJKbo4HIqsFfVLA5iEyBAaHCLi4YEbEXSyLBYX6gM9QcJphgJLqcCh73mwyhBnc/YnnyPlSAIjb5WSJIAjaZ5wdcX1Hwrg/q2YGmIRR+PPkl9WxWwJUnwh5iuPYzoOzAWEIDNv1TW9FqqvVf9BquP9W9bqwN+v6lbwfj2SHztuQJ8/cmJ2p7LxNa/x4mL1/iHR/fuH9OkXkUfc4zGP4RWrxfVECzAHzgBNSRmdTOiusrr78Vtyn3ExWtw5qREoGaE8eRLkqHVihhzdgLundMtYFgsAPTqGxMw/zexTvBO6aTHlTekof+QOH9Pq8ksYfAoC3rmmf0rE2d3NyE+QQudHIO86gtxRmIePB4Zh/apvZpN2aIFUNvFzDsycOOfMqHVRdffDg6LpaglHD8O0ysvwPDaAoi2Kig6HapvvAXVd/4flKSkUJdHFFyShMpnXoR14miYH/8nXGedA2/P3JCVE81bkQRjziWFRlKKuqJkRbH6RtJRJUAQ1DexzdGcYbG1cy5DHC5NIkqh9nxpdQL+8mhOu88DC/YQYd+WHm6XmkZM5vZ5Uz9hShIKCxzo1EUPURTQtbsR+3bZcWCP3R+mRpwZj/VrK+ByBm6v0tRe8wHD41B42ImDe+xY/W0ZuvZQA1JTegCbomsPEzb/UolRE6ytup3LZnRGtc3rD3C2Ki9S03To2sOE/bvs/rm+1iYG2GFj43Fonx1x8Vr0OKN2GkF9vbA6nYi8ATFYv6aiZnXh+p//br1MECWgZ5666usFl6fgxccPwF4tI7u7ERar+pxUlKjP1a5t1fC4FeT0NDXr/0xzX1ciRXSeFXVo4pHDML7wLIxv/huCwwFFr4d9xkxUz/4j5IzMUJdH1G68vXrDdvc9iHnkQcTe+geULf8K0LV8Sf3WqA1g0fUJLVAbJKLx3Doa3xyu8hMKZKsCp01ArEXT7B4yQA1IXsXb6EI9sTq1xypGG9p5V76tWKCoC6U0NEQymHz7iwYrXGp1IgwmEY5qNRSYY9rnbfAZ/WMCVmHtNzgW+3bZ8fnSEyg66kJKZx1SOusRa5FQWa72HKd01qlbcjRxWGxKJz1m3JaOt145jN3bq7F3pzoH0NoGPZcAMHl6MsacleDvIW2pur8/aWqy//uu3Y1YUfO9KUbyb8fSGEkScPn1Da8UfLL8IXFYv6YCicnaBj8QTEzWYdbfsv1zrWPjNLj6pi44fNCBtAw9BEHwb4NSUe7BspqFgAaOqH/OakfDv4QUNTQb1yP21j8gYUg/mBa8DIgiqm+ehZJ1m1A1Zy6DJXVI9ll3wj1sBLSbNsD05OMhqyOqey5rzo3DYiOfb/GV8hOAwy5DVHQBK5M2h+9Dh8aGxVoNCbik56Xol5zfovtpK3XnH/p6Ztqb77EK5hDhuDo9ge3Vc3myvoNikZSixdHD6vDcXn3V4Fk3CE6/thMGjYjDgGHNCyy+xXa8XgUGk9jovNKmMhikVgfL00nLNEBbsy9kc4bdNldmjgHnX5qCSZckn/a4hCRtwBDa9CwDho2J97/ex1vVbVD+91ohbFVeDBoRh159omthnpbiX0KKbB4PdB9/iPgLzoX17HEwvP8eFLMZtjv/jOJftsL20KOQO3UOdZVEoSNJqHj+FcgxsTA99zQ0a9eEpIxonnNZuydl9AXnjiaxJlyWFSnorRuGTva+zZ5v6eNr603phYvRxoR8WHVYhMt2GCJctyewsTmXwaLRiLjgilT/z736qsM5feHSYtUgpbMeF1ye2uyex4yutfMM22K+ZXvRaARk5dQM5Q1iuBQEAYNHWZCR3bp9JS01HzoVHHDAHCvh3KmnD6sdCYfFUkQSjxbC8M5bMLz1BqRDBwEAnu49YP/DLXBcdiVg5vL9RD5yVjaqHp2DuNtvQdxtN6J0xQ9QYtt3+I4YxftcBmO1WAoN37DYE8ddyHNmwuw93upwGcpVYJvDWCdcxltDE0p8w2Ib6+1tjbr7drZVr15LZOUYcc5FSSgrcaNzzZYZvlDVOaPlW590yTJAFNUVWYMZ0oIhJ9eE3TuqA/cGDVN1XxcGDIuDLsoW5WkNhkuKHF4vdF9/AcNbb0D35ecQarZXcI0bD/vNt8E1/iz41/smogDOy6+C8/NPof/kI5j//ldUPRuaFWSjelgsw2XE0+lFxMVrUFbi8W9I39Jhsb6hncEMSm3JVGdxk1D1XPp6LIMZyGMDhsWGNviPHB+4OE5GzZDW7rkt/4BcpxPRKV2PIwedTV4UJ1wMGW2BJAntvkpxS9R9XRg43BLCSsJPZLziUYcmbd8Gw+JF0C96F9KRwwAAOSkJ9suvhuOaa+Ht1iPEFRJFAEFA5ZPPQvPzTzC+8xZcZ50L1wUXtdvdR3Pvnn9BnygMzh1RUooWFWUe7P1N3RKipT2X4bIKbFPVHSJqaeE5t5YmyAv6AIHDYs0hGhbbkJyeJtxxX3aLP9DwyepmxJGDzqDOkQwGrVbEsLHxoS6jSXzbmHTLNUVcD3GwMVxSWBIPHoB+6QcwfLAImu1b/Ze7xo2H/drr4Dp3cshWvSSKVEpiIiqffRHxV1yC2D/OQmm//pCzstvlvv2rxUZhAPOdUTQG544oKVWHvb/ZUVigLrbS6mGxETKixmiqOyw2VD2XvmGxHaPnsj5tsbrr2LMTkJisQ15++PcARqrs7kZMmZ6MnnmchnUyhksKG+L+fdB/9gn0yz6C9qfaRUc8Z/SB45JL4Zw6jSu+ErWSe8JZqJ51J0zPP4O4m65D2Ueft8sHNbVDR6MvXHIrkugycIQF61aVQ5HRoj0ufXwLPfn2bgx3vqAliEBME7e/aGu+UBnUYbE156bVCVG3eb2P0SRh8EgO1QwmURQwZHR8qMsIS5HxikfRSZah2bgeus8+gf6z5dBs3+a/ypuZVRMop8Pb+4wQFkkUfWx/uw/aNT9C+/NPMD/yIGwPPtIO91oTKqM4XLLnMjp0StNj5HgrVn1d2uI9LoHaOZeRMizWWLMtR5xF06yN4NtSuwyLrVnQJxx7LYmiAcMltSuhqAi6lSugXfktdCu+hnS00H+dJ7cXXJOmwDlpMjwDB0flm1CisKDVouKV12CdOBqml+bBPWo0XOecF9S79G9FEpU7YEXvkN+O6sxzE3DsiBPpWYbGD26A5NuKJIhDPNtSbJwGObmmVp1za9UOiw3marEadE7Xo0tm6M6TKJoxXFJQCZUV0KxbC91330L33Qpotm3xX6eIIlzDR/oDpZzTLYSVEnUsckYmKp99CZbfX4nY2Tej9JtVkLukB+3+BG5FQhFEqxNxzU1dWnUbtftcRsZbLVEUcO0trTvn1mqPnktRFHDjXRlR+VpEFA4i4xWvFW6//XasXr0ao0ePxty5c0NdTnRTFIgH9kO7bq369dNaSNu3QlAU/yHe7K5wjZsA19gz4R49Boo1IYQFE3VsrvOmoPrGW2Ca/xLibrwOZUuXA9rgrHrn77mMwgDGcEn10Yjq/yVthGxFEg7aY84lEJ0fchGFi6h/xbv66qtx8cUX4+OPPw51KdFFUSDu3wfNls3QbNkIzeZN0G7cALHoeMBh3i7pcA8ZCveYM+Eae2a7rUxJRE1ju+8haH9aA+26tTA/cC9sj8wJyv1E83YdtcE5+s6NWq5/cj46mTsj3mBt/GACAMTq1EVo4vRxIa6EiFoq6sPlsGHDsHbt2lCXEbm8XoiHDkKzZxekXb9B2r0b0m87oNm6BWJlRcChiiTBnT8A7iHD4Bk6HO7BQ4M6zI6I2oBej4pX34T17LEwLXgZngGD4Jx+eZvfTe1qsdHXu8fVYqk+VkMCrAaOzmmOFFMKLs29AkaNMdSlEFELhXW4XLduHV599VVs2bIFRUVFePnllzF+/PiAY95++228+uqrKCoqQu/evfH3v/8d/fr1C1HFEcjhgHiiCOLhw5AOH4JYUACp4CDEwwWQDh2EtG8vBKfzlF9TTCa4Bw2Bp28/ePr2V//N7Q0Y+QeBKNLIGZmoeOV1WC6fiti7boen1xnw9unbpvcRzftc+ofFRuViRUTti8GSKLKFdbisrq5Gbm4uLrnkEsyePfuU65cvX47HHnsMDz74IPr374833ngDN9xwAz777DMkJLT9p4WiGF5viqTjx4DtG6ArrYTi9gBuN+DxQPC4gepqCFU2CFWVEGxVEKqqIFRVQiwuhlB8AuKJExCKiiBWVZ72PuTERHjyB8DbvSe83XvA20P9V+6aA0iBcyL4tiq6+Np7uLV7Cg7v+Amo/vsDMD90PyzXX4Pyr76DEt92w/kyLZmodJcj0ZQIURSiqn2JogBBACRJjIrziRbR1MYo/LB9UTBFcvsK63A5btw4jBs3rsHrX3/9dVx++eWYNm0aAODBBx/Et99+iyVLlmDmzJltWotGIyIxMaZNb7NVHA5gcD+guhqxLb0NiwXo0QNITgYyMoDMTPUrK8v/vWi1QgQQnCU+KBJYreZQl0Dt5YG/A1s3QvrgAyTcfjPw8ceA2DYfGyUm9sHArn1OuTwa2leS3YIjLgNSEuORGBdGfycIQHS0MQpfbF8UTJHYvsI6XJ6Oy+XC1q1bccstt/gvE0URI0eOxIYNG9r8/jweGRUV9ja/3dYw3fEnGA/shVMRoIgSoNFA0WoBSQPFZIQSEwMlJhZKTAxgNkOJiYWckAglORlyQiKg15/+DmQAxVXtci4UfkRRgNVqRmmpDbKsNP4LFB2enAfLps3QLF+O6j//BfZ7/xGUu4mm9pWm6Qo5TgO9Kw7FfM0MG9HUxij8sH1RMIVr+4qLM0KrPf1qzhEbLktLS+H1epGUlBRweWJiIg4cOOD/+cYbb8SmTZtgt9sxduxYzJ8/H7169WrRfYbTkwsA1Xf9BcbEGFQVV7WstjA7HwpPsqyEXdunIDLHoOKNdxA/aQJMc5+Ep0duUBb48YmG9mWUTOgRnwsogKxE9rlEo2hoYxS+2L4omCKxfUVsuGyIoigB+xfNnz8/hNUQEUUeb/ceqFjwb1iumo7YP86CN7srPIOHhrosIiIiCnMRuwaL1WqFJEk4ceJEwOUlJSWn9GYSEVHzuMdPRNXDj0NwOmH5/VUQCw6FuiQiIiIKcxEbLnU6HfLy8vDjjz/6L5NlGatXr0Z+fn7oCiMiihKO62+E/fczIRYdh+V3VwBVnE9IREREDQvrYbE2mw0HDx70/1xQUIDt27cjKSkJycnJuO6663D33XcjLy8P/fr1wxtvvAGHw4GpU6eGsGoioighCKh6dA6kvbuh+/47xN12Iypef6vNVpAlIiKi6BLW4XLLli249tpr/T8//PDDAIBZs2Zh9uzZmDx5MkpKSvDcc8+hqKgIvXv3xsKFC4OyxyURUYek1aJi4RuInzQB+k+XwfzwA7Dd/1CoqyIiIqIwJCgKl7ZrCrfbi7Ky6lCXEUAUBSQmxqC4pavFEp0G2xfVJe3ehfjJEyGWlaHysSfhmHljq26P7YuCjW2Mgonti4IpXNtXfLyp0a1IOLaJiIga5e3eAxX/eReKXo+Ye/4PuuXLQl0SERERhRmGSyIiahL38JGoeHEBACDu5uuhWbc2xBURERFROGG4JCKiJnNdcDFsDz0KweGA5XeXQ9qzK9QlERERUZhguCQiomax33Qbqm+eBbGkBJbLp0E4fjzUJREREVEYYLgkIqJmsz3wMBwXXQLp4H5YrpoOoaI81CURERFRiDFcEhFR84kiKue9DNeoMdBu2oC4310B2O2hroqIiIhCiOGSiIhaxmBAxX/egTt/AHSrVyHuhmsBtzvUVREREVGIMFwSEVGLKbFxKH9nMTw9c6H/8nPEzr4J8HpDXRYRERGFAMMlERG1ipKYiPJFH8KbmQXD4vcR89c/A0r4bPpMRERE7YPhkoiIWk3unIay/y2FnJwC4xuvwvzwAwyYREREHQzDJRERtQk5pxvKFn0IOT4epnlzYfrXY6EuiYiIiNoRwyUREbUZ7xl5KH9vCeTYOJiffBymp54IdUlERETUThguiYioTXkGDEL5e4shx8TC/MQjMD3zZKhLIiIionbAcElERG3OM3goyt9dDNkcA/OjD8H43NOhLomIiIiCjOGSiIiCwjN0GMrf+QCKyYyYhx+A8flnQ10SERERBRHDJRERBY1n+AiUv/M+FJMJMQ/dB+OL80JdEhEREQUJwyUREQWVe8QolL+9CIrRiJgH7uUcTCIioijFcElEREHnHjUG5f99H4rJrM7BfORB7oNJREQUZRguiYioXbhHjUHZ+x9CjrPANPdJ4I9/ZMAkIiKKIgyXRETUbjyDh6J8yTLIiYnAs8/C/KfbAa831GURERFRG2C4JCKiduXp2x8VH30GdO4Mw5v/RuysmwCPJ9RlERERUSsxXBIRUbvz5vYCVq6ENz0Dhg/+h7gbfg84HKEui4iIiFqB4ZKIiEKje3dULPscnq450C//GJYrp0GoKA91VURERNRCDJdERBQycnoGyj7+Au5++dCt+h7xF02GeOxoqMsiIiKiFmC4JCKikFJSUlC+ZBlcY86EZutmxE85B+LePaEui4iIiJqJ4ZKIiEJOiY1D+X8XwXHRJZAO7of1/LOh2bg+1GURERFRMzBcEhFReNDrUfnKa6i+4SaIJ07AcvEUaL9bEeqqiIiIqIkYLomIKHyIImyPzIHtnvsh2qpguXIa9O+8FeqqiIiIqAkYLomIKLwIAqrv/DMqnn0RABB3x60wPfYQIMshLoyIiIhOh+GSiIjCkvPKa1D+7mLIcRaY5z6J2Ftmci9MIiKiMMZwSUREYcs99kyUffIlvJlZMCz5APHTLoBQXBzqsoiIiKgeDJdERBTWvLm9ULr8a7gHDoJ23VpYz5sAac+uUJdFREREJ2G4JCKisKekpKBs8Sdwnn8RpP37EH/eRGhXfR/qsoiIiKgOhksiIooMJhMqFr6B6ll3Qiwrg+XSi2B4bQGgKKGujIiIiMBwSUREkUQUYbv/IXUlWVFE7F/vQsyf7wBcrlBXRkRE1OExXBIRUcRxXnkNypZ8Am9KKoxv/hvxl5wP4fjxUJdFRETUoTFcEhFRRPIMGYayL7+De8BAaH9aA+s546DZuD7UZREREXVYDJdERBSx5M5pKPvwMzguvQLSkcOIv+Bc6BcvCnVZREREHRLDJRERRTaDAZXPv4KqBx4BXC7E3TwT5vv+Brjdoa6MiIioQ2G4JCKiyCcIsN86G+X/fR+y1QrTKy8gfuoUiEcLQ10ZERFRh8FwSUREUcM94SyUfvU93PkD1HmYE0ZzP0wiIqJ2wnBJRERRRc7IRNnHX8D++5kQTxTBMv1CGJ9/lvthEhERBRnDJRERRR+9HlX/mouKeS8DOh1iHroPcTOuhlBRHurKiIiIohbDJRERRS3n5VehdPnX8HTNgf7TZbCeNRaaDb+GuiwiIqKoxHBJRERRzZvXB2Vffgfn5Asg7d+H+Clnw/jy8xwmS0RE1MYYLomIKOopcRZUvP4WKh97EhAExNx/D+KuuQxCcXGoSyMiIooaDJdERNQxCAIcM29E6affwNO9B/Rffg7r+JFcTZaIiKiNMFwSEVGH4u3bD6VffAfHFVdDOloIyyXnw/TEI4DHE+rSiIiIIhrDJRERdTwxMah87iVUvDAfiskM81NPwHLJ+RALDoW6MiIioojFcElERB2W89IrUPb1Srj75UO35kdYzxwJ/fvvcbEfIiKiFmC4JCKiDs2b0x1ln3yJ6ll3QqisQNytf0DsjddBKC0JdWlEREQRheGSiIhIr4ft/odQvuQTeNMzYPhwMazjRkD77TehroyIiChiMFwSERHVcI8cjdJvf4Tj8qsgHS1E/GUXw3zP/wHV1aEujYiIKOwxXBIREdWhxFlQOe9llL/6JuSEBJgWvgLr2WOh2bg+1KURERGFNYZLIiKierguuAil362Bc+LZ0Oz6DfGTJsD02EOA0xnq0oiIiMISwyUREVED5NROqPjv+6icMxeKwQjz3CfVXsz1v4S6NCIiorDDcElERHQ6ggDHjJkoXbkGrrHjodmxHfHnTYT5n/8AHI5QV0dERBQ2GC6JiIiaQM7IRPmipah86jkoJjNM8+bCOnE0ND//FOrSiIiIwgLDJRERUVMJAhy/m6H2Yo6fqM7FPP8cmP9xL1eUJSKiDo/hkoiIqJnk9AyUv7sYlc+8AMUcA9NL85Awdji033wV6tKIiIhChuGSiIioJQQBjqt+h9Lv18J53vmQDu5H/BWXIPbm6yEcPx7q6oiIiNodwyUREVEryGldUPHGf1H++tvwdk6DYfH7SBg9GIa33gBkOdTlERERtRuGSyIiojbgmnIBSn/4CfaZN0IoL0fsn2bDcvFkSL/tDHVpRERE7YLhkoiIqI0osXGoeuxJlH36NTx5faFb8yOs40fC9MQj3LaEiIiiHsMlERFRG/MMHIzSL75F1f3/BDQamJ96Agljh0H35WehLo2IiChoGC6JiIiCQauFfdYdKFm5Fs6zz4W0fx8sV1+GuN9dDnH/vlBXR0RE1OYYLomIiIJIzspGxduLUP7We/BmZUP/+adIGDMUpjmPAnZ7qMsjIiJqMwyXRERE7cB1znko+f4n2O6+BxAEmJ98HAljhkH32XJAUUJdHhERUasxXBIREbUXgwHVf/4rSr7/Cc5JUyAd3A/LtVcg7upLIe3dHerqiIiIWoXhkoiIqJ3JWdmo+M87KH/nfXi65kD/1RewjhkG8/33QCgvC3V5RERELcJwSUREFCKuieeg9Ls1qLr3H1B0ephefh4Jw/JheHU+4PGEujwiIqJmYbgkIiIKJYMB9jvuQsma9bBf83sIpaWI/dufYT1zBHRffxHq6oiIiJqM4ZKIiCgMKKmpqHp6Hkq//gGuMeOg+W0nLFdOh+XyqZB2bA91eURERI1iuCQiIgoj3j59Uf7+Ryj/z7vw5HSDbsXXsJ45AjH/90cIRUWhLo+IiKhBDJdEREThRhDgmjQZpSvXouqfj0GJjYPxjVeRMLQ/TP96DEJVZagrJCIiOgXDJRERUbjS6WC/6TaUrF2P6htvgeBywvyvx5AwNB+GV18BXK5QV0hEROTHcElERBTmlIRE2B5+AiWrf4Xj0isgFJ9A7N/+DwmjBkO/5H1AlkNdIhEREcMlERFRpJAzs1D5wnyUfrMKzrPOgXRgP+Juuh7xZ4+D9ttvQl0eERF1cAyXREREEcab1wcV/30fZUs+gXvgIGg3b0T8ZRfDMu1CaH79OdTlERFRB8VwSUREFKHco8ag7NNvUP7aW/B06w7d99/COmkC4q65DJpNG0JdHhERdTAMl0RERJFMEOA6/0KUfv8TKuc+D29GJvRffAbrWWMRN+NqSFu3hLpCIiLqIBguiYiIooFGA8fV16Jk9a+onDMX3s5p0C//GAnjRyL2DzMg/bYz1BUSEVGUY7gkIiKKJjodHDNmomTtBlQ+OgfelFQYPlwM69hhiL31D5D27g51hUREFKUYLomIiKKRwQDHDTej5KeNqHrgESgJCTC8/x6so4Yg9rYb2ZNJRERtjuGSiIgomplMsN86G8U/bULV3x+EYrHAsOhdWMcMRewNv4e0eVOoKyQioijBcElERNQRxMTAfvsfUfzzFlQ98Ajk5BQYPlqChImj1dVlf1kX6gqJiCjCMVwSERF1JDExsN86GyXrNqHysSfh7ZKuri573kRYpl8E7Y8/AIoS6iqJiCgCMVwSERF1REYjHDNvVBf+eeYFeLO7QrdyBeIvnoz4CydB+82XDJlERNQsDJdEREQdmU4Hx1W/Q8mPv6DipYXw5PaCdu1qxF8xDdbxo6Bf9C7gdoe6SiIiigAMl0RERARoNHBOuwyl361B+WtvwT1gIDTbtiDuthuRMLQ/jC8/D6GqMtRVEhFRGGO4JCIiolqiCNf5F6LssxUoW7oczrPOgXS4ADH334OEAXkwP/wAxGNHQ10lERGFIYZLIiIiOpUgwD1yNCr++z5KVq6F44qrIVTbYHruaSQM6oOYP86CtOu3UFdJRERhhOGSiIiITsvbqzcqn3sJJT9vRvVtd0DR6WF8+z9IGDUYcddcBu13K7j4DxERRX+4vP322zFkyBD88Y9/DHUpREREEU3unAbbP/6Jkg3bUHXfQ/B26gz9F58h/tKLYB03HIY3/w1UV4e6TCIiCpGoD5dXX301nnjiiVCXQUREFDWUOAvss+9Eyc+bUfHSQrgHDoJmx3bE3nU7Egf0VudlHjkc6jKJiKidRX24HDZsGMxmc6jLICIiij46HZzTLkPZZytQuvwrOKZOg1BR4Z+XGfuHGdCsW8shs0REHURIw+W6detw8803Y/To0cjNzcWKFStOOebtt9/GhAkT0LdvX1x22WXYtGlTCColIiKi0/EMHorKV15HyS9bUH3HXVAsFhg+XAzrlLMRP2m8ul+m0xnqMomIKIhCGi6rq6uRm5uL+++/v97rly9fjsceewy33XYblixZgtzcXNxwww0oKSnxH3PRRRfV++X1etvrNIiIiKiGnNYFtnv/geL121H59Dx4ep8B7fpfEXfbjeqQ2X/+A+KB/aEuk4iIgkATyjsfN24cxo0b1+D1r7/+Oi6//HJMmzYNAPDggw/i22+/xZIlSzBz5kwAwIcfftgutQKAKArtdl9N4asn3Oqi6MD2RcHE9tUBmE1wXTsDrt/9HprvV8Lw2nzoPv0EpnlzYXz+Gbgnng3HjJlwn30uIEltfvdsYxRMbF8UTJHcvkIaLk/H5XJh69atuOWWW/yXiaKIkSNHYsOGDe1ej0YjIjExpt3vtymsVs4ppeBh+6JgYvvqIKZOUb8OHwYWLICwYAF0X30B3VdfAFlZwI03AjNnAqmpbX7XbGMUTGxfFEyR2L7CNlyWlpbC6/UiKSkp4PLExEQcOHCgybdz4403YtOmTbDb7Rg7dizmz5+PXr16Nbsej0dGRYW92b8XTKIowGo1o7TUBlnmYgnUtti+KJjYvjoogwWY/Wfg5jug+3w59K+/Ct13K4B774XywANwTbkQjutugGfkKEBo3Sf2bGMUTGxfFEzh2r7i4ozQak8/0iRsw2VDFEWB0Iw/OPPnz2+z+w6nJ7cuWVbCtjaKfGxfFExsXx2UpIFj8oVwTL4Q0p5dMPz7NRjeexv6pR9Av/QDeLr3gOOqa+G47EooKSmtuiu2MQomti8KpkhsX2G7FYnVaoUkSThx4kTA5SUlJaf0ZhIREVFk8nbrAds/H0Pxxp2oeO4luAcNhmb3LsQ8dB8S83shbsbV0H35GeDxhLpUIiJqRNiGS51Oh7y8PPz444/+y2RZxurVq5Gfnx+6woiIiKjtGY1wXnE1yj79BiXfrUH1TbdCiYuDfvnHsFx9GRIG9YHpsYcg7t8X6kqJiKgBIQ2XNpsN27dvx/bt2wEABQUF2L59O4qKigAA1113Hd59910sWbIEe/bswQMPPACHw4GpU6eGsmwiIiIKIm/vM2D75+Nqb+aCf8N15gSIRwthnvskEof2h2XaBdAvXgQ4HKEulYiI6gjpnMstW7bg2muv9f/88MMPAwBmzZqF2bNnY/LkySgpKcFzzz2HoqIi9O7dGwsXLkRCQkKoSiYiIqL2otfDedElcF50CcRDB2F45y0Y3n0buu+/g+777yBb4uG86BI4LrsSniFDW70IEBERtY6gKEpkzRINEbfbi7Ky6lCXEUAUBSQmxqC4uCriJvtS+GP7omBi+6IW83qh/W4FDP99E/rPPoHgcqkXZ3eF47Ir4Zh+OeTsrmxjFFRsXxRM4dq+4uNNja4WG7ZzLomIiIhOIUlwTzgLlQvfQPGWXaj81zNwDxkGaf8+mOc8qg6bvXAS9G/+GygvD3W1REQdCsMlERERRSQl3grH769H2SdfomTNr7Dd9Rd4M7OgW/MjYv44G0hNRcwNM6D76nOuNktE1A4YLomIiCjieXO6o/ov96Lkp40o++gzOK75PaDXQ7/0A1iuuhSJ/XIR89e7oFm7BpDlUJdLRBSVGC6JiIgoeogi3MNHwvbM88DRo6hc8G84J54NobQExtcWwHrBOUgY3BfmB++DZvNGgEtPEBG1GYZLIiIiik5GI1xTp6HinQ9QvHkXKp94Gq4RoyAVHILphWdhnTgG1lGDYZrzKKTdu0JdLRFRxONqsU3E1WKpo2H7omBi+6JgO10bE48chn7pYuiXvA/txvX+y919+8N58TQ4p06DnJ7R3iVTBOFrGAVTuLavpqwWy3DZRAyX1NGwfVEwsX1RsDW1jUl7d0O/5APol7wPzW87/Ze7Bw2Gc8pFcJ5/IeTsru1RMkUQvoZRMIVr+2K4bEMMl9TRsH1RMLF9UbA1u40pCqRtW2FY8j70SxdDOrjff5W7b3+4LrgIzvMvgrd7j+AVTRGDr2EUTOHavhgu2xDDJXU0bF8UTGxfFGytamOKAs2WTdAt+xD6jz+Eps58TE/vM+CcciGcF1wMb6/egCC0ceUUCfgaRsEUru2L4bINMVxSR8P2RcHE9kXB1mZtTFEg7dwB/cdLoV/2ETTbt/qv8nTrDtf56tBZT798Bs0OhK9hFEzh2r4YLtsQwyV1NGxfFExsXxRswWpj0p5d0C37CPplHwUsBuRN6wLXuefBee5kuEeNAfT6NrtPCj98DaNgCtf2xXDZhhguqaNh+6JgYvuiYGuPNiYe2A/9Jx9D/8lH0Pz8E4Sat1RyTCxcE86C69zz4DrrHCjWhKDcP4UOX8MomMK1fTFctiGGS+po2L4omNi+KNjau40JRUXQffU59J8th+67byBUq+8ZFEmCe/hItVdz0hSuPBsl+BpGwRSu7Yvhsg0xXFJHw/ZFwcT2RcEW0jZmt0P3/bfQff4p9J8th1h03H+Vp1dvuM45D86zzoVn8BBAo2nf2qhN8DWMgilc2xfDZRtiuKSOhu2Lgonti4ItbNqYLEOz/he1R/Pz5dDs2F57lSUerjMnwDXxbLgmnA0lJSV0dVKzhE37oqgUru2L4bINMVxSR8P2RcHE9kXBFq5tTNy3F/qvPofu6y+hXfU9BKfTf527/wA1aE48G56BgwHp9G/iKHTCtX1RdAjX9sVw2YYYLqmjYfuiYGL7omCLiDZWXQ3dqpXQffUFdF9/CengAf9VstUK1/iJcE08B67xZ0FJSgphoXSyiGhfFLHCtX01JVxyoD8RERFRKJhMcJ09Ca6zJ6n7ae7e5Q+a2tU/wLD4fRgWvw8AcPftD/fYM+EaNx7uYSMAozHExRMRnYrhkoiIiCjUBAHeHj1h79ET9ltmAVVV0P2wErovP4fuu2+g3bwR2s0bYXrhWSgGA9xDR6hB88zx8OT1BUQx1GdARMRwSURERBR2YmLgmjQZrkmTAUWBuG8vdN+tgO67FdD+sBK6lSugW7kC+CcgJyXBNWYc3OMmwDVuPOQu6aGunog6KIZLIiIionAmCJBzusGR0w2O624APB5oNq5Xg+Z3K6BdtxaGJR/AsOQDAICnW3e4x4yDe9QYuEaOgZKcHOITIKKOguGSiIiIKJJoNPAMGgLPoCHAn+5Wh9Cu/gHamp5Nzc4d0OzZDeO/XwUAeHJ7qUFz1Bi4R4zm4kBEFDQMl0RERESRLCbGvzCQDYB4tBDaVd9D++MP0K76Xg2bO3fA+NoCAICn9xlwjxwN18gxcI8cDSUxMbT1E1HUYLgkIiIiiiJyp85wTrsMzmmXAQDEI4fVoOkLm9u3QbN9G4yvzgcAeHrnwTVqNNzDR8IzdDjkTp1DWT4RRTCGSyIiIqIoJqd1gXP65XBOvxwAIB4u8IdN3Q8rodm+FZrtW4GFrwAAvJnZcA8bDvewEXAPGwFvj55cjZaImoThkoiIiKgDkbukw3npFXBeegUAQCw4BO3qVdCuXQPtujXQbN8G6eB+GBa9qx4fHw/30OFwD1XDpqd/PmAwhPAMiChcMVwSERERdWByekZA2BRKS6D9+Sc1bK5dDc36X6D/4jPov/gMAKDodPDkD1R7NgcPhXvgYCipqaE8BSIKEwyXREREROSnWBP8CwQBAJxOaDZugHbtamh/Wg3tT2v8Xz7ejEy4Bw6GZ9BguAcOgadff/ZuEnVADJdERERE1DC9Hp6hw+AZOgx23AnIMqRdv0H70xpoflkH7S/rIP22E4ZDB4EPFwMAFI0Gnj594Rk4GO5BQ+AZNBjert0AQQjtuRBRUDFcEhEREVHTiSK8ub3gze0F/G4GAECoKIdm/a/Q/vozNL/+DO0v66DdsB7aDev9W6DIVqvauzlgEDz5A+DpPwByaqcQnggRtTWGSyIiIiJqFSXOAve48XCPG19zgQLx4AE1bP6yDtpffoZm80bov/4S+q+/9P+eN7UTPP3z4emXD0//AfD0z+dWKEQRjOGSiIiIiNqWIEDOyoYzKxvOqdPVy5xOaLZuhmb9r9Bs2gDtxg2Qdm4PWCwIALwpqYGBM38AAydRhGC4JCIiIqLg0+vhGTgYnoGDay+z26HZtgWaDesDA+eXn0P/5ef+w7wpqfDm9YEnry88Nf96u/cANHwrSxRO+D+SiIiIiELDaIRn0BB4Bg2pvcwXODduqA2cO7ZBWvE1dCu+9h+m6PXw5PaGJ69PQPBU4q0hOBEiAhguiYiIiCic1Bc4HQ5oftsBaesWdWjttq3QbN0M7aYN0G7aEPDr3i7pNb2bNT2cvc6At2sOoNW273kQdUAMl0REREQU3gwGdQ5mv3w4fZcpCsTCI2rY3LpFDZ7btkDasxv6wwUB8zgVrRbe7j3g6amucuvJ7a2ueMvQSdSmGC6JiIiIKPIIAuS0LnCldYHr7Em1l1dXQ7NzOzQ1vZzSzh3Q7NwBzfZt0GzfFnAT/tCZ2wvenjWhs1dveLO7MnQStQDDJRERERFFD5NJ3UtzwKCAi4XiYnVo7Y7t0OzcDum3ndDs2F5/6NTp4O2aA2+3HvB26w5P9x7q9927Q0lIbM+zIYooDJdEREREFPWUxES4R4yCe8SogMuF4mI1bO7cEfCvpqbH82Sy1aquVJt3BgwZ2fB07Q5v9x7qEFu9vr1OhygsMVwSERERUYelJCbCPXI03CNHB1wulJZA2rMb0u5dkPbugWb3Lkh71O+1634C1v0Ec93bEUXIGZnw5nSDNysb3uwceLO7ql9Z2YDZDKJox3BJRERERHQSxZoAz+Ch8AweGniF1wtN4WFYjxfA9usmiLt3Qdq9Ww2eB/ZDOrC/3tuTk1P8QdMfOrNz4M3KhpKSAghC8E+KKMgYLomIiIiImkqSIGdmAQPy4Bg8CrKs1F5ns/kDprR/H6T9eyHt3wfxwH5Ihw5Cu+44tOvWnnKTismshs7MTMjpGfCmZ0JOT4e35nslORkQxXY8SaKWYbgkIiIiImoLZjO8Z+TBe0beqdd5vRAPF9QJnvtqg+f+fdBs3wrN9q313qyi18Ob1gVyeia86elqAM2oCaJd0iF3SQd0uiCfHFHjGC6JiIiIiIKtpsdTzsyCe8y4wOsURZ3jWXAI4qFDkAoOQiwoUH8uOATp8CFo9u0F9u2t96YVQYCSlAxv5zTInTpB7pQGuXNnyJ3T4O2k/it37gzFEs/htxRUDJdERERERKEkCFASEuFJSAT65dd/THU1pMMFatgsOASx4CCkgjo/Hy2Etug4sKnhu1GMRsipndQQ2rlzbQhNTgn4UqxWDsOlFmG4JCIiIiIKdyYTvD16wtujJ9z1XS/LEIqLIR09ArHwCMTCQvXfY0ch+X4+esQ/HPd0FI0GcmKSGjSTk08Kn4E/KwkJgIaRglRsCUREREREkU4UoSQnw5OcDPTt3/BxdjvEo4WQjhZCPFqohs6i4/4voahI/f5EEaRjR5t013KcBUpCAuSEBMjWBCjWBMiJieq/J32vJCZCtiYABkMbnTiFE4ZLIiIiIqKOwmiE3DUHctec0x8nyxBKSwOCp/pVBKHO92JpCYSSkib1iNalmExqKI2Lg1Lzr2yxQImLr/0+Ng6KxQLFYoEca6n9PiYWMJk4dDcMMVwSEREREVEgUYSSmAhvYiK8vXo3frzL5Q+aYmkJhOJi9d/SEognfS+UqseIRcchHC1scYmKyQzF7PuKgWIy1X5f93KzOfBYowmKQQ/oDVD0eih6A2Co+d5gBAw1l+l0XACpmRguiYiIiIiodXQ6yKmdgNRO8Db1dxQFsNkgVlZAKC+HUFEBsaIMQoXv53KIvu8ryyHWHCNUVkCw2SBU29Rjio4H7bQUgwFKTQiFwQhFrwM0WigaDaDVAJJG/V6jBTRSne81UDRS7bE1X4okqYHV/yUG/iyKgE4L3HQDkNA5aOcVLAyXRERERETU/gQBiImBHBMDdE5r+e243WrQtPm+qgL/ra6u/b6qCnA6IDicEJyOmu/VLzjVywSHU73c6fRfLpaVQnAda7tzb/ScHMD9j7Tf/bURhksiIiIiIopcWi0US7y6j2cwybIaQL0ewO0GPF4IHjfgUX8WvF7A46lzmUc91n+9B/B41R7bgC8ZQp2fBUlC7CUXAHJwTycYGC6JiIiIiIgaI4qA0QilzkVKgwe35m4EwBoDFFcF4daDi0ssERERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqwmKoiihLiISyLICr1cOdRmn0GoluN3eUJdBUYrti4KJ7YuCjW2Mgonti4IpHNuXJIkQReG0xzBcEhERERERUatxWCwRERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsNlmHv77bcxYcIE9O3bF5dddhk2bdp02uM//fRTTJo0CX379sUFF1yAlStXtlOlFIma07527dqF2bNnY8KECcjNzcVbb73VjpVSJGpO+/rf//6Hq666CkOGDMHQoUNx/fXXY/Pmze1YLUWi5rSxr776CtOmTcPgwYORn5+Piy66CEuXLm2/YiniNPc9mM/8+fORm5uLJ554IsgVUiRrTvtavHgxcnNzA7769u3bjtU2HcNlGFu+fDkee+wx3HbbbViyZAlyc3Nxww03oKSkpN7j169fj7vuugvTp0/H0qVLcdZZZ+HWW2/Fnj172rlyigTNbV92ux3p6em46667kJyc3M7VUqRpbvtau3YtpkyZgv/85z945513kJqaiuuvvx7Hjx9v58opUjS3jVksFtx0001477338NFHH2H69Om455578OOPP7Zz5RQJmtu+fLZu3Yp3330Xubm57VQpRaKWtK/4+Hj88MMP/q8VK1a0Y8XNoFDYmj59uvLQQw/5f/Z6vcro0aOVhQsX1nv8HXfcodx0000Bl1166aXKgw8+GNQ6KTI1t33VNX78eOXNN98MZnkU4VrTvhRFUTwejzJgwADlo48+ClaJFOFa28YURVEuvvhiZd68ecEojyJcS9pXdXW1ct555ykrV65UrrnmGuXxxx9vj1IpAjW3fX3wwQfK0KFD26u8VmHPZZhyuVzYunUrRo0a5b9MFEWMHDkSGzZsqPd3NmzYEHA8AIwePbrB46njakn7ImqqtmhfdrsdHo8HFoslSFVSJGttG1MUBatXr8a+ffswaNCgIFZKkail7evxxx/HsGHDMGbMmHaokiJVS9tXVVUVzjzzTIwbNw633nordu/e3Q7VNp8m1AVQ/UpLS+H1epGUlBRweWJiIg4cOFDv75w4cQKJiYmnHF9UVBS0OikytaR9ETVVW7Svp556Cp07d8bw4cODUSJFuJa2scrKSowdOxYulwuiKOLBBx/EiBEjgl0uRZiWtK8VK1ZgzZo1nMdLjWpJ+8rJycFjjz2Gnj17oqKiAq+99hquvPJKLFu2DKmpqe1RdpMxXEYYRVEgCEKD19d33emOJ6qrsfZF1BpNbV8LFizA8uXL8eabb0Kn07VDZRQtGmtjZrMZS5cuRXV1NVavXo1HH30UmZmZGDx4cDtWSZGqofZVUlKC++67Dy+88AKMRmMIKqNocLrXr/z8fOTn5/t/HjBgACZPnoxFixZh1qxZ7VRh0zBchimr1QpJknDixImAy0tKSk75pMMnKSnplOOLi4sbPJ46rpa0L6Kmak37evXVV/HKK6/g9ddfR8+ePYNZJkWwlrYxURSRlZUFAOjduzf27NmD+fPnM1xSgOa2r127dqGoqAhXXnml/zKv14t169bhrbfe4srXFKAt3oNptVr07t07LEebcc5lmNLpdMjLywtYxU6WZaxevTrgk4u68vPzsWrVqoDLfvzxxwaPp46rJe2LqKla2r4WLlyIF198EQsXLgzbJdYpPLTVa5iiKHC5XEGokCJZc9tX37598fHHH2Pp0qX+rz59+mDq1KlYvHhxO1ZOkaAtXr+8Xi927doVlqv3s+cyjF133XW4++67kZeXh379+uGNN96Aw+HA1KlTAQB33303UlNTcddddwEArr32WlxzzTV47bXXMG7cOCxfvhxbtmzBI488EsrToDDV3Pblcrn829q4XC4cO3YM27dvh8ViQVpaWsjOg8JTc9vXggUL8Oyzz+Kpp55Cly5d/HPFTSYTzGZzyM6Dwldz29j8+fNxxhlnICsrCy6XC99//z0+/PBDPPTQQ6E8DQpTzWlfJpPplJEWJpMJ8fHx6NGjRyjKpzDX3Nev559/Hvn5+cjKykJFRQVeffVVHDlyBNOnTw/ladSL4TKMTZ48GSUlJXjuuedQVFSE3r17Y+HChUhISAAAFBYWQhRrO58HDhyIp556Cs888wyefvppZGdn44UXXkC3bt1CdQoUxprbvo4fP46LL77Y//P8+fMxf/58TJ06FY8//nh7l09hrrnt65133oHb7cbtt98ecDuzZs3C7Nmz27V2igzNbWMOhwMPPfQQjh49CoPBgJycHPzrX//C5MmTQ3UKFMaa276ImqO57auiogL33XcfioqKYLFY0KdPH7z33nvIyckJ1Sk0SFAURQl1EURERERERBTZ+JELERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtZom1AUQERGFm3nz5uH5558/5fIRI0bg3//+d/sXREREFAEYLomIiOoRGxuLhQsXnnIZERER1Y/hkoiIqB6SJCE/P7/R4xwOBwwGQ/ALIiIiCnOcc0lERNREBQUFyM3NxUcffYS7774bgwcPxs033wwAKCsrw/3334+RI0eib9++uOKKK7Bx48aA36+oqMBdd92F/Px8jB49Gi+99BKeeOIJTJgwwX/MvHnzMGzYsFPuOzc3F2+99VbAZYsWLcKUKVPQp08fjB8/HgsWLAi4/q9//SsuueQSrFq1ChdccAHy8/Nx5ZVXYteuXQHHeb1evPLKKzj33HPRp08fjB07Fn/9618BAG+//TYGDBgAm80W8Dtr1qxBbm4uduzY0cxHkYiIohV7LomIiBrg8XgCflYUBQAwZ84cnH322Xj22WchiiJcLheuu+46VFRU4O6770ZCQgLeeecdzJgxA1988QWSk5MBAH/729/w008/4Z577kFSUhJee+01HDx4EBpN8/8cL1y4EHPnzsUNN9yAoUOHYuvWrXj22WdhNBpxzTXX+I8rLCzEnDlzcMstt0Cv12POnDm48847sWzZMgiCAAC4//778eGHH2LmzJkYOnQoysvL8dlnnwEALrjgAjzxxBP4/PPPcckll/hvd8mSJcjLy0OvXr2aXTsREUUnhksiIqJ6lJWVIS8vL+Cyhx9+GADQv39//OMf//BfvmjRIuzatQvLli1DdnY2AGDkyJGYNGkSXnvtNfzlL3/Brl278NVXX2Hu3LmYPHkyAGDYsGEYP348YmJimlVbVVUVXnjhBdxyyy2YNWsWAGDUqFGw2+146aWXcOWVV0KSJABAeXk53nnnHX9diqLgtttuw969e9GtWzfs2bMH77//Pu69915ce+21/vvw1RgXF4dzzjkHixcv9odLm82GL774AnfddVez6iYioujGcElERFSP2NhYvP766wGX6XQ6AMCZZ54ZcPnq1auRl5eH9PT0gN7OIUOGYMuWLQCAzZs3A0DAEFiz2YyRI0di06ZNzapt/fr1qK6uxqRJkwLub/jw4XjxxRdx9OhRdOnSBQDQpUsXf7AEgG7dugEAjh07hm7dumHt2rUAENArebLp06djxowZOHToEDIyMvDpp5/C4/Hg/PPPb1bdREQU3RguiYiI6iFJEvr27RtwWUFBAQAgMTEx4PLS0lJs2LDhlJ5OAMjMzAQAnDhxAmaz+ZTFf06+raYoLS0FAEyZMqXe6wsLC/3h8uQVbrVaLQDA6XQCUHtoTSbTaXtPhw0bhoyMDCxevBh33HEHFi9ejIkTJyI+Pr7ZtRMRUfRiuCQiImom31xFH4vFgj59+uCBBx445Vhfb2dSUhJsNtspq8sWFxcHHK/X6+F2uwMuKy8vP+X+AOCVV16pN5x27dq1yecSHx+P6upqVFVVNRgwBUHAtGnT8L///Q8XXXQRfvnll1MWDyIiImK4JCIiaqURI0Zg1apVSEtLa7An0tcL+s033/jnM9psNvz4448BoS41NRU2mw3Hjh1DamoqAGDVqlUBtzVgwAAYDAYcP378lCG6zTV8+HAAwNKlSwMWAjrZ1KlT8dxzz+Gee+5BamoqRo0a1ar7JSKi6MNwSURE1EoXX3wx3n33Xfzud7/D9ddfj4yMDJSVlWHTpk1ITk7GjBkz0KNHD0yYMAEPPPAAqqqqkJycjFdfffWUYbJjxoyBwWDAPffcg+uuuw4FBQV49913A46Ji4vDrFmz8Mgjj+Dw4cMYMmQIZFnG/v37sXbtWrzwwgtNrj0nJweXX345Hn/8cRQXF2PIkCGoqKjA559/jrlz5/qPS01NxZgxY/Dtt9/ipptu8i8YRERE5MNwSURE1Ep6vR7/+c9/8Oyzz2LevHkoLi5GQkIC+vXrF7CAz+OPP44HHngAjz76KEwmE6666ir07dsXn3/+uf+YhIQEPPfcc5gzZw5uu+025OXl4amnnvL3dvr84Q9/QEpKCt544w28/vrr0Ov1yM7OPuW4pvjHP/6BtLQ0LFq0CAsWLEBCQkK9PZNnnXUWvv3229Mu/kNERB2XoPg27SIiIqJ259tD8ptvvgl1KY264447UFRUhP/+97+hLoWIiMIQey6JiIjotHbu3IktW7bgyy+/xNNPPx3qcoiIKEwxXBIREdFp3XLLLSgtLcVVV12FSZMmhbocIiIKUxwWS0RERERERK0mhroAIiIiIiIiinwMl0RERERERNRqDJdERERERETUagyXRERERERE1GoMl0RERERERNRqDJdERERERETUagyXRERERERE1Gr/D7jJVSLCKlhjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wUdf7H8dfMbEtPSCD0DgHpChZAUQQLWEFFTj0L9np2z3I/eznPs53t1FM8PfUs2LCdXSyA0pv0FiCkt81md2fm98fszO5mk0CAkICf5z3uYbI7OzubLIF3Pp/v56uYpmkihBBCCCGEEELsBrWlL0AIIYQQQgghxL5PwqUQQgghhBBCiN0m4VIIIYQQQgghxG6TcCmEEEIIIYQQYrdJuBRCCCGEEEIIsdskXAohhBBCCCGE2G0SLoUQQgghhBBC7DYJl0IIIYQQQgghdpuESyGE2E+YpsnYsWPJy8tjw4YNCffPnj2bvLw85//Dhw/n9NNP54svvqj3fEuWLGHEiBFUVVXVe//ll19OXl4er776atztF198MU899dROXXN+fj433ngjRx55JIMGDWLMmDFcdtllzJ07d6cev6fNmjWLl19+uUWee0/w+/0MHTqUIUOG1Pt9e/LJJznkkEP2+PNu3ryZvLw8Bg4cyJYtW+Lu+/rrr8nLy2Pz5s17/Hmbw9ixY3nooYecz2+55RYmTZq0V5570qRJ3HLLLXvluYQQojlIuBRCiP3E/Pnzyc/PB2DmzJkNHve3v/2NN998k0ceeYTMzEyuvPLKesPcY489xplnnklqamrCfbNmzWLhwoX1nv/iiy/m5ZdfpqKiotHrLS8vZ8qUKaxevZrrrruO559/nquvvhpVVZk/f36jj20uP/zwA6+88kqLPPee8OWXX1JTU0MgEODLL7/c688fCoV4/vnn9/rzNqfLL7+cBx98sKUvQwgh9gkSLoUQYj8xc+ZMkpOTGTJkSKPhMi8vj6FDhzJmzBieeOIJMjIy+OCDD+KOWb9+Pd9//z2TJ09OeHwoFOK+++7jT3/6U73nHz58OJmZmbz//vuNXu9nn31GUVERL7zwAieddBKHHnookydP5qmnnuKiiy7a8QtuQbquEwwGW/oyEsycOZPOnTvTuXPnRt8DzeXggw/mnXfeobCwcI+fOxQKoev6Hj/vjnTt2pW+ffvu9ecVQoh9kYRLIYTYD+i6zqeffsrYsWOZPHkyq1evZsWKFTt8XFJSEl27dmXr1q1xt8+YMYO8vDy6d++e8JhXXnkFn89Xb/C0HXPMMbz33nuNPndFRQVut5uMjIyE+xRFcT622xK/+OILjjvuOAYNGsTUqVNZvXp13GMMw+Cf//wn48ePZ+DAgRx77LHMmDEj4dz/+9//OO200xg8eDCHHHIIF110Efn5+Tz55JP861//Ij8/32kdtlsUY69h4sSJDB48mEWLFjXYZlq3XdhutfznP//J6NGjOeigg3jwwQcxTZNvv/2WiRMnMmzYMC6//HLKy8sb/bo1pLy8nFmzZjFx4kQmTpzIDz/8QGlpab3H/vrrr5x66qkMGjSIk08+mV9++SXu/i+//JJJkyYxdOhQRowYwemnn86cOXN2eA1Tp04lOTmZf/3rX40eV1NTw7333suoUaMYNGgQkydPZtasWXHHnHPOOVx99dW8+eabjBs3jsGDB7N9+3bn9nfeeYexY8cybNgwbrzxRoLBIIsWLeK0005j2LBhnHPOOQktun/729848cQTGTZsGEcccQTXX3/9DoNw3bZYu/W87v+ffPJJ55iVK1dy8cUXM2zYMIYNG8bVV1+d8DwrV67kzDPPZNCgQRx//PEtUmkWQog9zdXSFyCEEGL3/fzzzxQVFTFhwgQOOugg7rnnHmbOnEm/fv0afZxhGGzbto0BAwYknG/YsGEJxxcWFvL000/z7LPPoqoN/35y2LBhvPjii5SXl9cbHgEGDBhAMBjkpptu4oILLuCAAw5o8JxbtmzhgQce4JprrsHn8/Hkk08ybdo0Pv/8c7xeLwD33HMP7733HpdffjkDBgzghx9+4NZbbyUzM5OjjjoKgPfee4+bb76ZiRMncvnll2OaJj///DMlJSWcfvrprF+/ntmzZ/OPf/wDgDZt2jjXkJ+fz8MPP8zll19OTk4OnTt3buQrm2jmzJkMHjyY+++/n6VLl/LYY49hGAa//PIL11xzDYFAgHvuuYdHHnmEu+++u0nnBqsSHAqFmDBhAoqi8Nxzz/HZZ59x5plnxh0XCAS48cYbueSSS2jbti0vvfQSF110EZ9//jlt27Zl48aNXHPNNZxzzjlOaFuyZMlOhd6kpCTOPfdc/vnPf3LxxReTlZVV73G33347X331Fddddx1du3blrbfe4pJLLmH69OkMHz7cOW7evHls3LiRG264gaSkJNLS0gBYsGABpaWl3HHHHc57w+fzsXDhQi688EKSk5O59957ueOOO3jxxRed8xUXF3PJJZfQrl07SkpKeOmllzj33HP58MMP0TRtp77O//jHP+Kq1rNnz+bvf/+784uYDRs2MHXqVAYOHMjDDz+Mrus8/vjjXHrppbz99tsoikIgEGDatGlkZWXxyCOPEAgEuP/++/H7/VIlFULs0yRcCiHEfuCjjz4iPT2dww8/HI/Hw8iRI5k5cybXXXddXBUQrEAZDoepqKjg+eefp6amhj/+8Y/O/aZpsmzZMk466aSE53n44YcZPXo0I0aMaPR6+vXrh2maLFmyhFGjRtV7zGGHHcZ5553H9OnTmTlzJikpKYwaNYqpU6cycuTIuGNLS0t5+umnOfDAAwErmI4fP553332XqVOnsmHDBl5//XUeeOABTj31VABGjhxJYWEh//jHPzjqqKMwDINHHnmE8ePH8/e//90599FHH+183K5dOzweD0OHDk243rKyMl5++WX69+/f6GtviNfr5fHHH0fTNI444gi+/PJLXn31VT777DO6dOkCwIoVK3jvvfd2KVx+9NFH9OrVy/mFQu/evZk5c2a94fLaa6/lxBNPBOCQQw7hqKOOYvr06dxwww0sW7aMlJQUbr75ZucxY8aM2enrOPvss3nxxReZPn16va3Ta9asYebMmXHfq8MPP5yTTjqJZ555Ji4MVlRUMGPGDNq2bRt3Dr/fz9NPP+2EzTlz5vDf//6XV1991XlvFhQUcPfdd1NTU0NSUhIADzzwgHMOXdedCua8efN2+J62HXDAAc7HW7Zs4aWXXmLSpEnO1/Mf//gHOTk5PP/883g8HsCqZB9//PF8++23HHnkkbzzzjuUlJTw1ltv0b59ewA6derEH/7wh526BiGEaK2kLVYIIfZxwWCQL774gnHjxjn/mJ04cSL5+fksWLAg4fiTTz6ZAQMGcNhhh/Hyyy/z4IMP0rNnT+f+8vJygsFgQtVp/vz5fPbZZ9x00007vCb7sTtqOfzzn//snPPggw/m+++/54ILLuD111+POy47O9sJlmD9Q3zAgAEsWrQIgJ9++glVVRk/fjzhcNj5/2GHHcaKFSvQdZ1169axffv2XZ78mZubu8vBEqz1iLHVsW7dutGpUycnWNq3lZSUNHk95/bt25k7dy4TJkxwbps4cSJz586loKAg4fjx48c7H6ekpDBy5Ejna9m3b18qKyu5+eabmTVrFn6/v0nXkpaWxllnncWrr75KZWVlwv2LFy/GNE2OO+445zZVVTnuuOP49ddf444dMGBAQrAEGDhwoBMswfq6ud1uDjrooLjbwPra2L799lvOPPNMDjroIA444ACOOOIIwFpj3FSBQIArr7ySjh07cueddzq3//TTT4wfPx5VVZ33YefOnenUqRNLlixxvgYDBgxwgiXAQQcdRHZ2dpOvQwghWhMJl0IIsY/77rvvqKioYMyYMVRUVFBRUcEhhxyCx+Opd6jLo48+yttvv82TTz5Jjx49+POf/xwXQGprawGcoGq7//77mTJlCmlpac7zgPWP7Lohwn7szoSkbt26MW3aNJ599lm++uor+vfvz6OPPoppms4x9f2jOzs72wmvpaWl6LrOQQcdxIABA5z/33LLLYTDYQoLC531h/WFlZ2Rk5OzS4+zpaenx33udrvjApJ9m2mahEKhJp37448/xjAMjjjiCOd7c8QRR2CaJh9//HHcscnJyfh8vrjbYr+WPXv25Omnn2bTpk1cfPHFHHrooVx//fWUlJTs9PWce+656LrOa6+9lnDf9u3bSU5OdqqJsddQU1MT955p6Gte39cyJSUlrq3a7XYD0ffzokWLuPzyy8nNzeWvf/0rb775Jv/973/jjmmKO+64w1mra7dmg/VefP755+PehwMGDGDTpk3O2ubCwsK4luvYr4EQQuzLpC1WCCH2cR999BEA11xzTcJ9n3zyCX/+85/jKma9e/emb9++DBo0iH79+jFhwgSefvpp7rrrLiBaday7lci6detYtGgR06dPj7v94Ycf5u9//zvLli1zbrPDZkPrLRvSpk0bJk2axL333ktxcbETLoqLixOOLS4upnfv3s7zuFwuXn/99YQ2YPu81dXVwI6rqU3h9XoTguCuDuTZHfYvEU4//fSE+z766CPOP/9853O/308gEIgLmMXFxXGh+8gjj+TII4+ksrKSb775hvvvv5977rmHRx99dKeup02bNkyZMoWXX36Zv/zlL3H3tWvXDr/fH9eual9DUlJS3C816vte7qovvviCrKwsHnvsMee89tY9TfXyyy8zc+ZMXnjhBTp16hR3X0ZGBuPGjav3e2H/2Wrbti1r165NuL++97kQQuxLJFwKIcQ+rLq6mm+++YYTTjiBM844I+6+5cuX88ADDzB79uyENYy2rl27cvrpp/POO+9w9dVXk52djcfjoWPHjgmb3j/77LMJW0H88Y9/5JxzzuGYY46Ju91+bH3TZm0lJSX1Vm82bNiAx+OJq+oVFxczb948pzV2y5YtLFu2zGlxPfTQQ9F1ncrKygbXePbo0YPc3Fzee+89xo4dW+8xbre7SVWs3NxcqqurKSgoIDc3F7D2ytybNm3axKJFizjvvPMSXtd3333HCy+8wPr16+O+F//73/+cNYLV1dX8+OOPCe8fsFpcTzzxRObOndvkvUcvuOACXnvtNd5444242wcNGoSiKHz22WeccsopgLXO97PPPotra93TAoEAbrc7LrB++OGHTT7Pzz//zMMPP8y1115b75+rww47jFWrVjFw4MAGw/GgQYP48MMP2bZtm9Ma++uvv0q4FELs8yRcCiHEPuzLL790BvIMGTIk7r4DDzyQZ555ho8++qjBcAlw4YUX8tZbb/Hvf//bGcBy4IEHsnTp0rjjYqd4xurevTsHH3xw3G1LliwhLS2NPn36NPi8M2bM4MMPP+SUU04hLy+PcDjMTz/9xH/+8x+mTp0a12qYlZXFTTfd5EyLfeKJJ5wqJ1itnGeeeSbXXXcd06ZNY9CgQdTW1rJq1SrWr1/Pfffdh6qq3Hjjjdxwww1cf/31nHDCCSiKws8//8zEiRMZNGgQPXv2pKioiHfffZc+ffqQlZXV6FTYww8/HJ/Px6233sr555/P5s2bE8LU7ho7diwHH3wwDz74YL33f/TRR6iqygUXXOAEXFvv3r2dKtsVV1wBgM/n49FHH8Xv99OuXTv+9a9/EQqFnKFOb7zxBgsWLODwww+nXbt2rF+/nk8//ZSTTz65Sdfdrl07Jk+enLB+tlevXkycOJG7776bqqoqZ1rs2rVr+b//+78mPUdTjBo1iunTp3PfffcxduxY5s2bl7C/645UVlbypz/9iT59+jBixIi4Nc3t27enffv2XHnllZx++ulcfPHFTJ48maysLAoKCvjxxx859dRTOeSQQ5g0aRLPPPMMF198MVdddRWBQIDHH3+8wem6Qgixr5BwKYQQ+7CZM2fSvXv3hGAJVhXu+OOPZ+bMmXEDR+rq1KkTJ554Iq+//joXX3wxycnJjB8/nj//+c8J7ZM76/vvv3eGmjRkzJgxbN68mf/+979s3boVTdPo2rUrt99+e0IVrWPHjlx66aU88sgj5OfnM3DgQB555JG4APp///d/dO/enbfeeosnnniC1NRUevfuzWmnneYcc+KJJ+L1enn22We5+uqrSU5OZsiQIU4F9fjjj2f27Nk8/PDDlJSUcOqppzYY6sBq/3ziiSf461//yhVXXMGAAQN45JFH4gbr7K6ampp6K7y2mTNncthhhyUES7DW8NmTg2PD5V//+lfuuece1qxZQ8+ePfnnP/9Ju3btAGuy6VdffcUDDzxAeXk5bdu25fTTT6+37XpHLrroIt5+++2E1uF7772Xv/3tbzz99NNUVFTQt29fnn322QZ/gbEnjBkzhhtuuIFXX32Vt956i6FDh/Lcc89x7LHH7vQ5ysvLKS0tpbS0lClTpsTdd+WVV3LVVVfRo0cP3nzzTR5//HH+8pe/EAgEyM3N5bDDDnOGDCUlJfHCCy9w5513cu2119KpUyduueUWnn766T36moUQYm9TzNiJCUIIIQTWIJ4xY8bwl7/8heOPP75Jj62srGTkyJG89NJLeyQs3HLLLaxcuZJ33313t8+1r9m0aRPHHHMMn3/+edxUWSGEEKI1kmmxQgghEng8HqZNm8Yrr7zS5Me+/vrrDB06tFmrUL8X8+fPZ9y4cRIshRBC7BOkLVYIIUS9zj77bGebkbpbZjQmNTWV2267rRmv7PfjpJNO4qSTTmrpyxBCCCF2irTFCiGEEEIIIYTYbdIWK4QQQgghhBBit0m4FEIIIYQQQgix2yRcCiGEEEIIIYTYbTLQZycZhomuGy19GQlcLpVwuPVdl9g/yPtLNCd5f4nmJu8x0Zzk/SWaU2t8f2maiqoqjR4j4XIn6bpBWZm/pS8jjqoqZGenUlFRg2HIXCaxZ8n7SzQneX+J5ibvMdGc5P0lmlNrfX9lZiajqlqjx0hbrBBCCCGEEEKI3SbhUgghhBBCCCHEbpNwKYQQQgghhBBit8maSyGEEEII8bthmiaGoWPuxlI2VVUIBoOEw+FWtSZO7B9a4v2lKKCqGorS+MCeHdnvw+WAAQPo3bs3AAMHDuS+++5r4SsSQgghhBB7m2maVFWVU11dAez+P9iLilQMo3VN8xT7j5Z5fymkpKSTmpqxyyFzvw+XmZmZvP/++y19GUIIIYQQogXZwTI9vQ0ejxfYzQqNSyEclqqlaB57//1lEgzWUlFRAkBaWuYunWW/D5dCCCGEEOL3zTRNJ1gmJ6fukXO6XCoglUvRPFri/eVyuQGoqCjZ5eplqx7oM3fuXC699FJGjx5NXl4eX3/9dcIxr732GmPHjmXQoEGcccYZLFq0KO7+8vJyTj31VKZOncqcOXP21qULIYQQQohWwjB0wIxULIUQDbH+jJiRPzNN16orl36/n7y8PCZNmsRVV12VcP/HH3/MAw88wF133cWQIUOYPn06F154IZ9++ilt2rQB4MsvvyQ3N5fVq1dz8cUX88EHH5Caumu/sVLV3Wuf2NPs62lt1yX2D/L+Es1J3l+iucl7TMQyDPt9IO8HIRpn/RlRFGWXfn626nA5ZswYxowZ0+D9L730ElOmTGHy5MkA3HXXXXzzzTfMmDGDadOmAZCbmwtA79696du3L+vWrWPQoEFNvhaXSyU7e8+0UexpWVkpLX0JYj8m7y/RnOT9JZqbvMcEQDAYpKhIxeVSIu2Ge8aePJcQdbXM+0tBVVWyspLxeDxNfnSrDpeNCQaDLF26lMsuu8y5TVVVRo4cyYIFCwCrJTYpKQmPx0NBQQErV66kS5cuu/R84bBBRUXNnrj0PUZVFbKyUigtrZYx2GKPk/eXaE7y/hLNTd5jIpa1pYMRGZCyZ9axuVwq4bCsuRTNo6XeX+GwiWEYlJb6cbmCcfelpyfhdmuNPn6fDZelpaXouk5OTk7c7dnZ2WzYsAGANWvW8Je//AVVVVFVlVtvvZXMzMxdfs7W+peTYZit9trEvk/eX6I5yftLNDd5jwlovf+G29vmzfuFq6++lM8//47k5OQGjzvttBOZOvVsJk+eshevrvV58cXn+PHHWbz44r9b+lL2ul392bnf1fJN03QmGx144IF89NFHfPDBB7z33nuMGzeuha9OCCGEEEKInXPffXcyevRwHn30rwn33XXX7YwePZx//OOxXT7/xx9/yMSJRyfc/vzzrzBx4snO56NHD+eHH77f5efZF9T3GqdOPYe///3JZn/uK6+8eLe+j63JPhsus7Ky0DSNoqKiuNtLSkoSqplCCCGEEELsi9q1y+V///uMYDDaolhdXcX3339Du3a5zfKcWVlZ+Hy+Zjn37gqFQnvtuZKTk8nIyNxrz7c/2GfDpcfjYcCAAfz444/ObYZh8NNPPzF06NCWuzAhhBBCCCH2kAMOGEBWVhazZn3n3PbFF5/Tt28/OnbsFHds3eqb3+9n9OjhzJv3S8J55837hfvvv4vy8nJGjx7O6NHDefHF5wCrLfadd950Pga4+eZrGT16uPP5pk0bufnmaznxxGMYP/4ILrnkfBYuXJBwPe+99w7XXnsFY8eO4swzT+Wnn2bFHbN27Wquu+4qxo0bzcknH8uDD95DVVWVc/+VV17MY4/9jccee5gJE47m1ltvaPBr9cEHM5g6dRJjx47k7LNPZ+bMD5z7QqEQjzzyECeddCxjx47k9NNP5u2332j0Nb744nNMm3aOc4777ruT22+/iZdeep4TThjH8ceP5T//+TfBYJCHH76fY44Zw+mnnxT3PQiHw9x//12cdtqJjB07irPOOo0PPpgRd84FC+bxxhuvOt+HrVu37NTXpjVq1Wsuq6ur2bhxo/P55s2bWb58OTk5ObRt25bzzz+fm266iQEDBjB48GCmT59OIBDg1FNPbcGrFkIIIYQQ+4IZr21jxeLqXXqsooDZxCVp/QalcOpZ7Zv8XBMmnMjHH3/A2LHWEq+PP/6QE088hU8/ndnkc9kGDRrC1Vdfz8svv8C//20FyaSkxHWYzz//CieeOJ477rib4cMPRlWtgS5+v5+RIw/nkkuuwOVy8/7773LTTdfw5pvvx804eeGFZ7n88qu59tob+eCD97jttpt4/fV3yc1tT2VlJVdffRmnnDKZP/3pevz+Gp588u/cd9+dPPDA35xzzJz5AaedNoVnn/1Xg6/n888/4aWXnufaa2+id+8+LF++jIceupf09HQOP/xI3nrrDX744TvuuechcnNz2bIln4qK8kZfY33mzJlNTk47nn76BebOncOjj/6VX36Zw6hRo3nxxX/zzjtvcs89f+Hdd2eSnJyMruvk5rbn3nsfIj09g/nzf+WRRx6kffsOHHzwoVxzzQ1s2rSR3r37cv75FwKQmZm101+b1qZVh8slS5bwxz/+0fn83nvvBeDKK6/kqquuYsKECZSUlPDEE09QWFhI//79eeGFF5w9LoUQQgghhNjXHXfcRF588TmKigqprq5m7drVjB07brfCpdvtJjU1FUWB7OyGl5RlZWUBkJqaFndcXl4/8vL6OZ9fddW1fPvtV8ye/SPHHjvBuX3cuGOZMMGqBF555Z+YM+cn3nvvHS655AreeedN+vc/gAsvvNQ5/qabbuOss06jtLSErCzr3/TdunXnkkuuaPT1vPjic1x11XUcccSRAHTs2ImVK1fw/vvvcvjhR7J9+za6dOnK4MFDUBSF9u077PA11iczM5Orr74OVVXp2rU7r702Ha/X4ww/Ou+8i3j77TdZtWolQ4YMxev1Mm3aJc7jO3bsxIIF8/jqq/9x8MGHkpqaisvlwufzxT33W2/t3NemtWnV4fKQQw7ht99+a/SYs88+m7PPPnsvXZEQQgghhNhf7EoV0bY3t4rIzs5h+PBD+OSTmVRWVjBmzFiSk1t2D1e/38+LLz7HTz/NoqSkGF3Xqa2tpaBgW9xxBxwwMO7zAQMGsX79OgBWr17F3LmzGT/+8ITz5+dvdgJUv379G72Wmpoa8vM3c999/8cDD9zl3B4Oh50QedxxE/nTn67gD3+YzKGHjmL06CM46KARTX7dPXv2QlWjKwszM7Po3r1nzOeZaJpGWVmJc9s77/yXmTM/oKBgK8FgkFAoxLBhBzX6PKtXr9ypr01r06rDpRBCCCGEEAImTjyRZ5/9B36/n//7v3vrPUZRFMyYXt1wONxs1/PUU4/x669zufzya+jUqTNer5cbbrgmYeBOZBOHhOsEKxQefviR9VYl27Zt63zs8yU1ei01NX4Abr31/8jLiw+iLpcVd/r1O4C33vqAn3/+gblzZ3PLLdczbtwx3Hzz7Tt+sfWcL/a11L0NrFkwAF988RlPP/04V111HQccMIDk5BReeumfFBQUNPo8fr9/p742rY2ESyGEEEIIIVq5UaOO4OGHHyApKbnBqldmZhYlJcXO56tXr2z0nC6XG13fcfXV5XJhGHrcbYsXL2TixJOcNtSKigoKCxMD09KlSxg//jjn82XLljBypFWN69s3j++//5YOHTqiaQ2vc9yRNm2yyclpy5Yt+Rx99DENHpeWlsb48ccxfvxxHHLIYdx99x3ceOOtqKpa72vcExYvXsiQIcM45ZTJzm2bNm3C4/E4n7vd7oTnzsvL49tvd/9rs7fts9NihRBCCCGE+L1wuVy8+eYMpk//j1P5q2vYsIN4553/snr1KhYvXsjzzz/d6Dk7dOhAdXUV8+b9QllZGYFAoN7j2rfvyC+/zKG4uIiKigoAOnfuyjfffMWqVStZuXIFd955W72DcL788nM++eQjNm7cwNNPP87GjRs4+WQraE2adDqlpcXcffftrFixjPz8zfz00yweeui+pnxpADjvvGm88sq/eOedN9m4cQOrV6/i/fffZcaMtwF4883X+PLLz9m4cT0bNqznu+++oUuXrk6La32vcU/o3Lkry5YtYe7cn9m4cQNPPfW40xZsa9++I0uXLmHbtq2UlZVhGAaTJ0/ZY1+bvUnCpRBij6qoLeenLT9QE65p6UsRQggh9ispKamNrrW88so/kZmZxaWXns/DD9/PBRdc3Oj5Bg0awsknT+KOO27mhBPG8dpr0xs87+zZPzFp0kQuuOAswBrgk5yczKWXns+tt97IUUcdTdeu3RIeO23axXz66cecd95Uvv32a+655yHat7fWurZt246nn36RYDDIn/50OX/84xSeeuqJuGmzO+uUU07j+utv4YMP3uPcc8/kmmsu5auv/uds1+LzJfHvf7/MtGnncMkl51FZWcm99/610de4J5x88iQOP/xI7rjjFi699AJCoRATJ54Ud8zUqdb8mLPOOo0TThhHQcE22rXbc1+bvUkxzaYOUf59CoV0ysr8LX0ZcVRVITs7leLiKgxDvo1iz9rV99fC7fNZWLiAUZ1G0yuzTzNeYfMoKw1RURbG51MxTMjMcuFL2nfaUfYV8vNLNDd5j4lY4XCYoqJ8cnI61bs+blfszYE++6rRo4fz0EOPMmpU4lAa0biWen819mclMzMZt7vxfxPJmkshxB4VNq3hAYZpUugvZGHhPA7rOJoUd8tOtduRqsowM14rYM2K+F8iZbZxcdVt3dG0+luQhBBCCCGERdpihRB7lB6ZjmaaJpsqN7ClagsF/m07eFTL++7zEtas8JOe6WLA0FR6908mPdNFWUmY9atbV9eCEEIIIURrJJVLIcQeZZjWtDMTE8O0g2brbhuqDRgsmFOJ7vZzyQ0DSUm1Wj4WzKngvf8UsPjXSnrlte7KqxBCCNHazJr1S0tfgtjLpHIphNij9Ei4NEwDI7Kk265mtlYLf6mgWN9C9QFfs6J6nnN7v8EpuNwKyxdVEwq17tcghBBCCNHSJFwKIfYoPaZyaWKFS4PWHczm/VRBlWsr3Xsns7RoiXO7z6fR94AUagMGq5dLa6wQQgghRGMkXAoh9ig9sgmwacaEy1bcFltdFWZbfi05GVlktnEDUBWqcu7v1S8ZgIIttS1yfUIIIYQQ+woJl0KIPcqMVCkNDIi0xW7e6KdwW7AlL6tBG9ZYG0Z37OxxbttUsdH5OD3TWppeURbeuxcmhBBCCLGPkXAphNij7Molkcrltvxa3n9jG2/8a0vLXlgDNqypASC3i9u5bWHhfGasepvt/u2kZ0TCZbmESyGEEEKIxki4FELsUbo9IRaTosJa5s8ux8SgeHuoVVb/NqyNhMtO0XAZ1INUBivZULHOqVxWSrgUQgghhGiUhEshxB5lD/TJ31TDJzO2Ew6DL7KLh10lbC0CNTrb8mtJz3SRnKYAMLz9wRzR+UgAygKl+JJUXG6lVQZjIYQQYlfcd9+d3H77Tbt1jnfeeZPTTjtxD13R/uvjjz9k4sSjW/oy9hrZ51IIsUeFwmFWLK5i9sLtBNHpMySZIR0yWD7DCpeDDkpr6Ut0bFwXABO69Upy1oomu5Lpmt4NVVEprS1FURTSM1yUFIUIBQ3cHvmdnBBCiL3jvvvu5JNPPgLA5XKRm9ue448/gbPPPg+Xa9f/GX/NNTdgRuYiiD3ntNNOZOrUs5k8eYpz29FHj+eww0Y1+3Pfd9+d1NT4uffevzb7czVGwqUQYo+prgrzzWdF5Bf56eAyOfTwDDydguR63SwH1reyyqVdSe3WK8nZk1NTNVRFJcObQWmglEA4QHqmFS4rysNkt/U0dkohhBBijxo58nBuvvk2QqEwCxfO46GH7kPTNM455/wmnyscDqNpGqmpqc1wpXteKBTC7Xbv+MBWzOv14fX6Wvoy9hr5FbwQYo8wTZN/P7OF7dtryMxyMemcXHr3t7bx8KWotGnrpqggSFVl62kv3bDaCpfdeyVhRNp51ciPxUxvFgBltaWkZci6SyGEEC3D43GTnZ1D+/btOfbYCRx77PHMmvUdALW1tTz55KOcfPJxjB9/OJdddgFLlix2Hmu3ZH733Tf84Q+TGTt2JGVlZQltsbW1Af7+94c44YRxjB07kquuuoQ1a1bHXcdHH73HpEkTGTduNH/5y5+pqqqKu98wDF588TlOOeV4jjrqMKZNO4f583+NO+b7779hypRTGDt2FNdddyXvv/8uo0cPd+5/8cXnmDbtHN577x1OO+1EJkwYC8CPP87isssu4LjjjmTixKP5859voKBgm/O4efN+YfTo4cye/RPnnnsmY8eO4vrrr6aiooIvv/wfZ5xxMscddyR/+9uD6Lre6Nf7u+++4bzz/sDYsSOZMuUUXnttOoYR3VLtxRefY9KkiRx11GGceuoEnnvuKQCuvPJitm3byqOPPszo0cOd11W3LTb2NZ566gTGjz+CJ5/8O7qu8/zzzzBx4tGccsrxvPfeu3HX9Y9/PMaZZ57K2LGjOOOMk5k+/UXnul588Tk++eQjvvnmK+e55837BYCCgm3cfvvNHHvsGCZOPJrbb7+JoqLCRr8Gu0Mql0KIPcJfbbAtv5bkDiqHjc0iNV2jMmhVA03ToHvvJEoKQ3z2XhGn/CEXTVOa9XoM00BVGv79WbDWYMumACmpGtnt3KzcYv2A1lQNgExvJgClgVLSM9sBsh2JEELsb37I/55NlRt3fGA9VFXBMJrWWtolrSujOh2+S89n83q9hEIhAB577GE2bFjPPfc8SHZ2Dv/736dce+0V/Oc/b9O2rfV3l9/v5403XuW22+4iJSWFlJSUhHM+/fQTzJr1HX/5y73k5OTw8ssvcv31V/HGGzPw+XwsXryQv/71fi677GpGjTqcWbO+Y/r0F0hLS3fO8eab/+Gtt17npptup1ev3syY8TY33ngNr7/+Lm3btmPr1i3cccctnHnm2UyYcAJLly7hmWeeTLiWjRvX8+OP3/PAA4+gqtbf44FAgDPPPIdevXpTXV3Ns88+yZ133sozz/wr7rEvv/w8N954K5qmcdttN3HHHTeTnJzMgw8+QkFBAbfddhODBw/hmGOOr/dru3DhAu6//07+9KcbGTRoCBs3buCvf70Pt9vDGWdM5euvv+C///0Pd955Pz169KKoaDubNlnvn/vvf5jzzvsDp556GhMmNL4WdePGDcyf/wt///s/2LBhHf/3f7eydu0aDjhgIM8++xLffPMVDz/8IAcddDAdOnQEIDU1ldtvv4vs7BxWrlzBQw/dR2ZmFiefPImpU89hw4b1BAIBbr75NgDS0zMIh8Ncf/1VDB48lGeeeRFQePHFZ7n55ut4/vnpztd3T5LKpRBijygrsf6iS8tUcGkKhmlG97w0DUYf3Yb0TBeLf63k47e3N+u1fL3xS15f/ipho+EwuHlDAMOwWmIVRXEGESmRQJrpsyqX5bVlsh2JEEKIVmHp0iV89tknHHTQCLZt28bHH3/Ivfc+xODBQ+nUqTPnnXchPXr05PPPP3EeEwqFuOGGPzNgwEC6d++BxxO/vMPv9/P+++9yxRV/4uCDD6Vnz97ceuv/EQoFnfO8/fabjBw5mqlTz6Zr12784Q/nMGTIsLjzvPHGq5xzzvmMHTuObt26c80119O+fUfeffctAN577x26d+/JpZdeSdeu3Tn++BM4+uhjEl6jruvcfvtd9OnTl169egMwduw4xow5is6du5CX14+bbrqNxYsXsX17QdxjL774CgYOHEz//gM47riJzJ//K7fccgc9e/bmsMNGMXz4CKeiV59//euf/PGPF3DccRPp1Kkzhx02inPPvYAPPrCqiAUF22jTJpsRIw6hffv2DBw4mOOPPwGwwpyqqiQnJ5OdnUN2dk6j38tbbvkLPXr05Mgjj+aAAwZSWlrKRRddRpcuXTnrrD/i8/lYtGiBc/x5513IwIGD6dChI2PGjGXy5DP46qsvAEhOTsbr9TpV7uzsHNxuN19++TmKonDTTbfRs2dvevbsxW233cXq1StZsWJZo9e3q6RyKYTYI0qLrHDpS7UqkiamMyzAMA3a5LiZdk1nnrhvA8sWVnHCGe1QlOapXtq/ha4OVZERqUDWFbve0r5GiLbFZkXaYktrS+nubEfSeCuNEEKIfcvuVBFdLpVw2Njxgbvp+++/Zfz4w9F1HV3XGTfuWC644GLmz/8VXdeZMuWUuOODwSC9e/dxPvd6vfTs2avB8+fnbyYcDjN48BDnNp/PR58+eWzYsA6wqolHHTUu7nEDBgxi7do1AFRXV1FcXMSgQdFzKIrCoEGD2bBhfeQcG+jff0DcOep+DtChQ0fS0zPibtu0aSMvvPAMy5YtpaysDLD+fVFQsI127XKd43r1ir7uNm3a0KZNNhkZmc5tWVltKC0tafBrsWbNShYvXshLLz3v3KbrBmbk3whHHjmON9/8D2eccTKHHjqSkSNHM3Lk4U2uAHbs2ImkpKS4a/V4vM7nqqqSmZkZd61ffvk5b731Bvn5mwkEagiHw+Tmdmj0eVavXsXGjRsYPz7+fa7rOvn5mznggIFNuu6dIeFSCLFHlEYql0mRbhsz8j+IBreMLDe5HTxs2VRLeVmYzKzmXaTfWFusEy57x4dLLfIXRIo7FZfqory2zFlzWVEWas7LFUIIIRIMH34I1157Iy6Xm5ycHGdKbE2NH5fLxb/+9VrCL2tjW199vp0bJlP3HNbvhxXn48Z+IWwPnk08h0n0ptiPo7fV5fMlJdx2883X0rFjJ/7857+QnZ2D31/NRRed67QH22In6CqKkjBRV1GURqfk+v01XHTRZRx++Jh672/fvj2vv/4uc+b8zNy5s3nwwXvo27cfjzzyZJN+YV7fdSXehtN2vWTJIu6++w4uvPAyRow4hJSUFD766H2+/PLzRp+npsbPAQcM4Lbb7kq4r02bNjt9vU0h4VIIsUeUFYcwMUlKscKZaRpOYLNbTgHad/ayZVMtWzfVNku4jG2FtZ+/PiVFIVCgXXtP5Nj4gT6KouDVvFSHqknPtNtipXIphBBi70pK8tG5c5eE2/v06Us4HKa8vIyBAwfv8vk7deqMy+Vi4cIFHH30eMAa8LN69W+MG2e1rXbr1p2lSxfHPW7p0iXOx6mpqWRn57Bo0QKnemmaJkuWLOaII44EoGvX7syZ81PcOXamNbO8vIyNGzdw663/57zOn3/+cdde7A707ZvHpk0b6v1623w+H0cccSRHHHEkxx03kUsuOY+CggLat2+Py+VG1/d8NXvx4kV07NiJc845z7lt27YtccfU99x9+uTxzTdf0qZNG5KTE9faNgdZcymE2CNKi0OY6CSnWgNxTNN0fh9pxoS8Dp2tto9t+bXOccHaPfeDuCbsdz5uLFwGagx8PhVVVeKOja12ulUr/PpSTBRVBvoIIYRoPbp27c7RR4/n7rvv4LvvvmHLlnyWLl3CSy89nzCltTHJycmcfPIknnrqMebM+Zm1a9dw33134XK5GT/+OAAmTz6DH3+cxZtvvsbGjRt4441XWbhwXtx5zjzzbP7975f4+usv2LhxPY8//gjbtm1h0qTTATj55EmsW7eW5557io0bN/DZZx/vsPIGkJaWTkZGBu+//y75+ZuZO/dnnn32H034Su28c8+dxscff8jLL7/AunVrWbduLZ9//gnTp78IwCeffMTMmR+wdu0a8vM38+WXn5GamuZUATt06MCCBfMoLNwead/dM7p06cLWrVv48sv/kZ+/mf/859/Mnh0f1Dt06OC0wZaVlREOhznmmONJSUnlz3++kYULF7BlSz6//jqXv/3tASorK/fY9cWSyqUQYo8oLQljKgZJKZFwWWfNpa1DJ6s9Z+tmK1z+8FUpX39SwjmXdaJ7r8RWmKbyh6N7aRoNtL7ouhVoM9tEfwQakSisRqbFArgi4VInTEqqRnVlONLi07yTboUQQoidcfvtd/PSS8/zxBOPUFRUSFZWGwYOHMy4ccc26TyXX341pmly99234/f7OeCAgTzyyJNOS+3gwUO54YY/869//ZN//vNpDjtsFH/4wx/58MP3nHNMmfIH/P5qHnvsb1RUlNOzZ28efvhxcnLaAtY6w7vvfpCnnnqMN998jaFDD+Sss87bYVBUVZU777yfxx//G+eccwbdu/fgiiuu5tprr2zaF2snHHbYKB544BFefvkFXnnlJTweN92793QCckpKKv/+90s8/vgjmKZJnz59efjhx5whSdOmXcrDD9/PlCmnEAwGmTWr4eFBTTF69BjOOGMqf//7g4RCYQ4//AjOOutc3n8/ul3JiSeeyvz5vzJt2jnU1Ph54olnOfDA4Tz11PM888wT3Hrr9dTU1NCuXS4jRhyaMNhpT1HMxhqPhSMU0ikr8+/4wL1IVRWys1MpLq5q8ihsIXakKe8vwzC594bVuFODdJoyB4Cemb2oDFZS6N9Obkp7ju1ujf0OBg0euHkNaRkurruzBy8/tZn1q2rIyfVw+rntKS0OkTcwZZcD3PrydXy3+RsAjmp/PJ3b5Cacy1+t89fb1tK+k5dLb+wKwMdrP6KoppDT+k4h2W3tz/n5+k/YVr2NU/tM5tXHSinYEuTm+3uSlKwhdo/8/BLNTd5jIlY4HKaoKJ+cnE4Ja9t21d4a6LM/e/bZf/Djj9/zyitvtvSltDot9f5q7M9KZmYybnfj/waStlghxG6rKAtjGJDeJvoDxzRNp2IZW7n0eFRycj1UlIWprgpTEGmPLSoI8sxfN/LGi1tZtXzXf5FTE6lclpWEePKBdbzz720J/7AM1FjX40uK/gisvy3W+q1eyAiRkmb9gK2ulHWXQgghxK545503WbFiGfn5m/noo/d45503Oe64E1r6ssQeJG2xQojdVlpsTWtLb6M66ywN03DaYnUjPpB16OylcFuQFYurqfEbpGW4CNToGAboYZOl8yvpe8CuLTy311xuWh8A02TJvCo8nu2cdGZ0VHmgxroery8aJO09OTUlti3W+hEZMqy2WIDqKp2c6KmEEEIIsZM2bdrIK6+8RGVlBe3bd+D88y/mzDPPaunLEnuQhEshxG4r3BYEICNLoyxyW+xWJHZws3XrlcSiXyr5+Vvr6J59kzjm5BxMEx69az2/LakmHDZxuZreGlsTrsEwTLZuCtBBNUhO0pj3cwVHTcgmLd36kVdf5dIOwHGVS82qXIb1ECmp1iCi6ioZ6iOEEELsij/96Ub+9KcbW/oyRDOStlghxG75+dsyPplRCEC7TtHfV1lVy8SBPgC9+llrGu1Q2r6Tl5RUF6lpLnr3SyZQY7Bu1a61xtaE/ZQUhqitNenSw0u3yJCgspLoXljRcBmtUhoktsW6IlVMqy02UrmUtlghhBBCiHpJuBRC7DLTNPnfh0WoisLE09rSI88bvQ+j3jWXAJlZbnLaudnuXUalayu5Hb0EwgEM06D/4FQAlszbtRHZNeEatmwKANB7QBKZWVbgLS+NVhzttti6lUtVUeOG/3jsymWdtlghhBBCCJFIwqUQYpcFagz0sElOrpsRozPjQqRp1r8Via1znkqhbwWF3hW0aa/w7qq3+CH/e/oNSsGXpLLol0onJDZFhb+a/I0BVBV65iWRUW+4rH+gT2zVEkBT7DWXMZVLCZdCCCGEEPWScCmE2GX+aito2Xtb6mY0eMWuuawvXHbrY+0h6Uk2UL1BwkaYymAlviSNcSdY6y8//O/2HW4hUBsweOXpzSz+tRLDNFi5qoxwGDp38+FJgows63nKSxtvizUxE8KlO7LPZdgIkZIi02KFEEIIIRoj4VIIsctqqq2QlhwJl3Urlw21xQJ07O4is42LLr08Tii1/3vgYel06upl66Za1q+uafQaNqytYe3KGt759zbyt5U7azV79E3GNI0GKpcNt8XGcmlSuRRCCCGE2FkSLoUQu8yuXNrhMmxGA1z8tNh6qo8ug8PHteGAYcmEI5NajUi4VFWFQQelAbBxbePh0h8T9p75+2pq/AZtcz2kZ7gwTDOmcrmDtlgS22LtymXcViSVMi1WCCGEEKI+Ei6FELusbrg0IxXKrr/+xoQ/3Mi4//snGEbCPpcAumGFNN3U0c3ox7YuPawpr5vWNb7uMraSGDRryW7nZvBwK5gapkFyiorLrTTaFmuvD43d4xLi22I9XhW3R5HKpRBCCNGAyy67gG+//cr5fNWqlUybdg5HHXUY5533ByoqyjnppGMpLNzeglcpmpPscymE2GV1w6VuGKihMMff/yqpJRVkrd7IkIHdWHTqEQmPDRlW2AsbYcJ20IwJoe07eXF7FDatD2AYJqpa/56XVZFK4nGntoVsg9+UTBSsYw3TQFEUMrJcFG8PUVtr4PWq1AbiK5d2qE1oi3Uql9a1pqRqlJWE0XUTTWv6HpxCCCHEzho9enij959//kVMm3bJXrmWFSuW88ILz7BixTJqamrIyWnLwIGDueWWO3C7rb8rv//+G6qrqzniiKOcxz3zzJO0a5fLffc9TFKSj/T0DI4//gRefPE5brnljr1y7WLvknAphNhldktqcko0pPWetZjUkgpqstJJKq1gyIc/sPCUwzFNM26bj3AksBmm4YTL2LWZmqbQqZuP9atq2L41SPtO0W1OYtkDdnI7ejDbuVi5WUFTNHRTd86XmeWmeHuI8tIQ7dp7E9Zc2scltsW64q7VDpf+ap20dPnxKYQQovm8//6nzscff/whM2a8zfPPT3duS0pKdj42TRNd13G59vzfTaWlJVx77RUcccSRPPro0yQnJ5Ofv5mvv/4Sw9ABK1y+/fZ/Of74E+P+rs/P38Tpp59J+/btndsmTjyR8847iyuu+BNpaWl7/HpFy5K2WCHELkuoXJo6PX9aCsCPN19AUc9OtF27lTbrtyUM9QnHVCmDehBIHPzTNdIau3Fdw+su7XCZmubCMKzHuzXrLzoD6/O6Q30CNQYo4PXVDZfxbbGumDWXAClpkYmx0horhBCimWVn5zj/T05ORlVV5/MNG9ZzzDFH8PPPP3L++X/gyCMPZdWq37jvvju5/fab4s5z++03cd99dzqf19bW8uSTj3LyyccxfvzhXHbZBSxZsrjB61i8eBG1tQFuuuk2+vTpS6dOnTn44EO5+ebb8Hp9AJSWljJv3lxGjTrcedzo0cPJz9/MY4/9jdGjh/Pii88B0LVrd9q1a8esWd/uwa+WaC3kV+9CiF3m90fCZao9LVan86I1mIrC1mH9SBkzjJy1+fSYswzjOAMNjZAewqW6nGolQK1RC8SvuQTo0sP6S2v2t2Vkt/XQKy+Zuuy22JQ0jeJa62O36iZAwFkDWl+49HpVp9W2obbY2DWXQMxQHwmXQgixP0i76lI8n8zca88XPH4ilU8+u8fO99xz/+DKK68lN7c9GRmZO/WYxx57mA0b1nPPPQ+SnZ3D//73KddeewX/+c/btG3bLuH4Nm3aEAwGmTXrO4444si4yqRt0aIFJCcn06VLV+e299//lIsuOpdTTz2NCRNOjKu05uX1Z+HC+Rx//AlNf9GiVZPKpRBil0XbYq3Q5dmylYyCEgp7diSYnszGYX0A6LJgNQYGhmkwY/XbfLv5ayewAQR1K1wapoFpRifL9uiTRLdeSRQXhnjtuXyKC4MJ11BdpaOqVourvWbTrXqc80F0r8uykhCGYVIbMOImxdohVGtwWmydcFklE2OFEEK0vIsuupyDDhpB585ddqrFdNu2bXz88Yfce+9DDB48lE6dOnPeeRfSo0dPPv/8k3ofM3DgYP7whz/yl7/cwoknjuemm67lrbfeoLKy0jmmoGArbdpkxwXP7OwcVFUlOTnZqb7acnJy2LZt6268ctFaSeVSCLHL/HX2uUxdshyALQO6Y5om2/p1IeRx02nRWraHQwQ1k0A4QGmghFR3qnMeuy0WrEDoD1Xj1Xx4XB7Ou7ITH7y5nfk/V7BlYy3ZbT3RYw2T6iqdlFQNVVWcqbMeuy02Ehrbtrcesy2/NmGYT+xxdSuXiqLgUl2EdCtcJkvlUggh9iu7U0V0uVTC4cR9nPemfv36N+n4tWtXo+s6U6acEnd7MBikd+8+DT7u8suvZurUs/nllzksXbqY116bzmuvTeeFF14hJ6cttbW1eDz1z0aoj8fjpba28WnwYt8k4VIIscv81TqaS8HtsX5TmbxqHQDF3TtYg3o8LrYe0I2uC1ajrfyNcOQvwaAeJBzTAhsIR/+CqQpV8v7qGSS5kjg970wURaFzNx/zf66gsCC+clnjNzANa70l4LTa2msl7dCY29GL5lJYunk13fO3AenONiTQcFusda6YcBkJ0TX+lv3HhBBCCAHg8yXFfa4oSlwHEEA4HO22qanx43K5+Ne/Xktob01JSWn0ubKy2jB+/HGMH38cF154GWeeeSrvvfcOF154KRkZmVRWVuz0dVdWVpCZmbXTx4t9h7TFCiF2iWGY1FTrJKdozl9QqWvXA1DUoz0m1t6RBXnW+gvPogUYkRAXMkLOPpcAQSMaGqtD1QDUhKNDfNrmWpXHojrh0m5PtdtV7ZDo0ey2WOsvWJdLoUNnL6vVn5m1Zg66EqxTubSOU+r5kehW3c7k2aTIVFx7kJEQQgjRmmRmZlFSUux8bhgGa9eucT7v06cv4XCY8vIyOnfuEvf/rKw2O/08qampZGdnU1Nj/V3dt28eRUWFVFdX7dTj169fR58+eTv9fGLfIeFSCLFLAjUGphndhgQgdc0GAIq7tXeqhgV9uwDgXrjQuc0wDWr1aLWyNqZyGTvoxx/yA5ATCZd1K5d2e2pKmr3PpvW5U7kkWmHs3M0aDrR9q3WO+tpiNTV+Wqx1rmhVNDnZrlxKuBRCCNH6DBt2EEuXLuGLLz5j48YNPPHEI5SXlzn3d+3anaOPHs/dd9/Bd999w5Yt+SxduoSXXnqe+fN/rfecP/zwPffc8xd++ukHNm/exLp1a3nmmSdZt26tMx22T5880tMzWLx40Q6vsba2lt9+W87BBx+6R16zaF2kLVYIsUtq6kyKJRwmdf1m/Bkp1GSl4YtUEbdFKpfeRQvjthqpjgRHgNrIQB+AUEwVszRQQrI7meQUjZRUjeLCILpuEg6ZvP7iFtzuSMU0rU7lMhIuzZjn69zdBwtg+9ZaumPEtcUapg6mScbaTdBBBy16nz0cKGSESEq2zlsjlUshhBCt0GGHjeKss87lscf+hmkanH76VEaMOCTumNtvv5uXXnqeJ554hKKiQrKy2jBw4GDGjTu23nN2794Dj8fD448/wvbtBfh8Prp168699/6VAw8cDoCmaUyYcAL/+9+nHHroyEav8Ycfvqddu1wGDhy8Z160aFUkXAohdkndSbHaurVooTDF3bsD0WpgecdsAqlJeJcuQw9GQ6Q/0v4K8QN9amM+LqktoVNaZ0zTJDMXqtdAaVGI4qIg61dF22ZT6qy5dGvx02IB2nWxKpW1tSYmJn0HRNeWGHqYCff9m/5f/krthE+pePEVJ2C6ItXMsBEiKcWqfvplzaUQQoi9aPLkKUyePMX5/MADhzNr1i/1HnvJJVdwySVXNHgut9vNxRdfzsUXX75Tz92pU2duvvn2HR53xhlnce65Uygs3O5safL22x8mHPfWW69z7rkX7tRzi32PtMUKIXaJve7QCZe/rQCguFsuEBPsFIWCvC6otbW4V650Hh9brYzd3zIUEy7LAqUA/Fowl1UZMwkpNRQWBCkqiG5jArFrLqP7XMZdA5CUpuP1WZXOUeMy4vbMTP7+e/p/abUDeT/+EM//PnPui1YuwyQlq6BI5VIIIYSoKycnh5tuup2Cgm0NHlNRUc7o0Ucwfnz9VVKx75NwKYRo0OqS1fxWsqLe++qGS9dv1jYkxd07APHBzm6N9e3MWozYymXAGkpQESwnOU0lqFZRVBBMGOxTd82lp55wGTRCDDownbwByYw6OjPu8dn/edO6zrGjAPB+MMO5L7rmMoSqKviSVBnoI4QQQtRjzJijGm13TU/P4Kyzzk2YVCv2HxIuhRANmr15NnO2/lzvfXX3uNQi4bKoR3sgPtjZQ318Cxfu8Dlj11xWBCsIG2EM0yAtQyOs1rJ9WzBhsI99Dfb2JnW3IgEI6rV06Oyl74BUUGLGtFdXk/HN9wRSk1h69w2YSUl4PvsEdOtcsWsuAZKTNUJBs8X3NhNCCCGEaG0kXAohGmQHu7p7ZkE9ay7XWKPOS7rmJhxbkGeFy6TFS3f4nLHrL03TpLy2HN00yMhyo6tBNq6toWh7EJdb4cQp7eg3OIX2nayNm53KZWTNpRkzLTa2DTc2dHp+/gE1FGLDQXnoGZmEDhyOWlmBtvI3ILrm0g6XSZHXa4drIYQQrV+0UJb495kQIlZke7ZdLC5LuBRCNMheCxkbxmx+Z1qsCqaJtm4toSQv/qw0VCX+R0tFbhvCmRn4fvsNNRROOFes2MolWO2ouqHj8ahk5ZqUl4YJ+A2y27o56LAMzrygI5qmRK7XXnMZCZcxoTg2tBoxt7u/+QqA9SP6oaka4aEHAuBaMC9yLqsKGtatc9tbr8i6SyGE2HeoqgYoBGMGywkhEll/RpTIn5mmk2mxQogG2ZVAwzTQiP8hY1cuk5I1lOJi1KpKSnt3AUXBpbriwhyKQvWAA8j44Sdy1m9je5/ODT5nUI8f1qObuhNyc7sqbN9o3d42svdlLGdabGSdZGworjXqr1y6584GYNPQPvRUVELDrHDpnvcrtVPPdlpsncplsl25lHAphBD7CkVRSElJp6KiBACPxwvs7ro/hXBYKqGiuezt95dJMFhLRUUJKSnpu7wuVsKlEKJehmlgRlojDOqpXFZH97nU1qwFoLxTWwA0JfG3XdUD+5Pxw0/krtzUeLiMhECP5iGoB9FN3dqHEsjprLA9clxOPeFSN3VURXV+22bEtD/VhgPOx/brIhDAtXgRwaxMyjtmo6ISHjIMANeSRZHrsMOlFZbtcGnv8ymEEGLfkJqaARAJmLv/j3ZVVTEMWSIhmkfLvL+sX8LYf1Z2hYRLIUS97KolNNAWGzMtVlsXCZcdc6xwpyR23FcP6AdAu5WbYOJhDT6vXfF0q24rXBrRymV6WwOXWyEcMusPl4aOS3WhRjr+Y6/brjwCmJHbXUsWoYRCVA4+ABQFTdUwunTFTE5GW7USTDNxoE+kLVbWXAohxL5FURTS0jJJTc3AMHTqGSew01RVISsrmdJSP4Yh1UuxZ7XE+0tRrPbx3Z3kK+FSCFGv2L0nYz+2+at1XG4Fj0dFW78OgNJOOWhK/T+YKg+wwmXuyk3ObS7V5bSy2uwQ59G8VIeqMUzdCbphgvTKS+a3pdV06Oyt95q9qtcJt7HhMhBTubRvd8+zNqAuH3wAgBVKVZVw7764Fy1ALdiGOzVSudTjB/rImkshhNg3KYqCpu3eP4FVVcHj8eByBSVcij1uX35/SbgUQtQrNlCadSqXhmES8BukZVg/QuzKZVnHbFRFRalnHUtNp/aEMtJpu2YLaljHcGl4NW9CuLSH8HgjE19103DCYNCo5aQz21FSGCK7bXzl0ogcp6laXLisCdcQ1GsJGsG4YwFcv861rnuQFXw11Xqc3jcP96IFaCt/wzV8ABC/FQlEBxoJIYQQQgjL72JabE1NDUcddRR/+9vfWvpShNhnGGbDbbGBGgPTjNmGJFK5LI6Ey/raYnUMqgb0wxUKk71+KwBezdfg89vtqPZ2KAC14VpSUl106ZGUeP5IddOluJznN02Dj9a8z/urZ1AWKHWOtddcun/9FVNRKBuYB4CiRMMlgLbqt8Q1l1K5FEIIIYSo1+8iXD777LMMHjy4pS9DiH1KY2suo3tcWj9CtPXrMN1uKnMy8GieeiuXhmlQcYAV2nJ/s1pjfa7E1labvVelYRpOFTUU2ZakPuHINiSqkli5hMR9LpXCQrSN69H79KU21Qqr9lrNcK/e1utatzZmWmydrUj8suZSCCGEECLWfh8u169fz9q1axkzZkxLX4oQ+xQ9rnIZ3+8fO8xHqapELSok1LUrpqbi1Xz1rrk0MKgY0BeIrrtsrHLpcdpiw/Fbiuj171FmX69LjVYu65tya70ew1lvGT5wuPP6NHvKbLfu1ufr1+GxB/ro8ZVL2YpECCGEECJeqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u5/6KGHuO666/bWJQux39BjAl1C5TJmGxJ1ndUSG+zaFQCvVv/eYaZpUN6/DwC5KzdHjm04XFrnIX6/TKBWD9R3OHqksuiKBERFUeqdcgtW6LTXW4YOGuGEULtyqXfvAYC2YT2uyJ6Zdfe5lLZYIYQQQoh4rXqgj9/vJy8vj0mTJnHVVVcl3P/xxx/zwAMPcNdddzFkyBCmT5/OhRdeyKeffkqbNm344osv6N69Oz169GD+/Pm7fT2qurub7e5Z9vW0tusS+wczErgUVQHFjHuf2S2hKaku3BuscBno1hlFAZ/bR0D3U7d4aWJS0zmXQFoybdfko+k6SW5fwnE2r8uLokDYDMUdEzSC9b7nTQwUJVK5VJXIcB4TTVXrCZmmU7nUh4/ApMJ6rGY9lsxMjKwstA3r0RTwujyEzRCqquDzqWiate5U/uztOvn5JZqbvMdEc5L3l2hO+/L7q1WHyzFjxjTazvrSSy8xZcoUJk+eDMBdd93FN998w4wZM5g2bRoLFy7k448/5rPPPqO6uppwOEx6ejoXX3xxk6/F5VLJzk7d5dfSnLKyUlr6EsR+xjRNftsSxjBNUpK9ZGYlkepOYunCCjati+65lNMuibT5+dZj+nYjNdVHbpssjKoAgUhVUkHBxCQ9w4dpmhT170bnOcvpUlBC7qAs0vxJmJh4NE9clbJddiaplT6SUl2khqIVzuR0jeys6J9F3dD5afNPpHvTSU310SYzjezsVNJTk1EVFU1PHOGdmebFM/9XSE4mc/TBpG36ntSQj5zsNLJTI+fu3RvmziU7VEVWehr+kN/5GeDxaoRDZqv9mbAvkZ9fornJe0w0J3l/iea0L76/WnW4bEwwGGTp0qVcdtllzm2qqjJy5EgWLFgAwPXXX8/1118PwLvvvsvatWt3KVgChMMGFRU1u33de5K1wWoKpaXV+9weOKJ1W7G4imdfWo06qJihh6SxckUxn08vorw0MjTHaagPE1i6Ah9QmJNNVVWAmhSdysoAVX6rfdXey7K0rMoapNO7E53nLCdtwWqqDg5S4w8RNsKkuF1Uh6Itr/6KMFVVAYoop6oqevu2ohIyjHbO56tLVzEnf57zeZUrSHFxFf7qICEjVG9rbM2vi6GyktBho6goD1BaXkVVVYCy0hrctVUApHbuhnfuXMrnLSaQo1NZW0NBYRku1YXLDdWVBkVFlbu92fDvlfz8Es1N3mOiOcn7SzSn1vr+Sk9Pwu3WGj1mnw2XpaWl6LpOTk5O3O3Z2dls2LChWZ6zNX1zYxmG2WqvTeyb1q70Yyo6G9b6ycrRWPbzZjyVuXTvncT61TUYkbzmS9ZQ7T0uO+RgmiV4VC+YCvYMIBUN0wwT1g0MDLb17QJA7oqNBNGc+92qh9i5QZriwjQhqIfibq8J1cS933XDiLtfVbTI/Qq6Uf+ay+QFiwEIHTgcwzAJ67p1DlNxzh3u1h0voKxbh6ttBqYJgVAtyW4Nt1vFMHRCIRPXPvtTtHWQn1+iucl7TDQneX+J5rQvvr9a9UCfXWGaZr2VhEmTJnHDDTe0wBUJse8JBQ1nzeWCOZUEanRGjc3ij5d3IjM7mqaSUzRrGxJFobx9G8AaxKPG/Bl0JrBiYJoGWw/oDkDHJetI96Y7A3Ps6bBgVTs1JTJIp85An0A4flqsPfjHeaxiPV/sXpvZSTkclDuC/tkHAJC6YIl17gOHA9H1pVrMYwx7qM/6dbgj1xiODPVxexTn6ySEEEIIISz7bLjMyspC0zSKioribi8pKUmoZgohmqaiPIyhWNNQNRXGnZTF+JNyUFWFXnnJznEp7iBq/maMzl2o0ayg5dW8cftcuiIh0TB0DNOgqm0mwc6dyFm/jexaDS0SBu0tP8AKhlqk9zZoBJ3zQuK0WJP43+hp9YRLj+pmQM5A0jzpAGTMt6ZKh0ccDET39Ix9jB6zHYk7EnyDdrh0W8eFQvvWbxOFEEIIIZrTPhsuPR4PAwYM4Mcff3RuMwyDn376iaFDh7bchQmxHygvDWOic8JpHRh3Yg79BluBMqSH8Hbbho4VstKKNqOYJnqPXk7o82reuO6B2Mqlvf7RP/wgFNPE/csctAYrl5rznIATDCuDlXHXGrsfp/1YiG4rYl2DdZuCgrfKT8rqdehdu2G07xC5Niskqmp0HUF0O5J1uFU3IJVLIYQQQojGtOpwWV1dzfLly1m+fDkAmzdvZvny5RQWFgJw/vnn88YbbzBjxgzWrFnDnXfeSSAQ4NRTT23JyxZin1dRFkbzmKSlu/D6VIzIosZ15WvZ5P2Fct8GPF4F7yZrGxK9R09qI+2rHs0bVwG021sNMxoua4Zb7aiuOT9HK5cx4VJTohVNe3/JDG8GHs1DWW0pZswiS7POwB61nsqlEzgVlQ7LrDXZoRGHOPc7lcuYH4lG+w6YHk+kLTZSuYy8RpfbCpdhqVwKIYQQQjha9SiKJUuW8Mc//tH5/N577wXgyiuv5KqrrmLChAmUlJTwxBNPUFhYSP/+/XnhhRdo06ZNS12yEPu82lqDQI1BcgfFqUDaoTCg1+B2qxw83sug9HZov3wKWOEyqFtrIX0uH1BP5TImXNaOsMKle85sXFNHAPFtsS7V5YRE5zyKRhtfG7ZVb6O8toxMX5b13HWG9thBUokNl4odLhU6LrEGEMWGS/u6YgMpmobepSuuNavxBayAG61cRtpigxIuhRBCCCFsrTpcHnLIIfz222+NHnP22Wdz9tln76UrEmL/VxHZbiQ5LRoQjcjAG7ty16WvwpAu6Wj/XQOA3rMXtXopbtWNqqhxay7tITmGaThVxlDffhhp6bjn/YInsg+lJ2Ywj6poTiiNva2NL5tt1dsoCRQ74dK+NptLTaxcajGBs8MSq9oaGy6jA33in9Po2g3WrCZtaxFkxK65jLTFhqQtVgghhBDC1qrbYoUQe195mRWg4sKlHQoj4cof9gOgRbYhCXXvTlAP4nVZATFuzaXTFqs759HcHkKHHoZSU0P2UuscHs3tPCZ2zaVzHlWlTVI2AMWBYud2u6XVVn9bbOS2sEGH5RsIJyeh9z8g4RxxlUtA79odgNQt2+Nev1QuhRBCCCESSbgUQsSpKLMql0mp0dsSwmWoGgBt/VpMRcHf2RqM41Ej4bKBtlg9ch5FUQkdPgaADnOtPSfdauyaSzUxXCoa2T4rXJYESqLXllC5jK6vdG6LBNzUZSvwBIKUDe6PvUHlsuKlVIWqEh4DoHftBkByfoH1+iOVW2egj1QuhRBCCCEcEi6FEHHqD5dWZc8OVzXhGsxAAHXzJoxOnQlG2kR9kcplfcHOMM3o2kZUgkccBUD7OVa4THanOI/TFBeKotQZDKSR7snApbooDZQ4Q32MOpVLZyuSuIBrXUP6z3MBKDx4KAD5lZv5ZdscAIa2G5awR67ezQ6XW63Xb1hfG2crEqlcCiGEEEI4WvWaSyHE3lduh8uUmMmpkVBorzk0TIPQut9QDAO9Ry8CkWE+Xs0HxLfFqvUM9FEVFb3/ARg5bclctJyJOWPITspBUzQM03Cqnfbn1mM0FEUhy9eGQv92qkKVpHnSnfttWn2Vy8htaT9ZQbJoxBBygPJgOQBD2g1jUM7ghK+FEalc+jZb4XJz5UY2V27Epx0IyFYkQgghhBCxpHIphIhjD/Spry3WnpYKYK5eAUS2IQlbe1zaQ3li22JdSjRc2oNzVEUFRSF4xJEouk6Hhb9Fbyd2umv0R5T9cbLL2nMzELYCbcI+l0oD02Jra0n9ZR61KT7K+veKnKMGgJTIOeuy22I9mzYDUB2qpjpUzeawdb0h2YpECCGEEMIh4VII4QiHDQoLrNZXb0r0dqdyGWmLBWDtKsDehsS63acltsXabaom0cqlfVtwjNUa6/n6y7jH2dXO2Imx9mPcqjX4J2QEI9cWH/Dqnxar4Z73C2ogwOYhvdE1K/zW1qm41mVmtcFIS8ezaRPEPE9WZFKtVC6FEEIIIaIkXAohHF/NLKaiLEz3Pklo7miYsgNcKKZyqa2NbkMS0BupXEZaUsNG2Kky2sEvOHY8pqLg+ewTME0nTNrVztihPpoaqWo64dJu0Y2vXNqDgeq2xbq/+waADcP6RPftjFRcfa6k+r8gioLRtRuq309SebVzs8eeFiuVSyGEEEIIh4RLIQQAWzYF+PHrMnxJKqf8ITeu3bTuPpcA7vUbALtyGakARgb6oMQP01EVlbARxjANFEVx1mSaubmEDxyOtnkT2pLFTpis+1+IbjFib1lit+ja13loh5Ec1fVokt3JkePjq6ee/30GwIbh/ZxwWVv3uutht8ZmbI1uf2IXVGWgjxBCCCFElIRLIQQA2/KtoDVidAaZWe64KaymaRDSQ3HHJ23chKko6N17OCHNF2kvVWN+tCgouFSXEy7VOj92ao+fCID3s4+dABndTiSxLTZaubTWhtpBMcOXSZe0rs7xsc/jLSjEvWgBwW7dKOmWG1O5rIm77vrUFy61yCg02YpECCGEECJKwqUQAoDagBWUklOsEKfHTGE1TINgZI2jR/OghsIkbd2O0bET+HxOe6nTFhuzo4eqqLhUFyEjZIXLOntJBo+dYD3204+j24goO7PmMjq5Nvb+2Oe1ZX71HQDV48eBomBiVRwDegCX6nLCbH3s7Uh6lEVvc0W2XpHKpRBCCCFElIRLIQQQDZden/VjIa4t1jScNtQMbyYZW4tRDRO9pzV11Q6evnrWXCoocYGwbrjU++YR7tkL96IFpOdvB6KVS63OUB4Ad6Qt1t5zM7qOM36PythpsWlffgVA9bhxgFWJNUyDoB7EqzXcEgvR7Uh6lqmM6jTaei5XZA2qVC6FEEIIIRwSLoUQANTWWkHJ442ESyM+XAYjbbHJrmTabi6yjunZ23psQuUyJlwqitPKappmQrhEUaiddDoAvT79Aah/zaUdFt0JbbF6wrEQDZtuf4CkH37AyMik9uBDnNezw2E+EXrX7tb5N653rkGTNZdCCCGEEAkkXAohgMTKpVGnchmKaYvN3mBVGPW+fa3H6rWoiopHsya1xlYuVUXBHdN2mhAugdrTzgCgx6ffx02NrW/NpR0uw3XaYuue1/6873cLUWtrCR43AdVjhV8Dk9rIhFvfDiqXehdrHae2Yb3zuuxJurIViRBCCCFElIRLIQQAwUbaYk0MZ1KsW3WTvbEAgHDvaLi0gyXEBz17oE9999n0nr0JHTSCtE3b6LB8Q7RyGbfmMn4rkqDTFmuHyzqVy8iPt/7/+wWAwOlnOpVH0zSjQ4h2ULkkJQUjpy1q/mYUPbK+0xnoI5VLIYQQQgibhEshBBBti/VG2mLDkbZTsFpk7c/dqpusjdsACPXpQ0i3BvXETlyNrVwS0xYL9YdLsMIfwKCZP8WsuUysXHoaqFzWN9AntbCMrvNXoXfoSGjU4c51xbbF7mjNJYDerTtKKIR3u9UObGfesIRLIYQQQgiHhEshBFBfW2zMtFhMZ2iPW3WTuX4rQZ+HUPv2TnupJyakxa65VFGdVlZoOFzWnnYG4SQf/b74lfQqKzjG7XOpNrQViT3QJ7Ettv8Xv6CYprWmU9OcYwzTIBC5bq+r4W1IbPbEWN/mfOvczppLaYsVQgghhLBJuBRCANFw6fGqzjAfu4JomIYznTW1qByPP0BJ11x0DGojt3vjwmVMW6xSty02vsJoM9MzCE49B3cwRNv/zkg4NnErkqBzbdaxdcKlbjD0/VkABKaeHXeMieEMIUrSdtAWS3Soj2/TlsiLMnG5FRnoI4QQQggRQ8KlEAKIaYv1qc56S3sdpTXQx6ompqzbBEBJt1x0U48OxnHV3xaroOBSGl9zaQtMuwSApJeeh2AQTY3ZikSpsxVJ5Hr0BqbFtv3ye9ILStl48AD0vnlxz22YBjVO5XLHbbH2diSeSOXSJBIuZSsSIYQQQgiHhEshBADBgBWYNE1xAptdJYwNl6nrNgJQ3DUXw9Sd9tLYgT5x4VJRcGk7bosF0Pv0pfaY49DyN+N77ZX4ttiYx3k0j7MG1DANFEWJa8UF6PzKfwFYeuZxCecwTdOpXPp2qnJphUtvJFwapoHbrRIKmpimVC+FEEIIIUDCpRAiojZgOMN8nHCp2ftTRqfFJq9ZD0Qql4bu3O6NHejTyJpLrZFwCVB98+3W8/z9r7gDoZjHRYOmS3VFK5eGnlC1dH/9JRnzF1HUrT3bDh0avS57oA9GTMV1Jwb62JXLTZsBq3Lp9iiYJui6hEshhBBCCJBwKYQAwmEDXTejw3yM+iqXVoj0rVkLYK25NKNrF2PXXKp11lzuaJ/LWPqgwQROOhWtYBvdItVHVVHjAqtbdWOaJmEjjIkZf05dJ/XuvwDww7QJcVVTu8JpmIazFUlsKG6I0akzpqpGw6Vp4nZb1yPrLoUQQgghLBIuhRDUBqyA5PHVX7nUTZ2gblUKPWvWYLg0yjq1jay5rGegT501l1rMmktlJ37s+G+9A9Prpduz08naWJBQmYzd61I39Lhw6XvjNVxLF1N54BBWjx6MS41/rIIVLmP37dwhtxujU2fcBQVoQWvrFbfHek4Jl0IIIYQQFgmXQojoNiROW6z1uUt1OZW+sBHCU1WDq6CA6i4dMFwaRsxAH29DA30UZae2Ioml9+xN9Q23oAaDHPvw67jqtJ7G7nWpm9G2WHXjBlLu+DOmorDxlutBURKm06qK6lQ97de3M+zW2PRtJZFwGalcylAfIYQQQghAwqUQAgjWxu9xGTuBVVVUq9JnBMneWABAVfeu1nFGTLhUYwb6KLHhUt3pgT6xai6/muoB/ei0ZB2H/+OtuPvsyqVdNVUVFQIB0i+/CLWqkpqrr6PmwKGRY11xj1UVFRMzLpTuDL1bdwAytpVYay7dkcplSCqXQgghhBAg4VIIQUzl0g6XkUmsmqqhYoWxkB6i3aYiAKp7RsJlbFtsTOVSVeLbYmPXXO50oHO7Wf3Uo1RnpTLo3W9IfvgBiExmtdt17WCr6QbpF5+Pe87PhIYMo/rGPzshNnYbFPt6rEpsOCF4NsbejiRjazFEBvoAhIJSuRRCCCGEAAmXQvyulQZKeHXZdFaVrgSibbFGpC1WUzQ0VUM3dEJGiLbrtgHg79UDIG6fy8bWXDa1Ldamd+nCB3dfSDDZR8rDD5B2xcUohYUxlcsA6duKmXj1w3g/nUm4V2/KX3sLPB7SPemoikqmLyvunKqiOtuYNCVc6jHh0t6KBGTNpRBCCCGEbef/ZSWE2O8sKVqMYRrMLfwRGOcM9AnHVC4VRXXaZHPWbgGgul8foBLDtLYi8Wie+NAYuxWJosYP9GlCuNQUjS0De/DxM7dz4s1P4Xv7TTyfzGTEyANp285Lr6L3GP7V97hCYUKDh1Ix/T+Y7doBkOHN5Mx+ZyUEyNiWXU1pSrjsbp13a7E1LVbWXAohhBBCxJHKpRC/Y3aLajiybtDZioRo5VKN+THRZvUmTLebQK+e1uMi+1wmrGskdisS6lQud26ATuz1lef1pPSbH/FffBlKKEj7/33Hoa/9j7affY3h0lh0wSTKPv4Co1PnuMfXV5mMDcFNqlz27AVA5uZCDEyZFiuEEEIIUYdULoX4HVMj23SEwyYK0bbYsB5tG7XDWHJJBUmlFYQHDEJxW8N7gkb923koddZcunZlzSU4k141VcNsk031vQ9R/ee/sPWrt8hfNZvM7gOY081N2+xudPB4dnC2yDmJDZc7fy1mdjZ6ejpZW4owDQOPW9ZcCiGEEELEknApxO/It58Vs3RBFUMPTmf4qAy0SHAMhwzcgNdnBSZ7HaXP5XPCZdtIS2z4gAFOWAzqtUBie2nsmktVUVEUK2CGjXCT1lza4U+LfUxKCv7DR7Gsp0nX9G6EKzY06ZyxxzalLRZFIdyzJ94FC/BtLyYt03psaXF4588hhBBCCLEfk3ApxO/Iol8rKd4e4vP3i1ixuIrUIQG+nG2tIexJtC02UE+4zHHC5UDntmBkUmxj6xrtoLkr4TLVnUaKO4V2yblxt9sDfexwW3cvy8bEXptbczdyZKJwDytcpm3aQrvhVqV0+9baJp1DCCGEEGJ/JeFSiN+Rqgodt0ehba6HjWsDFOaX4/fpzv2eSFtsbSS0WeHSCmNtV0crl1qkohgIWyG0bntp3LTYyOPdqpsAgSYN9HFrbib3PSPxdmdarB0ud/6cSmxbbFMql0TXXaZt3ErbE+1wGWzSOYQQQggh9lcy0EeI34lQyKA2YJCW7uKsSzrRroMHj9uFyxUNgnblsjbcWFvsQGfdor3m0lVnzWVs2IutXEL8msdd5VatYFcTrgFwwu7OiGuLbcLjAMKRcJm+cRs+n0ZGlouS4hBBWXcphBBCCCHhUojfi+pKq0KZmq6RkqpxyQ1dOe+KrnToHN2fMtoWG61cKoqKGtbJ3rCNYJsszHbtEtZcJrTFxlUu1cgxVgBtaqCrj1ezwqVTuWzCj7K4abFNrFwaPXsDkL7J2u+zXQcPmFBUINVLIYQQQggJl0L8TlRVWOEyJc0KVJqmkOR1k9spJlw6bbFW5dLr8qKikrWpAC2s48/rA4riBLRoW2zj02IB3Huwcul1+QAwTWsbELVJlcvotTVlKxIAPSFcWl87aY0VQgghhJBwKcTvRlWVNdU0NS0axBTFWn9pc9ZchmvxaB5URUVVVNqusVpiA/37AaA5lctIW2ydgTqx6yrtoGkH0Kasj2yIR/XEBdimBNbYqqrWxHCpZGbhz0wlfUsh6LpVuUSG+gghhBBCgIRLIX437Mplano0UJmmicul0G9gCgcemo4vSUU3dEJGCK9mVQc1RXPWW4b69weiYU43rXM22hZLdKAPxFcOd5WiKHjUaCjW1L3TFqsoCqWd26KFwqibN9GuvVQuhRBCCCFsEi6F+J2oqkisXJpYbaV9DkjhpDNzURQlZlKsFZxURaXdqnwAQv0HAIlhrm4FsO4+l7HHNGXbkMb4Iq2xYAXgnRVbVa075XZnlHZuZz3nmtXk5LpBgUJZcymEEEIIIeFSiN+L6qpI5TKt/kBlmNbEU2e9ZaRyqaKQu3IjYbcLo/8BQGKYc+/EtNjc5Fx8Lh9ZvqzdfSlx11f3+XYkrnKpNm2fS4DyLpFwuW4NbrdKWrpGRXkYwzCbfC4hhBBCiP2J7HMpxO+EXbm0B/pAtHIJoBs6qqY6lUs7vKVsLSSpws/Wft1w+1KBxHBZt700tvPVXhvZI6MnPTJ67qFXAx4t2hbblGpobFW1qQN9AMpiKpcAGZluKst1KivCZGQ2PawKIYQQQuwvpHIpxO9EVcxWJDZ72ipA2LTCZ8DZ49Jqi81atgaAgrwuTqCrG+bqbi9SX1vsnubbA5XLpg70Aajo0h4A11rr65KeZZ2jvDTc5HMJIYQQQuxPJFwK8TvhhMt61lwC6IYVjupWLrOWrQJgW79uTqWvbpis2xZb30CfPc3rim6h0pQ1l7sz0AegrFNb6zntymUkXFZIuBRCCCHE75yESyF+J6oqwviSVFyu+v/Yh51wGV+5zFy6EoDi/j2cYxPaYusO9Ind53IPTIetj0eLhstdX3PZ9IE+epKPitws1E0boabGaYUtL5NwKYQQQojfNwmXQvwO1NYahIImqWkauqE7t8e2xeqRgT6BcEzl0jDIWLaKkM9DVfcuzrF1w6VWpwJoB7jmCpYQ3xarNSFcKrvZFqsqKsXd2qMYBtqa1U7lsrw01ORzCSGEEELsTyRcCrEPqQpWOhXGpqiutB6zLW0e7656ywmYsW2xtXqAJUWLKQkUA5FwuXo17io/23t3wu1Nco5VFKXRCqDdCttcLbHW9UUrl0pTKpfsXlusoigUd8u1Hv/b8phwKZVLIYQQQvy+SbgUYh9RE67hvdXvMnvrT01+7Ob1VqurnlxOTbiGmrA/4Zi15WuYV/AL2/0FQKQt9pdfANiW1xW36ok7PrZ6WXfNpT0utrmG+QB4d3mfy+jHuzIt1q5cAmgrV5CeGQmX0hYrhBBCiN852YpEiH1EVbAKwzSoDlXt9GNKi0N8+1kJC+ZUAJDT3gWECRpBIL5yWRWMP69X8znh0poU2/BelnXbS+3qYHNWLn17ZM3lLlQuUSju0cF6/G+/kZKqobkUGegjhBBCiN89CZdC7CNCkUBor43cke2F1dz61JtkVPWmXUonJkxux28pXvzhMCE9sj4wZs1lbDXTq3mtttOYymVm3cqlqkFk+WbCtNhIebA511zGDvRp0rTYSPDdlWAJkcplV6stVlu5AkVRyMh0UVIUIhg08HikIUQIIYQQv08SLoXYR9hbhMQO5GnMghWbKDcL6ZqXyTVnj8KXpLFshVVdq69y6Q9Z4XJkx9G0T2mPEg7Dr78STk2htHNb2tYJkLGBrm6429trLtUmTH21A29TAmnc41EIpiahd+iAtm4t1NaSkWWFy4qyMDntPDs+iRBCCCHEfkh+xS7EPiKoW4HQMHcuXBZut9ZZduyp4UvSIo+1qp6hyLli6ZHzpnszSPWkoS1ZDH4/lUMHgqri1uoPly7VlVCh3BuVS1VR8WhWkFOb8KPMbovd1cqlPTwo1CcPRdfR1q6JrruU1lghhBBC/I5JuBRiHxF02mJ1TNNk5bJqZn1Rwi8/lGOaJqZpUlIUZMWSKvzVuhMuUzKj5wib9l6WkcplTFuszRsJbO65swGoOnAoEN+GCqBGwmV9FcC9seYSotXLpqy5VHY3XEZeU6hvX+s8vy0nI8sK3hVlsh2JEEIIIX6/pC1WiH1EMNIWWxvSeeeVbSyZHx3A07mHj0W/VPLjV6UADDwwlcLCAIoCSWlWtdIwDSdMhuppi7V5I/tHumb/DEDy6GMYlptL78w+ccdparRyWZeyF6bFgnWtlVQ2aZ9LO/jW3Ztzpx8fea5gH+vrof22grTRRwNQWbFzVWUhhBBCiP2RVC6F2EfYbbHzfi5hyfwqMrJcdO1pBcHSohDrVlprJhUVfltSTVVlkJRUDR2rmha7VjNYT1uszW41dc2dDaoKIw5jUM5gklxJccdpjVQAnTWXzdgWC5CdlINH85DsTtnpx+x+W6z1moJ9rXDpWvkbZnIlm5PmUFRWuUvnFEIIIYTYH0i4FGIfEdSD1AZ0Nm3040tSufj6rvQ9wApVFWVhykvDaC6FPv1TCAVNTMUgLcPlBEk9Zq1myLACZ922WI/mQVVU1M2b0Lbkw+DBkJZW7/VE11y6E+5TFRWX6krYG3NPO6TDoZzWd4oTiHeGHS7du9kW61QuV66gTMun3LOZzeWbd+mcQgghhBD7A2mLFWIfEdRr2bQ+gG4YDBmRTkqqRnqW9Ue4aHsQf7VOmxw3eQNTWLm0GgODzAyNkBHCNE1nvaV1rvrbYu01jPZ6S0aNavB6VKXxttijux2Dt5nDZUPP3xg7HNbdm3NnqZHKpZ6Zgd4uF23NapK9VnCvqpKBPkIIIYT4/ZLKpRD7iJpQLRvWBjAVg+EjMwCcQTKb1gUin7vo09+qZppKmLQMK0CFjBCGEVu5rL8t1h7a47LD5ciRDV6PveayoQpgbnIumb6snXpte9PutsXajzdNEz2vH0o4TM72LShAVaUM9BFCCCHE75eESyH2AWUlIT77aCv+Kp3stm7atLOCXUZkC4yCLdawn4wsN+mZLjp29WJiOltkBI1gncplpC02oXIZmRQ7Z8eVS82ZFrtvNUDYlUfXLl63Xfk0TIPwAQMASFu5Go9Pobo6hGEkDkkSQgghhPg9kHApxD7giw+LKC710ybHxbBD0531k2kZLlDAXjqZEWmTnXxOe8adkklKaqRyqQfRDcM5nzMt1qwbLn1QVYVr6WKM9h2ga9cGr0lrpC22VVPsttjELVR27uHW401MwgMGAZC+ci2+JA3dMPFXy8RYIYQQQvw+7dfhsra2ltNOO42TTjqJE044gbfeequlL0mIXbJhXQ2GEuKQw7NIStIwTCsoappCWno0JNnhMruth07do/tSBo0QekzlsjayrUldHs2Le87PKLpO6JDDnCBWH2efy30sXLZLziU3pT1d07rt0uOVyI9NwzTRBwwEIO23NfiSVExFp7JcwqUQQgghfp/2rX8VNpHH42H69OmkpKTg9/s58cQTOfbYY0lPT2/pSxNip5WXhSgrC5DWVcPljgyTiZn8mp7pdgJNZpvo5FYjdjqsHnTaOa3PG26L9fzwvXXM6CPw0jBN3b2pqy0l1Z3Ksd2P3+XH25XLstoSliUXcKrLRdrKtfgmqfgxqawI06HRr5wQQgghxP5pv65cKopCSoo13CQYDGKaJkZMa6AQ+4L8DQF0JUhWdv3B0V53CdHKJcQH0KARjPtcN3V0Q6dOVyxezYf7RztcHt7odTltsfvYmsvdZQ/0WV++jnWBfPw9u+ErKqFt2I+JQWW5TIwVQgghxO9Tqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u4PBAKcdNJJHHnkkUybNo3MzMy9dPVC7BmbN9QmhEs9ZvJrbKBMjwmasceE9FDcQB+wAmddSTUhXAvmo+e2x+jdp9Hr0vbRttjdZVeAQ4b19azu1xeAnoXbQZFwKYQQQojfr1b9r0K/309eXh6TJk3iqquuSrj/448/5oEHHuCuu+5iyJAhTJ8+nQsvvJBPP/2UNm3aAODz+fjggw8oKSnhqquu4thjjyUnJ2eXrkdVG15/1hLs62lt1yX2rPwNAQwlTJsct7ME0lQM5/tub0eSmqbh9UbXX5oYzvFhM4QLLW4JpW6GUFQz7racBUtRdJ3wqMNRNet3Tw29v9K8aSgKZPjSf1fvQU21vo66GUZRwN+/D3zwCd22bsPwGVRV6L+rr8eukp9fornJe0w0J3l/iea0L7+/WnW4HDNmDGPGjGnw/pdeeokpU6YwefJkAO666y6++eYbZsyYwbRp0+KObdOmDf369WPu3Lkcf3zT11u5XCrZ2alNftzekJWV0tKXIJpJMGiwZVMAd7JOuw4pzjYaGZlJZKda78fOXUNAIdltvXHv0ZQSD6mmD4DkNBcpbi+p5T7n/tQMD+nhJFJro7e1W7gQAO9x4/FG3lcNvb+ys4fQv0svUj2t889Fc8msTCY17MPn1Uh1+eAga6hP920F0N2gqsLA1N3ktJN1lztDfn6J5ibvMdGc5P0lmtO++P5q1eGyMcFgkKVLl3LZZZc5t6mqysiRI1mwYAEAJSUluFwu0tPTqaqqYs6cOZx++um79HzhsEFFRc2euPQ9RlUVsrJSKC2tlr319kNVlWH+888thIImuX0V/NXRCa+FxRW4aq0fOL5kax1xm7YuiournGNKyiupqg4AsL2klHSPQVVVwLm/oKiU8gp/3G2ur2cBUDr0YCit3qn3Vy1VDd63P6qsDFBVFUCvVakJBSjo3JfuQNu1+Zg9TFYsqeT/rl3KUcdnc9Tx2S19ua2W/PwSzU3eY6I5yftLNKfW+v5KT0/C7W58K7d9NlyWlpai63pCi2t2djYbNmwAoLi4mJtuugld1zFNk6lTp9KvX79dfs7W9M2NZRhmq702seu+/qSYzRsCdOnhY/AxaSyvjN4X1sPO9zwn18P5V3cmp50n7n0Q1qMDe2rDQUJaCNMEt+omZIQIhGsxDNM5xlvlx7NkCXrHToS79UCNnEveX/FMU8E0IRS2vp6BrEwCOVlkbyqgc3tILXURqNH5+pNiXG6FUWOzWvqSWzV5f4nmJu8x0Zzk/SWa0774/tpnw2VDTNN0tgro06cPM2bMaOErEmLXFBZYA3dOnprLJnM7VIJH8xDU4ye/AnTrmZTw+LpbkdgDfpJcSYSCIYJ60NmKJCepLb3mL0ExDEKjDm90f8vfOzUyB80ekGSaJuV9e5D74zxOGVDN4HE92Lw+wItPbOKnb0oZNTYL0zQxMZ1Js0IIIYQQ+6N99l86WVlZaJpGUVFR3O0lJSW7PLBHiNakrNjaizKzjYvayGTXZFcyEN1mZEPFer7d9DWGmbjFTuy02KARch7jc1lBNKhHp8UOa3cgBy3ebt1+eMPrnEU0d5uRkq+JSVnfHgCk/7YGgM7dfbTN9VBVoVNeHmTG6rf5z/J/8/Haj6gJt672eiGEEEKIPWWfDZcej4cBAwbw448/OrcZhsFPP/3E0KFDW+7ChNgDdN2kvCxMWoaGy6USigRBn8savmNXJb/d9DUbKtaztWpL4jnqVC7DZrRyCRAygk5AUhQFz9dfAhA8alwzvar9g70Vic3EpLR/LwAyl612bu/Q2Rros2lTJVXBKgzTYHv1dl6evoRvPy/ZexcshBBCCLGXtOq22OrqajZu3Oh8vnnzZpYvX05OTg5t27bl/PPP56abbmLAgAEMHjyY6dOnEwgEOPXUU1vwqoXYfZXlYUwDMttY24yEI3squlUPAIYZ33/v0tzUpZs6qqJiYhI0ghhG3cplyGmL9azfgLZ+HeEBgzBzc5vnRe0nElpbTZOS/r0BaLNsFXYNuX0nLwvnVrItPwCdrdsqy8OsWVFOweJikpNVRozO3GvXLYQQQgjR3Fp1uFyyZAl//OMfnc/vvfdeAK688kquuuoqJkyYQElJCU888QSFhYX079+fF154wdnjUoh9VVmJ3RJrhUa7UunVrGqYbupO4GyIYRq4VOuPeEgPOWsE3ZHbzMj/ANK+s6bEBsdK1XJH6qtcVndsS016MpmrNlASDILHQ/tO1vdq65Ya1vr9pKZr1NYY6Ir1vf343UJ69E0mp51nr78GIYQQQojm0KrD5SGHHMJvv/3W6DFnn302Z5999l66IiH2jrISKwhmtrH+iNotrR7NCiK6oVMZrHCONxtYc+nW3GiKRnWoOqb6aQVWO1gCpH4fCZdHHb2nX8p+p27l0hrWAwV9u9L9lxW4fltOeNAQJ1yuXFrNipQqkpJVOnT2YighUtM1qip0tm6ulXAphBBCiP3GPrvmUoj9Wd3KpT2cxw6XhqlTGYzuTVLvQB9TR1M05zGBsLWfpRapXGKamKaJGgqT8uPPmMkphA4+tHle0H5EURIrlyYm2/K6AOBaMB+ApGSNzGwX4cj3rsZvsC0/iK6E6XuAtUdpRVnj1WchhBBCiH2JhEshWqFouLSCoG7Gr7nUdxAu7TBqhUurguYPVwPgUuLbYjstWYfm9xM8/AjwSBVtR5R6KpdgUtCvKxANlwAdItVLAAXwV+ughejZ15r6K+FSCCGEEPsTCZdCtELRtti6lcvI56ZOZSg+XK4uXcUXGz7DMA1nUqymas50WHsLDJcW7YY3TZPuc5YDMiV2Z9W35tI0Tbbl2eFynnPf4OHpZLdz0X9QCqphBfe0bMjMtr6P5WWhvXTVQgghhBDNT8KlEK1QaXEIFMjIsiuXVlh0KpeGQWVtuXO8YRqsr1jLlqotlNeWRcOl4sKnWeHS3nbEqVxGPu/10xIAgkePb+6XtV9IWHMZ+V9VTgb+Num4li+FgNWC3H9wKudf04luvZJwEQmXbUzSM63vgVQuhRBCCLE/kXApRCuj6yYV5WHS0l24XNYf0bARxqW60BQNiKy5jK1cYqBHWmMN03TCpaqoJLmT4s7vipkWm7Ixn+wNBQT65WF0697cL22/kFC5tLeFURQK+3VHCYdxLVsSvR8Tt0clp00qAGltIDVNQ1UlXAohhBBi/yLhUohWprpSxzRwqlsQ3bNSU61wGTJCVIeqnftN03DWXRqmgR6ZDOtSNZK0+HCpxYTLDt/OAaBqvFQtd1Z9lUv7a1+Y1w2IX3dp39e7VwaKAm06KKiqQlqGi6pKne1VxSzYPq/eoUxCCCGEEPsSCZdCtDLBoBUyPN5ohUw3dVyqyxkmU15bHq2YYVUro+FSj6lcavhcPuc4l+pyKm+madLxu7kAVI2X9ZY7K7FyGf24IBIu3fN/jd4f2fJl8LAsjju1Lcnp1ufpmS4w4ZeNC1hUuJDCmsJmvnIhhBBCiOYl4VKIViYcssKH22398TRMA9M00RTNWS9ZHaqKe4xhGhiRQKmbOrphBU1N0UhyJTvHqYrqhCN3WTk5C5dTlZ1O7eBBzfui9iP1bUViRBLm1gO6A+D6ZU70/kjod6kayV4vIcMa4mNXpssq/QAYkaFNQgghhBD7KgmXQrQyoZAVRtxuK8SEnRZXF2ok2NTqtXGPMeq0xRox02JjK5f2mk2A3B9+RdUN1hw2EEXVEDtHrSdc2vwZyYR79sK1ZjVKcTEQbYtVFAWP5iFshDFMgww7XFZY4dKuNjfF6tJVfLvp67gqthBCCCFES5FwKUQrEwpGprpGwmVsi2tsOATwRvawjA2XekxbrFW5jK65tFprrfPa6y3XjByY0OopGlZ3n0tM0wmYhmkQHn4wAO5f5zi32Y+zp/0G9aBTuSyv8scd1xQrS39jQ8X6hEq2EEIIIURLkHApRCtTty3WDoou1YVap8KY7LZaXg3qD5eqoqEqqhNCNUVDQcFVG6T9D78SSvKx6cA+zf+i9iMN7XMJ1vchFAmXrl/mOvcDqKh4NCtcho0Q6ZnWXpcV1db+o7sSLnUzvMuPFUIIIYTY0yRcCtHK2G2xTuUy0harKWpC5dKuSsZOizVNA93QncfEHqepLhQFus9ejrsmwJbRBxL2ehLWEYqG1bcViR0gTdMkaFcuf6lbuQS3agXKoGFVLk0MqvxWi7NB0wOi3TK9Ky21QgghhBB7moRLIVoZp3LpiW+L1RRXQrj0RUKjYRrOcdY+l9F1mhATLiOVy7xvFwCw6ehDgcTAJBpW31YksWseQ3l5GKlpuOf9AuGwc5+qRCuXIT1Emxw3ulZLSWEIXTcxjF0Pl4asuRRCCCFEKyDhUohWJhSy11xafzzDRnQ4T0OVS3uiLFhh1A4b9vF2CHWpGmqglp4/LSXs85I/chiQOAFVNKy+abGxQ30MVSE87CAUvx/X8qVORVJBia65NIIkp2j0HuAhGDTZujlgrZs1TMLhnQ+K0V8oSFusEEIIIVqehEshWplwnWmxRsxwnrpVM3ubkbiBPobuVLTUSLi0Q6iqaKR8+x2emlqrJdbnaeZXs/9R6/zYtEJ9TLjEIDRiBACuuXOcrUhURcUTaYsN6UEABoywJvmuWubn9X9t5p4bVvPX29ZSVhLaqWuJVi6lLVYIIYQQLU/CpRCtTMgZ6BO/FYkWmfQaGzCjlUszWsUi2iKrqfGVS03RSJ05E4CNRx/mnEfaYndevZXLmLZU3dAJjzgEAPfc2dh3qYqKW7Mrl1Z4bNcVUtM0qip1irbX4nIpBGsNlsyv3OF11N1+RgghhBCipUm4FKKViW5FUmdabKQKabe6ulSXMyAmtnJlGHpctRMgKbLXpSeok/LFF4S8bvJHDo3W26QtdqclrLk067TFYhA6yKpcuufOjg70QcGj2msurcpl0Agy8MA0OnbxMnFKDudf1RmA35ZU7/A67F86gAz0EUIIIUTr4GrpCxBCxKvbFhudFmsFRTvceDWv83HIiLZR6qaOYiqRx1j3p3kyAOg6awFqVRWrxgwlnOSNq7iJndPYViRgTes1M7MI9x+Aa/lS3Fu3WY9TVNxadFosQK1eS9tcD21zPXRs56FDjpf0TBeb1geoqgyTmtbwj+jYcCmVSyGEEEK0BlK5FKKVcQb6ONNireBgt7ja//VqPidc1g0asftcArRLbsexPSbQ7/PZACw7ZkTcc0pb7M5TdlS5jHy/QoeNBCB97q/W4+Iql9YvA4J6bdzjFEUhb2AKmDuuXtoTgWOfUwghhBCiJUm4FKKVCTe05lJxRf5rr6P0OkEnPmiYCYEUoL1fw/v1l+hZWaw/uD/WGBrruSRc7rx6K5f1hstRAKTPnQ/UXXMZrVzWfVy/QSkArFreeLiM/4WCtMUKIYQQouVJuBSiBZQGSvgxf1ZcuLCFIm2xCWsu1fhw6dV8zuRSe7sSsIJG3TWXAN7330EJh6k++RQMl2ZV3KQttsnqrrmkTlusvQ1M8FArXGb8Eg2XdafFBsKBmMdZ3/cu3ZNAga2bEt8bseK/5/J9FEIIIUTLk3ApRAtYU7aa1WWr2Fq1JeG+upXLxDWX1n89jay5jJ0wa/O9/SYA1ZNPB4irtsk+lzuv7peqobZYMzeXcK/epKzbSHJJBQoKLmfNZaQtNlLBhGj7s8erkp3jprw0TI2/4YpkbLVaBvoIIYQQojWQcClECwjb24bUEwqiW5HEVy5V1frcDpQ+zYuqxAdQ65zRLSrsQKqtWYX7118I9+xFcNgwID4USVvsztvRQJ/Y72lo5GgAOi1ei6qozvfD/v7Errk0Y9ZN5nbyAlCwpf7qpWmaLFlUTqDGfh/JmkshhBBCtDwJl0K0ADsM1tfOGArabbH2mkt7K5JIW6w90McVM9CnThXLrmrZ02K9b1lVy9rTpqBEQmrdUCR2zg63IokJeqFDraE+XRauRlGij7WPqa8tFqB9JFxuy49WNu3nAlgyr4qZ725l2cIqQCqXQgghhGgdZCsSIVqAHQbqCwVOW2xkWmzd9ZNaPVuRJEyLNWIeY5r43v4vAIHTpjiVt7jKpbTF7rQdVy5jwmVkqE+nhWtYp6jOGlm7Shm75jb2vdC+ox0uo/dXlod59m8bGToinXWr/RiEKS0KxZ1PCCGEEKIlSbgUogXY4a++dkZnKxJ7zWWdgT72mkuf5nOmxdadHGqv31NVDfcP36NtXE/okMMwuvdAqWeIkLTF7ryEyiXx61cNot9To3MX/J3a03bdVjaXVqCmRavGIT0U9/2vr3IZ2xa7eoWf6kqdH74qtc7h0anxGwRqdKlcCiGEEKJVkLZYIVqA3bZaX7gM11lzaQdHO1RmeDNQFZV0b4ZTCasbUuzHuFU3vn+/BEDN2ecC0SBpRmKRaKI6Vd66rcW6oceF/eKDh6KYJhmz5zoVYsM0qDWs4Fh3HSZAWoZGUorK9q1BZ3rw5g01cc/jSbKet7QkLGsuhRBCCNEqSLgUogXYlcX6B/oYKCpoml25tIKKK7LW8qDcEZyedyYp7pR6tsWwzm0/xl1chnfmhxgZmdSedCoQW6WMtnNK5XLnqdStXMaHy1Wlv/H6ilcpqikCoOgQa4BS+o+z49Zc2q2s7sgEWTOm4qkoCu07edF1k7/etpYFcyrI32CF0cPHZzFgaCoHjrL2wywrDkm4FEIIIUSrIOFSiBbQWFtsOGQ6VcvYY+P2rNSstsl6w6WhO1uTpLz9X5RgkMDpUyApCYiur4ytuMmay51X92tlmmbc97GwphDTNCmvtdpXtx88BID0H34GrO9Z7ERfu9257nth7PHZ9O6fTDhk8vn7RRRsqSUtw8XRE3M4/bwOtOtkPa60OOT8skIIIYQQoiVJuBSiBTTWFhsKmc4el9axkW1F1MQl0rGB02ZitcW6FA3fqy8DEDj7vHqOMxOqbmLHEtdcxn8N7ZbYUOS/tW0y2N6zI96Nm1A3rE8Ml5EpwHUDYpceSZx9SSf6DkjBX61jmtC5u8+5PzVTweVSKCsJEdZlzaUQQgghWp6ESyFagF2NrDuIxTBM9LDpDPOBaFipL0g2VLnUDZ0ui9bhWr2K0PCD0Q8Y4NwfNy1W2mKbLGFabJ3Kpc3+vpmmycbheQB4vv8WBQUT09mGRmugcmkbMSrD+bhzt2i4NNDJbudG12HOrJLdeEVCCCGEEHuGhEshWkDYjO5z6a/W+W1pFYZhxgzziQYYo8602Fj1tbNa+1zqDProBwBq/nh+vY+JrVxKW+zO21Hl0haOtCYbGGw4yAqX7u++RlGUuEDaUFusrWdeMpnZ1jGxlcuwGWbgsDQ8HoWlCyuYP7t8N16VEEIIIcTuk3ApRAuwK5fV/hAvPr6J15/fyuzvyqLbkHiifzTtIFpf5RISw07ICJFUVkWPb37FSEun9sRT4u6XKuXuSfz61d9ebK97NU2TzYN6YrjdeL7/FtW0gqS9ZYnbCZf1t7aqqsKpZ7XnqAnZdIkNl0aI5BSNg0ZmoKgmH7y5nZVLq/fAKxRCCCGE2DUSLoXYC9at8rNlU8D5vLSsll9+LGfGf7ZQvN0KId9+XkJleWTKa+yaS0NHVdQGq4t1w2VQDzL4wx9wBUMEpp4FKSlx98duh+FULiVw7rT6BvrU3Y4E4oc2hZO81Bx4IGpxMW3XbsEgOi1WUxqvXAJ065nEmGPaoKqJ7dI57TwcclQ6pgFvv7KV2loZ7iOEEEKIliHhUohmFgoZvPbPLbz+whbMSBvsj98Us3VzLTX+MP0GpzD04HQCfoOvPi4G6oRLU6+3JdZWN1yqoTBD35+FqSjUTLuk0Wtz1lxKW+xO29m2WLtyaYdG/+hRAHSZu6LBttjSQAlLi5bUG1brChvRSmePPj569UsmWGtSWhxq4isSQgghhNgzJFwKUUdQD1Id2nPtheWlYcIhk8pynaLtId55dQs1NTqdung548JczrygI0dPzAZg5TLreV11tiKpb3CPrW7Vse+3C0gtrmDL6IMwevSs/zGKIpNid4OiKDtcK+kM9Il8nWsOHw1A51+Wxd0fO9Dnk3Uz+bVgLqtKV+7wGuyJw9bHOmlZEFJqqCgNN/IoIYQQQojmI+FSiDq+2fQlH655b49tTF9WEq0kzZ1VxsrllSSnaAwekY7Lbd2eluEiKUUF0wojq9RZrChZjmma6Kbe4HpLqFNJM00OfOdbAFb/4cQGH6NgDZUxMaVquQsyPBlkerOAxsKlvebSur928BCMtHQ6LFyFFgw5a2lVVGd7EjtwFvi3xZ0rpIcory2rc/5oiDRMk43euaxO+5yS0prdf4FCCCGEELtAwqUQdfhDfoJ6MO4f77ujPKaSNHdWOaZi0K2nD5dLwSQaTDLbWEkzpPgpU7ewtmyNs1XJzrbFdli2ng4rNlLYowMlhxzY4GPs7TBM05T1lrtgQs8TObb78UDD4TJUp3Kpuj2EjjgSV22QzgtWO2syVUVBVVR0M1qhLqstjTvX7G0/8cGa9/CH/M5t8eHSAJ8fQ9EpKvEjhBBCCNESJFwKUYc9xXNXK5fbt9Xy5r+2OBXL2MqlaYKJTseuvoTnsMOloYTRNNXZUgSiQ1/qExsu7arl/ElH4FLdDT7G3g5D7BqX6kJTrWpyQ+8T3dluxrpfURSC448FoOfPy5zvrapYlUvTNMnwWntaltWpUpYGSjBNM65dO3aPVN3U8SZbH1eUy5pLIYQQQrQMCZdC1GGHgV0Nl5+9V8TyRdX89E0ZAGUlkfbHSGdrh25uklOsT/TYcJkVWXunhNA00I1wzLq8HbfFpm8rpu+3C6lJT2b5uOGNPsapXCKVy92144E+9tAkleDR4wHoOXspYd263w6Xse830zTjqpR2qLRbba2Pw3g0T+R4A3ey9fiKMllzKYQQQoiWIeFSiDqccEnj4bKkKMhr/8zn529LCQatY7durmXNCisULF1QiWGYTuWy38BU679DkhOeC6KVS10Jo2kKuqk7ex9qjQz0scPl8P9+jWoYzD/1CMI+D+4dVC7BCjGy5nLX1Q2FsUKR8Oi0xaJi5LanOK8HmVuK8a5d55zDbouNbXUtqil0zhPUgwAEDeu/hmlgmIbzPdZNHY/Puo7y8uCefplCCCGEEDtFwqUQddhhwdxB5fLnb8tYtczPpzOKmP5UPqZp8sOXJQC43ApVFTob1wUoKwmhqDDx9HacdGY7Bo2Ihks9ZjuJzDZ25TIaLu2w0fiaS42k0koGzvyZkM/D/FOPAKJTSEXzargtVo+73w7xW0YNA6DNtz9at6M4vyAIxVQmi2uKAPCHo62wduXSfl/YlUvDNDBVA49HobI8jGFIy7MQQggh9j4Jl0LUYa9FbKwt1jRNZ9uQzDYu8jcE2Lw+wLKFVSQlq4w7wdpaZNHcCiordNIzXKSkahx4aAYoMe2P9Qz0MQihagqGaThtsztac3ngu9/hDoZYdMJhBDJSAHA18hj7NUhb7O5prHIZNsJx+1naAXLLKGvQUs73PwNWu6w9DdiudgKU1lq/qIhdZxnU48OlprhQFZWQEcI0TZKSNcK6gb86+ksLIYQQQoi9RcKlEHXszJrLooIQZcVhOnbxMnh4OgCfzijEMKDfoFQGHZSOqsLCuZVgRoPj/7P33nF21XX+//OUW+dOb+khPSEQSgIIAgEUUMCGCihYsOyqK7r+Vl33q7sra1t72XV1baiIi1gQ6Yj03gkJKZCQnkymz9x+T/n9ce7nlFumZYbcST7PxyOPmbnnc8753HPPuTmv83oXqFDls0hjwLl0xpljyLmMpLIcf+ODmLrGM5e8zn19JLdT5FwCMix2kqjUi9T5rL2wWICBlUtIN9bR8vQLhNJZNywWgkV6csVQWL+4LBTDYkWxIF3V0BTNDZuNxVXADlQolkgkEolEInm1kOJSIinBqxZbPbRQuJZLjq5j8XInzHXPzhwAy46toy6hsWpNA6bpbEOEvEJ5lU9BNKoRi6tuWKy/7+FIfS6X/uluoqkMG1+/huyMdvf1EQv6yGqxk4JfUFb6jApWoSwsFj3E9pNXoBoG85/ajKqoKL6v4qjuVBIuuOIy6S4TItIfLu1/OBCNa9hYsqiPRCKRSCSSQ4IUlxJJCWMJi92ywRGXS1fWMXt+lEjUuZT0kMLCpY7YXHt+i1sh1u9c+gVl6T6aWkJuQR/wCrhUDYvNZFj+f7diKwpPvOt1gSI+I4XF+vtcSiYHv9AUrrHhE5diuYLCttesBGDh4y+iogbWjWpRFEUhZzoPKyr1tjQsr0WNX9TGYiooSOdSIpFIJBLJIUGKS4nEh1/sVasWm89Z7HolQzyhMXNOBE1TWLjMEZSLlsUJh53Lqrk1xEmvbQKgY2bYXd9fxKdcXOpYioGqF8Vl0anS1MqXauyXPyfWO8CWtcfTP68zEAo7YlisIluRTAb+Y+c/3nUhJ+/VsA0v/Lg4VlVUdqxZhqWqLHj8RVS7VJiGCKtht7hPwLksC4vVg8K0TsXGZmhA9rqUSCQSiUTy6iPFpUTiI9hrsLK43L0ji2XBUYtiqKojGI47qR4UOPHUhsDY897Sxns/NpsVqxLuayM5l0uOriMctWhodIRKvuheVXQhUyni//UdbEXhkfe9AYCQ6onYkarFKsiw2MnGL/LiuvOwoWAZWLaFoihu+KqqqGQb6ug+bhmJ3iHq178YaDWjqRphLVzMuTUDOZeG2ztTFHrSAvuNRDTAIp2aWI9WiUQikUgkkoNBikuJxIdf7AmH0bJsXnkpTaHYy3LH1gwA8xbG3LHLj0nwhW8uYtnKBH40zQmTFSIUqhf0ATjxNY287f2txOucUEcRGqlWyJ+M/eKnqD097HrDmfQdNQNwCrwIRqsWK/YvC/pMnEqhsADxonNpFivG+h1Osc6OM1cD0PLX+4LbUTTCWgRwnMq04YXFimqx4gGFv9IsQCjkONK5rKwWK5FIJBKJ5NVHikuJxEelsNj77+zjVz/cw+MPDACwY5sjLucvigXW1fWxXU7WCM4lOKGUAhEaWSoUleQw8R9+D1tV2fz37/bm4M+5HKWgDyDDYicRtSjyNEVz+0+Kgj5+8Sh+37622O/yr/cEPgNN1QkXP8fh/DCGZbhhtm61WDfnUnX3C6AXw6lzWelcSiQSiUQiefWR4lIi8SHEnmna7N2V4eVNKR682+k3uGdXDsOw2b09SySq0jkrPNKmqlIaFlsanurvdSicy9JKpLGf/hi1r4/cOy8jPX+u+7q/oM9oYbHgFC+SzuXEqVQtNqyF3c/BsArY2IFxSvH3gc5mDiyeTfSVHTRt3+su11XddS4Hsv0ANEWaAO9hg3jw4W9jAqCHFWzFIivFpUQikUgkkkPA6HFzEsk0pzfTS0+mm2Uty6uOMU2bfM7CClls2ZDkpY1p1iX30Fjwbty79+XYuyuLUbBZsCQWCHUdD/6wWHAEpl88CncKfDmXPhdS6e8j9j//ha1ppP7pn1GVfe6y8VSLlUwuuqpRF6qjMdLoCnvDMssEvDj2hmXw0umr6Hh5D3PufZz17zzJ2Y6io2nO5z2QGwCcMNuQGnILPNlVci5DIaegTy5TWVwmC0kMs0BTtHkS37lEIpFIJBKJg3QuJYc9zx54isf3PUoyP1xxeXLY4Edf38H3v7SdLS8Os3lDGkWB+YsjHLU4xvEnN5Bo0OjtKbBts5P/VhoSOx7MklBYy7awbIubXv4Tj+592HWnwMux84c+xr/3bdTBAbJXvB/rqAWuEwbB3pajVYt1f5dCc8KUhru+edHbOGfeua7IrxwW6xxv0zZ5+YxVAMy69zF3uSjoAzCUHwAgpsfQVd19MGFannPpLwakaqBqdlXn8v5d93LH9ttkMSeJRCKRSCRTgnQuJYc9WcNx//I+R1CQz1lc+6M99BxwRNwffr0PErD82AQXndXB4uY5APz6f3azbUuGx57Yx874MzTNef2E5+PPuQRHZOQKWQZzgwzmBgOiMG8J59J5Td2xndjP/xc7XkfqM//ivOYTigHncgxhsYAMi500FEKac/xDvj6XpXmtQmialknPgpnk5s+jeePL1Hf1MdzZgq7o7mcnnMuYHieshckYGaeKbPEcUkucSwWFUESp6lxmjQx5M49pm2Mq+CSRSCQSiUQyHqRzKZkSskb2UE/BRQg0wyqvoLl5fYquvXnmL4rRPiOMZVtEIgrzFsUCxXbaZzg5cHuTe0hH95Gp93LkNvVt5IXu57Ftm6HcIMP5oRHnUyksttpyt89l0bms+9qXUPJ50h//JHZHB1DeI9H5ObJwkIJycigVdgKtKNwqOpfFr13TNkFRGDr/XAAWP/QCEMy5TBccpzymx9w2M2KbYv9qST5uJKJgFGxMs9ydFOtVKiQlkUgkEolEcrBIcSmZdHYO7eCGzf/HjqHth3oqgCfQzBJRB7B/jyM8jz+5nrdc1km8XmHFqgS6prhFUwA6Zjo39jYmza0h8nbGXfbEvsd49sAz3LXjDm7aeiN3bb/DXWZYBnuTewL7FK6TEIAWVqDIT6W5a6qO/vyzRP/0e8yOTtIf+bg7RvVdxsK5LC0ANBIyLHZyUCo4yOJBQbCgT/B4J88/H4DFD60DnM9aOKCCmB533dCCmXfPzdKcS4BQ1Nl+toJ7KcWlRCKRSCSSqUSKS8mkM1zMbRzKDR7imTiIHEZ/iw9B115HXHbOijDnqCgf/ed5zF3g5FMGncuiuFQsWttDpH2N7d1tpfZj2zapQsp1nJ7vfpa7d9zFM11PueNEWKwQILZdXVwKNFTqrv5XANKf/X+Q8PppCnGhKIpb+Gc05xJkzuVkUM251IviUDwcqBQWK8iduJpsWwtz1m0l1j+MpmhE1EhgTCwUI1TMw8xbBSzLdLdVur1wcdVKvS5tHDdTikuJRCKRSCRTwWEtLrdt28Zll13GRRddxMUXX8xTTz01+kqSg0a4Kv7CNIeKgllwi5eUhqMC7N+bQ1E98eh3KwPistNb3tIeDjS2F0JuecvRdNbNAGAg57SQ2Jd0Krmu73nBHS/mIcSlaZlugZZqNN5xJ+GHHsBYtpzsu98TWCbEhYrqFvcZNSxW5lxOOv7jKPIZRbXfSq1IBKqmceDctaiWzdIHnkdXNTcsVhDX44SLYbGGVfByLlW1zKUORar3unSdS6S4lEgkEolEMvkc1uIyEonw1a9+lVtuuYVvfvObfP7znz/UUzoyKIq5QgUx92qTK+ZbgiPishmTvh5H9KaSBskhk7aOMKGQcynYPkHp/z0W12hpD6GHLZpaQ64z6YyziWgRTp55CnMSTs/JvqzTG7Mt1lY2J1EtVjhRFlZZkR8/eiZH+398CYDkV74BelA4CrHiVA4VzmUwrLIUKSgnB4XKzqUIYc0XH7D4j7da8rWrKioHLnAKRC275xk0RSfsC4uNaBFURXU/07yZ93IuqeBchkcPi7WlcymRSCQSiWQKOKzF5ezZs1m4cCEACxcuZHh4WJbgfxUQN7BGiXNpWAY7h3a8qiF5BdOrEGvYBn+8dj8//M8d9BzIs3+Ps2zGbM8l8s+tdJ7v/tAsLrykHV1TKFgFCsU2ITa2e4PfEm0BoL8oLv0OYrKQBByRC54AMa2Rw2JP+e3d6Hv3knvTWymceVbZctUnLtWJOJcyLHbSEUKw4IbFBluW+FEVlaETjmW4vYk5L2wj2t3nFu8BiIfiAK7gLFh5rOL3mKZqZQV9QlHn50jOpVmhuJVEIpFIJBLJwVLT4vLJJ5/kIx/5CKeffjrLli3j3nvvLRtz3XXXcc4553DsscdyySWXsG7duorb+tvf/saKFSukY/MqIPK6/GGxuazFxgObuG/XPa9qoZ+8bw7pTI6tm9KYhs1j9w348i29G/mRxGVbZ5jGNu+SSRtO3qV4vwDNRXEpwmL9yw6kuwAwbREW6zmXpeJS9Dls2tPNmt/9DSsaI3n1Vyq+R7WSczlKQZ9An0t5TUyY0j6XAiHucxXCYkvFpaKoqKrO5rNPQLFtWu/4KxFfWGxMd3KAvWqxhut0O85l8PMLVwmL9T9Yk2GxEolEIpFIpoKabnSWTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0t7rg9e/bwzW9+k5/85CcHNR9Vra2bcDGfWpsXio2iOCJKVRUKeYsff3MnffW7WHye47y8WnM27QLi3nvnjhSWVQfAc08OMa9YuGfmnKg3n+Lcxe/l87Tc5VkzQ7PaDNioqoqqKsTDMeLhOEP5QWyswPZ6MgdY3LwYq7iNiB4pLrOxfdsFx60qWHnO+uGN6AWT1Kf/CebNq/g0SFdVFMVxsTRVQ1EgpIVGPMaqqrj7UxSl4tiaPb9qCFWl4nGMKGEUBYzi+aeq3jJdUwOfta5q6JrG5nNOYM0N99J06x1kPvEv6JqGaZnEQ3WoqkJED7nbFOeQrunomhbYXrhYLTafswKfnWlZo5zbry7y/JJMNfIck0wl8vySTCXT+fyqaXG5du1a1q5dW3X5Nddcw6WXXsrb3/52AK6++mruu+8+brzxRj74wQ8CkEwm+djHPsa//uu/Mn/+/AnPRddVWlsTow88BDQ31x3qKQSoz0RJZKJE6zRaWxM8fG8P/b0FDqSyHB0KkWgIlx1L27a59Y/76JgR4eTTWydtLv1KiETCiRPcu8HpvdnWEabnQJ5tW9IoCqw8toX6RifkcEiNk+hzxtc3RMvmmRiKkCg4y8MJaG1NkEhESYRj7tj57bPYPbQbrc6gvj5KIueMz2hDtLYmiMV11EiclqYEXUaUpuYYmQIk+qPuftoTTcy640kWPbqBodltNPzb56mLRqlEi11PYihKQyTO/BkzqO+JMbdjxojna0NPjLTibK8hFhtxbK2dX7VEY08dGdWpjtzcVBc4jk0NCbd4U1PCW9ZjJ0gM+j7rtgaGtQQvrl7qfNZPP0M82UtrYyPpQpqZba20tiboUJpJDEWpqw9hRyIkjChtrfXkQvUkMt72Io2Ow6kqemA+BbPgXgtNTXFaE7XxfSbPL8lUI88xyVQizy/JVDIdz6+aFpcjkc/n2bBhAx/96Efd11RV5bTTTuO5554DwDRNPvnJT3LJJZdw+umnH9T+DMNiaCgz+sBXEVVVaG6uo78/hWXVTi5p/0CSZDKLbgzT0zPM3bfuB8DGYu+eFL3Nw/SGkpimzc2/66K1I8wxJ9Rz+437qW/UWLQiMsoexk5Xbz/Dw1lyWYuXtwzQqMzjkitncvPvumhuDXHiqY3kjRy9vU74Yu/gMMmkI0L7I0l648ngextMusv3dvfQYs90/g6H6O11xur5GMlklq37djGQSrnj85keenuTDA474bTD4SzJZJae3iGyZsYdB2BlM5z2td8CcN9V7+C1KQNSwbkIBgeddbVClHxS4YI5byOiRdz5VGJ4OEsy5ewvYmYrjq3V86uWGBrOuMdxMJQOHMdc2iRjOMuGbe8Yi89L0N+XZmgoSzKVY+NZx3PKdXeTuuZacm+YRzKXJZ+C3t4kyeE8yWSW7r4BcmaOZDLL4ECGoWQ2sD29mAvc1xf8XMU6AD19w+i5Q/sfljy/JFONPMckU4k8vyRTSa2eXw0NMUKhkVOvpq247O/vxzRN2tqC1ThbW1vZsWMHAA888ACPPfYYPT093HDDDQBce+21NDQ0TGiftfTh+rEsu6bmZlo2tg15I8/Lm1Ic2OcUNbGxGOw3KJgFLMvmsfv7eeaxIUJhhcYm51QcHjRJJQ1i8ZFP3LGSM3I898Qgu7bnaMrHWT43QsfMMB/8x7nuGP+xM01TFLvFNK2y41owDXd5Mp/CtCznb9vbTkiNYNuQM/Lecpy/DdPEME1CWgjFVrFtMCyTgm+/AKt+dD2NXX1sXns8O087nlNH+nxtBdt2CvNYlk24uP8Ri1fZblFfLGvkc7vWzq9aQikeewBsJXCcNEV3l4nPRowLfDS24m5n81kncsp1dxO+8Y/ob/wstg0RNYpl2WhKyD2vClbxPLQV9zwS6G61WDMwH8N3jhmmUTOfqTy/JFONPMckU4k8vyRTyXQ8v6atuKyGbdtugZKzzz6bDRs2HOIZHT5YtoVpOcJoJESbg4JVYMuLTsuOlSck2LvJZnDA6dE30F/gntt6nXF5m+efGnLX796fZ97C2KTMOVvIs293HkWB+maF085qHnG85btLr1TB1d8yJF1IuQLOX3FVFGyxbKusKFDGyGDaJlEl6o4zbTNQvXPGi9tZ8NubyCZi3POJt6OpIwttUcSntGroSMg+l1NAyXH0t4MZqaCPqnj9SbsXzaKwZCmhdc/RtqubnjaIFavFit6Zhq+gj6ZoZdvTi8Z/rqQVyUjFqiQSiUQikUgmg5quFjsSzc3NaJpGT09P4PW+vr4yN1MyOdy7825u2vqnUdu5iAqphmWwd5cThnfS6U3YWAz1G5i2xVMPD1LI28TrHEH00kavb+SB/fnyjU6Q3XuGMQyb9hlhLrqslWNOrB9x/Gg34KbvtbSRdt9roI+hInpm2u5yUf0zmXfy80JqyDfO63O5pO4oLvrun1Bsm/s/+lbSLQ2ueKyGv1rsWAlUi5WtSCaM/5iXHsdQoNdo9ePtr/KLopB9x6UAHH/POmYlZtEadXKQ9eJDBtM2vD6X/nXFfovFj7Nl1WKluJRIJBKJRDK1TFtxGQ6HWblyJY888oj7mmVZPProoxx//PGHbmKHMQO5AdKF9Ig9GcHX59I02bM7TSSqMm9BlEgchodM8oU8G3fu4KX6OznmjOKNtk+vdk+iuNy50xFz7Z1ht7jKiHNnFHFpjcG5LF5WFp5zGQ85+W19xf6XMT3mczht95ie8JvbaHx5B+nTT2f9G08BRu9ZOSFxKQXlpFMuLr3PrZpzKUS+eE1RFPLvvAyAGTffxevnnut+/kJEmrblOuxqBecyXAyL7TmQ59of7WHHVidXXDqXEolEIpFIppqaDotNpVLs3LnT/Xv37t1s3LiRtrY22tvbufLKK/nsZz/LypUrWbVqFb/61a/IZrO87W1vO4SzPnwR4my0G1OxPDlkkjcKzD/KaaXQ0qbRtR96e3Js6x6goKWYvTILdzinYSSqkstaHNifO6h5bt2c5pnHBkkOmWxNO+G27TPCGGNoHD+6c1nsL6io5MxcRedS/G77wmLjeox+oC/rhALHQ3VuGKtpm5i2Sesr+5j9o19gx2L0fv0bkH+yuK+xOZfaRJ1LGRY7YYJCMbjMHxZbKWwavAcR4jVd0bHmzCX/2jMIP/wgoUcfpvDaMwDQVC8s1r8tVQ1+7qJF5kCvwUCvQUOzzvxFseC5LftcSiQSiUQimQJqWlyuX7+e9773ve7fX/7ylwH4+Mc/zlVXXcUFF1xAX18fP/jBD+ju7mbFihX87Gc/C/S4lEwe4ubUZuSwWDFuoL+AhcGsecX2B2067IftryRJZ0zqOzSidQptHSF6DhRYfmwdLzw9fFDOpXBrBAN1GWL1KokGDdMeg3PpuwG3K9yAi/BVXdUxLMN3LPziQfFty1nuOZdFcanHg7mZuRwXfPVa1EKB5Oe/CAsWw+Yn3X2NhDIB5zKwvnQxJ4XS4xjWwu7v1ZzLUtdZ5Nfm3nkZ4YcfJHLD/3nisviQwTkHFfc1tSQARdeLi4un5kCfUz3Wf93a0rmUSCQSiUQyBdS0uDzllFPYvHnziGOuuOIKrrjiildpRkc2hj0251LcxA70FdAVg9nzHCtlxpwQrIeNLwxhK1Eamx2BNndBjJ4DBeYcFWXPzhw9XXnSKZN4nYZt2zxy7wAzZodZtGz01gmD/c6N9LJj6phzVJStDxSYuyCKgjKmsNjR8tJMXyGVvJ2vGBar+EVjcRsx3SlQNJgbBDyxKcYt+Z9f0fHyHpInryHz9x9D8wnb0RxJIS6UcUW5S0E5GfiPeakDrCmVw2KVCmGx4jXxICH3preQ+Nw/Ebn5JpJf+xbE4+4ywzICorT0oYLiE5YAg33iuvVetEbJm5ZIJBKJRCKZCNM251Ly6mLZliukRivo4zqXvQaWUnCdy9ZOnVBYIVcwsDFpaAph2gZnnNvMKWc2sWpNAx0zHLdH5Int2p7lr3/p4dY/dI9pnumks++2zjBnvL6FCy5r5uhjGlAVdWw5l6OJS8sM3NBXLOhDJXEZD2wzHvKcy/qnnmXxL39PLh5h97e/AZoWqBDrFymVaIg0ENNjdMQ7R31/AlktdvIpdy6rhMVS7lwKV1JUhLXrG8i98ULU5DCRO251xyqKUqwWa7nruesWxWfpeTvY77QdkTmXEolEIpFIphopLiVjwi/MRs/XcnryDA0ahOtst4clqk3nrDC2YmIpBo3NOqZl0tIW5o0XtxOJqCw7xnH0/vSb/WzdnGbDs04T+L7uAunU6DmTYoyoQmthENbD6Ko+aiEiKBWXjnA0LZNtg1vJm3lM23Rv8v3jK+XU2b5AxHixnYQgrtehKgrhVJaV//JlFMvink+8A3PuPHcbYh+jtSKJaBHeuewyVrYdM+r7EwSrxUomykjVYqu1IqlUWVh1P2vvQULukncBEL3h/7xtKrqbo6soCoqi0BhtIqpHmVE3AwiGv+ohBdO0SQ6boxarkkgkEolEIjlYpLiUjAm/uBwtX8uyLTJpp2F7YxsBITZjdhQbC0sxaWgsF3zHndTAuW9uo5C3+f0v97H+mWF32e7t2VHn6ReXpuXchIfVMJqiTbha7O7kLh7a/QCb+zdh2ZYj/PCK9kBlwWDZdplzKYiH4iiKytn//Sdie/az65xTefG8kwJtJUrdrMlE5llOPqUOcKAViVKekwve5yDcTH9+bX7tOVjtHYTuuwd1397iuiqmZWLZlnt+JEIJLln2LhY3LQXAtuHdH57FuW9uY+nRzsOawb5C4Lody4MWiUQikUgkkvEixaVkTFi+m9GxhMUmh5zxja1K4PX2zjBaxKKhRSEUVjEq3OS+9pxmXrO2iWzGIpU0EabPru2ZUefpisuESt5yCgOFtQi6qgfCVEeae+nvedPZTs7IYtpmoHF9JefSLzxLcy7BEQhRLUr7zXdwzB2Pk21r4cl/+TtQlEB+petqjeJcTgTZ53JyGLnPpS/n0h8KWyEsNh6qQ1d1GsON3gZ0nexll6NYFtH/+43zUtGBFw85Ks3FwmLpyjpee04zTS3OHAb6jcC57ReafT15LEvmYEokEolEIjl4pLiUjIlAWOyoAs0JwwNItPjFpYmuK5x9QTNnnOfcRJtV3MRzLmylpd1xflaf6owdk3OZ9JzLvOm0NAlroUAxlErkzBzJQjJQ6ERUixXvt2AVsG07EKZqjehcenmquqq71UNjegx968vM/9cvYSsKz371n8k0Os6mf9tizvoorUgmgsy5nHxKj2MwLLZKK5Li72EtzDuWXsopM08NbCN7+XsAiP72WrAs95zIm/kyMev+7TuHG1ucOQz0FSo+ONnw3DA/+PIOnn/SixCQSCQSiUQimShSXErGhN9hHC3n0sYmOeyIuPpmf4VKZ71InY0edX6vFp4XDqu860OzWHt+C+e9pY1QWGHPziyWZdOd7uaJfY9XFLn+sNi86VSODalhtyhONXH5h82/409bfo9hFcrmK35mDUfcBpxLhHPp4V9m4zmbwr1sMMM0fPC9aKk0j77vfLpPXoVZ3IdaISxWmwJx6Uc6lxNnJAfYHxZbra+oX2iGtXCZQDUXLiZ/2uloO3cQevD+4PlR4mi7/VV9OZdNzc55P9hnVBSXzz3h9IHdt9t7cJM1smSM0aMEJBKJRCKRSEqR4lIyKr3dea754U669jpOYKWo2KEBgxuv209fj+OQpIrOZV1TMCxW/BQiz7Sq5361d4Y5+42thMMqs+dHyedsnntiiM39G9nU9yLdmW52b89y+5+62bYljWXZAXEphJ+maujFG/FKvS4t23JFbs7MBl531hHLnPfvv8G3RmhFYvtyLlVFJaI5VXNf873foG/cQPK1p/LYFec7+7e8FieC0iqgk4l0KyeHgKAcybkMtCzxh9KO/hWcvdzp9Ru97lcVzw93HyWh2gBNwrnsL3EuschmTLZuTgPO9Sv4/Zbr+f3m60edl0QikUgkEkkpUlweZhiGzR03dvOHX+/jntt6JyWX6vEHBujan2b9c8mylgaCh/7Wx/NPDvPwPX3Ytk1yyEBRIJood0sMy3AFm1/sjZQTecIpDQD85foDPPZQj7OuZXDHjd08/sAAv/6fPdx1Uw/plJOjGYmqbl6ZiloWFpvMD7v7GswNuPsRbqd/vmI7IsxWUzRXFIw1LFZVVKJ6lOV/fYqFN96F2dHJru99B1tTi++7XFwKEavKsNiapVKurcCfc1mpVQ1QljdZidxFb8FqbCJy2y3UDaWqruvm+uIPiy3mXPYZZcWqtryYQjzbGRzwF+xy1vdfFxKJRCKRSCRjQYrLac6zT/Tz8+/vYnjQYCDbz7W3PMSj9/ez/pkkD9zVx/aXJxbeNtBf4Eff2MFzTwzxwjPDWJikkyZbN6V5/KE+UknvZtQ0bbdlyOb1KbI5g1zOpi6hYSm+cb4QWFEkxyje3Vq2xZ9f/iMP7L6v4nyOW9PA+/5hNrG4yobnh+jvyTM0mGf3jiyxuHMav/JSmnTKIh7XUFUlIPy8sFiT7nQ3f3rpDzy4+34A+rK97n4KxSJAYk7+n9miq6mpmheCOEJBH8u2fGGzCh0v7eG8b1+PraoM//jn0NHpjhPHpmLO5VQ4lwEhJMXlRBkpLFbXKrciqfZ7VWIxcu+4BCWfZ9HtD1df1z0nPXEZjWpE4yqD/QWyWf+1aLHx+aT7t9+5FPRkxtZbViKRSCQSiUQgxeU0p3t/jh1bMzzw1z7uffFJbn/uEQrRfk481XH6xlIEpxJb1qfo2pvnz7/tIpOyqC8W5tm0PsX9d/byyL0D7thXtqRJFQvpJIdMtr/suCuJeo1CBSfQjxBVWSNLMp9kX3Jv1TktWBLnvLe0Yysm654eZvMmpwjJqjUNRGMq3V15TMMmntAC+1MUz7k0bYP96X0A7BjaDkBfts/dhxC9/vVLq8ZqvlYklZ1L4SB5Tqza28sp/9+XCOUK7P/sP1E4/Ux3nL9voV8wiMqxU5FzKd3KyWGkfNWwGvbGVRWXY/scMpe/D4CFN/3NjUsvdbRVn5ueLqTdhyZzj4pSyNv89md73FzoXM7gpY1pwhGVRINGatjEMIJRDt1pKS4lEolEIpGMDykupzmvPaeNSETlmUeHuOP2Xdg2vOa8GCecXBSXOyYmLvfvyQX+PvXsBmbMDhMOK9iKzZa9O3hlcBsALxR7Uc6e7+QUblrvOCKJej1QIKdSCxMRDiocw4JVIF1IV53X8SfX0zpDY2jQ5P67nPDY5cfW0doeckP84nVBcamius3pDcugrqTnZL9PXBb88y2GF1olVWNVRQv07nSoHharmzYNH3ov0b37Sb71reif+oI7L+e4ODmXpSJSuJiqOvmX6UjhnJJxUKU4DwQdZ6XC+VFpnWqYxxxL4fgTaNy2i1kbtgPlDx38BX0e2nM/t2+7FcMyeNvlM1ixqo6hwQIvbXQe/OzYmsIo2KxYVUdLm+OwDg8Gi/50S+dSIpFIJBLJOJHicppTl9B5zVlNmKZNMptm3oIoS48LM2NOBFVznMvR+lJWQojLBUtizJwTYe6iECe9tonXXdSGjcW6wSd5eM+D2LbNlhdTaJrCWy7rACCTcfItO2eHKYzSwkTkQPpzHYfyg1XnpSgKJ62tJxZ3msnH6lTmLYzR2uG5RPG6YD6kqihuOw/DMgKOj23bY3YuBU7OZVFcUh4W6xeXlm1x1g//RPiRhygcexyZ7/3YFSSaW2SoWt/CYkEfZfLDYqlSvVQyPkYS5qqiugLwoMJii2SveD8Ax97ySHHdyq1IbNsmW+zJalgG8TqNN1/WCapF9748tm2zdYsjMo9dXU9Do3N+DQ0YgQJbA7n+QOSBRCKRSCQSyWhIcXkYcNrZzcxbGGXuMpVVa+opWDlCIZWZsyOkUyb9veO7QTRNm659eWJxlfd+bDZ//+l5oBb7NeoKiQaN4WSOgmEyPFwgk7Jo6wzRMTPCmtMa6ZgV4szzWmhpCwecy0ptR4S49Oc6Duaqi0uAaAxOPauJtk6d085qRtMU2jrC2NiYFDznEq9Sqz8s1l/YpCfTExCUfrxqsSXiUi13LoOtJoqOJHD0Xx7guBsfwGprY+hXv4V4vGycZduYdgXncgqrxfqRzuXEqeZICsRnV80pHku1WEHu4ndQqIuz/J5niA6mKjyMKA/HFu57LK7ROStELmfTcyDPnt0Z6hIaC5bEaWjyiUvfNWrbNr3ZnjHPTyKRSCQSiUSKy8OAWFzjin/o5OgT4iiK4haemXOU01dxvHmXvQec3MUZsyOuaPJXdW1u0512I0mTrn3Otts6Hefwoks6OO2cJpqanL9FmGm1KrDiZtYv8IS4TBfSvNS/pcx5NW2TuoTOO67s5IxzWwBo7QjRFX2BzQ23osWdbbnVYhXVbQthWKb7OsDO4e1Vj0NptViB41wGxwRERvGymvHwM5z13esxdY2hn1+LNWduYDtinHAuS/sWdsQ7iWgRGiNNVec4UVR56U8Ko5m+Yc25DvxCUFEU97oaj3NpJ+rZ++bz0AsGx972WFnOpd+5FNeV/9qZszACwLOPD2HZFitPSKBpCg1NzrUxVBIWC9Cf7R/z/CQSiUQikUjkHeZhQsbw8hSzhhCXTg7krnGKSxESO2N2xH3N8IW3NrWqoFgkhwy6u5xqtO2dXliqCPEMqaFRxaV43Z/rOJQfAGB9zws8uvdh9ib3BNYRc7Fsi73JPTy4+36a2jVy2hC2YqHEssXlXhsQfysSy3fDLYr6NIQbAvsoDW0NLtN8N/Ll70tRFNpf3s3az38f1bS453PvpXDqa8vGCTFZcAsFBcXCspblXLr83dSF6srWnUxkWOzEGS13VTzUqNY2ZDziEmDPuy4G4LibHkIrOfX8OZduSLfPpZ8z37mec1mbSFTh9Nc7D2b8zqV/PIBRoS+sRCKRSCQSSTWkuDxMyBhey5Fc0bmcdZTO1sTfeHjjunH1u6wsLr1wueY2HRub5LDJgQPO2PYZnri0sZ18M1Vzc7iqiUsv57LcucyaznsaLMnB9HIhTV7q38Irg9tQ6oawcPYVjZeGrKpu3qJhBZvJJ/NO8aHOuhmBfQgxWklcaorqC4v1BKwgtHcfb/uXnxBKZ3n4Axfy0vmnVnzvoaLwEE7zVPSzrIZfT8qw2ImjjJK7Kj7j0mMszpfxisvc4kXsOHEpjV19zHr42YrbDJyzvgcpze0akagzj9ec1ejmWnrisoBVvF5tbAb6CmTzlUPGJRKJRCKRSCohxeVhQjrgXDqCz46lqJuZZn9mDzu2jr3f5b7d5eLS8uViNbbq2BSdywPBsFhwQvEUFHRVx7RNbNuuKi4BTMsM5FymCikMy3AdvaH8UGC8cFOcFh5FZ0U3iSWcG+lITMzZXy1Wc9ctnYuu6rRG2wKvCRexsnNZ3opEoAwO0Paed1PfM8jmN53JY1ecW1VAqIpKWAv7Wpy8iuJSCspJYTTnMlR8SFFafGei4lJTNJ572xkALLrh1opzsfFyLcVPZ4DNSa9t4uTTG5k5z+vBKcTl4IB3bWx/KcODd/fzm5/s5KG7+yZUFEwikUgkEsmRhxSXhwmZQrlzadomc+dHsRWL558cqrZqgHzOYucrWaIxlbbOMC/1b+HJ/Y8HwuOaWzVsxSY5ZNJ9II+iQGu7d7Nq2RaKorhuocgprIZpm261WOH+DOUHyRdDZZM+cSnae4jfhTNqWAZ1Tc66kbg3FkrDYsvn0hprQ9eCRXNGci51VfecS1/RINJpGi+/hNDGF9m+ZjkPfPoKKOldWUpE8wR8ac7lVDKa4yYZGwFxWeEwirDY0oViPWWc4lJXdbaeupKhzmY6H30G7eWXfBv1ci69fGFPFFq2RXNriM5ZkUCRqkS9hqrCYJ/h5CRjs+Nl5wFTLm9w9y29PHb/wLjmKZFIJBKJ5MhkXHc2+XyeH/3oR2zatGmq5iOZIP6cy5zp3BhalllsSWLz4vNJ8vnqAk+wdXMa07BZvCKOpils7N3Axt4XSRVS7phI3KkaOzxkMDyUp6UthK57p5KFVQyL9ec5lleKFRiW4TqXjeFGAIbzw65zOZwfdsf6WyU4zqVV3EaBo0+IcfRxCVpnOCJNuDaqLyzWrDCXtlhbWbsPv7i0S/LQHEGgBOajFAo0Xnk5oSceo3DCav5y9ZUUiodkJHEZ1WPu79o4hcbBIPtcTg4BkV7RuSzmXJZ81YpzYrzHXlM1bE3j+Tc7ObzRa37qbZPysFj/gxGrRGi666kKM+ZESCVNHn+on/6eAplBjaYWnfPe3oweUrjzph52bR979INEIpFIJJIjk3HdzYbDYX784x8zNDQ2F0zy6uHPuTQsA8Ny2gqEQiqdc8Lkczb7i+GuI7F5vSMilx2TALxqrmmfuLSwmHNUFMtyBJw/JBa8sFgR5lkpFNWPaRtuaGh9sbBO3syTLwrOVCHlru93UE3bcudnWCaJJoVFy+Kum+ivFquW9JT00xptK2v3oRXFpoUVELTOMl9BH2wU02LN579F+N6/YSxfweD1f6QQj7pzG0lARLWo+/urmnMpBeWkEDiOFazLqO58vqJqrMALix2nuCyeIy9ccCpmOET0+t9CMlncfXlBH39YrL9YT+k18ObLOtFDCvf/tZt1Tw2j2TrzFsZo6dA489wWsGHXK+MrDCaRSCQSieTIY9xWyapVq9iwYcNUzEVyEAjnUtzMZs2sK27qG52Pub9v5H6XlmWz5cUUqgqLlzuxpWIbfufStAxWHp+gpVXHxqRjZrBSLIhQVM0dP9acy0TYEbU5M+c2cLdsyxW3wT58lutCFqyCWxzILnFtVEWp6OpAsbJrvMN1WQVi7rZtYRHMN9MUr8+lbRqc+53fMfuvD2HOP4rBG/6M3dyCqqieqzmic+mJy1c153IUx00yNkY7jke3HsMZc9Yyo25mxfXGm3MpHPZMU4L9bzgHdXiI6O9+G9i/35n3i0t/ZePSKsczZkW46J0d2NgMD5lE9Aiz50YxLYOmVmef6WT16AOJRCKRSCQSgHF3Z//MZz7Dpz/9aUKhEGvXrqW1tbUsZysWi1VZWzJVCOeyOdLMPmMfWcMTl/GESg7o7xlZXO7dmSOdNFmwJEYsLoRhebVX0zZRVYU1pzfSvrCRk05vcpfZvuqpmuLlOY6EaVtuzmUiVA9A1sgE2pMM54dJhOsxLb9zafpyLgvu+zWtoLhUUNBUX0/JooNzfMcJdMQ7qQvVue1bwLnxH6kVietcWhbLvvgNZt/2GNn2FlK/vwlrxkz3/QuxO2JYbMC5PDQp0DLncuKMFl4c1aMsaFxY9rp42DHefqP+vNzd73kHs/9yJ/H//SHZ93/QPX/8bYP8dXiCIbLlD3uOP7mB2NzZ/HldAwvbZpEJdVGwDOJ1zj7TKSkuJRKJRCKRjMy4xeUll1wCwJe//GW+8pWvVByzcePGg5uVZNxkjAwhNUQiXA+pfeSMLFZRZMXqoR/o7x1ZXIqcqgVL4+5rlW5Cxc1rJKJx6jlNNMT1svGBIjq2UfEmWlVULNvCsI0y59LvlIIjLmcSdC5Ny3T/zppeyK94TYhIRVHd/ds+sdgYaXIdJd13066ijtznUlVRbTjvW9cz+/bHSbY28MTPvsGxRy1wx4w1pzHicy5LQ3OnEulWThITLIw08Wqx3jmSWrmC/OlnEn7oAcJ33EbhDW8AguLSf+5WC5H1E6tTmDknyozGOl4ZdLYlxaVEIpFIJJKxMu672a9+9avS6agxDMvJWWwIN7hOWM4MOpcwurjcs9Nx72bP8wSPWaEQj1ESmurHu4FVXLFkWgZUEE5hLew4rMX566pOVHNcb38RH4DhwlBxW0H3RdxIZ305p6XFTETPTfF+KvWm9IfFOq1GhLgsb6OiWbD66h8w//bHyXa0csO3PkLHUfMCY/zXyMgFfbxjPd7KoQeDDIudHCZaGEmZoLgsfQiS+ejHCT/0APEf/RfpN74RKAkdp3IRn9I84tIx4WIVY9M2iCekuJRIJBKJRDI2xi0uL7744qmYh+QgEPmWsVDcdcL8Tl60TkFRxyIunXVmzfX3tyx3OCzfjWnp8oCgU7xqseIm2t/XMaJF3PDdglUgokWI6s6+U4WkOyZn5lyxadp+V8YrziPar4jXnZ+eiFQUTyy6hX58bqq/WmxpWKxfQCumxYJ/+SKtN/+N4bZGnvrZt+ivH6KzRFj4RcNIRVv8YbH6oSroIx8WTZhgK5JxiMsJtiLx5+Wqikr+dedhLFlK6InHCD/zDMRGcCtHCYt1XneunZCv0rNwLlMy51IikUgkEskoTNgqefnll/nzn//Mj3/8Y7q7uwHYsWMHyWLlQsmrRzLvHPO6UB3RouOQNTKug2Fj0tQcYnjQ5I4bu/nBV7aTzQZvFNMpk/6eAi3tobJ8y1IMu3LYnf9vBcV1WfzVYkVrBoBIUVjlzRyWbRHWwq5jItqpNEebnfkVHAFtlOZcirBYX86k+759IlLclPvDXP35a3qJc+mKS7yKtFre4MIv/YrWP91EurONG753Fcn5s5z3W6Ir/OJyxGqx+iHKuZSCclKYqAM84bBY33mqKRqoKpmPfByAuh//NxC8RqjSfsQuKVIlEK19dFVHV3UMyyAcVgmFFelcSiQSiUQiGZVx382mUik++clPctFFF/GFL3yB73//+xw4cACA73znO/zwhz+c9ElKRiZZcFy9RCjhCracmXMdRqd5unNT+tgDA/R1F9i7M9iWZO8YQ2IhKDrLxCXlOZeW5Qm0oLh0hGS6GNIaUsOE1WDLhpgerFobyLn0CcWsWS4u/S6quIn3C1K/a1TqCInxIkczlM7ytn/5X5bd/xz5eXN55GdfZ2B2uytgS4VF0LkcqaCPV/zqUOVcyrDYiTPR4zjxnEvvPBVFqrLvvAyrrY3ILX+hYV9vYHy1arHVnUsvT1lTNC+0vk4jk7awrMqidCJYtsVdW+9i68DLk7ZNiUQikUgkh5Zxi8v//M//5Nlnn+WXv/wlzzzzjFsdFGDt2rU8+OCDkzpByegMF53L+nA9Ud0RK/5qsTY2za1FUVf8uHq68oFt7NnliM3Z87yQ2KricgTnEjcUVfHCYv3Opa/fX8TnsgKEtRCKogR6AgqxbFUQl4avmmzOX9DHCvb4UxW/c+mF0vrDYhXF68sZcC5ti0jfAJd86r+Z/8wWDiyazY4//J7M3NmB918aEhkMl6zBnEspLicFZcIFfYqtSMb5Fex/AOGeL9EomSs/jGJZrP7j/YHx1UJhRxOXKqrrXIIjLrEhk67eUmi8DOeH2D6wnW0DWydtmxKJRCKRSA4t476bveuuu/j0pz/Na17zGjQtmCM2a9Ys9uzZM2mTk4yNZDE/MRGqJ6w5ItLfmsOyLZrbQoF1ukvE5c6tjsCbNQbn0gg4l8ExwfYfxbBYyx8W690cR3QhLrPFZY6oFKITIKYLcems73dNRe4mEHjIIdxTvwtTqfprqWsk5qvi5Whqu3byto99gxlbdrFr1SJ+972rsGfMcMNKrTE4lyOJN1VRXTHtz/uUTA8OpXPpF6aZKz+MHY1yzK2PEhlOu68Hr4vKIbJ+3BBwVfOqPU9RxVj3mq7yPSORSCQSiWT6MW5xmcvlaGpqqrgslUqVCU7J1JPMO5VU68IJVEXkOZpu/pQTFuuIS2GudO/3hNmm9Um2bk5T36gxc44n7EorwQqCrQ6CYXJ+t1CIJdMyfIVCPFdS5FeKgkRCZIV94jKsRVAUpWJYrL8Pph/Lqh4Wa9kWthu6GxQD4mZaLbYumbFxB0vfcTlNuw/w0unH8sdvfpR8Iub1uWRs4nI0ASGK+ryaOZdBx+1V2+1hx0QL+ojPerzH3u+w+3OG7bY2spdeTjib54QbveiRSgV93HD1Cte3uOY1RQsU5HIrxk5iUR+vqrMUlxKJRCKRHC6M+2722GOP5aabbqq47M477+SEE0446ElJxkcyn0RVVOr0uoDbYPvE5ay5UVQNTjilAVXznMt0yuSWG5yc2Tdd0kko5J0S1dsVjF4tVvG1/3DCYp2bXH/IqxBVGTfn0hHAEd+YkBZCRXXn4he2fufST2nOpRAAIoesmnMpxLCiqMy+6wEu+cf/ItzdwwtvPp2bv3glZtiZn6pWEJdlYbHjEJfFUGZ/m4mpRobFTg4Tbcskzo+JhEKL60orqS6c/vgnsTSVE/94H6GMEyZeKRTWX9yqFHHtqIoS6FM7Nc6lXXUeEolEIpFIpifjvrP55Cc/yV133cX73/9+fv/736MoCvfffz+f+cxnuOOOO7jqqqumYp6SKhiWQcbIUBeqQ1GUgFvoF2KNLRqf+rcFXPCODlrbw6SGTdIpk9v/1E1yyOT4kxtYurIOcG72cmbOdT7L9unPuaRUXDo3jIqvz6VheYJOCEhVUd3fM27OpQiL9UJzw2oYTdVcB2YsLofYV6lDqSrqKGGxOtg2x19zE8d/5ktohsGO//dP3P2pSwiFvcI7mqK5jpPYx4hhsaMIEBEGfMj6XErrcsKMNbe2bL0J5lwCgdxgP9b8o9jy+pOIDaVZdfMjwPidS//DIfGww7Smptel51xOXpEgiUQikUgkh5Zx39msWbOGX/7yl+Tzeb70pS9h2zb/9V//xa5du7jmmmtYtWrVVMxTUoXhnFMptj5cD1DiFgabptc36ui6QnunI+Ie/GsfLzw9TEOTzvlvbXPHPrD7Pm586Q8UrKAzKG5KR6wW6xNuQuj6i+gIQamrujtX4UCKkNlQwLkMoyqVnctqVKoWK3464rIogEtuziN5iwu+ci0n/uQPGPEYf/7yh9n7vndjYQeq3FYMi1VGCIsd5TKLCefyVcy5lG7l5DBRXT7RnEvwrsNKYvbpy88HYM0N96DljUDOpT0GcenmXAbCYk3idc6+piIsVuZcSiQSiURy+DChu9nVq1fz29/+lmw2y+DgIA0NDcRisdFXlEw6w3nRhqTefU1XdUzLDFZ19TmMbUVx+eh9AwC8+dIOt7els80h8maetOEVBhHbNSwjcDNYeoMaqNDqC9EtrRbr3LwGw/pEMaKoL+cyohbFZYWcy2pYI4jLglWoWC1W3f4Kb/zwv9OyZTvJmW1s+J9v8UrTIO3FYyic1oJVQFVUV0xWy7n0i83RBMSipiXkzByddTNGfW+ThQyLnRz8x248LuTBiEs351IpD6MeWDCbLWesYumD61h5x+PYH3udu8wLix3JufSu35AoDmYbxOuc63YynUvh+lcLv5dIJBKJRDL9GPedzaOPPkom44QxRqNROjs7pbA8hAzlvGI+gtLcQgjeSLbP8JzBs9/YwuIVdYFtipu9ghksmCPcu2BBn+CNoe1z8sTNr+Er6KMrOnPq5zC3YX6gITxAXch5D/6CPiEtHMgRqxaqG5h/SbidUuJcenllzuvhu26n+dy1tGzZzs7jF3PnL75CetmSwHv19+0MOpdFZ6jUufQLtlHsrfZ4O2vnnh2okjvVBMJipbicOBO0LoUQnZC4dM/D8nVVReXxy88D4KTr/4ZteNeweMDkOZflos7yOZf+EHuRc5maioI+jH5NSyQSiUQimR6M27n8wAc+gKZprFixgjVr1rB69WpWr15Nc3PzVMxPMgoiLDYR8sSlrurkCrmSliHeDdxRi2M0Nuscu7qeM89rKdumEF95X+9I8MJWR+qX5zqX+HK2fCG6qqJyzrxzAejNeA3fFUWhLdYOBAv6hNUScTmWsNjSarHFG3mxHbEN1bKJf+0/qPvutwDY/P63c+sVr2VmY4t70y96aaqKxsKmRWSNLIqijK9a7ATy6l5NZM7lxJlotdhFzUswbIP2WMe491kt51LM58Cyubxy0nIWPLmJllvvgPcuA/zOpRr424//OhVh6wWrMKU5l9WqUkskEolEIpl+jFtcPvLIIzz11FM8/fTTPPHEE/z617/GsiwWLlzI6tWrWbNmDW9+85unYq6SCtRH6gmpIdrj3k2qcCb8OZN+l6K+QedT/76g6jbFTV+uKC7DWpi8mXfD5CqNLf1bURRfWKy/Qqt3A+53XpojLe68w26BG8WpFitEoW2OKefSKxRSHhYLzs1yonuAtn99J5GHHsCqb2D4v37MpuOasAdeCrQu8TuXqztPcvcxelisv1ps7Yk36VZODhMNL+6Md9IZ75zQPluirQzk+onrdWXLxHn5+OXnsuDJTcz+0S9IXf5x0DQs2ypry1OKd80Encu6KRSXMixWIpFIJJLDh3GLy+bmZs4991zOPddxn9LpNI899hjXXHMNN9xwA7///e+luHwVOabjGGao8/EXXBQ5VTmf8ziecv/CuRR9JGfWzaI328PMupl0pfYHxo7UikT39cnzQlG9PDF/nz6/OBbi0l9ZFijmkY4959KrFivEpbO/+fc/zTnfuJbIUBrj6GMY+sWvMRcuRtv3mDN3VNdtNEpCaAVCSLjVYstakdR2NVb/lKTQnDiHol/oyTNPYXXnmsD1IxDn7Z5Vi9h13GLmPv8yxp//SO7tl7jiUjz4qBSO6g8Z91d7jtUXw2KHJzPn0q46D4lEIpFIJNOTCRX0SaVSPPvss66DuW7dOiKRCGeddRarV6+e7DlKRkFRlEBVSHFT6O8DOR5xWepcNkebWTv3bAay/Tx34NmSsXbFdZ2w2KLz4etz6Rdpmq86anu83f09WiIuxU20U3XWdN9jNRezWrXYcDbPud+6nlW3PgpA+u8+SuoLV0M0WpyP53B6gtYIbEMwmnNZ62GxtS5+pwuHqjBSJWEJvs9SUXjk/W/k0k/9F/Fv/Se5t1yMbdtOuKsbZl7eAsTLufQV5LINNE2hqVVnoM8gmzGJxg6+J6t0LiUSiUQiOfwYt7i8+OKL2bx5M62traxZs4Y3vOENfP7zn2fZsmXyJrVGELmOwcI7Y+8lV5pzqSjVi4+Uug5etdiSgj4lLqIzT5+4jHniUvS5FD/9OWIijzSkhsYlLvWnnuCij36Bxh17STXXc+fnruCMK78eWE/MxxGXijt3KCnQA+U5lyO1InkV+1eOGXmtTgq1VhjJP4fdxy+m/9STaH70SSJ/+B32cbbjyY8x59IfFgswe16Ugd4ke3flWLg0ftBzLc3drsnrRCKRSCQSybgY9//mmzdvRtd1jj/+eE444QROPPFEKSxrDLVCi4KxOpe2bbsuaL5YLXakAiKlxTj8YktUjDUswx1XTVzWhxvc36N6lNWdJ3FCx4mBdUzbC4sN+4r+lCKcEBsbPZun/ov/StNF59G4Yy/bTjmaX/38n9n9mmPL1tMC4lIUM8kXl5Uc03E4l7V4bchWJJNDrTnApb0vd1z1YQDqvv11KBRKci4rVYv1icuSh1Sz5zkPe/bsyAbWeal/C3uGd497rnaJuJRIJBKJRDL9Gbdz+dRTT7khsXfddRff/va3CYVCnHjiiaxZs4aTTjqJ448/fgqmKhkrulr+sY41r8mf05i3HOfS7adX4eZ5pGqx4Igyf1sUf28+VVE5c85ZxPTyVjYr247xjRMFfbxqsaJyrfN7yM0PVRTFnUPns5tY+7VfEt/TjdXQyJP/eAUPnrUEFIVwhfcinBrR0xI8ga2UPIcR729s4rL2HJnAfGtAFE1Xak2kl85h8IRjyZ/zesL33M3yOx7jlbe+fkTn0vQX9CleAwUhLucXxeVOT1yalsmjex+mKdLE7Po545qrP5rCtE30iWVpSCQSiUQiqSHG/b95LBbjtNNO47TTTgOgUCjw6KOP8tOf/pRvf/vbKIrCxo0bJ32ikrGjKxXE5RjzmgLispiz6TqXFYzu0gI7dkmYqK7qZIyMO65UaB3VWL1qrSDY51I4l17l2rAWdsVlWA2jDQyS+MyneOuvfg5A7rw3kPzm99he2AjDO533UkHwCVGu+IqZiNDgaiF71cJilRrPuZRMDsGCPjUgLkvmYNs2qc/+P8L33M1rrr2LXRed4xX0GSEsVlO0QM40wMzZERQ1KC6N4jJx/Y2HkVoaSSQSiUQimZ5M6FFxX18fTz31lPtv8+bNWJbFkiVLZEGfGkCr5FyOcvP2Qvfz7E3t5fTZZ7qvCXGpqiPkXNoW3eluTNtgRt3MssI9uqJj27avX+T4hZY/jM+wDBRFcV0VcHIzU4UUmq1w9O2P8Zr/+T2xwRSZhjoe+MQ7OfGq74OioO7aXLZNPyL01SlG5Gw/V0Vcir+FS1o2Z2o8LLbGcgWnK7XmXJaepxYWxolryJ57Po1/vZPltz7E4BXOA53K4tKrFuu1EnIEZDii0jEjTNfePEMDBg1Nelnbn/Hgv3bGUgX6YEgVUjy1/wlWtR9Hc7S8t69EIpFIJJLJYdzi8vzzz2fnzp1omsaKFSs45ZRT+Id/+AdWr15NU1PTFExRMl70CpUkRwuL3T60nf5sH8lCsmyZEEqVRJJlWzy45z7yZp7Lll8eaEUCntAV4aUT6fkonEvRikRX9EB4bVSP0P7ybl7//T8ya/02ANKXv5ffXHIMueZ6Tizu0583WUlcNkea0VWd1liLewwLVURxabXY0vfl/7MWC5XUmiiargSuiRp4iFD2WRYf9gx9+rNE/3onJ/zyZh665DJg7AV9/IWzZs+P0rU3z56dWRqaEq4oHK847N6f5+ln+4kdbRenObXO5d7kHnYMbacx0ijFpUQikUgkU8i4xeWFF17o5lXGYuW5cpJDT6Ww2NHK/Yvwz4KvfYnA7+iVYtsWeTNP3sxj2VZZzqUIrXML41QoNjQaXs6liWmZ6KruCra6nkFe8/1bmP+Xu1Etm56l87nrkxdz1sVfIL35/whVCU+t9F6aoy1ctvxyVEUlVUgB5e1MBKXVYsvnXNthsbXopk5Hak2kl4XFFq/H3LHH8tIZq1jy4Drm33Az6y9YPmKfSycsVlx3PnE5L8ozjw6xZ0eWFasSbri9PUI1atu2uXfX3cysm83ylhUoisLNN3Tx9J4+jmnKkmhUprwdibhOxUMuiUQikUgkU8O4xeUnPvGJqZiHZBJRJ+BcCocub1UQlyNUi3Xagzg3n6ZlluUgijYibojthMJiPSFn2iZRNUo4k+fUX97OSb+7h1A2T6YhzjMfvpiX3nYevYV+p4gQwfYG6ijOpf/1kC/s1nk/I4vL0uU1HxZbY1VOpy01Fl5c2jLHH7b60AcuZNHDL7DwJ9cRPvP/VXQLLdvyKj27YbGe8Cst6uP2qvQ5l5Zlk06ZJOqd9bsz3ewe3s1Dz24h9mSUt7yrk53bstgRm4H+AonG8JgLjk0Uz2Gt3L5IIpFIJBLJ5DChnMtdu3bxs5/9jGeeeYaBgQGamppYvXo1H/zgB5k7d+5kz1EyTio5l+JGsi/bS3e6m6XNXvsY27Zd8Zev5FwWxWUlEWL4KsEatuE6GG7Opetcimqu4xeXmuKFqGp5g2NuuZ81v7qVaE8fRkhj+5WXccvFx1HXNtfZb8G5mbRtO3DDHxR8I8+jtOJuqfs4miAL9rk89KKjlFpz3KYrtSbSKxX0AefhUt9RM9h60Vks+cu9nPx/d2P+++vL1jct073eKoXFtneGCYUV9uzMYVm2W13W7+A/dv8Ad/2lh498eh4zZkfcCs9d+/K0J01u+OU+Z26KxdBAAQhjWlMrLsX8JlJ4SCKRSCQSydgZ953++vXrectb3sJdd93FMcccw1vf+laOOeYY7rrrLt761reyYcOGqZinZBxUbEVSvMl8ev+TPL7vUe7bdY+7TBStgcphseoIzmXet65pGa4DIW66NUXkXBadywmEiGqqhpY3aLvuej54xZc4/dvXEu3pY+PrVnPNrz/Pzs/+I7lEHF3V3RBecUPrn7Om+n4fJTzX3w+wdF3/+3PHjyA+a7IVSQ0IocOBWhPppXMQYbHi4dILH34nZiTMiX+8H33/foBAnrWNXfZgqC/by/MHniVZSKJpCjPnRMjnLHoPFAKOpQht3bYlDTbs2+18N4gxmbTz0yjY7r4G+x2xJ7439u/N8fgDAyOG2U4EUajIkOJSIpFIJJIpZdzO5de//nWOPvpofvrTnwZyLjOZDH/3d3/H17/+dX79619P6iQl40OrFBZbvLkczA8CsGt4Jy/2buDo1pVuPiRUDosN9mxUAjd+fifAcQuDOYqlQrfS3EYkn2f27/7CST/+GQ0HBgDYeeZq9nz873mkPQNARAsX9+Vtu1BBXAZyLscg+HRVryqKR9Nm06kViRSaE6f2WpEEzzUhLsX1n5vRzp73Xsq8n17L3B/8L7u/sYB7dt7NabNOZ3HzEizb8pxL37X7fPdzbOx7kbVzzmb2/Cg7t2XZszPLzJXBdiIaGt37nWsmlSyGy9smNjaZlCdE22eE6U7aDAwUxWVRmP7l+i727swxf1GMGbMjk3ZcPOdShsVKJBKJRDKVjPuu94UXXuBDH/pQWTGfWCzGBz7wAdatWzdpk5NMjIp9Los3VzE97r62u9jzMedzKwsVCl5oIwgl/3jDMn1hsaJC68jhpdVQBgeI/df3aDlpFcv/41s0HBhg/1mncu3/fpoHv/VZUkcvc8e2RFuZnZjNwsZFrmgU/feC7qM/53J0IeDPu6xW0Mf9W6nuZNaC6Cil1hy36UqtHccy59IOiktVUdn94feRaYgz48ZbsTY639cDuX7AEYL+6ySmO9/zc+rnkDfzPLbvEWbP8/IuA86lbZLLWgz2O9deOulVki3kbQwDOmaGecd7Z/DO982gsUUjn7fJZiws22Kgv8DenY7bOTQwuSJQzLPS95tEIpFIJJLJY9zOZSQSYWBgoOKywcFBIpHJe9osmRiVwmLFzZXluxnszzo3lP5QWH+IrMB/s6koCv7Wjn7n0rANr8BN8SZXLwk/Hc0xVHfuIPaT/yF63bWoKSdcr/ecM7ntkpOpO3ktBwa3MUfVA8V5QlqY180/D4CdRcFsFG8ilSp5lmN1LquOL209UhomO859vdrUouCdjtTaYSz9XC1XXDo/FVTshkYeu+I8zv6fPzP/2z+Ef3snWTOLbdvYth04X9+w4AIA6sMNXL/pOnJmzhWXO7ZmWGUpvn1Z9HV53yUpIS4tk3TRtWxuDXHMifUANLVoMAjDQwambbJpnReemxyeXHHp5oXLsFiJRCKRSKaUcYvLs846i29961vMmTOHNWvWuK8/9dRTfPvb3+bss8+e1AlKxk+pWwhezpXIi2qMNDKYGyRdSAdzLiuGxY5eZdXZti/nskpYbMX1LYvQQw8Q+9UvCN/6FxTLwo5EyLznSjIf+Qc2t8GBvQ8zy8wWtxkKOIP+/El/8Z/S/Y0/LNZzLqtVi/WWVxeXteBolVJrjtt0JVAwqgYeIpTOoTQsVlVUNFXl+becwWv+/Bht9z7E7LedSO7U2YE2JIL6cIP7u6ZoZM0sTS06nbPCdO3Ns+GFHDRR3IdJ935PvKWGPecyk3L239jsfR80turwCmxen+IPL+4lPOTNOzk8ua1JTFnQRyKRSCSSV4Vxi8vPfe5zfOxjH+OKK66gtbWV1tZW+vr66O3t5YQTTuCf//mfp2KeknHgD4tVFRXLtspaBrREWxnMDTKQ6w9UiK3UB85/szmSEDGs8mqxfqErWhy4f3d3E73+OqK/+SX6K9sAsFpbSV/5YTJXfhi7vd3ZxsDLgBe+G1JDATe1krg0RwmLVcYQnusXxqUFgMrE5TRzLqmxXMHpSq0J82oFfcRDH1VRURQVM6zz0sevZNX/+xpn/ugm7ly9pmpPV4Gu6tiGjWVbXPCODq75wW7uu7Ob/rY+OmdFMBebHPCLy1S5c9nU4j2waWx2rqm+ngI702maCt73UHJocp1L23UuZc6lRCKRSCRTyZjFZTab5f7772fPnj28613v4oorrmD79u10d3fT3t7Occcdx+mnnz6Vc5WMEX+OpChK4/V5c1oNNEdbeGVwG/3ZfvcGFKo5l2MTSqZt+sLvnJvcmXWzeJannXVRIZ8nfO/fiPz+eiK334JScG5GC6ecSua9V5K76C1Qks8rnFNRmVZX9aCg9OdSqsK5FOLSu9nWxujACkIjhMWWCrKRxGYtistaE0XTlcDDkho4puWtSKzAT1VR3etg9wVnMf83f2TWi1uYd8f9WB99Q3FM5aJbwsk3bIP5C2Mcf3I99z1r0tdrkBw2sS6y6N7nC4sd9kLxMxXEZXO7hqJALKZy5hlN9L0Qpa0zzHNPDLnrThZuzqV0LiUSiUQimVLGJC537drF+9//fvbs2eO+lkgk+O53v8sZZ5wxZZOTTAy/4xZSQ+TNfKCZuqZqNEeaAaeQhyjaASP3uYSRXS7TMgMOCUBbrI22SCvRxx9n+d+epvWhL6AWc3atpiYyl76b7BXvx1y2vOp2xbZE+G5IDbmiUVGUiqGvFcNilfEJPk0ZQVyOGhZb461IZFjspFBrfS5LC2aJSALb99DHdfcV2PjZj/Ka93+KU370B3rf8y/ONkZwLsG5tiJahAvf2UF8SSv/d59GMmkynCzQ3ZUHBSIRlVTSKfBl2ibptBCX3jUVq1O56B0zMS2DlXPqWPb6ufT3FnjuiaFJD4v19+E0LKNiXrpEIpFIJJKDZ0z/w37zm99EVVWuu+46jjnmGHbv3s0Xv/hFvvjFL/K3v/1tqucoGSf+UNSwFiZVSLmOommZhLQQTVFHXPZn+9Hi3viK4lIdm+Nn2AaIsFjDJHT/vYTvvI3Lbvkzkf1dANihELk3XEju7e8kd94by1zKiu/HdS7z7vsT7kppuKroR1mpz+V4C/oEq8WOLCbLxWZt51z6qQFNNG2peeeyQs6lOPdt26LnhJVsOvsElt/7LLn//j68bXEg8sGPcPLFtRUKqcxdGKH+eZ1k0mTPrjSD/QbNbSF0XaF7f558zsawjIphsZZtUd8QIpk03fnV1TvX82QX9BG55uCIYykuJRKJRCKZGsb0P+yzzz7L5z73OVavXg3AokWL+I//+A8uuOACDhw4QEdHx5ROUjI+/DmXIpRNOIqmbRJVotSF6ghrYQZzA9SH693x/tYCMLpjF1jW18/M++9lyV//ypInv4A2PAyArSjsOmEpu994Fkve/3nspuZxvZ/S3pghNeSKytL5lRb0UaoU/nk1C/rUZFhsjYmi6UqtOZej5VwqvrBY0zZRUHjg79/MoofX0/y/P6H+1M+hLp5VcdvCyTd8Qs2yLerrNfYB658dBOqYNTdCatikG6fXpWk5BX10HWJx71rwh+OL751wWCUcUUkOTa5zaeN3LgvA6A+1JBKJRCKRjJ8xicvu7m7mzp0beG3evHnYtk1PT09Ni8tPfOITPProo5x++ul897vfPdTTeVXwizHhNti25T69FzeXTZFmDqS76M32VN/WCK1EwjmDmS+8zLyntzDvmS10vrQbRbQ+iETInfcG8udfQO68N6K3t7JQUbEnILRKhV1I1b2CQVXmZ1RwLqu5mNXQ/Y4to4jLEQr61KJ4q8U5TUt84dm1QOl5Xd7nUnFdf9MyUVSF4c4WnrrsHE799Z2s/d+/8Ny3VlXctnD7/O08LNsk0eC8/tKmJHHqmDM/yu7tTmXnoQGD514cwDBs6hu1wHHyh6ravt8T9Rp9PQUKBYtQaHIezPj3JfMuJRKJRCKZOg772KDLL7+ct771rdx8882HeiqvGiL0zbItz7m0La/VQFE0NUUdcZnMJ0fclvt7134W3P80Dc9tYOaL25m5aSdawQtfy8zooOvkVTx/0nwWv/0TdLQtcJcdzIlWKiB1n3NZ6mqKG2chLpUqBX2qhf75CYbFjlzQZ6S+l6UhtbVAYEo1OL/pgvica0Wsl87Dn2sNXisSKDqXtjP+ictexwl3Ps2y+55l73ObYN65ZdsW14O/4qppmyTqg47mnPlR+nocAXfbH7t5ZqAPJQILlsTL56Z429k5tIOWWCuJBkdcpoZNmlomR1yaAXEpK8ZKJBKJRDJVjPme/0Mf+hCaVl5F8P3vf3/Z648++ujBz2ySOOWUU3j88ccP9TRedUSVWHFDaNqmKy6FABNFfcqwLBq6+mnfupdZO7pp6LoD/dmn0Xbv4nW+Ydn6OFtPXcnOE5eyY/VSZhy7loyZYcfQdpbEE5P2XkqFYEgNuVVhy3IuR+pzOc5QVX0EcTlauHDNh8XKgj6TQs2Jy5JpiNBT4QxqiuZeI5ZtYtlFpz8WYcMnrmT157/J8d/6OcaFHwOtNJ85eG0527Coa3BetxULVYMZcyJs3ZwG4MC+PFbc5IzXtwR6XIIXqgswkBtgXffzHNW4gLr6ZQAkh8xAjubB4M+5NCq0W5JIJBKJRDI5jElcfvzjH5/qeVTkySef5Oc//znr16+nu7ubH//4x5x99tmBMddddx0///nP6e7uZsWKFXzhC19g1arKYV1HEuIGMqSGgRLnUtHAtmlNWcx8cTuNe3po3ttN455emvd007p9H5F0LrA9W1EwVhzN1qWdbF86g71HH0Vh8SKGjZQ7ph1z1F55E6Esr1LV3TBVf0VX//sWoXv+cFZ/i4XSMNdKjNTnshQpLo9MlBoLiy0910RYrFmhoI/T/9YTXVvOPYmZvz2KWRu2MfybX5F93wcC2/IeVAWdS11TiMdV7LTFzNkRQiHVLcwDUN+slAlLZ26ec5kqON8jeTNHQhT1SU6ewyjDYiUSiUQieXWoaXGZTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0tkz4fVa2NG0iBmkpC92703kHsXAGlkIdCASWTYdnmZ7EG+5jPRlq7ttGWUelI/oh379hEQ3+KeN8Q7fk8KypsNx+LsG/lUXQvnEVy6SJWnnU55jHHYtc38MS2W+hOHwCgORRBMT1xaWGhKI57omvqpB0vXdMDjkxEc25ynf1ogf3omtM7z7QNFAU03zx0TXW3o5WsV4mwHqo6XlO1wJw0Tam6XFUn71hMFprvWKiqUnF+4rVam3stoanOcVSVysfwUM1HoCjFz0+xnetB1dzrycLCxnbHZ6ws93ziHVz+0e9Q95WrKbzpzdht7e62QlrIXU+8V7t4zScadOwei7kLYqiq4obKAnTM1lGUYg607xgJV1VRFfJWDkVxXqsv5nCmh83JO6aK9z5NjJr4rCRTj/wOk0wl8vySTCXT+fyq6ZzLtWvXsnbt2qrLr7nmGi699FLe/va3A3D11Vdz3333ceONN/LBD35wUuei6yqtrZMX6nnQZLOwdCX09dFYYfHrKrwGUCd+6eiAmTPZ2Ramf1YzyXkz6J/dwtCcdpIzWohHEqQLaVpjrZx29Pnu+o09cTJqFICmeB0FPe1tOxHCsBQSdpTWlnqaY5NzvGIFlcTeqPt3Z3szlm2R6IrSXJ8IfC79Sj2JwSixaIiEFqW50VuuZPIkupzttDQlRv08k1ojiX5nfFtLPa0Jb7wRSZHo9ubU2lJPqy8U2Iym3eXtrQ3Uhd0jXxNoWYNEongsmhO0Nlc/Fs3NtTX3WiJnhEgkooS1cE18PzRl60hkvPOyviFKa2uCeiNCYihKa3M9Ha2NJPZEqYuHCakhEjjjVc0kvXoJ+694KzN//Sdavv4l+MUv3G21mQ0kUlHq6kPue61PRknko7R3Rul7xeKY45tpbU0wazbAPgDmLYohLh3/MYp3hclmoC4eIaRCIhwlkYjQOrMO6MUytUk7pvF9IQq68z4TDbXxWUlePeR3mGQqkeeXZCqZjudXTYvLkcjn82zYsIGPfvSj7muqqnLaaafx3HPPTfr+DMNiaCgz6dudMLZN3TsuJbp9K3lU0HXsUAj0EHYsxla7h4GIzcyZK9hi7ifWNpujlp3KnZl1tM0/hrWLzgPgsR1/ZffwLurDDQznh5xtp/NopkUylyVm5ent9Qr+JIdzJFNZVEUlaeVIprPusj5lGNu2SSazDPSnsdKTky+VNbIkk95+hgZyhNUwcbuRZjoD8xsacsbauWFShSzDkay7fDCXdrczNJSlN1y9kBHAcDLvjh8YSKPnvPH96XRgTv19KRTfTf1Axlve15ciG/LaLtQCQ7lU4L31WuXHQlUVmpvr6O9PYVm1Nf9aIW8650hYswLn4aFCnP+CAVL09ibpG0iSTGYZGswyoGRIJrPoRoqQqvuuYefnhr9/L523P4h6zTUMvuNdGKecCkByyHmvPf1D9Iac9yq2O39xhFPntDF3oU5vbxLDcnrSqirEG0xnf6oevFaH06BDKp3DtornopmkVXVczgP705N2TAeH0yTzzj66+wbp1Q79ZyWZeuR3mGQqkeeXZCqp1fOroSFGKDRyqti0FZf9/f2YpklbW1vg9dbWVnbs2OH+/Xd/93esW7eOTCbDmWeeyU9+8hOWL18+oX3W0ocLkPrqN4i2JhjuTZbN7bntt7M/tZ/Xzj6dDXseoiPeSWvnMQy/spO2UNgd3xhuYpe9i6gWY8gectcPqWFsGxS0wLYVFOd1RUVBxfbt1jCdm0Lbdv5N1vFS7OB+NHQUVM6ffwEQ3I8YWzALxXUUb7mteNuxlVHnp6JVHS/eo//vqsvHsK9XG//8LMsecX6jLT+Ssa3icayVz7jkvLQsC8uyMUyjeD17161hGmXXFoDZ0EDy379Mw8f/nrpPf4r+vz0Iuu5eD3kj775XsV1NU5i9MMxT+5+kIdzI/IbFxOIqc46KgmZiF5x9+4+RaTl5kLZlu3MwLIv6Ruc/re1bMxiGNSkhQWKeEJy/5MhAfodJphJ5fkmmkul4fk1bcVkN27YDxTV+8pOfHMLZHDoqFfSxSvpcgtOOBCCmB5uKR7RwcWzlqqiqopYtMyzTLRYylj6SY6W03chIxXW0klYk1Qr6jFagB7weoaXbgTH0uWQaFfSpkWI005FaO3al56HIawz2uaxc0EegKiq5d15G/rpfE370YWI/+zGZj3zca0XiW8dfKCdjpNnY+yIAi45ezMf/33z0kMqfX6lcmEfMzY9lm3TOijB3QZRdr2R56uFBTj6jaaxvvyr+eRpW+XuWSCQSiUQyOdTeXe8YaW5uRtM0enp6Aq/39fWVuZlHInXhegASYSe3yF8tVvWJtTmJucytn8fS5mWBG2UhSsv7OxbFI0rZMtM2vJvYSTy1/PvRVX3EG3ox1mu7chCtSDQvrLdU4Ja3uZxe1WL9b0BWi504biuSGhGZ4vr02o2UikuvhY+/PZH4nnDGqKAoJL/+HWxdJ/71r6Lu2+tWTzZ9fSL94jRv5t3fuzPd1CV0IhHV3YddYpH6BZ//NVVVuPAdHSgK/O3WXjLpgxeDqXSBpx4ZZGjQoGDlR19BIpFIJBLJhKjBu96xEQ6HWblyJY888oj7mmVZPProoxx//PGHbmI1wskzTuHiJe8gEXJEpo2/FYn3sYe1MGfPex0zE7PQfW09wloECLp9zt+q+1Oh1Lk0XDdisgWV2J6/PUjlcaUi0FfB1d+KZAxiwH88Sp3YUZ1L3/haFG+1OKfpiNuKpEaOp5iHeBgirsfShy2aqhWdS0fgnTH7LHcb4sGSuXwFmb//B9RUksQXPue2/fG38jB94jJnerme+5J73N9FFEGpU2lXEJdiezNmRzjupAZyWYtNL6TKxo2XbS+l2Lc7x8Z1SXc+EolEIpFIJp+aFpepVIqNGzeyceNGAHbv3s3GjRvp7u4G4Morr+T666/nxhtvZOvWrXzxi18km83ytre97VBOuyZQFZVEuN4VVKZlBvtcVllHEC6GwJWO9YfFBgSUomBYnnM52U6OF+Y7cpGgsBZcrlRxEMcStuvf16hhseVWZsX91gqyz+XkUHvOpXd9gucWCgdTXEcKivudoCka7fF23rH0UtbMOJmFTYvc7aX+6Z8x58wlcvOfabr7HqDUufQEY970ROeeorgcSchVcy4Fx5zguKkb102s+E53V57//up2tmxI0bXfKcZ2YF+eF9cP8L3/eIU//WY/+/fkRtmKRCKRSCSS8VDTOZfr16/nve99r/v3l7/8ZcDpu3nVVVdxwQUX0NfXxw9+8AO6u7tZsWIFP/vZz6akx+V0xc2vwsIqFtCo5v7pqk7OdG62hHNZKi79zqXqC8FTFRH+VnQuJ/m5hedcjiwuoyW5o/55BJzLMczP6VWpYNt2hfDgsedc1orwqEatz6+WURSFiBYhqsVGH/wqUOrwezmX5c5lzsyh2ZrrcsZDcY5uXRncYCJB8pvfpfFd76DjC/9K+Kf/SCHuCcZqzmVvpoeskQ1sqlRMOn9rVccctSRONKaydVOabNYkGh09T9rPM48O0nOgwO1/7mIgb6DYCrZi89hDvSxIGQz0DfPypjSf/fLCcW1XIpFIJBJJdWpaXJ5yyils3rx5xDFXXHEFV1xxxas0o+mHoigoihLIuazm2vnFV7hY0EdVxyAuVQ2FKXYuVQ3M0Z3LiBZBVVRfjllQ5FUTi9UIqSHyZr5cXJa6fVVyLmvRtYTandd05I0LLkQbJVz71cINiy1ey3ZZzmUwJ9OwjFGvqfzrziP79kuI/vEGzvzJX3jm/33MXWYFxGXQBezJdLsFwyphMbK41HWFZcfU8fyTw7y0Ic2xq+tHnKcf27bZtN4Jp+3tzkEjzJpZz96uISzF4LWva2bdU0MMD5qYpo2myQcsEolEIpFMBvIO8whARQ2ExfpzCf34b5DjehyASDH/SlApLFZXdXRVDxQImbqcy9Hdi6ju9ZssnYdwFMc6P3ETPm7nssbFpR8ZFntwNEQaqQvVRpNjT1wK59IRa5UK+ojXS4tVVSL55a9jtrRy3M2P0P7MBvd1vxj0F/QByFv5QAhtec6lXSZsS93No493QmNvv7GblzaOPfeyp6tAf08BVQNbcba5ZEkjRx+XYMmxEV53YSuxuPO+87ny8FyJRCKRSCQTo/bvfCUHjaqo2NijCj+/kJqZmMUZc9ayoiRMzm01guo6oLqiu2F4hWLe1WQLFjG30cJigUCIYul7FTfSYxV9iXA9ES1SNfe02t/ecapN4eYXxzIs9vDBH00AnnNZeu2Pty2P3dpK6sv/CcDp//kLyGYD24Vyd9QwjUDbj0rVYktD9C3bCoxbtDxG4ymb6c7s57c/3UvX3rHlSG5e7+RpnnpWM9E6BVWBWbPrWLKsnuXHR1FVhUjUmacUlxKJRCKRTB5SXB4BiDBR4SJUc/90n/BSFZUFjQsDLiDghn+qiuq6gJqqu06JYRlu+OnkvoexFfQBiIf84rKyCByruDxn3uu5aNFbRizYUwmv32dtCrdaFb2Sg0OcbqIidGmfS62Coz7WayH39kvYfspKmnZ1Ef/ONwCnUFgp4jvDsA0Mu3JBHzGfSvnffveyO9NF66puoqc+g2VZ3Hdn35jmuuVFx+U85oQE7/q7Tk49u4lYNISu6m6RoXDEed85KS4lEolEIpk0pLg8AhDisjQ0rpRqIaCBbfnCSoVwE2Gx4DgZk13Mxz+n8TqXpfmlnugb2xwjWqRiyONIrUf8y2tVxMlqsYcn4rMU16O45isV9BFU+z4o37jC/Z+5gnw0TPy/v4e2/oWKFV/F9WdYhUBYLJTngIqiWX4quaELl8Yxmvex8fnkmCq89h4ooGkKM2ZHaJ8RoqUtjKooaKrmistIUVzms/ZIm5JIJBKJRDIOpLg8AhDiUoSoVW9Foo243BmjuD/dUFVFC/TOnAq3zmtFMnrhlEDOJVXCYg/y1B9NkCmKgqqoY8pnOxQEPqMadVcl40cpCXstdS69gj7jdy4BcjM7eejDb0IxDOr/8R+gUCgbExPOpWWUtSKpNJ/S7xu/YBXOp6YptK522pvcd2fviHM0TZtU0qS+0RGupu97z9+iRTqXEolEIpFMPlJcHgGIGypT3KhVEY/C7RhJEFWuFqsHigHVh8de1XGsaK5zObq4jBWLEUGFnMsxuLNjoVRAV9remhknc2LH6oPaj0QyHqpVizVLohbGm3Mp0FWd595yOrmTTiG07jlO/M3tZWNEO6CCVR4WK+YjRGZpv1wIiku/i9k8L4fWNMymdSn27a7uXiaHnH3WN+oM5gYwfFWyxUMly7ZkzqVEIpFIJFOAFJdHAOLmTVRzrCYeXXE5ws3mSNViBU2R6u0HJsq4wmJHqhZbwbmZCGMJJV3esoKFTYsPaj9TRaBFiwyLPWxQfDnRiqKM4Fz6xeXYrwVN0bE1le7vfhc7HueUX9/BjJf2BsaI68+0jLKczNL5KCgVnEtvHbF+SA2haQqLX5sG4L47qruXw4POOqnEDm56+UbWdT9XnLsXgmtjE444v+eyUlxKJBKJRDJZSHF5BOBWb7QKxb9HDosdMeeySrVY/w3iSL3tJsp4CvrE9OrVYpVxtiKpPp9R+l5OI6bz3CVB/OJRQfHlOAZD4idS0Ae8sPTc/LkM/9t/oJkWb/jatWh5z6EUOZcFq1AeFluh72Zp/nMgLLa4/ryG+QA0LBigoUln8/oUjz84UHGOw0XnsivqtEzZPbzL3Zd4r5Zt0a/uZiC0UzqXEolEIpFMIlJcHgEIYVawRg6L9SpJjuBcKuXOZWlYbPMUOJfCbR1bWOzktSIZK7VaFbYaUlAensR1p/hUXagOBcVX0Ke6cznmgj54vXALlkHyPe9jx+qltL6yl9Ouuc0dI3IuzQrVYoVzaY+Qc+kPhRXrt8XaiepR+vI9XPSuZvSQwu1/7GbjumTZHIcHi99zEedhmvjOUBXVfbhk2RZbjWfYF3uWXM5ix9B2dgxtH/NxGCs5M8e+5N7RB0okEolEcpggxeURgLihLFjFsNgqwmpMYbEVci51VUOfcufS2ddYnMuoT1yWiqg5iTm0xtqIH2TT++nuXMo+l4cnrbFWLl76To5pW1UxLNZ1Ln2h8eMpOiWuP8M2MBWbOz/zLvJ1MU763T3MWv8K4F1/hmWUVYsV+MVuec6lV71VrB9SdWYn5mDbNtGZg7z50g4A1j87XLbtoUGDvJokGivPt/Y7l4puYSkm6Uye+3fdy/277h3zcRgrzx14lr/uuJPezMhFiCQSiUQiOVyQ4vIIwBOXzpP8ajeTXshcdbHhb0Wi+UJV/YI0EUoc/KRLaIo0oyoqjZHGUcdGtIj7e2nI3bHtx3HhwjcdfEGfEjE5nQXadBPGkpFJhBJutWKBaZuB/rP+asnjuRbclkOWgWVbDHe28MSn3oti27zhP3+Dnsm5OZeFMVaLHamgj1hfU3VmJmYBsC+1j/mLHQE70FterXZ40CCpdxONaYFtqH5xiYWmO3NJZtNjfv/jJWM4286Z2Snbh0QikUgktYQUl0cAwqksmCPnXGpjcC791WLn1M9lafMyFjQuJGNkJnPKZRzTdiyXLb+c+nDDuNabKuFUKiano0AT72Ea62LJKPjDYv2CUlN9v48nLFYRYbEFN49z+5vOZutrj6V5Tw9n/uTmQJ/LajmX/mqxpZEUViAs1vldV3Tqig+t8maO+gYdTVPo7yt3RoeHTFL6ASIlzqWqKO6DM9u2EBH2Q9ly93OyEHnu/lBfiUQikUgOZ6S4PAIocy6r5lyWtykoxRMkKjE9xmtmnUZ9uIFkYepu0ARjybcsRYQCTzaHg3M5HQWxZOwEC/pYgYgF/3dAqbs/EiGfcykEk6Zq3Pfpy8k01HHCnx+k4YGHAMcxzJdcf55zaRf3rQRCdCEoxERYrK7qgTYiqqrQ1KKTTpplfSqHBvOk9ANlYbFOzqXiHY+iczmUm7rvLpHnXlo1VyKRSCSSwxUpLo8AhJNQmndVil68yRuxz6UIiy05dU7oWIOmaJw973UHPd/JIKyFAaewyVRwOOQsihttKTIPT1RFDYSh+j/nibYi0TUn57JQDIsV+8m2NXPXpy8FoPGqj9IwkHbEpen0oxTXo2Vb3L3jTjb1veiuK75LxMOjamGxwm0V4rOp1ZmLCI1NDhv0HMjTlTwAeoF5TXMCIbelOZea7hyP4fzUO5eWdC4lEolEcoQgxeURQDwUD/xdTTwKx3Lkgj6iWmxQkLTH27n86Pcyt37ewUx10njr4rfzhgUX0hhpmvJ9TVdx5rrQ03T+kpEpLegTbD9S2cUcDVHQp2AVMF1xqaEpGi+fcRzr33QGak835/7nbzDMArlib12RB92dPsDe5F62DrxcXNfLuRRj/OLStEWFay/HWwi15hZnLv19joD73S/28d9f3UGPsZdoTGNuw7xAtIO/7YlhmYRCznmfzHsVZ/37ngwKblisbHcikUgkkiMDKS6PAER7AkG1Ah7+kv3VUH2tSGqZqB6lI94xpfvwen5OT3HmOpfT1HmVjIwIi7Vtuyws9mD7XBbMvBcW63MEH/vEZRhLlnLU4xtY9cd73UI2Ec0p8lP6YMtfGEyMCbQi8YXFinFCqDW1OnMRzuWuV5x9JfX9RGMqcxJzXMfU2Zc3T9M20HXn96ThOZe2r1LtZCDy3GXOpUQikUiOFGpbIUgmBb9zOVLeYmu0jeZoC7MTc0YcUxeqoyPeOalznM5MV3E2XectGRvi8xXCJlDQZ8LOpSPWCpZRsVelUpdg+Mc/xwzpnPm/NxHf9JIjDEV/WcrzIMNFx1KEsNuBsFghYHXXdRTuYnMxLLa/13BFYUFJk9WG0PJ1JML1gdZF/pxLwzLQil+FaWPqnEtD5lxKJBKJ5AhDissjAL+4HMmliIfivGnRW5jXML/qmKZoM29feglz6udO6hynI9PduRRM9/lLKuMXUhB0Df3VYkcq4FWKFxabdwWTpmiu8NNUHePY43jmY5ehF0ze+B+/JF6w3TNMhOl6+1Y5ofNEzpp7Dq2xViAYQirCYgPOZXG/nrgskM1Y2Njsiz0HwIpZi4rz9ZxLLeBcOq1ZdB2yvjYhpfOrRrKQJFfMJ62GZVuusJc5lxKJRCI5UpDi8gjAHxY7HpdCMjKHS1jpdJ+/pDJCSBlFgaZQWVCOKyxWE85lwXNEizmX4IXNbnnXhWxfs5y2Hfs5/X/+5K5f6gyqikpdqI55DfPLnEmoHBYrhFpTMedyoK9AatikN7KFyOxezjpzDu+58LUAhLWgc+mKSyG4dQWjYJf13xwJwzL405bf8/vN1484TuRbggyLlUgkEsmRgxSXRwBRPereVI1UCVYyPqa7KJOO5eGN+HyFkCqtnFrp99EQ4tGwCr5qsYq7bRF2r+sRbv+Xy0k3JVjxp3uYe+8TQGVxWTqPUnEpRKH47hJCLRZXiURV+nsLDA8b9IRfIhrVufy1F9BYHyvOxycuVU9cinDbkK5i2yCiVsciLjNGekxjpbiUSCQSyZGIFJdHCCI0VjqXk890FWmyWuzhTWnOZbWCPv4Q2dEQYaZ5s+A6iJqiue1MhJjTVZ10SwO3f+5yAF7zpR/RuKcHi+ri0h+yKjBts6zQmBB1+1P7SLTYFPI2W/fsx1TzdMQ7aIo2u+uHfWGxKl61WPeYFCvGGgWLTMbkzpsO0N/ricJKiAq4o2GYPnFpyWqxEolEIjkykOLyCEGExo4nv0oyMtNdlLnzn+YOrKQyIgxWuHRqlT6XyriqxYaK2/RakWiq5gpXsVz83H7K0Wy58p2Ek2nedPU1kM2UzLF8TlZJtVitJITXtE260938dcedpFpeAmDjzh0AzErMCs7XFxarqZpbUEiECuvFXpeGYbNtc5qnHh7kup/sJZP25mDZFt3pbrdoUM7wcjRHolB0jEvfk0QikUgkhzNSXB4hSOdy8lGmSVuWakz3sF7JyIjP16rkXKoTC4sVLmLBFxarKKorZDVFD/wE2HbVhzhwwgo6X9rNvK99N7C9oHMp5mu5Py3bClS41hQNy7bc0NRovfPeXt63G4C5TbMD2w9Ui0V1n6OIUOGQ61zCgX15bMWipyvPX67vctfb3LeJ21+5hd3JXQBue5XREMWInN+luJRIJBLJkcH0vCuWjJu4XhSXMudy0jhcnMvp/j4klSmtFqtMQisSRVEIa+FAQR9N8ZxLveQnQDgS59Gv/hPppgQzf/t7lt3zjLvMLy5LC/qIqrB+cakqaqAKa12DioXJvuR+NFtnZlN7YL6BarGq5su59Ar6AAwPFkgOmzS3aURjKls2pLEsx6lMFZxWJZmC47pmxuhc5n3hs1JcSiQSieRIQYrLI4R4sYecNk1dtlpkujuXAikuD0/E+VmxFUmFXMexoqt6ubhUKofFAoS1CLn2Vm77/HuwFYXzvnU9zbsOlO3bbTVS3K4IXfW7oCIsVrixdfUqGa0PW7GIG+0k6r39Ovv2/lYU1Q2LFSG9esj5e+9up63I4qPraO0IY5o2w0PO/t1elcV9jtW5NHzOZcEwRhgpkUgkEsnhw/S+K5aMGeFcypzLyWO6i7LpLoolIyPOT8ttGVJZUI43VD6khrBtm0LRmfO3+PAK+vjFpeMe7liznB0fvZJwJsdFX7wGPZevUi3WcQxNtw2Jvz+n5uy7uCxer2AqzjzCVh11CU+Ils5DpbwVici57NrrbGPBkgjNrc42+nudMaLqq3BUR+tvKSgUC/pkMyZ/uHYvt/3xwJjWk0gkEolkOiPvLo8Q6sMNAES0yCGeyeGDW211mucuTvf5Syqjus6l5zAKgkVyxisuHbGYLYaHaorqbsNtReILZY1oEfcc2/bR97HjxKV0bNvL677z+8DjGa8abNG59PW4LJ23ELbxehVbKeZ+olBXH3wv4UBYrOq5uaKgj8/o1HWFmfOjNLc6L/b3FALzEPPKGMGiRNUQ673yUoZMtsCWF1NjWk8ikUgkkumMFJdHCK2xVk6fcybHdZxwqKdy2DDdcxan+/wlI+P2uSyKIiXgXFZuSzIWRK/L4cIwAFE95mtFUizo48+51CLuXGxV4bbPv4fhtkZW3vkErdf8rmwewiE03LBbf1iss9285YhLTbOJJZxt65pGOBw8l/3OpaZoXiuSouAOh733vvq0BlTV9sRlrxCXzk8vLNZzLkUF2UoUrDyGYbNjWwYbi4Feg1xWtiSRSCQSyeGNFJdHEAsbF5EIJQ71NA4bprs4k47l4U2pS6f6C/pUyb8cC0KwDWT7AYjpMRY3LWFp8zJmJ+YAwZzLiBb2Va61SLc08JerP4AR0pjxr19Hf+wRZ35uWKwo6FPuXAoBKkJObWzqG531YnG97Jz251yqgZxLZ9uz50dZeXyCc9/USseMCBZWmbgslORcZn3OpZirH8uyGewvYFgGu7ZnKORtrKK7emDf2EJqJRKJRCKZrkhxKZFMkOkeFuuK42k6f8nIlOYXamqVarHjrCAtciiFgxcP1dEUbeY1s05zl5UW9PHyPx2Rtf/oo7jnH9+JYhjUf+A9qPv2evMtCYutFM4rnEvLtqhvctaLx4P5ls48vLBYxZcbKkKFQyGVhUvjRGPFfdg2zW1VnEvLy7m0sentzvPI/b2Ypude2rbNH369n+9evZ3HH+lh0zonFHbmXGebXfu8CrISiUQikRyOlP9vLJFIxsTh4lxO1/lLRiNYLdbvXFZqATJWSkNNK+Vx+0NZ/XmPfqdv/YWnckq3QuMv/4+GD7yHvut/UxxTUi22gssqci4t2ybROJK4DM61tBVJKZZt0dCoo2qeuNzfleLJp/qYcV6OjX1D3HrzXizLJp+z6RvqZq/5EqeePId5DfN5+tEhXnzOaV3y7JP9GGGbhctizG4P07dROpcSiUQiOfyRzqVEMkGmu3M5t34esxKzAjfgksMHt8+lyF1Ug3mW4rwdb7XYsO98iYViFceICq/hYkisl08ZzFHs/c9/o3DSyYSefpKOL15dHFMSFusTquI95H0VXEd0LkvDYkuKBjVHmwGI6lHACbNVVYWmlhCpYZN8zuKVbUkG+gy2bBzmyccOkM1YFPI28ToNQ8nxwEtPsK77eTJpkzv/3I2qwpnntWCpBvUNGsuPSVDfGKxKW410IU1XumvEMRKJRCKR1DJSXEokE8RrSj89xeXxHSfy+vnnT1txLBkZN8/RKi/oA56oHK+41H2CLa7XVRwjHliIMFmBRTBHUY1EikhcwgAAwMpJREFUGf7FbzA7Omm87rcce8sjXkGf4rz9OZfimssXQ3It22L2URHqGzUWLamcTy7moCmaT3A7wnVu/TzetfwK5jUc5W4P8PIu+woMJ52quHv3pHll+xCKAm+4uJ2z39hCKG7S05Unlzd4eVOaQt5m1ZoGzrmglQsuaeH017WgaQrRegVNVziwLzdiEaAn9j/Gna/cRqpQ+5Vldw/v4rZtt4y5eq5EIpFIjgykuJRIDhIZViqpRUqFlFrydS9cvPFWi/WHucb0ys5luNh+RIhPt1psSQEcVVGxZ85k6OfXYodCnPODP9C8blNg3ppa7lyK3pM2FnUJlbPOb2XR0sriUghdx7ksVtC1vN6fIS3kHptScdnbkyOZdObRtS/LcCZNU4uOrimoqsJRS8NYNuzbk+GlYquRZcc47zlWD3pIfDdYtHeGyaQthofMivMEx7n0/6xldg3vpCfTTU+m+1BPRSKRSCQ1hBSXEskEETfl0vmT1CJqSduN0sI9Yvl4ncuQT+zFQ/GKY8JamHPmvp5TZ50GEKgWW2kOximvof9LX0EvmJz9mW+j7tpZOSzW7XPphcWKbVYTySd2rmHNjJOLocDBokGKK7CL4hfHVWwpFvXZtzdFOmUWl1mYSp7Wdk9cL1ju5JvufCXLyxvTqBosXOocE1EIKKyFMW2TWfOcsZvWJSvOE5z2Jf6ftUy+mPcqzi+JRCKRSECKS4nkoJHOpaQWEYLOrOJcNoQbSYQT43444i/oUy0sFmB2/RwaI03OXKgsLv3XTuZ9H+C5t5xOrH+IxisuxR4eKu6vvCdnwaokLiu/jwWNCzm6dWVg/dIiR6Xid+YcRwhufHEQEcVqKxaGkqW13Xv/sxaECIUV9uzMkE6ZzF8UIxL15qgoCiE1hGVbrD61AYBH7x/AsiqHxooKvEK41TIFt2KvFJcSiUQi8ZDiUiKZINK5lNQyblis61wGv+7PnX8+b1r41nFv159HWa2gT/lkgs6gwO82qorKPVddzO6TVqJv3MCxn/0SimkFwmLVEpfVsi03j3MsVW9LRa4bGlz8r1DMb8ZsR1zu3uWEutY3aI5zqebdViUAmm6x5rRGUJ3tLVnhiW3DMgipITdntHNOiAVLYvT3FNj0QmX3UjiyExWXyUKSu7bfTnd6/KGqPZkebn/lVobzQ2Ma7/X/LO/1KZFIJJIjFykuJZIJIlt5SGqZUpeurKCPqgWqqY6VoHNZOSy2GkLUNYQbaI210hJr8eajaNiaxt1f+ijG4iV0PPAYZ/z05pKwWLVse6OFxfopHVNa8VnkhMbiGs2tISzFOXYz5kSob1GYuzhEKORV2i1YBdo6wpxyZhOLV8RZtabe3XbBKqCruiuITdvk1LOc6rTrnhqueGxEuG5+gmGxXal97E/tZ+fwdpL5Ye7Z+Vf6sr1jWvel/s10pw+wa3jXmMZ77WCkuJRIJBKJhxSXEskEEZJSOpeSWsRz6YrO5ThzK6sRyLkco7gsdQwXNi3iokVvIaJ7PTIVRUFRFDKJCIO/uYF8Yz0n/e4e2n9/ozumVBw64tKuuKwSpWOEY1mpVcqMORFsnGOXqNc4762tnH2BIw5FkSBRdGjmnDBX/P1sEvXOsTEsA9u2Cakh97iblknHLMf1FXmcfvxupaiGO17E/AtmgT3JPewe3s3uMYpFUZgna2ToTndz5/bbSRZGyg91XFZThsVKJBKJxIcUlxLJBBE3zFJaSmoSpaRa7DirwlYjFKgWO15xWbktikBFxbRMrIWLePQb/4ypqcz6wr8TeuQhoFwg29iu21iaU1px+6XiUoS2u9VsPXE5c07EdS7r6jQs23SPpQgNFkWHSsN9hfDS1ZBbSMnCIhJx9pfLlrt9/iI+oo9n3sxzz8672ZfcO+p7A0+8F6yC636OxVksmAUGcgMAZIwMrwxuoyu1n1cGtlZfR4pLiUQikVRAikuJZILIsFhJLSPOS7da7KQ5l14Py7GG1Qpzf6Qej+CE6gqhtn/1Cu7+1CUohkHDlZejbXsZVa2QczmOsNhSUau6YbFezuVL/VvYNrg1IC7jCQ3TNt0QYyGw3ZYoJe/LcMWl7obympZBuCgu87ny45DzOZci5LQn083u4V1sG6wu8vx44jI/rrDVvmyv+x4yRpq0kSruv6fqOsJptWS1WIlEIpH4kOJSIpkgrnMpw2IlNYgrLm2vp+NkENJCNIQbaI+1j3suVlE4VnMZFRRXDOXNAusvPJXBv/t71P5+Gi97O5G+wcB4f0GfMYnLkgdBSolzadkWj+59mId2P8DMORFMxUDXIRx1HFXTFZfFsNgqzqUnQr2cS8u20DQFPaSQy1VwLiuExYpjMda8Rv+xy/sq6o5Gt69XZcbIuH02e7OVxaUoPATSuZRIJBJJECkuJZIJIp1LSS0jXLlqBX0OhjcteivnzDt3zONLW31UeyCjKqorVkSYaPLf/oPchW9G2/4Kx37ss+hZT4T5ncuxvL9qYbFezqUnxMJxi2NPirF4RZ0resXcwlqJuCy6fk/se5xtg1vdSqqaoruOsajaG46o5CuIy3yFsFghWscuLr1j5zmXI7vF4OVbgiMuU8Vcy3Qh7QpNP8KxHc/cJBKJRHJkIMWlRDJhpHMpqV1KBd1khcWCE746nvO+tKBPtQcymqph2za2bZMzc06fyFCUof/5KYWTTqFh3QYu/NKvUExP0Iiw37EV9FFK/i4Vl54LlywMc/LahNtexLItVyCWhcVikzEybOp7kRd7NgQcTn/OJUA4AkbBxjQd0ffoff3877d3ksxk3X2Px7m0bIstfZvJGJlAzqXbh5LRxV9vpgdFUYhoEbJGlqzpzaWSe+nPD5WtSCQSiUTiR4pLiWSCeDfIUlxKao9SAVcqrA4FozmXmi+EtGAWCKkhZ2wsxuC115NZMJ/Fj6znnB/8AYqOnOkWLBr9/ZWG44q/vZ6ghrssmU8GHDrTNt19hUoK+vgdVMMqBAv6uNViDfJmno11t7A/+oJb1OfxBwfYtyvHrp1eZdZ8Sb6kPYJAfP7Aszy27xEe3vOALyw2T16Ero7iXNq2TaqQIqbHqA83uK8JeivkXRZ8x8mSYbESiUQi8SHFpUQyQWRYrKSWKT0vJ9O5HC9eNdaRnUu3N6dtULAKblVWALullc0//x9SzQmO/8vDnHT935yxwrkcw39npaK21LkU1WABUoUUhk84Oc5lsVpsMeey4Mu5tH2uodiOrmqBnMvh/DCECmS1fvI5i4G+AgO9ztiuAyl3X4VxhMXuGNoOOMV3hEsZcC5HcRZFqG9IDRHTY+7r9eH64na7y9bx54fKnEuJRCKR+JHiUiKZILKgj6SWqZZfeCgoy7msIi6V4n9JWSMDQFiNBJab8+Zx49f+nkI0zJk/uZnldz81roJFpWPcB0TF6ZhWMCzW8DmXgBuqqxd7fQon07ZtVwgaloFh+sJihXC1DAyrgB5SMZUCuZzFKy9l3G13d3u5jYZlYFqmK1hHCj0dyg8BUB9u8JxO23ZzJUcLixVCVlN0YiGvtcysxBxURaUv21d1HQgeM4lEIpFIpLiUSCaIdC4ltUzpQ4/JLOgzXrxqsaOExRbzE7PFnMNwSasTTdHoWjaPm//9/Viqyhu+/ls6H38emFgrErdabAXnMplPBqqigiOqdEX3xgfCQ/2uYVGwqV5BHwvLWV9XsBSDfNZi+8ueoOzu8ZxLcAr8iGI8YymaUx+uDxTvyZXkbVbDzQ/VQsS0KKmkQSZtkgglaAg3ODmYRjawTjDnUopLiUQikXhIcSmRTBDpXEpqmZoKix2jcykEonAuReGc0uWvvGYld/9/l6AZJq//3PeZsXHH2KrFVsm5FD/9YjFVSLnOpQjPtW0bTdXc8dWqpuaKBXH8BX1My3TFpYnPuVQgElXpHchgWba7r4KZH7Wgj1/8qopaMf/x8Qf6+fNv91c9JuI9hFSdsBrjobv7efyBAepCdTRGmgAYzAdbwORN//uW4nI6MZwf4ol9j7sPHyQSiWSykeJSIpkg0rmU1DRV8gsPBWXVYqtcMporLh1x5s+5BFBVTyC/cOGpPPihiwhlclz8uR8TfumlUedRLVRYXMumv6BPYdjNqYxoXniurupejqZvvD90NVMUx1pJzqVhGeghBUspcGBfnqEBg5mzI8yaF8Gw8ySHTepCCQByZn7UnMuB3ID7u7+okCCft9i4YZjnnhh2q9OWInJWNUUnPxQin7cZHjKxcxGahLjMDpSsI1uRTFe2DWxlU9+L7BzacainIpFIDlOkuJRIJogUlZJaptSlO5TOJWV9Liv/11PqXJaKy9L38MS7X88zl76O2FCajnddirpr54jTKBeXSuB1fwGfvJknY6SL8/DEpaZoVcSlt65YL+SrFmtYhutc2orN3j1OGGzHzDCdMyOYisHQYIFEUVwWrLwvh7KygBv0iUvTMsuEXk9X3q0Wm05VdhgNt7KtTnrAO74D+zTXufSLWAj25DSLonbH0HYe3fswu4d3VdyPpDYQTnW6kBplpEQikUwMKS4lkglSWmlSIqkl/OHaUT3qFqE5lIgWF9UezES0KOAVqQmrpeKy5FpTFO77yJtZ/4ZT0Pfto/Gdb0HpLq9u6g4va89SvRUJOKGxzry8eWiKXvGatwPOpS8s1pdzKQr6AHT3OgK0LqHROSuMpRQYHvCcy7wvLLZaXuNArt/9ffu2FM8/NRhwKLu78tiKs4100nTfoz+H0qtsGyLV550jPbsUGiONAAzlBwL79bciMS2Tdd3Pcf+ue3mpfwtPdz1Zca6S2kA8QEkb6VFGSiQSycQ49HcbEolEIpl0/EJK9C88VLitSBhZXIpWGMIp8zuGUPlBjg3c9elLWay0Eb39Vhovu5jBG2/BbmgsG1stLFb8NEvEJTiOnqbogb8r9dT0V00VzqWm6Giqt23LttB1Z93e3gwQp65eZ8bsKCYFBnoUYrojsPNjCIv1O5dPPjxANgXqK/0sWBqjrTNMT1cepVhEKZ0yuXfn39g17Li7Z897HXPr5/l6cmoMd2sotoJuR9m3q0BDuBVFUcqcS38rEss2nRYr7pwGyRpZosX3MVmkC2nu23UPx7Ufz+z6OZO67SMJq3ieZqS4lEgkU4S0XCSSCaJI51JSw/idy4YaEZdeWGxlcRkP1QEwlHMKyFSqFlsJW9MY+vEvyJ9+JqEXnqfhPZdBJlM2rrwVSfU+l4H9+nI9dVWrGNbrb/khiqWEVD2Qc5m3Cugh570Pp5wxiXqNGbPDROosBrrByDrj81bedUOrictkIenM27BJpwuAzeCAwXNPDPO3W3pJpyxXoO7u3+cKS3BEIHiiOKSG6DtgMDtzErMyq9mzI4uCSn2onnQhTd4nKAOtSGzTdXybo81A5d6YB8uOoe30ZLr5286/ug64ZPyIczxVkOJSIpFMDfKuWCKZIDLnUlLLBJ3L+kM4k7FXi43rTp9FEQZaXi22et6oEosx9KvfUjjuBMKPPkzj+98NuWBFzFJRK/JSS8NiFzct4bWzT6cj3snylhUBUaspelk+KwSdSyF+dF8rEtM2MS3DdS5NxRFodfUapm3SOTuEaoXYvdWZQ97MjV4ttijyUsMGNhYz5oZYc1ojCxbH0IpT1ov6fGPviwC0xdqLc7QC71lTdHoPFGix5rJ89jxyWYu+7oJXMTbnVYwtrZIr8jZn1s0C4EC6q+J8Dwb/MdidlHmdE0WcpzLnUiKRTBVSXEokE8RtRSJFpqQG8bt0iUMtLkuukdGcS0FkDGGx4Dmadn0Dg9f/CWPF0YTv/RsNH3ov5POBsf5teNViReiqc+OtqhqLmpbwhgUXcGLnmsA6/mqxfvzOpTc25IXc2sU+lyHR87MoLhM6eTPPjNkRNHS2b3Jez1sFr6APnlN31196+Ol3dmKatisMU8MmtmJR36Qxc06EY06s5+wLWlm1up6VJ9ZRUNLsHN5BRIuwqGmxs39XXDr7M3Mq6ZRJS3uIuQuckNY9u7Lug4lkwQt99bdAMSzDzeOblZgNQHfRuezL9vJC9/OT4jRmTc+J3tCz/qC3d6RiFp3LnJkLPBCRSCSSyUKKS4lkgrj3x7LPpaQGCTiXoUMcFltyjYzmXApCYwyL9Ys9u7WVgd//BWPxEiJ33k7DRz4IhlFxbGlBH+GYlhYOUgPOpVZZXFqVxKXuFlKyLBPDKqAVnUtLceaUqNcoWHla2kPEwhF2bzMoFKyqfS43v5Bkz84c/b0FDMtAUzSSSce5TDT6ijhFNeYvihGvVxkOdZHPWSxqWuweU/FehQs53O8IwLaOEB0zHVHfvT9PSC2O9wmRQrFarK7q2NiuQG2JthLWwvSku7Fsixe61/HsgWfoSlfvszlW/EWIDqS7An9PBMMyjkhxZfhzg83y0HGJRCI5WA57cXn33Xdz/vnnc/7553Pbbbcd6ulIDiOkcympZfx6riFSGzmX1f4WxPRYQIiWVYtVK4vLUvFqd3Qw+MebMY9aQOSWm6j/+N+BWXQlK4hL8VOIuFLx6BebWhXnslJFV13VPVfUNilYBqGQLyxWgXhCI2NkUFWF+fPrsU2VA/scYVmpoE867eynr9cJmw1rYce5xKKuoXxe4YiCjUE+ZxEP1bkhvZ5z6WxvqM8Z39oRpn2Gc9y79+fd3qJmSZsWTdHQVR3T8nIuw1qY9lg7pm3Sn+0nZzoCsLQgUMbI0JUan+AU7Wk8JzU5rvVLuWXrTfx1x50HtY3piP9zTMu8S4lEMgUc1uLSMAy++c1vct1113H99dfzve99j3xJiJREMlHEDa0Ul5JaxH9eloaXHmqqhcUqiuJWjIWRq8VW+11gzZzFwJ9uwZw7j+if/kD9pz4OlhU4Ll5YbHDdUofU/7euVnEuS/IiheOnFyvNOoVv/M5lgXhcQ9MUtzfkCcuPQrEV9u1xhKNlB8WlZdlk0s7vvb2OcItoEZLDJrZiU9dQflxDESesNp+3UBXVJ6Tt4rwcYTjQ7YiO9s4w7Z1FcdmVd+fvb9NiWAYhzWmzIgr6iG3XFcVfxkiTL4bPlorL27bdzJ3bb6c301s232qI9i7t8Q4Akr4KtePFtEyG8kOBVi5HCv6KyDLvUiKRTAWHtbh8/vnnWbZsGW1tbTQ3N7Nq1SqefvrpQz0tyWGC61xKbSmpQTIHGTY4mYzVuQSI617epRBofoTQ8/ftrJaLac2Zy8Afb8acNZvo9deR+MynAnsW8ygt0FPmXPqrxSp6xWqxpc6lmJ/qFjMynZxLvehkKgZ19c52dw7vAOC0Y5YSDmt078tRMMxA70zLthxhWUxf7O3LFPcTIjVkoeoWkVgVcalY5HN2IKRX5IiKsNgDe4p5k3OjRKIqDU06/T0FbNObP0B3uhvTNgn58kkLVsF9v5Gi25w3c2747FCJuBT9Q8dT+CdrZlAUhdZoGwDDhYmLS/Ge82b+iKs86z9PM4YMi5VIJJNPTYvLJ598ko985COcfvrpLFu2jHvvvbdszHXXXcc555zDscceyyWXXMK6devcZQcOHKCzs9P9u7OzkwMHDrwqc5cc/siwWEktc7Bhg5NJWc7lCE9k4iEn7zKshSuOE4LGLzxHagdkHbWAwT/djNnRSezaazjjBzeAbaMoihd9UDa/yi1LwCn2U6larFVFXIqfBcugYBbQdFBwnMu6eo2+bC/JfJLWWBuNdfUsXJrAMGDv7kygkI9pmaRT3j76+52HB0ZOxShAXb0KlAslPQQoFrmchaoo7rHyV4u1LJvuvSbhiEprh3Nc22eEsW0YHhAOp8mGnvXc/sotAET1mCv0Re4neG5zzsy7LVlKnUvBeHotZo0sES3ihcUehHMpRK/ze2GEkdXZ3LeJ6zddN6Hr7IWeddzxym1VqwBPJX4HOm1I51IikUw+NS0u0+k0y5Yt49/+7d8qLr/tttv42te+xj/8wz9w4403smzZMj70oQ/R19f3Ks9UciRS7cZUIqkFljUvQ1EUTppxyqGeSoVqsdX/6xHOZSXXEjwhGda8fMxKYs+PuXAxg3+8GautjVV/uIfXff8PqL77+vIcyxHCYhUdTR09LFYvzj+qOWG+WSODYRkoKGi6gqkUSCQ0dg05vSfnNcwHYMVKRzzt3J4ObNPCIuMTl31FcTncZ6OiEm9QKlastbEIxyCfc0KCNV/fTXCqxSaHTay8xqx5EVTV+axEaOxAjydChVu4oHEhr5l5aqDQkfi8xOfiOJeF4nvPukLTz2jOmWVbPHfgGXoyPVi2RUyPTZK49ARl3ppYqkxXej95M09/dvz3G892Pc2BdNchCcuVzqVEIplq9NGHHDrWrl3L2rVrqy6/5ppruPTSS3n7298OwNVXX819993HjTfeyAc/+EE6Ojro6vLCbrq6ujj99NMnPB/xn26tIOZTa/M6UlBVFUUBTVUPy89Anl/Tm5Z4C+9d+f6aePihqkogfNx/zZSeX4lIHYoCUT1a8dzTNZ28lSOkhdxtapo26nlqr1jB0I23EnnzuRx/00Polo368/eBqqKpWmB+uhrcXkjT3eVhXUcvGQ+AYgdeC2k6qqoQUcOEtRAZI42FiaJAKKRgZQskGnR6cz0oCsypn42qKixdUY9yG+zbncXG8lWl9vItAQYGs+T35tj20BDYKs1tTuVWVVXQFd0TUIpNNK5gJcEyVbSoM3cbC1VVsDAZ7Cug2Bpz5nnHvLNYMXao10JpAgsTy3bmv6x1Oa3xVnRNI5+30HWFkBZCVRWioQiKAmkzDXjHZCg/SGedE0kkXsuaTiGj4fwQm/s2saBxIa2xNvc9vtT3Ei/0PM8LPc+jKBALxWiINKAokDSSo37m1c4xwzbcOZh2YULfcWZxGwUrP671M0bG3beqKGNedyDbz23bbuG1c85gfsNR456vQJyDzlzS8vv9IJD/R0qmkul8ftW0uByJfD7Phg0b+OhHP+q+pqoqp512Gs899xwAq1atYtOmTfT09KBpGs8//zxf+cpXJrQ/XVdpbU1MxtQnnebmutEHSSad5nwdiXSUpsa6mj03JgN5fkkOlj4SJAaj7t+tLQma65zzqvT8mq20szkZpTXRUPG6amqoQ82ZtDY0kFGHAGiMxcd2DZ5+Mrf/8t9Z+4GrOebmh+Gf/xF++lOipkIi4Z9ffWB7rXY9iSFneVtLI23xBhL7o4FNJ+ojJDK+bTR4829vbmYoN0QEjageJRzuo4BBe2ecbFwlYUeZ09lBPBQn3qDR2hEmtbdALuvNq7k5zk7Fc5qGhnO89OQwdfkWjjulmeUnRImGQoTMOLFQjFQ+haqo6KpOPKFBEqKhGG0t9SQOREnUR2htTRDdr5McttFtnWUrm9w5L14G0EVyQKEp4YwvWAUSRpT21gZa6xJEdka559ZeOmdGeedbj6K1NUEu3EKiL4oaNQLHVI0X3G23NDY4FWejFr3s5b699wEQjissnXOUu06DGXWPO0BnSwsd7Y10NLeQKWRobomTzCd5cMeDnDT7JDrqOip+7KXnWEoPu3Orb4zQmhj/93esRydhR4nX6+P6/t852Ofuu7E5Rmvd2Nbt7tlNJK7Ra+3jxNZjxj1fANu2icVDRPV6skYWPWof1v93vVrI/yMlU8l0PL+mrbjs7+/HNE3a2toCr7e2trJjh1McIRQK8elPf5p3v/vdAPzjP/4jkcjEqiYahsXQUG2FkKiqQnNzHf39KSzryCpKUAsMDmZIJrMMDmbojdZOfttkIc8vyWQxMJAmmfQKDPX3pwjlUxXPr1wKksksWcWkt7f8ukol8yRzWbKa6W4zauYqjq3E/s4Orv/eVVzy//2QxDXXkEtl6f/udwLzGxzI0Kt42xsazLrLhwdz6Lng+wHoCw8HXkurBXdORlYhmXKWhaJxFM1pRaJqJr0DQyRzWYYH8mRUi5yZo7UjRHKfxeYXB6hf5KzX3TvIgS4vX87GJJezWDY3zrKVCslUkrzmhDweP+tkspEszx14BsvOo4WckNXu/Rnqo1GSySwDSore3iT9Q0m692eZjU5jC+6cwzFnWwf25tGTWfr0JAUzTzKZZWggi5ZNsmn9EIWCzb7dGZJDzvtNZQokk1n25A6QKnjHY/v+PbQrcwAoZCCZz1LI9PHg8GMkc864A0o/vQ3ecU8NFQLHNB+xnfnlQwyn+ti5fz8betazuW8r6WSBc+a/3tlO+gCmZTK7YVbFc6xroN/dbldPP3pu/DdvfYNDJDNZunr7maV7cx7I9rMvtY9lLcsr5gJv6dru7vtAzyBaNl42phIHegdIJrNsy+2it8nbn13MH97Y+yKGZXBs+6qq2zAsg2QyixaJks7nMXNDY75uJOXI/yODZI0sUT06+kDJmKjV86uhIUYoVLktmGDaistqiC9awXnnncd55503KduupQ/Xj2XZNTu3wxnbdv5h1+65MRnI80tysFi2jb8op20p7jlVen61RtpY0LiIBQ0LK553Ciq2DRq6b5vq2M9RW6F/Tgd//q9P865P/y+RG/6P5lwWrjoDWxP/YSqB7Yl9OnvSwFYoLTJqWlbgNU3R3W1E1Zi7LKpF0UOK04okoZIzciioqGjOeEuhfUaY7c8b7N6VZvlCZz3DNEklHcEXCitYxRYii5Y0oJLDtqFgGoTUEPPqjwLguQPPYloW4aiz80zKcucuCvkMJ7MMD1jUN+jUN2runCNRlXBEJTXofHYFo0DBKmDbuHPdvS1ffO8w0G1hLbDRVacQUKqQwrahKdLEQG6Awdyg95nbzrHKGjmyRg5VUbFsi7xRCBz3gmkEjmlYi2JZNgm9ni67i/7MANsGtmHbsHt4N5mCU/Tn/p33UrAKvPvoK5z9lZxjOSPvbjdr5Cb0/ZY3nGORM/KB9R/Y9QB92V4yhQzHd5xYtl5Putvdt2EaY953tpDFtiGZT5LKp4npMe545TYMy+CiRW/mua5nMSyDla3HjjpnBRVN0SmUHG/JxJD/R8JQbpCbtt7IqrbjOK7jhEM9ncOK6Xh+1XRBn5Fobm5G0zR6enoCr/f19ZW5mRLJVOC1Ipl+8fASyatJeUGf6mM1VeP02Wcyu35O5eVuK5KxVYstRYxNzpnBwJ9vw5w3n7qbbuTCL/0a1TAD+yjdp/i90v7KW5F484vp8cDrsXAEUzFoaNTJm/myyrdNzTqhCHTty1HIF3tc2hbporicOSeCpTi/L176/7N33nGSlHX+/1TsnCaHzTknYMksUYISliQIohjO0wM9zzv19FDx9NCf4U7UUxFUDAcoSZIgOe2SWZbNOc9OTh2rK/z+qH6qqzrMdM9MT9rv+/Xa1/Z0V1c/VfX0zPOpzzcEbL0rdcfYOJhFfuRMi5JUAo5tAWDv7ig4XcTSVYG832XBkAAlyUFVDeiGBlVn50dEPKah7XC2ME7HUfM1F29GB7EWH0FXCIAp4hi5xY+a/M0AnFVcC51TT6Y4kl8yQzm3dG6CoinWPg/0mVFLiqYM2GbEXtAnrQ2tWqzVzkR3FiqKZarHbmx/r2A12I5Eds2iGmre68VQbGPuTHTAMAy0xVvRleyEYRjQDA2aoQ1YgZadT5EXIfFS5mbBxFq0EuOTXqUXhmEUrQxNHFtMWHEpyzIWL16MdevWWc/puo7169djxYoVYzcw4piBWpEQRGmU0+dyMGq9tfDLfvikbCgjX8b+mLjiOR76tOnoefgJqDNmYv6LG3DxN38DQUnniUf7zwIvFhSXedVibYLUI3msxxIvYdnyCJYc70FNowDN0OASsukaPMeD4zg0z5Ch6zp2bIll9m9YrUgap7ihQ0V1rYRgwO2o2mofG8/xMAwDciZS7ch+xarU+/rL3fjzb49gz+4oeAhYdVIo75gCIRE8eCQTGnZuj+LIYXMsIi9i+6YYoPMIhszPbjuk4tnHO7B/h+IQqay6a1LLppVoulM0MnHJhGJ2O6f4YiF3AVcQAHA0dhQAsLjGzEHc17sHQFa05YpTRtr2OUOtFstaeig5VXAj7oj1eHfPLsdr/Uqfo2pu7vj6lT4cjbUUHrNtnJ2JDkvEsrGw8ah6ccHKzqeQycUtNAaCGArse5D7fSCOTca1uIzFYti6dSu2bt0KADh06BC2bt2K9vZ2AMCNN96Ie++9Fw899BB2796Nb33rW0gmk1i7du1YDps4RrAWUORcEsSA5PWRHIa4PKHhRKydc2XJfS5z4TNjsRy8KVPR9dBj6JpahznrNuHyr/4KYtSZX+9sRVK4z2WuYGKLdwDwih7b8xKqq7yYPttj9XmUbG1VWP/NBct8ECRg784E+vtU6IaORNz8jOUnBNAwTcS8RT6InJgnKHMfN06XIMkcNr4Zxdvr+pFO69i5LYr33+tBPKahrs6D2obsGBiBkAjOENDXo2Ldix14fV2ndT7efKUHHAQsWOaHIABHD2h4+eluPPt4J2Q+uy+34IEsyEjZnEsjpx9nnbcOsiDn9ZzMFT7uzHmcFpiOZbXLEXaFUe9rwMq64+ASXDgaPwpN1yw3rpjQStueT2tDE5dsrKlcQWy7yXCo/6DjtfZEu3PbnDnz0M4H8Pd9TyKWzu8/aRfenckO9NtasdgF8oDi0uFcspYxQzt+grCjaMzJH1okADG5GNfictOmTbjssstw2WWXAQC+853v4LLLLsO9994LALjooovw1a9+FbfffjsuvfRSbN26FXfeeSeqqqrGcNTEsQI5lwRRGvlhscP7znAc5wz/LENcsrE4BGnTFNx7+xfQOncKpr27E3M++glwXZ3Wy3ZnUCziXBoo3OcScIbFSraFfTTjPrkEp7DjwUN2A4tX+mAYwJ4dcejIhsXW1Mu44MoIaurlvPEUeuzxGzjhtBBEQcALj3ejpysNgzMguQ1wABYtDRc8V6ZzKaCzPQ2D0xGNpqGmDezZlsSRgylU17pQ1ygjXCWBM8xz1NGmWMcHmH0vXYJZaZaJKbvLK/Iiwq4IJF7KC2XNFUrMuRR5ESvqVuGSOWtx/owLwXM83KIbhmE4nMHi4tLuXJa/GLbvN9epsb+m54jjtngbAFjtVoq5hv1KX95zduHdHm93ikuHG1pcXNrDmkVeGHR7gigVci4JO+O6oM+JJ56I7du3D7jN9ddfj+uvv36URkQQWZr8Taj3NaDJ3zTWQyGICUU5TmPxfXC2x+XnXHKwi1MOibAff/7xTVj79V9jysb3IV96IXr//DD0xiYI/OBhsbkulOQQl86wWCnjajKHyi7G2Bh1Q8e02V6sewfo6UzDMHTEYxo6/VvwwpFdCMhmaKjIixAGEZeqrqG6RkZgjhf7txo4sCcJAzJOPNOPqU21aA4WbkcRCJrOZWe7Ah0CDE5DrA948e0uAMCq1WEk0I0ZczxIKV6EoiJ6ulRoKdG6dW2KSzf60Y+kloSP9zlEVY2nBjzHQxZkxNIxpPU05IzYVjPbBeQAXIIbXrF4ZVWBM89pSstWly0mnOxuXW6eZynYhV4qZzFtF5S5odLtcbPvdqOvEZ2Jjrw5w0iqSfNcaArCmTBbNuaAHEC/0o8jscNFjqe4WGZjE3gBkiEPun3hfeh4dv/fMTU4HQuqFpb1XmLywhx8csIJYJw7lwQxngm5wjh/xoWocleP9VAIYlwzEmIyF66IoCr1fYXyKhW/Bw98/x/Rf+YaiNu3IXzx+eD37skr6MNCV+1ouTmXvC3nMqegjyvjwDGHSs5xLjmOg27ocHt5uNwc+vs0JFNpJBI6Ev5DOBo7it5ULwBTrDqL+NiPi8uMzRRZ02b6wIFHy6EUDBioaRIgCJwjhNdOMCyAh4D+Xg0Gp0GHhqMH0ji0P4naBhkzZ5uitGmqG1d/bAqmzzZFdKI3OwaZl+EWzZzSlJaEYRgwDANeyYsFVYuwPFNR1QrTtIk9PSO+Tmo8BRfN+hA4cHjuiU489KejedUT2THYF7fFnEvVJqiGshge6P0O59IW/pvSUuhOdsMv+60bA5qhIpaOWY6mfduXD72Iv+193NofE8GNmfxUe8it060tnkPJ9iVyonW+0gOE0RaiX+lDS6wFO7sHvvFPHFuw+VnuzQpickLikiAIghhVygljLUaxUNBBP7tQWKztedUt48iddyB52eUQDuxH+OLz4dqWXUizRXlu3mVeQR+bc+kW3dbnSbxkOZl2gWhH4ATohg7d0BGKSDAM4OC+OAxDB1ymkGDC1HRSixf0AbKiYtoMb7atCqejqoHPfF5hcRkIms9zBg+dU2FwOg7uNhePC5f5IQnOcOHaelMgJnqzwlsWXHBnqrym1JR1nkROxOrGE1Hvrc9sZ54Dew4kczj5jFB/85VevPT3Lrz3Zj9ajzgdQybmkzbnspjQsofCDmUxbH+PbugOQakVcS7bMwKyzlsPITNWVVfx2pFX8dS+JxwCMakm0J3sQlpPW4V7FE2ByIvW+bLv2y5wc4sg2bHOJydYc04ts1ouE6P9Sj9VmiUs2PzN/T4QxyYkLgmCIIiKMpLVYhkOEVXGn7JstViu4PMAwMtu9P/iLiQ+eiOEtlY0XXUVmjbtBc/xjmqzdtjCnbmcck6oKxOUIi9aTmZvpmy/vVos27fZC1JHKGIKvH2741C5JGSXOe6EahYdkkrIuWSLveZpHoiiWVvX5QXcGUM1V9wyAmEmpAXonClC9LS5zzkLvJboY8dVkxGXsZ7s87IgwZVxLpNaMnueeGe7l6xzmRU7dqetrSWFJx/KFsTZuTXueL8VFutoeVJYXA7Xucx1++zC0C767I/bMiGxdZ56a45ohoa4moBhGI5cte5UtyVg2XVm4cK13rq88dg/fyCxzKroirxgcy7LE5earSptv9KHdYdfwf6+fWXtg5h82L9HFBpLkLgkCIIgKspIVotl2AXlUHIu85xL2xgFXgAEAdEf/g/iN38RQk8PrvzSzzH31c0FtweyQmZxzRKsqj8e9b4Gx+tMUNqdy/60WZRFyi3okxmbZmgIRUzht3dPHGk+bonL7Fid4rJQ/iUTdC5JQvM0FzhDQLBKsISFUCQs1h9gzqUAjgMEwRSaLjeP5uluZxVdXkRNXaZQUZfTuXQJZhhwUk1agovLWX6wc+B0LrNiaMfmGHQdWLDUbEGza6uzoioTSymHc1k855JdP3UoBX1y3D4lp4hQbi9RwGwfApitdLLiUrc+v5DLCQBxNY60ZvajlHkZfskPr+TMPXV8/gAFeliOJ+tzycZbDvbtd3Rvx66endjYvgEAsLVzC7qSnUXeSYwkUVsrmvGAo0gWFfU55iFxSRAEQVSUka4WCzjFYTlhtkXFpW2M1v44DrFbbkXvt74DSUnjolt+Bffdvyn4fiYOgnIQS2qW5r1uOZeCZBWmYWGFuTmXdscxnHEuuzpSSPMJ+AO5jp/kEHnO/EtY+2GvTZvpAQcOwbBgCRGpiLgURQ4+v5l36fULZvVYQ8Ss+V4IApfTokVEpEYCLwD9HRy2vh/NVI6V4M6Iy5SWFZe550fOiB17ziXLYxU4AQf3maLxpDMj8AXMn1lrFiArLh1hsUWEVlpPQ+IliLw4ROcyV1ya+zAMA7qhW8LNsAlGVrwpIAezPSZ11dqXXVwytxIAEumEdU6YAK/1ON3LlP2cDZBzaQ+LZWHb5TqX9u339O4GAPSkenCgbz/ePPo63mvbUNb+iPLZ27sHD+74C/b17h3roVjY3XNqR0KQuCQIgiAqSiWcS85RLbb0/RWqFpu3v5zXkp+9CY/d8jEYgoDAv/0zvN/7DnjkFvTRMvsp/Gd1YfUizA7PQY27xlE9FsgPobU7jm4vD1nmYEBDoF7BrPk+x7a5fS4LFTqyC7oTzwhjxmwfZsx1OZysYpi9Lnl4/QJCEREceMxZ4HXs39yHBEHgUFUjQ4kL2LU1jm0bkuA53hYWm4KeadmSFxZrOZfZhSkbHwceh/YnwfNA81QX5izwwtCBvTuzobEsLNaZf5gvtAzDgKqrkAUZEi8NKecy1+1jC2s2B6RM/qhdMMbVOGSBtY7JhsWyMWqGXtCBT6hxy81lAjw3NDbXOR1s3E7nssywWJtgT6qmkDcMAxvb3wNgHuexzMb2DXhk10MVzTuMZtrQsLD68YAzLJacy2MdEpcEQRDEqDISzmUlqsUycoUPz/HwX/sZ7PjN/0IPBOH78f/DWd//PXg1v3hLMeHc4GvEqc2nQ+AFR/VYID8slglfVVfBgUPTNDd8QR6nf8gLUbQ7rBwEXih6LgodYyAk4riTwpDdnCWsxCI5lwAQCAngIMDnFzB3oQ/Hn1SF5SeY1U4Fh7g0z1ltgwwh0+ZCiZrPZQv6JK0KsLniXC5QLZYJmWgPEOvX0NDsgiTzmLvIFNib382GBrLPd7YiyReX7JglXoIsyEMqQJI9b05Ba4lL5lxmqsUm1SRUXYVP8jnGqtqcS83Q8opCAaaLyZwgNk/mReZjRd1KzKtakPl8u7gsoRUJJ0AUhpZzWaxIEguHTdpc13KIpWNFCwQl1STi6bi1XTkhoS8fehFvt745pDENhcPRw+hJ9VjFuiqBlY9rm+tjSe53SBlCex9ickHikiAIgqgoFSnoY8+5LONPGfvsgdzUQvtbXLMENedfg55Hn4LW0IgFj72CS//jToiJbJVEoDShKwmSo4iOq4hzyfa5dFUA1322EbzHuZhk+yjW55IrkpfKCgZptoI5xTBDYU1x6fEKWLYybAlcPifnEgDWfKAKp5xRC44DoIkwDMPRioQdU75zma0We7j/kCXIAODoAfP/KTPM8Nr5i31wuXlsez+GWNTpvibVgV08K8SUl7NFhMoMjWUCjolF5lyyz2MuKjvWuBpzbM/CiUup8up0Ls3xiryIZbUr4Jf8mc8fvP2KY3x8tlpsqa1I3jz6Og707c/bf25IN3Mzy6Ej0YEHdvwZmzs3FXz9r7sexP077oNu6Hhm/1N4cu/jJe1X1VXs7d2D3T27yh7TUGFCf6giuxSYwE8N4VxXgtzvT7rMCsTE5IPEJUEQBFFZKlHQZ4jOJQuhLce5tKMtWoyeJ55B98wmzHp9C67+l5/B29WXdS5LdGXtobHFCvo4MfIcGyZSBqsWa9/W/jwTWgJf/PzNX+KD3y+hrjErbKx9OqrFmmKlodmFsz9QD39AgJEWkUrpVkGflJay8ihzw5KZcDrYfwDPHngamzo2QjM0cByHw/vNBTsTl5LMY9nxAWiagb/e04r//f5+HNqbznzGwAV9LKEmSFb7k40d75WVv5bOEZesmAlzBkVesAQ8kM239GbEoFCg+FAxB9F0LlnOZX7LGqD0gj5MlIhceWGxvakebO3cgs2dmxxhsQAwOzzHMc80Qyso1ruSndjds7Pg/vuUXutzCsHE++HoIfSmehFPxwfMLWWw/Ntybh7s6t6J9nj74BsWgY01UVFxmT/Xx5LcMFhyLgkSlwRBEERFqUxBH3vO5RAK+qC4uBxsf/qUqXj8F7fg0NJZaNx2ANd97scI7zab2pcqnD22ip/5rUjy96FDRywdgyzI1vZMIAwmIoGcariZbdI5Tlsh5i/244rrmuDzi3nb5hb0YYTkMGo99Qimm9Hfq0EWZPAc76gWm3uOmcBm4YSxdAyqrsLQOOzYYoqzKdOzgvy4k0MAgB2bY2hrUfDyk71QVcNRWCRXCNmPWeQly7nc0bUNbxx9reg5yEWxxKXTObTnNNrFJQvp9GXCodl5swuQXJHnElyQeMkUlznOJSNbIbe0nEtHWGwZBX2iinlTI60peds3+BpR7akBkL2mua5dPB3H3/c9iVcPv4JtXVvz9q9qauY4BhZLO7q2WY9TJeT1MRdVN/SS3LSEmsC6I68MK4yWXauEVkFxmZnXQ3GJK0EqR7xTziVB4pIgCIKoKLmCqxwxWIwhV4vFwNViSx2bGg7i/h9+DlvPOQ7B1m5cc9N/Y8YbW0t+P3MueY7PK6hTsLBLOmHl7bH3MgfMLvK4IoKy0PliLt5ABX3M/WdfF/nC4jXX0TwpdB6qlTno7zUXwi7BhZSWsgROsWqxjLSuQDd0bNuQRE+nirmLvKiqyW7T0OzCvMU+BMMips1yI9EP7N4Wc7hUqq4iraUdz7FjZjmXjKSaLEmwANkQVuZcKlZBHyacTeeS5VzGMo4zayFSKCw2N5cxIAfhET1QNMUSa7kON3OOc4+5GNk+l6JVIbgU55I55oquWONcVrscS2qWotk/BctqlmNuZB6a/VMA5OcCvtbyqjXGt4++iZ5kt+N1JljtIc0Mex7m4ehh23sGd8fsYaMpffBry65jSkvCMAy8dOgF7Oou7LYWQtVV64ZCIl155zI5BOeyNd6K5w48U1SY7uvdm3d9BoNdCza/Sw2LrWTRI2JsIXFJEARBVJSRcCpzGWpYLBtLriAtVuhnoM/XZAlPfP2jWPfxC+CKp7D233+Fmj/cU9L7mUCUChTTsecyMqLpPgCmoHGLbsd7HQV9iuSiFnI02aJQKPB5dpzhr1kRycYpcELeNQ4Eze36+8wFpFt0Qzd0a0Gc+5m5wknR0ujsTGDfjiS8PgGXXFOfN65rPtmIL35zBtZe1wBRkLB7exy6nhUjmqHh0R2P4ok9j1nP2Qv6xHLCjPtSfQOdBtvYzPOWLy6zziAHLi8sljmdhcR8riPol/2Wu92bCRvNzW8sdN0KLdh1Q0d7vN0KJXW2Ihl8gR/N9GNVddUS1vXeBqyqPx48x6M5MAUnN50Kv2wen925PNR/EIf6DyEoB7Gsdjk0Q8PWri2O/TOHuZDjVbxXaXEB05fqRVTpdzihpbhp7Fyk9TT6lT7s692LXUVCeQthvzmRrKRzqTOnN1W0CFIx9vTsylyTg3mvRZV+vHTohbJcfDYOAPBLAevnw/2HBgxHbo+3455tfywaKk1MbEhcEgRBEBWlEs7lUKvFZvtcFs4DLUdcZgaC9R+7EI9/7aPQBR7N3/w2fP/xFUAbOCeMVYzNFQzFxsBCE72S33ovcxGdwrGwW1kodJYt0IVBnEvREQqbHxZbSCwFQuZz0T7zPLBQXhYiysbT05XGrm2xvJDPlJZEb48KzhBx3ClBS6za4XkOHMchUi1h6jQvNA2I9mfPe1pX0RnvRG+qB32ZcFsm4mRBRqOv2bG/PqVnwPPAYGIoIJuhuaz9hlYsLDbzOhOjPMfniXHmRvllPzyiB1MCU60bECxUOC8stkA4MxtbR6IDf931ILqTXXi//T38be9j2N+3LzM+oaycSzb3FFtYbKEKw+7MeO2u2LaMkFxZfxxmBGcCQJ6oTw/gxBUL2y3mXBqGgb/tfRzPHngaCdUuLgd3OtO28GYW+lyOu2YXsJUs6MNEsGEYZec3slDs3gJznd0E6S7TuWTnlt1cOBI9jGcPPI3XW9YXfU9nsgOGYZT9WZOVofTbHc+QuCQIgiAmHEOuFjtIK5KSxWVGjDKBte284/GXH90EtSoC7x2/QPBj14KL9hd9vzezEJdz8i2LjYEtvGVespxLsUDOpeO9RYWm+XypzmWhqrDm+/i85xiBkPkeFhbLjpO5SWyff72nFX/85RFseSfhEFxJNYl4TAMPHpHq4q1SGA31puDu68mKkZSatEJT2+JtALKLOJGXsKBqIc6fcSFObjrVfG/JzmW2oI8syOhX+mEYhuVcsrBYJi63be9APKbBK2Z7lOaecyaignIQV82/BrNCs23isgdA8bBY537M8/23vY+hN9WLt1vfxN7ePc73cYJ1zUrKubSJQXb9xAKf7RGYuDQFTE+yG0eiR+CTfJgWmA5vRlyzGwy5Y1Y0Jc+JK5Q3y7YtRCwdRUpLoTfVi4St52Yp+YnsXCiaYglNvUA7m2LYx5Rb0Kcr2WmJ++Firyxcrohl56FQqxR2EySlpSw38lD/Qbx06IUBRTYTuKx6MTuP+/v2FT3vbNxqGecXQNlO7UTgcP8h3LvtT2UVFRvvkLgkCIIgKordpBkJ1zJ3P2U5lyznskhBn3KdS/sC/8jSWdjz0P1Q586D6+9PInzxBeAPHyr4fsu5LBgWmz8GttiTBNnmXIp52zseD9CKBLALrYHFpegIi80+ZsdeUFyysNhe1bENE2Y8x0FVdRzYay4+n7i/HalYdqKk9TQScQ2cISAUKUFcNjJxmV0E2xf47QlTXDKxIvESBF5Ava8BQZfpQPYppYlL+z4CchCqriKuZiuYCjZn8tCBOF59tQU73lMccyVXXLLFu13Is+vMRGruXClUiEm1uVpsH0FX0Pm+jLMq8mJJ+XFRJXuThJ3TQtec3fRgOZfbus0CPAuqFoHjOMiCDJEXLRGTHbPthkBO+Gqu+GXntZi4tIum7mSX9bgUZ8g+DiZMC/VKLYZ97Lni8rHdj+DFg88PqwgPE+X2c5Iss3gOuznQV0hc2kQ/u9Gyo3s79vXuRVu8teg+lZywWIZu6NjTu7vge6xiSyVU/WVje/nQi7h325/w5N4nSnpPqW7g0ViLdQOlJXrEcnDttMXbSs7JLpeezM2jntTkcXFJXBIEQRAVZSRaj+RSyIkr5315BX04pxM5GMwBzRMJ02eg5/GnoZy+BuLm9xE5bw3E1/LDw8LuCEReRMRdlT/GAn+amViQeRmeHOeyWJ9L+3kp1POSLVIHzbnk7KIoP+eyUIgkC4tlOZcshFPJFFbhOR5HDqagqQZEiYOSMrB3q3MxmIjp4CEgXDVw2C4ANDbli8u4bZHIFsfZsE57dVsmLktrfK/YigIFZVO49St9lugUedG6hi2tfTA4A4kup+uoKTxefa4LLYfMRXZWXGavk9dWURgo5FzmzxNNVx3ujkf0WCLVep8tVzZXPG1s34DXW17D0VgLALM4SyHRVEjYsrDYREaktGfO+azw7OwxiV4omuJwwuwCN7diLHM1m/xNmB2egwVVCwEUb3fRa7uGncnO7H5LKOhjzz+NZcRlOWGx9lBdRVOsmw2dic6C25TDgb79uH/Hfdjbu8cxpnJ7XTJR15/uz2vnYnd6+xVnGHkhp5PBvg8e0ZO96ZaZY7u6dxR8D5tHpYr3Hd3bsLd3D9J6Gm3x1kHbxWzv2oZ7t/0JB/r2D7gdq2T8RstriCr9eHr/U3jr6BuObXpTPXhy7+N4p/WtksZaKtmbBUrm/8nTH5TEJUEQBFFR7OKyEs5lWdViM9vm5rzxQ8y5LFTp1QhH0Hvvg0jc+CnwHe0IX/EhuP/wO8d2HtGDq+dfi+MbVhfddyEkXkSdtx4+yYcGb0PmWAqfi2K9O5nQtMTlIDmXfAG3EjDDQmeFZ2NeZH7ee/xBFharOd7HFqICJ+DAHnOBuWRlphBM1HnciZjpXAbDg4vLujoPeA7o7VGRTutIK7pDFPWmepFUk7ZWJNl9ukW3I7x1MFRdhciL4DgOAdl0a/qVfmi6bh0bO/dHu3sAAKk+CWlFt/ZxZL+Crg4V+3ebi322wLRfsyn+qYi4IwAAAwaO7FGhqtl9cLpghf0y0nraIZJVXcsTSOzYJUFyVDhNqklsaHsX27u24u/7nkRrvDUvP1IZoMIwcy7NqsA6elO9cItuR09XJpjj6Ri6kp1QddXhGDInLqkmEU1HbZV5/Ti1+XRUu6vN4yziStkdObtzVUpBH7tgZdVey3MunWOKq2b14gO2cNihVkjttfUCVR1hsaWLS1VXre+8YRjoz3Hq7W4rc/HZOewd4MaL1SpHcFk55M2BKahyV6Mn1eNwkK1xa86bKoPBbg6x3zWFCgHphm591o6Ma/7CwecG3C875lg6armXua4zE9YDCexcBjuuI9HDuH/Hfdjds9O6JqVW2Z0IkLgkCIIgKgrncNBGxsUcalhsjacWPsmHOq+z+igb43DFpXWokoTo93+M/h/+BAAQ+NLn4f/KvwDp7AKiWAuQQtViGZIgIyAHccW8qzEjZBZIcRT0GSQUFsgKPSakBnMu7YVjcovInNZ8BuZG5uW/R+Th8fHo7zOdtNz2GzzH48Aec4G5eKUp0IyoDyIvIigHYRgGEgkdXq8ISRr8mrhkCYGQCCVl4O8Pd+Clp/NDzNoTbZZYya3SG5RDUHUVMTU/JC6XtJ62rh1zLvuUXkfOJRP53T3mQpXXRXS0Za/90UPmOFiOKFuM2q+FLMi4cOaHMDcyD2J3I/7vF+149dludLYr+NUPD+BH39iPV57pdghMzdAcjp1mqGa/UNs27DOyRX0K95nsTfY48i3tFJq7LOcyocbRl+qFbugIu8KObVje5f6+fXhs9yPY3PG+wzFkIvCFg8/hsd1/zROzzL1Virg8xURQSWGxtsU9E9VMeAPm98V+w0LRFDy09SFs69zqGDvj2f1P48/b78H27mx/ztyWM6XCxHRKUxyCd7DeoHZyCyblniu7c9lrFcAyP7d/QOfSPG5ZkKyiU/XeBkwLTgPgbCFjjSUj4ErJadUNHR2JDsiCjBV1q8BzPPb17c0TcFs7t+DR3X9FS/QIwq6I9fyRAp/PYMeXUBOWUM91EJnYjJfwuwEww7Hv2fZHbLf1Zc2lKyOCe1I9lqgk55IgCIIgSsQuKEeqLclQxWW1pxpXzLsaDb7GgvsbSNgV2j43PDBXPCdvuBE9DzwGvaYWnt/eidCVl4BrHzikyxHOmnO+ciuG2scy4OMB3OPB+1zancvBXURGIChCTRtIJnRbAZnMIt/gcHBvAoLIYeZcD2QXh0jXclw8+1IEXUEkEzoMAwj48wseFULkRATC5jh1A4jHNKhqJpQ4I0j6Un02Eec8jhDLu0z14kj0MB7d/VdHriFDN3Tohm4Js4AcQuuRFB55eB9i8awQYue4t9dceHPg0d5qPlZSOjpazEV1KmUgmdQsgVXo2pzcdCqmJk4EAOzblcD7b/ej5VAK0AT0dKlQlaxwVHUVXY4wzDQO7I/h7w93YO8uUzxwHIeONgVKwulg5zpvdjfHDs/xBb9zAi9AFmQk1aSVRxZ2OcO+vZkQXVZkqFfpdRTtSWV6XTLXj+W/sfPN5n8xJ5IVP8qltII++fm6diH3est6/GX7vdY5aY0dRXu8He+2vZ0JH86GhwKm+6cbukPYsmPVdA3vt79XVLznwsR0PCcfMKEmSy5yk3sOcvMuB3IuB8pHZqLVLXqswl113no0ZfqeHo7m552zsZRS0KczYTrctZ5auEU3pgamQdGUvP2yuRJNRx3Cc0vnpqL7VizRnrKOPzd0mYnuUnuXtsfbYRgGDkfz270wmLhOa+mscznEkOnxCIlLgiAIoqJUos+lfb/lVIstui9W6KdEoZptw+EUo4Xer550MrqffhHpZSsgr38VkfPPhPj+e0X3XahtCKNQfmOx7e1C1x7Oaj9fHMcNeszFCvoMBsu77OtVLTGnaAr2707gD/97FIm4juZpLogij0BIhJYU4TL8kHgZ8bi56AwG8sV04TGKCIWd5yaVNF0n1l9S1dNWCKaUI5JZm5CEGseh/kPoTnahLeGsMAvYczaZuAxg764E9hzswJb3zQW4PSy2p8dcRHPg0X5UQX+fih1bYoCWPed9PdnQ0GIh3j1d5utHDqZwMFMEyec1x5BI6NY5YC4PQ9VVHDoYg6IY2PROFO+81ounHm7Hz27bj+ce6YGqGtZnM8HGhHY0HbUENnNo2ecUwy24kdbT6EyaYyjmXDLxqWgph2PDnEGWD8jcInZTg90oKLQQT2kpJNVkTsh8pgBQCQt3+z7Z5xqGAd3Q0a/0YWfPDvP8ZvL9ssegYFfPzrzzB5i5og2+Bmt+MdGzv38f3m17Bw/u+Mug4zLflxGXOcWQtndvxT3b/ojWAQruMJigYaHc+c5lAhIvZULE+2AYhnVtYulY0VDPhJoAz/FwCS6sqFuJlfXHodpTjWp3NdyiG23xVsd3yB6em5v3WQhWjKvWW+f4n7XIye436wDab1jY253s6NqO+7b9n601kTkuwzCs85EbnspyIzVDK+kmBXO9e4rc6ACy81zRFWsMA/VunWiQuCQIgiBGjZEs7sOXKQgHIlvQp7R9FSvoU+z49OYp6HnkSSQvvwrCoYMIf+gDcD10f8FtBxKXsjCwuCyWi1qooA9QuFdi/v5t4rKE7Rn1jaYQ2L0tbgmSzu443n+nH6mEgdoGGaecZYav2QsASbyERCwjLoOlOZccx2HmbB8WLPWhulYCbwg2cWku7NN6umDOpfmzeV4VLW0t9nRdx9bOLbhv+/+hKxNqyhaMrKiSW3Qj2cdB4WPYurkXBgwIfFZc9vZnnEuDx+YNUfz3t/bi/ruPmlVwM7mkprhkjmoxcZkJXU3q2LMzDlHisGCRKWLYuWK9RDtt4lLTVcQT2YX94QMprH+hBzCAZJTDnh1xdPcmoaR0SxyxIlOxdMxyrOyFpwYUlxnXriVqFgQKucOO1705xYVSmlKwoI/VIzSzsGfOpRUWm7MQ39W90yrEUpcRH0C2PUYpOZd2kWt38TRdw+aOTZZDyHIVu23VPbd1bbE+I2gT1EtrV+ADMy7E9OAMAFlxaRdVrbGjeWM51H8Qe3p2WT8zccacS+aOGoYBVVexv3ffoMfHzi1LCbC33lF1FYqmwCN6rBDxPqXX4YoWKnjFQoVZvm2TvxlLa5YBML+Tzf4pMAwDLbEj1nvs7VOKtZqxw/It2bhdRW4wsOun2r7nPMcjoSas872vbw9SWsqqYmufR8z1zhXR9nDhUkJjWWh9VIkWzaNk+0xrijVWNWf+5eZ+TiRIXBIEQRAVpRJhsUD57UNGcl9M2OaGiQ54fF4v+n9xJ6Lf+E8gmUTwM5+A75avOvIwc8eQu5CXCobF2lzJor0t+SLbD368jt6WZYTFLjvedLs2vNEHgRNgGAbefqMThgGcelYV/umr07Fgqbn4t7cukQQJibgpLoLB0pxLwMy7nLvQh3BEBm+ISOaIS7N4DBOXTpGezT/MhqlphobeVA8Mw7BEJVvwTwvMAACkFR1qvwc6p6Gtuxe9XSoETgAHmCHBqTRcbg4cBHS1p6HrgCRz8LhFzFmQrXDLPjP3evT1qtB1w3IuAcDQgeZpblTVyuAMDokEE5dua9xssZ/WVUTjpuj57FVn44azz8ep50Tw0c82QeBE7NgUw8+/vwd//l2LFdYZyeSrxdJRa8Fd46m1Pn+gGwzhTAEiJsYjttw3AHmVaxUt5ax+mhFoTFxmw2IzziWfLyx0Q8drLeuwO3Ntaj111pwNyAFwHFdSGwn74t4uqhJqHLtsBWSY4O7JOGJhdwT9Sr/lHjK31iN6UOcxhS4bDxNT9mN+r/3dvLG83rIerx55JS8fjwkO5sYzcp34QiQyrhtrvVOo9YpX8lrOZldOIZ5CfWCTmhmW6xY8ea8BptgEzF6OueMASnQu423gOM6ag9meuU5xaXcu2eOwbS4bhmEd08H+g5lts/tgxYA0Q3Pk2sZtIq+U0Fh7K5Ni7mVSZc5ldqx2d/1vex/D0/ueGvSzxiskLgmCIIjKUoGCPuZuucz/IxEWW15BH49kLqaYcMmOaZD3cxwSN30Bvfc8AD0SgfdX/4vw2g+CP9pScB+54lIWBs65LFYttliLksHyLQGne1rK9oyGZhfqm2S0tSjobtPQ05lGV4eKYEjAytVO0RG0hdDKvGy5caFQac6lfWwetwQeApScsFh7uFyeaM84wvaFqaqrVs5dSjVF0L7evRA4wSqm1NmRhqz5wQFI8b04uC9p5VwmEhp0aAiGJPh85jmsa5Tx1dtm48Mfn4LqevMz7c6lPWT54L4EfvzNvXjtxR70djvdlCkz3AiFRfAQLCFud7VrPDUATDETj5vHc/r843DxmhU47+IazJ7vw7IVERgAdE7FkYMpy9nyiF54RA/iahzRdBReyWvNd/PcFe87uqRmqXVuvZI3b77mtldJqklHXqPV/5A5lywsNiNoJcthzi7EY+molQfrFt2YGpxufS/dogcyL0PRFGxoewc7urYXHXu6SNgny51k4a79Sn+mGm4P3KI7z5Vs9DVC4iUsqF6UjYjInBNW0Mcu7I7GjuaFWyYzuZQsVDO3IFHu751UCWG/zDH0274PDOYQe0SvdWMiN+e4kHPJ9smc/Fya/M3gOM6RH5nU7M7lwOJS0zUk1AT8kt+aV8Xybtn1S9vCbsMZ5zyajqJf6bPOY3eyC1Gl33EOCoW/A84819yw5ELYz1ux3pXsHKQ1xfrcbGGtVF7I70SDxCVBEARRUSaSc8mV+GdxcfUSXDL7MtRn2oEwShXP6bPPRfczLyO9YiWkN15D5OzTIL36sjkW2xjshWfsuXx2ivW5dORcFnErSxGLjlYkJRY8YqxYbbqX2zem0NWZ6Vk4zQ1RcB5HIJRtXSIJsiWYQmU4l8xR83lkcAaPZMbRy4bFKgX7XL7+Ug/2bGG95lRrkaob2TYeaV3Bgf79SOtpTAtOt0RTZ5sC0XCjYaoLaT6BrnbFuk6JuAadU+Hx8qipMxff515cA0HgIAkiXC4Bbg+HaL+GtOps2QLAqqb7zmt90FQDXl/2takz3QhFRHCGgGRcg8AJDtFX7TbFZVpLI55U4JakvKq7p5xeizMvqALcCWiqYYUIyoIMn+SHYRgwDANhV9hRSGqgOeOX/FhUvRhAfr4lYLp59t8B7Hqw82nlXGZEB3PqmKjkOA6yIDsW//2Zxfy04HRcPf9a1HhqrGvuElxwCS6ouoqN7e/h7dY3Ha6UnWLtTZjoDrnC4DkefUov+jOCs8pThVqbq8tzPEKuMK5ZcJ0VHgpk52Z2PjmjFewFczRds46/NyNO1JztZUHG/KqFVrhyKWG/SevmgQciLzrcUyaaPKIH7owDzs4ruzaFXDgmit1iYefSJbhQ66lDQk1Y/T7tQrpYHuc7rW/hraNvWDcXvDYxbc+7jaVjeK/tXSia4gyL1dIQOMES0rF0zKqizH7/Hew/WDRsle1LN5wtjXILKrFj2NTxPh7e+QD29u5xCFCW79keb3fkQrNzoNh+JymakmkRY5535iBPREhcEgRBEBXFIS5HMufSEpfD3ycbl1BiwRqe4xF2R/LEXjnHp0+dhp5H/47EDZ8A39GO0JWXwPOznzgqu9oX8lKBfEs2lqE/Hvx4Ha1IynAuAWDpcQGAA/ZsS6K7w1y8V9VIeSLVyrnsVSHzEvp7VXAAIpHCjkghmDvk88rgICKVMkMbvZa4NB1CexuS/j4Vf3uwHc8/1gMDhqPoj2ZkF/lJNWXlxjGnCgA62tIQDRdqaiWILh3Rfg1mbV4eiZgOndPg8fFYc24NrvtME+Yt8jnGGq6SYBhAV+bc2J1n9lxHq/n/9DkeeHzm61NnuBG0OZcCLziOK+KuMgVuMo20psLryRfpzcEpCARFJLwtSKV0y4VyCS6HMxaUw1auIzB4UaclNcswv2ohltjEFYPneEu82GGfp2R6ZDJYeKpom/sSL0HJOD5pLV1wMc7cansFU8AUDfZFvp1irSBY+KXMywjIASTVJNriZpGZiDuCGm9WXNpFsJ3csFh2A4P1Me23uYJ2MWMvGmRH4ESc2HgSzpiyJvN6CeIyc33dghsCJzhcw4TlQHqt8GomeBt9TRA4AYf7D+WJsYTG3ldYXAJmz0sAOJJxL+05l/Zr3ZfqRXeyCwk1gU0d72NL52YrFNeeq2sPi93ZvR3vtW/Awf792bBYLQ3N0CDyIvySOSdi6aiVizwnPNcaT7FCT+xGQ65TWci5XHfkFbzT+hb6lD5sbN8AwzAsAdwaP4qn9z2Jv+19DH/f9zcrt5Udd1pLOwS2qqtWTi+JS4IgCIIoAlckD3C4WOJyBP6UDdUFzRWTZR+fy4XoD/8Hfbf/ApAk+L99CxZ//quQo+YCzL6Qz+3NWOgznX0u7Y5xkYI+JYXFFu7pWQr+gIjmqS5Ee4DWFgUcB4QiUt55sovLZIxHIqHDHxLgdhUPwczFCsf0Zgr65DqXmYWc/TgO7DHPs5oUEI9qmaI/trBYm3PJFuB+OZvv1tmmQNBd8AdEBEIidB3o7zayziXS8HgFhEIuzF2YFWzsnNY1mgvl1iOZ/p+269fV7lzIR6pEXHZtPS69tg4+v4hgWARnmJ9jOpfZ4wq5QhB5Ef2xJAxOh8+bLy7rPHXwiB4kXZ1II4F4kvUrlB3iMuQKOXL6ctu45CLypvDJbffDCLpC4DjOsXj2iB7wHI+klizoLNpvcLCF++N7HsETex+1wjUDtoq27LFP8lkFYBhHbcVl7BQTl0y4Cbxojflg/34AQJWnCi7BZT3vEgqHcbObVmpO8ZYqdzWAbF9J++eZz/cUHBv7vcBysHPzDxl7endbQpjl+bltziUT7yzn0iN5rLBYJnJ8kg/TQzOQ1tPY17fXsX+Wg1jMuQSA5kze5aGMuLTnXKq2gj5P738Kf9v7OPb07LaeY8V87PPRHhbLvpNJNVt1OK0r5k0kQbK+q9F01MoDnhWeYz1XzK1m4p8dH7u+iQLikl07juOsx/XeBvAcj+5kF1piZsqDqquIKv2OfaT1tGO+K7pihdUyYTwRIXFJEARBVJSRdCvtjGS1WFjVYssL+8x1KIYa9pu65jp0P/EstBkzUf3Mi7j+H3+I2l2HHQv5QsV8AKf7aHde7YJSKOJWllIdl+2z3HPDmLvIB94QoOtmbqUo5rc/sQr69KnoPGIutiJVUlmtT8TM+HxeGTwEJJM6OHCW66Hopism8iI0zYCmGVboKW+I6O1SrZA6ANAMHVpm4ZfSklYom8vmvHW0KhANF3xBAf7MMXS3aTB0oLszbTqX3vxwZiYEWUXd1hbFqjTL6MwRl+EqCfOX+LHyRDP3T5J4eNxmCLHACdZc4TkeATkIgRMQzfTe9Pny5w7HcZgenAlJAvqlFkSTzLl0OwrGhF1hx42NYg56qZzUeDLOmXZeTgVaCS7BBUVTCufh6Tw2b+hHKqlbzlW/0o/eVK9VLMYuLudHFmDN1LMwIzgzz50/GmtBIYqFaCYzYk/kBeszjkRNgRrxmM5jbrGZXLJhseaxpXPEpT0sVrEJyZ5UD1RdzRPc7HowMZvrXKq6ihcPPo9XDr2E9UdeyRxHAhzHwSW4bE6qOZ7WmCniAlIQroy4ZMJNFmTMjcwHAOzoduasstxBd5GcS3aMHtGDjkQ7kmrSkXPJWr30JLutdif2AkesSJI9LFYSzJtTiqY4elOy68eeEznREqVRJYquZBdEXkSNpwYCJyCpJh3n2nn+WAElUwiy6xtL54tLtm2tJ1ulOCAHrPm9pGap5ZZG01FrPhX7XAqLJQiCIIgyqIhzORI5l5k/h+UWB8oVzsMR0tqSpeh++kV0nbMGkcMd+Mjnfox59z8FZNyFQm1IgAEK+hRpP1K+cymWvG0h5i32gYe5wK+qkfLGAGRzLvt6VbRnxGW4WiopbNcaZ2Z8/oy4TCV1uEQX9u5I4rH72nHwUMYd0gX8/Hv7cddPDmLfLnOxyBsierpVK3QWcOZcKlrayr1jYZ2GYaCjLQ236IHbwyOYOYbWQ2k8+VAnOtrScHkNhCJi3vEyoe72mC1J4lENsT7NumZpRUdfj1PshKvyr7/PJ8MwgHSKs4R4UA6C53hIvIRkpgdmwFtY9MwIzYQo8eiTDiGWMo8v17kMukKOGxvltKMpRMgVRpO/2eHySRlxqRt6nlDSdQO//8lR/OV3R/HWut48B7+vQBihJEiYHpwBnuMtx0rkRciCjLZ4G1RdxZHoYTy+51FE01FoulY0F5ONR+REBGVT2OuGjoi7CnU+U1Aw8ZHrkjLyq8VmxKXHFJf9dnFpO/6oEi3olrH8WoE3HevcsNnNHe9jf98+AKazZhgGkmoSLsEFjuOs96f1NFpjR9GRaEfEHUGttxbuHIEs8TLqvfUIu8LoTHRYbiqQzR30FKkWy5gSmArDMHAkdtgKi2XfAU3XHH067SK/I2H2FM1tYcNCo9nnJ21Vhy1xyUvWTZKORDsUTUG1p8YMzRbdSGmpouHE7HyyfYVdYQicUDTnkuM4NPiy+fc+yY81U8/CRbMuxqr64xFwmTcl+pV+R1hw/uem0Z8mcUkQBEEQA8JVrFrs0ARhIVgIabkhtrlO5XCFrhEKY9cv/gcvfPYycIaBFd/7JS7+1m/hisaLOpeOYj2wC83y2pIUY7jOZUOzC/6AOfZwDXPXnPsSRR5en4D+Xg3th+zOZelChm0rCgI8LhmphFlBdM+OOHiIaG0zF3X7tivoak/jyIEUWo8oEAQuIy7TULSU5eaYjlGmWqyWREpLQeIlbH4nhiMHk4j2a1BSOupqAuDAWc7l269G0dWqIVwl4tzLwpAkPu/csePnOA51TVn3kl2brk5TfNQ3Za95uCr/XAT8pkhIxTnr+EOZQjoCL2aLGhVwLgGg1lMLWRKRFHoQT6as8Fq2KJcFGR7R4xB0peYlD4bsyOPM3kjI7WH53lt96Gozb7C0taQKVkyWBbloSOr8qoUAgBMaTkSDrxG6oaM93oYD/QfQmejA0WiLlXtXKHfQEpe8hKDNHT2p6RTrejX4GsBxnNXmI5dstVhnzqVf8kMWZPSl+qwQ1VzBUyhH1JGLzUtQdMXRPoWFoLLr1pPqhm7o1vFZYldXsaljIwBgcc1SAE5nHsje1Gr0NwEAOpOdaI23YmP7Bkv4DuRcAs6WJMyZYyGrqqFabjK7tuz7wgR/busVl+CCZmiIpc2qqnbRx4ShlKna7JW81n5mh8yQWNYSpz+nIi4jK1SzLVo8kgepnJxgwHR/JV6y+nCa4/XBL/mtqs2BTIhrNN2fVxnY+blp9Ct94DgOfhKXBEEQBFGYSlWLtcTEEB01O9mWAeWKy6EX9CkGzwt4++qzcO/tX0CsuQHzXnoPH/30D1C3ZU/h7css4lNuaxGX4MLM0CzMicwr6zisz+Y5nHBSBG4Ph9o6OW88jEBIgKYaOLJXgyAA/qBQlqBljprAifB5RegGwGkSertV8IaIVEKHqhrY/l4S9ss0f4kPsiSht0u1WjIA5qKR5YQl1AQUTUEqKuLBP7biiQfa0dtlvlZb5bPGDwBqigNncFi8wg85o1Vyi07Z2yrU1JrnpLc7DT4z/1i+5bRZHrMAksghVMC59PszOXexbNg0q9Iq8mLWufQXFpccxyEoB6FxKmKphLW4D8pByIJsVUMW+Gxor8iJUFUd8djgPQoHQnY4l6IlWu29B1XVwOH9Kcv5Tib0gjdZ7CGxuSyqXoxL56zF3Mg869zE1ZiVbxdLRy0nMbcPJ5DNVRR5EdWeGgTlIJbULEWdNxsGGXFX4ZLZl2Fl3XEFx5BbLZZ9nsRLCLnCplDKVEZl+ZNs7rfH2/P2Zxf4LsEFwzCsUNuUlkJnogM+yWeJOpb3x/L4WAh5NB3F4ehh+CQfZgRnWvvjHO2KzHlXlQnz7Ep04s2W17Gh7V0czRS5KnTe7DT6msBzPPb27kEsHUODryHbl1U3xSXP8Tip8RQAwILqhY7357awYXOHOYvxAuGqbNz2GyWshZBbNN+vGzpkQba+j+ycs3Npb9HiFc3vOat6y0jrZmXaGk+tdd5yxTATilElOqBzmdASiKfj8IreEY3yGW0m7sgJgiCICYFTcI2cuDy+fjVObT6tqGNRDlb+ZrnOZW5Y7AiIZ7aoOLpwOl6+7xfYceZKhI524YxPfBmen98O6HrB7c3HNrcShR1K+zalirfTp6zBkoyzMRTOPr8e511cC5ebuaD553nJSnMBZqiCGUrKc5bjUwqC7WaDLxMGqiUFU7QZIhJxHYf2J6AkOCw7LoAlq8wF4Kx5XjQ2u6GnefT02StZalaTd+aGdGXS9bo70+jrNRegkbDbDOt0CXC5OPAQEKl2IVIjWQWBcp1adt5dgsuqAJtM6NY162zPVtb98Ccacf1nmuBy5Z+zYCCzyI4CM0OzsKBqEeZVLQBgCrbBxCUAq3+jmjYsB0oSJFw653Kc1nyGtZ3ES9B1A+uf68f/+/oe/Ogbe9F+dPD+isVw8c6wWDYn7MVrujsVQOcxbWbGaepTrdBTe15bcABxydqDmJ/DisFkCzdF01HrsVfKdy5ZOLTIC5AFGZfNvQKr6o/P2y7kChe9WcNClpkTnnXXsm5oX6YYDBPX1RnXi4WG2rE7yUxo7evdi/t33Id3294BYAo6Ft7MihgFM+GZTHgx5y+cabMCZNq92AQ8e8zyQ9vibehOdWWOR7fyOBmGYaCjVYGmZZ1UWZAdYnxpzXLrnHQmO5HSUqjx1GJGaCY+svCjjkrDhSoM56YIsJYldti1YO1IZoZmZ3vh2sQw648K2NzUzHxI2qrhMmG67sjL2bxsXYNhGJB4CbIgo9pt5nPmhrSyMUTT/Uhk5lNur1IA6Mm0LpnIIbEAiUuCIAiiwlQqLLbWW4vZmUIJwyXrXJZZ0Ge41WILYBeFetCPp279NJ7+4tUwBAH+W/8DweuuAteRDZUr17l0FvoZvutbCgIvDFo1+LRzI7j4w3VwySKap3oz4yvDucxcO5EX4c+EgabjguVcJhMa+no08IaARcv9+NDVdbjkmjqsODGIpqkus6hPt7MtQG5xmc5ML/hYv2a5i8GwaC1OAyEZHHgsXGqGyjLRkpdzmRmrLLjg9mRdOSssNrPvqloJ9U0uzJxb2BmqqzfFUOuhNNyiG6sbT7RCHwVORDLOxGXxGzBhtyku02nD4Qp6RI+jeI8syDhyMImt7yagKGZBpI1v92HvzjiefKjdISZKITcsNtc1AsxWL7whYvEKs6VNtE+zxljnrbdCEUtdjDNRZm85E0tHrTBViZfzBKJiOYlD/65YYbG2kGuRFy3nGMjmjrJWJEzM9WR6XeaGwjLYedzduwvxdBw7urYBABr8jZZjxhxGljPK9hW35SfasYcHszY0rM9nR6LdEYLrFtzWd3vvzjh++YMD+Nlt+/Hc406Hr8lvtiSp9tSg0d9k3XBhxYSY+BR5ES7BZR2XT/Ll3bTLLZxUKNSUnaMZoZmocldjcab/Khtzdl8y3JmcUTaPsr0n09Y5WFC1EFMCU9Cb6sXGjg2O7dj1PWPqmbhg5gfzQrfdohuyIDtyLu03RKzvfSY/eCAnfiJA4pIgCIKoKJUKix1Jsnfty/uz6BRtI3NsuaKQ43hsvORUvHXfr6HOnQfXs08jcvapkF55ydqOLcyLjadYu5JyqrEOF0duaIHzzHEcjjs5hH//3mwsWBgGkA3fKwV7WCwTl6kYj74eFTxM5zIe1cBDQqRGgtstYNVJIYgih0BQBA8RaSW7aNYM3XIuAUDTDHTaCo0e2m8uaENh0WrFMHeBH0tW+TF/cSCzDy3v2O0/u0UXBIGDLHNIJjTrvLBKsdU1xR1HAGhs8sDl4tB6WMsLUxUzOZcch4KtSBhhTxiA6VwOFAUgciL2bE+ANwRceo0pBDa9G8WDf2zFay/2WG1dSsWepyfyoiU27L0UO9sU8BAwa74HPr+AaJ+KWk89XIILs8NzMC8yz3S8MiGdg8HEsqIrlnCwt6SQBDmvYBATEMMJv88Ni03raWt/LE+TuVZMzFZ7qhzvsTtddqHLrll3ssvxmY2+JssxY/tggoaJIdZqI1cMuWzXRuazRbjCrkjesbG5H4tquO+3LVZbnffe6oOuZ79PcyPzMCs82wp9ZcdvtUHJCa1lIbzeAg5fsaq8dtj+pwam4UOzL3HkMNpbp4h251Iyz49ia2sCZN3b1Q0nAchWC2Zh82zO+CU/qjNFmnLxSX6oumoVRArY8nNZ2C8LuZ3I+ZYAiUuCIAiiwlTKuRxJmKgsv6CP7fEIHZtDICLbtiO9YCG6//4iktdcB+FoC0JXXAzfrbcAqVRBcex0KAsLu6EW6RkKzjEU/1yez4blleMkZyto8vBlCt10thgwDLMarKoa6Os1nbBItVNAuNw8eENEOp0NOc51Lrs6FHDp7CL84F5TXAbDouWENDd7ceUNjXDJzhDPYq1ImAvn8vDQNEBJmLmXB/Ym4PHxiNQM3PZDEkQ0NLvA6Ty2b4o6X9R4pFIGPB4eslh8PxFv2DzetD6guOxqBXp7VNQ3eLFidRCNU13o7kijv9dcYOe2ThkMp3OZzblkxXVU1UBPlwqvW0ZtvWz1EfUZEXx4wUfQ4GtExF2Fi2Z9CGF3vugpBBMBZlXgbF4d+0yJF61tcgVXsT6zpWAvoKMbOnRDt/aXDX81oxGYuAy5Io55YxeX9ptCbJx2Edroa4RH9OSFXjJHjN20YcIu99gclXxt56HK1j5mSsB0Ij0ZYfbsYx1IxnUcd0oQM+Z4EO3TcGhf1lF0CS6c1nyGJb4EawxM4DrHwFzE3EqxQFbwDsRA18udI55nhGai1luHRr/Zm1W1nMts+DJgij6P6EFPqtvRB7eUm3RM6LNemHbnkuVzMtea5QZPVEhcEgRBEKPGeHUumbNQ7gLSLihHqgADnyME2X4lQQJ8PvTf/gv0/eo3MAJBeH/+E0QuOBs1+8ywN0eepSPnsnCeZTk5jcPF7vwMdq6YM5EbrlfK/kVORH2tuSDduyUT0mhkqqomDfi8EmTZ+flMXKrprNNir9ppwOyJKegu+ALm+YtFTeEZDIt5VTjZ8bHwQT5n8RlxVyHkCqHZ3wyBE+DJhMbGozreeKUXhg4cf0oIgjDw90XgBDRMcYE3BGx5zykuE1Hzvd6AMGD7kCpfNiy2UCVWxv4d5rk84aQqcByHxcudRUtYnmipyEJuzmWmIJKWxrZNUTz7WAcMA2hoMMMiA0Hz9f6+oRcSYkIprSmWoNQN3cp3lHjJmnO5lWOH812xjs1QbU5o1u2yCxY2LrfgchSysReJsf+esgtBt+jG2rlX4tzp5xd8D9sfe7+9l6Udu7Nnz79kOa4SL2F57SozH1IL4ZF7W/HO633w+Hic88EaLMzMja0bc2542M9J5nyyMNHcQk0s/zG3mI853lKcy+K/O3LDfmeFZuPCmR+0RB5zz9N6GhIvOf5u1XrrzLzSRLsVTl3K7yl76Hadt94xhtybAJECDvFEgsQlQRAEUVEcYbHj1LmcGZqFVfXHY3poRlnvq8Sx5YbFsoWpfZGXWnslul9YB+XU0yFufh9Xf/q/sPKBFyEUEbtczj4Zo+lc2sXlYJ97XP3xWN14UsHWEMVo9DWizluP5sBUHD9vPupTC8F3mE4Eb2Q/OxLOX5i6PDwEQ3KIS3vu384tMRw5mELQ78WJp4ezb+SAQCibc1koPBnId8Q9ogeXzrkcs8JzzAW6x3y9t1PH2+t7wfPACaeFMRgiL6KmTobLbYasplJZ5zWeaZ3o8wkDCqOAzw1Rdw0aFtt91Dw3c+aZi+QlqwIQJQ61Dea87Gwrz7nML+jDci5V7N9l5nV6PDzmLTA/j7V6YU7pUJAt51Jx9FPsyYQqSrxsOWjunLlXToh2LhzHQeAEqHpWXNoFYrWnBrqhoyvZZd3UkAWX5XYBcDy2ixm70PJLgUwoPZd5TbaEoz2PT8gJSc0VR6zXJc/xjugB1pezzluHak81Lpt7BQ4814x3XuuDy8Xj0mvq4fUJWLjUHOuW96KO/Ew7rIBTMYHLKhXbW3wwSiniNlAYsyPn0l68SMjOD/P/tCPvGABqPWZIeHui3VH1dzDs4b2nTTnD8bkOsctLFBZLEARBEAPhzP0bn+LSLbqxpGZp2ZVnHSG/I5Zzad+nzbnMWcDoU6ai9/5HEL3l2+B0A2f/7EHUXHct+Najeftxupj2nMvRcy7teWKDOZf1vgYsqFo44Da5BF0hXDDzItR4ahAO+LAoshyiYS4i3S6b+xLOF6wuVyYsVs2KMxYSl1Z07NgchyAAV107DQ1TbIv5gABB4Cwhwhbiubm7A7W44TkeHq/5+sY3Y0jGdSxa4UcwNPi14TkBPM9h6jQfNM3Avl3Zlgwx04yD1ycMuPh1uXm49ADUtF7UEYpFVYgdUzHFNx1Tq03BHq6S8MVvzsDHbzLDI8txLlVVx5svRZGMmcLD3ueyP56EohgIBAWce3ENpkw1hUogIy6jfUMXl+w8KFraKS4z+Y525zK3Qmk535UjB5NIK86qzgIvQNM1qKxIjG1/rB9iZ6LDCo2UeMnKOwRyw2Kz77WLskKFjZh7ySrF2t9vCbsc15C1CcmdN/XeepzcdCpOaDgRgCl4jxxIg+eBL9wyAwsyojIYFlHfJKO3W0W0iNOcW8Ap17mcEpiKDy/4CKYGpuW9txQxJw0kLh3OZXZfonXzQYWqq1YlWDs13loAQHu8zZpDpbjaM4IzMTUwDefPvAh+ye8IN7Y7zKWGeI9nSFwSBEEQo8Z4dS6HSm5+5EjvkwdvCZXcO+gAAEFA4uZ/xiO//gY6p9fD/cJziKw5CfLjjzodSpv7wBV5vtKUExY7EkyZnhUHTU3Z0LpIOL/hu8vNg4czLJaRSuowDCBSI2FKcxChSPY4gmHzMRMiTEAP5lw6XuN4uDJhsQf2mDlq8xblFzEpBDun02eai9NdWwuIS78wYE6Yy81D1gNQ1eLO5eH9Kfi0WpzRfKbjOvr8Inx+Af6ggO6O9KAVYzvbzRYV65/vwd//2oG927JCiwnwri7zGFj4sdVSYpCw2L074/jhN/Zg/+7ihYXYgj63dQWr1Craci7tRW3M10oL0T58IIk7fnQQ//frI46CNiIvZsJi80MpazymYOlItEPRFMiCDI7jrNBQwClAHOKSH1hcMsfTnuPHhBcTR7m/W1yZPpCFwqTnRuZZRYgScQ3RPg1VNRK8PuccC2RujsTjha9XrljPzbkEijuU9uftY8ytQFwMey9Pu3i0VxPO5ls6z0G1u9qqmmuFOJfganslL86adg7qM06sSyjsXE70kFiAxCVBEAQxCrA/5OM153KoVKISbm7FV/ZzrrtgZ+YZV2HnIw8g/qnPgO/qQujG61D3L1+CHDUX2nZx48i5HNWw2IGrxY40U2dmF2zNTdmFeVVVvrh0e/JzLhmsyI8k83CLLoe4DIVZ3zync1ms9UghBF6wnEvofN7YB4KFAp+4aA4AYNe2wuJyoDYaLjeP6tQcVKVmYUpgasFtWGXc5un55w4Aqmtl6DrQ01U8NHbbpih++t39+N3PDmHd86ZTmOgzj9feiqS7J9MH0O/Mgx7Mudy9PY5on2btGzBdZ8XmILJ9xdPxvPcDZuhok78Jftnv6MtojrE053L3dnPfe3cm8NqLPdn3cyIMw7D6ZuaGxQJAe8J0w5h4coRHqrLVT9GO3W0uJC6ZYxmyFYnJnQ+57pwn05ojV1jl0t5qCjAWGu3YhzdTsCeu570G5Bf1KiWPstC2rL0K4BRpA10vjuOsG0L2Y2TtYRRNyVaKzRG9Ii8i7IogqSbRn7kpMZRiT/bPtd84iNiKJk1USFwSBEEQFYeJsMnmXKIClXBz8yOb/c2oclcXLMnPaA5MwezGZYj91w/Qe8/90OrqEfzLX/DxT3wP09/YmpPHWbi4T6Up5upViqkzskKoeUr23FVVF3EuDRHpAuJSS2fEvcTBLXjgdgtwuc3ngmFzUclCFpkoyHUqB2pxw4O3el1yBg9/UEC4qjQhE3KFccHMizC9vh4NzWb1Vhae2t9tHovPLwycf5YJi61PrMjb7sCeBO7/fQt2bDGdvilFxWWmOm+RirGqauDvD5vVUA/uTVqCQ+ypQ7WnBm7RnScuw0FnkSQmLos5lyz8cufWGGJRDds3R/GDW/bi7p8fzhZW4niIvAjdMD/fHmo6r2oBqj3VmB2ei8vnXuUISQVK/64csDmnzz7eabWIyRawSWaOy1mUJ+QKIaqYBXCY8GCio+VwCrd/6xDev7cZ2D3f8Xl2B8xfoD/i4uqlOLHxZEe7FnZO2XnJFZHMuXQNUOAJANqPMnGZLwzZDZNErDTnsphA6+1Jo7fHnFe6bkDXDYfgs4f7enJajAwEC43NFY8SL5mFlbTC4bpAdt70K/0lfVYh7DcJPFJ23BQWSxAEQRAlYInLSexcjli12JyKryvqVuFDsy8pef/KOR9A90uvIbp2LQLtPbjyK7/ElK9/E1y0P2+co5lzyT5rtARtTaZ9RSAkoL4+GxZbW10g57JAtVgGr2YW2rJohQ8y95KFxfrlAM6bfr6Vi5Y7zwc6ZoEX4MkU9OHAY+oM95C+J3MWmMe4a2scum4g2mNAljlIEj/gdRYlDjxvhv/m8vpLPdj0ThRHD6UgShzqmwq7S9V15kL5hSc78YdfHka0X0W0X8XBvabQevOVHnR1pDFjjgfVtRIkmYPby8PfsQgfmPLBTFVk8xz19JnOX13EFA3MYfKHMmGxRQr6RPvN53UNuO83R3DPnS1QUjoO70/i8IFs5V/7uYi4q+AW3aj21GCKugxbN0bR15PJo7NdM5EX0dej4v13+h2hrrnouoGD+5IQJQ6LVvihqQaOHk45Pjehseqozmtid42ZqAtIARgwsHNLDLwhwtU3BdueDqGjLZvf6nAupXzn0i26Mb9qgWNOibyIfbviePKhdvT3qnkCK+KqwrzIfCyoXlT0WAGgI+Nc1tTni6usczlwziVgCrpCv9903cBd/3MIv/7xQaSSOn75gwO46yeHIHLm+eE53lHoyN4rc6CcS3PbfOcSMM9NWk/bnMt8ccluIsXSUes95cJcUsAsbsX2QWGxBEEQBFEC2YXN5BWXlQqLHQpGVTW6fv5L/PXWTyAe9qPqnvsQWXMypJdeyKkWO/ricrRuMPA8h3/++lx8/J+mIOh3QxAASeYQ8Oe7b6LIQxIkqOl8gcWr5vZed1aU5opLAGj0N1mORm7hqoFuDHDgIcocBCEjLksMic1lTiZPc9e2GKL9GvQ0D6/fXMAPdJ05joPLwxcUl/bnps5wF22NwpzLIwdS2L0tjnvvbDGFwO2H0NOdxqZ3zBsb519Wi89+ZRo+//UZaMoURurOhNKy0OGeftPZW9g0Byc3nYq5EdOp8wfMY+hsV/DiU51WKxhGtD/784E9ScgyZ7XE2PhWn/Wa3SHziB7Tpdx1Mu780RHc95sWPPQnsyCWPYxb4AQ88UA7Hvj9Ufzldy15xXoYbS0KUkkdU2a40TTVPD5LXGbEFGu9IeYIummBGdZjJhg9oge9nTp6u1U0Nnlx5oVmtdZ3X88eDxM6AieUXF1Z5CV0tKehqsCBvYk8gcVxHE5qOqVgMR07lnNZX8i5HDgs1h4qXjCfHEDbUQV9PWZRoPt/34K2FgWH9yexf3saRw8p6O8QHOI6t+rqQDBXOLcqcLZNC6ukm//dYc5uLB3LbDO0G2Ys1UHkRcwMzcLM0KwB2wFNFEbvrwpBEARxzDJZw2IrXtBnGEKMA4ddZyzH4WWzcf1d6xB87HGEr7wE/Mc+BunDi5H2uAasYjrSMIEzmqG4Dc0eSG4NR6Myjjs5BI4HJKHw0scty1BVFiYoWcU6eMVcfAbcWVdk+iwP9uxIoHlaYScvr1rsIM4lBw5ujwCui3eE85bD1BluuNw89u5MoP1oCrwhwJcpsjKYi+Ny80jEVGia4RCQiYQpDK6+sXHAcTVOdUEQzLYkhmFYOZoA0N6ioKsjDUHkUN8kg+c5BEI8IjUSsCOB7o406hpcEDgBBgz096cgCEA46MbcyDxrP6LIwR8UEO3T8PzfuiAIHE47N5ufFu1TwfHAkpUBKCkdF6ythezisP39KDa9E8X5l9VCELi8HDuRF3H0UNYJZGLQfs04CNizwxQbWzfG8MNv7MWseR4sP64KM+fLVpj0gT2mcJw202O5vK1HMvvLCYvNq0KaybsEAM0whTLHcUjsbERY8eGkCyOYs8CHF/7WiQ1v9KGhyYVItYQpM9yYHpwBl1i64y1yAlIJ8zNaDqYcYzl8IInNG6I4+6JqiOLA+2tvVQAOqKkr4Fz6MmGxcQ1vr+9F65EULlhbC54392k/v8Xyye3FmXZuyebJPv6XdhyNzUe3JMO1zF4YJ/sdHSxUdWntctR4alGbKabEYPOD5eUWGpss5IrL8sNiAWBR9WKktBQ4jsPJTacOaR/jERKXBEEQRMWZtAV9uAqExRbpTznU/STCfhz9358Dl14F/1f+BcG778YNf6/GU1++FuKcUWxFkhGyo5VzaUfiRWuxX6xtgNslQUuZoXhu2Y20YopLTnGjKb4Kq2pmW9uecnYEq08PQ3YVPpbcnMuBjpm9NnWGG7P9PjROHZq4FAQOs+Z5sHVjDO+s7wNviJZzOVjYntstAFCRSuqOqp8sX27uIi8kqfgxhMISvvTtmXB7ePR0qXjgD0ehpnW0HlFw5KCZY1lTL1vCAgCqasxFe1dHxrnkeChJHSk1jWCocJ7oZdfW4903+rD53Sh6e7LhsbpuIBbV4A8IuOKjDY73zFnow47NMezZHsfcRT5HCCgTVb3d5r68PgHxmIZ4TAMvZ89DT7uOtGJg+mwPvD4eO7fGsXVjDFs3xhCuEnHVx832LG+vN6soTZ/ttvIQW1tM4Spa4rJwWCzHcQjKQfQpfZYABQDsXoDpqoGlqwKQZB5zF5nH88AfjsLj5fFv35mFNVPPKnptCiHyIpJJ80ZKMqHj6EEVU2eY5+LFp7qwY3MMzdNcWLyieL/FVMp0VCPVEiQ5f254bWGxmzdE0d2RxnEnh7LfQ7u4LFLMh4lLUeKgpg3UNcpQ0wa6OtIIohlQAQE2J1oqraAPYFbRtd+8YLDrEss4l1IBJ5GFarPc3aEU9AFMgVuI3dtj4DgO1af6C74+3qGwWIIgCGLUmGzOpSMstkKtSEZkPxyP1KWXo+ulN5C48IMIt3Tiw1/8GWq/+u/genuGM9ySEUe5oI+dQu0GcvG6zAWu2ZIjK/DSKQ6R9Aw0hbKihee5osISKNCKZIBjZs3k5y7y4WP/OG1Qt2gg5iw0Q2M3b4iCg4BItXmsg/XhY85bbmhsPKZByuRtDobXZ/bcrKqR8OkvTsUZHzBdRVbBtqrGed7Zz92dGYeYE6xQV19ALOjaz1nowylnmTlp/baqsfGYBkMH/MH845ydyUU9cojlPtrngikcentU8AIwbbZ53TvbFCsv8dnHO7FniykQl6z048OfaMJX/msWPvZPzVh+fAg9XSp+/eOD+PWPD6L1iILGqS5Mm+VBICjA4+PR3mK2X2HzP6nlF/RhnDP9PNT7GqzcXV03kEjo8PkFS8CdcV4VahtkeH0CEnG9aBGlgRA40XIueUPElg1R6zUW6rpvV/GWLgDw/ttmqHOhfEvAFhYb0608WbsT6ezVmb8PwzBwYE8CHA9ccJnpLp7xgSqsOb8K9q+TmsiKVG/GueQ4bsj55Fa7mjQrrjR4i5RS+lwOxluv9uL1l3qQTuu4584WPPaXtmHvc6wgcUkQBEGMGpPNuRyJ/MhK7dOZW2kuwIy6OnTfdTceu+VjiId8CP7pj4icthry448OfcAlwhZgYyEuxRLEpcdlLirTigG3mF08KknzGrDFcikUOveDbctx3LDnECvqAwCrVkdQ15TJ6Rokt7aQuNQ0A8mEnte/sFSYM8lCZJnQZUQy4rKrPZtzyfIm/QGhqGtvVY3tzeZYskqx/kD+WGvrzXGw4jP2nDaJl6CqOmL9GoJhETWZwkSd7Wnw4LF7RwLxmIajB0xxNHuBKd4licfs+T58+p9n4byLa9A41YXpsz24YG0tPvXPUyFJPDjOLICkaQY62xVr/ics5zJ/HgbkIM6fcSFqvaaYSsR1wAA8tmswZYYb//TV6Vh+gukqHraFIJeKluahaYAsc+ANCXszQlJRdCsHdu+Owu1aAGDzhn489pc28Dxw4unhgtuwsNiuzrRVKGv/nqy4tOcBF6rI2tWRRrRPQ9MUF44/NYSv/NcsLFkZwPITgvj6/5uNeYvNa5GKZecJy7kcqpMIAF7R3G9PqqfovvJ6oNqORdcNvL2+Ny8neCBUVccTD7bhbw+1Y9fWuOnS1k/c3EsSlwRBEETFmaw5l07ncuT+pDLBMRwh5iw2ZHMxeQHbz16F3939NcSvugZC61GEbrwOwRuvB3+0ZeiDHgTREpejl3PJYAtEsypp4XPKxKWuOvPyVEtcln4tcl3jgbfN9MYcgfkTikhYfkIAC5f78cG1TdYcGMzFKSQukxlna+ji0jznmcjBPOeSic2uThYWK1iVWoMhsago9wUEgHP2u2SPCzmXNTni0nGjQZCszwyFJVTXMnGpoKNVQzwjEDhDQFWtlHcMHMfh9POq8JkvTcONN0/BSWvCjpzV+kaWd6lYRV+yOZeDiwdWadVbYO41TzMFzpGDA4vL/j4Vb7zSY/VrBYBkvznGYESELMjoyVyDjlYFyBTD7WhLo69IZd7XX+oBDOCKGxostzwXdjOGOaGA6Vyy9if2fO9CoafM5Zw+2+PYH2AW4AoEzZ/TsWw/VHZt7XNnx5YY7r+7pWjV2lxYUS7WFqZgtdica2cPcd72fhSP3teGJx9qt57r7kxbubyFaD2iQNcAGGbFZQCYNntohb3GAyQuCYIgiIrDHJmxcK0qid1pGklX1hKXw/gzbXfCComdRMiP6M9+hZ77HoI2bTpcjz+CyGmr4f79bwG9cIXH4TCWYbECL1g9DovhdWcWjJpT2DDn0l0xcTmyuahrr2vAh29shFvOLrQHm5vuTCuUZDK7AI9HzTngGaK4dLl5UwhmiOQIM5fLfL2nK20WEuIES8wEwsXFpSBw8PkF9PepllCxO565BIJmX9KONsXskZjjYrN8y1BERHWmME1nWxpb34uCM3jMXeTFvIUBnPuhmrx9D0Z9xjluPZzKc49LqTDKcl4LXYOmjLg8vD+J7Zuj2Le7cBjrK89044n72/Hik13Wc/19KnhDgNvNI+h3I5nQkYhrZoEewCrqvfndfqtvqp2ujjR4HliwtHhOIJtTmppt3RLt06wwaGdBn3x3MFdc5sJuJCSi2Rso7CYS+/+d13pxz6+PYNO7UWzMhPEOhi+nn3ChmwB5zqWjIJIpIre9H0UqZZ7XO//7IO76yUEoqcK/V1sOZoVn6xHzfBc77onA5PorTxAEQYxLjg3ncuTF5XAFKxOnjsqXHGc5eBzHIX3WOeh68TXEP3szuGg/Av/6BYTWfhDCrp3D+uxcWOuB0awWa2dx9RIsql5c9HVLXKo8eNvCX0kAHG+KoVLhyhCX7HyMtOhm17iU3DN2bHbnMj6Aa1YqdqevqjpfQNQ1ytA1UyBx4NHfo4LnAJ9fGPB8BEIidA2Ix8zxMucyUMC55DgONXUS0oqBvl7VEh6qaqDtkG6Jy2BYdDiXWzdGwYPHlOlunHF2HRYtL7+4CnNNuzrTeXl5hdy6XKxrUEBcRqpFeHw8jhxK4Z5ft+B3PztUcB8th0xnc/0LPZZQ7O9TwRkC3G4BoYApYro702jPFB+au9AMr37q4Q787L/24/CBrDuqpHRE+zSEq6SirWkAMy+ZCUzzZ/N/Jhrt56Ooc8kB02YVFlnsWqf6ebhFNwJyELIgY0nNUiypWYZEXMNjf2lD5v4Ddm9zhvke2JvAo/e15oWv+iTndS5UaTk359L+HTuaye1NKwa2vR/Fs4+bbXPSioG2lnyhDgBHDjndZ0nm0DTEwl7jARKXBEEQRMWharHlMVJuVjHHOE90+HyI3fpd9Dz5HNRFSyCvfxWRs06B98f/D0gVD+cqh2xY7NjMgZX1x2FZ7Yqir/s8bgTSDajlp1k9CQEgneTg8Qzu/tmxO87CIA7VSDuXdlbVH4+VdccNup0rIwJSiay4ZK4Zqzg7FCxxyQHh6vxF+sJl5kJ+84YoknFAUQwEQiJ4nhtYXGZCIg/tS+D+u1twYK+5OPcHC4/VCo09qlhCZst7Ufz512147gkzDDEUEeHzC/B4ebS1KGhrURAKueAPiEMu2BKOZKvR5or8Yu037CQy4rlQvi/HcWie5rbCjmEgr/+mYRiWE6ZpBp55tAOA6SAKEOHy8AgFM/1GO9OWc3nSmgjqm2QEQiIMA1j3XLe1T+Y85jrRhbCPe+bcTGGlg/mtXly8U6z1dKfR06WivlEumuvsD5nPR/t1XDJ7Lc6Zdh4Ac87Picw1nWrNrHQsuzjs3RmHqmbPzwt/68Tb6/vw89v2OxxFv5wjLgsIX57jHeGy7NoahoEWW/jrs4914q11vdbPxUJjmXPJ+udOGaCn7ESAxCVBEARRcSarcwlURjhnncvh/ZkuJlwWVy/B4uoledurK1ah++kXEf36NwEAvu99B5EzT4b00gvDGgcwtmGxpeB285gWPwUzxeXWwlfTDOhpvqx8S6C8ir98hZxLwOyjN69q/qDbFcq5jLOQzDIKGeVSlXECQ2ERoph/fIuW+8FxZoGYjpaM+xhi56P45zLX6oUnu7Dp3Sh2bDb7DfoDhUUgK+rT3qpYTtShfQnwEB05lwBQXStbbtfSlSEAcNxsKAd/UADPA73daUdYbKOvsWAuXy7Za1B4bkyd6XT1mAvL6Oky28s0NLvg9QnYvimGeEzLOpceHpGQzbnM5EdOme7GZ788HZ//+nR4fQK2bIyiJ1Poh7WOyc0/LYR93DPmZD4n8377+ZByqsUeGCQkFsjOgWifCrfozttHZ5v5OXWNLsyc60VaMXBgT9YhjMfNuR6PaY78SLfgLqkHJ7t+Apd12fv7zDzdukYZ/qCZQyzwHJasMgVrIXGpqjpaW1Lw+gWsWB0EAMyYwCGxAIlLgiAIYjSZZM4lkBXMfAXCYodb5MUaW45wWV63smiPNUgSEl/4ErpefA3KWedA3L0L4SsvQeAfPwG+9eiQx8JCTceioE8pMIGVTOqW25hWdHAQ4C5TYNnd2cGdy/ym8qON/dgZTNgMtaAPkBUgxYSIPyBixhwPon0a3nvdLKASDOcXZcl7X0ZYtBxK5TxfxLlsyDiXbYqVQxeulsAb2XEx16i20Xz95DPDmDrNzL8balsLnucQDIuI9mkw9OycWFKzrKT3JwYIiwWAE88I4ZJr6rB4pSleerqdbUmYmGme5sLC5T7oupkLGO3TwMPMRY1ETCHTflRBV2cawbBozQdJ5nHCaSEYOvDGK6YDZzmXBcKcc7HfmGAFaqwCTnxxATdYviWQvdb9fYUL9bAQ4OpayWpHYw+NZc48AGx9PwpdN+8ocBznyLssdu1ZuyL7cbCQ2KapblzzySZ86Oo6fOnbM3H2RdXm60fyxSUr5tM01YVTzorgA5fW4KQ1kaLHPREgcUkQBEFUHMvdm4TO5UjlRzr2iZEJlfRKXqs8f7nos2aj994H0XvX76E1NsH94P2InHwcPL/+BaAWriI5EH7Jn1m4jc/G4Hb3jrVJUBQDvMHD4ynvOpRTRbhSOZfl4C7gXLKQzOGIy6kz3ZBkDrPme4tus3il2VJj1xbTVco6l8W/T2ybXIo5l6zFSFuLYjlOHMwej4xg2Hx85vlVuOSaOpx7cY11I2Q4fQxDmdDYjqNpvPpsF1pbUmj0N+Vtd/RwKq8oT3yAgj4A4HYLWHVSyHJmc53L1oyYqW92YUnmPG96N5op6CPC7eFRFTZF0rb3Y4ABNE5xhqguP8F005jgG6pzWV0rWQWcdN2wcr6B/NDT/RmHsVi+JZC51jlVg+2w/p/VdbLVomfXNtPh1nUD/b0qfAEB02d7kIjpaMu4tof2JbF7ow7DMJCK8nmFgKL9KjraFPCas3gQkBXzDc0uTJnuxvGnhOD1CQhXSZBdPFqPpPDn37XgJ/+5D0893I54TLOq/TZNdcPl5nHKWRHrd9FEZWKPniAIgpgQTOqw2AocW1awDm8/Z007FxfMvGjoO+A4KBdfhu5X3zQL/iTi8H/9Kwh/4EyIb71R1q58kg+Xz70KJzSsHvp4KoiVd5jrXBpC2RVTHX0uS8y5HG4I9HAYMCzWN/RxhSMSvnrbbJx2TnEnZsXqABYs84GHeZ6CocHDp+2Fe+y5f3KRokuRagn+oICDe5PY8o4pklQF1mfKLt4qPhOKSFh1UgiCwFmu1XD6JjJH9OCbAXBHZsL1/ml52xiGgXvuPII//vKwIy/QEviDOOdMwLLQVQZzyhqazD6cPr+AvTvjOHo4Bd4Q4XILqIqYwotde5YHywhXiZBkDh2tCgzDsMJaS3IuM98bXjBvUkSqJegarFBkkRORTut49al+9PaY+9V1A13tCnwBoWCBJoYgcPD6BNMVNoy81zvbss5lVY2MSI2E1iMK+ntVxGMadN2cayxcd99O09V84sE2bHtLQ2d7GlveSeKhP7biwF5zznS0KfjRN/fiZ/+1H4/+XzfSad3hbLJ8y1yBzvMc6ptkpBUDWzZE0d2ZxvoXevDqc91WqO7UGRO3gE8uJC4JgiCIimMJsMmnLW05lyP3J5UbobBYv+RHQA4OezyGP4DYrd9F97OvIL36JEibNiJy0bnwf+nz4Lo6S96PT/KN25xLl9tcCJvOZUZcpg3wEB1VL0uhnFYk7LPGNiw2e+yMkQiLBUwRMJCrL4o8PnxjIy65ugGLlvvh9gx+PgKh7IJ+/mIf1l5fj6s+3jDgGK68oQE8Dzz7SA/6+1To6ez+w1ViwTEKmWuX20akHJi43L0thYbkUnTtd1mhpYyeLhW93SrUtIH+Xls7mHhpAj9cZX5GnnN52BRY9U0u8DyHJasCMHQgGdch8CJEkYPP7bJCTAWRw4KlzlYcPM+huk5GKqkj2q9ZYa3lhMUGgmaRJuZ2MveT53gc2JPEWy/F8NJTZqsUu/AbjEBQgKYZSMSz8/bt9b3YuTWGro602Q4nU5CKuZe7t8ctcRsIiZg51xSXe3cm0N+r4siBFGTdi74eFb0dpmhl4bT7dyesAkpaQkI8qjnakLCw2Prm/DzNhuas4LxgrdnWZtfWGPbvToDjTJd/sjA+f8MTBEEQk4rJHBbLGMljYwvr8VZdV1u0GD2PPIm+238Bvboanj/8DlUnr4L7rjuGFCo7nrC347Ccy5QOzuDLLmpjv9EgDCIuuQpWiy0VK+fSXi12kHy/kYTjOBx3UgSzbeGzA+Xm2nMrm6e7sfz4IBavCAz4GTPmeHHiGWFAFdHTmYauiBAlDhddWYsL1tYWfI8l/EvoSVkMFm5rF+5b3os6tjmwJxsO228L80yUKPALOZdpRUd3Zxrh6mwO5ZkXVKEm08sTWiavkpctoTh3kdcS93bYe9paUujtSsMfFIq6xHZYWCw7B+xzmLgWeRHdHQoEQ8LOrXEYhhmuCjhvIBTDbyvqA5jn9dH72nDvXS1IKwaq6yTrd6g9NJZ9RjAkYsoMN0SJw75dCWzPFIaSdC/aWhRoSfNc7NlhiksWZuz28BANU3Az5zKZMHt4RmokuN0F+pJONcXlvMU+nLQmYjmpfT0q6ptdBc/7RIXEJUEQBFFxihWWmQxU4tgq2Z5i2PA8Utdch651byPxsU+C6+1F4N//FZFzToP08otjPboh47aHxdqcSw7DrBZbcp/LsbuRYB17Soeum/0g49GB8/1GGnsOHvu5GCzfDjCL1ZRKuFqCaLigpyVwSQ/cHh6rTwtj1rzCOaFM4A61oA+QFX5AttfjpnedeXwOcdmbFZfxmA6Ow6A5eMGweT7szmVfZj9h2+d7vAI+dtMUTJvlxlknz4ZLcKHKXWX192R5mbmwnM7d2+LQ9dJcS/Z5QDaM2RKXHWl0daQxLTADWlutVbW3tUWxxl0sr9ZOwFbUJxHX8MQDbQAATTUdR3ZcADBjrhe8YDqX9t6moshj6gw3UkkdLzxpRmFIuhcdrYpV8OnQ/iSSCc3KqZy9wAshIy5Z9eGjmZYvjc2F5+PS4wK48IpaXHptPYCs2AWA6QPklk5Ehv5tIQiCIIgSGW8O3EhSiYI+Db4GpLQkvKJv8I3HCCNShegP/huJG26E/z++Ann9qwhfcTFSH7wE0W99B/r0GWM9xLKwV0wVrYI+OgRDLNtVcIrL0nIux0O12FRCx7rnuvHMY+YiWxA4yPLofXcFToBqmAv/gcSlIHBobHZBUfSShQ5g5i5y4LFE+wCUaAzuuoFF20jmXAJm9dO+HhUtB1Po7U5bwpP16QSA/l4NTz3cjr5eFYm4Bo9XAM8PfA1EkUMgKKKvV4WmGRAErqgDGAiK+MTnpwKYCsDMfz7zQjemz/Zg0fLCxbZYn9ANb5iiuKGIgMqF5cPWZqr1sp/feb0PrzzbjZUnTkdtRzYfd+fmmCVISwqLzWzT0apg19YYon0aZs33mk6jkXVcATMyYdosD/btzDqU7P2nn1eFA3uOINqnQXbxkIQqtKlVCKabwAuArgH7diXQekSBKHGYNssDYZNsVpbO/K44esi8hg1TCp8bUeRx4ulh6+fZ8714M1OBd/rsyRMSCxwDzuXnP/95nHDCCfjiF7841kMhCII45hmXTtwwqUTI74q6Vbh0zuXDCscbLbSly9D78BPovfNuaFOmwvX4I6g67QR4b/s2EIuN9fBKxuXmwXFAPKrZCvoY4CGUXdTGnitbqnM5lgV9BIGDKHFIJXVstoVsapoxqjeGHIWQBhHbH79pCj79xalljc/rN/cf7xIhQIJrkJsGs8NzMDUwDTWewmGzpWAXl41TXJiz0LxhxEIt4zHN6i8JmI7jm6/2YvO7Uahpo+S5F64SYehZ57PPFvo56HsjElaeGCwqYlm1XZaHW0yE5jJtphv/8KWpOO1cU0BWZW4EMFf83df7AGTzDXdujdmcy8HHPX+xOY7XX+rB2+t7IYgcLr++3sobZaKWMWd+Nu8SAIJh8/rPmufFhz/ZCFHisHilH81NfsyMnYlIeiaWHWfmrL/5ai9SSR31jTICQRGS7kEqqcMlmmO3V4othRlzPZaTPVBV3InI5Psrn8N1112H73//+2M9DIIgiGOcyZtzOZlDfkuG46BcshZdr7yJ2Je/BvA8fP/9Q1Sdchxc998HFKjmON4QBA7+oGjmvOnMydPAgS/a4qIYdsEzmEhi4bBjPX9cbt5cLI9hGwT7uRrsfLjcfNmOMnPFWEEZ9yDH2uRvxlnTzhlWWKzbLVjntHGK28orZQLnYKYSKROhh/cnoaaz35dSc17Z+3syIZ+sMFAp4aWDUVUrWcXY/EFhwP6TdjiOQ9NUNySJt94rSpm+rkL2O3L8qSH4AgIO7kuiq8MU2qWI4ikz3Jg2y42ujjSUlIHlJwTgD4i4+Op6fOiqOixY6hTBsxdkIkEyp9cuYOct8uFf/3MmLr66DvVNWYF4+nkRiBJnFfWpbzYLIHm0akxLH4+lmZ6lrOdqsbDYXNxuAedeXIM151eV/ftlvDPp/xKeeOKJ8PnGb1gRQRDEsUC2WuzkE5dWWOwkFM5l4/Ui/q9fRde6t5FcewWEliMIfu7TCF90DsTXXxvr0Q1KKGy6P8mM4ZpOZhfF5VBOziU/DqrFAqbQ0jTDykebs9CLD141dMduKDDHODf/cqTwZiqH9nSax+gqswrwUGHVXBunmC1BeB7YsyMBXTesVhSs3+ehfUnHe0stJhWuMl3B/7vjCF58qrOswjiDIUk8whnXcdFy/6BhusUwxaYLsovHNZ9qtJ6fNtOD5mluGHpWdAfCpY37lLOyYbUnn2k+9vkFHH9qKG+cDc2y47sczPkMt9sMQW7IVHsNRURU18pYbQtnbWhywR8QwYGDLzoNPskHVdXRfjTTPqWM833KWRGcdWF1ydtPFMZUXL755pv4x3/8R5x22mmYP38+nn/++bxt/vSnP+Hss8/G0qVLcfXVV2Pjxo1jMFKCIAhiOEzmarGTWTgPFb15Cvp/9Vv0PPIk0stWQHr7LUQu/gCCN14PYc+usR5eUZj7E+szrQ0lYV5Tf6DyOZfjwbkEgJ7ONESJw3X/0IQTTg2P6hiyxY0qcy6YC6hp5vUtt8XMUDnvkhp84NIaVNdJcLl5TJnhRjyqoa1FsXooLl7hd4yNUWoxqVUnBTF3kdfsG/lcj9VuoxQHsBSYI7d01cBVeQfj2k814aZ/n465C3047dwIVqwOIlwlWr0hWW/PUsc9b7EPS1b5ceo5EavwUDE4jrOcY9nFFazqCpgViMFle0+eenYEssv8XVDf7LJ+H0T7zXPc1qJA10sPiZ3sjKkPG4/HMX/+fFx++eW4+eab815/4okncNttt+HWW2/F8uXLcffdd+NTn/oUnnzySVRVVQEALr300oL7fvDBByEII3sXcKh3aioFG894GxcxOaD5RYwkAs+B4wCe58Hz3KSaXzxv5uoJmWMjsminnIq+Z16EfP+f4f3urXA9/gjkp55A8hOfRuJLX4ZRXVOxzx7KHAtl3J94nwHOCyhJc3Evy+WvJwSeh27oEAeZF7JohhxKgjim84eFmBqGKaYFYfTFrsiLFf0uud1mWCYLO/V4Bi+WU4xy5te8RX7MW5T9efZ8Hw7sSWL7phiOHEjC6+MxZbrbCk0GAFnmoCgGfP7S5kVNnQsf/ccp+NWPDuDw/iQO7Tcd0FBEGpFzedGVdTjhtBCmzy5cWbdUfP6s9PjAJVlnvGlqtqiNKHHw+oSSbtjxPIerP95U8ufPXejDe2/2Ixgqfl4bmtz41BemorrWPHeBoIhLPlyP3dvjmDbTA0Hg4HLxiPVr4HkOr7/YAwCYOdc7YvN2Iv+NHFNxuWbNGqxZs6bo67/97W/x4Q9/GFdccQUA4NZbb8ULL7yAhx56CJ/85CcBAH/9619HZayiyKO6urQE5tEmEqGwX6Jy0PwiRoJguxcJ3o1I2Of4XToZ5lfwqAealEQ45Bu3fyfGnM9+Cvj4dcBPfgLuttvgueMX8Nz3f8DXvgZ8/vOAu3LVEsuZY03NcQDd0NMyXLIMXeURCstDuq7BgBeqrqIqEhjw/aHIbET5EzC/Zj6qPGM3fwLBbGXNUGRoxzxcwu0+KGIMHtFTsc/3B0SrH2Skyj3szxnK77CTz+Dx/N868cozXdA0YM6CAGpqAghXSVYvxTUfqMPTj7VixqyB508u02b4cHh/0nIup88MQRSHf6OguhqYOWvYuynKwiUSgCMAgHCVjJqa4TmkxTjhFDeeergDcxcGBzyvua+ddb4fZ52f/TkYltDemkJfF4eNb/cjEBRx4aXNI96vciL+jRy3GaSKomDz5s347Gc/az3H8zxOOeUUbNiwYdTHo6o6+voSg284ivA8h0jEh+7uGHR9/BdLICYWNL+IkaQ/mkQ0lkRvbwKdUnRSza9oNIVoMok+VwKdndHB33As8+mbwK39MDw//D7cv7sL3Fe+Au2nP0P869+EcsVV2UaAI8BQ5pgom0VQ2o8o6BFSEHQZHh83pOsajylQNAV9vUl0ugd+/zzvUhhxoDM+dvOHF7LnyO0Z2jEPl1hUQTSWhCGJFft8eyisAXXInzOc32FuHzB3kRc7t5j5hY1TJXR2Rq1qtgCwek0Acxa5UNfoKmuMoarsPnwBAb298bLGNlYYnAGPl0cirsPn5ys6//75GzMgiMOb46yK7x9/vQ+GAaw5vwqxeAKxETrd4/VvZDDogSQNLKDHrbjs7u6GpmmoqXGGzFRXV2P//v0l7+cf/uEfsHHjRiQSCZxxxhm44447sGDBgiGNaTxdXDu6bozbsRETH5pfxEhg6Ga4nWE4f5dOivllcGYxVIOb+McyGlTVIPpfP0Dik/8A339+C64nHkXgs59C+n9/ivjXboFy9nnACOavljPHWDGO/m4DKxeciT2JbvgCwtCua2Ze8OAnxLyQXTZR4h/iMQ8THjwMw8xjrtTn21t7yK7hX5uh/g477ZwqS1xOneGBrhsIBM35FwgJkCTOqlpazv5rG7IOdCAkToi5x2hodmHvzgQCocrOP0E0f78M5zNY3uXRwym4vTxWnhSsyJgn4t/IcSsui2EY5fVcuuOOOyo4GoIgCKIUJnVBH3ZsVNCnLLTZc9H3uz9Bem0dfLf+B6S330Lo2iuhnHQKYl//FtQTTxr1MbGCPn09KrzpWrh1bchtAqwqwhOkRY29BYmvzAJGIwVf4YI+gLO1x2hViy3E9NkezF/iQ2ebgoZMMRsmLqtrBy5MMxB1jdmiMoEyqxyPNY1TTHE5UkWIKom96uzchT5Ha5VjnXH7Gy8SiUAQBHR0dDie7+rqynMzCYIgiPEN+7M71hUxKwE3iXt4jgbpk05BzxPPovfue6AuWAj5tXVmZdmPXAnh/dGtEO/zCxBEDr3dKqJ9ZohsuW1IGOxmw1i3GCkVu7gcq7572WqxlTtndnE50vlx5XLNJxvxT/8+HWLGSWM9KatrpYHeNiD+gGC5sxNBpNlZuMwPSeYwa97wigaNBvbvyLzFEy8vspKM27/ysixj8eLFWLdunfWcrutYv349VqxYMXYDIwiCIMpmMgsvJiImo3AeNTgOyoUfRPfz69D3s19BmzYDrmf+jqpzTkPgMzeOWvsSjuMQCouIxzR0d5pFX4brXE6UeTEenEvW57KSgtwhLt1je204jnNEPMye70MoImLRiqEXGeI4DnUNGSd0gonLqTM9+Pr/m4M5C8e/WGM3nXgemLNg/Ivh0WRMv1WxWAxbt27F1q1bAQCHDh3C1q1b0d7eDgC48cYbce+99+Khhx7C7t278a1vfQvJZBJr164dy2ETBEEQZTKZBRg5lyOIICB19bXoWvcW+r/3I2h19XA/9AAip54A/5e+AP7I4YoPIZgJjT1y0GzlMFTnks8ssSaKc+l2OJdjJC5HOyx2jMVlLrUNMr74zZmYPX944qqu0QyrDYYnlricSPgzIczTZnvg8U6M7/hoMaazbtOmTbjhhhusn7/zne8AAG666SbcfPPNuOiii9DV1YXbb78d7e3tWLhwIe68806rxyVBEAQxsZiMAoynnMuRR5aR/MSnkfzwR+C561fw/vR/4PnDb+H+8/8h8bFPIHHzF6HXN1Tko0OZBfnh/WZLCJYHVy5Z53JizAunczk2y8NszmXlzpm9oI97DHMuK8kpZ0UAAItXVKadBwHMmufBcacEsXJ1aKyHMu4YU3F54oknYvv27QNuc/311+P6668fpRERBEEQlSBb3GSMB1IBLOdyErqyY47Ph8Tn/wXJG26E9+e3w/PrX8J7xy/g+f1vkbjhxoqITLNCZz80zazQOPScSyYuJ4arYS9uM3bOZeXd3vHsXI4UkWoJH7yybqyHMakRRR4XX10/1sMYl0zObxVBEAQxLpmMzuVkroQ7XjDCEcS+/k10vvU+4jf9M8Dz8N7xC1SdsAy+//gK+NajI/ZZK08MOtpyDDXkbaLmXAoCN2aO3mgW9JFdPHievrMEMdJMjN94BEEQxAQns4ibhNal5cqSuKw4Rk0NYt/4Njrf2lQxkenxCjj+1Gyo21AFyEQTlyzn0hcQxizEmxX0GY2cy8kaEksQYw19swiCIIiKM7mL3kzeYkXjlUqLzJPXhAEAcxcNvQokm+sTpaCP1y/A5eZRWz/0HovDZTT6XPr8AiSZs3qaEgQxstA3iyAIgqg4kzl0NJtzOfmObbzDRGb8c5+H939vh+c3d5g5mXf/BqmPfBS45WtAsLbs/QZCIr783VmQpKFfU1aUhucnhriUJB7/9O/T4XKN3U0SJsQrKcglmccnvzAVHi/dDCKISkDfLIIgCKLiTGYBNpmF80Qh18k0RAnu394JzJ0L/2c/DWHb1rL36fUJkOShL5OssNgJtNQKhsQxLXJj5VxWWJA3NLsQikgV/QyCOFaZOL/xCIIgiAnPZBRgHIXFjhuYyOx6ZxPiX/k6EArB9Zd7UXXGiQh+7CMQ33lr1MbCQjwFnuZFqbBzNZEEOUEQTujbSxAEQVQc5u5NRgFGBX3GH0akCol/+yqwfz9i/3kbtIZGuP72GCIXnI3QlZdCeuUlwDAqOoYFVQsxNzIPYVekop8zmRB5002UeMraIoiJyuT7K08QBEGMOyZzQZ+scJ58xzbh8fuR/OxN6HpzI/p//FNoM2ZCful5hC//EMIXnQP58UcBTavIRzf5m3Fy06mT8oZKpWj2T8HKulWYWzV/rIdCEMQQod94BEEQRMWx8hInoQDjJnGblUmDy4Xk9R9D17q30fer30BduBjS228hdON1iJxynJmfGY+P9SiPeURexNLa5fBL/rEeCkEQQ4TEJUEQBFFxJrVzOYmPbdIhikitvRLdL6xD75/+DOW0MyDu3YPAV/4F1asWwfu9/wTX1jbWoyQIgpiwkLgkCIIgKg5zInySb4xHMvJM5nzSSQvHQTnvAvQ++Bi6n3kJycuvAtfbC9+Pf4Dq4xbD/8WbIGzfNtajJAiCmHDQX0KCIAii4iyrXYGr5l+DoCs01kMZcTgq6DOhUZetQP8v70LXmxsR/+zNMCQZnj/9HlWnr0bwI1eOSvEfgiCIyQKJS4IgCKLicBwHj+gZ62FUBLfgAgC4RPcYj4QYDvqUqYjd+l10bdiC6Le+C615ClzP/N0s/nPuGXDd80cgmRzrYRIEQYxrSFwSBEEQxDBYUrMM58+8CPXe+rEeCjECGMEQEp+7GV1vvIe+X9yJ9LIVkN5/D8EvfA7VKxfC991bwR8+NNbDJAiCGJeQuCQIgiCIYSDyIgnLyYgkIXXF1eh5+kV0P/IUkpesBdfTA+9PfoSq45ci+MkbIL22jkJmCYIgbJC4JAiCIAiCKAbHQT3pZPTfeTe63t6E2D//K4xwGK5HH0b4kgsQOfs0uP/0eyCRGOuREgRBjDkkLgmCIAiCIEpAb2pG/GvfQOe7W9F3+y+QXrYC4ub3EfjiTahesQC+//wm+P37xnqYBEEQYwaJS4IgCIIgiHJwu5G65jozZPaxp5G87HJw/f3w/vS/UbV6OULXXA75b48DqjrWIyUIghhVxLEeAEEQBEEQxISE46CuPhH9q09E7GgL3Hf/Bu4//R7yc89Afu4ZaI1NSF53A5LXfwx6U/NYj5YgCKLikHNJEARBEAQxTPSGRsS/8nV0vbMZvXffA+Xsc8EfbYHvh99D1arFCN5wDeRnngI0bayHShAEUTFIXBIEQRAEQYwUogjlwg+i994H0fXGe4h/4UswqqrhevIJhD5yFapWL4f3v38AvvXoWI+UIAhixCFxSRAEQRAEUQH06TMQ+/o30blhK3rvvBvK6WsgHDwA323/iaoVCxH86IchP/EYkE6P9VAJgiBGBBKXBEEQBEEQlUSWoVyyFr0PPIqu9W8j/tmbYUQicD31N4Q+/hFUL58P3ze+BmHb1rEeKUEQxLAgcUkQBEEQBDFKaLPnInbrd9H53nb0/u7/kDr/QnDd3fD+8meoOuNEhC84C+67fwOur3esh0oQBFE2JC4JgiAIgiBGG0mCctGH0PeH+9C5YRui3/hPqHPnQXrnbQT+7Z9RvWQuAp/9FKSXXwR0faxHSxAEURIkLgmCIAiCIMYQo74eiZu+gO5X3kT3408jcf3HYAgi3A/8GeErLkbVCcvgve3bEHbuGOuhEgRBDAiJS4IgCIIgiPEAx0E94UREf/xTdG7aib7bfwHl5FPNIkD//UNUnXo8wuetgedXPwfX2jrWoyUIgsiDxCVBEARBEMR4w+dD6prr0PvXv6HzrfcR+9o3zLDZ996F/5Z/R/Xy+Qh9eC1c998HxGJjPVqCIAgAJC4JgiAIgiDGNfq06Yj/87+aYbPPvIT4Z/4JRnUN5OefRfBzn0bN4jkIfO7TkJ57BlDVsR4uQRDHMCQuCYIgCIIgJgIcB3XZCsT+8zZ0vrcNPfc9hORV1wAA3Pffh/A1l6N62Xz4v/IvkNa/SoWACIIYdUhcEgRBEARBTDREEemzzkH/z+9Ax+Zd6PvFnVDOPhdcdxc8v70T4UsvRNWKhfD9x1cgvvE6CU2CIEYFEpcEQRAEQRATGZ8PqSuuRu+9D6Lz/Z3o/8H/QDl9Dfi2Vnjv+AUiHzoPVcctge+bX4f47tuAYYz1iAmCmKRwhkG/YUohndbQ0xMf62E44HkO1dV+dHZGoet0GYmRheYXUUlofhGVhuYYwLW2wvXYX+H664OQXl8PLrPk06bNQOrStUhddjnUJcsAjhvjkU48aH4RlWS8zq9w2AtJEgbchsRliZC4JI41aH4RlYTmF1FpaI454VuOwPXow3A9/CCkt96wntemTUfqoouRuuhiqCesBoSBF46ECc0vopKM1/lF4nIEIXFJHGvQ/CIqCc0votLQHCsOf+ggXI88DNcjD0J6523reb22DqkLPojUBy9G+rQzAFkew1GOb2h+EZVkvM4vEpcjCIlL4liD5hdRSWh+EZWG5lhp8C1HID/xGFxPPAZp3cvgNA0AoAdDUM47H6mLLoZy9rmAzzfGIx1f0PwiKsl4nV8kLkcQEpfEsQbNL6KS0PwiKg3NsfLhujoh//1JuJ54FPILz4FLJgEAhtsN5cxzoFxwEVLnng+jrm6MRzr20PwiKsl4nV+liEtxlMZCEARBEARBjGOMqmqkrrkOqWuuA6JRyM8/C9fjj0B++im4nnwcricfRwBAetVxUM67AMoHLqCCQARBOCBxSRAEQRAEQTjx+6FcfCmUiy8FFAXSKy/B9fSTkP/+JKR33ob0ztvwff+70BqbMkLzfCinrQG83rEeOUEQYwiFxZYIhcUSxxo0v4hKQvOLqDQ0xyqEYUDYthXy00/C9fcnIb71BjhdN19yu6GcvgbKBy6Ect750Juax3iwlYPmF1FJxuv8orBYgiAIgiAIYuTgOGgLFyGxcBESn/8XcJ2dkJ/9O+Snn4L83DNwPf0UXE8/BQBQFy4yczXPPhfpE08G3O4xHjxBEJWGxCVBEARBEAQxJIzqaqSuvhapq681w2dfXw/5709CfvpJiFu3QNy6Bd5f/BSGxwPllNOQPuscKGedC23OXMrVJIhJCIXFlgiFxRLHGjS/iEpC84uoNDTHxh5+/z7Izz8L+flnIb38Ivhov/WaNmUqlLPOhXLWOUifsQZGMDSGIy0fml9EJRmv84takYwgJC6JYw2aX0QloflFVBqaY+OMdBrS229Ceu4ZU2y+9671kiEIUI87Acrpa5A+fQ3Sx50AuFxjONjBoflFVJLxOr9IXI4gJC6JYw2aX0QloflFVBqaY+MbrqMD8ovPWc4m395mvWZ4PEivPskUm6edAXXZCkAcX5lcNL+ISjJe5xcV9CEIgiAIgiDGHUZNDVJXXI3UFVebFWi3bIb86kuQXn4R0rpXIb/4POQXnwcA6MEQ0qecivRpZ0A5bQ20hYsoX5MgxikkLgmCIAiCIIixg+OgLV6CxOIlSPzD5wBVhbhxA6RXXoL80ouQ3lgP15NPwPXkEwAAvaYGyqlnIH3SKUifdIopNnl+jA+CIAiAwmJLhsJiiWMNml9EJaH5RVQammOTiFTKzNd8+UXIL78I8Z23wKmq9bIeDiO9+iSkTzoV6ZNOhrp8JSBJFR0SzS+ikozX+UU5lyMIiUviWIPmF1FJaH4RlYbm2CQmGoX05uuQXl8Haf06SO+8BS6Vsl42PB6kj1+N9IknI33yqWaBIK93RIdA84uoJON1flHOJUEQBEEQBDG58PuRPuscpM86x/w5lYL47juQXl8Hef2rEN94HXLG5QQAQxShLluO9PGroR6/GunjV0NvnkJ5mwRRAci5LBFyLoljDZpfRCWh+UVUGppjxzCaBnHLJkjrX4X02npIr70KvqPDuUl9gyU008edAHX5CsDjKfkjaH4RlWS8zi9yLgmCIAiCIIhjC0GAunQ51KXLzQJBhgF+7x5Ib70B6a03IL79FsQtm+B6/BG4Hn8EQMbdXLI0624edwL0adPJ3SSIMiFxSRAEQRAEQUxeOA76rNlIzZqN1NXXms/FYpA2vAPx7Tct0SlteBfShneBO38FwKxKm16+Eir7t2Il9IZGEpwEMQAkLgmCIAiCIIhjC58P6VNPR/rU05EATHdz/z5TZL79JsS33jTdzWefhuvZp623aXX1UFeshLZiFXDGKeBmLQRqasfsMAhivEE5lyVCOZfEsQbNL6KS0PwiKg3NMWLYpFIQt26GuOFdiO+9C/G9DRC3bganaY7NtKZmqMtWQF2+AurSZVAXL4Xe1EwOJzFkxuvvL8q5JAiCIAiCIIih4HJBXbEK6opV2ecSCbNY0MYN8G99H+rrb0DYvg2uI4fhevJxazM9HIa6eCnUxUugLl4KbfESqPMXAi7XGBwIQYweJC4JgiAIgiAIohQ8HqjHnQD9hNXwV/vR2xmF3h+FuHkTxI3vmv9veh/iti2QX30Z8qsvW281RBHa3HlQFy3JCs9FS2DU1ZHLSUwaJrW43LNnD772ta8hGo1ClmV87Wtfw/HHHz/WwyIIgiAIgiAmCz4f1NUnQl19YvY5VYWwexfEze+bgnPz+xA2vQ9x6xaIW7cAD/zZ2lSPRKDNWwB1/kKoCxZYj0l0EhORSZ1zefjwYaRSKcyaNQu7d+/G5z73OTz11FND2hflXBLHGjS/iEpC84uoNDTHiEoy1PnFtbc7BKe4dQuEXTvApVJ529pFpzZ/fub/BdDr6kl0TnLG6++vYz7nsrm52Xo8a9Ys9Pf3wzAMcPSFJAiCIAiCIEYZo7YW6TPPRvrMs7NPahqE/XshbNsGccc2CNu2Qty+DcKuHZBeXw/p9fWOfejBELTZs6HNmgNtdvafOmsO4PeP8hERhJMxFZdvvvkm7rrrLmzatAnt7e345S9/ibPOOsuxzZ/+9CfcddddaG9vx8KFC/Ef//EfWLZsWdmf9eyzz2LhwoUkLAmCIAiCIIjxgyCYQnHWHCgXfSj7PBOd27dD3L41Kzr37IL07juQ3n0nb1daQ6MpNnOEpzZ1GhUTIkaFMRWX8Xgc8+fPx+WXX46bb7457/UnnngCt912G2699VYsX74cd999Nz71qU/hySefRFVVFQDg0ksvLbjvBx98EIJg2raHDx/GD37wA9xxxx2VOxiCIAiCIAiCGCnsovPCD2af13XwR1sg7N6V/bdnF4RdOyEc2A/haAtgKyQEAAbHQW9sgjZ9BvTpM6BNnwFt2nRo02dCmz6D8juJEWPc5FzOnz8/z7m86qqrsGzZMtxyyy0AAF3XsWbNGnz84x/HJz/5yZL2G41Gcd111+Hf/u3fcNpppw15fOm0hr6+xJDfXwl4nkMk4kN3d2xcxWMTkwOaX0QloflFVBqaY0QlGbfzS1HA79/nFJ67d4E/sB/84UPgdL3g2wyPxxSe06ZDmzET+tRp0KdMhd7cDK15KozaWoDnR/lgjl3G6/wKBj0TN+dSURRs3rwZn/3sZ63neJ7HKaecgg0bNpS0D03T8IUvfAFXX331sIQlAIgij+rq8RnHHon4xnoIxCSG5hdRSWh+EZWG5hhRScbl/GqsAk5alf+8ogAHDgB79pj/9u61HnO7d0PcthXYtrXwPmUZmDIFmDoVmDat8P+hUGWP6xhkXM6vQRi34rK7uxuapqGmpsbxfHV1Nfbv31/SPl566SW89tpr6OjowJ//bJZ8/sMf/oBgMFj2eFRVJ+eSOKag+UVUEppfRKWhOUZUkgk7vyINwHENwHGn5L3E9XSD378fwr694A8eAH/kMPjDhyAcOgT+yCHwTJQWQfcHYNTXQ69vyPyzPW5ogJF5zgiFKQR3EMbr/JrQzmUxyqn2etZZZ2Hz5s0j9tnj6eLa0XVj3I6NmPjQ/CIqCc0votLQHCMqyaSaX8EwtKVhpJcuL/x6Mgn+yGEIRw6DP3TQ/P/wIQiHD2WE6GErDHcgDJcLel29+a++AXptHfTqKhjVNdCrqqFX18CoNv/Xq6oBt7sCBzsxmIjza9yKy0gkAkEQ0NHR4Xi+q6srz80kCIIgCIIgCKKCuN3QZ82GPmt28W1iMfBtreBbW8G3HYXQetR83Ho0868VfHsrhIMHIBw8UNLH6j6/KTyrq0zhWVUNvaoaRigEPRSCEQqbj4Pm/+bjEODzkUM6BoxbcSnLMhYvXox169bh7LPNXkC6rmP9+vX42Mc+NsajIwiCIAiCIAjCgc8HfeYs6DNnDbxdOg2+vc0UnJ0d4Do6wHd2gu/qBNfZAb6rE3xHB7iuTvCdnRAO7INwYF9ZQzFE0RKaRigEIxiG4ffD8PlgeH3m/z4fDJ+/8GO2jccLuGQYLreZe0qCdUDGVFzGYjEcOJC9a3Ho0CFs3boVNTU1qK2txY033ogvf/nLWLx4MZYtW4a7774byWQSa9euHcNREwRBEARBEAQxZCQJelMz9Kbm0rZPp8F1dZmis7MDXHcX+N5ecL294Pp6so97M4/7zJ/5vl6InZ0jOnTD5bKEpuF2w5BlwOWG4WL/Zx4LAsALgCDAEO2PRdtrvPlz5jWrIq8sAZ/5FFDVOKJjHw3GVFxu2rQJN9xwg/Xzd77zHQDATTfdhJtvvhkXXXQRurq6cPvtt6O9vR0LFy7EnXfeafW4JAiCIAiCIAhikiNJMOrrodXXQyv3vakUuL4+8H094GKxzL8ouFgMiMetx/bnuVgMXDwGLhoFl0yAS6YAJQUuZf5DKgWuvw98R3sljtYknQS+8d3K7b9CjJs+l+OddFpDT098rIfhgOc5VFf70dkZnXDJvsT4h+YXUUlofhGVhuYYUUlofhEAAMMAFAWckgKSKXCppPUYmgZO1wDN/Mdp2cdQ1cxreuY51XzdMADDACeKCFx+MTp1aVzNr3DYO/mqxRIEQRAEQRAEQYw5HAe4XDBcLiAAjJQM5HkOiPiBzugI7XH04Md6AARBEARBEARBEMTEh8QlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhjMMwxjrQUwEdN2ApuljPYw8JElAOq2N9TCISQrNL6KS0PwiKg3NMaKS0PwiKsl4nF+CwIPnuQG3IXFJEARBEARBEARBDBsKiyUIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYnLcc6f/vQnnH322Vi6dCmuvvpqbNy4ccDt//a3v+GCCy7A0qVLcfHFF+Oll14apZESE5Fy5tfOnTtx88034+yzz8b8+fPxxz/+cRRHSkxEyplff/7zn/GRj3wEJ5xwAlavXo1PfOITeP/990dxtMREpJw59swzz+CKK67A8ccfjxUrVuDSSy/Fww8/PHqDJSYc5a7BGHfccQfmz5+P73//+xUeITGRKWd+Pfjgg5g/f77j39KlS0dxtKVD4nIc88QTT+C2227DP/3TP+Ghhx7C/Pnz8alPfQpdXV0Ft3/33XfxpS99CVdeeSUefvhhnHvuufjc5z6H3bt3j/LIiYlAufMrkUhgypQp+NKXvoTa2tpRHi0x0Sh3fr3++uv44Ac/iN///ve45557UF9fj0984hNoa2sb5ZETE4Vy51goFMJnPvMZ3HfffXjkkUdw5ZVX4mtf+xrWrVs3yiMnJgLlzi/G5s2bce+992L+/PmjNFJiIjKU+RUOh/HKK69Y/55//vlRHHEZGMS45corrzS+/e1vWz9rmmacdtppxp133llw+y984QvGZz7zGcdzV111lXHrrbdWdJzExKTc+WXnrLPOMv7whz9UcnjEBGc488swDENVVWPlypXGI488UqkhEhOc4c4xwzCMyy67zPjpT39aieERE5yhzK94PG5ceOGFxksvvWRcf/31xve+973RGCoxASl3fj3wwAPG6tWrR2t4w4Kcy3GKoijYvHkzTj31VOs5nudxyimnYMOGDQXfs2HDBsf2AHDaaacV3Z44dhnK/CKIUhmJ+ZVIJKCqKkKhUIVGSUxkhjvHDMPA+vXrsXfvXhx33HEVHCkxERnq/Pre976HE088EaeffvoojJKYqAx1fkWjUZx55plYs2YNPve5z2HXrl2jMNryEcd6AERhuru7oWkaampqHM9XV1dj//79Bd/T0dGB6urqvO3b29srNk5iYjKU+UUQpTIS8+tHP/oRGhsbcdJJJ1ViiMQEZ6hzrL+/H2eccQYURQHP87j11ltx8sknV3q4xARjKPPr+eefx2uvvUZ5vMSgDGV+zZo1C7fddhvmzZuHvr4+/OY3v8G1116Lxx57DPX19aMx7JIhcTnBMAwDHMcVfb3QawNtTxB2BptfBDEcSp1fv/71r/HEE0/gD3/4A2RZHoWREZOFweaYz+fDww8/jHg8jvXr1+O//uu/MG3aNBx//PGjOEpiolJsfnV1deGWW27Bz3/+c3g8njEYGTEZGOj314oVK7BixQrr55UrV+Kiiy7CX/7yF9x0002jNMLSIHE5TolEIhAEAR0dHY7nu7q68u50MGpqavK27+zsLLo9cewylPlFEKUynPl111134Ve/+hV++9vfYt68eZUcJjGBGeoc43ke06dPBwAsXLgQu3fvxh133EHiknBQ7vzauXMn2tvbce2111rPaZqGN998E3/84x+p8jXhYCTWYJIkYeHCheMy2oxyLscpsixj8eLFjip2uq5j/fr1jjsXdlasWIFXX33V8dy6deuKbk8cuwxlfhFEqQx1ft1555343//9X9x5553jtsQ6MT4Yqd9hhmFAUZQKjJCYyJQ7v5YuXYpHH30UDz/8sPVvyZIlWLt2LR588MFRHDkxERiJ31+apmHnzp3jsno/OZfjmBtvvBFf/vKXsXjxYixbtgx33303kskk1q5dCwD48pe/jPr6enzpS18CANxwww24/vrr8Zvf/AZr1qzBE088gU2bNuG73/3uWB4GMU4pd34pimK1tVEUBa2trdi6dStCoRCamprG7DiI8Um58+vXv/41fvKTn+BHP/oRmpubrVxxr9cLn883ZsdBjF/KnWN33HEHFi1ahOnTp0NRFLz88sv461//im9/+9tjeRjEOKWc+eX1evMiLbxeL8LhMObOnTsWwyfGOeX+/vrZz36GFStWYPr06ejr68Ndd92FI0eO4MorrxzLwygIictxzEUXXYSuri7cfvvtaG9vx8KFC3HnnXeiqqoKANDS0gKez5rPq1atwo9+9CP8z//8D3784x9jxowZ+PnPf47Zs2eP1SEQ45hy51dbWxsuu+wy6+c77rgDd9xxB9auXYvvfe97oz18YpxT7vy65557kE6n8fnPf96xn5tuugk333zzqI6dmBiUO8eSySS+/e1v4+jRo3C73Zg1axZ+8IMf4KKLLhqrQyDGMeXOL4Ioh3LnV19fH2655Ra0t7cjFAphyZIluO+++/D/27u3kCjbNYzjl1lpmiamCZphShiopZD7jLSdZNIWSqnQNpQoGAhmBupBhQolaiaiaUWlZNiGoLSITqwMojKDQooow6zEDY7tLNfBwoFJ60uG9Vmu/+/Me555n3s8kcv7fZ/x9PQcq4/wUxaDg4ODY90EAAAAAODvxr9cAAAAAABmI1wCAAAAAMxGuAQAAAAAmI1wCQAAAAAwG+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2SaOdQMAAPxpiouLdfTo0WH10NBQnThx4t9vCACAvwDhEgCAEdjZ2amiomJYDQAAjIxwCQDACCwtLeXv7/+P6z59+iRra+v/fUMAAPzheOYSAIDf1NbWJm9vb12+fFnp6elasGCBdu/eLUnq7u5WVlaWwsLC5Ofnp02bNunRo0cm7+/t7VVaWpr8/f21cOFClZaWKi8vT1FRUcY1xcXFCg4OHra3t7e3Tp8+bVKrra1VTEyMfH19FRkZqfLycpPXMzIytG7dOjU2Nio2Nlb+/v6Ki4tTa2urybpv376prKxMK1askK+vrxYtWqSMjAxJ0pkzZxQQECCDwWDynrt378rb21tPnz4d5W8RADBeMbkEAOAnBgYGTH4eHByUJOXn52vZsmUqLCzUhAkT9OXLFyUmJqq3t1fp6elydHRUdXW1EhIS1NDQIGdnZ0nSvn37dO/ePWVmZsrJyUmVlZV69eqVJk4c/Z/jiooKFRQUaMeOHQoKCtKTJ09UWFioKVOmaPPmzcZ17e3tys/PV1JSkqysrJSfn689e/boypUrsrCwkCRlZWXp0qVL2r59u4KCgtTT06Nr165JkmJjY5WXl6f6+nqtW7fOeN0LFy7Ix8dHc+fOHXXvAIDxiXAJAMAIuru75ePjY1I7cOCAJGn+/PnKzs421mtra9Xa2qorV67Iw8NDkhQWFqbo6GhVVlZq7969am1t1Y0bN1RQUKCVK1dKkoKDgxUZGampU6eOqre+vj6VlJQoKSlJKSkpkqTw8HB9/PhRpaWliouLk6WlpSSpp6dH1dXVxr4GBweVnJysFy9eyMvLS8+fP9f58+e1f/9+bd261bjHUI/29vZavny56urqjOHSYDCooaFBaWlpo+obADC+ES4BABiBnZ2dqqqqTGqTJ0+WJC1evNikfufOHfn4+GjmzJkm087AwEC1tLRIkh4/fixJJrfA2traKiwsTM3NzaPq7cGDB+rv71d0dLTJfiEhITp27Jjevn0rNzc3SZKbm5sxWEqSl5eXJKmjo0NeXl5qamqSJJOp5I82bNighIQEvX79Wu7u7rp69aoGBga0atWqUfUNABjfCJcAAIzA0tJSfn5+JrW2tjZJ0vTp003qXV1devjw4bBJpyTNmjVLkvThwwfZ2toOO/znx2v9jq6uLklSTEzMiK+3t7cbw+WPJ9xOmjRJkvT582dJ/53Q2tjY/HJ6GhwcLHd3d9XV1Sk1NVV1dXVasmSJHBwcRt07AGD8IlwCADBKQ88qDpk2bZp8fX2Vk5MzbO3QtNPJyUkGg2HY6bKdnZ0m662srPT161eTWk9Pz7D9JKmsrGzEcDp79uzf/iwODg7q7+9XX1/fTwOmhYWF1q9fr3Pnzmn16tW6f//+sMODAAAgXAIAYKbQ0FA1NjbK1dX1p5PIoSnozZs3jc8zGgwG3b592yTUubi4yGAwqKOjQy4uLpKkxsZGk2sFBATI2tpa7969G3aL7miFhIRIki5evGhyENCP1q5dq6KiImVmZsrFxUXh4eFm7QsAGH8IlwAAmGnNmjWqqanRli1btG3bNrm7u6u7u1vNzc1ydnZWQkKC5syZo6ioKOXk5Kivr0/Ozs46fvz4sNtkIyIiZG1trczMTCUmJqqtrU01NTUma+zt7ZWSkqKDBw/qzZs3CgwM1Pfv3/Xy5Us1NTWppKTkt3v39PTUxo0blZubq87OTgUGBqq3t1f19fUqKCgwrnNxcVFERIRu3bqlXbt2GQ8MAgBgCOESAAAzWVlZ6dSpUyosLFRxcbE6Ozvl6OioefPmmRzgk5ubq5ycHB06dEg2NjaKj4+Xn5+f6uvrjWscHR1VVFSk/Px8JScny8fHR4cPHzZOO4fs3LlTM2bM0MmTJ1VVVSUrKyt5eHgMW/c7srOz5erqqtraWpWXl8vR0XHEyeTSpUt169atXx7+AwD4/2UxOPSlXQAA4F839B2SN2/eHOtW/lFqaqrev3+vs2fPjnUrAIA/EJNLAADwS8+ePVNLS4uuX7+uI0eOjHU7AIA/FOESAAD8UlJSkrq6uhQfH6/o6OixbgcA8IfitlgAAAAAgNkmjHUDAAAAAIC/H+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2QiXAAAAAACzES4BAAAAAGYjXAIAAAAAzPYfEC0zLr/JWK8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wU9fnA8c/M1tvrhTu6gBSl2guiKIoNe8cSUdTYjSYx1iQajSaGaDRGE/VnSYyx994VK1aKINLh4I7rbeuU3x+zMzt7u3fcwSEHPu+88vJ2dmb2u7tzxz77PN/nq5imaSKEEEIIIYQQQmwCdUsPQAghhBBCCCHE1k+CSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGE2MqYpsmUKVMYNWoUK1euzLj/s88+Y9SoUc7/d9ttN0488UTeeuutrOebP38+u+++O62trVnvv/DCCxk1ahT/+c9/0rafd9553H333V0ac2VlJb/+9a/Zf//9GTduHJMnT+aCCy5gzpw5XTq+p82ePZuHHnpoizz2prjqqqsYNWoUv/3tbzPuO+6447jqqqu2wKg6dtdddzFq1ChmzpyZcd+ll17KGWecsQVG1X3279TixYudbdl+JzaHxYsXM2rUKD777LPN/lhCCLGpJLgUQoitzNdff01lZSUAL7/8cof7/eUvf+Hxxx9n1qxZFBUVcfHFF2cN5u644w5OOeUU8vLyMu6bPXs23377bdbzn3feeTz00EM0Nzd3Ot6mpiZOPvlklixZwhVXXMF9993HpZdeiqqqfP31150eu7l89NFHPPLII1vksXvCM888Q3V19ZYeRpfNnj2buXPnbulh9KjHH3+cQw89dEsPQwghehUJLoUQYivz8ssvEwqFmDBhQqfB5ahRo9hpp52YPHkyd955J4WFhbzwwgtp+6xYsYIPP/yQ448/PuP4RCLBzTffzC9+8Yus599tt90oKiri+eef73S8r7/+OrW1tdx///0cddRR7LXXXhx//PHcfffdnHvuuRt+wluQruvE4/EtPYw0w4cPp6CggPvvv39LD6VLioqKGDVqFPfee+9mOX80Gt0s592QnXbaibKysi3y2EII0VtJcCmEEFsRXdd57bXXmDJlCscffzxLlixh0aJFGzwuJyeHwYMHs27durTtzz77LKNGjWLIkCEZxzzyyCMEg8Gsgaft4IMP5rnnnuv0sZubm/H5fBQWFmbcpyiK8/NVV13Fcccdx1tvvcWhhx7KuHHjmD59OkuWLEk7xjAM/vWvfzF16lTGjh3LIYccwrPPPptx7jfffJMTTjiB8ePHs+eee3LuuedSWVnJXXfdxf/93/9RWVnplA7b5aTuMUybNo3x48czd+5c7rrrLvbcc8+Mx2hfGjllyhT+9Kc/8a9//YtJkyax6667cuutt2KaJu+//z7Tpk1j55135sILL6SpqanT160jgUCAGTNm8MQTT1BXV9fpvp988gknnngi48aNY+LEifz+97+nra3Nud8u9/zss8+49NJL2XnnnTnwwAN59NFHM871xRdfcPrppzNhwgT23HNPrrvuug5Lqds7//zzeeedd/j+++873W/hwoWceeaZTJgwgd13351f/vKX1NbWOvevWbOGUaNG8cILL3DllVey2267cf755zvbX375Za6++mp22WUX9ttvP+eLj/vuu49Jkyax1157cdttt2EYhnPOpUuXcvnllzN58mQmTJjAtGnTeOihh9L2ycb93rcvRXf/f82aNc4xTz75JNOmTWPs2LEccMAB3HfffRnnffTRR5k8eTI77bQT559/PjU1NRt+gYUQopfwbukBCCGE6LpPP/2U2tpaDj/8cHbddVf+8Ic/8PLLL7PDDjt0epxhGFRVVTFmzJiM8+28884Z+9fU1PCPf/yDe++9F1Xt+HvInXfemQceeICmpqaswSPAmDFjiMfjXHnllZx99tmMHj26w3OuXbuWW265hcsuu4xgMMhdd93FzJkzeeONNwgEAgD84Q9/4LnnnuPCCy9kzJgxfPTRR1xzzTUUFRVxwAEHAPDcc8/xm9/8hmnTpnHhhRdimiaffvop9fX1nHjiiaxYsYLPPvuMv//97wCUlJQ4Y6isrOS2227jwgsvpKysjIEDB3byymZ6+eWXGT9+PH/84x9ZsGABd9xxB4Zh8MUXX3DZZZcRjUb5wx/+wKxZs7jxxhu7dW7bqaeeyv3338+DDz7Ir371q6z7LFmyhHPPPZeJEydy1113sW7dOmbNmsXq1at54IEH0va9/vrrOeaYYzj55JN56aWXuPHGGxk3bhzjx48H4Msvv2TGjBkcdNBB3HnnnTQ0NDBr1iyam5u58847NzjeQw89lDvvvJN7772X22+/Pes+9fX1nHHGGWy//fbMmjWLtrY2Zs2axVlnncXTTz+N3+939v3zn//M1KlT+dvf/pZ2Lf3lL3/hyCOP5K677uLpp5/mqquuYuHChaxduzbt/Rg9ejTTpk0DYP369QwdOpQjjzyS3NxcFi5cyF133UUsFuPnP//5Bp8bWNf4448/nrbtT3/6E8uXL3d+L+6//35uv/12zjnnHPbYYw8WLFjA3/72N3Jycjj99NMBeOutt7jxxhs55ZRTOOigg5gzZw7XXHNNl8YghBC9gQSXQgixFXnppZcoKChg3333xe/3M3HiRF5++WWuuOKKtCwgWAGlpmk0Nzdz3333EYlE+NnPfubcb5om3333HUcddVTG49x2221MmjSJ3XffvdPx7LDDDpimyfz589lnn32y7rP33nszY8YMHn74YV5++WVyc3PZZ599mD59OhMnTkzbt6GhgX/84x/ssssugPWhferUqTzzzDNMnz6dlStX8thjj3HLLbdw7LHHAjBx4kRqamr4+9//zgEHHIBhGMyaNYupU6fy17/+1Tn3gQce6PxcXl6O3+9np512yhhvY2MjDz30EDvuuGOnz70jgUCAv/3tb3g8Hvbbbz/efvtt/vOf//D6668zaNAgABYtWsRzzz230cFlXl4eZ5xxBg8++CDnnntu1sD+7rvvpn///txzzz14PB4ACgsLufzyy/n666/TvlSwg3CAPfbYg3fffZc33njDCS5nzZrFzjvvzB133OEcU1FRwYwZM1i8eDEjR47sdLyqqnLeeedx7bXXcumllzJ06NCMff7v//4PgAceeMCZ/zt06FBOPPFE3njjDY444ghn3wkTJvC73/3OuW1nB/faay+uuOIKZ5/XX3+dd955h1dffTXt/XjzzTed4HLvvfdm7733BqzfiV133ZVoNMoTTzzR5eAyLy8v7Vp69NFH+fbbb3nggQfIz8+ntbWVu+++mwsuuICLL74YgH322YdIJMI999zD9OnT8Xg83Hvvvey7777ccMMNAOy7777U19fz5JNPdmkcQgixpUlZrBBCbCXi8ThvvfUWBx10kJPFmTZtGpWVlXzzzTcZ+x999NGMGTOGvffem4ceeohbb72VYcOGOfc3NTURj8cpLi5OO+7rr7/m9ddf58orr9zgmOxjN1S6d/XVVzvn3GOPPfjwww85++yzeeyxx9L2Ky0tdQJLgAEDBjBmzBinGcwnn3yCqqpMnToVTdOc/++9994sWrQIXddZvnw569ev57jjjtvg+LOpqKjY6MASrODMDuYAtttuOwYMGOAElva2+vr6TZrPaX9R8O9//zvr/XPnzuWggw5KG8shhxyC1+vlyy+/TNvX/cWAz+djyJAhVFVVARCJRPjmm2847LDD0l7zXXfdFZ/Px4IFC7o03qOOOop+/frxr3/9q8Px7rPPPmmNpcaPH8+AAQMyxrv//vtnPcdee+3l/JyXl0dxcTG77757xvvhboYUi8W48847mTp1KuPGjWPMmDHcfvvtrFmzBk3TuvTc3L744gtuueUWrrjiCido/frrrwmHwxx66KFpr+Fee+1FbW0tVVVV6LrOwoUL074EAZg6dWq3xyCEEFuKZC6FEGIr8cEHH9Dc3MzkyZOdDq177rknfr+fl19+OaO89fbbb2fQoEGsW7eOO+64g6uvvppx48ZRUVEBWB+qgbRyQ4A//vGPnHzyyeTn56d1go1Go7S0tJCfn+9ss4/tSpC03XbbMXPmTGbOnEl9fT0zZ87k9ttv55RTTnGyrqWlpRnHlZaWOsFrQ0MDuq6z6667Zn2MmpoaGhoaAOjTp88Gx5TNpjZpKSgoSLvt8/nSXjN7m2maJBKJjNe/qwoLC5k+fTr//ve/OeusszLur6mpyXguHo+HoqKijPme2cZsv6fNzc3ous4NN9zgZNTc2s/j7YjX6+Wcc87h5ptvdrJ37cc7YsSIjO1lZWUZ4812nWR7Hn6/P+tzs699sLL0Tz31FBdddBFjxowhPz+ft99+m3vuuYdYLIbX2/WPStXV1Vx22WUceOCBnHPOOc52+5q0s6XtrVu3Dr/fj6ZpGc+to+cqhBC9kQSXQgixlXjppZcAuOyyyzLue/XVV7n66qvTMjTDhw9n5MiRjBs3jh122IHDDz+cf/zjH06AYGcd2y8lsnz5cubOncvDDz+ctv22227jr3/9K999952zraWlBaDD+ZYdKSkp4bjjjuOmm26irq7OCYKyNaipq6tj+PDhzuN4vV4ee+yxjDJg+7x2w5qebIQSCARIJBJp2za2IU9POvvss/nPf/7Df//734z7+vTpk/F66rpOY2Njt96v/Px8FEXh4osvZvLkyRn3l5eXd/lcJ5xwAvfcc0/WRjbZxgtQW1ubMVc423u/sV577TVOP/30tM7F77//frfPE4/HueSSSygqKuKPf/xj2n326/3Pf/4za7A4dOhQcnJy8Hq9Ga/Bhpo2CSFEbyLBpRBCbAXa2tp47733OOKIIzjppJPS7lu4cCG33HILn332WcYcRtvgwYM58cQTefrpp7n00kspLS3F7/fTv3//tG6WAPfeey+6rqdt+9nPfsYZZ5zBwQcfnLbdPjZbt1lbfX19WsMc28qVK/H7/WlZvbq6Or766iunNHbt2rV89913TonrXnvtha7rtLS0dDjHc+jQoVRUVPDcc88xZcqUrPu0z15tSEVFBW1tbVRXVzuZ348++qjLx28upaWlnHjiiTz00EMUFRWl3TdhwgTeeustrrjiCudLhzfeeMMpae2qUCjETjvtxPLly7NmHLvD7/czc+ZMZs2axZgxY/D5fGnjfeyxx2htbXVKY+fOnUtlZWW3xttdsVgsLXus63qnS/x05Pe//z3Lli3jySefJDc3N+2+nXfemWAwyPr16zss6QVrDvPbb7/N9OnTnW1vvvlmt8cihBBbigSXQgixFXj77bedhjwTJkxIu2+XXXbhnnvu4aWXXuowuAQ455xzePLJJ/n3v//trF25yy67ZMyZ22233bIeP2TIEPbYY4+0bfPnzyc/Pz9rOaPt2Wef5cUXX+SYY45h1KhRaJrGJ598wn//+1+mT5/udIEFK5t65ZVXOt1i77zzTifLCTBs2DBOOeUUrrjiCmbOnMm4ceOIxWL88MMPrFixgptvvhlVVfn1r3/Nr371K375y19yxBFHoCgKn376KdOmTWPcuHEMGzaM2tpannnmGUaMGEFxcXGnXWH33XdfgsEg11xzDWeddRZr1qzhf//7X4f7b4wpU6awxx57cOutt3bruHPOOYf//e9/1NbWMm7cOGf7BRdcwLHHHstFF13E9OnTqaqq4i9/+QuTJk3K2iG4M7/61a+YMWMGqqpyyCGHkJuby7p163jvvfe4/PLLszbo6cjJJ5/Mvffey9dff512PZ111lk89thjnHPOOZxzzjmEw2FmzZrFyJEjM77U6EkTJ07k0UcfZfDgwRQVFfHoo492ey7siy++yNNPP835559PU1NT2hzo0aNHU1BQwMUXX8zNN99MZWUlu+++O4ZhOF2L7777bsBasuXiiy/md7/7HVOnTmXOnDl8+OGHPfl0hRBis5LgUgghtgIvv/wyQ4YMyQgswcrCHXbYYbz88sv8/ve/7/AcAwYM4Mgjj+Sxxx7jvPPOIxQKMXXqVK6++mqi0SjBYLDb4/rwww+ZOnVqp8uVTJ48mTVr1vDEE0+wbt06PB4PgwcP5rrrrsvIwvbv35/zzz+fWbNmUVlZydixY5k1a1ZaAPq73/2OIUOG8OSTT3LnnXeSl5fH8OHDOeGEE5x9jjzySAKBAPfeey+XXnopoVCICRMmOBnUww47jM8++4zbbruN+vp6jj322E6DupKSEu68807+/Oc/O3PzZs2axeGHH97t16wjkUgka4Z3Q/r27cuxxx7LE088kbZ9xIgR3Hffffz1r3/l4osvJi8vj2nTpvHrX/+624+x22678eijj3LnnXdy5ZVXYhgG/fv3Z9999+32HNWcnBxmzJiRsSRJSUkJjzzyCLfeeiu//OUv8fl8TJ48mauvvnqj56V2xfXXX8/vfvc7brzxRoLBIMcccwxTp07l+uuv7/I5VqxYAVhZ/3vvvTftvrfffpuBAwdy7rnnUl5ezsMPP8yDDz5IIBBgyJAhadeQ/bj/+te/eO6559hjjz24+eabmTlzZo88VyGE2NwU0zTNLT0IIYQQW0Y8Hmfy5Mn89re/5bDDDuvWsS0tLUycOJEHH3yww2xnd1x11VUsXryYZ555ZpPPtbVZvXo1Bx98MG+88UZaV1khhBBiayJLkQghxE+YPQfukUce6faxjz32GDvttFOPBJY/dV9//TUHHXSQBJZCCCG2alIWK4QQP3Gnn3561mVGNiQvL49rr712M47sp+Ooo47iqKOO2tLDEEIIITaJlMUKIYQQQgghhNhkUhYrhBBCCCGEEGKTSXAphBBCCCGEEGKTSXAphBBCCCGEEGKTSUOfLjIME103tvQwMni9KprW+8Yltg1yfYnNSa4vsbnJNSY2J7m+xObUG68vj0dFVZVO95Hgsot03aCxMbylh5FGVRVKS/Nobo5gGNKXSfQsub7E5iTXl9jc5BoTm5NcX2Jz6q3XV1FRCFX1dLqPlMUKIYQQQgghhNhkElwKIYQQQgghhNhkElwKIYQQQgghhNhkMudSCCGEEEL8ZJimiWHomJswlU1VFeLxOJqm9ao5cWLbsCWuL0UBVfWgKJ037NkQCS6FEEIIIcQ2zzRNWlubaGtrBjb9A3ttrYph9K5unmLbsWWuL4Xc3ALy8go3OsiU4FIIIYQQQmzz7MCyoKAEvz8AbGKGxqugaZK1FJvHj399mcTjMZqb6wHIzy/aqLNIcCmEEEIIIbZppmk6gWUolNcj5/R6VUAyl2Lz2BLXl9frA6C5uX6js5fS0EcIIYQQQmzTDEMHzGTGUgjREet3xEz+znSfBJdCCCGEEGKblmres2mlsEJs+6zfkY1teCXBpRBCCCGEEEKITSbBpRBCCCGEEEKITSbBpRBCCCGEED8BX331BZMm7UY4HO50vxNOOJKnn378RxpV7/XAA/9k5swztvQwtioSXAohhBBCCNEL3Xzz75k0aTduv/3PGffdcMN1TJq0G3//+x0bff5XXnmRadMOzNh+332PMG3a0c7tSZN246OPPtzox9kaZHuO06efwV//etdmf+yLLz5vk97H3kSCSyGEEEIIIXqp8vIK3nzzdeLxuLOtra2VDz98j/Lyis3ymMXFxQSDwc1y7k2VSCR+tMcKhUIUFhb9aI+3LZB1LoUQQgghhOilRo8ew/Lly5g9+wOmTDkIgLfeeoORI3dAVdPzRJMm7caf/nQ7++yzLwDhcJiDD96PO++8l1122S1t36+++oI//vEG5ziAs846l5kzf84JJxzJ9Omnc/zxJ3PCCUcC8JvfXA5A3779eOqpF1m9ehV///vtfPfdAqLRKMOGbc+FF17GhAk7pY3nV7+6mvfff4dvv/2G8vJyLrvsl+y99yRnn2XLlvD3v/+NuXO/Jjc3l733nsTFF19OXp61HunFF5/H8OEjAZM33niNMWPGctttf8v6Wr3wwrM89ti/qa6uon//AUyffgbTph0FWEHpnXf+lffff4fW1hZKS/tw8snTOeGEUzp8jg888E8+/ng2Dzzwb8DKJEciYbbffgRPP/04um5wxhlnccIJJ/O3v/2FN998ncLCQn7xi18774Gmafz5zzfz1VdfUF9fT79+/Tj55NM46qhjnXN+881XfPPNV/zvf/8B4MknX2DQoIEbfG16IwkuhRBCCCHET9Kzj1axaF7bRh2rKN1frmGHcbkce1rfbj/W4YcfySuvvOAEl6+88iJHHnkMr732crfPZRs3bgKXXvpLHnrofv79b2t+ZU5OKGO/++57hCOPnMr119/Ibrvtgap6ACtwnThxX37+84vwen08//wzXHnlZTz++PMUFRU5x99//71ceOGlXH75r3nhhee49toreeyxZ6io6EtLSwuXXnoBxxxzPL/4xS8JhyPcdddfufnm33PLLX9xzvHyyy9wwgknc++9/9fh83njjVd58MH7uPzyKxk+fAQLF37Hn/50EwUFBey77/48+eT/+OijD/jDH/5ERUUFa9dW0tzc1OlzzObzzz+jrKycf/zjfubM+Zzbb/8zX3zxOfvsM4kHHvg3Tz/9OH/4w2955pmXCYVC6LpORUVfbrrpTxQUFPL1118ya9at9O3bjz322IvLLvsVq1evYvjwkZx11jkAFBUVd/m16W0kuBRCCCGEEKIXO/TQaTzwwD+pra2hra2NZcuWMGXKQZsUXPp8PvLy8lAUKC0t63C/4uJiAPLy8tP2GzVqB0aN2sG5fckll/P+++/w2Wcfc8ghhzvbDzroEA4/3MoMXnzxL/j880947rmn+fnPL+Lppx9nxx1Hc8455zv7X3nltZx22gk0NNRTXFwCwHbbDeHnP7+o0+fzwAP/5JJLrmC//fYHoH//ASxevIjnn3+Gfffdn/Xrqxg0aDDjx09AURT69u23weeYTVFREZdeegWqqjJ48BAeffRhAgE/xx9/MgAzZpzLU089zg8/LGbChJ0IBALMnPlz5/j+/QfwzTdf8c47b7LHHnuRl5eH1+slGAymPfaTT3btteltJLgUQgghhBA/SRuTRbR5vSqaZvTgaDpWWlrGbrvtyauvvkxLSzOTJ08hFMr9UR67I+FwmAce+CeffDKb+vo6dF0nFotRXV2Vtt/o0WPTbo8ZM44VK5YDsGTJD8yZ8xlTp+6bcf7KyjVOALXDDjt2OpZIJEJl5Rpuvvl33HLLDc52TdOcIPLQQ6fxi19cxKmnHs9ee+3DpEn7seuuu3f7eQ8btn1aOXJRUTFDhgxz3S7C4/HQ2FjvbHv66Sd4+eUXqK5eRzweJ5FIsPPOu3b6OEuWLO7Sa9PbSHAphBBCCCFELzdt2pHce+/fCYfD/O53N2XdR1EUTFetrqZpm208d999B19+OYcLL7yMAQMGEggE+NWvLstouKMo2ccJVlC47777Z81K9unTx/k5GMzpdCyRiLW0yjXX/I5Ro9IDUa/XCnd22GE0Tz75Ap9++hFz5nzGVVf9koMOOpjf/Oa6DT/ZLOdzP5f22wAMw/ri4a23Xucf//gbl1xyBaNHjyEUyuXBB/9FdXV1p48TDoe79Nr0NhJcCiGEEEII0cvts89+3HbbLeTkhDrMehUVFVNfX+fcXrJkcafn9Hp96PqGs69erxfD0NO2zZv3LdOmHeWUoTY3N1NTkxkwLVgwn6lTD3Vuf/fdfCZOtLJxI0eO4sMP36dfv/54PB3Pc9yQkpJSysr6sHZtJQceeHCH++Xn5zN16qFMnXooe+65NzfeeD2//vU1qKqa9Tn2hHnzvmXChJ055pjjnW2rV6/G7/c7t30+X8Zjjxo1ivff3/TX5scmS5EIIYQQQgjRy3m9Xh5//Fkefvi/TuavvZ133pWnn36CJUt+YN68b7nvvn90es5+/frR1tbKV199QWNjI9FoNOt+ffv254svPqeurpbm5mYABg4czHvvvcMPPyxm8eJF/P7312ZthPP222/w6qsvsWrVSv7xj7+xatVKjj7aCrSOO+5EGhrquPHG61i06DsqK9fwySez+dOfbu7OSwPAjBkzeeSR/+Pppx9n1aqVLFnyA88//wzPPvsUAI8//ihvv/0Gq1atYOXKFXzwwXsMGjTYKXHN9hx7wsCBg/nuu/nMmfMpq1at5O67/+aUBdv69u3PggXzqapaR2NjI4ZhcPzxJ/fYa/NjkuBSCNGjmmNNfLL2IyJaZEsPRQghhNim5ObmdTrX8uKLf0FRUTHnn38Wt932R84++7xOzzdu3ASOPvo4rr/+NxxxxEE8+ujDHZ73s88+4bjjpnH22acBVgOfUCjE+eefxTXX/JoDDjiQwYO3yzh25szzeO21V5gxYzrvv/8uf/jDn+jb15rr2qdPOf/4xwPE43F+8YsL+dnPTubuu+9M6zbbVccccwK//OVVvPDCc5x55ilcdtn5vPPOm/TvPwCwSmv//e+HmDnzDH7+8xm0tLRw001/7vQ59oSjjz6Offfdn+uvv4rzzz+bRCLhLI9imz79dABOO+0EjjjiIKqrqygv77nX5sekmGZ3myj/NCUSOo2N4S09jDSqqlBamkddXSuGIW+j6Fkbe319s/4r5tZ8yz4DJrFdwVBqIzVUhPp2+C1rb7L8hzCLF7TR3KihehRUFbbbPodd9irc0kPb5sjfL7G5yTUm3DRNo7a2krKyAVnnx22MH7Ohz9aq/bqbouu21PXV2e9KUVEIn6/zEl2ZcymE6FGaYTUPMEyTRfUL+ar6Cw4cPJUB+QO38Mg69/nsRl55qiZj+7dftDBoaA59KvxZjhJCCCGEEDYJLoUQPUozrQnphmkQTZbGRvXeXSLb1qrx5kvrafSv4KQjdmbQoDwME76f18rH7zYy+636TWpXL4QQQgjxUyDBpRCiR+lO5tLASFbd60bvLht65+U6qo3lBMd9T23/NiYOPRaAvgMCfP15M3O/bGHyISWUlEn2UgghhOiq2bO/2NJDED8yaegjhOhRmju4xAoqdbPnW3v3lGhU55s5LaiBBCPH5tIYa3SaEQUCKntMKsI04LtvWrfwSIUQQgghejcJLoUQPUo3k8ElBpgmmmby7uvrmTO7ccsOrAPfz29D10y2H5mL32/9Sfxm/VesaFqOZmgMGhIEoHZ9orPTCCGEEEL85ElZrBCiR9mZS0yTltYEn7zbgH9dMw3f1DJh9wL8gd71ndaCr62M5NCRQeqT235oWMwPDYvZpWI3BpTvAEBdTXwLjVAIIYQQYuvQuz7lCSG2epqhYxgm875u4tlH19HYoIHHIBE3Wfxd25YeXppIWGfJojZyQip9B/sA6BMqZ2Cys21V21oKi714PAp1NZK5FEIIIYTojASXQogeYxgmSxY38/bLdXz4dj3xhM6wkTlMPqQIgAVft2zZAbazaF4bhg47js/DVKx5oaNLx7D/oAPxql5qwjWgmJT08RFu1YmEe+/cUSGEEEKILU2CSyFEj3ny4So++6ieaMRgyPAg004sY8xO+Qzc3k8gqPLDwjDRaO8J0Oxgd8zOeeim1XzIo3hQFZXyUDkJI0F9tJ7SPlZWU7KXQgghhBAdk+BSCNEjWls0Fn7bij/HZNKBRRx4ZAlFpda0bkU12WFcLlrC5KG7KllfFdusY2mMNrCqeWWn+4TbdJYtDhPK8zBkeAjDsIJer2qNuTxUAUB1WxWl5dYSJDLvUgghxLbg5pt/z3XXXblJ53j66cc54YQje2hE265XXnmRadMO3NLD+NFIQx8hRI+oXmsFjKV9PRSX+jFME9O1FMlBR5TRUJdg1bIoTz9SxQVXbrfZxvLC0ucAOGHkyYR8oaz7LJzbimHA6PF5eDwKWrLLrap4AKgI9QVgfbia0j6DAKiTjrFCCCF+RDff/HteffUlALxeLxUVfTnssCM4/fQZeL0b/zH+sst+hZlci1r0nBNOOJLp00/n+ONPdrYdeOBU9t57n83+2Dff/HsikTA33fTnzf5YnZHMpRCiR1SvtbJ6eUXWbQMDI1lqqhs6+YVeZlw8kJI+PqrXxmlu1Db7mOxlUbJZkFy3cszOec4YwSqLBSjL6YOqqFZwaWcu10vmUgghxI9r4sR9ef751/jf/57j7LPP45FHHuSxx/69UefSNA3TNMnLyyM/P7+HR9rzEomt/0vdQCBIcXHJlh7Gj0aCSyFEj6iqjGFikFdo/VkxTVdwaVqBm6oqbD/KyiQuWxzeLOOI66kA0H78bGqqYigqbLd9TnJfO7i0xu9RPeR4c4jpMUrKrG+HZc6lEEKIH5vf76O0tIy+fftyyCGHc8ghhzF79gcAxGIx7rrrdo4++lCmTt2XCy44m/nz5znH2iWZH3zwHqeeejxTpkyksbExoyw2Fovy17/+iSOOOIgpUyZyySU/Z+nSJWnjeOml5zjuuGkcdNAkfvvbq2ltbU273zAMHnjgnxxzzGEccMDezJx5Bl9//WXaPh9++B4nn3wMU6bswxVXXMzzzz/DpEm7Ofc/8MA/mTnzDJ577mlOOOFIDj98CgAffzybCy44m0MP3Z9p0w7k6qt/RXV1lXPcV199waRJu/HZZ59w5pmnMGXKPvzyl5fS3NzM22+/yUknHc2hh+7PX/5yK7reee+HDz54jxkzTmXKlImcfPIxPProwxhG6vPEAw/8k+OOm8YBB+zNsccezj//eTcAF198HlVV67j99tuYNGk353m1L4t1P8djjz2cqVP34667/oqu69x33z1Mm3YgxxxzGM8990zauP7+9zs45ZRjmTJlH0466WgefvgBZ1wPPPBPXn31Jd577x3nsb/66gsAqquruO6633DIIZOZNu1ArrvuSmprazp9DTaFlMUKIXpE9doYBjoFRdafFdM0MZIlN3bgBrD9qBBzZjexbHGYnfYoYN6XLcx+u55jT+tL3wGBTR5HSzzVkVY3s/8DYpombS06uXkeVFUBQDPT51wCBDxB2hJteHM0AkGV+to4pmmiKMomj1MIIcSW91Hlh6xuWbVRx6qqgmF0r7R0UP5g9hmw70Y9ni0QCDgZvTvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpUw5AOBzmf//7D9deewO5ubnk5uZmnPMf/7iT2bM/4Le/vYmysjIeeugBfvnLS/jf/54lGAwyb963/PnPf+SCCy5ln332ZfbsD3j44fvJzy9wzvH44//lyScf48orr2P77Yfz7LNP8etfX8Zjjz1Dnz7lrFu3luuvv4pTTjmdww8/ggUL5nPPPXdljGXVqhV8/PGH3HLLLFTV+sI3Go1yyilnsP32w2lra+Pee+/i97+/hnvu+b+0Yx966D5+/etr8Hg8XHvtlVx//W8IhULceussqqurufbaKxk/fgIHH3xY1tf222+/4Y9//D2/+MWvGTduAqtWreTPf74Zn8/PSSdN59133+KJJ/7L73//R4YO3Z7a2vWsXm1dP3/8423MmHEqxx57Aocf3vlc1FWrVvL111/w17/+nZUrl/O7313DsmVLGT16LPfe+yDvvfcOt912K7vuugf9+vUHIC8vj+uuu4HS0jIWL17En/50M0VFxRx99HFMn34GK1euIBqN8pvfXAtAQUEhmqbxy19ewvjxO3HPPQ8ACg88cC+/+c0V3Hffw87r25MkcymE2GSaZlJTHScn3yQYtMpKDQxMrH90dVcGccjwHBTVylyapsmcjxqpXhvnv/et5f3X63jx8Wpi0Y4zjhvSEm8GrADy2y+bsjbhiYQNDANy8zzONrss1p5zCeD3WF1iNTNBUYmXeMwkEt74sQkhhBCbYsGC+bz++qvsuuvuVFVV8corL3LTTX9i/PidGDBgIDNmnMPQocN4441XnWMSiQS/+tXVjBkzliFDhuL3+9POGQ6Hef75Z7jool+wxx57MWzYcK655nckEnHnPE899TgTJ05i+vTTGTx4O0499QwmTNg57Tz/+99/OOOMs5gy5SC2224Il132S/r27c8zzzwJwHPPPc2QIcM4//yLGTx4CIcddgQHHnhwxnPUdZ3rrruBESNGsv32wwGYMuUgJk8+gIEDBzFq1A5ceeW1zJs3l/Xrq9OOPe+8ixg7djw77jiGQw+dxtdff8lVV13PsGHD2Xvvfdhtt92djF42//d//+JnPzubQw+dxoABA9l7730488yzeeEFK4tYXV1FSUkpu+++J3379mXs2PEcdtgRgBXMqapKKBSitLSM0tKyTt/Lq676LUOHDmP//Q9k9OixNDQ0cO65FzBo0GBOO+1nBINB5s79xtl/xoxzGDt2PP369Wfy5Ckcf/xJvPPOWwCEQiECgYCT5S4tLcPn8/H222+gKApXXnktw4YNZ9iw7bn22htYsmQxixZ91+n4NpZkLoUQm6xufRxDh7J+qcDMMNPnXNqCOR4GDA6yZkWUylUxKldajYCaGzXefbUegKJSH/setHHzE1oSVuZy5dIICz6o5hOvwVGnVDB259TckrZWazy5+ak/gXaW06O6g0srkxrVYhQWW3NFmxo0QrmpfYQQQmy9NiWL6PWqaNrm/8Lxww/fZ+rUfdF1HV3XOeigQzj77PP4+usv0XWdk08+Jm3/eDzO8OEjnNuBQIBhw7bv8PyVlWvQNI3x4yc424LBICNGjGLlyuWAlU084ICD0o4bM2Ycy5YtBaCtrZW6ulrGjUudQ1EUxo0bz8qVK5LnWMmOO45JO0f72wD9+vWnoKAwbdvq1au4//57+O67BTQ2NkLyy+vq6irKyyuc/bbfPvW8S0pKKCkppbCwyNlWXFxCQ0N9h6/F0qWLmTfvWx588D5nm64bmMnPM/vvfxCPP/5fTjrpaPbaayITJ05i4sR9u50B7N9/ADk5OWlj9ftT1VuqqlJUVJQ21rfffoMnn/wflZVriEYjaJpGRUW/Th9nyZIfWLVqJVOnpl/nuq5TWbmG0aPHdmvcXSHBpRBikxiGycK51ryL0n4e2pLbrbLY9DmXtpGjc1mzIsrrz9Wg6yYjRocoKbO+Sf3sw0Y++6CRvfcvwuvtfnFFa7wFwzBZsihMuWIQj5s8858qho0MOUGhHVzm5buD4WRZrOIui7X+0CeMOIXFVhazqSFBv4GbXr4rhBBCdMVuu+3J5Zf/Gq/XR1lZmdMlNhIJ4/V6+b//ezRjuoa79DUYDHbpcdqfw5rZojg/dzYlxG48m3kOk9Qm98+pbe0FgzkZ237zm8vp338AV1/9W0pLywiH2zj33DMzGv64O+gqipLRUVdRlE675IbDEc499wL23Xdy1vv79u3LY489w+eff8qcOZ9x661/YOTIHZg1665uTZnJNq7MbThl1/Pnz+XGG6/nnHMuYPfd9yQ3N5eXXnqet99+o9PHiUTCjB49hmuvvSHjvpKSzdNkSIJLIcQmeeQflaxYEgFg8HA/C5PbDTP1TZ/RLrgcv3s+77xax5KVNXiVAMN36MOe+xUBVvC2aF4b875sYec907+57IrWeAtrV0WJhA22295PRU4e333TyvqqOEOSzXvaWqwusu6yWM2wtqVnLq2AN6bHKCy2jm2s3/xdboUQQghbTk6QgQMHZWwfMWIkmqbR1NTI2LHjN/r8AwYMxOv18u2333DggVMBq8HPkiXfc9BBVtnqdtsNYcGCeWnHLVgw3/k5Ly+P0tIy5s79xslemqbJ/Pnz2G+//QEYPHgIn3/+Sdo5ulKa2dTUyKpVK7nmmt85z/PTTz/euCe7ASNHjmL16pVZX29bMBhkv/32Z7/99ufQQ6fx85/PoLq6mr59++L1+tD1ns9mz5s3l/79B3DGGTOcbVVVa9P2yfbYI0aM4r333qakpIRQKHOu7eYgcy6FEBstkTBYsSRCTkjlZxcOYNCw1DwOM23OZXpwWVTsY+hIH0vz3mZNzhwGbx/glWUvMa/mWyYeUAzAmy/WUV/b/e6sjZFmFn9ndaLdZZ88yvtaY6qpijn7tLUky2Ldcy5N3VmGxGaXxcb1OEV25rJROsYKIYTY8gYPHsKBB07lxhuv54MP3mPt2koWLJjPgw/el9GltTOhUIijjz6Ou+++g88//5Rly5Zy88034PX6mDr1UACOP/4kPv54No8//iirVq3kf//7D99++1XaeU455XT+/e8Heffdt1i1agV/+9ssqqrWctxxJwJw9NHHsXz5Mv75z7tZtWolr7/+ygYzbwD5+QUUFhby/PPPUFm5hjlzPuXee//ejVeq6848cyavvPIiDz10P8uXL2P58mW88carPPzwAwC8+upLvPzyCyxbtpTKyjW8/fbr5OXlO1nAfv368c03X1FTsz5ZvtszBg0axLp1a3n77TeprFzDf//7bz77LD1Q79evn1MG29jYiKZpHHzwYeTm5nH11b/m22+/Ye3aSr78cg5/+csttLS0dPBom0aCSyHERmtpsrJ45f0CDBsZcrJ/0PGcS9sOu/swFQMlJ0pOSYzaSA2rW1YzeFgOe+xbSLhV59F/VRKPdf4NYGuLxh1/WM47r9RhmAbfzltPW6tOeT8//Qb76OMEl6nGPqk5l+lzRN1ZS4CAageXMQqLrUKPJslcCiGE6CWuu+5GDjroEO68cxannno81113JcuWLaWsrE+3znPhhZcyadJ+3HjjdZxzzhnU19cxa9ZdTknt+PE78atfXc1jj/2Hs846lfnz53LqqT9LO8fJJ5/KiSdO5447/sKZZ05n3rxvue22vzlj6d9/ADfeeCvvvPMmM2ZM5/XXX+G002akzTXMRlVVfv/7P7Jw4QLOOOMk7rnnLi666NJuPb+u2nvvfbjllll88slHzJx5BhdccDbPPPOk07E1NzeP5557mvPPP5sZM05l0aKF3HbbHU6TpJkzz6eycg0nn3wMRxxxUGcP1S2TJk3mpJOm89e/3spZZ53G0qWLOe20M9P2OfLIYxk4cCAzZ57BEUccxNy535CTk8Pdd99HWVkp11zzS04//URuu+2PKIqa0dippyhmZ4XHwpFI6DQ2bp51+TaWqiqUluZRV9fa7VbYQmxIV66vFUvCPPT3Ssbtms/xZ/RlRdNyPljzHgB9c/vSEm+hLdGG3+PnlB1OSzu2uqWGmx77D/3LizjvkKN4edkLFAeLOXL7YzAMk0f/uZal34c59rQKJuxekOXRLQvntvL4/60DYOh4eGXVMygq7H9oKVNHTiY/Oph/3LqKoSNyOPOigQC89MR6vvi4iVPP68/I0VaZyH++e5iAJ8CJo05JPb/k8xldOoaRObvw198tp//gAOddMXijX1dhkb9fYnOTa0y4aZpGbW0lZWUDMua2bawfq6HPtuzee//Oxx9/yCOPPL6lh9LrbKnrq7PflaKiED5f500Nt+nM5bx58zj66KOd/48ePZqFCxdu+EAhRJc0JzOXBYXWHx/dTGX1THAyl4aZ+cfRUBLsvk8RQ3fwoxlWqamd+VRVhb0mFwE4zYI60lifKlOdv6AG04TRE/II5XrQDYOSMj+qCjXVqcxla2v6nEu7+VBG5tJVFpuX70H1QFODZC6FEEKIjfH004+zaNF3VFau4aWXnuPppx/n0EOP2NLDEj1om27oM27cOJ5//nkAKisrOeOMM9hxxx238KiE2HY0NyaDyyLrT4nmKn9NK4s1M8tiY3oseYxGol1wCTB0ZA6BoMqSRWHiMQN/IPt3YXawt8e+hURywmzfp5RQyOM8rterUFrup6YqTrhNJ5TrSc25zE/tB3Q45zKmx1BVhcIiHw11CRIJA59vm/5uTgghhOhxq1ev4pFHHqSlpZm+fftx1lnnccopp234QLHV2KaDS7fXXnuNQw45ZEsPQ4htSkuTFZTlO5nL9ODSbuhjZwZVJRWQ2QGlYRrE9GjG8V6vysgxucz7soUfFrYxZqfUOpVuduZy/G4FxAubmV3pwe/xE9fjTnDbp8IKLmuq42w3LCc15zK3fXCZ/ifR77Ga+MQNK+tZWOKloS5BU4NGWfnmmasghBBCbKt+8Ytf84tf/HpLD0NsRr36q/c5c+Zw/vnnM2nSJEaNGsW7776bsc+jjz7KlClTGDduHCeddBJz587Neq7XXnuNww47bHMPWYiflOZk51Q7c6m3a+jjntJtN/VZ21pJU6yRuJ4qUw1r1lIm7swlwI7jrfmQrz5Tw3uv1WWdN9WYzFwWlXhJJI+3y1ntJVDaN/Vpa9HxB1R8fjXtcTPLYq1GBvFklrUw+TylNFYIIYQQIlOvzlyGw2FGjRrFcccdxyWXXJJx/yuvvMItt9zCDTfcwIQJE3j44Yc555xzeO2119IWBq2srKS+vp7x4zd+DSCw5oH1JvZ4etu4xLahK9dXczJzWVTsRVUVdHRngWRFweoGm7xtKga6qfHu6rcozSmlX+4A576YHrH2x0hbYHmHsXmMnpDHd9+28t5r9QwbGWLI8FDaGJrqE/h8CvkFXvQ6DUWBHF+Q1kQLBgaqqlDRzwo2qypj6LpJLGpQ0seXem7JcXpVT9rzDSh+FMXKXKqqQnGplclsbtTk924Tyd8vsbnJNSbc5DoQontUVdmo35teHVxOnjyZyZMnd3j/gw8+yMknn8zxxx8PwA033MB7773Hs88+y8yZM539Xn/99U0uifV6VUpL8zbpHJtLcfGPsyiq+Gnq7Ppqa9ZRVdhuaBGqqpAX9pMXsbJ9uUE/WtTvlMYWFeegKAqhXD+KTyeU73X29YUgL2b9HCr08MSCJxhUMIgDhx3IRVcW8OaLVTz3v7XUVRvsumfq9zAS1omEDSr6Bygryyc37iOvNUifwmIiagv5BQFKS/PYZY8ATz68ji8XL2ZoQx3gpajI7/xOq5EEeXlBigvyMn7PSwsL0U2d0tI8+g+IAvVo8d7792BrI3+/xOYm15gAiMfj1NaqeL0KXm/PFe715LmEaG/LXF8KqqpSXBzaqOVKenVw2Zl4PM6CBQu44IILnG2qqjJx4kS++eabtH1fe+01rr/++k16PE0zaG6ObNI5epqqKhQX59LQ0CZt1kWP29D1pesmTY0J8gu9NDS0AVDX2ExrqzV/UomHaYmnfmdq6poAhdbWKGElTp7Z6OxbZdbR2mb9vKRyFfVNzdQ3LWBCwR4oikJZX6tcddGCJnbdJxXUVa+1ylXzCzzU1bVSW99Ea2uUqNegtTVKfaCFuhyr2+zA7YK81vAR3k/z0dmfQA7U1Vn31UWs48Jqwtlmi0dMWuKt1NQ2o3itctjqqnDGfqJ75O+X2NzkGhNumqZhGAaaZgI9s7yDLEUiNqcttxSJiWEYNDSE8XrjafcVFORscCmSrTa4bGhoQNd1ysrK0raXlpaycuVK5/batWupr69n3Lhxm/yYvfUfJ8Mwe+3YxNavo+urpUnDNK1mPvb9Cd3aZv2cwL2KrqZbJbSmCbpp0BJrce4Px8POz1Et5vxcG66jNKeUigF+VA+sXh5F1w0MA955pQ41+YVeYYk1hnjyMf2qH9MEzTCcsY0cm8trH8LyJRH6KgahXI9zXzw5bgU147n6kueKJKLk5Vt/MpsbNfmd6yHy90tsbnKNCei9n+GE6K029m/nVhtcdsQ0TRTXpK3+/fvz1ltvbcERCbFtar8MCaQ35Gm//Ihm6GnzKZvjTc7PES2V4YxqUefnqrZ1lOaUEidCcGA94ZUl1NcmqKtJ8NHbDc5+RcXWXEi7A20w2YjHcC2NMmy0Hz60mvFUYDBgu6Bzn71f+6VIAAIeqyQkrsfIL7Sypi1N0tBHCCGEEKK9rbZQvLi4GI/HQ21tbdr2+vr6jGymEGLjNMeaaYw2ZL8vGWAVFKaCS3e3WN1IDy4N00A3UuUd7iDSHZRGXYFmVdtaAL5e/yV15Z8RVZtYvTzKmhWpYwGKSnzJ81jBpd3l1R3g5pVo5OVZweOkqYXsvGdBaqz2UiRq5vdtPtUKLmN6nFCuB9UDLc0SXAohhBDtXXDB2bz//jvO7R9+WMzMmWdwwAF7M2PGqTQ3N3HUUYdQU7N+C45SbE5bbebS7/czZswYPv74Y6ZMmQKAYRh88sknnHnmmVt4dEJsG15f8jo1jQ2cOHJ6xn1ZM5euYK595lI3uxaQRfVU4Lg+vB7DNIhqEYpLfaxX21i9IkJDbSLtmMISawz2UiT+ZLbRPYaoHmW3SYXEIgYT9ylMq3BwliJRMr9vC3hTy5GoqtWVtqlRQ9dNPB7pPiiEEGLzmDRpt07vP+usc5k58+c/ylgWLVrI/fffw6JF3xGJRCgr68PYseO56qrr8fmsL3g//PA92tra2G+/A5zj7rnnLsrLK7j55tvIyQlSUFDIYYcdwQMP/JOrrtq0fiiid+rVwWVbWxurVq1ybq9Zs4aFCxdSVlZGnz59OOuss7jyyisZM2YM48eP5+GHHyYajXLsscduwVELse1oS7QR1aIZ5eaQPXPZfp1KN8Ps2qR0d0YzYSRoiDagGTqlfXys9URYNK8NLWHi8yvssW8RP3zXRt/+1lIjCT1ZFpsMCA1XcBnWwuQXeMkvyByLvV+2sli/av2jaa91mV/gpalBo61FTwushRBCiJ70/POvOT+/8sqLPPvsU9x338POtpyc1NJcpmmi6zpeb8//u9TQUM/ll1/Efvvtz+23/4NQKERl5Rreffft5LQS69/Jp556gsMOOzLt80Jl5WpOPPEU+vbt62ybNu1IZsw4jYsu+gX5+fk9Pl6xZfXqT0bz58/nZz/7mXP7pptuAuDiiy/mkksu4fDDD6e+vp4777yTmpoadtxxR+6///60NS6FEBvPDhZ1U8erpP+5sOcd5hdllsV6VW9GoNlZ4OnmzlyCFdTppk4g6KHvMJO2hVYguN32OUw9soypR6bK4FNlsVaw6Q4i3fM6DTN9grqe3M+jZgkuk+eK6VbHtPxCa5/mJk2CSyGEEJtNaWnq37dQKISqqs62r776gksvPZ+//OVO/vnPv7Ns2VLuvff/eOaZJ4lEwtx005+dY6+77kpyckJce+3vAYjFYvzrX//grbdeJxxuY/jwEVx00eWMHZu9+eW8eXOJxaJceeW1eDzWv4EDBgxkjz32cvZpaGjgq6/m8Mtf/sbZZmde77jjL9xxx1+cTOvgwUMoLy9n9uz3OeywI3rmxRK9Rq/+ZLTnnnvy/fffd7rP6aefzumnn/4jjUiInw7DNJzgTDd1vO3+XDhlse7MpdlxcGmYhrPmZWfsOZc+1UfCSKCZmhO0Dt5BYclCa7+BQ4IZxyaMBKqi4ktmG3XTPcczFVxmNhuyy2Iz/yTazYGczGXy+UpTHyGE2PrlX3I+/ldf/tEeL37YNFruurfHzvfPf/6diy++nIqKvhQWFnXpmDvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpU56xf0lJCfF4nNmzP2C//fbPqGQCmDv3G0KhEIMGDXa2Pf/8a5x77pkce+wJHH74kWmZ1lGjduTbb7+W4HIb1KuDSyHElqO1b87TLqlnl8XamTz7GI/iyVpe2tU5l7FkEBf0BknEE2iG5gStJQMMgjkq0YjBoA6CS6/qRU0+vrupUHrmsv18ULuhT7bMpTV/M9o+uJSmPkIIIbawc8+9kF133b3L+1dVVSVLbF+hpKQUgBkzzuHjj2fzxhuvctppmX1Lxo4dz6mn/ozf/vYq8vPzGT16HLvvvieHHjrNKWutrl5HSUlpWuBZWlqGqqqEQqG0LCxAWVkZS5cu2ZinLHo5CS6FEFm5g8v2wZhpmjQ3aoRyPfh8qSY4uqHjUT2oWRrjGKaJ2a4cNeAJOMGkLZ4sPw16c2iJt6AbujOWuBlhv4NLmPdVC0NG5GSMSTM0cn25TpBomAZtiTZiepSIFnaNpetzLt0NfcCacwmSuRRCiG3BpmQRt9Qi92477LBjt/ZftmwJuq5z8snHpG2Px+MMHz6iw+MuvPBSpk8/nS+++JwFC+bx6KMP8+ijD3P//Y9QVtaHWCyG3x/o8jj8/gCxWHTDO4qtjgSXQois3JnG9mWk4TYDXTMpqEj/E6KZGjmenKzBZbY5l7m+vIzg0maXoyaMhJOBDGthJh5QzMQDijs8v0/1OUGiYeq8suxFIlrEyUBa242sx2bLXAadOZfWP4JSFiuEEKK3CAbTv2hVFCXji1xNS/17FYmE8Xq9/N//PZpR3pqbm9vpYxUXlzB16qFMnXoo55xzAaeccizPPfc055xzPoWFRbS0NHd53C0tzRQVZf5bLrZ+W+06l0KIzSutLLZdcNmSpSTW7iob9OSgkDkfwzCNjPOEfKGM/Ww5yfs0M1UWqxmak9lsL5Fs5uNVfU5wq5u6Uw7rPi5zmZROusUmg8uoZgXBBU5wqWfsK4QQQmxJRUXF1NfXObcNw2DZsqXO7REjRqJpGk1NjQwcOCjt/8XFXW+ImZeXR2lpKZGI9W/syJGjqK2toa2ttUvHr1ixnBEjRnX58cTWQ4JLIURWibQ5l+mZvmxrXIa1NgBCvhyULJlL3dQyymtDvo6/JbUzhnE9lvYtbDjRlnV/u1OsT/WiKiqKomQEkamxtA8uk91is5XFZmQurX1kzqUQQojeZuedd2XBgvm89dbrrFq1kjvvnEVTU6Nz/+DBQzjwwKnceOP1fPDBe6xdW8mCBfN58MH7+PrrL7Oe86OPPuQPf/gtn3zyEWvWrGb58mXcc89dLF++jH322ReAESNGUVBQyLx5czc4xlgsxvffL0zrNiu2HVIWK4TISkuuGQlgYAVfkbBOY33CFVz6nH3CCWtOY8ibS0TLnEdhmEZGqU6uK7hsX8qT47UylzEtvWw2rIUpIr2UpiZc45TxepOdYj2KB93Qs5YIme3KYt1LqLSnKip+j9/JfAaCKh6vQmuLZC6FEEL0LnvvvQ+nnXYmd9zxF0zT4MQTp7P77num7XPddTfy4IP3ceeds6itraG4uISxY8dz0EGHZD3nkCFD8fv9/O1vs1i/vppgMMh22w3hppv+zC67WMuNeDweDj/8CN588zX22mtip2P86KMPKS+vYOzY8T3zpEWvIsGlECLDmpVR7v7XUor3a6HfIB9VVWFee20Ny3+IgJnKWBa4ymLt8tMcb/qcS4/iQTf1rHMug56gc3/AEyDqCkrtjGH7dS/tINa2Prye15an2sj7PFZwqSoquqlnBJaQbZ1LPXlMZubSHktLvAXDNFAVlWBQJRbbsk0chBBC/HQcf/zJHH/8yc7tXXbZjdmzv8i6789/fhE///lFHZ7L5/Nx3nkXct55F3bpsQcMGMhvfnPdBvc76aTTOPPMk6mpWe8safLUUy9m7Pfkk49x5pnndOmxxdZHymKFEBmWfh8mGk/wxScNfPN5M/+5dzXLF0fIy7eCr6xlsQm7LDY3bc6lnQ00TBMtGcTZgaNP9Tn353jTmxIEk11a2zf8sctvbU2xxrTbduZSVdSsAS1kKYs1Op5zCe55l1agGwiqaAkTTdvwup1CCCHET0FZWRlXXnkd1dVVHe7T3NzEpEn7MXVq9iyp2PpJcCmEyFBbHcdAwzRh1fIoqs/kkGPKuPx3Q+k3MNVq3O6cCu0zl5nBpW5qGMkgblD+YHJ9uZTllDmZRndwaQWd1vZYMqCzs6HtM5d2oJo61no8d6DYJ1TO7n33ZHTpGCCzW2yqpDZ7cNm+Y2wgaI0lLtlLIYQQwjF58gGdlrsWFBRy2mlnZnSqFdsOKYsVQmSoXR/HUHRGjs4jFtM57YB+jB9UTEJPUDS+kjVrCvHg66ChTyitLNaXDBIN03CCuu2LRzBxwKS0+wPJpUfACki9yeDQLost8BfQGGukKd6UNtb2WUifK3NpC3j87Fg6mu/rF2U9prOGPuBe69Kad+kPWOeORQ1CudmPEUIIIYT4qZHgUgiRxjRNaqvjeP0mu+5VTFtbjFCe9Q3j0qYltPb5jubcfvRnFMFgKrAKJ6zMZcibmxbY2RlI3dSd4NIdxNn322WwkF4uawd0pTllRLQINeH1aIbmKrdNDxTdDX1S57PWuLTHldnQp/M5l341ff6nnbmMRSVzKYQQW4NUokymMwjROet3ZGOTy1IWK4RI09ykkYibFJTilK3Ymb5wog2fX2W/Y/ycMrN/2nFhrc1qduMNouDOXCbLYg3dCQQ9Sub9QVdZrNdVFuve1je3H4ZpUNW2ztmuGR1lLj0Z2+zH1Y32mcuOu8VaY7OXRUl1jAWkqY8QQmwlVNUDKMTjsQ3uK8RPmfU7oiR/Z7pPMpdCiDS11dYSJAWlqQDQDi7t4CpUFmO7oalg0DANolrUWVpESZtzaZfFdp65DLnnXHp8GYGeV/XQP28AK5tXsK5tLQPzB6WNLbVfcs6l6snYZgec9tIq9tgTyTUyOyyLTZbsSuZSCCG2ToqikJtbQHNzPQB+fwDY1Hl/ijR2E5vRj319mcTjMZqb68nNLdjoebESXAoh0tSutwLI/KLUHxU7gLODq+ZY+rzHsJZc4zIZXKaXxdoNfXRnCRD3t2F2VtHvaszjU70ZgZ5X8dIvz8qWrmtdmxpbu46w7bOU1rnTy2J1w3Cex+srXiWiRfCq3rSA1M0+3m4uFAhIcCmEEFubvLxCgGSAuekf2lVVxTDk3wGxeWyZ68v6Esb+XdkYElwKIdLUVlvBZV5xapvd5dVeFiSmx4jpMadTa8SZbxkCyNrQR3c19PEqqT89QwqGEk60UR6qwKt60QwNj+JFURTnNoBH9ZLny6MwUEhjrJFwIkzIF+pSQ5/2cy7tzOXatrVEtAh9QuXsVrFHh69JMJm5rGxdQ9XSKlTfOOt1kOBSCCG2GoqikJ9fRF5eIYahk2UZ5C5TVYXi4hANDWEMQ7KXomdtietLUawv/ze1k68El0KINE5wWQh22GYHcHbmDqA51kyfUB8g1Sk2JxlcZlvnUjd0TDLLYgfkD2RA/kBnu4bmyj5at93nKQoU0xRroi3RRsgXyljL0tvpnMtkWWwyWG5LtAIwqmQH57lkY2dVm5IZW0NZCmwnS5EIIcRWSFEUPJ5N+wisqgp+vx+vNy7BpehxW/P1JQ19hBCOb+c0s3xJBH9AIZif2t6+LBagxbUkiL3GZcjXWeZSc2Uhs5ef2gGkHSC6513a2U57WRB7zUktI3OZuc5las5leubSXjMz15ubdTy2gDd9Lc38YJ41BslcCiGEEEI4JHMphABg7eooz/63GlWBY07ty2p1sXOfbhqYpumUxQI0x5udn8OJ5BqXyaY8iju49PhRFIW4HndKLdzBp5sdBPqcIDP1J8oOSAPJEtd4cix2FnJY0fYYpkG+vyBtf3DPubS26U7m0hq33YioI0HXGpwA3mQjWwkuhRBCCCFSJLgUQgBQuSoKJkw8sJjRE/JYsVyDZHxmGDpxI47pmqDiDi5TmctkQx9XUYSqqPhVPwkjgUfxdLjcB4AnmZ30euzMZWo5Evs4u0Q1mgwuteQyIiOLd6A8VO46V8frXNpzP+2y2NAGgsv2Y/ZZp5PgUgghhBDCRcpihRAARNqsQKmw2Aqk3OtH6qbuzLcsChQB1pxLm525zElmLlXXZHAVFb/Hj2ZYZbEdZS3BnbnsuCw2teakFVzaWcj23WWVLGtp2h1kTaxMbESLkOPN6XRMtsmDDnCWP/FKcCmEEEIIkUGCSyEEAOE2K0gL5VpBmr32IyTXsUwGc4WBIryql9ZES+pYeykSb+Y6l4qiONlG3dQ7XEsSUsGfUxbr2tfTLnMZS665qZt2w5/087qXIrEzoamlSHQiWgTDNDaYtbRtVzCEIYVDrXPbwaU09BFCCCGEcEhwKYQAIBK2gsuckD0vMdWFVTc1p4FOwBvEp/rSurRGtAg+1YfPDuLSymIVAnY0RsfNfKz77AyjN+02pILHVHAZTY7NyNjXOodrzqVdFps8h24aXZ5v6WY/L6/PKg+WzKUQQgghRIoEl0IIACJhK1CyM5f2XEawMpcxzcpcBj0BvKoXI7luZUJPENfjTqdYSG/YoyiqM+cRMstX3dqXxfrccy7tslhPelms04FWaZ+5zFyKxA4ODdNIzbfcQKdYN/t5SUMfIYQQQohMElwKIYBUWWxOroppmuiG7qxXqZuGswxJwBN0gkDN0IgkS2Lt+ZaQHlyqqAQ8Add9HQeXpcEyfKqPwmARkJ6NbF8WG00Gu4aZfc6lnaX0ql6nTNfOmhqm4ZTyditzmXxeqtcERYJLIYQQQgg36RYrhAAgYs+5DHmcbGDAG6CFCLqhO5nCgDfglK1qhpaab+kO0twNfRTVKZeFzjOXY8rGsmPp6FSGMMtalXagGjfSM5ftO7raWUp39jOVudSdzOXGBJcoJoGASlzmXAohhBBCOCRzKYQAIBzW8foUfH7VaeYTcDXisde4DHqCzvxH3XQFl15XWWz7pUhcmcvO5lza+9uydYu1zucnnmzooxkaiqJkdHz1OHM0M+d76qZOOJElKN4A91ImgaBKLGqkLc8ihBBCCPFTJsGlEALDMImGDWe+pd2BNZBc9sMwdaKauyzWygZqhuYEaTneDuZcohBQXcFlF5b9cPZNK4t1NehJBpeGaaCbuhN4ph2r2GWxrsyl4p5z2f2GPorreH9AxTQhEZfgUgghhBACJLgUQgDRiIFpQk7I+pPglMVmyVwGvAEno5hwzbnsqKFPZlls16vx7aCxfcmrX7U7xsbQDT3rOpXtlzVxj8daWiUCpM8V3RB3Q6BA0PpZ5l0KIYQQQlgkuBRCpJYhsTvFGtZtn8eHqqjohu4s/RH0BJ2gT+9C5lJV0hv6bKgs1s2eL9l+nmbQm+oYq5t6RvAJqSyju1OtfS7d1InrcbyqN2tg2pH2ZbEgwaUQQgghhE0a+gjxE5fQE06n2FAovSzWDr70ZFmsV/XiVb1OuapmakQ0KwPozlzaXWYhuRSJKzjsrKFPex5Xx1c3ew6n/djZzmlvc8+5tMajOMuouIPerlCTjYpMXMGlNPURQgghhAAkuBTiJ626rYrXV7xKUctIoJycXCtgshv6+FQfXtVLXEugm7ozP9GnurvFWnMX0xr6uLrFKigEPF1b57I9O6jsKLi0O756smQu8/x5AOT789O2exSP0wyofeC5IWmZy4D1HCVzKYQQQghhkeBSiJ+wHxoXAzC/7ltgqtPQx728h5LMXILVzMfebu8XSUQIeALpTXyUjrvFdrbOZXupstj0P1XB5PnCnWQuS4KlHDfyRHK96Q173ONsXzK7IellsdZjSnAphBBCCGGROZdC/IQk4gbNjZpz2+6kGk92PM0JpQeXPo8vLXCz5zrawV5cj6ObekZ5qbssVlWUdsuBdKNbbEcNfezgMjnf09vBPM48Xx6KK4tqjccdXHbv+7VUt1hT5lwKIYQQQrQjmUshfkKe/k8Vi+a20aevnwMOK0ErVFi5LEJbq04uOJnLcHKZjpAvlBZcts9c2p1ife3KS9s39FEVFZ/qI2EkulkW60n7r83JXCbHma2hT0fcj99+3Bvi7hZbXGoF5tVrY906hxBCCCHEtkqCSyF+QtassDq+1lTFeeLBKhoK1rNWaQFgDDhzLsPJoDHXl9tBcOlJ28/vWksSMoNLsOY3dje4LAoUM7J4FAPzB6VtdzKXycfvTqmte1//JpTFbre99VqsXBrp1jmEEEIIIbZVUhYrxE9EIm7Q2qxTXOrjtJ/3JyekosdU3FWqdrdYOyOY689NK2NtXxZrd2vtLHNpl8japbHdCQQVRWGv/hMzgks7yHUa+nQruEyNzdsuKO7qsSZW5jKvwMO6ypiUxgohhBBCIMGlED8ZjQ3WPMqiUi8jdszl4muGcNo5gxkyIsfZx17n0p25VDsri03YmctOgksncxlIO3ZT5PisMUe1aLfP6R6b37NxwaVhGiiKwnbb52AasHqFZC+FEEIIISS4FOInorHOWl6kuMQKqHLzPJSVBRmyfSq4tOdctiXa8KpeAt5Au7JYK0C0u7imMpfpQVp6Qx817Rh3cLex3MueQGY32c54eqhbLMB2w6zXbtWyaLfOI4QQQgixLZI5l0L8RDTUW8FlUWkqEDRNk9w8L8NG5rBDNJeckIpmaMT1OIXBQoB23WKtzKW9rqS9Hmb7zGX7pUggFZh6Oujs2h2qohL0Bp3MZbc60Loef1PWuQQYnAzMZd6lEEIIIYQEl0L8ZNiZy6KS1K+9ibUEyZid8jl5dD8URSEcT3aKTWYH3cGYHSB6281x7MqcyxyvFYh1t4lOR0Le3FRZbDcylwruOZfd/xOoKqoTXJb39eMPKKxbE8M0zYxlT4QQQgghfkqkLFaIn4iGemvOpV0WC6ngElJrW9rzLUO+XIBO51zaMudcZpbFji4dyz4DJtE/b8CmPZGkkC9Vzqt2IxuaNudyIwJdd3Cpqgpl5X7iMYPmJm0DRwohhBBCbNskuBTiJ8LJXLYri7XZJa5Op1hfMnPpCsaczGW7LqtdmXMZ9AbZvmhEj8y5BCtzaetO5tKdie3uOpdgPR93UF5WYZ2jtjre7XMJIYQQQmxLJLgU4ieioT6B16eQl58KrtxBUsKwgqM2p1NsHpAKxnyqz/l5w5nLzDmXPS3kSzX16dZSJLgb+nS/LFZBcTKXAH2SwWVNVaLb5xJCCCGE2JZIcCnET0A0ohMNG/hKm1nWtMTZnp651IjpMcLJ5UWcOZfJwC2QXOPSvc3WPpNpB5Sbcw5iWuayO2WxPZC5dAeXkrkUQgghhLBIQx8hthKaofHGitcYWjiMHUtHd+vY1cutxjcNRfP5qFJnQN4ggt5gWuZybesavln/tXPbzgymur0GnfsURcGrep15mu3Xi7S7xaqb8fsrd+ZS3cjM5abOuQRX5lKCSyGEEEL8xElwKcRWojHWSG2kBq/q6VJwaZomc75Yz3dz4qxYbAWXucVWMBnRwhnBZVXburTj7YY+9hqSQU8g7X6P4kHDCi7brxdpB3CbqyQWUt1noXtdX93LlvjaZVy7wr0ciaqoFJf5UD2SuRRCCCGEkLJYIbYSUc1aS1Ez9C7tP29hFbe99BCfrfySwmIvhx3Xh1HjA8lzWcEmrrLY5niz83OeP49gMlPpZC69qcwlpAd07deLtMthN2tZrM9dFtv14NIOfH2qb6PG136tS49HobSPn7ZWnXBb194bIYQQQohtkWQuhdhKRJLBpW52bcmL75fWADByD5PLjh2CqiosX2QFPxHdOpc7c2nPtTxou4MpD1U4gZcz57Jd5tIO6FRFzQjunDmXbL7gMuAJOKW53SmLdRoUebqftYTM4BKseZc1VXFqquNsNyyno0OFEEIIIbZpElwKsZVIZS411q+LMfvtBuprEoTyPJx4Zl8aGzS+/qyZpvoEu+1TyKqV1pIiFYMVVNUK8uzlRmJaDEhv6GPL9eVmzUq6G+hAqlw2W2npj1EWC1ZpbEu8pVvdYu35oBtTEgugkBlc9qnwsxCrNFaCSyGEEEL8VElwKcRWIpIsZV28qJm576xyV7SyZmWU2W81sPR7K/tYtTbG2pYw3pBCsNDKdOqG7gSTdqDqzlza2geRQwqHouk62xUOSdtuB6DtS2IhVQ67uYPLXF8uLfGWjIZCnbED0fbzRLsqW+YyVKxR6/+B2pp8oHCjziuEEEIIsbWTOZdCbCUiWphoRGfu142oqsIhx5QxcUoxYHUqrV4XQ1Wh78AAdesTJPQEJWU+4oaVpbSzlgAxPXvm0qt6M8pFvaqXkSWjMspi7TUiswVpHsWDqqgbnR3sqp3Kd2Xnil3J9xd0+Rg7OOxOQJrteINUcNmcs4LqnHn8ULNyo84phBBCCLEtkOBSiK1EVI+yaF4bCU1jr8lF7L1/MQO3swK+1cujtDbrlJb72XtyEQAGOiV9fMT1OIZpoLmCy0gHmUt7bcuu8DiZy8wgTVEUJg3Yjz377d2t59hd5aFyxpWN79Yxm565tLKypitzmVtk/be+PrxR5xRCCCGE2BZIcCnEVqC5UePt19eyekUUXwD2OcgqvSwrtwKkxQus+ZV9KvyM3imPUK4HQ9Eo6WMFflEt6qxJCa7MZbvgMsfX9eDS20nmEqxy2orcvl0+34/FDg43NquarSw2EFTxehUaGmNZ57EKIYQQQvwUSHApxFbglafXs6qykZwclZ33KsAbsAKYkj4+FBViUSvQ6dPXj8+ncsRJ5ey4cw4lpVYAFdOjJFzBpTPn0tz4zKVX6XjOZW9md5btyW6xYJKb5yGRMGhtkeVIhBBCCPHTJMGlEL1cPG6weFELik9n/8NLKe8bcLKQXq9KcWkqSOpTYQV6oyfksfvkfKexjpW5TJXFRnWrOVBG5tLb9U6nzpIeG1leuqX0y+3P9kXDGV40YqOOt7vFRrQIC+u+I6EnMEyT3HwPpqJRX5vYwBmEEEIIIbZN0i1WiF5u+eIwMS1Kn35+vB4rWHSvddmnwk99jRXQ9OmbCvR0V6YyokecTCPgzMNsX8GZ043MpV1WurGNcbaUoDfIPgP23ejj7czl9/WLWN2yioDHj5nMXDZgUF8jy5EIIYQQ4qdJMpdC9HLfL2hDU2P07Z8KHN3zJ8uS2UpFgdLyVKCX1h1Wi6G5AlKwspmZcy67k7nsfM7ltsoOLu3sb8LQnODSVAzJXAohhBDiJ0uCSyF6sXjMYPGCNnQ1Snm/1FIgmpGa12c39Skp8+H1pn6l9bQGPlE0vV1wqUcygsvcdmtcdqZ/7gDKQxUMyBvQ5WO2BXZwGXc1RTJNg1C+BxOddWtirF8njX2EEEII8dMjZbFC9FLr1sR47P61tDbr9B0Jfr8rcHRlIfsNCqT915bewCeakWGMabGMx+zOnMvSnFIOHXp4l/ffVqSCyzhgNUUyTZO8ZOZyycIwSxauYodxuRx5cgW5eZ4tOVwhhBBCiB+NBJdC9FIfvllPc6PGDuNzGXJAHovDVmBjrVmZChz79g9wxgUDKO+XHjy694nqUXIMK3AMeALE9BgRPZK2VqOqqN2ac/lTpSSDS7vs2DANTEz8QZXtRwcprQvS0qSxaF4b0eg6Zlw0cEsOVwghhBDiRyPBpRC9VPVaK7N49CkVzGtaDWHI9eXSEm9xAsfVLatY1bySvUfu42TUbO7sZlSLkvBZwVC+v4BYpCYtc7lz+S4UBYs3enmOnxI1OZvAfg9MTAzTQEFhr/0LmDxoELGowd9vWcmKJRFaWxO8V/0qLfFmioLF7FNxAHnBHFRV2ZJPQwghhBCix8mcSyF6oUTcagxTUOQlJ+QhqlvrUub6rDmRduD47qq3Wdq4hOq2qoxzaO3nXJrWPM08fx5grXVpr9XYJ1TOoPzBm+8JbUNUJT0oNJP/A9CTr3EgqLL9qBCY8MPiBuqjdSSMBGubqrj11i+476+raWqUxj9CCCGE2LZIcClEL1RTHcc0cUpd7TUq7bJVzdCdwBBSnVvdEkYCr+rFo3jS1rkMJc8Rd3WTVZAsWle1zxCbpuE07zHMVKOlYaOsMuSlP7SxZmWEhroEdTUJWqMR1q2Jcf/tawi36QghhBBCbCukLFaIXmj9OqtZTEWyQ6ydhQx6g87tplijs787qLHpho5X9eL1eGlLtDkNaPweK2B1Z9xQJLjsKo+S3qDHNE0n0NddAf+wkVYQP/fLZhbmtJCTo9J3YABdiZGTq9LSpLHs+zBjd8n/8QYvhBBCCLEZSeZSiF6oep01H7I8ubZlwgkurWyYbmrUR+uc/d1ZTLACHt3U8Xl8BDxWQNqWaAVc61Imu5yK7snIXLrLYl1LxOTleynv5yehWdsiEYPVyyNoSpxd9yoEoHZ9/EcatRBCCCHE5ifBpRC9UGbmMlkW68lJ3taoj9Y7++umzrKmpby76u20brJexUvIZ2XQmmPNAPiTTXvcQZEqfwq6TGkXXFqBffqcS9uosbmYGJSUevGYXjQNgoUaw3e03hMJLoUQQgixLZGyWCF6ofXrYigqlFVYgWDCSKAoilPSqhk6DTFXcGnoLG34gXVt62iKNTrZSq/qI89nlV3agY+duTRccwVF12XLXNqZ4/blyZMPKaH/6DgfNRbxwbMxIrRQ2h/KKqz3oHa9NPURQgghxLZD0hVC9DKRsE5Lk05pHz9eb2rZC5/qw5ts3KMZCeoj7rJY3Znvpxm6003Wq3rI96fP6cs257J9wCQ6ltnQJ1Ve3D5z6fWqlFX48PtVBg0oAqCkn0lunodAUKVufZyWWAtLGn6QQF8IIYQQWz3JXArRy9gdRPMLU41jEkaCoCfodIVtjDWScHV71U3DCWwMU0+VxapeZ+kRsJrR2GWdpsy53CjtS4gNM/ucS+d+rKB/n0kVqAsb6DNIQVEUyir8VK6M8snyL6jSV1AYKKJPqM/mfwJCCCGEEJuJpCuE6GXiMSsY8futX0/d0DFN08pcKlZw6e4UC1aJq12SqRma0wDIKotNBZde1esER+mZS+kW21XZy2KzZy4BjGTAWVQUYNy4EhKm1ayprNwqeV5b2whAwuj+/MvGaAMrmpZ3+zghhBBCiM1BgksheplYzApUAkHr19POUHpVH17V026bFWzqpu5kzayfUw197DmXAD6PDyUZSFpZS8lcdlf7QNw0DSdIb9+1171NVVSCniCGaRDX45SVJ+ddNrQA2QPTDZlT9RkfrHmPiBbp9rFCCCGEED1Ngkshepl4NJm5DNjzLa1A0ufxOWWxNns+pW7qTnCimRpacs6lR/UmlyOxus76VB8KVnDkbuhjbxMb1r5brEnHcy4hVRarKh5nndKYHnWa+tQ0JoPLLCW1GxLVowDE9Vi3jxVCCCGE6GkSXArRy9hlsYFAeubSp3rxqb60fe2spGGk5lkahpF2DEBeMgj1KF7sxJu7LFaRstgua18Wa5UkW++ZaZoZ2Us7aFQVxeniG9VilJX70UlQWxNJrkuqdXsscd0qpd2YrKcQQgghRE+T4FKIXiZmz7kMWAGflgxOPIrXmXNpc2cu7aBGMzUnoLHLZu15lz7V68pSmpK53AjZ5lyarvLi9hnIVOZSJZDMXEb1CGUVPsoGGzQ36axZGaW2Js73C1pZtjjc5bHYXyLoRmY5rhBCCCHEj026xQrRyzgNfdqVxfo9fjyqJ21fOyNpuLrF6oaOqVjBjkexM5dWcOlVfU5wZJqSudwY7bvFtp+7qps6Pnyu+91zLq3y5JgWQ1EUJh2Wy+z/wbdzWqh6fxWlcatU9mcXDmDYyNAGx+IElxuR9RRCCCGE6GmSuRSil4kl51y2b+hjB4p2NlJVVHJ9uQBorsylbmqpeZrJMlq7fNbryly6822Suey6zspiIbNE1e4kqyoqQW8OkJorWdxPZ+CQAKYJxX08jBprvZ+fvt+4wXFohpaa67kR8zWFEEIIIXqaZC6F6GXicStgyGjokwwqPYoHDY0cbw4eJdk9Vk8tY6EZmhMs2t1li4MlAIR8ISdL6W7og2QuuyxrWaxrvVAjI7hMNfSxGytFk91d27QwE3YrYNQYg72H9GFsaT/uuHE5i79ro742TkmZv8NxxF3vucy5FEIIIURvIJlLIXqZ9t1inTUrPVYW0s5chny5qeDSSA803N1iAcpD5Rwy9HDGl+3kylySKouVzGWXZXSLNTufc2kHfqqikpPMXMaS3V0jiQiqqhDK9WCYBh6Pwm77FIEJn3/Y1Ok43O+5JmWxQgghhOgFJLgUYguoCdfwzqq3sq5PGGvXLdbuAmuXuDrBpTeEmgwu43rCOV53dY51d5etCFXg8/icLKVpSkOfjZGZuWxfFpveXMe9zqWduYwly2IjWth1nBWE7rJnAQCLF7R1Og73e25IQx8hhBBC9AISXAqxBSxvWsaaltVUta3LuK+jhj6pslg7cxnCo9rZzXaZSyM9c+lmN6SRpUg2jtrutcrIXLYrUXUa+qCmLUUCEE4LLq398gu9lPfzU1+boLEhQUeaWyMYRsfrawohhBBC/NgkuBRiC7C7e7afnwfu4NIKYjpq6BPypspi4+3mXNrBZfulSyAVSErmcuNkdIvdwJxLO/DzqKrT7dfOZrozl+7jho6wOsWu+CE9sx2N6JimyfIfwtwzaxnfz7Oym/b7LYQQQgixJUlwKcQWYAeMWpYun05ZbDB7WaxPTWUu7RJN+3zQvltsluASV0MfyVx22wa7xbZf5zJ5n6KoTmBqB5LhRCq4dAeIQ0daczOX/5C6v64mzm3XLec//1zLy0/VkDASrFkVwcTM+iWFEEIIIcSPTbrFCrEFaM76hFkylxkNfax9Uw19rP+GfLnOnMu04NLQU02AXHMubU7mktT6jJK57LrMOZdklMWappnWlResjKc7cxnVoh0uYbLdsBwUBZYtjjjnWvB1K7pusnSRFXAafo1oxKSpQUPvI8GlEEIIIbY8yVwKsQXYWaqswWXcRFHA50svi7WzkDuUjmbH0tH0yenjlMW6yzI1U3fmYPo9mUtZpAJJM8s2sSHtu8Ua7Rr4LGn8gf8tepT6aF3y/tQ6l3ZgqrveI7vJjzv7mBPy0G9QgJYmjVuvXsZXnzbx/fxWAPr09RPMURk53jquujImZbFCCCGE6BUkcynEFmBnFvUsQUEsauAPqE7mK1XiamUhK0IVVIQqAJzg0s3KXCZQFMWZn+lmBzjuRjRSFtt1GZlL00wLMNe1rkU3deoj9ZQESzEw0o5TFRXDNJzyWb/HT0yPZZTTHnBoKe+9VsfaNTFeeboGLWFSVOLlwt8MJhE3+XBpNR/8ANVr4xkdaoUQQgghtgTJXAqxBXRUFmuaJvGY4ZTEWvta+2QrcbXLLN10UyOhJ9KWIXFzz7lsv01sWLY5l+7Msf2e2mtZGsn3z/4iwKN40E3dCQh9qj95XHqAOGJ0LudeMZhJBxajJazzjxqbh6Io+AMqoSKT3DwPTY0a33xRnzYGIYQQQogtQYJLIbYApyzWMFj6fRuvPL2etlaNRMLENCEQUFz7pmcu3doHOva5E0YnwaVrzmWq2YwEl13VPlvsXtLFzS57bZ+5VBQlLdvpT86l7Wg5kUkHlpBXYD3myDG5rvMnGLtLHh4PzPm4gecfW4+mSYAphBBCiC1HymKF+BE0NSTweBXy8q1fuXA0zorlYaqbamj7ai0A66viHHd6X4C0zGVqKZLMLKW93R2YRLWodY4s8y0hlaU0MZ2fJXPZdZkBvZkx7xIgrlvvm7tbLFjvV8yIOXMs7Yx0Rx1fA0GVk87qx6qlEYaOyHG2J/Q45X0DTJxSzOL3Fb75vJnmxgSnnz8AVZX3UwghhBA/PslcCrGZ6brJP2et5qG/V2KaJs2NGu++Uc28r1pZvLCFQFClpI+PFT9EeOvFWgD8wfTg0qf6Oswuti+NtQNNu9yyvbR1LmXOZbdlK4vNJm5YZbF6u7JYZ86lmZpzae9XF6njm/VfZZxz8NAcJh1UkhY0xpNfOhQV+zjk2GKKy3wsWxyhbn0CIYQQQogtYZvPXI4ZM4bhw4cDMHbsWG6++eYtPCLR261oWk5LooVxZeN75Hx16+OEW3XCrTqrlkV57rF1tCQ0yvv62X1UAcfvuh2JhMGdN61k7hctAET9NbTGC8nz56MZmtNRNJtspbGQKrfMRlEUDNNw1l0U3aMoCl7FS8JIdFjOGtetsljTKYu1AkNPu+Vj7Mylbuq8seLV5JcJfsaUje10DJpr+ZlACIpHNPJ9yypq1/ejT9/sXywIIYQQQmxO23xwWVRUxPPPP7+lhyG2InNrvqEx1sgOxTvi6yRA66rqdXHn52f+U0V9Y4Q+I/zsPqmQwYUB8gutX8OiUi+NdRqaEuN79QM+XbeeKYOnYphG1q6vto7KZbM1ALIpKM5cQcladt/I4h3wqV7m187L6PJqs4NLZ51Luyw2mWnWnHJnFa/qdebKAqxuWZUWXC6onc/ypmUcOvRw51qwz2+dS6c+dxE1wZVUrtuNHcfn9eTTFUIIIYToEklbCNGOZna8BmVXLFsc5p4/r2Ttamvu4/p1Mee+pgYNA40dxueiqkraPLuKflZ2UlOieHwQ0aIZ2a1sOsxcdlAWax9jmiamacp8y42wZ7+92KViN6DjslinoU+74FJJ/tm1l6Ox1780TIMCfwEA68PVaeda1rSU+mgdDdEG1/lTmUvd1AnmW9fS+vWRTXtyQgghhBAbqVcHl3PmzOH8889n0qRJjBo1infffTdjn0cffZQpU6Ywbtw4TjrpJObOnZt2f1NTE8ceeyzTp0/n888//7GGLrZidiZqQ8FlPG4wZ3YjlauizjIQ0YjOs49WU702ztsv1wGwPpm5zMm1ft2GjPRTVGwFi5or61XeLzn3Tonj9SpoRsIJIDrq/AqdZS47znamZS4luNxodnlxNs5SJKY9rzW1ziWkN2qymzK5vyioj1rXj2matMSbAYjrqS8q4nrcKZc2TJ1gvjWO2prUPkIIIYQQP6ZeXRYbDocZNWoUxx13HJdccknG/a+88gq33HILN9xwAxMmTODhhx/mnHPO4bXXXqOkpASAt99+m4qKCpYsWcJ5553HCy+8QF7expWM9bYOjPZ4etu4tnqKiaIAitHpazv7rQY+eKMesJaIOO28/rz1Yh0tTVZGaumiMFWVMSe4nHZ8OW+9VMs+h4T40kpqYqI7j9G3vxUo6EqcgE9FR8cwNRQF/F5fh2Pxejxkq2wNeAMdHmNvVxTr52z7yfW1YaqiYKBnff01I4GqKpjJ+30eL6qqOO+XnnxvvR4vXo+XqB4hbsadc61rW0tZqIyWeKuzb9yMoaoKCT2BokCOL4e4EUM3dbw5Bl6PNcdXUXp/kya5vsTmJteY2Jzk+hKb09Z8ffXq4HLy5MlMnjy5w/sffPBBTj75ZI4//ngAbrjhBt577z2effZZZs6cCUBFRQUAw4cPZ+TIkSxfvpxx48Z1eyxer0ppae+cx1RcnLvhnUSX5YR8eA0oKg5RFMz+nmuawdefNqMoUFjkY/GCNlb8kODLT5rIzfNwwKHlvPTUOj54o5GGugSlffwccEh/DjikP2tb1vL94iAAoRy/c12N3NEDVKErcUIhH8EcD/lFAfLygpQWFXR4/RXV5BHztGVsLy8t6vCY/LwcdFPHo3gwTF+n17ZcXx0ryA85a5ZmU1wSIrc6QNQTpE9pAQFvgOL6PNqUILn5PvIiQUqL86nRcyGaQFXAE7Cujai3mdLSPNqa6snLs7bl5HkoLc0jnAhb10VuAWY4jldVUXQ/BUV+Yo06XjVAUcnW0dRHri+xuck1JjYnub7E5rQ1Xl+9OrjsTDweZ8GCBVxwwQXONlVVmThxIt988w1glcTm5OTg9/uprq5m8eLFDBo0aKMeT9MMmpt711wmVVUoLs6loaENw5DF03tKU0sbhmmwvrYRPSf7r8i8L5tpadbYYVwuI3bM5cUn1vOff67ENGH3SYXsvFcu77/p4btvrXLGsgofdXWtANS0NNHaaqUu1USbs93jN/F4QFfjGKZOY0sr62sbaW2NEvZpzn7ttbXGaW2zzmc3hgFoa05Q5+ngmLYYCSPhlNRmO7dcXxvW1hpzzYv1ZgSa69bX09QSpjUapaE+jM+ToLUlRmtrlBqvdR00N0UJtyZojVrvoUf1oBs61XoddXWtrKhd61wvVXX19Pe20hSzrosCdKIRjbgeBiCUpwAGixc1sv2o0I/3QmwEub7E5ibXmNic5PoSm1Nvvb4KCnLw+bJPx7JttcFlQ0MDuq5TVlaWtr20tJSVK1cCsHTpUn7729+iqiqqqnLNNddQVFS00Y/Zm95cN8Mwe+3Ytka6Yc1d03Sjw9f189lNAOy2TyEDtwvy6rM1JBImqgd23bsQj1fhmFP78u97K8GEPn39zrliWpzkNDwSesLZrqpQWu5nbUMcj0fBMEzCiQimCR68HY5FQXHO51P9JHQrwPEoHR+DaZ1fUaxusZ1dP3J9dSb12qt4MJPNoOxAM6bF0HUd07Qa+RiGCaZ1TFy3rgPFVFFQnfPkevNojjcTTkQwDJPGaKNzXzQRxTBMognrWK/iSzs2L99LXDGpqYoxdETOj/xabBy5vsTmJteY2Jzk+hKb09Z4fW21wWVHTDO1tMIuu+zCSy+9tIVHJLYm7mUljA4a+jQ2JFi5NEJhsZdhI0OoqsKYnfL4dk4LY3bKd5YW2X5UiP2mlvDBG/VpH/Td2a32y1hU9A/wTWMCn9+6hqOanZHs+Fsi1dXQJ+AJEE5YWazOusUqSqqhj6x1ufHczZC8qtdp4pPvz6ch2kBMjzuNoTpcikRVnW1gfUEQ8ASc974x1ujcZ59fczV6cjduys33EMOgribVSVYIIYQQ4sey1QaXxcXFeDweamtr07bX19dnZDOF6Cp3h1j7Z00zWLygje1H5RIIqnz3jVVCOnbnfGei9f6HlmIYMOXw0rTzTTm8lD32LSQvP/Wr5g4u23ca3e/gElYG/ZSUW4FhVLNKsbvaLdaf7B4K4PN0ElyiWEuRYKJshZPFewt3d1d3kFfgL6Qh2kBCj2OYRtp+9vtlL0WiKCoe1/1+j48cM4eoFiWmx2hKCy6tgNMJWFVP2vsfzFExMWht6XgeqBBCCCHE5rLVpiz8fj9jxozh448/drYZhsEnn3zCTjvttOUGJrZq7mBPN3UMw+TpR6p44sEqPnrHWmNwQTK4HLNzqglOcamP48/oS3FpZhDoDiwhlXWyH8OtT4WfMbsHnaA1kgwuO1vnMj3r5XP93MlSJMnsvoEhS5FsAndHVvs98qpeQj5rvmNMj2UEl85SJLrVRdhaisSbdp6gx2rg0xhtIK7HyfPnOeeD1BcU3nbH+gMqpmISbtu4NVqFEEIIITZFr85ctrW1sWrVKuf2mjVrWLhwIWVlZfTp04ezzjqLK6+8kjFjxjB+/HgefvhhotEoxx577BYctehtWhOttMSa6ZfXv8N9dN1E00x0VWddZYyVSyIsqV1JsanT1GB9kF+xJExDXQGVK6MUl/noNzDQ4fk6k3AFl4ZpZAQfsWQ5JEBU717mMuDOXHZWFpsMKN1l5KL73IG5HczneHOc9yFhJKzSY9f7q2Rb59L1BYFf9Tvv6fpwNQClwTLCibBTKmuXbLc/NhBQAZNwa/bgMq7H0QzNCX6FEEIIIXpSrw4u58+fz89+9jPn9k033QTAxRdfzCWXXMLhhx9OfX09d955JzU1Ney4447cf//9zhqXQgB8vu4T1rSs4fiRJ5Hry2zpvG5NlCceqiIS1pl0RIAvP27CNCEQTqAmNIpKvETCBpWrYsz9sgWdBGN2Kt7ooExrN8/Szpa+uPQ5ykMVTnYKIKKlusB2RE0ri/Vn/TnzGFewI5nLjda+LHbPfnuT482hLWEtDRNPlsW6vwDwtAsuVUVNu9+r+vAr1ntXE1kPQIG/AL/H78pc6s5juktqvT4FVKPDzOU7q96iKdbISaOmy5cKQgghhOhxvTq43HPPPfn+++873ef000/n9NNP/5FGJLZG9gf9qBbNCC5rq+M88Lc1aAmrE9fLT63HzIfRE/KYvt9AhuQNw+9X+d8D61i8oI033v+exYUfcMTwowBrbm9TrBHDNCgOdu1LDXdZrHVbQzM1mmJNNMWa0gKWiGY15+ksuHQHF3bGTFGUTo9xB5QSZGy89MBcYVTJDgAsa1wCQFyPoZt6WubZDiTt0larLNb9BYEPT/K9Wx+2gst8fwFBT5CoFiWhJ1xNgjxp77OiKARDCm0tetasdFuilVhyTF6lV//5F0IIIcRWSD5diB63PryeD9a8y74D96ciVLGlh+PMW0wY8Yz7vpvbipYw2WPfQnTN5KPPGulT4WfYqBwU1SAYtD70DxoaZPGCNpoTjeQWeTDy651zvL3qTVrjrWxfNJzK1jUUBYo4eMhhgBVAVLWtY0DeQOeDvjtjZZhGcm6nu0ttat6nXQbZWVmsOxi1S2E72x/SA0rJXG68jl5Hu5lSzIhjmmZa6ar9ftnvs6p40rLPXtVHjteacxlPzsvM8+cR8AYhZjX10VxLnriPBQjmKGiNEIsaBHPS77ODUt3U8cqffyGEEEL0MPl0IXpcTXg94USY9W1VWzy4NE3TKSVMGJnLM6z4wcoMTti9gH4DA/QdHWWeWYiCktZsZ/AwaykRU9HpPyhAS6LZua81bjX4WZrMVlVpVbQmWsnz5TG35hvm185jVMmO7NlvLyCVuQx4AkS0CIapO8FCe3YA0mlDn2RwoSgKfo+134aCS5Dgsidka9QDqa69drdf93IvnnbBoKqoeFT3FwQ+AsmGPrY8f76TlY7qMefLiPZZT4BgrkIrEG7TM4JL+3rSDR06XwNZCCGEEKLbttpusaL3MrA+wLrnDm4pMT2GmVxhPqHH0bTUfDRNM1i1PEogqNJvYABVVRi8fRCvxwq23MFl/0EBPB4FA53+g4M0x1PBpV2WOL7PBAblDwagum0dALWRGgC+r1/o7K8lzxtMZqc0Q3OWpehIZ51f1WRWzOPKgHU23xKkLLbnZH8d/cng3s48Z2voY/O0m3Pp8/jI8aYa7qiKSq431+kgG9NSmUuP6skofw7kWONoy9LUxw4uO1rDVQghhBBiU0hwKXqcmfwAa5f02SJahHm1czO2b0525gggbiR46uEq7rhxOTXVcdasjKElTIYMz3GW/kgrT3X97POp7HdICTvsFCS/0EM4EXbmzBmmQdAbZKfyXdi+aDgAVW1VAJQEU+tehhNWljShW5lLO7ulmwb6BoLLrmQuVUV1Ao3OOsXa+9okc7nxlA4ywPZ7a69LqaY19ElPGXpUjzPHEqxusfYXDwD5/vxkVtrvnFM3DOdcGWWxIWsc2Zr6uMtihRBCCCF6mgSXosfpyaDMnbn89P0GXpn9DV9Xf8nqlpU/2liiempZj/r6CIvmtRGPmbz0xHqWL7aCvSHDc5x93B+6238An3xwCXvsX+AEES3J7KWJ6WyryO0LQFUyc2kks6YAq5LP210Waz+O1i64dAcX0LWlSNwlknZ5bEfS5gpK5nKjdVgWmwzu7fm+He0HVibTXTbrc61zCVZwCTilsjE9ju6ac+lpdz47c9l+ORLDNJwsvgSXQgghhNgcJLgUPa59WewP37Xx2rO1vPNmNbpuEusgc/n57EYWf9fWo2OJutaMnD+vAQBFhZVLI7z/utWUZ+iIVAmiu5mO+2ebO8PYFGsCrHmddsAQ8AQoDpbQlmijNd7ivBYAK5tXANbcT0VRnABET3aLdcv15aXd7nwpEuuxParHyVj6PZ2vwdm+y6nYOB039PGhKqqTpXcHlBmZy3YdX72qD4/qcTKVeb4CAILeVDZUd61z2f7aSGUu069f9/VsZz6FEEIIIXqSBJeix9kfXON6jETc4OWnreUUdN2goTbhZO7aWjX+NWsVzz9WTV1NnFeequGF/1U72ZWeENWjtDRrLFnUxnfzG0GBE8/si8+vUFTiZeIBRVT0T5WQpmcuMz+AuzOMLYkWZ6zuIKNvMnu5PlztlAgDNETrncfwqanlJnRTd7K9NveSKV7V22l20c5ceRQPZTll7N53T8aVje9w//bjlbLYjZc+lzL9dXTPe1Vd96nt9su2FAlAjtfKqOf5rS8a7MxlVI8514uapaFPR3Mu3de2zLkUQgghxOYg3WJFt2RbO689d+byy0+aaazTCARVTDRq1sdJGAnicYP/3reOtatjrFsTo7DYuhRbm3Ua6hKUlHU+Z7CrIokwX37SREuTTlE8xq6jQoyekM8O4/KceZZpY9/AB3DdlWFsjjVhkgwuXQFayJubfP7xtA/0cT1OXLeef9ATdIJC3cgsi7XPAZ1nLSE1n09VPCiKwo6lozvd3xqv6Alp+d/25ameQNaGPu3nSKqKiurqFmvPr7WCyabMslgt6iqLzZxz2VFZrPsLDCmLFUIIIcTmIJlL0WUfrHmPF5c+t8HMoruhz/cLrGU6DjuuD4ZiUFsdJ2FofPJeIytWNaCoYJrw0TsNzvGrlkWznndjVK5roaVJJy/fw4S9Qxx5UjlA1sAS0ssFs30AT8tcxltcaxVmzqkzTMO5385iNcWaME0Tn+pzgkb3UiTFwWI8isfJfsKGlxXxuLrFdlVncwBF13XWGMldmuwOANu/3hmZy2Rpc1lOGV7VS2mwDEh1DNaMhHMdelVvxpcP/uQU4nCbTiKemmfpLtGW4FIIIYQQm4N8qhRdtj5cTWOscYMfTO2AKhbXWL60hZxclfG75ZOTC031GuFwnI8WfsviglfZ9VDrXIm4q/HN8kjW83ZVIm6wbHGYRfNbmTevDoAhI3IYOT5AUUnngVpaWayRLbhMbWuKNabKYl2BhR0oGKSCyzyflX2qCluNfvL8ec5+ummgJTvIji4dw2mjf0ZRoMg534Yyl/Z5vGrXg0sphe0ZHXWLBQiklcVmn3OpKAqKoqR1/LW/LNilYjdOGHkyIZ81J9ibLJdNGJpTsp2tLDaYzFwuXtDGLVcv5YuPrLnB7u7H2a5tIYQQQohNJWWxosvcS290xg7Q7BLYcTsUo6oKFQN9rFsOy5Y1s7o6TiBPYfudTea9oxKLGvQbGGDdmtgmZS7bWjX+fstKIslmJstzG1B9MGBwkHgygOtMWtOTrJlL6xxe1UvCSKTKYrNlLg3dKa0tCBRQH61jXWulddtf5GSzNFdDH7sk0r30SGfLkLgfrzuZSyVtDqB8x7SxlE7mUqZnLrNnit2dfiH9iwRVUdPmbdoZ7ISRcAJZj+JxglGbXRYLYOiwZFGY3ScVyZxLIYQQQmx28qlSdFkiGVh1NXO5fl0MXYkzYrSVeRkw1PqgPOeTOjQzQVmFH0PRnfvH75ZPcZmP2uq4s0afppk89cg6Pv+wsUtjrKqMEWkzKKvwM2R4DroSo/92Afx+lYSx4fU1NzTn0g4CfaoPE9N5ru6slT1/Tjd15/78ZOayJlwDWMGmHRS4G/p4FSu4cAcZvg1mLq3728+965xkLnuCQicNfdQOgks1s0TW3uYOJtuzg0vNSLRbiiT9fVfU9LL1mirruncvi5OtWZUQQgghxKaSzKXoEs3QUnO3NvDB1DANTExq1sWpUOMM38FqTtNvsI9QSCXanMCreCmr8KMZCaYcXkp+oZdd9i6kem2MhtoETz9SxVHTy1m6KMz8r1pZsijMrhML8Xg6D4qaG60P3aMn5HHAYSUk5uQTzDFRFcVZFqIz6dmd1PNsijVS4C9EMzSndNHUXMGlO4NF5pzLfH9B2vkL/AW0JdqS++muzKX1K+nrRuayKFBEWU4fBhcM3uDzs6WVc8o6lxuts6679tIhkJ5Vdq9paQeX9pcKnc2vVRUVVVFJGAnnOvEoHucYv8dPXI9n/H7W11kNtDpbw1UIIYQQoidI5lJ0iZ21BNKW18jGMHWiEYNIxKCkr0Io1/pgbWIwZEQIQ9EwlARl5X4ShtUZ9pCj+xAIqOx3cAll5T6Wfh/mgTvW8OGbVqOfaNhg1bINz8VsbkoGb4VeTEwCuTq5wRA+jy+jI2v2sbvLYq2f17ZW8vySZ/m+YRG6oVtLgyQDCbtJSlqpo5qaS2lni/IDBWmPUxAodPbTDM0Zm708iXse3oYa+vg8Pg4fdgTbF43Y4POzpTeiERsrLWPdrrzYXnMU0sumPWq2slg145hsvKrXuV5URUVRFCpy+zK+zwTGlI0DrAzlTnvkU1DkZdDQIJhQWx1Py8TLnEshhBBCbA4SXIou0VzBZVfKYhvrrP1L+6dK8TRDY/CwIN6gQX6JSSjXg9buXCVlfn7+q8GM2zWf5kaNhroEXp/1AX7RvLYNjrO50XrcgiKvswxE0JODT/VlXU+yvWwNfewMY3OsGc3U8KretHmVkL2hj2mmskV5vry0+3O9ua6GPrrz+rpLYO3s1IYylxtD1rnsGZ11iw24Mpdp2Uoyg8uQLxef6ktr5JSNT7W+JLG/5LDHsFP5LhQHigHrC49jTu3LL347hMFDrdax69elZzTtQLOtVeO1Z2toatjwfGQhhBBCiA2R4FJ0iTtzueGyWJPGOisTV9LX1VzE1PH5VA6YVsQ+h1iZPHfQavP5VY45tYIdJ+SheuDoUyoA+H5+K6Zp0hxrYmHdd1mXRLHLYvMLvUR1K9MZ9AadjFAiy+MBfFH1OW+seDUt+LQ/gNtZxZgexTRNvEoqc2kHj9ka5LjnXPpUn9P1syBQkJaZ1E3D6ULryRJcbmjO5caQstiekRakt3sdA2lzLl1fPmSZc+n3+Dl+5Ens2W/vTh/P3dSn/VxL+1x2ZYGqKvTpa13366viWcti33mljk/fb2ROsqMsWOvT2l/MCCGEEEJ0h8y53AYlEgbxmEEg6MHr3fTAYe3qKPf931K8u0YYNDQnrTGIrXptjJeeXM+hx/ZBN3Ua6q0grrgitY/9gdYbNPB4dEhAooMOrh6Pwkkz+hIJG4RyPXz6fgOVq2K89mwt/vHfURlbRmlOGbU/5DBndhODhuaw68QCJ7gsKPLSaqSa7/idZRziBAmmPZZu6HxXt8B6XNcHdnu8doAY1sLWPqoXkl1inSUh0oI195xL6xyqopLryyOcCDvzL511Lg09tW6hki1zuRmCS8lc9ggly/tu66hbbHpnYdf6lp0087G5s9jtu8S611e1lfezzllTFWOkkR5ctrVqfDunBYDa9an5yM8veYaoFuWM0TPkiwchhBBCdItkLrdytetjzPmoEV03SegJ5n2/jlm/Xc5t1y3nL9cvc4Kt7tI0g4/eaaCuJs6bL9bS3BJj3lctNDdpVK4Ko+vpAeYbz9eyenmUt1+qRTd0GusTeL2QU5S5tIdmaE5zHXfmcl7tXJY3LXNuK0pqvua+U0vw+hQ++6CRF5+uJB43iCZivPpMLct/iPDBG/W8/GQNzU0aHq9CKFd1SlY9isf5UB7XrQXoP1zzPuvD6wGoiax3HjPmavpjj9fuzBlOlsdacy7VtH3cH8Ld5a6GmZqTmeuzGhsVJINLZykSU0vr/mnLtixJT5HMZc/otCzWFSy6v7RI+7kba5NCehY7o0tsluCyrMIPClSvjadl5XXDYM7sJrSE9Xtctz71e2hnLde7fi+EEEIIIbpCgsut3Ox3annx8fW891odb87/hFue+A9NsSbyCz1EIwbffdu6Ueed/1Urb75Qy79mrWb54gh4NHQd3n+9nn//azWfvt/o7Lt6RYSl31tZvWWLI6xaHkbXobDEl7b8h/vDrZ2pSyT/G9WifF39JZ+v+zTreHYYl8dl1w9hxOgQjc1RvvioifnfNNLSpDFkeA4ej8LKpREibQYFRV4URXECP1X1OFkhzUiwtHEJy5uW8drylwFY17rWeZyYnioHtMdrf1iPaFaZrVfxZJQgps+5zOwWqyqqE1QWBYuT+3mcx3Ea+rgCBl+WzrE9Jb35jASXGystSG/3OnZtncvu/QlOy1wq6Rlt+/FNTJpijVS1rcPvV+lT4ae5UeO//7eGttZkiXc8weezm1AU8PkV6mriGV8YrW5e2a2xCSGEEEJIcLmVmzSljEBA5cO3Gnji6e9JaAbjJyucOKMfAN8v2LjgctliK1iMRa3gaP9phZSUeVEUMBWT9xd9zseVswGcjq4DBlsfpr/4xLpdXOIjrsecc2abq2lnLu2gLqbHaI23ZB1TfoGXE8/sR2GZQl1NgjdfstaM3HdqCX0HBpyxFhR60x5PRXXmXMaNON522aJ1beucn91zzcxk6asd+Lk7utrZPjsAVbIED0Yyc2nfHl06lon9JzG0YBiAMw7DtIJLr+u81v2bsSy2k6BIdF22993mLnNN6xarZM657Cqfx71ETfp14S6L/WTtx7y18g00Q+PY0yroPzhATXXM+bJp4fxmwq06Y3bOo9/AAIYOjfWJtC+A1rSs7tbYhBBCCCEkuNzKlZUHmHZiOZgQV1oZPSGP8fv4GLhdkFCeh5VLIkTC3Vt2wDRNli0Ooygw+ZAS9ti3kGE7+pl4QDGHHdcHj9dgUe1ifmhYTCymsWRhG6FcD6eeNwB/QCGe0MnN87Dd9jlZy0zd7AY77qCuJlLT4dj8AZV9phbQp68fA43yfn6GjcxxAludBAVF3rTH86iqkwVMGIm0eW7hRJi6aG3GeMCduUzP6LiXInHKYrN0izWS3WLt236Pn+HFI5wA0l0+694v9ThWILE5Mpd00ohGdF1n5cWqojoBZkcBpap0ryw2PXOZ/ufbbhpkmAYxPYphGmiGRv9BQc6+dCCBHKs8NtymM+9rq4HPflNLKCu3xli3PpH2O9ocb6Yp1tit8QkhhBDip00a+mwDJuyej+rTeK8tj4JCLxEtjKoqjBydyzefN7NkUZhxu+R3+Xy11Qlam3UGbBfkgMNKAZhbs9bqcOqBPv19rKzRaG3RWbM6gmHAoKFBcvM8zLh4IM8sKaSgjwFKKiPpLhF1s7OBUVc5am2khqGFw2iKNbK0cQkT+uycNjfN49fZc99CynYqYeLI/miGxoDBQaqCs2nwL2OvglOSj5mac2l3YU3oibTM5ff1C7N2nYXMOZc2r+J1PsjrroY9NsXpFmtgmmaHwZsz5zJZFhvwBdLut5cvcS9j0lMkc9kz1A00RvJ7/MT1eCdlsZsw57J9Qx9Spdrtm1F5vSojxgZZMR8+frcBb9jPvhPyKO8XsOZlYjX1GTgy/TlUtVVRuIHlUYQQQgghbJK53AYoikL/UYZTDmqvyzhqbC71/mV8/uWabp1v2Q9WSeywkTnONndGr+9APyjWWparlltldoOGWh1Y+w8K0qefD6/Hi9/jd47raPkSzTXn0lYbsTKJC+u+Y37tPFa2rEg7JmEkUBSF7UYEWKHN5YnvH6O4v07M04Sh6Hjz7YDWChpVRcXvKovVjdRYvm9YBEBxsCTtMdzZx/Zj96o+J5AwOmvoY1gZyY5KH+3gwA7A25c57lS+C8eOON6Zo9mTNndDH3XZUnKv+TXBhx7o8XP3JtmWoHHzJ5cjaX+ffY10uyy2kzmX7rJYJ+tO6todNdZaCicSNgjlKxx8dBkApeXWOWvXx53rGcAwzLQ5yEIIIYQQGyKZy21Ei2ueor1kRunQGA0l3/Lx8hoOXzOMfgMDHR2eZnlyvuXQESFnm914B6C8vw/jG4OGugSrE9a+g4akAlF7nqFX9RJO3q8Z2bvW2h1V3R9i6yN1GKbhPI+GaD0Ubu/cb59LNzQaYg3opo63IILq18GAUH7q3GBlCO2Mj6Yn0pb7iOtxFEVhSOFQ63GSfB4fuqY7AaKbV/W4PshbAaw7WHOa/WAFph1lp/yqH4/icb4MyBYs2MuW9LQNZdw2SSRC0YlH41m9ytkUnTGzZx+jl9hQBtjuGKu2C+A9qgddzyyF3hB3WWxHcy5NTOeaNV1fjBSUqPQbGKClSWPKIcUUlVjnsstia6vj6Kb1N2LtqihfftrM93mraNt9O/bcrwhVlQy3EEIIITonmctthDu4bEtY2UTTozFix1wMJcF7r9V16TytLRo/fBcmEFQZNDTI5+s+45VlL5FwzZ0sH+DFVAzq6xKsXhVGVaH/oFTgageXdrYwoSc6zFyClYmMalbjH1VR0U2d+mg9sWQzoPpIauzuTKJmauh211kzTlG5tU9uYXqzHY/iweexM5eJjGCxT065s0yIzc4Q6aae1uQESGu8Ywe62Uods93npigKIV/IeT7uZi2bm7IZ51zmPPQAntWrMEPWlxO5t90CkUiPPkZvkV4OnXm/3TG2/RqYdiCqdnspEnfmst2xzpxL07mm3CXfuqmz28RC9j+shJy81GCLSnyoHli/Lk5jUwxdN1n4rfXFTl19lNefq+WpR6rQtI5/h4UQQgghQILLbYa7w2pEiyRL4zQGD8shmAvfz2+jribeyRksX33ajK6b7LxnAT6fytrWNdRGamiKNTn7BHMhlOehpUmntTVB34EBfP7UpWQ3p7GzLAkjkTFv0S1hJIjqVvBRltMHgOZ4E9Hk0h/1roxiesMdw8moJvQEY3YLstPu+ZRUJLOKpJYBsT+Ua0YirfQPYED+QCcQttndZa3Mavr+HiW1zqWRZSkSO+Cwx9pZ6aM7qPV2M4u1KTbnnMvA008A0PDSm0SPOha1Zj2B55/p0cfoLdLLizPf50AyuFRp33xHzbp9Q9zZyvbNgFTXNdl+zqX1cyrL7v7CxONRGD0hj2jE4NH7VvPtnGYSbT76DfBz+ElFFJV6+e6bVuZ9uXGdp4UQQgjx0yHB5TaiNWEFl36PH9M0iWgRNENDVRUGDLECpbWrY52dAl03+eIjK4jcfVIhYGUHwQr2bAkjwS575uP3K5joaSWxpnueo8cOLuMZ2b+0xzU0Ysk5l/b8wkgi4mQuY3qM1mQ2Ni24NDUnaI0bcYJ5JoOG5jjbDFfm0i451QwtI4s6MG9gRkdWO4tomNnKYlOZy2xzLhVFQVEUV+ay46Ax19Wsx7MZlhzpyOYKLtXly/DN/QZtxEj0MWOJ/uwsAILPPtVjj9GbKBsoLx5SOJS+uX0pD1Wkbbfn23rUjZ9z2X5JHdVpJKU5v4fuOZdp8ynbXdPHnFrBDuNzqW+IUbkqho8gO4zLI78E9j/EaupVX7vhL6eEEEII8dMmcy63EXZZbHmonDUta2hLtDmBYUGJSj1QVRnrtGvs0u/DNDdqDN8hRGkfKyBtv8YjQEKPU1zqZ58Diylckcse+xY697m7p6Yyl9r/s/fe8ZHc9f3/a/p2adV1J+l6L77zueF6btjG2BiDAVMSWkLyDQn5/lJI8s03IQlJIAkkIeELCYSW0IuNwTY2rric7eu9V+nUtdJq2/T5/THzmZ2Z3ZVWutVJuvs8H497nLQ75TOzM6vPa17vMqGA0UzdrRbbINmFdXJaDqonFHdUTiEmxNwwWDImMi5Flz1jJVVenbGwrDuJN6ziOmsb1yEZSiIZakBKLobesgzrtnmwcy6DBX04z0S+tM8lYAvaycJigYBzeTHF5QyFxYovPAcAUO++F2AYaDfcBLO5BcKvXgCTGoHV0Fizfc0FvJ97uWu8LdqOtmh7yeskpHXq1WIrh8UGHXMA8BZC9j4kKXlgwrN41wfbsWB3Br88HcXy5gVgEkPQTN1t7TM+Vjn6gEKhUCgUCgWgzuUlgWmZyGpZhPmwWwAmr+WgG464TNofc//5iZ3LYwftwjIbthQFaDnHkYi3WJzHHfc1uEKUjAUoDUUt1+OS9ADUTQ2yLoNlWNRJtlAdU1K+ZUnepbewkGEZroAjxX/I676xgHWL+Bim4YYHtkRasax+BQD/pN0Wl6RXpllyDuyw2Mp9Lsk2yv0cxOtc8szFE5fsJKJougivvgwAUG+82X6B46DcdQ8Yw4D44vM1289coVw4dDW4YbFTrBbr63NZoaCPZhTFpdeln0hcAgDLMuhaLmLFmihWrrAjCDRTdatQU3FJoVAoFAplMqi4vATIaVlYloW4mECEjzqvFZ3LaB0DlgUGehWkRzWcPJov2YZlWTh+KAcwwLLVEfe1cpNQ3Rea6n+/KC45N29RNYotDoigBIAwb4fTaqYGxVAgcZL7GsmzJDlr5Hffvj3OJSliRF63x2aPhWM5t3CKYZm+/pcEwZNzyTKsr61DMISQZ/mic2mW5lySbRCCze69zJpz6R1vrZxLy4L4ykuweB7aNde5L6u33gEAEJ97pjb7mUNMt6UL67YiuYA+lxWcS+896Q+L9QjNCmHq5Fon951qqNS5pFAoFAqFUjVUXF4CjMqjAOx8RSJW8nquGELKmGhqFZEdN/CNfz+P//7SeQwN+POnhvpVpEd1LOyUEIsT1678BFSbQFx6w2Ld9h+m5k5myaQVACK8LWLzWh6mZSLEhxB2XiMhsc2RZud48iX71i3DFdCknYe9Pyfn0iMieU/OJRmjtwl9MNyQvFcx55L0uXSLBgVaTXgm/nMxLBYz0IqE7ekGOzwEfcNGIFo8Lu2WrbA4zhaX5hytOGpZiHzus2hcvRiRv/trfzzpBEzXASbrzUQrEm8Iu2VVyrks/zmQBzI8y0NgBWimBlFiEYqwGE/rvuqzteDg4EGMOH1tKRQKhUKhzH+ouLwEIK5eUkq6YZY5LVfsB2kZaFtoi7rREVucnT3pbw1x/LAt3lasLYqCSr0pNbMoTIMOiOUJi+W5Ys6l4ToiIXfZiCOsSDEiiZMgcIJP6EWc43FbjnjEpWqo7mTXJy5JQR/PWMgk3isWva4R58mj9C5vlBGXHOMp6GOWFvQh2yj3c5BLqaAPv3cPAEDfuNn3upWog3b1tWCHBsEf3F+TfdUa8eePIfrZvwWbSiH6L/8E8WePVrWe93OfSogrN82wWP9DkNJ1g9dhJbey0oMjcs9zDA+BE9z7LVHHQ1MtyIXaPRzIqON4pfsV7BncXbNtUigUCoVCmV2ouLwEGPM4lyGehLMpPpFFxCWh+3RRXOZzBnZus6vB+sRlhfYhuul1QMqHxXKePpeqqbrbksqExZJiRCHnd/I6UHT2yPreCbLiFAHy7te7jFdEcqxHLJqlYbFAceLOMZwrPMv3ueTcQi7V5FwyE9xmPMu7ocIXM+fSH85Zm23y+/cAAPSNV5S8p93mhMY++8va7KyWWBaif//XAID8Rz8GAIj8+79Utaq3lcjFcS49YbFlHkYEW5v4+1z6Q2TLuZBeV19k7crTmqHNSGgsyQ1VTVqFlkKhUCiUSwUqLi8BvM4lCZtTjWIoqm7qaO+wxWV9oz1J7D5jCzNFNvE//3EeqSENK9ZGsKCzKEKNapzLQHhd2bBYQ4PphENKfBnnUrXzJYmrGRYixWX4MFiGdY/F61wqevkCRWQMXhFJ8ijtViTkdf/lT9qPcCznqxYbDCHkWd6dxHuP10vQFZ0I4l5ezLDYmSjoI7jOZam4VB1xKTz/bE32VUuE114Ff+I4tKuuQe5v/wH6ylUQ9uwGe/rUpOtOt+qum3M5xVYkDMP4HoKUbte/vXI5l+RhRrnQWHLP8wzv61M7E+KSfHeYE7QpolAoFAqFMr+g4nKeoxkaMuo4YmIMIie6bqFuaj4h1rlUwp33N+HhjyxAY7OA1JCG9JiG7/5XL3rPKehaGsJDH2wHwzAYKYzgTPq0z6H07XPCgj6kUTsLgSPOpeYJi3WayjOs+zMJiw07wtPrXEpcCDzLu+tPVEyIQEL7rEA+JMdwvjDXoOgjRX1YphgiS8JovYWI7LBYuO/bxzu9nEug6M5OJkJrSS3bjwAALAv8vj2wBAH66rUlb+vrN8JsaoKw/XUwmfHa7vsCkX7wXQCA/P5fBxgG6l1vAQCIz03usrI+cTmNarHT+AomDyHKPYyYMCzWuVbJeuXuH2/7Hm+fWrdibLp24pKMLfiAikKhUCgUyvyFist5Dinmk3T6Q5LcQc3U/IU9YOKG25JoXSChc4kt4r7+bz04c7yAtg4J7/2NBRBF+3J4o/81/KrnBRR0f1VZ4ph4Wx0EQ0Yna0USctxJgS3mVpLiPa5zGRCX3p6RXmFbCSMQQsu5lTlZX9/KYKVOMh5/zqUJ0zIhcqIrCARWKBb0cbY1Uc7lZKGPCad9TJgLT7hcLZluC41KsP19YIeHbWEpSWUWYKHechsYXYfw8ksXvL+aYRiQnnoCFs9Dufc+AIB6510AqqtuO93cVbfP5TQeKBSv09J1g2Pwhr66FZudhyjlK0E7ApThPdWeZ8a5NK1iZAWFQqFQKJRLAyou5zkjebv/YzKUdF/jWR6aqbkiC/BPJDuX2CJmbERHS7uID/zWAoTCxYmqatjhpnnNLy4lJ5/TOxksyblEsf2HtxUJ2b/ISQjxIcTEuK84CVB08EjFWPvnEDiWc1qCmL4+l5XQA61ISBsS4oBWyrkkTg3HsO46RPhyDFcMR/QU/zFccem/lbwht5M5Whuar8DWztvQFm2f9NhqRS17WwLeYj6lIbEE9dbbAcytliT8rh1gh4ehvekGWHX1AADtyqtgSRKE7a9PXt12mlV3p5tzCRQrxvJlhGk1YbEkoqCcuPRWWCZuvWbOTDsSMp5Kud0UCoVCoVDmHxex9wFlJhiTxwAA9VJRXAqsgJyW8wkx7wRu+ZoIonEOy1dHcO87WyBK/gkpEWey4a8oK7ISgOyEzdhJ/hQLfysS0yPo7l16PziG81V45RgOrZE2AHaeJUHiQm6hG8M0KuaB+sdv78t1UeGfyJOc0dKCPqL7enBZluGwqG4JCloeLMO6QoII1YkK+kwW+ihxEroSiyY9rloy3SqnleD37QEA6Bs3VVxG3eqIy+eftVt91Do0dxpITz0JAFDvuqf4oihC33QlhNe3gTtxHMbKVRXX9xX0mcLxLEosRk7LojHcNOUxu7nBVeRcWoGwWIZhwJPKyWXC3r0h4yR8dqZ6XZJ90ZxLCoVCoVAuHai4nOd01XWhNzGEhbEO9zWRE5HTcpD1ojj0TjLr6gX84V8vqTgZJuKyoNtFfxJiAuPqOKJCFCl5xLdsac6lpxUJW9qKhGVZ16EkDikAtMfa3UkzcS45hoPACW5VTN3SpxYWG8it5IJuZEnOZTHckEzcVScEmGM4XNf+JnfZYMP6UnHpzbmcfREVpNZjKorLys6l1dICbf1GCAf2gTt9EsbS5TUdw3QQn7bFpfLme3yva1ddA+H1bRC2vz6huPSL9OrPaUe8Ex3xzimO1mZF/QqEuBASYl3JeyXOpbdarGmABeurnBzE24qkmL+tu+IyPQPOZaXcaQqFQqFQKPMPGhY7z1mYWIitXbe5wgwohs3JerFVRzCvaSKXhUz2SM7l4roluKnjFqxtWl+6rFmpWqw/rM6byxUcJwB0xovOHcm5DDkFfrw9J0lBn4nCCcmxekP87P95ZzyaM0b/5U+cGm/OpetyBoSo2+eyYrXY6nMuZ4Na97nk9+2FxXHQ15ZeI160OVQ1lj19CvyRw9BXr4G5eInvPe3KLQCKorkSM9EvdDKW1i/HLZ23lr2HS53Lori0YDkh3cV84iDFBzLeglwqQiEO8ToOI4Mq8rnaiEGD5lxSKBQKhXLJQcXlJYjoaSFAmEpFRjcs1hGnPCtgSd1SX7gqoVKfS5ZhwLM8GIaBZmolQg/wN4T3Oq8RIQqO4RAT487+ncmwqbuhviFPS5Mgbridx0UFigLRtMyygo+IYY7l3BYRxZxL/63CuNVkyxf08YrRWoSd1pxpttAou6mBAXD9fTBWrgbCExclcvMu54C4lJ4mIbFvKXlPX78RAMAf2D/hNmaipcuFMFHOpWEagWJVZcJiPa1IiHOpOffA8jVRWBZw8og/F3tUTiGrZac8Vu93R7AwGIVCoVAolPnJHJz1Ui4UPlAoB6g+9Mw7ySNhtcTRK1eYpiQsFn5BJ7ACdE9YrFd0CZyAlkirLVw9vS1FTsTdS+7FjQtvttdhSO5m0bkklWXt9/1CsVjQx+8q8p7lylXp9OZcEuGrOKG7wcqcbs5lpbBYz63FXsQWI9VSS8dN2L8HwMQhsQTt6mthRmMQX34JUNVJl59JxKd/AQBQ3nx3yXvmosUwY3HwBw9MWNSn1lV3LxQGwbBYf86lN5+4fM5lsQgWue/JQ6qVa+1w9mOHirnSpmXiF6efwK+6X5jyWH0huzQ0lkKhUCiUS4LZnw1Rao63JyNhsqIZGXUcfdleX+Ef2XCcS0fclStMY1gGLMtyJ7GWVSouvdVigyLt7iVvwU0dt5RstzHc6OZm8mVyLsMe5zIseAsASa5ANkwj0G9yYjeRCEqGYSE6PThJaHBQwLo5l2aFsFivczkHbzOfoLxA55LftxcAoF2xafKFRRHajTeByecgvPHaBe33QmDGRiG8+jLMpmboV15VugDLwli3Hkw+B+70ycrbqaEDXAsqhcV6XXy2ipxLnuE9Ye32Pbd0ZQQsB5w4nINpWu57mqmVtC2qBu+DrJkOjbUsC0P5IZ/YplAoFAqFUnvm3qyXcsGUa64+mTOwrfcVPHPuaeQ9FVyDhW/KCTLDNPDM2afw+KmfOb87rUgcMeY6gE6I7XTyD90wPlOHZmjgGM7nzkb4qLsvgRNcwUtyzAje81JuHKTVisgKbmgxCQ0uybkM9rmcyLmcA45WkFqGc7ptSDZsqmp5t2rss7+8oP1eCOIzT4MxDCh33QNw5a9Jff0GABOHxs61sNigwCWRBN72O1ygGJVveU/4ureVEABIIRaLl4VRyJvoOWPfF0QUTlUcjqd1HD007hG/M+tc9mS78eTpn+No6siM7odCoVAolMuduTfrpVwwwf6RwOTiMqtlYVmWrz0IgYiycoLMtAyMyCMYlVN2L0r4+z66xYUMIi6nfsmRarGGZcCwDPAs7xOKpACQwAm+fDLDNHwTfu/4yx3LguhCXNV2DVY1rHGLmWgVCgiVVIsN6AqOndvikplmf8Zy8Pv3wmIY6OsmLuZDUJ0wVPGJn9ktSWYB8RdP2GO5+96Ky1STd+kLL54Dn3OlViTeyIEJcy494euk7yspagUAK9f5Q2PNQH5zOUzLxBOnfo7t3btw9lQBlmXhh9/ow9M/G8Rgvx12PtPOJenZm9UyM7ofCoVCoVAud2Z/NkSpOcRx8EImjZqhIa2MlbxPHDrFkEvec8NiK+RcEmdDN3V3kkkmsGSCWskBrAZS0EczNeimDp7lfWKP5GsKrODJz9RhwvQX1vH8XG4cHMthbeM6RIUoJFbyvVcp57JY0CcQFuu5teZ8tdgLCOdkRkbA9XTDWLESiMWqWsfs7IK2aTP406fAHT407X1PG0WB+OwvYUUiUG/eWnExfYMtLrkD+youw8wx55INjIFcn96w2GLOZakg1E3dDp0NtBIirHDyLo874tJ1Lj3h9H09Mh75dj8Uxd7+UGEIw4Uh/OCFl/H1L/TgR9/qR/dpGRYsDPbZ4nIqBcemA/n+I99VFAqFQqFQZgYqLi9ByjmXZCL5Wt+r+OmJR/B632vuhFMztJLell7YCcJiFc9kTTXV0iI6Jc7l1FurksmwotsTUYEVfOKQ9MUUWNFThESFZVk+YcdXyL8sh8AJPtFVWi3WP4kPCgt/tdjZFx1BalXQx+1vuWHyYj5elHvvBwBIP//ptPc9XcSXXwSby9rhuRNUt9VXrobF8+D3TyAuayTSa0Vpn0siLouOpDfn0rIsDOYHfT0n3QdDzkOqofwg9g/txZg8isZmEY3NAgZ6VaRHNbfFkDfv+qVfjmLv9gyOHXAEqNMrdixl/39wt11Z1mIMDA044bWOOO3rUbDthVFfC5VaQKrgKp7euhQKhUKhUGoPFZeXIDxXOecyJY8AAI6mDmPP4C4AgGwU3OVIhVjf9hhSLZYpmUB7l9cNrWxBH6BYWGQ6ziUJiy1WrxV8/TKJcylxoutyqkZpL8vJwmKDeEV6aVjsxOLS62hNJmRng1oVouH328V89I2bprSeSsTl4z+b9r6ni/ikHRKr3F3agsRHKARjxUpwgwNghobKLuI9d3Mh/DnooFuw7zs33DXQiuTs+Bn84vTjODZ61H7NaVcCwNc7d/fgLjx28lHsGdzlupfHDuVgeBxL3dRhWRbOnbbv07FR+x7UTA2WZSGT1t3w8cZmAZxgYWRQhWXZBcdM08KPvtmHpx4dRl9PbUUgdS4pFAqFQrk4zP5siFJzxDJhscSZ9DqH3ZlzAIC8RyCWe7LPs5VFmXd5zRMWS8RXMER3OiGiREgS91Pk/M5lc7gZaxvXYV3TBvf4SJ6YV9j5C/pMfulLXDE0tqSgTzAMNvC7v0rt3LvNalWIRiDFfKqpFOvBWL4C+uo14A8fBHfk8LT3P2VME+JTT8BiWah3lrYgCaKvWQcA4A8fLPs+W8Pc1VoQHMNEYbGGZaDg3PtjTqg8yWkmtEbbEBfjWNu4DgzD4GjqiJt3eXR/zlfx1bAMjI7oyI7br6VHSUsgHfmcAcMAOhaH8PBvtOO9v7kATe08NN3CeNpuVXT8UA4jQ7YgTQ0Ve/TWAvL9p1LnkkKhUCiUGWXuzXopF0zZsFhSNdJxGqJCFGkljYJe8LmP5ZxLzjPZrBR2BwC6qXkmsaRarN9FnZa4dLZB2h0IrOgTyQIr4qq2a9AWbXeXJaK3UiuSahxUrzCulHPp/h5w/+a6uKxZWOze3QCKlVWngvzOdwMAQj/83rT3P1WEN14DN9AP7brrYTU2Trq8vtYuUsQfOlD2/Vr2C60FpfcncS6L96W3zyUJR81rWV9FWcJdi+/B21e8E1e1XQOJk6CZGrqWhhGNczhxJI9d21OOcLRgmDq6Txe/P9KOc6mbBjJpe9st7SJWrYuhsVlEc5t9r+7dPo7vfLUbT/902F2XhNDWCnL8NCyWQqFQKJSZZe7NeikXDF8mnJPkHJHqpwtiCwEAA7l+t9gOUD7n0huCOtEEWjO1kpzLEF/MaWMZdlohmMRlzDkVHyVO8rkr5X4m4W/eybZ3uWCz+XKIXOWw2BJxGWxF4guLnYO3WQ3CYpmREXDnzkJfvgJWom7K6yvvfDcshoH0w+8Bxsy2oiBIjpBV3vGuqpY31jnO5aFKzuXc+pxLqsWWhMVy7oMVu6Ky/b2Q03Ku0OTKtDIC7IgI0zIB1sBDH2wHywHPPjmEZx8fwesvjcGwDJw75RWXxe+cTNr+uaW9GA3Q1G7fX2MpHb29eYwMae5lOVpjcUlyTsn3H4VCoVAolJlh9mdDlJrjFUWkETqZXOqmDoEV0BppBQAM5gd9DdDLVoudwLn0opmq65SQ5ZbULXXHMN0G5lzAuRQ5sWL+JHE03R6dFXIuy/UCDSJ6w2IrtCKp/Hv5FihzhVo4bvxeO2dX33TltNY3FyyEdtNWcP19EF56cVrbmBKyDOmnj8ASRSj3P1DVKsS55CqIy7le0IfkQJseV5Jc+7ppuN8LOS1X1rn0Qu4H1VCxeFkYD7y3FbE6BhwHpAY15GUN507b3x8s6wmLNfWiuGwrRgO0LODRtTiMJSvCePDXm3HLXQ24/z0tAICxkdq2JvH24/SG8lIoFAqFQqktVFxegnidyxAfAgAYZrGZOsdyaIm2AQAG8n0+51Iu41xyVYaT2jmX/glqiA9hU8v0xAfBzbl0xiZwojsOnuX9VV2d/pIk59LfimRqLpM3d9XbtxKYvFqsN4x2LvQ/DOIXRdPbhrDHCYndtHna45Df/TAAIPzf35j2NqpFfOZpsONpqG++B1ZdfVXrmG3tMJNJ8EcPA3qp4Kllv9BaULlabDHnktxPhqW71V5VQ3XzL/kK93iw7+XGLQm877fb0NIuwQJw/Mg4hvpV1DfyaGwRocgm5IIBzdQw7jqXxXuKYS3ceHszNlwZR3O7gFvvacTaTXEAtXcuvX00aWgshUKhUCgzx9yb9VIuGK8oIm6D6bQdIAU7YkIMMTGGUXkUaTXtLh9srB4Ub+wEl4zmy7ksLrcyuQod8U6sbFg9reMJClqJLYbFBl0WMnEmLVK84a/e8N5q3ETiuAKlOZfB8zBRzuVcdC5rUdCHd8SltmnLtMeh3PcAzMZGiE/8DOz5nmlvpxpC3/4mgGKuZ1UwDPS168EoCrhTJ8u87TmPc8C5DD7I8LYYAezrmLQi0T0PgwBg3PkeqHS9khxkUokZsFuIJBtt0fny83bO5PLVUdTV2/faWErH6VNZZDMGJIlBNFa8B0keONkOAEgSi0iMQzqlwzRr147Ee5xEHFMoFAqFQqk9VFxegnAs54oHIjQNy3Cf3pOCP60R270czA9U3tYE4aDBwkGaobqTWSaQi3Zb1x24rv1N0zueQG9Mb1ist10CUAyhJVUhuQqVbqtpD+IVlyU5l0HncoIw2TnZ55Kp9Ev18Ht2wWLZaRXzcQmFUPjAh8AYBsLf+K/pb2cS2FMnIT37SxgLFkJ98+RVYr3oa0neZWlRHyLM50K+JVD60KMk55ItOpe6qfscvYw6bm+jYlisfT94xZlpGkg22tsbGbbvuVXro6hL2q/9/AeDePpn/bAsoLHFXznaV2nW1HFgeD9GCiNINvAwDAuZ8dqFxnofmim0HQmFQqFQKDPG3JgRUWoOcfZIOw3DMtxiFkSsEXE5UcPyoGtYqbUHEGhFUsNLKximJ3KiKyL5gPAkY3LDYiuE9AbDXMvhrRY7Wc7lfCvoc6E5l2x/H7j+Phir1gCRyAWNRf7gR2BxHEL//XUgl7ugbVUi/PWv2vv6tQ8B/OT5tl6MdbZ45g9WFpdzISQWKH2QUQyL9eZckoI+fnGZVmznslI+MnmY5O0VqVs66pICGAYwGR2CyGDx8jDqkvayPWdlmKyOK69LYPO1Cf/YPM7lSGEYuwZ2YN/QHtQ3Fgv91ArdI2RpOxIKhUKhUGaOuTfrpdQEMhF0C/qYhtuGhEwuW6OtFdcnzlxQvHmFktfZA+xWJF6HpFYEJ7siJ7nj4gPuKe8W9NFKxstNMSxW8jqXwT6Xk1SLvdRbkfBOf0tt84Xl0wJ2YR/lgXeATaVcEVhLmMw4Qt/7NixBQOH9H5zy+sS55Mo4l+SznQshsUDlnEuSc21Xi/UW9CkKuHHHuaxc0IeExXrEpWmA4xjUJXlYMLF8dQSCwKKuwdMrs5PFwq4QWDYgfD2CL6tlne1pqG9wxOVI7fIuvc4lFZcUCoVCocwcc2/WS6kJZCIoOQV9TE9YLBFrcTGBsNMqJCjgQpy9XrAtgb+1RyAs1tTc6pS1dC6DYbESJ7oCOehqkqI9ZALp721ZvnJsJYQJci4nCoMNLl9NCO7FhrnAViT87p0AAP2K6Rfz8ZL/g0/CYllEvvgvQDZbk20Swl/9D7DpMSjveBeslpYpr6+vXA2LZcu2IyHnbq48QCh9UGBHJXjbjHjDYg1PBWc3LLZCQR8359IbFuuItsZmASZjYPXGGAC4ziUAdCwv7bsLwLfvvNNmyLBMJB1xOVpLcekr6EPDYikUCoVCmSnmxoyIUnOI8JPYYlis7rYaKIq1tmg7ACAuxn3rhyqIThJ2x3masRN0T0GfiarKTpXgtgRWREKsw5K6pViZ9BcJKhb0cXIuvWLYc9zV5VxWbkVS4lwG5vRzPSz2Qgv68HudSrE1cC4BwFi+AsqDD4EdGUHkP75Yk20CADOeRvhL/waL45D73380vY1EIjCWLgN3vgfM2Kh/+3MkHJZQ0bm0SluRBMNiiSPJV3QunWqxPufSXn/F2ijufCCJ5MpRjBRG3II+UohFS0exsnO5sQHF/pO6qaPeyeHs66mdw0idSwqFQqFQLg5zb9ZLqQliMCzWMj1hsZ6QNSfvMib4xWXYcTyDE00isjiW8wk3wA5FNcoU9LlQgqG5IieCYRjc1HELFtct8S/r5lyWhsWybPn8y0qIHmc2eKyT5VxW6q85V7ig/oyWBWHPLliCAH3NupqNKfdHfwpLFBH5wufBdp+ryTbDX/p3sGNjkN/1MMwlS6e9HdLvkj98yPe6GxY7R0Rm5bDYYkg8uR6D1WIJlXIu3T6XpqdaLCkSJrBYuIzFC93P4fFTjyGRZHHTnUm89aEWmEzpvQiUVqa2x2tgYVcIkRiHowdy2P7y2KTHXA26qbu55dS5pFAoFApl5qDi8hIlIdWBZVjUSXUA7JxLIri84axdiUVoi7ZheXKFb/JHnMtgWCwRjSzDlgg0r3NZ07BYz34EVpjQCSzmkzlhgN4CRFPMuRQmyrmcwKkM/j4XnUtcQH9G7vRJsCMj0DdeAUjS5CtUiblkKfIf/wSYQgGx//unF7w99tRJRP79X2CFQsj/wScvaFtGhbzLuVYtltyf5Po2LX+1WJbhwDAMOIbzVYtNhpLuNirmXLKl1WK9OZs5rViM6Xy2B7ff24QNW+LQnPznYOGwcuJSt3SEIxze8+F2cByDJ34yhOGBCxeDgwMFPPGjIXSfLtBWJBQKhUKhzCBzY0ZEqTlXtV6Dd658N+KiXaHRGwLnzVMM8SG8efE96Ix3+RwLknMZdDFc55LhSkJLK/W5rAVkHMEiQkGEYBhvhVYkQSeyHCSkGCiTczlJQR/vfueK8PByIQV9+DdeBwBoV19X0zEBQP73/gBG1yJIT/wM0g++O/0NWRbif/IHYBQF+f/vj2F2LbqgcbnOZSDvcq4W9CH3S7mCPoD9sMS0TOimDpZhcWvXHeiMdwEA6qT6stsmbX+8BX28eZMFPe/+fGLsuLt/IiJJWxSC5VnX3Z4Tut+1NIytdzfAMoFtL46WLFcN42kdP/h6H86fk3HsSAamBRzcm8Xp02l8+z/P45mfD2Own4bIUigUCoVSS+berJdSExiGQYgPuZNJwzLciVswzJTg7VsZ5iNll2W9zqVHaPIs74jLYm5XLSHbm0xcRviof7yeS5zzCb5qnEvBFQ2TtiIJiAvvfue8uJyiMBJe3wYA0K6pvbhEJILMv/8HLJZF7JN/AO7UiWltJvzlL0J84TnoK1Yi/9u/e8HDqtTrkmEYiJzotvyZbcjnSoRgsc+lPySeZ3nolg7DMsAxHGJCDLd23Y73rvkAuhLlhThxLtUyOZcAIOuy+/P5bA/yWt63rBkQk94+l+5rHjfzqhvqIEoM9m7PIJedeluSl59J4dDeLH74zV4M9ClgLAaaauGXT/bj+KE8Xn5mFN/89/NT3i6FQqFQKJTKzL1ZL6WmMAwDlmF9YbHBUFeC16UkOZfBypGsJ+yOCC6e5SGwgpPDNdPO5cST+BAf8olkLuAguuOvsuAQ2dbk4tL/O9n+XBSWwIWNS3jjNQAzJC4BaNddj/z//iOwuSwSD78TzNDQlNYXtr2C6N/8BSxJwviXv1aT0F2zswtmLG7nXJp+kXTHortwc8fWC95HLSCfK7luyxX0AeyHRpZlQTM1371QKd8SKIaJ+8JiPeIy73EuLcvCUGEQuic/M+hcmjBL8zA9gjMc4XDldXXQNQuPfW8QY6nqq8cqsok9b2QAACMjMiwLWLYkCZ5nYDAqbntLI+J1HHJZA7pe6qBSKBQKhUKZHnNz5kupKRzD2dViHfdCYMu3BiC5mAzDoCXahmQoiY5Yh2+ZonPJucJT5EQIrADTMssW0qnVMQBF92QiYmKsZL3g79U6q2E+XDa/dNKwWPhz3+YaXrdyKp8VkxoBf/wYjMVLptXWo1ryf/gnUO69H/zpU6h7z4NgBgerWo/fuR2J970LjK4j+3f/CGPDxtoMiGFgrF0HJp8Hd+aU762mcFPFUNKLTfHhjy0SLTcstphzCRQfMFmWVfU1Ws659Fdh9ecyaobma1tSknNpGiWRCME8zGu3JpBq3I2dR07h/332bNVhrHu2j0NVTCxeHgbD2edgwxWNuOmOBtz8ljhufnMDEnX2OSjkqLikUCgUCqVWUHF5GcAyrJ37VCbn0gvJV+QZHjEhhvuWPYCOeGdgW0VHjnNdEtEVpoqhgGGYmuegcVXmXAJAVCiKSzYYruoJ662G6xfchFs6by1dvsJ2i+PlnMXmRi5ekOlWNxW2vwFg5lxLF47D+Je+CvWGmyDs34vkW24Hv2fXhKtIP/0J6t75NrDZDHJ//GeQP/DBmg6JhMZyB0v7Xc4VyPVO7uXSsNjStiATuZVeGIaBwAruAyTAHxZLiAp2aLpiKNAC7xOBSRzVcg+6vO6lIqZwxX0ZYOMu5NQ8fvI/A9B1q2SdIHvesHt2vvltTbjvPU3YcGUMDckQGpMRROvt9cMR+1wU8qXhuRQKhUKhUKYHFZeXARzrOJduBdVKYbH2RG8i4eX2ufS0NBA4wc3xMi2zppViCdXmXAL+tirB3Eoyka50DoI0R5rdQidegsdY4lxOUcRebPw5l9WPcaZDYn2EQkh/98eQH3gQ3LmzqL/7NsT+8PfBHToIEBfMMMBvfx2JX3sYid/4IJh8Drk/+4sLrg5bDn3dBgCleZdzCfJZ8sGwWDMYFustblXdvQDY97pqqK5ILFfxlTzc0UzV1xMT8Ihdkv/N8iX3iO6pQKuZGgSBxYYrYzCXHkZ/j4IXnhyZcIymaWGoX0U4wmJBZwgrN4aweHkEPGvnhpMxh6NEXFLnkkKhUCiUWlH9rIIyb+EYzs2vAio7FcRFmMjJKIbdFQv6BCu0EueilhDHpZrCKdWExV6o6As6kuUcys54F0JO7upcY7qO6kUVlwAQCiHz5a9Bu+FmRP/mLxH+1tcQ/tbXYNbXw2xoBDs8DHY8DQAwFixE5p//Hdqtt8/IUNyiPgf3z8j2awF56FFSLZbkQrP+sFjvstUgsiLyyEMzNYicWNa5jIkxDOYHoAbCYgHHuWTsfEvAvg95lofhy+M0AOe2Jd9ZDMNg0bUZnO8bw8vPAcvXRrF4WbjsGDPjOnTNQnM7jyOpw0g4FbNZT564aZkIR+xzRZ1LCoVCoVBqx9y0VSg1hUyoSDXHSpNJbyXJybblzbkUWBGCJxeyNdp24YOuMDahmpxLX1hs+XDValqRTERJX8syt9KtXbfjTQtuuKD9zBTe8VcdIqso4PfsgllfD2PlqhkaWRlYFvKvfxipN/Yg+5efhrZpMxhZBn/qJBhFhnrTLch89vNIvb5nxoQlYDuXFsuC37tnxvZxoXhbkTAM44pLtw0RQ5z7qbXlIZCCWqppu5emZZZ8X0Sdis22c+kvwhN0Lr0REARv70yyfkSIIBLlsPrOMcACfvLf/RjoK59/mRqy10kl9+KNvtfwet8295jJ+TFMA1YoD4XNIJ+j4pJCoVAolFpBxeVlAAkNJS4CX7Ggz+Qho95qsURQCU5BH0JrpPXCBx2AjEmaYs5lqXPpHGOV1WIrUVLQZ47mVlZiOn0u+d27wCgKtKuvBdiL/9VhNTSi8Du/h7GnX8Tw6T4MnRvE8LlBpH/8M8gf+mhNqsJOSCQCY9UacH29YAf6Z3Zf04TchwIrgAXrirlgiyCvIKxUPbocohP+rhmqG14ajCaIiXZYumqovvxMexy22PU6l8H9e3MuyfqrkqvBMRyYtn5suDqM8TEdX/l8N04dyyNIatheJxs5BwDIqBn3mMl3oWEZOGT8CmeiL6GQN3EmfRpn0qerPg/VktfyOJ0+NfmCFAqFQqFcIlBxeRlAhJRq2E/6+QrVIasJi2U8uYRFN5H3rdMyg87lZK1IACAuenIuAyKyNdqKmBgr6Yc5VUpakUyzQM5s4RXD1Qpj8aUXAADajbfMwIimCMcBoVBJYaWZRtu0GQDA7919UfdbLa3RNrxpwQ1Y27jeLeQFFPMYuQsMiyWRA6qpuW5o8J4kYfHqBDmXpicHtNS5LOZAkvWjQhSL6hZDN3VsuCePW+5qgK5Z2P5KumSMqSENBXYU0bi/MrTXuTQtExBU6KyMTE7Gr3pewK96Xqj6PFTLvqE9eKnnRQzlp9ZOh0KhUCiU+QoVl5cBJOxNIeKyYlgsEZeVXT1vi42IEAFgF9AxPW0GvGGptaIrsQgtkVY0hZsnXdZb9CcYrrql9Wo8uOKhmjuXc7Vwz0QQUVmtMBZeehEAoN40B8TlLKFf4YjLPXNTXLIMixXJlYgIETAMUyy8Yxq+Pq/+gj7V3wtur0tD9bU28l7/5P63ncvy1WLdvpssV/J94y/oQ6rcClicWAIAGCoM4E1b6wEAA+dLQ2NTwyrSYjeisaJLSfZF7nsTJjjRHksqO1b18U+VvJ4DACiGPGP7oFAoFAplLjH/ZsSUKUPEpKLbE7FKYXDEuZwoLJZMzliWQ0esE29ddj9WJFcip2VrOeQSOuNduHvJW6ZcIEc3q2+8PhVKnMt5FhYLFEVlVUPP5SDs3A6zsRGGU9jmckQnzuUkbVHmAgwYTysSwycipx0W63xHqKbqa23k3Z63WmxQVFmwkNfyrmi0Ba9fXJq+sFjbuRQ5ERJn3/u6qSMU5lCX5JEa0aAo/mqvQ0MyxoRziMT8x2WH8jPuPjjBPjcj+dGqj3+qKI7zWq7wEYVCoVAolyK0WuxlQMSZ7JEn+OV6y9mvT17Qp+hcsmAYBg2hRgDAFS2bMKqkcMPCm2s27guhNdqGgVw/ElLdjGx/OmGlcw1XXFbhXAqvbwOjaVBuvGVW8i3nCvra9bB4HsKe3XY7lDn82bMM6+YsGqZRUVBWCpMvh1vQx5Nz6a3CyrM8OJaDwNotSwq6nRMpcRIUQ4GsF/Czkz8FYJ86b1isyIm+7QLFnEuBFd02SKTgT9tCCelRHUN9KjoWh/D6S2M4f1bG2fQZMGENy5sWoTfb626PjM3erg5RsreXkkcwM98SxVQEb5EiCoVCoVAuZS7fWeJlBCnFT6gUBse7zmXlySbHlu/f2BBqxIMrHpqRYj7T4c5Fd+GhVe+ZkbYohKmGlc41pjJ+0QmJ1S7jkFgAQCgEfc06sMNDYHvPz/ZoJsSbc2lYfnHJM9PLuSTFexRdhm6WijYSkk76YRb0AgC4IfSkuA6B87ieEd5exuvykZxLb143eb91gT0WUjX2yR8PYd+ODAaZU4jFOaxqWOMPkWc4MM6fPN3UIIj2z2NK0bk0rdr2vFRd55JWpKVQKBTK5QEVl5cBXnFJWhSUIxlKQuIktEwgEOukJHiWdx3LuQrLsAjz5fvg1WwfKC+05wtk3NU4rzTfskgxNHZu5l0SyOdLxFjFsNgpOJeuuDRUXwVaIlZFp+AP+T+jZsCzvFsIKLgvlmHdcNe48z1l+pzLYs4lCdcnQq11gb3N/vMKTNMOcc1xQ8jzI2iM16E9usAXRu8t6KOZGgTBvu7H1JkTlyTPnYbFUigUCuVyYX7OiilTwisuJ5pIxsUE3r36vVieXFFxmaZwE96z+n1YUre0pmOcj8x355Iw2fiZ0RT4/XthdHbBXLzkIo1q7uIW9ZmjFWMJ5HMloaXeIlb+n6fgXDpiTTHkomj1tPggBX9I+KxpmQjzYTeklbQgcffNcNjSdhVu77oTTeEmAH6Xz5tzScZMwlxb2x3nsldBZlxHlh/AueirYBjgmsWbwDCMr02KPyxWA8MwEEQGBbWYF+oNya2EZVl47twvsXtg54TL6abu6TM6M7nfFAqFQqHMNai4vAyIiXFfc/ULZb46dbVmKs7fXKRY0Gfi8QsvvwTGsqDeePOczjG8WBDnUpjjRX2KzqUjLpnyYbFTci4dB9IrLnmmGNoqueKymNcd5iPutWYEwkNJhMHCeIevByWBiECe5d0xk0JCDc0CeIHBQK+KsREN58M70drF488+dg8evP0qZzwe55It5ne6bVREFoYB1/kMjq8cOS2LnkwP9g/vm3A54loC/gq4FAqFQqFcylCVcBnAMqzbHqAW4pLiZ746l9U6r8IzTwEAtK23zfiY5gP66rWwJAn87l2AWdswylpCetKqRqlz6cu/nEJbHtETFkuK1PAs726DhL+S/wEgzIfda80MOIPlxuRrRWJoxSrWzrK6pUMxFDzX/TSk9hQU2cTuY6egszIWxhdgU/tGd30pEBbLeMJiAUAQ7XGpionBfgWf/6vTePmZlNsyheANl807eaSToXrFJc25pFAoFMplAhWXlwkJyQ6NnajNCGVqVOv8zVVcUTnR+E0T4i+fhsVxUG+9/eIMbK4jitCv2Aw2PQbu+LHZHk1FyOdLnMtKvS2n8p1AchhVQ4HhCGs7l9EfFit4CumE+HDRuQzkNHqjIMiYSCsSy7Ls3EhPdWue5WGYBobyg+jN9gLNAwCA148fBgCsbFjpH68nLNZuReJ3c0WnqI+mWjh+MId8TsMzPx/BLx8bdtc7kz6N7x35NobyQwCAvJab/EShWMwHKLqtFAqFQqFc6lBxeZmQEO1i+wJXvg0JZeq4YbHz1Lmsavy7doEdHIB2zXWw6pMXaWRzH+3qawEAwvbXZ3kklWEDLp23n6SvFckUohlYhoXAClAMxXUYOU8lV9IHU/QIwojPuSzNuXS37VSiJmGxZNzeiq8cw8GwDPe9ukYOBjScGjkDzuKxonWxb/vesFg755K4uU4VWse5TA1rSI3oiNUzECUGr/8qDcOw3cvhwhB0U3eryuaqFJc0LJZCoVAolyNUXF4mEHE5lZ52lIkhk/f5moNaVVjs448DANQ7774YQ5o3aNdcBwAQ3nhtlkdSmaC45Cv0tpxKziUASLwE1VA9jijv6VUp+f4HSM6lXzi6+/aGxQaqwRbH7XcudVN3cybrG1nk+WGYMBHX2tHY4K8QLfHFcXj7cXpzLgHgxBFbMG5+UxwLu0IwDAvDg7YALbYTsdepVlySYkSGYeHl54ZwcE9mkjUoFAqFQpn/zM9ZMWXK1EmOuGSpc1krXHE2z8NiJxz/z38OAFDvvOtiDGneQJxLfk6LSxIWO0krkinmYYusLdiIyOJY1t1GsBUJYIfSkmssKC7LhsU6yxDxKpRxWWXDrvCaSHIwGaclihVCXdJ/LBLrrRbLlQhu4lzmcyYYBli3OYq2hU4V2vO28+i2E7GIuMxWPjkeZN1e7/jhHI4dHcdzT4xUtR6FQqFQKPMZKi4vE1oirbiieRPWN22cfGFKVbjibJ6GxU42fmZgANixA8aixTBWrrqYQ5vzWE1N0JctB3/qJJjh4clXmAWCrUjYCu1HplLQBwBCjhuYklMAgAgfdavIkpxMoUK1WGuCsFgiHIkAJYWIvMWBSGivotviUpAsRBP2tkWBQzji/5M2WUGfcLS4/01XxxGOsmhdYB9ff6/jXBIH0hHpeT3vrjNRX0zNVJEZ13HicB4mDIwMasiM0/BYCoVCoVza0OoulwkMw+CKls2zPYxLiksmLLaCcyk6VWLVO++iLUjKoF99LfiTJyBsfx3qPffO9nBKCLYi8YbCTrcVCVAMeR11xGVcSqA+lERMjKMj3gkAvv6S3mqx5VqRFH/2h6x6e1y64w44l4ZloKGFA3qBRFwsuZZ9BX1Y3hMWa5+TjkUhSCEWDU0CBIGFCdN1Lvsd5zIYFpuRMzAMC6MjGraPjeKq6xrAcUQ8W3j+yRT2vDGO5htT2Lk3DcsChJAJ5ICzJwtYvzk+2SmmUCgUCmXeQsUlhTJN5rtzOVlBH/EXTwAANBoSWxbtmusQ+t63Ibzx2pwUl0GXzlchtoKLWQ2kSI5pmeAYDlE+CoZhsCJZrNQqBMNiUT4slmM5wOn6QRzUYEGfcrmixLk0LQsNzba4jCeK+wyOFbCPn5wD4oqyLIPW9qIANU0Dza0iWK4YFnv2bBrbtg2h4d48dp4dxU+e6CZDRmq8D7vHXsWN1y7G+qYNeOZnI3jlObvwz6FnB5ARDbS0i1i+OIr0L6i4pFAoFMqlz/y0XCiUOQCZvM/XnMsVyVVYkVzpc4YITDYD4blngLo6aDfdMgujm/u4RX3maMXYYlgsqerqqczKsO7DBX6K7Ykkz/USE2Nlr3/RCYsN8SHfvsxA/8hyOZck/LSYc1kMsSXHUNA9zmWr/VoyWRSJBIET3H3YLVNIYSF7H23RNsTFOOqlemd8JnieQXOriFzWQGZcx5kzGaiqhQN703j1lT5YACIxDk0tAnRGxmuHjuLk6An09ch45blRhCMs7n57M/iwjuZWEVddX4fGVnu/Z09O3CPz0MhBPH7qZ65LOpfJqOPYP7S3xI2mUCgUyuUNdS4plGlSdC7n5zOa1Q1rKr4n/vIpMIoCvPvdgCgCplVx2csVY/kKmPX14PfuBhQFkErFzWziFq9xwjqD/Sx5lodqqFNqRQL43cC4mCi7DAmdjfBRAMV7xQw6l75WJMS5tPMYy+VckmNQDOJcGli8IoT1wzFs2VRfYbwSCnoBPMu7RY5IqGtrpA1XtGzG632vYUwZgwl7320LJQz0qujrKSA1ZgvC0yezSOTGEG3jcOtbGsCAwajJ4eSwgd4eGTsG0wCArXc34tqb6zG8sAEjigEGDEQRSDYKGOxTkcsaiMbKhyKfHT+DkcIw0koajeHGssvMFQ6OHMSx1BE0hpuwILZwtodDoVAolDnC/JwVV4miKHjnO9+J+++/H29961vxwx/+cLaHRLmEYOe5czkR0mOP2j+8852zOo45DctCu+Y6MIoCYffO2R5NCcHKqFygcA8RdlNuReJxLhMVxGWYD2NL69W4snULAFSsFlu+FcnkOZekgqtpmbBgYsnyCOoS5cX9uqYNWNu4znFQ/XmdRNByrrNqi8v2DltAHzs+juy4E6ar69DYPBZ0Sq5Y3nCN3fpk/65x7NuZAS8w2HiVHfaqW6otLDkRuqlj2eoIAOClX6bKjhMAZL3g+38uQ8ZIhDqFQqFQKMAUxaWqqvjSl76EI0eOzNR4aoooivjmN7+Jxx57DD/4wQ/w5S9/GePj47M9LMolQlV9Iucj2SzEZ5+GGYsDb37zbI9mTqPdcDMAQHjpxVkeSSnBgj5BEbkiuRIrkiun/HCkGucSANY1rXcdrUo5lxO1IimXc0nyQ4k4NCzD3SbLlv9ztrZxHa5qu8a3D7eCLvxFuci2lq60RePO14dgWQDHASbjiMuu4vF3ruDR2CwgPaZCUy1suDKOcMTJCzUUcAwHiZNgWiZuenM9pBCL1381hvPn5LJjJaJZNqYnLmVdxmt92zCupKe8blbNYFvvK5D18mMLQsZKQowpFAqFQgGmKC5FUZxXAo1hGESjdliWqqqwLAumWbl0PIUyFeZ7tdhKiM/9EowsQ7v7LXMu1HOuod7oiMtXXprlkZRSdC5Lcy4BYFPLlXjTghumvF3RU4G1knNZQqBaLMMw4FgOCam4PldS0Mcetzfnkg8IZMMsistqHNjgvUr2SV4nrVKa20TE6zjkFFtALVoWhhi2UN8GxOuK+zGg4bpb6rF4hYRYgsN1W+vd91RThciJrjgOx4A772+CZQEvPztaMjbDNFwXsFClwAvSm+3BsdQRnBg7jlE5hcdOPIKBXH9V6+4f3ofjo8dwOn0KlmVNKlBJUSWd5lxSKBQKxcOUZ8UbN27EwYMHZ2IsJWzfvh2/9Vu/hRtvvBGrVq3C888/X7LMt7/9bdx2223YsGED3vWud2Hfvn2+92VZxv3334+tW7fiIx/5COrr6y/K2CmXPsTvudTCYklIrHL/A7M6jvmAsW49zGQSwo43gMLcCmUkbmEl53K6kD6XgN2GpBqIQ2g5OY2bmjfjPavfh5gYKy7jFP5xw2IdoSVw3pxL/zGYlunmaE5LXDJ+cUkKDjEMg6UrIzAZ+9w1NAm48+1J3PlAPRgwbj9P1VDAsgw2XZvAH/zVErfyrGZosCwLEieBd8SxZmpYudZ+2JkZK3X7SHsVoBhyalkWToweR07LTXpsQFHoybqM/lw/xpQx9Of6Jl3Psiz0ZLrtsakZHB09gkdP/ATdmXMV1yHO5XwoPkShUCiUi8eUxeUf/dEf4bvf/S7+53/+B93d3cjn8ygUCr5/tSKfz2PVqlX4i7/4i7LvP/HEE/j7v/97/M7v/A4eeeQRrFq1Ch/96EeRShVzWkKhEB577DE899xzeOKJJzA8RxueU+YfxVYelw5MZhzSL38BMxqDduvtsz2cuQ/LQrv+JjCqOueqxgZbkUy1KmwlSFgsaUNS3Vjs/93KogxTtpAQx3Ae59IRl95WJIF1TMt03cZqIgiCApR1e70Wcy5PjZ3AmfRpLFsVgcHYY0jUC+BFCwxvjy3EEXGpuut5HzIppi28RE5y3VbD1BGO2PvJ50vdPsUrLp2fBwuDeLX3Zewf3leyfDnIuZMN2d1eMBS5HCPyCAqOoM1q4xjKDwIAzqRPV1yHhsVSKBQKpRxTnm28613vAgB8+tOfxt/+7d+WXebw4cMXNiqHW265BbfcUrkNwte//nW8+93vxjve8Q4AwF/91V/hhRdewCOPPIKPfOQjvmUbGhqwevVqbN++Hffcc8+0xsOyc0tGkPHMtXFdLrAsC4axQ+sulc9AevwxMIUClIffBzZqFyC5VI5tptBuvgXS449BfPUlGFtvne3huPDO9WlYOhgG4Dm+Jp9liJWQDCcRE2LguOqeT3LOWEzGtMfiuWe8Y+I5Drqpg2UZqKYKhgHCQthdRuAEeAMFTBgwYVZ9fDzH+9Yn6/AsZ7/OWHil1w5xfnDVB2AwGgSBQTTGwYABA/a5DAkhMCqgW5q7HssySCtjkLgQDOd1iRfBgLGPHQakEAdBYCDnjZKxqqbijk0xZLAs425Ht7SqPjvLOb+apUIxZd/YJqI31+PuO6fnwDEFMAzQn+8Fw5RGZ6iGCss57yZKj2WuQP9GUmYSen1RZpL5fH1NWVz+3d/93ZwIA1RVFQcPHsRv//Zvu6+xLIvrr78ee/bsAQCkUinwPI9EIoFsNos33ngDDz300LT2x/MsGhtjky84CyST1bkHlNpSNxpB2gqhLhGZs9fGlHnErqgc+o2PIORcV/T6moS33g188g8Q2fYyInPoOqgvRBFTQnbFUoTQ0lSHxmhtxvehhvcDqD4kvL4QRUwOIRaVkGdCaEjG3OvKe33VJ2LIqlk0NsYg9AExNoSFLU1ubmSjGUcsG/JtOxYXEdNDaG5MTHp8VlhGbLC4flNDAo31MTQa9nZjCRGxjP1+w0IOdz3YgJNqA+LxEESORzjMI2aF0FKfRI4ZQzjGI6aFwLM8EvUSHt37FBbEF2BT2ybEYiE0J+thWiZGrRAS9SE0xmIIxxhkxkwkk1GwLIMDe9I4uGccm97CIhaz9y2EgcbGGDJcGLGREGIxccLvmJ7xHrRGWxFXJcSyIYghBlKIRUwNIRaXJv1+Sg8OIRazrxWwGkwwiDnurBkuoCXa4ls+o2TcsUbjE49tLkC/wygzCb2+KDPJfLy+piwuH3zwwZkYx5QZHR2FYRhoamryvd7Y2IizZ88CAEZGRvDHf/zHMAwDlmXh4YcfxurVq6e1P103MT4+t3KqWJZBMhnF6GgOJu1DeNHJZhRkszIyjIyRkexsD+eCYXu6Uf/CCzAXdmBs/Rawozl6fVVDSyeSLS1gtm9H6kwfEI/P9ogAAJlxGdlsMdQyPVoAJ8/OdTo+XkA2K0PUc8jKMtJjBYwKpddXPqchq8gYHEpjaHQUDMNgbLT4vZtJK75jAoARZhzZrFzV8Y3Jef85GStgxMhiPG2PbyiVdt8/1duDBUsZpIY5ZLMyOFaDpfDIyjIU0UQ2K2MYaec9Dn1DKaQzOVjqINr5UWSzMgqSDt007G2PpGHkeRyJ/xxsoQO955chFGbxva+dw+iIBr1tHNmwE8qqjGJkJIuRdAbZrIxRJlvxO2b/0D7sGtiBFcmVCPFhZLMydHkMqmQhm5MxKlZel3B26DxCXAgRIYKR7IjvvX1nj2Bza8T32nBh2D1PI8I4RiJz8/uP/o2kzCT0+qLMJHP1+kokwhCEiWscTDsJ58SJEzhw4AD6+/vxjne8A83NzTh79iwaGxsRi83eU0zLstyn6StWrMAjjzxSs23PpQ/Xi2lac3ZslzQWA8uy/78Uzr/0w++DsSwo73gXTDCAc0z0+poc9YabEHrkx+C3vQL1jrtmezg25Pp0YMDO2udomYBl2TmXlmX/bJa5vliwsCygoMlQDQ0JMeEbMwvOd0wAoOgqLKu642Ms1n9OLGcd53VV19z3U4UUZF1xf9cNA4rzu8hIsCy47xum6TzEBGRNhqzLsCxAYERYsLep6CrGCmmwooECl0Iua2CwX8HoiJ0Te/r0GMJr7H3JmgzTtKAbOiwL0A294rEdGj4IywLOjZ/D0rpl7vkTGNFZ15jwvGiGBtO0IAoSonwcw5YtLhtCjUjJI+ge78YVzZt96xRU2T0v2gRjmyvQ7zDKTEKvL8pMMh+vrykX9MnlcvjEJz6Bt771rfjzP/9z/Ou//isGB+3k/89//vP44he/WPNBliOZTILjuJICPalUqsTNpFBmArfP5RwIE79gLAuhH34PACA/9J5ZHsz8Q7vZzrUUnn92lkdSpLTtRm0K+kwHco+4PSkrFN/hnKJDpDpqiA/73i9XBIhUw62moA8baMfCuq1I7PGRIkIAMKaMuUVrCLIug2d5dxykoq1lWTCdwkKqqUI17DEJrAje2Ydu6VANBaLIQGdUFPIG9u/MuNs+d77Y4su0TCiG4lavJRVxy0EK8TSFm3zLZTXbTZxMXHqLD8XFOMZGNWTGdXQluhDmwxhVUtCc4wmuA9BqsRQKhULxM2Vx+ZnPfAa7d+/GN77xDezatQuW5zHwLbfcgpdeujj93kRRxLp16/Dqq6+6r5mmiW3btmHTpk0XZQyUyxvS6uFS6HPJ79wO/thRaBs3wVg1vdDxyxn1tjsAAOJzz8zySIowgTrGtWpFMh3IPVIUl+UfyJDcypwjjCTO32e1nLgkFVvZalqRBP7kkd/JuqSyLgCMKaNQDSK8RHf8PMu7y3vFp+5UTbUsC3k9565HxmyYBhRTgSCyMFgFuYyBg7uzYFggFGYxMJiBrlvuvmS94J6vShVfvfsXOQmmZznTMmHBwi8eHcR//FPlliJEIIucgBCiePW5Ubz24hjiQgItkVZYloUR2f8QV9GL+6XVYucX/bk+PHbiEYzJpb1WKRQKpRZMeVb89NNP4w//8A9x3XXXgeP8f8wXLFiA8+fP12xwuVwOhw8fdqvP9vT04PDhwxgaGgIAfOhDH8L3vvc9PPLIIzh58iQ+9alPQZZlvP3tb6/ZGCiUShRbkcx/5zL0398AAMjv//XZHcg8xWxfAH3tevAnT4A9U7l9w8WEqdDTcTYg9whpRVLpniFtO4hzGQ44l+UEpDaFPp6lbi7re50ILQBIK2lXvEX4Ys6hwAquCPaKUcMsuoYZNVNc1nFjdVOHZmgQJRYGo+HksSxyWQNLloexdGUEGlSMjqiol5IAbJeUuKFmBXFJWobY+zfc5QljIxoG+gsY6FUhF8pvQzWLLmt+RIJhAHLBRH44hOaIXchnMD/gW8fbNkU37ZoGA/kBHBw+gJTsz9mkzC16s+cxpozhfLZ2czUKhULxMuU4KUVRUF9fX/a9XC5XIjgvhAMHDuDXfu3X3N8//elPAwA+/vGP43d/93fxlre8BalUCl/4whcwNDSENWvW4Ktf/SoaGhpqNgYKpRJkgjzfw2KZ8TRCj/4YViQK5R3Tq6ZMsd1L/tABiM/+EvJHfnO2h+MTUiInuo7YrODcIxYs3+9BRMepHFNsVyXE+yvD8uyFicvgMuR3V1x6QjxNy8So4+6E+TDGlDEAtggj63nFnNfBy6pF55UIVN3SAdOCINrH3t1jC9CWdgkNTQL0kwpGBk3Ur0liMD+Agl5wt+/2Bw0wkO93fz56KI3UoInEch2xhP2nvfuMAouxP/fxMR0QNAzmB2BYBrrii8CxnCuoBU7EWG9xStB3jMMVW21x6RWxACAb/rDY/cN7sWdwNwAgmU7ivmUPlB3vhZLVsogJc7sy7VyHXOMZdXySJSkUCmV6TFlcbtiwAT/96U9x8803l7z31FNPYfPmzWXWmh7XXnstjh49OuEy73//+/H+97+/ZvukUKqFTEiDoXbzDemH3wdTKKDw/l+HFU/M9nDmLertdyLy7/8C8bm5IS697mBDaHYfuAWdy0r3TEK0rz/ilJXkXDKlf7JIagZXRngGCS7j3sOuuFRL1hFYAYJHmAucAK5MKLxXAGY1x7nkijmXhqlDN3UIor3u+d4MGMRQ38Bj6aoIjF8q6DsLRDjbJZUN2XUsK4XFDuXtKB4LFna8NgZdYZE9kUI0zqG+kcfAeRUi7DL2w6kcXhx/2s3RvH7BjVieXAHVOWaRFTDSw4GzBPBmCCcPKbjtng5wDIehwpCvWJ5q+MNiifBmGRaj8ijGlTQSUl3ZMU+XofwQnjz9cyyrX44bFt5U021fTpAc5XE1PcsjoVAolypTnhV/4hOfwNNPP40PfvCD+OEPfwiGYfDiiy/ij/7oj/CLX/wCv/u7vzsT46RQ5h6XQkEfy0L4W18HAMi/9qFZHsz8Rrv6WpixOMRXXgJkefIVZhivc9kQapzFkXjE5SQFfeKSLS5JWGmI8zuXwYI8vveqKegTWIYtcS7tiXedVOe6pnEx4cv1FDw5l150j3NJ8kAlTvSFxaqGClGy95VXbZFXlxTQ0MyjoQ1QswJ6T9pupex1Lj3i0rIsGIbTusXJ7cxnDSiqDiliIRRmkc0Y6DmjQNMs1y3e0bcTBb3gOtgFo+Abq8hJ6DunYnHuFqzlb0Jfj4LsuImmSDNUQ0XaEZAAoOjesFjddT87410AgLOZsyXn50IhDxxOjp3AYMBJpVQPucbJPUahUCi1Zsri8qqrrsI3vvENqKqKv/mbv4FlWfi3f/s3dHd34+tf/zo2btw4E+OkUOYcxH2ZzzmX/M7t4A8fhLbhCuhX1C7q4LJEFKHddAuYfB7Ca69OvvwM4xOX4dkVl0FRV+mBTEL0u10lYbFlnEtgavmk3rGQ9Rg359KeeLdG2/HQyvfgLUvvw21dd/j2K7BiWSFrlKmaKrAiBFYAAOiWAcWpFgsABmMLsvoGAbIuY8nKCDhLxME37NdlXXZFpTf89pFvD+ALnz4DTTVdYTg6osFkDHQtDeGO+5pw9wNN2HhVHAs6JaxcH4LMpnF05AhETsT6JvtvtOk4rUQY6jKLsZSOjqYmbNrQCgA4eSTnut6jSrEAjOxzLg03b3NZ/XIAQPe4XUDoTPo0njn7lDvOC6Gg592fX+971VdMkFI9xLnMaTla6ZdCocwI06pNv2XLFnznO9+BLMtIp9NIJBIIh8OTr0ihXEKQ+XGwcMp8IvzVLwMA5A9+pGIeHKV61NvvhPTkzyE++zS0rbfN6li8FVkbZ9u5DFxbk4XFEoLOZblqsUB1IbHusgznijUiErlAtVie4cAwDJrCTc5yxe3bRXpK91euXYi3WqxuatBM1Q2L1VkiLnnk9Sxa2kQkEyIGzlkQUhrUOtVXaZZw9mQB6VEdg/0qNFODyIkYS2VgAahrts+zILJYtDSMRUvDkIcF9PNDEAsmVjesQUSIOOO1t0nCYlP9tljrWCRh8fII3ngpjXOnZSxZKjnj9zqzxSq6hmm4ArU10oaYGMNwYQg5LYdT6RPozfbifLYHS+qWuuvrpo6CnkdcrD4MnxR5AoBReRRZLTOl9YNs738dEidhY/OmaW9jPuLNK86qGdSHkrM4GgqFciky5Vnxtm3bUCjY4TShUAitra1UWFIuS+Z7tVi29zykxx6FmUxCfse7Zns4lwTqnXcBAKRfPAHMsrPivS6DjuDFJniPVHIuRU70uZXBnEuvqPNuYyr3oHe9YkGfidu2eAsJ8SxfVswGXSC7ZQnr9hfVTT3gXCqQQizCEQ5nx0+DYRhcu7kTjMXi1LG8U/2V9Ll0HEzTQiZt76e3NwvLshDmw0inNFiMiWRjqfiWIoAFE4WCiRAfdl1Ysk3i1g522+J4YVcInUvsz6D7tAzecV69lXEVQ3GFs27pUE0VDMNA4AS0RdoBAGPyKApO+CzJDSU8e+6XeOT4j32htpNB+naS0NuUnKp63SCmZeLwyCEcGjk47W3MV3TP5zhOi/pQKJQZYMri8sMf/jCuvvpqPPTQQ/jsZz+LZ555BqOjtF8S5fKjWC12lgcyTcJf/yoYXYf8ax8GIpHJV6BMitm+ANrmK8GdPQPu8KFZHYvX6ZntvOCg+JsoP5IIYYZhSvpcMgzjCj+RLRbZmapzGRxH0EkNbs+fcylMmnNJlgOK7VUMJ+eSOJcGo6K+gYdu6jg2ehQsw+LeG7YgEhbQ260gm9V8LUgM00Aua4B0PDl/3hZbAiMhPWaAEyyE46XHG44wsBgDct4Ax3Du8ROnlVSz7T5hj3/pqgjiCR7JRgHDAyp0xXFaTQ2jcgrPnXsGuqkjxIXAMzwsy4Ksy+7xEmdUNgqQneJBQwV/juRAzq5y253pLh1wBXJaFizDYkFsIQBg9ALEJTlm1VBL2rdUS1oZw/7hfdNaf0wexZn07LQs0qi4pFAoM8yUxeWrr76Kf/7nf8aWLVvwxhtv4BOf+ASuv/563HvvvfiLv/gLPPbYYzMxTgplzhGsNDmvyOcR+tbXYPE8Ch/66GyP5pJCveetAADpyZ/P6jiigl0lNDnLlWKBUnE7kdNIQmNDXKisKCbCz+twTifnkmVYd/sl/S8DuZ3e3wVOLLs/M9AuhAhjyRlnQZehGio4jgHH2c5lfYOAk2MnoBoqFiUWoy4Sw+Zr62FZwOED6UCrE8NuJ+LQP2A/PEgPWbB0FnVNDCyUCh2Gt8CJFgp5ExzDuufPzbk0VRTyBlJ9QGOzgMZmW7QT93K4115ON3UcHz2OHkcQtsUWuK6saZluoaCw0xM0rxcgO87lqJwqm9+XnaSojGVZODh8AONKGrIuIypE3euZtImZDt6CRIonf3QqHBw+gN0DO12hPBUeO/koftXzwqTHH4S4zBeCdxtT3T+FQqFUw5RnxclkEnfeeSf+5E/+BD/+8Y+xfft2fPGLX0RDQwN+8IMf4JOf/ORMjJNCmXO4zuU8DIsN/ej7YEdHodz/AMwFC2d7OJcUyt33AgDEXzwxq+NYWr8cN3dsxV2L75nVcQClYacT5SmTirHBYj4E4iKKHldzKuKSLOtzMANO5eTOZek9H2wXIrhiKwye5ZFRx13XSBBZ6KyCuiSPnoxd/GZlw2oAwDXXN4ABcPJYDpqh+7ZPQmIBoH8wh+OHc3jusTQYi0NjCw/DMuzwVMdFBADTMhCJAbpuQVMZ13V1cy4NDYN9KliLx4q1UXc9Ii4HeogI1d1WLbd13YHr2t8EjuHQfaaA0ZQGwXGSyeeWUcZ9BYlG5JGSc5ZRx6EZGg4OH8DTZ550hSvhVPoEdg5sx6MnfgLAfmCSlOwcwVGl6Fym5JEpFfjxCkqv0JwKslNtl1TsrRZvRIFapvVNJYbyQ/jukf/B8dFjU9pfEK/Ip+1IKBTKTDCtgj65XA67d+/Gjh07sHPnTuzbtw+SJGHr1q3YsmVLrcdIocxJKrkecx5dR+Tf/wUAUPjY78zuWC5BjFWroS9ZCmHvbrDne2Au7Ji1sSyuWzJr+/ZSknM5wQOZOicsNljMh0BEoeTpPVkuTLUSbq60RyCWhMVOknNZrrCQXuJcFscXF+Ou0xYVohDFEaiMivoGASlH3JDjrq+X0LJARLpbw7kzecCpxRR0LjNZGd0HcmjiWrHhyjp0rGBgmHboa0yMI6fZOZkWLITjDJAH5CwDLs4547W3pZkqBvsUJC3BJy67ltj5roPdBpIr7LBYUvWVuJOpQRN73sggEmWx6iH7Oid5ssGcyKH8IFojrc4yIci6jIyWwcvnf4VuR2BLXAgd8U53HcP0O7ExIQ6BE5AQExhXx6EaKs6On8G23lewoWkjNrfa84+cloMFCwmpTJww/OJSNqYnLlXHASwExKmsy0irafdYg/Rmz7s/a1Oo1joiDwOwW7GsSK4seX8gPwDLMtEWba+4DdMyYVgGIkIEeS3v5rFSKLXAtMz5Nx+izAhTvgoefPBBXHPNNfizP/sznDt3DnfffTe+//3v4/XXX8eXv/xl/MZv/MZMjJNCmXMw87Sgj/TYI+DOnIZ6863QN9OHQTWHYdzQWPEXj8/yYOYIwWqxE0xAmsLNEDkRrdG2su8TYSd5xOdUJjRsOecyGBYbdDIZv3NZznk1SnIui+IyJhRFTlyMQxBZNyxWNgq+/FKWYR1hZ+LYoeLk3zQNjDvOJcsBBqPBsoBNmxuwdn0CDGMLRpZhcVvXHXjLkreCZViYlolwzD7/+YwdGgvAzefM5GQM9euQRAGLlhXPaXObCF5gMDJAnEvNLQYjOJ/B0b2Oe5czkXW0ZMQRl6RYD8nBHC4Ui/oQZzWrZnE+2+MKfWUSoRcM9R7KD2LP4C4AwJHUYVc0PnP2KTx5qnJYuk9cTtO5JGP1tkgBgN2DO/HU6ScqFgvyurPl2tdU3B8pjlQYdMf/yvmX8Ny5ZwAAL/W8gBe6n5twG8Q5lzgJIifWpEUMhQLYIdbfO/JtHBw+MNtDocwBpiwujx49Cp7nsWnTJmzevBlXXnklVq1aNesFIyiUi43b53I+Xfumici/fg4AkP/9P5jlwVy6KCTv8gkqLoFy1WIrLxsRInj3qvdWbBFBhJ7ITa+gj9t+hJ1AXJY4l5PnXFYKiwVsQUmQuBAS0RAMRkVTq93jUuIk93uEZ3m0tIsQI8D57jxGR1R3+8S5XLQ0DJPRwDLApi2NxZYllu1cRoUoElIdOJaDYRkIOYZkZtRyj3toSMHZkwXs25sCdB5XXV8Hni+eB5ZlkGwUoOU5qKqJTE5BTlacMdrFfvrOFMVRzykDQ/0qLFX0nY8Wx8HLqkWh7A3NNC0TXfFFAEqFnrf4DADExBgAIOm0z3i9fxsKegEcw0EzNRwZsYto5bQcCnqhYrEdr1s53ZxLIsyCYz47fgYAsKP/jZKcRsM00JfrdX8PHp9lWb62M14Kzpgty0Jv9jx0U8fJsRPoyXTDtEwoujJpgSI3LNvpv6oaKu0XSqkJI/IIdFPHYH5gtodCmQNMWVzu2LEDX/rSl7B8+XI8/fTTePjhh3HNNdfgYx/7GL7yla9gz549MzBMCmXuQSaD86nPpfj0L8AfPgTtqmug3XDTbA/nkkW/6moYLa0QXvkVmKGhyVe4xCmpFjvJn56JHtisaVyLlQ2rfe1VuCncg0RceccwJXHJ8mXFZbBgjejJe/T2Y5Q4CVde1YRrt8YRazRsZ9HTcoVlWLAsg9VXhGHCxPZX0pALBgzLdHMu114Rg8Fo6FwSQn087AsLDopmy7JQ12ifzxd/MYaTh2WYpoVnHh/Af/3bWZw+mUNIEHHTnaWFnxqbBbAWh/ExHT/7YR9efGbQOQcCnn1iBAw4LF5uj/3EfgVf/MxZ/Ow7I76cz3qpHizDIucJwQwK8SV1S8ExHApOddniOfWLr6hgi8v26EKwDIusmgXDMLi163YwDIMjqcOwLMsT8lu+AI6/oM90nUtblAady3qp2Ddy39Be33sD+X7fdRI8vhd7nse3D3+rbOEe75h7s+d9BY1UQ/Xk0FZ2I3VnuzzLuTnLU8n7pFAqQR6yTPdhDeXSYso5l+FwGNdffz2uv/56AICmadi2bRu+8pWv4HOf+xwYhsHhw4drPlAKZa4x7/pcWhYi//KPABzXcj45rvMNjoNy/wOIfPU/IP3sUcgfvrzTBYLi7ULc/iV1S7GkbilOjB73bH8KzqVzv07kXAZzKoNhsWWdy6C49BQc8jqXIieiLhaFyubc0NFgfinHcFi0TEAhZWH/CQtHD+RgrLWdS40pYNFGE/dE6jEsxCEGnNRyP7cu4rBqfRT6NgY//fYwIneqUDQGJmuLjSs2NyISLT2mhmYRLHj09SgoKBYygwp0LY7Duws4vDeLRIuINRtiGEtpMHrtc3TmRAFrtkqusAvzEUSECLJq1s4JZTmfu8azPBbEFkLiJRT0AizLcq+PoDgkYbHNkWa8Y+W7MJQfhMSH0BppRUJMIK2kfQK1UnVV7wQ4mDNZDbqpu8dQKoiL10FQeBJXs16qx5gyVpJzeW78LAC7QFEwLNwrgnsy3WgKN5fdj2aqCKF8vjLZn8CKMDl7/KqhlLT8mYysmoHohNZSKADctkNy4H6gXJ5Mq6BPKpXCjh073H9Hjx6FaZpYsWIFLehDuWxYGFuIrsQidHoKUMxlhF+9AGHXTujrNkC98+7ZHs4lj/LAO21x+eiPL3txGRSTtSj6wLLFbUypWixxLifIuQyKVW9BH4EVy44/6MaJvpzLWHF9TnTF5Khiu08hj3NJxmjCxMar4jhwAhjsV2AYOsbTOobqd+KZ83uxsLkDqXEGIif6xlfuuAxLx8q1UTD5BI7vNnB4XxYWIth6bwLtkQasaK8vOR6AOJc8+rplWAwLEzqG+0w88ashgAFuvasFKSGNNRtjsCIJhEZEDPWrUDIiiL4J8SFEhRiyahZ5PYe4mPAJsIWxDvAsjxAXRl7LQzEUt+Ks7gmtDfNhxIQ4zp4sQC4YWLU+hq7EIs9nZLulXrEXdAYJinFhzqVfnFZ2W73XhGmZODd+FizDYkndUuwe3AXN1GBaJlRD9VVHzuk57Bvag5Scwi0dt4JhGNcZago3Y7gwhGOjR9zlvaG56gTtSsjYeJaHBck5FhXlyx6VR9Zl/PTEI+iId+KWzlunsCblUoaEbU+3QBbl0mLK4vKuu+7CuXPnwHEc1qxZg2uvvRa/8zu/gy1btqC+vn4GhkihzE3iYgJbO2+b7WFUh2Uh+plPA6Cu5cVCv+pqGB2dEF97FWzv+cu65UtpzmUNxOUEYa0Tj6V8f1pS/AaYLCxWAMMwvuWB0mqxXlcnJsbBMAwsy4LESm54JylyE2y7wjIsNEMDJ1mob+QxOqKj+1weqmrBbE1DN+uQclp72GK3vHNJXtecUMm1G+twYvcYMuMGRMZE5woBvRm+ogPV0CSAAQtVBlhoMBkdR3bL6CqYuOLqODo6M0gNAU0tIq67YiG6t0Ux1K8iO8RBcp65hbgwIqT3pZZ3jz0hJnDdguvd4jwh3hY7sl5wzwcZ9+bWLWiNtOL1l8bw5E+GAAv4+J8uQlNrcdwkDNnbGkStKC6LoaDTaUWiesSlaqiuIwv43VbTk884mB+AYihYEFvgOrCGqeOlnhdxPtuDh1a+x102p2ZxeOQQFENBVssgLibc3NIldUsxXBjyhcUGnctKeHMuyfWvTjGMMaflYFh27qjXZaZc3hQ0+xoM3g+Uy5Mp/4W/99578bWvfQ3bt2/HD3/4Q3zyk5/E7bffToUlhTKHEZ96EsLO7dDXbYBy3wOzPZzLA5aF8rYHAdgVei9nptKKpFq8k5fpOJfBPE3vNvgK1WJZhvWs71+GuFQk3zDsVEkl6xFBIXKiGyY7lLdzGEucS8YuxGNaBpodAbV/Vxoam4MYsQVLxikWI3L+MN1y4b5EVKxcFYcocmAsBlLEQjxpb8vrsnppaLaPhQUPg7VFi5q3t7nl+jpwvkJHAjoW2aIwPVj8fEO85B57Ts+5riXHcmiLtrshmeQceF1BsizP8Dh1LI8nf2wLSwDY9Zq/RyNxLvNa3rP+5DmX03FagnmNBaPoXnrdSu/PZ52Q10WJJe5YNVPDuJqGbupu30ygKEQB+3O2LAuqqULiJXQmukrGk/e4pxPmXDoVje2cS/szn2qOHBGvqqFisDCIHx79HnYObAeACYsoUS5tvPcRdS8pUxaXv/d7v4c3velNCIfDky9MoVBmH8NA9O//GgCQ+z9/AbDzpwDRfEd5+zsAANKjP57lkcwuQXejJuLS69BNp1psQBx6x1jJufQ6mEHnk+RcbmzehJs7tqIl3OJ7n4TGSpzkisucZrts5XIuAVtcNbfZIuDIoXEobAbhiH+/Aiv6xuUVzVxAXIYkwQ6PBYfmdsEt5lLJuYwnePACA9biIYoMwmEWnCWgqVVE5+IQeE8uqsiK6FhsH8fIeQZnTuQxPqY7OZdR93iJ4AqGHhORWS6sVeQEHNxti+lb72kAwwJ73shA14tChhxDXis6l5UK+siGDJ7lfeGmUyEoyAqaJ8/T1NwHDKZHXJIHCQtiC93PSzd1Vwx6q8T25frcnzNqBoqhwLIshLgwYkIMDaFG//6rdS4N4lwKxYI+U2xH4l1+18AOFPQCjo8ew6icwk+O/RA7+rdPaXuUqTOUH8JPT/wEQ/m5UyzOm2s53fY+lEuHac0yu7u78Zd/+Ze47777cNNNN+G+++7Dpz71KXR3d0++MoVCuahIP/6BXSH22jdBvf3Nsz2cywp9wxXQly6DsGsn2DOnZ3s4s0a5ENRabnNK1WIdURMMzfVurzTncvL2J0Q0hYUwFtctKRHUnfFFiAgR1IeSvgI/AHzVYr3b1kwN9Q0CeJ6BphtALIslKyK+ZSVOKhsK6z0mr1t47c31iEQEdCwVXPFVSVyyLIOGJrtibF1SQGOrABY8rrwuAYZhSlq0RGM8kk0C8ike+3dlcXhPHjzL+8JiyXkKCvhyziUpQMNYHI4ezIFhgatvrMeqdVHkcwaO7CsKSdJXNO8VWmXyDy3LgmqokDgJEidNq7plUJAR11E3dViW5Z5Pr4s3rqYhsAKiQtTnXJJt6ZbhXjPe9TLquJsXSkKHuwLuZfU5l8S5FCCxRFxOz7kEioJZNVS82vsKDMvAUGFwStubaQp64aJWMN0zuAuPHv9xxWJStaA/14u0kkZvtmfG9jFVvNcgLepDmfJf+AMHDuBtb3sbnn76aaxfvx4PPPAA1q9fj6effhoPPPAADh4s3ziYQqHMAqqK6D/8PQAg+38+RXMtLzYMA+UBx7386U9meTCzR0krkpqIy8oFeSYcSwXn0idW2dL3trRejU0tVxaXCaxPJu6V2qysaVyLd658t1uYxovEBXMui+KSZRksWRlGUzuP294pIVHnd085lps059I+bjtPtGtpGPc+2Ir6Js4VNkKFsFjAKeoDHnVJHqvWxXDlVQ24+ga7DYz3PJGcx6Urw+At+3jkcfs1kmeZ13KuwxsMPSburWLIbnglcS6HzpvIjhvoWhJGJMrhquvt/b/4dAqm6YT2coK7D0I555IIDYkLIcyH3YI6U6G4Dcdt1YrikmwbKD5wyGpZ6KaOOqkegN3OBrBzSskYDUeYBsmoGXfiTgT4moZ12Nh8BVY1rLH3X3XOJfm8hSmHxQ7kB5DVshXF60hhGAB8LWeqRdZlvNj9fEUn7uDwAWzvfx2ALd529L9R1XYty8Ljpx7Dc+eemfKYpktPpgfj6rhbrGsmIBEH+UA14tlCN3XfveYN8aZcnky5oM9nP/tZrF27Fl/5yld8obGFQgG/+Zu/ic9+9rP41re+VdNBUiiU6RH61tfAnTsD5Y43Q7/uTbM9nMsS5e3vRPTz/4DQj3+Awu/9f5enwJ/hsNgp5VwScVmSV+nJuWRK/zSua1rv+70kLNYN95xc6HIsh4gQcfMDw3z5sFgiNlavj2HL7c04nT4FeCLOiEDg2PLC2O/u+s+X7eDZwsLblzLIgs4Q2JM8GposRKIcll/TCEG0t+s9T4Izljff34xFV6j43E9fh5bmoakmIk7+aTVhsb3ZXuwb2osrmje5E9YTB+2DXr3BDq9dtjqCrqUhnDsl49HvDCA1rGHhDToQCTiXZcVl0QUkDuGuwZ1ojbRiSd3SiufBCzlvdVI9BvMDHufSCTvlBLAM64a6jitpZ3lbFAtu8aHiWCv1m8xqGTdUmJwjgROwqeVKHB45BMAfSjxhzqUr7ItFnKoR1jkth6fPPImFsYVoDoR7L4wtxPnsefd3WZehm3pJO5+B/ABShRGsalhdco/05/pwdvwMRE5Ec6QZQUhO56LEEuwf3gfLsnBl61WT3msFvWBXINardy6Ppo6gPpREa6S16nW8kGshq2XQgpZJlp4e5DObjpCfCYJO5XTa+1AuLab8+Hj//v346Ec/WpJzGQ6H8eEPfxj79u2r2eAoFMr0YVIjiP7D38FiWeT+z6dmeziXLcaq1dA2XAH+yGHwe3fP9nBmhdJqsRcuLtkJciQnXs+pFovKYbHVVDoMiqOpiEvArjZNCBb0YcucH8PSkVbGIHKiKzJIIR6vyKskussJTeJaBYWAl+u21uOet7WjdYHkLFsUot71yFikEIu1K9rRGKtHXG/D6IiGEBcCy7DI6zkYZvmKvOQcDOYHYFomUnIKmqkhPw7s3DYOAFi13haXDMPgzffbImTfjgx6zsh49tE0MuP6pAV9ZOeYRU5yHcZjqSN4vW9bWeewHIojBOsdJ5IU1ClWY+V91YTTjrhMOOKSnMOcx2UNhqdKTh9JknPpPUcEoUz7lUp5pv7xFXMuq3EuU/IILMtCRs24IphcTysbVqM5Yoso8pkGRU9v9jx+eeYX2N7/Ol7tfbnkPJMxeF3ncuzof8Ndt5q8PnJ+DcuoSkTntTxe79uGnU7e6EhhpKTVzERYluWOK6fOnPArisuJz1c5dFOfMFfTtMyq7wMCEZPkmqBhsZQpi0tJkjA2Nlb2vXQ6DUmaWjNeCoUyM0T/4e/Ajo1B/sCHYKxbP/kKlBlDfvh9AIDQd/9nlkcyO8xEWGyl8M9q1wsWAapU6Kea/QNFl7FqcemExvIsXyLuyom9tJKGYRmol5KIOTmbxC30Hgvjyx0t71yS80WqOk7kXAoCiwULou7vJPwUgFstlmEYCJxfdN7e8jY0K2uQGtbAMAyiQhSyLruhmcFjDHH+uYNiyMjmFLz2XBZy3sQNtyfR0FQM3+1YHMItdzVg9cYotlyfgKFy2Lkt7XMAVUPFq92vYlvvK57XimGxXlRDRUYdr3ge/Mva2yBikbRhIO1oOCYgLlXHuRSJuOTdfRaP1y9+GkINiAox6KaOMWXMOUf+MZfbTjkRZVkW0spY0bnkBEjOtTNRGC1hzGl7ohiKm0u4pfVqXNd+PTrjXbim7Tpsbt2CxXVLAABZj7BKK2N4ofs5mJYJiZNwauwkDozs922/GOZZKkq8hY5I6x5g4tDLvJa3XUtPW5pCFSGkZJuKIUPWZTxx+md4rffVSdcjKIbifubZGXQVyWfmfZBSLQeG9+HJ0z9HX7a35D3VUPHDo9/D6/2vTWmb5NwmnAdmiqFgKD/k++yCZLUsnj7zJAbzcytHl1IbpvwXfuvWrfinf/on7Nixw/f6jh078LnPfQ633kqb6lIosw136CBC3/gvmHX1yP3Jn8/2cC57lAcfgiWKkH7yI0C+/EKGZqJaLFsh/HPS9VwR6V+H9L+stj9bpeWqdy5tgRgs5uMdi5cxJ4erTqrzVJ51wmJ9Ib3lz4uvoiwbcC65yuIyuK7PuXQc03LitKHJfi01bIsRUjF23BFwZMxnThbw4tMp8PCLy7yWx0CfDE1msP7KGO54q79CKgDcek8j3vPhBbj3nS1obYsikzaQHS9OaDVTx6GhQziWOuoKRxIiGeIkJENJ3/aG5eEJzwOBiMsGp0dnVrMr2eoeZ5BlWNfNHnfEYZ1UFJfBeyIYotwWW1DSskYKCPByDyGI8BjID+BHx76P4cIwjqQO46cnHrHDqmE7q0XncnJxSfIHFUNxr5nGcBNWNqxyfm7EhqaN7ni9wur1vm3QTR2bWjbjtq47AQCDuf6yx17OuawULlwp1JXkWT5z9imfs1eNA0mEuWIoyGk5WJY1JXfQ69hV+6BiOpC8V29BqGoh/VH7cqXiclQZhWIoODd+xn2tmpxk4tbWO/dTd+Ycnjz9c7zS+1LFdc5netCf6/ft63LFMA2cSZ92H/5cCkxZXP7Jn/wJOjs78f73vx833HAD7r//ftx44434wAc+gM7OTnzyk5+ciXFSKJRqsSzE/vyTYEwT+T/+U1iNpZMyysXFamiEcve9YNNjkH7x+GwP56LjFZMMw9QmLBblXblJ1yPOZYVqsdU7l07eYWCCH6xCWwniPgYdtHLbBIohcGE+jJhoi0tSiKdS+GulQj9k7KTfozBBWGxwPIIvLNbeZrlqs664HHLaoDjHSQQE6+R9/uz7A3j+iRE88s0RWGbxushpOYyP62AtHivWRie8ZliWwYoVtmsyPFicCOe0rOskkT6TxK0VOQmrG9bihoU34voFN9rr5qsTl0SQJcQ6hPmw7Sqbhht2yrN271HTMlHIG3jkkVM4d1L2hUIHBTkRDC2RFjy48iGsa1zvirWUPGKfwwphseW289TpJ5DX8tg3tAfHR4+WrEfCmKupFkucS8uy3DzRctcMeehBwmJPp0+hP9ePeqke65s2umJ+PCC8vKIu6HZVGl+hgnM5poyioBcwKo8i7Yh6oLriN0QkqYbqCkXDqn7C7+3vGBSlOwe24xenn6hJH1Cv2zzVvEsyLq8LTMg6n4usy+4Dgj2Du/CjY99H1umrWw7i+Cadhy3k8zyTPl0xBJeMW7cqu5teTMvEmfRpbO9/HSfHjle1TrWohupGnpC2P0H0CgW3asGZ8VP4Vc8LOD56bEa2PxtULS5lWcZTTz2FRx55BA8//DA+97nP4b3vfS+uvPJKPPzww/jKV76C73znO0gmk5NvjEKhzBjizx+D+PKvoK9ajcIHPzrbw6E4KCQ09jv/Pcsjufh4cwhr4VoCfueQm0Lv1koi0n29SueSLB+c4FeqFhuE5OsF25J4t+2FTNgkLuRWmyWizlt5tVLPS6/QJMsQN2eisNjg+0KZsNhy1WZJCGtq2N9Ls5jnyWGwX8XIoC2Gjh/K4/Sh4kTesAxk0wZYi0dLW+VqtoSlyxxxOVCceHtFzDlHXGrueRQhciKW1a9Ai5MzODJF51LiJDSGG90cUd0RIgLLu9fXsROjGB7Lou8E6/tcDZXBjlfTGOy3t6Wa9v8swyEmxMAyLOJCwrvbktBhvsznFgxzjQlxd9LvXY9hGIicWOJKHRjejzf6Xse58bOwLAuGabhhvUDRkRPKPFCIBpzLI6nDAIBr2q8Dy7B2WxohgqyW9YlI7xiC4auqpzcnAFegVsq59IoZrzvn7UVaCe84yLUzFTfJK2CJ8wnY5+zg8AEM5gcmzSutxEB+AN8/8h30ZXt9ebJTzbskom64MFwidMeV4v1Cqv+OFIahmzr6A26zF5JzWSfWlTwE2jW4o9wq7jVSLi+6HEdSh/GrnhdweOQQXu19xffgoBxnx8/gx8d+MGkvUMVQ8KNj38e23ldQ0Av48bEflIQF57QcfnD0u9g7VNuaCaNyyueOe8O45ztVVYvt7u7GBz/4QZw/X6wIFovF8M///M+46aabZmxwFAplajCZccT+3I4eyP7NZwBh4kkj5eKhbr0dRls7hBefB3u+B+bCjtke0kXDKyhrkW8JXHjOZVBcclN0Lsk+gy5jtceXDDXg9q473VCycmMsh8RLSEpJcAyHpnCzbyzABDmXbOn5Ut38x4m/J7gKzmWEj6A50oIF0QUl69Q38gBTDIsNClqO4XBojz3BXL85hgO7s8gM+89dJq2DB4+mlsnF5eLFMbAsMDKooedsAWCAzkVATLId0+HCEHJazi3G4xVHCakOIiciVRiBaZmTfoaKoYBneXAsh4ZQI3oyPUjJI+51zjsFfQDgbK89SS+MhCDLBkIh+9yfO6Ghr0eBqphoaZNcweq9njrinYgM21WFNc3Es4+O46Zbw2hoEnDySB7n+rMYhoqm1uKxqIaKUTnl/m6h1G0hn6HIiciqWfeYC3oBuwZsMXAkdQh3LroLEi/5HBsi6sQyDxSiTuhzVrVbr4wUhhHiQ2iLthfPtZhAXstjTBnDmfFTWFa33OdO5vQ8YmIc58bPIq/n3Ty+xXVLsLllC3qzPXj5/Euu6x7E68h5cz+ryblUzOI4iLicqEASAJwfPw/oEkRW8glY0zJxevwU8lreJ4Qm214lBvMDUAwFA/l+Xw/NqeRd6qbuClM7l3cUDaFiZFNGK7qTI4VhLEosdgtgDReGsDy5oux2icsb5iOQOAmyLqMj3omsmsFArh+D+UH3AQ6BfDbV9gM9k7b7RHfGu9CdOYc9g7txS6c/DS+jjuNo6gg2Nm/C8dGjyGk5PHn653jvmg9ULFpGrtXhwpCbl0ycesJwYQi6qaMv14dNVYzVtEwcTR3BosRit1J2kJ5MN5479wzetOAGyE6I91SqGs91qvor+I//+I9gWRbf/va3sXfvXjz++ONYs2YNPvWpT83w8CgUylSI/t1fg+vrhfzgQ9C23jbbw6F44Tgo73oYjGUh9IPvzvZoLirMTDiX02xFsjC2EJ3xLnTG/Y3o3SqyUyzoE3TtylV67OTqVAAAiBJJREFUrTiWeIc7Ifdvo/IYQlwIyVADHl7zfqxIrvSNJfizv6BPaRgxEQ1TcS69ooJlWNyz5F5c0bK5dB2BRaKOR3pUh65b7jaIOGFZDof32RPMm+5sAMMA7GgzkqEkmsLN0DQThYKJRCLktj6ZiEgohIYmAZpmYffrGex+LQOnBaZ7/fVmz7vOpRhwAZvCTTAsww2n3N7/esXiOJqpuU5sQ6gR42kdz798GrJWFOvkM+wftI+RMwWcP2sfu2laOHvUXnZ0WINhWK5D5/38IkIEb1v2IDa1bEZocDn2bpPxq6dT2Lcjg2//Zy+e+1kab7w85vb6BGzx0usp1qKbGoZG8ti5Le26ujzLYzytA7r9mZDjDAqwEXmkZKJNKHfNRPkoWIZFTstiuDAE0zLREmjpkXCKGu0b2oODwwdwOHXIl/dJnL3dgzvxRt9rrqsjciJCfMgNDfaGoHoZKpQvEFNNzqVXsGYct9brXJ4cO45nzj7lCqKRwjAeP/44njn7lF0p1ig+OAGAV86/hF0DO3By7IS7Dc3ZnmVZODt+puqcSTI2bzsf+/ds1eGawRDaYBh4xhP6SkQ6EY5DZcJoCcSxDQthN4d8cd0SrG5YCwAlYdnesVQTdpzTchguDCEmxnBTxy0I82GcHT/jhosTjo0exaGRg+jJdvu+l3cP7qy4bdKaKKflXMGrBK4tcl5IS6HJODd+Ftv7X5/Q6STO8Kg86kYtVLqm5yNVicvdu3fj93//97FlyxZIkoRly5bhr//6r9Hb24vBQVrpiUKZC/A7tyP0ta/ArK+3XUvKnMOtGvvt/wbMC8+9mS8Ecy5rsk1P7uZU3NCYGMetXbeXOIZMhRzKSrjiMlAMpyaVcD1hvsHxkBzNisV6KuZZlv+ZYZhJj1moUNBnMhqaBVgWkBpS3cmebBRw7FAO3/hCLwb7VLS0i2hdIKGugUd0eDXu6rwfUSGK7Lg96WxsKM1JLT9GocThlPP2JJwImoKed8NGxcBxEAdnTEnh+OgxHB45hN7seaiGip5MtzuB10wNlmW5xXUaw004sj+LV944hz07R92xkM9naNieeDPgcO6UjMP7snjl2VHIWft907IFJnHvglWMBU7AxuZNqBtbAwA4fjiHA7vtyW5IFGEYQC5LqtRy0E0d57Pd7vqqoeLY0TR6uxVse3EMr704hh99sw///KnTePbRNFTVdCfTxHkjDzzSyphbzMfrwIicWPY+ZhgGESGCgl5wq5EGxSXJO+1xxpjXcu7k2v49746bjMHep32+yfVfTiyqhoq0ki47tmqcS6/QI+1jTMuEaZlIK2N4rXcberO96M3ZUXwkVHSkMIIjqcPug5OGsH0tWZZV4lyRhxt9uV682P08fnL8h1WJQ+I4pgMCZ//wPnzvyLcxkB+YdBvevG2gVIhn1HFwDAee5ZFyQjbJfseU0Yohwjkta3/2fAQdsU4kQw3ojHVhSd1SCKxQIqIN03A/P62KsGMS0t4VXwSe5bGqYTUAlITqKh4H0BseftZTNOho6gh+cPS77nUle9oIpRzHP9iexy0G5iloNRGk+Fp/rq/iMiQsWDFk98FBNdueL1T1V3BoaAidnZ2+17q6umBZFoaHq8tRoFAoM4imIf4HnwBjWcj95adhNZc2oqbMPsayFVBvvBncuTMQn39mtodz0ZgJ5xKoHOI6HSpVka24PEucy0BBnxocn6/6a1Bc8qXtvio7lxV+9giYyVxLewwe53KSyrJeFi21J7FvvJx293PoUApHD+RgqiyaWkXccpedD9jo5GiODmsI8WGMp23B1NRQWk23HCzDYunyGJasCKOungdr8cjn7G2QKq2yrhRz+AI5g0S0KIbqTvI0U8PB4f147twz7kSxO2NPdEnea4SPIDPMQWHT2LF9CJpmuiGzlmVheMQRlxaHV58fxfe/1odnHx8Ba/FobLbPyfBgcZ+Vrj+Sm1nImThxOA8pxOKKzfUA4ArxsGCfK6/Q0EwVY2l7DDwPDA2oOLDbntjKGQ7bXx7Doz84j/07M+6Ev90Jc04raddhafeEPk90zZCiPifTtlsXFJfksyCCKq8XyuZcupV2nYk9ccxDPPmc/BPxp888iR8f+wEAOzqBQHI0q3IuK+QyaqaGV86/7I4pVbAdswGPuNk7tNttGdMcLv793dp5O96z+n1Y27jO3RZQdMNUQ8Xh1KGSsbxy/iU8feZJz9hsATLuOKreiAfN1NCb6Zn0+IgzR6I2Rj2utGIoUA0VcTGOhlAjVEP15WValoWRgFMI2EIxr+URFWzXenPrFty37G0QOAECJ2BJ3VLopu5zb70OajU5l+ece64rsRhA8RoL9tMkn59iyO59LnIi8lrevcaOjx6DrMs4OHzA3obnMx907pugm+yt/OvNS60EuQ4yaqZi2HLOKy6d/XnDw/cP78OB4f1l150P1Cb5hUKhzCrh//cF8IcOQL3+Rsjv/cBsD4cyAYUP2UWWQl//6iyP5OJRKQ/wQnFDWasswjMRUxWqRFQGwytr3cMzmNsW7HVo79MrHMuf60qFfqo5Xn+F2OrF5bU310MKsdi1LY38OJDN6Ni3awwsCzz4vgX4+J8uwrpNtkhraC62LglxkiuYmprK5yyVIxqRsH5zHO0LIuAsHvmsX1xqpupO4ErOqyPaVUNxJ/K6qbuiJKNmYFom9g7tAQCsa9oAABhL6WBzCViMhTF1BKeP5W1xybAo5E0ouor6JA+R56CpFniBwYYtcaxaE8f6zfaxDw+q7oSWtHchr3/uL0/j4J4MBvv8E96V66JoXRgCa3Fu+5UIbwsOy7LQGG5yjkdDetw+5r/5jffi/773fXjHB9rwvz+1BA31EaSGdezbm8LzT464wq4x3ASBFZBWxjBcGIbACmiNtLn7LlcdmLCsfjkA24HkWd5t10IIFrDKaznfZJ6EWBJRQ0IRSYQAcd28wqKgF9Cf63eF28JYp+sYJsQ6CKyAgl7AweEDbjuWclRyjkblFIYLQ+5xj8jDsCwLg/kBcAyHJfXLoBqqK8Rbo/a5aou2oSncBNEpHgUUxaU393L3wM4SV7A7cw79uX6Pw+YUfnLOVbCNjl5VeKktaMi14XX3iNiNiwm32Fiwoiw5vnLbJIIvyIqk3a7GGxrrbVUzWQ6qaZkYyg9C4iRXtLuh0YG8W5JDrhrFSACS6zmmjKGgF9xQ2tPpU5B12RcKPaqk3H16c0G94cIZrbK4dPvaenJsBys4yuThRUGX3e8bcjy6qWPP4C4cS5WGE88Xqov/AfDRj34UHFf6R+iDH/xgyevbtm278JFRKJSq4A7sR/Qf/g5WKITsP/0rUKOwQ8rMoN59L4zWNoi/fArs2TMwFy2e7SHNODNR0Me7rVo6l9XmXK5KrobACoiLCZwaO+m+Xm0rkonH4nUuPdVZnZC1IN5qsZVzLssvM5FQcJevUNBnMiJRDtffWo/nn0xh1yt59EkKLAArVkfQ0eUXjaR1yciQiqaOEDJpe7Lc3FydcwnYglGGjLp4CKxlIuc6l/UAHEfDVMEwjHsclmXhR9/qhxbLAauJc2lPUnVTcye/BT2PE6PHkVWz6Ih3uJPWnrMyJDOOSNsohvvG0dtTDIvNjOswGQ2Jeh6NYgTqMeCeB5ux5U11ePV8C46PjUGSGIyldMiKBkFkfYWXjuzPIpPW8ezPRyAXTERinCuY12yMIhTmwFoCMuM6OIbzfZYLYwsxUhiGaigYz8qQBB7L2zqBokbEfW/vwC92nUd+/zhyWQN5tzBLGHVSvSsu2qJtrmMIlK8OTFhWvwL9uX6cHDuB5nBzyf0eFxNgGMbX+gGAW7mWOD1EbJEiMxJri3+WYSFyok9YECexI96BZfUrnKIvZ5HX8ogIEYT5MMbVcewc2A6e5dER6ywJZwcqtz0heaCtkTacz/ZgpDCCMacnZGe0HYukpTg1etIdX0esEzd3bHVFpvecqWVcKsMyMCKPoNVxeXVTd5cbyg+hTqovyQMM8xG0R9vRn++HZVlVObM5pxppXIyDZ3mfqCfuXFyMuyHfRIiRz6Y/1+s6sAQiFKMVxGVjuBGN4SaMFIYxkB9Aa6TV7wpXKOjz7NmnYcHCNW3XwbRM1IeSbgSM+4DBsMXiroEduH7BTe45td1ABRxTLLg1Jo+6rVZID9rjo0d9DxS84cmKIUPgBBim4RtvpoxzOZQfwt6hXejN9mJz6xafGB3IDyAuJnA6fRISH8KGpo2+CrGyXnAdcdW0W6KMyqOwLMsV+fORqsTlxz/+8ZkeB4VCmQ6KgsTHPwZG05D9y7+Bsbx8NTfKHEIQIH/gg4j+02cQ/tbXkfu/fzXbI5pxZiLnEvC6jbUQdFPLuYyJcWxs3oSeTLfv9drkXHrFX3ESXC4kFqgut5Kt2K5k8uMlLi1pJzEVrr2lHq88N4bj+2UMNNsT5PbOUMkDgcZmp3XJkIZWU0RqWAPPM2hqql5cklDXRFwCa2koZG2hQpxLxVChGRoEpxUHAJw/p+Dg7iwKQgErl5lQDcWdpGqm5obtFQzZbclBCpUAwPmzMgQzjPYuCdlMDpm0CV1hwTK2o2gwGmIJHltvakbT1gVYscYW1TwrgAGD1oUSzp2S0XNOxpLlEd+Dhd5uexyk4u6KNRH09SgYT+tYtjoKRTbBgkN23K5e6xWXrZE28OxBjGUK0EwVzfWlLW+u6FqJM+pB/OrMaST6liGvOoVZ+AjqpDpXXDaHW3z9WCcLjb62/U2IClF0BIpmAfY1FBNiyKgZsAzruj0J0d5fXs/52pS4Rac8xxbiQhhXx7Gj/w0AcMVQW3QBFjmhkwmxHr3oRVSI2WHWntYi3ZmzWOo4rF4qOZc5x00N8XYxrZHCME6lbTHZHmtHm9gOjuFgWAZCfAgMw2Bx3RLfNsjDDHI9EWHXGm3DQK4fw/khV1x6XdnB/ACWJ1eUjE1gBdy5+G5k1HE8cvzHJSGihFE5BZGTEBWirqCJClEIrODbZtbjXJKHVURcdsa70Js9j55MT0nlV7LNSs4lAKxMrsK2wjCOjx5Fa6TV1zPTW5zopZ4XUdDzuKJ5M85n7bxWEuKd8PSIJc5lXivg5NgJ9GZ70Z055xPumqlB4iTUS7bDO6aMuQL9ipbN2D2wE92Z7orVXBVDRQxA1nm4wbM8dFMv6dEK2D1MiUN5YGgfTMtEQkxgXB3H8dGjOOq05AGAZXX2dUeue8VQfKHHiqG41Z6DLYTmE1RcUijzmMjnPmuHw954Mwof/a3ZHg6lSuRf+xAi//yPCH3nW8j90Z8CoeqKlsxXZirnsug2XrigY6bpggb3XeuwWK9zKZUJiQX8wpGrECLrFeBed7WaHEoyMZ6qsASAUIjDxqvieHlbCplxA5Eoi3hdqQNLwmJHhjQMdlswDKC9Q0RImNxZLY7T3mZdXQgsZORzBhgwiPEJpIZVxNrz0EwNMTGG0RFbvB7aY08eGUPE8KCGxcli0Q7dNNyCIwUt777uneiePydDMKOobxTQ0CQgn1PQ162hIFro65FhMhriCQ7J+hBWNkZLxrpoWRjnTsk4e6KAxcvDvs+vr9svKFoXSLjz/iYYugVJYiGKDCReQDaTA88IrjvGMAyaws0QWAH96TQsAHWJ0munTqpHZ7wLTGgP0sI5jGXt/YWFsOv2AkBzpAWSR9xN5FwC9nWyqeXKiu+valiD/lwfLMt0RUSYD0Pi7HYe5UI81RyHX72SwuZrE65YPDRyEECxGFOjp63G8uRyjCkpdCUWYSjvL1xzKn0SS+uXl1T+rSQuSaEjgRXQGGrESGHYbXjfFmsDr/Noj7WjJ9ODEFf+YQhxSokTTva1ILoAA7l+X4/VgseVHSoMwrTMkjxAMmayv6BzKesyXu19GT2ZbjSGm3Dv0vvcENYIH4XIiSjoBeim7Xr3ZO2czYTjLAPF3MGoEMWVrVvwyvmXsXNgO+5Zcq+7HyIUY2Jlcbk4sQQ7+t/A2fQZXN12reugArbYtywLWS3jhiyPKc+7758dP+2Mq859LcTZAl42Cm4eqawX3HOa1/MwLRMiJ7ru35iSwqg8CpZhsSq5GnsHdyOrZSp+X5MHTMSFbIu2oSfTU1ZcEtFaJ9W5BZfaYwthZS1k1AxiYgwCK2JUTmFMGfV9pwd7jaqG4or6xnAj5is055JCmafw219H5AufhxmLI/MvXwSm0EieMruYbe1Q33If2JERSD97dLaHM+PMVFhsTQv6YHr5myXisgZ/Vr1C0BuGGuLKO5fePD3v+L1j8QlWz/LVCEbibk4lJNbLVdfXgXWeZbctlMCAKfnMko0CGBZIDavoOW67Ga3t4pQELRE9dbEQeIZHLmc7SYd2yHj12TSOHrcnbYVxBl/8zFl88TNnsX+XPXnkLAFD/Qpkp7AJYLtMJDyzoBfcybkpS1BVE4Zhoa9HQVyKIhrj0OC4rwd3FPDYd4cwOqIjFDeRbBJKjpd3xEZ9UkB9A4/MuIHUkFbsB5o3MDqi+bIcWtpExOI86pL2ugzDoL4+BMMANJl1K+DWS0kInGD3sczY40/WlRc965s2QpRYpKRTSOecaqJc2BeS1xRuhuQNi60ilHoi1jauw21dd/hCKSVOQkSIwLCMEhdueFDFN7/Qj+ceH8GOV9KuU0kgk3Gv09MQasSbF9+DmBBDmLfdqSV1SxHmw+jL9SGv5XF09Ai+f/Q7GCmMQDf1ij1OSS6qyImeXFYVjeFGLEzYxYMWxuyilxGhgrhk/eKSiJc2p1CSN5/RW9k2raR9OXzF7dmfgcAJbk6pl92DO92oipRsH19eyyPMh8GxnCtwVEPF0dEjGMoPIhlqQGu0DRHnfBHXWOJCWFq3HMlQA4bygxjKDzmVecfcsFhS4KrssXMCltQvg2EZODV20hWE3nPizYX1hjz3OYW0SPQBYF/3pJ8mcU7zer4YSu0IQpGTkJDqwDIs+nP9UAwFbdE2iJyIqBCFrMvIe4SuFyJUiZhsibSBZ3lfcR/vsizDYkndUve1eqkeN3VsxQ0Lb8Tblj2IpXXLnM8iVdISxotsKG7V2vnsXNLZKIUyD2HGRpH4rY+AMU3kPv0ZmF2LZntIlClCCvuEv/ploMo+ZfMV74SttjmXnO//C9uWPYvnp7itoBNbi+Pz51zyrpPgneB7qabPZaV2JdUU6JE4CTzLV8yrmoy2hRK6FtmTz7YOkjvnP88cx6C+QUAmbeDEAXuS2NIuTknQEjdH5AUkYmEosgUBErrPyuAsCaMpFaZpYfsLeeiaBblgIpM20NQigIOIwT4VeS3nugm+sFg9bxeb0SR88e+68eh3BjA8qELXLHQutPPBSN7oif0qDI3FoqUh3Pn2eggC62svAxQFvsAKWLzMFiTnzynugwUSErtqfRSCyDjno/ThQrLeviby6aLoIxVaBVZ025RUEpfNkWYkpBhkLo10PguRE8GxnNuqp06qQ4gPQWSL7UcElkcua4vfC4HkzgH2Z0ceYngreJqmhZ3b0lAy9vUyMqj61iPExXjF/OFFdYvRGG7CxuYr0JVYDMuy0J/vw0jBLszTn+tzewwGCw4BxSJDAiu6RWUiQgS3dt3h3mOLEovREmnFYo/A8BLMuSR5vXExjoSYQEbNuKIqWKimO3OuZHveiIMQH4JqqDBMA4ZpQDd1nEmfBsdwaAo3w7IsdGfOwbRMtxUMeRBR0AvYPbATDMPg+gU3gmVYRAK9d0moLxFP/blevHL+Jfzs5E/dKsrRCZxLAFjp9OQ9MLwPg/kBiJyIhFtoqyguSaVf8nCDCFyvuATs0G3SIgaAz1EkIlPiRLAM61v3imbbUSfVdrNqFhzDlXxvKwHnMi7GERcTUA21pPcrCbXvihfnYfVSPZrCTVhWvwIcy7kFmEbllK+gURBZL2BMGYXIiWWvxfkCFZcUynzDshD//Y+D6z4H+e3vgPzw+2d7RJRpoN1wE/Q16yDs3gX+9ddmezgzil+A1S4sdkVyJZbWL6uYNzMVpuuCBgv41CKn1JtzyTKcO6ZKYbGcLyy2vFvpFXNeoVONeONYDvcuvQ83d2ydfPAVeOh9Hbjqhjq35QhfxiFeudae8CnjHOobeEghznX4qoEIZYEVUZewhZiW4zHYp4CzBGQzBs6dKmB8BFi8PIyupfb5vPJNdVjYEYGSYzCU8uaD6a7TlNNydoXQ04Aimzh7soDhAVsgLGi1C6TEEhxEkQELDvGYgHWb4wBnT3SDua3kvIf5MJKOKM2O6+7n1NdtC4zOJWHc9UAzbroziXhd6TlrSNpCazwFdMQ60BBqxPL6Fc4+eGQzhm+5cjRGbDeuIGuuaxUTYrh+wY24bsENAOzrWmRFaKqJJ743in/881P4wqfPoOeMDNO0UMgbFbdfCeIoAra4JNeEt9jN0IAKTWawoMNeNjWiucWFIkLEFQ4NnpDYIK2RVty79D7USfWuqFD0YvjzmDLq7rOsuHTcMZETUB9K4rauO3D3knt97UBCfAh3L3mL61AFIWHQbs6lWSxkRNxQ4sDKhu1Cktd7yrQZ8VapJufxUOogvnvkf/CrnhegmRo6E11ojthi+JTTCoSEWpIHEWNKCpqpoS3S5r7Hs7zPHSYVqkk7mrPjZ3E+2wPTMlHQC26PS8B+GHD2VAEvPp1CargYytsQsgv7EIf16rZr3FDrwfwA0koajeEm3NJ5G65uuxa3dt3urssybMmDrbBzDZCczYncXRLivaRuqXs+vE6rxEvu3xByPZHrIacVxWVn3Hanf3n2KbeKsWEaMCzDzu8MJVEv1TuCtt43FuJCjimjrtta7u/WUGEQuqnPa9cSoOKSQpl3hL72n5Ce+BmMxUtoddj5DMMg/9t2PnvkS/82y4OZWWYq53JVw2rcuPDmmmzLrTx7oWGxNc655BjW3WalsFiWYd1z7Fu3YhXZyn00K1En1V+QiG9sCmFhR1HglBPxdz3QhPvf04KOzghWr7EnecE+ohMhuuJScHMM1SyPoX4VnGWHiKaGNXCWgJvuTOI9H1mAtz7UgmtuqsOSFRFwloDRVNGN00zd1yLCgoWeY/Z5zmUM9JyxBWBTq4iYEAMDBs0tITBgcc2NSXAc47ZHCF5X5LyHhQgiUQ4MY7dqIcv19jg5eZ0Srrq+Drff21T2wcWiJU5fyUMy4kI93rrsfp+AyDvisrGh8mfXEnVCPRXT5wouT65wi8wAtoA6vC+LofMmwhEWlgW89EwKP/pmP/7pL05jbHRqTmZY8DqXkntOFL0oLs+flcFZAq7fWg9eYDA6rLliqiu+2C3g0+TpLTkRIbefqewRl2OuoyhxoRIHlAgiIlY64p0TFrApBxFzqqegj+g4a2TspIASqdpLXDySj+kVfN5WOuQzOzl6HKZluuGwy+qWIynZIqU31wugKFjJ+sSZCwXcYF/IslNIrCHUAJETkZJHfLmCpMelYVj4zn/24utf6MHzT4zgse/7c11XN6wGUKzqSx64EPezI9YBnuWxpnEt4mLCPa6EmCj5Xg2ON+j2AkUBviq5Gh3xTlzZepX7njdHNMSF3eMloo5cG6QFTIgL44rmzViRXImCXsDOgR0Aiu1PyOd7a9ftePPie3zVlQH7MwrzYaSVNDKOMG0MNXnGaq/fl7XPRbCFz3yDiksKZR7B79uD2F/+H1iiiPGvfhNWPDH5SpQ5i/L2d8JoaYX4i8fBnTox+QrzlJnKuawlxbYmUytaMxPHFgxtdZ3LCmGx3nW8OZdMBRfT+/N08ying3df5XJbWZbBldfV4Tf/oAtLltSVrDPp9jniivJuuOjweUAumOAsAYW8idERDawloG1hCJEoh6tuqAPPs0jUceAsEapSDFHXDM3Xh290WENhtDiew/vt8LamFtGdrG66KomHf6MdK1bH3G0A/jxX73GFuBBYlkE0ykGRLRgqg/SYhuOHcmA5oL2j/AMFQktTFM1tIuQMg8N7/eF2nGXnnUohBtFQ5e20Jezqn6pqlkzavaSHgLOnZERDEn77k4sQS3A4eiCHQ3uzMHQLZ45P3g7DS6lzaZ8TxVBgmhbG0zr6zysQORGrN8SQbLQ/wzZhETa1bMYVLZuwvmkj3rTgBqxyhMtkEKGkGMWep2mnByJgCzgi4ojYJUKqmrY9lfBWiyUFeshrrVFbwJPiRiTntC3aDqAYGlrv6W0p+MJiHffaCQ1lGAYRIYL22ALXQSPbIGG9ZH0iLoNREd4HSeQ9hmF8/U5JYauYEINhWHjyx0M4cSSPxmYBiXoeZ44X0NdTFH3L6lfgtq47cHPHrYExjDv79IfjEoEVF0vnOeX6/QYhzmhrtM3J8S1u3+86S27bHOLOEnFJivWQ0OBr2q6DwAroy/U6LWNI31zBHau3mq6XZCgJ0zIx6BSYagoXxSU5RreYzwRO/Hxgbv6Vp1AoJTDjacR/44NgVBXZT30a+sZNsz0kyoUiSZA/+jEwloXwf/y/2R7NjOF1XOaquCQTqFCFdh+VYGfg2NiguHSE2EST23Jhvb6CPmx5oVlNzmWt8E6IJws/jgoxOxSzgltbDiIKJE5C18J6AMCRHba44yz73OVzJhKxEKIx//4jUSIui46Mt7dgLqtj7/YMBDOCuqQtOsZGbFezqUVExHE+4lEJq9bFXGFCwvaCYjoZakBUiGJBbCE4hkM0Yb8/njLx1CPD0FQL129NIhSe+DwJLI9lqyJgLR6vPu/PBcuNMbAsIFEvTHjttCVswaHKVtl8RsLxffa53HpnKxJ1PK67ud73/vlzpe7RRPhyLlnRFeCKIeONl8bw4lMpGAbQ1RWHKLFINgrucW1s3uTmAq9IrqzagSfXk2LIvqb1ZFIvcZK7TNCdnKxK7kQIngI6XpcUsENGI0IEw4UhyHpxXDEx7gvT9YZaeu+LiOc8hvkw3rLkPrx50d1gGdZXmMnO4yM5l0Hn0n+feYWeV8i1xxa427qx4xZwDIexMxF8/i9PY8eraURjHD7wvxbixjtsIfzq82O+7XbEO93Pinz3kBzEoNtHXMRgvqV9nJNHUUz0efnCYrkQNrVciXesfJfr+hfFpeI6zIAdgbAgthC6qaMv1wvVeXhUzfcUOR7DMtAabfOJ5uAxtnh6pM5H5uZfeQqF4scwEP+tj4A/fQrKW+6D/JGPzfaIKDWi8OsfhhWJIPS9b4NJjcz2cGYEr+iqZZ/LWrK0fhm2dt6GxYnyBTkqMRPFioJCkAixiZ7WEwHKVcitZCuEy86Wcxl08oJc1/4m3NZ5R0ll0InojHdhXdN6LKlfhuvXr8Ey41pIYx3O/jw9IFuiJetGohxYS/CJS+JmmaaFV58fQzZjYMWyBmy9u+gqiBKDeB3nOiHkGIO5uMHjjQgRvGPlu7AiuRIcy7li99CePA7tzaIuyePmuyYPjeM5AU2tAhobw+jtVtDbXRR4404B0rp6fsKHCHWJMCQjDlU1K07aVdVEqlsAzzO4crPttF11Qx2WrAzjWkdk9k5BXBqGhaO7NMgFW3yLnATOER05pYDhQQ08DyzskrDpSvs8kIJJpO9nOUxz4uJoJLRc0WU3pBEABnID7jiI4xUNOGnVtO0h9HbLUNXitcQwDARWgGZqRbfLs72FsQ5YloXe3Hm3WmyYC/ty75JS0bn0hsV63eaGUAMaw41usRyBE1xX3euGEZefuIZB55IcOynwROiId0JgBSyvX4GmcBPesfJdGHi1E7msgeVrIvjAby9EfVLApmsSCEdYHNydgSyXz8clIe8kBzHYxmVZ/XK0RFrL5rGGJ4jiIEz03eEtQCRxIbAMizAfdkWiaqiuwxzcTmfC7t/ak+mG5lxD1bjazWHb0WyNtuHWztt9Ytrb3igmxqYcdj3XoOKSQpkHRD/zaUjPPA195Spk/u1LNM/yEsJKNkB+z/vAFAoIf/Nrsz2cGYetYc5lLeFZHl2JRReUc1mrfFKvQGQY1hWGlQr6ALaoYRimsnPpC4vlPetNvXfldPE6CZOd5zqpHgvjHVPafogPYUvr1YgJMUiCgGtWrQYHewLf0VF0Ktpay4jLGAfeknyCgIRDFvIG5IKJ+gYe73nfErQtLE42G1vsKqpkMkhEXNCZ5SZ48MAxHGJx+3PY/4YtLG66owGiOPkUTWAFMGCwbmM9AGDXtmLVzLEh+3pM1PM+MRIkGuUQNpJQFatiXu3pY3k0Ztfgro770ByzRUoozOHX/1cH7n57E8JRFv3nVeh6ZXGnaSa2vTCK/l4Fzz0xgse+O4TTh4qVPUlBn4HBHCzLPrdXXleH5ib780pOIi6PHczhb//4JI4eqFyNk9xDWS3rhooC/rxGskw0UNynWpf/3OkC/vNz3fj6F3p8hY4EzhaXSsC5BGxxCQDnMz2QddkVdV5B6XW3vA9qvA5wuUIwxL1s9IRhkuuBOHRBAUXEZfD1mBDDu1Y9jC2tVwMATEXAyKCBZJOA939soXtviCKLhV0hmCYwPlrat9R7DORzCLqndVI97l7yFl84MCEUqDQc3Cbgj5QIEuEj7oNO7369ObnEQQ5+7y6MdYBhGHRnzrnnr5qHdF2JRXjL0vtw56K7IHKi72Gh18Vsi7RPuq25DhWXFMocR3r0x4j86+dgJuow/s3v0DzLS5D8x34HFssi/JUvAfn85CvMQ4gIm6vO5XSZiZxLNpAr6a0sWoktrVfjuvbr/UV8WG/4q6cVicfRvKhhsc4YGIa5KOHRqzcUn/6vWlHv/tzeVloRtJxzSZAL9mvRGIeYFENTi+AWPW5qIS4XEZflqw5PFLbJszyicXt5y2ABBli9sVQAl6Mj1oGOeCduu2YNOJ7Bvp0Z9xjGBu1Je6Ken3iiHePQrKxGvbwMnfEu33uZcR173hjHwT1ZsOCxef3CkvUZhsGCzhAMw8Jgn1LyPmALiCd+NISnHh3GVz7fjVees0N4syP2uCQu5Lq7fYN2qGYy6bSWcQROgxMWO1pBXJ46loehW3j6p8MwDAtjoxoe+/6Auy97P/a2SCgmuQ4tywLLsGgMN2JRYjGaIy1Y4OTfESYS6F7277TH39ej4Nv/0QvDsD8HgRVgWZbbW9EritqjC8AyLM6Nn4Vmaq7wIMIql9Xx1A8yOL7bQGGU932Pet3mclVzW5w8yQWx4mcXvB6CIalRnojL0gdaHMu5++8561Q1Xly6XCxhf56Z8fLOZTC/PehcEnTdhKb578twwK119yl6w10rO5csw7oVbr3HyLM8WIaFYiiefEv/diROQnO4BbIuu/1Jq83HbQo3udecN4fe++CA5ODOZ6i4pFDmMNz+fYh/4n/BYlmM/+fXYCxbMdtDoswA5pKlUB54EOzwMML/843ZHs6MQETYXM25nC7MDIT8eiddLMNic+sWXNv+pgmrtXbEO7HC6SVXbmxzoaBPJVdvpli+JgKOY8ALDJavKE7eFi4sHxbLBwr6uKj25DIU5hDhIxBEFskG+1iaWuz/G0INaIm0YlFiCYByVYQrH7PtXNrvMxaHriUh18mcjJgYx21dd6A92YS1V8SgKiYO7snAsiyk+i1wHBD7/9u77/Cm6v0P4O9zcrLbppOy2rILlFEQKHsJynCBuHBccaOo94o/9erVi3qd97pxIbgRFMWFDEFAlK2yRfYqs3Q3zc75/XGatKWDrvQk6fv1PH3apmnySfvteOfzHZGaaoORwShCL0cgvqB7hRC85sccfPPZaWz/rRCCAHTsWnnobZWs/KO8ZGEWPnvvBPJzXTh90oE/tylBa+umAmzZWACDSVSmrsqAIALGk13Qp1l/GCSDf3ycOaOEr+YJyvfMt1nK+TqXvnM3s7NcmD/nBGY+ewR/rC/A8u/P4nRJ6FXW8epKN7gxNVN+br0iWhf2x671XhiLW2Bs2/HldkzVCBoU5HqxeW0eHJU8AeHj9crYvb0IggAkNNch84jdvxbV17kvcirBtmz40Wq0aB2Z5F+jayz5WY/Rx0CGjG2bC7F/uwvuP3rj2Lfdyp0xWjYYVrbLaNe4NFzeYYJ/gyDla6pD5hEbVi7ORlGhu0IQs+ijoRW1iDVWv7HMsUPK1PGkthXDpe/onKKC6juXQMmTaJU8AeL1ypj10jG8+79jsNs9+OCNTHz67nHoxLKPubTGsmtUz7dG1hdEz33seo0eTo+zTFe3kuBcMq3WdwRKbdaG+5TtXJq1Ef7fGWU3TQpVjTcfhohqRTx1EpabroVgs6Ho8afgGjla7ZIogIrvfxCGhV/COPM12P52K6Cv/R+rYCYIAiADDXnOZTAIxJrLczuXiabEckdC1FSV51yqtKGP79n9xnqCwWDUYMq0NigstCMyNg9arQBRBOIrOZZDq1NCR24lwUHjVAKVxRjhfwIhPlGL3GwX4pqV7lA7pu240s85d81lNZ1LUdBAbxSh0QACxHId19q4YEAUdvxeiD82FKBNBxPcDg0imyldLm01nRVRFGA0aVBsrdhhys4qDTHtOinHplSmZbLy++rYISVIHT9ih63YA68XuOefemz4OQ8AcN2tLaGRBOTnuvD7+gIc3JOAGIfSLfV9jc5kK+ErPaUTJKPXf25ndKwWggBkHrbjrReO4LJrE9E6pfQf9LKBa9+fxdBIAtp2MuLQXht+XpqDq6co4cqgMfg31YnSRaFnQjrWL7dh9WoPgCy0TNbjjgeSy53FKokSvp57CkcP2vHrilz0GxKN1ikGmIzlu23HDttRVOBB245GdOhixvLvzuLwPhuS2xorrDE8N5B0jeuGowVH/DUCynTJU0fdyDnjRvfmZqS0S8Bva/Oxakk2Lr2mGTQaAUbJ6J8SX9nOqpWdu6jV6HAy0wFrkQf7/rRCf0Hp19Hl8qI4X4NJna4570ZJxw77OpcVu47+zmW+G4X5bthtXiQ0Lx2Hkqb0ts/tnPpkHrbjzEnlezXn1UxknVLe3vSTHluOWRETFYG+o0t/XiLLdS6rD5cWnQWnrafKdTuVz9PD5rZV+iSAj6/rmecLl3X4PSoIAgySMhZ1og5Jkclwe10V6glFDJdEQUgoLIDluknQHM+EfdI1sE27X+2SKMA8XbrCMfYS6JcsguHzz2C/aYraJTWosO1clp0W20CTgcqHwrqH8XIhtYrNfRpzzaXvH9XG6lwCQK9+McjOLsIZqx39h0UDAqCXKv7TKQgCIgxGZDplyLIMo9boX3Ml2iMgeQ1oYSntKPQZaIHbLaN9auXd5HM39KnuMUuiBAECLNESxFwRXXrULVymtDciNkGLY4fs2P5bATSy1r+z7fn++TWZRRRbPXA6vNDpS2v3dZ1u+3sS4ppVfRttO5rQobOyk67TKfunhgLA0YM2ZJ1ywhyhQXI75UiH1ikGnDjqwME9xTh13I4WrfWQRA3cHhl5hcUwGEXER0eVO2JEkgS0TNLj+FEHzpx0Yve2In+4lGUZeTku6PQihl0cC1uxBxlDomEwinjtP4fx57YinD7pQGILvTId0b+RjR7NzS1QcDwTgA2CAJzKdMDl8vqfeJEhw14k4uhBe0kwdmP5dyW7JSETXXpEYPjYWMhe4JflOQCArj0j0LKkm3t4fzGGXhTrD/hFrkL/fZdV9ggLXwAVBAH2rZ3RwmbH+L8lokUrPXZvL8L23wqx849CtGitx23/SELf5hnQilKNZ0/oRC2Ki5QnE44fdcBeqIGppOm5/Luz2Lw2H7f9PQmtkqv+nns8Mo4fsUOnF9CsRcWfqciSHZALCzxY8NFJnDjmwP2Pt0FkSegs27msaj35rq2l62ezTjmh0QjwyjJ+XpYLnaYfimUN9GNK7ztSWxquz9dNTG/WG60jk8odCVL28wqcynmUlR0B5ZuK7Ps+VffkTXX6Ne8Pt9cNQRAwLGmE//ITx+yQJBFxcaG5sQ/DJVGwcbkQdcuNkHbtgHPIcBS++iY38Gkiiv/xIPRLFsH0+suwX3cDoG28rlKg+f7paahNb4JFYHaLrbzjWOvbqaJbWW4tZi12wKwv39TMmh4b0ZD0Gh2iS6ayVjVdLsJkgFwIuFwy4k0RpUdVFEvoWHgRBrdK8l83tVsEUrtV/Y9fhQ19qtnAyNflTM+IwphxKf4jN2pLEAT07h+FFd9nY9WSHIiiBEvJbZ2vQ22K0ABnXCi2esqFy8J8NyStgFYp+mqDi14v4oa7lDV9Xq+Mrj0jcPa0Ez/9kI3tvxXC6wWaty5/G81LzvA8melArwxlOnhhrgteWUZ0jLZc59Dn5ntbY//uYnz+/knknC3d7VUJxjISW2oxaGT5DWAyhkTjpx+ysWenVQmXZYKAL0hknXZCFIG2nUw48FcxTh13oFmShIN7i7H/LyuaRyUgAsDwi2OR0sGIowdsOJnpwLHDduzeXoTd20tDkMmsQZeeETCaNNAbRBw9ZIfbLfvDVGnnsuI4vDB5NFYd+wld4roCUAIczrRAikVCm/ZKd3DUJfH4dt5peL1KMDx7xoXOiV2q/N5URhK1sJaES9ErYdPPBRgzQTmSZt/uYsheYMvGAv9053O53TJW/qAcmdO2kxGiWHFslK65dONkpgNulzJluN/gaADnbkpU8X68Xhm7tirTsXtlROGPDQUYPCoGbreMtT/lwuhRvs9eR5lwWW5abPVj3iAZ0DoyqcLlvtDv60pWtkv3uUsU6jItFgDaWNr6317x/Vm4XDIuvCQOH848jkiLBk+9EprnXYbXU8hEoU6WEfnAvdD9vAruLmko+OATQFf3s7UotLjTe8M5chQ0R49Av3CB2uUERLh1Lssfs9Jw02J9/4TX5+tVvnNZZkOfJrLmsqyynZGqNt+INCnXcdq9/mlvAOCwihAhISqq5l+r8lOPqw/Tvu9NRKQWbTvUbCOfqqT3i4KvSd1/UAJalXT2zrfhiKnkKJSyU2NdTi9sxV5EWWreEQOUabZdekT4O7BHDijr8lq0Kv8PeIuScHnquLK2TRIl5JScHRodq630iRWtVkRyO+UxlV17mVvyeb51mWWldFBCWebhirt/GjQG2Io9KCrwIDZe69+Y5sRRBzxOEXt2WuGwyzh7wgtBBHr2i0JyWyMGj4rFNbe0xJMvd8PwMbFo3caAth2NGDEuDlMfTkZEpASNRkByOwPcLhknjtr9T2pYXVVPt2wV2RqTu9yIthblSCRrkQeyXNoFBJSg9dAz7TBktBKu9v1prXA7ZbndFTdachVr4PEARpMIjaz330ZRodu/YdKurYVV7v677JssrFuVB71BxNDRlR+Z4+tQnjzmgMup3M6uLaUhvOzackMlm5UdPaRMMU7pYMQlVzfDrfe3xrCLYzHqkjjc80gKupRsemXLK90orOwRKr4xW5Dvxp5d5XcHrk6UXul+ZhWfAVDVtNhzjqkp83s0O8uJV586hO2/le7c7HZ7q12ray1y49eVudi4Jg9rf8qF0+FFy6TzH7cSrNi5JAoi5mefguHzz+Bp0RL5876EHFXx8GAKb9a//x90K1fA9PKLcEy8Kmy6l76OZbjtFhuIziWghBO37G64cBkEG/qUrrls/HDpe5xaUVvl19QXLmW3VC6MOazK9X2dmJqozbjwfT/Od/ZnTURESrj21pZwubzo1N2AeX8pO/OeL+D61lL6pkoCSscJACItdasrNkELnV7wb5LU/JxwGRuvfPzUcQe8XhmSKCE7S+lGxjbTVvkkhMmsdARzzrogyzIEQfCvt/RttFRWi9Z6iBolXMqyXC4s6DQ6nD2t3Gd8c52/U3f8qB1erwyPC7DESBCydehxQSSizvla6PQiRo6Lx/AxlQeXNh1M2PdnMQ7tt8GSrtTmW+9ZVeAvO14K8yv/HpjMGnRKM+OX5bnY96cVURYJRrOI9qkVn5xY+1MOVi3JwahL4zD4QiUI5ud4IcgiomO1cHmNyD7jgtPhxdGDpWeV2qxebFyTh1bJerTpUL5Tt2+3EkbvfDAJsfFVzAQoCcRl18IeOWhDYb4bkRap3JT8ygLcri3K9OFu6ZEQRQFJbUsDaEJzXcn9WmHL1wBmZWaEr4Po+9pu+60Ai7/MgsPuxcQbE9HjgvPvtu87usW/oU9l02K15cNw2WmxO/8oRF6OGz9+dxZdekTA7Zbx/uuZsNs8uP/xNpCkir8PDuwpLtmTQNlECwC69QrdtZfh9RQyUQgzvfo/5cgRSzTy530Fb8uKW75T+HP3HwDnsBGQDh2E4fPP1C6nwfj+YWqodYnBIhBHkZS9rfp2+XyfX/7sTCVw+F4aiy/gqDEtVhAEtLW0KzcN7VxREco/jLJLKjeN1G4FRI2yq2pNiWLlYb4yvq9HQ30vOqWZkZYeCa1GC0mUqj2SwccfLst0Lgvylbd9u37WligK5QKlbxps2Y+3SjHA6ZCx708rBGiQfcYFjUYJiVWNE0EQEBOvhcspo6jAg1PHHaXhspIpxVqtiBatDSi2epBz1uUPCwX5bvyyuMi/KU1Cos6/TvLYYTs2/JwHERqkZ0Th+tuScdm1td9UK7lkF9WTmfYKU5NrMpWyqnAJKDv0mswaHNpnw5cfn8JXH5+utDu3d5cSBFcsysbekg5l7lkXNLIW5ggNEuIiABk4c9Lp3/21QxclTC7/7iw+nHkcf24r7Tjaij3Iy3YjNl5bZbAElK+7wVTmCS5J2dTtz5IpxGWn5J/bufR6Zfy5Tdl1t0vPyrv5vi61NVsDg2SARR8Ng2RASlQbtLd0QFGhG998dhoOu9Ix/H1dQbnP/2NDPl59+hD27Cp/LqpFX35ataGaDX18yu7GfHCv8jUsKvDg5x9z8Pn7J5F1yonCfA8yj1R+VM/+3aVHkMkyoNML6NC56t3Bg114/ZUnClHGWW/B/OxT8JojkD/vS3i6pqldEqnI+s/HAQCml14AHJX/MQo1/jWXYda5FAQhIOtJfYGkvoGjqpBqlIz+KWSNReufFqvOvx5DWg/DgJaDqvx4VIQRCfbOSBa7+df7ybIMR5GIiEip0nVlVSn7JMp5p8X6ngCoZl1mXQ1sORj9Ww487/V84dJatnOZpwSbc7t1tdGitRKutDoBsZVMWc0YGg0A+GVFLnJPe+B2y4iO00IUhXJTuc/lu62ffsjGO/89irU/KWdZVrVe1bfxT+Zhu38N3fbfCrBjkx0/fqtszhOfqIM5QoPoWAm5Z13Iz3WjZUszoiwSTHoDNJra/3z7dkfNOuUsN0tAK2phrOJcx7KqC5eiKPhDIKA8MVBUWH7HX7vNgxPHHJC0SrD7/vPTcLu9yDnrgghJOeO0ZNOYUycc/t1+R18Wj559I9EpTfkdsWRhlj+knT6h/E0698mCykSW6fZ376104o4dtPm/Bj7nrms8csAGa6Gy6645ovJx4BsDudluXNr+ClyYrOyoPyxpBHo264XjR+2QvUCPPpGIjpVw5IDN3xkHgD+3FiEv2415753Eb2vz/ZdbdOVnjFW22ZAoiP4dbgVB8D8Wp8OLY4dt0OoEQAB+XZGLw/ttSrAGcGhvxXOsvV4ZB/YUK2t+OypjIrVbBLS60I1ooVs5UZgwfPoRIv71CGSDAQVzv4C7Tz+1SyKVuXv3gWPsJdAcz4Tx4/fVLqdBlE6LDb8/O6U74TZguBR94bJ+gcMfLs8JLqNSLvL/M9ZYfFPHAhGiGoLJrEEzR1fEelL8/yw6HF4IssY/xa+myu7Oe/41lxW7yw2ljaUtkiKTz3u9yjqX9Z0WC5Suq2zeSl9pOO/U1aycB3nYjvU/KdMg4xPOvzY3tiREbitZ1+YLPlWFS99aymOH7f4pk14PIMmlHaeEROVt39TYVikGDBii7CSqq+PGVwajBpEWjbI+1KtBcbEHsiyjV+IFNfo5KCwo6R5XMSW735BoJLU1+DvEvmM7fI4ctEGWld1rU7uZUZjvwfbfCpGb7YIoa2E2a9A8UQmQmYftOJFphylCg2bNdZhwfXNMvr0luvWOQGG+G2tKdsI9mamEy3PX0Fam7M9NWq+SEFuyxrZcuDxn6qlvbWZaNVNDfd/r3GwXjJKxwjmZJ44q99O6jQG9MpTpsFs2lHYvfcfsCCKwamm2snkSlDNHyz7xVtX0Zd+6S62o9T/BeOSgDV6PMq4HXxiDlsl6DB4Vg+vvaAkAOLSvGIX5bpw4Zvff3+kTDlgLPWjdxoBRl8YjsaVO2dk6hIXfX3miEKKfPxcR0++DrNUi/8O5cA0crHZJFCSsj/wLsiDA9Mr/AGv1GzaEAv8GNWH4Z8c/5beB11w2xG1G6qLK7aDoY9FHI0rfuGu6o3RRysHsZQ49DyalAav0GAqHTYYoS4iIrF3AquqM0equq8Z0YR9zJRv6FPg6l9F1r6tdqglR0VKV68dEUcCQUco0xAN/KmEgNqHkSYhqxn5sSQCVz9kjxRJbea2tS6an7tlZpKzRAyBpBWjKhEvfmaXDx8ZhxLg43DS1FYwG5bKqdhiuiYREHWQvcORPL35alI292+1Ijelc4XrLvs3Cgg9PlpvaWvo9qHwMtU4x4Nb7k5CWrgS3rFPlZ7ocKpmi2aaDEYNLvs5rf8pFdpYLGlnpXLZIVL43238rgNcDtOtkLDfDZPSlSsD2Ta/1hcNz19BWpmwobp1iQFS0hLNZyvpO37R8GTKyMmV/2AKAPbusEERUeyxPVLQEUSy/prOs40eVLmyrZAPS+0UBArB1cwE8Hhlutxd5OS5ERUto18kEa6EHh/YpXcWVi7Px0+cO2G0eHN3rxnsvZfp/LlxOL76bfxrzZp/Ant9dkCGXC58HSzqTbTuZMOqSeNzxQDJGXRKPNh2MMEVokHnEjnf+dxSzXjqGFx87iMMHbNizU/m6duhiRqtkA6Y+lFLlLr2hIvz+yhOFCMNH7yPqvqmARoOCWR/CNbJxuwgU3DxdusIxYRLEs1kwzn5H7XLqrbRzqXIhARCIcFl6m/X7gl3UZgwuaXd5Q5RUb0bJiKtTr0N6s95ql1Ip/46pRR7/5joOh0cJl7XsXFa1mVJlStdcqtfRLd0ttjStVTcls6aiLBIemNHWP/21Mt0viMRl1zZDVJQOJpPo70hVF7bLdihTuyndz9ZtDNBqK/8ZtERLSOsVgcJ8D76YlQ27zQO3XQOh5N/gqGgJ+pIjWBISdRh2USz0htKNkM632251EporIWz3z3okWftDt2VEuenHgLJb6IbVedi1tajc1FZ/9/g8m0kllJwzeeZU+c6lLzC17WhCUhsjUtobkZ3lwvEjdkiCFkaTiITYCOj0Arwl3/qBI8qvObTEaBEdKyHrtBN2m6c0XNZiWqzJrIHRpFECqVzaYZVECceP2LFgVg5+XqZ0Ru12DwrzlTWdvid8KqPRCIiO1aKoQDmfFVCmsW/dVIBD+4px4qgDogZIbKmDJUaLDp1NKCrwYP9uK3LPuiHLQFwzLXpcoITrHb8XwlbswfrVufBazThzyomje5VjVHw7v+7ZZcUfGwqwZ6cVe7YouwyXfeLBF+bbdSq/XlIUBbTtYITXA1gLPYiJ18Jh92L10mz/eta6nm8bjBguiVRgfO9tRP7f3yHrdCj4YC6c4y9VuyQKQtaHHoWs0cA08zUI+Xlql1Mvvn+2w+2cS6BMcG7AP6m+bfrrO1VSEqUK08XUFKxTYoHyU0MlTUm4tHnr1LkUyx1FUv1jFivZdKmxVbZbbEF+/ddc1oRyPqcF05/oiBHj4vxrG6sL277OJQB0TY/AnQ8m45b7Wld7H1fe2Bxd0yPgKBJx5pQTbrsGogbo2TeywtmYPr4dTeuzq3J8Yun0zSh3S8guCRvX5JW7zl87rPA1LMsesVLTgN+szNpOH4fDi9MnnbDESP4wPm5Sgr8TbYlUOpQGrR7NWihBsX1nU6VHYLROMQAycPSgHVmnnIiI0pw38AKl02J93y9ft7Ps1NjjRx2QZD1+X5cPt1tGTsl01biE8wd636Y+uTnK56xZnotvPjuNT945jmKrB4kt9f7dWXv3V6bG/rGhwL/2Mi5Bh87dIyBpBezebsWGn/PgcsoweKJw7KANjgLlMW7dpEzZ9oV1o0mE5DWguMjjPzfVWuTGqeMORMdJla4vbpdq8n8t7344GZYYCYf32XDmpBPNWuj807LDAcMlUSMzvvEqIh57GLLBgPyP58N58Vi1S6Ig5W3XHvbJN0LMz4Pp9VfULqdeStclht+fnYY4k/JcWv/OqsETDMNduXBZEu7tdi9E1L5zWZtpsb7umFobHQHlH/v+3VZ88Eamf3OX2hzBUh8ajQitpvS+qutcRkZJyiY1AtChsxmSJJx3wyVRFNA+1QRJNkBri4HemojIKAkTrm9eZWdVKnOETV35OpcAYI5UAu2mX/L93TYA5XZjzclyYtfWQvy2Nh+FBW5IWuG8OxVHx2ohaQWcOen0T6vNyXICMtCsRWloSWyhx50PJiG9XyQuHtgdLcwtkGhqjnadTBBFYNjFlZ9Z2bpkzeq61bnweoHmLc/ftQRKQ3HcOeFyxx+F+PDNTBiz2wPH2kKEBGuRB3/tKEL2GVe5z6mOLzSfPe3Ejt8LsWpxNgBlPS0AtCoTlDulRcAUocHeP63+s1fjErTQG0R07RkBp8Pr754avBbkZLuh9SqB8NRxB04dd+DQPuXzevaNgtZrQHFxaefS97F2HSvf5TW9XxQuu7YZJt/RElqt6F8HCsA/rTlc8JxLosbi9cI8418wvTMTssmE/E+/gGvwULWroiBX/OAjMHz1BYyz3oLtb7fAm5yidkl1EogAFiwCMS22d2Jf5NpzYNKG7nb0ocYUIQKC0i3Siso/wQ6bF4Y6dS6DY7fYmtLpBWg0AoqLPNiwJs//zzcASFLjzTbQiBp4PEoyqK6TK4oCxk9qBo9b9q8XrYlIiwQBApLzh8Fms8IcX/3nxhrjkFl4DBZDdI3v41xlO1Kdu5vhdMjY8Xshdm8vQs++USi2esrtIpp9xoXNa/NLNymK1553l21RFJCQqMPJTAcK8z2Iipb8G9ace1yIOULCFZObA2gOQFn7OexiPTKGWqrcmbV1irKL6eGSANX9gpqdwdipqxnp/SL94d23wZNvfB05EIUEbxqi4yTkZbvx29p8tOmg3FdsDcJlmw5G/LY2H6uX5qCoUOnyTr69JVYsOoszJ51olVIagiVJQM8+kVi/Og+bS3aH9XVHx05MgNst48+tRWjTwQinUw/XiQEweCxo09GIw/tsWLUkGzlZLmUKdooB2rWmks6lch++9ZbnTon10WiUDr1Per8orF6WA8hA1/TQPdOyMuH3V54oGDkciLz7NpjemQlvbCzyFnzLYEk14m3REsV33wfB4YD5mRlql1MPDX9cR7AIRFc2zhiHDjEdG+z26PwkSUR0jIT8PDdkjxI6bMVeiFCOp6iNssHofNNdS3eLVe/5fkEQYIoQUVzsgd1W2lGLb+SpemWD+PlCea+MKPQZVLtNqXxTQn3TMk3nCabd43vg2s7XI0Jb986SOULj7wy3TzUhvZ8SJLZuLlnHt9MKr7f02JJ9u63+YAnUfFqy7/NXLcnGqeMOf7iMa3b+kKbRCFUGSwBo3lrnn65siZHQrXfNwpBOL+KKyc39R9JEx0rQG5Tfk0aT6N+QadQl8YiKlnB4v81/7mhNpsWmpUegTUcjsk45YbN60WegBZ3SzLjmlhYYMjqmwkZSvUqmxrpdSnfX97UxmjS46m/NcevfW+PqKS3QpoMJke4W0AkmXHZNMxhMon/jnbYdjYiO08LsTkB8cRekxXcDUHYzn/MfMaN8LbQYfnEsBgyPDqspsQDDJVHACYUFsEyeBMPCL+FJSkbeouVw981QuywKIcX33A9PYnMYvv4K0m+b1C6nTko39Am/cBmIziWpIz5RB8hAQbbyX6+9SBmvVR1xUZVyG/qEQOcSUKbGyl7gzEkHIABjJiTgsmuaNWoNUgOtNa6KL6jl5ypdrpp0PRvi+9Kuk7JbaNuOJrTtaEKkRcKhfTbk57qwe7syJXbwhcq6z9Mnym/KE1nDKdm+jt+WjQWYN/uEMi0WNZteej6SJKJFktKhGzQypk5nfgLK7//+w6KR2s2MqQ+lICJKA71BRMcuZv+ZnQf2FNe4bkEQcMlVzSBpBUREaXDhJXEln6vDhePjK5wV2ay53j/FVxSVgFf2tpLaGGEya9C25GvZMsmA2HgdLr269OegbUcTYuIkCBARkdsJFn00srOcyMt2I7GlrtqQfq7hY+Jw8RUJNb5+qOC0WKIAEk+dhOW6SZB27YA7rTvy538Fb2JztcuiUGM2w/rYvxF131REPPEo8n5YHnLbrvo39AnDABbOj62piW+mw/7dxcg/C8hmGfYiZb2b0VS7gCEIAkRBhFf2nnctpW89n9rra31dPKdDhiVGUuWsPV8QD1TQNppEaCQBHrfSuarNlNr6uOL65vC4ZX/XrmffSPy6Ihe//pSLA38Vw2AS0a13JH748gycjpLzFnUCXE65xrv19sqIQsskA778+BTOnnbiYMnOpedOi62rEWPjsHeX1d/9q8/t+NwxPRkupxd6g4j2qSb8sb4AkJVjYmr6uOOb6XDXg8nQ6oUa/Zz27h+FzMN2xMRpqwzJ7VJNGHxhDDp2Vc6yTEuPROYIOw78VYy2nYzQ60VodQLyctzwemX8sOAMACC1W3itnawr/iUkChDpj98QPXoYpF074BwyHHnfLWGwpDpzXH0dXN16QPvbJui/+1rtcmqtSZxzGYaPranxTS3MPSPDafdCdmkQXcuupY9vXJyvC9fc3AI9E9LRJbZLne6noZQ99qFsR6cxlW5uFJjQJwhCuWmm55sW21AkSfAHSwDoM9ACrU7A5l/z4fHI6NwtAhqN4D/jE1A6x1qdgLZVbBBzLkEQ0LyVHu1LdiUtzHdDoxFgiWmYPlL7VBPGTkyo8riXuoiySP7pr207mnyrJxAbrz3vBk1lxSfqYImu2ZhN6xWJ5HYG9OxXdUjWaASMujQeKe1Lp7hefHkC7n44BQaDBoIgICZOOU5k+XdncXCvDc1a6PxniTZ1/EtIFAD6L+Yh+vKx0Jw+Bdv1NyF/3peQI+v3bB81caII65PPAADMTz0B2O0qF1Q74Twt1ncESRg+tCbHt8awIEtAtLc1LK7kWk+J9fGFy/OtHRQFET2b9YJFH12n+2ko5cOlOhPbtAHuXAKl6y6Bxutcnis6VosLx8f73+/aU+l4+Y6wMBhF9O4fhUdfaI9OaeZa3XbZQBRTy5CmJpNZ49/wpyGm8lZFrxdxy31JGDq68p1xa8r3e2H96jxoNAKuvrkFdDrGKoDhkqhheTwwP/k4oqbdCbjdKHz2RRS9/AagC6/F2qQO15BhcIwZD82xozDNfFXtcmolnHeLDefH1tT4NtbIOu1EqjgQCY7OiKlj0PKvpVRxo57aCIbOpe9rJQXwaxZpKX2ctVkf19D6DbGgY1cT4ptp0S61ZIfUknDZMkkPQRDq9GRccrvS4zcCGdICoX3JTquxNdjMR21lf0a69Y5o9M2vgllo/MYjCgFCdjai7rkdupUr4I2ORsF7H8E1bITaZVGYKXr6OehW/wTT6y/DPukaeNu0VbukGhH8r0PjWfTa4LTY8GEya2CK0CA7y+k/zL2+nUu1N+qpqbJTRNXqXPq6vOc7G7Q+1JgWWxlRFDD59pYASp+g8p0fmdS2ZjuOViYiUkJ8My3OnnGFXLjsO8SC3GwXetdzXWdjiIkrHUd9B0erV0gQ4l9CogYgbdyAmAsHQ7dyBdypnZG7dBWDJQWEN6UNiu97AILdjojHH1G7nBoL5x1VA3EUCaknIVEHr6f0aIG6rrks7VyGRrg0B0Hn0hcuzzeVuD7KbhSj1rRYn3O7k13TI3D1lOYYdGH91u75psbGNQutbpolWourbm5Ro2NI1OZ70qllsh6tUwznuXbTwr+ERPXh9cI48zVEXzEWmhPHYZ90DXKXrIS3XXu1K6MwVjzt7/CktIF+2RLoli1Ru5waEcL4nEuR02LDim9qrO+8vbp2Lv3nV4Zk51LdabHn22G3PoJhzWVVRFFA156R9V67N+SiWAwcEV3j8yip9tp3NqP/sOhyx5SQgn8JiepIyM5G1I3XIOKpxwGtFoWvzEThm7OACG5FTQFmMKDouf8CACIeexiw2VQu6PxK1yWGY7jkUSThpGffSECAcsC7UPcpor6NnkKlc+lbcykI5QNYY5L8gTxw9++bFitpBej04fkzGx2jxUWXJ0Afpo8vGEiSgDETEtCiNbuW5+KoI6oD3YpliB2aAf3yZXC374DcJSthv/4mbhdJjcY56mI4xl4CzdHDML3+strl1EDJz0YY/oyE85TfpiiprRH9h0YDUIKIJNXt++rrWAZyc5qG5AuXUdFSlef/BVqgjyIBgMiS4BxsXUuicMG/hES1UVSEiAf/DsvkqyBmnYFt8o3IW/4zPGnd1K6MmqCip5+DbDTC9MYr0Ozdo3Y51fKvSwzLPzvhO+W3qRo5Pg4du5rqtbGIJsQ29ImI0qBLzwhcMMCiWg3+3WID3LlsmaxHx661O+KDiGomNJ5OIwoC0uaNiJx2J6RDB+GNj0fhS2/AOXa82mVRE+ZNToH1occQ8eS/EPnAvcj7bikgBmd4K506Gn4BjJ3L8KPTibj+jlb1ug3/brEh0rkURQHXTGmhag2N0bkURQF3PJAcsNsnaur4l5DoPISiQpgf/T9EX3IRpEMH4RgzDjk/b2SwpKBgu/NuuHqkQ7tpAwwfzlG7nCqF81mQDJdUGb1GWYtlkPQqVxI6tL5wGSLdXiKqiH8JiaqhW74UMUMyYJr9LmSLBQWvvYWCj+ZBTkhQuzQihSSh8JWZkDUamJ/+N8TjmWpXVKlw3i229CiS8HtsVHe9E/tgZPIoROqC/8y+YBFjiIVOo0O8kX9jiUIVwyVRJcTTpxB51y2wXH81NMczYb9iInJ+/Q2O624Iyw1JKLR5uveA7Z77IVqLEPHwA4Asq11SBU2hc8ndYqkss9aM1pFJapcRUmIMsbi28/Voa2mndilEVEf8S0hUlsMB4xuvIqZ/bxgWfglPy1bI//RzFM76EHIznmVEwcs6/WG427aD/sel0H/9pdrlVBBqB8rXhn9aLP+kEhFRE8e/hEQldMuXImZoBiKefgKC04Hiu+9D7q+b4LxorNqlEZ2f0Yiil98AAET880GIp0+pXFB5nWO7oHt8DySYwu9JGoFrLomIiAAwXBJBs3cPoiZPguX6qyEdOgjnyFHI/XkDrDP+AzkiUu3yiGrMNWgIim+/C2JuLiL+MS2opsfGGGLRK/GCsAxgkVrl90SELkLlSoiIiNQVGvtjEwWAmHkMpv89D8P8uRC8XrjbtoP16efgHD2G6yopZFkfmwHdyhXQr/gRhrkfw37D39QuKeylxXdD++gOMEgGtUshIiJSVfg9hUx0HkJ2NsxPPIrYAb1h/OwTyBYLimY8g9w1G5UpsAyWFMpMJhTOfBeyKML8+D8hHjmsdkVNAoMlERERwyU1IUJuDkwvPovYvj1gemcmoJFgfeAh5GzeDtvd9wJ6nkVG4cF9QV8U3/8ARGsRIu+bCni9apdERERETQCnxVLYE86cgemdmTB8MBuitQiyVgvbrXfA+o+HuAMsha3i6Y9At/xH6NavhfHdt2CbOk3tkoiIiCjMMVxS2BKPZ8L45mswfvoRBLsdsl4P25TbUDzt7/AmJatdHlFg6XQofHMWYkYPhfnZJ+EcMgyebt3VroqIiIjCGKfFUtiRftuEyDtuRmyf7jDNfhcQNSieei9yftuBohdeZrCkJsPTpSusj82A4HAg6s4pgNWqdklEREQUxti5pPDgckG/6FsYZ70F7e+/AQC8sbEovvlW2G6/G3JcnMoFEqnDdufd0K5ZBf1PyxHxr4dR9MpMtUsiIiKiMMVwSSFNPHYUhrkfwzDvU2hOngAAuDt3ge2Ou2G/8mrAaFS5QiKViSIKX38H0oiBMM79GK6hw+GYMEntqoiIiCgMMVxS6HE6oVu2BMZPP4R29UoIsgxZEOAYfTFsd9wN19DhPE6EqAw5IQGFb70Hy1WXI2L6/XD1ugDeNm3VLouIiIjCDMMlhQZZhvTHb9AvXADD119BPJsFAPC0aAn7dTfAPvlGeJNTVC6SKHi5hg5H8f3TYX71f4i66xbkff8joNWqXRYRERGFEYZLCmqafXuh/+oLGBYugObwIQCALIpwXDwW9htuhvPC0YDEYUxUE8X/90/ofl0D7W+bYH7637A+9azaJREREVEY4X/lFFxkGZrdf0K/9Afofvge2h3b/B9yXdAX9iuvguOyiTyfkqgutFoUvPs+YkYNgemdmXD16QvnZRPUroqIiIjCBMMlqc/thnbTBuiW/AD90h+gOXK49EMdO8Fx5dWwT7yKa8SIGoA3KRkFb8+G5bpJiLz/HuR17gpPp1S1yyIiIqIwwHBJqhCPHYXu51XQ/rwKujWrIObm+j/mSu8F59hL4BgzHp7OXbg5D1EDc40cjeIHH4H5v88h6pYbkLt0FRARoXZZREREFOIYLqlRCGfPKt3JNaugXb0S0sED/o/JWi2cw0fCMWY8nGPGwduylYqVEjUNxdMfVjbJ+mk5Iv8xDYWzPuATOURERFQvYR8u77vvPqxfvx6DBw/GK6+8onY5TYMsQ3NgP7SbNkDatAHajeshHdhf7iruLl3hHDoCruEj4Ow/CDCbVSqWqIkSRRS+9R6k0cNg+HYh3H36wnbnPWpXRURERCEs7MPl9ddfjyuuuALff/+92qWEJ1mGePgQpB3boN2+DdL2rZC2b4WYk1Puau72HeDq1x+uQUPgGjYC3sTmKhVMRD5yTCwK3v8E0eNHwzzjX3B3SVPOiSUiIiKqg7APlxkZGdi4caPaZYQ+WYZ48gQ0e/dA2vsXNHv3QrNvD6RdOyEW5Je/qlYL1wV9lTCZMQCuvhmQExJUKpyIquPukY7Cl15H1LQ7EXXbTchbuhKedh3ULouIiIhCUFCHy82bN2POnDnYuXMnsrKy8M4772DEiBHlrjN37lzMmTMHWVlZ6NKlC/71r3+hR48eKlUcwmQZgrUI4vHj0Bw7AvHIEWiOHYXm2FGIR49Ac2A/xKLCip9mNMLVpx/cPXrC3SMdru494UntDOh0KjwIIqoLx9XXofiv3TDNfBVRN16LvCU/QY6yqF0WERERhZigDpfFxcVITU3FxIkTce+991b4+OLFi/Hcc8/hySefRM+ePfHRRx/htttuw9KlSxEbG9vg9YhicG12IYqC0lH0uAGnC4LbBbhcgNsDweWEUFQEobAAQmFhyUvJ23l5ELPOQDxzGkLWGYhZWRCzzkAoLq7yvmRzBNzpveHplAp3p07wdEqFp2MqvO3aAxpN+boC/cCpUfjGe7CNewoM2+MzIO3ZDd3yZYi68xYUfragws92Q+L4okDjGKNA4viiQArl8RXU4XLYsGEYNmxYlR//4IMPcM011+DKK68EADz55JNYvXo1vv76a9x6660NWoskiYiLC6Kt+p1O4IILgJ07EdMQtxcbC6SkAK1aAW3bKi9t2vhfhObNIQkCJAD6hrg/ChkxMdxsqcn48gtgwADoflqOuBeeAl56KeB3yfFFgcYxRoHE8UWBFIrjK6jDZXWcTid27dqFqVOn+i8TRREDBw7E1q1bG/z+3G4vCgpsDX67debxICq+GbTJyfBoJECjgazVApIWkCTIOi3kiEjlJdL3EqW8joqCt1kivAnNIDdrBm98wvmnseZYG+dxUdAQRQExMWbk5lrh9cpql0ONQoT48XxYLhoO8eWXUdSmAxyTbwzMPXF8UYBxjFEgcXxRIAXr+IqKMkKrrX5WU8iGy9zcXHg8HsTHx5e7PC4uDkeOHPG/f8cdd2D79u2w2WwYOnQoZs2ahc6dO9fpPoPpmwtBRMGX3yIuLgJ52UX1ry2YHhsFFa9XDq6xTwHlTW6DgjmfwHLV5TBPvx/upBS4Bg0J3P1xfFGAcYxRIHF8USCF4vgK2XBZFVmWIZQ5CHzWrFkqVkNEFHpcg4ag6IWXETn9PkT9bTLyFv0IT+cuapdFREREQS5k916JiYmBRqPB2bNny12ek5NToZtJRES1Y7/xZlj/8SDEgnxYrrsS4qmTapdEREREQS5kw6VOp0NaWhrWrVvnv8zr9WL9+vVIT09XrzAiojBR/MjjsF91LTTHM2G5bhKEwgK1SyIiIqIgFtTTYq1WK44ePep/PzMzE7t370Z8fDwSEhIwZcoUPPTQQ0hLS0OPHj3w0UcfwW63Y8KECSpWTUQUJgQBha/MhHjqFHS/rEbULTci/7MvAa1W7cqIiIgoCAV1uNy5cyduuukm//v/+c9/AADTpk3Dvffei3HjxiEnJwevv/46srKy0KVLF8yePTsgZ1wSETVJOh0KPvgE0ZeOge7nVYh84F4Uvv42IITe2VtEREQUWIIsy6G1BZFKXC4P8vKK1S6jHFEUEBcXgeyG2C2W6BwcX1SWeOI4osdeCM3JEyi+7wFY/zWjfrfH8UUBxjFGgcTxRYEUrOMrOtp03qNIQnbNJRERNR5vy1bIn78QXks0TK+/DOMbr6pdEhEREQUZhksiIqoRT5euyP9sAWSTCRFPPwHDJx+qXRIREREFEYZLIiKqMXffDOR/+BlkrRYRD94P/bcL1S6JiIiIggTDJRER1Ypr+EgUvPM+IAiIvPt2aFcuV7skIiIiCgIMl0REVGvOSy9H0ctvQHC5YJlyA6QN69UuiYiIiFTGcElERHVin3wjimY8A8Fmg+W6KyFt3qh2SURERKQihksiIqoz2933wvrwYxCtRbBceyWkP35TuyQiIiJSCcMlERHVS/H0h2F98BGIhQWwXD0B0rYtapdEREREKmC4JCKieiv+v3/C+o8HIRbkw3LV5ZB2bFO7JCIiImpkDJdERFR/goDiRx5H8b3/gJiXB8uky6DZuUPtqoiIiKgRMVwSEVHDEARY/zUDxVPvhZibi+grL+EUWSIioiaE4ZKIiBqOIMA64z/+gGmZeCmkTdxFloiIqClguCQiooZVEjCt0x+GWFiA6KuvgPbXNWpXRURERAHGcElERA1PEFD88GMo+tcMCMVWWCZPgnblcrWrIiIiogBiuCQiooCx3fcAip55AYLdDsuN10K3eJHaJREREVGAMFwSEVFA2W6fisKXXgfcbkTdeiP0X32hdklEREQUAAyXREQUcPYbb0bhzHcBAFFTb4Nh1tsqV0REREQNjeGSiIgaheOqa1HwwVzIBgPMjz4EPPYYIMtql0VEREQNhOGSiIgajXPMOOR/8Q28URbg2Wdh/vs0wO1WuywiIiJqAAyXRETUqFz9B6Jg0TKgRQsY5n6MqFtuBGw2tcsiIiKiemK4JCKiRufpmgasWwdP+w7QL/0BlmsmQMjPU7ssIiIiqgeGSyIiUkebNsj/4Ue4evWGbsM6RF9yEcRjR9WuioiIiOqI4ZKIiFQjxycg76tFcFw4GtKevxAzZiSkLb+rXRYRERHVAcMlERGpKyICBZ98DtvNt0LMOoPoK8ZBt3iR2lURERFRLTFcEhGR+iQJRS+8jKInnwXsdkRNuR7Gd2byqBIiIqIQwnBJRETBQRBgmzoNBXM+AQwGRDzxKCL++SCPKiEiIgoRDJdERBRUnJdchryvf4A3PgHG99+D5fqruJMsERFRCGC4JCKioOPu3Qe5S1fC3bkLdKt+QvSYkdDs36d2WURERFQNhksiIgpK3uQU5C1eAceYcZAO7Ef0xSOgW7FM7bKIiIioCgyXREQUtOSISBR8+BmsD/wfxMICRF1/NYxvvMqNfoiIiIIQwyUREQU3UUTxI4+j4L0PlY1+nn4CkXffDthsaldGREREZTBcEhFRSHBcPhF5i36Ep1VrGL76AtGXj4F4PFPtsoiIiKgEwyUREYUMd/eeyP3xZ7gyBkC7dQtiRg2B9udVapdFREREYLgkIqIQIyckIO+r71F8250Qs7NhufoKmF75L+D1ql0aERFRk8ZwSUREoUeng/XZ/6LgnTmA0Qjzc08j6sZrIOTlql0ZERFRk8VwSUREIcsx8SrkLl0Fd4eO0C9fhphRwyDt2KZ2WURERE0SwyUREYU0T+cuyPtxNRyXXgHN0cOIHjcKhrkf87gSIiKiRsZwSUREIU+OiETB7I9Q9PRzgMeDyH9MQ+TU2yAUFqhdGhERUZPBcElEROFBEGC78x7kfb1YOa5k4QLEXDgE0tY/1K6MiIioSWC4JCKisOLO6I/clb/CMfYSaA4fQvT40TC+PZO7yRIREQUYwyUREYUdOSYWBR/OReFz/wNEERH/fhRRN1wN4exZtUsjIiIKWwyXREQUngQB9lvvQO6Slcpusit+RMyIgdD+ukbtyoiIiMISwyUREYU1T7fuyF2+BrbrboDm9ClYrrwU5v/MAJxOtUsjIiIKKwyXREQU/sxmFL32Fgreng3ZHAHT6y8jesxIaHb/qXZlREREYYPhkoiImgzHlVcjd/U6OAcMgnbndsRcNIyb/RARETUQhksiImpSvMkpyF+4CEX//g8gy4j496OwTLoMYuYxtUsjIiIKaQyXRETU9Gg0sN1zH3KXrYa7azfofl2DmGEDoF8wH5BltasjIiIKSQyXRETUZHnSuiF32SoUT/s7hKJCRN1zB6JuvQlCVpbapREREYUchksiImra9HpYn3gK+d8shicpGfpF3yJ2SF/oFy5gF5OIiKgWGC6JiIgAuAYMQu7P62G7+VaIOTmIuutWRP1tMsTTp9QujYiIKCQwXBIREZWQIyJR9OIryPv6B3hS2kC/9AfEDO4H/fy57GISERGdB8MlERHROVyDhiBn9XoU3zEVQkE+ou6biqjrr4J44rjapREREQUthksiIqLKmM2w/ucF5H23DO72HaBf8SNihmTA8MFsnotJRERUCYZLIiKiargz+iN35VoU33M/BGsRIh9+ANHjR0Oza6fapREREQUVhksiIqLzMRph/ffTyPtxNVzpvaD9fTNiRg2B+aknAKtV7eqIiIiCAsMlERFRDbl7pCNvyUoUPvsiZIMRppmvInZYf+h++lHt0oiIiFTHcElERFQbGg3st92F3LWb4Rh3KTRHj8By3SRE3n4zjy0hIqImjeGSiIioDrwtW6Hgw7nI/2gePC1bwfDtQsQM7APDnHcBt1vt8oiIiBodwyUREVE9OMeOR+6vm1B85z3Khj///D/EjBoK7YZ1apdGRETUqBguiYiI6kmOiIT16eeQu+IXuDIGQPpzJ6IvG4PIu26FeOqk2uURERE1CoZLIiKiBuLp1h153y1Fwduz4UlsDsPCBYgZcAGMM18DnE61yyMiIgoohksiIqKGJAhwXHk1ctf/rpyN6bAj4qnHETN8ALSrflK7OiIiooBhuCQiIgoAOSIS1n8/jdyfN8A5bASk/fsQfc0ERN10HTQH9qldHhERUYNjuCQiIgogT8dOyP/iG+R/MBeepGTol/6AmCEZMD/+CITcHLXLIyIiajAMl0RERIEmCHCOvxQ5v25G0b9mQDYYYXr3LcRmpMM46y3A5VK7QiIionpjuCQiImosRiNs9z2AnA1bYLtxCoSCAkT86xHEDM2AbuliQJbVrpCIiKjOGC6JiIgamdysGYpeeg25K9cq6zEP7IflpmthufJSSDu2qV0eERFRnTBcEhERqcTTNU1ZjznvS7g7pUL36xrEXDgEkXfdAvHQQbXLIyIiqhWGSyIiIjUJApwXXoTc1etR+MLL8CY0g2Hhl4gd1AcRj0yHcPq02hUSERHVCMMlERFRMJAk2KfchuyNW2H95+OQjSYY338PcRnpMD3/NITCArUrJCIiqhbDJRERUTCJiEDxP/4POZu2ofiuaYDbBfPL/0Vs3x4wvjMTsNvVrpCIiKhSDJdERERBSI6Lg/WpZ5GzYQvs114PIS8PEU88itiBF0A/71PA7Va7RCIionIYLomIiIKYt3USCl9/G7mr18MxZjw0mccQdf/diBnUB/oF8wGPR+0SiYiIADBcEhERhQRP5y4o+Hgecn9Yrhxfcuggou65AzFD+kG/cAFDJhERqY7hkoiIKIS4+2Ygf8G3yPtuKZyDh0Lavw9Rd92KmOEDoPvua8DrVbtEIiJqohguiYiIQpCr/0DkL1yEvK9/gLP/QEh7/oLltr8hZsQg6H74HpBltUskIqImhuGSiIgohLkGDUH+t0uQ9+V3cPXNgLR7FyxTrkfMiEHQf/MVp8sSEVGjYbgkIiIKdYIA19DhyFv0I/LmL4Trgj6Q/tyJqDumIGZwX2V3WZdL7SqJiCjMMVwSERGFC0GAa+Qo5C3+CXlffqesyTywH1H3343YjHQY5swCbDa1qyQiojDFcElERBRuSjqZ+QsXIfeH5XCMvhiazGOI/OeDiOvTHcaZr0EoKlS7SiIiCjMMl0RERGHM3TcDBXMXIPenX2C/bAKEs1mIeOpxxPZOg+m/z0HIyVa7RCIiChMMl0RERE2Au3tPFM7+CLm/bob9mskQCgth/u9ziOudhoh/Pgjx8CG1SyQiohDHcElERNSEeDp2QuEb7yBn41bYbrkdkGUY58xCbP9eiLztb5D++E3tEomIKEQxXBIRETVB3uQUFD3/ErK3/Anrw49Bjo2F4buvETNmJCyXj4XuxyWA16t2mUREFEIYLomIiJowOTYOxdMfRvbvu1D4v9fgbt8BuvVrYbnhGsQMzYBh7seA3a52mUREFAIYLomIiAgwGmG/aQpy1/6G/I/mwdWvP6S9exD5j2mIu6AbTC8+C+H0abWrJCKiIMZwSURERKVEEc6x45G36EflGJPxl0HIPgvz/55HXO+uiJx6G6Qtv6tdJRERBSGGSyIiIqqUu28GCj74FDkbt6L47vsgm8wwfPUFYi4egeixF0K/cAHgdKpdJhERBQmGSyIiIqqWN6UNrDP+g+ytu1H44itwd0qF9vfNiLrrVsRe0A2ml1+EkJWldplERKSysA+X9913H/r27Yt//OMfapdCREQU2sxm2G++Fbm/bELegm/huHgsxDOnYX7+P4jr1QWR996lTJmVZbUrJSIiFYR9uLz++uvxwgsvqF0GERFR+BAEuIaNQMEnnyNnwxYU33kPZL0Bhs8/U6bMjh4GwycfAkVFaldKRESNKOzDZUZGBsxms9plEBERhSVv23awPv0ccrbtRuHzL8HdJQ3a7VsROf0+xPXsjIhHpkOz+0+1yyQiokagarjcvHkz7rrrLgwePBipqalYtWpVhevMnTsXI0eORPfu3XH11Vdj+/btKlRKRERE1ZEjImG/5Xbkrl6H3EXLYb/qWghOB4zvv4fYYf0RfclF0H/5Oc/MJCIKY5Kad15cXIzU1FRMnDgR9957b4WPL168GM899xyefPJJ9OzZEx999BFuu+02LF26FLGxsQCAyy+/vNLbXrhwITQaTYPWK4pCg95effnqCba6KDxwfFEgcXyFMwHe/v1h7d8fxc88D/38z2D4cA60mzZAu2kDvP96GI7rboD9pinwtu8QsCo4xiiQOL4okEJ5fAmyHByr7lNTU/HOO+9gxIgR/suuuuoq9OjRA48//jgAwOv1YtiwYbj55ptx66231vi2N27ciPnz5+OVV16pc32yLEMQQu8bTEREpDqvF1i1CnjnHeCbbwC3W7l86FDglluASZMALmEhIgp5qnYuq+N0OrFr1y5MnTrVf5koihg4cCC2bt3a6PW43V4UFNga/X6rI4oCYmLMyM21wusNiucIKIxwfFEgcXw1QekZwDsZEGY8B8Nnn0A/92No1qwB1qyBd9q9cE64Eo4bboK7dx+gAZ7M5RijQOL4okAK1vEVFWWEVlv9zNCgDZe5ubnweDyIj48vd3lcXByOHDlS49u54447sH37dthsNgwdOhSzZs1C586d61RTMH1zy/J65aCtjUIfxxcFEsdXE9QsEda/PwjrfQ9Au+5XGOZ+DP0P38HwyYcwfPIh3KmdYZ98E+yTroGckFDvu+MYo0Di+KJACsXxFbThsiq1nZ46a9asAFZDREREdSKKcA0eCtfgoSjKz4N+4ZcwfPYJtNu2IOLfj8L89BNwXjwO9sk3wDliFCCF3L8sRERNTtAeRRITEwONRoOzZ8+WuzwnJ6dCN5OIiIhCl2yJhn3Kbchb/jNyVq5F8e13QY6MhP6H72C5/mrE9UiF+fFHIG3fCgTHVhFERFSJoA2XOp0OaWlpWLdunf8yr9eL9evXIz09Xb3CiIiIKGA83brD+syLyN6+FwXvfQjHhaMh5ObA9O5biBk1FDFDM2B8/WWIxzPVLpWIiM6hari0Wq3YvXs3du/eDQDIzMzE7t27kZWVBQCYMmUK5s+fj6+//hoHDhzAjBkzYLfbMWHCBDXLJiIiokDT6+G4fCIK5n2F7G17UPT0c3D1SIe05y9E/GcGYnunwTLxEujnz4VQVKh2tUREBJWPItm4cSNuuummCpdPmzbNf+7lp59+ijlz5iArKwtdunTB448/jh49ejR2qXC5PMjLK270+62OKAqIi4tAdnZRyC32peDH8UWBxPFFdaX5azcMC+ZD/9UX0Jw4DgCQjUY4xo6H46pr4Rw6AtBqOcYooDi+KJCCdXxFR5vOu1ts0JxzGewYLqmp4fiiQOL4onrzeqFd+wsMC+ZD9/23EK1FysVxcXBccgWcEyfBMn40svNsHGPU4Pg7jAIpWMdXTcJl0K65JCIiIqqSKMI1ZBgKX38b2bv2o+CdOXCMughCfj6MH82B5fKxQFISTI89DOm3TdwIiIioEbBzWUPsXFJTw/FFgcTxRYEi5GRDv3gR9N98Bd2vawCvFwDgSU6B4/KJcFwxEe5uPYBaHGtGdC7+DqNACtbxxWmxDYjhkpoaji8KJI4vCjRRFBDntqLoo7nQL/wS2o3r/R9zt+8AxxVXwnHZBHg6d2HQpFrj7zAKpGAdXwyXDYjhkpoaji8KJI4vCrRzx5h4PBP6b7+G/psvod26xX89d/sOcI6/DI5LLoO7Zy8GTaoR/g6jQArW8cVw2YAYLqmp4fiiQOL4okCrboyJhw7C8O1C6H74HtptpUHT0zoJjvGXwjH+crj79gM01f8TRU0Xf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVdIyJR49A/8P30P/wHaTNGyGU/FvkaZYI59hL4LjkMrgGDga02sYqnUIAf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVZYyJp09B98P30P/wPbTrfoHg8QAAvDExcF48Do4x4+EcNgIwmwNZOoUA/g6jQArW8cVw2YAYLqmp4fiiQOL4okCr7xgTsrOhX7YYukXfQvfzKgguFwBA1uvhHDoczovGwnnxWHibt2jo0ikE8HcYBVKwji+GywbEcElNDccXBRLHFwVaQ44xoSAfuhU/QvfjEuhWLIdYkO//mCu9F5wXjYXj4nHwdOvODYGaCP4Oo0AK1vFVk3ApNVItRERERCFJjrLAMfEqOCZeBbhc0G5YB92yxdAvXQLt1i3Qbt0C84vPwtOqNZwXjYHj4nFwDRoC6PVql05E1KjYuawhdi6pqeH4okDi+KJAa5QxJsvQ7PlLCZrLlkD6fbN/QyCvOQKuocPhHDkKzgtHw9s6KTA1kCr4O4wCKVjHFzuXRERERIEiCPB07gJb5y6w3T8dwpkz0K9YBt2yJdD9vBL6JYugX7IIAOBO7QznyNFwXjgarowB7GoSUVhiuCQiIiJqAHKzZrBPvhH2yTcCdrsyffan5dCtWgFpz1+Q9vwF09tvQDaZ4Rwy1B82vckpapdORNQgGC6JiIiIGprBANfwkXANHwkrnoN49Ah0K1dAt3I5dGt+hn7ZEuiXLQEAuDt0hPPC0XCOGAVX/4GAyaRy8UREdcNwSURERBRg3uQU2G++FfabbwWcTmg3rle6miuXQ/prN6T9+2B69y3IOh1c/for6zWHDoe7Zy9AU/0aJyKiYMENfWqIG/pQU8PxRYHE8UWBFkpjTDyeqXQ1V6+E9tefIebm+j/mtUTDNWgInEOHwzV8BDxt2/O4kyAQSuOLQk+wji9u6ENEREQU5LytWsN+482w33gz4PFA2rkd2p9XQ7dmNbQb10G/+HvoF38PAPC0TlKC5tDhcA4eBrlZM3WLJyIqg53LGmLnkpoaji8KJI4vCrSwGWM2G7SbNypBc80qSNu2+o87AQB3l65wDRgE56AhcPUfBDkhQcVim46wGV8UlIJ1fLFzSURERBTKjEa4SjqVwAwIuTnQ/voLdD+vgm7NKki7/4S0+08Y338PgHLkiWvAILgGDoZzwGDIiYmqlk9ETQvDJREREVGIkGNi4bz0cjgvvRwAIJ44Du26X/0vviNPjB/OAaDsROsaOASugUrg9DZvoWb5RBTmGC6JiIiIQpS3ZSs4Jl0Dx6RrAADiqZNK0Fz7K7Trf4W0fx+k/ftg/Ph9AIC7XXu4MgbA3a8/XP36w9OhIzcIIqIGw3BJREREFCa8zVvAMfEqOCZeBQAQT5+Cdv3a0rC5dw+kgweAeZ8q14+Lg6tvBlx9lbDpTu8F6PVqPgQiCmEMl0RERERhypvYHI4rroTjiisBAEJWFrSbN0K7aQO0mzZA2rYF+qWLoV+6GAAg63Rw9+wFV8YA5bzNvhmQ4+LUfAhEFEIYLomIiIiaCDkhAc5xl8A57hLlArsd0tYt0G5arwTOzRv9Lz7uDh3h7tMPrt594L6gD9yduwJarUqPgIiCGcMlERERUVNlMMDdfwDc/QfABgBeLzT79ylBc+N6SJs2+NdtGubPBQDIRiPc3Xv6w6ardx94Wydx7SYRMVwSERERUQlRhKdTKjydUmG/4W8ASqbS/vEbpD82Q/v775C2/uGfVuvjTWgGV+8L4O6thE13r96QoyxqPQoiUgnDJRERERFVSU5IgPPisXBePFa5wOuF5sB+SL9vLgmdv0P6cyf0y5ZAv2yJ//PcHTvB3SNdeemZDnf3HpAjo1R6FETUGBguiYiIiKjmRBGejp3g6dgJjmuvVy6z2SDt2A7tH5shbfld6XDu2wtp317gqy/8n+pu174kaJYJnNExKj0QImpoDJdEREREVD9GI9z9MuDul+G/SMjOhrR9K6Qd26DdtlV5++AB5SiUr7/yX8+T0gaunr3g7tGzpNPZE3Isd6glCkUMl0RERETU4OS4OLhGXAjXiAuVzYIACHm5kLZvK3nZorw+eACaI4eB7772f66nRUu4u6bBk9Yd7q5pcHftBk+HjoDEf12Jghl/QomIiIioUcjRMXANHQ7X0OH+y4SCfEg7titBc9sWSDu3Q7N/H/QnTwA/LS/9XL0e7k6d4Unr5g+c7rTuPIeTKIgwXBIRERGRauQoC1yDhsA1aEjphTYbpL1/QfPnLki7dkAqea3dsQ3aHdvKfb4nsXlJ4OwGd2pneFI7w90xFTCbG/mREBHDJREREREFF6MR7p694O7ZCw7fZbIM8dRJSH/uhGbXLkh/KqFTs28vNCtXQLdyRbmb8CSnwN0pFZ5OneHu3MV/xIocEdnoD4eoqWC4JCIiIqLgJwjwtmgJZ4uWwIUXlV5ut0PatweaXTsh7d0Dzd6/IO35C+LRI9AfPQKs+LHczXhaJ8HTKVWZYpvaWel2dujIXWuJGgDDJRERERGFLoMB7u494e7es7TLCQDFxZD274Vmz19K6NyzG5o9f0Fz+BA0mccqdDq9cXHwtO8Id/sO8LTvAE/7jsrrNm0Bg6FRHxJRqGK4JCIiIqLwYzKVHG2SXj502mzQHNgPac/uki7nHmgO7ofm4AFoN22AdtOGcjcjCwK8SSnwtG9fEjw7Qu7YEeibDhijAQiN95iIghzDJRERERE1HUYjPN26w9Ote/nLPR6ImceU4HlgHzQH9pe+HD0MzdHD0K36qdynxBoM8KS08b9427RV3m7TDp6kZMBobMQHRqQ+hksiIiIiIo0G3pQ28Ka0gWvkqPIfKy6G5tBBaA7uh3RgPzQH9sFw5BDkPXsg7VHWeFbG07wFPG3awpvSBh5f8CwJn3J8PCCw60nhheGSiIiIiKg6JhM8ad3gSesGJwBRFGCIi0BudhHk3FxojhyGeOQwNIcPK2s6jxyG5sghpRN66iSwYV2Fm5RNZnhat4a3dRI8rZLgTUqCp1VreJOSldctWgIS/1Wn0MIRS0RERERUR7IlGu4e6UCP9IofdLkgHs8sEziV8CmWvC3t3QPs3VP57YoivC1aloTPMqEzKQmelq3hbdECsiWa3U8KKgyXRERERESBoNXC26YtvG3awlXJh4WCfIiZmdAcPwbx2DFojmdCzDwKTWYmxMxjEE8ch+Z4JrRV3LxsNMLTvAW8zVvA26IFvM1bwtuiBTwtWsKb6LusBaDTBfJREvkxXBIRERERqUCOssDT1QJP17TKr+ByQTx5AprMY8oU28xjSic08xjEUychnjoJ6dBB4NDBau/HGx8Pb2ILeErCpjchAd6EZpATmsHrf0lgJ5TqjeGSiIiIiCgYabXwJqfAm5xS9XVsNoinTkJz6iTEkycgnjpV8vokNCWvxVMnIZ09C2nXjmrvTtbp4I1P8IfN0gCaUBpCY+Mgx8XBGxML6PUN/IAp1DFcEhERERGFKqMR3rbt4G3brurryDKEnBwldJ45BfHMGYhZWRCzzpS8lHn71EloThyv0V3LJjO8sbHwxsRCjo2FNzYWcozyvjcuzv+2XOY6ckQku6NhjOGSiIiIiCicCQLkuDh44uLgQffqr+vxQMjOLhM8z0A8e9b/tpCTDTEnR3mdmwNNyXTdmpJFEXJUFOQoC7xRFv/bssUCr+9t3/uRUZAtZd6OjIJsNivnhzKgBiWGSyIiIiIiUmg0kJs1g6dZM3hqcn2PB0JeHsScbKU7mpsDITcHYnZ26dtlwqhQUAChoACao0egqWOJsiBANkdANpkgm82QzRGA2ex/WzabSz5W8rbvcoMBst4AGPSQ9QbIBmPp23o9YDRC1ivvQ68HRLGOFTZdDJdERERERFQ3Go2/K1orbjeEwgII+fkQS14rwTMfYkF+yfvKZaLvbWsRBKu15KVICbRnTgfmcQHlgqas1wOSBFmrVV5LWkArARrfZVpA0vjflks+Bq1WuUwQAVFQOq6iCLnkNQRB+VjZ93Va4K7bgdgWAXtsgcJwSUREREREjUuSIMeUrNGsz+04nRVCp1BcXPp2mddwOCDYbBAcduVthx2CzV76vt0OwW4HHHYIJe/DboeQnwfR6WyoR14zbgfwxDONe58NgOGSiIiIiIhCk04HWaeE1ICSZcDtBlwuCB7lNVxu/9uC2wW4PWXedkNw+67ngiB7ldvwegEZJa/l0teyF0LJ+4JGg8iJl6J+qVsdDJdERERERETVEQRAq1WmuZa5WK7yE+pOFAUgJgLILgrArQcWV6kSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9CbIsy2oXEQq8Xhkej1ftMirQajVwuTxql0FhiuOLAonjiwKNY4wCieOLAikYx5dGI0IUhWqvw3BJRERERERE9cZpsURERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdBbu7cuRg5ciS6d++Oq6++Gtu3b6/2+kuWLMGYMWPQvXt3XHrppVizZk0jVUqhqDbja9++fbj33nsxcuRIpKam4tNPP23ESikU1WZ8ffHFF5g8eTL69u2Lfv364ZZbbsGOHTsasVoKRbUZYytWrMCVV16JPn36ID09HZdffjm++eabxiuWQk5t/wfzmTVrFlJTU/HCCy8EuEIKZbUZXwsXLkRqamq5l+7duzditTXHcBnEFi9ejOeeew733HMPvv76a6SmpuK2225DTk5OpdffsmULpk+fjkmTJuGbb77BqFGjcPfdd+PAgQONXDmFgtqOL5vNhtatW2P69OlISEho5Gop1NR2fG3cuBHjx4/Hxx9/jHnz5iExMRG33HILzpw508iVU6io7RizWCy488478fnnn+O7777DpEmT8Oijj2LdunWNXDmFgtqOL59du3Zh/vz5SE1NbaRKKRTVZXxFR0fj119/9b+sWrWqESuuBZmC1qRJk+SnnnrK/77H45EHDx4sz549u9Lr33///fKdd95Z7rKrrrpKfvLJJwNaJ4Wm2o6vskaMGCF/8skngSyPQlx9xpcsy7Lb7ZZ79eolf/fdd4EqkUJcfceYLMvyFVdcIb/xxhuBKI9CXF3GV3FxsTx27Fh5zZo18g033CA///zzjVEqhaDajq+vvvpK7tevX2OVVy/sXAYpp9OJXbt2YdCgQf7LRFHEwIEDsXXr1ko/Z+vWreWuDwCDBw+u8vrUdNVlfBHVVEOML5vNBrfbDYvFEqAqKZTVd4zJsoz169fj0KFDuOCCCwJYKYWiuo6v559/HhkZGRgyZEgjVEmhqq7jq6ioCMOHD8ewYcNw9913Y//+/Y1Qbe1JahdAlcvNzYXH40F8fHy5y+Pi4nDkyJFKP+fs2bOIi4urcP2srKyA1UmhqS7ji6imGmJ8vfTSS2jRogX69+8fiBIpxNV1jBUWFmLo0KFwOp0QRRFPPvkkBgwYEOhyKcTUZXytWrUKGzZs4DpeOq+6jK927drhueeeQ6dOnVBQUID3338f1113HRYtWoTExMTGKLvGGC5DjCzLEAShyo9X9rHqrk9U1vnGF1F91HR8vffee1i8eDE++eQT6HS6RqiMwsX5xpjZbMY333yD4uJirF+/Hs8++yySk5PRp0+fRqySQlVV4ysnJwePP/443nzzTRiNRhUqo3BQ3e+v9PR0pKen+9/v1asXxo0bhwULFmDatGmNVGHNMFwGqZiYGGg0Gpw9e7bc5Tk5ORWe6fCJj4+vcP3s7Owqr09NV13GF1FN1Wd8zZkzB++++y4++OADdOrUKZBlUgir6xgTRREpKSkAgC5duuDAgQOYNWsWwyWVU9vxtW/fPmRlZeG6667zX+bxeLB582Z8+umn3PmaymmI/8G0Wi26dOkSlLPNuOYySOl0OqSlpZXbxc7r9WL9+vXlnrkoKz09HWvXri132bp166q8PjVddRlfRDVV1/E1e/ZsvPXWW5g9e3bQbrFOwaGhfofJsgyn0xmACimU1XZ8de/eHd9//z2++eYb/0u3bt0wYcIELFy4sBErp1DQEL+/PB4P9u3bF5S797NzGcSmTJmChx56CGlpaejRowc++ugj2O12TJgwAQDw0EMPITExEdOnTwcA3HTTTbjhhhvw/vvvY9iwYVi8eDF27tyJZ555Rs2HQUGqtuPL6XT6j7VxOp04ffo0du/eDYvFgpYtW6r2OCg41XZ8vffee3jttdfw0ksvoVWrVv614iaTCWazWbXHQcGrtmNs1qxZ6Nq1K1JSUuB0OvHLL7/g22+/xVNPPaXmw6AgVZvxZTKZKsy0MJlMiI6ORseOHdUon4JcbX9/zZw5E+np6UhJSUFBQQHmzJmDEydOYNKkSWo+jEoxXAaxcePGIScnB6+//jqysrLQpUsXzJ49G7GxsQCAkydPQhRLm8+9e/fGSy+9hFdffRUvv/wy2rRpgzfffBPt27dX6yFQEKvt+Dpz5gyuuOIK//uzZs3CrFmzMGHCBDz//PONXT4FudqOr3nz5sHlcuG+++4rdzvTpk3Dvffe26i1U2io7Riz2+146qmncOrUKRgMBrRr1w7//e9/MW7cOLUeAgWx2o4votqo7fgqKCjA448/jqysLFgsFnTr1g2ff/452rVrp9ZDqJIgy7KsdhFEREREREQU2viUCxEREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdWbpHYBREREweaNN97AzJkzK1w+YMAAfPjhh41fEBERUQhguCQiIqpEZGQkZs+eXeEyIiIiqhzDJRERUSU0Gg3S09PPez273Q6DwRD4goiIiIIc11wSERHVUGZmJlJTU/Hdd9/hoYceQp8+fXDXXXcBAPLy8vDEE09g4MCB6N69O6699lps27at3OcXFBRg+vTpSE9Px+DBg/H222/jhRdewMiRI/3XeeONN5CRkVHhvlNTU/Hpp5+Wu2zBggUYP348unXrhhEjRuC9994r9/FHHnkEEydOxNq1a3HppZciPT0d1113Hfbt21fueh6PB++++y4uvvhidOvWDUOHDsUjjzwCAJg7dy569eoFq9Va7nM2bNiA1NRU/PXXX7X8KhIRUbhi55KIiKgKbre73PuyLAMAXnzxRYwePRqvvfYaRFGE0+nElClTUFBQgIceegixsbGYN28ebr75Zvz4449ISEgAAPzzn//Epk2b8OijjyI+Ph7vv/8+jh49Ckmq/Z/j2bNn45VXXsFtt92Gfv36YdeuXXjttddgNBpxww03+K938uRJvPjii5g6dSr0ej1efPFF/P3vf8eiRYsgCAIA4IknnsC3336LW2+9Ff369UN+fj6WLl0KALj00kvxwgsvYNmyZZg4caL/dr/++mukpaWhc+fOta6diIjCE8MlERFRJfLy8pCWllbusv/85z8AgJ49e+Lf//63//IFCxZg3759WLRoEdq0aQMAGDhwIMaMGYP3338fDz/8MPbt24cVK1bglVdewbhx4wAAGRkZGDFiBCIiImpVW1FREd58801MnToV06ZNAwAMGjQINpsNb7/9Nq677jpoNBoAQH5+PubNm+evS5Zl3HPPPTh48CDat2+PAwcO4Msvv8Rjjz2Gm266yX8fvhqjoqJw0UUXYeHChf5wabVa8eOPP2L69Om1qpuIiMIbwyUREVElIiMj8cEHH5S7TKfTAQCGDx9e7vL169cjLS0NrVu3Ltft7Nu3L3bu3AkA2LFjBwCUmwJrNpsxcOBAbN++vVa1bdmyBcXFxRgzZky5++vfvz/eeustnDp1Cq1atQIAtGrVyh8sAaB9+/YAgNOnT6N9+/bYuHEjAJTrSp5r0qRJuPnmm3Hs2DEkJSVhyZIlcLvduOSSS2pVNxERhTeGSyIiokpoNBp079693GWZmZkAgLi4uHKX5+bmYuvWrRU6nQCQnJwMADh79izMZnOFzX/Ova2ayM3NBQCMHz++0o+fPHnSHy7P3eFWq9UCABwOBwClQ2symartnmZkZCApKQkLFy7E/fffj4ULF+LCCy9EdHR0rWsnIqLwxXBJRERUS761ij4WiwXdunXDjBkzKlzX1+2Mj4+H1WqtsLtsdnZ2uevr9Xq4XK5yl+Xn51e4PwB49913Kw2nbdu2rfFjiY6ORnFxMYqKiqoMmIIg4Morr8QXX3yByy+/HL///nuFzYOIiIgYLomIiOppwIABWLt2LVq2bFllJ9LXBV25cqV/PaPVasW6devKhbrExERYrVacPn0aiYmJAIC1a9eWu61evXrBYDDgzJkzFabo1lb//v0BAN988025jYDONWHCBLz++ut49NFHkZiYiEGDBtXrfomIKPwwXBIREdXTFVdcgfnz5+PGG2/ELbfcgqSkJOTl5WH79u1ISEjAzTffjI4dO2LkyJGYMWMGioqKkJCQgDlz5lSYJjtkyBAYDAY8+uijmDJlCjIzMzF//vxy14mKisK0adPwzDPP4Pjx4+jbty+8Xi8OHz6MjRs34s0336xx7e3atcM111yD559/HtnZ2ejbty8KCgqwbNkyvPLKK/7rJSYmYsiQIVi9ejXuvPNO/4ZBREREPgyXRERE9aTX6/Hxxx/jtddewxtvvIHs7GzExsaiR48e5Tbwef755zFjxgw8++yzMJlMmDx5Mrp3745ly5b5rxMbG4vXX38dL774Iu655x6kpaXhpZde8nc7fW6//XY0a9YMH330ET744APo9Xq0adOmwvVq4t///jdatmyJBQsW4L333kNsbGylnclRo0Zh9erV1W7+Q0RETZcg+w7tIiIiokbnO0Ny5cqVapdyXvfffz+ysrLw2WefqV0KEREFIXYuiYiIqFp79uzBzp07sXz5crz88stql0NEREGK4ZKIiIiqNXXqVOTm5mLy5MkYM2aM2uUQEVGQ4rRYIiIiIiIiqjdR7QKIiIiIiIgo9DFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvf0/E8krr8igmf4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "norms = [\"leahy\", \"frac\", \"abs\", \"none\"]\n", + "\n", + "for norm in norms:\n", + " ps = Powerspectrum(lc_ar4, norm=norm)\n", + " mtp = Multitaper(lc_ar4, norm=norm, adaptive=False) # adaptive=False does not calculate adaptive weights to reduce bias, helps see the normalization similarities better\n", + " \n", + " fig = plt.figure(figsize=(12, 8), dpi=90)\n", + " plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + " plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + " plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + " plt.legend()\n", + " plt.yscale(\"log\")\n", + " plt.ylabel(\"Power\")\n", + " plt.xlabel(\"Frequency\")\n", + " plt.title(\"AR(4) Spectrum, \" + (norm + \" normalized\").title())" + ] + }, + { + "cell_type": "markdown", + "id": "ddda379e", + "metadata": {}, + "source": [ + "### Other attributes with the S(f) estimates\n", + "If you look closely at the attributes of the `multitaper` object, there is a `multitaper_norm_power` attribute. This attributes contains the PSD normalized according to \n", + "\n", + "\n", + "Another attribute containing the PSD is the `unnorm_power`, and as the name suggests, contains the unnormalized PSD." + ] + }, + { + "cell_type": "markdown", + "id": "c6e7f041", + "metadata": {}, + "source": [ + "## A summary of the jackknife variance estimate\n", + "Assume that we have a sample of $K$ independent observations, $\\{x_i\\}, i = 1,...K$, drawn from some distribution characterized by a parameter $\\theta$, which is to be estimated. Here, $\\theta$ is usually a spectrum or coherence at a particular frequency or a simple parameter such as the frequency of a periodic component. Denote an estimate of $\\theta$ made using all $K$ observations by $\\hat{\\theta_{all}}$. Next, subdivide the data into $K$ groups of size $K − 1$ by deleting each entry in turn from the whole set, and let the estimate of $\\theta$ with the $i$th observation deleted be\n", + "
\n", + " $\\large{\\theta_{\\setminus i} = \\hat{\\theta}\\{x_1,..x_{i-1},x_{i+1},...x_K\\}}$\n", + "
\n", + "\n", + "for $i = 1, 2,..., K$, where the subscript $\\setminus$ is the set-theoretic\n", + "sense of without. Using $\\bullet$ in the statistical sense of averaged\n", + "over, define the average of the $K$ delete-one estimates as\n", + "
\n", + " $\\large{\\theta_{\\setminus \\bullet} = \\frac {1}{K} \\sum_{i=1}^{K} \\hat{ \\theta_{\\setminus i}}}$\n", + "
\n", + "\n", + "and the jackknife variance of $\\hat{\\theta_{all}}$ as\n", + "
\n", + " $\\large{\\widehat{Var}\\{{\\hat{\\theta_{all}}}\\} = \\frac {K - 1}{K} \\sum_{i=1}^{K} (\\hat{ \\theta_{\\setminus i}}} - \\hat{ \\theta_{\\setminus \\bullet}})^2$\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "9e982a2c", + "metadata": {}, + "source": [ + "This is just a summary of the jackknife variance estimate, kindly explore the references for further in-depth details." + ] + }, + { + "cell_type": "markdown", + "id": "1738b1ea", + "metadata": {}, + "source": [ + "### A look at `jk_var_deg_freedom`\n", + "This attribute differs depending on whether the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a $chi^2$ model of how the estimated PSD is distributed about the true log-PSD (this is either 2$*$floor(2$*$NW), or calculated from adaptive weights) \n", + "\n", + "We'll do a combination of the valid values for the `adaptive` and `jk_var_deg_freedom` and have a look at the results." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a03504ed", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAmACAYAAADckwLtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOz9eZhdVZnwf3/XHs5c8zxkIiEJSYAwQwgyCIKAI2pLi60tTq2A2tq2traK3WqjtkOD/uzHqbV9nre1pVsFBRVlUmZISICQQOaq1DyeeU/r/WNXVVKpMUkllVTdn+vKlZy91957nTr7VM597rXupbTWGiGEEEIIIYQQ854x2x0QQgghhBBCCHF8kABRCCGEEEIIIQQgAaIQQgghhBBCiCESIAohhBBCCCGEACRAFEIIIYQQQggxRAJEIYQQQgghhBCABIhCCCGEEEIIIYZIgCiEEEIIIYQQApAAUQghTjhaay677DJWrFjB7t27p3XMtm3bWLFiBY8//viM96enp4fbb7+dlpaWUdsff/xxVqxYwbZt22b8mtO1YsWKcf889dRT0zr+E5/4BG984xuPci+P7bUvu+wybrvttgn3t7S0sGLFCu6///4jvtbb3/52brnlllHbfvazn3HZZZexatUq3v72tx/xNQ52Ir/mQghxPLBmuwNCCCEOzYYNG2htbQXg17/+NR/4wAdmtT89PT3ccccdnHvuuTQ3N49sX716NT/96U9ZuHDhLPYO3vWud3HllVeO2rZs2bJZ6s388tnPfhbL2v9Ro6uri8997nO87W1v46qrrqKsrOyoXFdecyGEOHwSIAohxAnm17/+NYlEgpNPPvm4CBAnkkqlWLt27Wx3g6ampuOiH/PRwUHZ7t278X2f6667jpUrVx6168prLoQQh0+GmAohxAnE933uvfdeLrvsMq677jpefvllXnzxxTHt/u///b9cfPHFrF27lve///10dXWNafODH/yA6667jrPOOot169bx/ve/f8yQ1eEhgj/96U+57LLLOO2003jve99LR0cHEA5HfM1rXgPAX/3VX40M54OxQ0xvuOEGPvShD43px2233cYll1yC1hqAYrHIl7/8ZS6++GLWrFnDa1/7Wh588MEj+KmN7xe/+AXXX3895557Lueccw5vf/vb2bx586THDA4O8qlPfYr169dz6qmncskll/DpT396VJtt27bx3ve+lzPOOIMzzjiDW265Zdyf/6Hq7Ozkk5/8JK985Ss57bTTuPLKK/n617+O4zij2hUKBb785S9z6aWXsmbNGi677DL+9V//dcLzdnR0cOWVV/LOd76TfD4/bpvHH3+cM844g6997WsA/M///A8rVqxg69at/PVf/zVr167lqquu4ne/+92o4w4cYnr77bfztre9DYDXve51rFixgv/5n/8B5DUXQojjiWQQhRDiBPLYY4/R3d3N1VdfzVlnncU//dM/8etf/3pUNua+++7j85//PG9961u5/PLLefLJJ/mHf/iHMedqb2/nhhtuoLGxkUwmw3/9139x/fXX89vf/paSkpKRdhs2bGDnzp184hOfoFgs8tWvfpUPfOAD3HnnndTW1vLVr36Vj33sY3zmM59h9erVE/b96quv5rbbbiOXy5FIJIBwPuW9997Lq1/9apRSANxyyy1s2rSJm2++mYULF3LPPffwN3/zN9x5552ccsopQBhs3HHHHWzdunXKn1kQBHieN/JYKYVpmrS0tPD617+ehQsX4jgOd999NzfccAN33303CxYsGPdcX/rSl9iwYQP/8A//QHV1NW1tbaPmtu3evZvrr7+eNWvW8JWvfAXf9/nmN7/J+9//fn7+85+PPMfD0dfXR3l5OZ/85CcpLS1l165d3H777fT19fH5z39+5Of5gQ98gA0bNvCBD3yANWvW0NHRMeH8u5aWFt75zndy0kkncfvttxONRse0efjhh7npppt4z3vew0033TRq38c+9jHe8pa3cOONN/KTn/yEv/3bv+W+++6jvr5+zHne/OY3U1lZyec//3m++tWvsmDBgpHhx/KaCyHEcUQLIYQ4YXziE5/QZ599ti4Wi1prrd/znvfoSy+9VAdBMNLmuuuu0zfeeOOo4z71qU/p5cuX68cee2zc83qep/P5vF67dq3+3//935HtN9xwg161apVuaWkZ2fbUU0/p5cuX6wcffFBrrfXWrVvHPfdjjz2mly9frrdu3aq11rqnp0efcsop+u677x5p88wzz+jly5frTZs2aa21fuSRR/Ty5cv1448/Pupcf/mXf6lvvvnmkce33367PuWUUyb/YWmtly9fPubPW9/61jHtfN/XruvqK6+8Ut9+++0j2//+7/9ev+ENbxh5fM011+gf//jHE17vYx/7mH7Vq1418vporfXOnTv1ypUr9f333z9lfw908LUP5rqu/tWvfqXXrFkzcr2HHnpIL1++XN93330THnfppZfqf/mXf9G7du3SF198sb7ppptG9Xfv3r16+fLl+o9//KO+77779Jo1a/T3vve9Uee488479fLly/V///d/j2zr7e3Vp5xyiv5//+//jWy74YYbRr1uB98TWstrLoQQxxvJIAohxAnCcRzuu+8+Lr/8ciKRCADXXHMNH//4x9m4cSNnnHEGvu+zZcuWMUPgrrjiCv77v/971LaNGzfyzW9+kxdeeIH+/v6R7Tt37hzVbtWqVTQ1NY08Puuss6iqqmLTpk284hWvmHb/KysrOf/88/nNb37DNddcA8BvfvMbFi5cyKmnngrAI488Qk1NDWeeeeaoDNAFF1wwMhwR4KabbhqTzZrIjTfeyKtf/eqRx8lkEoDt27fzta99jQ0bNtDT0zOyf9euXROea+XKlXz/+9/HMAzWrVvHkiVLRu1/9NFHef3rX49hGCP9b25upqmpieeee45LLrlkWn0ej9aaH/3oR/zsZz+jpaWFYrE4sq+trY1Fixbx2GOPUV5ezitf+cpJz7Vz507e9ra3cd5553HbbbeNKiQz7He/+x133XUXn/zkJ0eGhh5s/fr1I/+uqKigsrKS9vb2Q3pe8poLIcTxRQJEIYQ4QTz00EMMDg5y8cUXMzg4CMB5551HJBLh17/+NWeccQa9vb14nkdVVdWoYw9+vG/fPt71rndx2mmnceutt1JbW4tt27zvfe8bM6ft4GOHtx3OHKurr76aW2+9lUwmQyKR4N577x21pEBfXx9dXV3jDlU1TfOQrwfQ2Ng4EoAOy2QyvOtd76KqqopPfOITNDY2Eo1G+fSnPz3m+R/oM5/5DP/2b//Gt7/9bT7/+c+zaNEiPvShD40EvH19fXz3u9/lu9/97phj29raDqv/w370ox9x22238d73vpdzzjmH0tJSNm/ezOc///mRYLG/v5+ampopz7Vhwwb6+/t505veNG5wCPDHP/6R8vJyLr/88gnPc+BQZIBIJDLpz2888poLIcTxRQJEIYQ4Qdx9990A4xZ6ueeee/jkJz9JZWUllmWNyo4AYx4//PDDFAoFvv3tb4/MB/Q8j4GBgTHnPvjY4W3TCUQOdsUVV/C5z32O++67j6amJjo7O0dlesrKyqirq+Nb3/rWIZ/7UGzcuJH29nZ+8IMfsHTp0pHt6XR60uNKS0v59Kc/zac//WlefPFFvve97/Gxj32MFStWsGzZMsrKyrj88st585vfPObYioqKI+rzvffey1VXXcVHPvKRkW3bt28f1aa8vHxagfsb3/hGMpkMH/zgB/mP//gPTjvttDFtPv3pT/PDH/6Qd73rXfzkJz854v5PRF5zIYQ4vkiAKIQQJ4BsNssDDzzAtddey1ve8pZR+7Zs2cKXvvQlHn/8cdatW8fKlSv5wx/+wPXXXz/S5ve///2oYwqFAoZhjMoe3XPPPaOG+A174YUX2LdvH42NjQA8/fTT9PT0jAQVtm0DjBryOJGysjLWr1/PPffcQ2NjI0uXLh1VYOeCCy7ghz/8IYlEYtSH+JlWKBQARobqAjzzzDO0trayZs2aaZ1j5cqVfPzjH+euu+5ix44dLFu2jAsuuICXXnqJNWvWzHhxkkKhMKq/AHfdddeoxxdccAHf+973uP/++7n00ksnPd+tt95KLpfjPe95Dz/+8Y9Hqs8OS6VSfP/73+ftb387N954Iz/+8Y9JpVIz82QO6rO85kIIcfyQAFEIIU4Af/jDH8jn8/zVX/0Vp59++qh9Z555Jv/f//f/cffdd48sV3HTTTfx2c9+liuuuIInn3yShx9+eNQx559/Pr7v88lPfpI3velNvPTSS/zgBz+gtLR0zLUrKyt53/vex8033zxSxXT16tUj8w8bGxuJxWL84he/oKSkBMuyxgzvO9CrX/1qPvWpT5FKpbjhhhtG7bvwwgtZv34973rXu3jPe97DsmXLyGQyvPjiixSLRT760Y8CcMcdd/Dtb3+bF1544bB+nmvXriWRSPCP//iPvPvd76a9vZ077riDurq6SY+7/vrrueKKKzj55JNRSvGzn/2MRCIxEizfdNNNvPnNb+a9730v1113HRUVFXR0dPDII4/whje8gfPOOw+Ayy67jHPPPZd/+Zd/mfR6BwYc69at4z//8z857bTTWLhwIXfdddeYZUmGf34f/ehH+eAHP8iqVavo6uriqaeeGql0OswwDG677TZuueWWkSqkixcvHtWmoqKCH/zgB7ztbW/jfe97H9/73veIx+OT9vlQzZfXXAghThSyDqIQQpwAfv3rX7N48eIxwSGEGbxXv/rV/P73v8dxHK644gr+8R//kfvvv58PfvCDvPDCC3zhC18YdcyKFSv40pe+xLPPPsv73vc+7r77br75zW+OmVMGcMYZZ/CXf/mXfPGLX+RTn/oUJ5988qjhgNFolH/6p3/i+eef5+1vfztvetObJn0ur3zlKzFNk76+Pq6++upR+5RS3HHHHVx33XX86Ec/4t3vfjef/exn2bBhA2edddZIO601vu9P62c3nurqar75zW/S3d3NBz7wAX70ox9x6623smjRokmPW7t2Lf/7v//LLbfcwoc//OGR+WfDyzosWbKEn/70p8TjcT7zmc/wnve8h9tvv51IJDLq3Pl8nsrKykmvVSgURrKzAB/84Ae59tpr+eY3v8lHP/pRbNseU4xIKcW3vvUt/uIv/oIf/ehHvOc97+Eb3/jGhEMdLcviG9/4BsuXL+ev//qvx50zV1tby3/8x3/Q2trKTTfddMhzDKcyX15zIYQ4USith1YmFkIIIQ7y9re/nYqKCv7t3/5ttrsyZ+zdu5dXvepV/O53v5tw7T0I5wkuXrx4ZHF6IYQQ4liQIaZCCCHEMbRhwwYuv/zyCYPDzZs38/DDD/P888/z7ne/+xj3TgghxHwnAaIQQghxDL32ta/lta997YT7h6uUfvzjHx8zBFcIIYQ42mSIqRBCCCGEEEIIQIrUCCGEEEIIIYQYIgGiEEIIIYQQQghAAkQhhBBCCCGEEEOkSM0EgkDj+8Fsd2MUyzLwvOOrT2JukHtLHA1yX4mjQe4rcTTIfSWOhuPtvjJNA8NQU7aTAHECvh/Q35+b7W6MMAxFVVWKwcE8QSB1hcTMkXtLHA1yX4mjQe4rcTTIfSWOhuPxviovT2AY5pTtZIipEEIIIYQQQghAAkQhhBBCCCGEEEMkQBRCCCGEEEIIAUiAKIQQQgghhBBiiBSpEUIIIYQQs0prTRD46Fmo5WEYCsdx8DzvuCkmIk58s3FfKQWGYaLU1JVKJyMBohBCCCGEmBVaazKZAbLZQWD2grPuboMgOH6WIxBzw2zcV4ZhUlXVgGlOXa10IhIgCiGEEEKIWTEcHJaWVhKJRIEjy3wcLstSeJ5kD8XMOvb3laa/v5vBwV4qKmoO+ywSIAohhBBCiGNOaz0SHCYSqVnti2UZgGQQxcyajfuqpKScvr5OtA5Q6vDKzUiRGiGEEEIIccwFgQ/oocyhEGImmGaY/zuSoa0SIAohhBBCiGNuf0Ga2RlWKsTcFL6fjqTgkwSIQgghhBBCCCEACRCFEEIIIYSYNc888xTr159NLpebtN2b3vQa7rzzp8eoV8fWL35xJ3//9x8Zeex5Hv/8z5/lqqsuZf36s3nppa3ceuun+a//+sms9O+mm97LHXd8Y1auPRskQBRCCCGEEGKavvCFz7F+/dl8/etfHrPv1ls/zfr1Zx9RMPGb39zFNde8csz27373x1xzzetGHq9ffzZ//vPDh32dYyGXy3HHHd/gzW9+LZddto7XvvZKPvKRD7Jp08aRNsVikR/+8P/wzne+e2TbAw/8gYcffoBvfOPb/PKX97JkyVLe+c538+Mf/5BsNjPpNd/0ptewfv3ZY/784hc/n7K/EwXrX/ziV3jXu95zKE/9sBwvr6lUMRVCCCGEEOIQ1NbW8fvf/5YPfvDDRCIRALLZDA8//AC1tXVH5ZoVFRVH5bwzwXVdbNses/0rX/ki27a9yEc/+gkWLVpMf38fTz/9JIODgyNtHnjgD5SVlXPKKatHtrW07KWpaQErV54ysm3RosUsWLCQ3//+Xl7/+jdN2p/3ve+DXH31a0ZtS6UOv1JuaWnZYR97IpIAUQghhBBCiEOwatVqdu7cwZ/+9BCXXXY5APfd9zuWL1+JYYweoLd+/dncdtvXufDCi4Awq/aqV72Cf/u373DmmWePavvMM0/xxS/eOnIcwF//9Xu48cb38aY3vYbrr7+B6677C970pjD4GR6WWV/fwM9/fhd79+7hjju+zgsvPE+hUOCkk5bygQ98iNNPXzuqPx/72Cd58ME/8uyzG6mtreVDH/ooF1ywfqTNjh0vc8cd32TTpg0kk0kuuGA9N930kZEg66ab3suyZcsBze9+dy+rV6/hK1/55pif06OP/om//du/5/zz1wHQ0NA4KhAE+MMffseFF75i5PEXvvA57rnn7pG+Dj83gHXr1vOHP/x+ygAxkUhQVVU97r729ja+9rUvs2nTRjzPpampmQ9/+O+or2/gllveD8CrXhX259WvvpZPfepz3HTTe1m5chU33fRhIMxSvu51b2T79pf5058epKKiio9//JMsWLCYf/mXz/Pcc5tYsmQpt976BRobmwGmfG0mek0BHnroAX7wg//Dnj27qKmp5bWvfQPXX//2MffaTJEhpkIIIYQQQhyiq69+Db/5za9GHv/mN3eNyVodqlNPPZ1bbvkopaVl/PKX9/LLX97L9de/fUy77373xwD84z9+nl/+8t6Rx7lcjnXrLuKb3/w23//+f7JmzWl8/OMfor+/f9Tx3/ved7jiiqv4j//4v6xffzGf+tTH6ehoByCdTnPLLX/DqlWr+cEPfsJtt32DvXv38IUvfG7UOX79618Rjyf4znd+wM03/+24z6eiopJHHvnTpPMrN23aOCpT+KEPfYy3vvUGli1bPuq5AaxcuYrnn38Oz/Mm/iFO4Wtfuw3XdfjWt77Lj370X9x44/uJRKLU1tbxhS+Ew4Z/+tNf8Mtf3suHPvSxCc/zX//1E8466xx++MP/x9q1Z3Drrf/Il7/8z7zlLX/J97//EyzL4itf+dJI+6lem4le02ef3cgXv/g53vrWt/Gf//kzPvzhv+PnP/8pP//50ZuPKhlEIYQQQghx3Hjuz4rOPcfuerULYe3Fh37cVVddw/e//+90d3eRzWbZseNlLrvscu6999eH3RfbtkmlUijFhBkw2D/cNJUqGdVuxYqVrFixcuTxzTd/hAcf/COPP/4IV1559cj2yy+/ciSYvemmD/PEE4/yi1/cyfve90HuvPOnnHLKKt797vePtP/4xz/F2972Jvr6eqmoqATCIZ/ve98HJ30+f/d3/8Ctt36aq6++jOXLV7J27ZlcfvmrWL487GM6nSaTyYx6DqlUing8jmmaY34GVVXVOE6Rvr5eampqJ7zuHXd8g+98545R2771re+yfPlKOjraufjiy1i6dBkATU3NI21KSkqBMLBNJBKTPrcLL3wFr3nN6wF4xztu5J577ub889exbl2YiX3LW67n1ls/TRAEGIYx5Wsz0Wv6gx/8H/7qr97FVVddM9Lfd7zjXfz85z/lLW+5ftI+Hi4JEIUQQgghhDhEVVXVnH32edxzz69Jpwe5+OLLSCSSs9qnXC7H97//7zz66J/o7e3B932KxeJIdnDYqlVrRj1evfpUdu3aCcDLL7/Ek08+zhVXXDTm/K2tLSMB4oFZv4mceebZ/Pznd7F587Ns2rSRxx9/lP/6r5/w8Y9/imuvfR3FYhFgZB7nVKLRKACFQmHSdjfc8M5RATEwMjf0jW98C1/72m08+eTjnHPOeVx22RUsXrxkWtc/0HCACVBZGf5Mliw56YBtVXieRyaTprS0bNqvzcG2b9/G5s3P8sMffndkm+8HaB0ccp+nSwJEIYQQQghx3FhzoYYLj/VV1WEddc01r+E737mDXC7HZz/7z+OfWSn0AauWH8nwyKl861vf4Omnn+QDH/gQTU3NRKNRPvaxD+G67kF9Gr+fAPl8nosuumTc7GBNTc3Iv2Ox+LT6ZNs2Z555NmeeeTbvfOe7ue22L/CDH/wfrr32dZSVlaGUIp1OT+tcw8VtyssnL9hTXl5Oc/OCcfe97nVv5LzzLuDPf36Yxx9/lB//+Af8/d9/mle/+tpp9WGYZR0YRoU/O9Mcuy0Iwtd+uq/NwXK5PO95z99w0UWHkeY+TDIHUQghhBBCiMNw4YWvIJ1OE4lEOeOMs8ZtU15eQW9vz8jjl1/eNuk5LcvG96fODlmWRRD4o7Zt3vws11zzWl7xiktYunQZpaVldHV1jDn2+eefG/X4hReeY9GixQAsX76CnTt30NDQSHPzglF/otHYlP2ayqJFi0YygLZts3jxEnbt2jGtY3ftCvtVUlJyRH2or2/guuvewpe//HWuvfZ1I0VxhiuxBsHMZ+em89qM95ouX76CvXt3j3ktJgqAZ4JkEIUQQgghhDgMlmXx05/+L0qpkQzcwc444yzuvPNnrFq1hnw+x3e/++1Jz9nQ0EA2m+GZZ57ipJOWEYvFiMXGBmb19Y089dQTrFq1BtuOUFpaSnPzQh544I+cf/6FaB3wne98C8Mwxxz7hz/8jhUrVrJ69ancffcv2LNnN7fd9g0A3vjGN/OrX/0Pn//8p7n++rdTUlLKnj27eOihB/n7v//UIf18br75fVx55atZvnwlqVQJW7du4f/9v/9k/fr9VUvPPfd8Nm3ayHXX/cWU59u0aSPnnHPelO1yuRw9Pd2jtsXjCRKJBN/85r9ywQUX0ty8gP7+PjZvfpZTT10LhIGjUopHHnmYc845n2g0OuVcxOmazmsz3mv6jnfcyCc/+VFqa+u4+OLLAHjppa20te3jHe+4cUb6djAJEIUQQgghhDhMyeTk6+vddNOH+cIXbuX97/9rGhubuPnmj/CRj9w0YftTTz2d173ujfzjP/49AwMDI8tcjHfeO+74Or/4xZ3U1NTy85/fxc03f4QvfjG8VkVFJe94x40MDPSPOfbGG9/Lvff+hq985YvU1NTyT/90G/X19QDU1NTy7W9/n+9853Y+/OEP4LouDQ1NhzXE8ZxzzuOuu37Jnj3/huMUqamp45prXjsqsLnmmtfx3ve+g1wuO+kcTtd1eeihB/jqV/9tyuv++79/i3//92+N2va2t72Dv/mbm/F9j69+9Ut0d3eRSpWwbt16PvCBm0ee+403vo9vfesb9Pb2ctVV1/CpT33ukJ/3eKbz2oz3ml5wwYV86Uv/yn/8x/f48Y9/SCRis3jxSbzxjW+ekX6NR+kDB0WLEa7r098/cUneY80wFFVVKXp6MiNjmYWYCXJviaNB7itxNMh9Nbd4nkd3dyvV1U0Hzec69izLwPOOXtGP48nB6zIeDz71qb9jzZrTuf76GyZs86tf/S/3338fX//6tyZsc7yZjftqsvdVeXkC2x6bUT6YzEEUQgghhBBCzJoPfvDD4w6jPZBhGHzkI393jHo0v8kQUyGEEEIIIcSsaWxs4g1veNOkba699nXHqDdCAkQhhBBCCCHmiT/96anZ7oI4zskQUyGEEEIIIYQQgASIQgghhBBCCCGGSIAohBBCCCGOuf3LBkpFWiFmTvh+mmBZzmmROYhCCCGEEOKYMwwTwzDp7++mpKQc07SAI/hUe0QUnieBqphpx/q+0mQyAyhlYBhTL2cxEQkQhRBCCCHEMaeUoqqqgcHBXvr6Ome1L4ZhEATzYx1EcezMxn2llEFlZS3qCFKIEiAKIYQQQohZYZomFRU1aB0QBAF6FpJ4hqGoqEjQ15cjCCSLKGbGbNxXSoWZ+SMJDkECRCGEEEIIMcuUMjDN2SmNYRiKSCSCZTkSIIoZcyLfV1KkRgghhBBCCCEEIAGiEEIIIYQQQoghMsRUCDHvFHyPgu9jDo3RT1gWppLvy4QQQgghJEAUQswbXhDw5+597M2ncfwAQyk0sDRVxitqmma7e0IIIYQQs06+MhdCzBtb031sTfeRNG3qYwmqIzEq7Agvp/vpKORmu3tCCCGEELNOAkQhxLzQ7xR5pq+TykiUuGlhKIVlGMRMC4ViU383wWzUVxdCCCGEOI5IgCiEmBe2Z/sp+j4pKzJmX3U0Rms+Q9pzZqFnQgghhBDHDwkQhRAzIuM6PN3bQcH3ZrsrYziBz8vpAcrsscEhgG0YeDog67nHuGdCCCGEEMcXKVIjhDhirfkMj3W301HMURaJsixVPttdGmVfPsug69AcT07YRqHISIAohBBCiHlOAkQhxGHRWtNZzLN1sJeXMwPYhkGJZfNyuv+4CxB3ZAaIGAZqaFmL8ShgwJEhpkIIIYSY3yRAFEIcsp5igWf7O9mVTQPhHL6IYeIGAW2FHH1OgYpIbJZ7GUq7DntzGcrt6KTtooZJj1M4Rr0SQgghhDg+yRxEIcQh0VrzUFcLO7KD1ETjNMaTRAwTGJrLFwRsGewjf5zMRdxXyOIEPlHTnLRd1DTpdwr4UslUCCGEEPOYBIhCiEOS9VwGXIfaaBzbGPsrpDYa57mBHu5t2z3rBWu01mxP9xOfIjiEMINYCHxyMg9RCCGEEPOYBIhCiEMy4Dl4OhjJGh4saposiCfpKebpKuaPce9G63eLdBRylE0xvBT2Zz+lkqkQQggh5jMJEIUQh2TQnbqQi1IKQyna8tlj0KOJDbgOAXrcTOf4pJKpEEIIIeY3CRCFEIekq5jHVlP/6khZNnty6ZE5fS+n+9mVHTza3RulGPiH1F4pSEuAKIQQQoh5TKqYCiGmTWtNZyFH3Jz6V0fSsmkv5Oh1ClRHYmwe6GHALXJBdQMFz6MpkaI6Gj/iPnUX8ygUVdGxVVOLnke4gMX02Eox4BaPuE9CCCGEECcqCRCFENOW9T2ynktFZOo5faZSaK3pyGeJKIN+t4ilFA91tuJqn+VOBa+sXTDp2oRTcQOfh7paSbsu51TWsaqsckx/zUM4f8QwJUAUQgghxLwmQ0yFENOScR22DPZSDCYuUHOwlGWzNd1PezGHHwTUROMsSKRYEC9hTzZNRyF3RH3amR2ku5gnahg8099J0R89pDTruViHFCAaZD0PXwdH1C8hhBBCiBOVBIhCiGl5pLuNDX2dVE0jezis1I7Q6xR4Kd2PZewP1GzDQKF4bqAHLzi8YKzge2zq76bEilBqRyj6PmlvdAGdrO9iTWO+5P5+mTiBT947PtZwFEIIIYQ41mSIqRBiSlpr+twilZEoScue9nGGUkQMg+5intRBx9VEY+zIDpDotTivqh5zikAu57m4OhhZsmJzfw+9ToEF8RRKKTSajOeOzGvUWpP3PKwDK5g6BrSnUANR0CqcnmgG6CX9EPewDQNfa3K+R8qOTPt5CiGEEELMFRIgCiGmVAx8nMCn1Dr0oKkyEqO9kCNhjg4QLcOgPpbg+YFe6mNJTkqVTXqel9L9bE33cUltMxnPZfNAN7XR+MgcRgUMOEVI7u+zqwPiaujXnK9QTzaicuM8h4KFPrN96EEYIAohhBBCzEcSIAohppT3PdwgOIT1BPezDYMFidS4+yKGScQw2JEdmDJAHHCLtBVy3Nu+GzfwiZsWsQOqqUYMkx4nP/K4GPh4Wo8MbVU7y1G5CLoiH2YMrQACUM/XonoS6N4YVBZGnq8QQgghxHwkcxCFEFMq+j6acMjoTCu3o7TmsqRdZ9J2/a5DXTROiWXTEEtSGRm9rEXMMOkuFgiG1l10ggA/CMKhq1kLdpWjzQC9uhOq8lBWhIoiemkvAGp7BQAGasq+CCGEEELMVSdMgPjkk0/y/ve/n/Xr17NixQruv//+UfuLxSK33nor5513HmeccQY333wzPT09s9RbIeaWfDCNjJqnwjl+hyhqhoVh2grZCdv4OiDjuUQMg7hpjRuoxkyLnO+RG1rovuj7I0sgqn2lKK3Qi/shPrrSKfVZdNSD/hj4CtswGJAAUQghhBDz1AkTIOZyOVasWMFnPvOZcfd/8Ytf5P777+cb3/gG//mf/0lnZye33HLLMe6lEHNTwfcBPXGD3hjqTwtRjzaHgeIhipsmz/R1sqGvEyfwx+zPex5O4GNPsrzGcIGZ9HCAGPgoVNjtthQaDY3psQcqoMQJ22ZtIobJoASIQgghhJinTpg5iBdffDEXX3zxuPvS6TR33nkn//qv/8oFF1wAhAHj1VdfzebNmzn11FOPZVeFmHMyrovB6MCvsrOPc/70HDgGj5ZdQ8YKgzfdmYTGzCGdvyoSY9BzeLK3g/JIlCXJ0fMRc76Hp6eeA6m1pqeYpyGeHAo0NfTGUUULXZmD2NjgE4CkA90JyEaIJA0yvosT+NNe71EIIYQQYq44YQLEyTz33HO4rsuFF144sm3p0qU0NjaycePGww4QDWPm51sdruG+HE99EnPDdO6ttO8QMc2RiqFmJuD8+zaTdMJhoeu83/C7s66FlnLUvhJomni46HiUUpRHYuQDj+5igaUl5aP25wMfQ6mR608kadnszA1yakU1hcBDKYVqKwl3NmYmPj4VZh1VNkLEMPFch6L2iRlz4lfkrJDfWeJokPtKHA1yX4mj4US+r+bEp5/u7m5isRip1OhKiVVVVXR3dx/WOS3LoKpq/MqLs6miIjnbXRBz1GT3lt+rKDVjJKNRvH0xmu7fR9LJsi++BDtSoGagjWWpLWyPnwN9cWJGAiMxQbZuElW2pk85VFYmRwVzLeSIDdokU9FJj48kbDpyWUhakDcpjSZQnQmwAhIn+Shr/OP9GigCViFKsjROX9olXhqlaoLqq2L65HeWOBrkvhJHg9xX4mg4Ee+rOREgAuNmBrSeZM7UFDwvYHAwP3XDY8QwFBUVSfr6sgTB4T8vIQ421b3l64DuwSwxwyTrFuH5KhZmtgGwdX0Dygq45J42mjft4KUVp6B2lpN/uAJWd0N58ZD6ooKANifHro4+Su0IOzIDtOWzGErh5D2yTH2+TN7hsT0t7M4OYu8rA99AN6bJFQqTXNhBUYM3YOJlihQLLu3dg0ROvN/pxw35nSWOBrmvxNEg95U4Go7H+6q0NI5tTz19Zk4EiNXV1eTzeTKZzKgsYm9vL9XV1Yd93uPlxTxQEOjjsl/ixDfRvZXzPBzfJ2XaaA9iAx7VThvZZJzuxlIA0qVJqrr6SZ3XQqYygupNoJ+pQ1+8+5BKYVnKwPUDugt5UqZNSzbNi+k+qiIxbGVM60ufhGGyqb+biDIp6ygHQDekYbJjLQ1RD/I22tdorcl6nrzXZoD8zhJHg9xX4miQ+0ocDSfifXXCVDGdzJo1a7Btm0ceeWRk286dO9m3bx9r166dvY4JMQfkfS9ccF4pyESoL7QA0LagBpQCpdi9tBGAptZ96DPb0dU5lGdCX/yQr2coRXcxj681+/JZHN+n33WITFGgZliFHaUmEqOOFKo/jo65UDFJ9nBY0kFpBTkbUOS8aSztIYQQQggxx5wwAWI2m2XLli1s2bIFgJaWFrZs2UJXVxclJSVcd911fOlLX+Kxxx7jueee45Of/CRnn322VDAV4ggVfB+NDodxD0aoLewBoKNxf3Z+34JaAJr2doICXRMWqVHdibBBAGTsSVfKGJa0LHZmB+kp5sl4LgsSJQQ6IGFNb8CDUoqYaQ0FeoTB4fAIdK1hom/xkmGhGjIRLKXIeLLUhRBCCCHmnxNmiOlzzz3HX/3VX408/ud//mcAbrrpJm6++Wb+4R/+AcMwuOWWW3Ach4suuojPfvazs9VdIeaMvO+NxFcqHaXaaUMDnfWVI20GKkrIpuJUdg8QyxUoVA+Nb++OwwpgdznGy5XoJX3ok/rAMyASjHu9UitCaz7LlsE+Ah2ub9gUP4xiMcWhPkTDYjkl/RnOe2gj8VyRR9atZndjZbj2IRAzTcykGz7K20QqDdISIAohhBBiHjphAsTzzjuPrVu3Trg/Go3y2c9+VoJCIWZY3nMZTsFFewOSfprB0hRexN7fSClaF9SyfMtuGvd2smPFQnSqiMpE0TkrrCQKqJ0VsLc0LBxzVtu4Qz+VUtiGQbeTx5yqMnRHErWtEr1oABYMMmqpRif89aYjHgSa8x5+loreNADrHt7M3tevo2CHbXqcAgtiYUUalbOwlEHGddFaT7m0hhBCCCHEXHLCDDEVQsyOQc8J5x/6isq+PgB6asrGtNu3sA6Axj2d4YbqHACqpRQGo2jbRxsBeAZKK9T2igmvWRGJsi+fIWnZE7bBV6itVaiCjbG1GrW1atRudUAGsXl3OxU9g7RVlbBrWTMx1+OtnUXeunA5b2heSpkdJW2H/aVgYxsGxcDHCcbPcgohhBBCzFUSIAohJjXoOSQGSlCPNFPpdADQW1M+pl13XQVOxKK2rQfT9dCNmXDH7rJwKGdNFr1+L/ri3eikg+qLQ29s3GtGDJPmeIqSyQLE1hJU0UJX5NFKQ3tq9BxHZyhAjPgs27IbgCfXLCGy/hwArBe3YyhF3LQ4vbyaAWsoQMxZ2IaBpzWFQArVCCGEEGJ+kQBRCDEhrTVp1yXRGmbqKnUbAL3jZBC1YdDWXIMZBNTt64aki67Mjczz09X5cD5gJEAvCTOR6sVqcMf/NRQ3rYmHdzoGakcFGo1e2Q0pB+Wa++cdwsi/k+4gNZ199KdilK5cSklDPX5lOWZHN6p/EIAlyTLiEZMg4kHRwtQGvg4o+P5h/dyEEEIIIU5UEiAKISYUDrP0MQs2aE1lsRPPNBioKBnTNu97bKoN10Vs3BsOM9ULwgBMo6Eyv79xfRZdlUNlI6gN9WGV08lkbNRjTdAxNJdxa3UYEDamIeVCyVBBmUzkgM6H8wub28JlObYtrGFRMgxs/ZMXAWDtbgUgapqUWhH82NBSFwULUOR9ySAKIYQQYn6RAFEIMaGC7+MGAapokdK92K5HX1UZ+oA1CbXW9DoFep0C2cWN+ErR0NIVLidRk0NX5cJAzj4gClSgT+9AlxVQAzHoTE7eka4kKh3F2FSP2liHak+hox56eU/Yh9RQgJg+IEB0TLQR0Ly3HYDepQuoioRDWv3mBgDMlvaR5pWRKG6sGD7IWyg0xUAyiEIIIYSYX06YKqZCiJkXaM3OzCClFeGC9lpr2gpZ2gs5nMBnQaIkLCrjmVQGw8NLy0fa9rsOac+lKhJjXXUjGk1LTRmLOvup6u6np7YCfWb7+Bc3NXpJH2pjA6otha7PTthPld//q0p1JdFmgF7TCfbQpMNUGNipTCSchhiAck3iVg+VPQP0peLULlw4MmTVb64HwBgVIMZoiw4FmnkbnQBXitQIIYQQYp6RAFGIeWzQdXi0u428HdBAjM193byUGRjZH2iNVQwLxVR6wwVqyki7Dn2uQ1Ukxvrqak5KlREzLQq+x7YFNSzq7KdxTyc9tRNXKgWgKo+2fehJgDPx2ogMBYjB8u6wTU0WrAMq0owMMY2Gfw8VqGnObwdgx8IamhP711LUiThBRRlmbz8ql0cn4qSsCF4sHBKr8hYKcCWDKIQQQoh5RoaYCjGPpT2HnOeyobuDX7Xu5KXMADXRGE3xJEpBT7GAURgKEPPhvMKeqjL6XYcLqup5bdMSVpVVETPDAC5mWgQnLwagfm/H1B0wgLpsOO+vpXTiuYj5oWqmzWloyIwODiEsfBPxIGuH5xief5jZCUD25MUkDqqIOpJFbA37mbRs/Nj+DKKplAwxFUIIIcS8IwGiEPNYxnPDGC2epNyO0BRPEjHC7FulHaXbKWA7EQztUZbvIx+P0he3iZkmJ5eUYxvmmHMuX7CYdEUJ5QNZIv3pKfugG8I2xvZK1J8XgHtQ5dIAKFjoqAemHnuCYSVDBWayEXBMEt4glblu+lMxKhc2j2k+HCAOz0NMWTZGcqgoTd7CQFGUKqZCCCGEmGckQBRiHutzCpiGQcyyRrKAw2Kmha8DYm6UCqcLQ2t6q8vIBwFldnRM+2EJyyJyyskA1OyeYP7hgcqLBKe3o1MOqmBDX3z0/oIVBn5xd/LzlA4VmOmJQ9GkaWh46c6FddTHU2OajwSIrWEfo6ZJPK7CNRULFqYyJEAUQgghxLwjAaIQ81h3sUDUmHgqcnM8RcyJUukMzz8sp+B71MXiEx4D4C1bDMCioeUuplSbQy/sB0D1xUbvGx5emph8yQldGxa5UR1JcEya8y8D0LNsAVFzbKYzqKpAR2zMjm4YKkZTFY3jR12UY2Fog4IMMRVCCCHEPCMBohDzlBv4DHoOsXGCp1EKFhXuUIBYXYavNZWRyQPEoLEWtzRFU/cgsXQOgM5inq5ifuKDKgrh38MZRA3sS8FgWHhGT5VBLHHQcRc1GCPV4VLpdjKQSOLXVo7fXin8umqU42L0hoV5KqMxvEg4D9F2bBwJEIUQQggxz0iAKMQ8lfFcir5PdJx5hKMULCqdDjRhgRqlFKV2ZPJjlMJfvQyA+u2taK1xfB9TGezLZ9mby5B2ndHHxL1wnmE6Ap6C9iTG87UYL1eO7B/PoOsw6DqggLoMAM1trQBsbaolZU3c16C+BgCjvSu8hGnhR8PrmEUbNwjQepJ5j0IIIYQQc4wEiELMU2nXRWuNodTEjQKI5hySfprB8hRZSxExDMqmChABf/VyABbvaiPv+8QsiwurG2iMJzmltJI+1xkdfCmgooBCQX8MdfBcxHEyiF4QMOg5ODqgrZBF14XDTJvzLwHw4pIKohPMlQTwG8IA0WwLh8LGTRNvaC1E07Hx0Xha1kIUQgghxPwhAaIQ85AbBOzODRJGZZNwTKqKYfDUVVVKVzFPRSQ2YYGaAwU1VRSryqnpz2J19dAYS7IoWcpVDYs5t6qOykiUgYOyiLo8HIKq+uJw8FzExNgAsdspsDBewqvqFqJQeKkCiZNfosLtZrAsSW95Ytz5h8P8+lpgfwYxYdoEkfA6ZtEmCDRuIBlEIYQQQswfEiAKMc9orflz9z62DPZSG4tN3rhgUemEVT53lidYU1bNRTWN075WcPopAKx4qZWmAxaqjxgma8qqGPRc/AMzdNV5NBpaS1C5CDrhoBcMoOsyYI/O5DmBj68D1pRXUR2NEzctCoHHwr4dAOxd3ABKTTqEVleWjSpUEzctVDycd2gULMkgCiGEEGLekQBRiHmmGPjszaWpjcZH1jycUN6iaihAbK8u4+SScsrs6LSv5Z26ksA0OHVvNzVqdNZxaaqcZakyWvNZ/OGhpnEPqvIod6hfFQX0yh70aZ0UAo+stz+L2FnIc3KqnIZYEkMpKiMxiq7HkpdaANi1tBENkz9HpfDra1Cuh9HTT9Q0seJhQGgUbQIdSIAohBBCiHlFAkQh5hknCPC0xjamfvurvEGF24lrWgyWJYlPY2jpKIkY7oqTiLo+NS/vHbXLNgzWVTfQHE/Rc0B1U908uP/fw5VNCYeTDrgO/U6RjkKOEjvCmZV1qKE5lDXROPX7ekjkCnQ0VDGQimMpY9IhpgDB0DxEY2geYio1NOy2aKEJ5zkKIYQQQswXEiAKMc84gU+gNcZU8w+B8t40lvboLq/Asqypl8QYh3/WGgCiT22GgyqCxkyL5aUVFA8Mwmpy6JgbDjUtP2BZDK1YmirHI6AiEmN9TSMpyx7ZXWpHWLOjDYAdyxfg6QDLMKas0uoPVTI127sBKEvYaBVAwUKhcCWDKIQQQoh55BDTAUKIE124tp8eybxNpqqvF4COqlISloWpDv07Jb+pHr+xDnNfB+b2PfjLFo3a3xhLEjNN8r4XZigV6LUdULAgfsA6hEpzckkZZ1fWEjetMdVXK7MFmvb1UIhF2LewFi/wiSpzykzpcKEasz3MIJZGInRHXexCFHwlGUQhhBBCzCuSQRRinnEOIeCpHAyzaq21KUoPyNYdEqVwLjgDgMijz4zZnbBsFiRKRlc0LXGgJjfy0B/KeCZMm6Rlj7s0R/WGFzE0vLhiAYFp4umAhDX1d2C6ohQdjWB09IwUqvGj4VxHy7HxZB1EIYQQQswjEiAKMc+4hxAgVuXD5R9aqhOUWNMvTnMw7+TF+FUVWC3tmDv2jtl/UrIMBbTkM+P2zw18IqYx4RxIlcsT27wVzzLYtCyssuppTXI6Qe1woRrPw+juI2Fa+ENLXRgFSzKIQgghhJhXJEAUYp5xAh89PP9QD/05UAAMRoj2+aS8QQYj5eSiFin7MDOIEGYRLz4XgOj9j8JBQdfCZAlXNy6hOZ6i3y2O0+eAmGFNWHAm8sgzKM+ndeVi+uzwuXlBQNKcXp/94UI17V3ETYsg6gFgurbMQRRCCCHEvCIBohDzTCHwRt746ukGeKwR7SgoGqgt1aj7F2M83kz1o2GbnmQNaHVYBWoO5C1fgtdcj9nZg7V565j9NdE4CxMlFAN/zD4n8CdcXkP1DWI//Rw6YlM4/wwCrdFa42umNcQUIBguVNPWRcy0UENrLpqeiTtOf4QQQggh5ioJEIWYZ3Keh6kUuArVF0eloxQeqoY/LUC1lIZFYmyfqlw4vLSnrAqlIG4cYU0rpShetg4NxP74KCqTG9OkMhIDQB8w709rjRMElE8QIEYfeBQVBDjnraW6qoqkaZP1PZRiyiUuhh1YqMY2DEw7vL7pm+MGrEIIIYQQc5UEiELMM3nfw1IGZCMj2/SgDYFCLxxAX7QHfXIv1cV9AHRVV6IIl6Q4UkFTHe5Zp6IKRaK/fWjMshflkSgx06QwFJR1FnLsyWUItKZknCGu1ovbsV/cQVCawjn3dCKGyeJkKZ3FPIZS0x5iqstL0LFoWKjG94lFwl+Nhm9S9CVAFEIIIcT8IQGiEPNM3vewDAWZMEDUTYPYqwbhwhb0ih6wA6yqfircTvJGgv7yGLZhHPEQ02HFS84jKCvB3rYT++nnRu2LmRY10QRZLywS4+iA8kiUYuCTOCjYU9kc0d8+DEDh6ksgEu5fkCihOhLj4pomGuLJ6XVquFCN72N09xGPhb8aJYMohBBCiPlGAkQh5hGtNXnfw1QGaihApKqAvTIDCW+kXXV3LwaarmgjTmmOiGFOueD8tEVs8q9/Fdo0iP7hEcxdLaN2N8aSFAKfQGsUipNSZVREYqPnE3o+8Tt/i5HL46xdhb9kwciupniSaxtP4qRU2SF1a7hQjdneRTIaPlfDMyn6UqRGCCGEEPOHBIhCzCOuDvC0DucgDg8xTTlj2tW09wDQeXqUYqxIiWWjxll78HAFjbUUrnwFKgiI//wezL1tI/tqYwkMFBnPJWFanF5ezZkVNfuL1Pg+sbv/gNnajt9QS/GKC0edWyk17eI0o/o0VKjGaOscySAavokjGUQhhBBCzCMSIAoxB7lBQGchN6YCpxMEeEEQzkHM2GilIeGOOb62vReAroYqnCCg1I6MaXOkvNNPoXjJ+SjXI/5fd2M9vw0Iq5nWxhK0FbLUxRJEDJOVpZXYhgGFIvE7f4u9ZTtBWQn5N10FhxEMjscfrmTa3k0sGgbDhhcOMZW1EIUQQggxX8zMJyshxHGlNZ/hgc4WoobJ2vIa6uMJdmfT1MTi+FpjuRbKsdApZ8zXRJbjUtEzQD4RJVOawM3nKLFmPkAEcC44Ixxq+sdHif/qD7jbdlG85HxWllTQksvsn0OoNda2nUTv+zPGYAa/qoL89deiU9OcYzgNuqyEIB7D6OwmOTTd0fBN8r5Hn1ukJhqfsWsJIYQQQhyvJEAUYg7K+x6uDkgoiz917yNimGQ9h5WllYBGDQ8vTY4dXlrd0YfS0FlfCUqhlCZhTa8a6OFwzz2doKaS2K/vx35xO/aL21ndXE+sNEbd3jTRgoO1qwWjPx22X7WMwqteAfHxl704bEoR1Ndg7dxL2eAgmhLwFBpNTzEvAaIQQggh5gUJEIWYgwbcIrZSlNoRkpaFF2jipklHIYfh2KitVQDo0iIHzywcGV5aXzW0Rc1YBdOJ+EsWkH3v9USeeBb72S1EWto55aA23oIGnAvOwF+66Oj1oyEMEBNdfWizAeUZRJTBvnx2KLgWQgghhJjbJEAUYg7qc4pEhqqOmsrANCFiGLTks9RtPQmViaIrc9A8OObY2rahAjX1lWit0WjiM7AG4pQiNs76s3EuPAujoxujuw98H+Ix/KY6dDJx1LswXKjG7ugGO0AVbFKmTVshixP4Iz9TIYQQQoi5SgJEIeaYQGsGXYeIMXpyoVKKcjtCJBtHGwH6jPah+Yf7c4jRXJGK3kEyqTjZkgSe1ljKIHYsAsT9HSWorxkJ1o6l/YVqOjHKwsI0cR2h10/TWyxQP911FYUQQgghTlBSxVSIOabgexT88bNdJWYEwzMh4o/77q/f1wVAe3MNKIU7lDWLH+UhpscLXZoiSMQwOnuxzLACrPJN0NDvFme5d0IIIYQQR58EiELMMTnfw9U+thrn7e0OBXqRMPgJtKa9kBtZxqG+JQwQn6tJsTefoRgEJCwLc7xzzUVKEdTXooKAcj8caotnYBmKXkcCRCGEEELMffPkU58Q80fO81Aw/sL27tBb3g4DwoLvAdCSTZMuFqht7cY3FE0rV1Jpx+hx8pQexQqmx6PhYaaVxf0BYtSw6C7mZ7FXQgghhBDHhsxBFGKOyfoueqKdzugMYjHwqYrGKEnGCFr3EHM9nMXNrKyuwx+waMlnKLVneDmJ41zQEAaIFfmu8DekZxAzTQY9RwrVCCGEEGLOkwyiEHNM2nUwxyxeMWR4iKkdBogF36cuGufqRUt4ZSbMKgZLFwKwKFFCTTROcr5lEJvqAKgYbA83eAZRw8TxfTKeO4s9E0IIIYQ4+iRAFGKOcAOfXdlBWvKZibNcQxlEPZRB9NGUR2IkLJvYzlYAvKEAMWVHWFNWRWUkdvQ7fxzRyQR+ZTnJ/CBRPwuegaEUGk3adWa7e0IIIYQQR5UMMRViDtgy2MPG/m6yrkvEMKiOxsdv6IyegwiQsmx0fxqzvYugvBRdWT6y77Ty6qPY6+OXv7ABs7efaqeNvV4lAFor0pJBFEIIIcQcJxlEIU5wvtY8P9BLEGia4klqYwmM8QrUAOqAKqZeEGAqg5Rt429+CQBv+RKY4Nj5xG9uAKC6uA/lhb8mI4aiRwrVCCGEEGKOkwBRiOPcgFtkV3aQXdlBtA7Lz6Rdh/Z8lrzvMeAWGXQdyiOR8SuXHuiAIjWFwCdmmKQsm2DTVgDcFScdzadywvAXNgJQ7bSh3fBnGjMtuouF2eyWEEIIIcRRJ0NMhThO+Vqzsa+T5wd7R6pnvq7xJFDwm7ZdZFyX08qrqIzE8bWe3lqFByxzUfTDCqZmrkiwo4UglSAYKtAy3+myEtxkkrJsN3bBwwUihkHacyn4HjFTfnUKIYQQYm6SDKIQx6ld2UGe6esiZdo0x1MjVTQHXYes51IVibEt3c/O7AARY5pv5aEMome5ZH2X2lgC66WdoDX+ipNkeOkBCg0NKKBysBuAiGHiBAFZz5vdjgkhhBBCHEUSIApxHMp5Lk/3dpCyLBLW/mxV2nPIeC4KSFgWhcCnu1ggaU0zo+WYaKXZ52U4uaScVaWVmC/uAMBbKcNLDzQ8D7Em3QEwNK9Tk5VCNUIIIYSYwyRAFOI481K6j9+07QrnFR6wSL1lKPqcIt3FPNbQcNJyK0J3MU/CPGCtQl+hNtahNtVCRxJ0uA3XCNdBtH2ipsE5FXXEXB9zZwsk4wRD8+7EkCXhz6Mm0xn+DIdkfQkQhRBCCDF3yUQaIY4jGdfh0e52bEPRFE+OKjoTNUy6inl8HRAzw6GiJXaEpGWPrlraH0N1JQFQHSl0RR4yEfAMlFYEto9pGERNE2vLS6ggwFy9DAwDAo0ImXUV5M04lcVOrAGNV64wVRikCyGEEELMVZJBFOI40l7I4QQ+FZHYmIqkMdNicGiIadQwR7aPWdIiF37vo2uz6ISD6oujXBOlw3aB7WEphaUM7Oe3hec4a9VRfFYnKKXoqKjDQFO7Iw2EQXq/I5VMhRBCCDF3SYAoxHFkV3ZwwoIzUcOk6PsUfX9UgHgwlQ+Hm+raDPr8VoKV3QRr20f2B0ZA3LQwMlnMXa0EJUmMpQtn9onMEZ3N1QDUte0vVNPvOvg6mM1uCSGEEEIcNRIgCnGcyHgu+/JZyg6Yd3ig4SIpSqnJ1zvMDc1HTHhgalgwCDU5dDSsvqlci7hpYb3wMgrw1ixHGVK9dDx9J1cCUNfXDjoM0p3Al0qmQgghhJizJEAU4jjQUyzweE8bhcAnak6cHQQ19UoUIwHi6GIq+qx96LICg4vaSZgW9nPh8FJvzfLD7/gcp8oT9EfLKfEGiHd6WIaBrzVP9XbwWE8bGdeZ7S4KIYQQQswoCRCFmGVaax7qamFndpCGWGLStvWxOHXR+CQnA/IW2vbBPmgYZNJDn7uPfHmG6oEsZmcPfm0VurbqyJ/EHBU1TVoragCo29UHQNw02ZtL89xAD79u20WfzEkUQgghxBwiAaIQsyzrewy4DrXROPYUC96bysBUk7QpmqjAgPjESzEEGpq37QXAXX3yYfV5vogYJrtrywGo7+wCoDISoy6WoDmeYtB1aM1lZrGHQgghhBAzSwJEIWbZoFvE0wGRSQrPTNsEw0sPZAU+NS/uQhsG3qkrjvyac5itDPY0pggwqO1vH7MMSMK02J1Lj9rmBgG/b9/DjszAseyqEEIIIcSMkABRiFk26DrMWImYoQqmxCcuorK0pQer6OAtX4JOTj6kdb6zDINCiU93tIGoX6Syu3/U/hLbprtYIO067MoO4gY+vU6B3dlB7u9s4cXB3tnpuBBCCCHEYZIAUYhZ1lMsYE5ZeWZ61FAGUU+SQTx1exsA7lpZ+3AqllJgQFtpMwCNu7pH7Y8YJq72eaavkwc6W9idS9NVyKEURAyD1rwMPxVCCCHEiUUCRCFmWWcxT8ywDv8EAdCeRG2sg11l4bYJAsRUf5oFXQO4ZSn8xU2Hf815whqaE7qvtgGAhr2dY9qYKF7ODFD0fV5K97MnlyFmWMQMk55iEa31mGOEEEIIIY5XR/CpVAhxpPK+R8ZzKLHswz6HerkStbscAB3xCBYOQllx3LZLtobFafKnrZx8LUUBhHMQQZOpjpG2yilP95PI5Mml9leSrYnGKQY+EcOkLZ/FUgZldgSloM9xyPkeySN4fYUQQgghjiXJIAoxi9KugxMERI+kQE13OI8wOK0DfdEeWNKPpwP6nSJO4I80s1yPk15uxTcUzmlSnGY6bMNAoQhSRdpii4GxWUTLMEhaNrZhEKApBh5R08RWBq72yXgTD/cVQgghhDjeSIAoxCzK+x4axs/mBcDeUtRjTagHF6KeC9fjY28J6pl61JMN0B9FZSPopAN12ZF3dL9bJAB6nCL7ClnSrkPZC9uJuB4vL6rDLik5Rs/wxFZqR0lZNrlYjrbYEgAaxxlmOqwmEqciEgPC11ShSHvOMemrEEIIIcRMkCGmQswiX+vxK5hqUE81ogZi+7e1laCX9aJerEYNH7WpLvy7Mj/qcDcIWFNWwZJUGU/2dtBTzHPOy+0AbF21iEYZXjotplI0x1Nsdfvoji3GMaLUtPdguh6+PfbXZ9Q0iTI6GzzoSoAohBBCiBOHZBCFmEWuDoBxipjsLUUNxNCpIsH5LejqbLi9I4VCoSvyaCtAFcMgRVeMDhB9rSmxI1RH41xRt5DrixFK0jlaasrI11Qc5Wc1t9THk/hodMqnPboIM9A0tHZN69ioYdBTLBzlHgohhBBCzBwJEIWYRV4QoPUB2TwN9MRQ2yvRSqPXdEGJE/4BVFsqbFaRh6bBoUM0VI4OQpRipDCKZRiknn4OgJZTl5E0pWDKoaiMxDANgyDh0BpfCkDzrvZpHRszTXqdAoFUMhVCCCHECUKGmAoxi7wgQKn9wYPaWoXaGy5VoRf1jwSGOumgAJWOhg1LHHRpEfaWQmkR7GDkHOGyCoq4Gb69jdZ2rN37CMpLqT9tDeXsbyumVmZHKLMjOPEC7bGFeKZFQ0sXpufjW5MXF4oaFl3FPF3FPHWxxDHqsRBCCCHE4ZMMohCzyAkCjOH5hK4BLaVoKyA4tQN9cu/+hiUHzWNLORDz0eta0Gs7Ru1ydYA9VFkTIPrIMwAU151JVTxBUzx11J7PXKSUojGeJB/NEyiLtvImLM+nfhrDTG3DwFCKp/s6yHkurfkMO7MDZGReohBCCCGOUxIgCjGLioGHMVwwpiuB0gpqM1CfZVT1moSLHso0ajOAuBduj3ujsocARd8napjEDBOjoxvr5d0EpSm8NcuPwTOamyrsGE48HMbbkjoJmP4w05ponNZchl+07uCetl38rn0Pz/RPbw6jEEIIIcSxJgGiELOoGPiYQwGi6kgCoOuyYxsaQGJoPb2Uw/ilT0NOEFBuR1FKERnKHjrnnwHmEay1OM+lbBs3XgSg3VyCZ5k07O3E8PwpjgwrodZGE0QNg6ZYkvpogh2ZAXodKV4jhBBCiOOPBIhCzCInCMIMYsGEngTa8scsWTEi5Yz+e8Jz+pRHIhjdfVgvbidIJnBPWznDPZ9fSqwIpqXQMRe/GKOtth7b86lv7Z7W8VHTJGnZKKWImia+1mxL9x3lXgshhBBCHDoJEIWYRU7gE+0qRT2yIBxeesBi9wfTZcVRf08kQFNqR4k88gwKcM47HcZZs09MX9KyiRomftxBoWgpnArAwi0dUxw5vgo7wsuZAQq+N5PdFEIIIYQ4YhIgCjGL3CAgsbsa5RvohQPo5T0TN14wQHB6OzSmJzxXVzEPKKr6MljPbyNIxHDPWH10Oj+PmEpRGYmRbexBV+Rpa6jFUVEa29uw+w59CYu4aVHwPbpljUQhhBBCHGckQBRilgRa43gaIxdFRzz0ih6wJgk2DKA2N+78w45Cjm6nQHU0zmV1zSx8fHOYPbzwbIjIuoczoToWY7BiAH12G/45XbTULsAkoHnLQcNMByPQHZ/0XEopFIqO4jjzTYe05jJskmI2QgghhDjGJEAUYpb4OsDI2uHQ0oOXsTgEgdZ4OuDyugW8umExy3qy2Nv3EJSX4J6xagZ7PL+V2dFRj3ctbwBgccue/Rs1qGfrMTY0oF6oZrIlJ5Omxe5smkDv/1Kgs5Djoa4Wuop5Hu1pY9NAjwxDFUIIIcQxJQGiELPEDTRmOhY+KJl4XmHWc+kq5uks5NBDwUTWc+lzCjiBT873SJg29bEkaE30/scAKF50rlQunUElVgTN/mCuZ0mSjFVCda6T1OMJ1CPNMBBFFcL5nqq1FFpKJzxfyrLpd4r0Oftf+13ZQTb0dfPHjr30OkUKvkd7IXf0npQQQgghxEEkQBRilvg6wMyEAaIeJ4MYaE1LLkM+8GiOp1BKkfd98r5Hv+sQM206CnmynktjPIVtGFjbdmLu68CvrcJbffKxfkpzWtKysZSBGwylBQ3FnpolACxs2YvKRlAvVgOgy8NKtGogOu65ACzDQKO5p30X93e0UPA9dmYHaYgl8IKA+lgcE8Xe3PhzToUQQgghjgYJEIWYJZ4OsLMTZxC7innq4wle17iUS+sWUG7HKAYeed+jIZbgsrpmIoZJ1nNpiCfA8/dnDy85H9QkiyWKQ5YwLeKmRTHYv/bh7qXhMNNF+RdBa1Q6DAj1ooGwQSYy6TkbYkmSpsVLmX6e6u0g7TmkLJuqaIyIYVJmR9idS5PzZJipEEIIIY4NCRCFmCWOH2BnYmgzgMToAKDge/hac1ZFHSV2GGTUxGIUfJ+C71MdjVNmRzm5pIy4ZVMViRN54lmMvgG8kxbin7RgNp7SnGYoRZkdoejvDxAzJxn0lFST8gapVC0A4VqWNTm07UM2Muk8REMp4qZFuR1hZ3YQhQrXxRwSNy1ynscDXXsZcCdf3kQIIYQQYiZIgCjEMdJdzHNv2y6eHwiXsshnwAjMMHt4QLKvvZCj1ymypqyKhnhyZHuFHcPXmgBNRSTMPK4oqaQ5nqKi4BJ55Gm0YVC4/ELJHh4llZEYzgEZRAzYtaYOgMXe5nBbVT58PZNOWIAoP3UV2dKhLwGqIqOHpCqlaI4nacvnuLdtN7uzgzPyPIQQQgghJiIBohAzyAsCNvZ1jcxTc4OAJ3s7uHPvy9y9byct+QyP97SzKztIcbj2SGx/9rDge5hKcXXDYs6prBt17pRlo4YCvxIrDDqqojGuqF9I4v7HUK6Hc+7p6Kryo/4856syO4qvRy9FsuekRlzLZEH3bqz6TvRJfeGO1NC80imGmQ6ricaJmdaY7YZSNMWTBDrgwc5W+h3JJAohhBDi6JEAUYgZ1O8W2ZLupS2fxQ0CHu5qZUNfJ572KbcjNMdTRA2Tp3s7cJyhQMPaPwZxwHVoiqeojydHgsFhKdvGUApbGaTs/UGHuWcf9paXCVJJnAvPOibPc75KWvaYdSg922LPSY1YfsBC8zlIuQDoob/JzMw6lBWRGK72SXuHvySKEEIIIcRUJEAUYgalPYfeYoGd2QF2ZAd4OdNPYyxJmR0dyQ6V2DZpzyVbHAoMrf0ZKVcHLEqOvzRCyrKJGSYJ0yY5nGnyPKL3PghA8bILIDIzwYgYX9KyUKhRaxcC7FgRzvk8adteGN43lEFU2ellEKdDA2lXAkQhhBBCHD0SIApxBDoLOfZk9y9DMOCEH9735NI829dNqRXBMka/zSKGiacDMoVwaKkeyiAWfI+IYVIfS4x7LVMZVESiVEVjI9nFyJ+fxuzpx1uyAG/Vshl/fmK0pGUTNc1RlUwB+qvK6K0uo6w/Q3Xn0BDT5KENMZ0OWxn0OIUZO58QQgghxMEkQBRiGpzAZ18+M6pASc5zebhrH3/u2TeyDEFnMU+ZHaHg+/S7Rcrs8YMDBXhDIxAxA9KuQ2exwKJESTiMcQJ1sQS10TgARmcPkcc2om2LwlWvkMI0x0DEMCmxbDqLefbmMqOWn9g+nEXcuneocYCOu2EGsTc2I9ePGibdxfyMnEsIIYQQYjxjKyIIIcbYOtjHYz3tlNoRXlm3gKpIjKf6Oukdyua8lOljTVkVPcU8MdOixIqgFGPmEQ4zlSJwVfgNjenT7zpcUFXPytKKSftxWnm4EDtBQOzX96OCgMJlF6DLxx+WKmbe2ZV1FIe+ANjY10WAJmXZ7F3cwNonXqR5Vxsbzz0FJxZBL+tFba5DvVATZhSHhpvq09uhxJ3iSmPFTJO051LwvXEL2gghhBBCHCnJIAoxBSfw2TLYS6ltk/EctqX76CrmeTndT10sTkUkwnMDPezLZykEPnHTJGqaRAxzwnPGDAt3KD5wTY+YaXJySTn2JMdAOMzUVAaRJ57FbO/Cb6zDPWvNTD5dMYWmeIqTUmWcWVHL6rIqBobmBPq2xa6lTZiBZsm2PWHjuiy6KofK26juZPh33kbtqDysa0cNEycIyHiHHlwKIYQQQkyHBIhCTGFPLs2AW6TUilAZibE9M8DmgW4gHHKYssIhpU/3duLrAFNN/baKmSb+0Gf8ovIotSPTzggZHd1EHnwCbZoUrrkEDHkbz5aGWBLN/oI1L5+yCA0seWEXXdksGo1e3YVe0kdwRhvBJTvREQ/VmTys6qZhRlpLgCiEEEKIo0Y+WQoxiUBrXhzsJW5aKKWImxZ532dPLkNVZP+8soZYgs5iHuPgNRAmEDVMtBe2LRoutdHxC9OM4XnEfnUfKggoXno+QfXhZaLEzKiOxokaJnnfo6uYp78kzp6makoKLqfu66WjmIeoj17WB9V5sDV60QAAanf5YV1TA4OurIUohBBCiKNDAkQhJtHrFOgs5Cm3oyPbqiJRLKWImvuHgxpK0RxPUheLT+u8SimiQZhBcg2fyuj0iphEH3gcs7sPb3Ez7tmnHsIzEUdDwrKojyXZm8tgDlUYfWp5IwBnbWvF8/2xBzUPoo0AOpMQjN09FVsZkkEUQgghxFEzZwLE22+/nRUrVoz6c9VVV812t8QJZl8+w5+6WkfWudubyxCgRy1VkbRsaqJjA0FDqWkNLx1m63BIaWD6lFpTL4Vg7thL5MlN6FiUwrWXSdXS48SCRIqGeJJVpZU4QcCemlLy1RUkuvpo6h5AH7RmIpaGigLKM2Bgki8G+qPgjX2NTaXIHlA9VQghhBBiJs2pMngrV67ke9/73shj05y84IcQOc+js5gj74cfuJ/u68TxfVaXVVFqR9ie6adkkmUnjogXBpOWDSUTLIcxTKUzxO66D4DCqy9GlySPTp/EIVuaKqcxniJqmGxJ9+IGAc45pxG/50HO3raPR5obRmWbAXR1DtWTQHXH0RUHrGvYHYeUA71xjOdr0Y1p9OquUcdayhi5X4UQQgghZtqcChBN06Smpma2uyGOY07g8/xADwpYWVrJHzv30pbPYgwlauKmRaA1vU6RvO/R7xZpjB2lYMwz0GgSEZPkZAVqfJ/YL36PkSvgnLUGb+XSo9MfcVhsw8A2wgB/WbKcXqeAcWozwcNPsqS1h6f701BVPvqgqlz4d08CTu4L/90fxdjQgLZ9RuredCThlK5RYz0sQ5HzXbTWEy6jIoQQQghxuOZUgLhjxw7Wr19PNBrlzDPP5KMf/Sj19fWz3S1xnPCCgPs69tKSy6CAtkKOffkMzfEUxgEftIt+lo58FqUUBmrUvpntkIG2AkrsyKQf9KMPPoHV0o5fX0PxsnVHpy9iRqwuq6QY+GCauGefSvSBx1n93E6ev/iM0Q0THjruotJR9O4yaEijOlIAKDfMNmojQPkGuicBNbmRQy1lUAhcXB0QUTJKQgghhBAza84EiKeffjpf/vKXWbRoEZ2dnXzrW9/ibW97G3fddReJxDQrRB7EMI6fb+eH+3I89elE0+cUaS9kaU6kcAKfvbk0DbEk5kHLRKTsCPuKWZwgoDwSPTpZGg3KNwiiDnHLnPB1NbfuIPL4RnQsSvG6KzEiM/+WlXtr5qQiEVJD//bOWoP5yDOs2NXBzrML5FMHzFtVQG0OdpdhbKtCt5SAH2aUObkP8haUFeH5GlRHEmrzI4dahonvObg6IGYcv7/C5b4SR4PcV+JokPtKHA0n8n11/H66OESveMUrRv69YsUKTj/9dC699FJ++9vf8oY3vOGQz2dZBlVVqakbHmMVFTL37HDt7c4Ri9mUloSFQarLxv9ZRgObtlyWQENtydG5B7SryAPYmuqy5Lj3WrCvE+dXfwAg8pdXE1/aeFT6MkzurZmWovO8NZQ+vIHVW3ez5eLTR+3Va7P4DR7eSymCnrBKrlFdJHZqOCdRu4r8Fo3qShIL8hil4bxDrTWDGZdkWYyq+OF9+XUsyX0ljga5r8TRIPeVOBpOxPtqzgSIBystLWXx4sXs3r37sI73vIDBwfzUDY8Rw1BUVCTp68sSBHrqAwRO4JP3PMoi4Yfv59o60U5ANjP1GnLpXJGkaU2r7bTlLOiPQX0GHBMFeIaHk3Pp6cmMbpvNE//hnRiOi3PxuWQbGuDgNjNE7q2jZ+DUlcQefZYFz+9i86olFOPR0Q1Ki3BKDh5pQgUGfnV69D3XlEbtLSX/x2pY3Q0NWQDyeZeOnjRG/DDWyThG5L4SR4PcV+JokPtKHA3H431VWhrHtqeenjJnA8RsNsvevXuPqGjN8fJiHigI9HHZr+PR5r4etmf6uaphMQbQUchRatljlx0Yx4JYEqXUtNqO4qmwwIg9dJyvoDuOykRhVxkqMNB9UfTCARQQGAEWxujX1PeJ33kvxkAa95RlFC84E47Bay731sxLlJTw4snNnLZlDyc/t4PNZ68c2yjuwooeaCtB12fgwHtuRTc64qG2V6A216LT/eiTewFN3vNOiNdL7itxNMh9JY4Gua/E0XAi3ldzJkC87bbbuPTSS2lsbKSzs5Pbb78d0zS5+uqrZ7tr8053Mc/Gvi4urm3CNib+lsLXwSGtG3goCr7Hi+leeosFnurtoCISxQl8Yub0F7I/ZBrUE02gQV/QAq6J2lCPSodZI6002vJRraUQhOcPLH/UGotoTfR3D2PtbcOvr6FwzaWy3uEJLGKY6PPPwNu6l6Uv7uGxFU1kbJNSO0L8wMq1zWl0c3rsCRRwUj+6rACb6lC7ytGL+tEonMA/Zs9DCCGEEPPHnAkQ29vb+du//Vv6+/uprKzk7LPP5mc/+xkVFRWz3bV5xQ0CHu9ppzWfYXWxiob4/nHXBd+j3ylSH0+yN5dme6afS2oXzHgfvCCgJZch47osTJSwNd2HiUGJfZTWMxxWNFHZcLkD3ZVAvVSFytvosgK6NgvVOfAM1JNNqLaSsJ0ZYB0QJEcefYbIxi0EqQT5N10F9px5i85bi+rq2bV8Icte3M15W1vZcs4qdmUHWJAomf5JqgpQlYeOFGQjqJjGCY7f4aVCCCGEOHHNmU+fX//612e7CwLYmu6jNZ9Boegs5EYCxILv8VBnK71ugdc3LaUll2FvLkPO80hYM3cb7smm+XP3PjwdEDdNbMNg0aF8ED9UrgFWEGZ60vsXu1cv1KA8E12VQ69t37+OnSYcMuiEz1mbAdZQltV6dgvRB59AR2zyb74afZQK5Ihjy1QGZZdeiH65hZUv7qX6onV0FXNkPIeUFZn6BEN0ykF1AJkIRkyR89yj12khhBBCzFtHZ3yfmJcCrdme6afEsklZFrtygyNz+J7q7WBXbpCM59Kaz7InlybrefQ6hRntw9Z0L3nfI2FaVEViM3ruMdqTqAcWwa6y8HF6fwES5ZloNHp5z+h3mQJKnJGHgeljKQPzpV3E7nkQbRjk33glQf3hz50Vx59YeRnumWtQnkfZE5s4pbSSfseZ+sADpcL2KmNjGQY53zsKPRVCCCHEfCcBopgx/W6RnmKBEitCyorQ5xQZdB2cwGd3Lk1VJIaJ4sXBXjKei6kU3cUjrxSb8zwGnCLdxTx7cxlqonGSlj1z6xe6BuqpBtSzddA9NIcxb6G2VKNQqJ0V4BiooQyiTg598G/IQGqcLE/J/iqVgeWTaush/ovfo7SmcO2l+EtmftitmH3OBWegIzb2xuc52TexDOPQ5hEO31eZCJYKM4gvDPSyIzNwdDoshBBCiHlpzgwxFbOvo5AjQI8UXXGDgPZijpRvk/c8KuNRFIpep4DWmqRl0ZLPsLbi8LNlT/Z2sGWwl0BrqqIxAg22McPfe+wpRfWFgaHqTBKc24LaXhlmCYeHi+4uH8kg6tM6woqUi/rHPZ0ucRgOXSuyvTT98hGU51F45Tq81ctntu/iuKETcZyzTyP6yNNUPbGZytMXkvUcIpGpy00DkPDQRgCZCCYGGd9lY38XTfEkJ6XKjm7nhRBCCDFvSAZRzJidmUFiB1QtTVoWLwz0si+fRSmFUoqEZZF2XUpsm6Rp01sskHH3D7VrzWXYOtg37Wu25bOYKCrsKN2FPNXR6NQHHQpfofaWhcNFF4SZGvViNaongY676HP3hR/a95SGBWniLqTccCmCyARFRIaGmJa53Vyz+RHMoktx3Zm4554+fnsxZzjnnY6ORbA3vcjKoibrTZxB7HUKtOaz+zcoIOmiPBPbtXGCgJ5inq5i/tCXYxFCCCGEmIAEiGJGZFyHrmKOUnt/0Y1yO0p3Mc/u7CCJA0r6n5QqpcyOEjVNioHPHzpbaM9nwwqove1sGujGm0aFRl9rMp5LzDSJmiYN8SQxc4aT4m0plGtCbRa9rBdtBajBcG6jXtwPcQ+9tA8VDL2VSqYxryzhUuJ3cVH3L4l5LulzTsV5xbkz229xfIpFKV5wJkprVjz5AkrpUcHdoOuwMzvIgFuk4PuY6qDlLIbmIdq5GL3FAhWRKFnPIy/zEYUQQggxQyRAFDOizy3i6oDIARlEQynipklnMUfKGn+JiaZ4kgGnwO879vBMXyc9xTwDbpGuacxNLPoebhDM/JDSA6iWUgD0ogGwNDSGa9XpiBfOMQRYNICuC/+tS6cuulMykOYVXb8iGhTYvHgxuYvPk7UO5xH37FMJykpI7WhhaXeG9AHVSNOew0nJMjKex6rSSmqjCQYPyLDroQDRysVYkEhRFYnhan9UGyGEEEKIIyEBopgRvcUC44U4lZEYtdHEhEGcoRS1sQSWUmzo6yJl2SigNZ+Z8pp538fTAbaawdu4Pwq5oSxkxkalo2HRmbKwsIxe2I9OFdHLe8Ecyvwo0Ku7CE7tgAWDk56+vHuAS+95nJhf4KWqFfzpvMVYprwN5xXLonjJ+QBcvHEHec9lTy6NE/goFGdW1nJV/SLWVtSwNFVG3j8ggxgPM4WqYBI3rZFCTIPe+AGi1po/de2j/cChqkIIIYQQk5BPpmIMJ/BpL0z+gdIJ/FHrsO0rZIkZY4d3GkpNmD08UEUkRlM8SUUkRokVYUdmYNTcRAg/7HYX8xSHPjAXfA/QR16tVA/92VuK8WQTalMdwP7F7BvSjES/cR99Qev+7OEwU0N9NswyTqC6o5dLfvsE0aLL1tWL+fNVzRimgTWTAa44IXinLMVvrKO0Z4AbBmFRopTduTQVkRhVkRhNiRQx06I+Fn65MnzPExn629mfqTdR9E2wXEx7Ice2dB99bnHc/UIIIYQQB5NPpicg94A5SYHWvDDQy9O9HUdc7n54rtPzA73c17Fn0qzDEz0dPNDVQqA1Bd+jx8kf8YL3w1nGlGUz6Dr8b+t2Nvd3j8zR2lfIck/bLu5seZm9uTT5wEPrQwwOA6A3Fv49GEE90Yj642LUH5ZgvFgNgEpHoWhCWwqNHhsMHoa61i4u+t2T2K7Hc2uXsenslQSArQwMGV46/yhF4ZXrACh9+GnOLqmg3I6yNFU66n4oi0RZXlJOZzFP1nPHDRBjpklnYWyAqLXm+cEe+t0ivcWZXW9UCCGEEHOXLHNxgulzCjzcuY+LqhtJ2RGe6e1kY38XoElZEZoTqVHzAKers5DjT937WF1axXMD3eR9j0d62qiOxrGVwQXVDSNtu4p5Xkr34aPDKqJKUfB9quyZWZjeUIrmRIqM5/J4bzumUpxSWskLA714gcbBZW8uExbEUYdQvTFjo56rDYeNVuYgG0EVLbTlgxGgDQ12gEpHUdsrwn2VOYgdwlp141j0citnPbIZM9Dcf/oSNq9spEEpAjQx89BfKzE3BM31uKcsxd6ynYYNW7nozBXURONj2p1f1UCJFeHpvk7yOkstjAoQ46ZFVzHHhr4uVpZWEB8q1NReyLEnm6YmGqdnggyjEEIIIcTBJEA8wfha01HI8UhPG1HD5OVMP7XROFHDpLWQpaOQY0Gi5JDP21nI0ZbPMuAU8bVmQTxFezFHb7FA3LI4q7J2JPDc3N+NVmBh8PxgTxjkaGZuYfohw0NTH+lpo6uYZ08uTW00Ts53actnCQ5l/qEG9WwdKhdBGwGqNxFubkijV3ftH0LalkQ9V4dqHSpOc4jZQ18HtOSyNMWTWEqxYuNLnPbsdgIFD5y3ktiZp5Ic7KWrmMdU6qgW2BHHv+Il52Nt20XksY0sOXUFOjl2OLahFKeWV1MdjXNf+x600gdlEC1K7YAnettwAp/zquoJtGZzf/fIEO9Bz8ENfOzD+PJICCGEEPOLfDo9AWk0e3MZdmQHaYyFSzsopTCUoiV3eMMhd+fSlNtRyiNR6mMJlFI0xJI0xZMUfJ9+J5zDlPVcWnIZquxwrtSOzCAvpQfGzXzMhJRlUxOJsy3Tj2WEAVXCtEl7Dl3FwvQDrKwdBoclRfT6vejSArqsgD6lm1HVdSr3Z1q0GUDtoRX3yPselmGQLhQ460+bOO3Z7bi2RecbrmDVxRexpryaC6obKPo+vtZE5QP7vKbLS3HOX4vyPKL3/XnStg3xJNWxOIHtgRt+KTMsZUWojsR5KdNH1nNpzWfYk09THYkRNUyKvk/mgDnDQgghhBATkQziCWphIjVmW6kVYVd2cFS2bzoyrkN3MU9FJDrmOKUUGk2vU6A2lqDXKeAEPtGhoZGLk4eerTxUUdNkQXz/87UNA08HOIE//Qxiz1AAW52DqI8+d1/4+OCkZ9RHJxxULhIGh5MUnRlPwfepx2TdA8+wsHOAXCKG+xfXkqyvGWlTE40TNU3yvicBosC54Ezs57dhv7QL9+Xd+MsWTdi2OhKnw/YwHRvtGhDZv15o0rLpzRV4bqCH3blBYoaJNfIFiibtulREZmYYuBBCCCHmLskgziFJ0yLjOew9xCxil5Mfs4bhgWxl0F7IAdBTLMz4UNLDVQz8iTOIRRP1VAN0JAFQPUNDSqvC54FibHA4rDaHRqObJ1+yAmDALdJ9QAGQZN8gr7nnCRZ2DtBVnqT9L6/FOCA4hOEhgRFynndY80XFHGNbFC5fD0Ds938Cd+JF78sjUXx7aL8z9t5JWRE29XeT9zyqD8jqayBz0FIYWc/FDQKEEEIIIQ4kAeIcopQiadls7OvaXxZ/GvbmMpgTRkthZqK9kMPXAa35DPGpCqt0x2EgOu3rH46EaZF2nQkDRLWnDNUXRz1fAxkb+mJhMZqyqcv966W96Av3Qvn+tm4QjGRPh4XD9jzcwKfo+zTtauOt920kOZilbWE9T7zmFVRXV497jZpoAm+SoFzML/7Ji/GWLcLoHyTy2IYJ26UsmyAycYBYEYlSE41RF0uM2m4rg94DCtVkXIfftO3i53tf4ome9lH3tRBCCCHmNwkQ55gKO0qPk+elTP+02vc5BXZkBqicZOhZwrTIei4vZwbodQokzElGJvfGMDY0oDbWjZojNYoG9pZAdur1ESdSakVIWTbmeENMfQWt4dBX5RuoJ5pQgRHOL5zOHW8AidFZnK5iHtsw6SoWGHQdtNZ0FHOsKatiWbKMFU9uYd0DG7G9gL4Lz8R4y7Wc29A8Yba1KhIjYppSpEaMKFyxHm2ZRB7dgOodf8maEstGT5JBhDBDfbCEabErmx6Zo7xpoJsBp4htGGzs7+K+jj0SJAohhBACkABxzlFDVQt3ZqYeHgnwcnoATwcjcwrHYyhFzDB5tLuNYuCP+wEUAE+hXgiHUyrHgsHI/n1ZG/VoM2wvh544xos1qK1V031aY1iGMSZLMhx4qi3VKNdE12bQZQWUb6DjLnrB4a0TOTwM7xU1TZxTWcuA55D2XMrsKGutBJfe9zTnvLiXom1xz8WnodefQ8K2J/45AaV2hKRpHzBHTMx3urwU54IzUb5P7N4HQY/9hiVh2RjRoe0TBIjjKbEjGAp+376bu/ft5MXBPmqicVKWTXM8xb5cdqQQlRBCCCHmNylSMwfFTYt+t0DB9yYNUnKey9ZMLxX21MNBq6IxMp6LryeZs7S3DJW30VaA8gzoTkCZA3kL9XQDqmhBoQxqh+YB9g0tWD9TMVJXAuPF/fP99KIBKC2ivdHFPA5Vr1OgOZ6iNhonYVps7OumxynwmpxB5f/eiZErkK0s5T/PXUpFXd20soIldoSEZWFNt8iOmBec88/A2vIy1u5W7E0v4p5+yqj9hlIkEmFWWjnmhEn68VRGYhR8j7RbJGXZI18KGUNZ7sIhDEsXQgghxNwln07noNhQWftB15m0XXshR973SVrTG+qZsmzKJgkm1VBBGH1KV/h4qDDMyKLzRoDyTNgXViRVgQEDM1dVUe0tC6+/qJ/g9PZwDqHBEQWHWmtcHbCytBKlFCV2hKXxFFc+t5dTfv0wRq6Ac8Yq3L9+C81NzdTHktM6b9K0KLUiWMdJwR9xnLBMCldfigaif3gElR67zEpZcuhLn6IVzvc9hNs7ZlpURGKU2pFR25WCfDBxcRwhhBBCzB8SIM5B4bw3xYDr4AXBhAVr9uTSRGYqg1UwUekoOu5CXRYd9cJCNU6YSdRKo1f2hP07sCBO7xEEiI4Bu8pQm2pRWytRvXF0zEWf3Ls/S3mEMp5LiRWhIR4Gu0ZPH5f95jFO37IHHYuQf8OrKF51MWbE5qKaJk6vGL8ozcGUUpxWXn3U1o8UJ66gqQ73nNNQRYfo7x4eM9R0JIO4rwRjQwPsm5mlZnKeBIhCCCGEkABxzjIV9Dp5NvZ38WRvx5j9Bd+jJZ+hxIqMc/Rh6BzKnNVmw+UjqnMoFGpbFco1oSIP9Rm0EaY7dF1YLEP1HRAgacKgcpoZEbW9AuOlKlRHCrWnPDzFgsGJl6+Yhl6nwM7sIHroQ/mg53JSsgwbhf34RhLf/28iHd14zfVk3/UWvJVLR441lBq/aM4EFiRKSEwzeyvml+IrziUoL8HethNr645R+2Lx0Te4moGKwbYyGHRlDqIQQgghJECcs2KmRWs+ywuDvbTmM2PmDnYUcuQ9b+olK6ZJdQ0NL60Nh8QNryGo2sLshq7Og6mhIRNmE5f2hctO9McgPRSk7ivBeKIJtaNiehfNhcFVsLoT3TQYrnHYlD6kfhd8j85CjtZ8hpZcBl9ryuwoOd/DHwoST3ICEj/5JbE/PgpoipecT/5tr0OXzUzmRogxIjaFV18CQPS3D6Ny+ZFd8YMCRNIzECAaJoOue8TnEUIIIcSJT4rUzFFx06TfdXACHy8I6HccqqLhcM6M67B5oAfbMGZm0XtfhesM2gesM1jqoKtyI/MQGVqgXq/shqV9EPWhIRPOG3y8Cb20F9USziGkLRW2maprhaHbty6LbsxMq6tuENBZDPtSE43TWSywNFVKZSSOG/g0JVJsHeyjJZfG9TwufLmNRc8+gvI8/PoaCtdeRlBTeSg/HSEOi7+4GWftKUQ2biF674MU3nAlKEXM2v+ljjaDcLmYIyz2ZBsGWc8h0HqkaI0QQggh5icJEOeoqGFSDHzqonG6i0V6nQJV0RiDrsMDnS10FnI0xqdXUGVKA1GUVuiKwqigTi/pR/Uk0DEXkkPZCYMwOAT0ih500kVtq8R4ef+SF6pgowejky9qr4GCFQal5vRqOfo6YF8+y8rSCtKey67sIKeVV7O+unHUh+K065DfvZdXPvUyNQNZtGFQfMW5OBecAbIshTiGipetw9rVgr11J95z2/BOXUHUMOk+bQdlZhRrdwWqN4HO2ZAaJwNYNMNh21PMyY0YBjnPo+D7JCz5b0EIIYSYz+STwByllGJRIhwCaRkOHYUsdbEE93e20F3M0xRPzkz2EMJhooAuL4zeXl4gWNUZBofjXUoBCwbRqSJsaAgzkU1pVGspqj2JnixAdA1UYKCT0583lfU8qqIx1tc0kvd9tg72sqqsanTGJF9g+UMbOGfzNgAKzfX4r76YoFqyhmIWRCMUrn0l8Z/8gtjv/0R2YSORVAK/PI9reVg9SehNhMNMDw4QNahn61ADMYJzWyf9wsVWBq72KQQeCflvQQghhJjX5JPAiU4TZgkUEPHHDcSSQ/MR9+WzpD2Xxlhi4uDQNVDP1ENVHr2sb/w2eQu1pRq9pA8qiqihAJGDA0QFNE1j6GdFEX1BS7jwd9SD1hJoKwkDy8Z0mHXUoLZVQtFCV+UhObSER2z6lRcznsvqskpMZZCyDM6qrNu/MwiwN75A5KEnMfIF8lGb5885hRXr14VrAAgxS/wFDTjnn0H0sQ3E7v4jwfWvwVIGntboEgcFqHQE3XDQgT1x1PAyMoORSQPE4crHec+DGapbJYQQQogTkwSIJ5jObRaxQgrigK/CDMHQPD+9uA998tigLmFZ7M1lKbVtmsYbVqqB3WUQ91D9MdRgDAZj4ZIVVgAVhVFrCaptVeE1HRN9XisMRMPqpCVHUAUx7oV/AJrTqJZS1JYadE8cfVon9MZHKpWqjtRIFdTJAkQ3CHCC/es8BlpTN846heaOPUT/8Ahmdx8acE4/hSdOX0J1eaUEh+K44Fx0DtaOPVh79hF5chPx5hKKvgclQ1+UDFf/HR4BrcMqv8NUNsJUA7G1lrUQhRBCCCEB4gklCDQtG21qgsVouwO1uxzVF0fHvDCL2FoaFnc5aJqcqQwWJyepuJmxMV4K5wBqdLigfWBgvFAbbqvLhEEahPMNh5a0UOkoelcZyjPRFflR19VaH/YQVn1KN7oxjdpci+pMwfMa8uGtqquzqO4kdA0FxZMEiB3FPBAW3TBQRAxz1LqDRncf0T88grVjDwDewkaKr1xHUF/DmYfVcyGOEsuk8JpXkviPnxN94HEarzmfl1JRSDpoy0f1x+HRZvSZ7eEXLV0J1GAMHfVQRQsyU6cFldIUJlgzVQghhBDzh1TcOIEYhqJprYvSBsbGhjA4LCmiz2uByny43mDfYSw8P1xplHARe31SP8HSXnTcRSsNvXGG0w/DWQldEy5nMVJc5oDhpYOuw/bsIF4w8YKGWusxS2+MUlZEn9kWfsBtK0H1x9EJB72yJ+xHMHTrxscPEN0gwABOTpXTVSzQUcxRHY2TtGxU/yCxu/9I4ns/xdqxh6CijPx1V5H/y9cS1NdM9pMSYtYEtVUUL1uHCgLOf3AjynHAAH1mO7o8j8pFUDvLR2UP9cru8D2cnXq9TVsZtOezR/lZCCGEEOJ4JwHiCab2ZI9sTTiMVDcPoM/eB5EAXRd+sFMdqUM+p+oOA8RgVSfBim5Y1A8n9aPX74XSYhh4Zu39y1lYPvq0DnRpIVzTsD6NXtwPgBcEDLgOtdE4GW900Qwn8OlzwkCy1ymyOzvF/MSEhz6vNVzfENBL+yDmoaMHBIUHZRC11rhBQI9TYEEixQXVDZxcUsaa0irOs5NE732Q5L///7A3bw0LgLxyHdn3/AXe8iUynFQc99yz1uAuX0JyMMclT24Lx4WWFdFrO8IlL9pSsKcUlYmiywpQk4OEi3IscCb/dV9qR9hXyJL1ZD1EIYQQYj6TIaYnGKWgZ/le4qsGRs0LpCaLVtXQmYSV3dMP/T0F/UNrGDZmxha5qSjAQCysVOq4YeXQqmyYuTi7LcwsWvtnN3U6eU5KlVJmR3m2v4tywkW8ncCno5DDUIpk4JMPPJKWjRP4RAyTCUV99BntaM8Ae+j5lhdgOBA+KEDscQo4QYBtGKwoqSRimFwWqyDy+EbsDS+gfB8djVA893Scc06DqFTkECcQpShcfSnBvg5W7Oki/VILO5cvCN8bDWlUSxlqWzUAellv+H5OOZCNhH8ihQlPHTMtup0CHYUcJ6XKjtETEkIIIcTxRgLEE5FidHDI0OOqHKo7id5XAs3p6Z2rNx6uYVidG7cCqi7PoyhH9cfQThjI6YqhD5kHrT+otUZrWFkSLgmxga6RuYgdhTyry6rod4p0FfMYKFKWTdZziUQmCRCHn6+9//nq8kJYqMYIwsqtB1w/7/tcVNNIYzxF2UCG6AP3Yz23DRUEaNuieN6ZOOeuhXh0ej8fIY438Si7r7qQZXf+nrWPv0BPTTmDFSXoBYOolrIwq7+6CyrD96lOhpVOydjhFz4AHUlUTzxcmqYuO/JetpTBnlxaAkQhhBBiHpMAcQ7RS/tQ3UnU9gp0fWZUZm8iqi3MxA0P4xyjvIhGQ18MVRwK5Cry4zbN+h4J06I2FifQEDct8r6PbRhYhsGq0io6Cjm2ZwZojKdYnCplY18nFeOebRLD8x2jPpqwsIavNVprUrbNsoECqd8/gbVtJwrCjOGZq3HPPR2diE96aiFOBF5THY+cupj1m3Zx9v3P8OBrLsRPQXDmvvDLlFJnf+Oh9RHVYBRNOlym5rkaVGCgWkvRuxz0aR2Qcim1IrTkMxR8j5h5+P899DkFCoFPVdWhD3kXQgghxOySAHEuKXXQDWlUWwl6bxks6Z+8fc6CziQ64kHtBAGiHUDKCec0Fa1wnlPKGbdp2nVZXlKOPTRktDmWZFdukKhhURmJUmZHUArK7CiLUyXURuPoqWPYsUrC56lLi7QWskQNEzuAup37uHh3N2UdvQAEqQTFc07DPWO1DCUVc0rUMHlyRTMLOgdY1N7H2Y88x+OvOB2qxhlCWhbOFVb7SsORBulIOFS8IQ1FE9WbgGca0Ov3EDdNet1wmOmiZOmE1x+vSnHWc+kpFmhOpHiqt5Oi9jltQf1MP3UhhBBCHGUSIM4xetFAWPWzN4ZeMnlbtbsMhSJYODhmuOiocy7vhWfrUL6BLs9POL/RJ6ApsT9jsLSknJezAziey8rSSpRSlNlRlpWU0RwvocSyiZgmed8jPpSt6CkW8HRAXSwx/kUAFOg1XQAkex3e0JGj8rmXMbNhZtOvLMc973TcNSvAmmL4qhAnoIhhYpkmz1x8BhV3/ZmFO9vorS7jpdXjvOljPnptO2yqQ+0qB0DHXPQp3WBoeLwpXLKmaKHiHiYGe3PpCQPE7mKeZ/u7eGXdwlHb9+bSPN7TwaqySnZlB4lZJhl3/C+ThBBCCHH8kgBxrkk64dy8wWhYQGaiwpyegn0lYUaweXDyc1bl0ee0wsuV6IXjty34HlHDHBXYNcVTNMSStOQy1MX2D+1cV9048u+TkqW8ONhH0rIosSLkAw8F+DrAVONHoioIqGvtZvHLLTTu6cTUGg24Jy/GPetU/MVNUpFUzGkx06QyEmNFRQ2/vWgNb/z9Bk57aiv9laV0NVSNPaA6jz6vFdpTkLfQzQd8KZRwIR2FggVxjxLbZk8uM2EBqa5inq5ifsz+nmKBtFfk2f4uooaB4wd05fOUsr/Nxr5O4pbNipJDHlguhBBCiGNEAsS5xgBKHNRADJ23IDHBQvLdif3DzOxJ1iMcVuKiz+iYcHfO96iMxEYygQCGUqwuq8IJfKqj48/9W1fdSFMixZ+729idS7MsVU7Wd0m7LuWR0YVkUgMZlrzUyqLtrcTzRQAKEYvC2lXos05Fl088JE6IuSRmWlxWt4CUZfNkbSV/OncFFz+2hfMf3Mh9r1lHPrn//TYyHDTphkvFHGx4LdFC+N5Nmhb9bpaOQo4FiZIxzVtzGfK+T97zRhWY6nLyVEfiRAyDuGnRVszRWchSaobvy4zn8txgD4sTpRIgCiGEEMexQw4QOzo6eOCBB2hvb6dYLI7ap5Ti7/7u72asc+IwlRbDpSm6E6icjV4wCMnRa5upziQAunZmFsbO+x6nlI7NXCxMlFBhRydcysJQiiXJMuKGxaM9bZxWXk1nIceTfR2UEyWaL9K8u52FO/ZR3dkf9hloa6rmxZMa2NlYyXVLTsGQjKGYZ1KWDUBtNM7mxbU09WdZ9uIe1t2/gfuvOo/g/8/efwdJlp3nmfhzrk9bWd60d+N9D9zAzAAiCDqBJCBRK9GIFBnSxlI+pBB3ZWJXbqnYlWJDil3yF9QGKWopR5GgAUkQIIGBncF419M97burqsunN9ef3x8nK8tluZ7useeJ6JiezJs3z72VXXnf+33f+1omUkqutOsM2d6WGy6rSC9SjQYd9XUghMASBi9Xlxh2PLLd9wEVVzMftAnThE4SM9CNsfGTmEYUUrDsnrlNxrS4Vq+TcQ38JGYl8FkJfAYs7/adFI1Go9FoNG+afQnEr3zlK/zdv/t3SdOUoaEhbNve8LwWiO8MZDFAAOLCECI1IDGU7f0qKbCcVa2ow1sdSeM0pRFHDG5zQQkQpSmJTHsXgxIYdrZe+BlCMLDDflaZyOT4oanj2IaB7Qf4l+a5d2aFiYUyotsJ1yhkeeP4BNMnDxIXclRCn4LlanGoeV8z7GY416jw0gfuprRSZ2SpyiNPn+G5j95PNQoZtD06SdzLJN1CN0tU+Bark8jjbobZTouvLEwjgAdKIxzNFSkHPn4SYyJoJ2vdCfUoJEgSRtb9DsibNnPtFpfLVdJU7blkuzTicMcWco1Go9FoNG8v+xKI/+bf/Bs++tGP8ou/+IuUSqXbtCTNfkilZCFok0qJbZiMuRlVQQQlDgEqm4TbclYZzoy2NpjTrM4UzQcdHGFQCYNtReKcryqPBzN5EimxhLGjoNwNUWuQvXgN6/wVjl6b5VjX3rTlOdw4OsH0sSkuljxiIJESO/BJZEpx000Kjeb9RtFyQII0DZ765MN8zxe/w7GLs9QHcvzpiXGO5opca++Qi7qpxRTUzb7JTI5qGNBKIkptl6O5IsvB6g0lQWe9QIxDEGxwNnVMk6JtUpQ2JhDJFIFgJfTpxDF5WzsLazQajUbzTmRfAnF+fp5//I//sRaHbyO2YWALk1YckTEtbnRaTGVzHM4WeWZlnjhNsXIR0kwRiRKIomMjfRO8BOoO4vVRAJWV2KUehZTDAMcwcITBQ4OjPFteoNWOkMgNs0j1KKRgO7iGSTUKMIWgaDu9lrc9kaYYNxaxLl3DunAVc6m89lQ2Q3TXcaonD/NlO2YlCZh0szQ6LR4fO0AqJd9evoFAULB14L3m/c2A45KzbGY6Tca8DN/61Gk++UdP88Dz51nOe4w9eJhr7R2MqLytAhHAFIJh18OJDOY6LRIpmek08QyTWKY04jWH0loYYPRxxCq5Lq0oQEqJI1SbeSxT2okWiBqNRqPRvFPZl0B8+OGHuXLlCo899tjtWo9mFwZsl9ODo3xnZQ4QHM7m+cToATKmxeVmjXocMuR4MNFEVj0oBoi5AlQykI0QL0wgYhN5pArja/OHzVhlGC4FHU4VSjxQGsE1DCIpeba8oISnoQRnNQr42MgUtmHy1cVpJPBQaWRLLtoGpERU6ljXZjCvzmJem8XorGW2JcMlkpNHiE8eJTk4AYZBBng8DPja4gxXWg1GPI+j2SLVKEAgkEiylvZZ0ry/yVs23zd5hDO1Fc7VKzgjAzz98Qf42JMv8cS3z7B85BimMDb8G96AJZFWomYQ+zgfZy2LBb/DdLvBvN9myHFpRBHVMCSRkuvtOtfbTTxzb5EyAmgl0a7baTQajUajeXvY19X1L/zCL/D3/t7fI5vN8thjj1EsbnWNzGT6u1Vqbh13DwxTj0PylsPdxSHs7kXf8VyRp1fmGXJA3rOsNl7IqVzE6SK0HERsII9VlJvhugvBREpOFUp8cGi8N1d4Z3GIVErO1cu0k5ii4RAkCZ5pcTRXxDIM7iyUGHEynCiUNi5SSkS1jjkzj3X9BubVGYz6WsVSGgbx0QPEJ5QolEMDfY+15Lh83+SRnmGGa5rKvMY0qYchGUMLRI1m0PG4f2CEi80afhLz2uQguYdO8vBLFxn9wp8w+D0PEVhJf4EI4MWIpouMDHA2uhqbwiBFcrFZJUpTHMPEMRLqUciVZo0nl2awhcHoNk7Fm5FS0I63cVfWaDQajUbztrOvq+vPfvazAPzP//P/vG216OzZs29+VZodMYXYkCW4ylQ2j1EWGysFg2pmSNTUHKI8XkEe3ygOO0mMZ5qMuJkNMRWgTGamvBxvNCoUbYdWEjG0ztnwibFDasMoxrwxhzk7jzG7gDkzj9FeM8CRQDIxSnz0AMmRAyQHJ8HZW0tqxrT48PBk7/9d02TY8ejE8Z6rFhrNe50Bx+VYrsiZehnPMLE+/kGi2MB+7Tw/8M3X+J1PPQjbtYFnYmh2sxCdreH2JoJqGPT+vTmGST0OOVNfwTPMbWNs+mEZgloU7L6hRqPRaDSat4V9CcR/+S//5c5thJq3lUHbZcLLshR01gLrnRQ51IaGi7xnCcbaW17XjCMmvNwWcbjKWCbL6w01I9hJYu538qoiuLCMubCMsbCMsVJFyDXDG2kYJJNjJAcnSA5NEh+egsyts7ef8nIs+R2y26xZo3k/ckdhkAW/zaND4xzND+B//xOIap3hmXk+9c3XeP7TH0B2bx51khhLGKoDYf0cYnGrQMxZNvN+m8PZPKBmocM0ZSXwlTHWPnAMg2qoBaJGo9FoNO9U9nV1/bnPfe52rUNzCxBC8GBplC/NXyNK017rqXx4XlUMt9H2fhJzqHvh10NKRKOFsVLl8OISn5y+zngrIF9pUOhsvYBMCzniiVHSgxMkB8ZJJsbAvn3ibcj1KNoOrhaIGk2PyW5cTG821zLp/Lnvx/oPv8WxuTI8dYbnHruPTpqwEvpY3dnEKbeovgw6/SuMBcvGEKKXZ2oI0Y2qENu3rW6DY5jUIx11odFoNBrNOxV9df0eYyqT41iuyLV2nUkvpx7scw0m0hS3EyLqDe5rtrlrIcRtnkHUmxi1BkalhohUVSELDHdflwqIhkswPkoyPkw6PkI6PoLMvrWzp+NelgdKIz0RrNFoFFuMmzIeS5//XoZ+4/c4dmGGTtblS3dN8dDACHcUBnm5tszVSp0JRhAVD3mktmWfQogtLsVFy7kpk6iMaTIb+rxYWeL04JjuStFoNBqN5h3Grt/un//85/f1Bf7f//t/f1ML0myP9ANothFxAmkKqUTIFJIU4hgRRogw4tFmg/zyAiPCxA5j3CDE9Tf9CXZ2EZSuQzI5RjpUIh0usZT3eAqftFTkB46ceouOeHscw+R4vr+xjUaj2cjg6ChLn/9enP/6R9zz8iXKrs2px+8ka9l8bGSKhdZFpJnASgZiAZbcdZ+lm8w9NYXBmJvhxeoSA7bLqc0GVzfBtVYdKSVH9e8EjUaj0WjeNLsKxFOnTuk7vO8AzFffIPj9PyW3+3UbB7p/tiM2DVo5j47nUMk6TIyNYw+WkAMF0mIeWcwjMx6s+7kPAB8OA8I0ebOHotFo3gZGDh2i+bnPUPrvX+Kjz76Bf+go8R3HMISg4NoEww28xRJyJbshAud24JkWedPi5eoSR3KFXuvqfiiHPmGaMOJkeL6yiJ/EDLsZKmFAkCaMuRkGblLEajQajUbzfmZXgfiLv/iLb8U6NLsgBwcQRw4QhxEIA2kIMA0QBhgG0jLBsZGOQ+pYvNapE1omlusSeg6+5xB0/yTd2cBFv81kJs/ExGH2kkp2sxUDjUbzzsA+foTgz/4ZvN/5Ct7vfoXOj/0gyZEDFG2H68M1vMUSYiGHfLMCsU+e4mZKtst0p8m1VmPfVUQpJc+uLFCNAh4ojbASqkzVry/NsuC3SaRkyHH50YMnMfUNTo1Go9Fo9oWeQXyXkB6cwP2bP05zpUma7l5GXFic5UqrxojrkUjZ9w59kKYczW3NstRoNO9d4rtPErQ6eF/5Fpnf/EPaf/HPUsy7tEvzDBopLGchEWDuoV1hPauisOoiXpiEO1fgru1vPQkhKFg2L1QWEdDLVt0LC36b2U6TWKa8Xi/jCINBx2Wu02LU9RAI6nFIlCaY2shKo9FoNJp9oR0+3qOMehkimTLnt1nwO1ueD9ME2zAY895acxmNRvP2Ez16P8HjH0JEMdn/9gcMluukBjDSRiQGlHf4vbCYheYmt9OOhXjyKOLcMOL8sNrHXL7/69dRsl0SmfK1xRmeLc8j5d5E6blGBSFQsT5+h0HHxTFMDmXzeKaFZQhiKQnTdE/702g0Go1Gs4YWiO9RBmynVzlUlvQbL7waUaRmdGzdNqrRvB8JH3uE4LFHEH7Iyd/9GkONNnJMtZaKxVz/FzVtjJcnEGdHNj5eziBiAzE9gKh1805rLnL9yHIi4EZe/beLEIIhx2Pcy3CmVuZSc6uD6mb8JGam06BkK1F4tM8Mo4EglVLPTGs0Go1GcxNogfgepWi75CybOwuD5C2bTrLW6tVJYtpJzIlb4B6o0WjevYSf+CDho/djdQI+/+QrZN1lpJCwlIV+xbfVymJ7YwVRNJwN/y+9GJEapOW1x8WFIYwzY3CjsGW3jmFStB2eWplnOdja8bCeVhwTJCnuDsY2QggkkkhXEDUajUaj2TdaIL5HyZkW9xWHuHdgmAkvRytWmYbtOGYl8Hl0aJxT+dLbu0iNRvP2IgTB93yUzv13kO+EPP7Vp8nklxCRqSIvNm9eUY+J0NpQCaQrENP7FknvW0AeqQKQLHU7FAITZpUwFK1N7aldirZDIlO+tXSDVrz97KJ6TmLsaj4jdAVRo9FoNJqbQAvE9yhCCB4aHCNv2UxkskQypR1HlEOfDw6P81BpZA8XWBqN5j2PEITf/wQXj4yRb/o8fu0PycZ1xJkxWMipmUOJ+lPx1l7X6Zq/SKDhIs0UJpow2YJB5SoaX87BV48gnjmASLtfN+3+AhFg3M2wHHb40tw1bnSafbdpJXvxXAahK4gajUaj0dwUt0wg/tRP/RR/5+/8HZ577rlbtUvNLWLIUa5+tSjkg8MT3D8worMtNRpND8M0efbjD3Hp8Bj5TotPVH+bXKeF8co4xssTMJ+DpqMqi6usCsSOpUxp8uFatEU+RNoJhAbEAuFbSKMr1nYQiEIIDng5mnHIU8v9TWtqUbCn6AopIZJaIGo0Go1Gs19umUCUUjIzM8PP/MzP8PnPf/5W7VZzCxi0Xe4qDPK9k0d4oKTFoUaj2UrBdfnjD9/F9WOT5IIWn6j+Fpn8AgCinIGyqh5Kq9u22ekKvUa3jbQQrO1MAPctYd9bhyeuk56+gfzgDaQTg2/1n29cfakQDDouzTiklcRbni8Hft/Ynq37AT/RLaYajUaj0eyXWxYQ9R//438EIAxDXnvttVu1W80twDIMPjo69XYvQ6PRvIMp2i6hkDzz8QeQQnDk8g2emP4i3yj8OZqVLMLvfl1MNmF6ANGxVPRhd/5QFsKNOxztYOdTwmYKQ6rllGyEqFpI34LsVvG3imOYRDKlFgXkrbWKYyJTqlG4o0HNKpYwNphzaTQajUaj2Rt7riCGYcgv/dIvce7cuR23cxyHRx555E0vTKPRaDRvHQO2o0YNDYNnPvYAV09MkW37fGLlCxQaLShnkE6MnOjOBrYcxMtjcKWk/n99BXE7VkXhDm2m66lHa6Lz+fICM+0mYZrsSSCaQtDpU4HUaDQajUazM3sWiI7j8Mu//MvU6/XbuR6NRqPRvA2MeVkcYRIkCRiCZz/6AFdPHCAbt3h86bcpRSsw1oKsqsqJlSxiMQ9OgjxWgWK4yzuA7L621566A7YwWPJV5EWUJrzRqPJcZZE4TbGM3b+6TGHQiXWLqUaj0Wg0+2VfM4gPPPAAZ86cuV1r0Wg0Gs3bxKrjcT3uCj1D8OzH7ufioRN4aYdPLH2BIes62Oma4QwgH1hAnqysGdTsRKYrLvdQQcyYFotBm1RK2klMkCasBB3kHkeoLSHwU11B1Gg0Go1mv+xLIP79v//3+c//+T/z//1//x/T09O02206nc6GPxqNRqN5d3I0V9xo7CIELz52F2cLp3FkyCee/hbjN5Ygo4SXzIVQ2kNr6SqrFcT27uPvGdOiGUe04ohOHJPIlIOZPJNudk9vZQqDME1JtJOpRqPRaDT7Yl8mNT/2Yz8GwD//5/+cf/Ev/kXfbc6ePfvmV6XRaDSat5xxL4ttGIRpsuYUmkl57bFjhDMBD555jY/96fN891CeG9yLPFjvWzlsxhGRTMnhbnyiKyxpupAIMLfGWKxiGwZxmlKPQoI0QSAwhNhzfqtlCOIkJUxTMqbBgt8ma1oUbGdPr9doNBqN5v3KvgTiv/yX/1JHJGg0Gs17lAHbZczNUA59RtzM2hOTLc5PHiIcgEefeo0PXXuSF475XJka6m3iJzHNOGLY8SiHfn8hZ6fIwQ6ikoFXxpEPzu/YxyIE1OOQVEr6RCIqJNCyIRdtEKumECRSEqYJAvj64gxCCD4+MsVEJref06LRaDQazfuKfQnEz33uc7drHRqNRqN5B3AsP8Dscqvvc1fvOETDhMe/dYZHrzyNWzrFuQdOgBBUwgDbNLnSqjOeydFOIvx44wyglBIeWIDnphDLWeR0EY5sb3xmCYOloIMtDKzNQlKiBOF0EeONEdKTK3Cs1nvcFAaJTInSlCW/Qy0KcQyDp1bm+ZEDx/XNTo1Go9FotmFfM4irXLx4kd/5nd/hl3/5l1laWgLg2rVrNJvNW7o4jUaj0by1THhZTARR2n9279WpIX7nE/cSWSb3v3iB00+dQaQpCZLjuQGG3QwPl0YZdjya0cYcwjm/zVzSRD6wAIC4WlKtptuQMa2uuAuwxbpoixUP8afHYLqAuD6g9nV5EPHaKOJPjyGeOghzeQQCP0k4Wy+TMU0GHZd6FNK+hfEXc52WjtPQaDQazXuKfVUQW60W/8v/8r/wx3/8x1iWRZIkfPzjH2d0dJR/82/+DVNTU/yDf/APbtdaNRqNRnObKdkuI26GRhwy5Hhbnk+RLB0Y5Uvfm+N7vvYSx89Pk2n7/PYH7+BYrsj9A8PkLZtmEvFau0JGqJm/ThJjCkEsU8hHyLEmYjGvqohHa33X4pkmlTAklinOumgLcWkIIQWcG0EgkEaKSA2YKyCFRDQduFyCR+Z5pbrMnN/iQCaHKQwimVCLAnLW3rIYd2I56PC1xRkeHhzl7uLQ7i/QaDQajeZdwL4qiL/4i7/Iiy++yK/92q/xwgsvqHahLo8//jjf/OY3b/kCNRqNRvPWIYTgzkKJVhypTMR1RGmKKQxsYbAwmOOrP/gR6gM5JmeW+PNfe5mBMKZgOwghGHE9JJJy4LPgt1kOfEa9TG+WUB6vAmBcGEa8MAHh1q8jxzCJZLLRNKfqImqeEoLdoUN57xJyqK3+fOw60kwhNHEMk4Wgpaqiort/CfVo98zG7Vj93ovSlGfK8ywFbWbauntGo9FoNO8d9iUQv/zlL/P3/t7f48Mf/jCmaW54bmpqitnZ2Vu6OI1Go9G89ZwqDPJQaYylsMNMp8lSoCKM2knEgO0w7HiEaUo7n+GrP/AR5sZKjFWajP7G7yNWKgAMOR5FxyFrWxzI5hmwHe4qDCGEIJUSCiHp/QvITIRYySJeHVPzg30I0xS7W0EUV0sAyLuWkYUAmQ9grIU8PY88PQ9eAnaCiE1G7QyTXm5NXKLcUVePB9gggttxRC0KmO+0eKNR2RKRcblZ4/duXOZqq85TyzeYaTc5mMmzELTwdZupRqPRaN4j7KvFNAgCSqVS3+dardYW0ajRaDSadx+GEDwyNMZkJsdy0OG5spoZbMUx9w4MYBmCa+0GAJFr8zuP389nn7vEgSs3yP36F+h87jNkjx3kh46cIG3GmIieEHO6MRqeacFECznahmcOIMpZuDyIPFHZsBYTQZCmyhVVAhUPaaQw1UAeUGvYErXhJODbEBvgbBR5GdNi0e8gpUQCX12Y5uHBUQYclz+Yu0ozjpQwlGqtx3JqxvFio8o3ltRN0D9dmCaRkkkvhyUElShgJfQ5kMnfuh+CRqPRaDRvE/uqIN5///387u/+bt/n/viP/5iHH374lixKo9FoNG8vphAczOY5mM33qn6JlIx7WfKmo6qAXXwB09/3UYIPP4TwAzL/5YtYL5xhLJPtVf5c08Q1TTKmRbjeAMeUyAcWVFvo5RIsZzaso+S45K3uvczIQMQmZCP17SXom8OI3d1/uPWmpWeaNOOQVhLTiEMWgjZXWnXmOi2qYcCY63HAy+GaJmdqKyRSEqUJL1WXyJgWU5kco67Hge6xKTdUwbLf2fJeGo1Go9G8G9mXQPxbf+tv8eUvf5mf/umf5jd/8zcRQvD1r3+dv//3/z5f+tKX+Bt/42/crnVqNBqN5m2gZLtkTYuV0CdjmYx7WTKmhRCQSMmi30YIKDou4Sc/QucHPwmA+0dfJ/rtP4FNbqgl2yVMN842kouQ9y4hEIjXxqC8Zo6TMa21TMaW09t+R+zu/qOtAlHNNaZUw4BaGNJJYq60apxvVHANA1Mo0TfkuMz7bWbaDabbTSphQMl2evvozTQCOdPkcqu2ZWZTo9FoNJp3I/sSiI8++ii/9mu/RhiG/LN/9s+QUvLv/t2/Y3p6ml/91V/lgQceuF3r1Gg0Gs3bgGUYTHhZloIOhzIFMqZFxrKQKBfPQcfjibFDTHXbK+MH7qLzlz6LzHok33oB97/+AfhBb3+DjruxgrjKeAt5pIqITMTzkzBb2LpNq+s8uptAXG0rjfp/xQkEC0GLauRjGyatOGbeb1Ny3N42pjDIGBZfX5rlleoynmlum504YLssBR1eqS7vvC6NRqPRaN4F7GsGEeD06dP8p//0n/B9n1qtRrFYJJPJ7P5CjUaj0bwrmczkON+scjinRFvGtLCFgZ8m3F8a4WiuuGH75NAknZ/5c+R+60tYl6fJ/offpvPnvx85VCJvO8ht3GjkqTIyH2KcGYOZwtqMYRfRFYgyu7MLqbQT1Xnap8UUIG9ZXG02KNg2XrcF1l/vlNpl2PVoRCGLQYcDmey272cIwZib4bXaMsfyxbWKp0aj0Wg070L2VUF86qmn6HTUnIXneYyPj2txqNFoNO9xhhyPCS/LhJcDugLRMBlyvG2NWWSpiPM3f5z41FHMcpXcf/gtzIvXyJrWdmalap5wsom0E2i4sLnQ2H7zLaYAecumFgUsB36vhfXgNsdRsB0OZ/MbWkr74ZkWKdCKd1mbRqPRaDTvcPZVQfwrf+WvYJomd999N48++iinT5/m9OnTDA4O3q71aTQajeZtZtTN8MToQTKm+sowhaBkuxzM5nomNP0Qnkvw576P5GvfxX36RTK/+YdMfuRhxKE8iZSY/Vo2BVAMECtZZMuBQqhaRSNjrcU0u7cWUxEafcWoKQxSJH4SM2BvXxncP5KoX/usRqPRaDTvIvYlEL/zne/w3HPP8fzzz/PMM8/w67/+66RpyvHjxzl9+jSPPvoon/3sZ2/XWjUajUbzNiCEYGDdfB7Ao0NjFLqmLTtiGISf/DDp5CjeH3yNwade5MemR/nCB04yWhzoP9dXCGAlC3UXCiHitTHEshJy0o3B2rYGqdilggiQMSwacdhfpN4kUoqtBjwajUaj0bzL2JdAHBwc5NOf/jSf/vSnAWi32zz99NP86q/+Kv/tv/03fvM3f1MLRI1Go3kfMObtr/IW33WC9sgQ3m99iamZJX6q1uT3P3oP9sTYlm1lMVQJFnUHeYCeOAQgt3X+cDnwQcCI03U/dXYXiEOOy9Am0ftmMYSaZVxlwW9TjwJOFXSXjUaj0WjePezbpKbVavHiiy/2KomvvPIKruvyxBNPcPr06duxRo1Go9G8B0hHBmn/9OfxvvhVCuev8Oe/8iLPPnYfsycObNyw2HU9bbiQbKrw5ZVAbMYhUSop2jZBGmMKg3Yc004ikiRgEiDcof31FlYOVzGFoBPHvf9/vbZCJQo4kS9h3Ib302g0Go3mdrAvgfi5z32ON954g+HhYR599FG+7/u+j3/4D/8hd9555235stVoNBrNewzXwf/cZ0ieehH3G9/lsW++woWlGq984E5Ss1vx82KklUDDgbb6mpKlDvJgHYY7SCmphAGWMGgnEaNulqlMjmfK80x6eYYHPXzYsYJ4OzCFoJMogViPQq63GyRSUosCBh1vl1drNBqNRvPOYF8upm+88QaWZfHQQw/x8MMP88gjj2hxqNFoNJr9IQTRY48w/aPfQ8e1OXXuGp/8g6fJ1Vvd51FGNakBq+2luQgmW+Ck1KKQQcfj7uIQUSq5uzjEfQPDfGx4iu+dOMzp4TFSM1mrIM4UEN85CMu313XbFAadRLWYzrQbhGlKimQl8G/L+023GyRyb6Y4rTjipcrSbVmHRqPRaN5b7EsgPvfcc/zSL/0SJ0+e5Mtf/jJ/8S/+RT74wQ/y1/7aX+NXfuVXeOmll27TMjUajUbzXmPwzlPc+MnPsjQ+yFC5zqd//9scvDKnniyqVlKxqKI1ZGatdbMeR9xTHOKhwVFOD41xKJvHMy0eGBwlZ9k4hkFqJ4jEhEggLg4hWg7ixQm40T/O4lZgCYHfrSBeaFbJWyov8obfuuXvVQ59ni0vUAmDPW2/4Lc5Wy9T2+P2Go1Go3n/sq8W00wmw2OPPcZjjz0GQBRFPPXUU/zKr/wK//pf/2uEEJw9e/a2LFSj0Wg07z3GRsfo/OTnePWPv8Z9r17mI19/iUtzK7x05FGghKh3WzMzKtoiSlMcw+BQtoBnWnxgaHzLPi1hgB2CD0wPICITmQ8QTRemi8ip5m05FlMY+GlCO45oxCF508Y2JLPtJlGa7hgJshOV0MczrV7MCMC1Vp2loNNrad2NpaDDUtBhPmhvcaTVaDQajWY9+zapKZfLPPfcc70/b7zxBmmacurUKW1So9FoNJp9k7Edcp/+BL8/XODTT7/OifPTDC/U+K77QzTtrgNot4IYpAmeYZK17G33J4RAdLMQjUtDAMi7l+GlCWV8k7LP/pltuFxCzBSRH5wFL8EyBHGiWmDDJMW2TRxgNmox12lxOFfY91ukUvLk4ix+GnNHfpAB26HkuLzRqBKmyZ4EopSSG50mhhBcada4U7uqajQajWYH9iUQP/OZz3D9+nVM0+Tuu+/mQx/6ED//8z/P6dOnKZVKt2mJGo1Go3mvM+pmOHTfPfzHgsefffYCk/Nl/oz4b7w88HGuZu/uVRDDNGHQ8XbNLzSdtdk8OeDDQKDmGleyyKbTa2G9aSou4tIgAoFcysGhOqYQJFJSjQJSZG+NrjB4rbbMwWx+326mjTikGgV4hslL1SVSKbENgzBNyBg27Xh3gdiKI+pRyISXZcFv04jCvWVYajQajeZ9yb4E4g/+4A/ygQ98gIceeohM5vYO+2s0Go3m/cWJ/AC1qQP85scdPnJuhtOvXuV09WtMBFd4LjlOiEuQJHvKL7THAvwVD2OijTxW6RnfsJKFuruzQJSo7Tc/tphTGYu5EHFmDNHdSKxkkIfqmMIgkSm1KAC5toNh1+OG3+JGp8XB7PYzkC9Wlhh2vA2VxkoYkKQpg16WQdRxh2mClFCNAurR7kK3EgVEMiVv2VTDgMWgowWiRqPRaLZlXwLxb/7Nv3m71qHRaDSa9zlCCE4PjTPguDxpQF3ewYfOPsWBzlWGf/cGz37sAWaGMgzYuwvEwqGIq4VzTGZyvcdkMUAAou4iaUDZg6YDh+qwmEMsZVXuYiUDmQj5gRuqFVWCOD+MuD6g9uPEiNBCjrSgnFHbd9tWBYJaGLK+UGgKA1sYnKmtcCCT29b5e67TJCXdIBDLob9le8dQ8R1OYlCPdxeI5cDviVlTCBb9NifyA7u+TqPRaDTvT/Y9gzg9Pc2///f/nhdeeIFqtUqpVOL06dP87M/+LIcOHboda9RoNBrN+4iDmTyuYbIwmeNPVv4CDwRPcrx8gY//yXMUTk7ifu+BXffhmRYpcuODxa6DZ10JTHFuBNFySHMR4swoIlk3mBiZyIWcita4NoC4PoC0EyUWu+JQPrCIeHlcta3WXSgFgCRIE6xNom7Y8ZjpNJn32xtE6ypSShpxhPA7Gx6f67TImP3zHG3DpBmFpFJu27oqpeRau9HbR86yme00d3yNRqPRaN7f7GtM/7XXXuOHf/iH+fKXv8x9993Hj/zIj3Dffffx5S9/mR/5kR/hzJkzt2udGo1Go3mf4JkWRduhVaoTj8Q8/+EH+PYnHyFwbR66OMfJ//JHGPM7Z/o5/RxD3USJvKYDoYFoqTZL8boSh3KkRfroDdKH5tXjV0uQgrg2gEQiT88hPzJDet8i8sEFMCVyqCvoyqtjF4IwTXpVvlUsw8BAcLa+0ne9QZoQpgmVMCBK1fykn8SUQ5+s2f9eri0MQpkSpMm256EaBayEPgVLHWvOsqhHoWqD1Wg0Go2mD/uqIP6rf/WvuOeee/iVX/mVDTOInU6Hv/pX/yr/6l/9K37913/9li9yP/zGb/wG/+//+/+ytLTE3XffzT/6R/+IBx544G1dk0aj0Wj2x4SX4/VghdJpJdaeamW5+P2P8snvvsHhuTLWf/htwo89Svjhh6BPhc0xTKTcVCETwICPWM4hp4trD/vqq1AeqsOgD1IZ24iaBy+Pq4rhaAsK3XbOyXUxGcNtuDCs3EwP1ZFAmKa4fQTqsOtyrdVgOegw4m6c4+8kMWGaAinNOMQ1TM42KvhJwojj9T1HtmEQpSmdJN4QgbGeBb9Nsi5iwxQGqYRyGDC4zX41Go1G8/5mXxXEV199lZ/7uZ/bYlCTyWT4K3/lr/DKK6/c0sXtlz/8wz/kf//f/3d+/ud/ni984Qvceeed/NzP/RzlcvltXZdGo9Fo9sew45F0O0TjNMUxTRZtkyf/zCP43/txMATuN54h++u/jbG4tSpnGwZCyC2Py2FV8evNE3a3kU4M3ecQIE+WkUIillU7qDxc67/QQoScbCACC3F2BANVDdxcQQQlWhPgUnPrvvwkQSIBSSUM+OriDM+XFxhy3G1nFldbRHeKurjaquNtEtCmgEW/ve1rAC40KrxaXd5xG41Go9G8N9mXQHRdl2q12ve5Wq2G67694bu/+qu/yl/4C3+Bz3/+85w8eZL/7X/733Bdly984Qtv67o0Go1Gsz+KtgNIpJREUlXA7hsYYszLEZ2+j9bP/hjxwQnM+WWyv/rfcb71HCRrrZaqgthnxyNKGIlYiSZ5rKLaRw/WNzqXDvnID8wi86Eyoxn0t12rvHMZ6caIhTyO7+Inca9it5lB2+FCs0I7jjY83kliFZmB4FKzxlynxcFMntwOeY/rX9uPahgw77e753KNrGUx57e23Z+fxLxYWeJMvUy0Q/uqRqPRaN6b7EsgPvHEE/yf/+f/yXPPPbfh8eeee45//a//NZ/85Cdv6eL2QxiGnDlzho9+9KO9xwzD4LHHHuOll15629al0Wg0mv1TtB08y8TvzublTIvHRqb44PAEAHKoROfHfxj/ez4KhoH7zWfJ/offxlhQVS9HGBhCkG5WidkYmVOtohIJR2rIj1+H49WtixgIkR+ZQT68sDX2Yj22hO4sohvtHB+Rs2w6ccKFxsb385MYKSWuYbAUdMiY5p5MZCQSP9ko4qI0QUrJK7VlEpluqWa6hkkrjvC3EZZXmnWqUUAzCpnfpdKo0Wg0mvce+5pB/IVf+AX+p//pf+Inf/InGRoaYnh4mHK5zMrKCg8//DD/4B/8g9u1zl2pVCokScLIyMiGx4eHh7l27dpN7dMw3jkOb6treSetSfPeQH+2NLeDN/u5yho2JcejGYXEUjLquFimsfFLyzBJPvQgnVNHcb/4VczpObK/9ltEHz2N+6H7sUyDBIkpDKphgGuYZCwLRtvQciAXIWzATtlZAe4BWxnLFKRHPlfcti0UVC7iC9Uliq7bi5topTGWYZC3bG74LY7lBnbcxypZ0+K12jIF2+FYvkgjCvnS3DXGvAwXm1XGvOyW/bimRTkK6KQxtTjkervBh7rCuxVHvFZfYcB28dOYy60a19p1ht0M9w4M3+zZuWXo31ea24H+XGluB+/mz9W+BOLg4CD/+T//Z77xjW/w6quvsrS0xOjoKA8++CAf+9jHbtca3xRSyj19yW7GsgyGh7cPNH67GBzcao+u0dwK9GdLczt4M5+rk+EQLy0vYgKHh0vb/04eziP/1k+QfPsF4j/4Bs43n2X04hWOfeAknQN5LGGQyBBfpAgrpXQ0IrgqsSdCnPytGY2I8oII8EwPq6DEYtoyEZkEsalXJ4eLE/i83Frhnqkx8rZN2hQU8x6jmSyj7P27J5d3WfE7PNtc5OjYIL4PbSNhJmozlM8yuMkzYJUKIVbeoe53mK23yZU8LGHwzPQ1QivlcL5IJ4mZ7rTw44Q7XfMd9Z2of19pbgf6c6W5HbwbP1d7Eoi+7/P1r3+d2dlZRkdH+chHPsInPvGJ2722fTE4OIhpmiwvbxyqL5fLW6qKeyGOU+r1zu4bvkUYhmBwMEel0iJN+w3WaDQ3h/5saW4Ht+JzZQWSVke1g6admJWV5s4vuOdOxOQE7he/hnn9Bt//e8ucu+Mg33jgKGPFAY7nB/jqwjRuRiAeC4gyMVHzFn3mpYMAgkZK0AxgxUM8P448UYET1S2b2wjmOy3emFviaK7IXKVBnCa0kv3HT3gYLLdbvDq7QDnsIMOUIc+DBFrN/vvr+BGzyzWm2w0WW00uzC3TjCNeXJhnysvRbqnznk8t8obFtXKV2XwVbxu31DfLgt/GM00G7J0Fu/59pbkd6M+V5nbwTvxcFYsZbLt/tu56dv1NPz09zU//9E8zOzvbeyyfz/N//V//1zuqaug4Dvfeey/f+c53+NSnPgVAmqY89dRT/OW//Jdvap/vlB/metJUviPXpXn3oz9bmtvBm/lcFUwHKSVI8IS1t/0MFGn/pc9ivXIO40++xd3nZzg0vUj5Ux/GG5nCNUyCJMHtziHyJj/yldAnZ9k4dqKaVENDda5c78ZoLGSRxyt9X2tKwUyzwZSbox3HeIapjvcmyJo2b9QrdNKYvGntuh8TWOy0WfI7+HHCXLvF9XaTrGFhCtF7/eqalpOYFd9nMnPr74SfrZX5bnmeI9kinxw/uKfX6N9XmtuB/lxpbgfvxs/VriY1/8f/8X9gGAa/8Ru/wcsvv8wf/MEfcPfdd/NP/sk/eSvWty9+5md+hv/yX/4LX/jCF7h06RL/6//6v+L7Pj/6oz/6di9No9FoNPukaDvKjVSgZgf3ihDED97NVz73OK8dHiHfCTn8B99g8AtfYSJMd4yF2A+NKCRIU1YCH+yuUUxkQmDCclYtpemq/+9Dwba43mnSiEPCNNnW+XQvFG2bahRsn4kYmBCvjVu4hslS2KGTxAw5LpeadZaCNiVnawVPCIEAyuH2Tq43y3LQ4bvleRzD4Fq7TuU2vIdGo9Fo9seu30Yvvvgif/tv/21Onz6N67qcOHGCf/pP/ylzc3MsLi6+FWvcMz/wAz/AL/zCL/Bv/+2/5Yd/+Ic5e/Ys//7f/3uGhobe7qVpNBqNZp9kTIuCZeMIg+xNtDYeHB3H/+z3UPvz309aKmBfuMpnf+873HH2GiJNb2pNq66ocZpSjQKOZAskSHC6AjE0YS6PkKKXsUi5/xxg1rRpxSHfXLpBlKZY+5iXF2eHES9M9CqgpjAQgCXE1rn70EB8+xDi1fHeQ063kiqlpGg7VCIfEwNzmzU4hslMu8mLlUVudHZp9d0Hc50WcZoy5HjEMuVKq37L9q3RaDSam2PXb9ylpSUOHTq04bHDhw+rlpPlZcbGxm7b4m6Gn/iJn+AnfuIn3u5laDQajeYWMOpm6CTJTc2+rTqEUhikdeQAzreex/nuSzz+4iWqVxd54cP3MDc60IuB6CQxqZSEaUInSRj3MpjrHGYW/A5+GpM1LTpJzB2FQR4qjXKt3SAyY1yAyEAsqjZMeayCuDyEWMkgJ7eKKkMILGGyFHSYyuT2bqjWthAz6thkYIKnxOmkl+2/fdVDJAZyOaMqiW6Ca5hUoxAhBI5h4gqjb/VwlZxpc73T4I1GhcdGJpnKvHnDmlRKLrdq5LrV4ZLtcLZe5o7CIPk95D9qNBqN5vZw8/0sGo1Go9HcZkbcDEOOu21la8/YNuEnP8z0j/8QsyNFSpUGn/qj73L/ky8Q1OqEacJy4BOmKVnLZtj1KIdrBi8LQYesZfHE2EEypsWdhUE+OjLJgO0w6Lg0RdfULDKhbSONFA7XVdbiSmbbWcdxL8OBTG7745vLqUrhQg66RU8xW1x73l8TzqJf9RAQFU/9FwFLSkRahkEniXqV2TEvuyUvcT1Zy2LY9hhy3FvWaloOfVYCn4KlsiPzlkMnjnmluoSfxCzqDEaNRqN5W9jTLdmf+7mfwzS3fnH89E//9JbHn3rqqVuzMo1Go9G87zmQyZO7hdWkzNQEv/k9D/PA9AqPPH+eB64vc+dchWfuO0rmgVN8z+RRhBBcbdX5yvx1UilJpSROEz42fpjJTI4j2QK2YfSqi4eyBV4MFhmyEvAt1V6aC1U24qCPqGSQi1kY37/gEVcHEU0HsZJVYjMXbZxp7FhQ2sX5tOat7W8xhzzYAOBItrivttasZZHIlEoY3HSE1CqJTDnfqJIisdbNXo66Gc7VK0y3m/hJwhNjBziSK+6wJ41Go9HcanYViH/9r//1t2IdGo1Go9FsoWA7FGznlu3PMy0GHI/Xj4zyxuQgHzlznbvOXePjL16ic30Z+X0uyeEpDmbyjLoZyqFPKiVTmTwT3RbOze2u4263tdNOEHFXvGUiAOTRKqKSQVwZRI61YTtNFRlQ9mD9NpGApo10YigG0HQQLXUupJAIKTZUEPuSCKi7yFUTnXJGvZed3pQpjmuaVMOQThKTvUnhLqXkuyvznKmtMOZubIt1TbPbcipxDME3l29QsB2GHK//zjQajUZzy9ECUaPRaDTvK45kCzxbXkCYgqXHH2XmjsPc+9SrHFiswm/8LtE9Jwk++RFOD43x9aVZOknM3cWhbStmk5kcp/IlamaES1fMZrpOqcMdZCFANFzkSgZG+ufriislxLUS6UNzMNrdpu4hEMghH3m/MoWTLVu1rBoScXYU4ds7J3XUXFXRHPTBShA3ishyBsZb+z9xgC0MwjShGUc7CkQ/ialFIeN95iIbccT5RpUxN4vbpztpfRbiTLvJdKuhBaJGo9G8hegZRI1Go9G8rxj3siCUScqQ4zF15DAXf/RTdH74e0jzOezXL5L7//0nTjx7lh8cPsCjg+Mc2MGUxRCC00PjCGfNGVVmVQURocxqQInAbWkpsSXWt4NW1d/lwLqZv1wEh+sw0G0r7exyn3d1HyUfOaT2szqTeDOoOUdo7xIVcqFR5UtzVzlXL2/JZGxEIbFM+4rDzeQsi2vtxk2v93ZxoVHheuudty6NRqO5FezfFk6j0Wg0mncxw26GvOXQiqOuyYzHkVyReGic+ORRnKdewHnmZdzvPM/Bl88y+vgHiUsjO+4zZ9k4brj2QGadgBprI3MhoppBVjwY7GPystoq2ljXTlvtVtJKfbb34o2v2wbRzWNksLMWxbFN7MZekVLQjKNtn0+l5GKzRixTnlqeY8jxGFtXSazH4bamPZvJWTbl0KcehRRvYavxm+VKq45jmBzOFTY8/kp1mclMjlH3zZ1jjUajeTvRFUSNRqPRvK+wDYPDmTxZ09oqOhyb8PEP0fqrf5HonlMYrTaZP3yS7K/9Fua12R33a7rrVE9mnYASII9V1V+3qyL2BGJXFKZAzVNuqPlw6/Z2irRS9brtxJZvImoe0ougEIKXIDORmmMMb/7r3zYE1R2cTJeCDuWww4SXJYUtYnIl6GwwptkJxzCJ05Q5v8Wr1WUaUZ9z8RaTSEk58HsZjqvUooCXq0tcb+8tyzGRKc+uzON341WutGq8Wl1mOejfhqzRaDRvFVogajQajeZ9x6FcgSO5woacw/XIgQL+D38PrZ/6HMmBccyFZbL/6ffw/vsfIVaqfV+zYUwus6kFc7ypxNlKFpqbZvdi0TO3EYEFS1nEUwcRiaGqh9t9U3uR2ibeZoNupMUG45uhrvio7FDhkqhYjaT/zKVjmBsiQFZJpaQc+lxt1ZAITGEgkTQ3ibrl0MfbIVJjM5YheLW6wlMrcyy9ReIp7Rrp9BOkrTjCTxPaSUw1WjsPl5t1KmHA9VaDVO5eIq1HIRebNeb9NktBhycXZ3lyaYZrrd0F5oLf5k8XppnrtEilxE9irrRqRGmyvwPVaDSaPugWU41Go9G87ziULXAoW9h1u/TAOO2f/FGss5dwn3wa+8JVrEvXiR66m/CjjyLza62TjifoANKNwZTUogA/TZTLqQHyUB1xfhhxfQB5z/Lam2xqExWvjCFSAznYQd61sv3ivBiarppDtLcKGbGYA0COrRnSyEEfMVtEVDzkdkY1VwcwLg4jD1eRd5a3PJ0xTaphQC0KeoYyqZQ8X17k1doyCZKh7uOOMCivE1F+EtOIQgr7cEAdtD1WQh8QtHZobb2VNKKQc/UKUZrysdGpLc8lUiKRrIQ+i0GHZhRyqVVj1M1Q6Z6bwV2MdepRSCXymWk3yFo2iZQM2d6eRHA59Hm9XuZqq07BcpBIqlHAfQPDfHh4kjjd24ynRqPR9ENXEDUajUaj2QkhiO85Seuv/g8ET3wIbAvnhTPkfvk3cL7+DARKnDmr5pvd9tJ6FBGl6ZpJy1RDtYzO5VXUxCpdgSi7vaI9cfjonDKl2Y7MDnOILQsqGRVvsX6GcfXvdXfra0BVM6+V1N/n86rVdROeaRGmCa9W18TrmdoKL1UXGXJcDq3LrnRNk/K6dtR6FBKkCe4+KoiuaTKVyeEaBrVol8zHW0QlCvDTmPONCvOdjUK6EYdIKbGFwYV6haeW53ittkIniSnZDimS5WD7FtzZdpNEptSjkDiVXG83udSsUbRsXNOkEgYkss+JX0c1DChYFuNuBpAYwKSX5fVamd+dvcTv37j8lolpjUbz3kMLRI1Go9Fo9oJlEX7kEZr/448TfvBBSFPc7zxP7pd+A/uZl8llYyXyigGdJMYzTbKmveb4aacw1USkBuL88Nrs4KrAW2deI49Xdl2O7BrViPVibyEH0wXEuREVb3GktjF70YuVSG3Z6v2XMxvnEWeKiKjb7hpasJCHmQLEG9tNx7yMEk9+iyhNOFMvM2C7WzIiXcNULZndc9CMIwRi28iQnXAMg0qf1tZ+pFIy3W5scVDdK8tBB0sYCATnm9UNz5XDAMsQ5C2ba+0GBctmKpNjysshhMAWBrPbOK92kpjvlue50WmxFHQo2Q7tJKIWBeQtG88w8bsxIjuxEvq4hollGBS7WaGOYTLmZgiThFqksio1Go3mZtACUaPRaDSa/ZD1CP7MY7T+2l8iuv9OhB/g/el3eOB3f5fBka8jj5epRAHHcgNMZXIbLvblsQrSjRE3CtA1rBGrFcSxFtJKkMNtGNq+AgUqbL6aq6nXXxlEXBiC0EC8MoZxbhRRziKzIRypAqq181qroQRsNlIzj4tZjBcnEee6Dq1tC3F5EInsCVTjtTGMs6MwXdzw/k63AniuXmHeb9OM+7eNOoZJmKa0YiVW5jotDPYvDlf3papuO1fXABb9Nt9dmadykxXH2U6TrGlSsK0tZjRLQRvXsMhZNoezhS1GR0Xb4Xq7Sb3P/GItDFgOOky3GywHHTKmhSUMLCEwhMAyDFIpaUbbC8TV6qPTpwrrmiYlx0UiCfU8okajuUm0QNRoNBqN5iaQAwX8H/oU7Z/9MaJTR7EbLf7My2f43j/4JkenlzmWLXAgkydK11WxvAT58DzSSJWjaSLWKoj5EPmxaeRD87u+dyuJqWTrtB6YRloJ4mpJVf8QSDdG2gny7uXet3wjjrAMQ1WVum2rYrYr+lYykAjEK+PK9OZYFXm0ijTXRJHoY2oz7HhcbdV5o1HBEP2rgoYQgKQVR4Rpoipu9t7nD9ejxGZCuyu4EymJNonFIFGi6Hq7wY1Oi0W/ve/3accRtTAka9pkTZtmHPWE5oLfphGHeN35PruPG2vGtAjShEvN2pbnqlFAkCRcbTVoJzGeaTHhZZnwcr1tpJQ04u3dWptxtGubrgDCPQjptwspJYt+e09mPhqN5q1HC0SNRqPRaN4E6egQ/p/7fhb/hx9kdrTIQLXJD3/7dY7/1y9xcHYJA7lxpqwQwmgbkRoqk3A17N6LVRvqpm/mZhz2hM8q1TBk1M3QGWzAIeV6uRqhIe9aRj5xbUMVMkgTRt0M9ThE5rriY0WJPhGbiLMjiIaLLHVU9dCUyEfmSB9UYpaqtyVOwzVNYpky77coWjtnFLaSiAW/TTuJyK1vQ5XA5RLiW4egvvM+bMMgTteqa1daNZ5ZWRPTC36b379xmYvNKpdaNRzD4OoeHEFBtaSuVtwqYUAoE1zTxBCCFBVr8XJ1iT+4cYUoTXd1YS3ZDuca5V5r7doaOxS7baWxTPsKTFOIDe6om2nFEYlMd4kKEe/YCqKfxHxr+QZ/sjCtIz00mncoWiBqNBqNRnMLkIem+MKnHuZLjz/A0mABZ2GZsS/8CT/+1VcoXJ2DddUSOaIqW2IpC76lWj+9rTNjUkrKYUAlCphpN5nrtKhHIYZQIfJRmiInm2pfqYEUci3KYt0+kDDqZohTuVZBXNfqKeaUo6u8Y2XtyqAUqIiMkq8qi42tAm7I9mhF8UbRtwlTCGY7Ta616lsqjeL1UYxLQ4iOjbg8uNPp7b6AnvlKOfCZ71YIW3HEt5ZusBx0eHplnlYUMeFlWfA7u87zAVxu1fjW0g0A6nG4oQnWFQaXWjVeqiwxYDtMdmcNdyJv2bTiiEV/7WeRSsmC3yJrWpg7NNp6psmSv32LcSuOd23SVS2me68gRmlKJfR3Nce5FZyrV3i9XqYZh2vzuRqN5h2FjrnQaDQajeYW4BgGpmlwfqLEyuGP8Lm2gfPNZxlZXOEHv/4Ky69f58zDp1icHIaRthKFS1mITHCSvrdsO0lC1rL59PhhyqFPOfC51m5wMJNnwssy22lCLkIWAkTDVeLQ2ljqC1JVDburOMjFZpXA67DaMCqtFNHNUZQDPgxsbW2UJR9RzqpqpwDyYc/4JmtZHLF2jgsZdjJcbdVJUsmwuy76oW0hbhSQTlckLGWhbUF2B9EgoRVFDAmb5aBDO4noJDGXmzVWwg5HsgWWw4CsZeGZFsuhz6LfJp8f2HaXqZScq5epR6oyt9I1qFklZ9mqHRLZc2fdjVUB2VzXKtqIQlpJzKjjkbfszQXZHhnTohL5NKOQvL1VlNejYIO474eJ6LXi7sZsu8k3l2fxk4SPDE9yZ3GQRhSSt+ybMhPaiShNudCsUrIdGlGsnVbfwTSjkDm/DUhOFfZw80bznkILRI1Go9FobgGWYWALg3oSUHJc4oMHiU8dhXOXiJ98ipGlKo9/+VmWxwY589BJlgbGETUl1eRYm+l2g6xpbxBR7SRi1M0y7qk/AKe7VZeZdrMnE+TBOuLsaN9sw3YSM+R4DDoeU5k8s3ETD6lExlgTuZRDRCby0DbtmF13VXFhCHFBkD44ryqLe8Q2DA5m8kTpppbKhe7c3YEGUkiMy0MwXeybvbiKZRhUAp8Jx6MahfhpQitW7asZ00IIwai7MX9wNxGy6LeZ77QxDYNmFPUcQlfJmhb1KGTM3TqHueNxC2NDxMdK6BOna62h21cQLZYCn/PNKo8Mjm15fiX0cXZsL1XnaS/VuXYc8/TKPGGS4BgGr9aWKdg2T63M8+HhCQ5k8rvuYz/M+y2qUcABL4efJFTCnc2YNG8PldDnT+anqUYBjmEy6mYpOdtE42jek+gWU41Go9FobhEZ08JPk16APELA3Se5+uM/xO9/5C5qpTwjixUe//KzPH7j9xj3ryMPV5B3LSOE2BJN4Kcpk5nshsc80+r96XGgQfrhGZjaGq/QSWKmuhf6BzI5QiPptbPKgQB5oowcb8J4s/9BDQTKVKcracR2GYq7sHneTiyoNcmJJhzsZkTOFNdmMvvgGSY3Wk3qUaDm+6SkFoUsdR1BN2MiaCXbC8Q4TTnfqKpZQ5myEvo04mhDyLwQgslMbpeZv604hkm5G8vRSWJerCyR2WN4/aDj8np9ZUt7rKpw+lviRDZjCUF7h+Ne5ZXaEuXQZ9TNMGi7VMKAp1bmmW43qOyQ5bhfOonKlHyjUcHCwBACxzCphNub8WjeesI04XqrwZOLszSTkEPZPJFMON/YPXZH895CC0SNRqPRaG4RnmliCWNLK+KRfJHlEwf5r9//AZ56/CHqAzlGq8t8bOX3+dT5LzJ1bQ4h2VJWklIy6GysiK2iBJFQM4YCZX7T5/USGOlW1YYcZTYji4FqcS35cKiBfGBx+ysCUyIfnic93q3stW/OhXQDbUuZ4uRCNRPpJnCkpjIiXxtFPD8Bl0pbjHEKts1K4HO11SBFIoTBjU6TThL3FV/KubW/WYufxDy5OMO5RpkR10OiKlxBsrND6F7xTJN6HBKlCS9XlyiHHYa3+VluJm/ZdJKEy5syGOvdfMPdhKYpDNrxzhVEP4m52Kwx5LiI7mxoyXaohAFDttub77wVzLSbfG1hhqutBsOuusHgGgaNOHxL5h41e+M7S3P88fw16lHIhKtuTA3ZHucaFRp9Yls07120QNRoNBqN5haRNS0cwyRjbazw2IbJfQPDNJKI6aMT/PGPfJzvPPEwlaEiQyt1PvrkS/zUl57nniuLpN0qYpgm2IbBoN2/YpfpitFohwvsdhKTNe1ee+qg45G1bNon55GPzkF+jzNgQ37PLZXWmxSIkYF4rds6Od7qiVp5rIr0IkQ1gyhnVcvp9Y35i6ZQOYHzfgsB2EJQCQNSJKbYekljie1n8ZaCDldadQ5kcjiGOpcrgQ/IbjzHm8MxTIIkYcHvcKFRZcTN7Gumr2jZnKtXiNa5kdaicNtjXY8lBGGa7ii+Fv0OnTgmu64aWbAdDmZyau4y6GyJEdlM3H2PREqeWr7B9dbWCjaoc+0YBge75xq65ydNehmZm4nSlDcalbc9CmPRb/NiZek9L2TDNGHWbzLsuIx7a5/VrGURpemOzrqa9x5aIGo0Go1Gc4vIWBaOYWy46F7laK5I0XZpxBEIwezRCf7kzz7GN77nURZGSwzV23zmmTf4gd/+Jodfv8Jyq8Ww421rjOKZ6r12uoivRyGHs/neRbltGEx4WZqm35st3DN2irQSVUF8E9fs4pUxRM1DDvjIw9W1J0yJvG8ROdYivWNZtbWeH4bmxuMvdKtcljDwTJNOEm9r2mIJY0vb7ip+kmAIemLL6wqWWyVHTCGQSC41qwRJ0rcFdieKlkMtDpnprLX+VsLdDWpAVU5jmfZ1MlWiTjLdbmAJo69ozZgWnSSmtoMoiNKEry3O8Cfz07xUWeLF6hJz/tY2ZSklc36L7KabJpahxP52Ar4S+rxQWWS63ejtZ77T2vbnebt4o1Hh28s3+Pby3C0TiSuBMk96J0WRVMIAf9vPqdwStaN5b6MFokaj0Wg0twjPULOBWXOrqPNMizsLg9TXt2oJwcLBUX7v04/wx5/5APMHRim0fD70zDn+xz98jh+4WkaE/S+gDSHIWfaOcQaxlBzMbnQZncrkCHe50F0IOtzobDK8EUAuUvmN/g5iJzARTx1AXBzcKiQTAeUM0omRj8yBvWmDwQD54AIcqSOPVZUYWsxt2GTAcVjpzhy6hkk9CrfNJTSFsW0lbbMYdE2TRhxh71KdIwWq7p5FciUMdjWV6YcQAlcYvFGvqDZiVDVrtwxGUMcdpylhn4v65yoL/NHcVa61GxTt/jcfDCGQEub9NucblZ6Ia3Y/u6mUPFte4EqrzkynyXOVBVzD7NuW2oojGlHYV3hICc1tZiXbSUw58HmpusRsu8mfLk7zxbkrvFxZ2vX4UympRcGOJjjtONqSU7l1m5irrTpjbobz9cotabtdCXz+aP4qv3/jCn+6MH1LRGctCnij/ubmBMuhj5Ry2yq3/ybFbDUMeLa8QCJVpMrZ2krvc61556FdTDUajUajuUU4hknOtDaYnKznWK7Iy9UlNee2bptIpvgHxjh/7Ai//8Y5PnN5iUPXFnC/8Szyuy8TPXQP4aP3I4sbXSWLtkN1m4vgVhyRsUzG3I0mN7u5EUZpStIVnetdNwHIRlDzVJtpZpuL6xt5RNOFpguBibx3ee25poNAIIvBljiOLYy24dIQYiWLPF7tPWwaBkdzRSwEEvDTeItz6SqWIYjjlCBJyVobRVozDrHWXQwrsRkwvul8bWF6AOP8MOn9CzCxTkQnQhnsrGvbtYRgJfS3Xd9uDDkes50WS0GHQcdjJfT3ZHRjCkEqJUGfi/py4Peqh4OZXJ9Xr+4DXqws0oojJjN5Rl2PmXaTz0wcIUVyrl5hwsvgGCaJTIlTST0KacfxhmphJQqIZdqrYq9HCJhuN1gJfB4ZHMVet007jnAMkwW/zZfmr2EgKNku5xoVThZKjOzgKnuhWeWp5Tkcw+T7J49smeOVUvKNpVnqcciDpVFG3Ay5eOvPaM5v4ScJo26GejfX8s04uyYy5bnyAmGaMOFlmWk3udSscSpfelORIkt+h+cri4x6GTVn3Hs/SSrlFoOoftxoN7f9vWUK0YtsacXRnuNe1nO5VeP58iI50+Jqq86s3yJr2d2bOAnHd4ii0bz1aIGo0Wg0Gs0tImtZjHnbC4yS43IsV+RCs8rBdReaUZpSsFwGbIfO+DC1+x9kuJPgPP0i1pkLON99CfvZV4jvOUn4wQdJx0cAJRA3zyCGaYItDFZCn0eHxre09uUtR80ubo6d6LIc+BzNFWglMbUwZNj1epUFmeuGyLdtoLPltUgQc6piKe0EcaOIPFZdyzZsdHP9CnswvMiHKiOx6kJogBTgqWN1DFOtCTiVL227C0ustlomZDdd8jSjaEPeoSEEBzP5XVtBRVUJbLGcRa4TiOLsCGKuQPrBWRhQrZl5y6YahX3FEYGpqpBeV8SlqGM014SzZRgI4EKjyslCiU4SU7J3EbC9BbGl/VhKSSOOGHU98tbWjMX1jLoZ/DRhxPFYCDosB21SqQTf6nJXj8sUBoahBGk9CjZ85qphoI6rDwO2w+VmDQkczw8wuk701aIQ2xCMOFnEulbgehzyanWFT44f3HbtK34HKSXtJKIaBT2BmEo1X7oYdJjttPAMk28uzSIQlKoe+dTivoFhBmyXZhTyRqOC2/03kjNNrrfrPFQauWkxd6PTYrrTYNLLYgpB0bZ5rrzAa7UVDmbyfHB44qb224gj5v0Wr9fKfGx0qvf4hUaFRb/NJ8a2P1eg2oUXgk7f1nhQ/44a3ZzQry3OcHpwjMkdbi5s3X/KxUYVSwheqC6pmwimyVPLc7SSmDE3+54TiKmULPsdhrm1UTFvFVogajQajUZziziQye9aYXhocJSloMOC32HcUxfEKZK8rTIQT+VLHMrmSXMG/g99CvHEh7Cffw3nhTPYr53Hfu088dGDhB96kNHxEpYwWPTbjHlZOknMot8hRTLqZrinOLTl/bOm1Zu3a8URlSjkWE6JOj+JQcA9xWGqUcCTi7O0khjbEEx6OeU4CojWNkHvTQfRcpD5QImk2SK0nJ5AFE0lSuReBKIARjqIGwX41mFIBXx8mv1cbxlCVRn7zXo1k2iLQO5VRkIDYmNN2G46RgAqyhEWAfgmzKuFicUssicQnW2FmHhhUlVYP34d8coYLCvhJx+d2zAfOui4XGrWmO00MYRQBjornqrg9lvf6v4RWyqIQZoQpgnFXcQhKHGa756fie5Nj9lOi0o3umOzRFoVTdUoYGKdeLjht/DM/hWsvGWTt2xmOk1acbRBIFYiX5kHbfoZDdous34DP4m3jftYDlUUSCeJWfZ9juWU+HiuvICfxBhCTXKuzxy1HIsb1QYz7SamEMQyxUD0/o3mLJtyGNCII4r27uevHyqbUvTE7oDtshL4NKKQS2mNhzdVUfdKJexQtBwuNqvcOzDUE8Qz7SaznRYPReG2a27HES9UlmhEIaVs/39ctmHQjENaccxy0OFau74vgTjvt6jHIQcyOZa7FXXPMFkKOhvcbHczX3qr2e+awjThmZUFHh0aoxIGPFdd5OTk8G1c4e1DC0SNRqPRaN5CBmyXT4we4A/nrq61mkoVizBguxsqAAAynyN8/EOEH3kE+5VzOM++jHV1BuvqDHeODjH00F387pBNM45oxREn8gOMeVmGHa/vBbQhBCVHXZj6aYLbNbpZraw8XBpjoutkOeS4DDkeV9tdB9Nst32yveliMxFq5nClK3ImmyC6IqJlw2h3u9UKYn5vlvlyuI24UUAk6iJNNhwY2f/M1uY5zURK2nHcqw5tRrw0AQ0H+ZGZjSIsEb2YD+HbyLYFqaHWuFolW8nCqV3mwUJjTSxfG0Asr7vYXskg1wnEjGlRi0LCNGHSy0LdwXhhCikkHKgjC6Gq2iZCzXU66lglcosw9pOEaHPb8D7wDLPnINtvFtIWBsvBWmXZT2KWgvbuLYlStS6ukkpJPexfefUMk5XQpxoGTGS2fr7DNKEeh+S6n/0bfhMYpxoGnK1X8NMIUxgbIkeEEHiWxbiXJU4TUqnaKte72TqGSSxTloPOTQvEThxvmV1drdDPdlosBju3sCYyZdHvbBFnlVAJwHocUg5VxTRMExaCNo04ZKbd4J6B/kLl+coiZ+tlJjPZbd17baHiYupRSJAkXG7Weag0umse5ypXW3VMlCHS+psAY16WOE1ZCn1acbzjea1FAQt+m5P50i1xGd6Neb/FS5UlPjV+qPc5rIQ+RdvF3Ob9F/w2F5pVxr0s5bBDMwp5t45ZaoGo0Wg0Gs1bzJiXZcLLshx0cE11wZQxdvlKdmyiR+8neuRerPNXcL77EuaNRSa+8h1+OuPy4vFxXjkxyZGRKU4VSjvuasjxmOu0kEjVThdHhGnCwWyehwaVmivYDj84dYxUSmY6TcI0wcmCNFNVPWtZkIshBfHyOGJVHFoJTDZ7YlC0HHVNLIGmizTSNaHZpRoG2MbW/EhG2siij6h3L+bbNrB/u/3NQilME2KZku93ziMDUeu+3/lh5EMLa891ZyhXEc9PIQK1Dykk2InKdwxMle24HY21C2FxeVC9fqyJWMyvVSjXMbG+bbnebXGVAmYGNlbyXp5ADrfV+S22tjhP+kmMhG0vcHcja1mshD4C+s5CZkyLeb/da19eCX38JGHY3nkG0zKMDYYy7SQmSJMt7dGgxJxAmapMbBJKqZQ0ooggSRiyXQwEtSikHUecb1SIZMKhTKGbJdn/35spDMxtTo+JYDFo33Q7ZCNWbbP9jskQghvtJs0owjUMjvZ5jxudFl9fmuUDg+PcWVSfGz+JaScRBcvGQFAOfE7kByiHPp0kZshRc5sSGHa8DecslZL5TpuS7fZvg+5iGQZRHLMSdjCFoBVHzPmtXmV2J9pxxNVWnZLTX/ytd7PdTiBea9X55vINgkRVvzcfQ/NNVHW3Y6HT5lKzxuFsgXsGhpluN/j28g0+PDzJ0Vyx72vmOi1qUcDr9TLtOOLdHIzyzqrlajQajUbzPuFIroifJiRSVe/2ejcewyC+6wTtn/oc7Z/8EaI7juF0Aj585jo/+8VnuPNPvosxO89Ot64HbJeo20I37Ho044hIptw/MLKh7TLXbQEcsB0VvG6ovEIhBeKCqkiIi10jmXxI+pFp5CeuK3HUbUft5Sb6FiI21PzhavahlNzwW6RAOewj/CyJ/NAN0gfm1f+3b+a+dr9KWqwqaf3ax6prJj5iKafaOVfpCjvZrYCKwFKOrNkQjlVhrDuTuNLfQEWcH0K8MNETeUCv8ihPdKuOfQTihn10z2d6xzLpPUvIw1XSB+aVkK56GJeGEK+NYQlBa5NLZyeNeTMZJZ5h4icxfpL0/bzmLZtKGHCtW3Fe9DuA2HVmzzUMKmFInKa8Ua9QjwIlMrdp73MMc4vL7vWWuoBvxCESVSl3TZMwTThbr3CmXmbY8Xruvzd1/KbVPaabQwnE7dttLzZrPLk4w+VWve82C36bWhjw1MocN7rxJ+0kVjdvDBPPNFkIlNNqOfBBQsl2KQc+31q+wdeWZjYE3jfjiFYS7Tp3awuDWCYsBR2EENiGwXR7a6RJP250jX52e4/Nn9X1XGhUSdIUIZQB0Xrm/RZ/NHeVV6vLJLeoXCel5FrXyOnl2jIvVBZ5cnGGJd9n3m/1fU0iU661G0y4WZaDdm9W992KFogajUaj0bwNjLlZDASdJMY2VKbfvhCC5OAk/ue/j8b/+Bd59e4jxJZJ7txlcr/+BbK/9ltYr74B8dZKVs6ySaQkZ9kczw2QSMmQ4zHVZ65ICMGBTL47PwUcrqlA+6UclD2YyyOFRD48pxw8V01WvFhVC1vd3MT61vbSVhKRMSyeGDtA1rJobpOJt9bauocLewnipXHEa6O9h/xNlbTVylq/VjVRVYJQlpQQWDXdgXUzlAdr6pjNFHl6DvnRGeSJCnK4+5rlPkYyEpgpIlayiBlVeZFW0n0vH/IR0ouUE2qyg6Bqdc/jkA8HGsg7yzDeRj60oNblxAgpsGOLzqYIic3nYb8IIUCqCIx+506JL4tXqstEacJ0u0FuD59rxzBpxCFzfounV+Z4vVZGCLYVljnTYiFoE60T/q0k4nKzzvVWY8v2r1SX8Axz31mUm/FMk3oc3nR+YTPaPkYlb9ldsWayHPikm8ROKiXX2w2GHQ8BvFRdIpWy25qrKpAZ06IaBYRpwo1OC9c0lflSNs+RbIFWFPF8ZbG371rXYXY3l1PRneVtdKubWdNi0W9vWWM/LjZqe/rd1oz6t51Hacpi0CFv2QzZLpeb9Q1RQY04ohz6fHdlnqvbCOv9srrPyUwWP455sbKIa5iMexmm282+0SQrgU89CijaDo5h7SmO5p2MFogajUaj0bwNDDouJcdl0fc5livivokLCjFYovHEB3npL38W//sfJxkdwpxfIvPFr5L7v38d5+vPIBprd/xzlsoQHHU9xrwsg47L3YWhbQ0ZRr0MsUyZ7TSpJJ1etUucGUWEFgx11tw4e4sCshEiNlXb5qoJS2mtlbAeRRzPF5nK5LkjP6gcL/uxOgfY2YNArLuIpZwSdh0TSxi0NwulNGHbStqqQDxZQSLXzGhgrbo36Cth+IHZDbEWDHeU6FvMKeOa9TSd3iyl6OZIrp5HeaB7YZsPVQvrTlXElq3WtalNFzdB3r3Sc4h1YodWvLEq046jDS2yN0PWMne84B+0XZYDnz9dmKYS+nuq1rld06RLzRrNOOKG39pxditjWvhJsqGK2ElUC+RK2MFZJyxHnQwlx2Vwl3iXveAaJkGS0IgiptsNLjWqfbeL0mSLUA2ShCBNthVjqy66JcelnURrN2S61KKAahiQt2xGXI8b7RYzbWXus5onuFrhnW43udFpkd907se9LJebNWrd6tZODrObEQjCNMHtCu3VmeedqIUB836LgV3aP20htq241aKg1xLsmRZhmnClVes9Xw9DXMPENU3ON9YyQyuh3xOM1TBgflPFecFvc6PT7JuFuRx0iFMVzTKZyXEgk6doO+Qsm3oUMt9p882lWZ5anmOhm42pWvbVz3HU9W7J5+3tRAtEjUaj0WjeBgwhuLs4xMdHp/jIyNSbykEDuL80wj0j40QP3UP7Z3+M9l/6LNGdxxCdAPc7z5P7f34D73e+jHltlrxpkTEtxtwsGdPig8PjHMv3n6sBNbNYsl2mMnklOiaaqlLlqwtQOd6/7arXZtp0YCmn5vRG1QWVlJIUycGMqtCdKAxgGQadfq1mpkS6MXQsZIqae7w4uLHldC4HMwXE3DqTj+UcphCqPXYdm2fzeqRA3VUir+RDIVTH2LIRFwah6q3NUA76UNh0gWxKOFhXLbjTm+azahsvGKUbw+E66cevwVRXvK9WV7cTiIkA31IOpuY2CspRx2bF1pZzqaIj3tyl35DjMbJDrqMQgikvy7zfJpZy62xbZKhIkFfGesJ7dQ5twW/3TExyfeYP17+Haxg8uTTTE2ntWLVKzvmtDe2vrvnmK4errLriNuKQs/Uyz1YW+35ep9tNnq0sbIgZ8dOYeA+ZhCpXUm5oBQUVP5NIiWUYmMLAMQxerC4y77d7M6Wrv0PO1cuEcmtbp909z6tOtIt+G3cbh9nNSCR+11TLNgziNKW2aY2vVJc4U1vp/X89Dkn6fQY24ZrmhhlU6M5WxjHVKEAiexXrAdtRZkPd874SdnANk5LtMtdp9VrVX60u83xZVUsvNKo8tTLfq/xVw4CvLFznizeu8EZ9q6HUjU4Tq8+sqCkEEskLVWXs81ptme8szxGmCRebNfLmzbUuvxPRJjUajUaj0bxN3N0nhuKWIATJkQMkRw4gag3sF87gvPQ69tlL2Gcv4Q0N8NiJKbxH1BzhbmYTA7bLD0weZTn0me201Czi4Tri4pASfWM7C0QxU0REpjJQsdVFWjOOKFhOLzdyyPG4pzjEy9Vlxr0M7TimtP4ufCZSM39tExZyiCuDEFjIe5dgMYvx2jjQNYtZPQ1LWaxxY0s1ppPEyNXKSQpcKcFYW7mxpgZyqKUqoEMdaLiIFyeUa6mQyJOVHW+vy0N1uFaCmQIcq4Cl1rNqfCOttDuL2a2YrKu8yrzKmRTNbWJEWjYCgcztULnpCkQzsolkuiHvshlv3+J4K7EMY6OxziqBiXhmau3GwqmyEruokdlmHDLp5SiK3Q1HRtwMy0GHM/UyJwol5YJpOZhCbKmc3WoW/DYLfptGHHGhUeWB0siG5y+3atTCgFYc9T7DfpLsOTZBosTVJGst3/N+C2eduBxxMywGHZY25RcaCBb8NiNOfxFvCMFS0OZIrsBi0NmzeDa6sSm9z49Q1b2D3dyZOE15o1EllZJThRKOYdKMI1Xt3gXHMGmtm6VsxhFfW5juZkU6mOuq3gXLZqbT4nq7wYl8iWoY9ERriuRqq44h4HKrTiol5dDnervBctBhrtPmYDbPcthRMSmGSXVT5VK1Rje3jafJmhaz7RYHMzkMIZjz27xcXaYS+Ux5e4/+eKejBaJGo9FoNO9h5ECB8JMfJvzYo1hnL+K89Drm7AL3lWvIF94gvvME0SP3kBychB2qmHnb6bVmSikRB+rI6SKsE31b3jvXFTwL6iJSdoVkIlMqUcBDpdENFZX7Boa52qqzHPg4psly0GFk1RY/G0E1g2xa0OxWJJo2dCzEmTG1fyERUighWnehnMFKzS1VnuZ6N8kbBYzLQ8iGq14HUFSVETnYQVwrKXFoJcgPz/YEzbZ4CYy2EYs5ZN1Vs4LQqyDK42XE+ZENrbZrJ3mXCuKq4U92+5gQ6SQIwIos4jTtzqM1ibtujxuiPSSwlFXtvxLkXSvbVyZvAWK62BPaQgp1PN3zqX4cYl8RBqutjomUtJMIyxAM2Le3tc8Rgnm/RZAmjDoeZ2ornCqUekKrEYXMtltEMqUVR3imybzf7kqcvR2bCVsqaiuhv6EN3RCCCS+Ln8QbKnQl26G9Q0ZkzrKY7bQ44ndoJzETdn9DJQAioW5wCHAMgzCOelVKp5u/mjFMEtQMZS0KkN1ZyZP5ErUo2CDutsMxTMphQC0KKVoOX1+cYd5vK5fl2N3gZiu6c66v18qMu1n8NGG4e0Ng0HZ5qbrEnN8k7lZvLzarah3C4FKzysFsntl2C1sYOIa5pbV1OfBpJREH7P5ib8jxGLTd3nkwhWCm3UDs87P7TkcLRI1Go9Fo3g/YFvEDdxE/cBfG4gr2i69jnzmP/foF7NcvkAwPEj18D9F9d0Km/0V21rRxDJMwTXEdgfz49Z2vecdayIkGYr6gWjPHWt3MtzZHcwPcv6nykrVsnhg7iBCCJE358sJ1mnFI3nKQ2RgBpC1zLSai5ahqYmwgD9WU6Do3gjxSQ8zlEXMF3Gqe6mBlQ7B6fdVNUqrqJgANB+F1q1mrQm3QXxOd66pduyELAWIxpwTQkK/aKlsOMhOpttJiAAN9Zq5yUTdGJKNmGDfNdYquQc1eKohGaJFI2Z3ZqnOxWcUWJvn1rZvzeYzXxtbWnY/AShFVF3nP8l71zN6QwI2u4c9UA2aLXdMhZezTt+K4CyrAPaaTxHSSZNtcy1uJZ1q04hgDQcF2mG43mWk3e9EyN/wWYZpgCoNmEhF0Ep4rL6hojD26bHqmucEtNUwTmnHUy3bcvJ71ZC2b7A4V1KxpsxL6vFhdwhCif0VzKYO4NKQiWw7WkHev9NrMV8l0jYKudcXRkWwBgcAzTc7WyhzPDVAO/D0Z1Jjd6JIXK0sM2A6znSYHM3mCNGHOb3EoU9iw/YDtMue3uNiqEa+rkOcsG9swmPfbjLge9ShkoWumM+pmuNKqc6rT5EanSd6yMbqRHeur7PN+m92cd9c/N+S4XG01ONDH4OvdjBaIGo1Go9G8z0jHhgk+83GCT35YVRVffB1zbhHzT76N++TTxHedIHro7i1VxYxpkjGUUYRrmtsKiDBNaMUxg46LvH8JeayqzDCcFD9R+XYfH53q2942tk4o3Fsc4qXqsmr36pqyyKa1lrGYGMoQhm51cshHTrS62zmIObB9h6B7ge2ZVi8rzzEMqLmIRjdX0LeRq3OCua5AtCQcqSJDCw5sdcfcltXW2tUMyKXuMQ0E6pwNbmPGYwCHaoirg3CthLxzZePzra1OsFvoCkQRmUgkQZpQiwIEEKQxtui2Hvom4twwEok8WVZxJZdLEBuqjfVAA0q30Kp/JaNahIfayOE2YraIaK+10t5M9cUWBpFUx5fIFEvc/stazzS52mow2f2cZk2Lc40yJ/Iqk/JSo0rGVDdRGt2g9Dm/Tc6ydyrQb3oPi3Lo8+zKAqcKJfVz7GY7vllW5wfnOq0NofU9VjKIlyfUTRGkEvJHahjZeMPPKGNaXG03GHJcgiTlcqtG0bLJWhYLfofloEM1CvdsvjXuZbjaqmMKwZib6bmyHu/T/m6uy43c/EvIMUwOZlTHQiqVu6hjGOr3VQTfWZ6nlUSU7BwpkmqU0k4iBgyXVKoW1X5CfDscw+R4roj1FtyceCvRAlGj0Wg0mvcrjk384N3ED96NsbCM/eIZ7DMXsF87j/3aedLBAaL77yS6/05kMY8QgpLjsuC3KOyw2+XAxzVN5vwWE24Wsc7p00/UrNheZp/GvRySJdXSmldiJZnzeuH0sDbb15vp6x3bmlBCKmORETfTy/EbTLOIN9QMpjRSRGog6p6aYVznECpPbTWxWAjamIi19tfNrArMlqPm7s533+fg7jb88kgNrg+oGcajVZUpuUrdURftexCIhKq5rx3HSqzb3sZWvUuDiNhEHqnCsRo0XcT8OoOfmndrBGJoIJ6d6kWUyKnGmnnRXmJLdkDFbkA9Coml7GsscqtxDJOpTJZc15Ck5DjM+20WgzaOYar5PzdDPQp7YfWeYVAO/T3PfyqX1phnywvEMuVgNr/BqOXN4pomIDYa5jRtxIUhWMkipCC9ewlCE+PSEFwtqYryOizD4HiuiCEEqZTUIuWwKoQgQeUIBmlCcY/zoKYwGHU94jTdUybsoO1SDoMdRXfGNFkKU4YdJebH3QwznZaqWAqBiVp7O44ZsF0W/DaV0Gdsu3/X2/BeE4egXUw1Go1Go9EA6fgIwfc9TvNv/GUVlXFgAqNSw/3GM+T+7/9I5r98Eev1i4yYFsEOOXBp1530kcExMqZFI96axTfm7e0CbMT18ExTzT7mYmQ+RLa3XjzKbAj2pva9dUIJoezwQQVyx7HEfe6QEoRFHw6tE265aNeroyhNu/OYG5npNFVGWzZSQrN70S0iE3moppxPd8NJ4VBdCdbpdc6yoaHMXXJRz/im/+vXHTf0cvHWG5yQAos5pJEij3ejNo5X1Jzlav5jdR/VqtBQLrL9lrWSRbQdsFLkUFuZAWViJXRbO4gHybZJJOsRQqgKYro3A5h903C25FLmLWfdDJqBIQSvVJa51mqQdJ1Kna4orIUh416WWhR2hdneGOy6xU63mxty/24Fo26G0U1OtOLSIGI5B1ZKeucyHGzAoZpy9L1RUD/jTawKVkMIBh2vd048w2Smmxe4H/GUMS0Ku0RirN/WT+MNBj2bEUK1vq6edyEEBzO5XvV3lXYS04hCvr18A0uI96Tg2y+6gqjRaDQajWYNxyZ66B6ih+5BrFSwX30D+9XzWFemsa5M85jrUDw0zNJdx6gOF7cY2zTjiAHb5VS+xFynxWynueH5BHXxuxc802LCzTHdbrCCz8RYHaep5hblgL9WPew3z7dOKLmGyUqohE8rjrBb3XbHUgd5eg6WcmuNarmdL8ZTKRHdNMH1rpTtOMIxTOpRRNFWLbGi5SDn80p4nSxvPA9SVVkOZnJYwmAp6BBJSdGyKR6qwbUBmCnC8a5rar0r2Iq7VPXWHbeUgmoYbL1QL2dU9XC0tSY2cxHyiWtKDD15VFUQJdvPIXYsxGwBOdlEvDaKqHukxgJsijwRq+Y8dy3D5LrnvFhFdiRiqzGOBPHUQXBj5CPzO85CSqQSULejeLjiYbwwhSz6ah3bmDGNuRmuthtUoqCX+6iiG0IimeCZmV61bT/kuu2aM53mnsxebhoJVDLKpfdj19c+E7aEoQ5iMY/s2ODsraJcsGwa8a0Vtf04kt2pj6E/m2cLJZJWFPJsq041DDmYfW/NEt4sWiJrNBqNRqPpixweJHziw7R+/ido//kfILrrOGYU89DFOT79xe/w6d/7NqfOXMHtBKRSXahXwoCTeZVpOOR4hOnGi2oBFLexkO/HoWyBUKaUbJfGcHVtbeNrwlP2E012VyhFJp5hshwoh8VOEmOG3fvjxUBdCa1r2ZT5ECklV1r1vhl3QXf+MmfZG/IVy1HIuJsBoVxeV4WmkEJVzTZV/fwkxjVM6lFIIw7JWBZ3FQaV2MkkMNZS7bGrbZ9dgSiLAbUo4GqrTjn0e0Y0i35b5e4ZqKpPaGIIlb/Xi/TomKpS1K1Mys3xJAK1znyo2nh9q38VLzQQz08irgwivnMQUVdCvW/VsdoV8ZvbVXORktmdPrUK30K0HEQ5q44/MBFnhxHPTEFnYxXOEoIgSbuS/dYiuqY6ou4hnp9Uldc+mMJgxPGohIG6OUB3PnJdlbknDq8OIJ4+oHIgmzu3X5rCIJXqpsuO1cfQ2FO1dVtatvqsDQRbq9OrRkn+3qufnqkyOI31P5OGs1aFjN7kem8hjjCY6bS41qoz5u3txtX7AV1B1Gg0Go1GszOGQXLyCMnJI7QaDS489TT3XJ5nuNLgoWfP8cBzb3BtvMS145NUjx/sGUuodrG1K8EwTbCE2HMbGcChbJ4nxg5Sj0Jei5cRpZC0asNYG3lRzQ72raqtryCaJpUwoJXE1KIAO+jOw63O92Wi3hwiuZBOkpC3bJYCn0OZ3Iaqg5/EDFgug47DxWZVtazKFAPBg6VRVsKAdhKTX+c0Kic2VlHVfhKGHJeV0MdPUk4PjTLsZDhXV5VGeaiOWMwjrg+oKt26CmI7jjlVKFENlUujIQSDXWfHA5kcpp1gdBys1CBO1+VCXishptXPRgoJo+3+J73kq/zH7x4AUyLvXVRCz0rhcB3x6hiiYyNzIbRspJkqw6D6JoGYCGg6SCdWFcP1ZCNYAcoZcOONLcLrZhPFuWFIVT4lABeHkfcv9p63hUksk7W8vVggLg9Cx0YWAjhe3Xp8NRdxtYQ8UIeRztbnu/thMadcZbORcvSsu9vOZWYti6PWWkVLCEEs043h6VVXtRwjoOFCw0F+ZGbHco1tCBpRSGG7Wb6Ohfj2IZhsqkzQm6HSbfke3HoupKvcgwn2JxkGbXdtxrFpq89SLkTesYJ4aQJG2sgHFlUrtJPcngrwHnAMk3ockHb/rlFogajRaDQajWbP5AoF0g88yK+dmOT+TsLRi7McuHKDY/MVjs1XkM+eJz51jOi+U+QmhzYUCoIkIWvaO84NbSZr2dxZGOR8o0Iqwf1Qhc5KqiInBn1k04FCn3a2dZU0xzCJZEozVsYhTtx1RnTj3rbkQ6h7UAhpJxHDboZGFFKLwl7YOShhdyzvMeJkeLG6zIFMjnuKQwBMZHJMZXJca9XJdTMgpZ1suPBeCXxKjnJWnXLyVKOQhJQDmTyWYSC6ph/GoI/MB0qY1Fyou0rUFUKSQHIwU+Dx0QHq3Va+rGnx1cVpZtstxq0IDwcnsfGTeM28pbNOZEw1ts+vLPmI6QFVVYpAPD/Vey4dbiPKWaQXIT80qyqAZgpPH1ICMWVN8NRd5Ya56t66/j2yEQIw3hhBXiup1sbVbbpzplJI1QprpspMZy6PmM8jD9d6bcW2YRCkydruF/KIayUAxGKO9GBdzXWuQ7wxjKh5KqsyH0AhJBpOoZRApivsl3KI1EBONpD5ULndrmT2ZdxzKFtY034piNdHEQjSO5cRS1lVIT0/jMxGMNHcsk5Q+YLT7ea2wffUuuf4Rh6OVGHVECoRiMsl5MHGrvEsoqL2LfvNyHb/jYjAQi5kVUbn8equgm79TSAxV1CV9KYLL06qvy/m4QVDfZaOV5AntppBvRW4psl0u8mhbH73jd9HaIGo0Wg0Go1mX9xdHOJCo8o1S7Lygbv40n2H+bHEY/j8Naw3LveyFY9nPD51cJj5Uwepjw7ipwkHMvmbcmPMmTYIMHIJyEAFuz+4oATJphm2VErKoc+okyDaDjIRKoav06IRReTCrlBa5xAq71pGthzIxgSdhMOZPFbO4FtLNzYIxBTJoO0x7HocyuR5bGRyQzTHwUyeC42qEq9WosRMVyWEaUI9Dumab3IkW6ARhcQyZdjNkMoU1zQJ0oSMaSEP15WoODeiLtDzAZgSIVTm22ob7yqfHDtEPQp59o0EGmBFNk2ntWZQ020TTB+/2leM9BhrkZ5aUcK74SAuDoGZImITMdMV14O+Ou+rgqQYIMoZZMuGQvex1fnDgT7CY7SFnM9Dy0H4FtI3VWstIFYdT+9aRlopDHeUmM1GiLOjiCsl5EMLgBKItSjE6s6Cim4EirQSRGyqyudYW4W+z+chEyNqHtKLwJCIpgtNl2gOEEXEeEv9cJbVz1RONJVIujCsxMyJ6vbnbRPm+s95zVUzqaUOHKojhzvwVEYJcVQsy2anUFA/5+P5HWIUuudKIODSIPLBbnV1tqDiUtqO+neyHbGASte9t9Tn57SuxVQsDCM6NulwZ+9CWQJzyoUVoVquZdFXNw/K3X83ZQ9O7G13t5qMaXE4m9+Tc+qurBpoZWKc18fBieDhN7/btwMtEDUajUaj0eyLjGnxwMAw31yeI0UynMmSnTqGf+dJ+MwnsC5cxT5zHvPyNA9emOXBC7M0CllePTxC/sF7b+o9s5alqi/rw8ZNCX26wupRSCuOGbJjLBwITYZtl1eqywgExVWBuL7tcSBUf1DXtIOOh2daGEJsMKORQMG2GXQ8fnDq2MaoAFTgu2eatM2A7BPXNjzXjmOGHU/lEgpB0Xa4szBIisQUAlOYFC2HVhyqGJCJJvLCUC+rUR6sk3RNcnLW1ku4jGmRMS0MV2U2WrFNJ4nJW90WQt9CGum2lcMeBnC0pv4+3FEid6aIeGMEbqhKy5a5z2Kg2kXrXk8giuoOJkKZBPnBG4jXRmGuAG0HMt1K62qLaTGA4rrq8FQD+cYwVNYMdGxh0OlGpwCqwtXdluslJQbH2og3RhBzhV4rqjxaU0ItMBFNF7udI7qY60V9SCNVzrPDak3SiZXgjcRWx9y94HePqdStpuYi5D1L6pzN51VW5jamQDu1PvbENFKZyfgr4CW9qiBLWQjMjXEpqzRtxAuTiFDlU24xC4K1Knvb7s2LihsF5F4FYnld/uV4C+bzqkV4MauqtCtZNeu6G6tLuw2tqFvEoQRmC+oGSb/Pbj9SVJyLFMj7F7HnB5ADrd1f9w5FC0SNRqPRaDT75khugBeqS1TCgAdLo2tzeo5NfO8p4ntPIVptzn/3WaYuzjCxUuexM9fhzHWSsWHiu04Q3X0COVTa0/tlTRvHMAgSdaGbStmLFFhFxTmYNJOIyUyOyIrUhU5oks3YNOOIehwysTpP1eeiOUjUPgYdF9e0yHfNaPKWTbVbqSp0xchmcQiQtx1OFUq8VitvyB0E6CQxB7J5mnGEY6r9bM5SHHUzlLuOq5hStd5dKSHvXIHxFmGS4Jgm+R3y5SxXCUA7sugkiQorj4Vq18zehOOnQe9CWcRdsbJJIMqij0C5lsoDDVXZrWSUIN10kS2lpB6HStR1W01p2z0x1muFzWyMSFldh6hkeq3FVrfF1Da6xidNR7lxTjUR10tQdVVlZ15VsQRCzRVOKhGNm4DXwcmnRBNl0qqjhFIh3CikhztKYFYyqiK5X7rVW+muuykx1VTrDCxVfV2d88yFW+cSUxAvTKoIlbuX17Xjds/VSEdVPWsuuO3eXGGv/fRQfYsBjbhWUuJtrKn22Y/VfyMNd80IaCEHd670F5SbEHNdwT3ZVMd7sHveDzWQhxrwzUPbu9lCrwIpLg5BPkQ+vLOr7S2h7mKcHUU6MfJj02pdVwcQVU+J237rrHqIVfOr10YBCEYbwPBtXuztQQtEjUaj0Wg0+yZrWdxVHOS1apmpTH9reJnLUnnwTr51dITRdsA90yvcN1vGXFzBXFzB/cYzJOMjxHefILrrBHJwYNv3c02TrGURJAk2sBx08NOEw12r+2oYUI9DHMPEQHAgm+eq3b0Y77onjnlZhtIUAkvNJ3Yv9KSUxF2x2U4iSrZLtivApjI5Ljar1OOIgm3zkcGJHcUZwMl8ibO1ck+wrpJIOJYbIEgTpKSvM+Wg424wluFQHbkupzFIEgqWjb1DVcnxIATM2OZUfkCJp9X2t81mMXulEKiZQCl6s5AbWBWBK1klDusuIjaQwxsrU2GaMO+3sQ0TQUSxa+YjWjYyBaSAtq1mN/tV6gZ9JX4qXm8Nx7NFnBslJR4jU7Xi5kP1M667iMuDKvz9RBmZiVTbZL8sSSeF0f6mNXJICURRySBvQiAKf/vzL8daiHIG8fI4IjJVSP2qkFql6iEqGXXsZoq8s6zEU8tW1c7RFmI5i6i7ar4zMpFehPBtjIvDcHGY9K4lOLRuv6vOuHetbN9ybEqknah51NVjiU3kcnZLpMkWYgELKm+TzY65q2TVGmXHWmtXXs9cHuPMmPp7YKl53NXqpQTx+ggyH8Hh2i0TjqLbXixCC66WkGaKcUEJPVn2+n5GxNLa70ARWkghCcbqW7Z7t6AFokaj0Wg0mpviVH4QJJTs7UPVBxyXQKbMeDZHP/Iw7dIIxnIZ6+wlrLOXMBeWMReWcZ/8LsnE6JpYLBW37Ktku1SSCBuTUKYYQiClJEgTWknMo0PjvFJdZszLcndhkGtOt00yXLu4tVITkRjKgbPLYtChncQcyxXxk4QT+bWZwolMjleqyxQdl8+MH2HA2f5YVxlxM4x7OSqhz7DbnfuTEoRk0HE5mSvRTvpcDAOFdSHs/QjShIPOzoYabkYQAiI016qcq1VTb2vVNEpT/CQma9kb5+bWYwCFQLWQ5sOtVRQvQY60EMs55Gyhd87l0MaL6aXA567iEJ04ZiloQ7b7c2jZiKcPQmIoEZrtf37kYAfBIKLiIQ+rC3BnpYBxbnRto3y3SjoQqBbGuYISi4dqN9ceCmsV0+beHXg3EOwg0EdbcG6kJ8JE1VurtHURK2ufSXG9hBzyYcBXYi0frK2v4a5V/SabyLatzHUSA3F+WL0uF3UdZm2kF/dvP12PG0O0+vNUJkViOaNaRndicc3op68gB7WWMqoS2kcgroo1OdZCLOYQ00VkqevWWncQN4pqhnM5o+ZS91DV3JVlVX2VSHVzYf16VrLIzQJRolp5AZkNEW2HZLilbnK8S9ECUaPRaDQazU1RtB1OD43vuM3RbJEPDY1zuVlnqusUmI4MEX58iPBjj/bEon32Iub8Eub8Eu7XniaZHCO66zjxncd7lcVBx2XB91kdPLSFcicthwF3F4d4ZHCMESeDKQRZy6aQNdXo0jqB2LtQ77b6pVISpSmOYZJISQIbROCw41FyPB4ojexJHK4y6maY99cuoP1EGc8M2A7DjrdtDNyA7WAbaq4u08c4I0pTBrdztOzieYIGbDzubSpY5dDHTxI802LR7zCZydKOIzKmtVWoDnQFYr9YEUCeqCCWc4grg2sxI8NrF9OJKhFyZ2GQmU6D2U4TsrGaC6xklLvlKtsIRAZUJZNKZm1mL9xYTZXdXEtZ8tUFvZUo8XCz4rC7HimkyvPrtrL2hOhe2KGCiJcoEdV01Lxpo48I7YqW9I4VjPPDiEuDyDuXe2sjH6r11V2E0a2MD3XgZNcd9HIJ49IQvD6C/MCc2g7RP0MU1Q5dDQMMIZjwYuVACsgDDWUusznSpA9iTlX35eTWmJdVVt1safWpykug6iGRyLuXlJnNQh7uKCtR2+oaEiGVgdBCDqa675UIMOT+q4qBiagrEyM51YDrA+ozN9XAeHVciW3fVOstdtuQW7aKfSn6yOMVeG2M6NDb48p6q9ACUaPRaDQazW3DNU0eHhzj/oGRrU6MQpCODhOODhN+/AMYS2Wssxexz17CnFvEnFuErz1NMjpEfMcxRg+NctZNSYTKHXRNNZOYIpnMqDv4h3NrWXTFnEkNVUnrSYOgKya6VZN6N8YiSJPufKPckDk3YLt8cGicI7mtFc2dGHCcDSKwGYeMZ3K91tDtrlvztsMdhRKvVVc42M96Xwhyu7S4eqtjjeuE02qLo1wnUIIkoZMk/JnxQziGwZfmrlEOfepRxEDXiGc9crypHCn75DoCUAyR403EQl61A9qJElFdalHIqJtl1M1QiwJ1fkwJXozwNx7TdhVETKkcU2se8toAHKltEYi99zzQQEaGmons1764HwwgFyKaLvLaAMaFYdKTZThW3bhdIhDPTSoX2zvKa4/7qu1w22iR+7pVsa8fVsJnfVxI10hHZlQrpZzPIeoeXC2p53NRr8Ir6h5ySYniDbOfR6vI2QKimkGGxprDbHGrc2kzDqlHEacKJa626kRORE+yDnWUYU/L2Tg3mKh2Uiaaai2RAWVPzVwO9W/bBXo3AkTb3nrTxDfVjGQhUC2wBxqIayXkTAFOVBGronKyCXMFxGwBOdVUlcVnp5DHqzDSRjw3qWZ4u+JRXBhUrdB2omYvs+tE+0r3H89IB05UN7jWyiuBcr19+qBq4RUSed8iYlWojrZhtIP85DXSJIZ3bwFRC0SNRqPRaDS3n21t+lcRgnRsmHBsmPATH8RYXME6dwnr/BXMpTLmUpm7gQN5j+lDY3gHRginxlkM2xgIBvq0ubpeV4ZF/SuIiUypxSEfHZ7kartBJfSxhEHeWqvgGEJwslDa9/HmLbvnmBmmCZGU3F0Y2tNr7ywMcq5ewU/iDQ6LysFUVW53wst0j3uXCuJS0OG+gWGO5opIKTmcK3CxUeNorsBsp8Xg5h0PBshPXtv86AbkPUvqon+2AAcaINTxrwQ+fpryyOAYhhAqtmSVXNRz+UxPrqgcw+HtRYU8XoGXx5VIQ90A2MCqQHQTNat3qyiE0HQRXWEmrpaQB+sbRd9SVom0wFKVLlCiMTKVwNutolUIVdWztS7fsyda2iBAnqwo99FlNffWE9NFleUpEKRHaxvbLQ2UULthq3nG1QrgugpilKZUo4AgTfjYyBR3FYfImBaXTR+HbqanrUyHxFIO2XB684Di8qA6Hx1bGSu1bFWhHPB3PubVtbfXfR7qDuJKaU24deM35ME6XBtAzBSRx6prFcSDdXVMVRWzIq4MIlID5vIQGcpY6fKgqmRGhor/6CIXcnCs1vv/XkvrSJ8505GO+vlHJrKgMkq5uO7f9HY3Tt6FaIGo0Wg0Go3mnYUQpOMjhOMjhI9/CLFSxT5/BfP8ZYo3Frn37HXuPXud0HN5fWKAuSMTFA9uNW3pV0lbdZOMnYjZTosTuQFOFEq0koirrRrDTmbXCt1eyFk2pjCI05QFv8O9A0N7DuMedDzuKJQ4W69wILN2qeZ3206L1s4CMesZSpyGpmrT61i9415trY3SFNMwuKuoLnCFEDxUGmXMzZC3HGY6N3mxa0nkycpaayP8/9m77zi56nr/469Tps/2mk2FQAIkgdBJCMUISrFSvBcBUVBBqV78cRVRypVqRcpVKYriVaygCFgQBAGxEek9hPTtdeopvz/O7OxOtmTTd7Pv5+ORR7Jnzsx8Z+aw7Hs/3+/nS0cuS2MswbRYklmFSmzCDmEQhF47noe2QjVrl65gC4rRQkVtGn/fdRj/bMJoixUDmj+zEz/sFvdT3Nr8ZC7o1Nq/VtAxYUVF8HoL+rt2Glkb3zGCtXf97/1YGgQlc0F1q2cgIPZvF+JXFUJzTRpv9zaM16uDabmF9bR+WTZYjxd2gvWWG46/KhOs2euIDkwRHbSNyLpMimnxJHPLqtg1GUzrnlNWxfJYW3BCIgi4fnkQEOkurHeMOrCu0KRlZTnM6hxYq5nYSOU26gSV1f6A2B3G+OeUgW65DNpHM+4EFcHWBH5zYmBaaiKH39SD8UY1xss1wdYhEOw76RT2x0yH8NtjA2tjCw18jPSgyqUHtMWC8QxT9fTr+4IQXJ0Kuqn+cwpGZ2xgjPHNbAA1DikgioiIyLjm11SSW7Qv5qH78WL7WlY9+QyHtKaoWtvCwreaWfhWM/5TL+HsOgNnt5m4s2fgx2NEY/071A+aalmoIKZDWZpiSd7RMA3LMKkMR3H9YJ3jiI1aNkHSDhExLbqdHBHTYkFF7ajNZza0WzIIiI7nFauvadehPhrfaDU2Yll4IQczZ8OqDRq4FEJKdz5HfSRG5aB1lbWRGLWRGB25DCal+z8Ox/E8DCPYpH1lqpeEbQ/ZtgMg73vskigvhlGAhG0TtixynotVXgg2/U1PjGC9YnMmTUM0jjnc+9Y/fTJjgxcEQn9a91b/Ib0rn6Unn2dKLI41aLqsX5kOAtLbFUEgsv2gW+6gZjJ0RTFerB1YjzmGgOiXFUJoz6Apyv1BaPA02Vld+DXpoKtnf8ir78NfU4Y/s2v4pjCFShxrywa6vRbCdf91trhmSsla2/JQmERF4bHKCu95oepovFGF8Uotfk2qOEXYyFv465LF6Z+Dm0ENyyToZNoXxm+LYTxfFzTeKQS4YNwDVU5/enewznVFBaRDwRTWkB9MJ367IlgfCcXOq0bWLnbfNVaVg+UNPM5rNRtULiPBc9eMsCdkRRZv8cpg+xWz8Bj9AbF/25SdhAKiiIiITBhNUxp5bK+ZTKlposPxePVfz3BgSy81K5sJvfwGoZffwAe8qY00zWxijbMbPanqgYYmhamWuVCOhlC4GIDKCoGuJjw04GwOyzCpDIV5rbeTBRW1lG1kWuiG6iIxpkTjtOUy1BVCV9ZzaYjEN3JPCJsmXsjFyoeCvfEGcUwXwzdIeQ77JeuHvX95KEKisP/jSON2PI81g5rw1EdjtGWHrmfz/eAH7coNGvyEzGAvx6zrEJvSixd1gi0sClKOg0fQRKc2EsPzfbryWRJ2KNg6pLD9Qskm6xvrxrkZevJ56qNxVqf7mJqwissC/ak9GDEn2BtxXTLYlmJ9orgNSBBIyoKQ0x90IgPh3PN9EnZo6F6ayUIY6o4G20TYQXXNN/yh+0KW5Uq3Gwl7+AetGfnFxBz8sFPcr8+fOVBl7HPzlNvhYT/vZI3PmvnLqawtHOgPiIUqX3+HVb+xB2NdGcbK8oFQvLEKIoWg9XItxr8ag2mpU3rw57TB01OLa1SLatJBp9DuQlU1MWg68aJV8GoNpG386V0YzxcaaE3tCaaSNseD68bwoakH//XqkoA46vTSfoNfT31fsKY3Z0LjRjq6TjAbWRAgIiIiMn40xhM0RhOUh8LEk0nW7D6dde99B70XfZTUyceR23cv/LIE1up11Dz5L969/qccu/pu9n3iJRpXtWD2BtWoTDRTstawzA5TFgpREd7MbQyGUROJYhtmcVrlpjAMgz3Kq8m4bjFk+f7QoDWcsGkF0wwh2PagwG/oZV0mxZpMHxYGjdHhw6ZlGDRGE3Tlc6xN95FxHXzfJ+U4hXH4rMn0MaesisU1U6iPxIPq4DCFvqznEjGtYbdCqQpFgsZABlBdulYt67lUhyNk3GD94qp0L5Zhsj4zaOpf1AnWmqVD+JZXrPp4vk+fk6cnP3L1KuM6haZEI8u6LiHTZHHtFBqicbrNDH7IDabv1qSDiiUElSl/oGsn/dWkQXvjQdAgqCefI+26xGybtZm+QmfXQRJ5fNPD6IxiPDoLmuNBoIvnR/ypPeXkWZMeQ0AxKIZwP5ELmrsUH8NhajwxbLW2LBSmr7JnoAts2MNPBF1T/ZmdwePh489px0/kgrV5hSY4/YGqz8mzoq8H1/fpdXKsyfQVr2umdQfbZ2AE3UP3aA2eY9Eq/INXl15XBiX7gpYEtoiLv6A5CMn1qSAIAn5dH/4erRgYGK4JFZmg6U3UCWYUuIUn6P9lyijrX0uY4B+wJhjjCM2HJipVEEVERGTCsE2TpQ3TCRkmnu8zJZagJhIDO4S720zc3WaS9X3M5jb8V98k/a+3qE21sdvrvez2+ls4xjKao9N4YYVNebKM/k4sCTtEZShC2UbW922KilCE6nCUxmhi4ycPY1o8SUUoTLeTI2mHMI3hm/FsyDZNjMLG50bWDn54X/pW0PY/A/tV1oPhj7p/ZWM0zopUN42ROG+nevDwMTCACD6QtMMcUtNI1LLZs6KGjOvwNyOYMho2B6b0plyH6nC0pNlOv6pQhOedPNlUL1M2mDqb8zzmxJKU2WF6nDwH1TRSF4nx4Nq36M7ngkY9UQd6IkHVLjxQZWrOpgibNlnPDRribLCm1Pd9mrMZQoZReC0hLMcaCCwFXfksU+NJaiMxZsTL+VdHM1ULmsExg2pl2MVPBs1K/LXJoLNqLNgewVhTXrptB+BF8nTkcxxWO4U55VX8Yd3brMukqC9UiE3DCELHvBZYWR5MX3yj/wIdOez2OHkMw6DXyZX80sP1fXzfL3lf/cZeaE7g795WErxc36d+hOp0zBroApx2HaKmBfutBdcMAm3IDa6tiBs00ukLF6eJ9of2jlyO2miMdZkUnu9TEQrTliuEVaBufgu8WRl0nO2fHjvS3olTgurfhvuZlrD84LyuaBCKLR+/qwvj7Qr8+kKFMJ6HdChYo9sXCj7HWH7kLVaGfXN2nnWHgykgioiIyIQSsSw8z8c0DA6rmzr0hEKTG7e+mgfMXah5tYz6ihdo6nubhtVtNKXfoukfwD9ex62twt11Bs4u01kypZ6yEapqm6MuEmdBRQ1xe/N+3AqbFnuWV/PXtnVAEGLLQmNroGNGBlU0ok7wA7IfhLyZibJh1woOtmuynMZYnHI7zKs9nfQ6eZqzKdqyQXWlLhovhj6rEMLKQiHSrlMSENOuy9zy4d/TGYlylloWz3W2knYdysyBcBOEiAj7VtVjGhSnAi+orOWp1rUDAbH4Zg1UAx3fZ1FVPStTPazN9BUDolfoAtvt5KgMhzm0ponlfV205DJ05bK0p9PETZuYZZP1HLKey66JoFlLfSQWBO3q1MBaUgP8GV0YL9ZjvFBY59nYW1LV8m03qI62xOmO9NEYjTOnvArLMNm3qp7frVvB2kwfvs/AtiaNfUFDmcdmBtsqwKhTNR3fY0oswapUX0lAbM6kyPseM+IDW79Qn8J/5/KScOh4HqZhUD3C/ppRy8YovH8rU73URWJURQ2K+zgM6gLq16aCLrSDxuz6wVrVPcqq+Ed7M9MSCXZPVvHH9W+TsEP0OnmIufh7to34GkuEfJjejf9WRcm05A3581pLv57TFmzV0t+5tX/K7vpE0HwGP9gOY8uXIE94CogiIiKyU7IMEyOZI2vFeTu5ByvmTsX2GqhJvk6Z/xLzWnsIt3ZgtXYQ/tu/idk27owpOLtMx509A6+6EragYU1NJEpNZPRN7Tdml0Q5yzpb6HMcDqmZMmrTmMFCUZ9iRCxUORzfxzKMYat5Q+5vWlQUgt7c8qCK9e+OlsJURp/GYapNjdEEr/a0l1Q5ffwR13VWhiNUhiOsTPXQnEkxKMZgGAZx2x6yRm9mvIx/mOvJex6hqDPws/wG6w+ToRBTYgneSg1MR1yT7iu8crLikQABAABJREFUJz6H1ExhajzJ1HgS0zSIVUR4fnUzy9pbSLsOcSvEPpV1xXBVE4kStSwynkts8PvX1IvfnBxYvzalN5geWWiSQkUWf34zpG2ydpbp4criZ9gQjfPO+ulkPZdHm1eVNCQi4gbTNfu3chi12YvBjHg5HbksvU6eZCEQu/jELJt0ofvtoNOLMq5DczbN1FhyxO1ToqYFGMG030iEPidP1UhTnSsz+LYXdHgtjDnY/zLGnuXVJOwQteEoyVCYpQ3TsQyDP6x7G7dwbY6Vv1s7zOjatHWnBqUNb+LB9WO8WRVsDbJbO9QF1UXf94MOuxvbnmeQvOexItXDjHiSrOsSt+1Nuv94ooAoIiIiO61weeEHyN4wpEJ4hsW6hjr+1ZSjZtpsqlM57OUrsd5cib1iNfabK7HfXAkPP4lXnsTZdXpQYZw5FaIbn965tSVDYQ6sbiBhh5g+uBK0EeEoFGsrhSlz+cL0z5g1dEuQsagKR4P1dyOshayNRHmxe2BaYN7zsA1zxMpUv5pwlFWpgfVwXmGqZ9waWi1N2iHKQ2H6nDyVJRXEQgguPOeGU4X7nDwRy2KXRDlr0n1D1oXG7RCzkxXMiJUBPiZGSdfZqGXTGEmwNtM3JGz585qDhirx/EClL5GHTgu/MpjeSDJPPu0NqQBPjSfxfJ+aSJQeJ0fV4PeqOl3c649EHrfQqKcqFCkZm49PXSRGUzTBylQPSTuE4wUdaBuicVale0vHPEhrNsPeFbUsrKobvlssQcXeIAiTUdMmb/pBQB8u/JhAdQqak/jF9YdOoRJslLzvsxLlwTVZ6GY70hiDx8jTnc/RGI0Hr91gy5sSFf676F/7SGE9JQRV5pZshpnxsuLr7MnnSBSmeg+nx8lRHY7SnsvieB7zK2tHPHe8U0AUERGRnVYsbpILORh94WI1xo3lCBkmEdPGr4yS33ce+X3ngetirVkfhMU3V2KuayG87CVY9hK+YeBObcCdORV31jTcpgawNy9obarB20OMVTRmFAOiX5hKl/c9YpY15irkhirCha6vBsOuhawMRTAGbY/R6+SoCkco28i+kslQmMEtPvKeR9g0SQwzNdcwDKbFkjzf1VYSEP2wi+f7ZDyXqGmRsEPYhkHYtMi6Lh25LPtW1bFvVT29Tn7EallQxRr+h/qp8SRv9XUPvSHs4R+6svRu5RnojJbsp2cAsWFCr2kY7JIo5+n29WQzKWzDpDYSxa9OY6wMpriSyNOVz5LzPNZn08UGQ/0hPGGHqI/GeaMvmO7Z35V0XnkNb6d6WJXuJWGFSip/vu+DAbsmK0atKketoBLW6+SZW15GwsnTmk0Xu+tuyJ/dEYTihl6yrkvYNJkaG34P0JBpkbDsUQNiazaD5/vE7RBd+VzJLyc83yftOpu3d+mgtYb+jK6SJkC9Tp5psSStuTRToglas2lynkfWc0ecnp1yHXZJlPNmbze2YQxMGZ6AFBBFRERkp5W0bdbHM0S6kvitwQ92+WgW2zSJbFhJsyzc6U2405vIHXEwRiqNtTwIi9byldir1mGvWgdP/BPftnGnT8GdNRVn5lS8hloYR9PJotFBaaWwN2De87ZoG48yO0zCCuHjD7sdQm0kxtRYgvWZFA3ROCnXYY/ymo3u/5i0QhgEa9XWZ9LErGAdYMQcPoDXRWN4XaXbH/SZGZpTPZTZIeqicSzDIG6HqAiFWZPuozIUYfeyKkzDGDEcbkx5KDzy+rQNPnp/dkfQEKZi8NRQg+gI1dvGaAILg6QdpitfmAZZlcE3veIa0nTOYY+yat5O99CRy1AVjha7xMYsm/JQuDi8PsdhXkWwjnRhZR0G8FxXW8l004znErXsjXbGjZgWIcOkw3WpDkdpiMZZPajiO0Qyjz+/BYDOTNDoZ7T3vDocZUVfN4yQ8TKew5H108g4Dk+1rSsZb1c+R8rN01moLm7SHqaxoGMsZrCPYj/f9/EJKpwdHUEH3ahlM7e8ipe62od9KLdQ9d6rvIaufI6oaY08DXcCUEAUERGRnVbcDpFNpol0JTFSwQ+p+WimUEkb/YdJPx7DmTcHZ94c8H3Mlnast1Zhr1iN9fYa7OUrsZevJAL40QjOjKagujhzKl5N5RatX9xSJb12+iuInrfZ4QiCSldDNF6oEA59baZhsKCillXpt3A8L+hOuZFmOABxO2iC0pnLEbYs1mdTzBslWFaFoliGiRPKEyrsOZgLBWvv2nNZ9qyoKZ7bFE2ScV2OqJ+6Ra8dgoBsG2bpWsGR2H5JOAxChz9ipa4mEuPA6gaSoRB/Wr8yaCgU8vD3Xwu2Vwwts5MVNMTiPLJ+FRUhn5znUhmOYBU63FqF8Xn41EfjWIbJAdXBfoCGYfCP9mamxxIYhkHadagKRUqaCg2nvxOsncuQtEPEC6/B9/1Rw7/v++Q8j9nJilEfvzIU4XV/+I6lru9hYlATjhKKWjzT2VIScrOeyy6JCtKuQ2s2TcOmNJkywd9vHVheScfUIDhb7FFeFXzOvk9jLIHn+7zU3Y7n+0OmjvY5eSpDEeqjMfarrA86CU/Q6aWggCgiIiI7sZBp0jN1PWXN1UHTECBnOVTam9it1DDw6mvw6mvIH7QPeB7m2mbst1ZjrViNtWodoVeXE3p1OQBeMhFMR53ZhDN9Cn5VxXYNjLHYoOeK9XeT9DdvKt4gs5MVwTrEEUyJJdglUc7rPV3EbZvaMTTpSdohwpZFRy7Lwso6fN8ftfpSHgpTZofodLLURRzIhMiH8tQW1vFVDAqC8ypq2LOiuti4ZUsk7BBRM2hUk8ln8aC4RcVgjufRmc+WTEV0fB/bMImNEMYsw2BBZS2ZQhfYbKG6199UJeU4JKxQ0PiIGHWRGB25LDnPLa7xDMJbiLZchohpUbdBtXh+RQ0vd3eQKkzJHK3D7Ib6P6OkHSJph4jaQxv29G8T0h+M+vd7nLKRbV6SowT3lBOMtTwUhODdkpW82N3O1FjwvI7v0RiNE7Nt/rhuZTG09jp50q5DXSRGn5Mn53nFa8r3fTrzOXx8khXukIDck88xNZYkatnMH/TLBtf3KLPDdOSy9LkOZuF9qQxH6HFy7F1Rh2WYzEpu+r6n440CooiIiOy0IqaFG3Lx57VgLGvEr0rj+H7JdgCbxTTxpjaSm9oIh+4PeQdr9TqsFaux31qFubaF0AuvEnrhVQC8ZLwwfXUK7owpeLXV2zQwxsIWTjiPZVLc4NwwjFEbgYzFxtZVmYbB4XXTmJWooM/Jj7ljatIOkXYc5pRVMiUaJz5KoDMNg4NrGnmsZTW5WJZwxsaL5GiIVJN13ZIGNZu7xchwLMOgOhKlOZMi47mYGEP2fQToyAfdRKvCkeJ6T8cPmrpENvJ+RC2bslCYjOOUvHe9Tp6ZiXJChefau7KWR5pXkvXc4npQ0zCoj8ZY1tHLYfVNQ4JX2LRoiMRYU9j6w/d9qkJj67JbZoeJFNZ2Ri2bCjtKr5MtuZ7WZlIYBsVAmPEcqsORjV4DCcsesgdlznPx/WBd38xEebFivVtZJS91txeb5BgEe3I2ROMkQyH63DxJO0xHLoNhGHi+T0c+C37wiwXLMEi5TrHy2pLNMDWW2OC5PaYN0xDKMkxmxMv4R8d69quqp9wO83T7OhJeCDCYPoHXHG5IAVFERER2WmHTDHJYXQrvoNUQcXB8b6ONUzZZyA6ml86aRu6IgyGTxVq5FnvlGqy312KuayH00uuEXnodAC8WDcLi9Cm405vwGmq26hrGsGnRtuAtqsNh+uNLMMVx2zfWCZnmRqcVbqg6FMXxPGoiUerHME1weryMJbVNPLLrKhr9CtyIS20kyvR4kpoxTGvdXLWRGG/0dhG3QkyNJXg71UPTBgEj4wahLet6xO3gM817HlFr6LYdw6kLx3gt11lyzPG9kueZlShnSe1U/t3ZUlIdrYvEaIzGmVs2fGOjpniS5X3dxWmSwzUbGk7CtoPKYSGgNkbjPNeVoqpwu+sXNhDxKYa3rOtSs5EOthBMA7fNgam7adehNZcBP2hC0zjoeqiLxJiRKGNVqrdQvQ2mv0Ysi92Tlfyro6X4mCYGfU5QPa8MR+jKZ6kOR4OwHS9jWqKMPzevLhlL/56Q9dHhr6EZ8TIc3+Og6kZMw+DNvi5WpXtoiCao24p7qO5oCogiIiKy0wqb1sCUyIpgup6RHttegFskGsHdfRbu7rOCr7M5rNXrsVauwXp7Ddba5pIpqX44hDutEXdGE+60KbiNdRDa/DGGzWAfOseGjmweFx+DLa8gbiu1kShlodAmdVgtD4VxY3m8aAo/4xOxrDGFyy1REYrg+B710RgLq+pYle4tqSKmXYeoFTSNybgOtmfQmctiGeZGm8H0q45Ecbq9DY4aJZVR0zCYW17F9Hiy5FqeFk9SZodHnFJbFYqAAd35HEk7XDIddzRxOzSwxURhjB4+zdk0PhApvL6kFWJtpq+wVtUfUwBN2EFDopTrEMOmJZvhgOp6OnNZ3uzrGvK+zS2r4q3ebjKuQ8Qyi691t2QlK1O9rEn3sqh2Cn1Onmc7W6kOR9mjvJonW9dSHQ4qhFPjZcWGS4P1V35HGnf/3pn99iivZk26j92SlZvWIGecG5/fJURERES2gqhlEzLMDaYCbp9KWolIGHfX6bi7Tg++zjtYa5uDsLhyDdaq9QN7MAK+aeI11uJObQyC49RG/LLR13INFjaD7SwcP2jNn7RD5GDbB+PNtGd59SgrG4fXX5HLeS4GxohdT7emMjtE0g4zK1FObSTG9HiSVaneYnOUrnyWXRIV2IbJ672dOHmPrO/huA672GOrqpbbpd1Sgz0NjWHXj244FbciNHK4gaCSFrUs2vNZ3lE3bcwbuc+IlzFt0FYV/cEyZJq4vk9rLsNhtU1UhaO8ne4J9rI0GNOaV8swmV9Rw1Nta+nKZ9mjrIqFlXX0OXnC5tB9NJtiieJU34ZovNiNuDIc4dgpM3mjt4uZiXLWZfr4d2cr0+JJdk2U8+/OFtpzGSzDoDYSxTQMLMMsbssC0Oc6zC2vHvP+hTPiZcyIl+1U00tBAVFERER2YvHClgnBfmxWYa3TOKikheygWjijKfjadTHXtWC/vRZz9TqsVeuw1jRjrWmGvz8LgFdRFuzFWAiNXv3I01JNwyBW2IDcx2fvyloyrrtdQtTmMAxjxB0kRhIxLcKGSdp1sQ1zo904t4ayUJiacLTYnXX3ZBVv9gZTNg2CZjQzE+X0OXnyngcGNEYSvN7bMeYuquWhMFHLZlW6t7C3ZBD4h9sXclNFLZvacIyoabPrJkwDNg2jJDRVhMJMiyVZUFlLn5Pnn+3NTI0nqQhFSNphep08BsaYmwPtWajE9Tg59q9uwDQMykJhltRNHXKuZZjsUVbFylTvkG1bopbNvEJjmbpwjJpwlKZYkrgd4uDqRh5ev5K6aIyKUATX9wu/YPCIWWbQKdb3aRhheulwYpbNMVNmbvbeouOVAqKIiIjstEzDoDocZV2mjzKC6WUh09zibp5bnWUNNL0B8H2Mjq4gKK5ej7V6HWZLO6GuHkIvBusY/ZCN21QfBMamBrymevzEwBTLmBWi18ljYtAUTVAxgfdlG06w/UKY1myKsGVtl/Abs2wOqwsqZRB0ba0KR+jO57BNk4QVYko0wdpMX6EJkc+0eIKOXGbMVeuyUJij6qfzdqqHZ7taiVs2laHIVgshc5KVmMPtA7oJQqbFuxtnFhvBlNtBcDYMg2mxBM91tVIWiow5INqmyaF1TeQ8d0z/bU6Pl1Edjmy02+3csiqmFKq7s5MVdOSyhC2zGHiTdoiME2yb0ZnPURYKj2lrlsF2tnAICogiIiKyk6uNxFiRCjbCznkuUdMuNtsYtwwDv7oSp7oSZ+89gmOZbFBVLFYY12OvWIO9Yk3xbl5FGe6UOtwp9UyLmawJe4Tjsa3azXM8KQ+FWJlyKAuFxzxdcktVDZryGDJN9iqv5onWNYDB3pU1RArbQYBP2LSYU1ZFVz5XsoZwYxpjCUzD4LmuVjKuS01ybN1Gx2LXssqt8jj96xFNw6BxUAOdqfEk/+5spcwOFbuujkXwno0tUJaFwuxZXk3NKNuoGIbBftX1JV8fWNNQ0jG1MhTh7VyWlOOQdh3e0TBtk8a8s9o5v1uIiIiIFJSHwvT/TJjzPOqisYm5iXU0UrqO0fMwWzuKYdFc24zZ2hFUGV9+k0XAIUBXRYLEjDVBtXFKfTA1dXuvwdxGykLhko3Td4S55VWsSffxVqqb6YXtERJ2iLBpUREKk7BDHFE3dZOvuepwlIQdpiWTGnO30fGgLhInaYeHrB3c2g6obtis+w3+HCpDEd4orKE8sLqBXRKb1n13Z6WAKCIiIju1slAYjGB9Uc5zx7z327hnmnj1NXj1NeT3mxccy+aw1rVgrW2m9+1VWGuaqezqg+deIfTcKwD4lolXXxsExsY6vMY6vNqqrbrNxvaSsILOpztyyrBlmBxU00hFOFJsVhM1LeKWTVM0aF6yOb+QsE2TplgwPXXcTYkeRdIOMSUa3+YBcWtIhkKkXYeaSJQ9y6s2fodJQgFRREREdmpldoiIaZHzPFzfpyw0cX7Y3mSRMO7Mqbgzp/L2vF14YO1bHJmoZt+UF3RNXRs0vun/dz/fsvDqa3AbaoPuqQ21eHU1W7TVxvYQtaxgTam1Yz/T8lCYAwdVtAzDoCmWGHE/vbGaEk3wdqp7zGv5xosDahrGbUOkweKWTdSy2LOsetx2+N0R9E6IiIjITi1q2STsEBnPwRhj6/2dQdi0iFoWkfIy3KlVA3sy+j5GZ3cQFNe3YK5rxVrfOjQ0GgZebRVeQyEwNtbhNtRCZOxr6ba1mGUTtixi43CN5SE1Uza5M+uGaiNRqkPRCRcQJ0L1ECBph2mIxJm9CR1dJ4Px91+TiIiIyFZWH4nxUndHYfuHyfHjT9gyids28Q1fr2HgV1XgVFXgzNs9OOb7GF09WOtbi4HRXN+C1dKO1dJO6PlXi3f3qipwG2rw6oLprW5dNX5leaFr5/YVLWxjMh6rVWPdS280VeEoSxumq3HKNlIeCnNU44xJ8z1hrPRuiIiIyE5vQWUtK9O9OJ43aSqIEdMiZoWIj2X6pWHgV5bjVJbD3F0HDvemgqA4ODh2dGF2dMHLbxbP80M2Xl01biE09v+b+LatJEUta9wGxK1FUx+3LYXDofSOiIiIyE6vIhRhUc0UXuxuH/9bXGwlUcsmYYW2aIN1PxnHTc7EnT1z4GAmi9XShtncjtnShtX/95pgfeNgXjKBV1eNVz8oPNZUwlaaEho2Lcrt0Jj3GBSRjVNAFBERkUlhVqKcabHkxNziYjPELJt3NkwntLW7k0YjuNObcKc3DRwrTFE1W9qxmtswW4LQaLZ1Yvf2wfKVA6caBn5FGV5tFW5tFV5NVbDWsaZqs9Y3HlY3daeuIIpsbwqIIiIiMmlsr83Ux4utHg5HUpii6laWDzTDAXAczLZOzOa2gapjWwdmZzdmZzf26ytKHsYrSwwExtqB4OjHR+4GqimYIluX/osSERERkW3DtvEaavEaanEGH8/lg6DY2lH822rtwOjsxu7pg7dWlTyMF4sGYbG6Ar+6Eq+qAq+6Eq+qfKtNVxWRgP6LEhEREZHtKxzCm1KPN6W+9LjjYLZ3DQmPZnsn9sq1sHJtyek+BNNVqyrwqisGgmN1BX5FGWhtosgmU0AUERERkfHBtoNGNvU1pcc9D6OzB7OjMwiQ7V2Y7Z2YHV0YXT3YXT1Dqo6+aeJXluFVBZVGrzL441eW41WWQWhydLMV2VQKiCIiIiIyvpkmfnUFbnUF7uwNbnMczI7uYPuN9k6MQeGxP0wOx0vE8SvL8avKyE+pxY7EcCvKghBZltgh+zqKjAcKiCIiIiIycdnBHoxeXfXQ27K5ICgWmuIYnd2YnT3Bv7t6MPtSsHod7vOvERl0N98yg6mrFUG10a8owytP4pcX/i5LwCRreCSThwKiiIiIiOycImG8xjq8xrqht3keRk8fVncPZfksqVUtGB1dmJ09QZAcpfroGwZ+WaIQGpN45WWFv5PFMEkkrCqkTEgKiCIiIiIy+ZiFKmFVOXZNkvxuvXieP3B7Ll+oNHZjdvdhdPdgdvVidvdidPdg9PRhd/eO+PB+OFSoNgYVRy8Zx08mCv9O4JfF8RNxVSJl3FFAFBERERHZUDgUNMupr8Ed7nbXxejpKwTGXszunuDvriBAmt29WK0d0Nox4lP4hoGfiAXBMRnHK0uUhshkECL9eFRBUrYbBUQRERERkU1lWfiV5biV5cPf7vvBGsiePozeviBM9vZh9KQwevsGjvemMHtToz6VD/ixaBAmE3H8eGzg34kYXnzg334ipr0hZYvo6hERERER2doMA6IRvGgEhmug08/zMNIZjJ7+EJkaFChTGKk0Rl8Koy+Nmc6MWpHs50fC+PEYXiKGH4tCLIofiwQhs+TPwDHtGSn9FBBFRERERHYU0yxU/+LQWDf8dFYIKpK5PEZfCrMvXRIcjb40RqoQIgu3mR1dmB3DN9kZ9uHDoYHQGB0UIKMR/EgYIhH8aDgIn5EwFI77kQjYlhry7EQUEEVERERExjvDgEI4c6srN35+3glCZDqDkc4W/h78Z4NjmQxmVw909Wzy0HzTxI8WQmQkPChIRiAcwg+Hgr9Dpf8mbA9zLKSwuYMpIIqIiIiI7GxCNn5FsIfjmHkeRmYgOJLOYGRyGNn+P1no/zqTHTiWzQXnpTJbZeh+yC6GRd+2wLaLf2Nb+CE7WAPa/3Xh78HnFc+3THzTBMsMGv30f13yb6t4+8C5RnCOaU66wLrTBMS5c+cOOfb1r3+d448/fgeMRkRERERkgjHNoAFOPLZ593ccjGyuECILATKXD6bG5vv/doJj+XzJbQP/doK/czmMVHrrvr4t4PeHRMMo/Bn874HbiufZFu6JR8PUph0y3i2x0wREgBtuuIHFixcXvy4vH6GrlIiIiIiIbF22HVTzEnH8jZ+9cZ4XTJV1Xcg74LjFf2/4N64bhMv+vx0Xw3HA9cBzg+qo6wWP6XngehiFv/uPDXu77w/6A1D6teH7hWPBeI3+81wXcvmt8S5sdztVQCwvL6eurm5HD0NERERERLaUaQbrLgcd2irBczswTYNYTRLaenf0UDbZTrXj5uWXX84hhxzCySefzK9+9asdPRwREREREZEJZaepIF500UUsWrSIcDjMX/7yF770pS+RSqU49dRTN/sxTXP8LEjtH8t4GpPsHHRtybag60q2BV1Xsi3oupJtYSJfV4bv++O2UnvTTTdx8803j3rOn//8ZxobG4ccv/HGG7nvvvv405/+tFnP7fs+xiTrWCQiIiIiIpPbuA6InZ2ddHWNvsHntGnTsCxryPFHH32Uc845h+effx7b3vRCaT7v0t09fjonmaZBVVWCjo4+PG/cfmQyAenakm1B15VsC7quZFvQdSXbwni8rsrLY4RCQ3PThsb1FNPKykoqKys3674vvfQSVVVVmxUO+42XD3Mwz/PH5bhk4tO1JduCrivZFnRdybag60q2hYl4XY3rgDhWf/rTn2hra2PhwoWEw2GeeOIJvvOd7/CJT3xiRw9NRERERERkwtgpAqJt2/zoRz/immuuAWDGjBlceumlnHzyyTt4ZCIiIiIiIhPHThEQDz/8cA4//PAdPQwREREREZEJbafaB1FEREREREQ2nwKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIABMkIH75y1/mhBNOYP78+ZxwwgnDnvP000/zwQ9+kPnz53P00Udz7733bt9BioiIiIiITHATIiACnHjiiRx33HHD3rZy5UrOPvtsDj74YO677z7OOOMMLr30Up588sntPEoREREREZGJy97RAxiLyy67DID29nZef/31Ibf/5Cc/Yfr06Xzuc58DYPbs2fzzn//krrvuYvHixdt1rCIiIiIiIhPVhAiIG7Ns2TIOPfTQkmNLlizhhhtu2KLHNU1ji+6/NfWPZTyNSXYOurZkW9B1JduCrivZFnRdybYwka+rnSIgtra2UlNTU3KstraWzs5O8vk8oVBokx/Ttk1qapJba4hbTVVVYkcPQXZSurZkW9B1JduCrivZFnRdybYwEa+rHRYQb7rpJm6++eZRz/nzn/9MY2PjmB7PMErTue/7mz02AMfx6O5Ob9FjbE2maVBVlaCjow/P27LXJjKYri3ZFnRdybag60q2BV1Xsi2Mx+uqvDxGKGRt9LwdFhBPP/103ve+9416Tl1d3Zgeq7a2ltbW1pJjbW1tVFZWblb1sN94+TAH8zx/XI5LJj5dW7It6LqSbUHXlWwLuq5kW5iI19UOC4iVlZVUVlZulcdauHAhjz32WMmxJ598koULF26VxxcREREREZkMJsQ2FytWrOCll16ipaWFbDbLSy+9xEsvvVS8/T//8z95++23ueGGG3jjjTf40Y9+xEMPPcQZZ5yxA0ctIiIiIiIysUyIJjWXXXYZf/vb34pff+ADHwDglVdeAWD69Ol85zvf4brrruMHP/gBjY2NfPnLX9YWFyIiIiIiIptgQgTEH/7whxs955BDDuHee+/d9oMRERERERHZSU2IKaYiIiIiIiKy7SkgioiIiIiICKCAKCIiIiIiIgUKiCIiIiIiIgIoIIqIiIiIiEiB4fu+v6MHMR55no/rejt6GCVCIYt83t3Rw5CdkK4t2RZ0Xcm2oOtKtgVdV7ItjLfryrJMTNPY6HkKiCIiIiIiIgJoiqmIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggjis/+tGPWLp0KQsWLOBDH/oQzz777KjnP/jggxxzzDEsWLCA9773vTz22GPbaaQy0WzKtfXaa69x/vnns3TpUubOncvdd9+9HUcqE8mmXFc//elP+fCHP8yBBx7IQQcdxJlnnslzzz23HUcrE8WmXFd//OMfOfHEEznggANYuHAh73//+7n33nu332BlwtjUn7H6ffe732Xu3Llcf/3123iEMhFtynX1y1/+krlz55b8WbBgwXYc7dgpII4TDzzwANdeey3nnnsuv/rVr5g7dy4f//jHaW9vH/b8Z555hosvvpiTTjqJe++9l6OOOopPf/rTvPHGG9t55DLebeq1lU6nmTZtGhdffDF1dXXbebQyUWzqdfX0009z/PHH84Mf/IAf//jHNDQ0cOaZZ9Lc3LydRy7j2aZeVxUVFZx99tncc889/PrXv+akk07i0ksv5cknn9zOI5fxbFOvq34vvPACP/nJT5g7d+52GqlMJJtzXVVWVvKXv/yl+OeRRx7ZjiPeBL6MCyeddJJ/1VVXFb92XddfsmSJf/vttw97/oUXXuifffbZJcdOPvlk/8orr9ym45SJZ1OvrcHe8Y53+D/84Q+35fBkgtqS68r3fd9xHH/ffff1f/3rX2+rIcoEtKXXle/7/gc+8AH/pptu2hbDkwlqc66rVCrlH3vssf5jjz3mn3baaf511123PYYqE8imXle/+MUv/IMOOmh7DW+LqII4DuRyOV544QUOPfTQ4jHTNFm8eDHLli0b9j7Lli0rOR9gyZIlI54vk9PmXFsiG7M1rqt0Oo3jOFRUVGyjUcpEs6XXle/7PPXUUyxfvpz9999/G45UJpLNva6uu+46Dj74YA477LDtMEqZaDb3uurt7eXII4/kiCOO4NOf/jSvv/76dhjtprN39AAEOjo6cF2X2trakuM1NTWsWLFi2Pu0trZSU1Mz5PyWlpZtNk6ZeDbn2hLZmK1xXX3ta19jypQpHHLIIdtiiDIBbe511dPTw+GHH04ul8M0Ta688koWLVq0rYcrE8TmXFePPPIIf/3rX7WeVUa0OdfVrrvuyrXXXsucOXPo7u7mzjvv5JRTTuH++++noaFhewx7zBQQxzHf9zEMY8Tbh7tttPNF+m3s2hLZHGO9rm677TYeeOABfvjDHxIOh7fDyGQi29h1lUgkuPfee0mlUjz11FNcc801zJgxgwMOOGA7jlImmpGuq/b2dr74xS9yyy23EIvFdsDIZCIb7fvVwoULWbhwYfHrfffdl+OOO46f/exnnHfeedtphGOjgDgOVFVVYVkWra2tJcfb29uH/GaiX21t7ZDz29raRjxfJqfNubZENmZLrqs77riD73znO3zve99jzpw523KYMsFs7nVlmiYzZ84EYM899+SNN97gu9/9rgKiAJt+Xb322mu0tLRwyimnFI+5rsvf//537r77bnVfFmDr/HwVCoXYc889x+WMLq1BHAfC4TDz5s0r6brmeR5PPfVUyW8aBlu4cCFPPPFEybEnn3xyxPNlctqca0tkYzb3urr99tu59dZbuf3228dta2/ZcbbW9yvf98nlcttghDIRbep1tWDBAn7zm99w7733Fv/Mnz+fD37wg/zyl7/cjiOX8WxrfL9yXZfXXnttXHaMVwVxnPjYxz7GJZdcwrx589h777256667yGQyfPCDHwTgkksuoaGhgYsvvhiAj3zkI5x22mnceeedHHHEETzwwAM8//zzXH311TvyZcg4tKnXVi6XK26XksvlWL9+PS+99BIVFRU0NTXtsNch48umXle33XYbN954I1/72teYOnVqcb10PB4nkUjssNch48umXlff/e532WuvvZg5cya5XI7HH3+c++67j6uuumpHvgwZZzbluorH40NmN8TjcSorK9l99913xPBlnNrU71c333wzCxcuZObMmXR3d3PHHXewZs0aTjrppB35MoalgDhOHHfccbS3t/Otb32LlpYW9txzT26//Xaqq6sBWLt2LaY5UPDdb7/9+NrXvsY3v/lNvv71rzNr1ixuueUWZs+evaNegoxTm3ptNTc384EPfKD49Xe/+12++93v8sEPfpDrrrtuew9fxqlNva5+/OMfk8/nueCCC0oe57zzzuP888/frmOX8WtTr6tMJsNVV13FunXriEaj7LrrrnzlK1/huOOO21EvQcahTb2uRMZiU6+r7u5uvvjFL9LS0kJFRQXz58/nnnvuYdddd91RL2FEhu/7/o4ehIiIiIiIiOx4+nWJiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICgL2jByAiIrK93HTTTdx8881Dji9atIjvf//7239AIiIi44wCooiITCplZWXcfvvtQ46JiIiIAqKIiEwylmWxcOHCjZ6XyWSIRqPbfkAiIiLjiNYgiojIpLdq1Srmzp3Lr3/9ay655BIOOOAAzjnnHAA6Ozv50pe+xOLFi1mwYAH/+Z//yb///e+S+3d3d3PxxRezcOFClixZwv/+7/9y/fXXs3Tp0uI5N910EwcffPCQ5547dy533313ybGf/exnHH/88cyfP593vOMd3HbbbSW3f+5zn+OEE07giSee4L3vfS8LFy7klFNO4bXXXis5z3VdvvOd7/Dud7+b+fPnc/jhh/O5z30OgB/96Efsu+++9PX1ldznr3/9K3PnzuXll1/exHdRRER2BqogiojIpOM4TsnXvu8DcMMNN3D00Udz4403YpomuVyOj33sY3R3d3PJJZdQXV3Nj3/8Yz760Y/y+9//nrq6OgA+//nP87e//Y1LL72U2tpa7rzzTt5++21se9P/N3v77bfzjW98g49//OMcdNBBvPDCC9x4443EYjFOO+204nlr167lhhtu4FOf+hSRSIQbbriBiy66iPvvvx/DMAD40pe+xH333cdZZ53FQQcdRFdXFw899BAA733ve7n++uv53e9+xwknnFB83F/96lfMmzePPfbYY5PHLiIiE58CooiITCqdnZ3Mmzev5NiXv/xlAPbZZx8uv/zy4vGf/exnvPbaa9x///3MmjULgMWLF3PMMcdw55138t///d+89tpr/PGPf+Qb3/gGxx13HAAHH3ww73jHO0gmk5s0tt7eXm655RY+9alPcd555wFw6KGHkk6n+d///V9OOeUULMsCoKurix//+MfFcfm+z7nnnsubb77J7NmzeeONN/j5z3/OF77wBT7ykY8Un6N/jOXl5bzrXe/il7/8ZTEg9vX18fvf/56LL754k8YtIiI7DwVEERGZVMrKyvje975XciwcDgNw5JFHlhx/6qmnmDdvHtOmTSupOh544IE8//zzADz33HMAJdNJE4kEixcv5tlnn92ksT3zzDOkUimOOeaYkuc75JBDuPXWW1m3bh1Tp04FYOrUqcVwCDB79mwA1q9fz+zZs3n66acBSqqDGzrppJP46Ec/ysqVK5k+fToPPvggjuPwnve8Z5PGLSIiOw8FRBERmVQsy2LBggUlx1atWgVATU1NyfGOjg6WLVs2pOIIMGPGDABaW1tJJBJDGtps+Fhj0dHRAcDxxx8/7O1r164tBsQNO6+GQiEAstksEFRK4/H4qFXMgw8+mOnTp/PLX/6SCy+8kF/+8pe8853vpLKycpPHLiIiOwcFRBERkYL+tXv9KioqmD9/PldcccWQc/urjrW1tfT19Q3petrW1lZyfiQSIZ/Plxzr6uoa8nwA3/nOd4YNmLvsssuYX0tlZSWpVIre3t4RQ6JhGJx44on89Kc/5f3vfz///Oc/hzTEERGRyUUBUUREZASLFi3iiSeeoKmpacSKYH818k9/+lNxfV9fXx9PPvlkSTBraGigr6+P9evX09DQAMATTzxR8lj77rsv0WiU5ubmIdNdN9UhhxwCwL333lvS3GZDH/zgB/nWt77FpZdeSkNDA4ceeugWPa+IiExsCogiIiIj+MAHPsBPfvITTj/9dM4880ymT59OZ2cnzz77LHV1dXz0ox9l9913Z+nSpVxxxRX09vZSV1fHHXfcMWTK6WGHHUY0GuXSSy/lYx/7GKtWreInP/lJyTnl5eWcd955XH311axevZoDDzwQz/N46623ePrpp7nlllvGPPZdd92V//iP/+C6666jra2NAw88kO7ubn73u9/xjW98o3heQ0MDhx12GI8++ihnn312sQmOiIhMTgqIIiIiI4hEIvzgBz/gxhtv5KabbqKtrY3q6mr23nvvkqY01113HVdccQXXXHMN8XicD3/4wyxYsIDf/e53xXOqq6v51re+xQ033MC5557LvHnz+NrXvlasOvb7xCc+QX19PXfddRff+973iEQizJo1a8h5Y3H55ZfT1NTEz372M2677Taqq6uHrRAeddRRPProo6M2tBERkcnB8Ps3fxIREZGtpn+PwT/96U87eigbdeGFF9LS0sL//d//7eihiIjIDqYKooiIyCT1yiuv8Pzzz/OHP/yBr3/96zt6OCIiMg4oIIqIiExSn/rUp+jo6ODDH/4wxxxzzI4ejoiIjAOaYioiIiIiIiIAmDt6ACIiIiIiIjI+KCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiExgvu+zdOlS5s6dy4oVK8Z0n1dffZW5c+fy9NNPb/XxtLW1cdNNN7Fq1aqS408//TRz587l1Vdf3erPOVZz584d9s8//vGPMd3/c5/7HCeccMI2HuX2fe6lS5dy/fXXj3j7qlWrmDt3Lo888sgWP9fpp5/OBRdcUHLspz/9KUuXLmWvvfbi9NNP3+Ln6HfTTTeN+Hn3/9mazycisjOxd/QARERk8z3zzDOsXr0agN/+9rd8+tOf3qHjaWtr4+abb+aggw5i2rRpxePz5s3jnnvuYcaMGTtwdHDmmWfy7ne/u+TYbrvttoNGM7lcfvnl2PbAjx0tLS1cccUVnHrqqRxzzDFUVFRstec6+eSTOeyww4pf//CHP+Tpp5/m5ptvLh5LJpNb7flERHYmCogiIhPYb3/7W+LxOLvvvvu4CIgjSSaTLFy4cEcPg6lTp46LcUxGGwbxFStW4LouJ554InvsscdWfa7GxkYaGxuLX//ud78jHA6P+tlnMhmi0ehWHYeIyESkKaYiIhOU67o89NBDLF26lBNPPJHXX3+dl19+ech5P/rRjzjiiCNYuHAh55xzDi0tLUPOufPOOznxxBPZf//9Wbx4Meecc86QKav9UwTvueceli5dyt57780nP/lJ1q9fDwTTEd/73vcC8JGPfKQ4lQ+GTjE97bTTuPDCC4eM4/rrr+fII4/E930AstksN9xwA0cccQTz58/nfe97H3/+85+34F0b3r333sspp5zCQQcdxIEHHsjpp5/Oc889N+p9uru7+cIXvsCSJUtYsGABRx55JJdddlnJOa+++iqf/OQn2Xfffdl333254IILhn3/N1VzczOf//zneec738nee+/Nu9/9br7xjW+Qy+VKzstkMtxwww284x3vYP78+SxdupSvfe1rIz7u+vXrefe7381HP/pR0un0sOc8/fTT7Lvvvnz9618H4Je//CVz587llVde4WMf+xgLFy7kmGOO4fe//33J/QZPMb3ppps49dRTAXj/+9/P3Llz+eUvfwlsn8+8f+rsr3/9ay655BIOOOAAzjnnHCCYinz33XeXnH/TTTdx8MEHlxxbs2YNn/nMZzjooIPYZ599OOuss3jzzTe36jhFRHYEBUQRkQnqr3/9K62trRx33HG8+93vJhQK8dvf/rbknD/+8Y9cddVVHHnkkdx0003MmTOHSy+9dMhjrVu3jtNOO41bb72V//mf/8F1XU455RR6enpKznvmmWe4++67+dznPsfVV1/NK6+8Uqxa1tfX89WvfhWAL33pS9xzzz3cc889w479uOOO49FHHyWVShWP+b7PQw89xLHHHothGABccMEF/OpXv+Lss8/m29/+NgsWLOBTn/oUL730UvF+/evNxsLzPBzHKf5xXRcIAsMHPvABbrzxRr761a/S2NjIaaedxsqVK0d8rGuvvZZ//vOfXHrppdxxxx185jOfKY4bggrZKaecQjab5Stf+QrXXXcdr7/+Ouecc04xAG+ujo4OKisr+fznP8/tt9/OWWedxS9/+Uu+/OUvF8/xfZ9Pf/rT/PjHP+bDH/4wt912GxdccAEdHR3DPuaqVas49dRTmTlzJt/5zneIxWJDznn88cf55Cc/yVlnncV//dd/ldz22c9+lqVLl3LzzTcza9Ys/uu//ot169YN+1wnn3wyX/rSlwD46le/yj333MORRx4JbP3PfDQ33HADiUSCG2+8kbPPPnvM9+vs7OTDH/4wy5cv54orruCb3/wmqVSKj33sY2QymS0el4jIjqQppiIiE9T9999PeXk5hx12GOFwmMWLF/Pb3/6W//qv/yoGlW9/+9scdthhXHnllQAcdthhtLe387Of/azksQaHRtd1OfTQQ1m0aBEPP/wwH/jAB4q3tbe385Of/ISpU6cC0NTUxIc//GEee+wxDj/88OIP7bvtttuo0/mOOeYYvvzlL/PII49w/PHHA7Bs2TLWrFnDcccdB8BTTz3Fo48+yg9/+EMOOuggAJYsWcJbb73F//7v//Ktb30LAMMwsCxrTO/Z1VdfzdVXX138er/99uPHP/4x5513XvGY53kceuihPPfcc9x3330ltw323HPPceqppxbHC0E1rN/NN99MbW0tt912G+FwGAiqU8ceeyx//vOfi4Foc8ydO5f//u//LnkdsViMSy+9lMsuu4xwOMxf/vIXnnjiCW699Vbe+c53Fs8d/Hn2W7FiBWeccQYLFizga1/7WnG8gz388MNcdNFFXHTRRZx11llDbj/jjDM46aSTgGDN6aGHHsojjzzCKaecMuTcxsbG4pTTuXPnMmfOHGDbfOaj2Weffbj88ss3+X7f//73SafT3HvvvVRWVgLBZ7B06VJ+8YtfFKujIiITkSqIIiITUC6X449//CNHHXVU8Yf5448/ntWrV7Ns2TIgCHovvfRSSTgAOProo4c83rJly/jYxz7GwQcfzF577cU+++xDKpVi+fLlJefttddexXAIsP/++1NTU8Ozzz67SeOvrq7mkEMO4YEHHigee+CBB5gxYwYLFiwA4Mknn6Suro799tuvpOq3aNEinn/++eL9zjvvPF588cUxPe9ZZ53Fz3/+8+Kf/rD4xhtvcO6557J48WL23HNP5s2bx/Lly3nrrbdGfKw99tiDO+64gx/96EdD3icIws7RRx+NaZrFsU+bNo2pU6eWjH9z+L7P97//fY477jj23ntv5s2bx2c/+1lyuRxr164FggpzZWXlkM9/Q8uXL+fUU09l//335xvf+Maw4fD3v/89F154IZ/73OeGDYcQBLl+VVVVVFdXj1hBHMm2+MxHs7kh/amnnmLx4sUkk8niGBOJBPPmzdviz1ZEZEdTBVFEZAJ67LHH6O7u5ogjjqC7uxuAgw8+mHA4zG9/+1v23Xdf2tvbcRyHmpqakvtu+PWaNWs488wz2Xvvvbnyyiupr68nFApx9tlnD1nTtuF9+49tzrq64447jiuvvJLe3l7i8TgPPfRQyVYOHR0dtLS0MG/evCH33dzqUVNTUzGA9uvt7eXMM8+kpqaGz33uczQ1NRGJRLjsssuGvP7BvvSlL/Gtb32LW2+9lauuuoqZM2dy4YUXFiuiHR0d3Hbbbdx2221D7tsf4jbXXXfdxfXXX88nP/lJDjzwQMrLy3nuuee46qqryGazQDANsq6ubqOP9cwzz9DZ2clJJ51U0mV0sD/96U9UVlZy1FFHjfg4ZWVlJV+Hw+FR37/hbIvPfDTDXc9j0dHRwbJly0p+wdFv0aJFWzosEZEdSgFRRGQCuv/++wGGbfTy4IMP8vnPf57q6mps26atra3k9g2/fvzxx8lkMtx6663E43EAHMehq6tryGNveN/+Y2MJIhs6+uijueKKK/jjH//I1KlTaW5u5thjjy3eXlFRQUNDA7fccssmP/amWLZsGevWrePOO+9k9uzZxeMbrr/cUHl5OZdddhmXXXYZL7/8Mrfffjuf/exnmTt3LrvtthsVFRUcddRRnHzyyUPuW1VVtUVjfuihhzjmmGP4zGc+Uzz2xhtvlJxTWVk5puB+wgkn0Nvby7nnnsv3v/999t577yHnXHbZZXzve9/jzDPP5O67797i8Y9ke33m/QavGe0XDofJ5/Mlxzb8b6GiooKlS5cO2zU4kUhs3UGKiGxnCogiIhNMX18fjz76KO95z3v40Ic+VHLbSy+9xLXXXsvTTz/N4sWL2WOPPXj44YdL1oH94Q9/KLlPJpPBNM2S6tGDDz6I4zhDnvvFF19kzZo1NDU1AfDPf/6Ttra2YqgIhUIAxSrWaCoqKliyZAkPPvggTU1NzJ49u2S7g0WLFvG9732PeDxeEty2tv6mIoOnVv7rX/9i9erVzJ8/f0yPsccee3DJJZfwm9/8hjfffJPddtuNRYsW8dprrzF//vxhg8iWjnnDqaC/+c1vSr5etGgRt99+O4888gjveMc7Rn28K6+8klQqxSc+8Ql+8IMfDGkAk0wmueOOOzj99NM566yz+MEPfrBN9hHcXp/5aBobG0vCtud5/PWvfy05Z9GiRTz44IPsvvvu2hpDRHY6CogiIhPMww8/TDqd5iMf+Qj77LNPyW377bcf//u//8v9999f3K7ivPPO4/LLL+foo4/m73//O48//njJfQ455BBc1+Xzn/88J510Eq+99hp33nkn5eXlQ567urqas88+m/PPP59sNstXv/pV5s2bx+GHHw4EUzij0Sj33nsvZWVl2LY9ZErnYMceeyxf+MIXSCaTnHbaaSW3HXrooSxZsoQzzzyTT3ziE+y222709vby8ssvk81mufjii4GgGcytt9662WvSFi5cSDwe54tf/CIf//jHWbduHTfffDMNDQ2j3u+UU07h6KOPZvfdd8cwDH76058Sj8eLYfm8887j5JNP5pOf/CQnnngiVVVVrF+/nieffJIPfvCDxW0Tli5dykEHHcR111036vMNDpmLFy/mhz/8IXvvvTczZszgN7/5zZBtSfrfv4svvphzzz2Xvfbai5aWFv7xj39w1VVXlZxrmibXX389F1xwAWeddRZ33303s2bNKjmnqqqKO++8k1NPPZWzzz6b22+/fdhOp1tie33moznqqKP4v//7P/bcc0+mT5/Oz3/+c3p7e0vO+ehHP8qvf/1rzjjjDE477TQaGhpobW3l73//O/vvvz/vec97tvq4RES2FzWpERGZYH77298ya9asIeEQggrescceyx/+8AdyuRxHH300X/ziF3nkkUc499xzefHFF0u6eELQRfLaa6/l3//+N2effTb3338/N95445A1ZQD77rsvH/7wh7nmmmv4whe+wO67714yHTASifA///M/vPDCC5x++unFrpYjeec734llWXR0dJR0A4UgEN18882ceOKJ3HXXXXz84x/n8ssv55lnnmH//fcvnuf7fnG7is1RW1vLjTfeSGtrK5/+9Ke56667uPLKK5k5c+ao91u4cCG/+tWvuOCCC7jooouKaw77N2jfZZdduOeee4jFYnzpS1/iE5/4BDfddBPhcLjksdPpNNXV1aM+VyaTKVZnAc4991ze8573cOONN3LxxRcTCoWG7MFoGAa33HIL//Ef/8Fdd93FJz7xCb75zW+OOD3Utm2++c1vMmfOHD72sY8Nu06yvr6e73//+6xevZrzzjtvk9cYbsz2+sxHc95553HMMcdw44038vnPf5499tiDE088seSc6upq7rnnHnbddVeuvfZazjzzTL761a/S09OzVbbfEBHZkQx/SzdjEhGRSeH000+nqqqquNWAbLmVK1fyrne9i9///vdMnz59xPNOOOEEZs2aVdycXkREZFvRFFMREZEd5JlnnuGoo44aMRw+99xzPP7447zwwgt8/OMf386jExGRyUgBUUREZAd53/vex/ve974Rb+/vUnrJJZcMmYIrIiKyLWiKqYiIiIiIiABqUiMiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgZrUjMDzfFzX29HDKGHbJo4zvsYkOwddW7It6LqSbUHXlWwLuq5kWxhv15VlmZimsdHzFBBH4LoenZ2pHT2MItM0qKlJ0t2dxvPUV0i2Hl1bsi3oupJtQdeVbAu6rmRbGI/XVWVlHNO0NnqeppiKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIGa1IiIiIjIDuX7Pp7n4u+AXh6maZDL5XAcZ9w0E5GJb0dcV4YBpmlhGBvvVDoaBUQRERER2SF836e3t4u+vm5gx4Wz1lYTzxs/2xHIzmFHXFemaVFTMwXL2ni30pEoIIqIiIjIDtEfDsvLqwmHI8CWVT42l20bOI6qh7J1bf/ryqezs5Xu7naqquo2+1EUEEVERERku/N9vxgO4/HkDh2LbZuAKoiyde2I66qsrJKOjmZ838MwNq/djJrUiIiIiMh253ku4BcqhyKyNVhWUP/bkqmtCogiIiIist0NNKTZMdNKRXZOwX9PW9LwSQFRREREREREAAVEEREREZEd5l//+gdLlhxAKpUa9byTTnovv/jFPdtpVNvXvff+gv/+788Uv3Ychy9/+XKOOeYdLFlyAK+99gpXXnkZP/nJ3TtkfOed90luvvmbO+S5dwQFRBERERGRMbr66itYsuQAvvGNG4bcduWVl7FkyQFbFCYeeOA3HH/8O4ccv+22H3D88e8vfr1kyQE88cTjm/0820MqleLmm7/JySe/j6VLF/O+972bz3zmXJ59dlnxnGw2y/e+910++tGPF489+ujDPP74o3zzm7dy330Pscsus/noRz/OD37wPfr6ekd9zpNOei9Llhww5M+99/58o+MdKaxfc81XOPPMT2zKS98s4+UzVRdTEREREZFNUF/fwB/+8DvOPfciwuEwAH19vTz++KPU1zdsk+esqqraJo+7NeTzeUKh0JDjX/nKNbz66stcfPHnmDlzFp2dHfzzn3+nu7u7eM6jjz5MRUUle+45r3hs1aqVTJ06nT322LN4bObMWUyfPoM//OEhPvCBk0Ydz9lnn8txx7235FgyufmdcsvLKzb7vhORAqKIiIiIyCbYa695LF/+Jn/5y2MsXXoUAH/84++ZM2cPTLN0gt6SJQdw/fXf4NBDDwOCqtq73nU43/rWt9lvvwNKzv3Xv/7BNddcWbwfwMc+9gnOOutsTjrpvZxyymmceOJ/cNJJQfjpn5bZ2DiFn//8N6xc+TY33/wNXnzxBTKZDLvuOptPf/pC9tlnYcl4PvvZz/PnP/+Jf/97GfX19Vx44cUsWrSkeM6bb77OzTffyLPPPkMikWDRoiWcd95niiHrvPM+yW67zQF8fv/7h5g3bz5f+cqNQ96np576C//1X//NIYcsBmDKlKaSIAjw8MO/59BDDy9+ffXVV/Dgg/cXx9r/2gAWL17Cww//YaMBMR6PU1NTO+xt69at5etfv4Fnn12G4+SZOnUaF130/2hsnMIFF5wDwLveFYzn2GPfwxe+cAXnnfdJ9thjL8477yIgqFK+//0n8MYbr/OXv/yZqqoaLrnk80yfPovrrruK559/ll12mc2VV15NU9M0gI1+NiN9pgCPPfYod975Xd5++y3q6up53/s+yCmnnD7kWttaNMVURERERGQTHXfce3nggV8Xv37ggd8MqVptqgUL9uGCCy6mvLyC++57iPvue4hTTjl9yHm33fYDAL74xau4776Hil+nUikWLz6MG2+8lTvu+CHz5+/NJZdcSGdnZ8n9b7/92xx99DF8//s/YsmSI/jCFy5h/fp1APT09HDBBZ9ir73mceedd3P99d9k5cq3ufrqK0oe47e//TWxWJxvf/tOzj//v4Z9PVVV1Tz55F9GXV/57LPLSiqFF174Wf7zP09jt93mlLw2gD322IsXXngex3FGfhM34utfv558Psctt9zGXXf9hLPOOodwOEJ9fQNXXx1MG77nnnu5776HuPDCz474OD/5yd3sv/+BfO97/8fChfty5ZVf5IYbvsyHPvRh7rjjbmzb5itfubZ4/sY+m5E+03//exnXXHMF//mfp/LDH/6Uiy76f/z85/fw859vu/WoqiCKiIiIyLjx/BMGzW9vv+ernwELj9j0+x1zzPHcccd3aG1toa+vjzfffJ2lS4/ioYd+u9ljCYVCJJNJDIMRK2AwMN00mSwrOW/u3D2YO3eP4tfnn/8Z/vznP/H000/y7ncfVzx+1FHvLobZ8867iL/97SnuvfcXnH32ufziF/ew55578fGPn1M8/5JLvsCpp55ER0c7VVXVQDDl8+yzzx319fy//3cpV155Gccdt5Q5c/Zg4cL9OOqodzFnTjDGnp4eent7S15DMpkkFothWdaQ96CmppZcLktHRzt1dfUjPu/NN3+Tb3/75pJjt9xyG3Pm7MH69es44oilzJ69GwBTp04rnlNWVg4EwTYej4/62g499HDe+94PAHDGGWfx4IP3c8ghi1m8OKjEfuhDp3DllZfheR6maW70sxnpM73zzu/ykY+cyTHHHF8c7xlnnMnPf34PH/rQKaOOcXMpIIqIiIiIbKKamloOOOBgHnzwt/T0dHPEEUuJxxM7dEypVIo77vgOTz31F9rb23Bdl2w2W6wO9ttrr/klX8+bt4C33loOwOuvv8bf//40Rx992JDHX716VTEgDq76jWS//Q7g5z//Dc8992+efXYZTz/9FD/5yd1ccskXeM973k82mwUoruPcmEgkAkAmkxn1vNNO+2hJIAaKa0NPOOFDfP3r1/P3vz/NgQcezNKlRzNr1i5jev7B+gMmQHV18J7sssuug47V4DgOvb09lJdXjPmz2dAbb7zKc8/9m+9977biMdf18H1vk8c8VgqIIiIiIjJuzD/Uh0O397Mam3Wv449/L9/+9s2kUikuv/zLwz+yYeAP2rV8S6ZHbswtt3yTf/7z73z60xcydeo0IpEIn/3sheTz+Q3GNPw4AdLpNIcdduSw1cG6urriv6PR2JjGFAqF2G+/A9hvvwP46Ec/zvXXX82dd36X97zn/VRUVGAYBj09PWN6rP7mNpWVozfsqaysZNq06cPe9v73n8DBBy/iiSce5+mnn+IHP7iT//7vyzj22PeMaQz9bHtwjAreO8saeszzgs9+rJ/NhlKpNJ/4xKc47LDNKHNvJq1BFBERERHZDIceejg9PT2EwxH23Xf/Yc+prKyivb2t+PXrr7866mPadgjX3Xh1yLZtPM8tOfbcc//m+OPfx+GHH8ns2btRXl5BS8v6Ifd94YXnS75+8cXnmTlzFgBz5sxl+fI3mTKliWnTppf8iUSiGx3XxsycObNYAQyFQsyatQtvvfXmmO771lvBuMrKyrZoDI2NUzjxxA9xww3f4D3veX+xKU5/J1bP2/rVubF8NsN9pnPmzGXlyhVDPouRAvDWoIAoIpNS3vN4um0dGXfb/SZXRER2brZtc889v+Kuu/6vWIHb0L777s8vfvFTXn/9NZ577t/cdtutoz7mlClT6Ovr5V//+gednZ0jTqdsbGziH//4G21trcXK2rRpM3j00T/x2muv8uqrL3PFFV/ANK0h93344d/z4IP38/bbK7j11ht5++0VvP/9JwJwwgkn09HRxlVXXcbLL7/I6tWreOqpv3D99VdvylsDwPnnn83999/Lq6++zJo1q3nkkT/yf//3Q5YsGehaetBBh5TsiziaZ59dxoEHHrzR81KpFG1trSV/+hvl3Hjj1/jb3/7KmjWrefHF53nuuX8zY8YsIAiOhmHw5JOP09HRMWpznU01ls9muM/0jDPO4oEHfsP3v387y5e/yfLlb/L73z/IXXfdsdXGtiFNMRWRSWlFqpvXejuZnawgaulboYiIbJ5EYvT99c477yKuvvpKzjnnYzQ1TeX88z/DZz5z3ojnL1iwD+9//wl88Yv/TVdXV3Gbi+Ee9+abv8G99/6Curp6fv7z33D++Z/hmmuC56qqquaMM86iq6tzyH3POuuTPPTQA3zlK9dQV1fP//zP9TQ2NgJQV1fPrbfewbe/fRMXXfRp8vk8U6ZM3awpjgceeDC/+c19vP32t8jlstTVNXD88e/jjDPOKp5z/PHv55OfPINUqm/UNZz5fJ7HHnuUr371Wxt93u985xa+851bSo6deuoZfOpT5+O6Dl/96rW0traQTJaxePESPv3p84uv/ayzzuaWW75Je3s7xxxzPF/4whWb/LqHM5bPZrjPdNGiQ7n22q/x/e/fzg9+8D3C4RCzZu3KCSecvFXGNRzDHzwpWoryeZfOzq33W4MtZZoGNTVJ2tp6i3OZRbaGyXht5T2P36x5k+ZMmvdN3YWm2OZvnivDm4zXlWx7uq52Lo7j0Nq6mtraqRus59r+bNvEcbZd04/xZMN9GceDL3zh/zF//j6ccsppI57z61//ikce+SPf+MYtI54z3uyI62q0/64qK+OEQkMryhvSFFMRmXRWp3tpy2WwTYPcNlhnICIiImN37rkXEY2Ovr7RNE0+85n/t51GNLlpXpWITDq9Th6DoL9YdoPF4CIiIrJ9NTVN5YMfPGnUc97znvdvp9GIAqKITDrd+Ry2YeL4HjlXAVFERCaPv/zlHzt6CDLOKSCKyKTTk88RMkx83yfljr7/kIiIiMhkooAoIpNOr5MnZJp4+KRUQRQREREpUpMaEZlU8p5H2nMImSa2YZByVEEUEdkRBrYNVEdaka0n+O9phG05x0QVRBGZVDKug+N5hGwTxzBJu86OHpKIyKRkmhamadHZ2UpZWSWWZRO0D9sRDBxHQVW2tu19Xfn09nZhGCamufHtLEaigCgik0q6EBBt08TyTDKei+t7WIYmVIiIbE+GYVBTM4Xu7nY6Opp36FhM08TTtkeyle2I68owTKqr6zG2oISogCgik0rWc4vTLmzTwHE8sq5H3FZAFBHZ3izLoqqqDt/38DwPfwcU8UzToKoqTkdHCs9TFVG2jh1xXRlGUJnfknAICogiMskEU0qDb5zFrS48l7i+HYqI7DCGYWJZO+YXdaZpEA6Hse2cAqJsNRP5utKvzEVkUsk4TvE31KZh4OGT89TJVERERAQUEEVkkul2coTMgakXBgY5rTsRERERARQQRWSSCQJi6bc+VRBFREREAgqIIjJp+L5Pb94hVNKx1CergCgiIiICKCCKyCSSdh3SrkPEKt0bKOMqIIqIiIiAAqKITCI9Tp6875ZUEEOGSXc+uwNHJSIiIjJ+KCCKyKTR4+TAN0r2B4pYFh0KiCIiIiKAAqLIpLc23bdF9+/O52jOpOhz8ltpRNtOVz7LhnvHhk2LXidPXusQRURERBQQRSazlOPwr45mevO5zbp/znP5/boV3Lf6Tf7Wtm4rj24o1/d4rrMV19+8bSlaMxmiZun6w7BpknNd+hxnawxRREREZEJTQBSZxDzfw/V9nM3cB7A5k6Yzn6UqHGFdJkV+lMfJuM6ot49FWzbDq72d9A6qVnbkMiVfj8T1PdpzmSENaizDxMOnzx3/FVARERGRbU0BUWQScwnCoev7m3X/NeleTAzilk3KzdORy7Ay1cPy3q4h5/6ro4U3hzm+KdpyGbpyWbKDuo6+2N3Oir7ujd6318mT8dwhFUQAg6CaKiIiIjLZKSCKTGKe7292BdHxPN7q66bMDmEaBj5BgPtXRzMrU71Dzm/Jpki5WxbCVqZ6yHhOyb6FPfn8mMJdTz6P63nY5nDf9oyggY2IiIjIJKeAKDKJub6P63s4m7GmrzWbpsfJkbBDAIQNk9d6OlmfSdG1wZrGnOfS4+Tp24IQlnEdmrMpPL9038K0m6d3DNND12X6SrqXDhY2TTpzmc0em4iIiMjOwt7RAxCRHcfzfRzfx/V8gomWY9eZz+L7YBZCV9wO0ZHLkPM8ep0cnu8Xb+t18mRdl94tmMbZls2QcV0illWsIHq+T9p1CeVHD4h5z+WN3i7KC2F2QxHToiOnCqKIiIiIKogik1gQEDevgtiRy2KbA6EybtmkPZfGaJyc55EZNJ20z8mT9ZwtagTTH0hDhkFvoRKZ81xc36PPzeOPso5yXSZFj5MjOUJADJsmKTdPegunwIqIiIhMdAqIIpOYS1A93Jw1iK3ZDJFBDV9Mw2BWvIyEZeP4Xsl6w14nj+v7ZF13s7eoSDkOtmFgGya9hYph1nNxfJ+c55Ib5jXkPZe3+rp5racTC3PEKaYR0yLtOry1hU10RERERCY6BUSRSaxYQfQ2rYtp3vPocrJEraGz1PtD2OBqXEcu2H8w73klHUg3RdrNYxUCYn8lMu95hQqoX9K4pt+6TIo/rV/J8r4uaiKRER/bMAwqQmGe7WorqXyKiIiITDYKiCKTmNvfxXQTq3q9To6s6xIeZssIAB9KKoht2SwJO4Tje8MGubHocx1s0yRkmqQcB68QCg0f3A2mtPbLex4+MDWWHHGs/crtMF35HCv6ejZrfCIiIiI7AwVEkUnMK3Qx3dRpn/0b01sjTNk08ItbT+Q9j24nS9QMqo2bW0FMuQ62YWIbJo7vFaaVuhiGgWEYwwZPxw8C4lgYhkHENFmfSW3W+ERERER2BgqIIpOYR1BBzG1iaOt18vijRK+QYdKVz5J2Hf7evo4+J0/EsgCfzGZUEPvXL1qGgW2a5D2PjOuScz3Ax/cZPiB6HozSvGZDMcumJZseteGNiIiIyM5M21yITGKuH8S8rOtt9LuB7/vF9YVt2TQhY+TfL4VNi658lsdb1vBWXxeN0Xih2hhU+l7ubqc6HKU+Gh/TOPOei+N7JAwbyzDwCaaXZl0H3zfAKN0bceB+G1RGcyasS2J0RaBwPywPf5dOiDlErWC7i7TrEB+h46mIiIjIzkwBUWQS83wfr9AFdGOeaF1DUyzJtHiS9dl0SQfTDYVMkx4nz/pMmqmxBNagMNmbz/F6bxe7JMqpj8Zpz2VI2qFR1whmPRfX9wdtq2GQdd3CusSgSJhyhm6hkfXcgWmwroHx9yaMVHjoE2Rs/P3WETJM8r5Lt5NTQBQREZFJSVNMRSYx1/fxC9M3N2ZdJsVf29byt7b1tGXTlIeGCVoFUcuiK5elLhItCYeWETxOZz7L26keMq7DX1rWsCbdN+pz5zwP1/OKj+UDGc8h5eaDdYmmWVwXOVjGdTELAdFYXomRCuNXpfH2W4t30Gq8A1bjx/IYbXFojxYrpD35zd+vUURERGQiU0AUmcS8whTTIVMxN5D3PDKeS2cux4vd7dRHYsXgNRzLMJmdrCC2wTYYtmGS8VxMoCuf4/muNtZm+kbcoN71PfKeS851Gfx0pgHt2Qx9joNlmISM4QNirr+C2GfDW5X4loc/rxlq0lCRhaos/ux2AIw3qoKxY9CeS4/6foiIiIjsrCZMQPz73//OOeecw5IlS5g7dy6PPPJIye3ZbJYrr7ySgw8+mH333Zfzzz+ftra2HTRakYkh73uYsNEmNVnXwfE8psUTNERiw+5/iGMEa/xGYRsmnbks5aEwvu+zKtVLbz5HTz437PnLe7v5R3szOd8lWDAYqLDDvN7XSdrNEzKDxjUpJ4+3QXOZ/immxppyDN/An9UJsQ1ea2MffsSBzii4BlHLojmTGfV1iIiIiOysJkxATKVSzJ07ly996UvD3n7NNdfwyCOP8M1vfpMf/vCHNDc3c8EFF2znUYpMLP3TNje2BjFTWAMYMsxCN9INtEcx/jID46lpQVAcQcSy6HXyJO0wMctmTaaP6nCUrhECYsrJszrdW2hAMxD+EnaIlOOS930swyRiWmQ8t2TvRQgqiCYGrE0GXVebhtnj0ADKchgY0BciZtm05dKs28i0VxEREZGd0YRpUnPEEUdwxBFHDHtbT08Pv/jFL/ja177GokWLgCAwHnfccTz33HMsWLBgew5VZMJwfA/LNDY6xTRbCGjGoHme1c0dHPiX5yFn8lTF8fTaQXD0mxPQ1Dvs48QsmznJCgzDoDIcIWya+ECPM3xA7HXz9Dp52rLpoFvpIEnbpiOXpSIeJmQGeyP2OjmSg5rLZD2XSGcCI2vjV6cgOkIQTuSgNQ59YaLlOWwnz8PNK3l340xqI7FR3xsRERGRncmECYijef7558nn8xx66KHFY7Nnz6apqYlly5ZtdkA0zZErIdtb/1jG05hk4nN9n5Bp4XgevjHy9ZXzXShsSA9g9Xoc8sfnSOSCKtti5wF+v/97YFUlxpoymDpy9a3/MWzDoDwcIe04pDwHF5+QWTqpIeU6ZFyXLidHyDRKAmpVOIppGIQLFU3DMEi5TvE1OJ6HB0TWVQZ3aOotuX+JZLB+0egLg2FQF42zMtVDWy5DfWxsW3FIKX3Pkm1B15VsC7quZFuYyNfVThEQW1tbiUajJJPJkuM1NTW0trZu1mPatklNTXLjJ25nVVWJHT0E2YlEe8PEnTAePmUVseGnjwIr/RSx7hCJZARnTZSpj6whketjTWwXQuEMdV1r2S35Em/EDoSOGFEzjhnfeGdUgIgXIptKESuP0JXPUh+LF9c4+u0mfsYgHAuRtHwS8UjJfcuIFv8d83MQH/jvNu04RNaEsVuTYHvEd3Ux7NL793PrIAvYmQiRZHBO3M+RLI+Oy+8DE4m+Z8m2oOtKtgVdV7ItTMTraqcIiMCwlQF/g4YVm8JxPLq7x08nQ9M0qKpK0NHRh+dt/usSGayrJ42bc/Esi7b23hH3Nlzb3k0u49BnZOGFGmb0vgrAK0umYNgeRz64lmnPvslrc/fEWF5J+vEqmNcKldkxjaM3lWV5czt/bV3HPpW1zCmvwvN92rr7MB2flu4+TAz6vJEfz8u5vNXSyW5WOQA9+Rzu2xFwTfymHlKjNZ4xchjU4XRZOL3Bc6TTOTq6UrQZw0+XldHpe5ZsC7quZFvQdSXbwni8rsrLY4RCI+873W+nCIi1tbWk02l6e3tLqojt7e3U1tZu9uOOlw9zMM/zx+W4ZGLKeS6WH2x3kXNdQiP0rerO5bAMA9+BaJdDbW4tfYkYrU2FMFaeoKalk+TBq+itDmO0x/H/1YB/xIoxtsLyWdHbQ2smzavdHcxOVJDxXPKeR5kdojuXoyYcGfWXPhHDpC2TwXU9DMMg57pEC9NL/Sk9MNovjGwfIg6kQ/iuD2bQuybruvrvbQvpe5ZsC7quZFvQdSXbwkS8riZMF9PRzJ8/n1AoxJNPPlk8tnz5ctasWcPChQt33MBExjnH87FME9f3cUcJUL1OnpBhQm+YxswqANZOrwPDAMNgxewmAKauXoO/3zr82hSGY0HH2Bu8dOaDCt/6TIqOfJas2x8Qw2Q8h/AI1c1+Ecsi7TrFPRVTfRDtTuJH81A1hm0rEjkM34BU0OTGIOjyKiIiIjKZTJiA2NfXx0svvcRLL70EwKpVq3jppZdoaWmhrKyME088kWuvvZa//vWvPP/883z+85/ngAMOUAdTkVG4vodlGHi+j+sPH4Y83yfl5LFNE7rD1GfeBmB900B1fs30egCmrmwGA/y6oEmN0Vpo8OIBvaHBO1WUMDDozueoCIVxC/sj5jwXr9C4Zm6ycsT1kf1Chkne9+h1goYzqe7CDVWZgS0UfR9G+i1eIrgfvWEATMPAGeE9EREREdlZTZgpps8//zwf+chHil9/+ctfBuC8887j/PPP59JLL8U0TS644AJyuRyHHXYYl19++Y4arsiE4Pp+sE8gPs4IFcSc55L3PWKGjdEToTa3Fh9obqwuntNVVUZfMkZ1axfRVIZMbSHMtcZgLrCiEvP1avxdOvB37QDHhPBA+AqbJh25LNNjSTx83urrpiocKea6EbuPDmIYBj4+nfks9dE42f4lxJGgWU5ZZy8HP7aMWCrL35fszbppdSX3z8YyRKmA9EAF0VEFUURERCaZCRMQDz74YF555ZURb49EIlx++eUKhSKbwPE9QqaFYYxcQeyf6mmbJpF2j4TbQ3d5Eic8sN8ghsHq6fXMeWkFTSubeXPuDPxkFqM3gp+yMZqDSqKxvApWlgeNY/ZfW5z6WWaH8QHbNElYIbryWTpyY2hwsz6B8Wo1/swumN5N3LJ5oaudXRIVxYDohx3wfA5+/N9UtfcAcPBjy/jtSUcWX0PKcWg3ephBA0bKxkcVRBEREZmcJswUUxHZujzfx/MLsy/9YD3icDKFqZ6WZ1Ld0QFAW13FkPPWzGgAoOnt5uBAbQoAY1U5dEfwQy6+6YFjYvgGxhtVxftGLIu6wob0YdMk67m0ZFMjzUgNuAbGKzUYmRDmK7UYr9RQGYrQmk2xMtVDPl2oOkZcpq1YR1VbN211lbw1eyrhnMNuL79dfKhuJ0usrPBsmf4KojHieyIiIiKys1JAFJmE2rIZXN/Hw8csNJoZqYLY5+SJdCQxnpxGdW49AO11lUPOa22oIhe2qV/bhpV38JsK20OsqMDAgLo+/CUr8Y9YgZ/IYXTEoD065HH6p5NmXBeLUaaWri7DyNr4VWl8w4d1SUwMYpbNC11t5DOF+4ZddntpBQBP7DWdlxfsAsC0t9YWH8rxfCLxQhhMBRMrTAMcVEEUERGRyUUBUWSSyXseT7evpSOXwff9QgVx5C6mKdehfE0tRiZEtR+EqpfKwsVuof180+Ttphosz6NhTSsk8vjVqSAcAn5tOlgPGPbwdwkqkcbLtZAf+m0oYlr09jfGGU7OxHizCh8ff49WSOYw8hZkLSpDEVqyaTLp4PUk8t3UNXfQmYyyvKGS9vIE3eUJqtp7iPekSLsOEcsiHrZww3nI2uCpgigiIiKTkwKiyCTj+h451yPlOsFaOwwwGHG9XWcug50Ng+9TnW3GsUzWlsfoyedKzst5Ls/WB/siNq0Mppn604NWoj4+VKcHTm7sw69JYfSFMZ5pZMNCXdyy6c7nsI3Ct6jeEMZfp8L6wlrGV2qDQNjUA8k8lBXG0hvGNk08fLxM0Chn2tpgW47XZtRTH0vQkcuwttB1tX5tG935HNNjSaojUZxoYauLjK01iCIiIjIpKSCKTDKO75PzXNKug+f7wZROf+RqWUcuh5UNkfTbCeUd2mvKiYXC5DcIT1nXZd3UOjzDYMqqFt7q7cat7cWvSQVBLjTofAP8fdbjV2QwuqLQnCh5rJhl0+fkCfdXEFsSGD0RzGcbMZY1YKxL4kcc/DltAPjJQkDsCbaoiJk2ftbENz2mrVwHQGrOLPYqrybrebTUVwJQ29xB3veojcZJWCGcSOFx0nZhH0RVEEVERGRyUUAUmWRc3yPnu4MqiBCyDFqzAxW+7nyOh9e/Tc5z6c04mK5FtRdML22uKSdkmkMayGQ8l0g8xur6CqKZHI2tXWQ8F3+/dfjzWocOxPIHppquTZbcZBoGu5dVkLALDWPSAw2XjZYEvuXhz2+GUGEUyaDjqVHYw7DcCmM6NjGjneq2LjqSMepmTGdqLEnCtllZUwZATXMnBhAyTSKWhRPtD4ghDFUQRUREZBJSQBSZZFzfJ+d6pB0nWINoGMTtEOuzKbzCOsTOXJb1mTSrUr246eDbRLUTNKhZV1NO2DQJGSY5zy0+bs5zSYbCvNFUA8Be67vIb2wfwZo0fsiFtjjkSr8dWcagrwsB0ZvTije/Gf/wFVCdGbi9OMU0AkDICYLltMybALw+o46qSIyIZVFuR+gJW/SUxynv7iOazRMxLSLmQEA00jYmBj6M2LxHREREZGekgCgyybiFhjS9Tq7YxTRhh+jL54vrCvvcPO25DCtTPRiZIJxVp4N1hWuqk1SHo5SFhjaqiZgmbzZVA7DrmvYh01CHMIGGvmDd36ryIWsRiwqb1zOtB6b0gr1B/TLsBfsd9oWCx8gGY57euxyA1TMbiVvBsfJQmLzn0VofbLMxpbWH8LAVRIK1jCM07xERERHZGSkgikwyrufh+T4Z16V/nqhtmrj4dOaDqZoduSw5z6U9l8HKhjF9h4p0B+lYhI5oiPJQmPpIrBgQfd8HDOoicbqTMVor4lR19RHv6tvoePwpweb15hvVGE9Mh/wGW1t4QMbGjzhgjRLWygoNZvrCkLOIO91Up1rpSkYxGuuC7TyAslCYnOfTVgiITa1dhAsVRDc6sAbRxMAfpburiIiIyM5IAVFkkunf/9DxfQZvM2gQBEOA9lyGqlCEHiePnQ1RlWvB9H3aayvwDUjYIeqi8WJjm6znErFM6gub3fdPM521um3jA6rM4u2zDj+Zw8iEoCNWenvGDoJfLD/645QHY6ctBlmLqek3AHhleh210YHHTNg2GNBaaFTT1NZTCIg2ZsQL9lTM2EEF0UcVRBEREZlUFBBFJhnHDyqIju8W9ygEiJoW6zJ9OJ5Hdz5HeShMn5MnlA1TnQvWH7bXVeL7ELUsGqNxQqZJxnXIuC5ldpjKcISwafLG1GCa6e6rS5vTuL5PRy7DEPUp/BmdABgd0dLb+qeXxkuns27Irw+qlcb6BOQspqVfB+DV6XWUhyLF82KWjYFPT0WSvG1R19FLGIhYJrZl4kfyGDkb0zPwUQVRREREJhcFRJFJxvV9fIbuexi3Q7Rk07Tm0kFF0AxCYCQXoSpfCIi1FRiGQcy0qQhF2DVZQVsuS4+ToyEaJ2JahE2LjtpKcuUJprZ2E+sd6I7a5+Rpz2VJOcOEvapCcOyvIPrAmiR0B+HO31gFsSyHH8tjdEdJrs9TnW+mJ56ktTJBmR0unha1bPzCw7dVlxF2XKKdvVhGsA7RiwRjM7IhPF9rEEVERGRyUUAUmWRc3ydkmjieX7JVRcyySbsuL3d34PoetmkG1basTXVuPT7QUlOBQRCyAHYvqwSgMZpg74o6DMOgIhQmaoXI7rkbANPeXFN8jrznUR+NF9c6log5wTrDnjA4BqxLYL5Qj/l6dfH20eR8Fxp6g+dcuxqA5TMaidg25aFQyeu0DRPH92mpDra7sNcHlc6EFcIJB0HUzAZB0h2yoYeIiIjIzksBUWSScX0PyzBwfZ8N2sFQZts0Z1IDxz2IpHIk3B66K5NkbJOQaRK1LAAaInEOrm7g8PqpxO3+LqERKsNhvHlzAJixfCAg5jyXpB0afvsIA6jKBNNeO6MYG65FHKWC2OvkebOvG6c+aHgzLf0aAK/sWkVVKELItAYexgqqnHnPZX1VEBCttUGH1qRt40QKW11kQ/jqYioiIiKTjAKiyCTjDAo8G2afilCEznx2YG1izqImG4Sn9toK8r5b7PgJYBgG8ytrqRi0xq86HKEuEsdsqKWjMkl1Ry8V7d0AuD5Mj5dRH4mxNpMaEhL9ymA6qtERgw3XIsZLA2Le81je14Pn++QLwTOTSBPf/TWq8q10VyRYnYzQFEuW3M8yTGKWRd73WFeVAMBc1wJAwg6TDxc6mWaswpgVEEVERGTyUEAUmWQczxuoEG5QQjQNg5pwlJpwIZxlbKpz6wBoq6sk47pUhMIYxoa1xwFzyqrYu7IWgFW7Twdg11dXBk9nQNyyWVLXxIx4OavTG2yDUZvGx4fVZRipMH48hz+9C7+hF0KlYTLl5gGfnOeS8zzK7WBfxhkdbwKwctYUfMOgNrJB0AQqQmFynkdbMooTsrHWt4LnEbMsnEgQRI2MjYG6mIqIiMjkooAoMsnkPS/Y44+hU0wh2MIiUphCStqmZlBATLsuuxXWHY7ENAysQoDs2HNXHNNg5htrsPLBGsK4ZVMVjnJo7RQipk3OcwfuHHOgJo2RLzx/VQZ/jzb8vZuHhNmM6xb2NPTIez7JUIic47DLa6sAeG3XRkKGRVV4aEAssyPkPQ8Pg766Koy8g9nWScSyimsQyQRTZlVBFBERkclEAVFkksn7LqYRTCL1N9KAxUibVOWbyVs2axIRykJhpsfKxvxc8fIyXpteSyjvMG352pIGNwk7RHkoNKSjqT+te+DfVcNsiVHg+B4JqxAwDYiYFjPWdRBPZVg/pYbmWIjKcJikHRpy32Qo6FBqGD6ZhmDPRnNtMxHTwo0WpphmbcBQBVFEREQmFQVEkZ1cxnVK9h7MFaaY1kVixY3tR1LZ3oPtO7RXVdPp5plbVjVQXRyDcjvMs7OnALD7i28RMgxihYAIMCWWIO06pF2HdZlUcLAuhR/NB+G1Mj3cwxYFzWY8DHzqInEWvBlUO9+cM52U6zItnhz2fnWRGHahk2uuIZgOa61rDbbAsF1804OMje+DizfsY4iIiIjsjBQQRXZyq9N9PNPRUvw673mYhkG4sGfhaGo62gFoq60EA6ZE45v03GWhMC11lbTUVlDV2ctu67pKAmZtJIaLT1sug+N7QdMaA/yF6/EXroeYO+zjOp6HaZjF+/s+TM047LqmjXQkxJoZ9fi+T214+ABcG4kxK1GOYYDb2B8QgwqibZoQcTDyFqZn4KmAKCIiIpOIAqLITi7nubTm0sWOoXnfLa4R3Jjq7mB/wObG8qD7p21v5B6lEpZNIhRm2V4zAdjvxRUlt1eGIhgYWIZJ0h403bQsB3WpER8347nELZu6SAzHC/ZsrHvmZUwfnp0zlZxhYJkmlYO6q25oz/JqaiIxjOpK/EgYc30bEQxs08SNBOOwcqGh23GIiIiI7MQUEEV2chnXJeU49BXCl+P5A9tYbERNOqg8rqtLEjJN4tamBUSj0BX11SmVtJfHqW3uwHpzZfH2ilCEmGUzM55kWixJn+uM8miDX5NDdThK0g5hGSZlOYf486/i2hb/nN1I2nWIWzZlofCIj1EfiXFgVQMV4ShuYx2G4xBu7yJq2niFTqZWNqQ1iCIiIjKpKCCK7OTSrkPGdel1guYrOS9oUgOAX/gzmAd0h4l0uCSdbrrDlfSGg3AY2siU1OHURmLkfPjL/KCKGHnkKfCCqlzINNk1Wc4e5dU0RBM4Y5zPmfU8aiMx4naIkGly0IsrMRyX7vlzyEZCpFyHhmh84HUOwzAMZiTKsAwDd0odEOyHmLDtYidTMxtSF1MRERGZVBQQRXZyGTdPznOLFcS87xWDk/HPKfDXJvycAVkT46VajEdmYT49jdqngvu3JerIex4Vo1TjRlMeCpP3XVbNqCfTVI/V3Ib93CvF2w+pmUJTLElVOBKsCRxTIPOJ2zYxy6ImlWOPV1fih0O4h+5H1LLodfIbbcAzmNcYBERrbQtJO4RjBe+V6ZqqIIqIiMikooAospNLuS6O79Gdz+L6Hr4PJgbkDYyOGEZPhMxjtfCX6RiryoMmMSGXmlQwvbStooac5426nm80FaEIdZE4S+qn4h61BB+I/ukpjN7SNYZV4QhJO0TazY/pcSOmhWWYHPrvNzE9n9zBC4mUl1MXiWMZJhWbMF63sR4IGtUk7HBJQHS0BlFEREQmEQVEkZ1cxnWIWTatuQyu7+PhYRpA30BF0O8OgWfgz+jCP+xt/N3bqc2uAaC1tgbP90kMs5/gWFSGI7y7cQa7JCrwpjaQ338BRiZL5HePwaDqnGWY1EWipN3hO5eWMoiaFvbLbzBzxXqyyTi5g/YBYGo0QTJkUxEee0D0K8vwoxHM9W3EMfDsIBRajj3maa8iIiIiOwMFRJGdmOt75LxgQ/nOXBbH8/A8gimmvUFA9Kd2E9qrGw5dhT+3DUIedk0nVflm0macnuoYhgFxa/MCIlDSLCZ75MF4FWWEXl1O6J/Pl5xXG44FG9+PwveDhZPRTI7I7x4HIHXsERAOxlcfjdMQSZDYlIY6hhE0qnFdyrt68cwgIJquRV4VRBEREZlEFBBFdmJ5L9hbMG6HSLsO3fkcHj4mBkYhIFKTIbRHL8QHOojWtrZj4tMSacKvyOLDJm9xMaJwiPQH3oVvmUQefhLrrVXFm8rDkSE9czbk+D5hDxp+/SfMVJrcwr2wd5tVvL0+GmdpwzSMMW7l0a+/UU15SwdeaGCKqba5EBERkclEAVFkJ5bzPBzfJ2paOJ5HZz6L5/tBBbF/imkyN+R+devaAGjeJ0I+liVkmMQ2cYuL0XhN9WTefTiG5xH7+YNYK9cCUGaHMTBGbQzjug7vevoVwmuacafUkz360CHnWMamf2vrb1STaOkAK6himo5F3lNAFBERkclDAVFkJ5bzXDzfxzIMMKA9l8XDD3ZB7A3hGz7EhzaFqV/XDkDLlBrynkfItLZqQARw9tmT7JGHYOQdYj+5H/uFVykPhYhYFtlhppm2ZtN09vRwxCPL2O3tZryKMtInHQNbqbLpFgJiZH07FGbTmq6lJjUiIiIyqWzdn/hEZFzJex4+PoZhYBsGbbk0AEbewsjZ+MnckF8T2bk8VW1dpOMResvj5PO5wob0mzZlcyxyi/YNppr+6Sliv34Y+9W3mLrXVNZFKQ2kvs/UFes5ctmblKeydFUksE7/AH4ysdXG4leU4cWihFrasM1giqnhqIupiIiITC4KiCI7ga5clqhlE7FKN7IPGr4EwS5m2aQdp1A9LEwvTQydXlq7vgPDh+bGajAMHN8jubXWHw4jf9A+eHXVRH/7CKGX3+B9/5+9/wySK0sPu8//OdelLe/ggUajvffd09Mzw6EZURT1cvhKerVSaCVF7Co2QlqFGJwgJYU+SWJQihDfDwoGuUvFiitppV2KfEWKdoYcb3raTHuHbjQatrxLf905Zz/cW1mV5VAFFBoF4Pw6EGhUZt68WXUz6z73ec7zfPAxl0f7aY4NkXoOxXbE6OQ81WYW3H54dIyzLzzKZ6qVvd0RIdATo7ifXGSk2coCa+WQ2vjQsizLsqzbiA0QLesW8GZtnoOFMndWB3q+nmiNyNu+FKRLLY2RsYc4PQyA6YtYnxfslpdODHe3UXF9rid14git/+vfxH/5TcTr73JorgZztZ77zI4N8vK9h3lvrI8ny3uXOezZjwNZgDi23GDG1chUkpqdjN2wLMuyLMu6NdgA0bJuAY0kJvQLG74ea9UdNehLSawVY6ePIpoBZqgNh+sbHjMyOQ/kGURAAaWrnIG4K75H/PwTxM8+widnP2bh0iQlBLJY5J2qx+NHTrBQXyBsNfZ8PeSKlUY144sNphyFE/kkSvP1mYucrPRzvNx3XZ7XsizLsixrv7ABomXdAjoqpZluLBcNtWJl6eDK2AevVcRIjXl0Ol9/uJpDDNoRw0sNauUCrWqJlVsL60pXryffcbn71N28PTrMDxemGPILJGnKeKHEdNjiUru5oZR2r6w0qhlZbGCGNUTQihTT0QLKaBsgWpZlWZZ1y7NdTC1rn6rFEd+fmyRU6bb3U8YQa00jSdZ8TVOLIzppirtm5INnJE7qgq82ffePXJoB4JOJQVjTlCaQn16AuOLO6gAVz2c26vDo4CgDfsBwUMSXznXbH9NXQZcKDCw1QGQBd9H4HCtVmey0qCXRdXley7Isy7Ks/cIGiJa1Dy3HEX8+c4H36ossx9sHJYlWKKN7MogX203+fOYCi3HY0310VOaNXfzN19WNXpoF4NzBwe7XjDE3JEAsOi4P9o9wqjLAfX1ZuWvF9Si77vXbHyHQE2NIbehLs1mQA6JI4GTzECc7revzvJZlWZZlWfuEDRAtax+63GmyEIUIBE21cU7hWqnWKGPoKIXKFxw204RL7SbzcdgzNF6meWDlbWzNKbTmyNQSWkqmx4eI88DTkZLCdVrzdyX39w3xhfEjuDJ7DVXXp+J61zVgXSkzHYzmsi+k2XOXXZePm7WtHmZZlmVZlnVLsAGiZe1DjTTGlxIhoJ5sXFu4VmI0ymhSrYnyctSlOGTQD/CEoLK2wUycB1abZBAHZpcpJCnhkQncICBSikRrXCFuSAYRsnWTazOgfZ7P4VL1ujbN0QeyAHGokzXrWQkQC9KlnsSk2s69sCzLsizr1mUDRMvah+pJnK+1kyxE4bb3jbXGkAWKkc4Cv8U4JJAOI0ERT655mycrGcSNAeLIxWz9objzGMN+gUgrUqPxpYMv98dHhSclTw6N976mPaYOjQMw3urNIHp5F9grrQm1LMuyLMu6me2Psz7LsnrUkxhPSgLpsBiH6JVZFZvIZh0KDIZQKWKtaKTJ5p0+8wyi2SSDePByFhCpk8cYDopEWpNoQ9nxuh1QbwemXCIcqNIfNglUqxsgukKQak3bBoiWZVmWZd3CbIBoWftMrBWhTrMA0XEIlaKzTVCSrAxyN4JQp7TShEgp/M3KQuP8Lb9uDWKh2WF0qUmnr4wZGqDP8wFDajRl71OYgbjPtA6NATAST3UDRCEEQkCoNm/wY1mWZVmWdSuwAaJl7TMdlZJogy8lnpAkRtFMt25UE2sNmG7w0kwTDKZn7d4KkWy+BnHs40kA6iePgBBUXQ8QhCrN///2EuZlpiPRJCLt/ZjsaJtBtCzLsizr1mUDRMvaZzoqzbqHCpllrYDpsMXpxlK3S2ltzeiLpNs0xdBWWQaRrSpSt2hSM5EHiMldJwAYDoqcrPTTUYrSDepgeiPFhyeAPIOY9H5MtrYJ1i3LsizLsm52t9+Zn2Xtcx2V9gR4AsHrS9n6wPGghMHw3blJfmz8CBXXI9IpAoErBK0kJtVq0+whsBrsrCkx9cOIocl5WkUf78hBABwheHp4grZKKbq34cfEQB+NQoH+cB4vTFnpI+sJSeMKXWUty7Isy7JuZjaDaFn7TKgUrInvxoIiQ36AMoZWmtBMExbikNmwDUAnTXGEwJOS2ajDR43a1nMLN8kgHrwwizBw8egYxTXlpEXH5cfHj3C01Lfnr3G/c4VkcngAAQzX57pf96RDzQaIlmVZlmXdwmyAaFn7TCOJcdZEiK6U+NLBAE2VBYjLccTFdgPIAkpHCMquRy2JCKRkwPM333jsYIQBdzWDeOjcNADLJ49s6FbqS2frbOQtzJWSydEBAEYas92v+1LSTJNuqa9lWZZlWdat5jasHbOs/a2Wj7hYTwL1OEahCaTkYqdJqNI8QMyCyEPFCiiBeHMMpMGMt2CsBVpkfxInm4EoIFIKJ44Zn5qnE3iYowc//Re7T7lCMD2RZU5HmzNgDoHIZiE205RIpZRuw+Y9lmVZlmXd+myAaFn7iDGGRhpvOqIikA6LSUiqNQN+QFulzEUdQp32ZvmWC4i5MgBipoIZ7EDTh1QijMD4WfZwPu5wz9kZpDacPzqCfxuOs9iKJyX1wTIdp8hgNItbM6QDAk9IUpPNQrQBomVZlmVZtyJbYmpZ+8hs1GEpjihusoYwcCTLcUQtiQny0s9PmjVirXsDxHb2WDPWwpRixFIRkTgIk9/HW11/eN+FrHzyozsmcIX9OFjhCIkrJdODY0gMY2ezcl4hBAaz7dgRy7Isy7Ksm5k9I7SsfeT9+iIiL2Vcz5cOoVJEWhFIhwEv4Hy7gTK6J7gTnSyzZcaamGcuo++ZRz8yvbohJ8sgltsxR2aWaZcKTE4M4tgAsYfvOFw6OAjA+NR89+uekLxXW0AZvenjtDGcbiytGT9iWZZlWZZ187BnhJa1DyijOdeqc65VZ8QvbHqflfJGZTSulBQdl1AplDHrMoh56WMpBcfAkTqMtjFBPuA972R694VZBHDxjoMgJK68/ZrRbMeXknPHs1Ld8aXp7uiRkaDI5U6L863Gpo+73GnyxtIctSTa9HbLsizLsqz9zAaIlnWDaWP4+sxF/mLmQrfZzGaEEBjTMwGDsutST+ItAsTeMkjz+CSmP8TcuQjAveez8tLzJ7PmNLbEtFdBOjTLHrVggGpaozibBdiOEBQdh/fqixseo43h7do8i3GYzbO0LMuyLMu6ydgzQsu6weajDhfbTSaCEqPB5tnDFVLSUwo66AUcLJZXx1MYoONiPAXeuhLHcop5ahKGQ6qLdUaXW8z1l6kP9QHGBojrBNJFGcPs8DgA4+eWureVXY/lJCLRqucxk50Wk50WjhA2QLQsy7Is66Zkzwgt6wa72GlgTDZ770oOFspMFErdfwshqKztphk5CC2huH0TleMfXQLg/eNjaGMQAhxbYtpjwA9IjWb6wAgAE7Nz3dsC6RAptaFZzXzUAUAiaaU2QLQsy7Is6+ZjA0TLuoESrTnTqNG3VyMmtigvXUumihMfT6Kk4PSJCVKtkULi2Qxij34vwBiYO9KPRjK2PA06W4go826mjWRjgFiQDr4UNJL4Ruy2ZVmWZVnWNbFnhJZ1A81FbZppQnWvZurlHUwpbp29OnRhhiBOOHd4lKjgk5hsTEbPOkaLfs/HlZKwopgPDhCoiKH55Z77NNPVIFAbw0IcEkgnm6NoA0TLsizLsm5CNkC0rBsoVNkaNrFHwZnIM4hmmwziHacvAvDRqUNIIfIMothRievtpOJ6VFyPjkmZ6jsMwMFzveMuFuOw++9WmtBRKQXHxZMOzTRGG/Op77dlWZZlWda1sGeElnUDRVphuMYgQgPTZcQb43CuP/vaFgFipdZkbGaRerlA/dA4jpDdDKJtUtNLCMF4oURHpUyOHQDgwMXZ7u2BdFhYEyA20pjUaDwp8aUkNrp7AcCyLMuyLOtmYc8ILesGCpXiWnOH4swQ8u1xxFwZfIW+cxH6o6zkMQpJ1wxsP5lnD989eYCK7+MIQaI1rpBIW2K6wWhQJDWa5kiBhjvAQKNOqZk1ogkch0YaE+VBYCNNWBlC4glJohWhto1qLMuyLMu6udgA0bJuoFYaX3vmbj7raqofmsF89gKcWCbSisudJhrT7bTpJinHP7qEkoJ3ToxTclx8mWUQfWfz2Yu3uwEvyPK7lZipwnFgNYuYdTLVNPJ1iMtxyMp3MSsZFnRsJ1PLsizLsm4yNkC0rBuordKtA0QNXOxD/PAQ4ttHEe+MZl+/WEW8NoF45QAsB4iWjynHMN7qvqMbacyxUh+jQRGVr4M7duYyfpJy8cRBmgW/u1Yu1ZqCDRA3VXY9XCFJyxFThRMAHMwDRCkExhg+bCyhjWEm7PR8H42Bjs0gWpZlWZZ1k3Fv9A5Y1u2srVLczeYPGhCvHkTUCqtfm6pi7lxEfDCCWClMfSsb4s5Qp+fhsdYMBwVaacqsaYMxnHrvHAAf3XcMgcGXDr6UpEbjSxsgbqbguLhSkrgx84XDxDJgdHoBJ0lRnstoUOSD+hKhUsyEbcYLxdUHC2MziJZlWZZl3XRsBtGybhBtsgDC2SyDeLEPUStgKhH6mUuYkVb29ZkKAoEZ7GBcjYiyazxmsDdA1BjKrkfRcVHGcODSHNVGm7nxQZaHs0Y2npQE0iHRtsR0K56UFB2XxGhMRTEdHMPRhgOX54BsHWIgHc40lxkvFHsCbV/IniY2lmVZlmVZNwMbIFrWDZJoTWo07trmMAZYKCA+HsIIg3lgDqpx9gcQU5XsboMdOFTPH2JgaH0gIig6LgXHQWG4691PAPjwvuPdp/GlxJcOhixTZm2u6nokWkMp4XLxJACHz013bx8OChwtVTdkYYuOy0zY7pb4WpZlWZZl3QxsgGhZN0isFcqYnjWI4vQw8rWDiFTC0Vo3MDTlPEBsBNkdqzHmaA0jNQyE4OnejRtD0XHxpGRivs7Y9CLNaonJI+OYPGDxpYPvZM8dOPajYCt9nk9iFKYcM104Suq4HLg0h5NuP8Ki6Li0VUojiTfclmjFmeYyyuhNHmlZlmVZlnXj2LNCy7pBIq1I8xmEACQSLvVhXI1+cAZzanH1ztV1QUYlhoLCPHcJ88hMz02p1rh5aaQvHZ5+Pxtt8f5Dd4AUhFoRSIei4xJIFwm2xHQbVdcnNUA5QQuXqYFDuKliIi8z3YorJUprakm04bYL7Sbfmr3E9+YmibWdlWhZlmVZ1v5hA0TLukFirRCIfCQCMFdCGAFjTZho0TMgsZRgRJb5M46GYt78pJhuyB7GOms6U3RcKgvL3DG5SLtc4PwdhwBYiEJOVQcoux6OELjSwbVNarZUdNzsR1HOxoVcqtwB9JaZbkUIWIp7A8SVzqcOgtONJS60G3u9y5ZlWZZlWVfNBoiWdYNEWrF2eZqYKQNgxlsb7yyBUhagUIl7g8d1EqMouVn3zbFX3gXggwfuwDiSjkpxpeTu6iCQDXT3pOxdB2n16I6uyL//084JUtfhwMVZ5BXKTAvSZTrs/XkuxhFTnRYjQREp7KxEy7Isy7L2FxsgWtYNEmuNyLOChA4slDCu2jCyoqsS9/69zXb7XB85v0Tlo/O0Cj6f3HmIehIzF4Xc2zfIoJ+Nz3CkwBUCV9qPgq2sNPDRUmMKCSoqMDU2gZcqJi7Pb/vYouOyEIc9ZaQX2g00Jg/MJY10+5/nWqGywaRlWZZlWdeXPSu0rDWaScz35ib3dJvTYYvleOM6tChNMUbATAnxgyNZeemaYffrmf6o5++tJFrT7/v4P3gNAbx2z2FiR1JLYj47epAnhia693XzDKJnA8QtFWTW7Cc1WSdTgeBS+CAAR9+f2faxRceho1Lmo9Wg/2K7QTkPOj0haSTJjvbjo8Yyfzx1btNjybIsy7Isa6/Ys0LLWqOlUpbiaE9HE3xYX+Jyp7nh622d4koQZwcRSmZdSe9a2HpDR2roh6fh4PZr1rQxjC61cd/9EF0q8P7Jg3RUSsFxOFHuW22Kw0qA6PR0UrV6FRwHT0hirTFH65jBDlMHxohFwMHpKbylrY8VIQQCmOxkZaYdlVJLIkqOB2RzFneSQTzXqvOducssRJ1dZRwty7Isy7J2y54VWtYaqclmE+7l+IFaktDc5KS+nSa4xoGWj/FTzN0L4G4TmEpgrL3l+kNjDPNRBykER196GwGEzz2OCrwsQJQuwbpmNG6+/tCWmG5NCkHF9bNZiKNtzBNTqCfnuDR2BAfN4ffXlZnWfZgvdv9ZdX3Oteooo1mKw7yJUPb99qQk1IpkXSfT781Nbsg6OkIghaCZ7izjaFmWZVmWdTXsWaFlrZHqlQBxbzKIxhhaKt60jLCVKvx2MSstXT/G4io00gRHSH4m9ameu4weqKIeux9PSDpK0e/7qx1Tc64QeNKxJaZX0Od5G4K4c3cdAOD4pQurXzQg3pxAvn4A8d4IaKi4HrUkYj4K846mpvtz8IQk1ZqOWt12O0250G4wlweIqdZMdlpUXBdXiA1dUS3LsizLsvaSPSu0rtnFdoNzrfqN3o09oYwh1Rql9yaDGGlFovWGssCVwDFoZ81iqF77SX+sFSN+geMvvp0992efAsehkK+DG/CCDY9xhcyziPajYDtVzydZl1VeOFGm6VYZac9SeamE+MFhqAWIMFtfKC73waU+ZB4MfthYYqrTwl+TxXVlFiCubT6zlITUk5jpvCx1KYlopgklxyOQDgtReL1frmVZlmVZtzF7Vmhds8UoZC7covPmTSbJS0zTPcogRioLEDtK9ZStrgSObjMLEM1VZBA7Ku3pjpkaw4lL8ziTM6ixYdL7TwEQSBdDFuSs50mJLyS+Y+cgbqfseGw4JKTgwugJAI5euoho+YgPRgAwA9n7QdSyoHw0KPJ+fYnpqE0pb1CzQggI12QQl6KQ2CimwzbKaBaiDgaDFIJAOjTSOCt3tSzLsizLug5sgGhds1jrnkDlZqa0JtF7V2IaakVqNIlWPUFApBWpMTiNq88gzkUdptcG5qninpffy7b/+WeyyIOsyYov5YbAJLvN5Qvjhym6G2+zVgWOs+naz/MnszLTY50PwBhEIwsIzbFadodmFpT70mEsKBCqlOK6n4NB0NGrGcTJsM2A69NRKctxzOVOq7t2NHAcQpXSsusQLcuyLMu6TmyAaF2zxCjiPWzqciOtBIdrs30f1BepXeW6r1ClSASpMb0BolJobRDNAONoKO1uvl2sFb50qLge9STLPj52+hLFepP0jqOoO45071twHHzHoex6m26rsEngaPVaH9StaN4hWaiOUEnrDIlLANksy9E2xlPQ8iE/lAqOy+FipVty2mWyhkXfm5vkneV55qI2FddHY/igscj5Vp1q/rNzhEQbYwNEy7Isy7KuGxsgWtcs1ppE3RoZxDgPENM1AeLZZo2F+OrWfYVa5Zk807POLNIKN/QQSmbZwy06k26lmSaMBEUeHhhhOYkotjo89d4FtJSEP/6ZbvYQoChdAuFsmkG0dqbgODhCbuxuK+HcA+MAHE+ztZ8Md7KfZznOGhB1Ng/MV3hScLnT4oPGIi8uTNNKU4qOg4PgTKNG0XF6gnghsJ1MLcuyLMu6bmyAaF2zRGviW2RNVKRTDKZbYqqMoZEmdNYEd3NRh/dq28wrXLu9NAUDrCsjjJRCxvlJf2H77KExBrOu5LWtUo6WqhwtVfGlwwOvfICnNMuP3YsZHui5r+84FF3XZgqvQdFx8aTY9Di/cMdBEtfhyPx53IlZzB1L2Q2VfF1pc+Paz7U8KVmMQgrSYSwoMuBl3WaHgwKBlAz6hZ77C0Q3a2xZlmVZlrXXbIBoXbPEKBJzq2QQVV5iarr/jrTqKelbjELeqS30ZAS30kgTPCkw9DYiCbVCqrwxjLt9cD0TtbkctpgKWxhj0Pm+jRWKlFyP43N1jp+bpln0aT376IbHe1Iy6AcbSxutHfOlQ0G6pJsEiKnncuGOg7hKc9R5ByrZsWLyv2lun0EsOS6hThnyCwSOQ5+3um5xwN/YedYRglDvriTZsizLsixrp2yAaF2zWyuDqNFrMoixUqTrxlS0VcpCHDIdtrfcTi2JCFVKM02yURICGknM9+Ymudhu0ExjnG6AuH1DHGUMDw+MEkiXtkrpqJSS4zHsF3GU4nOvfgjADx45iV8obnj8RKHMA33Du/1WWOtU3I2jLlacvTtb83nHhxfptjvNM4iitX0GseC4HC1VdxzAO0IQ3SIl3ZZlWZZl7T82QLSu2UpjF71HnT9vpERrzJo1iFHehbSxJoPYSGI6KhtmDlkA9/byPJFSRErx59MX+B+XPuaHC9M00wQvnzM4HbZ5r77AdKdNK01wdVbyaa6QQQTBRKHEkB8QKkVHpQwHhWxExfd/RF+txdnxAT45PpF121yn4npMFMt78w26jVVdb8N4iUYSo4xmebifxZF++pebjMzmJablnZWY7pYjZDcb3UwT27DGsizLsqw9ZQNE65oYY0i6WbebP4sYa4WBbrAb5SWn7TTtvr6miun3fM636rTThPmow+vLc5xr17nYaXCuVaPP9fi4WSPUKZ6U2TqzOEQZzaVOI8ssrmQQnd7v20zY7pYyruxHyfEYK5QI85LX8aCEnF3A/+EbKNfljx45TsF1cWwZ6XVT9byeDKI2humwQy1fD/jxShbx9MXsDr7GFJMsg7hY2LC9q+UIQZSPlTndWOSjxvKebduyLMuyLMsGiNY10ZhuQLVXw+VvFG0MsdYIRDdAWzkRT7RezdokKX2uT0cpPmnVudhusBRHvFdb5IP6IkXHpeR6uCJrJuIKScnxkMChYoVaEtNO0zUlpqtBR6RUlhVSSfd5fSkpuy4DXpA1rAEGXI/CH38ToTVzn3mEsK9MZYsxFtbeKDleT7PZUCkGfL97XFw8foDEczl8bgo/zIJGc+ciAOK9UcTr44jvHUF87wg0rv5n5QhBrBXaGDppSlvZDKJlWZZlWXvHBojWNUl1ljnUxqB2uA5xqtPaUYOXT5syWSbUE6I71zFSCldIUpMFiLFWxCbLCvZ7Hu/UFvi4WWOiUGQh7jAdthnMG4uM5h0pVzKIB4plfOmQGk1q9KYBYkslDPqF7prOWCsK0iWQWfMSIQQSweE3P8KZnkMdHCd+7H586VB2bIB4PRUcl7WXQDoqpeJ63a8pz+XcyUM42mRrEQHGW5jhNqLjIebL2d8dD3F26Kr3wxECRXYMtVVKO91/7yXLsizLsm5eNkC0rkkWHO4ug/jW8jxTYes679nupfk6SldKkjxz2FFpt2wzVCmhUiTa4ApJn+tTS2IaaUyf61N2PIrSwxHZ20oKsWFEAWRjCuItupi2laLf84nUSoCo6fezwLDf8wkch8P1DgPffw3jOIR/+fOU/YDAcWwG8Toruy4C0S01DnVKn+f3jCE5c+8xDHDn++dJk4RQp5j75zAnltCPTqE//wnGTxGz5St2N92KFAKlIc2z2u19eLHFsizLsqyblw0QrWuijMFg0PQOl9+KMYZaEtHah1mPVGeZUFfIbjOSVprgrgSIWhGqFKU1rpQIIRgNCvS5WQA36AcMBxvHEqxXclxaaYpQ+duvZw2ioex6CLE6ZmPQy4JMTzqMSJefePF9hNZEX3gGPTKUjUPwAjvn8Drr83xKjksnLyk1wOFSlcBxuhnfZn+ZqSNjFDsRg2cuMh+FECjMnUsw0gHPYI7VABDnB65qPxwhUUaTaE0n72q7fk6mZVmWZVnW1bIBonVNUpN1MDWG7miI7cRaE2nFchx+Cnu3OyuvxRViNUBUWRfSbI5hSqQVa/vAFB23O7dupwY8n2OlKqT52y8fcxGqlEA6HC5VIF/tpjBUvdVM07NvfkLfcpP0+GGSJx7sfv1UZYChYO8aoVgbOUIyGhTpqJRUa1whmSiUqLgeLZVwvt0gUooP7zsOwKMfXkawyXvicB0jNcyW4Sr6OjlCoDF0VEpiNElesmxZlmVZlrUXbpkA8d//+3/P3Xff3fPnS1/60o3erVveSgZRCrGjLqbZ2AjDUhxf8b6ftjQvFXSl7GaE2mmKIyQO0EjjnmH3V0sIkY2jWMkgulnmciGOGAmKDPsFBHkHU5M1RwFwzl7k8Ntn0IWA8Gd+jLWR6t19g4wGG2cgWntrvFAiyss6K65H1fUZDYrMhJ3uwPu5iSGWhqqMLzU5NFffmN1zDQyGiFRCbZugfjmAdPOutAJBW6UobUi1JrpF5pBalmVZlnXj3VI1affccw//4T/8h+6/nU1mwll7SxmT57rMDjOIK3MFs/lxK+v19gOlNQi6XUzTPNtZclw8KaknMWXH2ywndHXS1QBxMmwxUSjz1NAEZdfDd2SerRSUXBfRaFL4w78AIPpLn8NU7VzDG2HAD0BAPYl5dGgUKQQjQZGxQpGq69NIYhCCD+49xrPff4fHP7zMi0cm8EXvZ5EZaSMWSoj5ImZwTTZ9vgiVGBaLyHfHMAcbmPvnNtkTQytNUCbrIxxrBdg1qJZlWZZlXbtbKkB0HIfR0dEbvRu3lay0Taz5/ywI/KC+xAP9w8h1c/kipdDaEAtFO02p7rI8c6/Nhu3uSX5ishEXjhAkJutYmmqD4wqqrs9kp4Ux4O5VUJvKbP2myJ732eEDDOdlokXpsRCF9Hk+/dKl8Pt/hmyHxI8/QHrPyb15fmvXBrwAV0ikFNxZGQCy0SUlx8vHnWTB3kdHx3joNZ8Tlxd4bamBGR7o3dBwO/t7oQSnlrL/Xw6Qrx/AeIruVYiZMtw7t2mtR1ul+d0E8R5kti3LsizLsuAWKjEFOHv2LM8//zxf/OIX+cpXvsL09PSN3qVbntKG7GzW5P8PS3HE2WZt03LMSCtcKbst+m+0N5fneWM5y9CsrKWUYnWtZGqytWaB42CAxSTE28MAETdbQ+ZLScldvV4z4Ps004R7+oaofPdV3EvTqIlRoh97bm+e27oqZdejz/O5qzpAv5c1JKp6PkfLVcqu1+3kGwrDR/ccRwD3v3tu44ZKKaaYIBoBnO+HWCJmKgCIxEGkDkbqrJHRQmnTfWmlCeRzSFfmdVqWZVmWZV2rWyaD+PDDD/Nv/+2/5dixY8zOzvLrv/7r/K2/9bf4wz/8Q0qlzU+wrkTKzdf/3Agr+7Kf9gnACIPIs4RaGKQUtFU26D1GUZG9ZW8pGpGXcXZ0ekNfT0elzERtlDFZySsGKUEKSWIUkVEgwJFZQDgeFDnbqnOgUOq+5qtmQCiJKWSNRgLHyUpJ8+0OBQWGCwXunV7Ef+kNTCEg+vmfQvp7/5bdr8fWfiQRPDU8zqBf2PD9Knkuguz9EBvDwsN3krz7CXd9Ms3Zx0M6lTVrRAUw1obz/cgPhzGXqqCyjDKnlqDjQn8E744iZsow1lm3JyLLeAsBBhL0vvv52ePKuh7scWVdD/a4sq6Hm/m4umUCxBdeeKH7/3fffTcPP/wwX/jCF/jqV7/Kz/3cz+16e64rGR6u7OUu7onBwf219mxWRhRqWRBYqhYYHq7wsWqgPUGxGjBc6f0eeqpBoeEBArfs3tDv8Sf1GtLPgr+am1IOChTqHtVigEgSKLkUix7lyuroioerhWsPDgGTCDqA9A1uwWW4UGRkpNq9/bgTM9BuMfS7XwfA/z/9NMWTB6/5ebez346t/WqrY3bMTSg0A8qVANdEHDo4Rv3J+xj+/pvcf/o8777wEAthh5FCESEE5pEW6kBK+lEFvZAdY3IkovBgVqZqEkHnfYOYK1PQHWTfasa9REyx7FMwWYl2sRLsy88rsMeVdX3Y48q6HuxxZV0PN+NxdcsEiOv19fVx/Phxzp8/f1WPT1NNvb7+qv2NI6VgcLDM0lILrffPzLPFeouwkzXmWFhqsiBKfDK3RL0dMr1Qpxj1BlNTi3WSSCGAc3PLHBU37k1zemGOMEwoOS6vXJ7iRLmPTpjQ0S6tNOLC3BKdTkKLaG+esO3CcgEmmhA7WadSqai1OkzIAgsLze5dh1uKw7//fYgT4s89RevAAVhz+17ar8fWzabTjuh0YlpERGFC2kqZf+AU1Zfe5si75/jmHRMsBQ4iNhRXZlb2RXBvG35wCKElaqRBq7nmeDvUQFzso/ONEbh/Hg60AIjDlLoJ6YQxEsH0YoMFcXWVEteLPa6s68EeV9b1YI8r63rYj8dVX18Rz7tyE89bNkBstVpcvHjxmprW7Jcf5lpam321X4nSaASOyRrQKKVZjEISrWmn6YZ9bSYJLgIpBEtRdENey1SnxWTY5FyzQdlxqbo+lzotXATCZNV/qTbMhh18IXc3hDzNSv7w8scoAfNFRDOAc/0ILTFLAeZoLWvt42gSbai4/ur3QimKv/dnyFqD5N47iZ59DD6F79N+O7ZuNp6QYEBrjdaGonQQ5QpvnTzAE6cv8+AHF3jvyXtpJQkFuebDuZjA3QswVcVMNGHt8Xb3PMZPER8PIt4ewzSWMacWkWTvN2nAEdBK4n37s7PHlXU92OPKuh7scWVdDzfjcXXLNKn5N//m3/Dyyy9z6dIlXnvtNf7hP/yHOI7DT//0T9/oXbulpVqDyeYgxlrRyWfEBdLZtAlNK01wpcCTklYaZ7P+9tBSHPJubaHna8m6GXEf1Bf54fw0i3FIxfWQQjAeFJkMWzhCIPMYr50m+HIXbxED4uVDiJcPZQPQIwfxykHkWxOIs4NgBMZViMt9iHMD2WNcjQBKKxklYwi+9l3ci1OoiVHCv/yFnnmH1v4VSAdHZPMJA8eh6vmUHY8P7j9OKgWPnJnilFOgs1lDmcMNzJOT4K2bZyiAO5Yxj01lx865AYgljsg6lzpC4EpJax80fLIsy7Is69Zwy2QQp6en+YVf+AWWl5cZGhriiSee4Hd+53cYHBy80bt2S0uMzoMqQWIMzTQmVoqy49JM4p77amMIlcKXEk9K2mlKqFJK7t7Nb1uIQs40l7m/fxjIGtF8bfo8D/aPcEeln0gpJsMWBwqlnucNHIfxoIgjJBKBNprYKCrOLvYtchCtbE2YmSshPhpGdDxMf4gZa8FIG1KJeOUQYipfb+hkAcFKyaH/4mv4b7yPrpTo/K9fAu+WeYve8gLHwZWCZprQ5/ndn+lnT9xF88F5Bt48zam3z/LDk0O73/hwCMMdmKlAy8epdAiVxpMSV8h90RHYsizLsqxbwy1z9vm//+//+43ehdtSrBVSCCSCRClaKgHAk5JGmmy4b2o0JeHiCUliNB2lSLSmnsYcKVU3e4pdaaQJjTQmVCkFx+XjZo3L7RaNJKHq+SRa0UlThorBhscWnNW3gzEQKc3Qleq0k2xUBQJorM50FO+NZqMKhtuYR6ZXc/WGrGQwzp5L5xnEouPivvk+wbdfxvgenb/205jq/mw6Ym3OE1mwVktDTlb6u18f8guIzz6NefcMw29+wMDhp4gLCl9eeQ3AWqYSI2aApo9TzTL2BcfDESIr7zYGZ5Ns8ysL0xwt9zFe2F9rFC3LsizL2p9umRJT68ZIdBbgZCWmmkYSIwR5CWnSs34vmytocKXIO4EaQpVyudPk/frinuxPLYmIlKajsuzku7UFhoOA1Gi+NzfJhXYThLhiJ1IhBIasdHZL02XEt47BuTwYaKwGnSJ1MBjMXQu97zIBVFczq1oqfEfSf+4yhT/9NkZKOl/+KfTE1a+dtW4MIQQlxyPRmpGg2HObqZZJHnsAkSqePX05n2G4S5XsuBFND0dIYq1wRJaNT7Um2iKLOBt1aKTxprdZlmVZlmWtZwNE65okWiOFyNZEGcWFdoOCdHHzE9i1A7xjrVFa46wZNN9RKQtxyFIc7a4ZzBaWk6jbIGey06KexvS5PuNBkYWow9lmjbJz5cyNwWQLEQESiXj1AOLNcZjPT/w7LuL9EQQC8clgNug8zyCacn4yfqAJlU0Cgepql8rUSTmy0KT6B19HGEP4M19AnThyLd8C6wYqOS4Fx6XP8zfcFj/7KMb3uOvDS7j11u43vnJcNf3s/aYVrhDdbHxbpWhjWIzD7kO0MTTThEhtsu7RsizLsixrEzZAtK5JbFS3sUusFXNRSJ/nZ1kNY3oCxFrcOy5ipRHMfNTZEExejURrmmlCarIM4nzUwSHLFgohOFAsEap005P39bRhtVzvQh9iqYiYLSNfPwA1PwsOUycrF1UScX6gm0E0D81gji9n2cNNmDUZxL72Aj/5jTcQaUr4xedI77/rmr4H1o1V8TwKjkOfu/EYM6Ui8RMPIbXmyfcuXHFbKj+Ou0opRmpo+vjCYaJQIpBONxvfTrNj/vtzkyT5eynWilgrQm3XKFqWZVmWtTM2QLSuSaoNApE3dgGls8YZjpBoownXZC4utBt4a7qCekIyG3dopgmxXncyvENnmzW+OnWer89cpJ0mJFrjCUkzTZgO2xTXZAsdITlYLPdkMLcSSEnV80AJxMX+rFz0SA0A8cEIYqGEKSaYpyazk/YLfVlDmmIClQRzahF8vfnG8wCxP5nnJ9/8Hn6SEj33GMlTD+/69Vv7S0m6VFyP8haNl+KnH0YFPvd/Mk11efu5lotxxFTYXv2CAMoJInUgchj0C91SaQO0VUIzTailEfUky1yvlHW3EhsgWpZlWZa1MzZAtK5Jt0mNELTShEJP+aYgzIO+UKVMhi2qazIrvpTUkphIKzTmqgLEDxtLXGjXudBuMBm20MZQdBxmoza1JFodSL5L44USFdeHqQoicWCshblzEeNqRL0AgDm+DMUUc3IJofO3UnUHa71KCVU1x2fn/4BCknDmwZPELzx1Vftp7S9F12OiUN56jWshoP70Q0gDD776wYablcmy4JA1Sdowh7OyWma6loOgkSTUkphaHHfXHMZak2ptu5xalmVZlrVjNkC0rsnKGsSs1X7SU75pMDTyURdzUYcwTXsyep6UWSmcEUjoyTZu51K7yUKUrbNqqZR+L0BpzaV2EzD40qGexMRaE+yyU+R64lJf9lqO1cA1cLCR/dtPszWGAMdqmPHs/01fuOl21qrWGrww9z8JdMhbx49z5qn77azDW8Txch9PDI1te5/0iQeplwscujTH6FRvGfJyHHezhkIYPOmQmNVMtFkJEFu9AaInJUtJyELUIdKKel7OHamsc3BbXUVTHMuyLMuybks2QLSumjIaA0iyYd13Vwd7WveXHZcPm8soo7ncaSFlb/dQTzjESiMEGMSOsxzv1xeZDlsoY4hU1qgjcByaaYwBfOkQaw2YK3Yr3WA5gHaedWx6iEaQNZ3pz064zdFlTCXC3LUITp7ZEWDun0M/OANH6ttufmC+xhf+9CUKKuTM8D1864mjeDtommPdHDwpe8albKYQFHjt0VMAPPzKB9lMlVyssxmiidaAwJcyP5Zzxew9IsLeYyaQDrU4ZiEOKTou83Gnu700L/XWe9AEyrIsy7KsW58NEK0rUmbztXSdNM06KcrNg7B+L2AxDnm3tsgH9UUG3N7Zg9msxJhASlwB9SRmstPk3drmzV1W9mU+6tDOnzs1GldK+lyfhTjEExJfZtlMyQ6DQ5P/udiHfOUQ4q1xgO4we3OgQXdTRYV59vJq9nCFY2CilWUZtzAys8jnv/oyQZRw+v7jvP4zx9GO6VmXad0eaqeOMD3cx+BinUNnLjKTZw2VMRRdt1tu7TsO8drmTX7+/3FvgOhLh1CndFTKgOczF4XovEmUIwTK6N7tWJZlWZZlbcGemVrbutBq8L25yU1vW0oiUq23HPi9sjbxdGMJY6Dkuhtu96VDxfXwRFYW+m5tgR8uTOflohs1k4RQKxppnJXP5WMzAsdBGUPZdXGlpK3SDc8HgAYWC9nfdR/x8kHEN44jvn4C+cEIAKIRQOTAVCUbd7E+GLwK45fn+OzXXsFLUt555E7eeuIeEAIDuDtommPdWgaCIt9+5A4AHn7tI8IwJNUaIQQF6dBIY3wpGfYKOwoQvTzTmGpNxfXpqJRWmhAqhSc2dhS2LMuyLMvaij0ztbZ1prnMZKe1aRZxKQ7hClm6Ya/AchwxVihuevuRUoWC4+YNa6KsFBX44cJUt8HNWvU0JlRp3vlUYVgdR3GsVM0aywAnSn0bRw00PcTLh5A/Ooh4fQLxxgSiVgBpwFOYQoLJZxSKjwcRkQtDHShc24n1sTOXef7rP8JVmjeevIdXHjjOhU4edK4dp2HdNqquz9RIlYvHJyh3Yl44M9PNGlY9n2aaUnRcRgtFUr0mK71FgCjzURcI8hEzmkYa00pjfOmgtO4tVbUsy7Isy9qCDRBvctezbKyRxFxsN4m0opVuDNamwjYFZ/tDKHAcjpQqVwyCsgyIItGaiUKJ5SRiOYk23K+ZJiRa0VbJthkRT8re9YcGxJvj2ZpCqRGLJUTkYg40MJ8/j/ncBcxnL2KOLQMgLufNaa4le2gM977xEU997y0w8MpnHuDD+46zGIeINYH1TsZuWLeWLLsteOvxu0ml4LH3L2CW6/hSZl1QgT7Pp+S6vf2LXI0RZkOACNnszm5ZtYFaEtNWKa6QCAHxDptAWZZlWZZ1e7Nnpjexi+0G35y5tCfb0sZ0O4OuuNxpEmuFMoZW2tsFMdGKhSikdJVjJNbzpEMtiSk5bhbYGUEz2dh5cT7qUMibeKx0SN2Rlodo+5hqhHn+IqYvxPSHmHvne5OgQ6vfA+NoGGtd1esRSvPk997mgTfOkHgO3/riY3z30CCXOy0GvAApwBiDEDaDeDsqOx4CaFQKvHrvEVylef61MxQdlxG/QOA4DHoFyo5Hz6pWQZZFTBxYt9x1vFBkLMgy9YHjcKndpJUm+RphYUtMLcuyLMvaERsg3sTONGrMRu2e+YEXWg2iq8gUzEUd/mLmAmeaywCkWnO6sZQHgKY7m23FchLTVskVOzbulCMEI36BQT9rZCME1DbJIM5FHSquR2oMjTRhw1nyVhbyEteRNgQqG3D/5ORqJ9IVgcKU8sBzrLfpTKwVZ1t12ptkU9fyooTP/sWrHP/4Mu1SgW/+pWc4O97PoB9wpFTlvv5hpJBkPWBFXh5o3U7KrkfgOERK88o9h2lXS9w9tcTd08tUXI+y61L1PEqOiytk3tU05yuEEZD0fnz70sHNGx5VXI+ZqEWoFK6QGIxtUmNZlmVZ1o7YAPEmY4xhOY6oJREX2nVCpbqZtGaa8PLiDLNRe9fbbaYJC3HId2cvc7ZZ41yrzmzY6QZs9XQ1WKslER/Wl8Cwp8HNgB90t1eQDnNRp+f2lcYbZcdDGc1yHPWUavaIHMSrB2CmDIBYKAFghvPvjWDr5ZNjbQwGc3h1ZEWqNdNhmxG/QKS3DhBLi3Ve+MPvMT61wNJglf/PFx9iebBKojX9XsBPHTjGHeU+JFnHyrVrKK3bhyclfW5ApFNSx2Hqc08A8OjL71Mygj43oOR4FF03H9ty5UY1axVkFnymRmdNkMzWc0aVMby0MN1zocmyLMuyrNvX3qR/rE/NUhzx1enz9Hs+sclmCDbShDHgcrvJTNjatvRSG8PZVo07yv09wV09ifGFQ8l1+fbsJcquR8V1kUIQSKdbftpRKV+bvkAtiRgNNm88w3wRPN2dHXg1AsdhKY5QRnfX6C3FIZFS+H620mqlhf9mxIV+xFIR6vkcw6UCxlU72idzchEO1aG0esJcT2MOFssUpMt0uHnZ6aFzUzz5vbfxUsX5w6N8+7n7mNcJRZ2dqFc9D8jWHEoh8vF3xq5BvE0N+QEzYQtXSoJ7TnLh9fc4enke+dIbPPzY3YwVijhCMuD5LCcRZbLjpzdA3FiGDSDy4yvRGlcKvHz0y2ZqScS5Vp3DpQqHipXr8Eoty7Isy7qZ2DPTm4zGUE9jLnVaDLg+AsFyks08O91YIjWahTjc8vH1JOb92uKGofRLcYfAkfR7AWXXo5HGDHhZ9rCQB2vaGD5u1liKQw4XKwSbDXhfLCBfP4B4Y3zr6k8DXKxCy9tyPwvSIdSqp7R1LuwAott8Rq1kR9ZTAi5nMwyFkoiXDyG0zNYX7uSIl/QEh5BlEPvcrGmIWjNwfD7qMNlq8uCrp3nuW2/gpoqXHjrBnzx/Hw2ZdatMjCI1ptth1ZVZWenKdmwG8fY0FBTo6BRPSsqOx9znn0I7Dv6Lr3M8Mt3y7dGg1Jv920EGEaDkOrTSBEdIHCG2LI1ejEIW43B3a3oty7Isy7pl2QDxJiSAw8UyVc+nIB3mw5C5qMN81GHELzK/rjRzrY7Khmkna0rWjDEsxhFBPs+wz/M5VKx0AzFfOoQqZT7q8G5tgX7P33TbpALx3mi2j7EL9TX3a3mIFw/DxwOwUER+MIo4PbzlfrpSoo1hKY641G6ijeFip0nJzfbRsJodWX0hwMUq4v0RROJgxpqY/hChJKaYYI7Utny+K1HGUHQ8io5Lumbkh2x2+F++8zb3vHOW2HP54889yIcPnyIyhtgYKp6XjRcwgkIeUDtCIhH5GkQbIN6uyo6HI0S2zlBK7jp6jOS5xxBKUfizb5OnmBn0A9ZOujA7DBAHvICJQlZa7UuH5SS7yLPedNiinSbbfm5YlmVZlnX7sCWmN7nAcViMQ95ezrpxll2XRpoQqnTTBjJtldJRqqfpRUcp2iplYIvAz5cOHZXy1enzdJTiSLG8+c5c7Ed0PIyrEamE+RL0x9BxET86kM0VDPthLF8HuJQPrN/iMoUxhteXZllOYh4fHGMhChn08yycyLoy9nRRnSshPxhdffyxGvRFmFSCf20z4BSGguPkpaFZQDd+aY6//N03KUUJywMVfvBjj/GxBxP56A+BwReSptYgDAW5uq++dLqzJW2TmttTxfMIpEt1zbzO+JlHcd8/g3v+Mt5bH5A8fC9Vzwdh8q63optBFLGzbYsmKUT2WKDkuMxGHWpJxKBf6N5HGcNkp0W/FzC/TeWBZVmWZVm3D5tBvMmtlGKebzcY9YsE0iHWekPX0RWtfNB8siYL1kxjYqXwtlkLd6hYoc/1OVws984XXEPkDWHMvXPZv/PGMCtD543UiNSByWydk9ASaoVNtwVQ9TzqaYwvJO/VF0i0ws+znK6Q3Q6N3ee/2J89/7Fl9MPTMBBlR/g1BofZRrOgzpcOjtY89MoHvPAXr1KKEt658yB/8peeotVXRhtD1fUxJutQOuAH3e91YU1JriclymgEwmYQb1MV1yNwJH1rL8y4DuFPfwEDBF//AaLRour6eaOa/DheySBGbrbedweH90pGfn35+XIc0UwThvwCjST7bLAsy7Is6/ZmA8SbnCsloUrxhFgzHN7QSDdfT1RPYhKjezKIrbx5xVaBH2QBTZBn0DYVOtkQ+mIC4y1MkEItgDjLJBphMPcsZM+ztn3o4tYBYr8XMB6UGA4KNNOk28J/ZX+i0OBfGES8NYY4PYRYLGIKCebU4mqWcp2VtZS7JUT2nJXlBn/9629w97ufEPku33zhIV595n46K6WuQjAaFAkch8BxGAtKpDpbK7k2o+tLSWoMUgjbpOY25UuHfjeg4vauxdWHxkmefAgRxQRf+y4lx6HieoQr3XNXMoiTVeTrB2CyuqPnc6VgutPbYGkxDvPyaYdIKep2HaJlWZZl3fbsmekt4GipsqGjaCPe/ERvOYlRxvQEiI0k5pqTWLN52elYK1skOdJGIBAfDiMSBwY7MNHEyOx5zXgTIOs0usKQBZWbZEQOFyuMr3mNRcdl4vJBnDMjiJkK4sJAtokj9S3HVyRasxiHLMWbdzKNtSLVm6djhIbxNz7gzv/2J0wsNZkfG+S//tRjxHedYND31wwhNwz6BUqux4Ab5NmhLHgvyN4MYqo1ErsG8XZ2pFRlIB8ls1b0wlPogSreh5/gnj7LSFBcbVTj946rELWNj99M2fG43Gl1S5sBzrfqBPmFJSGybr2WZVmWZd3ebIB4C3CE7Mn++dJhepNZiMqYbqfCtU1q5qNw2/LSnRBzeXnpWJahWJkhKKay7IYZ6WRD6Q80s2ziyaVs7MRyARp5id1kFfnyIcTZwc2fY91rrMbZc+r7ZzGH6tmMw0ONLfcx1opBv0BbJXkJ6KpQpUyF7U07wFZqLf7aN95k4ruvIYDvPXSCb33pKZZLAcOFIgN+gVjrbqaw6LiM+AVGCwWKjosvs+zh2gyoLx1So/MMog0Qb1ePDI5ycLPREr5H+Jc+D0Dw1e8yoVi9qLMuQKSxswCx5Ho004T5fGRNO02YCltrSlwFteTqR9NsprbFxRjLsizLsvYvGyDegvpcn6lOe0Pb+lClxFpRkLKb8Uq0ZiZsU3a3HjlxRUpkcwa9NXMG++LVofQA+f+be+Yxn70A5QQONBFGIF46BJ/0rwaGU5WtR2T0vKC8ZHO8hblvHvPYdDZ/cQuJ1hQdlwG/0JMpSbVmNgo5VKz0jLAQWnPXO5/wE//zexxcqBONDzP9t3+WV+89gsqDun7Pp8/1AUNiNK7MAsS7qoOcKPdnAaIjqa77/np5iamwAaK1BXX8MPEj9yLbHe757ps4ZBc51n5qG0dn42J2sA7REQIp4EdLM9n7PmoTKtUtfQ6kZDHau4Au0YqvXzrPsg0SLcuyLOumYgPEW1DgOMRaMbluoHtbpSRaEzhZV1KA5SSirVKKm3Q83bFagDACBsOe8k5zYjn7u5BkASFkR1yQBafm7gX0PfMgDPLMMCIP+EToQf0KWREDhG4WlDo7W1OYGE2/53N/3xC1ZDWLWE9jDhRLHC1VMXlk2j+zyI//4Q94+NUPEMbw4oPHWfxbPwtjIzhCdBvkVPLZiCtjN4rSxZOSA8UyY4USgeNQkG53BuKKIO9iKhFIuwbR2kL0Y8+hB6qUz5znM1N1FvNgSz8xiX5sEvrDrNlTe4sLPJEDs6XuP8eDEpfaTV5ZmOaTZh1vzZiYQGbzTtdn169WO01pJsma8mvLsizLsm4G9sz0FlV0HD5uLPec7HXSFCFWO4BC1qTCYK5t1MJy1mjGDKwrzxwI0ffNYh6c3XxdoACO1DGPTWEcjcFgDuWlqdNbjNJYkcjsxLiw866Lic4CxJOVAYb8gOW8nK6tUk6W+wmkgx8mPPaDd/jJP32JgaUGc+OD/PFffobXHziO53r4UuJKQUelBNKh6Lj5PDtJR6VUvY0n6v1e0NupEvCkkzepsWsQrW0EPuHPfBEDPPLSexQb7azJ0mAIwyFU8kz4ZmWmBsSb48g3J7K1vWSjL8aDEu83FjnTrNHvrT4ucBxCnY3B2QttldJKE6IdbK+exDu6n2VZlmVZ158NEG92BgidLFOw5sJ/vxdwudPiazMXuNDKgq62SjCQZ8CywGombPeuP0wk4qWDiDObrwMEsrmGr03AUnZyKfIAkfUBogAONbNxE9sZjDDPXsI8NYm5YynL4k1V4VJ1tXTOkHUqfWsMLldXMya7CBANhpLrETgOjwyM0kxTQpUiERwIioy/+zF/989+xMkPL9IOPL797H387hceYrG/jCMknpS4QuKwEgz6OEJQdj1G8nWI/ZvMkjxe7mNoXSMSVwiMMT1jOixrM+rIAeJnHsWJE3761Y9orymPNtXs/0VjkxmmC0XEyhiZ+urtgeNwqFjhaKnSUzngCUmsVber8bVqpQntJCtrv5LXl2a52Nl6/bBlWZZlWZ+ea6grtG6E2Q9dCmEFioASiDfHu/MGzfElzKklIFvjNhIUuNRukGrN0XIfs1EHT8gs26UVymimOi3Kjgvn+qGYIpYLiHoB6oVsZIWrs2zFmlmC4sPh7DljB/P0ZagFWXfS6jWsNSqm2R+Aww3EpT7E+6OYhSLmoVlYLHY7lYqZSrcL6lYBYqo1QrBhhMTKCfHxch8nK/28V1/kmeWIQ1//nzjzSxjg7KnDfO3+w9w1fpDO0hye0T0jPnzHYT7qMJhnX1wp+dKB4yzGIaVNSnVPVQc2fM0REpkHnZZ1JfFnn8Q9e4GDMwvc/e55Lj9yV3ZDHiB2u/+uHE4mmz+6QrT8Ky7rFSIbQNNKkw1dka9GK01op1cuMdXGMBd1GCuUtr2fZVmWZVmfDhsg3kS0Nlx6w2NUH8d4M4jzA4ilIqaQZhnEy31wcql7klh0XIb9AotxSDNNmOq0KDkuUghipaglMa00YTztR340DGRZNiM1Qkvke2PZ18abWZAG2XrDfKSFaASYc/2I1MEMdvYsH23uncccbCDeHkPMVuBdA53sUDUjLcR8GebyoHiLAPFip0kgHYSAA4W8wyqrAaIrJZ8TJT7z0iuMXJwBoH1onP9x30G8g+OEYYtDxTIf1BfpqJSxNWsIi9LJ1jOuyQp6UjK+ixNcV2bNaWwG0doR1yH8K1+k+B9/l6ffOss3D4+zNNIP5RjjKsRyEV48nDVqKqYwV0LUC5ggRUQuNDfJMG7CmCyw2wu1JCY1enU8xxY6KqWdpj2jdyzLsizLunHs2elNRErBoUcShJHINw5kwWE1wjx9CYY62bzBpd7B8wXHJdKKc606rTSh5Lo4QqDIZgJqY3AWVtf7CQTmjmX0yUVMMcEIA4vFbvnqSlbCjGYNcOSZLLDcUF56rfqjbG1ikCKmqojlIqYUY+5ZyPZDr0TBGwPENO9W+szwBMoYjDEoo3GEpOA4iOU6hT/6Bv3/r//OyMUZ9GA/nZ//ElN/7aeYG6qijMERkqrr0+f5NNOkZ8h9wXHwpUPZvfrrKw4SAdc8XsS6feixYaY++yiONjzz7Tdw4wQkmMemMQMdRNtHfDLQkz0098xn7+HWzroUe1KytMmol6uxHId4UtK+QslqM00IdWrXIFqWZVnWPmHPTm8yY6dSWqNZGak5XMM8MQm+xoxnAZuY2WSmmoFL7QaaLPBxhCTVhsUoBARiPst86ftm0XfPw7FluGMZ8/xF6IuywLPlrY6zcBXmoRlMX5jNNJxoYI4v7/2LLaWYpy93x2WYk0tQSDHBmqBwkwxirBW+dDha7iOQDpFWJFozEEaM/MWLlP8f/w3v7dNZA5AvPkfr//I3SO86gedkg+xTo3FENtx+LCj1jAKALOj2paTkXP1okCyDKHtmI1rWlcSPPcCZQ8NUGm0ef/HdLOXXH2EemclGXkxV4EIfohlg+kMYbUMpQcQuxFc+1nzpdDulrkjycvTdUEbTSBPKrkc73X6dcCsvQ13prGxZlmVZ1o1lS0xvMkLAwl0XKd5X61kXyGgLI0Zgtgz3zPeE/gXHoZ7EOHkrUUcIlDHMhm0C7cByPsPwYHNjt9HBEGqFrFNpnCC0xAy3sszFE1NZZtG9clv8RhLjS4cgD8J2LFCYR6cxqVydcTgQwkogvGmAqCm7LhXXo8/zkfUmD79/gbs/msTVGhP4RE89TPzkQxCslt65QuIIQax1tynNUFDAy7uVrsgCRGfT9YY7la1BxJaYWrvS5wf8/rP3MvGnr3L0kylmDwzzyV1HsvfGgQbiUj/iwxEAzJ2L2fu5EkPLz/7422cHAylppgmp1t2LF28sz9HvBdxV3aZx1TqdNCXWmqoX0I63zyA2kphY6x01s7Esy7Is6/qzZ6c3I0FvcEj+7+F2lu2brPbcVHY95qIO5XxY+0qzlbZKqdT7shmGI+1NR1GYgU72lMuF1XEWg/lJpmN2FBwCLCcxs1Gb9GrWGQlWg0NWx2kYqcHfeFIZa8WgFyAXlvjCDz/gb/zPF7n/9CWQgui5x2j+3/428fNP9ASHkJXXSSFItO428+l3fcquS2FNYBtIh4LjULqGElNXZM9lm9RYu+FLh0KpzNefux8tBI+89B59S1n3T3Mk61ZshEE/MAtD+fuknDeyaa7JeM+UEe+NwGQlqwzIBY5LR6XMRu3u12bDDuEVsoDrtVWalXq72fb0NrMVF+IQf83oHcuyLMuybix7dnoLMSez0lPx8SCkqyd9BenQ7/lU3N6SyFArCnP92WOH22xqIMrGTiwVECvrGwc7u9ovZbJsxNFyH9PRFs+zGyvrHQO1aVA7PF/j6W/8iNL/8//LoQ8vkDqSl+89wvf/5k8Sf+5pKG4yM461GUTVzXT25d+3tYGcLx0GvGBDh9TdcIRAYgNEa/fGCkXOD5V559FTuErzzLffwElSqCToxyYxT12GA83VB1SyDJ6o58d9x0W8M4q43Id8dwzx0qFu8LhyXH5Qzz5LlNHUkpi23l2A2EwTENka29SYbRvQLMYhRcclMjZAtCzLsqz9wJaY3kr6YsyBBmKqirnYDyeWgax9/ciGtvUG3XKQsxWMn8LYFoGbp6ESZ2uaIjdb51SJN7/vFjpKUZAOD/ePcLG9B7POqtnrNH2ra6WE0hw6N8WpDy4wMrcMgK6UWHj0Xv5/Iz4EAX9lbGLbzbpytcR0JWNYcj36vQBfrGYQB/2AOyr91/QS3DxbaZvUWLs14AUoYzj94B2MTS8yMTnPEz94h5deeBiGNykh7c/WCovJvqzSoOFnpeIHGhA5iMUSvHYA8/wFkDAcBJxr1ZmPOgTSIdZqV9m9RhLz+tIcgczW2Cqjey66rNVRKR2VUnJdYqUwxiDEJld9LMuyLMv61NgA8RawHEeU3GxdnDlWy7p+LhYwJ7Z7lKDv8igCgT5az8pFt2DuWoQ3xxFKZiWn28Q0m80fDFXKaKFE4GSrIK/5JFCAeWAOgEI75I7TF7njw4sUO1nAuFgtEj/9MOVHH8IIQ3D5LHdVBxj0C9ttFcjKRxOjKMjVt8ZTQxNUvdXs60hQ3CTg3h1HiKxRjc0gWrtUcjyEAITgpRce5sf/8Psc/WSKxZF+Prp/kzd9QWEemYa3xhHnBgAwhQRz7zxIAy8dykbWRC4UU3zpoIHz7TqHipU8QNxZBtEYw4vzUyzFEYdLZRwhSLUh0orqJvdv52sVh/yAlkpJjcYTu1ynbFmWZVnWnrIB4i2glsY0VcLhYiWbiyY11IOsgcwWcZhIJeXZwSwjeLi+/RMMdzBPXoYzQ5ij2993OmwjhOBQcXV0RqQ1o0ExX3cnUcbgbhMgamOQQhCqtGd2YXfftWb88jwnzlzi4IVZpDEY4PzhEV4+OcHk+CBfPnIKXIcC8OTQOIeKm3R33USWMdE9zzkcXDmw3C03X+Po2GyJtUsl18WQBWNxwecHX3iMH/uTH/LQq6dZHupj7sDwxgeNdDBPX4bpCnRczOE1F4VKCTQCCN3u2Jiy43Cp3WTQK+yqw2hLpUyFbcYKBYQQ2R/YsgFNmJeuOkKgtCHRBs9eM7Esy7KsG8oGiDc5ZTS+dHCFoJW3lacaI2oFTMeF0uYndhOt4dUyM28HjWOqCebRmSvuixQCjUEbw1TYxhUSY7KyuJUSTk02m7ClUlppwpBfwJMSbQyXOy2kgEPFCgtxiDZwpJQFd5VakxMfXebYx5e72cIo8Pjk1GG+e2yEu48cZbG+iI/paSCzm3JQXzoY6GlKcz04eXmpDRCt3So5Lp5wSIzGFw7LI/386Nn7eer7b/PMt9/gL/7Kc3TKm2S4y0l3nXKPlVmi4ep7pux6LMUx02ELbQzRDss/a3FEYrIxMyuMyDoLb2YlcFz5XEiMwv5asizLsqwba9e/iWdmZvjWt77F9PQ0UdQ7L0sIwVe+8pU92znrymKt8aTkVKWft5cXsgCxL8pGU8yXEG0v625Y7m0178xmQZcZa23YZqhSFuJwx1m3Fc00od8LSI1mMQ5xhUQbDcJQ9fxu505lDO00JjFZpq6Zxgz6BabCNqNBkfm4gzEmCyxjxdFzn3Dy3DQjs8vZPgNTh0Y4d+dhPjo4yLxKqboed1eHSLXhcqfZc4K6GwXH+VSax2QdTJ1ranRj3Z5W5nDGWneP8/OnDjO0UOPODy7w3Ddf55tfehrt7uw9YApJVmjQWf114Oel1vNRh6LjkmJ2VP65nESbfn19BrGZJlRcjyhf2ygRKKNJ9c66IluWZVmWdf3sKkD88z//c37hF34BrTVDQ0N4Xm9XTBsgfvpirSg7LsdKfbxTWwTA9EUIQHw0hNASlMTcP7f6IA3Ml7JS1OGNHUnrSUyqTc8stJ1opgmPDA4QK82LC1M8OTSOLx3ONmtUXQ9XCByyADExmiOlKr50+LCxRKqz7ONTw+N8/8LHHPrkHM+em+bQ3DIyP2dsVEucOXmAy6eOdDMk8+0mDw+McKLST8l1uadv8JpKQgPp4sgseLveAmkziNbuSSGoej6NJAJWP4PfePJeBhbqjMwt89gP3+XVzzyYDU69knyWqAiz0tUVAkFHKUqOm5d/ajzpkGjNUhwyViht2NRM2Mbf5KLH2gzidNji5YVpfnLiGB2lgNXMZGI7mVqWZVnWDberAPHXfu3X+MxnPsOv/uqvMjAwcJ12ydqNOF/fV3BcBKCMwcm7ewqdn6gtrQuY5ktZw5nR1qbNaWKtGfAD2iqlT/obbofsRDA1prvWcCXjN1Eoo41holXmzsoAA37AgBdQyNf0+Y6D0hplsk6hfa6fBaL1Jo9dmuOOH37MqfOXkfnctKRU4M2DQ3x8bIwLQxUUcLgY4OavVQrBqTUNaKqeT9XbfJ93InCyct1Po7toyfFsF1Prqgx4PgtR78Ud40he/MKj/Pgf/YATZy5T6y/zo3uO0Hel98MmJaYAJcdhOYkY8QvU8mH2JeDDxhKnG0v8L4dOdmeqQvZ+nIs6G+aDukKyHOczGY3hvdoC81FIR6W00hg3fw8IhM0gWpZlWdY+sKsAcXp6mn/xL/6FDQ73kVgr+v2AguPgSUmqNU45wTgaofITr46HCR0oKKj7iPdGATATzQ3bM3lgVnJdFqNwy5PLWGuk6P237zgMegU8KXhscJTxQgkpBHf3DXbvFwiHhlGoVDM2W+PApVnu+OgTRmurYzbiYsAbB/rR997JyXvv5dzCNGXH4YvFCi8vTBNqRUVKIqUoOA4V9+oDwvU8KfGkg/8pdBd9cnj8qkthrdvbSin3emGpwPd+7HG+8Kc/5OEffciHHpi779h07WArTSg5LqKweYBYcX2W4pii47IUR8Ra0U4T3qrNEylFK016LsbUk4hWmjBeKK7bjsfFdpNEaxaiDudaDVKjaacpzTTtBojG2AyiZVmWZe0HuwoQH330UT755BOee+6567U/1hV4QuIKSaxXG0FUXJ9AOt11Q4FwYKKJWS5AX4SYqsJSEUoJ4rUJROpgji3D+Mb1h7HWBI7DkWKVmXDz2YihSgkcp2ddkcEgBbh5eeY9fUO9DzIGsVTn7o8u0X9phgOzS5Si1QY6i9Ui9ROHGHvwfj4eLPGdmYt8buwQBc/nxyeOdu/3UWOZ+aiTrV/SKf1esKfrBV0h8YXcVWnt1VrfndWydqrkemzVonh5pJ+XX3iY5775Oj/3yhm+NjxEe3Sw5z6p1kyGLUb8IoN+gHFVtgZxTedjT0ruqPQB2fKBxGhON5ZopgkS0RMgNpOYd2uLWQXDuqx42XFZikPmow7v1xcQCBwhaKuUlkq6718hsBlEy7Isy9oHdnWG+su//Mv84i/+IqVSieeee46+vr4N9ykWr20+nLW9fj/gjnIfZ5o1DhbLgMiyAEJQ9TxqcVZeau6bzx4wU87mIl7sg5aPSCXmxFLWzXDN+aUxhlhr2iprNDNRLMHS5jMLG2nCgBewEIcoo3GERBuQrFlTZwxiuY5zaRr3wiTOuUvIepPH8m0oKWgcHsecOsEflDRTJY8vjB1muG+I/jhkOCgw4AUbXv+QX+ByJ8t8hkpxorK3Iyg8KfGlc92b1FjWtSg5Loatg6nLxyb43gPHef6dc3zum6/zzZ95jrC0+l5ppgljQSlrEEUAhRTRDDCJBH+zjqPZGsSL7SYVx6WtFM00a3yljeGbs5eYCdsbsoeQBZcYwenGEudaDUaCArNhSD2JsyoAuZJBNJtmRS3LsizL+nTtKkD82Z/9WQD+6T/9p1u2O3///fevfa+sbd3XP8zHzVq3A+BKJqrq+syF65rODGb/FrXs5NDcsYS5ozc4VEYz1WkjhaCZJtxZGWTACwikQ6RVd/3gilApHh3sp74ckWiN40hEmjIxX6Mw+QbO5CzOpWlke3VfDKAmRrkwPsBbAwEXR/r5wqETHC5VCC9+CHHULRXt8wJOVQcY2qTZzIAfoPMTY41h0NvbANEVWYmpHdZt7WdFx807f5otGx29et9hDrQjTp6d4jPfeI1v/dRTKC97L7dUyqFimUYa5xtMoZnPQvTjTbYmaKcJ9TSmnAeItTS7GLUYh8xFHQ4US1t25S27DlOdrGLBlw6+FMxFbRKtqeRrFoWAWNkSU8uyLMu60XYVIP7Kr/zKFedgWdffSFDkruogb9XmKTseJSfrZFh1fZL1JVq+xgy1oRFg7puDsdWy0XaasJhkHU9PVPq4uzrEG8uzjBWypjfDfpGFuNMTICpjKMcpd8zWkB9fZnipwehyk2qt2e02CmCkRB0YQx2eQB05QHr0IBQLXFya45OlGQxZtk4KQb8X0E5TKm72OhwheHhgdNPXXl7TAMMAlXWddK+VKwW+lDaDaO1rRcfFdySJVjhblSoLwY+ee5BCvcWh+RrPfPsNfvBjj2HymaN3VPqZizqEKqW4dh1i38YA0RhYjCMipRjyAgIpWYiyxjNTnWxW4nYjW6quz7l2gyP56BxfOjTThNTo7hpEiSDUm89t3YlEK96tLfLgwIjtDmxZlmVZ12BXAeKXv/zl67Uf1i49PjTGUhLRTpPuUPeS6266LMk8Op19fc1tS3FEpBWPD45zqFhmOCjgCMnBYjm7mzE8KHzem7zIiVDRV29TrbWoLjcot7PMwfia52gVAxaG+xg/dRJ1aBw1MQbexsPLlxJjBELQDcIG/YDFOMxmOF5B1c3mKYYqa25R2cFjdqPouJQdF9eeYFr7WOA4BMIl0ZpCnuxeWw6uTbaYcKBY4g8+cx9/+1tvc/DSHI+/+C7fe/oeCo7D4WKVs0GN+ahDoZDmsxA3fz9JAfU0xuSdgwuOw1IcoYzhbKvWc+FmM66U3Fnp7/7bl5IwH32x0gnVEaJbFbFTKyXuAPNRyMetGicr/dfUydiyLMuybne2S8ZNquC4fHb0IAtR2D3BKjouAtMdOB3kgSObXNjvJAnPF/u5p6WQU5OIegNZbyLqTWStgVyqcV+Sct+6x2kBtf4ypUMH+bjicbrkwMQosxKKrstfPXRy2/12pUSTDdxeCRD7vSDvfnrlrF3J9Qikw2zUYdAv7GkH05V9+bHxIzZTbu17Fc9jKR8fAXA5bBFIh9GgSKI1vpSMBEXeK3h85yee5It/8iInPrrErCe5/PSDlFyXo6UqlzpNqGZZQ7FUwByrbXguRwjUmlmGgXRZiEPOteosRCFjwe7WnvvSoZ4msGYdpSMkod55gHi6scSPFmcZ9gt8buwQy0nEchzSUokNEC3LsizrGlwxQPz5n//5XZ0s/+7v/u417ZC1NRNG0GwjUgVaM6ANg0ZDewHSlIFWixNTCwTpLE6SMiZdvDgliGKCcN2fKNn+uQIfdWCMWl+J9zyDHB6kMVDhYw9ODg7z3MhBFpbm+GRplkOFABOH3VKx7XhCooyhIES3C+tEodTNgl6JIwSDfkCsNc8OH7gupWQ2OLRuBlXXY3Zdp+GVgfSxVgTSZdAPAEG7XOA7P/Ekn/+TF3n6vQssHjwME0fp9wIEAgY7WSfThSKkAtzeUnVHCDoq7V7E8aQkNZoXF6ZwpNh1119XZp8Da0khCHeRQZwN27TThFaaMBW2mOq06ChFO83KVNdmFy3LsizL2rkrBoinTp2yJ8z7gPP2aaI//DrlbbrAl4G/uoNtpY6kXgpwqxW8wX5MXxXdV8H053/3VTDFAgiB0YrTlz/GGEO/FxB3mt2h9EXXYyUDoA07ChBdIfP1SqvD6Af9QnebO3FPdZAH+kc4XKrs+DGWdavpc31Ss/L+M1mgl78fY60ZDoqUXQ9PSmKtmesr8cfPP8DPfedtBr/+ImF/H9UTh3CEIEXjjbYRU1XMQmnDCJyVsRTFNRdyAuniCcGIX7rKV2AwZvV3iyezIDTVekcB51zUoep5dFTKJ806M2EbbQxtlbIcR7y0OM1PjB/tVlhYlmVZlrUzVwwQf/VXf/XT2A/rCsxgP+LYIdI4ASExUoAjQUiQEuM6aM/lw7iNE/gsC4NfCNCeR1zwCQs+Uf5HeS6XOy2+dOAYh4rbB1m+dLivOsQPFqbo97JsxMq6vyzrl518GQyuvPKJmCcljpDZPMerbARzfM1aJsu6Xa29QBNpReDI7hq+xCgGfJ+CdChIl1grGmnC4B1HCfvHKPz+n1P4gz+n/6/9NEXHJdQKd6yVjcSZKWM2BIiSVhoxsKZ0c3STLsNda+YpbkUK0VNWXnI8JsMWs1Gbg5t8Ln1vbpL7+ocY8gt0VEorTehzfTzhMBk2iZSm6nosxyElx6UWR8SbdGG2LMuyLGt79jfnTUIfniD4v/8tmgtN9DbDpD+eucg91UHenruML7du4mIw3QzeldxR6eeN2jz1JFuntLLNYj6LzRiDNmZnGUSZzUq0J22WdW3WXqCJVFZSGqmsxFQZQ5/rI4TgYLHEe/VFXCG5p2+IdKxE1OpQ+PPvUf7dP+XkTz7FB30+leEORmqYL4ES4Kx+zgTSweR/b2klKFwOEK8dgLsX4J6tS9kPFMo9/5ZCIBFcaDc2BIjaGC51GgjgM6MHaeQzFH1fIoRgoR0iEBRcl+U4JpAhbZX2NPGxLMuyLGtn7AKNW8wXxg5zqFShz/NJtGI+6jDZ6c0GmLwcbaejHEqux0P9I8zHIYHjdLuNFqSDKySpyUZ272Q9oCtEtwuiZVlXb+0FmkgrijK76GLystNi3ln02ZEDfGHsCA8PjDJWyMpBkyceJPrc04gk5fk/f4W+hXoWEI60EUrCYm/TmcBxuLPSny03mC1Bc92Fp46L+NZxxAfDiA+Hs21M7b4EvM/zOdusb+hmmhpNajQfNZdZjiMaaYIQq+uFK65LxXXxpaSexkyGLZTRJEZv9jSWZVmWZW3DBoi3mJX1NoNeQKQ1oVLo/CRyxcpw7Z1k/Fbc0zfIwUKZqut1m8sEjoubN6vQxuyoZNQTeQZR2gyiZV2LguN2L9AkxjBWKOIKSWI0BrrzUR0hOVUd4PGhsZ7Hx889RvTcY3hxws99+22qy03MWHYxScyW1z9dpukh35xAvD/S+/XFIiKViIv9iFpeeloLMGvjPCVgspL9vYWy49JKE2bWNd9JtUZpCFXK+/UFluOQtTWsg36BAT/Alw6xVtSTiNQY4l10RbUsy7IsK2MDxFvUQN7pU+TlnJ01V+Q1eZOYXawB9KXD08MTnKoMdr/m5CVhOs8g7mR7KyWmRVtialnXpCAdfOmQaI3AMBRko2JCpXCFpLyD91j8wlPUHr2XUpTwwldfphzMY4SBuRJslnxbySy2ezOIotE7VsIUUoSW6MXVr4uPhpDvjsFkdcv9EUIghKCWRD1fT4xGYxgvlHi3tsj5doPCJuWuK91VI61whCDRNoNoWZZlWbtlA8RbVMl1SbSi4nqM+EXaanUtkMqHXe8mgwhwoFjmvv6h7r9XtqHzNYieuHLZqCuyJjXFKwzWtixre66UFJ0sY2bIZnj6UtJWKb50dvYeE4L4xz/D+3dMUOpEfO4bL1GszCESJxt5sf7uS9nXROz2ZgLzAFE/MIt+YAZzbBkANRdkt0cOXM4CQ9HafF30ikBK5qL1GcRsvmtBOvR7PpOd1pYXmQSAAYENEC3LsizratgA8RZVdrJS0IlCmaOlSs8AamUMrtj97LLNeFKgs7OxHbWTd6XEl3LHDXIsy9pa1fVZSiIKjkPF9Si7Hu00oer6O54BWHA9fvD0fZw9Nk652eFz5/+EUlpHvDsGM+VszaEh+7O0pnNpJw/QDNAIMI6GiSYcaMFgCEB6tgzfOIZ4+RBC5/vT3j5ALEiHuShEG8OZ5jLtNCE1GkGWYax6PsdLVUpbBMCucLq32RJTy7Isy9q9PTtL/zt/5+/wT/7JP+HVV1/dq01a16CUnyxOFEsM5e3oV9YhKqO76wivlS+dfAbbzprUQLY2ajflrZZlba7P8yk7Hs8MH6DouJSdbC7ggO9f+cFrFDyPrz97LxeOH6DSafHC8v9BudNCvjWOfHMCpsvQ9LPM4oqVALHjZk1pKvHqssBKjPEUxBJSgQjdrEMqXDFALDouHZUyG7V5c3mehTgkXZcJ3O7i1nihyJBfwBiIlQ0QLcuyLGu39uws3RjDpUuX+Ht/7+/x8z//83u1WesqFR2XQT9gxM9OlsqOR0ulQNYyPtijLqKelKxM3ZBXGnyW6/N8SnYNomVds7uqg/z0wePcWRkAoOx5CCHo93YXIJZdl1TAyy88xIUTByhHLV5Y/j2KlRkAxGIRFvMLTW4edHXyQK+Rl5FW16wbFMADc3j31+HzF9CPT2KemsT4KYTu5usbc66UpFrzUWOZxSgk0VfXjdQR0NHprh9nWZZlWbe7PTtL/8//+T8DEMcx77zzzl5t1rpKjhD8+PgRvDxTeKLSx7u1RSquhzJmz7qI+tLJSkzZeQbxuZEDOypHtSxrewN+0PPvkuMSSIeyu7sAseR4pEZjpOTlzz6EEYJjZyf5/MU/4jvV/5XmUgkR5p8ZB5pwsR/RcbPRh/n6Q1ONezc62sGraOKmhqEwf6IEsexiQhdKWwdvQsBCHNJMYyKt8pL03X1muFL2NOey9kYjiXGE3LLE17Is61awMkLqdp3bveMMYhzH/MZv/AYffPDBtvfzfZ/HHnvsmnfMunbemjLSY6U+DAZlsj/bDrzeBV9mTWpgZ2sQd3M/y7J2JwsOvV1n6MuOS5on6YyUvPz8Q5w7eZBSO+SFhf9BtdGCxSLGTzETzeyOLR/x5hh8MpD9uxptuu0eK0HhFcpMXSGZjzoE0iFWKs8gmm0fs54jBB11/TOI81GH8FN4nv3ig8YS59v1G70blmVZ19V8HPKD+akbvRs3zI4DRN/3+c3f/E3qdfuL4WY0Vigx5BeoJ3GWQXT3qMRUOLsOEC3Luj4C6VBy3F0HiIHj0hOAScErn3mIcycPUUpbfG7u/2AgWYCxFpSyjshioYSYrYCvMCeWoC/efONrmPyx3fLULfR5PgJByXVpq5RU612Gh1mA+GkEbm8tzzHZaV3359kvIpWizG5/GpZlWTeXRCui23iZwq7WID700EO8++6712tfrOvIEYI7K/200gSNIdizElO56xJTy7Kuj8BxKLnersv/fGeTEk4peOX5Bzlz5CQF3eGFuf/BkHsBPL3acAYwD81g7lzaWQVoMQ8ud9Co5lCxjCskHZUSa7XjNc4rHJHNhDTXOZhZSrIy2NtFrHX3oqB1dT5qLNsRLJa1zyljbuv36a4CxK985Sv8t//23/gv/+W/cPHiRdrtNp1Op+ePtX8NeIVsEDUCd4+COVdKsh6mwmYQLesGG/QLPDE01lNevhO+dNj07SsErz93D+9XH8c3MS/88HuMT85BMbuqasoxDGSlpanWtNJkk42ssZJBbO8sgF0pEw2V2vUFKFcIFFfX4GanEq3oqJT2LVhiqk02e3K9RGvS6/g9vdUpY/iouUQ9uXLG3bKsG0eb1WVZt6NdXWb+63/9rwPwr/7Vv+Jf/+t/vel93n///WvfK+u6qHoeAkiN2fUJ5FZcIclK0wTOLq/wW5a1txwhmCiUd/24QDoYDMYYxPpArKh557kTxJciHn73HZ7/+o946UiFSe7HHK53M4dLSUQ9iTlZ6d/6ifLAkmYASoCz/S9eJ88gFh131xegHCFJtSHWezfWZ71IqSwwvgVP9j9u1mimCY8OjvZ8PTEapW/PE6a9oI1B6c2Db8uy9g+NQZnsPXs7VsjtKkD8lV/5lY0nD9ZNo+r6FByXpTjcswyiI0U3LLQZRMu6OfnSwRESZczmnw0HWnx44AhxPzzx4js8c/5b/OhEyCcHh7p3SbXGk3LzIHOFpzGDHcRSEd4axzw8vW0diysEodZ0VLr1L2gDtDwoJz1lro4QeYmQArYvab1aoVakRtNU22dO1T44wWilCR82lnh0cGxH94+0opluDHyT/DVbV2clK2HLdC1rf9MGtLl9S+p3FSB++ctfvl77YX0KXCkZ9APqSbxng+odITBGgDA2QLSsm5QvZVaSacy2vxTO3XWExHd55jtv8sQnPyQYOMUHD50EIVAGCo5LrPW2c1bNQzPw6kHEfAlzsQ+Obd34LAtasxLODWsQs8IFuNiHPD2CvnMBTtS6X88+j67vGpIsg2hoJVuXmIYq5Zuzl3h+5CDVXc6n3Ev1JOZSu8nDA6M7+qxO8sB8vdRmv66JxqC4fcvWLOtm0b2Ys+sWabeGq4oSzpw5w+///u/zm7/5m8zNzQFw/vx5ms3mnu6ctffGgiKOEHlp6LVzhQRhEIgbfoXcsqyr40sHV8gdrdc7c2SU3/3MvSSuw4Ovf8TjL76LyIOwQDrE2zRsmQnbzJlWFiQC4txAVmq6BVcK0jzb0vP5slBAfP0EXKwiLmQlreLsIOKdUcTXTyBePAxTFQxZU5XrJcqzaZFRWwailzst5qPOpzJyYzup0cRGb/vzWSvRilj1viZjDKnRpDa4uWpZiam2AaJl7XPa3N4Xc3aVQWy1Wvyzf/bP+OpXv4rruiil+OxnP8vo6Ci/9mu/xsGDB/mlX/ql67Wv1h7o9wOKrrOnGURtDJ6UNoNoWTcpKQQFZ/vgbkUrTZiaGOAbX3qaF77+I+748CLFdsjvPXUKPwhop5sHQpFSGCDSGioJZqyJmK1kWcTjtU0fk2UQs5PptZ9Z4uMhhBHwwQgCgZEaoSVMVTHCIJo+nB1APDaz44DoakRaZUGs1kQqxZO9GUJjDKfrizTT5IZ3w0u0zmZKak1hB0syY62ITO/3buVqus0gXr3uSSf2e2hZ+5kmWy98u5aY7ipK+NVf/VVef/11fvu3f5vXXnutp3345z73Ob773e/u+Q5ae6vP9Sk7Ht5eZhDJKr2cPdqmZVmfvpLjke6g+UikNWXHZ36owjf+8rPU+8scuDTHX/vmW/THasuAbD4OGfYLiLxcx9yxDID8aBjx2gTEW39+KKNXL0AtB4haIQsE87JTc/8cZqid/Xn+AsbREGedWeei69ddu60SvHztZrjJ656LOkyFbRwhbvgojNRoYr3zrq6JMcTrxoSk+Xoc26Tm6q2uQbzRe2JZ1nZWLojZAHEHvva1r/GLv/iLPPPMMzjr1pgcPHiQy5cv7+nOWXuv3wsYDYr5YOxr54gscygRu55TZlnW/lF23R03H/GlJNaadqXIN376WWbHBxlfavKTf/JD+motluKQ6bDdvX82xxAmims6rFZj9IMzmGKCWCgh3h5js6UegpUucvnFqHMDAJh75jHVCFOJYKyFeXwa8/g0FBR4CpE6VITH+VadVGteWZxhds0+TYctfrQ4u9tvE401HUtbSZJfbDNEavMA0WCQiBueQUy1JjZbB/DrJVqhMD3HhM4Dm9Rmv66axqDtOk7L2vdWRv3criWmuwoQoyhiYGBg09tardaGoNHafwLH4fnRQ3taYioRCAHSxoeWddMquh5tlTATtre9YmrIyj3TPOBJAo8//+JjfHR0lGKjzf/2jTcZnJzvOQFejiMOlSqMB6XejU20MM9ewlRixGIJcXZwk2fMmudIIbIAcqmAkRoONjBPX8Y8c3njbzI/C4IqFGikCR80lni3ttCTTZzptDndWCLM1wYaY/igvtgN9DY7KZgJ23xr7lLeGRWaKul+lm6WIZyPOlkAKbiupa47EWtNordeK7leorNxFsmaVJcyBoPZUabZ2py6zdc1WdbNIjEKY7BNanbiwQcf5A/+4A82ve2rX/0qjz766J7slHXzcIVACoEQwpaYWtZNrN/zmShU8KTccuB9rBWukBSk05NZiiV8+/kHWX7iAQpxype//Q4PnJkEssAr0po7KwObX5hyDOahmaws9OwAzBd7bjb5H0cISCQidaCUZL+9BGxauOBl+yaTbL7j2eYyS3HIzJoM4lTYop7EzEchAB2V8ubyPBfaDRpJzFenz21YT3m502Qu7FDLs4jtNO2W2a8PEI0xzEUdio6Lg7guTWomO80dBxqRTkmN2XHTnlgrNIZkzTrElfEMNvt19W6WrMQbS3M099F8z0QrPmltvlbZsq4HpbMLYrbEdAf+8T/+x3zta1/j7/7dv8t//+//HSEE3/72t/nKV77Cn/3Zn/GP/tE/ul77ae1TjlwtMbVdTC3r5nVnZYCfO3ySw6Uq7S2CmVgrio7LaKHUk4lKtKHk+sQ/9ixff/puEPDFV89w77ffpJ3ElF2Pg8UyrpRs+ru2nGDun0MgEO+MwWKhe5NkzRXclt+9/7a8PKhJHMqOy8V2k7GgxFzUQRtDrBXzcUhqNFOdFgDNNKGexLxfX+T9+iIzYYfWmvmGymjONmu0VUo9iUm0JtQKV0oEgva6WYgtldJKEwqOgyP2LkBsJjEmn+/4+tIctSTa0eMipVF6511MVR7IrM0WpkbnTWpuzxOmvbCypmk/n3RqYzjfrrO0w2Pr07AUR7xbW7QXJ6xPTbbmmn39Xr2edhUgPvHEE/z2b/82cRzzL//lv8QYw7//9/+eixcv8h//43/koYceul77ae1TWQaRvMTUBoiWdbObyIM/Y0zPejuAUCkG/YCK66FMliWL81EPFc+jIB2W77uT03/1C7QDj+NvneXzX3+NO90CBcfFExKRdz7eYLyFObaMSBzEjw7A5SqQD7xfCUZb+cD7KwWIfn7/RDLgBRwslun3fDoqpZHGLMcRkUoZ8Qucb9dRxnSDwdmozQeNJSKV0lmTQVzJHBYch+UkykZcaI0rshmSC1HI9+cmqcXZSXUjiUmNyUaISLknAaIxhu/PTzIXdYhUtp4w3WFGMNQpKm88s5PnSXTWkGbjGkQbIF6LlXWcibmxJcfbWZmBudWFohshNZpQKTo7OH4tay+kt3kGcdedSh5//HH+63/9r4RhSK1Wo6+vj2KxeOUHWrckR0gkcs+6olqWdWMN+QWEECzEIbUkJnAcfJmtL4+0ZjjIgj0hYCmJWIojCo5DxfEQQvDF8cM0hxN+5ydafPkH73Fseomx//ld1N/ox+0rZwHfyprCdcypRUwlRr47BpeqmEMNCo5DmJ8UijxANKXtS9+Mp7LK09hBCEExb8qVGk09ibvbq3oeM2GHpTikmSQIAZ5wUEbjSUlHZyfIidZ81FwGoChdZsM2R0tVlDG4QuBJh/PtBkprjpar9PsB9STG5JnPvcogJkbTVCkdlSKFIMyD852IVRbMrrym7ayOszA9meK1V9SNMQh7UXDXtMnW8d7opkWbCVWKn88yDZXacmQNZBcRpsM2B9Y2nrqOsk7B2bFfcb1P5Tmt25vi9r4gtquz+hdffJFOJ1vkXygUGB8ft8HhbU6KrLTUlpda1q1hJUPYTBOGgwKRyrJUl9pNJFkAWZAOYOgoxWhQpJ4klNwsCHOExBMO7b4i3/nyZzl7cIjicoPy//v3KJ292J2duikBHGhiPAWNAHTWeflYOcsm0t59iWkPA7UkZiZs5Z9bEoVhIQpZjEN8IRkvFDlQyE56W2lCqjXfnr3E+/VFRoMCRcdhMY4401hG50FSv+cz6hfwpNM98V+IQ9z8c9ERklCpa74SHStFR6WEWhHlg+zXN4xRxnCmubzhuSKj8KXcUQZmZZyFWdfFdKVJjQHbx/QqrWRhd5r5/TS9uDDNVKdFrDWp0RsqCNZaTiJeXZy5LmtrN5MaTaRUt6mUZV1vSuv8s+72DBB3lUH8+3//7+M4Dvfeey9PPPEEjz/+OI8//jiDg5t1nrNuF76UtkGNZd0iHCGZKJQpuy6ukMxHHZQxjARFnhs5wEhQZDEOAYExhrFCiaU4IljTxdrLPxMiT/JHz9/P//bxAmM/eo++3/sqTz54gvceOglbdb0WQF+EWChhWj5UY0hk9melxLS0sxJTEcueX+2+lHxQX6SWxPR7WbAZCMnlTpNa0vsafOlQT2IW45Dz7TqHimUcIXGFZDlp81FzmWE/ALILZQXHxRB1A6q5qE1BZr9iXSEIyU66fXH13b4jrYlUSpSmeEJ2y3vXaqUJ79UWGPGLDOT7Z/LSUl86dNQVvneslkEKRE8gs9KkZmUdnb0wuHs6D7DTfZiVaCQxHZ1lp5U21LcJEJfiiKZKsvLvT6GBfaoNkd5fZa+3A5OXmXvy9ptSkN7mcxB3FSD+4Ac/4NVXX+VHP/oRL7/8Mv/pP/0ntNbccccdPP744zzxxBP87M/+7PXaV2uf8oTDHk3NsCxrH3igfxiAc60ak50WqdAcLfcxVsjGVBRk1nhFCMkD/cMsxSHBmhMIN29cpbTBSMHiZx+nevQwhT/+Jk++/Qnjiw1ee+ERkmCLUrFqBAslqAdQjRHvjCHms+c2QQruFX5hb5FBHPADFuOQ0aDQLZutuB5TYQuDoeys7o8nJLUkop7GeRfV7ENOCkFqDEZn2dMeeWZIG0M7TfHzD0ZHSFKddRD1r+FEK9IpiTY00gTPcbJ1kOsCxNRommnKchJ1A8Q0H63g7TiDmJ0YSSFI1mUQs5d56580GWN4qzbP3dVBCns0NxhYzczuswyiNoa2SgiVwhMyP45i9Bbl4PNRh06afmqBbpZB1NuWvVpbu9qS8MlOi49bNV4YPXQd9mrvJFrteRCbao0xm488uh3s6rR+cHCQn/iJn+CXf/mX+b3f+z1eeeUVfv3Xf52hoSF+53d+h1/6pV+6Xvtp7WOelN1W75Zl3fyGgwLDQYGq56PJAoZhf7WzaOC4uFIy4PuMBEWeHTnAeGF1xqEQgsBxuh0HfemQ3nOS9v/556n1lTh6eZ4f/6Mf0LfU2PT5TV+WuRD1LMu3EhwCUN5+/aEyBr1FgOhLh4lCuSdIKzouHZUSKd0T5GbjPlLmww5y3SyN0aDA2PqZjrkkL89T6G6Gzc3XXSZX6CD6zvI8lzvNLW9fKf1rpgmhSrNh9utOXlKtaamEpXi1A+VKyagvHaIdlLqq/P4SSJTq+boU4rYou0qM5kKrQWOLkS9XK1u/SU/gvR+kJju2WmlMrLOfc5w3htnMVNj6VDvarqyLbeyjzqo3i1Rr/mLmIu2rOJab6z5L9qO5qMN35ib3fLsKfVtcDNvKri+LtVotXn/99W4m8a233iIIAj7/+c/z+OOPX499tPa5TWebWZZ10yu7HoJsDmHVW5Ndk5KidDhUrAAwUdjYqCJwHEKtEQj8/AKSHhnk6z/zHI9+5w1OXJrni3/8Iq8+9wAX7zjY++C+/ISkEYBad9W7sn2AONVp45uYCcgGNF7BylV1sy5T4kuHRppwudOiuK4ctrhFRskRgigfRq80SFeseY4rzyCcjdo4UnJoi6X9kVaoPEAspS7KsKHZSWqyAfczYQsYBeh2JPUdSVulxFp1s2LtNKWeRj0/w5W1hq6QROtKTAXXL4OYaMWlTpMT5f493/ZuxUrlP8u97Zqp8lWc+61JTZofs800oeL6uEKSaEWoU0r5qaIyhjeWZjlSqlKL4091Jmass8ZTtWRvA/admOw0WYyjbmXFzSbSirZK6ChFaZcNfjppNq5HGb1vlxJFSnVHD+3l+Wiafw7e6hfDtrKrAPHLX/4yp0+fZnh4mCeeeIIvfelL/PN//s+5++67bTez25gvJfr2fP9Y1i2t4mQBoiMkfV7Qc9tYobRlFg2yMtSaSnCl6Cn9cQoF/vT5+3n+wykefP1DnvnOmwzPLvPWk3ejVwKxQopxFTR8aGe/psxAB3O4DsOdDc+1MtvPlw5CGBInP4lc36RmC/2uv2HQvSsEqdF0dNJTeroduTZA3HBCJa44g7CZpps24bjQajBaKBKlKRJJqFNqSYzAEK3L8KQ6O2lfiMNu2VVqsv1ZCXoTrSnk35rpsMW5Vn1DgCjy1xOu6Xqq8jI1w/WZDXamUePd+gKHi5UbvuYp0rr7s9xLK8H1Spb2w8YSp6oDN/zke+WYbaYJoU5x8p9zJ00h7w0VqpT36otc7rSIjcrWKn5K2ZVYKwLp0Nqm7PV6MMbwzvICBm7aADHWikhd3cWORhqT6qy8t+TuzwAxNbrb4daT/p5tV+ns886WmO7A6dOncV2XRx55hEcffZTHHnvMBodWd86XZVm3lpLrETgOFdejvC5r9uzwAY6UKls+tuA4xErhCNldiwcQSAcNnH7oJN/5iSeJAo9TH5znx/7kh5Tr2dD6bqMaLWGlvLScwIHW6ozDNWajkLloNXA0kizAXAkQL1URPzgM85un5qpeViq7lhACAYSpyru2XpkjRNb1NR8ov76Jy5UyiKHKrtavNd1p8f35SabDFi2VUnSyTqntNOmOJFgrzQPBUCmW8yYjad6NbyXoXbsfsVY00njDNkB0X8+KRGscxHUZ9B6qlLdr8zTTpCdreaN0T6r3OEOWnWxmJ52hUnzcrNHc4zLWq5EYjSJbO9tK0+6xu3YsSphnVafDFiL/b6djVq5VnJeAx3rrstfrYT4Oudhp9lwoudnEKxc7ruJn1Ujj/DNj/86fXOlwu9cddZXRCFidw3ub2dVZ/auvvspv/MZvcOedd/K1r32Nv/k3/yZPPfUU/+Af/AN+67d+izfeeOM67aa1n3nSsXMQLesW5ElJ1c2Cp/UXAl0pt704WHRcIpWNVlh7AangOihjmAk7nB6p8rWffZ658UEGF+r8xB9+n8OfTGV3XFmHOJtltkxx61/+K3uR/UIX+NLJZiGmEhKBODOEaPmI1ydgcuugdqut7/QiqCMEsdk667TdSZYymsToni6NkVK8tDjDdNiiHse00oSCk33/UmMIHId4kyY12TpBQy1fr5Xk35cs6BU9Q9rjfN7d2oBPaQN5gBtqhclvS7TqZpb2uuzqk2aN5WT/nIxGWl2fDCJZZjbRmiQ/VvbDGqdUa7Q2JEazHEd5XwHTE4xFeZB0qFhmolCET3ENYqwVgeOQmL0PBLZztrlMK00+1aB0r8VaEV/FsWyMoZkkKGP2xXtyrVClvL08D2THbrjHAWJWZp83GLtNh/rsqsS0WCzy3HPP8dxzzwGQJAkvvvgiv/Vbv8W/+3f/DiEE77///nXZUWv/KrnuvuvIZlnW3hgJCvSvKy/dCT+fCVjwen/NBNLNmltoRWoUYbnCt3/qKe574wz3vvUxz377DT6eWuCNY08AA4h63hynuHWWxWCywCdfg1J0XLSrsiugF/sRiYOpRIhmABf7MAe3bgSz1sqYip2SecYt0Zr1IaUxWTC2lVhrlDE9AeJM2GYuajPsF1iIO7RVmq0LRJPoLKOyvsRUrRli38jXa/V+Phtitfrvtk5R60ZwKFYyiJJIK95cnuvOeJT5HMu9DgzmopCClCT5SI5rpYzm/foS9/UNXVU5YqQVsdZ7si9rpVrjiCxQjJTKR5Xc+AAxyS8spHm2yZUC10hqaxqURFqBEWvKYT/FElOjcIUghk9tFmI9ifmwscywXyAxes/XuH1aVjKIuw3yVh6XGr2hBP9GW4hCzrZq3Nc/RGqyESh7GSCujPNx8pEvt6NdN6lZXFzk1Vdf7f45ffo0WmtOnTplm9Tcpu6qDNzoXbAs6zp5dHDsqubdeVLiSLGhoYsrBNqs/g1gpOTdx+5ibmKIp7/zJic/vMjwTI2Xgp+h6eVzdrfIIK6s9TPGEOXrlCYKJRa9BJci8uOh7DnunYc3JrLGN5od1c8MB4Xt73B2AHGpD/PUZShk2bWVTqOwPuMqti0ljPOOpJ08myeFoJ3PLCw6LvNRhEZn2Vj1/2fvz4Jsy+6zXvQ3xmxWn323+119lUoqVanUWJ0tWXAMNgYc3AsHrgGDfX1vYIIb9wk/EATwQjiACIKXGzcwAcdxDNxz4JiDMQYbW7YkS7JUKlWVqlSlql273zv7zJWrne0Y92HMOVefuTJ37l27SvOLUGhX5lpzjjnXmCvHN77///tMNlnZGi0xTVUCV8oBBTGF1mTHBWNSMxzBYRb9ZgxBHPNWs86ZYjlTv7gPJaatOMCRMjOHuVe0o4gb7QaPVmaObcwBPTfa7imXFqbutgqjekRaPxQlbCn5TyM4zEaL4K7XJlJm3vlxzPBXwYMyqUnHB0bVfhB4u7mPH8esFEvUg9M3QXlQMOXS6tgKohebGBMrUbwfJrTikE4UESqVqaOtUzQwUslGmyUeXBn1w4ZjEcSf+Imf4ObNm1iWxTPPPMOnPvUpfumXfokXX3yRubm5+zTEHA878h7UHDk+uJjk2HkUHGlhCTniAJouNKuF4kjo9dbZJX73z36WT371NVbXd/mS+N94dfbzXC8/M6Ag9hvABH2LtnYUsVYqs1wos233jq1nPZj1TV/jbhndcrMS1hNjv4B4dx6BQG9X4EIDiSTQMV4cZWWZKVwpOYgm28WnJiGRFpnLaCMMsDCRIfuBjyUFRWmhNQhhyp+GCaIfG6LqCEk9IYimB9GMxxIiI45gFoG9CA5DpNIdc0sIPDQHvkdBSiq2k0V+nHaJaTs06qggPrJXcxrEWp2orC4bTxSgtT710sJYaSQSrcFTUbYx4MURX9u+y+eXz1GwHrxBT7oI1ghiFCVh4Vo2d702236XM6VKotD0Pnf9AEtMQ6WQGAL7IModm2HAm4095t2CUZHQSWn26WViPih4sXE/Pu5c9hLX5NSd+WHCQeAbdTNR+QXQOOT79bhIvzEl4oe2Qu5YM/2nfuqn+MQnPsHzzz9PqTTBhztHjhw5cvzQwxHG5KQ85ADqCIkUxsRmXOi1Vy7ylT/5CZ753rt86LtXeLH+Zdb8a7wUP0pAAaU1V1sNFlyT1RgqRUnaIGDf95ixXWqOQ3e+TvlgBlbb6Ef2M+MbdsvQKBxOEI2PyOjPtirgxlAJEG+sIJIXid0S+kLDLCS1MmH0Q+93paQZhhMDqyOlUEkoc+oyWg99XGll5boaiW1Ls6OfqIyhUgPHDJRxl3SlRTsKiZQaKGEsWBa7vpf9dyeOTP9j3yIo0gqtzefXjkJcKWnHEVIIZDL001QQQxXj65iKZaPRp7IYDZVK+vxOShAjHClPnSBGyYJbJeQzTPIHfRVzEAUchD4r1mR34PuFMAkFF0ITKY1lS2Ri1HS70+JMqUIrCkcyjx8EQVTJM+FKsz3xIPoBt/0ufhyznJhXDT8j7yek+Yfd+HgKWzeOsq+x97oHM91wS7/n9gLPfFcmG0EFy6IR3uOmXx9SIy6jIOYlpkfi7/ydv3O/xpEjR44cOT5AcKSFa8kRNcSWMlMWhZjwh1cK3vzo42yFj/LJN7/Bue51Fv/Pu3z7c89x6+wiM45LqBXNMCBQMWvFIkLANaWo2S4V28FfaRBdCAbiA/SMjwBEo4CmCXtFaLlwoQFbFcR22eQu7pegFKI/cdeUomoQby8ibpp8Pu1GiMBGL7Vhr2Rer8hs/9txkCltKVxpUQ8DPBWPVWWDpDctTkplq1pTD4KeA2zyO0sIKrZDN44yhS/SGidZOPmJkYwrJY3ImN74KsrGU0jGkZYGpr2P/apdWmJqC4mFYKVYYsf3CKWVkeLTbMvxY6MEOLY5X3fMxsFxEWtNcA+L+k4cUZDWqbtXRkonJaZkCkisDSnrRCHNKGTlVM84HQKlEEKjtSBCYSfzqWa7XGsf8ML8Mq0oHCixFHDqOZHjEGtNnJQ820KeKPD9uBjXz/Z+JYjdOMqcjY8DUwlh2gXu5z3vRCGtKGSlOHlj5I2DXRzL4qnaPLHW1AM/2zjwVExR2nTi6NTKgFVmUpOXmE6NW7du8au/+qu8/PLL1Ot15ubmePHFF/n5n/95Lly4cD/GmCNHjhw53mdwpKQg7ayvLft5Qg7nnCJ3u+2x7w2UCT7m3DL/Y/cv8Zz/Bzy69w6f/x8v8dZTF/jqRy/zzOIq39rdxBKCWaeAFOacJduc00rImtXP02aSEqSGMd0Rby0h2i6qEiLeWEbEfQuL0EJvVky0xo1ZxM1ZtBMbspiQQ/3cFuLVVVO22ihgzXqoxPlvuG/TETKJp4jGEsQwUe2ESHqGVIyvImZsk+slk0gBIQQzjsuM4xKoOFGiIr6xs80nF1cJkl4tW0rTQxdH+HGcGbUUpEUjWZC50iLWRjnqdzYNExVSCsH5JMpEYxbq6XFOU0H0EiMMK1Gd28dUOsYh0opInZwgdqMoMQE67R5EnSnAXrKgjZNcRBNN4gGzp3rOaeAn2YdCCLpxnCk1Vdth3euwG3i0hxREyYPpTYuSzMh0fgyXpt8PNKNg4BkWD+ha7wfMZoc8dj9tO46SUvbTeSYn4a7XZr3bPpQgtuIQKyG43SjEUzGKVEFUxuFWKbxTykJMzb5k8j36w4hjEcTXX3+dv/bX/hqFQoEvfOELLC0tsbOzw+/8zu/wm7/5m/zar/0azz777P0aa44cOXLkeJ/AFkY9dId2c52kl80YwIixJZf7gU8njlha6hAtVfnOhedY79b4+Ne/x9M/uMXq+i7Rn/uTvJKUUVYd0xtXsixKlm2iNYQkUhq37/SxG4ETIVouBBLRNgsJ8X1DDvVSG335ACKJfGUNcX0OvdpG3JhFo9EvroMTo/dLsNoCCXqhi9gtw14JOeej0IkaOHhNIjEA6cQhi4ya3wQqThRV0+/TjqKB/sqa7XAwZMIgk0zCeuizG3ST98Q99VKbEtG9wMs+B1tKYq1M3qINkdbYUgxlI6oxzp/G1c9J4g9OswfRT3qIhBBGrZhyMRomTqOVMSY0kT55iWmoFL5OYxX0qZqTxKkZTPIZxDrtPTVEccvrHn2Q+wAvySy1haAd9T5bM1bNtt/FU/FAHqoU4r72Ayqt2fI6VG3HGDdhFMQHEXPRCIOBzS2tjZPq+xEnVRBbYYAj5H2/57HSI27MwwjimBjzmlYUEmmjcptS8jgr4e/GETXn3gmi6UHUJuYidzE9Gr/yK7/Chz70If7lv/yXAz2I3W6XX/zFX+RXfuVX+LVf+7VTH+Rx8Ou//uv8q3/1r9je3uaZZ57h7/29v8dzzz33no4pR44cOX7Y4MiUIA4qiAVpGYLoljKVzx4iIykx0nYML24AcJdVfmd5lue/+hoX1nfRv/6bfPGjj/NbjyxQsmwkgrLtUEjMcdwxO797oUe10qZSn0Xfmsl+Ljzzp1BfaMC8B9oY24iDIry6ahTD5TbUkh6XM30xGYsdeGfRuJleaCAQmUo0CjFxoRXGcaIgGoKZkqSUqNUcd2Thk5a0NsKAdhziJ6YnvXNrNrwOO77HotsjpQIGFMS0lzEbi4pHTF4Fpr+yICxIiOlpwbhSmjFbQo7tTR2Hm50WW16HTy+dGfldrHRiUnP8RX2oYmKlKdk27ej0ytbAEHKZ5FEGKkYnP4uUURH3Az87351Oi7JtM+8e4aZ7CvBjs7Ew5xSYGZpnrpTcbDeMm6ndpyAmSuj9QiMM+M7+Fh9fWM2cfW1p3H0n9fKe5rkHymmFfl8qiOkmScGyMlXdnmIue3HElt+lYJnv024U3bd7Pk32aRq5AUZNTEvdI6WyDTkhODUznbTEVIoH59T7sOFY33jf+973+IVf+IURg5pSqcTf/Jt/k9dee+1UB3dc/Nf/+l/5x//4H/NLv/RL/MZv/AZPPfUUv/ALv8De3t57Oq4cOXLk+GFDjyAO/pkp2w5fWr1AxbYzgtiPlLDYQo78zisX+e0vfITvfOoZkIJnv/s2P/fl15nba1C2bSqWk5VvFi175A+7r2KCBUPusn7CpA9SuxEsJuqNAP34HlpoxE7F/P7iwfgLrYXoM02EbyPeXDLXoNRA72MKgTE/GYeuikw+njbREp0hx8hxSGMJmlFAO4qM6Umf+mdLwa7vjRAcgaCR9G8KBBIxUEqZZuL1w00MW4xJzenGXPh9rq92EhUyzaIsVL1wbD+OB4hlav5yEoOJNPutIK0+98rTQax7GZlxYoQRJZEarrToxhGtyGxEXG0fsOU/GEUx7V0VQozM3bLtcBAGmWqTwpSY3j9VLdKmv6wZBlnEiiVk8rnev0V7oGI8FQ08M1oLwvfYqOUkCFRMnGSmpqYu0+Ctxj77gTH9soXpS03fux94p/r8R0oRHDGuQMfZd6cx+wLQidOqcQaG0zNNUlqbqoYHmPX5sOFYBLFQKFCv18f+7uDggELh+GHKp4l//a//NX/pL/0l/sJf+As8/vjj/MN/+A8pFAr8xm/8xns6rhw5cuT4YYMjJE/PLzLjjP5dcKWVxWAML/TaUUTNdsaSR4AYuP3sY7R//i8SnFtlZb/F+X/7W6x+63UuFMqUbUMQy5Y18P4osckPU4IYGWVTP7JvionONwadRxc89CfuoKuBMaOZ95gE/dQOuhAhNqtYXXegV2/wuuVAxEQ/unGMLSW2hHYc0gqDbJf8MAgEB0FAN4poRWFm5mHOZ9GMAorWqIq763tJWalRO/uVzXElpmmJWvrz+BRLTNtRlKmetpQmrD0+eiGbxkMAXGsf8Ep9e+B3kdYn6iH0VYxGY0uZGWGcFmKtk8/VjM9OelN7c0ZnboypC+2DwKDyPIiyZWd9f/0KkhRGoWpHIf9j8+apK2xpf+1BFJBulqSl4/59vC/dKCJUemBzyxKceibmg0CgTNZmShCnKQk+CHxeO9hh0S0iks26SGmCOEZrzTd3N9gLJn8fHn+M6sh5HihFoM0G2H7gUbAkWoskpict6T89MmcIsEgUxJwgHokvfOEL/NN/+k956aWXBn7+0ksv8c/+2T/ji1/84qkO7jgIgoA33niDz372s9nPpJR85jOf4ZVXXnnPxpUjR44cP4wQQvCRhaWJpXmp0+bwH992FHK+XB1LHsH8sS5aFnphDv9n/zytH/80SEn5ay/xo7/5NZwtUzFSspwB9agVhcw6LqISoyqGpGk0XDpAf/4mPFofHeRsgP70bfQLm6OxF/1wNCwYpccO7Iklpv3ZhMPwEldSW0iaYcC61xlRXyfBUxGRVjSjIDPzAENId4MutaEevZJlsx10E2Vm1PgjzZzrRzEpUUuPPZzzeC9oxWFW9pZ+7tMsZFPHVzALyE2vk/3OV2Yxe5LeqSBWA1c/bvG64bXZOYG6F/eps7E2ym6o42Sua5Q2cxWMuciDIIipi+24TQ1I+xAZ2bAwJaaGIO763qmSBkgUxNgoiCnsJErmfvY+djPS0U8QxXse9XAS9G8CTbvZcaPTxI/jrLc3dfL0k8icUJ2uguur6EhlM4wNifRVzEHo40qJJcyzkpYfGyOt0xmX2QDTmYJ4EsVUac3tTvNUxvNe4Fg9iL/8y7/M3/pbf4u/+lf/KgsLCywuLrK3t8fu7i4vvPACf/fv/t37Nc4jsb+/TxzHLC0tDfx8cXGRGzdunOiYUh69e/ugkI7lYRpTjg8G8rmV435gmnlVsm2aYYgQpqxyK+hiS8n5So1Nv0uk1EjPS4ymbDvmuNKCT79A96lHKfyX38e6tU753/xHws++SPVDF41ak7y/oyJemF3m3dYB4UKbQrsAlRDhAI7icAY4BRyzMJGRTYSHLeXI2AuWKSFsxyH10Gfb6/LR+eUsiNooVrAf+hyEAedKlSN7foQw5ZRFy6YRBpmxghCCqu2yWoTSEEEs2zb7XZ+toIvARJL4Ks4+qxiNNTT+gmXzzMxCela0OL3vjHYc4kgrUSvMsSPU2OP3z6u07E3KhKjEIYGOKVp2Vmob6PHHOQwRZt6JpK8pQo8c40aniUSwUhp0Xlzvtpl1XMpjjHOATOEVSdSFKy0inZj+CIEtwNcmRzNQ8cT7kKIZBlRtZ2Se3O22OFM8ev6AWXyrRDGd9PqCJQn14POYkvkQRSMK2A26nClXjjzftNCJQumpqO/zEJAQ09P8m9U/r3wdZ59RiuFn5P2CdC5LKREimX+HXEOsFe+2D5hx3Oz6ReJoHKHQQhNh5stp3YsoUYd14pg6DKXNOWM0XRXRVTFlaRNI88wrSL6vjM58KuMS9MqthUJIJm6gTELd93mtvsMzZ1fed/MGjkkQ5+fn+Xf/7t/xla98he9973tsb2+zvLzMRz/6UT73uc/drzHeE07aVGvbksXF6n0Y0b1hfv70vnxz5OhHPrdy3A8cNq+WmhX8TotKqUDge1wsz/Kl8xdZKZW5EbXY9T0qxcES1YL2WZ6vDn4/L1bR/6+fJf6jl4l+6yu4X/02L/7gCpufeIziyiJKa4ra4ekzy7S2YvYvdODWPM5agFs9ndaIsCoIgQIusmAzUy4iug6iFJMKEQXlcL3Z4Ld3b+LHMa60+JGZ88aFdduiJhxsKbnTbvLY4jzuUGnoOBS1j2XbLNplZMHCFTa1SjFbzFTHOKYClAixihYV5VJ1XdBk99TZtikIQcUd7wZY1D61meKhfyNvtZq8vL3JF85eYPaQ9hOtNXpbMFMoZucr6YDSTIHF2uTjz89XKHRd3NBhdr6M6zngSayqw2K5QqHjUG0XsIr2sf+W3xUexYZDpVqgREBlpsDi3OAxnI7NnuePHPuPrm/wZGWBC/Pjz1nYdkxZaaBxpIV0JW7ZplB0KXdcbCmwSjYz82XcLYdCxZ04/s1Om6/tbvCFsxc4X+295sD3+f5+nQvLc8wVjja4aQYB7pbNTKmII8fPuUfGPHQUjwMAAQAASURBVCcqFISxolgtgCPYFeGx7nUQx4fO8bod4RQt7KJDCZdKMoYyAeWZIoszp79Gm5+v4Kh29vlnY3U00rKOdX2t0DgsnzZCFU/8nIaxYwUU6+Zaito/8r7dbjXpypjzM7UBQlTUAbXZEjOFIu6eTXWmxOLs6dx/p+FQxGFuvjx2PgRxTHHLIQg0uiSxXIu5cgntC1zHpoBNrVqgTkDliO+laVG3I0r7DpVSARUKZucrI5m+R6HdUlhtQ7Pej+urqQii53n84R/+IXfu3GF5eZlPf/rT/OiP/uj9HtuxMD8/j2VZ7OzsDPx8b29vRFWcBlGkaDTeG7vpcZBSMD9fYX+/jfohtdzNcX+Qz60c9wPTzKvIi2i1fSqxRdP3KBbL2F3NXrdN7MW02h6laLDM0vdCui2fXdEaPeCHnkKcWaPwX75M4eZd/vxvvcS7T2/zR89dplQsUPQAT3FgNyh8BsJSRNg6pTmvXQSgOpJmx2duZwb58ir6sX14rJ69bE0WCSNFWTisdzqs75jd+kbLp2LbSMvmjFUm7EaEHF0e6XkhASZb8SDs0o1CugRHvk+GivV60xhERAJPxVzb2OPNg102Gy2W3RLtYPy98bshe/vt8Z9BgpuNfb6zvs7mQZM/febyREWtG0cctDxqtpOdr+sF3No+oBaMLsj659VevU2747O102T3oE293eXmdh2nqtk9aKOCmL1mh93dyeMch716m243pC18ut2A7f0Wi/EgWd496LDhtbm1uZ9dW6wVN3cPmIltltUouVZa02r7FKRFNwzxMUYo+3TBUwReiBaSTdVkw2nQbPvs0Ga3ODr+bhzx39avc6Pd5BGnSsnvLeavtxtsHLTYKjeJC0fPoXrg0+4E1JRNIKYvyfWjiI6K2NhrEPox1/f2uVXZn/hZD9+L39m4yY8srjHnFuhE4cj7dlvmc6jToRMGtDHl2Z1uwNZek9nweAt2gDcP9ihaNo9UZwZ+3j+v7uwcEHSj7HwAQWieq2nn0o7f5aW9Lf7UmUvHHmN/SPsw9nyPb+9t8hMTjvu9+g6PVGepJvdyp9HC64a08el6ITtH3LfXdjbwvJCuGPwO6XoBO/stYjek0fbZ2W8xFx07Sn0s9hpt2mHA9m6T4piM2G4c0er4dMKQG9t12l0fHwc/iFC+wgtDOiIwc+Wgk30vpfmiw07a02C/1abrhXRVQDvy2ZkwtsOw3mzQaJuy64dpfTUzU8Jxjr4nR17trVu3+Lmf+znu3LmT/axarfLP//k/f6hUQ9d1efbZZ/n617/Oj//4jwOglOIb3/gGf/2v//UTHfNh+TD7oZR+KMeV4/2PfG7luB84bF4VhEWsFDrpaylKK3ttUZrg4+FeN601NnLyXJ2dofNX/izNl15h4Ssv8fhbN1i7sc7tH/044pygnJQf6kqyADqtKe+YLD8rskxpbBqjsVlGP7o/+NJEUtRam0B2YSUmOsfv7UsXkwUpacWmH2eaY1Qsh9vdFjO2a4LbleKPd9a50jpg2S3hSnnocUKtDv2+aIcRJWmb3jTfoyhHlxsHoc83dtbpRCELTiE7X9Wy+dbuBrO2y5nS+J13lcRYREoTxjFeFONHMfu+hyrP4McxtpB4UUQcj5YqHwaTyWbuo9bgR/HItXpRTCeM2Pf97NraSQ7bQRCMvTdxEvguMJ9zDBQx5dW+jBEaLGn6Qf0oSsj76LkB1jtttrpdZmyHrW6HJ6vzWS/WZqdDKwwI4t5ntN5t40jJUqE0cqwgNk6X6bimhyZWikYQUJQWfhyz1e1ysXL0QrobR7TCgGZo3vvlzVt8fvl8RmwgiX7BZDRq1ZvXWoEXRSf6e3W302KxUJr43iCK2fE9U+rcdy+kEHRjM8fSvmo/NmZG44hDOwzphCFhki95HLzV2CNQiufmRsWN/cCjEQYD40ihteZq64B5p0A5mZNBrHrfCdrkDR523za6XUrSHv3eVWaehLEiiGOCI45zHASxIlaaKFYoMXrMIDKxM1II9gMfpcy1Skx/sE6uT2AckdNx3Ww3uN1t8dmls8cek/nbYxoP1CFjOwydKCJI+lbfj+urI2ftP/kn/wQpJb/+67/Oq6++ym/91m/xzDPP8Pf//t9/EOM7Fv7G3/gb/Pt//+/5jd/4Dd59913+wT/4B3iex8/8zM+810PLkSNHjhxDKFp25oYZa51FVACUpU084e+pc9SCSwg6H3mK/+VPv8i1R85Q7QY8/d+/TvE//Daz3eBULdp7gzILASu0Eb4FO6Y3TbQK4E/YrdWm9zCNdbCPuZAEEzWgEjfMSOnJzqe+BVF/T5WkKC3KfXEjN9pN1vqcYCdBYHIGD0MzyZETpEYZg4i14hs769zutjhXqg6Us806BQTwzd31gc/qrcbegGFJqEwvVJS4MxYtKzOOCZRZQMd99vzTwuRAJj1pMNacJFAxXRUNmA51YpNDmcZUjF6zCd82XqUGaQaliZmQWeZcOifG3TswJjxSQFHabPtdQhXzOxs32PDa3O62jItr33tvdprc7bbHHitQ8YlacKUQKG0yAy1hZt60Tp9+bCJK0ngSL45HwtJjrSlIOWKsIoUxZjoJDqJgosGNF0f84dZtbnVaI1mQlhAoNWjy8nZzn+/VdyccK8ZPIhimwbbf5WbbGJq0opDGBDOrRhDQSYLih9H7LumdM+iby2mEziTE2kTmjDfH0obEJbmKJ4mPmYQgcQ2edK8inbj8Jlms6dPTc7pOntWkZ7V3XMVBMP4+HoX0eyd9Vk/iZHoQ+LzPOOEAjtzm+e53v8sv//Iv8+KLLwLw2GOP8Y/+0T/iJ3/yJ9na2mJlZeW+D3Ja/ORP/iR7e3v8i3/xL9je3uaZZ57hV3/1V1lYWDj6zTly5MiR44HCETJbKQ/vxLuWBWN2bDVMFVruSkm3WOC//chTfOjxc3z+2z/Aeec6z12/zcGHL7HzkcfRRxxnx/cQwOJQH5cXmwWtI2Xm9IcbJ//nsLq/gtDC5ChqAXslODOmNE2YHX1PRlnO27QQby5C16H24ZtEqCweYqxSFkjEH12AeQ/9wkb241Sd00mcQMGypuqzkYmr4WFoJQvNKFZjnROvthrc6jQ5W6qMLaWbdVz2A59OHFG1HUKleLOxR8VxuJy8JlTGXTB1tSxbNnu+l7lyulISJIva45SZBaoX5yGFwB8iIzohpAUp2fQ6mXlPOw4JlKIZhmOPqxJFUpC4aQidEUTjImpcOj0UnThMcuvGL+iDRF0rWTaNKOBGp8mNdpNQKQ5CHwEDxDhSig7jx9WJI+MQckxITA6nMRmShJEintJ1NUgyLL04wlMR3TgeudY4ceQNVTyweWILQTs8PkGMlKITRSNENMVWp8O7rQPOlcojqp8lRF8mpvmeakXhRFfibhRmCrc7xb7PerdFPQy4WKnhxRGtCXmpu0E32xApDSmXvjLK3ghBFOk1gHeI+2s32eAYdj0GIHnmY22I4mm5yEbJJo95jsezqXRjxZHCVAYkF2QJgaI33wRiYFMk1opmFI440k6DjCAm7q8n2VQ8iE5GTh8WHEkQt7e3uXDhwsDPLl68iNaanZ2dh4ogAvzsz/4sP/uzP/teDyNHjhw5chwBJ3Ge6//vFK60RkQNlWTITUMQTc6ioBlFWI9dpv3R53G/9h3cP36FL3z3XerXt3j5Rz7E7urkDUSjUowunLd9j8VCkW2/S9myDSlLXUxDi/LuLGAyFsXVBcRuCT2GIApM/qErj7nY7diI2+YcNVWColmsCdGvTfWhXkTEEr1TMkpiYXBxJ4RgznGp2eNNacaNOzpka1xrTTMypEHHYmQxGSrFd/e3qdnuxIWbKy1CrWhFxqXzIPRphOGAohbqOLPuD5WibNt0k1iEWJscu25C2spjz9JDJ1nsny1VCVQvziN1mO1HpDUxmorlsOV1stLOThShtVHRQqVG5qnS5n9CpCRbJyTLbDpkQfBK046ijOiOQzeOsDBRMb6Kebd5gBSCDa+TONPKkcVyMGFNb5yEj7hBYyATBSdSqfotplaWjNplws/LdowXRyMbCen4ldZYfS6QtpQDsSzTIiVAk0LZ05zPcXPSEpJYK7pxxGyS7dqJQ/YDfywBMcREHxq70AwDWlHImVKFZhjSSUhhN47pxqNkXmvNjm/ON+75C5KNhgGCGPcURBPVMfm+dZLcTXvMZBD04i00JyOIu77HW829gZLPKCm71iROvn1IxxpphcBEAHXiKNvssYRMKhnM+0zsSu8Yae6jF8dU7OMTRK1NBcG4sR0FrfXEjaL3C45fz5IjR44cOXKcAvoX0FqLgdIm87uhiItEUZjGwa8gZZKtp1koFMFxCL74I9z52Z/mztIMc/tNfvy3/5hPfPVVCp3Rnd4gVS2GFryBinGl5HNLZylKu6fSJCWmhBZ0HLRUcLFhshZ3S2N5my0k7SigE0eTlx/rFcTLa7BZId0sF3f6DDa8o/u9xL5RQAUCtsdTpXm3mGURHnm8RE2ZhHTxbwuZlGgOLko7cUg7Dqkd5fCoBa1kkbUf+DSHygNDZRaXvoqJ0UlkRJIHiSEtpgT1aFVrw+vwVsP0ivZnAsqxBNGct2zbeHGcXd9B6FOyTD+pF0fsBd4A6TFLa0MK7aQk0wRxqyxjMs35a0chKim7G6estOOoF0uhBXuBx5zjMue4mao9oCBqTTcav2DdC7oUpvzs+5Heo0hrbGFCxScpnsPwY6OuNSPflJqqeIQgpnmcq8Uy827PUdQSYiyBOgppCfAkBTFQ8cjzPoyDvhLndmTG3RpzX3sEcfLxrrUPeK1ujBUPIj+7JlN+O1qe2okjuocoy34cE+h4gJT2z2VLyEMVxE4cwVC8RwqJ2ehJr+mwUtVJuJmo3P3PcJoxqPRoGeeV1gFvNHaJlXluDEEMsxaDdINC67Qc3KjN2bGVygjiNHi1vs2bDZOjqwCESUHoLzH9QXOfzoTnqB/pd+D7GVNZ8vzCL/wC1piyk5/7uZ8b+fk3vvGN0xlZjhw5cuT4QKOfBAqhcUXv74krLUOu+hAni+gjexAx5MsWgrLlMO/2lYiuLvEfv/Q8n7izz/PfeZvL797l7M0tvv/841x55hIBZve4E4dUbYdGGAwoBK0oZLFQYqlQomhZCWG0QIK2Y/BsU15aCYyqOO8h9kvorTKsdkbG2IoiBD7OBAlHXJ9HtFzEbtncj0o42NPYtWEuJbi9fpwBHPSuX2xV0OfvLbzZ9CBOJl1+HGcKmiXEiNozLoh8HKQwpAtgy+tkpb1AVpKm0HixURLTPrhWFBIrkLa5F9OEg4dKZQv9/r6t1MCnH1FCTAvS5kCHdOOYsu1QD3zKtk0niujEES/tbfLc3BIXyrVszBqjIC4XSmhSsmmUxV72nqAVhaa/FJXcq8G1VjcKM6VHCmhGAef7ejnbnWhAQYy0ojtmoay1Zj/wT+T0CEZdiZTCtu2RHrDD4KmYKFGaZ5JyzOFe0TDJIxwupbSFpJt85scpy+4mKuXEHsQoQh9yPFsItr0OT9Xm0cl3hB8bgpiqiilakckkPWxz4manRStRu1uh2RDQWuOpiCgpm+6/9mYUECa9yuPu86QS0341/DCy1I2jRM8ehRSGIKabI4cRzXGIEwOdThzSDEMWC2a+RdoUiY4Lue9GEa04ZNE1Bkq2lHSCiGW3lF2P0jpTv6Vg4H4HWhEqfahq2o+9wOdu0hOdmjalSEtMrzTrVG2Hsu3gx/HEknyjViuK1vtXhzuSIP7tv/23H8Q4cuTIkSPHDxkcYUigTowGBktMJSIxYIHebrEl5FQlpiJZWJYsBpwRC9LClpIrj6yxfmGViy99n49ducvz336LR965zX9//hFurcyh0bwwN8fbrTqBUnSiECk03Tjiw7OLSCGYcVz2A6/vghQiShYMJUM29OU6Yr+EuDaPXukM8DdHyiToWeHGNmyWof81oYCWg3YjmPGh5SLapgw062/sUxCXxzhUEgtoFNCpwrlXglBmJbEnQVoe2Y9uHGEnn01XRWjMZ2UnpivDr51mWV+QFtt+F6U1617bxEMkKktKDuNEQVR95ZqNMEDRI4zTkBZfxXTiMHPUzRREBH48RBCTXixbmB68bhyhtKYRBrjSoitiNr0O+6E/qCBmbotJ6DsgtUhK2BQyI4EaX0XYQqAUY/vYOnGUEewFt5CVR6awxKC5TqRVZprS3/PpqZhOHDE7ZXnxMAQiUT/N8zotQexEIa6UdKKIeuAbVWwMER83T2wh6egoMSaaPnqgG0eEejJB7EQR9iEzs2TZbPldM0cS1TfSakRBDFWMl8zJSQpiKwrZ9T1AcxD6+CpGiJ5pVaSMW2g/QWyFoekVnUDEgzEmNX5fP60lxET1FEzJq5xw/ZYQ2bHVmM/qKOz6Xeqhl5SfB1lfd6RMGa4UjPT5deOQdhhmRjRFaVGW9kClSaw1bvIcmB7E3jFCpQh0PDWZ9eOYba/LK/VtKpadGX6lf4fSzzV1Tv3D7dt8YmF1cAMyG7vZjCiebN/loUBOEHPkyJEjx3uCkmXhCCvrs3IGSkxND+GG1yFQigvlStZXNq1qULIc5od29gvSwhGSSGt8x+IbLz7B1SfO8/mX3ubMVp2/+Aff49ajZ/ntD53n7Jkq616bbhTRic2CVmlYKZgyzXm3wKbX5wzpxtBNyGgpIUWLXXTNRzQL6N0SLPXyde1kRz9UMdVbq8hbC6jn12E5eU2jiECgFzz0R7YA0G3HlKxKjXhzGeE52Z7/WBXooGAUzXkP7Bhxdwa9V4LV8Y6W00Awutv/Rzt3aYQBH59fHejXsaWgM2Ty4sWHFaj2ULAs9gOfg9CnFYXMOG7WpxVrlVjdm76qOFGTLAT1wM8II4ipXEw7cUikdabcpHPRlJiqAbUqjV9JSV43jrIySeMAq9nwOjTDYKTEVCUupilkooLESmSKJwhiZUpmDQkeHH/qblpMxli07BGiNGyuky7EQxVj9b22nah3450rp0NKxlNDmWnQjiNKlukzrSemOsNmQP3lkf2wpdmg8I9JEBuhj50owunn149WGGAdch9Kls1+ENCOI9CaSBmX1WGnTC9OSARMVBB3/S6hjhEIdvwuoTIkO1XXU0Lfj4PIRyTGXePmtDE2GjSFSst0IVEQE5I3zhiqHvoTN99kShCVUfyOUz4ZqJgbnWainosBh9Z0bgvECJnuxDHtOEyUcI0tJefL1YHXKHrPpelB7L/2OCv3nga+ilgsFLnaOuBsqUKv7dX0HPsJaTffEzp77ufHHMuL46lK2x9mvH+1zxw5cuTI8b5G0bIpJIYTthADBMeVEluaRcnZUoUNr0us1dg8vUm4WK5yYWhBIYSgbDtEfQulc5cu8u+/8GF+81NP4pWLXLh6l5//7Ze49K3XWRbGJbJoWXx8YZW1Yjnb/Z51CoNKmtNbNOlyoioIY1YDIK7NDYzFTiz8g1hhd42CI/rLQevm33q2T6WshHCxAbPJIqt7xP1IjzHnoRfMcdKexJNieDGntWbP99jxu3xt5y71wM9auSwh8eJoIFetGQaMWhCNoigtPBXzan2bQKlEQUwJos5ImxfHhiwKo0KnSmBq2jMNaekmuW5eHGeEx4zflHn2L/ZirTOVV2tBOwppR6Epq03MWrw4ynreUvQ7I6aQSY9T/zl1ojw5UhoTmKGFZpCYhRzWMzpsrhMn0QTDpCNVv46TEzmM9J2GRExn5tEOQ0pJJqkpxbPwoiEzIz2eIKaGMcdVsQ7CgKI00Tpj+zr7ynbHwRgnxRyEPl6ixpYth52gO/C6bhxlZi+T3C+3vG5ybZrdxHnX9J5GiWsnI59VOzT9d3qCUttO+nXT+R4nRKa/BzHdJBiHVAEfh7QHMdIaS4yPrhmHVhTyn+9c5ZX9LeadAq6Q7Pi977PUgIYxn4mnIkJt3G71BJddR0iKSZmnFAyUVYfJJtKk2JlheHFMUZoe4k4cDUQGpc6tfkI6o2STZtJ9OImJ0sOGnCDmyJEjR473BFIIZlzXODJKOWhSIyQ2kjOlCp9bPkvZstkNfEr29DU7T88ssDYmaL1s2Vl5mCUkz84u8fnlc2w+foHbP/cz+J/5GFIIyt/4Ll/833+fx6/cZdkp8uzsIn/qzOXMJKdk2Ymjp6IRBoNlm6W+BcJKB10JEPUS9JEzW0gibXLFpJcoj82+Ur96on7O9RHEFMXk+EeY1Igkj5H5rvkfmDLTe4AUYkDV8pOF00qhRDsKueu1s74gK7HH79/ZP0gyEo9CGt3xdrPOWrGELUVGENPeJSnMzn9KcFxpFOn+df40zprdOCRGZ6WBWQ6iEMSKkX6+9PCuNIpIal4iEqOZg9DHEXKgzHMSWdCJzX//OdNes3H5cEGiUI1TgVKMEkRDNIeJRTsKxxooHQfp4n04ZuAwtBNFXifumEVpj2Qb9qtfwzCK4/H64Bqh2ejRY0g3mJ63o7JIBYJGGGTZfUXLoh4EI8+D+Wgmx8Hc6jYpSxutBQdhkG0UtBMTGsmoOVKqqMoJ196Kw4H+xFgrFIOOvMP5mNmYk1zKSUpyL47FmE8d5dCajSkMqIc+50tVKrZD0bLZC7xsw8jMbfPv/ucjjd6JVErwxk/S8+Vq1v+ZloKmxwmVxpHWVG6isU43DCVzboH9wB+YeWl/Z5jmQCb3Yty9jJTi3Vad0hSRQQ8zcoKYI0eOHDneM8w5RdO/ltiYpxBCMF8o8uzsAgtukT915hKfWljjTLF6yNGmQ9m2Mze+gmVKWZ+aWeCnzj7C6uwcwY99ivYv/mXCDz2B2/H4cy9f5Sf/6zexbtwZIDZly0ZrE3uxF3i9Pj/IehDNxYB+pG7+2aciDqgjKdFrJqRQAQdF44ZaHbMD7ii0rcz7Ji3wPQtxUEQXQ6gFUIzRpdD0MQYn//NvSkx7J00NGVxpUbZs6oGfGQnZSWxD/067CeOebvE057isFsq40jIREImDYqYgYkpAU7hSJg6PvXs7jdJkXCNNOZoaUF0ECj1Uuqay4zvS4iAM2fG72ULckZKDMGDGcQbcNtOYlmEIxEDJY0ruTA/lKMkIEqOQw0x+5FC/WaTV2Py6/cCbiqxPRm8eTOtiagxpYjN+ba6vYFkjBirRBAXRYDQ+5TD4cYynIoqWlSlrA+dSCj+ODyXdAI4QbCZl7wKM8hlHAySkdx06iWEYhBdHtKOQomXhSFOWqxOi1IlCNGaeDDuFBjrOSnn9MQpVJ4qS+a+Sa9IoxcBcjrUeW55qHIIn54WmJjV+nBLE8VEbwwiTzZR0bhcti3YUDWz0pM9S/3dKlCjeYZJleNTnko4xzVQ012+qDppTKIihSs2gBFXbwYujvudC0I3CzJk0TMx6ggmGR7e6Tba8LvPOvVVqvNfICWKOHDly5HjPMOu4pnzQskbK3D63dJZHKybvb94t8onFVT40Ozm3cFpULIcw6cnq3+XtN7PRszW8P/cnuPOXf4rNpVkqO3XK//Y/U/wPv43YrQNQth0TEK4Vc26BwOpbiJSGFnCrLUPOdsvQ6o930IhIZOY2wrdhu4z4xnlELI16OOkvdTE0r4kmvCCNtOg3vllIVMT9Q1REjYnViCeoN2KQtHRjY0ojhWDOLbAbeNlC004XpclCKkzKt6YlJTXHzZwCLSGynfs0O80Shlyla0tHWgSxyv7blMYdXu4Va42fkM5uHGXKZPp+pdXI4rXX9ylpRgHrXjvpP4Sa7bLoFnDEIOmZ3Hmp+/kstpDJQjwpvVOjCuJR62VL9AhUL0bALGp/0Nhno9tGa82W381K9E4GQRoxZ2IGjiYNacSFI2TSU2ciDIbNRMIJJjVgVNcgnk6thKRcURnnWTVGRUsdOo+KeilZNlteN+trs5IolXpfX103Ckl1sXEKYjvqbaiYrM4oIUCCdtJjK4XJ0+yHuR9irBtppEzPolHQze8irYj7SpdFYqo0vGHixzHf2ttIzjvZpEZhHFYdKc09HHNtu743YNzVv5kCpjIk1DEbXscouX3zpV9BTPsd48SwZ5q+cwEDxkChjilYMtv8OQz9LQcAl8u1zHzGFoJmFCal3TqLZImUGpmzsda8Xt+lZFknyhZ9mJATxBw5cuTI8Z6hkpCskjWaiVexnWPZ2E+LgmWBMCrCuPP2o3jxHG/8zBdp/dkvoWZrOO9cp/Kr/z8K//0rlLtGCVsqFDlfqtG1EufSQgTW0EJZgr7QAEDcnM1+rDVY/uAYxGsriI6Lnu+in949ZHDJAnJCH6LYMuW1eqVnSKPnp+hDvD6LfG0VcWWc/UK6EOst6LpxnCljlhBcKleZdZKeyoTkpApi6u43TVTJMOzUXCjulXal7rapeYeVlOql/52aaxyGUJkFpNKmBzHWvdLGNAdtoMRUqSwvz0n6SJtJT136s3m3aPL6+hb5k0pMjYbY70AqkngCc4+GFR9TXnj4cyEx9yq9LmOQY4jQD5r7XGs3aEUhjTCgfMQzcBjWiuXMtEkmGweTr7M3/nQxLhAJITeKWVp6mC70Jz7/eryKNgkp4bDTz3NMX2eo1JElpkXLphMbxbi/L26/z6gmLfVkjPEKJGW9yYaKKy1aUYgjJZqkd02bMuV2OOyOqjIFcbgc15Q7mr7V9NrSz76/THecq+/3G7vc7rQ4UxyfkQrpRolO3IrF2N5YgLcae7zTrA+Mqz+uSAhBUdp8eesW39rbTI5hNnj6SVyYkDFLSGKmizORQiTH6ZWYutIy7qNHZCGGySaQ7CPTKZxkE8hPvieCOM5eP+zQ3IoCdgKPuSFztPcjcoKYI0eOHDneM5QtY1v+IPs1XGklRivqyPO60uITS2fQzz5J+xf/Z/wvfAocG/flN5j5//5bfvSNmzxbqHKuXCG0kwVdaULPy9mmKRldr5qoCWCpUGRRmbLZdCEllDTk8OPrxpRmEkqH9CG2bdgvmbLX/h7G9N+NCQuYSCBuzJl/b1STxOhBFKQpq0sXxaZcrLcIdOWwGtxTs1KXxqOUmnGQiVqYmmUIellog+j99zTOmkG2GO31OPaPf7jMs3+B7WR9pPFIeZ4txXQ9iEM/NuZMcaYqDb8vdeE8DOl9CZXK8vUkpg/vIPS53W2xE3SJtLqnElNLiAEXyTR65DCk/XNCCObdAvOOa8of+8yA0hiTScTAlsK4iU6JVHVNVbSRvk7VMzo6DCkBq4dBppyWpD3gZuwnRE4wvt+v3Vd2XJAWrThM5o5GaQXC9N+2+l6Xxq+I5H4Px1X4iQJqCJE55yS31uENh02vS8U6fDMuddv1lZkvCj22xHQ/8NnwenmvgVImmqMPS4Uis47L1dYBfp+j8XB+ozkvIyR34hhJS0xVYvTUux/DUSTDSO/VWNdcIWlFId0oSnIq40RxVNn3RYpudPLvt4cN7/8ryJEjR44c71sYgmiNhGHfTxSSxVikoHwMV1Rsm+DTH6P1//y/EXzyo6AUT796hY/9+m9z+XvvYhd8Q/Jm/PHvdxScbSGURLy9CNooEnaQGNPM94icfnT/yOHoREEU/WRvswK3aoi3lky8xaWDQbGpGBmS2nYMj9opDfYj3p5BhEm5a2DDZhVu1yDqHcROSsw2kkXxQeAfqbz0K4j3ogkLYUrilO4piGpAowBNL+57GgUxLVmViePqOPQvhoM+g5iUcIy7JkuY8uN0wa4YT5xStTNFybKp2W5yjtGeMaOcHX4X+w1JUldMWwi2/S6+immGAddajbE9kSeFTHopjyrn699QKFk21eRaY2UW6n6i4upDiIEtBJ34aPORFP2qa2os1Y/j9DOiSVxKZXYNu4GXbUSkvYymvHn0XuwHfjZ/bCmZtV3Klp0RHHN9km6fq2tKmI2CaEqQ+zcJUsJoiZ7Dab/bbj/6Nzi01jRC/8iYEynMXlHcV+45rCDGWtGIzAZE+hx5cYQ1Zgwly6ETR+wGHhKBEINmUmESbZEaH03TgygSEpv2mGbltUJwo90YuQdf276bjTPSaqKTryNN+fNB6Gcl7Onxh91Kh91P38/ICWKOHDly5HjPULIdCg+YILqWhdZmYe6cRLksF/G/9Bna/4+/QviRpxCez8yX/5i/8odfY2Xlq+hH9ya+VT+yjy5EiLs1SAxrRKIA6pU22o7Rix1YGONcOoy0XPTaPOKdBQgk4rUV5FvLiL0yuhzApfrgewRQDk3P41YZ+d0ziLeWzO86NuLqPBqdEVT5+gryzWW4NTNwmJJlc7V9gNaag2hyflpy1dkCvB7492SaqTWZSQ2YRXg05Ha57BZZdk2P5aRFej/SxSjaBMePW971L4Z9FQ0oDQIxdv5aQqBUr+erGQRjSaLWDFBcS0jOliqGfGqzKO9HR0WZejUJaeltmJQZam0cHTOyqjX7oX+qyr3sW6AfhuvtxsiGQhrBsB/6/N7mLTqJWdAkXmALmfXrTYNhAjhatjt9P2PBsvrKSFOjmjhzsg1UjEQkbrSjxLMeeMkmlcFqsYwtZUbuJEkfqur1zqWluzLpQYwYNNrxlVHi+rMAexESPWjNgKKeOhAfZRolk4oLnfx7nHlSJ4oyI5v0XvT6KweRbn504wgpyJ7jFEFiNGULQaDj6UpMMc9RnGSHphsMc47LldbBwOZPN4643W1yt2s2uUI1afsm6ZtUioMooCAlvjZGNWkszsA9SPqxPwjICWKOHDly5HjPYCVlZvfmpHg8uFJiJRlz07ppjoOereH9mR+n8/N/kfCJy1TaHj/63e/xP/3WVzl7c3O0dhCMk+gLG2ipjKNpLHolotUA/blb6Oc3phvArI96YR1tx4jrc0b9Q6ALEdqJ0c/sjP8rn5StijsJ6dstQSwQr60a05tH6ujLdbTVW7CJIVObGcdlx/eohz7NMDxSgfDimFYY8EZjlznHPfS1h0EkgdVR4vpo+t4GS8MKlpUZ26Tui4ehV/KoM+I5iEEVz1eDbpfnShUW3NGeTlM2qQl1zPV2g5eSLLhxV3XY8nfYcbMTRYc6mEKvHDdK3F5TBdFLesgcKakHPuVT3JjJVKZDCGI98LndaTHvDt6H1ARly+twEPk0wwAFE5Wj/siTaeANKG6jvYHhhI2BcShZFq0wxJa90lrdZ1QTKENo0miIfsRJeeq4753UnMgSAlcaNXs3yQzsz/0c3ngw41cITBlx2ocXaTXyFSTEIBlOHYiP+v5N1bV0DMN9uWBKZ40SZ0qZzfHjQ8ote5s7w2Q6SDZtHCnx4ylNapINlTTqQmlzvVXboR2F3O60+o4f04pC3m3VgeQZmzBtbSkzwxxXWiZmRmssaUhyv2JeD7wT9Vc/jPhgXEWOHDly5Hjf4mK5xpz74Jr6C9LCTojFUcRmGqjlBbz/y5/mlT//BW4vzzBbb/HZ33+ZL/2Xb7B2a2uUKNYCWO4glDSZhKnJTDEyZajHGdJSF1Lzm0SR1E/voL9wY6IKqSuJ2+quIX0ishBvLiGaBfRc16iHlkZ/bB31UUNmqRcHFlBOsmh6dX+HQMU4YjLRtoRkP/B4tb5DJ4qo2n0EUQNX5xBfuwCNKYijEPhJnw+k+WyT4wnSRfphPXvpQtsSMnEMHXyt1oPqxjBBnIRUFfPjmJf2Nila1oBTborFQmEswUzHP0xw21F0aKB7BpEa8JgFs5MYohSlzazjEiYxAKeF1MjksBLTW50m0SFxCtt+l2YY0I7CibEg0F++O11paCcO+0iQIU9eHGXv9+J4QqHwKEqWyWwcvoa0Ry3M8gpH1et2orKNu++WEARJ1IItJUIIXtnfzshe6q7bv/GQwvRQpiXXhrTESo+UL5sIlR6x7kSm3Hc6l1CRGcYMR92kxxKYebAbGLdkT41XEMEQ7U4cZcfrL+NOFT1byEyRnQqCLMJI0ytRdqXM1EIw5FZpuNNtUw98Mw/E5O+ItATWlZYpLY3CrP+4/zM+CINT+ZvyMOCDcRU5cuTIkeN9iw/NLrJWHA20v19wpYUtTEnXaSqX0fk1/sMXn+OrX3qR/cUZFnYP+PzvfYcf/61vsHp7e4Ao6iVj5CC2y+DZpiypOL0i0g99xuyMCyXRQveiLCYhVRD73Q3Xa+ZYT+72VgZzvonImPOMstgcJHCrxTJvt/bpHhFbMWM7XGsf8EZjl6XCIBES319GvruA6DqIq+NdU/thIWhHJkxca6OmhHpyoHqqTB2mahmnRZEZpQwriEIMmo348XQlbyn2Q59WFFKzxxPgkmVPLLG2hghipBTNKJiK2KWLbtOjadSYVmTcVouWzeVKbWLf1UkwyQAmxUHg82ZjbyxJNuMVtJK8uXZfdMo4mHxNNXVpaDvqERWdKFff3tvky5u36cYRnainCB4FS0iers0PEEQLkbmzpr1v43Ih07k7TlWzEifXdJwrhSI3u01udZqJIpaobfQMiFL4ypjwmDLfnoI4PJctIQfKIo+jwpKZHY3vjW2FARozn9MYC9ODOP67oWTZtJOMQ1MJ0BuXF0dYGKIcTLkhA2TmY9GQK6krJa2+PETTR2xKjde99ohKP3rlaV6nRGtNKzLGQrHulc8rrWmGAc4pbrq8l3hwTR85cuTIkSPHQwApBEXLohOLeyoxHUZJ2iAEGxdW2Di/zNlbWzz73XdY3DngR//HS+wsz/HGC0+wdWYRljqGFG6XIbTAjQ/dsk1zx8aOtxKiaz6iWTDk0D6iB6bPGVXbCpHkKOpZD2ZHQ6X1nIfYKxu1UwDVAIRREdeKZdpReChhKtsO5XGkoGMj7tbQbrJI3S5Dx4by5EWrJSWdMKKozSLV9C5p5DgnDHqqVqQV9oQb7KkISc/5c7iHSCaL/xSBmkxIhyEQ7Preid1CBQwoFK0oxIsjZp1Dciz73p32rmmMIdSiW8zKb+8XxsUfdKKQP9i+QysKD41TSGMejnKdNFELaVD50TEdnb6eQZFkAW75Xe522xyEAb6OqZRdOIZXTT9kUr4b9fW+jSsxNfNo/PNpCUmgVEagLSFBG2JdsZ2kb7o37/o3LTpRhC1Md2C/UcvwXB7OUDT3edpNApGRrmFVHcxGiCskRcvKVOBIawoTiHdRGgVxxnFQelBB7CSEviAtKpZzrGdnQEFMzYCEpBmFmatroGO0FrhSsOt3KSYmQROhjarpOi6tKKKdKNJpJiIYsu0rleWhvt+RK4g5cuTIkeOHDmXLwRIS9xT7RYqJ+Q0AQnD34iq/+2c/y9e/+AL1+RpL23V+7He+zRd/+49Z2dmCWQ8R2AgtjFJ3CPYCjzt9JVLD0OdNmalenfyaDOWwt3BcaZkoDHo5jSNIzXDeWUB+87whcglcaWWB0sfGZqIan2uizxtHTTFkhjMMV0j2/O5gn5c+vMRUaX2oQpAuRi1hFr3DR5KiRxDTxee0igZo0491Qt8KKymxS9GKzGd3VA9ieu40rw3MdSwWTvhZTQkxIftvy++y5XU4Uywfqlr6cUzFtulE4aGdmeYYgqutA251moeOSeskvy8hGRJBIwroRCHnSxUUirJls1SchnSPh5XMkUj38hslowRxODi+H7YUI+XLtjRZmrFSQ28bVPBSM5jMKEipsaWZwyWmjdDHOcZcNj2Io6o6JARRWhSkRaCM4VCsJj8rQggulCrUbBcpBjcWUuVRCsH5cvUYir3OSqr73+FISajjbLPFRIZoCtJiL/CT800+h5NEz9jC9K6nmZSiL8KnE0eEOv7A9CB+MGhujhw5cuTIcQyUbTspMT1FBdGysaUpfctKyITgzqU17lxc5dyNDZ595QpLW/v82O98m+25a/zA+jQbT9bQTx4ea+Ed5TR4roma9Y26dxSspJzVc9Czvonl2C/Bamv862d9Y6qjEgWmUUAfQWingdhM8h/XWuAodGK0w8VGL+NxCCXLphEGOJh+LJmQukkLyH57/mF044ib7SaNMMhKjr0xlvr9ZZ5p/pk8pOdyGKGKT1zKLMVgLEErCsZ6H41DaiQyvFi+v9BJH+cgfBUnxGLySIw/kFm0DxOrcXCl5Ft7m1wu17hQrk18XZiUHBZlz7ioEQYEyvysZNkIIe6p3DYjiMn9tpLjDWcRhkmv4DjYQiIZrGqwhKQbp7mfvfFpbeIy0uvuxrEhVPScPIPkng+Ps19BrB+zJFIlqv2wqh4mpi+V5F5qzPhirQ7dzEgrCwRikPAe0rt4OHoVA/232ZGSMNR4KqJgGaMZrY2hVSMyfYOHnc+VFs2kUkIPbBLpjHSaTY3D5/j7CTlBzJEjR44cP3Qo2w62kKfag1i07GSnekw5oxDcuXyGO5fWOH99g2dfeYfl+g7L/CZ7b8/wVvEx7lxcZaKvf4Jxwdfm+Bjzm2kx46M9G+Y8qIboC4eoMJY2zqv7ReTVBegcXdJ3JDq2McWpBKbkVQCXDhDX5uH1ZZAaPefBo/UB5cS1LBqxT0uHmeX/glucGNeQ2vOPUxA3vDZ/uH0bECwlKmikogmqS8yO3+V79R26cTTBjXQ8unFE8YRlncMmNf0ZekfBlKeajMcHh7SPcxBBXyD6JCwWCiaGQcfJNR/+juVCCVfKI2NM/DgmUho7yQZJlWKY8CydAGl4fUpMUrdRP1G0UlMhP1GuJh3jidrswM8sIegm7qD992PWcXmjscsTtTljmpO406ZOnpFSBPE4BVHiq8go5cIo0oUpvwONv685R8myudlp8tzcEsWk59CLIxaS50Kg2Q/8jCxPc//6n1EvjqfuCR1GqvL3E2pLmOxWP47BMQTUliJTENtHKIhzjkstLZMXZJEj9KnEJuLig4MPhg6aI0eOHDlyHAOlRDk4jtnIUXCkpGTZh6sfQnD7kTP89z//eb7+hRfYX5hhYbfBZ778XX7iP32VS1fuIMaEeDtCZs6r7ShkL5giJ/EQ6Kd30R9fh+qUYeMLXuaWSvseCWIoEa+vmH+vtjMCqB+po4shol5C7JUNGb05WnIq6NntgzHLmaRSpARgnLNmPQiwhORiuZopyuEYNTJd/L9e3+HtZp3lQukQ6/5BWELSjiOK8mT78Ua97I19x/emJpspsT0ql/B0MV5BbMch1hE6ZsmyKdt24g45Lm5kFHJMHt8w0nuQEgCZuICepq5qJbmF/USuv/81xWGmLeOPaxS/4fiVmuPSCgOuNOvEWhH2KXVpYHwwZi5bQiTGKopubIj4tH3Y6fWAIah7gcebDVP58G7rAAs50PPXCP2pCbgUvZ7KQMUD13NcxFlZ9fA87OUWZopraqx0SBUCmHuaPvOpg6uVKKXpBs623/3AlJdCThBz5MiRI8cPIVzLonYPeXyTULPdibl7Wmt2/K5ZZAnBnctr/I+f/gxf+RMfZ3tlnpmDNp/82mv86f/jKzz61g1klC5mIiq2gyWNrXojDGiGUxK7SSjEWW/h1HAU2o6NgngPnEO8toI4KKJnPfTFeu8XlkZ/eAu90kY9uWPKWt9ehNYgIU3NIaYl9+NCvQG2/c6AemIl/YwjBDGJK7jttVkuFCc6jo6DJQSdKDqx9X1q8+/HxgyjEfkUpiSbEkMuJkeA3x+MI6SH5+ENwpHW1PEV08SYGJfanlooMYTfPcXNISvZvPH7yjeFAJXk8qXwjuHIaY4rEwV0UEEE813zdrNOoEwJbU9x05m75vC50tD31Lk10mq6yBTScm2dXJtg0S3yan2b1w92udFustAXVeRK61BDnmGkvatKm55dPx4fBXIUND0FcXiDQSPwkv7LbhwO3Jt46r5eM1pTZi6QmM9Uac1Gt3Os74aHHR+cK8mRI0eOHDmmxFqhfKoZcClmHIfbnfGKRjuOaEQBRcvuWf0Lweb5ZTbPL7O0ucfTr73LmTs7vPjN7/OhV9/l7Wcv8/WLi1xYXOZ2p530wJnIgqP6e04dAqiEhtx59sQ+QXwL8fIaLHfQj+0PrtNiAXsltBuhP7Y+6rg676PnNwHQsUS+u4DeqkC1nr2kZDtsd9pZT9nRGI1eiLVi1/co9i3ojIKox5aYhsrk5i06BdPU2CjArH+kyFWxHNMDeEIy4kiZnVthCMjclBsblpAEcVpi+mD6orQeT8Y7UTg1EUmV8mEHznFI1cD+Mk5zPpNxOOsWCIaMhywhaEVBr2TwFJA64Pb396URK4Olk8frrbOFwMMQOq0H31eybBpRQDMMBhTSNJJh3CaKSPrmOmnZqp6+91IiBtThiu0QacU3dtcRMOCOW5AWXTV9hEaq5KUEMc10PDYSchjr0W0RAXiRGZMXx5mrrS0EQawoOtP/PTD321R17AeecW2NQ5ZPatj1ECJXEHPkyJEjxw8dqo57qLHFiY9ruxNL+lpRwEqhTGeChf/O6gJf+5Of4Hf/zGe4fWmVYtfnoy/9gL/xm3/M8y/9gEXP2OgLISha9sBi9DBseR2a4TH6Ew9DORn7YWWmd6uIVgFxbR7x/aXB37Vc0xs04x8dx7GcZEXuDsYiVJxeftp0GCUtzTDEU/FA72K6UB5W+1IjnLT/iluzyG+f67mwpojFiNpZtm1WD4l1OAqWkCg0XRXRikLUMZQOY7qTEsQHpSKOz0HsHqO0Ms1TnAYSYxoy/Plebx/w1e27xAlRGniPEHTi6FQ3iGSigJlcwZ5SqRKykuK4BNESkkjpsXmFTtJ/uR8OmsGkJZDhhDgWjcljbEfRsfYNao7LvDu4OTHrFDhTKLNWGJzjBcson8OkdhLSsvFYa/ZD76hW7IkwrsYq6UEcnEO2EDSjMOtFTAloQVqZC+x00Flv5YzjcqfT5la3RdxvTvYBwAfnSnLkyJEjR473GGkG1qbXYT/w8PoWdpHWzDiFkYDpYdSXZvnGFz/Gf//zn+fa4+dwYsXqd9/iz/4ff8iPff37LO43KVnWVARRaY2n1JG5ctNCVxKiOcmoRoNYN8RbOzHi7ozJNkzRTBaY0xjqVAOTkVgvQCDBNwt6R1pUbPsYxi96IGMNoBkFYxXYp2pzI5mNUphYhGry2Yp6YsSxM7goFm8uIb9xAQ6mNLDxLfD6rkFhSOYQBEbx6ETRsXTA1OAm1npq59N7RRo70g+TV6gyxWZaTHOtWazD0AW2o4hb3SZXWgfcajcH1KiCtCgmcQynBaMgqqSEsVeGqYcI83CMxTTHjbVR/IY9W9Jrqgf+0Ls0nTjCn+Cea2FcXPcD7xgRF0axHBdpY0s5QoysJA5ikiHPMGRirhNrzWa3M9F06ujjQJTO+eFxCkkrKauN6ZXWFqRNJ55+w0lrkfVAFy2bQMXc7DQ+MO6lKXKCmCNHjhw5cpwSLpZr/PjqBS5XZqnYLju+6fMzRjMWlyq1qbSRbb/LVq3INz/zYf7NT3+K5qc+SuzaPHV9k7/6O9/lT/3ed1m9s40fRWPVhRStKGTWcbPeodvdNvsjC8pjoGKIppikILZcRNtFV31YSTIZ2z3VQbTMv/U0BFEAS12j3H3tIuKrFzNCdbZUndpcY5yCeGQ2YSAzYusIyYztULOT60iugf1i7xieBRsmtkNsTacYipfPIL55HmKB+O4q4vceQfz+ZXPcPmiMAncQ+j1FaLc4SLzHIDW4MarzVEO6Z8ikXK8ffqyS6JfpB1GQFuUp+rnSGJMRhTgKCJXiu/tbXG03WCn0Mg5tKblYrp3qgj6NdugOqWYCwYbX4Vu7G4TKuOkepyw8Lb3sRNHYkkuN5iAMBsi0xuSm+mp8H5+bOHfuBd59KbPvH9u0z6jAlOP6KmIv9E9s6iQSV9FwTJ6pIw1BDJQiUr3PoWzbPFqZOYYyz4BPb9my2fW9E5PahxV5D2KOHDly5MhxSrCE5NHqLI9WZ7nTafHbG9cBU9K4XChyvlTFFdah7oGRUnSiCKU1NdslqpSJvvBRvvORR2m+9AqffGedlbs7/MzdHbZnr/Lyk+dpPX0ZNWaB0owCzhQrtKKUkGlaUciM454sZywtMe0M9cHFAnFlHpJyUH2mBSJRgdoOLKcDSt43TV4joBc7iLs1RGwWb7rpwtLRGXkDxxhT9rjjdw81jhGvrEHTRX/6NqIcsZKWicYiU0+F56A7NihpxpgSg90yPHF4riWB7JHlG7OInb5y1d0Sus9ASCJohSH7gQkip+EiXz6LFhrONdC1wKi2sTB9na65P6YHTk2VKXhakDByviBx9zyOgrhcmC603pRxqpEoj1Zknjcvjlgrlh5Ir64A/LinIBporjTrdOOIZ2cXUUpj2cd77kzXoB6r6FiIMYY+IitjH0eCC5akHnrEWlM6IRGbBudL1akVbynIshP9OM7iMo6LNC4jGlNe60jjKNyNo4GeTWCgF3mac6i+ez7ruFxtN7h0H1oW3kvkBDFHjhw5cuS4D0hNG7TWdOOYD5WqVGyHGdc1zpauxd1uG0fKgQXxQRiwVCxRDzwCFVOxbVPGVSzwrcfWuP70ZX66qdDfeJkze01+4ttv0339BlefvMDVpy7glY0CpZIyq7OlKne9NmFS5rdQKLLjd0/WG1cO0ZYyKlfbhkoECsSrq1mvoLZjONPKyKBou2bJrIFWAS1Vj2gehaUOesZDNBJVreMAx1NABYwsopthODkgPJSIg+R8by+in9/s/S7toUyP/Z2zCN8spbTQ4MQm39G3jFPsJDT7VNWr8+b9Ky3EVrWnUCZwpeQg9KmHPgVLGoMcMIT09uzgMvjVNfRiB8ohcqVBrExZ44MuMd0PPHYDD1dYFC3LBKzfBxkzy/3ru0CVRME40hpbEnk/MUw8QLDldyhIy5jJMF0u4CAE8QTTltQtdKDXT2tCpSfGirjSoh0EKDRzzv0jzsf5vNN+zRudBlqffK4IzAZbKEcNemwhiZTiIPThHuajIyWdvlJwW0qerM2d6FgPM/IS0xw5cuTIkeM+oCAt7KQXB9HrTzxTLNOJjUJoyqoGiURHRZlTZaBi5pLd9IK0sISg7LpYzz7Jf/vTn+JbP/15rpxbpNj1efbVK/zUf/gDPvmVV1jY2seLQsqWw8VKDUtIuokxx0fmFg9VlQ4NVpcmr1BogXhnEQBxZQGxW0ZXA9Snb6F/9KYhR5UhQxvPRkTS9B9OuzazNfpTd1HPbSQ35/j72mkeYD86SbD4WNR76oXYrphyzhQJsdOJAip82ziylgN4pN4rq90dr4CJtxeMw2uj7xzJ4l4/lqiOQwTRkZL90MeLjeqclveqJ3dQH9pGX6yjntswRLpeRL67gHh9BSsp2+vG48sT7wdkktv35a3b/N7GLb6+c5dOHA2Q6tOGEIK4bz77SY7eSaNF7gXxGHJTtR0irTlI+l7HGcccDp2YE41XA704HuhPNCY84cTIBRN1ET94F+RDkCqd11oNFu6B1KfGTJNKTEOluN1p3ZNl07xT4FK5eg9HeH8gVxBz5MiRI0eO+4CiZWFL46pHXznX2VKV7x3s0okNgevEPTXN9CpKHqnMcr3dJNCK2QGCKJlxXIqWzedWzlJcs/lPFcklX/HU27d55J3bXLq6zqWr62wv1PjB0xepnXk0679ZK5aZcwpZmPbwYjZQMdeScqmJZVcXD9C3a4jtCnqvCOtVtNDoF9ah2EfEipFRC9tJbmLjeOWlA8hKW6eIJtBG0cRW6A9vmxzDvr64UCkCHVOZcH2ibhaoeq6LqJcQ6zX0oin5zMpCzx/AD5ZAavSL61BNxrdVRtyeReyU0WdbI+Pi9owpl036MrUdIyILPedBNUQXQ+jappTVMstYR0i8pJfQEb33suBBLcgWu3rOh6tzsFVBBDYytIm1ich4UPYZEkE3jtgPfM6XK2x4Xbb9LvfTRTUtId7xu+wFHsuFUqaWP0hoyNwtU5wrmdLhO902jTDoOeEeE+OeVTBqYD0cDGiXQtCOQhYnEC0hRK/8+yFCeq/uBRXbYdvvjiXq5vc2O373njYshLif2x0PDx6OrYMcOXLkyJHjAwZHWrjCTkKuyVw314plarbLhtdhwS0kFvmKThSy6XV4vDrL2VIFVxqr+DQz0ZWGcNYcJzlOJSs/rVeLvPaJp/kvf/GLvPSZD1Ofr7G81+RzX3+Duf/P/8pnvncd0Wwx5xYpSBtHyLF5dXuBx7xTPLxvzdKZ2iXeWEYENix0B8khmBVoOURElinbTFw/9ZzHsVFOjHi6UxDERgGxXTF9eV1rxFkzUDGxUpNL/VKC+Pi+iVvoN6NJ1b15D/3iOvoTd3rkEGCxa0pstyqDDqXJe9NeSuElZanJfdTnGuY1VUMi+lVER5qeVZ3mKbYdM67hMt1CjH5mN3OIFaGVlNeqB6ogtqOQomU2M7SGXf8En/cxIDAmNbuBx1uN/czd90FdcwZtMhnHm8kkxkgnIMoCMbanDpLNg3jQGVVCojYftsQX91XVfa/gSotYK8IxGZBg+gXTEtMchyNXEHPkyJEjR477hIptsxd42FJmJV+OtHi8OsuO3+WR6ix7iTHDbuDz8YU1nptbwhKCqu3QjiJKSWlqQUqKlkXF6pEkJ7HsD5WiZEFsW1x78gLXnjiPfXOdT1/bYvXGBh/93jU+/Pp16o9uU/jk89hJ+Hu/UU6sjcvijG0xGjM9hLUW+p0FhGfGolfbE25ACK2CITzbFdOnl+QbHguWRhci6Npohel7fHcefbbZI4/rFYh75i8A7FSQq+2BElNjmqLHK0wKaBQMyZszCp1oFtBtB7FehXqx10Mpx/RRWhrONxDX5+HWLPqJvd7vhuIvdCGCiw3USrtHrqsB7FTM/Zo1vZYmOF6BEEZZ9GwoRZnCOAI3OVZgQckshR8UFbCFpB76PFaZNf8tR/s/CSXiygKEEv2RrVMYnMhy/w5Cn93A470gAJZgIpETMFLmPP1xk2fVHl2yCyGo2jaVvmiWkmWj0IcqlWeKJR4+DfF0MGu77Ac+NXt0M8mE23+w3EbvF3KCmCNHjhw5ctwn1GyHO90WZdsZKNm8UK5xs9NkrVhm1nHZ9ju40uKJ2lymBiy4RfYCP7P7dy2LonRGSj9nbJdtv0s98BHChFcjBDdWZlh86gmqssjuH32LlTevsvjuLXj3Fn95psz3HzvL5lOXCIqGUNWDgNVCGSEEzfAIIxgJ+mIDcWXBkL6VQwgiIG7PIELLGKg4J3TVLIWm569jwWYFcW0efBv97DZslZGvrwKJWUwCsV1GrooBRTRQyrhCpgtoBVybg5WOcWNVEr3QNuvnhS40C4jvrhnXUqHRj+8fWn+lLzTgxhzcrsEj+2AnuXiJ8Y22VdKLmdzjPuVVV01kgWg5GcURCUEoWza0HQQCXTnE5GeIIE4qT7wfKNs2T1TnsvOVLYeDKOiRcd9CfOtsb2PhiT1Ddu8BGqMg+nFEO4rY8jq8F+QnVardMQTEEYLohGZBtpB0VURNjFfP14qDpZk1x6XmuGNfm+Jh6T28H6jaDvthkJmEDWO1OJ1D7g87PrgzJEeOHDly5HiPUXEcOlFESdoDodXLhRKfXz7HrFNgqWCI4GqxlJWTgiGIRcuinCiGjpBUbHvEfKLmuIQ6phWHNMNB4lC0LPRsjc3PvcC/+ulPsfUTnyM+t8pMo8OPfPcKf+Z/+30++ZVXWNrcoxOFPDkzT1FaI7EQY3GuYVSwM82JpE9XknLHTWPqoCcRyWmQlFTqlt0rwWw50LURb6yY3wmN0AK92EE7MeyVkLE1RBDjQfpwt4a8uoB4d77nLjpjxq3nu2b8noO2Y/Rnb8Glg8PHWYxhuWNKa/vMaFIFUT9qVMWxpbZpf+aQUc2iW2TeLfQMf8qT+zh1P0HE9OhNLCfUmL7J7y8h3lgyCuU9op+Mli2bZhhkmx7i1kxGtIHe9dwTTA9iN47oxiGeenA9l/0wSt94Mm7KhNWJeGuqIB7f3OYUEIr3XTWmEIKL5epEk54c0yG/ezly5MiRI8d9Qtky/WJp32AKIQRLSbTFnFOkIC0uVWYGXlN1HGYdN9sJF0LwmcUzI+pAzXEJElMOPbSGTIOwS5ZNqVhEP/oInY99hDfe+QGlV97iQze2MlObj86UsV4M2T03f7iTaQpXoT9/8/BF70obvdZEbNRMaeY9EERdNgt/1bZ6RK7tGjUxkugLB4Z0vbWEvnSAWK8i1mu49QrdxUampJlSv2TQ2qibADRdRNGoWalLKfNej3QeQ+3SNR+xVTEEaMEzZZVtF10KTVnpjJ+VkA6gksaIlEwPY6Iuzji9yBBgKgVRJARRYapTx2Kjinx9pTfuagi2QtQL6A/t3LMQZ0uJJZLyag3cTbLizjbhzkxiOtS9t5Ng3ENTt9R2dIhD7X2EJSSdOMASo+qdKyVdFZ+I5GUE8UFe03YJ8e6CKa8+f2B6W3P8UCEniDly5MiRI8d9QkFa2FJmC/xxqDoOS4XSSDj4mWJlpFxt1h0NkC5aFl4cs1J0aUeDxCEliGXLppa4nwKwssTvf+xx3v3Us1y4vs6FN2+wtteEL/8xf8KSXLywxMYzj7CzMn8Iu+BoAiFBf2Qb/UgdtMhC3FNorWlEQebUeij6FcQ0YzGWxhCGRJ1c8NBr7eR1LmIdXN9lJw650WnwSGWWIDaGLwAcFBDNJFfQc9Bpn2CifGJruFRHBzacax49xhRpaW2aAbmdZE7O+uaezU8o4ZXAhQPTw3hjDv3U0MK8PYUTbJ+CqLUw5jbjPijPQry1iEajH98zcSVX5yCSpoz1XBPmjpc5OQ4X00iAnZIpEV7ooBc7iDsziI5zzwKVRBCoGC8xdGqEAeUJ5YX3E4cpfWlUiXOC0k5HGkOp4+cnnhC7JcSra2ZTBG2I/KWDXq9vjh8K5AQxR44cOXLkuE8oWBausKjakwniglvk0crMSP5X0bI5N0XeVknauNKiYjsDBFFrMvVxuVDix5bPZSpEybKN54ljc/2JC3z13Dw/Jas88oMbyNff5pnrWzxzfYtmrcz1x89x4/FzdCv30LtTHa94deKIDa9LUdoTe4Z6xzBkJV4vZuH00Ovty3r6UiREyQptKpbNt3c3WSmU6aokF9CzED8wWY5aKoSSiEbRlD/2OYTqJ/aPc6UGKcFsu6bv7u3kPOcbR75VXzqAm7Omh/Fy3WRKpmi4ZtE+JUG0RJrNN/oy8e68idi4VIdHDqBVQGz0zbeD4qkQRAKJ+PbZLKJEn232MjKniS05AlIwQBA3vA6zzoPPqZNCEExwx3WEcSQuOscnrkVrsK/zvqHlIN5ZgN0yQgvUM9sQWMh3F+D6nFGUc/zQIO9BzJEjR44cOe4TitKmZNtZxMU4lCybTyyunXgBWLRsKradmFWYfMNYKywpM5dSIQTlvv7GfjIWa4UtJZVzZ/D/1I/x8s/9NL/78SfYWZmj1uzwke++w0/973/A53/n25y/to6MTubGOA5eHFOzHZMVOQY3Os3Elh6oROhqgO6M7m3rcgDOkBbVR5Tm3SL10Odmp0k7jLCVhfjWOUMIZzy40EfcKuG9r47KoSGayaJbhBb6wgHMTxH54Cq40DCE9VZf2XEgjblLJcyMb8a/v3fdxjhFjSqICtiqoKVCP5pEbTy6b/os55K+y/oUqm7f2FivjO9X2y0jOq7JpVzoGDOgUmSI7mE9iJqp+t8EAi+OibRx5b1Yrk7MuDwRmu5UvZlFaVG27LEEMc0e7HcNPg6cQyMrTgfi3XnETgVshXpqB8434cKBcfS9WzOfcY4fGuQKYo4cOXLkyHGfULDMorEk79+f25JlM+sUWCuW+X6Sb6i0xhZiYhZaUdqmtFBrvDimkCiQANIt8MZja9Q//DjVgxaXr9zh8rt3WLu7w9rdHQLX4eajZ7j2+HnqizOHl6AeAU/FzDpuEoUwSBbSvqtuHDOb/mqtDVeSPrxZr6cejuvnGzJrKUqL9W6bQCkK7aTcca5rgu63Kz0KVTlEnZsWEpMB2XbRG1VDvB7fO/JtKfSFA7gxC7dn4NHENTU1vJk5QtUbUBBNhl7RHpoHeyWjHi63e2SzEqK/cMOQoT+4bBTEwzIyujbiTg19poV4fRnRKKLkJgxFnojUnOfpHTjT97tiZCI7YjEa2aFBfOM8FCL0xzYOLWW2hKAThURaYUsb9zSftd0i8uWz6BnPjOMQB15bSi5VahN/n0Z/PJTQwH7JuPR+7mZvTjgaFrqIrSq664B7CopyjvcFcoKYI0eOHDly3CcUpGUMYsZkmJ0WyrbNpxbXWHCLWNJkwsVa4wiZ9SAOo2hZOEISakWgYmacAnZCJi0p0InbTWu2yusvPsUbLzzB6t0dLr9zh3O3Nnn8rZs8/tZN6vM1rj9+jpuPnsUvHUNx6oMrrZHeSYBWFDDvFKj3R26stuHKPAB6tdWLjhhHmpyEKIVJH6btsOmZOBEnTHoCZ3xDvvpKNvVh5ZvHQSWAtmt6uVY6h6t+wyjFsNI2C/ONKpxtZQRx7LX2Q2JUn0RBjFXcUxC7FuLuDDQSkj1sGiQw46wm+Y+ebYjcMEELJOI7ZxBdB67NZccX9cJoJmY9IfHD5aqV0PR9du3REmTPNoY8CcFmoWv6I5sF9Ec2zf1JL1cIPBUTa33qfXoiMdURjSJ85wz6k3fuXV2+PmtKecuhUW8nlF8fC4E05PWkl992jMo9543O0zSGxbPgXjhu04VCZBTyUIJ9D+PNcd+RE8QcOXLkyJHjPsGRks8snWFuGhOWe8Bq0RCegrCIlCLWmpJtTwzLLloWjrSIlMZXMZf7+h9tIRHCqIs7gcecU8CRko3zK2ycX8H1Ai5eu8vld24zv9fk+W+/xXMv/YDNs4vcfPQsdy6uEjtHLy+01mg0Vdth2x91smxHMefKRQ7CPsJWCRFzAaruwEoHfcX0Do5V1YYUxJJl0wg75jBB0g+X9veVwqwP8VQUxGSsKfRa69hv1xcaiK0q4uasUemmVRAB3BjRcbGUJOqLXhA35hC3zCpfCw3LnfHvn/NM/uMfnwNLo5/dMkTPVnCxgfjeCqLrmBiTtoO2lDEMagzN81hAy0W7kSGa/SiHsAvslQxx6C8R7utNFG8tgjL5lABcWUR/ZKv3ewRKJ3mPCIgE4uo8dB10zYdH66PXd1BAXJ9Dn2vA0gQX1UiYMlxLGTW4WUA3CvfWl1kvmJJjBDQL0HTRn759b6SzayP+6AKcaZlM0JNgP+kvnh+9F7qQxIb490AZWo6ZS5UA/eQu4pU1WOqgn9syz6cb52TxIUNOEHPkyJEjR477iPkh85n7iZJl04x8Yq2z/MRxMNEDFn4cE2nNXJ87qiMkGgi1IlSKda/DWrGU9U8FRZcrz1zmyjOXmd1tcPnKbS5eW+fMnR3O3Nkhsi3uXFzh5qPn2Dy7iJ5Q5uqpmKJlsVosc609mC2otQahWSmWudMdJFeFT+3T3VUmcmLeQ7dcqI0hdX1KmrlmgUIbR8iEIFKIstdSDaBRHH+sE0BXTOi9duKxC+8jMe+hq74hJgcFaBQMqZtmfK6CDtiRTUS3t/bu9s2Js4fkV855iFuziNCCEMR3zma/U4sdxF4ZXQzRn7oDXRssBd+8YAiiokd4GgWjoKburf3nKIcIQP5gCX1jzpQ2pq9J+ky10KYU1lLGTGe9itiooi8eZGXFlhCopIdVCAGbVcSNOfPfWxXU+caIe674wSLioIjYqqCrPtQCwkUFczGUEmK/XUEoiT7TRCeKKrulkxNEBeL7y4bQPrWD2C4j9srw9iK6HMJaa2ScU+Egucd3q3Cp3lMkY4G4Ooc+3zwynkXsJ0r8uB7Z5BkRvo3eLJuMzkfrxyJ0Yr2G0AJaBfjuGfPvrSq8LM1cenQf/dgJzKBy3DfkBDFHjhw5cuT4gKBs2+yHHkprKkeUtZ4v1XjtwDgTVvsMbKzE8jJUiqJlc7lS4/WDXS6UqiOK5MHiDK8ufojXPvE0K+u7XLx6l/M3NrNsRa/ocuuRM9x49Cz7S7MD/YpeHDNjF8ZGXLTjkIrlcKFU5ZX97SzDEEBWYtA+aNAf3TSEZLiHLUWipOmkz83C5CBaQXJv+hxC9dM76LZ7enb+857pPbx4cDKFSIC+2DCk4q0ls0Cv+pOvtR+pg2vgEDl94e1eko34Y9cPJyMrbdQTu4aMNl3ElQWwFCKyELdns+vD0j1CMuMj9krotgO15Gdp/+HsGOKx3Dblo20X4dloz8pKR0XqePr0DtpWsNg1ZLYcIt5cRlybQz+/CRgX06gvt1MkESjajhGRZZTPlY4Jfd+oQilCHBTRxRCkRrQK0CoQrgNiBrHaNj15O0aV12stQ5LeWTRk5rH60fd/HA4Kpid1rgsXGujFLnyjZIg4JpblRE6hyb0SCHh3Hv3RRF29UzNxKR3XPCeTEAnYT9x758Z8Tn0lpmJzEdF1UIvd6YmyBtarxpRIYMjsjGc2D/aSUu+9Ijw23eEeaqQGWqUI9/ur4Ibwwns7pJMiJ4g5cuTIkSPHBwRl205KTKF6iIIIcKFc5bWDHQRigCDaSVZbpBUly+Jj8ytseB12A4+lwvioCy0lm+eW2Ty3zMs/EnH21haXrt5l9c4OT7x5gyfevEGzVubmY2e5+cgZbpZs6kHAI9UZE6JOkteXEJl6EPDCwjIzjosrJaFS42MwLA2HGUO6MXQwKmIpomzbbHhdhJ9cb3/Z42xg/ndMNMIARyZh8P0oxsb05V6w1kK/s5BlNU4TkwFk/Zd2ZBPZfdl8no2W6lCzFcAQ2suJqrvYNST39gziB0tw10RIjPRCzvimXLRRzAiiqB9iIlSK0Z+8i3h9GdZr0HGhlCitaYnpjA8zfZ/J2Sb6B4uw3zPQkYlzb8YRW272Wm7OGTK40kH8YAmxXjNEBdCXDwxR8y1Eq4DTqRBeqWRRH1oqYxa0aMak3cgQ3lCMOuZOAy+5prlETa2E6A9tm3u2UTVZmYeZAk1ARqbRpmfV24VinKmCbJfBtwbjUlK0HMTLZxCByaccu/mQquwdx6jFmN5MPS1B3OvLv1xtw0bVlAhvlY1Ku1s2ZkVHIR3agyhF1cCdmtkgGTd3x0Fh4ly0QH9kC2djFj3bPvp9DylygpgjR44cOXJ8QFCxHOJklVmyDyeIy8USc06BrooyB1MwBFFiQr/nnSJFy+bF+RV+d/PmVEYgsWNz69Gz3Hr0LIWuz/nrG1y6epfF7TrPvnKFZ1+5ws5chfaTl3Fn1pB9hjmusOjGEY60eLw6R0FauNIi1DGFQ5ngBKQqWUIQZ2wXt2yZBTOMXzQfgkDFHIQBS26xR2ZDH0tIzpXGLKnudTFraVN6d20O/dTuiEPoRLgpQXR4vDJrDIgiYco1y8HxxyXJFsoiSu7dEEHUMx4C41qqzzWNsrtfMoT0kEV2WmpKx8nIWFYKWxoycEnGIfZLWWmxEAKFQghtFvYt17hxnm0hbs5BvWCUnQ2jYgmE6Ss80zTHLMRQ7OJWFeHaHqruGqJUCwaJ9GLXEMz9klEkj4tEvdWFvk2Jsy0zTt826mva51kJRlVnBeLlM8bc5pmdvnLc5F4tdY3qeVCAQifrK8zKTy80RgxoxI05Q95WWuaY45A+I81Cz+xoswJP7U6lZov1hHCfaZnrPZ/c9wtN9IUmfPXCZDdbyBRIcWUBqgH6hcNdbU8FjQLyzWW0G6E/d8uM6/osol405HbcOOtFRFqZ8PoyAP5yE1i8z4O9P8gJYo4cOXLkyPEBgWtZWcTFYuHw3kdLSB6vznKr0xrIZ7OlRApTillOylSXC2VcYRFrRaTgrtemYFmsuKXM/XQc/FKBd5+5xLvPXKLSaHPx2jprV++wVG+z9K034FtvEK8u8fG1GW5dXkPPz7If+Dw9M5+VntZsp5eFeOwbkhrVmDEKIYzS59umP3GKBa7SmrteO1N3bCHxVJwphpa4z/lwFxroC1Mqhwm0G5s1dGD1lNdUpRk2i5kWNd/0BGoxvhcyJYG7ZUMOGwVEJNGLE5SpFImZj2g7aAVoAR3H9G6OU+rmPUN+9k2/qCUEcQyVuwuwjHHjrPqGTNixGcfVeRP+/tgeuhSasslxrrKuguXx/aJ6wRBEsV8yrrTHhDjk/uuVNmKvhHh1FRFaJqQ+JVIp6kXEfslcu6XQT+2ZOdl2jNq53EbslBGNgiHdoYUuGqdYeWURriyint6GC33HTZ1xn96dXHJsabQTm37U9FoiC71TPnrDIhKwafI2GXbMTVE+xM0WYL2KfGPF/Nu3TT9uql5qEN9fQldDuHhwasRRJOXFIrDh+hzaUsh3DNHTe8Wxc0RsV3r/Dmy00Pgrx3tuHybkBDFHjhw5cuT4gKAgLQKlWCgWp3JOfbw2x3JxsGzUFgIryR+s2KZcz5YCKQ1ZirRi3i2w6Ja41WlyttRbGGmtudZuslQoMuO4A8dtz1R447nH+N0n1/hz7hznrq1jv/ku1uYOn9rc4VOvXmVvcYY3zi2y/MJ89r4Zxx3rcjoVhpxMAaOkxdI4cE6BUCkK0uL5uWVmnQLf2d8kSAii7ut96++TfM+RXLcIrF7WfOpCWTyeappBAjXflJBWg1HSV4zRS23ETgV9p5bdc71wxGdXTj6HtoP45nmIpSGh5fHxD3q+i2AesV9EX2wgEdi7FRaunoeryYuqiUo665sSxvWaIYsXDk5WHgo9xbTlHv66SfAPIejLbXhrKSNhol7sKW0JxG659++bc+gFD2Y9Q9aqfm98zUJP9TvTQnccY64TS8Tbi+Z9lTBxmHXQxehoJb0QZXExesGYFImd0mikyTC2ekY/E2NeKiHsYZTQMQQxJWt6pY3YqiBuzaDnErfWhou4O2N6OHdKpi91mh7do7BjvhM12mwu9I9nt4weJogaU8oL6HKA6LjEi22zyfE+xX3e9sqRI0eOHDlyPCi4UmILyYVydSqyUrEdzpaqAz+zhVEQIw0lq+cAKpFJnAA40uLJ2hyKwcVYOw6ZcV2aY3INAZpRwJxTYP7sWYLPf4LO//0v0f6Fv8g7zz/Bfq3Ewm6Dz792jaf/l/+T8r/5jzjf/C4r7WDAhOQ4yBZo/QQxXagXplPSQq2wheTZ2UUuVmosuiW82Bw3LbktWBa+OtlicNvvsuWdoGTxMIwjxveqIEJPJZwQtZE6UYpr8z1FZfEoghiZvsD9EiIxrDE/n5APOGuUTPZLoE0OYlYynI4jybLUiemKtmNDHk5KDpPxaKFNnp+m9//T4rD7X4yNW2otJXljSGhCWtSTuwCId+eh7WRjoxqY8TUKiL2E4Cx00c9tob94A/3oPkJJxPeXzHsaScnoNLEpfWPW55rZ+4+CWDc5kvrM5JiXbCOgPaYkXgP1IhqNfmbbkPzNau/zbieGRGhjeLPZ26wiFsf7fFL4FqJhTIz0o/tm7ix2UB9JjH52S6ZceLdo8hyTsYuug57x0E/uou2Y8ML725U1VxBz5MiRI0eODwhcaVFzHFaLlaNfPAGGDJpuo7T01BISKUChUVpTFJLlQomCtPDiiGJSblkPQy6Wq9zsNAdMZ1K0oojn55d6ZalCoJYX2fyRj/Jfnlzl6a5i6d3bvHC3jr2+hbW+xYvAxdkyW5fPcvfSGlFl6Rg3ZJySdrz+w0gpyradEe55t8DbLXO0UCtsKajZDu0oHDWqmQJ+nPTPnSbGEMSUeOl7IIh6tWUcKSflOs4E6NUWYrNqygGd2Kh5h8HSUIwQ3iBBmKQgYmnjmHpQRN+YRVysZ+pWhvSc55roUBpSc6+B9BKoBIhWAX1jFvnOIurxPXikPvi6WCBeOmNcbJ/c6/3cM2WHE6NFPpyoYn940RCf/riQxEhHl0wppd6oIBpFuD5nfl8JM4VXNIro7bIhU/29n5fr6Ds1RL2EDmTPYXZmjHPpMPqflYWuMexpu4N9g7EpJ2WtZcYSStgrmp7Lw1Tk5HMWHWeUz3mW6ZGs+aYE9lwTcWMOfbsGj9URKak804L1GuJODX22ZZTFb59FP1qHpQ7ipTOmh/esmbfinXlTCu3Epvey37l4N6moWOrCY/UB11p9zTeut988b0p4hUZ/eAuREtXlDix30V+8gYojeP8KiLmCmCNHjhw5cnxQULRsZp3CRLfRaSCEwLUsbCEHnEMdYfobFRpXWpRth5VimVaiFkZKIYBnZxepWA7teEyvFZold3RsVcdFCMHWbIXvPP8YjV/8n2n/zf8r/mc+hr8wy/JBh2dfvcKf/M9f48d+7Xd47lvfZ2lzz8iZhyElSuHJFcRIKyp9jrBVx0EkS9lIKRxhcbZYzVTF48KQw1MuTb1fCuK8j/7iDViYTCr0h7bRj+wbEnG+Md2lVXrkTT2+a4jlIcqjfnQfLU1fmLg5hxUOEfOUIBZi06t3r+QwRdJ3KRJiJq7P9VSkFNtlQ942+pT5WJjy0WJ09P2oBSYnsN2nImakpWPiTx5PlNodsxGUkenE8VUgjEtrf7mlpEfU6kVEqgBOoSCmxjqmL9SYDgktBpROcXUe+cYK4lpSHt52zDbTrHf4Nadj7/RtEDRcxKsrvUiVVAk+3zBq4e0ZQ6BTYna+gS6FiHrJnPfavFFL16vmf5GFuDpvFMVAIq7PI5qFUdWRvpLWpTGq/pK5fyK00DVzD8SVBUiMeJi0cfI+RK4g5siRI0eOHB8QVG2HH1s+NxBbcRI4QmJJQaHPvMaRkjCKUVrjJFmJF8s1bnVMydlBGLBaLHGmWOFCuco7zfrAOEJlSjXn3NHStIpto4FQx5QtG8eyUKtLBKtLeJ97kd/7/ms8fmeXR27vsLhd58k3rvPkG9fxii53L6xw5+IqW2cXUcNRGGOJUuomOaWCqBVVp3cdFctBa9NvGWlFzS6wUCiOlNtOD8HJauEOgaNM2WZgmUN37ey6pyXGJ4atDYF5/BglduUQdhM165EDQ24OIxVLXfQLG4jvnEXslpixzWepL9XRbpzlKZ42dDUwTq1pr2Ak4cZsRtig59opfBsdCdN7l977ach5NTDqVtPtEdJ6GmSfELzFLuqJXcSVBUPUkn5aXfPNbHIj0285PP55z/Ts7Rd7JaIzU/Tipn2rldAQ1BnflBA3kn7HYgQbCdG6NQOX671ezcoR5LwYGWU1JYgNF/GdMz23XPpyNMuRUQR3KuitSq8stRKgzzYR7y4g3lo00SFgciejxKCq66D3Sr3e2MTAR3T7lEsF7JbMeMaonnqljbg+ZyI7XtiA75wxpDQd42llqD4EyAlijhw5cuTI8QFCzTmhiUYfitJETwwTxLTE1BHm56vFMraQBCqmHUd8vLaKFIIL5Ro/aO7TjsIsQqMTh9Rsl5o9Or6K5WALSSeKWKoMKoxFy2bx7Bm+Vilw/fknWUAx9+Ytzt3YYHljj0ffuc2j79wmtC02zi+zfn6F9fPLBEV3fKnlYWYhYxBpTbVvzFXbxbUsQq2ItKbiOMw6LhJBrNUJXE3vg4IoMNceWHC7hnxrufe7e1EQ7xP0TEJsUtOTaW5HWj7p2ViueYM+37i/i/S+clk91zUE6easIUS2Nm65fWYyHBRNz186D6e497qWkNCm2yMuKRHqV0IvH6AXu8bVMyV5K2303Rr60sF4U5hEiWO91nN7PSoTEzICSm2wB1W8O4/4wRJ6sZOVCIvQQm9Us/LPI82gJMbJtO2id0uI15eN8U5C4My4eyqnvtBA7FQQN2ah6xh109GmnPjmrFEFIXNeFb6due+K2zNgqd5x3lkcUi4L5tyTnHdnfdRnbpn4FZkcIyWIaWzKBwQ5QcyRI0eOHDlyDMCxLGwphkpMZa/E1DIkaMEt8mhlhjcae1Rth3OJ4c3Fco1PLazx7f0tGmHIvOvSiSKeqtXGmueUbQdXWuwFXWbsUYXxYrnG6we7KK3xayWuPnOJd5++iOOHnLm9xbkbm6zd2ebC9Q0uXN9AA7src4YsRhUanYUeD0tLLadUEAUMEOWSZVG2bPw4JlKKquWw4BZZLpaoBwEFy+IgDDhXmq4PNIltH9uzOQ2U1sRa4wzHjbixsenfKQ/+fJKb5HuJMy1UMTIRFtMiiV8YCFk/Zq7lsdFPEM81EaXIZCNuVE0sxWYliwExhKRmSE5KdKZRb6sJGWoUTUyEbdQ1LfRoLmQtGIwbcRX6k3cnH7sUod0oy+vTl0ZVxrGY81Efu9srR00JYqLypQ6req2J2Kghbs30SPFRCiIJ0XprCfHymimPPdNEP7kLf3wu61HNsNg1TqGNRFWt9JUTf/o2vL0IXRt94QDx+qr53bkmerMCW2Uzb4SGs030lYUBgnhoeWmK/utZaZue3kDC2pQZpe8T5AQxR44cOXLkyDGAgpQ4wqiIKVyZEETNABl5emaBK60DLlVmspJSIQQfnltivlDkauuAd5p1fBWzUiyPnAuMMc6c47LptQfKOVOsFsssuEXqoU+NXr5jWHC4+dg5bj52DiuKWV7f5eytLc7c3mJpq87SVp2P8DZtq8r6Hy2xfnmJ7daaIWWTTFDG3o8+BVII5pwCG16bGDIDmydr83xl6w6dODJq2DEInyUkcZJfeVxs+106cczlcnXwfOkCvdkj3Hr1wfdI7foeVdsZ2GwYgeDQvsaJKEaIZgHdddCWOp2Ig8NQiA0pDWVCVEKTjXh7xhDGxLWTM024OwPbg5sEUxkEVUK0VKas9A8uo5/bNLl6leDenUMEhoRvVs3xDnEXHcFi3+fjKvP+jgMXD4xxDNqY8jQL5jOxpyeInG+gt8qIvbJxD316x5Qqf/q2GfNAzkRCKH+wNHr8QmyC7AHiHlHXy22Y7yK/t2p+Ptc1pjfFyJSYpmY76WbKUc67KSToj981Bj3TKLHvI+QEMUeOHDly5MgxgIK0KFn2AOGwpYXCKFau6C32V4plPjq3xPlybeQ450rV7H/frW+zUCiOvCbFQqGI27bGOoFaQvLRuWW+vHWLWI1fiMW2xcaFFTYurIDWzO41OXt7izNv77PQ3uHxKy0ev3KdSLzCVvE8d69V2Ti3RLNUwBJiIpnTMEJulgslrrebCNH73blSlaJlUbEdmqGJ5nCOIHxKa5PjJ4QhiIe+ejxCpVh0C9RDn3m37/4mwefCt83i/cevg3zw6mErCvF1zFkrMVTRGg2nkxlZjAwh0cL03d1vCAwBiaRRK90YXfUNIVqvGmfVUmj64e7OmP7AgfFOoXBK0M9uw60ZU774bmL6MmVu51HQay3YqqCf2L2nymb9sXWIpSG0TmzmViE2RjptNysTnYq0i8TF9eqccZxNVe5JavcZo/4dmmdqafO6g6IhxZZGHxwgbs6iVxKFsBxC1zE9um3HfI6l8FibR5QevpLt00BOEHPkyJEjR44cA3ClNWJ0U0gURCHoxVQkeHFh9dDjPVqd5WypksVhjMOsU6Bo2ROjIi5XapwvV9nsdpjlCBMeIThYnOFgcYY352YpvVliZfYNzrZvsnpnl7Pd65z9unnp9kyJ9bNL1C+ssr26gLJ7ZDBOCFy/ggiGFCMM0Ul/V7UdPjq3zFKhyB9s3SFQ8WjZ5xBirZFCZAriJHTjCEfIkfue4kypwluNfeacPtXS7SMjxej+q2tjoLXGliJRns21bvtdPBVzccyGwrHRr8i597m8NEW/uiRAXzxAfH8F8UbS57nWGlC1tB0bdXS7PD3JW2sbQ5mvXDKxCjCdEjcNVjroL12797bXYkyW4/BIr1RVL3UQN+bMfxxnzIUY/czudK91NFxooK/PHlqWrJ/dGfzvJ3eNip6WyqYlu5sVYz6DNnEYp9wS/H5EThBz5MiRI0eOHAMoWNaI26gjrYwgWidQfw4jh2CMaqq2M5EgWkLy4sIqf1i/y0HgMzPG7AZM9AT0kdhqgG8tcrP6NDeeOoetVlmsXmHNeoel21ssN7osN27BW7eILMn22gKbZ5fYOLfMTrWII+WIgrhUKFGxHFpROEAen5szZW8V26YbHa0sGFMbgSWMwc0krHc7VGyb1aREdy/wCJVizingWhYfmV1i1/e43W2zWizhSgvtxr117nukckRaYwlJ2bJphAGzjouv1InmzzjoYtS7xjH9h4GKsyzP+4azLfRWtde/dqZlSjATkxRmffSHt4xKdRwDnUKMrgS9jL1TUhCB+0uA5jy0rYzD62mOeQj68T24eHC8vlPBoOFN2cwfcXUegTC5lsuH9B/+ECEniDly5MiRI0eOATxWnUMPKVpmUW9WlvaxnTqPRtU5nCCC6UX80rmL/Mbbb1MQ1ti+tk3fKDyZSUxqLNJyoeOghMXm6jLXLglazz/Cs8omunKdp7ebrK7vcubODmfu7MC336JVKXJrbYGK56Iun4eiIc2OlCbKo3Uwoi4C1GyXRnj04lglBKpo2XSintoSKZURXC+OqDoOoTIL4btem6rlEqKohz6zboE5t8D/tHaRl/e3eLO5z4VSdVBRO07J3Cki1gpbCh6rzvGd/U2kEFRth04cndiUZwADCuIg+erGETc7LS6Vq0duTtwTBOhnt4yhSjnsqWaVEOoWes6UN54oi3Gh28tDPC0F8X5DAgsd2Kqi7+eYBfduSpQ8FwJhymEv1e95WB8U5AQxR44cOXLkyDEASwgYWrwbUmhI46n0jw1hwS3yueWzR5ZlPjm3wHKhRDsMJxifaAa4rZsYi7TdTI2hHOKpiKVCkdnaPH+gA/Y/UkEoxeJ2ndU7O6zd2WF+94Bn3r0L795FC0F8bpX40jniy+c5P1tiw+6MHcOs43K9fbRphTGmkVQsm2boE6iYTa9LqGMul2eQQtCOIiq2w35gXFPR8OOr53n9YJfv7G3xZM30qJVth2dmFnm7WTfKZB9B1MPulw8IUXJ9z8zMs+61udo64Pm5Za61Dwi1GuhlPRH6CKIeKjHdDXyWCyVCpSjeZxERV6E/e2tQmZvxoF4cm6c3LfRCF3ErCYt/vxBEQD+2b0jxe2CKdCz0bZzoiwf3bgL0AUJOEHPkyJEjR44cR8KSPSOX+6EggulDnAYly+Yg8Ed+bvr4xCC3FUA1QOyX0DtJxmI5ItaakuVQtmwQSdiElOysLrCzusAbH3uS1sEBz+52eGGvg3XtFvbtDezbG/BH3+HDtsW5tUVKjzdRl8+jVpcgIbdluy98O8F+4OOrmLU+J9dYa0q2RdGyiLVm2/d4rDrLzU4z60/sxjGPVGdohgH10GfGcVlwizxeneNau8FSoZcbOe8WmHUKtKKQ2QEF8cGVmPYrg5FSlGybsu3wxZXz1GyHD80ucLvbIlLq3ss/+xXEPjXJj2MsIShZFl78gK596JHQj+0bQ5jZeyiznPfQUr1nPaQnRjU0pjMPO0rGMRZpchRz9JATxBw5cuTIkSPHkbCEQGsjLJ4kjuE0UbbtsaYufhxRsmy6w6Rgxof9EqLTUxDjWFNM3VoxRip3u22WC6VMFWwVbPafuoy3dAa0Rm7vYV2/jX3jDtbNuyzc3oLbW8Afo4sFootniS+fZ25lFvp6CmOtaMchYqj5S6EpSJtS3/Vcrsxwp9tCaZONiNBcKs9wt9vmTrfNjyzOIYXgTKnMxXKNhT7nUikEF8s1XjvYGSSID0hB7EQRt7pNnqzOIRJn1rRkuGI7/NjKeTMcyyJQp2AqU4izKIP+ktrd0OOxyiwCuN5u3Pt5TgJb3xs5BHAU+sV1sD9YEQoPDSToj22ApR7OfND3EDlBzJEjR44cOXIcCVtIhDDlm9YRZaD3G2XLIRpj6uKpmIJl040HCZG+dAB3a8Y0BMBRxJHKXFNdKWlFIaFWdOJe6WqsoZr2rwmBWllErSwSfvKjoBRyfQv7+h2sG3ewbm/gvH0N5+1rPAmcLbnsnllia22Bt+ZLLM7PsjvUlxhrTcGyKEqbUCkKlsW8W8hcTX0VU5AWi4UiK4Uym14ny5K0hORLqxdG7sFaqcyrdT0Y+/CACGLq3JqWj0ZaUbFGHWdrtsuGdwrB4gITPu85GUFMy3CfmpnnTrdNdIg77PsCc6NKeY5TxCEuqD/MyAlijhw5cuTIkeNIWEKgeTgUxKJlj5RwAnhxzHKhTD3wB01QCjH62W3EK2vo+W7fcayMJO76HnNugSDuV7Y0BXvCUklK1Lk1gnNr8NkXIYyw7mxg3bgD125R3timevUul67e5ROAXy5yfbFK+9wK26sLNOaqhiBKC0dKfBUz5xaYcQpIYdTFSGnKtkPRslkulpjpuCy6pfHjSbCUKKC+iCi5kSmfcx4MSYq1pmw5eLFxD420omyPIYiOw63OKalilRDt2Vm56W7gca5UZbVQZj/wUWNnSo4cOQ5DThBz5MiRI0eOHEfCEiYH0ZHWfTGpOQ5cKSEJIY+1zmITlDYh9ne6rdGg+uUO6pN3jOKUwEl6KWccl5udFhecKnejQWVrnEvpWDg28eXzxJfPE3z+4/ynd7/P7N0dPtYMObd9gLu5y1O3PLhlstn8gsOtpRm4eA596SyWJlEPTe5iqBSxVlSkIVjzboEzxQq1MYSrHyXLpmw5BEpRfHH9gWa6RVpRtmz8pHxUY0j4MCq2y2mlFuqnd6Dr0HV8djselhA8PTOPSO7jcFlvjhw5jkZOEHPkyJEjR44cR8ISAinMcvt+mdRMC1daCGHC199p1rlUqVGUFkLAYqGY5Qru+z4WgsVC0qc3O1iul0ZJzDkFypZtyiF1j1BojkEQh8ZnFYuET1xmdu0igbS40zjglddf4+n9Lssbeyzs1Hn8zi7c2YVvvMb/27Zon1nCfWyXM0W4OVMgtmRGsNaKFZZXS1NFQ8y7Lne67ZNFK9wDlDaKZ9PrxQeMM6IxfZ+nhHIE5YgDL+BydYZnagucSSJOxrvc5siR4yjkBDFHjhw5cuTIcSRsIZGILNj9vUS68A9UbMopE9dKW0jm3WLWwxcqRTCxB01kkRo1x2XGcTlXrvJOsw6Q5UCe1GnzI3NLrBTK2ftlocCNtXniRy4QKYWIIuTdLT7b1czf3cW5u8nCrU24tcmfBGIp2J6v0j2zjP1ESHxuDatWmercc26Ra+2jXRm9OMKREuuUCH+MTsqPe/fcHdOvWpTWwGtO5dxasVascK5c7TuPWeb2lxsrrdkNPJbc4r3nMObI8QFFThBz5MiRI0eOHEciUxCFODVCcVIYYifwVUzFdgi1IlAKV0rKlk3BsoiVQqOxpCRUaiRfUWudlZhWbYczxQqLCWlQWmcZhSdVodJ8whSWEMjELXUn6OIrhb06z87KeZRb5MvrN/iSKrC0scf+1WvMbu6xttuE3Sa8fhUANVszWYzn1ojPr6FWFrNojX7UbBd9BAGLlGLD61KyLFb7ojfuBQLjVqox91ejxxJsc0/FYJ/oPUJrMVLOWrAsLCEGyo27cYSnYjb97kDkSI4cOXrICWKOHDly5MiR40hYqYKIeM9NagrSwhaCbhxRcwocBD62UFRtFykEJWmxH0UIBDXboRWFzLu9jEWVZAym5OVcqcpqsUystXHhVAqFxpaSwik5tqYEOyWfjjDnsYUpI50pFikunyN45BLfe3KNtw52qTa7fN6TXNxrYd3ZQG7v4Rw0cb5/BQDt2MRnVwxhPLuKOruCrpQp2/aRvXfbvsdaqcyOd/Ig91EI5t0ijpAESiUlpqP3r2TZ2EPE7Z7PLDQlObisLUgLW0oirXCSoEKlNTO2i69iNrw2Fcuh5rinMoYcOT4oyAlijhw5cuTIkeNI2NIE0DtSvuelea6UWFLSDH3jWoomVDGzyUK/aNl4qo0jLc6WKrzZ2GOeHkFMjW1SVVEKgSssdOIqGuoYrcEVEudew9wTWEKYvMVE2as5Lru+hyMlRcvmS6sXs9cWpEUMHNTK7D9yhtWZBfMLz8e6u2XcUm9vYN3dxL5xF/vG3ey9arbGxdVFXiwJwrUlDpbmiJzB5V6gYjSaD80s8PVgfazCehJoNLOOS9GyacehUWDH3L+iZeFIK4vFuOfzap0Y4gxepyMlRWmZ6ItkGHHSJ/mZpTNcazdY77a51W3xSClfEufIkSJ/GnLkyJEjR44cR8JKSkvf6/5DAEdamUqVEoxA6UwJKlo2XhxTsRwulGt8v7E3UM4Ya4UlxQg5EUJQcxzqgY8AanaB04IUAinAtDYKKrZDI/Qzo5zh69MAmkGCWiwQP3qB+NEk/1Ap5M5+Rhbl+hZyZ5/yQZPPA7x6DQ005qrsLc2ytzTL/tIcb5csLtdmeKI6x5uNPVpRwLxbPJXrLEiLlUKJN5t7zDqFsSWmlpAsFopsex0qR7iyToM0d7E0phy4bNvUg545kUrKXi+Ua1wo1/DjmD/avcte4FO7z8viRhhwEPpcKNdO9bihUkRaUbLeX8v6Hb/LrFM4lU2CHKeL99dMypEjR44cOXK8J7CERIiTm7acNkyZomTOKXCTJkJAJcksLFk2XhxRtV3mnQJ2YlqTlsZGWmMhsx7EfszaBba9LlIIKs69k5cU5v6lCqI2pY22O7Zc1xESgTFUPbScV0rUyiJqZZHwY8+an/kB1sY2b771JvM7dVZ3m8zWW8zWWzxy5Q4AX5CCYHkB+/wNPjlT5JuORqy56GMu1NtRaEp6LRulNSIx/vnY/Ap7SQbhOAIMcLZY4dYURjrTIFVAhxVEgKrlsqN6ZbSx1gN9pQXLYsZx2fLvf2B6IwqwE+X0tJ6jbb+bEETNxT6DnocdrSigFUXmGXZPbyMmx+kgJ4g5cuTIkSNHjqngCPnQ7PaXLRtXWiy4RSSmny1VUIqWyWqccVwKlulDC7XC7utDK1jW2FLZWbdAqBWWFlROUZHpN6kBwVqpjICxqo8lBVr3SnqPhYJLfOkcd0uab7YbrBTLFLo+CzsHLOzUmdmus7RzQHlzFzZ3eRJ4Eoil5GChxv7CDPXFGfYXZjiYr6HsyURmP/ARwvRw9sp2Laq2wxdWzrPjdya+d8EtnlpGY6AUFdsZm89ZdYyJUQqlNe7QxkDJsom1vq+ZkbHWCEzmZisKWXDvnSBqrfHjmBfmV3ilvgWkKmXA2VLloVD7x0FrzX7gs1ws4cfR0W/I8cCRE8QcOXLkyJEjx1RwpfVQKYiulCwUijhSolSckS1HmOiGmuPiSAtXDPehKarWeHWwbNloDbEwvWqnBZnEg+hEQSxJmx9dOTf2tbaQCKHRwyWmx8CcU+DdJKrDLxVYv7DC+oUV7nTbPDezyCetEtbdLfw7/3/27jtOrrre//jr1Knbd7OpEFoCJJHQSQigCFcEVFT0JwoIoheVptd7RVFpCgpWmgooXEGvcEXFgmAFUUD0qggoNdT0bC9TT/n9cWYnO9meZFv2/Xw89iE7c+ac78x8s85nPt/v57OerlfXMLsjUwoiO8vnCAyD7poU7Q01dNRXlf/Xc6PXxSg/n+g1tc0tRWkaYvEt/ScHUefGiZlRi5Lt7VdYDHyqncFbgERzYkug5IfhwGqnpsV4f+3R4xWocWLslarhL+0bd8g586U2L3MSSR7riAKvrO9R58ZYl+1lXiI1aNA82bq9ItVOjJRlk/V2bK9OPwxYl8swy02oD+Z2UIAoIiIio9I/AJhsSdvBNS1qnBgx0yYIt2TjouWGFsnSktO0bdNZ3LIPzQ/Dco+8rTXHk8Qti65iYdACK9vDNk38IAAMLHPoD+6OYRKEUVC5rRVj08Msj22IJwjTNXh1NXTvtQs/XtPA7FiCdG+O2rYu6lq7yv/btzyV1Vse312VpKO+mjVVMTbXpLCbDXoSzpDLdgeTtG3q3DhdxfyAD/IdhTyWYYy6umgxDKge4ti4ZdG/FWYwSOuN8p7PcdTjeSyva2R2IkXYtqWS7vbI+T5VjkuV7ZZ7f3phwNxSRjfjF0nbO75CaxCGBOHQy4dH0u0VWV7XSM7z2ZgbOsu8LeNal+0lZbtkfG9cAsRC4FMI/HF5XacSBYgiIiIyKq5h4RhT41v5uGVR58awDIO0Y+OFQXkPWlS90i63PUjbDi35yn1oW2eR+qRsh11T1TzR0bLDA0THMCmGPhD1WByKbZpRD8ftqKKathzCcGDYs3VvQseMCg/5QKYqSaYqybpdZ5fvj2Xy1LX1BYyd1LZ1UdWdoao7w4J+5y3aFh21aeLz1kf7Ipvq8ZsaIDl0FnFuIjVogNDjR1ml0QaIYQipITLCcdMGY8vrYMCAwMY1zXFdXhqUekLOjadpiMWpdlx6vSJVjrtdgWIu8FjgVm15D8OQMDSocVxaLYcer7CDn0lkcz7q47ktex77+mM2x1KsD3pLS653jM5igcZYAse06OxXmGhH6ijk6S3tb96ZKUAUERGRUXFNc8pkEGscl3mJ6ANqte3iBWF5z5VrWsQti0Qpg5hyHLx+H0RHqvi4W6qaVzLduNaOfa622bck0xh2f5htmOUlqduaQUzaTtQDMAgqAqKtexM6pollGvj9egX2l0/G2JBsYsP8pi2PyRep6egm3NhCY2cvc7tzVLd109TSCf2WqAIE6RRBUz3BrChgDGY1EDTUgm1T68Rgq9xdWCp2M5awwTCMIQP+uGVF7UX6BWJbZzljlkXpbRkXfZm8xlgCyzCZm0jxfE8HSdvhue4OdklWlbPdo9FeyBG3bLwgpKG0xLovg2gY0RcAKduisxgMeOyOKJDjhcE2L8nNBT5xy6YxFqetkMMvvdGdxTxVpT6m28oPA6qdBKZh0l7YcUWHMp5HRzHP3EQKL9zy5U4YhgQwZfd6bg8FiCIiIjIqbqnx+FQwN5Fmbr8A0e8XUTimScKySZQ+CCctp9x/ECAMjWE/JM+OJ2mOJYfMSm0r2zDxSsVKhs0glgrabE8GMWVHRXzygV9+z4LStfs/d9swMYmCi9EqxhxamutZWx0FeHPjKVryWRYFNisDF2tTK+bmNszNrZitHdg9vfDiq+XHh4ZBWFPFHvXVFFwIG+voqknTXZumt9R+pBAMDG4GE2VJh94vGjOt0usetcKAgRnELQFWgDkOUWJ30WPv6rpywaHZ8RRPd7fT6xWpdlzygUc8tHg50838RHrEwkS9vkePV8QoFWKyDLNUqTcoP5+k7eCFla9hIfB5qbeb2fHkkEtyR82gonXMaHUXC8xLVhG37FJP1ZAwDNmYy+LHwqh40TYKwrC8/3hHZiZ7/SLZUjGdgLA8Qzbns2R8n12T6UnvDbujKUAUERGRUZmXTO/wZZc7wtxkmobAL/+eth32rKotBw0x06r42D9Suw7HtDimecEO/9DnlJq2j7S30C4tGXTNbe87aRkm1Y5LdzFPiuh18MIAy6jMApul64wlQNz6Ol4YRhna2ir8hjn4ey3ccoDnYbZ2YG5qxdrcirmpDbO1HbOji3RHFwcDsKZ8eE8yRmd1ik1VcYLGOrpq03TVpCnEBw9osr5PzLKpGSLgiZUCkWIQ4Jb2Gm4dnLumFWVRiyHmMHtDhxOEIR3F/KABjk/A3MSWIjp1pcq7XV6BBjdBVzFPPvDxw5B84I8YIBqlPpr5wKfa7uv9aZHxilBqNZKyKrPmAF4Q0BhL0FHMk7JtrFHuFx1sBI5hlPtPjkUhCJhfWppqGyZhqQJxteOS8TzqtyNuDQDXsrAYPEBsL+1tTVr2mL7o8oKAmGXhhwEGUXXhIAzLe1+7S4V2/DDYYf1EJ5sCRBERERmVHd3ge0dpjCUqfrcMk32q68u/x7YqVBKG4cgfwschI+CU9om5pok1zPX7lphu71LAejc+YO+lZRoDspIx096m/WphGGJbUebKDynv+axg2wTNjQTNjVQ0NCgUKW5q4e/PPU1zd566rl6qO3tIdWdIZ/LM2wA8t658eD7m0FWbprs6RU91iu7qJD3VKdpjBk3JqiFfK8swSFhR78HykLYKAt1yltEfdJntaGR9j425DNW2WxF8ZH2PmGkxK54s31bruqRsh7ZCjqRl01bIUShV4fXD4TOnfXv4dklW0VLIlr8EiZsW3WGBMIyWmLqWNSAX6pXm3q7Jatbnepndb0yFwGdzPkeN44xif12IY9rloHu08n4U/PZd1zIMDKLAyjIMAsMo/fe2vQdB6d+1M0hGPO/75AKfKtthYz7LvMTgVW8H09c70wuibHXfcl6AOjfGiz2dpGyHuGWzNtvL3H6v63SlAFFERER2ajEz6nkYhiG9vkfCtmmehA9xthktdYwb1ggZxGh5aXw7A8Rax61YZuiHwaC9LGOWSVdxbBnEaHkhWJSWzRpR9mbUXAd73mxeDLp5xaAclKzv7uYwI0b7+vXM6c5R15WhqrOXqs4emja207SxvXIcQL4qid1QT1BfQ1BXQ1BfS1BfQ1hTBZZF2nbZmOsFouzb1hlEyzCI2xbduW3vyeeXAjM/DCs+XGd9jwY3XrHn1TJM5iRSFAKfOYkUa7I9FIKAZF8/xhGuYxsmS2oaCNmyrzJuWRTDKDvtGOagmX4/DEg7MfaprufVTDdhGNJSCk4NDOYmUrya6SZlOSN8QRJlnYujXAbcp72YY9dkDTVODOjr8RmWemiapFyH7mKRWjc2pvP2CcKokFaUda8cf8Yv0uDG2a+2kV9vfHXwEwzBMCj1UvUJobxnFwwWJKvww5BlNQ3UODF+tu4Fcv2+jJiuFCCKiIjITi1uRh8avTCks1hgWU3DsEVqxotjRsGUiTlslsQyoqWl21umP2U79P+g7AWD79WLmyNnrrYWfTw2StUzAyAsV5EdLcMwqLKdihYkgW0Qb27mJTdkvWmWngMYQUCyJ0tVV4Z0Zw9hWweNPXlqejJUd2cwujPw0pqK84emSVhbxRHpOGvjNn5tFbGYRSLeAE029GsFkrAc2sMsQ1mb7aEplhgyY+aH0TJELwyIseWYQuBTO8iyw7mJFH4Q0ODGCcOQQhBQ5bp0FYevvhkFU1FRnv6vd9yyKQQ+MTPqDzpYgOiFIUnLYXYiSdpxaS3k8MOQo2bNp9p2qXZcfrL2BTqKBSCkql82tLOYxwtC6t1YuRJuZgw9DIPSMuQ9q2rKt0V9QUsZOtNi91QN/9e+kVq2LUA0jKj1hmkYGEZloJ3xffaqSpGyHQzGun/SwDEscn4x+rdZ+lIEQqptlxPmLCyfK207O6QQ0GRTgCgiIiI7tVhpz1HO9zCAhanqSRmHY1jl5XQjVWt0TXOHBIj9PwxHrUAGnjNuWWPegxiWqoI6pknG8wihHMyNRZXjsrm0DDbaN2ZQ48RI2jZ5f0tGLzRNeqtT0c/sWvLBXHK+h2kYnDx7IdU9Ocz2Tsy2Doy26H+j3ztpauukrwbrgQB/+Gd0vVSSsLaasK6KpUmbpBli1NbQW5Ugm4xHqSOi4M8LQtoKOWbHB1+a6JWCnK1fRz8MqR1kf+RuqRp2SVaVi830LY8c6X3Yso+08n2MAsSApB0tIY7uNyoCIa+UpXRNiz1SNTzUso6D6pvZM11bPs+ymgYebl1PwrLpKOZpjCVoL+QoBAFeGJYzmPVujM35LK35HAHQFBt+711XsUCtE2NOv9fPNkwMoi8YovYyVTzWsZmc7435y4Y+lmGUvnyp/PcVElV8TdsOrmmSL1VTHUlfqxjXNGkvROOyTbM8V13TrAg0a904azLdChBFREREprKoL6LFhlyGRVV1NG21Z3GiRNk2RtUqJGZZg+/pG4OkZWMbZrmYiB+GJAf5UBwfJLAZSVBa3piyHFrzOVzLIr0tAaLtUgyia3cW89Q6Mapsl5Tl0FMs0OsVcczKgKirWGCvqlpsw2RjPkMqniBIJAma6gdeIF9g7Zo1PL/mZebkfOJdPezlWdid3Rid3Zi9GVi7gYXAwn4P802DTDpJbzpBVzrOrgmH9oRLrLaWbDpBLhkj7Pc++mFAwnIGzcQOlrWNAhmLhBWWg2zHtPBHaPDRtx9u6y8YouAywC4F7bFSgSMvDHH6At1+1V4XJNMsSFVV7NUF2KuqlhonxiuZLp7uipbz9nge+9c18VjH5lKAalDrxgmBTClIH0m3V2RFw+yK/Zl9S529Ul/SOjfOoqpanupqZ15iW+a+Ud6/2799Sl912lonRtyySdoOhSAgPooYzitlbGtdl5d6u6hyXFKl4DkkHLCft86JsdrvJD3NI6xpPnwRERGRkSVtm7TtcEBd06SVpO8ryuGMovJj3LRHLKQzEts0sUzKwZ8fhiQGCVYcyxpzD8Cor2C0pK7Xj/aNbcueyZTtYBghQRjS7RU5etbsqAqnHVXh3JzPkrAq94z6hMxPVjE7nixn4IYUcwnmNPG8kaXVcckFAfN2WRTtUwsCjO5erK5uWls3se7lNczOeqR6sqS6M1R19VLV1cvsQU4bGpBNxsmkEmRScTbGLILqNK1xG7u2hkwqQcGJsniDBeV94qZFzLTwzIBax+XVQd6I/r0svTAgPUj7FceMsnF9WTHXssp7XvsK7xhsCcqa40mOnjV/QNVNx7SYl0zTWczjhyHFIMAxTeYn0zzZ2Uo+8KMKubaLF/ikHYec7w+7ZDPre8Qta0Dmvi+Y6yvQA7C4qp5nuju2cZlmWN6D2V/G80jbDtWlvY8NbpxXervI+h6WYQwoctVf3/OvdxP4YUDSiorRFPIZbCMKxPtLOzu2Nc5kUYAoIiIiO72+5W3DfRgcb1a5OunIgV+V427zMrs+fT0O+0r+ByGDBnGOMfbuf0EIJiZpx8UPo71p2xJ4R0teDVoLOebEU+Ugosp2SoFFZeGWvqqgzfEkccse1WsUMy3Cfssjy61DTJOwpoqgrprswgYeqbbLvTUBrGIULJodXaQzeRYUobetjYZckWRPjkQmR7I3asi+yyDXLToWXckY6brVmNVVBOkkYTpFWJUiSKcIq5KQSlLlOBRDnxo36ivZX9b3eKm3m0VVNeXqmYnBAsTS84qXss6OYeL0643Y/7WAaP/ncC0Z4paNUQreXNOi3o3jmhZZ36OqtATYNk1mx1NsyPUOu2SzvZBn7+o60lsttY328xnkg6D82Ho3RsK0KIyxQipQbmFimUbFq5jxPRamasrve70T49lSoLt1r8itRcuybVK2jWNapO1ozuX9gGTptv5SlgPG2LLxU5ECRBEREdnpHVzfvB1933aMaO9hKWM3ggPqmjC2s2n71j0ODSMc9EN3X3aqu1igo1hgQTI94Jit9TUMj1tRi4g6d9sC74RlExJlqvavm1UeS8yKgoSmmEtHYUvhlqzv0RCLj6nIUN++sUIQDJnhiZlWec9hH9+x6aqroj3lUOPEqKlt5FcbXim3SDCCgERvFCTm2juYVwyhs4umnE+yN0uyJ0tDZwY6M0OOLTQM3pJw6Ym7xGprcA0fszpNNhEjm4yzyTFosg2KnofluHhBQGKQ+eOYUeGjpLUlAExY9laFZEb35QRQznoWgqC0b88iYVl0FvPMilskLJtq22XPdC29XpGMN/S+wSAM2SU5cN+vYxqYpoHnhRWBa8K2yXpjrygbVagdWKW2GIQVfTLTjkshCGiOx0csClQMAmqcGHEzWq6dsh1c0456UBrugCx/stRfclv7ik4VChBFRERkp7f1N/2TwTQMzFKT8ZHsqGC2strk4AFC35K8Hq9IOMIeuD59vSSjwMGmahuX1sUtm6TlsHu6ptxAHaKALWZaJG2bjmKufHsxCKixx1blMmXbJC2b9kKe+iGKqcQsa+vkXZlXWprbt8cyKBXoCU2TTFWSTFWStTUumWQVr2a6mVfKQrbns9Rj8cZUI0ZPL0Z3L2ZPL0Z3BqOnF7O7F6Onl1hPhngmD23dvGaI5xAChZhDd8zBrkoTr64mTCUIU0nCVIIa12JuTw81Tgo8D+wo69UXAPX1TxxtVi5u2RhAPvCY50TPp8aJ9uElLIeEZbN3dT1z4inWx3p5Ot8Gg1QfLZaWx9YMUqjHMkxMogI9/ceVtBy6i9vWl9MyzVLm3Ci/T4YRVnyhkLYdUrZDUyxRUUF3MF4YBchxy8I1TVK2i0m0XDs+yF7QpBUVwYn6bk7OUvYdQQGiiIiIyAToq146WAuC8dLXQB0YMkDoy4L4REv0+j5YDycgxDXM0odmZ5sK1ECUqVpW08BeVbWV47Zsqp2oWE3/TGoxDKgeJNgYjmWYLEhW8WqmZ8jXvj4WJ2ZZ9HjFAc8lqv5pkbIdYlZUAXNgBtMgudXSz0IYkk6no+I5gxXQKWnPZfB6MqRyeR596QXmeAHJTIFEJgc9GaoLHrFsnmSuSGO+CF0ZWLup4hyzgff0+z2MuRwbd+h0LMJEnLzrsIdjUL8ui5NOESbipZ9Y+b/pl5mMWxaOadLlFcpVWKvsWGmJaxQYvaa2sfzaDdX5L+d7JC170Aq3fRnuvmq4fVK2XWoj0e+1DHxe6O1iUbp20LnZtwfSLv2YhlExj/tXBE7bLk2xBHuma3mxt6tij+fWvDCkynaImTYJyy7PH7OUod2aY5qkbYf2Qg5nO4tMTabpO3IRERGRaSQqUmNgT2CAGLOi1hphGGJgDFr4Jrotqvxom1EvP3eEQjpBGBXbcU2LpGUPWjhlNEzDYFkp0OgvadnUOjGa4wme7+nYckcYLUEcqzmJFHHLGjJArHJdltY28OeWDQMCRJ+wlBmySNsued+rCA76snMp2y4tvI0Uw7C0r3B4dfEkxJNkfY9XvS66HbccyK/J9jA7nqIln2F2LMnm7k5el2pg19DGyGQxejMYvVn8nl42tLbQ5IWkckWMTJZUZy/RYtiuLRd7es1gQ4ieh+uUg8ZEPM5xYZE2C+bXd+BUVbNb6NGW6WRuwcXMGRCPEcZcajAxhlhSmfU95ierhvzCwS31KO1fWCZlOXilyrZ53y8tN/ZLVVkHn5t9VXUtw8QqBZ1BKSUcQkV7l6Rtc2zzLuXAtBgG2AweIIZA3LaJW1Y5QAyIKpsOtcy5zomzIZvBmdwV7dtFAaKIiIjIBLBKhUS2tzrpWMSs6AOtX8qmDLoHsVy4JfqgPpoCISFRU/K07bAgWTVoK4ftUeW4HDN7ARtzGfqv/TQMxrT/sE9jLEHadod9Xour6vhXRxs9XoG03S9LGVJ+XL0T58VCJzX9nm5f8Zuo72S/scKwFUy35paWR3ql198LAmzDpMGNsyGXAcOg4DiE9bX4yaqKxxYDnwfWvsCBdbPYPR01o3+2bTOPrX2ZXQyHIJPFyhU4PFWHmc1jZHMY5f8t/eRymJ3d0NkNwO6lH17YCMBupR94ruLaewHnmQYFx8ZzHfKuje86FF2bDhMaqqpx0+vAdQgdh9B1yv89t7uDwCuQTPVgBAah40SVQY2QQuCzureTPdM1eEG0T9ELQtxB/vn4YYjZbw+iaRj4YVQd12Rg1r4vo5i07IoqqoOJmzamYTA3kaLacen1i1jGwIxxn6ZYnMdHKH4z1SlAFBEREZkAlmFgmyb2BLbZiJlRFdAoiBliD2KpZ55b2veX8ysLhHQW8xSDoKICbNTYPWqrcGD9rHEZe192qS/k6qvGui0BYtp2aCotIx1K0nZojidZm+2p6GNnGAauFb1udW6MZ3sqs2V+qVdeynIGbGMcy1it0pLdvuWVucAnZlo0xhL9As9w0CxoX8uF/l8+2K5LdypBRyJFZ3VUhdSbv+fwgwgCjFwUOD65fg0b29tZWVVP2gvp6e3hlbYWdjVjVAdEx+ULGPk8QS6PkyuQyBfpH7rOB2DjkJd7Xfm//l7+r4OB5ZaJ51jkLYvQtihaJp5pEtoWhmPjWya+ZZX+16RgGmQMSK3vxXJclnS1gG2DbVEVBlR7CSzHAdMEy4x6WJom87rzbC7mSMV9AtMgMExC0yAwoz2mVuBjlf65HtIQNTwp5Hxs0xwykz03maZqB39hMtF2mgBx8eLFA277yle+wgknnDAJoxERERGpZBmDV1kcT65pEmKUGpybgxbriTKIJnVuDNsw6PEqC4R0eUW2boQRhOGAfnPjwTbM8h7Evp502xIgAuxb0zDi/s8a1+Wl3q2zP2F5WWPaqcwSAuXXNmU7pQqWQXnM8VFUrO0vbtl0lwqn5H2fxliitHS1L0AePANtGEbUfqJfVqv/PBuqPcYApkmYTBAmEwR2wLoqB+bvRdGyyBXy/G3Dy8Qb5+BulcEEaM3nKBTy1AbwSlsrz7VsJO75HFHdRCoAo1iEQhGj6GEUilAs0tLVRS6XZZ4Vw/Y8KBQJ8gWKhQJu0SeRKw4yyOG8BMCRA25/ctCjjxnVOR8CooqzAGnD4HxCTMPEMI0ord33pY9hkDIMPhAGFA2D0E7DgvljfA6Tb6cJEAGuvvpqVq5cWf69unpgSV0RERGRybBlj9TEZRBt08QgxAuj9gjWINnLvqxmYyyBFwQUg+7yfT1ekaRlk/Mry5CEMGRhjx0pukZIGIYUw6Bc3XRbbN2ofTBpyy1nKvuE4ZZCPinLIQypaAzvh1FWL1Z6ff0wGq9rmmPuZRlVW42qtmZ9n8ZSSw8DI6oIOsQyYYCjmuZV7PWz+82zvkI7YxG3LKpst5x1jVs2Ccsa8voNsTiUqsQurqkhqK/lhd5O7DkL8YbImj/dupFnetp454JF5fO25LPcvXY1FgbVlo1fKOIVCzRaLrl8nibLwfIDTN/H8gIsP6BYKIDncWhNI4Yf8HTrJkLPw/J8XAx2T6Sj7KgfQFD68QN6C3k6c1kShokZhBhBgO/52GGIHULg+6QsCwsjmgil977ge7ilqsTR/svoPoIAIwxxwjCKGQtjDXCnhp0qQKyurqapqWmyhyEiIiIygGWYE55BjLJ8Bl4QUucOnUGqclxqnBg538PvFx91FgvskqzilUxXRVXIKIM4/sV2osqvJgEhxcCnxomNWGF1eyRKDeL7+GFQUXm2rydgsV+xFD/s6xUYLdX1gpCAKMM61mA2adv4YUCPV8Q2DeYnq4hbNq5pkgs8LNMcspfh1q9L/3nmheGY94k2ugkW9asuG7Ms5ierqLJHV0V2n5p6FlXXDvqlRP9zWpgV2ehoabFJMfBxbYe2wMezXArxFG2ugRtPDThPV7GAaRgcuGAvAJ5Z/yKdhTx+GDInkWJe8y6DXv/V3i5+u/GVcmsSgBd7u0hZNrPiSdZke3jrvD2j4LekEPjcs+5FDqmfzbwheoYWg4CXM10ctnA+tPUO/0JNQdO4vs5Al1xyCYcddhjveMc7+PGPfzzZwxEREREp69uDONwH5h0tChKiDGJqmCWG+1TXMzuejPrflYYXlKpz7lVVi2NE1U37BKUiNePNKfW088OQQjD2FhdjFbesqCppKYvoh9HzdEtZtL6ej5l+jdy9MCRuRQ3SHSOqGlsMgqhn3hjf66Rpk/F8Oop5DqpvpjmeJG5GWbvOYoG4aY36C4a+rGcYRgHrWLOZtW6Mvasr23McUDeL5BiqyI7Uz9MxTZJ2ZVDuljLaXhD1NYzmnVEKvgc/z9a9FGOmhR+GFINg2BYsScuuWDAc9vW4LJ3TKF23P7sU+LvDZGQd02RRdV3F85pOdpoM4kc+8hFWrFiB67r88Y9/5OKLLyaTyfCe97xn5AcPwZzAJSAj6RvLVBqT7Bw0t2Q8aF7JeJju88ohKiLiWNaEPQfXjvbw+YRUue6Q1929Kqp82ekVSluqDLJekSrHZUGqCteKiqfE+u21ci1z3J+Ha1vYZvSB3SNqG7Gjr9l/XqUcB8ey8AGntFzUMU3idl9TdIP5qSr+2dmCYURZpYAoO2eaBgnbIuN5eGFAteuMeax7VNeSdl0Mw2Bhqrp8zSrXpcsrcHBDM5Y1ugDRtaLXLiB6P2MTOO9Gy7FM0k7lvIwbNo5p4Vo+1Y7Lhlx0n2tZmCaDBl2hQcV8jFlWFOQBVc7QcybpONiGWf4iwCsFmn1Bo2UY2FvNcxODw5rmUO/Gh/0CYDr/vZrSAeJ1113H9ddfP+wxv//975k9ezYf+tCHyrftu+++ZLNZvv3tb29zgGjbJg0Ng6eNJ1Nd3cC0usiOoLkl40HzSsbDdJ1XXhBQ052gqT5NQyI5MdfMGMTbXCCkub6KhvrhP9t4CZN4u0My5dKZKbK4tp7ZTdU0dabpLRZJxaO+fgny1Nemxv2zkh8GpDbHiNs2CdNnTkM1DXXjc826uhRVQYKatjiObZNyHLwCxHGZ1bhl/+KeVgPP5jqJpxzW9fZStGB2fZqGhjRN3SnWZXoJfIN59TVjfn0agIXUD7h913wtu9bXcuDcuaPOSiW8IqnWGPGYS8Io0liXpqF2an22nesGBLGBn7kb25NYeYuFTbW8UuwhBObUVbHRz5JKD+wt2Zv1qUsly+dpyKdZ62exgiCa90PMmZTnUdUaI+Y6xG2b3mKRWidO1veIJ1ySlk9TQ5r0VpnrBkb/Ok7Hv1dTOkA87bTTePOb3zzsMUPtOdxvv/34xje+ged52NvQUNXzArq6smN+3HgxTYO6uhTt7b0EweDNSEW2heaWjAfNKxkPO8O8mm8m8Xs8WjM9E3K97kKOXK5IEIbkugu0hsNfN1ssUMz7dIY5uvN50imL1tYerEJIV2+WmBcFJ7lskZ6uHK2M//Mo5Ir4eOSKRfI9BVqDHXvNreeVWQjpyGbBDegu5Kh2XFpbt1zTLPgUch4v5Tupc2PMjydx8watrT0EOZ/unhw+IUHWq3jc9ljsVGMZBm1j2M9WDKJxdhdz5ApFMt05Wv2JmXejlcZkb7dm4OuUDwgKHmY2IJMtYBomYdYnlyvSa+QHnKc3l6dArHyefG+B3kx0XK4nP+ScCcKQYs6jsxDi2w6dxXyUPS8W6fXz5L0iHe0Z8lZh0McPZyr+vaquTuA4I++LndIBYm1tLbW1tdv02Keeeoq6urptCg77TJU3s78gCKfkuGT609yS8aB5JeNhOs+r3VPRUs6JGr8VGpiUWkQYxojXdY2oEmfe9yCEWidGEIRUWQ6FICjvzQvDqBH8RDwPxzApBD4BITHDGrdr9s2rKsels5gvVav0ScadimtWWS5p26Eln+XIprns1u89nRVL8s+gDdOIXssdNVYbE0IGVFgdjhkaGGGUuQ7CEIuR3/+pImHapCwX14iWe1pEfSaDfvtD+/PDANswy8/PNsxS1VdzxDkTMy0KgU8Y2hT9INpjGYaldiVghNs3z6fj36spHSCO1u9+9ztaW1tZvnw5ruvy0EMPceONN/KBD3xgsocmIiIiMmn6iuLYpkHMHPljn2Oa1NoxXsl20eAmqHOj5XxJ2yHcqv/fRBXbcU0rquq5DVVBt0W141AMomoohSBgTqJyiaBpGMyJJ3EMkwWJyn6ATbEEjmlSCALiEzDW4Rillhh+qbjQRFSd3VH6Kq7GTAun1BombTsYGBXVdPsEYbQHsY9tGGQ9j32q66lz4wwnZW0pOlQMA+zS6xSEYDKxRaWmip0iQLRtm+9973tceeWVAOyyyy5cdNFFvOMd75jkkYmIiIhMHsc0o96LRljuZzeSo2bN48nOOLZplKtQDmxOH2JNUDF817TI+z5x2x5z4/lt0dcLsRgEWKbJrFhiwDGLqurYMz2wkmuNE6MhFmdzLjvmqqHjIap+GgXXQ7XHmIp2SVbhhwGxUqEd17BIWja2EVU1dbcKdoOQittsw6QhFmd5XdOIAV7StvFyURDthQGOGRUGCggxiIrSzDSTP3N3gCOPPJIjjzxysochIiIiMqVEwWGUSRxt9q3KcVnROKfitni/yo7lc09QdcaYaZIPfGrNGM4EZOVStoNhGLQVcjS4cWqdgUVRZsWHLjK0W7Ka7mJxQoLZkcQsk2I+wDbNctuL6aCv72BY6reZsKLKppYZVZbdmmFUBus1boz9aptoHuZ96pO0nXILF4MtrTnCMMQyzGnbqmJ7TJ+ZIiIiIiJj5poWcdPargAhbtnlfoSRgf3hxotrWeQDf9h+djvS3ESKxVV1dHtFFqaqxxwgzE6kaHDjE7IcdiTR/rog6tE4jQLEPoZhkLBsknY0fx3DLC+Z3Vr/ZadNsQSvqW0c1TUSFb0QDVKl+iUhYE/DFhU7wk6RQRQRERGRwY12aelw4lb0Ab0Y+FiWXc6uTATXtAjCcMICRNMwOKh+FgEhC5JjbwvRGEvw+uYFUyLzFLMsiqGPbZgT9n7taGnbJmFF733Cssl4xUGOMnC28fm5poWBQRiGhISkbAcICcIQe5q+ZttLAaKIiIjITqyv0Mf2niNmWhSDgJgZYhgTW6TGNAzStjvywTtI3LI5smneNj9+672Jk6UvgzgVlrtuq5Ttlgv+JCybruLANhcwsHDNaPXtzfRLAWHKcgCDkFAZRBERERHZ+cRMa5AiM2NjGAbVjktbIUcIGBhYE1S8wy5V40xsR+uymapvz+Z0DhD3TNeWv4xIWnZ5mXPGK+KUlk6HsM1FeGKmRUgYVTA1zajNBVHhm5maQZyZz1pERERkhqh2XKqc7c++VdkuxVJPPdOYuD2Ife0tpsKevunGMUxMDOKjaHEyVTXE4tT2a7fSV1BmUz5LWyGHH0Z7LFPWti1Bdk0LE4OM51Ftu8RMm5CQAC0xFREREZGd0LKa0RXrGEmNG8MLAwJCTAzMCfrwbJtmVGhnGmfBJottmpimsd0Z5KkiYVlQylw7pkUxDMj7Aa5plnsnjpVrWtiGSZdXYJ+aeizDKBdkmqkB4sx81iIiIiIzhGEYO6RgSrz04bwQRB/Id0Txm9GwDIO4ZU3rLNhksY1oKfDOEly7pSxyWFpmagD5wKfKdre5SmvMMst7RhvdRBQgGgZ+GEzLyq87wsx81iIiIiIyJn1ZqJzv0RhLTNgSU6e0xHRnCXImUl/2dWcJdPq+lCiGQSm7Z5DzPercgb0qR8syzCgDadnUuzEsw8CY4RlEfRUjIiIiIiNKlgNEn6ZYYsKu65gWccsuZ49k9JxS/0NnJ3nt+grKeEGU3bMw6CjkqXPj23XepG3jmCZpxyXne5gG+KWiNTPRzHzWIiIiIjImcSv6EF0MA2q2I2MzVvVujCOb5m5zG4OZLMqObX+bk6kiVtovmA98YqZFVWnfYWo7K9ymLJd5iajnpWWYGIaBH7LTZF7HShlEERERERlRvK8XohlQvQOqoo6WYRjbXIBkprNNA9c0t7kFxFQTsyxs0yDr+9S5cdK2w6ZcdpsrmPZZVFVbXsLcV6QmCMMZm0lTgCgiIiIiIzIMgyrbwQ9Dqiawab1sO6e0v25nWSrpGGZUcdQvkLIdGmIJEnYXqe38AmFOIlX+774WLkEYYu0kmdexUoAoIiIiIqNS7bgYhjFjl95NN45plVqE7Bwf+Q3DIGk5rAt6SdkOaduhxo7t8DYetmlOaK/PqWbnmC0iIiIiMu5qndh2Z2tk4jimyetmLZiwliQTIWXbGERVdZvjSQ6on7XD96c6holhMGP3vSpAFBEREZFR2aemnlILOpkmdqbgECBlOzil/bCuaZWLy+xIthntQ1SAKCIiIiIyDMswo+7kIpMkZTnYpd6Y48U2ZvYSUy0gFxERERGRacG1LOKWNa6ZUce0MFCAKCIiIiIiMqXFTIuEZY9rBtExjBm9B1EBooiIiIiITAtxM8oejmcG0TZNTIwZ2+ZiZj5rERERERGZdqocl+ZYEnc8M4hmqYrpDN1wqwBRRERERESmhZTtsKJxzrhewzGsUgZRAaKIiIiIiMiMZhnR8lIFiCIiIiIiIjOcZRhYpjKIIiIiIiIiM15f9lBVTEVERERERGY4yzCwtAdRRERERERETMOIWl2ozYWIiIiIiMjMZhkGtqEMooiIiIiIyIxnGQbOOPZZnOoUIIqIiIiIiJQkLYd6Nz7Zw5g0ChBFRERERERKat0YhzbMnuxhTBoFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkZJpESB+7nOf421vextLly7lbW9726DHPProo7z1rW9l6dKlHHvssdx9990TO0gREREREZFpbloEiABvf/vbOf744we979VXX+Xss8/m0EMP5Sc/+Qnvfe97ueiii3j44YcneJQiIiIiIiLTlz3ZAxiNT3/60wC0tbXx/PPPD7j/jjvuYMGCBXziE58AYI899uCvf/0r3/nOd1i5cuWEjlVERERERGS6mhYB4kgee+wxDj/88IrbVq1axdVXX71d5zVNY7sevyP1jWUqjUl2DppbMh40r2Q8aF7JeNC8kvEwnefVThEgtrS00NDQUHFbY2MjHR0dFItFHMcZ8zlt26ShIb2jhrjD1NWlJnsIspPS3JLxoHkl40HzSsaD5pWMh+k4ryYtQLzuuuu4/vrrhz3m97//PbNnzx7V+QyjMjoPw3CbxwbgeQFdXdntOseOZJoGdXUp2tt7CYLte24i/WluyXjQvJLxoHkl40HzSsbDVJxX1dUJHMca8bhJCxBPO+003vzmNw97TFNT06jO1djYSEtLS8Vtra2t1NbWblP2sM9UeTP7C4JwSo5Lpj/NLRkPmlcyHjSvZDxoXsl4mI7zatICxNraWmpra3fIuZYvX86DDz5YcdvDDz/M8uXLd8j5RUREREREZoJp0ebi5Zdf5qmnnmLz5s3k83meeuopnnrqqfL973rXu3jllVe4+uqrWb16Nd/73ve47777eO973zuJoxYREREREZlepkWRmk9/+tP8+c9/Lv9+0kknAfDMM88AsGDBAm688Ua+8IUvcNtttzF79mw+97nPqcWFiIiIiIjIGEyLAPH2228f8ZjDDjuMu+++e/wHIyIiIiIispOaFktMRUREREREZPwpQBQRERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlBhhGIaTPYipKAhCfD+Y7GFUcByLYtGf7GHITkhzS8aD5pWMB80rGQ+aVzIeptq8siwT0zRGPE4BooiIiIiIiABaYioiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgCgiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgDilfO973+Poo49m2bJlvPOd7+Txxx8f9vh7772X4447jmXLlvGmN72JBx98cIJGKtPNWObWc889x3nnncfRRx/N4sWL+e53vzuBI5XpZCzz6n//939597vfzcEHH8whhxzC+973Pp544okJHK1MF2OZV7/5zW94+9vfzkEHHcTy5ct5y1vewt133z1xg5VpY6yfsfrcdNNNLF68mKuuumqcRyjT0Vjm1Y9+9CMWL15c8bNs2bIJHO3oKUCcIn7xi1/w+c9/nnPOOYcf//jHLF68mPe///20tbUNevzf//53Pvaxj3HyySdz9913c8wxx/DhD3+Y1atXT/DIZaob69zKZrPMnz+fj33sYzQ1NU3waGW6GOu8evTRRznhhBO47bbb+P73v09zczPve9/72LRp0wSPXKaysc6rmpoazj77bO68805++tOfcvLJJ3PRRRfx8MMPT/DIZSob67zq889//pM77riDxYsXT9BIZTrZlnlVW1vLH//4x/LP/fffP4EjHoNQpoSTTz45vPzyy8u/+74frlq1KvzWt7416PEXXHBBePbZZ1fc9o53vCO87LLLxnWcMv2MdW7197rXvS68/fbbx3N4Mk1tz7wKwzD0PC/cf//9w5/+9KfjNUSZhrZ3XoVhGJ500knhddddNx7Dk2lqW+ZVJpMJ3/jGN4YPPvhgeOqpp4Zf+MIXJmKoMo2MdV798Ic/DA855JCJGt52UQZxCigUCvzzn//k8MMPL99mmiYrV67kscceG/Qxjz32WMXxAKtWrRryeJmZtmVuiYxkR8yrbDaL53nU1NSM0yhlutneeRWGIY888ggvvvgiBx544DiOVKaTbZ1XX/jCFzj00EM54ogjJmCUMt1s67zq6enhta99LUcddRQf/vCHef755ydgtGNnT/YABNrb2/F9n8bGxorbGxoaePnllwd9TEtLCw0NDQOO37x587iNU6afbZlbIiPZEfPqy1/+MnPmzOGwww4bjyHKNLSt86q7u5sjjzySQqGAaZpcdtllrFixYryHK9PEtsyr+++/nz/96U/azypD2pZ5tfvuu/P5z3+eRYsW0dXVxS233MIpp5zCz3/+c5qbmydi2KOmAHEKC8MQwzCGvH+w+4Y7XqTPSHNLZFuMdl7dfPPN/OIXv+D222/Hdd0JGJlMZyPNq1Qqxd13300mk+GRRx7hyiuvZJddduGggw6awFHKdDPUvGpra+Mzn/kMN9xwA4lEYhJGJtPZcH+vli9fzvLly8u/77///hx//PH84Ac/4Nxzz52gEY6OAsQpoK6uDsuyaGlpqbi9ra1twDcTfRobGwcc39raOuTxMjNty9wSGcn2zKtvf/vb3Hjjjdx6660sWrRoPIcp08y2zivTNNl1110B2GeffVi9ejU33XSTAkQBxj6vnnvuOTZv3swpp5xSvs33ff7yl7/w3e9+V9WXBdgxn68cx2GfffaZkiu6tAdxCnBdlyVLllRUXQuCgEceeaTim4b+li9fzkMPPVRx28MPPzzk8TIzbcvcEhnJts6rb33rW3z961/nW9/61pQt7S2TZ0f9vQrDkEKhMA4jlOlorPNq2bJl/OxnP+Puu+8u/yxdupS3vvWt/OhHP5rAkctUtiP+Xvm+z3PPPTclK8YrgzhFnHnmmXz84x9nyZIlvOY1r+E73/kOuVyOt771rQB8/OMfp7m5mY997GMAnH766Zx66qnccsstHHXUUfziF7/gySef5IorrpjMpyFT0FjnVqFQKLdLKRQKbNy4kaeeeoqamhrmzp07ac9Dppaxzqubb76Za665hi9/+cvMmzevvF86mUySSqUm7XnI1DLWeXXTTTex7777suuuu1IoFPjDH/7AT37yEy6//PLJfBoyxYxlXiWTyQGrG5LJJLW1tey1116TMXyZosb69+r6669n+fLl7LrrrnR1dfHtb3+bdevWcfLJJ0/m0xiUAsQp4vjjj6etrY1rr72WzZs3s88++/Ctb32L+vp6ANavX49pbkn4HnDAAXz5y1/ma1/7Gl/5yldYuHAhN9xwA3vsscdkPQWZosY6tzZt2sRJJ51U/v2mm27ipptu4q1vfStf+MIXJnr4MkWNdV59//vfp1gscv7551ec59xzz+W8886b0LHL1DXWeZXL5bj88svZsGED8Xic3XffnS9+8Yscf/zxk/UUZAoa67wSGY2xzquuri4+85nPsHnzZmpqali6dCl33nknu++++2Q9hSEZYRiGkz0IERERERERmXz6ukREREREREQABYgiIiIiIiJSogBRREREREREAAWIIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiAFFEREREREQAsCd7ACIiIhPluuuu4/rrrx9w+4oVK/jv//7viR+QiIjIFKMAUUREZpSqqiq+9a1vDbhNREREFCCKiMgMY1kWy5cvH/G4XC5HPB4f/wGJiIhMIdqDKCIiM96aNWtYvHgxP/3pT/n4xz/OQQcdxAc/+EEAOjo6uPjii1m5ciXLli3jXe96F//4xz8qHt/V1cXHPvYxli9fzqpVq/jGN77BVVddxdFHH10+5rrrruPQQw8dcO3Fixfz3e9+t+K2H/zgB5xwwgksXbqU173uddx8880V93/iE5/gbW97Gw899BBvetObWL58OaeccgrPPfdcxXG+73PjjTfyhje8gaVLl3LkkUfyiU98AoDvfe977L///vT29lY85k9/+hOLFy/m6aefHuOrKCIiOwNlEEVEZMbxPK/i9zAMAbj66qs59thjueaaazBNk0KhwJlnnklXVxcf//jHqa+v5/vf/z5nnHEGv/rVr2hqagLgk5/8JH/+85+56KKLaGxs5JZbbuGVV17Btsf+f7Pf+ta3+OpXv8r73/9+DjnkEP75z39yzTXXkEgkOPXUU8vHrV+/nquvvpoPfehDxGIxrr76aj7ykY/w85//HMMwALj44ov5yU9+wllnncUhhxxCZ2cn9913HwBvetObuOqqq/jlL3/J2972tvJ5f/zjH7NkyRL23nvvMY9dRESmPwWIIiIyo3R0dLBkyZKK2z73uc8BsN9++3HJJZeUb//BD37Ac889x89//nMWLlwIwMqVKznuuOO45ZZbuPDCC3nuuef4zW9+w1e/+lWOP/54AA499FBe97rXkU6nxzS2np4ebrjhBj70oQ9x7rnnAnD44YeTzWb5xje+wSmnnIJlWQB0dnby/e9/vzyuMAw555xzeOGFF9hjjz1YvXo1d911F5/61Kc4/fTTy9foG2N1dTX/9m//xo9+9KNygNjb28uvfvUrPvaxj41p3CIisvNQgCgiIjNKVVUVt956a8VtrusC8NrXvrbi9kceeYQlS5Ywf/78iqzjwQcfzJNPPgnAE088AVCxnDSVSrFy5Uoef/zxMY3t73//O5lMhuOOO67ieocddhhf//rX2bBhA/PmzQNg3rx55eAQYI899gBg48aN7LHHHjz66KMAFdnBrZ188smcccYZvPrqqyxYsIB7770Xz/M48cQTxzRuERHZeShAFBGRGcWyLJYtW1Zx25o1awBoaGiouL29vZ3HHntsQMYRYJdddgGgpaWFVCo1oKDN1ucajfb2dgBOOOGEQe9fv359OUDcuvKq4zgA5PN5IMqUJpPJYbOYhx56KAsWLOBHP/oRF1xwAT/60Y94/etfT21t7ZjHLiIiOwcFiCIiIiV9e/f61NTUsHTpUi699NIBx/ZlHRsbG+nt7R1Q9bS1tbXi+FgsRrFYrLits7NzwPUAbrzxxkEDzN12223Uz6W2tpZMJkNPT8+QQaJhGLz97W/nf//3f3nLW97CX//61wEFcUREZGZRgCgiIjKEFStW8NBDDzF37twhM4J92cjf/e535f19vb29PPzwwxWBWXNzM729vWzcuJHm5mYAHnrooYpz7b///sTjcTZt2jRguetYHXbYYQDcfffdFcVttvbWt76Va6+9losuuojm5mYOP/zw7bquiIhMbwoQRUREhnDSSSdxxx13cNppp/G+972PBQsW0NHRweOPP05TUxNnnHEGe+21F0cffTSXXnopPT09NDU18e1vf3vAktMjjjiCeDzORRddxJlnnsmaNWu44447Ko6prq7m3HPP5YorrmDt2rUcfPDBBEHASy+9xKOPPsoNN9ww6rHvvvvu/L//9//4whe+QGtrKwcffDBdXV388pe/5Ktf/Wr5uObmZo444ggeeOABzj777HIRHBERmZkUIIqIiAwhFotx2223cc0113DdddfR2tpKfX09r3nNayqK0nzhC1/g0ksv5corrySZTPLud7+bZcuW8ctf/rJ8TH19Pddeey1XX30155xzDkuWLOHLX/5yOevY5wMf+ACzZs3iO9/5DrfeeiuxWIyFCxcOOG40LrnkEubOncsPfvADbr75Zurr6wfNEB5zzDE88MADwxa0ERGRmcEI+5o/iYiIyA7T12Pwd7/73WQPZUQXXHABmzdv5n/+538meygiIjLJlEEUERGZoZ555hmefPJJfv3rX/OVr3xlsocjIiJTgAJEERGRGepDH/oQ7e3tvPvd7+a4446b7OGIiMgUoCWmIiIiIiIiAoA52QMQERERERGRqUEBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBoojINBaGIUcffTSLFy/m5ZdfHtVjnn32WRYvXsyjjz66w8fT2trKddddx5o1aypuf/TRR1m8eDHPPvvsDr/mSK677joWL1487M9pp5024eMazHXXXcehhx66w8972mmncf755w97zOLFi/nud7+73df6xCc+wdve9raK237zm9/wxje+kaVLl3L00Udv9zW21vdvYOufn/zkJ6N6/Hi97iIi05E92QMQEZFt9/e//521a9cCcM899/DhD394UsfT2trK9ddfzyGHHML8+fPLty9ZsoQ777yTXXbZZcLH9I53vIMjjjii/Pvtt9/Oo48+yvXXX1++LZ1OT/i4dlYf/vCHyeVy5d993+fCCy/kyCOP5LOf/SzJZHJcrnviiScOCPQnY76JiEx3ChBFRKaxe+65h2QyyV577TUlAsShpNNpli9fPinXnj17NrNnzy7//stf/hLXdYcdTy6XIx6PT8Dodj5bB2WbN2+mp6eHE088kYMOOmjcrjtr1qxJm2MiIjsTLTEVEZmmfN/nvvvu4+ijj+btb387zz//PE8//fSA4773ve9x1FFHsXz5cj74wQ+yefPmAcfccsstvP3tb+fAAw9k5cqVfPCDHxywZLVvmeKdd97J0UcfzWte8xr+/d//nY0bNwKwZs0a3vSmNwFw+umnl5f5wcAlpqeeeioXXHDBgHFcddVVvPa1ryUMQwDy+TxXX301Rx11FEuXLuXNb34zv//977fjVRtozZo1LF68mJ/+9Kd8/OMf56CDDuKDH/wgMPiyy8GWI65bt46PfvSjHHLIIey3336cddZZvPDCC9s9tkwmw+WXX84b3vAG9ttvP44++mguu+wyenp6Ko7zfZ8bb7yRN7zhDSxdupQjjzyST3ziE0Oet7u7m3e96128+c1vpq2tbdBjnn32WQ4//HD+67/+C9/3y+/ho48+yvnnn8/+++/P61//er73ve9VPK7/EtMf/ehHHHXUUUCUWVy8eDHXXXcdAEEQcNNNN3HssceydOlS3vCGN/DjH/94m1+roTzwwAOceeaZrFixggMOOIB3vvOd/PGPfxz2McVisTwXly5dyqpVqzjnnHMoFArlY8brPRcRmWwKEEVEpqk//elPtLS0cPzxx/OGN7wBx3G45557Ko75zW9+w+WXX85rX/tarrvuOhYtWsRFF1004FwbNmzg1FNP5etf/zqf/exn8X2fU045he7u7orj/v73v/Pd736XT3ziE1xxxRU888wz5azlrFmz+NKXvgTAxRdfzJ133smdd9456NiPP/54HnjgATKZTPm2MAy57777eOMb34hhGACcf/75/PjHP+bss8/mm9/8JsuWLeNDH/oQTz31VPlxfXsMt9fVV19NKpXimmuu4eyzzx714zo6Onj3u9/Niy++yKWXXsrXvvY1MpkMZ555ZsVSy22Ry+XwfZ+PfvSj3HzzzVxwwQX86U9/GhBcX3zxxVx33XUcd9xx3HjjjXziE5+oeG23Hu8ZZ5xBsVjktttuo76+fsAx//rXvzjttNN43etex1VXXYVlWeX7PvOZz7D33nuXlxJffvnlPP7444Ne67WvfW15Ke+FF17InXfeyTve8Q4APvvZz/KNb3yDd77zndx0000cc8wxXHTRRdx///3lx//oRz9i8eLFA/a0DiYMQzzPK//4vg9EXwC87nWv4+qrr+a6665j//335wMf+AB//etfhzzXjTfeyM9+9jMuuOACbr31Vi666CKqqqoIgqD8Go7Xey4iMtm0xFREZJr6+c9/TnV1NUcccQSu67Jy5Uruuece/uM//qMcYH3zm9/kiCOO4LLLLgPgiCOOoK2tjR/84AcV5+ofNPq+z+GHH86KFSv47W9/y0knnVS+r62tjTvuuIN58+YBMHfuXN797nfz4IMPcuSRR5YDtT333HPY5X7HHXccn/vc57j//vs54YQTAHjsscdYt24dxx9/PACPPPIIDzzwALfffjuHHHIIAKtWreKll17iG9/4Btdeey0AhmFUBDDbar/99uOSSy4Z8+P++7//m2w2y913301tbS0ABxxwAEcffTQ//OEPec973rPNY6qvry+/dwCe5zF//nze/e53s27dOubOncvq1au56667+NSnPsXpp59ePrbvdeyvra2NM844g2Qyybe+9a1B917+4x//4P3vfz9vfvOb+fSnP12eS31OOOGE8pcChxxyCPfffz+/+tWveM1rXjPo+PfZZx8Adtttt/KcePnll/n+97/P5z//ed761rcCsHLlSjZv3sz111/P6173OgBM08SyrAFjGMytt97KrbfeWv69ubmZBx98kFNPPbV8WxAEHHrooTz//PPcddddHHjggYOe64knnuDEE08sjw0qX8/xfM9FRCabMogiItNQoVDgN7/5Dccccwyu6wLRB/e1a9fy2GOPAVGg99RTT/H617++4rHHHnvsgPM99thjnHnmmRx66KHsu+++7LfffmQyGV588cWK4/bdd99ycAhw4IEH0tDQMGQGaSj19fUcdthh/OIXvyjf9otf/IJddtmFZcuWAfDwww/T1NTEAQccUJEZWrFiBU8++WT5ceeeey7/+te/xnT9wbz2ta/dpsc98sgjrFy5knQ6XR5jKpViyZIlFePcVnfffTcnnXQS+++/P0uWLOHd7343AC+99BJAuRrt1pVDt9bS0sKpp55KbW0tt9xyy6DB4d/+9jfOPPNM3vnOd/KZz3xm0MDs8MMPL/+34zgsXLiQDRs2jOk5PfLII5imybHHHjvgvX366afL2b+TTjqJf/3rXxVzbihvfvObueuuu8o/N910ExBlxy+88EKOOOII9t13X5YsWcIf//jH8us3mL333psf//jH3HzzzTz99NPlJc/9xz+e77mIyGRSBlFEZBp68MEH6erq4qijjqKrqwuAQw89FNd1ueeee9h///1pa2vD8zwaGhoqHrv17+vWreN973sfr3nNa7jsssuYNWsWjuNw9tlnV+y5GuyxfbcNtq9xJMcff3x5P10ymeS+++6rCHLa29vZvHkzS5YsGfDYHZEx3Npgz2002tvbeeyxxyqC3T4rVqzYrjH9+te/5sILL+SUU07hox/9KLW1tWzevJlzzjmHfD4PRMsdk8nkiJVYV69eTUdHB2edddaQlUQfeughfN+vyBpvrbq6uuJ3x3EGzJORtLe34/v+kBm8zZs3VxQWGo3Gxsbylwt9giDgQx/6EL29vZx//vnsuuuuJBIJrr32WlpbW4c814c//GFM0+T73/8+X/rSl2hubuass87ive99b3n84/Wei4hMNgWIIiLT0M9//nOAQQu93HvvvXzyk5+kvr4e27YHfBDe+vc//OEP5HI5vv71r5cDB8/z6OzsHHDuwT5Ut7a20tTUNObncOyxx3LppZfym9/8hnnz5rFp0ybe+MY3lu+vqamhubmZG264Yczn3haDZctc16VYLFbctvXrUlNTw9FHHz1oBdlUKrVdY7rvvvvYb7/9uPTSS8u3/fnPf644pra2lkwmQ09Pz7BB4qGHHso+++zDxRdfTF1d3aD9CD/0oQ/x8MMPc+aZZ/I///M/49YmoqamBtu2+f73vz/o6z7Yvsht8fLLL/Ovf/2Lm2++mSOPPLJ8+0j7BGOxGBdccAEXXHABL730EnfccQdXXnklu+22G0ceeeS4vuciIpNNAaKIyDTT29vLAw88wIknnsg73/nOivueeuopPv/5z/Poo4+ycuVK9t57b377299yyimnlI/59a9/XfGYXC6HaZrY9pb/S7j33nvxPG/Atf/1r3+V974B/PWvf6W1tbW8/8xxHIBydms4NTU1rFq1invvvZe5c+eyxx57sPfee5fvX7FiBbfeeivJZJI99thjxPONh9mzZ7N69ery70EQ8Kc//animBUrVnDvvfey11577fDWGLlcrryEuM/Pfvazit8PO+wwIFqK2n+/3WD6smkXXHABN91004Bsl23bXHvttXzgAx/gjDPO4Pvf/z7Nzc074JlUOuyww/B9n+7u7oolqzta3zzs/xquXbuWv//97yxatGhU51i4cCEXXngh3/ve91i9ejVHHnnkuL7nIiKTTQGiiMg089vf/pZsNsvpp5/OfvvtV3HfAQccwDe+8Q1+/vOfl9tVnHvuuVxyySUce+yx/OUvf+EPf/hDxWP6Pqx/8pOf5OSTT+a5557jlltuGbCUEKLMztlnn815551HPp/nS1/6EkuWLClnZ+bOnUs8Hufuu++mqqoK27YHLPvr741vfCOf+tSnSKfTA4Kbww8/nFWrVvG+972PD3zgA+y555709PTw9NNPk8/n+djHPgbA9ddfz9e//vUdsg9xa8cccwz/8z//wz777MOCBQu46667BrSYOOOMM/jpT3/Ke9/7Xk499VSam5tpaWnhL3/5CwceeCAnnngiQLmJ++233z7sNftn1FauXMnll1/ON77xDfbbbz9+//vf88gjj1Qcv/vuu/P//t//4wtf+AKtra0cfPDBdHV18ctf/pKvfvWrA87/n//5n/T29vLhD3+YW2+9dUAxoXg8zje/+U3OPPNMzjjjDL73ve/tsIxe/zG/613v4j/+4z8466yzWLZsGfl8nueee46XXnqJK664AoiC3osuuohf//rXo9qHONh1Zs+ezVVXXcUFF1xAb28v1157LbNmzRr2ceeccw5Llixh3333JRaL8ctf/hLf98t9HEf7nouITEcKEEVEppl77rmHhQsXDggOIcrgvfGNb+See+7h0ksv5dhjj+Uzn/kMN910E3fffTeHHHIIV1xxBWeddVb5MYsXL+bzn/88119/Pb/+9a/Ze++9ueaaa/joRz864Pz7778/K1as4Morr6StrY1DDjmEz372s+X7Y7EYn/3sZ7nhhhs47bTTKBaLPPPMM0M+l9e//vVcfPHFtLe3D6i6aRgG119/Pd/85jf5zne+w/r166mpqWHvvfcuB1sQtTfoK2qyo5177rm0tbVxzTXX4DgO73nPe9hrr70qeiPW19dz55138rWvfY3Pf/7zdHV1MWvWLA444ICK9hvZbHbEICeXy5WzsADvete7WLNmDbfddhv5fJ7DDz+cL3/5ywMyx5dccglz587lBz/4ATfffDP19fXDZuYuvvhistksH/jAB7j99tsrMrcQLZO8+eabOf300znrrLO47bbbRvV6jcUll1zCwoUL+cEPfsC1115LOp1mzz335OSTTy4fEwQBvu8PKBIzWq7rct1113H55Zdz/vnnM3v2bD74wQ/y5z//udyTczD7778/v/jFL/j2t79NEATsueeeXHvtteUvO0b7nouITEdGuK1/dUVEZEY57bTTqKurK7eXkNErFAoccMAB3HLLLeWWHYM5//zz2bhx45D9I0VERMab2lyIiIiMsyeeeIJFixYNGRw+99xzfPe73+X+++8f0JZERERkImmJqYiIyDg78MAD+dGPfjTk/Zdffjmvvvoqp59+OmeeeeYEjkxERKSSlpiKiIiIiIgIoCWmIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiIjVDCIIQ3w8mexgVbNvE86bWmGTnoLkl40HzSsaD5pWMB80rGQ9TbV5ZlolpGiMepwBxCL4f0NGRmexhlJmmQUNDmq6uLEGgukKy42huyXjQvJLxoHkl40HzSsbDVJxXtbVJTNMa8TgtMRURERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlKhIjYiIiIhMqjAMCQKfcBJqeZimQaFQwPO8KVNMRKa/yZhXhgGmaWEYI1cqHY4CRBERERGZFGEY0tPTSW9vFzB5wVlLi0kQTJ12BLJzmIx5ZZoWDQ1zsKyRq5UORQGiiIiIiEyKvuCwuroe140B25f52Fa2beB5yh7KjjXx8yqko6OFrq426uqatvksChBFREREZMKFYVgODpPJ9KSOxbZNQBlE2bEmY15VVdXS3r6JMAwwjG0rN6MiNSIiIiIy4YLAB8JS5lBEdgTLivJ/27O0VQGiiIiIiEy4LQVpJmdZqcjOKfr3tD0FnxQgioiIiIiICKAAUURERERk0vztb//HqlUHkclkhj3u5JPfxA9/eOcEjWpi3X33D7nwwo+Wf/c8j8997hKOO+51rFp1EM899wyXXfZp7rjju5MyvnPP/Xeuv/5rk3LtyaAAUURERERklK644lJWrTqIr3716gH3XXbZp1m16qDtCiZ+8YufccIJrx9w+80338YJJ7yl/PuqVQfx0EN/2ObrTIRMJsP113+Nd7zjzRx99Ere/OY38NGPnsPjjz9WPiafz3PrrTdxxhnvL9/2wAO/5Q9/eICvfe3r/OQn97Hbbntwxhnv57bbbqW3t2fYa5588ptYteqgAT93333XiOMdKli/8sov8r73fWAsT32bTJX3VFVMRURERETGYNasZn79619yzjkfwXVdAHp7e/jDHx5g1qzmcblmXV3duJx3RygWiziOM+D2L37xSp599mk+9rFPsOuuC+noaOevf/0LXV1d5WMeeOC31NTUss8+S8q3rVnzKvPmLWDvvfcp37brrgtZsGAXfv3r+zjppJOHHc/ZZ5/D8ce/qeK2dHrbK+VWV9ds82OnIwWIIiIiIiJjsO++S3jxxRf44x8f5OijjwHgN7/5FYsW7Y1pVi7QW7XqIK666qscfvgRQJRV+7d/O5Jrr/0mBxxwUMWxf/vb/3HllZeVHwdw5pkf4Kyzzubkk9/EKaecytvf/v84+eQo+Olbljl79hzuuutnvPrqK1x//Vf517/+SS6XY/fd9+DDH76A/fZbXjGe//zPT/L73/+Of/zjMWbNmsUFF3yMFStWlY954YXnuf76a3j88b+TSqVYsWIV55770XKQde65/86eey4CQn71q/tYsmQpX/ziNQNep0ce+SP/8R8XcthhKwGYM2duRSAI8Nvf/orDDz+y/PsVV1zKvff+vDzWvucGsHLlKn7721+PGCAmk0kaGhoHvW/DhvV85StX8/jjj+F5RebNm89HPvJfzJ49h/PP/yAA//Zv0Xje+MYT+dSnLuXcc/+dvffel3PP/QgQZSnf8pa3sXr18/zxj7+nrq6Bj3/8kyxYsJAvfOFynnzycXbbbQ8uu+wK5s6dDzDiezPUewrw4IMPcMstN/HKKy/R1DSLN7/5rZxyymkD5tqOoiWmIiIiIiJjdPzxb+IXv/hp+fdf/OJnA7JWY7Vs2X6cf/7HqK6u4Sc/uY+f/OQ+TjnltAHH3XzzbQB85jOX85Of3Ff+PZPJsHLlEVxzzdf59rdvZ+nS1/Dxj19AR0dHxeO/9a1vcuyxx/Hf//09Vq06ik996uNs3LgBgO7ubs4//0Psu+8Sbrnlu1x11dd49dVXuOKKSyvOcc89PyWRSPLNb97Ceef9x6DPp66unocf/uOw+ysff/yxikzhBRf8J+9616nsueeiiucGsPfe+/LPfz6J53lDv4gj+MpXrqJYLHDDDTfzne/cwVlnfRDXjTFrVjNXXBEtG77zzrv5yU/u44IL/nPI89xxx3c58MCDufXW/2H58v257LLPcPXVn+Od73w33/72d7Ftmy9+8fPl40d6b4Z6T//xj8e48spLede73sPtt/8vH/nIf3HXXXdy113jtx9VGUQRERERmTKefMhg0ysTd71Zu8Dyo8b+uOOOO4Fvf/tGWlo209vbywsvPM/RRx/Dfffds81jcRyHdDqNYTBkBgy2LDdNp6sqjlu8eG8WL967/Pt5532U3//+dzz66MO84Q3Hl28/5pg3lIPZc8/9CH/+8yPcffcPOfvsc/jhD+9kn3325f3v/2D5+I9//FO85z0n097eRl1dPRAt+Tz77HOGfT7/9V8Xcdlln+b4449m0aK9Wb78AI455t9YtCgaY3d3Nz09PRXPIZ1Ok0gksCxrwGvQ0NBIoZCnvb2NpqZZQ173+uu/xje/eX3FbTfccDOLFu3Nxo0bOOqoo9ljjz0BmDdvfvmYqqpqIApsk8nksM/t8MOP5E1vOgmA9773LO699+ccdthKVq6MMrHvfOcpXHbZpwmCANM0R3xvhnpPb7nlJk4//X0cd9wJ5fG+973v46677uSd7zxl2DFuKwWIIiIiIiJj1NDQyEEHHcq9995Dd3cXRx11NMlkalLHlMlk+Pa3b+SRR/5IW1srvu+Tz+fL2cE+++67tOL3JUuW8dJLLwLw/PPP8Ze/PMqxxx4x4Pxr164pB4j9s35DOeCAg7jrrp/xxBP/4PHHH+PRRx/hjju+y8c//ilOPPEt5PN5gPI+zpHEYjEAcrncsMedeuoZFQExUN4b+ra3vZOvfOUq/vKXRzn44EM5+uhjWbhwt1Fdv7++ABOgvj56TXbbbfd+tzXgeR49Pd1UV9eM+r3Z2urVz/LEE//g1ltvLt/m+wFhGIx5zKOlAFFEREREpoylh4dw+ERf1dimR51wwpv45jevJ5PJcMklnxv8zIZB2K9r+fYsjxzJDTd8jb/+9S98+MMXMG/efGKxGP/5nxdQLBa3GtPg4wTIZrMcccRrB80ONjU1lf87Hk+MakyO43DAAQdxwAEHccYZ7+eqq67glltu4sQT30JNTQ2GYdDd3T2qc/UVt6mtHb5gT21tLfPnLxj0vre85W0ceugKHnroDzz66CPcdtstXHjhp3njG08c1Rj62Hb/MCp67Sxr4G1BEL33o31vtpbJZPnABz7EEUdsQ5p7G2kPooiIiIjINjj88CPp7u7GdWPsv/+Bgx5TW1tHW1tr+ffnn3922HPatoPvj5wdsm2bIPArbnviiX9wwglv5sgjX8see+xJdXUNmzdvHPDYf/7zyYrf//WvJ9l114UALFq0mBdffIE5c+Yyf/6Cip9YLD7iuEay6667ljOAjuOwcOFuvPTSC6N67EsvReOqqqrarjHMnj2Ht7/9nVx99Vc58cS3lIvi9FViDYIdn50bzXsz2Hu6aNFiXn315QHvxVAB8I6gDKKIiIiIyDawbZs77/wxhmGUM3Bb23//A/nhD/+XffddSjab4eabvz7sOefMmUNvbw9/+9v/sfvuexKPx4nHBwZms2fP5f/+78/su+9SHMelurqa+fN34YEHfsdhhx1OGAZ885s3YJrWgMf+9re/YvHivVmyZBk///ndvPLKy1x11dcAeNvb3sFPf/ojLr/805xyymlUVVXzyisv8eCDv+fCCz81ptfnvPPO5g1veCOLFu1NOl3FM888xf/8z+2sWrWlaukhhxzG448/xtvf/v9GPN/jjz/GwQcfOuJxmUyG1taWitsSiSTJZJJrrvkyK1Yczvz5C+joaOeJJ/7BsmXLgShwNAyDhx/+AwcffBixWGzEvYijNZr3ZrD39L3vPYtPfvJjzJrVzFFHHQ3Ac889w/r163jve8/aIWPbmgJEEREREZFtlEoN31/v3HM/whVXXMYHP3gmc+fO47zzPspHP3rukMcvW7Yfb3nL2/jMZy6ks7Oz3OZisPNef/1XufvuH9LUNIu77voZ5533Ua68MrpWXV09733vWXR2dgx47Fln/Tv33fcLvvjFK2lqmsVnP3sVs2fPBqCpaRZf//q3+eY3r+MjH/kwxWKROXPmbdMSx4MPPpSf/ewnvPLKtRQKeZqamjnhhDdXBDYnnPAW/v3f30sm0zvsHs5isciDDz7Al7507YjXvfHGG7jxxhsqbnvPe97Lhz50Hr7v8aUvfZ6Wls2k01WsXLmKD3/4vPJzP+uss7nhhq/R1tbGccedwKc+demYn/dgRvPeDPaerlhxOJ///Jf57//+Frfddiuu67Bw4e687W3v2CHjGowR9l8ULWXFok9Hx9AleSeaaRo0NKRpbe0pr2UW2RE0t2Q8aF7JeNC82rl4nkdLy1oaG+dttZ9r4tm2ieeNX9GPqWTrvoxTwac+9V8sXbofp5xy6pDH/PSnP+b++3/DV796w5DHTDWTMa+G+3dVW5vEcQZmlLemPYgiIiIiIjJpzjnnI4Muo+3PNE0++tH/mqARzWxaYioiIiIiIpNm7tx5vPWtJw97zIknvmWCRiMKEEVEREREZog//vH/JnsIMsVpiamIiIiIiIgAChBFRERERESkRAGiiIiIiEy4LW0DVZFWZMeJ/j0N0ZZzVLQHUUREREQmnGlamKZFR0cLVVW1WJYNbMen2u1i4HkKVGVHm+h5FdLT04lhmJjmyO0shqIAUUREREQmnGEYNDTMoaurjfb2TZM6FtM0CYKZ0QdRJs5kzCvDMKmvn4WxHSlEBYgiIiIiMiksy6KurokwDAiCgHASknimaVBXl6S9PUMQKIsoO8ZkzCvDiDLz2xMcggJEEREREZlkhmFiWZNTGsM0DVzXxbYLChBlh5nO80pFakRERERERARQgCgiIiIiIiIlChBFREREREQE0B5EEZlhNmR72ZjL0FksEBISArsmq9gtXTPZQxMRERGZdAoQRWTG2JjL8KuNr1AIAtxSha+AkDWZHurcOLVubJJHKCIiIjK5tMRURGaEvO/zp9YNhGHI/ESKWfEks+JJZsdT5AOf/2vbSDAZ9dVFREREphAFiCIyI7zQ08HGXIZZscSA+5pjCV7N9tBdLEzCyERERESmDgWIIrJDBGHI2mwP/hTMwvlhyNPdHVTZ9qDNY23TJAhDerziJIxOREREZOpQgCgi260Y+PypdT2/3fgq67O9kz2cATbmemktZKl2httjGNLjK0AUERGRmU1FakRkm/lhwJpMD491tLAxl8EAXujtZH4yPdlDq/BCTyemYWANkj3sY2LQWchP4KhEREREph4FiCIyZjnf45VMN091tbEplyVuWcxPpCgEPi/1dnFAbRNpx53sYQLQ4xV5sbeLumGzhxCzLFoK2QkalYiIiMjUpCWmIjJm929aw+83raXXKzIvkaIplsA0DOKWTd73ea6nAz8MJnuYAKzJdJPzPRLW8N+HxUyLjkJhyoxbREREZDIoQBSRMcl4HpvzWWbFEtS7ccytlm3WuzH+r20j929cQzGY3GDLD0Oe6W4nZTsjHhszLQqBT6/nTcDIRERERKYmBYgiMiZdXp5C4OOag//5SNkOcxMpXurtYnM+M8Gjq9SSz9KSz1EzwvJSiCqZemFAj6dWFyIiIjJzKUAUkTHpKvUKHKxdRB/LMDEMWJ/bUtG0GAQT3oi+t9S2YrjiNP0ZoAyiiIiIzGgKEEVkTNoKOSxGDrjStsOLPV3lvoh/ad3An1s3jPfwKhQCf8yP6VIGUURERGYwVTEVkTHZmMuMWPAFIG27bMhlaM1naYjFeTXbQ1exQH0sThCGNMeT1Lnx7R7P5nwWA2iMJQbcl/V9YPRZS9e0yhlSERERkZlIAaKIjFrO9+gqFqgaRdEXyzAICdmQ68UyTHq8InHL4sHNayn4PntX1/G6WQuGXao6Ei8I+OPmdXQW8+xf18R+tU0V9/d6BWxj9AslHMOkq6heiCIiIjJzaYmpiIxKGIaszfZSCAJipjWqx1TZDs92d7ApnyEMoSmWYHYsyYJkFS/1drMht31FbF7JdNOSz5K0bB7vaCHnV+4fzHjemAJE1zTp9Ty1uhAREZEZSwGiiIzKo20beGDTGmKmOeqsX5Xt0lHMs7qnE8eMHmObJo5pYhoGj3e0bHMrDD8M+VdXKwnLosp2KAQBPaWiNH16/SK2OfoMpVNqdZFVoRoRERGZoRQgisiorMn0UGU7g+71G4ppGFgYtBVyJLfat9gUi/Nyppu/tW8iHEV10yAMK6qgvtjbybpshjo3jlFaztrdr8BMEIZkfX9gBrFgQmsCNiWjn81JKMWojmniBQEZXwGiiIiIzEzagygiIyoEPrnAI2WNvPdwa/VunLW5HhqS1RW3W4ZJcyzBk50tzE2kWJCsGvY8z3V38GqmmyNnzcMLAv7atokq2ym3sDCA7n4FZgqBjxcGpIzSn7kQjKcaMdZWDzh3OL+TcJ/W6DyGQc4fe/VTERERkZ2BAkQRGVHW9ygGIa4z9kUHMcti91TNkPeZmLzc2zVigNhayPLPrjZCQnq9qFjOgmS6fL9rWrTkc+Xf876PFwTYZmnMG9IYa6sJHR8aM+CU0obr0xhraghn90JdjjAMyfiVS1VFREREZgotMRWREWV9jyAMsMZQ8GW0ahyHlzLdAwrMbK2jmKfOcVmT6SHrF5mbSFXcHzMt2gq58nLVfOATEEYZxryF8XQDISHhfhsJl24mXNxa+mkBwHi6EYiWxfYqQBQREZEZatoEiH/5y1/44Ac/yKpVq1i8eDH3339/xf35fJ7LLruMQw89lP3335/zzjuP1tbWSRqtyM5l1EsuR99ysCxh2eR8b9iKpkEY0lUokLQd5iRS1Lnx8tLSPnHLotfzyJYCzXzgY1A6Zm0VhmfBgi6oy1WefHYvYbKA0eNCMSqg01lQL0QRERGZmaZNgJjJZFi8eDEXX3zxoPdfeeWV3H///Xzta1/j9ttvZ9OmTZx//vkTPEqRnVN2pKItOQvjL3Mw/jy3XPBltAzDwDYMnu1qZ3VP56AtJnK+RyEIcM2h/2Q5hokX+nSXKpnmA58wJNp7uDZavhru0jnIAIB0KSDsdXBNk071QhQREZEZatrsQTzqqKM46qijBr2vu7ubH/7wh3z5y19mxYoVQBQwHn/88TzxxBMsW7ZsIocqstPpKRYxqczY1W9q5+CHngDP4JH64+kJouqmYUsSZo2tv2Gjm2BttodXMt0cM3sXFqYqC8lkfI9iGOAMs8Q1qmQKHYU8zfEkBd8HQmhNYOQcwvoMJIcIdFOlJaU9Lk7aIrv1/kURERGRGWLaBIjDefLJJykWixx++OHl2/bYYw/mzp3LY489ts0BojmG/mnjrW8sU2lMsnMYzdzq9gu4llXuf2gVPA773eOkSstCV+Z/xa/2fBt0J6Iqoc3ZMY3BsSzmJtOsy/awuZBl96rKoja5wAcDzBECtrhl81K2i31q68mHPpZpbKlaOr976P6N6ShANDIuMcui2y+QD31c0xrT85At9DdLxoPmlYwHzSsZD9N5Xu0UAWJLSwvxeJx0Ol1xe0NDAy0tLdt0Tts2aWhIj3zgBKurS418kMg2GG5u+W0GNVacVCyG3+Iy97frSOUyrIvvhm3mmZVZx55zH+P5lw7BaEkQtxKYiTGuNQWanJA2CtTVpzANgw2ZXroKBZy0QyLukkrHhn28nbBpzWWx0jZkLKqtFMbmJMR8krv7GObgjw+aIAdYuRjJqjidPR7x6hgNSf172176myXjQfNKxoPmlYyH6TivdooAERg0MzCa5ttD8byArq6xZUHGk2ka1NWlaG/vJQi2/XmJbG2kueUFAZu7ekmYFr3FPDzWwC4dzwPwzAG7YNTkmXXvOuY/8QLPLdoH46Vasn+sg6WboWps1UCNIGRdvpsXN7RR68Z4rHUjq3s62DVVRS5XoNcYeW9gVybHn15ey+qeDmIvN0BoEM7pJpMZ5rFGAQjxO20yvQWyuQLrWzpxUvq3tq30N0vGg+aVjAfNKxkPU3FeVVcncJyRV0ftFAFiY2Mj2WyWnp6eiixiW1sbjY2N23zeqfJm9hcE4ZQcl0x/Q82t3mKRgu9TbTmEfki8w6OxsJ7eVIKWvRJAgu7qFA2bO0gfsoae2jhGR5zwr7MJj3hlTKWwLMPADwI25TJU2y5rMz1szmVxDQvXMEf1pU/ctHiiowVCqFlfC0A4txuGe6wZYiQ8jKxDUATCqNei/q1tP/3NkvGgeSXjQfNKxsN0nFc7RQWGpUuX4jgODz/8cPm2F198kXXr1rF8+fLJG5jITiDre1sKtvS6zM6tAWD9giYwDDAMXt5jLgDz1q0jPGgdYX0Wo2BDR3zM17NNg/XZXrK+R2cxT8y06CzmR70fsN6Nk7JsZnu1UXGa2uyWIjTDSfVVMnUByHgjVG4VERER2QlNmwCxt7eXp556iqeeegqANWvW8NRTT7F582aqqqp4+9vfzuc//3n+9Kc/8eSTT/LJT36Sgw46SBVMRbZTzvcpr+DuijEr9woAG+duyc6vWzALgHmvbgIDwuYeAIxNpXX3XS7G47MgO/KihWo7xku9XazN9pD3fWbHk3R7ReLW6AJE0zCoclzIlY5P9wsOwxCG+hav77heB8cw6VKrCxEREZmBps0S0yeffJLTTz+9/PvnPvc5AM4991zOO+88LrroIkzT5Pzzz6dQKHDEEUdwySWXTNZwRXYa2cAjLLW4MLpcGgvrCYFNs+vLx3TWVdGbTlDf0kk8kyPXZMFTwOYkLG7FeLkGY2Ma8hbhARugYEFi8Axd0rZpKeRY3d0JBtimyZ7pmkGPBaK+i4N91VWI/ryFbnSdqo4eDn3wMRKZPH9Z9Ro2zG+qODxMFDEAI+vgmBZdxbHtnxQRERHZGUybAPHQQw/lmWeeGfL+WCzGJZdcoqBQZAfLeh6Ukm6x9oCU301XdRrPdbYcZBisXTCLRU+9zNxXN/HC4l0Ia3IYnXHCHhfaox6JRkcCHtgVAiMKFBsGLwSVtm1aClncYfoeArCmCuPpRpjfRbhnG9j9soP5UgYx5kMQcugf/kFdWzcAB//+Mb594sEU3OhPoGkYzE0kSk/YxjFNer0CQRhiDtUaQ0RERGQnNG2WmIrI5Oj2CjimAQHUt7UD0No0MKO3bpdmAOa+sgmAcFYvAMYLdRh5mzBeJDQDCAwMDIzn6suB59ZqHJfWQo607Qx+AIBvYKyuwwgNjFdrMJ6cVXG3USgFiK7P/Jc3UNfaxYaGap7ffQ7xoscpm/OcNG8PTpy7GwnLpsuKxkvOxjVNCkFAzvdH+zKJiIiI7BQUIIrIsLq9AvF8DOMfzdTno+Cvral2wHEtzXUUXJtZ61uxih7M7iE0wi37EJt7CQ9/lfColwmrcxjdsWgJ6iAsw2RRupbkcAHiuiqMgk3YkCG0AmhLVAac/TKIez71MgCPLN0Fc+VBANQ89wqNsQSz4ykOrm+m0y5lM7M2jmFSDH1ygQrViIiIyMyiAFFEhhSGId3FIqkXmzFaUtR7GwBoGySDGJom6+c3YQUBzetaIO5DY2bL/XW56DY3INwjykQaTzduCeTGwjcwXorGEO7ZBukChm9Crt+q+VIGMVXoomlTOx3pOKm9dqdpwXz8+lqsjS0YHV0A7JaqJuXaBK4HeRsjNAjD0vJaERERkRlEAaKIDKkQBBQCHyvnQhhS723Es0w666oGHFsMAv7ZHAVtc18tLTOdFwVgISHU5rYc3JAlnNONkbcx/tEcFZoZTt7C+FcjdEctKIyXSi0smnqhugDpUouKHrff4KMAcf66tQA8s0sTe1TVAeDvtSsA9svRfZZhUuu6+LECRmiUglaDrDKIIiIiMsMoQBSZwYpBwKMtG8gNkSnL+R7FIMDM26T9NpyiR3tDDaFZ+acj63tsyPXSMr8Z3zCYs2Zz1E6iMRv1IZzdA06/KNCAcN/N5UI2bE4NP9D1aYy11Zh/mg+vVsGLtYRmQLi4FYBwsAAxbxPaPvNfKWU995hPYywqROPPnwOAtWZD+fAGN04xVjpPzsEwQorBSJGriIiIyM5FAaLIDNbjFXi2u4PVXR3l2zbkenmuu4O12Z4og+aDUbCpD9cDlfsPc77H2mwvncUCB9U3s6R5DmuaaojnCjS0dESB4MHrCZdtHnhxE8KF0XWNjcMHiEa/paPm003REtDd27e0yigFiEYpw4hvYPgmSaOd+tZO2tMJmnfZtVyR1J8/OzpXvwCx1onjxUsBYtYmDKGoIjUiIiIyw0ybNhcisuP1eEW6iwX+1rKRw6tn86+ONv7Z2UpAiGtaLK9twipEhWLqvY1AtP+w1yvSVsjjmhaLqmrZt7qBhlicnO/x7IImdt3UwdxXNtE6q274ATRkowIzm5PgGZVtKvrLRGMIGzPg+ITNvRX7G8tLTHtLAWJpX+P87AsAvLDrLBaktiyLDZMJgroarLYOjEyWMJkgbTt4bqlQTc7GMgzyyiCKiIjIDKMMosgMlvE8HNOgJZfl52tf5PGOzdS7MeYn0uR9nzXZHsx8FHTV56J9ha0NNbQW8uxf18RJ83fniKZ5NMTiAMQtm3CvhQDMfnXjyAOwQmjqxQhM2JAesu0F2VLT+2UbCZduhqYM9G9P6AaErge9TrSfsW//YXcUIBYXR60s+itnEddG40zbDkG8CICRtTENg7z2IIqIiMgMowBRZAbrKhYwDZPGeALbMFmQrCJeCqRqHJeOQh4n72KGHjXZdrKJGO0Jh4RlsbSmgRonNuCci3ZZSHddFbWdvcQ6ukccQzg76j9oPtWE8dCCKJNYcQCQdQgdf+gMI0SVTEMjChLzFkmvi/pMKx3pOI277DLg8L4AsW8fYsp2sJKljGE5g6glpiIiIjKzKEAUmcHaCjlipknacal23Ir7qmyHjmIet+BSV9iMGYa0NdaQCwKqHbccSG4tYdm4e+8JQOPLGwY9pkJjhnC3dsJEESPrQGui8v68FQV+yeLw56kuLTNtT0DBZl52NQBrFs6hKT6w32I5QFwbjdE2TVLpUnCadUoZRAWIIiIiMrMoQBSZoYIwpKOYJ2YO3ofQMAwWJNIki3HqC337D2vJ+h7NgwRc/Xl77QbArqV2FxAVtCkMFnAZEO7ZHhWdAYy2fgFilxtlBGFLQZohhLOiTKSxMY1RsJiffR6A1j0XlIvT9Bc01BG6DtbGFijtNWxIxvAdL8ogYlDQHkQRERGZYRQgisxQOd8j5/u41tCN6h3TxMjZ1BVLAWJjDT4h9W582HMHc2dRrE4zr6WLWHcUuG3O59iQyxCEQywTrS8ViOkLEFsTmI/Ox/hXU/R7YqQMYp4wXsToiJPaVKC+uImOZBK/qWHw4w0Dv7kRo1DEbOsEomW1fb0QrYJDQVVMRUREZIZRgCgyQ/V4RYqBj2OM8GcgZ1Nf2EhIVKAGGLAcdQDDwF+yFwDNq9fihwGWYdAcS/JqpodXsz10FPKVj4n7hKkCRsaFnIVRWmpq5EoVTIcIEFvyOTblMgSE0BwFo/PXrwXg2fmzSDrOkMMMZkfBp7khasORsG28WHQdO+/ghSH+UAGtiIiIyE5IAaLIDJXxPQwjWko6pBBivQVSfjddtWkytolrWlTbA4vTbK0vQNztpQ30eh7VjsuKxjnsmqriNdUNdHvFgdnE/lnEjq2ylMmBS0yLQUAh8Kl2Y6zJ9hDM6gFgfvY5AJ7ZrX7IJbQA/pwoQLTWR0thE5Zd7oVo5V38MMDTMlMRERGZQRQgisxAxSDgld5uKntFDHagSUMuyq61NNSwOZ+lxnZJ2iO3UA2aGig01DKroxdncxtz4ylmxZMcN2chB9Y3MyuepK2Qq3hMWAoQjY0p6HYJjX4B5CAZxJZ8jl1TVRwzawFx06ZYnSW5cDV1xRa6alK01iRxhwsQZ88C+mUQLbvc6sLKOQRhiBcqQBQREZGZQwGiyAwThiGPtK7n6e42ZsUSwx+ctakvRFU+X6hNsDBVzeFNc0d9rWC/fQBYsno9zYlU+XbbNNmvtpF8KQNY1pAltH2MllTUG7EhS9iYIUznIVa5H9ALAgJC9qmuJ2U7JG2bnO+zS09UnObVhXPAMIgNs8cyrK+pKFSTtGyIR5lKI+fgh6EyiCIiIjKjKEAUmWHygc/LvV00xRI45sj7DxtKAeL6xmr2q2uicaSgsp/isr0JLJNlr2ymYau9jrskq9i3uo4NuSx+X5bOCmFuT/mYsCZHuHwD4WFrKYaVweSmfJZdU1XMjqcwDIN6N07B89jtuTUAvLjHXAyMYZeYYhj4s5swih5maweOaeGkorGYOYeAEE97EEVERGQGUYAoMsMUgwA/DEcuTgMYGZO64iaKlk1XTZrEEL0Ph5SMU1y8O27Rp+G5VyvuMg2Dg+qbmZ9M0ZrfstQ0nNe15aCaXLQK1ogCwo25LFnfo8crYBsmB9bNKrewaIzFmbOuhWQmx8Y5DXSm49iGOewSU4CgtA/RLO1DLPdCzNkYoCWmIiIiMqMoQBSZYfKBjx+GWMMVpympbevBDj1aaupwbJvEMMs1h+IfuBSA2P89AVtl4xzTYlG6rrLfYLpI2NhL6HpQ07/SaciuqSpa8zl6PZ/965qo69duo9qJsfSF0nLYRQvwggDbNIlZw/+Z80uVTK0NLdFzTjgEtgdZG0K0xFRERERmlDGmA0RkuisGASHh8NVLSxra2wDY0FBD0raxRpF13Jo/bzb+3GasdRuxVr+Cv+euFffPTqRwTYuc7xEvZSjD/TZCaERLTvvZp7qeJTUNVNsuVVu12qjtyTJvXSu5uMu6XWbhBT4xyxpxzH2FaqwNUQaxynHZFCvi9iYwPYuiMogiIiIygyiDKDLDFAIfY6TqpSX1XVFWbV1Tmmp76H6CwzIMCiv2B8B95G8D7k7bDnOTKTqLhS03mlQEh1E7DIO07TAvkR4QHAI0/v1pzBCeXryAwLLwwoDUKJbEhnXVhDEXc2MrBEHU6iIWjcXOxbTEVERERGYUBYgiM0y0nLMUfPU60c8QGjJR+4dXZyWocUbufTgUb6+F+A112Gs2YL3w6oD7d0vV4IUha7M9FAdZ0lkMAlzTHHIPpJHJEn/iGTzb5PE955Yfk7RGEdT2FarxPMyW9q16ITpaYioiIiIzigJEkRmmEPiEoQEhGH+dA4/OISz0yygG0U+sp0Da66LLqSUbs0ltawYRoiziUYcAELv/Edgq6NotVc1xs3dlfrKK9q16I/aNOW7aQ1YkdR/+G4bns3bvhbTb0XPxw5CUM7ox+32FajZsjoJQJxqf4VmqYioiIiIzigJEkRkmF3iYBlA0MfJ2FAS9kIp+/2cjxu92w/zt7jQ+Gh3fmmrCgPL+wG3lLdoNb/5srE2t2E88U3GfaRjMS6bZNVlFYZAlnYUgoNpxB903abR34fz1SULXIXfY/gSEhGFISBj1NRyFoK9QzfrNJCwLoxQgWp5FPvCHe6iIiIjITkUBosgMk/W8qIJpv6WlxefS8NA8jHXVYAWEZlAuUNNa00gIY29xsTXDIH/0SkIg/rtHMHoyAw5piCUwMEp7DqGtkGNttpdC4FPrDtx3CBB74BGMIKBw6HIaGxpIWQ69vgcj9UDsp3+hGse0sEtZSMu3yPsKEEVERGTmUIAoMsNkfA/bMCETBVyhEUbZw4JNOKebcNWrhLt10JhfB8Dm+nosY+j9f2MRzGumeOAyjFye2C8fHND2os6JkbYdMn4xGmspmM0GPtWD7IG0n16N8/QLBNVpCofsh2taLExVsyGXIWZaVA9SzGYwYW0VYTwWFarxfRLxLQFiQRlEERERmUEUIIrMMFk/CrqMTCmDuGc79l49hIeuJVy6GZwAe1Y7dcVNZM0k7XUxnGEKxIxV/rWHEtRU4Tz7Is5fn6y4zzZN5iZS9HgeYSl4bHAThGE44PpGb4bYL/8AQO7414IbPZ9dklXMjid5XfN8GmOJ0Q2qr1CN72O2tJOMRX8aTd+ioAyiiIiIzCAKEEVmmJzvYZv9lpjWZ3GXdUHNljYTjR0tmIS0xOZRSBZImDaOuYP+XLgO2ZP+jdAyif32YayX1lTcPSeeohgE5Et9DPeprqPejVfuJ/R8Ej/8JWYmS2H5vvi7LSjfNS+Z5oS5uzEvkR7TsPoK1VgbNpOKR9cyPYucMogiIiIygyhAFJlBioFPMQyj5vF9GcSkN+C4pg2tAGzcK0WuqpeqUVYDHa1g7ixybzgSIwhI3HUv1qvry/fNTaSIWxZthTw1Tozd0tXsXV23pc2G7xP/+W+x1m7AnzOL/LGHDzj/tmQ7+wrVmOs3kShlEA3f1BJTERERmVEUIIrshHK+x4u9nXQW8xW3F4IAPwiwiQLE0PHLLR36m7UhKlCzeY9qiqFPlT26vXxj4e23D/nXHoZR9Ejc8XPsfz4LQNJ22CNdQ0cxz7xECssw2b9uFjHLglyexA9/ifPUaoKaKrInHwf2jln66vdVMt3QQjLeb4lpEKgXooiIiMwYO+aTlYhMKetzvfx2w6vYpsny2ib2TNewJttDrRvDC0OsnIMRGoSpwoDH2oUida2dZJMxeqqT+LleqkZZ7GWsCiv2j5aa/u4REj/9LcVnXyL/2sPYPVXD6p5O6mPx6MAwxH72RWK/eQizqwe/oY7sKScSplM7bCxhTRVBIo65qYVU6S+j6ZlkfY/2Yp6m0e5nFBEREZnGFCCK7IR6vajNQ43j8pe2DTzZ1UpPscC+1fWEhJilCqYkiwMe27ixHSOETbPrwTAIQ4O4Nbp2EduieMh+BE31xO+5H+fp1ThPr2a3BXM4oS5FfbqLWCaL/dIazI7u6Ph99yT3b0dCYmBV0+1iGASzm7BffJWazm5CIwWeSUhIaz6rAFFERERmBAWIIjuhzkIexzRIWDaz4ynygY/txFify2DnHYxnGwAIqwts3Xq+vLx0dnSMYYQkzPH9U+HvtoDefz8F98//wPnHU9ivrmfXVyuP8RbMobBif/w9dh2/ccyJAsT4plZCexaGb+IaJuuyvexdXT9u1xURERGZKhQgiuyEOot53FLVUcc0cUyTMAxZk+2l+ZndMTIu4axemNcFW4WIs9ZHBWo2za4vtZowov1/4811KKw6iMLhB2JubMFsaQffh0Qcf14zYSo57kMI+u1DNOwAo2iTMl025DIUAx/HnIDXQURERGQSKUAU2ckEYUhXsTAgmDEMgyrbwc0kCM2AcNnGAWWqYpk8dW1d9KQT9FYlKYYBtmHssB6Io1Ja6tkXrE2kLYVqNmHWQZiFZOjQHuRoK+Rpjo9/kCoiIiIymVTFVGQnk/U98oFfziD2V2vHMD0LXB9M8IKAZ7vbyXlRq4vZ6zYDsGF+ExgGXhDgmNa47kGcSsLqNEEyjrmpDceKXhPDtzCA9kJucgcnIiIiMgEUIIrsZHq9IsUgwDEG+eddLAV6pdYWucCnzo3TkssCMHtNFCA+2VjF+lyGYhiQsKyob+JMYBgEs2dhBAG1XrQXE8/EMgzaC/nhHysiIiKyE5ghn/pEZo6M74FhYBhbl58BiqV/8m7U/L0Q+FTZDgCduSyz1m7GNw3m7rOYuGXRXsiPSw/EqaxvmWldviW6wTOJmTab89lJHJWIiIjIxFCAKLKTyfoeEA5+Z6GUQSwFiHnfZ24ixe7VtTS0dBIv+gS7zGOfxmYWVdWS9T2qx6kH4lQVzCkFiJkom4pnErcsurwChcCfxJGJiIiIjD8FiCI7mc5iHmtA84qS8hLTKNDxCalxYxw1dwHH9ETLTv09dgFgt1QN9W6cdCnDOFP485oBqOveEN3gmcRMi7zv010c2DdSREREZGeiAFFkJ5HxPJ7v6eDVTPfQbSkK0T/50I2CQQNIWg5pxyHx4loAvFKAWO/G2S1dQ2qGBYhhKolfX0sy00XM7wXPxDQMQkK6vcJkD09ERERkXKnNhchO4B/tm3m8s4Wc75OwLBrc+OAH9ssgBqUehynbJuzoxtqwmaC2mrC+tnz4qsa5mIPtZdzJ+bvMwWrroLGwnle9egAMDLqLChBFRERk56YMosg054cBT3e3YxsmC5JpGmOJwQvUAEa/PYjFIMA1TVK2g//EcwB4i3aDfo+dicEhgD9/DgCN+XUYXvRn0jVNFaoRERGRnZ4yiCJTWBiGbMxnyi0WFlXVYQKb81l6vCJNsQT5wKfHKzJ7NE3c+2UQ84FPwrKJWzbB489Edy/efZyeyfTi7zIXgMbCekJvPwBipkVbIUcYhkMG4CIiIiLTnQJEkSmqGAQ81LKOF3o6CQkxMMpB4K82vkxP0WNJTT2zYkkCQqzRBC2FvjYXAYXAZ04iBb1ZghfWEKSTBKUCLTNdWFNFMZWiprcFO+vhAXHLoqNYIOv7JG396RQREZGdk5aYikxRz3S18Wx3B02xBPMSaUKgxyvSVSyQ83zmxJOs/v/s/XeQXOl12H9/nxs7Tg6YGeSN2IANwAbuLpe7pCQGUZQoyvL7WrKtVH7f10m2yyrL5VCOsmRbzirrV5JLsixbtiiZEimK5FIMyyU3ERu4CTlOzp375uf94zZmMJgMzCDt+bC2CHTfe/tpoAfdp895zqmVOV0v4250kH0rgxhYAY04ptfNYZ08C1oT37V/SXnp+50/MIACuivpPERbGQRJTD2WTqZCCCGEuHVJgCjEDWjab/JGaZoux8E2Wp1H0VTDgEoYAArXNIl0wqzf3Hin0cBEoxmPatzb3sU9bV2Yx84AEN0t5aWXilr7EHtrkwAopVBAPZIAUQghhBC3LqmTEuIG89rcFO+UZwFNwVocUm8rg9nAI9Yax0gzfV12hgm/Qc+lXUtDA/XdQTA0ur8Ge8rpV0E6vQ87JmOaPNDRixWEmGdHIJ8lae27Eylj/xB8E3prU6B3ggKNoiYBohBCCCFuYRIgCnEDmQ883irP0G7Z5C7LCmZMk2m/SaI1GTP90c1ZFvuttqUXKbuoehpYqqqLns1BYEJgohKDJBtiGunwd+vEaVSSYN57OxgGJPqaPM+bgerroGlm6fKnsMqaqENhK8Wc713vpQkhhBBCbBspMRXiBjLWrBPrZFlwCGkXzXoUUo9CMqa5+kUa6bl6qILOB6j5LKruoFr7DxMrxlYGtmFgv3sCAOPQPVv/ZG52SjHZ1Y+Bpu9MFWh1Mg0lQBRCCCHErUsCRCFuEInWnKqVyJsrJ/Zdw8RPLs4vXD1AVM1WgNjVRD8yit4/T3JgevFxrHS8harWMM+NkhTzGLft3tonc4uYHuoFoH88bVTjmia1KCRI4uu5LCGEEEKIbSMBohA3iPFmnRnfo812VrxfKQVard9otNEKMHMh2Bp92zzsrKJVWj5qeDYZ08R67xQKiO67E2VI99KVlO7oBKC/NAG6FaTHsTSqEUIIIcQtSwJEIW4Ab8xP8dXJC9iGgbnGyArHTPcOrqmVQSS7NIjRj4yinYjqrilypoX9TlpeGt1351Wt/ZbWmaPkdFAMy2SnQwyliLXm2zNjvDk/RUMCRSGEEELcYiRAFOI6i3XC0co8OdOiz82ueWyfm6VnrWM00LTQdgz2ZQ1n2gP0hy5Q7ynTU65jTs0S93Wj+7qv/kncolzDYrSzVWZ6rgTAjkyWWhjw3fkpvjB2lvlA9iQKIYQQ4tYhAaIQ11ktCvGTmLy1BU2F/bRTKbnVM1uJhp0nhgEI773j6h/zFuYYBuf7uwDYMTndus2k08mwK1ugGgYMN2rLztNausEKIYQQ4uYkAaIQ11ktCkm0XrO0dMMaK5eXXspKYnqPnUMbBtH9d139Y97CLMNgeDBPgkFfaWLZGJCcZXG+UVkSEAZJzBfHz3G8Mi+BohBCCCFuOhIgCnGd1aIQzRYFEgsBYrTqIbePzGD5AdGd+9D53NY87i3KVgbNYsyMO4Ab+3TNlJbcX7QcZn2PShgw2qgRJgnTXpPxZp0Xpkc5Wpm/PgsXQgghhLhCEiAKcZ2VAx+Trekiqpppmapeo8T0vtMTAIQPyuzD9VjKQBua8bZdAAyen15yv20YRDrhtVaTobP1MmPNOoZSZEyT0eby8lMhhBBCiBuZBIhCXGczQRN3rcH360mAyRzqrT4435HetkqAWChV2TVdJmwvEO8duvLHfJ8wDYUCxvoGABi4ML3sGEcZnKyVSLTm3fIc5xsVipZNxrSYCzxiKTMVQgghxE1kC7piCCGuVKwTSkGw/uiKNahTXahWYKjtGL2rAu3+isfuazWnaRy8G2PdgYrCVgagqfW4VK0OOqolcrUmjcJiJ9leN0usNYZSjDbrGAp2ZPJorZkJPOpRuOpsSyGEEEKIG41kEIW4ji52ML2aAJGZdB9hct8k+oMX0LfNE+iYKa9BPQoXGqVYYcT+k6PEhiI8KM1pNsI2DBSKpOAzntkLwMDw1JJjlFJYhoGhFHnLwlQKs3VbrDXVMLgOKxdCCCGEuDISIApxHdWjkFgnWMYKP4oJcKEN9dIQ6vndqHfSeXwMF1Gv70B9dwBKLqruoHMBDNTBTIPBShiQs2y8JGbUa9CMIzqOnsEJI07t6ccqFq/dk7yJtdkuBcumkWkwntkHwOBlAeKlupwMOzL5hd9rralGEiAKIYQQ4uYhAaIQ11GQJCu3p0lAHRnEON6DqrmowEKNF8EzUcd6ULM5VCmLeqs/Pb6ruey6+wptfGpwP4PZHOXA59DJcQCOH9iDKeWlG2IqxWA2T81qMpPtIzBceidmMcPVu8ReyjIMZn1vm1cphBBCCLF1JEAU4jqKkmTlO4bbUeUMuuiTPD6C7q2nt08WUCh0VxNtJii/1bX0sgBRoylYDkXb4cN9u/jzvkNbtcFIbxvNvs7tfEq3nB3ZPBEanY+ZcPdgJpqB0eXNalaSMUymg+b6BwohhBBC3CAkQBTiOgr1CgHibBZ1uhOtNPq+KSgGUEjLFNV4AQDd0YSdlfTXaOi6PEulyJlp8JgxLbreeA+Ac/feRta0t+fJ3KK6nQwGCp0PGM3eBsDOcxMbOjdjmlTDgHq0+tgRIYQQQogbiQSIQlxHUZJw6RAEdbwL4/UBVGzAvhIU0sBCXwwQq256YDFA7y6jjQQ6PLAXA82LTWlyrUDQGJ3AOj9G0tFG38F72Z0tbPvzupW02y5ttoOf8ZjI7CYyLQZGpjGjeN1zXcPEiyPeK88t3NaMo9Uzx0IIIYQQ15mMuRDiOgqSGOPiLsTQgOF2tJWg75mGvvrigYXLGp0UAsjE6CdGwFwabARJgm0Y5Kz0x9t98XUA/CceZiAvzWk2y1CKHZkcI5kmWdXLeMcQu2bPs2N0mtE9O9Y8VylFj5vl3cosGdNkNvAYaVa5p62bhzv7rtEzEEIIIYTYOMkgCnEdeXG82DBmKo/SCvpr0F9nSfeaXIhWaWZQmwlkW01SshE4lweI6diMjGFiTM5gnTpP0lYguu/Oa/CMbk3dbhY/m5bxjhT2AxsvM82a6eiLV+cmOF+vYKB4rzIrZadCCCGEuCFJgCjEdeQn8cLAejXR2l+4o7b8QAPIt7KIhYCVW5+mgiShw3ZRSuG0sofB4w+BeRWzFt/nipZDlPXRaCaMfUSWycDwFMYGykwBet0sQ9nBsCozAAEAAElEQVQC/ZkcXU6GZhRxulbe5lULIYQQQmyeBIhCXEdBkqQZxPkMzGXQbgSdq4xFuFhmWlx7rl6QxHQ4DsbMPNax0yT5HOHBu7d45e8vRcvGMBVkI5Igy/hgL3YUs2N05oqu1267HK3MESQbCzCFEEIIIa4VCRCFuI6CJCY70o1xZDAdXzFUWTU7qNv91v+vPVcvRtNmuzgvvo4CgsceAFu2G1+Ngm3jGiZxLv07GKkfBGD3qfErul7RsqlGAVOejMAQQgghxI1FAkQhrqMgicmMdwCQ3DsF+0urH7yzQnJoDAZWKEEFYp0wF6TBY+d8FevdEyS5DOFD927xqt9/TGXQ5bhUd06juxqM5/YSKJfB4Uns2uazgEopDKUYaVaX3ScdToUQQghxPUmAKMR1kmhNECcYTQftRDBYW3NvIQbpvMMVjpnym0x4TfKWzdO9Q+x95Z00e/jkYXBk7uFW6HGz1Is19KEJ4g+NMNK5B5OEne/OLj0wNMBff79nm2Vzrl4lvKTMdLhR5fNjZzhTK3OuXmG0sfKXAUIIIYQQ20UCRCGuk0gnqKaVdi7NX3lHS601YZLwkf5d/NDgfg7MN7FPXyDpKBI+dM8Wrvj9rcN2SS4OrbQ05+5OR1zsvTC85Dj12gDq27tgIr/m9fJmWmb6bnmOWT/N/F6oV5loNvja5DBfGT/PS7PjxFoyikIIIYS4diRAFOI6iZIEVWsNvs+v3nimGUfM+h6zvofWaYTixRHl0CdMEhpxRNa0GMoWMAD3Gy8D4H/wUelcuoUKtg1KL/x+dn+emlmkpz5F/lwCw21Qt1BVF5UYGG/3w3Ru1esppWi3HL47N8lXJ84zH3icb1Tpy2TZmc2zK1egHAbM+GvvORVCCCGE2EoSIApxnYQ6wWykAaJeIYOYaM1os04lDOnJZIm0xktimnHETOBhKINJv0E9ChnI5LANA+vEWcyxSeK+bqJ777jWT+mWVjBtLGUQXtwjaMGFnnQm4p7X5jGO9aBOdAOgWwG/WiNABGizHXblClSjkFfnJmnEIXnTWtijqDWMNevb96SEEEIIIS4jAaIQ11CiFzNQUaKxGk76m8LyDOKM36THzfLDQ/v56I49dDouXhzjxRE7Mnm+v383ljKoxxGD2QJE8WL28JnHQa21oVFsVtayyRgm/iV7Bs/fNgjAnsYx0Bo1k5aV6v3z6QE1Z0PX7nEzjDZqGEqhLvl7K1gWZ+tl4kteN0IIIYQQ20kCRCGukUYU8dWJ83xraoRKGBDpBLuRSe+8LIPoxzGR1hzu7KPDSbOMPW4WP4nw4pheN0OH47K/0I5jmHS7GZxXv4cxXybav5t4/65r/fRueaZStDvuktmFtX2K2XwvhbhClxoBSBsO9dfRZgJVBzYQ22VNi6xp0uNkltxetG3mA49pv7Glz0UIIYQQYjUSIAqxzbTWzPhNvjU9woVGjePVEs9PjRDGCVbTRVsxOItBx4zfZCZocqCti6FcYeH2LsclSjQxmo5WIHF3sZPBTJ4uL8R58TW0YeB935OSPdwm3U4GP75krIWtOXewD4C98Vvpbb2NtNNsMUAlBjQ3NoOy08ngGEv3jJrKQCnF8cr8VixfCCGEEGJdEiAKsY1infCdmXE+P3qG0WadoWyePjfLfOhTqkQYiZFmD1vx3MXM4ff17+ax7h1LrlW00nJFhaKt9eu+TI4fGNhN7huvoMKI4NEH0N0d1/Ipvq+02+6ycs8L+wcJLZNd0xcw7xxB3z6X3nGxbHiDZaar6XEynK1XFjqdCiGEEEJsJwkQhbgK5cBnwltsIhImMa/NTVKPQmKt+e7sJO9V5uhxMwxl8xhK4RgGQRwzX21lorLR4vVCn53ZAnvybRiXZQELlo1pGJhKUbQWZxs6wxPYR0+RFPIETx7a3if8Ppe37GVzKCPb4sL+Qaw4YU/9BDhpExtd8NMDqlcXIDqGSaQ1x6tzV3UdIYQQQoiNkABRiCsUJQnfmR3jG1MjlMM0GJjymrw+P813ZsZ5aWact8oz7Mhkl5QOqlYjkobfChCtxTl3fpKwr9C+4uMVbBvXMMmZFrmLAWIU4X75+fTcD38AHHvFc8XWyFsWCrWk2RDAmbvSPZ/7TwzDxfuKrU6mF0eZXIVeJ8OxyjxjzdpVX0sIIYQQYi0SIAqxAbUo5LW5SZ4bP8+M3wTgRHWe0UaNWhhyZG6SWOuFkQTn6mXeq8wxkMkv21d2URK1UlGtALEZR2RMk4HMyqMRTGXQ4Tj0uJmF7KLzndcwZ0tE+3YR3XP7Vj5lsYK8ZeOaSzuZApS625nraae9VKNnqrVf8OJsyw02qlmLa5qYSvH6/NTimA0hhBBCiG2wse4JQryPaa15bW6So5V5lALbMHmws4fX56fpsF2ypsWZWoWd2RLnGxXabYeCZaNgyciCS7mGQRSACWgroRT4VKKQe9o6F7ODK+h3c9itgNOYmsV5+U20beF97GlpTHMNOIZJ0bKZ9Bp02C5Fy174Oz591y66ZsrsPz7MTH8X2Bpd8FE1Fz2dg75GGihGCuzNR4y9bpYxr85c4NG/ypcIQgghhBBXSzKIQqxjpFnjZK3EUDbPQCbH2XqZ78yMEyQxRdvBMgyKls1r81OUQ5+8ZS+bZ3c51zAJL062MGOqUcjTvYN8oGdwzbUc7OjlQFsXJAmZL34DlST4H3oM3dG2hc9YrOVwZz8PdPSigeFmfSGjN7x3gNC22HluHMdLs4f6jnTfoDrejTrRhfrOLtQ398JsdtOPezFrXGqVMwshhBBCbAcJEIVYQ6wTXp+fJmOY2IaBY5gYSjHSqNGfWfyQ3+G4NOIQhcLcQCbPNU3iVgViZMa4psnuXNu659qGka7j1e9hTkwTD/YTHrrvqp6j2JyhXIHHunfwqaH97M23MR+k3UVj2+LcbUOYiU73IgL0NNG9dZRno853oJo2CoU63XlFZae2Mpj2ZCaiEEIIIbaPBIhCrGG4UWPab9B1yQDzfjfLrlweUy398RnK5NmxwdI/xzAX9iAGRkSuNSh9I4zJGZznX0WbJt4PPgOG/BhfD1nTYm++iH/JnsBTB/aggX3vnSMIWlnEAzPoffMk90yTPHkBnQ9Q5QyUMqtcee3HnPAay5rkCCGEEEJsFflkKcQlvDhitNUpMtGa9yqzOMpYMnJCKbUsOLx4++WjKdaS0+n4g8AI6XLcNUtSF0QRmc//WVpa+uzjJD1dG348sfV63SyWYRAlCVprau15hod6KHgBXadHqEUBuDH69nkYqkIuQu8tAaDOr9ytdi1Z06IWhdSicP2DhRBCCCGugASI4n0l0ZrRZo3xZn3ZfV4c8cL0GN+eHiNIYmb8JhPNpdnDreQkaTOawIjodDa2J8395iuYM/NEe3cSHr5/W9YlNq7DdulyXKb8JmfqFaphwJE7032kHzw9SamVRVxiRw1txzCTg3Bz/wTbhkGkk4WxKkIIIYQQW+2W6WL6n//zf+a//Jf/suS2ffv28eUvf/k6rUjcaGKteX5qmLP1CgrF3W1dhElMpBNsw2SiWacU+pjKoBIGzIc+CRpru0o44/S62oxps9cfpm6eGcb57lvojIv3yQ9L19IbgFKK3bk2prwmd7V1crZeodzbRrOnk8LMPEPTJdhTWHqSAfTWUWNt6JkcDGxutqFCMed77MoVt+x5CCGEEEJcdMsEiAB33303v/mbv7nwe3ODe7rE+0MtDDjfqNHrZkm05mhlDkulTWVircmZFjuzBcaadSphwKzXxNrOIKyVPYqtmLy19o+iqtbIfOHPAPA+/iF0Mb996xKbsr/QRtG26XdzjDfrJBr8Rw6S/dLzHD4xxsu7BrEv+5JB96UBoprKoy8GiJFCvd0HhTAtQ63bUAzAXLrf0FKKSrRCZlIIIYQQYgvcUgGiaZr09vZe72WIG1QlCki0XhhcP5Rd+eWvlKIU+kz4DbLmNv6IxGnwaVpQsNbIIMYxmT/6KkbDIzh0H9Hdt23fmsSmtdsu7bYLwJ3FDkpBgLl7J8kL32Xf6CxvlCokXR1LT+ry0GYCM1loWpCNYCqPmsnDDKhz6fF6ZwV9YGbJqbZhUJUAUQghhBDb5Jbag3jmzBmeeuopPvKRj/ALv/ALTExMXO8liRtIOfDZSPNH1zAYadSoheH2BoiRgTYSMrZJbo3HcZ9/FWtkgnhHL/6Hn9i+9YirdrCjl8e7d4BpEh6+HwXc887Z5QeaGnobqMTA+PZu1PEu1FSaFdZFH+1EaKVhMg/J0lNtZdCIou1/MkIIIYR4X7plMogPPPAA//pf/2v27NnD1NQUv/Zrv8ZP/MRP8IUvfIFcbmOjBy5nGDfOHq+La7mR1nSj01oTab1Q3jcdemRMY91uoTnLph6HhMS42x0gmgntjoNlrvxdjXn8DM4rb6IzLv5nPorhbP165LW1dfKGTd5Omw9Fh+7DfPF17jw7yZlDHs3CZY2I7pxDuzGMFuBCOyjSrOJjY+lXd6/1o2ZzUM5Cl7dwmm2a1KOImHTv7I1KXldiO8jrSmwHeV2J7XAzv65umQDx6aefXvj1XXfdxQMPPMCzzz7LV77yFT796U9v+nqWZdDdXVj/wGuss/PG33umtWbO9+jObKwz53Z5a2aKV6YnGMoXeHJgiPp0TFdbjrzjrnleJrEZb9TJaId8Ye1jr5ROoJkY6ExEd1t+xddaMjZF8PmvAeD8hU+QvW1wW9Zy0c3w2rq5FJh87F7aX3iTe4+f5+iHHrj8buipE7ZD+FY7aDAHPNy29DUX7goIZ3PYpSLO7sXUt5PYBM0G2fYM7eu8lm8E8roS20FeV2I7yOtKbIeb8XV1ywSIl2tra2Pv3r2cP3/+is6PooRKpbnFq7pyhqHo7MwzP18nSW7sIdljzRqvzEzw0YE95Cx7xWNindCMYwqr3H+1qmHAN0cvkGjNm9U6tZrHbKNOj5OlHqw/IqBU98iaJnW1heMEKk5aMrirAoZGAbEREzZDZmcv62RZb5L9rT/ECEKCDz1KfWAALj9mi9xMr62bTem+u8m+9Ba73j3H2/fsw8+uEND1+ZDJozyLqLNKVGu95tojFB2EIy7hPh9aX0Bqrak2fSZmKkTu9f0SZi3yuhLbQV5XYjvI60pshxvxddXWlsW2168+umUDxHq9zvDw8FU1rblR/jIvlST6hlzXpU5USow3G8x6Hpnc4kusGUfM+E125YocK89zqlbiE4P7MLehU+jbpRlqYciuXIFCHHO2ViHRGlMp9AY2IvY6GRzD3NCxG1JxUK8NoCIDfaENfdscCkjMGBtz6d9pHJP9wy9jlKuEB27H/8DDcA3+zm+G19bNJlcscvT2IR44Nswd75zh7cN3Lz9IAfdNwlQe3VeDi38FTgTtHqqcIZlzl5SZajSNMCKxb/y/L3ldie0gryuxHeR1JbbDzfi6umWa1PzKr/wKr776KiMjI7z++uv89b/+1zFNk0984hPXe2nvK+XQ52ytTKw1M/5iBjbRmu/OTvDNqRHGm3Xeq8wx4TWY9hrbsoYTlRI9bjrg3jVNbMPA2kQNeN6yl40muCKBgTrejToymAaHXQ1UbKBOdQEQmzHupeNYtMZ97gWs4XHiHb14P/iszDu8iWVMi+DRB4gMxW3HLmA2PeYDHy++rMlMp4++a27Zv8h6VxkAdb7jsjsUXhKhtd66LzGEEEIIIbiFAsSJiQn+zt/5O3zsYx/jb/2tv0VnZye///u/T2dn5/Ve2vvK2VqFMEnosB1Gm4slkWfrFY5XS3hJzKuzE8wFTZSCC43qtqwhSOIlHUh73Sw7MtegBjww0v8gnWv3+gDqQrq/LNk/h354Am0lqCQ9RpvJklmLzkuv47x5lKSQo/ljHwP7lk3yv2/sHxjk1B07saOYXd87hW0YTPve+icC9NfRmQg1k4PaJeXYCvw45q3yDEcrc9uzcCGEEEK8L90ynz7//b//99d7Ce97jSjkvcos7baDbRjMBh7NOMJSBm/MT1GwLNpshwuNGkXLJmOanK6XebCzd2E24ZWKteYbk8PkLIvhRo02e425glul5KK+14++fQ6G0tJA9coQxAb60BjqeA+q6qI7m+iDk+C05hXkAyin2c3EirFamUrre0dxn38V7dg0/9wn0MUbr0mS2DzHMMk8/TjJqTEOnRpj17NP8bnyOPUoJL/eHlwjzSKqk92oM53og1MAmEAtChhrNmi3be5p797+JyKEEEKI94VbJoMorr8T1RK1KKJoO7iGiZ/EzPkew40q84FHh+1iKoPduSI9bpa8aVMNQ743P01ylWVyFxoVzjUqvFeZoxT6FLe6+Y0mHWjebH2nkoB6rxcVWKhjPdCwoOyiPBsVmqiXd6Lms+lMuwcnFoNDSAPEi5c1EyxlYJ48R+ZLz6MNg+aPfpRkx5XvnRU3nu6eHqJD92FEMV2vvsNdhS7mww02QNpVQbsRarIAc+kXC7ZhMOk1KYU+07531T8/QgghhBAXSYAotkQzjnivMkeXk2bulFJYyuDVuUneK8+RMa2F+YMXm9Iopeh3s7xZmuG1+Snmgw2W3V0mTBK+Nz9DxjDZmS2wJ1dcd9bhpngm6qWd6UDz7+xKS/3Od6DqzkK5qHqvNy0DBLQVo1DoDg99aByspR/edSFc+HVixRQnZsn+0VdRWuN98lnifbu2bu3ihhF84CG0Y2O/+S53ahNTGYRJsv6JpkbfOQuAOt4NGixlECQxQRzTjCNqUbjORYQQQgghNkYCRLElxpt16lFIwVos7ex3s5RDnwvNKp32yvPaXNOkx83wvflp/mj0DN+cGtl0oDjarDHtN+lyMlf1HFajTnalwaATobRKS0fPdKCVRj8yii4EqPksnG8HQB8eJ3lgAv3wONgrBACXZBA7G3Ps+eOvo6II7yNPEN1757Y8B3H96VyW4PBBVJzQ9+rb9LgZqlGw/omQ7kUs+KiaC00L2zCoRxEZ0yRKEirhBq8jhBBCCLEOCRDFFQmTZEknxjO1Ms5lXT+VUuzI5NiXKy7ss1tJ1rTYmSvQ7bicrJZ4ZXZiU2s5WytjGwbGdnT7nHdRE0W0E6EfH0XbMWoui0oM9L55KITou2cA0ttyARQD6GuAuUrZXyH9MN8ezvCJt7+DGYT4TzxM+OgDKx8vbhnBYw+gMw72W8c54EMjipYdE69ULqqAztYXJxUX2zAohT4Fy0YpNh5oCiGEEEKsQwLEm1yYxHxvfprSBoa/b8aKH1Iv8VZ5mq9OXKARRVTCgNFmjY5VsoQbLfd0DJP+TJZxr7HhLGItChlu1ujYpqY0F8dR6DvmwI3Re0vp73MB7Et/TaeHHmh1Y+3ZwNgON6YYT/PBmT8mE4VUHrmP4OlHt37x4saTcfE/8DBKa+589T0MpYj1YpZ5PvAYadSY8ZvMB96Sn2vdlv5alV0cw2QomyNv2VjKYNprLnuoMEk4VSvxTnmWmmQYhRBCCLFBt0wX0/ejRhTy7ekxTtZKlKOAp3uHrvqaWmveLc8y3KzxAzt2Y6rl3yF4ccTxSolS4PPizBimUgRJsnSe3xVyDJNYJ4w2akx56SiMO4urjyoZa9bw45iMm73qx16m7KJK2TQYHGiN7NhVIYkV9NeXfL2i75pF50MYqqx72WK5ytPT38BNPN7au5fupx+lTWYdvm+Eh+/Hef1d8meGufu2Po52abqdDBnToh5F3NfezYRXx1AGs0GTNu2k2fH2VrBYSb+IuVjOnTUtpv0mw40qvW6WTGu8y3uVWV6ZnSBKEqz+Xdxtd12X5yuEEEKIm4tkEG9SsU54eXac840Kg9k8Z2rlJYPpNytMYo5X5nllboKXZycYbdQYa9ZXPPZCo0o9CtmdK3C+UeV8o0rfFgZoedPiWHWeF6ZHeWV2gvIa2dHz9SqZLQhMAUiAsx0wnT4XdaG1p3B3OS3xg7Rs9LYSFC5rCmInaUbRWbvpSMdMmWe/9AqZ2ONU+z18+9A+rKsc8SFuMpaF/8zjAHzozbPsy7Ux7Xt4cYRSijvbOvmRnbfxycF9FC2H+sUGNLkQbSVpgHjJyyxnWswFHl8eP8+3pscIk4RS4PNWaYYuJ0PesplcIcMohBBCCLESCRBvMkES81Zpmu/MjHGqVmYgkydrWsStzN+Vtruf8Bq8MD3Ku+VZut0MlmFwslpadpzWmmOVeXKmhWUYDGXz7MjktiR7eFGb7TDjN2m3Hfwk4Y3S9JIyvIuiJGHab5IzN5EIL7uoY91QuawkVadjK4xTXajjPemw+8k82o5hsHaVzyjVMznHM195FdcPOX7vXl76oUGUq7EMyR6+30QHbiMe7CczPccPTDW4rdDeKpV26XIymMrANtKRMNWLAaIC2nxUYkB9cYyLZRjsyhUYzOY4X6/w0uw4z0+P4icJBcsmZ1pMePV1y8aFEEIIIUBKTG86lTDglblJLBT9bm6h+Uuvm+FErcSOTI672jZfSjbne6AUQ9k8kI6iuNCaX9h5SXfQZhxTCv1t2/OXPrbB3nwbABnT4kR1Hi+O6HQylEOfp3uHyJgW5TDAiyM67NyGrqtOdaLOtspVR9qgswlNG5wYmhYqaP04NC2Yy6K0Qveu0WxmE/pHp3ni669jxQnvPHg7Rx+4nTiOMDCwVijjFbc4pfA+8gT5//E53Odf5f6f+mEuNKrsLRQXxsAADGULvFOeRWud7uVt82EuC5UMFJdmsU1l0OtmON76Amcgk/5c5CyLSa9JJfSX/CwLIYQQQqxEPpnehBQwkM0vydo5hkmH5fDq3NQVNawZ8+pkjaXXi5KE8/XqkuNqUUAQx9jXKKixDYOhbIFJv8G7lVnO1SucqpUBKIc+idYb616qgfPtaCNB70rPV3M5VNNGlTMQmujOJrrNQ6FQ44X0tOLVN//Zc2qUp772Glac8K0H9/PNu4dIgERrnO3qvipueMnOHYQHbsOo1Rl68wQPdvSyJ9e25Ji+TJasZdFsdQzWrQ64qmEvux6kX6jsyhXodjMLgaapDBI0pXBrG1kJIYQQ4tYkGcRbSNF2KDdrzAYeHc7KHUVX4sURM36TgrX0Q2eb7XCiOs+97V3YreCxHocotfHOpFvBVGm2FNIM6tvlGfbn25gPvI2vo2GnYyg6mui7Z2FvCe1b6UzCyAArAUujTnWm2ZnZVlay7So+VGvNge+d4r43T5EoxXOP3MnMgX10AaPNOkXLJruFpbni5uM/8zjWiXM4L7/JQ/ffhb5sL2/GtNifb+NoZY6cZYPbGovhb+51o1DM+h778u1btXQhhBBC3KIkg3iLUai0XHQT5gMfP4nJXNYspWjZlMOA0Uua1dTCkOu5k6nNdqiFAW+VZpjwGhsPsKqtkthiq91/Jk67Qlo6/bWVPivdul9phUYvzCzcLBUnPPLtt7nvzVMElsnnPngvMwf28UzfTj7YO4SpFJFOcKRBzfua7mgjePxBVBTh/tl3Vjzm9kIHCkWYJODG6Y2bDBDzpsWpWokpbwNjWIQQQgjxviYB4i0ma5pM+Zv7EDgfeCiWZwWVUjiGwZlWSSfAXODhXOc9c31ujncqs8yHHtkNNqhRrQDxYgC4qsIlGcNcuBA4rkZrvawxUNho8MGvfpe9p0ep5Vw+930PcfsDB/nYwF6KtkPBssmYFo04wjXkR/D9LvjAwyQdReyT5zBPnV92f6+bZVeuwFzgXZJB3FzxR4fj4scJX528wJla+YqbWQkhhBDi1iefTm8xWdNiPvQJknhDxzeiiKPV+VUDrTbbYbRZW9gDNRd463csTWA704yuaVK0bCphuCzruaBuob6zE/XdARgpQrVVcrvensJchDZaHVPXCyaBca/BSLOGbn3gdmbm+fifvkL/xByznQX+z0ce5J4772J/oR27FQxahkGb5dCMI8kgCrAtvO97CoDMV78NYbTkbqUU97R1E2lNaMRoM9l0BhGgP5PFRPG1yWGem7jA8co8F+pVKuGVZcmFEEIIcWuSAPEW4xomfhxT3sCHPq01r89PMet7dNor71nMmhZ+EjPtNfHjmHoc4q4V1MQK9eIu1Bs7rvQpbEi77bI/37bqHkR1shvVcFClLMbRXpjLopWGfLji8YsnslBWqi/bfxgmCdUwWMi+1KMQSxn0ujmm/SZD58b5+JdfpbPmcWZnD5/98AMc2nvbQkfWS3W5GcIkwTVkG7CA+I69RLfvwShVcF5+Y9n9g9k8txXamfKb4EaoyIR48/uAOxyXHZkc036Db8+M8uWJc7w2N7kVT0EIIYQQtwgJEG8xhkr3zm0kKzDtNzlRnWdHJrtmsxcDxZhXoxaF+PE6++Ym86imDbNZCC97eTUsiFQ6UuL53XCmY4PPapPmM6jpPDoTktwzBaR7CskHGxtZ0dnaw9mxuJdzLvCY9puEWjPtN9FaMxt43N/Rw2OdvTz25hme+Oab2FHC2OMH8X70ozyzcz+3FVZuCtLpuJjKkBJTscD7/qfQlonz0huoufKS+5RSPNDRg6kUiXNljWousg2DXjfLULZAl+My5TdlRqIQQgghFsin01uQQjHZrOPF0ZrHjTbrrVELa3/QLFo25+tVRlullGuNZVCjbQtroHxJVrLkLmQW1YV2VGChLrSn5ahbTJ1OZx3q2+dhsIbubLaeyMZK6fRt8ySPjUBHmkGMkoR6FPFM306e6hkkTBKm/SY9bpZ7DJfbPv88h48N49kmX3j6PpKnDrMr38ZQrrDqY1wcYG5JgChadEcbwQceRsUxmS8/D5cFbZ1Ohh43S+S0suBXGCBeKmOke2FrUmYqhBBCiBb5dHoL6rRd3q3M8fnRM6vORIy15kytvGy0xUryls186PHK7DhFe43jazaqtDiIW823fh0r1Lu9KK1QpSwMt4LI0EyHfm+lmo2az6KzIeyogQJ99wy63UMPVNc/H9IsY9viB+bpoMnefBt7W0HfjmweP0l4phzT9dt/iHVuhLCnkz/62CNU9w7RZjnrPkTBsslaEiCKpYLHHyLu6cQ6P4r91rFl9/e7OQKr9dqsuKj3eiC48teQZRgkWm+oJF0IIYQQ7w/y6fQWlLPSYdnlMOBCY+WgaMZvUgo9ivb6wYyhFIOZPEPZAu2r7FUE0owgLAZirWBRne1ANRx0/pIREq1ujGpi9SzbplQc1OlO1NlW9nBXJd1PCFAI0Y+OQffmxn9Auu9Qa3igowdDKUyleKitix87NsGez38do+ERPHQP3k/9GAf27OOetq4NzWZcyCBe546w4gZjmXifeBYNuF97EVWtL7m7280Qt0pM1emuNGM/snyP62ZoDeXwKuZ9CiGEEOKWIp9Ob2FFy+ZUrUSsl9dxXqhX0DoNeDbCMcw1S0vxTBgroq0Efdcs2oqh4qb7EEfa0EqjHx5H99XTX98/mXYLncov36u4WQmot/pRZzpRE4X0uoMbzBauYy7w2Jkt0NsaYG7MznPHZ7/K7rdOojMOzU//AP7HPgS2xf5iB7cXOzZ0Xdswabfdhc6mQlyUDPUTPnIQ5Qe4z72wpNS0zXaIWyWmKk5fO6q2/pc8a3FNQ+YjCiGEEGKBfDq9hbXZDvOBz5TXXHL7jN/k3coc3e7q2cDNUuc70kYwu8pgJ9DhoRIDdbQnLSXtq0MmTgPDJy9Apw87aqjYQL3Zf3V7EceKqKaNzoRpp9KdlXQNVyBIYqb99M8r0ZpQJ9zV1onSGvuVN8n9t89iTkwT7dxB/Wd+nOju26542Y9172Agk7/i88Wty3/60XQ24omzWMfPLNzebjuY2cte29WrCxCzpslM4EmjGiGEEEIAEiDe0i5m/IYvKTNNtOb1uSk0esND5tcVKxgtoo0EvTvtvqgHagCoybSEVO+qtBYFZNMZjfruWXTRR5WyqO/sgrMdaZfTzUjSElYAfXAK/ew59J1zqx6utWYu8JgPlpebBknMpNcgSBKiJKEaBXTYLruaEbnf/WMyX38J0PjPPE7zJ34Y3V7c3Fov02Y7sgdRrMyx8T7+DADuV15ANdIvLWzDpJi/rDlNw76ikRcXXWxUU5V9iEIIIYRAAsRbXtGyOVevLJSZzgUeI80avc4WNoeZzqXlbn0NcFrZjR11kgPTaDS6zVsyMmKBqdEPTaC7GyjPxjjVhXphN5Q2kdmczaE8G93dgHY/bTCzymflRGuGm3UypoVlmFxopJ1ZR5t1Rpo1pn2Pe9q7KVg2XhIRhCGPnxij7bf+EHN0gnhHL42f/nMEH3gIJLAT2yzeu5PgwQMYjSbuJV1Ne9sXM4baTNKOwVdRZmoZBrFOKMk+RCGEEEIAMqX7VqBZNSgqWDZjzTozvkd/Jh3onqCvLnMVKtTZTvRQFfLhYpawv7b0uJ1VdHcTrGTV9eHG6Icn0HU7bWYzXoQzneiHJza0FDWRlmjqDew59JOYnGXx8YG9xEnCyVYXV1MpIp3Q6WTodjJ8LRqGkTE++eoJest1tGHgP/2oBIbimvM//ATWuRHs42eJ3jlBdP9dtGdsZsw4/VJmsArD7WmZafuVB3gGilk/7dYrhBBCiPc3CRBvZpFCvdMHZTft0pldPvfQUAoUTHp1+jM5LjSqZNaZe8hcBnIhZOIV71YXOlDnO2Aqjz40BjNZtJVAzwqNLlZY04ryIfqeaZjJpaMvAiMNLNeKx2IF0/m0KU3v+k02vDii3XLT0loTHursXX5Q0+MDL7/HwNGzADSG+tCfeJakp2tjz0OIreQ6eJ/8CNnf/SMyX/029d2DuJbJ/G2jdFoZsDRquB1Vc1iygzABdawH5jNgaPSh8cXs/gqypslIs8Yh+rf9KQkhhBDixibpkJtVqFBHBlHT+XTofGsf3krypsXZeoVGFDLlNdaefXi2HeO1QdTbq3xQTIDRdO+datqoF3ehEgN661f/ajKA/no6L/HtPtQ39sLYGmMwZlqlrb2NtLR0HV4c05fJrHxnkmC//g75/+f3GDh6loZj8dXH7qL0//qkBIfiuop3DRA8/hDKD8j8yddxDYNGXwmGalBoZQ2n8qiTnYsdgYfbUaNtqIaDqrkwu3ZJec60KQcBjSjc3icjhBBCiBueZBBvRhrU0V5U1UV3NtNxEmNFuG0e3OVZv4LlMO41eHF2HD+J6TWzy693ohvmM6hquv9PlTLomg2Fyz4wzuRQvoXuaEJoQt1Gt3noPaWteWr9NdRIG2oul95wvBvd01gx+6GmcwvnbEQMdDjLA0TzzAXcr72IOTOPBir33cHv3taNW8jz6AbmRAqx3YIPPoJ15gLWhTF63jiK2pEl0RojF6HdCOVbcK4Tag763mnUmQ40GvaWUOc6UeUMeqC+6vVd0yQIYuYDn9xaXyAJIYQQ4pYnGcSbzPkjNjveuAM1WUBnQ/QDk7CzkmbdVski2oZBv5vlfL2Ka6zwnUDdRl1oTwNOO14IuNTo8i6dF2/Te8rox0fSrqGPjUFxizIPnR7ajdJZiR0eKjJRJ7vSfZYX/7uo4i6cs5JKGDDcqKX7LrVGAW3WYsBnzMyT/T9fJPd/vog5M0+0e5DGT/8Y/ieegVyGHje79uxHIa4Vy8T7oY+gTYP2F15jYL5GpNO9vfrxEZLDY+hcgJrJo76zCxWZ6R7godbe3PIGGj9pOFkrcbw6T5hc+dyZRMZlCCGEEDc1ySDeRJJEUxoxcZo22onQ90+BnaD3lGG0iBpuR/c2oLu57FzXNBnKrjJzr5Rm1fTuUjoiIjDTAfbjRbhjbunXCBU3nTXY00hvN5Z/GPTiiJFmnX35NszNBliKdL9UZEA2hO/sQo21QSUDTQvaffTD45CoNHvpRitmFxOtKYcBD3T0MO7VGWvWsQ2Dou2gShXcbx/BeucESmuSznb8D3+A6I69oBQZoGg59Lpb2OlViKuU9HXjf/gJMl/9Nh998Sh/8onHIJdNX/+Ohz44Ba8OQmSguxvo2+bSfx/sGKpuWh6+xleC3W6Gs7UyJ6olxot1nugZwFlvv/Jlpv0mL8+M81j3DnbkZManEEIIcTOSAPEmYhiK+3/I4/PnzzJYzC52BnVj9IEZ1Nv9qHd60U8Nb2hP3kXqYoDY5aXXdGPoaaCm8+jpPPS3StNCAxVY6Hyw5gfNucCn3XZoxtGy/Y5aa5RSVMOAchSwM7vCHsP8YjZSHx6Hd3rTfVQAc1n0TA7sGIVCt63cuXEu8OjL5Hi4s49Jv8Gfjp+j24/p+uqLOG8dQyUJOuPiPXmI8NB9YC79IHxXsYNuCRDFDSY8dB/m+VHaT5zl8Vfe4/VnHoaLX8IUA/QTw+nP8KUNptp91EwOXXXX7HSaNS2yWYsoSThRnQfgg72DmGpjhSZzgcefTV5g2mvSn8lJgCiEEELcpCRAvMkYJiR2vHxsxI46eqyBms2hKw50bqLl/cXys/bFUk09VEkb4IwW0RcDxHor2MutXk6aaE2Cpt12KQXekgBxLvAohwG7cwVKYYBtGPhxjGuukaUoBujHRtE1Bxo2xtv9qNOdC2MtVgoQE61pJjFPdfRgGQZDgeZH3h5hz/HzmHGCdh38Rx8geOQguCvvMTzQ3r36moS4XpTC+8SzBKPj3HZ+ivmTI5y9c9fi/dnle5B1m4eayaU/5xsYhWEZBoOZPCeq8xRtm0OdG+tsOtqoUQtDBrN5TtXKPNi1tEtwmCTYMiZGCCGEuOHJu/UtRF8cRl/dxKD5wEA1HHQuWFqq2d1Myzdns9BsBXCNVrCXXz1ALIcBXU6G/YV2gkv2MQVJTDOOGcwWGGnUcU2TPjdLeSPDuQ2gLYD+Orroo6puOmYDoLj8/HIY0O1k2NMMyXzxGxR+/X+x/72zKMPAf+Jhav+/nyR46vCqwaEQN7SsyzsfeYREwYOvvEdmprT28a2gUI0XINpYybdlGPQ4Wd4rz9GINjaqZrRZI2ua5E2LehQy1lxsijPerPOl8bNUw2BD1xJCCCHE9SMB4q2kFSypzQSIrfJSOi4LtAxgsIpCpR1SAdXKIOrc6h/yqlHAXcVOepxMup+w1bBi2m9yV7GTR7r6sAyD2/Lt3FnsXBJErkuBvnMWjUZ5reR32+JaGlFEmCQUJmf5oW+/R/E3fh/7rWNgW/gfeIjGX/1Jgg89BtlN/PkIcQOKBvt58b69WHHCE9/6Hma4RhDX1Uy/WKlkUK8NpHt5NyBrmvhxTD1evwGVF0fMBE3ylo1SCtcweKc8ix/HlAOfF2ZGGWk1jBJCCCHEjU1KTG8lxVawVN14ZkxNpvuEdPvyTqB6oIo624mayqNvK0Gjdd1VMoi1KKRg2ezLt2EoRcY08ZIYA4WpDO5r76bddjjc2ceufBHHMHFMk2YcpcPrN6LLgz1lON+RZjhbYz3iMKLn9AUeOjnG4GxafpoUcviPHCR86F7JFopbimtZfOvuIXZNl9kzMc/hF9/hlacfWNyPeCkD9KExeHMHqpSFl3bCrgq6qwlOlI6yWeE0pRRKQS0K1m3YNB/4eHFMt51+4dTjZhlt1vnO+CgnZ2aphSFZ02KiWWd/oX0r/giEEEIIsU0kQLyVuHHasbDmrNuxEIDpLGqiiHaixUY0l8pH6GyIqrloz1x3D+J84HO4q29hjlqXnWU2aBIlmr35NjqcNHP3QOfi3qS7ih18rzTDUDa/4WYY+vY5CA10u0+m4bH/+DB7j18g76UBcrOjiPrAw4T33QXW5rowCnEzcA2TQGu++cS9fPrL32X32XHmeto5ee++lU+wddod+EwnnO1AnUv/A0jumIW95RVP0yjqGygxnW1lBlUrQDWUos/NcmRmEivUDGRy1KKQkWaNWCcb/lkXQgghxLUnAeKtRAFtftqopu4sZhRXkoA6mgZq+p4ZsFcp9expwHA7zOagaaUB6ApjJbw4wjVMbit0LNx2T3sX35waIdIJdxQ7lp0D8HBnP7Uo5FStTLvl0G47Cx8yV3+aCf1t77Hv5AiDF6YwtEYDtf07MR59iHjv0MqZFCFuERnDxFIGXZ0dPPf0/Xz6udc5eOQ4pa42pgdWabBkgL59Hoaq6Kk8qpRBTeVRc1n0KgGirRRz/spzRi/SWjParJO5bCRGxrS4PZ+jUQ/QWpO3bMa9BnOBLyNkhBBCiBuYfI17q7kYFFbWKamcz6B8C93dgN7Gqofp7vQ+NVJEJcaq5aXlMGAoV6DNXnzcvfk2Pty3izsKHQxkcyueZxsGT/YM8mT3AJZhMNysrdrIolCucf+R4/zgZ7/JB7/2GjvPTxI6Fm/cvYs//cwzJD/+SeJ9OyU4FLc81zTJ2xY7c0Wi/h6+9eidGFrz+PNvkq2vs88vG8GeMvr+yXSm6Rol6a5hMhcuDRC9OOJMrUwjSv8tGGnWGGnWlvzsX3Tplz2GUmg0M7IPUQghhLihbTqDODk5yTe/+U0mJibw/aWNTZRS/MIv/MKWLU5sni76KECd6EYHFuwtrby/aKq193Cl0tJLdXlopVGVVjObQhq8xVqTaL3Qtj5IEvbm25advjtfZHe+uOZDZEyL+zp6uKutk6OVeV6ZnaDY+rDpNn12np9g95kxeqZK6ZqB8aEezt2+k7FdfZwPmjzTN7Bu5lGIW4VrWLRbLt1Ohl43y9t7+thVanD7sQs88Y03+MbHHiNZr7zaAPJBWkLumwv7eZc8jmlSi0KCJMYxTLTWvDk/zfdKM+RtizsKHUx4TRzDwDHWL+fOmRYnqiXuKnZiyM+rEEIIcUPaVID41a9+lb/zd/4OSZLQ1dWFbS8dgi4B4rWXaM2k16DDcdNGLz0NdH8NpvIYp7pIehrLS001MJVHo6F3nQDRbB0zVUD31tH70wHaE16DWCcMZPLEOsE1TXZkVs4SbpRtmNxR7ODE5ChDR89x24Up+iZmUWkjVGrFHGdvH+L87UM082mJmh/HOIZx1Y8txM0kZ1k82TtIp5Ohw3GJ0bz5yAE6Ziv0TJd4+OV3efWJ+5gPA0Kd0Gm7K88bLQZQc9Msors8s+caJnOBTz0KCYyE0WaNdytz7MjkiHXC2+U5tE4YyhY2tO5222HCazLlN8gaFrZhkrNkp4MQQghxI9nUO/O/+3f/jieffJJf/uVfpqOjY5uWJDYqShLGvDrdbpZZ32NnrgCWRh+cgnPtqJPdqIkCuji39MSyiwosdGdzxf2EM36TehyyO1tEKYW+bxodzkImXnhcgD25Ns41KmgNtxfbyVv2smttlCpXsU6dJ3viLH/5/ChGazxGI+Mwum+A4b0DzPZ1LCsfrUQBA9n8QsZRiPeLLifN6rdZDmio6ZjvPPMgP/DFl9h3apSxvIN/8A5sQzHre/Sby79E0UUfNV5MZ6f2LA8QL5aFfq80w4VGlSCJyZt2K9g0FxpSbZSpDBTwXnmOSb/B/nwbj3UPXMnTF0IIIcQ22VSAODExwT/6R/9IgsMbgNaacb/BbYV27m/v4Uvj55eOi+ivwclumMjD7XNLykzVcFoKqvvqS65XjULqUYhjmnTYGapRmO4rMjWYi+VnpdCnP5Plg72DOHMGbZaz+db1SYIxNoV1+jzWyXOY04tBbJjN8OZgB+f37mC4q0h3Nrtq+ZoXxyuWtgrxftHuuPS1uoSeVjHf/vDDPPulV3jie2fZt2sPo3v6mWiOrXxyq7pAVR30KtdXKE5U5+lxsuS2oLlMh+1wrDqHo0xO18o80NFLZqNjboQQQgix7Tb1rvzQQw9x9uxZnnjiie1aj9igCa9Bp+3yWPcABcvmjmI7RyvzDGVbf6XZGN3hoUoZdNmFjtZ+0ZK7ONpisLpwvWoU4icJu3NF7mnvZsJr8Nr85IqNJ7w45q5iFznL5tm+XRtbsNao+QrW+RHMc6OY50cxmovNL+LuDuLb9xDdvpfaQA/vTQ1zsKMHp17lZK3MUDa/wiU1SkFnK5MixPtR1rT41NB+GlHIlyfO857yaTx6Jz/80jEGvvJtwj/3MeDiz8tl+/42MDt1IJNL9zVv0Z7BnGWzxyxioBhp1hiT2YhCCCHEDWVTAeIv/uIv8nf/7t8ll8vxxBNP0Na2PHOTzUr78u2UMS12ZQugFA+091BolXgdaOvidK1MNQwWyi11fy1tZT+ZR7cCRHUybYGv75gDazFn0IhD7ix08kTvIACOYfLm/BRhkiw0ooG0vNQ0DPoy6/w9a40qVTBHJrAujGGeG8Go1BbvNgyivUNEt6VBoe5a/ICYBT4xsA/bMOiwXUabdca9OlnDwk9i+twsSim8JCZjmmmJnRDvcznL5gPdA7w4M0bh/gNUrAJtLxxh5xe+QcdHDhK4yfJ9iHaSzjptOOhQgb08j7gdzWQuzkF0DZOT1RI7MrlNl6terhlHvFOe5f72bslICiGEEFdhU++in/rUpwD4+3//76/6bfLRo0evflViVQXL5qMDe5fd3ulkONzZz7dnxsiaFpZhpM1ljvekMwyZA89MM4rZEAZqS86PEk3vJY1eut0MA9kC035jycyyIIlxDZO8edmHuTDCnJjGHJ3AGJ3EHJnAaCzuadJAvKOXaO8Q8Z4h4p0D4Kz+gfBiUNrpZPiBHXt4ZW4cL44xlKIUBnQ6Ll4c0Wat0nxDiPehgWyeT++8PQ3qnuwnnK9gv3OCH3rhXb7wkYdwcys0c2rzoWlDJQPd13YERZeT4UKjyudGT9PlZOhxMzzc2Y95BUHpqWqJ785NECUxj3dLV2MhhBDiSm0qQPylX/oledO9gd3Z1snJWolqFKRll9kYXQhQNQfdtGCuVYrZ01iyJzHRGlTaYfBStxfbGW5Ul9zmJwndEbgXxjAmZzAnZzAmZzBmSyi9mH3QhkE80Ee8cwfxrgGi3YOQvbJS0G43w8d27AXgZK3E81OjdNgOXhyzvyDdS4W41ELGTym8jz+DKlXoGZngmRfe5rXvfwRtLB1/qzs81GQByu41DxAtw2BXrkA9CpkPPEYaNdptlzuLnRs634sjXp2bYGe2yDuVWdosh/cq8+zMFdmVW3u8jhBCCCFWtqkA8Ud/9Ee3ax1iC5hK0Z/J8V75kg953Q2oOTCTQ5XSAE1f9iHQi2OypkWn4y7eqDU7A7h9pkxfdZruWpNiuU5+vkqxuXT+JUBSzBPt6CXZuYN4qJ94Rx/YW1fmdfFD7758G287M5TCgFjrhU6OQogVWCbNH/s41n//Q/aNz6FffIfXnrx/aTfg9lb5eTmzaqOa7Za3bPLYmMrnyNwkOzL5Ffc/X+5srcy75TlOVcvEOmFXrshIo86870mAKIQQQlwh2ahxi+lyMsSXfMzTPQ3U+Q7UTA7KLlpp6GyikgS3GZCrN2kvVdgRJBSOT6MqNYxyFWO+TDGM+NRl108UNDrbsAf6ifu7Sfp7SPp70Llrs/fUMUwe7OjlG9MjKMWGPkQK8b6WzVD98U+gf+dz7D81SjOX4b2H71y8v+ijjSTNIGqWVBdca+22y3CjxoRXX/dn249j3i7P0mmnM2Avxry2oahEwZrnCiGEEGJ16waIn/nMZzZVVvoHf/AHV7UgsTrt+VBroKIYkgQSjdIJxAlEESoI2VGrcvfUFH1qFiuKsf0It3wcd9bHTRq4NHA/28D1w7Ufy3WIB/qotud5105QXZ1UOwqcsBKeGdp3XUdL7C+0M9qsMdpc/0OkEAKyXZ3UfvwTWP/rC9z71mmqWYfhA3vTOw2gGKQZxIYN+bX/bdhullLMB96ax8Q64e3yDOUwYGc2v+Q9yjEMCRCFEEKIq7BugHjHHXfIvsMbgPn2cfwvfI38OjVgOWBwnWtFpkE9n8HLulRyLuWsw+7BQbJdXSRtBXRbAZ3NgFKEccRbIyfJmzYZwyRq1sld5w6BhlIc7uqnt15ZnPsohFhTdnAHjc98FOv3v8Sjrx5lyoIzO3vImzad7R6UM6j3etBDVRisrX/BlWjSMgPzyotVM6bJpLf6XkitNS/OjHO0Mk+vm1n2/mQbBtUwXHmshxBCCCHWte6n61/+5V++FusQ69Cd7ag9Q0RBCMpAGwpMA5QBhoG2THBsEsfmuFfDt0zMjEtkmQQZB89y8f02/IGY2E3/2hOtGWnW+UD3DuyOHqIVHjdjWuxw84x7dUxbYRsm+atsR78V8pbNPe3d13sZQtxUzH278T/1ETJ/9FU++fIJ3vx4N9/Kh3T0NmC4HVXKokpZdNNG3za/uYuHBur1HdC00U8Og3NlQWLGtKhEPn4cr9ihuB5HnKmV6XezK95vK5NmHOAnsYy7EEIIIa6AvHveJJKdO3D/5k9Qm62RJGt/8LowNcK5eoX+zEodPhf/yqtRQLeT4e62rjWvtzNX4FyjQtCaOyhZOyFuXtGB2/HrTTJf/TYPfuVlTjx9H8nOPMbT59HlDOqdPtSZTrQdw+7Kxi4aK9RrA6hq2uhKT+Zh15VlITOGyWzgUYkCes3le5sroU+oV5jp2GIZBmGS4MUSIAohhBBXwlj/EHGz6XGzNJOIMEnWPK4WRewrtC3MHFzregpFKQhot51tGZwthLh2wsP343/oMYww4tPfeofsdAmcBHob6IfG0UaCOtEN8xvsEjyTQ1XddMYqoMYLS+/fRDLxYlloJVx5H2ElDNa8nqkUmnQEhhBCCCE2TwLEW9DOXIH9uXYmvQbNVT4kJVqj0Qxk8uter9Nx6XYyDGbzPNzZt9XLFUJcB8ETD+M/8TBuGPH9X3uNYqmV8evw0XfPoLRCHe3Z0LUWRujsn0dnQlQpC81W9i5WqCMDqCMDGw4UFYpSuHKjmhm/ibXOl1paQzORAFEIIYS4EhIg3oLabZcfGNjD3W1dlIKVv4VvxCFFy6HHXX88hakMfmDHHj46sJe+FctWhRA3o+DpRxm+7zayfsiHnnuVfLWR3jFUQ2dCqNsQb6BioNSaodrhwUAr0BwpojVwtDvd2zh/SdC4jqxpMr1Ko5opv0l2lfLSBUrjxfGGHksIIYQQS0mAeAvbnSsS6wStl39tX4lCdueK65aXXpSzLEwpLRXi1qIUMx96hHf29ZNt+HzoK6+SrbUCs1yIQq0f1MUKqi7aiSAboYeq6VzFc+0Er7ejxi4ZWD+3sXmptjKohMvHbTSiiFoUkjHWXpOJorbC+UIIIYRYnwSIt7D+TI6cZVO/rMzUj2OUTucJCiHe34qOy58dvoMLe3eQrzV55suvkKs1F+ch1tfpWlx2UVql2UNFGiTeMYfSivh8Hm3FJPvnAFAbDBAtwyDQMWGyNAtYiXyCJMZZ54st2zCoRP6GHksIIYQQS21ZgPiX/tJf4m//7b/NkSNHtuqS4iq5psnefHFZs4dpv8kdxc5VupwKId5PipaDbVm88OR9XNg7QKEVJGZVKT2gsU6AeHH/YcclAdmuCrqvjiqG8Og47C2jlU4ziBvYh2grgyhJ8C8rE61FIWi17nxD2zBWbXIjhBBCiLVtWYCotWZkZISf/umf5jOf+cxWXVZcpZ3ZIskln8j8OMY2DO6XGYJCCNLy8aJl09AJrz59kAv7BtJM4ptfIxdVUA1n6Ql66a/VVKvRVcclTWUU8MAUme+bhkIIpoZ2DxWaUFt/jqqpFJFO8C7LIAYb3FdoK5N6HBEksg9RCCGE2KwtGxL1P/7H/wAgCALeeeedrbqsuEo9bgbXMPHiiIxpUYtCet0c7Y57vZcmhLhBDGTzHC3P0eG4vPrBg2il2HNmjA8Fn+P54sdZmGjomahXhsBO0LvLAOl4izYP2i4r6VSwJNHX5UEpCzM5KJbXXI9SCgXLMoheEmNsYCt01jSZCz3mAo8dG+jULIQQQohFG84gBkHAf/2v/5Vjx46teZzjODz88MNXvTCxNXKWTa+bTUuzSFu/78oV1jlLCPF+0uNkiVuZQW0YvPrUQc7tHyQX1/jQ2T+lUKmn2cKjPajAQtUdjKO9GEd703Pumk2zhmvQfWmYqcaLGxx3ofAvywA2o2hDzbIulqDO+h61KOTt0gzxCs26NitMEs7Wyys2/hJCCCFuFRsOEB3H4dd//depVCrbuR6xDfbk2/DieOFDzUZGWwgh3j/aHReUJrkY+BiK7z51kHNtd5CL6zz7hVfoeNlGzeTRuYDk8Bi6v4ZGower0LGBhjDFEF30UXUHznagXhtYs0Oq1nrZsPtmvLEAESBjmIw0a5yozvPS7DgnKvMbOm8t036DV2YnmPAaV30tIYQQ4ka1qT2IBw8e5N13392utYht0uNmUUpRjUIypkW3m7neSxJC3EDabYeMaS2dHWgojux7gtP5+8iEPh868WW6olH0PdPQ6aEPTqGfPZf+foP0QDW99Oku1FwWdaFt1WMNpWhcFiA24ghLbextK2/ZTPsNjlXmcAyDI/OTXKhXF4PgKzDne4w3G7xVmrmq6wghhBA3sk0FiL/wC7/A7/3e7/G7v/u7DA8P02g0aDabS/4TN54ux2Vvvshc4DPg5nCMdYZMCyHeVxzDpNvJ0LwsIKMY8mb70xztfBBHB3xw5vP0N0YW77f0uqWlSwzU0Epz8X9MFCBZ+VDbMBZK4y/y4nhTGcRmHFOPQnZk8hgonps8zzemhqlHVzYjcdSr0+W4XGhUOVqZ25KyVSGEEOJGs6kmNT/+4z8OwL/4F/+Cf/kv/+WKxxw9evTqVyW2lKkMnu3bxW2FDrLmlvUlEkLcQgYyeS7Uq3hJTJ+bxTYM9O4yOhvxTv8gwTGPB44c46mvvcbLTz/A6N6BFa8TJgn2anMKnQT94AQYGnWuAzWbQ89noXv5l4uWWjrsPtYJoY7JGhv7N0wpRc6wcM30C7FuN0OUJJypVaiGId/Xv4uC7axzlUVBEjPtN2mzHaIk4cWZcab9Js/07dzwNYQQQoibwaaihV/6pV9ad/6UuDEZSrE3v3o5lxDi/e2utk46HZfz9SpHq3MMZvLYDjCUloWeuG8fgWNx+KV3+MDzb3IkiDh3564l1yiHPnOBT5fj0uGsUsrekwaD2q+hZnOoc+3oog/O0lSipQzq8WKAGCQJsdZYK7UxTUAdGQQzQT80sVAbc3k5vWUY7MzmGW7WGWnWuNvu2vCfz3zg48UR3baLMtPA81y9QjUMKG4i0BRCCCFudJsKEH/0R390u9YhhBDiOsqaFnvybQxlC6DgWGWOndkCxiVfCp67cxehY/H4t77HIy++Q6bpc+zgbaAU9SikEUXc3dbF6Vpp9QDxot462o1QcznU83vRVozeW4Z9JaBVYhqHBEmMY5gESUys9colppN5VDl9PH2+Y+EaK1FKkTVNLjSq3N228QBxLvDSTq6tx3cMk0gnTPtNCRCFEELcUja1B/GiU6dO8Ud/9Ef8+q//OtPTaYOC8+fPU6vV1jlTCCHEjcwyDB7r2sFgtsCEv7xb5+jeAb79kUOElsn9b5zk0EvvopKEchhwoL2b+9u7MVBEySqbCxceSKMfG0XvLqEzIcQGxqkuKKUzWi1lECZ6YRZimCTEOsG82KRGg3qrD/XdAdTZzvQmpVGnO6Fur/nQRctm0mvQ2OBexLnA483SNHlr6XeqJoqJZn1D1xBCCCFuFpsKEOv1Oj//8z/PJz/5Sf7hP/yH/Mf/+B+ZmpoC4N/9u3/Hr/3ar23LIoUQQlw7rmnyePcOFIpwhUBvcqiXb378MZpZl/0nhnny669jBhF9bpYuJ0O3m6ESBQvH16OQU7UywWVzDXFj9F1z6A8OL3RDVUd7IUkD1ThJ8FrnBEmMurQjznwGNVlAlbKouoNu92BPGaUVzK09yidjWvitPYXrKQU+35wawY9jOi/LihYsm+FmjVivEwwLIYQQN5FNBYi//Mu/zBtvvMFv//Zv8/rrry8ZFvyhD32IF154YcsXKIQQ4trrcjJkDXPZsPqLSt3tfP0HP0ClPc/AyDR/7ptv0R0mGEpxR6GDWhSitSZKEmYDnx2Z3LKupEsM1NAdTVTNgflWuSgw0kj3QAZJ0rolpc51pMf01tHZEH37HDqfBqXKW79Ts4HiQqNKrBMSrZnxm5yqlpYExDN+k69OXqAU+vSvMD82b9nUooBJmYsohBDiFrKpAPG5557j7/7dv8vjjz+OaS59Ax4cHGR0dHRLFyeEEOL6MJSizXGWZ/0u0Shk+fonPsBEXwf98zUGfu+LqNl59hfa6XWzjDfqjHl1bi+0sy/fTjNe/Voo0L2tQKuWlpl2OS5vlWaZC7xW4NbKIM5l0g6omRB9cBL91DB0eZBpjenw199e3+1kOFqZ4xuTI3xh7AyfHz3DN6dHGGlWF455rzJHOfAZzORXbNBmKIVlGHxjaoRz9cq6jymEEELcDDYVIPq+T0dHx4r31ev1ZUGjEEKIm1eHnVkzQAQIXZvPfeh+RvcNYpar5H/nc+RHJnm0ewemUtxV7ODJnkH6MtklVScrKrQygNW06Uvesol1wtulGYIkTvOH01nUGzsA0PtKS9/F3FaA6K0fILqmyWAmz3CjSj0K6c9kcZTB8UoJrTVBEjPSqNHpuGtep9/NgYZXZiek1FQIIcQtYVMB4v33388f//Efr3jfV77yFR566KEtWZQQQojrr8N2iDYwDN5TMPrxp/AffxDl+WT/95+w99h5PrX3dp7qHcI1TbqdDI5pLjSdWVGxtW+xttgVtNNxGW5WKYc+BqCO96ASg+TOWdhZXXp+pnVtf2NfVlqGwUA2T5eTwVQGnU6GsWaN2cBjxm/SiEJyG5gd2+G41KKQ+cDf0OMKIYQQN7JNBYg///M/z3PPPcdP/dRP8dnPfhalFM8//zy/8Au/wJe//GX+xt/4G9u1TiGEENdYzrKBtWffhkm677DLzRI8+wGaP/gsAO6Xnqf3Ky8vzFLKWTbdTmbJbMNlnBhtx2mA2ErGZU2LZhQz43tYkYlq2uhcAHvKy883dXq+Z126XXHDbMMgAd4tzzLWrINSG5r9ayqFRjPre5t/0E1aM8AWQgghtsCmAsTDhw/z27/92wRBwD//5/8crTX/+T//Z4aHh/mt3/otDh48uF3rFEIIcY3lLRvQS0pDq2HA+UaVKa9BlKRzAPcX2ulrNXGJDt5N8y98Cp3LEH/7ddz/80Xw0szarlyBRhyt/oAKKPppJ9LG4qgKUymCJCbTyKU3FIKVzwdwI1RiQHRFU5zod7Mcr5Y4VSuR30D28CJHGYw0t3fU06TX4E/GznC2vkJwLIQQQmyRjb/7tRw6dIj/9b/+F57nUS6XaWtrI5tdu6W4EEKIm0/etLCVSagTHGUS64RSGPBwRy+zgc9os4apFPe39yzJtMW7Bmj+9I+R/8MvY50ZJvff/y/NP/dxBvMFDKaIkgTLWCWAKwQwl4OqA4U021i0bEqhT3ejHQBdXCNAzMRQI80i2msctwrbMNiRyTLpNxlwcxs+r2DZjHt1giTGMbZ+P/584PH1qWHKgc935ybpd3OtDK8QQgixtTb1FetLL71Es5nOjcpkMvT390twKIQQt6iMaZExTbw4Zj7wGWnW2ZUr8HBXHz+wYzcfH9jD071DdLuZZefqjjacv/kTRHfsxZwrkf/vf0jf8CQ9bpZyGDAXeCuOvbgY/KnaYnOYvGVTjyKceutx1goQFxrVXHmQ5hgmu7KF1YPYFWRNCy+Otq3MdLhRpRaG7M23UQ4C3q3MbcvjCCGEEJvKIP7Mz/wMpmly4MABDh8+zKFDhzh06BCdnZ3btT4hhBDXiaEU7bbDyVqZoWyeBwu93FXsxFRp4DSYLax5vsq4+D/2MeJvvIL78hvkPvslPvToffyPXUW63CzzgU/h8izYxfLR2uLthlLcWWjHuBggrlFiqjNRumtyA6MuttLFDGop9BnI5rf8+ufqVfJW+pwKlsVkU2YvCiGE2B6begd98cUXOXLkCK+99hqvvvoqv/M7v0OSJOzfv59Dhw5x+PBhPvWpT23XWoUQQlxjA9k8bbbDw519ZDaxJ2+BYRA8+zjJQC+ZL36Dna++w18a62X240/zfHVmeUmme7ET6dLHUiioOWgrXpx3uJLWfcqzrqRPzVVxlMF4s86Btq4tvW61lXHtao3ccAyTShQQ62QhWBdCCCG2yqbe7Ts7O/n+7/9+vv/7vx+ARqPByy+/zG/91m/x+7//+3z2s5+VAFEIIW4hD3T0bsl1ortvo9HTReYPv8zQyDQDn/0q4x86yGkV0OteslXBidFKQ3BZiWjDRiUGuq25dmPVVQLMayFn2Uy2mvdspjx1PdN+k0gnC4G0a5hUopBaFNJurz2nUQghhNisTb+D1ut13njjjYVM4ltvvYXrujzzzDMcOnRoO9YohBDiFpD0dNL4qc+Q+ZOvY584y/d98SWiw7dTvWvvYiZMAXacBoiaxWCw3io5XaW8NEoSJrwmA66Zbq6/ij2IVypnWoyHDcphsOK+zCsRJgkjjSrmJVGxZRgkWtOIIgkQhRBCbLlNBYg/+qM/yvHjx+nu7ubw4cN87GMf4x/8g3/AXXfdtaFZUUIIId7nXAfvRz9K8vIbOM+/yg++fJw3Ziq88OB+DMuiP5MDN0YFFjo0wGkNRGxlFLW78hzA2cCjaNtM+VUG0dBwrtUzWmC05iHOh96WBIgjjRqvzE4wGzSXZlkBraG+QpMfIYQQ4mptqgbm+PHjWJbFgw8+yEMPPcTDDz8swaEQQojNUYrgAw/T/POfJMlmeOjUOD/7/Hv0NQJKgX9JmeglWcCw9XZlJws3JVoz3qzTjCPCJOHe9m4sW5EUfJRnQfPal5maKKa8q28gc6Za4s8mL9CMQ3ZmC2RX2P9ZlQBRCCHENtjUu+eRI0cWykufe+45fvVXfxXbtnn44Yc5fPgwjzzyCA8++OA2LVUIIcStJN63k8bP/jkyf/xn5IfH+cyXvsuXDt9O0xlKCyoDC0iDIBW1gkV7MYNYCn1yls2032Qgm+dAWxfNOORCsUaxloHZLGqyAO0e+vb5q1/w2fa0Cc5AfdVDOhyXo5V5upwMd19Fs5r3KvNYStHjrjxKyjUN5oMmtSgkShI6HCk1FUIIsTU2FSBms1meeOIJnnjiCQDCMOSll17iN37jN/jVX/1VlFIcPXp0WxYqhBDi1qOLBZp/4VM4LxzBefE1PvnSMY73BbxnfT/JpRnEYGkGUWtNLYp4pm8I1zDJmBamUhQsB7+9TnG8B3WqCxWaMJdFdzah+ypmFDYtjFPdaCNBd3qQWbnUNWtatNual2cn6HVzK5aahkn6HOxVGtloranFARlz9X2UrmEyF/h8e3qUWhTy0R17KNrXvqxWCCHErWfT9Tdzc3McOXJk4b/jx4+TJAl33HGHNKkRQgixeYZB8KFHiXcPYP3xV7lr6gz91h/wUukxaoOtYy7LIFajkHbbYU+uDfeSQCpjmnjFNMOnwsXb1Xu96IcmoHCFZZmlNEOnEgPOdaDvnl310IJlUw59GnFIN0sDxHLo88L0GLtzBQ6u0iHWT2LCJCFrrR7wOYZBJQqZCzwMFC/NTvCR/p0y9kIIIcRV21SA+NGPfpQLFy5gmiYHDhzgscce46/9tb/GoUOH6Ojo2KYlCiGEeD+I9+3izP/7E3R87lvsnJ/l+488x5vW3Zy9Y+eSDGItCqhEAU90Dy4JDgEyhoV2Y3Q+QNUddJsH2SgtNX15J+wroffPrz0qYwWqfEmgN1qEwSq0rdxRtXUGXrw0y9iMI742OcxIo0ZujeygF6cB4lqjMlzDpBo22JHJkjFNhhtVKmFAp7M13VOFEEK8f20qQPzBH/zBhX2G2ezK+yKEEEKIK5Vtb+MLjx7i6RdLHKh+l8MvvsPA8BSvOT2EZImtiLkg4IM9g9zd1rns/ItlmbqrkQaIu8vQX0e3+6jTnagzndC00PdOby5ILKWBlx6sosaK8OoQ+p5pGKytekrzsiYyJ6rzzPoeOzI55gIfrfWKTd68JCJBY67RAE4pxW2FtiW3NaKITqkyFUIIcZU2FSD+zb/5N7drHUIIIQRF28HIwrG2R5js7ePR6a8zNDxFt/mHHOn4MKeJyFsWtxc7VgyuMqaFbRgE+2dxepvQ1UwDwT1ldHcDXh9AjRfRQxXo9De2qEhBzUG7EfqeaXSbjzrWjTrdiR6orRhoWkot6TJai0LeKc/S6TjYyqQcBXhJvGJ3Ui+ON5vgBDSNONr0WUIIIcTlNr0HcXh4mN/8zd/k9ddfp1Qq0dHRwaFDh/jZn/1Zdu3atR1rFEII8T6RNS0yrQKVOWuA5z71JA++epT9J0d4avaLdLw6xLFH71m1wYtrmFjKIDQinO7m0jsLIXpPCXWiBzWbQ280QKy4KK3Q7V4aDO6qwGgRVXXRTQtyywMz2zCWBIjDjSqNKKQ7V0RrTZDE1KNwxQDRj2O03tjSFilqMvZCCCHEFtjUbvZ33nmHH/7hH+a5557jvvvu40d+5Ee47777eO655/iRH/kR3n333e1apxBCiPeJnlyGxIzBN4lti9ceP8hLXR/HN1zuOznKx7/4MsbE9IrnGkqRt6yFTqHLXAwa5za+TUKNFwHQ7ZcElF1rX8dSBrVocY/ilNfAMdLyV6UUClYN6BpxxGbHCzuGQSncYMArhBBCrGFTGcRf+ZVf4Z577uE3fuM3luxBbDab/JW/8lf4lV/5FX7nd35nyxe5Gf/zf/5P/tt/+29MT09z4MAB/uE//IccPHjwuq5JCCHExnW7Gap2hO256FhBYDCW3cNsTwf3Vb7M3ol59H//vwRPHSZ4/EG4rOFL0bKphqs0kMmHaDeCsguhsTA2Y1XDbaixItqJYGBxv6HubKLOd6Dmsuid1WWn2YZBPY4IkxhLGUz7zSXZQq1Xz/hVwwB7k91IHcOgFFzFGA8hhBCiZVPvQG+//TY/93M/t6xBTTab5Wd+5md46623tnRxm/Wnf/qn/Kt/9a/4a3/tr/G5z32Ou+66i5/7uZ9jbm7uuq5LCCHExhUth9hpBU+etTDiwsu5fO6D9zL17KNgKNxvvUrud/4vxtTSkRMFy1k9g6iA7iYKtTT7p1v/XWqkiDrWjVYa/cAkuJd0Je300ErDfGb5eYCtDKIkwYtjGnFEPYqWzDW0DcX8KgFdLQpWLaFdjWOYCwGpEEIIcTU29Q7kui6lUmnF+8rlMq7rbsWarthv/dZv8ef//J/nM5/5DLfffjv/9J/+U1zX5XOf+9x1XZcQQoiNy5gmfnsDAHWuY2HERWLFWKZJfPgg9Z/9caKdOzAnZsj91h/gfPsItMZK5C2beI09fLq7de2zHTCdQ73bi/rmHtR3dkHcqu2cyWIc7QUF+uAkdFxWvmlpaPNRgQUjS7uJAlhGK0BMYqphQKjjhRJTuDjo3kNrzbTf5EytnK5Na6pRiHUFGcQwSWhE0qhGCCHE1dnUO9AzzzzDv/23/5YjR44suf3IkSP86q/+Ks8+++yWLm4zgiDg3Xff5cknn1y4zTAMnnjiCd58883rti4hhBCb4xomtaFptB3DWAE1n2b6IjMkZ9rkTAvd1UHzJ34Y7/ueBMPAfeG75P77/8WYnCFjWmvv4ettoDuaqKqL8eYO1FgRFZmopg1TOQDURAEgHWXR11jxMnpvCa00xrEeONe+7H6lFF4cUYmCZV1JXdNkxm/yvy+c4POjp3lldoIwSQiShCCJN51BNJVBoqWTqRBCiKu3qT2Iv/iLv8hf/at/lb/4F/8iXV1ddHd3Mzc3x+zsLA899BB/7+/9ve1a57rm5+eJ45ienp4lt3d3d3P+/PkruqZhbL7R+Ha5uJYbaU3i1iCvLbEdruZ1lbEtbBei/bPYx/vgbDrvMLRiejIZLLMVPBkm8WMP0LxjL+6ffB1zeJzcb/8hOx+9H2NXccUxGED6znd4An2iCypuOvTeSlBv9aPG2mCgAbNZtNKovgarRpv9TTg0AUcGUKNF2FdZdoivY8qhj6mMJevJWfZCVWvGNKnFITEJIQmx1jimufr6V6PSGYrr/ZnHWtOMIwqWvXBbOfR5tzyLo0wOd/dv7nGvIfn3SmwHeV2J7XAzv642FSB2dnbye7/3e3zrW9/i7bffZnp6mt7eXh544AGeeuqp7VrjVVltEPF6LMugu7uwDSu6Op2d+eu9BHGLkteW2A5X8rqKdUJxNoO5vwknNSTpv+EqlzDY1bb83+buAvrnf5L4O68TffFb9Lz8PX7ieIFjH3mYykD36g90uA7UAdAavJMRzGVxqm0EgYXRFZBZb/J8QdM8HkLVIWNmMbKLex+z2sfIWtSimM5ilnxm6TaMPOnvoyQhaDQodmTx4hgnY9FW3HiX1SWPl7Po7i5wdH6WShBwf3cPuUsCQYDT5RJvlKf4kX13YBkGWmueOzXCcLNCr5ulvTOHtckM5rUm/16J7SCvK7EdbsbX1YYCRM/zeP755xkdHaW3t5cPfOADPP3009u9tk3p7OzENE1mZmaW3D43N7csq7gRUZRQqTTXP/AaMQxFZ2ee+fk6SbLpAVlCrEpeW2I7XO3rSvsJlaRJe4eHajWT8RKfsG4wO1tb+aR77kIN7MD+k6/TfWGcJ/7gW5y+ew/vHLqTyLFXPudSA1XUmU781zpQQNxRp17bwOiI9iaqatMcMWBg8X0j9GNeHhmlFgYMZPPUo5WvpbWm5vlMzVZpxjGeF1JXKxzrmeCb0L5yh9YkSDg1Ncs+s8CRsXFO10q8OzHFJ4f2YV6yp/HYzDQnSnMcc6cZyOZpRCHj5QpdlsNkpc7J8Rn6Mrn1n/d1IP9eie0gryuxHW7E11VbWxbbNtc9bt0AcXh4mJ/6qZ9idHR04bZCocB/+A//4YbKGjqOw7333suLL77Ihz/8YQCSJOGll17iL//lv3xF17xR/jIvlST6hlyXuPnJa0tshyt9XeUMi3oYorsbCwFibEVYylj7eu1txH/hh/neCy9y33ff4/Zj5xk8P8Ebj9/D2J4daz/orjKMF9K9iLSa2WxkYn1nEzXSBnMZ9I7F4LXbdvGSmJ3ZAoZS6DWupbXGj2P8OEJrlh9bs1FHBlGhSXJ4FDqXB5AZw2Taa9IIQ+Z8jz4ny7TXpOwHdDguzTjCMUwu1Ks0o4jztQr9bo5KEOBHMY6dZhOnvSY9zuYzmNeS/HsltoO8rsR2uBlfV+vWkPybf/NvMAyD//k//yff+973+OIXv8iBAwf4x//4H1+L9W3KT//0T/O///f/5nOf+xynT5/mn/yTf4LneXz605++3ksTQgixCTnLItIJ9Cw2iInNZGPNW5QiPHgXv/3xQ5zc20+u6fPkN97gia+9Rra+RmWIk6AfmkBbcTr3sG1pEObFESdrJaLLR2h0tsZVzGeW3GwZBgXLxtjANgeFWmhSs2xuRmigXh9Ahem3vupYD6wwxSNrmjSTmLFmnWYckbdsNJpKGDDRrPOV8fNcaFSohAH9mSxn6hWCJB3DoVTaVCdjmgw3ls913E7VMCDW68yjFEIIcc2sm0F84403+MVf/EUOHToEwG233cY/+2f/jE984hNMTU3R19e37YvcqE984hPMzc3xn/7Tf2J6epoDBw7wm7/5m3R1dV3vpQkhhNiEvOWkAWJ+cZh84sQ4av3SGIAuN4OXcfnCo3dy6I5dPPDi2wwNT9E3Pss7D9/J6bt3o1cKNvMh+omRNEa77O5aFNLjZJkNPPovLcF0Y3Q+QNUdtG8unZe4CWGSECbJ8rGK0zmUb6F762mwWMqix4qwc2kgZyqDWCcMN2pordOsJYpymAa65xtVDKWI0bRZDqNenSmvSS0K0ToNYvOWzaTXoBGFy/YubodZ3+O5ifMYSnGwo4cDben7dawTKmFAp5NZ5wpCCCG22roB4vT0NLt27Vpy2+7du9FaMzMzc0MFiAA/+ZM/yU/+5E9e72UIIYS4CgtD5RUkD49D1SF2Nz5AvtPJ4Bhp59C9B+/nC91t3P3mSQ4dH+GhV4+y7+QIrz9+D7P9K3yBuEqA5yUJ+/J5ztYrxDpZsq+PDg/qDpTdVcdirE0T6gQvjjAvG4pxscRWD1bB1KjXs6i5LHrnCpk+DfU4WGjO5hoG034TP4npsB1GGjWKto1SCgVM+Q3qUYjd6rKXMUxm4ibfnZvkqd7Bpc9xG5xvVKjFIW2WzYsz46A1txc7eW1ukvONKj84uG9Jt1UhhBDbb1NdTIUQQohrwTVMuBgodTfT/5psOEDMmhbdboZuJ0uXk+HZob28mc/zu7t7+egbZ+ifLvHhL73CudsGeevQ3fg5d/2Lorm90EGYJAw3awy4i90+dZuPGgVVdtFXECDqVolpI4qWlqRqYC6LRqelrHHrvubKb9+OYVAOAjJGGmBnDJNpv0GQJLTbDl1OBqt1/ZxpL5STuq3jlVIMZPKcqM4T6oSd2QJ3FDu2JVAMkpiT1RIdlkPRdjCVwQszY7xbmWMu8NFoztTKHOzYfKM5IYQQV25DAeLP/dzPYZrLy3p+6qd+atntL7300tasTAghxPtWGrAsFlvGWmOgsDcRqDzStYOsmb7NtTsuT/cO8Z6b5X935Hl4dJ7Dr59k7+kxhi5M8e6Dt3PqwJ6Vy05Jyz8tZdDlZHiqd4hXZyc4WSuxO1tIs3XtrX2I5SsriTQAP4nxkrQRz4KGnZaXtnlgJ2CBNhJo2Okfz2XbG7OmxUzg0e/mlvw+0gk9RmbJ2KeCZTMbeFiGQd5c/DhgGQb9mRxjjRpnahUcw2R/of2KntdaRps1KlHAzkx+YT1Z06IS+vS5GYIk4WhljruKnbgrfAa53sIkYbhR3ZY/GyGEuJ7WDRD/+l//69diHUIIIcQC1zTTQfKtWbYXSzo3mkEE6HWXduJUSnFvezdzgcebhmJmzwe5981T3H70PA9+99hC2enMjuWzE5txRNFyKFhpeeYTPQOMNmt4SZwGoYUQbSZQcVcM3NZjKoUfR3hxjHlpBnGuFXB2tQJQBeRCVM1FhwY4S5u75CwbNwoXSnQtw0j3cqKWzQS2DYMoSUi0ptNeOu/RMUz6Mrn0z6o0zc5cAcfY2iDtQr2KrYwl6zKVWth36BqaUa/OuFdnb75tSx97Kww3qrw2P0V/JkdeymCFELcQCRCFEELccBzDbDVd0VhKEWuNaSjsLQhSBrMFjlfmiTI233v0AGfv2MlDL79H3+Qcz375VS7sG+Ctw3fRzC8GmI045PZCx0IwkzEtet0sM34zDRAV0Oaj5rPoug2FcJVHX5mhFF4c04wjLEOlQeaFNtS5DgB01yXdV3MR1Fxo2uAs7bRqKsVgdulQ5oxhkjFXfrs3lcJPklVLSDttl+FmnXP1CncWO5fcN+U1OFadx4sjPtK/e2lgu44giRlt1imuEVhd3CfZiDb3Z7mdJr0Gx6vzHOrs41S1xJzvUQkDCRCFELcU2YMohBDihuMYBpZSRDrBYjFQ3EwGcTXdTgazlT2zDINKZ5HnP/You86O88CRY+w+O87QhUmO37uPY/fvp2kqQq0ZyhWWXGcoW2CkuTj3kDYf5rNpo5pNBoimUtSjkFAnOFiod3pRE0UA9EAVOi8JELOtazdsaF8+D/FyPe7qMw273QxevHrXVaUUjqGYC7xl971RmuZ8vYKpDGb85tLOruuY8Zs04pBOO7/mcQaKShRs+Lrb6UK9yjemh6mHEV4cMdqsoZWmHPoMZNd+HkIIcTORAFEIIcQNxzVMbGUQtQbGxzpZaKRytdpth3bboRaFdDit5jRKMbx/kLFdfdz99hnuevcs97x1mn0nh/nWvXvoe+Ae9uSWljl2uxnQi2Wwut1HAWqigB6obWDS8CJTKZpxRJJo3JFu1EQRnQnRD05CcWmApHNh+jgNe/lIjE1yDHPd0lFbmVSCpWuItWbe9+hyMpTDgAv16qYCxEmvCXp52etK6ysFN0aAeLpWAg27cwXO1SsYSpExLGb8NWZrCiHETWh7+1cLIYQQV0ApRZvt4MURkAYkq5VJXsm1d+eK1FvXvihMEmLb4t2H7+RLn36ac/sGyDYDPnrkJM9+4dvYF8aWHN/lZMhYJl7SysB1N9C5ADWXS4fZb4KpDGI0kU4wKukePH1wallwCECulUGczqFeGYSpjQdmV8I2jGVZvHoU4iUxGcOkzbI5Uy8TJhub/5hozYVGhby1fsDvGAaV0Efrqw2Fr06UJEx4DfKWjWUY7Mjk2OHmyJomUxIgCiFuMRIgCiGEuCEdaO/CS2JinWxpgAgwmM1jKcWs7zHlNRhu1hj36tRa+92ahSx//OgdPP/JJwgH+7GmZsn9r8+T+YMvoWZLQLoPcTBTYNpvEiUJWBr98ATaiVCjbeCtEAA1TdTpTgiWvv2arX2WidYov/U8c6uUqbZuV1UXVcmg3umDxvYVBNmGgZfESwLAahSk5b+GQcGyKYc+75XniHWy4jUSrXltfooL9SpvlKaY9JoULWfFYy/lGGaru+vGgs/tUgp9GnFErvUadAwTyzDImha1MLyh9kkKIcTVkhJTIYQQN6TduTaGsgWmvAYaTXYLRx0MZgt8uH8XL82M02VnuKvYyaTX4L3K3MJg9gRN32234d13kOjoadxvvox98hzW6QuEDx4gePIwH+gZwFSK49USu3MFyEbQ4cFUATwLMpcENjUb46VdAGnH073lhbtMpUiStFQV30pHWVgrB1u4MdpIUImBtmJUZMK7vehHxrfsz+dStjIIk4RmHC80CaqFiwGRUopuJ8Mrc5NUo4CneoeWXaMaBbxdmiHSCVpDn5tZmCG55mMbBkGSNu/JbuEXBJs1H6RZTOOykljHMAmSmHIYkJNGNUKIW4QEiEIIIW5IplLc197NV5o10JA1tvYta1euyI6daSZRKUXesjlaSbNgYZLueex2M6AU0T23E925F+e7b+G89AbO6+9iv30c+5EHOHToHs7WKwRJnO7nc1tBoW8BrSYyCag3diw8tqo5S/YPmkoRo9PjQhOdDVcflaGAtgBdcdCPjMHrA6hSFh0rMLe+FNMyDGKd4MURba1xGPOhh3nJAvOWjQLON6o8lsTLus2WgzTjOJDJoTUbCg6BhYCsEUV0rZ9w3DaTXn31Nau0kc4A0qhGCHFrkBJTIYQQN6xeN0vGTPf5OdswLN02Fufw9bpZut206UotCul1s0uzVpZF8IGHqf1/f4Lg0QcgSXBffI3+3/wsj58cx/fTYFC7rb2N/iXrHSuiPBuda+3lay4Ndg1asx6D1u3u2iWV+oEJ9BMjabfU/MrX3FqKxiV7Nmd8b2HW4kUZ08KL02za5eYCD0W613KjweGlGvH1K+GMtWasWSe/SgbTAGorPGchhLhZSYAohBDihpUxLXa4eRKtsVeZ1bdVDKW4u62LWhRSi0N2ZgsrH5jL4H/kCer/n79AeP9dKM/nkddO8GNfeJk9J0egFSCqiwFiAupsBwD63mm00umIikukM/8Uht9Kk7lLG+hc1IgiEq3BSdJyVlj8/+Y2ljhqvdAwKEwSyqGPe1lG11AKjV4xQBz36mSuOAOsqEcr/3lcC7N+k1oUkrNWXr9jGMwF648bWUusE07XygTXea+lEEKABIhCCCFucDtzBVzTvKLM02bdXujgnrZuXMNac34ggG4v4n3ywzR+9scp799JW8Pn0e+8zQ+89BUGmmcWm9TM5NLsYXcDOnzIhqjAgnBpDWmiNVbYOmeFDOJ84DEf+kxf1jVTX5yLuI0ZREMp6q0sXi0K8OMYd4WMroFizl86MzFIYmYDb9UAaz2OYVAOry4AuxrjzToJGnOVLygcw1xYXyMK04ZFmzThNfjW9CjfnBqVhjdCiOtOAkQhhBA3tB43S7vt4FyDANFUike7+3msq3/dAPGipLeL6qd/gN//vgeZ6uukvVrlibkv8eH3vsSO4SlUKc0K6v56ekLukkH3l4h1gh20jr0sg1iPQvwk4VBnH7HWSzNNrQyi2sYA0TYMKuHFADFsBUzLN0lmTZNxr77ktlLg48fpSIwrkWbovPUP3AaJ1pyulymYq2dnXcOkGUd4ccS3pkc5Mje56bEcF+pVYp1wrl7maHVuU+ddzOxqrYmS5LqPBBFC3PykSY0QQogbWqfj0u1krlkXS8cwuae9e1PnFG2Hxo5ePt/XyV1jVe77znm6mtN88GszzOXO8172ccbzrQApH8IMaYDYvliO2eVkyMXpDMTLM4ilMOC+9m4e7OylFoUcr84zlG01RbkGJaa2Mqi2SkfrUQirxCBZ06Ic+nhxtDCWZD700eiFvZ6blTEsylFAI4ooONe2U+hs4DEf+OzIrP5lQdppNWHW95j2mww3avRnc+zLt2/oMbw44my9TKftEiYJ5+tVHuroW9YxdaXzvjMzxr58G/e2d/PNqREqUcA9bV081Nm3qecphBCXkgBRCCHEDc1UBh/u37Vqid+NwFCK/kyWU7UyE3t7mTx9mAHvHPdG36FrfoanGn/CzHc6ePehO5jKFtL+n5dlENtsBxW0brssg5hoTX8mB8CefJHjl2aZrkGJqW0Y1KKQWGvKob9i9hDSbNps4lMJg4UAcdJrXNX+Uac16qIS+tc0QIx1wtHyLKxRXgqLnVZHmzX8JCZvWRyZnWIoW0i72q6iFPi8ODuGY5jUo4jOrEtiaia9JvOBn3bQXcOs71GLQt6rzDHlN5nymhiKFfeACiHEZty477ZCCCFEy40cHF7U6+aILg6Kz8RMOLfx1Y8+zUtdH6PkdNEzXeJDz32XZ9/4Gr3eMKreCujqNgSt5+cv34MYJgm2YdDlpAFDmklVi6WEdpLOVfTsVTN7V8ttDayvhQGzgbfi/kNgIUvoxen6E62ZaDYWBsxfiYvXLEfXLvDRWvNmaZrj1Xn63NxGzmC2VQbbabuUQo8L9SoAUZLwwvQo85eUydajkOenRxlr1hmuV2mzbZRSmMogRjPtN9Z9xCm/iaEUrmEy5TUYzObSjr+xNLoRQlwdySAKIYQQW6DddlCkwYVyY2gAcznGsn2M7upnsPN73PvmKXrm5niazzNd28GxqQeZSnaiu5voQxOt2YksySDWo5B226XYGsSeM21swyDUCY4y07mI2RBVc9GRAfbmm6Ss5+IsxOmgSTkI1syMAQQ6DVIqYUAtCujb4H7OVR9fKWb9a7cP8XS9zBvz0/S6WewN7H1VrTEgGcNEKUXOtHm3Msu+Qhvn6hWOVebpy+TobAX5p2slJr06u7KFZaW3WcPkXL3C3W1dqz6e1poLjQo501y4JqR7aJvXcSSIEOLWIAGiEEIIsQXaHRfHMAmShEym1ThmthUYFUNG9w4wumcHO89OcO9L5+j1J+gd+TLzdi9Hw4cY1Qb4ZpoNtBZTgY044rZCx0IgkTVNXMMkSOLFQC0bQc1Ny0ztK8i0eSZMFGBHDTIrZ6BMFOfrFfwkpmCtVeqpCVudPOdDjwR91R1oM4bFpLd+Vm0rzPhNXpoZp81yFspk1+MYBqXAp9NOmwx1Oi4jzRovzUww4dXx4oiJZoO7ip0AjHtpVnWlfZlttsNYs85os8bQKqNWqlHIfODT5bhLbjeVwr+BRmVcuhdVCHHzkJ9aIYQQYgtkTYs226EZRWQulojOpuWJutAK2pRiZP8AI4NDDJ2e5sDJ43SWpnli+jkqf1TguBFyoXsvmjRLNB/6JGj6LmmSopSi3XaWdva8tFFNIYByBtq95RtJYoV6txfdW4eBVrfRyRzq3T5UbKBrDvq+/z97fxIkWZal54HfvW/SWdVmMx9jjozIyIzIqaoyUUgUqgg0ARCggN3FRZPoFmkRdAuEG665IHdccMENKQLhgr1oEbAHijRaWBSMrEJljTmPERmzz4PNprPqG28v7lM1VTNVm9w83T3rfCIu7mGm+vTq02cW93/nnP/fmfn+yq7HbjgkMdmpVbVRm+PucIjiYuY0kxSdkVFNzFH7oE4c8fPmLrvRgOvFKl9uLJ9LkFqDmAKNXGw96HcJ05SVc1Q9C47LXtRlI58T1UqxFpT4uHNAZgwbxRKbwx6pyciMYTcczG279bWDpzXf29vkd1evU/P8Y4Y1+9GQJMuOVXIdpRlmybgt+Vny8+YuP2/tUHcDfnvlylSlUxCE55vnf6hDEARBEF4Q1gslBmkyjqlQo1zDypGqXiHj4ReX+N/+w2/ypxt/h11/g1qryzcO/pB//+7/m5c/vMvjboeC4/I7K9e4VqpOPb3hB1NRF+MsxL4H9+roH15B/eU1aE1XmNgvorYqqM8Wx/OK6tYCKtXj78+bYyw5Lr0kPlXwOUozyKMXHg97lObMK56HkVFN80geYmoM/9vWfX7Z3qefxPy4uc3ukZzIk4izjO/tbvKHW/fHM4KPBt1zO+ZWXI/XKvUpIRc4DleLZa6XKpQcj25e9WvGEYNTKmvLfoH9cMj/7+Hn/JvNu6Rmum24l8Qw43NwlCLLDiu4z4rPuy1+sL+FrxweD/t81mk90/UIgnA+RCAKgiAIwiWx5BeJTYYJDufATCE5zD48ilJs1a/ynZX/iH/3rW+zGdygHHf5+vd+yf/1X/yQ/+hei9f80jHX0Jrrk07m3eUCVHV81IGt1Ki+j/pgZfrl9m1VTA09aAdWDPY9jJtiqiEqdOe6obpak5whY89VimGakJqMbhITXDD/cGrdSqFR3Om1p74+SBNaccj6aL7PwPYZDF5GNOOQXprQjEP+cvcx/SRhLxpSds/fYHWa06kxhv1oSDMKwagTYyyUUlwrVVjyCzzod9kcTL+ng2iIp2cLxBRDbJ5dm6kxhl+0dik6DjXPZ8Hz+bzXms7uFAThuUZaTAVBEAThkrhWqnCtVOFhtsu113woJLDSP/l2rGurPbuldf58+UvU67e52f4+rz3YRX3n+5jv/pT4vbeJvv4lTM3OpJXyGcBeHj1Rq+Qv0PUhVRgM+Cmq52MSBdtlm7+4f9jmp7bLmCBBZRpTGcLCEDqBrSKWOjOXuuwHp+bzWaOUhDBNibOMygXE1iwaXsBnnRbdiRiHfhKTZBluvqaS63Kn1+HLjZV5h5liPxpiMGwUSmwO+3zSOSDKsksRtUfxtOazbpOy4+GcsevW0xpHaT7vNrlaOpxH3I/CmWt0lDUTepYVxF4S05yYj6y4Hg8GPR4Petws157ZugRBODtSQRQEQRCES6LguHx7+SrlwKVzbcfO+bnTVbfUZNMtg7lAVHnQ/UFjgf/1r73Fo//zPyT+0psQJ/jf+ynlf/rPKPzBH6K3dik5LsZYodBNYgZOZNtae56tDpZiqOftmNtl9AerqB+vW6dTL6/kbJUPsxhLMWbBtmaOKpCzKLneqaYjoxbTMEtJTIZ7UkRJM4DN8mHMxwmUXJdhmnCrfdiu2E8TlDqMwqi4HvvRkM4ZswA3Bzaj0VEaAzwYdDGYmeYxT8pyUORhv8ftXpvSOUTzgu9zp9cZv6c4y2gn0dyokdFjnhX7UUhiDucjlVJ4WnGr2z7lmZfD7V6LW91W3oYrCMJFEIEoCIIgCJdIxfOpez6xOb5JD9OUh4MeW8OJOblRLEXe2pm5Ka7S6NUlhv/B79L7z/5Twm99FXwP7/1PKP/f/2eu/X//La9utbhRrPDuwjI74QBTCQ/nA6vRYdvpvbr9O8kFxUoPUxuiBh5qu2y/VkpgYYhRxlYQn0BfOEoRZRn9JMFg5lccY4360Qb6F2uoP7kJj/MKmQEeVY7PT2Jba//k8QN+crBDajI77znxfV87JCZj6wxtpqnJ2Bz2xu2kDc9nc9ij8BSqh2DPy7VimYJ2qLr+mZ9XcFzCLOXR0JoK9ZKYKE3x55jQKNQzFYh70XFjogWvwN1+eyoL8mkwTBP+fPcx/3bzHn+59/ipvpYg/DojAlEQBEEQLpmK45Mc2aQnmRUuN0s12wI6Iq8gjqp5qZvgaj1uITSVMtHf+E26/9k/Yvi3fpusUSW4+4h/8J2f8w/+17/k6/f2qCqHpHxo4GKqEaY6mku0Qmv0mmZxCEu5QM1FmSnFttK5MEBFrjWxuSBu3ubYSaKTDW02y7a9tZyv84MVW9W8W7cVz5+vHROqdT+g7vv8cH+LR4MerTjEOfIaBe3w3b1NbnVPNkZpRhG9JKbo2PNedj1cpah5Zxdv50UpReMMbbpH8bXmYb8LWIGYGTN35tEYZt6c+FXxcNA9ZkwUOA6pyZ66WU03iQnTlNVCkUeDHt0XoIpojOFer8OD/PM9K5kxdp5VEJ4CIhAFQRAE4ZKpeN6xTfp+NORGqco7jSUmvV6Mm7d85hXExLGB68diCnyP+Otfovd/+z8y+Id/m/TKKv5ek8q/+A7/6f/yl7y1+WMKaR5dUQ2hMr15NO9sY9a7toK4mLeTjqqKuYmOeXsX46aouw3UT9Zhu3Tu9+4oRWoMnSSeFsJHUI+r+WvuYN7eQRmF/vka+lMbZKGGLuwef/2K56MM7IdDWlF0LOphOSjioviLvUf0TxAI+9GQ1JgpA6D1QvnY8Z4HKq7H42GPKEvppvEsA9MxShniZ2AI82F7n7/YfcR+NKTkHM/JbHgBH3cPTvxMnpROEmGMoei4hGn6K8vOvChxlvKnu4/4V5t3+MH+FtkZTKBGPBx0+ReP7/Cz5s4xl9vLoBWHz9wNV3h2iEmNIAiCIFwyR2MSUmOITMbbtSUqroejtTVX0XrcYjoSa4mbnOyiqTXJF14lefMVnIebeN/7GcVPbvPe7Y/5Mp/yoPgqn4ar7C9WMTrLTWgi2OhhRtmH9RCjDMrkSmPkslpMMF/ehp+toXZLsFvEfOuBNbg5I45SJCajHUfzdUzPQ7UKmFJkZyUbIZmboT5fgJ4PVzqohzXU/Tpm9fgmv+C4PBh06SXxzFbLuufzaNinm8RjQ5+jbA17M51Az8x2CfwUGk+/ilNyXA7ikL1wSDuKjlVNJzHGtvj+qrnba3Or2yZwnJnzkWXX46AfshsOuTHnM3lS2lE0Fs++1tzutegmEUXH5Y3qwlN5zYsSZxl/sfuYjzsHrAZF9qMhu+GA1cLZbsrshkNaccgP9reoeT4vl+uXtratYZ8/2rrPaqHIt5avnDv2RXjxkU9cEARBEC4Z2x56uIlvRiFrQYmrpQrGGALtEI0Eoju9mY+dmIpzhjZHpUivbZBe2+CDu7fwfvQBX/p0hxuDT7nxbz9lf6nOZ36fh+pt0saRbEDHQH0IzaI1rfEm1rA0wPzOHbi1gLq9ALcbmHd2zvzelVIoFL0knm9Qs2VnH81G9/A0rfYxK31IlV3ffhG1X8T0XCgnU08vuy77+TxbbcY8n1LWybWbxKzOePnUGB4NepRnVLrORN9F/2wdU4wxv33/Ysc4B0opMHCv32F72D+xyukoO4t3EoM04eP2ATfL1UsJsDfG0IojVgsFKifNVypFMx5yg+r8xzwBO+FgPENa83xu99p82mlS93yuFCtUnpIwvQi3ey0+7hxwpVDG1ZrMDHk46J5ZID4cdKl7vp1r7ncvTSB24og/3n5AlKXc6rZRwO+u3biUY/86kRnD+609+mnM1xfW7O/yXyNEIAqCIAjCJVM4UkEZpCnvLtRtO6NSlF2XQZJQwp0hEBPKXoXz4Cw0+JP3XubuF97lxv0HvHb7Fot7LX6DP2Gof8Ct4k0+720wLE+IgUUrECnOqA5qMC834UHNzim+3JyuIqYKHlVQu2XMSg+uHY3FMMQmO94mmzPKY2T5SHVQcej6utyH+3XoBscEYqAdwjRFKU40a2nPcTNtxSGdJGa9UJz5/ZlkwN0GuClEuUPnwMPEelpgPyVKrssvWruAYuOEdTt5DuVJ7IYDvre/yc+bu3x79SovPWH8xDBLCbOU+inmOwWt2R4OTnzMRcmMYS8ajmd3i47LghdQclweDnp81N7n64trT+W1L8K9foeCdsbCoup5fN5t8eXG8omZmgD9JGE/GlJ3fXztcL/fJc7sz9utbotftHZZL5R4r7F6otvtLHajAZ0k4lqxQpimPOj36CUx5UsU18M0oR1HZxbDzxvGGL6795gPWvsYDElmeKlcYzkonOry/KLw6/EuBEEQBOE5ItAuBoMxNjJBKahObLAWvALNKDfsOCIQEzehdM5Nhm0BU6QLGbcXrnD7SxusbO7z2gf3uPpgi7c//4gv3PqYhzfX+PzNG+ysL2KW+qhbC9bxdBaOwVxvoW8tYnZKUD40GFG3Gqg7ecteM8Bc6RxxNVB5PuGMjW6qoFmwlct5rw2YYmKLi4Pj50IpBbaoNjeSwtea/ei4GMnywHrDfKOXYyQK9bM11L7d0I7nRgE6vhXbT5mR2DlbzMjJM4idOMJRClcrvr+/yWpQOlf0xlH6SUKczXdWHVFwXHbCAanJjp37JMswMPemwulriBmkCUsTFdFRxXDJL/DL9j5vVBeeqgnRWRmkCY8HPaoTa6m6Po+HfQ6ikOXg5BsXB9GQKEsJHAffaB7GPfbCAUXX5bt7j4mzjK2hbVc9b2WxM9EaHjgOYZiyHfZZo0w/jU9d21n4RXOPzWGPv3/1lSc+1rNga9jno/YBa/mNmo/a+3zY3uelco1/b+36U4nJ+VUjAlEQBEEQLpnAcXCVJjGG0f37yda7hu8Td3NhOFF9MsqAc/6g9qLjMuV8oxQ7G0vsbCxR6g549aN7vPzpfa7f2eT6nU06tTK33rjOnS9FREsnbGZGTqhDd9puZuSMWoxtFW2/CMuTYsxWEMuzxMxBAWWUNco5aR+VVzaPvXZOxfEYnGDGEmiH/Sgci/R+EvN+a4/Pey2K2j1xju8YD2qo/RKmEKOG3qG5D0D3VyMQlVJnqk44SjHMTq4g7kVDPKVZ8AIeDHr8tLnNby6tn10wH2EUN3LaxrjoOLTjiHYcHWtt/cH+FgXH4SsLs5qCT6eTxKTGzBSYJddlLxpyp9fiy40VwFaRA+38yio+UZbySadJJ45YL5YYpikrE2JL523RrTg6VYTtRQPI54dH7cefd1t0koh+mnKtWObxoHeh1tP9KMSbuA5cpXjY73K/12GYpvztjZvj76UmY3PQx9WatTNWA/fCIR+093C1IkzTc1c4nwd+2d5HKTVu9b5WqpBkGff6HR4Nelwtna8D5HlEBKIgCIIgXDJB3jqWmIzEQODoqfmnsusfypPJCqKbgVLn3jSVHBdX63Gb2ST9SpFffP1NPnjvNa7fecwrH99neafJuz/8iHf0xzx4aZ1bb95gd3UBjm7wg1xohEe2Cz3fVkhfaqI+XEFtVTATAtGYvILoHt+sj9pLR06qcynkrz2jggjQ8AMaJz3dcWhGEYM0QSvFH27dZ3PYp+75dJKIxXPM3qmmfax5ZwceVVGPqpjVHmq7jOoEJ3i1/upxtWJ4SgVxNxxQcByUUqwVirzf2mOQJvy15SsXEkz9NOZktW9xlCbLRdCkQGxGIZ90DrhSvPjGuhWHJ7rm1j2fD9sHfKG2yH445Ds7D3mvscKbtePmNakxHETDsYi7DBHzJzsP8+gVxU44wJlhkKRR7IdDXq3MF3XdJOaTTpOye7immufzQXsPX+tx+3HV86daT8/KXjicugaqns+9vjWEqnk+mbHZpqnJ+Neb93jU7+IoxTuNJRpegdVCkbp3PMN0Pxry04MdWnFEYjLSVNFL4xdOIO6EA+702iwH078/XK1xleJnrR3Wi+Upd+QXERGIgiAIgnDJeFpT0A5xlpEZQ9X1pzZCZcdWxVJj6JoB4y2qZzf2564gui5+/nrzNoOZ63D3tWvcfe0atYMOr358j5ufP+LmrcfcvPWYdr3M52/e4O6rV4mDXMwWcqExnFhPomxVrxjDWhfz0bJ19HyLcZupqyFMU9zRJinWtrXUy2AnrzScJhCLuUAcXmyr4ilNlKW04ohPu002hz2uFSvnb/8yQCuw1d1aiKkPMRsdKMWo7bJtMX2OcJQmzJJDl9wjDNOEbhKPW5597XC1WOZWt8XrlQVulM9vINNLkjPXYxXQikIoH37t484B7SSiOFHxPS9bw8FU5esoVdfjwaDLv358l/1oSDMO6aeznU3v9zv88fYDYpOx4hf55vLGmStks+gnMY8GPdaCEkrBg36X1RlzpEXH4fGwN/c4SZbx3d3HNOOQq4XDE1jz/GOts2XH5WHcYzccsFEsHz3UTAZpQj+Np4yfyo7L9rA9jg4Zpgkl16OfJGwP+6wVSiQm4+fNXaIs4+sLa3xjaXrWc5gm/PnOI7bCPmXHZaNQZnPYoxvH57pRcxHm/RxclP1oSIaZaRS1HBR42O9xt9fmlRNE/ovAr5fljiAIgiA8J5Rcl8RkhFk6NRcF1vK/4npsDfsozxyG2LsZjlJjJ8az4ihNyXWJzdny79oLVX7yW1/kD/7jv8kP/to77C3XqbV6fOX7H/L3/z9/xDf+9Ocsb+2Dl1hhNCnSerl4LEfgGVjuoxIH9dN1iPR4PSnZeKOvfraG+tMbqO9eRfV9TGNwKADn4WYYJ4Ohx0VKdHb2087YfdTeZ71Qvths0NBFRS5UIuuuqrEtpUFq5yi7vjWweU4Y5VAezeEc0UliwiydugnhKI1Cz33OaTTj8NT5wxElx+Xj7sHYQKgTR3ySRz0M0oTBKQY7s0iNYXPYO3F2VynFol+gk0RUXZ+GF9BLZs/A7gwHpMZwrVDmIBryg/3Nc69pkt1wYmZQO7xSqc10VC06Lq04nGsy9GjQ406vzUahdOq1bL+vThScR+nm18bkZ6mU4qVyjfVCicik9PO1DdKEJDeiKjouV4sVGl4w8/Xeb+3xeNjnSqHMgl8YV9d66bRB1kE05OP2Ac38RsGTkpqMP9y6z0F0eS3g3SSeezPEUZqy6/Ljg+1TjaKed6SCKAiCIAhPgYrjs5MNiE127C551fP5OxsvYYzt6vxLJ0OlDpmX4mp9obarmuvzcI5r5yTGGLLcoCX1XO68fp1PX72K2dzhy7ce84U727z0+UNe+vwhnWqJu94ud/236WdYcdTLqwu5q6l5cw/6HmqvBB8vYb60Q8X1DjdRqbJzhyjo+5hKhHl36/SORAUUE1TXxyQXcwotaIeDKORqsXLxlq9m3i7XOLLJVEA1slEcfQ8qTy8A/jyMBGKUpjPz6zpxBEYdFxjKEJ0w03kSrXMIxAW/wINBjz/bfcjvrd7gTq/NMEtZ9gt04t6J2ZXzaMchvSQem4bMo+x6lLHHHqQJ3eT4Jt4Yw8Nhl7LjopRiKSiwFw7pxNGUqcx52A779vo/hUA77GUhrTia2ep7q9vC1erMs6J11+PjzgFv1xbP1DrcTSIwx2dJ9ehGD9BLrFFNPz1eNS45Ls04ZJAmU9fedtin4rrj44AVU/vh9M/UZ50W39/fpOR6VF2PVyp13qwuXNhBtR1H7OXV4suIcwFb/T4pZmbBC7g/6HK31+GtxuKlvOazQCqIgiAIgvAUqHgeiclQMDMbru4FNPyAouOOXTEzJ8FXDt45K4gAdT8Yb/Bbeaj6rLvwrTjidq8z9b1Hwx7B1XX+8Guv8wf/8d/kh996h93VBtVOn3f2f8jf3fx/8Nf/zQ+5dvsxTsduHUw5F6PFBPONR7YKms/qFR330Gij7aNQmMU+2Vs7mK89Av+MYq+Qi645c4insRQUWC+UnmgeSLXy+cP6jCpEJT8H3eenzdRRmswYwjlirx1Hx0ZNwW7+w1NmF2eRZBm9JMZTZ79mrxRKPOh3+f7+Jh93Dqi53liUHK0qnYWDKBzf9DgrntYzX6uXxDSjcOzq6muH2GTsznDEPQvGGO71O7MNm44wyu9sxeGx73XiiHv9Do0Z833zqLgenTjmdrd9psd3otnXxiSTFcSjv118rYnSlGY0vf5+khxzNA60Zn/iccYYHg27LPoFlv0CmTH8aH+bf/n4zpmrccM0YWt4GJ1zEIUcREPa0ek3zs7KaTdDlFJnipp53hGBKAiCIAhPgaLjMkwzio5H/YTKg6s0Jjeqybz0WIbiWZmcG+omCZ7WPBj0jonEXprQ8AN6+QYmzqxr6jcW1yg4Dh2tuP3Gdf7d3/0m//If/nU+WnuHoS6zvrnDN7/zU/6D7/9z3mt+h0a8c+ic6mVQtg6fozbTMe1cYC0ObV7iWcUhPPEc4qXQGlUQj2/azShDcvD8BLCPmCUQU2O4229TnHGN2XiM829qB2lCnGVnriCCrUitF0p81D7gIBoeXrtK0Y3PLxD3wiH6PK60WHfOME1Jj7TV7kchicmmqkQOis1B/+ghAI49/yitOKIVRzNbSmfhoNgLj9+MeDjoEmbpuUyElFJUXY8P2nvEZ6gO70TDE6tjGkU7F6+dODrmBDyKn2lOCNzUZEQzIm8C7dJJIuLMnr9uEnMQhZRdF09rap7P9VKFZn6z6yz8rLnLn+48HB9zNxwwTFN2wsvJ3oyzjH6anHozRKMu3K79vCACURAEQRCeAhuFMr+3do2/s3GTuj//rr9WauxkmjoXF4hV18Ng78QbDN9YWiNwHKJseqNiMDS8gE6+EY+yFF871D2ftaA0VVXp1iu8/+q7/Mv1/xN/+rW/xv2b67hpwqu99/lbf/zH/K3/5c95/YPbBIPwsJp2xLRFtfP3XjsusE7DnOJk+tSJNLQDTJAcuqpOMorieNL13anD7fqFZi3nMUsgPhp02RkOZrpMukpdSCAOs/RCRiC+dlgJCiz5hXH10FOKg+h810lqMh4OuzPbaU9i5Pp7tGq6Fw2PSc2K63G/3+H91l7uRGp/bn5ysMMfPLp9YrXol+090nOcn6Ljsh0eF6MP+90L/W5oeD770ZBbvZOriIM04dGge6KQ9bXDQV6Na8bhTEMsX+mpKl6YZvn1MX1WA0czTBN6if0Z2o+Gx4Q5AMZ+7zT2wiEftvc5iEK289d/NOxR93z2oiHZJcw0nvVmiFJqLFJfVGQGURAEQRCeAg3ftpCeBZXP16Vucm6DmhEVz8dTmm4SE2iHjUKZsuONhcJ2OGA1KOIph1fKNTZzM4koy6i6Po7SXCmWudOf3kiaIMEozWbtOptfrBH82w2uRx/zkvk5C/sd3vvBR3z5hx+ztbDOffNFHhzUSZcmDtC6uEAcVRDV0Hs2URK7Jdseu9KfPTNZGglYDxIFfQ9q52xnGzroT+0JM30f8/bOWRIjTsQwu130o/YBntYzW26dCwrEKE1PbUucx9FqWKAdm/F3Du72OuwMB1w5o1PnCJtTak2kRuEaxhju9zvHxGbJ9bjb6/Cd7QfcLNd4pVLng9Y+39/bxFGK9pGZwShL+bzbwhjDh+39mY6l8yg6Lu04mprjy4xhLxpe6HeDUoqa6/Oz5g4112dn2OeLjaVj7bibw96xbMaj+FrTikMyY2jH0cxqY8l12Rr2x3EYUZaSmOMVREdpDLaluEHAbjSYOadZcBweDXt8ieW56xqkCT852CYzBkcpHgw6NPyAVhSx4Ad0kphWHPJZp8mXGysXjtYYGfOcJvY1iEAUBEEQBOHJ0J6VP4mbXDi4u+y4lByPVhyyXChScFyWgwJ3e23CLKXoOjwYdLleqvJypc6Pm9sM0oQoS2n4tuo3MtOZihrIoy7U0MEMPGJd5PONN/ns6zXqe21e+uwBN24/ZmP/MRs85qt/4fLw0Qr3XrnK1soKauDZVswZJjOpydgc9ilol7rnH994PeMKosojOczyHCfIifWpTxdRD+pk72zDRvfsL7J9KGzUoypmYQBXzvD8tm9nHze6xwSlg537muThoMu9fofVOQLgoi2m9gbE5WS+BY5DL43HVe3TiLOUnzZ3KDnuuedMR4Ypk0J6Lxqym99ImcRRipfKVeIs4yAa0k9i7vXb1DyPXpIem2VsRiF/sfsYg6Go3TO9lxG+HsWzhGOB2M/dXRfOeMPpKHXP5/6gx7/ZvIsBXq7Ujxnu3O938WZkM04S5Nmi7ThimCVUnOPVRk85DNKIKG+HDbOUDDNlUDPJ6Jp70O9SmiHcyq7HTjggTNOZwm5z0ON7+1tsDftcKZQYZgm3ex2KjkecpZTdIgdxyAetfe7027xcqRM4Zxfsk/TT+Q6mk2ilzuwo/bwiAlEQBEEQnjFuOSUFoiCi4Jw/hw4YOy7eH3T4gm/z3ZaCIp92WqAyXinXGSQtrpcqFB2XjUKFR4MuicnGxhcLfoGS49HJQ7EBCHLRELrQz7cNJbshbi3V+NnS2/z8G19g9f4BN7/b4urw83G24tAPeOA94G71Ovsjy9YJ2nlguq81jwY9rhbLOMq2nh1EIeuj6LlnYQKTAXsljM5srMUsHGPbT4cu7NnFqo+XMIsDCM62QVSbtn5lXjlA3VpA7ZYwZxCI6pcrqE5A5mTWSOdxBRSYL+7gVgZ0J0TLIE343t4mvtZzczJdpRhmGWlehTkrF3U+nUWgHfYj60jq+6eLqoeDHvvRcCoT8HwYhhPrv9/vkmFmVoi0UgSOQxil3O93OYhCFv2AfppYZ9gJbPXIcK1YOXac07BGNfZnYz1/X904Ip7VfnmOY64XiqR5JTLMUiZ/ywzTxApe92QB6ilNmKXc73eI0gzPO74enbvopnlLZ5SlJzi4GoZpSpSldJKI8gzBWdAOe9GQg3jIujP9Of9of5ufNXdwlOZ60cbYlJXHnX6H7+1tUvNGx1M8GnTpxvETXa+DGa63s9BKEWfPpOfh0hCBKAiCIAjPmOJrPW7VtomLQzx98YDlJb+AozRLeQXEhqHbjcqb1QVKrg2pBrhSLHO720IpxjbygePw1YUV/nTnEYU8s21cJRu6toUSMKXpionRmq2bS2zf/Qo/HnybjVd/wM07D1l7sMtr0S947aNf0HlY4t6rV7j38gbdut04d9OELzdWeKO6wJ/sPODzboslv8B+NKTouvRUTLUY2ypkouBX6QWzU0alGrPSs/mH8yjGqNAdG9Wo2IFPFzHv7Mx/jgF1awG6HqpVwBRizM0m3G7AftF+ZCdptFiPZz3V+6uobELQ7BZxq4rehNnLR+199sLBiYLFUZrUJMRZijNRxR6kCYF2TqgApVzW8KTOXTy7STwVS9CKQ37W3OHdxsrU/KQ1TJkR2XEORi3YSZbxaecg/5k5AQN3e+18Fs3BU9NunMATG5SMjWpyFdc5IXvvrIzEpUIdm09txiFhmrLsn1xZU0pRcBw+7jRz19jjq9JKkRlDkp+DMEuZN/7nKE0rvyEQphmLMwSnUgqMdSRdn7gR8HDQ5WfNHRZyJ+jJx79Uqk5dEw5wEIfWmOgJBGInic5khqRQJNJiKgiCIAjCk1DwHMLSEFBzKzxnoeb71D2fau4KWfV8lLLHXPALXC0dCoRFv2ArToapgPE3qgvshkM+7uwDinW/iMLYwPiRW2dpjtNkJSILS9xfu8n91zYo/KDG9QePuK7fZ+nggC/+9DO++NPPaC5UuXNzjcHVBa5eq+BpzbeWr+Brh8+7LV6rNig7Hj9v7lGtRFZ8dX1YuDy7+hMZOqgP7cyTuXpKREAxgab9p1nu2aiPzQq8vm+riHsF6AZwo3Uo+u7VrEAcsdYD10BjiDooYjr+ybOMo1xJQGUaozPMKwfoz5Yg0bhK088riJkx3Oq1qeXXwjxcrUiMIcoyCvk+vRWH/JvNexQdl28srrFWKB17Xj+Jj82XPRGGsXHJiDvdNj9t7rI9HPB7a9fH4nE3HBI8wc+LMYowrwptD/q0ooiNGe9xkoLj0E6isTgqOC57R0xUnnT+7KhRTTMKz5SjeFaOzqfaduSzHX8pz7GcJ5Q0kGFI8gqanVGdrRB9rekk0bgdet5NCKVgOLHmOEv54f4WrlIzzYmOXuerefV0ezggSi/+2TSj2XOXR9EKaTEVBEEQBOHJ8LUzLhp5T7DZrrq5QMxbq6quR+A41Fx/nOs2YsEPKDgucZZRnPieVopvLq/zWrXOTw522B72Wa9EqG6A2c8rDPMEop9vimL7HsJBg8+qS3z6N6uUe11u3H7M9duPaRx0eO+gw3s/hfSHt0neehX1hVf56ytX+XJ9mYJjLfDfb+2RVkLcnbKtmP0qBGIG6hdrqNjBXG/BymzTlCTL2IuGrBUPqztmcYAqxah7DczDKtxojY+VLQ6gGtlcyE+WrKh7cw9CB25YEWqWBqiDom1XPUEgqoN8VvSVA2gFmKudw8zIxMHVml4+X9pNYlpReGqIvMZWfkYteJkx/ORgh2YU0mTIx21vpkDspfET5UwexVFqKiYhyTI+7TZZC4ocRCGfd1t8fbGAMYa9cEhwwbZLsKJ41IrbiSNQ80XKiLLrsTnss5jPAwbaCsZhejg/nDxhBbHgOHbOLz/mbjR4ovd5lKNtloM0mVvlO4pWipWgMLdCNhJno3MwOKHF1FOadhznM5zzF+AoRZgdtne24oidcHDm1mJHaRwFoAjPOGfbTWLu9tp8sW4NpHbCAZvD3mHr/Qlo1LjF9kVFBKIgCIIgPGM8rcdthU9SQVzwA96qLY4riJ52aHg+GzMcHn3tsBaU2A77lI7M/jhKs14o804941/3u2T1IU43QPXyzVFxziZrZEQTa1uFC11MJQTH0KuV+fDd1/jw3deoNjvUP73He4+aFLd2cbZ2Cf74e6TrK/hvvUr8hVfx61XWC2V6xR51FlGdADiH+csFUZ8vopoFTG2IeWNv7uOaccggTUkKEeMtYz3ELPdR9xqoBzVItW05BWgGViDmzqjZKwc2F3KSxT6waOcQX2rOL+ocWLFnNjrw6oH92mg+NNZ4SpPkEQ47w8GZQuTtxt6Mq1+PBj0+7zZZL5ToJhHtZPZNgX56PAT9SQgch/2J3LvNYZ9mFHKlWEahuNVt8W5jhShL6acJC/7F51NHrr9gQ+LPQkE7lB13/DNmTWUyukk8FohROr+t8kzr0g5xFjJMUzytOYjCC8ffHMfkbcGHtOLoWAzFSRQd1/ZtzkGhxgKxn8y/geBpTSeJ85zD+a9v55IP15yYDHWB1mJ7Q+D4765uEh+L99gPh3zQ2uNqsULJdfnu7mMMnClOZRRzcTSD9kVCBKIgCIIgPGM8pa05hTF4T1ApcJTmC7XFqa99obZ4GER+hCvFMmG+CZ39/QobxTLdSoc6djbSBAk4hkGasB9Zy/truUGEcVO7zYsdOCH/sFmv8PE7L7H+t19mtTPA/fBzvA8/w9ncwdncIfh33yXdWOWrN1b4bqUOXJ9vVJMBe0U7K1mJz2+oOTnv1/ZRdxoYN8V8eftYWvQwTdiNhqwHJQZpyqIfEAYhPmCUsQLQMVYk7pbgTmP8XNUqYK53DnMhF2ZUJmsRphhbgbpdgrUZ4eyxgo5vP4dJoZ5naZLYGIvUmLGhyNmrT2pcXWrGISZvefa0ppfE0+622CrjIEmOXz8ZcK8O2sBSH8pnd0cNtEMzj3n4WXOH+/0ujtJopai4Ho8GPbbDPg7WKfKixi1gBcOonXUvHOKfQegqpVidqKSqibnJ5Xz2d5AlT1RVdZQiw+QVYDvHVzttNvKMuErTPyL2m/Hw1Gy/82CANG8x7SfzbyD4uRDeCfsnvr6j1JRATDOb9XpeXKWOvffdcMCf7Dzkr69cnYr4GGQJO+GAB/0OiTE8Hva5dsYoFUcpQgzZswnnuRREIAqCIAjCM8ZVepzh9SQtprN4rdKY+71rpcrYoGYWjlK8XK7xveouY+ucvL10NxzyVm2Re/02/TSxx/EORYoa2i2GqR8XiP0kpux6LAQFskKJaGWJ6K9/A72zj/vhZ3gffo7zeJvXH2/zOtD0PuJR52UevlokKU/koXV81C9Wx5VNUx9ivvHo7CLx8wbqYQ3z3qZt6dzLK3MvNY9VSbtJTDMOWQ1KPBj0KDouNc9nJ+hT0ZkVwrmZjXlnGz5dhIdVWO+iNqt2NhGgHdjNbXVGxUqBeWsX9eMN1EfLmOQAVnrgT7TzdQKbzdgYTr9P97B6OxJxB1HI42HvxPDzaQ4riM1oiDcOsLfRBWEeXTBilHFXVNMiTX22iLrbsEdUBvPNB1Ce05Z8hEA7dJKYD1p7/Ky5y4IXjNtjtVJopbjf67AUFC/FuGXUinswHF5cbBo1rkSCnfF70rZbRW7wgo2DOS1776y4Sk/Fchhj6MTxpQpExWGLaT+N51YndS6Eh2l64k0MzXSLqa0gnh87mzv9c7017HO/3+En+9v83vqN8efWT+x18XG3ST+JWfSDU9uPRyjszZPkBXYyFYEoCIIgCM8YV9uKj6f1pW0Ez0LdC6ZcIWdRcFyyIMEEiXXrLI0qSfBGtQEYPu00pwSiijV05lcQe2nMa5XGdNujUmSrS0SrS0Tf/g309h7dn/8S95PbLLX3acT7vP0H0K+VeHB9lYc31ti79UVUz8c0BtDPHUH73pnFiNqs2Pf0k3XMNx7ZuAiAxoyqZxTy9cVVXi7X+V8f32ajUGa1UOJBv2tFqT/RtudlmLd34fU9az7Tse25puNNtd3OZGmA2eigHldRv1zB1KuY33h0+P2Rk2z5iMDUYJwMksNz+lmneWr4+STGHFYQ96NwLJhcrYnzltVpgZiRGDNdIdoqo+7aKiwLQ9ROGbNZhlebZ1qDqzWpMdzqtqi53rGZr4YX8Mv2PleLlSc2biloh73QZh924ujCIsnXit3wsCI8TNNTW3pPRxGOW1Uvb8ZzsmoKMMxSwiylcYbZurNjiE1mK8xpeqKRkEIRmXRmxMUIRynCCXMZO993/nPiamveNFkJv9Nrs+AF3Ol3+PHBFm/Xlii7Hu04ZMEP2B0OcLVmJTh7BVcrhTFW2L+oiEAUBEEQhGeMq2xboKvVpd7JvwwCx7F7scYQtiqYUkxsMjylKbse10pVPuoc2E2XNzKpcWwsBsw0tEmMYf2kdi2lyNaWaf321/gXry7xhc9qXP10jyvmE5bae7zxwR3e+OAOQ/0zHpde4sEXyuz0X8fcW4L9wtkEYqRR/TwqInLhkyVr+KLMTFE7ai2s+wG/s3KNwHEOw+jnGcp4uQish9DzUffrJz8+x7y9g1npoT5dsqK3dyh6VX/kJDujbdPLYOjkfh+G7bDPclA4/rg5KGVzAZPRTF1+LTp5G+UwSw8rydgKYmqyqWqZemizGcwXd6Aco3bKqK0K5owCEayzbiuOZrb0lVyX1GTc6rWeWNQopUDBw36PME2pXrCCWHBcdsPBWHiE2ZNXEA22gphirIvwJeHm83yZseH1/SQhzrJL7VwwRpFm2fj6cNV8uWEMRHMiLkY444zODEfpC5sAjbI+oywjcBw6udnNoh+QGsNPm7s8GvT4D668QjuOCbRLzXUInPOdG42tjL7IRjUiEAVBEAThGeNpO2Ol0ZcbGXAJFLSLwZBdaaPbASz3ifJWw6Ljsl4oUXBcBmlCaWIOjsixIfOu3STFWZZv0Gx1Zck/XbgUHRcFtF6B3uZX+bjwJRb+9/dY+Og+V+9ssbK5z8vdj3j5DyF2fsaWf5NHn23weCUgKpwiHlq2wmnWujZ7cMeax5jq8ereaE6z4dk1j+JCDtQQlc/7nSQITH2IelS1YfaAmSFAp9DAWh/T861pzuMK5rWRGc0JUSNuisLFJBpfO6TGnMlUY/x0pRkkCb00njn3NjjSnhfmDpXjuUSDFdk6g+W+rWpWQuuA2/XsjOgZqLguWs03Ial6PkXHvRT3VFcpNoc9UjIc7V3IWKTgOBxE0bjVengJLaYOts3R0xpjLrGCqDR9k4x/hvtpjME8UZbkcYw1ScpSW2E+wQDH1RBm2Yntm4cZnRmOo3PhdZEZRE2S2dnOwHHYDgckeZ4lwEZQYica0o5DukmEp/Ux9+ezMMqCzEQgCoIgCIJwUUYVRD8Xis8TBcfBUw7xYg//t627ZBhmLAdFtFIUHJc3Kg1+2txhRfuUAULHxkQUrSBITcaDQXfcdveNxdWpIPQTX1trIj/EaQxQzSKDYZ2DtzSfb7xO8N0l1r1PuMInrD/c4drgc67d/RxzF/ZWGzy+tsqj66u0GxUbpjbBqJ3ULAxQXop6kNfG6sOjy6CfJtS941EhFden4DiEaXryRnK1h7ndQA1zwXWaQByx0YXPF62wfPXAVnJPyqKcEOgrxbO1lU7iKMUgTegnCZkxU+3OxhzPzzsal0DfQyUOpj4cG/yY9R7qs8BWESsHZ1pHwz+57RmY3Yrd8eGgYM/N4uCYydAsSo5n59KeYEfsKU1sUjpJRMFxSEw2rr5eFBtVEuNmCu8cDqOnH9fmXY7mSa3ov9zfOTaWwlbq0iw7sd224nqo5GQTI53fhEmyDBzbYnoR6TVp3lTMMj5s79kOiRzb3pyxHQ6Is4zyBcQh5DOImCeOO3mWiEAUBEEQhGfMqIJY0M/f/5ZHIm3yTnuYpSxOCLyvLa7haYcfbe1YgTiKw8jn8gZpSsML8plFxbuNlTO9dqCd3Okwo3Clg2oWiX7SgC+GMHSJdYF7V29y980KTpKy+h3Dlb1HrJvPWd5usrzd5Es//oReucDj66s8vrbK9voimeuMK4jUQ0w1GgvEWaY6gzThlUr92NdtVTGgFYeUTtpS+Rnm64/gxxu2/bZyxjzHYoLJhbFpBbZVte/a+T5vxuZzMmbk/PqQkuOyGfZYC0vHYhqU4pjBR5im026S43M6IbLXuvDZIjyqwCsHl61Fptf4/gqqa9eQvboPrzRPfU7RcdmPh3iOe+G1KWWnITtxTMML8lbIJ/tZdpU1vnGUeqLom6M4SpPm86R40EviS/9IdJ5bGKbp0fsyx6i4PpU5LssjRsIuzgVXlKXoC6x6VCUNs5RbvRaPBjOcSQ1sDXrjNvqLYK+HFzsL8fn7P5EgCIIg/BXDzW38Ly/r7PJwlKbgOMQT1aIMQ20if85RitcrdX52sANwmP0X2OcM04S1QpmvLa6d67WVUlQ9j2YUwkYXs12B3RL8cAN1vQWAKVjRkroOmzcX2MrewCx9ndq1z7nyeIuN+9ss7rZ47aN7vPbRPRLXYWtjic3eW2wGN+hXbEC6KUV2JrFxvIKYYViaM8u3FBTYHs6IozhKMbVunqmeb1AzA7PSRzWLNvuwkKAyjakcXyMwVUG8CCXXY68f8mDQPbax95S2YfLYDfqP97fppQlMtD+qUdvupMlPKcEs9lH7JcxuEVZmxHtcBhnQ8zE6Q2UatV3GnEEgelrTTxJWSoE9xgVRKJpRyEahdGrL8RSpsnOzi8Op68LGUSRoxWyhcjGfltFibXZjHPFJp0npHG3IZ8FRiiifQbwMdB4BNHLYjbKUJymqHkQhH7T2qHvesY6NwHHYj0O4hLZbEYiCIAiCIFwYV2vc51Qggm0D2xlOVI8MVI64DpZcj5LrYpwUlebvw7fPCbOU1TM6aR6l5vrsDPN2wa9s4XywTvqoiNmy83wUJiz7r7eti+ZehTav0/pqlQ/ffY1gELL+YIcrD7ZZe7jL1fvbXGUbgNb/UmHz6jJbawfslDaOmb9kxqBQNOa4vVZd/+wbQQ3oc6qQBSsG1UHBtm7CbIMamK4gXpCi43AQhcfMkmyouRWId3sdftbctRVU34dIw1bZznLCsTZdc62D2i/ZSJGnJRD7HsrY+A8TOqhOgBk6UDhdpKwXSjQKRaL+2WYkZ1FwHHbCPq+Z+tkFYtezMS3dAHOziXljf/wt22KagIHyUQEXK9R3r0E1wnxx+9AM6YwoFK045JPOAZ0k4lqxcq7nn4bOBWJ4SQIR7M2iUctmlGYXqiBarENuO4m4PuN9F7TD8FLabsWkRhAEQRCEJyTQzlSEwPNExfV5ZHqAnSfUSh3LT9RKsRwUCN0UJxeIZiL6oX6GubJZ1Fx/3FqGAr0akj4qokazeJN5hUFqIyH+/LoVKxmgISwG3H39Gndfv4ZOU5bfD7nyyQFr2R3qzTb1Zpc3uUPiaHbWF9m6sszm1RU69TK9JKbienMFop09fELHSmM4iEMa3oystWpo4yuahUODmuJsIWPc1K4kufiNhoYXcKvXZn0iDB6sQOwmMUmW8X5rj6rnjduM1SeNw9xDPxlXjses9OzXd0pWTPpPYTarl5+bcgRV4J4P22Xr/ro4OPEjKrmenXV9gpcvaJeDOBy34Z5afeq7qB9eOay2b5Xh9f3xOq2hij1PnntE8DcLdp516MEPrmJ+4+HYDOosGGP4SXObfpJy5cjnDMCduq3A5k6050Vj41KG6cmzhefBwLiCGJv0wrPaxii2hv1j1/eIouOyEw252JTjJIpMZhAFQRAEQXgSnmeBWHW9w7v3WYbvOMcEIsByUOSem+KMOgwDa3OvUNQvGElQcr2pvDtnMWJqy1o4sgn1MqhEqIMiZnA8EzFzHHbcG+w23iF793VKxV3WH+2y9nCXtcd7bDzcZePhLvzgI3rlArfWGqSv3MBdjaFwXCQWHRel7GZyFB1wXjpJTJxlPBj0uFosT1efNNAYovZKkFdNzSyDmtF7h9MriBlWiMxYqqs1L5Wrx9oaXaUZpDE/b+2yGw64Ojm7NcpmrIaYK53jx9XA0gD1uIrpBLD0FKqI+dyrKcc2XuNeHfXxknWmfekA8/rZDHIuSsFxOIjDqTzEuSQK9dN1a+R0vQWtANUuYLo+VK1MdUcVM3PckGdssORkNl9zrwRrvTOvdbVQJMkMy6UZVf1HFfSnS/bfP9zAfP3xuUWirSCm9JL48lyZDRMziCe7np7ESlAgw8yd63S1Zpgmp7fdGqAZ2MiaOS3jUkEUBEEQBOGJKLku7nPmYDqikMdNgDUmqeQVl6PUvIDMnage+SmDNKXouMcCz8+KjWk43GipWjKeMzNONtuspRTbmb3+cYEIQL7Bph7SD0rcevMGt968gcoylnaarD3cZf3hLgt7Lb50axNubWL+8AekV9dIb14lfeka6ZU1cB2KjotW1v3wQb9HwXFZK5yvnbaTRLxVW6IbRzwc9NgoTlc3zIIViGrUwpkLxGGaEGjnsFqVzyCqRM+vf6QK9efXQRvMG3uwenx+0p+RB+hrh0E64McHO9Q9f3qDnmdemq8+nlsdNJXIXkMd/6kIRDVZQVwYWvGU5tfo/Tq81Jp9rVwSo3D03XDIqREM22Ur7Jb6mDf3bMWuXbBVu1wgjj7TmZXIkRnQtTbcbaD2ipiRQOz44KUnttb62sGfpY8ijfpw2WaBLg1QuyX4dBHz3tYp734arRRxnqV5WQJRKcYV1Ti7eItpcIY2/iW/QHBSJmYG6oMV1GYV0xhgvro5QyQaEhGIgiAIgiA8CRuFypns/Z8Fk7ORUZay7s0Oua95Ppk7Ich822a2WiifaHV/EuW8gmgDtx2Uxt61bxZs9XDGPtGUcmfGngdHDVNjbTfnxfhYK6TRmt21RXbXFvngq29gen0aD7b56+2E4M4D3AebuA824c9/hHFd0usbODc3uBKk9JZcXK0xGAZpcub8wSy37H+pXCXKMu4NOscftHAoqMx6B+ohmTE8HPSouh4rQZGtcICXavt2TzKp6fqo0K5N/Wyd7L3HZzKO0Upxo1Sd/c2Ba7MPTxJgI+HT9S8x9n2CkXNuObb5i1/ewgxdVDtAPazBvTrm1adbRXTU8azIWYyEvrnWttfvah8+W4Ltko0zGT0OxTGxaYB2AaMzzI2Wbe0d3TjYLKN/YY2gTH1onXPP82PX8e2Nl/WunW3845emWrXPiqMUQ4wViEfdZFKF+nQRs9qzxjxnxGAmWkwvXkE8C6fdzFIfLaM27c+CahbhRxvQGGJutsa/U4yx7fgvKiIQBUEQBOE54M3awrNewlwC7YxjD6LMnGjYovwJB8sgJcxS1i5oUAPWIKfguAzTlMrorn5jaAVicc5mPK8aqr43vb1Olc3Jg5l5h0fZcUC/+TLJxk0SY9A7+zh3HuDefYhz7xHu7fu4t+/zfwCGvsvj1QWim1f4i6oDa6vHshcnGc0dZsZQdX1WghLDNMFVmihLp6t49ZDszV0riPOK3yBJWPALDNKER8M+q0GRRqPMAE5uMe0dtoOqToD6ZAmz9OB8QmKSRNnsw1J08ijmKNqjM2PzbYC2b4X/Rfb9Buh5GDc7FP3LVvSawQAeVeFeDV5qnstB9ryUXJd+Ep8sgA2wV7QzbiPhX44xxdia1cR6LLSNMcfPR8+zFeLGAAopphLa53U91Me2NdR4KapVwLQDaJwxcxMOW4XLkb0eFoao3RLmoGirlmu9M7WbOnlQfJRlBEc7De7XUPfr0Pcwi5tnXpqDYpjncMZZenmtq+dl4MLDKsZLMV95jHp/1bb8tgoQO3ZuE0BiLgRBEARB+HWm4NjqWJJlKGWozJg/BGtkMnXz3U8x4dmCz+fh5k6ZzShk7Dm4MIQ72HbCWYxm9EamLhm2Fe9WA5XZjeWsvMNJBmlCYgxv1xftF5QiW10iW10i/o13IcvQj7dx7zyk9ennLG7t8/KDHXiww5tArxiwu7HE9voiD1dqRPUqamKzvBUOKDouGamd+dMaV3ks+AG9JMb3JwSiAm60p9bXS2Kulqo4SvFg0OWbyxvsqoR7cGIFcdSKaW604HHFxk/crcPLrRPPx1zy9tK5Yn1EkFqjmp5/vCJ1v4b+eJns7R24OqOCeoY1qExjqsPjgqqYwGoPtVXBbJdgo2cF9H7Biu1LLEQVHZf9KDzeYWqAzTLq1oKdJ41c60g76T5aC2HgWQGdV9ZqR1t5YSq/E7CP7Qaon6zb4653MLUI9ckSaq80HTlyCqqf//DmPz9m0baZqvdX7LEH3oQAwq51pwQb3anPX2MFYkJGeTIPMlGoOw377/7s3yHzGGUrpiYjMzzVCuJJqPs1O9d6vQ31CPNbDzEdH/WTdXhcgVf3x+29mQhEQRAEQRB+XSm7HkXHzdvnFEV3/vbB9e2myLgZqbZug/U5FcezsuKX2BxMzMotD8je3RxHQByjGNs5qnwTqj5cRj2q2bY8N7OVxBPm4FKTsRMO+friKtfntVVqTXZ1nejqOu9/4Rp/uXWf/zAr8Ppej8Fnt6ntHHDz1iNu3nrEN4Be0WdvbYnd9QXuLFVxq0V+b+06Fdcbm9IopbheqvKTg21OqydHWcaVYpnrpSpfSBZYDoq0/a79ZnzC/NREK6Z5Yw++V0R/tkSWKXi1ecqrzmCQXwtHzYJmUYmsIO0dmrGQgbpbB0C1A8xFBGJ3NH84x931Sge1VUE9qmKWB6jv3EQZNb+9NlH2PDkZVM5u0OJrh2GaHq+a3W6gP89vNIxE2OL065pKhNoCutMCcfpBoEZGRblANIt9a8gz9DBBYqMyIg0s2fbQ87TV9o6cx8U+sISK8s+4f/hzrz5cQj2wn5u5W8e83Mwr3D10HmyfGWMNdvK2UvaLh66tA/dcrauOshXE1JjcSfkZRAKlylYPlbHtwWAr0o0QrrdRtxfgbgPz5h46z5p8URGBKAiCIAjCiThKsV4ocavbQgFlZ/7dfy/Auoz6CYM0pex6VL3zVQuO0vCDadv50dzWPDQ2VH7gYR5VrDj0E+vIWIztRu+E7Lit4YCbpSpfri+faX0Vz6MQBKj1m0TvVNn9zS/x/7zzKW83B1Qe73Bjp83Sfpsbdx5z485jvgrEBR9u3CW9vkF6/QrZ2hJozUpQxBjbXjgvKmHUerjgB1Rcb1zRDYL88SfNII5EQCkCz2De24Sfr6FvLZKtd6F8zmiCkUHNWQRiNYL9khVBI4G4U7aRDTAlQM5F296AMNU51bKlAaaQoPZL8P0rKJOfp4EHHBGIQwf1F9fHBjfmessK6TMKmarrEThHXEcfW1GXvbqP+nzBVqCOCMTxjGbnhBnNh1VbFSxFsJxf/8sDslf3bWvtetcKFj+v1rYCK3bPGoExquqNKvCVGOMnhwJxOPFzvFmxN2HWuqjNKip3Ps3e3kFf7WDyn1hHKdStBdtWinVexU/tz+YMl+F5OEoRZilJZp5dBfGgYNup17rH55dvtOBuHR5U4aUmCkguMQfyV40IREEQBEEQTmWtUOL91h5138+z/2bj+yoXiCmDNGHjCQxqRlRd7/zGJuUYBh7ql9alZirTTc8/WjuOCByH31xaPxYvMI+RS2vdtxWflaDISr3ODz0Hd7XKW7VFPt3b4kudmOWtA+qPdtjY76I/uY33yW27Pt8jvbbOjWvrvFEwPEZRL802AxpmKQXHZcErTH3d96xJzlyBmAEDz4qHkUBeHsBqDx5XIXTPLRDVcH4FMcmyqXM4cjJV+0XMhq12qnu1wyecs+1wvIZcIFKbIxAVmKtt1OeLh22UYGMmjj52v4hKNaYSQuhaYeNmmNfOVolbCqY/E0IH1fetqHulabNBmwU7RztJJV97d45BSqxRHy/Z6tU7O4ezlAp4pXns/bI4sC6bB0VYOeFmyogMazYUJFPHNjdasFO2n83QsY/L8rnTcoT50g7mage1WUE9rKFatgo8jqZpBXCnjnEza5pTiu2s5ENv2mXY5I8txTOdcB2lCTMbm2MwZ3MxvVtHtX17vi5DT45uhlRmtLb7ma0i3m3YivFLHSIxqREEQRAE4deZhh/gaU3R8WbGIIwICtCD3KAmY21OIPV5qHg+Xm7eclQyxVnGdtjHGHC0Zi0o2upC6XDjmb26PzYtOcpBFFJy3LH9fSeJeW9h5Vxzk1XXZ8ErUHXt5l4rxe+sXuejzj79JOH1aoNftvd5fKXOoytLbL11lf9o7SZLe22ce49w7j/CebCFe+s+lVv3+XtAqhUHizX2VxfYXW2wt7rAsGTFRz9JWA4Kxyz7fa3J3BQ9z6Sm76GMwhxtm/TySsdJranzGFWVjgjEzWEfg62iLAdF6+q63LcGKo+q1sWyFKOaResomym7AT+nYyYA7cBWs6pzZlIBXmqSNYZ2nT0f/dN1CI+/33HG4CtN2xL7F9ftnN0ZBeIxmrlgHLVDX+tgrs1ooy2kGDe1AnHWOdgu2TnLK+3D+cMTMEtWIKrtMuYsArFv3YLN0bnel1uYl1uoH2zYz2ro2s8KDj/zxaF1Dn5YO6zmYsAo1MMqCkX22u748xm7DE/eENgton+6kUds9G2F9Up3bNijlSJMUxKTkZ4lb9SAulO3s5OvNM+d5TiLk26GAJiXmvCgBg9quOs+cUUEoiAIgiAIv8Y0vICS69I4xQK+vJxyd2OX8rUQxZMZ1IyP6biUHG/sYjjCGMOjYY83qwu8VK7x/b1NeklM1fNtYPvAtRWQOXb6mbFW/N0kYr1QzrMdDYvnXPNSUOB3165NbVoDx+Hdhq1exllG0XEZpgkGW3Gslkqk5QrpjSv2CWmK3tzBvfcY/WCT7MEjlndbLO+2eOOX9iG9cpG91Qa3FkoUX7oOaxlMVOg8ra0AG7iYVB137JxsL508j15mN+wnuZ/OY4ZJTSsOcZXmb65e406vzUedA64WXfAzzNs7qJ+toz5YGbdJmqsd1F4RFbrnaju0r+9YEVAJT3Yo1RxeB6P3OUsQj01ghla0FWIr2ibcRc+Dyl1zzdGK4bEHYgVpszjzHIxnD9d7Z3vh1R7moww2y/DG3ulrP9peepRiAk1sW+7oNE8KpSDFeIcC1wZ0mEMRPmmWUxq5DLvjQ6n9wxtJareM2i1jbi9g3tqBtT6uUgzJ6KeJrSCeJhBD57A1tnfOa2oepwhE/Ayu2Spi4aBKsngOB9nnDBGIgiAIgiCcSsFxWfSKpwo+z9UcvPKQUrGEGRpKJ8wrnhWlFNdKFT7qTFdxYpNR0C6/sbhGyfV40O/wWbdJ1bMzbqcFfA/TlKLrcq1Y4bNuk41CCVBzYzxOwjuhquppzXJQYHtoBdFqoXS87dZxxqY3AGmWsr29y2cffsiV3Tbruy1qzS7l2wNu3AZ+/DnG+zPSK6ukV9dJr6zhrS+R+S4MAoic486iuUGNObpZHomHiwjEgWuFQHD4Wu045m+sXuVqyYqaDzv7hzOVq33M9ZZt3Xxctc/dsGKeg6KdQzzPZr59xNXzLPj5jYajFcRUQde3LbijGbPFoa14HhROnnudx9EK4klUI2gWrTvo5DmINOwXrQBbmG+uNIVrz6t6UMc8rMJLp7jUjiIuThKIcGhKxJG5UwXUQjsj2fXJPDs3OBbh3sTNnaMuwzAW5ua3HmAix85tPqqiPljFrNzB0w5RFNKJ51SJQwf143VrcnSjfXhdQH7dX+CzO8oZDJlMIUEBOtPE0mIqCIIgCMKvO29WGxROmD8E8JQGBYkxuEofa4O8KDfKVX7Z2Z+yjo+zDE9rgjyUfr1Q5sP22VsBB2nCUlDgawur3O21acURpXye8LJZL5S42+uglWI1OL3t1tEOjfU1Ei/jX7X3uVIo40YxSztNvEfbvNOOqGzt4d59hHv3EQAl4O97ZZrOOnvvFzi4VuZguU7i2fOjdvLXPSqmXLt5V8mMmbyTyLAiK0jHLZGjucO1/D2uFoqUXY9eGlPJW3DNG3vQLKA6gXWTLaSHbYezjGNOYDR/aObNH85iNOMWHbk2275twa2H45k1szBAPaqiDoqYowKxFdh51nmtrZGGjm/n+s5g4mOq+Yxmx5+uFO6U7bpWe+dqvzXX26gHddSDmg1xP6Hopkazj/OcYIv28xm3WcLx91QLYa8E7YDiimNb0Ufn2J8QiEVbBZyKoWkHVgCXY2uOszhEDV3retv1cWoRBkMrjma+DXW7geoGcFfb9906FIiqd4EZ5lkM85shJ32W+XyzSm0s0IuKCERBEARBEM7Eq9XGqY/xtLWPSIwVCscs/y/IWlCi7vm0oxAv3yLGWTYVE7HgF3Byi33nDC6HgyxhvVCm6vlcLVV4v7nHO/WlJzbVmcW1UpUP2vscRMNztd1eL1V5v7lnc+V8j80ryzxcKLJ69RXwC+jdA5wHmziPttCPtynvHlCJP+faB8AHeQZ9o8J+bYFmq89+fYGD8gAzqTQuWkGMHTu3NlE9HKQJJcelkotsTzu8VKrxYXt/LBDRYL68BZ8s2XgEsO6ygOqfczOft3DONaiZhWNs3MlRgTiqYtUnqn2jyt+jCmqrjHlrF5b6qE+XUPfq1h332/dmii91u2HPz0rvbCYpI/OTI0Y1qpmv6yyzhFPHi63APShitss26H4WBtgt2fm/+rzomFEF0QOVf0JHhNKkwF2+VrRfjBw7Wzl5aTm5yBrNnLaDXJgfybGsh9b1thVAzZ6bThJhjp7M0IGHNo5GDT1Mz5uuIM4z/jkPBmvi5Kcni3Qnn5k0UkEUBEEQBEEArCAweVaZpzTuJYktV2teqzT4RX+fZRWgsC2mk9W+hu9Tdj36+RziqRgbFQHwcrnOp53mpZjqzGLRL/B7q9f5/v4mC+doYV0LStQ8n24SU/N8YmOrpiXXs1mMq0tkq0vEX/0iAP/6322z8lnKwsItFqJtFneb1Jtd6s0ucB9akP5PiuZijf3lBgfLNQ78ZXpmDXNugZg/fmK+bZAm3CjXpgT6tVKFD9pW5I5nx0rJdAtwKRcb53EybQWHJjfVCGMM9wddHKUoOd74s52Jn1h30VQd7oZH7aCTFdZCginENoojAR5VMKGDupdnN0auPW8Tzpvq8wUrWh5VMU5mTVLOQsVWyegcWfcou3KWe+YpmJebqIMi6lYDtkt2VvCN/ekHtQPr6Lo4mB//UsgriwP30AV4VgUxPx5gZxFTbT+foxQTK+YGHoyMgY5Utk3dzjGrVgFz3TqjhmmKmryFkIH6eMka+HipzVncKduKpM6HIfse6pfLEDv2xsRFHE1Dx4rYo23bR8nnYFWmiKWCKAiCIAiCYFtMtVJEWUbF9edm+V2E16sNWjrhk909NoIScZZNCUFHaTaKZT7rNE8ViKnJcLQezxtuFMqsFUqXYqozj9VCib+78fK5MtxcrblZrvJBa5+a5xNlGb52rCvoDFTZZTdYZ/tKEV6+CkDQTFj6c5eFcJuF8j0W95ss7bZY2j2cS0v5E1oHCxz0ijSXahws1mgtVMncE1qEZ7QPxiZjNShOPWy9UKbuBXSSiPo8cTxrLu0U1O0GkLtHKltRLmiXLzaW+PH+9ikCMbNjaZEDbopJFOwWbU7fpFBRYN7ZwbQCG/beLjD6+MaCpO+Bnz8ndFC3FsZPz17eP5aZNxfHWGfXvm9Fp5fZylXPs2LnLFmTR1kcYGpDVLsA3bwS+fr+lEgatR6b5RMqlIXUVhgH7qEZ0NH3VUjsY8L82pzVXjrxWMCaDI3aQY8a+YyqmbngDLRDlKWMFx9p1Purdu4xSDBf3EH9eAN1v2bbpetD62baLsBDG6dibwhcoOH0NIOaEbl41qkmy2+UvYiIQBQEQRAE4dJwtR5b0q8VLnebUfV8/v5Lr/I/9Ya0o5DMGMpHhNIb1Qb3+x22hgPWCsU5R7JRESXHHQvJkuvyW0vrrJxhPvBJuEjA90pQIjN7AMRZStUL5rbQugVDAqjocJ4wur/Bpl/l8WtLmDdXwRjKnT6Luy0W9to0dtssbHdZHOyy+MnhsTKl6NTLHCzVaS5Wx38nfi7iZhiQGDgmAj2teb3S4If7W/MFomOsOcxZoy76LmqnbNtbr9jYiDC1+ZBvVRf4ZWuPYZpQmCOkx6IlcqCUkm4Ftgq11j3uhrowtH8eV1FdH5Pk7ZjrXbhftwJx5NKZV1VNObKGKddPNocxxrAXDVEom6FYjaDvW6OaxaHNP0wc69Kqpp83SBNbST4JlQvCn69ZMQvWjGdSJO3m1/xJAlEBhQQ1yM1s/OT4eVLYFss0X+gsg5oRI6EVuva9AlSPtAn7mZ197FnBHDg2CxGMDa3/mX1PphxhvvI4d51NDuckF4a2ktueyKaMHHAvILTPKhDHFUSNgamZ6RcJEYiCIAiCIFwantI4StFP00txMD1K4DhcLZbZHvRBqWMCYL1Q5t9bu8G/fHyHKEvnZjYO0oTrpeqU0LpSrFz6ei+DBT9AK0VqMqIsOzFqxC/aTshx9Wa/YAPT/QTzat5aqBS9Wplercz9V67YKsu/fYmS26L+6odWNO63WdhrH7anfn74Gp1qieZijZZepjPocZA63Bn2GWYZvtbUZ1Tubpar/KS5c+JnYnMRXZu1N2o5NbZl05Rim4s3YtTGuHZo3BJmKWuFMiXXY61QYmvYP0Eg5sfPz1P6MG9znDenB1AbQtdHJRpTDTHVvAVycm4yyRdTieDmyeIwM4ZHgx41z6ed2BZZqhFqCzs3tzg8bC89Yh7TjEN6aUI7iVkLiidX6heHmN+5Cz/cQB0Up0VSrFGdwLaBTjiYJlmGo9T0cZf68MC21s4VSk4ebWE4sYJogiQ3JXKt+YuXzm5vrYV27rEd4C/E9KIIkynU+ytWHF5tW9OjXPCa1/Zgu2KF/moP7tanO0pjh/wn5HzkAtGcsYJIpjAGXlB9KAJREARBEITLw9MaR9k7/Uere5fFol8gy7fks1otV/Jg9jCdL0Zikz21ecPLpuYFVFyPfpIQm4yGX5j72KCgrKF/ZIWKepzn572+P7+1TgG+oZ/V6d1c59FNG7WhPl0k2MloVO7RMDss7Ldo7LepdvpUO32uswm8D9+H6Mea3kKNzmKNxm6CWV0iXVmCkl3rgl9gyS/QSyJ8f55AzLP2+t6hQGwFqNsLKCAbupDP86lxZMfhXF6YpSwGVjjeKFW51+9wEA1xlD7uTDvpZJpBulmwbZwnVNFMPUQ9yv9jYTi7LXYkEN3TWwsfD/tcKZX51tIV/sXjO/TThHI+Z6g6vr3CR9mVRwRiP015o9pga9inGYcsnHBNjJmqmh6JrShH4wrlME3YCgc4SnG1UB6LRPNyEzUSiPP0qJvZPMtMja/ByfnMMbnQUu28cluZbY5jqqHNgOx5eIuaKEupP1yx84vLPczbu9NP2OhhNiZE/tEM1KPGRGdEnbmCmL/X7PKNrn6ViEAUBEEQBOHS0Erhazt/EzwlgVj3AhQKrdRMgaiVou4F7IXz4xIMzKx0PY84SrFRLPN5twUGSiec13FX7SgkfD//woTwMcbQSxPKjntYIXIz1MDDjNo7mwHqToMI2O4tsvnmLrzbBsALY+rNDvUPMxrbfWrBJtVOk4Ud+4eP741fK6uUyVYWyVYXebfo8HMf9Ko3c7ZxVtTFKCAeQH++SDZq95whnAxQc+1nuhwUsX66inYSUXG9qfZe4+cVrMix1bpE23N0tG1ykonZRNMYHr72BQTiQTSk6nn89vJVap7PtVKFW90m5VGbZW5Uo3qjfMJpgxpjDNeKVWpuwA8PtlngDIxaPeOJcz8SPrn5SmoytsMh79aX2QkHVsQWy/YxhRSz0kPtlKeqjVOMBFJ6mIFoZraY5l8bGQPNM38ZGSClGqUUWQa1B6sYZWzl8DTqIdnv3EHdq9vZ0LMKxIFrz9fopsroepsQiN0kJsmy6bnlcczF5c1ePwtEIAqCIAiCcKkE2sXVGt95OnfRa55PyXFJMRTn5Cwu+D6PB92Z34uyFE85Y4OaF4G1QomfN/dYLxTtrNocfF9hVGarNwPXVlqq4VQVp5PEdJKY/WjIeqFkq6xeaoVZ7ICfoj5ZAhgLAtX1x22UceCxu7bI3tYqKq6QfP0BW4UDfr+2Rv2gi7O9h97ZR+/sofeauN0e3L7PO8A7gFHQq5RoNyq06+X87wodzydj8bBl0wBbZQwG88oB+taijZpYmGy9nBZO5Tync8Ev8BuLa1wtVfiTnUccROH0ecvPh4oc6Ofb4XmiZ3zwCKMzVKatoYqX2biMvmfXqhgLRHOKQOylCb9ZXx9XNq8VK3zSObAizMkORWf/eIvpyA227gV5hfxQ1EZZSjeJKTnu8fbaWfmPR1on23HMWqHI1xfX2I+G/MGj21Pus+ZL25j7NTt/OYuRwE60Pbcw26Qmj0ZRSf6YeQIxP48qsTN9DVNEp7kBTfmMraJeZg2F4LCqeRKRRv3FNWvw85Ut2C3aPEY/GX8OnTiik8S4StOKw8PZWuewxfRFRgSiIAiCIAiXSuDYeIu5s2ZPiKs1y0GRVhzizXmNmheQzknU6ycJNc+jfJrBx3PElUKZby1v8GZ1gZI7f/vmaU3qJTiRB3t59XBhupIaZik3SlWKjsNH7QOulSrTWYg9z0YLVEPMKwe2YhTOOM95hSh2YzxH4y0skC4vk77+0uFjkgS910Rv79F/vEnn4WNWOgMqnT6VTp8r96cP2XcqdFo1Wk2PjrNIp12gvVIkvNaBW4uwU4I39qyzp5eORU9qMhylx5+poxTvNJYBeKe+xB9t3WfRmMOK6eQMYm68MlekjNBg3tyzDqMjB89ShGoXMKFjq2JnqCAaY8AwJVhXCyU85RCZlCCYiOCYUSkd5OY7Nc+n6LgE2mGYJgTaYXPYZ61QYjcc0vDM1DVu/OMiSQ2mWyejLOW6X8HVmqWgYFub0/gww9Ix8NIJs5XOYcVvnklNO45oJRE3RmIbMIU54tyduC6Buh4JsXO6g+YiVcXO9G+F+zX7GhsTgrfn2bbX3ZK9yfKhvY7MW7vgGJIsoxlH/M7qNVyt+JPth3STHiXHYUHbnzmVSoupIAiCIAjCmIJ2cbQieEoCEWCtUOQkX46y4x0bk8qMYZim9NOEm+XaU1vb06Di+XxlYeXUx3lak3kJbuTDlm0NNIvTAjHKMlaCIq9W6tzpd+gmEdVx+6EeV+fMam/abfIoudCInJhAuQSzqrmuS7a2TLa2zPALL/MHDz5j2S8QpBm1Vo9as0u11aVy0KHe6lHt9Ch1u6x9CHAX+AnsQnjLo+0s0mWRzndden3oLBToJCmZ6xCmKYF2KM8wRrpRqlD3fDp5liQwUU3Th3N4pwlEgGud6f8uJdDGVvwKKeoUgWiMYZilFFyHxYm5wYrrUfU8BmlCMIrgCB0YuNapdaL1dZAmVlBqjac1S36BgyhkoFLqXsDfWrvJjw62+Lzbmr4Jkn/Gkw63R905Y2PGM66O0lwtlvmsawVhP7GveyKjlsx09gyiMYZmHNr23yCBQf55nFJBHAvv0WyfPqf7y+T85Yihg/5o2bar1iYqkvm1rlDw0zVbhV/pwapt0z6IQ64Wy7xWqaOUorzhsR0O+O7eY2p+aj2TpIIoCIIgCIJwSNFx8Z5iBRHgRqnGkj8/xsJW2RQmrxoN0oSdcEDJte2Ly8H8577IeEqT+gn0sG1xytiZvSNUPI+q5/Pl+hLf3dui7KY4ALFzWFUqxrY9T5nZFcTIwShD7CRnatctux4F7TDMUlzP42C5zsGyNT253++glOLmX75JddilGu9TY5equ0s1OaDa6rISbrHCFnwC8AvYB/M59MtFDqoF+vUqxa0h2WKDbLGOqVfBcfC0w2vVBj852B4LxI7Tp4axwm60l58V6H4ak0Y1i8O5FcQoS9ka9smMdeLdKJaPtYAuB0Vud1uHYqbro1DHnDPDLGNtIo7lWqnCrV6bouPyN1auUnJdNgplPu4cTK/VP2EGcfQa5rBNF6wr8IftAw6i6FhES5JlHMQhjlKHYteZEHQzWkzbSUTV84nSlCxIcM4rEEezfSfNis7CmyEQ8/lcZRR8voj58rb9+vDw/atuYAXk69YB2OQ3mb5QWxxXo1cLJZaCInd6LQ7CkBWMCERBEARBEIRJAsfB1das5mnR8IMTQ+1LjoenNbHJUEaxGw742uIqb1WX6CTRySHqLzCu1qTeRJ7cUv+Ye6nBUMkrbV+oLbIXDdlRQxpgN+KjlstSkjucpofRBWp8ECs0vJTYZNTc+dEbIxylWAgK7A4HVCYqW/0kpuha19msYminS7S9Je6/V4GVNQBUllHaial9v0g1aVFJWpT9bapxm1J3QLk3gM2DKYMcozWmUSVbaPBerYQhQi3U2C369AsupWKINyhYx00Yi5RRlS/OMsqui6PmX8emHFkrnF4+ozlHIG4OB7xVWyQxGb9o7vH1hdVjx1r2C3xiDg4rfblRzWQgfZjaNtGViYzPK8UKX64v83KlxtU8qmUpKKBQ49ZbYE4VzbU3AEavocxUPM1SUEArRdX16CTx+IZLZgwPBz2ulyv0k4T7/S4Fx2FRp3hwrMW0l8QcRDbL8bcW1/lFa480iBmvZJ47qDvRsjr597lbTKdbVQFU3oJtlEFtVTC3I7jZRB2tlm90DmcP8yr0tdJ0JI6jFG/XlvjDrfvgGGkxFQRBEARBmMTTGl85T7WCeBpFxyHQtvWwlUS8Xl3gK41VtFInzvC96LhKTxmkmFenq0hJluFOzOr52uG3l6/yb4v54+IJ05ZRRS1IbHRB5BwKiUSjjML4GYkxZxKIAMtBgQf9aYOTgzjiWrHM/X7XVuRaBZvLt3zYGmu0prcW0Hu3wtbHLwGQffUxLA3QSUpvd5dv6RLXBwlqv4Xeb6IPWuh9+6cO/M6RtfTdH9HXDfpOjV5QpXs7plsp8jDQtAs+Zc/j4aA3jk2ZyWg2cDQrOBIg3uFnYLMfNe81VnCUIkxT1kfOoBNUx+2vhxVE+9+HwnU77POl+vJUZudyUOTbq1enjlX3AuqeTy9JJtpqjwjEVKEi155rBfHo2ph4r3UvYK1Q4mapyo8PdohNhq8coiyl5Lr87up14izjl+099qOQLhH1/NhEDkZnZDpjbxjytYVVNool1gol7vU7RH6Mj3WUnVsRfFoVRAPsF2118O0d+OUK+rNFTNcbV//MWhc6PuaVw5+hQZrwaqU+83fb9VKFRd/GpYhAFARBEARBmMDTmornH2tJ+1WilKLhBXzSbbJeKPG1hdVnup5fFZ7WqHw+y+gMatMun2EeVD8pkj2tCQJNCqjYVhCNkx2KnJEoDCcE4mi+zEsBQ/GMhj8LXoHMmHFlK8kyFPBGbYHHwz5pOcSlirnenp21d6NNlinUbgnqtnU2dTR79TJm42Wio8IrjKxQbLbp7eySHbQod/s4zQ6Fdo9Ssgls2lSNPzt8WpZXH5ulgAeBRtVr9CtF+uUC/XKRYSnAaA2lGIM5dFWdUUHs5yKt4noopfjb6zdnXotV10ejyLzEVtY6+Sxofs47SUzdD3j3DLOoWimuFit81N4/FIheZtc6quwN878nDGoC7Ux9llopfnf1GoHj8IvWHnGW4WuHxNi/A+1QcFx+c2mDu70233MGh+chN/PZjgZcK5b5cmMZL+8qqHsBj/z82swrt0mWEZtsWow7xq75mEA8vYJojOFOv8uVQonAcTBueigQu74Vx40BXOli6iF89yrslsai37yxdxjHkRNn82+GeNrhy41lPtUZbuwyxyPrhUAEoiAIgiAIl0rZ8Vg6S3D3U2YlKKKU4jeX1g6rM7/muEozuLpPIfPQr7SPfT/KrJHJ0bZJz4cUoO+hUo2phIcCbSwQXSDf1MeT82WKwpy4kaPcKFW5WaryYNDlSrFMK45YLZS4Uaria4fBlX3K1RiW5mdY8lILM+GkGeWipTbrMw58svUVsvUVgi+8CkAGfN5r8Rcf7XPzZyuU0g7V6i7F6mPKnT5uu8tKP8bbb7G0DzbwY3PqsEbBoGTFYr//MYNWnd4HIYNmSj9eoJeFxEZDPv/6cqU2nlmbd6Oi4noUHJfIjSkCatTqOyEQ31tYnl/NPMJGscz7rb1xWygKK/ojbcXLcDrbL8pSal6Ac2R9pVwwVlyPfmLFU5xlNo904rE1zydzbEi9Grp2ftJPSU3GW/XFsTgEm0F6O8gD7fM5zp1wgKs1e+EQV2vquUsr7qRAzF1Pz1BBjPKbD/00tgZKfjp2h1XbRwycyjFUckfajrKidEY8h1JQOKED4aVyjc+d/Hkv8ByiCERBEARBEC6VjWKZjRktdL9q3l1YQTF/Q/7riKc1upDRf3Nras5vRJilLMwQ74UiDAEO8u+VDmfCTJCHyk8a1USHIegGc2bR4mrNbyyts/v4Nq04pJ8mfL26hqM0Vdenm0SUl08QhzMYZgkV1xsLmbPga4ewOqTv1ui7NZo368Qv10iylK3hgH947VUWcOCgxfc+/4RSb8DiMKbUG1LqDSh1hxT7Q0q9IZC3IP4A4AP77/8ZYs+xBjqBR3VxAX/hHqZSxlTLZJUyplrClEuQCydXaxq+T8+NmLJQ8hMyYytpVwrTs28ncaVYpnbMvTW185KpOjRjySt4YZadaDZU93yaka3axll2GH2RU3V9vNFHMDI68m3YzFFH45LjMqx3MC8fYPJMxRTDbyysEjgOjwc9Pu+2aMYRV5zU3pwwnKvFdJAm1D2fMMuv5ZE7bM+De3U7e3llot25EkG7YCMuggRmdomefK17WuO7hgTGER4vIiIQBUEQBEH4teRoJeSvAlrZal6UzQgnBxJjZhr0lBYy9rwEJzoyfwiHlZTwsDVRtayQzLwUV+njoewn0PADfmNpnT/auk9Bu1wt2JsJdd9nPzqfOAQYpOnYnOWsBNohc1JMMUYNPFQecTBIU4p5xiBKw9oysQ75UbfJemH6pofKMoq9IeWPPUoPobi0SWkzo5R0KRX2KXUH1JtdO5O3dXB8EYBRClMuWuFYKfHXPM3DVOP2+gycMkOnTN/02I0iaq7Pyjncd33t8EZ1gR8dbE20mR7O4qmuVXMjl9Qky040fqp5PrGxrZ2xMceq8q7WlIP8GhlVP/PXOzqzV3Y92z76mj0vmTEoFGuFEstBkdcqDd6qLfKvNu+SuRlOqKyoPcGkppPnK17Lr4VhlrDkl+iF8dRa1KeLqERjrrWm3FNNJTrsap5jmmPMcbF7FJ3/KCipIAqCIAiCIAjPA0XHo58c3+CmJkOhZrb/+q6mv9yk+jgPBZ+MHQjsv1Xo2va8715D5S2mqZfgaU3hnIZEr5TrPK71SI2hkguNhnsoQM5DYjJWglPy+Y7gaY2jNaY2RA08dMW+x2GasF4oT7XgjqIejmK05qAU0L9SRx+sYlbXYFCHIMV8+x4YQ9jvU+iH/PuVZZxuH93toTp9VLeH7vRQ3R6q20d3bcbetfwPfH74Qv8iN40t+DiVH2PKJUypaIVluYQpF8lKh/825SLkbZAvlav8tLmTG+U4h2K/WYAHNTunOpGTWT6hCjtdoTWUZtwUqBc9OjCuIGZeiqP0VHsp2Aqim8+gulozTBOKjkt9ooK5HBRZ8gtkTh7BkmjUCRXEgziyzsVZhqc1iYGS66BGpr75e1f7JYzOMC83pw9QnZjXDY7//IzWelq1XOVre5GNakQgCoIgCIIg/BpRcly2ZwitZhSxWijOzID0tKa/sjcWiFMVxEmTms0KKnas82U5Ilxs4ysH95yRJlopvrW8QWoON/olz7Ph5Ocgy59fP+eMaaAdXKWIXtklWAzRKxH0YJhlrB0Jg2/4AVopHg56+FqzEhRJsozNsE+cZVwrBQQA7cDO3eUGNQbYUoZvXL+GWVhlTpADZBlqMER1erT29vnlw3tc+aRBMe1TSHsElSbuYEgljNG7B7A7uxo5iQl8TKlIsVzk97Vh31G4pSJRe5OoVyf6YYFIxwxfConMkE5kXYdPygct6kPZYObMndYLViCqxH4v8xIcpY5VEEuui69tpdvVmn6asFIoHROSa4US9508OiPRkM2uIHbiiKrnUdKujbHxAsCwXihzp9chMwZnYqbQvNw8ZkBDZVIgHq/Ax8YKxNOq5eO3KhVEQRAEQRAE4Xmg7Lkk5niFpZfP+82ayfSUQ1jtj1suxwHwMGVSox5UATBf3IaFkDiKqToXMwBylMaZWErJca05yDk4iEJWguJULuBZ8LSDozRxISK43kGpUeXKHGuzXPADVoMigeNwr98BYCsc8FKpzl40YOgM8DHQss8zbspuOCAzhrrn84Xa4smL0Tqv/pVQyw0+LKU0976Ail2Mn5B9+y4PBz3+wZWXWdUeqtdH9wao/gDV66N6A/unb/89+p4+aKEPWmwAG/Neexf4of1n7Do45R9higGmUMAUC/m/A0zgs+ooXu8dUCn3SUxCtbCIMg4mCMB1QCkqwbS0SPMW5KOZqI7SlF2XQZJQws7Grs+oAi/6Be6OTF8SPXMGMTUZB3HIby2tA/D9fTt/6yuHK8UyvtaEWUqchDbrE+Cl5vFz4WcYP7HupjNaTOMso6CdYyL2KHpUQRSBKAiCIAiCIDwPFLRLdkRn9ZKYouPMndXztEYpMF/axnT9KZMa/NQaenR9m31YCaFh+/ZSk1F0LyfvsuR46KPh7idgjKGfJvzm8vqZHj+JoxSB45Bmh5WoQZJQcI5X0Ryl+btXXqKbxDwa9EgyGxfxerVO2s7YzQZQilF9K5RTJwVl5+7ea6yc2cAHrEguOq5tzYxdCFJik+Fpx7biuh4m8EkXG6cfLE5Q/QGmP+RHj+7QbXep9g2LuwGBOyBwe/hhjB9GOMOQSpSiWx1odWYergD8vamv/Gz8L6M1puDzhuuzMSiQaJ9Y+fQ/TogeGYp3muB7GM/D+B74Hq/2DthKY8qlEt00YqWSQRiB71m7UGxl2LgT0RlHZhDjLOPxsMfL5TpvVBdoxva6bMcRFc+j4QWUHI+tYR9/NaU8KOO82ppjQIOtIu67M1tM4yw7scI6YlRBlBZTQRAEQRAE4bkg0A5KHSpEYwz70ZCvL67NdDYFxlURUxui6uH0NxVQPBRA5kZrHIGRmrM7mJ5GyXXxHYcoyyg6p2+u20lEww+4Wape7PUcl4N0OHW8G8XKzPczclktOR6dJMJVmoYfsOAHPBp0bd5kfn4yJ6XmBvy9Ky+hz9kyq5WdER16MQ4BBAlRllJwnHMZAQHguZh6FepVbi5WGKQJf7bzCF/rqVnDzBgeD3v8/SuvsOoXUMPQtrwOhjAYooYRKowww5BPdrfwoxgvTrihfZwwRoUhhBFqGOH1hywyEa/ycPSP+8eW981jX/nh+F/GczGeR8n3+A9DyJIC6Z+nZElAGvukP4wYehkDBd8sllivdNDeFmXH4Zu9A4YarlcbeJ1bvNU5oDjsUgsKZCtNigOfLFQYrci0JtMKk/+dNXahuURa7mKSzH5PKVCK2GRUvdOdcg9NakQgPnPefPPNY1/7b//b/5a/9/f+3oxHC4IgCIIg/HriaY2ZECYHcciiX+StE1odPaVxlCY1BndGC6p5dwvT822FpXzYfpqYjKJz9niJk/C1Q8lxibOM4kRR0hhDL02OidthmvJapYp3ToOcESXHZWeighibjOvl2tzHa6VYLRR5v7XLeqFM1fWpej4ZYGohatNWZzPXBs6ft6o5YikoctdL8AGClDDNWC4UnyiuZVT5muVw208TSo7Hol+w7a6lIqY0u1K2s7fJ9/Y32QjK/P6N1499fzgI+d7/y+BlEZ4JGbx2m6UivFuqo+IYohgVJ6go5qDbYb/bpZIZiGPWtY+O7feJYlQUofuDvC20PU4TAeDB/Pf6W0f++zfzP+fiuJ4lU9gZWTX6w8S/889GKb6dgMkUyS6YNeD6tfO++jPn10YgAvw3/81/w7e+9a3xf9dq83/IBUEQBEEQfh0JtDNVt+qnCV9fXDuxAuVpjaOUFYj514wx7EZDSo5LuQJU4mPPM4aZZiUXpeH5PBr0pr7WjEP6aUovSVibmDVMTDYzsuOslBxvbJIzTK0b69opLYSrQZE4y9golNFKUXY8wED1sOqaOZkNZr8gdc8n9UbZfSlRlrLoHXeevQhFx2WQTrdPxllK1QvOZDT0heoCH3cOKHuzryU38Bm6mtDYecLNK/s4C1WSlSvHHvu42+KPtx9Qcz0Mit+//hrqqAjOMr73wxaDD0qol3ZwdwKcjsPBFz7jStnnK9UFdJpBnECaWnE5+jtJUUlCPwqJ44RBHNGPQkpKozKDzjK0MagsQ2cGnU3+O7OPMRkqAzBkWTY2N8KY/A8oYwD7b7IMxxiMAZUA0fGfmReBXyuBWKvVWFlZedbLEARBEARBeGZ42sFgMMaQYdCoU2enrEDUU66irTjCUYp+mtBNk5niSSlONe04D3U/4E5vegaulyR8sb7E3X6bg2jIQh7TYVAnxjKcRtF1yXJTnF4cs+gXxpEbc9fnBdS9gNXc6bTkuhjAVA9bVVM3wb9g9RCg4nokvj2eKSZkmMMcwyek6Lgk2bQDaJxl1M54Hut+wFvVRZI5cSSuVhgnQyX2GoydmKI7W27YaBRDbDIW/cJxcQigNbrkETlFjFsFt4TyArZXt/nGjZtkQZHTglGc/M8v9rZ4v7XLRrF8yjNm82DQ5X+3fpPrp7Q0//zHMZvvB3Ref8z/5WsvQ/P82Z7Pmhe3OXYG/9V/9V/xW7/1W/z+7/8+//yf//NnvRxBEARBEIRfOYHWuLnY6ye2NXMyX24W1lHUGsSAnUtrJxFfW1jlm0sbx0TFCIPCV5dXQay4/pSTaZJlaKV4vdrgndoSvTzf0RjbRPskAjHQzrgVN8pSGmcQYXU/YDEojJ1OS451y4ydFFOyMQmpkz5RVbXieoQbTeIvbMF6F3iy9znJZNV0hJ2tO3sl9r2FFb6ycEJBZhRB4Vn5PS8j01ZZFVGWniiA3dG3JkxqSt7JkRyzKLou6Rldcgdpwp1+B5Ofq4MopOr6LPmnv6YznkEUF9Nnzn/+n//nfPOb38T3ff7sz/6M//K//C/p9/v8J//Jf3LhY2r9/Hywo7U8T2sSfj2Qa0t4Gsh1JTwN5Lo6GwXPxdOaFOvy+XqtgXcG05dR+6FSilYcsloo8Vptga1hLx+3On7eFRC4zqV9JhXPQyk1fq1uGrNcKLJcKKKUQh8oMiAxhsDR1Hz/wq8duA5agdKKODU0CoVTj1XzfX5reZ2VfCaw5LkUXIc4ywhyo5rMTSm4F19X0XPxChBdaVFwXJTSVHzvUs5xyXPtLN3EZ6mUouy5Zz5+oEc1udko10AI+ClaKwJ39rFLnoerNcM0oe4Hc1/f9/OvJxoyhVEGz9PnPh+B46Anrq0RUZriHxH0wzTFUYphZudJe2nM765dp+KfLtRdzx5/ZFLzIv6+eq4F4n/33/13/Pf//X9/4mO+853vsL6+zj/5J/9k/LW3336bwWDA//g//o8XFoiuq1lamm0F/SxZWLhYWVwQTkOuLeFpINeV8DSQ6+pkjDHUdgu4jsbTKW+sLbO0cPqeZqldZmfQp1wM2O9GvL2ywvpKDdV3KBx4lCvTVSZjDEXjsbZUZal4PMPuImQlTeHAp1Dy2Bz0SVx478o6K8tVFk2Zje42qTFoHJZUmaurjQu/1iAwFJoepZIP3SHri9WznSemH3OlXWNn2Kfw5oA4c2E9ZKmx/ET7yMZekQyDqx0aboHrq43zu5jOYEUNKfb8qc+ySMTGUo2l2uXsex3/gKwHTtFQKHisLlZmHrueZdT3CsThwL5+Y/brL7USHgIuLmmqMU5GvVI89/ldcWMK3en33o0jNrsDbpRqlCccStsq5oZfohWFxKS8vbrC129eOZPxUL3eBwxebmf6Iv6+eq4F4j/6R/+If/AP/sGJj5k3c/juu+/yT//pPyVJEtw5vc8nkSQZ7fbz0zOstWJhoczBQY/saLiRIDwBcm0JTwO5roSngVxXZycLM5pJyDBLcAeGvax76nPSQUKnN6SYagb9EAYpe3td+nFENExomcGUkUmSZcRRQq81RPdPmwQ7G2GakEYJt4dNFoKA32pscJUCe3t2/asq4GetXXxtQ9BHX78IgyhkOIzp6hAMxP34TOfpKEEMre6QUtGB97oMBkN6nZA9Lr62LEzpxDZOwwC95pDeqc86nUE3ZDiM6KlDU51+P2LYidiLL77eSYyyLqmpkzAcxPTb4dxjZ1FKGqZE3Yi9dPZjwjAEPJIhkCqMlxIP4nN/9v1+yHAQ0ePwvW8P+6x4BR4ctLg2MVvYGYRUjUerP8RRilcaGzT3+2d6nTBM7HrDvD31Ofp9VasV8bzT25+fa4HYaDRoNBoXeu6HH37IwsLChcThiOflw5wky8xzuS7hxUeuLeFpINeV8DSQ6+p0io7D3V6bVyo1qq5/pvPla01qMowxGBSBcsgyg4edT4wz23Y3IskyNAoHdWmfh4/GVw47yYBvLm9ws2Qd6UfHXw/K/NTs0okjFmpLT/S6Ze0RaId+HIOjKOTv97xUXJ8kP29gzS2f9JwUtcNBlmEUZ/78zoKLtp9vvtbRjGdwwfc+C+VaQ0+8lAxz4rkoa48DFZ74+uPxy8hBGUXqZHjq/OfXzddhJmYwozTler1KN4loRyHVfBbSGMN6UGJn2Ge9UGbNL5359Ub3UEYtpi/i76vnWiCelT/6oz9ib2+P9957D9/3+fM//3P+h//hf+Af/+N//KyXJgiCIAiC8Cun5Ng5xHfqy1Oi7iSK2iXJN9DGmHFgvK81ntYkR8xNEpPhKH3hHMJZKKWoe4HNJCwed4u8UizzbmOZnzR3zhRafhKe1ix4ATvRgLIfjN/veTmazwjgPoGLKUDR8azohKnWxyfF05rJjzE2GZ7WlxpVol1DBmRekl8f889FxfXwtT7x3Ad+/vzQrtHoDO8C59fXdgYxMwadR7popbhZqlLULt/f36SXJqznDrUNP+Cd+jJXi+XZDqtzGCWAqPTFmz0c8WshEF3X5Z/9s3/Gf/1f/9cA3Lhxg//iv/gv+P3f//1nvDJBEARBEIRfPUXX40qxzPXS2ee0fMdBKWsA42pNKd+0K6UoOR79ZDrTLTUmD4S/3I3woh+w4PuUZnSBKaX4ysIqgXZYC5587nGtUOJWr8WCLtkZvwsUeiquh+JQeAA2K+8JKDsuSQZGZVScyxOIQS6SUmPyqnBGQTv4lyjyXRcSRgJRnXjsqmuruMEJj/FcRerHOJE9D8bJzpTZeBQ/j3JJTIavHPpJTMX1WPADloMii37Av9y8S5Ll7quOc7Jb6xwcN//sxcX02fLtb3+bb3/72896GYIgCIIgCM8FN0tVrhUrZzLVGDGqykRZiq+dqfy6suvSjsOpx6cmm1k9e1K+1FhGM39z7SjFlxrLl/JadT8AlHVDzatL56XsegSOJsxSio6LwVxIwEziOw4oQ4qamyN4ETzt5BEoGY6y7qtL54yLOA0394BJvARXafwTzkXBdVkM5mQgjtasNGkhGgvETGd4F4hW8bSDo9U45qObxLxRXRj/jKwUShS0wyBN0CgK+mLnfVxBzF7cNMFfC4EoCIIgCIIgHHLejDgAV1tDlDjLKLvulLgsux7xkSzExJhLcdY8ykVbPS9CzfUpOE4uFC+Grx0qrs8wSWyFDvXELaa+dnKJbObmCF7suBpXa5LM4GvbYlq7xBZWgNorQ+4nTfRiZ1y1m8dGoXxqxqOrNWkhhrb970xnJ7atzsPTGk9pkiwj1RkphhvlwzZmRykW/AKPB108rfOcxvPj5hXEF7nF9MWVtoIgCIIgCMKlseAFuErTS2PqR4LTK65/LGQ8NdnMNtAXiZrnU3RcFoLCEx1n0SsQZul4ru2JK4jaGZ/tiwqVWbi5SEqNFfuJyah5FxfHs/BLhu7VPRKdnVqFq3o+V4snt0E7SmOKh+3NF20xBXvzITWG3XDIlWL52GuvBAW6SYyr9IltrycxFogvcAXxxV25IAiCIAiCcGnU/YD1QolmFB0TiIF2UHlNKzOGzWGfbpJQvGAb3vNCwXFZCopUnrCKtuAHxMaQ5bN9TzqDOGrLNHCp84Fg33NiDEleEa65/qUef1Q9TU1G0X3ytTtKTQtEnV147rXouIRZSmIyvlRfHs+Mjqh7gTUGcr1j3zsr449LBKIgCIIgCILwovNKpU7JdSkfqQxOVlNacUjF9fhibfFCrazPG+8tLHOtfNwx9TxUPA+Fyc1fTnbuPAt+3qqqUReuZM2j5DqkJmM7HPBKuca1cxgZnQUrrAzJhBPuEx+zlIz/bRxzYYFYclz2oiE3S7WZlcuK6xE4DpUnqIw74xnEF7fF9MW+7SMIgiAIgiBcGhuFMitB8djG3rY5jsw9Ev7a8gpv15eewQovnyvFClXfZ4/owscoOx7GkJu/qHOZA81iNLun1OW2mIKtoh3EIct+ka8srF64UjYPV9lZ1tRkFC/JgdUrH86/Zk6Goy523KLrsnTC+654PkE+U3pRtAPGTUG9WNmHk4hAFARBEARBEAA7E/alxvKxyuCoxbSfJASOw43Sk1Xcft2oej6BYx0wR2HrT4KnHVytUJwcE3ERNgplvrW0wSuVOgv+k81ezsJVdt0Gc2n5in4RUp2hMo3RKY662Dle9At8bXGVpTkzpyXHpeJ6pxrnnIRSoL62STsbAo0LH+dZIgJREARBEARBGPNmdeHY13zt4GnNTjjg7foilUsQQb9OFB2XqufzeNC7lLbbkeOmp/Wl50y+XKnzMvVLPeYkjtYYY1CnZCCeh8BxaAcR3qDwRDOIL5VrJ35fK8V6ofTE5ktuIyEdXrwi/awRgSgIgiAIgiCcSNFx+ObyBp7SrBWePKD+15FVv8itbuvSRFHR8U7MEHxecZVCKTCYS1t/oB3SQi4Qn2AG8Sz8xtL6E7cIP2nMybNGBKIgCIIgCIJwIkopXqs0nvUynmuWgiKOUpc2M1h0nEtr0fxVopVCK02UpU9s1jMi0A5xMaRwAJmbPrGAO4nLEPhPGnPyrBGBKAiCIAiCIAhPSM3zKWj30lxHS653aS6gv0pcpdHYSuJlVVNdrWlv7FEJXAaNDo5avpTjPi08qSAKgiAIgiAIwl9tap5Pwbk8gXijVH3iPMVngaMUWikc9KUKxKwYkb26D8On22J6GUgFURAEQRAEQRD+ilNyXGqed2ltlZedT/irwsZzKFzFpc0g2oqcIsPkLazPuUDM5zBfVEQgCoIgCIIgCMITopTiSrFM8AK2hV4mrlI4KEBdWqvlKFsxM6Dgqc4gXgaOUrzA+lAEoiAIgiAIgiBcBl9dWHvuq1tPG6XUOJ5DXdK5sJmQkBlbQXzeW0xfhCrnSYhAFARBEARBEIRL4LLaS190XK0p6MuTGbaCaMYtps/7bKaj9AtdQZSrWBAEQRAEQRCES8NTmtIlRnSMTF8yY9DYGI3nGUc9/2s8iRd35YIgCIIgCIIgPHd4WlN0vMs7ntK4SpOYDK14MVpMn/UinoAXee2CIAiCIAiCIDxnFByXont5LaYFx8XVmmGa4r4AlbnLnL98Fjz/Z1gQBEEQBEEQhBeGmutRvkSB6GlNyXEJs/SFmPPUvNgVRDGpEQRBEARBEATh0nhvYfXSj1n3fB72u5cWnfE0cV5wF9Pn/wwLgiAIgiAIgvBXmoYXEGXp2LDmeUZLi6kgCIIgCIIgCMLTo+x6aKXx9OW5oz4tHKVfaJH1Iq9dEARBEARBEIS/AhQdF19rvBegMqcVUkEUBEEQBEEQBEF4WliB6LwQLaaBdvG0fmHnEJ//MywIgiAIgiAIwl9pSo4VXS+Ci2nJdfm9tRsvhJidxYu5akEQBEEQBEEQ/spQdG0F0VPP/wwiWCfTFxURiIIgCIIgCIIgPNc4SlN1vRdaeL0oiEAUBEEQBEEQBOG5Z8EviED8FeA+6wUIgiAIgiAIgiCcxhfri/gvQMzFi44IREEQBEEQBEEQnnsW/MKzXsJfCaTFVBAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiC8P9n777j5Krr/Y+/vuecKdtbdtNDSIAASSB0CKEY5YpgQUV/ooAgerFQ9HovKipNEcHrVQQsoHAFC1wVUUGwgiggooi0AKGkt+1l6inf3x8zO9nJltRNNtn38/HIQ/bMmTPfmfnuOJ/9fL+fj4iISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEjRbhEgfvGLX+Qd73gH8+bN4x3veMeQ5zz++OO8/e1vZ968eZx00kncc889O3eQIiIiIiIiu7ndIkAEeOc738kpp5wy5G0rV67k/PPP56ijjuIXv/gF73//+7n00kt59NFHd/IoRUREREREdl/erh7Alvjc5z4HQEdHBy+//PKg2++8806mT5/Opz/9aQBmz57NP/7xD77//e+zcOHCnTpWERERERGR3dVuESBuzlNPPcWxxx5bdmzRokVcd91123VdxzHbdf8dqX8sY2lMsmfQ3JLRoHklo0HzSkaD5pWMht15Xu0RAWJbWxtNTU1lxyZMmEBXVxe+7xOLxbb6mp7n0NRUvaOGuMM0NFTt6iHIHkpzS0aD5pWMBs0rGQ2aVzIadsd5tcsCxBtuuIEbb7xxxHP+9Kc/MWnSpC26njHl0bm1dpvHBhAEET09me26xo7kOIaGhio6O1NE0fY9N5GBNLdkNGheyWjQvJLRoHklo2Eszqva2gpiMXez5+2yAPGss87irW9964jnNDc3b9G1JkyYQFtbW9mx9vZ26uvrtyl72G+svJkDRZEdk+OS3Z/mlowGzSsZDZpXMho0r2Q07I7zapcFiPX19dTX1++Qay1YsICHH3647Nijjz7KggULdsj1RURERERExoPdos3F8uXLWbJkCa2treRyOZYsWcKSJUtKt7/nPe9hxYoVXHfddbzyyiv88Ic/5IEHHuD973//Lhy1iIiIiIjI7mW3KFLzuc99jr/97W+ln0877TQAXnzxRQCmT5/Od77zHb785S9z++23M2nSJL74xS+qxYWIiIiIiMhW2C0CxDvuuGOz5xx99NHcc889oz8YERERERGRPdRuscRURERERERERp8CRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkbHW2l09iLEoiixhGO3qYZSJxVx8P9zVw5A9kOaWjAbNKxkNmlcyGjSvZDSMtXnlug6OYzZ7ngJEERERERERAbTEVERERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAUURERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAcUz54Q9/yOLFi5k/fz7vfve7efrpp0c8//777+fkk09m/vz5vOUtb+Hhhx/eSSOV3c3WzK2lS5dy4YUXsnjxYubMmcMPfvCDnThS2Z1szbz6v//7P9773vdyxBFHcOSRR/KBD3yAZ555ZieOVnYXWzOvfv/73/POd76Tww8/nAULFvC2t72Ne+65Z+cNVnYbW/sdq9/NN9/MnDlzuPbaa0d5hLI72pp5dffddzNnzpyyf/Pnz9+Jo91yChDHiF//+tdcc801fOxjH+PnP/85c+bM4YMf/CAdHR1Dnv/Pf/6TT37yk5x++uncc889vOENb+CjH/0or7zyyk4euYx1Wzu3MpkM06ZN45Of/CTNzc07ebSyu9jaefX4449z6qmncvvtt/PjH/+YiRMn8oEPfIANGzbs5JHLWLa186quro7zzz+fu+66i1/+8pecfvrpXHrppTz66KM7eeQylm3tvOr33HPPceeddzJnzpydNFLZnWzLvKqvr+cvf/lL6d+DDz64E0e8FayMCaeffrq96qqrSj+HYWgXLVpkv/vd7w55/sUXX2zPP//8smPvete77JVXXjmq45Tdz9bOrYFe97rX2TvuuGM0hye7qe2ZV9ZaGwSBPeSQQ+wvf/nL0Rqi7Ia2d15Za+1pp51mb7jhhtEYnuymtmVepdNp+6Y3vck+/PDD9swzz7Rf/vKXd8ZQZTeytfPqZz/7mT3yyCN31vC2izKIY0A+n+e5557j2GOPLR1zHIeFCxfy1FNPDXmfp556qux8gEWLFg17voxP2zK3RDZnR8yrTCZDEATU1dWN0ihld7O988pay2OPPcZrr73GYYcdNoojld3Jts6rL3/5yxx11FEcd9xxO2GUsrvZ1nnV19fHiSeeyAknnMBHP/pRXn755Z0w2q3n7eoBCHR2dhKGIRMmTCg73tTUxPLly4e8T1tbG01NTYPOb21tHbVxyu5nW+aWyObsiHn11a9+lcmTJ3P00UePxhBlN7St86q3t5fjjz+efD6P4zhceeWVHHPMMaM9XNlNbMu8evDBB/nrX/+q/awyrG2ZV7NmzeKaa65hv/32o6enh1tvvZUzzjiDe++9l4kTJ+6MYW8xBYhjmLUWY8ywtw9120jni/Tb3NwS2RZbOq9uueUWfv3rX3PHHXcQj8d3wshkd7a5eVVVVcU999xDOp3mscce40tf+hIzZszg8MMP34mjlN3NcPOqo6ODz3/+89x0001UVFTsgpHJ7mykz6sFCxawYMGC0s+HHHIIp5xyCj/5yU+44IILdtIIt4wCxDGgoaEB13Vpa2srO97R0THoLxP9JkyYMOj89vb2Yc+X8Wlb5pbI5mzPvPre977Hd77zHW677Tb222+/0Rym7Ga2dV45jsNee+0FwAEHHMArr7zCzTffrABRgK2fV0uXLqW1tZUzzjijdCwMQ5544gl+8IMfqPqyADvm+1UsFuOAAw4Ykyu6tAdxDIjH48ydO7es6loURTz22GNlf2kYaMGCBTzyyCNlxx599NFhz5fxaVvmlsjmbOu8+u53v8s3v/lNvvvd747Z0t6y6+yozytrLfl8fhRGKLujrZ1X8+fP51e/+hX33HNP6d+8efN4+9vfzt13370TRy5j2Y74vArDkKVLl47JivHKII4R5557Lpdccglz587loIMO4vvf/z7ZbJa3v/3tAFxyySVMnDiRT37ykwCcffbZnHnmmdx6662ccMIJ/PrXv+bZZ5/l6quv3pVPQ8agrZ1b+Xy+1C4ln8+zfv16lixZQl1dHVOmTNllz0PGlq2dV7fccgvXX389X/3qV5k6dWppv3RlZSVVVVW77HnI2LK18+rmm2/mwAMPZK+99iKfz/PnP/+ZX/ziF1x11VW78mnIGLM186qysnLQ6obKykrq6+vZd999d8XwZYza2s+rG2+8kQULFrDXXnvR09PD9773PdasWcPpp5++K5/GkBQgjhGnnHIKHR0dfOMb36C1tZUDDjiA7373uzQ2NgKwdu1aHGdjwvfQQw/lq1/9Kl//+tf5n//5H2bOnMlNN93E7Nmzd9VTkDFqa+fWhg0bOO2000o/33zzzdx88828/e1v58tf/vLOHr6MUVs7r3784x/j+z4XXXRR2XUuuOACLrzwwp06dhm7tnZeZbNZrrrqKtatW0cymWTWrFl85Stf4ZRTTtlVT0HGoK2dVyJbYmvnVU9PD5///OdpbW2lrq6OefPmcddddzFr1qxd9RSGZay1dlcPQkRERERERHY9/blEREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAPB29QBERER2lhtuuIEbb7xx0PFjjjmG//3f/935AxIRERljFCCKiMi4UlNTw3e/+91Bx0REREQBooiIjDOu67JgwYLNnpfNZkkmk6M/IBERkTFEexBFRGTcW7VqFXPmzOGXv/wll1xyCYcffjgf/vCHAejq6uKyyy5j4cKFzJ8/n/e85z3861//Krt/T08Pn/zkJ1mwYAGLFi3iW9/6Ftdeey2LFy8unXPDDTdw1FFHDXrsOXPm8IMf/KDs2E9+8hNOPfVU5s2bx+te9zpuueWWsts//elP8453vINHHnmEt7zlLSxYsIAzzjiDpUuXlp0XhiHf+c53eOMb38i8efM4/vjj+fSnPw3AD3/4Qw455BBSqVTZff76178yZ84cXnjhha18FUVEZE+gDKKIiIw7QRCU/WytBeC6667jpJNO4vrrr8dxHPL5POeeey49PT1ccsklNDY28uMf/5hzzjmH3/72tzQ3NwPwmc98hr/97W9ceumlTJgwgVtvvZUVK1bgeVv/f7Pf/e53+drXvsYHP/hBjjzySJ577jmuv/56KioqOPPMM0vnrV27luuuu46PfOQjJBIJrrvuOj7+8Y9z7733YowB4LLLLuMXv/gF5513HkceeSTd3d088MADALzlLW/h2muv5Te/+Q3veMc7Stf9+c9/zty5c9l///23euwiIrL7U4AoIiLjSldXF3Pnzi079sUvfhGAgw8+mMsvv7x0/Cc/+QlLly7l3nvvZebMmQAsXLiQk08+mVtvvZVPfepTLF26lN///vd87Wtf45RTTgHgqKOO4nWvex3V1dVbNba+vj5uuukmPvKRj3DBBRcAcOyxx5LJZPjWt77FGWecgeu6AHR3d/PjH/+4NC5rLR/72Md49dVXmT17Nq+88go//elP+exnP8vZZ59deoz+MdbW1vJv//Zv3H333aUAMZVK8dvf/pZPfvKTWzVuERHZcyhAFBGRcaWmpobbbrut7Fg8HgfgxBNPLDv+2GOPMXfuXKZNm1aWdTziiCN49tlnAXjmmWcAypaTVlVVsXDhQp5++umtGts///lP0uk0J598ctnjHX300Xzzm99k3bp1TJ06FYCpU6eWgkOA2bNnA7B+/Xpmz57N448/DlCWHdzU6aefzjnnnMPKlSuZPn06999/P0EQ8OY3v3mrxi0iInsOBYgiIjKuuK7L/Pnzy46tWrUKgKamprLjnZ2dPPXUU4MyjgAzZswAoK2tjaqqqkEFbTa91pbo7OwE4NRTTx3y9rVr15YCxE0rr8ZiMQByuRxQyJRWVlaOmMU86qijmD59OnfffTcXX3wxd999N69//eupr6/f6rGLiMieQQGiiIhIUf/evX51dXXMmzePK664YtC5/VnHCRMmkEqlBlU9bW9vLzs/kUjg+37Zse7u7kGPB/Cd73xnyABz77333uLnUl9fTzqdpq+vb9gg0RjDO9/5Tv7v//6Pt73tbfzjH/8YVBBHRETGFwWIIiIiwzjmmGN45JFHmDJlyrAZwf5s5B//+MfS/r5UKsWjjz5aFphNnDiRVCrF+vXrmThxIgCPPPJI2bUOOeQQkskkGzZsGLTcdWsdffTRANxzzz1lxW029fa3v51vfOMbXHrppUycOJFjjz12ux5XRER2bwoQRUREhnHaaadx5513ctZZZ/GBD3yA6dOn09XVxdNPP01zczPnnHMO++67L4sXL+aKK66gr6+P5uZmvve97w1acnrccceRTCa59NJLOffcc1m1ahV33nln2Tm1tbVccMEFXH311axevZojjjiCKIpYtmwZjz/+ODfddNMWj33WrFn8v//3//jyl79Me3s7RxxxBD09PfzmN7/ha1/7Wum8iRMnctxxx/HQQw9x/vnnl4rgiIjI+KQAUUREZBiJRILbb7+d66+/nhtuuIH29nYaGxs56KCDyorSfPnLX+aKK67gS1/6EpWVlbz3ve9l/vz5/OY3vymd09jYyDe+8Q2uu+46PvaxjzF37ly++tWvlrKO/T70oQ/R0tLC97//fW677TYSiQQzZ84cdN6WuPzyy5kyZQo/+clPuOWWW2hsbBwyQ/iGN7yBhx56aMSCNiIiMj4Y29/8SURERHaY/h6Df/zjH3f1UDbr4osvprW1lR/96Ee7eigiIrKLKYMoIiIyTr344os8++yz/O53v+N//ud/dvVwRERkDFCAKCIiMk595CMfobOzk/e+972cfPLJu3o4IiIyBmiJqYiIiIiIiADg7OoBiIiIiIiIyNigAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEZA9hrWXx4sXMmTOH5cuXb9F9XnrpJebMmcPjjz++w8fT3t7ODTfcwKpVq8qOP/7448yZM4eXXnpphz/m5txwww3MmTNnxH9ngnzDwwABAABJREFUnXXWTh/XUG644QaOOuqoHX7ds846i4suumjEc+bMmcMPfvCD7X6sT3/607zjHe8oO/b73/+eN73pTcybN4/Fixdv92P0u/vuuzf73u7IxxMR2VN5u3oAIiKyY/zzn/9k9erVANx333189KMf3aXjaW9v58Ybb+TII49k2rRppeNz587lrrvuYsaMGTt9TO9617s47rjjSj/fcccdPP7449x4442lY9XV1Tt9XHuqj370o2Sz2dLPYRjyqU99iuOPP54vfOELVFZW7rDHOvHEE7nrrrtKP//mN7/h1ltvLTsWj8d32OOJiOypFCCKiOwh7rvvPiorK9l3333HRIA4nOrqahYsWLBLHnvSpElMmjSp9PNvfvMb4vH4iOPJZrMkk8mdMLo9z6Z/BGhtbaWvr483v/nNHH744Tv0sRobG2lsbCz9/OyzzwLovRUR2UpaYioisgcIw5AHHniAxYsX8853vpOXX36ZF154YdB5P/zhDznhhBNYsGABH/7wh2ltbR10zq233so73/lODjvsMBYuXMiHP/zhQUtW+5cp3nXXXSxevJiDDjqIf//3f2f9+vUArFq1ire85S0AnH322aUlfjB4iemZZ57JxRdfPGgc1157LSeeeCLWWgByuRzXXXcdJ5xwAvPmzeOtb30rf/rTn7bjVRts1apVzJkzh1/+8pdccsklHH744Xz4wx8Ghl52OdQy0DVr1vCJT3yCI488koMPPpjzzjuPV199dbvHlk6nueqqq3jjG9/IwQcfzOLFi7nyyivp6+srOy8MQ77zne/wxje+kXnz5nH88cfz6U9/etjr9vb28p73vIe3vvWtdHR0DHnOSy+9xLHHHst//dd/EYZh6T18/PHHueiiizjkkEN4/etfzw9/+MOy+w1cYnr33XdzwgknAIXM4pw5c7jhhhsAiKKIm2++mZNOOol58+bxxje+kZ///Ofb/FoNZ86cOdx2221cffXVHH300aU5unjxYq699tqyc/uXrKZSqdKxrq4uLrvsMhYuXMj8+fN5z3vew7/+9a8dPk4RkV1JAaKIyB7gr3/9K21tbZxyyim88Y1vJBaLcd9995Wd8/vf/56rrrqKE088kRtuuIH99tuPSy+9dNC11q1bx5lnnsk3v/lNvvCFLxCGIWeccQa9vb1l5/3zn//kBz/4AZ/+9Ke5+uqrefHFF0tZy5aWFv77v/8bgMsuu4y77rqrbKnfQKeccgoPPfQQ6XS6dMxaywMPPMCb3vQmjDEAXHTRRfz85z/n/PPP59vf/jbz58/nIx/5CEuWLCndr3+P4fa67rrrqKqq4vrrr+f888/f4vt1dXXx3ve+l9dee40rrriCr3/966TTac4999yypZbbIpvNEoYhn/jEJ7jlllu4+OKL+etf/zoouL7sssu44YYbOPnkk/nOd77Dpz/96bLXdtPxnnPOOfi+z+23316Wgev3/PPPc9ZZZ/G6172Oa6+9Ftd1S7d9/vOfZ//99y8tJb7qqqt4+umnh3ysE088sbSU91Of+hR33XUX73rXuwD4whe+wLe+9S3e/e53c/PNN/OGN7yBSy+9lAcffLB0//6AbdM9rVvre9/7Hq2trVx33XV87nOf2+L75fN5zj33XB555BEuueQSbrrpJhoaGjjnnHOG/EOLiMjuSktMRUT2APfeey+1tbUcd9xxxONxFi5cyH333cd//Md/lAKsb3/72xx33HFceeWVABx33HF0dHTwk5/8pOxaA4PGMAw59thjOeaYY/jDH/7AaaedVrqto6ODO++8k6lTpwIwZcoU3vve9/Lwww9z/PHHlwK1ffbZZ8RlfieffDJf/OIXefDBBzn11FMBeOqpp1izZg2nnHIKAI899hgPPfQQd9xxB0ceeSQAixYtYtmyZXzrW9/iG9/4BgDGmLIAZlsdfPDBXH755Vt9v//93/8lk8lwzz33UF9fD8Chhx7K4sWL+dnPfsb73ve+bR5TY2Nj6b0DCIKAadOm8d73vpc1a9YwZcoUXnnlFX7605/y2c9+lrPPPrt0bv/rOFBHRwfnnHMOlZWVfPe73x1y7+W//vUvPvjBD/LWt76Vz33uc6W51O/UU08t/VHgyCOP5MEHH+S3v/0tBx100JDjP+CAAwDYe++9S3Ni+fLl/PjHP+aaa67h7W9/OwALFy6ktbWVG2+8kde97nUAOI6D67qDxrC1JkyYwNe//vWtvt8vfvELli5dyr333svMmTNL4zz55JO59dZb+dSnPrVd4xIRGSuUQRQR2c3l83l+//vf84Y3vKFUhOPUU09l9erVPPXUU0Ah0FuyZAmvf/3ry+570kknDbreU089xbnnnstRRx3FgQceyMEHH0w6nea1114rO+/AAw8sBYcAhx12GE1NTcNmkIbT2NjI0Ucfza9//evSsV//+tfMmDGD+fPnA/Doo4/S3NzMoYceShAEpX/HHHNMaa8ZwAUXXMDzzz+/VY8/lBNPPHGb7vfYY4+xcOFCqqurS2Osqqpi7ty5ZePcVvfccw+nnXYahxxyCHPnzuW9730vAMuWLQMoVaPdtHLoptra2jjzzDOpr6/n1ltvHTI4fPLJJzn33HN597vfzec///khA7Njjz229N+xWIyZM2eybt26rXpOjz32GI7jcNJJJw16b1944QXCMATgtNNO4/nnny+bc9uif5nr1nrssceYO3cu06ZNK40R4Igjjtgh762IyFihDKKIyG7u4YcfpqenhxNOOIGenh4AjjrqKOLxOPfddx+HHHIIHR0dBEFAU1NT2X03/XnNmjV84AMf4KCDDuLKK6+kpaWFWCzG+eefTz6fH/G+/ce2ZbndKaecUtpPV1lZyQMPPFAW5HR2dtLa2srcuXMH3XdHZAw3NdRz2xKdnZ089dRTZcFuv2OOOWa7xvS73/2OT33qU5xxxhl84hOfoL6+ntbWVj72sY+Ry+WAwpLRysrKzVZifeWVV+jq6uK8884btpLoI488QhiGZVnjTdXW1pb9HIvFBs2Tzens7CQMQw477LAhb29tbS0rLLS9JkyYsE33639vh5qDu6Iir4jIaFGAKCKym7v33nsBhiz0cv/99/OZz3yGxsZGPM+jvb297PZNf/7zn/9MNpvlm9/8ZilwCIKA7u7uQdfe9L79x5qbm7f6OZx00klcccUV/P73v2fq1Kls2LCBN73pTaXb6+rqmDhxIjfddNNWX3tbDJUti8fj+L5fdmzT16Wuro7FixcPWUG2qqpqu8b0wAMPcPDBB3PFFVeUjv3tb38rO6e+vp50Ok1fX9+IQeJRRx3FAQccwGWXXUZDQ8OQ/QE/8pGP8Oijj3Luuefyox/9aNSCoLq6OjzP48c//vGQr/tQ+yK3x/a8t/PmzSt7/QfeX0RkT6EAUURkN5ZKpXjooYd485vfzLvf/e6y25YsWcI111zD448/zsKFC9l///35wx/+wBlnnFE653e/+13ZfbLZLI7j4Hkb/+/h/vvvLy2nG+j5558v7X0D+Mc//kF7e3tp/1ksFgMoZbdGUldXx6JFi7j//vuZMmUKs2fPZv/99y/dfswxx3DbbbdRWVnJ7NmzN3u90TBp0iReeeWV0s9RFPHXv/617JxjjjmG+++/n3333XeHt0/IZrODApFf/epXZT8fffTRQGEp6plnnjni9T7ykY+QSqW4+OKLufnmmwdlOD3P4xvf+AYf+tCHOOecc/jxj3/MxIkTd8AzKXf00UcThiG9vb1lS1Z3pk3fWyhkUAc65phjeOSRR5gyZco2Z5hFRHYHChBFRHZjf/jDH8hkMpx99tkcfPDBZbcdeuihfOtb3+Lee+8ttau44IILuPzyyznppJN44okn+POf/1x2n/4v65/5zGc4/fTTWbp0KbfeeuugpYRQyOycf/75XHjhheRyOf77v/+buXPncvzxxwOFojXJZJJ77rmHmpoaPM8r7Skcypve9CY++9nPUl1dPSi4OfbYY1m0aBEf+MAH+NCHPsQ+++xDX18fL7zwArlcjk9+8pMA3HjjjXzzm9/cIfsQN/WGN7yBH/3oRxxwwAFMnz6dn/70p4NaTJxzzjn88pe/5P3vfz9nnnkmEydOpK2tjSeeeILDDjuMN7/5zUChTQjAHXfcMeJjDsx2LVy4kKuuuopvfetbHHzwwfzpT3/iscceKzt/1qxZ/L//9//48pe/THt7O0cccQQ9PT385je/4Wtf+9qg6//nf/4nqVSKj370o9x2222Digklk0m+/e1vc+6553LOOefwwx/+cIdn9GbNmsV73vMe/uM//oPzzjuP+fPnk8vlWLp0KcuWLePqq68GCkHvpZdeyu9+97vt3oe4qZNOOokvfOELpeq4v/3tb3n55ZfLzjnttNO48847Oeuss/jABz7A9OnT6erq4umnn6a5uZlzzjlnh45JRGRXUYAoIrIbu++++5g5c+ag4BAKGbw3velN3HfffVxxxRWcdNJJfP7zn+fmm2/mnnvu4cgjj+Tqq6/mvPPOK91nzpw5XHPNNdx444387ne/Y//99+f666/nE5/4xKDrH3LIIRxzzDF86UtfoqOjgyOPPJIvfOELpdsTiQRf+MIXuOmmmzjrrLPwfZ8XX3xx2Ofy+te/nssuu4zOzs5BVTeNMdx44418+9vf5vvf/z5r166lrq6O/fffvxRsQaE9Rn9Rkx3tggsuoKOjg+uvv55YLMb73vc+9t1337LeiI2Njdx11118/etf55prrqGnp4eWlhYOPfTQsvYbmUxms0FONpstZWEB3vOe97Bq1Spuv/12crkcxx57LF/96lcHZY4vv/xypkyZwk9+8hNuueUWGhsbR8zMXXbZZWQyGT70oQ9xxx13lGVuobA09pZbbuHss8/mvPPO4/bbb9+i12trXH755cycOZOf/OQnfOMb36C6upp99tmH008/vXROFEWEYVjqi7kjvfvd72bFihXccccd5PN53va2t/GRj3yEyy67rHROIpHg9ttv5/rrr+eGG26gvb2dxsZGDjrooCGX6IqI7K6MHY1PWhER2aOdddZZNDQ0lNpLyJbL5/Mceuih3HrrraWWHUO56KKLWL9+/bD9I0VEREaD2lyIiIjsRM888wz77bffsMHh0qVL+cEPfsCDDz44qC2JiIjIaNMSUxERkZ3osMMO4+677x729quuuoqVK1dy9tlnc+655+7EkYmIiGiJqYiIiIiIiBRpiamIiIiIiIgAChBFRERERESkSAGiiIiIiIiIAAoQRUREREREpEhVTIcRRZYwjHb1MMp4nkMQjK0xyZ5Bc0tGg+aVjAbNKxkNmlcyGsbavHJdB8cxmz1PAeIwwjCiqyu9q4dR4jiGpqZqenoyRJEKz8qOo7klo0HzSkaD5pWMBs0rGQ1jcV7V11fiOO5mz9MSUxEREREREQEUIIqIiIiIiEiRAkQREREREREBtAdRRERERHYxay1RFGJ3wVYtxzHk83mCIBgze8Vk97cr5pUx4Dguxmy+EM1IFCCKiIiIyC5hraWvr5tUqgfYdcFZW5tDFI2dapOyZ9gV88pxXJqaJuO6my9GMxwFiCIiIiKyS/QHh7W1jcTjCWD7Mh/byvMMQaDsoexYO39eWbq62ujp6aChoXmbr6IAUURERER2OmttKTisrKzepWPxPAdQBlF2rF0xr2pq6uns3IC1EcZsW7kZFakRERERkZ0uikLAFjOHIrIjuG4h/7c9S1sVIIqIiIjITrexIM2uWVYqsmcq/D5tT8EnBYgiIiIiIiICKEAUEREREdllnnzy7yxadDjpdHrE804//S387Gd37aRR7Vz33PMzPvWpT5R+DoKAL37xck4++XUsWnQ4S5e+yJVXfo477/zBLhnfBRf8Ozfe+PVd8ti7ggJEEREREZEtdPXVV7Bo0eF87WvXDbrtyis/x6JFh29XMPHrX/+KU099/aDjt9xyO6ee+rbSz4sWHc4jj/x5mx9nZ0in09x449d517veyuLFC3nrW9/IJz7xMZ5++qnSOblcjttuu5lzzvlg6dhDD/2BP//5Ib7+9W/yi188wN57z+accz7I7bffRirVN+Jjnn76W1i06PBB/+6556ebHe9wwfqXvvQVPvCBD23NU98mY+U9VRVTEREREZGt0NIykd/97jd87GMfJx6PA5BK9fHnPz9ES8vEUXnMhoaGUbnujuD7PrFYbNDxr3zlS7z00gt88pOfZq+9ZtLV1ck//vEEPT09pXMeeugP1NXVc8ABc0vHVq1aydSp09l//wNKx/baaybTp8/gd797gNNOO33E8Zx//sc45ZS3lB2rrt72Srm1tXXbfN/dkQJEEREREZGtcOCBc3nttVf5y18eZvHiNwDw+9//lv322x/HKV+gt2jR4Vx77dc49tjjgEJW7d/+7Xi+8Y1vc+ihh5ed++STf+dLX7qydD+Ac8/9EOeddz6nn/4WzjjjTN75zv/H6acXgp/+ZZmTJk3mpz/9FStXruDGG7/G888/RzabZdas2Xz0oxdz8MELysbzn//5Gf70pz/yr389RUtLCxdf/EmOOWZR6ZxXX32ZG2+8nqef/idVVVUcc8wiLrjgE6Ug64IL/p199tkPsPz2tw8wd+48vvKV6we9To899hf+4z8+xdFHLwRg8uQpZYEgwB/+8FuOPfb40s9XX30F999/b2ms/c8NYOHCRfzhD7/bbIBYWVlJU9OEIW9bt24t//M/1/H0008RBD5Tp07j4x//LyZNmsxFF30YgH/7t8J43vSmN/PZz17BBRf8O/vvfyAXXPBxoJClfNvb3sErr7zMX/7yJxoamrjkks8wffpMvvzlq3j22afZe+/ZXHnl1UyZMg1gs+/NcO8pwMMPP8Stt97MihXLaG5u4a1vfTtnnHHWoLm2o2iJqYiIiIjIVjrllLfw61//svTzr3/9q0FZq601f/7BXHTRJ6mtreMXv3iAX/ziAc4446xB591yy+0AfP7zV/GLXzxQ+jmdTrNw4XFcf/03+d737mDevIO45JKL6erqKrv/d7/7bU466WT+939/yKJFJ/DZz17C+vXrAOjt7eWiiz7CgQfO5dZbf8C1136dlStXcPXVV5Rd4777fklFRSXf/vatXHjhfwz5fBoaGnn00b+MuL/y6aefKssUXnzxf/Ke95zJPvvsV/bcAPbf/0Cee+5ZgiAY/kXcjP/5n2vx/Tw33XQL3//+nZx33oeJxxO0tEzk6qsLy4bvuusefvGLB7j44v8c9jp33vkDDjvsCG677UcsWHAIV175ea677ou8+93v5Xvf+wGe5/GVr1xTOn9z781w7+m//vUUX/rSFbznPe/jjjv+j49//L/46U/v4qc/Hb39qMogioiIiMiY8ewjhg0rdt7jtcyABSds/f1OPvlUvve979DW1koqleLVV19m8eI38MAD923zWGKxGNXV1RjDsBkw2LjctLq6puy8OXP2Z86c/Us/X3jhJ/jTn/7I448/yhvfeErp+Bve8MZSMHvBBR/nb397jHvu+Rnnn/8xfvazuzjggAP54Ac/XDr/kks+y/vedzqdnR00NDQChSWf55//sRGfz3/916VceeXnOOWUxey33/4sWHAob3jDv7HffoUx9vb20tfXV/YcqqurqaiowHXdQa9BU9ME8vkcnZ0dNDe3DPu4N974db797RvLjt100y3st9/+rF+/jhNOWMzs2fsAMHXqtNI5NTW1QCGwraysHPG5HXvs8bzlLacB8P73n8f999/L0UcvZOHCQib23e8+gyuv/BxRFOE4zmbfm+He01tvvZmzz/4AJ598amm873//B/jpT+/i3e8+Y8QxbisFiCIiIiIiW6mpaQKHH34U999/H729PZxwwmIqK6t26ZjS6TTf+953eOyxv9DR0U4YhuRyuVJ2sN+BB84r+3nu3PksW/YaAC+/vJQnnnick046btD1V69eVQoQB2b9hnPooYfz05/+imee+RdPP/0Ujz/+GHfe+QMuueSzvPnNbyOXywGU9nFuTiKRACCbzY543plnnlMWEAOlvaHveMe7+Z//uZYnnnicI444isWLT2LmzL236PEH6g8wARobC6/J3nvPGnCsiSAI6Ovrpba2bovfm0298spLPPPMv7jttltKx8Iwwtpoq8e8pRQgioiIiMiYMe9YC8fu7Ec123SvU099C9/+9o2k02kuv/yLQ1/ZGOyAruXbszxyc2666ev84x9P8NGPXszUqdNIJBL8539ejO/7m4xp6HECZDIZjjvuxCGzg83NzaX/TiYrtmhMsViMQw89nEMPPZxzzvkg1157NbfeejNvfvPbqKurwxhDb2/vFl2rv7hNff3IBXvq6+uZNm36kLe97W3v4KijjuGRR/7M448/xu2338qnPvU53vSmN2/RGPp53sAwqvDaue7gY1FUeO+39L3ZVDqd4UMf+gjHHbcNae5tpD2IIiIiIiLb4Nhjj6e3t5d4PMEhhxw25Dn19Q10dLSXfn755ZdGvKbnxQjDzWeHPM8jisKyY8888y9OPfWtHH/8icyevQ+1tXW0tq4fdN/nnnu27Ofnn3+WvfaaCcB++83htddeZfLkKUybNr3sXyKR3Oy4NmevvfYqZQBjsRgzZ+7NsmWvbtF9ly0rjKumpma7xjBp0mTe+c53c911X+PNb35bqShOfyXWKNrx2bkteW+Gek/3228OK1cuH/ReDBcA7wjKIIrIuNWZz1IfS5T+aioiIrI1PM/jrrt+jjFm2P8vOeSQw/jZz/6PAw+cRyaT5pZbvjniNSdPnkwq1ceTT/6dWbP2IZlMkkwODswmTZrC3//+Nw48cB6xWJza2lqmTZvBQw/9kaOPPhZrI7797ZtwHHfQff/wh98yZ87+zJ07n3vvvYcVK5Zz7bVfB+Ad73gXv/zl3Vx11ec444yzqKmpZcWKZTz88J/41Kc+u1Wvz4UXns8b3/gm9ttvf6qra3jxxSX86Ed3sGjRxqqlRx55NE8//RTvfOf/2+z1nn76KY444qjNnpdOp2lvbys7VlFRSWVlJddf/1WOOeZYpk2bTldXJ8888y/mz18AFAJHYwyPPvpnjjjiaBKJxGb3Im6pLXlvhnpP3//+8/jMZz5JS8tETjhhMQBLl77I2rVreP/7z9shY9uUAkQRGZfachn+0rqGE1umUR9P7OrhiIjIbqqqauT+ehdc8HGuvvpKPvzhc5kyZSoXXvgJPvGJC4Y9f/78g3nb297B5z//Kbq7u0ttLoa67o03fo177vkZzc0t/PSnv+LCCz/Bl75UeKyGhkbe//7z6O7uGnTf8877dx544Nd85Stform5hS984VomTZoEQHNzC9/85vf49rdv4OMf/yi+7zN58tRtWuJ4xBFH8atf/YIVK75BPp+juXkip5761rLA5tRT38a///v7SadTI+7h9H2fhx9+iP/+729s9nG/852b+M53bio79r73vZ+PfORCwjDgv//7GtraWqmurmHhwkV89KMXlp77eeedz003fZ2Ojg5OPvlUPvvZK7b6eQ9lS96bod7TY445lmuu+Sr/+7/f5fbbbyMejzFz5ize8Y537ZBxDcXYgYuipcT3Q7q6hi/Ju7M5jqGpqZr29r7SWmaRHWE8zi1rLX9qXc3S3i7eOnUWE5M75q+DstF4nFcy+jSv9ixBENDWtpoJE6Zusp9r5/M8hyAYvaIfY8mmfRnHgs9+9r+YN+9gzjjjzGHP+eUvf86DD/6er33tpmHPGWt2xbwa6feqvr6SWGxwRnlT2oMoIuPOumyaV/u6sVjym6z1FxERkZ3rYx/7+JDLaAdyHIdPfOK/dtKIxjctMRWRcacjnyWyFgeHnAJEERGRXWrKlKm8/e2nj3jOm9/8tp00GlGAKCLjTirwcY0htJZ8qABRRETGj7/85e+7eggyxmmJqYiMOz1+npjj4BhDJhq9flQiIiIiuxsFiCIy7vQGhQDRNYb0KDYsFhEREdndKEAUkXEltBGZMCRmHDzjkFKAKCKyS2xsG6iKtCI7TuH3aXtaPGsPooiMK5kwxI9CarwYvo3IhP6uHpKIyLjkOC6O49LV1UZNTT2u6wHb8a12uxiCQIGq7Gg7e15Z+vq6McbBcTbfzmI4ChBFZFzJhgGBtXjG4BmHTBgWKppuz5/aRERkqxljaGqaTE9PB52dG3bpWBzHIYrGRx9E2Xl2xbwyxqGxsQWzHd9rFCCKyLiSDUMsFlMMENM2IB+FJF19HIqI7Gyu69LQ0Iy1EVEUYXdBEs9xDA0NlXR2pokiZRFlx9gV88qYQmZ+e4JDUIAoIuNMNgwwxSVMnmMIrCWnAFFEZJcyxsF1d01pDMcxxONxPC+vAFF2mN15XqlIjYiMK9mokEEEcI1DaCN8LSsSERERARQgisg40+Pn8MzGjz6DIReGu3BEIiIiImOHAkQRGVd6fZ+YKf/oy1sFiCIiIiKgAFFk3FuXSe3qIexUvUGemDPwo8+SD7XEVERERAQUIIqMa+kg4MnODfT546MXYCYMyIQBiQG9gaw15MJgF45KREREZOxQgCgyjkVYAmsJx0mRlr7AJxeGxAdkEGOOoTvI78JRiYiIiIwdChBFxrHQRoRRRGDHR4DY6+cBU9YfKOG4dOZzu25QIiIiImOIAkSRcSyylhBLuJ2diUMbEe2K7sZbqcfPs2nv2Ljj0hvk1epCREREBAWIIuNaZCG0lnAbM4ihtfxx/QruWrGUv3Ws28GjG1o62Pb9gm25DAmn/GMv4Trko4h0MD72YYqIiIiMRAGiyDgWUdh/GETblv1rz2V4LdVLZCNWpHpHzER25XPbHYT1+nn+uGHlNl0nspaOfLasQA2AaxxCG5EKFSCKiIiIKEAUGccia7crg7gumwIsDfEEfYFPt58jEwZDBnBPd7WxPN27XePdkMvQ5WfJDGhs/1qquziOkaXDgHQYkHS9QbcZILUdmUkRERGRPYUCRJFxrBQgbkMGMbKW11I9VLoernGIKGTo/t6xnme72wed35bPkN7OLN3qTB99fkA22hjMLU/10prNbPa+fX6eIIo26YHYz9CrSqYiIiIiChBFxrPtySB25LO057LUeHEAPGN4ta+bV/q66fLLq4LmwpB06JPytz1Ll49CVqX7CG1EbkAGMRX49G7BktO23PBBZMJx6Mxnt3lsIiIiInuKwWutRGTcKPRBjLapimlnPofF4hUzclVujLZclh4/T7UXKzs3Hfrkwu3b59eay5AOfOKuSy7aGCBmwoDYZrJ/kbUs7eumyhv6Iy+uVhciIiIigDKIIuNaWMwgBtsQIHblcxg29oyo9Dw68hmaExVkwoBsuDFb2Bf45KOQ1HYUqenK57CAiyntcQyiiNwWXLctl6Ezn6U2Fh/y9oTjFvYoqpKpiIiIjHMKEEXGsai4vDTchh6AbfkMSXdjRVDXOOxTXU9dLI4fRWQGBIjpICCwEfko2uaCOOkgwDMGz5jSktJ8FBJElkwYDnndXj/PPztbWdrXRWQLYxxKwnXJhiHLUj3bNDYRERGRPYUCRJFxLMISWUuwlQFiaCM687lBLSMAHGOIsGUBYrefI25c/Kh8/+DWyIQ+rjHEHIc+vxAg5qKQwEbDXrcjn+Vv7et4tqud+nhs0O0D1Xoxnu1pJx9t2/hERERE9gQKEEXGsdBaItjqoKgv8MlF4ZABIoDBkB4QIHbmc1R5HoGNyvYPbo1UGOA5DjHHIRX6WGvJRSEWS2DDstYX/QJb2CO5V1UN1d7Qy0v71cXidOXzrEhtXysOERERkd2ZAkSRcSyyFmst+a3MIPb5PpHdWKBmUxZb2s8XWUuXnystR93WADETBnjGwTMO+SgkH0XkwwiDwQK5aHCF1CCKsFu4v9IYQ9xxtqinooiIiMieSgGiyDjWHyD64VYGiIEPDB94xYxDj58ntJYV6V4yYUDccQuB3DYsMY2sJRuGpSWmgbVko6CY+bQYDNkhruvbiAF1dDYr6bi0qd2FiIiIjGNqcyEyjkXWYgF/C7J6obW4phBtdflZnBEir7jj0OXnebx9Lc93d5BwXeLF5aj5KGJDNk21F6PSG3lfYL98VChC4xkP1ziExT2H2SjEYgA7ZGbSj8LBo8w70JuAsHiLAZrS4EDSden182TDgKSrj0cREREZf/QNSGQcC4oB4pYsMf1L62qmVdYws6qW9dnyCqabijmFQGttJsXEZEUpOKRYvGZJTzszq2o5qL6ZdBCQcJ0hK4z6UUhgLX4UFfcTFoI6YwpLVTNBgEshhzhUi4pcFJaCWiyYJRMwq2sHnWendWMPaCfhuLRFhV6OChBFRERkPNISU5FxLLQRDluWQdyQzfD3jvU819XG+myamhGKviQcl9ZchrpYfEBwWOhhuCbTR2suy2upHoIo4k+tq1idHnrf32upHp7s2FDKIA7MWmbDkPSAyqa9QwWIYbjxPuuqMatrsbEQO7kXO6O78C8WYlbVQWcSYwwGU1xCKyIiIjL+6E/kIuNYYCNc4+BvJoPoRyE5G9Kdz/HPMKQuFh+2QA1AzHGYXV07KCsYcxyyYYgfRbTnsrzQ28nqTB97Vw3O6gFkg4DWXIa9o1oMBtOfDcTQ4+dIhT4xxwEMvf5wGUQHci7mhSYsFnvwemgYsM+wNot5diLmhQnYY1ZhLXT5uRFfDxEREZE91W6TQXziiSf48Ic/zKJFi5gzZw4PPvhg2e25XI4rr7ySo446ikMOOYQLL7yQ9vb2XTRakd1DGBX2FW6uD2I2DAmiiMnJKuKOoTY2TPZwQN2aoZaMesah289RG4sRWcurfd105/OkhsnYpcKAvjA/qChOrRfjpb4uUkGAa4qtL4I80SYVS3NhhGMMrK7BBC5M7ykPDgEmpbCVeUxfHHyHpOvQmsuM+HqIiIiI7Kl2mwAxnU4zZ84cLrvssiFv/9KXvsSDDz7I17/+de644w42bNjARRddtJNHKbJ7CQdkEEdqB5GNCgFipefREE8OcYKLeWIy5m9TYIRY03McOvM5arw4CddlTSZFfTxO9zAZu3TokwsjOvPlt1d7Mfp8Hz+K8IxD3HEKexLD8lYX+SjExWBW1wBgZ3QPfhADVOcL/52KkXQ9OnJZ2hQkioiIyDi02ywxPeGEEzjhhBOGvK23t5ef/exnfPWrX+WYY44BCgHjKaecwjPPPMP8+fN35lBFdhuBtbiOIbKWqNguYijZMBiwvLOgcUMnRzzyDASGxxpPoS+qAMC2VUJLesjrVLkee1fVEnMcGuMJYsbBGOj280OenwoKrSy6/VxZUw1jTKniaHVFJTHj4NuIvsCnqlgZtdDfMaSiswaTjWEb01A5uFdiYWDFDGZfnKo6j3VBmvvWvsbilulMr6wZ5tUTERER2fPsNgHiSJ599ll83+fYY48tHZs9ezZTpkzhqaee2uYA0XG2ooHaKOsfy1gak+z+IgrN7iMK1UzdYeZXvthPsD9IdPMBR//xaaqyhUBwYe63/Hafd0BvRaFK6MShs2/GGJLFvYuecWlIuKQDn2wUlsYyUDYKyNtiBVPjlAWpjfEkvk0Td1yMMTjGkI6C0u+IH1msgfja+sIdpvUOCnJLqgsBoknHMY7DlIpqVmX6SIWBfue2kT6zZDRoXslo0LyS0bA7z6s9IkBsa2sjmUxSXV1ddrypqYm2trZtuqbnOTQ1VW/+xJ2soaFqVw9B9iCJ7hhVxImspaa+Yti+hCtsioqeGFXVCcK2OFP+sIaqbJo1yb3xnBwt6TXsM+UpXl52JKatgqRbgVOx+dYZAPHIozWToaIuQcL1SBTbZ+TDkNh6j1ongZt0qXYTVFUmyu5bR0Xpv5M2h1Phln5v04FPYkUCr60KEiGVs0KMU37/flEzZAE3myBZnShdr7o2MSY/B3Yn+syS0aB5JaNB80pGw+44r/aIABEYMjMw0p6qzQmCiJ6esbMHyXEMDQ1VdHamiKJtf14iA3X3ZfH9kFjCpb2jj4w7dIC4ur0HPxuQMjl4qokZXS8D8OKhMzB1OVruX8O0Z15l6X4HYJbVk/lLA8xrhZotaxfRm8myqrWbJzs2MLeukRlVtfQFPj2pHC7Q1pPCMYZUNHx10TAX8lpbJ3u7hYCu18/DsiqwBju5l3R6hMqkJg9Ywm6PVF/hvGzGp6MrTbvp26LnIOX0mSWjQfNKRoPmlYyGsTivamsriMWG72Pdb48IECdMmEAmk6Gvr68si9jR0cGECRO2+bpj5c0cKIrsmByX7J78MMQBImvxw4jIDD23evJ5XGOwoSXZFTAhv5ZUVQVt+1YAFfTWVtHU2kX1kavoq09iupLYf0zCHrdiy0phWViR6mVVupfIWqYkq8kGAUFUaKnRkc9RH0uM+EefhOPSns2Wfj9yQUjF2obC5af0wkh/MHIspiLAZGJEPuBZDIX2Hvp92z76zJLRoHklo0HzSkbD7jivdpsqpiOZN28esViMRx99tHTstddeY82aNSxYsGDXDUxkjItsofVEZC3hCAFUX5Av9BtMxZmUXQXA2unNYAwYw/LZUwCYumYN9vA12MYMJu9B1xAVT4dgLWzIpgkiy5pMivXZNPkwBAwJxyMVBHjD7R8sijsO6dAnW6xk2tMBXi6Orc9sLEIzkqr+SqaFFh6OYbP9IUVERET2NLtNgJhKpViyZAlLliwBYNWqVSxZsoTW1lZqamp45zvfyTXXXMNf//pXnn32WT7zmc9w+OGHq4KpyAgCGxU/BMywAWJoIzJhSMw40JOgJbsCgPVTNmbn10xvAWDqyg1gwE4sLMs0G4rr7nvimKdbIDP0ogXHGFKBT00shoNhaV8XuSjEAjHHYVpFFRXuyAseEo5LPoqKPROh1KWiekBwaG0hKh5K/3mpwjJbgyHczf7iJyIiIrK9dpslps8++yxnn3126ecvfvGLAFxwwQVceOGFXHrppTiOw0UXXUQ+n+e4447j8ssv31XDFRnzrLVE1mIcB4gI7dDZslwY4kcR1Z6H6YkzIb8WC2yY1Fg6p7uhhlR1BY1t3STTWbLNLiwBWithTjtmeR1mfTXkXOyh6yDvQsXGlhMxx6E9l2VKRRVxJ2RtJkVLogJTbG5RE4sP/0QiwCnsQ7ZYeoM8ExIV5IqdNmy88Dg1XX0c9fBTVKRzPLHoINZNay57LXpjKeqox2RiWArtEYNhXhMRERGRPdVuEyAeddRRvPjii8PenkgkuPzyyxUUimyh/tYW/Qs3h8sgZqOQwBYyiInOiKqwl57aaoL4gII2xrB6egv7LVnOlJUbeHXODGxdFtOdxPbFobNQbdR0VcBDe0FkCoFiUyHNV+3FCKKImOPgGMP6bJrWXAY7TF/GklU1mBcmwLQe7D4dxIzDSz1d7FVZSz5bvG8ihMhy1J//RUNHLwBHPfwU951+Yuk5pEKfXs9SB6Usp2OMAkQREREZd3abJaYismNF1hJhSxWAh8sgZsIAMBhraOzoBKC9uW7QeWtmTARgyooNANiWFADm1QZMzsMmfawTQWQwGMzSRooJQipcj8kVheWorjFEWHr8PCPW2QoN5pUGjDWYlXWYZ1toiidZleljbSaFny2eFw+ZtnwdDe09tDfXs2z2VOL5gH1eWFG6VK/vU9Ff3ypbCBANhkBLTEVERGScUYAoMg5lw4DQWqy1OBQKzQyXQcwEAW4mhvnXRBpzheCvo7l+0HltExvIxz1a1rbj+gFM6sMau3Ef4sQU9tiV2BOWY2uzmN5EYQnqEFwMuSjEHakwzZoaTN7DNqWxbgQdFXjGwTOG57rb8bPFj7dEyD5LlgPw13l78cL8vQGYtmxt6VIhlnhl8fmXMohaYioiIiLjjwJEkXEmiCIe2rCKHj+PtYVCpIxQxbQv8KlbPgnTVkVjsA6A52vixcziRtZxWDO1GTeKmLimDZIhTEhvvL0hWzgWj7CzC5lI88IEyA3OE1Z6Hj1+Hs8Z5iMqNJhlhSym3acDqvOY0IGsR0M8wepsilym8Hyq8j00b+ikqzrJixNq6Kqroqe2ioaOXip70+SjEM84VMQcwrgPOQ+iYgZRAaKIiIiMMwoQRcaZwEbkopC+wC8sMcUwUhXTbj9HPBsHa2kM1hO4DutqKwqN6AdeN4r4e3MhWzhlZXGZ6dSewv9ioT678eSmDHZyLybnYf41sVBoZoBKN0ZPkMczxY+onIt5fgL0ForVmGX1mGwM25yC2jxUF8fSFyfuuAQ2IsoV7jttzWoAXp7RQmMiSY/vs7ZYdbVlbTt9gU9TIklzopIg4WOsgZxb3IOoJaYiIiIyvihAFBlnQmvJhSGZMMBS/BAww2cQu/wcbi5OddhBzA/oaKqlIhYnv0l2LRuFrJvSTGQMk1e1sqyvh7ApVehDOKkPYgPON2APbC0VsqG1quxaMcehKZakyivW0VpbjVldi/PXabCyBl6rxzoRdk47AHZAgAhQ6XjYnEvkhkxbUch65vefxb41DfQFPm0TGwCYsKGTTBgwpaKaKs8jSBSvk41hgFB9EEVERGScUYAoMs4ENiJvo0KAaAtFagyGVLAxI9jn5/lz62ryUUgqF+L4Ho22sGdvQ1MtMccpFZjplwtDklWVrG6pI5nNM6mtm2wUYo9Yi53fOnggDtiZXQCY9VWDbm5KJHGLGUST3Vhw2XmhGWMNdlbnxlYZxQDRFDOMdU4CJ3SpMJ00tnfTWV1B84zpTKusxjOGdRMKy1ObNhQev9L1SLgeYbL4GmQ8nOK+TKssooiIiIwjChBFxpnIWvwoIhuGxSWmhT1/azKp0jmdfo5VmT7WZFKExWIvjcF6ANY11RJ3HDzHwR+QYctGIdVejFemNAFw4PrustuH1JQpFJhprYRghII06UI7CjshjZ3cS7RgHczs3nh7fwYxVQgQPb9w/vTsKwC8OqOZ+niShliC2liCrphDb20ltT0pkrmAhOOScNwBGUQPU+zCGG0aCYuIiIjswRQgiowzgbUEUURvMWNojKHKi9Hl50gHhYxcKvDpyGVZke4tZe8as4V9hWsaq2mMJ6l0Y2QHFKqxFmKOyyuTGwGYvaaDfBSOPBjXQnMKEzmwrnpQVrKkWFnUzl+PndcKzWnKWiTGI2w8gFSssJ8xXyh8M733NQDW7j2FpOthjKEmFiMfhbS1FJaZTm7rIeY4JFyXIOEXXpOMh2MgIhp26a2IiIjInkgBosg4E9qICFsWvCVcl3wU0VVsHtjl58hFIR35LF4ujmMD6jKdZCoSdCZj1MXitCQrSpVMrbVgLM2JJD01SdrqKqnvTlHRnR5yDAPZSYXMpbOkGfPI9MGZRAtkYthYCN4IwVp1vlBgJhWDnEtl0ENjup2u6iTepJbSaXWxOH4U0V4MEKe09ZQyiLZ/yWp/BtEWMq4iIiIi44UCRJFxJowskbVlFTqNMRhr6S5WJu3IZamLxekLfJxsjIZ8K461dEyowxqo9GK0JCpKhWp8GxEzLi3JShwMLxeXmc5e2775AU1IY/fuxFb4mEwM2ivKb8+5hcCv0h/5OrXF5aGdFZD3mJopLC99adoEmpIbr1ntxQmtpa2lHoDJ7T3EiwGiqSg+RiaGYwyRRRlEERERGVcUIIqMM6EtBohRVLZKM+a4rMukCG1El5+nLpag188Ty8dpzBf2H3Y01wOQdF2aEhU4GILifsYqz6MpniTuOiybWggQ91nVVvbYQRSxPpsuL/xiwO7TWSg6A5iOAQFiT7yQEYSNBWmGYVsKmUizvhqTd5mWeRmAl2Y0UxOLl86rKC417a2rxvdcWjr7SBhD3HGIeQ5RLChkEG2hPYcyiCIiIjKeKEAUGWeCAVm/gSpdjw25DD1+nnwUknRcGuMJkvkEDX4xQJxQBxgqHI+WRAVTK6ppz2dJBT5N8SRJ16PCidHZXIdfW83Uth4qejcuM02FPtliD8ZBGjOF/+0PENsrcB6fhnm+ufBzxeYyiDls0sd0JanakKfR30BPVRWdDTXUeeUBIgDG0N5YQzwISXb1Yoyh0o0RJQu9EB3fI7LDt/8QERER2RMpQBQZZyJr8Uwh8zdQpRejx8/zQk8nobV4jkNdLIGT82jMr8cCrU11GCgVfNm/toFsFBJ3XQ6sK2QN62Jxqrw4+QNmAzD1tTWlx/CjiJZERWkpa5lkiK3KY9JxyLqY4lJTky1WMB0hQAyiiPW5NEwsZBGnrV0NwKvTJ1Lpxaj0YqVzK1wPU3wd2hprAIitLyyFHdgL0WS8QgZRVUxFRERkHFGAKDLOBDbCNU4xk7hxkaljDEnXZW02RSlpZiGRylMV9tJTX03Wc4g5Dkm3UCV0WmU1c2sbWdwynYnJSgAa4gma4hVE8+YAMOO1taXHyEcR9fEEMccpq4BaMjCL2JUsv61y+CWm6TCgN/DJt/QUxpVZCsCSmQ2FfZFm4/NMui6xYouO9cUA0V1bqNBa7cXw+wPEXKzQ5kIZRBERERlHFCCKjDOhtWCG7jnYGE/QnstuvNl3aMoWmtx3TKjDt2GpoAuAaxwWNU9lcsXGRvfTK2vYp6YOWproqq+mqbOPuo5C4BZZy+RkFfvVNNCay9Lt58oe3xYDRLO+CnrjWDMgONskgxhEEctTvUS2UJG1xouTqUpTOfMVGvw2euqqWFdbwaRi4Nov4bjEHZd8FLK2vjBuZ13hOVZ6MfxEf6GaQqZRS0xFRERkPFGAKDLOBFEE1jJUiOgah9pYjIZYonAg49GYXwdAe3M92TCkNhbHDBNgArQkK5lSUQ3A2jl7ATDrpZVAIS6tdGMc1TSJ45un0uP75Rm6pgzWCzFtVYXeiE0Z7IQ0tjoHifKeiukwICQiH4X4UURtLEYmDJjRVyhOs3LmJDCGhnh5JrK/F6JvIzqqkwQxD3d9G0QRScclTBSC1v6lreEmezVFRERE9mQKEEXGGd9GuMYwXGKsLpag0isWcsl6NPUHiC0NZMKQWVV1W/xYfXP3IXAMe72yBifvY4EKz8Mxhr2ra6nwPHID+jHiWpjSV/rR1mWxC9Zhj17NphFtNgyojcXJRxEhlgrXIwhD9l66CoAX955M0vWo7w92B6j1Cr0QQwOp5gaMH+C0d5FwXcLkxgxiYYnpFj9dERERkd2eAkSRcSYfRcUM4PBBYj+TdmjwN+C7Hq3VSRKOy9QBy0k3p6K6mqXTJxDzA6a+tpaYcUpVROPFKqnpoHxvoZ3as/GHumwhMBwiYZm3lmo3XggwbaG/4cx1nVSms6yf3MT6Co8J8SSJ4n7JgWpjcXwbYTBkJxaK6zhrN5Bw3NIeRLIeBqM9iCIiIjKuKEAU2cPZTVo1BFGIA0xIJGhKDM6uDVTf0YdnAzrqG+kM88yorKF6QE/BzamJxXl69hQA5ixZVhYgAkxKVpEtLhHt6a9sWu1jJ6Sw8QDqckNdtiTuuuSjCAy0JCuY/2oh2/nqftPJRhFThglma2JxrC3sicwXA0R3XRsJx8V4FuuFkPHAQoiWmIqIiMj4oQBRZA+3KtPH4+3rSj/no6hYsdQrC9aG0tTZAUD7hAaCyDKzunarHrvGi9ExsYHWCXU0dKWYs74bd8D+xYZ4ArC05jJ05nOlbJ09eD120Urwhs7eRcU9lE3xJGGxKuvkjM/ea9rJJGKsmdEC1g7af9hvekUNkysqC30OJxX6LLrrNhB3XTzHKfRTjBycwNUSUxERERlXFCCK7OHSQcD6bApbDL58G5W1fRhJY08bAG2TagvFXbwtzx4CxByX+niSJw+cDsBBzy0ru72wP7AwlppYnHR/6wuHwn7EYeSikITrMjFZSWQh5hgan1yCY+Hp/aaSMwbPcYbcfwjgOQ4H1zfTEE9gGuuxiTjO+nYSGDzjlPYhutm4itSIiIjIuKIAUWQPl49CegOfTDH48qMIp39TXypW+DeMpnSh/cO6lmpijrOxeM1WaE4keXFSA+21lTSu78B9dWXpttpYnErXY0ZVDdMqq+kL/BGutFE2DKn14tTHEsQdh7p8ROKZFwk9l3/MmkQmDKj2YlR5wz+3aRXVHN44kbp4gnBSMyYI8Nq7qHBdwmKrCy8X0x5EERERGVcUIIrs4dKhTy4MS8FXKYNowfxjMjw+GZsfkFGMCv8SfXmqgx56YvX0xR2SjkfSGVzwZXMa4kly1vLo/ELLi8SDj0FUyMq5xmHfmnrm1TUxpaKq0IJjC+SikAnxJFWeR9x1OeL5FZggpHf+fuSThUxkS7JyxEypMYZZ1XW4xiGcXFhm6qxrpcqLEXqFYNoErvogioiIyLiiAFFkD5cOQ3LRxgAxiEIcA/gOJudhApfg1arCz89NwPxxb5w/zGLC44X7t1c1k48i6jfT/3A4NV4czzF4++9LMG0S7oZ2vGdeLN1+eONEJiWrmBCvwHUc/C0IEkMbUR9PEHNcJqbzzH5hOTYewx57GEnXpS/I05Ko2OIxRv37ENe2Uu3FCNxCgFjYg6gAUURERMYPBYgie7hM6BcCRD9PaC2hpbDEdMDSUn9pNTwyFbOmFtwI60QbC9TUTSAfhdTHR654Opz6eIL9auo5tHEiucULsUDyj49h+tJl59XF4tTF4qTDLVlmakgUC+wc89SrOJElf9QCvJoaJiUqiRmXumH2Hw4lnNQCFArVVLsxArfQm9EJHQLtQRQREZFxRAGiyB4uE4YkHZd2P0dkIyJsIROYLhScscYWsod5Dzu5F7toJXbvLibk1gDQ3tRIiKV2K9pbDFThehzfPI1KzyOaOhH/sPmYbI7Ebx5mYCNGYwwtiQqyYbgFV7UkHBfvhVeYvGwtYU0V+SMPBmBKZTU1xWBzS9n6GmwygbO+nSQOUTFAdAOXQGVMRUREZBxRgCiyB4usJReGVHkeHbksgbVE1uIag0kXM4j7dOLt24c9ajV2XivEIryWThr8DWScSnoaKjFApTt8wZetkTvxKKK6GmIvvUbsH8+W3daUqMDfgoydBSqzeRK/+XPhmqe+DuKF8bUkKplWWU3lCAVqBjGmUKgmDKnt7iv0QQSc0N2i8YiIiIjsKRQgiuzB8lFIaCMq3Rjp0CcV+MUeggOWmDZmiM/vgbp86X4TutpwsLQlpmKr84WAbBsqmA4pHiNz2r9hXYfEHx7FXbaqdFOtFy9EfyMIooh4BJN+9SBOOkN+wYGEe08v3d6USHJ889StHlZ/oZqa1k5CrxAUOqGrNhciIiIyrihAFNmD5aOIwFoqXY9cFNLlF5rRO8ZAfwaxMhh0v+Z17QCs37cKvy5D3Lg7LIMIEE1pIfvG4zFRRMVP78dduRaA6lgM13FGrGYahgFvfPwFEms2EE5uIXfSsTtmTMVCNVWtHVBcYmrCLSuaIyIiIrKnUIAosgfLR+HGJaVAZz6HxeJYIB3DxkKIDQ6AWtYVCtS0zq4lX2xKX+FufYuLkQQHH0DuxKMxfkDFnffiPfcS1V6cCsclGw3eh5gJA/x0hhMeeop9VrQS1dWQOf1k2EGZzbAYICbWd2C8QhrTCVwVqREREZFxZQetGRORsciPImyxKI3B0J7LYC2YbAxjDbYqP+g+Xt6nob2bTGWCvtpKfD9HbSyxTS0uNid/zCGFpaZ/fIyKX/4B76VlTJ83g9dihUb3JdZS/+oqTvznq9Smc3TXVeGedRq2umqHjcXW1RBVJIm1tuM6qmIqIiIi45MCRJE9WC4K6Q/rKlyXVBgUAr2+/uWlg1tKTFjfibGwYVIjGIMfRVRtTcGXreQfeTBRcyPJ+x4k9sIrnPzCK6xqriPV0kgQc6lI52hZ00Z1XwaAl/Zq4eVFCziupnrHDsQYoknNeK+tpLkvjXWiQo9IxYciIiIyjihAFNkDPNGxnknJSqZX1pQdH7h/Lul6pEIfJ+dhXmoCwNbm2TQvWFpeOqlwTmBteTZvFIR7Tyf172cQ/9u/MP98jmmt3dDaXXbO+pZ6Ht9/Gi9PquegqsrRGcfkQoDY0tnLOjfCBA6B3ZK2GyIiIiJ7BgWIInuAzlx2yCAuH4VYWwgBk45Lez5Ly4t7YdJxbEsKpvbAJiFi45pWoJhBBCILle5O+KiIx8gvOpxo4aEsW76cFcuXE7fgVlTwTG2MBVP3YkN3O6lsiipv23oybk5/oZpJHX2s9SIc3yMI4Z+drUytqKIlOTqBqYiIiMhYoSI1ImNYt5/bovP6Qp90MHi5aDYKcIrxnykWqomlk1gnws5fP+gTIJHO0tzZR3dVklRNZfF+kNgZAWKR4zhM3ntvKhbM4x8zJvDqtCb8iiRTK6ppTiQxGBLOji2Y06+/UE1TRw9RsZJpJhvyl7Y1PN/TMSqPKSIiIjKWKEAUGaPWZlL8cf1KuvIjB4mRteTCkN4BAWI6CHgt1U06CHAHFJcxkcENPIiHQ/72N65cD8BrkxsKkWHRaAVkI9mrqoaY47Ium+aA2kbq4wma4hXEHWfUxmNrq4kqk9R39oJTKODjRR5Tk1UsT/XS6w8u6iMiIiKyJ1GAKDIGpYOAx9rXsi6bpm+IzOBAgY0Iiej1N563Npvi4Q1raMtl8MzGX/Nmp1jYZYjWFgAtqwvLS5dNbsDaQqsHay2JHdziYkvUxRLsXV1LQzzJ/LrCfsjaeJwqLzZ64zGGaFILTmSp8wsZw0angkrPIx+FrEz3js7jioiIiIwRChBFxqAV6R7achlijkNqMwFiPooIIksqzJeCuj4/T0+QY102jedszATGwuJS0fjgwismipixtpPIcVg3sRHfRoQ2wh3FjN3mLKhv5oSWqVQW91fWeHGqvdiojqd/mWl9rhAsExQ+Jqs9j6V9XaP2uCIiIiJjgQJEkTGo1/fxjIODoWczyxr9KCS0Fj+KyBUbzHf6Oeq8OBMTldQMLOiSLwZWQwSIdRs6SfoBuemT8BIJ8lGIH0V4xhB3ds1HRW0szqTkxl6HdbEEU5JVo9p2I5pc3IeYaSscKAaISdejL/DLKsOKiIiI7GkUIIqMQd1+rrTXrsPPjniuH0VExQAxGxYDxHyWhOtS6Xk4Axvc+8UAMTY4QGwu7j9kn5nUxxLkwojAWmJm12UQNxVzHI6eMJnYKAas4dSJAEzsK88gxoxTfI2DUXtsERERkV1NAaLIGNQd5Ik7LnHHoSufIyouHR2KH0U4BiyWXBSSj0JSoU98qKAuX/iVt/HBWbApqwsZs3D2DBrjSXJRSBBFVHoxjNm0W+Key1ZVkq2vpS7bRyJMlQJEz3EIooiMAkQRERHZgylAFBlj/CgkEwbEHIeE65INwxGzVnnb3+vQkAkDUoFPLoyGzvoNk0FM9mVo7uwjU1uFbaynNh4nolAAp8obf+1S01NbAJiQX1sKEKFQ2LU/SysiIiKyJ1KAKDLGpMMAP4qIO05xWWM4YiVTP4qKve4LGcRUEGCx5UtLi8wwexBbXlkDQN/s6WAM1W4MU7z2aO73G6ty0wrLTCfk1mCC8o/JTKQMooiIiOy5FCCKjDGZIChUDzVOobm9gfXZNP/qbCW0haWh3f7G3ogbi6YY0kEhgzjsgtBhMoiTigGiP2cWAA3xBDVejO4gT/XAIjfjRH7aJGBwBhEKLUhERERE9lQKEEXGmHQYgN0Y4llreLa7nSe7Wunx83Tlc/xpw+pSVjEbBTiAZwypIE+Pn8cMFyIW9yAyYA9iPJujcU0bqYo48elTAaj0YhzXPJWWROWYKVCzM5n6WnqTSer8NmLZjQFhzDj0DgjORURERPY0ChBFxphMWFgi2q8hHscAoY3oC3x6gzzt+SwbsmkAskGIawwxx6E9n2V5umf4oG6IDOKUFRswFlbPmEhiwH7DyRVVnNgylckVVZteZY8XMw5rmxowQFNP68bjjkuPP3JfShEREZHdmQJEkTGmN8gTG9DcvsqLUR9PgIVU4NMX+HTlc6xI9wKFgNI1hkrXY302TTYMaIgnhr543i0En7GNGcSpy9YB0L3P9EGnT6mopnoc7kH0HIe1LXUATOjdUDoecxz6gvyIVWVFREREdmfjrzyhyBjXlc8TM4MzgK4x9Ph5IiwJx2FVpo9sGJANQ1zjkHQ9ZlTWgO9gHpsCjsVO7IO9ugt/CrKA7xSCQ1PYx+jmfCaubSOTiGH3mrrTn+tYFXMc1k2qB6C5bz3YqWAg7jikw4BcFFLh6uNTRERE9jz6hiMyhoQ2osfPER+iEXzccenIZwmspT6eIBUEbMhmyEaFDGJJdwKTKhSWMb0JbHsl5F3Iu5jIwVbkAegNfOauWI8TWZbPmIDrjr+9hsNxjUNvQyUZt4KG3Aa8bktQb/CMgx9FZMNg2AAxspalvV3Mqq4jNsT7KCIiIjKW6duLyBiyPpumJ8gP2Voi4bp05XP0+HkSjotnHF5JdZGPovIAMV24r53ag63KYzorMKk4ZpP9hwbYf3lh+eTSWZPwjD4OBoq7LusaWnCwtLxaWM7b3zpkpEqmXX6OZ3vayyrNioiIiOwu9I1QZAxZlurBMWbIHoYJxyUbheSikKTr0hCPsyLVR2ijsuDOZIoBYmMGe8Rq7KxOogM2Flrp339Ylc4zfX0X6cokayY14CnbVSbhuqyc1ADAxLVtZbctS/UMe7/12TSd+Sy5MBz2HBEREZGxSt8IRcaITBjwaqqHumH6DsYch8BGpR6JSdcjH4UE1m6SQSwufaz0IWaxszthWi/WFAurZAq3z1mxAQOsnDUFjFN+DSHpeCybWajgOrFrHf2FZZviCV7u66IrP3SG8LW+bjJhQDZSgCgiIiK7HwWIImPACz0d/HbdctJBMOTy0n6F/oYbA7lqL0aPny8P7ooZRCrK2zHYI1Zj4wF2VhewcXnp8tlTAKslpptIOC491R7diXpq/G4qWguvZ9L18G3E0t6uQffp9nNsyGXwjEMuHH4ZqoiIiMhYpW+EIrtYOvB5omM9fb7PlGTliOd6xhAfEAzWx+LsVVmN6T9mgYyHjYUQ26QVQ10ee8IKmJiipqOHlq4UrXVV9DTWFq+tj4OB6uMJ/ChiQ+MkACYu6yrdVuvFWZ7uwW7S7qI1l8GPIpKOS2qEfYoiIiIiY5W+EYrsYutzabJhSFMiudl9gBOTlbQMCCKNMSQHVtPMFSqVUjlyM/e9lq4CYMnMFqy1GAOuoyWmA9V4cTCwbvIEACat37iPM+kWAsD0JlnCbj+HYwye49Ab5HfqeEVERER2BAWIIrvYynTfjmuHkB56eelAThAy65U1hI7hhZkT8W2Eg6MM4iZqYjEcDOum1RDh0NK1DqJCxjBmHHwbDgoC23NZEk7htewLRg7SRURERMYifSMU2YWyYcCKdC+1wxSm2WqlAHH45Y1TV6wnkfdZPq2ZXEWCIIpwHYOnIjVlarw4SdcjVe3TlphMIszR2NYFFDK3WEOfvzEIjKylM58j6brEHId04A9agioiIiIy1ilAFNmFWnMZskFAxQ5qUm+KFUrtCEtMZ724EoCl+07FNYbAWgyF5vCykec4NMQTZG3I2trpAExZvnGZqWMo63WYDnwyYUDC8YoZxoicKpmKiIjIbkbfCEV2oY5cFmPYWGRmW0TA+krM0y2wvL5wbJgAsbq7j5b1HfRUJemZNgnHmEIG0Th42oM4SEuigmwUsqZlMgCTV2wMEBOOS2suU/q5L/AJbETMKbyWfhSpF6KIiIjsdhQgiuxCa7Ipko63+RNHYF5uxHl6EmZ9NXgRdlYn1OUIbURbLkMQRaVzZxezh8/Nnkx1cY+dbwtLTJVBHKwungCgb0KCXq+e+t4eKvsKQWHSdenIF15nKASI2EKQ7RqHCKteiCIiIrLb0TdCkV0kF4a057NUetsXINJWqGoazVuPPW4FdnYn2ShgdSYFhlKxFM8PmLl0FaFjeGbvFqq8GDHHIYgi4s6OWeK6p+nfG2qr86xNzgRg8spC/8ik65KLwtI+xO4gx8BEsMEogygiIiK7HQWIIrtIl58jF4YkhwvOImBFLeaxqZg/zcA821w4vrIG8+QkzBOToSuBScWxlXmYnAK3UBSlN/DZu6qW5kQlYbFQyl4vrybuB6zcewqpRKEAS9xx8a0CxOFUul5hn2ZVjrXJvQGYUgwQXePgRxHP9bQXs7WFCqb9LJCN1AtRREREdi/bmboQkc15tquN2liCGVU1Zce7/BwWO/T+wwjM36dgupMbj62twe7TgXlhAobifZ6eWPjfxkzZ3f0oojGeJBUEBDYCa9n3+WUALD1wL4wxxBxnYwZxBxXJ2dMkXY+Y4+C7edoqppF3EjSva8f1A8KYx6RkBc92t7Mmk6LLz9EUH/B+WcgGChBFRERk96IMosgoa8tn6Rmiafr6bJrYcPv+VtZhupPYmhzR0auwzaninaoxGGxjButGmFyxaukmAWJkLVVejArXI7KWyataqelN0zqxga6mOsASNy5xxyGwEfEd1YdxD+M5DhWuh0+IrQpZl9gLN7JMXl0oVhN3XCYnqwhtREuiggp349/c4o6hLZ8d8rrWWrryuSFvExEREdmV9K1QZJSlQ5/cEEsNu/P5oZd2tldgXmnAGoudtwFq8lBdCDDN2moAbH0GpvUU/hsLjeWBiDFQ4XpUeB4hlv2eew2Alw6c2X8Gccch7rgE1pJQBnFYNV4cP4qgKs/qitkATFu2rnR7zHGoiyUGvZeVXoz12XSpiM1AG3IZHtywqqxNhoiIiMhYoABRZJTlwpDMEEsNc1GAu8nyUvNiI86TkzGhA3t3QXWhAIrtDxB7C1U1qcljZ3RjnQjqsxDbGIRYa7G2ECDGjMOkth5a1nXQV1PJmukTC7djiTluKXOoJabDq43F8KMIW+WzLjmDwPWYvKoVNxi5AE2F65EJA7ryg7PH7bkMKzO9LO3tGqVRi4iIiGwbBYgio8haSy4KyWxSzTKyFj+KygNE34GVdVgvIjpofaFdRb/qTYKM6jwkQ+zCVdiD15fdFFiL5zhUFvfPHbWk0NpiyUGzwDGkQp9KN0aV5xEvtthQBnF41V68UOinyicyHmvrp+IFIZNWt454P9cYIsuQWcKVmT6SjsuSng56/cEBpIiIiMiuogBRZBQF1hJYSyYszyCGNiLE4gwMEDdUYayBiX0wsdCioqTSx5pCNVLrRlBRvF5FAPHyJYx+FBJ3XCo8j+r2Lmat6SBdlWT5rKkAdOXzHFDbUCrA4hhDTFVMh1XheoX2FZWFQG5V9SygfJnpcBwDrbny/aHZMKA1l6Y5UUE2DFmXTe/wMYuIiIhsKwWIIqPIjyIiawf1w/MjSxTZsgyiWVfcXzipb/CFHKCqmGmqzpcHj5vIRxFVnodrHFqeeA6AF+bNwroO2TAg5rjMqq4DwDOGmHHwVKRmWEnXxQJUBlgs65y9CTyXySs34GxmmWml67E2myo71pHPkgsjko6LMYWAcWuENiKIBu9rFBEREdkR9K1QZBT5NiS0Ft9GZcVKgmIGsRQgdiahI4lNBNAwdOXL0jLTmpGXJPo2oi6WwGnrpHrpclLJGK/tM5WufI7WXJb9auqpixX2MnrF4NAbqtWGAMUMIobIKWRuo3wFa6c0EwtCJq1uG/G+lZ5Hdz5H34BlpG25LNYW2pt4xqF3iAq3I3mpt4tnutu36bmIiIiIbI4CRJFRFES2sJzURuSj8gAxshEOBpbX4fx9SqF9xdSeYbODti5X/N9hAsiifBRSG4sTf/RJDPDk/tPJuQ69gc/xzVM5smlS6VzXMXjGKIM4glIvxGIlU4BVqYMAmPHy2hHvG3dc/ChiXW7jMtLVmb5SO4yYcejz/a0aT1suQybcuvuIiIiIbCl9K5Tt9mJvJ88pozGk/gxiUCxK069/iaAxBrO6BoBo7gaY1TX8xab1EB22BiYPsQR1ExO6UnjPvURUmWTJPlPIhAFJ12WvqpqyZa2ecYg5Dt5w/RiFhOMSNw6+jbB7d2Eb06ytnEneJJiycj2xvpGXmcYdh2WpQkuSTBjQlstQ5RUDRMehdyuDvc58TktMRUREZNToW6Fst3QQ0LeVy+TGCz+K8IxDZC35KCw7DkAEpGPYeABT+kbcW4hDod/hMOdE1rIum8Y1Dns9/gwGyC48jCgeIxMGVLgeyQGN3KFQadPTHsQROcZQ3d8LsT6HPWwd4QmrWNWwFy4R057b5I8jvgO5jUV/amNx1mRS9AU+HbksuSgkUSwKFHMK+0L9TQK+bj83ZP9EP4roDfL4Q9wmIiIisiPoW6FstyCKBn3B3V2lA5+/tW++OuWWGiprCGz8gp+JFSqXVm3/ksHeIE+VF+NtQYLq11YT1dcQHjoXzzhkwqC073CgUgbR0R7EkdTEYvgDAnw8y7L9C0t1Z65YWXau+cdkzF+mw7oqoLBENReGrM2kaMtlwBpMMYvrmcLS1dyAa4fW8ufWNaxOp7DW8ljbWtYXK52mAp9cGO4xv28iIiIy9ihAlO3m27Bsf93urDfwWZ/NEFlbOpYNg7Kft0YhELSAHbQH0VoDqVjhQNX2Z2D9KKIxFmfqo/8CIHfckeC6pYbt9UMFiMXlpVpiOrKaWHxQ1q59VhV9bg0TUhuoWhbBylpIeZjeBCZycJ6ZCK2VAFR7Hn/vXM/ydA8VA3pOesYQ2Kiskmm3n6M1l6E9n6UnyPNibycPbVhFZz5LKvTJR9Ee8/smIiIiY4++Fcp28/egL6x+FBHYkGBAMPB4+zrWZFIj3Gvk6xVCS0PebswSBVEExkJfHAC7DRnETZcmBjZi5qo23DXrCVuaCObuC1Bop4ChNhYfdA23WKBGS0xHVuXGGPQ3Ag9WTCj0RNzrH504L0zAvNQEgC0G/KYYIDbEk2TCgHXZdGn/IVDKJGbDkHTgE1pLRy5LX5BnTaavsN/QRqQCnyfa1xcyiFH5/BQRERHZkfStULZbIUAcuVDH7sK3heV74YBooCufG9TofkvlorBQqZRNitQUr2/6M4jVW59BbM1lS0sPAWwQMudvzxce98SjoRh8JF2XuOtQ6XmDrtGfPVQGcWQJ1y29ngMtnz0FgL3SL4C1mLbCslI7q7NwQt/GoHxyopLGeHLQPlCsIRMG/HHDKp7vbmddNkXMOHTks6xI92IwTEgkWZ3pY2W6l03nkoiIiMiOpG+Fst18G+0xRTOCqNizsPgFPLQR6TAo2yO2NbJBgGsM1hry4cZr5KKgEDimigHEVmYQ81FIzHFIel6pQNBhL66moruPYNYMwlnTS+cmXY+445ZaKwxU6XrMrWukKhbbhmc3fhReu8HLjPv2NrRXNVMd9tBoVgEUCg5NTGHdCHrjpbsZY6j2hnidjWVNpo/12RTPdLezOpOiMZ4kF4Wsy6SoKr5/IZYuP0+F6xFau83LnkVERERGogBRtpsfRQR7SgYxCovLTAtfvvNRIfjtHdDovDOf5ZW+7hGvExW/wOeioLiMEzLRxixkLixmFlMxrBdCfOtev77ApzGeZF5tE535PBWpDEc+v4LIcci+4diybFfS9Ug4LpXu4ODEGMPe1XU4Q2THZKOk6+IaZ3Bl0Zhl2UEtAMwMny4ca04XKs3W5DGRA5nBgflAnjH0+HkskAr9YrEhDyykw4CqYlBZ58VpzWaocD0iLKG1vNjTwcu9XTv2yYqIiMi4pgBRtptvI0JL2bLM3VUuighsVNrjlY8KfQz7go0Zvg25DE90rCs7tql/dm7g+e52slGIawyucciGIR35LNkwIBdFxHPxQgBR5Y/Y3iIfhYOWuGbCgJlVNexdXUvMcZj/xAvEwojuQw/ENtWXnRt3HCpcr6w4imydCtcj5pghl3aumDUF33OZ3roCd79V2H06Cjf0LxvuG7z3cyDPOHT5OarcGBPiSeLGwTUOCdclEwbEivtDq70YVZ5HtRfDWktoI7r9PB357A59riIiIjK+KUCU7RZEERHRkH3bdje5qFCxtD/Y9YsB48A+j7kgYH02M2zmJrQRr6Z6eCXVTTYMcYzBNYZuP8eD61eyIt1LLgzx/GJGr2Lk/Y2tuSw9vs/abKHtQWQtFmhJVlLtxZjZ2sNey9bRVxEnfcwhg+4fc1ya4slSQRTZenHHJWG8IQPEIOaxYtYUvDBir9RLEC+cY6tzhRN6Rw4Q445LZz5HbSxGhevRkiwUtmmKJ5lWUV06zxhDc6Ki1FcztJZsGI74hwoRERGRraUAUbZL/xfVKCrs39vd5cKQyFIKdvNRSBhZMmFYChp7Ax/XGJb0dgxZvKYtl6U7n6MjnyMXhrjGwTWGVBCwIt1LVz5HPgpxg2JGz9t8YD2vromY45IJC9nESjdGU7wCN4w44e8vAfDogtnEK5KD7ju1oooFDc3b+pJIUXUsNuxe21fnFPZ8znppJaVypzXFSqZ9g9uLDFTjxdirsgZ3k0JBjjGl7GH5cYgoZOzzUUg62LYCSiIiIiJDUYAo2yW0lghb3BO1ZRnEV/u66fO3v+/faMiGIaHdWMU0H0VYLMGASq19gU9DLEGf77O22P6iI58tFQ1Zl0lhTCHIDLG4xpBwXNpzWRrjSdpymUKAGG55gDipopLGWIJsFJAJAyYkksQch/gj/6C2O8WrE+tYNnMScWfwMtKk69EQHxw4ytap8WKDMoh+FGGtpaupjo4JddR19TFhQ7GCaX9vywGFaoZijClUSd1CDqb4h5nCnEyHyiCKiIjIjqMAUbZLaKPifii7xb3ZXurtpG2M7pvKRSEWyvYgesbBH9DMvC/0iTkOMcdhZbqXznyW365bzj+7NpANA15L91Dpxogbh0yximnS9di3po5qL0aXnycfRTjFANFuEiBmwwBbDDb7g85K12NiRSWZMCQXhUxMVOJsaCf+16cIYx73HTKLylhMxWZGUa0XLxUvArDWsizdQ09x+fEr/VnEF1cWTohZbHUOk4lBsR8iFvC37z0yxmCLRWpyUUjeRvh7SJEoERER2fUUIMp26S+3319VcXMia+nx8+TCsfmFNltcShpGGzOI/TFXLgwJoqiwf9A41HpxVmb6WNLdQZef48mOVu5e9QobsmlqYzFqY3FSoV/WYzDpumTDgIiNASLuxgDRjyKWp/tK+8r8KCoVmWmIJbG2sIKx3ouRvO9BTBTRtnAB2ZqqoVsoyA5T4cUYmArMRSHVXpxMcS6vnDkZP+Yxbdla4tlC0Gj3LRSsMS82YV5qxDwyHfPQTGiv2K6xGDYuMQ2iiJz6IoqIiMgOogBRtktgIyIoK+wyknxUyIBlt7Hx/Gjqz4IaNmYQs2FQanSfLY7dL/YgrHBdMkHAq+keJsQraElUEHccpldU4xqHpOsxp7q+LKvnGqcQTEdsDBAHZBB7gzxNiWSp72I+Ckk4hTYVtbE4xhT2pk3711Lcda2EUybiHzaPhOuW2iHI6Ei6LgPLzWbCgNpYvDRXwpjHstlTcSNb2IsIMCGDbU5hsjHM8npMJobBYF5pGHHZ6eaZYoXdwlwdq39wERERkd2PAkTZLv39/lwMwRZkMXJRSGAtqTG4b8qPCvsPXWNKSwnTQYBnDNYWMojZMMS3EZ4xGGPwjEM6CKj2YiRcl2ovVlYtdLjKoREWExZ//QYEiOkgoCGWIB/1L3GNqIvFMcZQF4uTcF2m92Spe+RJrOuSPfVEquMJkq5LtTdytUzZPpVurJS5A0iHIZVueY/Dlw/YCwvss2Q5JixWMz2gDbt3J9GBrUTHrsBW5THdSejann2hheWloY0IokK/TREREZEdQQGibJfQWiwWY8wWZhAjgigak6X5g6hQnMYzTqkYSSYMcI2DMYZMGJCLgkIGqBj4TUxWMLWiaqsexzMOuTDEBOUBYhBFOMbQGE/SHzL6NqQuXgj8Yo7LBMfjDY89j4kicq87mmhCI65xaE5UkBiiQI3sOPXxOBWuN6ByrWVysgoHUyrQ1FdXxdrpLVRkckx4ZWWhR2EixO7TCVN7oTLAzuwCwCyv247RmNJyaLClPyiIiIiIbC8FiLJdQmtLi+4GFnZ5pqutVGBloHwYEtiI1BgJEDNhUFru6herl8Ycp5QNzUQBnmPwjKEvyJPdZClff4/DrZF0XPI2xGzS5qIjn6UpkWR6Zc3G1zSy1AzIDC58+jVqu/oIZk7DP3x+6fiC+mamVW7smSc7nmscJiUrSQc+oY0wGKZVVpN0PbJhSK+fJ7KWlw6cCcABS1aQ9ofI7E3qw8ZCaKsEf9s+gq0tZOMja3Edp7QkWURERGR77TEB4g033MCcOXPK/p188sm7elh7vEJQWAhn+jOIbbkML/d1DfmltbAsrtDge6gAcmd7uquVp7vaAEpZQ9cU9ndZa8kGhQxizHHo9vPFKqfbN+66WJwZFdUwYInp+myGmONyROPEwjJVNr6elV5hGaP76kqmPv0yUTJB9s2LYUBgOiFRQcUmyx1lx5tUUUU+ikgHAVVejIZ4kvp4nM58jg25DH2BT+ukRjoba5jY2ce0tu7BF3GA5hTGmkKQuA2MsYWenViMNeTUC1FERER2kD0mQATYf//9+ctf/lL696Mf/WhXD2mPFxWXuMHGNhdd+dywlUrzUYiDIbAb+wruSuuzGV5JdZOPwlITdMeYQusAGxFQ2G9Y48VZn02zJtNXLFqz7Uyx7UUpe+QV2hQc1zyVKRXVVHkecdctvD4GKlwP09tH8le/ByD3phOwNVu3rFV2jIZYAgx0+XlmVdXhGsOEeAWpMGBisrLwO2AMSw/cG4BDX1o95N5c21Lon2k2DHgfA4P550TM0sbC3OhKQDj8XMtFIQaD5xj6Rij69HJfF91+bhufsYiIiIw3e1TKwXVdmpubd/UwxpXQWqw1YDZWMV2XTZMrVvzcVCYMiTkGv9guIrkNWa/2XLZUEGZ75MKQniBHn++zPpsuBbsOBj8Mi/slLa5XyCBaoMfP4+2oXoPFL/+BE+A5DnWxjXsNq70YnbksCcel2ngk7/k1TjpL/rB5BPvP3jGPL1utvlgQKGZc5tY1lo5Nq6iiNpZgbaYPgGUzJ3Hg319g1up2nu7qJWjcZL9hYxbrRtBWARkPKgLYUIVpq4I2MMvqAbDTerAHtA0ah4XSH2A8Y0iPsGR7WaoH1xjqYontfwFERERkj7dHZRBfffVVFi1axOtf/3r+67/+i3Xr1u3qIe3x+rOGho1VQNdn08OW3k8HPnHHLXzB3cYM4ou9HaxK9w55W3c+x4s9nVt0nd4gTy6MiDsuy1M9xQyiKWQQo6j4fGwpIGyIxdmQzRBzdtCvTeBgnQjfRHiOU2yjUNAYS9Dt59m/ppGmR57EW7WOcFIzucULd8xjyzZJuh5TktUc2tBCZfEPFNMrazihZRqNiUSp+m3OWJ6ZMxUDHPDsa4Mv5FpoTmMiB+cvMzAvNpayibYmh40HWGNhfRUMUX/GUKiEC4WiRyNVBU4HQWn5tIiIiMjm7DEZxIMPPpjrrruOvfbaiw0bNnDTTTfxvve9j1/96ldUVm7bPh/H2UGZoh2gfyxjaUxQyGQ4Drg4BDaiN/DJRAFxxyVPOGi8haIvDmEU4hNt0/PJRiERQ78WHUGO19LdHFDfuNnr9IU+xhSWDS5L9xYaoRtwHUNAYYmpMeAUA8KqWJxUGFBdbDux3QIHXEtgLUnXJeFt/HVsTCSZXFnFoa29xB9/CptMkHvnG3HiO/5XdqzOrbHqxInT8Ab8kaDKiVEVi9GWz4IpLCEOrOWV/ffi8CUr2fe1dbxyWJZMdUX5hfbrwCZCWF0NK+rAUMgqHrWm8Ke7f0zEtFdCdwU0Zsvu6hoHsBgDMdclG4UYM7itirWWbBQQYnf6+6t5JaNB80pGg+aVjIbdeV7tMQHi8ccfX/rvOXPmcPDBB/O6172O3/zmN7z97W/f6ut5nkNT09irCtnQMLb2nlWTIdkXI+Y4JKri2EqHRLJQZCVZHR/0GpoOh1ovSW8+T7I6QVPD1r/GptOlombwtQFWk8HPQH1jZfFL9PBeDnuoSMZprqkm09tDnxdQkYxRnUgQWUjUxEkmY1RVb1yat3f1jlmmZyPIRA6mIiCW9JiQrCh7PvMqHWZHlvr/+wUA8feeQsXsKTvksYcz1ubW7maim6ciFaeqOkE6E9LcUEv3EQcy4ZGnmfvicpaccHD5HaqBCSn8OvCfrgML7uQsidrCHPOn5/HbK4l11RCfUV4Yqcr4VCQTJAmoq0jSnc9RXV9B0iv/SPejkNiGGImqoX9fRtuy3m6m19ds9ndRZGvp80pGg+aVjIbdcV7tMQHipmpra5k5cybLly/fpvsHQURPT2YHj2rbOY6hoaGKzs4UUbTrq3/26+hKkcnkiRyPdlL4aZ981sdgWNvewwyz8ZfCWktbbxrPOGTyPhs6e2mO4oTWEtrCUs8teszeFNWRQ7vbN+i2Ne09dPVlWLOhu7QEcODjm2KF0tBaXt7Qgc2HpPpyVEYur7Z1YYBsWGgbsLqth2zWJ2V2UIGPnnhhyeD0HnAK7UEiJ6QnlaXFSdDevvH5OKkME378G8j75E84ktTkydA++PnuCGN1bu1uMukcmUyeFDl6MlmmuJW0zt2X2sefZfpzy/jn/jNY6URMSlbhDMz0teQgWYXJegQNvQR9xflWF2Cox1+VwN87x8DaSLmsT2+YJZPLk7cevbkca9q6B+0zzIQBfeksG5xe2r2anfAqbBRi+Uf3esJUQL32P8oOos8rGQ2aVzIaxuK8qq2tIBbb/PftPTZATKVSrFy5cruK1oyVN3OgKLJjaly5MARbWBGXCyNW+ymSjktobaEv3ICx5sKQfBiS8BwcoC/vE0WWZalu1mZSLJyw+QxZZC25MCIXhEO+Dr1+nnwYkQkCkk5hemfCgL93rCfpehzROJFnOttZ0tMBQMJxsdaSdFwcDBWuW2ox0ZHLYGwhsNxuPXHMPyZjAge7ohY7u6Pwfd+LyIcR1U5s4/MJQyp+9gBOdy/+AfuQO+ZQ2Anv+VibW7ubmHGJrMVaix9Zqt0Y8UQFT8+ezOEvrmb60y+z9pB96PPz1MQ29rbEAPPWw4YqbEsfpS4q8QDqspjuJFFHomyZqaFQ6MnYQtXdIIrI+AE1brxsTPkgJIgsmXDo35fR5NuQIIoIokjzSnY4fV7JaNC8ktGwO86rPWbdz7XXXsvf/vY3Vq1axZNPPskFF1yA67qccsopu3poe7QginAwOBhSQZ5uP0eF6+EZh75NerPlSkVfHDxnY2GNXj9Pez471OUHP56NiIjKCtx05rP8pXU1AH2+XyiQU7w9iCL+sG4lT3e1sSLVS2QtazJ9pAOfdBCU9Q6cmKygNhbHNYbIWjryuS3Oag4r72BebML8fUohOGxMY0IH83Jxj6RX2OdYWhpoLYnf/hlv5VrCSc1kT31dWb9DGbsSjotrHMLi3tUK16PKi/HcgTMIHMNBL69llhOnd6iCMg057JyOQZ/Idnqhj6JZXl923DGFue0W54YxZsiiT76NiGxEboQ2GKMlsBY/ikrVjUVERGT3sMdkENetW8d//Md/0NXVRWNjI4cffjj/93//R0NDw64e2h4tH4U4plD5M7SWXBQywUkSWEs69EvLOvvPDWzhS61nHHr9whflHj9Pyi8/dzh+FBFGlvyAqox9gU9rLkM+CkmFPkEUkS1WUF2TSbEul2J6ZTUd+RxtuQwd+SxNieSwjeUNhQAxEwbEt7Ziab54fjwq9LV7cjKmN4F1IqJZHTCrCx6aiQk29kAEStnO+GNPEn9qCVF1JZnTT4bYHvMrusdLOC6eMaWKoZXFAPGoGfuwav+1zHx+GYe/sJolsxu3aK4DMDGFfTnAtFVi+2JQXfidMRh8Gw1YqmqHDBCDYoCW3QU9R4MoKvxBRwGiiIjIbmWP+fb5ta99bVcPYVzyrS0FiL6NwBayGZ4xZMKIfBSRKLZv6Av80u0Jx6U3yBNEEV35PH4x67e5voj9X3gHlu3PRxGpMKAznys0l6eQrbTW/n/2/jtIzuw874Z/5zypw+QZ5LDYxM3YgF1uIpfZpCiJlkSH9/0sW8Eq11eWQ9klleVYTq8slS2Vy/7D+kpySa9sWbZlm7YoieIyLsMuudzMXW5eAIuMwcROTzrnfH+cp3u6p3sSMABmsOdXhQIw3f300z0dznXu+74uXq/NEghJKD1yrTnaWOyI2JVoVxBTrRjxwxWvx3yEeHEX5qZZ2GdbA8V394GSmCOnEa9PWXE43sIcPmdFI0A1hYXi/n2NwbqY+i++SvTE05gwoPXnP40Z3nomSY6VCaXNy4yVwhOCclEV3lcZQnz0McwbJ5h88TXGDz5IK8z7ZmQHIm0VUbw5iXhnHHP4vP2xEORKdTYwDHQ2RbqxFUQGRs5cbnKji/eri9hwOBwOh2M7cc20mDquDplWnRbTRKlORqAvJLnprWqci5udikfkWSOYWp5aoWgGV0D67s9oFKYjBNvn0MpzZtOYvGhhTfKcmTTmRLPORGjFmBCCmbTVEakr0c6YS7Veyjw02EDzViFgNYgf7ECkPuK1KWj6sBAh4gCReYjv7EfMlW2m3T1nl8QhWIFYoD2FJySjx05R+sITGClp/cQn0bsvfnbWcXUQQlDxAuayhPEw6tlcMMNVsvvuROSKx14/TW2VYPs+Dixiohxxbghm7WtZCkFubHs3gIegmdsq/Hy6ZKrUFmhtsXYlUcZ0NnTWop5nPe9ph8PhcDgcVw8nEB2XRG40UtiZqEaeddo2bdbh0iygNoYTzRpDRdXEExJtTKc1NNd6XVWOtuFFpnXHPCbVmqbKmUliVFGxrKuM83ETjemIvIrnMZ+mawbdCyEQWHMaKQTEHuKp/TbQ/NsHoB7A8TFEI8T4GqGlFYsXbN6m8RUCgRmLMUfOgN+7QDZDS+JAeYr9M4tMfv5rCGOIf+QjqOsPrOOZd2xFhnyflso5WBnp24RIH74XEwYceu1dyvXm+g/qGcz7ZgAQr092TKFybToziL6UnVbrb06f6oit3JhOy3R2hSt51qDGrEsgvjg/zYnm5XHpdTgcDofDsTGcQHRcEpnWCASBlEghqHblsAmx1No2nyUsZmnP5QaYTlqdWaruCuKpVn3g7JKtINoqYl5cHqucTCsWsgQhBIGwi+WzcYOoy2Sm4gXMpC0qa7SxFmff8YYRb05YMRjmCCNs6+g7YxhhMA+cwgyliLkyHB+1j+v+M+i7z2LuOwPBgEV5VwVxtHGBH/769xG5Iv7YI+R3vG8d5+bYqlT8gKofsLtU6bvMVMqk9x9Gas37XzmxsQPvamCGEkQ9gpZftHSrTkW+/ZpfzFPmsoSFzL7GMq3wpOhU864k7crlegRiI7fmUg6Hw+FwOK4+TiA6LolMW3HnCcn11ZFlgdiCWFv3xAtJC21Mz+UeMJ8mRZOc6YjJuTTmezPnWMj68wczbeccTZGdCDbGwheyEJgGXwpqWcq5uNVjRBN5HjujcqeKuRrGGIwRMBchzg5jwhzz0ClMoBCzZYSWmOvnYCjD3HrBPlotMZUUhlPY2QRvhYXxkF28j2YX+OiL3yTKcpJH7iN7/92Dr+/YNgz5IaN+yFQ0eMY1ffBuVBRyx7GzDM/3V8wyrXtaRDsIYLxw+l2MOtEW3RXEZp4xlyTMZwkLxTHyogqujL7yFURjyLRal0lNS+XOzMbhcDgcji2CE4iOS6LXSbEXTwjebdQwxnC8sdjX2hlKrzCTKUw2igrimVaDmTQe2HKaGb1UESkWlC2lqPh+5/pWLNq20+XVwtEgWpd7ZGY0oRSdOApz8yxECnNo3v6/ksL19t+Mx5g9NfvvqXW0DkaKYTXNBy/8H0p5xut33kD62PvXvp1jy1PxfK4fGiFYKR6lFLH44GGkgbueea3v4oUs4UIaY4xhIUs42VoSkWbEij6xEOELybAfdmJYAiHJjOZ0XEdpbWdtgUTneAgM9Bg7XQns3OPaLaZtx2AnEB0Oh8Ph2BpcMy6mjiuPMgZj7PzhICbCiHebNb6/MMO7zTo7o3LP5ZHn0VI5spj5a+Qpxhjeqi/QUjkt3Z/d1m5p1cagigVvrK0QbKocWbS7NvIcg1lRvK7FnlKFoFZGzJetGNxTLNQPLKKVgF2Nnu0Vc8sMpprBvsU1jz28UOOx6a8R6ZjvHzrEOw/cyl6XdXhNcMPQKIeqI6teJz1yF4vPvsy+k9PsODPDud0TtFRO1Q/ItKbqB6RaU89zeiTTaFFZLCqI+ytLLre+FOTGUM8zxoKIs7HdqEgKR1VzFVpMc23W5WKaauXyEh0Oh8Ph2EK4CqLjoklUO9dw8MsolB7KGF6vzREI0VdBjKRHLcs68QCNPGMmjbmQtAikGGjbn2iFLyS6mEE0xhCrnFIhNgMp8YUkLionG0IDR8dgukzJ8/FP2AxNc3CBzqE8AzfOd/LoOgTaVhTD1RfDYxcW+PAXvktJxbw1ejvfPHIIf6Vqk2NbstamRCmK+N49NwJw9/deo5YlnGjVrYgzhqrnE2u7wdE2SwKgkmF8DYuRfa120TZ9SpRiLIxYyFKaeUailyr8V7rF1M4gri1M206nbgbR4XA4HI6tgROIDsC2ec2l8YZuM5/FZFqvGiY/EUZFMH2577JASjKtbAagkNTznFNNa04TCI+m6o8CSFTembvK2/b9xWzjWBAy7IeF4Y0ePGu4ECFem4TFZfmGxsZWyLcmEK9P2cD7c1VMoGDv5rgrTp2b5cNffJpSkvH0zXt5/scOogOzosB2XJtIITh/437OTY4wPrvI9W+foeoFnXbtsufTzG013BdyqbImgJEEoSU0Bs/RagxlzydVioUs7VQQ4cq3mKbFTPBawjQ1RRTHFT4/h8PhcDgcg3Er022MMnrDom4lppMW35g+RTNfauvsjpIYxGwS2yrHKhWTsudzXWW4s0hdzk1Dowz5oTXZUBlv1OcZDgJ8Iahn/QIxVqpoSbU5cJnWqMLufyoqE3m2GndTdYThoFcEirfGkU/vQ5wYRTy9D/HsbsS3DiCe3ov4xkHEmWF7xZYPs2WEEbBjFbOZDbDr1DQffPx7BFnOk3cc5Nv33gBCYApTHcd7i5Eg4pv33gDAgy+9wyiSRCkMhqEgpJZntootRW9lbaTdZtpvgqOLimOb+Swh0VZoGmMdTa8kibLnvZYwzVwF0eFwOByOLYUTiNuMWOW8ujiLMYaj9UW+deF0z+WnmvWLCpyu5xnn4xZn4gZg29q+MX2K08X/B3E2blK6xPbItrj0hSDTmoUsYdgPCaSkNkAgJnqpIqK0DbNXRuMvq8L1iVYDHB/FSI05sGCvM1tBtALEQgkyDzPewozECATijJ3vMsMDHCU3yHVvneIDX3kWX2leuP9WvnvHdQghMcagjXWgdLy3GAlCTkyMcOLQboZaKUdeO0GsFRLBzqhMKD0moxKB8HqEkykccEWzv4I45oeMB1Y4BlLajFFlnU6FsHmhK3GssbjmrOBGybRCwJqVwVSrIobDzSA6HA6Hw7EVcCY124x6nvH9+QuMBCGv1eaYTxMSpYg8j1jlPD17jvdP7GJfl4HFeljMUmp5ylu1eW4cGmUxSzndqrOvXIX+7lAyrTiXNNeZKbg2gZQ085zIs3mKgZQ0VIYxvRXKuNNiaisOmdFosw4zmmZgYyjGWphbZ+DQPCbxbSZhLsHX4BvEW+O2OjNT5NiN9ArERClCKdflhIox3PbiW9z5wltoIfjeo3fy+g17ifKU3Bg0xlYQ3T7Ne46qHyCE4aUjt7Dn3XPc+coxvrN/nGB0mF2lCmXPZ3dUIVWaer6Um0lUVPiT/o2Z7op52fM512qSGU1JSjyxFDmznFjlfH9+hpEgZCIcHM9xMaRG40m5ZotppnWnXdzhcDgcDsfVx61MtyGLecpzc+c5FzfJtO7M6p2Nm8ykrYHun2sxl7YYCyLOxA3m04TppGXz1JZlERpjeH5umlcX52jlOaVNEoiesEY17QVqIDxSrYpswyXSIvvNYKMuUq3WJ9ZqxeJ5uFhsl5R1hfSN/bdvqxemuFwY2/7ZziwE29J7vFmjlvdXNpcjlOaBb32fO194iyzw+NbHj3Ds5gM0VUbZ8wvzEVvY9FwF8T1HyfMwQHO4wjO3HcBXmo88/w6h9BgPS4yHEaNhRNX3e4VTVLwfBgjEbsqeT0NlqGKuUSIGxsYANFVOS2WbPgOYaoUv5boqiLl2LaYOh8PhcGwVXAVxG2KAs60mUgg0NkNsHDjZrLFYuBdu6HjGMJsmDPkBi3nKDxZnSJVCafvzbmKteHnhAi2lkKzt2LgR9parnX/70racJkp1RGheVBoC4dOpIGoNrN2aJgqB2BaAKzLU9XgrWUc4gq2yjoXRmgvZIMl4+OvPs+vMDM1KiW99/AgLEzb6oKUU+8rDNPNFNFYhrjSf6bh2sZsENuz+mVsPcM+JGW45M8e5s3N4BwUPTu5mIow4Hzd7BVangrj6R3cgJbnRCCSesH8GuQIDNPOcuIia2ExSpQmE7OSVroSbQXQ4HA6HY2vhShfbEIF1B90ZlcEImionUYp3m3XKnsditoYIWkasFU2VE0mPnVGZVxfnOBk3mAgjFtKkJ8C6kWekWrOvXGFPuTL4gOvTbKviFVEWcVcFMS/aST0hwFjBuOKituEjvr0f8b09cHIYapH9+VozhZUcI4tjLhOTdZUzEoQ9C3Zles9hZK7Gx/7oSXadmWF+fJiv/PDDLEyMYIxhOmkhgN3lCkLYCqIQIDcax+HY9owGIWXPp5anyDBg5sMPAnD/069BlrOrVCGQHhU/sBsJbXyD8fSaFUQAjM0qbbds1/J0YBh9U2W0VL7pMRiZWV8FsaVyfCHcDKLD4XA4HFsEJxC3KVU/sLmCwtDMMqaTFk2VMRpEawrE+rLL63lGqu1sXSg9StKjVlTL2uKx+7oGOlWJPpRAPHkA8fzuTXiUgpbKOxXRtKg0eEIghSA1ilQrjOkXWOLNSUQzRMyXka/ugNkyRhiorlFdFXTaSk3X/GGqFYGQDHlBT6D3dBJ3jH32HTvDx/74KYZrTU4d3MXXPv0QcdW2zDZVjhCCj+8+yPXVEURR/QWxqVVYx/YgKDZj5rOUUHqEt97IsX2TVGpNwu8837leNMgEKsoRuQdq9ddNVGSDekJQ8XzqeUYt7/9sqOVZJ9N0s9DGkGmNv44ZxJbK8aXcdJMch8PhcDgcF4cTiNucQEgW8pTzSRMBhFJSy7OBlQKAs60GXzl/grhL9DXyDMGS8+dkVOJQZZhQWgfFRlfLajPPEKuVB89VEa0AZsqQLXt5NX3IBbR8xBMH4Z2xVR+bwPB2fZ4/On2UmSTuzFz60hrZJEoXM4jLzmeuhJiuYkoZ+vbz9lhGQDUlYR3zmeNFdMjYUoRIPc/YEZXZGZVRXXeXG41n4M5nXuORr7+AlyueufsGnvzIveSB33O9YT/gQGUYKSQS0fkduRbT9yZ7ylVilTPsB5Q8nxfefzva8wifeh4xa512BwvE9c0hDvtB5/Z+0XK6kPYLxIU07quEXyrKaLRZanVdjZaymy9qjVZUh8PhcDgcVwYnELc5ofSYT1NONGtUPJ9AeCQDzF3AtmQ+M3ee2cL5tE0tS5clqC2JRYHoEYhzabJqsLs4NdK5HQvR0gXzUaeyKN4dRaQ+4t1R24660rEQvFNfYDZNeHVxltcWZzuuqRLrpNrM8/6Ii7fHATA3zcHeOma8Zf8/lHC0sUh9jRlNc+Mc+sGTMLZUQcy1puoHhJ7XI0irrYzPfuMVbnv5KGng89WP3sOf3rSLllbkWvNus4YxBmUMkbTn3o4dMNg2U1dBfG8yHkZUvKDjPrpv714WHzyMUIrSnz4BxhAVZjY9rFMgljyf/V1uxgKYHZCbOp+lGNbOK9wI1qVX4wu7EbLShhVAS2UE66g0OhwOh8PhuDI4gbjNCYvZork06bSdZlrRUv2VsmONRc606iitSbsWY7NpTLiCSDGYnpbU2TQhWsl1sx4g5pds8sVc8W8lEK/sQBiBmC/DiUJEZh7MDsjQKNhVKrOnVGV3qcxb9XnOJy3GQruY9oQk0Yr5LOkViPUAMVfGlDPYXQcB5tYLmNGYfM8iI0FIba0ZTc/ASO91lDFWgEsPCjG98+R5fvKLz3Lg3Byzo1W+/KOPcHTPBCNBSKwUDWXnNTNjW2NL3tKCPihyEN0M4nuXibBENfAZ9u1r+taRCbxHH0BNjeMfP0Xw0mtE0uupNgMQFu/txQjxgylI1/cxXpJ+px26TVa0kJc9b0WX04tBaTsv7EsrcFeqDhpjSLTCFwJjVr6ew+FwOByOK4cTiNucUHqFTbwmlF5RjRK08n6B2K7+CSFIiwpj2zxlpbiKUEhmi6iLXGtqeTq47Q1sRRAwe2r2B4VYFEfHEM0QU+2KkCjcGMXZlfMaPSHxpaTk+Rhsu1q7eimFnZ06FzcZDUJYDBFvjyOOFtXDA4t0dNdQhnn/abLxJpHnremqOAhlbEUmEBKpFIe/9xof+vKzVJKMo7dex3/7xL00RqokSjEShCQ6J1aKId/OLCqjewSi15lBdBXE9yolz2dXVKXid733fI/40x/BANFXnqTcjDvtoW1MUUEUb0/Yiv3JkXXdX8X3mUnjznsfrINpqhQl6ZNcRDzOSuTGoI11I9bF63/w9TS5MQTSmlKtVml0OBwOh8NxZXACcZvjC0GyLAvQGAZmITZUhl+EzLfbyVoqp5HnPeKlm6ofcKJZYyFLaKiMRCuiQdeNPTg9jPE15pYZjK9gMbJziCdHMMJg7juD2dmw/77rnHULPV/tn1UcwJ5Sxbq2FtgZRAUCfCTipV2Id8YRZ4fscffW+o6hjM1QjORFVEuEIZSS6nyNv/CVF7nllaMkoc/XHzvM9MceIvbs858ZTcXzybV9jkuehyoqiGW5JAR84aGNrdBKpw/fszwwsYuDleGen+l9u8geOIxIUka+/CQ+orf9s725ouz7RtTDdd1XSXq08pw3avOd139T5WisQFspBuNiaDsO+2J14ZdqjdL2/s0qQtLhcDgcDseVwwnEbY4QAg9pq2idH5qBWYiN3M76mK4F52KWkhlFuEJVsOoHJFrxysIM82lSiKz+l404PmaNYA4sQKBhLEZoiXh1yraS7mxASVlh+Oi7MJ7A7jpCScQLu1adRRyEJwQX0hYTQQSnhxGtAFPKrFPp/kV7DsuwbZ4+O0tlFge4Oa6G1IZ9L7zBwd/7PLvn6kzvHOO/fvII9ZuvY8QP7cwlYIxg2A+tYBfgC9mx7w+7hLUvBaaY/FxtptNxbTMWRgOr98lj70ePDRO+eYy7z873OAl3ZhDb1NYnEIUQjAYhT144w5MXTgN200gg8IqNps1CtdunhejM4A7CZiBqfCExBlzShcPhcDgcVx+3Mr0G2F+pMuQHnf8HQjKTxn279t2GLu02s/UIpamwxA8WZ/n6+ZN9hjCAtds/NYyRGnPQui+aPXUAxDnbQmoOLNrrSqBctLfeOoMZThDzZcS3D8DRMetyug6qXsDeUpWS8BFHx+zxDp/HfOQY5n2zA2+jjKEkPW4eHifRqs+sRhVVj+UMLTT48199ib3ffh4BfPvu6/nqJx9grhIyHkYMByGeaItuw+5yBSkEvpAEcsmdMeia3fSFRBvjTGocgwkD4h/6MABHvvMDZKO1dNlygdgM1oy8aDMShOyISpyK68Qq52yrgcRuUsSbKBBzbRuopRDoVWYLc6PRmE7uqb7UAFWHw+FwOByXjBOI1yBjQcRbtQW+N3uuszDLtCYpgqslEBctqHNpjLeGSUrJ85kISoyHEbtLlf4rTFdsu9vOJoRF5W53A33bNAaDGYl7IiM6eAZz71nMZBMRB8i3JhDfPAjzUf91lyGEsKJ4poKIA8xkE0YTazCzwsNRxhB5PjcOjfLo5F7m0qSnde9Es8GFZGkhnuUZe194nU/84bfYO7NIvHOS2Z/6cV64/TryYtZzyA8Z8gPGwxIzaYtAeuyKKpSkR8WzP2/PjwVd4tqX0i6FnUmNYwXUof2k99xG0Er4+HNvk7dbQKOlaqLxtK1er7PNFGyraZwrppMWp1oNhvzA5ooqhdmkGUBlbHVcAJreCmKmNS/MTaOMIdf2/GXh6utaTB0Oh8PhuPo4gXgtsGxNF3k2hPul+Qu8WZsDICmMbHwh8cSSic35OF5x/rCbiu8vtaFmAvHGBDRs1bJTJdxV773R/hrmAycw951dUbQRKcx9Z9GPnMDsqSFyD/HO+PoeNyDOVu19D5g5XE67gghw68g442HUcXtt5hlV3+9Y7U+cn+MTn3+KR194B2EM377rEOf+0o/g7Zwq2kbt9dqL69tHJjqznEN+wERYYkdUour7xeJYLKsgCpQxyKK9z+EYRPLRR9Cjw9x08gK73zxhf+gbO+uLWZq1XWebKSxF2LxVX6CeZ1T9AE8IFOaiDJwGkRuNMUv31S386nnKiWbdmmsV9ydYOw7D4XA4HA7HlcEJxO1MLhAv7EJ84yC0eueYIs9jNAh5du4880XuoTIGv2h9bKqcVCsW8qR/Bmq2ZE1nVkC8O2ZnDp/fDS0PLpQxvoapZv+Vy/nAecA+qhnm9mlMoGz0RSrXnktUAqar1pRmx4D7Xn51ozuPVQjBzlKlIxDnsoSJsEQYZ9z35Mt87E++w46FBqd2jPL5Tz/Ec3dcR+j51llVSBvuLSVDRUTBgcoQE1GJibCEEILd5Qq7S1VK0rdmNMYUERkWX0iU0QghXIupY2WikPhHP4YBHnn2DUo1+zo3t07b98u4rcz3GdVoED+YQnx7P+KpfX1RGGXPZzaNC5Mku0mhtSHVitcX5y65kpdohaAt/ugRfpnWpMZuWNnquj0Hw8qzig6Hw+FwOK4cTiBuVzKBeGYvYrpqQ+eLObxuRoKQllK8ujhLonNrilIsBmOlqGUZqVK9sRVHR5HP7kV8f9fg+9XAKeu6KFoB4skDCC1hR+PSX00S2NWweYnf34n42iE4vXIMBheK1tYdTdtaugbGCMKuKt6OqEymtW1z03D4rdP89J8+w41vnKAVBTzx8O388cfv49xICU+IjsAreR71PGPIDzoRBSXP57bhcXYUTquHR6e4dWScUHqdRXhPi6mQnTY8JxAdq6EO7KHx/sNEmeKeb7yA1hr2NGBfHYZsBA3nq4g3x5ccgU+MIk6NIJohoh7BTG/eaNX3mU3iznu/XUGcTWN+sDjDXJpc0jnPJC284tgGUF1tDqnWRfWwLRDt679dRXQ4HA6Hw3F1cQJxO2JAvLoDUYsw4y2Mp+H0MCT9Vb8hz+ds3LAOhcYuxHwpiniLDF20OYrXJxHf2Yd8axLABt7Xg77jcaGCSHzMWMvmGmqBGYkx181vzkMr2lTFbMW6oL4+uWIQuJiu9Nymm7Nxk4Vs2SJX9BrFjAYhCBh+9ww/9aXnuf3bL1FOct65eT//7w/dj7rrVoYC24baNpwBKxAbKuuJ3QA4PLaDw2NT9q6EQAhRmNToQmD2ziC6FlPHejEfeohsxwQHphe44eV3li6o5JgoRyQ+4tg44uUdkErEO2N2/veQbTEXC6We45U8HynouB9LBMpoZtOYuTRhMduYy+9yzictyoVAXF5BTLUiU7qzOWO6xKMTiA6Hw+FwXH2cQNxmHH8mYPfzNyPODWHKGebuc7B/0VbdBlQRy55PLc9YSFMQdvHlCUlmNPNZYldvjQDx7qgVnIFaEmmnhvuO1/6ZuW4B89BJ6xr64GkY7o/VuCjGY0yU26zEsdjOJL45YcsQ7T9tFqPObZaTa01mDOe6TGcwvQJxYrHJj3/jFX7k6y8xNl+nuW8X/+UT9/Lso3cRRz67ShVGg5CWyok8r1PpK3s+AsHkMoEoB7SL2oqlwJO9ArEdDC6cSY1jPfge6Wc+jpKC+154i/EL1i0YAeahk+j7T2MqKeJCFfHtA4jcszPA+4oZxYV+46d95aHOXLEQNqhlLk1YyFL72VDwTn2Bs63Guk+1mWfU86yndX25SU1q2hVE0/PqV8sHqh0Oh8PhcFxxnEDcRmhtmD/pETbLmDDH3HUeAm3Fmq8QJ0b7WslCKUm1dSxsL8Q8IVDacD5u2rbHeVtdMAfnMR86boPuhYEzw/1zgIuRvWyqaV89/iYv6ASYI2cwD5zG3H3WPq7TI4jv7Ed87RDiuT1Fz5qARoCJ8iXn1PbzZGxL55HxneRFzpo9tiEQHmJ+kdIffZWp3/5fHDozy/xQmfkf+zjn/sKnOD9RGO5g5zhHgpBE6R4jn7LnU/Z8RoK1jUFC6eFJm1XZ3WIqAa1xM4iOdaN3TvLc/bfgacNDT7yAnxabMqG2GyuHz9t53FxiJpuYG2ehnNu53lq05kyvAWpZCtjPhjZHG4tcSAe4EK/AYp6SatXTzq2WVxC1Jtemx0UYnEmNw+FwOBxbAScQtxFSCu760ZiTD76CeexdG+sA6DDH3DYNYFvMujLR2i6CsVrKQGwbpMxnCaH0bDspYCZiW1GMFEw1bcD9dHXpBDKJSH2oZJf3lVPN7GMLNeb+M5ihBFEPEUoiZstwoQK1Ipx+pH9WShmDJwQHykNMhKVOu9xwM2HvV79L9f/3+wTffx2ikFcfvIPv/PmP4d12M4Hn2eqq1kgEkfSo+gG+lJS9pXbbUlsg+msLxEBaU5vQ8zq/C2jPHboWU8fGOH7b9RzdP8VQrcmRp16BbkE1nGIeOYH54LvWOTjU9v08miCMsCJxNYwg1oqxIGK2KwJmLo2JVb76bbtov9+6X+/dpjctlXfmDxOd97z+nUmNw+FwOBxXH3/tqzi2EtIDHaie2IijjUWmJlPGJkcQMxXMYgjjS8LJQ5Bo1RGINrzakGhFWfpL7WejS1UCs2/RGuCcGsbsKtrLilgLKpvUTroehlPMg6cw9RCaAfL7uxBvj3diLcxAgajxpCD0PG4aGuXlE8e5++13uOH1d/G1wUQhyfvvJn3gMKMS7i4WqKH08IQg0Tm+lESeR8nzCKWk3FVBDKRkJAio+gNmNJfRPmZZ9s6H2mBwnEmNY0NEvs9XH7yF/2uuzsGjZzi/Z5Kj7zuwdIVyf9i9GYkRFyr2fT66svmMEIZY5YwGEfNZQi1PqXg+LZXTzNcvEGcHZKt2C7+mytHGkBlNqnRPi7WrIDocDofDcfVxAnGbY4pqWayUndmbqdhKQZdALBVziJUukSOEIFGKMVNGNENMJe1t1Zxs2fbNmbKNsigraBaCqHoFBSLYauVIasXisQRRi+B48ViGV6ggIglnFzj85As8+OpbeNqQ+pLF9x9GPHQEylYUd09ZBkVGZKysmI6kR9nzrUCUS2+Vqhewtzy0LmEXFhXEyFsuEG04ePdcosOxFpH0aAY+3/3QPXz4C9/lnu/+gJkdYyyO988LdyhEoTgzZDdWVmkLT7VmKvSYywwLWYIofhbr9QvEc3GzZ/7QmF7h11I5yhjyws20+33kBKLD4XA4HFcftzrd5uTGUPJ8GzhdiCWxrJWs7HnUsrRTQWxjMHgLxczi2DKhJYG9NdvGebqItSgqiKZyaQ6HF40A874ZG9cRFwvQkaVzOdpYZDFLmZie55PffJmh3/xvDL3yJsrzeOa2A/ynH32I+LH3d8Thcnxp5wRjpSgXpjQVzyfyfMIugbe/MsSDk7vXdcqekEUFsncvRgqBcO2ljg1S8nyU0czsHOfle2/GV5qHnngBL1tFwE20MMMJYrGEeHZPX2ZqG1PkddrWUMFcmtDMbV5qrPork4PItKKWZz0zu9BbQYxVjsAaSaVG9baYOpMah8PhcDiuOq6CuM3JjbaRCSqH4UIs1Xpn4yLpMR5GfSLFGBDn7IyhGe03oTB7aoij44jzVcyN89AsjnsRFcR6nuEL0aksGGOYz1JqecqOqNx3bisyEcN1C3B8zFY4I7twFUpzy/FpHnznLLsvLAKghyokDxzmu9ft4Kn6DGNh1GMUM4iS5zOdtBgq5gvb84ah7I8QWS8lz++pqMBSBdFb43wcjm5CKWn7fr5+1w3sPDvL7tMXuP/Jl/nuY3fDoA0HCebIaXhhN2K+DE/thwOLmIkWhDkMZSBsNmJeCLmK53GyWWfID8i0prXOGcRmnpMqxXiXgZMUVjiCrRDGShFIj0QrErVUQTS4CqLD4XA4HFsBJxC3OZnWBEKSAETKOhbWQ+tYWGgPIUQnwL2NLyTluSHE2WFMmMOuATb21RxTzhD1CBN7Fz2DqI1hLk3whSCQGVNRmYUsxQA7owpNlVGSHm83FtlXrq4pFs1Ns5BJzGhCqRlzw+snuOGNdym3rECeGy5z9PBN3PzIw+B7jDcWMPUZfCHx12jpLHl24dqeL5RCMBFGnUDxi6HqBX23l9gKoi9dBdGxfnwpEe0qmxB897G7+fjnv83Bo2eYnRrlzTuuH3zDwGCOnIF3xuHoGOKY/QOgb56BQwuMh0tZiVU/YC5NOBc3kUKQGZtbuFZLdENlaEzPxkcgJLXcfmZk2prThNJW6jNtOjOIAmdS43A4HA7HVsAJxG1OpjVl3weEbb0cSaxRTSNcqigOYFdYRry1DwBz+wUIVvDAn2rCiVGYqUDLtwI0XMMvfxn1PGMkCLlvfCdPTJ+05200+yvDeAgWGwm5MUTSYzFLOwKxkWcYTKea10ag2TXyA65/8yR73z2PNDZq++i+SZ67aQ9ndk9w4/AYN/tWlI0HpaJVdG2RV/F8tIGhLpH60OSeS6ogTkUlhpYZ2nhCIBH4rsvbsQGWV8DTUsiTH7mPj/7Jdzj8zOvMT4wwvWcSsGKrUbz3AFtJvGkO9tUw56uI+RLifBUxW8YcWug5big9MqOYSWIqno/ShkyrjkC0/156TyxkCUN+SFPlYJZlgXoes0VMRqYVyhhC6RFrm4UYFcdcPqvocDgcDofj6uBWp9uc3GhGgpBASDKjl0Th4hoRDHMlROJjJpuwo7ni1cykvUycHEZo2Wkvbam8yExbm1qeckN1lMmohMC2l6pCEA4FAVlheV/2ffsY2qeYJcynS9XKoYU6dz3zOj/8B1/ng195lv3Hz5EEHi/cdoD/+WOP8qUP3c2J3eMo6KlCjgQhQ35IaR0ir+z5BFIQ+X7Pzy5lVvCusSmuq470/EwW+YeeqyA6NsCgCt781CjPPnwH0th8xHKjBdhMwzPxgM6Acg7XLWDuOmczTWuDPytE4X5cLuYe27EXJ5t1vnLuBKYQc8povjl9ipPNGvWsv7sgkh5NlZEoRWZsLmkoJS2VodGd95atVK5v1nEQscr59vRpcr2xDSyHw+FwOBy9bLiCeO7cOb7+9a9z9uxZkqTX2EQIwS/+4i9u2sk51iY3hqmwzIW4Rao14bB1HhRvTGJSHw7NwwANIs4Xs4cDWkvrecb5pMUN1RGYiDHCIBaL9rMhKwpn0wRtDMNrhMXrorq3vzJUuIRKlDEooyl7Xmc2L9OaUEgyIcm1LlrpoJKk3HD8AtcdPc3U+Xl7zsCZfVMcu2k/T09VwPep+r414VECjSHqEohSCPaWK2TrqE5ExbzhpbSUrgcpBELQZxzkcKyGL+RAG5fjN+9nYmaBm157l0e+9jxf+9SDZEYTSg9tzGDHXQlUU9tCnnided42Fc9jLk3YVSrTyDNSo9HG8MrCDOeTFi2lqPg+s2nCubjFnlKLWp4RLtv0CKVHojRNlZFqjcFW0BOlUBqkv9RiulFxZ4zhTNxgT6nKYpZyPmnSUjnDcu2MUofD4XA4HIPZkED80pe+xN/9u38XrTUTExMEQW/bnBOIVx4DVHyfIT+klicw1cTsqsP5KvKtCfRUs7/V1ADnqxgM7OgXiItZil9kJUoPe53zQ5gdDcwNc/YQxgz0w1h+nIUsZVepwo6oTG5stUAZg0EQSq9wOxRkWjMZlQikR1pvcPOZOR58+yT7pxeQxYq4Plzh6E37OH7TPlrVMspoRBKjtK1uVH3PPibT34q3vzJMfR0Vz1DaeIv1VBsvBa9wMXUC0bERVpsBfOGB2xibWWRqep77vvMKf3jfDUSrCUSwnw31yFYRo1bPRUN+yEKWEUkPIQSpVpyNG5xs1THGUM9TKr7PhaRFPU852aqjjelr5ZbCtr/XizlEgX3958YU84pLFcRcb6zF9HSrwXdmz/KxnQdoqpx6nhFrxSqhHw6Hw+FwONZgQwLx13/913n00Uf5lV/5FcbGxi7TKTk2gsBQkj4jQchM2oLQYA6fh2OjiDcnEWeHMMOzvTdaiBCpjxlvDZwn1NjojExrIs/D3DmNyWagZCsMxhgoql/tat9yMq1ZzFMemdrDjUOjtiJo6FQQBdZwI5JW1JXrTe44foHd755j7NT5jihslkPeOrCDCzceYGbnWI9LY6o1gRRoQ2eGUWAriMsX0oeWtXiuRCAlpXXOK14KrsXUcTH4QiIRA0Wf8SRPfeRePv5HT3L9W6e4rxLw/TsOoYxZ8YPeDCeIM8M2O3WqVyAGUnKo2pZahkxrTjRrSAQKQ0NZwXe8sciIH1ojKimpDjKZMnam2M7yCiQSbZR9HD0mNeuvICpjeHFhmvNxk3qe0cgzmnlOvE7HVYfD4XA4HIPZkEA8e/Ys//gf/2MnDrcUgpLnMRKEZN2777vq8OYknK3CTbM9babihBVLZmd/9TBRilB6nZnGCA88A95S+1msFZH08IQk0WqgQJxObYvq7SMTRa6aFYe+kLbypw2jZ2fY8e45fvL1t9ixsDQH2YgCzhzaw/N7x6hefx1vNObZGVUQxuB3LYptW6pHjCLXmomwxHQS09TZRQfQh8Ij8jwieXn9mzxhl8WugujYCL6UyKIKP6gqGFdKfOujR/jIF77DB146RnN0mLPXrZLZWXQXiFq4RgKhnUc8Fzep+j61PKWWpTSKdvTxMOJCEqON6Ym4aOMJwWKWFoY5pugk0F25i3TcUtfLyWaN060GnhDUctut0I7OcDgcDofDcfFsaBV87733cvToUR555JHLdT6ODaCMRhbZglU/QIiuJV5ZYcZixHwJsxDBWDEvOh8tRVvsrfUds5an7IzK5NrYllWCvuskSjEShEgk9TyhSoAympOtRuECaheAh8d2dBZ/GIOYW+TOt0+z4/QFdp+bo5IsGVrMDJfJb7qO5MaD/C/RZFe5yoU05uFKldfq85xPWihjOFCudo6ZasVIENFSOS2dMxKE+FIglVgz73AlAikpSY/Iu7zCTVK4mDqB6NgAdo7XiqtgBY+x+alRnn7sbh752vN89MlX+JPhMunOycEHXCE7dTkGmE8T6nnGZFgiVjmzacJQ3CRRilJUti2iRg/M9gyldTJtG920RW63xhUI1AZaTBfSBIwglIK5NGE+jcmNJtZOIDocDofDcSlsSCD+0i/9Er/wC79ApVLhkUceYWSkv22vXC4PuKXjcpAVLZYlzxuYHWh21a2V/bkqphCI4k27UDQ3z4LfvxiLleJAZZiZpMVs2uq7HCDWOQejEbTRnetkWlPxfMaDEoGU3DEywY5mivfGu/jvnsY7dhK5WOfB4hhKCpoHdsPN1/O/q5oTJY8f3XuDjYM4+TZZMa+4p1TluuowN1RHeW7uPPNZyngYde5zZ1SmnmfU84yKb/MGWzJfM+9wJSajEveN77zsAfaeEEgpLvo8He9NfGmNntaKgzh+YCfcdYhHvn+Mj339Rb72I48QV0r9Vwy0zTpthphMQDD4uBKYLQRYuw17Jok7mYYAo0FIIx+ckRp5krks4WSrzo6wjFfMOPfch7CuzOulrnJ8KYik5ELSopHbecn1uis7HA6Hw+EYzIYE4mc+8xkA/v7f//tLlaFlvPrqq5d+Vo41SZRiLk2o+gGh9BjyA7sD372Dv6MBr0/ZDENmIfZsRbGcwZ563zFzbSuSu0oVUq1XdP3MtWEijMiNIdPzAMhcsWd6gU/mLYLT5/FOnkU2lwSmAdTuHRzbMcIrExWOTw3zo9fdwmRUIj3xFkEaW3MYzyeQkljl+EIy7Af8md3XdY7ztfMnGAtChLCzhqNhxFASUMtSIulR8X1q+cW3mHpCsqdcvajbbgQpBB7C5cw4NoQnRNGmbYhV3nEBXk5mNC/eeYjdjYQb3jnDo199jq9/8v2oYOn6tSyl6gd4Iwm0AlgsweTgTSFPCOswWnwkRNJjMU+pNVPGA7thU/UDqn5/x4G9vs/pxiK7SuXOfK/GILp63wXWuGa9NPMMXwgiaVterVGV/bfD4XA4HI6LZ0MC8Zd/+ZdXFIaOK8u5pMWh6jDXVWwVd8gPKHk+sVJU/UJ2lBVmKEXUQ0zLh9migjDVHBh9UctTJqMSE2GJmTS2jqADKKUZu87M4J+fYezESfYutBheqHeMZQCMlKg9O1H7d6MO7CE/uBfKJY7NnOXt+Qt4UuIXBi1VP2AxT605TDH/2FI5E1Gp5/W2u1QhkJ413Sh+XvZ8xoKI6aRF5HlUvQCP+KJbTK8UnhC2iujeT44NEnmS+TRhtpVwQ3WkI7jOxS1CKRgPS2RaU/YCXv7g3ZRrTfZML/DQEy/w5Efvw0hJpjXnkhaTRjM+FiPODcFCtKpAbKm8s/ESSkmiFAbWZegUSMkN1ZGeirkVh0sfGu0W1fXSUBm+kESex1xmOySGfH/FKqbD4XA4HI71sSGB+BM/8ROX6zwcG8AAu0plPrbrQKda6EvJWBAyn9mZwA6TTaiHcKGCmLcC0aywCKznOXeNTiGFoCw8hhoJO+dihhcaDC827N/zdarNuHObvcXfjUrEhYlhdt98E2rfLtTunRD0v7xK0rP5bHgEwi4sh3y/0yorhaDqB8ymMZVl1RGvMOjQxaLSABXPOrgGwjqiVrwAKQXBZY6puFSsg6m87K2sjmuPSPosZDXGwmjJSArIjSJTMI5tvx4rRQSezx994A7+4ldfZO/JaY489QrPPHIntTxld6nCQpYwPlq0ny+UVjSq8YWkoXIqhRi0FXwYWaFiOPAYa1T1S57HbJownyaMFW3kK2GMoZXnRcutjdEQQCA8Wkr1dlI4HA6Hw+HYEJfXqtFxWSh7PneMTvYtgCajEufiZs/PzFQTcXwMcaECCxFGGBhvIbQmaMaUGzHDzYRSrcnNi3XeZ44R1ZrcNrvAHXm/XbwWMDdSobp/L/GOCb4mWmQ7J1kIPDwp+ez+m1Y998DzrLmOFJ1qxJAfEgm/sMCHkSAkVnmfQPTFkoNjrjW+kJQLg56S53VaTAMhe9xOtypB8Xgcjo0QebaKPuwHy4LlRacgZw2cQnwhaYU+3/jEA3zsT57i+jdP0qpEfPGWveyqVphPExhOMFLbCqJhYHeBJwSNPGMiWBJuBytDl/xYugVpKD0yrTnWWOSecMeqt7Mt8JpSsckkAGMEvhRkuertpHA4HA6Hw7Eh1hSIn/3sZzfUVvo//sf/uKQTcqyMiROiVsIhJbg+AzG7gDAalIY858DCAo0LF9gt5vEzhZ/nBElOtPA60UxCpJtENIn+oEmUrN6GpcOAcxPD1EeHmB+pkIwPUxsd4mQkKZcq/Oi+61Fac+bEG9a5VClK69ixD6REG/CF6G0TDZdcFIeDAANU/V5nRa+Y29PGkBZmGWXP71QR27mKQ36wLVqhQylxMYiOjdJ+jftC0jJ2E8cUs3vtl70yMOyHaGNQBlpDZb7x8fv58J98h9tffJszvmDPB67jdNwgNjnl4dRWEJsBVPs/G8qeT9nzOoY0m0Hb7bibkSDgjfocd4xOrjpHnGhFbpbyTifCUlFBlOTGFAJx/dVNh8PhcDgcS6wpEG+++eZtsdi+1vG+/zrJ57/CbgM/tMJ1bin+rEXuSRYrEWKoymIl5HzkM18OObB3L3t27caMDJFGIZ87+SbzaUogBQcrNjC7FTfZW4g5T9ioBmUMBrOuqp1f2PRH0uu8rqaick9gfMWzxjulZbNNUohCYBrAEEkPX0p2lytUfJv1Vvb9Imtt6xNKD8/Z1Dg2SMmzAnFnqcLcom33zk07W9B03EHLnk+iVSf+5tRwiS9/+G4+9dXn+chzb9G67kYmh8vMpTHl0RgWSogfTGH21WBvr4mVLyX7yuuoGBpsm4G3ttlMIGWf4BzxQ07FDc7FTfavUqFMdW8b6XIX51j3dz84HA6Hw+FYH2sKxF/5lV+5EufhWAMzPoq4bh95moGQGCnAkyAkSInxPVLf4820SRCF6DAgC3xy3yMthcR+RJKMkOxRqMjnVKvBR3buxxeSr5w9RsXzuX3/Tehi1z0Aql7AWDXiQtIi1arTAjYe2llGUQg2Y4ytCq6juhAWc3fdxhaTUYnJaMmC31YrllpOuwmkpFW0vrZbUD0hO+e0t1RlZ1S5uCf5CrOvMsRouD3ErGPrEEmPA5VhRoOQduJfbrSdxzOGVCsQhuEgRGcJ7Z7RhSzjhpsOsVgaZeyPvkblD7/MHZ/+AF8qacyOJpwYRcyXEfNlTCvA3Di3sRPLJOK53dAKMI+egHB1kbi71P8+bW8a1VdwIrUVUUOi1KBO2AJ7ucNxtVFGIxFuk93hcGw73AziNkHv3030t/4S9Zk6eoUwaWU0T7/7JoGUNk9wIEu/cl9I9par7IjK7IoqVJbd5r7xnYyHEV88e5xYWYEoBD2tW54QpEYXFcS1BWK7glhaxUSmVFQPB7WzBVLSwGCMXSgvRwhBsE2+jG8ZHr/ap+DYhtw4NIo2htNxozPEl2tNqXD4rRd5gMN+UDh6miLCBg5WRvDv2kWSZJS+9C1u+8K3efmxO+HAEOax45iFEuLlnYh3xjGBgoOL6zspJRDP7kHU7IyiOVeFA/1ROuvBQ7C4QpbhscYiZ+NmIS4Hv88NYkWB6XBcSZ66cJabh8fYNWAzxOFwOLYyrr/tGsITkv2VoXXlgBkMfhHU/sjkHu4Yney7zsHqMMNByI6oTKxyjLHCrFsgBsJDF21t6xGIofSKFtOV9yZKnk/ZCwYKwLB9f5h12es7HNcaJc+n4gdFm7b9WWY0Fd9nOAio5SkjQWgzRYv3ZDvCZrKotGf330XyoQfxspwf+8bLjM4sQqhhRxNz7xmM1Ig3JmGutNJp9HKhgqhFNmMVEGeWtYeuP96QUHrMF7EVy4lVzqlWnabKVzxoJCXn48FOzQ7HlaSlclvRdzgcjm2GE4jXGDcMjaKKNqxVMXSiIHaXq6vayk9FZTJjXQMD6VHtmvcJC9MZDesKp/eLqIqSv5pA9CgXrqTLCaXXaTMbdLnD8V6h5Pkdc5pca4a8kFE/opnnTIVlwL7fDBArxa5Spcc1N33kPmYeuJNSlvPYl77H8HxR8RtLMLdeQBiBeHVqXefSidC5YQ5TyhDzZWgV73ElEM/sQTyzZ11CMZSS+TTtPLZuEq1ZzFLOL3Nr7qbs+cyk8dqfgQ7HZSY3GvcydDgc2xEnEK8xdpeqTIbWeKKZZwMXWdoYRJeL6FqMBCEGawxR8jxKXQLRlxKNwayzghgISVC4ja5EyfN5cHL3QLOZ0LP3p42rIDre20TSRsuoYvNmKAgYDSN86XVmetubNsoYxoL+TaD5R+/j+Zv3UopTPvT401RrhfDaV8eUMmgEoNbxOTFfHHsshj2F0Dw5bBfHr07a2ca5LtG4CqH0iHVOPKDykuicpspo5NmKnzdlz6ORZ9RWaFN1OK4UyuhObq/D4XBsJ5xAvMbwhODW4XE0sJBn1PN+y/q2vXywziDpET/EE3ZXfzyMeqoQYeEqqjHrMqkJpOyIxNWYisoDB/ujYs7KYAaa2Dgc7xUi6eELQVZkIbbNnYb9gOFic8XO/MoiN7F/w8X3PJ649wbeuWkf5WbCh774NOV60Z5ZyRCItUWdElCLMGEO5Ryzr2ZzFY+Nkj43ijg9vHTd2fKajyuUkkxrmgNyWGOlSJUi1mpFgegJicGsOMfocFwpcm2/qxwOh2O74QTiNcj7Rsb57P6buGlolIbqX2SpQiCuR9ABDAUBVT9gIipxz1hvgLVtYbNfgetpMZVCUPGDdYvT5QTSwwDGcNHHcDiuBUIpCaVHbjQgOq3ZI0HIiN8lEBGERTTGcnwhkdLjew/fwbvX76Fab/HhP/0ulXprKQ+xsUae4EKEMMJWDwVWJN48izACdbyK8RX6hlkAxDoEYntjqKn6N7dipaj4AYtZir9KiKhBMJ/FnGrWqa8gFOfSmDdr82uej+PyUc/Sa7bSa4xBFYZqDofDsd3YtBX2X/krf4W/83f+Ds8888xmHdJxkXhCUPUDdpUq5EV1oRsrENeu4i0dT/KhHfv41O5D7FzmxhZID23sunB56PVKVP3BBjTrwRcCUdiGr1fgOhzXIkIIql5AVlQpIukxEkTsiModI6lASqS0uaNDwSCBaLNMcwFPf/Aw7x7aw1AhEsti3l6puYZAbM8fjnUZyxxYxOxsIIYzeP8ZOLSAEcZWENexYDbGDKwgJjpnuBCIq20QlaTkWKPGl8+d4FSrMfA6F5KYo42FtU/mMqGM5rXF2U5u5XuRd+oLvFGfv9qncVloj164FlOHw7Ed2bQVtjGGkydP8jM/8zN89rOf3azDOi6B8bAEgr4FiEbjCdEJmV4Pu0oVKgOMZUJhTWqAntbT1XhwYhe7y9V133c3tq3MVizXO0PpcFyrVIOArJjVi6TPkB/woZ37O+9FXwg8BGNhOPD97kuJJ+1nhJGSpx87vFRJfOErVPJFRHNZa6rp/bc4X7yXx+Klnwvg7vOUPj4NQxl4BkZjROZBfQ3Bif0sGdQiGis7B32oOkzZW7n1tez5nGjWWMySwvG0n0Srq1q9auQ57zQW3tMulxmaRtZfKb4W0KZ4Xzl96HA4tiGbloP4n/7TfwIgTVNefvnlzTqs4xIYCyIqXkBL5T3RFMps3vyerRqarn+vzfK8xQ3dnxQYIxBifS2tDse1zJAXsJhnDPsBpQGmTULY9tK2q+lyfCGRyI7jp5GSpz94GCME171zmg+ln+OJ4R+ik2gYe4jv7oNAYw7a6puoRZiRGEaWRVMI6PlImIhhvgwXKjC8euUulLIv6kIZjTKGQHirikOwXQrXVYaZTeMVRWA9T0m0Rhm9oc2yQcwkMWdade4cW5/rK9jHk2vznq4gKm0GthJfC7Rn810F0eFwbEfW/a2Ypin/4T/8B1577bVVrxeGIffdd98ln5jj0gmkZGdU7ttB30wHUE/KYhFoW9UuN76QnUXnelxTHY5rmZuHx/jg1F5uGR7vcRfuZsiz7qaDkIVZVbdIMVLy9AcOc+yGvVRUnQ8d/ROGFhu2WvjqFCL1EY0Q+eoO5Kt2JtncMrNSbv3ScXdamSnODK/ZZhpI2ZfnmnbE3Po+Z3xp2+jrK+TC1rOMXGsS1d+GvxFyrfnu7JkNt0raOCK9rjiOazWyIzd64Jz8tYB122agk7jD4XBsdda9wg7DkN/4jd9gcXHxcp6PY5PZW64Sq94Wps3MELSLNYFh/RXES72/tiucqyA63uuMhRF3j+/goak9K77/bhweZXdUGXgZ2OiYPgEiBd/7wGGOjdxMRTX4yOe/y9h3AsSFKqaSou8/jdlVtwZVe2s2O9GYgTPPHYYzzHCCaIRwdAzx7J4VHVJ9IYmV6jmvXOuOwdZ68YWkNsDJGaCuMnKjOy26F8vrtTmO1hdJlNqQGMgLcbieCuK3pk+tmv24Xcm1IVEKZS5NpG9F7Pyhqx86HI7tyYZW2IcPH+aVV165XOfiuAwcrI5Q8f2eNqvNFoimY1Jz+QWbLyTG2Pt1FUSHY21uGhpbsYIINndw4DJWCp65/hHert5JKUv40Bt/ykR+CnP7NIzHmMPnMR85Zv8PzGUJx5v1/uN0YfbU7KHfnkDMlhHvjgy8ni9svmP3fF5mNlZBBLuJlBnVN+enChMcZQzJJQrEt+rzVDwfhSkcZdeHrSCu3YKYac1MGtO6BittCrMpVdytiDamM4focDgc240NrbB/8Rd/kd///d/nP//n/8yJEydoNpu0Wq2eP46txZAfcHh0irks7exua2NWbEfbKLbl07ooXokKoi8lUtjWOOdi6nBcOpH0Vl7EDme8MPoYr47fQ2hSPnjhD9nVPLl0uW86raWZ1vhSrNgO2cwz2FPHFJ8XBgNnh2CANvClIDeGtKv7IdNWSg3KR12JQEoybfrEVapVUcHTnRzJiyHTilqeUfUDlDYbOpbSplNFXI1mntFUOVkhPp+eOTtwrnIujft+ttXJit/DtWjUo7DVYScPHQ7HdmRDKuEv/IW/AMC//Jf/kv/n//l/Bl7n1VdfvfSzcmwqNw2P8eLCNLFWlD0fZdi0CqIsWkzBrNvF9FLwhEAKaQWiqyA6HJdMKAe0mBaYgwuYcs7Lu/aSvhZz9zOv8YGvPMt3HrubU4f29Fw3N5ohPyBeZooFVpAdb9a4vioo3XMWpEEcG0PMVDBzZZjs3Vz0hERp3VPdy7Te8JSzV1QiE6Wg65RilZNpa06z0QqiNkufdfU8I1GK0SiknmcbE4ho1DpMahoqo6Vycq3RxnA2brKvMsRwsOQuG6ucp2bO8tiOfQPzLrcq2liRfKlV3K2IMe0qopOIDodj+7EhgfjLv/zLG9q9dWwNyp5PKHw7H+SBEGbTqm/t2Am4MjOIgZBIrHW/i7lwOC6dSPorL2JDDftsW+gbd15PGvrc/9TLPPzECzyT5hx734Geq1c8n0ZRUesm05qyF5BpTWnKikGT1BEzFcSxUcxwYu+rG2GNaTrHMApjVnjPaxDP7AVPY+4929MbI6BvDjsp/i8FGxJ1c2nM0zPn+PjuA3hCUs8zDIZASjSmU+VbD0qbTpVpNZp5TqsQtKlWJLq/ZTYv5j/tPOX2EYh5UUW9FiuIuqiSO4HocDi2IxsSiD/xEz9xuc7DcZmpeH6PK+BqIdMbwRMCDVa0XZEKom0xDT3PbVY4HJtA5HmdmTyNZsgPV7zusfcdIAt9HvrGizzw5MuUWgmvHb6xyLMQRJ7P7IBWRysQ/d4ZvR0NTJQjZiuIJw5hfIU5tADXzwMgED3CIdeGFd/y56qIhRIA5vhY5xgABkGse1tMY60AgzFiXdWrdhTGiWad80mTRp4zEtiq4fLHuV5UUT1TazQhLuYpqdLEStl5PZ2TLpvZU0aTXWK77NVAoTtGNdcaNuaCNX+/DofDsRW5KJXw1ltv8b//9//mN37jN5ietgYFx48fp15f3aDAcfWo+F6PU9xmVRA9YeMtpBBXpMXUlwJPSCKxOS2yDsd7nbYb8GwWM7+O4PhTh/bwrY8dIfM97nr+TY489QqiECbDfjBwOZwbTdnzeiqC+Abz4CnMwXlMKQMlkW9NwLw11DGYZS2mqjd03IB4aSfie3sQR8ftj4RBvD0OjaDnenHeKxDbgsSXrJnD18xzvnDmODNJzFv1eZp5TqMQhgtZglc0vgo2JhBzs74W0/k0RgpItJ1DTFR/S6YqKojbLQ4jN4Z8E4yCtiLaGDCg9fb6nTgcDgdssILYaDT4B//gH/DFL34R3/dRSvHBD36QHTt28Ou//uvs3buXv/f3/t7lOlfHJVDxg57d+82rINp5wCvlYuoJiSesNb/D4bh0PNFOtDc9+YTaGOazhImw1Hebc/t28PUfepAPfPlZbnjjBOVmzP96//uYisq8WZtHGY3ftYmTac1YWOqPnIgU5pZZuGUWTg8hXtmJeHUH5sGTCKClck416xxvLlL2AoToOsG5EuLcUOe/ZjSG8RhxbAwzW4aqva9AChaXZSG2VI4xAk9Kmvnq7qAtlXMubvLUzBnm0hgh6FQOZ5KYUidTVmysxXSdOYhzaUrZ84iVIiuyIJeL2lzbCuJGXFS3AkobfCHW/B1sRzSm02bqcDgc240NrbJ/5Vd+heeff57f+Z3f4bnnnuvJfPrQhz7EN7/5zU0/QcfmUPEC8u7N+02tIFqzmivRYgoQSI/SJpnsOBzvdXwhO+YvvpSdKti5pMlitrLxyvzkKF/94YdZHK2y5+Q0f+5rL7Izsw7J/dmrFDPDqyyW99QxYy1EPYS5Er6QNPOMC0mLdxqLzGdxz2eMODYGgNnRwJQzzE2zmKoVgiJe+nwIpGQxSzkXNzuZh/U8JZB2jnmt+IhUK7QxnG7VMUUr/WKekGvNQpYSFp9FBrOhTMVM2+bD1SqIscppqoyy5xNrRVpUCZvLhLbuzCBuM4FoNIGUNNao4m5HjLF/tltV1+FwOGCDAvHxxx/nF37hF3jooYfwvN4F+t69ezl16tSmnpxj87CupQZT2G5vlgOoV7SWCuwc4pUgFB6h5wSiw7EZBIUo9IUk8jwSnVPLUnwhqfqrGNgAzaEyX/30w5zfNc6uuTr7/9sX2NNI+4SKEHbW0az2GSHA7CjC4OsRvpA08pzppMVCmrCYpUtdCrMl64BayjCHz2E+cAImYigVYi9Zao4JpceJVp0/Pn2Uky07BlHPc3wh8YRcUyAmWiEF7C5V2B2ViaTHTBLTUBmJVl0VRNsyuV7SwpV0tRzERp6TFvObiVZkRhUCsd+kZrtVEFXxXRRKuWab73bERlw4kxqHw7E92ZBKSJKEsbGxgZc1Go0+0ejYOtiWTIHG4AmJLzdHzHlCIgqReKUqiKEnieTm5Dg6HO912ptFofQYDyJipZjPU+4cnUQIsXaQexTw5Y8d4c2DO/AXanzqC99l59mZvuuNBRGrVhABhooKYC3El4KGyphJYwx2btATAqbLiOd3A2Cun+/9FosKsRcvfT4M+QH7y1W0sYLLGFNUECW+kEVVbmVhZY1yBKH08KWk5HnMpQnn4xZ5EZUB4CFobaBV0uY6ri4gWiovMmYlqVKdc20uE7W50eTa/tkutMVxINZu892OtNtLXQXR4XBsRzYkEO+66y7+z//5PwMv++IXv8i99967KSfl2HxC6SGE3bX1EASbZPLSMam5Qi6mACXpEW1Si6zD8V7HKzZ3RoKQHaUyjaK6dl11BA+xrgpIKuGrj95J8uA9hGnGj3ztJa5/7V2AzijCWBghEauKMYaLWcF6iC8kiVI0Vc6OqMR8luAJgXh9CqEl+n0zsL/We/tSUVlLej/f2ptiC2lCrBUtlRNJD1+KImah/5za550WQq5NKD1ilfPKwgzlrk1RKQRJl1vqk9OnWVzF9CcztnV1NQGRaoUoPlsVhlae4wlBalRPlbbtiLqdWky1sR0tgfRItNpW4nY92MfHmhssDodj+7NWJ8p2ZEOr7L/9t/82jz/+OD/90z/NH/zBHyCE4IknnuAXf/EX+dM//VP+5t/8m5frPB2XSCQ96wqoFJHn9bRFXQo2sN4uYK5U7MRwEFL2XQXR4dgMAmmNpibCiNEgItGKqajEeBDZfL91CERlDJHvk370Yd788P0g4MhTL3PbEy+iVI4vBGPF8VYVMaHCBMoKRCPJjUYbzYgfkmpNqAJEK8BUUrhuof/2nrG3j/2+YmUoJQt5QiPP7LGkxBOCXGvSZTOTLZXzpXPv0lI5zTzrOJXa43hkRjOTxoyH0dJdC9GZvVTGMJPGHbfTQdgK4uoziEkRx+EJgdJF5VN4KN2bHaiMbVfdTm6gbdkdSIEyG8uQ3A60H59rMXU4rm2U0Txx/iS1dbiAbyc2JBDvv/9+fud3foc0TfkX/+JfYIzh3//7f8+JEyf47d/+bQ4fPny5ztNxiYTSwxOSpsqZCEubGkkRSIl3BSt694zt4FBl5Irdn8NxLeMLSSAkY0HEkB9Q9QOur4wghMAvAuDXoh1jAbBw5038zw/fRRKFHHrpHR778nNUc82wHxJKb/U5OQEMJwgj8OOIvJhTE0Jw09Ao5VbFXm9olS/iKEdoCXnvZ1IoPRbTtHAgNQhhI3MGCauzcYPzSYtaltJQeZ+plzYGKXqdmz0hOwIx04p0jZlAO4O4lkmNKo5tW33reUbkSXJjlglEs/0EYnHO7d/BtdaKaVMu3Ayiw3Gto4wh09vr83c9bLgMc+TIEf7Lf/kvxHHMwsICIyMjlMvly3Fujk0klBJfCGp5xlS0ub8vX3hX1Mr7SlUqHY73Au25uoofMOyH7IhK7Cnb+IhQSlr54Pf28WaNsSBkNIhQxlDxbPZgJD1O7xjlKz/6CB/82nPsPTPDTzz+LN7/vZ8hP2AxSwCYSxMCKRjyw94DD6UwW8GrR7SGc6rd3QI1e10zvIpALCmoY6uIwdL1QmlNb9ozjW2EoM919d1GjYU0oals5qG/7DNnb6nat8nmCUFctJi2BdxqAjE3Gl+IVY1tWirDF7LTmhsrhS8kyqietlibgci2CpzXhfj3hG1jVtdqi6kTiA7HNY0uIou2k0nYethQ2eepp56i1WoBUCqV2LVrlxOH24R2BVEZzWgQrn2DDRDIzTO9cTgcVxZfCMqerRxW/YBHp/YxGdnsw0B4Ays7tvIjqGWFINKaimeFnG1nh+Zwhaf+3GMc2zfJ6GKT6v/7P7nhzGynxbSWp9Sy/hbMtvgTdduSOtwlIEW9+PdqArFjVNPbRh8I27J6Pm72tIwa0zs/0sxzTrTsbGNL5cQq73N99ou23G48ITrOpJm2M4L5KiHpmdadFteVaBQzh0IIBFZMtme9uyuIqVEIDKlZWSBqY5hPkxUvv9KoYgaxXR1V19isnmqb1Fxjj8vhcPSijd0UXO3zfjuyoQriz/7sz+J5Hrfddhv3338/R44c4ciRI4yPj1+u83NsElIIyp5HSfoM+cGmHtvOkDjTGIdjOxJIj8Njk0wU83RtcQgQFTOIqVacajU5VBlCCFHEO/jEhSuoMlAuBGInF9AYVBjwx4/ewadfP8P1L77JA48/jbrzICeP3G5bCwctntvto/WAA5Wh3suKCuJqLaamlFv5l/R+vYkih7GlcqJl5jJ1lWKM4fXaHDNpTCtXVDyfuTQm0aojflfDE6Kzi5wVmYQr7Si3Wyo9IVbddW4tE6fKtF1TRU87U6Y1vpSrVhAvJC2emzvPJ3dftyW6MNounxIBhmvOpMYYgzb05EU7HI5rD+tWfO1VEDckEJ988kmeeeYZnn32WZ5++ml+93d/F601N9xwA0eOHOH+++/nM5/5zOU6V8clUvYCIi/rb+m6RALhIYX7EnQ4tivXVQfP9PrSQ2NbF7XRxFpR9nxaKme0+BxpKWuk0haGkefhC9lpncwlnHj4MLtvuJ7wj77Kwy+/y+n5Fv/ngZuJwwFmWVHbiXTZ15MB6iHGV0t5h4MoLhOx3yc/jbHGL2HXTGEgJQtpSkvlPD1zjlQrxgJrijMdt8i1wfPXFlS2Q8OQ6iWBuJIhjzK6Ezm0kqurMYamynq6M5QxRFJiDD3GOqnSBEVkx0ooY4i1IjOacJNcrC+FdoupKCqk11orZjsHUV1bD8vhcCyjveF3rW1ybUggjo+P84lPfIJPfOITADSbTb7zne/w27/92/z3//7f+YM/+AMnELcwFc+n6gVUNtkBNJAScY3tnDgcjqUKojKGIT8kVjllzydWipuHqlTzgJPNGkIIgkJ0RUVeYHs31c6ZSfJbb+Ttssfez3+dvSen+b/na3z+0duhvKxKGCqMMJAuEzHNAKElZqQFq+m1lQQmtloYK0W1y300lJLFPKWWZ6RGsa9cRQhBLUtp6byYFVy7Q6I9S5drTWZsXuFKFb3u9sqVZhDbwfclaTs+DO0KoocU0OqK1MiMwpdWoC5VGfvvMyscW9ti/mqijen8Gg1m1VnM7YjG/s407rvR4bgWqWUpQ36AZulz/1piw0qh0Wjw/PPPdyqJL730ElEU8eEPf5gjR45cjnN0bBLVwEdTWvuKGySUEvcd6HBcewTSQxsrLoaCgPk0YRy78B2PIkbCkNcW5wik7IiOQEpC4XV2U4WhMzeXT47zXz9xL5955m32v3uO/+vLL/Dso3dx4oa9S3cqgEBZgWhYEoONojV+NQdTWKouxv0iKJSS+Sxld5dRVyA8mnlu5/PMUlxPKD0W8tS2Qa6jJVMWAjEz7fZS05OL2E1eiG5frjyDmBYzjJ5fiL3i9+AJazjWyLoEoraB86q4b8/rF4i6EIiJ1gz1XXrlsRVD+7yKtfIxtzCpVrwwN83ByjC7y9XOz9sC+FqrjDocDsuTF87wwOQuJHZU4D1dQfyJn/gJXn/9dSYnJ7n//vv51Kc+xT/8h/+QW265ZUvMNDhWZ3dUZUe4+V9WwRbYjXY4HJuPX8ztKWNbGE1R+QIY8UOG/IDHdu7DF4KprtnFiudTV4WQE0sC0ReCNPB46iP3suf513jk+8d46BsvMnl+npceuAXdng2MFCL1MZmEsPjSLSqKJlrDqbOUW1flZn8r/bAfdtoa2wRFBfFs3KDbayssMhs38s0mhOi4l2rTm1XYjTJ2+rK7FXc5qVaowunUHttW2XwhiDyPmbTVc91A2mOtdDyFPZ+VzulK02vesj1jLjKteeL8Kd6szzEaRuxmSSAqo5EIrjHfCofDgd34aYtCX0oMZst8tm4WGxKIr7/+Or7vc88993Dvvfdy3333OXG4jdi33PBhk9hVqmzb3V+Hw7EynpQI0Z598xBCEBczfMNBSNnzuXN0su921SBgPl9yzGy3PLZbNRXw7G0HOTc+xI9853Vufu04U9NzPPWhe2iMVG2baA1IvCWBmBVVsWCNzxrPwFCKqEeYlg/lpUpb5Hns8HqdtwMpybUNvo+6Nrva32vGbOT7zZAoRaxUZ+ZvEDa3UONLf8XPTjtjuFTR9IQg0RohBJH0qOUZscopeT5Z0Qab6nzFXWzVqSBujUVMb2VNbEuBuJilHG8u2qinZeefa9OpKjscjmuLdsap7vzdH5e03dmQQHzmmWc67aWPP/44v/Zrv0YQBNx3333cf//9PPDAA9xzzz2X6VQdW5VdpcrVPgWHw3EZ8AvHTGVgZ6nMTBpzJm5y09BYx7V0EFXP7wgVA50WzXbgvA2aF5zYPcHjn/kAD33jBXacm+MTn/82zzxyF6fCKXug1AdsFIbIC/EWrONLeDyGegQzZcS5IRiNMTfNrXz9Yjax5C3vhli2uD86altY9zQGHsYYQUvlJDonkCubxqgiI0+sIowS3Vtjs4Y2VuxG0uOCjqnlmRWIWuFLgVGs6KSnCjfarbLLbYXT0iPcjpuM7efaVgp7f48KjRRuBtHhuBbRxnZBtEUihQHatcSGBGK5XOaRRx7hkUceASDLMp566il+8zd/k1/7tV9DCMGrr756WU7U4XA4HFcWr2gxFUJQ9nx2lspMhBEfmNq76u0qftBpIRR0t5hKa9xRGLQoY4irJZ745Pu5/YW3uO2lt3n4iRd4e3edl+TH0EmXYEvXWUEEzHiMODGKeGsCkXkwW8aMt2AyXukWJFoxGvRGANl4i6KC2PKRb01ipMaMx1DqXwx4wuY7xspWWdOVTGqKSqAUYkVjg1RrRJeAKneJbiEEGGukMxGW0GZJhK9UQdSFw+pqTqdXEt01YLpdTWryogXZCNMnA5U2rsV0i/NOfYGqH7hNbseGMZhi5AKMoGgx3RqfrZvFhk1qZmdneeaZZzp/Xn/9dbTW3Hzzzc6kxuFwOK4h2oIOY6t/D03uIewypFmJSHpdDpW2wmKPJzoD/bIQnwBGSl65731M757gwW+8yI1n32LSn+Op+Qept7XoOiuIC1lCMKwZYpcVhwXiBzsw956FoazvNhJrFrPc/XM87DL1mrfOp0JLODaGuXWm7ziBlCxmKdpY85u2GY23bAxDFdUzgRUSg7AVxKXbDflBT4atELCQpUVkhkYW0RUrziAWO92NfA2TnytEu4oKViZuR4OHjrg3/WY0qqiStzdE1mN01EYbw/m42WN649h8zsYNJqOyE4iODaOL/F9dCEVt2DLdGZvFhgTiJz/5Sd599108z+O2227jwQcf5Od//uc5cuQIY2Njl+kUHQ6Hw3E18IVAIDACQuH1CJTV8IToWfx7XS2mUggybQ08lkuZ83un+NJnHuX9X3mZXTPTfOKZx3nBv5WjN+9fdwVxMUvxRE61miIaIWYkhnJuW02/sx+un8fcMNcTlTHsByvOC7YRC11i8dQw7K3BSK/YCovZQL+I/VCFiYG3rHVVGYMp5gtXEkatPGc1GR5JyYWkZYWfBulbwb1Si2mmNcYYGvkqGZJXkC4TUyRixczIrYx9rgVS9Lf2qi73W9Njx7s2i1nKs3Pn+Xh4kKiv7dmxWbTjZhyOjaINaKOLjSD7GnpPC8Qf/uEf7swZlsvltW/gcDgcjm2LJ61zKYKewPY1bycE3QUTr8toxWb/aQLpWfFpTI/RWVwp8Y1HH+H2r53httr3uP/Jl9lz4jzPhlNklCFQLGQJI37YZ5DWPpY2wEQLGiHm4ALsamBGE8Tb44h3xqHlY+6Y7qzZh4OQ4bUe1LwViGZvDXF6GJ7eh7l9GvbWO1cJpKSpcjwhbIuptlmG0TKplxvbmihp5xv2VxlbKuv7WTclz2M2jUm1QmM6VdqVBGeubdW2qbaGQFRmySHWttpuv8VVp+WX/kqwKjZBrImFbT9eL8rYlueWyp1AvIxkWvdtUjkc68FgOzJsq+lSi+lGuwW2Mmun/3bxt/7W3+Lhhx924tDhcDjeA/jCVrmM2VicTXewvOmajwukxBM2PsIrZvDaSzRlDHNpbAVpSfPayAN8/YYfpj5cYd+J8/yZY/+TXfExlFScbjVoDBA6WRHHIQSYG2fR952B3Q37TXfdAub9pzBRjjgz3GkZXRe5gHqIiXLM7dPoWy+AAfH2eI+PTVA8NmUMgfRQxgwUbJ0WUyE6LnjLqeUZgVz5KzqSPi2VFy2tS4uSlWYaM2PnIlurVBAXs5SzrcEGPJuN7qreCNimFUS7QBQDKohLvxNTVBDXjy7ccFtbRMxfq+RFBcjh2Ci6aCvVpv1vg0av2MGxHdnwDOKJEyf4rd/6LZ577jnm5+cZGxvjyJEj/NW/+lc5cODA5ThHh8PhcFwFPGFbQgVW/Kz/dr07qLJTQZRIYUWMJwQSOtWVRp6RaM2JVoM9fpUImPX38PhnHuWep1/lhjdP8oGZP+b17x7g9O37BgqKVCtCzyPPMwgMTLZ6rzCUYa6bR7wxhZipYMaTvmMMZDFCGIEZja2aObAIp4YRtSJKo5J3Hne7UhcIicYMFGyq3ZpYVFCV0QRd+7XKaBaytCd2YznteI65NLEVxELIryS0cm0IhEdiFJnWA8XnmVaDc0njisy+aVhqMRXbs8U00TkS24a9XOTnhYupGTCfuBa6q4LouHzkRrsWU8dFobGCUBuDFoXpmrZdBWvN6G8XNlRBfPnll/mzf/bP8vjjj3PnnXfyYz/2Y9x55508/vjj/NiP/RivvPLK5TpPh8PhcFxh2qYyXjFTt168IjhYFy2f3YIxkh651pSk35MTp41hNIi4oTrCrG5hPA2Jhwp8nn3oME9N/BCJjLjl9RP81FdeYvTCfOeY7fiGRGlK0mPVea+2aJxdfyeMOGMbUM1ol6Cc6D+OKFprlTH40grrQTvKqqvyZAw0Vc7TM2c7i9VGnpNqtapAtHcIM+mSM6snBE3Vb8IDkBcVRKX1irMyiVYsZoNvv9ko3dtimhr7O3x5YWbbLNoTpWw7Nf0xHVrbGJPeMI/1oYz9HW2VduBrlVwPrt47HGthjH2P6+KzXK6yIbhd2VAF8Vd/9Ve5/fbb+c3f/M2eNtNWq8Vf+2t/jV/91V/ld3/3dzf9JDfC7/3e7/Ef/+N/ZHp6mttuu41/9I/+EYcPH76q5+RwOBzbkXbFT2xUIIqlqoqEnpmMQHhkRlP2fUS21GJqMERScrA6zLHGIoQK0QowSkAqOV2+jpmpMe6pP87+0zP8uS8/z6t338Rrd93A+aSFATwEU36ZmWSlOAugmmGiHBYiyOTasRknRhCnhzFhDnuW5g3NeAtxfAwxW8bsry39HIEyujMTOMilNC3EkShm1ObShLNx085mCo9GnhUic/XnPBSSxSxBsNTC28xXEIjaEEhJUgjEKv2GQy2V0RzQglovjrlek6L1kKM7521dZA0LWco79XluHBpdNWdzqxAr1amwL3ePVegiyoUNC15t7CbCYrbOCvcWpZalHG/WuHN08mqfykCU0agNy3eHo11BNF0zxqIwJbt2Xk8bqiB+//vf5+d+7uf6ZhDL5TI/+7M/y0svvbSpJ7dR/uRP/oR/9a/+FT//8z/P5z73OW655RZ+7ud+jtnZ2at6Xg6Hw7Ed8aXAExIPueEW03acha0gLt029GxrZMnzewLG7ZesZCIs2XbJqBAqsd+JuIgrEV/88N08ef/7MEJw5/Nv8tE/eoqpuQaBkCRadW6/4myRACZbVpx0VxEHlXpODiNem8QIg7n7HERdlbfxGCMMzJV6b2fs7nLbQGfQjnItS/EL8W2w7bWxyjsio6Ey1qMpyp5ftCHaK/tCUl9hxrDd1muK+bZBoqWpFGnRgtrNm7V53qzNr31CG0Bp01NBzLQmVbZqFq9QOZtOWmRbyCkw1aqzGbK8UpwbU1QQ+zMS16I90zS/zQXiYp5yulVf+4pXCc3G238dDmjHXJiuWWr7OrqWZhA3JBCjKGJ+fn7gZQsLC0TRBob+LwO//du/zV/8i3+Rz372s9x00038s3/2z4iiiM997nNX9bwcDodjO9KuIIae1+cYutbthBA2LFz0ziSWpIcp/vZEOwLA/u1LwXgYUfUD0hFrliKOjfVEXCgMb9x2Hf/pz9zHhZ3jTMwu8v/58vN85PXTeNowHkb4Qva1/IGdD1nMUsxk0x776BhMVxCv7EB8/TrEtw+AKs71Qhn56g4QYA6fg7Fli3XfwEiCSH04OdL5cSBF1333CweAep4SStmpsrZUTmoUqhBmtSxjPU+3FYgKY9oxIrbFdJD4a2dPagNfO3+SJ6ZP9V2nlWcobfpEWKLzTRVmxpiuLEyKuVRVzN2t3Fr50vwFzsWtgZddDRKt7AyisBsc3Zgu46ANVxCLd0UtG/y73C5oY7b0bKlyLaaOi8RAx2CsXYXernmuK7EhgfjhD3+Yf/Nv/g3PPPNMz8+feeYZfu3Xfo2PfOQjm3pyGyFNU1555RUeffTRzs+klDzyyCO88MILV+28HA6HYzsTSK+Y61s/1qG0HecgOu2WYMWmLFpWfel1FtbaGHxhXU73lqvM7TuPCRScHkLMFZW+QNlICAQLIxW+9qkHefK+mzrVxJ/66kvsnG8i5eAK4nyWcC5pwY4mZqyFqEXIF3YjTg8jcg/RCuC8Dc0WZ4cAbJTFzubAx2kOzWOEQb42BcdGARj2Q6pdrZjLFwzGmCIrURZB6oZ6npEq3akgzqYtonW09PpF1qIQSxXETGvSAYuUTNvfxa6oTG40F5J+odVSitxokuUCUSlitTkC8a36PC/OXyDvriBihWtL5TTzrOe+WirvCO5Y5egttEOfKr3iDGLeqdjCRsMU2g6oqVZr5nNuZdoCcauKXGV0X2uw49pmpe6EjdKuHC5VEFd3kd6ObKjJ/5d+6Zf463/9r/OX//JfZmJigsnJSWZnZ5mZmeHee+/l7/29v3e5znNN5ubmUEoxNTXV8/PJyUmOHz9+UceUG8j9uty0z2UrnZPj2sC9thyrEXkeZc/f0OsjxAq9XGs8KQg82bl9yfPxpCTwJKGUNLVtQ0UsXW9Ppcob9Xm4cQ7x2hQcHbcHDjS6OCchBEYKnnnfXrxbb+S+b77I1ImzmN/7PA/eeR0v33E9YtnMXGo0Vd9Hexrv/rOYNyZgMbKh975GvLQLcXoE9jRhpowRBrGzyYrlvF0tOHIWntmDODUM1y9SDQKqQXG/oghM73ruEqXJjGbYDxBF1EdTZXY3WljjmvksIfL8dVVthQBh2nOiHpqUDE1Z9n69K+xMY8n30RhirTDCdNp/lTGkxmYq5svOOW27zm7CZ8RinjKTxgRSIqWtNEspMVrR1HkhivLOfT174RyHqiPsrwyTGY1uO59e5c8rZQw51hRJaysC2+fUFkTtCqLY4HOnhSGUdlY30Wrp9bTdEPaxIHvnkLcCush3Rdjfm/sevPbJteYb06d4dMdehoPw0g5mh8jt67v4EG7PlHe/hrbz62pDAnF8fJzf//3f5xvf+Abf//73mZ6eZseOHdx999184AMfuFzneEksD2FeL74vmZwcugxndGmMj19++3HHexP32nIMYnyxwkgYbujzUBtDZTok15pKOWTH1HBngThlGlRrIZNjQ4yZGJ3EVEsRkUiZGKkyOTnEdSUoL05TeV9G6w1DWxWEQ5Kg5LN/fJTGgiKIfEIC9l53kKH7DqO+/Rz5H3+D+146yvUnL/Dqx+5jYfdE57xKxgqvMAwo+T7c3wBsK6sxEL+Zw2yZsDZCmvrIiZTS+BoLiSFD6/UMaiElr4wsL+0gV0gpDfU+d/NJTBD5jFXKeFJSMilBFBARMDxaphJFcE4yHkb2HNdgX2SrpdXQjngs1DIqIxENpQg8yZ7KENoYSucDSp5PNQjwlY9KYobGylQKEd3MM8JzPkFqqIxETA4vnbM/5+NLsSnfibo+Ta5hOAqpEFItR/jKJ09AR4Ig8qG09P2bzBpKwxFjoxXCmYDqUAm4+p9XscoJzwUMhyGxyok8v3POudaUzoeUfI8sMYyNV5gsrd81d1jEVGoBGIiGw57fxXbigpdSikPGxquE3tay/s+1pnw+pFyNel7XV/t15bh8xHlOuBgwPFbe0PtxEM26IboQUBmKqAYh5br9nqiMlJic6H+/bsfX1boEYhzHPPHEE5w6dYodO3bw8MMP89hjj13uc9sQ4+PjeJ7HhQsXen4+OzvbV1VcD3muWVzcOrMOUgrGx6vMzTXQ15BLkuPq415bjtVImyl5LpiZ2ZjZRJ7kqEBg4py52aXw9WYtQaWKRi0maWY04oRSLmm2UlpRwsxMnVaakMQZdVrIsRhRmMmkOqHZShEVjUoUs3GTVOXQVMzmDbj9FsSe3TT+1xfYcXaWh//gCd6+9TpePvI+8jCg1crwA5hP1OAd5D01xDvjJM+O2bbBsQaN+jqMQkZbiFpA66SEPUvfG2mcMT1XZ8Zfeu7OxU3qzYS4cBGN45SF3NBIU6Zn69S8FguNmKryaIhl7YWxB4kHo2nnRwL7Rd5Ik+J4GWdnary2OEszz/n03kPWCKeZ2ugQT6OMph4nnL2wyGhQCMssodZIyIzm/Gyd4XRpQT9baxAIb8OvgUGcmV9kIUvJ45wky2iohExrGmnK2awGmeHk7CIzpTqJUkwvNpn1G5zLPBbqLeZLTRifuOqfV408o9FMiHLbmpuIvPP8ZFrTbKXg+TTTjJnZeq/B0RrMLTSJW9Y59szMItV0Q9NAW4bZWoNaPWZ6pkZpi7nSplrRaCYs0GJmpu6+B98DNPOMxXrMhQ2+Hwcx22zQamXMLTTJg5xWbN+vM3N1Zkypc72t+LoaGSkTBGtv2Kz5jj1x4gQ//dM/zalTSwPtQ0ND/Nt/+2+3VNUwDEPuuOMOnnzyST760Y8CoLXmqaee4qd+6qcu6phb5ZfZjdZmS56XY/vjXluOQYTCIxDehl8bXuEqGgjZc1uJsPmKRhRmMnaGQ2mDh71uICSeEGRaEU42OwLRBAqjDQGSsvR5t1njUHWEES9cuo/REb73w48Sff91PvjCUW567Ti7jp3m+Yfu4MzuUXwhiVU+eC7qwAKcGbKziGDNbNYzozTeQpwcgdkSZveSiPIQ1LOs5/E3s8waphbHNQZSpdCFiyfGdO6y5xzrAeKZvYjMQ99/CsYHC1djDM08YzpuMZPEvF1b4EBlyOYOysI8pTDPSXKF9ux9JLmdP5TYnfb2OWtjSJTGyEv/TlRGU8syEqVIpO6cr8DmIiZKUfY8FtMUrQ3NzLq7pkqT5YpcazJlb3e1P6/S4nxE4VWad51PrrQ1HJJLr+2NnGuudcc8xb42tufnslLWjChX2rbibSFyZZ9jpXXP83u1X1eOy0emNJkuXo+X+lmmNRpNrjWp0lC4FscrvF+34+tqzW2pf/2v/zVSSn7v936PF198kT/+4z/mtttu45/8k39yJc5vQ/zMz/wM//W//lc+97nP8fbbb/NP/+k/JY5jfvzHf/xqn5rD4XBsS3aWKowHG3eo9otcKH/Z14wvJL7w8IUViu2FsBBLc0qR9DqGK0x1GcQEupPJ2K4A3jo83jffVPYDXr5+N3/64x/kzUO7GI4zHvv6C/zIt15hf87Kzoqhxtx7FuMrm3s4ss6YgfEid3Gu1PPjUHp9UQWxUkV8+hKZ1vjSQ63k+phJxHN7EJnd9RWvTbFSdoIBZpOYlsoZ8n1emp8mNzarq/tpEvQ+D4lWnVzCWKnC7MaKRo01vrlUx0d7XHtMGy5tfy6xLra5MZQ9n1jbqIuWzkm0ItE2AiQ3W8d1MjPWeqY787Mt6NsupFLYHJONnrM2pnDNXyWuZRugsVEAW/Ex6CKOZiuem+PyoNobApvwO9fFRp4yBk17o4iOE/W1wJoVxOeff55f+qVf4siRIwDceOON/PN//s/59Kc/zfnz59m5c+dlP8n18ulPf5rZ2Vn+3b/7d0xPT3PbbbfxW7/1W0xMTKx9Y4fD4XD0cfPw2EXdLpCSPDf4Xq9484UkkBJPSkLp9XxZt+MwpBCUPY9UK6h2Bb8HtsLmC8mIHzARlthf6Z/3KHm+zfsrR3z54dt454a9vP87P+D6kxc4+D++hnfndVy46ybMIKfQaoZ55KRdoK+whXo6blD1/E57JpHCVFNEI8QkXqd9KZSSurIVs6iYwVoe4WAN8Axe4fq65O3ZxXQFkfiYHQ0rFufLmNPDsL/Wd1WJYCaNyY1mR1hmMU9pqdwKsq5jG6xLZhsrFu1z21IZry/O0lKKO0YnUBqQBmU0Ulz8LFmryHr0EEXlcMnExRj7+If9gLk0IS6cUzOtSZS2lajiz1ag+zwEbdt78LBV0c7LWvTHa65FZlQRSbI1xdV6aefEbcXH0B1y7nhv0N6sUBt+R/bT3gRSRqO1/Qxo57leK6wpEKenpzlw4EDPzw4ePIgxhgsXLmwpgQjwkz/5k/zkT/7k1T4Nh8PheE8TSo/caHyxrIIoRad66EvZEwHQXQkc8kPOxQ3rFHffGaiFUFKYlhWf42GJ20fGB842BV3CTxnDhf07+e1PRvzEOzNc99JbfPj5t5k/dp7nHrqdmV0DNhBXmU9pqRwPQS3PlgQiwFgMjRAWok4sRiA90jShqbKOQKxlac9z0n7IxgjbWlhEX3TTabHdWwPPIJ4rI2bLmAEC0S8WKQL7XOfG0MrzTnRC55iYvgoiWJHezHMWs5RASuscikFoG/5+KX6asVIYrHGcxgrFpefBPv6wyMmMVU5L2fzFTiVzC+XqdZ9H+/FoY/AKYdcW5KIQwxtBFREgsmiz3q50wsQ3YUG+2RhjClG/NV5PjsuPMjZHdzMqiLbIb4rOBtvZMijuZjuztaaGHQ6Hw3FNEBQxF77sbzENpLR/C9kz4tctGKp+sJRRNtmyf9rHlpI95dEV7zuUshMer4xhKirRVBnTH7gOdcf7KD3+TfZdWOSjX/gux27cy0tHbqFZjjoVzNWYTRP2lqucbjV6XLLNSII4BWIhwhQC0SuEQ1Pl1Js15tKYep4SLntO7MM0xUwbvSUnA8yWrWgcj0EV59ga/PXtSztjKRF4QqK0pqVyltcmjenN7Mq0Xcb7QlLLUxoqZ8QPybQushbt75NLMKOMVY4AAiFIlI0c6X6gBtH5HTRVbuc3jSFVqhNqvpUqiO2Xp4BOJhrYSBGDFf+GjQuk3OgiI3N756qpYnNhq7QFd9NuCVbb9+l1bBBdzANvRkVbY7sEdPG+72zobOP363LWJRB/7ud+Dm+ARfFP//RP9/38qaee2pwzczgcDse2JZASXbSDdtOeQfQKI5puuitcw37QJwZUYbCy/JjLCYXXCY83GEaCiNuHA6aiMuwu898/epiHTy9y97Ovc+jt0+x59xzfvv0gs3e/b3DbaUG7Mnf32BTzaUJT5VTbWYujxRziQu8cIkbQynNOtxq8XptjOAh6zl8Xs3gSYef80L3PSzOw7aUjMQQafDBSQ9PGICzvSPWFpJ5nlIvKqhC26kmRldhGCHoC6Zt5hlcItEQrmnmGX1T1TPHcX6o4aypr0BNKj1qeMdy1BFlqOLUP6VzcpFVUXhNtsyO3lEDUpvMaa4u5duXXGDottIL1+Rz1HRv7PKTbWMHkuhBhW1Eg4iqI7zVsi+nmzCC2x4Tz4pj2/SpQ11DP8poC8W/8jb9xJc7D4XA4HNcQgbSbh/6ygOCy5zMZlYg8O4fYrYW6BaJtyey9rSoC24NVRJy9b9lz20BKbhmdBKCeZ/jS450b9nDm4E7ueOEtbnr1GB998Sjzx6d5/qHbubDbXvd8bCuBO0sVwAqcsTBib3mIPeUqxxuLSwJxKLMxEotRj3ATwobDn4kbSAHTSYuD5eHOuY35IV5RtUt03mlT7DBbCM6JQoAKoJIh6hEmkxD2LnDbAnE8XGp/baq8Lw+4PWvYfR2vaPtNVE6q7bxfs6hGmsIk5lKoZRlBUUGOdY4QS2JadD1pI0HA8WaNUEoi6ZEa1Zkd2iotprnprQu2qwnQFh/tiq24qApiu2UtN9u3xVSh0WZrtt2pog14K1Y3HZeH9gzi5pnUFDO22M03KdgyG1ibgROIDofD4dh02iJuuZiLPI9HpvYAbVOapbpRtzCKpLe8OGbFk1xbIIbFbW3lQvS0dJY9j1B6ZFoRhAEvvv82vnNgko89/xb7zi/wkT99mnev38NL999CKnu/7BOl2F2ygcd7y1Xeqs0vXSiAkQQxV8Y0Ahiy4isQgtOtOo08Y3epgjKGUC513rTdWJsqI9XWLdQT0orMd0cQx8YAMBNdubyVHOoRtAIIe11SS57HWBBS6rqPlspZbpXiCVH8nM79+1IWM4gZVc8n14ZGnmGK6uOlOvTVcjvXGEmPXC+rlHbN6lW8gNNxg4oXUPJ8UlU4nxrbhrsVyLSGoo1ZInrEhjbtFlNrX7PaejRWed8crY0bEQgB6TauSNjq89Y0grFRM87F9L2EQm+ySU27IrlUQbzUTbStxPZMX3U4HA7HliaQEiEE/iqul6u1mNoKYu+XrW0xlWu2mJY8z7qoFgvUoOscPCEpe17PrMjsWIXHP/EAX3nkdlqViINHz/BD/+sbPPL9Y4TZUgUnNYaJ0Fa9xgZFf7RjMRaWLgulZ7OxMHhC9ojD5Y891ZpE53hGIF7egXxjCpH6mD01GO8SiOWi8tfst4yRQrCzVOmpGCYDjE48IWnligtJiy+fe5e5NCnafyXNPGc0CMmNpqGyTpX3Uudr2hVEX0puGR7veS66TXRksXGQaEUkPRSGRNkq4laZ8UmUwuuqEhvoLDy16W2YXamCmGnF18+fpJlnPT9XxiBEseDcIoL4YmhXa7ZilU53KohX+0wcgzgfNzds7rQWm9tiansEVDHXKBDX3AyiE4gOh8Ph2HQ8IdZsB/WKBLyl/y+JmpL0O/lybWz1TfblHi4nlB6BkJ0v6+XnUPL8nsqBMVANAl4+MMUXfvwxfnD4RgAe/MEJfvpPnuHQmydAGwSmU/GLpIcUvTl1ZtQKRHF2qJNTGEpp2zcHxVd0IYvYiVgpqid2IM4OY0oZ+qGTmDune76tTcUKCjFAIC7HL4xqlrfrekIQ65zTrTpv1eYRwJAfIIXgfcNjVPwAgaCRZ7R/R5dSbUm1IjGqY1q0/He4MyozFS21nA55PrUsJZIexhhilV/xCuJqC8lGUXEFunIQi9sV1YU2y11p22RaF3mTy2ZtOwtOG3mxXVFFG67agnN+Vri6GcStSKYVz8ydZzFLN/W4nZiLTTGpASnoVCTthg7X1AyiE4gOh8Ph2HSsCU2/EU3vdVavIPpS9sx0KGMoybW91aQQVP2QrAh/X+4aGhWh9EDHaXV3qWLnpQKfV+57H1/48cd47eAOqnHKA99+mY//0bfZf26BoWLmMJD28fXMV002MZUUMVuxYfZYsTqfJkuziqucc6xzcqPxFotYi8PnYXjAIqkQiExXEN/dC+crKx7XF3LgXIxfVCxPNusM+yETYWlZBc+Sat3jsnqxJEqRa02wQvU3Klp/24wGIYeqw3iFCG/kefF6uDILMG0MXzl3gtoKi9S2iQ+0pfeSW+lyYbnSKWcrZDvm6I5xUb6NF5z5Vs5BLCqIbUMhx9YhLzaCNrsapzexgqiNQbLkjCoQtg2/aIW/FnAC0eFwOBybjldkHcpVKmeeXJpBNPTm9EXSwxeyx5REGd3JE1yLoSAgVspWMUW/QGwvEjJjBaI1ojGdL/fWUJkvPHQr/+MT9zG9Y5Tx2Rp/7usvsfcPv4aYmbcCUfZWEPEN5r6zmDBHnBqB2IrcXaVyR1jS8hBvj0Pae05SiI4Fu0wLEVzpbT3s0K4g1iLEYgnx8k5orhR7MXgupi1uZ7OYir+y6F4yzRGXZMCQFFmG64kSATu/F3ZVaZsqs9XQK9TC1W6vbeSDfwdNlXdanUXhYtp+TSVadeYTYXmj9BKqyHVcLqC6W9byi1hwamM43li86q2dbSOfq30eg2iLeetk6thKtB2TN3tjwWZybk5VXhUt8dbJ1M4gysJqayvmfl4MTiA6HA6HY9PxC0fM1SuI0s5yFDNb3deVQlDx/WUC0VBap0Ac8QNirTrOnN1E3lIFMdOakvSYDEuUfI+4mNfTxmYczuwY44//zP189dE7qFdLRG8dp/pb/42hL32b4Vbav4gp5zBWOI7GVniNBpEVv/UA+a3rEO+Mw+nhnpu1MxOVMTbWQmrwV1i6RspeDhhfIZREvLJj4FW9dn7hskVLWzjGueoxtOnF7rjbhdCSi2lL5Xz3wpkNLeASpayRwzoFYpv2fWdGL8VuLLvf0636pi8mM61JlRo4v5lrTaJV3+uqLYSaebcpkFlR4OVad4K2e35uigpi12tiIxxvLvK92XPUVxC3Vwqt2dIVRG1MkWe39c7vvYwy2r43NrmdPCs+OzajDVQXRlIaU7gO21lkzeYL26uFE4gOh8Ph2HSkkPhSrDov6Anr1NjejV1+3SEv6GsxrXjriu+l4gdkhSPocmOYngqi1gz7ISXPZ8SPiAtnT1VUzgIpyYzh1QNTfOPPfZTkww9C4BM+9wp/8fPf4Z4X3sJPly3Eo0JUJF3nqkE8v7vzX1EPe24iizk2pQwi8+wxVnrqBDCSYqTGPHAaE+WI+TKo/hv47SrUsp+37w+xsmjzhexUYdszkgCNPONk3GAxSwbebhCDhNZ6EYXDqSckmt5ZyFxrnp2d5kLSWvkAF0FWiMBB551qRa5740hElxlNLU+7LlvZpCY3dgaxe8Hats4XiKXXhDG8MDfN2bix5nk385xnZu381tWu3OW0XUy33oK5nYPY3Rrs2BrYvNPNN6RqC87NiMrpVBCL92f7/WrM1qyYXwxOIDocDodj07EmNatXEINiTrHdouMtawUdCcKeL3MNROsUiG0TmUGmNn5X/mJmNMOBbf/cVSp3wuPbmYtDvhWpqTGMVaqkD99H/f/7l0jffzdSa+59+Rif/p9PcPMrR5G5va2JiviIpEuYnh5GxAGmUsy0tXofR7uV0mu3l0arCypz91nMIydtnEZ18DGhPYNo+vocRRFzEa1YPbS3TU0hEAUdgZhqxWKWMptuTCBeyrJJGft7Wx68nhlNU2WbXi3LjRWIyw1kYKlddrmbbnthuJCmnU0JY1aOuWi30nVvgrSFiyhiLto5gheSVlGZ7OVb06eY7/o9HG8uMpfGF1V53GzswnlrRkkYYxfA19KC/lpBFTOIa71uNtpu3m4t3Yw29e4WU6DojrDv12vl9eQEosPhcDg2Hb8IRF9VIBaXt3Pfls8rVv2gb5Gw3HBmJUqenWFcnjEH9Mwk5sZWEAEmwnKnmqCKitV4EBWZd4axdvh8pUTysUf42p//KK9ev5swzbjne6/xqc99g+vePAmFQBRtgahBHB0DwNwxjRGmL6LCE7Za5KdFZTHqFwO9T4S27ayw9Her3wjHK9oyB1Vyd5fKTIQD4joKfClIlK3CSgRpIZ4zrWnmGedaa1e02jRVtuo86mrYRbxtMdVF22ubXGtaKl+342Gscl5dnF3zepnW5NpQz/uP264qLn9O24XAdt4jtNvOVq4gLl8It9sehVjKV7QzmHnfwlMbw2ya0FBL4ng2ia04NVd/Fkpp05mj3Gq0W8gNK8+IvheZT5NOF8XVQrc3Tlap9C1kCV89d3JD7cHtz8HNeD2q4jurvcEgii4LswU2ZjYLJxAdDofDsel4UuCtEUnRdgLNtJ3hkMuuWvb8nvZHgVkxR3A5Jc8nkILygJnF7tkxUdwPwHAQFAHaphOpMRSENFVO6Nk5xW7M6DBffvB9PP6ZD3DqwE6qjZj3f/v7/Jmnvsie1jsQF/d9oWKrh5NNGEugnCFSH7LemUsD664g9pxHOxdxQAVRFKJq+XMLMOSHfVXbbnwhSbXqtP+2q2lZYSBxOm6se7e8kS25fm4UIayVvC+krah1tWTac9HrbjGdTWPeqi2seb3caDS6L6MQ7DxlP7aVMlGKlso7GxmruWTm2nTOv40qZnJlYVLTXizHKu8L+E61ItWqp8o+k8a2Kiw2p1JyKbSr8Fsxy1Fhq5tX28VUG8Mzs+cGVoevBi8tTHN6Axs/l4NBlfXlpFoTK7UhV+Os/XrcJBdTr5iPthV/Ou9XJxAdDofD4VgB62IqVxUgXhHMnhc7sMuvW/K8ZRlyq+cq9txWevjCGxiL4QvZZSFCp8o44keE0iMtqjol6VMqDG0mwxKVZVEVZemTa8Pi+DBPfuwIX/30Q0zvGme0VuOR2S/w0R98gd0nziPmbVXQ7CoWXpWVgu6XWkzNWhXEnhMpKpYDBCLQMQHaKL6QRSC8NRBqt5hm2rrJLmYpC+ucQ6x35QZeDMbYiqYxvRXEtgvobBqvS6ymWpMataZ4ah+3PmDhng4w/QFbsWupnExrgvZGhljZJbNdJelesLbz+USXSU17Ibz88bUzFNsL6UwrFvOUkuf1ZYheaZSx79x2C/lWoy0KDeaqupheSFq8VZ9nPouv4lksUcuyqy5w2lmFg9q727QjKzby2sq0WTH2Z8PnCMtaTO0nrLmGZlqdQHQ4HA7HpuOtw6QGrAjMtG3XWd6OWvb8noWuMWbVmbluIs8nkJLSgAgHvyintReJbWfUiu8z5AfEOkcZTcnziKTN59tfHuo7Tuh5PUYyMzvH+fqnHuSbH76fuWAHE60LfPArz/LRF77Ervg4VAsxVV1JIAq8tPjZsgpiolTPrFkPq7SYAkyEJUaDcOBlqxFKyWgQduY5262VmVJ42JnJC8n6FrbNPF8xA3EtDO1qlOybrcuLnMaWygdW+5aTFFW3tfIFsyIvraXyvgrTYMMd0bm+psvAZpUKVTtku2fO1tiaRLsdV2Af26CZrFTrngpiPc9IlOpU2a/mQr/dKmsriFtvway7Nk2uZgXxVKvBTBLTvMptnWCfk0aeXXVB384qTPXKz4kpjGw2Up3Otd6016Mu5uZNV0v48rib7Y4TiA6Hw+HYdPxOBXFtgdi2CV8uJiNpRV5etOF5Uq67gugJQdUPBkY4+EIiCoHjC9kjOndG1qimHalR8nxGg5CpqNx3nEDK/sqcEJw9tIOv7P4s397xKebHh5loXuADM3/ER779BDtPX8CUi7m2ZQJRG9MlEHsXR7U8ZSZdQYyt0mIK1uxn0CzmWggh2FOu2hZTREeINHWOJwQVz+cHi7PrqsbFA2Ih1ovEtoX5QmKMFT4vzV+gkWdF25hEGUNtPQIxz4vq4Nrn7AlJZlSfm2IzHzxP2a4gLr9kpeVioq34zLoEp2q3rHUdJFZ5R7D2nKNRfQIR6LznruZCVXe1yl5twTEIjX2Or2ZunTKat+vz1mgpu7qRJFC0LBs1cGPhWGPxis0mqkJ0JWqVCiIXUUEsDLc2xaRG2xl1QzumybJVTZkuBicQHQ6Hw7HptPMH16wgSltBHFRdKnkegZCdlk+vCE9fL+NBOFBQBsIu71Ot8KUg6ppTnIrKZNouxkueT9XzGQsiJqPSwOOsuBQoKc6GN/KlTz7GUxOfYj6cYGp6ng89/j0+8vxX2BGfQDQK0dYIILUh8P4KFURduOYNJNAYT0McXDbHjfbsjirm7DwhGAsjzidNTjVXn1lKtCLX/a6fG7pvrTtzlJlWHK0vMJ8mnflVg1mXk2ld5cWM0+pPVKoVoZTk2vTNHDZU3id27ewqNFWO6ZKIYpVZwLRYAKddArGdzye6lpyxVgMXw5m2MRnt87OPf+lxXdUKIu0W0y0qEI3pVICu1tM0HbeYzxLGgoj5DUTGXC5Srcm0GRgD8crCDLMrbVBtMrr4naSrRONosxQTs17axmOb8b5QRdWwbXLU/mxudztcC2x8S9HhcDgcjjXwheR9o+MM69VbG8tF1uGgSqMsqoCNomLjC7luF1OAO0anVjSp8YqWyUB4PeJ0OAitwQdWIFb8gI/vPjhYaErJioosUtAEZiucLu/k1IFd7Bl7kVuef4Op2Vke4w+Zru/mtfP3cF7vx0y2mLo7IcgGVxA1S06nfUJRYI1v6hEmlxBs/gLFzsPZyltLqc5zGArJDxZn2V8Z6jmvvKgaDvkBiWrHQlycSY0Ugswo2vXaRpbRUjmJVmRa2UqVEOvKZWzmWWd+aTXiwmhGGUOiFcNdlzXyQYY7VtgtZmnPZavNArYNgNKeFlMrdpeeS2MNaga006VaozDERSveXBr3vI+u5ixUu4K4VQVibnQxQ9a2Gbny1PIMgd0km1+nC+/lJC3iW7JlwqydCXqlWoVVsUmSmpUFosF0TJ7WS1a0mG5KDqK2GwyicDLtZgt2VF8UroLocDgcjk1HCMFdkzvWbAkteV4ROj74eiNB2GkxDeXqpjfLmYz6jWXAilc7U6epeEGPU+qIH1ojg66q5kqPYXk1M1Fd7VmlwjhmpmhNHc5488AUv/WJu/n6o3eyGIyxIznLB0/+KR+d/gP2nj3FkOcjEt9WA/3+SINAeisvtjtziBe57xt7cGx0yXl1Gb6QZNoapiRFiynAZFjiRKvG8eZiz/VPtuo8PXMWsK2UNtfvIgVi0Q7cvn0jz4rzUCRFBdETYl1zXM1iRnCtKkJStJjaf/cuVFt53lcNFVhBVsvSng2H1VrO7AaF7BGIyuhlew6i0/K8/HefaoUq3BwBZpKEqGPKdHXdFHW3Sc0WXDErbYpYgqtXaU21whib1VrPs6teeUq0QmnTV7lLtepkf14JlNFFi+nKAlG1TWrWIfbaxlbtivZm/M41tsrf3mBoV/yvtjnUZuIqiA6Hw+G4agRFG6o/KIcBGz2RFe2Jw95gE5aN4hdCs5mnVJeZ2FT9gIrn92TZrXjuRT5gu/31bNxACMGuqEKp3SI6UwHADKXESjEaRbxxXYnpA9ex7+1pbnvzdcbnp3lk+nEW//cQr8uMdycP9dU0dDET2d5d18b0tjl2G9UMpbBQgtG4fxtYCcQrOzA7GrCnaA09V0G8shOhJKYeYu6cHvic2ephTly0mLZ/XvV8npudZk+p2pl1jFXecRaNV1norYee34OwFcREqx6x6gmx6oIS7EKxmWdo3Su2FtKEqh/0PJ+JWhLB7QXzm7U5pv//7P1Jl2VZft2J/c45t3mtPeu9jz4jMiM7ZBKAABAkgSIWq0iKUqkkqAZcNdGMM34Ccs4BJ+RMiwNxppK0qCVWlUSCDUC0hUxkh+yi8/Deza03e+1tzjkanHPvu68zM/fwjMhI3J0rMtzNnt13u2dx9t37v3cyJrGa9txMZ7HoHOpsZn8v6kHMjCGQcjakBjsTfGT9+zsFcS6kRuuyWkNbQz9PaVTe+yoLVW0tEl6YvK+C8YqqlC8283VveE4kJTeXhEO9DGjcgwXm+finiInRSOEeNJ3nGaM8dw6GzwilgrgQhqRJtXkute6TQPvZ1eyCBwuWogrj4qtnreU/PnvI1zd2MPh5ZX9vXjYff/E+mnJO2FlMK9/7THNxXx5qBbFGjRo1anxmCKVCSbFyPq2lwnKuoxlcff7wIrgKDlfb0JlTGKUQbMdNlLi8UqPocSyeZMcq4J3uBgfJuKypEJnf507KxGjWgojEGGgYHn95i//wv/91/vDG3+UwusHa2YBfOfmP/Df3/++88dP7yLxCeIQg9MrmYTLmse8qG+U5gzyddiGOQnjQQ377JuJPb8NZPLvTx03Esw7iw81yZSzubiC0LL+/asUscHNuuTUzSu5GGHOcTmb608ZaM8xzly6q808059UNQl5vrZV/H+Y5mdEM89STVTlTw7EKqXGLXIMtuxSHecbvHzxibzKaeW1idNlzVhDPjwZnfOfkgPM0XZyZtd5Wq/WCxVSvWOimXkHM7OwMYjX4qAjSXzaDODY5oVQlWc4qQUD2ikrGt472eDQeXPq658VUQXyx1Mj9yYjjVam9LwBrLQ+G/TKxNDfGq9qfXYrpOM/KWe3cms88yTTRblY4m3vQkvjwmk+rzzKzhkAK7xxZfm2MD6u6bJ9SYzjLU87SBGNdeNp8Vc7z4I8OHrsHX1SqLWzRhEgZovWLgJog1qhRo0aNzwyhkChWE8SmCrDeLtd8gSTOVYiUIrNmqQV1J24uzCYuQ0Fuizm1SCpeb/fck+XGdLFnG7nvPrREvjuxhBA8693iD3b+O/7zb/xN9uJXaGcD/tqf/Zi/9//6A97+4V2CLAes75SzZNai/CPr4zThJEudagiIfoQ4cYE6YhQhfrQzs8/i2FlexSSE89iRwVGIDTS2myCS4AKbqpvz03NP34VwdSZnlTmqYZ6SWs1I5xwnE8IVCvFVIPwiusA4z8mtZZhP1Uwl5Ir6iSmcTc7N9xVk68dnxzwZDxfIZbFdVzOhGeucg2TM7WabV1qdhZAaIWCkMxfGM/e9VQpiatxCuAia+c/7j5Yeg8ERrgWCqDWxlKTG7V9uK2FP9moW036e/UyISXWW8kWsiUUAz8vCIM/4wdkhQ3+sRUgNiM9sVrOqxGPd/fNZorDIzyuFqXZziRf1Er5MFIFWxczzMlj/ebhM1ZyYnLHOGPjZYyXczOCLuJ6ttRynCcM8K2cQwSuIxYvEL07NRW0xrVGjRo0anxkKFW4VQdyIYgIhmeic5kuymALlPOOyXsW1MKIVBJfWMoRSEvjY9MwY1oKYWCm33NweYd46ckRxZ4QVLplvM4p5NOrPbihwi5zD1nX+ePur9Hof88XhX3Dr/jO+/u33+NL3P+IHb17n/rtvsB9Pg3Gs9f1bUBJEBhFop3wRacQwwuYC9tuuf/F4msYq9tvYOEcYie1MYGMC/dipiK25fcS9z0m6SBABYik5SKYq3DDPSbVmmGccpeOya/JloHhgMNROgZGImZ7GVUh9Gqi7ZpaTdMKPzo+wzC6KtVcuQqFoyIDH4z5bUYPEaHbUYt0JuDnJUe7qKIK5GcRlC8aiDDwoKzpSjtMJG2G8+FofrjFP+MY6I5IKjWGYZ74ew12XqxKzsc4vJWL7kxHbcfPSROLZ43Pezemc36zqfBnyK86XXRWlJVk710DxoABrPrMU07FXvx3c/fNZYqhzQrmoxDv18OJewpeJYqRAG0cWlyVXFzbR5JJ9SrRmnGvO87SciTUvWGafW1PacA3Tz7llOh+96vP+eUStINaoUaNGjc8MoZTOYrpCYVoLInphzNjol0oyGlIRCLGSILaD8Eqdiw0VoK0lNaYkswBWWHj9zM35Be77sVJca7RmZsyAkiAKX3R/ur7Bn/72N/l3/+3f4OO3bhFozS//9BH/h3/zh/z2n/6YrZMBoVAVUiMgMs7WOgydOtjKoOctevtt5I92Ed+57pJOQ78AfNaedjG2MuzG2G3tZLHSAxypPs9SN1s2dxANFZTkEWCoMzJjOE0TBnm29Dy7g41hrw3p1ZcjmTE0pGKidUVBFJdazhKtnSXMz40WwSCRr1qpbl/7ZN31KObpeMR7/ZMlzYdTCOFmymYTSB1h09ZymiYzC0ddWWQaDIM8Y5hn9PN0hrBIBKk1hFIuWFXH2qnW2jiFbNaaypUIVmo0owvqQbQ1fPvkGSfPafe0fieKGcznXTQ7deiTza5WkRrNxOQloaiS589KQUxMXtqRAyk4fYmW2hfBKM8IpVp4EJH6FOKLeglfJgqLqWF1HY21FmO5dO44MZrMam8xtZWQmuc/ltSY8h9bjgrP/lb4LEOPXjZqglijRo0aNT4zhNJZTEOxnEAIIXil1bnSTODzIJKKUMqZDsQCa2HEG+0e7Ssolk0VeDucZT2KCaQon1JXMdY5nSBkK2r4RNDKAqWopfDWTuv/3l/v8O3f/Br/8//pt/jzL90hCwO+eG+f/+Hff5f/9ve/z/ajA2bYRCedkoRuxXb6oOf+nftj3Rli1yaIcYjYb7uvtXLYmDhie9xkWc5C6O2MsBhq0pCKsc6d/cq6WbxQSp5NhqQrVAAyifiLG8i/vIb4L6/CUx9IYoEnncX5Sf+t3BgaKihnlJQPC6raMLU1/PDsaGYh6BRGRxGdGuAmiSRipgQ8r/Ruuu5NybNkSOsCi7OLu5/OIk2/7sjbf3j2gL3JdEYzNwZtXMiPMW4W0v2TUz210ndABktmFROtfRWHWehAvIqCaK3rvLvIYppoF1DyvAvqghBKipmv5ySIK/r4XhSpMUx8NYrbv6K77rNJndT+/isUxFgqjj6lnsFVGPlql8yYmbnMscm9WvfyCPtFKC2mS+ZuC7j+QevmuS+Am6t0+26xZVXQi1zzzBgf2KOdWr/skVHlXtfWcn94vviazwlqglijRo0aNT4zhEI5i+kFM2o7cYtuEBGtIJEvglgGBCsspkpIvra+fanFFOBWo81Ya4SwTnWsJJtWkRjNTtykGQREUs3auLyCWKp5gSYzplzETFoN/uRrr/Hv//u/ze/90uuctRvc3jvhv/5P3+V/+Hff4Usf7yG1hu5UgbDdFNst5hId0Sr63uzmBLacWliQMtvKXLXGxhiRBi7EZg5T1XJxcRX4zsB+lpJoZw9sqYChzhdUtRJ7bWdvbfv9/NGOUzXv95zi+YNrC0RVWK8gKuWJnFmqIA7yjA/6JzPKV3WBq60t+96UEIwrJCnzxLPY562oQT/L6ASrEybF0rPiFpEnPsCnX1HqcutsbqF/mOCqO/IFIiaAzDqyXb2nCrtsKCUWOM+S51YQtbVo7IWzb4nRpEY/94K6mPETwpGxF1IQXypBdPbSQnHS1hSxIp+JxTQ1Zqb/taEU53m60EF4ESY6595LIiDW2opleZbQj/KcUF4+4/uykJUdlavv4WL/LlMQJ36fU2P8/ShKi/rzIjXu9/LEaFdzIQDmQqXEVJ0+Ssb84PSQ9BOmOH9WqAlijRo1atT4zBBKWapuq7AVN+iFEdFLVBBjtVpBfB5cb7bL4IOWcnOLSi4uiDNj2YgaKCHpBtFM4IMN/AKiCIcJDQ9HfU5nit8FUaPBt9+6wf/4D36dP//tb/Jks8PW2ZD/+s/f5+/9P/+AL+19l4b2KlU3gc6sZc1+ZR97feAUxE1vJy1UxZYjCfbdQ2ygEffXEd+9Dvut8ucLdWHRI+u372fpEuNm8dpB6IjwqlTUp13/ngfYdw8QViB/cA35wZb7/iSAw9bsz/g6i1iqss9Q+ZCcasBGZgxnWTqjyri6DWePTX3ohrVLCKK/NrK0/0leb69dqGALUYSdzB5sKwiwuCTW08q+aGvKqhLjz5ulWNDOKoGZmc4qVvexmGEEp1BX01OdgnjxIji3xhOD1QtYl2Bp0M9pwywUdMmLLcivEkDyPEh92fu4JIjThf1nYTEtr59/MBZLRaK1V4KvhqNkwvdODi4lSVfaH3++IynLAJgCozxffKj1M0RurE8IXa2CW+uI/WUziMM8paGUJ96frKsw86R+nLvQsGlITeXzWkktPsvSzzyZ9pOgJog1atSoUeMzQyilD6pZrSC2g5Avrm2yHi1aDj/J+0ZSLbc+Pgc2owYbUYNQKtelJyQSuXRB3PKdixtRNLvY8pbSkqyFZqG2wVpLSwUoIWhFEaN3XuP/+rfe5X/+O7/Mh7e2aIwTvvzRT/i7e/+aXzn+92wmz6CZYaXbtu2kcGOI/eq+Uwp7ibOTljvnF6bNHPu1fawyiMMW4vvXYOiUzUBK/0R/+eIqkILjNCntXLFUDL36sIBhiDhrYFupm5W8OcB8fQ/bcftlbzllRDzszfyYFG4mKhCyLKEvCKJb2Lp9S30oydNK9cYwT931EcX3c5TAhyBNz/WVUzf3W26GkqliF8zdx00VcL3RoqEUB8mUIBY2vmImapBntFSwoDY4gjhVEE15fLMKVGbtbP/iBYvrAsX2ivTKZXAJlua5F9TF9sQLWvpy+3ItpuPc2SSHeer3r+ixEzML/E8LhSpbzPK6hxGWfnZ1gpgYzWmWcJSOP/n+eCtmJNXC9RppN0P8qRFEq32v4GL35/Q1jlynl8xFDvLMjQHMfRZe5KFAat3npKjtESXhnEIKUVrBD5Pxpfv384w6xbRGjRo1anymaMrg0tLiL60tWh4/CUIhaQfhJypLBrcgeKO9xgeDU5oqQPqZtYUFt7C0/EzjWhDNLn6D2UWEDXKUlCXZKdJKm8rZYnthRFuFCCE5vb7Ov91o8nYueesnD3j9p094ZfwBr/zeBxxv9fgwGvFYvIten1tEKgu9CZw2XWhNWNmHrTH2t+7B3Q3Exxvw8Tr2Kwf+OFYvqBsy4NlkxM1mG4E7D4M85VrcWnzxMzf7aG8Mpius3RF2ZwRauP07biKOm9hhAG3fK4lTELvSz2tWEwTF1JKWevvp0/GQzDgrZhFoo+0sQVNelSxwJWIyCpDfv45tZtjffIhAuNqKFUp4LAPOsqTcF21tZdbQkhlnUXbkegpXGF7MIDqiVixCXY+fJ4hGz7y3FJcTXZfGiE/h1aglM5aFxfR5FcDpDKJ7nPC8C/LcGF6iYYChzgilZOiTQqsK4mdhMc2Mmbl3Af+gIF39Q0u2cZ6lHCZjbjY7n2h/Ev/AwVmeKX/3GGuZlLOudmmNy8tGbqbEedU9XJTeF3bwVb/Hh3lOKCQps8r8Ve7nzBiO04kLFmOq+k4KgijAWjEzMyz8/gMzM8efR9QKYo0aNWrU+EzRDILnitB/GYikYn1JpcCL4NX2Gu90N8pjKJ7CFyhCF4qQEynl7GPnOYJoQhd/X7XASSEdQZSStTCmoQIi/2eJYNBp8oNf/SL/0z/4Hb79za9zutFl8+iMX336X/i7e/833j38No3hXAjGpv97c4lqIcG+furI49NOqSIaa1EIR+Iedp0N9ZGzinaCkNMsYd+XzgshuNXssBYuzu4VfYxsj+a+gVM4ReV7g+l1KsiRU94WYyKKBWURjz/SGSfe2jkx08TTzGhG2hXLTxeaU3K5VCU1wMfr8LBbzm6KcQiZUyWzCwhiQ7nU1YIAzC583TE1ffBO9a2LsBk3aziN53fKRPFCW75musXLC+qdgmjILwggSfzc1XMTxCLGwz9QyCszn5fBegUre5GyuhUoVLChn7d0M6bVff10kRmzcPeGQnL8HEE1ReXCg9HgE+9PcT8WIS7Tz4J7j+J32ot0Wj4PCnur8H9YoasAAQAASURBVJ/vVe+njS0rhlbNKTrFOFtKaK+iaB8lY75/elD+PfWfg8x6co8AMfu4rPi8jvLsudTgn0fUCmKNGjVq1PhM0Q2il5pQehXcanXYbSzvtHterEfxjP01loq+nSoBqXF1BE1PEJUQs/xjjiDmSqMQGL84Mp4vtYKAWCpaQUBTuX+6YYT0izopBHrD8PHGTT7+6g129o5560cPuPXoGe9+9FO+ePc9Hr96jY/eeYWD65vYrRHi7oZLPF0GZbF3zpB3N7EHLWifcaPRcmEPH60j7m24153G2Jt9F1Tjn7oXy6ZOsCQJVgs4bTjyueq9AdvM3RJ6PF2qqMqiWgHZzDpPlOpfaopKCzjJEnYbLRLjiLfFkBrLxOSVgBuXKtlUkrO5wBd3UQTi+9cQx05NKOdGAfoRojMmszltuXxZVbUQbkQNv/CdTjHlxrh5RT8TWaDoCXUL9+nCdqSzUvmy+DnFQM6832XJo7mfwdSsDoQZ5dmMtfWqqL5eAD88O2KS5/ydG6+Wx3eWJqyF0UIirvF3j/YzkvPfL/BkPGAzatC4IF22wDjXNFTAROty/rOYe/5MQmqWVHjEUnH4HARxrHPaKuQomTDIs+WftSsit6ZUpKups27uztKVkpHOHRl7eVlhCyiuvUTMJILOo5i/LUhrvGSnCnLbEu7+mD5vuNpMrGb2wYmrJfH3Je6+FszeP4W1+zRLGOmcrlwdbPXzjpog1qhRo0aNzxTf2Nj5xFbP54USYqml7mUgVmpGlUiNoR0E5ZNsUf6fR8XeaYVFS01gC1sUZQpow5PClgpoKDfz2AlCF7owr4IIwcGNLQ5ubNEajHnzpw94/YOH3Lm3x517e/TX2tx9+w73vpqSbl1w7osk1IkLWymJfJGM2swQ4xB73ITtMZGUDOcCUxZw0kBY4YJyLrrsXtks3hugF8XstAL02Cludi4EolAcEmNKC1iS51hrSX31hrSinEEMhOvgLGbemsoVwy90bj5aQxy3sI0MMQmn86IAgwjRdYvp8IKwJWuhX8zAmWqgjbeRSumDjqYnpakC3ur0SktsQbz6WVZ+ZoSf1QpmFMTLbXTaDVJ5e+xydW+QZzOK0lUxTyjvD8/JvOX3dquDsZY/PnzCr25dZzuefVCjrcWZX4UnAstvkh+dHfN2d51X22szX386HrLbaJYEUFsXUNOQitQYxr6moKg5/6wUxHmrdqwUgzx1IUxXCM8a6ZxWEJBozWmafCKCWL0fRaUiJfFpuZHvR1wVHKSt4YenRzSDgFvNDu0X3Jfi2kufWL3qwUWRXnxR92midfm56oVxRcG+WkiNsRZtpkFYYx/WY6w7U8J/dqr3T2HtPsvSn7na+rNGbTGtUaNGjRqfKSKpLkwx/bwhmiubTo2esbMW/WslqgpiYNC4xY+ry5hWLsRSshU3WAuikih2VIgUF6sgo06Tv/zld/iffve3+fPf/CqHO+t0z4d8/ds/5X/77/+//OqffoftZ8fLNxJ7ApbMkelhhMViXzsFQDxzlstuGHGcTlZaLWFqLy2SVFei4d+7qiB6ogxOub3ZbJffs3Y6gzjWGYGQBBJGJnediUwDbSZGk9tph6L2tQqZMZxkCY258CJx2nDv8ZUD7M2++/OumzES/Xg6g3hBXUsoJUc+qCaz1WWlLTvaXGLvovW5UEOL++okm5QBS0oszrwKIS6dpSxUI7AzqbpVjPL8hVJIjZ3WR2TGHVsoJO/3j/3XDGOjGeWLKY9OsWQhTXNx37KF/Z7onD872mNvPLUuF4E+DeVqWsY69zUFxQzip08QJ1ovPBuJpCLVZiZR9yKMtHtIICrBKC+KeUW7SOJ0SrwPgWJ1cf0gy/jO6QH/8dlDPhqcvvB+FNdeCkEgJf1sucOgKL03rCatRR2FEoJOELIRNaY/f4WHAk5dnz4cGWvtf7d7Zbv89ExRWLsPJuMLHxZ9HlAriDVq1KhRo8ZLRKxmZxAza2cW/VLMGRirBDF0xCWSroYjNxbr0w6lkPzNnVvlS7+xsctOo1mpWLgYJlDcf+s299+6zdpJnzffe8CrHz3h1btPefXuU857bT565xXuv3mLLPYKQMMvPCcVwpQLp+o1M7g2wP502yV6fskpXqnWrM93BmbSWUtDAwc+tOYygtj0C+XJ1ZYqQkyTL11CqZtjGnslQRuLCgRa+K5D/3ch3FIvM5p+njLRmo0qSbPAWexSX9cSbG+CvdGHVobYb0N/apG+6EFHLBXHmSOIJ2lSUcbEpVevsBE74mU5TdOy9qUh1cK8YREOc1GAhyN9ziy3agZxqLOlvZ6rcJ6l/PDsiG4QutJK4NVWB+FTeR+MBpykE0KpGOt8aQdjcYz2AqXHWMvEB+hUcZomHCZj9pMxt1ruoUXqU1qLOc5qTYG1z9/R+DJQ3J9VFPN/F9V7GGs5Tidsx03Guggm0gvX31rLj86PeavTu5IFd/b6Tq93YnRJ9AUCveJBwti4Ds+mCq5U1ZEazVmWsrNMPfbkK5ZqpqZm5nW4hyDCigsVxBWFPFe6nw0WXZm/HeucyIeHlRZTIbCV9y9mEPeTEc1PWKH0WePzTW9r1KhRo0aNnzPEUs3Yx6ydncWT88uWoGI3C11YSi+MCIvkSixKsLCgvN3qEArp5xWfb5F7vtHlu7/2Zf7t//m3+dZf/wpH2z3WzoZ8489/wj/4H/8Tv/KHP3CqYpg7YlQlaT6whnYKoYXtESJXiO9dh1TyZqdHdy6YRnz/GuIPX0H82S3EKMKuj6cEcBUCg1UGJuHKLsUqZIXojPQ0kGass8p5FEikUwesqRA6tzA/z1wf4Uxo0iRApAF0UpeuKnEBP7F2c5SDiKYIeKe7fuH+OQthRmo0p+mEuFQp7aUU0SkVzg45MZqJyUsFcT2Kud1qz77ePzS46L7Q1mKtU4aWqY2Z0WTWJVgWpOXxeHCh4rY/GXF/eE4/S8u7vFDqCmV9lLtZtlTrmSCPDwenvH9+4giiP95VC/miJ3Ey14N3kiUMdcbDUb/8WmI02hTXWjA2lZoC4bKHfpboZykfzqlqY50vf5gguDDM5zid8L8e7ZEZQ+LvcbskAGiocz7on8x1qa6GUxDt3N99d2ilDmcVeR1rNy8cCnklgvh4POD39x+VAVIFivk+KVyw03meLj0f2hffX7RPF9VyXNliWpmDnJQKoi0TaDtByFo4/d0ucOr4MM+uRMx/nvH53vsaNWrUqFHj5wwL1iJhaQbT/9wWgSUAj8dDIinZDQzkyllMrXUW0iBklGfebrX8abQQAuXDGl4EOgy494U73PvCHXpH57z5/gNe+egJr330mNc+eky/2+J+eMj96F1GBkeOhp78td1C0L5zBKMQcdSC97awXz2YexPh5g4RMIqwnRT79WcXzx+C+34zRwwibC5nqziWQAlR9hm6xbMs/1x0+SkhkcLg/ldV15xFdJCli2TNdx2yPqdmCKCbuiqOUQidixfGsVQcpwnnWcpplpYEMZLq0qAU4fsStU9mzIwpFcRlkBRhI4ZwhRbg0iKdOj1eYvVMKt14uZ/Z/P7pAZ3tcKkNFly0/1mWcpYvCfoBCiJe1BNUCcyz8YhQSnYbrfJ+XkkQjcUYu2BRfToe0g1CjtMJ/SylG7pKmSrfd52IboYMK36mFtOJzvnDg8eMdc5bnfWZry+frbzYGpwazVjnnGUJ2hoCH8Ay/zOnacJZls70e14EbWceaZXnf5hnMw+0Vll+J36uM5CC4RUIYj9LeTQa8K2jZ/zt63fKz2qhkksEkf+8DPKMjWj291+hMsLqOUWnfi6eY8sVCSLWWUx9ZU5uDY3i4Z//cffgr0IQhcAYd3+vSUl2xfP/84haQaxRo0aNGjVeIlxYiK+o8AuZVuVp8qyCaEm0mdpMQ2eHawQBnSAsu+8ummcJ5eUWxctwd3DO3nqL7/z6V/i3//1/xbd/4ysc7q7T7Y/4yvG3+Xt7/5q/8e+/ze2Pn6L6Pt6j7eeDmjn2V564hdNpY3Hj5xECgd0cYb50gP1rTyC6om7T8IvN8eXPs6VwCqKx1ieW+nlDTxCrr1u2psyM5iAZl8pcAXHm5w97S+xuHX8OBpenFRZzXAfJmNTokiDuxM0rJ+oaW5Ci1eme4MiPSz1dvS1tDNY6lXWZ1TPx9rrC6lwE+ayqz9DW8Hg8JDF5mby7ZM9IjSbz3YpnFYJ4liVl56LxaulFCqLGzszr5cbwbDLygSSmtCc6VdntTSgkHw/PXPATAiGeP6H1efC90wM+Hp6X5xKc/XO0SkG0qxUxcMR4rHNO0qS0DyuxaBE+SSecZ+lMv+dFSI2u/F6ahtScZ+lMwvSqaz/IMhSCQEjG+vLezOM0YSOKeDjusz+ZWs2r6lzx8KaqSBZ/zjG+psSu7I6cmJylI8H2aj2IZUiNn9HNrZsxXggZq6Cwdn8GuUcvHbWCWKNGjRo1arxEBGJK2FzFhSwrLqAgChUIWyGIBmPdXJkJInJjUEpcGH6ihGTyCUIqiqj4iXbJoDoM+PjtO3z89h06ZwNe/5MTXj34mOt7B1zfOyBVP+Zh423uZtuc2oZjI6GBdoYYRthUzhLAc0+wNidwu79iL1agOoe4dnGJeLFQTn3yYiACLJYJhlGFSMgyebBSUm7dYng/Gc2QeQDOCgVx0a5nm5mv4rhiaqOFZ5ORS+d8gWoXY62ruLjkdRJHRs1FZMPPIAaVfsAqEm/fLOaqtA/xmVeREq358fkR1xotBnlGL4yZGL2029RCSTLdHGFO4vsoz7KURpEAbJ0asyo9NbcGY2ev61mWMtY5vbDFuUjZn4x4rb1GanRp4d6JGzwaD9wcsE+h1D/D1fzBZEInCH0IkkapgLHWjHROb35Ol9k5WnBERjC1POc+ZOc0myWI80rh08nId31eLfAmNbokU9UwmkGeVR5OrQ4NOssSQikJpWSYu2vaClZTjKN0QkuF9PN0huQXx1vAYktSeJYm/MnRE37n2qv+AY8LPjpK3efy4ajPVtSg5e38o3xxzhOKLtXLH1AV6b25MaRCz8zzLlfHKWdtP+3app8FaoJYo0aNGjVqvEQEcvosPjOGWAYz8yhSLFlgVAiiEM52SADah2hEYnXgQSQVAy4mT8uQGk3oEzBjn843j0Gvww/ffIUfq7/Bzo0f8NrhR9y6v8+bwx/y5u/D6UaXe2/d4sEbN0k7qbOf9iPYmqpt4twTrLWrzUNVYRuLXYiroIT06pQpF3PWpwqOKiqE9PH4VZquBOwnYwZ5zmarooKmEs5jbJxPU1WrKKo4xsGVaIYSzoK3IGDc6zn29NrZSnWiqK44z9KZPsilr/VVmxeRn9SrrIGQjPPFBwxFQEkxVzVVEGfvk0Ge8YPTI7biIdZaOmG40mYocemSDWsIpSxTOwPrrl3q7XwIP3O50mLqrvHEV5gIITjLkjIBM5KytK+OtQZvNZRCcC1usZ+MnYIIZWLnMrzXP+FOs3sh2VkFay1D7azEE39fNhQM8pRUa6JokURYO2sx/cHpAS0V8s6a6xzNfE3Hqe8aFV4lryqImTEcJmNaQbhSXZtHqk2pILpzYsqi+YLszO9bFf3cKY2Bn5tOTE5rBcWY6JxRnrEWRJwjZkisnklThUBIjhKnMA7yjJHvsdS4GcSGCjhKxmhr+dbxM760tsmX1jYBZyVelqYsBeQXzCcWMNaph8bf97Mzy8shcZ/v7XiJk+Jzhpog1qhRo0aNGi8RoZClYpFZw2Y0ax+cV1YkAhu4BY8NNeBsfUIUVkF74RPpUD5/SA3AvWGf3bhJQylipVYu/mycY4Vkb+0Oe19eI/69G9xJ3+M1+wM2jvv80rd+yte+/R7PNq7z0H6ZRyc99FZlA2cvThALBVFMwislfVZJRvG0X3tLX+H7Kqye1aughOAkndAL55TAw5azx+6MlhO3VlHFEUIuYBReqHTGSjnCUsVEIT9wJ8yOIuy7BytJosFykiYLNth5SKapp6uQepUv9CXomTEz95k21s0oCtcTWQTDzKsv7uuax6MBrcB1dR4mCe0lpEoJwSTPyVTg7m2cIhoYSWoMqScmwiugF1lMjXVWw8waIqFIjC5nDSOp6HuS2s9SoooCHyvFHZ9w6s7pivveWt47P6GlAlpBd+V5XIXUK67dIGTgg5KgsEmKpRZhJRyBKvB0POR6pcol87Nw7h4S/mdmCeJZljDWOWtBVPZuXobMThVf6edxJ1qTWUNbBuW+LbOs5sYpuU0ZlNu4yNo68PUkkZQEwin3BeavdzXJdKAzEm9fNbbohlWcpil7kyGnacLHg/OSII5MvtR5IS6Z8yxgoOxBtAuvX35fKuHOXVMFz10N8/OGmiDWqFGjRo0aLxGFgmitm11Zm0v0nE8xDaXEBLkLBQjcE/RISgLrJlos4mKC+AIhNdorOLk1aCuJpFo6hwaUVRdiorDjkEw2+ejGO3z4y2v0js557cNHvPLxU24cP+UGT/nmnwQ8frLDgzdu8WxnBzEOXSXGJSEzy997sQtxFdxC2TLRuTOQFj13LLFlzjpMXSBGNuH11mzpuvCVHHbbdR5qa9ifjLneaLntV/ZPfLCJeNTDfGUfbgyW7mMkXRl6rCrXc39KAMSTLnZjDDeX/7y2tlRrOI/c7OONwQKhFBVyvAqpT4IMhPSpmDmhnN6rGlumfebeWrrMYpoZ16f4ik9SFV6hXWbvc6my+XSBbp2CFIhCQazOr62u1yhm4XJjPdlQpHpayRBKydC/z1mWEl4Q8qRXnKLUp1FeJXRlGSYmJ6883ClSNftZOpMMWoWzi7p7KjOG0yxlPZoGAiXG/Z5w/YTW/4ycIYhHyQRrLZGUDDO3rYnOaagAay1PJkNuNtozBDWpWIKl71VMjDt/hQrnlMpFFb24nr1gakWdXKDQDfKsVD9DoZYQxOm5aShH9FOjOU9Tl0hbSRYtkp4fjvokfoZ4kKW0g5BJni+1cUtP4i5DaTG1BmGL1kOnpIoV1y+Qki921xH+Pv88oyaINWrUqFGjxktEICTSWzdzaxcJolewCkRSkTdS9x/kVoa1llAqgrKfzxBeYDENpHzuKarUGFoqIPeLreK9qtDWcm94zmuRz8FMAhj5ZUPLzwVtrfH9rXf5wa98kd2HJ7z6Z2fcmnxUditOophH4SPud+9wbIvoyOdA++ohMEWP3EjnC8cy1nqGmDtb7XTxuB7F9MJoVtUxwFELK42rtcD1FxZKV6wUKOvsp5MAjhyZFO9tYTfHEC8ukmOpeJINud5olV8Te07Nsm+cIO5uIA5b2KUE0d0LqXFpiuLHO4h+jFHGBek87Thr5pcPYGt8oUUTCoupJPAzhhOj6VS+b6xFCGfJy6xGG+uI4tziOrPeilo5d6+0OisIomSitQsRQqCFZZRlhEqVBLRY/AtWp2YWgSHaGk+8QsYmp+AooZBe2coY5OnKBywCVs5pJsbtZ7WK43mQ6Gm9RlW1OpqpOJmFErIkVwM/n1edL0y0pqGCmYROKYQnx+68fTA4paEUgZQMdUY/S/kvB4/LDtXvnhzQ24noVH4vZWZqMS0I1FjnLsynrCmRHKaTBaV5rF1tSZWMzYfmfOdkn62owavtNaeg2uk2B3mKtpb/9OwBTRVSfdrhkn8nnKYJJ9mkJG3uAURxz1mOkgkNqcisZj8Zc1spcgyNJb83ZSWE5yIUlRtFcM70GkF2wS/ci8KjPk+oCWKNGjVq1KjxEhEU3YS+324+9EQKUSqMIAikZHDngOj6BN1OkYkgEpJWEJYzNhcriOq5FcTEB9KcZylaGiIVMG+byox2c2dR5oLcJ4GzUAK2lVVe5xaMz17dYv/+N/jO+G9y481v8eq9x1x7dMhb6V/y1k//kv7jFg/evMmD128w6HW4EgLrgmDGITYX1UT5BRRWu/1kNPP1ouC7Slg0BiVmr8vCwu6gjdASuzN0RNBaxlrTDaNZZauZIZKgDKoRmYIPNrFfmav7wClbW1GDtgoRH23AIEScNbCNDPvqKXy8DsfNBYXTwZZqTcf6WU9A/HAXYSr3x2ETuzVGcLH1OLcuCbI47vmgk6L6QHolr7CY5nPbzI1d4P2r7lclBBOTM9G5mxUUivujPltxw3XMYSv9dYsE9/snB1xvtsmst2QzVeZcKIl730A6gniaJmTGLLW7QkEQl5+j1DiL5Um2vKz9MjjL6/TEZMZgrSu6X00Qp4Ez51nKROczXY8TrWmpgImehsooIZj4YJnzzIXz7PoC+txYnk6GnGcpI3/OR3nGeO5hQGZMSQSLmdOJ1jMPWnphzKPxkHvDc75Q6fycaD1z/a11NuIqnk1G3Buec6PZ5jidEPqdD6Wkn2ccJWMejYcLt7wUAgMlSSySbYvKGvweD/KMVhAw1jmPxwN2Gy1yY1HB8hnEqyiIuZn2IDqyWCi24kKF9BcFNUGsUaNGjRo1XiJCKZBSlAvs5jxBRPgZKwBLJCQDDHSzUnEIpSKUkl4YsTcZXph4GUjpUzmvjtRo1qOYfu7tgAjmGUluDbFU5KGzhDEJEEVaZ6EgZgn7yZg32z0309Ya00i6PLz2Kg/fukHjW2vcefSEO/KHbJ2c8OXvfciXv/chpxtdHr52nUev32Cw1uZCdFJHvgYRbKyeqVJCOoVuPJx54o/vM6vOfm6GjYXrMoOJQvxk2/30rXN/rCkbUVyqGCWaOZz6d9oeuqqPvQ584dipiEcNGMTwigug2YobcH8NcXdjuo1rQwgsrE8QJ01sP1qYZbTWqzXWEJ63ysW7MBIrDfaNE+SHW5BPrX4XWkz1lBRgxULpfFFGLnzqo+suNAvqUGb0lbsEHYk3vuZBsB7FPJ0MyXzHnPG27HIf5rb7cDygEQTkxj1+EVhS7V4/XtIteJImZNasrIkRQrBqqe96IA3nWVoG4TwP3Bxesf/WB8zkjPKc9Wi5Iq6EKOf3zrOU1JiZeb7EJ2SOsrR88FQo57k1PBr1MUwTcnNjeDoe+U5ETxB1PjPnaH0IS0HqVWkx1TOfIykE3SDg+6cHvNLqOgUdFqyUoRQz1RTgft88Hg/4w4Mn3Bues+7Vy1AqMpPwdDJEW8NaEC0Q9khI7g/7rmvRWn/tpz19sZScpAm3mm0EgmeTkZ9VNEu7JotU3sugMRWb6XSf2sEVE4s/56gJYo0aNWrUqPESUSiIubdtLRBEIXzxuVt+dcOoVL20tSg5nTncjpu83z9datcrEL6AxTSzrt6geE/3fnZmIZwZN8dkhYVOihjE2GMfuOMJoiuxbjDROed5RjfIaABkvqR+vM6H3S0++O0u7eGAVz5+yp2Pn7J+0mf9pM9Xv/sBJ5trjiy+dp3hMrLYTeGg7RSzCwgiwHZU1BhMCUFhE6uew+pc1wIMiL+8hsgU9s4Z7ExTFH916xr3hv2ZVNSy6gKwm2NEK0M8WMc+7sIrZ+W2zObYHct5hHh/y5G6d44gUfCKI6F2a4w4aTq76hxBFIJyTlSeuOtg3ziBsxh7qz/tjMyn6tRFDw5yO7UVIhYVxBw3Wyhx5LSwf84HkMwX0V+EQEhGNmeYZ2VFQyyVr7gIypoSdy/O1lxo68jaOPczpv7/U1/xMp7vFhTCq3+ryd1lFtOClCdGzyQRXwUToyv00JGkQZ5dSFidOuWI+EEypqGU3w93DBNPrCOpyt8rRSBRbgx3h+e01Wxx+0k6ITHOqlrMgFavde7TOhuVGcSJ1pymyUJa7noY83g85CSdlOE5Z1kyY98OhFwgiBOt6QYhH/ZP2W00y31XvvJnbzJCIBbs+AAtFXCcTUh9kE7m1bzimnaDqCTOFsVplvp+zeVBQNL/br4M2tgyKMnNfrpttYPwrwRJrAlijRo1atSo8RIhhGA7bnB3cE4rCGioWTtZYTEtysTbQVjOE2m/eCwI4noUEyu5NK69wCryaK3rEMutoRNEM7Y/aykVCO3nJA+SsQvVqHSuRUo5FWc9gUGMGPoFXNPNHQmEi6vPnJVPhn5JnEmnwiUBtpOAsgzX2vzk62/xk6+/Rfe0z517e9z5+Ckbx+dsHJ/zte+8z/HWGo9eu8GDV6+x3wzphhG2mzglqx8Dy8Nbquf+VnPWvlqQ9YtI9sw2PtpEnDawaxPs20cz296IGuxNRi5opECzoqD0Euz2CPFgHfFoDbR0llOA09gRRJ+Mat44WeyF3BwBm24O8bXTBZtpqUoVBPFGH948cd8s5kOzShLpCmWvUI2iQjWChUoEZzt0x22wJEZ7hW+WII7N8r65ZVA+wCYz08qAzSjm0WjIVhQzTvKZ7Vf3f6w1mdHlTGFhfU19sqWbzax8TiyLibFzEBcE4TjS4ZJxRz7k5XkwzKd1JApHuga+4mQVYVVCom1OagyHyYS2nxMuPpepv49vVZJNi3M60jlDndGe2U/3denrJEIpGeuccYXAaeusrwUB6gQhj8fDhblCcPstxGx5/bPJeOZ3XCglAz27fW0ta0FMq7H8HA7yjKZabrttBQF7k3H5UciMmUkhjpUqP/OhkKRac5ImrEoaFUKUdt+LVOHCypobwyTXV77Hf1FQE8QaNWrUqFHjJeNLa1t8PDynMdeBCFOLqbaOYHWCsFRgcmNpVualukFIS4UXLk7UkoCZsc45SCb0wgglJMfphGuVYBSEZSOKvYop6AaRm9uyhr3RkOuNNrkxtIOQ3Brs+sQRHlztBcpynqZsx01eb6/xp0dPCYRERP7JfKbggv7D/nqXH/9Slx9//S3WTgf0PrjP2w8P2Tw6Z/PonK/9xXs83mhz+MZtHl+7xZjrq4NqDHDUdIminWyhRqSYTWytWIDOzPudR4h769hAY7+2X/rYtJ956wYRTRXMWtS8mmqFdQRQWUcSD1twb316ys8a2Dv9aS/kxnhxX9ZSp0ieNrD7Lbg2nacseIzIJfQjdx2q5LTo0syns1mFXe+HZ0cEQvBFXwFQqEbFuQqlZDAXxqKN9QqicPOXueuknFcQ07kAIMBdkwc9kBa2RtB2++nIjKmo1o4Uvdru+h+zJNpbCAWlOgguiTO1hkGe01KBs1b6xMzMaF9tMv3shFL4vrvVnx1XI7P8e27OzylcwzxjM2owyjOX2FlRoPcnI3bi5gLZGFQ6BAvlbqTzlQmY0/NjOU0TRjqjG4RlGqsU7qFNuGR21mLpZ6kj/eGsej7KM9bCiH6WOju6tWUFCFAGVRX3ghKSW802e5Mxm0uVdsFZ7j7Tidac5ZMZ1TLwCmTRGzjtEFxOOdxsbzazjdlzIksLsxDFLOfysnp3DQrleBUJFyRMw7lWodB/i17HmiDWqFGjRo0aNT4Rbjbb3G51UCwPSZCCssur5QNirF+oxbJKEB0huZggLr7HUTrh6+vbfGNjh++dHPCjs6kSVizc1sO4VFBaQUAkJP0sRVtnZdRYVx+Qa1ivBHV4QjTKc76+vuPn8qAThpTryVwiJu44bO+C/kMhON/o8pOvvsaffvlVvpxYbt/b4+bdJ9w6GXLrL97j67zHafg9nvRf5/GbTfL29vTn+xHiL3dLZdP2JthfeTKzNlRCMjY53WW2sI/WEY/XsL+05yydR16Ze+10hnyNfahPNwxpyGB2TqqVuaTTNaeUAtiv7MMHm/C4C9cHiL2um00EOHfEnO4Su6wA+6VDxHduIH66jc1PYGcIkfGBHZZo4LsZ1yeza+CCIGbTGcRiP0/SCfuTMW911gmkXFCNXFjI7P4UpLggURPtagPmZxCddXFOafpwE3F/3e2FsNhffwTtzJMZZiyNs4fvFDssSMlMX12RljnMMwLhCuIDJCPfq5dbO9N7F/mqi4tIwEUW02GeEgj30KQoc/94eM5BMua3dm8Dbk7wTw6f8ps7N9mOm3M/Py1qd+mtOSfp5FI3gLau6F5bS0MpzvPM9RQafDjL8vN2lqdz4S1eUbO6TAsNpJvTrV5r7bsnqw9WCpK4DLGUHCXu98F5njLRmq2wMfOz2jpSq5QLC1pVe1Ic8zDLZ7Yxj7UwQoA/F8bX2Kx4sXBq8qq52CKYSFt7IQkqZnBTo5mYWkGsUaNGjRo1anxCSCH45sburBWx8j0hnIVJgCeA0j/JNzNKVzHvsowEFlCiyHN0KBZGr7a6RFIRSzVjo0t9IMV6FPv+uYxIKloqZD8ZsRO3fM+aTxG0Fho5Ns5dWqcniEII2kHIRtSgHQTcbLaxTcUYEJmE/moFcRECIeFss8vZ5hr/7os3uHk+5suPj7nz8ID102PWs2Pe/bcwWmvx6M4uj1+5xtHdLyOGEXZ9DCOfCDoKoT1VSJS3lC1dWO913DF99zr2V564ughwltoKJjpnt9FCCUkzCNBV+1pkHCmNKsQpNNh3D+ELRy58pu/subYfzthul2JrjL3RRzztIn68g+11sb/6xC9WDdHEdzO25+4tCVaZUkG0dmrRdIrymKeTIXda3QXVKBCSsbdqFucps46USpxCNTa5IxzzBHF+8fysjbjvVFg2JoiDNnavDW+eFlcabSwqWLweFlu+b9G/WMAF9FgmJifSsnzPkXa2VFMhvOBI71mWrVaO/d4UPYijPOPu4IzXfBfmyBM8bW1pvz3LEp6Oh+VDllGecZiOeTjqzxBEYy3DOQVxYjSTVK9MMAVKAn2YTlzFhHca5MaiWE20LCz9XbMTN10PaJ7T9/vTVMFMdUduLQa75FHWcjSU4iRNMD41tdjvAsXvjOLhRGYvJojtIIQ8v9DuWcwmnueZC6mxdqmCCK4aI9F6wUkwu3/4+dbV10J7sp37oKBV2/tFRU0Qa9SoUaNGjZ8BrjfaXG8sPoWfWkzdDEysVNnp5lSD6X+apRC8u7a5wurlML/wyqwhEqpcVLlF6vQ1idZ0CuuqFKCd0tAKAjJj6IYRT8fD8v0NflhyfQLPOmXFhcUSCLfgvNZocb3R5qzhCCKZcrUYUBLKizHX6yAEp5s9/mJ7k5/8tS/S/UvFrQ+OuGnfZ+v8iLd/dI+3f3SPifw+T1uv8eiLbQ5GX8A+2ILjxgxBDKRLhlywQaYSMfJVEWkA72+5wBdhF0htYgy7sSNmoZCL401rK8JzipnMXgLDCPGwd/Hri7Px7gF2Z4j4YMuR3mGIVL4Tc+LvhdaSIu7QwESBr5wsQmpc92DOe+cnTLQL9KiqRqGUDPKcROe0vNJaWkz9gr9Iupyf30rnCKJ47Oyi9ssHTjU8aCOedbCeIIIjJMuVMPzivyhsn57oUe4IapEGKoUgEJLTNC2DbaokIxSKkR7RWxJ8Un0/gyOhh+MxPzg95FajQ+g7BAMpsEiOE3c/nGYJI51zmqZsxQ2fCKr5oH/KV3rbJSFMjSa3hpa3VQZSMNYZubU05eVL7/MsIRJyGhhlNdIuhi1Vj2Oi84XbUnrLZVEnUbgFEutIdSRVGQR01ZTWWAYcpRN/HiYLRE0K5zAukj8LFXjV9tfCaGk4zTIUDxCWtsCU+6cY6mwlIS0eeFQfmp2kEzaiWQXTVeEI33taK4g1atSoUaNGjZ8hCnXEYJHCLWgU0vdtQWNOYXij07twe8ovAguMdU47CKdJgVLOzD1l1nAtjAmlJBJOiQmlpB0EtIKQtSDiiR2CcGSomNGyt/purnB7OhdXWPp+Y/smDan4oDHmCJyKlSpnvQyukrEqykh97dM1C7sdQP9Nwft73+S9xlfZ+D8+YOOnD7l17xk7e8e8Pvgpr/9HyNT3eRa9ypMPb/B0JyZtuEVnQwZ0giVznGeOaNlrA9c9eOCtm91Fdc9i6UVTwv28lQe2N0E86boye8CuUFUHPt2zqQK4NsIOIxea87SDuH1GZgzNcUEQlxDvQCMIsLks01vB3RM7cZO7w3PuDc+JlZpRjUIhya2z0rV82WRW9CTiiKbxc4Ma62fhprUUcRFmYt15tdK4+0SC7SQuAXcQQsft87zaV54nK0riKhFkFbXyPE9pKlUqXoFP8zxJE07TxfMZSUlDqpXhJ1BRyHHzfYM84zRL2IoajLUmlhIpBcfpxKWopq68/ixL2IobDPKUhlSc5yl7Xp0F9xAmq4S8KCFJjAufWQ8v0eqsm1csPr8CMVNkv+zes1gys3qmLpSFQ0GzHkacZO44IqnI/Sz0VRH6WeVBnvJsMlo4vy5V1ZSf3atUSjwPMnOxxTSWitMkWTnTWFzz4rNxkk74k8On/M61V8rqDnDz4IF09S+5dXb7v0qoCWKNGjVq1KjxKaJIMc39QjgQkoZSvi7AEl5oiVuEs59OCc1Ea17vdMqF5Hykfmp0qao0VIDy1rN2ENEJQm63Ovzk/BiFoBOGmLHf9tYY+5sPgamNNRRuXztedWo3/XslytVENK+iHrKw/w0V0JCqnP2ilWPXx4jTJuNJj5MvST668QXiP9vievg+N3mf648PuD3+iNv3P8Leh6PddZ7e3uXJnV2C9c7CirKwk9qNMSLUiEeeiPdmi9GNt7OtBY6YrSqBvxC7Q+zH64iJX7SuIIjHaUIgBM2mX57dGMBHm/C0g7zt5vPUxKstSwniNKhG4BbTmXEdhm0VsOlVkvMsdcRAVEmHmOm00/64hRBg3XkIhPRqoiWUVAJI/D07ChG5wvYmZcCPvT5EfBg7FbFzUqo/y0l2EZtEGcpS4DxLiaQk1xpjQQpJJN3n5ij116wfwUkDWhlic1wStotQEIXcGPpZymma0PXhTG0RIKXgKJ1wmExIjEsZPkjGvNHpcZq6RNXMGk7TpHy/sclnVFIlnK22sKZeCOFmXncqila1yH4VilnDZXBzgY4Ixl41TLSGsDj+5yvKEQgeDPscJBPWwlkiJoTA2kUF8WWgmAm8yGIa+aTWVcpx4Yoo7q1R7mpXJjqfIYjuAYr0gTurLbK/qKgJYo0aNWrUqPEpQ/lZLiUk0ttM3eJcPDcBKbrECuTWsFOZh3KhGNPFjWVa9lykQYZ+VvFGo81GFBNISSDEyqfwbvErZ0JBALoFsRn6n4surhmo7lOxiE2MZj2KicRsmIa92UecNkm/uw5fTmASkMkGD269yv13Oqhcs/sHlptHT7huP2J7/5Tt/VO++p33GbYbPL2zy9Pbu+xf38QEqlQQ6SXYbloSxPlQnaIOou3TZYvOyOdCZLC//AS+c8PZbzvT4zrPUiyWbhAhBTPl5DSnxDjstxi3+shx6Ob7wiUL73AaVBNEskzdNHMzf8tsfZbZ+oJiFhB8obxXEMdal4vrvJwv8/dseU4rJPvaAD7chCcdeOMExax1dAZ+Pmw6g+heZ/wcYCgV6Hw2FVO4lFFrBeKHO4iB2wfz5jG8cbr8fSh/dDorZwwTo3k2GbIbN33Ng/D3peXZZERmNWthxN7EWbBPs4RYKoy2M+R6ovUMfVFCuLlVewWSYZ29cVox4WyVyqz+WYmzUa8iiNOjdTZcgeA8c6E27lo+P/l5f3CKwC70vIK/XzwxzKxh1eV+Xkic5bNac7Hsve80OxfWklSvu6sHyRmbnB5TK39BCot5ymWK9y8yaoJYo0aNGjVqfMpQUqBzSyzwSaYhR3aCZVHxu3RbfsE3yFO0tVjr0k8LzJM4gSg7EFuBJ4i+auBGo0VDBcTSNbg1g2Dpk3rtF0zz+9rxBFFkfnkRX04QC4WuiPifaM1O5IJyZjrqbgyw+x04bMG3byDunAFgG25hrgPFk1fXeWbexm79Mmu3P+Lm02fceLjP5uEZb/30AW/99AF5oHh2Y4u94ZfYi19h1EldemgrdTOJ67MKYmZ1GfYDlFazy3rUFtDULs1TyxkL63megvVzoCpkNFcybndGiNMm0WkbLYcII7GdyfzWHSoKYhC7ubPMz8Ndplwp4DSdbtfNIE5hsMRCMbB5aR/MfAJmoa6IwrZbDflp5djNEeK4hT1sEqyNmeTLlWXh5xOL2cfMv09iNKkxZQVMNWDHWVEt0gLDCCsNwkjEfht7CUGUfsbMWEuOASx7kxFf6OryoQU40n6QjBEI2kHASeqUxkGe0ZCS1Myqr+O5eUAlpCdMS+4XLdzc7OYElCWQYGz1gc40ZGmGaFUG8Vy5fU5brU4CFTOTe5bvnR6QGsOX1jZ43gcem1HMRGu2q9U5c8gryuzLEt+kECTGPUi76LPXuqTI3jJVpwd5xijPmMzVt2hjyyqVWkGsUaNGjRo1avzMEfgn00XkfUMVYRH2BRREp0IepwndICJWim5Y7SWTpSpVWEOLp/5NFRII6YrH/UwXOMuowXoCuLh4NNaiJAtF2qESWKUR2lu1oiVBKnOwTK22ubHlvN8gz2bnlyTwjWeoH11HP2lin7l5PhqObGhr+Gj9IW+3OsijDud8gbNvdvnJ198iHidcf3TAzUf7XHt8yK2H+9xiH4Cz/0+HvVvbPLt2wkHrxkL4iwvuiWcsu4WqdFGFwlJIQC4qfy5xM2U9ihnrOfK04UhbeNZCtfx1reyjtdb3BooZBbEIWkntLIlbhYZSHCQVgmhN5V60MxUKhW0w99uWmYJnbTfLCQs2XXu7jzhuIR6vsbk9ZC1YYf/zyaVFFUyRYjrxXYChdBFPjvCKcr9HOiNOGgjr6j9sohD9GDtR0Fj9kEIKgcaQW1eT0ZAB/TzjvfOTmSoTiSNgFNUvRvPB4JTEaNaCkEDqGYI4yDLUHBlMjaY7b3schK6mZRBjXz3Fvn3MtXiWdEkcQQ58+rG7AALxZ7ehm2K/vF/2LF70u0MwdRp0g4hEa0Y+3fZ5FcSmCpYqh1PYispsZ1XxT4AixGhVhcXVtyPKh0/nWUJqjL++U2h/jzkR+zkfBv0CoCaINWrUqFGjxqeMIpSmWOS2ZEDu1/bPG4ag/EzjzWabv7Vzm4NkPLMAD6QsF1aZNQRClgpiQylaQbAw37ThFYJ5e2oBpyDK5Z1uoQFPEO0VLKaFGjkNpXHWVhdnP/feAuRugn7SRIw9WfJ9hbmxBE3D+Tc+pvfnbzmyYgAJSTPm/hduc/8Lt5Fas/3DhJvvn3DN3KN3ek7vdMA73CNXkoPrmzy7uc3erR36vTaZMTPnM5SyVDtfxiJKIOiEEfeHfa4t657rJlhlCM9brG95UlyZ7TxOEwY649VWFxt4a2OuCISbn5roiysECsQy4CxLylJ2CzO2uqpql1cURCFA3Fuf9h5G+aJyvDN0Xz9oobIAFS2fS5NCuNlcXEhNQW4Tr+5IH6h0nmXlvjSk4iRLWRt7YtVOoQs8iGC/7RJtN8dLOZCbDXREdGJ9aIsxvD84YTueqnENpRjmWXk+Wirg/rCP9kE0BUErcJYlC2RtLYzKWV0ARgHi2zcRmf+8P2vDF44XrpUSgkTnxFJNidZpw82zTkL41i2Cb3xEbuyFc4rXGlPbeWEvziYjr5zNEa57PafA+iTa58eUgE10vkCWXxRFRcUn52rTkJrTLAEsw8r1M/6hixKyTAL+q4aaINaoUaNGjRqfMqR08fqFIhP5VMlALNo2L4MSgl4Y8bXeDt0wWlApAiGRfqGT+nm6Yj4nkmrpnOFG1GCYZ64GYwmMtURedVxAaKAQkK5gMbXWqUWBT3oEZ30d6XwmfbU83s2UmSVrYTG1lqYKmZDR66SIkyZ2HC4scI1SHASvcLj+FczXv0Crecj1J4dce3zItadH3Hh8yI3Hh/CtnzJsN7h7bR351uuwtg2NmFCqcl7yoh61q8PSVgGdIPAzZHPnVALrE8RRi7XjTfcTlYCaorMSWFAQ+3nq+/HmzmPhdqy8VawUJ1nCIE9LBXl6eafpouDIeEEmARi5e8h2E+zN/iIZk8DWGPG0i+3HsDVeeiaKhwSBVE7dsy5kJ6mkmRbl9dP9DhiOh2yNfOhQO3P1Gg96iPe2nHL22gn2CydL38/4Gb/Ud93daXUWXhdLxWmWlgnD61HE3mRcnh/lyXhxjs7zdIEgVnsSyQXie9ddkNOdMziLEecN7CCC7mwFirOPaiKZT5NMi4AlZRDDiPWzDVo7/aXndHqsi79XukHoLM5VPOkgP9hyf/72DewvP30BkjhVECe+kuRlQBaznJ+YcDoCmxvDMM9pqZBBpUfSeNVTVWzOC7DAaewqa1Z1mn6OURPEGjVq1KhR41NGUcBdzAdGUmGsQcnwuS2mDRXw69s3yp6+xfcSvnDbkhlNN4jLBdt23GAZB3yr08NYSz/PWGYx1daWKuQ8RDU85QoKovEW004QcjqeEElFS4WEcnlXoFjLyzkzq0xJigzG2Q3zzCV8njQdcVm2uPULbHoJo7jF3Xde4e47ryCMYevglGuPD7n++JCNozO+encP7u5hf+/P0LeuoV+9xZ0W7G+twSWzTqswYwtFsNNoMdaa9TDmPosLfbvhCKIoLJwVgqixhD6ZUvkZRJG7kKHMGn8NKxdZC8Qf3wFpsW8fwa6rLXEzbpZ+ltFUAXYumKOayvl4POBbJ0NeaXXdtn3npf3mU1ihDtpO6rbWj1YSRDdjZmhQEEFLYrQnou4+XAujmc+IEoL1MCIe+3PTTmFj4siT9q972IPXzhaCfaZF9C7Vc5UNt6EU/VHKmld4lZAoQRmVEgjBxFtVha+pWPX5AGC/jRhG2K0R9p0jp9idN5xqN0cQlXBVCzo1U0tzEQZ0+xzuryOPW8TXff1MP4JQX2itLdBSAYfphKggj6lE/GTbdYFujRGHLfhgE/tLzy7dVhXWUobUJC+xQ1AiPrG9tIC2hpF2fZDtIOA8m36mjE/TDaRkki95PwPiRzuIvS52fYz95t4vHEmsCWKNGjVq1KjxKaO0KPqFWSidwqfk86eYAlxvLLEmegRSoiRlZ13R5wfQC2N6YbzwM4XCOPLJqvPQ1pahLfMQYWXi6Dkspu0g8PH0MbFSRFIuNXcJiXtqf9pw6qGYbkd5Wcy2MvflYQg7cxvIpFucN7MFhdNKyeG1TQ6vbfKjb75NNEmI7j3h104Teg/3CB65f/4ekCv32v0bW+zf2OJkc42lbHsJ9iZjDJZbzTZguR63uNFoMcrdnNsCNqaEyl7vQyVpVeDuHxfiUqm58Ivyfp7ObnEQIRIfJvT965hfego70+2f5ynbtrFg5avGphwmYx4O+zSkcgv2ceC6Dz0BezwesBbMqdme+IhBtNK0V84gBlPLcWo0idGl3Vj5hwlV7DZaLmAI3AMBCfZrz7CTAHEeIx6vwYMe9s1ZFVFUKmcSrVcmVSohudPqzJC+6mdO+fnZ1Bhn5TaGMLhgHtATfXv73J3Y3RF8uAX7LZjbRyUEgyxjkGfO9mqB8wZWGuwrZ87aWzw42Gsj//Ka23Zv4pJzL/h1IoSg7UOpAOhH7sHL9QH2y/vw+6/NWLWvDlGG1CwQRC0QH2xid4cumOc5UO2t/CSw3mI60m7OuRPEDPO0VICND/tSYsXvoJ9uI/ZcpYk4bcJf3ID1CfbVsyu5Jj4PqAlijRo1atSo8SlD+T65KkFUQqIQy+f6PgECIZF+5jGzht6KgJBVP1tEwldtYgY70xlWhQw15RLpShZTdx5aQchE65KwXjiLuT5xBLE5OzcUKTenZVuejIzC2QWeFq4nD2aCVM6zlJM04dX2bG9e2oj5+NVd3v711wniJvLgGHXvESfvf8jW0yOuP3H2VIA0Ctm/PiWM/V575bBUbmd77QIpudZocXdwxlL7XC/BvHPoCLFX/KqIfXBKs2IxBTffmBo9u7YfTu2goh8j3t/Cbj0C6TrkjpIxr7W6LjzI74utkEWL6wXcbTQ5zRKklq77sJWWu+4skZqZs1lUe/SX3H8WOI9QzbQsbi/qGBKjvU1x6amc/vwwxAZmes9tO9Jrx2N40oUHa/Da6YLSY3GzlIm3mK5C+wK1OBBThd51Q9qFAKeZNzxqunnCgvi3M2wzc2E1mZxROpWQ3m7tPxODEJFL7PoYGhrbSdzPDULEe84aakONOGtgz2NYX965WWDG+lpYhdupI4QbE8RhC3vSdKrlteGV7KZSuPRfwCuzlXPxcA3xsAejELu5d+m25rebvzQF0VeTWGfrH9ucxGiaKsBYPEEUGDs3Cz0O4HEXG2rsN54ifrjrLL9nDciUm9v8BUBNEGvUqFGjRo1PGUGpIE4tpoEQNJR66Wl50s81Gut62C6LgJ/fz+KJenXxfJGCKCM7JYhXtJhGUtLwc2cb0bSQvpj1W5if2pjAPZydsLpPQhIKSd5M3HSgX/BigPvriLvrCOOrCyoq3ETnfrZpFrkvKG+owHX07W5hdrf43uvb3D0/5YuDlN2nR+zuHbP97ITbD55x+4Gz441bMfvXt9i/vsnh9U0G3Rb4OoJYKTI/V+fCMHxlw3yVQQEBvHK+4gwKIik5SzMI/PnOp+mjRVx/+eqCIL5yBk87rn7ifg9eP3Nzi1mG9t1v1Xtxaqd0ZHwzanB/2KeZeIJRIetSLLECxtoF1QyjRUXq4RryvW3id/bQm09nyGCiNcM8vzgxdhI45as7WeTXzRx2h4hnHex+C24MHYE+bsDuCIEjiOknsEK68+QUxPmKC8Bd5L024u6GmydNA2xvAmHllWsJjENHoCvKWiQlj8cJrxcPLyr9nYB77SBGfPe62+71PnYtRby/hThqzVaOXHYchQrrLcx209lMxQ933LbH4SwB6kdw0IIbg4Xrn2qnproEVn+xc4G4t+7+PHp+e7agUBA/aYqpu+ZOsZ8q8BOdO4JYqVvJrSWqfn4errm51jvn0Euxv/YY248Q370OTzvw5vGV7L0/76gJYo0aNWrUqPEpQ/oFUxlS46sTVqlynxSRkj7Nkkvi6WehfBDNfJKftma1ghj5So3AXGkux1g3Qxf6rsGiwzGSqrTiqvl1+/YY8/W9sgLC7ZNlPYoZ6pxEToiELReh4ifbiCdrzpYXGKckVubgck94c2NmlJ/MVz005o61GQTkAo53Nzje3eCnXweyjN2DM3b3jtl9csjm0Rmv3n3Cq3efADBuxhxc2+TedofT69vcbamygLtYQIvy/64Oi6UThBwmk0pIjfLbc3OIM8RnOLVi2reP4H9tIj/cwhiBemWfxGo/gzXlcFJQpj5WaxiuN1qoof+7Dwuyvtdy6ZXvpI6QDithLAbE/R4AatAgWzdl96bFkhpXx7BSkQMYhOUxLT1HN/uIZx3Eky52e4z4g1cRVjh7bWdAbl0QTvkQJBfuPCkDnasGtDi1tqjDmMHH68iPXMAQBQnbnJ3DtJ0U8QwYzBNExdudniOhFoSvdykecNjNkQvkmYTYOMe+fQypBLacPXTOsnohhnPncXMEbCFS/ztjNP3dIX6yhXjkrpu938O+fuoV7iESfP+mdZ8tKxE/dftTpraOg+e2rk5/F32yh2iuO1Mz1hmBFOV1L7oQi4cb0j8MkcUTCy2ceiissweD+x23nsCdc8THG3B/3c2Vfs5RE8QaNWrUqFHjU0ahhhQhNaEnQw35s/nPciQVAx/C0Aqu/h6Fgqjn1CDLaguoKlSRK3QgAhjrVJJQOptpsX+Rrw8Y5BmpSbheLeUu5rZmtmNpqID1MOYwGdNt5IhxiH3SceQwyl0iYzNzC72KemOAplKk8wTRGBpSLRxrUwYzs1DDPONpMuJ8Z439m9vwzbcJ0oydZ8fs7J2w/eyYjaNzXrn3lFfuAXzAOAo4vLbJve0ujXADbl1HCrFy6Wu8GlMl+IW6uhE1+HjQnxJEryAGPgFzRoEtSEArhdBif2kPfnANeXeTYOeUpJGU3XWFgiigfEhQVRVjpSBxhMdW0mRDKZfPinVTOG45ElQQxIO2q2wA1Nhtq/hcYN2ifayzi9W9c6eq2e4KtWxrjG3kiOMW/PlNRGEZHIfQcQqyMdZxlYlC/MmdMuDG3jlzRPoKRCYzhqHOFmYZxVNH6sybx4iPNhyBniOI5Yxmf3FGszznj7tOFWylsO3v/+0x5s1jZ629PnCEJfJq7VnsyG5wRcWtUPWKEKROho3yKUGcVFS/vY4Ls7k2QOx1ET751Lx7gNwekxpT9mTG97ecrRSXvEqk3WdzScrwRXhZITVSODJ/nqU+Odgfnk9RNl5BL9JOy3vvpOHs1NcGi/PLr5zB/R486jorc3C1338/r6gJYo0aNWrUqPEpo6iPKMhIYadsPIe69zyIpWRiXM/b87yHEhLJYjBEEYyyDIWCeBV7KTjiEUoXStNUqiRASkhCodhPhsRXIM4apwJuRg0ejwdu4TkOET92KTUznW5y/nhcAbqbm5q+V2YMW9UZLY9ozgqcW8Nu3KSfZ36eMiCPQp7eucbTOy40JMhyNp6d0HzyjHdPxjSfHXHn4T53Hu7Ddz/CRiGv3Njhl3sR6a1rnGz1MMGUmPbzlL3JmHe669P3Nc6mvB7GICwo6xbt+fS+GuucblCx2o5DRx4Kgrw9ht0hPO2i0hDdmJBqPUNxNqPGTLXEzLnzCabVupGgrAGBk3RCOwiJpCqTTMVxE3tj4H7+wdp0W6OQL3bXy3MbSskgT/1M4wWhL54gsraCIAqwt84RH21ObZTgaiasI9HaGlcxc9xEaIntJJAEjtgEBvvW5UpcajSHyWR2XxOFGEWO1L1x6rpBTxtujraKjt/3wYoZ4Uwi3tty6tVXDqbqvADeOF04XjbHLmXzpAk7i3OrCzC4sKE4n9m2feUMDtqOPE6Ue50Rjii1U+xXD7C3+oi9DuLxGuIsRu0IUuvmMeVZA3V/AxsYF5rTytys5ONwNmXY4ghtK1uZhCsEZXH9lXC/hziP3Pmq3NCOIBpPEJX/Gnw8OOfV1tqMgt5WwTScqEjr7SxJWI6MUxHvr8PH6/CF50t+/XlDTRBr1KhRo0aNTxmBlyOKf0shiCvk6GUjkoqJ1nSCqOxyuwqkcPbHRTVodV9jWBBE/4T9PEs5z1y33rqfL6zOFRprCYXw9RYBrUovY0MpduIWg/mutiUoSKsqkg5b04WnefO4DC1Z9dNu/i4n0ZrMunOVWzMlVxW4+cuKAmkt3TBiN27yYNRfUGlTo7GB4uPr62S7a9y48Sr/+v4HvHE2ZmvviG+cZwSPn9G5/4TfBPjBPYwUnGyucbS7weHuOpP1FiqYVTTyUkGMXWUDhiAwZUiN65ZMWReeQI1ChBXYTjY72xm6a6XyAG2cUlm94rFSxKs6HwtVqSSIzpab5W6bR2mCttaFoWyPXIDKk65LsWxliNOmS5Q1ri5DWFEu5pUQnGUuuKYlLvhsnMeOGHcvuE9eO8WsT9x+DiPk965DolDCKcDG93GWHYNvnDpL7J/ccXN2lxBEa912jpLJ7Of41IciFXbo233s7SWdhQ2NDbQjiMusl/stN2d583wmxXbl/mw5gij229irEMRR6JTN9tw5fP0M+/oZ4ls33LWaBO5aQXnN2Zy45ODHa3AeO2uzcR2Wrb11Nzv41mF5fcqU4eoc4mET+b0bvmJj5BTWm4OZwB7Jot199QkAca/nZiffOJ1RKiWCfp6SGFN+VneiJncHZ7zR6dEJwlJBv9GcptXOPwxZeMvXTuHRGjxaQ9w+uvJDsp9H1ASxRo0aNWrU+JRRzPapitLQViHxC1RcXAWxDEiMphuGzx2CE0r3tH0eq9JWG9ua/o1D2rfdIvY8S3m7u8G94TnDPCOWivcHp7zV6fn+R6ferYURr7V7NCvzfrtxk1Aqvnu6f4U9FQRS+sRN4Qrbx4FTQK4Qp9+QAUdmzFE68dH3jiAuC/WJpJpZphrr5kjbQbRgx9XWcH84YDt2KtzNRtspokHAo50eD3Z6vPPK20hjOH3wiPs//jGvn4zY3j9h6/CMrcMz3v4x/AZw1oo59oTx4WYXs9EhVgGdICQqLLKhRmQRVrvzMdH51LLp7aVZc8KHgzO+2N0AwIYGAchcYXAE8cp3SbFo9iEleUFg/QZiHwDiTpzBvnuA+P51xI92SpukvdVHHDURSTBjOwyEU0BnbH4L768cCegkMzOv1lrOspReGLl7XjK9DzyBJnPBSEOd+T5OWQmBmTjS1sgcaZtLF51HIGE/GTPWOevh1A4tfGqunVcM5yFwhPS0udR6Wc4eXh9evJ0Cu0PsTw3steHtowv3HVi0l86jmcMpzpZbnOYqUYo1NnQEV1npkmFNjkr9dqthOf49xCgoNyWOK+fssI04bGM/3sB+6QCuuftkWnNxhbszUVNr7HD2fBZpqJnV5YOuQEqaKuC7Jwf89e0by0XKSwgikYHbTkVUR224cfWAoJ831ASxRo0aNWrU+JQhcOpIddHbDUPC51D3ngexnwnrBYudh5fBqY+LC6JgRe+AlHDyxlParbZbzAn44toGJ9mEcZ47VVLKkkg5i6kkkoqvrW/PbOvXtm9wkk743umBCz+5kNw6a6MVrsOMbnqlgu9ipmkjink07ruC+Mr7zAfUgJuPLBIVi+CMUClaQYCeW1ieZSnXmy3OswQLXG+2CaVAShcgE/n0VpQivbHDt+0rPG22wVo6/RFb+yds7Z+y/uyYzbMhvXt7vH5vj18BMiU53lmn/cYRX2xYHvfaTrUYAami0TBcb7SnM5Q+oCZrJk4tKs6pJw8yc4Q90c+hfIwDZ8iLqzOIqlzCT5MnPXZH2Dtnzrr51NVpcMOReU6aLgilIIhSlrURKwni+VyqZ+W8n2QJoZSLFRWFspO42d9Ua7Q0SB3CIHIW3GLGbHPiFM+TxtKKkQJKSK+8zt4/CwriReimcNp06aBVgpg666sN9Uwn5oUI3HkVj3rYx1147ezi1xcVF568PZuM6IXR1JJepJSOp9TBVomSANYSxFELNYpJ2mPGWiNzb5kNK/dUQUKrCqIn5vbXHmFT5eY2n3QRP9rF7twDSXlel84hJgrxnevYW32X+Hte+V03jHAfimJXRRmmVP2d0goChjojNWZ5Q834EoLoz4kAMD+bh32fFmqCWKNGjRo1anzKkD78pRpm8bXe9sXdf58AgZQEQtKLnp8gusCRJdtcoSBKIRDC/cAgz1gLIrbiBp0gpJ+lSCOIhSpJg4ULibH0mZZXCTwMi2JrcfUgi0Lx6oVRWd8xnbcTS2ctY6kIhCS3hsgfSygEsVQLC8thnvPFtS7nWYrFJa0WnZcTo2dK32eIhRCcdJp8GAmuv3WbvcmIrrbsHJ6x+eyEW0d9rh2dc23vGPaO+e3i/aLvciKvc/TDBie324TbPYrlrDhwKk3aGRNJicGiEGU9hsjddUjMFQmiARLlyJQ/TdoaGlU7qGuAmIF9+whOG4h+7NJkG3pqOxyHgCNBgRCMrZkJzJlHMX9oK/OHxlr6ecZuo0Wqc9rME0R/fVOflOtnzkQ/dhbcXlKKVHZjjHjSRZw0sfME8Sx286zdlMATzZmAmlRCP3JzfReQivK8dP2MZj+aVQoP2m6/dofPlfpp75wjHvUQj9ZcifsFz1fEYJpumxvDSOcuOMsTRNt016e0WcLiMa0lcNQiHDQYtUcM8wyZeWWwards5u6MV2tozmNHgNuZC8fZnCAmgUu9HUSwVlhf7dLjEB+vIwYx3JfuuM+mv+vEcLYPdRq8NXtjKiHQxjAxS6pKACb+YchF19LPNwv9cuuKPm3UBLFGjRo1atT4lFGQQzmjIF69wP55EUgXgPMiM46RVDNzP8XT+5UhNZUuv0Ge8W5vEyUknSB0oRVCECk1oypdlFBZkOnL0gstXFyFsAK5dcml62GMEoJOEHKWpeX+LZu1jKQilJLcWCJJaZON5mYTEx+u8pXeFnuTEWOdsxHGrptSSvq5IRRTcqx8n16h7I11zkk64VrcdMpmI+betXU+2F1jLYx5MuzzO7LFLw00/fsPkE/22Twf0uYjbv8I+JHvoF/vcLy2wenZiOPeBs+a/ZL4K0GlHsMdq4v7v8ICN1NOjYmnC+Zpv6coazyMsLMKsAT7tWfw/parRwCXLosLqinOoAu7sRfvibdwVgNqjtMJN5otemHMR4Mlypmyru4kVaVtUQimKlavovYVyt+TDuJZG/ulQ9gaIT7YQjzouXTcv/kAJSSDPJv5jImP3fyd3RlerZmhCD+ZC6oRp36/VswSDvKU4zTllVZnbnuZI7gnTex+2xXdL4MFDltu/q83oZ+nrEfxrJJcKojh9AHMHFEqCK7qN7C7ltNsgsq23Gxl9WOkPMmaBCU5dMR8rseyl7jU27O4JIhLM2oSBY9dT6SYhNhhOKsgzp1PKdzDmfm0WffQxynoC3nCFkgCR3Qv+jWj/GepVhBr1KhRo0aNGs8DhXAJoS9YzP28CHzHYvMFehajucqCwu63KqRGVmxbxlquN1zIQzuI0Lhk0EjKyhpPXEgQlRDOpnhBOMU8aRX+a1eZtyzSK9fCiFgqrjVaDHNXFm99uuk8AimJpCyVxiKJNVazs4lDnbETN9mIGrza6vJsMipnGiOp3LlQ0/Mo/P+KKStjLUpKDO68x0pxkrrvtpTrYjS722Rvb7P/ziv83rP7vPrgGpsf5Gxs3GUj3Wfz8JTe6YDe6QB4CGfwtx4JDtc7nO6sc76zzkm0zdBew3qCmJglXX7LUMzyVebbtLVlSm+h/IVIZ6etkGFa+awFuOXJRsV2qITw53jFdTyLpyE3lYCasdb8aneD3BjesyvCZaIcMYpQRqKFdYdb2EGrdtVGjm1kroojB550sIlCPHC1DSINsJlESUE/z9iKGoiPNhxpedLFKoN945TH4wHrYbxod62i41Rm+nNKf9FduSw9ExjlObkxS+95+/op4qSJuLsO+y03K/j28ewGzmOX6Lo5htAyGufcaHZ4klUIZcPbQsfBNAV4mYIIyH4DYy2nk5SGVu76zKOZOzI3DqEIBpqzCdte4lTLswb2jg/2scyq9AbEe1suwCfUrmfxoO0USWncrTMKET/ehkxhv/YMiSDReiGwSwqBxTJZpqAnypHY5iVKsKoVxBo1atSoUaPGC0D6+cMVY3wvHYGQNKSaSQi9KiKpOM9SUk/sOkGI8nOEy1BVEBGUFsqGcnNpubW0pEL74BLBartqsT0p4CIB0WBRwtlo3XynrChZFyM3llYQ0lABvTDmZrPD/dE5uXWF7auU0pYKOMt8WTn4OcppLUihTBX22S9010uyXJyP3JoZe62z54rC8IjFEhYpsl51LtJHdxst7g3PSwLbDUNAkLUkh/Et9m824fVbAMSnOVt/HLCR7LPRfsD60QnXj/tcP+7Dew8B0PwXzk42eHwWkF7bIm2HyOvNmaqNBaT+exX7oMX6vjoX3iNxDxnc/XPBtpbMpQlREOblF198vO7e87XTkkPmvstyJ25ylqWsJJeRgRGoLCSVCWgJh03X01clKgLsVw6wZzHig004b5QEpSQko5BmT7MTN4jzCHF3o/xx87rrKMyGlkGeXUwQlUvfFaPIkfXQuJtrGDqys8LamFmXxrlAwgE2x9i1CeK8AQOvRH7heOa0FNZjuz0qQ2Dc57Zy3hvaKYzjYBoGNNcFSCPHCotIAuc+nkADlqd5FscyUVM76HyQT6HkVtRAVz/hdz6ViB/uum7IOMd++QDxnRuIh2uuhqM3cYTyvAGPXZ2K1e73yUTnrK24FktncC8LqClQkGdTE8QaNWrUqFGjxnNACE8Sn2eg6BMgkG6WaFngymVoByGvd9b4QneDjwfnPJ0MaalgJakTuOOz3hpYqIOxJwdFCExWLj7thUqqI02sJAngVStcJUdxbrW1V1rk5NbQUgFSCH5t6zqbUYNvHUlSo0sr6DK0gpCjdLqgVUIQy2BmNtF93X1/I2qwETXK18deQawm10oK9dP9oegUNH5eSvj+tl4UcL3RohtGpQLZDkJipciCDAWIdKpmpg9vsBd1efrWFvadXR6P+lwb59w8HnD9dMj64Tkb+wM2x4ds3gXu7vHXACME/V6bk60ep5vd8t955BfWmb+fQk3u7cPgrb5iqiA2lGKsc5ifBaxCWRcOU9gOKzONS9XqUYA4aDt7681pbUQ/z9iMYtbDuLSnLlWTPWlRWYCJxjSPuk6FujYgFTnDNGejmNndmLh/nnYRgwibezvm9QE87MEoRK4nbEYNGLh9te3UBabccRbX0IcSXYpuCqPIBdVsTlz/Ya5cSuuKj4m10AgUqdGLJFx4QviDa47MAmjhQmwKHPo5we0RI53RCUJuNtu8f346sx0aOWLsw2yifCY1tnyNMqAFxhp06nc4vIAgJoE7VoDuXOpnZNzs43BKmC0uXIaTBuL77phsO8V+46lPnc2nc5IbE6fknk8/d6QK1dAkRhMv+X0oECQmX3wgdVWCWCqItcW0Ro0aNWrUqPEckBQK4qfzlLmpArpeJXtevNPd4J3uBlII3u6sc56ljE1+oYIIFmcMnAbxNFTgF+qUKpuDuFBBVEIgWR6UU0Bbi5SOzBWkdL5uYhVya0vb527DLZRjpRjkGcr3My5DSwXkZhpmo4QgVpJASnKvlllw1QlLUCxOqzOIcs5OW8xVGhzRKYh5U4bsxE26QVgS0UgqukFIEqROtSnUveOGK0yPcuybx367kuFam4/W2uyHkVNZfu81WsEZ+s53eaOf0jw44cbpcGpP/Wi67/1ui9PNNc7kNv3xkBOt+Ol4SKQUIGjIoLTISuESYs+Gl3dZul7EwHXtectpSwas3b8GXeN68QoUqtK12eCWoc754tomQgjaQUjo1csFMhC57asscMmrz9wMm7025Mx3d27MhzqtTWAQIXKJ7SbYrrdAVuYmyf3OdFJ4dTr/eNV+d9tNEc9wc3Obk6m9tL2ifgL3QCaSinGe01n2Ed+cYH/rPnz7BuKk6e6NwBOdTCL6sbOBtjLyzH0eWipYTPLcGsEjZ62lkS8n3spCorAGTOLPxRIF0cY+7XMcuPCXUEO45AStJW7u8dwFGhmL+63ywx1HDm+du9AjT3jtW0ew38FeG8DuEO73Znl1pghbkjfbvRWfbUuil6SYeoJoawWxRo0aNWrUqPGzQJli+imtITaiBr+1e/uFfrZKYoUQ9KKYHqvTUAtCWCiFxc/HUhH4xboUVPTDCyoMmKaYXk1BdBbNQEgMV1BrcBbT9hxxbqqQo2RCKwiJLlAQCyJX2GSVkDMpqNaHtCxDLAP/78oMoldLCxhvk9VeUmwHIYGUZf3A6+3eTDLtVtTgYzWmBy5BE1xdAF5F8otoIaxPhvXnVOBmz2yPp3d26UcN9pMRtx+9QnxgWO88YN0esHF8xvrxOd3+iG5/xB32gB/Cn8PvfEdytNbmcL1NfOMaw8iSb28gQ8VG1ODD/vnFFwIcKTzF2Uw9QdyerCMfuPoTMwngjVO3y544VYvdrbVgLdcaTQAaUtGUAekytcgnmco0QGuIDjrOxrk9Ik8NoZQLBMj2EsQT/5eNyfK6hoIgBtP7rwjrEVKUFtiV8HOGoh+5q+O7Ky8iiNYf65m5pHevIGqpms58FtUN7bRUfasPRqrnwL5+iigIooD3+qe81u7OPngKDCIJEFZMFeZoyWfREy1xHjvltrO8BsR2E9cBOQxha8xu3CR+sOnmF7eH2HcPZ3/gxhB7ozI7Od+B6h+cLFMPgcqjmdnfN+LKCmIdUlOjRo0aNWrUeAEUxEldoJy9bLxIwueLQBYJlt4KVpC/hlIEUmCsqNgmmXnNMgg/r2kuUASNtURKlQvZWCmSJd2Ny7e/uFhsKWfX64l45TVyltliv6c22WagOE1z/1VWPgSIpCOUasZiKkrlrTwuOU18bXvCuhE7UvhLGzsz29yMGrwfetWqKAk/dmSpKKX3R42SkrRyjrIgI5o0UNZZZOPzNuLeOimwP9xk751D+LojeWGS0Tvt0/uJYX1/xFq8R7d/yo3jPjeO+3B3j7f9dofNCL2zRaMp0btbPOu2OOhGrDXbzGNZ1UVREA8gP9rEFHbPJcQpt5ZAStZCd36EEKxHMc8mQ7rz7xU5BUtkAWoYI7XCbo9AWYwPJ1qYY63MJtr1yfS9r0IQfQ3KxGg6F30WC5ulD6oRw6KfcLkCq61BItiKmzyZrEgpLVBYPbPK/V4Qn+b0ni0edBRKfHkOGhq7M0QctDHNlKYKGOTZLEH0BEkahcq86rbUYuq/VgQDrQp/KQKQvGWzJQPEvU3Xd/r20cXHC9BLML91D/Gg52ZD04tt9gp3zGoSQlix4hb32xUVxDqkpkaNGjVq1KjxXFAIFJ+exfTTREGIrHV/Lo4xkopQKIyEbhCyPxlhfVLoZURZSYk2hkGecTxI2WQ2tl5bS6ti1WxIxShfrbjMY95q1lQhidEXWnLdbGLFCuqPoaNCDs24/Poqi2kgJaGUM8R9GlLjYLyaU8wgtlVIUwV0guWVKIGUWGXdfFwqYRw4paWblCpOQTYllLZdYy3GdyEGWpFpw/rHTnEuCIEYROV+ZXHI4bVNjp7tIrIO5lce8zg6YnuS0T3u88u5ZPB4j93zEb3zEfLBU34Z4L3H7v0EjDotztc7nPfa/t8d+mGEYXNq2bTAszYWi33jBHl301VNbFStl1PilPkZvGpa72YU83A0nVEs4c+HSBXSz9WViiCCwM8MBlX/ajvFSoMw0gWqhMbVZYxCyuhZTxBtlSD64J52EHKeJTPdlwuItQvKKUjn6GKLaWac2rkVNS5v0qj0P5aYs04WqnXsH+jkc+fAfnUf+3CNZPeMdhAwyefUwcoMnvQEcWlIja9GKbo3VxJEfx5F7pOPU4XQ0gXQtK/2EIjQuEAhKJX1VVBCoBPB9e+8g9gcY7/xDA6bro8xyi9Uct0GaotpjRo1atSoUeMFUKhiq+yHn2cUx2R8QElVHewEISaztANHNox//WVpo4EQ5FjGOifBsjlHkJyCOF34xSq48gwi2DJAp0AzcCmMF9WCNCoKoqgcQzsIyf17W2vLkJp5hEISCjlzfqSfzyx2vZhBnOicgrRsxY2VBEMK4XYp0i6c48irhxvj8jWFIhRJxQC32E2NRniVJ8gDGAVE/Zabs3vjBHHQdtubRxlSY7AC8l6XB62YN3Zv8x+erbMWRETW8t81tvjJh+/Ds0N2zkZsnI9Y64/o9EfcfDi7yZHq0D9b4+w0pK826Z83ON9pktzuw91NOGjB20cu2TPUM/bF1BjaQTDzwKEVhMvtyX4GkVQRCH8+SxXNhQPlxkD1sCXYd45cYEqR4NlKEecNbKKcKrZKQZRwrdFifzLmQgggdhUcVotLLaa5dfOu61EMiAvrXWy0SJLEeNY6aXEPZEKfCpzPB+soC6+dofMMZSSIOfKnpoROVkKMFhCaKdkGbGMF8SrOY1GpUihz6moW8hKepIpstoqGh2vuPW64+dZASkw/QBqJPWy5hyw/cRZn+6XDxWCeeUh//HVITY0aNWrUqFHjeeAspvJTm0H8NFGE1BTzd1UFrROEfkHrQmcK6526xP6qvCXV+A5GO0f+tDUznWYNbw+cfn/5nGMR6d8MZpdDoZQEPn1zFVwgizvOYt4SXCBQ1Q4rVyTVBsIriJXzs2zesgj0cWRT8utbN1YG55QPHCKNSAJ45mycdrNKEA1KCtpBwGHi3ic1hoYPCFFZgB54W+PucDZtch6eaJgwR2jBZtRgrHNfaeKseiIIMNe2iToh/8uTe9xqdjhKJ7wSxKydDVk7HdA9G7B26v7p9Ie0BgOu/QTgPvBdOITkbsi52mTAJv0/CxiOoL/RoJ/rsoojs4bduYcHKwOQSjVN0hSeSDdzjLWe8CuyZX14t+fUyFYO5zjFr6ERSwmiuw+2osZi+MmqfRvhSPk4cEmtK4hJZgw9368YScneZEQoFdtxY/HFnqhVE27n0zmttS4FVwhaKlypxBefqUgoEl2Z8fSWTGkUUR5Oj2ceAkeyx/58XaIglsS7mO2TV30A5FGdvywwUcifbju76ppTJJUQ2LHyuyjge9ecCr8zhN3Rkg3PoVYQa9SoUaNGjRovgk87xfTTRNGDWNSbzyiIoSOIxdesn927aAYR3CLf4havoZ/Jq547be2MHbShFNorHxOd8/HwvExirSLz3Y6tOStp6ANnmhdYASOpUEKS+2TWwipaJHm64wO54ilA4FNXq8dehNRMl76irOxw4TviQttrQc5LteTY1zFsTIM6cmtRSJoqLIlsajQtP+uldICZFIpa5tVBu1xBTBVWWIzSKCPYjZucpQmxVH6/pxUVNxptbjbb3Gp1OEzG6DDgZLvHyXZvZpPqP92iOxnQzY5Z45BucEg3P6F7NmAnecYOz+B9gL+EY7AfwajdZLDWYq8d0d7dQfUNZrOH7XW9FXjJNWjkjoiPQprFt5uZ76aUtIKAoyQj0a4SYS1cbuudCarZnCxXEHFprp1VauY8CjIziFwP5AVzb6kxdIKIhlSshTHaGo7T5YEv5XaXzSA2ZmcQAdpBwHm2PPhGW+veVwUM83RKEL2yt6NaiJIgLiHaxXuOZ9XbBcwTxFJBfE6CGC4hiH4+V1gBH21iv7bvjr3yMEQMYkcgv3B8tfcpKnlqglijRo0aNWrUeB5I4YjTpxlS82lB4GyOjszNHt9aEPtQGokQ1tVTiItrLsBZTI21aCxtpcgzS1QhVgZLt7KAj6TCWvf9zBiUnO0mLII9UqNpyGDBYurmJeWMKjmPSEoC6bZRDdqJpZoWqePSVZcfk1MP5zv+AiFLhbQg2MUxXPZAoSSb1QX51mim805bQ0MpF37jyUpmDDLyCmKuMOVMXj5rWS3m7NzBOaIRaoxwatLNZtsFogqnZWo7nS9tqIDf2r2NsfCD08MFkl/AdCzneovzcIuHv9SBnWvuXBhD6yBj7c+bdPMzOvkZ7WifbnZOazCmPRxzDeDDp8AP3C5KydtrHdrNgHy9y7Dbcv90mgy7LUxRSl8s5ps5qXGkdjNq8Gw85DidLLWuFrDt1IXdDP2M5gqLaSgVTRUgccT5ws9+ofT5oBpizUEyJpaKtTDiLEvcfatcYm43jBBC8Ld3b6Ot5f/9+O7yTsSlKlrgHgB4y6zFovxDjZYKS4upthbt7azFMcVKshU3+N7JmI1ie4X1U8uZnsylqBLfVSQ4qGyv+u/ntpjOWVUB4S3YVljEsw724xR1+2hRLb/Rv3z2sNwooGxtMa1Ro0aNGjVqPB8K1ewXcgZRUNoL4zmC+GanhwU+HrikzWo9xUUIpCyD5yOpyG1OVA3OQMyogKEvai/eIxazltMHowFr3oq4HTcXZrYiKYk9iVqFYkYr8wXxxYLfqZ3FDOJqlTj0ITXz3xczia22VOIC5KVEuryfwuni2b55MvOaQm0N/TkFr3D5n5G5Iph4st30i+I4RyQBNlXT2btcIqzARqZUODtBxLu9BqM8c32O1hBWFNSNqMEgS8vgnfljz41hEo5Yo+F6+ban1lgrJcNrMcOvd3j23mtuv7/5FLbGkOes9cckh8f8KhGbgwR5fIo8OSM+PXfNGE8XFaBx0GQoe4zUGsO4y+DjjL2GIu916fQCtO+f3G40OUkTtuPm4kkviEMxK1gQkHCWIDaELM97ZgxKXXAtKwqi+3vORGsyY1gLI86zjIHIueWTYIt7vxNGWGvpBCETfQWCqAUiDdy5roRLFfdZWwUUGTQn6YR+nvF6e839qLd1d4NoVhMtlD0tnMIsDShHLs+zlF4YT6+7D6qx0WoL7c9MQbTAcdOpg+8ewI93kB9u0uiHJP6g7bUB9CPsGyfLt7kK0k7383OKmiDWqFGjRo0anzIC4YhB8As4hFhWNSxJJy0WhmUVxlw9xSoUCqLAh7ZUgjOsT/hsVeygoZxSb20tccVyCr5UXGuUgPVo0ToYSulUxAtmI4sZrdN04lXQ6bGJ8jXLVTLwBNOTxPljzcsld2ExLRTnyxVECyA8QZUG1mbrEbS1NFWAquynRSC8giizAJHEWKWnJKcghUmFIBZBJ6FeIPpFx2dm7AKpLZRQs8RqOdI5WXsMh2DvnC91hvLKOcYIxGELes5K+cFkwG6nST/e4su33qDdaJUvP+73+aP3fsTrqaUzGNPuj2hX/t3Mx8Cea9X4o+nbGCl5px1z3m4g1td4EArC9TVGnSajdpNJK8ZKCa3MPRAoUlVXWExD/9AhlgGZMTRWPHs4SiY05MTVcvR912OsZ86Z8DZGN//KzKysEIJrjSYfDc5oByHWV3+4a2XcvhbK3sT/u6LeVT+3cRAg/L1UdHEWKD5X8+q7DYx7VS4dWY41CDhNUqywPBoPuN5oOZW/4UNzVtlLAZRLOl4kiM+pIEqwgZ4SxEHkyPH6GG4OsL0E/uwW8qiFarj7yr59NK3jWIJEa3JraM9b0ZVBZOF8leLnCjVBrFGjRo0aNT5ltIOQv75980KF6vOKouNRW7uSABdER1tDS1wQ+e/hFETr/yzIzXTllVlDKNRM2X2VlBS2uOrPACAsBsrOvCoiqS4liOAW5qkxNCr2Q1H5f2vFSo048EmR8wRSIcv6CesTVqeJsJcoiMVs56tnkEvs66cLr8mNoamUP0eiLJdvxIIEEOMQqRW6PZkGqpQEMQA84SxL0PUC0Vd+lrJqMS2P2x/zspTZsc7RN09I1iHcuaD0/bUz7GtTFbqlQk7ShIYKaM7NaAaNmKOtNVTcWDx/RzGdP+/S0n263UOa3afI03OuTzTt/ojN/pjN/hj2Tnh1bheMgGEzJum0GI3eY3zWY/ijhPGpZpRtMDQJmZXgH25E/l7qhiEnq2YE/TkQQUoXdy3cOXbzksLbUyWuhmI/GdMKAnbmlM3tuMl7/ROejkcgLLebvktS4Eh/Kh15mSx2+1k7JfpV8mfmEnkNloYMaKgAUWVCRYrpJHDzk161nBjN19a3meic9/unTv0s3rd1gX1T4CzSJUH0qafPqyCCC2/y6bBify7AqZ1BxyXShsOm+32zZHbyNE04z1NeaXU5zRLGWi8hiJ//oJqaINaoUaNGjRqfAVaGXnzOUZAE16e2nNAUC/VChbgMCkkhYMxH76fGEEs5E94SVgiltpaWVEz0dBFaqCqJ1guEArzF1KuIF6GtQjJraFVmEKUQ5XtfpCA2VMBXelt051I3HY+YLn6jIpSHyxXEqXVPY989XPoabaEpA78tW5bLt1uOIHLi0i9la6pj2tiVys8E1aTT+TJtLc1KD6UUAol0ITVLFNKijBzcffJgNOBms0VmDY1IoZtDQuGuy1mW+G7D5UvW3AcNgbvuCwRRyGn5+fzpW0sZBWuMgjVOX+2Rvb7Go1Gf39i+yWbU4H+59z43E81/09zkvUf3UedDNicZreGYuD+iPU7ojhLAWxC/BfAj9+f/B2ShYtRuctYIEd0O0c5TvkzOPamJ19cYNxskzcgpkf5YlJSYcFZR01FOICTaWnLj1MhrjRY/Ojvib+3cnlHPAXphjLbQkJLMzpGcSLt5SS2mATVVBU9M76PqfKzxdueiRsNad75jOU2sVUJMyVFRnxFNZxt34iadIOTD/qmbkdwaYV8/wV4fLL2204tonNppeXGLKUzTYYchPOi52cublffupHDeQFqJjjKW/fpKjS4fNhkfULUAn7BaVHh8HlETxBo1atSoUaPGS4PEzVbm1lxAEB05MXaxg3AZAimdioYgkHLGLpoazXoUzxCx0JMVay3aOsI3zKfdhEIImspZ/eYTTMGRitc7vXJOcRVaQUhq9EwibaniVYJmVuFVP881894VBREgVmo6s3oFgigqx7gMQrikVWdHFWWYycaG5CDMUak/H60KaYgqFlOAiUKc+RqFyPjruFjXoa1dqDARwqW3FnOWidGEUnCSForhjB7FeZYhRc6t5vIla+bvs17sEjyDufcLpUTK5YolocU2M8Q4RJSl667eJJYKG4WI9Q3s9Vc52Wry47Mjbvi5v0ejIdJo3rSKznsRrcfQ3NqjtWdo5QNajWNagzG90wE9gL0T+OAhXwa+XNkFK2DSiBm3YvqNiFEr5kzEhMOEsWozUW1OTZ/AWjSQWU0oJG+0e5ymCW911xcOqxdGdIKQnbjJg9FcLUdlFk8UdSYzATHThxrF7K/7qlMWix5NhCCUioZSBNJ1RiqlptbaQv0Mdal69sKIjajBa+0e94bn3Gi2sG9dYb4vMAgCR2pfNKSmcuzig01ELrG3z2bIse2k5efVxBnLfjNZKp9xfCjXPFRBEGsFsUaNGjVq1KhRw4XUCDBL5s8KTC2m9sKuwQKBVywEuJqLCoVIjWY9nO18c/URnlQK60mlf+rvF8DdMGKi8wX1BRyJ+Upv69L9aig1Yx8Et4+iJDni0vnKeRQKZKEaxtKRuegSuysUxEzMhI3Ow+JCagIhEVgyY+gEIVEgGW2f0n3qS8GrqpIPExGJW6SLP7uN8BZTG2oM1td7+HNQsRnPp7SCU0WLfr3MGLpBxHE6oR2ESNy1njkfF4hFuXEzYG91ehwmiyX084rlAnoJjENkp6h5sGVCaChlGUyzHsYz950QEIYhp0HE+GYPebKL3b0G455TcP/mA7CWMM3pn5zwNdXgbSJOjo7YPzxgOzU0RxOao4TGOKE5Ttic2bG70z/+/7wjNA4ZN0LSZoONjQ1ebUQ0H/ax7Sam1cS2W9h2k1a7yVd6W+zGTR6NB7OpqQXZP23AozU3p1rpycROw47cnOp0UlV59T7wrwikKBN/c2uIUUsURMPYK/WFa+LNTo+Phqcrr+kCKkE14hMpiJX6F2kWLdjd6bxu0Fw2Jevuj2pK8VIXvfQ2289xkmlNEGvUqFGjRo0aLw2ynD9bVHOqr6FMOr2CxdS/HgHtMJx5aq+tZX3Orhv5ovvcWJckCqUqpz3xut5oMcyzldbFqyCSCiVlqVhCtewewD53Uq3yqk2R8hlLhfTF7ZfBnfvC4rr4vtoahFdyEq0BQWZdMqYSgtHOlCCWCaYwG1Kz10FkyiVftlPYHS69jkoIDCy1xcZS0bduMZ4azXbcJPfpm8M8W+gKLIJSlsGFhAS83d3g9U5v4ftCCCKl0Ga54mTfOoaNCXInxQ5cEFKRYNsKQnp+RnV+zqyYD52YnLjjicW5q3GxBaERgiwOOVxrMdi6Tr6+zdlowH/euzedCwSOxiPseExnnPI11eTg4ICb76/T1CMaeohqH9NKMhrjlGaSwdkI9o5ZnJ6d4jfiCNNq8ruBJY9j8kZEGkek53ukwx7ptxukMmPyWkJqJyQ6wipZknvAP0SgDIhSQs4Q7WKetBUEjHP/QKGYQcynDxDGOudmo12pPFFLlbfU6DJEaQaqkmRqPoGCWJkptK+fLgbQdCqBTvHycJriQZX7s5i5N7U1fNA/44vymntNrSDWqFGjRo0aNWpMVaxV6hFMSYMVzChPK7cpRJnc2A6ChSf78ypg7FWNzBoQTnUsFnKOeMHNRtvZ4p5T4asi8kEzVSJchPRYPzT5vJtXPjimsNQWpfOXBeYU7+0W9CzO2wETrWmpgG4QkdsEa52C2A0jlJAk3VFpuawGhxyJATsASYB41AXAfnkfNpwt1Iwt0Vxtg1Ofls9gRmqqAqfGsBM32YwaSCH4aHA6rd+oEJOlvX5MFchASgKWn6NYKvp6RVJmM4c7fYSIS1t0odpej1tsRo6GdYKwDIkR3kbdCUIOkjG9tie1Z56yBfPkZTo/WpCjqg14jOHtnWuk1hB3N/lhL+D06MuOiEc5B7/2HtcbbU7TCYf9M36zucnXwxZiNEYMR4jh2P0zcn+WwzFiNEadnHFj+VFPcQh825/LQDGOAoJ2i6jdJmhE/HY+QTYb3BAW0YjJooCg2UCbnFbcRxjJGpK+0cuPPdIk2rBbSZaNpCqJZ/X+OEpc5+Sr7e7sNqpVF59AQbTCTmnpa6eLL4gMNspduumKXkZTuafnH1zkxtfSSI2ktpjWqFGjRo0aNWoATrERuEj+VQqiKpIszeo5xfnXW6/GtYNwOifkSdj8HKEQgpZXoyhJZRGe47a302hy3c+TvSiiJfbPYtFfLB2fW0H0VRUFkY2U9ATx8u0U85/zClyBsc7ZbbQcmfJqo7GWjgodgRFgv7qPHUQzM4ip8gRoELnuw04C69OUUYMllrPXIBQKKeQKBXE6g2ixdIKINzprWODe8Lyc3ywIW6RcoNAygqjnKk6WoSEVp7YILTKcpilbcWPhdblx92zxPn9952b5vXYQEitFog2BFARCcq3R5slk6MhKK0OMvJK9QBCnduumCgiEU24jrwoL4Gazw1vddfpZihTSEZXM1Yrk1tIOQlKrGQUKsbWOvoIFmizn9++9TzIYEkxSojTl+iQkfqYI1ZA4GBIlGVGSEvt/r40SGCVwcEIAfO3CN/geAP87QEtBFoVkQUiWtMllRCYi0p8a3mxm3F4/Imp3sGHIWiB5+/yQuNFARCF5oMjDgEaeoALlZbrKfTNDED+BgnhzgO3Hrtdw1a+dTgrHQWmrnoe1oqyRcZjupylSh0VtMa1Ro0aNGjVq1ChR9OtpSxmXv+w1Ei6swqhCCoHx22uHjgwYa3kyHnK71WEjWlzsd4KQsywB69JGS1LJVJX6pIj8rGOV5LryiGqS6fNtU0n3s0UYRqkgXsli6jvyVogridFci1v+tU7pzKyh4UNrBAKzNkH2ZismjLDkzZRw7BQy+8rZjINVVDoQq8chYKmC6Hopp12PrSAg9KSsIK0wJWwbYYODZER3YUvuvS+bY21U3m9/MmFictajaOEeyK1x6vOSBxuhlHSDyD90cKrxDMlcS8ETRBtoJjovk3WFECg5VRBDqciMKYmohfK1gXSk2kYahkCco62lrQIy45TSqyT/up0OUOs99gLITAshYHjJQ5EnwwF/p7fLKzJED8f88cO7dLUhG0/Y0AKShK626MmEV2REmOak4zFmMqGR5jQmKW7HPR7B6wA8Lr/UAP7uJbueB8oTR4XWETqL0X+sMXmMziL0t1N0LNBKopXEKIUOpP+7cv8OFEZJjJQYKTBSYq89w4wlJhFY/zUjBbZ4zfohnG6h2wNsbtz3fCiPu5hUQoZn7+2i7kUXM4h1iulnj3feeWfha//8n/9z/v7f//ufwd7UqFGjRo0af3VRWCxXpW5WEzmvSnwKO1orCAmE5Ml4xGbc4Dd3bi1d0HeDiNS4gvF2EJbF4i5U5uX0T8ZSlQrXdF9nbaWrmxCXo6j0KGYlIz+DOG/hXPqzws2QLY/XcOh5y2QgZCmiNH1ojfLkbNl1O/zSfa7lPaewtOd76xbV4uIaL1MQI+EspoVSWJ05k0BRsJFbV2Gx22jxaLy6CuGyOdZYBhhr/dylm3Gb630HXCJq74L6mc0o5iSdoITrIVwPY6S3naq1BLHn5gpzpbk7POdL3Y2yEqI4D0rIctayjU+crZDcYq7PFlUXsdvnOAjo4GzbDXn15bv7HJiZ+pWLYKXwoTdd2Fznoe0TSslZlrAbtzhOJ2xEMSdpwu/e+QItX1vxBwePuNXsIDNN/B9vEZqU0CaILz5kaPr8xto2LWMhzRBZzvtH+4SZpmksQZYT5BqTpIS5pqktQZ4TZgXh9CE61cDTR1c+BS+Gh0vOjXDc0PqZ6OLveAJp/GswEmEk+SHYa8Cd2z/jnX35+IUhiAD/7J/9M37jN36j/Pva2mJ8dI0aNWrUqFHjZ4vCJrlqvk95e6MU4koKoiuPd5bLdhC6+H1r+c3tm3RW2AtbgauxaKqAVhCUPXLGWhpXIFtXQSQVgZydDyxyH50K9iIhNe7cWev67gIhUZIrzyDOp4AWqAbUwJTAuaqCYKogriARWTOB1nDp94AFq3ARcKKWePkC6b6X+Z7ElppeQyUk1nf3aWvohLFPv1y+X9bamQ7MZXCKJRymE15vr/FwNFh6nLkxtNVqu+pm1OCn9oTQGroqohUEREqSGYPqViy3ShNKSW4toXBBJtXzsx03OU7HQEzu+wNLBVEIAgQ61G6R7oNVYqkwylkYr5L8W6AZBExMzlbUZKzzlQ8Appjes9VKkkLlLD5DSoryoUBV0TSBYhI0SaxTqse3BpyLJv+bO18gq1ynHzy+yyjPWI+mUTuPx0PAcqsS4COMQd1rE7y/jnjtgOAgRvUV8uuPkCpD5QalDUprbJ6TpSldJIEuvm6Qxv0jjEUaW/mzQVqLMMZ/vfpn/xprcI5Ri7BgrAELiqLKxqIQCGvdPwaE0QhrEDmQzj9M+XzgF4ogrq2tsbOz81nvRo0aNWrUqPFXGlP1aFWKqSyL368yg1ioclJIGoGiF0a80VubCb6YR0MFbvEtBW0/Y6d9+MtVKiOugmJeLZoriReiWnPxnNsUbkFusERCEkhXOn8VpbWw9xbkR1vDo5Gz4c5XDRRqYygETaUwdqrULuKy41i8joG/B5aRkeK1qdELhEdVlK7cWloqpBOES+mhtq5Y/jIFMZQSISzWwq1Wh8fjwVISnVuz8oEDQNefO0ckAxdQ5CseWKsQxEATCUVuDaE3HVcflmxGcVm2XlhNm2pqsY2VwsSOWBR1I7FUWK9+XiX5t0BTulKKbhCirSEz5kKLarXnD9xDkEGelvO/hkLdnlqr3f5ULJjKQO72N1M5IYvXqKUCzrPpOdPWlFby8jxay3464Vqji1FNbNCFoIUIY8zuAMLZOcTDZIwSkkGecq3RemlOgSoejwcIBNcaLfYmIwBuedvuaZq4zta7PdbvX6f/haf8X/7a63C6WL/y847Przl2Cf7pP/2n/Nqv/Rq/+7u/y7/5N//ms96dGjVq1KhR468kHPlYPn/mvi+Qwr3uasoYPjnSkYv/6tod3lnbvPBnGj5ARiFpBUHZ4Wa8Mvey0A6CuRRTZlS851UQpQ+LcfupynO0ap5zHqpMUHUJoZk1jHVOojUbUVyS9qIfsCGVfx+fvgrcHZwzXpX6uQLzSrBTCZdbTN1rBakxdMNw5j5RJbl2RKylAj8jKdF2lhBkxhCIy2cQQ68eSyHYCOMyEXcehiUVCxX0wphASCZGu7AkIWip0JG9wGJbribBKE2kFLmv1rC+Q7BAN5jaWDOrafrjKxBJxfj6MeZLB9hrfaz/WiyVI4jPoSA2lCJSitutLrEMSM3y+oYqZgmiJPcW1YLEFt2fxeti5eZkH44GPJkMsUWATOjuv7aKFvpAm16NLJAb6/tOp18b6ZxhnpFIr8JdElKTGsObnR7XGm0/K/qzgTsW98Cheh+53lXhuiWpU0x/LvCP//E/5td//deJoog/+qM/4p/8k3/CaDTiH/7Df/jC25RXsL18Wij25edpn2r8YqC+t2r8LFDfV3+1EUivDkq58h4IpXKx/kpdep+ESqGkIFQKIQTdKMKY5ZbDAs0wIJKSOFCEStEMAjKjMXCl97wq1sJo9jitI8e+tpFArT4Hy+DCXQQWUe5nUwVX3k7oiUmZUBqEJEaTWs1us1XZhiBUkrUgQkpBKGTZc6expMbQCgqrof+JC0hqNHdOQyWdDXHJfkdKIYRb0G/FzZnvF2RbCIERrveyGQSlZbNKRLW1xEoR+/ti5b4FyvU9RhHrcYwUErzSC3CepyjtZj2bQbDyPK9FEZ0w5PE4oRWGSCnohCH9PHXb8kE1NtDESpF7wiD8+Si2uxa7e0ZbS24tO1E8857NIOA0TBB3BuTGEmpFMwxoEnC92aIRXH353gydarzVaHCQRBwlkwvPlWD2c1scRyglrSB0KjPQqlzvtSjilza2iaVTBQ+lJiKESKOtYS0KF85pOwzRTKs+3Hu43wngrv/EaLbiJukopwW+B1G4uoolPS5WwEbcYGRyzotr8pyw1vJwPKAXRmUH5sz5KR+kCKSkTEcuXANKCHJfwVGE1Hwe/zv4c00Q/8W/+Bf8y3/5Ly98zR/8wR9w/fp1/tE/+kfl1959913G4zH/6l/9qxcmiEEg2drqXP7CTxkbG58skrtGjVWo760aPwvU99VfTXTPmjT1hM2NNltry/9bun7cQGSS3e21SxWRfCRoHkWsNV1q5FXuqzAN6R432Gq22drqsH3W4iiZYLVkq9d5af+N/5X4Fu0wZKOSaNk+iAmVJAmMOwftq7/XBmOaA1epsNFpsbXVYavfcvu8cfl21o5jRjqnHcekiWXn/8/enYc3Ua1/AP/OJOleulME2QQToC0t+1JEQJBNFFARFLSyKqusRVRWQQQBadlFQcSLXC7IvSjIIspPBUFQRHFDZQellELplrbJ+f2RzLRp0jZp0w2/n+fxuTfTmcmZyUnIm/Oe98ADt7Kz4QEZdUIDbc4RcMMbNX191XsRkOyFLFMuAjVe8NBp4ett+YLsJSypgL5+9l+YzULABx4IC/ZHsFfePQjK8YVPVipCgvwQ4mObCpzlJeCVYplXeE9YMEKC89pULc0bqXIufL094S2MqB7kj5pBAQi44QWtJMPXI2/0LSvLjBAPT4SGOqpvmifdwwzfGx6oFxiEGmHV4HPdA95arVoR9+/ULJgys+Dl7YHqIf4I8S/8Pt+TGYwb17JRPcgfIUF+CDf64bowwtfXEyZDJnLMWkg1jQj08UZGbg68vT3gA0+b+xNg9kFwig9kjQyNrEHN4Go2/TE00xfJMMLXxxOZuTmopvPEXaHV4KHRoG54UJHXWpC/yRt3ZfijfvVg3NbmIuVGDnx97V9HhbcwIiTYFyHeltcsJNMXF3PT4afzwF0h1eCdlgQPrRYhPr42bX4w1FL3Iy0nBzu+TAUyAY23gMZLa3d9ABCOTHhlpah9ypgl4C3LENkSfHw9IUsSkoURNf38cTXTMjKrhRYmkwxoBXwc9EUfkY27QqrBlCbhb3NmkddZmOSsTIRofWASZvj62B/vJYzw0Gjg4+kBbykXkKC297aci1AfXyR7WwJDnbWYUFX8d7BSB4hDhgzBww8/XOQ+hc05jI6OxurVq5GbmwutC7+0KHJzzUhNrTw5w7IsISjIFykp6cX+akrkCvYtKgvsV/9sxoxsZBtzcftWJpJzHAd/xsxcGHNykJqSUUzRDOCWMRPGrBzkSpa0R2f6VY7ZjFyjCSYpF8nJaRBZZqSlZyFbmGH0zEZycuFVMV3hDQlmYy6S0/LOl5WZjRxIyMjJwc2bGfDMcv58t1OzkJWVg1zJBKPG0k5zpgnpchaSzcW3OSszB+k5OfDIkXDbaISPVovM7GxAAOb0XJtz5GbmArJZvRfZmTm4mW2ERpKQlm2Ej8ny2mVm5UACkC4Z7Z4vx2xGdrbltRbpeWmpGWlGGLNykHozA9pM23TA21lZyMzMtgyxZppsXovMdCMyMrKRbtIgKysHmWlG3BDpgNGM1NxsyB55r3ua0Qhfk6bY1zItKwu5RhN8cmXcvJGBrMwcmGQToDVb5qVmm2DylGDMykFmqhHJ2YWfzydHBnIFMm8bkWxOgznDhLQMI9KFDvA0AjFpSMvKgjbLE7eNWfDOlZGdbbkPamVSAF65Eq6nZyDTnAtR4B5kZ+QgPT0b6WYjMnJzkGU24WZKRqFFn4rT2jcMIj0XcpZAerq1rQ6YhUBWVi5u3cyAnGFW23I7wwidhwRjWjYyrH0zBJ4O73uWKRcmyQQNAJMmFxmZ2TBlmOz2zbxttPRVWPpUqjELAToPZGfn4LY5C1pZRmZmDmSdQJbJsk9uFgCTBHiYkJ5m2xeFEMjMykZ2WjZMmblIy8hGurDvr0XJNOUi2ZiFmj6++DszC+lm++OzsnJglk1Iy5GQmZ0NCRLShOU9k5GVDUn2Rq7Jcu9yjZa+Wpn+HaxWzRs6XfEpypU6QAwMDERgYGCJjv35558RFBRUouBQUVlezPzMZlEp20VVH/sWlQX2q38mCQCEZT3pwl5/LSxpjRCFFUbJdz4hQRKWuWSAc/1KAwkekgwPSYbZLOAtW6qamq2Llpdlv7QsfWBdxqGIe+CQsHzZNcMMDSSYzQLRAaHw1GidOo8MCWZhhhACuWYTZOgsc8YkDXw1Optz+FgLnijbNJIMoykXgR6eyMzNzZsPJqBWVi3IZDZDBiAXuE4ZloqqjvqAMtvOU5ZRTWObLiwJCWazWV2SRAfLa+Wr0eJWttGmDWbh3GupgWWuYDWt5blk5D2H0ZQLnWRJU81BLnTFnM9fq4OfRqfu5yFZ7p9tu8yWPmAWluqxQrJeV94+IR5euJhhCZo8JY3N3zwlDXKt5zRZ+5DkxPukMF6ype94SppCX0el3cp7V2mPDpY5iBrI0MKyrkOW2QR/rc7hfZKFlG8OogkQUN+D+WlhqUSstCXHZIK/tw43jEaYhBlmk6W6693efvhdk2o5KFsDyXr+gteQbTZBCxlekqViMYQo9DoduWbMBAQQFRACrSzjSkYahBC4lpUBf52HOjdVeQ3M1vnMljm/ZgjIMJnN0EkyPK3xt5JiWhX/HazUAaKzDh48iOTkZMTExMDDwwNfffUV1q5dixEjRlR004iIiP5xNJJsLUJT+IiHUgHUGUplUFeLy/hpdeoXO1+t1lJEAkW3yx2U9QSV+WeukK0TGM0C6uLxfkWszefouZXvxSYhEOThiVs5RstyHwUKsDQNDLUpyuIhy2pl0TThXJEakxAOiw3J1mtxNDqss665GKTzsksvVorUKOsDKn3EV6tDjtl2JNIshPqjQVF0kqVQkbrEh2wJ3gDAaDLBT6tDoJcXsjJziq0QGqDzhL9Wp+5nWZ+y4ILp1sJKyrqSsn0RnyAPS7qpSQi7Ijtaa9VVWO+Du/prwde/ICEsV5K/sJJlriSgkyWbYkZ1fBwvJaeRpLwCMjoTBOyvD4C1knDe85gh4K/1hCxZKsxmmXPhp9WhlrcvPDys+xmt55Hzgi0hBHKE2dJvNZaKuK5UeVVkm014ILw26vsG4MdbyWrpmdTcHGuBnvz3Lq+QkmVJG0BjXRNRK8vw0lnmaUqmqjf3UHFHBIharRbvv/8+FixYAACoU6cOZsyYgccff7yCW0ZERPTPo823zmHh+8jwciVAhHNrAebnr/WAp/WLXd5aec4trVEaGkmGUVgWOC8ufbYgJY4wW0deXKWV5HzLXFgCmmo6D/hr7StJKkGKQidrrJVBNWphGiEEhDWwFkLYnSPXWmio4JImlmVOHFcx1ciWALGGt/0yJZZ1IIU18JTUJUl8tR52axc6W5HWR6uF3i8w3xIfEnKt5zKaTbjb0x+1qwXg71tpxf5o4afVoXlwdfVcnnLevcrfLtk6TmoWgAzZ7j7U9a2GztXvxu+3b6Ka1vYHgPzXJGC5X+7grdFCgnV5EAd9y9EPKFrZciUesgYesgytLKOmlw9CPL3sjgcsQbGktQa3ulxIgMN1KnXWZTvy9ykfrdYSVEMg05SL+r4B0MkaBHt5wuSRA022dWhOk9cPUnOz8bcxE0E6T4R4ekG29pnixuuyzSb1tc41W+5HsM5yTVqb65eQW2Ak0lKlWFjXPM1blsVszXLw9ZBxGwBYxbRidezYER07dqzoZhARERHyFmwvauRDJ8sQcC5AVEYtXF3XrIF/gLp+oGWkSlLPV5Zk9Uuj6yOIliOUlE/X25l/qQBJsozUhHv6wLeI9f0UOkkCJAk6OW8UUiBvRMlyRbZyzGYEOqj2qLGOEha2DqKPVodgD/sgQwMZQlgCT02+19zRqJAyYlMcjSSjSUCIzXMoGX85QiDYwwu1ff1x0dvPqYA+/0LuSvtsgmfrkhDCup6lZF3SxbZNEu7xC8A9fgF258//A4ZliQz39FdPjcZSDdYsUFhdKClfdVelLbIsWZdakRGo84Tev+glZmTr+oS5HrnQShqHPwR5Ws9nEkINyLw1WjX4yjGbEehh6Vehnt646pWdL0DMG0k2mkwI8/DGX1npaOAXaD231hK4OfhBA7D02T/SbqGebzV4a7TIMpvgo9GqI/XKEi3CmsKsLK+ivq9gGSEU1tc2j4BWlqFVqv+aq+5qgndEgEhERESVh1aSC00vVFgWL3fufLI1bHI1QKzhlVc90MtaUVD50leWZNmSOlgwXc8ZSjAgSSUbOdIWGD3RyRrEBIU5FaoqQYBOltVI0GxdP1AAatCbX44ww09nH3wW9SOBVpIQ4uGFEA9v++Ms01Kt87vyUlcdBYjOppgWpJEBJQiXIOCr1SHcxxcdq9dyea6YpzXtMn+gI8ES7GhkGTlms8sj3/mvSQhLQOsOOjlvKRNHzA76rMa6XqZOtqx12Kn63fAtJlVVqnMbadpsIPi2ZU6eg2hUSVfNFWbLfERYA0TrMhpKewHL/cj1zIYnrO/nfCOIOUKguocnUnKy1BRiD+sIdf7XJD+TMMNf54HbOdmWANGUixpevmpfVT4fzNb1K81KgGi9N5KkpEDDOrKed25ZkqDcnqqcYlp1Q1siIiKqlDTWlFBNEUGJhyyrQZsz53M0z80VnhoNtJIEEwQ0ZbwumWz9wltwNMa5Y5VgzHFQVBxl/qOFZUFzLycXV9fJlnvkp/WAEkBZ0g4luy/CilxhRjUHI4iyNcCVHQRwkjXQqOZgbqUlWBCWOVzIW7TdU2MpsGI0mfB3Vkbe/iUJoiXLCKIlfdaSNlpSnhqNNQ3Rdn6kj1YHrSQhNScbIQ5GSouiyxfkCwhrQFt6Gkm2vAeE/SLzlueCXWq4zvpjj5Lu7KfVFdunPXwEMmolI1c2W4M1+wtQfozItRbikSHBU9ZYXxsB5EtP1sgycr2y811IXvuFAO728cddXr7wsRamLOw1yX+d3hotsq1zWo1mM6p75f1YoTyv0i7lRxGhrmspWdOdJTUlFrD+qJM/QOQIIhEREZGFLMmWKpZFjO7c6+/8em6yJEFbyHw2Z3nJGkvqmNlU5iOIWqVIDVz/JV6S8qpzOkrdLPa5bUYQJZdG2HSSpXCQn1anxIcQ1oIrZiHZzQG0PAMcphAqo4euvmayJEEIS3pf/h8EPGXLQvbJ2VnqF3tlf1dZCuFYipt4yBr4lqLivU7KC3Ty89ZoLfdecq2vA3lBr6WSK9zaXz01GmSZHBcgEtaAKP891ciup3frJA3M1sDPW+M4+JYlCV4aDbLNJpiEGVpZtgZ2lkq6EvKuWwIKBIj57rUkEOzhiXYhd6kpqYW9JgpzvuvMNVuSRQPyvdeU5zUJS3Cea1KOgxoumqwj67a9z9LfJSWArcIBYtVtOREREVVKGsmShlXUQJ23RlugMmDhZEmCtpCRCGdprSNpcikDTWfI+QJEl0cQrVVIfbU6+LtQvVShjMApxWV0Lnyxt1SWleGn1anXYFZGTQq9DMnh6KQsuRac5j8OkrCm9+U9qRo8mE1q4CiV8LXUSJYg2lKxVXa6HzoiSZYlNHJtKqxa2u6j1aGGlw/u8nZtoXRLlVdLsSF3zkEELPPzCk0xBex+1FDSxT1cGKn10FjabhYCnkUMf/pqdcg1C2thJMuPE1pYRxCR9wOBLEnI9cq3JqFGKcJkWU7ER6NDDW9ftRiOZK06mmt2PIKoLE8R4umFJGMmJEg2o9ka6zxepdiQUoRGIC+wzAsW8+b8CljSgTXW9klVuEgNA0QiIiJyK9maElqagK4gS0pa6b5w+Wl0kMuhiqnWmnamVDl0hTLHKdzLp2TBj3UEUZk/5UparjJS5Kf1UOdwKaMtlnL+toGFso6doyqV+QvMuEIZlRHCtrCLkn7op9XZtKWkhXzMyuicrHE5iC/IR6OF0WzC7RxllMsSuIZ4eCEiIMTlNmokGRplLU3YF7gpDS+NptAAUSijYgWK1Ogk2aVUXp2sgVlYAriiKhX7aXXIFWaYhLBWwrX8EGS2rrup3DcZksMU02yzGR4axyPAPhpdkSmmGllGQ79AVNN5oo6Pv02AaJkfLamVdC1riwpYM18hW9N0ldFE5VkkazAvaSSYNCbL4pVVFFNMiYiIyK2U1MKSpP8VxsNa1KI0lJGx0gaaxVFGASW56FHUwo7VyRqEe9kvAeHU8QAgJOSaLQU6XBn50UiS+oVbI1u+BAsIa+EQyS7B1CQsVRsdBQGhnt6Iylc51FlKmRczhM3agbK1MqhO0uF6dpYa5JSkgIsygmgWAl5uCL58tDpkmkwwmk3qPDiNJKFtaA2XixQpx1oKoSjpxu7rr5YAsfDAqeCPJ1pJglZ27UcVD+vop0k4XuJC4afRIccsoJPNqKaxBGg66zInUr4fcmRJgsnDBCGbIZllCOsIXbbZBF+N1uEoua+2iJFS6+seERCCCAd9VGMdNc0x5y3hkivM6mi6Tso/xxhQ87HzpVVfanIG/l46AIFO3rXKhSOIRERE5FZKcRF3psb5a3WFzmdy5RwaSXLbunKFka2jD4DrC11IkOCjyVvUvSTPLUmFL2BfFK0ko5pWZwnGIVtHEK1fmCHZFanJsc4dcxQEeMga1HAxtRJQUnItozUFg5IQT2/U8wvIV4inZOmXWklWl6AouIB9STT0C8AD4bXhpdFaR/2EOoJektFJZRTPbE1uLGour6uKSjFVfgzIT2MtJuNKYSdltNEkRJEjiJ5aLSRJINdsho/1va3LV2U1L5XY8h+8rXMn840gBhQyT9e7yBHEol93rWSp3JojzPDWaKGVraO51tF0nSyrVYqlAu8LS4o0YPTLgMknu9DnqOwYIBIREZFblXT+WVHah9ZEmJf9sgiu8NRqLfOcymMOonW0wfURREvKYkkK1CjPLWBJ79O5mOYb6uGFe/2D1FRTJdjRybJ1dUbbwCLHbEkhLE112YKUyrdm2C9H0jo4HPf6BearHFmyHyFkWVJHEJV1MkujupcP6vtWU9NygdKttWmb1liypTwK4yHLEMJx2wqm9QKWYForaVwaQbRcu+WHCl0R1XOVKr25QsBXZ/mRQStbRussI/3WEURlbVDvHMuBsjKCaEZQIRViLetQ2qdFAyi28I9WliHLsASuWh08JA1yzWZ1jqZSaVVS0qEBdc6v8mOK/YqhVQsDRCIiInIr2ZqqWNl4yRrrunVlPQdRzrdOmmtfFKvpPNEsqDp8Srj0gixJgIA6r8sVfjoP1POtBsDy5d0kzOpag7K18md+ucJsXRLDfSRrcOFovUovjdaybEK+4Kkko8E66xd8AbgtuNUqyzaYzZBKGLgqZOsPC8pyJ7Ibl2XJv8ZlQY5G1jTWFFNXrkcrKYu1FB2IWUYXLa+lt3XJG52kQa5ZQANJfZ/K1j4BH+sIok4ZGRSFLlGiLO1yMSMNGbm2VVvNxRRvsgR5MnKEWS1ilKv0N+t8TMscY2XOr1DXSFTSg6s6BohERETkVpZCMJXvW5KlcqrGrXMjHVFHEOH6OogaScLdPn4lfm7lC6pJCHiVIkhXipmYhVJV00GKqdkM/1KsIeiIEp+YAYdpgJKUl+IHqWQjdUoaoLvn93lqNMixjn6Vto9p1SDWvSOIymiwI2ZhqYKbnyxJliViXBxBVH4eKSoAV37AEID6g5I6gihL0Ml5RWoEAFHnFkT9FCAkbx3Mws5f18cf/Wo1QAO/AKSbcgpcp4CuiNdHmUeozEH00Wqs83Gty35AqVJs+ZxTRiqVtPqSzDutbBggEhERkVu5um5aeQnz9Eb70Jpl/jzKQuwlWQextJR0vFxhhk8plm9QAkTLqJI1QCywT45wf4CoJO2JItI/LQGiZYkDTQm+jCuFfMwF1losLS9ZixyzpbplaUeplbUaLXMQ3RdwFBXoCQiHcw0N1YIQ5OF8ynPeCGLRwa2nrFXnHCrpplpJQq51rp9yD63xPOCdC9EwBdDmLStR2PklSYKfzgM1vHyQbTbZXWdxVVk9rIGqp6yFj7XaqoBQi/Yoy9hoJcsIovKDkPKDRVUPERkgEhERkVsF6Dxwl5frBUrKmiRJJVpb0FVqOqbk+jqI7nhuWJdIKKqCZHGUgitma6qnsi6iQqmEGeJZunmhBSnzt8yFBCuAJUDMMZtLXAhJKeQjYFnmwl28NJpStSs/y2LzAITk1i/rOjlvXT8AuJKZjuvGTADK0hL2z1bfN8ClvqSR835MKCoQU9a2lCWoPygpBYg8ZFkNjNU5iAVIkIotnhPo4YWC4ZpZFJ9arJM16gihj6xFrtlynAaymiGgFCKyzEG0jH4ro8dVd4ELCy5zQURERG4V5OFVaPGIfwJ1Hb8KGEdQvlQLCPiWYnTPS6O1LHZuTRPUQLb50ptszEJNL1+XF4Evjtp+UXihI09rAR3LcgSuh0/Kc5iFZUkGd/HSaJArzPCSSl8ISaMs9yC5dwRRGZUV1iIrZghkmiwjbMoC8qWljFIWN8dTY126JMskqyOIGskSDubPQCjs+oWDQkYFBXp4QitJyDab1HM6U5zIwzpqrga4Ut5outY66qlR5ooKqEWptNKdUKKGI4hEREREbqWMIJT1XEdH8gelvqVYFkSrBmrWEUQ5r4qpWQgYzWY0CQhx+zWqpysiMNJJlkBMkhzPUyxO/vO6cykWL1lrmT+HkgWu+SmFdAA3p5jKltRNM4Q6j04ny8g2m2wWpy8NjSRZ0y3lYgM4X40OWkm2GUEsmKKujPbmp7S9uPb6arTw13kg05SvUI0TQbendd1VpW2Sdd6hRsob5ZSlvFRgszUtVrZee1XHAJGIiIjIjZQiFRURIMqSpQIoIKmLtpeE+qXYusyFFrJapCY1JxvBnl6oXYpiOoXRQFkovfBgxUOTtxRCiVJMrSmLkiTcWtHW0zpvs6i2O8tSHdPC3SOIGmsKstFsgqdGRpCHJ9JycxxWji0JrbWokUYqukgNAPhqddDKMjw1eRVLJckygqeQYR90KaOdxbVXkiTU8PK1qWTqzOujkzXqUhuW0U2hpiRrrMG7MoKtLJmiBLfuHvWtCAwQiYiIiNxI+YJYYQGiZEntK02KqY9Ga13bzTKPTEl5BIDbuTm41y+wTJYLyb+2XGH3z1O2LIUgo2QVI8tqBNESrBQfFDlDp875FG6tiqmTZcjWhd+zzSb4anRo4BuADFOuWqWztCxpopLNWoaF8dPqbJaeka1VQD0LpJgWXGLFDNtCNkUJ8fCyrpupKP6HBU+NZa6hVpbgqdHkBYHW64I1ANZYl2TJn07LKqZEREREZEO2BjkV8UXR8gXbEuB5laIAi7dWC42cf66VZaQk22yCVpbLZPQQUOZuWXIKC/vyr5M1yLVWIC1JEaC818W9QbxOlqF1Q4EawBKUK0GRe6uYWtpnEgJGkwlBHl6o7uUDwLrshxtCA60sQSNbnqu4uZheWi2q6fJ+yFBG4fKv4Zk3LzUvyDMLAVl2LsXYErgVXN+xmCqmUl6Kqad1mY9cYYZWtry/lEq1SnVfc77RV0vV1aodJLJIDREREZEbyai4NDMlHS9A51mqCqo+Gh08ZBlpudmWVE7rSMmtnGzU8vItsyJEymiRZC0A4ogSdJQ0EMtfZdKdI4g6a7XX4gqgOEMrKSm97l1XT5Is6xpmm03IFmYE6zwR5OEFH40O142Z0Lhh9NOyFqAlsCquD4Z4eNlcnTJ/0WYOIiwBl0BemGcSAjKKn+MIKO/DvOBSiOJfd60sQydZ/rNUW5WQmWNWK/paRkjz+pKSig1U/eAQ4AgiERERkVspIwhuyNZzmTICE+zp/Lp1jigpqsqXaa116QKj2eT2yqX5KaOvApYlBRxR5riVNBCT1REe985B1FkrXBa3xp4zlEIygPt/aPDUaNQCOH46D+hkGWGe3pbCP244v2VuHmxGAQsT6ukNvX+QzbFa2TZNN2/piHxBHvLm/BVHK9lW4LXMPS36OMv8SU2+QFGDHLMJGllSf7zQWkcYhXU5GF3+EcQqHiMyQCQiIiJyI6WkRmEBTllSKkD6a0u/3mOQzlMtBKOO7KHote1KS0kxFUIU+uVfI1vnt5WwHWU1B1FnXbtP54ZfBnQ2RWpKfTobXtZlQgCo81Tv8vJRR8fcQSdrbOYROktJ68w/Migr4Xy+KM9kXSvRGVoHlUWLG5W1tMG6bIUkwVejQ47ZrBb5Uaq0Wqr7Kmtq5s1BrOLxIQNEIiIiIndSgo6KKlLjqdGUaokLRYDO01qIQ86X8ohC1yd0h/yjRYWnmFpGqEoaiOUPDtwbIGqsI5vuSdNUIkS3jyDKWqTn5kAryfDVWGabBXl4wUerdV+AKMklDxBl2WZuYd7annnMQkDn5Pk1smwzf9GZIjVaSVZHEAHAV6cDrH1TqVSqpNIqy1zkf92reojIOYhEREREbqRUcNRUUIqpl6wpVQVThZ9WBw9r0JOX8ljykTtn5B99KSz9U/liXtJALH8QVBYFYNxxf5R5rMr/dydfrQ7VdJ6o61sNPtZ+EuThCV+NzmYdzdLwkDXw1rgeZsjWAFtbINiSYZtiahZwbQRRshS5kZz88UYjS/CQZTWQ9NPo1OUx8lLILa+3ELZzEC1VTl256sqHASIRERGRG8nqF8jyT9TykDVoG3IXAj1KNwcRAHy0WnhqlADR8kVYGTkpK8oX+KIWQVfmIGpLWKVV48RzlITOulyDO4rUlFUQCwBRgSGICAixmefno9UhyMPTbc/lKcvwLEGAqLGmbtqkmFrn9OUfBDRD2BSyKYpsrcJrhoAslPmLRb83A6wBtMJHq7WMXFuDVQnIS8mVlADR0h77hNaqhwEiERERkRspXyAraj20EE/3VBj10ejgJWvz1nS0Xk6ZppjCtkKkI1rZkmLq7AhSQcoXeEkqfp0+V2gky6iTe4rU5FXtdHdAblmewX57TFCYW+auApZlUkrST2RrkRptgSI1loxb22UunB9BlCHDMuooSbCun1j0PfXT6hAZEKI+9tRo1DmmaoqpdckLCMvaox7qCCJTTImIiIgoH0lSlrmo6JaUjo9WC2+NRl3vDQIQkijbFFPrfZNE4cs7KOsyljRQtaQJWr7cuzv48tJobUbmSkq2jtiWZ7BRw8t91WmbVAsp0X1Q5nDmXz9Rti50UXAOorMjiEqRJbOwFFlSUkNd4Slr1JRT9UcMyNb3uqVlyvuiqgeHAIvUEBEREbmVsm5bRaSYupOHrEF0YBgCPTzUpSdkuHfUrSBl1LCoL/FKimlJ1+yTrEtpqCOjbuSj0bol6NRI+deDrHoBRzWdR4nmIOpkGXf7+MEv3xxayRqU5S80Y3IhQFRSQc0QMEOUKLXYU9ZAJ2vU0UPlHHk/YuQVJ5JQ5acgcgSRiIiIyJ3yqhxWdEtK724fPwCwfsE2Qydpy3iZC8voniQKX6tOWQqhpIGYOo/MWnzHnXy1OrcE0AVHvP4pZElCdGCY7TZYAi5zgX21Tt4XJZAzCWF57YtIXy6Mp8YygijnK06TV3E3b04ioGQQVO3XjAEiERERkRspi73Ld1CilgwJJrOARiM5/cW8RM9jnSMmihg5U9aoK3GAKDk/F81VUQEh7pmDqKYxFp5q+0+RN4oq8m2D0yPIkiRZ1pUUAmZJlOiHgfwjiEqQmVfR1EJZmkMJaKuyO+eTi4iIiKgSUOZMyVV9EmI+siTBZK3+6I45doU+j/WrtVRMkRqtLJd4pE6Zg6gpIggtKR/r0iCllb8Yyh3UjUpMqaKbx7X1JnWypYqpsI4iuvrDgIesgYd1/U2lKmrBQlRqf6zio4cAA0QiIiIit1KCG3etKVcZ5K39Vvj6hO55HmsKIIpOIfWyjuaUhDIKVJapsqWlznUrxUjpnUSp6ppHuPT662QZZiFgBkqUYipLEmr5+MFXq8s3ipi3vqLyHIAygli1X7PK+84gIiIiqoLUZS7uoC/2yjV5umF0rPjnsh+dKcizFMVglGspy+U6Sksj5UsxvYP6UUnJ1qI9+bny+nlIGpiEgFmIEo88Nw+qjgCdZ948RuvrYxlZlwrMQSzRU1QanINIRERE5EaSdOd9sVdSHnXlECBqZAkwF13oo1lQGPzzVbp0hTJKqa3EuZtqiikqbj3NykQDGeYCKaYaF14/D+sIosi3oH1JSdZRdOU1MgnLaGbeMhdVfw4iA0QiIiIiN7JUyKz6XxLzU4KU8hlBBFBM+mewh1epnkMjlXwOY3nQKHPcrGmm/3SW7pAXIQq4NhKolWUIWNZPLG2KtEZ5f1vTrpVsAXUE8Q545zNAJCIiInIjOd8Iw51CtqY8epbDvD2NJEMukE7o/ucon9HQklKWZijL+Z5VSf4RRMvyH67NzfSQNdYRxNKnFkvW+cVKqqkEy2Oluu+dENQzQCQiIiJyIyU1sGp/RbQlW9MyPTTlMIIoSWU+CqORZOgq8Zd4ZRSaBWosNPnmIJqF7Zw/Z3jI+eYgljK1WKliqhSrkWB5XyhBIUcQiYiIiMiGpFY4rPpfFBWWgFeCp1z2Xx015RIgVoUqphxBVGjkvDFls7WCqSv3xjK6J8EsROlHEAFoJCWItwTynlLeDyfKGptlOwZethggEhEREbmRulbaHTCSoFAKcniUR4qpiwVISvQcZbyeY2nlpZjeOX2oNDTIW07CLITLRYY0sgzLzMXS/zCgrKOZlykgwUOTd847YQSx8r4ziIiIiKqg/Guk3SksKX2upfWV+Lnksn8erSRBJ1XeOYiWEbKyXXOyKpHzrYNoEgIyXCsypAR1lhHE0r3uyhqnynqnkCzrcub/e1V/67PXEREREbmRZZmLO2t5AgkSNLJcLmmZcjlUGNXKcqUfndNIlb+N5UUj5aWY5gozvDQal4pAKf3JBMCrlPNolRRyWf1f+7m5Vf1lY4BIRERE5GYaSa7yXxLzk9URxLK/KA1Q5immHlUg+KoKQWx50UqymmKaZTIh1NPbpePz7qOAv86jVG1RlrTQyspPQPZzc+UqHmJV7dYTERERVULacii0Up5kQP1SXNbKY35gdS8fBOo8y/Q5SkvrYhrlnUyW81ZBzBFmhLi4DqZWktXlMfy0ulK3JzasJoJ0ntZUYPu5uWX8+0aZY5EaIiIiIjfTyPIdlWKqVI0srzmIZT0/sKF/YJme3x20MovUKCwrY+bVBfXXujYKqCyT4anRuHysI0qQKUOCVrYvfFPVKxjzZwkiIiIiN9PeYSmmUjkWqdFa15j7p9NKcpmn2lYVWkmCEBJM1lFAf51ro4Aaa5/y13rA041reUqSBA1ku6UzqnqAxRFEIiIiIjcL8/R2SypbZaGRlCI1ZR+w3OXlW6mXoCgvWpkppgpJkgBJwGgywUujgZ+Lo4Baa1EZV1NTiyNDqfBr+zpZqs+a3Ppc5YkBIhEREZGbNQ0MregmuJWHrEHLoOqo5ob0vOLU8vEr8+eoCrQuLgZ/J9NYl44wmnMRoPN0+QcEjWyZ1xriYnGb4siSBJ2DH06qeno5ex0RERERFau6l0+Vn1tVlehkuVyqxlYFSrXQLJMJYZ6ujwJqJQk+Wp3bR/UlOJ6bW9UzgzmCSERERERUyXjJ2nKpGlsVWOakCpgEEKgrSYAow0ejRbVSLnFh3y7L6GbBEc2q/kMKA0QiIiIiokqmcUDwHbVUSmmoKZuSBG+N6+GLVpbRufrd8CrBsUWeV5Jxj1+A3ZxITRV/3RggEhERERFVMh5y2S71UZVYRhAto4glrULq7uAQsIwUNq4W7HB7VcZxayIiIiIiqrQkCTAJAY0kw8uNy1SUlao+B5EBIhERERERVVoyJOSYTdBKErzkyp8AKVfx6rNVu/VERERERHRHkyUJkmRJu/WoAoV7Kv8YZ9Eq/x0mIiIiIqJ/LBkSJEjw0+qqxPy+qtDGojBAJCIiIiKiSkuSLGsO+rt5HcOyIlfxKqYMEImIiIiIqNJSUkz93LyOYVmROYJIRERERERUNmRI0FkXu68KWMWUiIiIiIiojMiSBJ0sl8lahmVBruIhVtVuPRERERER3dEkSPCQNfCSq0Z90CpQaLVIVbz5RERERER0J5MlwIMjiOWmareeiIiIiIjuaLIygqipGiOIGhapISIiIiIiKht+Og9EBoRUmRFECZalOaoqBohERERERFRpaSQJdX2rVXQznCZJUpVeCZEBIhERERERkZtU9QCrqrefiIiIiIio0uAIIhEREREREQGwzkGswiEiA0QiIiIiIiI3kSSJRWqIiIiIiIjIsixHVcYAkYiIiIiIyE0sy1xU3SCRASIREREREZGbsEgNERERERERAWCRGiIiIiIiIrKqwtmlABggEhERERERuY1UpccPGSASERERERG5jQwuc0FERERERERQUkyrboTIAJGIiIiIiMhNmGJKREREREREACwjiAwQiYiIiIiIyDoHseqGiAwQiYiIiIiI3EQCRxCJiIiIiIgIqNKjhwADRCIiIiIiIreRULWDRAaIREREREREbiJLrGJKREREREREdwAGiERERERERG5iGUGsumOIDBCJiIiIiIjcxDIHsaJbUXIMEImIiIiIiNykao8fMkAkIiIiIiJyGyXFtKqOIjJAJCIiIiIichN/rQ7RQaHQyZqKbkqJMEAkIiIiIiJyE0mSUNPbr6KbUWIMEImIiIiIiAgAA0QiIiIiIiKyqhIB4quvvor+/fsjMjIS/fv3d7jP0aNH0a9fP0RGRqJbt27YuXNn+TaSiIiIiIioiqsSASIAPProo+jVq5fDv128eBGjRo1CmzZt8N///hfPPPMMZsyYgcOHD5dzK4mIiIiIiKoubUU3wBkvv/wyAODGjRv4/fff7f7+wQcfoHbt2pg+fToAoEGDBjhx4gTeffddtG/fvlzbSkREREREVFVViQCxOCdPnkRsbKzNtg4dOmDRokWlOq8sV57FS5S2VKY20Z2BfYvKAvsVlQX2KyoL7FdUFqpyv7ojAsTr168jJCTEZltoaChu3ryJnJwc6HQ6l8+p1coICal85WmDgnwrugl0h2LforLAfkVlgf2KygL7FZWFqtivKixATExMxIoVK4rc59ChQ6hRo4ZT55Mk2+hcCFHitgFAbq4ZqamZpTqHO8myhKAgX6SkpMNsLt21EeXHvkVlgf2KygL7FZUF9isqC5WxX1Wr5g2dTlPsfhUWIA4ZMgQPP/xwkfuEhYU5da7Q0FBcv37dZltycjICAwNLNHqoqCwvZn5ms6iU7aKqj32LygL7FZUF9isqC+xXVBaqYr+qsAAxMDAQgYGBbjlXTEwM/u///s9m2+HDhxETE+OW8xMREREREf0TVIllLs6fP4+ff/4ZSUlJMBqN+Pnnn/Hzzz+rfx84cCAuXLiARYsW4Y8//sD777+PTz75BM8880wFtpqIiIiIiKhqqRJFal5++WUcO3ZMfdy3b18AwK+//goAqF27NtauXYuFCxdi06ZNqFGjBl599VUucUFEREREROSCKhEgvvfee8Xu07ZtW+zcubPsG0NERERERHSHqhIppkRERERERFT2GCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrSQghKroRlZHZLGAymSu6GTZ0Og1yckwV3Qy6A7FvUVlgv6KywH5FZYH9ispCZetXGo0MWZaK3Y8BIhEREREREQFgiikRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiJXK+++/jy5duiAqKgoDBgzAqVOnitx/z5496NGjB6KiotCnTx/83//9Xzm1lKoaV/rWmTNnMG7cOHTp0gUGgwGbN28ux5ZSVeJKv/r3v/+NJ598Eq1atULr1q0xdOhQ/PDDD+XYWqoqXOlXBw4cwKOPPoqWLVsiJiYGjzzyCHbu3Fl+jaUqw9XvWIp169bBYDDg9ddfL+MWUlXkSr/asWMHDAaDzX9RUVHl2FrnMUCsJHbv3o3XXnsNY8aMwYcffgiDwYDhw4fjxo0bDvf/7rvvMHnyZDz22GPYuXMnunbtitGjR+OPP/4o55ZTZedq38rMzMTdd9+NyZMnIywsrJxbS1WFq/3q6NGj6N27NzZt2oQtW7YgPDwcQ4cOxbVr18q55VSZudqvAgICMGrUKGzduhX/+9//8Nhjj2HGjBk4fPhwObecKjNX+5Xi9OnT+OCDD2AwGMqppVSVlKRfBQYG4ssvv1T/++yzz8qxxS4QVCk89thjYu7cuepjk8kkOnToINavX+9w/wkTJohRo0bZbHv88cfFnDlzyrSdVPW42rfy69y5s3jvvffKsnlURZWmXwkhRG5urmjWrJn43//+V1ZNpCqotP1KCCH69u0rEhMTy6J5VEWVpF9lZGSInj17iv/7v/8TgwcPFgsXLiyPplIV4mq/2r59u2jdunV5Na9UOIJYCWRnZ+P06dOIjY1Vt8myjPbt2+PkyZMOjzl58qTN/gDQoUOHQvenf6aS9C2i4rijX2VmZiI3NxcBAQFl1Eqqakrbr4QQOHLkCM6ePYsWLVqUYUupKilpv1q4cCHatGmD++67rxxaSVVNSftVWloaOnXqhPvvvx+jR4/G77//Xg6tdZ22ohtAQEpKCkwmE0JDQ222h4SE4Pz58w6PuX79OkJCQuz2T0pKKrN2UtVTkr5FVBx39KslS5bgrrvuQtu2bcuiiVQFlbRf3b59Gx07dkR2djZkWcacOXPQrl27sm4uVREl6VefffYZvv76a85npUKVpF/dc889eO2116DX65Gamop33nkHgwYNwkcffYTw8PDyaLbTGCBWYkIISJJU6N8d/a2o/YkUxfUtopJwtl+99dZb2L17N9577z14eHiUQ8uoKiuuX/n6+mLnzp3IyMjAkSNHsGDBAtSpUwctW7Ysx1ZSVVNYv7px4wZeeeUVrFy5Et7e3hXQMqrKivq8iomJQUxMjPq4WbNm6NWrF7Zt24axY8eWUwudwwCxEggKCoJGo8H169dttt+4ccPulwlFaGio3f7JycmF7k//TCXpW0TFKU2/evvtt7F27Vps2LABer2+LJtJVUxJ+5Usy6hbty4AoHHjxvjjjz+wbt06BogEwPV+debMGSQlJWHQoEHqNpPJhG+++QabN29m9WUC4J7vVzqdDo0bN66UGV2cg1gJeHh4ICIiwqbqmtlsxpEjR2x+acgvJiYGX331lc22w4cPF7o//TOVpG8RFaek/Wr9+vVYtWoV1q9fX2lLe1PFcdfnlRAC2dnZZdBCqopc7VdRUVHYtWsXdu7cqf4XGRmJfv36YceOHeXYcqrM3PF5ZTKZcObMmUpZMZ4jiJXEs88+i2nTpiEiIgJNmzbFu+++i6ysLPTr1w8AMG3aNISHh2Py5MkAgKeffhqDBw/GO++8g/vvvx+7d+/Gjz/+iPnz51fkZVAl5Grfys7OVpdLyc7Oxt9//42ff/4ZAQEBqFmzZoVdB1Uurvart956C8uXL8eSJUtQq1Ytdb60j48PfH19K+w6qHJxtV+tW7cOTZo0Qd26dZGdnY0vvvgC//3vfzF37tyKvAyqZFzpVz4+PnbZDT4+PggMDMS9995bEc2nSsrVz6sVK1YgJiYGdevWRWpqKt5++21cuXIFjz32WEVehkMMECuJXr164caNG0hISEBSUhIaN26M9evXIzg4GABw9epVyHLegG/z5s2xZMkSvPnmm1i6dCnq1auHlStXokGDBhV1CVRJudq3rl27hr59+6qP161bh3Xr1qFfv35YuHBheTefKilX+9WWLVuQk5OD8ePH25xn7NixGDduXLm2nSovV/tVVlYW5s6di7/++gteXl645557sHjxYvTq1auiLoEqIVf7FZEzXO1XqampeOWVV5CUlISAgABERkZi69atuOeeeyrqEgolCSFERTeCiIiIiIiIKh5/LiEiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREAABtRTeAiIiovCQmJmLFihV229u1a4eNGzeWf4OIiIgqGQaIRET0j+Lv74/169fbbSMiIiIGiERE9A+j0WgQExNT7H5ZWVnw8vIq+wYRERFVIpyDSERE/3iXLl2CwWDA//73P0ybNg0tW7bEc889BwC4efMmZs6cifbt2yMqKgoDBw7E999/b3N8amoqJk+ejJiYGHTo0AGrV6/G66+/ji5duqj7JCYmok2bNnbPbTAYsHnzZptt27ZtQ+/evREZGYnOnTvjrbfesvn79OnT0b9/f3z11Vfo06cPYmJiMGjQIJw5c8ZmP5PJhLVr16J79+6IjIxEx44dMX36dADA+++/j2bNmiE9Pd3mmK+//hoGgwG//PKLi3eRiIjuBBxBJCKif5zc3Fybx0IIAMCiRYvQrVs3LF++HLIsIzs7G88++yxSU1Mxbdo0BAcHY8uWLYiLi8O+ffsQFhYGAHjxxRdx7NgxzJgxA6GhoXjnnXdw4cIFaLWu/zO7fv16LFu2DMOHD0fr1q1x+vRpLF++HN7e3hg8eLC639WrV7Fo0SI8//zz8PT0xKJFi/DCCy/go48+giRJAICZM2fiv//9L4YNG4bWrVvj1q1b+OSTTwAAffr0weuvv469e/eif//+6nk//PBDREREoFGjRi63nYiIqj4GiERE9I9y8+ZNRERE2Gx79dVXAQDR0dGYNWuWun3btm04c+YMPvroI9SrVw8A0L59e/To0QPvvPMO4uPjcebMGRw4cADLli1Dr169AABt2rRB586d4efn51Lb0tLSsHLlSjz//PMYO3YsACA2NhaZmZlYvXo1Bg0aBI1GAwC4desWtmzZorZLCIExY8bgzz//RIMGDfDHH3/gP//5D1566SU8/fTT6nMobaxWrRoefPBB7NixQw0Q09PTsW/fPkyePNmldhMR0Z2DASIREf2j+Pv7Y8OGDTbbPDw8AACdOnWy2X7kyBFERETg7rvvthl1bNWqFX788UcAwA8//AAANumkvr6+aN++PU6dOuVS27777jtkZGSgR48eNs/Xtm1brFq1Cn/99Rdq1aoFAKhVq5YaHAJAgwYNAAB///03GjRogKNHjwKAzehgQY899hji4uJw8eJF1K5dG3v27EFubi4eeughl9pNRER3DgaIRET0j6LRaBAVFWWz7dKlSwCAkJAQm+0pKSk4efKk3YgjANSpUwcAcP36dfj6+toVtCl4LmekpKQAAHr37u3w71evXlUDxIKVV3U6HQDAaDQCsIyU+vj4FDmK2aZNG9SuXRs7duzAhAkTsGPHDjzwwAMIDAx0ue1ERHRnYIBIRERkpczdUwQEBCAyMhKzZ8+221cZdQwNDUV6erpd1dPk5GSb/T09PZGTk2Oz7datW3bPBwBr1651GGDWr1/f6WsJDAxERkYG0tLSCg0SJUnCo48+in//+9945JFHcOLECbuCOERE9M/CAJGIiKgQ7dq1w1dffYWaNWsWOiKojEYePHhQnd+Xnp6Ow4cP2wRm4eHhSE9Px99//43w8HAAwFdffWVzrmbNmsHLywvXrl2zS3d1Vdu2bQEAO3futCluU1C/fv2QkJCAGTNmIDw8HLGxsaV6XiIiqtoYIBIRERWib9+++OCDDzBkyBAMHToUtWvXxs2bN3Hq1CmEhYUhLi4O9957L7p06YLZs2cjLS0NYWFhePvtt+1STu+77z54eXlhxowZePbZZ3Hp0iV88MEHNvtUq1YNY8eOxfz583H58mW0atUKZrMZ586dw9GjR7Fy5Uqn237PPffgiSeewMKFC5GcnIxWrVohNTUVe/fuxbJly9T9wsPDcd999+Hzzz/HqFGj1CI4RET0z8QAkYiIqBCenp7YtGkTli9fjsTERCQnJyM4OBhNmza1KUqzcOFCzJ49GwsWLICPjw+efPJJREVFYe/eveo+wcHBSEhIwKJFizBmzBhERERgyZIl6qijYsSIEahevTreffddbNiwAZ6enqhXr57dfs6YNWsWatasiW3btuGtt95CcHCwwxHCrl274vPPPy+yoA0REf0zSEJZ/ImIiIjcRllj8ODBgxXdlGJNmDABSUlJ+Ne//lXRTSEiogrGEUQiIqJ/qF9//RU//vgj9u/fj6VLl1Z0c4iIqBJggEhERPQP9fzzzyMlJQVPPvkkevToUdHNISKiSoAppkRERERERAQAkCu6AURERERERFQ5MEAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiERERERERGTFAJGIiIiIiIgAMEAkIiIiIiIiKwaIREREREREBIABIhEREREREVkxQCQiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREABggEhERERERkRUDRCIiIiIiIgLAAJGIiIiIiIisGCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrBohEREREREQEgAEiERERERERWTFAJCIiIiIiIgAMEImIiIiIiMiKASIREREREREBYIBIREREREREVgwQiYiIiIiICAADRCIiIiIiIrJigEhEREREREQAGCASERERERGRFQNEIiIiIiIiAsAAkYiIiIiIiKwYIBIREREREREABohERERERERkxQCRiIiIiIiIADBAJCIiIiIiIisGiERERERERASAASIRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERExZo+fTr69+9vs+3AgQPo2bMnIiMj0aVLF4fHHT16FAaDAb/99ptb25OYmIg2bdoUuc+QIUMwfvz4Uj/Xjh07YDAYkJ6erm77448/8OSTTyImJgYGgwGXLl0q9fOUl0uXLsFgMBT7X1W6JiIich9tRTeAiIgqv9GjRyMrK0t9bDKZEB8fj44dO2LevHnw8fFxeFxERAS2bt2KOnXqlFdT3a5Tp07YunUrvL291W2LFi3C7du3sXr1anh7e6N69eoV2ELXVK9eHVu3blUfX7x4EVOmTMHMmTMRERFhsx8REf3zMEAkIqJiFQzwkpKSkJaWhoceeggtW7Ys9Dg/Pz/ExMSUcevKVnBwMIKDg222/fnnn+jSpQvatWtXQa0qOQ8PD5vXRAnuGzZsWOhrlZOTA1mWodFoyqGFRERUkZhiSkRExcqfYrpjxw7cf//9ACwjiwaDAYmJiQ6Pc5Ri+s477+DRRx9FixYt0L59ezz33HM4f/683bH79+/HY489hqZNm6JNmzYYMWIELl++7PB5hBCYN28eWrVqhe+//97hPrdv38bAgQPx8MMP48aNGwAAg8GAd999F0uXLkXbtm3Rrl07zJkzB9nZ2epx+VNMlfTMCxcuYOPGjTAYDBgyZIi674EDB9C/f39ERUUhNjYWixYtQk5OTlG3tlJS0nO3bt2Krl27omnTprh27ZrDVGPlnnz22WfqNrPZjHXr1qFbt26IjIxE9+7d8eGHH5b3ZRARUQlwBJGIiFzSqVMnrFixAmPHjkV8fDyaN2+OGjVqOH38X3/9hcGDB6NmzZpIS0vDBx98gEGDBmHv3r3w9/cHAOzcuRPx8fHo3bs3Ro8eDSEEvv76a9y4cQO1atWyOZ/ZbMbMmTNx4MABvPvuu2jSpIndc968eRPDhg0DAGzatAmBgYHq3zZs2IC2bdti8eLF+PXXX7F06VLUrFkTI0aMsDuPkp45duxYtGnTBkOGDIGfnx8AYPfu3Zg8eTKeeOIJTJo0CRcuXMDSpUshhEB8fHyh98NsNsNsNhd5zyRJshm9M5lMEEIUeYwsy5Dlkv8O/O233+LChQuYMmUKvL291dfGGfPmzcPOnTsxevRoRERE4KuvvsKMGTMQGBiIzp07A7AE3i+++CI+/fRT3H333SVuJxERuRcDRCIicklwcDAaN24MAKhfv77LKaQzZsxQ/7/JZEJsbCzatWuHTz/9FH379oXZbMaSJUvQrVs3LF26VN33gQcesDuXyWTC9OnTcfjwYbz33nu499577fa5ceMG4uLi4OPjg/Xr16sBnaJWrVpYuHAhAOC+++7Dt99+i/379zsMEJX0TA8PD1SvXl29diEEFi9ejL59+2L27Nk2+8+dOxcjR45EUFCQw/uxcuVKrFixovAbZm3jwYMH1cfdunUrdDRVMXbsWIwbN67IfYqSmpqKDz/8EGFhYS4dd/78eWzZsgWvvfYa+vXrBwBo3749kpKSsGLFCjVAVFJWJUkqcRuJiMj9GCASEVG5OnnyJJYvX46ffvoJN2/eVLefPXtW/d9r167ZpTIWZDabMXHiRHz//ffYvHkz6tevb7fP9evXMXjwYISGhmLNmjUOi+nExsbaPG7YsCF+/PFHl67p7NmzuHLlCnr06IHc3Fx1e9u2bWE0GnHmzBm0bt3a4bEDBgxAp06dijy/h4eHzePVq1fbpME6UtoiMxERES4HhwBw5MgRyLKMbt262dyLdu3a4eOPP4bJZIJGo0Hfvn3Rt2/fUrWRiIjcjwEiERGVmytXrmDo0KFo2rQp5syZg+rVq0On02HUqFFqwJOSkgIAxQYnmZmZ+OKLL/Dggw86DA4By3IUSnppYZVWq1WrZvNYp9PBaDS6dF1Km0eOHOnw71evXi302LCwMISEhBR5/oKjbA0bNnQqxbQ0QkNDS3RcSkoKTCYTWrRo4fDvSUlJLqUkExFR+WKASERE5eaLL75AVlYWVq1apQZsubm5uHXrlrqPkoqZlJRU5Ll8fX3x5ptvYuTIkQgLC8OUKVPs9mnTpg0aN26MmTNnIigoqND1GktLmdM4b948Nf02v6Lm2FXWFFNHqZ8eHh52RXfyv3YAEBAQAK1Wiy1btjg8R8GKsEREVLkwQCQionKTlZUFWZah1eb987Nnzx6bVMT69esjPDwcO3fuLDaga9euHZYvX45x48bB19cXzz//vN0+zz//PNLT0zFhwgSsW7euTJamUNp8+fJlDBgwwKVjK2uKqSM1atTA5cuXYTQa4enpCQD46quvbPZp27YtTCYTbt++bZe+S0RElR8DRCIiKjdK8PDiiy/isccew5kzZ/DOO+/YpHnKsoypU6diypQpmDx5Mh566CFIkoSvv/4avXv3RlRUlM05u3TpgkWLFmHKlCnw8/OzWXZCMWXKFKSnp2P06NHYsGGD29dmlGUZ06dPx7Rp05CWloaOHTtCp9Ph4sWLOHDgABISEuDt7e3w2PDwcISHh7v0fAaDwR3NdlnXrl2RkJCAl156Cf3798dPP/2EHTt22Oxzzz33YODAgZg0aRKGDRuGqKgodR7muXPnMH/+fACWSrUzZszA/v377SrTEhFRxWGASEREZU5JNTQYDHjttdewYsUK7N+/H40aNcLy5csxceJEm/379OkDT09PrFmzBuPHj4ePjw+io6MLTU/s3bs3MjIyMHPmTPj6+joscDNz5kxkZmZixIgReO+999CoUSO3XmOvXr3g6+uLtWvXYvv27ZBlGbVr10anTp2g0+nc+lwVRa/XY8GCBVi1ahX279+Ptm3bYsGCBRg0aJDNfrNmzUK9evWwbds2JCQkwM/PDw0bNsRjjz2m7mM2m51aroOIiMqXJPjJTEREZeTgwYN4/vnn8cUXX5RJyiMRERG5V+lKnBERERXi22+/xdatW1GjRo0SV8QkIiKi8sUUUyIiKhPPP/88goOD8dprr5V6yQUiIiIqH0wxJSIiIiIiIgBMMSUiIiIiIiIrBohE5Wj69OlqdcUdO3bAYDAgPT29glvlXv3798f06dMr5LlPnDiBfv36ISoqqsKWAQCA9PR0GAwGu/L/VVGXLl3w+uuvu/Wcly5dgsFgwGeffVboPu58fxgMBmzevFl9bDabMWfOHLRv3x4GgwGJiYmlfo7SOHv2LBITE5Gammqzvbw/IwprR2mMHz/e4bIj5elO/awFnO/Lu3fvdvh5NGTIEIwfP75M2ubM+7wqef3114tdl5XoTsE5iETlaPTo0cjKyqroZtyxZs2aheDgYLz99tt2C4tTyaxYsQKBgYEV3YxS2bp1K+6++2718b59+/Cvf/0L8+fPR8OGDVGjRo0KbB1w7tw5rFixAv369bNZD7JTp07YunVroesnllc7qrryvo/lydm+/MknnyAlJcXh8i9ERAUxQCQqR3Xq1KnoJjglKysLXl5eFd0Ml/35558YMGAAWrduXeg+VfXaKkqTJk0qugmlFhMTY/P4zz//REBAgM2afJVRcHBwoes+UvFMJhNMJtMdfR+rSl8moqqFKaZE5Sh/iqkj69evR1RUFD799NNiz9WlSxcsWrTIbvv48ePx5JNPAgAyMjIwd+5cdO/eHdHR0ejSpQvmzJmDtLQ0m2MMBgM2bNiA+fPno23btujTp49T1/Pbb79h4MCBiIqKQs+ePQtt9/HjxzF48GBER0ejTZs2ePnll+3acPToUfTp0wdRUVF49NFHcerUKbRp08ap9L+jR4/CYDDAZDJh/vz5MBgMapprly5dsHDhQqxcuRIdO3ZEixYtAFhSs9atW4du3bohMjIS3bt3x4cffmh37gMHDqB///6IiopCbGwsFi1ahJycHJt99u7di+7du6Np06Z46qmn8Oeff9qdx2QyITExEZ06dUJkZCR69+6NXbt22eyj9I/PP/8cvXr1QnR0NEaOHImbN2/i/PnzGDJkCGJiYtC/f3/88ssvxd4XdyiYYvrdd9/hueeeQ4cOHRATE4NHHnkE//vf/+yOu3z5MiZNmoQ2bdogOjoaffr0sbve/I4ePYpmzZph6dKlhe5T8P2h3K+vvvoKffr0QUxMDAYNGoQzZ87YHJc/xXTIkCFYvnw5bt26BYPBAIPBgEuXLgEArly5gokTJ6J169aIjo7GsGHDHL6WBTlz3Nq1a9GtWzdERUWhffv2GDZsGJKSknD06FE899xzAIAHHngABoNBTWMrmBqppOx9/PHHePHFF9G8eXN07NgR//3vfwEAb731Fjp06IC2bdti8eLFMJvN6vP/8ccfmDhxIu6//35ER0ejd+/e2Lhxo7pPUe1w9hqvXr2KESNGoGnTpujSpQu2bdtW7L1LSEhAbGysTVsB4LPPPoPBYMD58+cBADt37sSgQYPQunVrtGrVCkOGDMEPP/xgc4zSHw4cOIDevXujadOmOHXqlMMU0zfeeAN9+vRBs2bN0LFjR0yePBlJSUk251P6/saNG9GxY0e0atUKEydOtEvBTUlJwcyZM9GhQwdERUWhe/fu2Lhxo/p3Zz9rCsrMzMSrr76K2NhY9XPxyy+/VP9eVF8ueF/27t2LY8eOqfsV/FzdtWsXunXrhubNm2P48OH466+/bP5uNBqxaNEi3H///YiMjMTDDz+MQ4cOFXsNBTnzOQgAmzdvxv3334+YmBiMHj0aR44cgcFgwNGjR4s8f2JiItq0aWMz3eCRRx7B8ePHbfb79NNP0b9/f8TExKBVq1Z4/PHHcezYMfXvqampmDx5MmJiYtChQwesXr3a5Wslqso4gkhUSaxcuRLr1q3DqlWrcN999xW7f8+ePbFnzx5MnToVkiQBsMx9O3ToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixbBmeLGWVlZGDZsGIKCgrBkyRJkZWVhwYIFyMjIgF6vV/c7ceIE4uLi0LVrVyQkJCAlJQVLlixBamoqEhISAAB///03Ro4ciWbNmmHSpEm4fv06pkyZAqPR6NS9i4iIwNatW/HEE09g6NCh6N69u82IwUcffYSGDRti1qxZMJlMAIB58+Zh586dGD16NCIiIvDVV19hxowZCAwMROfOnQFY5u1MnjwZTzzxBCZNmoQLFy5g6dKlEEIgPj4eAHD69GlMnDgRXbt2xYwZM/D777/jhRdesGtjQkIC1q9fjzFjxiAqKgr79u3DlClTIEkSHnroIXW/q1evIiEhAS+88IL6BXHmzJm4dOkSBgwYgOHDh2Pp0qWYNGkSPv74Y/W1dyQ3N7fYe6fRaIo8R0FXrlxB8+bNMWjQIHh4eODbb7/FjBkzIMuyeh3Jycl44okn4O3tjfj4eNx111347bffcPXqVYfn/OKLLzB27FiMGDECY8eOdbhPYe+Pq1evYtGiRXj++efh6emJRYsW4YUXXsBHH33k8LpmzZqFDRs2YO/evVi/fj0AoHr16rh58yaefPJJBAYGYvbs2fD29sa6devw7LPPYu/evYWOOjtz3M6dO7FmzRpMmTIF9957L27evImvv/4amZmZiIiIQHx8PF5//XWsWLECYWFhxaZHK8FNYmIitm/fjunTp+Pnn3/GlStXsGDBApw+fRpvvvkmmjRpgt69ewMArl27hvr166NPnz7w9fXFzz//jMTERBiNRowaNarIdjhzjUIIjB49GikpKZg/fz48PT2RmJiImzdvol69eoVeS+/evbFy5UocO3YMbdu2Vbfv2bMHERERqFu3LgBLcNy3b1/UqVMH2dnZ+OijjzB48GB89NFHqF27tnrc5cuXsXjxYowePRqhoaG4++67ceHCBbvnTU5OxqhRo1C9enXcuHEDGzZswDPPPINdu3ZBo9HYtMNgMGDevHn466+/sHDhQixduhSzZ88GYPkcfPrpp5GcnIwxY8bgnnvuwYULF9TAFnDus8aRl19+GQcPHsSkSZNQp04dbNu2DaNGjcK7776Lli1bFtqXCxo9ejSuXLmC27dvY9asWQBgk4r6/fff49q1a4iPj4fRaMT8+fPxyiuv4K233lL3GT9+PE6dOoVx48ahTp062LNnD55//nls374djRs3LvQaCnLmc3D//v2YN28ennzySTzwwAM4ceIEXnrpJaefIysrC1OnTsWoUaMQFhaGDRs2YMSIEdi3bx/CwsJw4cIFTJgwAUOGDMHUqVORnZ2NH3/8Ebdu3VLP8eKLL+LYsWOYMWMGQkND8c477+DChQvQavm1mf4hBBGVm/j4eNGvXz8hhBDbt28Xer1epKWliSVLloiYmBjx9ddfO32u06dPC71eL7777jt1265du0SjRo1EUlKSw2NycnLE8ePHhV6vF5cvX1a36/V68cgjj7h0LZs3bxZNmjQRV69eVbcp546Pj1e3DRo0SAwePNjm2MOHDwu9Xi9+/fVXIYQQCxcuFK1btxaZmZnqPh9//LHQ6/UiISHB6Tbp9Xrx3nvv2Wzr3LmziI2NFVlZWeq2c+fOCYPBIHbs2GGz79SpU0X//v2FEEKYzWbRqVMnMX36dJt9tm3bJqKiosSNGzeEEEKMHz9e9OzZU5jNZnWfVatWCb1eL7Zv3y6EECIlJUVER0eLxMREm3MNHz5cPPjgg+rj+Ph40bhxY3H+/Hl12+uvvy70er348MMP1W2ff/650Ov14vfffy/2fhT3n9LGwnTu3FksXLjQ4d/MZrPIyckRr7zyihgyZIi6/Y033hDR0dHi77//dnjcxYsXhV6vFwcPHhQHDhwQkZGRYv369Tb7OPP+UO7X2bNn1W379++3uzcF+0VCQoJo3bq1zbmWLVsmWrduLVJSUtRtN2/eFM2bNxebN292fHOcPG7OnDli7NixhZ7j4MGDQq/Xi4sXLxZ6D4TIu2/5++Tt27dFkyZNRLdu3URubq66/dFHHxUTJkxw+HzK67Z69WrRpUuXYtvhzDUqffLkyZPqPpcuXRKNGze2e/8X1KdPH/HKK6+oj41Go2jevLldn1CYTCaRk5MjunfvbvOeio+PF3q9Xvz00082+xe8jwXl5uaKv/76S+j1enHs2DF1e+fOncUDDzwgcnJy1G2vvvqqaN++vfp4y5YtwmAw2D2nwpnPGkd+//13u+NMJpPo3bu3GDp0qLrNUV92ZNy4cQ5fh8GDB4vmzZuLmzdvqts2bNgg9Hq9+nmsfF4fPXrU5tgnn3xSjBs3rtDnzP8+F8L5z8H+/fuLESNG2Owza9Ysodfri/03MiEhQej1evG///1P3ZaWliZatWolFi9eLIQQYs+ePUXes99++03o9Xrx8ccf252jc+fORT4/0Z2CP4UQVbCFCxdiz549ePvtt9G8eXOnj2vSpAnq1auH3bt3q3Osdu/ejdatWyM0NFTdb+fOndi4cSPOnz+PjIwMdfu5c+dQs2ZN9fH999/vUrt/+OEHRERE2PwS3aJFC4SEhKiPMzMzcfLkSbz88ss2o1ktWrSATqfD6dOnodfr8eOPPyI2NtZmlOaBBx5wqT1Fadu2LTw9PdXHR44cgSzL6Natm0272rVrh48//hgmkwnnz5/HlStX0KNHD5t92rZtC6PRiDNnzqB169b44Ycf0KtXL5vRqgcffBBvvvmm+vjMmTPIzMxEjx49bNrVq1cvTJ8+HcnJyep9q1Wrls1cVWUEJf/oivL3v//+Gw0aNCj0uv/zn/8Ue2/yF29xxq1bt5CYmIhPP/0Uf//9tzoiGx4eru7z9ddf47777nM4mpHfvn37sGvXLrz44ot46qmnHO5T3PujVq1aNiNUyv0o7t4UdOTIEbRv3x5+fn7q6+3r64uIiAj8+OOPpTqucePG+M9//oOEhAR06tQJERERNqNUrsrfF/z8/BAUFIRWrVrZnLNu3bq4cuWK+thoNGLt2rXYtWsXrl69apMmnZubW+TIiDPXeOrUKYSGhiI6Olo9rlatWoiIiCj2enr16oWNGzdi5syZ0Gq1+L//+z+kp6ejZ8+e6j5//PEHli5diu+++w7Jycnq9nPnztmcKzw83KkRrUOHDmH16tU4c+aMTbr7uXPn0KpVK/VxmzZtbO5Nw4YNkZycjOzsbHh4eODrr79GkyZNCn1OZz5rHPWFH374AUIIm88MWZbRo0cPdbTQXaKiohAQEKA+btiwIQDLe6hu3bo4fPgwwsLC0Lx5c7trcKVSszOfg4GBgfjll1/wyiuv2OzTpUsXbNmyRX1sNptt0pILZkJ069ZN/f++vr5o3749Tp06BQDQ6/W4ffs24uPj0adPHzRv3hw+Pj7q/krqcv4U64LnILrTMUAkqmD79u1DREQEmjZt6vKxvXr1wvbt2/Hiiy8iPT0dX3zxhc0/rPv370d8fDwGDRqEiRMnIjAwEElJSRgzZoxd+mb+oNIZSUlJDgs/5A8QU1NTYTKZMGfOHMyZM8duXyXlMCkpyW5ZCk9PT5t/tEuj4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc5sK7qc8vnXrlvr//f39bfbR6XR225VtxaXgOvNF2dVAZfr06fj+++8xevRoNGjQAH5+ftiyZYvN/NObN28iKiqq2HMdPHgQgYGB6Nq1a6H7FPf+KOx+OZuerEhJScHJkyexe/duu7+1a9euVMc9+uijSE9Px9atW7Fy5UoEBgZi0KBBGDduXIkCxYIVRj08POy26XQ6m3uwePFi/Oc//8GYMWMQEREBf39/fPrpp1i9ejWMRmORAaIz11jU50Fxy0v07t0by5Ytw9dff40OHTqoP3opP2ClpaVh6NChCAkJwfTp01GzZk14enri5ZdfRnZ2ts25nPkcO3XqFEaPHo2uXbtixIgRCAkJgSRJGDBggF2/cXRfhRDIycmBh4cHbt68ibCwsEKfy5nPGkeVR69duwYfHx+7yqshISHIzMxUA1R3cHSNQN57KCUlBUlJSQ6DfVf6rzOfg2azGbm5uXZ9qeDjGTNm2MzjfO2119T5/T4+PnYp4SEhIfj1118BAPfccw9WrVqFdevWYeTIkdBqtejWrRteeuklBAcH4/r16/D19XV4DqJ/CgaIRBVszZo1eO655xAfH4/FixdDlp2vHdW7d2+sWrUKJ06cwKVLl2A2m21+Of3kk08QHR2tzpcBYDMRPz9X5qEBQFhYmMMCHvl/3ff394ckSRg7dqzDEUplhCksLAw3btyw+ZvRaLQZ8SyNgtcWEBAArVaLLVu2OLzu4OBg9UvtvHnzHAZayshbWFiYzTUDsLsW5QvkjRs3EBQUpG5XjiurZSScGb3J/8WqOEajEYcOHcIrr7yCQYMGqdv/9a9/2eyn/BBRnJdffhkbNmzA0KFDsXnzZpt7oyjN+8MVAQEB6NKlC0aPHm33N19f31IdJ8sy4uLiEBcXh6tXr2LXrl1YtmwZwsPDbe5jWfrkk08wePBgjBgxQt3mbJERZ67R0XsYsPTx4qoG165dG5GRkdi9ezdatGiBzz77DBMnTlT/fvLkSfz111945513bEaFb9++7VT7Czpw4ACCgoLw5ptvqu//y5cvl+hcgYGBDuc4Kpz5rHGkevXqyMjIQGZmpk2QmJycDG9v73JdxicgIADh4eFYuXJlqc7jzOegcr8K9qWCj8eOHWuTdZA/EyIjI8OuWnVycrJNIN+pUyd06tQJt2/fxueff44FCxZg3rx5WLZsGUJDQ5Genu7wHET/FAwQiSqYXq/HW2+9hbi4OMyaNQvz5s1z+tiGDRtCr9dj9+7duHTpEtq3b2/zD29WVpbdF4miKkm6IioqCrt27cJff/2l/gJ+4sQJm39EfXx8EBMTg7NnzxZafAQAIiMjsWPHDpt/kJ2p5FpSbdu2hclkwu3btxEbG+twn/r16yM8PByXL1/GgAEDCj1XZGQkDh48iMmTJ6tfAPft22ezz7333gtvb2/s2bPH5j7s2bMH9erVK7MS/O5OMc3OzobJZLLpU2lpaTh48KDNfu3atcN7772H69evFzmi4+fnh7fffhtDhgzBsGHDsGnTJvj5+dnsU5r3hyvatWuHPXv24N5773VpGRRXj7vrrrswcuRIbN++HX/88QeAko96usJoNNq8biaTCR9//LHNPoW1w5lrjIqKwooVK/D999+raaZXrlzBTz/95FTqfO/evbFmzRq0bdsWWVlZNmmIytqx+dv/7bff4vLly4iMjCz23AVlZWVBp9PZBGwl/Vxs164dPvnkE/zyyy9o1KiR3d+d+axxJCoqCpIkYe/evejbty8AQAiBvXv3FjoaWZSCI8quaNeuHTZs2AAfHx+X0rYLcvZzsFGjRvj0008xcOBAdZ+CnzF33313kZ9d+/fvV6txp6en4/Dhww4/x/39/dGnTx988803+O677wBAzX44ePAgevXqZXOOgp9PRHcqBohElUDTpk2xdu1aDB8+HH5+fmqFTGf07NkTmzZtQlpamt2X5/bt22Pu3LlYvXo1oqOjcejQIRw5csQtbe7fvz9Wr16NkSNHYty4ccjKysLy5cvtRoGmTJmCuLg4yLKM7t27w9fXF1evXsXnn3+OiRMnon79+oiLi8O//vUvPPfcc4iLi0NSUhLeeusteHt7uzyy6Yx77rkHAwcOxKRJkzBs2DBERUWp8wrPnTuH+fPnQ5ZlTJ8+HdOmTUNaWho6duwInU6Hixcv4sCBA0hISIC3tzdGjBiBAQMGYMKECXjsscdw5swZu8AsMDAQzzzzDNasWQOtVovIyEjs27cPhw4dKnJZh9JyJs3TFf7+/oiKisLKlSvh5+cHWZaxbt06+Pn52czjiouLw86dO/HUU0/hueeeQ40aNfDnn38iIyPDZgQLAIKCgvDOO+/gqaeewqhRo7B+/Xq7tLrSvD+cFRcXh//973945plnMHjwYISHh+P69ev45ptv0KJFC5tKs64eN3PmTAQEBCA6Ohr+/v44evQozp8/r1Ybrl+/PgBg69at6N27N7y8vOxSrkurffv2eP/991GnTh0EBgbi/ffft0vPLKwdzlzj/fffj0aNGmHChAmYMmUKPD09kZCQ4PSPHz179sSiRYuwaNEitGzZ0mb+akxMDHx8fPDKK6+oSzCsWLHCZt6rK2JjY/Huu+9i/vz56NKlC7799luHS7U4o2/fvnj//fcxbNgwjB07FvXr18elS5dw7tw5TJkyxanPGkcaNGiA3r17Y+7cuUhLS1OrmP75559qJVJX1K9fH59++ikOHDiA8PBwVK9e3en7Fxsbiw4dOmDo0KEYMWIEGjZsiLS0NPzyyy8wGo2YPHmyU+dx9nPwueeew9ixYzF37lz19VFGu53JIPDy8sKyZcuQkZGB6tWr45133kFOTg6efvppAMAHH3yAkydPqvOkz507h08++QSPPPIIAEsg26VLF8yePRtpaWkICwvD22+/bffjyOXLl9GtWzcsWLBADeKJ7hQMEInKWWEBT6tWrZCYmIjRo0fD19e3yBG3/Hr37o3ly5fDw8PDbi7XwIEDcenSJWzatAlGoxGxsbFYsmRJkSNizvL29sb69esxe/ZsTJw4EbVq1cL06dOxatUqm/1atmyJ999/HwkJCZg2bRrMZjNq1qyJ++67Tx1dCg8Px9q1azF//nyMHTsWDRo0wIIFC/Dss8+W2S+2s2bNQr169bBt2zYkJCTAz88PDRs2tFlwulevXvD19cXatWuxfft2yLKM2rVro1OnTupoS1RUFJYuXYqlS5dizJgxiIyMxLJly/D444/bPN/48eOh0WiwZcsWJCcno06dOli8eLG6DEFVsWTJErzyyiuIj49HYGAgnnrqKWRlZanrDAKWtLktW7Zg8eLFWLBgAbKzs1G3bl2MGjXK4TmrV6+OjRs34qmnnsLYsWMdrjlW0veHs4KDg7F161a8+eabeO2115Camorq1aujefPmRQZrzhwXExODf//739i6dSuMRiPq1KmDefPmqe/XWrVqIT4+Hu+99x42b96MGjVq2I2YlNYrr7yCWbNmYe7cufDy8kLfvn3RrVs3mznLhbXDmWuUJAmrV6/GK6+8ghkzZiAkJASjRo3C4cOH1fm8RbnrrrvQrFkzfPvtt3avbWhoKJYvX45FixZh9OjRqFu3LubMmVPiYi33338/pkyZgs2bN2Pbtm2IiYnB2rVr0b17d5fP5enpiXfffRdLlixBQkIC0tLSUKtWLXUtWsC5zxpHXn31VbzxxhtYtWoVUlNTodfrsWbNGrRs2dLldj755JP4+eefMWPGDNy6dQtjx47FuHHjnDpWkiSsWLECa9aswbvvvourV68iICAAjRo1wpAhQ1xqhzOfg926dcPLL7+Mt956C9u3b0fr1q0xbdo0vPDCC079e+Dl5YVFixZh3rx5+OOPP3DPPfdg3bp16o8OBoMBBw8exGuvvYZbt24hLCwMjz/+OCZMmKCeY+HChZg9ezYWLFgAHx8fPPnkk4iKisLevXvVfYQQMJlMdmt4Et0JJCGcWPCMiNxi3LhxyMjIsFuDkOwdP34cTz31FN59912bqo1Uvtq0aYOhQ4cWGtwREZW1VatWYc2aNTh27FiRqdyJiYnYvHkzjh49Wo6tI7rzcASRqBzcunUL33zzDY4dO2Yzr4LyLF68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdtH+kS5cu4eDBg7h582aJ5nkREZXEjRs3sHbtWrRp0wbe3t44fvw43nrrLTz22GMuzQ8mopJjgEhUDr755htMnToVbdu2xbPPPuvUMfnXmypIluUyq+YI5KXOlOfzZ2dnY9GiRUhOToavry9iY2Mxffp0yLJcIe35p9u0aRN27dqFoUOHulRcg4ioNHQ6Hf7880/s3LlTnQP49NNP26SAElHZYoopUSV06dKlIheK79evHxYuXFhmz3/06FF1Qr8jrsxfuRPbQ0RERHSnYoBIVAllZ2eri/o6EhQU5NLyBK5KS0vD2bNnC/27KxXw7sT2EBEREd2pGCASERERERERAICTdoiIiIiIiAgAA0QiIiKX7dixAwaDAenp6RXdFCIiIrdigEhEREREREQAGCASERERERGRFQNEIiIiB44fP47BgwcjOjoabdq0wcsvv4y0tLRC91+7di26deuGqKgotG/fHsOGDUNSUpL695s3b2LmzJlo3749oqKiMHDgQHz//fflcSlERERO01Z0A4iIiCqbEydOIC4uDl27dkVCQgJSUlKwZMkSpKamIiEhwW7/nTt3Ys2aNZgyZQruvfde3Lx5E19//TUyMzMBWJauefbZZ5Gamopp06YhODgYW7ZsQVxcHPbt24ewsDAAwPTp03Hs2DEcPHiwXK+XiIhIwQCRiIiogCVLlqBZs2Z488031W3h4eGIi4vDb7/9Zrf/qVOn0KFDBzz11FPqtgcffFD9///9739x5swZfPTRR6hXrx4AoH379ujRowfeeecdxMfHAwBkWYZGoymbiyIiInICU0yJiIjyyczMxMmTJ9GzZ0/k5uaq/7Vo0QI6nQ6nT5+2O6Zx48Y4dOgQEhIScOrUKZhMJpu/HzlyBBEREbj77rvV8wFAq1at8OOPP6r7LViwAPv37y/bCyQiIioCRxCJiIjySU1Nhclkwpw5czBnzhy7v1+9ehU1atSw2fboo48iPT0dW7duxcqVKxEYGIhBgwZh3Lhx0Gg0SElJwcmTJxEREWF3vjp16pTZtRAREbmKASIREVE+/v7+kCQJY8eOxf3332/39+rVq+Orr76y2SbLMuLi4hAXF4erV69i165dWLZsGcLDwzFo0CAEBAQgMjISs2fPtjufh4dHWV0KERGRyxggEhER5ePj44OYmBicPXsWY8eOdfn4u+66CyNHjsT27dvxxx9/AADatWuHr776CjVr1kRISIi7m0xEROQ2DBCJiIgKmDJlCuLi4iDLMrp37w5fX19cvXoVn3/+OSZOnGi3/8yZMxEQEIDo6Gj4+/vj6NGjOH/+PKZOnQoA6Nu3Lz744AMMGTIEQ4cORe3atXHz5k2cOnUKYWFhiIuLAwDMmDED33zzDechEhFRhWGASEREVEDLli3x/vvvIyEhAdOmTYPZbEbNmjVx3333ITQ01G7/mJgY/Pvf/8bWrVthNBpRp04dzJs3D127dgUAeHp6YtOmTVi+fDkSExORnJyM4OBgNG3aFF26dFHPYzab7QrcEBERlSdJCCEquhFERERERERU8bjMBREREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERuNX36dPTv3x8AsGPHDhgMBqSnp1dwq9yrf//+mD59eoU894kTJ9CvXz9ERUXBYDBUSBsAID09HQaDATt27KiwNpSlzZs3V+j9raz++OMPPPnkk4iJiYHBYMClS5cc7nft2jWMGDECLVq0gMFgwNGjR8u5pXkq8v2qMBgM2Lx5c4W2oSiXLl2CwWDAZ599VuR+iYmJaNOmjfr4zz//xJw5c9CzZ09ER0fjgQcewKuvvorU1NSybjIRlSEuc0FEbjV69GhkZWVVdDPuWLNmzUJwcDDefvtteHh4VHRz6B9m0aJFuH37NlavXg1vb29Ur17d4X5r1qzBL7/8gqVLlyIgIAANGzYs55ZWLlu3bsXdd99d0c0otccffxydO3dWHx8+fBjffvstBg0aBIPBgIsXL+LNN9/EyZMn8e9//xuyzHEIoqqIASIRuVWdOnUquglOycrKgpeXV0U3w2V//vknBgwYgNatWxe6T1W9tn8yo9EIT0/Pim5Gsf7880906dIF7dq1K3a/6Oho3H///YXuYzKZYDKZ/hE/dMTExFR0E9yiRo0aqFGjhvq4d+/eeOqppyBJEgCgTZs2qFGjBoYNG4bjx48X+TlFRJUXf9ohIrfKn2LqyPr16xEVFYVPP/202HN16dIFixYtsts+fvx4PPnkkwCAjIwMzJ07F927d0d0dDS6dOmCOXPmIC0tzeYYg8GADRs2YP78+Wjbti369Onj1PX89ttvGDhwIKKiotCzZ89C2338+HEMHjwY0dHRaNOmDV5++WW7Nhw9ehR9+vRBVFQUHn30UZw6dQpt2rRBYmJise04evQoDAYDTCYT5s+fD4PBoKbNdenSBQsXLsTKlSvRsWNHtGjRAoBl0fV169ahW7duiIyMRPfu3fHhhx/anfvAgQPo378/oqKiEBsbi0WLFiEnJ8dmn71796J79+5o2rQpnnrqKfz555925zGZTEhMTESnTp0QGRmJ3r17Y9euXTb7KP3j888/R69evRAdHY2RI0fi5s2bOH/+PIYMGYKYmBj0798fv/zyS7H3xR2ys7Mxd+5ctGzZEq1bt8aCBQuQm5trt9/Nmzcxc+ZMtG/fHlFRURg4cCC+//57m31u3bqFiRMnIiYmBh06dMC6devw+uuvo0uXLuo+Sur1qVOnMGTIEDRt2hTr168HYOlvI0eORLNmzdCsWTOMHz8eSUlJLrdj27Zt6N27N5o2bYo2bdpg8ODBOHPmTJH34eeff8YzzzyD6OhotGrVCpMnT8b169cB5KUgXrhwARs3boTBYMCQIUMcnsdgMODIkSPYv38/DAaDeu3Ka3/gwAG1badOnQLgXB905t44+37dvXs3+vTpg8jISNx///1YtmyZzWuuvEanT5/GkCFDEB0djUceeQSnT59GRkYGXnzxRbRo0QIPPPAAPvrooyLvq3JP8qeYDhkyBOPHj8euXbvQrVs3NG/eHMOHD8dff/1V5HmuXbuGF198EQ888ACaNm2K7t27Y9myZcjOzi62DZcvX8akSZPQpk0bREdHo0+fPnbvz8zMTMycORMtWrRAx44dkZCQALPZrP69YIppUFCQGhwqmjRpAgBITk4utk1EVDlxBJGIys3KlSuxbt06rFq1Cvfdd1+x+/fs2RN79uzB1KlT1S8h6enpOHToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixZBCFHs82dlZWHYsGEICgrCkiVLkJWVhQULFiAjIwN6vV7d78SJE4iLi0PXrl2RkJCAlJQULFmyBKmpqUhISAAA/P333+qX20mTJuH69euYMmUKjEajU/cuIiICW7duxRNPPIGhQ4eie/fuCA4OVv/+0UcfoWHDhpg1axZMJhMAYN68edi5cydGjx6NiIgIfPXVV5gxYwYCAwPVNLHdu3dj8uTJeOKJJzBp0iRcuHABS5cuhRAC8fHxAIDTp09j4sSJ6Nq1K2bMmIHff/8dL7zwgl0bExISsH79eowZMwZRUVHYt28fpkyZAkmS8NBDD6n7Xb16FQkJCXjhhReQmZmJV199FTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccf230Bzc9RIFeQRqMp8hxvvPEGtm3bhokTJ6JBgwbYtm0bPvnkE5t9srOz8eyzzyI1NRXTpk1DcHAwtmzZgri4OOzbtw9hYWEALEHQt99+i5deegmhoaHYuHEjzp07B41GY/e8kyZNwqBBgzBmzBhUq1YN58+fx6BBgxAZGYnFixfDZDJh+fLleO655/Cf//wHkiQ51Y5vvvkGs2fPxvjx4xETE4O0tDScPHkSt2/fLvQe3LhxA0OGDEGDBg2wZMkSpKenY8mSJXj22Wexfft2VK9eHVu3bsXYsWPRpk0bDBkyBH5+fg7PtXXrVsyZMwf+/v6YNGmSzQjh5cuXsXjxYowePRqhoaG4++67neqDztwbZ9+vX375JSZOnIi+ffti6tSp+PXXX7F8+XKkpKRg7ty5Ntcyffp0PPXUUxg+fDiWLFmC8ePHo2nTpqhTpw4SEhKwfft2xMfHo2XLljYja874/vvvce3aNcTHx8NoNGL+/Pl45ZVX8NZbbxV6TEpKCgIDA/Hiiy+iWrVqOHfuHBITEx22Pb/k5GQ88cQT8Pb2Rnx8PO666y789ttvuHr1qs1+b7zxBh588EEkJCTgyJEjWLlyJRo2bIhevXo5fV3ffvstAPzj04qJqjRBRORG8fHxol+/fkIIIbZv3y70er1IS0sTS5YsETExMeLrr792+lynT58Wer1efPfdd+q2Xbt2iUaNGomkpCSHx+Tk5Ijjx48LvV4vLl++rG7X6/XikUcecelaNm/eLJo0aSKuXr2qblPOHR8fr24bNGiQGDx4sM2xhw8fFnq9Xvz6669CCCEWLlwoWrduLTIzM9V9Pv74Y6HX60VCQoLTbdLr9eK9996z2da5c2cRGxsrsrKy1G3nzp0TBoNB7Nixw2bfqVOniv79+wshhDCbzaJTp05i+vTpNvts27ZNREVFiRs3bgghhBg/frzo2bOnMJvN6j6rVq0Ser1ebN++XQghREpKioiOjhaJiYk25xo+fLh48MEH1cfx8fGicePG4vz58+q2119/Xej1evHhhx+q2z7//HOh1+vF77//Xuz9KO4/pY2O3LhxQ0RFRYm1a9eq20wmk+jevbvQ6/Xqtn//+98iIiJCnD17Vt2Wk5MjHnjgAbFw4UIhhBC//vqr0Ov1Yvfu3eo+mZmZonXr1qJz587qNuV9sXHjRpu2TJkyRTz44IPCaDSq286ePSsaNWokPvvsM6fbsX79evU96KzFixeLFi1aiNu3b6vbvv/+e6HX68WuXbvUbZ07d1afpyiDBw8W48aNs9kWHx8v9Hq9+Omnn9RtzvZBZ+6Ns+/Xxx9/3O79um7dOtGoUSP1WOU1yv/+Ufpk/rampqaKJk2aiPfff7/I+1HwfTt48GDRvHlzcfPmTXXbhg0bhF6vt/mMKE5OTo743//+JyIjI23uTUFvvPGGiI6OFn///bfDv1+8eFHo9XoxdepUm+0PP/yweOGFF9THCQkJonXr1oU+T0ZGhujRo4fd/SWiqoUppkRU5hYuXIh//etfePvtt23Sk4rTpEkT1KtXD7t371a37d69G61bt0ZoaKi6befOnejbty+aNWuGiIgINf303LlzNucraj6UIz/88AMiIiJsRgZatGiBkJAQ9XFmZiZOnjyJnj17Ijc3V/2vRYsW0Ol0OH36NADgxx9/RGxsrM3cwAceeMCl9hSlbdu2NnPYjhw5AlmW0a1bN5t2tWvXDr/88gtMJhPOnj2LK1euoEePHjb7tG3bFkajUU1J/OGHH9ClSxebUbgHH3zQ5vnPnDmDzMxM9OjRw2Z7r169cO7cOZt0s1q1atnMVa1bt656DQrl73///XeR1/2f//yn2P/yF9Uo6LfffoPRaLR5LWRZtnttjhw5goiICNx9993qfQKAVq1a4ccffwQA9X/zp5N6eXmhffv2Dp+7U6dOds/RrVs3yLKsPsfdd9+NWrVqqed2ph2NGzfGTz/9hAULFuCbb75xKv3w1KlTiI2NtRkVbNq0KWrVqoUTJ04Ue7yzwsPD0bhxY/Wxs33QmXvjzPvVZDLhp59+cthPzWYzvvvuO5vt+edaKn0yfz/19/dHUFBQsf3UkaioKAQEBKiPlRG3os4lhMDGjRvRq1cvNG3aFBEREZgyZQqys7PtRgPz+/rrr3HfffcVWlRIERsba/O4YcOGxaa95m/bSy+9hBs3bmDBggVOHUNElRNTTImozO3btw8RERFo2rSpy8f26tUL27dvx4svvoj09HR88cUXeOWVV9S/79+/H/Hx8Rg0aBAmTpyIwMBAJCUlYcyYMXbpm/mDSmckJSXZpHEq8n/hTE1Nhclkwpw5czBnzhy7fZUvbUlJSXbLJnh6esLHx8elNhWm4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc8EK7qc8vnXrlvr//f39bfbR6XR225VtxaXg5g82CuMovVOhzLErrN2KlJQUnDx5EhEREXbnUAKH69evw9fX167YjKM+VNhzvPXWWw5TDJXXwpl2tG/fHq+99hree+89bNq0CT4+Pnj44Ycxbdq0QvtbUlIS7r33XrvtoaGhuHXrlsNjSsJRPwWK74PO3Btn3q8pKSnIycmxa4fyuOC1OuqT1apVs9nHw8PDqSC8oILncabPv/vuu3j99dcxcuRItGrVCtWqVcMPP/yAuXPnFnnczZs3ERUVVaI2OZsGv3jxYuzfvx8bNmxA7dq1nTqGiConBohEVObWrFmD5557DvHx8Vi8eLFLpc979+6NVatW4cSJE7h06RLMZjO6deum/v2TTz5BdHQ0Zs+erW47duyYw3MVNQ/NkbCwMIfFWPKPhvn7+0OSJIwdO9bhCKXyi31YWBhu3Lhh8zej0YiMjAyX2lSYgtcWEBAArVaLLVu2OLzu4OBgdX3KefPmOQy0lLL8YWFhdgUnCl6LMgfvxo0bCAoKUrcrxwUGBrp4Rc5xFCgV9NprrxVaOEkJDJKTk23aWPB6AwICEBkZadPPFMocu9DQUKSnp9tVJC14rxSOXrOuXbvi8ccft9tXuafOtAMA+vXrh379+uHGjRvYt28fXnvtNfj5+WHKlCkO2+LoNQYsQa8z97iklHteXB905t44834NCgqCTqezu1blh4L8I3qV0SeffIIePXpg4sSJ6rY//vij2OOUH87KysaNG/HOO+9g6dKlaNmyZZk9DxGVDwaIRFTm9Ho93nrrLcTFxWHWrFmYN2+e08c2bNgQer0eu3fvxqVLl9C+fXubACQrK8uuTH7BynwlFRUVhV27duGvv/5S09ZOnDhh8+XSx8cHMTExOHv2LMaOHVvouSIjI7Fjxw6bJSicqeRaUm3btoXJZMLt27ft0sYU9evXR3h4OC5fvowBAwYUeq7IyEgcPHgQkydPVoOaffv22exz7733wtvbG3v27LG5D3v27EG9evUKHUUrrf/85z/F7lPU+nN6vR6enp749NNP0aBBAwCW6q8FX5t27drhq6++Qs2aNe1G/hSRkZEALK+rUtQjKysLhw8fhq+vb7HtbNeuHc6cOYPIyMhCf8xwph35BQcHY+DAgdi/fz9+//33QveLjo7Gli1bkJaWpqaZnjp1CpcvXy50FNodnO2DztwbZ96vGo0GERER+OSTT9RUdMDST2VZRrNmzdx0ZWWjpJ937dq1w3vvvYfr16+7nElRnF27dmHhwoWYPn26S8VsiKjyYoBIROWiadOmWLt2LYYPHw4/Pz+1OqEzevbsiU2bNiEtLc0uuGzfvj3mzp2L1atXIzo6GocOHcKRI0fc0ub+/ftj9erVGDlyJMaNG4esrCwsX77cJkAFgClTpiAuLg6yLKN79+7w9fXF1atX8fnnn2PixImoX78+4uLi8K9//QvPPfcc4uLikJSUhLfeegve3t4uj2w645577sHAgQMxadIkDBs2DFFRUeqcrnPnzmH+/PmQZRnTp0/HtGnTkJaWho4dO0Kn0+HixYs4cOAAEhIS4O3tjREjRmDAgAGYMGECHnvsMZw5c8YuMAsMDMQzzzyDNWvWQKvVIjIyEvv27cOhQ4ewdOlSt1+fwpm0uaIEBQVhwIABSExMhFarRcOGDbFt2za7kd2+ffvigw8+wJAhQzB06FDUrl0bN2/exKlTpxAWFoa4uDjo9Xp07twZc+bMQXp6OsLCwrBhwwZ4eXk59RqPHTsWjz/+OEaOHIlHH31Undt2+PBh9OvXD23atHGqHQkJCbh16xZat26NoKAg/PTTTzh27BgmT55c6HM/++yz2LJlC4YPH47hw4cjIyMDS5YsgV6vt5tv6k7O9kFn7o2z79dx48Zh2LBhePHFF9GrVy/89ttvWL58OR5//HGXK5GWt/bt2+O9995TK6nu2rUL58+fL/a4uLg47Ny5E0899RSee+451KhRA3/++ScyMjIwYsSIErfn2LFjePHFFxEbG4uYmBicPHlS/VvBNROJqOpggEhEblfYl+FWrVohMTERo0ePhq+vb5Ejbvn17t0by5cvh4eHB7p27Wrzt4EDB+LSpUvYtGkTjEYjYmNjsWTJkiJHI5zl7e2N9evXY/bs2Zg4cSJq1aqF6dOnY9WqVTb7tWzZEu+//z4SEhIwbdo0mM1m1KxZE/fdd5/6a314eDjWrl2L+fPnY+zYsWjQoAEWLFiAZ599ttDlAkpr1qxZqFevHrZt24aEhAT4+fmhYcOGeOyxx9R9evXqBV9fX6xduxbbt2+HLMuoXbs2OnXqpM6JioqKwtKlS7F06VKMGTMGkZGRWLZsmV263/jx46HRaLBlyxYkJyejTp06WLx4MXr37l0m1+cu06ZNQ25uLlauXAlZlvHwww/j2WefxcKFC9V9PD09sWnTJixfvhyJiYlITk5GcHAwmjZtalOUZuHChZg9ezbmz58PHx8fPPnkk6hduzZ++OGHYttRv359bN26FcuXL8fMmTORlZWF8PBwtGvXTi3k40w7oqKisHHjRnz88cdIT09HzZo1MW7cODzzzDOFPndwcDA2bdqEhQsXYvLkydDpdLj//vvx4osvlvlC9s70QWfujbPv1w4dOmDZsmVYvXo1du3aheDgYAwdOhTjxo0r0+t0hzFjxiAlJQXLly8HAHTr1g0vv/wynnvuuSKPU5ZDWbx4MRYsWIDs7GzUrVsXo0aNKlV7jh49ipycHHz55Zf48ssvbf42duzYKnFPicieJIQTi4ERETlp3LhxyMjIsFuDkOwdP34cTz31FN59912byoh058jNzcVDDz2E6OhovP766xXdHCIiomJxBJGI3OLWrVv45ptvcOzYMQwcOLCim1MpLV68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdNHKTPXv24Nq1a9Dr9UhPT8e///1vnD9/HosWLarophERETmFASIRucU333yDqVOnom3btnj22WedOkZZw80RWZZdqnbqKiEETCZTuT5/dnY2Fi1ahOTkZPj6+iI2NhbTp0+HLMsV0h5yPx8fH+zYsQMXLlyAyWSCXq/HmjVrSrTECxERUUVgiikRVYhLly4VuVB8v379bOaAudvRo0fx9NNPF/r38p4/U9naQ0RERP9MDBCJqEJkZ2fj119/LfTvQUFBRS5PUFppaWk4e/ZsoX+vXr06wsPDy+z5K3t7iIiI6J+JASIREREREREBADihhYiIiIiIiAAwQCSiKuizzz6DwWDApUuXXDquS5cubltqYMWKFbjvvvvQqFEjTJ8+3eE+iYmJaNOmjVuezx12796NHTt22G0fMmQIxo8fXwEtck52djYSExPx888/22y/dOkSDAYDPvvsswptR2ls3rwZBoOhyH127NgBg8Gg/teuXTsMGzYMp0+fttnv4MGDGDhwIFq2bInmzZujd+/emDlzJtLT09V9unTpop4nMjISHTp0wIgRI7Bz506YzeZi21tWfaXgfTh69CgMBgN+++03p45PTk5GYmKiS58JBoMBmzdvVh+789oKe6+VVHp6OgwGg1vO6c7PQWd8+eWX2LhxY7k9HxGVHquYEhG56IcffkBiYiImTZqE1q1bIyQkpKKb5JRPPvkEKSkp6N+/f0U3xSU5OTlYsWIFatWqhcaNG6vbq1evjq1bt+Kee+6p0HaUl3fffRdeXl5ISkrCqlWr8PTTT2P37t0IDw/HRx99hMmTJ+OJJ57A888/D0mS8Ouvv2Lnzp24ffs2fH191fM89NBDGDJkCEwmE5KSkvDll1/i5Zdfxq5du7B69Wp4eHgU2oZZs2ZBqy37rw4RERHYunUr6tSp49T+ycnJWLFiBVq3bu303OWtW7eW2TznqvpeKwtfffUV9u7di7i4uIpuChE5iQEiEZGL/vzzTwDAU089BT8/vwpuzT+Xh4cHYmJiKroZ5SYqKkoN9CIjI9G5c2fs2rULw4cPx+bNm3H//fdj7ty56v4dO3bEiBEjULDUQPXq1W3uW48ePdCzZ0+MGDEC69atw9ixYwttQ8OGDd17UYXw8/Mrs9c2KysLXl5e/6i+Q0TkCqaYElGpTJ8+Hf3798fnn3+OXr16ITo6GiNHjsTNmzdx/vx5DBkyBDExMejfvz9++eUXm2MzMzPx6quvIjY2FlFRUXj00Ufx5Zdf2uwjhEBiYiLatWuHZs2aYdq0aUhLS7Nrh9FoxKJFi3D//fcjMjISDz/8MA4dOuTy9ZhMJiQmJqJTp06IjIxE7969sWvXLpvrnTZtGgCgRYsWMBgMOHr0aJHn/OmnnzBgwABER0ejb9++OH78uEvPeeTIERgMBvz999/qtieeeAKNGzdGamqquq1Pnz5YtmyZwzZMnz4de/fuxbFjx9QUw8TERJt9du3ahW7duqF58+YYPnw4/vrrL5u/l/QeO3Pcp59+iv79+yMmJgatWrXC448/jmPHjgEAmjdvDgB48cUX1bZfunTJYYqpkj63bt06dOjQAS1atMDChQshhMChQ4fQu3dvNGvWDKNHj8atW7fU4zIyMjB37lx0794d0dHR6NKlC+bMmWPT1wprh7PXmJ2djblz56Jly5Zo3bo1FixYUORaoEW56667EBwcjMuXLwMAbt++jdDQUIf7SpJU7PliY2PRvXt3bNmypcj9CqZh/vXXX5gwYQLatWuHpk2bomvXrnjzzTeLPIcz98FRium2bdvQu3dvNG3aFG3atMHgwYNx5swZXLp0CX369AEAPP300+prk/88X3zxBZ577jk0a9ZMDaILppgqtm7dii5duqBp06YYOXKkzfuusNTX/PeluPfagQMH0L9/f0RFRSE2NhaLFi1CTk6Ozfn27t2L7t27o2nTpnjqqafUH6WK88Ybb6BPnz5o1qwZOnbsiMmTJyMpKcnhvitXrkRsbCyaNWuGyZMn4/bt2zZ/v3jxIkaPHo3mzZujWbNmeO6553D+/Hn174WleCv/JgCWNPt33nkHly9fVu9FYSn5RFR5cASRiErt6tWrSEhIwAsvvKAGfTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccfq19YX375ZRw8eBCTJk1CnTp1sG3bNowaNQrvvvsuWrZsCQDYtGkTVq5ciVGjRqFly5bYv38/Fi9ebNeG8ePH49SpUxg3bhzq1KmDPXv24Pnnn8f27dtdSgdMSEjA+vXrMWbMGERFRWHfvn2YMmUKJEnCQw89hNGjR6NGjRpYvXq1mvJX1KhKVlYW4uPjERcXh9DQUKxcuRJjxozB559/Dm9vb6ees1mzZtDpdDhx4gR69eqFzMxMnD59GjqdDt9++y06deqEmzdv4syZM5g6darDdowePRpXrlzB7du3MWvWLABAjRo11L9///33uHbtGuLj42E0GjF//ny88soreOutt0p9j4s77sKFC5gwYQKGDBmCqVOnIjs7Gz/++KMawL377rt45pln8Pzzz6NTp04ALKNg165dc/h8H3/8MZo2bYoFCxbg9OnTePPNN2E2m3H8+HFMmDABWVlZmDdvHpYsWaIGC1lZWTCZTJg4cSKCg4Nx9epVrFmzBhMmTMDbb79dZDucvTdvvPEGtm3bhokTJ6JBgwbYtm0bPvnkk0LvW1HS0tJw69YtNShs0qQJPv74YzRp0gTdunUr0ZIo7du3x+7du3Hp0iWnUy+nTZsGo9GIefPmwd/fHxcvXiw2mCnJffjmm28we/ZsjB8/HjExMUhLS8PJkydx+/Zt1K1bF2+88QamTJmCmTNnIiIiwu74l156Cf3798czzzwDT0/PQp/nu+++w9mzZzF9+nQYjUa88cYbGD16NLZv3+7U/QCKfq/t3r1bTQWeNGkSLly4gKVLl0IIgfj4eADA6dOnMXHiRHTt2hUzZszA77//jhdeeMGp505OTsaoUaNQvXp13LhxAxs2bMAzzzyDXbt2QaPRqPt99NFHqFu3LubNm4ekpCQsXrwYL730EhISEgBYgvi4uDhotVq8+uqr0Gg0SExMxODBg7Fr1y4EBgY61Z7HH38c586dw9GjR7FixQoAQHBwsFPHElEFEkREpRAfHy8aN24szp8/r257/fXXhV6vFx9++KG67fPPPxd6vV78/vvvQgiuTrydAAAYAElEQVQhfv/9d2EwGMSOHTvUfUwmk+jdu7cYOnSoEEKI3NxcERsbK2bOnGnznHFxcUKv14uLFy8KIYQ4fPiw0Ov14ujRozb7Pfnkk2LcuHHq486dO4uFCxcWei0pKSkiOjpaJCYm2mwfPny4ePDBB9XH27dvF3q9XqSlpRV5bxISEoRerxeHDx9Wt/30009Cr9eLQ4cOufScAwYMEHPmzFGvt3Xr1uKFF14QixcvFkIIceDAAdGoUSNx+/btQtszbtw4MXjwYLvtgwcPFs2bNxc3b95Ut23YsEHo9XqRmZmpPqcz97ggZ47bs2ePaN26daHnSEtLE3q9Xmzfvt1m+8WLF4VerxcHDx5Ut3Xu3Fl07dpV5ObmqtseffRR0bhxY3HhwgV12+uvvy7atWtX6HPm5OSI48ePC71eLy5fvlxkO5y5xhs3boioqCixdu1a9e8mk0l0795d6PX6QtshRF5/S01NFTk5OeLKlStiwoQJonHjxuKnn34SQghx5coV8fDDDwu9Xi/0er3o0qWLWLBggbh27ZrNuYp6D/zf//2f0Ov14uTJk4W2ZfDgwTavd0xMjPj000+LbH9+zt6Hr7/+Wuj1evHrr78KIYRYv3696NevX6Hn/fXXX4Verxdff/21zXblPPPnz7c7Rq/Xi/fee8/m2po0aSIuXbqkblP6gPJ+Ldiu/Mfmvy+O3mtms1l06tRJTJ8+3Wb7tm3bRFRUlLhx44YQQojx48eLnj17CrPZrO6zatUqh32vKLm5ueKvv/4Ser1eHDt2TN3euXNn0apVK5vPr//+97/CYDCon8//+te/7N4zV69eFREREWLNmjVCCMfvPyEs/ybkf60WLlwoOnfu7HS7iajiMcWUiEqtVq1aNsUk6tatCwBo27atuk35u5Ku9cMPP0AIgR49eqj7yLKMHj164MSJEwAsI5NJSUl44IEHbJ6vW7duNo8PHz6MsLAwNG/eHLm5uep/7dq1w48//uj0dZw5cwaZmZk2bQKAXr164dy5c0hOTnb6XAqdTmdTybRBgwYA8u6Ds8/ZokULNTX1+PHjaNmyJVq1amWzrVGjRiWeExkVFYWAgAD1sTIqqrSzpPfYmeP0ej1u376N+Ph4fPnll8jIyCjRNShat25tM1pSt25d1KpVC7Vr17bZduPGDWRnZ6vbdu7cib59+6JZs2aIiIjAk08+CQA4d+5ckc/nzDX+9ttvMBqNNn1ZlmW7vl2Uli1bIiIiAp06dcLXX3+NBQsWqKOTd911F3bs2IGNGzdi6NChCAgIwMaNG/Hwww/bpQoXRpRgWeRGjRph6dKl2LFjB65cuVLs/iW9D40bN8ZPP/2EBQsW4JtvvrF53ZyhjPgWp0mTJqhVq5b6uEWLFggJCcGpU6dcej5Hzp49iytXrqBHjx42/aRt27YwGo04c+YMAMtnY5cuXWxSgx988EGnnuPQoUMYOHAgWrRogSZNmqBjx44A7Ptw+/btbQoXPfjggxBC4IcffgAAnDp1Ck2aNLF5z9SoUQPNmjVTP5+J6M7FFFMiKjV/f3+bxzqdzm67ss1oNAIArl27Bh8fHzXNUhESEoLMzExkZ2fj+vXr6raC++SXkpKCpKQkh6ll+QOF4ihzdQp7vlu3brlcsdTX1xeynPdbnFIhUrkPzj5nq1atsGHDBqSmpuL48ePo1KkTWrZsiQULFsBoNOL48eNo0aKFS23Lr1q1ajaPC75eJb3Hzhx3zz33YNWqVVi3bh1GjhwJrVaLbt264aWXXipROpqja3HUR4UQyMnJgYeHB/bv34/4+HgMGjQIEydORGBgIJKSkjBmzBj1HpTmGp3ty0V5//334eXlhaCgINx11102/Up5rnbt2qFdu3YALMsLjBw5Eu+88w5mzJhR7PmVHwNcadObb76JZcuW4bXXXkNqaqq67IvShoJKeh/at2+P1157De+99x42bdoEHx8fPPzww5g2bRp8fHyKbaez1+Rov5CQkELn8bkiJSUFADBy5EiHf7969SoAy2dCwXY48z44deoURo8eja5du2LEiBEICQmBJEkYMGCAXR8ueH4vLy/4+PioadtJSUkO57SGhoY69UMAEVVtDBCJqEJUr14dGRkZyMzMtAkSk5OT4e3tDQ8PD/ULSsGRu4KPAwICEB4ejpUrV5aqTWFhYQCAGzduICgoyO75nJ13UxbP2bx5cwghcOzYMXz//feYMmUK7r33Xvj6+uLIkSP46aefMGzYMLe3T1HSe+zscZ06dUKnTp1w+/ZtfP7551iwYAHmzZtXaNEdd/vkk08QHR2N2bNnq9uUIjnFceYa8/fl/P3IlVHpxo0b24z6FKdDhw5o1KiR0wVOvvrqK4SFhbm09EN4eDgWLlwIs9mMU6dOITExEc8//zw+++wzm/6sKM196NevH/r164cbN25g3759eO211+Dn54cpU6YUe6wzhXoKa0dycrL6PlXmLxYsKnPz5k2H15ufcr3z5s1zOGdXue9hYWF27bhx40axbT9w4ACCgoLw5ptvqterFDEqqOD5s7KykJGRoc6pDQsLw++//2533PXr19VMg6LuBRFVbUwxJaIKERUVBUmSsHfvXnWbEAJ79+5VR8LuuusuhIWF4dNPP7U5dv/+/TaP27Vrh+vXr8PHxwdRUVF2/znr3nvvhbe3N/bs2WOzfc+ePahXr16ZFFdw9jkDAgJw7733YuPGjZBlGU2aNIEkSWjevDnWr1+P3NzcYkcQdTpdsaNhhSnpPXb1OH9/f/Tp0wfdunVTv6AWHM0sC1lZWXbr/+WvJFtUO5y5Rr1eD09PT5u+bDab7fp2STkKbIxGI/76669Cq5vmp6xVN3DgwBI9vyzLiImJwdixY5GZmVnoKJM77kNwcDAGDhyIli1bur2P/PTTTzZtP3HiBJKTk9G0aVMAecVm/vjjD3Wfq1ev4uzZszbncfReq1+/PsLDw3H58mWH/UQJMCMjI3Hw4EGblN99+/YV2/asrCzodDqbYLhgH1YcPnwY6enpNueXJAmRkZEAgOjoaJw+fRoXL15U9/n777/x3XffqZ8zISEh0Ol0NvciPT0dJ0+eLPZeEFHlxhFEIqoQDRo0QO/evTF37lykpaWpVUz//PNPtfKfRqPB8OHD8frrryMoKAgtW7bEvn37bL6QAJYS/R06dMDQoUMxYsQINGzYEGlpafjll19gNBoxefJkp9oUGBiIZ555BmvWrIFWq0VkZCT27duHQ4cOYenSpW6/B64+Z6tWrfD++++jQ4cOaupiy5YtsWjRItSrV08d5ShM/fr18emnn+LAgQMIDw9H9erVna52WdJ77MxxH3zwAU6ePIn77rsP1av/f3v3H5Xz/f9x/N5VV6VwdVHKRe0wKtRSIwtnuA5nE+MoZTOJJcWUzbIfWk1CfsSWakpnlGEMzYbFDjabw2Fnfq2zhv2oaZJ+UKqVku8frevrWpmrpsk+z9s5znFd1+v9fj3f73N1To9er9f71Y3c3FwOHDjAxIkTgYZpuT179iQrK4u+fftiZmam28bgQRk6dChLlixh/fr1uLm5cfToUU6cOKHX5l51GHKNarUaf39/EhMTMTExoU+fPuzcufMfr7dsFBQURO/evRk1ahTdu3enqKiIrVu3Ul5ezpQpU/TaXrt2jbNnz3L79m2Ki4s5duwYn3zyCUOHDiUkJMTgPm/evElQUBATJ06kV69e3Lp1i40bN2JjY6Nba/tXrb0P69ato6ysDE9PT9RqNT/88AOnTp3Sfe80Gg3m5ubs2bOHTp06YWJi0qI/DjXq0qULISEhhIWF6Z5iOmDAAN1aPjs7O1xdXUlISKBDhw7U19eTmpraZHbBvX7WGrfJqaio4Omnn0apVHL58mUOHTrEunXr6NChA8HBwfj7+zN//nwmT57MpUuX2LVr131rHzZsGBkZGSxbtgytVsvp06f57LPPmm1rZmZGSEgIQUFBFBUVsWrVKsaMGaNbe+zj40NaWhrBwcGEh4djbGxMUlISarVa931SKBRotVrS09PRaDR07tyZjRs3Ym5urtdX7969KS4uJjMzk759+6JWq1s0Si2E+PdJQBRCPDRLly4lPj6e999/n/LychwdHUlJSdFtcQEQGBjIjRs32L59OxkZGWi1WhYuXKg3rczIyIikpCRSUlLIyMigoKAAlUqFs7MzAQEBLaqp8Zehjz76iJKSEhwcHFi9ejXjxo17YNfd2j4HDRrE1q1bGTx4sN578P979P2dqVOnkpOTw6JFiygrK2PevHmEhYUZVGNr77Ehxzk5OXHkyBHi4uIoKyvDxsYGPz8/5s+frztPTEwMK1euZObMmdy6deuBjbw1ev7558nPz2fz5s3U1NQwbNgw1qxZg7+/v1675uro2bOnQffm9ddfp66ujuTkZBQKBRMmTGDmzJmsWLHiH9c/a9Ys9u/fT3x8PCUlJXTp0oX+/fuzbds23ehXo3379rFv3z6USiVWVlY4OzuzdOlSJkyY0GRd498xMzPD0dGRzZs3c/XqVd3m8x988EGTkHC31twHV1dX0tPT2b9/P5WVlWg0GsLCwggMDNTVEhsbS3JyMgEBAdTW1nLhwgWDr6WRu7s7Xl5eLF++nNLSUjw9PYmNjdVrs2bNGt5++20WLlyIra0tCxcuJCMjQ6/NvX7WvL29sbS0JDU1ld27d6NQKLC3t2fkyJG6UVBXV1fWrl3L2rVrefnll3FxceHdd9/Fz8/vb2sfMWIEERERbNmyhZ07dzJw4EBSU1N55plnmrQdN24clpaWREZGUlVVhVar1ZtebWpqSnp6OnFxcURGRgIND39KTEzUC8PR0dFERUURExODSqUiNDSUM2fO6O0TOXbsWE6ePMnq1aspLS1l0qRJD+Q7L4RoO0Z3WvPYMiGEEEIIIYQQ/zmyBlEIIYQQQgghBCABUQghhBBCCCHEnyQgCiGEEEIIIYQAJCAKIYQQQgghhPiTPMVUCCFEm/r888+prq7Gx8dH7/2AgADUajXr1q174H2WlJSwbds2Jk2a1C4eqZ+YmMiWLVs4efLkv9ZnQEAAp06dAhq2jNFoNGi1WsLDw+nYsSMAVVVVbNiwgaysLAoKCujYsSO9e/dm4sSJuqdmnjx5kunTp+vOa2Fhga2tLYMGDWLatGk4Ozv/a9ckhBCi7UlAFEII0aYOHDjA9evXmwTEtlRSUkJSUhKenp7tIiA+LEOGDGHBggXU1dWRnZ1NQkICV69e1YXysLAwcnJymDNnDn379qW0tJRvv/2Wr7/+usm2CvHx8djb2/PHH3+Ql5dHZmYmvr6+LF68+L5bMAghhHh0SEAUQgjxP626uvpv9+17lFlZWTFw4ECgYc/MqqoqEhISKC0tpby8nGPHjvHee+8xduxY3THe3t40twOWk5MTjo6OAHh5eeHv78+iRYuIiYnB09OTxx577F+5JiGEEG1L1iAKIYRoM2+++SYHDx7k1KlTODk54eTkRGJiol6bvXv3MmbMGDw8PJg1axZXr17V+7ympoZVq1YxYsQIXFxcmDBhAkePHr1nn/n5+Tz33HMATJ8+XdcvNEyXdHJy4ptvviE0NBR3d3eWLFlCfn4+Tk5OfPnll03q/+vI58WLF5k9ezbu7u64u7sTHh5OUVFRi+/N5cuXmTt3Lh4eHri7uxMaGkpeXp5em7KyMl599VUGDhzI8OHD2bBhAytXrkSr1ba4P4ABAwYADfeovLwcABsbmybtjIyM7nsuhULBW2+9hUKhYOfOna2qRwghRPsjI4hCCCHazNy5c7ly5Qo3b97knXfeAcDOzk73+blz57h27RpvvPEGNTU1LFu2jKioKNLS0nRtwsPDOX/+PGFhYTg4OJCVlcWcOXPYvXs3/fr1a9Jnt27diI+PJyIigujoaF0oultkZCQ+Pj4EBgZiZmZm8PXk5eXxwgsv4OLiwurVq7l9+zYJCQmEhoaya9cug4IVwK1bt5gxYwYmJiYsXboUY2NjEhMTmTZtGnv37sXKygpoCKinT58mMjISa2tr0tPTyc3NxdjY2OCa7/b7778DDaGwU6dOWFhYsHz5chYsWMDgwYNbdC8AVCoVLi4unDt3rlX1CCGEaH8kIAohhGgzDg4OWFlZcefOHd1Ux7tVVFSQmpqKSqUCoKioiLi4ON20zxMnTvDVV1/x4Ycf4unpCcDw4cPJzc1l/fr1zT7gxtTUVDdi2KdPn2b7ffbZZ3nllVd0r/Pz8w26nqSkJKytrUlLS8PU1BRomHo5duxYjh49ysiRIw06z+7duykoKODgwYPY29sD4ObmxujRo9mxYwchISFcvHiRI0eO6E0B9fLyYsSIEVhaWhrUz507d6irq6O+vp7z58+TkpKCi4sLdnZ2GBkZERsbS1RUFEFBQSiVStzc3HQPqDE07NrZ2ZGTk2NQWyGEEO2fTDEVQgjx0Li6uurCITQEOoDCwkIAjh8/jo2NDR4eHtTV1en+eXl5kZ2d3ep+DQ1yf3XixAnGjBmDQqHQ1dKzZ0969OjRonrOnz9P//79deEQGoKWu7s73333HYDufHdPJzU3N2fo0KF657r7vtTV1el99sUXXzBgwABcXV158cUX6dGjB/Hx8brwN378eI4cOcLy5cvx9vYmNzeXqKgoXnvtNYOvpbn1ikIIIR5dMoIohBDioencubPea6VSCTSsOwS4fv06RUVFzU4Tbe00S4CuXbu26rjr16+TlpamNwW2UUFBgcHnKSoqwtrausn71tbWXLlyBYDi4mIsLS2bTPvs0qWL3uu/3psLFy7o/v/UU08RERGBiYkJGo1GL4w3UqvV+Pr64uvrS21tLdHR0WRmZjJ79myDtrAoLCxs9lqEEEI8miQgCiGEaLdUKhW2trYkJyc/0PP+dfpkYwirra3Ve//GjRtN6hk9enSz2zqo1WqD+7exseGnn35q8n5xcbEuxFlbW1NZWUlNTY1eSCwtLdU7ZteuXffsR6VS4erqanBdSqWSGTNmkJmZyS+//HLfgFhWVkZ2djaBgYEG9yGEEKJ9k4AohBCiTSmVSt2IYEt5eXmxadMmLCwsePzxx1vUJ2Bwv127dkWpVPLzzz/r3qusrOTs2bNoNBq9ei5duoSLi4vBa/Sa4+bmxqeffsrly5d100wLCws5c+YMYWFhALi4uABw+PBhvL29gYYtOY4fP663BrElAfBuFRUVmJiYNNnio/FJqvcbZa2vrycuLo76+nomT57cqhqEEEK0PxIQhRBCtKlevXpx+PBhDh06hK2tLd26dcPW1tagY4cNG8bw4cN56aWXCA4Opk+fPlRUVPDjjz9SU1Nzz7VyGo0Gc3Nz9uzZQ6dOnTAxMfnbIKVQKNBqtaSnp6PRaOjcuTMbN25sEp7mzZuHn58fs2fPxtfXF7VaTWFhIcePH2fSpEkMGTLEoOvy8fEhLS2N4OBgwsPDMTY2JikpCbVazZQpUwBwdHRk1KhRxMTEUFlZiY2NDZs2bcLc3PwfhdNGv/76K3PmzMHX1xcPDw/Mzc3JyckhJSWFfv368eSTT+q1v3DhAlVVVdTU1JCbm0tmZibZ2dksXrxY9kAUQoj/EAmIQggh2tTUqVPJyclh0aJFlJWVMW/ePN0o2f0YGRmRlJRESkoKGRkZFBQUoFKpcHZ2JiAg4J7HmZmZERsbS3JyMgEBAdTW1uqtzWtOdHQ0UVFRxMTEoFKpCA0N5cyZM1y8eFHXplevXuzYsYOEhASio6Oprq7G1tYWLy+vFoUkU1NT0tPTiYuLIzIyEgBPT08SExN1W1wArFixgsWLF7Ns2TIsLCyYOnUq9vb2fP/99wb3dS8ODg74+flx7Ngxtm/fTnV1Nd27d8fX15fg4GBMTPR/RYiIiACgQ4cO2NraMnjwYGJiYgxapyiEEOLRYXRHHj8mhBBCPBLq6uoYP348bm5urFy58mGXI4QQ4j9IRhCFEEKIdiorK4tr167h6OhIZWUlH3/8MXl5eaxatephlyaEEOI/SgKiEEII0U5ZWFiQmZnJb7/9xu3bt3F0dCQlJYUnnnjiYZcmhBDiP0qmmAohhBBCCCGEAEDxsAsQQgghhBBCCNE+SEAUQgghhBBCCAFIQBRCCCGEEEII8ScJiEIIIYQQQgghAAmIQgghhBBCCCH+JAFRCCGEEEIIIQQgAVEIIYQQQgghxJ8kIAohhBBCCCGEAOD/ALcKCtN39HWvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "\n", + "# Setup utilities\n", + "import scipy.stats.distributions as dist\n", + "\n", + "fig, axs = plt.subplots(4, 1, dpi=90, figsize=[11, 26], sharey=True)\n", + "fig.tight_layout(pad=4.0)\n", + "\n", + "axs.flatten()\n", + "idx=0\n", + "\n", + "for adaptive in (False, True):\n", + " for jackknife in (False, True):\n", + "\n", + " mtp = Multitaper(lc_ar4, adaptive=adaptive, jackknife=jackknife)\n", + " \n", + " mtp_stingray = np.log(mtp.multitaper_norm_power)\n", + " \n", + " Kmax = len(mtp.eigvals)\n", + " \n", + " if jackknife:\n", + " \n", + " jk_p = (dist.t.ppf(.975, Kmax - 1) * np.sqrt(mtp.jk_var_deg_freedom))\n", + " jk_limits_stingray = (mtp_stingray - jk_p, mtp_stingray + jk_p)\n", + " \n", + " else:\n", + " \n", + " p975 = dist.chi2.ppf(.975, mtp.jk_var_deg_freedom)\n", + " p025 = dist.chi2.ppf(.025, mtp.jk_var_deg_freedom)\n", + "\n", + " l1 = np.log(mtp.jk_var_deg_freedom / p975)\n", + " l2 = np.log(mtp.jk_var_deg_freedom / p025)\n", + "\n", + " jk_limits_stingray = (mtp_stingray + l1, mtp_stingray + l2)\n", + " \n", + " \n", + " axs[idx].plot(mtp.freq, mtp_stingray, label=\"Multitaper S(f) Estimate\", color=palette[6])\n", + " axs[idx].fill_between(mtp.freq, jk_limits_stingray[0], y2=jk_limits_stingray[1], color=palette[4], alpha=0.4)\n", + " \n", + " axs[idx].plot(freq_analytical, np.log(psd_analytical), color=palette[0])\n", + " \n", + " axs[idx].set(\n", + " title=f\"Adaptive: {adaptive}, Jackknife: {jackknife}\",\n", + " ylabel=\"Power, ln\",\n", + " xlabel=\"Frequency\"\n", + " )\n", + " axs[idx].legend()\n", + " \n", + " idx += 1\n", + " \n", + "\n", + "text = \"if jackknife == True:\\n\\\n", + "jk_var_deg_freedom = jackknife estimated variance of the log-psd.\\n\\\n", + "else:\\n\\\n", + "jk_var_deg_freedom = degrees of freedom in a chi2\\n\\\n", + "model of how the estimated PSD is distributed about\\n\\\n", + "the true log-PSD\"\n", + "fig.text(0.5, -0.05, text, ha=\"center\")\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "06082f55", + "metadata": {}, + "source": [ + "### Linearly re-binning a power spectrum in frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "efea10b1", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "Original df: 0.0009765625\n", + "Rebinned df: 0.0068359375\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHYCAYAAABHktmQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AADrAElEQVR4nOzdd3hc5ZX48e8t09R7l9wt924MxmB67xAI4LC0zYaa3lkCWQjpyZLdX0iApcWEQBKH5gChmGIb3LvcZVWrd0295ffHSLKFbVkjjazi83keHqSZe997xroe68x53/Mqtm3bCCGEEEIIIYToNXWwAxBCCCGEEEKI4UYSKSGEEEIIIYSIkCRSQgghhBBCCBEhSaSEEEIIIYQQIkKSSAkhhBBCCCFEhCSREkIIIYQQQogISSIlhBBCCCGEEBGSREoIIYQQQgghIqQPdgDDhWXZmKY12GEAoOsqhjE0YhFDm9wrIhJyv4hIyP0iekvuFRGJoXC/aJqKqirHPU4SqV4yTYumJu9gh4GqKqSmxtHS4sOy7MEORwxhcq+ISMj9IiIh94voLblXRCSGyv2SlBSDqmrHPW7EJ1JTp05l/PjxAEybNo1HH310kCMSQgghhBBCDHcjPpFKSkri1VdfHewwhBBCCCGEECOINJsQQgghhBBCiAgN6URq7dq1fOUrX2HRokUUFhbywQcfHHHM0qVLOeecc5g+fTrXX389W7Zs6fZ8c3MzV199NTfeeCNr1qw5UaELIYQQQgghRrAhPbXP6/VSWFjINddcw3333XfE88uXL+exxx7j4YcfZubMmTz33HPceeedvPXWW6SkpADw3nvvkZmZyd69e/nyl7/Ma6+9Rlxc3Il+KUIIIYQQYoSxbRvLMrGlj0ZUqKpCMBjEMIwBazahKKCqGopy/K58xzOkE6nFixezePHiYz7/zDPPcMMNN3DttdcC8PDDD7NixQqWLVvGHXfcAUBmZiYA48ePZ+LEiRQXFzN9+vQ+xdObNogDrTOGoRCLGNrkXhGRkPtFRELuF9FbI/VesW2b1tYm2tpaAMmioqmuTsWyBrr9uUJcXALx8Un9SqiGdCLVk2AwyPbt27nrrru6HlNVlYULF7Jp0yYgPK3P4/HgdDqprq5m9+7d5Ofn9+l6uq6Smjp0KlnJybGDHYIYJuReEZGQ+0VEQu4X0Vsj7V6pqanB620lOTkVl8s92OGICAUCfpqbG4iNdZGRkdHncYZtItXY2IhpmqSlpXV7PDU1lZKSEgD27dvHgw8+iKqqqKrKD37wA5KSkvp0PcOwaGnx9TfsflNVheTkWBob22U/BtEjuVdEJOR+EZGQ+0X01ki8V2zbprq6loSEFFyukZUgDgUnYkNelyuWuLjwz1FVPUdUpRISPDgcJ+E+UrZtd/1hzJkzhzfeeCNqYw+lNwDLsodUPGLokntFRELuFxEJuV9Eb42ke8U0DcDG6XQNdiiiH8I/PxvDMNC0vqVEQ7prX0+Sk5PRNI26urpujzc0NBxRpRJCCCGEECIaDjWWGFnrvk4+4Z9ffxqFDNtEyul0MnXqVFatWtX1mGVZrF69mlmzZg1eYEIIIYQQQogRb0gnUu3t7RQVFVFUVARAeXk5RUVF1NbWAnDbbbfx0ksvsWzZMvbt28dDDz2E3+/n6quvHsywhRBCCCGEGFE2bFjHokXz8Hq9vT7n0Ucf4oEHvhPVOAZizL4a0muktm3bxi233NL1/SOPPALAvffey3333ccll1xCQ0MDjz/+OLW1tUyePJmnnnqqaw8pIYQQQgghxCEHD1by9NN/YM2aT2ltbSE9PYNzz72AW265HY/Hc8zzpk+fyauvvtXjMZ/31a9+C3sEb7I1pBOpBQsWsGvXrh6PWbJkCUuWLDlBEQkhhBBCCDE8lZWVctddtzNlyjR+8pNfkJaWwb59e/j97x9n/fq1/M///BGn03nEeYZh4HA4SE2NrA9BXNzQ2TpoIAzpREoIIYQQQggRHb/5zc/JyMjipz/9NaoaXuGTlZVFYeEkvvjFq/nLX17kS1+6lUWL5vHtb/+AlSs/Yv36tdxxx38wadIU7r//K7zzzkfExMQA8Oqrf+fZZ5+itbWF008/g3HjJvDaa8v4619fB8LT8Hw+L4888nMA7r33y0ycWAjA8uWv4/HEsGTJrVx77fVdMT7++G/46KMV1NTUkJaWxqWXXsGXvnRbV7xDydCLSAghhBBCCBFVLS3NrF37GV/84pIjkpK0tHTOP/8i3nvvna7Hnn76D5x99nm88MLLnHvuBUeMt2XLJn71q5/yxS/ezP/931KmTJnGiy++cNw43nzzNZKTU3nyyee5/vqb+O1vf8GBA8Vdz8fFxfHAAw+zdOkr3HPPV/nLX17k9df/0fcXPoCkIiWEGHaClsmLJbv4tL6KmoCXzq1JbsifwI2jCgc3OCGEECel3+zayKf1B0/Y9U5NzebrhbN7fXxZWRm2bTN69OijPj969BjeeeefXd9feOElXHzxZV3fV1SUdzv+b3/7C6effgY33HAzAAUFo9i0aQN79uzuMY7Cwsl86Uu3AnDjjUt46aU/sWnTekaPHgPA7bf/e9eGvNnZOezdu4f333+XK6+8ptev9USRREoIMey8UraHv5bvJTGgk6m7aXObtBhB/lK2h3Mz88lwxwx2iEIIIcSQpChH3//Ktu1uz02aNLnHcUpLSzj77PO6PTZ58tTjJlJjx47v9n1qahqNjY1d3//rX2/zl7/8mYqKcvx+H4ZhkJmZ3eOYg0USKSHEsFIf8PP38n3EmzqvfDYfTVXxfTeFpWW7+HPpbl4s3cXXJvb+EzohhBAiGsLVoaH7709eXh6KolBcvJ8JE46cvVFScoC8vIKu793unrvz2faRSVlvOvTpevf0Q1EULCtcgdq2bQsPPfQAd955F/PnLyA2NpY33ni125TDoUTWSAkhhpWXy3YTsEy+3zAZRwuoTRZqlcnVueOI0x28X12OzzQGO0whhBBiSElMTGLu3Pm89NLSrsSlU11dLe+888+jroU6llGjRrFjx/Zuj+3cWdSvGLdu3UJubh5f+tKtTJo0mfz8AqqqKvs15kCSREoI0SPjc2+2g8m0bT6pqyTB0Fmw+VBLVbU4RIzuoDA+GQubKn/7IEYphBBCDE3f+MZ3qKo6yPe+9022bdtKdXUVK1d+zNe+djfjxk3ghhtu6vVY1157A6tWfcwrr7xEWVkpr7zyEhs3rj/m1MHeyM/Pp7Kygvfe+xcVFeW8+OILfPbZ6j6PN9AkkRJCHNMrZXu4dtWbbGisGexQANjRXE9zKMg95eNQ/WBlaQBo+4MAZHWsjary9X7XdSGEEOJkUVAwmieffI74+Di+971vcMMNV/Hb3/6SRYsW89///fuj7iF1LDNmzOLrX/8OS5c+x2233cTWrZu59trrIxrj8xYtWswNN9zEr3/9U2677Wb27dvNzTf/W5/HG2iKPZK3G46iUMikqWnwfzlTVYXU1Djq69uwLPnRiWPrz71i2zZ/K9/LswfCJfoz0nL47uR5AxFmRP6wbysfF5fxyop5aJaC7+vJeH7TCG4F73+msqxiP08Xb+eOMVO5Om/cYIc7rMh7i4iE3C+it0bivWIYBnV1FaSl5R6x3udk96Mf/QCfz8fPf/6bPo+h62pX176B1NPPMSkpBodDO+4Y8tMXQnRT2t7Kk/u3sbGpFocSLlqva6wmZJk41OO/qQwUy7ZZVXeQm/fmoocUQos82Ok6Vp6OVmKg1JhkdlakZGqfEEIIMeBefPF5TjnlNJxOJ5988hEffPAuDz/8k8EO64SRREoIAYS74S0t2cm71aVYQL4njm8WzuGlst18Wl/FpqY65qdkDlp8u1sb0ZotrizJwnZC8Oxw0mSOcaCVGGjFIbKmdSZSg189FkIIIUa67du38uKLL+D1esnLy+P733/wiJboI5kkUkIIAB7e/in721uI1x18IX8Cl+WMwalqnJaazaf1VbxbXcrc5AzUfiwi7Y9VdQf50u48HJZKcFEMxIWrZdZYJ6zwhROpeeFEqloSKSGEEGLAPfroLwY7hEEliZQQgnYjxP72FjJcHh6fcxZxuqPrudO0dCZ/MoP9ce382ljPN6bNPeHJlG3b7DtQz93lkzA9EDrz0N4W5igdWwF1f4gYLZ4E3Um134tl24OW9AkhhBBi5JOufUIIyrytAIyNS+yWROG1SH3ey4SmWC4sz+Cq5cnsrWk44fHtb2/h8q3paLaCuTgWPIe9dblVrFwdtcVCqbfI8sQQsi0agv4THqcQQgghTh6SSAkhKPO2AZAfE3/owZCN+/kW1GoTY4KDugyDmQ0JjH42hNJkntD4avY3c25lGl6PRej0I3dat8aEkz+tOEiWOxaQdVJCCCGEGFiSSAkhKPOFK1L5no5Nbi0b159b0IpDmHk6gS8lUn6rizXpTSQ3aLj/XxO7dtfym10baTdCAx7fxJXhboE7F4TAeeR0PXNsOJFS94e6OvdVS+c+IYQQQgwgSaSEEN0rUraN87U29O1BrFQN/22J4FIYm5LEf526l3/l1aE2W0x6waR6ZxN/Kd09oLGpJSEKDjip8vipm3X0tyxztANbAa04RLorXLGqC8jUPiGEEEIMHEmkhBCUd6yRyouJw/GBF8dqP1acgv+OxK7ueJqiMikpmZ/M3EPlaRAT1Pjlp1OoW9/EfRtW8KNtn9Kf/b29RohHdqzhpdLdmIeN43w7XFl6dmI58Z5j7JYeo2JlaaiNFtl+F4CskRJCCCHEgJJESoiTXNAyqfZ7SXd5iN9g4Hzbi+1UCNyeiJ3afQPeGUlpoMBTk8t4fGoxDkvhwXUTmLbDw/rGGjY31fU5jvdqyvm0voo/lezk5zvXYds26t4g2r4Q1YlB/pVbS4LjGIkUYI0JP5dXGf6/JFJCCCFE9GzYsI5Fi+bh9R57DfLTT/+BO+740gmM6tguvfRcli9/fUCvIe3PhTjJ7WxpxALOr8/A+VErtgb+LyVg5TqOOHZ+Sib/V7yDD2vKscZAfmYiV6xI5htbx5Lmd/JGSjGzktP7FMe7VaUAxGo6K+sO0hDwk/tWOBl6dVotlgrx+rETKXOsA8cqH6kVKmRDQzDQpziEEEKIkejRRx/in/98AwBN08jIyOTss8/ljju+gsvliso1brzxS1x33Q1RGWs4kERKiJPYp/UH+WnROiY3xnHbZ9koFvi/GI818egJS35MPHmeOMp94TVV2iwPwfFJuJ9r4ZY9eSz3V1M1uo2s2LiI4tjX1sy+9mZGx8RTEJvAR7UV+Le2o5XZmDk6H2bVQwASHEcmd53Mjs59MQcslGypSAkhhBCft3DhGXz3uz/ENE0OHCjmscd+DCjcfff9URk/JiYGiInKWMOBJFJCnMTeqSolq9XFr9dPRTcUApfGYs5293jO6WnZ/KVsDwDj4pKwMp347krCfrKeS8oyKXqqDvvLHhSP1uM4h3vzYDEA52cV0BoKodqQ+YEJqIQujKGlMYhH03CoPYwZp2JlaGg1JqPNWMqCXmzbRpFNeYUQQggAnE4HqalpAGRkZHLOOeezbt1nAFiWxZ/+9CyvvbaMxsYGRo0azZ133sXChYu6jbF580Z+//vHKS8vY9KkKXz/+w+Sn18AhKf2rVr1CU8//QIQroL5fF4mTpzEyy//GYArrriaL3/57q7xFi2ax/e+9wAffbSC9evXkpubxze/+X1mzpzV7ZpPPPE7du3aRXJyMueeez533nkXTmf4g9/6+jp+9rNHWLduLenp6dx1130D8wf4ObJGSoiTmNVs8vPPJuP2q4TO8GCcefxPkU5LywbApWrkx4QrT3a2TuieZMoT/EyujMX8n7oe95r6rL6KH2//jMagn2q/l/eqy4jVdM7NLCDHGcuXi0aRWK9ijtYJTtRpM0I9Tuvr1FmVOqUpGcO2aTGCvfljEEIIIU46FRXlfPbZajQtXFd54YVneOedt/jud3/I88//hSuvvJYf/vDb7N69s9t5TzzxO7761W/xxz8+h9Pp5Ic//DaWZR3zOmvXfkZjYyP/7/89yf33f5MXXniGzz5b3e2YZ555iosvvoxnn/0z48dP4OGHf4hhGF1xfutbX+Xccy/g+edf4sEH/4vVq1fyxBO/6zr/0Ucfoq6ulv/5nz/wox89wtKlz/e4litapCIlxEnsyvVpZPvchGa6CF4S26tzxsUmckFmAeluD5py6LMYR6qT2n+P4eBzDcyvS8L6nyYCtx19rdWzxTso87XxjU0fMzE+CdO2uTJ3HPHNKme/4iauMge/w8K+LI62jjfSnhpNdDLHOnB85mdGfQJ/SQ1P70t0RGfetxBCCNET58st6NtP3Ad4xlQnwesTIjrn448/5Pzzz8A0LYLBAIqi8NBDjxIMBnnhhWf43e/+wOTJUwHIzc1jw4a1vPbaP/jWt77XNcbtt/8Hc+fOB+CBB37Mddddxrp1azjllFOPes2kpGTuv/8bKIpCQcFo/v73l9mwYR0LFpzWdcxll13J2WefB8Cdd/4H119/NRUV5YwaNZoXXniGiy66lOuu+yIAeXn53HPP13jgge9w333foKyshDVrPuX//u9PTJw4CYBvfvO73HnnLRH92fSFJFJCnKQsv8m8ygS8uol9XTyo4Slw+rbdOD/bhDFlAsHTZh9xnqIo3D9x1lHHnJCewpfP2MDN67K5tCwT9xNNBG5KwJzcPZnpbG5eG/BRG/CRoDm5vjoXz1ONKEHYltzKCwsP8mD+6bR0tGbvTUXK6qhITaiJgYnhhhNjepcfCiGEECPevHkL+PrXv43P5+Pll19EURTOPfcC9u/fh9/v5/77v9Lt+FAoxJw587o9NnXqtK6v09LSyMrK5sCB4mMmUmPGjO02zT41NZXGxoZux4wdO/6w58NTDzunF+7du4d9+/bw1ltvdB1jWRaBQID6+npKSg7gcDiYMKGw6/nCwsk4elhXHS2SSAlxkjK2+Yi3NFblNzHTmQWA0tSC+80PUCwLraYeMyMFc9yoXo+pKAozUjP45Yz9jBuVyqRPdFzPtRC8PA7jdE/Xca0dU+4mJyRTqCVy+4Y84rf7sBUInuvhezFrsVQb27ZpCYWP7U1Fyk7UsFJV0usdJAR1GmRTXiGEECdI8PoEhvqEco/HTV5ePgDf//6D3Hrrjbzxxj8YMyacyPzyl78jNTW12zlHdvQ7cu1xT+uRdb17uqEoyhH7Th5+TOdYndMFfT4v11zzBa6++gtHjJ2UlIRt93z9gSRrpIQ4SWmbw+3Bd4zzdT3mXLsFxbIwU5LC36/ZEvG4c5LTQYG/FVbhvykeNHC91obztTawbIKWSXMoSJY7hl/FL+C+13KJ325iJav4/yOJ0AVxZMXG4jNNmkKBrqSrN4kUgNmxn9SM+gTp3CeEEEIcg6qq3HLL7Tz55O8ZNWo0DoeDmpoq8vLyu/2Xnp7R7bzt27d2fV1fX0dV1UFGjRo9YHFOmFBIcfH+I+LKy8tH13VGjx5NMBhkz55dXefs2rWTUCg0YDF1kkRKiJOR1yJur0WzI0RtQUdTCNtG33sAAN9Nl2MlxqMfKEdpaYto6JmJaaiEG0osS6uk9c547FgFx0ofrhdaaGz1oVkK/1aUh/uPzajNFsYsF76vJndNzctxh+fjHfS1d1WkejO1D8AaGx5jZoMkUkIIIURPzjrrXDRN57XXlnH99Tfx3//9K956600qKsrZubOIv/xlKe+//263c/7v//7Ihg3r2Lt3D48++hB5eQXMm3fKgMV48823sGnTRn7721+yZ89uSktL+PDD9/nf//1vAAoKRjNv3in87GePUlS0naKi7fzmNz+XqX1CiIGhbw+gWvBRXgOJnnC7c7W+CbWpFTM7Azs+DqNwLM41m9H3HCA0d9pxRjwkzuFkTnIG6xpr+OP+bejjFC69pwD3M83oO4JkNsDv/FOZ3BSP7VIIXBWHMdsFh5Xlsz3hRKrc1xbR1D441LlvZn0CG4I1vY5bCCGEONnous51193Aiy8+z8sv/4Pk5GSee+5pDh6sJD4+gcmTp3DrrXd2O+c//uMefv3rn1NREW5//pOf/BxVHbjazIQJhTz++BM8+eTvueuu21FVjby8PC666LKuYx544Mf89Kc/5p57/p3U1DTuvvt+fvnLxwYspk6K/flJiuKoQiGTpqaBb6N4PKqqkJoaR319G5YlPzpxbD3dK+6nmtD2hPj6qds55ZQCrsgdi2PjdtxvfUTgtNkEzzoVrbSSmKWvYowtwHfDpRFd27As3qku5f/t3cJZ6bl8a9Jc8Fq4X2hB2x8utVdlhkj4t0zs1CP3hlpdd5BHi9ZydkYeKU43fyvfy7cL57I4I/f4F7dtXI/VozZbfPPaPTxyyukRxX6ykvcWEQm5X0RvjcR7xTAM6uoqSEvLPWL9j+g/XVcxjGO3U4+Wnn6OSUkxOBzH3w9TpvYJcbJps1D3hmiPMdmS2kKKM1yR0iqqATBzszr+n4nt0NHKD4J57D2hjkZXVRal5QCwu60JANujsObaEJvn+PjDpBI+/IL/qEkUwIykNFQUNjXW0hwKr+VK6G2JXlGwxjpQUcg8KP/ACSGEEGJgyG8ZQpxk9K0BFBu2jvJiKZDkDHfj0SqqALByM8MHahpmXjZ6cRlqVd2hx3spweEk2x1Lpa+d1lCQzU11/HTnOgjnV/zAc+zqUqzuoDAhiaKWRrY113eM1/v9oOyxTtgYZEy1G9u2B62bjxBCCCFGLqlICXGS0Tu69a3KbwQgxemCYAi1oRkrMR475lCbcnNUOOvRSyv7dK3C+CQgXJUqaum+Z0Say93jubOTwl2CqvxenKpKputQXHrRPmJ//yecKz6Fo8xO7lwnNaM+nhZjqDejFUIIIcRwJImUECcRpclEKw5hJatsTGgGINnpRq0LJzlWekq3442CcCKllVb06XoT45MB2N3SSHF7S7fn0g5LjI5mdnJ619dfnTCbuI5mE0pzK+7X3kVtasW1eiP6rv1HnGunabR4DCY2x9HU6jvieSGEEEKI/pJESoiTiLYlXI0yZrhoNAJ4NA2PpqPVhhMpM6P7JnxWVjq204FWFvk6KYDCjkRqZ2sjBz6XSCUeZ6peYXwyl2WP4b4JM7s1mXB+uim811VHrI4N2448WVEozwqi2QpmsVSkhBBCRM+h2eIjo3nGySv88+vP7H9JpIQ4iXRO6/NNd9BuhEhydLQ+rwmvQ/p8RSq8TioLJWSgVtVFfL2xcYnEaDqbmmppMYKkH1aF0o7zzqUqCl8ZP50Ls0YdetA00Yv2Yqsqvhsvx4qPRSupBO+R+0XV54U7/jgPGBHHLYQQQhyLqmqAQjAYGOxQRD+Ef35Kx8+zb6TZhBAnCaXORCs3sNI06tMMOADJHY0mDk3tSz3iPLMgB31/GXpZJcEIG044VJUFqVl8UFMOwMykNM5IyyW2j+1itZJKVJ8fY9wo7BgP5ph8HFt2opdVYhSO7Xasd7QKH0NiWZ8uJYQQQhyVoijExibQ0rH21+l0AdLUKHoUDGMgq302wWCAlpYGYmMT+tWQShIpIU4S+pZw1caY6aKho6V4Z+tztaYBW1WxUhKPOM/Iz8EFaKWVcOrsiK+7MDW7K5EaHZvA3JSMPr4C0IvDWZExcXT4/6NycWzZiXag4ohESs9y0uwIkVatEwjZ4JB/5IQQQkRHXFz438twMiVT/KJJVVUsa6D3kQonw50/x76SREqIk0TntD5jpovGYHi9UrLThdLuRfX6MNNTQDuyvG1lp3fsJ1UFlgUR7l4+JzkDt6rht0zGxCb06zVonYnU6Dzg0J5XWlXtEcemuNxsTq3mzKpUQqUhrHHOfl1bCCGE6KQoCvHxScTFJWJZ5tEayIo+UFWF5OQYGhu9A7aBs6KEp2dGY2uUkyKR8vl8XHLJJVx66aV861vfGuxwhDjhlCoDtcrEzNawM3UaK8PVqWSnG7X22NP6gPA6qdws9APlqNV1WNmRVZRcmsYlOaP5tL6KCXHJfX8NbV602gas5ETspHBCZifFYzsdqLX1RyR5KU43K1NaOLMqFW2/JFJCCCGiT1EUNO2k+HX6hFBVBafTia4HByyRiqaTotnEE088wYwZMwY7DCEGTWc1ypwZnsrX2LFANtnhOiyRSjn6yYTXSUHH9L4+uH3MVP4471xi+rg2CkA7EJ4e2FmNAkBRMDNSUUIGSmP3roDJThdbUsOPacWhPl9XCCGEEOJoRnwideDAAfbv38/ixYsHOxQhBodtd5vWB9AQClekUpzucDUHwlP7jsEsyAb6vjFvNOgdiZQ5Jq/b41ZGGgBaR+fBTpqiUp9q0qYbqCUhGNCFq0IIIYQ42QzpRGrt2rV85StfYdGiRRQWFvLBBx8ccczSpUs555xzmD59Otdffz1btmzp9vzPfvYzvvGNb5yokIUYcpQKA7XexMzXsVPCa6C6KlJOV9ceUlbGMab2AWZ2JrauoZUfDE+hO9FsG624HFtRMEbldnvKygzHrdYc2Z49yeVia0origFqubRBF0IIIUT0DOlEyuv1UlhYyIMPPnjU55cvX85jjz3GPffcw7JlyygsLOTOO++koSH8i+G7777L6NGjGTNmzIkMW4hB5zcNHty6mn+WFqNt6l6NAmgMdqyRcjhRaxuwnQ7shLhjD6hrmDmZKP5g11TAE0mtb0Rta8fKTgd39418zc6KVHX9EeclOlxslul9QgghhBgAQ3p13OLFi3uckvfMM89www03cO211wLw8MMPs2LFCpYtW8Ydd9zB5s2bWb58OW+//Tbt7e0YhkFCQgJf/vKX+xSPqg5+++TOGIZCLGLo2tHUwLqGGtbX1/Du5tOxFSieEKK8/iCZ7hgagwFUINkXQgkZmLmZqFrPn6tYo3KgtDK8Z1N2+ol5IR0OTevLP/Lez0zFVhTUmrojnvPoOnsS2gFQawz5e9MDeW8RkZD7RfSW3CsiEsPtfhnSiVRPgsEg27dv56677up6TFVVFi5cyKZNmwD45je/yTe/+U0A/v73v7N///4+J1G6rpKa2sMn9idYcnLsYIcghrBgazUAUxvjUZssqvIM7tqzGghvGWgDaW4PKQEvIcCZn0Xsce5vc9o4Qh+vw3OwBucJ/rsQLD+IBcTNnoh6lGsH0pOxaxpI8egoMe6ux5Ni3KyJC1eqnPU2CUPo7/BQJe8tIhJyv4jekntFRGK43C/DNpFqbGzENE3S0tK6PZ6amkpJSUnUr2cYFi0tvqiPG6lwf/1YGhvbh0VbSDE49tc3AnB2ZXj90IvJpXg0nQlxSWxpDq8lStSdtO+rwAl4E+Ix6tt6HjQ+kRhdw9xTQn1tS8T7SfWZYRKztxScDhrjEuAocbqSk9BrGmjaU4aVl931uGLY1LmDGE4b7WCI+tpWGCafcp1o8t4iIiH3i+gtuVdEJIbK/ZKQ4MHhOHJvzc8btonUsdi2fdQNtq655pp+jz2U3gAsyx5S8YihpcbvRbXgrMpUTMXmwJgAv551BgB3rQ83bUl2uFBKwuudzLSU499PmoaZn4NeXIZSVoWZn93z8VGilVaihAxCE0ZjKSocJU4zNRkdUGoasHKyuh53qzoo0JZik1RlYzea2MnHf2M8mcl7i4iE3C+it+ReEZEYLvfLkG420ZPk5GQ0TaOurnunroaGhiOqVEKcbGr8PmbVJ5ISdFJTYPLj004nPyae/Jj4rmNajdBhrc+P3bHvcMa4AgC0/aXRD/oYtOJD66OOxUoLb/Sr1jV2e9ythpOm5pRwp0G1xhyIEIUQQghxEhq2iZTT6WTq1KmsWrWq6zHLsli9ejWzZs0avMCEGAJqAl7O6ZjWl7ogGYd6qApzelq4kpTjdKM2NGPFxcBh64p6YowNJ1L6vhOXSOnFZeFr9yWR6thtviEpnEApNdICXQghhBDRMaSn9rW3t1NaeugXtvLycoqKikhLSyM9PZ3bbruN73znO0ydOpUZM2bw3HPP4ff7ufrqqwcxaiEGl2nbNPr8LK5KBR3Mad3bhX994mzGxSVxiRqLYq3DTDv2RryfZ6ckYiUloFXXobS1Y8cN7GJQpd2LVl2HlRSPnZxwzOOslKRw57767omURwsnkHVJIcAlFSkhhBBCRM2QTqS2bdvGLbfc0vX9I488AsC9997LfffdxyWXXEJDQwOPP/44tbW1TJ48maeeeoqUlN7/YijESNMY9DOnJpG4kI42OwY83dcVuTWd6/MnoG/bDfS8Ee8RFAVj/Cic67ai7z5AaM7UaIffTee0PmNMPhxl7WMXh46dlIDa2AyBILicwKGKVHVCEAC1VhIpIYQQQkTHkE6kFixYwK5du3o8ZsmSJSxZsuQERSTE0Ffj93JuRccmtQuO3e770PqoyD54MCaNDSdSu/YNeCKl7y4OX7NjbVZPzLRk1MZm1PpGrJxMADwdiVRNbBBbC+8lJYQQQggRDcN2jZQQ4ujqW32cXpVM0GGhzYo55nFaTTiRsjIja85i5mZhxXrQSipRvAO4JUDIQN9fiu3Qe2w00elo66TcHVP7fBjY6RpKuw3t1sDEK4QQQoiTiiRSQowwniIDt6VROd5EcR77r7haU4+tqlipyZFdQFUxJo5Fse2uitFA0IvLUEIGxvhRoB+/eN75OrRuiVT4PJ9pYKWHv5aqlBBCCCGiQRIpIUaQar+XuK3hRCEwy3XM4xSvD7XNi5WaBHrk+yoZk8cBdK2zGghd0/omju3V8VZH04zDK1IeNZw8+U0TKyP8OqXhhBBCCCGiQRIpIUaQP2zezKyaBNo9JgUzj91EQu2c1tfL/aM+zyzIwUqMRy87iNLQ3KcxehQKoe/aj61rvVofBYSTQkCtb+h6rHNqn980JJESQgghRFRJIiXECFKwR0ezFfTZsaAdu8tdVyIVSce+wykKoemFADi27uzbGD3QdxWjBEPhalRHB77jcjqwEuNRmlohGAIOTe3zmyZ2Rvhr2UtKCCGEENEgiZQQI0TQMllcHk6MrNk9b7Db2WjC7GsiBYRmTMIGHFt3gRndKo9ja7hbZ2ey1ltWWjIKoDY0AYf2kfJZBla6hq1IC3QhhBBCRIckUkKMEP6aANMa46mJC2Ll99ycod8VKcBOjMccNwq1tR19574+j/N5SlML2oFyrPhYzNG5EZ37+c59uqKiKQp+0wCHgp2sojZaELR7GkYIIYQQ4rgkkRJihNA3BQDYNKat581rTRO1rgHL48aOO3Z79N4InjIDAOeazWBHJzlxrtuKQrjihRrZW5TZ1XAivE5KURTcmo6vo2JmdUzvU2tlep8QQggh+kcSKSFGAtvu6ta3c1zPezupDc0ophWuRvWUcPWCOSoXMyMVraoOraSiX2MB4A/g2FyErWmE5k6L+PTOFujdO/dp+E0D27ax08NT/RRpOCGEEEKIfpJESogRQD1o4qmD3Ylt+NJ6To7Umjqgf9P6uigKwdPmAOBa8Vm/q1LOjTtQgiFC0yZix0ZeLeuc2vf5vaRsIGBJC3QhhBBCRI8kUkKMANomPwDv5tQRpzt6PvZgLQBmVnpUrm1MHoeZmYZ2sKZ/G/T6/Dg/3YCtKAQXzOzbGC4nVnwsSlMLGOFkyaMdvpeUbMorhBBCiOiQREqI4c6y0TcFsLH5IKf+uImUWhVOpKzs6CRSKAqBs04FwPXeqq7W45Fyrd6A4g8SmjUZu2OKXl9YaSkott3VuU/2khJCCCHEQJBESohhTj0QQm22OJhrUOcJ9pxIWRZaVS2204GVkhS1GMyx+YQmjUVtbsX10ZqIz1eranGs3Yrt0AkumtevWD7fua9rLynLhBgVK05BqTPBlM59QgghhOg7SaSEGOb0jeFufTvGewGI04+9ga1a34QSMsLT+vrZaOLzAuefge124ly7BW3Pgd6faJi433gfxbIInHUqdlxsv+I4lEiFO/e51Y69pMzwdD47Q0exQKmXqpQQQggh+k4SKSGGM8NG3xrA1mBzfjtAjxUp9WANEMVpfYex42LwX3I2AJ7X30Otre/FSTbuNz9Aq23AGJXTp059n9eVSNWHK1KH1kiFEymZ3ieEEEKIaJBESohhTNsVRPHZmJOc1GvhylRsD4lUV6OJ7IwBiccoHEtg4RyUQBDP0te61mMdlWXheucTHDv2YCXG47/i/KhUyczUo0/tO2IvKWk4IYQQQoh+kERKiGGscxNeY5abNiPc5KGnipRWFa5ImVkDk0gBBM88heC86ag+PzEvLMOxZnNXB71OSkMTnr+8iXPDNiyPG98XLun35sBdPG6sWA9qQzOYJp7Dmk2AVKSEEEIIER36YAcghOgjv4W2I4DtUjAnO2nfepxEyjRRq+ux3S7spPiBi0tRCJx3OlZCHK4Vn+F+bxXOTzdijsrFdrtQ6xvRSg+i2DZmanI4iUpOiGoIVloyekklamPLoWYTnWukZFNeIYQQQkSBJFJCDFP69iCKAaGZTnAoXRWpmGMkUmptA4ppYhTkRL3RxBEUhdCCWZij83CuXIe+qxjHjr1dT1sxHoLzZxA8ZQbo0X8bslJToKQSta4Bd0LH1D4rnDjZiSq2S0GtNcCyQR3gPwshhBBCjEiSSAkxzHxYU86K2gq+8WkBWegYs90AtBkhYjQd7RhJ0qH1UdFvNHEsVmYa/msuAl8ArboWQgZ2XAxWZhqoAzez+PAW6HEpmQA0B8PTIFEUrHQNrdxAabawk7UBi0MIIYQQI5ckUkIMM/+o2E9dfTvppWNocRu86S5j184mvKZBhstzzPO08oMAmDmZJyrUQzwuzNF5J+xyhydSY2ZPBGBvW/Oh5zPCiZRaa2JKIiWEEEKIPpBESohhpi7g46zKVDQU3smu5Y8HDnQ912PHvvIqAMy8rIEOcdAd3gI9PyYOl6qxp60Jy7ZRFQU7QwcCKDUGTDz2vltCCCGEEMciXfuEGEZClkVTKMBFB8Nd94rGeRkdc6hxxLEaTShtXtSmFsy0ZPC4T0isg8mO8WB53Kj1TWg2jI9LxGcaVPjaAOncJ4QQQoj+k0RKiGGkIegnu93FxIZYrFSNb5y3gN/NOavr+abOdUCf0zWt7ySoRgHhdVBpySimidLUwoT4JAB2tzYBkkgJIYQQov8kkRJiGKkL+Di3Ig0AY7YLFAVFUViYmg1A0LaOel7XtL7ckySR4tD0Pq2ukYnx4a93t4Y36bVTNGxNNuUVQgghRN/JGikhhpH2ah/X788BwJjl6nr8vgkzcagql2aPPup5XYlUfvaAxzhUWKkd66RqG5iYPwmAPW1N4Sc1BTtNQ602od2CWPlMSQghhBCRkd8ehBguDJvpr2vEGTo75gaw0w99DhLvcPLtSXOZkph65HnBEGpVLVasBzspuhvfDmVWVrhyp1bXkemOwaPplHlbsW07/LxM7xNCCCFEP0giJcQw4VzeTlqNztbkFirP6n3LbrWyBsW2MfOyB34j3iHEzAgnUlp1LYqikOOOxWeaNIXC68isjHAiKtP7hBBCCNEXkkgJMQxo2wI4Vvpod5n8eM4eUiPovKeVVQInUaOJTi4nVkoialMr+ALkeGIBqPC1A1KREkIIIUT/SCIlxBCn1Ju4XmkF4KkFFdR5gqT3sPHu52kHKgAwR+UOSHxDmZmZDoSrUp2JVGVHImV3VKQUqUgJIYQQog8kkRJiKDNsXC+2oPhtgmd5WJFah64oJDpcxz8XsANB1PIqLI8bK+Mo66dGOPOwdVKdidRBf0dFKl3DVkCtlYqUEEIIISIniZQQQ5hzeTtauYE5WufgYpWmUIBUpwe1l2udrOIKFMsKV6NOovVRnaysjopUVS05njgAKjs25cWhYCerqI0WBO3BClEIIYQQw5S0PxdiiOpcF2XGwBOnlfP6xlIAJnZsLtsb1p4SAMzRJ9+0PgAzs6MiVVVHjrv71D4AK11HbQii1hpYuY5BiVEIIYQQw5NUpIQYgpSGQ+ui/ndeKX9tLQbgmrxx3DNhZq/H6UykjFF50Q9yOPC4sRLjURuaSLAgRtM56GvvaoFudzScUKThhBBCCCEiJBUpIYYaw8a1NLwuqv1MF/9IqCDd5eF3c84iTo+gauLzY1dUYyXEYSefPPtHfZ6ZlYajuRW9toEcTyx725ppDAVIcbq7de6TVEoIIYQQkZCKlBCDyGcaLC3ZyY+3f8Yvd64naJn4Xm1AKzeozAry2Snt2MCk+OTIkihAK6kAG8zReSfl+qhOVkfnPrXbOqnOFuiyl5QQQggh+kYqUkIMkipfOz/YuoqagK/rseua8pm6RqHZEeKrU7fC/vBnHRPjkyMeX9tfBoA55iSd1tfBzM4AQKusIXNmeK1Ytd/LtMRU2UtKCCGEEH0mFSkhBsmzB4qoCfhYkJLFJdmjyfS6GP9meO3Or+YWU+cJUhf0A5E1mADAttH2loAC5tj8KEc+vJg5nYlUNZmuGCCcSAEQo2LHKSj1JpjSuU8IIYQQvSeJlBCDoLi9mU/qKklxuvjOpLnMjEvjwQ0TcAVV/jyuArPQyZjY8LomFYVxcYkRja/W1KO2tqOMyoGY3m/eOyK5XZipyahNLeTZ4SmONQFv19NWho5ihht8CCGEEEL01ohOpAKBANdddx1XXHEFl112Ga+88spghyQExe3N/HLnBgC+kD8Rl6Yx61MXU5ri2Z7cytOFZeR4YjknI1xJGhUbj1uLbBauvi/crU+bPDa6wQ9TVm4mAPkN4bVRVf7DEymZ3ieEEEKIyI3oNVJOp5PnnnuO2NhYvF4vl19+ORdeeCEJCSdvBzMxuFpCQb6zeSU+02BGYhoXZhWg7QyQsdqi1WHwX7N3Y6o2OZ44FqRm8lFtBedlRj41T98b3nNKnTwu2i9hWDJzMnFs2UlqbROKftjUPronUubUwYpQCCGEEMPNiE6kFEUhNja8CWcwGMS2bSzLGuSoxMlsfWMNPtPgjLQcvj1pLlqrhevl8H5R/292KdUxQQByPbEkOlz8ZvaZkV/E60etrMaKi0XJzYCG9uOfM8KZHRUpx8EaUsd5qA/4MCwLXVWx0sNvg4p07hNCCCFEBIb01L61a9fyla98hUWLFlFYWMgHH3xwxDFLly7lnHPOYfr06Vx//fVs2bKl2/N+v58rrriCs846izvuuIOkpKQTFL0QR1rfUA3Amem5qDa4XmpFabcJneamdHyo67jcjjbdfaEXl6LYNub4ApSTuO354ay0ZGynI9y5z+XBAuo6uiXaMrVPCCGEEH0wpBMpr9dLYWEhDz744FGfX758OY899hj33HMPy5Yto7CwkDvvvJOGhoauY9xuN6+99hrvv/8+y5cvp66u7kSFL0Q3lm2zobEWTVGYmZSO430v2r4QZo5O8NI4cjzh6mmMppPocPb5Ovqe8Pooc/yoqMQ9IqgqZnYGSshgejCcXHauk7ITVWyXEk6kbOncJ4QQQojeGdJT+xYvXszixYuP+fwzzzzDDTfcwLXXXgvAww8/zIoVK1i2bBl33HFHt2NTUlKYNGkSa9eu5eKLL+5TPKo6+J/ud8YwFGIRkdnT0kSLEWRGYhoJZTaOd73YToXQkgRUl9qVSOXGxKFpffyMwzDQ95VgO3Ts8QWA3CudrNxMKKlgSmsQnFAb9HX82SjYGRpqmYHWamMnDenPlwaMvLeISMj9InpL7hURieF2vwzpRKonwWCQ7du3c9ddd3U9pqoqCxcuZNOmTQA0NDSg6zoJCQm0tbWxZs0avvCFL/Tperqukpra9+lW0ZacHDvYIYgIFDXW8/Nd6wE4PzUf9/Ot2DY4b0kjdlI8ABN9qXAAxiQm9vleM7ftIRQMoc4sJDkjCZB7pZM5eTShVRuY0OKDNPiwvoIJGanMz8gikO/FLGsj0edAGxcz2KEOKrlfRCTkfhG9JfeKiMRwuV+GbSLV2NiIaZqkpaV1ezw1NZWSkvDUpvr6er7zne9gmia2bXPjjTcyadKkPl3PMCxaWnz9jru/VFUhOTmWxsZ2LEumIQ0X/7V+NQe97SxKzeGCd+Kxm0IYc934ChWobwNgijOJC7IKuCRjFPUdj0XKuXYHDsA7poD2xna5Vw6XmEQMkFZRj56ewqb6Wu795D0uyCrgGwkTcAGte9sws0/OhjTy3iIiIfeL6C25V0Qkhsr9kpDgweHQjnvcsE2kjsW27a4F9hMmTGDZsmVRG3sovQFYlj2k4hHHZtk2pe2txOsOHqibgnNnO1a6RuDKODjsZ+hUNO6fMCt8Tl9+tqaJvqcYW1MJjS1A7RhD7pUOLhdWRirOmnpemHQpa8x2ni0u4p2qUi5wZjAXB0q1cdL/Wcn9IiIh94voLblXRCSGy/0ybBcDJCcno2naEc0jGhoajqhSCTGYGoJ+QrbFgvZUnG+1Y+vgvzkBXNGd/6uVVKL4g5hj8sHV92YVI5mZnwNA8sE6zs0s4D/GTQdggzPcoKazc9/Oloaurn5CCCGEEEczbBMpp9PJ1KlTWbVqVddjlmWxevVqZs2aNXiBCfE5VX4vsSGNu1bnoZgQvCwOOzv6xWB91z4AQoVjoz72SGEWZAOglR0EYGpiCgAr7RpsDdRag7qAj+9sXsn9Gz6kpL1l0GIVQgghxNA2pBOp9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCdFPtb+fe7aNJaXNgTHNinOqO/kUME8fOfdiaijFxTPTHHyHM/HAipZdVApDsdJPtjqUk0EZrqo3SZlO1sQELmxYjyH9uW43flI16hRBCCHGkIb1Gatu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj1NbW8vkyZN56qmnSElJGayQhThCQ5OPmyvSCLhtjOviYQA2ydX3l6L4g4QmjgG3K+rjjxR2bAxmahJafRNKWzt2XCxTE1M46G/nZwW7eLRmEhPfVog5Q8NyQUMwQHF7C5MT5D1FCCGEEN0N6URqwYIF7Nq1q8djlixZwpIlS05QREJELnk3OGyVqkkQ7xmYIrC+fTcAxtQJAzL+SGIW5KDVN6GVHcSYPJ5piam8W13GqqxG3sup49zKNP6jqIDt55u8U11Kpa9NEikhhBBCHGFIT+0TYiQYvy/c+MGeMQBT+gD8AfQ9JdguJ8b4UQNzjRGkc3qfVhKe3jcnOYNY3cGClCwen1ZMozPEFaVZLGoKN62p9LUPWqxCCCGEGLokkRJiILVbTKqKpdEZIrZwYDZ61XcXo5hmuMmEPqSLzEOCOSoXAP1AOQApTjcvnnoh/zn1FArSEnl8WjEA899z4TZUSaSEEEIIcVSSSAkxgOytPjRbYX1eM5p+/I3d+sKxNTz9Vab19Y4dF4uZnoLa2IzS3AqApoTfCq/JG8dnec00TAR3E9yxq0ASKSGEEEIclSRSQgwgZZMfgJ1j/QMzfkMTemklVlJ8V6VFHJ85Og84VJXqdEpqFq+cfgnuL6RguxWuKc4iqSK80bcQQgghxOEkkRJioLRaxBywqHcFqc+1BuQSjs07AQjNmDwg3QBHKqMjkdKKy4/6vJ2gEbwiDhWF+zeOock7MImwEEIIIYYvSaSEGCD6tgCKDR9m1+N0DMC0PtPEsXUntqIQmlEY/fFHMLMgB1tV0Q6UwzGqTcYcF3tyfRS0e1D/1XaCIxRCCCHEUCeJlBADRN8SAOCDnHo8avSbQOh7S1DbfZjjCrDj46I+/ojmdGDmZqL6/KjVdUc/RlH47Gw/7bpB1qc2annoxMYohBBCiCFNEikhBoDSYqIWh/DF2WxPbsWtRT+RcmwqAiA4a3LUxz4ZmGPyAcJVqWNIzYrlD5NLUG0F1yutYMhaKSGEEEKESSIlxADQtgZRbCgbH8JWwKNFd2qf0tyKtr8UKy4Gc5zsHdUXneuk9P2lxzzm1NQsPhnXzMbUZtQqk/p/1vH/9m5hf1vziQpTCCGEEEOUJFJCDAB9S7g5wd4JQQBcUa5IOTbtQAFCMyaBKn+N+8LKTseKcaOVVYE/cNRjnKrGVfnj+OWMffg0k5yVFjt31fDk/m0nOFohhBBCDDXyG5gQUaY0mWgHDKwklfK08C/oUa1IhQwcG3eEm0zMnhq9cU82qoo5bhSKZaEfo3sfwMVZowkkK/xfYRm6rfL9LePZ3lhPlV/2lxJCCCFOZpJICRFl2tZw8mTMcOGzDADcUWw24di+G9Xnx5g0FjtBmkz0hzE+PC1S33vgmMfE6DpPzDuH62+chTlKZ3xTLF/eOYr3qspOUJRCCCGEGIokkRIiyvTN4UTKnOnCb5oAeKI1tc+2cazbCkBw3ozojHkSM8bkh9ug7ysF69h7fXk0nRing8AX4jHdcMP+HPL+ZWH3cI4QQgghRjZJpISIIqXBRCszsFJUrFwdvxmuSLmiNLVPK6lAq23AzM7Ays2MypgnNZcTsyA73Aa9sua4h9vpOsH/SKbVZXDJ3nTMl5vAkk5+QgghxMlIEikhokg/bFofioLfim5Fyrl2CwDB+dNBUaIy5snO6Oh6qO8r6dXxVo7O61e1UOsKkrjRxPWXVjAlmRJCCCFONpJICRFFWte0PjcAvo6KlDsKFSmlvhFtbwlWXCzGpHH9Hk+EGeNHA+ENjnurYEwyX124jca4EPqmAK4/tdDmC/B6xX5aQsEBilQIIYQQQ0n0dwkV4iSl1JtoFQZWmoaVHU6cOtdIRaPZhGv1RhQgMH86RHlfqpOZnZKImZKEVlOP0tLWqwYekxNSqI0L8a2FRTy5YTb6jiDBp9t4dtoOXq3cz/i4JEzb4juT5uJQ5WclhBBCjERSkRIiSvQt3af1AV1rpPrb/lxpakHfthvb7ZKW5wPA7Ozet7u4V8e7NZ1JCcnsd7bzfxdXEcpUyS9z8rPPJtPSGuCTukpW11extbl+IMMWQgghxCCSREqIKNEOT6Q6dFak+rshr/PTTSi2TXDedHA5+zWWOFKocCwA+q79vT7nrPRcAJY27uUHi3axM6mNmQ0J/GnTPC5LKgBgS1Nd9IMVQgghxJAgiZQQUaDUGmiVBlaGhp11qPrktwxcqobWj8YQSls7ji07sZ2OcCIlos7KzcSKi0UrO4jS7u3VORdlj+YP884h0xXDukAd31ywgwOZfpKrVe55J4/kgIMtzZJICSGEECOVJFJCREHn3lGHT+uDcEXK1c81Ms7PNqOYZnhKn8fdr7HEMSgKRuFYFNvu9fQ+gFxPHJfkjAbA6zDZdJ2JMcGBu8bm8dXTKG1qwWuEBihoIYQQQgwmSaSEiILOtuf+6Q7eriqh0teGadsELLNfrc+VNi+ODduxdY3gKTOjFa44CmNSx/S+nb2f3gdwQWZBV7I8JT2NwK2JmGMd5LW5mVeTxPaWhqjHKoQQQojBJ137hOgnpdpArTKxsjT+2LaTNw8ewKNp3DVuBtC/1ufOVetRDIPggpnYcTHRClkchZmXhRXrQSupQPH6sGM8vTov3uHk3gkzqPb7yHHHgqIQOtWNtj/Eoupk1jZUMz9FNk8WQgghRhqpSAnRT53T+jaMauPNgweI0XT8psmvd28Ewh3e+kJpasGxcUd4bdSps6MWrzgGVT00vW/PgYhOPTsjny8WTETpmNZpFjqxNTitOoVV1ZWEOjZmFkIIIcTIIYmUEP1h26hb/AD81rMTXVF4YMopjI9L6jqkrxUp1yfrUCyL4IJZva6OiP7p3OhY37mvfwO5VcwJThJCOmNq3KxtqIlCdEIIIYQYSiSREqIXiloaaA0FAbBtm7+W7WFzeTX6Jz70WovdCW0k58Ty+OyzmJGURpb70DS8vqyRUusa0LftxvK4Cc6fEa2XIY7DzM/GinGjHagAr79/Y00Jt6lfVJXC+zVl0QhPCCGEEEOIJFJCHMemxlq+vfkTHtmxBrvVpPnjRqa9BAv+R8H1RjsAK8Y18sDUUyiIjQcgyxPbdb67D137nCs+C+8btXCO7Bt1IqkqxqRxKJaFo59VKWOKC1uBM6tTWVNXRYWvLUpBCiGEEGIokERKiM9pCPpZU1+F1whh2zav7t7D5SWZ3P52FrGP1pP7psncuiSanSH+MaqKby3cwbxLxxCnO7rGyD6sIhXpGimtuBzHngNYSfGE5kyN2usSvROaOhEAffvu/g0Ur2KN0knzORnfHMvfyvdGITohhBBCDBXStU+Iw/yjYh9P7d8OwL3eiZy7N4XHSsejEW4i0OQOsXOUj5dSyijJ8NNiBvne5PkUxid3GyfLfVhFKpI1UpaF672VAATOPg10+St6olm5mVhJCejlVSiNLdjJCX0ey5jqQjtgcHZNGk8nl7Jk1CRSnLIXmBBCCDESyG9pQnRoDQVZWrITFyp3FhVw7b5UAOpcQbxTNP6WWsEbrgpsBVRF4fn5F+A3TTLdR7Yl7+saKcemIrTaBoz8bIzCsf1/USJyikJo6gRcK9fj2LGH4Olz+zyUOdUFb7ZzXk06f5hYQlFLA6en5UQxWCGEEEIMFpnaJ0SHNyqLIWDzv1tmct2+bFocBj+Yv5PvXbGH5BsyOWVeAZYCNjA+LolEh+uoSRRAqutQl71eT+3zB3B+tAYbCJx3OnS00hYnXuf0Pse2XWDbfR7HTtWwsjTSmsIb9Ja2t0YrRCGEEEIMMkmkhACClsnqveX8z8ppjCt1E0iBu0/fyurMRm4cU4iqKMxMSuuawjc1MaXH8bTDkiC7l7+Iuz78DNXnx5gxCSsrve8vRvSbnZqEmZ2B2tCMerC2X2MZU11AuHtfiVcSKSGEEGKkkERKCGD31hp+sWISY1tjMcc7MO5LZeq4DBan57IgJQsARVH497FTKYxP5vzMgl6P3dzRNr0nakU1jg3bsd0uAmef2ufXIaInNK2jKtXPphPm1ENt0EvaW/odlxBCCCGGBkmkxElP2+hn7ksaKUEn5bMt/LcnQozK/RNn8e1Jc1EOqy5NSkjhV7POID8m/rjjdnbuS3MdZzNdy8L91ocoQOCc02Tz3SHCmDwOW1XRt+8Bw+zzOFaOjpWsMrUpHn9TkJDV97GEEEIIMXRIIiVOSo1BP9/Y8BG7Xy7F/VIrigV/mFFC3PXpoEVnbdJjM07n38dO5ZLsUT0e51i7Ba2mHiM/m9CMSVG5tug/OzYGY/woVJ8ffc+Bvg+kKJhTwtP7Tq1KpsLXHp0AhRBCCDGoJJESI1ZzKMDjezbxuz2bCZiHqgAhy+JnW9Zx40cZzF7vIeS0+d6CIppPceBQo/dXIs3l4crccTh62JBXaW7F9fFabFUlcNGZ0mBiiAnNnAyAY3NRv8Yxph0+vU/WSQkhhBAjgbQ/FyNSUzDAfRtW0BgKALCtuY6AaeLUNBIaFL62bgyFzXFUxPh599I21vma+XrCCW43btu43/4IJWQQWDgHK63nBhbixDPH5mPFx6IVl6E0tWAn9W1PKWuUg4DbZnZdAi80NkJGlAMVQgghxAknFSkxIq1vrKExFGBOcjqF8eHpVFqzxU2fZvI/70+jsDmOorQ27l60lXc5CEB+TNwJjdGxuQh9XylWSiLBhX3fq0gMIFUlNGMSCuDYsrPv42gKzRMVHLZK4r6oRSeEEEKIQSQVKTEiVfjaAFiUlsvZsdn43mkiawMoBlgeheDZMbyRWUlLrUFLx7F5nhOXSClNLbjeW4WtKPguOxcc8ldxqArNmIRz5XocW3YSXDQP+jj90z9Zhy0G4w+4ohyhEEIIIQbDiP7tbf/+/fzgBz+gra0Np9PJD37wA+bNmzfYYYkToNzbhsdQOWVdDIlrmkkKgO2A4DkxhM70gEcluzwOOrYISnG6idEdJyY428b95gcowVB4Sl9u5om5rugTOykBc0w+enEZ2v4yzPE9Nw85FrXQjU9rprDCgxmywSHr4YQQQojhbEQnUi6Xi5/85CeMHTuWffv2cffdd/P2228PdlhioIVspm528e0dc0gK2tgahBZ6CJ4TA/GHqgk5ntiur0/ktD7H2i3opZWYmWnhCocY8kIzJ6MXl+HcuB1fHxOphBgXa9ObOLMqFf/eIOZkqUwJIYQQw9mITqRyc3O7vh47diytra3Ytt1tXyAxMti2ze62JsbudZLwTz83NWdjYROa4yJ0fix2ypGd83IPm8p3oqb1qTX1uD78DFtT8V92DmjH7ugnhg5j4misuBi0vSUojS3YyZE3ndAUlXW5zZxZlYq2XRIpIYQQYrgb0s0m1q5dy1e+8hUWLVpEYWEhH3zwwRHHLF26lHPOOYfp06dz/fXXs2XLlqOO9d577zF58mRJogZQUzDA3ramQbn2v6rLeOb9TSS81I7abPFxZgOPXFJM8IaEoyZRAJnuGFTC90NeLzbY7bdgCPc/3kExTAKLF2BlpA78NUV0aBqh2VNRAOeGbX0eZleeD0Ox0HYEwLKjF58QQgghTrghnUh5vV4KCwt58MEHj/r88uXLeeyxx7jnnntYtmwZhYWF3HnnnTQ0NHQ7rqKigl/84hfHHEdEx893ruebmz6mxu896vO2bROyzKM+1x+WbfNayT6+uWUsKgq/mLGPB+fvQs1y9nieQ1XJdHsAyD8BFSn3Ox+j1TdhjCsgdMrMAb+eiK7QrCnYqopjSxEEQ30aQ4/V2ZTagtpuo5YYUY5QCCGEECfSkJ7at3jxYhYvXnzM55955hluuOEGrr32WgAefvhhVqxYwbJly7jjjjsAaGtr4+677+Y///M/GTWqb2sbOqnq4FezOmMYCrEcrj7gY2tzHTawp72JrJhD648O+tpJd3lYXnWAJ/dt49ezz2RCfFLUrr22vpqztiYyui2Gg/kGy/NrAMiLjTvun9PM5HRaayuZkJA0oH+m+padOLbuwoqPJXDFuajawH+GMVTvlWErIRZz8jj07XtwFu3FmD0l4iESHU5WZjUwry4JfUcAY1zPyf6JJPeLiITcL6K35F4RkRhu98uQTqR6EgwG2b59O3fddVfXY6qqsnDhQjZt2gSAaZp89atf5frrr2fRokX9up6uq6Smnth9hnqSnBx7/INOoPf3VdA5UanS8HX9Wa2squAba1Zww7hCVlVXYto2n7XWcOrovKhde9Oqg9yzNxfTAZlfyYfVawEYn5Zy3J/Zfy5YSNAyB7Rjn1VdT/Dtj0FRcP/bFcTkpw/YtY5mqN0rw5l17gKC2/fg3rgd57nzI54qnBEfxyeZpXx1Gzh3hEj4t9ghN91Y7hcRCblfRG/JvSIiMVzul2GbSDU2NmKaJmlpad0eT01NpaSkBICPPvqITz/9lLq6Ol5++WUAXnjhBRISIl8obhgWLS2+/gfeT6qqkJwcS2NjO9YQWmPxzoEDXV9vq62lvr4NqynExx/sRk2CV/btwup4fmVFOUtyJkblus1+Pxd8kIDDVglcGIvlNLlr/HTeqCxmvCOe+vq2Xo3jIxCVeI7gD+B59m+owRDBxafQnpgMvYypv4bqvTKsxcXjzk5HO1hL08bdWKNyj3/OYdyWQp0nSH2mSWo1NGxrgpwT1Hb/OOR+EZGQ+0X0ltwrIhJD5X5JSPDgcBy/IdiwTaSO5fCufGeffTbbt2+P2thD6Q3AsuwhE09j0M+25jqSHS5ajCD72pphfxD92Ubu943ivKQUHpu1l/I4PwAl3laqfV7SXZ5+X7f23TpmN8VzMD1IwulpYNlcmj2GS7PHAIP8M7MsPP94F7W+CWP8KAKnzRmUBgND6V4ZCYJzpuF58wP0tVvx5+dEdG6CHp7K93pKJbdW51O1pp6MK4bWPmJyv4hIyP0iekvuFRGJ4XK/DOlmEz1JTk5G0zTq6uq6Pd7Q0HBElUoMrPeqy7CAxRm55MfEM784Hvcfm3D5FKrdAaY0xfPkRzO4pjiLs9LCn+Cvb6jp1zXfOljCtz5YwaRPdAzFou4KFwyx+bTOj9ei7yvBTE3Cd8V5MMSmcIm+MaaMx4pxo+8uRmlqiejcBEc4kfogoz78/S6rp8OFEEIIMYQN20TK6XQydepUVq1a1fWYZVmsXr2aWbNmDV5gJxnbtnm7qhSACzMLuLMonx9smoBt2fxm2n6+c+luAufH4ETlvu1j+OoH+WR6nbxdVYJh9e2XSMu2+VvZHr62dSweU+PViTWMnjC0WonrRftwrdqA7XLiu/ZicA2dpgKin3Sd0NzpKLaNc83miE5NcIT3jiqN91Ea6yO1TkdpiH4nSyGEEEIMvCGdSLW3t1NUVERRUREA5eXlFBUVUVtbC8Btt93GSy+9xLJly9i3bx8PPfQQfr+fq6++ejDDPqlsa67noL+dmTEpjP+bzelbEmh1GPzotN28Nrqa0zNzMM6LJXBvMlaWRlKJwjMfzWJckYM/HdiJbUdett3YVMvUfTGcWptMU6JJxuWZqEOo2qNWVuN+431swHfFedipSYMdkoiy4Jxp2A4dx+adKN7er51MdBxKqD/JCm/ToG0foPV5QgghhBhQQzqR2rZtG1dddRVXXXUVAI888ghXXXUVL730EgCXXHIJ3/ve93j88ce58sorKSoq4qmnniIlJWUQoz65rKw7SJrPyUMfTEDfHsRIUXng7D18khL+JfHM9PBUPivXge++ZIJneXCbGt/dPJ5Z/9D40eqVbGuuj+iaHxWXcu/20QC4vpjCnPSMqL6m/lAaW/C8shzFMAicuxBzfP9a7oshKsZNaOZkFMPAsb73G/QmdlSkAD7MDt/3zve9KNWyp5QQQggx3AzpZhMLFixg165dPR6zZMkSlixZcoIiEp/XtL+VJz6ZTlJAxRzrILAkgbuU2Xx/y0pyPHHkx8QfOlhXCF0chznZhfJSE6dXpzBteTy/LdvJrtMzuTZv/HGvFzBNTl0ZS2LIQWCBC2vsEJoy5/UT8/IbqF4/wbnTCM2fMdgRiQEUnD8Dx/ptONZvI7hgFjiP333v8IrU3qR2XhpbyRf35+B+uhn/3UnYScfvECSEEEKIoWFIV6TE0NMY9PN2VQkhy6J1XTMPfDCO1ICT0Hw3/jsSIVYlPyaeJ+efx6PTFx51DGu0A/MbaQRPc5MYcvCjDROZ/WcVbY0PvD2vm6rYVM955Wm0eAyMi4fOvl4YBp6//RO1oZnQhNEEzjtdmkuMcHZSAsbk8ag+P44tO3t1jlPV8Gg6CjAjKY0/Ti6hfrqC2mzhfroZ2qX5hBBCCDFcDOmKlDg+y7Z5ung7DQE/35o0F62fv7zbto0FxxznuQNFvH+wjLyPbU5ZF4uFwkentTL3yrRuiYNHO86t5VQIXRWPOc1F+59rmV4XD39rw/5HG+ZEJ8ZMF+YUF7gOiyNgM2q5BWhsO89kpmeIfA5gmniWvYNeXoWZnYH/ivNAHSKxiQEVPHUWjh17cK7ZTGjO1F793O8YM5WQbVEf8LGpqY7V5/i4KJSAvjOI+9lmim5U+FdjOS2hADcWFJIbM4Q+MBBCCCFEF/ltbxizbZs/7NvKqxX7+biuks1Ntf0az7JtfrZzPf/22Tu0hIJHPB+yLFp3tfHHj2dwyrpYfLrJD+fvRF0c1+fqizXeyRu3ePn6qdvZOKkdn26iFwVxv9RKzH/V4fpTC9q2AIRsnG+3k9CmsSK7jux5Q2QdnGXhfuMD9L0lmClJ+L5wca+meImRwcpMwxiTj9rcir5jb6/OuSh7FJfnjCHHE06Qtrc30HiDB7NARys1MJ6r583yYlbUVvDmwQMDGL0QQggh+kMSqWHs47pK3jx4AL0jiflXRxvyvijztvJ08XY+qaukKRTg0/qqbs8rTSbB5+v46SeTGNcay+aUFu46fSu7831MTexf6/HZKelsSmvhG+O3cMW5a3nirApCc8L7QulbA7hfaCHmv+rRV/lodRj8dV4tGe6Yfl0zKmwb19sf49ixBysxHt+Nl2PHDoG4xAkVXDgHAOfK9RBBS/88TywAb1WV8OUtH3DwJjdtqTazqhJ4cNtEFBsOtEe2T5UQQgghThxJpIYh07Y46Gvnqf3hbmE/nHIKsZrO6voqWo9SSTqe96vLuGv9B7xasR+VcFK2uv5g+MmQjeP9djy/bCCjSKHWHWD9JUF2LlH5wrzJ/H7uOTjV/i2QHxuXSIIeXoRvqjZ/iStl68Um3v9Mxf+lBIzpTjBtFBv+d8oBcjMT+nW9qLBtXO+vxrlpB1ZsDN4vXo6dIFOwTkZmQQ5GQQ5aQxN6Ue+qUgCFCSl8IX8ChfHJNIUCPFG1jf9auJcad4AzS1P4ys5RlHolkRJCCCGGKkmkhqGvr1zBHWvepSEY4OyMPBa0pfDv7eMxbKtPU4G2NNcBcHpaNj+beTqxuoNNDbUYW714ft2A820vWPC3iVXcdvZm8k7P4LLcMZyVkUes3v9pbKqicGnOaApi4rmpoBAIr8XyqSa7RvtouykO74OpvHpjC2/n11JweCfAwWDbuN5diXPNZmy3C9+Nl2GnJA5uTGJQBRfNAyKrSmmKwr+Nnsx/TTuNFKeblXUHWWPX8duzSrFjFK7fl8MFO1NpCso+U0IIIcRQJM0mhqFZaem0+gPkeuK4dcxknM+2c+XeZFYvSOYVdQ/nZeaT5vL0erzitvCn3v8+dhppLg8Xa7nMX+khsbYdAGOyk5ZL3PzPrtXkemKJi0Ly9Hk3j5rEzaMmEbJMPqwtZ0tzHTetfouQbXFp9mjuGj+DbTEt0Ar5nkFMpDqm8zk3bsfyuPHddAVWev+mNorhzxyVi1GQg15aiV60D2PqhF6fG6Pr3Dt+Bv+7dwvzUjL5YsFE/GN1tD82cFfRaHZ/2kLSmekDGL0QQggh+kIqUsPQ7ZOm88vZZ/DVibNIdLgInRZOmr6/YwKEbJaW9Lz31uEMy6LE20qC7iTV6UZf6eOuZVmcUptEXUII/20JBG5NpCo2/Kl4hmtg1wA5VI2fz1jEtIRUQraFisK71WW0GyFKva0A5A9WFzPbxvXPD8NJVKwH381XYmVIEiXC+lKV6nRKahbPLbiA+ybMJN3lwRrl4MOLvRiKxfjlNlqRVKWEEEKIoUYSqRHAnObCmOIksVXjlt15bO2Yqtcb5b42DNtiTFwCWomB8/U2FE3hqcml3LF4M/6J4epTTcAHcEKaPCQ6XfxkxkKWLriQ8zLzCVgm71eXUeZtw61qpEdQbYsa08T9xvs4NxdhxcWEk6j0IdI5UAwJ5qhcjPxstPpG9J37+j2eY0oMP5u5D9VWcC1tQak3oxClEEIIIaIlokQqGAzy+9//np07e7f5pDhxglfGYTsVbtifQ2wNBK3e/dJV3NEVrFBPxPVSC4oNwSvj2XeKSYsd6lo/VeP3ApB5gpIYVVFIdLq4JHs0AM+X7MRnGuTFxKGc6I1ugyE8f30Lx7bdWPGxeG++Eis1+cTGIIaF4BnzAXB+si7iqtTnjYqJ5928Ot6YVIsSAv0zXzRCFEIIIUSURJRIOZ1OnnjiCVpapJPUUGMnaQQvikWzFb65ZSyV7W29Oq+4rRmAyz5LRW20MKY7Mea5OC01C4DVdeHufdWBcCJ1otuOj49PYkpCCj7TACD/BDeaULw+Yl58DX1/KWZaMt5brsFOSTqhMYjhwyzIwRiVi1bfhGNr76fYHk26y8OY2ASezSvBUmz0dX4w7ChFKoQQQoj+inhq34wZM9i+fftAxCL6yTjNzcH0IJOb4lFX9e7T6/3tzZxbkUZ+kYaVqBK4Jh4UhfkpWajAuoZqAGr8HVP7BmFa3Z1jp3Z9nTnAa7QOpzS2EPP8MrSDNRj52XiXXC0tzkXPFIXAWacC4Px4LYSMfgyl8MCUUzDjFVZmNKK227DNH61IhRBCCNFPESdS3/72t/nzn//Mn/70J8rKyvB6vfh8vm7/iUGiKmw538BUbMZ9rKI09Ty9r7S9lerKVr6+dQy2AoEb4iEmfEskOJyMiU2kLuinxu+l2j84FSmAifHJzE/JBGBGUtoJuaZWfpCY5/+G2thMaOIYfDdcBh7XCbm2GN6snAxChWNRW9txrN/ar7Ey3TE8PO00VoxrAGD/vw7ym10b+XPprl5P3xVCCCHEwIi4/fn1118PwCOPPMKjjz561GOKior6F5Xos/hRMbw8toIb9+WivtZG4JZj72/0wv4ivr9xPLGGTvAsD9Y4Z7fnJyUks6+9maKWBmoDXnRFIcXpHuiXcFQ/nDyfA+0tjI9PGvBr6ZuLcL/1EYplEZw7jcB5p4MqfVlE7wUWn4K+uxjX6o2EZk0Bd9+T8HFxidxywUwatjQxvS6en+/fy3txfvI8cZyRnhvFqIUQQggRiYgTqZ/85CcnfrG/6LVcTxw/nljOeVXppG8HY1sAc9qRv8SVtLcwbq3G9MYEjByN0PmxRxwzJSGFNw8eYFNTHU2hINnuGNRB+tnrqjrwSZRl4Xp/Nc61W7BVFf9FZxKaPfX45wnxOXZqMqGZk3BuKsL56UaCHdP9+irNE4PjdBve9vKNxkK+Ebe5azsAIYQQQgyOiBOpa665ZiDiEFGS6nSjOhV+O2M/j66ehPPVNnzjHeDuXlEp3dnArbvzCek2oZsSQD8yQZqcEG7v/WFtOTA40/pOGK8fz2vvoheXYbtd+K65EHOUfNov+i64aB6Obbtxrt1KaO407Pj+ra8z5ntw/MvLtN0xOHIUKnztUYpUCCGEEH3R5/lKe/fu5R//+AdPPPEEtbW1AJSUlNDW1rtucWJgKIpCnieeVamNbBnXjtpi4Xzrc79wBSzmL3ei2Qpl56vY6UfPp9NdHhIdToIdbZxz3EdWrUYCtbyK2GdeQS8uw0xLpv3W6ySJEv1mx8cRnD8DxTBwrfgsCuOpmFOcOHxwZlUq5VKREkIIIQZVxIlUe3s7X/3qV7nssst44IEH+O///m9qamoA+PWvf83//u//Rj1IEZmbRhUSrzv40dgd+FwW+qd+1JJQ1/OOV9tIbXOwMquBlDOOvR+SoijMTc4AYExsAtcXTBzw2E8o28axZjMxS19FbWkjNHUC3n+7Fjs5YbAjEyNE8LQ5WLEeHNt2o1ZW93u80IJw18wrSzOp8LVj2dIOXQghhBgsESdSP/3pT9m4cSPPPvssGzZswD7sH/LFixfz8ccfRzVAEbn5KZn8ZvaZNLkMls6oRLHB9fdWMG20zX6c6wPUuYK8fUYTDk3rcawvj53GT6Yv5LezF5M+CK3PB4zPj3vZ27jfWwUK+C86E//l54LTMdiRiZHE5SS4eAEA7ndXQj8TH2u8AytFZXp9ApnNTuoC0iVVCCGEGCwRJ1LvvPMO3/rWtzj11FPRPvdLeE5ODhUVFVELTvRdljuWfE8cSzPK8I1WUatMnG+041oWnnr501l7GZeZctxx4hxOZiSloY2gBiNacRmxT72MY1cxVlIC3luuCTeVGEGvUQwdoemFmJlpaBXV6Dv29m8wVcHoqEpdVppBhU+mUgshhBCDJeJEKhAIkJSUdNTn2tvbj0iuxOCZk5IBCnx0Zju2Bo5VPhSfzasTqtmQ3sxpqdmDHeKJFTJw/esTYl56A7WtndC0ibTfdh1WVvpgRyZGMlUNt9AHXB+shlDoOCf0LDTPjanaXFiewcFWaTghhBBCDJaIE6np06fz6quvHvW5t99+m9mzZ/c7KBEdneubPlKqCZ0T7rjXlG7xv+OLWZCaRW5M/7qIDSdqRTUxz/4V57qt4a58V10QnsrXj/19hOgtsyCH0KTwJr3Ozzb3b7A4ldoJNgkhndjtRnQCFEIIIUTEIm5//tWvfpXbbruNW2+9lYsuughFUfjwww959tlnefvtt/nTn/40EHGKPpiWmIpDUdnSXEfgLA92gspDgXWEsLkub/xgh3diBEO4PvwMx7qtKIAxOg//ZWf3uxW1EJEKnH0a+p4SnKs3EpoxCTuh7/dg8BQX7AoxabsLLo5ikEIIIYTotYgrUvPmzePZZ58lGAzyX//1X9i2ze9+9zvKysp45plnmDFjxkDEKfrAqWpMjE+izQhRFmijbpbKZhrJ88QxKeH466OGO21fKbFPvoRz3VZwO/Fdcha+L14mSZQYFHZSAsEFM8Pt0N/9pF9jJU2OpyLWz9haD0pV/6YKCiGEEKJvIq5IAcydO5cXX3wRv99Pc3MzCQkJeDwjqKPbCDIlMZXtLQ3saGkgxekGYFLCsVuejwRKazuu91fj2LEHgNCkcQTOX4QdN4I3FBbDQnDhHBzb9+DYVUxobwnm+FF9GkfTNFaNb+YLm92Yq9tRr06KbqBCCCGEOK6IK1KrV6/G5wu33HW73WRmZkoSNYRN6ag87WhpYGdrIwCT4kdoImUYOFdtIPYPL+LYsQcrLhbftRfhv/oCSaLE0OBw4D9/EQDudz7uV+OJsikmQdXCvTEIQdlPSgghhDjRIq5I3X777WiaxuTJk5k3bx5z585l7ty5JCeP0F/Oh7nJ8ckowI7mBjLd4WSicKRVpGwbbe8B3O+uQm1qwVZVAqfOIrhwLricgx2dEN2YE0YTmjgGx+5inKs2dO0zFamMtDg+zmrg3Mo0rK0BjLnuKEcqhBBCiJ5EnEitWrWKdevWsX79etasWcPzzz+PZVmMHTuWuXPnMm/ePK644oqBiFX0QZzDyaiYeA54W6kOeHGrGgUxCYMdVtSoldW4VnyGXhLev8wYPwr/uQuxU5IGNzAhehA473T04jKcn27CmDoRKy3yDzfGxCbwSsF2zq1MQ//UJ4mUEEIIcYJFnEglJydz/vnnc/755wPg9Xr59NNPeeaZZ3j55Zd55ZVXJJEaYk5Pz+FAyS4AxsYljojNddW6BpwfrsGxuxgAMyWJwHkLMcf1bc2JECeSnRhP4Iz5uN9fjevtj/DddEXEG0KPjk1gc2oLB+MDZJeCctDAzu7TslchhBBC9EGf/tVtb29n48aNXZWpLVu24HK5OOuss5g7d260YxT99MX8icTpTpaW7OScjLzBDqdflMYWXCvXoW/bjWLbWPGxBM+YT2h6IagRL/kTYtCE5k3HsXUXemkl+tZdGDMmRXR+ktNFktPFsvyD3L1jNG0fNxF7fVpEY5i2xc6WRiYnpKAy/D9gEUIIIU6kiBOpa665hl27dpGamsq8efO46KKL+OEPf0hhYSHKCKh0jESKonB5zhguyx49bH9Gam0DztUb0XfsCSdQHjeBhXMIzZkKunwKL4YhTcN/0WJiXliG+72VtI/Nx46LjWiIL+SP5/1QKcGdFrGbbeou9pIW37vGKrZt8+tdG/mwtoL7J8zkopzRfXgRQgghxMkr4o/wd+3aha7rzJo1i9mzZzNnzhxJooaJ4fgzUg/W4P7bW8Q+9Rcc23dju10EzjyF9rtuJnTKTEmixLBm5WURmj8DxR/E9dZHYEfWfe/K3HH89xlns3dsgFhD48N39mL2cox/VOznw9rw2sJVdQcjjl0IIYQ42UX8W+i6deu6pvW98847/OpXv8LhcDBnzhzmzZvH/PnzmTVr1gCEKk4aloW+uxjHuq3oZeFf8Ky4WIILZhKaNQWcjkEOUIjoCZx5CvqeAzj2HMAo2ocxZXzEYxSckwl7W7hufQa7HRVMuCQX9J4/OHm1Yh8q4NI0tjTX4TeNPr4CIYQQ4uQUcSLl8XhYuHAhCxcuBCAUCrF69WqefPJJfvWrX6EoCkVFRVEPVJwEfH6cm4twrN+G2tIGgJWcGE6gpk8CXRvkAIUYAE4H/kvOIubF13D962PM0bnYMZHtzaeMdVJ9hkrKJxazVrowdjZgXBaHOdl51CYWzaEAdUE/BTHxFMTE80ldJVub6snNSMKybf6wbytZ7liuzB0brVcphBBCjDh9mhfV0NDAunXruv7btWsXlmUxYcIEaTYhImPbaCUVODYXoe8qRjFNAIyx+QTnTcccWxBxNzMhhhtzVC7B2VNwbtyB61+f4L/y/MgGUBTiLkvl8dQNnL4qjlNrktGfa8GY6CB4eRx2Rve3+uK2FiDcQn12cjqf1FWypqGKixjHWwdLeL2yGI+mcVnOmBHR5VMIIYQYCBEnUhdeeCGlpaVdm/IuWLCAe+65h7lz55KUlDQAIYqRSGluxbF1F44tO1GbWwGwXU6CMycRmjcdK3WEbRosxHEEzj4NfV8pjh17MSaPx5g4JuIxtEwn3z9lJ790zGP2x2703SG03zRinO4heG4MeMLLYve3NwMwLi6RecmZaIrCB9XlfLGpkWf2bwfAZ5pUeNsoiI2P3osUQgghRpCIE6lLL720ax2UxxPZ9BNxclPaveg796Pv3IdWWtnVbNkoyCE0YxLGpLHgkPVP4iTlcuK/eDExf3kT1z9XYOZmYsf2rgNfpwxX+PjteV4mfT0bx0ofjne9OD72oW/0E7wwFmOem31t4URqbGwiSU4XF2eN5o2Dxdy+4i1ClkWsptNuGuxua5RESgghhDiGiBOp+++/fyDiECOU4vWh7ypG37kXraQSpaOjmBUfS3B6IaHpk7BTEgc5SiGGBnNsAcE5U3Fu2I57+Qp8110c0dTWDFf4w60avxd0hdDiGIzZLhxvteNYH8D1tzYcn/i41JHIqbiZVevA4Wnj37VRxFUHaVFDZCXGUpiWwk/bt7C7tYnzMgsG6uUKIYQQw1qf1kiVlZXx1FNPsWHDBpqamkhKSmLu3Lnccccd5OfnRztGMZzYNmpNPfreEvS9JaiV1V2VJys2htCkcRhTxmHmZsnaJyGOInD2aegHytH3luDYVERo9pRen5vhDlekagK+rsfsBI3g9QkYp4ZwvtaGVmYwn44PL8pDQAgn8B90T5h+FzONR5KL+/tyhBBCiBEr4kRq27Zt3HLLLbhcLs466yzS0tKoq6vjnXfe4fXXX+f5559n6tSpAxFrn9x///2sXr2aRYsW8Zvf/GawwxmRlDYvWmklWkk5+r5S1Nb2rues+FhC40djTBmPmZcFasRblwlxcnE68F1+LjHPL8P13kqMUbm9rtp2VqRq/d4jnrMKHPjvTmLb/hqeKdrG7Jg0/i17EgRtlICNEoJYzYG3KYC6O0BupZupRW6Cc0ycqnTMFEIIIT4v4kTqZz/7GVOmTOHJJ5/stkbK5/Px5S9/mZ/97Gc8//zzUQ2yP26++WauuuoqXn/99cEOZcRQWtvRyg+ilVSilVag1Td1PWcrCmZuFsb4Aoxxo7AyUqXyJESErJxMgovm4fp4LZ7X38X7pat79SFEnO7Ao2ndKlIV3jYe2bGGwoRkloyaxIvefexKaueayZMx01xdx6mqgiM1DqO+DXuWC/dvG7h5dx776xqZlJE2IK9TCCGEGM4iTqS2bt3Kb3/72yMaTXg8Hm6//Xa+/vWvRy24aFiwYAGfffbZYIcxfPkDaFW1aAdrUCtrwv8/rOIEYKYkYY7KwSzIwRidDzHuQQpWiJEjuHAO+t4StMoanCvXEzxj/nHPURSFdFcMpd5W2owQcbqDZw7soMzXRpmvjY9qKwhaFtnuWE5NzT7mOHa2TkmhwZhdDoyP2uA6SaSEEEKIz4s4kXK5XDQ1NR31uebmZlwu11Gf64u1a9fy9NNPs23bNmpra3niiSc4++yzux2zdOlSnn76aWpra5k8eTIPPPAAM2bMiFoMJ41QCLWhGbW2AbW2Aa22AbWuoas1eSdbUTAzUjFzMjELwsmTHR87SEELMYKpKr4rziX2mb/iXLk+/PdtVO5xT8tweSj1tlLla6cu6OPT+irSnG7Ozszn1Yp9AFydN+64+0MpF8YT2u1l+iY3pYubCXlgbJw0hhFCCCE6RZxInXXWWfzyl78kLy+PefPmdT2+bt06fvWrXx2R6PSH1+ulsLCQa665hvvuu++I55cvX85jjz3Gww8/zMyZM3nuuee48847eeutt0hJSYlaHMOeZaH4/Cht3vB/7V7UphbUplbUphaUphbU9iPXVNiAlZSAmZ2OmZ2BlZOBmZkOTmlRLsSJYKck4b/wTDyvv4f7tXfx3nE9dkzP2050Npz42qaPuh67aVQhF2SN4tLs0expbWJBatZxr52eG8+KceWcvzeNrX8v4bnp5fzp1AtxyHopIYQQAuhDIvW9732Pu+++myVLlpCamkpqaioNDQ3U19cze/Zsvvvd70YtuMWLF7N48eJjPv/MM89www03cO211wLw8MMPs2LFCpYtW8Ydd9wRtTg6qeogr/WxbRxFezFMA2ebD9swwbLAtMLJUjCEEgiCP4ASCIa/9vlR2n1dbcePOqyqYiUnhv/LSMFOT8FKS8FKSz4iaZJWEcNH5/066Pet6BdrRiGhkgocW3bifv19Al+8tMd1hxnuQ4nW5IQUzsrI5YLsUaiKQoYnhgzP0femOtr9UnY6+IpNrjyQyStjKtne0sCclIwovTIxnMn7i+gtuVdEJIbb/dLrRMrv9/Phhx9SUVHBjTfeyJIlSzhw4AC1tbWkp6czc+ZMFi1aNJCxdhMMBtm+fTt33XVX12OqqrJw4UI2bdoU9evpukpqalzUx42EVVFD8O/vYAC9rgmpCsTHoiTEoiTEocTHQkIsSnIiSmoiamoSJMWjSDe9ESs5WaZeDnf2jRcRrK5F31+Ke8sO9HMWHPPY0+w8Xjiwk2vHTuTrM+aiRtjs5fD75YKZE/j7qq3cvCePW3bnsWVaA+dPGNvn1yFGHnl/Eb0l94qIxHC5X3qVSJWVlXHrrbdSUVHR9VhcXBy/+c1vOOOMMwYsuJ40NjZimiZpad0XQaemplJSUtL1/Ze//GW2bNmCz+fjzDPP5I9//COTJk2K+HqGYdHS4jv+gQPJ5cFxxbnEKBbegImtKKCp2KoKmgoOB7bbhe1ygtuJ7XKFK0o9/SJlA41HTusTw5+qKiQnx9LY2I5lHbsiKYYH5Yrz8DzzV0LLP6Y1LRUr9+jT8/KVGP6+6FIcqkZjQ/tRjzmao90vqTi4+KZpmD9v4uKyDL67czf1eW1ReT1ieJP3F9Fbcq+ISAyV+yUhwYPDcfyp7L1KpH7xi1+gqipLly5l2rRplJeX89BDD/HQQw/x3nvv9TvYaLJtG+WwxOGPf/xj1MYeCm8AoemF6KlxhOrbehePDfQwrU+MfJZlD4l7V/RTWgqB8xfh/ueHuJb9i/bbvgCeozf30VD7/DP//P3iinFgnh2Lc3k7l21JY9OcWmYk9b2L3893rmd/WzO/nnUGMbqstxzu5P1F9JbcKyISw+V+6dV8ro0bN/K1r32NuXPn4nK5GDduHD/+8Y+prKykpqZmoGM8quTkZDRNo66urtvjDQ0NR1SphBBiJAjNnExo8njU5lY8r797wj4kCS304I21OOtgKs99vJm713/A43s2YUV4/SpfOx/VVlDua+Pv5fsGKFohhBDixOhVIlVbW0t+fn63xwoKCrBt+4hE5kRxOp1MnTqVVatWdT1mWRarV69m1qxZgxKTEEIMKEXBf/FizNRk9H2lOD9Zd2Ku61BQL0wA4Cu7R1PqbeWdqlJW1R3s1ell3lZ+v3cLL5Xt7npsWcU+GoL+AQlXCCGEOBGGdIeB9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCCDFwXE78116I7XTg+mQd2p4DJ+Sy5jw3VprGrJoE/jvuVABeLN2F2Yuq1B/3bePNgwd4t7oMBTgtNYuAZbK6l4mYEEIIMRT1umvfnXfeiaYduejq1ltvPeLx1atX9z8yYNu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj3dtyPvUU0/JHlJCiBHNSk3Gf9k5eP7+Np7X36P91uuwUwZ4s1xNIXhBDO4XW5m60sGURSnsaG1gbUMVp6ZmH/O02oCPTU21qChY2MxOTmdBahar66toCAYGNmYhhBBiAPUqkbr33nsHOo6jWrBgAbt27erxmCVLlrBkyZITFJEQQgwNRuFYAqfNxrV6I56/v4X3lmsGfLNsc7oLM9eHVmbwpbbRfJ8G9rQ295hIfVBdhg1cmzeOOckZjIlNYFdrIwBNIUmkhBBCDF9DOpESQghxbMEzT0E7WIt+oBz38hX4rzyv5+0O+ktVCF0Ui/Z0MzNXuVBPhUrfsduhNwUD/LMqvB3FuZn55MfEA5DkdHU9L4QQQgxXQ3qNlBBCiB6oKv4rz8NKjMdRtBfn6o0DfklzggNzrANPPZxfnk7FMRKpgGnyo+2fUhvwcUZaTlcSBZDk6EikpCIlhBBiGOv1GikhhBBDjx3jwXftRcS8sAzXh59hpSVjTBwzcBdUFIIXxeL5f03cvjufJx2laEEvqg/wWSheG8VnEWj2873mUaQYTuLGxhAaZ4MzXC3rSqSkIiWEEGIYk0RKCCGGOSszDf8V5+H521u4X3sX75euxsocuP30rFEOjKlOMrbDD9dNgHXtRxyTgkoKseFvtoVQg80E/i0RdAVdVYnXHTSFAkdsoi6EEEIMFzK1TwghRgBj4hgCixeghAw8f/0nSpt3QK8XvCKONZNaeXlsJaVnQuCqOPw3xuO/IxHfvUn87xcOcsUFa1l1n42VpaHvDuF6qRU6dqpPcrgIWCY+0xzQOIUQQoiBIomUEEKMEMHTZhOaOhG1pQ3P394Cwxiwa9lJGpvOCfL7KSWsndOOcZoHc5Ybc6ITK9/BDkcLrU6DzNRY/HckYqWo6FsDOJe1gW0fajgRkk15hRBCDE+SSAkhxEihKPgvWYyZk4lWWY37zRXQiw1z+yrXEwdAhe/IqX0VvjZ0RSHdHYOdoOG/MwkrXsWxxo/jn+2yTkoIIcSwJ4mUEEKMJLqO77qLsBLicOzYg/PDzwbsUp2JVPnnOve1hYI0h4Jku2PROtY/2aka/jsTsT0Kzg99nL8jvHG6dO4TQggxXEkiJYQQI4wdG4Pv+kux3U5cqzfi2LBtQK6T4fYAUB/wdXu8wh+uUOXGxHWPK0vHf3sithPOWBPP5SUZUpESQggxbEkiJYQQI5CVnoLv2ouxNRXXO5+g7SmO+jXidCcK0GqEuj3euUlvjif2yLgKHPj/LRFTs/na1rGk7Ih6WEIIIcQJIYmUEEKMUGZBDv7Lz0WxbTz/eBe1oiqq42uKQrzupCUU7PZ4hbejIuWJO9ppWOOdbL/cwgbOejcWbadUpYQQQgw/kkgJIcQIZkwej//chSiGgeeVf6I0NEV1/ASHk4Bl4jcPdQis6pjal+0+siLVFdc0F7+YuQ/NVnD9qQW1OHjMY4UQQoihSBIpIYQY4ULzZxCcNx3V5yfmL2+itEdvj6l4hwPoPr2v8+sEh/OY56U43bydX8vLs6tRQuB+pgXl4MC1axdCCCGiTRIpIYQY6RSFwHmnE5o0FrWpBc9Lb4A/OtPpEvRwG/PDp/d5zXAiFas7jnleqtNNjKbzf/klBM7xoARsXK+0gjlw7dqFEEKIaJJESgghTgaKgv/yczFG56LV1BPz8nIIho5/3nF0Vp1aDmtj3t6xEXCsph/zPFVRGBuXSMAy2X+6RWseaBUG+irfMc/pDXMA980SQgghDieJlBBCnCx0Hd+1F2PmZKBVVOH5+9tgmP0a8lAidVhFygihAO4eEimA8XGJADxZvJ37x27CVGyc77SjNPYtppdLd3PT6n9S8bl9rYQQQoiBIImUEEKcTJwOvNdfipmegl5chvu1d8Gy+jxcfMf0vZbD1ki1mwYxmo7asRnvsYyLSwJgY1MtBxJ8/GVcJUoQnK+2QR8qS582VNFuGrxRGf1W70IIIcTnSSIlhBAnG48b3xcvw0pKwLFrP+5/ftinxAUgwdG5Rio8tc+0bXymQUwP66M6dVakOj03oZy6+BB6URBte2Rd/EzbpqS9FYD3q8u6dREUQgghBoIkUkIIcRKy42Lx3ng5Vnwsji07cf5rJXYfkqnEz03t85nHXx/VKccTh1vVALg4axRJMS4em7IHAP0freDrfaXsoK+dgBWeEthuGrxTVdr7FyGEEEL0gSRSQghxkrKTEvB98XIsjxvH2i0Yr6+IuDLVuUaqs+W5t+P/valIaYrCxPhkAC7MHsWvZ52JVujmndxa9FYb+58tvY6juL0ZgML4ZBTgyf3bWC5T/IQQQgwgSaSEEOIkZqUl47vxcmyPC3PFWhzvr44omYrXu3fta+9F6/PD3T9hJg9PPZXxcUkkOV08MGU+a0/30uwIEftZELW0d50Fi9vDSdcFWQV8b/I8NEXlyf3bCVn9a6YhhBBCHIskUkIIcZKzMtPw33QleNw4P92E88PPep1Mfb5rX2fr85heTO0DyPLEMjclo+t7TVFZMm0qf5hcgoKC8++921uqM5GaYMdz1pZEztayCNlW1+NCCCFEtEkiJYQQAisrDedd12O7XbhWb8T50ZpeJVOxugOVQ4lU59S+uF5WpI4mzeVh3fg2Nqe0oB00cXzS895Stm1T3NrMpaUZTH3Cwvm2ly9tyAZgd2tTn+MQQggheiKJlBBCCADUvCz8N12O7XLiWrUB58drj3uOpijE6c6uNVLtHc0merNGqieTEpL51Yx9WBo4/tWO0nDsKXrrdlfw/Y/G8q0t41ACNrYD8kodpPuc7G5t7FccQgghxLFIIiWEEKKLlZ2B94sdydTK9ThXfHrcylSCw0nAMvGbRldFqjdd+3oyKSGZsjg/m+b4UELgXNZ6ZBymTfC9Fk571sGc+kS86eC/O4nQ6R4UFC4sT5eKlBBCiAEjiZQQQohurJwMvF+8DNvtxLV6I653V/aYTHWuk6oN+KJXkYpPAeAvEyqx0jT03SHUzQGsjjjUSgPX/zSS/E4ABVg5rxX7a2lYBQ6M+W4ALivPpMLbRpvRu4YVQgghRCQkkRJCCHEEKycT701XYsW4ca7biuufK8A6+r5OM5PSAHirqiRqFamxcYk4VZXNbfVsOT88pv/vDXz74w9Rl7fi/l0jeqXJ1uQWfnZxCVOvHQW6AoCdpmOOcZDZ7mJmfQLvVZf1KxYhhBDiaCSREkIIcVRWZhq+m6/CiovFuXkn7tffB/PItUqXZo/Bqaq8U1VCTSDcGKK/FSmHqnJD/kQClsnXWz/jn/k1JAcc/Pc/J+P50A+6wlMzy/j6wu3cfupMHB0b+3bqrEpdWpbBk/u38UFNeb/iEUIIIT5PEikhhBDHZKUl411yJVZiPI4de3D/419gdE+mkpwuzsnIx2eafFRbAfS/IgVwff4Ebi4oJF53UHaOgt9t4bJU9ub7qbjPw9L8cgriEkhyuo4415juwnYqnF2dRmxIY/lB2ZxXCCFEdEkiJYQQokd2ciLeJVdhJSfi2F2M56//hFD3dUdnZ+R1+76/FSkARVG4cVQhfz7tYm6eMoW2/0jg26fu4Ftzt7NVaQJgUnzy0U92KhgzXWiGwkUHM9jf1oJpH31qohBCCNEXkkgJIYQ4LjshDu+SqzDTU9CLy4j58+vg9Xc9PyE+CV1Rur6PjUIi9XmeHA/GeAfNRpBl5fuAcHe/Y+mc3nd5RRYBy6TM2xb1mIQQQpy8JJESQgjRK3ZcDN6brsTMyUSrqCbmT/9AaQknJ05VY1xcUtex0ZjadzRnpocrX3vamoBD3f2OxirQsTI0RtW7GdMSw96Oc6JtXUM1v929EV9Hx0IhhBAnB0mkhBBC9F6MG++Nl2OMG4VW30jM839HrW0AYErCoaTGPUCJ1LmZ+UxPTAUgTneQ44k99sGKQqijKnVxWTp7BmBPqTJvKz8tWse71WW8XinrsIQQ4mQiiZQQQojIOB34rr2Q0PRC1NZ2Yv60DK38IJMPS6TUw6b5RZOmKHyjcA5pTjdnpOWgHOc6xmw3tgoXlKdzoLklqrHYts3Pd67Hb4Wbb/yjfB9+qUoJIcRJQxIpIYQQkdM0/JeeTeC02Sj+IJ4/v86cmtYTcul0l4f/O+V87pkw8/gHx6uYk5wkhhxk7lMxjrEXVl9U+b0Ut7cwOiaexem5tBhB3q4qjdr4QgghhjZJpIQQQvSNohA861T85y5EMUzSXnuf31gp/GjqggG/dCQVL+OU8PS+C0rTqPS1Ry2G3a2NAExPSuPCrFEA7Op4TAghxMgniZQQQoh+CZ0yE98V54GiMGfVVhZt2g+2PdhhdTEnOmmLMZlfm0R1VfSm9+3uWHM1MT6JLHcMALUBb9TGF0IIMbRJIiWEEKLfjKkT8N14ObbbhfOzTbiXvX3EXlODRlMon2KhohCzKXprmHa3hatPk/Qk0is1VKAu4O/5JCGEECOGJFJCCCGiwizIof2Wa8Ib9+4qJmbpayhtQ6NCE5rnAmDcDgdY/a+WGZbFvrZmYjUHo18xiftDC4sb06kP+GTjXyGEOEmM+ETq3Xff5cILL+TCCy9k+fLlgx2OEEKMaHZqEt5brsbIy0I7WNOtPfpgyspPYEtKC6ltDtTi/lfKDrS3ELQsrq/PQ98fHu+6fVlYQEMw0O/xhRBCDH0jOpEyDINf/OIXLF26lJdeeonf/va3BIPBwQ5LCCFGNDvGg+/GywlNGY/a3ErMC8vQ9g9uN7sY3cHHY5oAUNf4+jXWx7UV/Oe21bgNlWs3ZgBgexSmVMUxpiWGWv/QqMIJIYQYWCM6kdq8eTOFhYWkpaWRnJzMjBkzWL9+/WCHJYQQI5+u47/iPAKnz0UJBPG8vBzHms2D2oTi4EQTr2bi2BYEX9+m361vrOEXOzfQboT40cEpxLarGDNcBM8LN5v4QnE2tbJOSgghTgpDOpFau3YtX/nKV1i0aBGF/7+9+w6PqzzzPv49Zfpo1IsluclFNu7GBUwxGAIEQjAltDgkBLIJkITsy242m90kkE1Cwi4ppFNCSCAhkGAghNA72MaAC+6ybMsqVu/T55zz/jFFkiXZGlm2ZHN/rkuXpClnnhkdy/PT/Tz3U17Oq6++2u82jzzyCCtWrGDOnDlceeWVbN68OXVdY2MjhYWFqe8LCwtpbGw8JmMXQoiPPEUhcuYSgp88BzQV58vv4HzmFYiOzqa14zK9vFLcjBoDfVP60+9CRoy7tr+HicV/5S9k6ZYMLBtELvIQW+wkYrc4pzaPrtYjq3gJIYQ4PozpIBUIBCgvL+fb3/72gNc/++yz3Hnnndxyyy2sXr2a8vJybrzxRlpbR38+vhBCiLjYrOkEVl2KmeHBtmUX7keeQunqPubjOKuglBcmNMfHtC79/aQaQ0H8Roy5vjzOfCcDxYDoOR6sLA0cKnXzLOymimddhB9tf4/WiFSmhBDiRKaP9gAOZfny5SxfvnzQ6x988EGuuuoqLr/8cgDuuOMOXnvtNVavXs0NN9xAQUEBDQ0Nqds3NDRw+umnD3s8qjr0DSCPluQYxsJYxNgm54pIx1E/X0oKCH7+Uzj/9hxaTT3uB/9G+IoLMEuLjs7jDaAsI5PTF01k36YAk+rchBoMrHF9/xtsCAXIczjRlP5/Z+wy4mtsT23MQt8ZwczTMJa7U69ZcJkD470IZ1Rk8YuJe1AUhW+ctOjoP7FRIL9fxFDJuSLScbydL2M6SB1KJBJh69at3HTTTanLVFVl2bJlbNy4EYC5c+eyY8cOmpub0TSNTZs28f3vf39Yj6frKrm53pEY+ojIzvaM9hDEcULOFZGOo3q+5HqxvvppYk+8CGs343r4KfRPnYe+ZM7Re8yDXJ11Er8c/wY3bZ+E98MY9tlZqeseqdjOPR9+wI0z5vCFk+b2u68RasVmKFy4PgcA16p8vIXu1PWKR+e1cZs5py6P82ry+btWy9XmTE7OL+x3rBOF/H4RQyXnikjH8XK+HLdBqq2tDcMwyMvL63N5bm4uVVVVANhsNv7t3/6Na6+9FoCvfe1rOByOYT1eLGbS2Tn6895VVSE720Nbmx9zBPZCEScuOVdEOo7p+bLiNPSsLOwvvEXs0X8S3LWfyMdOB107uo+b8OaEVr6wYwLW2110nWIDn8b6lgbu2fIBAG/UVnNZYVm/+9W2dnDlnmJ8HRrGTDvtJSa09ExRtCyLx8rqOKcuj8/tn8AzExp4ZPtWJqnHxxuCdMjvFzFUcq6IdIyV88Xnc2GzHf7/pOM2SA3GsiwUpacceN5553HeeeeNyLHH0i8A07TG1HjE2CXnikjHsTpfIgtmYeRm41z9ArYPtqIeaCJ46XlYmRlH/bHNDI1Xi1v4WG0+jp+2EVqVwe9bt6Wuj5rmgK9BpDnKqooSDM0ifLEXa4DbLJs/gbrKKMUHbJzSmE1jRvCE/vcnv1/EUMm5ItJxvJwvY7rZxKFkZ2ejaRrNzc19Lm9tbe1XpRJCCDH2GBOKCXz+itTmvZ7fPY5WefT3m8qyOfjfuZV0L9BRu0ycv+1gzlYXZW4fDlWjMTzw7IOT33LgNDX2L7Gwcgf+S+UV46eR87FcAK7cM46WyOjPZBBCCHF0HLdBym63M2vWLN55553UZaZpsmbNGubPnz96AxNCCDFkVoaX4LWfJLJ4LkoojOuxf2B/410wh7fP01D4bHaimsXeixTCl3qxsPjXLWX895bpFOtu/LEogVi0z33U3RHK97pocIZpO/3QkzmMmXbMXI35LZnkN+kY1tF7LkIIIUbPmA5Sfr+f7du3s337dgBqamrYvn07TU1NAFx//fU8+uijrF69msrKSm6//XZCoRCXXnrpaA5bCCFEOjSN8LmnEbz0PLDbcLz9Pq7HnkUJHJ1qTpYtvla2MxYlvNTBv5+2nWZnhMnbbNzx2lQKgva+VSnDwvFUfC3Ur0/aR4bnMGttVYXoGS4ALt8zjrZI+ntWCSGEGPvGdJDasmULK1euZOXKlQB873vfY+XKlTz66KMAXHjhhXzjG9/gnnvu4ZJLLmH79u3cf//95OTkjOKohRBCDEdsxhT8n7scIy8bfW817gf/ilZzYMQfJ9NmB6A9GqYpFGRDZgd3f3w/xmQb41ud/PbNuUR39QQp/Z0gaqPBtoJuXh/XSqbt8E2LYic7CTgMzq7LpbNZpvcJIcSJaEw3m1i6dCk7d+485G1WrVrFqlWrjtGIhBBCHE1WbjaBz16O87k3sG3dhevhp4icsZjIqQtAHZm//SWDUEc0Ql0ovjGvN8dJ6AuZ7Hu0hlmbncz7i0WkM4Cx0In9xQCWCr+ZU4WuKri1IfzXaVf4cGaQpRu9eNdG4fIRGboQQogxZExXpIQQQnwE2W2ELl5B8KKzQddwvPEurkf/jtLlH5HDJytSHdEwB4LxY45zekBT2HMufH9+BYYKjmf9OH/WhhK2iJ7qZKurC5/N0acz7KFUzTeIKiYlGxUIyzopIYQ40UiQEkIIMfYoCrG5MwhcfwVGQS56VR3uBx5D2111xIceqCI1zhXf66nA6eal0mbuu6geM1tF7TKxvAqtZ9sxsVIhbCjcuQ5eLmnGHlHQ3wsd8biFEEKMLRKkhBBCjFlmbjaBz15GZOFs1GAI9+PP4njpbYgZwz5mpr2nIlWXqEgVJ4OUI94k4kNvB3VfdLNpfpDKy1TatQjQ06hiKHLtLv5aFl/jZXsrCMfBnihCCCGGToKUEEKIsU3XCZ9/BsHLL8ByOrCv34z7j0+gNrcN63A9FamDpvYBOXYnKrCrq53PbHmRr5Vu5EGlko5oPEj50qhI5dqdVPoC7CwKoLaaaFsjwxqvEEKIsUmClBBCiONCbPpk/DdcSWz8OLT6ZtwPPo7tvQ/BSq/Sk5ye1xYJUx8KkGmz49FtAOiqyvzsfIxex2yPhumIhhP3TaMi5XAC8PTUBgBsbwaGfF/Lsni1sZq/1+0d8n2EEEIcWxKkhBBCHDcsX3wD3/BZS8G0cL74Fq5Hn0Hp6h7yMeyqhkvTqQ8FiFlmqhqVdMesU3jitIv449LzAIiaZqoilc4aKaem49F0XstpwizQ0KpiRPf2XysViEX53x3vs62jBQDTsvjhjve4e+cGflv5IS1hWV8lhBBjkQQpIYQQxxdVJXLqQgKfvSy+59S+Gjz3/wV92+4hH6J3IEo2mkhSFCUVtgCCRoyuYUztA8h1uAiYBs2naABEHmqmfXUT6r5oas3UOy0HeL2plr9UVwCwq6uNt5t79s+q6B7eFEYhhBBHlwQpIYQQxyWzKJ/A9VcQWTwXJRTB9dSLOJ96EYLhw943Q+8JRJM8vgFv41A1VOJBKmDEAHBrtrTGmGxi8XJpM+/ltVMQdFCyFly/bsf9/Rbsj3dhfhjEYahs6Wghapo0hOIb+Lq0ePiq6GpP6zGFEEIcG2N6Q14hhBDikHSd8LmnEZs6Eec/XsW2bTda9QFCF56NUTZ+0Lt9ongSrzbWcHpeMecWThjwNoqi4NJ0gkYMfywKgEdP77/N4sS0wbUdDdx7SjNFAQfLGrL5TPdkMqstbO+FuJQcLlQX815+O62xVroK40FqWW4xLzdWU9HdntZjCiGEODYkSAkhhDjuGZNK8d9wJc4X3sK2dRfuvzxDZO4MwucsA2f/BhHnFE7gnEECVG8uTac1EupVkUozSLm8AGztjK9/0nJ1nnDXUzgln7U1dSxqzGRcpcbixixOa8iBZy0mqD42npzFohkFvN5US0VXO5ZlDXkjYCGEEMeGBCkhhBAnBqeD0CfPIVY+Gcdzb2DfvAN9TzWhC87EmDZpWId0aTom0BaJN3xw68Ob2pfsArgkp4jVtZW819bIhnALGzJbYCGU2j0U1Opc0jKOM3dn818bplG9xEmZ18eurnYaQgGKDlrLNZK2d7byWHUFszNzOb9wAt4014IJIcRHkayREkIIcUKJlZfh/8LVRGdNR+324/7rP3E+/TIE0+9+50pM5WtOdM5LtyJVkqhIJS3OKQRgQ1tjn8vPKCphT3GIO2bs5O/ljXhjOlP/ZjLTmQXAlkRF62h5rLqC9a0NPLh3G/+1ZQ1R0yBmmtxXuYU3m2qP6mMLIcTxSoKUEEKIE4/bSeiT5xC44uOYXg+2rbvw3Pco+s49aR3GqcaDU2uiIuVJsyKVY3fgVONNI7JsDqZ6swCIJSpUycl65RnZTM/IwsTip1Mq2ZDXga3e5Np3x4EFj1TtJBCLpfXYQxUyYmxqb8Kj6czIyKayu4P792zlseoKnqrbw28rP8SwzKPy2EIIcTyTICWEEOKEZUybhP8LVxGZOwPVH8T1xPM4n3wBpXtom+O6ExWpsGkA8b2h0qEoSmp6X6nLi1vXye61qe9Xps3n6vHTWZBdwLREyDJVuHdZDWamSsFWuK25nKZwkNu3ruWd5rq0Hn8oNrU3EzFNFmYX8B8zF+HVbfzjwD7+tH8nAO3RCB+2H92KmBBCHI8kSAkhhDixOR2ELzqbwFWfwPR5sW2vxHPvn7Ft2AqJytBgXL2Ck0vT0YbR8CE5va/Y7enzva4onF1QyqpJM9AUhakZWT1D9tkJf8aHpcFF63M4oyuPbZ2t/GD7e+zobE17DIeyrrUegCW5ReQ7XPxgzjJmZGQDMDczD4A3xtj0vtZISDYqFkKMOglSQgghPhKMsvH4b7yKyOK5EInifO4N3H9cjdo4eLWld5BKd31UUjI4lR4UqCa6fdjUnv+Gp3ozU1/nO9yY421ELvGimHD7B9P5l7yZAPzzQNWwxjEQy7LYdaCV3LCNRdkFAJR5M/nfeafzh6Xn8V8nLUZXVN5uOUDUHBvT+0zL4t83vcW/b3oT6zBBWAghjiYJUkIIIT46HHbC555G4LOXYxTlodU24H7wr9hfWwvRaL+b9w5S6a6PSrqoeBKXFJdxXqLdenJvqbJewQkg2+4k3+ECSH2OLXESXeRE7bK4/LU8vIrOm821dEcj/R6nKxphZ1dbWmNrbfTz4xdn8MgrC8mq6AkliqKQY3fi0W3MzszBH4tSG+xO69gjzbIsuqMRdnW10RAK0BgO0h49/ObLQghxtEiQEkII8ZFjjssn8NnLCZ17GugajjUb8Nz/F7TK/X1ud/DUvuHItjv5wpTZqZbip+aOY4I7g3MK+28YnKxKJYMUikJkpRejRMe+L8a3984kYpr9ptr9ef9OPvvuC9y28U3eb208+LADMywyHvWTHbHhMFQcf+hEf7v/2rF8hxvoabgxGkJGjG9tWcN1776QWrsFUBv0j9qYhBBCgpQQQoiPJlUlunhuvFX69Mmo7V24H/sHzidfROmKv0HvW5Eama0XS9xefnXy2czOzO133QXjJjHVm8mC7PyeC20K4VU+LLfC4i1ezq7N7RMgTMvi8eoKIompd2tbDgxpHLbn/GTXqWzP6uL9j0dAA8fTfuxPdYHRU53KsTuB0QtSlmXxox3vszHRFOODtqbUdTWB0a2SCSE+2iRICSGE+EizfF5Cl19A8PILMDM82LbvjjejWLsBd6//Jt3a8Kb2pePk7AJ+umA5ecmKVHKMORrha3xYwL9vnoK9sWe9UlskTMQ0U1WsDe1NHI62LYz9jSABm8EdCyvwLPER+pcsLI+C7Z0Qjj90QjgepnLt8S6DrZHRmUbXHg2zvrWBfIeLSe6MPtfVjfJ0QyHER5sEKSGEEAKITZ+M/wtXE1k6H2IGzlfXct5Tb7KoLbEZ7whVpIbLmG6n5Wwdl6Fxxcu5EIyHqYZQvDpVnpHNZI+P+lCAA4eY8qa0Gjge6wLgRwt2051hUOLyYk60EbwlGzNfQ98RwfmbdpQOg+xkRWqUuuTt9XcCMDszly9OmYOuKJyaWwTI1D4hxOiSICWEEEIkOeyEV5xK4MYriU0ej7ejm7u3tvC9bS0UBY/OhrjpMFd4eLuwlYIuO86HOyFg0hCOr2sqcrpTUwIHrUrFLOyPdKAELQ4shTcKWpmekY2aaOtu5WoEb87CmGJDq4vh/EU7Je3JitToBKl9iSA12eNjTlYej5xyAbdOXwAw6g0whBAfbRKkhBBCiIOYudkEr7qInRecxgGHxhmtIT773PvY31wP0dELVG6bjf9bsIf9GUG03VFc97QR2xefclfodLMwK97CfHVNJc3hYL/76892o9cY7Mz18/WSzQCckqju9DyISujzmURPdqB2mpQ/ZLC0IWvUgtTeXkEK4t0TvbqNbJuDAyE/hjU22rILIT56JEgJIYQQA1EUQtMmct3CQh4cH1+b43jrPTz3PYq+o/Kwm/kenSEp2Dw6Ny/7kOgcO2qbySdW+1i5r5BCh5u5WXmcklvEgZCfb324BqPXGLUtYRxvh+iwRfnv+TuoifhZnFPIx8dN6v9AukLkUxlEznOjRuD762ewaLvn2D3RXpIVqUmJIJVU4vJiWBb1of6dBoUQ4liQICWEEEIMwq3pRDSF30/08eKly+Pd/Tq6cK1+AdfDT6LWNRzzMWXZHPhtBg2fshO+JL7J761bypj/Dx01YvGNGYuY5PFRHexOrZ9SWnrWRf1gwW66PAbnFU7gtukLUtP6+lEUoud4CF2dgala3LBxPNq6/lWuoylqmlQHusiy2VNrtZKSGxvXyTopIcQokSAlhBBCDKJ3+3Ml20fo8gsIXHMxRkEuek09noeewPnUSygdXcdsTFmJLnpt0QixZS6+tbyCeleIjC0GrnvasTWYTM/IAhLNGKIWjkc6UcIWm04O8m5BO5+bNJOvTp+f2tvqUIwFTn56Znx/LduL8eMdK7XBbmKW1a8aBVDocKOZCoHGEJjHvjoohBASpIQQQohBuHp16nMnQpUxqZTA9VcQvPAsTI8b27YKPPf+Gfvr6yAcOepjyrLFg1RHNEzUNFjnaeE/z60gNsOO2mzg+mUbZ+7LBqA60IX9H91otTGMMhtPzY43oZjgyRj0+ANpHG/wRlELWpeF/u6xWyu1p7sDgIkeHwRM1MoI+psB7I91ctnjmTz73BIufNCN81ftqS6GQghxrIxuL1chhBBiDLMpKpqiYFgWbr3XPlKqSmzeTGIzp2JfuwH7uk043vkA28btRM5cQnTeDFCPzt8qkxWp9miYxnAQC/D6HIQ/68N8I4jteT+nveTm38dPwew0sa0JYXkVwtdksHd3vHI2wZ1ekMqxO3loeg1n1udiezVA+BTX4e90hJR2g5xXo3yvrpyFr2fj6mrpc30WKu32KAG7SVY1OO/vIHRDJriH9rr7Y1G+vWUtp+QW8anx047GUxBCnOAkSAkhhBCDUBQFp6bjj0VTFak+7LZ4cJp/Eo7X12Hbsgvnc69jW7+ZyFlLiU2bBIOtQRqmrMR0vLZImIZQT+tzVIXoWW6MCTq2Rzq4sLoAqsFSIHSNj1iGQk2gG59uT1W1hirH7mSPL0DdNIPiCuJrpS5JL4ylxbRw3t/BaU3xx7AUMPM1zHE6ZrGOOU6jJjvMF3au4RRvAbevnY6jKhYPUzcOLUy929rAzq42dna14bPZOb9o4tF7PkKIE5JM7RNCCCEOIRmgPL0rUgexfF5CF5+D/3OXE5tQjNbShutvz+H+w2q0/XUjOp5kCGqPhmlKtDjPd/RUiMwyO8Fbs9mQF58WFz3XjTnVzoFggJhlMsGTgZJmuMtxxBs9rFsYb+xgeyWAFTl6U+m0TWHUJoMt2V3cvmI3ge/mEfy3HMKf9hE9240xw0FmrhsUqDUDfH3xNjbndKLVxnDe1wH+w49tQ1tj6uvf7P6QQCx62Pvs6e6gMjHdUAghJEgJIYQQh5Bjd+JQNbyHCFJJ5rgCgtd+ksBVF2EU5qHVNeB+5Clcf3kGtX6QTXLTlJza1xGJ0BRKBil3n9uoPp2fnVXNp8/eQOvy+LirAvE24hPTnNYH8T2qALZ5O4nNsaN0mcReP0oNNgwL+0vxStt9M6pwlbnB3j/4uXUdl6bTFA6yNdzGfyzZzt6iUHwj4fvaDxmmLMtiY3sTKnBydgFRy2RXV/shh2VZFt/esoavb3qLxlCAB/Zs5dtb1vD7vduO4MkKIY5nEqSEEEKIQ/j3GQu5c+4y7Ko2tDsoCkbZhHhDikvOxczyoe+pxvPgX3E++SJK65FVNAaqSBU4+q9ZKvF4qfOEqAl2A7DfP7z1UQAlrp5W45Fz4l9Hn20/Kh389E1h1GaDquIwm3O7mJ2ZO+ht8+xOQqaBYVmEdJObFmyie7KCdsCIh6nu/mFqT3cHLzTspzUSZnpGNguz45sY7+hqO+S4DoT8tEcjhE2Dr296i9W1lXzQ1sRfa3bTPYRqlhDixCNBSgghhDiEIqeH6RnZ6d9RUYidNA3/v1xN6PwzMD0ubNt347nvURzPvYHSNbz9j1JBKtITpPIGClLu+B5TtckgFRh+kMp3uNEVldpgN9Y4ndhcB3QYaGtHeF8pw8KWqEb9vGwPKgpzs/IGvXmuo2dvKZ9uJ6yZPHDWAYxptniYure9T5iqD/r5901v8fOKTQAsyM5nRuJnu6Oz9ZBD291rSl9zJIRL0xiXqNQNZVqgEOLEI0FKCCGEOJo0jejC2fi/9GnCy5eATce+YSueXz+C48W3ULrTC1QZNjsOVaM+5KcpHA8deQ5nv9tlJwJXZzTekr0qGaTSbH0OoCkKxS4PHdEI3dEIsY95QImvlSIyclUpfUMYtcVgd3GQ97PauaSkjBx7/+eW1DtAXlY6BRV4vb0O/3U+2iaD1mBg/qoJukxMy+KnFRsJmwalLi85difL80sp8/rQFZWdXW1Y1uDPZXdi6l9OYmrldRNnUuyKh9WgETvyJy+EOO5I1z4hhBDiWLDbiCw7mcj8WdjXbcD+/hbs732IbeM2ogtmETl1AZbHfdjDqIrCRE8Gu7ra8RsxfLod5wAdBT2JPbACsRgx06Qu2E2WzU5mmh37kopdHvYHuqgN+fEV5aAt8mCs96OvCxI74/DjPizDwvZyPFT+ZPJu8uxOrp1Yfsi75PYKWXOz8piblcfG9ma2BlpZfUoll3XncEpTNua97bx3pcGWjhYmeXz8ZP6Z2Hq1p5/qzWRHVxt1QX+qknewZEXqv09aQsQ0meXLYWuiiiVBSoiPJglSQgghxLHkdhI5+1SiS+ZhX7cR2/tbsa/fjG3DNqInzyKydP5hA1WZJzPVHCHfOfCeTi4t3mQiYMSoC/qJWRYT3L5hD7skUX2pC3YzMzMH2yezib3nx/ZagNhS14ANIdKhfxBCbTXZVNjFtuxuvjllMa6BWs73kpuoSCnEpyyekV/CxvZmHt2/i81dzWxc1MRdG09i/gEfs35v8j1POeOyvHiq/FhOBRwKllNlZec43uyCug9bGV/oiM/XUeMHtlQFS7EIHggxSXEzNeJFdWmgKKmOjgEJUkJ8JEmQEkIIIUaB5XETXrGMyNL52NduxPbBFuzrNmH7YCuRk2cTXTofyz1wSJrizUx9nT/A+iig15v8aKpj33DWRyUlG07UBuJVI7XEjjHXgb4pjL42yLrZ3WTZHZR5fGm3V49Xo+LTFH87dR+Lcwo5NbfosHdLVqSKnB6cms6y3HE8uHcbmzuaAYhqFv+5YDtP5ZyOZ2uU07pzoAEg1Oc455PJ+WTCewDtAz7WvcyJf/Fye3xvri9lpYLeaFWkTMviiZrdKIrCGXnFFDhHoDIohBgyCVJCCCHEKLI8bsLnLCOydB72NRuwbdiGY+1G7O9vIbpwFpEl87C8nj73KfMMIUj1mtq3/wjWRyUl1wMlm1cAxD7mQdscJvpyJ3ca7xHSTaZ5s/i/+WegDSFMvdVUx4N7t/Gj4HwmtlnsLg2yPbub28fNGlIYG+/2ogIzfPGGERk2O/837wzu3vkBzeEgOXYnlf4Odl4Kf56ym4Z2P9+dupRc0w5hCyVkoYQtCFmsq6vD3x1hitNHicOLXVHBBExoD4fY29VJgc1FqeJBq4thezuI67TRDVLPHdjH7/dtB+CRqh3cv/jcQ64pE0KMLAlSQgghxBhgeT2EP3Y6kVMWxAPVxm3xCtV7W4jOnUHklPlYWfGpeRM9GajE3+cPFqQ8qal9UaqOoPV5UrIiVdMrSFmFOnunRiirsHNNbSlPT2ukorud6kAXkzyHn0b4RO1uWoJBHK+GAAd/mXkAYEj3hXi4+/H8MynqVYkpdXv5yYIzMSyTh/Ztp9Lfwd5AJ5uVNmJZFr7pXowBQlpGVz7f2fgGFuBUNe5bfA7ZiVDyYm0L9+7ZzucmzeSKohLc329B2xoma0n8NQ7Gjn2QagwFeHDfNlQUZviy2dbZygdtjZxbOOGYj0WIj6oTvmvfV7/6VRYvXsy//uu/jvZQhBBCiMOyMjyEzzsd/82fJrJ0PmhqvMvfb/6E8+8voza34dT01Jqlw1akjBgtkfhUtqIjmPqVZXOQZ3eyz99JRyScuvyfs5sxsbi6soRzsksADru5bVJXNMrHq/MpCjrYPT7EG64mvLqtTxOJw5makYXXZu93uaaoTE5U7t5va8JvxOIVrEEqXdMysvjBnGXM8uUQMg3Wtzamrku2mc93uMGmEFvoRDFg5s54447RWCP1UkM1QcNgZWkZl5dOBWBD28hs+iyEGJoTPkh9+tOf5kc/+tFoD0MIIYRIi+X1EF5xKt03ryJ8+iJw2LFt2YX7vkdxPvEc51pOFGDiIA0kkut3ArFYqgW6b4DAMVSKorAktwgLWN/akLp8p7ubV4tbsAdgxe745rkVh9ncFiBkxGjxB1i1uxSAH0+qIGKaTHIPY43VICYnKltvNNUCMP4wFbk5WXlcOWE6AOtb61OXN6eCVDzgRZfEP5dtsYE1OlP79vrjXQRPzR3HnMw8NEVhY3sT5iFauAshRtYJH6SWLl2Kx+M5/A2FEEKIscjlJHLGYrpvXkVoxalYHje2nXv53Eub+Pt+g8nNnTDAm2eHqqGiEDCidMUiOFUNu6od0VCW5BQCsLalJ2S0RcL8YVoNlgJT39NwxlQqutsPe6yqQBcXVBdQEHTwYWk32zPjUwYnHsE6roOVurx4dVvq+6FMbZyTmYtT1djY3kTUNABoPGjjY6tIx5ig421TmdfqG5UgtS8xXXOiOwO3rjMjI5uOaIR9/s5jPhYhPqpGNUitX7+eL33pS5x++umUl5fz6quv9rvNI488wooVK5gzZw5XXnklmzdvHoWRCiGEEKPMYSe6dD7+mz9N6PwzMTMzyNhfj/tPT+P+/d/Qt1WAaaZurigKHl2nOxbFH4uScQTVqKS5WXk4VY0PWhsJG/GQ0RIJ0ZwVxZjnQPPDVdUl7PN3pkLIYPZ3dPLp3fGpgPtP77l8qOujhkJXVf7f9AWp78cPskdUb3ZVY352PkEjvu8UxCtSKpDba+Pj2NJ4qPpEVcExn9oXMmLUh/wUOFy4E0FxQXYBAO+3NR7qrkfk2QP7+NaHa/jd3q10x6JH7XGEOF6MapAKBAKUl5fz7W9/e8Drn332We68805uueUWVq9eTXl5OTfeeCOtra2p21xyySUDfhjGoX+BCyGEEMclXSe6cBb+L11L8OJzMApy0eqbcD31Ep7f/Anbu5sgHJ/K59ZsREwTC/DpRx6k7KrGopxCQqbBbe+8RnM4SNCIkWN3EjnHjaXAtTuK+cqmSTTs7BiwUpbkez9GQchB/VSTaeX5qctHMkgBLMkt4tZp81mQlc/czPzD3wFYlAglG9ubiZkmbZEQOXYnmtLztik214HhgDPrc1H85mCHOiqqAl1YwMRer9UyewH/vmkKe/a0HLXHfby6gg3tTTxRU8nz9VVH7XGEOF6Mate+5cuXs3z58kGvf/DBB7nqqqu4/PLLAbjjjjt47bXXWL16NTfccAMATz311DEZK4Cqjsyc7ZEYw1gYixjb5FwR6ZDz5TikaphzywnNmY66rwbb2k3oe/bjfPkdHG+9R3ThLIrtFsnVTD67fUR+vv8ydTZ1oW7WN9Xzq0ROynE4UYpsxM7zoL3YzSf3F8HvDcy8VoyTXRgnO7Gye00rjFos3BBvfBE618V4bwYTPRnUBwNM9vpG/Dw8v3gi5xdPHPLtZ2bmAFDZ3U5bLBzvjuh09x2XU6Frnk7WuzFm73ajLjp2/3aS7ezLer1W097SmFldQFHAQdOpQQpHeE+pqGmk1ooBbO1o4VMTph32fqPxu6UzGmFLRzOn5I4btLmIGJuOt/+Lxmz780gkwtatW7nppptSl6mqyrJly9i4ceMxH4+uq+TmHn5KwLGSnS3rvsTQyLki0iHny3EqbyYsmolZ14Tx+nqMD7ZhX7OBuxV4Kc/FX0oyyCt1j8j/Y7l4+VHGcj714t/5INHZrjjDGz/2VV7aPpbBHx99n8W7fcxqzkB93o/teT/qDCf6qRloizzE3uokGtR5c1wr5yxaiK6q3HPGOXRFI4zPzD7iMR6pzGw3jg0ae/ydhOON+SjxZfR7/VrPNeHdZk7Z7SMnxzNiTTIO5cPWZt7tiMfj2YUF5OZ6MZujhD6Id2Zc2JLJmztbOWlFwYg+7v7uTixgbk4eO9pb2d7VRnaOZ8hB5Vj9bqnq6uT/rX+TukA3dy49gxUlh28HfyDQzU1vvMTFE6fw+Rmzj8nPURza8fJ/0ZgNUm1tbRiGQV5eXp/Lc3Nzqaoaejn5X/7lX9i8eTPBYJAzzzyTe++9lxkzZqQ9nljMpLMzePgbHmWqqpCd7aGtzY9pSmceMTg5V0Q65Hw5QThccN6ZKKeejP7eh8TWb+L8piDnNwXZXxumPerDmD4J1COb2e9WVByallon5bF0Wlp69pc665Jyrl/3IouNHL4fWYD2fgh2hIjsCGE93ISlxtcWvDyvjUVtAQBsQA62PscZTZM8PnZ2tfHO/moAMgcYW8hnsjeri5ntGbS/34Y5+cinTx5KbaCbf1n/Msl/oXmWnZaWbmxPdKIbEChWcNdZ5L8YpWXeyL6OO1qbASiyuzEzLLZ0tPDB/jomeHyH3Hz5WP5u6YiGueW9V2lNtOd/Y38185w5h73fy3X7OBDwc+/2zYSCEa6eWD4i46kLdvN07R5WlkyhyHV8BIPRNlb+L/L5XNhsh2/OM2aD1GAsy0rrLwX33nvviD32WHpzYZrWmBqPGLvkXBHpkPPlBOFxYyxfys9yFTK27uaKum4mNHXA357D9HmJnjybyNyZ4B76fk29qapCWUYm29vja5az7Y4+502+3YVXt7FZ7SC83I1yrht1bxT9/RD6hxHUsMUrxc3YShxj9nyb6s2MB6nm+CbBeXZnv7HaUPnHhEZmtmegrg0Sm2gb6FAjpibQnQpRU7yZFDs9WK0xtPUhLIeCeUM2dT+uY0aDh0BlGGsEg92BoB+AAoebbJuDLR0tfOvDtWiKwk/mn0mW3XHI+x/t3y2WZfHznZtojYRZmlPEutZ6Nrc3Dekx93b3dDr8U9VOVpZMOeIOl1HT4Htb17PP38mG1ibunn9GqjGIOLzj5f+iMdv+PDs7G03TaG5u7nN5a2trvyqVEEIIIfrTHA6eKPay6uRCXluxgNjk8aid3TheXYv3l3/A8eyrqA3Nhz/QAKZkZqW+zrb1D2QFDhdh04jvYaUqmFPsRK70EfhWLi9e3M3/zq0cdA+ssWCKNwuA3d3x/ZryBtj4WFEU1k7oIKAb6JvDEOjfdCJkxLi3cgsbRqCbXltiY+VrJkznZwuWoykqttcCKAZET3eheDWenx0Pt8qLI1uRqg/Fg1Sh081JmfH9wj7z/jjueXYGayqqR/SxhmNrZyvvtByg0OnmtvKFjHd5qQ36aQmHDnvffYF4kCp2eYhZFpWJn/mR+Mv+Cvb5O9EVhepgN/fu2XLExzze7fV3cNvGN3m1cfTPl5EyZoOU3W5n1qxZvPPOO6nLTNNkzZo1zJ8/f/QGJoQQQhwnPIm/gJuKQtfkUoJXfwL/v1xNZOFsUFXsm3bg+d3juB5+En1HZZ/26Ycz1ZeV+rp3W/CkgkSzg8bwQdPi7Qpv57US0s3Uhrlj0VRvZuprm6IyNSNrwNupDpWXiptQYqBvCPe7/oO2Rp6u28O3tqzlkaodRzSm5JS1HHv89VY6DPR3Q1h2hejp8aBXPSNGrTuEq9JArRq5FuUNofgUzCKnm1m+HE7vzmVlVRFFQSdz/qFjxY5t58KDJVvVf7J4Mm5dZ25W/I/umzsO/YcCy7Ko8ndiU1TOyo9vDr0rsaH0q401/KJiE+8016W90fGrTTUA/Hj+meiKyrstDVgjuFnySB7rWGgJh7hjyzp2drXxs12b2DMCYXUsGNUg5ff72b59O9u3bwegpqaG7du309TUBMD111/Po48+yurVq6msrOT2228nFApx6aWXjuawhRBCiOOCW+uZwZ/cR8rMzSZ8/hl03/IZQueehpmdiV59ANfqF/D86mHsb65H6Tx8NaN3RSpngGld+YkKTlM40O+65KaxI93qfCRNcGeQZXOQabPz/Tmnpp7PwVyazjMT49Um27vBfi3f60M9z//P+3exP7GR7nAkK1LJIGV7PRivRp3mBHf8Ld04j5eHp8XfxNte8g/7sQ5W3ytIORWN23efBECXI0Z5i4e2fx69tutDsTMRfqZnxJuVzMmMB6kP2w8dpFojYbpiUSa4M5jpi993V1c7rZEQP6/YyHP1Vfxg+3tpVVEMy6I5HCTH7qDMm8kUbyadsUifc+FIPFZdwap1z6fOh+PB7/ZupTkSYrzLS8wy+X8b3+DWD16ncYRek9EyqkFqy5YtrFy5kpUrVwLwve99j5UrV/Loo48CcOGFF/KNb3yDe+65h0suuYTt27dz//33k5Nz+IWDQgghxEdd7yDVbx8pp4Po4rn4v3gNgSsvJFY2HqXLj+Ot9/D86mGcf/0nWmXVoFWqKb0qUsk39r0lg0fvilTIiLGrq43qQDdZNsdh19WMJl1V+dXJZ3P/4nNTU9kG4tJ0KjL9hItV1HoDdX/fzXmTlZyTfPH3Lk/U7h72mFoTb5yz7Q6ULhN9XRDLDtEzelqdl7g8vFjSTIfPQN8VRd3fU5X6oK1xSFPdBtIQCuBQNbJsDvQPwmg1MYzxOuuujRHUDEretlD3Rob93I6EZVns6mpDVxSmeDMhYLKgyosrplIVOHRwTYb6iZ4MpiVC2M6uNv5Ws5uIaabC/ocdQw+KrZEQhmWR74j/XKYnqplvN9dx5/b1qcccjpAR4w/7ttMRjaQ1ptEUiMVY03IAl6bzkwVncnHxZFyaTqW/g2cO7B3t4R2RUW02sXTpUnbu3HnI26xatYpVq1YdoxEJIYQQJw633rsiNchCd0XBmDKR4JSJKG2d2DZtw7ZpB7aKfdgq9mFmZhCdN5PovBlY3p7OY7lOF6UuL4Zl4tT6v50oSLyJbAzFg1R1oIvvb1tPTTBe7RrL0/qSfLbDN2tIhtW2hRpFdSb6uyEivZpOJKsQ102ayf9sXcdrjTVcM6F8WPs89Z7aZ3sxgBKDyHIXeHr+Ll7s8mKoFi/MauVTa/KxvRQg/PlM1rXU8z/b3qU8I5u755+R1uN2x6J0J6o2SsTC9ly80hW52MucYg/3zHmf/9g4Fcefu/DfmsV7oSZm+HKG9PodiYqudn688wO8Nhsd0QjTvFnYYyrOB9rx1MR41LaQp6c0Yk03UNwDN49Iro+a5PHh1W2UurzUBLt5qnYPDlXj38oX8uUPXmNnZ9uQx5WsshQk/phQnpHN39nL7/fFZ2BFTJPvzFoKQNQ0eaWxGruqcnbB+MMe+42m2tTXHdHRCa7pWttygIhpck5BCU5N54tT5nBF6TSuf/cFXmmo4bqJM9GPsJPoaDk+Ry2EEEKIw3JrPW/o+1WkBmBl+4icdQr+L3+G4MrziE0qQe3owvHGu3h++TDOJ55H21udmr72o/mncde80wc8VoEzWZEK0BEN8x+b3qYm2J0KEItyRnafo9HiSgSphpkmlh30TSEI9lTxkhWpyR4fnyguI2ZZfGfLWtoj/ddTHU5yKld22Ia+Nohl61uNgnjDBIB/FNdj5qjoOyOo1VGer49vHZOcApeO3o0mbK8EULtMYgscmBNteG126mdZvFTchNphUvuHWr679V0eq9414LEsy6IzGjniNT57ujv4+qa3qA52sz0RcqZ7s3D8pROtJoaZpeKJ6azaUYL7R63YXvAP2Axkc2LqX7LyVJ7Rs4/ZNROmM8njo9DppjrYTXdsaGvOGhPTWZPrBGf0OqYzppLsPR2IRbl1w+v8vGITd+/cwAN7trK1o4WoafQ7ZkckzM8rNvFIVU8BYqBps2PR64nwd1ZBSeqyXIeThdkFtEfDvD8CjVhGy3HX/lwIIYQQQ5OsSOmKknrDPySaRmzmFGIzp6C0tmPfuA19805sO/dg27kHM9tH7JR55EydhOEdeJPfZEWqKRTkT1U76YxFOKdgPLdOn49hWdiO079AHyz5Gvt1g9g8J7b1IfSNYWKnurAsi8ZwAK9uw6PbuGbCdPb6O3i3tYE/VG3nq9PmD/lxLMuiNRLGp9txvh1CicY79ZHR93X06DaybA5qI37CZ7lwPeFHf9HPlhnxaWC6kv7rXp2YHjcrkontzXiAi3y8pzp5St44fjJnG/M7Mpmxz8VFGQVsyeg/7Wx7Zys/2LaetmiYKd5MvjNr6YDTQodibUs9Ucvk9Lxi3mk+gInFJZvy0bdEMHNVgrdk8+stm5ix3saFtYXYXw5gezNIdJkzHj69Kpvbm3m/rZECh4vZiembV02Yhk+38zG9mMnNLrQN3Xyneho/mryLiq42FmQf/g8AySpssiJV6HTj0+2cUZnFv35YxuYJ3TDZZEOgif2BLiZ7fDSGg6yurWR1bSXnFU3od248uG8bLzX0XafVFBr9/U0PJ2qabGhrwqfbUw1AAJTmGF+qmMRN2U08X1/F0tyiURzl8J0Yv8WEEEII0U+yIpWh29Pag7E3KyeL8Ipl+L98HcFPnkts/DjUtk5i/3wT18//iOvRZ9C37YZY37VBmTY7dlWl0t/BPw9U4dFtfL7sJFRFOWFCFPRUpIJGjNjSeCjQ18WbTrRHw0RMM1WF01WVz0+eBZD2IvvuWJSYZTLBcmN7J4ilQ3T5wA0wShJtvKtPMjCzVWw7o4xvia9Hi1lmaiPlodofiE/H/Nh7WfHmFme7sTJ7psqdkltEwGbw7fk7MRSLL2+dRJm//9TFN5vqaIuG8eo2Krs7+I9Nb6U9lqQ9/njXt0tKyrhu0gyuri9h2nody6UQ+lwmeFTchU7unreHlz4fInqqEwwL+2tB3D9swfb3Lh7fGu+i+KX8k3DtiGF73s/kR2J85Y+FzPxVDOejXdjeDjJzv5sfvjuTqvr2IY0tuS4wWZFSFIWrwhP51y1laCgs2J+B66dt6Hvi/2aW55dw19zTuKBoIgC7DppGuM/fycsN1fh0Oz+Zfya/PXkFAE0Hd8QcQe+21B9RY5Sk9mgYE4sStwctGeJjFs6HOpmyVmNhIIv1rQ2pqufxRipSQgghxAkquX4nYyTWqugasVnTiM2ahtbWQUbFHqLrPkTfW42+txrL6SB60jSic2dgFuWhKArJSUwmFp+ZOINM29htLjFcvYOUWapjFOtodTHUmhj1mfGwVOjoCRWeRAUrYMT6H+wQko0mPllZiBKB6DInlm/gdT/TMrLY2tnKM437uOXsqTie6Oa6XaX815L4tLDmSJAS18CVxIHs93exsNlH8W4NM1slembfkJTncPFv5QtpDAXYr1lMfkPj028WwVILHD0BPtlk4XtzTuXeyi1s62xlZ1dbn0rFUFV2d6ASnzI5q9mLc0MHlgqhVT6sgvhrXJKY5lhp6+a0leOJnu3G9noQfV0Q+1shfqhOo9thkBO0AT0NICwdjAk65ngbxnidwIfdFG11sPxpoKzvcxrIwWuklKYY17yaj2JZ/GZuFdNaPZxTk8fZf3NyYMoEfFOcTPT4+PK0ebzTfIDaoB/DstASf/x4vLoCC7h6wnSmZWRhWCYqSp8gFTJi3Ln9PbLtDi4pKWOS2zfsP540hgL8z7Z3menLGXTq7lClpqP22mvO9lIAtdHAmGZjykkFrKtu4x91+7ihbNYRPdZoOHH+JCSEEEKIPnIdTjJ0W7yT2QiycrOwXXQmwa98hsCVFxKdUQaRKPYPtuD5/V9xP/AYtnc3sdwT71T3+ckn8YniySM6hrEiGVb9sRgoCrElyapUqM/eSz23j1cJA7H0glRbJIw3onHmziwsDaLLB29WcUXpNDy6jX/U7WV7eZBGV5hljTlcQbzi0ZxmJaOmu4tbtsZ/fpELvWDr/wb9rIJSrpwwndwL8tmQ28GEdif2f/atMlQF4hvUTnL7WJJTCMDu7va0xgLx9UJN4SCl7gxcbeD8YyeKAZGVXsypPX80SIbF2kSDEytTI/JJL4Fv5LJtYQRDscgK6ZhFGtFFTsKXegl+NYvAd/MI3ZJN5JNejAVO1Kuz2ZzXSWmrA/2RdjAOvb6rqXdFKmDi/H0nSsgicpaLNTO6+N78Cjo+5SZss/h0ZQln/cWB0hw/H0rdXqKWSUOvCk1dMP71GfnFAGiKSq7DSSAQIZao6G3paOH9tkZeaqjmKx+8zr+89wrrWurTfm0BqgJdWEBN4Mg3dW5LrAXMTnToVGui2F4PYNkVwpdn8PHiieiKwgsN+zGs0d2LbDgkSAkhhBAnKKem87slH+Nr0xccnQdQVYwpEwldej7+r1xH6NzTMApy0Zpacb78Dv/5/Cb+UadwZZcC0fSCw/HCm2jikWxEEJvvwLLFm060diYqUr2ClF1V0RSFgJHeZrmtkRCX7x2HI6oSW+zEyhq4GgWQZXewauIMTOCOHet5eGp8sf+FW+LrgNKZEhY2DBbt8lLW5caYbMOYc+jqpqap/HTRPjptMWxvB1G3x99It0fCdEQjlLq86KrKVG8WEK8spasyMa1vli0b54OdKAGL6BkuYkv7TnVMNt6oDR40bSxD5feza1h53nu8f5tK8F9ziHwqg9gpLswSG2h9g6LNrvHiBV1UeQM4dsawP93db7+wpOS6uAzdhgsN58OdqM0GsVl2oud7yE2sCTtwkslPPlHDluxOMuoVXD9rQ18fZLwrA4DqXiEmeW55VR21KorteT//98oMnn1uKeqjHWBYqWpfnt3JVG8mB0J+/mfbuzxVWzmk17Q7Fk0FmarEsTpjkbQD/8FSFSm7E2IWjse7UEyIXOTBytbItjspdWfgj0UJHuFjjQYJUkIIIcQJzKXpqSlCR5PldhFdPJfADVfiv/4KIifPAbsd754aXE++gPfnD+H8x6to+2oG3ZvqeJRsK98VS7SidqnE5jlRIpC7LX5R7yClKAoezRavYKWhqyvE5fvGYaoW0bMO3zr9wnETmezx0R4N81xpIwGvyeR9DqZ2uNMKUvWtXVy/czwmFpFPemEI51I0A+6aF98vy/6XTqz2WK/9muLd8aYmqqQVw6hIVXZ3oJsK171eGA8pJ9mJXOjpdzufbser2zgQ9GP2Cj5R02BzezOaXWF67tD2Jl1cUsw3luygyxnDtjaE/sbAr2FyXVyB3Y39yW60yihGsU74Kh+oCrmOeJBqCYeodHRz66lb6TzbAVFw/LWba17PxxvRUg0+CJos2OflvzZOI/MH7bh+1Y79lQAT2pxEFZOMzQaOP3ZS3RF/ff+1fAE/XbCcb520BIBn6vYd9rnVBrr57LoXuH/PVqBviGsIH9napd4VKdsrAdR6A2OKLbWeEOJ/XACISkVKCCGEEB91ZlE+4fNOp/urnyVwxQVEZ04Bw8C2eQfuP/8dz68exvHKGtTG42ND0UPJSFakoj0VpuT0vmXveflEVQFTXH33zHLpOmHTSGsq08SNOhlRndpZJlb24NWoJE1R+dKUOfHxaBbhs+PVmut2jac5jU15XS8HyYza2DozhFk8tKX1Xt3O20VtdC+xofgtwvc3sa+7b5Dy2uwUOd3UBf34D2orvs/fyZ5DVKoqOtv52oeTKaqJr0kLXx0PKQdTFIUSl5ewadAS6XnO2zvbCJsGczPzh7x/0bysPPw+k28s3o5lA8ezfrTN/VvYJ6tfl+4pwvZuCDNDJfxZX2pdVbJLYUskFA8ZqoJyfgahL2VhZqtM3G3jgTfmMfltFedv2nF/t4V/f6+Mc2vyIGhhTLERvsjDI1e18ukVG+jONtG3R7js+RxcMZVJ7vjruzS3iHyHi/qQn9Bh1uM9e2AfYdPgneYDWJbF/l6bGDek2RTlYG3R+Gs0vtWB7dUAlh3CV2T0CeR2JX4+R47DP7BIswkhhBBCHB2ahjFtMsa0yRAKo+/ai23LLrSqWuzrNmJftxEjP4fYrOlEZ03D8g29AcJYkaxIdcZ6Nkc1J+g0zVfI32jjtg+nYNYFiHxMwZjnAFXBk1hXFYjFhtYIJGyyYLMLQ7FoOE1jaDUUmJWZy5emzMEC7AUZRF8Pc0ZDDu8e2A/TDn9/pSHGxI0a3XqM/WdC2RAfN/ma1JyjMn2/BtuCnNFsx+OczEldPrSOMFaOxixHNvWhAFet+SdXlE7lc5NP4oX6/dxTsRGfbueRU87v1zChORxkwnsKF1UXYmQofULKQIpdHnZ2tVEb6CY/0fxhb2Jq4Exf9qD3O5iuqpyWV8xzsSreOj/I6f9w4fhLJyFfFuaknv3atnW0cEpDFhe+l42lQ/izvj7TMJNT+1rCQdojYbLsDlRFwZxkI3hrNtYT7RRsdlCwwQFEMb0Kz2U3sHt8iM+fvwCc8eBnr7PT5I/w9GVdXPnPHE6q8/LTdbPJXGqDxCk1yeOjKRykOtDNtIysAZ9X2DB4uaGaOS0Z7M0IcCDk76mG0bOh9HC1RkLopsLs5zQUE8If92Ll9P1DQLKLZ2SA/bPGOglSQgghhDj6nA5ic2cQmzsDpasbfdvueKhqbEF7bS2O19YSKy0iNnMqsfIyrIz+U7XGolRFqleQQlF4dGkDW7z13L7/JMbt13E+2oX5WoDI+R7cavyNt9+IHj5IGRa214PYwxr/LG2kOL/k0Lc/SO8mH6HlLmx/D3LB+hzUyVHMcTrog4QQy8L+TDeqpfCH6TVcUDz0jmrJ16RTiRL5dBbO+zoobXRQShHsh2SHvP9mAjc7iqhzh6hzh+mc3ExjcyOXaUWENJOozY/LZQObQkgz2dDdRGe1ny9sm0BUt4h9LuuQa8WgZ51UXbCb+dn5ADQk9l8qcqZ3jp1XNIHn6qt40LMH95lTOfl1B84/dBC8ORsrLz6OlqpuvvXBdBQUQldmYI639TlGsiK119+JiZVqwgCAS8W6Npvbne8wsdvFVStm05Ab5a73KznJl5MKURDvlAhQo/jZ+ek8zPvbmNPmw/xtO6EbMrF8GhPdGaxvbWCfv3PQILVlQx13vTaDmR1e9nuCvFpSS6hXoNnZ2cbP/Bu5YvzUtDo9JrVFwly7uwRXAxhlNmKn9N83LBmkolKREkIIIYQ4NCvDS3TpfKJL56M2taBvrcC2bTd6TT16TT3Wi29hjB/XE6q8h18TNFq8emKNVK+pfaZl8XbLARqyAoTPyyJYq2F/zo9WFcP5UCf/ljeBn06NDryQP2iiVUVRq2Jo+6Ko1VGUKJiKxSNTa7lDnzTssapLPTS92MGsRi/8oh1LA7NYxyztafVt5WmgKmg7Iui7ouz3BNk7L9ZnndfhZPRqwGEV6Zg/GMcNjz/D1LCXf8ubh9pqoLSY0Bwjs81GTpud2W1ArcUXE50FAdgcBOKhxwmcjTPxFbRe4cRV2jekDKSnc1/PWp+BuikOxTRvFpPcGez1d/JvGR/w/6aWcfHuQpy/6yB4SxamafGZlwtwGxqhc10Y8/qHhuQaqd2JqYsHb0isKgp7J0V4PdDCRePm0B2KnyPJ8ywpO3G/9miYPUYXv1q6nd9smc/EGgfO37QTujGLSYlplPsCnRxMqY8R+XsbZ+6OHyfkMJngd7HsSZNHl6qUZGZQ6e/gzea61ON8Z9bStF4vAF+jwmcqSrBsiSl9A0zBtKvxECpBSgghhBAiDWZ+LpGzcoksX4pa14htRyX69t3o1QfQqw9gvfAmxoRiYjOnxEOVZ2yFKoeqYVPUPhWpNS0HaAgFmOXLId/hwiyD0E02tJ0RbM/5mXjAyU+aZ9FRH0E9J4LabaLui6JVRVEaDJReDeEsh0Jsms5v8yqp9YZSXQKHxabww3P2MmeXm2uUydhrDbTqGFp1DNaEUo9njtdRmuJViV+dtI9zS6am9TCp6Y7R+GuysaORfRlBJpblEJtx0M/PtPjDxq3srmpmfMSNFbEoVF2EQlHOzi6lVPdA1GJvWzv1XX7shoq5wMm8BflDGsvBLdABGsKJfZ7SDFKKonDBuEn8pvJDAH5avoePO8ajb43gfKiDkGFQGHTw/sQuZpw78N5YyeB0INHePHuAvdWSe5NFTCPVsc9zUJDKSlSy2qNhqgJdhHSTLZdZlLxiR98SwfmbdqZ9Ov7ck134AJROA9sLAfT3grgthTp3iD1nmkxdUkTjL2qY2+rju++Vs+lyI9UdERhWwxorZvKF90rRLZXwxz1YuQNXD23HcbMJCVJCCCGEGH2KgllSSLikkPCKU1FrG+Khakcl+v469P11WC+8hTGxmNiMKcSmTx4ToUpRFDJsNjqiESzLwgL+XBXf+PaqCdN73xBjhgNjup1XXqxg3jonE/a54IG+TRXMbBVjog1jkg1zog2zKF4hem1dC0qkZ9+qYY83R+eh8hoWL5zKJHcWSpuJWh1Fq46hVkdRa2Nou+Nv3tcXtLO5uItv5Bam9RjJilSyk+G7jfH9jOZnDRB+VIXsIg8f+PfwQWLK32WlU3iiZh+usmw+WRJ/7Gcq9/H3ur3818zFnJo3bshjObgFumVZNIQCuDSdDP3wFa2DXTRuEsUuD/+34wM6YxH8V3rx3t+JVhXDA2zL6mLj+RFmDBI8su0OHKpGODF9rs/UvgRHokITNnqC1MEVqazElND2xJ5aAPleN+FrfVh/68L2fpipD1mUn+xhn60LQia214PY3gygRKHDFuOP02rwLc/m8knxBXP/t6KBm57XWNycxdw1Np6avJfuRJt+mzKM/nSv+pnW4WFXnp+SUwffdFnWSAkhhBBCjBRFwSwtIlxaRPicZWg19ejbE6FqXy36vlqs597AKC0iNn1yPFRlj+ymw+nw6nZaI2GChsHWzhb2BbqYkZHNgkGCQ3W5wU+dG/lxbBGzqjxYeRqxiTqxiTpq1sBvzfxGFLduQz3CVvbJtTVN4SCTPD6sHI0dti6+E1jLqpNncGHBRJRGg2BtkP/pqKDY6cWmHr5LYG/JilQyBLzXFA9S87IGfjM9yZ3RMz67M7XHVGO4p9FBMNF5zpVmkHRpOjl2Jw2hAFHTJGTECBoxJrkz+jWyGApFUViYXUC+00VndwS/GkP/XCau37TTHg7z34t28pWswfdt0xSVswtKea6+CoAse//pfw4t/nqHzMGDlE3V8Og22qNhWhJBKtfhBE0hckUGOFVsbwf58ZpZ/HXSAZwvtKL5LSwdXpnVxo9LK/jszFlcOG5S6pj/Nn8RoUkRzAfCODZH+VqwjO9N3wlKz89yyK9TfQz3KyHCqslflzVzqzpp0NsmQ5pM7RNCCCGEGEmKgjF+HMb4cYTPTYSqHZXou/am1lTxypp497/pk4mVl2EW5A5pv6OR4uvVcOLDjmYAziuaOOgbdbemY6qwa2aYqecUA3DPro28vrWWy0uncuX4aX3acsdMk6BhUOjsX71IV15ijU5zr72kXmmspjMW4Te7N5PvcLF4XCH7PFG6NsWYk+b0N+jZpLgzGqE1EqKys4Nil2fQqXTJlugAZd7MVHe93vtdhYx4tSLdIAVQ4vLQGgnREAqkWoGnO63vYMlg0x2Lkul1EPzXbP5v23ra2qPkOlyHvO8niif3BKkBmo2kKlKmkZoyOtCUzmybg5pgN3WJaltqvZWqELnYg+VUcL8c4LqKUiwsoic7qDzN5H/27KDQ4eb8ogl9jpdhs5ORbyd0oxPXr9o5pyKHoGsad0+oSC9IGT0b7z5w0n5ieYcO4rJGSgghhBDiaFNVjAnFGBOKCX/sdNT6pnig2rkXrakVrakVx9vvY2ZmpCpVRmkRDHGvoOHy9mqBvqurHYDyQbqkAan25/7Em/raQDcvNuzHAv60fydZNjsX9uq25x+kKjEcBQOElA1tTQCYwK93b2bR4nNTba/TbcgAvYNllJrE5q7TMwZvNe6z2cmxO2iNhJnizaTAEX/MxlDPGJMVKaeWXnUM4uukPuxooTbYTSyxDied5hkD6R2kANAUmmPxdWYDTdfrbZLHh66oxCwz9Vx76z2171A/+6xEkGqLhvHp9lQgAUBRiJ7n4Z+B/XiqLEouKmLCVB9/370ZgJUlZWiDTNez8nRCN2Ti/G0Hn9icx06rg/fLD78xr2lZNIYCjF+roNXEaBln8LfJB1hpn3LI+9llap8QQgghxDGkKJjjCoiMKyCyfClKSxu2XfvQd+1Bq2vEvn4z9vWbMV1OjGmTiE2dSGxSKTiOoFnDIJJrgjqiEXZ3tePSNEp7TVc7mCvxpjj5Jnl1bSUWUJ6Rzc6uNvYHuvvcfrDpXcORd1CQagwFqAl2M8GdgU1VqezuoD4USHW2G07gSAbLrlgkNe0sWQkbzES3j9ZIE2WeTLLtDnRF6RP2hju1D3rCYGMokGpocORBqicsJrVFQqhA5gANJA724JJz2d7ZSvkAe1klp/aFDzG1DyDT3nMu5wzy+m45KcRLudV8Py+fCcTXVAHM8B16NzKzxEboOh/O33XwtQ/LuMtZCYsHv73SabD3rXpsGyPYO7xYOvzfvEpMBeYNNMW1F12aTQghhBBCjB4rN5vIqdlETl2A0uVHr0hUqvbXYdu8A9vmHViJilZsygRiUydh5YzMuqpk04Idna2ETIPZmbmH7HKWrEgFjRiBWIxXGqtxaRpXT5jOHVvX9dncF45OkEpO7dvQHq9GLczOR0GhsruDzR3NvSpS6e/nlWo2EY3QHI5XaXIHWAvU26WlU8i02VmQnY+qKOQ5XNSHAkRMA7uqpabkDSdI+Ww9oac9Gg8ShQNUgtKR/JknG2qYlkVbNEymzTGkDnfZdifL8ooHvG4ozSYgXpFKGuz1darx1ys5NTLZ5MI+hCqtOdVO+Gof9kc6uO39MmLzw1hT449ZHegCv8nkPXb0jWHUvVHmWnbATrUnSNMKnbVWCyf5clh4mCCVrKRFZGqfEEIIIcTosjI8RBfOJrpwNoTC6Huq0Sur0Cr3o++rQd9XAy+/g5mTSWzqJGJTJmCMHwfDmDYG4E28UX+/rRGA6YeY1gfg7lWRqg/5iZgmi7ILKE6Elo7Em/2kwVpgD0eevaci9VRtJX+t3g3AguwCTMtidW0lm9ubaUtULoZTufHoNhSgKxalJZIIUodZN7Qwu4CF2QWp7/MTQaopHKTE5e01tS/9t66pvb5iURoTAXKkp/Z1RSMYltVvX6jh6LtGavCffZZ9CEEqcU4nX7/k9DnHEBuIGHMd/HF7HZ/9oAT9D52Er8+ENoPu1xqY35iBbiWCpE/lrdI2Hs6pYlemnwmuDAjAqokzDtvUo6fZhEztE0IIIYQYO5wOYidNJXbSVDBN1LpG9Moq9N1VaI0t2N/dhP3dTVgOO7HJpcSmTMQom5DWJsDJ6kRyfdR07+DrgaCnhXnAiKWCRp7DRaatZ4pgbyNZkXJoGpk2O/WhAPft2QrAKblFzM3MI2oaqCh82NGCrigoQIHz0AFoIJqi4NVtdEYjqcrX4ab2HSy+dqiFplAySBnoipJqlZ0Ob6927G2J1/tIA8/BQao1OrT1UUMx1Kl9vfegGuz5JCt4oVSQild90unEuH5GN2Z3NdfvGo/rN/F2/YvIpMMWpb48yoTTCjAn2Xhy2y52tcXXUu0PdDHNm8XcQTo19pasjkmzCSGEEEKIsUpVMUuLiJQWxddVdXaj766KV6v21WDbsQfbjj0AGAW5GJPHE5s8HmN8EeiDv2XKOKij2owB1r305k4cKxCL9Qoarnh7cxQ6D6pI+Q/RuW048hyuVFi7sWwWK0vizQBsqsrUjMxUIMy1O/s2MEhDkdNDRXc7u7raEsdKL5AlA1xy89yQERvWtD7o2449uUlw8rLh8vbq1AikKngjWpE6XLOJ3hWpQYKqMzWNNF7t6alIDT2QenU7f5hWwydyJpK32aJmYpRfZFTwfl4HWU4HD0wqRleV1PqrpE/0aphyKDaZ2ieEEEIIcXyxfF6iC2cRXTgLojG0qtp4tWpvDVpjS7xitW4jlq5jTBgXD1Vl4zFzs/u0V+/9pnx+Vl5qHdJgPFr89gEjSkuvNUSqouCz2elMbO6bnBI1khUpiE/vqyReWTgzv6TPdSsKxqeClG+A1txDNcGdQUV3O83hEArpV2qSa7PqQwFMyyJkGmQMczwZvUJPRzRChm4btGPdUB1ckUpWuka+IhVBV9QBp+INZY2UK7kn1UFT++xpTGP16jZQoOJsE/el+fypYhPv1rfj0W20REL8z7Z3+X/TF6TWn0G8c+MZ+QOvATuYLdVsQqb2CSGEEEIcf2w6xtSJGFMnEgaUtk70vdVoe6vRq2rj66z2VMPLYGZ4UqEqNrG0T0Xq4702OB2Mq1f78+ZI36lvmTY77dEwASOWWhcz0kGqqddGtwdXUC4aN4lnD+xjf6DrsIHwUMa7vamvsx1OdFXFNK0h3z/Zaa8+6D+iPaSg53VrCYcIm0ba0wwHPOZBmw63Jqox2SNYkQoZMbpjUby6fcB1Rr0rUoN17UtVpMyDpvalESQPDo07ElXG/565mF/u3sz7bY08sHcr7ZEIOXYHnywuY7I3c8jVTJnaJ4QQQghxArGyfUSzE9Uqw0Cra4yHqj3VqAcasW/eAZt3YAEz8nO4xRbmgywHSz2HntYH8XbPDlUjEOupSCVDiy+1Tip81ILUJ4onc0/FJr5QNqvfdYqicNfc0/hLdQUrCkuH/Rjje7V/z3el39gh2QyiPhQgZA6/Yx/Eg4muqKl26kdSaUtKhYtoMkgl116NQEUqEUA6YxFiljXoz31oFamDuvYZBnZVPWwDiN56B6lALMZ+fyf5DhdzsvK4c+4yPrPuBTa2N2NikWVzcMX4aUM+NsjUPiGEEEKIE5emYYwfhzF+HJEzl0AwhL6vFm3vfvR9tTiaWrkSuLLOj7X9IcyifGITSzAmlsQ3BLb3fyPs0XU6ejVjSL4RTu5B1BGNUJwoCI1k1z6AcwsncJIvl9JeVaPevDY7NwwQstLR+9jDaViRY3diU1QaQgGCseFvxgvxcJih22hLTD0byj5PhzPYGqkRqUglnmcyZA8WpJyajkvTiZjGoM/J1avVPsSnz6W77q13kNra2YJJfM8ziIc5j25LBcnhvLbStU8IIYQQ4qPC5SQ2cwqxmVPi0wDbO+Prq6pq0arq0A40oh1ohLUb4ntXFRfEQ9XEEoySQtB13JqN1kiY+lAAl6anWqInO/d19urcN9IVKVVRBg1RI6XI6UZXVGKWOayKlKooFDrd1AS7U50Nh1uRAsiw2VNByjcCTTvcmo5KvKU6MGLdAKGnIpUMJ4cK0J+dNJOoaaIOUmFyHrRGKmyYZA0Q7A+l9zTG5w5UAXBqbhEQD6nFicYi0He64VDJ1D4hhBBCiI8oK8tHLMtHbN5MsCyU1nb0qjq0qtp4wKqpR6+ph7ffx9I0jOICvuRWeFoPsyXDTm6GL3Us3wAt0A/VuW2s0hSVEpeHqkAXecOoSEE8jNUEu6nydwJHFqR6v3YjMbVPVRQ8um2ANVIj12wiGaQO9XM/XGc8V68NeWOmiYmVVse++OPHX6893R180NZIts3RZzPhYldPkMoeTkUqERyjlgQpIYQQQoiPLkXBys0mmpsdX19lWahNrT2hqroOvfoAZwBnAAZQ52vH0foWxvhxFCTe43dGw3REwvzfzg+o9Mc77B1PQQri66SqAl3DqkhBT+e+vYkg5RxmK3YY+SCVPOaBUIBdXW0cCPnJd7iG3S6+t2RFKhmmj+Tn7uw1tS/VsW+YU/uSG05fMG5in/28il2e1NeZR1CRisjUPiGEEEIIkaIomAW5mAW5RBfPTQWr6L5q3t+8kTkdEcZ3BuH9D+H9D7kMWOLU6KiNsa+wlsZoKzg1Cl2eI27ZfaydkV/Mzq42FuUXQij9+xclAlgySLkOsZfX4fTurJg5YkHKDgT49e4PAbi8dOqIHPfgVudHsn9Y7/bnyWYOww1S8fuq/TpT9g5SWcOqSCWDlFSkhBBCCCHEYBLBSivI5a+Obr7b0cKNORO4wnKj1dQTq6qmtK2L0r0NsLeB04Gw045ZrKFG3scoKcQYVwCOkQkDR9NpecWcUVBCrsdLS6g77fsnW6DvSwYp9Qim9tl6V6SOfPod9GysXNHdTqHDzflFE0fkuP2D1PArUo5U+3OjV0Uq3al9PY//8XGT+q0DK3b2rLcbzhopm5KY2idBSgghhBBCDMWyvHFs62wlp7CAWH4JsTnl7PV38N/rXuGskEpxcyeLumJM6Y6g7KmGPdUAWICZnxMPVcWFmCWF/TYJPhEkp/Yl1844x9AaKejbcvzmaXP7THc7Eg5t5IKUpig4VI2QESM87Kl9Pa/XFQNU3Y60ItXTbEKm9gkhhBBCiCH4ZHEZ5RnZqVbSEG8f3WHTeMoGZGRy9fjpFJZORa1vRqtriH/UNqA1taI1tcLG7QBYDjvGuIJUxcocl4/l9QzyyMeHEpcHFUjWKY6oa1/vqX0j0LUP4NoJ5czIyObMgtIRXb92cNA50mM7NY2QYaSmzh0c1A7Hpqp8Y8Yi3Lo+YHv3DJudDN1GVyx6RFP7pCIlhBBCCCGGRFUUZvpy+lzm0+04VY2QaaArKmcVlIKuY5YWYZYWEU3cTunyo9U1oCaD1YEm9H016PtqUscyvR6McfmYRfkYRfnxcOUZXuOH0WBTNYpcHuqCfqBnvc9wZByFilSRy8OFrkN3zRsOVVGwq2oq+Bx5kIrvWZbcS8o2jLV2p+cXH/L6M/JL2OfvHN7UvuQaKenaJ4QQQgghhktXVb4/dxkt4RAzfdmDbvBqZXiIlZdBeVn8AsOIdwesbUCrb0I90Ija3IatYh9U7Evdz8zwJEJVAUZRHmbR2A5XE9wZqSB1RFP7EuFJV9QjqmwdKw5VSwWpI92I2ZWocHUlugCmW5Eaipunzh32fTVFRVMUmdonhBBCCCGOTHlGNmSkeSdNwyyKV5+SVSuiUdSGFrT6pni4qm8aOFz5vBiFefHugoV5GAW5WFm+MbHmqtTV08hgJPaR8tnsKGPgeR2OQ9XoYmT2D0sG0GQ79ZFo0T7SbIoqU/uEEEIIIcQYYbP1mxJIJIra2IJ2oLFvuOrs7hOuLLsNMz8XoyAXszDxOT8X7Md2L6sJ7p5EeWRrpHqC1PGgd9XoSNqfQ8/r1hGNbxqcbte+Y8GuaqlmGMcTCVJCCCGEEB8V9kHCVVMLWmMLakNz/HNjC1ptPVptfequFmBlZ2IU5mIW5MU7B+Zlx6tXR+nN+fgRClIFDjflGdmcnF0wEsM66pIt0FWUI1obBvFmEzC2K1K6qtIdix7+hmOMBCkhhBBCiI8yuw2zpAizpKjnMstCaetEa2xGTQarxhbUtg7Utg7YsafnprqGmZsd/8jPxszrHbCO7E17qbtnap/zCAKFrqrcPf+MIxrLsZSsSHl12xFPRUxO7etMVaTGXpCyqyomFsZx1nBCgpQQQgghhOhLUbByMonlZMKMKT2Xh8KpipXa3BpvcNHchtbQjNbQ3OcQyYAVKcnH5vNh5GZj5GbFA9YQQ1HvKpT7OGgSMVKSFaneGwkPl6vfGqmxObUPSDXYOF6c0Gfknj17+OY3v0l3dzd2u51vfvObLFq0aLSHJYQQQghxfHI6MCYUY0zo1Q7bslD8wXiwam7rF7DMhmZ6r/KxFAUry4eZk4WZk4mZm5X62vJ6+jW5uGP2KTSHg7hHcK+msc6hxt+ij8T+VMlKXmeya98YrEglW7Ifbw0nTugg5XA4+MEPfkBZWRmVlZXcfPPNPP/886M9LCGEEEKIE4eiYHndGF43xqTSnsstCy0YIjMSpLuyFqWpFbW1HbWlo2eKYGXfQ1k2PRGqEiErJ4vFOZmYWYVgWWOik+CxkJza59FGoCKlHtxsYgwGqeReUsdZw4kTOkiVlJSkvi4rK6OrqwvLso6LtpdCCCGEEMe1RMDScguI5eRimlbPdeFIPEy1tqO2Jj63tKO2dQw4TRDActgxs3yYWRnxilavDyszY8jTBY8Hqal9I1KRGvtT+5JBSipSaVi/fj0PPPAAW7Zsoampid/85jecffbZfW7zyCOP8MADD9DU1MTMmTP57//+b+bOTX/Tr5dffpmZM2dKiBJCCCGEGG0Oe2rfqz4sCyUQjIeqRMhSWttRO7oOHbIAy+ftCVZZPszMDKxML6YvA8vrPq6C1kgGqWTXv2iikcNYrEglx3S8bco7qkEqEAhQXl7OZZddxle+8pV+1z/77LPceeed3HHHHcybN4+HHnqIG2+8keeee46cnBwALrnkkgGP/cQTT6AlTpza2lr+93//l3vvvffoPRkhhBBCCHFkFAXL48bwuPuuw4J4yAqGUNo6UdvjH0p7r687u9E7u2F/Xb/DWonqmOVLBCufF9PnTX02fRngcoyZqYOprn0jsO9VxkHHsI/BQNkztU8qUkO2fPlyli9fPuj1Dz74IFdddRWXX345AHfccQevvfYaq1ev5oYbbgDgqaeeOuRjdHd3c/PNN/Otb32LiRMnHtF4VXX0/3ElxzAWxiLGNjlXRDrkfBHpkPNFDNXInisKeN3gdWOOL6LfW+6YgdLZhdrWidLWGf+6owulszv+0eVH7fKj1TYMeHTLpmP5vFgZHiyvB9PrTn1tpb52wwh00jucZIOIDJvtiF+7fKer37HH2r/dZEUqRnz651gb32DG7BqpSCTC1q1buemmm1KXqarKsmXL2Lhx45COYRgGt956K1deeSWnn376EY1H11Vyc72Hv+Exkp3tGe0hiOOEnCsiHXK+iHTI+SKG6pidK4WZg15lGSZ0dmO1dWK1d2K1dSU+d2K1d0FbJ0pLO7S0H/oxnA6UTC+KzwM+L0ryIxHyFK8bxeuKfz3M6s9JwXyo2sncosIjfv851dV3TVR+tpfcnLHznhYgw+UAwOGJh9Tj5XfLmA1SbW1tGIZBXl5en8tzc3Opqqoa0jHeeOMN1q5dS3NzM4899hgAf/zjH/H5fGmPJxYz6ewMpn2/kaaqCtnZHtra/H0XbQpxEDlXRDrkfBHpkPNFDNXYO1dUyMyKfww0USkSRenyo3T7UboD8SpWr6/jn7uhoQWroeWwj2Y5HVhuF5bHheV2xr9Ofu9xYbmc4HRiuRxYTgc47KAoLHDl8thpF+LVbbS0dB/RM1YsExVSFbxgV4QW68iOOdLMaHxtVFtHAPIZ9fPF53Nhsx0+BI/ZIDWYdLrunX322WzdunXEHnts/AKIM01rTI1HjF1yroh0yPki0iHnixiq4+Zc0XXIzox/HEo4gtId6AlZ3X6UQCjeKCMQRPEHUYLxz2prO7S2D+nhLUWJByqnA6czHq6SISv+tTN1vWW3YdntWA4b2O1YdhvYbf3WeSkoZNudtERCANgUZcz9LPTEPlIhIx6ojpfzZcwGqezsbDRNo7m5b2eW1tbWflUqIYQQQgghjhmHHcthx8jNOvxto9F4yPIHUQI9H6o/iBIKQzCEEgr3fATDKMHQsIZlAdhtWI5ksIoHrW8FO2mwYgQ0lcLQBuwOB9hsWLoGNh1L1xOfNdB1LJse/5y6XAddBTXxMcJNOaRr3wiz2+3MmjWLd955hxUrVgBgmiZr1qzhs5/97CiPTgghhBBCiCGw2bAybfG9roYqFusTrAjFw1WfwBWJQiSCEo6iRCLxaYnhCEokGq+WWT0VnQW9j31gyxE/JUtVQYt/WKoKqhb/XlWxNDXeal7t9b0CoMQDmKIc9D1cHPSzINhNvn8HzJxxxOM7VkY1SPn9fvbv35/6vqamhu3bt5OXl0d+fj7XX389X//615k1axZz587loYceIhQKcemll47iqIUQQgghhDiKdB3Lq2N5h9l0wbIgGouHrXCE1Xu28359DS7D5D+nzsdmWijRWDywJT/HjL7fRw2IRROfY2AYKIYJpgmJz4phoMSiYIRRrOFPxZuc+Ih078Eyjp+q1KgGqS1btnDdddelvv/e974HwJe//GW+8pWvcOGFF9La2so999yT2pD3/vvvT+0hJYQQQgghhDiIosSn+Nlt4HUTC+SxIdQEgDVrOrGjsV+WZaUCFoaJYho931sAVvw2lhUvSFnJ76EpFODF+iouKJ+NbwzuczWYUQ1SS5cuZefOnYe8zapVq1i1atUxGpEQQgghhBAnljxHz15S6tHadFhRQNeAeBA6VH3q4OtyyeXqCeOPm/2jktTD30QIIYQQQghxvOodpMTIkSAlhBBCCCHECSzX7hztIZyQJEgJIYQQQghxAsuRIHVUjNn250IIIYQQQogj59A0vjlzMT6bfbSHckKRICWEEEIIIcQJblneuNEewglHpvYJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaFMuyrNEexPHANC0MwxztYQBgs2lEo8ZoD0McB+RcEemQ80WkQ84XMVRyroh0jIXzRdNUVFU57O0kSAkhhBBCCCFEmmRqnxBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmC1Bj0yCOPsGLFCubMmcOVV17J5s2bD3n7f/7zn1xwwQXMmTOHiy++mDfeeOMYjVSMtnTOlYqKCr7yla+wYsUKysvLefjhh4/hSMVYkM758thjj3HttdeyePFilixZwuc//3k+/PDDYzhaMdrSOV9eeuklLr/8chYtWsT8+fO55JJLePLJJ4/dYMWoSvd9S9K9995LeXk5P/rRj47yCMVYks758sQTT1BeXt7nY86cOcdwtIcmQWqMefbZZ7nzzju55ZZbWL16NeXl5dx44420trYOePsNGzZw2223ccUVV/Dkk09y7rnncvPNN1NZWXmMRy6OtXTPlWAwSGlpKbfddhv5+fnHeLRitKV7vqxbt46LLrqIP/zhD/z5z3+msLCQz3/+8zQ2Nh7jkYvRkO75kpmZyRe/+EX+8pe/8PTTT3PFFVfwzW9+k3feeecYj1wca+meK0lbt27l0Ucfpby8/BiNVIwFwzlfsrKyeOutt1Ifr7766jEc8WFYYky54oorrO9+97up7w3DsE4//XTr/vvvH/D2t956q/XFL36xz2Wf+tSnrDvuuOOojlOMvnTPld7OPvts649//OPRHJ4YY47kfLEsy4rFYtaCBQusp59++mgNUYwhR3q+WJZlrVy50vr5z39+NIYnxpDhnCuBQMD6+Mc/br3xxhvWqlWrrB/+8IfHYqhiDEj3fPnb3/5mLVmy5FgNL21SkRpDIpEIW7du5bTTTktdpqoqy5YtY+PGjQPeZ+PGjX1uD3D66acPentxYhjOuSI+ukbifAkGg8RiMTIzM4/SKMVYcaTni2VZrFmzhr1793LyyScfxZGK0Tbcc+WHP/whS5cu5YwzzjgGoxRjxXDPl+7ubs466yyWL1/OzTffzO7du4/BaIdGH+0BiB5tbW0YhkFeXl6fy3Nzc6mqqhrwPs3NzeTm5va7fVNT01Ebpxh9wzlXxEfXSJwvd999N+PGjeOUU045GkMUY8hwz5euri7OPPNMIpEIqqpyxx13cOqppx7t4YpRNJxz5dVXX2Xt2rWyhu4jaDjnS1lZGXfeeSfTp0+ns7OT3/3ud1xzzTU888wzFBYWHothH5IEqeOAZVkoijLo9QNdd6jbixPX4c4VIXob6vly33338eyzz/LHP/4Ru91+DEYmxqLDnS8ej4cnn3ySQCDAmjVr+MEPfsCECRNYtGjRMRylGAsGO1daW1v51re+xS9/+UtcLtcojEyMRYf63TJ//nzmz5+f+n7BggVceOGFPP7443z5y18+RiMcnASpMSQ7OxtN02hubu5zeWtra7/0npSXl9fv9i0tLYPeXpwYhnOuiI+uIzlfHnjgAX7729/y4IMPMn369KM5TDFGDPd8UVWViRMnAjBz5kwqKyu59957JUidwNI9VyoqKmhqauKaa65JXWYYBuvXr+fhhx+WzqAnuJF472Kz2Zg5c+aYmX0ja6TGELvdzqxZs/p0OTJNkzVr1vRJ473Nnz+ft99+u89l77zzzqC3FyeG4Zwr4qNruOfL/fffz69+9Svuv//+MdVuVhxdI/X7xbIsIpHIURihGCvSPVfmzJnD3//+d5588snUx+zZs7n00kt54oknjuHIxWgYid8thmFQUVExZroPS0VqjLn++uv5+te/zqxZs5g7dy4PPfQQoVCISy+9FICvf/3rFBYWcttttwFw3XXXsWrVKn73u9+xfPlynn32WbZs2cL3v//90Xwa4hhI91yJRCKptviRSISGhga2b99OZmYmxcXFo/Y8xLGR7vly33338bOf/Yy7776bkpKS1LpLt9uNx+MZtechjo10z5d7772Xk046iYkTJxKJRHjzzTd56qmn+O53vzuaT0McA+mcK263u19l2+12k5WVxbRp00Zj+OIYS/d3yy9+8Qvmz5/PxIkT6ezs5IEHHqCuro4rrrhiNJ9GigSpMebCCy+ktbWVe+65h6amJmbOnMn9999PTk4OAAcOHEBVewqJCxcu5O677+anP/0pP/7xj5k0aRK//OUvmTJlymg9BXGMpHuuNDY2snLlytT39957L/feey+XXnopP/zhD4/18MUxlu758uc//5loNMpXv/rVPsf58pe/zFe+8pVjOnZx7KV7voRCIb773e9SX1+P0+mkrKyM//3f/+XCCy8cracgjpF0zxXx0Zbu+dLZ2cm3vvUtmpqayMzMZPbs2fzlL3+hrKxstJ5CH4plWdZoD0IIIYQQQgghjifyJwIhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJNsyCuEEGJM+PnPf84vfvGLfpefeuqp/P73vz/2AxJCCCEOQYKUEEKIMSMjI4P777+/32VCCCHEWCNBSgghxJihaRrz588/7O1CoRBOp/PoD0gIIYQYhKyREkIIMabV1NRQXl7O008/zde//nUWLVrEl770JQDa29v59re/zbJly5gzZw5XX301mzZt6nP/zs5ObrvtNubPn8/pp5/Or3/9a370ox+xYsWK1G1+/vOfs3Tp0n6PXV5ezsMPP9znsscff5yLLrqI2bNnc/bZZ3Pffff1uf4b3/gGl112GW+//TYXX3wx8+fP55prrqGioqLP7QzD4Le//S3nn38+s2fP5swzz+Qb3/gGAI888ggLFizA7/f3uc/atWspLy9nx44dab6KQgghRppUpIQQQowpsVisz/eWZQFw11138bGPfYyf/exnqKpKJBLh+uuvp7Ozk69//evk5OTw5z//mc997nO88MIL5OfnA/Cf//mfvPvuu3zzm98kLy+P3/3ud+zfvx9dT/+/wPvvv5+f/OQn3HjjjSxZsoStW7fys5/9DJfLxapVq1K3O3DgAHfddRc33XQTDoeDu+66i6997Ws888wzKIoCwLe//W2eeuopbrjhBpYsWUJHRwfPPfccABdffDE/+tGPeP7557nssstSx129ejWzZs1ixowZaY9dCCHEyJIgJYQQYsxob29n1qxZfS773ve+B8C8efP4zne+k7r88ccfp6KigmeeeYZJkyYBsGzZMi644AJ+97vf8R//8R9UVFTw0ksv8ZOf/IQLL7wQgKVLl3L22Wfj9XrTGlt3dze//OUvuemmm/jyl78MwGmnnUYwGOTXv/4111xzDZqmAdDR0cGf//zn1Lgsy+KWW25hz549TJkyhcrKSv7617/yX//1X1x33XWpx0iO0efzcd555/HEE0+kgpTf7+eFF17gtttuS2vcQgghjg4JUkIIIcaMjIwMHnzwwT6X2e12AM4666w+l69Zs4ZZs2ZRWlrap4q1ePFitmzZAsCHH34I0Gcan8fjYdmyZWzevDmtsW3YsIFAIMAFF1zQ5/FOOeUUfvWrX1FfX09JSQkAJSUlqRAFMGXKFAAaGhqYMmUK69atA+hTbTrYFVdcwec+9zmqq6sZP348//znP4nFYnziE59Ia9xCCCGODglSQgghxgxN05gzZ06fy2pqagDIzc3tc3lbWxsbN27sV8ECmDBhAgDNzc14PJ5+jSkOPtZQtLW1AXDRRRcNeP2BAwdSQergToM2mw2AcDgMxCtvbrf7kFWxpUuXMn78eJ544gluvfVWnnjiCc455xyysrLSHrsQQoiRJ0FKCCHEcSG5tigpMzOT2bNnc/vtt/e7bbKKlZeXh9/v79flr6Wlpc/tHQ4H0Wi0z2UdHR39Hg/gt7/97YBBbPLkyUN+LllZWQQCAbq7uwcNU4qicPnll/PYY49xySWX8P777/drbCGEEGL0SJASQghxXDr11FN5++23KS4uHrTClKxuvfLKK6n1R36/n3feeadPgCksLMTv99PQ0EBhYSEAb7/9dp9jLViwAKfTSWNjY79phuk65ZRTAHjyySf7NKk42KWXXso999zDN7/5TQoLCznttNOO6HGFEEKMHAlSQgghjksrV67k0Ucf5TOf+Qyf//znGT9+PO3t7WzevJn8/Hw+97nPMW3aNFasWMHtt99Od3c3+fn5PPDAA/2m+p1xxhk4nU6++c1vcv3111NTU8Ojjz7a5zY+n48vf/nLfP/736e2tpbFixdjmib79u1j3bp1/PKXvxzy2MvKyrjqqqv44Q9/SEtLC4sXL6azs5Pnn3+en/zkJ6nbFRYWcsYZZ/Daa6/xxS9+MdXMQgghxOiTICWEEOK45HA4+MMf/sDPfvYzfv7zn9PS0kJOTg5z587t01zihz/8Ibfffjs/+MEPcLvdXHvttcyZM4fnn38+dZucnBzuuece7rrrLm655RZmzZrF3XffnapiJX3hC1+goKCAhx56iAcffBCHw8GkSZP63W4ovvOd71BcXMzjjz/OfffdR05OzoAVp3PPPZfXXnvtkI0phBBCHHuKldygQwghhPiISO7R9Morr4z2UA7r1ltvpampiT/96U+jPRQhhBC9SEVKCCGEGIN27tzJli1bePHFF/nxj3882sMRQghxEAlSQgghxBh000030dbWxrXXXssFF1ww2sMRQghxEJnaJ4QQQgghhBBpUkd7AEIIIYQQQghxvJEgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBp+v8g94NCrVDNAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "mtp_rebin = mtp.rebin(f=7)\n", + "\n", + "print(\"Original df: \", mtp.df)\n", + "print(\"Rebinned df: \", mtp_rebin.df)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Original\", color=palette[4])\n", + "plt.plot(mtp_rebin.freq, mtp_rebin.power, label=\"Rebinned\", color=palette[7])\n", + "plt.plot(freq_analytical, psd_analytical, color=palette[0])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "163d3050", + "metadata": {}, + "source": [ + "### Poisson distributed lightcurve\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2c4dcaa6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABpKElEQVR4nO29e5glV10u/K6q2ve+Tff09Mwkk0yYEGguEkw0qARkouR7sIGon+IzD5yj4vFR/DDikw9HOGZCAh4bfcRoEsMR1Afh4CEigQz4JcCgh0QuETESOpCQTDKTTGcufZm+7Utd1vfHqrVqVe2qXatq757e3b3ef2b6slf/du2q33rX+7sRSimFhoaGhsamh7HRBmhoaGho9AbaoWtoaGhsEWiHrqGhobFFoB26hoaGxhaBdugaGhoaWwTaoWtoaGhsEWiHrqGhobFFYG20AQsLq/C87KnwY2MDmJtbWQeLuoO2Kzv61TZtVzZou7Ihr12GQbBjRy32Z0oOvdls4g//8A/xta99DaVSCVdeeSVuu+02HD9+HIcPH8bi4iJGRkYwPT2N/fv3ZzLO82guh85f24/QdmVHv9qm7coGbVc29NouJYf+x3/8xyiVSrj//vtBCMG5c+cAAEeOHMGhQ4fw5je/GZ/97Gdx880342Mf+1hPDdTQ0NDQUEOqhr66uop7770XN954IwghAICdO3dibm4OMzMzmJqaAgBMTU1hZmYG8/Pz62uxhoaGhkYsUhn6yZMnMTIygjvuuAPf+MY3UKvVcOONN6JcLmNiYgKmaQIATNPErl27MDs7i9HR0XU3XENDQ0MjjFSH7jgOTp48iZe85CX4vd/7PTzyyCP4jd/4Ddx+++09MWBsbCD3a8fHB3tiQ6+h7cqOfrVN25UN2q5s6LVdqQ597969sCxLSCuveMUrsGPHDpTLZZw+fRqu68I0TbiuizNnzmDPnj2ZDJibW8kVGBgfH8TZs8uZX7fe0HZlR7/apu3KBm1XNuS1yzBIIhFO1dBHR0dxzTXX4KGHHgIAHD9+HHNzc9i/fz8mJydx9OhRAMDRo0cxOTmp5RYNDQ2NDYJSlsv73vc+vOc978H09DQsy8IHP/hBDA0N4ZZbbsHhw4dx1113YWhoCNPT0+ttr8Y2AJlfRPWT92Htv/wc6GB8vq2GhkY7lBz6vn378Hd/93dt3z9w4ADuueeenhulsb1hzC3CWFqBsXgernboGhrK0KX/Gn0H4nnsP463sYZoaGwyaIeu0X9wfUfuuhtrh4bGJoN26Br9B5+hE+3QNTQyQTt0jf6DkFy0Q9fQyALt0DX6DkRLLhoauaAdukb/QUsuGhq5oB26Rv+BO3ItuWhoZIJ26Br9B66hezptUUMjC7RD1+g78Dx0ohm6hkYmaIeu0X/QQVENjVzQDl2j/+Bph66hkQfaoWv0H7TkoqGRC9qha/QddB66hkY+aIeu0X8Qeeg6y0VDIwu0Q9foP+jSfw2NXNAOXaPvoCUXDY180A5do//g6tJ/DY080A5do/8g0ha1hq6hkQXaoWv0HzyfmWuGrqGRCdqha/QduIau89A1NLJBO3SN/oOuFNXQyAXt0DX6D9qha2jkgnboGv0HLbloaOSCdugafQeiGbqGRi5oh67Rf9CFRRoauaAdukb/Qfdy0dDIBe3QNwmK//x1mCdObbQZFwa6l4uGRi5YG22AhhqK33gEtuvBvWTvRpuy7gj1cqEUIGRjDdLQ2CTQDH0zgFIWKNwuEgSXXKT/a2hopEM79M0ALj1420SCkJ34dtnENDR6AO3QNwOEQ98mzk124j3S0Yv/8k0Yp870ZC2NFFCK0hcfBJlb3GhLth2UNPSDBw+iWCyiVCoBAG666SZce+21OH78OA4fPozFxUWMjIxgenoa+/fvX097tyV4G9ntkvVBPA/UNEBcD8R1QbtdkFKU/vVbAPXQ2rurFyZqdABZXkXx374Db2QI9tjIRpuzraAcFP3zP/9zXHHFFaHvHTlyBIcOHcKb3/xmfPazn8XNN9+Mj33sYz03ctvDcdi/24Whex5QKABusze56NtsQ9xw2Ox+1ZW+Fx65JZe5uTnMzMxgamoKADA1NYWZmRnMz8/3zDgNH+72k1xosQCgR0MuuGPRDuaCgNg2+w8nIhoXDMoM/aabbgKlFFdddRV+93d/F7Ozs5iYmIBpmgAA0zSxa9cuzM7OYnR0dN0M3o4QTGe7MEwvcOi9cMJiU9CVpxcExGfoegO98FBy6J/4xCewZ88etFotfOADH8Ctt96KX/7lX+6JAWNjA7lfOz4+2BMbeo1e2+WtraAFoGQZGOxi7X69XkBgG/UompTCqpRAAewYLMPo0m5qUTQBlAsGhjKu1a/XrJ/tcufOwQZQLRgY7hM7+/l69RJKDn3Pnj0AgGKxiEOHDuE3f/M38fu///s4ffo0XNeFaZpwXRdnzpwRv6uKubkVeF72sNf4+CDOnl3O/Lr1xnrYZZ5bQhVAq97C+Zxr9+v1AiK2OS4GAdiGAQvA4twy3Gr+TR8AyPwSBgA0VxuZrl+/XrN+t8s6t4QKgPpyHYt9YGe/X6+sMAySSIRTNfS1tTUsL7M/SinFF77wBUxOTmJsbAyTk5M4evQoAODo0aOYnJzUcst6YDulLfL3WPAllx7IJEJy0RLAhUGLaehEa+gXHKkMfW5uDu985zvhui48z8OBAwdw5MgRAMAtt9yCw4cP46677sLQ0BCmp6fX3eBtie0UFPXjBL3U0IMsF+3QLwSEI9cb6AVHqkPft28f7r333tifHThwAPfcc0+vbdKIgAdFt0PaHfGrYXua5eJus6DyRkOkLWqGfqGhK0U3A7YhQ++t5KL7q19IkBZPW9TX+0JDO/RNAMF0toND8tZBcuEnHO1gLgxE2qJm6Bca2qFvBnCHtJ0YupBcevCedR76BQUvLOrHDdR69HEYp05vtBnrBu3QNwO2keRC2hh69yyP6KDoBQXpY4Ze+srXUPz2zEabsW7QDn0TYFtVinKH7jeCE86hG2yn69cP6ONeLsRx+3Kj6RW0Q98M2EYMXU5bpIQAvC9IV2vqPPQLiaCXSx9eb9ftT7t6BD2CbhNgO6Utik3LNICC1RVDJ2t1WN/5PmCx21xLLhcIdh8XFvktmbcqNEPfDNhGlaIi8GsYoAWrK4ZuPfo4yse+BoMPWtjCD3I/gbT6NCuLj3LcwgxdO/TNgG0ouTCGXuiKoRvz5wEApNEIr62xvuCbsO2wId/9gm2Qvqod+iZAkIe+DRwSrxQVDL0Lh76wCAAg9Sb71/P6y8FsUfBNuO+GfG+D9FXt0BNgHn8W5olTG20Gg+/ICaVb3yEJycVkDL2VX3JpY+jAlj5u9w3kTTjvhlxvovCtR3t6vwdN2vpQ2+8RtEOPA6Uof/4Yiv/nmxttCYN8A/YT41kHEElyocUugqK2DWNpha3ZaAbf38LsrF9AbBu0y0B0+csPofzAV3tLqrZBcoF26DEwzszBWF4FqTfSf/kCIPRQbOGbEYDE0A2WnZIzKGosLAVf1AOHvpUzHPoClAK2A1phdQS5T0S8GGx5tUeGQUpf1Qx9W8H6wTMA0DcOPfRQbHGGLvLQDQO0i6CoMb8o/h9i6FpyWV84DggAWikDyJ+6SKsV9vq1eq8s2xZ98bVDj4H1g6cB+MG0PtCs5aj8lu/n4oUll7waLNfPAT/2wJGRoRtn5mA+81wuG7Yj+AbMHTocF2RpBdb3nsy0juzQre89CXK+BxOHeCxqC5/StEOPgXH6HKhpMOfZRVCuZ9hGkouch87SFvNdf7K8yrJkot/PeP2KD30LpQe+msuGbQn/eREO3XZQeOQxlO/9YqbTJbXY8Hnj/ArKn3kAhW9/t3vbHM3Qtx9cF8T1QAfZzL6+kF22oeQCs8u0Rc8N2geE1s/2MBPb7irTZruBSyxCcnFZ7xTia+vK6/hzhs1Tz4OgN9KLaNK2hdNXtUOPwr/pvKH+cejEdSFuvy3O0EVzLs7QPS9XZgpxPcA0gShLz8rOXLerXPhth1ZUcnHEqShTPMS/D4xFJrUQKbCdG/J9tEVZunboEfAjPu0jhw7HDfqDe/1zI5o/eCasbVLKeqd08bC0lf4D+Ryq6/lrFMLrZ90cHDcU2LO++wTQ6IFz6QMYs2dhPH+2p2uK58fPciGOG5wqs8hnkZNoT57DkHTZP89RL6EdehSCoQ8C6A+HThwn6A/eJwydrNVRvecLqNz7gPiecXYelaPHYB4/kX/hSOk/gHw6uueB+g2+AICapr9+RsnFcUUJO1ldQ+VzX0L1k/dlt6cPUfryQyh95Wu9XbQtKOoI55yHoXP04jkkjif9Xzv0bQERpR/mDL0P2JgbMPR+0dDNp06y/8gata81E7uLh4U7XJmht3IwdM9n6P51o6WcM0pdl5Wwu55wVmaPWe1GgdgOSLO38QF+AqJliaG7fcjQt2guunboEXA26A3U2Nd9wNDhuKDFIvt/nzB0nqvv7hoT3yO9aCLmeUw/JySQmXIwdOK6TEP3KxbhXz+ZpSmtw5mc7YTkGuJXoW5qeF7vHRu/XuWi+JrkYOjRbKRepBATLbn0OepNmL5j6Rk4GywVQcvFrhm68ezzIAvn038xCZ4HQqlgmr3KQydzCzCeyzlb0XVhPXVC2Bd832v/Xla7XI/JLYBg6LmKi7iGXvQllxLfEHMEReFnb0jHdKvX991GwHV7MxEqsiYQTJyC4+Rk6IHz9gaqvUkhlus5tOTSf6jc9yVU7/kCyErvyoNFUKdggZbLXTP0yn1fRumfv55/AX7j9VhyqX30U6h97B9zrWcsLoE0WwAiTErM7uzCRp6dAgQBzTxOx9fQ+RpBDCJrUNQJbJCcgDl7JrtNfQbi9r43OHeUfAOVg6Iki3TmB/+9ahnOFZex13d7WtYMvb/BMyzIWg9lEa6hFwqgle4dOpqtYMBCHvAHpNDboCh3ukYexyQ7Acme3kguLgtmAiKgmU9y8cTUIwAAdzBZg6I85c4JSy49GY230fA8EKfH74PnofMagFBQNBtD9wZqWL3xV+C8YB97fZfPokw0NEPvR/BBws3eBS7FEbRo9cShE9uBsXA+t/4ngkyl3jJ0b5hl8eSSDmTHJqdRimHMXaQthhh6F2mLPCgaZehZH+QEhp6JbfYrXBfoJoAdA+E0LROwTBDHDb6XqbAokN7Ai5R6ydC1Q+8/CCfXaPVuUSG5+Ay90cVNRCljdn4/i1zgN57vmIylFRjPPQ9QCvOJp/M7Tz87JY9DDzGdOMmlm03HdVnZP9Bd2qLrslTFQlhDzyIHUUpDDB2uzz676ALZTyB8vmYvM6f4Bmia7Dp1k7bo36NUdugtG+aTOeMXWnLpb/DASy8zUcRNV7BAy6XugqLSDSw3i8pkDz/C+g6p+NC3UP37ozBmz6D6D/8E86mcOd++Bm6emcsdKAQQcgZCkuhSQ6eRoGh3DJ1nueTQ0GUWZzsiQ4ZWSr0PJm4E1qP7oOuyLCXDYCy9i8IicR8Ih95E5dP/H6qfyhc3Izoo2t/gDJ30snLPttkNaZps/ZadXy6RbmC5nWsm+I5X3NSrayAtG9bTz7Kv88QPKAVpttj7BLI7YC4DERJ+bS+GWXuB5BKkLWZ3noGG7ksuluXbm8WhB3+XZblIRTNbgKEL5tzD1EXiuMyRA4Bp+qeAnAzdvz9FTnu9Ie57/lxkgmbofQ5+JO81Q5dYHaE0P4MJMfTFfPb48QFa9R26/33Rsz3Pje04IJ4n1sxcPcmdeLEQYei9SFuUJBfDYCwtZ6VoiKFLmq4ynLDmKuIZW4GhS3JST3vVcKkLYJ+dl5eh0/B9UC7COLcgfpyrYZpcR6ALi/oQnGH4Dt04O9/9hBPblgJpvu7ayqfRhxl6TsnFjw/w/tBiPT+HPM/pJLpmZs2bD6EoFGKLNXqVtggAKFj5ApBcuuGVoqbJGHuWzUtydEQKitJyfzF08+Sp7PbIG3EvnVuEoSNn2iJxA4YOsGtuPXE8+HkOh04cN9jge5AtRuYWQBaX0n/xAmJLOfTyZx5A8avdzQElrYChd1V6Lr2OFgtdMPSw5CK+H/l5rjUFQ88nuaBoRQqLeiC5uFLaIvxNI2dQFIYZfIamyZx6lqBoiKE7gdTUTwx9rYHKxz+LwnefyPY6+Tr08L0Qxw02ZF9yEfdF1tJ/yaF7YyNhopCLoXtBgVkPNrHK57+C8hcf7HqdXiKTQ7/jjjvwohe9CI8//jgA4Pjx43jLW96C66+/Hm95y1vw9NNPr4eNyYg4dNJqdd2bgth24ARKvWHo7sROljOfpw1s1Pkm/DwTuIxT8Vl/Xg29WIjPQ++C/ZAIQ6fFQq6HV6S98fx9y/QdTE4N3XaCoplKmTn0PuipTRoNtrlnPam568TQXVcMp+CSS57Sf9YCIugTVP/5/wsrv/U2rP7qL7C18jyTbtBCoxdBUbJaB1lZ63qdXkLZoX/3u9/Ff/zHf2Dv3r3ie0eOHMGhQ4dw//3349ChQ7j55pvXxcgk8Cb4IhPFdbsPdthOEEjrJm2OrwXAm9gJQmm+41mzCUpIUErd9vMeMPSMLXmJJLmEg6Lda+jw3BAzQ7GYUy/1giEZ4JKLmS0eEmXojt+Xnn8WfcDS+bXJ6qBCbZh7mIseDooaYcklZ1CUrWWCDg0EMmGOUzPxm9xRoDdB0WarP3o9SVBy6K1WC7feeiuOHDkC4ueGzs3NYWZmBlNTUwCAqakpzMzMYH5+fv2sjcKNMHSeV9sFiO0EToCnuuVk/fwGdid2Asino5Nmi50UZD2R5+cS0p3kIqbK5JRc+ACKyPe7y0P3wpJL0QLysDG/yZeosDVNxhy7Yeguc1aix0wPmC1ZWOqq0ZfY7LJuLqGNuIfxANcFzEDmYpJL9qAoiTp0H+KZzMnQecO2rhm6nynWbw69fehiDG6//Xa86U1vwr59+8T3ZmdnMTExAdM/HpumiV27dmF2dhajo6PKBoyNDWQ0OUCpaMADYDSaGB8fRMPzUDQJBsYHc6/ZpB7IQAUD44PwnAZaAIbLJswMa477v+uUTTgAhl98CVqfB4ZadVgZbWuBgtYq2DkxDH6oNl5wMeiJWRi7d8JwHeX3K+z6gQEHQG1iBxwAO4bLMDLY5ZQtOACKgxV48wti3VaBfR6lgoHBjO+Tr9EkAKmWxOtbA1XQhaVMnymlFE3PQ3WwAmv/BJqmgeFLJ2D/exHEgLJt7vyc+H+lwDpAugULA2ODcACMDpZgjOa/1wCg8T/+EgBQ/tN3Z3odv17uWQs2gGrBwHCGa+QZLrhLHK4UMt3fnVAgAKkUMT4+iFalBNpsgvrSlOW5wu40NA0CUim0fe7U89AEULMIChmfySYhIJUivIKJStHEUBfvmbZsND0PaHnYuaMKYpnpL0qwq5dIdejf/va38Z3vfAc33XRTT/8wx9zcCjwvuxY5Pj6I5loLBQCwHZw9tYABx0Wr3sL5s/knhNfqTbgUOH92GWSlhQEAS3PLcBTXHB8fxFn/dwvzKygDmHcIqpUy1k6cQTOjbZXzqyCWhaW5FQwQAkIp6i86APuG61H+p3+Beeq0+HvKds0toQxg2SWoAFg4twyvVFO2qbhURwlA0wNM2xHrllcaKABormX7DGTbai0bruOJ15dBYK41lN6jgOtiEMBaw0HLIcC7fhUoFFAhBrDaULZtVGLgjaU1UNOAZRhYrjvsuj2/CM/tLq+AP85Z3p98vayzS6gAqC+tYTHDGsbcEvgnvjS/onx/p9nlNFqglTLOn11G2fVgNGwYDusp7zZayu+z2nLgOTT2sxooWKgvriq/X369qo0WaKUEwzDRWq5nul5RkOVVcCo6d/Ic6EA18xry55gFhkESiXDq3fjwww/jqaeewnXXXYeDBw/i+eefx9vf/nacOHECp0+fhusfYV3XxZkzZ7Bnz57MBuaFfLQna3WmU3ebjiQFRUUAJU/gEZA6NxZAR4fzZbo0m0FknhdalIpMCywV82nojRbT5XnBRua0xaBhWFzpf1ZNPrx2VHLJERSVpx4BQWC0WMimx0fz0B0XsCypgnXjUxd5cDCz/CMHRXsZC3AcERQVQejcGjqJ/VHeQLnIkbcyBsdjIPuEfpJdUh36r//6r+PBBx/EsWPHcOzYMezevRsf/ehH8YY3vAGTk5M4evQoAODo0aOYnJzMJLd0DYnZk1U/2sw/KEphzKZPliErqyDLgYZJpKAoeCVq3j7MLYcFYCwT3ugIjHPzMI+fzJQdQZqtwKGbkkMHWL/2ZivTesbpc2yCeqkQOLzMGrrvdE0jtrAoz6ZKFpeAtYZINxTI6oR9+wAElbA+aGaHzjtvWmxz5g6hiwpWuC6M0+dC63eF3Bp6JODbI4jBIgD715M19Px56CEUi/myXPyALc0aHI+D1BCQrK4Fn+kGo6vz4i233IKPf/zjuP766/Hxj38c73vf+3pllxpkZ7JaZ//xbx7z5Cxqf/sPMM7Oxb1SoPxP/4Ly0a+wLygFpKAoTJM5hZxMjDgOe/gJgTuxE8Zag/VhOdPZptAaPCgKhBk6AJSKjF2r3pwtG7W/vgfF/5gBLZVyl/7zh5aaRvi1XeShV/7hn1D6l2+Eu+zBPwVIDZ6U7OMnBDOsa9JiMVMwjdq8kKjErjF3CF30mCk++C3U/voeGGfmejMnU2S59AtDD7JcKC/k8jxQ+CdBVWZMkx165o3ZRzDFyux6E5MZevGbj6D6N//ACMkGQykoKuPYsWPi/wcOHMA999zTU4Mywc9kIJ4nDVzwMy38/FCS0omRrNaDm8x1Wam/PCm+WMif227brOMcAPvql4OWiqh8/iuZJBzSbAlphJoGCCSGXgokIeFkOq0lbUy0VAwcXp5KUcNgTDquP0YOh07qDXZycCMOnW9eLRsoJ6RuRsH/ftQhZHUE0nxMYjsAIeyadZHOapxjWWDG3CK8sZHMr48ib5ZLSGbrcaVoSHJx2DNFy0XWFbXlABWFAKLrtZ2wOLqWXLLWI8RAfobNk7NM7q03EutFLhQ2f6VoMTIEgTt0zsTSPjjbDhhKKzhiczA2kFNDbznCPhACumPIt0nR4VEKyJILv8G5g+ffV+0HH+o25wjHmfnm5sUj/gYTNHnKX1hEHH8cmuuJXiAA8s0V5ZKLGSO52BnYPh92Ui6JSlHaJUMXqaKNRm+0V6Gh5++Y2UuGHpZcDOF4RWdU1c9R7uUSRSEfQ+dtJajVveQS0tDFcPSNj6lsaodOPC/IM+YfMHcm/OuUh5c4jngwxQcScei5g19SXxgAoFwbVnWgzVaIkbdp6PwhUe0HL93Exvz5gAlnZNTioY1q8N3koTsO21wj+ceiuCsTs45n6CKHWdWBOZJD55WiUo/1PE5F7u3dlUN3HJCF80GBTdZ7NK5LpoxmS0wEy2aXXClqshMvpHtY2aF3CIqWMjB0x4F3ljX1Yvet0TVDN87Oi8pcOXqlfD/4n916YFM7dEgOXeySnhv6OpUtthzhyInTztBRLOaWXEKdG4GAESs6PMECJIZOTSOYZF/KloUj38TO/ou6aJ/rdzI0IhtCztJ/Silj6Pwzi5b+A5mKu5I0dMH2FU9copdLqegPuOAaehdBUW7DWkNUOHNZLgsK//EYah/5FJOpkKNSNIWh1z78vzBw18czrckGgkgMPdRcizN0tWuWVFgEZNPQSw98Fa3/8VfMAfubDS0Vg5hbRhjPn0XtI/8bpf/zTZYpVpPSFRWfw8Ij30Pto58C7dE4yZB9PV/xQsKjgeTCP2Befs6ddBpDt+2AsYnxWRHJpUcMXdzoih+kqOj0mTg1jIDpIKyhK8F/6OtvvA71//sN4oHJzKj53M/IhpB7pqhvl3i/slTSheSCGMkFgDq7sx1Q03fgfrdFagUMPdfJjZ9iJIYu7MoAslYHcRwYC4vC1mx2+LIU0K6hex6MPA6Pf/78+ZGKbYKh0Yp2dnDoyNCwzTzFZuYaC+f9gLsJ95K9bNB5jjTi0HD0UiGkmavaROoNPyaT+c+nYnM7dFeWXMKauWDVnZyLn9Uiou+8+ZLMLPIGYNDO0ANGrMamAofOJRcz6CMC2aGraeiEj1CrVZldGTcYsY7jiWZXgMSI8/Zy8R9y0Qo4dP15UDRDHMNLSlvkzdZUj8Z+xkbB8odEO6ysnRA/lTHnJCWwoL2QXJIcVyfw+3zRH5SeNbDJP6Nyse19mM89H3yRpQEZf34kyUVASC6KJwnPa4uBCJOKReXBM9SfnWuc9VuSmCacyy8FkHOebihgXwp1QVW+r/i1J7336JvaoRPPC/RM34ETStk0cxXJxXGCTbLlxB/Vc6ZIAfA7N8oMPaNmzR16WZJcZIbOsz6UGTo/gfgPXMYNRoDniidp6FmPktyh8PcRI7lkkb1IAkMPJBd1rZPyIJpg6H4cI+dcUZGrv7IaOHQ5/XZBrYEbl1jE/ZszD52WSm0M3ZQdXZbPktsQJ7nwjVm1b4xHAZKUh+4PnlF4z94Qc+imn11ELRN0ZAjuzh0oPPYkjOfTa1VCkK4HLRVBK1Lmlep9RSnLztMOPQLqxXdE9LzgYevgPGVmQhxbkly6b98KIJzTDgSMNiNDh/8w0FoF3rBU8iucnapD9xm6nIUAZGfUPnuKavB5JRfKg9L8624ll4S0xcySi2DoBRD4wWfeeIpnzGSF74gNiaFzycs4t4CBuz8B89nZ9HUi9xDxvGy5+lxyKbUzdOvEqeCLLNed6/j8+ZGfI5+UEBWGTilz2IkMPcM94QdWzWfZQBiecupccRnMU6dR+5t/gDG3kPTqdkQd+vAQPP8UkImhJwR8u8XmduhuwNBDD6njBiXRnW5y+UZuOQmSS86qNPg3XBxDV2U9nEX5Drg+dR0ab3id9AcIs1U1yOpGHjiRtphVcglnuZAug6JtWRZxQdE8+eNthUVZg6IOq/Kt+S1b/a8BP3CeazSez6wbzaCXthewdgAg59O7L8YGQbNsMIKhF9sYujynNsumRSOEISR5CYausJ7YkDuU/gNqgXJeaOjLSM4lrDVJ6yeuQuOnXw0A2XqayxtpqYjmtT+Ctf/6c6CWpXxfEY+ui9wCbHaH7lEx/Fe+mKzQKF1ykXd4YttBD5Ko5CJPXcmClsPav/oQDkbVAXsR6aBSai+uMQ11hxzROBHNUlGF5zt0WbKR++hk7eUSdYxxDD1Lz5qEtMXMkovNClHoQNC4TFy7Qj6GLn9WvMgoOnNT6b1KDj1zwFH+mzEMHc2WxKgzbFp2lDDEBEVVrllC6waBLBuzdC96O4ZBR0d8Gy24F+9m62Qp9PNkhl5iPZVq1Wwn+U4B3y6xyR26f3SxzPBD6rpKkos8Wo71u+aSSyQoCuRoEOVParFi0hZVN4ckLVhGHoYuaZyUkBwaui+5yBuUXEqedYOIHsPlDTVHALJtI/QRBFizSC5WuJOeKTP0/JILgLZCLJ5TruRgpM9MzJvN2isFXEOXrr/f59vjmxiXw1bX0u8TNyLphbJc/OcoE0PvEBSF2mYjb6DOgUtCzFjEo7JMe3LbN1IA2WJtXnIVbLfY1A5d5KqaZkRykYKiHTV06TW2LUkuMZWKWR26NE9UIGvetxtjTwTUMNTXi2qc3KashUVOlKFHTjBZ89Ajjig2OyWL7JW0EWYtCHIctnHJDl0wdCtfOqvnigElAHuvhFLmSLmzU8haktl4IAll2JhFW4Ni+H04jIjwUwlvSlb78CdReOSxzmsKhu53K40JiqpszCTVocfIrEmQHfoVl4V/ljXtN7IeHZJObpkYOl03DT17RUM/wXfo1AwzdOJJGnon5xKd6h7D7MQRO2NamOF3f6T+w8a+mZERJzDNEMwMDjlOW84i2ch28W6L8CUu0VLXyi7hRK9tTHZKpg01IW0RBhtJp7oW5Qy9WhE9g6jE0JUCfBEQ14M3MYbG618D0mrBPHEKpX/9d2YzL45TqfyNY+gZJRdqGH4ltD8fVZqAJTaxlsMm8zRbIMudtWZRiMVPuPJ9VrDY56HE0P10xCQWa/GJUQrX33NBdu/EytR18MbDnWAz13Eg2GzW3vpmuLt3BWtlaRGiJZcE8FxVK8rQ3UBOUcxyAR8xBoQZbJabR17bD3DJ+iuATA40janwnylXnjphBiXWzjGCjkZL//npJjI4WglR1hYTzMzTVKutUhQZmZTjsDUICTZmkcFh5RtB57CUT++iCbiX7Qvysz1P3I8qDka+H7ltmWQp12WffbEY7oLonw68QYmhNzg5SllfBEXbC4tgGP6ppvugqFhX4ZkkLquZiDpzAKyvS8HKyNDZ3/RGR8JV4MWC8pzTTlWw3WJzO3TXY7mqhhEquiItW8q86MTQI0HRGMmljaG3bCWWwSPnXnSSCe8RrQJVDV2V8XO75RMIt2etoV5EwpscyUFRbmuxGGrYpYRUySVb6mjHjbCQgUnZwbAGvjHTbjX0SMFMKPUzS1C0W4bOh2hHJEV+OqCShi7sSTuRRCS9kORiGCx3X4lVdw6KihOmyn3v36tJYENismjo3LYuWjNTneXSBupR5jgMEjhdH6GmRxkYeqzEEWHolX+8H+X7v5pqHx+4EWXoNIsD9jwm0XT48GlGyYX6jFPANEDqDQzc9XewHvuB0jJykyMgIrnwmEEGh07bJJf2Hiy5mnPFbIS0VFRbi1LQtYZgYWJj7pKhh3qdAKH2C+J+VHEwjgvPr1L0RobYGpnSFv3AdiToH5VciG0HlchpDJ13p5QHXHCYBlAwM2W5JEsu/n2nsjnwezUBtFTMxdC7kgU9um5B0c2rocvON+oAJIfeSY4IpS227OCIZyUzdOP8EjyFzdVYXmUsLtqnwzTVe7lEH/7YP6QumRBp+ID8emNlDcR2YJxTLLDgG4Oc9ihr6ACzSfXuapNcIgzdMnOl5MU9NKps3zg3Dyyvwt3H8paFpswDfpyhZ2VbrguUpZ7Z4hrSTAydOC7cy/ahfs0rAgkt0zXy7y2JoVPpb3sxDD0tZiA2ZrHpSddfMHSF0y3tfDIVko4CMSKuB1IqJP9CqajerRSdMqiyZbnowqIo+IdptDv0EENXCIqKYI0jrckR1dBbdmj0XRLIyhpj59GH3TSypS12klv4elkZugRqGoIRct2/I3i+uWkE0oHUBwc5GHqaQ4dpZYphJJb+A8q9tHmfD+fAJQBkycVf07JEm4lMiMxMlat1s2jovDe7t3s8V392EpFcAobud4AUDN0JWjKkauhRySXC0C1VDT0tKOqfapQZeifJpdSTGgdBFFRkS62hx8D/0Jk2F34bvC0p+73kD53wiUJFiwU0eH6onFYWYeikZQM0/SEmq2vt+jmQLQipkq9qZGD8CQydMxRDpWJOMBQzmP3pylkuPuPrSkOP2GiZ6jIV0DkoKvfS7uDYzR88A3LRLtBB1mohlqHH2J6G6KlLpDC6XpDzrVpYFMn3Js2W+uAG1wM1TKlhmf83ueRSKbPN37ZF07TUrJ6k1hLwn9OCGkNPLSwyw89kR3he+KQQAS0rDlr3/M/Hddt8BADRX4bU02NRpNPwji6xeR16Lxh6i/VaYe1RbRERD0EcZ1k1pCpDN1ZWw/nLPrJp3ukMPdN6TgxbMc3ggVVx6PI0ILn0340w9AyZLjTqhKLH2axDfTt0s6M+QycLSxj404/GN2eyHZjPnYbx4hcES/o6tWiIljP7qe0zFQxd6gevMPibuMHmzDfR8pf/FbW/VOxhzrXlaFC02WItdYsFlpXSkoKiqRp6ci8XGFkYekqWC+/F36OgqMoGWvz6t1H9m3vEyaZtHX9jHLj9b1F86FudF9OSSwykTIaojECyaOj8xvW76bXtnHIAxmbdGVXYJ1lZCze/58gwLUUpvSlLYZDrtgWQYRhCn1Zz6BL7jUtbLOSRXDqU/gOsEjgLQ+eZJHHats/2jZUVEEphLC61/Qqxbca2pMIR99KLsPq2n4U3sROAdHLL0eUwdL8aPLBMA8kFSGeN8uxO6TNVOmWhk+TiDyUnRMwCEBp6yuZF1+rMJlFYFJZcVBl6kKXUIX5kmUqbaWocStGhGwtLMM4vJ5IsuQmf9WRKW16qK0Xb4Uq7eEKWS2oVpR0wdN7LpU1jlgJOQfVpCkNv2SzINFhr/5mZQXJJYRcAmEPOJLmEI5WynktW19JH9kkOXZ5Y1JblkiUX3XFDU3vaP4NsDJ24HTZCnrfP7YtzyEKDD7cg8PzeHwCCQdFZM12inylnanKHUHSWXajniWENbI0cj7HnMYcZx9D5iEMe+OW2pH0Ga41Qf/CQ4+slQ4d/j6hs8p4HEiUx8jqlUjCNqhNaNnt+PDe+cltqA+DujMl5D9mkJZc2UDmTwUhw6OVSetpioSBu3HjJRWLoXGfsoKFTSmGcmQMAeDEMneV9q6Ytuuk7eSYJx2kfGiA7dCB9NFdIcpHygUUeuqKGTmnwENlOuK90m40mWy8t4CT3RkmSqrgj4L3b48r34wrMouZnYeiS7SLlk68j5aET2xFfd2SNcQVi/E/FkYg4uG4obVHW0EWPEv/kKmxJ2bzoaj3s0OVsMcMELShuzCoFdaqbvBtz6pagWi0qKs9bdipDT920tOQSAynaLIYO8IeBz2pMcehsRJwVjLSKk1x4ub4iQ3e/9ghqf/cZ9veHBtp/ITNDT9HQszTncrx2JxB5v6myiyy5yCPsommLKTYVv/owBj/4P5kz9yc7ic0mQfbq9ACTtToG/vSjbDhDEouCvxG5XnCqiXv4eDvbTg6F94VRYOi1//n3KDz8n+yLqOQi96S3nSC7RMGhJ030UQHhJwV+0hKFRU2JofuxpSySi7wxy9fPNACroHaiSSksYuupyXCxJE1C0KArRXaRJam4U7P0XKVNECOeXxC5Dti8Dl3exfkFFgN46372SqGjHMFHxImjJZ+VGfolIvQ6lYZf3iPfhzcyhPoNPy1ymEPIIpF0kg44Mm0QTntZfTT+kJK6SGQ5QtLQeWBVlMin2FTigSPbYU2wLCt4KKIpYQqVgWS1DuK6KMw8kcrQCaXBHNMYhx503ezE0BWzXCgFWVxiee1SyqdAqLDIDgrROjp0nu8dOJHVt/8i7Bfuz9bXh2drSDnUpNkKWjRzhs67EaY54yhD5/36Ab+Pjql+ovFfkwRlGc5LIUXKDD0IWMdtpO6+PVj7pTfCufSidE1eSy4xkHONeTk2d+iUMqaQJkfwEXE+Q0/azUXJchpDb7bgPXkS9otfAGfy8tgPTZTaqyDtZgQy9XIJBdKk14e+XFVl6MwZUEKYTllvsNQ0XjSTpee7zQZHUMuKD2aqVAb6kob15Am/G2SSQ/e/z6WWTpJLp/iFKkP3PD+drRlO+eSQi7NsB96gz9A7tHTl3Snlz9LbNQY6NKDeaE1qQUAjDj0/Q49o6EB4mIplMVatktbHX5ME1UB5Wh66v3mlsmp+fVp2vDMmBO5lF7P1Uh26B6ollwjEsSwo/Zd1LFopp8oRgqEXrWBiUdxR3TJDkgtJuCGt4ycBz4PrD6GNhamYbgX4D51CpWiW5lxtaYv+Q82d5nJKcZEbOe77zcZIvcFu5ugUozR4HqjtM3R5cLUEqlIJyWWSRpONcEvpAxI8oJ2Cop0YoiJD5yeBeiMcf+DrcDv9YeWiba2Khh69VpkynrwwEZIZaERDh4qGTimwVm936FyyJCRoZpV2zeSEhyTIqaxJGwQ/ESlILqmsOk1ykdZLZ+jrV1i0KUv/K/d8ATYPLMqSi2mC+g6GVkoAIZ2LIfjMT8vvbe0lTBq3LF9y8T+ohIfGfPpZoFyCe9Hu2J8ze80MkosbHjIdA5pJcklm6LRUBC1Q0YMm2aYIy/SDjKTuszMhj3TOLhLgDL1QYCX+cTe6SjMm6TMxllbg7twR/3tc4uBl9jEMXQwL7+AIVBm6SAmtN+KZP98Aoz1UlCSXGPksU1sJ/1pzhu4PtwhlufgZW+w1XnKrg2aL9SiJOHRqBp8ptYJrRqMtMWQoaOjUTz+tfOrz8EaG0Xz9qxPXIWnNubj9HRCqEZBbYkeh5NC15BICWVkDPXWGfRFx6IJ1VMqpjIUVZ1hiIg5x2jVmgOt1TsBiEhgBWauDjAx2/rCyMHSV0v8srCymUlRsYIWC2uDjiFPipyDm0EtSKmPyezQWz0vreUHaYqEQfyJRkVx45bA4OSQ8xGbAiEP/ynAVHEEOht42MQoINhhRoVlhhT2d1hVB0ZjNOUuvfYmhkxYjNMTzguKwQoHNPnXdwPElbGChzDIZUgGaMkNXyXIxWVzLOLeQPFRbpVupygAbzws25mar46lZNH/r5Hd0lksYtFgIotKGEUguphEwTgWHLjrO8WNXo5kYwVYJipKW096MK2p7BhalVvqfoR96nJ5oBHKVUqApKhv4uf6k3vQZuqQJJ5k8Hzh04nnMSVgm+/txKWEqQVE/ldS99KLArhi0SS4d89A7ZbkobDJA0DKi3ozPTuEOnQeVC0x66sj87XiGDtNQb13supKG7rd+5VO2/FMhLVhCXhTB7oT3Kxx6VHKRsqGUpDOgc/tjH6LRV8uGMb8YT7Li6gmi60RbH8QhNDyns1wiNrROLJ1qhh5GdKybHEmXGDrtxIZ5HrRhiCIR1Juxkgs73jnpWS62DVJIUbGM3jfnyjKCrk1ykdmTQkvYNpbpNwcj9QbAN1Ggo6wkO3SuoYNr6HE3egaG7ryQjRlLTOkTmnWHoGjcsPA2mzjb7Nzoi9vMrlGzbd0g79z/WcFizqoDi6VJefJy5W4KQhlUvCKUvxd+D0vPGa+pSPoMkhw6lZu4cZkqlaGnNOcCRNoiadnsdB2TbqsknZlGKG0zDm3sXUHC6Si76KBoGLL+Rg0jPGXcChw6DDOZvVK/n7ppBtkxSQzdNJkWz1ldQpYLsR2gU6tOIFMhEOHVfB2gmodOPRquLpTtgc/KlBh6xNn5x3wuuUSdivnUSdTu+Fi4CnIh7NBhO6CmCVoqxWurVjpD507A27kD3o7hYJOOQjB0nzl3Slvs5NAJ8dv6qjF0QEoJjctD55JLoaDM0EUbWR9y5W4qpIIbWigATVt8Rjy5QB6CLNIpEyUX/4RRiUoucQw95ZopVIryKWWcYBjzi+2/o3LSiqRtxv5KZNPumP8fcehk4TwGPvTXIBESs6FB0Xe84x149tlnYRgGqtUq/uAP/gCTk5M4fvw4Dh8+jMXFRYyMjGB6ehr79+9fF0NliOntQLiXiyy5lEudJRcp/Y5PJCeUJlaBkXoj+NCTNHTeG6aT7Vkkl5Tm/AACySWtL3dM7jIgOYGCxbTbtDQ87kz4Q2+aIE1WFi0yiwBx3Y25BRjLqyBrDdBhaeMU75EHRS00f/QVscxGOK6ODD0IpNV/9vXJzoAHIVXSFjt06WM/T+9NIjt80WclVnLx33fRSu8bHp3dyaESkOZwvUCqLBUE0wUgNkN78nK2lkFAi0UUHvsB+5xjlhP9k+IkF8HQ/c1UUUNPC4rKPZuMhfOB3Ca9R6BzLARAei/zZkqvIXmtiEM3z86DNJowFhbhjg6zX/LouhUWKTn06elpDA4OAgC+9KUv4T3veQ8+85nP4MiRIzh06BDe/OY347Of/SxuvvlmfOxjH1sXQ0OQnaachy4d74Sem3Rzyy06JTaXGJRznKD0P1FycUDkzSYOXAZSGYyQlHUTWs8MbOp043L9NinLpeC3/0yL9ouH3r91TANk1Z+fKksu/Bpx5yg5ttBgEer5hUUm6OhwrLNQ6n/NN1mDiAZasb/GnYSShm4CHXyj0hi6GIYebs4VCYpyhq4UFI2v+iVevNMNDI+c1goFJl/INgBAuQT76pcDAMwnnm57PzJIvQGQ9qAoNQ0py6XQcQ2xlmpQVHq24xi6kuQCpA49adPXO5yaacnPa+ekxd905Ht3w4Oi3JkDwMrKCgghmJubw8zMDKampgAAU1NTmJmZwfz8/LoYKiN0LJebcxnhLJdOckSoyZTshDulLXJH1ElySWHoME0m9ag0wlepFJV6gXSEmCcalVzkoKgC44wwdBgGyArr/xIKinJ2xP+V17WdoA+47bLrGdOXhENlQo2SEwAkySWZofO10pidUsxBfpBX2xm60NB5UJRXzHZYlyYERamqhh7NVOKSIx+bGBcHSoljkHqTTWKKXn+5iZsIJCtmuXSsA4hUOMuSBkfaKDuONIaeQXKJpkGKU4R83TZacgGA9773vXjooYdAKcVHPvIRzM7OYmJiAqZ/U5imiV27dmF2dhajo6PrYixHSEMnUtBFZus+W0wMzsn6WojxJ6ctkmZ6UDTdofOHLrlpUOlLD7G/p/DBi/eeopvSJIYupy26brombLNRZcIBm2bgCCSGjo4M3WFaY6Mp2E/Hk4il4Aj4Bpl26olUiqZmudjJ11XuRlj760+hMXUQ7r694V8KMXTu0JM1dBQt0ILZuX7CSWCeqhp69F7gMgG3L9ahd5a9SKMBUi23fZ8WLBDeTlc11VPFEcuB5YIVDrSLdVQZeuc5sySD5IIyu5blLz0E97En4Y77vlC+d/thpugHPvABAMC9996LD37wg7jxxht7YsDYWEwDqxQ4o4Pgl2d0fBDU9GADKNfK8NbWQAGM7dsJ5/tluNTD+Phg2xqe4aIFYHCkBmPPDnBVtzJYwVDk9+3BClzXFUdZQil27hwAkScbuR6argdSsGL/nrB9qAIHwM4dNZBoAMlH89wcY7GeF2tPeL2qv14VJG5CEn+/p1kHyKEdNZjSevz1leEqYAGuF3+9OGyLwC0WML5riH192V64zz0PABjZOwoyMoQmgIFKAdb4IOySBRfAjoEiDH/dpucC1TJoo4mhsgUbwMBIDVbC36UVM7RmHNznSrAB7Ng5KP5O7HVYHUQLgCm6LTrYOTYAIh2BnYrF7i/LxPh4cvfCZqUEYgA1w0VrcRlDjbU2+5xKQdyrxUYDFMCIZCNt2WgCMP2NbWzPKOxaGXRxOfFzcB5lK45NDINIEoe7owYbwOhwpeM1oMsGu57DVVjjg3B3DsEGUKMu+6wmRtpe7zVW0AIwXCuE7h+OFqGg5WKbzd7PHgSaNmrjg+JzHCyaiZ8jANiVAlxCxD0Wew2Gq+K6Gjt3gJxvv17e6hJaAGCaHe/p1kAFdG4x+XqXTMhbUKVWTnwmqVtFE+zEZT17CqWdw3ABDEr3boN6qA6wza+TXXmQuVL0hhtuwM0334zdu3fj9OnTcF0XpmnCdV2cOXMGe/bENKTqgLm5FXgKE4BkWC0XvFZrfrEOY6WJKoB6y4XhASaAcystFJsOio6Hs2eX29Ygc0sYALC02oKz3AS/rGtNB63I7xdtD0XbgVdvCo3q3JmlMINo+GuUCrF/j6NQd1AGMHfmPGg1vuKsutYEHAeG48baE16v5a+3BFpPZnVjPrNaWrPhSOsV6jbKANYcCuJQFFp2R/tLS2uwLEv8jnnRHvBtZL7hgi6sYhDA6lIdrbPLKC3XUQSweG4Z7jB7Ta3RAq2UYQJYnl9GGcBK3Yad9HebLQwCWFlcTfwda3ENFQDzi2ugZrL9xnIDNQC00QJ34edmF0Inq+L5OkoAYJodr0UFAFYbWDk1jyqAlYV2+woLq+C81V1chgFgYakBj/+e62IQAF1rgAA4t9RA2QOMegtLCX97h/9ZnlusA2ag71qrLVQALJxbhmckx3LI0goGEFxzs+mhCqBxegEFAPMrTVCE/7ax3EINwNLcSuj+EdditYFCIebeN0tAtQScXQYch90b88sd7+nicgNFg3R+jhqOuK52rQpz9izOnj4feibNuRV2b5pGx7XKIDDXGom/U/DvUY56y8Vih/WEi27aaJ5ZgAVgZWGF3RuUYtCjWGvYGAY62pUEwyCJRDiV96+urmJ2NqjEOnbsGIaHhzE2NobJyUkcPXoUAHD06FFMTk6uu9wCxGS58CAFr0rjGS4dNXR1yYUHYEIBw4gGLo7uWSSXJPh9Y4hCAYJyqhqf95gYFLWU0hZZ8VTAA9xL9gYZLx0kFzn3nrTsQGuUB3UngUsuKqX/adkD0eZcaE9LU2rOBfjtYF2hk8bKVf519yrleMlFCiJTnoefos1Tx2GyV7QrpaFwbwFtlaYiM4MHbWNSPqOzdaMgtpteg8H19LTcfRWNWYq5eMNDbHOOtsDl9163QVERLOaZXepyiXGWxRTFvUEVcuy7QCpDr9fruPHGG1Gv12EYBoaHh3H33XeDEIJbbrkFhw8fxl133YWhoSFMT0+vi5FtSAqKmiZowYLHma9hMKcYl1EiKh5Nv9qUPUSxHxYviGi2QAkJpr3LDyYfH5aS5SIPNEhCaKiASum/v575zHMoffFBrP3Xnxc2F//1Wyh+9d/Q4jdS0sQiOSjaKQOHD9bmsCw4l+2D9cxz7Hrwv8OdSlzfcdsJutzxB6mT8zQMP6VSLculE0QQUr7+toPCN/4D5uxZNG74aZZdpLJWwWSflQh8sfdoPfo4Cv/5PdQPvUk8yHRoAAYvvolMQuL3lKjQTCksEi0cop+RYlCURLXlctihd9LQE2MsjgMUU4ZrEMIGskc16SiUHHpwDb0RxolJvQEq6/gq9QRIT1skYrKZn32UttFLMPg15RuhSo59F0h16Dt37sSnPvWp2J8dOHAA99xzT8+NSkNbYRFPVTQN2D9xdZAyJN/g0V1abgMLgBat5F4ucgBmZIgVxnhRhu7fEApZLqG/Hweps6PSxCIwVmM8f5blva7VQYfZTW6enAWtVWBd83KsORTuRRPh18tpi5afgdOhQx2f8iSj+bpXwZ5b9H+BgJZLIGs+axWO3f+Xj6uL9gZJK/7wmzEl/krGLJfQa20H1olTMHh/IL8TIUkLsPokIMrQzedOwzxxiv2OwzJ6vB1DME+f822IZoIYzEmLHioKhUVxn080ZTQJ0SwXP9XOWFkLtc+QkcbQeS1BGmixGD8lKmRferpu6Jn0B8mQeiOUrkkiz3giikX2u0mtdlstpgrIyRcdsHboTSDLq6jc9+XAFr4R8p5DGx0U7SfQaOm/1JzL2zUW/F7o+B9Jc4r2pi4WgbVG/Acq3aje2AiMGIeOjJILcb3EXOEQC1JpnwswRylyq22xNllZgzexE4U3vCZetxS5yFa410bSMdW2WbthCXR0BO7oiPjaG6wFKXo8bTHSDEsc8/n3U+WNlKpMT42hxz6Mtg1SbwbVfSoFXQiyXERJvxiaYYtTHPHZtCddn7a1DQNA0ABLMPSkk5LjtOegy+umprAmSC7NVntzLY60tEXHAUnpDAr4ck6nvilAag9z2R4KwJMcengddYYOgPWyqcRs+C0/e83/KNJaWruXXiTyzwWcgNCwRXXpf4BoYZHcRF9GJ3mjjaH7x91OzaEAMQCWROaKinasxc57ZGqaIaXh47Zq2qIbOHRIPb7Jyiq8gQ5H4WjpPzoX8MQx9DabatXgqBlh6CTBoacxFir3v479BUVtMoGhg3dDdFy1/H+gjaEL9sodlr8etayQQ4/tkggp/7sgnZRiQGO6ZgIIYkkpM2vbmKsV5IrH5qADUtpidwwdxUKq5NI21SkG4hoWC6AVJrG2OfS4gSIJNgExBUTcnpYNWiwEhEfl3iiXwp8zb9KmepLMiU3p0NuCojzPNaFohsTd4HKlKKRdOoWhizmhbZKLIkPnD53rovjQt1B64MHwz/0JN8F7UNTQPVeqfrTF3zDWGqLHdhwES5Nv2A7HfcKnPHUAHaiKAGBbYRHvF8KZoK2goQPBtJsk8HLxFOYjbxwBM7MD2aTZ9EcRpuukAUMPSy5iaIYTdJL0dgwHL4ysLWwqSgwdSNbRHSf+vvC/Z5ydR/Uj/5udOOMQ1dAJCU8pigMhjDx0YOip9z7A2mykSS4q158z9GJR9I8xT59D9a/+HuR8kEEEKAZFgWQd3XfoicQxDoSEnruo5KIdugwebQbY0aVcQv1nXgfnpS8M/16HDJB2ySXZoScO9ZXRUtXQA8nFfPpZWE+dCP888hCnt8/lm5YXMAweoF31Kzg7MHT30ovQ+KmfgLd3l1o2CR8K0gHeQI05dN7REmAVoZAYOQ+KCsmlS4aeQ0MPbLCDuEuzpcQQAYAO1kAoFZkMgoW1AumGT4nqKLnwU1Ip0NCBDoVUDTtMaiLrmLMslmIsLMa/3g1LLgCCmEanE2ZS9g0/Vapo6IWUqkyAfc5pDl08txZQKoISAuuJp2GeW4BxhtVchDLZUmwCkJjpQhpN0HIp2GgVg6IhInWBgqKb06Ebfqqh9EE5P/Ri0FqYiXYshU6QXJJK/wHAG6gmpgmKBvipvVw4Q2dpkNFjYtsDo9I+l68X6U/CWbLXgaHDMmH/yA+JdDkAHTMsiG2nPrh0oBq01BVpi1yO8B8akbaoGPxNC4pmrRSF5NBX1sTrSaMVGs/WCd6OEQCA4TNCwcJawQkJjr8BytkX0fcqdz1EOkOnjWaoE6L4fqQvTFI/GOK0SxG0HDkdxP3dpM/AdUGA9LRFgAUgUzR0leHoVGLoIAS0Ugo+h6YkeQHpn2WpM0MXraH531Rk114sQ09vPNYNNqdDB5hDUO1zEqdXC8lFCooiIcfU303p4EDgMKK9WBQZerDJuOx432iG7Ys+hGkBHfk9RvqTcB27k+QSWktkMqQx9DTJxZ+LubIWsKQoQ88aFDXNzpkfqgydEBEw5jYYSyvBj5stduRXeOC80eHwN1zO0AOHHjvHNQqpLzkABYYe79DFaY33Vk+SNmIYejBHtMNnayU0DeNtClSCokWrY843AHb9U2QSTj5E7Evq8igcukJPGLYGvxeTHTqt5GHo7DnwKmVxb2jJJQGkWFB26JXPfRnWf34v/LNEhh7zYfkPlrtrNDgqRRm6cpaLJJHwakWpIKLtIc7QnCuJoas6dP6QFGaeQO3P/xa1u/8XyFo9+LnnMQetwNDZ318NAnT8hnZ8Rh4pLEp96CwT5nOnUbvz78I2CdsUs1wICdL1OEPnmit8Z6gquQwNhByP6L8iZnC6gJsuUUXjOKkMvd5gxXNRRPrCyM7XeuxJlP/hn9gXMT1OeOpiNIMp9HcTCs+IExmM0QkpfVMA+JKLYjJArENnG1pbvn3SWnwjius0agetoeWhLirgDp0O1sS9IZIptOQSQbmonKNtzp6BxfOCfUT1tU4O3b1sH5qvexWaP/XqINc3ytBtmwXklAuB3PaObEDAdnykt8+Vco8jQVGysgoKtElRSeDOyTp+EsZqHcbCeZBFKdWR58anbFqecOhrUipfJGBYLLCCGjGsIV37Js0WjKUVmM8+H/NHM6SD8b9VKoKWi0F+OOBr6Aqs2v9boWBnlKE7Hnvf/lqrv/aLqL/pp5Lt4XJdXobO74U4h/74cRSeeJoFceOkCAWGTitlkHrMZso/W5WgaJFV13ae9Zs+2KUTQxeOWTT5yi+5BIM7ykHsTpFd2y+/Ao3XX8sSKdyw5KIZehQKkkvowkcfDn7sFJJLctoiDAOtV73Sz0XlDD0my6VYSC1G4euTRivQbSWH3s7Qs+ehC8e+usZmQarePLwacHk1sEcu2Y/2Qk8AZ+iGLLlwZyem4vgxEOUslxh5IPRHKdtQFRy6yOwxTXg7RoT2CvjOUKGwhSMU7LRZcUqomMoNUgy98bH2wD0QaOgqDN3zgKadoKFzycV3aJKD4v3C5U02TnLpdJqQs5dkiHtWqbCocwASAKvUTZNcRHaWfx0SJBdqGKHGa51sipNc5NF6wSAdRcllcAD2VS8L983Xkks8SLGYfmwJOfTIUTGir4ljV4ZCnhAUsj/k9WXZIMzQswVFaUhy8ZmZ/4AZy2sdM1za1uK2yTbI1012xp1QKLDp5yur4jqJoJDcT90wgr+lGARjNsU5Oqp+jJUq/kIOGSyjgbV1UHXojKHTcokFfuWBwq6rdl/wGI2Kht6MSFYyxDQmJ/QvKGXFcACM1dVgk5UmHqlo6LRWC6YuyVDc6AFIOd8dHLpCYZe4HwRDDyQoPv1JtUAMlsXIQEx+fGhWqjTUJRNMM9jkFdNr82JTVooCYP0nVDNAIN3kC0sof+ErcPf6JfCRarnUIGQiQ7eVgkLioUtw6NGHWFVWghvkofPCIrK6qiy3AAjn25eL7MHw7Sl+/dswnjvd9ntJ8GrVEBsUKX1iELEfA1HtWSNVRhLbQekL/wz3sn2glonC955knStVWQ//PdOEN8quD/XfF/ElF2olVExGwDcEb7AWHlMIAI6rJN/QSFC00+xNrg/HB0Uj759Lb2v1QIZZWYvN/uDxhFSG3myxdaV7PQ9DJ61W50rpVMklqJ8AIIqLvEoZpNlC6YGvovDv302f8QsgmCvagvX4cViPPo7Gz74eIERy6KUgsyZDLxfAv6ZtaYvrw6U3rUO3XnM1Vvfv6/xL8kXzb2Khp0d2W+fy/Wi+5kfhjY2orZmTofMHx1hcEt8LzdjMyNBl3ZTv+cS2GStbXIK9dyL5tVHIDY8GajAbLcEszCeehuVr10onkXJJOEcgzNB5rIEaBgxfdkp9SGRC47gozDzhN2azYD32A9g//DL1h0QaWSgYernEmi81W8pBUQBwrrgMzfPLIKt1FB57IuTQiZy22NEeLrlwlhxzUuJr8g2wA0MXv+u/Xh7+QJZXAddln4F8vRQYuhwboXLsQDSmU9HQ/b+TIrmkBTJhWWi8/lo4L2A+wH7J5aAGgfXUCZBmE4XvPgFCKTzFe4KWiiCNJsynTqLw/afQOjMHb2JnmKFnDIoKmEHbCqIll3gY+/fCmby84+/I7FY8HNzBNJrs55xxV0po/cRV6RpsQlBUmaFbFmi5CIM3s0KKhq4oAUU3BVJvgDRabZJCJ8g5yMGU93C6IQDl9DRi28HGJ69TsPxsE+n2S3lIQrq+7Q80dj1fs/bY31E8xgp93DADyaRSZqy32WIOT/WhLZfQuvZHWFGQ44b7lCinLXK2ySf7JM/eFK1c47Jc/M6NAtzRSvM2yeparE1qGjq7J0RbB75mBoauKrmoXH/7qpeJjYUOD8K+5krQUglktS6eByOpWjYCFvBtgjTY71s/eIbZyYOi5XJo7GIWxDN0neWSHWY7QxdMsdHMt0smpS22FDV0AF6tBiIz9E4aemrg12dzkkMnti2CYG250p0gBx4HfYcuerAED6DSSaRQYO8lIrlAbh0gv7cUpxcKXNZ5WpoXZDK4Lqiyhh4wLZ6lQitloMRPFQpZFjFrEscNOyqXD8BW09ChwNDRSXLx7eDgn5kxfx7UMOANVJkG7roh/Vxer1MGE5Wzl2QIDV0tywXo7NCJqyC5JK1fKobSUJVfVykzEuQ/i9aT3KE3glkBGYOiAnygteete1B000ouSpBvbu5YBENvZT86AZJD9z8YSlG55wswTp8Tx7800MEqyNwC+3+xwG4ix0HlMw8EWqavYSu3z61HGLp/zObVjEowmAxCPA+e79CjwUxAISgKMD26ZQcDl+U+J1GmQ5DOrqUTkYg/uK54GbEdpA634BAaugGUiqwC2A+qkdV6pqCoAM8QWguftkiHVsQccf2EWP93yaF7Hsr3PiCmXCU7dANiXpqQXBbh7RhiOeAra6DDA20SF89D7zisO+rQPQ/lz35ROHJSsICUFPPELBdKUf7cl2G/5HK/fXNOh1cqtqcUK4BWyow0uMw+47nTrB+OYQQpkTkGXAAIrqkbpGsqk4+M2NoOPS5tkQfnms3UfOo4UO40/AIBslaH9eQJuHt2wX7lS9XWqAWZJ97IEGMG55dh/eCZIMhTLqttOkJyCYYnENuBMb8IahigfvN/ZVgm0PICycWNkVxSOkoCvtOXCzVkhs7foxFIH2kOvf4Lb4D51AmUjn0tONG4bvA6x1E+xvIHkju15ut+DLRWReE/H2NSmOtlD3zxPjjyaYu//zSGHq2FIIRtiNI1J8urKHz/eHA6SnDo1DCCWIrvNI2lFdDhQVDThLG4BFKrtLFMb2IMzR97JZzLkkkJrZTZ+rzx2loDhe89FdhdVGi8ldDZ0JhbQGHmCdbbKMf1FzZK16X5ulfBG6iFxsclvq5SEq0qnP0Xgw5UYT32JIjrwp3YCQBwLr8UzZ+4CnQkedZp7Np8Q7el/HtV8pERW1pyCeeh854iEmPMc9NEGDq/uVuvuhLugUvU7PKZDiUEdGiAaXdc72yxiUAde8vIEHnt/lG8VgFsG8b8eXgjQ9n1Ph4wbGPokuRiKTJ0WQaSNXQrHJBWYWPe+Cjsa65k64rhGZ604bgZgqJ8I/ED4i+7Au5lF4c09PwMXcpe8tPnUnOqo6X/QDA9iq/FnahonZCQhROX2bXC0ldFHnlcrxrTROsnXwUkDC5nC7EOgkJD5xWZnG0rDrgA0MbQuWbt7tmlNoIuaX3JodsvfxGcl12h9rpKGWg0QdYa8HaNofHG61hfc/4zALRWRes1P6ocqxHg94brBKcHraHngHxzRxh69OfKMCIM3b+5O/Ycj0A07SkVA+1OZsCWGVTCpWmJfIQZD97UqgFDz6KfcxSCRmQA2PXiJf8cSgzdEjev7JyIPCCD39QZNlZqWSGGLuxyHPUHzYjXQmlJyszJuhFyhi47dFWGbhhsI5XtiTB0Y1XSrS0zWcaR7faD0mR1jclKAzUYfmpl6iaTgFBrZOkERrldaShYoGjX0E3foYt7I699XLIkJHEIe9LrCJif4PKbc/ml7GcVFY7fYW25R5KuFO0CshNyXIDS8PCGPBfVdxokwtCV+6VIv0slh45I0FHc2CqbjmGwIC8YQyetFoyF85kyXAQ4Q69UmDTheiE2ReUJUZ0g6ey0VGSO12+z2hYUzXJSKlhB+TmvxIT/IGZk6G1aaLnotyG2s5/eJIYupkXxAKaChh6V/9oYupTlg04OJhQU9bOdKBUMHQDI0nK+0yn81si+LaGh6QUrfWQfIOV8Sw690RTtHEQWT077uBRFa9VMTFp22vz/gUNXq0lIhJjH6ug89G5Adwyh+apXgtQbKD7yGLuYUil7rpsmkodu5HLoftOeUpExA8cVx3MALLUxLhMkCaYh5A1voArLXyuPQxeTzSulYCKPzxRbP/Ti9Dz9yDoAWHHHKtisVMeRTh9ccsnwOVhmaHgGJTyLxs2gocfnE4ce6oynN8ozU9Ya7OTVsoNAdYoU4fzQi+DtHg9/s1wKBbrlzBJSTm7RHNrUbCdMOHwHZyyvwBsbTX1PcfB2jcF6/HioWAlAeiaPbGOxGIqvGEsr4fbFQNeSS5bnEYh36HR4EM3XXgPHl17yIszQ+UxRLblkByFove5VgRNy3HD1XQ7JhbZp6KvsmJfhhvZkhs7LvKUjNS1Y2cqMDSOQN6rBjZwpZZHD9MeRlYo+Q3dFtoR7yV7Yr3ql2jqyHsz1Xn79I5NfSIbPITQgQZJciO1k19CjgUFZNsucmiYxdH+6jShKSemR7+7bC/uql0VsqQo5D0Do/7GdFoUdsoZuCzbt1arCUZFGK3umhg/n8ktBAJhPnmhj6KqgpWL4tdLpVMRd8kouvGtkDxw6ALR+/IfhRQerZ8UFZOhb26FzSBc0NI0nT64rCTN0srLWeYBEDEQGSakojogkpJEyhk4BpQ9epL2ZphhUAORn6LRcYmzOstjpgT9wGbKCZIYuep87DssXF6PPckgu8oPuekF73gxZLuLvRa5tyAlkdXgSQ2eNx2SHniObaiDcN8VYWQtSSTtJABGGzrV3OlANa8F5JZfd4/BqVVhPngix7CwMHRGHLgK9BUusmXcABL/XssS0gGSH3hMUAoZOVGff5sS2cOihI48jSy7589DNM3MoHz0G4/xypgZYAFjr2GIBtFQKCi1Wg2AaLZiM8ajaJ6e9ccmkYGVmKWwtM7ihTTPE0FULpwC0aegA2A0tZxclMOVOkG0QQ539tVVTwYINMOrQg88xc9qiz9CNeoN9vpJDz7IRBrZUQRpNGM8+j/LRYyBLy/B27WTXUoGh05IfD/CLbKiUaw8oZN4kgRA4l1/CSuzlFM0eMHRarQTfz6uhl3shuXSpmUfX5n2IQkFRnYeeH8KhO+ERWl1o6MVvPiK+ZSumRslovvpqeLt2CnsMyaHDKrDeFKpReu6gRkeE9u6NjmRPrwJgv/IlQQqkP9Ag1FBLEfEM3Q0xdMHCsmysMhN0XRGIY0HRrN0WI1kuncbEpdolVdnWqszZcXacw6HzU1/x376DwmM/AAC0Lt4N59ofweD+3YmvE2mnfpMqY+G8kARDrDevwwTg7Z0AeeR7MPziOACZJEdaLoV7GfnN5ERxD5BfcqmU0brmFXBefCDbC8tsLimhtPcMnWdAOY6uFO0JhOTidp/l4jsNr1YVx9msxzsALKcagHmSDd4Ia+gmvIt2o3VR8oMrgzMl5/JLg7TDPPo5AOdFLwi+8Nt+khwMPVRNKk0nimXoGR7e0NHe9QCDj7jLkuWS0GQp5PCypi0GdnljIzAWFoN+YjkZOgCY0mAWWqvC/pEfgjk+CJxNKG/nm3u1DCwuwVhYCiRBwwjYcTcOnfd0ObcoKot5UFgFIt/fB08pDrHkvA6PEDQP/niu19FyiZG+LPKRAkLdM0X7XC255AaVGbqUCpZPcgnnoQPZj3ch24qBhi4aK2W8oXiQ0Ln8UuF0M5X8J9nGR46p9kGXEcfQeXVgREMnGdMWOYgXSC4EUD6RiErRmBiKxzMcMqctSp0qR4fDwyPSBofH2cidprzRqxAH7tD9drLGwvmwlMTfX97SegT3u7HgF68B2e7ZqOTSCiQXgS42nLyglXJ807NuEWLoujlX95AZepeSC3e6YpQaunTohUBDp7Uqy0nOolVL8MZHhSySl6GHYPkNp7IMMPBBYzR0IeV0o6GHBl14kSC3ai+X5DaogiVmLiySGProSJDPbxj5sqmke4pm0IXFZlXlGS3N8FpyfCQnRD6754FWy/Aq5Wynt1IxFP8QJ0BZ8sqr8XeDSqn3cguke8N21r197raQXMIMvbu0RdE7xWf69ktfCPeSvfmN4/MMPQ+0aKF15Q/D3bcn0xKN11/LHihC4E7shP3SK+AqNgrrCNNkA6xbORh6MYahRyonc2nosg1uJPdcNWbQaSPJ6/AiDF28Xh5bmAG0WhFyRuuaK2GcXYBzscJ9wR265Ji88SDnXAT8unHo1YrQm1EqovWqK0GztGkW90MT1Kqy/j5AiB3nlly6QOuVLw1Lsr1CqQBqGizxgctvOijaBSSG3nVQVHo4vVoFjbihvxkgB8xooYDWtT+SeY1QDnOpiMabruvKJmGPZYYKi1RK/sVrZcfLH9RojnGXDJ1QCiq3TMhaKRrz+8LhZX3e5KDoQE1IGnkCouzvE1b1u7wK96LdaP34VWqv473VJfmCVzwCsuTSBQM2DGbbyhpoqaRem8Bt4PdDswX4rSpQLIRZ/gZILs7LX7Q+CxsGvJFh1vVy15j43rr8qXVZtc8gM3R5B87FAuTX9CJ4wucZImNa4IUA7+Ns2+ol/xxxGnpUcuGBoSx6buQaya1SVbNckipFAUjFN822n3WEfF8QEkgueR06IMYHZqoniEguAOCN7QjWzCkptdkmFcdlfm30xManfcnPU87Cp36FN8ocOjz1YeZ5sLWuWhLkKLPbreQSfBBdsRwOv7cFgExpgRcEfj8RMWUoCwwj0HP96j1Ryt4VQ+9gh+oxtkMPGaE91zM69Og6suSSE95gLXM9gcixF331SyHnIRx6l/cubwFNO7QhSETEofNpX6FU1w1g6OsJOjoMY2GJFcKtk9wCKEguCwsLePe7340TJ06gWCzi0ksvxa233orR0VEcP34chw8fxuLiIkZGRjA9PY39+/evm7G5IaLMkbTFLiWXXqU30UIBpNnqO4Yul/7nsq1QANymeOjbGDqPR+Rk/m1QZJ3u/otgv/xFrNVwBK1XvRJkcRmtKyfVbfLR/LFXwuU6txhinMPh+XBedgW8iZ3Z2Jy/Sbo7R2FPXs7GKkqgebN4IpA7hmZFMkOXbNpyDH0ExHVhLC6vm9wCKDB0Qgh+7dd+Dffffz/uu+8+7Nu3D3/yJ38CADhy5AgOHTqE+++/H4cOHcLNN9+8boZ2gyAP1C895wMW8tw08tzGHrEI2scMXZT+57AtOowh2qdDSCR589CjUHR83s5RNKYOxj5YtFpB4+eu79zRMAGtn3wVXK5X90BycV58IHtMhb+nchGNG346FBAFehMUBXojufCYCmnZrK3uBmvo6wkumxnn5jfWoY+MjOCaa64RX1955ZU4deoU5ubmMDMzg6mpKQDA1NQUZmZmMD8/v27G5obE0OG43euIBte8e3TT8Q0mQ9DxQoBaZlcMnQdGaaHAMjaiQdFcWS5+hkyc896AzIgk9EJyyQW+kSRsfD2TXKSOoZlfyyU4Ibn4LZWtrSu58DRi49zCuunnQEYN3fM8fPKTn8TBgwcxOzuLiYkJmP6FN00Tu3btwuzs7LoY2hUMgzmAls0yI8pdshThiHokufQrQ/eDoqTVymeb3NNdmmAUBCUj/yqAO6rYApA+cugiOHmBP1OaUn3bK8klYOg5CnF4qi6XXBw/RlPYukFRWquy+cFY35TMTB7ptttuQ7VaxVvf+lbMzMz0xICxsYHcrx0fV5+X2ShYqBIPLoDCcA3e6XOoDVUwnGENsZZpADZQrJUxEPP6LHYBQGuwAg9AZbiKoRz2qCKrXc5wFQ6AguOA1KqZX9+slkEJwfjEMBrFgqgU3TE+BGN8EM5ghc0zNk3ltd3FQdgAzIEKqNwcCkC5UsRgj69f1vfMYQ9W4AKojNTW5TNNssu98gp4roPx3SOxP6fDZdgveyGGX34ARhd20crlsB97AXa87DKQwaASVfV6NUpFVA2K4fFBND0XZLCC6vgQeP3ozt3DID0swc/7OfYSzYsmQI8/C8MK7vde26V8xaanp/HMM8/g7rvvhmEY2LNnD06fPg3XdWGaJlzXxZkzZ7BnT7aimLm5FXgeTf/FCMbHB3E2qZ9FDAYMA43FVRQANE0LBQArdRt2hjXEWiAgAJouxfnI67PaBQBlaqAAYM2maOWwRwV57Co0HJQBuMtrcGu1tveahgolME0TZ88uo2ay4cIEwPxSA7SwjEK9hTJYP3RV24zVFmoAHKuAKMestxws9vD65blmHMWWixKANRc9/0w72jW8Azj4E8m9XgDgjX7tRLd2vfl6oOEBjeV0uyKoFQuwF1exeHYZtXoLjgfYK+yzBYBz82s9kya6+Rx7ieKlF6F0/FnQ5VWcPbuc2y7DIIlEWIn7f+hDH8Kjjz6KO++8E0U/aj82NobJyUkcPXoUAHD06FFMTk5idHS001IbBiof+buUXGiPNXQRpO2zLBcRe2g0c2X00GLQAphawYxRsVaeiUVcl+97ycXXsvvtM+0TsAZdflCUpy3KFcTrqDNvFHiBl1w70Wuk3m1PPPEE7r77buzfvx+/9Eu/BAC4+OKLceedd+KWW27B4cOHcdddd2FoaAjT09PrZmjXMM1gxqMo787b0a23Gjr61KFznZW07HwB20JB0nRjMhi6qBSNdej95AT4e8oRNNwW8AdyAwiC7lmmdG1CeDvXn+ymPqUvfOEL8f3vfz/2ZwcOHMA999zTc6PWA7Rgsb4kYClEzoFL4OYdLZUj3a6jbf0aFJXL2XOk8TkHLgkKXOSikbYslwwOfWiAfXb7LxJ9wgX6iKGLjedCZ7lsEtBigZ38XBfE80IMfaulLAoQgsbBH2NzZ9cJ/UUJ1xOmCbLmD5EoFVH/xZ/Jv5YRyAi9QP9KLpEOghnhvOSFcF7ywra1gjz0fAMu6r/4MzCeP9v2o/UavJsLQnLRDj0OtGCxGQByr31+X2xVh45gDsJ6oX8ozTqDWqY44nVdsk96y9DBqwn7jM3JD1Yehx5aK65oJI+GLtaIuXX7iKEL+0r99Zn2DUze+E2ahsXbRWxRyeVCYPtcOb/qEUD3VXKcofeIUfcvQ5ckl277qwv2JQW8TF76n6NfeNyA7z7S0MUouC5K/7c0+PCUVmQaVsHaupLLBcC2ceg9GZDLYfS29N/duwvOxbu7ZsE9h9mdhi5DPLDyNcuhoQvEfYZ9xNC9vbvg7NsTTPTRCIGKxm+coVvi+7lacmgA2EYaemgkW7eOuNcMfccw6m/72Z6s1UuENr5u2S9PSZNZf48kF2pZbOBIH2no3tgO1N96w0ab0b+ITMMSsQZLM/RusG22wtBItm6DmT1m6H2LlL4gWSA2P3mtLhi6LLmItddp8K5G70ELlj+vNjw8hWrJpStsmydAljO6D4p2wSw3E/wCCG8of3sGgbiUNDNHlotYT1qHxyD6iKFrpMA0QTxPtIOQGbqWXPJj+0guMkPvWnLxK0V72GuiH+HtGIY3WEPz+mu7X6zQLrl4YzvgTuxEaWIMaCW9MAGy5CLmNGpHsFnAT1XE78fDv3Yu29dX0tlmw9b2SDKkoF63DJ32Om2xX1EsYPX/+S89WSquaIQO1rD2q7+A2vBg9r4isvMWkot2BJsGvAqZF9n4DL312h/dKIu2BLYnpelVUHSLM/SeIoahdwVCghF3mqFvPvA+QRGGrtEdtucT0HXa4jbR0HsI4ch7ec1Mk52WeE8dfVTfNOBkiDv0zDNrNWKxrRx646dfDW94sHsmR7aHht5TrEefDsNgTp0zdc3QNw8EQ2+yz01ntvQE28oj2Ve/HPbVL+9+Ic3QM4P2WnIBq8YklAYBUq2hbxqEGHqfjV7czNBXMgfyDDfe9lgPhm6ZoJQGG6yWXDYPJA1dNzDrHfQZNQ+2SdpiLxFbWNQtDL+RU7TZl0bfI8TQ9XPUM+gnIA+05JIdvPS/h0Uj1HfmQjvXksvmgTQNS/eM7x301pgHhPjZFdqhq2JdGLplsmJWvklohr55IN0HOmWxd9BXMg8MQ7PzrIhpztU1DBMwAw1dZ7lsHoTuA62h9wzaoecBIVo/z4jY9rndrmkaIDRIW9SSyyaCZujrAn0lc8DdNQaysrbRZmwuFCy4O3fAG+/doFxvYifr2GfooOhmg2bo6wPt0HPA/tFXwP7RV2y0GZsLhoG1//ZLPV2y+dOvBgAUH/w3/29ohr5poBn6ukBTGo3ND1PnoW86mAYo/7926D2Ddugamx5ixqsecLF5QEgQKNeSS8+gnwCNzQ9dKbo5wXV0XfrfM2iHrrH5oStFNyV4YFQz9N5BPwEamx+6sGhzggdGtYbeM+gnQGPTQ5f+b04EDF079F5BO3SNTQ9vxzCoZYHWKhttikYW6KBoz6G3Ro1ND+/i3Vj5f//bRpuhkRGiuEgz9J5BM3QNDY2NgQ6K9hzaoWtoaGwMeFBUpy32DNqha2hobAhEUNTSDL1XSHXo09PTOHjwIF70ohfh8ccfF98/fvw43vKWt+D666/HW97yFjz99NPraaeGhsZWg2boPUeqQ7/uuuvwiU98AhdddFHo+0eOHMGhQ4dw//3349ChQ7j55pvXzUgNDY2tB11Y1HukOvSrr74ae/bsCX1vbm4OMzMzmJqaAgBMTU1hZmYG8/Pz62OlhobG1oOpC4t6jVxXcnZ2FhMTEzD9kmvTNLFr1y7Mzs5idDRbv+uxsYE8JgAAxscHc792PaHtyo5+tU3blQ1Z7HIu2gnnqSGM7xpaR4sYtsL1UsGGb41zcyvwPJr+ixGMjw/i7NnldbCoO2i7sqNfbdN2ZUNmuyavAF54AMvr/F62zPXyYRgkkQjnynLZs2cPTp8+Ddd1AQCu6+LMmTNt0oyGhoZGIgwDKGr9vJfI5dDHxsYwOTmJo0ePAgCOHj2KycnJzHKLhoaGhkbvkCq5vP/978cDDzyAc+fO4Vd+5VcwMjKCz3/+87jllltw+PBh3HXXXRgaGsL09PSFsFdDQ0NDIwGEUppdwO4htIZ+YdCvdgH9a5u2Kxu0XdnQNxq6hoaGhkb/QTt0DQ0NjS0C7dA1NDQ0tgg2PA/d6GKwbzevXU9ou7KjX23TdmWDtisb8tjV6TUbHhTV0NDQ0OgNtOSioaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWw4aX/WXH8+HEcPnwYi4uLGBkZwfT0NPbv37/RZmF6ehr3338/nnvuOdx333244oorNtokAMDCwgLe/e5348SJEygWi7j00ktx66239sUwkne84x149tlnYRgGqtUq/uAP/gCTk5MbbZbAHXfcgb/4i7/om8/z4MGDKBaLKJVKAICbbroJ11577QZbBTSbTfzhH/4hvva1r6FUKuHKK6/EbbfdttFm4dlnn8Vv/dZvia+Xl5exsrKCb37zmxtoFcNXvvIV3H777aCUwvM8vPOd78TrX//67hemmwxve9vb6L333ksppfTee++lb3vb2zbYIoaHH36Ynjp1ir7uda+j3//+9zfaHIGFhQX69a9/XXz9R3/0R/T3f//3N9CiAEtLS+L/X/ziF+kNN9ywgdaE8eijj9K3v/3t9Cd/8if75vPst3uL47bbbqMf+MAHqOd5lFJKz549u8EWxeP9738/fd/73rfRZlDP8+jVV18tPsvHHnuMXnnlldR13a7X3lSSy9zcHGZmZjA1NQUAmJqawszMDObn5zfYMuDqq6/uy5mqIyMjuOaaa8TXV155JU6dOrWBFgUYHAwmnq+srICQ/mig1Gq1cOutt+LIkSN9Y1O/YnV1Fffeey9uvPFGca127ty5wVa1o9Vq4b777sPP//zPb7QpAADDMLC8zIZbLC8vY9euXTCM7t3xppJcZmdnMTExAdM0AQCmaWLXrl2YnZ3tCwmh3+F5Hj75yU/i4MGDG22KwHvf+1489NBDoJTiIx/5yEabAwC4/fbb8aY3vQn79u3baFPacNNNN4FSiquuugq/+7u/i6GhoQ215+TJkxgZGcEdd9yBb3zjG6jVarjxxhtx9dVXb6hdURw7dgwTExN46UtfutGmgBCCP/uzP8M73vEOVKtVrK6u4sMf/nBP1t5UDF2jO9x2222oVqt461vfutGmCHzgAx/AP//zP+Nd73oXPvjBD260Ofj2t7+N73znOzh06NBGm9KGT3ziE/jc5z6HT3/606CU4tZbb91ok+A4Dk6ePImXvOQl+Md//EfcdNNNeOc734mVlZWNNi2ET3/6033Dzh3HwYc//GHcdddd+MpXvoK//Mu/xLve9S6srq52vfamcuh79uzB6dOn4bouAMB1XZw5c6YvpY5+w/T0NJ555hn82Z/9WU+Odr3GDTfcgG984xtYWFjYUDsefvhhPPXUU7juuutw8OBBPP/883j729+OBx98cEPtAiDu82KxiEOHDuHf//3fN9giYO/evbAsS8igr3jFK7Bjxw4cP358gy0LcPr0aTz88MN44xvfuNGmAAAee+wxnDlzBldddRUA4KqrrkKlUsGTTz7Z9dr992R3wNjYGCYnJ3H06FEAwNGjRzE5OanllhR86EMfwqOPPoo777wTxWJxo80BwLTX2dlZ8fWxY8cwPDyMkZGRjTMKwK//+q/jwQcfxLFjx3Ds2DHs3r0bH/3oR/HqV796Q+1aW1sTmiulFF/4whf6IiNodHQU11xzDR566CEALAttbm4Ol1566QZbFuAzn/kMXvva12LHjh0bbQoAYPfu3Xj++efx1FNPAQCefPJJnDt3DpdccknXa2+6ARdPPvkkDh8+jKWlJQwNDWF6ehoveMELNtosvP/978cDDzyAc+fOYceOHRgZGcHnP//5jTYLTzzxBKamprB//36Uy2UAwMUXX4w777xzQ+06d+4c3vGOd6Ber8MwDAwPD+P3fu/3+kLjlHHw4EHcfffdG562ePLkSbzzne+E67rwPA8HDhzAf//v/x27du3aULu4be95z3uwuLgIy7LwO7/zO3jta1+70WYJXH/99Xjve9+L17zmNRttisDnPvc5/NVf/ZUIJP/2b/82fuqnfqrrdTedQ9fQ0NDQiMemklw0NDQ0NJKhHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwR/P9WOPqjG/dGXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc_poisson = Lightcurve(times, noisy, dt=dt)\n", + "lc_poisson.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b9e4b55d", + "metadata": {}, + "source": [ + "### Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "dabd22b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wcdfnA8c/M7F7vLXeX3ntPCIRQQpEuGBFEUBERVJqogAIqXfgBitgQREABQToiTZBOCAnp7dKv5XrvW2Z+f8zu3t7d9pK7yz3v1yuvJHd7s3OzbZ55nu/zKIZhGAghhBBCCCGECJk62DsghBBCCCGEEMONBFJCCCGEEEIIESYJpIQQQgghhBAiTBJICSGEEEIIIUSYJJASQgghhBBCiDBJICWEEEIIIYQQYZJASgghhBBCCCHCZBnsHRgudN3A6dQP6X1aLCoOx6G9z5FGjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4f6GGuaiqoqQW8ngVSInE6d5ubOQ3Z/qqqQm5tGa2sXui4zk+NBjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4NxjLOyUlBVLejtpLRPCCGEEEIIIcIkgZQQQgghhBBChEkCKSGEEEIIIYQIkwRSQgghhBBCCBEmaTYhhBBCCDFEGIaBrjsxYrSmXlUVbDYbDodDmiHEgRzf+IvHMVYUUFUNRQnemS8QCaSEEEIIIYYAp9NJQ0MVuu6M6Xbr61V0Xdpzx4sc3/iLxzFWVY3c3CI0LXh3Pn8kkBJCCCGEGAJaWxtRVY2cnFFAdFfKvVksCg6HZEviRY5v/MX+GBs0N9fT2tpIdnZ+5PsVwz0SQgghhBARMAydnp5OsrMLsFisMd22xaICkjGJFzm+8RePY5yenkVTUy2GoaMokbWNkGYTQgghhBCDzF22pGlyjVuIQ8H9WoumZFACKSGEEEKIQdbbXCJ2JX1CiEDM11o0jV0kkBJCCCGEEEKIMEkgJYQQQgghhoT169exYsUSOjs7A97u3HPP4oUXnj1EezV0vf76vznjjBMHezdGLAmkhBBCCCFERO688xZWrFjCb3/7fwO+d+utN7NixRL+8IcHIt6+v0DhkUf+zhlnnO35/4oVS/jkk48ivp9D4dFH/8KKFUsG/LnssotD+nlfweOJJ57Mk08+F4e97evOO2/h5puvj/v9DDeyolEIIYQQQkSsoGAU//3vW1xxxY9ISEgAoKOjnY8+ep+CglFxuc/s7Oy4bDcW7HY7VqvvzotTpkzj/vsf7PM1f7cNRWJiEomJSRH/vIiOZKSEEEIIIUTEZs2aTXZ2Nh9//KHna++88zbTps2guHh0n9v2zxx1dnayYsUS1q9fN2C769ev4667bqWlpcWTvXn00b8AfbMz5557FgA33HAtK1Ys8fy/vLyMG264lrPO+hInn3wsl1/+HTZt2jhgf15++QWuvfYKTjjhaL7+9a+wevXHfW6zb98efvzjqzjppBWcffYp3H337bS3t3u+/4MffI8HHriPBx64l9NPP5Ebb/yp32OlaRq5uXl9/mRkZHq+/+ijf2HVqjNYufIovvKV0/nLX/4IwJVXXkZ1dRW//e29nmMBAzN2jz76F7773W/y8ssv8JWvnM7JJx/L73//G5xOJ4888mfOOONEzjnnNF599aU++/WHPzzA17/+FU444WjOO+9snnjiUU83u0cf/QtvvPEa77//P899ux+vmppqbr75Bk455TjOOONEbr75eurr6/z+/ocbyUgJIYQQQoionH76Wbz++quccMJJgHmCf9ZZ5/Dmm/+JeJtz587n6qt/wuOP/5V//MMMmpKTUwbc7pFH/s5ZZ53ML35xG0uWHIGqaoAZpC1ffgyXX34FFouVV155keuvv4Znn32FrKwsz8//9a8P8cMfXs21117Hq6++zE03Xc8///kio0YV0tbWxtVX/4BzzvkqP/rRT+js7OL3v/8Nd955C7/+9X2ebfznP69y7rnn89BDf4v4933vvXf417+e5pZb7mLixMnU19dSXl4GwF133cvFF3+Dr3zlXE4//ayA2ykrK2XDhnX85jd/oLR0P7/61Y3s27eXWbPm8NBDj/H++//j/vvvZunSZRQVFQOQlpbGzTffSm5uHrt27eSee+4kKyubs89exQUXfJPS0gN0d3dzww03AZCRkYnD4eAnP7mKefMW8Oc/PwooPProQ9xww4955JEnUNXDP18jgZQYsaxPtdCjtMM30gZ7V4QQQogBfluygc8aqqLfkAKE2OL5yNwirp2+MOy7OPXUM3j00b9QX19HR0cH+/bt4YQTTooqkLJaraSlpaEokJub5/d27jK/tLT0PrebPn0G06fP8Pz/qquu5YMP/seaNZ9yyimne75+0kmneIKTK6/8EZ9/vpqXX36Byy+/ghdeeJaZM2dx6aXf99z++utv4sILz6WpqZHs7BwAxo+fwOWXXxH0d9q9u4STTz6mz9e+/OVVXHXVtdTUVJOTk8vSpcuwWCwUFhYyZ848wAxcVFUlJSUl4LFw+9nPfklycjITJ05i1qw5NDU18b3v/QCACy/8Fk8++RibN2/0BFIXX3yp52eLiorZs2c3//vfO5x99ipSUlJITExE15197vutt15HURSuv/4mz9duuulWTjttJTt3bmfWrDlB93O4k0BKjFjaThtOB4AEUkIIIUQ0cnPzWLJkGW+88R/a2lo57rgTSElJHdR96uzs5NFH/8Lq1R/T2NiA0+mkp6eHmprqPrfrf8I/e/ZcDhzYD8CePbtZu3bNgOAHoLKywhNIzZgxM6R9mjBhInfddV+fr6WlpQNw/PEn8eyzT3PeeWdz5JHLWb58BcuXHxN2Zqe4eDTJycme/+fk5JCQkOj5v6qqZGZm0dTU6Pnau+++zXPPPUNlZQXd3V04HA5GjSoKeD979uymrKx0wLFxOp1UVlZIICXEYc1hgHOwd0IIIYTwzcwMhZ8d6s9iUXE49Oh3KIgzzjiLhx76A52dnfzqV3f4vI2iKBheE1AdDkfc9uePf3yAL75Yyw9/eA2jR48hMTGRn/70Gux2e7998r2fAF1dXRxzzPE+s035+fmefyclJQ/4vi9WawJjxoz1+b3CwkL++c8X+fzzz1i7dg13330706bN4P77f+/Zn1BYLH1P7xVF8fk1XTcfh61bN3Pbbb/g0kt/wNKly0hNTeW1117h3XffDng/XV2dzJo1m5tuunXA93JyckLe3+FMAikxMhkGivu9W49ipLUQQgghADj66GO5995fk5ycwsKFi33eJisrm8bGBs//9+zZFXCbFosVpzN4EGixWND1vldHt2zZxBlnfJljjz0egNbWVurqagb87LZtWzn55FM9/9++fSvLl5tZlmnTpvPRRx9QVFSMpmlB9yNaSUlJHHvs8Rx77PGceuoZXH75xdTU1FBYWBjysQjXli2bKS4ezTe/ebHna9XVB/vcxtd9T506nffff5ecnJxBzz4OlsN/FZgQvjj9/FsIIYQQEbFYLDz77Es88cTTfjMoCxcu5oUX/sWePbvZsmUTjzzyp4DbLCoqoqOjnfXr19Hc3Ex3d7fP2xUWFrNu3ec0NNTT2toKwJgx43j//f+xe/cudu3ayS233ORpROHt3Xff5o03XqOsrJQ//el3lJWVcvbZXwVg1aqv0dTUwG233czOnduprKxg9eqPueeeO8M5NB5Op5OGhvo+f5qamgB4443X+M9/XmXfvr1UVlbw7rtvkZaW7snuFBUVsXHjeurqamlubo7o/n0ZO3YsVVUHeffd/1JZWcHTT/+DNWtW97lNUVGRp5SvubkZh8PBl750Gqmpafz859exadNGDh6s5Isv1nLffb+mra0tZvs3lEkgJUYmh1cWyikZKSGEECIWUlPTAmYnrrzyR2RlZfP973+He++9i0suuSzg9ubOnc/ZZ6/iF7+4gTPPPImnnnrC73bXrFnNqlVncMklFwJmc4mUlBS+//3vcOON17Fy5YmMGzd+wM9+97uX8eabr3PxxRfwwQfvcfvt91BYWAhAfn4Bf/rTo9hsNn70ox/yrW+dzx//+GCfrn/h2LNnF2effWqfP9/+9tcB89i9/PILfP/7l3Dxxd9g584d3HvvA57ZXN/97veprKzg/PPP4cwzT4ro/n1ZseI4zjvvAn7zm7v5zncuZO/eXVx44bf73Oass77CmDFj+O53v8mZZ57E5s0bSU5O5o9/fIS8vFxuvPEnXHTR17j33rtQFNWzz4c7xfAuVBV+2e1Omps7D9n9qapCbm4aDQ3tnhpWEUPtOqm3m6UFXbfmoSeFXnssQifP4/iS4xt/cozjS45vL4fDQX19JXl5owesZ4nWoVojNRytWLGEe+75LUcfPbCZRKjk+MZfPI5xoNdcVlYKVmvwUk7JSIkRSfHOSDlG9oe3EEIIIYQInwRSYmTyCp4UuYgkhBBCCCHCJF37xMjk3W1Vmk0IIYQQI9LHH68b7F0Qw5hkpMSIpEizCSGEEEIIEQUJpMTIJBkpIYQQQggRBQmkxMgkGSkhhBBCCBEFCaTEiKTYvQOpwdsPIYQQQggxPEkgJUYmr+BJkYyUEEIIIYQIkwRSYmTyzkhJ+3MhhBBCCBEmCaTEiKR4N5uQgbxCCCGEEFFbv34dK1YsobOzc7B35ZCQOVJiZHJIRkoIIYSI1p133sIbb7wGgMViYdSoQk477UwuuuhiLBY5zQSoqjrI1772Zf7+92eYNGnKYO+Ox+uv/5u77rp1wNdzcnJ59dW3gv78lVdexowZs7jyyh95vjZ37nxeeeVNkpOTY7mrAzz66F/49NOPefTRf8T1foKRZ7gYmaRrnxBCCBETy5cfww033ITd7mDTpvXcc8+daJrGN7/5ncHeNex2O1ardbB3IySDsa8ZGZn84x/P9vmaqmoRb89qtZKbmxftbg0bUtonRiTv0j5FuvYJIYQQEUtIME+eCwsLOeWU0znllNP4+OMPAWhtbeHWW2/m1FOP56STVnDDDddSXV0NQHt7O8ceewS7d+8CwOFwcNJJK7j22is82/7Xv57m0ku/5fn/vn17+PGPr+Kkk1Zw9tmncPfdt9Pe3u75/pVXXsYDD9zHAw/cy+mnn8iNN/4UMDMYq1adwcqVR/GVr5zOX/7yR8/PnHvuWTzxxKP88pc/56STVrBq1Rn85z+v9vkda2qqufnmGzjllOM444wTufnm66mvr+tzm1dffYmLLvoaK1cexTnnnMaf//x7AL72tS8D8K1vfZ0VK5Zw5ZWXAWY27+abr+exxx7h7LNP4ZJLLgRgxYolfPLJR57tdnZ2smLFEtavXwf0ls+tWbOab3/765xwwtH85CdX09rayrvv/pfzzjubU089nvvuuxunM/BJjqJAbm5enz/Z2dme77/44nOcf/45rFx5FF/+8inceectnn3fuHE9zzzzJCtWLGHFiiVUVR0cUNr3+uv/5owzTuTDD9/n61//CiedtILbbvsFNpuN559/hnPOOY0zzzyJv/3t4T779fTTf+eb3zyPE088mlWrzuCBB+6np6fHs83HHnuEkpIdnvt+/fV/A9Da2sqvf30bZ5xxIqecchw//vGVlJYeCHgMoiEZKTEySUZKCCGEiIvExETsdjsAd9xxC9XVB7n33t+RmJjIgw/+hhtv/AmPPvokaWlpTJkylY0b1zN16jR27NhGYmIiW7duxuFwYLFY2LBhPQsWLAKgra2Nq6/+Aeec81V+9KOf0NnZxe9//xvuvPMWfv3r+zz3/5//vMq5557PQw/9DYD33nuHf/3raW655S4mTpxMfX0t5eVlffb56af/zsUXf49LL/0+H3/8IffccwcTJ05i1qw5OBwOfvKTq5g3bwF//vOjgMKjjz7EDTf8mEceeQJQef31f/Pgg/fzwx9ew9Kly2hpaWHXrp0APPLIE3zve9/m97//C+PGje+TdVqz5jNSUlJ54IE/h32cH3/8Ea677kY0TeOmm67nF7+4gZSUFO6++35qamq46abrmTdvPl/60mlhbxtg587t/O5393Hzzbcyd+58mpub2bFjGwDXXPNTysvLmDJlGt/5zqUAZGVlU1V1cMB2Ojs7efnl57n99ntobW3hxht/ys9+9mNGjSrkd7/7Mzt2bOOOO37FkiVHMG/eAgA0TePaa6+nqKiY8vIy7rvv11itCVx++RWceOLJ7Nu3l3XrPuf++x8EIC0tDYBf/vJnJCcnc//9fyAlJZnnnnuWa6+9gqeeej4u5YYSSImRySFzpIQQQgxtCf9qxbLNFptthXg7x+wEbOdlRHw/27Zt5a233uDMM8+mrKyUTz/9iIcffpxZs+YA8Ktf3cG5557FunVrWLr0SBYsWMSGDV/wta99nY0b13PMMcezfv06du7cwezZc9i8eQNnnGFmdF544VlmzpzFpZd+33N/119/ExdeeC5NTY1kZ+cAMH78BC6/vDer9emnH5GTk8vSpcuwWCwUFhYyZ868Pvu9cOFiLrjgIgC+8Y1vsnHjF/zrX//kllvu5N1330ZRFK6//ibP7W+66VZOO20lO3duZ968eTz22CNceOG3WbXqawCMHQtz5swFzAADIDMzc0DZW2pqKtdff1NE68kuu+wKz+9x6qln8OSTj/Pvf79NZmYWkyZNYcmSpaxfvy5gINXS0sLJJx/T52vLli3njjvuoaammqSkJI4++hhSUlIpLCxixoyZgBm4WCwWkpKSgpby2e12rr/+JgoLiwA4+uhj+fzzz/i//3sAi8XC+PETeOqpJ1i/fp0nkDr//As9P19UVMwll3yPxx77K5dffgWJiUkkJyejaVqf+960aSMlJTt59dW3PMHqtddex4cfvsenn37MiSeeHOKRDZ0EUmJE6tO1TwIpIYQQImIfffQBJ598DE6nE6fTyUknncIll1zGunVrsFqtzJw523Pb/PwCioqKOXDggCuQWsw999yOYRhs2LCeU045DcMw2LjxC5KSkmhra/OcXO/Zs5u1a9cMOPEHqKys8ARS7pN9t+OPP4lnn32a8847myOPXM7y5StYvvwYVLV3hYs70HObPXsu77//rud+y8pKB9yv0+mksrKCyZMnU1V1kEWLloR97CZPnhpxU47Jk6d6/p2Tk0NOTi6ZmVmer2Vn59DU1BhwG+npGa6sWq+kJDNzs2TJEeTnj3Idt6M58sjlHHvsShISQg3LTampqZ4gyr1fY8eO7fN75+Tk0tzc5Pn/2rVr+Mc/HqO09ACdnR3ouh60THHPnl10dLRz+ukn9Pl6T08PBw9WhLXPoZJASoxMUtonhBBiiLOdl0Es8lEWi4rDEb8WtUuWLOPaa6/DYrGSl5cXNDAwDANFMf+9YMFCWltb2bNnF1u3buaGG25C13X+97//kpSUxOTJU8jIMDNkXV1dHHPM8X2yTW75+fmef7sDAbfCwkL++c8X+fzzz1i7dg13330706bN4P77f4/i2hH3397cX+vq6mTWrNncdJOvDnc53j8R8Pf2JTk5yef9GkbvuYnD4RhwG6DPcVYUZcBx778dX1RVYcyYsT6/l5qaxuOPP8369etYs2Y1f/7z7/nHPx7n4YcfIzFx4H7742u/NK3/c0RB183naFXVQW644VpWrTqPyy+/kvT0dL74Yg333/9/Ae+nq6uT/PwCfve7gWWS7udQrEkgJUYmaTYhhBBCxERycpLPk/Hx4ydit9vZsWObJ+NTV1dLdXUV48dPBMyucZMmTebZZ58mMzOLUaMKWbhwMQ88cC8Wi4UFCxZ7tjdt2nQ++ugDioqK0bTwOsslJSVx7LHHc+yxx3PqqWdw+eUXU1NTQ2FhIQDbtm3pc/tt27YybtwEAKZOnc77779LTk4OKSmpA7ZtsagUFRWzfv1a5s9fMOD77jIzpzO0YDYrK5vGxgbP//fs2RXSz8WDxWLhiCOO5IgjjuTCC7/Fl798Cjt2bGfBgkVYrVZ0PfYnUSUlOwD6tFV/441/97mNr/ueNm0G9fV1WK1WRo0qjPl++SJd+8SIpEhGSgghhIircePGs3z5Mdx99+1s2bKJXbt2ctttv2Dy5CksWXKE53YLFiziv/99k4ULzaYShYVFZGRk8umnH3saTQCsWvU1mpoauO22m9m5czuVlRWsXv0x99xzZ8D9eOON1/jPf15l3769VFZW8O67b5GWlt4nm7Rx43qeffYpyspKeeaZJ/nss08499yvA/ClL51GamoaP//5dWzatJGDByv54ou13Hffr2lrawPgkksu46mnnuDFF5+joqKcnTu38/LLzwNmYJSYmMiaNZ/S1NTYp8ugLwsXLuaFF/7Fnj272bJlE4888qcwjnp4DAMaGuoH/AH45JOPeP75Z9i9exdVVQd5443XsFgsFBePBqCwsJht27ZSXV1Fc3OzJ6MUrdGjx2Kz2XjhhWeprKzgtdde4T//6RtIFRYWU1lZye7du2hubsZms7FkyRHMmjWbn//8J6xd+xkHD1ayadNG/vjH38Wtc59kpMTIJM0mhBBCiLi76aZf8cAD9/HTn16N0+lk0aKl3HTTrX1K6RYsWMQLL/yLhQsX9/nam2/+h/nzF3q+lp9fwJ/+9CgPPfR7fvSjH2K32ykqGs0xxxwXcB9SU9P4xz8e43e/ux/DMJg6dRr33vtAn7U+F1zwTbZs2cTDD/+JjIxMrr/+Rk+ziOTkZP74x0f4858f5MYbf0JXVxcFBaNYuvRIzzZOO+1Menq6eeaZp3nwwfvJzs7h1FPPAMyszo9+dB2PPfYIDz/8J+bNW8Af/vDwwB11ufLKH3Hnnbfy/e9/h+Li0Vx11bVce+2VYRz10LW2tnD22acO+Pq7735CWlo677//Px599GHsdhvjxk3gzjvvpaBgFAAXXHARd955CxdeeC49PT0899yrA7YTialTp3HVVdfy97//jT/96UEWL17K5Zf/kF//+nbPbY4//gQ+/PB/XHXV5bS3t3Hjjb/i9NPP4r77HuShh/7IHXfcQmtrC7m5eSxcuDhupX2KEax4UgBgtztpbu48ZPenqgq5uWk0NLSj6/IQxVriYy1YdpqV5/aTUrCdPDBVL6Inz+P4kuMbf3KM40uOby+Hw0F9fSV5eaMjbj7gT7zXSA135557FhdccBFf/er5Ef28HN/4i8cxDvSay8pKwWoNXj4qpX1iRFIkIyWEEEIIIaIggZQYmWSNlBBCCCGEiIKskRIjk3TtE0IIIQTw/PP/Dn4jIXyQjJQYkaRrnxBCCCGEiIYEUmJk8p5tJxkpIYQQg6y3iZ1c3BPi0DBfaz5mMYdMAikxMkmzCSGEEEOIqpqnZE6nI8gthRCx4H6tqWp4w529yRopMSJJaZ8QQoihRFFUEhNTaGtrRtMsQBSXyQduHYdDPuviR45v/MX6GBu0tTWTmJjSZ6ZZuCSQEiOTvfef0mxCCCHEUJCRkUNDQxX19Qdjul1VVdF1mXMUL3J84y8ex1hVNbKzC6LahgRSYmTyzkKN8CGQQgghhgZN08jPH42uOzFi9NGkqgrZ2Sk0NXWO+KHH8SDHN/7icYwVxQykoslGgQRSYiQyDBTvEnQpRxdCCDFEKIriKu2LDVVVSEhIwGKxyYl+HMjxjb+hfIyl2YQYeVylfIb7IsQQe1EKIYQQQoihTwIpMfLYXYFToiuSkjVSQgghhBAiTBJIiZHHnZFyBVKKdO0TQgghhBBhkkBKjDiKZKSEEEIIIUSUJJASI4+zfyAlGSkhhBBCCBEeCaTEyOOaIWVIRkoIIYQQQkRIAikx4iiSkRJCCCGEEFGSQEqMPO6MVIIrkJJh5EIIIYQQIkwSSImRx+HKQFkU0Og7nFcIIYQQQogQSCAlRhylTyClyEBeIYQQQggRNgmkxMjjykAZVsxgSppNCCGEEEKIMEkgJUaefqV90mxCCCGEEEKE67APpK6++mqWLl3KtddeO9i7IoYI79I+RZOMlBBCCCGECN9hH0hdeOGF3HPPPYO9G2IocTeXsGAGUwayTkoIIYQQQoTlsA+kli1bRmpq6mDvhhhKXBkpw91sAqQFuhBCCCGECItlMO987dq1PProo2zdupW6ujoeeughVq5c2ec2Tz31FI8++ih1dXXMnDmTm2++mXnz5g3SHouhqsvpoLKznfKudnqcDqyqRqKqYVVVElUNi6ri0HXshs7oVoOpaOzobGKKbiUVONjeTk56MknaoL4khBBCCCHEMDGoZ42dnZ1Mnz6dVatWcdVVVw34/uuvv86vf/1rbr31VubPn88TTzzBpZdeyptvvklOTg4AZ599ts9tv/jii2iaFtP9VVUlptsL5b4O5X0OJw09XbxYsZfSjlbKO9up6+kK+We/XTWGqYzljbpSvtpTxFRS+ckXH9GW4CBFs5CdkEiSZiFBVbGqGgmqSoKqMSophZMLxzEhNSOOv9nhRZ7H8SXHN/7kGMeXHN/4k2McX3J8428oH+NBDaSOO+44jjvuOL/ff+yxxzj//PP56le/CsCtt97K+++/z0svvcR3v/tdAF555ZVDsq8Wi0pubtohuS9v2dlSlujLc9v28FLFXgBUFMakpjE+PYMJ6ZmkWxPocTrp0Z3YnK4/uhOLKyCaV20e0xVjxpBZbYFWWJRTwAHaqe/uorKrw+/9vlSxl/m5+ayaOJWVo8eRGONg/XAlz+P4kuMbf3KM40uOb/zJMY4vOb7xNxSP8ZCtY7LZbGzbto0f/OAHnq+pqsry5cvZuHHjId8fh0OntTX0rEe0VFUhOzuVpqYOdGmEMMDBlnYArpm2gJWjxpCghh7QWDe2AV0syx9FYno3ek0PP5u8CCPL3EaPK/Ay/+jYdSc9us6W5nperzrApoY6NjXUcf/GdZxUOJbzxk0jw5oQj19z2JPncXzJ8Y0/OcbxJcc3/uQYx5cc3/gbjGOckZGM1Rr83HLIBlJNTU04nU7y8vL6fD03N5fS0tKQt3PZZZexefNmurq6OPbYY3n44YeZMWNGRPs0GC8QXTfkhelDm90GwPiUdCyoYR0jw27eVlcxZ0kBut3AcG3DqqhYNZVUzdrn5yanZvLl4klsbq7njeoDfNZQzYuurNglE2dH+ysd1uR5HF9yfONPjnF8yfGNPznG8SXHN/6G4jEesoGUP4ZhoCih10g+/PDDcdwbMVjaHXYA0izWILf0wd3+3OrdtS+0F6aqKCzIzmdBdj4bm+q4eetq6roPXaZSCCGEEEIMDUO2/Xl2djaaplFfX9/n642NjQOyVGLkaXOYGal0S/gldd4DeXFnbR1+b+5XYVIKAE32nvB/WAghhBBCDGtDNpBKSEhg9uzZfPrpp56v6brO6tWrWbBgweDtmBgS3BmplIgyUu45UqC4MlJKBKnirIREAJptEkgJIYQQQow0g1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRZDQbvDRqrFihZGmaeHO/vkPZDXGf5mkjQLyZqFJlt3+D8shBBCCCGGtUENpLZu3cq3vvUtz//vuOMOAK688kquuuoqTj/9dBobG3nwwQc9A3n/+te/emZIiZHJoet0OZ2MSkqM6Od7S/vwNJvAGdnixeyERA52ddDjdEordCGEEEKIEWRQA6lly5ZRUlIS8DYXXXQRF1100SHaIzEcuMv60iMp6wOv0j6vNVIRZKQAsq1mINVs72GUlhLZRoQQQgghxLAzZNdICeFPbyAV4ewmH6V9SqSBVEISIOukhBBCCCFGGgmkxLDj7tgXUetz+pb2KVp0pX1ZVrO8sMku66SEEEIIIUYSCaTEsBPVDCnom5FyF7fqkW0q29W5r0kyUkIIIYQQI4oEUmLYaXdnpKwRlvbZDQwFc31UlBkpCaSEEEIIIUYmCaTEsNNuj67ZhOIwzCBKid0aKWmBLoQQQggxskggJYadtliU9lldAVS07c89a6QkIyWEEEIIMZJIICWGnd41UpF27TPM1ucQdfvzLCntE0IIIYQYkSSQEsNOVF37DMMs43M3mfCskYpsX9xd+6T9uRBCCCHEyCKBlBh2PHOkrBEEUt4d+7z/jrC0z6KqZFgSaLJ3YxiRbUMIIYQQQgw/EkiJYcfTtS+S0j7XDCnDk5Ey/1IibH8OZuc+m67T6XQEv7EQQgghhDgsSCAlhp22aLr29ctIeQbyOiLPJrnXSUl5nxBCCCHEyCGBlBh22h12LIpCoqoFv3E/ijtg6l/aF01GSjr3CSGEEEKMOBJIiWHFMAzaHTbSLAkoihL+BjyBlOv/UQ7kBZklJYQQQggxEkkgJYaVHt2JwzCimyEFA9qfRzqQF8w1UiAt0IUQQgghRhIJpMSw0hZNxz68S/tcX7BE1/4cvAIpKe0TQgghhBgxJJASw0pUHfvAq7SvX7MJPYrSPquU9gkhhBBCjDQSSIlhxd2xL9alfUTRuTxLSvuEEEIIIUYcCaTEsOIexhtpIOW3tC+ajJS0PxdCCCGEGHEkkBLDiru0Lz3i0j7X356MlKvEL4o1UumWBFQUmuxS2ieEEEIIMVJIICWGFXdGKqJhvOBZIzWgtC+K9ueqopCVkEizzYZuRL4dIYQQQggxfEggJYYVd9e+tBh17fM0m4giIwVmeZ+OQZvdFt2GhBBCCCHEsCCBlBhW2u3Rdu1z/d2vtC+ajBRAtlVaoAshhBBCjCQSSIlhJdpmE72lfa7/W6JfIwWQnSAt0IUQQgghRhIJpMSw0rtGKrKMlDIgI+X6vx7dfmVLC3QhhBBCiBFFAikxrLR5BvJGl5GS0j4hhBBCCBENCaTEsBLr0r7YNZuQ0j4hhBBCiJFEAikxrLQ57CRrGhY1sqeuYnf9w52R8qyRii4jlSWlfUIIIYQQI4oEUmLYcBoGnQ575B37zI2Yf7ubTXjmSEWzZ16lfRJICSGEEEKMCBJIiWGj02HHIIqyPgC7q7TP2m+NlB7lGilXRqpZ1kgJIYQQQowIEkiJYSPajn3g1eZc69e1z+Hr1qFL1iwkqpqskRJCCCGEGCEkkBLDRtQd+8CTkcK1CUVRMDSibn+uKApZCYm0OezY9Sg3JoQQQgghhjwJpMSw0ebu2GeNIpByZaQMd0YKQI2+2QT0rpNqkfI+IYQQQojDngRSYthot0fZ+hxQPBkpr0DKokTdbAJkKK8QQgghxEgigZQYNtpdpX3RrJHydO3TvL6mEvVAXpBZUkIIIYQQI4kEUmLYiHoYL4BrjpThnZHSlKjXSIFXC3Qp7RNCCCGEOOxJICWGjbYYZKSU/nOkAEMDRSfqFugylFcIIYQQYuSQQEoMG7HMSGHpl5GCqLNSvWukpLRPCCGEEOJwJ4GUGDbaY9G1z2FgKPR95rvXS0XZcCLb6l4jJRkpIYQQQojDnQRSYthwd+2LqrTPYZhlfYqPjFSUDSfcGalmWSMlhBBCCHHYk0BKDBsxGcjroG9ZH8QsI5UlpX1CCCGEECOGBFJi2Gh32FFRSNEswW/sj8PA6BdIGar5/2iH8iaoGqkWq2SkhBBCCCFGAAmkxLDR7rCTZrGiKErwG/uiGyhO+nTsA6//x2IorzWRLqeTLqcj+o0JIYQQQoghSwIpMSzYdCc9ujO6RhPuQKl/aZ/7VRBl+3PwWiclDSeEEEIIIQ5rEkiJYSEmrc8dZqBk9M9IeZpNRL5pt+wEd+c+WSclhBBCCHE4k0BKDAux6NiHu9rOT7OJaNdIAWRZXQ0nZJ2UEEIIIcRhTQIpMSzEomOf4spI9Q+kjJhmpNyd+ySQEkIIIYQ4nEkgJYaFWJb2DWg2EaP25yCBlBBCCCHESCGBlBgW2j0ZqehL+/q3P4/VQF6AbKtrjZRd1kgJIYQQQhzOJJASw4I7I5UeRdc+JUhGSpGMlBBCCCGECJEEUmJYaLPHsrSvf/tz1/+l/bkQQgghhAiRBFJiWPBkpKIp7TM3MbC0L4YDeTOsiahAs3TtE0IIIYQ4rEkgJYYFd9e+1Gi69jl9l/YZauzWSGmKQoY1kSZbN4YR/faEEEIIIcTQJIGUGBZ6M1JRlPa5MlL+5kjFIiMFkJWQiMMwaHPYg99YCCGEEEIMSxJIiWGht/15FKV9royTv659sRjIC5CXYHbuq+/pisn2hBBCCCHE0COBlBgWYjKQ1x7/OVIAeYnJgARSQgghhBCHMwmkxLDQbreTqGokalrwG/vjDpT8lfbpkW/aW4ErkKqTQEoIIYQQ4rAlgZQY8gzDoN1hj6rRBACujJTRbzOGeyCvIzalfflJEkgJIYQQQhzuJJASQ16X04GOEV2jCbwG7mq+M1JKjDJSeQkSSAkhhBBCHO4kkBJDXpsjBsN4wZORwuq72UQs2p+DZKSEEEIIIUYCCaTEkOdpfW6NomMfeEr3jP7LrGLcbCI3IRkFCaSEEEIIIQ5nEkiJIa/NHn3HPgDF4fpHnDNSVlUlOyGRhp5unDKUVwghhBDisCSBlBjy2mNV2uduJtGva5/hehUoMcpIAeQnpqBj0GTrjt1GhRBCCCHEkCGBlBjy2j0zpGJU2jdgjpQ7IxXd5r3lSwt0IYQQQojDmgRSYsjzrJGKVWmf3zlSsSvDy0tMAiSQEkIIIYQ4XEkgJYa8mHXt85T29ft6XDJSKYAEUkIIIYQQhysJpMSQ51kjFXXXPvMvw19GKkbNJsCrtK9bAikhhBBCiMORBFJiyItd1z7fzSbcGanYNpswA6l6mwRSQgghhBCHIwmkxJAXqzVS/kr7DMlICSGEEEKIMEkgJYa82HXtM//yX9oX3ea9ZVoTsCqqrJESQgghhDhMSSAlhjx3Rio1zqV9scxIKYpCXmIyrQ4b3U5H8B8QQgghhBDDigRSYshrc9hJ1SxoihL8xoH469rnHsirR7f5/jzrpHpkKK8QQgghxOFGAikxpDl0nS6nI/qOfQAOMBQGPustsW9/DlCQ5B7K2xnbDQshhBBCiEEngZQY0hptZjYnMwaBlOIwzGxUv8yW4X4VxLC0DyAvwR1ISUZKCCGEEOJwI4GUGNJKO9sAGJeSHv3GHAxcHwVxGcgLkC8ZKSGEEEKIw5YEUmJIK+1oBWB8Skb0G3MYAzv2QW/XPj22GSlPC3Tp3CeEEEIIcdiRQEoMae6M1ITUKDNSumEO3O3faAJ6B/LGuLleb7MJCaSEEEIIIQ43EkiJIc2dkZqQGmVGyl22dwgzUnmSkRJCCCGEOGxJICWGLKehU97ZToYlgSxrYnQbc7U+N3xlpDzNJqK7i/6SNQvpFit1PV0YRmyDNCGEEEIIMbgkkBJD1sGuDuyGzvjUdJQoZ0h5yvZ8ZaQUBUMj5oEUmFkpm67T6rDFfuNCCCGEEGLQSCAlhqzSDnN9VKwaTQC+AykAFZQYtz8HaTghhBBCCHG4kkBKDFmlne71UbFofR6gtA/MACsOGSlPINUtgZQQQgghxOFEAikxZB1wtz6PttEEoNhd/wiQkYr1QF6Qzn1CCCGEEIcrCaTEkOVufT4+FsN4nYFL+wxNAT36u+lPSvuEEEIIIQ5PEkiJIanb6aCqq4P8xGRSLNboN2h3lfb525QGio4M5RVCCCGEECGRQEoMSRWd7RjEYH6Um7trn+antM/99RhnpWSWlBBCCCHE4UkCKTEkHXA1mohJWR+guLv2+ctIxWmWVG5iEioSSAkhhBBCHG4kkBJDkqf1+SHKSBma6x8xbjihKSq5ick02rpx6HFYhCWEEEIIIQaFBFJiSPJ07ItRRsrT/twapLQvLkN5kzCARlt37DcuhBBCCCEGhQRSYkgq7WxDRWFsSlpMtucp7dP83MD19fgM5U0BoFbK+4QQQgghDhuHdSC1b98+vv71r3PmmWeyatUq1q1bN9i7JELQZrfRaOtmdHIqVtVf5BMmd2lfsIyUtEAXQgghhBAhsAz2DsRTYmIid911F5MmTWLv3r388Ic/5K233hrs3RJBuOdHxaxjH/SW9vl7xsdpjRT0du6TobxCCCGEEIePwzqQGj16tOffkyZNoq2tDcMwUBQ/WQkxJLjXR41LjdH6KLxK+wIN5IW4rJEqkIyUEEIIIcRhZ1BL+9auXcv3v/99VqxYwfTp03nvvfcG3Oapp57ihBNOYO7cuZx33nls3rw5ovt69913mTlzpgRRw0CpK5CakBLLjJTrbz+BlPuVEJ81UhJICSGEEEIcbgY1I9XZ2cn06dNZtWoVV1111YDvv/766/z617/m1ltvZf78+TzxxBNceumlvPnmm+Tk5ABw9tln+9z2iy++iKaZ9VqVlZXce++9PPzww/H7ZUTMuEv7xscwIxW8tC+yjJRS78TIUUH1H6DLUF4hhBBCiMPPoAZSxx13HMcdd5zf7z/22GOcf/75fPWrXwXg1ltv5f333+ell17iu9/9LgCvvPJKwPtob2/nhz/8Ib/4xS8YP358VPurBjhZjjX3fR3K+xwKDMOgtKOVRFWjOCUNNUYZRNUVIClWdcCxVVXF80pQDQIGRX22ecBO4h+bsJ+WiuOEVL+3y0xIIFHVqO/pGnGP50h9Hh8qcnzjT45xfMnxjT85xvElxzf+hvIxHrJrpGw2G9u2beMHP/iB52uqqrJ8+XI2btwY0jacTifXXHMN5513HitWrIhqfywWldzc2LTiDkd2tv8T9MNRTWcHHU4HM7NyyM+LXUbKZunCAWTkJKPlpvT5XnZ2Kj0pHTjpISM1GS03OaRtOna1YQOSu1QSgjw3ilJTOdDWSlJGIqlWa4S/xfA10p7Hh5oc3/iTYxxfcnzjT45xfMnxjb+heIyHbCDV1NSE0+kkLy+vz9dzc3MpLS0NaRsffvghn332GfX19fzrX/8C4B//+AcZGeGvvXE4dFpbD11plqoqZGen0tTUga7Hft3OULWhoQaAMUlpNDS0x2y71jY7FqC1qxu9wexx7n2MNYfD/H5TJ3pDaPV9WkM3CUB3u522IPuabUnkALCrqo5xsexGOMSN1OfxoSLHN/7kGMeXHN/4k2McX3J8428wjnFGRjJWa/ARPEM2kPInnK57K1euZNu2bTG778F4gei6MaJemPvbWwAYl5we29/btUZKVwc+jrpuoLqaTRiO0I+32uMaOmUP/jP5CWaWq6arizHJMVz7NUyMtOfxoSbHN/7kGMeXHN/4k2McX3J8428oHuMhO5A3OzsbTdOor6/v8/XGxsYBWSpx+OidIRXjYMPT/tzP99Xwm00oPa5t2oO/qHs793WGfgdCCCGEEGLIGrKBVEJCArNnz+bTTz/1fE3XdVavXs2CBQsGb8dEXLlbn4+Pdfmbq/254W+OlDvACqP9uSeQcgT/md7Ofd0hb18IIYQQQgxdg1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRbx4jR0yjvbybAkkG1NjOm2gw3kjSQjhc1wbTv4TQuTzAYXH9ZVclrReE9gJYQQQgghhqdBDaS2bt3Kt771Lc//77jjDgCuvPJKrrrqKk4//XQaGxt58MEHqaurY+bMmfz1r3/1zJASh5eDXR3YDZ3pqemxH5wcrLTPtZ5QCae0zxZ6ad+szFyW5RSyprGaGzZ9wp1zj6Iweeh1nxFCCCGEEKEZ1EBq2bJllJSUBLzNRRddxEUXXXSI9kgMptIO1/qolDh0tQtS2ucOpMIp7SOM0j5NUfj5zCXcX7Kej+oPcsPmT7hj7lGMTRl5jSeEEEIIIQ4HYa2Rstls/PnPf2bnzp3x2h8xgh3wrI+KfXCh2IOU9mmur+thbNMVSCn20G5vUVV+OmMxJ40aS4Otm59t/oR9ri6FQgghhBBieAkrkEpISOChhx6itbU1XvsjRqhup4P/1pjr5WZmxKF00xm4tM9Q+90uFGGU9rlpisLVUxdwZtFEWuw2fr7lU0pam0K/TyGEEEIIMSSE3bVv3rx5MZ3NJATAqwf302Dr5ui8IibEY2Ct3RUsaX4yUq5MVVhrpNwZqRBK+7ypisLlk+dw7pgpdDjs3Lx1NY026eYnhBBCCDGchB1IXXfddfzzn//kySefpLy8nM7OTrq6uvr8ESIcLbYenivfjaYofHvCzLjch+I0etdB+RJNRiqErn0D9sf1u55aOJ4up4P/1ZSHvxEhhBBCCDFowm42cd555wFmh70777zT52127NgR3V6JEeWZ8l10OR2cVTyR4uS0+NyJHbAG6ASoRTCQN4LSvj4/ryh8uXgSb1aX8k5NOV8dMyX23QqFEEIIIURchB1I3XXXXXKyJ2LmYFc7r1cdIFmz8PWx0+J3R04DI9F/AtaIomufort+zl/ZYADjUtOZlp7FrrZmStqamBGP9WFCCCGEECLmwg6kVq1aFY/9ECPU3w/sxGkYfG3MFDITYjuE10M3UJxgWAPcRgtzjZTD6HtbJ4FLBwM4qWAsu9qaeaemXAIpIYQQQohhIuw1Um579uzh5Zdf5qGHHqKurg6A0tJS2tvbY7Zz4vBW0trEx/UHyUlI4sujJ4X3w04DpSbExUnugCdQxsgdBIXa/tzWL3MVYXkfwLH5o7EqKh/WVdLjDKO2UAghhBBCDJqwM1IdHR3ceOONvPXWW1gsFpxOJ8cccwz5+fn85je/obi4mBtuuCEe+yoOI4Zh8Lf9ZvfHi8bPIEkL76lo+aybxFfb6f5WBs7ZQTJZriDHCLhGyvV3iKV97o59nv/bDSINpdKsCRyZW8hH9QdZ3VDF8QVjItySEEIIIYQ4VMIOpO6++242bNjA448/zqJFi5g3b57ne8cddxx/+9vfJJASQX3eWMO21kbGp6Rz4qixYf+82mhmbixru4MGUp4SvACld4YaZrOJ/hmpCDr3eTupcBwf1R/k3ZpyCaTEYau6q4MXKvbQrTtRMEcBKCgoCizKKmBFfvFg76IQQggRsrADqbfffpubbrqJI488Eme/MqTi4mIqKytjtnPi8OQ0DB7bvx2A70ychRZJ8xLX7CZtlw06dUgJUKXqLruLY0YqmtI+gAVZ+eQmJLGxuY7a7k4KklKi2t5hw26gtOsY2REuQBNDRrfTwa3b1lDe5bv8++3qMm5Wl3JkbtEh3jMhhBAiMmEHUj09PWRlZfn8XkdHB5omJzxDhfU/7SjtOrbz4zDgNgp72pup6GpnZkY2i7MLItuIK3BRnGDZ2oPjiGT/t3UFXUagp2a4zSb6ZaQUR+SlfebdK5wwaizPle/mvdoKzh8Xxw6Gw0jic21o23ro/HkupEW8pFMMAX/es4XyrnYWZedz3thpGIb5mtENg8qudv68dwu/KdnAbxemMzpeYxCEEEKIGAr7zGTu3Lm88sorPr/31ltvsXDhwqh3SsSGdU031vU9UWdLYq2ktQmARdkFEbfSV7xK6Swbe0K7bTwzUo7oj/FJBWaJ4zs15RjG0HrMBovS5ERxgFobZe2kiIldbU3U94Q/dP2dmjLerS0nNyGJn0xbxJzMXOZm5TEvK48F2fmcUTyR88dOpdPp4K7ta+l2xu/x1g2Dj+oqabEFft8QQgghggk7kLrmmmt4++23ufjii3nuuedQFIUPPviA6667jjfffJOrrroqHvspwtWle072lY5QW9EdGjvbzEBqRnp25BtxZ5kUUPfZUVoDpJLcQY4lhIG8EXbtU+wh/lwAo1PSmJmRTVV3B9tbG6Pf4OHAdRFAbRpaz+GRaF97Cz/d+BE3bPqETkfogU5pRyt/3rMFFYXrZiz2O+bgG+NnsDArn9LONn6/e5PfiwmWL7qxfNQZ0e8AZgnhPTu/4L6S9RFvQwghhIAIAqklS5bw+OOPY7PZuP322zEMg9///veUl5fz2GOP9Wk+IQaP0tJ74jnUAqmS1iYUYFo0gZTrBNs51YpigLY5wNVld9AVoJDVU/YXYmYpHhkpgBMLxgFmVkr0BqhKo7SFH2xPl5WgAzU9nfx1/9aQfqbb6eCenV/Qozu5aMIM5mTm+r2tppiBVkFiMh/UVfLqwf0+b2d9vZ3E1zrMtZFhsutOni3fBcCG5jo2NNWGvQ0hhBDCLaJFB4sXL+bpp5/miy++4IMPPmD9+vU888wzLF68ONb7JyKkNveeeCrtQ6dMrMnWTU1PJ2NT0km1BJqQG5i7XM+xJAkIXN7nKe0LmJFy3TbUc7OefsFZjMonj8kvJlHV+Li+Mq7lTcOGey2cBFKDak9bM581VJObkESWNZG3q8tY21gT9Oce2ruFss42FmXnc+6YKUFvn2FN4Oczl2JVVP62fxtbWxr63sAwUDpdWcqD4b8+3q4uo66ni/xEc03l4/t3oA9SGe2+9hYabd2Dct+HHbsB+tD5nBNCjBxhB1KrV6+mq8uskU9KSmLUqFEkJwdY6C8GxVDNSJW4yvqmR5ONAk8GSJ9oRc9V0codKA1+TrY9pX0Bthdm+3PFVdpnpJovISVGMU+qxcpRuYV0OZ18Un8wNhsdxhQp7RsSniorAeDr46Zx1dT5ADy4ayOtdpvfn3m3ppx3asrJSUjix9MWoYa4HnJqehY/mDIXp2Fw9451NPR4BRs9hudih1oZ3ovOpjt5tnw3ADfPOoLp6dns7Wjho7pD22m2xdbDvTu/4OoNH3Ddxo9H/AWTz+qruGv9Gmq7IyzX1A2S728k8e+tsd0xIYQIQdiB1CWXXMLSpUv52te+xj333MM777xDU1NTPPZNREFp9jrxbB86J6E7W2MVSJl/GRYFx3xXVmqTn6u7Xrf1yx1khdlswh1IxbKhx0mjzPK+P+7ZzFOlO0f2iZZkpAZdSVsTaxtrKEhM5qRR41iWW8hJo8bSZO/hob1bBtxeNwxertzL73dvQgWun7GYLD/rovz5UuF4TikcT7PdDDqchvke5s5GAWhhZqTerCql0dbN8twiJqdlcvGEmQD8vXQndj3+75GGYfC/mnJ+8MV7fFBXiYJZJvlM2a643/dQpBsGTx7YyW3bPueVA3u48ov3WdNQHfZ2lHYdtUmPKEMphBDRCjuQ+vTTT/ntb3/L4sWL+fzzz7nmmmtYvnw5Z5xxBr/85S959dVX47GfIkxKi1dp3xDMSM3IiC6QUrxmQzkWmCdplk1+yvtCaDYR8UDeVKXvfcTA/Kw8vuU6yftn2S5+8MV7fFx3cOR18jOM3jVSrXpMj3E4NjTVcu2GD9nX3hLxNjocdtoDZG8GU2lHK+0O/91Sni7tzUZZVfMj43uT5pCfmMyHdZV9MjpNtm5u2fYZf923DYArp84PuC4qkMsnz2FyaiZbWxt4yrUPite6qHAyUt1OB8+5slHfGD8dgLlZeSzNGUVNdydvVB2IaB9DVd3dwS+3fsZvdm2g1WHj9KIJ/HHRSpI1jZcq91LaMbKyKZ0OB3ftWMsz5btI1iycOnYC7Q47t2//nEf2bg0rsFVaXUF2/3WrQghxCIQdSGVnZ3PyySfzs5/9jBdeeIG1a9fyxz/+kZycHP71r39xww03xGM/RZjUZu/SvqHxAeM0dHa3NZOsaYxNSY9uY+6Tag2MURacRRpqtROleuDJlRJKaZ+72USIdfYDSvti0LXPs21F4byxU3lo8QkcnVdEXU8Xd+9cx8+3fMr+jshP5ocdr4dSMfpmWau6OrDrhyZL9VLlXna3N3NfyXpsEdxnt9PB1Rs+4Fufv81j+7cHDFoOtQMdrVy1/gOu+OI9n8+tHa2NfNFUS2FSCie42vODWYJ6zdQFAPxpz2Yabd2sa6zhqvXvs76pjnEp6fx24TF8qXB8xPuWoGrcMHMxyZqFf5Xv5ovG2j4ZKaXeCT2hnXC/UVVKk72HY/KKmZDaO1fv2xNmogDPlO2iM06Py+r6Kq744n02NNcxJjmNe+YdzQ+nzGNcajoXjp+B0zD4057NI+ZCSVVXBz/d9BGfNVRTnJzKbxcey61Lj+ZXs5eRbrHyysF9XL/pY6q7OkLantLmeg70GDBCjqEQYuiIqNlER0cHH3/8MQ888ACXX3451157LSUlJRx//PH8+Mc/jvU+iggozUNvjVRpRxvdupOpadloEc6P8nC4Ou25MknO+QGaToTUbCLMgbz9S/vikC0pSErh5zOXcufcoxiXks7WlgauWv8BP974IS9U7An5RGPY6lcuqTQ6aXfY+W3JBr637l3uL9kQ911od9jZ1FwPQFlnG08e2Bn2Nl6p3EdNdyc2XeeFij1cuvYdXqzYE1FQFmv/qy1Hx6DB1s0Nmz5hY1Ndn+8/VWr+vheMm4ZF7ftxsSA7nzOLJtLmsHPdxo+5Zdsamu02Tiscz28WHMPE1Myo9684Oc0TsN1fsp62lt7yXcUA9WDwY9jtdPB8xW4U4IJx0/t8b0JqBieOGkurw8aLFXuj3t/+mm09PLh7IzbdyQXjpvH7Rccx2ytDd1bxRCamZrCttZF3a8Pr1KkedJD0l2aUmuFT0raxqY5rN37oaUDym/nHMC7VvKi2LK+QBxcdz6yMHHa3N3P1hg94fP923qwqZX1TLZWd7T5fM56MlAEMnWsUQogRItA1ep9WrVpFSUkJubm5LFmyhFNPPZWbbrqJ6dOnRzxcVcSYYaC0ODEU15X8IbJGyl3WNzPKsj5wZZm8AiPH/EQS3uzAsqkb+ykpoChgGKh77VjWmidfAddIRTiQ14hDaV9/87Py+f2i43i9qpRXK/eyq62ZXW3NPLZ/O5PTMjk6t4hTisaTaQ1vHcpQp/QLpMormrixaRMNrk5nH9cfZF97C5PSoj9h92dtYw1Ow2BRdj4lrU28VLmXI3ILQy5Xa7b18HzFHiyKwh1zl/NebQX/rS7lb/u389rB/Vw4fgYzM7JJtVhJs1jRlIiubUXEHEx7EAU4s3gi/z64n19t+4xrpi7ghFFj2drSwMbmeoqTUzm+YIzPbVw8cSbrm2s52NVBusXK1VMXcFReUUz3c0V+MWe1mvv3bkUpX6cQI1lB6TJQD9rRJwbu/vnawf202G0clz/ac9Lu7RvjpvNBbSUvVe7l9OIJ5CQkxWzfH9m3lTaHnTOKJnDh+BkDvq8pKldMmcd1mz7mb/u2c0ROIRnWhJC2rW3rQdtnRyux4RgV9kd5bDgMEl5tx7EoCX1C4Mdha0sDv9r2GU7DYNWYyXx7wqwBF9TyE5P59bzlPFlawnPlu3m+Ys+A7YxNTuPGWUs9VQ2ejBTm+7KRIOchQohDJ+x335KSEiwWCwsWLGDhwoUsWrRIgqihpsNAcYCer6HUOYdMaV/MGk2Ama1I6n3OGTkaznEWtDIHarkD7AYJ/+1E229eotQLNZwzA5yguM9fw1wjFW1pn+WDTiybeui+PAsS/b+GNEXlrOKJnFk0gf0drXxSf5CP6w+yt72Fve0trGms4f4Fx0S2E0NVv2O6dk8VDTO7WVkwhtHJaTxZupNnynZx46ylcduF1fVVAJxRNJGVBWO4v2QDv921gd8vPJ4US/C3z3+WldDldHBW8UTmZOYyJzOXs4sn8cSBHaxprOa3u/pm1ZI1C2kWKzMzcrh66nySNP/3YRgGj+7dTsWODm6cvgSN8N6Dd7Y2UtfTxZyMXC6fPJeJqRn8YfdmfrNrA3U9XWxsNrNTF4yb7jfAS9Is/GLWEfyvtoIziiaQlxifDq6XTJzFztYmulrNJ4VzshXLVlvQdVKdDgcvVuxFZWA2yq0gKYWzRk/kxYq9/LO0hCtcXQkDUUvtaNt7sJ+S2tvxs591jTV8UFdJbkIS33atefRlRkYOpxSO583qUh4/sJ2rXRm4YNyVBkr34L2/a/vsWNd0o7Tp9Ezwf0GjydbN/+1ch9Mw+OHkuZxePNH/NhWVb0+YyXH5o9nb3kxNdxe1PZ3UdndR1d1BeVc7f9y9mV/PW46iKH0CKXp0SD90FyOEECLsQGrdunVs2LCBdevW8fbbb3P//fdjtVpZtGgRS5YsYenSpSxYsCAOuypCpboaTeh5GkqrPmRK+2LW+txwBYr9MkyOBUloZe0kPd7iCR71Ag3byak45yT4PeEBQFHMUsFQ25+7M1IpUXTtcxgkvNdpXlmvcgS9omvupsKktEwmpWVy0fgZlHa2cfeOdZS0NbG7rZmp6Vnh78dQ5TqmHVYnqXaNcd3J3DRzKUflFWHTnbxedYBPG6o40NHaZ91LrPQ4nXzRVEuSqrEgK58EVWV1fTWfNlTx6P5tnjbg/lR0tvNGVSkpmoWvj5vm+fq41HR+MfsItrU08HrVAZpsPXQ47bQ7zD/1PV18WFdJl9PBTTOXDiipc3uqtIQXXFfstxc2MDczL6zf7wNXk4hjC0YDZqe83IRk7t65ln+4SvrGJKdxbP7ogNsZm5IeMFCIBatrvdTWz80hvXuLupm+VUULEEgZhsHzFbtpddg4sWAsY1LS/N72a2Om8lZ1GW9Vl/HVMVMoTE4NuD8JL7WhVTlxzkhAnzjwAk2308Gf9mwG4AdT5pISZGbexRNmsrqhireryzipYCyzQsh4ut/jBjOQclc7qP5GTwBOw+C+kvU02no4edS4gEGUtwmpGQNe105D55r1H7C1tYH36ypZWTBmYEYqgt9DCCEiFfalm+TkZJYvX87VV1/NP/7xD9auXcv9999PZ2cn999/PxdccEE89lOEwb0+yshSMVIV84N2kDqeubXZbVR0tVOUlEJmmK2QB3B/ZvcPpOYlYqjmCYaer9F9QTpd12bjnJcYOIhyU0EJsbSvNyMVeWmfttuG0uU6GWoJf72MoihMSM3gDNeJyRvVB8LexlBm7zFPkvenmfNllin5nrKxBFXzDHh9Nkj76EgX8W9srqNHd7Iou4BETUNRFK6YMo8sawJvVZcGHUj7+IHt6BicN3aqz7LL2Zm5XDdjMXfNW87vFh7Ho0tP4tmjTuOpI09lbHIaaxtr+MOeTT73//WD+3mmvPf33tBvbVMwTkPnk/qDqCgcndtbirc4p4C7560g27W/3xg/Pfr1jDFSmJTKEUn5ADzcvpOOVCdKrdPnRYy6ni5u2/45/yrfjUVR+gSyvqRbEzhn9CR0DF6qDLxWSqlxoFWZr1e10fdFqidLd1Lb08Xy3CKOzA1e6phmTeC7E2cDZvMORwhd6zwl292xv1AWyv0D4ApilAan30Y9z5SVsKm5ngkp6Vw+eU5U+6UpKt+fMg+Av+3bRofD7lkjBXjWrgohxKESUQ68sbGRt99+m7vuuovzzz+fH/zgB6xbt46pU6dy/vnnx3ofRZjcw3iNTK239GyQs1K72pqBGJb1AUb/i7zpKj3fzqD7wgwzgFqQFFoA5aYpYQ3kNRIAq6tJRQSlfd6NMbwHKIdrZcEYElWND2sr49Z5bDB8dNDMmDizzWyhtbnvMTqlcDxZ1kQ+rj9IWUebz23s72jh25+/zV98zDsKZnWDWda33GvNT2ZCIle5Sq8CDaTd2tLAZw3V5Ccmc1bxpLDuN8OawK1zjiQ3IYl3asr5e2nfBhef1lfx571bsCgqV7qyYhuawwukNjXX02y3sTA7f8CFjclpmTy46DjumHNU0GwUgLazh6Q/NKE0xb95Rr5url9qT3SwKbUFRYcvtlWgu4JNp2HwauU+fvjF/1jbWENRUgq3zTmKoiAZJoAziyaSpGr8t6aMFpufUQr0HbPg63fe3dbMq5X7SNUsXD55bsi/28qCMczNzOVAZxv/crVqDyRepX3/rS7j/NVvhNRYxR3MKQ76BjQuG5pqeaZsF8maxs9mLg1YqhqqOZm5rCwYQ5O9h6dLSwZkpIQQ4lAKO5A65ZRTOProo/nxj3/Mhg0bWLZsGQ8++CCrV6/m3//+N7fcckscdlOEQ2l2lfZlqRhp7kBqcD9gdrY1AjA9Iyf6jQXowueckWhmoLQIrqJrhNz+nB4DI1Ht3YdwM1I2A2177wmZ6uMkJCS6Qc7rPVzWNplu3cn7XjN9hrOGnm4+qzYDmQk5WRjZGkq70Tu/C0jUNL46ZgoG8Gz5wKxUdVcHv9zyGY22Ht6qLqUjjCDTaeh83lCDRVFYmjOqz/e8B9L+esfaAW3DDcPgsf3bAfjm+BkkahrhKkhK4bY5R5JqsfJc+W5erdwHwLaWBu7d+QUAP52+iNOKxlOQnMKetma/QZ0vH7rL+vwEStkJSSzIzg9pW5YvetDKHVg+9zMQO4bcwcNNi5dhKzaP67qtB/nxxg/5oLaC6zZ9xMP7tmLTdb42dip/WLSSeVmhlTymWxM4pXA8Nl3ntar9vm9kGH0CqS/2VvHf6jI6HeabktPQ+f3ujejAxRNnkZsYeuMKRVG4cup8klSNZ8p2saO1MfDt4xBIvVl1gN/t3kiP7uSZ8l2eNYJ+98GrkZFS3zeorO/p4r6S9RjAVVMXBCytDNclE2eRoln4d+V+T1YMgEEscxRCjExhB1JnnHEGf/vb31i7di3PPfccN9xwAyeeeCJZWVlx2D0RCdWTkVJ723MPcuc+zyDeGGSklBAG7EbCCDUj5TDMNukJiicrpoQZSGk7elBsoOe4At0IM1LaHjvWT7o4pcRcU/Fm1YHDYh7Nk6U70VwBc0qSFT3bdZwa+z5ApxWNJ8uawId1lZR39malmmzd3Lx1NU32HtI0KzbdLGUL1baWRlodNuZl5ZHqY33LZZPmMDo5lS2ulvS3bVtDiauZysf1Bylpa2JyaqbfbnehGJ+awa9mHUGCqvLIvq38q2wXt23/HLuhc9mkOazIL0ZRFI4oKMQANrvatAdj152srq/CqqgclVsY8f65qVXmA2XZ0hP3OT7uOVK52akcOc+ca7W0M4c97S3cW7KeXW3NTEvP4oGFx/LtCTPDDmLPHj0JTVF47eB+up0D11+plQ7UeieNiWbQmtgCv9u9kW+ueYv7dn7BX/ZuZV9HK7NcDSTCNTo5jcsmz0XHXFfkN8OsG+CeqRWj4OHfB/fzhz2bsSgqq8ZMBuCBXRuoCjBmwTuQUr0CKaeh8387v6DFbuOMogkhZTbDkZ2QxEXjZ5Bm11C93hIkIyWEONTCDqSuvvpqjjrqKJKT49OdSUTPnZEysjTPGp7BLO3TDYOStmYSVDU2TQFcQYsR646/Gig6wU8G3eujEpXeYC7MZhPusj77MSkAKK2RlUVpG80sQJKuMTE1g30drexqb45oW0PFvvYW3qkpIxNzEb9hNbsyAqj9SqmSNAtfcWWl3OVQ7Q47v9j6GdXdnRyXWcxzHyzhkp1j+V9NRcj74C7rO8rP+pYUi5XfLTyOyyfNIS8hic8ba/jJpo+4acunPL5/BwDfmTgLNcr1RbMyc7lhxhIU4O+lO+lw2Dl3zBTOGt1bLnhEgbmPoZb3rWuspcPpYGnOqKBNEIKyG+b6GECtc6LUxLe8T+nSzYsXVgV9tPkGsLw7j59MX8SsjBwumzSHe+dHPsOqICmFY/NH0+aw83Z12cAbbOgC4IWJ5vNjljOTEwvGogDv11XyetUBLIrKVVPnR/zYnzxqLMtzi6jp7uTP/kpSuwzzvYrYZKRertzLX/Zuwaqo/GLWEVwycTbnjplCh9PBr3espcfp+3FV2r0GJDc4abPbeKemjJu3rGZ7ayNT0jK5dNLsqPfPlzOKJzBX6XdhTgIpIcQhFtEaqfLycn71q19x1llnccwxx3DWWWdxyy23UF4e3kBBER9Ki46hgJHhXdoXfiDVaOvmg9qKgOsFQlHZ1U6Hw86UtCysfjqQhcOzHska40Xw7nLAIOeCnqueCWC49yGcmZhdOlqJDSNZwbHYLP2JKCNlN7BsNa+MKw441XUF/M2q0vC3NUQYhsHf9m/DAFZkuYIYq4KRbQZSio/F/acXTSDDksAHtRXsa2/htm1rONDRyoKsPH6cN5ekZji2NpetrQ3UdHeGtA+fNVSjAEcGyNgkaRbOGj2JR5aexNVT51OUlMqm5npqejpZnF0QcmlcMMtyC7ly6nxUFE4eNW5Ah7yl+eY+bmyqC5iNVBqdaFt7gpb1hUOtdXhO6MGVlYoX3YAuw9Mp08y4K6jVDlbmjOb/5q/gy66MUjS+6mpi8lLl3r5NF3QD54ZOdAxq5yjo6SqJrXDt1AU8eeQp/HjaQo7MLeSKKfM8M44ioSgKV02dT25CEu/VVvBB7cALAN6ZIHunA3uozSF8eL58N3/dt41EVeNXs5exOKcAgG9OmMGczFz2dbTy8L6tvvfVq6yuZF8dF615iwd2bWRLSwN5CUn8bMYSrGr4pa2h0BSVi3KmAuBQXE17JJASYthosfcMKLlXS+0k39eIWjl81nuHfVa7detWzj77bN5++23mzJnDOeecw5w5c3j77bc555xz2LZtWzz2U7g8sm8rf96z2bO4egDdMAOpNNf6ndTw1khVd3XwYsUertv0Ed9e8zb3lqzn51s+pS2M9Rf9xbKsD+hdjxTj0r6QZ0m5M1IJCkRQ2mfZ2oPiBMecREhU0NMUc6F2qOuzXLQdtt4TB7vB8e6mE3WVYa0HGkrWNdWysbmeMclpzE0219MZVsVTAtk/IwXm7KVzxkxGB67b9DHbWxuZlp7FTbOOwGozf66oKwkMeM/HSWl/e9pbqOvpYkZGNtkhDGe1qipfKhzPQ0tWct30RawsGMMPXZ3FYuVLheN55qhTuWbaggEz+3KSkpiUlklNTyfVAQLFhP+0k/SPVirKmknWLAPWfkVCrTYfD8csM3to2RokkOrQsXzY2WetW8i6DRQDjBTX768oOEdbUJyg1oRzJSOwCakZLMkuoK6ni4+8ykFrd7SQ1qGxJbeNb8ydiZGtouhmk4UkzcIJo8Zy86wjOLlwXNT7kG5N4CfTF6FgdvGr9XpcyzvbeMLrc1btNvjOmrd5fP/2gGV4vrxQsYfHD+wgSdW4ZfayPsG/pqjcMGMx2dZE3qou5d2a3gulumGwvrEWo91Jl2Y+B9JaVNIsVk4tHM/tc47kr0tPCtpGPloTdXPd1cEUMzNfUt/Ie7Xl7GxtpMXWg2EYOA2dVruNg13t7G5rZmNTHQe72uO6X0KIwFpsPfxg3Xv8aMOHfcqotX121DqnOQ90mAi7OOqee+5h1qxZPPLII33K+7q6urjsssu45557+Pvf/x7TnRS9drY2UdLWRG5CEuf5aOmrtOsoOuiZrqu27tK+IGuk3qut4KWKPezraPV8LT8xmXSLlX0drdy2fQ23zzkqoq5LnkG8GbENpGJd2me4L5w6DQgw3NQTvHg3mwijtM9d1udYYHZLMzI11HaHueYhLfTg0LKpd3G/4jBItVg5Ln80b9eU8V5tBWeGOK/lULPrTnqcTtKsfefvOA2dv+0zTxC/M3EW2mbXsbAqntK+/muk3M4smshLFXtoc9gZm5zGLbOPJFmzoHSbxzrBrpBht/C/2nLOHzs14ADxYGV9/miKynEFYzguinVRgQQqw1uYlc++9hY2NNf57VDnvpiS3WFlwoSciJpgDNhmtavJwtxE1EYnarUTpdaBUeD7xZn4SrvZrCFFxbEk9EYMAEqn6z0spff6nz7aArvsqJUO9NFRlil6+eqYKaxrquWFij2cMGoMumFQ9nEt48mia56VKUkpGNkOKHOgNDkxsmKfdZmXlceqMVN4oWIP95Ws52czl/BM2S7erCplRX3ve6nVUOnucfB8xR6er9jDwqx8zhs7lblBmmw02rr5x4GdJKoat8050ufsquyEJK6fsZibtnzKn/ZsJi8xiZK2Zt6qLqWr1cYrxlKqUnso6klifFcKf196MloMnlehcncKrEnvYVxHMmWNLdxfss/zfauiYjd8f/YtyS7gnNGTmZ+VF/D9YMB9tukkvNyG/YSUmD7nhBhJnijdQavDRqvDxjNlu7h44izzG+5zqVhXHMVR2BmpLVu2cOmllw5YI5WcnMwll1zC5s2bY7ZzYqCrp84nUdV4snQnG33MjvGeIQWEVNr3YsUe7i9Zz76OVsYkp/G1sVP57YJj+dvSk/i/+SuYnp7NjtYm7tn5RejzRbzsjNUgXhdPaV+sM1Lu0r5gv6L3GikVDAUIMQGktOmoe+3o6Sr6JPND2HAFvWo4s6S6dLSdNowkxcyMuS7enFrkLu8bmk0nHLrOzzZ/ytc/e5Nr1n/A4/u3s7m5Hrvu5K3qMsq72pmbmcsROaP6vKHq7tK+Jt8PTorFwpVT53NkbiG3zz2KDHeQ5rV+ZBn5HOzq8GRI/XF3Kgs3kBpMC12ZBF/vCR6u521OjzVmi/9VVyClF1pwzDUvDPjLSin1DrTN5vfc6zjD4W404clIAXqx+RpSD8b26uWczFymp2dzoKOVL5pq+c++vcwrTcWhGMxeUWzed7Y7Sxq/9acXjZ/B5LRMtrc28p3P/8vrVQdItlg4Lb1v1uvhOSv5xrjp5CUksaG5jl9u/Yy6nq6A2365ci8OQ+fM4okBBwDPzcrjWxNm0qM7uWnLav5+YAc13Z0ckWA+58aOyiChIAHVARbfUwjixl1aOHuymV2dl5TLV8dMYXluERNSM0jWLIxKSmFyaibzMvNYnlvEiQVjyUtIYl1TLTdvXc1VGz7gnZoy7Hpoz0lttw3LVhuWdXEsYxXiMLarrYn/VpeRYUkgWdN4qXIvB9wX8e3xuVAeT2HvamJiIs3NzT6/19LSQmJilMNWRUDjUzO4cup87i9Zz70lX/C7hceRl9gb1HoCqUzzxDPQHCnDMHimbBdPlZWQqGr8fOYSlvQr90nSLPxq9jJu2PSxZ0DoNVMHlhf50+lwUNbRSl5CUp/9jIojTlcsXBdSFYdBoBCkd42UAopZ3hdqaZ+2uQfFMIcHu2dcGRlenftCPL+1bLWhOMC+IBGtxOa5Wj81LYvJqZns7WihpK2JGbFoNx9D/yrfTUlbEwmqyt6OFvZ2tPB8xR4SVQ0FMw/43UmzzeeX97ywVAUjAVQ/GSmAo/OKOTqvuM/XvBfiH28ZxX+p4n+1FX6PS0VnO+Vd7UxISQ9p9tBQMTszF6uisqmlHqdh+FwnZPSYz5FiezILs2KzfkutdmKooBdoGFoiCf/tRNtiw37CwGNnfa8L11KWoBlyX9zPcaN/Rgqzm14sKYrCV8dM5q4d63jywE6KD1g40T6VlikKljTzPnvX7cWvwYZVVblu+mJ+tOED7IbOWcUTuWDcdHI/sAO95X65RiLfGD+d88dN5dF923n14D7+WVrC1dMW+Nxuu93GG1UHsCoqZ3s1LvFn1Zgp7O9oZVNzHccXjOHUwgmMq0oAWiBdw0gDyh0o9fHJzvnjzkhpBVaghyI1he9MDH4BxKHrfFJfxcuVe9nd3swDuzbyxP4d3D73qOANkVzv/5E2CBJiJNMNg4f2bsEAvj1xJt1OB4/s28Yf92zinnkres+lDueM1PHHH899993HunXr+nx93bp13H///axcuTJmOyd8W1kwhtOLJtBit/F//bJESkvvDCnwCqTa+57oG4bB4wd28FRZCcmahdvmHDkgiHLLsCZw29yjyHMNCH3iwI6Q93VPezM6MSzrgzh27Qs3I+X6v0UJubTP4uqy5y7rg96MlK+BlkG3szDRDOScmOvjFKU3K1U9tJpO7Glr5tnyXSSqGn9YdDwPLzmB70+ey7KcQlQFunUnJ44ay5S0LAAU7xS/Ypb3Kd0GdIZ+nLwDqTnObCyKwkd1lX6vPnvK+vKGTzYKzJlaszNz6HDY2eMaft2frdsMNmarWVhi0PSFTh21VcfI08CiYIyyoBdoaAcdA2YKKU1OLOu9SlEjCqQGZqSMHBUjSTFbsDtjm4FdllvE6ORUdrU1c1RZFgCJS3pnIRlBsqSxMiYljT8uXslfl57E5ZPnkmFN8JRpusuR3c9zTVH5xvjppFmsvFNTRkWn77VAr1UdoMtpvt5yQlgHqCoK181YzJNHnsqlk+YwJiWt9zFMVdFzXV01Gw5tcOHOSOn5rseiJ7THwqKqHFcwmt8sOIZ75h3N4uwCmuw9vFK5L+jPKjZ3IDW4I0WEGI7erSlnV1szU9OyOHnUOM4snsjk1Ex2tDaZnVJd1T3G4RxI/exnP2Ps2LFcdNFFHH300Xz5y19mxYoVfPOb32Ts2LHccMMN8dhP0c/3Js1maloW21sbefzAds/XVU9GyvXQumYdeWek3FcEXqjYQ5rFyp1zj2J2gNIOMNdL3TbnKNIsVp6v2MM/S0uo7Gr32y3KruuUd7Z5OoTFqqwPzA51QBxK+1x/Bzkh65ORAgyLq7QuSCmd0uhEK3Og56joY3ujQHf2MNTOfQPKAz1Dgc2/jssfQ7Km8VHdwbCGtMaTTXfym10bcBoG3504i+LkNIqT0zizeCK/mH0ETx95Gg8uPI4rpszv/aF+b6ju8j5fDSf86u49psmtsDRnFG0OO2sba33ePNL1UW7qfjvJ/9foaUt/KC1wZZl8tUG36U4M1/PWvUA/Wt5lfW6OOb7L+6wfdqLoYF9kft+721vIfGSkUMw26IodlLrYnsRrisJXRk8hwamyoiYHwwrOWb0XQAI1QIm1UUkp5HtXHriCGPfaQbp633vSLFbOHTMFHXMeW3/dTgevVu5DpbdDYSQ8+5Cuoue53sPqByeQMlz3H277c0VRmJ2Zy3XTF6GisLaxxn8jJzd3IBXh7D8hRqp2h91zvvr9yXNRFQVNUbli6jwU4PED27H3uE5kYn1+F0chX9Pv7u7mgw8+oLKykgsuuICLLrqIAwcOUFdXR35+PvPnz2fFihXx3Ffhxapq/GzmEq7Z8AEvV+5jVkYOy/OKPRkp7/IKI0016/idBrX2Lp4qLeHd2nKyrAncPveokGeujEtN51ezl3HzltU8VVbCU2UlqEB+YgqFySmMSkyh1WGjorOdqu4OnF4fSLNiWWIWp8WIRojtz90f1kai6tkPxcDMZAWoarFscjWZmJ9klgS66J7SvhBr9Dd39ykPNDyBlAEJCikWCysLxvJ61QFu2vIpt8w+ktzE8Bb2x9o/9u+krLONhVn5nFY0YcD3rarKpLS+z0Ol3+PcJwMQYgmkd0ZKadQ5oWAsqxuq+V9tOcu9sk5OQ+fRfdvZ1dZMYVIKEyOcd6bttqE2OEl8pg1bl4HjqEM3b29hdgGPH9jBxqY6vt6vEc3f9+/gCocZaGV3W4nF6g53xz69qPdJ75ybCP/rRNvSg/14c0YabTqWz7sxrGA/JRXr+p4BGfJQuDNS3s0mAPRiC9peO9pBB47C2KapTxo1loydTlIcGo75ZpdNN/d7rHIIAqn+3BfG9DzNnN/Vb5bUmcUTefXgPj6uP8ie9mZPlhfgv9VltDpsHJc/OqryVfdjaKSpnkBmMDJSRqLSuxY4wvbnadYEZmXmsLWlgd3tzYEv/LkDqTZXp1U1wOeQbqBtteGcZIW0GGSBhRjGni4tocVu46RRY/tUKU1Lz+aMoom8VrWf0pZWZpLi6Yg8HIT0qVNeXs7FF19MZWWl52tpaWn89re/5ZhjjonbzonARiWl8JPpi7h12xp+u2sjJW3NXFCbQy4aey1tZNpSaLfbGZVgJweNH33yPnsUczVwbkISd85dzpiU8K5Oz8zI4Y65R/F2dRlV3R1UdXVQ09NJTU/ftss5CYmMSU5nbEoa09KzY5qRittiRNfnnOIMskbK1jcj5XnB243e8kAftE0Dy/qgd42UGuIVTssGV0C20LUd13HwXtt18YSZVHa1s6m5np9u+ohbZi9jfCyGIUdgY30tL1bsIVWzcPW0BWbpV7OOc3aQ9ZSeQMr8y50BCGdNivcJptrkZEnOKNItVtY11tBqt5FhTaDVbuPuHevY3FJPhiWBa6ctDKuLV5/7c12lVwxIfLkdpdvAvjIlom2Fa2JqBpnWBHa2NdLldJDs6rC5ubme18v3c41hlu6qkWSDfFCrBmak9CINPVdDq3B1s8vWsH7caa7nOybZHBKeqESUkepdI9X3sXGOtmDFtU5qUeS/jy8WVeWEyjygB+eCfhcjrOYsKaU5hBPqGHMHUoarpE7p7ns8kzQLXx83nT/t2czfD+zgtjlHAebaoBcr9wJw7tjIs1HglQ1K8yrti2FGSt1jM58veX6uTtkMlB7DLOvTFAxLdHOkjsgZxdaWBtY21AT8vPKU9ulmJ0wj3f/jru63k/RUK/ajk7F9OTaZYCGGMsMwz0P6DyQ/0NHKawf3k6JZBsxCBHNu3acNB2np7AFShlVpX0inovfeey+qqvLUU08xZ84cKioquOWWW7jlllt49913472PIoClOaP4+thpPFO+ixcq9vD15sU4FIVr9q5Gd5V7/9qYwZFko7c5mVCUwZyMXFaNmUxBUmQneDMzcpjplWHqcTqp6TaDqQxLAmNS0kgN0Ko5WvEr7QttjZTiyUh5lfZBwKG8Sp0DrcqJXqhh9Ltq7u6wGErNvdLgRCt3oOeq6GNc23G/4Xh1DkyxWLll9pE8uHsj79VWcP2mj7lp1hHMC9ISOda6nA5u27AaA7hs8lzyE5NJeLEJ9aCDzltyzRby/niaTbiOs6uMKVDDiQG8M1JNTqyKwrH5o/lP1QE+qqtkVmYOd2xfS013JxNTM7h51hGMivB1Ab2BlO20VKzvdpDwZgd069hPTe2ThYwHVVGYn5XPh3WVbG1pYGnOKDoddh7YtYEkZ+/JaCTrk3zen4/SPhQFx9wEEt7vQtvSg2NJEtbV3Rga2I81s3NGumqecNuNsLLKvWuk+mWk4tRwAoBuHXVHDySr6DMSBnzbyFZR23SUVv2QNlmgwzCbfLjeO+geGEB8adQ4XqrYw/qmOjY31zMvK48P6iqo6+liSXZByJUI/nhK+9IUSFExUhSUBmdsgso2naRHW9DHWej+ge+gxv1+aaS7jkGS4vM4hOqInEL+tn87axtruGjCDP839JqBprQ4e+/fB9VVbhpqtYEQw5ldd3LF+vdptvUwLT2L6a6L6NPTs/nL3i3oGFw4fobP+YypFiuXTZpLwgfmRXm7poffDW+QhJRr3rBhAz/60Y9YvHgxiYmJTJ48mdtuu42DBw9SW+t7rYE4dC6aMIPfLDiG66YsIrfHSmeqwRF5hUxJy2RWRg6ZWeYJzL1TlvOHRcfz/SlzIw6ifEnUNMalprM0ZxTTM7KjC6JCadkdr4G87vOgYOdjnoyU6/+uk0ElQMMJ94J05xgfxyZRNa/Sh5CRsniyWr3lgX1K+7xYVZUfT1vI+WOn0uF08Mutq3k/hIG0sfS3fduo7GjnqNxCTnDNV1LazFlnSlfgxzpgaV+I3BkpI0Ux2+a3G5xQMBYwh5H+dOPH1HR3ckxeMffOXxFVEAW9mQLH/ES6L83CSFZIeL+LhJfbfQ9cDnMIczCedVKuNugP79tKbU8Xx2T0ljEqncaA50rYdMPs2JegeC4EuDndbdC39GD9tAulx8CxJAkjw9VJ1DUrLeyslDsjldz3dW/kaWZHx4OOmB9PtdaJ4gBtRpLP95tD1XCi750aKB262UgoyXURxkcAYVFVLhxvBgRPHNiBbhg8X74HgK+NnRr1bnivkQLQczUUR2yaMKgNThQd1Cqn388Epc3Z5/6NRMW8yBbhc3t0cipFSans7WihPkDreMU7kAryu7q76HrKUoU4jJW0NXOwq4NOp4ONzfU8W76b27Z/zoVr3mJLSwPjUtI5w0dpv9vReUXkKObnx4b2+kO019ELKeCrq6tj7Nixfb42btw4DMOgvr6egoKCuOycCN209Gym2zNQaCQ1L5GbZx3h+Z61oh12dZHSrQZd/jOYLGu6SHizg66rsnsXUfvi7toX46SXZyBvkJMxxdY3I+V5FQX4APd8+Cb6Dv6MDNW8etmj+8/SGEZvWd98r7I4H6V9nvtVFL45YSb5icn8ac8W7itZT4vdFlLL42jtaG3kPwcPkJWQyFXTelvmK12ukw9bkJOLAc0mXCWQYWWkXGtJisx1NGqjk2njshidnEplVwcK8K0JM/namCkRl/N567NuJFuj6/Iskv7ajPWzbrS9dvPSVY9hPh9cmc2eb2bgnBmbsRGeeVLNdXzWUMU7NeVkWxP5dvEMoLeDm9IeXQZFadZRbAbOcZYB2Qd9tAU9W0Urc6DWmO3RPeul8Jpt164Hfp33v093Riq13+tDVcx1UgccKI1OjLwYXsd0B/Mpvl+T7uek0uSEiYeoqL/LMIeupymeoNJXIAVwbP5onq/YQ0lbE3/YvYnyrnZmZeQEbS4UCk8g5Xo8jDzNbIHeEH0LdPe6M6XHMNdBZQzcXv+MlLlmVTdfVxFcZFMUhSNyRvHKwX2sbazxuZYT6JeRChxIqa55aUoYnUajoW3vwfp+J93fypQ1WeKQ297aCMC3J8xkcXYBO9uaKGltoqStiQZbNz+cMi9gx1hFURhtSQF0ZudG/x51qMgr7TDiaTSR2e9DxzNLamhfFdN22VA6DU/JkD/xHsirhNhswh3wuDNCSqChvO7gK8FPIOVugR7gg1mtcqLWOnEWWzBGeZ0s+ijt6+/Uogn8YvYRJKoaj+7bxm4/LbJj6T8H9wNwxZwFZCW4AgWngeJqJKgECaT6Z6RIVjGSFfMkK8Rhw+4TTHf5mdLkRFEULhw/g3Ep6fxy9jLOGzs1JkEU9C5+92TRiix0/yALPccMlNUap9lZ02H+XooTtD0hTnMOQX5iMmOS0yjrbON3uzYCcPW0BaTpfYOLiLrmefFZ1ufZuOIZzqv0GDgWJPYJmNwnvuGWGHoC8OSBj5VnMG+s50m5noOKnxJEI5JOktHuk7sDa6rZ+h3o053Sm6oofMuVlXq7pgyITTYKwzAD4RTF874Zy3VS7u6zAEqt7+151mi51pi6L1JFtU4q11xH+Hljjd/bRJKR4hBlpCzre9BKHVh2DI1urd4e3beNq9e/z0N7tvBpfRVtQ6SjrIidbS0NAMzLzGNSWianF03g2ukLeWjJCTy3/HTmhHABR3Oar+OUpIGl1ENVyJfuLr30UjRt4FWhiy++eMDXV69eHf2eibC537T1fqU2vbOkhna7Vs+HTrCZTHEeyBtq+3NPUGT1XVrX52eCZKT0TBUNM5Ay/CR4tc1mWZ+zf7MKP6V9/S3NGcX3Js3mD3s288CuDTyw8FisanzWdXQ47HzaUEWyZuHkMRPobHG1A/cu5wuakerbbAJAz9HQKh3QbkCARd5uSreBkaB42jOrTTpOzCv1x+aH2PovVHbX4vfcfq+/PAtdP80xy7HcQZaqoB6wk/zn5pi3UV6QlU9FVzttDjunFo5nac4oaOp70hLXQApXed+HXRhK32wUeGWkwtwHpcMwj5+Phi56sWudVJUD5/wB346cOy4LEkgdytI+T9YzVTXXBeE/IwXm635mRjY7WpuYkJrBkuwYVJDYzAtH7owc0NsCPQad+5Tm3m2odU50H30xPDOkvEr7gLBboHublZFLimZhU3Md3U4HSZqP57fXSynY2iflEGek3Jk8dyOYoaKyq52XXE1O9nW08lrVfhRgUmom87Py+OrYKWRaY5OVF4PDaRjsaG0kUdWY3K8Db1jcn/vDZYEUIe7qlVdeGe/9EDHg7vrWPyPlWZPQEd83c6XKgZHdW7cf9s+7P3SCXaCP10Bed4lSsPOAfkGREUJpX29Gyve33Y+Z2qr77XWhlZofjo7p/TbiLu0LYSjwKYXj+aj+IJua63m2bHfgRdVR+KiuEpuu86XCMSRbLLh7OnqyCgTPSGE3zHJLr9IxI1uFSrO8Tw+wyNu8sVk+Z5bZhd/xL1yeTmq+Smo0ZUB5Uu8g5tju08LsfF6r2k9hUgrfnTTbvI9+J5dRB1JVrtbnhb4DcX2sBfuiRIxsrW/2FK+MVDj74HQFqTl+Suw87bdj/B7nfk0lBC7tCzsjZRgkPN+OXqjhOCa8dXme51mqihFgjZTn9orC5ZPmcn/Jer47cVaMSlgHPteNGGakvANTtdZ3UBAoIxVpKGVVVRZlF/Bx/UE2N9dzRG7hwPv1et9SA2WkdMNzkURxYH4G+KlIiBU1jEDKaejsbW9hcloWWpDnxMGudj5rqOZLheNJi2AN9Guu6oRVYyYzISWDzS31bG6uZ29HC3s7WijtbOPWOUeGvV0xdJR2tNLpdDAvMy+qge+KwzDPqeLcnCmWJJA6jLgDkf6Lvw9FRkppcJLyQBN6hkrPeenoU8NMy9oNVPdsmSABQbxK+zwBUbgZqRBK+/oP8R1w38FmSRlmyaOhgZHf7+TVkxELuNvm9hWFq6bO58ov3ue5it0szysaML8pFv5bUw7AlwrH973/PhmpwNtQ7AzIBOg5XrN7xgf5QLeBooORpEQ2zDdMvk4uAzEyVAwlNovzvZmZxzksyS7wtED3BPIpCkqnEfeMFIqC7Xzf7fa910iFzPW8MZJ9H1vDe61SDIVa2hfu/SrtBtZ13RgpCo4VyWGdNPQG7IpXaV/g96wp6Vn8eckJYe1jwH1oG/hc9wSzsSjt8zqeqr/SvgFrpKIv7QOzDfrH9Qf5vLHGZyAV6hopd1Mdz/87dYyEOHZ2tBme8n31oMO8kBTgefVkaQnPle9mQmoGl06czQLX+kpvPU4nz1fs5vnyPdgNnZ2tTdw4a2lYu9XhsPNOTRkJqsq5Y6aSYU3ghFHmmvvq7g5u3rKaL5pq2drSELT0S9vagz7O4nPNnBhc21zro2ZnRjkz1Mfn/lAna6QOI4onI+UnkIrjGin3VXW1VSf5ry0k/Ls9eIme9897fyAFy1TEq7Qv3IyU+zw+hNI+TyvvCNdIKe0GSqeBXqANKG0KtbTPrTAplW9PnIXTMHhg1wYcemxP5Ms72yhpa2JMchozvYbuQd9AKqSMVL/HOJwW6O7ZOkaSckhKsPovvg9KUzBSFfOEMIbd5lRF4ezRkxjtNSPOfazd61iiuqjiMFDqXRnBUH9XL5GskfIEDyn+L0QYWpiNSEIRpLQPq4KepvTOkgpVd283N6Ux3BJHr+eZp7Tv0JZt+7xokOJaw+hugR4pw0BpdnWEVECp8/2YuuehedqPx6C0D2BxTgEKsLaxBsPHWkzFZpaYGtbAF0GU5r7fi3fnPu9gXuk2Ar7X2XQnb1YdAMz5PjdvXc2t29ZQ3tnmuc26xhquWP8e/yzbhaooZFkT+LShio/rDoa1X/+tKaPL6WRlwVgyrH0vsBYmpXLh+OkA/P3ADp/H203dZyPpH61Y/9vp9zZiIG1rDwkvtUX8mqzsaufyde/y9wM7At5uu2t91OyMKJtE2I3ec5phQgKpw0jvGqn+pX3uQCqOJ5Gu7IKzSMNIVrB+3EXy7815QSH9vFdNfNAStXiV9rkOW7BmE0qPue7GHXgZ3gN5A/wM4D8j5Snz8hNIuUo1+s+gAsIq7XM7o2gCczJy2dfRynMVu0P+uVD817Wo/cRRYweWEXWFGDA7zc5k/aeb95bohfBcdrc+T1Ig0RW0NEV5kheAd8e+UBmZmvl8i/didHcW1R1IRZGRUmvN1tT+yvqC6c1IhXGhxR2A++meh2oGy0qHEfWJdB/9G574YGSbj2E4mcU+g6LLw2s20ud5ZnENoo1iflIkeluf98sY58WgBXqn2ZBGz1UxcjSzZL1n4PaUNt38DHA1H+nNSEX3OZdpTWRGRjYNtm72dbT2/aZhgM18/zcyNfO4+3kf8/5MA/q+98VB/4sIgcr7Pqk/SJvDztF5RfxsxhJGJaWwtrGGK13NIO7avpZbtq2huruTZTmF/GnxSn46fTEAD+3dTGuIjSKchsG/K82yvrOKJ/q8zbH5YxiXks721kbWu8Y2+OIubY91Bv9wZ32/E+tn3RGtXWzo6eaXWz6jsquDfx/cR4/T9zYMw2BbayMqCtP7XTwNi5/P/aFOAqnDiNriND9YUvt96CeYQUdc10i5Tjj0yQl0XZuNc4oVtcZJ0h+asHwU/AqSd5emoKV9cRvI6/o72Im264qkRzhd+/w1m3CVKvjLSKk1AUqpwijt82xPUbh62nwSVY1ny3ZxoP8JQ4Schs57NRWo4JnX5C3kjJSfrGM4JXqek0vXOhI9x3XCG2VZm9/7C7O0D3pLOtU4D+wckJGK4hgo1QGC+hBEskbKvVjfX0YK+rUijxHF9TxUAqxtiSjb6RX4aOXhNQbozUi5Agj3INoQO1nGgr/sqxGDhhOqp0RdMzPw9A629XCYZWxGuuopX4tFswm3I3LMkr7PG6v7fsNplguTqPSWY/tZ4+i+sOkeqxHvrrnu55/uuigX6CLmG1WlAJxeNIEV+cU8tHgll0ycRaKq8VrVfj5tqKIgMZlfzDqCX8w2h5QvyM7nS4XjaLbbeGTf1pD2aU1DNTU9nSzIymNCqu9SX01R+Kars+TfXfPOfFErzA/YQ9W443DhWacX5sW6druNX25dTU1PJwmqSpfTyRdNvrtZ1nR30mjrZnJaZm85eSSCVQAMURJIHS7srg+WzN4PFg9FMT/wOo24XY33lK5ZzSt13d/NpOesVFAg8bUOT0bFnz4ZqWAXu0K4ShwRd8lcoHMAh2FmELxPrMLp2ufvhCxVwdD8r5FSq/0v7g+3tM+tODmNb06YgcNV4uc0ov+A+qKxliZ7DwuzC8hNHDi9XAk1I+V6Dvgr7QvlZFnxzkjhdcIbZilVqHoDqdCfl8EykTHjDuRjkZFyr48qivAD06qYw1PDCqTca7z8f2R5yj5juU7KfXEkwHuNuwFGOAFcdBmpfkFMkmq+Jx3CRm39h/G6xaIFujsgMLJUdNd60P7lfT7vP0ZrpMBcZwhmeV8fXmMsgpVjuy8OekYvxDkj5X7+OWeb3e/8ZaQOdLSyvbWR0cmpzMvMA8CqaqwaM4VHlpzIqtGTuXD8dP60eCXL+q0R++7E2eQmJPFebcXAY+PDqwf3AfDl4sBzC4/MLWRqWhZ7O1r4tL7K523cow2CDXIXXpyG57USzvOv2+ngtu2fU9rZxsKsfK6ZuhCAj/yUdW5rNcv6ZkW9PspdbSSBlBgEfmdIuRhpKopB3EqIegMF1xdUBceKFBxHJZv/rQkWSIWekYpXaZ/hfjUEajbhI7MUUte+/g0q+lPNK5xKh+FzO56T11EBSvvCDKQAziqexIz0bPa0t/B+bUXYP9/fO64mEyePGuf7Bt4ZqQAnPANmSLlZFfR0NbQ1KV5rpCCyE96wBOra50dvk5E4n2S5n7fJitlwok2POIMRKKgPlZGumo9/qOWoIWSk4hEoKyGsx4xklpT3mia10hG0wU0fHX0DKSOEFuix5i/7GosW6O7Xp5GteRrr9G84ofRfH0VsM1LjU9IpSExmV1szTbbu3vt1v46soGcEvgjivjjobs3vnRFw6Dot9p6o99Ob+/nnmJmAofgPpN5wrY06tXDCgNLrzIRELpk0mwvGTffZ+j3VYuWKKfMA+MPuTXQ4/F8E2NfewtaWBoqSUlniCkz9URSFb0+YCcCTpTsHXtTr0FGb3JkVyUiFSmn3angSYgDq0HXu2fkF21sbmZaexY2zlnJkbiHJmsbnjTV0Owc+rzyNJjJ8B1Lath6S72jwVDP43V/P+21IuzpkSCB1mPA3Q8rNXQYSt/I+r4yUN88VyiAfrOGskYpbaZ+7RC/ArvaudfLxc4HWSHnaKAc4Icswg90BV+p1A7XGYTZN8PX4hjCQ1x9NUbjIVVbh72pTqFpsPXzeWE26xcqyXN8fnEqoc6TsvScs/RnZ5hX4YMFHb2lf34xUzBsSuO8votI+14lnvDNSPb0XAIw01SxDDdbsww+12oGhgl4Q+ZUMz0iGEBtOeE5CA2Sk3IFyTB9fd9c+P+3PIfrSPsVB0CHk3pQOw7zo4x5MHGQob0A9uidIDYe/9YCxaIGuen2WuZ9jal3f4zOg9TnENCOlKIqnvG9tYy0A1V0dvF16AIANnfX8p8NcC6r6axDk/j3cgZTrs/dgVztXrn+fSz5/h73tLVHvq+f+3Jm8Iou5tqxRH7Auq8vp4H+1FVgVlRNHDSy9DsURuYUcnz+aBls3j+3f7vd2vdmoiaghdKVckJ3PvMw8Krraea/fRT3Ne9B2V/Ay1v0dLdy85VPeri4Ler+HM+/PyFAyeYZh8Pvdm1jbWMOY5DR+NXsZyZqFRE3jiJxCenSnz2HV21vMQGqWn0YT2l47apve93H0JV7VRnE2jEZeiUA8M6Sy/Fwl9mqBbgS+OBQRxU8JjGdNRpBAKpw1Up6MTcznSLn+DnR12HNC6vUBHsoapWAZKdzZRIc5lDe793FUGnUUOzhHawPLNom8tM9tTmYu6RYrG5vraHfYI5oTAvB+XQUOw+D4gjF+B/32mSMVSuDp4w3VyNGgzIHS5OxznAbwlPa5rtzHuXNfZM0mDm1GigTFvIpf6zQX6yeGeS2tU0dt0c2Sqyg+7LyH8gZ8DF1CWSMVTtlnyEL4YI9klpQ7yNfTVdQ2HbXcgT46hNedYZiDnVO8mt14ZaTCfQdIeqIVpc5J189yfA469rv/Ptqfg/c8Lz/HQjf6zIXzue3m3oyU50Jc/9K+fq3Pwes4xKjZyNLcUbxWtZ+XK/fyetV+9rS3MK05lXOYR49FZ6PRyFfIZ2t5LcX2YtL7daRTm801y+5jQpfBluZ67tqxljZXJuc3Jev57cJjSYjBYHS1ybw/I01BL9ZQG5yoVQ70Sb379UFtJV1OBysLxgzooBeOyybPZWNzHW9Wl3JMfjHzs/q2Tm+ydfN+bSUpmoUT/VUn+PCtCTP46aaPebq0hOPyR3s+R1SvE3BFx7wI5Ge98bs15fxpz2Z6dCe725o5Jr84unU7w5j358qaioN8vKsNh6GjGwYOQ6fH6aTb6aRLd9DtdNDhcNBs7yE3IYnb5hzZZ0jysfmj+aCuko/qKvsMs2+29VDR1c7o5FSyEvwMVXZ/7gc9tzP/ktI+MSg8Hz6Z/jJScW6B7ifjYgT7YAVPu1uPUNpix2NgWwhrpHytdQqltM+z7itIRgoGZic8jSZ8lfVBVKV9ABZVZVluIQ7DYG3/xdUhMgzDMzvqpAAfnH2uigU64QmwNkX3tEAPLyPlyViEO/On0Yn1zQ6fncP63K5d75spCIEeZMF6zLjXnLkDKSLLggWdHxWicFug9wZSATJSntK+WDabcP0jUGlfVvgBuvu56ZxqBk9qqA0nul1rNL0H4boHoIe7dsRhoO63o7bqYa+ZUzp086JQ//czdwv0+oHdMZVaByl3NGB9oz3wtt2ZlWwNUlWz22Zd3+35Ku3DfVEgRoHU3MxcklSNss429rS3UJycyum55nvbEYWFHDVpDABt9d1ctu5dXju4v7ckzWaOqzCyNE/zp/rGdm7eupo2h52vjJ7M/Kw8SjvbeLJ0Z8D9qOxs592a8oCtwelxrZHONi+2ubNg7sHZbq+7BuOe1m++X7gyrAl8f7JZ4nf7ts+5v2Q9axtrsLtGabxZVYrD0Dm5cBwpltDfK2Zk5LAsp5Dani7e9MomuRtNuD9rfTVOsOtO/rh7E7/dtQG77mRschodToen3Hwkam/o8vy7uqmd/9aU8V5tBR/UVfJJfRXrmmrZ2trA3vYWKrs6aLX3MCY5jdvmHElBUt9B4Yuy80nVLKxrrKXTq6Rzu6esz3/bc89ncZBzu0AXUIeykRmmH4Y8HYL8lfbFuQV6b+14v0AqU8VQQWkIcL+dBordXL+hdBmhlfbF4YqFu7tSwLU3vrrvWYOX9mEzzO0H2G/dk53w3cbW38mr5+pNBKV9bkfnFfNOTTmf1Fex0ke3vWD2drRwoKOVSakZTA404DfUrn1+SkUBrxboQcpF+zebyIosY2H5vIuE97ow8jUciwc20DA3bi7qNVLVoFfc+/yYu8NWnEv7BmSk8FFCGoJYrI+CvhmpUPQ2mwhwbFMVjAQ8ayliIshAXsA8pmmKeTEohIwL4MmW6lMTYH0PWogNJ5R+66MAr1lS4QUQ7jb24MoM+qtm6M9hoHQZngsT/el5Glq5A6XVa5tOg8Rn21A6DCzbbdhPC7BfrkyOuxxdz9fQDjhQmvTeZim+MlIxLO0DSFA1fjpjEfvbW1mWW8jE1AwsJTagFSVR5dgpY4FGpujptDvsPLR3Cy9V7GV+dh5HOvJYSSJGlorDdWGlrtnsXnv11Pl8qXA8dT1dXPnFe7xUsZcjcgp9DqPd1dbEL7d+RrvDTm5Cks+hudD7nubOjrobwXh37tvR1MCe9hbGp6Qz089alnAcnVfEuWOm8O+D+3mvtoL3aitIs1hZnlfE5w01KMBZRb5bngdy0YTpfN5YzT9LSyhOSmVxTgFqpQNDAX28FW2vHaXLwPDqsl3b3cndO9exq62ZLGsC189YQqrFyjUbPuDVyn2cUTQhpPLCw4lD11m/v5ovYT6vjk0tYvScYjRFwaKqqIpCoqqRrFlI0sy/rYo6cGSJi1XVODK3iHdry1nTWO05T3A3mgg0iNd9ATXoiBZPs4mwftVBJxmpw4Q7hav7azbhXiMVzSDOQDxXEvp9XVPMeu023e+VQne7W3eHpqABgcOIzwvNlZFSAlwc9jkPKoRARrEZAbNR4HVS3dI/IxXk5NV1zCPNSAEsyMojRbOwvqmWLh+LSQMxDIPXXQuYA2WjgJC79in+nk/0ZqSCBkT9mk30aVQRxuJ+9wlqwPvrMudfhNOxD4Ak12DPCEv7lAYnzpKu4Df0Ki2NZCCuW9Qd+1zC3ocQMlIo5nuN0m1EtO7HJ4eP17sPenZ4rfXds470PA09W0WpdQbNeIJX+Wiqd0bKHUiF9zt7NyMIawZWkLWAho9ybusHnWgVrq5r9U7/2XubK7OSpXkCUj3fFRTUeu2vex8yBgZSxLDpxpG5RVwwfjqT0jLNE0z3+7/VfB0ZChT1JPG7hccxLzOPmp5O3q4u4/UdewH40FHNjXtWA5Blt3L7nKP4kisblJ+YzOWT52IAv921gU5H3/fdHa2N3LxlNe2uq/8f1lf63U/Vq0EHeAVSXo/xS/vNeYGnFU3we7IcDkVRuHjiLJ488hSum76IZTmFdDsdvF1dRrO9h2W5hRQmp4a93YmpmZxZPJFWh41fbfuM36xfh9qkY+RpvWvAXa/vToedt6vL+NGGD9nV1szMjGweWHgc87LymJyWyZzMXKq6O0LqMHi4ebqsBK2197WQpyeyIDufuVl5zMzIYXp6NhNSMxiVlEKmNZEEVQv6vDgmvxiAD73WUwdbHwX0rt8Mdf27ZKTEYOidvTE4GalAGQQ9R0Wtd6I0OjF8nIB5FuUWWNDKHIGvWhgGisP3/UTNk5EKcBtPRsprl4IFMu4hjhmBr1sYfmZJBS2ninKNFJhXm47IGcX7dZV80VjLCtcbZiBOw+DT+oM8V76bfR2tWBWV4wpGB/wZpcvAUDCbakSakQoxo9K/tA/AyDHXpCitoa3NATyPeaDSLc/rKjXMa1OKOS5ArXeav3OYz+uEv7fQU+OAX+QFLCn0HOvEaDNSMSrtiyAjZSj0eSx90bM11GonapMTPVDQFSJ/az/7M7I1KHdlTfxczOqzXa9sqT7GiqWpB7XCgT458LoVT0bKK2A3kiMLIKIOpNL9Z6TAbDihTzazItZ3OjGs5nFSa52otU5P+VmfbTcN/Bxzz5JS6pwws+/+xqv9uT/uEm0jUTEvEqapKG06k1IyuGvecpps3WxraYSWDgAOJHSytbsJh6JTrCeTm5XXZ3srC8bwWUM1nzZU8bf927hy6nwANjfXc9u2NXTrTlaNnsyrB/fxWX01P5ysY1EHHvc+5ZC4KkFSFLMs3GnQoTt4q/wAiarGyoIxMT0myZqF4wrGcFzBGNrtNlY3VLO9tZFzx06JeJuXTZrD/Kw8Htm7jdYD5rHcl9XJmKQMrMCumkaes5fzeUMNdlc55VnFE7lk4mysXsfnnNGT2NrSwCuV+wa0cj+cbWqu47ny3fyuZ7bna7FoG78gK590i5UNTbW0221oqsre9hZyEhIp7FcK6M1dUTBoo23iTAKpw4TS7KpZ93OiEe81UoHWABl5GuyyozY4cfoKpNyNMtyLcgMFUvHq2Ae9gVSAbIXnQ9p7kb4nI+Xn5xxm4BCo0QR4NR7wXi/jMFDqneZaGj8nhrEo7QNYnlfM+3WVfFJ/MGAgZdd13qut4PmK3RzsMj/kpqZl8Z2Js/osTh1AN6DH8Jx8BM5Iuf7hK5Byn4QHaeWv9Gs2Aa4TjVKHGdSHGEi5gxC12X9GKpKOfZ59ylCh3mk2GckLvWROaXR6SneUDh2SA/yszdXpTQPdE8SE+V5gGKjVToyE3vLKSHkew3DWSCUrQcvm+rRADxzTh8Y9kNeqBGwm02cY8IQQmkZ4BfnOsRYsW3rQysMIpPqU9rnuO9xAqjo+Gak+DYYcBonPtqI4oeeMNNQmJ2ptl9kG2Ucg1duxr/e5bLiH8nq1QFfadAyl3z5YMJ/jcQyk+q8FNjJcF2Y6DIx0heyEJFbkF2NN6AA6OWf2VGbNHI/6oZlpwzDwXturKApXTJnH9tYG3qwuZVluIZqicMf2z7HpOhdPmMm5Y6dS3tXO2sYaNrfUsyi7YMBu9S/tQ1HQiyxmGVydk/8Z5XQ7nZxSOJ7UCJsJhSLNmsDJheM4uTD0BhO+KIrCkblFLMwqYE+FucbpLWsVeU2NnE8R/91/gE/0WlI0C8fnjeHEUWN9lkYuzSmkMCmFzS317GtvYVKgsvPDRIuth/tL1mMAkxzpvd+IwRwzi6pyVF4Rb1eXsbqhmvzEZHQMZmfkBsxmed6bBmm0TbwNs90VPnXrKD2GeeXOz5O5N5AajIxUb8MJX6einnkb2SqGJUimIo4vNMN9khaoYsxH973ernmh/4zP+/fRbMK9jsE5KsBJcgxK+8BcTJqoaqxtrKHH6SRRG3if+9pbuH3759T1mOVk8zLzOG/sVOZn5QUvF+k2UAzQ0xSMTkJqf+7zylSyYma1gp2E91sjBV7PxSY9YOKxD9dFgj6zzvpxByURBVJeAXQ4gZS2w2sOTZCTaKXHVVqqRJ6RUlrM9xnnGEtY68B86S3tC+E5azfXUOpBMrrgNSssRg0nescWqAEDKe9ZUqHcs3eQr491lWGFsE7KfSHMd2lfeK9/JdKMVJDnuuGVkbK+04Fa7cQ52YrjqCQs683nrFrtCPhZ4B2oe0r73C3QdcMMpNL6rUdUFEhU4pyR6vtebmSoUAlKi7NPdsz9eyTlJTInMx2SG1HanOZnQb+LnZkJiVw1dQG3b/+c35ZsoNPpwGHofG/SHM4ebQ6yXZFXxNrGGj6uP+gzkOpf2gdm23Vtr53GA228ajFbkZ9ePCFGR+LQSNQ0FnVkAza0sQlUV5qfO3Os2cyfOY4lOaMCdjzUFIUvF0/i4X1befXgPn40beEh2vPBYRgGD+zeSKOth5MKxpLSrvSuPY/RIONj80bzdnUZH9VXMj3dXKg2K9CaO6fheU0GXf8+TDNSskbqMOApjfPTsQ+I+xypgO2q3UMa/cwWUT2T7DXzZC9QW+zBzkj56NrnaTbhJ5Dx+TO+WBSzQ1WLjntOhnuAnRGolCoGpX0ASZqFJTkFdOtONjTXDvi+Xde5v2Q9dT1dLMku4N75K7hr3nIWZOeHVHPveSNPViFBibi0D1WBFCXoYEbPmhHv0r4QG1X02Y67tK/Zib/5JUoEw3jd9AiH8lq299ZJBJxabxhmp0vvkz8iCKRca17cQ1KjEU4w5/7dAjaacG83pzegiYmQS/vcz6sQj2m3K0NoBX201RygGkLnPk82yEcgFdYcqTYdtd3oLUsOo2tksOe6OyOl7bdjfb8LI1Gh52vpoCqedZ7upiUDtt2vRM38t3mBzdMCvdO1HtFHaaGR6HpfCTasO1L91sj2XgTpV47dr/mT50Kmnyz6stxCTho1llaHDYeh88Mp8zxBlPn9IiyKwur6Khz6wMfZc9xcz3+HrrMjrQ2AjzeVUdnVwcK8AqamZ4X9Kw82d6OJbx49l/OnmzMPT8gYzfK84pDaxp80ahwpmoX3ayv7DFc+HL16cL9nBtQPCmejOM1yZyNJiVkgNTcrl0xrAhub6lnTYHb5ne0jG+jhfWEjaLMJ19/S/lwcakFnSIG5qF0LvZQmbAGChd521X4+PL3WdxlWxXwx+Wv1Gs8rFu5mEwEOkeI12NTDHeP4e5Pw1enPDz3TXLSO68qzp/V5gEDKE2xEWdoHZvc+gE/qqwZ87/mK3ZR2tjEvM49fzV4WducnzwlxsmKe1Ad4nAM1mwCz6UCwobJKj+tE0Ws+TsiNKry5AykHnsdlwH15yp3Cf176azISUJeOus/rAQ+UjXC4ntPu51+yYnbSDDOQco8wcJ8oR8WqmCe9oeyDp2Nf8I+rmM8Kc7jWZgX5lfXs8AI4pVs3A3xXFsUYpaG26EEDGl9rpCLp2ucu63O6SgnD6Rrpb4aUR6qrBXqnmYG2nZXa2wRhlMUMGv0MIPY0HvJe66sqGHmamY3r0H23PndzP8cjHDYdjM+MFAMvgvSOI3GtWXJdBAh08eeySXM4tXA8P5uxhNOLJvT5XprFysLsAtocdja11A/4WfcMqY4kJ/8sLeGSte/wu45tAMxuT+fSSbO576jjwv11B1+H7mk0QaJKVmYyELys21uKxcKXCsfhMHTeqCqN154OuvVNtTy2fzsWReX6GYtJ7nAF8Zmu12NPbC4waIrK0XnF6Bjs62glRbMwPjXD7+37BHDBXpfuiiPJSIlDzd0u298MKfNGinlVrDNOV+s8L4CB3zJyNLMUy88sKaXZnL9jpKtgVVAM/JfRxLOG1n2yFCiz4wkYe7/kedH72WdP5iWEN4fek2rzWIXUbtoSOCMWjiXZo7AqKp83VHtmggCUdbTxbNkuElWNK6fOi6zrk+sN1XBnpAz8B3+BMlKEsMbGMMyr/kl9XxO9JVhhnDh6vfn7O1GObo1U35bOodB22foE/AHLmfqd/KG6Fsl36GG9F3gyUrEIpDCPldJjBO/k5D75DCEj5RmOG8vSPgtBn+9hBXBO17gHr0ypc2yI86R8ZqTCXyPlGakw0WqWU0e0Rsr/MXEH246ZCTiWeI0MsCoYuWbQ6KuzouKjRA28y/ucZgdY/GekIMjrIRr9Lhj6fO3qhvmZlqZ43vONZHe3Of/7lWKxcuXU+X7Xp65wX+Ty6pgG9Jkhdf+uDTxVVkKTrZuCsenomsHsjgxWjZlMWhQDeAeL5hrEq48xH39PQBrmep+ziiehAq9X7cemx3lm3yD4X005t25bg8PQuWzyHLPLpNd5oef5F6Os1DF5xZxYmcejH8xnqTUfLdD6KK/HSglysTfYBdShSgKpw4Cng1GwrnCpinnyFaMXU599cFcZ+TrxtSoYma620/1P9p2uevcM1eyC5D7Z83NyFd/SPtc2Q8pIeR3rYHOkwshI9V8npVa75mf4G8YLvRmxGARSKRYLi7IL6HA62NRcB5jd+X63eyMOw+DC8dMpTk6LaNu9pX1ej7OfK1TBuqUFvcLrwMzs9VuPYGSaLYvDWkPjtY/+1klF3WwCBswPC8Rd1uecZH7iBCrb8DlEOl013wvCuLKr1scwIwUY6a7HMEiWXAkjI0Wy6+prk/8yzLA4jNCy3/1nSQXSPfD9INR1Up41Un0G8obftc+7jb2RoZrHOMT3j2Bd+wAci5NwjrVgW5VG/3W7nvK+moHPd6XJ1USi30VB3dNwwtGbkfLxeec5pnEKpNzv8YYrJvFV2qd0mEOT+zTMSA3yfhWCZbmFZnlfQ9/yPnfw2ZzmYE1jNYVJKTyy5ERunrcMY5QVtcOAOM+pixfVFUg5R7sCqWT3cQzv8R2VlMKRuUU02218WOe/jfxwYxgGL1Ts4Te7NmAY8KNpCzzZTE8TrwzV09E1VuV9s1Jz+MGO8UxqS+GYjrzAN/Z+XwqxtM+Q0j5xqIV8EhfPhhN2d1cwPye+uZrZ8rrfFX2lRTc72rlLOdyTy/294Nxfj+dA3kDns15tpD2CZLIUH1ksv/vgGcqrm+Vbza4hlIFO5jSzVCsWpX0Ay/OKAPjUVd73n4P7KWlrYmpaVp+6/XB5l/a5T+r9rpMKUsLpWXPg5yS8/zBeD4tinji2+gjq/e2313PRX0lgVIGUn3UWfjkNtBIbhgbOua4uiYHWx/goR42k4YR7/U/MAqkQO/cpnhlSob3m9RwNxY7/RhZOA+v/OlDqg2R/DMN8TYVYZqJnuWZJBft93Cf5XtlS3ZWR0oJkpJQOM9Do0+o+gjlSapUrKC7Swl4zF8pz3bE8me4rsz0ZG2/uMuUB5X1OwxxL4Lqo1udn8ns79/lsfe4W74xUvzVSuo+LIIqvUSTJoXUaDcRfeZ87S75BaQTge5PmeOY36UWu43Yw+Pq7SCjVjrhtG0CtMD/UdE8gFXlmxf3Z9XLlPoxYXGQZZLph8Nf923hs/3YSVY1fzD6izxxHTyCVqfUGoDHo3AeQsNVGbrd5QjPDkhnwtt7BW9BmE47An/tDlQRShwHPkMYgJ3HxnCWlBJmB4z75Uuv7B1LuDx3XB26QjFSgEsKouXZBCaH9eZ8OfMECmRC79gF9ZkkFHcTrzRKb0j6AZTmj0BSFzxqqOdjVzhMHdqApCldPm4+mRP6WoXiV9hlB1jJ4rvz6WyMVZPE2PhpNeH42xxXUh7omybu0z29GyuizX+FwD/YMdX/UA3aULgPnlITeICzAiaOv0lL3SagaaiBlGKj1TvNxS43Nh1zI88DCyUhB0IYi2uYeEt7qxPpRkEHGOuZFnhA/1Pu0Xg/AV5Cvj9IwrK7SPn8ZLcMwg5gUpW+3OotilueFmpFyGqg1DoxU11DZ9PBKS5V23bzoFGSmlz+eYbH9AinPRTUfrfUNr1lSg5qR6r9Gyl2K7Z2R8m6e5N6vENZIhcJd3vexV3mf+/72JrSzKDufI3JGeb7nntXlPTMsZnSD5EeaSfprc2yyvz64G024AymiCAhmZeQwNS2LAx2t/HjjR6xpqB62AZVdd3JfyXpeqdxHhiWBu+YuZ6nX4w6951Z6rEv7DKPPe2e+MynAjfs9VkEzUlLaJwZJKKUWQHxnSdmMgIGCZ9p9v5MbT8dBd3cjd5mcn8FtcS3tC6X9ua+MFJhru4JlpEIp7fPKToQ1/NSixKS0D8xZIAuy8ml12PjFls/o0Z187f/be/Mwuao6//997q2q3jtJd0ISIGEJpIEQIKMsIoigguOGggubyOYoCurIPLiNAm64jIPiuDPy5SsObgPDyPBFZwRmHEDgJ7KvggmELUl3J53urq7l3vP749xz7lJ3rbq3blX35/U8PpLq6rqnb517zvls78/u+2KvgXDPUyTOiFQxwnMcGZGyXk8akYKj50+c9D6T23MOtre54XozVh+3GMZyA47GnnFqlgqPWWl9+5fsfmZhh2if1NLEEalpDlblwiHSTH2cD7Gb8jYRkQKCo4e6JdIRaXio6Hesy9rS61GCE35Gvs5g7lYAq3DReNaPikgZ8zPWeS8TcyDGwZBtM0Tq2YoCwJhv24VATA7MiF5wzc4Dc7lU7vMYUpMep5rzd5baEugqIuXnOOyNdiy0hDdNtpeBFz2pfT6CGdIJ0EpECpDpfZorva+yTUjKb+mv4v17H+iq55NGK8sgaqS9ZIBNW/2xMigX8ApNiIsyoUDXxH1kljNwzcAiPDW9HV949B589E//jTu3vQizRYNq48wUvvHA/4eX52Zb+pw4TFTn8NmH/oD/2fo8lvf04+sHH4Wx4SUN79McqX1pRqS0jTXoloELwLfW0YVznY0UmxD/R6l9RNuJm1Yki4NTV+4zxAYf5kWwI1JBMrHW5qkU6Nqf2qcOTEkjUvJ3o2qkYni2TZXaZ9iGVFh9lAUvsNA+N0mR6X0vV2axqm8Q71m9b8uf6a6Rsl4MaWIMhIhNqIhUwFyW0a9en0NnEols+d3JGge/iFRd9OhoRrFPjWlY1CxFOjk4h/6obUjxGLnvQTVSQHxDSktZaMI1hpg1UkENqRs+VwqKBEWkpNphXCnehBGpqHkVZOSr9L7N/g+yX32UolcTa3CMNUAJTViH7ESGlKXE10wKq4SPWtG3l9x1bH4GiKKHwVykgU2YtsEVEpHKzJCqedZ/xsAX6eL5U427gyNSrTZFFel9yzBdr+GB7SK9b/PzOwAAa1ePYlX/kOv9KvqXhSG10U7BSCJWEhev0ISE91sKdCH7dBB7DSzCNze8Bp874DDsO7gYz8xM4cuP3YuP3Hc7HtzeqIYYh5fnZvGZB+/EL55+Ap998C7srAV4gVPgge1b8ZH7bsfDU+NYM7gIXz/kKOzW71+zrFL7FqdbIyWjUcZBIq08yqh1p/aFfzb1kSJyg02b4mAa1fA1qxqpeuNBreHagREpdz55lNhElql9qiFv2O2pWHLInuvzAhORCx/PltrUE4hNaM7UvpUxDq9FCPGAJjYXP44YWQENDAzAR9YegmKMfh1ROFP7VC1DUGpflNKhqpEK+P254HsuDak4PX/kOMwluuhl43NIbqWHlBqTw4AOHc9WQzS23rUgDmryMF6JUSPlVJqMGw2yUNLnS9PbMrKqkeKqKa+PKtyUYacXR3hHWUIpXpVSGKXcF2BIGRGCE3YPKZ85nUACXRlSVqRb1fnE6CUVKj0eF43B3KUANsdd6ax+PaSc8F1ESq40CkLlz7NK7as07nXcc//8aqTSikgBQjENAP532wt4bGoCunXfjttvz8Y392swl2hg2wzwsDWiCfS/2PM0UeuGmMj6KCk0IWk1TY0xhsNGV+AfDzkal607AmNDS7Bxdicue+RubJyZSvRZU7UqLnn4D5isVjDS04vN5Wl84dF7UlcGNDnHdc8+gc8+dBe216r46xV74OsHH4WRUnBaHZsyhWOhx07ta9WQYuMG9EerMAcZaq+SUvQR63czqX1ZqDJnCBlS3Y7yhkd/lZml9lkOmLADhzlqGQjeGimV2icjUtbrUWpueTbkLXpqFAD7wO+3fnq9mGH0CkU7tkOk9vGCffAPRTXljX5rHBaVevC3Yxtw0dhfJe4XFYi3jxQQfOCJ6iMVoYIlC+/DUvviRaSs/+9h4It1cRDyzM1WhCYkcQUnlFrfAcIqUh74kAO0X2pp3GiQ+gwZkYozF2MS15hLWiMV1tPJ2XsrqvA5afRbrmFxI1LwREvNCAn0UIM9QVNe1VLBctAkiUiFGXNJsBvz2n+rndrn/z1LCXRmutODnbRD/pzrcIlhuASC4LOnAUq6Pw0npjO97/tPP4QVsz0wdI6+xf5qRubKAhgHzM0pRko4d0ekEiiOxkUq9pkeQ6qVOiknjDG8YmQX/MPBR+GMPfZDxTTwxUfviR1RqhgGvvDo3dhcnsbhoyvwy+Pfhn2HFuPRqQlc8cSfWk4XlOyoVnDpI3/ATzc9gZKm4+/G/gof3vfg8GbEc6boo2jNTZm5kKhptw/FO8pgHKi/qs9eN6IiUo69KdLZS32kiDxIcoiLUjpregxxwrE9GsxBS5bYUQeieSNSUal99WSHm0TIhrwRNVJ+MuYqQuYzbj8vZiDMkoqvcLBZDnOXQqASouv6ypBK7wBx7C6747W77J7a57kiUqoWLiryGJHaF3QwCamRskUBYnjgHcXlco42KE/GFHsJI6ixpxf9MVEPIQ0pqQYWq0bKL7UvZkqOHZHKIrUvKjUkaUQq+Pt1etGjVC5VbVzM6LeKkEQ4qoKMfL5EAx9gImLkt45IQ8qvRqov2qCWaC+6WyqoKHgSQ6qViBScyn0OtTvruTIDIlJSAj30+nJtTiAFnwRWRcM6bnpbVmwXzXGdoiwqIpVCatVAoYi/stL7Xti+E4tqRWBE1Lv5IdP7zOdiGlL16LQ5Nmm6BTayiEh5hSYs0ozuAcKges+qffHqpSvx0twsvvb4H2FEGEEG5/j6E3/EY1OTGBtagk/s/woMFou49MDDsbynH7/f9gL+z8ZHWx7bY1MT+Oif/hv3TW7F6v4hXLHhNbH2ZFuxz3pOUlCNRNlE4d458AJQO6IvvoCK3PflIxuSCRDV9qRTIUOqy0lkSA2m5xVzEdE8VV1/1JIHdtSZsEkr/CwPFaonU8CHtKMhb9D5um7VgvkZRKoprs/v+Rxkw3Dm/sdS7APsSF6Ulz1HXDVSUap9YX3JEB1dDfL6A2Jz4VqMFCzn+IrMjnR46qTSiUjFUE6bNqFtqsMc1pQaFwoA9PADmm86UsIaqbSb8QIJ0gtnrNYKMVJjAYjvasjqW+cR79CdEamowme5rsV12vQxob4Ytb76yNGLATEYq4pghn9NS5gypKoFjDqoz5rQdlgF/LJZbDMRqRbmOuAvgS73haDUPimBDgQbUplGpDgXbT4867jdRN0EalZz3EW6O2uhaIlStKjaJ5HqfStmRZ2Kn9KhRK4V/NlK9AcbHH3fnETvj3aEvk06JOR30rQhxTm0TbXG2jE/oQn5KylLeQPCmPrY2g3Yo38If9q+FT/Z+FjIkDl++PRD+MP4S1jZO4DPHXAYenVxj5eUenHpgYdjsFDE9Zufxk0v/KWp8XDO8evnn8EnH7wD26pzOG6X3fGPhxzdUAMX+PdY34dp7Ssq9bcFQ75w7xxYlaO+oRcY1ET2jIbIXoTKcSTX+7AzSj3hmtshkCHV5TQTkULKhlTcbtRScEIeylB2hJ+lNy1uQ94sPBbyFgZ548Ia64ZE0pKo9gG24AQA8DiKfYAjta+TDSlTRO4KLFYfKc5gG7deStbBJGAuK1GQPp97ronokrbTjM7Z9otIeZX71DPY/Jz060fjpfBEFYxb0Sj5vDAmvI1h9Q9+qaU9QvAjbnRaGxde9lYjES5KwqAOHQPn4vDZzwI97r6/tsQS73Ae8KZNaFsMuw9W1HeftKeJxoA+Fl0zoIx8n7TTPcTzrj/dGD2wI1I+44lZI+VsxKvosZ6lGEZ1WoYUl2py1ng452CThvByBziceIyIlC1/nn6EBDWAcTSMzykf79tDSr6vXxOGbgxlziiOGF2JfQcX450De4nPDjA+AduQMjdGR6S0Z2vQthrQ/1ID2xKcJ65ZhlT9YEtwoJnUvjpH6Rc70ffd7ej/8gRKv55WUWQpuOIVmgAckemUlQL79AL+/oDDMFAo4leb/4zf+zTuna7XcO2mx/EfL27E4mIJnz/wCCwq9bjes6p/CJ894DAUmYYfPv0Q7h5/KdE4ykYd//DEffjBMw+DgeGCfQ7G367doIy1OGieiJSKHjVrfBocxTuFyETtKFEbJfaeGOudjEhJB3FIJkDcs2SnQYZUl6O8lHEOOJYHISqVJjExIy7Smy3ThJTXxFmUKw8tTTZqbQnGRP57wJ4QJhqhImR+h7MYNWSuz3IYUrGkz+Hw4KTUlDd1OAfmuCp6VXMlKCJV52IxDTk88wHrYOJn+Iak9gGO9L4AOXM1Dvl9lpjjdzwRqZCUq7jESa/SH7XS+vZ310KwPk1EcAMcAEHzlg9pYpOLMihmTbBZLp5fb21gi/BBTRz+A1U6RaqtKjCP+7k+EugyGmXsXRSGQ1RzyCbWGt5vfRdh6Stqbjb+TfX9xaFMf8Tn0BtSI8VjNuV1NuK1B8TAh/VYcyGNNFbx+0ykMW4xxLydMsDqnroi7+8M2f3nolL7MolIBexzTqEYbzsP1/v6mTDEUkg77C8UcMWG1+B1pd3EZ4cYUnyJBnOxBnNTBYgwlvXH7XlXeDg4gqVb9VH1Q8R8jZMW6mLORO//2YHifRXhGDA5iv9bRt/XJtBz7Q7o988BaBSaAJBOmloAK/sGcPHYK8AAfPPJ+/HM9A7sqFXw25c24ZKH/4Az/nALfv7cU+jVdFyy7gistBofe1m3aBQXjf0VTAD/+OSfMFOPtzE/N7sTF93/e/z31uexS08fvn7wUXjjyj1ckvZxUP05h2WNVGsCHfojVWiTJox9iy7nLu/XhHM7LLpfFhkFas0IW2OyrIHPEDKkupxEHkKNgQ9owoOQYiO6uHmt3oiUXR/l2ASiUtSyTO0DAA1gQR7DsMa6KrWv9YiUbMoL2D1XIrHuR1NNeQ0O7flaKp7SQCpcFJrKCJGKSAW8X4p6hMAHNHEw8dkcWEhDXsCuw4hM71OHJ/tw5BUTSKNuxFuw3kCdQ3+yBl4EjDWeovKoOqmgA2BMwQkpI26mmNZnj4GFjiE0ChOCSsN0KPfpz1hCHXsXxfyLTO2z/j/BWhMlggIgvH5vhQ5zRIO+ud5g5NtCD8GGVNQh3avYp34/ZnpfWhEpMAZzRUGkem81YE5YkamQFDUwplLJTB/pcyDb1D6/NgKA+9757mkSVduTXrRMPZtR921dD8BtZ0wQBYchpT8UsDhPm9C2GjCX6uBLhZR9ktQ+NmWg9/vboT9Vg7FSR/mjSzD7qVFUX98P9DMUHqqieJ8Yp29EKoPUPievGNkFZ+65PyqmgU8+eAfe+4ff4sqnHsAfJ7egXy/i+OWr8dWDj8K+Q4tDP+eoZbvi+OWrMVOvxUrx+8P4i/j4/f+DZ2d34hVLdsE3NxwTeY0gGmuk4jlagij+XvTHUtEoizh1Uqxsin04TvlBPSITpUMhQ6rLUXK0cTe2ASbqfNIsxo3puW2ISKmceEdEKm5qX1YeC50FKt8FbaQA7L89jRoph9KOMzoVirp+8u+1cM8c+q7cDv2x7Ppf2EITlkc5LCLFRRPcyJo7eWj1Se8La8gLwLGxRHjgHd+5PBw1RKR2Bh9wY9OrCbXGgIOs/nQNrMphrC01PGdMHtAC/pbAA2DMOim2Lf36KDWGCAl0l0BJks9VEuiOiJSs69i7CF5kwgEU5lBqQkEqTiF8qJHPGIx1VlTK8zxG9ZESn91Eah8SGFJJ95sQnHVSfNwypEIiUoAtOBHotFDtAILvQ8/VO9BzbXgNkC9BDolhTdTGTZn2nhYQkQLSjaQopcOQiBQAe049EmxIsUkD2ksGzGU6zKU69Bfqdhq+AxmNMvYswq+PVuh4X6qj95+2Q3/RgLFPEXMfWCzqyQY11N4wgNlPjaJy8iDM5TrMXXSYuzXmeKUtNuHHO3ffB0cv3RWzRh3DxRL+esUe+OKBr8JPjjgeH1l7CNYMLor1Oe9atS80MNz4/DMoG8GpklvmZvH1x+/DnGHgtNVjuGTd4Rgu+qswxkE1rbZqpKBbqdxNRKTYpAH92TrMpbrYfxxEfhd1DlazzjJR2UawjKyITJROpMvU2gkvtiRuzEP6gAbAAJsxEx9OAolpKJgNhpRfRCpCbCLLhryA8IQEPeghNVJhqX2JVPtgb8LmimAlpsbrN5/aJ78PbZsRqLPRMkr63JpzYTVScevgHMp9DZ8Skj4F2HM1UnDAWSO1yDoweSMFYQfcBPBFGrSthjgEeuaY/oQVTdmvcXNl6hBtgvu58gIiqXENKaXYl0lEKmIMCXtISUxvat+MKQ6JI5pYb5yOj4B8fNbEWhOnDjXKyK+vK6H4+zIKj1RQf5XtAWbTpvDW+tyLWH2kTC6Mll7WcNB390IKLlBQY2hR/hywhXTYi3XwmmXghUVWANSP7AOr+z8HQIyIVI2j8Hi1qT6EtkPC8wNdpCmyKbtZsF+Kourlk2JESvXeimhLYO5dBPo1aE9VfdcXwE7rM/YrgReA0m1l6A9XUD+m3/0+y5Ay9xQ3kS/SgG0G2A4DfFnwkVL7Sw291+wAK3PUN/Sg8s6hxmeryFA/rA/1w/r8PwS2M67V5sZhMMbwd/u9AqfMrsXu/UPQmzzYr+wbwDG77IbbtmzGzS9uxMm77+P7vqv/8igqpoF3r9oXp+0x1srQAdipfa56615NrLMmT5SiLc+Y5i6Nqd2Rjaad+7Dcc0NT+6IzUToRikh1OUkbJPKIRqZNjSFugWA/A+9jwsvFuVI/c+WTR3ktMmzICwBcZ9E1UiERKd/UuqoVro7ptjB3LaD6hn5U3+iff+2LDJs3k9onvVRpqzk6SBSRksZLjNQ+AL7KfWEF/YDDGI5IAXJFcwpM1BXtcKvBhR1wk+Bt7OlEf9I65Kz1OUBGpPa1HJHK0pCKUO5Tns6YPaTU56peUuJzZTTK2NvqvxVRowcgvkHvvG4cSeCQZtEAYO5RFPVDTzvUzDgXB5o+5nsI4jH6SLEJA6xmRaM8B0OvhLcvnIvI4YD/GJLiG5GKiKyYq4qonD5sz3kvxfDnWv59rIbo2kAvIQ5DvkgHMwH9+eAURZWemmIkRZu0RGCiHKk6g35QP1gd0J/yzzyQhlR9/xKMA0UEy69OSgpNGHuJTceM2QOv54adYGWO6rH9qLzHx4iKSZpS8mHojGGPgeGmjSjJu1ftCwbghs1/xpxPVOqh7dvw+20vYLTUi3ev2rela0m0HaZw7jr3JFmjlzTtdc69d7voC96DAUf03dn3LSjxhXMgRiZKJ0KGVJeTNGc9Ewn0mPLnYAzmiA5WEwcnlQaxyN48uYpI5ZXaB1HL45fyEyRb7ByPT/SeVbk4xMZdkBlD7fUDyuMXB95CQ16Za552fzEX8vAQIyIV1zAPT+2zNpKgeaI813FrpCwDcLGlBjflOOCmdLg0A+qk2IQhahJW6L6pTyq1L2iDlGInXrGJmPLjWgbS5w1jCErtazIixRdb0UOpAvaMndYHIFa+PlPrWoILx2h6zuasXnRB80VjqO/fIw7mViQSVbH2BaaPxohIKaEJn5YKyogPmwtzov1DGml9gN3Hir3oTO1r8bM1q6F5kCHlUJdLWmMTltqt7t/L1rOyyOcep10jVbFEYJbosfYW/RARWfJN76ty6H+ugvcwmHsWYe5WgLlEg/6sp1avwqG9UIc5yMBHrRR0p/x7EAYXtXDDGmpvHGgtdUumZacY2cuSVf1DOGrprtheq+I3Lz3r+pnBTfzgmYcBAGfvdUAiZb5AaqIHpUsNGY6IaMKyjtBWInIPDniWnA5UHuZsBgADwtAjQ4poN2zaFEpzQbUgHrJoypukiRp3CE6w7QY4g7sOSDrc82jIC9jNb32iUmGiEYENebnIHY9bH9U0IWIXUciFMuzw1yqql0SciFRM2enQprxz/ukr6ndjR6Ss/1CGlKdOKsXDZZBynzxM18cCcuYj6mMiI1IRawEbN4XqUquHXB+ixmAbUgmvrVuNradMoM4bvOiRjb+dP0szIsU5UPFv6u3EWCe+64Kl3sdCFPsAO4U13JDyr48Cgueek9SEJiQ9DOaIBm3ShPm8+DuDmvEmgfcw8Vz7OMNcToqk611oRMq6/9w6XPqt9ymrzcm0vqh0SIm+vh9ctwQlPAqf+tNVkTK5tiT2QMZUVMqpIKk9VwMzAXOvojqkqx54IYYUmzTBzHScMe2KSKXJe1avBQD86+Y/o2bah4vfvLgJG2emcMDwCI5Ztlsq12qoj7KwRTqaM6R8xXEi5rQypHo12zEakW3UjQVHZEh1MyYXzSoH3Z6HMEIPn80SJsLgQdVJbTXAdphi7A6jKK78eVapfeqJ8Ls9cVT7vAczw4pwxW0m2ixBhlwcrMUuy4iUXGhVeoCMCPlFpGLKxQem9tUtsYqA+ijX9aPSHDxphvLQImshog64SQg6kKj6qABDSkakAgVkKlZD20KAIRUWhahyaDtNUYOhpz+H7ahYwEYs501SQwqiboRxYUBoL9ZhLtHsWpI4NXJNOG2iGkWjyoXXNcLxZexTAi9a6VZ1HqleGEe1L0ixD0AssYnUDSnHWPjWuljTW0yPBQD0MrHm+kTnnc20s4hIAXYT1Ib3xFF0TIAWU2hCwvo0mPuUwGatJrgOVH2Uo7VC3Se9T/c4JADH3AnpJZVqnWURwnncJREpANhzYBhHjK7ARHUO//nycwCAnbUqfrLpcTAAH1izPrHEeRBe6XOJWiOS1pZJJ6ifISWf16DvQtVGs2jnlTUlKbWPaC+zYlNOsrHZHuD0a6TiPABKuW+j8Gw1eLlzTu3jcp0PkzFPotqXULGvWVJJ7cuwRkot3jK1T57l/AyZuCqQQal9UYp9aLJGCnZESh7IpAGQZkTKVSNV59CfroKXGMw9ArwHKmUjIKpT9Y/OxTGkVH3USDZbRWRUrMnUPsA2egv3zYlGxo7Dn91AO/j3mdrY418zKn3L9tBG/D0lBmNtCcxKuYo0YmL0kVKKfX6GlKOpbBBpznWJcyxxU9SiCHu2Xal9SSNDYREpR8uKoMhtlPc+KUpoIkEUT6r3FZx9yjiH/ngVnLmj3ubqAsxhTURzp921hs6088jWDYCt/Lk0BUOKWbXWZf+oYx5oT1VR/rtNqsG0H6esElGpXz33FOqmiZ9uegI76zWcsGKP2CqAcVD9Ob2Kv3L+NRmR8nP+RKn2qd/tY5FiE82I+3QKZEh1Mc1I0aqDS9IGemEk6EZtWnnV+tNiQfbWfPCoA47qI5Vxap/P7WEhNVK2ap57kbAFKlIboT+tpPbJiFQbxSagseCmqDEFRYKiq1FCEwDiR6RqXkPKuuZ2T0SqFelzC78DibaxBlYFjH2KgRsMCxObCEktjVMjpeqj0jgA+ZCV2AQAFX0q3G/1pNnbcfiLIcUbN8XUdU1p8AU9SzGMfImSrH60ajfCDZpnBQZeCEntmzOhTZhi/fWLjvcw8J5g+X0gq4iU0wBJaY6FPNvOZytpZCg0IuVURwv4OyK99wmJ1UPKg3GA2Ij0RyvKCGEvGdC2m6Jnk/O71RiMdSUwDhQeqYh+g8/WRB2VIz3UjJHal7ryZ78m2rh0SAN6/U9z4BMGtKeDW4jsM7QYr1yyC7ZUyrh646O4+cW/YEAv4L177JfqWDTVQyogtS/pvHem53mJSGV2tq/gUWITGQuJZQkZUl2MvbEl2OhVUXGKQtcJoi7yQKYF9duIksjMOo/WWnuY4XP9sMa6QQ1x2xSRQoj8eigmt2ukqojVC6QpHCF+RQ/zvZ46sMRM7fPWOrCQVAT1uzENKdYgNuGukWrmGQwck096VVRaH2AbUr6H6Lqo2/CNokrZ5p1moGdX25adYh8gxsV7WOpiE4DtqZfGmFTsk9cFQtYZoKlWC8q4D/LQyvkWlnZqUd+vBM6kIRVtsPNeJgw1n+9Se0kKTQQvnHxYE+MLEmrIMLUPQHgz3gSEPdsuQyppjU3IWu5sEGwGRaQi5kZS4vaQcrFIh7F7AdqECWbNicLjwa0V6ustY/6hCrQX6mA1wNij4BZKGWDgenhqH0vZIdOsURBI2RRjLAevhWFom0UkKkrI4RSrVurG55+BCeD0PfbDolJP4uuF0dCM10KtoUl7iIbVSEUJqDj34qhsoyZqUjuFLizrIiRqY4spfe58b5oRqSQPAB/SrEiE+HeDNy3CIEgibNEUYWITITVSPCC1LzQdMEWCrh+JZ1FlMyZ4Kf1Ds19jVV5i0Ka5KHx21t/E/Y77mFBmayK1DzFT++z6P/F/cr5qMiKV4uGSD1pKc47DXuGJENlzSZghFWHI8yEN2owh7pmPvC3LULFPjWFQEx5rnx4irdRIOdMRzUWaatILIFgcxnntZnL2Iw54kY2inQxoMPcqQn+mpgzqoBopcW0NbNrw7Y0VltYn4cMasNUA22mA9zS+z95v0lvL+FJdHMKNhAZBGPLZ9klz1JyH/cQRKes/IiNSAXNVFfuns/cqsYmIHlJejHUl6JvrKDxaQW1lAfrjImLrrI+SmHsKKX796RrMR6vqNRcaE0b4diHs4ud4sB0yKRnLcj0oc2Bxix9W5ej/6oS9R2kQe0ufBnOJhsopw+5InZcaB3vZ2ngjjJT9hkdwyOKluH/7NqzuH8KbVu7Z4uAbUTVSqaX2ybT8JlL75LWcvxtRI0WpfURbaeoQV7CbB6aWX5zkwMGY61DWIBOrWSkqUcouWZ3r5OcmjkgFeFtCmvimStD1I/Auqpml95V9FuMA5T6mQvwR90xjojfGjHsuh8m1SniPtQEkjEih14qgTIprpuql160+VdOmiBRuN6C9bMBcpoc23FSpfX4e+ErInAUi5cezbMarxmAdzP3GwGYtGfsm0j2cB3Nzb1tlDIDtHY0lNpHgorpVvxGY2hcdLXUNQaZiWbUpYfMsrCmv9nJMQwrBTrYsIlLQGfguluBESoZUYESqzl21wWnWSKGXKeM8MEVRt9aOlNRRZQ8pJIyG1w9wqPHNmtA21WEOaTB39ZkbOkP9ACHFX/zfWQCeWkMLvkgD4wEpugYHmzRgDjKgJyVDKsWIFNtpgpWFkqa5Qhfzu8qhbTNQeKqGwkM+cvEOtJfqQtwECK1RlJyz1zrsP7wEH9n3YBS09I/ggRGp3uYM+VDnTwmhwh/OtED13ERkG5HYBNFWmt3YzGFNiDakJB/KPHUkkdd3GlJ+3rsSC45I1bnYPFJSuPHCm4xIqYOeJ7WvXREpddhLWCPlXfizUu4LikgBwcZnnMMzH7DmsiPvOpbXX3527IiU9VmMgS+xUqDmUjakYKVXmeJ7iJPWByBcbCJGRAoIOTyPWy0KEnq9kxBozHEOlLmYM00873xYU+Ix3sOfvamHfECTqSa8XxPRC581LFb9ngNZJ6U+O6wWL6Qpr2b1NzKXB3+PUU151QEtTUMKlpQ2/GXZmyFIbELJQsseYinWSIEx5RQMS1Hk/VaPKz9HXRIS9pByjWG5DnNUg/58HcV7LSGW/UqBn2NY6X2sKg7N5iofQ2o4uE6KbTdFxDHNOssmoyt+yH3d2LuI8t+OoPyZUcx+cRnm3jcMANCeDS/E0p53pIHESJvbe3ARvn7w0dhveKT5QYfApqx2FZ7nlDd7z8Ick4yJ9S5I+MOZ0h/hvLLFJpINrxMgQ6qLaUZsAsggvS9mTYu6vuNQZvp473iRiQOO34NZi3+dprBuZdIaqUCRjDDjK0WaTu1riEhlUyPFZrk41Dr34JL/gSd2g2fAX3AijtdfNu6MqAljVctwd9QEyDmrTZq2CEBahpRDcEJ/Mp4hFVYjFWXIm2HKfXUuWhQs0jJNtwhUD5zjwtMbls4WhsZUlMPY23P4i8jXB2ArhCY1pMJkrpOk9kGslcZKxxrZbETqpTq4Hn6YDd0XnI1YvSlDLVL76wH0XrIbeEqGVJDYhBSIkVG5Zmukgp6l6gkDqB7f71Lw8+JKSWsBu1dQE98FYzCsqFTxv2YA+Kf1SYw1RTW3zN0Kvs+DvW41eiCziGpH9mtLQkDU3rBUUvVnwzdVpyGVtNlt6hgcbKcpnmVPw29Vn5xiHykAQB8Twh9+9c4O1b5oITHr/ykiRbQTeehNbEhJ71FKhpQtfx7v/aa1mfMC/A9JRSYK5P1qV+s8O8U+oGnVviDVvPZFpPyvH4WKFMk9LoOIFOccKJtiIXd2Wg/o5ZPkAOsngR7X6x/WuFNR5Y2NbB3KfVlEpABR/6A/VQMv+qfSuAjrIRQ3IuVjSLEJQ7RXyDCtD0Cgcp+am03UR0mqbxlA5S0D4Ms8h/SwhtCSBAa9EzVen9SxOGmnXuShV3x28FiUqpb3oDRtgs1w8GXhvcDCmvLqVrsKc+/gyEXT9GrQ9kiv4D4wIiVloaXB1mREKuhZMg7qQe11A+Fj629cr5qhldpBwE4ZlVEmY58QZ02BqfcHrUVmiAR62kITQAvRFR8Cv9cBDeZSXdR3hXxf2gsOQyvnJsFspynWbD8DW869xKl9puUEDdhDQkRUXJkoUQI/Ta63nQAZUl1M0xEpuWGGNeJMQsIUGFkcyxf7pyUog8x7yDG58HxkGfpVNVI+P6twcBZw/SCRjA5X7ZOLqjwsZ1IjVbW+tz7PPFWH2cb3A4hnSMliVx9DKrQhLwD0BDfuBCDmW61xYXcq9wlxDqRmKMv0oMJDFbAKh7GmFHkfmGbVXvhFpJT8foQh5WNAt6M+CghO7VOKfT5FznEx9u9B/ej+xmtGNYeEwymRcL0J7G+GmGmnHox14hDL+1h4U+SAiJSqj1oe/oeEOdikrLOxpgu0iQPqH6UstLlcF6IuTdZItdRcvT8dA6AVNUsAMPcoqnlq7l2M/Jtqx/Sjvm8R9cP6fH8u1y3Nx5DKQvlT/d1pCHeE1JEaq8Uzoz8XEEYxOLQX63a6aIwaqSwJqo8CWkztC1PADatXm7MyUQpw9O6j1D6ig2DTpjjYJ0x9idPFPhGWVyt0k3def2UBvAD/4lYgOO1GGjdZphmFiE2wKhdj0/yMP//Uurap9jXZkFcuqjJKmEVqHw84EAdGpJKk9slDuHPcSSJSQHCdlLyXnu9Oyhtr44ZIWUyxZkQ+m/ojlpJWmFqf8/d6reiaGWDIBzj8QyNSbVDsc43Ba0jJiHsLEalA5MEnjvx5Ug9pmJJVQrEJQKyT9YN6UH9lb+j7eEBTXlUftSL8e7RbY/hEpKy+f91gSAWJTSg1s8W6SEdqOiLVwthSSknzqzlNhM5Qt+TO6z6y5174igIq5y0OjCqFNeXNZB1Rh/f0aqT8Mk3M1WK+a5v8N1btZQPMEIYpGJJLi6cMC+ghBQAoiPNNoohUnYPVw52San32OTuwsim+K2aLsQS3trE+rwsjUl1o+xEAoBTDBvwP9qG/mrIhxXxki0OvP6Sh/LElwYXTQeou7Qj9WsYg84tIVXnwoS5v1T5pfCZtyOs1pLIQm1CGVFBEyjNm1Qg1+qP9GqDG6SMFwFVLwQd9fh4QTZR1NzI3Po1mvBKVImPNv0ihCUkvA9sB8Yw45lqUIS//Fv2JqkjrdBiFKiKVUTNeNQaV2uc5+E615nUPvWas1D4IKeSYDiL12QGNogFEqij6whgqpw9HXzcgxVNJn0dGpAL2hbIJ7fk6zGEts8bMqRKR2scXaeD9moiUJNm7EtYC+xElFx2bcuvPRu2NA+AjOuqH+0eZkmDPHZ8aqSwiUimm9oX2B5MRqWdrvqU9cg8wdy9Cf97IvUZKOgucfc3sH1qKolIYIk6KbowIOg9KGawJI8yURlhEE3TqI9WhVCoVnH766ahWqzBNE+973/vwrne9K+9hpcOcSJcym/CGhy16TVELMTCCxuCtWXD+TKm7AM5HrtlUm0QERaTq4n4HpugFqvZZ/5F1al+Mvjh+qNS+pdml9nH5mTEjUmpjSxSRcopNxEufcnqu/e5akBEia6S056MlqZPCnY09R+MfXIXH0LBkfB0/iBA74aM6aof2onjvHHp+tROV9w2rDZZl3YxXjsERkWJb6yg8XIX+SAX6c3XXz1NFRb2D38LqvKm1JizqEDvttBl6/UVH7NS+iO+xaB20pgzXQUvfWBPKbmuK8Q5fORMckbLWusW6nY5UNsGL8ea3n/BM4rFJw6fViJQ0xFpIe+XDOmqvD6/piv9ZjT3wAIj06AlDpBE2Gz3zu16KYhMsJGXTXFEALwLac3UR7fd899oL1h6wWwGsXwPG/d8Xi5qVUdCCRLwWktoHwO41V4PqjRgG82tb4iXAOaDWOvm7umjcHCw20b2pfV045PiUSiVcc801GBgYwOzsLN761rfihBNOwPBwtHev02mlyD1V1T5DGhitf5QiKJdWRtezFJuQC6DXxoyILAWm1rVLta/Z1L45b2pfBobUrJXa4V2Mg/pIJWm6rGqk7M+ILTEdldoXFJEa1sA120hO1ZBybICxo1FAoOBEnNTS6lsHoT9TQ+GxKoy751A/QniotQl3/VxWyPunbayh/x8m1evmiIb6gdEpbU1dM0aNFGq8KQeIHZHyS+1LXiMV+7p+NVKcQ3tZ9BuKI2HPhzRoWwzxTFifp9L6vMqHHYq6tz6qfVwD+ABzC4LEPQ5UeWv1UYDj0Jmv2ETq6Ax8UBNnCochwXYI6XMj5TVEZTekEZEK26N1BnOVaIrNthjgnj5sKiK1W8E2FCu8KQO398c7wHYYKP/dSNPGuq3mGJCC6XQglKK/kzg1nYFGbdknM6TISGyi22CMYWBAeFyq1So45zDNfIsB06JZoQkgvC4iMSoNK73JH9i4TT5oGZr/QTVSkSk5AXVdna7ap9LuBjXhjZ5OYWPyMuOf2hcYkUowp7jVjLIZsQnbcx3QN0d9d54faG4J6FT76vRoalxx66OAgEM0EC+1tIehcuoQuAaUbpoG21IXDpIJQ8ijZz13SwzmqGjoaa7QUX1dP8ofXYLyxSOovXkwVU+285qAz9yTcA7U0ZRCaHhEynotQ0PK2UdKNhs1dynEOpz5pfdpqj4qTW9ZhvhFpOoc2jQXz63VyBtIYNBI4ZkWnwV7brS2zjJnf54OgS+yeuA5nVpZpQc7DIJWidrbleDEJk8oxRQtAXgPAx/VQ9tQxEF7vg5t3ATb0nymkKoDDIhIJTZAY+ylQemqKu3S2TuyyELEJqz/yNJRnhG5GlL33nsvPvjBD+Koo47C2NgYbrvttob3/PSnP8Vxxx2H9evX493vfjcefPDBRNeYm5vD2972Nrz2ta/Fueeei8WLF6c0+nxpqX+NzsAHmdgsw6Sf4yC98ml6EQKKElkGRlsDQfLnUZEluU94DZl2q/Ylbshrp4jwAU0cLBOmB0YRJDYRGJFSqX0xPtvPwzvHRW1LxO9Hik2EfHfc0f9MGnNpYe5eAB9kyQ6uvT6HR8Q35M1VRdTe0A9WA3qu2wk2boCZAB9tzxZR/vASzH5iBOW/HUHt+AEhRJNlGllUjZQB0YKhibXGLr72T+3jBWRzWPAxptlL8YQmJA1NeWdNaC/WYS7WwEe6w+/q91x7+y7xpOp5KdVv+K5XzdCq2EQG+PWSkvVRqUe1dUupNAWxiShnkxKc8PSTYlsNsJoVjdIcqYvNGFImV2u3TGluBpW+6lcjBSQ2QONkdwSlq/oa+0Wr/tevT2c7zncZkWtq3+zsLMbGxnDSSSfhwgsvbPj5zTffjMsvvxyXXXYZDj74YFxzzTU477zzcMstt2BkZAQAcOKJJ/p+9vXXXw9d19Hb24t///d/x8TEBC688EKccMIJWLp0aVPj1VrIjW72WkHX1OQmPaw1NS4+rEObrkObQ/MNL+EQZSix9O5PyUr1qQPc8ZmaYf13MZ1r+d1jZj0Rmum+tupt1BNwbU3k/7Ka5/OsDVjr1Vyflzry+vVk81QeJNiALozybQb0WQ6+JJ0NWtOYWmBZv3uuMnnwq3L3mK17rfXEuGdDttqg/Aw2ZwK9DJoe/jcwKxddq8H3Opo1DlZqfMb4Eg34i/XzIT3VtaF61iKgLuZMFOq61iauVbh73lqODtYbvU4Yxw3AeLIG/S819PxqJwCALy20Z90b0oEhoG0rrIxa1Lj/32fYm3rUWtyANSe1ss9nz4m0nyzuKeu3PeLy83Xp3V4R83u0UoL0nSI9S/tL3aqPKkU+T82S+P5GISMDFfs+yN5YfLH1rFr3SivzeOuy9JYHrf8xYQO2Aef3OWzCEOtwhONDk2vqoAYWYzyp32M/ZKPyKTu1TwrWYFn66wjvZ9AmTRENaOU7sQypoDWS7ykcWvpzNdfP9RctI3E38bfJ50+vcJhJx+MwvvTn6zAPb+LvMTnYlAk+yKCVAp5VOe8riHXPNOmMCFmz2ID/eqdV7Guq1615rRloMJiY2m/9r9WWOdwkuRpSxxxzDI455pjAn1999dV4z3veg5NPPhkAcNlll+H222/HDTfcgHPPPRcAcOONN8a61sjICPbbbz/ce++9+Ou//uvEYy0UNIyO+kl7ZcuSJf7FoFWjijqAgeX9KDQxrrmlO2G+UMcSrRfaaPMpG+ZcFXMAigMFDKV0f6qLqqhjFoOlHtffZmwpowKgZ6CI4RS/C+c9rg3WUMMsBns9137ZuvZwKfDas6VtgMFd82TO2AETwJIVg2AhHe/TYLa4FTCQaJ7OVsaBAjCyfBDVJTMwNtawuNALbTS9BpnVmTIAYHCXfhRG7XttjGqoYAp9WgElx5jLfDs4gCW7DIINRd+z2dI2aLPivvM6R7kGsMV65H2ojdRRwwwG9BKKPu+t94iAa++ixu+8umsV9fvETjG06wD00daVr1qhb0mPmLd6yTVvK5iBAWB42QD0GN+peX4v5i55Hrol99u3qi/VZ61T4HWOMrZBN5nvPOE76igDKPTqGLTWh6C1uOF3F1mfXXY/i7xmomwAbKCQyV7CiwbKmEChztRaXNlehgFgcN8h6KON/bS81FYaqGEWA0YBxdFBVJ+fQx1A/yFDTe0zSYh7f+MwW9wGrWqvxfWnpsWzvKIXw6ODqC0zxLPPir7PvhfTqGEO4ygMFDDYwn3gPdZ3VGEN+6W5uYq5r21G4bXDKJ0e7uwtVyfBAYzsPgQWdGj2Ic177KW2so4ayhisF9Q9reychgFgaM0g9NF0ax3LQ9vBJ6sY6esHG2x+b50zd8IEsHiXAf+z0ChQXrod2st1jPT1gfWLa1XHK+LZ2G8QhSUDqPaJfW642AN9NNl9FvNLUHrBaGrN5VOGWF9Gi4HrS3WkijrKGNJKsZ7nmlZHDUD/aF/gc2JqdcxhAsWqe07XdFP87kiv+t25vh0wYWBksB9skdv8qDBrrxrtD50rWc7hZulYsYlqtYpHHnkE559/vnpN0zQceeSRuP/++2N9xsTEBAqFAoaHhzE9PY177rmnadW+et3E1FS5qd9tBk1jWLJkAJOTMzC9vWEAFLfMoQBgJ6vCHJ9O/PnFXo4CgB3P7oTZ1/yhmW2toRdADSZmmhiHH4V6DUUA05NlGOMOD8d4BT0AKoaB6RSu5XePC9WquPbUHIxxhxT0VuvaqAdeu1cHUOYYd/y8Z7YODcDEzCxQy9aT0qsDqJqu64fCOXpnDKBPw8TEDIolU8yJ56dhDoXImSVA0xj6Le/pTqMCc9yey1qlih4Ac1M17HTes7Ih7tn0LFCNvmc9A8IzOb5lJzDH0QfAKCHyPuhGDSUAs5NzqI83bsT6eBklAGWj7hofAOg9hiqd2mFWwMebz2tvBTmHZ3kdRQAz43OoO+ZtaWcNOoAd5TL4eIzvlAH6SYMo/XQKADDTb8BI6bnuNHp1gM/5Py9swhDrGjNRnpwJXYt9P7uXgU8b7s/eaYq5WeTxn9Ek1K2577huz6YyNAA7+mvgMa6p6TX0ACi/WMbUeAE9j8xAAzC13Iz1+80Qtdc1Q28JQNn+bgvPz6AIYLbHwM7xaeiwnv2tc6jH+LvYy3U1H1ra50yOXgaYU/WGOVD4n2kUDaCyqdyw3njp3VkHCsDEztlYl83iHnvRC3VxT18oq/W054UKNADbC1WhaJcipRKHDmDy+Z3gS5s/ypZm6tABbC+Xwce93eEFxd11FLbVsf3+7TDHxHmp9PQsdABTiwywyRkMWJHQnVvLMMaT3WP2gjhHAYCxuYrxl3YmTnFjm8Vn1AeC974CxD4xvdV9tgqiMD4n9hWzGrwP1MS6U/fM6cK2svhdXlO/W9JM8Z29PANed++5pVlrr5qdA/eZK+2Yw16Gh/tQjKHq2bGG1OTkJAzDaEjDGx0dxaZNm2J9xvj4OC6++GIYhgHOOU499VTst99+TY+pXV+e95q+17WEIswB1tS4TCkpvN1s6e/SrEJ9s5De/TGt+gFecf/tzCE2keZ34bzHprW28Lrn2lYBt1kMvt+8CGjTgFk37bB5hYMzwNR4Y91VyvACgzbDYRpmvPqSmiWh3yf+JlP2Q9rZ2pxowDKkzB7PvZM1TBXP9azvOe494/0aMGnCnDFdzRWj/gZmXZ/P+f+9Mq3BLDbON+ZU1xtgjY1w24yUPOdlz99SlfMW4DHHaB7UA/ZULwp/nEN990Ls3+s6igyo+q+vUoDEudYErsU+8H4GbcKEWTVtIZiylQoUY242hSbWICbnM+dgLxvgJcAYjjlH5b4wZcKcMqC9ZMAc0WAs0jKf40nubxS8x1oLa6aoe520noNhDabJVVoxZuKtdZrsTRey/sfGagbs/RzNasIdOSbOgTIHH9ASjyXNe9zAsDXPtxviGiYHGzfA+xnM3vTXSFl7w2dMmCMtfLa1zhtFBI7RWF1E4f4K2MYazH1LQmhicx28KDIrNJMrsYmGNTgGmqO+iBkAnq+p2qy4FP4ijEBzRA+8vimtNZ/554vsMxm2ZunWuuP5TK72fXsNleI9ZsUENz2RVCvF0tR56J6T6Rxuko41pILgnIPFLELed999ccMNN2Q8onxoRf4ccKgz7WzNk56JKl1QB2wlj5nepRoIaMgb1mtC4ZQgt8IVqllxO/J6pQfLQKwn21sMygfsw0WaBIlN8IAGfayWrF+LHDebNsEMqTIU43cD+s2ocYTMbdPqJcUZlAJYnvCAHkJKDCbh81k9aRDVtw5mr9iXI7zIAov+WxW24QMaMGGCzZrgVkpvHCnhVuG9mvibOAfbLhwLxqp4in2AQ9F1yoD+TJep9TlwCU70swY1s8AmokGkKBrk1wyYTRqq5iZSObXKhRBMB6w7TqTkthQ8YFMmWB0wVmaT0q6a8raqgFiJPsPIxrzas+KZYJPWs7Xa8Wz1B6zBccYgxUM0gJmAtrmezJDiHMW7RHJg/a+CM4wSNzKO2dye92lCBdopfe+j2uc82zWMoIvFJjpH8sXDkiVLoOs6tm3b5np9YmKiabGI+URqhlSrvaSS9PyJSVCPF7shb4YPmlzzvRtsjH5QatxO5bwKT7fHVhjSeIqrujfrPtjZ/W9SNqRmAvpIOQr+XVSRbD7Jcc+aifr0BDXutMcRvMHyJdZE6W+TkRyF6p3jUU6KcUjwhbF5bUQBAEohClItSvG6+hRJ2mBIoZeJv6nubMQb31/q3Bf0p4UVbqzpjv5RLjzPNvM0Kk16CFdrVBqGlI9ymv6YnVImDeHAsch1u4OkzwGHap91ppDS53Gbiie+njQkW5VAr5ii7UnIs26uLIAXLEU9k7v7R1kwpdqXfDxyLpirLIPtuWSp9drTNWhbDRirCzB3C35e1ZxJUbUPEM5MxuFWyiw3ztPA1jaAWnOpj1SKlEolrFu3Dnfeead6zTRN3HXXXTjkkEPyG1iHwKZNMUGb3ejTasqbRRM12ePFu5a0oSGvsUcRXAOKd5TBttp5uvEiUtZ7pSFlNStuuYljTJI25VWLpHXoU4ZU2r2kZk0hR+65D2pR9RoydZ5oPjnHrQyHBBGpIPlzFuaFLjFU39CP6hs6o/A1rI9U1CFhwRLWlLfe2rqmoqQ+/c0QQ42xWZzzQHvZkj5fnuAgW2Dg/cwypMQCbHahIaX63jgMKa7ZjscgyeZAlER2CmOTKdSOfksFK62P65ZxH+TcAVQUtWOa8UqK1tzZYQCcK+lzM6uG3mlFpOI0Wi4wmLsXwMocbJsB7Xnr2fAxpFqJSBn7SoXAZPVkxTtF/X7tyAjRo4QRqbg9Gf2+C1kO4ZY/t9Ynn7YTylnRhXtVrk/izMwMHnvsMTz22GMAgM2bN+Oxxx7D1q1bAQBnn302fvazn+GGG27A008/jUsvvRRzc3N4xzvekeew86fKwarNR6OA9CJSavKnudcGpHy1I7WPryig9jqrn87PdipvNYsRkbIPZta/29VDynP9uE15mbfz+GBWESkhR95Qt6WaojpeM0TaSpL5pA6ts2b8hR8A77Flkn2JSFutvX4A9Vflq9anCDCkWJXP/8hSk0gjqcFhgxTWNZ8mle1I7YOjKS97SRzGeIKIFCD2BlYHtK0GzKW6Sk3sKuTaUuFAnQvH47BmR497GThLEJFqNrLrhzciVTahPVMDH2AqncvZ1LYBH09/p2Au0sTzVOZ2M96MDCm/yF5iTOssFeN7NazvRt9Ud0SkHAtEKw15ZURqqQ5ziQZtqxE/arTdgP5oFXyAwVgfbuknvmcx1yzfJuRln73Ye0ZyUs/gLNkmcq2Revjhh3HmmWeqf3/xi18EAFxwwQW48MIL8aY3vQkTExO48sorsXXrVuy///646qqrVA+phUqraX3ydzlLISKlmqemn9oX2JA3Y49F7dh+6E9UoT9bR/F3s6gdP2B7CEM8VyoiVHMbX207yCZtyutp6igby8r5lQp1LqIifjLmusgJdxnM8r+bikiZtpc2QWpfYERKGu5dUCKiNivnJs6tex/UnHGhE9aUt9XUPp+IVNx6g1ZoOSIFIcigWY18uzKtD+60XbbTBON2XSMAq4EqS14jlcI+xz1Gtv5EFcwEavuV7J5GM2ZgE1tl/HVQM14JH9aBFw2wHabqIZV6M155LR9nRWLkcx5jjxZGbhnaszXoL9TBdcDcxf7bZB+pZhry2vVEDOaqIrTJCrTn6zD3id58CnfPgXGgelhf5HplG1JxI1LW8xFpSAU7jpy/G1S2IV4TEdmOSJVPSK6G1OGHH44nnngi9D1nnHEGzjjjjDaNqDtgO6Uh1cKE0xn4YGOBYOKxpJg7rpBrh/dha0NqHwBAZ6icMoy+b06geOssjLFSeJqXxJHaxwF7/G0ypKQhx2poLOT0wZvDrBbDNCNSc/YG0TgAUYfjDPPLpnxNpfbNctFJGemITTRj1OWGX0SqDjDexoholxG6qbea2qcOFn6pfVkaUvazoG2pg/cyVbsS+zOGdcgTZrcaUs60XbbdWhM8kTXep4nDfp1H7ilpiiop7721zhas+ihjXQ/0J6uun/mORWYSdJjYBGDXSWk7DDsi1cE1UkqdM0b6vbmH2OALj1bAZjiM3QrueaMiUs3USNlOTWNVAYUHK9Cfi2FI1TmK95TBGVA/PEafrh4mnJcJUvt4AdEGmk+qLCub4neda6hThMt7rRjPYafSeS4NIpI0IlKAlcJhwl0Q7bzOhIH+z29D4Z6Q/lkZFAgGHnDk4aYN5j8f1VF96yAYB3p+PqWM19Bcak/YOlY6YJr4iV2EoLyx0sgpMPBelmqNFAtQ7JPwEhMGiyyuriU3Xlze/yTpU0UI1b1maqQ6jQIDL3g2cYcUPOFDQOTb9VqTa43tlPBL7ctw27XmvfZiHaxmRaNiqtxKnBFMY+8uCMf6oCJzFd6g2Kfeo5T7Yqx3tfSeJTU3yhwwOPTHq+AFUR8TJ8qiDt2dViMFh+DEDhPaNkOs+1kZfEkV6PyIU/tswYd1kbpo7Y/O+iig1Rope580d7cEJzZHC07oD1XApjmMA0q2AFLohZgQpIljfHIOzPF4e6l33kqJfk/UNEipF4ClYhl9qU6k855EIpLUDClLcEILSO/Tn6iCzXBVdOw7lkzkz/1rF1gGCoFh1A/tRX1dCdq4XXgdtpHaYg/WPcni3oTAE6b2MU9qHyDmFKvy+Mp/UURt+iVL7UdGG5tIoXGqDapNNc5hVUbEmqyR6jh6mSutJJNncx6hUjb9NvWUxCZcYgZz8Q9tzSIPPdpGqxg+YX0UYBtS5i663Veqy7DTdk2l2OdK7YPDuRMjAp9mmrbTe6/9pQY2x2HsUwJKzM4yCUuvjnBO5YmKSG22DPnR5IZ87GvJNLW4giE+JHV2OiXJvYaUrLtrJrXPmWZv7lYEZ4AWQ3CieJclMpGgVpf3WXVsUeeEuiV8EiOFtKFGqgbhpPfO0SDnFedgdccZqsvozlVygZNmRAoA2JR/LylZUBkaBm4ighA5riCvRZtqpBSMoXLSEExHCmW42IT1a9Y4VUSjXREBR2pfLKSH3ClP6lfb4YC9VEfvtydVP40oGqJeHrinToU1UXDqVMFKWtDPezwRMSfdFJGCiHQI6Wu3Id8t4287oREp6z9alD9vt9iE/Gx9k2VIrUieViXrPur7dWc0CoArbVdT0ueeeyEdMHG882k+S465UXjUSus7QNxrv5RQLx1fIwWoHmRZ1UcBCSOKQcSofXZi7GEbTw0RKY0BPawl1T70ic/gy3VoO8zAsxkAaC/UoW+qw1ymw9wn/oZpS6CHj7NBjCrsMz3rXeDvKvlzzwdIm7Eb0uh96LwnkYhEGVItegujlPu0F8XsDt1oslDSKwUccNqY2qcY1FB915D97zgNeZVqn/X/7VocWk3tAyJ7SRUerEDfXEfp5pmY12iMermQOdPSaG7GMO+zFLhmzOQF/T1WRMxPuU1+f11iiKi/2drI2y520m0oh43Pz1pV7ctJbAK97gNNMxEpc+8iyn+zSIjsdClOIZnA1L4E8tksxbXc6b3XHxWy58b+1kKo1t+w1L7OrZEyZUQqa+lzQETwNASWJsQhqbNTRqS4BpgrGp8t3suEcWYmGxMrm+IMZZ0hjN3FdbTNwVGpgpQ8f1VvsqhfXOW+BDWdDQ2uA/Z9u47bc3+yaKPTRsiQ6kLYTmvSpRaR8nmgDA7tJWlIhSzqGUSkghrLtju1T2Ls14PK2wZQPbY/9FCq1Abr7oNsuyJSTaf2OdLgonpJySaf+l9q0DbFiEoljUhZB5ZEC6om8vDZjC1/HtfDGKrcV+Vio+4W9WfphZd1UhSRCoUHOWyAbMQm5BzLMCXLa6Q1Y0iBMZhrSl3rHQbgikh5m/FKbIMmnxopfWMN2qQJY1VBRXKiMgKAGM6pHGm4xxkJTQAQxkN/AuVFP5Km9u1WgDmswdyr6P989FqOOb904SBkLZLj+7Qb8wYYUrMmCvfPgZeA+l/FEJlwXi5mbVmSCLoauzVvWZDIVICQmK3IHHmpjqRLh72wST21b2fjQsS2GkpBLTwiZX1WmpuuZhXOB6T25ZFHW391f/SbvAZgm1X7VGpf3F5+jgJXCY/oJSUllQGg+N+zqJy5KPQS0REpa8xVS+lQpfYlu2d8QIM2YyinQOz6AceBiw+5f8SqXIwjoxz/tHFKX3MgXhPphUyIal+rqX0oMPAe5p/a15N9Q17AMhRaUXbtYpT8+Ry3m/EO+RtScZryZlEjJaNOMq0PiM4IAGDXSHVgRAq9DLxkO8QyjUhB7CvatGEJFSS/H4nrSAsM5Y8vAfQAx2CvBsAQa3Bc+6Yieic69yzbkPJ3Vhb+OAdWA2qH9yZO8YzbSyqROM6AO7oblNoXWLaRk5M8LTrPpUFEkrbYhF9ESn/BcRovB9SQIMOC9hJrSLfqdK8F96TW5abaF1MowhZmaKyR8i12rosmi+YggzmsQX+0CrYlwmqLo9oH2Atrk6mi6gCywxQFvzHvud1vxvP3ciG40U3RHG9qH0WkwokjNtHKxs77mVJmAyC8zhpsr2wWOA9jKwpd4wRIHek8KIs+UnxIa2jxYavntblGSkpQW9QPsJuo+qk9emFlLta4LFNEm4UxVy1aVtLnkpYFJ5rJGunTgvcX7xocA28bEkA8u7wA6JvrjWevGRPF/04uMiGJWyOVKLWvocl0gAM1KAtA7vskNkG0CzZt5dO26GkOS+3THIYUM+DfiRrILLeVF5j4bOci0q4+Us3iFXvIS7UvgSHFe5nrgBEWkWJbDeE5W1lA/ag+MA61oIddA0Cw10waMiq1r9mIlPU5HGLhj3uADErtMyBUh7rJCJH1MQ01UnkNqMMJEZuwN/bmP16JoFjPAJszxXzL0Lhxeo+TNuKdT8ion7bVEL3U/HppqUN4nBqpFNdyKyUNAMwRDdz5PZUYeDGG2IRn3e4k5L3mPUzVCmZ2rX73M5aUtKP2zqyA2GPwMzp0BnPXAliZg4075gLn6PnlTmg7TdRe0QO+sokFKm5qXwKxCRQYeMmOwAel9tmtbTzXakJkqpMgQ6rbqHNxAE5BlpYPaqJIP8SQUgtDwMJuN+RteThupCy2U7Sm0wsSPTVKuan2xUntM7lIZ/NGikJqpGR9lLlLAbXDe8F7GQp/mgtVFvLztjlRHl556G9Svccpr56kmJ87UvtcKA90omHkSsMm3u7512WENeRNox7T1XjV5GDVZHOzqWs6Pr+p+qh5gnquJyyhicWNRmWcnk2KqhUFSumWymsbB/Q0GNZ8UBNjMnzGZXCRBt2B0ucSKTiRpfS5Iq2IVFoOM+XMSjAenxR7ADCV4IRtdRTumkPhsSrMpTqqJ3py0WOiokdRY/RR9Q39XBmBN3mwERbkvKLUPqKdyEiB8na2gsbAhzSRKuhUmeEc2gt10STQytUN9PhIj07KUSKV2uVIu+ma1L6a+yDbtsXB28cqDLVIeuoGQiJS2hZLiWm5DvRqqB3RC2YAhf8NiUpFiE2ohVVGpJo0lp1prs0YUt6IVDf2YFJ/t5Wm2I1/Q1tR9Xk+P0uj1YKqG0jYKLoVXIbUwo1IyfvArK/RLyLVoDQWgqiXRGpRILl/1w9o9NSERlk6uBmvRAlnZFwfBcDd3LgJWEL588jxyH2uiYiUN2tDnr10S3CCvVhH6T+mwXWgcupQ02OOq1apHHIxG4g7521gbbTPuQ4ApfYR7SUt6XMJH9ZECpMjJ5ttF41NzRUFQB6sgzabGsB1BBZfNo2f56LTU/uUap/4Z7sjUsr4jGFI+dVHAQhVjVIRKcvTXX91H7gOFP8wZxtMAdcJ2vjVvWkwPiP/BPfnOAuvYy78AOzDdEBEqquMEOmFL7vvJdVIBRAakWquVs+Js94l6aGkaXSmxryQI1IowFWHZPoZUvKQFzMileZaUH1DP6rH9wv1N++4QtZgFXnp4IgUX2JFpJa1wZBKkJ7pS9p7dEupfZ6IlBSc2FwDqhy9/zIFVgeqbxxQ0apmiN1HKqnzx9mUN+B3eUBEilL7iLYiFfZaFZqQSINMc6RnybQ+c2XBUUTo/9CxlDcYRcnnkFOz0is61dHqlR9v92E8QUNeFpBOYMuf+xlSjogUhOex/opesAoXxpQf0sAKWoy9hkyTstNZRaS6yQjxpvZRH6lwgjZ1AKmJTQDiYNGOZrwSY98SjH2KKiK2IGHM5bFvaMYL2P3notLCDA5mpLsWmGtKqL1uwD/CFaLcJw2GTpQ+l9Q39KL6hn7UjkouhJAU5UBrUgI97TXSqRYZm6C9eFQH72XQnq+j9O/T0LYYqK8tot7qfY3dRypZ3ztnqqxfj0oA/uc6x787tmwjgs59GglfZO1KaoaUj+CEMqR2K0T3HKjzTMKxfkWJrM6FsdKhSlTe1L62q/Yl6SMVFHovMPBe1qgaJRX7hjVXCkLtNX3gDCjcUfb37Je5eH9QSoxS7bPe32yutDPileSwGlEj1VVGiIx2VNyGPNVIBRCm2ifbOrSwtnFnc9VKhEMhRSrvW4S59y/O/DqdjnPd9RWb0Jjo+xMVzWi3aFBIU95ObsarKDHUXj/QHkM+pnBCIGk7zOQanKBGKlCQSWMwdy+A1YDivXPggwyVdw+3nF6atI9U3DXL5TgKOl/olmKlJ52adXq2UQRkSHUZaUmfS0INKUdEytfjY3nqMlEF89TOABCpfZ38oAWp9rUttS9+jZS9eDeOjQ9owrBwfI5S7PPUXfBlBRjrStB2mijc54lKmSKliYXk86umqFX34T+x2ISjX04aYhMqItVFHrKGiFQ3GoNtJFRsIsWIFJwRKTJq20dPhCEFq0C+ykPXzHZHp0NT+zq4GW8etCp/nlWNVLLUvuAWIapGHRBGVBoiYzHruBL1kYJHvCVMqKLI7PVVUmt9vc0Tehq7DNuQSunB9zOkXqyDM2FIhXp8Mpz8qjbBVSOVTfQrNYJU+9ql/JZCah/g2Mgd6X1OxT4vtWNEs+Li72bBXvT0HwPCPZOePlJMpfZF/w2uMTtV+5Jsij3u6yukx6yLjBC7j5T1vbU7ItptFEOeF7nupCB/zmbaKDZBKOS95pq9zzW8RxokYd75dkek1IHUxzjo5Ga8OdCq2EQn10gBgDEmDg/V1/ap/24ZOcbI1L5ka5bLcRSS0s+LCBGbiHWpjoMMqS4jdbEJ2ZTXqr3CrAlt0hSKOz0stAu2PIBk4rX3Nm4zrehXBxcj5q7a10REys+z6afc51Ls82CuLqK+vgfaDhN9355E8bZZEa2UkZEkEakmjXOXimWCgn7Zb6YhIlXrQiPEG5GqtfcA2G00NIN2UrPECloR0XHWDLRLbIKwsQ7Hfs14Jc50pCDaHpGS669PC4rIvnwLDGV8tBqRSqtGqomGvEEKugBg7lXCzOdGUfvrwTSGJ9Cs9P1I1b6E6cie9Y6X4L9+lpg4yznk/VmTbU86BXoauwwlNpFS/rE3IqVZEQVzV+EaCBWbyNBTp4wSeY1uyKH19HFiVS68L21qnMiT1EjNhUWkGjdyr2Kfl8ppQ6i8ZQBgQOmWGfR+fzu054SlzRJEpNBsSl3JVitL5PUPasjbhWlx3NOQlyJSEYSITYh6zBZrERwpWu0UmyAEMsoQlNYHwHX4C6TN0ekw406JTVBECkDrESlW5WLfTEt12LsGxxlDlBJjBrVmvI8JI9IMHiebs84vMe+Na96WeXBKoJ/Dt8tT+7o0kLaAmUk3ImVaPR+UIfW8LTQBRKQ+ZKm04k276YY+A94FosLbVh8FIFFD3iD5c8CRNuqMSL0cHJESb2CoH90PY20JPb/YCf3ZOvRnd4qf9QfLLHojUq14pvigBjZpplsj1U1GSAlC1ZJqpOIhdz8/1b5a68+uu2YgmQIW0Tq2IRWy/sToJdX+Gilrz/WtkQp2gC1I4irQBZHyHt2QXh2DPOreeJ8GTFopx35GORd1Tklq8ZWIxaQJxoPnqO0kB9BjvShT+rvUIqGIVJfBdpoi5SSthXRAqKg0RKRWWjM6pJiTZelF8MhkdnozXsBeBFhNeHpYvc0H8ZDieS+hqX1eCfQAxT4/+PIC5j60GNXj+1Ufl/CIlPX/Lab2AY46qRTkz+2IVOJh5AdjQoVMekOrED3eOtn5kCeaiGIyb2oft57dVte1IgMvwSV/3g7VPsLCStsNi0jFak7aQap93dCQt63oDLwUQ3nRD5OD1VLeo5uokULZFOt0O8sWItraoArRXzTJXmpF4LUJ4XQNNPZ9MgGaVuvtEDr4WEr4wZfqIiqTlgS4xsCHNGFImRy6pdhnyNS+sNB5hmIKDWIT3ZBDqyJSaLtiH5AwtS9UbMJdIyUV+8xdYjbw0hlqrxuAsV8JxTvm0HvkEBr0TuW1ZERIRqRaaIQqF/K4KkMAIuXPuyoiBeER1SbFs8wqnKJRUZRYo+MhxTRi3q+B7TDtlCwypNqGXFv8mvGq9zgK5INoe3Ra9rfq0oa87Yb3M7AdYs1LlEafxR6tWYZdktS+OS6+zza2dXHWvnOfxpysiQi6ckooQypA4MVPSEyJ+3TnvCZDqsuY+8BiIOW5xoc0aDtMsO0m2BYD5pBmy2wWLa+2r9hEhhEpr/x5N6T26VZqVY3nI5/dTGqf34Y86PaIalvC66OCMHcronZKCdpoCRj3N6TgrYVrYU4ZB/WAzXKYKxN0bC5YogIBqX3dZoi4ip1rnGSSI+BFy5vNuX2QaVI50vfzBzRo202w7dbhgsQm2oaxbxHmwzqMfUM8fbFqpNq8FugM6GPhDXkpIqXgfQzadgSnqQWQVZ9H3stELbtzTQmiJqLfZpvXabUvBM37Zmo6pXFmWP8O+l2HkJi8erNqvZ0CGVLdRgbCBVJwQn+yCmYCxm6OacGsRb3MGxeGDMOxDc1tuyC1D4wBBWusOUSkQms+PISn9tlF8kCM+qhW0Bh4wWkwN6+WVj+0D/VDE3Z9ZwzoYfMmIqUibDutPHXqWxROkYFxiCiUtYmzFL2jMuIh013auh4scMw1JZT/biT0PZ1YIwVYBvhWQ6xDjuuysikyDzo5M6Pd9GsADLAyB+9P8HtZ7dG9DGzK+vyIz1Y1b+2OVEdIoDelMqpbaoBhPaSARucp0PViE+TWIGxD6gkRNVD1UfLnfZrwMnj6rbAsxSaU18L6dzek9gHi8FUDmBWAaetBnFlGSRz587ngDdlbIxWl2NcyPczuI1Xjbf+OeclqyulQMOreiJS7nUHXGYJthntqMcV/W/+fxjz0KGBSal9nkaxGqg0DsvBtysu5UEOjKLML1cJlhxHxTjdZRqSAmEqCsxFGR0YoB0JACmKzKqNONcmg6Dv3CokB6nzX0RlHIdATSdiG1FOWIbWr15AK8F5kedhskD/vgtQ+WOOrcztVrN0HWcuQCyViQ/b2kco0IgXLkKlBGDI13v5eYT0+h+k8UjPTwNr4NNlgmwypcGQUyukdTVFBqiEFiwypjiJOH6k8otO+TXkrXAgAkPS5C3NE7EvaeELlvrSb8Vok6SWlDJk2p2oqB0KQsdekOqRzvYuMSLnEJigiRXQ5qpeUdQBvNKQCJNBbEAaIHJNH2cV+0NK/VqoUhdqNKtZs80GWFxAtNlGz8piDDnUFBt7DhBc9gWJf08jFs5KSWlpC/CTQlbesywwR5Q3dYc0/SiULpaGJNtLd1F0e2hJrW085Ih7q4BcSkcojOu2n3MdIsc8XbhlSUuQgLmq9Tz21z7/Ju+8YcpKzV9eLTO1rPiIVJIiixMl8xSYSXa5joCeScPWk4j0MfMQzLQIiUtnKn1v/71Xt6/CIlBJ8mG3/5gtA1HwYCG+0F2Px5oOibkh7qQ5mAjyuYl8TKENmNievlJ8EepfWSClDSkakutTD1zY8fcwApJpG7GycTml9HUicPkS51EhZ13Kk9snoFPWQcmOOimdMS2hIZdWwnCeQQM+jhxQAu0YqwIFgp/YlHJcrIhXekNdvze26DBALMqQI8GH7kGyu1Bu8pjyo50CGdUAqhU8ZUl2S2ld0b4BtjwjI+xO2p8RYvOUBUHtGhGYyq48C7MOsvGedEJHq0hop5Q2dslTiKCIVjopIOV5LUSHU5aElQ6rz0Bh4X3gfonwjUg4DT63bNI+cqIjUeMKIVEbfq/p+4jTlzUlswjd11EkKEamgvynrLIA8IEOKEGlb8r93bcydC8qnbUdDXplixbol9CtrLmbzqVHhMZT7QqXP5edYG7muDKkMI1IeQ6rd6Zu+TXmrXEjZd3oqqQdlFFKNVCy4j4KUEmtJSf5c/TcZUh0J77NUO42ANTOP6LRfap809ii1zwUf1sALLUSkMlDtA2JGpGaj9+IsMCOMz2b6SAEe52zQ3+QVEgPscoTsjhmZQk8kAfQz0SsKgLlr40xWHhav9yJDQ6rhgNNNqn2wN8C2p4apXlKtpvZZhtRf2hiRms43ta8hIlVEW5skpkFDjRQZUuE4epoo5AafRvQ7hoeWyBdVcxRQeJ9PRMrjXEJ+9TQdj8bAl+hiz40TBbLIqkZKKacmEJtoe93bgIjEatsM3zKAplX7BpzrXXhqn1f+nBfQtTWkZEgRYiGyDs5eoQkASmSgIbUvQ7GJhgNOt6T2FTwbYA41UgBsw9MHu89DWGqf26tmZlkjJb/r2XxT+xpqpLrRCJGGlCV/Tn2LwlFrl0+aSRrz0BmRQg9tt52ISl33aYALINMU9iD8UvuoGW8w5qil3DeRQLkvq0hjAtW+ZtXxWoYxmEt1sJrtdHPRTB8puM8UQX+TV0hM/Dc630keAj2RBADAOKAEY7eCb+TBblroSe3L0lPnSVHrioa8gCO1L5+IVJzUvjh52c4DoDmkZZtOIu+RPDS021j2RqQMDmZ0ZzRHRaSsW9mNf0Nb8S18TjG1r59S+zqegQBHoUUuESlVw+IYE0WkAmlGuU99rxnJn7MY0TE153JYG6RzlG1tvGfNRqQQpybUx3mFOu94J3kYnX4sJdpE9e1DgT8L7CNlpcBkEkHQrOay8mFLs0lmljREpNp8fXkwrHMEmVJxaqQw6DgAZlgfBTgiUtM5ScZ7I1LdKjQBNHoQ2z3/ugy7Ia/jxRTFJlBi4EXL40qGVEei9regwntZL9nG05Jvap+qpyH/txel3DduhOosucioRipRH6m8VPsA8GUFABVoWw2Yaz0/bLZGynJK8B4WmKbX0ATdtByXXVaP7ISeSCKSoD5SmSutFJlKq+jW1L7cVPvCUvsSqPYBGddHAeqwb8ufZ3u5xuu7+36kmdrVbrwbH0WkIvBLM0m5HlNGFygi1Zmo6E9QRKpipfm2s16yR9Qt+9ZIUUPeBpqKSFUycpglqZHKMcpoLrPSIbc2Hhaa7iNlnSlC/x6VBWD9u1ta24RAhhQRTVBEKmM1I15kwmvBedel9imjM6/UvrCmvDH7SEmyVOwDGiNS7V5QG+TPuzgi1XBYpxqpcOR37Cl8BpDaPFReWjKkOhK1DvrVSHEuCuHbvRYwJubNLFdiANSQNxhVI5VAAl2m9mUVkYpjSKFsRTtzWKfNpdKQ8kntK/PQqFIQfIiBa3D1Jm14j1f+vIsdl5JOP5YSHUAu8ucAUGJgHKInkkwj7HCvhSqkzKtGxcfD7iWJ/DnQjoiUJ4rX7nvmSe1jORSXp4ZnQ+7Kv6GN+PU0SV1ER0YQkja3JNpDWETKEGt5Hs8RH2DQpiBSxPqZUs2lGqlGmolIITPVviSpfabYh3NQq+NLdXDmUyNlcqDCwYebWK96NFTOWgRzUcjves4o9jky+eU6BVrZiWhKANfQKA+b8QOgDjJVnmpvl0zxGno5yZ+nmtqXoWIf4IhIzWRsmAddfx5FpKAztwHQjX9DO5HiMJTat2BRYkp+NVIq66KdI7LwKPexWSt6QfOokSKDOayBTZrB/cA8sKwyauR+EiU2YXCwao7rQoGBL9Gg7TDdEfkqFw7sJsdljJXAV4Q4X+Wz5FFkptQ+Yn7DGNDHfMUmuI7svClOz0W3PGye9aMjVfvmYng2iwzmLjqMXQvZN4D0GDK8zXFyldpRdRtS3RrNcfbvaHuNXpfB25DaZ+5eANeyT5ElmsNXIc8iq15DcVDjmnGk9vXmE73oBviIBmYCbHtMCfSsaqR0Bl6KkdqXo9CExFwmNlttmx2ValqxLyaNqX2e17sQSu0jYsH7NGgzhpj8TsngLA+bTkUty0vcLal9ik5syDsbLy+7/KHFKQ4smAaDJafUPq/YRNdGc3oZsNP67y7enNqCctY4XpPCNilFv2uv6UPtiF7qI9Wh2O09QiJSOTxHSrlv1gTqHKzKYY7QHArCHNWhb6yDTRjgo9FOC1bl4hnPwDDlvZqo+eU8UKREzbccUzX5Mh14AmBb6oDsIRqjz2RLeMQmuqb+PQR6KolY+Eqg13imG4zTc9E1ebQOQ48XAOj51EhFNuSN49ns09ojtes1WPJuyJtnOk8KOD2JFJEKx69GKvXaT8bIiOpg1IHRLyKVo1PF1ZSXhCYikXVSsQUnKjy7SGMPE3XSteC35Cl9LrGV+xwRqax7W+kQjtx5JDZBTyURC5UGJjcbg4uFIsvJ74x8dU1qn2N8eWy+Ual9Bger8I6q1/BGpNq+oHojUt1cIwW4N8Bu/RvaRcmxxki6JPpNpERYH6kc1wLbkOK5ymR3C2YSwQmDg9UzVByO0ZTXNqTy+06VIeVK7Wuuh1RsGAOKzCE2Yb3exestGVJEPLzKRm3w2nNnB+wuOdw404FyqbGJSu3LOmzfDA0RqTZfvyB6tqBibXo5pvOkgdwAuY72R0S7DecaY9E10W8iHXQG3stCa6TyiOzK1D7MmNSMNwY8iQR6RtLnaizSCAnoTSZ+lr9xzC1DyqXcl3GNFAAhOOEVm+jS/RYgQ4qIiTe1L3Ppc8D2Fte6SLWvmHM0ICK1L470ebvJPSIFiFSMeRKR4jKNjNL6IgmTP+9mDymRDN5vPf9exbdqfoc8Z2ofNeONxo5IRYtNZC4iEqMpr70X53cM50MaeA8TqX3c2v9UM97sxsWLTKijmjz9dhM5QIYUEYuGXlIyHNuOGqkqt6/X6YcbZ41Unql9AREpFkexr93kXCMFCM8kq0Es7F2u2idT+7p2/O1EpfY5XpPR7y72kBLJUBF6b6/EHHvKuVP7qEYqkkGhlqeN20ZBIJVs1/g4TXk7Il2TMZjLdLAqB5uynOTtiEgpBxal9hELCPWwS7GJWhsOm7JGqg6gbinNdfiMdXlV8ogIyNS+oCLXWblIdtCNLFjFpxZ5RaQAABVuH6q71BBRG2CXjr+t6Ez0yMtSbILofIJ6SeWp4ClV+2ZMasYbB8bAR3QRbfJJ03S9NeusA9WUNyQ61gE1UoBPel/WNVLwZAJQah+xYFCpfR6J6Cy9CI6IFKtzIY8ZICXaMeQckbJT+wIiUh0gudoAY+4NLYcQv2oKXOn+iBSniFQyHIXPABzCNvkMh2g/Qb2kcq2RUmOiGqm4mLJOKkpwok01Up2e2gc0KvfZqX3tKdug1D5iwdCQ2tcOsQlnB+wausNj0SmqfYGpfTJFpLPupevQn1NqHwArItXdNVJqA6QaqVjwEvM05EW2jcaJjiOwl1Sea0GBiZTjaWdqH83JMKQEOosQnMi6RkpFmTo9tQ+OprweQyrLrBVlNFUd9e+U2kfMd7ypfW1Jf/HIn3e6Yh/QAap9fg1GHagNuZNS+wDXQSXP1D5W5e1JW80Q+d126/jbThFgBpTQgIh+071bSChHoTcilbOCJx8QIhhsZ2ccujud2BGpjGukkohN5K2ga6rUPqs4tI01Ukw6yR2vdSMddpoiOpaGiJT1ejvEJipWz6puSLXJPSIVntrXCZKrfrgimxSRagn1t3TxxtRWSp5npsY7Xx2USBUpNa494/FAqbWgzQOyUIITVoSFxCbCsSNS4cp9ao3PMbWvY2qklurgzBmRakP6v1xza1w55bvBUR4EPZVELILkzzP1ess82tnuCf06PZf59JES/xfUR6oT5c8BuDe0PAxmSzLcWSPVrYaUubqA+r5F1Df05D2UrsBWBwVgWo06yQhdUBgH9oAPMBT/vzkU/ndWvc4yrqWJQhpS2jYrWkCpfaGYo9b9yjkixWOITag00iwjP3EoMvDFGth2Uxg2bYhISaOJVeEQm8jscplDhhQRC5VDPuvw2gLtSe2TUZRuONx0iGqfqy+Og05JJ/Aiv1teRC6CIlzaHI6IVJb1f5nSq6Fy3mIYB5AhFQtn4bM8f3WB04ZID75Yx9z7FoEXgNJNM9AfqYgf5OxUkZEyJcPeYet2p8EXi+hK3jVSiCk2wXtYRzRNN5fqYBxg2wygbCkkt8FJjrqd2tcV57sA6Kkk4lGyZILbKTZhGSUqitINHguXal/7L68Wo4CGvCq1L28vmBe5sOa1mPpFpLp4YSfi4+5Xl29NDJEf5h5FVE4ZBgD0XDcF7bmaw6mS03xwpPLxAmhNiqJgRVemzOD0diBzZVYeVSNlcqDCc0/rk3CH4ASb48LAzFBsh8QmiIUJY0Afs1P72jH5ZURK9vbohgdNc/RE6sTUPrmwd1iuvUydya2oW4pNWBEpXgCpti0UHIXPjKTPFzTG+h5U3zQAVgN6/s8OsEkrspGb2ITDkOqwNbtT4SNWdGUyOCrVrhqpQNW+OQ7G86+Pkpi7WCIdW+pgFZ69o9UlNtFFjvIA6MkkYsP7NNEct8aV2ESWnjp1qJZNZLvBkGJMLQj51EjJ1D7/H9uqfR12L3OPSNliE6jyrq2PIpLT0GYBIM//AqZ+dB9qR/RCm+bQLNGCvCJSMrUPQOfVtXYopiU4oYWk92XeH0ym9lX8a6Q6pYeURPWS2mylsmR8PuAOsQmQ2ASxkHAKTrRF/rxkXw9A93iJ5YKQx+arWxGxkIa8HZki4qyRygFXRKpG0uELCmebhXmwqRMtwhiqbxtEfT9HbnZuhhRFpJLCLQl0NhGi3CdrpLL6XnUGXgxO7euUHlISvlTcM/054UnKvBZPrbkQznnHa90IPZlEbOxeUu2pI+Eq/IvMr5Um8hCWy2GcMaAQkNrHuSgk7RAvmJO8Jbvld8Wmrc2XDKmFg5xzNcdz08VpJkQK6AyV04Zh7FmAsaqQW1q5y5DqkEN3p2OOWMp9YRGpNqgx8l5NpPZxn71YKuN1yF7MF2ngJYBNtyljRa25vD3CZRnTLT5+ohNw9JKy5c8zvJ7nMNs1XmK5IOQkmYsC80/tmxP9uHgnSuh2SGqfanxJhtSCgTtU+/g82NSJlOhhmPvg4lyH4EztI0MqHnZEKkS5L+uIFAD0MrCdEMJPHseMUj/ulO+UMZhLC9BfaFNqn7wfNa6yZ3gXWyOdYQ4TXYGrl1Q7DhzeB6tbHjRZI5VXdKXAfFP7ZG8Nc4ne7iFFIg+zuYtN7KSI1ILDpdon/rNrnDZEtjCWSzsGiTMi1WkCQZ1Kshqp7O5pWFPeTkvtAwC+zD4XZB6Rcjivui3jyA96MonYcEdESsmHZjn5Neb2UnTJ4UYdwvKKSBUBZgIw3As4m7QW75EOfOxVRCqn60tDapoiUgsNp9gEpfYRHUUvUyqwHZlJ0In0a+B9TESk/NLqAEdpQobjCGnK24n9HM02GlLelhOcAeg8/25sOudbJDoeu0bKtL0IWR84HYZat/R2qR0lVJ/4opweL2nIeRxyjCJSwdeXhlSZUrsWHD5SvBSRIjoCjQGWAdVJh+5OxxzRwWqODAMPrMqFAyXLXklhTXnnOi8i5TSk0NsmsQlZl1pArpHfVqEnk4iPTO2bbV/jStfnd0lqn7GhF9V3DOW2MHBnIacDzeqrwUc60JAaEksRH8xpSfJED/Nopkzkg+0dnR8KUsT8Qqb3ddKhu9ORexwbD1Duq/BM0/oAuykvyn6pfR1WI4U2p/a5xCbQ9estGVJEbKT8qlNsIvMHwBHxIi9xTAKa8qrUviWd99ibexQwd84i1I7rz2cAuieNlFL7Fg6lxohUtzhtiPmPqpOiGqnYmKOWcp+f4ESdgxnIfo0Pq5Ga7cTUPnvRyzy1z3JUMktsotvPdp3zLRIdjzO1r13dqF19hbrca9E25KJUd7/cyWITYAzGWCnfBoWOqBTVSC0gPPn6QPekERPzH75YrInmMB3X4mJHpHwMqTZInwPO1D6fqJgUm8g68pOEEoMpyxHaFZGylIS7vSaV/G5EfDxiE7yATHOMAbiNJ5qtsfBN7eMcbNIQCzd5Nn3hPQxspg2yuERHwR01UpTaR3Qa1TcNoH5QD/gK2gDjYloS6H4RKaakz7MdgzKSfFX7rNc6bC/my3Rgh5l5pEytubOWkdnl6y09mURsnPLnrF15rUVK7UuMI7VPLeEzHKwKGLt2YDSqQ+AUkVqYyANV1ZnaR98/0RnwYR3GAbRuJ4EvtSJSW3wiUm2QPgegBBt8U/tUQ97OWmeqx/WjsKwCc/eMTQOZTl2eH+I+ZEgRsbENKUuysg3CAK4DbZc/bG1D3idHU14lNNGB9VEdgzPVgwypBYMrgiubQ3Z5qglBLGT4IiGBrr1cB0zuypxh1fZkHUT1keJFdNyZxlxTQnVNG5SWdICz+aOSS6cqIj49DFwTvXaYifYcNp0PGB1uYqG8Ow6xCSl9zjuxPqpDcBntXb6wEwlwSvFK50OHHXAIgkgAYzBXFMDqPnVSba6RaugjxTlQ5h0lNNF2GHOd53iXh3QW8DdJJIYxoNeuI2mH15a7HjY63MTCumdO1T7NUuwzO7EZb6fgSPWg1L6Fg/qunal9ZEgTRFdjrrDqpF50G1KqRipjQypQta9qCSx0ktBEHhTnj+OSTlVEIlxelHZMfkrtS45Pah+bpIhUFJxS+xYmLrEJmbOf54AIgmgV0xLn0F7yyNfKGqmcUvtUXVD/wt5j5lPZBhlSRCJcxZFtMKQ4pfYlJiy1z+zAZrwdg0tsIsdxEO1FGk01ikgRxHzBXOlvSKkaqcxT+6zjtTciJQ2phZzaB7iFxLr8bLfAv0kiKU5Dqi3pT6TalxyfhryaasZLhlQQFJFaoGgMvGgdsKwzF/WRIojuxk7tyycipVL7yqYQvLBgsodUhyn2tRs+j1L7KIGBSEa7U/uK8yf82zbkPZP7h2n1kBpg2eeFdzMkf75wKTKgxsFI/pwg5gc9GswRDdqEKYwna31vV0QKBQZeYtAmTPR/aRz1tSUYYyV7jeld4HEMZxSqy9dbMqSIRDjzetsiNuFMsaLZGgsVubMWbDZtgtUBYwVFo8JwRaS63ENGJIMXmWrrAIDSiAliHmCuKECbqEJ7qQ5zD/FQs3ZFpABU3jmI4h/moG2soXhfBcX7GpOhNQAAHBBJREFUKupnFJGaP6l9dDQlEuF6+Nud2keH23h4UvvYBKX1xYIiUguXEgPjjkaZXe4hJQjCEpx41G1IoV2qfQCMg3thHNwLzJnQ/1yD/ngV+hNVaFNm9k1vO515JDaxwL9JIjGO1L52GDacUvuS40ntk4p9JH0eDtVILVzkOsNmrZ4v5LQhiK5H1Uk5BCdYm/pIuejVYBzYA+PAHtFHqsIptW8eOcnJkCIS0W7VPrfXIvvLzQekN13mYmskfR4LubFyDWS0LzRkCvGsrJHKbSQEQaSErdzn6CUlI1J5OcusfpwLnfkkNrHATWIiKW3vI1VwHG717n7Y2obMN/am9pH0eTjSQ0nRqIWHjEiZANcBaDQHCKLb4aM6eMFS7uPWfphHRIpopDh/nORkSBGJcMuft+F68hpd/qC1E+5pyKvJHlJL6HEPQ9ZFUX3UwoNSiAliHqIzmMsLYGUONmWl7bZRbIIIxnl+7PbUPjpZEclod2qfvAYdbuIjU/tkRIpS++JBEamFi+M773YFKYIgbLz9pNomf06EQ6l9xEKF5yQ20e0ei7biTO0zOdh2E+aQ1vWLVdbwAQ28xMAX07K40JhP+foEQdiYKzx1UhUOzkAtDnKGz6PUvi4fPtFu2i5/XqKIVFJUal8dYDtMMJPS+mJRZCh/bMmC7++xIJlHUrwEQdjYghOOiFSJCdEHIj9ItY9YsPQwcAYwjrZ4btUDRjM1Pg7VPpXWR0ITseCjdJ8WIs50vm7f1AmCsJERKfZSXUmP8wFyLObOPKpLpeMpkQyNiTqpWd6eA0c/Q/2AEsxVNFVjI29VnUObFAW2JhlSBBHMPEozIQjCwZAGPsigbTGAKhfKnFQflTsusbIud17RlkEkhvcxsFlu917JEo2h8r5FbbjQ/EEZuHWATUihCfLAEUQQLgWvLt/UCYJwY64oQP9zDdpmkd5HhlQH4Erty3EcKUCnKyIxUnCCd3k4dt7iTO2T0ucUkSKIYOZRvj5BEG5kep++yeoJQsqsucPnUV0qGVJEYsxVBfB+UjfrWHxS+0j6nCBCKFFqH0HMV5Ry37MUkeoYCvPHeUVbBpGY6omDqL55kFJgOhWdgWtQqX2cgYxeggiB5M8JYv5irhSORIpIdRCudOr8hpEGZEgRyWGs6yf+vKcAsDkO1Dj4Ig3QaeMgiECcqn1dnmZCEIQbc3lBqA3Pima8FJHKH1ddVJevueSmJoj5SIGBVTkYp7Q+goiCxCYIYh5TZOBLHfsgRaTyx1pnuYaud/SSIUUQ8xCnV90cocecIEKZRwpSBEE0Yq6wDSmKSOWPcl51eTQKWCCGVLlcxrHHHot/+Id/yHsoBNEenAdDikgRRCh8HjWHJAiiESk4AQAgQyp/5Jo7DxxXC8KQ+v73v4+DDjoo72EQRPtw1nyQ9DlBhEOpfQQxrzFX2oYUp9S+/CmIyCAf6H4zpPv/ggg2btyIZ555Bsccc0zeQyGItuFK7aNmvAQRjktsIr9hEASRDRSR6jAYw9y5izB32nDeI2mZXE9Y9957Lz74wQ/iqKOOwtjYGG677baG9/z0pz/Fcccdh/Xr1+Pd7343HnzwwUTX+OpXv4qPf/zjaQ2ZILoDx55BqX0EEQ7JnxPE/IYv0cBL1n+TIdURmHsUwVd2v+cq179gdnYWY2NjOOmkk3DhhRc2/Pzmm2/G5ZdfjssuuwwHH3wwrrnmGpx33nm45ZZbMDIyAgA48cQTfT/7+uuvx2233YY999wTe+21F/70pz9l+rcQREdRsBVx+CKKSBFEKJTaRxDzG43BXFGA/mydVPuIVMnVkDrmmGNCU+6uvvpqvOc978HJJ58MALjssstw++2344YbbsC5554LALjxxhsDf/+BBx7AzTffjN/85jeYmZlBvV7H8PAw/uZv/qap8Wpa+x4+ea12XnOhMa/vsZQWXaxBK+RnSM3re9wB0P1NCU00sWYmwErMdT/pHmcL3d/soXssMA/ogfZCHXxFIdV7Qfc3ezr5HndsTK1areKRRx7B+eefr17TNA1HHnkk7r///lifcdFFF+Giiy4CICJUzzzzTNNGVKGgYXR0sKnfbYUlSwbafs2Fxny8x5WBGRioorC8B4M5zFsv8/EedxJ0f1tntmcrUOYYXNKHwmjj/aR7nC10f7Nnod9j/s4B4CRgICNlzoV+f9tBJ97jjjWkJicnYRgGli5d6np9dHQUmzZtavt46nUTU1Pltl1P0xiWLBnA5OQMTJO37boLifl8j4tmHQUA1SGOmfHp3MYxn+9xJ0D3Nz16CwwMHDvnKjDH7XtJ9zhb6P5mD93jbKH7mz153OPh4T4Ui9E15h1rSAXBOQdjyb0JJ510UsvXzuMBMU1OD2bGzMd7zK1O4eYSrSP+tvl4jzsJur+tw4sAA2Dq/veS7nG20P3NHrrH2UL3N3s68R53bBX6kiVLoOs6tm3b5np9YmKiIUpFEISHkjSkSLGPIGIhC9BJbIIgCIKISccaUqVSCevWrcOdd96pXjNNE3fddRcOOeSQ/AZGEF1A7dBe1A7rhXFAKe+hEERXICXQeUb1EwRBEMT8I9fUvpmZGTz77LPq35s3b8Zjjz2GpUuXYtmyZTj77LNx8cUXY926dTjooINwzTXXYG5uDu94xztyHDVBdD58ZQHVk4fyHgZBdA28zzKgesmQIgiCIOKRqyH18MMP48wzz1T//uIXvwgAuOCCC3DhhRfiTW96EyYmJnDllVdi69at2H///XHVVVepHlIEQRAEkQbVNw3COLgOvpjSYQmCIIh45GpIHX744XjiiSdC33PGGWfgjDPOaNOICIIgiIUIX1lAfWXX6S8RBEEQOdKxNVIEQRAEQRAEQRCdChlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEARBEARBJIQMKYIgCIIgCIIgiISQIUUQBEEQBEEQBJEQMqQIgiAIgiAIgiASwjjnPO9BdAOmyWEYZluvWSzqqNWMtl5zoUH3OHvoHmcL3d/soXucLXR/s4fucbbQ/c2edt9jXdegaSzyfWRIEQRBEARBEARBJIRS+wiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIdSg//elPcdxxx2H9+vV497vfjQcffDDvIc0bfvCDH+Dkk0/Ghg0b8KpXvQoXXHABNm7cmPew5i2XXHIJxsbGcO211+Y9lHnFSy+9hIsuugiHHXYYDjnkEJx00kl4+umn8x7WvGF6ehqXXnopjj76aBx88MF4y1vegn/7t3/Le1hdy7333osPfvCDOOqoozA2NobbbrvN9fNKpYLLLrsMhx9+ODZs2IALL7wQ4+PjOY22Owm7x9u3b8cXvvAFnHDCCTjooINw7LHH4ktf+hKmp6dzHHF3ETWHJdVqFSeeeCLGxsbw5JNPtnmU3U2ce3zffffhve99Lw4++GAceuihOOuss9o/UAdkSHUgN998My6//HJ8+MMfxg033ICxsTGcd955mJiYyHto84J77rkHp59+On7xi1/g6quvRrVaxTnnnIO5ubm8hzbvuO2223D//fdjl112yXso84odO3bgtNNOQ6lUwlVXXYVf//rX+OhHP4qBgYG8hzZvuPzyy3HXXXfhH//xH3HTTTfh1FNPxac+9Sncc889eQ+tK5mdncXY2Bg+97nP+f78y1/+Mm677TZ885vfxE9+8hNs2bIFH/nIR9o8yu4m7B5v2bIFW7ZswSc+8QncdNNN+PKXv4z/+Z//wWc/+9kcRtqdRM1hyRVXXIFly5a1aVTzi6h7/Kc//Qnvf//7cfTRR+Nf//Vf8bOf/Qwnn3xym0fpgRMdxzvf+U7++c9/Xv3bMAx+1FFH8auuuirHUc1fxsfH+dq1a/kf//jHvIcyr9i6dSt/zWtewx9//HF+7LHH8p/85Cd5D2ne8PWvf52feuqpeQ9jXvPmN7+Zf//733e9dvzxx9M6nAJr167lt956q/r31NQUX7duHb/lllvUa3/+85/52rVr+YMPPpjHELse7z324+abb+br16/nhmG0aVTzh6D7e+edd/Ljjz+eP/nkk3zt2rX8iSeeyGF08wO/e/yud72LX3HFFfkMKACKSHUY1WoVjzzyCF796ler1zRNw5FHHon7778/v4HNY3bu3AkAWLRoUc4jmV986lOfwnvf+16MjY3lPZR5x6233ooDDzwQF154IV71qlfhpJNOwo033pj3sOYVGzZswO9+9zu8/PLL4Jzj97//PbZs2YIjjzwy76HNOx5++GHUajXXvrdmzRrsuuuutO9lyPT0NIaGhqBpdBRMg+3bt+PTn/40vvKVr6Cvry/v4cw7xsfH8cADD2BkZATvec97cOSRR+J973sfHnrooVzHRU9PhzE5OQnDMLB06VLX66Ojo9i6dWtOo5q/cM5x+eWX47DDDsOaNWvyHs684dprr8Xs7CzOOeecvIcyL3nuuefwL//yL1izZg1+/OMf4+STT8ZnPvMZ/O53v8t7aPOGv//7v8fq1avxmte8BgceeCAuuOACXH755dh///3zHtq8Y9u2bejt7cXg4KDr9dHRUWzbti2nUc1vJicn8d3vfhennHJK3kOZN3zuc5/D2972NmzYsCHvocxLnnvuOQDAd77zHZxyyin40Y9+hD333BNnnnkmXn755dzGVcjtykQiOOdgjOU9jHnH5z//eTz55JO47rrr8h7KvOHpp5/Gd7/7XfziF78gT2dGcM6xfv16fOxjHwMA7L///nj44Ydx3XXX4XWve12+g5snXHvttXjsscfwwx/+EMuXL8ddd92FT3/601ixYgUOOeSQvIc37/Db3zjnOYxk/jM9PY0PfOAD2HfffXH++efnPZx5wQ033IDNmzfjG9/4Rt5DmbeYpgkAOOWUU/COd7wDgBCzuvPOO3HjjTfib/7mb3IZFxlSHcaSJUug63qDF25iYqIhSkW0xhe+8AXceuutuPbaa7F8+fK8hzNveOCBBzAxMYHjjz9evWYYBr70pS/h2muvxS233JLj6OYHS5cuxd577+16bc2aNaTumRJzc3O44oor8L3vfQ9HH300AGC//fbDgw8+iGuuuYYMqZRZunQpyuUypqenXVEp2vfSZ3p6Gueddx76+/vx7W9/G4UCHQPT4O6778Zjjz2Ggw8+2PX629/+drzzne/E5z//+ZxGNn+QAh7OvU/TNOy111548cUX8xoWGVKdRqlUwrp163DnnXfiuOOOAyCs8Lvuugvve9/7ch7d/IBzji984Qv4z//8T/zkJz/BqlWr8h7SvOL1r389DjzwQNdr5557Lk466STlRSJaY8OGDdi0aZPrtY0bN2LlypU5jWh+Ua/XUavVoOu663VN01Cv13Ma1fzlwAMPRLFYxJ133qkcMH/5y1/wwgsvkNGaItPT0zj33HNRKpXwve99Dz09PXkPad7wt3/7t65U9i1btuDcc8/FlVdeifXr1+c4svnD7rvvjmXLlrn2Ps45Nm3ahFe+8pW5jYsMqQ7k7LPPxsUXX4x169bhoIMOwjXXXIO5uTk6hKbEZZddhptuugnf/e53MTAwoGrPhoaG0Nvbm/Poup/h4WEMDw+7XisWi1i2bBn23HPPfAY1zzjrrLNw6qmn4oc//CFOOOEE3HfffbjxxhvxrW99K++hzQsGBwdx2GGH4atf/Sr+/u//HitWrMCdd96JW265BZdffnnew+tKZmZm8Oyzz6p/b968GY899hiWLl2KZcuW4eSTT8bll1+O4eFhDA4O4otf/CJe+cpX0iE0AWH3uK+vD+eccw7K5TK+/vWvY3p6WvWQGhkZaXAaEI2E3d/ly5e7Mlv6+/sBAKtXr6aMlwRErRPnnHMOvve972G//fbD2rVr8fOf/xxbt27FiSeemNuYGack5I7k2muvxT//8z9j69at2H///fHZz34WBx10UN7DmhcEqchdfvnlOOmkk9o8moXBcccdh3POOQdnnHFG3kOZN/zXf/0XvvnNb2LTpk1YvXo13v/+9+Ptb3973sOaN2zduhXf+MY3cMcdd2Bqagq77bYbTj/9dJx++ul5D60rufvuu3HmmWc2vH7BBRfgwgsvRKVSwVe+8hX8x3/8B6rVKo4++mhccskllNqXgLB7fNhhh/n+DAB+97vfYffdd896eF1P1Bx2snnzZrzuda/Dr3/9a6xdu7ZdQ+x6ou4x5xzf//73cd1112Hnzp3Yf//98clPfjLX8zEZUgRBEARBEARBEAkhSS2CIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEKny7W9/G2NjYw3/O+uss/IeWtdz9913Y2xsDE8++WTDz66//nqMjY1hZmYmh5ERBEEsPAp5D4AgCIKYfwwNDeGqq65qeI0gCIIg5gtkSBEEQRCpo+s6DjnkkFjvnZubQ29vb7YDIgiCIIiUodQ+giAIom1s3rwZY2Nj+Pd//3dcfPHFeOUrX4kPfvCDAIDt27fjc5/7HI488kisX78ep5xyCh544AHX709NTeGiiy7CIYccgqOOOgrf+9738NWvfhXHHXeces+3v/1tHH744Q3XHhsbw7XXXut67Ze//CXe/OY348ADD8Sxxx6LH/3oR66ff/KTn8RJJ52EO+64A29961txyCGH4NRTT8VTTz3lep9hGPjBD36AE044AQceeCBe85rX4JOf/CQA4Kc//Sk2bNjQkHL3hz/8AWNjY3j88ccT3sV4fPKTn/RNsXzve9+byfUIgiAWGhSRIgiCIDKhXq+7/q3ruvrvr33ta3jDG96Ab33rW9A0DdVqFWeffTampqZw8cUXY2RkBNdddx3OOuss/Pa3v8WyZcsAAJ/61Kdwzz334NOf/jSWLl2KH//4x3j22WdRKCTfzq666ipcccUVOO+883DYYYfhkUcewbe+9S309fXhjDPOUO978cUX8bWvfQ3nn38+enp68LWvfQ0f+9jHcNNNN4ExBgD43Oc+hxtvvBHnnnsuDjvsMOzYsQO33HILAOCtb30rvvrVr+I3v/kNTjrpJPW5N9xwA9atW4f99tsv8dhN02y4v6Zpuv79oQ99CKeccor697Zt2/Dxj38ce+65Z+LrEQRBEI2QIUUQBEGkzvbt27Fu3TrXa1dffTVWr14NADj44INxySWXqJ/98pe/xFNPPYWbbrpJHfSPPPJIvPGNb8SPf/xjfOITn8BTTz2F//qv/8IVV1yBN73pTQCAww8/HMceeywGBwcTjW96ehrf+c53cP755+OCCy4AALz61a9GuVzG9773PZx66qnK8NuxYweuu+46NS7OOT784Q/jmWeewZo1a/D000/jV7/6FT7zmc/gzDPPVNeQYxweHsbxxx+P66+/XhlSMzMz+O1vf4uLLroo0bglJ554YuR7Vq9ere53rVbDmWeeidWrV+NTn/pUU9ckCIIg3JAhRRAEQaTO0NAQrr76atdre+21F7Zv3w4AeO1rX+v62V133YV169Zh9913d0VaDj30UDz88MMAgIceeggAXGl8AwMDOPLII/Hggw8mGt+f/vQnzM7O4o1vfKPrekcccQS++93v4qWXXsJuu+0GANhtt91cUZw1a9YAAF5++WWsWbMGd999NwC4ok1e3vnOd+Kss87Cc889h1WrVuH//b//h3q9jre85S2Jxi254oorsGrVKtdrt99+O/7pn/7J9/1f/OIX8dRTT+FXv/oV+vv7m7omQRAE4YYMKYIgCCJ1dF3H+vXrG16XhtTo6Kjr9cnJSdx///0NUSwAKqqybds2DAwMNAhTeD8rDpOTkwCAN7/5zb4/f/HFF5Uh5VUbLBaLAIBKpQJA/E39/f2hUbHDDz8cq1atwvXXX4+PfvSjuP766/G6170OixcvTjx2ANhnn32wdu1a12veui3JL3/5S/z85z/Hd7/7XUrrIwiCSBEypAiCIIi2I2uLJIsWLcKBBx6ISy+9tOG9pVIJALB06VLMzMw0qPyNj4+73t/T04NareZ6bceOHQ3XA4Af/OAHvobYXnvtFftvWbx4MWZnZzE9PR1oTDHGcPLJJ+MXv/gFTjzxRPzxj39sELbIggceeACf//zn8aEPfcgVySMIgiBahwwpgiAIInde9apX4Y477sCuu+4aGGGSEa5bb71V1R/NzMzgzjvvdBkwy5cvx8zMDF5++WUsX74cAHDHHXe4PmvDhg3o7e3Fli1bGtIMk3LEEUcAAP7t3/7NJVLh5R3veAeuvPJKfPrTn8by5cvx6le/uqXrRrF161ZceOGFOPLII3HhhRdmei2CIIiFCBlSBEEQRO68/e1vx89+9jO8973vxTnnnINVq1Zh+/btePDBB7Fs2TKcddZZ2HfffXHcccfh0ksvxfT0NJYtW4Z//ud/bkj1O/roo9Hb24tPf/rTOPvss7F582b87Gc/c71neHgYF1xwAb70pS/h+eefx6GHHgrTNLFx40bcfffd+M53vhN77HvvvTfe85734Ctf+QrGx8dx6KGHYmpqCr/5zW9wxRVXqPctX74cRx99NG6//XZ84AMfcKkYAkK2/Z/+6Z/wxBNPNHEHG/nEJz6BmZkZnH766S4Z+cHBQeyzzz6pXIMgCGIhQ4YUQRAEkTs9PT34v//3/+Jb3/oWvv3tb2N8fBwjIyM46KCDXClpX/nKV3DppZfiy1/+Mvr7+3Haaadh/fr1+M1vfqPeMzIygiuvvBJf+9rX8OEPfxjr1q3DN77xDRXFkrz//e/HLrvsgmuuuQZXX301enp6sOeeeza8Lw6XXHIJdt11V/zyl7/Ej370I4yMjPhGnF7/+tfj9ttv9xWmKJfLGBkZSXztIDZu3Ijp6Wm8//3vd71+2GGH4Sc/+Ulq1yEIglioMM45z3sQBEEQBNEsskfTrbfemvdQIvnoRz+KrVu34l/+5V8afnbGGWfgiCOOUHLsBEEQRGej5T0AgiAIgpjvPPHEE/jXf/1X/Od//qer15SkXq/jqaeewmmnnZbD6AiCIIhmoNQ+giAIgsiY888/H5OTkzjttNPwxje+seHnhUJB9aMiCIIgugNK7SMIgiAIgiAIgkgIpfYRBEEQBEEQBEEkhAwpgiAIgiAIgiCIhJAhRRAEQRAEQRAEkRAypAiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCfn/AVWqP9WzEBgDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ps = Powerspectrum(lc_poisson)\n", + "mtp = Multitaper(lc_poisson, adaptive=True, low_bias=True)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Multitaper Estimate\", color=palette[4])\n", + "plt.plot(ps.freq, ps.power, label=\"Powerspectrum Estimate\", color=palette[7])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, Hz\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7b9118bc", + "metadata": {}, + "source": [ + "## Time series with uneven temporal sampling: Multitaper Lomb-Scargle \n", + "\n", + "Uneven temporal sampling is quite common in astronomical time series, and a popular method to deal with them is the Lomb-Scargle Periodogram.\n", + "\n", + "A 2020 paper (A. Springford, et al.) used the Lomb-Scargle Periodogram in conjunction with the Multitapering concept for time-series with uneven sampling. That method is implemented here in Stingray.\n", + "\n", + "Everthing works as before, just\n", + "- Create a `Lightcurve` with the unevenly sampled time-series\n", + "- Create a `Multitaper` object by passing it this `Lightcurve` object, with the desired value of NW, __just additionally pass the `lombscargle = True` keyword during instantiation.__\n", + "\n", + "__NOTE__: Jack-knife variance estimation and adaptive weighting methods are not currently supported, so setting their keywords will have no effect if `lombscargle = True`." + ] + }, + { + "cell_type": "markdown", + "id": "14120f67", + "metadata": {}, + "source": [ + "### Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "7b45c2aa", + "metadata": {}, + "outputs": [], + "source": [ + "# Loading data\n", + "import pandas as pd\n", + "\n", + "kepler_data = pd.read_csv(\"https://raw.githubusercontent.com/StingraySoftware/notebooks/tree/main/Multitaper/koi2133.csv\")\n", + "times_kp = np.array(kepler_data[\"times\"])\n", + "flux_kp = np.array(kepler_data[\"flux\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "346ea2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Bin sizes in input time array aren't equal throughout! This could cause problems with Fourier transforms. Please make the input time evenly sampled.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD7CAYAAACWq8i5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABBt0lEQVR4nO29eYAU1bn3/62q3md6mIUGehwERGWRwQUuwlVEYViikJmYIFxQDBoMQiTLe3PFvF6RX3AZrz+TXFQwxHg1RqOTm4jAiCMRFxC3iKAsDiLINgOzMnsvVfX+0dM9vVR3V3VXdVf3PJ9/YPrsVafOc85znvMcRhRFEQRBEAQhAzbdFSAIgiAyBxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIxpLsCWtPS0glB0MdRlKKiXDQ1daS7GqpCbcoMqE36Ry/tYVkGBQU5UcOzXmgIgqgboQFAV3VRC2pTZkBt0j+Z0B5STxEEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRCE3ujugf2RDTAcPprumkRAQoMgCEJncE0tAADTx/vTXJNISGgQBEEQsiGhQRAEQcgmrtCorKzE9OnTMWrUKNTW1krG4Xkea9euRVlZGWbOnImqqipZYbt27cLNN9+McePGobKyMiTP9evXY8qUKSgvL0d5eTnWrl2baBsJgiAyCx17E4nre2rGjBlYsmQJFi9eHDXOli1bcOLECdTU1KC1tRUVFRWYMmUKSkpKYoYNHToU69atw5tvvgm32x2Rb0VFBe69997kWkgQBJEuvF6AYQCOSyi5yKhcHxWIu9KYOHEinE5nzDjV1dWYP38+WJZFYWEhysrKsH379rhhw4YNw9ixY2EwZL3fRIIg+iH2/9oE27NV8SNGgdHhikOVPY26ujoUFxcH/nY6naivr48bFo9t27Zh3rx5uOOOO7B37141qprVMJ1dYBub010NgiCC8FtCKUKHKww/up3iL1y4EMuXL4fRaMTu3buxYsUKVFdXo6CgQFE+RUW5GtUwMRwOu2Z59zy+CfB4YXniPzQrQwot25QuqE2Zgd7b1NP7r9x6+uMJ7efhBmAwcrproypCw+l04syZMxg/fjyA0NVFrLBYOByOwP+vueYaOJ1OHDlyBJMmTVJUt6amDt34qHc47GhoaNcsf7vHCwCalhGO1m1KBwMLc9DY1OHTRWcJ2fieMqFN/uFeTj2D28O1dsEGwOPl0ZbiNrIsE3OyrYp6as6cOaiqqoIgCGhubsaOHTswe/bsuGGxOHv2bOD/hw4dwunTpzFixAg1qksQMXH98nGY33g33dUgCF0Sd6Wxbt061NTUoLGxEUuXLkV+fj62bduGZcuWYdWqVSgtLUV5eTn27duHWbNmAQBWrlyJoUOHAkDMsE8//RS/+MUv0NHRAVEUsW3bNjz00EOYOnUqnnjiCRw4cAAsy8JoNOKxxx4LWX0QhJaY9h2C68br010NgtAdjCiK+tDdaES/Uk89sgEA0H7f3ZqVEU4mqAiUko7nqDXZ+J4yoU1K+tJAmwGNTZ2A1QzuZB1sL74Gb8kQdN/2Pa2rGUJK1FMEQfhg2jrAfXs6pWWyjS1Ads/9+gWu/1wP+2//mO5qxIWERhZgfuNdcMdPpbsaBICcTX+B7aXXU1Ye981J5Gz6CwxffJWyMon+jW5Nbgn5mD4/CNPnB9NdDQIA4/aktDy29wwAd7YR3qDfzdvfhZibA/e1E1NaH0It9LtypJUGkVKY5lZAENJdjazHtPcgzO9/ku5qEFkICQ0iZTDNrch95mWYdDaYGQ4cgWXbznRXgyAyAhIahCyYto6k82A7ugAA3Mm6pPNSE+vrO2Dcf1jdTHle3fwyHVGE+a1dYE+fjR+XgJ79iJDQIOJiOHQUuU/9iTbbFWA4/E26q6AvBAGmT7+A7cXX0l0T5QhC0tZpTFMrmObzClLQngaRwXCnfQ4m2bONaa4JERW9jDGiCMPBr7Nn34rnYa98Bua39ySVTe7vX0buMy+pVKn0QkKDkE8W+WIitMHwZS2sm9+C8RP93W0dD6Zd4owN7xN+xr0H0lAjfUJCQ0s8Xhg/3qfNwStRRM5/Pw8jmdoSOoLp6gbQt38VgY4PIdqerUrpGRs/7JlzGbUHRuc0NMS061OYP9wL0WaFd9ylqufPdnbBkgrHejr+0Ik4dPUAnA7mhhmwSmW7eyJ/1Ljvs00tyHn+f+GeWBpWrqbFJoUOelPmYDhwBGx9g+z4TI/L968ntQe+0oHpg8/oAqgQ9PHV23/3HHLXP5/uamQ+Ggm9wMos2rgSXK4gwPzWLlUsGZOBhIYCrK/vQM5zfwVcbpjf/gDwarykFMXoM510zP6jfTheHuZ3P4Lthb+nri48D0jNDLMVQQB35FiM9x69PzAeb9SwqGnaO1U1j7X87U1fvqLouzc7RXBHjiG38hkgxSf1o8GcT9zBIneyDqZPv4Bl69sq1kg5JDQSwLz7U5g+2gfjvkPyEiQ4vts2veLr8OlGbv1TOBhY/7od9t8+l3xGcax8jJ99Cctf30iqCLahCfZHNoCtk79KDce0+5+w/XU7uKMnQgM0mgHnPPMScl74G9DjSmxfLiy+8cjxvv+rfSYmBub3PgEjCGBbes1dvTwsW/4he7bOuNyq1if36ReTzyTN6mISGonQa1ER16wwye+Za2rxzcxUxvjxPli2/ENBCl8dTB9qdE+7y634QzB8cyJ+JBmYPvw8ZrjlzfdDBrxEMBz51vfvV0cBUYTpg898ew0KYFvbAPSpM7TA9odXAqal/tWJ5c33YPnHB/I998oRYmkc8wxHv4Xxy1qY39oVMx57rglwe5D71J8SLyxGn+a+/hbGT79IPO80QkKjH2L5xwcwflmrOF1Ui5ggbH94BeY33pGdJ9PVDfsTz8K0+5/gjp9KavmeCGxjS0rL406cgfndj2DZ/k5Ky5UD19AM00efh/zm35fLJOseKZjObvkTE1FEzrOvwv7//yGJ8rpgf3Rj1HBbVTUsb+2Cnk9+R4OERkpI09Squ0fWMjzaoT2mswtQuInPNTTD9LlMtR0AplcQGQ4fhe3lLcj5/cuKytMt0V557+DLuJNT5ZnfeCdwwU82Y/zocxj3Jm9WbntlK0y7/ykvsgqr+1RPRlIJCY1ESLUMkFJlyOjYueufj7u8Nhw6ipw/VvlO8Yan/+/nYXv+byltL6OVcYHLHblxLoowHlC+4pIDd/JMcEGq569EMGsJd/wUcn/zR9/z1QDL23tg2R7brJxpaZNlFGH4+tvEK5Jqk2Edm7mT0EgA4z+V6yLZxmaIHV2wVlXD/I8PlKXt7FRcnuFALRg+cs/FcChUOPjNZKOZy3INzdCL+Wgy2J94NnLjPAmVi/nN92CN4Ucp5YN6Mq+ouwdctAE1Tr7m9z4G0+MC2yDdf9hzTfHN1EURTHsn0O2C7YW/g+ndv5FL7sY/+96tnAmHjME4HasERsH7Yxub0+oHjoRGAiiec4hAzqZX4HrgSRi+/hamj/cBAAy1x5Dz1J8Cgxd3sg7Wl7f4NtjjDWixOpnHC+vr0hvd1tfeUlr7kLLsj2yAefu7KbWUiokoAn69e5Rw847dIT+xDU3I+e//8em5E8T02QEYZHvrVWGWKmem63L7NnAVYqt6A7aq6r4fumM8zyiwbR0RExIAyHn2VZ+ZejDhllV7DyD3yRdgfvcjcKfrYdqTmMGFpXqnb9UhhxiPM+fZVxXFT4po+cZ432xXD2wvb4Hlf7drU6c4xBUalZWVmD59OkaNGoXaWumlPM/zWLt2LcrKyjBz5kxUVVXJCtu1axduvvlmjBs3DpWVlbLzzBxi9zRzzftg2zoCg5fl9R0wHD8Fpr0T9sd+n3ixGm9amvYehP2/NmlahlxMez6D/Td/BNMhvRpjz5yFKcwPkvHj/WA7u6XVFalSC2hQjvXVbdIDXhzYM6HnMcw7+1bChmMn5ZW9+a3EJiRAwDKLbWlNKL0f44EjyN34Z81UZXrDWHssLeXGdSMyY8YMLFmyBIsXL44aZ8uWLThx4gRqamrQ2tqKiooKTJkyBSUlJTHDhg4dinXr1uHNN9+E2+2WnWe/Q+H4kohllKoVSCF+F+RMexfE3JyIcO6cSqfURTEJvXbw8wvNg21oguHLWngvuxRgGAiOwoSraDhVn1C6cLNuKbVmVHTYNayv70D3/BsjfufqzoELHFhU/i65YyfBuD3wjroofuRkJwWZvKcxceJEOJ3OmHGqq6sxf/58sCyLwsJClJWVYfv27XHDhg0bhrFjx8JgiJRdsdIRQMyvNQG31NyZc0nUJQ4eb4gKidFiJRRlDFDLoSN3LAEdcpwZL1vfgJw/vArzh5/71Dh/eCXB2mUgHi9yfvc/4CTOwJg+Pyh/tSzR12NtePtVw8phYPvLVlh7T7Yng/SeTZTvOYGJCtPWAcMXXylOJxdVHBbW1dWhuLg48LfT6UR9fX3csETzTBVMSxvEvBwwbZ1gm7XdHDPt+hSs3zxW5UHVWlUN0WJGz7wZUeMYjp0EW9cAwelQrVzTux+BO1kHtr0TbGsbuhaXA1AmoJimVuT8z1/hHV6CnrnTAbMpNILSGVmi7iR4GXs4Yfs8jMsNMby+QUTo+mVg3bYTruZWxelSBSNzP4Q93w62qxvmnXskV1fGL76C54qx8fOpT/COlzQej2CD3p+oQUVsL78Otvk82kddBJiMquef9V5ui4pyE0on9rjgeuTPYCdeBuFTaV/6ublmGBz2qHl4rEbwAHLtFoQPOQ6HHT293kcLzQzcQfdm5z4TelahoCAHbFg5otuDaJ9nbq45pDz/zMt+RwWCDRMLmxshQIBfROUbRHBB5fjjWs1GSIkxR2/cgY5cuBCq1nA47Oj54LPQen3+JYSwtIKnB24ABo4NzLX8YZ7Xd4J/x/dcjLXHYPniIIzfmQrR6w20nes9IV1QGPmMAKAnzHIn/7P9gP+9hD0nh8MOURADeTsc9sAzGJBnlXw2/rqKLW1wPRK6z1NUmAOmwA5vjq8cm9UENt8KDwCTiYPUetARpT+5vZ5AfHPQRrHtm28hALC4ugPhRe4uSK1xgvMWu11wPf4cuImXRbxbs8UYUbcBA2wh7ffjMrAhc2TzB76zEFarEXlBzy+Y3Fwz2MKcwHtnzL7yTEZDoFzr4aPIn3l1IH3ey5t9Ps5+cXtIXgUFNsm2DhyYC4Zh4OJYyTm82WyEPaw9sYx2maAZv8Nhh9jjgnvDKzD+241ghwyMiM+32hBtejJgQF9YQb7V9xyMXEj/58/74hiNHHJ76+n/LRip/tLT6Tv7NLAoB4zFHKNViaGK0HA6nThz5gzGjx8PIHSVECss0TyV0NTUAUFQrh9kOjqRC4Df91XUuUBHhwuehugnmM3dHpgAdLT3wBIW1tDQjhxBBAugpakTkdr4PlpaOiEYw3LweBBNXHk375T8vaGhPSSN55lQ44Lz57vBB7XHH7e7x9cOqfwcDjsaGzoi6hJeFgAIB46GhAMA2+Jru5cXwIWF2d/5JCR9V6cLnq9OhgrV3sOBLS1dEEyR7yK8Dt0dPYC79710uELeS0NDOyCKgTTBbTjfJv1s/HXljp2GLayspqYOiB7AXv0+AMB15ATcgxywAXC7ecmPryFKf7L2eCTjC0d9G9Xek2cDuubzx8/CGidv7ui3sLW0gX8r8kY67+FjEXrr8+e7Qtrvx+blA+8tmO5uD1ol+gDg+x745t737hUguDwwAnB7vIE2isdOhTx/8bjv3Etj7WmIBXkAfANmS0uX5LfT2NAOMAxsQf0qGJfLi/Nh7Yk+/QNEsW9N0PKPTwCTEdaT9ejcvBM9N8+JiM+1dkX0Bz/nz/eFtfbG83pC+78/vcfDo83fx853R+QZ/E4Nh4+C6XbBLPoWUo2NHYBZuVEAyzIxJ9uqmNzOmTMHVVVVEAQBzc3N2LFjB2bPnh03LNE8U4kiD6FuD4wf7u1TmchceXL1cdQ1qTJvjVrfeEJXIlzGvgrTrszFM9vRFbEKSwqp9kZVdyWmRgh2UijfRDcBVDx8JsddDADfnkQUVWPcd9tbXa65FcYo96lL6f5zN/5ZVt3Uhgnak7Nuk56UJUfyG9/Wv9fAsv1dMBp79I0rNNatW4frrrsO9fX1WLp0KW666SYAwLJly/DFF75DbuXl5SgpKcGsWbNwyy23YOXKlRg6dGjcsE8//RTXXXcdnnvuOfzlL3/Bddddh/fffz9uOr1ifucjWHZ+CMPho/EjB2F58/2Y4aaPJDbvNDGu6Bt4QhzjRVmpxToTYHv+f2OWxB39FrlP/gmGr49HhJl2St/HHNNZn9xBUxTBeHsFmhrP0MvD8voOMG1RVpxq3ZUdr3lB5TDtyg+DJgIb431EEwQAZO9DyfIOEOW5pO3Oia4enwmxTM8GWuxpaE1c9dT999+P+++/P+L3TZv69Lccx2Ht2rWS6WOFTZw4Ee+9957idHqFcfXORsJXJ8mazwVvjHe7wLachzCwILk842Cufifwf1MUV9Y5z74KPPEfkmFcnA1KrncGzvXOvrmgE8XmDz+H+4YpEWmUuoGQ8s3EtHfC+JX0gGb8/CA840f31VHGysBQ+w2MB47AIJVnCs0m2SBBYamJPQlJBNur1ei8/fsQigclnZflHx+gs3hw3Him9z+JGycauU+/iPb77o4eQaN3Y/vLFnBnG8En+5x66xei6UjSPb1a0IlwTdHGMiLn+f+F9dVtqucdqG6PC5yCGwqTQTVTX5mPOnCvAhDh0dX4zy9D/rbFcBPix7p5h+8/ir9PpQnSPyM1v/Ohovjs6ejWjlKrFMPxUPfrRoUrdiUYv/pGsUZADoHVt0wVkd9ikoty4RVXdw5we6IeXuW+OZHQCf5kIKERBUbhfQepKoPr9UirjX7cNzDlPPfXkJmrtqTvEBMb5oadcXtCzCGTxbL1bVi3Sd+ypvjdqykzPB5Zq6iYxHLd0ku0gRCAimblsR9M+DsOxvr3muSLF313Y0SoIeWqS2WoL21/+jty178gHfbKNlj/ltrzayQ0omD7UwJXl0bpKOZ3P4r4zfTBP8HI3OBO9hIg2TCA4eDXgQt/0kVCYkRE0stxtrUNOZuiHLBjGDBtHbA/sgGcpGuNyLINJ+vANp+XiAtwCn1ERXNfnwi2l7eGmO0mQmCFlSBKnXaG4PHKnsnLvXmPO5WYEDXWHoOtqlqRvyylAjvQV6KML2xTah0sZv05jURRwwLB7zlWKi/zux8nnb/6MJJO57TAHEdfrfSGupxnXwXvKETXjxbEjpigYDEcOwmx1925ZN01XjDJtWiSAxdDbRQTv579fLtiT7ThJLOSzV3/PBiXG8L9P44ZT4k3AOPH++NHioGSy8PMweeXpOSAUnVTihfrtNJIAsPXx33H9cOWmIaTdWC6umE4cSZKSv2SaidoTE/kTJABkPu7/1GcFxfFPbcamD79AuY4V8PqGSGJ+8n9GE6c8XmkffpFcGk8le5fPbjXPRNTAFreiH0PRyjJj7zcsVN9frxkW/NF/pT7lLQqKhpRrdg0EiYkNJLAcPw0rFvfhjnMWsW4/zCsf96cplolQYJ6c9n3R+sBrSyaVMpXK59B7v96Ln4kGUhd1pVOuASdNPrJfeyZhF2xB2Padwi2v2xRnE7KD1u0s2FKV9/G2hhmz0lAQkMFDEciTUE5tS9y0bHXSy6DVlRa3QwY7ik2RsyYodatb2t6T7rsK0+joLfVszFJdSrDCzC/82HABDzVWIJM2+OhdOOebWpVVhm5+WqSK6E6anlrjUmCp4oZGVdtZhfamr/KvcMiEczv6XEvLf2wSg8DxvlWlBo6ZBIkNNQgBSb0bN25pK0kjHulHS8mg8gLMO2TPvyXFuIZMKR5xZboRUP8EPW8D6eMVN+rTaQEEhoZA5PU9aQAYNkuffo+GVy/fFz1PJOB+zZ9dyfLIZ7LmGiIKnkrFWkg70fQiXBCa2hA0S9qvZsUvmNOxbMlukPjFSt3XNnkR8pljlaQ0MgUaEBXhVgnhGXj0daLqJYwajlQlIFRw9vj0o7G95Ane/hSS0hoqImWAzvJDFkwKdiyCPZfRfRP5FvLZR8kNNQgVasAJXd7JEIWCKZUuQVPOf14kNIjyg4OpgttPmgSGhmE1qathkPaeRVNFYajJ9JdBW0g9SShGNoI1z3azgW1HzSiOdfLJAxHld25QRCEMkhoZAo00dQPpCki+jEkNNQgBXd4J33/AUEQhAqQ0JBC4aZjwMGYhqsBLT24EsqQew8KQWQjJDQkMHxZm1hCrdUWWlvQkApMv9C7IZRCrtFTB9Op3oU3mQWNTASRLWhlbRlXaFRWVmL69OkYNWoUamulZ+A8z2Pt2rUoKyvDzJkzUVVVlXTY+vXrMWXKFJSXl6O8vBxr165Npp3a0msOGc0PvmrFyLiXOSmy5CxA/xX6BNEHeybGHe1JEPe61xkzZmDJkiVYvHhx1DhbtmzBiRMnUFNTg9bWVlRUVGDKlCkoKSlJOAwAKioqcO+996rXWq3ReKJu+uxLTfPX0iV3KmHrGsBfPCzd1SCIrCTuSmPixIlwOp0x41RXV2P+/PlgWRaFhYUoKyvD9u3bkwojJMiOhYDmkJsPgtAOVfY06urqUFxcHPjb6XSivr4+qTAA2LZtG+bNm4c77rgDe/fq14FXH7QnoAfY1rZ0V0EDqG8RCtFokhlXPZUuFi5ciOXLl8NoNGL37t1YsWIFqqurUVBQoCifoqJcxWV7c8xQsjvBMAwcDjvcFiO09CHKcQwtNmRg6epEnsOOTL1PMNduhcFhD/nNbTIk3bccGfxMCOUYON+4pHq+amTidDpx5swZjB8/HkDoCiLRMIej76aya665Bk6nE0eOHMGkSZMU1a2pqQOCoGyoNXa6YFEQXwTQ0NAOi8sLo6KSlMF7BTJ3k4HnbDPON7RD/c8lNXR09MDTEOrC3erxJv2xNpxry9hnQiiH5wU0NCi/CoBlmZiTbVXGoDlz5qCqqgqCIKC5uRk7duzA7Nmzkwo7e7Zv5//QoUM4ffo0RowYoUZ1tYM0CLqAbW0DUnhvRKbAqHGXCNHviTt5WbduHWpqatDY2IilS5ciPz8f27Ztw7Jly7Bq1SqUlpaivLwc+/btw6xZswAAK1euxNChQwEg4bAnnngCBw4cAMuyMBqNeOyxx0JWHwQRDYYXstdFehJobrJN9AsYUcwS4/woJKSe+nAvLDs/VJSm/b67YdnyDxgTPU0uAyE/L0s3edWna9F3YXvp9XRXIyF6brwensvHhPxmfWUbDN8k5/a969/mwfbylqTyIDIH0WBAxy+XKU6XEvUUkSqyWr6rCpndRkKrr/6FVj7SSGioCV2UoxsYWpFFQOopQg1IaBBZCa00IiGhQagBCQ0pEl0xaL3SIO2ULITcHLAttNIIh4QGoQYkNCTg6hsTSqf5mE5mpLIQCshgQAoSGoQakNCQIFHVBtvVrXJNwvKnjUxZiAUDwLjc6a5GwjAaqdZIaBBqQEJDTXhaCegBIT8v3VVICkPtcW0yJqFBqAAJDSLrEAoyW2hwTS2a5EsrDUINSGioCZnc6gJhQGYLDQAAz4f8qYYJMQkNQg1IaEjANjYnmJLMm3SB0QDBnpPuWiQFdzr01jWuuTXpPEloEGpAQkMCra9tJbRHKBiQ7iokBXf8lOp5Ml4+fiSCiAMJDVUh9ZReyPjNcA2EBkGoAQkNIutgOjohZvhmOHvmHJDBZsNE9kJCQ01ooaEPBBFCfmarpxhRBHfiTLqrQRARkNBQEaatI91VIHrJZLNboWAARIOBVFSELtHtHeGZCNeQqNUVoSpMZu9piBwLoWSIJpvhBJEstNIgshMDl+4aJAU/ogRcYwuYjq50V4UgQiChQWQhGb65JALe4SUAtDG9JYhkIKFBZCmZLTiEwQMhWsy0r0HoDhIaRPbBIMNlhggwDLzDLwD37WlAJE8DhH6IKzQqKysxffp0jBo1CrW1tZJxeJ7H2rVrUVZWhpkzZ6KqqkrTMILoD/DDSsC2dYBpplsICf0Q13pqxowZWLJkCRYvXhw1zpYtW3DixAnU1NSgtbUVFRUVmDJlCkpKSjQJ0yOW12rSXQUiQIYvNXoXFv59DcO36qioRIuZ/E8RSRN3pTFx4kQ4nc6YcaqrqzF//nywLIvCwkKUlZVh+/btmoXpEUPtsXRXgQgmg2UG06uOEgvyIOTlqrYZLlrMquRD9G9U2dOoq6tDcXFx4G+n04n6+nrNwvRI19L58JYMSXc1iGyCYeAdXgLDt+qcDBetFlXyIfo3WX+4r6goV3GankTKGTsMrrcN5BxdBwzIt4J12JGpihiOY+Bw2AEAfOnF8Ow/rEq+xjwbhDpVsiIyBH8/UhNVhIbT6cSZM2cwfvx4AKGrBC3ClNDU1AFBUDaUJ/KYGxraYfUK2S+FM4Dz57vBN3Yk9B71AM+LaGhoBwAwRUVQPu2RxsVyMKqUF5EZ+PuREliWiTnZVkU9NWfOHFRVVUEQBDQ3N2PHjh2YPXu2ZmEEEZsM3tAAQkxsxRwbeEehOtmaaU+DSJ64E+N169ahpqYGjY2NWLp0KfLz87Ft2zYsW7YMq1atQmlpKcrLy7Fv3z7MmjULALBy5UoMHToUADQJI4isJuxcBj+8RBW/ZrQRTqgBI4rZfXIoIfXUIxsUl9N+392wvrRZtU1LInG6Fs4DP/wC2B/dmO6qJIQwwI7OFbcG/uaOHIftr28kna/rhskw7/ww6XyIzKH9vrsVp0mJeorwk+FqEUIXCANCd2P4C5Xv5UlBKw1CDUhoENlHhstuYYgj9AezSZV8aU+DUAMSGkR2wmS45NAAWmkQakBCg8g+SGBIY6DPnUge6kVqQoMVoQJMZ7dWOWuUL9GfIKFBEHpD4NNdA4KICgkNgiAIQjYkNNSE1FOEnqHuSagACQ2C0B3ajO4iSY1+hWjQxhMeCQ2C0B3aOGlgyAczoQIkNIjsI8PVhN6xl6S7CkQ2oNFnQEJDTTJ7rCJ0gmCzapIvqacINSChIYHIJfpY6KMkCCK7IaEhgZiXqdf3EARB9KLRFhYJDYIgCEI2JDTUhLRTBEHoBdoITyHZfS8V0V+hSU3/gtRTKSTDTTb7PfT6okAPhkgeEhpSJLjS8Iy5WOWKEISKkMzoX5B6Sv+IuTnprgIBaLYsTxWandzO8OdC6AMSGgShN2hwJ3SMLI9Wx44dw+rVq9Ha2or8/HxUVlZi+PDhIXEaGhrwwAMP4NSpU/B6vVi+fDnKy8uTClu/fj1eeuklDBo0CABw1VVXYc2aNWq1PQYJfrW0/CdUQSOpQf2TUAFZQmPNmjVYtGgRysvLsXnzZjzwwAN44YUXQuI8+uijGDduHDZs2IDm5mbcfPPNmDRpEpxOZ8JhAFBRUYF7771X/ZbHItFvlmaIhBpo1o9IahDJE1c91dTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnToVAFBYWIjRo0fjjTfeSCqMIAiC0BdxVxp1dXUYPHgwOI4DAHAch0GDBqGurg6FhYWBeJdddhmqq6tRWlqKU6dOYe/evSgpKUkqDAC2bduGXbt2weFw4J577sGVV16pqIFFRbmK4gOAi2MVT/YcDjv4Fis8iksj1Ca/wAbWYUdPuiuSIAMGWME5Ql3ZqNGWggIb3CrkQ2QGDMPA4VDfJZJqt3SsXr0aDz/8MMrLy1FcXIzJkyfD0HsJSKJhCxcuxPLly2E0GrF7926sWLEC1dXVKCgokF2vpqYOCIIyEZDj5RVbCDQ0tIM73w2bwnSpxjv8AhiOn053NTSltaULfEM7MtWD2PlWX/2DUaMtLa1dIPu+/oMoimgI60dyYFkm5mQ7rtBwOp04e/YseJ4Hx3HgeR7nzp0L7Dn4KSwsxOOPPx74e9myZRg5cmRSYQ6HI/D7NddcA6fTiSNHjmDSpEnxqp1S+EFFvv9kxJ4G6bV1D3kkIHRM3Al1UVERxowZg61btwIAtm7dijFjxoSopgCgpaUFXq8XALBnzx7U1tYG9kESDTt79mwg/0OHDuH06dMYMWJEUg3WBJYsl4lMgCYMRPLIUk89+OCDWL16NZ5++mnk5eWhsrISgG9VsGrVKpSWlmL//v146KGHwLIsCgoKsHHjRlitvstkEg174okncODAAbAsC6PRiMceeyxk9aE76Jsk1IAWGoQKeIeXxI+UALKExsiRI1FVVRXx+6ZNmwL/nzZtGqZNmyaZPtEwv3DKVESQHCESgc5pEMnjnnKVJvmSXkVNwr91UlsRiUArDSJJPGNGQhgyUJO8VbOeyiqyeiMym9uWLdA7IpKjp2KWZnnTVFhNMmH5T+OR/qF3ROgYEhpS0EdLpJXM74Ci2ZTuKhAaQUJDkgQ/2gz41kWLOd1VIOKRAf0oHvxgbfTpRPohoSFJJuiZEqQfbc6Lva5vCIJQj/4zgqSCjJA16k1jhRyrankRQWhliEHXGBMqQEJDiqy2nlIPT+nodFeB6OdodYCNiA4JDUmUCQ3R1l9n3CRctYAfeWHEb7QXJY2Qn6luKTMXEhpx6FpwU9w4Ql7/9B3K6F5m6L6C0mi07yQMyMIBNkNfcSZDQiMO/EWRs76Mhj6ymPDOQemugnYYssswwFz5i3RXoV9CQkOKbB5YNd6v6fzhD6KGdd1WoWnZcoirzmBpszhTYIyGDDE+yS5IaGhJlm2ouy+Pv/EtmoxRw/gSZ9QwLehaVB752+3fT2kdwum4a2FayyeIZCGhIYEwUP7NgD76yXRHlgyUjiSmwdxTKBkSWQ85RgtWiwa16S2/SGnfUpPUvQNP6aik0ruuv1peRBl9snPJ99B94/VJ1Yfog4SGBGJuNm9sq7f6Ea3yLXp65k5XrVytMa38t5C/ecWTCOX0zL4OHStuRcfyRZqXlQq840ej80cLEk4vqii4hQuGwHv5GNXy6++Q0OhvqKgxc0+6POK3qHNZGXsFevFXxBaHXfRljK5yUwvPVZdBHGCHWDBAMrxr/o2qlOOa+i8JpxU5bYYLtdpGpAYSGpIoHFlTrHkR9eIKhOPADCuWF1fGI9WrSah7Yqkq+SQz6Eqp2rIF/uJhkT/KVWdmqWY4Hepcuehk9MlsXNf16l9jDIw9N0wO/F80JneNiZiXm0TidG3OyyhXrx9KAj6sBIkVQ+eP06x60unjTYo0dGetJjfGH9/S94dGqzo10G/NMglbfP1ryHkPlR3pdVfMlPzdfdVlcdP2lF2jal2EwnxV8wuGLwrNW+mKyztUhvWWxCAkmpWrp6QmBmK6V1Ii4B0xVFbU7u/PifiNHy4vbSxSsT+kNfGeoXvCuJjhgj3+nqnc95QOSGhIEP7CvBf5/pZaMnovlKmeCUHZ9EjIzYmti46SnWv2dfEzjzGj4eVcFxm+cpF4RoLNCu+lF8XPK95MOExI8ENTo7LhdfwBS9FdMQsdK25F+313R4QJFwyW5ZJEyqdT9/f6Jiftq5crHti6b7xeXp9EX5fmBxUpKiNdeEbL6N8K6CmXngjqAVlC49ixY1iwYAFmz56NBQsW4Pjx4xFxGhoacPfdd2PevHn4zne+g82bNycdxvM81q5di7KyMsycORNVVVVJNFU+Ur5/AEQMiO333Y3uxZFnASRJUC3kHTkMnfcsgfvaiVHroRlhg3SipXb+9IeADJWcaIm9YhOGOGKGa4Ze1WZREA2cNquaMIOAnhuvh5Brk51ccBSCv7AYXYu+G3OV2HH34r40QxxwTbkyeqbpeDUSJ+v54sERv3nGjET7z5bKzpbJDTIHD/pepIR/OpElNNasWYNFixbhzTffxKJFi/DAAw9ExHn00Ucxbtw4bNmyBX/+85/xm9/8BnV1dUmFbdmyBSdOnEBNTQ1eeeUVrF+/HqdOnVKr7fLxj/dqDR4K5IdnfJ+9u3/m75o6MVr0uDA6PHAoMgzcl49GT3lZzHgpudhHhVfcM2tq8pkkRbR3rODdy1D9iXm56JkzTX6evQ+XH3ZBzG9JzM8L+iNOnYOCu+P0H7VwXTdJXkSWlX3mp+vWcrAXRAoePRK3ZzQ1NeHgwYOYO3cuAGDu3Lk4ePAgmpubQ+IdPnwYU6f6PpbCwkKMHj0ab7zxRlJh1dXVmD9/PliWRWFhIcrKyrB9+3Y12p0YyQwoogh21PCkihd7Z3qR50j0JwiU4L14GFw33pCAt2DtppldP/hO1DDX5CshGjgIQQOC59IRff+Po9MOxzvsAuUVjEE8R5KyLHO08FMVXGw8YRBUR2FgoazsvSMlrLC0QGXTcM+oi8APVa7m9g67IC2HFuMKjbq6OgwePBhc7+Ytx3EYNGhQYDXg57LLLkN1dTVEUcTJkyexd+9enDlzJqmwuro6FBf3PUyn04n6+np1Wq6EQAdPbJByXzUOwuCBMN75fbT/7A716pUAvJzNYD/h37XUh67GyiXBFZyghb67tzlCrFWN2YiOX96Fzp8tReedt6Bz6Q+SGkhS5vY8yqtKy4FCBf3Ge9klcePwQxy69RsmxhPACVabT9OhxeRsP4NYvXo1Hn74YZSXl6O4uBiTJ0+GwWBIKkwNioqUm6eKFhau3v87HHa4TRwEAExYp3Q4QvXGfIsVnqC//bHti+Ygr3e577hwIDzXXgX+Hx/KqktenhVcbzmekkHgT9Yh31kId1gcj0Rah8OOnrDfci8cHBI3N9cCb5SyDUYuZJyxWIzgw/J3haUJLtN42zzAaAh5TuH1AQCzyQB7bxyp8Gh1zbn8Eng+2R8RL3+AFaxEfubRw5Er8UyCMRh9H3hRYU5IHwhOk5NjxgB/m/zv5svDgWfjcNjh4liIAAwL5sD7yvbA71JtNJv72h+L8HSm/3sX3A/9PiJecJ8JTjNwYC4YkxE9Yf144KUlEXlL9Z3g3wY67GAYBvy56H1P4F0h/bSgICfovYghcXvC0nrtvndtsRhhH5QX9Z1Ze/ukeeqVyCkuBL/0e/Du/Bji8dMh+fnKlIfhuzfA+/rOqOGS31WOOdA3rVaTr05mI+wOO3rCJkVs2PP3x4sow2ICetyS5QGALceEAVHCwscmNYk7OjudTpw9exY8z4PjOPA8j3PnzsHpDJ2xFhYW4vHHHw/8vWzZMowcOTKpMKfTiTNnzmD8+PEAIlcecmhq6oAgKJsNM51d8IuahoZ2WN1eGOCbqAW/7oaG9pB0XGsXgrcFBasFbFc3GhvaAZaFw2H3pfmXK2A7fAzc6bNx69LW1g2vv5xrJ4EbdiHajRYEd4m2892QUuw0NLQH4rmumwTvxcPAtpwPidvR0YNoWlevh0fwHKmnxwP/Vmj3TTegvaEdeWFpgstsLum1wAl6Ttyt5bC9uDkkjcvtxfneOFJd3XthMTylo8CE1fX8+W5IbcO2nu8GH5Zfx48XQcy3A0H1k8Lr4WEG0OgSAvEawtK05Q0I5O/HEvRsGhraYeMFcADO59iRE/S7VBuD2x+L8HRNAifZlrbzXYE+Exze2NoNMD0wXzoCpr0HA7+Ht0/Ob42NHQAALso7aGhoB9xiSB4tLV0QLL31EkPj2sPSGtp7YIWvz7XGeGfdPR6YAHS0u+BpaAeGDIHFZIIxLD9Aum9JEeubkKovAHR0ugJpurt9dXK5PDjf0I5chI4bgiCChU8tZfzqG7hcvvcfPNA3NLQDd98KxuNFe5T2d3W64Y4SFj42KYFlmZiT7bjqqaKiIowZMwZbt24FAGzduhVjxoxBYWGonrGlpQVer0/W7tmzB7W1tYF9kETD5syZg6qqKgiCgObmZuzYsQOzZ89W9ABUobeDizLOYwTTteR76PnOtMhNRYZJ7MSnwQB+hPT1lj3Tp8S0gRfNJkmVS6xzFd4Yp7294yM93sZyix6oB6PcyltwOiTLU4JYOEDZ5UZRztJ0/PSHkia4fO+J7e7vJrIZmyK1Sm+fc82aio5Vt2tfntWC9nt/3GfAoGUzZeQt9B6KdV0/OeT3jpW3oTPI+7Dnyujnm7pvDh1/5BzU7a6YJR3gN3ePVneLGWKMMx3eMSNDy0mRma4sPdCDDz6I1atX4+mnn0ZeXh4qKysB+FYFq1atQmlpKfbv34+HHnoILMuioKAAGzduhNXqm9MmGlZeXo59+/Zh1izfQ1+5ciWGDk2fzbxrxjVg2jpgeWuXrPhiwQB4ovgSUhvP1VfAc/UVsD+yQXaa9l8uA4JUgaLFDPeVY2HesxcA4J52Ncwffi47P8GZmEmsV2Ub90RwXTMB5t3/jBrunlgKw9fHo27Wey4fA+/wklDLnzTBB7kccU39F5jf/yQ0AstCzJFvKhsLMZ7JLctK7l+4plwZ6GdK8F5YDMOJM4rTAUDnnbeA6XGBbWkL+V3MtYWaAEu49+9YvhiMxxOxj9Z592KgxwXDkeORBfr3xxzyNvKVIGWG6x17MbD5LdXLCkeW0Bg5cqTkGYlNmzYF/j9t2jRMmyZtfpdoGMdxWLt2rZwqaozv7YsmI7wTS2ULDc1gGHR/bxaMn+yH4VQ9gnc4RZYFIwgRScLvufCMuihEYAC+Q43u6yf3fcxyZua9M3LX5Bi29HHwXnZpwmmThR/iAFffAH54CfjD38A1Ywqk5naumdfCNfPa6BkxjC4EhvvKsSECwX3txEihIYFgtYDtlqv1D0rnHITOJTfDsmM3uDNx1K1Bq+uQfhaLMIHTvbhc0cQoBIvZZ3TQ2iYZ3DNrKgxffytdjYI8STsCMccG5NiAYKERtnIQB9jRtWAuLDXvg205n1jddQSdCJeDxhatiRze8Y4eCdEeqXd0Txof8rf/RK1Y4BvQ/JY6ah/+CnY61/mjW7TxXBqu0lPBcsvbq+4TBtjRdddCTS6KEnJzIFpiWFfpwOin60cL0LnkewmlFS4YDNGojolu97wZysruncWH+INK8Hl6JoxD94KbEkobr0j+oqGRF5RlqKW8emZK/YE4+xB8yRCIFhOYHnfMeJpiDjXfDO+o/PASdN88G14pz6LxiDVIBz0awVEEOKKYw+pggAzGfd0keK4Yq6lfqM6f3KZZ3nLwr6ZiIeba4quaYqU39QnFCAGp4YFSz8RS8BcMgVAcdLe7zgdjT+komD/4zLfHeOhr6O6jiAOtNOQgt9Mbjej4+Z3qlh1LUEkE+WfOsTbFvaMuCtnojemmQYKeGf+qKL6uYVnt1UoME2fCIW/QkOPoTiqvrlsrYP7/fiKrDDUQDVEcPGrhjoVhQgVGIqTYS4J31EVov+9uCAOUHwfomT0VnbcltiJUCxIaSlCx08c7tRsg0Q6t4KyLELYqcE+6HF23VUSvUtBhNMN0n0sFvkj9zT6tCfZxlNJylydWbueyhei4Z4nyhEYDmCRWEXII9gvmvSRsFevvizqZUGt+mDLeOCGG/asAz1XjIu5W6Zl9HTrvvCVKCvUh9ZQcdOivKYSg6vn3OcLN8ZTgUrCS4MZdgmYVHarxxYMlNlS1GW3StXHt319SjNmkm9sNw3H/61XwXjwMYo4twjS9++bZMO47JNsdiNYIQxzouuVG2F6t9v2g8gooqolxRDGR44r7X8aDbVa2We4JugKhY9XtgCfacV11IKGhhBTOlDyXjoCx9licWJEVEnNtaP8/P5LlVTY9xH6IXQvngm1rR84fXo0I8146AuLOPWC8vERKfcFfMATcuSZV77rWNSwb1QuxmJcLdxLXzCqmt4v1zPjXqBeW8SOHQWQYWQ48vQpuTXRffYVyIRQU3ZXk/TZqmVLHgtRTMuhTJWknNaIeEkpkFmQyKkyno5WU2RShLvMj5uWi45d3pbhCieGaeQ06f7Qg6qDVdctNfdfI6kRtoytUmP2Lebnwjk58xe0n5AK1XroWfTd5r7o6+uyUoNfpqK7omXUtzDt2g0/w8JoUYtg30fXDH4A7fiq9Z0Bo8FIPjot5qIsfeSGYwLmI9Dz4jrsWyrpFUrBadHEAM11IueTnwzwTB0zZFXqN8JFZHx4JDQnEsMtmhCEOdN9aoWmZwsACCAMLlAmNzOprihDy8yByHLimlsiwggFZcUgqUXq+Mw1i7+ayd/gFMAQ551OCWCTv6tVOBRcJKaH7phtg+nhfyG/eUWHCKc2z8Y4Vt8oyx/aMHw0wDDylo2A4+LXvxwxdScSDhIYUJiM6Vt3ef/TRfuR28mRUBzKTdt69GKY9e8G9E+kNuPNHCwBBAPdtGi7k0gGeK8YG/t/9gxuR8+yrGSlEveNHR/oUU2EvThzQe5BV7vcbY19D9vkdloUnDW7K0wHtaURBzLEpc3CXIIIagilGp3eVXQt+iMN330BU9L1kCVflwcBJ+gfKWJJ5/EYDOu+cr/isTTbjuv5qdH9/ToQKKYK0XeOb2UsQEhppwr+53vP9OcnkEjeG4HSga+kPIu53DiV6Jw5xcaLTvs4PHgjPJcPTXQ3lqGXKbTT2uZRRcRzsmfGvEFLkcDM6CTwjjoM36CZF/RDl5ch4Zx0//jd0LS5XtzoJQkIj3UTrMAG3ySmcDaWgqGBX7CLDqHKftmjPQU+M61n1jz5Xep5Jl6MzRbf6ecMtlNK2CtAnYmE++AuVXwmrBbSnoVNcs6b6TAZj+Ihy3TAZEPjMsmyxmNF5x3zk/LEKgqNQ8X3awYi9LvSFovyocbxDnWDcUnfL6Qg1x0edrgbj0T3/O/o/RJs0oe3zW1oJGvo90wISGjpFtFnhmh77ZLZoz0FPtAteNEGdj9pv+SPmyvGlFB2hZAi6Fs4Df2F0z7TJWr3xF8g/2JUNiGYTvCMTcGaZLNH2DyW6nHv8aBgPfa1tfTTFN0vgRwxF1w/mSJ4D0TMkNAjlJKk6EIvy0T1vRtzByTP2Ypj2fAbP+OhWKdFuMowF7yiU5Zur/ed3KPLhlQ10/EJlh5sa4LrpBrhuukHyiuOMgmHAX6LHvZfY9K8vQkX4QVFcf8NnEiqyGaSTjbOA6PjpDyGCgWWHegcPvePiX7wkDrBrMoh1/WiBvIgaO7bzu93wqrmJn0HdjshMSGgkQOddCyHE8PGixfWOqUF6xIl2xSmRHIKjEO3/cZesU9l6oXveDDBd3doXZPA9E9Hss/oT8nLhuXJsrBSKcU8a77vOOAWm9aFk9t4NCY0EEGSepI0F7ygEd7peezfNiojTmTO7r+uTDBIYgLwVoirljLoIruuvhvsqn6FE50r1L7Jy3zAF7humqJ5vdLJjGUhCI024Zl4D72WXRLiLdl99BQyp3uTLjr5MZBMMA/eUq9Jdi4Twu68Xc7JzhU5CI10YDJJ2167pU+CansrZD5EN8BcMBoD0WD4RIfAXD0P3TTfAO/bidFdFE2QJjWPHjmH16tVobW1Ffn4+KisrMXz48JA4DQ0NeOCBB3Dq1Cl4vV4sX74c5eXlccOamppw3333oa6uDh6PB5MnT8b9998Pg8GA9evX46WXXsKgQb7rHK+66iqsWbNGxeYTAGSrnfjiQTAePAIh0UuEUkUmGSGohDDEkXH7I1kLw0T61MoiZAmNNWvWYNGiRSgvL8fmzZvxwAMP4IUXXgiJ8+ijj2LcuHHYsGEDmpubcfPNN2PSpElwOp0xwzZu3IiRI0fi97//PTweDxYtWoSamhrceOONAICKigrce++96reckCD2YOuZWArvRUNle0dNF/3tbEUAEhiqwgd5LyD6iGs20NTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnepzCVFYWIjRo0fjjTfeiBvGMAw6OzshCALcbjc8Hg8GDx6sXgsJ9WAY3QsMAOSCgkia9p/fga475muTeYYblMRdadTV1WHw4MHgemcxHMdh0KBBqKurQ2Fh3ybuZZddhurqapSWluLUqVPYu3cvSkpK4oatWLEC99xzD6699lp0d3dj8eLFmDBhQiDfbdu2YdeuXXA4HLjnnntw5ZXKvHkWFUnfnJYuHA79uQzg8yzwADBbDLAnUD+9tMl/pZEa9dFLm9SE2qQE9fN1GTmIAAoKbGCj1DsT3pFqG+GrV6/Gww8/jPLychQXF2Py5Mkw9J6mjRW2fft2jBo1Cs8//zw6OzuxbNkybN++HXPmzMHChQuxfPlyGI1G7N69GytWrEB1dTUKCuTPdpuaOiAI+hDtDocdDQ3t6a5GBIa2HlgBuHq8OK+wfnpqk/9zS7Y+emqTWlCb0o/Nw4MD0NLSBcEaWW+9tIdlmZiT7bhCw+l04uzZs+B5HhzHged5nDt3Dk5nqL+fwsJCPP7444G/ly1bhpEjR8YNe/HFF/Hwww+DZVnY7XZMnz4dH330EebMmQOHo+8OiGuuuQZOpxNHjhzBpEmTZDafkIVfndMPN5AJglBG3D2NoqIijBkzBlu3bgUAbN26FWPGjAlRTQFAS0sLvF4vAGDPnj2ora0N7IPECispKcF7770HAHC73dizZw8uueQSAMDZs2cD+R86dAinT5/GiBGZ56tF73hHXwT3xFK4ZsR2kEgQBCFLPfXggw9i9erVePrpp5GXl4fKykoAvhXDqlWrUFpaiv379+Ohhx4Cy7IoKCjAxo0bYe11XR0r7Fe/+hXWrFmDefPmged5XH311bjlllsAAE888QQOHDgAlmVhNBrx2GOPhaw+CJXgOLhmXpvuWhAEkQEwopjdTuxpT0Nb9NQm+yMbAITdNpgAemqTWlCb0o/tub+Cq29A5+3fh1A8KCJcL+2Jt6dBN/cRBEGkAO9wn8VoprsXITciBEEQKcA9bRI8V46FmGE39YVDKw2CIIhUwLIQ83XugkcGJDQIgiAI2ZDQIAiCIGRDQoMgCIKQDQkNgiAIQjYkNAiCIAjZkNAgCIIgZEPnNIisof0/7gKy28EBQaQdEhpE9kA31xGE5pB6iiAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2WW9yy7JMuqsQgt7qowbUpsyA2qR/9NCeeHXI+uteCYIgCPUg9RRBEAQhGxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRAEIRsSGirR0tKCZcuWYfbs2Zg3bx5+8pOfoLm5GQBw7NgxLFiwALNnz8aCBQtw/PjxQLpYYXrhySefxKhRo1BbWwsgs9vjcrmwZs0azJo1C/PmzcN//ud/AsjsNu3cuRMVFRUoLy/HvHnzUFNTAyCz2lRZWYnp06eH9DMg8TbooX1SbYo1TsSrtx7aBAAQCVVoaWkRP/zww8Dfjz76qHjfffeJoiiKt912m/jaa6+JoiiKr732mnjbbbcF4sUK0wNffvmleOedd4rXX3+9+NVXX4mimNnt+fWvfy0+9NBDoiAIoiiKYkNDgyiKmdsmQRDEiRMnBt7NoUOHxCuuuELkeT6j2vTJJ5+IZ86cEW+44YZAW0Qx8feih/ZJtSnWOCGK+m+TKIoiCQ2N2L59u3j77beLjY2N4oQJE0Sv1yuKoih6vV5xwoQJYlNTU8wwPeByucRbbrlFPHHiRKDjZ3J7Ojo6xAkTJogdHR0hv2dymwRBECdNmiR++umnoiiK4scffyzOmjUrY9sUPMAm2ga9tS9cEAbjHydEMXP6YdZ7uU0HgiDg5ZdfxvTp01FXV4fBgweD4zgAAMdxGDRoEOrq6iCKYtSwwsLCdDYBAPC73/0O3/3udzF06NDAb5ncnpMnTyI/Px9PPvkkPvroI+Tk5OCnP/0pLBZLxraJYRj89re/xYoVK2Cz2dDZ2Ylnnnkmo9+Tn0TbkCntCx4ngMz5tmhPQwN+/etfw2az4dZbb013VRJm7969+OKLL7Bo0aJ0V0U1vF4vTp48ibFjx+Jvf/sb/v3f/x333HMPurq60l21hPF6vXjmmWfw9NNPY+fOndiwYQN+/vOfZ3Sb+guZOk7QSkNlKisr8e2332Ljxo1gWRZOpxNnz54Fz/PgOA48z+PcuXNwOp0QRTFqWLr55JNP8M0332DGjBkAgPr6etx555247777MrI9AFBcXAyDwYC5c+cCAC6//HIUFBTAYrFkbJsOHTqEc+fOYcKECQCACRMmwGq1wmw2Z2yb/CT67WRC+8LHCSDx9qYaWmmoyG9+8xt8+eWXeOqpp2AymQAARUVFGDNmDLZu3QoA2Lp1K8aMGYPCwsKYYenmrrvuwq5du/D222/j7bffxpAhQ/Dss8/ixhtvzMj2AEBhYSGuvvpq7N69G4DPGqWpqQnDhw/P2DYNGTIE9fX1+OabbwAAR48eRWNjI4YNG5axbfKT6Lej9/ZJjRNA5owVdAmTShw5cgRz587F8OHDYbFYAAAlJSV46qmncPToUaxevRptbW3Iy8tDZWUlLrroIgCIGaYnpk+fjo0bN+LSSy/N6PacPHkSv/rVr9Da2gqDwYCf/exnmDZtWka36fXXX8emTZvAML4b11atWoWysrKMatO6detQU1ODxsZGFBQUID8/H9u2bUu4DXpon1Sbfvvb30YdJzKhTQAJDYIgCEIBpJ4iCIIgZENCgyAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2JDQIgiAI2fw/Me9yy6rjJcUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_kepler = Lightcurve(time=times_kp, counts=flux_kp, err_dist=\"gauss\", err=np.ones_like(times_kp))\n", + "lc_kepler.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "e53378f7", + "metadata": {}, + "source": [ + "##### Plotting the first 3000 data points of the kepler lightcurve\n", + "The unevenness of the temporal sampling can be better seen with this" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "837c95a4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Days')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6cAAAHXCAYAAABAoSyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd5wctdnHf7O714vtOxtjbMBgjDFgG0zvhBRK6CWF/oJphoQkEJMAIRBMDZAAocV0BxJ6DYbQezHuvfd6d77e9nZ33j/2ZneKpJFmNNtO33yIb2c0kkaj9uh59EjTdV2HQqFQKBQKhUKhUCgUWSSU7QwoFAqFQqFQKBQKhUKhhFOFQqFQKBQKhUKhUGQdJZwqFAqFQqFQKBQKhSLrKOFUoVAoFAqFQqFQKBRZRwmnCoVCoVAoFAqFQqHIOko4VSgUCoVCoVAoFApF1lHCqUKhUCgUCoVCoVAosk4k2xnoCyQSOuLxRFbzEImEEItlNw8KhSiq3iryFVV3FfmIqreKfETV2/wgHA4hFNJcwynhNAPE4wk0NXVkLf1QSENtbSVaWjqRSOhZy4dCIYKqt4p8RdVdRT6i6q0iH1H1Nn/o378coVDYNZwy61UoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKHzyysZPce6MW9Ha05HtrCgUeYsSThUKhUKhUCgUCp9MWfMW6qPN+GzbnGxnRaHIW5RwqlAoFAqFQqFQKBSKrKOEU4VCoVAoFAqFQqFQZB0lnCoUioIimujB+s66bGdDoVAoFAqFQiGIEk4VCkVBcd2CRzFh9l1Y0rY221lRKBQKhUKhUAighFOFQlFQLGpbAwCY37IqyzlRKBQKhUKhUIighFOFQlGQ6NCznYWCIpqI4f9m3oEpq9/KdlYUCoVCoVAUKEo4VSgUBYmuK+FUJivbN2BTdwNe2fRptrOiUCgUCoWiQFHCqUKhKEiU5lShUCgU2eDBla+guac929lQKPISJZwqFIqCJKGEU4VCoVBkiZc3fpztLCgUeYkSThUKRWGiZFOFQqFQZImE2lqiUHhCCacKhaIgUZpThUKhUCgUivxCCacKhaIgUXtOFQqFQqFQKPILJZwqFIqCRHnrVSgUCoVCocgvlHCqUCgKEqU5lYsGLdtZUCgUCoVCUeAo4VShUBQkSnMqFyXsKxQKBT+qz1QovKGEU4VCUZAoh0gKhUKhUCgU+YUSThUKhULhijLrVSgUCoVCETRKOFUoFAWJMqlSKBQKhUKhyC+UcKpQKAoStedUoVAoFAqFIr9QwqlCoShI8klzqus6Pq6fhfru5mxnRaFQKBQKRQao627Cd42LPD27uasBL234GNFETHKusk8k2xlQKBSKIEjkkeb0y23zcNey59AvUoEXDrgl29lRKBQKhSKjPL/+A5SEinDGDkdlOysZ47yZkwEAD475DUZWDhN69rfz/4HGnlYkoOPnQ48JIntZQ2lOFQpFQZJPmtO1nVsBAM2x9iznRKFQKBQyyJ8RKDd4dt27mLLmrWxnIyts6qoXfqaxp7X32QbZ2ck6SjhVKBQFST5NDPLCD25eZFKhUCgUivwin+YrmUAJpwqFoiBRDpEko4pToVAoFArp+LH0KsR1YyWcKhSKgiSfzHrVGaIKhUKhUCgUSjhVKBQFSv6IpsiPpc98yKNCoVAoFHmGv/lK4Q3OSjhVKBSKLKM0pwqFQlFo5NUSqSKbqG1IFpRwqlAoFFlGiaYKhUJRWCh5Q6HwhhJOFQqFIssozalCoVAoFH0TtY5hJavC6fTp03H55Zfj8MMPx6hRo/Dxxx+7PjNt2jQcd9xxGDNmDE466SR89tlnlvu6ruP+++/H4YcfjrFjx+LCCy/EmjVrLGEeeeQR/OIXv8C4ceNw0EEHEdNZvHgxzj77bIwZMwZHHXUUHn/8ce8vqlAoMo4S9xQKhUKhUOQ6+eTAMRNkVTjt6OjAqFGjcNNNN3GFnzVrFq655hqceeaZeP311/GjH/0IEydOxIoVK1JhpkyZgqlTp+Lmm2/Giy++iLKyMkyYMAHRaDQVpqenB8cddxx++ctfEtNpa2vDxRdfjB122AGvvvoqJk2ahAcffBAvv/yyvxdWKBQKhUKhUCgUil78iKZaAa7ER7KZ+FFHHYWjjjqKO/wzzzyDI488EhMmTAAAXH311fjyyy/x3HPP4aabboKu63j22WcxceJE/OhHPwIA3H333Tj00EPx0Ucf4bjjjgMA/PrXvwYAvPrqq8R03nzzTfT09OCOO+5AUVERRo4ciUWLFuHpp5/GmWee6eeVFYqcIaEnENKUZX8uoOXB6KJMjxUKhUKhCAKlOTWTVeFUlNmzZ+Piiy+2XDv88MPxySefAADWr1+Puro6HHbYYan7VVVVGDduHGbPnp0STnnSOeigg1BUVGRJZ8qUKWhra0NlZaVw3kOh7E3sjLSzmQdZdMa78XnDXBxWMwYVkdJsZydveWL123hhw8d44YCbMaC4KtvZIeK33mqaljd1PmQSTnM1z2b5OVfzmCsUUp+r6DuoeisXTVNl6QXRMiuIeuujrmjIn7kOL3klnNbX16O2ttZyrba2FnV1dQCQ+nfgwIHUMLzp7LTTTpZrRpz19fXCwmkkEkJtrbhAK5sBAyqynQXf3DH3Tby8+lPM3mEZ7tr/0mxnJ2954cvk/u650eU4fcgRws/H9QQ+3DgTBwzcAwNKgq3bXuttaWlRTrQ7HiqaSlJ/52qe+4XKU3/nah5zjULocxV9D1Vv5VBalj9jUC7htczyud5WVpR6fu98muvwklfCKUA2f7Nfs//WdV3YbI4UBy19N2KxBFpaOoWfk0UopGHAgAo0NrYjkchv04EZW5cCAL7ZshANDW1Zzk3+09HW7akc393yLe5b/iJ2LhuMKeMnBZAz//W2u6snb+pIR3t6T3yu5rmlNd2H5Woec4VC6nMVfQdVb+XS2Zk/Y1AuIVpmhVBv29o6PdeV7u78qWfV1WUoKgq7hssr4XTgwIGor6+3XGtoaEhpNQcNGgQgqUGtqalJhdm2bRv23ntv3+kAcGhuecmFBpNI6DmRDz8YeyQTSOT9u+QCCd1b3VzVvhkAsKZzS+DfwWu91T2+W7bJ1TwnTIf25Woec41C6HMVfQ9Vb+Wg66ocveC1zPK53ib81JU8neuwyCtvKPvssw++/PJLy7WvvvoK++yzDwBg2LBhGDRoEL766qvU/ba2NsyZMycVhjed7777Dj09PZZ0Ro4c6Wm/qUIeoV6nLHE9keWc9G1KQkXugfogs5uX4YGVLyOux9HS046ZTUtTVhcslLMhhUKhUCgUiiwLp+3t7Vi0aBEWLVoEIOnQaNGiRan9oZMmTcK9996bCn/++efjs88+w5NPPokVK1bgwQcfxPz583HOOecASJrcnn/++Xj44Yfx4YcfYsmSJZg0aRK23357HHPMMal4Nm7ciEWLFmHjxo1IJBKpPBjHzZx00kmIRCK44YYbsGzZMrzzzjt49tlnccEFF2SqaBQUwobm1IdwGtcTWNW+iUtooLG1uxFburd5fj5X8CoSKeGUzB8WPoZ3tnyD2c3L8et59+P6Rf/EjOal2c6WQqFQKBQ5i3k+5mdulq/0vTdmk1Wz3vnz5+P8889P/Z48eTIA4KqrrsKvfvUrbNq0CaFQWn4eP3487r33Xvz973/Hfffdh+HDh+Ohhx7CiBEjUmEuueQSdHZ24qabbkJLSwv2228/TJkyBcXFxakwDzzwAF577bXU71NPPRUA8OGHH2LYsGGoqqrCE088gb/85S84/fTTMWDAAFx55ZU466yzgioKBSeGWa8fzeljq9/Am5u/xMRdTsPJ2x/m/gCB82feBgB495B7POcjnykJFbsHyjLZPJ2lJFSEzb2LFyvbN2D//qOY4ZXmVKFQKBR9Fd0knunQ+9yY6E8gL7yyyqpwetBBB2HJkiXU+1OnTnVcO/7443H88cdTn9E0DVdffTWuvvpqapg777wTd955JzNve+yxB55//nlmGEXmSWlOfawzvbU5afb9af1sz8JpXyeizkd1QTP95T5wFN7QolAUPl3xblw592/48XYH4BdDf5jt7CgUBUFf1CL2xXdmoWaYirwirLl7+XLDOFNSV92BJ+/TigBQ30GhyDtmNC3Fhq56PL12WrazoshB1AyDH53xq2/QF9+ZjhJOFXlFSIKOyYgj0Qf3NdhRIlEwiJar+g4KhUKhUAC3LXFaTRY6yqjXihJOFXlFWII5qWFmqUN5/FUED492uq/tr1EoFAqFIk1aPPuqcX4W86HIBZRwqsgrQjKEU01pTtN4FIrywgw1e3kUNZfOh9JUZvAKhRW1LUKhUMhAja9WlHCqyCvkmPUmq73qDBSZoGCmr6q5KBQW+uKRFwpFEPT5ptTnC8CKEk4VfQ6lOVVkFg7xVGlgFAqFosBQcwwFH6I1pScRCyQfuYISThV5hYy9eSmHSGrgKBytXp6TD3tOlaWBQmFFmfUqFHLo6+OL6PsbRyIChdkPKeFUkV9IaINGQ9Z1/w6R8t2sqxA7tVwjm+ecbu1uRFusU0pc+V3TFQqFIrPk+/wgk9hLSpUdmw1dddnOQqAo4VSRV8jUnJpXqha3rkF7rEs4rr6+2qeQhXzxtCsexfkzb8OZ0/8kPW6FQqFQKIKir82tRN/Wui2t8JQMSjhVZJS4nsD1C/+J/2z40NPzMpqg4fHXaNzzW1biN/MfxG/nPyAcV1/rQBV8mFd9eZTTQQwtrbEOqfGpuq5QKBSKYNAZv/KfrngUdd1N9ACCmuJEgR+FqIRTRUZZ17kFM5uX4um107KWB82mOV3SthYAsLZzK9fzZsEj/y1PvIlF+bBOlyt55DLrVebVCoVCocgyXfFuthDlQiwRR0tPu4Sc5P3kysL/zboD582cjKaeVuJ9cc2pEk4VihxCglmvT2+9ZkdKyqmSgoSqFQpF4aOWlBSFxoUpIarN0/NXz7sfP/v+z2iMkoUwGvbpWKGdptDYK5Ru7GqQEp+5fAqxH1LCqSLDZL8Z2TWn4pg1p4XVgSqyg+xWEdfjuHHRFKlxqrquUCgUhY0hlG7p2ubp+RUdGwEAqzs3+8pHXxttROejyqxXoZCIeRI+r2WF+PMSvfV6NYswr1jped5BZH+poFARHVrlfonFrWuxpnOL1Dj72mRBoVAo7NR3N+Pf6z9AR9zdgWI+95l+fQyIjmjO9PK59ILHqjktvJmcEk4VGcXciCYteNTX814ROee0JxHDxs56yzXzU/lu1luInVouYB5os3mUjEKhUCjkcdPiJ/DMuneJfjP87NXMNfzObMTnFjaHSPk9tRJGaU6tKOFUkVHMwly2vH/aO01WLv606HFcNPtOLGxdTXyir3WgBvkg1OZKHnlyIdshUjAOlgqjssf1ONolnf2qUCj6Fit7zVbXdybPmYwmYogmYgCA82ZOzlq+ZJNt7+zZTj/TiM4lC21Prh0lnCoyil8PYzIFDp49dLNblgMA5jQvT12zmvUWdgeh8Ib4uCFXmAwFIJgXSl2/Ys59OGP6nzyda8yDrutoiLYEErci18iNBTBe1nVuxcOrXkebWpzxjTEXOfnbP+D0727Icm5yD9G5mnN0IY83U9e9h/tXvOwpT7mMsOZUeetVKOQRz4EGZdcqiU8vCschUn5NrfIUDi2m7O9gnOWrcLK2dy/u5m45XhPtPLjqFfxy+i34auv8QOJXKLzyhwWP4s3NX+Cpte9kOyt5T8jUr8f0eBZzEgx+5zZ+jXdIqUcTPXhu/fuYtvWbvJ97+aE73oOvGxdkOxuBomYwioySU5pTCc/l+55TRTCIroLKNkEOwqS5D88FhHhnyzcAgP9t+D7LOVEUIrqu45+r38S3jQuFn23oSWr0C2lvpCIYMt3d28dM0hh60aw7U3/ngqJDLvwl/u8NHwSYj9xACaeKjBL3uYlbirfe3n+Nzk/88GO53np1Xccbm77AyvaNvuPKdb7eNh/rOrdmOxs5h7lad8WjvuMLB6A5LRSz3kyhSksRBIva1uDVTZ/hz4ufdNyr627CJo5zFAvdmUomCAWyrz+X8Out11/5kBZD66PNqb9zWTj9rnERvt5G1mzSNL4ipb2qwzpXLMSqqIRTRUaJ54T5i3hLtna06W5Exqb0uS0r8Mjq1zFx7n1Y1LrGd3wirOjInEC8sbMetyx5GpfMvjtjaeYCXLXNNLp850EjYqfwJ07+UcKjIh+JJnqo986bORn/N+sO1zgK3ZlKZuDpY/O3nP0vRgruObUl55Z+LptS37T4Cdyy5KnA4g/1AdGt8N9QkVP4P5vJ/6TbrjkVxepx2D/GodcA8Nv5D0qIkZ+XN36SsbQae1ozllYu4d8xRPBpZovGaCtWd/g7rD1X6ct7ovoK2WhlMtq2soLwTxBO53IJv92X39Jxq6O56hCoM97t6TmR8cLpU6Lw6mIk2xlQ9C1ywRTDt0MkUx/SVyegXrrCvuSkR3zPaRoZ+5iDKOsgJrS/nHELAODlA25FZaRMevwKRaEhwyqir45bMgnmuK7cwW9/L14+DtUpk1zVnGbCE3a+LD77oe/MFhUFgcwmaQzQol2wbtGcqkGed8Gh0FeaaXCdc2oO1QcnjmbrgUyhJuiKfETGxNSv7wdF3xAQMom9N85ns14WW7obiUeNicwlg/ApkWsU/hsqchZvRr3yzHq9YtZsKccSwBVz7gXgvmKY6ZXmuS0rMpqeGT8LHlu6G+VmRhJBinK5sRddLmrhShEEfsZA49l5LSvV4oxPghzN/rf1OyxrWx9gCu741pz6dYjkcj8XrPC8cPfy53HOjL/4isNuPVGIyyRKOFVkEQkrwHoC32xbgHYhUwr/uyFSf6kBHms7t+CLhrk4c/qf8MKGj6jhMm3Wu6w9u4N7Cg6h3FyLnl43zXeSQdRL2XH+Z/2Hqb+VgxaFgg8/i3xmgaEu2iQhN30Xnu/gpVdb17kV9614Eb+a93cPT8sjs+6Q+I6SMZOrC5pehXqRp/qC1l4Jp4qM4n8fg/X3u1u/xc1LnsJNBLf6QeXFPJGWsT+wEDQsr2/6HACYh7v3JbNe3bfjr8LHLIRHdboHUoVCkcZPPxo2DaA9iZiM7PRZeDymehnbW2MdXrIjnewvvOenWa934VTEIZJdc1p4cwwlnCoyQnusy3HN2wKw9aFFrasBAAtaVwnH4LXr1ak/FCwKsQOVhuSJQL4teLCOxwiKoMso+5M7RSHCY4FCr3vpPjhXJ/d9nULpN4THe7s/JJdiyFVrm0xkSx0lo1BI4I1NX+CM6Tfio7qZ0k1FvDRSnk4zoSfw3tbvKHflak7zEg8rC9k4ezMX9qVkQyQPolYGKczl6DxDoWCSDY+tPOMXra2aryvh1B+Ffpa07/7eZ/G4za1I+WvobsZ9y1/Exq56f4lnA4HiLnRP0YASThUZ4Jl17wIAXpFwpqZ9YPazj5G1QvnKxk/xtxUvEu+ZV+zyTUMVNNnWjq7u2GT5nS+ma6oWZZ7ANaeBxq7oq/AIRUo4zQTBjHW50m/4VySInu/t9NfLgiS83rfiRfyv7jvcsvgpobTlkgGz3j4guhX+GypyC8kqEk+rlxzPLG/fYHuGHC5XD4IWQYYZEU8MmRDkL+/1HGyQrQmY+V2zc75rAA6RpMdojjtXpmQKRW7DpTmlNCfz9VhCCad+KHjdlc95gbhwKpY8ae7V0N0MAFjTuQXvb50ulL4szNkWmVuJlHZYaU4VChlQVnE99X02zamHIYLnCdZk2Xx8TCFMqmUeh8Mq22yYbuaC5pTnTDLZ9SiQsla2twpFXmDuT7riUcsdA6U59UdwZr250c9me8uS25hIEvzMV+5d8YLkHIkjUoYic4BsW6hlAiWcKjKKfGHOi3CqueaFahal67hyzt9Sv3N1U74IMt6B57tmQ5D3MgFb1LoGTT1tvtI1v+kKuxbeJbwMCmHRJHACLiL1DRTZwqh5K9o34NTvrseU1W9ZrgO5sR8/nwlKQMiVOYXf/kv0edHwJMEv2wI1YH8PgfwIfPfsWGNllsJ/Q0UOQOvEs3MMix9vvQkk0BYXOVM198mVwTAIRLXCqzs247fzH8RFs+7AtmiLFJPn13qP2eHlBwP39Z1mEChhS6HIPnztMBnm/a3fAwBe2fSp41nVnv3hx7y6LxC0cEu8nwsFbspCUHMrJZwqFFLQCX/Jwd+eT4bmlHIrbruRCyt1fpFp1stOJ/NlJTo2rO/cCgDoiHfj7Bl/wb/W/y8zCZvKpiJc6i3NgMn/mq5Q5D9comlvINb5wao9B8+0rd+gIdoi9EyuLBr4XpgVfly3/XJxiESY++VGyaURyY9IWPt2tkL03quEU0XesqJ9g7fOqLche+l77R1iIZxJJtepE72TzEZZ+R3on1//gaSc8CPDXCyICU6gR8nk3LTCP4XQNyhyD556ZbQn5p57VT8zwhubvsh2FjzhV+DxrTl1dYhE2nOa/TptsU4QcogksOe0AIVRO0o4VWSAdEOS2Xk8u+5dT2YT9mZN7kDI8dq1jJnSOgZJIWh/aYgKCLLqp/B+G1M+c3Hg+aJhLpa1rc92NqSSCxMZhSIYknU7yhBOVf3PDJWR3LSECRph2yHHA+JmvblQp607TgMy6+0Dolsk2xlQ9AUozoWkxOxdOGQ7RCJjF4YzdQxLkHgT8MkCFEuuyoYg71fwzsZgJ0dzKo+mnjZMXvqsxBjtHkSz3waCIBcmSoq+iVHzWJpTVTszw6Di/kLhC6Xf8OsQyW3sJt3PNWsVkTIQybvdU3TuLWf7p/DFb0VB46UrsnvrFdFU2U1gC0HrKMOsl6tjzUJRmQeH59a/j5c2fJyhdL2Hl3FEgcxBujsRdQ8kyM1LnpIep0LRFxDxjN6jK81pUHCXXw5awuQFrma9ubnnNBNOx7wcoZhvKM2pImvIaLjl4RIJOXFiz5sh0BaCGW+QsLR+2ZgMmYW0qeveAwCcNfQHGc+HO+ayya2BJ4yw9DhnNy+THqcoQdfGXJgoKQoPLuFUVb7A0cG7KCuqQcwNMq2FtKcmes7pxo56bOyql5wrf4jtOeXHrlApxHNPleZUkTk0TUKHZ53E71G5s8/4+DqQFzd8hO54j9NbbwHMAjIlNGajpLKl2fZTprmwKtoW60ytTIcz4LY+H51lKRRZgava6r3/r+p4tsnXL+B7puazT3d72j62P73sPV/pycL83mLeekXMegtfdCv8N1TkDjkiyKXMeln5sd1qj3fh26aFTm+9SpMKAGjsaXUNk23NaS6nKzuXfsq6vrsZZ07/E/648DEAhW+Vpus6lrdvYHs2VSgIZENjwdO2jYk7c4jLkfE4nxExseaOM2e+S7DCpdsTns45zTGCymO4D4huhf+GipyC1lSjiR50x+lnssnE62S7Idrs9Nab5YFEyn5RCfnY3L3NPZ0C1I61xzrTaXlcMQ0CP++9uG0NAGBOy4pkXNl+mYD5sH4Grpr7N9yz/D9S482dSaaikBBQnPqPR8FElSGLYEtH7hF48vB6lIwIuejRXzZKOFVkDkaDOuXb63HKd38Uiw6ar0m48SSpoTfF2pzhdYK33iwOT+s6t+KEbybhlY2fZC0PdlhdZlAlNb9lFf68+Ak097Q77gVp1vvaps9wxvQ/4eO6mQD8OULIJUHGnneiy/4cyq9fvt62AADwacPs7GZEoeBAnraucNpwduArP3HneLnxXXhzEdcT+LJhHlp7OmzPi46B9t8u3npzdAzSKX+7Pydg1psDW3+CRgmniszB6Ex4G6ZdALB0BJydVdoUyzB9cj63sHU18VmHt94sdpD/3fw1AGDKmrd9xiT+Dl66xqBMoK9d8BC+bVyEf6//wJlmgN/n2bXJPS6vbPo0mVaG0uXCR/JOxxSFTa450VAo/KKn/mWNuQr/8C0CfN4wB/XdzdJizAS8Y9h7W7/DrUufwfWL/ml7PvlvZ7wbD6x8GcvbN4ilXxBmvfxzHpEpg9Ojf+EJq0o4VWSY4DoU/s7Ke0POlaNjookYXt/8ebazQYDhrTfgoiMdeUKqE7Obl6Eh2hJADnxoTi1/+y8okThmNy+jLsYYsfmJn4ds7kde1bGJK5xCkS+Q2tM7W76xhpFQr1/c8FHGjufKRXiKcHrjYty2dCounXN38BmSCG/tWNq2DgCwrH297flkDC9t+BjvbPkGV839m0t6YlZpuTIXc2I26/X2nBt9wSGSOkpGkTkk2MmbHVAk/xbf52fVm4oRz5FzTr9tXOD52QUtqyy/5c69/WvHvUIyzyZNwP6w8DEUaxG8efCdUtM3JyX+rtkbaP/Q6/jo3UPuId4n1Y9cnRbI5vqF/0RXIor79r4q21lR5CDZ0FfwCZU6Xt74CWY2L01deWDly7YQ/nly7TsAcvV4rtxgfVcdAKAj3s33QBYXw5osjg358uF2LndzzLndhge3YnA6p8yNUcmcb5H5oUj+C/HoGDuFL34rso510h5kOpxmvb2dqZfOzNEhZmhTvrH6aNCTiHuO68GVr8jIUs5B6rDTXiut3zrKOJzeK7IcIchoIzLbGamdvL91usQU/BPXE4Fow2c2L3XRKtPJlcmSorDgqVVNPe143GW7h5dtFrqu4+m10zArB84pzja6ztfG82l/4L/WvS/8TMhFjPD69qLnnOYmIsKpdwrRP5ISThV5hcP0w+Ih1dsGfF7PZ7pjl6skzSlHJ/vE2v9aVr79pNsW77T8ljuJppdl0FpmUsrGu2VCUPDqCMFLePf4/Gw6dX/27ytf8h4/KUmfz09e8gzOmfEXoX1NQdeI/Jg8KfIP93rFcyySl9q5oHUV/rPhw9QxUwp3zJrF6xf+E//d/BUzfDYXtcxbY3jzQTMxTT/PP78SwT6fyJXFQHM+ctVpUz6ghFNF4JhlP5kTNqtRr3dTSpE8OZzFZO0cTe8aW27zIsncs+zfAadA0JzqhnCaCUyDUo4MlF5wOkTK/Xf5utfM/fvGxVnOiUIRLLLao5exK1tjR67CU4Jmi56ZzUvx4KpXfccZFF4WWMOmCZ6f49RET0LIh3FJBLF5qDVsIZr5KuG0j9Ie60QL4eiNIMiU/EZLx97o/TRke1zZ6iD9pBvk+WBE7aWu4+FVr6Ohp8VyTTakvS+G6VrGFxEE09M9TQsyQ0bquKTvE9P5zd3vWf5v4vFDssitr6goFGR1ZV7adeFNgf3iXob5JTiY92Bxak5NYgRpawvv29+y5ClaTojY5zG5WM6JgE4o6AsKWSWc9lH+uPCfrt7TgkB+mzKv1JE7gmsXPIzrFjwSSF6y1UfEfe1plJFr/oFgU3cD3tz8RQB5sEIanIxiyohZr0dHCEHgb89r/o58IsLp5u5teKrXoYtC4YVsTIizqTmlve8Hdd/7zU7e4dfs1W+8QeDFP4h5UZj0DO+2KbvXdNFzTnNl3LIK6FnMSJ6jhNM+yraeFtRH+c7d8ovMzdrmtm4fKGn9wILWVZjTssL0nBFevOdw7DnNQO9D6qRldsRBd+qk/U9BpEgUTjO659S7SZPsUUxmbPk0wIoIpwDQaPFOKZfcW8dXyMbc5ueZxph8QGazvmf5fyTGlj/w9I351A9406abNKc+fICIIjv+2c3L8NbmL33HYxeZ+Z8LJmy+ooTTPkymqre1A/ebqrXzM8fmJigax8B4X+0mCYnBe+slaeEy5SVYBuTvEoDmlPBZ0956+eIQyZVzgDCvmIp9H4tRb5bGHbq5d2YFexFiiTjmNC9P/Y4LCqfmdx5XPcJTHhQKAPj9gkewrnNr4OnwtBWeMJ6sOwrRLWjA8GoOcwEvPjzMmtOEZX5m4O39Rc85bexu85SOwR8WPoaHVr2Guu4mX/GYETtKRgQlnCoKFA1aXq6+2CfuIit1/9v6nf/07etiAUsSbbFO4oRbptmot3pAfoZ41ihRuPaQpCv0c04zsYjgZWAPDvH0n1v/fupAdX8xeecfK1/BX5Y8zR3+2XXv4bqFj6Z+xwSPWDIvnJSEioWedSOfJqUKb9jbxsauemK4tR1b8NDKV9Ee6yTe95MmCR6/Al4WOFWNthLEUTLZ9fAqbv0T1siaUwPPqgBXs950/dV1HZ9snu0xJSudPp1+6V5so8UDFzyRbGdAkR2yNcjInLQ7zXrZca/p2GI86B1bEms6t/iIjE1LTzt+9v2fMbx8iOOeV+3vzKal6E70+M0ale5ED3Rdx0sbP8bStnW4YffzM7b/kjQJSGlOA0zX+BY0F/Kk72dHtjDrJb7n1r+P59a/j+tGnuM7Lq+8veVrofBfbptn+S1a18wOK/zKkt82LkSbBOFDkb/EKQLfLUuewoauekT1GH474meB54OnHfi2Ycone/8A4B1ZRPecZlNIsXxSbodI5j2nZsHM33uInHMq0/GQ3LgENKcCxWUPmovOoPyihNO+Su9MTNf1jK3w86Tilh+H5tL2LF8+0vGTNEXM/NnSf279+zhvx2OF4uBldcfm3n83Oe6JD3hJrl/0T8c1L2MI65F3tnyNJ3sdzWyNNga+Z5aFoR2QlV5TTys641EMKa0lpGX623R9WOkgoTSMvK5q34SP62fhvB1/gqJQBrtqh3lCBpKUFo+gcGoRJvz1g39e/KSv5xX5h9MHAXliuy2a3NssOt4Q0+TosLnCeNpfSDbhVNARFRyyqTn14jfBPBexPp/826vg5Ja+xYRYYpH1CFrf2CGVgehzrmH7wMKQMuvto/hxCuQVHe4djvvZVt7umeM2d5W/nne/y1NiaciE5dwll1fK3q+bkfo7rieIE7YgypG0qJHecyonxV98fwv+b9YdFA0JbVDypsW4Yu69eHHjR3hnyzfC+eTeYxvQJNYvuq5z7R+1f3HR72z+jrLbVC63UUUw0ITTQSX9AEDqfjY75sURHu2P3z6xL0yQ2dh6eUp5CAunGdiCIhPzuGsWrPXUfW/xipxzKnOhpDsRlRaXaiPeUcJpHyVtiphbCE3jNetv0r5C8wQ31Vn6WMkLYqJOi5E1OSed6Sk/B/6J6wnKwCE/TVaJyE6N9G1oe069pG3Wlj+y+nXh53nrKZ9zleCx5+OFjR/hp99ch+XtG5jP2RckRPNqDq9ESYVf4pQa2L+oCgDQFpex55ScxreNC1N/82jfPGlONYoJZx8liDKgfbtMCDpetH5h2jmnqYVhSZmz8eamL7GgZVVvGvISoZnm88JbhvY8G78Wtq7Gsrb1QmkW4tilhNM+imbSnWYuTXD0VG77DOih7ffmNC/HT7+5LvWbx0lEMp7cGHS7GCt4ogJ2lHCcix9Yna45Z3E9QQwbRBFrjO5M9jclabVJB5Dbr1OxrThfPudeX/nzgz232ZiEPr12GgDgv5u/YoaztwLSxG5jVz0+qZ9FfN68X0o5MFKIYu9XaGMM79jDlSZHGB5Nkhdtk7mFKOHUCq08/G01SNIVj+LsGX/BY6vf9JQ3XliLqtFEDxa2rmbWZdK7etVquo3Zm7obcM2Ch6jpesVrfrdFW/DoqjdQ150+opEpnNruGVuQfjf/H/jVvL8z07I/W4hjV1aF0+nTp+Pyyy/H4YcfjlGjRuHjjz92fWbatGk47rjjMGbMGJx00kn47LPPLPd1Xcf999+Pww8/HGPHjsWFF16INWvWWMI0NTXhmmuuwfjx43HAAQfghhtuQEdHR+r++vXrMWrUKMd/s2fPlvLeuUSOyGEp3PIj0tifX/++5XdqRcylIWdz0DVPllkDkYg54+LWNTj52z/gOVt5pJ4VyqEYCT1BFBiCKGOSNvnVjZ9i8pJnpO+PIq6u6uY/xdIzhyZ6Zw7o6KAca/4OxDWhznK6aNaduHPZc6lVdjPmQV2Z4Sr8Qmun81uddc8zkvacehn8LXtOc23ykAU8O2ZlQNK+L2lbi8aeVry26TPCE/JgHft397Ln8bv5/8B7W6cznict0HormRc3ussDqbR8lr7d868X/rbiRby++XPcsWyqKa7kv6STIpyLwPz0hZaXVeG0o6MDo0aNwk033cQVftasWbjmmmtw5pln4vXXX8ePfvQjTJw4EStWpA+/njJlCqZOnYqbb74ZL774IsrKyjBhwgREo2kt1LXXXovly5fjqaeewiOPPILp06fj5ptvdqQ3depUfPHFF6n/9tprL9/vnCsYk7JMC2LuelPRST19pS+shS2/jb0cflybB61VNTsXqI82U8OJaLcMD6hT173nK2/WBBmaU9OEn7bn1HiDzV3b8GHdjMDKdU7LCnyxbR42dNW5hq3vbsbtS6e6hgPcz9MUdSdv/n7/JXisjemJpBaas5z425GkiW5AiPYH79d9TzXL2trd6Lhm0ZyKZc2VQlzNVlix185MOAniOsOUYzHLb177uubU2S3yl0eU4TGf9O1kL5zRLanI1j8A8EWvZ/QZTUuseXM959Qb3zYuREtPO1dYvwslZidIvO1iS/c2/GbeA6lztjd2NQCwLlwbbeS+FS8SYvAjnhY+WRVOjzrqKPz2t7/FT37yE67wzzzzDI488khMmDABI0aMwNVXX40999wTzz33HIBkY3r22WcxceJE/OhHP8Iee+yBu+++G5s3b8ZHH30EAFixYgU+//xz3HbbbRg3bhz2339/3HjjjXjrrbdQX289o6x///4YNGhQ6r+ioiK5BZBFMm/US8oD6UxMNuwB0XovbPNoy7uXoD3WxZmCfHjPRFvcZrUG8DNRCHKSkaCZ9fb++3+z7sBfl//bMeDJz4f7O765+Qvu+GIJkpMn8sAso3yjiR6c/t0NuGHRFK7w3KKpoOCcezjby6LW1fxPWwRIhpdwD5OfXNkeoAgSPrPe4FIkk5GjZHK6XwgG5/c1C3P88Zz87R+pi8VE4VSibLq2YwtO/vYPeGz1G860Ob4pOy864W/vme/hcIqXTMlfXYzq6cUC3vN/n1zzDha3rU2ds02e5zAs/Wy3hI6d6QNtL6+Okpk9ezYuvvhiy7XDDz8cn3zyCYCkOW5dXR0OO+yw1P2qqiqMGzcOs2fPxnHHHYdZs2ahf//+2HvvvVNhDj30UGiahrlz5+KYY45JXb/00ksRjUYxfPhwXHrppTj66KM95z0Uyt4qupG2OQ+GYBgKZTJvmqWf0qA50hbJj2YTbzXNGl8kZNWc6tARCmkOjYb595fb5uHWJc+Q09M0Ysfst/zMcYa0EDM+457Dg6tGz4fbwKZpGnQtgS1djdihbCBnnumRmu8ktASgOTtSrTe/Rie7JdpIqAvOesvOk9g9e7yt8Q5nIEr6CS3hCGNZCzG/M+PbGLgNNttiLehO9GBm81Ku8rAHoT1DXAwx18eQBo32rMx+g1FGrHRI9VDXdOIzWsjZ35ifD2nO++lnvTkhy2a/rwgee/1LgFz3zEgdLyhxkczbSaFE+9xwKN3J2ZtDX6jrX9TPT/2tabD0jdTT3SjF8tz693HBzsc5ruumsSP1PUyR+y3nTxtmAwBe2/Q5rtj1VFtWzXvwyWmFbPM22vqeMR8z95uieQ9xjJ2hkEZdGeBNLw6TEMyRpv0Z81zGDK0MjWdo7c/+tyNee1yMsStfySvhtL6+HrW11vMFa2trUVeXNNkz/h04cCA1DCmOSCSCfv36pTSn5eXluP7667HvvvsCAN577z1cfvnleOyxx3DUUUcJ5zsSCaG2tlL4OdkMGFCR+jscSXZ2A2oqUBouDjRdo2+KREKoqiq1XLeXi1t+ikvSVbakJILyipL0swPKUVuWjq+8pMTybKQ4+R2Ki6zVvqIind7bdV9S066oKEZ1v1LHdb/ftrIzHWc4lK4rZ+x8JF5ZY91jQktrQE0FSsJkzX7xGnYzH9C/HH9b/CL+t/F7PHDQr3DY4L2Z4QGgvKWEeq/IVL6V1SWIxsOOMANqKlBZVJb6XVVZSn83U71lUVZGrzdV1e7frXKDMwwpHABU9ytNTUyN9h3qTg9O5eXpvBQVhZl15L0N010dXVT3S5cVT32rSpRZftOe6SGYd1VWpr9tbW0lGovKHGF488FLdRX5+5eURJjpRMLOGWElJa5KQh0z9wWstGprK4XPFtY0jbvuKvKTyqi1zyivKHJtF37bTVXM2RfYtfTlle5jellFsXCf2w/ptPsPKLfcy4U5TtC0N6UXMItLIqipSZeT+W8zRRHn+GdAKrOylvS3e3rTO7hm75+hH9Jl/UHLdPxs+NGetw2Ubk33efb0I8XpPq6isoTSJ1vreHljerww1wmjHy7blJ6XiNaRfrY5HYnk2Eu/x0O0Ix1BZRX5ve0UF1vLkSQcVvcrQ21/clw1tRWW88tLSq3jDysP5Q3W9l1eTm/L+UpeCacAeaWcpQkDkh23xfEFabXdFKampgYXXHBB6t7YsWNRV1eHxx9/3JNwGosl0NLi34W8V0Kh5CSpsbEdiURyEEvEk/82NLQFLpwa42YslkBra7ocNGhoaGizhHXLT3d32vwiGo2hvT3dqWxrbEe4I90Rxnqsq8edXVE0NLShp8c6ITfH0ROjrzi3t0fRHHJ+R/s7iNLWajIj1tPxxaLOvNDSqm9opZZbdzfbU++mhkb8b+P3AID3Vn+PPSLDXfNsLjM7sVh6RXFbUzvRs+22bW3ojqSvd7RHHe9GqrcsOjrp3o2bmp1aUXt68Sg5DVKZ1ze2piaEsVgCDQ1taIymw7Wayqc7GmPWketnPE69Z9DYlN57w1Pfmlus70t7hrT3qK0tXR8bGtrQ1E7WKHut95t69+aYaWntQkORM76u7h5mOvG4s400t3SgIeR8pq2tyxFXrCddB3uicUb7anNsE+CBt+4q8hPzeAYAbe3dru3C73hhnksYcdm3rDS1ktusmXZCXt363JZmU9+wzbof0O975QPmca+7uwcN29LvbP7bTLSHPv6Syqy1Pf19n1/5IS4ccgJaTd/87nn/Qb94FQ4YsIdQ3g3aTeOkPf0u0/yqldBfAsB3dYuxpa45ZZnW2ZGOr66hJf18aycaitvQ1ZmOU7SObGtsQ6SDvZ2uoaENzTFyvLzpbelI+/dobukkjkV2otH0d21oaEMs7pznNDV1oCFOH1OKTcJpZ6d1DsTKe3uHda7T0eGcP+Uq1dVlKCqiL9gY5JVwOnDgQMe+0IaGhpSmdNCgQQCSGtSamppUmG3btqXMeElxxGIxtLS0ODSqZsaNG4dvv/3Wc95zYYKSSOipfGipawkkCGaXwaAjYbV2dJSLW36s3uCs+zM+q5+D04YcCQDY0FmHbd0tlmcTeu/76/bFC3L8pLRJ37Gxuw39irxrSMxJhrRQKg1SXmj1aEXbRnzTuADnDvuJZTWOFo+ZK+bcl/o7pse56ipzb5Xp8VgiTkw/nrCVpU5/t4Q9LC1ZxnvGEgQPuLY4I5TukJR2NB5zhDGHs+5b4cs/i7hpjytXWdg+D6tsHddM5ZhI6Ja0eeJ048+LniLGRcsLMx3CrXgiQY6LkIalyugao5wSwpoKo3/Lhb5fEQyO+sTxveNx8bpkTdPZF9j74x7CRNmRD0o7MeIl3TO3F3u/0BfqecI+/zC9czxOfn/WuEQqM1K52qNY1b4J+/UbxZNlZpqO+ZdurVuk/DX1tOFfa/+H83dKmiSb38/iWIjwvGgdMddRWjmy+lje9MzzA1a7MGPOTiKhE/1asNuY9Qz4hG5dbGXlwZ6WvS4WAnl1zuk+++yDL7+0ml1+9dVX2GeffQAAw4YNw6BBg/DVV+mz8dra2jBnzpxUmH333RdNTU1YsGBBKsw333wDXdcxduxYatqLFi1KCb+FgeGtNxj+s/5D3Lf8Bb482M54ZGG+bx/eH1v9Zurw4otn34V5rSst93epGJJ8zodpPmlfwR8XPuY9Qlg3wvM6RLLz2/kP4oUNH+Etl3MhXfOSAYcegLMcvezn85MeiaIQezXPXDYk51q6ZaDx5iiDRkzwnFqZ3npls7V7G3fYuB5He4xsddIe68Lqzs2O60E4IlK+jRQkvFSLtzbTt454TdNeP928idNjEslHZsaKXMLRt1jWV+V0EqSxxT4vaKP0iTywvhuv08hvGxf6ep4Xo7wfXfUGTv72j9Rw/j1Pm//2Fpdfh0jJ0M7wXfGo65hWiA6Ssiqctre3Y9GiRVi0aBGApEOjRYsWpfaHTpo0Cffemz6M/vzzz8dnn32GJ598EitWrMCDDz6I+fPn45xzzgGQNNc9//zz8fDDD+PDDz/EkiVLMGnSJGy//fYpR0cjRozAEUccgRtvvBFz587FjBkzcOutt+LEE09MaWBfe+01vP3221ixYgVWrFiBRx99FK+88grOPffcTBZPoKS99QZTqZ9eNw3/q5uebFiWHtwkiJHMq13y4zi42HZ/W08LaEQ0d1MCL+WxsmOj8DNmzEKPeV+bl0k26bgMkXfidcnuW/Sx3Qj6jEme/LrVD4vAyfBA7Lzuv42RTKNZcH8fjoCy+4iQwLDzcf0snDH9T+iIOz1o/5pyULnXiQpLm+WlDNS5qQoSb/gUTkmt217nYzxHyXg659SUi8KbDwsR1xNY17XVdIWiORXsO4iOdWx9iZ+jU1jPch8FQ/GCZF4U0Qn3RTHieH3z5+jR6Qu0/hckTQvLtO+o67h/xUuYtoVsQUm0dGMJp465rPPLr++sw6nfXY/7V77MfLYQyapZ7/z583H++eenfk+ePBkAcNVVV+FXv/oVNm3ahJDJO9z48eNx77334u9//zvuu+8+DB8+HA899BBGjBiRCnPJJZegs7MTN910E1paWrDffvthypQpKC5O78e75557cOutt+KCCy5AKBTCscceixtvvNGSt4cffhgbN25EOBzGiBEjcP/993MfeZMPaCmtZbDpsDRiqTyIuGO337c9YD/b1PqobknXC0F0CubVRq+aUwOzS3QvJBirqnXdTVjatg6H1Y5hxmEpX8oHtZej5mE/nyNOxqfZ2Ol+zqlbvSCdX2bLQeov2ecdigqn9sKw77tPXScJ2fZnxVJO0dTThifXvIMzdjgSO5dvn7pO7hPYqWzorMfIymHWa131xLA07b9b21WipEIc97Zir4+khRbvKZKvJjj6iyfW/hcnDD4EFRGyIzgStDMt+yJfbJuLL7bNTf2mlYZoORH7L0fnFEzZJ2zbUWjQ+kqS5tRPv8o732LNW7jSsehPyGlu6m7AtK3fYtrWb3H84IMIefCrvdVhL/OvtyW9Q7+79Vv8ZsRZ5AwXKFkVTg866CAsWUI/33Dq1KmOa8cffzyOP/546jOapuHqq6/G1VdfTQ3Tv39/i0bWzmmnnYbTTjuNer8g0NK60yDRdeuk32qWSzIt9me+UMTSfkl41SBKy9yxVkRK8b+t36E4VOQpLfrh2nywzHIum3MPOuJduGPPy7jj06ETBU/7u/kVyt14Q+AMUxpmcyjSAGYZ4Cwr0BI0p4Q9s0HhXP/xlv/H17yFD+pmYHrTIvx7/z+nrot6vQWAbsah9Xa8ljdrcaLwpwIKL5C0H3bsmqqOeBeiiRjCmsZcTKWm6dL3AHyaUwB4YcOHuGjnnwrngZaPQodppkm5N69lJfG6na+3zcfOZdsTNZsOzamPHon1rHUBlg6trzQ//8amz9Eaa7eEXdK6FqOqduLOK28d81sXLVtyKG9unxt5afv2VC2/9D4hc3KTV3tOFfIwuou7l/870EFGJxor9OZBS4dy/kWLj/2bZ7D3qjnVoQdSVvYB4b4VL+LOZc95iot0NIgIrD2nxor/yvYN7F7UrDilBHFqTv0Lp6y9NDuVDXaPwCUL5hx3xLvRlaB7B35vy3fp5yRUGd7DyFNpcgycxp2gaIgmTewbe1ot18OEYeeR1W8w2xarrO2IvJG52rHroAcTyID3USvyA7tWJ64ncPK3f8C5MyZ7io9ss+FMg4fWmLtXXxr2dt0XYJpp+uhKV3dsxi1LnsZFs+9EnDCO2ecs/uYhDLNeV+sgNmYLn3mtKx3mqDctfkIoPl4hXKYW32vZkp9jLWbYf9PnyvyxFg5KOO2jGJ3dt40LAx5k6JPkwSVJj8o0jRM5Nvb9CEMrkzLrZcwZs7EabBkQfKZPMv8UiZFnL0tHnH6MjDNt2nKg9ZoMzSkr7yMqhvqO31z3nlk3jXl/U7fzuBQ/xBj7bUi4LeK4XbeG8VYnaQsdJM3p1u5GLGhdTY2rK84vnNLqAbEWcr6aWtFWkOCpFjSNi/dx17SY21sx7fngc4gkjllI+hVlz3ffxXsnUR9NH2VC6jcdxyP60Zwy95z6M491c6gouj2F10Gj33mTxWsuZ9nyaLNFNO0k0ZS2wOl4tgAHKCWc9lEsjg0CXIfRQddU7li2HfkB1xgNNEfeQ1oIn9XPdn0yl6DvZRTPsdteSNe8cAxOHfFuIZMf8r5G+zP+8WJy5ZWV7Zu4w+aGWS9NYHPPm2fhlPIcbR96N0M7+mnDLIF0+SdYbXGz5ihXewhFvkA27ZPswZRjEswvBIgfj9SXYVkm+ek9zOVKNuu1p+XdiovVn1vSZsRPm9Nt7W7ylCcamdIkWo8o9NZeiQ6RdB11lDJxOH7WC1PI9IoSTvsqpglikO3BbqpAFp104t9e07t92b+o95J431sWhCCf4NznwYPvFUQuL4/8nbeu08Rl3SKUyzHr5Rx0KbiZe7tp+INc5PFr1iuGfdT0GEtvgdnLVcRbr8HnDXPdA9nS5WFJ2zq+OKFjY2c9Hl/zNtpj/hzaKAoIjrpGOpPQ4PqF/8Qjq17nTEp3CEdGO7fXeV6zXmV5zs+ytvV4bv371Pt++lxzH0laXLP3oe9u+Q6nfnc91nVudYR1g3nuKu+eU/N2CFPeSBZF5rFddEsV/+kBEs16PcZFe+68mTTzfZLm1HqNt7QKUaRVwmkfJVNjkrlvoWnURHSFwt58CQ/789YrnzjF0Y6XtPzmj2dSI5KGDpogZzU98yKw2GENZHIGL5PpD8kpiQ/tpBtmTYiXBQjaI25RvbLxEzxg2zfEi6E5dQinFNN7WW2LbpbFToFdFjquXfAwXt74Cf61/j2ufKijZAofh/k8oQ4562P698zmpdzO2iYteAQnffsHdBO0d/YUeDWnonW0ECfBvLxfN50dQFLh8Cz+dia60Z3owSsbPxWOnzUexTkVBbR6c3jNWEJY7/AustDKrLWHb0817YxyEYhWEwKVguStlxqWksfWWAfxOMF8RAmnfRSrB90ghxz6wJxuX+lrD658BU2MvTjmvGqaM+88nYH3lTEEomaWeXA1jwkti5nNSzlTYQ1c1rC0OMywjhzixb/mlE5DtBmPr/mvJTVH+pQkZjUvw5qOza7ps7AIpx7qr4hDJPOVKWvexgqP5/gaE4aw7dvaf6cT5h+Ym3vaWQG44nE8Zl/Jti0UGWco08y03OJTFD4vbPjQMVH2MkaRmNea9PpaZ5p86ql/bWlINiVOp9eX67SLZY2kshERjopD4gdusOqfXyuuqki541omju6jheP18s5jvefWpkifjbWQ7JwZ+69BZ02/CefPvA1RAe/2uYoSTvsoQa7qmxux20C8sn2jxRHKF9vm4l/r6KYzbrD3HfLF4DV+r1jLy++kwr+5qZuwPLt5mY/c9F7XrYOwjPrIHgj8aYRvXvwUpm39JvWbXK/pMVw25x7X9FmIThr8nFUqa9+L8X3tmlK/WvI7lz2Hn3//Z+r9eABtVKEgYe9bm2Pt+HLbPGuYDOwjs6fBrzlVyEKe5YdzrKKN4UWauHBqr45xPYGZTUvRGe8WWNQwmeqaKhGPzwoapaFiAMDoyp1T13jzQxPoubcLmR6npem2aCDy3Uj3dJ0UnuYQiR2X37OUcwElnPZR/CiqYok4Hl31BhZSvGtahBtbK7IOojomzr0Pf1z4mCUM66xOUoOmx0971vswQnvylY2fCK9WGZ0g79lifHHKNV8lsbZzK1N7ZNHK63THDVYtuARvvT41pyyWta93DROs/YFY7Lyhg8yzMVg7Fh44PRDS+LRhNvM+zaGFm5DAGvC91FVl1ts32Ra1Wv7IXtAkLTvZU+Dv71Qd5Se43tLcp8SFNKdFwmnZ6+P7W6fj+kX/xOQlz1rHUKZDJErcxGf46tjw8u0BAINK+qeu8VoZeNV2ktKhpemmOCCeP8wI/+rGz2xhdX7v8X1gAVYJp30UP2a9H9XPxOubP8fv5v+DeJ/ufdYK7U4Jw1TFIYw6hmoOs15GHF4b/ZQ1b+OljZ9wh39781c44ZtJWNG+geohT675pkAcHFGs76rjiwvk7yxyphcvrIGIZ5DzOk1L750ObsBI2BZ13HGKWuRQPhZq3FaSKZrTbE2HdQC3L53qEoL8i7V3XtF3ofVtbmHk58Nm1suZqmhNVt5E6fhziJSGNI7RYvZk1mv7hkva1gIAZjQvEXCI5G2BkWdhz+IcSmCrBwleSzRzvmmmwG55IfYFjDnJvzd8QMiDaf7no60VQjNVwmmfxbtw2hbrZN5naQK9TKut9/gmxMRnOc4/dGvUrPQ3dtazHzbxj1WvAgBe2/S5JQcJS+fEHZ2vZxxxcHwl1uHtVmE/AdIXnbruPcv38LICbId9QHoGeusAk9CDqhc+8uw28BvfQ8YZtjLoiHfhs4Y5Ak+ILghYyY23VgQKl2O04DqGrd1NvX2bTTgNaM9p38atRcv5zkTzUEoHHtHCwvHbt7hURSpSfw8s7mcKx7vAwRYm+S1rjcVMc3ziwqUZLxZTc5qXU+Ji7yUn50sA3T7i6H16IVQJp30Uyzmngu3XzXlNwqY5DdKLqVPb4a6ple0q3MCLU58Sm1AmriGzIkVzyhGG7RnX9DflKJn/1U23CJMyBBhWPfbqhCRXsLcpN5zTY/735w3ptjc57RCJb5hxS/f3Cx6WEg/1OcaD5lt9ecKgcId0fqHU+E218f9m3YF/rnnT0R/zaoxEt1Pkdy8aLH6+sxdtIeBtO4w59paednSZzpceXFIjHJ81bv/aPrdjdUhQTXF5hVtTmdOc7XnZTytSHgnbXFlkv6qfdHMVJZz2UaydmtyKHIfZGQNjFdmLBsj0EGmS6NcU1rXRMwYO2hEZLIpDEWr6sr6KeJm4h2cNifZ3oJWZeRBwy+Oi1jX4vnExMwxrIOM5WNuv0JEps14u64MMnA/HK5zaJ1B0JS47L/NaVkr1bO2WfiGYRimChWjKJ7BgKoPXNn3uHGUDq7yqUdAI0luvzDpkPsLtZ9//GW+ajjLiNwcnj5VEzanZeRIjTrLmlHMco5r18o6Dznw44rKlwTNfEGmHyT2nfBZSbtvbCgElnCqEtUpuWq5YwnxuZ7CaBnvOPZ11KfD6rKBevJAWaUWWOC2eewnvMnHOfZjXsoKRPwmaU79RmJ5n1a2GaDPpESK/nf8gblz8uEU4aY11WJxn8TnDouO37IIcHhK24dPO7OZleG79+4wyoFkv8F+1YxcUW2MdeGPTF2jvNftPTTYkDjN+XOSLn+lIXjTijUeGky9FPpKNiaI1TRGnOgo+MmPU61xkXd9ZJ034+P2Ch/Fx/Sx62pwWOrSy8H/agF1zyvfetHD8i5nuCgovpvIii6l2KzMdusUkWkzQzX+UcNpHsXtUFXuY3U2bNad2s16eFSpW09pq8xLrZYXY88q2nvo/ItTzGxkUhcKWd3ATQlZ2bMSkBY+ys+i4JlZGfgdC675Zemw9nMcdmIklks90xaM4a/pNuGjWHcR07WRishbk6qVZ80t6lT8sfAxT172XOpOUYa9guy5Pc/q3FS/ikdWv46FVrwEwO0SSJ6RlbYXYlKySORUGpPpoX1SUUWf/t3U6875Xs17RndGFqKGRh/eysZr1Wr/dNRTHk6K0x7owr2UlMwyvbwPaAp0vJz69aWsmscSLWa4ZL0fR0OLa1N3AFZeZW5c+wx2WNVcGgLkWpUTht0MlnPZRLN7hJGtO/XrrZbHB5CWW1EEyneL40hO548WsN2xzaEAXVE1hWO8oweyRZwKyrnMr1/N2D3RmzOZFvINaVE9qzhp7ksc11Ju1r4w4eCZrudzdf8rpyCetWfQ+QeYNGbctLixqXQMAWNK2Lnm/t8x59xPz1AG+aiLebkj3WQtpuq5jXedWRxmYUXtTCx+e6ijjeK/7VrwgFJ63PxX31iv4QB/CS9kY46h5wcteX5pj7RkbnKzbR8QTdZtLsvpE40nzYiZvHqjaTg/P057424oX02ECaAhu3nq3dDfawpqedWQn/xuqEk77KLya06aeVsd9twEtrtPNemU2alKHxBLOjKSdDisETC8Y97yYL9rL0k1z6oYMxz88A0JbnO2x2RyXTDMZw4yXVI9YAihPWr7Nej3U7X+sfJUr3NrOLel0mNr7kGsYK/I0p3aMMpd7lAyHAEu9LvqutPAaPmuYg0tm322ZsCgUAKmeSZ4ocuxJ5HaIpBZQpOFl/Lh58ZOOa5u7t0mJ2w6fxQfn/IMSF/msT17LNENzKu6tl7YA5GWOwTOH+uPCx/DltnnCcdt5eu20dLq6bmnadm+9CT2BuJ7ALYufwlubv/Kddq6jhNO+inmljtIYF7Sswi++v8Wxaqu5aAjtmlNxb73eB0yejkVEQ+J4lukQyZvnPHOabntO3SA6iRKMxu/6gbmMXtjwEbVEYx7Ment6NYOk78wqLxnaCze8TCDe3uJlkKGnQztagPb6foqFJpwaNdCoB14sCmj4+Yru59TRV6PNdzQgNTH5oG6Gjxwp8h/SIhl9fAkmRWfdXtW+SXKqRtr5r5Hxiqgg37+o0jWM4RTQHPfitjWOcKKlbmx/scTBEYk5SEO0BSvbNxLDWZ0cie8RZaVtnkfxbsfxuwBuNWd2f2Z2C/m4GVH+s+HD1N92b732r56Aji1d2/B14wKLh2UShWDhoITTPgqPNvOLbXMBAO/XfW97lg2rQ5A5bIe1kOBgSQ5rcarjKYYkMibhokeG2JGzDu5Tg2j6e13nVmpPyWv+bcYwbSFqzRlxcGkS/Arl/h6Xko5hJk4qHf74+cK6nftmTFR4J3U8qfqZHLtNVNhHyaRvatCoB7UrFPbxtDPeLfwMMyyxDVivre7czBWXyHpqNBHDFw1z+R/oY9i/y//tdILwM37DAUlt3InfXufYeiPqFPDVTZ9h4tz7iOfa06oNSbDjrdppB3pms16f55xyly/570yi62y7OdIWksNrxlBC5z9KOO2jWA+SEavYbpNNs0bM22SS75mSULEjpBdvvS9u/IgzVzozb169ktI0t/JWv8Qi8p8sXwxejgXZaginguZDQWpOdcJfQcJ6z9TA7nDKIh6XGzTNt+GlNn3OKd8MuNtlNRgAVxF7P1bAXmbkqYKmAd82LnTNR3eiB8va1gd4rIci25D7ISt/XPiYazw3LJoiNU1++KXTf617D295svToG9j7Up6SNS95ycLQxn1os+rg29PvDGP4dzBDPUpGgubUbJnHO277Neu1HOGSJUEvYZtfOpycEd5RplVSrlG4b6Zg4scUw61BsBu6POHr3a3fOtNmvIvOEcYNnv1+XmI1sHi69aQ59T/I+T9ShU8wsjhE4ow7JfgQnmANZDyCsNf3TpuxenpcGFY6om2ZGJrzRVz3nApqTu9c9pxrmCA1p19sm4ffzHvAZElBS4vvfT7YOANXzvkbvmtaxJ9JRV5B1mFarzbH2gmhrMxsXsqdJqmN+10ASegJNPW0McPMdfH02tdxfgJ+8TSInb92TRvflicn3YkefGCznqNBHoPNC3uMNzW2gQjOTeu7m6njgpcF8ExsASKh2/acOs16E4QFEK03JGthNT9RwmlfRXM366U+6nKfV/snowHZB1TmWZcc78nqzF7Z+CnzWS97Tp9d925q3wkgYQVPwjkXfic6vAdE+xs4SNoDhkMkH9563cqDNkDYaY91ueaBD1Y6OjGEyLFNvF8/7lKm5j2nH9XNxEsbPuaMmRGnj2d56tvitrWYRRAU/DSJOc1y9icp8oOgNeWiWxpYGKPFLUuexi++v5m5V9X74mth4D60imtOeQUhL3XKy5FGpDDd8SieW/e+9SKlMGQs/JsFWB7N54TZd1HLkXuLCsVKJpPY95zqsC7sxnWnqC7zmLZco2/3Nn0Y61EytA6AXPHdHCJZCXig9tQB01ndQR+c2+Kdgew1+6h+Zupvc/cjawVPNBa/qdq/Acn7IGAzC+V+V50a3K9DpCjl2z619h2+rLlwxvQb8djqN33Hw3oT4z0d7YDyEKlYuPdB2dse5azFEDTcvfx5PLH2v+iKc5justL00b5FPTf+d8s3xHSFj98ogFVsBQ15giKNJptZpUyzXmPya5ipz2yia3D7unDqhpdvQBLIZMVtn9fxCbgE4ZQwLtJySxpn7fv13bDMTTn67K5ElNrmuMvNfIRfljSnCd0unNrGU0JZFLK3bdXb9FH8HO/irjlN48VzoUhu7J06l1mjj87Hi7bPO7KEU1FTT7mds9lduhkvDpGowpdLHG6DXFus0+I5z8yLG/1r/Axe2/SZtLhIiHrG/v2Ch51hfXpINFpkwqQ5NehKdPsaUP1opURNnqeseSudrum6aP6zNdlRFAbXzre20XdMiyYGmVgAUcIpG/v44SZwAvz92dR17wrnx+7plsusl7JYaX8Xq7dec1jnOMutHSbE7XWh1O26M22fFmsS0G1mu/a8JzWn1muG5rQQRxjV2yjE95y6TM4sDShgs16H0OHBIZJYevQ4ZK9ieXEukBveevme9yLop416nWkwNacuJqgsjTkvmRrUeBw/8eZkU3cDIX7OfLgM/OlzTtO1soPDcykzTR9lvC3qdOwhknIasVamNKeFC+nLyjbrXd9VZ/lNOmM6E063lHDK5r2t3wk/w/vV5rSsEI7buSDrzaxXg+Z7wZIPYzFT/CgZ2lyJ3xuy+DOycZ5zaoU0v6TNOQthzFG9TR/Fj+ZUZF+jzI3apHw6j7Ng5UVCHhjPyu4QvEw4pDhE8vkavI97cYhklDFJEGUJ85k55zQzPLb6DUYeenPB6a2XGYfPcGmHSCbNaZxugsWXJj9xPYE/L34i9ft/dXyTR9c9xoJNTGlOCxfimJSFiWFUj7kHIqBpVsGDpe1TwmkQFhNGHynfPNO++Ovm8CqZG391t4dwvqrocS7m8YLrCDgwLIa8aE6z5RAJOswjHM+3MMqqED3C9/Xeps9iHoNEOyQ3zakZHemGY++ARdsTUVsmIPy+tukzzGhaIpaoPQ8ZNOvl7Zhl41vIluTtlRi1IZwSyob1bTIxYczUAPGB7YgASx5A1pwGsZLqVqZps16rUwd/8E/4FrWuwbeNcjzlmj+t6ESyEFaxFbnNU2u874t/lLHYZSaMsOc0+ibu7T69gCcf8xjZGuvAlXP/5voM7xBm6QNN/funDbMdYY3j3xzPOdL2Pl5QzXo99L3Z6q113eWcA835nrRj2gphzJEqnHZ0dMiMThEglqNkRPecCmpOjdhDmmbp/dy8fTrjcuL0SMfmhkVTfDVbYzA5sP9oxz3pZr1ZW8HLzPNezsM1Omey4wU6os5w8hW6gMz/VWXVO2NyFDYNM76PKRJ4nPcAd764vOdbaU4LF6JZbxYmhjOavS266rqONzZ/wRW2kM9UzBZBdg3mMW9zF9kpoR2iWS9hvidiPfLltnmcaScxKz/sx+HQoC2U8i5Km/vobAl2cctsOZknezE780YRTgtgyBHqbc477zysX7+eeO/bb7/FSSedJCVTiszi5tiE93oqPqoHXeuTs5uXuWeOES9A0KDxHDQtwbR4l4ohnuPgxcukVo5Zr08BgrN8SauiH9bNwLI2ch8DpAcbkrDJEkDnetizI0ourFYa5ROU6bolLVs9SZ1BS7nuN18ynpcBqY191jCHGj4X8qzIHPk0MbRP3lmjR1836w3GLyrZ0kUGQXpy9Ro3j09i83gRI5gJE5/03eisQmE20PWEpSLw5IJ+lEwedUIUhHqbtrY2nHzyyXjhhRdS17q7uzF58mRceOGFGDNmjPQMKoLBojklmcvqCbxK8SyquVQbc2y6yT22Bn9NhuwEh3/PqQwyuZ/Iy6RWxrFX/gUIPuzHimzsrMdfl/8bv5r3d0bkdLPebOz1AvjPOc0ExiDtMOsVyhrvPh3rN6BNWCwal+wXkW9Ibez2pVOp4ZXmtJAhWXDI09hHE972kvLinNTTB5CIpsx6ZRNszyA+GSB6wc9Q/5VWYaTz/cTa/6K+u5njWYrmVNBTMABs62nB/JZVXM/JRLdpTu21Q4PmeEvaFrtCGHGEhNOXXnoJF154IW699VZMmDABH3zwAU4++WS89dZbuPfee/H3v/89oGwqZGPZc0powKy9mebmsC3awkwngbQHMhFzYBI8Zr18R8l4z4Oh7cvE+VL5aoq6rnMLV7jXN3+e+lvXdTTF3B02pDWnpIWK7HTJ6zq3Jv/IgRFB9CgZEvwHw/PFF7IthPk6SobjPYIwS/dl1pulveOK4DFqxW4VQwOJP+ijp0TqZl/XnHqxY3KP05+lCysFL9Mtb04Y+WnoacFls/+K+5a/yJ32ZXP+6hovfa4ktl3I4PqFj3E9J5OErlvmr6s7NhM+ot0qidwmc2Gh3C9CvU0kEsGvf/1rTJ06Fd999x1+9atfoby8HO+88w5OOOGEoPKoCAS25pR08HLqSVODOXvGXwghrKs/RkMJQZNiUmvGObgGa9abSYFRdE8ujUw7cPHq9EZEuCSlkS1hvjPRja+3LciJASGdB2teGnv8HKPilhYb86Q2E2a9aUsNr0IwSRuWvibcnpTmtOCxns0oD969gqLsVDYYgFif29eF01yE9fUsZ5FySqq854f7WWBc07mF6TndHnN7vMs1TpmaU4Ds/fqA/ntwxeUV+zvcsGiK6zPGwq/j/QtgyBHubRYsWICbbroJpaWlOProo7F48WI88sgj6Opyr0CK3MF6lIxzUs9yfuC659TUMnRdfLIoov1xOEQKeCJoCPIiHou9EvRRMmOqdiWnm4WeTQefOZzxvYl7TrOooXp367cZT/P6hf/EzYufslxLnXNqqzs8nhoN3L5/yHBfT22nVmRaGWRLzvOTbrbMzRXBk1p4lbCfYnbzMsdZmTK2aZC4ZOcTATjbsNpzSifIET+IeYtG+ZuZD85rMuplj81kPTVP9FDPaKXHX6rBKjV4SJ5zak3DPM/U4ByHaIsOubBQ7hehWvDggw/i5z//OQYPHoy33noLjzzyCB544AFMmzYNp5xyCmbNmhVUPhWSMVdp0uSJJXyJVHuLxkFz2syL4XzarkHjid9PHlJmvUHNGkzImtRSc0q5kR0BQOda5TQEWJJW2Z9Zr7/v2RHryvhwMLN5Kb5pXGC5JuKMamX7RuI9txh+OGg8AP7yNi90+TW95nq/VBoy26jSnCrouPlh4OEPCx/D31a8iM54tyneYMYZQwAQaY8hxp7TklCR7zwpxGHXDjl7Tt3z4K2O2q3z/ByrQ6vHvPu/eeZaQXfjieQmOMs1+4KQ/X5acwpbuPxHqEd96qmn8Kc//QmPP/44Bg9OmoX8+Mc/xttvv41Ro0bh3HPPDSSTCvmYO5Rn176LDZ11lvusVVK3yRbttt9hlhSt09V4sCtgRnqZ0JwGvYeSPqhkp2vjMQc2ckbec5rdvX25sFqZ0py6hHtq7TuYOPc+4j239h3unaR6e99MmPX6w+150ZafC/VCERCEsxn9Yu4HgxpljPFL7TkNDpFvF0QPYa6T3AIkUXVK1J16ypOZ7oTVIaKRjhdhl2rFwzuHCviUBx4SjnNOnRaMrTHrcZ1Kc9rLm2++iZ///OeO6wMGDMADDzyAu+++W1rGFAFjqtMrOjbi4tl3WW7bG0XcciYlP1bNaUho+amuuwlvbPoi5U7cmHgPLO5nyldmvfWm0suE5tSDsCUi0NLeIBtmiDpnuulzTnPLrDcDaxVUyAMwuyzf3UI3Q3Y74kmjrNbSMK9e+15w4VGcBlB//cQ4s3mptHwocgujXpgXKzN1FJcfDMFFJK9KOA2SIMx6xQcl0hgse8+pQXfcqjnVfcRL2ppmxMnDGg4njsELpwk4HB5Z7uu4buGjlvuZUJJkC6HeZtiwYcz7P/3pT31lRpE72IXTn35zHeq6m3p/uWhOzXtOTddFm9E1Cx7CI6tfNx0SnoytMlKOQwfsDYAgnAa959RYKc9Ap7C0fZ3wM+QOlJxX6kCQhUU3Xde5hHHj/UiCaDzL5pPZMt+0HNwNuuZ0fssqRBMxNPW0oi3eSY1vdstyZnrGugxtQuDInykzmXGIlESuUa91e4II9tVuReGRiW0eshhaOjDV9zvOOWW8B0s47QvHJYkKTiJ1wmu/yHpKA/Diho/wysZPfOUjGL0p0GXTnOrQPcdLW9jmXWh/bv37rmGCHt9jetyhuzH/dFoJmuuY9cFC2EoSEQnsphnVNA2///3vfWVIkRuECesWX26bh1OHHCHUkZobCemcJvIzyX+3djcCANZ0JFe1zKvURqO0N1i++P2b9ebTZIRKjpmE8AinrKNkNnTVOa5lCt66HQTmdLd00717XrvgIfxk0IFIgO9gcxq0fS40RJyuuMfFEyiAL2GJsgDavkIKZk/0EiM1Ib+u/WHkuehKJPe1CmlOmbqM/J8MyybbAoKmaXhy7TsAgIfH/s5zPIFpTm17TnVd9zyvopa1xG8Q9Lworjv3nLrVoRClTRaCWa+QcPruu+86rrW0tKCtrQ1VVVWorq5WwmmBQPLW2xVPrnR5Nuv12KEZAqHRUDVTXDEPe079YGjsSJORXJiyEgcSSsZyaccpr1mvESTb+0vtiIlrskmn++DKV/DTwYdQB7UP6qZjv/6jfKWWNuulvS+9HJzDrxiZ2HPqRi60c0VukFowlWjyaq7jQWjdty+tSS34ytpzqjxS+8OrDMXrEIn7pAQPGfHao9v3nPo5A9ur5vSzhjmojpT7SkMWCSQIHozJfxvk0hxONkLC6UcffUS8PmfOHPzpT3/CLbfcIiVTigzgUntJA1Fn72qrW09qNes1m8N568gMATT1rKal9szYzXq59i0K5yBNylsvoVvgjXdV+yYfObByZO04fNYwJ50HoT2nuaY5Tae7LdqCgaX9nGF68xbPwe43F8rNIMicGKvbvKZ85nCZ0CakjySQtwrvd5HNj1ZAkftIPS6p998vGubi04bZ0uJ986A70RHvQlWkPDV+2tsw+ygZurfeArAilI65vR9eMxZfbJtLDRvE2GE5SsaXPyTCVQnV3a459RMt7zJpTyKGolBS7Inrcdy+dCrxuX37jeRPRBLRRAxXz39AKFEttXfcfif/G6SU5b5x48bh4osvxq233iojOkWWuGz2X/HY6jfxyKrX8fiatx33eTWnOuWH1wE8LZwmCUFLmTPYNafB7zn1f5TMl9vmScnL6MqdURyyri/lrzmHblnFv3T2X8mhess/1zSnQGYnaOZ6bv7mu5QPcX/WZx1Jt2NaPNa2IbNOZka4ZV/z8j5Ks1SgBOCt16hfL2/8VFqcAFAciqB/USUAs2m+wGIm4x3zd9zJDPv7tFbxQtpXB/9CIunolc3d27Cpu8FyzTyX8/rlDS1hXXcTehKx3j2n/hYUD68dY7uefp/HVr+Bk779Q+pkCtbpACMqhjquBd2HO60A3ccdmsVGISwWCWlOWfTv3x+rVq2SFZ0iC6zp3ML0Wqan/hXYcyrBrDctnJpc7KdWfsU1p35WlViaU963a4g2e07fkp6mOVK1v9nGrnq0x7rIz9M0p1no2XRYHSLRHPYYOevRY8T72SK55zRz5WZOyzyoDSmpTYWgPuszmylnKh4iWt+5FSs7yOersghrIeKeHBLBeOslLwaIxKAoXMx96fqurVLi7IiT+20Z0MZP5jOMezp0dMS7UB4u9ZmzwiRTVhO0s6tJgg8JUpf+zFrndj4Zb6NDx8auelw0607sVjE0ZV3ipX815oY7lA60XU/z2qbPAQBfbJuHnw89hjl+uVnPZAq3NGmLTIWwWCSkOe3s7HT819LSglmzZuGBBx7AbrvtFlQ+FZLxU3ldNacWrU4aftMSHYta16R+p/ec9sZjmgp48dbr75zT3j2nhJfhjbVelnBKEC8t+5V6OnDRrDupR1nQvke2tDw8wo7xfg+ufCXo7AROV7zb87PmkjK3AZa33iT+pxUpUyJqCOtCg7k+Pbz6dU9pju+3u0uaptQDrr5eFm/6gjfTvkh6z2m6XX3buAjfNy3xHSvJO6cbuxE0PiQMyyORvt5tcfkvi59GNJFbi4bZZER5+lu4ng3vccydsuZtSz3Z1tNKDGffy0iD5FQwqCPadABL2pInEixv3+BrXmb0ryWhIsv1ul6nmmaMWkx6r5EVyRNJPm2YjYdWvmqdy2ajD3dJv5C3iggJp/vuuy/Gjx9v+e+ggw7CL3/5S9TX1+PPf/5zUPlU5AS9jUOgkVo1pyGuDujdrd/it/MfTP02zjlN7yVLTwbsHUwmPKoB/vYYyRNOnfkwd2ANPex06O+QjRVCvkEw2x4QqQgOEi9v/ASnfneD5+TM5WAWTo0VZFY78NtG0qu11u9lrk+WRSMJ3yzlhCkjh6UHq3lVFA5pb73WqdR3jYu8x9lbVbycK8pj1g+kx8+lbfbjyuj9GG0ifPCAvQAkj6C6a9lzTHPJfEZUENilgu9bAP56nM/q0z4nSm3CmcG2nhauuNoJ2nqydt1UFh77d/vxcTro3mdd4+otQbvmfur6/5mOQExCsvzZu2oXAMBRA/cBkJyjvbXlK6zqSPsHEe3DDxqwp1B4EuYUSQtJNC/hhTDeCJn13n777Y4GWlJSgsGDB2Ps2LEoKiI3DEVh4bXaexXn7HtONYRSsTkcIvFMXn2025wy6wXbrNf7/g3vefIDzcRsbUfa1Dw4ra7/eEUGBNKebq9pmVfOM6mhswuK1jyRNadeSZ2tKmC2L9VJDcUahP95aVlR5CD2eVHCg9bTwKjjLAdE1Hxw1nkjnMhCKS3mUZU74updz8Q1Cx7Cl9vm4cGVr+DqXc8saK1OLtGRSFvgFFOE09sojn94IC02yPi09q08SbNeb/126vx5TcOde16GPyx8LHVvZcdGDCrpT3jGKhgDTuHYrHEWFfi8LC7ZsZxhTtKcUs4JKIThRkg4Pf3004PKh6KAsOzPsp1z6oVYbydiPUomicOsl0f75qPpGnsdSQMvT6zRRA9aZB0PoDkHCZE9vjnlrVfXEafM4P++4uV0MIl5M3tQ9SvUacjsgEATBNMBgstNyNWs15onUU1KsRZB1LGn2LCUcH+vhKmfkMXz6z8w/fK+J0pRmNg1GLS+jAfjSS+TW16BUKYDJw0aBhRX4fbRl+B38x/Cu1u/RXWkAhftfIK0NAodPxZB5nFc5oKcAanPleEQSYdzL7/nBXWT6mKffiNx4Y7H4+l105L3bGVLsrpLWUDYF5kIwmFJqIjoadiOHOHU/LdzDKG145y1MBNA3uFcioLHqPDvbv2W/xmzsKRpnubMi9vW4P2t001mvendlg6HSAE3ymhvp+T10HVZJr2AsedU3AwrfV9aVnzDb9YrM02d+Lfn+CQc48OfVvpvi5ZSZ+859XqckyUOiqBofifrqrRYeqR6S2vvmeKThlmpv71ogpW33sLG7jXT3Cb3IR1LwUEkQM2pV/NJYpq97XX70lrcvuclqAyX4cWNH+HljZ9ISyPfCbL1m794UPtDnWnKUJ1aF6RlCKcpYU2z3jObr2sIYV3nVvxr3f9S14z79nZMGm/s+1pphCHefh3oTuHYjJZqx4U3vrhqTg8++GAh84yvv/7aV4YUuYvhTnxuywrLdfsZftbVHrMmzzv3rngBU8ff2BtPWndqn/QFrfUzzDxI78LzfrJMeoGkgGxP09yBuQvQOaQ5BV24Kw0Vp8ME5pzB3zvPal6GY7c7kDt8RAuhx5fpH1kzmYlvx+PpMw6zqbHYNyNNnI2ampk9p/IpgIVsBYHUgqmtL/1f3Xf43W4/A2Dtv3hjBbya9XKGo8zpWMIBrQqbx5nh5UPwl9EX448LH8Pja95GdaQcPxHoF3MZP/MXN021rD4riMV5N0/0XvOegI77V76UjkcH4HHxNG1Vlyxnc51M6Do2daWPwtG05LGJ5rmjsXXMru2cvPRZHFk7DlfscmoqfGmoGC1wt36LhPwvAK03Oagi7jmlaU5zcAwUxVU4Peecc9TegQLES9X9vmkJZjcvc1yP6XEUaaaqZPEwlr7s1U24gbEqqCGt9XPsOeWI308eoimzXm8dT32UzzEBF4SjZLZ0bzPd9mbWmw3Povb9J2ZKw0WmcN45b9hPMHV9erXUuojinzuXPccdNqSFAF/CaRrzMQFpb72syYQ/vmxIntP7z9Vv4oeD9iPG78esl6U5jXOZ7fvDrX94Z8s30uNU5CdGV8kSPkS/PU+cNEhtZ+eywbhrr8st17xa/vCkuWfVcPxp9wtw85Kn8PcVL6EyUo5Da/aWll4+8Ztdz8Lqjs0YUFSVkfSCsCwJ6pi0rTZPujp0z+bmxrhn1GuLFQ8Sljq6LdpCnSfaF0Ybe1rxxuYvcMUup6YaZkmYb7EpJEFz+ubmL1N/kxZm+7RDpF/96leZyIciT5hBcJH/3Pr3ceFOxxPDyzjnNBWXno6HZuYXtK19WnPq0azX5jnOD2Yh3aDR5ErebQKSa0tOtAHDbN7m5/s64yfvjc4EES2MbrjvW6GRsJj7mJ1KGN56Gfh8V2M1tznWTg3jxyESca+O4RApA5rTh1e9bjKXkkMh7AFS0GHvLxMUTinaWB5IzwwvH4L+NuGIrjll5ItSh0nP7D9gD1y72y9w17LnccfSf2Hy6AkY16/vHTV43OCDAADfNi5khpPVOwRj1svecyovFR9mvYbmtLdem+t3Qtct7fMlhrl5mCEcG+MYt1mvhD2n1vRJjql6/T/oulXYL4DhxrX0Zs6ciY4OSQ5cFAXJZw1zLL9pk0PNt9sY555TYxJ8ZO04ALyaU++k9px6XOFrkKg5ddtzyvM8iewcNk3XsFmdL7jn7SeDDsCFOzoXS1gavEy/s9+ByzxQWZw2uLyHjEnFUbX7AEhOeslpWMu6U/A8V9KiStoroft3aoq2WZ4RpbGnFZOXPiP0TP+iSuZ9tee0MDHqY1moRHrcXmov6RlSm6HuOfU0rpGfOXrgvrhyl9PQo8dwy5KnsKxtvYe4+wi+Fq+sgphsSDHK8dZr+y1h4ZmsOdUde0lpsMIZuSvhNNOXLpy6aE6vW/Bo6u9C0Jy6lt4555yD5cuXp34nEgmcc845WL16dZD5UuQopAlfEWNvjEzNqdEBmTWGxiTdGGx5Orj2WKfnPEQZe055kOkQyS0friVBeThb3nppJknW/czueetfVEnUDNg7d/PPTL+xl/1kZuiaU934g/ic3vs/PxzdexbcuOoRlDSswqnoPmvSBMH4mjwmwquNs+kyZBoQTfSgqaeNGaYQJgsKOuWRUuo9r3NuWZpTEjK99bI4cftDcd6Ox6Ij3o0bF03Bus6tGUk3CILQFhpI23MaQD+Tqb5LB1s4ZD5r15yaF7R1fo0sy1GYYZWULc0p6TuYt5cZPmGSYfMf19JznGWn65gxYwba2+kmXYrcx2uHQ3quKBSxhSH/nfQU6gOCWa8xWTU6Ap732mzalymKsb/P60Al1SESYc+pGc+Diu0xXdfx2Oo3vcUlgMgxIV6wO1OyHnmUOS+wus3MyAsJi4depxaVVkoyVtZpWkxzTTSfvcrjdt8MuWz4NafVRRVC6fnltU2fu4ZRZr2FSvK7locZwqlHs14vkI84k2OW6TVfZw/9EU7Z/nA0x9pxw8J/ok7i1pZMkqsLTBZvvRkbx8QWjEnYn/Pnj8RqCm9efEkgwb0Yw947noTXwZl8zSnBrDc1LlrJ1boqgjpKRuEb+8HPtHNO/aoyrEfJJEl7WQsT0pOP0UF4d4gkTzh1Nep1KQpes97VHZvx2qbPxDIniE5I14B0ptrgkgHCaTg0p5S/gyYBCcIpxazXqP+0svSvNzV766WXp6gTJDMks15j0sCKNyQgwMpks8kTJA1l1luYGF/V4hDQd5xyTDxZUDVUQXh71TRcNvxk/GDgeGyNNuGGRf9ES0/fUm64zUtklXqmFsFk6JAd/kLgfc+pecuXMx2d2wEYa1w22mVJOFt7TglmvQXsrFYJpwrf8Jv1ytlXYD5KxpislvV6UAt6Emjf2yD0rJ7Ath6J3nrB9sjrNsmhPWl/qqfXQ3G2MOfT0HCyNYBk74KsumEOz6rPctA9nWFo5pwZt6b+NpcFz8RW1jmnrCmVL+GUaNabdvxA45Bej6CpIBmSB/m82SvhtJCROUlM1V8PcZLGJVKToXv5ZORLODem9LQQrhnxcxzYfzTWdm7FnxY/LrwXvZCRpS3n8WYuA6vZrLc47GOErntvR8YYaNTrkGVBW+dWJrDNenuFU27Nqdx5BGnso43FhWCpw7Xc995772HevOTxAcaZlu+++y5mz55tCadpGs4++2zpmVQEgbzKazfrpaUis7nYu7CycElvGhnSnHp4tqmnzdek3Y7bKqN7SfBpToPca0NL04pTc8oOT77nNIsha/gjWsTXGaRu2L0H+o8v/V6tseCd1xkDP0vY92NexqpvrDTtA3WmNKg8C1XZOJ5JETy6bVJMDOOxHnpyTcT5EG1BJRhvr0kioTCu3/08XL/on1jYuhq3LnkGN+9xEYoZ84dcIhPjoF8y1c/IWIv5z4YPLb/9eKl2PGvz1surTGA7RDKE09zx1mvk135EYSGMNly9whNPPOG4NmXKFMc1JZz2TewmTZZVG4mdpfmgZfvgWm4Ip0Gb9TLMR9yQ7gxJs5pUV0XK0RrrSC0guWpOaQ6RsnLOKR1zPo138jIIO48dSv9tXjQI+lxnHbrUVVXzOacbuuqR0BPBCmYm9/WWy6a//azg85hWMbJlWsDIFO71pRD2APVlYok4OhPd6IpH0RnvTv6X6MY3xhEhhD5jQ2cdhpYNEh4Cl7dvwMaueo85JfvrtUObrLP6VVodFtGAloaL8Zc9LsbvFzyMmc1L8dflz+MPI8+VPpHPNZhLqYQyLwkV4aKdfopHVr8umE7+9jM6kkKkl/E3pTnVnJrTBBLc9Ytnzymv5lQ2pLZp5PabxgW2O/lbDwxchdPFixdnIh+KPMa+59SMtbP012CMuEKac7elkYfAzXp1wzuweAdqOEMqC5WgM+HfpElDCNWR8tRvw1TU2LvhJmTS95xmCUrCFrfwve/kZYWfVje64z241XR0iMwD6on5kKw5bYtbvU+7aud9fuD03k46cR+aZ5ZZL0sjazfJytREjc+oN/8nC/lCXI+js1eI7EqYhMl4NzoTUXTFu9ER70aX43cUnYnu3me7Uvc641FPWxumrvsf/rD7OcLPGccYjaneVfhZ0pYEUs2jaYhY5zzSEHVAVhkpw+TRl+Da+Q/h84a5qIq8il/tckbgi4LZhd7+n9/wAZa2rbNc271yRxy33UFcwmm+OkQiR6t5Gn/tmlOvZcK0gOide5SG+YRTNw/uopCPhOKzfstH8sOeQiEdme7teb316rq/RsM6liaSMYdI/jWng0r6Ya0El/oagKpIemKQ9liM3n+9Caf2gVTmpKEyXOYQpkhpWtInhGN/Z7JbaKcDn+TvtZ1bLNeDdjJwwczbKGXgjVabcxEdOrN9dyWivtIjOUTSdR0Npv3Ush0ipY6OYryYyFmoMuFpH4WwBygI4noCXfEouhImAbFXK9nZKxh2mQVGy++0wNkZ70o9G5W4R740VIzKSBlKQ8UoD5egNFyCsnAxSkMlKA+X4H9106nPGo5TvNZHL22oX1EFrtvtbNy1/HlmOFqNLQ+X0R8ivMYhA/bCTwcfzJ/BXmqLq3H7npfid/P/gXe2fIPqSAUu3Ml5NnVu4X1cYDnMmrruPce1MEKeTGczJZwGNUJqcB9/Bxb3c1ihpTWnyTmQeY8pb+vrF6lg7k0VNeuVbQZOPOeUkt9CGG6UcKrwzY5l21HvyZwoGg0uadZrvWdMEJtjcler7BgaTy8dj9GhDizuL0U4nd28HD/e7oDU77Q2Tjf9vzisI0L8csnwk3BE7VhcNOtOx8oiqa7oum7ReBp/szXklD2nDm0rOVzQe4uaY3I9VXbYzOrczHqXta/3lV56Z2e6POe0LLeE8bP3iSzsGftc6ZMvzW7XmyF46ksheOtN6IleTaRJ29grKKZ/R1NCpV37aAicXaa/RY8ZYlESKkJ5pBS1oRKUhotRFi5BWahXmAyXoCxUjLJwKcqMe73XDIGzLFxq+V0aKnY9d5ElnFYwjpcJispIOUZUDLVcI/ar1BjE6ulJ2x/meYvCkNJa3Db6Ekxa8Aj+s+FDVEXKccYOR3mKK9fZt/9IHF27Lw6t2Qu3L/uXa/hkveMdh9Lhltg0sEFh7fPk9W1J6xfx8ffljZ9Yflti0Pl81B9RO5aZstGHl3IKp7IhLVbRFkaV5lShIEJuGH6PsTAfJWPufkLJnQoAgA/qZvhIgR8vAkyDSTiVQWei22LWa5g16jqSykOvZr06XzgvaEieCWiPU9fJdeM33z2EL7bOc+TNywox7Rl7yl4PAs8WdsEnbvqAR9Xug08bZktNj3S22kbbcSp2s15jP7RI/NZrSVh12n6UTCa0lWWhEr72keG5gq7r6E5EXc1V01pKd4HTr8bdTLEWQVm4BAOKqkyCY6/A2KuZTAmMlt+GwJkUQMvDJSjtFUZzbd+iYVGUyYliWAtzafJpmjz2kh9hz5tPK5NdK3bALXtchOsX/RNT1ryF6ki5ZcG1UAhr4ZSJN59w6m3UfWXTpx6e8sbTa6dhbssKHDJgL6nxumlOmWOAZpj1mvec6lyLpRpcDufrjYO1jc2MbOdiIma9hUBWhdPp06fjiSeewPz581FXV4dHH30UP/jBD5jPTJs2Dffffz82bNiA4cOH4/e//z2OPPLI1H1d1/HAAw/gpZdeQktLC8aPH49bbrkFO++8cypMU1MTbr31Vnz88ccIh8P4yU9+ghtuuAHl5emJ/uLFi/GXv/wF8+bNQ01NDc477zxMmDBBfiFkCakaTVtcVlNeeems69U22ruQsMeO3A9eTD8Nj2qDSvpJy0eVSTg1JgoLWldhVccmjK0ewXyW6hAp0MmU2D7XL7bMs4VLoC3WifZ4l3DKtHqa7yaXpPPijLfbqXww4H4MpxBG3TeXW3ssbaas67pjlbemqIpfOCVUzNSeU0bdTOXLyAdXav7h6QqYxxjpOroTPURzVfv+yPT+ScO8lRQ2iq5EVFo7LtIiKAsXo7qowqp9DJkERJMW0vw7LXCWoDT1u1j6MQtZJ0f6kBAIe/YIWSsJF2H3ih2xtH2dLagzcDQRw02Ln0Bdd6Pjnoy+c6/qXXDD7ufjliVP4W8rXkJlpByH1MgVePKNEELcc4zsiCdaytvuiPId5MVK8Cdih72hR0vFY32GQzh1WdxK9Pry4BVOZZ7MAJDbGu9Z9flIVoXTjo4OjBo1Cqeffjp+9atfuYafNWsWrrnmGvzud7/DD37wA7z99tuYOHEi3njjDYwYkZyIT5kyBVOnTsWdd96JYcOG4f7778eECRPw3//+F8XFyY3M1157Lerq6vDUU0+hp6cH119/PW6++WbcfffdAIC2tjZcfPHFOOSQQ3DLLbdg6dKluP7669G/f3+ceeaZwRVIvsJoB06BwHujuaN3xTGpNzVpToVMYOTgyay3uwlAcs+ELCojzj1C1y18FAAwaTc3z9mZ79hYpcZ3RifwV5f9VLRUfjBwPM4e+mNcNPtOS3r2dHNNA+OGXfBJmvUmCWJllSQoujllqi3uhzW2vb00WHtOWZNhzbAcyKB4yntw/GOr34AGzbqX0iRUyjL7DWshlIVKMKi4X9pcNaVptP42zF3LQ6R7ScGzNFTMPCpM4Y7n7RUeBD/S5J7Wr+5RtbNDOCUJ2d82LsDs5mXCeRHhwAGjce2IX+Cu5c/j9qVTcdvoSzC2H3txNdNk0l+TyJwmG46kzEnyCmtc8ZIWVwQwnrU7UeRpSRrYZanrYsKpzHkeQPaAT1vAyH/RNMvC6VFHHYWjjuLfY/DMM8/gyCOPTGkwr776anz55Zd47rnncNNNN0HXdTz77LOYOHEifvSjHwEA7r77bhx66KH46KOPcNxxx2HFihX4/PPP8corr2DvvZOHtt9444247LLLMGnSJAwcOBBvvvkmenp6cMcdd6CoqAgjR47EokWL8PTTT/d54ZRLgDA7ShF8lgd7BxLKgnGDlwGhIdqC8nBp6kxWGfSLVAIAdiob7DCldHO6w+cOSbJZL7Xc+OqGruuY0bTULZTjyn/2vxn9i5JlNbxse6zu3CyYcg5jm1AmkEgfuxTAxIV08Hd7zKrJtg+kNcVV3PGzFgd4NKeZ/KK8wun0JqfX+xBCKA+XoKa4OmWemhIYTb+d+yOd+yXLQ6UoDStBMmuw2lkGtaoiR3GQQpFymqnc/2DQeLTEOvDI6tdx85KncPdeV2A32/7ZvoJXs95MEVTu3AREgD2PNLSf1h2xCegcWkw3na2O5HfhdYh09MB98dz697nC8iCkOc0RSw4/CI9kixcvxqOPPor58+dj8+bNeOGFF7DXXnvhb3/7G8aPHy8kbIoye/ZsXHzxxZZrhx9+OD755BMAwPr161FXV4fDDjssdb+qqgrjxo3D7Nmzcdxxx2HWrFno379/SjAFgEMPPRSapmHu3Lk45phjMHv2bBx00EEoKiqypDNlyhS0tbWhsrJSOO+hUPa6GiNtSx48ZofYcWjWuC1zS1uSMkohpGkIh0KW35kuX9IEWmPkoz3Whc5EN3YuGyzVG2xxJII3Dr4dRVoEl876qy0/7Gdp+dBs31Nm2Rrfyh6jRhiMSenqmu5ahzRCRaspMQlHWjrNUEgDNGtHLvs82qDRbfmHlm6nQXgeNtqeDj31jdpNCyGaZnWWBCQ1p9zxU9oWQHhXE+Z3TX5X7iR94N73/N/OJ2Bc9QjLnsqycCmKOPcHKnIf4rDY27/olE98SM1e+Hqb/XxCcwTi+QiHQs76qJH7UuLe+t5g5vCREMOShBK3V04begRa4x3417r/4cZFU/C3MVdhaNkgafH7QbSt+imXsBayzHFYsOYdQWEuC5nO3jRN82W5FA4ly8JSdrwTT43ubyIU0noXItNeuO33zQws7ofisNyFQtLYR6sjWii7MocMhErv008/xcSJE7Hvvvvi1FNPxT/+8Y/UvaKiIvzrX/8KVDitr69HbW2t5VptbS3q6uoAIPXvwIEDqWFIcUQiEfTr1w/19fWpMDvttJMljBFnfX29sHAaiYRQWysu0MpmwID0sSPFRd4aTlmZ84ynsvIi1NZWYury9/Hams9x0e5pl/BVlWktYVFJBOXl/g8wLikusuQjEgqjqjKznhH79XOa05aVF1O/c3Nrcr/p9pU1qK4uJ4bxQjK9ZJrhiLWjcivrkhLyCmBVVanlPZoEz7FjUVWZjFuzdZwVlSVos3X65vpqUFwcSQ4gjHM0y8pKUBaxxmV+n0g4ud9tQE0FqorKUA3G8Ql5QEmZ9V379S9DeVvy21eWy28X/fsl629RcThVrqEis2AYQlmFte7tNGAQsIEvflLfVNpbVysq6HW6rDR5L1KUzFe1noHvqukoL2NbQhy7y/4YWd03NUB9hYoKZx0oK0uOi0VF5P21e9buxBROQ2HxyWV1VRlq+1vHoOLiCHFcKt/k7P+NMcPc91ZH6eNVdXWZ9LnNb2pORzQcxYurP8H1i6bgycN/j+3KBkhNwwtlW8XMV/2US1lJMQYO5LM2qawsyfj8srQ03UeXlMoTwtZ1bkWly1yOJXRVVyXrY1VHOo6ysmJUVrmPg6WlRSivIo8vtbWVyUV7LYTtaqqp9w05vSgcQQ1h/uIH+/wOAPpR5pJVVfLbZaYRqlX33XcfTjvtNEyePBmxWMwinI4ePRr/+c9/pGfQDtFZhu2aYzO0rluukeJwC+PHTC4WS6ClRd65hqKEQhoGDKhAY2M7Eonke0R7vJ0F19Xp9NjY3hFFQ0Mb/r7wZQDAB2tnpu61tKbN/bq7e9De4d/jYzQaQ1fIfASBhva2bmr4IGhtcabX2VsOJJY3bQIA9NMq0dYq7syHhjm9RNy6stbWzi6TaJRcB5pbOtEQTsfb3MHnyIaHtrZuNDS0wW5l09rWhY5ua91obHQeudLV7V5/OjujSNjmg9ZySibeuK0N0UgczS3y3i8bdHRYv3NDYxvae691EtqrX1pakvW3q7snVa7d0XR7TCQSaG61lmlpD7+QnIgRnLJ0J+tqSyu9HzXCRHtiaGhoy8h31XUdXZ3s41CamzrQIPlAdkVu0U7oazs7k+2jh9LPdrrUm54YfQGORltbN1phHV+6Te3Ucr3LmS+j3zDPFVhja0tLh2WskMVFO/wUdW3N+Lh+Fi7/8u+4d+8rUV0kb1HXC27t3A5tLsBDTzTO/Xx775iaScx1p7NL7tyro509ZsUTdBPdtrZuNITb0G6Ko72jGy26+1jQ1dWDphbyMW8NDW2pdDtanPWgoaHNYr2fSOhobpI75zePsQa0uWRQ7VIG1dVl1AU7M0LC6cqVK3HdddcBcApplZWVaG4O1hxu4MCBKe2mQUNDQ0qrOWhQ0vyjrq4ONTU1qTDbtm1LmfGS4ojFYmhpaUlpVGnpAHBoXXkxOvpskkjoqXx4tUknPaYnEpb3szRSkxSi63Js4e0GoCFomXeWSCoHXad+57quZNuoLeondROPOT37solrWVNuJ2zvYX+nEwcfire3fCWSTRMasYz0hNPdOzEcR9npuu54d0v97P033tseWINdPhC3lVMsnt5zGsiGMSNqUz2xt/9YwjqxHlDEv+eUZCam99pGxhkVIHXETW++MtLnctbHXOj/FcGhE/uq3npIO1rNrXv24hBJB0KwTvx08Pel5vZs/K3R7JJt4eSi4Xcjfo7WWAe+b1qCGxc+jjv3vBSlEv01iCL6OWjlMmWfSbhk9t3MZ7XecVKD5uqrI6Fnfn5pLgv7+OM/cre0mR44k2Vhzp+eYI4b5nhpc4FEQk/5FyAdw2Qv/xA0ICHXrJb03rTXytj4FyBCxt21tbVYt458yO/y5cuxww7yXEqT2GefffDll19arn311VfYZ599AADDhg3DoEGD8NVX6YlzW1sb5syZkwqz7777oqmpCQsWpM1pvvnmG+i6jrFjx6bS+e6779DT02NJZ+TIkZ72m/Y1zOsW8nz1muK3bV1nOYEYUFSFq3Y5XUKqtjyQNxlRw9enzjitRnCb4fi8NKZDU/Lh0pFP2PmnQrmypklJEsDqjs2Uu2m4zw7jEGIae1rdguYF9jJJWKbDfHVtn+rduNMjeeu11zXnUTJOUyga81pWOtPsfQ32+baZ32Ojg8c5SH7v/VF4w61euNUKL6OlBg0RxzE95HhI+9FJaWbLe3lRKIIbdz8foyt3xuK2NfjLkmfQk/Bm8ZVLbFfsbqIcIjj2oYbNSv9C7/v94sdPAslbL2mxmgbrPNREr7fewSUDMLpyZ/e8SPYnQPLWW8hHyQj1OieccAIeeOABfP/996lrmqZh1apVmDJlCk466SShxNvb27Fo0SIsWrQIQNKh0aJFi1L7QydNmoR77703Ff7888/HZ599hieffBIrVqzAgw8+iPnz5+Occ85J5eX888/Hww8/jA8//BBLlizBpEmTsP322+OYY44BAIwYMQJHHHEEbrzxRsydOxczZszArbfeihNPPDGlgT3ppJMQiURwww03YNmyZXjnnXfw7LPP4oILLhB6v74CqxlkwmsYy+16ebgUe1YNl58mKT3Guzb0Cqe1xf0yJJryCF3knNhX+mV+wdQ5ZLbrK9o34Mtt85wP2OCrTxozz9t6kvt/jdXrfO/IHVpiXU+9E+8A+adRF3Knl3JORPHKDViF04gW9m2Sx3XOaW+Y75uW4NLZd6cWH4LGrxCiyH/IXm7Z1gvuXknF0TTN4bGZ1mVqhOkfKSjNSUwyfLB9Z2m4BH/Z42IML9seM5uX4p7l/5F+fiQvmRwnQqlv4957ZKN/MffD7AVDcUa4eGhmeuvtLTe7w6bl7XwOD2jv8p/1H6biDWth3LHnpcx4NE2TLpyKzKXze0aTREg4/c1vfoO9994b5513Ho4++mgAwMSJE3HSSSdh1KhRuOyyy4QSnz9/Pk499VSceuqpAIDJkyfj1FNPTe1d3bRpU0pQBYDx48fj3nvvxQsvvIBTTjkF7733Hh566KHUGacAcMkll+Dcc8/FTTfdhDPPPBMdHR2YMmVK6oxTALjnnnuw66674oILLsCll16K/fbbD7fcckvqflVVFZ544gmsX78ep59+Ou68805ceeWVOOuss4TeL5eRKTOyOguLWa+k9EK2s9yy4XZdNMWU5rSkP3VScuLgQ6Tmye4xlRfn97T/9l7atCcXta7mel4H0J1w3/vDqpNNtv1/eS+ckuwTei/x1tOKCP+eUEMINKdqr2vmCeTgkgGmyZY3jLdgnnNqaldrO7fi5Y2f+EqTDz0Qj8iKwsFr/+JlYTcEDRFOTSep2pIm5yzNXCZ6zqqicty25yXYvqQGnzbMxsOrXsvrozJ4uotwbyCesNkoCcvWLck5GFExFPftfZWnZ42+2FxsbbFO/HvDB1zP09rq0+umIQHzSQFuC5IacfHHD/ZyHldNPwdYB7+2OFcR2nNaXFyMxx57DF9//TW+/vprNDY2ol+/fjjkkEMsx7fwctBBB2HJkiXU+1OnTnVcO/7443H88ccTQifRNA1XX301rr76amqY/v37WzSyJPbYYw88//zzzDAKMuYJcdxm/iHLsNc8ITQORyYTTAMlDhqcZr113Y3EMCcMPgRvb/maPw8+RfIt3Q1c4aT2cZQy4j37NcohmIp+c6fo7b7PJ5ewmyKZBUPZyzYHDRid3tuJBOJ6HH9e/CS+b0r345u6G9ASSzqWOLxmLH4+9BhiPs4Z9mNs6W7EB3XfO+7RYH0X+yS6My7fGZQdHrPe3D6xUCGL83c8Ds+ue9dx3WtP4smsVws5NJ20eEj1kqSVZNXfTPWTtcX9cPvoS3HNgofw3y1fo1+kAufvdFxG0jaQNw669wdps173sNkYq8yLkUEIQSMrhjHSppO2zEq3gdYYv2M8thZYT8XrtiCpcYQRxT7Ou9WNPy76JwYUVeG6kWdLzUem8OQD+pBDDsEhh/jT8iiyi/d2Q/Z0TEO2yQcpBz16nCmakhrxDwbui4/rZ/nIA2FVzMWsN6KFUR2pAGtwKg+XoCPO5/3OsRfI7mHa5XmaeZT9e9oHvyAm27zDWw/jCBnPaTs6/fwyi7GvqCb0ROqbyfxSh9bsjd/v9kts6d7Wm46ORa1rLYKpwX82JM2g9u0/EiMrhxEXFY4ZOB7vmwRTY1FgYHE/wlmzWipNGnaLhO5E8MIpYC3jB8ZcjV/Puz8j6Spyi53KBguFd+tHvfRBIvsPycKps3/NlYW6HcoG4rbRl+D3Cx7G8xs+QHVRBU4dckS2syWMyD5SnrDZ+D4N0ZbU37I1p26w5pskzamI8Mx6l4SuI5w6xsZFONU06XuBRSzhdF3H3OblqCnm9/WQawjpnY855hj89a9/xcKFC4PKjyJDyDXrtWIe9CzCqS4nYbtZb08ixpS2ybf8dRwiq2I9iRiaetpQW1yNkEbvspLvxB+vXTh17jl1cYhEeQe3L+RnQTDVtdsi4V3E0LnCaYL7M2zCaZ6ZadrLZE7LckxvWgyAvV9MlAP6j0ZZuMQ2qWWXc5ixd8quod6+JOlhnfTtUg6RGAO0U3Ma/PFSMT2OZtPK/NDSgY4w+VafFN6wf+W0hYHHMc+Lt16BukYaw2KCwmmmTQd3rdgBt+xxEYq1CB5d/QY+rJuR0fRlwLO4m+63OTSnWTDfnNm8NPV3MAqIzM3PDJLTU0Zdh869aLAt2iJ17AUIC7OMd9SRXwvsJIRK79hjj8W0adNwxhln4Nhjj8X999+PpUuXuj+oKCDEqjzLo6dXvtq2wNI59OgxuuZUT+pO7fhd1RLpPI1VxtrifslnKZ2KaH8atnllFO3QM20KzUqTt26wNGfW+Pixhw3K++Goyh0Diddedo+tfhMLe/fwyhSMjAHfGHQTlLZlJszyOimQNfMxMfT8WYezTDlOeXPzF6m/KyJluGevKzOSriK3EG1rbqG9jJd++64Yoc2w+tzyMP9edVnsXb0rbhh1PkII4d7lL+DbxkwpS+SMizzVRMRbb7Y129lO3wxJqBfJX5xzIcZtrtUe75JuYUbS6tL7HMNyKn8XRoWE0+uuuw4fffQRnn/+eRx55JF45ZVXcMopp+DEE0/EQw89hNWrVweUTUUuw+sQKRnWPx3xLksP35OIMxuh4PZQLkiP096tIbXftFc4ldRhuGlO3cxteEVT5/f1k3/ys7xCJ8mduhO397aZPzsmZO7vd8seF3Hkw8rQ0kHCz/DA48FWBg7NPIczIGOyQAqngf98YuNp1vd3OgRjR/6LoT/kS1yQSgHnUorCgb1ASnrAzazXg+bUZ3uPJ8Q0p2Oqd/WVnlcOGrAnfrfbz5FAArcteRbzCcdPyUaeEMahOTU0dBwTlWyLhrxjtwis12Z76zUWUM3CKT8syywd6e9hz5+u6+jRrcccBe2tlxV7UnOa7ZrhD09653333Rc33HADPv30U0ydOhUHHngg/vWvf+GEE06QnT9FnhOEt17AZjqMBLWhbl9aQ43BV/oCHY9TOKXGKpSr47c72J4py0+v55zaBxu5342MbM0pqxydQowVt0GlSItgNxd39zzpykJEm+iH1MAvYK4YZpinGbGkfjPLnUdzKla+xaEiofAKBRty/VvUtsZTbJ72nBLawGXDTyGGJfVHRLNeSps7c4ejs2qy/qNB++Hy4acgqsdw0+InsYLzuBCvZE40FTtbdkNnvffMSCDTQhArNfJirJw9p0mHSOQ9p6Q27tdDvR173jTGjMJos/mrN/UonBp0dHRg48aN2LhxI1pbWy3HtSj6DqzOya7pkNWRORodYZA8dfsjcO1uvyA2Yb+NltTx0N6tznTGaTJtilmvYB4usHkrdDzvUtRuJiGpXwIrdm4MLCGXAa9TBZLDDgC2g+fdtHnp+w3RZjy86jXrfZdu8fjBB7umQSKoiRyr7GSmmF41TguKbppZplmvQO6MkKz9TU6NOLtOBXd4vWb7lc9TBAUvpK+8rG09I7yL5tTLnlNbnDeP+j8MKyNbbJBSJ5nC08a1XDiq4tQhR+CXQ3+EjngXblz0ODZmWVDjQWTPKU/YFzd+5DtPfghCc+p15DLGJnPfLpI/Vlizc0177roInuFlj/d8/jZ6w0pNOTsIe+vt6urCRx99hGnTpuGzzz5DIpHAYYcdhttvvx0//GEwZlKKXMLZ4Fht36o5lddk7A2f1A1cvktyxZjk/dbvhNGP5tS3TTGAAUVVBLNeOZrTIFZCp+wzCcvb1mNU5U7E+7xOFWiCWHGoCLF4WnBlfR/ze9+97Hls7vU+y/MsAFw2/CQ097TzZNeWbjCICGx+SA/MyX+betqwrJ0++QbS+6L91jXjmzAFcUFv1UF9EHu0SjTtG5D6jW09LYSQfHg7SkZj/naDtPiXaW+sopy/47FoibXjv1u+xh8XPYb79r4qtRCci/B8k5Ctr81lWE7qvOJm8E6DVG4i+WOd953Q0+ecci0wSP52Yu2wN2weO+MTEk5/85vf4NNPP0U0GsXBBx+Mm266CT/+8Y9RXZ2/7ooVMqA3mh7LHhaJwqlP7YTfVS2RjsdwiORm1puJDfQ8uO059ZLPHcu2w45l29HTJKxwvLXpK65wAFASKkruRU6GYuYlpGmpIBu7nGe9umsDw8z7NAIz6xUQ2PxgF05Xd27GQzats52U5pS055SSNR3AvXtdiRlNS/C87fB0plmvaB+QBxM/RX7gRbvoVvs8mfWKWA8QGiBRc0qJI1e8UGuahom7nIa2WCc+bZiNGxZOwV/3noiqSLm0NBJ6AotavZlneyGlOc2NImby1bb5GU2PXaWt1j2AmOb0sJoxrJSJ8ZN+0675gXTOKXVrVsohUv4iJJw2NDRg0qRJOPbYY1FTQ9vLp+jrmBsM75md4mm4XyHlh3XNL7RBvC7aBIDDrFegM+PJv5s2kirUuJxzKmOjvz0GkiD94MpXHNdo71Qa4t9SQD3qSABv9Scgs17m4CtTOE0i8v3DDBNpVhnuVb0LuhM9wIZ0aMDNhNkenzeHYF7ZqXfxxe/CmSI/IX1ndssMwKxXQHNKzq8zzXxwrBLWQrh2t1+gNdaBmc1L8efFT+L20ZegNFwiJf53tnyDBa2rpMTFQ/q79c2+g9U2eBwimZ8X8doe1kI4afCheGsLYWGc8dzGzjruNLwi0g57EjH3QDmO0J7TqVOn4pe//KUSTBUWnOdEpv8274fQ9fSAu11xf19pOieAos/7gzRBd/PWWxvwgciOfZwukxva5Mdx1XZB9vldgIhZLzlcSdgsnLK/rtXkx1kGPIsEXuRz2d77DNiDtTxSq8YCsbLqCmvlF7C+lxGKVadFzHpPG3IE4643fh6Q919FfkAzXM8k9v3yMkwLg9lTKJ+iUAQ3jboAe1TujIWtqzF56bPSJumix9VM3mOCr/SMRb2+IJqWS1pAAGiaU7EF6EiIrLPTLQ6RrDy46lWhNLxgfw/WdOKvy/+dDJPHNch1lrl8+XJEo9HU327/KfoevEOXebLZv6hKah7YK8T8V7nT43w+oSewLdqC/kWVKOrt9ILQPALOzsptpY2mhepORHHDwin4uH4WVzwy4E0jTpkoldo8rzKPFjLdIqUr4ilRhOD2nMozdWVBWpV2Q6QsWbGmzjll7B9ymDRS6tTz+92Ey4afIr1WU49/yN/5gYITt4UWykPy82Gre+zFISekNpEPmlOD0nAJbt3jYuxcNhjfNy3Bvctf8GwdY0ZkQbZIi2D/AXv4TC9/9pz65dCavR3XWPM5Vn00+mDzWMCvOU3GW8TYtiP6NQba9j4P8DHvzfW937JxNes98cQT8eKLL2Ls2LE48cQTqZVG15P22IsWLZKeSUVuI2J+ZIT0K6DxOERK3+Pf78YLabAidZotsXb06HGLgwa6t176BKciXIr21J5Kyh4Hh+bUm1nvjKalmNG8BDOal+AHA/fNSJe4oYvPy6L5na4feS5uX/YvAMk9p2l0l0EkfZdUd0dWDMP0psUuOeGrQOXhEpNpe0BmvSyHDzL3nFL227Bg7c91c5Jk/jJGkkKaU0pQo+3KnnTnyh48RebRAOG25iZ4eHE0Y1+gERdunG0i3ybFVUXluG30pfjdgn/gk4ZZqC4qxxXDT/XVPoPz7E1Jj7FXn0RCTwRi0eSF/kWVaOpp4w5fpAn7ZaVCqu8rOzYKxRFh+ZQQrENH1o7Dq5s+E3qGhvPUBPe85NPCkh3XWvHss89ixIgRAIBnnnlGDcAKDnjqiF/NpUB8hFs8DbtIizgOVhalPuUMyd2kV7Y+1XXFkNJvFdvMWgLp4Dz2I+a8mE15xc6sTMdhL6PLh5+CWc3LXGPgnfSNqBiKeb0HxHvtOs8YchRe2fQp9b4fpysieNkFxdKcipWHlz2n/sKJQpvA9gXth4JfE8mLjKNkWIvA3PUyT8x6zQws6Yc7Rl+K383/B97c/CWqIuU4b8djPccnJvj5L6+QoFlvQtcRypFuJqKFMbpyZ+7zfYsoZrQ0eM66Ntf7xp5WofjDIXmaU5l9P0nZ4LpvXVrqmce1Vhx44IGpvw866KBAM6MofAzhwrfmFPZjVFhhvaVVFi5GT4wsnPKupKaPkenvOz9u2GN1W/Gm3Y/m8GZ6cwdt1spZhVONW/IhC97BdOlBrb7LENh4MOIScojkMqnjPkrGCM+YmDjTcolb8mf2sidXUSBoTquXbdHWjHvrdVoUiS3akrKbb5pTg6Flg3Dbnpdi0oJH8Nz691EdqcApQw73FFdQ/gLc0uPtS+J6AmE9NzSnogShOfXTB7PGadF47fXGT77s7bDQxxmh2jx69GjMnTuXeG/+/PkYPXq0lEwp8gveCaYsDdxvR/zMIXuI7zl1h6WNI6VHer/67iYAsJr1UjKkQaMfSUAI65Ynr2a90USPNVwAK+dev4m5gzYLI17jc3oi5usSvaUXzGCSKc2pYaplXxhiwRZOrbkbVjYIAIhHDhn1nWXqKPrtpJv1UjWnir7I/+q+Y54D7K71EK+f9om16P55Upq5vFjpxm4VQ3HzqP9DkRbBI6tfx0d1Mz3FY3c0deGOx1PDyuhV3BzJ2UkgkbeLCMKaU8Y9GQuEoh6uWcg0tfY0XuWh1YOBUMmxJkGxWAzhsLfz/xT5jVNwooQzBfSjRSoPl/heNeJp6KwVPVL+Sc2DZNZLzbvGP7DxvL3bO9Las30yYg71k0EHIpuYzXCtx5SYS8TtvcnxJeMMzjQ0KCGFOSmRuOIf05NnFksz67X9/u2In+GsHY7GdSPPpj7D2nNqT4sWMu1cSS7pVXvnHUXhQ5rUfu+6d50Oz6Lg+H67M/PAdAzHWS8/qPueK1yuMrbfCFy/+3kIIYR7V/wH3zWK+0WxCxlBa1KNcYhUp0h9anIcy09BhOWAiAzHUTI5sr/Y3sb8LIiSvPW6vWZ+1ogkrksWGzduxIYNqcPmsHDhQnR3W8+u7O7uxmuvvYZhw4bJz6Eix5BjBumn8xA/t9RbWuwVPe9mvexnyWVZES5Fh8khEg+yNKfmPPUvqhDKAw2viwtWs17zIO3N5MXhZEC2UwlT9NLjNpLIkOY0bginATlE6l9UhYt3PjF9gfBebE+NduHUZZFC8tCdadM/RW5B+vrL2zcQrvLhpgmbtNvZGF21M/5v1h2pa8bEemTFMCxrX4+dygZTn+fZI7uwdTXmtqzgzXLOckjNXvjtiLNw74oXcNvSZ3H76EuxV/Uu3M+HJZpn8pByiERIJ6yFUguFBnE9kTdH/tgR1ZyykOHlmO3pX1BzaovLj+folliH8DMF7RDp1VdfxT/+8Q9omgZN03DzzTcTw5WWlmLy5Mmy86fIMV7c+LHjmr1PZHnhTO059dW5O/f3MEVTwk0uh0iMTpM8ESWY9RLOOKWlTMrTQQNGI64ncPFOJ+KKufeaArsL6G4OkWiDWVS3mfVa/aYy4wwamlmvFfbXNb+PvfPW9QSf2SpnMZDO6pQN+5xTeQJxrLc+ibTdMCN991VfU9n1BhbRnNITNhIIxqzX0TcpmbXg0SA+IfbrXPKYQeMdXlGNOP8+5lfojEdRGSkTjNXaJv69/gM/WcwpfrzdAWiJdWDKmrfw58VP4u69rsCuFTtwPet0NBXs/k5W/GTNaTxvxRDRdsM066VarwjkR+IWMft3lGt67eH4qjzCVTg9++yzceyxx0LXdZx88sm45557MGrUKEuYoqIi7LDDDiguLqbEoihkMr06Q2qOMsyX7BQzzHpJcRL3nKY0p+Y9p/S9afb58uCSWkzc5VRiWLdrbh2hOb9/HvV/WN6+Hs+tfx/ddrNei/aPGWXgmLWENK3cAQNGYX7LKnocFm+91jKKQ7cdSyOPoAYS1iKEXM2pkQ5/rOxJHH88RkgZe04NpJv1ZrtxKLJGEG3bz57TsBZ2FUzd8ry8fQOmNy3GdsX9sTXaJJyXXOSMHY5Ca6wD/9nwIW5YNAX37X0VhpTWuj5n71tYC2Ey5kOpM5MJ38huIQIk++YgfENkAtF+k+ecU9mWeea7QnE5jjeT941YPkoKAVfhtKamBjU1NQCADz/8EIMGDVJCqMIzMtomUWspuImda8+psObUSUO0GWWhEpSHS5n5oeVLFzAD8XPOqXkf7+qOTdRw2V6pMwsnIU3DPXtdibJwMf69/sPU9THVI7CgZbW3+PUEysIlruE87TkNqOiM70MarGQKTIZZryxvvcn88pHaJ8rSnHJ+k/SeU8lmvUb6tmxku80oMoOw5tTlPs9E1qml91fXzGn+p7dPPXPoD/DwqtcIaecnF+x4HJp72jFt6ze4fuE/ce/eV6LG5ag3u0CYObNeJ5FQGLBa9SaF0zwUVIaU1AqXJKtZ+HGIZNR9tqJDDLvlEElh8POhx0CDhv9s+NBxzw03U+58XbAABB0iDR06FMXFxYjFYli3bh2WL1/u+E+RH8jsyHhjsppT+oFk0iof5mHMRIHXSme8G+3xLtQWV1smDSJdn9B3sj0u+o3zYbJh7oxDCGHv6l0womKoMyDny9jncjp01BRVuT/HF73NIDqYEmYNqkFoTkXeQ9RbKJ1es17Wqrmo5lS2WS9jn5ii8JG9+OTFBJCkVRPBSHFtxxZ8uW0eBhRV4ViKE7x8nfZqmoardj0dh9eMxabuBtywaAraYp1CcbAW6OQswPf2JSSHSIRvnMhTh0h37HkpZI5SUo6SYSk6BBu5w0kfoXLsWDbYU35D0PLWQzMPQjuRe3p6MHnyZLz++uuIRqPEMIsWiXtCU+Q7Nm0fs8HoHGHYaHB2Z0FMCFkTa7K3Xus7kUx6AXpeNc1ZLrTOh3TVuedUUDilvK8XzWlluAyH1Y7Be1u/I6fl8XuZtcEyHNDY83Fk7TiUhUvw/Ab5e62CElqMOqJpIFQM+ZpTkfdgH4nAxiLY9wZmWQPw1oegREfaXlwlrBY+XvacuuFl8UQkD6yJ9qsbP4MOHacPORIl4WC2OWSTsBbCpJFno31xJ2Y1L8NNi5/A7aMvRWmYbBUYtzkgCrpNM08KIO05RSI13vcvqnTsRc5dvOybZC1QBmvWKxqr3fqOtC2FNJ/lQuOxjstfhJbZHnroIXzyySe47bbboOs6/vSnP+GOO+7AIYccgqFDh+LRRx8NKp8KycjsXO2DKO1cNJ36QwzRjsfruzIn1hx5SHnqLbEKp7TsEM2PTWX72xE/M98gPG9FpOPSoVNLyYs7pNJwcSADeNxi1ivXKcW5w36C2uJ+FhNsOvR3O2bg+IwKJJny1vvDQfsl45Ro1ssLjykuyzMwiaAGbiWK9lVE987JT9G/GX8yVxu76gEAh9TszZ12vlEciuCmURdiVOWOWNi6GrctfRaxRJwYtke3zmmCfvea4qT1jrHAbYbmEMkQfGqLrCbK+/UbhZO3PyyAXPqH5zgUOzwOkfw43GS3IbF47dZ3pLE6BM1Tuw1B83wiQz4gNLubNm0arrrqKhx/fPIA4rFjx+LUU0/Fk08+if322w8ffihuM63IDkGa9XYnyFp1s0DlT3NKMF9kmmJ4S4flaZSn8zPOOK3l1JwCzs7LrDk9drsDMbhkAPVZx55ThvMYR7qMfOXSvgWLQyTT97F/Y09mMgLCrludMm6TPM7KxqgjpDrpJ027xn94+RBqOjSYZr0essbaY8Ofr4D2nCqHSH0a8b1z7PrnzaxXZMHHiW77t9DrdFm4BH/ZYwJ2KtsO05sW494VLxAn/F1xypwmIFhbS2jnnBp9o30cG1Y2CBN3OU1uBhmIHGmjedCcMr3T+6ivRqysGESFXrvmlJh3j3nWtMI26xUSTjdv3oxddtkF4XAYJSUlaGlpSd076aST8N5770nPoCJzDC/b3uOT1gbC6shlTAhJTZndvL1qTlnmHe77Q+t7PRzyCqek67SVMWIp2vJb1+1cdaWh6zqxmDZ21nPH4YgzgI7T3Bmzvw8d86TQHC7oaZjX1Vz+8zrlvsHk0ROI10XG0jD4zzm1Q3pvpqfGgI93cCP9PoU9oVcQ0LxpP1gE7xCJEZbDOUyh0K+oAreNvhTbFffHx/Uz8ejqNx1l32lfcGeWs/9xb0AR3UHTydsf7riW0HWqw7pMf0OqciIDGGOsn0UV5jgtGK9dc0oSJr1uCQgh5HpcYD4jNJoPGjQoJZAOGzYM06dPT91bu3at3JwpMs7+A/aQEk9nopt4XZZDJLLjF+u1W/a4iBkHz+Keb7PeXuFwkE04ZebL8Zu259T9BRa3rRFIVyeW66/n3c+l/RM9fkXGRM6rMGIuuR7TXiIvZqYi8LyzFwHWWMAgDch+zJv6RSrxw4H7Oa7LcoikgV8rb6TJMmPi1pv2BgxKc0pysqUobHLtKBm/aQaz3JW7DCrpj9v2vBT9IhV4c/MXDp8DXXHrnCZIge8HA8dT9/lOO/iv2LFsO8f1uB5Pa07tnoUz/BHb413cYe2a0xMGH+wrbRkLhDTfG15idWhOaWa9gvEaKLPeXg488EB8//33AICzzjoLjz32GK655hr88Y9/xF133YUf/vCHgWRSkRm8nu9or/49lD2n5rC+Gg1Hb7trefpwba8Nn+X5kKw5tdJAM+sVWHW1m8gU934jUhkLv6duXSwgPd8W7+T6UucM+7Fo6r4xfx97n+9XeDx4wF7ssO6xEa64P/XmQXe6LqzYYZlR+ZlEaRpZ4BVziCRn/44RkmXGxJpUkJBtra5R+gu3CYSiMJDuEImn57VvZxCQRPqCVlSEHcu2w+TRl6AsVIKp697DW5u/TN3rjJMX3En46VaOrB2H60aeTb2vaRqxT43ridQ2HueCIPs7v3zArY5rpw05EmOrR7hnmMCB/UcLhTfnbuJwf+bHRv33teeUeU/QrFezO0SSZ9Yb0jTEdPIeaYNc2pIlitBo/tvf/hannnoqAODCCy/EpEmTsGHDBixevBjnnnsubrzxxiDyqMgQrHM9WfjxMOsFe8dD2rdg/k3eo+qeDmugJ0+6rW9YRzHrFfHqaRc8jAWE7kQP1/Pc6GTNqXHPDdln/PHg3XSH/D7m2G7e4/+wc9lgj/F7JxIKM/c6kzCfc+rAVkYH9BexjtCIToZEJsCyTG2NNGXsOU2XU0CaU1s+Ctn0SpFGtqjnZWIptOeUENRIMqitArnOyMphuHmP/0ORFsbDq17HJ/WzADjNerNZKqR+Prnn1LCgsZ/JyqYyUua4dtnwk/HjQfsL5+2kwYfiupFni1lGSVTtGgvWXiyz9qjaKfkso8SENaccTvpC0DyVgQatoMcWIWlk0KBBGDRoUOr3hRdeiAsvvFB2nhQZ5oTBB2NDZ513zaltDKXvk9QDWcnRQHCIo5H/TuWFIxthj3saDRqiLQhrIfQvquQIjd6jZKzYBX9DcxolCKei2L31+iEbjjPMadqTP3a7A/HE2v8Kxcda4CCFFsXr4oHbl0k5RCJqOa2IeLQNgbxKLwsvUesCTr7c45LbF9G+byE7rVAk8bJvjH8vOStdW58lyVtvSjTtje70IUfi1U2f+Yw7PxjXbzf8cffzMHnJM/jr8n+jMlzmMOtl9f9++hWvz8bMZr0O4dRbnfBSl46oHYcKgrBLTQOaZUHFb/XVKAuEbvSLVOCYgeMBuMxlBDPIp/DxcpxOMp+FbJWTXQ8Sipzg17ueibv2usKH5o1timowr2UlXtn0afIJH0KqZvM/rmlszanXdc5hpc69HekYnU3H/EqxRByNPa2oKap2mNkwvfU6tNDWzqc0VNx73Vl+TM+oLuigD0Y8A+bQ0kGW35kwJ6GZUQJAdVEFzhhylFh8rBUOR9rsOkV6lLsWOh52mcTqdC2HPZ8REY/E0IS1uCKIenV0e4a3/gejN01rrZTmtI8iOMzwLjqJIOat1317iRHm/B2PFc5LPnNozd74zYizENcTuHXpM2iLdQIABhX3xysHTA4sXZ5xkyQ86dBTx6w5LMs8S3xetsb4TcWfdOr16QMHjE4J9TI1p3aHSCRCmuflA8vYQhr/8nnPqatYf8YZZwhV7pdfftlXhhTZQ5ZmR+QIEy/Yc6n1rls7r3ln0m5nY/fKHfH0umnkPGga9qneDbNblqNYiyCqxywdQWNPK3ToDpPe5LO0VDWHRvfo2n0tv1nabT8mlLznnNp5cMxv0NTTit0rd7Jc1zTnu8hGrlEvqV7JhbcfFU2XdZSMHaGzQDXxfZwiuLVRy4p6778s4bQfp4WCgfQFFKpVfP5OEBT8SN9z6qHasBbsuNJkxOy8Utgmvz/Z7kC0xDrw+Jq3AQBDSmrx5L5/6F0Mzx7khXE9Jag4F8OT3LD7ebhr2fOu+xTtz4nlTXB7j83sjffp0lAxughegUO95me+jir0sShth0dz6sXqAkiOj+Zz3/848lxMXvqsJUw+jzyuJTdy5MjAzudT5BayvjKPRkSmt95RlTs5BQvTBS+Tw2MGjWc6dgpBw217Xoq2WCcWtK7CX5Y8bblvHJ5tPyuyN3fEOElXD6sdY/ldzBBO/Wu5xDWntcXVGFk5DM097Zbrfr1G8uDWoYtqHuyDPnMFlfP1MiGY6AzNXHPM+l14VnINkt8wmPwfu92BqIiUMsPs22937N9/FI6oHZdqT6y6WB4uwRlDjkpZZ9AJpm6SHKgNLR2Incszv3dZkWnkntdohHBP1fbb51wt5a3XdpQMz9FphciZOxyNlp52vLjxY1RGytJmowHNiXlKlJSyDp2x5zT5xBG147Bn1XCcM8PpAImcjjUlvr5VFGu74W1Dt+95KW5YOMVxMoSMZQOZSw92h0hH1I7F5w1znel5SrKwzXpdhdM777wzE/lQ5AIeO1yHKSpXg/GxsmVryTfufj7Wd211hEqn5C2tolCEutdG05IrlP2KKohmgg1M4ZQFO68lvWa9JHj2B14x/FQ8svr13pRM3npZDpFM2MMYna/jSU1zqU4SBhGNPajRBENafXBY9bJTd7nrvC/usIcPQwjnmTAJaU4Z+fjBwPH4uH6mQFxWjtvuINcwkVAYk0dfAgB4bv37ANgLDrXF1UJ7ZKXvOSXsd7ptz0uyfv6qIniCEFWyadZrT7kv6yf+b6cTsH1pLXYyOcgLqji49hkTPkYCeqq+hBFCTVE1tvW0GE+Yn2bGPb7f7pi4y2nEkOP67RaAcGrLHWdF27NqOF476DYc9/W1trg06BBfFDa3BVYbEh2b7cf+XDvil07hlLAtjYeQpqE8nF7gJZ4LnsdWO55GTV3XsWnTJsycORMdHR2y86TIAINLagAkTVUMPJtJ2h0icXSwLK2kG/b+a0BxlUNba+5g/ExCR1YMI+eB2OGn0zE0PbXFpMO0ad5iNdecllLOPwP4BI9IiBwmueeU/Aypg/vT7hfg4p1+iqqicuIzIYKJsmwqwmzNG9VrNCVfjgFC8ozMi4nsXXte7lqOiZSWw51ISGDPqcYa3Nw/Lq3tAOJ9jfFtaFri20ZfgrAW5hIEU3EJ5sEN0qRGWR31HYS/tZQKaNvO4ldzmmrvDA/gqZT7Rt3WNA0nDD4Ye1fvEnhaPMIEbSHWfN71nXtelg4v8JmO3e5ADCsbRHyQb+FD0KzXwzPM+Ayv7n4aF8usVzCrkVAYV+96Zup3SbjIobBI6PQtVSw0aDh64D44dfsjcN/eVxWcHYPw2SHPPfccHnnkEdTX10PTNLz88svYa6+9cNVVV2H//fdX3nvzhIt3/ikqIqX46eBDUte8DjYd8U7Lbx7NaVT3IZwS8ml3OmIOI+J4xU8ezKTMekv688fJUfwss14erZFVaE9TGi6mvhOp9Ozmxpk+Sua0IUe6TsRY5q4knE61WGH5MJedl3ce1283fL1tgUsa9ImkfbIjYvrNWizh83YtT2NovJnRlvfrNwoDiivxQd0MAMBeVcmJI+tsYifBeOtV8mjfRPSzB2EWK6Y5FUFVaivZKw8es96dys1aXrOFkY90A+rYsmcgTUam5pTvGT6rNTshLXnU2+W7nAIA+Kx+tnAcuYzQ7OHxxx/HnXfeiZ/97Gd45plnLBOfAw88ENOmkZ3HKHKPykgZJux8IoaU+tecfrFtnuU3j3dK0jmd/JDNWmhByJMAzs7L1CFfPvwU02Vnh29uD2mzXpLmlJqY69marMk3z8Sc1gnuU70b4ymvHX1wa3k8kzDRyZ89Rj9aA9Jd3gHIPglwPXLC0JwSD2e3Or8Q0d6KeJWmxeAlblZ4o52PrByGkwYf5rjPs0BjBJHuD4l4lI+a1PcVsvGtnQ7GBfLACGs/SkbVYivBmfVypE0y69V1NPa0AWAvCorUUXvIILYnaNACEXr99O3m/Fwx/FT7XeH4dqkYAgDUIwW9Kk/s35I8y81ffapQbXv++efx61//Gr/+9a+x//7WA3p32WUXrF69WmbeFJlGUifB0yBoZr3DbEeSkCC53rZra80haoqqURoqxgH993CNm8WeVcOJ10mda323YdYrtuf0ltEXMe+zJt9cmlNCmMpwGXPfA1f3Jlh1/A5I9ufJDjto0Ox6A56CcUYvmgvDOzaPRYG8oybcYZ8XJxhZb/iUdsA2qTH+5ptAGWa96XpwwY7HCWbISbps5WgqFPlDoZhv2x0ipQ0vC+P9ch2euVNVOL2V5vQhR6aeu2XJUwCAT+vnWMJ7P6jEi5ZQMLwmr4/88z7np/4mleN2JQO44jGPkacMOdxyz0teR1XuhHv2uhKPjfs98b49r0fUjuWKl2e+l7+iqaBwWldXh7333pscUSiE7m77QcWKfELWAMSzErRf/1EAgMNrxlg6A6+rc07hNE0kFMYrB07GX/a4mBKCjjlUsYtbcPNbs7310tLSMLikhrBal4YlXPDsOfVyhpeXTfXJDje4CY29HEiDkeiKpON8OMH8H14zFoNLBuDcHX9iyZnX+JwxUO7bPGuacWpOBYRTn5/voAF70uP2qDlNmTDbFlOMv0hmyz8etD8mEtqUuVwrBQ6Op+aRpDktEKFF4Y64t97Mp2l91olu+ze13KKqsYXg2rV7rdihbCCu3vVM3Lf3VQ6LkuTfdMs1t2zrlvHKip/zmo+q3YdxV05ZjqgamvqbtP1pn+qRnDEx5kgev/ve1bugX1EF8Z7d6s9soZfOkbtVji8LwRxESBLYeeed8d133xHvTZ8+HSNGjJCSKUV2kNXd8pxzesiAvfDouGtx3chzLEIVzz41UkO1N3B7JxLWQrZr6fAhaFxaVbtbcCfpVeeGaDOqI+XMPaJ2jNwdP/hgnLL94XhgzNXOMD41p5bn7cIb5Xk+A07WVIcU3h88g4Rvs17BTN446nw8M/4G7FA6kBAb/zt79tZLuGeeUJy8/eGCR/xooH1DUtmaz+S9adSFOHOHoxgxiwqnSYz30aBZ+gqWWe/gkhpURspNYZOUh0tS18S8GNPyaGiZFH2RfDOho1rK6Dp4HCL1bYIpF9711OMHH4w9q4anx0HGg55zautL7Qud5EecqY2sGIZLh59Ee0JaSZqTHlY2CGftcLTlfphzQOf1+P7EPtfxZs2CfbFf13VLuRVrzjkjKU9cZr351SVZEBJOL7jgAkyZMgUPP/xwyoS3oaEBL730Ep5++mnlDCnPEekm+hdV4u49r0j9Njc4Ho2VpmkYXr49ikIRy9mLfMKpE5ZZrxuH1ozBlb3u01nQPN3a02qNdSCqx4RNeg2KQxFcscup2L1yR8c9lmaZZ89pCUFYTh+BQYO+muoVv30mz7vS6iEtbft+TPY5p15MnoKa0ND3nJrZr//uQvkOgeEQiXCnyNQ+xlTvKkXgM3BoTmEtT+O1SO1DA7nenrnD0Tiydhzu2/sqRCTspzIEfy/n9inym+QyjlivlpPCrK7jjI//jCVt62w3VD3OBKJ1wuhz+L3TimzrsNKTcBdORQlqzykAXLTTTy2/ea3yWLkx9+dDywahOkI+rUAE+7cj5bMveoIXGpHPOuss/OY3v8GUKVNw4oknAgAuvfRS3H777bjqqqtw0km01RFFPmCu7HtU7ozLhp9MDwvrOZbmTpVHc2rGLJDShA7zsSFkxy90s14eaA3d3Bm5ydzGbS8mvfa0aLDNet2bc0WYbr5Ii5vr7DXXEHLh229BrofUc045rhiEtRCuG3kORx5Mgr3nwYRd/gmGluPH2x2QTh8as/5MHn2JxfwqF8e+5e0bACQXEqx1oFdzSuo/KPuTKyNluH7387Bn1XCEZGhOlUOkPowm7thEglrDT+0iPftpwxysaduSDqP5T6cQCc6oV9Dap/cD6bqOyt6x/UeD9qOHN+V8ePkQ3LLHRdT79r4rZjph4f4xv8aYql1FcurxnkgKtn6ewy+FeBry0W1HyZDmcSSB9djtDrRH5Iw7FxfAOBE+SmbChAn4xS9+gdmzZ6OxsRH9+vXDvvvui6qqqiDyp8gg5gZSU1yF04YcicdWv8kIbxLcIKg5Nf09uGQA2jqSx9HQBKwQwYTPjHPlUKwb4dHEDS4ZgGMGjscelTsRUzLKoMGjcMqTZabmlEM4ZQqwPsx6RZ/xbdZrH4gIMYp3zNY43ATgw2rGUO+RngxKUEmkTF2dlJlMVzWwBeT9+4/C/v1H4dOvZ6eeoJWhWxN39Wbs1yEW7H1CEqr5k0t6IprT47c7GNO2fkNOB9ak1KS+75DPE0E6TmsARe6Uh3nP6YEDRuOj+pkOoYXW107a7ZfYtWIHyzVrHbYLp2nN6SjbHMgrNKuWIGDPj/hyEYTAm7D554gQFkrt6exZNRzDy7e3XOvT3noNKisrcfjhh+Okk07CkUceiaqqKnzzzTeYMGGC7PwpMoqoOVo6jFkgFW0QN466IPU3rQMJ2fLmSME2W+bRrN2yx0UYUlKL/9vpeGp4i25G0zBp5Nk42eHBzfqsoTmlmfX6WTBnab549xM+t9+fMHX8jY7vRP3mXBnO7GDNI9wIO0QKWFXo2SGSy3uYnQS5pS+SB3Z9cuZJ5Dw9v5YN9ndJ7zl1N+slFRNpQkDj17uegX/v92fHdWL9yUX1syIQvDiO4+2zfzhwP+xYth3hjo/6xeOjILXgouqxmcA0p4JVyKg/cT2Oj+pn9l5jHSXDjz3skJLksYPFvb43SPM82iIxr6msP9zGP//xSNG+2o+Ks3vUJ7Q1+7hGUjLksyBKgktz2tLSgs8//xybNm3CsGHD8MMf/hBFRcm9a9OmTcOUKVOwcOFCDB8+PMi8KgLGaSTHj3izSKdgPmvV3uhCCCGBBA4asBf+V5d2xmXfY3pIjd2LtPsbHDRgz5RH0cZoK2/GqRgDS5Bmvb4dIkFzCM2a7V87nro811HWXyef7XNOSeFd4w9oRpNgeOs1o0PnMv020DSN+hndDaPdBWURHN9G0yz13WgXYUq8bumJ7I/VNA0Dip2WQhqhJakpfd9Ag8i+vyQ6gCf3/SMunHW7a9h9+u2G7kQU6zq3essggVzR/inS2Mess3Y4Gi9t/IQa3uj3pm35NnWNpSH08833qNoZk0dfgl1sGjs3WK1CbLmUjdv4yrv4zBak7Wn6z31SeE/Hw7vn1BlPYeEqnC5ZsgQXX3wx6uvrU9f23HNPPPjgg7jmmmswe/ZsjBw5Evfccw9OOOGEQDOrCBZrQ+MRdNJ4WTUmYW+YE3Y+EacOORzPrHs3na6mWUxMAKA0XEzNGwmHEbCfTib1rGHW2wLAi3DqDntVlEe4Tf9NWvckYRkwaRpmwuUgV/J4TJjFq6RdO+cWmmPAMBddQJPBtJMgfk0Ii+t2OxtNsTauNKnpcL4qfx1xfhvSgE3WnDqNwO1IcYik9pz2abw4RNq+tIYzLJmg65eqvRQypEke6nLuu/H9jb34gIgQRtJymu4TTjzYv/cIQHtYJrpOr6caAi3LpJVdMqc8W7d44mP95sHhrZcnXY9lJGteng1cv9bf/vY3VFRU4IUXXsCcOXPwzjvvoH///jjzzDOxbNky3HXXXXjrrbdw4oknIhTy//EV2cSsiXALafWyRnM+456SFfs5hTp0hLSQpWMJwSmckvInguWsVZ9anfpoEwC6WS9/TE5YAw9PB+blnNPNXdtc4xXF73AUhObUXrbu+yZZ94IZcPtFnGelibwnT75+MGg8Tus93J06dPrccyoKaVJAehfiogVHVuQeJaOm9H0RYYdIgsiOnaeWsuty363nst58fL/dLb8dW23ctmr03jc7obQLYTOalpgeYOenJ5F2euTlHUnPBO1/Ih2PM6YiU78uZUwOYFxP6Lq71tf+bsRCJTlEyl9cpcn58+fj6quvxrhx41BSUoJdd90VN998MxobG/GHP/wBp5xySibyqcgAVr2pWCMUNWmyY6wQ2jd5G9gFh7iLW3P3/Xf2+E3OVSxCNz9pb729mtMSsnDqp39jCWV+J8W0Mnt63TTXNDI9Iefacyq4YOKoFZJfyfOeU5f7Cc6jZNy89Yrliex+IZ0WG2GzXvun0TTiSjjJbNnuEImUsoi5Mw2jj7L0o2qvXp9A0zThBVo56fp62meQfJ765gbblQyw/Ha6dWR/o9RRMqaFEXtftqW7kfgsqe50JaKW1EWhOauk1VNRPwiiREJp41DesY/VZzvMej3k/bjBB1l+8ywu81mKFVZ7dH3j+vp6DBs2zHJt6NChAIBRo0aRHlHkKXanQ26Yw6zp2MII6c7de12OX+1yOk7f4UjL9XH9diPmrcdVc8qGNQiIa0613jjT3npLQkUp1+6OtCl9CM9Ew/9kl256KHOIcF8t9SlI82hORR0icZjsjKwYZgnhmodMHCWT8tbL0WZzRFgSzQZJc0p0HEEY0jS4fyleh0iimqTcKG1F8Hg4SkYIveAcnuQzsgQqxze11SHXRT7NOvcAnAv5YepJB87Yu+NRxl2P2N7JeXyNHEjxFJuEUxljn/sGEXfOGfZjPDru2tRvXU9wL0KIk799hq/l4khE+CQaRS4j0HjtE77fzn9QMClrWrXF/fDT7Q9FsVZkub5bxdDe8GbNZtI7HTt/Yo05LLjflkZ3vAetsQ7UFvcT7gy5zjllHSXDtaBgxt/xO6wng55I8eyruXCnE7BdyQD8edSFXHE6V0Wd3LHnZcz7LGjOevyS3nPqjuggR/uK7m7r3XWnADC2egQAYEy1yJl59BV3Ur1Y17nVEpb0nAzh1Chbt7QUhUf/SAWKQ0XU+0WE+iWyeBZEb8pTM5VZL5mg3lzUrJe47942rQ8TjtyiURlJL6ib075v76tcnqQnoNuOSjFvTdHg/o68kM16I8z7PFy800/paXrIe0gLYXj59vjdiJ9ht4qh+MGg8VzPuMG2Zco/uKTLCRMmIBx2dq4XXnih4/rXX38tJ2eKjJMLQ01RiDxJtHjmhOa6R0xcMDTtabWY9QpMIHS+M077FTn3DfLCNOvl2XMqYLLilyA7RvtAU9PrPbU0lHaMNaxsEJ4df4NApO6aU8vgLVpiAWktDZN6Xm/NMnB1iMSZzkED9sT9Y36NncvYHiDt6YU0jezVkHBtSdu6lFduGjyDv5EuDXLbyoVeVREUD475DWY2L8V+vY5iTh9yJCJaGC9u/NgS7pUDb8PJ3/7Bczp0QdbHgiJXf6EgElBfLmrWS7pv/660hTdzqEfHXYPP6ufgR4P2J4bds2o4Mx8G/YsqHdfY7xSwWa/p3b1qH32N+Qx+st2B+IntTFoafPNZ0p7T/BVPXYXTq67iXDFR5D2iK/5BdCpFIXKVtJv1njHkKCxpW4szdjhaSrp24VeEdMehu55xCgA1xdW4ZOcTMWXN29Z4eNJiCac+v4e/FczMTmPswsS5w36CnkQcJ25/qOc4HW+QIyawZkiDTXriyqN5F9WciuhO07g7VDPCaVwHupPm5jxaA8BYDDK1b0Lm7N6+afBoTs1BcrAKKSQysnIYRlamTf0vHX4y5rescginxYRxTXjamJV5pqrAmYT77HHjPqGDsTuVtO5BJc9zhpcPwfCdhgilbc/rTwYdiMElJO/TNm+9zoGWGP/Vu56F+1e+xMyDNRpnPCyz3uO3OwjTtn7reNT53uaxgz87IrgedcZh5HpYzRg8sea/aI61y8pWVlHCqSKFZT3LbXKpaYGMWzSNqN1hUVVRucXE0i/mSbvoBN4cOq05rWY+c2jNGIdw6le4yDUzLZmxmQcSwCmYVETKcNWup0tMkX+/D/nZ5D37AD6malfMa10plA9Xh0gi3noluNOn4bZbKqKFU162RRdSHJpTkDWnYcI3KdIirqkNKx2E/kWVaOphH6EjqjlVZr19D/sXp2lshKxyONMSQdVM7wRm1mvfc8rh5M6OvY8KWTzWCuRFcDXkwAF7UOKxzS1twh4tS8cPPgj/3fKV5ZgcFqR4zMoOe1ldPeIsy5yCBktxkan+3f5NSd+mIlKGqfvdiJO//WM6XP4qTgOcqSjyD+FzTn2YFIlqJwPuBKwaF29p6SbN6cDi/sywJPMXHpgHbPv0OOpvouN8mtkvCoySO5UNxmXDT7Y9Lr8+OCYGAdS5u/e6wjWMXYvHO0kwHCPRCGkh1EXJnhtp0AY38nW2t95/jP1t+r7w97MlqNH2nJLbAM+RDJftfDIzDMA+K4+851TR13DWNRm1IDsOkZTmn0ymhBK3VIhO4Wx9oHmriyVu6R+XLz67hV6QTvoilj2nfIi03s54t2iWuNK0w3vUmXN8yl/pVAmnihRiomlmtQJm0xRZx2GYMXeQ5s6c64DklJYMXGa9AFAWLsHvRvwMI8p3cMTDgjU55vtmaUT3t7DSEJc1RLQG9rXXYOpA0DMx3oHY68KFmwY1rIWwLdoqGCs5Ti97TqsiZO/VPNg9oWqgTMwC7pPY2vJQ77/Wq4q+jagljgj+xuBgF6AV4tgXtb3sObXPEcrDJdzxBYGu68x0ZeWIlIbFnN5jO2Rtd2uLd3qKUxT7djdaeQbZ12QaJZwqUmTSyyQr9uO3O5gQXm7eWJPrEobXRTd4zXqB5Ib4/U2mMH6PkuFzcEEwPSScz+iXoM/cCqJ+OldM/VsGeCmFQcX9sV+/UThjyFHE+4fVjCFed9OchrUQfjr4EA854sP9k8v7ZiGQzzmlak454uT5VqIOyQpnqqDgRcZxE3Z0yNeBiC5mKszIKRnzOHny9ofj8l1OsabixVuv7RmvZ9CLH6lHxrEI7jhzmiW4+itnL956He3XnN+gGoRLxMWaVTilzV/t41/+6k2VcKqwILcR/nu/P3t67tLhJzmuWTrcnB0x+c16DYSPvPHbkZuCOARIHx9dVBYVNVGzvxuvd1U/aWRrETKkhXDbnpfgkt52YC5bHcB1I88hPsdj1ktyzMKC9p1cNacuZed3zyk0shaaXi/c0+OZxJnTdJ6LS/irgFayFXzwnJfMui6Cql7ZQVaxRxOx1N8TdznVYTXjlg5XH2gaQKzWceJaWS/o0C0J0/tNf5DaQsR0+oP5tn1hk9/RZHYanFeFSUF761X0Hawrbu4dl9vEq7qonPk8/R4hb5I1p2Szw3K0xjo8x6XrSbPeEDQMKPZimsmh+QzQIZJUzanUuJyxZcJ8RbZ21mts9qOHaAKmm8AelijQkxYj3M459TPE2wXHpOaU36yXLz33WmvphzTNUhCFZFKl8IGtGtD6bJEJp86x5/Seva7kjo+VL1soxvNCyRU8B/RPWkGdNuRI7mfct0ew+2xSf2f37Cp2/rQ5qHztMCGRQM85NR8lY74/qnJHSzhLGTGOlAvKotAtVtopFoVM33tjBRXRyaNbGNb+SFFCAgdJ80AaFEpCRXDsyONQCRp9WQIJbIu2YkBRFfcGdlHnKazByvdRMj6eJw+y9LITFV7t41cmzHp9xUWMzFsKPxv6A/xnw4eu4YpdJrsy26P7pIp0zccg70hOIwqDJAFch841ASJNokIIIYG0RtquOY1bctRrpKY5ryn6DrwePUvCAtoQjnHIvLeQD47FUEaYfPYE6hdSf1IZKaNatdj548hzMa9lpeuZ565fiKg5tV7z6unZ7b6IZ2Fa3x+09laj/PjTqAv443CYIWcet7G9EFFmvQoTYk2PfeZfiD0hZE4WSVqX3DeVa+xpQwIJDCxhO0MyI2JmA4gfZcGXB82RF1GC1xrZzHqDGCYYK6bZpDxciuFl27uGc9PEhLWQVO0pC/LeZu/xOY6SEfDWyzuHJoWzlxfLq3e6HQW/0q7IXbiFU4oXVTqkGhps/crRoTbr+LHPAICjBu6Dq3Y9HdFEDzOc27hKGgft8wBz35lJwZCUPhDkQjP/+9Rw+AQhxRqc5tTlO/fBhqiEU0UKkUbo1lRkT4KtmtNgGuqw0kEAgB1KBwo9Z+SnvrsJgLunXsuzgp0O0yGLYLk4lVHeV9KLQ0WYsPOJprjdRAJ/y+6ZWKCQkkQG1Qt7VO7EvB/SQsKDnEjuLcZjxHQ04p9e8qFR0iC2D+5v4AwXsVlAXLDTcem07IsZJIdIfW9OobDRmSAfN7FbxVDuOES8xvPit2r27bpNWkAX5/jBByOEkOOoNN5Yebz1mjWcIt9MdIylhdahO5ZrzGkw1RRC+WXf513QtofKBcXI9iU13GHH99s9wJxkjqwLp8899xyOOeYYjBkzBj/72c8wd+5cathoNIr7778fxxxzDMaOHYszzzwTM2bMsISpq6vDtddei8MOOwz77rsvJk6ciC1btljCzJs3D+effz72228/HHLIIbj99tsRjUZT99evX49Ro0Y5/ps9e7bUd881zA1vXstKX3G5TYLZelO2qQqtO+M1qaHx+5Fn44whR+Ga3X6eusY3re0VTlPOkPiFU0ssHP0e85xTn9MNns6b5TTmzB2OxlBOwV5IZNOd9SWQ44Qcv/10j3ImLyIMLOnPvB/WQh5Me705RCLhR6PoWH2nPE/WnLKPMkiHc2J2qAEAx253oGsezFczpalW5A48E9jf7/ZL7G7b9+YpLUu6os/yPNCnJdDA2aF0IP578F3Ufapupc8659TVY7xL5H6+vFkgtnua1mx/8zsj8gKvQEofmzJh1kuLd/LoS/DI2GswyOZgsy9Y1Gd15HznnXdwxx134Morr8Rrr72GUaNGYcKECdi2bRsx/N///ne8+uqruOWWW/DWW2/hmGOOwYQJE7Bx40YAyQZx5ZVXYsuWLfjnP/+JF198EeFwGJdeeini8eTuoC1btuCiiy7C7rvvjpdffhkPPvggvvzyS9x1112O9KZOnYovvvgi9d9ee+0VXGHkGJu6G1zDuJn1yoQnvkEehUKD2uJqXDL8JCGTDzNdieQCh4hwKuoJjiWU8WjFXNYpXZ938wjL232LHDVDEi6C8NZrR9ZAZAjsu1UOY4Y7McBjXgCgIlwqXG41Rcm2YDcZ9jI4itV0G5z7m2hmvTzp7Vk13HGtOx51BjTywBEr795zReHAU9f2ItQ1Fjp0hJH5uqREUzJkuxBvpeXneDhSmmHb0XA0h0h+zXq5xwBdt8wbHIJggA6R5MRL/2XH0HCOrR4hmAg53tqiauxSMSRnt7IFSVaF06eeego///nPccYZZ2C33XbDLbfcgpKSErz22mvE8G+++SauuOIKHHHEEdh5550xceJE7LLLLvj3v/8NAFi9ejXmzJmDW265BXvttRdGjhyJO+64A0uXLsVXX30FAPjkk09QUlKCG264Abvssgv2339/XHvttXjxxRfR1tZmSa9///4YNGhQ6r+iosLelCzUuDWN2af4OUqC9KzFEQk1cvkNmEdDZE9VyKxXMD9+hTLW+/DkxU045X0fvyt/dnNLGfDuFRNBB/Dg2N/g4bG/czXju3KX093jYwj1tNzeP+bXuH7kuagprhZ+o18M+yFO3v5w3D/mantGSLkTiNmfeTFVc0q4zrsQsmPZdpg6/kbLtageo4RmTRz73kRCkSaISbIOssdOP8dc8OlNVV0mkSkTflcBkjAfMBbygxdoSJstyJgtrqznhmauhnn3yWHaUuYSxc+HHoPrdjtbyOESC6PN2+d9faFVZs1bbzQaxYIFC3DFFVekroVCIRx66KFU89menh6UlFg90pWWlmLWrFmpOAFYwhQXF0PTNMyaNQtHHHEEotFo6po5jmg0ivnz5+Pggw9OXb/00ksRjUYxfPhwXHrppTj66KM9v28olL3qZKTtlgf7fVZ4DcnvRUdjPx+ix2+eYBphIqa0QqEQ8dlwyPkcC54wFqGYll/b9UEl/bm/t2Z6r3CI7IHUzPZl6b0H9jR4Ot+QZv4uyQFD642LJ8+6prPDUW458uqakjmwhnDY+sSAkirpbcpeBrNblhPDsJ430Ex/VBaVYbci9/1l4TDDZNtYDdfoeSDuwQxpGF29M0ZX7+zIo8EPBu5LjbMyVIarRpzmuK67FD0pvpClDfPVtxS2oEY9Pn+n41ASiqT7ibBz0SJZZ61p0xhcNoCZDfOzdkE41c+aCieb/b4iO4QJ46JzbCWPYTRCmtO7byikWdaIwoJtSuMcI1n9TV+t37TzRWWXh70u2eMPE/JhjCNps970mB22za1Y+Q279Jl20TRkGpvM2dJtv81zHHud5Z3TkPKjEa6HKEoNZzrkebK9jEIu89ricBF+uN1+1Ps0aHkrCSfHNsf2EOY8wBZ3nrbRrAmnjY2NiMfjGDjQukettrYWa9asIT5z6KGH4sknn8T++++PHXbYAe+++y5mzZqFnXZKOgLZddddMWTIENx33324+eabUVRUhHvvvRfxeBz19fUAgIMPPhh33HEHnn76aZxzzjloamrCww8/DACpMOXl5bj++uux7777AgDee+89XH755Xjsscdw1FFHCb9rJBJCba2Xcy/lMmAA2215v3iZ5XdtbSXu3v8yTPr+MUfYUCiE/v3o55iGNI35zv2qy6n3o/G0BzsjTHV3Om81AypQW+p8tp9W7niORmlpEdc3qepIL3TQwpvTBYCRg4egtpLve5fXpz02DqytchUwa1GJfxRfjeGVg1Fbbk2jvNnd+2O//mWo7Z98zhjEQqFk/ayOlrEeBQAUl0aY5ZaOU0NJSXoyZX8mFObvMMMhDTU11ud3HDiQu4x5qaoqs+SzI97lCMN6d/M94ztGws62/++jbsQvP50sFLdRXhqjXZWXO7+/PWxHm/Mc378ecpnwqnJRkVMILC5JDyekPBZF02nUDKhw1F8WpXXWibnxra6utQrOLYTzhcOREKqr03XbT19sfjYU0mA+S8a412UyBXbrcxWFRyPhfG97nROt/+UVJahOWOO1xzmgfwVqq/jjrOosdQ1TW1vp2HdtUFbGN4YWItUx51hZWiK/PKpNc7Idymsd8Vd1OvNhhEmew5zs/4xrPYl0h+VWB/uB3WdGIlaBqbo6PX5GIuk6c8O+52JwTdqazNwnDqytQj+dPm8ripDrHik/GjRHf2sekyor0vXd/rx5PlidsL53P9O8qMTlG1dXlnqqA5Wt5Hnm4Nr+qC2tRHW79TtHImFqOkVFVrEuX9tozp1zquv0M+luvPFGXH/99fjxj3+MUCiE0aNH46c//SkWLFgAACgqKsIDDzyA66+/HgcccADC4TCOO+447LXXXqk4R44cidtvvx133nkn7r77bhQVFWHixIn47rvvUqvrNTU1uOCCtFp+7NixqKurw+OPP+5JOI3FEmhp6RR+ThahULLRNja2I5Ggm7i1tli9CjY0tKGtjexpMJHQ0djUTk9UTz5Po6WlEw0h8v1oIm1KZ8TR3pae8DU1dkArdnZazS0djudodHf1uIYBgFbT+9PC279tuKMIDd3ucQNAZ2f6vRoa2riEhN3DOwGdQEOnNY22NqcwZae5qRMN8eRzsXjSRDeR0JPfutX9+faOLma5xXvjjCcS6O52fkd7OB7i8QS2bbPWtdbmLu4y5qW1tQsNxew4We9uvmeYksZicccztSBr53jKVdd1arjODuf+SHvYxk6rcHrQgNGOsuWhJ+o0d40yvjcAtMXS7aSpqQPFnfznMrZ3WPuh9rZuYhqtnc5+tqcnjtaWdN3mafc0LM/q5HvdpsU1tz5XUXg0dzjroL3OCdf/9u7/b+/O46Oo7/+Bv3Y3m01C7oNAgHCEJIRADkDCqQXqBR4gUqiAyCWIR78WpC22VrQSD0SF1qPy/SoeVVHBW2q/trZfi4oHKKL9qt9WK+IPAwFCkJCQzO+PsJM9Zueendnd17OPRw27c3x25jOf+bzncwzaTwTnI6ltHmxVn7cj3dsDNTYeizip1/Hj6u6h8ai5KfxeeeLESdOPR2C59duh14Zt/5jEORSXOZVd2tq67kEnA4LTQ4e+h++4TB3tiHyZ2XayPejfTUdbcNB7aj+nvnPDjcFJ/dHa1IGVpZeguy8bRw533YMaG4/haED9KXQ/J0P2IZeezt8UXN4G3pO+/z64rhWopaXr3Anfu4KWC6wXtbbKn+Njx1p15YHmY9L1zOYjJ4Bjzfg+5DxL1Sv82tqC781Ou0YzM1MlH26Hsi04zcnJgcfjEVsr/RobG8NaU/3y8vLwwAMPoKWlBU1NTejevTuuvfZa9O7dNdFIVVUVXnrpJRw5cgSCICA7Oxtjx47FueeeKy4zdepUTJ06FQ0NDUhPT8e+ffuwbt26oO2Eqq6uxjvvvKP79zqhgtLRIcinI+Srjg5BZhiZoDiWS25fghD5eyHgc/8yroBFI60bmByl490hs//g5cLTIrffdE8qkl1e9ec75HdpmSgoVIeKdSMdu44OQdUbN9qFDtnfNiyrDHuPN2BEdnnQbwldR+srSoTQ9ZXysg5qtin3feB3gTMlqk2n/HKntid33Uh8HHbcQ/59Y/kCXcdRatZmpesvcN9Ch7YyMey6iHQcJPobC0JwOWYk30id49DvQvO9E8p+ip7QawyQug615cOODgHn9xiDrd/+LfI2Vd7TupZXcb/oENBx6ua7adgqCIKAy3bWi+snat6OdK81/Z4UsJ80d0rY9l0yZf5PB87EbZ8/jsuKz5Usm5TOn2J5LlMm+79yubo+m5g/DACw73hXnT+03iGVp6VIptvlCitvg+bYkPs9AceiJK0Xlva7EOXpxac+C+yj7NJdr5UT6Rh4BE94GhT2E3rMYvUatS04TU5ORmVlJbZv346JEycCADo6OvDWW28FtVpKSUlJQUpKCpqamvDmm2/ipz/9adgyWVmd3Qh27NiBAwcOiPsIVFDQ+V7LV199FYWFhRg8eHDEfX766afi8qRmoL7J4wFVvOfUCZM3aH2NjLlpNlYIqTln7QoTIi0sPg9DMgdgZPYgbPjnFkPpyUrqhiMnI7XqmX+uE3FGPN2/WSouVMx/+o9v+IvcI4xFkvhcz2tv1IiUhmS3F6vK5qB/QaEl+yVnU1Oma53YToCAopR8/CCvFm8c3Kk3aUHUpDNwmUIN71qMd1JHzor6h5F61oT8WpyRVx0xrxl9l73ecjU0zfKTYxo7pmrPSegvmdpzfIT0yG9H7yvuIh1L76ku9U6o20abrd1658+fj5UrV6KyshJVVVXYtGkTWlpaMG1a5ziilStXorCwEMuXLwcA7Ny5EwcPHkR5eTn27t2LO+64A3369MH06dPFbb7yyisoKChAYWEhdu/ejZtvvhlz585FSUnX1M6PPfYYhg8fjuTkZLz++uu4//77ceeddyIpqfNwbN26FV6vFxUVFQCAP/3pT3j22WdRX18frUNjC8kZ6PRuy8D3Uhdi8PTj+vZplcD9apmpN2xlg1S1nEoUglqSoDRbr8/jxel51RH3JaZDIa09fXloFfzdI6VeJaP/wLngkkzboPRi3duMxGnPLDO95oyB1PWeUwN5PTS7RNqU1Cun1FwXeshVGH5QUIu8vHTHdaki66mpUOt9/63sDPkWzNZL0qTrKHakQz4fhQemGibMUsjHsv185F6PE/ZvdWmqySrFriOfq95u+Pf6zlBwwGlPowyD0yibPHkyGhsbsX79ejQ0NKCiogIbN25Ebm7nE7pvv/02aJbFlpYWrF27Fnv37kVGRgbOPPNMLF++HMnJXROB7N+/H/X19Th06BB69OiBhQsXYuHChUH73blzJ9avX4/jx4+jrKwM69evD2tZvffee7Fv3z54PB6UlJTgnnvuwVlnnWXh0bCfmdnf7IspsIBwWstp4H61Bqd2FjqhAaKatCi1nJpleHY53jr0sfhvLU9blUgFpw/WrAx7v+1PS2Zi3f89pXs/Vjq/cAxe3L9ddhmpY5SelIq7hlyNaz/eYGj//qMXKdBXov38heZV6UqZVCtBlrebJa3iep+SU3xTk7eteRWW+RKxN4kqUTouSsdf60Pa4DBLqeVUYdu6H/qFz5SrxA2XYq80Iy3BahtLjDS6yAo5lrcOXoITHV1zF4TmA6t6AzmJ7RMizZkzB3PmzJH87tFHHw369+jRo7Ft2zbZ7c2fPx/z58+XXebOO++U/X7atGli620ikb64IweCRhoktL7ntE0IGBgf1fulth9Z4NManJpHahygqjSEvLRbTu/U7uq3K7NFo4WroeDUhbDTmuoOn5yk0Cc9cZEaHegM4j0WZdYrB1yE83qMwZIP14qfqa1I9k/raXj//vOnJTgNuslrPCxh3XojLCf1aoWfDJiBvS3faduhCqy4kxQ1uSJJR7de5f1qzI/Mvyazoluv0vfWnUPlbr06txuyYdm6oIbAUHF9ve85DXwvq2IAbOw99H41WaVB/07EB6HmHEmKW7q79Zr8xC/w5hzxQlWxyeLUznFgA7oZr6BL7TfXm6FxVfMKHaMVGDVpuaDHWFPSo5zWrq68UksaqVdJ5R+p7anJoz8vnS35ub8rqdaxZZFIpcT/gm4t63R+bjzP+VvdtZyH0LZvTfsL+XekcyPVrTdf4wMjtfql9bBkuxTb1FxfHgtaTjXHpoZ3l3gVZj/Jx/gWHA6j40K1bk/LsuEPDNVtO3w55fXUBMJKx19vftXyUNWqKyIRH4QyOCWR5jErBsa/yD9hCl83eKyj/m69tw1eiuUlM3Fe4RjFZdUK3K/X7ZVZ0lpGZvoFoFjy9kvrqRgQWUH6dxnr1qtme2qeguZ6MyU/j0a3m9AgW+0RMeM+F9itt+szAbdULMbqQQsi7VniL5X7C8sDEYJTnZN/6LFi4CzTt0lxIEJW+03FYvFvrWNOrRg2bfSaSISuhZFIHTs7Wre0Bi1aWgEVe/Vq2nPgZrUEyP59hc87oXW75jS0mNvo4mfdVIKxi8EpiaSuK6ue2Gi9iAPHOkZaVU2hl5OcgTO7nxbxxeKhtAZ8eie6MIPRqoLi0TOxhqRlS1J50EhFQO3EX0YmXepqOTXn+lnc93wAwH+UzBA/039tmtByeqrbcug1Nzy7HHU50rOeG6kMq+3Wa9bxViPbm4EphaOjtj+KDZHy+YjscvFvrT0q1Awx0Hp9WTHuNbFFP4Qwdh+U/97rUngQHTZnhfkC83RJt14AgL6pOmdB19utN8Lf0stakwfM6i4cS2wfc0rOYeYFoHSRyhWqUt8EtpxGszuRS0UlIjA9Wm/4Zgb/agLjwEr+mNwhePbbv2J8XlVnWjR241Hel7KC5Gw0tB6WXcbsLlRSXT+llzMeTEXalxsuTWOEh2WX4ZVRtyu8Ukl7dym9goJvlT8j8JxpvYbD2k01dOvVsz+1ErlrI0kzO0dc2X8axuQOMX2/SQZ7wTDvB7M6OJP83sKH4f3TeuKc7nUYkjlA8nvdr5LR2ePnvB6jkZ6UiuHZZRG3rGW/atcNHvcavNysXpPw5Devd32vu+VU/lgm4pWWeOE4RRR4AXgNPlVVupjknhy7XW5MyB+Gmb26ZlBuR3RmiQ3lU3EDT/F0zRatteXUzEIncJKNMwtGKC4/v3gybhu8FAuKp6jafpY3XVN6ZF87I45ZdAWdZ/Frxa2b3XIq8VnIcrN7n6l6H+KEQRFuVltG/gY3ls9XvT0g/JpRrrhE+FzTXtXT8p5T7fdwdeObzBrjq1YiVhpIntm9jSYXjlK1Ta37NX6PT9zcL3kPsaDXhlXv1Ty1dYV9u/AfJTPww4Lhkt+bNSGSWh6XB5MKhiNb47we4n5lv438a4LzefBWhmWVySxrnmj2CHIKtpySKLBw9Y8tjPjaFpf8bL1KBbXSRfyz0kuC/q30fk2r+NzJisukeVLEv7V36zWz5bSrsjE+rxp/anhPYm8BrbxuD6qzBnZ9p3DOlg+cqSk9al4744K+At1QdyapzyQ+DGyFWzfkKgzO6Be2TKSAzN+yGOm3pXh8SE9KU0yrHOWnrRGuXVO69cr/PmUaW05Dfmqk8y81Wy9gzjhbKYk76o4iMb+Cqm57Wverd/6AX5dfhs3f/AXTeo7XtX48iFSymr8f5QBS/7aN0jchkqY9a1lUalhawAb6yHQHlqu3BQaG7YFvjZDYp956ifJjXQanRABUjDcwSOuToMCJhlI94a/9sIpPxQRH3QKCU60tN2YWOkbHECmlpNCXq2l7HTKt3Woq9aHB16icSrx9aA8AY8dN+gXq4ectMI9q74aqPObU6JnXPVuiCVnOv2ct13Hw82dtiQjrAu2Qbr0MTymUXF7bPGK1ju0Z368UvfeL0blDMFpFN+NEkePNwKG2o+idkh/1fRt7SGusTDTnLadKy2q5v4QvG3iPTPVEbmhIkq3vdm33zcaPcB1+LLOoRcNHErDllN16SRR4cf/0VCtZpEtC6VJRHnOqLeuNz63CpPzhuHnQQk3rGZWhonUrMIDV+ooAM8sco5MxBZ4zMyZ26lAxgZLsu1CFrqWA4NfYGCmsf1EW/l5lydZUEwIaK2dwlDq8gfuz8nYmSLQMK51uY8czeOORjmvkfGHN0WBoSlpkersh09tN9/qyvZUMBqdSPUNIWuCxvmfoNVjWbyomWzI5mnWluNGH2WGTRaq8JzuxFVBugszAB7BtHSeDvgv9LVbd7514zKzGllMSBWb/AWlFpz7Td1EoBq8ag4sktwfXlco8sbJI/7Se+FHRRFRkFEdcJvC3aB9zal6h0zu1wLRtpXtSceTkMUPbkOuKrdQtNPCJp3+J4JZM/YZnl+P31dfh8g/v6Nqe1IzAJuxPbsIK409DQ1pOXUBnSq2fmF5Pt97gCZE07s/gTNGJd2snu5hdkbSqR0Rgt9785Cwk2/gatFjW3ZeDC3qOs2TbSqfUyFhEo+PzdU+IZFXrouRn6no/6Q/Uo3NnseM1RXZjyymJAi9eNYWe7CIK69v5yhUtXC4XFvSdrLobk8fGS2poZglWlc3Fw7W/iHjjkLuhmD3oXq5bb6DIN43Q1rLAY2ssraE3SOn31mmb/ViKpS2nEp8F/yzrRkYJARNayadIes9GZ+uVy6uL+56HqswSTdsnMovZde+gd1PKbFvrNRU4HGX90J8kYPXX+ZTn7tBf37DrVUJhs/WaNPTFSNArVx8Nfpe3PKsmLtLy2+Ll/cOxESFQdEhVbHV2kzPa7VcPJ1yUat+f6mf2cTg9rxo9UvJ0rWt2WuQmRNLSEuZPV2DBb/QmEBo0Ks3Wq78HgXVVvvSkVNn9Rb5yjafJPwZUS/CtIm6OSMv42ulFP8A53euCl7eo0uCEMoecRev19ZuKxaqXNbNbb+CEbLnJmZrWTXRO6WZp5D5otIEg7PVeKtezasypEXKBupbXHupOr0J9yCn5LZoYnJIoqOVUxcVg5EZpRYuSEyqKdracqqH3XV96yHXrPf/U+NHJhaNUb09N4KV6W6EtpxIbVHUNKO5H5juDvyJ0PPSRtmNRvIVpv9aM/F6tkz+ZVRb09Mk/6DHY25jikNZ8PiK7HL1MmExH6wOY5JDZehOxAqxXtOanUZyt18A5M/qAV+9QC+vymdQDZnX7lW1FlruHq+iBZYbQ/ZxXOCbisvFyS+KYUxIFVf79DacmbEtKvL63KS0pRXmhAE46CmanRW5CpJm9JuL0/Gr09OXh0a//GPa91KrBLZnGHgKEBp5Sgagr+M6mSzQrfB1Ch6r9mdGK6D89gdvSclPU3K1X49wbemcyDjW7z1l47bsd+Kjp/3StT4lHz+WlthXL7Iddfxh+g+ZJ/Ch6FMecGgpOzR1zqjr/aeurq2Fh7Zs6v3AMXty/HWPzhkZeT0OC9dZrFbsLB6ThyRE3IlvunfNx8sSUwSmJgiutrlP/b824tXidGjvwnadqOOk4mJ2W9lNjTiMFfkWnWgsi7TdsnKHEwxO9wvcpkUYVuVyppdxoBUALt8vd+btU3JseGXZ9WMuJFkrvcZUS/HBBK40tpybdoJNdHkzIr5UJTuOjIkBmCs6blRn9FddwqwwQ5XsracfuvPo4pZXZzvqDmt4pkg+ZrWpd1LHOlQMuwuJ+58tOBqYlvdHovScbmEYpDdHg7D6IFFWBl6DRbrdKhabWV8k43eicSuR4MxQLjlBWBS+GZzc14abnD2AM/0Zx+HP4wxO9QvOf1BPP4L1J709pjLFXptJp9i1ayxii7r4cZHszdO9LfI+rgb4VWoSOo9bardfIsZZ93ZGB7VJ8Cs0vt1QsUlzHjAkCjZbZTgm4YkN0jpWV3XqNis57TrUsK7W0cp3ByCzVofuUm2dDjuLEipomRIoP8RUhkCFqp91Wty15lnTrtfGqvKH8Mjw+/FeaKxlOCtLNvtFNLuyclGZmr4mmbC/wWBl9eBKe/5RubNK8EV7efdvgpShP74NFfc+PuK4VFYto5Sep2Xq1PLHVevlP6zk+ZH2l4DRkfzqPtQD5sipenlKTeUJzi5pus2bMVcDgMnqidqQVdmRrzyuZB+D+vChdPmrobeOAPK1lNuHj7SesSYOG8iFe7kns1kuS/BdkpAvTaKFoRSXazovS5XLpKkidNPbW7JSc1X0khmWVI09X17Hwc6n2lQpqaH15dsSW0wgVz+qsgbhn6E+UEmEqQRCiNlGHX7QqD8luL9I9qWhuP65qvzVZAwEA43KrcGoF3aLZNZtiX9irMlRkPq2zvKvZr+b1nXMrIpXsfP+lXG3LLROchuYzs+4hbpdb5cvrtNGSuqMnv7cgBRrrifERmzI4pS5aZ0MtTuse8Tul60PtOzDjXbSfDMqNMTKz5dwv35ele93QG1vwjdjcllOpsl/N/cCMSqW5AlsyreO/ftV0fZaiJ38FdplSWrvQl4utI29BijtZ9/6AzjzohKf3FDvUzAQeSm3LqeyESMymUROtFksruvXOKPoBfKfKRSNkAybZr6w5dh6XS3zFmYpkqCaX3sDvfG4v6nIqTdgjAezWSwGCJif1t5xGWhbquitFonVsZryybMypxGe/Kpsn34oZcLKj2Qqt9gYc9J5Tw93O3SH/lhpzqr9brx0ERK+7WW1WGQBgWHa5+Jm24FS7k0J71/oqKoepHp8plUi5vBYnEyOSicIHDCjnQbXDQeTym/EykdGt0yjeG3WUbwv7noc5fc7SmyTR9WWXRvxOPqBTT+n3l3Tr1bWs4jVkvLAOqxcFJO/p025ClrebOdsNoeXajpduvQxOKYD5LWdSuidnWzJ9fSxektHsllOa3lv2+8BzbtZsp0bIjRs03q1cueudmmsgN7lzUqGC5GzNaTD7GotmK9/SfhfiF6VzsLTfheJn2k6JnpbTgOBU4/pGjot8XrP/OiGn0d6t15yHlAwuE42d3XrL0vtE/C5aqVpXeZX4t0dpHgKdRXXg9St/vK371dpmDI4PznnsT7YLelWH+F9jF9y0nuNxpO0Y/nzgg64P2f9IFM0JDbR0EbL76ZsAiHeTrpZT856lhXe90/eEOtntxTOn3QyfgRn/YlGKJxln5NcEfaZlHLmeciWwy1Y0W3nk8p3d1wk5T9iYOpWt/Ib3y+A0aqJ1rPXel+ym3IoZsKyB/QS+Dk1q0iAzzlPgIQ7tDq11KJz+NLDllBJY8HsIO7NG5Iyu7mJZ0u9CrCy9RMea2sXiRWnnk085dh3JSfnDAQBjcoeIn5n1oCSQmdtKT0qFV8c7Q61oOXXSBFtW0lopM1KJc+o1Ss6k57pe0u8CVGWWGNsvXyUTNU45Uk49Z0qPwVVvR8PPU2w51VmrCTzGoe8GN2ueDqVWXaeeZysxOCVJaguFNRWXS37uhG6hscC6J58Ss+RpGL8SzfMXmKrlA2fi4dpVGJlTEbacmUGCmiAuWk9FzWTnTUxLYGw020crYOwcxysz5jQqqaBYoidndvfl4PbKKxSXk6tgx0oZReopnVOnPjhTO4mQke0AwXUWq+bvCJr0yBN5IikrnwsnykPnQOzWSyI9T4GKUvIM7SfRtVj0Xiw9As9KVFuhQ24wPVJyIywW3ZbTWLsf2P88SNtUF9GkZW8FydloaD0MAChP74Ovvv9/MkvbftDJYbS8k9BMRiuwsVbe2Slq3Xo1BGexwufx4se9fojuvhxTtyuV/804PIHHeNipiQAjLKl7H0r1re7JnccqzZOivC37KwKmYHBKIlfQ32o7Zmi/IBmcdunmSbVku5KvvlY47E4acyqVBjOfHqrbljlddiJu3eSKhYAOWysrWp7iG02l1ryg5fzdNeRqvHNoD07LqUB3Xw6+Pv6d1uRRArPyEpQvl43umPdl1RxyqJxUlwrMm0rl87zic0zffzTeRz2795lB/w4eCqefUn0rw5uGTcNWITNJeTZg+2tu5mBwSiI9s6HG4IM7RxmVW4kr+k3FiIBXclhHw6B6J5VwpzKZlgl3FDfpoJu6WVyn/mfb/jXs2mg6zcwLofJ9WZjSY4yqZR11nZBDWHcNylVindrFMx455f7h1O6eTjk+Zggec+oN+U56Oa3UtHYW+qR7lElsTXc6nITBKXVxSf6psIqOllOHFqh28LjcuLDnuKjsS+mo29VyqjYPmXnDUzfm1FoWtMWGHKPo3qSiWSGJZhnCSj9pYWVukavDckKk+KNlhv1YZdb4VKu4IvwdtpyB688JPdWchsEpibSMOfV/74TCwy9e+tpbRXn8StffTigsQ1PQKrSZtm1VY04t7tZrNpfL3t5mmia6MJhQTxTH9VVnDUT/tJ5hr84BnHGdkLNYW1YwvzlB9F4lE5XdmM4590vjD9zlehSa9TvNvKrj5Z7E4JREQU+ILCwVrdpyaXpvFCRnY1xelUV7iB1SgbqWMadOlOvNAACUdutteFtqxqdYXTHok1po6vZccNnaK0HbvrWn0+vyoE1o17EvY5LdXtxXvVzyu/ioBpCZrB1zah1nl/6Jyd+Vs19qD8nvO9ARzeSoZlb57IjgPCANVvWiMbNhJV7aaBickkhPgaIvoLHmAk92e/Ho8F9asu344MwuQhPya/HI19swq9ckye/9qUrx+LB15C1h4z6iwYqbZLI7CVf3vwgb/rXF/I3bQNsrArTbUHUtln64FoCTxlrFSU2ATGNlOWpl7yCnP5xMRKkeH7aM/A18bulXmDi1t5gT85LeIxX8WywKTk28j7DllOKOpgLlVOVQTx3RecVW/JF6H5fS+U1ye6xKjqyeKXl4edTt8KhozUz1+KKQIr8o5FSTgyxbJ0TStKz2dPZL62o9sHJCJC0cWjckGzmxYk7mimbPDbnXh3Q4KBAJTIl5R8foOOouegP5wG2EPhR1YrfeeOGMOzw5gpmtoPHy9CZW1WaV4tzudbixfL74mdLZTYnwdDYapANTe/NQNJ6YGlWXMzjo37HTrdcYp7ScspyjUFZeB5bmN2dcUjHBKYcqyWXPA2UpgtDVxdisoM3odnym9LKK/LoYsy513kfCMTglWR0Rnja5Qv6rBWfrtZ7H5cZPSmZgVG6l+JlSQZ8i0dpqJ3/Ws6slIip7Ndj09ovS2eLfLrhwTvc6oynSTduESJxZlEgrJ7WUJTKnlD/dfTmoziyxOxkAgvOmlvK9OK1z7gUrXqc3p89ZqM0qxW2Dl+reRuCDUJdVIZOZY07jpIxgcEoiqQL35KkJSLSso7wfsoXCgQ8c1+KUmy9gX35xyTwxdYqUgG7OLgCzek2U7QZmpWjmmWi8cF2NeKkIkLlGZldYtGWOOaVg84rPtTsJAIIbMrTkpFSPDy/W3YqbBy3Std9ZvSZhfoRjkO3NQP3gJajOGqhr20DobL3h35rBzIdO8XJHcsYdnhxB6mFXW8dJzeuo2JOelcggpcqHmjGfZDITexG4XC64XW4UmzwLsJJ0TyoAoGeK2peEG6d11kSrgshIPUsosdXlDlZeSAcrsxvvymREhxA4c7C23OR1J0m2tqrZymXF5+LHfX6oaX96hdahHHnNxMk9iRMiUQD1LaddFylbTmOFmuM+sFsvfHHsG8vToobtrVKuwD9jL9dG6+itr/oJ3jz4ES7oMS5Ke2TLKTmbVeUF85szOOl+YNXrTbQSgrr1mrNNJxxnufedm5U+Mx9yxksJweCURFKXWZug0HLKCZFiiP0FvS4Wj1Hul9ZTerexeryirCglHz/qNTGq+3TKuWE5R1KimTsXFk9RHH6jjjOuKdLGKXN4BHZNdcps6oH0ltWBh9eqifj4KplwzstBZBupCl9bh9KYU3WuGXCx7H7IGRLx3KwbcqXk50Fz9TqkAiAnkc6dR+P5sOzYxEc9gGKEVMVzRq8J+HHv6HRrJOdxSiDo1HeuGtd17wjtsWNWvcDMgLIsvY9p27KTM3I1OYLUhZaZlCa57OCMfp3rqKz0TS4cJY5Ns7oljKSpOexOeuoWrZREzsOxlU+NzKAdayybNVEjzp5K0ixqYbFyzGkiFBxxyCkPTjsseJWMmZeR7pZT85IQkZnX9ZJ+F5i3MRs54w5PjiBVoIzOrcS8Pudgbu+zgj5f1HeKfyUd+yE7aCkAndQKZ3VKnPNLSS2t3auseugioEN5IUo4VpUpVj48dFKZT+o5Zcxp4IO6C3t2zj+wsHiKoW2amSdL0nphQFoRftxLWy+DaFwXZt5H0jwpGJ1Tqbygw3HMKYmkLkG3y40f9/4h3mrcE/S5/xUWkcecSn3GVgZ78fhLk87DDnkgTRKsGvujFWfrJSI7OWWW/cD6XUVGX7xUdxuS3B4bUxQsye3BvdU/1bye3K2GD3Ss44xcTY5g9TtL/UUXL2h7qKlGO6uqHZ3URMqPcrP0maWbme8kdUjAFg1OGWdFJMWqrpZsOXUGJxW1PrfX7iQACH2VDEwJTJ1xmCOnwqz0mX1Vx8O1zJZT6iL7hEjHSmEEzWuQeZLdsXW5t5+62SW5rH36GqmiEY18Oj6vCp8c/RLjcqsMbysWbkibR6w2NLNoTeZA7Gs54JhxVuwNQlIs69bLlnpHcNJpSHZMcOqgg2KiqHTrjdNjZ0Rs1VbJUrpaTgOn2YZLdoIQ8fpzSMUyUTw67Jc41n5c1U0s8Mxc0GMsXvh/f7cuYQr8wan13ZaU86NVOdbj8mBZ/2mmbCsWrqpMbzdD69cPXqJrPatu/fFaISOi2OBzJ9udBADWTA53QY9xeLNxNxYUTzZ922rJjek1K3A1+yFniscZecII9o0ikZ7LLPDirM0qk11WYMupLQp82RHf5RkqsIi8ot9UcVZmO/hb2NwWt5xGDl1iK6eG3ijjsVXP5XI5ptUUiM9jTGZgt9545qAiyNZuvZuGrRL/FgTzJ4eryirBC3W3Rv092kHkzrVJ+cDs63ph3/NwWvYg3DXkalO3G01sOaUAka+0SBePK9IyEi0KXcGpg0p2kuRydQYCpo6J1CnJppbTaIw5peiwbvZUonBW5Te+usgZnNRhIsntwYC0Ivzz+31R33ehL1f826q8afdwJLl7v2ktpyYfurzkTNxcscjcjUYZW05JJPc0MHL3ta6V2IpAVrCqW+/KgZdgQfHkiDc/Jz0dVyXW0hsPnFRLpfjH95yShJ8MuNjuJCDJFZ9tXdG4LKqzSgAANVmlUdhbbIjP3ES6yPWtjxyauhSXEb8X2HLqeCGVbSecK49F3XonFgxTWMIl+afTOanbq1NYVacfmlWCXU1fYEzuEIv2QLEoFmfrJfWcVsTamS9WD1qAP363A5MU76exyvrZekflVGL90J+gb2oPk7YY+xicUgC54FR6PEFQIa2yFcFpBTtJcc5Jcsp73JzOCQ8SEs3MookoSStCddZAu5NCjmLNtZiTnAEAKPTlWLB1lh9qscNEl7qcwajLGWx3MmKay+VCWXofu5PhKAxOSSRXuY081bX6br0sz2OJc86WXcGpK+hv51bcLi76AZ7Z9wZOz6u2OykJJ8ntwajcSruTQQliWb9pSPOkYEbRBNO37dwSjsg+cvVa59SS4g+DUxLJjjlVNSGS9N+hnzq5op/wQjKBna3cNVkDsevIFxiSOcCW/cdKPl3U9zzMLz7Xsu7PRKSNVSVHTnIGri35kUVbJ7XY+ytxyL2DlN3srcPglERyXVUiXaBul56WU5bsjhVynkvSeuGdQ5+i3IYuJ78edBn+r+MbVHr72/KI0hVDQ04ZmBI5h94HWz19efj2xEGTU6NOrDyMo3AMkazjk3tnKA+8ZRickiqRrkF3wITPck+YAvEWGAs6z9Ks3pOQ78u2ZcKXbkmpmJBXg4MHm2VmiyYiig+yFWEiirpkdxIeHfZLpHp8Yd/x1U7WYXBKoiR35NaXiN16g1pO5bELROxJdnsxuXCU3cmwiSvC37GB8XyXopQ8AEBZN046Qc5lZynDrqpE0gp82ZKfs05rHQanJPK43Hh8+A1IcXslvlW+CLv7crDn6L9OLR2+vL+yzFddOBeL2i7MpfEjzZOC50begmTJso3IXLFZaWWJR0TOwHc0UJC85Ex0S0oN+1xNt8p5fc5WWCIWb9iUqALHYPF5SuxL8fjg5muJiIjIBGqHspF2vFOTKmqeBHdLSkVPX57MNjpx4gXn4pnpwhZ+IkoULO2ItInNHhKxgcEpqaKm5dSt8vbGm6BzsaiVxgcqRKSWWeXomorLTdoSxTMGSfbgUbcOg1NSRV3hJ1+BZwHqfP5zxFAsGINTIrJaaDkzLLvMtn2THB4rAhieWofBKakiCB2mbYs3QefjOSIiss/C4ilR3iPLfPUYlJC6HoWkj+3B6eOPP46JEydi6NCh+NGPfoSPPvoo4rKtra245557MHHiRFRVVeHiiy/G+++/H7RMQ0MDVqxYgbFjx6K2thbLli3D/v37g5bZvXs3Lr30UgwfPhyjR4/GmjVr0NraGrTMP/7xD1xyySUYOnQozjjjDGzcuNG8Hx2D1FyCHVAZwPIe6FgsaomIjNJXkvpvjT63FzN6TTAvOURkuhQ330tsFVuD01deeQX19fW48sorsXXrVpSXl2PRokVobGyUXP7uu+/Gli1bsHr1arz44ouYOHEiFi1ahH379gHonDnryiuvxP79+/H73/8emzdvhsfjweWXX4729nYAwP79+7FgwQKUlZXhmWeewYYNG/D3v/8dt912m7if5uZmLFy4EEVFRdiyZQtWrlyJDRs24JlnnrH+oDiU3MuGZ/WahLqcCqR7wmf5lcJWOSIiImkeG2aV5vxvWjjrYLFOZY+i1HwsLJ6CWyoW252UuGNrcPrQQw9h5syZmD59OgYOHIjVq1fD5/Nh69atksu/8MILuOKKKzB+/Hj07dsXy5YtQ//+/fHEE08AAL788kt8+OGHWL16NSorK1FaWor6+np89tln2L59OwDgjTfegM/nw/XXX4/+/ftjxIgRWLFiBTZv3ozm5mZxP21tbaivr0dpaSmmTJmCuXPn4uGHH47KcXEkme4LlxWfi9WDFnJ203jAbiqSYvPmz3NJFFN4D40Rzipby9J7ozqzBIv7nmd3UhLOjF4TMDy73O5kxJ0ku3bc2tqKPXv24IorrhA/c7vdGDNmDHbt2iW5TltbG3w+X9BnKSkp2Llzp7hNAEHLJCcnw+VyYefOnRg/fjxaW1vFzwK30draio8//hijRo3Crl27UFdXB6+364Xt48aNw4MPPojm5makp6dr/r1ut303Hf++jaRBcAUXxpG25T+sAgSZZVy2Hg+KTDh1WpxwjszIt2Zxu+0/Hmq5A8q2WElzvHFS3iUbBJx2LXkgcMlo5x23RGDM/CvN5bAy1o0k3DF0md3JsA3L2/hjW3B66NAhtLe3Iz8/P+jzvLw8fPXVV5LrjBkzBv/1X/+FESNGoKioCNu2bcPOnTtRXFwMABgwYAB69uyJdevW4cYbb4TX68Wdd96J9vZ2HDhwAAAwatQo1NfX4+GHH8bs2bNx+PBh3HvvvQAgLnPgwAFxm37+dB44cEBzcJqU5EZenvaA1mw5Od10r5t6OLhvfaTf4/F4AHQ+aIi0TLLX44jjQeGSPJ2dKdxul2POkZF8a5bc3G7IS3HG8VCSlOQR/3bKOUxUTsi7FH3px1LEv7Vcg56kzvLX5Yp++Zuy1xv2GcsPaYe9Xdc1j5FzsLyNH7YFp5EIghCxe+gvf/lLrFq1CmeeeSbcbjcqKiowZcoU7NmzBwDg9Xqxfv16rFq1Cqeddho8Hg/OOeccVFZWitssLS3FmjVrcOutt+L222+H1+vFsmXLsGPHDrjdXb2cQ9MgnOruqKfr6smTHWhqOq55PbO43S7k5HTDoUPH0NGhrztK87ETQf8+eLBZcrn29g7xv5GWOdkW+Tuy18mTnWOzhQ7B9nNkRr41y6HGY3D7HFdcSvKfQyDydUrWclLepehrPtYi/q3lGmw/2Xn/7LCh/G1pORn2GcsPaYeOHRP/5jGyH8vb2JGZmQqv16O4nG21rZycHHg8HrG10q+xsTGsNdUvLy8PDzzwAFpaWtDU1ITu3bvj2muvRe/evcVlqqqq8NJLL+HIkSMQBAHZ2dkYO3Yszj33XHGZqVOnYurUqWhoaEB6ejr27duHdevWidvJz88PS9fBgwfFNOjhhAumo0PQnY6OkFfJqNlO6DI1WaXYdeRzlKcXO+J4ULiu95y6HHOOjORb09IgOOMaViNw2HCspDleOSHvUvQFnnPd99xo5xuJ3THvShME4+eXzMfyNn7YNiFScnIyKisrxYmKAKCjowNvvfUWampqZNdNSUlB9+7d0dTUhDfffBMTJ04MWyYrKwvZ2dnYsWMHDhw4ILlMQUEBUlNT8eqrr6KwsBCDBw8GANTU1GDHjh1oa2sTl92+fTtKS0t1jTeNB4LKiXLk2pWvL5uLFQNn4ZLePzQnUURERERRxbGNRFaytZ/a/PnzsXLlSlRWVqKqqgqbNm1CS0sLpk2bBgBYuXIlCgsLsXz5cgDAzp07cfDgQZSXl2Pv3r2444470KdPH0yfPl3c5iuvvIKCggIUFhZi9+7duPnmmzF37lyUlJSIyzz22GMYPnw4kpOT8frrr+P+++/HnXfeiaSkzsNx/vnn43e/+x2uv/56LF68GJ9//jkeeeQRXH/99VE8Os4iaJydTmr5jKQ0/LBghFlJIoqaFHf4eCwiImnGWm+03m/NwImC1XMzOCWylK3B6eTJk9HY2Ij169ejoaEBFRUV2LhxI3JzcwEA3377bdA40JaWFqxduxZ79+5FRkYGzjzzTCxfvhzJyV2T9ezfvx/19fU4dOgQevTogYULF2LhwoVB+925cyfWr1+P48ePo6ysDOvXrw9qWc3IyMB//ud/4qabbsJFF12EnJwcXHnllZgxY4bFR8S55N5zGoyFdizzn2W+FihYisenvJDDsHMTkT30Xnt2vrIqNl+XZY8+qd1xel41KjP6250Uorhk+wwfc+bMwZw5cyS/e/TRR4P+PXr0aGzbtk12e/Pnz8f8+fNll7nzzjsV0zVo0CD84Q9/UFwuYbCmmxDEib9YUQnicdn6SmhNeOaIYpstLadR32PscrlcWFU21+5kEMWt2Klxka3UtpzyBkdERBRbvCFDF8bkDrEpJUSU6GxvOaXYIITM1qu4PJtaYxLPWrDnRq6RfDk9EVEkaicQdJIUd9fwqLqcwfhV2TwbU0NEiYzBKamiuuWUFfkYF3uVKiuleJKVFyIiinGBZZ3b5eK9nIhsw269pMrw7HJNy8fik2PqwjGnRESJw8cZyYnIIRickiqDM/rhx72U30/KkIaIiBJZLM7W63V5bNs3EVEgBqekWqEvx+4kkMXY3k1EZC/2PCKiRMbglFRTNwaFbaexrOtVMkREpI++4JLDPImIGJySBlqe5nK23tjGyTBiH69BIns0th3Vtd7Z3esAABcVnWFmcoiIYgpn6yVTMaQhshcnsyKy14S8Wjz69R8xr885mtabXDgKw7LKbB9Cw27FRGQnBqekmprWNN7SYhtb24iIjClKzcfLo26Hx6W9c1qPlFwLUqQCe8sQkUOwWy+ZzD9mkTe6WMbzR0Skn57A1E6BZT4fURKRnWKr9CRbqQlXOvwT6vApbExiyykRERER2YXBKZnKH9qw5S228ewRESUmlv9EZCcGp2QyduuNZWw3JSJKbLwPEJGdGJySBuonRGJoGqP8szSyWzYRERERRRmDUzKVwDGncYFnj4goUbHtlIjsw+CUTCWwWy8REVFM4R2biJyCwSmZqkMMTikWcUKrOMBTR0RERDGKwSmZi2MWYxpbvomIiIjILgxOSTU14QonRCIiIiIiIj0YnJKp/C1vbmYtIiKimCBE+JuIKNoYQZBqambg9c/WS7GJ54+IiIiI7MLglEzlD23cHHMakwam9wYAlHTrZXNKiIgoWgS2lxKRQyTZnQCKLwJHnca05SUz8cfvduCcwjq7k0JERNHCXjNE5BAMTkkD9QEnQ9PYlOnthhm9JtidDCIisglbUYnITuzWS6qpCTiv6D8VALCo73mWpoWIpPE1QESkFcNRInIKtpySauNyq/BS+nac3X1kxGVOz6vG2FFD4XHxuQcREVEsYGspETkFg1NSzefx4q6hVysux8CUiIiIiIi0YhRBRERElMDYbkpETsHglIiIiCiRBczWy4l7ichODE6JiIiIEhjjUSJyCganRERERAQAOKv7CLuTQEQJjMEpERERUQILnK33BwW1NqaEiBIdg1MiIiIiIiKyHYNTIqI44rI7AUREREQ6MTglIiIiSmACp0QiIodgcEpERESUwPj6GCJyCganRERERAmMLadE5BQMTomIiIiIiMh2DE6JiIiIiIjIdgxOiYiIiBIau/USkTMwOCUiIiJKYAxNicgpGJwSERERJTCB0/USkUMwOCUiiiMuuOxOAhHFmLL0PgCAvumFNqeEiBJdkt0JICIiIiL7VGcNxF1Dr0Jt74FobWq3OzlElMDYckpEFEf6dysCAFSk97U5JUQUSyoz+yPDm2p3MogowbHllIgojszrcw56+HJxRn613UkhIiIi0oTBKRFRHEnxJOPCnuPsTgYRERGRZuzWS0RERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtnMJgiDYnYh419EhoL29w9Y0eL0etLW125oGIq2YbylWMe9SLGK+pVjEfBsbPB433G6X4nIMTomIiIiIiMh27NZLREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2YlxxIwAADHZJREFUY3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwGsPeffddLF26FOPGjUN5eTn+8pe/iN8dPnwYN998M84++2xUVVVhwoQJuOWWW9Dc3By0jX379uHyyy9HdXU1Ro8ejdtvvx3t7e3R/imUQOTybaDW1lZceOGFKC8vx2effRb0HfMtRZuafPvBBx9g7ty5qK6uxmmnnYbLLrss6HvmW4o2pXz7z3/+E0uXLkVdXR2GDx+OuXPnYteuXUHLMN9StD3wwAOYPn06amtrMXr0aFx11VX48ssvg5Y5ceIEVq9ejbq6OtTW1uLqq6/GwYMHg5Zh3o1NDE5j2Pfff4/y8nLccMMNYd999913+O677/Czn/0ML730EtasWYO//e1v+NWvfiUu097ejiVLlqCtrQ1PPvkkbr31VmzZsgW//e1vo/kzKMHI5dtAd911FwoKCsI+Z74lOyjl2507d2Lx4sUYP348nn32WTz55JOYPn26+D3zLdlBKd8uXboUAPDII4/gmWeeQXFxMRYvXiw+yGa+JTvs2LEDs2fPxubNm/HQQw+htbUVCxYsQEtLi7jMmjVr8Je//AV33303Hn30UXz33Xe45pprxO+Zd2OYQHGhrKxM+POf/yy7zCuvvCIMHTpUaG9vFwRBEN544w2hoqJCaGhoEJf5wx/+IIwYMUJobW21NL1EghA5327fvl0466yzhM8++0woKysT/vd//1f8jvmW7CaVb2fMmCHcddddEddhviW7hebbgwcPCmVlZcIHH3wgfrZ//36hrKxM+OijjwRBYL4lZ/Dn1ffff18QBEFoamoSKisrhW3btonLfPHFF8y7cYItpwmkubkZGRkZcLs7T/uuXbswaNAg5Ofni8uMGzcOTU1N+Oc//2lXMinBHT58GKtWrcKtt96K1NTUsO+Zb8lpDh48iA8//BC5ubmYOXMmxowZg3nz5mH37t3iMsy35DQ5OTno378/tm7diuPHj6OtrQ1PP/00ioqKUFpaCoD5lpzh6NGjAICsrCwAwMcff4y2tjaMHTtWXKakpARFRUVit3Tm3djF4DRBHDp0CPfeey9mzZolfnbgwAHk5eUFLee/iA8cOBDV9BH53XDDDbjgggtQW1sr+T3zLTnN119/DQD43e9+h1mzZuHBBx9Ev379cOmll2L//v0AmG/JeVwuFx566CHs3r0btbW1qKqqwjPPPIONGzciJSUFAPMt2U8QBNTX12PkyJEoKSkB0Jn3UlJSkJ6eHrRsXl6emC+Zd2MXg9ME0NzcjCVLlqC0tBRXXHFF0Hcul0tynUifE1lp69at2Lt3L6666irZ5ZhvyUk6OjoAALNmzcK0adNQWVmJX//618jPz8fzzz8vLsd8S04iCAJWr16NwsJCPPHEE9i8eTNGjRqFJUuWoKmpSVyO+ZbsdNNNN+Gzzz7D2rVrgz6Xyn+CICguI/c5OQOD0zjX3NyMRYsWIS0tDRs2bEBSUpL4XX5+ftjTI/+/Q582EUXDO++8g08//RTV1dUYPHgwzjrrLADA1KlTxQk9mG/JafwTdw0YMED8zO12o3///vj2228BMN+S87z99tv4n//5H6xbtw61tbUYOnQobrnlFrS0tODll18GwHxL9rr55pvx5z//GZs2bUJhYaH4eX5+Po4fPx72BorGxkaxdZR5N3YxOI1jzc3NWLhwIbxeL+677z74fL6g72tqavCPf/wjaOrt7du3IzMzM6iSRRQt1157LZ5//nk899xzeO655/D73/8eALB+/XpceeWVAJhvyXl69+6NgoICfPXVV+JngiDgq6++Qs+ePQEw35LzHD9+HADEeSiAzhYlt9st9gZgviU7CIKAm266Ca+99ho2bdqEPn36BH0/ZMgQeL1ebN++XfzsX//6F/bt24eamhoAzLuxLEl5EXKqY8eO4d///rf477179+LTTz9Ffn4+UlNTsWDBAhw/fhx33HEHmpubxSdMubm58Hg8GDduHEpKSrBy5Upcd911aGhowN13343Zs2fD6/Xa9bMozsnl28LCwqCno2lpaQCA4uJi8XPmW7KDXL4tKCjAggULcN9992HQoEEoKyvDU089hYaGBlx44YUAmG/JHnL5tqamBunp6fjFL36BpUuXIikpCY8//jiOHDmCcePGAWC+JXusXr0aL730Eu69915069YNDQ0NAICMjAykpKQgIyMD06dPR319PTIzM5Geno7f/OY3GDFiBIYOHQqAeTeWuYTQDtoUM9555x1ceumlYZ9fddVVGDlypOR3APD666+jd+/eAIBvvvkGN954I3bs2IHU1FRMmzYNK1asgMfjsTTtlLjk8u3VV18d9NnevXsxadIkvPjiiygrKxM/Z76laFPKt4Ig4P7778cTTzyBo0ePoqKiAj//+c9RVVUlLst8S9GmlG93796NdevWYc+ePWhvb0dZWRmuueYajB49WlyW+Zairby8XPLz+vp6XHTRRQCAEydO4NZbb8XLL7+M1tZWjB8/Xhzr78e8G5sYnBIREREREZHtOOaUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbJdkdwKIiIgosg0bNuC3v/0tAMDlciEjIwPFxcUYN24c5syZg4KCAptTSEREZA4Gp0RERA6XkZGBjRs3AgCOHj2KTz75BE888QSeeuopbNy4EUOGDLE5hURERMa5BEEQ7E4EERERSduwYQMee+wxvPPOO0GfNzU1Yfbs2WhpacG2bdvg8XhsSiEREZE5OOaUiIgoBmVmZuK6667Dv//9b/z9738HAKxduxbnn38+amtrcfrpp2P58uVoaGgQ17ntttswadIkhD6XfvbZZzFkyBA0NjYCAJ5++mlMmTIFVVVVqKurw5w5c/D5559H78cREVFCYnBKREQUo0aNGoWkpCR8+OGHAICDBw9iyZIleOCBB7Bq1Srs3bsX8+bNQ3t7OwBgxowZ2Lt3L3bs2BG0na1bt2LChAnIzc3Fu+++ixtvvBEXXHABHnzwQaxZswa1tbU4evRo1H8fERElFo45JSIiilHJycnIycnBgQMHAAD19fXid+3t7WIL6gcffIDTTjsNAwYMwLBhw7BlyxbU1dUBAL7++mu89957uO+++wAAH330EcrLy7FkyRJxW5MmTYriryIiokTFllMiIqIYFthF969//StmzZqF4cOHY/DgwTj99NMBAF9++aW4zMUXX4zXXnsNx44dAwBs2bIF+fn5GD9+PACgoqICn3zyCdasWYN3330Xra2t0fsxRESU0BicEhERxagTJ07g8OHDyM/Px0cffYRly5ahsLAQt99+O5566ils3rxZXM7v3HPPhcvlwquvvgpBEPD888/jwgsvRFJSZ2eqMWPGoL6+Hu+99x7mzp2LUaNG4cYbb8T3339vy28kIqLEwW69REREMertt9/GyZMnUVNTg//+7/9GTk4O7r77brhcLgDAN998E7ZOWloapkyZgq1bt6JXr1745ptvcNFFFwUtM23aNEybNg2NjY147bXXUF9fj/T0dKxYsSIqv4uIiBITW06JiIhiUFNTE9auXYu+fftizJgxaGlpgdfrFQNTAHjxxRcl17344ovx3nvvYcOGDaipqUFJSYnkcrm5uZg1axZGjBiBL774wpLfQURE5MeWUyIiIodrb2/Hrl27AADHjh3Dnj178MQTT+D48ePYuHEjPB4Pxo4di02bNuGWW27BxIkT8cEHH+CFF16Q3F51dTVKS0vx/vvv46abbgr6bv369Thy5AhGjhyJnJwcfPLJJ9ixYweWL19u9c8kIqIEx+CUiIjI4Y4ePYqZM2fC5XIhPT0dxcXFuOCCCzBnzhwUFBQAAM444wysWLECjz32GJ5++mnU1NTggQcewNlnny25zUmTJuHrr7/GlClTgj4fOnQoHn74Ybz88ss4duwYioqKcPXVV2PevHmW/04iIkpsLiH0TdxEREQU9y6++GL0798fd9xxh91JISIiAsCWUyIiooSye/duvP3229i9ezduuOEGu5NDREQkYsspERFRAikvL0dmZiYWL16Myy+/3O7kEBERiRicEhERERERke34KhkiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKy3f8HqyjkYRAoJzkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[12, 6])\n", + "plt.plot(lc_kepler.time[:3000], lc_kepler.counts[:3000], color=palette[3]);\n", + "plt.ylabel(\"Relative Flux\")\n", + "plt.xlabel(\"Days\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6635859b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 19 DPSS windows for multitaper spectrum estimator\n", + "CPU times: user 19 s, sys: 4.61 s, total: 23.6 s\n", + "Wall time: 9.73 s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "%%time\n", + "mtls_kepler = Multitaper(lc_kepler, NW=10, lombscargle=True, norm=\"leahy\") # Using normalized half bandwidth = 10" + ] + }, + { + "cell_type": "markdown", + "id": "864f7f79", + "metadata": {}, + "source": [ + "As stated before, the `adaptive` weighting method and `jackknife` log-psd estimate are currently not supported, hence these keywords will have no effect, no matter their value." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4082f502", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AACxjElEQVR4nOzdd5gbxf0G8FfS9V7tczl3+9x7t8EFMA41dAi9JPQWagjNgVBDCfADQgktEEISHLrpxcY27r13+3xnX+9N0v7+uJNutdquVb338zwJui2zI2klz1cz8x2bIAgCiIiIiIiISDd7uCtAREREREQUbRhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMigt3BaKF2y3A5XKHuxoAgLg4O5zOyKgLRQ/eN2QW7x0yg/cNmcV7h8yw8r5xOOyw223a17Tkal2Ay+VGdXVjuKsBu92G3Nw01NY2we3mWsqkD+8bMov3DpnB+4bM4r1DZlh932RlpcBud2hfN+ArERERERERdTEMpIiIiIiIiAxiIEVERERERGQQAykiIiIiIiKDmGyCiIiIiCKKIAhwuZwQmG+CdLDbbWhtbYXT6dSVbMJmA+x2B2w27cx8ahhIEREREVHEcDqdOHLkENxuV7irQlGkvNwOt1t/+nO73YHc3B5wOLSz8ylhIEVEREREEaO0tBR2uwM5Od0BBNZjQF1HXJwNTqfeLkwB1dXlqK2tRHZ2vvlrmj6TiIiIiMhCguBGTU0tMjPzEBcXH+7qUBSJi7MD0N8jlZ6ehaqqoxAEN2w2c2kjmGyCiIiIiCKCy9XeEHY4+Fs/BZfnHjMyHFCKgRQRERERRRgO6aNga7/HAklowkCKiIiIiIjIIAZSRERERERk2J///CDuvffOcFcjbDgAlYiIiIgoAH/+84P44otPcdZZ5+LWW30DiwUL7sXXXy/C+edfhLPOOhfnnHOaaln33PMACgp64KabrsFXX/2ElJQUv2MqKyvwyisvYsWK5aiurkJGRiaKiobiuutuRt++/ax8agCAkpLDOOec0/D22+9jwIBB3u0333w7hBAs9nX22afiggsuwllnnRf0axnBQIqIiIiIKEDdunXH119/ieuvvwUJCQkAgIaGeixe/AO6devuPeajjxZ5z3njjdewa9cO/PnPT3i3paWlYfPmTarX+uMf74AgAPff/xAKCnqgrOwofvllGerq6ix/XmrS0tJCer1Iw0CKiIiIiChAw4ePwN69e7BkyU+YO/d4AMA333yFIUOGwm5vn03jcDiQm5vnPScpKQlxcXE+27TU1dVh48YNePHF1zB69FgAQEFBD4waNUb1PLfbjX/84018/PFCVFVVom/ffrjqqmsxffpMAEBtbS2efvpxrFy5HM3NzejevQBXXXUt5s493tuLdskl5wMAxo4djxdeeAV//vODaGpqxMMPtweCN9zwOwweXASXy4kvv/wcSUlJuO66mzFt2kw88cSf8csvS9G9ew/84Q/3Y8SIkQCAqqoqPPvsE1i/fh3q6mpRWNgXV175OxxzzGxvmaWlJXjmmSfxzDNPAgCWLFkFAFi/fi1efvl5bN++HTk52Zg79wRcddW13kA22DhHioiIiIjIAieddCo+//xj79+ff/4JTjrpVEuvkZycjOTkZCxe/CPa2tp0n/fOO2/gq68W4a67/oi33/4XTj/9LPzxj3dgx45tAIDXXnsJ+/fvxVNPPY933vkAN910m7fH6dVX3wIAPP/83/DRR4vwyCNPKl7ns88+Rn5+d7z22js46aTT8PjjD+NPf7oXxx47B3//+7vo168/Hn74fu+QwJaWFgwbNgJPPvks3n77X5g371e49967sG/fXgDAI488iW7duuPqq6/HRx8t8vboFRcfwu2334zjjpuHt99+Hw8++DCWLfsZL7/8vPEX1SQGUjFGEAT8YcPP+OuOdeGuChEREVGXMn/+yVizZhXKy8uwf/8+7Nmzy9s7ZZW4uDjcfff9+OSThZg/fzZuuOF3eP31v+HgwQOK57S2tuKdd97AH//4ACZNmopevXrj9NPPxLHHzsbHH/8PAHDkSCkGDy7C0KHD0bNnL0ydOh2TJ08FAGRlZQMAMjMzkZubh4yMTMVrFRUNxcUXX4bCwj64/PLfwuVyobCwL+bNm4/Cwj646KJLcfDgAZSVHQUAFBQU4PzzL8LgwUXo1as3fvObizFq1Bj88MO3AICMjEzY7XakpKQgNzfP23v3zjtvYP78k3H22eejd+9CjB07Htdffws+/nhhSOZtARzaF3OcghsbayqwsaYCNw8ZG+7qEBEREXUZubl5mDhxCr744jPU1dVi1qy5SElJtfw6xx13AmbMOAZr167Cpk0bsXjxj3j33bfw6KNPYcqUaX7HHzp0EM3Nzbjppmt8tre1tWH8+IkAgNNOOxP33Xc3du7cjsmTp2H27LkYNmyE4boNHDjY+zghIQGpqWno33+Ad1t2dg6A9iF93bp1h8vlwttv/x3ff/8NysrK4HS2obW1FYWFfVWvs2vXTuzevROLFn3q3eZ2u9HS0oKKigrk5ekfLmkWA6kYU93WGu4qEBEREXVZJ598Kl5++QU0NjbigQceDtp1kpKSMG3aTEybNhNXXXUNbrvtJrz99t9lA6mmpiYAwF/+8jxyc3N99iUmJgIAZsw4Bv/5z8dYunQJVq5cjuuuuwqXXXYVLr30SkP1iovzDS9sNt9tNptnIVw3AOC9997Bf//bPpSwf/8BSE5OxuOPPwynU33YYlNTI8488xycccY5AACHwwaXq70nKisry1CdzWIgFWO+Kt3vfdzsciLJwbeYiIiIKFRmzDgWTz75KJKTUzBu3ISQXNNms6FPnz7YsGG97P7+/fsjPj4eR4+WYsyYsYrl5OTk4pRTTscpp5yOf/zjTXz00UJceumViI+PBwC4XG7L675x43oce+xszJs3HwDgdDpRXHwIBQU9vMfExcX7XXvw4CLs3bsHvXsXdhxjh9Npff3UsJUdYwalZXkft7hdDKSIiIiIQiguLg7/+tdC2Gw2b++LWXv27PL2GAGA3e5AXl4e7r//DzjllNMxcOAgJCYmYe3a1fjss4/xm99cIltOSkoqzj33N/jrX5+Cy+XCqFFjUFdXh/Xr1yA/vzvmzj0er7/+NxQVDUX//gPR1NSEFSuWo2/f9uF1WVnZSExMxC+/LEVeXh7i4xMsS31eWFiIH3/8Hps2bURKSgreffdN1NfX+xzTo0cPrFu3BnPmHIf4+ARkZWXhwgsvwdVXX4Fnn/0LTj75NKSmJmPnzp3YtGkjrr/+ZkvqpoWt7BiTGd+Z7tGOwD68RERERGRcaqo1QcY111zh83daWho+/vgrDB06HP/85zsoLj4Et1tAQUEBLrvsKlxwwcUqZd2A7OxsvPXW6ygpOYz09AwMGzYcl112FYD21OwvvfQ8SkpKkJychHHjJuKWW24H0B4c3nLLHXjjjVfxyisvYvTosXjhhVcseY6XXnolDh8uxq23XoeUlBScccY5mDx5is8xV155DZ588hGcd96v0draiiVLVmHw4CI899zLePXVl3DttVfAbnegd+/emD//FEvqpYdNCFVaiyjX1uZCdXVjuKsBu92G3Nw0VFTUw+32f+u21Vbi9vVLAAD/nDof6fGhyaNPkU3rviFSwnuHzOB9Q2a53S6Ulx9GTk4Pv7k2RGqMDu1zOp0oLy9GXl4vv3stKysF8fEOzTKY/jyG8Z8uIiIiIqLgYCBFRERERERkEAOpGMNeKCIiIiKi4OPg0xgmMKwiIiKiKPfM9rVYXlES0mtOze2BW4vGhfSaFH3YI0VERERERGQQe6RiGTukiIiIKMq19wyxd4giD3ukiIiIiIgstGbNKsycORGXXnoB3G7flNwzZ07Ezz8vBgBceeXFeOaZJ3z2v/POm5g5cyIWL/7BZ/vNN1+Hhx66z1R9fvzxO/z+9zfg5JOPw8yZE7Fnzy6/Y2pra7Bgwb2YN28W5s+fg8ceewhNTU2GrvP663/DlVf6rmX1yy/LcPzxM/HKKy+aqvtHH32IG274HebNm4WZMyeisdF/OaIVK5bjiisuwfHHz8QZZ5yEN998DaFY4YmBVAxjhxQRERFR+Bw8eADffPOl4v5x4yZg7drVPtvWrVuDbt26+2x3Op3YvHkDxo2bYKoeTU1NGDVqDK655kbFYxYsuA979+7BM8/8Hx5//BmsW7cGf/nLo6au5/HDD9/iD3+4DVdeeQ1+97vrTJXR0tKMKVOm4+KLL5fdv3Pndtx55y049thZePPNf+Kuu+7F//73X7z//ruBVF0XBlJEREREREFw5pnn4LXXXobT6ZTdP378ROzduwfV1dUAAJfLhY0b1+PCCy/1CaS2bNmE5uZmjBs30VQ95s8/GZdf/ltMnDhZdv++fXvxyy9Lcffd92HEiJEYM2YsbrnlDnz99SJUVlaYuuZnn32MBQvuxe9/fycuuOAiU2UAwLnn/gYXX3wZRowYKbv/u+++QVHRMFx22ZXo3bsQU6dOx8UXX4Z//evdoPdKcY5UDGPWPiIiIqLwOf/8i7Bo0Wf46KMPcdZZ5/rtHzNmLOx2O9atW43Zs4/D9u1bkZKSgl/96hS88MIzqK2tRUZGhreXqlev3gCA9evX4vbbb1K99h133IN5836lq56bNm1ARkYmhg4d5t02ceJk2Gw2bNmyGTNnHmvgWQMffPAeXn75Bdx330OYO/d4n31fffUFnnzyEdXz//KX5zBmjL55ca2trUhISPDZlpiYiPLyMpSUHEbPnr0M1d0IBlJEREREREGQkpKCSy65HG+//TpOOulUJCcn++xPTU3D4MFFWLu2PZBau3Y1xo4dj5SUFAwaNBjr16/BMcfMxtq1qzF+fGdv1NChw/DGG++pXjsnJ0d3PSsrK/yOj4uLQ3p6huEeqT17duG5557Gvfcu8AuiAGDmzGMxfLh875JHfn6+7utNnjwV//73P/Htt19j5szZKC0twfvvt782lZUVDKSIiIiIiKLRr399Nj744J/44IP3cOmlV/rtHz9+ApYvXwqgfX7UjBntvT9jxozH2rWrMW3aTGzatAG33HKH95zExCT07l1ocU1tMtsE2Gxy25V1716ApKRkvPvuW5gyZRqys30DtJSUVKSkpAZQT19TpkzD1Vdfjz//eQFaWu5BcnIyzjnnArzxxh7YbMGdxcRAioiIiIgoSBISEnDFFb/Dc889hTPOONtv/7hxE/DPf/4DlZUV2LBhHW644VYAwNix4/D663/Dtm1b0dTU5JNowuqhfTk5uaiq8u15cjqdqKur8wuEtKSmpuHpp5/HzTdfh5tuugbPPfc3ZGdne/dbPbQPAC688FJcfPGlOHq0DJmZWVi9eiUAoGfPnobqbhQDqRjGGVJERERE4Td//sl477138M47b/rtGzNmHOx2Oz744J9ISEhE3779AACjR4/Dnj278dNP36OgoIfPEDWrh/aNHDkaNTU12L59G4qKhgJoT+EuCAKGDx+huxyPzMws/PWvL+KWW67DzTdfg7/+9WVvMGX10D4Pu92OvLz287777msMHz7ScBBoFAMpIiIiIqIgstvt+N3vrsODD/7Rb19KSiqGDBmK//73A0ydOt27PSMjA/369cfChf/B7Nlzfc4xOrSvtrYGR46Uory8DABw4MB+uFwudO9egIyMTPTr1x9TpkzH448/hNtv/wOcTieefvoJnHDCicjJyTX1nNuDqZf8gimjQ/sqKspRWVmB4uJDANrnYCUmJqJXr0KkpKTA7Xbjgw/ew/TpM9Da6sSiRZ/hm2++xHPPvWyq3kYw/XmMCcXiY0RERERkzLHHzsbgwUNk940fPxFNTY0YO3a8z/axY8ejqanR9PpRHkuW/ITLL78Qd9xxCwDg3nvvwuWXX4glS37yHvPAAw+hT59+uPnm63DHHTdjzJixuP32e3zKmTlzIj7//BPd183IyMSzz76IuLg43HLLtaiqqjJc9//977+4/PIL8fjjDwMArrnmClx++YXYtm2Lz/O76qrLcPXVl2Hbti34619fwsiRow1fyyibwJa3Lm1tLlRX+6+kHGp2uw25uWmoqKiH2+3/1m2pqcCdG34GALw1eR5yE5NCXUWKQFr3DZES3jtkBu8bMsvtdqG8/DBycnogLo4DpyJJSclhnH/+GfjHP/6NwsI+4a6On7g4O5xOt+7jnU4nysuLkZfXy+9ey8pKQXy8Q7MM9kgREREREZGqX35ZitNOOzMig6hwYahPRERERESqfv1r/4yDXR17pGKYwLx9RERERERBwUCKiIiIiIjIIAZSRERERBRhOKqGgq39HrPZzJfAQCrG8GuHiIiIopXD0d40dbmcYa4JxTrPPWa3a2fnU8JkE0REREQUEWw2OzIzM1BXVw2HIw5AAN0F1MXY4HTq7VIQUFdXjcTEFNgC6JJiIEVEREREEaOgoAA1NTtRXn443FWhKGK32+F2619Hym53IDu7W0DXZCAVwzjMj4iIiKJNXFwcunfvDafTCYGNGdLBbrchOzsFVVWNuhYBt9naA6lAeqMABlJEREREFGFsNlvH0D4ibXa7DQkJCYiLa9UVSFl23ZBdiUJO4M84RERERERBwUAqxjB0IiIiIiIKPgZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAxiIBXDmHiCiIiIiCg4GEgREREREREZxEAqyrkFAbVtreGuBhGFgVsQ0ORyhrsaREREXRIDqSj31PY1+M3yRTjQUOe3T+DgPqKY9sKu9Thn6ec40twY7qoQERF1OQykotyPZcUAgJ8rDoe5JkQUal+VHgAAvLhrQ5hrQkRE1PUwkIoRcj1SRNQ1rK46Gu4qEBERdTkMpGJEVVuL/0aO7CPqEsZm5YW7CkRERF0OA6kYMTqTDSmirmpAWma4q0BERNTlMJCKESlxcQAAQWA3FFGXw489ERFRyDGQihEumQCKbSuiroGfdSIiotBjIBUj3OyJIuqyuNQBERFR6DGQihEMpIi6Ln76iYiIQo+BVIyQH9rH5hURmbOm6ihuWvMDDjZyaQUiIiI5DKRiBHukiLqwIHz8X9m9CXsaavHa7s3WF05ERBQDGEjFCKfgDncViChMgvEzyqGmegBAq9sVhNKJiIiiHwOpGNHmbg+kxA0q9lERdQ3BHMbrZG83ERGRLAZSMYJNHSKyki3cFSAiIopwDKSi2C8VpeGuAhERERFRl8RAKoo9tGWF97Hs0B52UxF1CRx9R0REFHoMpIiIolxQlzpglEZERCSLgVSUOhTg2i7VrS2oam22qDZERERERF1LXLgrQObcvOZHzWPUfke+6JcvAQCfHnOaRTUionBhnxEREVHosUcqSjW5zK/tUt3aYmFNiCjchCAMv2PWPiIiInUMpGKEkXYUF+8lii3skSIiIgo9BlIxQm6yudIE9Hh759veEkDPFhERERFRV8VAKkbYTA7E+e7oQYtrQkShFsweKfZ2ERERyWMg1RWJWkatbg7zIyIiIiIyioFUF1fdxsQTRNEuqOtIERERkSwGUjFGT4NKfESNSiBV29aK+rZWC2pFRMEUnDVzmbePiIhIDdeR6uIy4hIU9/1m+SIAwCczT4XNxkYVUVfEvi4iIiJ57JGKEXJxjtKv1EaHAdU62StFFMk4tI+IiCj0GEjFCLNDewakZWoeY+cQHyIiIiIiHwykurj8xGTNY7iAL1FkC8YcKY7mJSIiUsdAKkbIDu2zaLiPKzgz2YnIBEEQ0Ohs893GoX1EREQhx0CqCzLa5GpxuYJSDyIy7vld63Husi+wr6HWu41hFBERUegxkIoRbW43bl+3GB8e2m152Z+V7LO8TCIy56vSAwCA5RWlIboiwzQiIiI5TH8eIzbUlONwU4PPNqXmj3iknqBj2F6rmz1SRJFmWUWJ97GezzERERFZiz1SMaLR6Qxa2eOzuwWtbCIyp2dSqvcxwygiIqLQYyAVI6rbWhT31be14vGtq7CrrhoAJ6YTxYLshKSgls+kfUREROoYSHUB/z60C4vLD+OWdT/57dMTUjHwIoo8ofpcctQgERGRPAZSXcB/D+3SPEYQBJQ2N6jOtXALAu7ZsBT/2LfNyuoRkQluRjhERERhxUCqi/M0xb4sPYCrVn6Lfx7YoXhseUsTNtSU4/2DyscQUWgwjCIiIgovBlIxTGnoj9zWd/ZvBQC8d2C7Ynl2uVV/iSgs2CNFREQUXgykCABQ09aqeUyDsy0ENSEiPYL9s4YnTOPvJ0RERPIYSHVBRtec8Rz+/dFDQagNEQUqGLFO59cEIykiIiI5DKRimJF4aXBaFgAg0e4ITmWIKCoxjCIiIpLHQCpKJVkU8Hh6pzzDd9RSKnNhXqKuhHOwiIiI1DCQilJ9UtMtLc/W8buzW6XtxGQTRJEj2GGOd45UkK9DREQUrRhIRalAMnYJMo9t3r+Vy2WyCaLIZAvmjxz8AYWIiEgWA6ko5ba4PE9vk1p89ta+rRZflYhC7aPiPfiydL/mcRzYR0REpC4u3BUgc/Rk3jvYWI8Xd23wP1emiaSnR+pwU4Pu+hFRZHp1zyYAwIkFfXUdz/4oIiIieQykopRbx+/Fz+1chxa3S1d5njlS6qXyN2qiSGEmwDG69IHZ6xAREXUFMT+076abbsKkSZNw6623hrsqltLTHlIMomTO1TMNgqnRiaKbM4C5lXqUtTShnnMpiYioi4j5QOrCCy/E448/Hu5qWE5tCJ6Zcmwqvzt7jjmvzxBLrklE4eEUrJ5d2anV7cLlK77G+cu+CNo1iIiIIknMB1JTpkxBampquKthOauy9hmRGZ9o+ppEFH5Od/ACKWb1JCKiriasgdTKlStxzTXXYObMmSgqKsL333/vd8y7776LuXPnYtSoUTj33HOxYYN/8oSuyKoBOkEe6UNEESSYPVJqa9ARERHForAmm2hsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJycHADA6aefLlv2hx9+CIcjduf0BNYjJZO1T9eMcu1rNruceH3PZswr6IvB6VmG60ZEweF0u7Fg8y9BK39LbUXQyiYiIopEYQ2kZs2ahVmzZinuf+ONN3DeeefhrLPOAgAsWLAAP/zwAxYuXIgrr7wSAPDRRx+FpK4AYLeHP39VoHWw220+ZXj+tkmOEbPZOo6x2RSP8fjs0D58UbofX5Tux+ez5INcCj3P+xUJ9zBZQ/x5tNm039v1VeXYVV/j/VvvveC5jtbxTaLkNrzPiN85ZBbvHTIjXPdNxKY/b21txebNm3Httdd6t9ntdkyfPh3r1q0LeX3i4uzIzU0L+XWV2EzeKLm5aWio7xzek56RhNzcNCQkxPkcI5aWnojc3DSk1icqHuPhLrFpHkPhk50de/MFu6rEpM7PbEJCnObnLaOtxudvvZ/PuLj2nn2teyelNsFw2RT7+J1DZvHeITNCfd9EbCBVVVUFl8uFvLw8n+25ubnYv3+/7nJ+97vfYcOGDWhqasKxxx6LV155BUOHDjVcH6fTjdraJsPnWc1utyE7OxUuk5PGKyrqUd3Y6P27trYJFY56tLW5fI4Rq6trQUVFPerqmxWP8WhtbtM8hkLPc99UVTXAzcksMaG52el93NLi1Py8lVf7Lqit9/PpdLZ/N2jdO40NrYbLptjF7xwyi/cOmWH1fZORkYz4eO0pQhEbSCkRBMFnSIuWV155xbJrR9IH2uwUKbdb8Mnc5XYL7c9L8D3G91rtx4jnqSu9FnbRexNJrxe1877fFPXEi+t6PqNqcuKTfP7WfR8IncerndM3Jd142RTz+J1DZvHeITNCfd9EbPrz7OxsOBwOlJeX+2yvrKz066XqigJZR+qj4j0mryl6rBDJOVTWoyKi8ElwmPy61/mRDiQBDhERUTSK2EAqISEBI0aMwNKlS73b3G43li1bhrFjx4avYhEikDbLotLOoZGeYgx08vmcJ2U3WhARmSL+pAU1hNFZuIuBFBERdTFhHdrX0NCAAwcOeP8+dOgQtm7diry8POTn5+Pyyy/HnXfeiREjRmD06NF466230NzcjDPOOCOMtY5+wzNysKW2Uvfxne0j0VAihWMZSBFFpsqWlqCWzx4pIiLqasIaSG3atAmXXHKJ9++HH34YAHDDDTfgxhtvxEknnYTKyko899xzKCsrw7Bhw/Daa69515DqygIZ2pdg7+yI3F5bhfHZ3WAzOCRPEATZbiyj5RBRaPzn0E5zJ+r8SLuCuNgvERFRJAprIDVlyhRs375d9ZiLLroIF110UYhqFD3MhlFlLU1YV9057+zdA9sxLa+H4WsqXT+QAI+IoheH9hERUVcTsXOkSIPJNssvFaV+29ZUHfXbVu9s89smbicJaM/+t6hkP1ZWHjFXGSKyhJ6vA71fGZ8U78GBhjrDdeDQPiIi6mqiLv05tXNb2PNT3NTgt+38ZV+oniMIwMLDu/HWvq3ebf+dfrJPY8poqnoiCh6lTJtiS8oO4297Npkr39RZRERE0Ys9UlFKAJBod2BaboGh8xaV7PPb9mXpfo1fkwXJf9t7pLZKElasqjqCnslpfmcRkfX0LEegdLySx7at8tvGn0KIiIjkMZCKVh2tovzEFEOn7Ws0PmRH6fLS4X9tbjfsNt9jAODHo4dw1/olaHY5Lbk2ERnHoXdERETWYiAVpQQIsMG65A7icnbWVfvs+9fBnShvafL7BVyaQl06V8rzK/mT29dgc20lvjty0JK6EkWTPfU12NdQG+5qsIeYiIjIYgykopQA44voapXnceu6n3z2HWiswz0bl0LL0PRsSUIKX2pZvdyCgL0NNcz8RTHnprU/4oY1P+g+vqylCUvLSyyvh7RHSm44YG/R0FyjmLGTiIi6GgZSUcwGG6yKO7TKOdzUoJn+PN5uR4OrTfEotUt8fHgPblzzI/6+d7NGTYli29WrvsUjW1dig2iZAi36svZpfx7nduut+5p+5TOOIiKiLoaBVJRyC4Klk8A31OhotIlaSuUtTbKNrmd3rPM+dksaVq1ul2yxS8tL8Nqe9gDqC5lkGETRysy8pFZ3+8K2extqVI8z+vmXVkWuB8nOLJtERES6MZCKUgIA2GxhG05z/ZofEGdXv32kdXtz31bctm4xKlqa8fCWFbh7w88AgEe2rvQeIw2+iKKZU3CbPndTTYXuY/V8D/RPy/A9R+aUQBJS8KNLRERdDQOpqGVtj5Qe0uQSWuQaVtvrqvDu/m1YXlGq0FBkc4xih9NtPpAanJ5tYU2AUZl5Pn/LfdLkass+KiIiInkMpKKUILQ3cCZkdwMATMkxtp6UGT+UFUsqoX680o/bzQpD/AD2SFFsCaSHx2WgN0vPZfx7rfxPCixo4oeXiIi6FgZSUUpAe7KJSTnd8dKEOfjDsIlhqYP6fvkjmkTrSUkbmm42xiiGuET3s3TdNS1Oi39VkBYnVzo/fURERPoxkIpiNhtgs9lQmJKuOV8pGKSB0g7J+lNKjTLxelNcJJRimfj2NjrM75eKEsPBl2pdJJ9Iqz97/CQTEVFXw0AqSlmdtc+MmrZWn7+/OnLA9wAdDTWuG0WxLJAe1n2NdXhg03LF/UZLlls3ykr8KBMRUVfDQCpKtbdZwhtKiXuW5Oj5/Z2BFMUyca+PmU/r9roqXcfpydon/TzKnSFfx3D/ZENERBSZGEhFrfD3SGnR1bgLID00UaQTB1J6eqeC2mskKZu/YRAREQWGgVSUEtA+RyqS6Wmo6e2RcgluxQV9iSKVOHiKs2l/3ZodCqjnLP+fLMIbSW2qqdBcdJiIiCiSMZCKUu3xh28klZuQFJa6KNlSW4k2jQn2Lp2NuStWfIMzf/7MimoRhYy4R0pXsBPUDilphkyLyzcQmLW4XLh7w8+4cc2PFteCiIgodBhIRS3B7817eNS0sNREySNbV+JvuzeqHqO3R6qitRkAs/xRdBEHRnoCDSPBiNEOab/ASeazFKpO7jYO6SUiohjAQCpKudGe+lysMCU9PJVR8e2Rg6r75RYdFQQBj29dhY+K9/jt8wRS7+zbipd3tQdpqyuPoqoj0CKKJD6Bv44YKZg/FEiDNKuvZKg8/iBCREQxIC7cFaDYpvXLs1yPVGlzIxaXH8bi8sM4vdcAn31uCGh2OfGvgzsBANPzeuCBzcuREZeA96bNt67iRBYQz3nSEzqYDS/0xCXSYywPpAwUyDCKiIhiAXukotDhhnoAQFlLU5hrEji5RUrVhhe5BQHbajtTQu9vqAUA1DpblU4hChvfOVLhzdrn3yPlfy3ZlOhBGO/HIbpERBQLGEhFobe2bw53FSxz/ZofDB3vEgSsqTrauSHSUxdSl2Y0C5/TZIChb6mBYKc/119gIAsVExERRQoGUlEo1psgW+sqff5eXdkZODkFN+LsnbctwyiKZEaz9snNGbSK9PpywVeoPk+x/h1GRERdAwOpKPTRvl3hrkJQvbx7k8/fD2xe7n383ZFDPmnexQ0yvRkAiUJFfEdafXsKCo8Vjw/y58NI6RzaR0REsYCBFEWcBmeb9/Geet8FO1/fuxndklI6N4h/8Zc0zlyCG3sbaoLegCRSZDj9efBI+7rCmbWPn0giIooFDKQoolW1tvhtS3Z0JpsUNw6lDdWPi/fixjU/4r+HYrsHjyKXkXWhgOBmBfdLNqHzWsGoE3/cICKiWMBAiiKaXC6JJWWHvY+PNDd6H7slbbN/d6RI11rLiihYDA+/C2JfjVPyAdGbtU+Pn8qK8dKuDbqPZ7IJIiKKBQykYtzA1MxwVyEgdpnp75+W7PU+/vhw56K9wWyEEgUqqKnNdZT9r4M7fM+RK0e+dM2yn9i2Go0up+76sEOKiIhiAQOpGPObPkU+f1/Sb1iYamKNmjb960NJe6Q8vVlss1G0kLtXlRIzBJphTy7YserHCK1S2CNFRESxgIFUjPlNX99AKvqXWdLf4JI2AqP+qVPUEwymPzcS3BgdNmiWmbK1zmGPFBERxQIGUjEu2oMJm4FIUNo28ww1OtRUb2GNiPTzDXYiK3qQrY3MRrNLBKvvjazXgoiIyAwGUhTR/rJtje5ja9pa8NKuDShubA+cWt3BW9yUyDAdsYOR8OJwU4PpqrRfy7pkE37laBTEdaSIiCgWMJCKQeIEE9HeXDEyl+KNvVvwWck+/GHjz/jh6KEg1opIH6OfP9ngRqGQDTXlhsoelZmrWa5sT5GJLxHOkSIioq6AgVSU+df+HdoHdUh2OIJYk8hT0dIMAKhsbWEgRRFHV+hgMr7QM1Suu3gha53nmMesfUREFPsYSEWZt/Zt1Tzmgr5DAAC/HTAq2NWJKOLpVJwXRZHAN9mEdvQQ1NBGUrjea5kJuLTO2FZX1XksoyoiIopSceGuAFlvam4PLJxxMuLtDqypOuqzb3hGDqpam/HnUdOxq74G22or8WHx7jDV1Fo76qq9j482N4WvIhTz9jbUYGddDeYV9NF9TjAX5DUVi8iN4rMoptEqR/y95AbQtfrOiYgoVjCQilHxdvmmyfHd+3gbf92SUtAnJT1mAikxu83GCe0UNDeu+REAMCAtA4PSshSPExT/0HG8/tN0kQZpeq9lLkZTP2tQWhaWV5S2HysIsbBOAxERdUEc2hfFEuzab5+0OZMkmTelVMaTY2b6/F2YnKZ5rZl5PWW3h2OullNgxj4KPiMLRgdzjpSZouWDndD8+LBT1HvMVOhERBStGEhFsSv6j9A8psXl8j4+tWd/zMjr4bPfYZO/BYZl5Pj8fdewiZrXWlddJrs9QaF3LBp8Wbofb+7dEu5qUITS+gIVBwnhniPldy2dFwvGgrwjMju/X0qaGk1cgYiIKPwYSEWxU3r21zym3tnmfXz1wFF+gVOcXd+QmngdvV8OheE5SsFauG2sLseta39Cicp6PM/vXI//HNqFRqczhDWjSLZdlCjBrjEkzejoUrO9RLqCNEE6tE/nOlImhshqnZKXmOx9rKdnnYiIKBLxX7AoYia71ZSc7kh2OHBBnyGy++N0BjlKQZIekTr74YHNy7Gzvhov7togu39TTYXoLw4/ona3rVvsfWwL492daLCn139on/Yx5ulPf57YxZZpICKi2MFAKoqYmfeTmZCID6adhAv7DpXdrzdA0gq4Tu85QLFJ6ZIEgO9MmafrmqEi7rUTu3vDz6K/IjUcJCs43W4cbKwzfJ5Wj5SYnt9B9Bzj+STmi3p1LEtIIVOB4PyE0Fmq9PuBiIgoWjCQiirmGvM2lcaeXIB0fPdCv21qDca3p8zDVQOU52tVt7X4/J2dkKR4bCjZO15PTnanp7avwbWrv8fKyiOGztP6RBqfI6X/Xgz0vg1mVksjJfPTR0RE0YqBVBfn6ZHKFQU3ckOGHCpNxpyEJNVgTexvE+carKH12txuNDrbmHGZvBaXHwYAxWGeSjTnSCk81nO81nlu0Q5dvV06rm/VeVrn+Lwu7JEiIqIoxXWkoor1DQ6bzYaFM06BU3DjnKWft2+TCZr0BkpaeulIo241aWB49apvcbSlydsbp+9VZWOvKyhrMbaQsz2MQz6N9kj5J5uQK9MiGsGReK+bny0iIopS7JGKIsFqbsTb7T4NwiHpWX7HRNqNkhGXoPvYFrfL5++jHY1lz5yzJpcTL+/aiLvX/4xdovVtxNjU6xqM3FeAfI9Us8uJP2z4GT+VFUt6pCwe2hfgTSl3raUdPXPSI43aXleNRoW5h36l88NFRERRKtLaxxQBJucW+G2zqkfKKmYyfQmCgDdk1oQ63NSAT0v2YlNtBW5Z95PiuRT7Bsv8iKBG7lPx3dFD2FhTgSe2rfaJQaxKNgGNuX2fl+zDszvWavZAPbBpud+csJJm/zWdzNz6D2xejtvXL1E5orNQ9kgREVG0YiAVRcQNmm6ijF2WlC1qzMjdFHqyk7lD2B4y8/z3NtTiv4d2mbqe8XyJ1BXI3fINop4YKxKZ+Acygt+1xdd5cdcGfHPkIIpV1kcDgJq2Vry+Z3PA9VNyQCULomAwwCQiIopEDKSiiLixNEWm1ygQ4iBIrvcpzmbDjYPH4L7hkxXLcCmkZ89JSNRVh8x4/cOquiWl6D7Wo9FlflFdpedGscXwvCOZ4ytbm01ff2Hxbv3X1ohApENa5ep6qKle+zq6a2QOs2YSEVG0YrKJKHWFSrpxM8TrSSn1PZ1Y0Fe1DKUhOpWtLfjP9JM016IK9i/TgQzP41o3XYPRt1nueHFyE6NZ+74/ekj3tcWhvVzZR5obMDAts/OYCLqFfZJNRFLFiIiIDGCPVBTKS0o2NUdIjbg8T9a+03sOMFRGqiNecV+SIw5x9s7b7cMZJ/sdE+xfpgMp3dPYO9BQh2XlJdZUiCKOFT1SDoUfDMze38rnqZdnJCjzmCrT0x2czyXnSBERUfRjIBVFPEPTypuNpWg2ytM5pdTrJbfOFADEK2yXkyBzbJNk6N0zY4/VXZ6Wl3Zt8Ctfzdqqoz5/ewKp69Z8jz9vXYnSZvX5JxSdjDbpNddL8pkMZLQ26twa3V3Tcnv41kVHBZIdoR+kwA4pIiKKVgykokiry6V9kAU8Q/scNht+O2AETu85wCdIemfKPNlfrgPllLSojGZQU/NZyT7diSbu2bAU921a7rNNOrSvprXVsroFqtHpxCW/fIl/7NsW7qpEPeND+wykKzdYF+3yBNnHHtKeMemcKdkyQxTVcB0pIiKKBQykoojVw/mUiBfkPb3XQPx24Eif/Slx8eiWKJfsIbIbRFtqK3Udt6Gm3G+btLEXyHCnVZVH8Jtli7Cjrsp0GWLrqstQ2dqC9w/usKQ80k/uLrAp7Ld6iJxWZ1dqXJzoWAFrqso0y5RLqRKUgX3M2kdERDGAgVQUyU5IwtmFg3D/hGlBvY6eJaO6WqYtaY9UIM/+wc2/oNbZiqe3r5Xdz8n34WN8jpS/3ilpuo81Q/D+VzTPSOaeEW/RmywlHOulsUeKiIiiFQOpKHPFgBE4ua+xJBBG2RTz9gXPZf2GhfyaRkgbol+W7jc0T8rpdmNHXZVPg1cu9fR/Du7EaUs+wYEG5TV4KHgMz5GSCTzS4zrT+PsEZhbHC0aGxzl1pu+XKycYwZVPTx1/OCAioijFQIr8mA2jjDaHXhg/G9Nze+DF8XNwduFgQ+cm2R0YmZFr8IrmSdeR+ubIQVy/+gefbW1uNxaXFWNRyX6fRVkB4G+7N+L36xbjo+I9qtd5c99WAMAXpfsCrjMZZ/Tel7vnxcGIOEbY21CrWM6zO9binY73Xve1BfnreOsh2qi3Ryp0vaGCzCMiIqLownWkyOvZccei0emUXZBXyopeq36pGbhn+CTVYxLsdrS6/X9Nv7DvUKytLsOm2oqA66GHXANTOnn/vQPb8e+DOwEAv1SW4oERU7z7vizdDwBYVuGbOt0lCD5reHkYac+Gvv8wdhm9r40MBfz6yAHM7+G/FpsgCPjmyEFD1wV85zNZ1SMVjqCGQ1mJiChaMZAir0FpWbqPPadwELbWVuL8PkO821LjlNeRMiLJ7sAz49pTn8/I6+m3Hs61A0chKyERX5Tss+R6euj5Rd8TRAHAysojPvuUzna63XDIJBEx0kDXM6eNgkOrJ0jPu6gV4iiuIuXTIyU3R0p9DpWcUC08bXShYiIiokjEoX1kSnZCEp4ZdyymiNKg3zl0AibldMf9wyf7HJtmMMAamZmLwpR0AECczOKm8wraf9U/scD/1/1gcQkCalpb/LY3K6xNJY1tPI1FaUNVOmTQw+yv9Px1P/wEhTBBKTg2OkdIkPwXkH/fxetMSZcWUCxb5rhd9TUGaqeP+DK8Z4mIKFoZCqRaW1vx0ksvYds2rldD/nolp+GBEVMwObcAT46ZiYyOSfeBdJjINbLi7faO66UGULLxejy6dZXf9rOXfo7lkuF6arZLUp4rNSL1DcTyd/bSz9ASovXGSH5InTiA8U2qoL8MPXx6nBSO8HDJDI+Vs0qyELW3fIuCnb/t3ointq8JStlEREShZiiQSkhIwMsvv4zaWuVJ00QAMCwjB5nxnkBKXyh1fmH7MEFxT1NGRxnxMj1T9hCOaXNBUFyH6oltqxXP+9eBHVhUsl+1XDlmG5etbrdsNkDSx+gtdf+m5X49lUo9T+nx8j2zWu+10m7x9gONdWiTzNkzk/5cSauOxXz1+OTw3o6huto9dURERJHO8Byp0aNHY/PmzZg8ebL2wdSljc/uhoNN9Zic213X8Rf1G4rTeg3wBk8AcH6fIWhyOXFKz/5YXFaMZEfnLRvKQMotCO2NbJk2n9zwQwHAhupyvLNfvfdWsUeKv9JHjQ8O7cRvB3QuWq202Oycbr1lzzfyTvvMi5Kc+XN5CWaLriG+dqCBlNNt7f3om7qdiIgoOhkOpO644w7cfvvtiI+Px6xZs5Cbm+uX5S05OdmyClL0urT/MIzKysW4rG66zxEHUUB7AosbBo8B0J7lT8wewnx1bkFQvJpSQHfPxqWa5So1cOXmTu2pr0HP5FQkOXw/tha3cbsMp9uNn8tLMC4737vNzB1V3+ab6l6ph0XpfjUyR8onU5/ktDbJ8D1BodcnKz4B1W2tuq/pKSFYuI4UERFFK8OB1LnnngsAePjhh/HnP/9Z9pitW42th0KxKcHuwNTcHkErP6RD+1TSRwfSDFTqeVpfXe7z96aaCty94WcMTsvyZjT0kCbzkK5h5dHicsHpdoc0AI1knxzei9f3bkZRerZ3m5m0/tI5Tr5zpLTmMRntfdSf707pyN4p6aiuMbZsgNWxDrP2ERFRLDAcSD3yyCO61hkiCrZQBgQuQWUmR0cr0w6b6cQBUlVt7fNudtVXQxCAHzpSwO+sr/Y7dmHxbp+/11WXYXRWnt9xx370PgDg02NOs6SO0W5HR+IPaQIQo6T3odHsfEdamjSuIL/wrjQwk34tKw0DNPOpsXoek7huHMZKRETRynAgdeaZZwajHkSGhbJHalHpfsVheA0uJwRBMBVEec7ZXluFbkmdQ2I9z+yWtT9pliFds2p0pn8QdbCxznDdYp1VzXe/AMZnSJ38drGvSw/ovpZaQKOUch/wDcDM9LpZHeq0iXp4mWyCiIiilekFeXft2oVNmzahtLQUZ511FvLz87F//37k5uYiLS3NyjoSybKHsGNUOtROaqPBoVIe/9y/Ayf17Ifb1i9GnM2OOJsNTkHwGW5mlFx8WdHSbLq8WCXXE2ImNpcGJuKhfW6fnhf58wuSU3RfSy3kkJavdKyZ57itqhKD4tKNn6jApeN1ISIiinSGA6mGhgbcc889+PLLLxEXFweXy4VjjjkG+fn5ePrpp9GzZ0/cddddwagrkY9Q9khpqVeYl6Tl26MH8VNZMQDAKbgRZ8Fzkus4EzfojzQ3onuS/sZ7uO1vqIUNNvRJta4hD8iv32Smt8b/PpQfUqfU89IjSf96aGrD4FrcLt/hfIJ8z5jaM0y0O9Aik+r8QH0tBmUF9vor1U3v0D6XIGBZeQlGZeUiMz4xoLoQERFZwdA6UgDw2GOPYe3atXjzzTexZs0an38QZ82ahcWLF1taQSIlgcyRSrI7LKwJ8MjWlabPbfNJZNH+nKz+kV7c1q8znLEtvK5f8wOuW/O95eUuryi1pBzpl6hvj5T8Y7F6p/r7ofde+Lxkn2ISB73D55SOc6gE+GpZ93wCJtF28WO9dfvmyAE8tm0V7t24TNfxREREwWY4kPrqq69w++23Y+rUqXA4fBujPXv2RHFxsWWVI1ITSI9Us0ULjFrNqZIdMBD5iZ3zr9qCdI1gs2pRWKs5JOuI+WTqU1n3yePfB3fpvpZayHGosc5nf01bC97ZtxWVrc0+J6r1uinFRHaZtdL08E3XrtQjpa+sPfU1AIC9DVwQnoiIIoPhfx1bWlqQlZUlu6+hocEvuCIKFrVfyand8ooS3LdxGRpdznBXJWChyO5m5o6SBvQ+vVCQDx7EZuTpXyJArfenPWjp3P/3vVvwr4M78eS21bp7tZSO65eeobBHa96WfFC5rKJEdL6+2iXy3xYiIoowhgOpUaNG4aOPPpLd9+WXX2LcuHEBV4pID/HQvsv6DQMA9E5mopMvSvd5F2d9eMtKrK0uwxeH94e5VrFLmvREqUdKqR8wNyFJtXwjay7JxVkHGut805+rRovyV1A7R+9qVuIEE4ca60VH6AukzMxfIyIiCibDgdTNN9+Mr776Cpdddhn+/e9/w2az4ccff8Qdd9yBRYsW4cYbbwxGPYn8iHsCzi4cjA+mnYSL+w0NY41Co6pVPQPfz+Ul+ODgDp9t4mFxgiDgme1r8cruTUGpX7C4BWBLTQVe2rXBGygGwrOQcd+UziQKZtbIkzbwxWGBUo+MWWolnFc4WHa/w2aXJJtQfo5Kw+zUh9+pzJESl+GzODGz9hERUfQzHEhNnDgRb775JlpbW/HQQw9BEAQ8//zzOHjwIN544w2MHj06GPUk8iNt9KbEmc7mH3EqVYKl+zYt9/lbLnHG0vISn7+lvRrfHj2Ijw/v8W5rc7tVh41FAgEC7tzwMz4r2Ydvj+hfe0mJVf0b0ux/SgkWFBfqNXAttfcoOyFJtrR4m93AReQPNBsE+iwgLMj3TuntkVolWS+NiIgo3Ey1PCdMmID33nsPzc3NqKmpQUZGBpKTk7VPJLKQXNa+WBn8I04OIbVPMtn+rN6D8O6B7T7b9ksW4BX3YkmbrYeb6vG7Vd+hR1IKXp10vLkKh4A4iKiOoMyDCZJA1id4sni9JLUiBEE+JLHbbLoXi1Y6Sj0zn66i4RIlOTGzjpT0niYiIgo3wz1Sy5YtQ1NTEwAgKSkJ3bt3ZxBFYWFkFNZv+hThk5mnBq8yFkt26P+NI96u/TEWLyjslAyLu7+jh6ukuVH3NdUcaKjDUQNlba2txEodvQ3i9rb0OQRCXK6ZlPopkvfKt0fKeM+LH4Vsd1JuyPcclTQ3+PydqJL6X6l0tUBMNbjTMYTP9OtCREQUZoZ7pK644go4HA4MGzYMEydOxIQJEzBhwgRkZ2cHo35Eiow0eW0wN/8lGhgNKVySxrbaulJv79uKtLh4nNl7kO6yPWs+fXrMad7te+pr8I/923DtoNF+vW13rF8CAPho5il+qcTdCkGJ3KKxRsnNFTKTCVIa3CgmmwjyHCm18sV1VBoCqxqkWVB38fvXLzXD27Ma6UNKiYiIlBgOpJYuXYpVq1Zh9erVWLFiBd5++2243W4MGDAAEyZMwMSJE3HaaadpF0QUBDVKQUFsxlDtZBqiGXEJig1Ul2QdqQaV1OgfHNwJAAYCKfmw7t6Ny1DrbIVt10bcN2Kyd7t4yKFbABwqGfDET8eK9bas6gmRluK7CK+geJzWdvlj1XqGBNlen6Hp2T5nZcUnyp6v9oqqB1I6k02IyhD3ioUirT0REVEwGA6ksrOzccIJJ+CEE04AADQ2NmL58uV444038MEHH+Df//43AykKCbkehc01FbqPVTMwNRPDM3NwbH4vb49JKGnVtsXl8q6rI9cArnW24g8bl8qXHcSeOd+EAm44bHb8VFaMWmd7gNvgbPM53ik6vs3t8humKA4MxEGEFVn7rCINA3x6pMTbQ9Ij5X9Egt3h3To7v5diGQdV5iCp9nap1MnnOIXeOb3vZLzNHrWLSRMRUWwylWyioaEBa9eu9fZMbdiwAYmJiZg9ezYmTJhgdR2JZMnFAycU9MEPZcV+2xN0zCMSy0pIxNUDR5mtWtCdtfQz79A5pV6KTQpBpbgRW9PWongN8XGLSvZhfo9+mvUSn3O4qQGFKel4Ytvqzv0qze6K1makdKQk9/DpkfLZHjir1iWSvv6K6c9Nly96rPLE3QrXEH9ObDabYkDXqjJc0myiDJ+sfaJnsrO+WnSMvsLndi/El6VcD42IiCKH4UDqzDPPxPbt25Gbm4uJEydi/vz5+OMf/4iioqKYnYNCkUnubkuSTPzPSUhCZWszRmXmKZazcMYpOOPnT322xdkM52GxlFqDV8poR8dDW1Z4H9e0Ks+PEgcBL+zagGl5PZCpMCxM7hy5eknfs/KWJu/jNEkQJS3P6BCwurZWpMXFB/17SVotpZ4Xa3qkNOZByVzDDt97SWkoZ6tKL5/6/CvFXRCHgYprVKmdDqCipRnv7N+Ko81NGkd2crrdeGzbKkzP7YG53Qt1n0dERGSE4dbi9u3bERcXh7Fjx2LcuHEYP348gygKC7keBWkA9PTYY/CXMTMxOD1LsRzxcLLx2fkAgDFZyoFXKFS2NuOAznTPgcz1kUuuUN3aArcg+JW7vKJUszyXwqKrSsTDJuUa2uJN4tdD6zmvqyrDBcsX4R/7t2nWIVDvHdiOhYd2e/9WWjtK6fUwNkdKmRuCbFDS6nZhTXUZgPZA9tsjB2XPV+2R0pibpbxP+zit9/K1PZvwzZGD2FBTrnqc2NrqMiyvKMXTO9bqPoeIiMgowz1Sq1at8g7r++qrr/DUU08hPj4e48ePx8SJEzFp0iSMHTs2CFUl8iUXu0sDg4z4BOSprMnkMadbbzQ6nbitaDy21FZgXHY3q6ppyu76Gly/5gddxwbS0SGdR7WvoRY3rPkB03N74Ir+w332Vbd2DgPcVV+N4sZ6zOrW2+cYt8+cJ/m+hqrWZqytKsO4jqDVQ65BLS5vSflh8cGqvu5YsPdfB3fi4n7D1A+2wOt7N+OM3gMBKK8dZfZ98h3ap55ZT27/5tpKbK6tBND+44NS75LavDMrEkJIF4nWW3aFyuLUSqxMj09ERKTEcCCVnJyM6dOnY/r06QCAtrY2LFu2DK+++iqeeuop2Gw2bN261fKKEvnzj6RSJcPD9PaT3lY03vt4Yk73QCoVMvVtrXhmxzrUO80vTlspaaR61ptaWlHiF0iJeyVuWfsTAKAoPRsFyamdx4jaxOkyQ/UEAHeuX4KS5kbML+jrW75Mg1ocGIjXeDLSrF9TdRTjVQJj8TWsyOTnM0fKinWkFMr22ydovy42m3LvUjACKfFZ7yj0DmqVbCYlPRERUSiYSjZRWVmJVatWef+3fft2uN1uDB48mMkmKGTkmlfiNYomZHcL+1ynYHr/4A78Uqk93M4I8ULAdkkDVq4xXdPW6htIKSSHEPMs/OtZR0itfLP9CuKy7t+0HJ/MPFXX8GMrklgEmp1OtWyNIXZawZoNNgxKy8Su+hrvtnpnG9Li4pHkUFuo12TWPh0BmNbcMQZSREQUqQwHUieeeCIOHDjgXZR3ypQpuP766zFhwgRkZWUFoYpE8rSaVwtGTlXd3y81I6qHAH1desDyMu2iF/WKld/47JMLdDzrRtU725DsiAsoOYRTo0fKSHNauujwsooSTM/rKXus1fM7fYJJPa+HkddJI2ufZo8UgPS4BJ9t3x45gNN7DUSCXTmQkr6ePlUKMPrU+gRKF2kmIiKKFIYDqZNPPtk7Dyo5WXvuCVGwKDWA35kyT1dq6+fHzbK6SiGltpBuMMg1eF2CgKrWZlz8y1cYkZGDW4aM8+6Ta1+LExrsqKvy2bek/DDO7zNEck3R0D4DAY80UceyilK/QMpTF5+hfRZ0SYnL8Em+YXp4nL4EHm5B0L6GTa53yeZ3Hb866MzMp39PJ606m+mRanC1aR9EREQUIMOB1E033RSMehBZJjshSfOYyTnddfdEJDscaHJ1BgCPjJqOH44ewldHrO8RCje1V+TfB3dideURPDd+tnebSxCwo64aQHtSA7fGfCPxkDJpYNYkExiK51w5DcxlOtRULynH9/iKlmY0y2Sps2Yek0L686DPkdIuX+4HBk+votrpqj1SanXSrJF2vaWLNOvxt90bDZ9DRERklKk5UgcPHsRrr72GNWvWoLq6GllZWZgwYQKuvPJKFBZyzQ4KnfHZ+chNMN4zOjwjR/ex0rTco7PyMDorD2f2HoRrVn9n+NqRTKvhu6ehFls7MsAB7T0uentMtEyQSQghLjuQxViltVKaW2bFHClxgPjJ4b2Wlq0WczS7XZq9O3KBcr2zvfemWBJ8+l63s9yKlmZsqCnH7Pxemj9G6Akete6ZRJUhh0rEP3wQEREFi+FAatOmTbjkkkuQmJiI2bNnIy8vD+Xl5fjqq6/wySef4O2338aIESOCUVciP38aOS3o11BqDPZOScP8gr5YFEADPxqJ10yC4BtougIYJic3dE8pMOielGKobGk5Hxfv8T7Wm15cL8UyjG1WOFb56M9L9uHs3oMMlNauW0eClpdUenHE7+tdG5agtLkRgIA53QoDDhC1RyMy2QQREUUmw4HU448/juHDh+PVV1/1mSPV1NSE3/3ud3j88cfx9ttvW1pJIqsZSTAgt1Csx6C0LABdK5ASEyAoJpiQa/RPzS1QXNhXNv25wnXTHP6p1dVIy1aab2VJr5FSHcyWbuC0W9f9pLrfJlNcZnyiZrk/HD6IWZk9AKAjiAK21VZhTrdC9UhIR921eq30Domsb2vFa3s345Se/XUdT0REFCjDg883btyIq666yi/RRHJyMq644gps2LDBssoRBYuR37jzEpXnXJ1Q0AfJKmmjY5G4YbunoRbNbqfo7xrRcf7UXnfPXB0xpR4poyHJ0ooSbK/tTG5xQvc+BkvQz4peLSVaQ/dq2tTXFJP7ASFBx/37y1H/xXSbO4bPBTpHyqq8mf8r3oNvjhzEbesWW1QiERGROsOBVGJiIqqrq2X31dTUIDFR+9dNonC5afBY9ElJxzyLGtIOmw3H5PWypCw1MxVSd1tNTwxQ3tK5iO/b+7bi2R3rvH+LH7fKJHNQG6Yl7fnb11CL3676VvbYBqfxrGy3re9sYCeIEhiIE1NYkRBCqefJkoyAAZ4v++obKPTp7WtEpwlGT5elFXjqLb+kuQFA+zDEeKZMJyKiEDD8r83s2bPxl7/8BatWrfLZvmrVKjz11FOYM2eOZZUjstq8gj54ccIcpMUnaB/cQbMhF4IpHDcNHhP8i0Bfo/WwSlICsXf2bTN0bWkA8t9DuxSPfffAdkNl66UV7OhJYa48Rcpc79rC4t3YUF2uuH9Ot96adfKQC2SNBI/fHT0kOq+ddGFlo2UHkqBETBy4n95rgOHz11Ydxb0bl6JOo1ePiIjIw3Agdffdd6OwsBAXXXQRZsyYgdNOOw0zZ87ExRdfjMLCQtx1113BqCdR2NxeNF51f7Anw2fGJyAlzticIPN0NGp1zi9bW13mt21phf8QMY8nt632+dsexNfV7HAytTTgHkpHmA0X/nNoF+7ZuBSCIPhkAfQ4rpv+TKkHm+r8tpmtl6cn6Z6NS02W4CknoNO9WkWLayc7jCekvW/TcqyrLlcN4ImIiMR0/2vT3NyMH3/8EcXFxbjgggtw0UUXYd++fSgrK0N+fj7GjBmDmTNnBrOuRGExLCMH/5l+Es5e+nm4qxJ0aok1gq2xYx2plZVHsKTssGZPxb8O7MB5HQv4NrmcqGxtRq/kNF3XUhpOptWDIjePS28Zgc6dWl11VDYFvJEFa9dXl2N0Zl5A9fDQtUaUjmPMLlQs1SYKpIwkk5ESB2RERERqdAVSBw8exGWXXYbi4mLvtrS0NDzzzDM45phjglY5okiR5IjDaT0HIElmYr60yfbm5BNw2YqvLbt2KJM/v7BrvaXliRM86FHT1oIFm38BAKRq9MK9s3+bN5A6pyPIfX3S8bpSo7+9b6vsdq0m/RUrvtEsW67XSFy2IAjYVV+DvqnpSDCwRpLcELo53XoHFDR46qMlI0H/UFijrBraJxbIDCkr5skREVHXoOvfmyeffBJ2ux3vvvsu1q9fj88++wzDhg3Dgw8+GOTqEUWO3w0ciUv6DVM9ZnpuD+QlGl8gWE11FM/ZECd40OPRrZ1zL50megY8iSO0hgU2yyTCALSHmdU6zb8XnqIXlx/Gret+whPeoYz+F82KT8DgtCyfbW/KBH8jM3NN10daLzlD0tvrkCQzVE5Xj5Se9OcWxS3iAGhXfY3KkURERNbQFUitXbsWt9xyCyZMmIDExEQMHDgQf/rTn3D48GEcPXo02HUkimjiJnuAnQMBMZJ0IBBmMubptammwvvYzJCvQF9+td6RQIfmeRr6y8rb54kpracFtK9zpedeKm9pCqj3xaNWIVj3DHM72tTot0/P66Gnd8eqHiBxKUvKD1tSJhERkRpd/waXlZWhsNB3QnOfPn0gCALKy5WzSRF1BeKhVcFIPJHf0cP17Lhj1eth+ZXDq03HfCQA2FlX7X3sEgS0uV2mh4uJAzmpdTLJMwzpqNJiXY18fe9mvbMt4KF9P5cfxm+WL5Ld5wjBXaUVMH8vyhSoJpjrdxEREcnhYhtEAQp2UzOpYx7NIMlQLym7zYZXJx4X5NpEniPNnb0lLsGNz0v8EzIY8XXpAdntRuYzyQnGXCCjsUOhTDKO71QCFXsIulitelUsK4fxGBER6aQ7a99VV10Fh8xE+8suu8xv+7JlywKvGVGUCHb6c70NcDts6JGcGtS6RLoURzz2NRxRPaamrUV1/193rsMJBf4LNmslvzDDLcgPbDNyRxlJE2+32QwNpVMLpPTcl7qy9kVYcgcmmyAiIr10BVI33HBDsOtBFLWC/aO93rlCerLVxaKtdZXex+nx2sHOhcu/NHWdQNN0y51+2pJPZI+1wUCAbuD+M9rDZFc5XF8iCfMLGBullnY+0OGPREREchhIEQUo+D1S+hzXvX0e451DJ4gywsW+j4r3eB8LgjU9Ck0uJw43NWBgWqZ3W6CBVKvbhfKWJsTZbHBqlGXT2XMkQAha7xWgfm9XtDbrLkctoLKqB0hpDbQdddUoysi25BpERERinCNFFKD1OpMQ3DNskqny9Tbg42ztH+dj83uZuk4s+KmsGN8cORhwOecs/Rw3r/0RW0TJJ1wBBlKLyw/jshVf60qPH2ez6+6pMRTIG4z51QKv7XVV2C+ztpUctaei9boGmuK9RSHVPRERUaAYSBEF6EBjna7jpuf1MFX+0PRs2cdSHL0E/OfQLkvLe3jLSu9jrbk8f9u9ERUt2r00pc3+qcSleian+l3vzN4D/Y5rz9qnWZwPQ+GgRtnXr/lB17XUep20hv/p7UULRhp1IiIiNQykiAKkp0fg8v7DTZd//eAx3sf3DZ+seJw4VfVJPfqZvh51qnW2YnlFCZaWH9bsOfnk8F78defagK85MiMXtwwZ69cT+U2pf0/b7voaQz1Seo6cX9DX+1hPYKjGE9woDbtrP0ZfGWJyvbRKbw9/XyAiomCJ6UBqz549OP/883HKKafgzDPPxKpVq8JdJYpB4gn5co2+mwaPxVm9B/lsG56Ro7v8NFG2uMyERMXjxBPqrxs0GlNzC3Rfo6vYorJOlJKHt6zEI1tXwenunK2WEZcge+wRHb1NWq4eNBLZCUl+PTW1Tv9Fc8dm5VseKByT39P7uKS5wft4Uck+02Wq9RZpDV2V2ytXntI1jCaaKGlq0D4IwDdHDmBPfY2hsomIKLbEdCCVmJiIRx55BJ9++imefPJJ/PGPfwx3lSgmdTbU0jsa2OKeI7XMZ9bWwvdCDp0NyOm55oYchlt8x5yw3jJrIym5c8PPpq9376bOZR2UXttinY1wNZ73Uc8QM4fNZvmQTqU078/tWG+8sI4noRYsaT5PmQOuWfU9lupa2BiIM/gCrdUx53FfQy2e3bEON6390VDZREQUW2I6kOrVqxcGDBgAABgwYADq6up0peMlMuuSfsMAAFNEvUHpMr0X2So9S2ZJA7ZgZxMMN6fgxrM71hrKHmcVvUFqIPTMvXNDsPx9Fj83o0GIlCD5rxztHin//SXNDXhk6yrJcfLiA1xIWU51q/paZERE1DWENZBauXIlrrnmGsycORNFRUX4/vvv/Y559913MXfuXIwaNQrnnnsuNmzYYOpa3377LYYNG8b1RMhymfGdgVKG6PEzY4/FhX2KMCmnu3fb+9N+hdcmHqf4q//ZkiGARhhdIyjaCQC+OXIQTS5nyK+tlb48EJ53UdditmbqoXGKeC5YTwO9faqX7ChT7h8crSQRep+h0o9kgQaDRERESnStIxUsjY2NKCoqwplnnokbb7zRb//nn3+ORx99FAsWLMCYMWPw1ltv4aqrrsKiRYuQk9M+x+T000+XLfvDDz+Ew9H+S2RxcTGefPJJvPLKK8F7MtRljc7Kw/dHD/ltH5yehcHpWT7b0uLifeY8WUnaS5Ku8zpsZxrXGiEptQUYWxtKT++V+Bg7gNyEJNO9ft5kEx1/O2x2uAW35JhOqyqPINHuwKisPBPXCh1+ZoiICAhzIDVr1izMmjVLcf8bb7yB8847D2eddRYAYMGCBfjhhx+wcOFCXHnllQCAjz76SPUa9fX1uO6663Dfffehb9++qsdqsYdqsouOOkRCXaiduCdI7/ui1Hskt1lvmXF2u0+P66UDhqPJ7UJ1awvWqcz70NO4vnbQKGQnJOERUTrwcEiLi8eYrDz8XF4S1no0BrEXzGG36X7PBRj8LrBBM43dgPQM72O75J4yymZrfy6eIhw2G9okEc/yilJUtjUjLzEZD27+BQDw+Sz5H8ikdD13m/7XU2+5Zj7zXQ3/rSKzeO+QGeG6b8IaSKlpbW3F5s2bce2113q32e12TJ8+HevWrdNVhsvlws0334xzzz0XM2fODKg+cXF25OZaM8zFCtnZqeGuAnVISuzs+dF7j4jPEUtM8t+ut8y8vHTf8wA8XjALz25YrRpIJSZqfw3kZKRiTG4+sEVXVYKm3tmGuydNxalfLAxvRYIoKysVuRn63vOERAeys1N0lx0f50C8Q33OUH5u531UkJqKknL5BBqZCYmo0ZgrlJWVgtz0NDg60qjHOxxolunNu2XtT/ji5LO8f4vv+bh45fpm5aRgXXkZRuTkwuGQH6mekZmE3Cxj391an7kMd73uY7s6/ltFZvHeITNCfd9EbCBVVVUFl8uFvDzfIR65ubnYv3+/rjJ++uknLF++HOXl5fjggw8AAO+88w4yMjI0zvTndLpRW9tk+Dyr2e02ZGenoqqqAW61xVkoZIYmZ+IzAJNyuqOiol7zeABoaWmT3d7U5L9dWqbSUCulaw9IaG8Yj8/rjjXlR/zr0qrdu9LQ0IxqR+Cpva1QUx0Z9QiWmppGVLTpS5DQ1Nxm6PVoc7pgdyvvtwGorOwMnH5dMABLj8hnx0u0aU+xrapuQGqrHZUd92tdm38KdwCobGlGeXlncg3xvdzWpjyM8u2Nm/Dyro2YmdcTbU754yqrG1Hhkk9Xr0Trc1xb0/lvgd7PfFfDf6vILN47ZIbV901GRjLiVX7I84jYQEqJIAi6h5rMmTMHmzdvtuzakfSBdruFiKpPVzYrvze6JaZgYFqm7vdEKUeAXPIAaZmvTzoeyytK8di2zqxlx3UrVLz21JwCPDl2Jib16YXZH//Lb79NR5UFt/Jk/pBTCQRigeDW/10Tb7Mr3kvyhQOX9xuOuzYsQc/kNL/MgDbYfK6dpJLx7miL9g9LPx09jPP7DMHqiqOax4rX6RLXQe2+W1PZXu6S8sPok5Iue4zL7Tb8Xal1vLhK/B5Wx3+ryCzeO2RGqO+biE1/np2dDYfDgfLycp/tlZWVfr1UROFkt9kwIjMXSY7Af5dw65gyH2e3Y6Zo0dTbisbh1qJxisfbOuqXHCdfP6X5WuOy8n3L0axZ8J3as3/MZyfU8+ym5hZgYnY3/KZPkaH3RYCAooxsLJxxCmbk+a8fJn1tA03zvqaqPdD5slR7FIH4R4R6Z2fPrNonQlw/pYDLaGbDfgoBmdjhJvZCERFRBAdSCQkJGDFiBJYuXerd5na7sWzZMowdOzZ8FSMKpjD8+KYUmJzZe6DP35GwLlW3xJSYD6T0vMz9UzPw4MipyExIRKNTf+ILT0xhs9lk30/PHN1hGdkAgO5J+udfybEBaHY5saW2UvNYcdr1z0v26SrfIRpeqPTRMRpIuXQc/+a+rYbKJCKi2BTWQKqhoQFbt27F1q3t/ygdOnQIW7duRVlZ+8T4yy+/HO+//z4WLlyI3bt348EHH0RzczPOOOOMcFabyFLnFQ72Pg7HIAaldrt0IeFghS9G0nc3uZyWfmld2rGAciTR82r8IEq3X96qf+6muMdT7jqtHcPrHh89E/+dfnLAvawNLie+PnJQdt/VA0f5/N0mHtonCmbU1pny6ZFSOM7oSFClNd7EuDYVEREBYQ6kNm3ahF//+tf49a9/DQB4+OGH8etf/xrvv/8+AOCkk07C3Xffjeeeew6nn346tm7ditdee827hhRRLLhY1JgXICDBbuxjaXbqUmFyGvITk3FBnyK/faf27I9BkjWwghVJaS3IKrappsKyRbUn5XQPeOhaMOjp+TO7ILDPWSqXsdtsSNTI7qfHvoZa/G33Rtl9U0QLVQNAi8LaXGpPVU/vpNEeqfzEZM1j4nQk2iAiotgX1mQTU6ZMwfbt21WPueiii3DRRReFqEZE4SUIwBNjZuKWtT/pPkfPL+hyZub3xIV9h8ruO7Vnf5+/bbbIGNrnsFlTi+z4RDwwYgr+V7zbgtKspef5iYefGRl+J27+h/v9lAbEpc2d2Qf1him+PVLyjAZSeo52MJAiIiJE8Bwpoq5IgIBBaVk4oXsfzWMfGz0DZ/QaiEmSX/b1yklIUqmH5G8heEP7jDRzbTZrGrGe5+6IgODQDHEikPwE7R4UD3HwFO5nLr3+qkpRan4dQ/YA354hpWQTWj2egiCguLEzeYSewCsCOzKJiCgMGEgRRRAjQcXIzFxcOWCEqeQLc7r1Vg3WpCVGSsPRBhviDQ59VGM2ccWCEVMxMDXTsnqI6Rm2N79H384/jDyHCHkfAf/X3mdon85epBRRJkrlHin1MhaV7sfVq7/TdT2PCHoZiYgojBhIEUWQUK3VdEX/4YhTCUh6JPmuDJ5sQWp3NUprAAVNR0vYzBypqbkFmJDTDTcNGWttnTq0CcoL0ALtAfSQ9Gzv32a/xLfXVZk80zxxanHpKy9OoCH+FKh9IhJsnfO4FNdm0/h54ltJMgw9SxBMy/VPHU9ERF0PAymiCCJ4/xucgOquYRNwQZ8hyFYZ1vfJzFO981fuGz4Zc7r1xtTcAsuSPMjR+0VkdL6LEs8zMdMjNSozz6cMq3me4q0Kgdr9wydLAkD9NZnTrbf3sdm5dYFwiIJ36Ws/WJTcxOddVnnLxUUoBUBa98w2SUCp5xYrSE7VPoiIiGIeAymiCBLs/qhZ3XorJpjwEAdMU3ILcFvReDhs+pOUPzZ6hqE6zczrqTtI09NboIdnrlAkZu0rTEkDABynMPRSGoAYeQqn9xzQeZ7xqgVMfBdJ76gUR2dgJ/4hwaXynovLKGuRTwOvFkjVtrX6Hx+WRQiIiCgaMZAiiiDB6okKldn5vTAyM1d2391DJ8puj7frD9Ks6pHyMNMjFewAJN7eOVwtXiaxhjTZhpH62HRkuQu2awaOwh1F4/2CZ5fQueKT+G2Wew089ATgap+pQ411mufLcbmNrk5FRESxiIEUURgoNeA9DcgQTZUyRCtddpzNhisHjJDd98L42ZiZ39N02R6D0rJ0HaeXPUhfgVnxiUEpF7CuF21rbaUl5Rixu74Gp/Tsj1ndevu98p4hk0B779LBxjrZHiMxPe+eVrIJ/+O1T2gTGEgREREDKaKwOK9wCPqlZuDe4ZMAAGf3HgQAOK57YTirpUqr/X7H0AneuVcTs7uhd3Kad1+/1AzVc6fn6Zu8f1KPfrqO0+IJZIM1tO9x0fDGeTpS2RthNtOglHjdplARD5uT9iYliRKafH3kAK5d/T0u/uVL1aF2enqkXCqBkdz50d4rTEREoRPWBXmJuqrcxCS8MH629+/L+g/HuYVDvOmcw9WYU1tbSqvJKt7/4MipaHO7ccbPn2pe87huheiRnIp39m/TPLbAwOKzajwBVLCG9uUmdr6OF/QtwldHDhi+jl5JOjMqDsvI1j4ohKSvo9w97xIEtKkMo9PzXhj9LCnFXS7BjRvX/IjRmXnIT9K/dhcREcUu9kgRRQg9a+IE2/l9hlhWlt4QZWx2vmpjV5xdzqrMgY4AeqT0vDfxdjv+Om4WXpt0XEiSOuj5IjeaBMTjiTEzTZ0nZ4goM590OKdS6v8DKvOY9NwPakP15M5Wuhe/P3oIBxrr8GnJ3pAtU0BERJGNgRQReal9IWjPY9LOJpemkHJbrezL+w3XuK5xgfRIfXe0fd0h9VNtGJiWiYKkVN3zvwAgRaV3qV9qhmIwdEm/Yd7HZ3UME5Xulyap0Ksg2ZpeQED9fTYz6yjQHim5+ijNqXp2xzp9lSIioi6DgRQRiZjvPwmk50XtXLOdUL8dMALPjjtWdp8nqPBby0hHMotd9TWax/is8mSg/icW9FXcN7dbb8WMiAWiBZTPK/TvVQzki97KHjVxUJMgWRDaTC9PnI7g0KVWrMknx/4oIiICGEgRRSStbGVWS+xIud07JU3xGCsa1EoNUPEQrW6J1sw/GZSWpZjlr97ZBgBwSJ7VE2P0D3+ra2tT3GdmudyTevTDZf19e9/Er5fe1O9ygZvcELjjdSY2sXIhZvFTkJZrpkcqzq79T5ja6ya3zw0Ba6uO4qHNK9DodMqex0CKiIgABlJEESlRtJZQKPxt4lzcP3yyYo8HADS4lAMHwL8Bb4cNozPzMK+gM2td/xT57H3iU0eo1MEItWF72+uq/I65dcg4nzWclFzZvz3Fu95gV+/Qvv6pGapzttQa7z7Z8GTr4C9ZZ5IKabCZrjA8U49Wt0txn1aP1OSc7hifnW/4mmpD++QCKUEQcN+m5filshSfl+xVKLTzvOrWFsN1IiKi2MBAioiQl5iMybkFqsdorccjDRhsNhseGT0dNw0e691257AJOL9wCGbl91I8VzpPyNNwTwpCcCkOXPqkpOs6x3OcS2UtIXFvSyD9OceK1t5SK8enp0fmyEBSpkt7jrTXE1P+Z2W/SuIItaQSAPCHYZMwNksSSOnopVNLfy4bSIn3K5zXIgoId3QE5URE1PUwkCIiXcRZBc3KSUjCRf2GorskjXlOQucCttJ03gl2B96aPA/vTD0x4OtLNbo6h27pDjY6DtNaG0t6vBk3DB7jfayeLKKz+W+XG9pn4dw3ufLF3p4yz9R1FpXuV91vt/m/R3qG2KkGUjIliHuwXAqp1z1DQ9vrFYq8jEREFIkYSBGRLtnxidoH6STtCRD3ehSl+653JKB9XSa9Q9GUfDDtJL9t4kVp9TaHPcf1Tc3A6T0H4Dd9ilSPtwcQxCSIeuHEjXcpyavptz+Qpr40UNAKyjLiExSHKM7t1tt0PWwmw0G1nkPZOVKiTU6Fc8XvRSBBKhERRTcGUkSki81mwwfTfqW836LrTMktwNmiFN5WrdmT6OgMSjzB2jBR0Ca9itIQNfHz/O3AkThWMkxR7fhAjmtQDaTUe6TaZAICvQGA9HXR0wFzz7BJstvNpmAH2l8faZ31JKhQH9rnv038WhYqDPf8sazY+1irh46IiGIXAymiCGTFMLpgSImLxyOjpuOGQWP89hnJ7qYWGjlsNp/sdVZlSBPXLr4j25t4iKG0d+L6QaMVypH20Kizqv4Z8QnK19CYI/WfgztNX1cayCoFYCf36Ifnxs0CYGDYo052tN9f0ivrCbKVepUAhaF9ok16FmzWk4KdiIhiU2S21oi6uEv7DUO9sw3nFg4Od1X8jM7KU23U66GWSU1Kb9pvv2v4BQCdPMPtxNukjWrpPC5FGm1tufrnJCShsrVZX/k6iK8gV506md4svWFvWlw8RufkYUNlOQCgTWbeUJzNjmtFgafSvCEj77tYfmL7eyEN1tWCJA+XSpYUufdmZ32197GeQErc00lERF0Lf0ojikDZCUm4d/hkDJHMF4oUAY9mMtCeNtv49pz17Nhj8fDIab6Z9GSegLRRHa+wRpHR3AIOmXJO7dnfWCHQyNonTn8uU8FAUpbbbDa8Orsz0UeP5FSZo7RmaclTSrcvzdDoeUrScv++d4vmNVwq94/a/CmgMyB8avsaxWPMBvpERBT92CNFRIbJ9TgYiS/khlTdOmSsbG+HVtp1JZ7TBqVn+e1TSwBx99CJWFddhqEKQazR5AJpMkGM3OsnziBolFZb/tzCIX7bzCabk+ulkV5ebya7R0dNx6lLPvHb7pQ8IWfHfWFmceDatlbUtLYgM8E/WYqelP4tLhe+P3pI8RgGUkREXRd7pIjIEkYCjKm5PQAAx+R1rpN0XPc+mN+jn6Frzs7vhQnZ3XDNwFGGzvO2x0UN84KOoXwz83vihsFjdDfa9Rw1OjNP8xxp8GDkQlq9dhnx/sHcWaKEHkbIBlKSy+tOsKHwGrslPUWeZBla5U6VWQvty9L9uPCXL2WPV0tE4aH12upJeEFERLGJgRQRGRboj/AjM3Px5uQTcMfQCZrHyvVeedhsNiwYORXT83r471MpUy7oy05IUjxenHpdemZuQrLKlfQLpGdDeuZtReNV9wPqz1eNXG+TNNgIdG0laXDSOadNvdxeyWn4/ZBxyEtIwtUawfX/infjqe2rVY/RM6yUPVJERF0XAykiMkx2kr/BtnNeYrKuBreedqpD5uJDM3L8tk3r6LEYl50PQH+Vm1SG3SU6HHh01HSdJbWTzgECtBvkakGENLHGoLRMSdnq9clPTEb3pBRdPXtyr4Xf0D6L11by9IJp3S77G2oxt3sh3pwyD90S1QPc1/Zs1uxNcgvarx0DKSKirotzpIjIMD3Z0qyi1ivgCSDkAjK5IWi3FY3H1tpKjM7KN12fvQ21GJXlO1QvyeBiwcd174ONNRVYXH7Yu83KHilpIKPVszIuOx83DR6r61o76qo1j1Easmf2KXrK0+qRqlDJhOgWBOxrqEV5SxMm5HTXeWXBb5ihX7mWJbgnIqJowx4pIjJMdm5JkNqTeoZX6R1KluSIw7jsbrrSWoudJ0rWUN7S5LffaP9LosOBu4ZN9Nmmll1Oi18QZtPYH2RWr1Erl65eToKop0967Pa6Kty09kf8acsKLCrZp+u6ArTnUbFHioio62IgRUSGJRvsgTFjfMfwu+EZ8imyxYwGRh56z+qbmu59PEOUIMNwQQCeHnuM7HbtoX3KlOYUeWgtXGs0E6EWPQvlGtJRPbtGNcXD+aS9Yj+Lev8211bquqwgaAe4Vj7Tl3ZtwG3rFjM4IyKKEhzaR0SG9UvNwNUDRmJwehZuX78EgPn1npQ8OGIqGp1tSNOx+G+gyQ2MkFtHycicIPHaYBf3HYp39m8DEFjPxoDUDADtc50A/7lEoW6WKw11NPs22WQeGSVOrf9TWbGucwQIaHW5VI+xMuj5rKOnrM7Zisx4/3TtREQUWdgjRUSmnNprgGxCB6vYbTZdQRRgfXIDtfLjNKKB3w0Yqbvc8/p0DhkMpEdqRGYuHhs9A8+Nm9VxrO/RoU7RHaewmPFFfYeaKs/zbLR6pOTO8TATbAsA/nNol+oxelKoA8DismLcs2EpmnWsFxbs+5mIiKzBQIqIos78gr4AgDndCwH4N5I/mHaSzpLUG6w3DBqNY/J6on9ahnebXJAgvv7cbr399uvptdDbIFcyMjMX6R2Bp/RZWT7UzoRRmbnI08ikp01/gGHFcEVBABaV7lc9Rm+P1OPbVmNDTbnq4r4eDKOIiKIDh/YRUdS5btBonFs4GN06FtGVBlIpcdZ8tc3v0Q/ze/TD4aZ67zaHTf33J7mMda6OPiG1ngaXQna4GwePwX8O7sSJHcGjHtKmvVZmuchvuLfXUOuXP59nKXlS1a0thq+qax0pgwMn9QRe4Q97iYhID/ZIEZElGpzaQ5asYrfZvEGU1LyCPpZfT9ywlUtsId4iN4Qsr2PR3t4paYrXUBp+d2JBX7w66XhkJuifMyPtgYqE5AUjM7WThijxpNtXSqvusUSUUEJ6pDjVvF56XjWjvX16gtYFm3/xCd6JiCgyMZAiIkvsqq8OdxUAACd0tz6Q0mpRi4MnuYby1QNH4eQe/XD/iMmKZVgZ7IQ/bPL1+yHjcK4ohbxRZR0p5430nFnTy2Z9j9Sa6jLNY7bVVeGp7WsNlUtERKHHoX1EZIlIGR5mrIdA37FGGstyPVZZCYm4dtBo9WtYGkiFtkeqd7JyTxsAzMzviXiFBBRGaM17KhJlRLRijpRbx8tm9LVdXlEKoP0+FfewSYd21jtbDZVLREShxx4pIrJGhERS/VIzdR9rVYAhnvtkNhW70hwpM6RPK0Vj3a9AXwWtdbysujW05ixZfwtqvzJrqrR7mKROWfwxTl3yCY42N3q3HW5q8DmmWPI3ERFFHgZSRGSJCJiGA8BYognLQhdRC95s6morU5SL34r5BX1xgsa8sWXlJZplPjhyCgDgL2Nm+u3TesZGeoem5BQo7tNa/0kcz1mxtNiOumrNY37UsSbVgYY62e1flh7wPjbaY6f0I4B4vSwiIgouBlJEZAmrF+QNBb2NV60gUdxm10qIoMTK4Xc9k1MxOjMPF/QZghsGj0G83aF6fK2OYWSTcwvw6TGnya4dpvWc9b4m/VLS0Tc1XXF/iagHR/Y6Pkv3Bh5J1TvbAi4DANbXlMtuF/dCxtvU3yOx53asw5k/f4omyZpUNa0tOOPnT/H09jXmKkpERIZwjhQRWSJSeqSMSHbEYcGIqcg2kBFPjhULqFoZSNltNjwyerpl5WnR7pHSZ0x2vurrEK+Ret5qG6rlAyCjmhQCMrPv+VdH2nuydtZVY3RWnnf75toKAMB3Rw/h90XjTZVNRET6sUeKiCxhNHuZ1a7oPxwX9R1q+LwJOd0wIE19XpVmb5sFw8gCXZA3nDR7pHSWY4cNX5TsU9x/UT/j728gqtqMrz0lJQgC6pQCKdF9ZaZHVzofT6vnkYiIrMUeKSKyRLJGQoNgO7P3oLBd25IMcVE4NNJDs0dK59A+mw1ocCmvR1aQKL92mFw9IiT3CR7dugpLK+TnoIljZ6eJZCPS56iV9ENOs8uJA411GCLKeEhERPqwR4qILJEZnxDuKgSN0uK/HlY02sO5aG5uQlJA51sRSOopx0icYHaumtWUgijAN3heXKa+YHBZSxN+6Uid7iGe4+cSBDy3Y53h+j20ZQV+v24xVlYeMXwuEVFXx0CKiCyhZ82daKXV22ZFoz0cgdQdHfNoXpowJ6ByzPSEyJ2rVYrWXDSrAjojeienoUYyBHBLTQWqWps1zy0Urb8lTRwh9duV3+KhLSuwtbZSdv+G6jKU67im1PqOeWCrGEgRERnGQIqIAjIuKx8AfCa9dzVWNN/DMUdqVrfe+PSY05ASFx9QOXEBLLYrXkB5V321+sEGslqEKqQ61FSPC5d/ic017YkeDjbW4c4NP+OyFV9rnpslSnLSS2FR4/q29oyKnqF/xU313n3i4FsrENPSGOD5RERdEQMpIgrIgyOn4M3JJ2CgRsKGWBZIT8jNg8cCAM7vM8Si2oReIFkLxTODDjTWIz8x2fR1xHulC9wG25Ly9qF5pR0p2vUExuJe3B4yw0df37MZ5y9fhP8c3OndJi5WHEh9ppKkQw8n158iIjKMySaIKCAOmx15Ko3friCQkX0nFPTB3O6FAQ2PCzer6l7Z2oweSamK+40MoWwzkbwhEGaGZnrmSLW6XbKpRhYW7wYAvLlvq3eb+LjipgZsq6vCqT0HeIfoeWysLkd1WwuOye+lqy6hfr2IiGIBAykiogAFGkZEcxAF+KfhDhbtkX2dR7hC3MMiF0itqypTPWd/Qx32ptTgxjU/on9qhq7r7G+s9T7+6851AORf/z9sXAoAmJJbgAQdadGjOf0+EVG4MJAiItLhhfGzFQOecCQ5iATDM3JQ1dqCqwaM8Nt3XuEQ/OvgDkuvZ+R1doY4MJAL257esVb1nH8d3OF9jfY21Koe6/FR8R6/bSUqwxilAZ5LcGNV5VGMysz1mRunNbRvQ3U50uPj0T+16w7hJSKS4hwpIiId+qVmoDAlXXZfVwujHhgxBaMz83D/iCl4ddJxsq/LxSYXzz2j90DFfUY6vsz08qUGsBbal6X7caChDocaO5NBVJrIomeG2rDCL0v3ezP9lbU04dPD+/DQlhV4dOsqn+PUhvY1u5y4Z+NS3LjmR2sqTEQUI9gjRUQUIPkZLrFrUk53TMrpHpSyT+heiBd3bZDdZyQ0mpXfC6/s2WTo2unxCaoLAmu5bs33ps8NhNrcsVf3bAYAXD9oNP5P9LqurW4fdmiHDW4IcKkEUvXONotqSkQUW9gjRUQUIGY8M8+zlhUA9E/NQLzMfJ5kR/s2I0P7Ehza84Kkbh0yTvOY38oMYwy3Bh2BjlJWP8+ivq0q97DeQMoluPFLRSkanUylTkRdAwMpIqIAZSckIc5m966pRe0GpmVidKb6+mKzuvVGasdcHUFjXpO44+WK/sNVjzUzRapnsnLGQI/TeykPPQyXA411OK5bofpBCi+IZwik2vBAp86Mfp8e3ouHtqzA49tWaR9MRBQDOLSPiChA8XY7/jvjpIDWU4pFz449Vtdxjo7XzdNcf2PyCbjcZ0FbW8f/B/f1tcGG2fm98ENZcVCvY7WpuQUoa2lSPUYpTLJp7Af0p3bf0jEXa3XVUV3HExFFO/ZIERFZwGGzG1rnqCuw2Wy6XhPPIZ4eKemivOcWDgbg+w+WXOM+KyHR+zhJYWjfJX2Vk2DYbMDc7ho9OxEoLS5B8xjFBYo7X3zFc/UGUnrSrBMRxRIGUkREFFaenia55vo9wybinI5ASjy2T5plbk633vjdgJHev+02G/rKZVlUCewcOnu8gpVowyw963gpZeXT0yOld5RkONZDa3W7sKOuSnNYaCzbXFOB29YtRqlKGnwlTrcbnx3eq9mjSUTyGEgREVFYJXb0Hsk1xLPiO3uZxP9gudy+DeebB4/16ZECgDi7/z9xav/o2Wz6Bg/eP3wy3ps6X8eRofH2vi345shBw+cpZUeU+rn8sK7jjAy9rHe2oc2CJC2Pb12N369bjJ+ibDimle7a8DO211XhbwazVALAotL9eGn3Rty+bnEQakYU+xhIERFRWP1x2CQUpWfjjqET/Pb5Dg3sfJwnGf4n1xkil4VPrd9CbyBgs9mQEa89nC5UmlwuU+d9XrJPV4/U/2QWAZajt0OqyeXE+cu+wDWrvtN3gopfKksBcF4WoH8IpphnMeeKEK15RhRrGEgREVFYDUjLxFNjj0G/1Ay/feK2uV30xwkFhZLMff6t+H6pGX7D8L4s3a9YD3sXnOJmZQIPvclWKlraG+1HWhotu3YoBvaVNDXgy9L9ETuM0Mw7KddrS0T68RNEREQRSylZhcNmx5m9B2meL/2VvrRZufGuZ65RsE3LLQjLdQVBQG1bK05Z/DH+3rGILwCsNdDTI371nty6Gg1tsbWQ729XfYvnd67Hisoj4a6KLDP3r3g4LdfDIzKOgRQREUUscQIItYai0h4jw52CnV5dD+mQxWDzJu0D8Pe97QHUh8W7vfvv27Rc9rxWtwu76qp9emfE78/3Rw/hT6uX4ewln/nNXxKC0H9kZlibWUdVgvFw0rtwspJgvC9EsY6BFBERRS6b7EO1w3y4DTQO7bbwB1OfHd4X0uu1ujvnV1W1tngfN7mcaHP7z73aVFMBAHhky0rcsu4nLK0o8e6TvnY/HD6IRpcTT2xb7d3WGGBjX0koQ4AmlzOEV9PPs46XEYLCYyLSh4EUERFFrHhb5z9TZoYu7a2v1X2sHbaw/ypvJPCzgidRhUvSo3PO0s/xm+Vf+h1/94afAQCrOob8ra0q8+7TensWlxXj3GVf4COdySuMCOW8pbf3bwvZtYJN/LqFslePKFYwkCIioohzR9F4nNyjH/qI1oJy2Oy4euAo3DNsot/xSnOpap2tuq9pdEHlSFtPKhAlzf5rEOnteREEAV+U7MOBxjrV4z481D5kcJEo4UdFS7OuIEirkd9VQoA3927BDau/1zWfaV9DLQ411oegVkRdFwMpIiKKOLO69ca1g0b7BTen9uyP6Xk9TZc7VSOZg5GhffcOn2y6HpHIzPwsAe3D/f5v1wasry43fP6lK77Cewe2qx7zn4M7cdqST3C4STkokAu0Pj28F98fPWS4TnKaFYLKRqcTxSr1stp/Du3CvsY6bK+r0jz2hjU/4JrV6inmObSPKDAMpIiIqMvol+KbYr0wOQ0PjZyK+00ERXILCAcq2eFAsiPO8nL1GCCTfl7OO/u2eh+7BQE/6FwMV2nY4gcHd6qe92bH9b4qPaB4jNyQzJd3b8RT29foqpsW8fwxAN4EGlev+hZXr/oOZS1NllxHr08O77WkHJfQ2bPV1Ub2uQUBu+qrma2QAsJAioiIYpZ0baO0+Hifvx8dPQPjsrthssm043O79TZdNznXDByF96aeaGmZemTHJ+JvuzfqOvZfosDn6yMHsLehRt9FFBrqLkHAkrLDmqd7ArFDjfWoafMNbNwCUN7S5E2QYfWcKWnM/MS21fjw0C5UddTjRxM9X+IgxqgGmaQdvZJTZY9Vey3Ec+PCPT8w1D4v2Ydb1v6El3Xe97Hsld2b8KlFwXlXw0CKiIii1k2Dx+CyfsMU9yc6HD5/S4fuZSUkBnT9BLtD+yADEu1xiLe4TD2yEhJhtlm/o65a13FqDfXHtq3SUwDq2lpxzervcOkvX/vsKmluwGUrvsata38CANPPxYi/793iffzNkYOGzn1y22qcvuRT2YBID+l9DSgPzVQLj8S9MbEURh1tbkSLyz/rpJgngFqkskh3NGl1u/DCzvXYajB7Y72zDR8f3sOA0iQGUkREFLXmFfTF2YWDFff7/xpvbXMxSaZBG4hwrQm8t0F/dkOzpJkB5by4awPuXv+z7D4BQIOrPfBwSnpzPIku9nX81+oMdNKhfVJGM0r+2DE0cKfOIFSqe2KKfx0U5vepBbBtotcxWrL2fXhoF54UpdSXKmtpwhUrv8H1a74PYa3Cb1HJfiwq3Y871i8xdJ7LxNDG0uYG/GPftohdCiCUGEgREVHMkjYN3QG0Fed17+O37dSeA8wXKCPc61gFy2+WLcJ+jax+QPtwq021FdgvE9hVtDbjPwd36bqelcPUNlSXazZOzaTmB0QLIguCoeGIA9MyFcsCgMrWZu9jtXu+TdSI/qFjeGJ1awv+sW8bqjWCx3D5+94t+LGsWHFe2sGO+6w0QhdODpY6AxlKxcRzFx/eskLXOX/cuAzvH9yBd2NoKQCzGEgREVHMkjaoxX/LBUZKXpt4HG4YPMZve3pcgvnKyYjNMMpYGnoA+KWi1G/bT2XFPsOwVoiOyY73HaJpRe+KZ/HgxTqSaWSYvA8OdqQnX7D5F1yx8hvdwZRcQhJxEC4OpJR6YQVB8PaMAcCRjsDjhV3r8f7BHXh2x1pddQkXpddKnASm3tmGbSYWKo5Ga0RruhkhDrSXy3zu5HjulcNN/ssmdDUMpIiIKGaptUvlAiMlBcmpsr0Ocpn7/jRyqu5ypcz2bMSC9/Z3pkHXM9joT6Jfz1PifAOL1gAzsX1z5ADOXfYF3tq3VVdP2oaacrgFASsqSrHRQBr4l3dvxJ76GqyqOoqyliafoXZq5G5r8Z0jHuan1CO1o77a529Pz4RnmOe+EAz3lNPobMOja37B7nr1JCZKnxWHaBHvW9f+iNvXL+kSwdTwjBxT5wWyCLjWcN0fjxbj73s2A2ifw7Wm6mjMZUlkIEVERDHLv0eqkxVBS5zdv4y8BOPrMXl03TAKPutJGe1RqmvzTdrwWUlnBrJ/7ldfp0rOszvWAQD+fXAntuhshC8tL8GftqzAHzYuNXStNVVHvY+XV5TitMUf4zPNDGr+r4/NZsOR5kZcu+o7rKg8IjpS/rWsbfPtJfS85J7ehnKfXq3QqGtrxX0bl+F/+3bhptU/mCpD/Bkq6Xgue8IUFIZSZrx6r+iPR4tlg/xAMlxqZZ58cvtqfFi8GyVNDXhx1wbcv2k5/nVwh+nrRSIGUkREFLOkmcysTostN8E/LzHJdHnSBYi7qu+OGsuCJx06WNHSGQS8e2A7SpuDPwTpW4N19hDP5Xli22q4AbykkUFN7i5udjlx5cpvcLCpHv8QzV1RuuPzpZ+NCMjb9/t1P2Frbftiw1q1UQq25XpJ5D6nnoQdOQnmP6+BqHe24c29Wyy7N9Ver1111Xhy+2rZIF/6Omp9R+4S9WTqnXPa4nZhcccSB6sqj2ocHV0YSBERUcx6cITvMLtRWXkAgJEZuZaULw58hqZn44/DJgXU08Uwql2giQKKm+p9/l4ZgsbbSlEvkNWkwYFcW3djTYXsuXrmEgGRMd+lxMD7rtSGf33vZr9t0o7j8pYmHGlpv1a4PnNv79uK/xzahatWfmtJeWq9uGoLOLskr6RnqJ9LcOPZHWvxVel+fHZ4L2raWvDPA9txS8cSA1rE6eftsHnrF2u/FTGQIiKimNU7JQ3zCjqTShSlZ+OViXPx0Khpll9rck53TMvr4TNHQ2xOt94Yl5WPB0dMUSyDPVLWkCYB+aWiJEw10ab1o/7ismKcvuQTrK7yDQZr21pxp45U1x8V78HqyqPebHZK1lb7JytYU+UfgNa2tWJJ2WFd6eyB9rkxakPABEEwtTixUtY+ublVX5T4rhX1ronhnkbVtbV6F4iWY2YRZzVq60epzYOSvo2egOeXiiP45shBPLdzPV7avREXLv/S73Xz9GL+88B23LF+sc/7KO7htNk6/461zKQMpIiIqEvpmZyGeLv1//x5mg3SX/r/Om4WTu3ZHzcMGoOHRk1TXcTXkynuuXGz8Psh43z2pcfFIyEI9Y41JU0Nfu+B0UFr47PzrauQiNPt9mtAN2osyvv8zvUAgAWblnu3CRDwUfFuXfO33j2wHQ9sXo5rV/uuqyRtQA+SSal+/6blqG5twSNbVmJHXfuQu/s2LcNj21bha50L2Z7582c4fcmneFO0gLHYqUs+welLPkWzwTWJ/nVA/1ybnfXVaHR2li9dh0xLm9utO3AE2odZXrB8Ea5c+Y3iMQ0m12ByCwIWbP4F/zm402f7Kpmg10NtuJ60J8slCHALAl7f49+zJ7WxpgLLykvw7v7t2Fpbhf0NncG69Iqe108uQU804zcyERGRjAv7FgEAbisar+t4T8NBOrRvYFomrh44Cok6Fu+t62hUD0jLxNzuhT77bLCpZiFUMy4rOIFBJPrtqm/9Gsqe163V7cINq7/Hz+WHVcsI1tq0C4t348nta3y2LVaoy3M71mFPfY3393vxMxKgb4FjNdI5UZnxiXhs6yq/497Zvw1LK0rw+3WLAXT2+KzXkZ1Q3ID/zyH1NcCUepiUGG2PN7s7Axdx8FDR2oy6NuX0/IIg4IyfP8XpSz7xL9PlRINMIOxZg6tS51pc5S1NaHO78eruTZr35u76GqysPII3923VVTag/ENCTVuLX2/Vq3s247Qln3iHPmr589aV3sfi7z7x7emw2RS/H6MdAykiIiIZ5xcOwT+mnIg53XrrOl7vZH21ZkQw/lEem5WHS/oNC0LJkWuZZD0cz3vz9r6t2NdYh0dlAgZxY9qKxAtyvQBqw6+kvjpyADet/VF23+aaCvykY30rNdLara46iiUyjfgmUc9JlSiTn1IACACbOnoqjPT7JMr01D6yZSVe3LVB9ni5BBJ6SZ/7Jb98pXjsto6eOKnK1macvfRznLfsi/YyRe+30SG6l634Gmf8/Ck+OrxH9t4U+8BE1ju5+VM/Hi3Ghcu/9OvZ+1JnT6MccW+T+DMkvrraK7O66ii+O2IuaUu4MJAiIqKYdkLHwrtn9x5k6DybzYashETtAzuI2ypn9hpo6FoecRpD9/SuMyT28KjpyDbwPCLFdoUGrBmet0apzH8e2I4Lli/CvzuGS+nNRqakxeXCqUs+wSmLP0aTywmXIEAQBFPPSW4I2Gcl+3DUYA+O2OKyYr85V0rEd+T7OofT3b3hZ/x560q0qswRArSDj6UVJfi8ZJ/suUaDFfHnUxpYqH2uxM/BU98Wl8sn+HIJAn636ls8uW01mlxO3NbReyensrXZL/W8EXK9XH/Ztlr1HLnb+dOSPQDUA2KjbD7rl4kCKVEF5HrwPB7YtBxP71gbVWtN+S+NTUREFEOGZeTgP9NPQpIjuP/kiX+BNbvIZbxNefhfIL0k0TjB+7Z1i/HW5HmWlDUqMxe76qu9qbWlPJPo39q3FTvrqgNapBSAdz4R0D6X57OSvRiUloWaABrQVnpcpuGdk5CESpm1o8RDsRoNzuv5uHiPz9+Vrc0+6cZ3iRJDWL00gZT48yPX86ZHg7MNafEJPsMEgfahfCXNjShpbsT47G6oblMe0ucJwE7u0Q+fKQSJasTPo6q1Gc/uWKcZFMsF8IH+WCBHHNu6fXqkjF3MJQhRE6CwR4qIiGKe3iDKqrV09JZyab9huGnwWBNndtLT0xat0xLKW5qQbEEAbINNd9rmpRUlhhcElnpXtLjwwcZ6NLlciunJI4f8c/5OlByjWmHOT5vbjXqZnob/SuZF3bHON8uguHfC6Ctu9Jb2vKfipBN6zvle9Py9CRMkV790RWfvlN7vkMx45V7ietU5W52PH926SlfPYo0ksCturLe0x1eOuJ7iJBR7GmrxzPa12KeySHKgP2SEEgMpIiIiC4gbDmrtcHGD8+Qe/X3Ss6uZrTBXS8/k7SiNo+CGYEnd3zugnu7aszirR6AB9SZR0PRLZanKkaG3QSFJhJ7YUS5FOgBcseJrnL/sC5+1gwD/HixpAoN7Ny0TXV+7AuIAd2hGjs++Nrcb3x45oHjux4f34FBjPW5WmHfm8fnhvd7X6Ofyw/hGNGfHBQGv7dmE5Srv6auSbHfi3sn/68jACKj/uKHW8ye+N/VkbQQAp6T76RuTi0drET8lcTD02DbfeV/fHj2Iuzf87LNNHOwF+kNGKDGQIiIi6lCQlAoAptKMCzqHsvgGPvoaDI+NnoEr+4+QL09HqBHIxHzPHLNYUy6aYyR9v4Mx7ClS3LNxqez2KpXhaEoanU68tW+r91xpz4cRenohmkWBWo8k3+D3f8W78cyOdYrn/q94D65Z/R1KmpUXHi5vacKLuzd6XyNpJsFttVX4X/EePKtyHekcoN+vWwy3IKCytRlfiBI5HGhQXtfLyLpPSg411mNvQ41secEeRgloB0P1zja4BQGPbFmJT4r3+CwIbTQ9fTgxkCIiIurQIzkVfxkzE3+fdILhc8XNBrVGhDjI0jvkcERGjmIiCl3rsgTQrXNqz/7mT45gl634Gh8V78GDm5bDKXm/oukX8XA6d9nn3gQdAPDS7o2mXzs9p22u7ezpe3zbaly58husry5DTVsL3jKQDlxJs0s9OUaL29zaT9vrqvxeF7UkD3KvhSAI+PFose408des/g43rmnvfZNbIywYxNXWk33vQGMdllaU4G97Nvn2ZkXR5y9a5nIRERGFhHTIkF7if/rV5sOI2wh611RRy1CmZ3HhQHqkwjm/6vmd6w0nODDi1T2bZLdbNVeuq1lZeQQlTco9Pmr09EhJG9hHmhtx78ZlmJjT3dQ1tUhrZLanclttFfLzk3UfL/fjyLKKUjy5XT07n5wzf/4U3fyGrgaH+O15e/82zePFGRHFmQwDXSMtlNgjRUREZAHxcJkDjcrDdtSaCNJ9PZJSNP+h/lWPfhiekYO7h05UPCaQRTDD2aZRex2DKXqacZGnyWSvjdZ9dvu6xXhoywr/89AewFlBHEB/VXoAb+zd4rO/zWRabq008FJyP44caqo3eW236XONEiDA6XajUSXFuZgnWyYAn3ln0RRIsUeKiIjIAnr/6fcMs+mfmqF57MsTj9Mc5pIaF48nxsxs/0PhR+AUyRDCO4dOwBMaa8+Ydd/wybIN3mhS36avIRhtmoLYu+dhtg2sPi9IUFwYN1ie27nOb9s/dPSyyDEaSMkx0vPhUpljJAiCasa8QFy7+ntDx4szDoq/59TqH2nYI0VERGQBvRO4uyWl4K3J8/D02GP99kn7jRw2m66he1qkQwOPze8VcJlKpuQWBK3sUJFmlwOAnsmpYaiJMmmyBbEku/x6ZB9K0pEHg575LZWtzWiWBHVy6dO9ZYaoj/BIs//7Lqa2PpSafx3cqTn/SqzZ5cKd65fg69LOLIRGXgG1VP8C1F/rcBH3mrNHioiIqIsx8k9/bmKS7Ha1uVBWOa3nAEPHR0+TJrgGp2X5ZBYLt57JaShRaPgrBR7/PLAjmFUCAHynklo7Mz4BR5obceXKb/wCQWk6bLFQJR9YWl4StLKvWf2d7mMXlx/GltpKbKmtxAkdyyMYybS3V6XHSYD8Ar3hJl6bK5oCKfZIERERWUA8v+L47oWGzu2Tkg4AGBiC7Fq/GzjS0PFGEi/kJsgHiGStBLtd9X0JZ0N0W61yI72mrRVXrvwGABSDQDmheD6Pb12Fr1TWoQoll2guVmlTA74q3Y9VOhbe1SMUqc/N+Kms2Ps4mgIp9kgRERFZQPxPf1Z8oqFznxl7LKramr3rWGmZ0603vj96yG/7vcMn4eEtK2XPeXOy8ZTuAAx1SV03aLS5a0SBSFrU2KZRm3A2RHd3rF1kpVD0SKmlIw+1rXWdC+3euPYHNBkYFqhlZ321ZWVZqUE01DOa5kgxkCIiIrKAuK03rCOFelF6tq5zEx0OFDj0z8HJTpAP1Kbm9lA8Jy9Rf/plqXibHW2CG8kOh2qjTprUIpaEYtilXgKEsGZTDLVoWlfICmuqyryPrQyiAOCO9UssLS8Y2CNFRETUxYiHWk3O6Y4nRs9Av9TgDNXT6pGw+GJ4eeJcbKopR9/UDNWJ7J71b47J74nFZeH/hT/ZEWdZpjqnydTXweAWgLXVZdoHxohoalhT4KLp/eYcKSIiogDM694+GXxGXk/vNpvNhuGZuUiJC87vlWrzY/46bpahsq7oP1x1vw02dE9KwXEdz1NNXEeGwTuHTTBUh2Cxcs7W/jCtaSXHGUVDn6wQqqx9FBkidR6XHAZSREREAbhx8Bi8O+VEjMzMDdk17So9UgPTMjEhu5vusrSGH4qvpHZdAEjoSLst12OWozAcMdoN7xjGScETTT0UFLghOodERwIGUkRERAGw2WzIDHGQ4NCYr9O3IwtgPx2L/hoZJGhXuG7v5DRMzS3wZh+UO+r0XgMNXEnd7UXjdR2nVF8zDir0SKXGxVt2DZL3yeG94a4ChVCiQ34dtEjEOVJERERRRitA+E3fImQlJOpaeNdIEoXCjkBJ6rReA3BSj36myjQjHGkflPpE4iIoCYUZ47PzfZIbRKL/aiwkrJUEhShY2CNFREQUZfITU1T3JznicGbvQboy9SkN18uMT+i4VmcZWj1hZvRRCM6sEIpGjmc4Y7S6sM/QcFchYAyiKFwYSBEREUWJlyfMxY2Dx2BsVl7AZV3RfzhGZ+ZhULp8ZsHXJx2PNyefgPSOgMpKl/Ub5n18YoF2EgspvettWdkzNkhhseT+OoZPRjKHPbp71IjCiUP7iIiIokTvlDT0TklDWUtTwGWd2XsQzuw9SHF/kiMOSTLrQt0zbCKaXS48vWOtd5ue1ODiTFzlLc3exw6b/t9042w2XNF/BIoy9E1G10qOYYTc0L6XJszBysojll0jHKx8jYi6GvZIERERkW7T83pibvdC9EjqHF64qHS/5nlzuhV6H9c5W72PjQwXHJOVj9N6DQAATM0t8Nt/nOgaACydTJVg928y9UxOMxQIRqIon+JFFFbR/eknIiKisHhl4nHex2o9ZK9NOg4fzTwFuYmdazr1TO4cmmckEFldddT7+ObBY/32i69hNfE6YR4Om83SzIDhENLFnUlVKJdQiFSpMr3gkYyBFBERUZTJTUjC4LQsnNqzf9jqoHf+kQ02v2BpREZng1Ep653DZsOdQ5UX9pW7fjCDAqW1ucSpJoKRjCNYTu7RDy+On+P3ivn16sWQzCDM97NStM+3s8LIzMDnf4YSAykiIqIoY7fZ8My4Y3H1wFHhrgoA4w3UONEwOfHj1ycdjyHpWQDaR+WprcOaFhePM3sPxMnitOuSYxqdTkP1UrJwxskoSJLPlOgQ1V8ayEVyD8M5hYPRJzXdr87DYniB4benzDN9brDT3N80eAzXywJQmJIW7ioYwkCKiIiIAnJxX2MptMWNUvHj7kkpooa9DdIUD/O6+2b4u6L/CMwV9aBI27olzQ2G6qUk3u6A0oSrabk9Oq8v2ZcUwanRPUMSpa9ZFHWqGRZIj2VakBdenlfQN6jla1/fePZMLc+Nm2X4nAsNfpeEGwMpIiIiCkiGSo+UIJPvLk401E867M9zvFxW7jiZhA9iwRzap1RyapzynI79jXXBqYwFPNn6pFn7YnnOlPSZGWnoG31dLus3DH2DuEaa1YLxvic6jP+QEK/xGY800VVbIiIiCjqjTapAMtdJr+UZzmeDTTbluN/5ogK06q0258rIdcQcNjv+Pul4vDv1REuvF2zeJBk26fbQ1yVUpPPqBiisDabnXC2n9xqAF8bP9kmsEgqfHnNaSK+nJi9Be0HwaMdAioiIiAKiN3PdtQNH4eK+Q5EqGialdK7eZqu4R0WrsXtsfi+dpRqrUbekFGTGJ3qDrSHpWfj0mNN0N6KvGzQ6gHq1OyavJ+4bPln38Xbvf6U9UtpuKxqvv2JhNjOvJ14cPwdPjT0moHKMJhKJtztgs9lwdu/Bus/pE8YeLLPx86Sc7or7zPRIRRsGUkRERBSQ7PhExX0ZcZ37Tu7ZH+f1GYIeogBDOqTI3dEPJdduFdSyT8DSZaMCKttTTb2L3Z4kSphh1l3DJmJwR6IOPbxzpCTb5YZ4Ses3LCMb70yZh1/3GoAPZ5xssKahlRGfgD6p6ShKb1/EWSn7opp5BX2QrCMt9/Hd5TIe6ulXbXdBnyEGamUt/bX0pTfA7J4on6wl2sV0INXS0oKzzz4bp512Gk455RT8+9//DneViIiIYsYL42fjrqET0Esm09Y3p5yDv08+Hikqc4gAmYaYt0Wnb2ifuN1vdPiVll8V9MUfh00C0B543DR4LM7oNVClKpLenRBlbhjekWnPyNU6k034nlXa3IhLJBP+XZIA1g4bshOScNWAkUiI4IQagP9r0ivZeFa47okpuHvoRIzJUk7NPS4rH9fL9CwaCVBCnT7/fzNOUdxXaOJ1UnNJv+hKIqFXTAdSCQkJeOutt/Dxxx/jgw8+wMsvv4za2tpwV4uIiCgm9EvNwDEKw+XSExJQoDK07ckxM3Hf8Ml+k8tdnh4pmXNOllk3Sxy86GmGnluof6jV9YPHYFpeZ1a+eQV9MFllKJNUII0s+d4NdUYSBniOrXO2+mx3CwLO7TMEc7v19m6T9gSGKkC0ghULJgsA+qSm48+jpiseMzmnu08SFe+5Gr2oYoEmfDCaJU+avGVQx5yxBSOm4sUJc/DwyGmaZeh/etFzzxgR04GUzWZDamr7l3hraysEQYDb7Q5zrYiIiGhYRg6m5Bb4Na9O6dEeLJ3fZwjEv+d/PPNU9JNZsNSm8FjJJf2G4cbBYwzX10NPu7Ez86D5xqOZRrWRy3nqJm0Ie3pFips6U8e7Jc862E3iwjTr5gpZkY3u2Pyemse4IcgGmOJW5xOjZ6iW0ehqM1o1r2SHw1DyDDmPjJqBJ8fMxPjsfNhsNl0Z9OSyciodGYvCGkitXLkS11xzDWbOnImioiJ8//33fse8++67mDt3LkaNGoVzzz0XGzZsMHSN5uZmnHbaaZg9ezauvPJKZGVlWVR7IiKi2BTO347n9+iLNyefgDN6DURhx+T7nIRExaDETPNMaXFdqwXSiDdypqcnxMj1PNn5EiSNZc/rvL2uyrvNb2if5L2wujH51pxfWVyiee9NnY+eomFuJyvMZ5O+Rl6i7cM1FmjeVV9juH5WSomLw7CMHG9AqOeHgFhOl6+H9sy5IGpsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJyc9vHAp59+umzZH374IRwOB5KSkvDxxx+jsrISN954I0488UTk5SmPcSUiIurqwv3bcV5ie9rkQWlZeGz0DBTKzMGSo3fImd4kEIFSSyV+TF5PLC4/LNvLBgBp8Z2ZDXMTklDR2ix73PCMHFw/uH1ujjSgGZKehR111fJ163gNpJnipL1PQPtwP7lzPRw2O9yCNSN+0uPikRof3MVvjYiT3FPXDByFz0r2+R0nfY08jHyWlMoIlyQdWfdyEpQTzXQFYQ2kZs2ahVmzlMdzvvHGGzjvvPNw1llnAQAWLFiAH374AQsXLsSVV14JAPjoo490XSsnJwdDhw7FypUr8atfmfulwx4Biyt46hAJdaHowfuGzOK90zXZENh7bui+ETVU5Y4fna3+42e8Q7y4r/r1POU7dC76KVcf8TbpfpvkOIdKX82IrFxcPWgUshR629JFixyPzMzFj2XFsuX8ZVxnWm+Hw/d6k3MKFAOpzmMlvUs2m9/zkgZXDofvMQPTMrFN1IMViEfGqg9/M8pmk7xnoqem5/6Mc9glx9lw7aBRqHe2YVHJfpS1NAEABOl1Oh4LOq43p1tv2O02BBKKCoLxz6z4+Fa3y+/8AWmZuKDPEPzzwA7FMtJUgl5xeTYddRufnW/6eydc/1aFNZBS09rais2bN+Paa6/1brPb7Zg+fTrWrVunq4zKykrExcUhIyMD9fX1WLFiBc455xxT9YmLsyM319oMJoHIzg7tAm8UG3jfkFm8d7oWm81myb95eu6bDKHR+9jMNXNyUoFV7Y9TU9V/HfeUn40mXWXL1SfD3aC439Mj5ohzIDc3DS6VXprU1EQM7tkZJH5wwqlYuHcn/rlrGwAgJbkzkEpIVG6uieuQ2OY7xyYjLUnXeT71Skn02xef4Hv93Jw0ZIp6Ip6cORv3rViCdRVlitfrlZqG4oZ6xf3eOqdbu4hrcnKCz/NJKu58XfXcb7k5aUiSZJ68LLe9B/CrLw50lpscj9zcNNw8ajxS4+K9ZZ+WOhhv7N2Cy4pGIDc3DW/P/RUu+e4L73mvzz4RQzKzkeBwID7BfAZEM59Z8fHfHz2Ex2b6d27ckjfJJ5C6aPAw/Hv3DrS4XQDaX1895aep3IseBelpAX/vhPrfqogNpKqqquByufyG4eXm5mL//v26yqioqMCdd94Jl8sFQRBwwQUXYOhQc+kXnU43amv1ffEGk91uQ3Z2KqqqGuB2R1YXMEUu3jdkFu+drkkQgIoK7UavEiP3TU1NZyAVyDUBoLGxVXW/p/w6nf+ey9VH3Bbw39/+XJ1OFyoq6lUzttXXN/ucnwY7Lu5V5A2kxM+ltcXpfZxkd6C5oxErrUOTq/O4O4ZOQPd45blgSq91U2Or3z7x9QGguqoRzrjOoM0B4De9i1QDKbdL3/dHbV0TkK3rUF2am3yfT3NT5+uq536rqKxHksIaUi5RArP6hhZUVNTjxJxCv7I/nHEybDYbKirqkYcE3DN8Eh7ZshIA0ENIQl11+z01I6sAH+/fbeDZdWpyOQ1/fqTH6zl/dnZPHDuhJ3638tv26zYpJ8gQl1dfLz80FWhPlNHkcmFebqHp7wCr/63KyEhGfLx2YBuxgZQSQZDPiiJn8ODBWLhwoWXXjqRGhNstRFR9KDrwviGzeO90LQPTMi15v/XcN+L9AV9T43Rv+aLjrh4wEn/bs0mzbnLb/PfbvOVrPRdB4xjpfJl+qRnY11DrN3xRXIYgetwnJQ39UuTnX8nX3Vt1v31+mdnc/sdoz+/R997aLP6akb7O4mrqud/iYVc87pbB43DvpmUAAJfGvS4OqpXuobwE7d64u4dOxGPbVsnuM/r58XsPdZzf3smq7zput4Azew/ER8V7MDYzX/G4Z8bOQnpcPDITEgP+Dgj1v1URm/48OzsbDocD5eXlPtsrKyuZLIKIiCgI5hf0xYV9i3Dv8Mkhu6aVTR7pz6zzC/p6H380s3PxUfGcpFN69sd9Ms/3pQlzZK/hyfiXqLIQrVxK6AUjp+JRlXWIPE7tWCtrRp5vym1PjdVeL3EGtQanM2jrPclNQzGyXpKSGXk9FJNvWOXXvQciPzEZvx8yDgDQXSODo9prODa7MzhwGbiTG11O2e3i++b9qfNlj5mpIxW7Hi+Mn+3z9ySd66PZbEBBUipGZuTi3MLBmmlbrug/Av+bcQoy4hPw90nHK5aZGaVJKyI2kEpISMCIESOwdOlS7za3241ly5Zh7Nix4asYERFRjEqJi8MFfYqQm6g9nyGSvDNlHt6bOt+vUddf1Ch3iBZLFWeds9lsGJ/t/2u5UgO7W1IKXhg/G29OPsFvn1qjckJ2N4zK6vwhWKnZffXAUVg442T0TknDxOxuAIAxWfkY2ZE6e5xMXb3XF1XgQGOdz773p/0KT46ZqVLDdnoahnIpr+Wez5D0LB2lteuRlII/DJsU0Npb/VK015/KT0zGG5NPwNyOBY+li9j+utcAQ9c8p2OB5zn5vTWO7FSlkIEx2d45UCwtPsEvNb1RfVLSMaebfL0y433nNum9lh022G02PDZmBi7pN0zXOZ5gNCNefj5VqLJoBkNYh/Y1NDTgwIHOiXqHDh3C1q1bkZeXh/z8fFx++eW48847MWLECIwePRpvvfUWmpubccYZZ4Sx1kRERLHFkyZ7eEZOyK+tf0FPZdkJ7YGftPdAqTdB2liXCwzUmnZGek1uGDQayQpzbJTEd/R23TVsInbUVWFUZh7a3L0wJD0bU3K64+fyEtnzxM9D2jhNi4sPKEjxuY7OYp4eeyzOX/YF6p1tPoGsHCt6JmXfb426psZ1Zp17YMQUTMrpjrndCnHT2h91XfPSfsPwmz5Fuhav9VC6HzITEvHHYZPQrSOIH5OVj5WVR3SXK/XXccfCJQj4/ughAL7DWKX3vNkORSN3lPj+e3/qfJy/fJHhMiJNWAOpTZs24ZJLLvH+/fDDDwMAbrjhBtx444046aSTUFlZieeeew5lZWUYNmwYXnvtNe8aUkRERBS4h0dOx56GGowIQyClNJHfDGmDTKmBJg0y5AMua5p38xUWcNUj2RGHMVntPVCJDodi74KHT2rvjse/HTASnjDF7DNKj/PtSTDyaj00chpe37MZ5/YZjPs3LVe8htlA6vjuhTixoC+SHXF4evsak6W0y4pvH16mZ/0kMSNBFKD+48G0vB7ex0rDR8/sPRAfHtqNJ0bPwJ0bfla5kg3xopvi1F4DRIGUOf7BuP6SxMFbmqh3Su9yBJEorIHUlClTsH37dtVjLrroIlx00UUhqhEREVHXkxIX5x06FmpD0rJwXuEQjMwMPIjTOydIephcMy6QMCp8aVlEQxY7Hp8uGqom1/PmV4LMa3hJv2Focbu8PRvxKvPDpAanZ+GxMTPQ3DEvqDA5DQeb/DOznd7T2JA6oL03yDO0DtD//mspSErF2Kw8DM8IzmfCpbP7R+nZXNF/BM4vLEJKnHoz3ob2Ia2vTJzr3wvWUfi9wyfh5V0bcXE/fVmt9dxDSqRz6+4cOgF7G2qRn2htyvtQirqsfURERBQ7bDab7kacZlkB1MHK6+trJlsfbokDQrlhfHqepeeYy/sPxxt7twBon9tyW9F4rKsqQ1Vbi6m6JTni8MG0k5DocOD0JZ94tw/PyMEfhk30Ds/U8s+p83FBx5Awqck53bG7vsZU/cTsNhse1pEYxCwr3nmtIAro/MGgZ7L/2kyegGhqbg9Mze3ht1+JNBgy8smRBmHH5vfCsfm9DJQQeRhIERERUUyQNuriFOblyPUIvDrxOCTYHbh0xVcBVEB/s9KKxvTNg8dKLt95/Vy5wMRAqzdB5rV7c8oJimnO9TwfucZ/siNOdxAFAOmiIWHSa55XOATDMnLw74M7sbGmAkBkzr/RThXfTk+Af0xeTywuP6xUgoFaKXts9AzcrTqEUB+7zYZrBo7yDqGMBdE7KJGIiIhIRNrwnJZbAKC9sSkmlyWsR3KqddkKdTSU4zWSL+hxjEoq7KIM/1VtjQzLyk/yH27lsNkVh/Xp6SGRY2WgE2e3Y3x2t6CnUA/UiQV90Ts5DTdJAmGpyhblRWz1UHttjbzug9IyvY8DzbB3Ss/+lqVwjwTskSIiIqKYIG3ipcUn4H8zTvFbxFbth/7fDhiBoy1NiDMxAV5PE/OBEVPwZel+HN+9j+HypdSy8Jke5thx5pScAlwzcBTGZimnWxcbmJqJC/sWYWN1BTbUlGuf0GGCzvWLjLi47zB8cniv5eVaJSM+AS9PnKt5XFp8vOYxciH7rwr64khLo2WBlPjz458Z00BBMYiBFBEREcUEuR4XuYBIrWfm9F4DLa2T1KSc7roXP9Wi1oaVyySnJ9W8p2Fss9lwSsfiwLrqYrPhgj5FALYbCqSmdvQaWsls75gVqfitZDZGuX7wGB2Fm8u218XjJj8c2kdEREQxQW/bMHYag8rPRG7dJrNrBRmRYmE6+65Oz9tlNvgzlCRCpUdKKUV7V8FAioiIiGLOC+NnK+4L9nCkYMcrcR1PQDpkUYtbT4+UqRp1OrGgL2bl98IjOrPe5RlINGFGIOm6w62/jrleIVlIV+ExAJzUQ3+vZSzizwZEREQUE+Jtnb+OqyUcCFbj2lj6c/Pen/YrON1u1TlSskLQI5XkiMMdQyeoHjMuKx9rq8vwwvjZlqWej0XnFA5GVnwifiwrxpbaSotLNzC0T6VHKiUuDsd3L8Q3Rw5aVrNowkCKiIiIYsL0vB6YUlaA2d3U16bJFKXQtlKoej+SHHGAiRFV+oaBBf85PDhyKmraWpCjozdqck53rKg8EvQ6RaIEuwMn9+yP9dXKc85MD+0z+TbLnZbq0E6KEasYSBEREVFMiLfbcd+IyZrHpcTF48Xxc5ARpIAqmoUiFHTYbLqCKADY31iHSTndsVIumLJ40ldqXGQGBKMyc7G0ogTjs/0zKJp9BQLN6ih2QZ8hqGprwem9BuC2dYtNlhydGEgRERFRl9MnNT3cVQi5yMpJp4/exWsD8dSYY7C3oRa9ktOCfi0zTurZHz2SUzE8IzfcVYFdJgJLi0/AnRrDOWMVAykiIiIiC9Q6WwEAVa2BLaQaiCdGz4ipeUeuAAMpPa9EUUa27ALGkcJhs2GiQsp888kmzPdJUSdm7SMiIiKyUJ2zLWzXHp6Zi2EZOabPH5KeZV1lLDAwLRMTsrsBAI7J6xnm2kSeUM+RMpzgJMaxR4qIiIiIcEL3PhgaQBAWDEPSsnBSj37on5qBwREW5EUCs/11Znuy9KbcT+0i64mxR4qIiIjIQpGatEDJgI5U8b/q0TfMNen04sQ5OL3nAJzReyDsNhtGZOYioYsv/hpN/jRqWrirEBJdI1wkIiIiCpGBqZnhroIhT4yZidLmRtW1t0KtX2oGfjtwZLirEfHSOoL2JJ1B5vTcHjjQWIcEu7G+lF8V9EWr2637+F5JqYbKj1YMpIiIiIi6sCRHXEQFUXrpGp0W41N6rug/HE63G+cUDtZ1/D3DJ0EQBMMJSa4fPEbXcf+YciJq2lqQ1kWWFmAgRURERGQhuRTRZD19ywvH9puRnZCEu4ZNNHROMLM6ZiUkIishMWjlRxrOkSIiIiKyUKQ23oUQrMkUSnqej97kCERmMJAiIiIissD8gvZkDcfkR2aa7oz42OgpGJyWBQCqad7vGz4ZwzNy8OteA0NUK+qKOLSPiIiIyALXDhqNU3v2R5+U9HBXRVbvlDT8fsg49I3C+VBij4yejoONdRiSrryI7pTcAkzJLQhhragrYiBFREREZAGHzRbxQcrc7oXhrkLAkh1xqkEUUahwaB8REREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAbZBEEQwl2JaOB2C3C53OGuBgAgPt6BtjZXuKtBUYb3DZnFe4fM4H1DZvHeITOsvG8cDjvsdpvmcQykiIiIiIiIDOLQPiIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIEUERERERGRQQykiIiIiIiIDGIgRUREREREZBADKSIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIFUFHn33Xcxd+5cjBo1Cueeey42bNgQ7ipRhHv++edRVFTk87/58+eHu1oUgVauXIlrrrkGM2fORFFREb7//nuf/S0tLViwYAGmTJmCcePG4cYbb0RFRUWYakuRQuu+ufjii/2+g+6///4w1ZYixd/+9jecddZZGDduHKZNm4YbbrgB+/bt8zmG3zkkR8+9E8rvHQZSUeLzzz/Ho48+iuuvvx4LFy5EUVERrrrqKlRWVoa7ahThhg4diiVLlnj/995774W7ShSBGhsbVf+xeeSRR/D999/j2WefxTvvvIOjR4/ipptuCnEtKdJo3TcAcMEFF/h8B915550hrCFFohUrVuDCCy/EBx98gDfeeAOtra244oor0Nzc7D2G3zkkR8+9A4TueycuKKWS5d544w2cd955OOusswAACxYswA8//ICFCxfiyiuvDHPtKJI5HA7k5+eHuxoU4WbNmoVZs2bJ7qurq8N///tfPPXUU5g2bRqA9kbOSSedhI0bN2LUqFGhrCpFELX7xiM5OZnfQeTj9ddf9/n7sccew7Rp07BlyxaMHz+e3zmkSOve8QjV9w57pKJAa2srNm/ejBkzZni32e12TJ8+HevWrQtfxSgq7NmzBzNnzsRxxx2HO+64A6WlpeGuEkWZTZs2oa2tzec7aODAgejZsye/g0jTwoULMWXKFJxyyil45pln/H45JqqrqwMAZGZmAuB3DuknvXc8QvW9wx6pKFBVVQWXy4W8vDyf7bm5udi/f3+YakXRYMyYMXjiiSfQt29fHD16FP/3f/+HCy+8EJ988glSUlLCXT2KEuXl5UhKSkJaWprP9tzcXJSXl4epVhQNTjvtNPTq1Qu5ubnYtm0bnnrqKezbtw9//etfw101ihCCIODRRx/F5MmTMXDgQAD8ziF95O4dILTfOwykopggCLDZbOGuBkWwY4891vu4qKgIY8aMwZw5c/Dll1/ijDPOCGPNKNrIfdcIghCGmlA0Oeecc7yPi4qK0K1bN1x22WUoLi5Gr169wlgzihR/+tOfsGPHDvzzn//02c7vHNKidO+E8nuHQ/uiQHZ2NhwOh9+vMJWVlX69VERqMjIy0K9fP/ZkkiF5eXloampCfX29z3Z+B5FRY8aMAQAcOHAgzDWhSPDQQw/hu+++w1tvvYXu3bt7t/M7h7Qo3Ttygvm9w0AqCiQkJGDEiBFYunSpd5vb7cayZcswduzY8FWMok5DQwMOHjzIid9kyMiRIxEfH+/zHbR3714cPnyY30FkyNatWwGA30FdnCAI+NOf/oSvvvoKb731FgoLC3328zuHlGjdO3KC+b3DoX1R4vLLL8edd96JESNGYPTo0XjrrbfQ3NzM4Vmk6vHHH8ecOXPQs2dPHD16FM8//zwcDgdOOumkcFeNIkxDQ4PPr3WHDh3C1q1bkZeXh/z8fJx11ll49NFHkZGRgbS0NDz88MOYOHEis2d1cWr3TVNTEz755BPMmjULWVlZ2L59Ox599FFMnToVgwYNCmOtKdwWLFiATz/9FC+++CJSU1NRVlYGAEhPT0dSUhLS09P5nUOytO6dAwcOhPR7xyZwwGnU+Mc//oHXX38dZWVlGDZsGO677z6MHj063NWiCHbrrbdi5cqVqK6uRk5ODiZOnIhbb71V1y841LX88ssvuOSSS/y233DDDbjxxhvR0tKCxx57DJ999hlaW1txzDHH4IEHHuAwmy5O7b45++yzcccdd2Dnzp1obGxEjx49MG/ePFxzzTV+SQSoaykqKpLd/uijj+LMM88EAH7nkCyte6ekpCSk3zsMpIiIiIiIiAziHCkiIiIiIiKDGEgREREREREZxECKiIiIiIjIIAZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAyKC3cFiIgocj3//PN44YUX/LZPmzYNb775ZugrFENaW1vxzDPPYP369di0aRNaWlqwfft2xeMffPDB/2/v3mOqrv84jj/5gYIiJ6TwbBKKscQFnKB1BqJgIslZyuIiM0wc1soYLiqbXDIlu3BZRgciR1IMM3XAoEVNqOYO5ilhNe9LY7QuOAJDDu4cIEH4/eH4/joeBI5i/tL3Y+OP87mcz+dz/MfXPt/P54vJZOLdd98lOTmZ5uZmAJycnFCpVMyfP5/ly5eTmJjI1KlT/6llCCHEHUuClBBCiDG5ublRVlZmUyZuTH9/P9XV1Wg0GoKDgzly5MiY7Q8dOsTzzz+vfA4JCeGll15iaGiICxcu0NzczNtvv011dTUVFRWoVKqbvQQhhLijSZASQggxJkdHR4KCgibUtr+/HxcXl5s7oduESqWiubkZBwcH9uzZM2aQ+umnn2hvbyc8PFwpc3d3t/p3iYqKIj4+nqSkJHJzc8nNzb2Z0xdCiDuenJESQghxXdra2vDz8+Ozzz5j8+bNPPzwwzz33HMAmEwmtm7dSlhYGIGBgTzxxBMcP37cqv/FixfZtGkTQUFBLF68mJ07d5Kfn09kZKTSpri4mJCQEJux/fz82LNnj1VZVVUVK1asICAggKVLl7Jr1y6r+szMTOLj4zEajcTExBAUFERSUhItLS1W7S5fvkxpaSnR0dEEBAQQERFBZmYmAJ988gnBwcFYLBarPkeOHMHPz48zZ87Y9Rs6ODhMqJ3BYCAwMJC77757zHYLFizgySefpK6uDrPZDEBnZydZWVksW7YMjUZDdHQ0hYWFXLp0SemXkJBAVlaWzfdlZGQQFxdnx4qEEOLOIUFKCCHEuAYHB63+hoeHlbqCggJcXV3R6/Vs2LCBS5cusX79eoxGI5s3b6akpISZM2eSkpLC+fPnlX5ZWVkcOnSI7Oxstm/fjtFo5Isvvriu+ZWVlZGTk0NUVBSlpaUkJSWh1+ttwlZ7ezsFBQWkpqayY8cOLly4wAsvvGC1nq1bt1JcXIxOp6O0tJTMzEx6e3sBiImJ4fLlyzQ0NFh9b21tLf7+/ixYsOC65j+exsZGlixZMqG2ixYtYmBggNOnTwPQ3d2Nu7s7WVlZlJWV8fTTT1NTU8Mbb7yh9ElMTKS+vt4qIFosFr788kvi4+MndzFCCHGbkEf7hBBCjMlkMuHv729VVl5ezpw5cwB48MEH2bZtm1JXVVVFS0sLn3/+OT4+PgCEhYWh0+n46KOPyMjIoKWlha+//prCwkIee+wx4MqZn6VLlzJjxgy75mc2mykpKSE1NZWNGzcCV8JEX18fO3fuJCkpCUdHRwB6enrYt2+fMq/h4WHS0tL4+eef8fX1pbW1lerqal555RXWrVunjDEyR5VKxfLly6mpqVECxkjg2LRpk13znqienh6OHj1Kdnb2hNqr1WoAurq6gCu7dxkZGUr9Qw89xLRp08jOzmbLli1MnTqVlStXkpeXR319PQkJCQAcOHCAgYEBVq5cOckrEkKI24MEKSGEEGNyc3OjvLzcqmzevHmYTCYAHnnkEau67777Dn9/f+69914GBweVcq1Wy6lTpwA4efIkgNVjfK6uroSFhXHixAm75nf06FF6e3vR6XRW44WGhvL+++/zxx9/4OXlBYCXl5cSogB8fX0B6OjowNfXl6amJoAxd2FWrVpFSkoKv//+O97e3hw4cIDBwcGbFjgOHz6Mh4cHDzzwwITa/313beRzRUUFlZWVtLW18ddffyl17e3tzJ07lxkzZhAdHU1tba0SpGpra4mMjGTmzJmTtxghhLiNSJASQggxJkdHRwIDA23KR4LU1ed2uru7OXbsmM0uFqDsYv3555+4urraXEwx3hmg0XR3dwOwYsWKUevb29uVIHX1bYNTpkwBUMKFyWRi+vTpY+6KhYSE4O3tTU1NDenp6dTU1LBs2TLc3d3tnvtEGAwGlixZMuHzVJ2dncD/fsuKigry8/N59tln0Wq1qFQqTp48yfbt261C1apVq0hOTua3334D4Pvvv+eDDz6Y5NUIIcTtQ4KUEEKIG3L1f/DvuusuAgICyMnJsWk78n6je+65B4vFYnPL38jjaCOcnZ0ZGBiwKuvp6bEZD6C0tHTUIDZv3rwJr8Xd3Z3e3l7MZvM1w5SDgwMJCQlUVlby+OOP88MPP9hcbDFZhoaG+Oabb3j99dcn3Ofw4cNMmTJFCbL19fXodDpefPFFpU1ra6tNP61Wy9y5c6mtrWV4eJhZs2axePHiG1+EEELcpiRICSGEmFQLFy7EaDQye/bsa+4wjexwHTx4UDl/ZLFY+Pbbb60CjFqtxmKx0NHRoZz9MRqNVt8VHByMi4sLnZ2dNo8Z2is0NBSATz/9lLVr116zXVxcHEVFRWRnZ6NWq1m0aNENjXstx48fx2w2s3Dhwgm1P3PmDHv37iUmJkb5Hfv7+21e0FtXVzdq/4SEBPbt2wdAbGyscrZMCCGELQlSQgghJlVsbCz79+8nOTmZp556Cm9vb0wmEydOnMDT05OUlBTuv/9+IiMjycnJwWw24+npyYcffmjzqF94eDguLi5kZ2ezfv162tra2L9/v1UblUrFxo0befPNNzl37hxarZahoSF++eUXmpqaKCkpmfDc77vvPlavXk1eXh5dXV1otVouXrxIQ0MDhYWFSju1Wk14eDgGg4ENGzbYBI7i4mLee+89zp49O+Z4jY2N9PX18eOPPwJXdo/gStD08vLCYDCg1WpH3R0zmUwcO3aMoaEhTCYTTU1NVFZW4uPjY3WVeVhYGB9//DEajYY5c+ZQV1fHr7/+Oup84uLi0Ov1DA4OyrXnQggxDglSQgghJpWzszO7d+9Gr9dTXFxMV1cXHh4eaDQaq8sl8vLyyMnJ4a233mL69OmsWbOGwMBAq6vFPTw8KCoqoqCggLS0NPz9/dmxY4eyizXimWeeYdasWVRUVFBeXo6zszM+Pj427SZi27ZtzJ49m6qqKnbt2oWHh8eoO05RUVEYDIZRL6bo6+vDw8Nj3LFee+01zp07p3xOT08HIDc3l/j4eBobG4mNjR21b1NTE6tXr8bJyQk3Nzfmz5/Pyy+/TGJiotUOVFpaGt3d3ej1egAeffRRtmzZorzz6+88PT3RaDTAlVAphBDi2hyGr77eRwghhLhF8vPzaWho4ODBg7d6KuNKT0/n/Pnz7N2716Zu7dq1hIaGKtexX4+Ojg4iIiJoaGiwumnwZjKZTERERPDqq6+SmJj4j4wphBD/VrIjJYQQQtjh7NmznDp1iq+++op33nnHpn5wcJCWlhaKiopuaBy1Wj3uo4GTxWw209rayu7du3F1dZV3RwkhxARIkBJCCCHskJqaSnd3N2vWrEGn09nUOzk5Ke+j+rc4ffo069atw8vLi/z8fKZNm3arpySEEP/35NE+IYQQQgghhLDTf271BIQQQgghhBDi30aClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2EmClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2Om/aAMr6cN41akAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtls_kepler.freq, mtls_kepler.unnorm_power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "82aa6b7f", + "metadata": {}, + "source": [ + "#### But how does this compare to the classical Lomb-Scargle Periodogram?" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "cf030cc3", + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.timeseries import LombScargle\n", + "\n", + "ls_freq = scipy.fft.rfftfreq(n=lc_kepler.n, d=lc_kepler.dt)[1:-1] # Avioding zero\n", + "data = lc_kepler.counts - np.mean(lc_kepler.counts)\n", + "ls_psd = LombScargle(lc_kepler.time, data).power(frequency=ls_freq, normalization=\"psd\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "4ed7d4d4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAMrCAYAAABUKTPHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzddZhTZ9oG8Dsy7o4NDoMOg3tpaUspVaC6pV3a8lWp7Na7NeruLkupb9stS5U6FHd3nwEGxl0j3x8zyZwkR5MTmZn7t1evTY6+SU6G8+R53+c12O12O4iIiIiIiMhnxmA3gIiIiIiIqK1ggEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTc7Ab0NrZbHZYrbZgNwMAYDYbYbGERluo9eB1Q97itUPe4HVD3uK1Q97Q87oxmYwwGg3K59TlbO2Y1WpDWVlNsJsBo9GAlJRYVFTUwmazB7s51ErwuiFv8dohb/C6IW/x2iFv6H3dJCZGw2g0KZ/X5zMRERERERERAAZYREREREREumGARUREREREpBMGWERERERERDphkQsiIiIiahXsdjusVgvsrHNBKhiNBjQ0NMBisagqcmEwAEajCQaDcqVAOQywiIiIiCjk1dbW4sSJPNjtLNVO6hUVGWGzqb9mDAYjkpPTERYW4fU5GWARERERUUiz2+3Izc1FREQUYmMTAPiWYaD2w2w2wGJRm/K0o6qqHCUlBUhP7+J1JosBFhERERGFNJvNCovFiuTkBJjNYcFuDrUiZrMRgPoMVmxsAurqqmGzWWEyeRcqscgFEREREYW0ljFXzFyRvzVdY76M82OARUREREREpBMGWEREREREpJsnnngEDzxwd7CbETQcg0VERERE5AdPPPEIfvrpe8yceQn+8Q/XgGPevAfw66+LcdllszBz5iW4+OLzZY91//0Po0OHjrj11hvwyy9/ITo62mObkpJivPvum1i7djXKykoRH5+ArKx+uOmm29CtW3c9XxoAID//OC6++Hx89NEX6Nmzt3P5bbfdCXsAaulfdNF5uPzyWZg581K/n0sLBljthN1ux2v7t6BbdDwu6Nwz2M0hIiIiahfS0zPw668/4+abb0d4eDgAoLq6CsuWLUF6eoZzm0WLFjv3mT//fezfvxdPPPGsc1lsbCx27Ngue65//esu2O3AQw89hg4dOqKwsABr1qxCZWWl7q9LTmxsbEDPF2oYYLUTJQ31+OVELgAwwCIiIiIKkAEDBuLQoYNYvvwvTJ58BgDgt99+Qd++/WA0No3WMZlMSElJde4TGRkJs9nsskxJZWUltm3bijfffB/Z2TkAgA4dOmLw4CGy+9lsNnzyyYf49tuFKC0tQbdu3TFnzo0YN24CAKCiogIvvvgM1q1bjbq6OmRkdMCcOTdi8uQznFm3q666DACQkzMMr7/+Lp544hHU1tbg8cebAsS5c69Dnz5ZsFot+PnnHxEZGYmbbroNY8dOwLPPPoE1a1YiI6Mj7rvvIQwcOAgAUFpaipdffhZbtmxGZWUFMjO74dprr8PEiac6j3niRD5eeuk5vPTScwCA5cvXAwC2bNmEt99+DXv27EFychImTz4Tc+bc6Axw/Y1jsNqJvJrA/nJBRERERE2mTTsPP/74rfP5jz9+h2nTztP1HFFRUYiKisKyZUvR2Nioer+PP56PX35ZjHvu+Rc++ug/uOCCmfjXv+7C3r27AQDvv/8Wjhw5hBdeeA0ff/wlbr31DmeG6r33FgAAXnvtHSxatBhPPvmc5Hl++OFbpKVl4P33P8a0aefjmWcex6OPPoBTTjkN//73p+jevQcef/whZ9fC+vp69O8/EM899zI++ug/mDLlbDzwwD04fPgQAODJJ59DenoGrr/+ZixatNiZATx27CjuvPM2nH76FHz00Rd45JHHsWrVCrz99mva31QvMcBqJ/4oyHM+tgagTywRERERNZk69Rxs3LgeRUWFOHLkMA4e3O/MZunFbDbj3nsfwnffLcTUqadi7tzr8MEH7yAvL1dyn4aGBnz88Xz8618PY+TIMejcuQsuuGAGTjnlVHz77f8AACdPnkCfPlno128AOnXqjDFjxmHUqDEAgMTEJABAQkICUlJSER+fIHmurKx+uPLK2cjM7Iqrr/4/WK1WZGZ2w5QpU5GZ2RWzZv0deXm5KCwsAAB06NABl102C336ZKFz5y7429+uxODBQ7Bkye8AgPj4BBiNRkRHRyMlJdWZ7fv44/mYOvUcXHTRZejSJRM5OcNw882349tvFwZkXBjALoLtxsS0zvij4GjzMzs4jwQRERFRYKSkpGLEiNH46acfUFlZgUmTJiM6Okb385x++pkYP34iNm1aj+3bt2HZsqX49NMFeOqpFzB69FiP7Y8ezUNdXR1uvfUGl+WNjY0YNmwEAOD882fgwQfvxb59ezBq1Ficeupk9O8/UHPbevXq43wcHh6OmJhY9OjRMmwlKSkZQFPXwPT0DFitVnz00b/x55+/obCwEBZLIxoaGpCZ2U32PPv378OBA/uwePH3zmU2mw319fUoLi5Gaqr6bpfeYoDVTpgNLQGVnfEVERERUUCdc855ePvt11FTU4OHH37cb+eJjIzE2LETMHbsBMyZcwPuuONWfPTRv0UDrNraWgDA88+/hpSUFJd1ERERAIDx4yfi66+/xcqVy7Fu3WrcdNMczJ49B3//+7Wa2mU2u4YdBoPrMoPBMcGvDQDw2Wcf47//beqS2KNHT0RFReGZZx6HxSLf/bG2tgYzZlyM6dMvBgCYTAZYrU2Zq8TERE1t9hYDrHaIHQSJiIiIAmv8+FPw3HNPISoqGkOHDg/IOQ0GA7p27YqtW7eIru/RowfCwsJQUHACQ4bkSB4nOTkF5557Ac499wJ88smHWLRoIf7+92sRFhYGALBabbq3fdu2LTjllFMxZcpUAIDFYsGxY0fRoUNH5zZmc5jHufv0ycKhQwfRpUtm8zZGWCz6t08OAywiIiIiIj8zm834z38WwmAwOLM13jp4cL8zwwQARqMJqampeOih+3DuuRegV6/eiIiIxKZNG/DDD9/ib3+7SvQ40dExuOSSv+GVV16A1WrF4MFDUFlZiS1bNiItLQOTJ5+BDz54B1lZ/dCjRy/U1tZi7drV6NatqZteYmISIiIisGbNSqSmpiIsLFy3Eu2ZmZlYuvRPbN++DdHR0fj00w9RVVXlsk3Hjh2xefNGnHba6QgLC0diYiKuuOIqXH/9NXj55edxzjnnIyYmCvv27cP27dtw88236dI2JQyw2gm7zDMiIiIi8r+YGH2CjxtuuMbleWxsLL799hf06zcAn3/+MY4dOwqbzY4OHTpg9uw5uPzyK2WONRdJSUlYsOAD5OcfR1xcPPr3H4DZs+cAaCoh/9ZbryE/Px9RUZEYOnQEbr/9TgBNQePtt9+F+fPfw7vvvons7By8/vq7urzGv//9Whw/fgz/+MdNiI6OxvTpF2PUqNEu21x77Q147rkncemlF6KhoQHLl69Hnz5ZePXVt/Hee2/hxhuvgdFoQpcuXTB16rm6tEsNgz1Q5TTaqMZGK8rKaoLdDBiNBqSkxKK4uAo2m+dHurG0AA9tXw0AWDj+HIQZTYFuIoUgpeuGSAqvHfIGrxvyls1mRVHRcSQnd/QYy0MkR2sXQYvFgqKiY0hN7exxrSUmRiMsTPkemmXa2yH+k0ZERERE5B8MsIiIiIiIiHTCAKsdYqdQIiIiIiL/YCfWdsLu8pgRFhEREbVuL+3ZhNXF+QE955iUjvhH1tCAnpNaH2awiIiIiIiIdMIMFhERERG1Ok2ZJGaTKPQwg0VEREREFAAbN67HhAkj8Pe/Xw6bzbV0+IQJI7BixTIAwLXXXomXXnrWZf3HH3+ICRNGYNmyJS7Lb7vtJjz22INetWfp0j/wz3/OxTnnnI4JE0bg4MH9HttUVJRj3rwHMGXKJEydehqefvox1NbWajrPBx+8g2uvdZ2La82aVTjjjAl49903vWr7okXfYO7c6zBlyiRMmDACNTWe0yatXbsa11xzFc44YwKmT5+GDz98H4GYoYoBVjvEEVhEREREwZOXl4vffvtZcv3QocOxadMGl2WbN29EenqGy3KLxYIdO7Zi6NDhXrWjtrYWgwcPwQ033CK5zbx5D+LQoYN46aU38MwzL2Hz5o14/vmnvDqfw5Ilv+O+++7AtdfegOuuu8mrY9TX12H06HG48sqrRdfv27cHd999O045ZRI+/PBz3HPPA/jf//6LL7741Jemq8IAi4iIiIgogGbMuBjvv/82LBaL6Pphw0bg0KGDKCsrAwBYrVZs27YFV1zxd5cAa+fO7airq8PQoSO8asfUqefg6qv/DyNGjBJdf/jwIaxZsxL33vsgBg4chCFDcnD77Xfh118Xo6Sk2Ktz/vDDt5g37wH885934/LLZ3l1DAC45JK/4corZ2PgwEGi6//44zdkZfXH7NnXokuXTIwZMw5XXjkb//nPp37PYnEMVnshuI5Ypp2IiIgoeC67bBYWL/4BixZ9g5kzL/FYP2RIDoxGIzZv3oBTTz0de/bsQnR0NM4++1y8/vpLqKioQHx8vDOr1blzFwDAli2bcOedt8qe+6677seUKWerauf27VsRH5+Afv36O5eNGDEKBoMBO3fuwIQJp2h41cCXX36Gt99+HQ8++BgmTz7DZd0vv/yE5557Unb/559/FUOGqBt319DQgPDwcJdlERERKCoqRH7+cXTq1FlT27VggEVEREREFEDR0dG46qqr8dFHH2DatPMQFRXlsj4mJhZ9+mRh06amAGvTpg3IyRmG6Oho9O7dB1u2bMTEiadi06YNGDasJXvVr19/zJ//mey5k5OTVbezpKTYY3uz2Yy4uHjNGayDB/fj1VdfxAMPzPMIrgBgwoRTMGCAeDbKIS0tTfX5Ro0ag6+++hy///4rJkw4FSdO5OOLL5rem5KSYgZYpDemsIiIiIiC6cILL8KXX36OL7/8DH//+7Ue64cNG47Vq1cCaBp/NX58U7ZoyJBh2LRpA8aOnYDt27fi9tvvcu4TERGJLl0ydW6pQWSZHQaD2HJpGRkdEBkZhU8/XYDRo8ciKck1cIuOjkF0dIwP7XQ1evRYXH/9zXjiiXmor78fUVFRuPjiyzF//kEYDP4dJcUAi4iIiIgowMLDw3HNNdfh1VdfwPTpF3msHzp0OD7//BOUlBRj69bNmDv3HwCAnJyh+OCDd7B79y7U1ta6FLjQu4tgcnIKSktdM1UWiwWVlZUeAZKSmJhYvPjia7jttptw66034NVX30FSUpJzvd5dBAHgiiv+jiuv/DsKCgqRkJCIDRvWAQA6deqkqe1aMcAiIiIiIgqCqVPPwWeffYyPP/7QY92QIUNhNBrx5ZefIzw8At26dQcAZGcPxcGDB/DXX3+iQ4eOLl3d9O4iOGhQNsrLy7Fnz25kZfUD0FRq3m63Y8CAgaqP45CQkIhXXnkTt99+E2677Qa88srbziBL7y6CDkajEampTfv98cevGDBgkObgUCsGWO2EXdAtkB0EiYiIiILPaDTiuutuwiOP/MtjXXR0DPr27Yf//vdLjBkzzrk8Pj4e3bv3wMKFX+PUUye77KO1i2BFRTlOnjyBoqJCAEBu7hFYrVZkZHRAfHwCunfvgdGjx+GZZx7DnXfeB4vFghdffBZnnnkWkpNTvHrNTUHWWx5BltYugsXFRSgpKcaxY0cBNI3xioiIQOfOmYiOjobNZsOXX36GcePGo6HBgsWLf8Bvv/2MV19926t2a8Ey7UREREREQXLKKaeiT5++ouuGDRuB2toa5OQMc1mekzMMtbU1Xs9/5bB8+V+4+uorcNddtwMAHnjgHlx99RVYvvwv5zYPP/wYunbtjttuuwl33XUbhgzJwZ133u9ynAkTRuDHH79Tfd74+AS8/PKbMJvNuP32G1FaWqq57f/7339x9dVX4JlnHgcA3HDDNbj66iuwe/dOl9c3Z85sXH/9bOzevROvvPIWBg3K1nwurQz2QExn3IY1NlpRVuY5c3SgGY0GpKTEori4Cjab50e6vuQkHtmxBgDwxdizEWsOC3QTKQQpXTdEUnjtkDd43ZC3bDYrioqOIzm5I8xmdsAKJfn5x3HZZdPxySdfITOza7Cb48FsNsJisane3mKxoKjoGFJTO3tca4mJ0QgLMykegxksIiIiIiLyypo1K3H++TNCMrgKFv4EQEREREREXrnwQs8KiO0dM1jtEXuFEhERERH5BQOsdoIhFRERERGR/zHAaocYbBEREVHrxLsY8rema8xg8P4IDLCIiIiIKKSZTE23rFarJcgtobbOcY0ZjcrVAqWwyEU7xN9+iIiIqDUxGIxISIhHZWUZTCYzAB/SC9TOGGCxqL37taOysgwREdEw+JDCYoBFRERERCGvQ4cOKC/fh6Ki48FuCrUiRqMRNpv6ebCMRhOSktJ9OicDrDbKZrejzmpBNCcUJmp37HY7Gu02hPvQvYGIKNSYzWZkZHSBxWJhQWRSxWg0ICkpGqWlNaomNzcYmgIsX7JXAAOsNuu53RuwrOg45o86E2kRUS7r7OwkSNSmPb17PVYU5ePT0WchITwi2M0hItKNwWBo7iJIpMxoNCA8PBxmc4OqAEu38wbsTBRQy5rT5xtKTga5JUQUaCuK8gEA8w/vDHJLiIiI2h8GWG1cYX2t50ImsIjahQNV5cFuAhERUbvDAKuNC+MYDKJ265S0zsFuAhERUbvTbjuxDhw4EL179wYADBo0CE888USQW+QfHSNjgt0EIgoSk4+DdImIiEi7dhtgJSYmYtGiRcFuht9Z7U1lKe2CcjvsIUhERERE5B/sItjGWVnHlIiIiIgoYEIywFq3bh1uuOEGTJgwAVlZWfjzzz89tvn0008xefJkDB48GJdccgm2bt2q6Rzl5eWYPn06Lr/8cqxdu1avpoccsQCLZdqJ2gd/fNPLG+qxsug4f7whIiKSEJJdBGtqapCVlYUZM2bglltu8Vj/448/4qmnnsK8efMwZMgQLFiwAHPmzMHixYuRnJwMALjgggtEj/3NN9/AZDLh999/R0ZGBvbv34/rrrsO3377LWJjY/36uoLBZlc/czURtS12PwRBn+buwY/5h3FD42BcnZqt+/GJiIhau5AMsCZNmoRJkyZJrp8/fz4uvfRSzJw5EwAwb948LFmyBAsXLsS1114LAIrjqzIyMgAAvXv3Rt++fXHo0CEMHjzYq/YajcEfSO5og3tbrLDDaDTAIFhuMBpCos0UfFLXDbUNBoP+3/Uf8w8DAPZUlgLgtUPa8G8OeYvXDnkjWNdNSAZYchoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR2jvLwcUVFRCA8Px8mTJ7F3715kZmZ61R6z2YiUlNDJfCUluVYNDIsyIyUlFnENkc5lyUkxSImMCnTTKIS5XzfUNkRFh/vt75PR3NTDnNcOeYPXDXmL1w55I9DXTasLsEpLS2G1WpGamuqyPCUlBUeOHFF1jAMHDuChhx6C0WiE0WjE/fffj8TERK/aY7HYUFEhMplvgBmNBiQlxaC0tBpWa0u3wKrqehQXV6Gyos65rKS0Ggi3BqOZFGKE143NxjE1bU11TdP33x8aGiwAwGuHNOHfHPIWrx3yht7XTXx8FMLClOeYbXUBlhS73Q6Dyjlfhg0bhu+//163c4fSF91ms+NfW1c6n9vtTctsgrEYNps9pNpMwcdrom2y+/FzdRyV1w55g9cNeYvXDnkj0NdNSFYRlJOUlASTyYSioiKX5SUlJR5ZrfZqc1nLe8M/QUTtF7//REREgdfqAqzw8HAMHDgQK1e2ZGlsNhtWrVqFnJyc4DUsRJyorVbcRq6wWGVjA6otjTq2iIiCxa8BFqM3IiIiUSHZRbC6uhq5ubnO50ePHsWuXbuQmpqKtLQ0XH311bj77rsxcOBAZGdnY8GCBairq8P06dOD2OrQcPMGtznDNJZpvnz1YgDA9xPP16tJRBQknPOOiIgo8EIywNq+fTuuuuoq5/PHH38cADB37lzccsstmDZtGkpKSvDqq6+isLAQ/fv3x/vvv++cA6s9q7UqF6+Quuk6VF2ud3OIKJgYXxEREQVcSAZYo0ePxp49e2S3mTVrFmbNmhWgFrVeWu6vGm2clJioLWF8RUREFHitbgwWaaPlBis+LNz5+HB1hf6NIaKAYhdBIiKiwGOA1cZpmrdacC92vNY/c+cQUeBoHIKp7dgM3oiIiEQxwCJRDewuSNTqMQQiIiIKPAZY7YTw12apmy7h8jqrRfJYP+Yfxu8n8/RpGBH5kf9CLAZvRERE4kKyyAUFh2uXH/HOhXa7HW/u3woAmJzeBQaDpk6IRBRADIKIiIgCjxmsNs7bG6wok3jsLTyejbdvRCGN31AiIqLAY4DVDtklRr4Ll3aLiVM8jsXG2zeiUCb1XSciIiL/YYBFmghv1yx2FsIgChV1VgtyqyuD3QwiIqJ2jwFWG2eHHXk1lai1WtVs7LKfkpKGOh9aRkR6unPzMty08U8crCp3LmP+ioiIKPBY5KKNy62uxI1H/lS1rdabsb8Kj+GKbv20N4qIdHe4pil7taOixLmMc1UREREFHjNYbdz28mKPZWpuuaSHbrSs6BIV61WbiMh/dgkCLMZXREREgccAq40rbayXXFdlacSHh3aioK4GgPZfu+PDwn1qGxHpr0dMvPMx4ysiIqLAY4DVjn16ZDe+Prof16z7TfU+wsyWsMRFvdXKimVEIUD4PfRnF0F+34mIiMQxwGqHHDdd3x0/pLhtVWMDvjt2EDWWRsltaiyNmLnyBzy8Y7VubSQi7wh/+GAIREREFHgMsMjJ7lJFsMnr+7finYPb8cb+rZL75dVWAQA2lhb6sXVEpIaNmSUiIqKgYoDVHmm4/1pedBwAsLTwmNZdiSgI7BD5pcQPDAaD/w5ORETUijHAIifhjZmqsRvNm/x2ItdPLSIiIiIial0YYLVDWn7UTmiuFJgeESW5TZlMpUIiCiwDWjJL/sw4M39FREQkjgEWOdlFnoQbTQCEN22et2yT0rr4tV1E5B1ONExERBR4DLDaGL0n/20Jq6Rv1MKNvIyI2hsDc1hERESieGfcxthU/GKt5ldtxxaOgexieziO89vJPLXNI6IQtauiBHk1lep3YHxFREQkyhzsBpC+1JRoPlFXgy9y93osFwu8HBG447hiR19ZnK+liUQUYhptNty1ZTkA4PuJ56vah/EVERGROAZYbYyaAOvZ3RtQJTNxMNASbLVksDiWg6i1UTslVoPNqvnY7CJIREQkjl0E2xg191NSwZXYzZjjFsrG+Iqo1VH7w4jFbvNrO347mYs9FaV+PQcREVGoYIDVxqjJYKnhHIPlVj1QeHjHw1nd+ulyTiLynTfZ5kab/wKsk3U1eHnvZtyxZZnfzkFERBRKGGC1MWqKXHhD7qix5jC/nJOIAsPixwBLqTsyERFRW8MAq43xJYElNg+WM38lc1w1p6y3WvGf3L04WVfjXeOIyC+sdhvePLBV835qR2DtrijRfGwiIqLWjAFWG6N3BstR5MLB22IX3xzdj4+P7HZWKiMi/1PzbV1RlI+NpYV+a0NeTZXfjk1ERBSKGGC1NT5lsOyij8Weu65UPunJ+qbMVUlDnXeNIyJVhNX97Cq+mzV+7sLnr27LREREoYoBVhvj082MTBVBuaOqOaPZwEuNKBSVNtZ7t6PKPoLJ4ZHeHZ+IiKiV4l0vOe2vKnM+bqki6PrcWyYD58whCjQ139u+sUl+bUOPmHi/Hp+IiCjUMMBqY9R0CZLy+n6Rge4qAiM1Z+SkpEShKczo5T8DKv/UWHWaOoKIiKi1YIDVxvhSbFk2BBK5SWoJ5pRvoLwtjkFE/lVUX+vX4+s1Nx8REVFrwQCrzfHuZsZudw2Bnt29AYBnF0Gxo6s5I2+xiAJPzfduweFd3h1cZVLaavffHFtEREShiAFWG2PzMpJZUZTv8rywvhY7y4u9HoPl3lXRl66LROQ/ajvvNtqsXh2fXQSJiKi9MQe7ARQaNpQWeCzLral0PnbchD26Y43Hdu73T9vKinDftpUAgMu79sUV3foxg0UUIHLTLYhRk1/Kq6nEjRv+RKTR5EPLiIiI2gdmsNoYO+xICAvXvN+WMs+JRj/L3eO8+XJMOLytvFhwrpZzCs0/vNP5+PPcvThcXYGOUTGa20RE/qdmjNSNG/4EANQJslhqC9ewgCgREbU3DLDaGJu96cZnYmonTfsViAx0L2mod3bt03KPVFzvOplwRWOD6Fw4P+Ufxj1blnvd9YiIFKhIHbMADRERkb4YYLU5dhh1/MXYcetVZWnEV3n7XNY9tnMtDldXuCyz2e0obnANsHZXlIge+439W7GjogTrSk7q1l6i1uLbYwextOCYX8+hqgAN4ysiIiJdMcBqY5qKXBh0+01aWJxCrNrY3I1LFM/VNSYOcrd6coU5TtRW44U9G3GyrkbhLESth9Vuw7sHt+O5PRtU7/PziSN4cNsqWGz6VuWzqfhrkSjS7Vj97zjsI0hERO0LA6w2xw4D9Ov2k1dbpWl7q92OMIPrZWWAAT/mH9Z87qM1Vbhxw5/4s+AontdwI0oU6hq9CJJe27cFm8oKsUlkvKSQcGyUqiIXKlJYk9K6eCxT/xeGKTIiImpfGGC1MXYARoMhoN1+hFmuZ3avx9CkNI9tdlWUSu7/0t5NeGnPJtRZLfj3oR34+PBuAMANG/5AY/McOiX19Tq3mih4vAmwHPZWSn+XvCE2PtKdmiyXFHZBJCKi9oYBVhsTjHuZvwpbxpGsLj6huQ31Nit+L8jD98cP4ZujB/CfvL0e2/hyg0cUahp9mHw3LSJKx5YAUzt2U9xGTZaLiIiImjDAakOEFf9OS2/q0nNepx5+P+9Bt0IXSqQmHS5rlM5S8QaP2hKtk+8Kt1dbHh1Qlz0yeTlGSm03ZH5ziYioveFEw22II8tjMBgwNrUjFoyaguTwCHx3/FBA2+EeQLkHRzYAYtOV7pbpRuhemZCoNdP6g4Fwe70DFn1LZohhiEVERO0LM1htiOMezPF7dEpEpHOC4EBy7873xK51Ls+lMli7dR5bQhSqrIIuglLfByFhtujVfZtduuWq3c+XbSR2JCIiIhEMsNogLV2I/GFjqXyVM3Vz8/Dujdou4dQEaq5094zXs7ulq2pqDZi87X6rdi9+k4mIqL1hgNWGOG6UgpC00kTNDaDWMSpErYnWLn9yc8XJUfVjhvtznb97/CoTEVF7wwCrDXHcx4R4fKXqF3OLyipreytLsbuixNcmEQWUFdq6CGqpoqk1oHE/v/rMlP6Rk91ux9d5+7Cm+ITuxyYiIgoUBlhtiOOGx72L4KD4lGA0R9KTu9bhuMIExmq7Lf1z8zLcuWW5Hs0iChhfuwjK0Rr2uB9b7+qAWtqTX1eNDw/vwmM712rYi4iIKLQwwGpD3ItcODwwcFTA2yJnY2khnpEZQwIAFokbyl9O5OJAVbnkftvLi7G1rAgAUNHYwLFcFJJcgxoVhSg0BViC7oeqsmPu51J9KpXUH9CXCZiJiIhCBQOsNsSZwXIbhBVrDgtGc2TJBUmAa5U1ADAbDDhSXYFX923GbZuWiu5Tb7Xi3q0rcP+2ldhfVYa/rV6MF/du0q3NRHpxqSKoYnstXQS1Fq3w7CKocn99NyMiImozGGC1IQcqmoKW3JrKILfEd8X1nvNeVVkaJbe32+1YUnjU+dwxhuPPgqNSuxAFjTAIUhMQaSlyoS035hm8BXMMFhERUVvAAKsNeXN728nW3L75L49l7t2HhJUGbQCWFqibG4go2LR2hFNb9AXQXgXQfXOxgE9s6gfVgRjjMCIiamcYYLUh+TXVwW6C39jsdvx6Mtdl2Zx1vzkf11gaXbpd1VutAWsbkVZay7S7d5mVPbbGzJL/M1GMsIiIqH1hgNWGtOkAC8DSwpYMVZ3VgsL6Wufz9w5ux/DkDPXH48/qFEQuAZaKa1HL1So8nLrgTbmLYKjPrUdERBRKGGBRq3S81jWY/KPgKDpGRqvad3nhcVy4/HtsLy/2R9OINFEVPGmIsLRnsNyeq/zxQfV2PrSFiIioNWKARa2S2C/qv53Mcz4+VF0hue/zezbABjs+O7LHH00jUuRSSl3V9uppzY5VNjZ4fS4lP+Yfxhv7t6renoUziIioLWCA1U6pzfaEKrFB9xtKC5yPN5UVSu7rmGOLN3MULC5Xnqougv6baPgXt7GNemam3tQQXDWdW9PmREREIYkBVhuhNAh+bu8hLs8v65rlz+aEFE42TKFMVQZLSxdBH6/3YH5btHZvJCIiCkUMsNqIWoWqeVM7dtN0PKNIhiiUaPlFX+qmbRvHYFGQaJ2ryttsqzd7BTPIYfEZIiJqCxhgtRF6f5DG0I6v8Po+9V2PKhsb8WXePpQ11PuxRUQauFT607eKYFmjj9e5ypP5IxRifEVERG2BOdgNoMCJMYeh2tKoalujwRDSdzt7KktVb/v2gW1YXnQcm0sLcWp6Fz+2ikgdu2uEpavVxSfEzyMh3hyOCktLoQv1Ewjr//eBXQSJiKgtYAarjfjnpmWK28SawwAAXaPjFLdtsKmf2DTUHW6uKLi1vAg/5B8KcmuIAthFUMVugxNTdDmXHhrb0N8dIiJqvxhgtRG5NZWK29zXbwR6xybgzqxhktv0i0vSs1khodZqcT4+XlsVxJZQW2e329Fgkx8P6bGPmi6Cfox53I+tOoOle0uayroTERG1duwi2I70jkvEy0MnAfCcJ+qqbv1gB3BJZh9UWxqxpPAY3j6wLQit1F9xQ53zcVvKzFHouW/bSmwvL8ZX46YhyiT951XYvU7vebB8FcxCEyWC7yoREVFrxQxWG5QcHqF5n16xibi0a18YDAbEhoWjX7x4Juvyrn19bV5QWUN4XBm1ftubK1Pm11bLbufSRVDFJenPbnuhNB9cfFh4sJtARETkMwZYbdC5nXoqblMv6MY0OCEF2YmpLutNBvEygld06+fyfN7AMV60sElaRJTX+/qb0rxiX+ftw/xDOwPUGmptjBLfHzGqAhwvYyBvKhSqzWD5IzATZv3qFaaeICIiClUMsNqgi7v0VtymURBgPZU9HmFG10vBbFB3aXSKipFd3xovsEXHDuKC5d9jX2WZ5DYfHt6F/x7dH7hGUcj7STB+SGkeOa3BibehjD9zU94kg5UqDw5OaCm4EUqZNSIiIi1a4/0vuXEvvW5Q8ev5GRldMTQxDQ8PHC26XiqDpXW7+DD13RUHxCer3taf3ju4HQAkA6h32sjYNNLXG/tb5mZT+voI4wy9qwgmavjOubdFbXu8pXRsrdUViYiIQhEDrDZA7dxWQjHmMDw2eCxGJmeIrjeJZLBGJKV7LJPrCjU8KR2PDpLuQlhYX+vy/Jns8ZLbBkO9RDW4746z1Ht7sbLoOO7cvAyVjQ3KGwsodRF0HYOl70TD0WZttYvcgzex9ug1dFExwBJsEMxiG0RERL5ggNUGuHfv04NjziyhoUlpmo4xb9AY9IxNULXtHVlDVWXe9OSefWu02TSP+/DHZKsUOp7ctR67K0vxwaEdmvZT6iKolZbrTOs16b612N5iGTTvuvCpz2Hxu0VERK0VA6w2QPhruZpJhNWIMYfh2ezxeNolq+R506jXLdBp6Zk6HUk99zLa/7fuN8xc+YOmY/AWsH347WSepu2lgo+WKpb+K9MuLM/iTYxi82fFQoVDC1db+e0iIqJWigFWWyC4DzHrmAUakJDiUulPbBLiUPuVOV1DZcIqQddKi82GIrc5eI7WVOKqNb/g3GXfYkNJgegxQuvVk78M1Dg+UOy6OFZThQuWf4fPj+xxG2uk71XkOsdWy+NGm1W0O7H7d7ikvs5j2Q8iEwB70+pPc/cgT8Wk6AC7CBIRUevFAKsNEN6GmHTuLii80eoTl6jrsf3B4EXXrIrGBkxf8b3H8vy6GufEpw/vWC26L28C24dOUbGathe7LH49mQugKciwu0ZYKo6noYugxPLpK37Apat+gsVtsm337e/bthJfq6iQ6c2l/1XePty04U/pY8q0i4iIqLVggNXGaK0gpkTYTUcsdElsntS4Y6R8ufZAGZHsWYhDyZayQq9v5hhgtQ/ay6p7bn+gqlxiW2X7JPYVPZ5LBsuTmqI436iagsC7a192L0Hb+d0iIqLWSlu5KQpJwpu5m/pk63ps4WB9sSIU4UYTvhw7DREmIy5Y7pkFkpMWEYXRyR28CoqkRJhMmvex+XAf1zQhsfZzUuui9V5fbHuLYPJq4XdWKXiz2e3OqQPUkJ8iG6i0NCIhvOWHGLHzV3pRmVQPwpYwwCIiotaKGaw2JC0yChmR0boes4PI8Ua5lXaPNptFy7orKayvxQ29B2OE4HjPBqVUu/c3co6iBdvLi/F7cxcwanu0ZrDECkWEG1sCcS1d4TRnzxQCk1XF+W7bKx9TbEJxf4Q/LgEWOwkSEVErxQCrDSiqbxonVFhXq7CldmJZq7v7DRfdNsYknhCN0pBVGpCQorjNPJm5tbS6bdNSlDXWq9r2RG01Ht7uOhbLEWDdu3UFXtq7GeUqjxUoeytLvZonjVzpcasvrPapdQyWEqnCFmLBltaCHQDQTaQ6qb/DHyawiIiotWIXwTagUWJCXH+JNJlxV9Ywj4l4Pxp9Fh7fuRabygr9ev7hIhMee+tAVTmOVFeo2nbO+t89lgm7fQFomkfLcwoxVcob6rG65AQmp3dBmNH3bod7Kktxx+Zl6BgZjfdGnuHz8dozrdUyxbq3uc6Npb5Mu5pTu3atE18uRc331ZtutN5UGGUXQSIiagsYYLUBnZsrnCWG61vgQs6k9C4eyyJMJtEJigPKi3syiw83cnreBN62aSmKGupQ0lCHy7tm+Xy8A5VlAJqqIZJvtH7KYtsnhIWLrtejTLvU8cSuT+GSWqtF1fFFu+tpmNNKNWGRC3YRJCKiVopdBNuAhPAIzB99Jr4564JgN0WULzGIN92ZAsnq9uJWFOWjorFB0/5Ha6pgt9ud83B9emSPx3bLC4/j7i3L2d0vSLQHWJ575CSleX08NWd0EOZUHUGKVGXBBqu67Ld4oCb/Krx5jcxgERFRW6BLgNXQ0IC33noLu3fv1uNw5IWMyGjEhAU5ewTxmyqtt0m39skBAFzVrR8eGzxW077eVBH0hXsXwQ8O7cD921a6LKuxNOLLvH349MhuVLoFX6/v24IbNvyBpYXHZM/z9O712FlRgsUnjujTcNJE6+xqyrFBywYnJDKMdrsdj+9ci89z92o6nzCYcgQpLhkuwXq12Vvvgh3fuggyvCIiotZKly6C4eHhePvttzF8uHjxA2rdHh801iOQkBLf3A0q3IcJj6d06IopHbp6te8FnXvBarfjy7x9Xp9fC/cMFgAcdhvT9ciONdhZUQIAOFRdgQcGjHKuc0w+u7LItbKb5Pls6j4HCi6x7m1SMcrywuMY6VaZEwBKG+uxuvgEVhefUDyfUhdBqcBF7fda7Dr3TwDEebCIiKj1062LYHZ2Nnbs2KHX4SiE5CSluZRSlzOrWz9MTu+C54dMdC4bkpgKAIhxG5/VUWNJ+T6xifhk9FkAgKGJaR7rnxsyAbHmMKwrOanpuL5QcxPoCK6Apqp+Yoxu1RqlCgRoCq9EKkBSgIh8fMKgyyXjJBGqiAU10qcTBiZizRAPXCwqA3axgFFq4mTnGX2MjxhgERFRa6VbgHXXXXfh888/xyeffIK8vDzU1NSgtrbW5T9q++LDwvHPrGHoGZvgXPbPrGG4rU8O3hk+Gd1j4p3LwzVWyuseE+8s5OEekABA/+bxWpd17etN071isdtEs2VzNy5BUb3YNS8e9CwvOu7yXOq219ubzs9ExnWRelpDVfEMlvg4KKlPVMtnbXM5dstjR5AmdSi1Gazt5cUey5QKZGi5UpcXHsfKouOcB4uIiNoE3QKsSy65BLm5uXj88ccxZcoUDB8+HMOGDXP5j9qnWHMYzuzQFYnhEXh92KnO+bLE5tgS07M5KOslCNrk9gxkJUOr3Y6PDu/yWH64ugIv7d0kskfTTeNP+YexobRA8rg2iRtfrwOs3D0obwitObpaE7XXqsPLezd5TJ9glwirpI7sTZlzwDWDtaeyFHa7XTJw8aWCpjL1x35693o8uWu9SyDIDBYREbVWupVpf/LJJzXfhFD7NDgxFauLT6B/XJKq7R8bPBabS4swIa2jc9l1vQahfPdGXNtzID4+vAtdBBOhGjXnG7wn141LLINV0lCPNcUn8Mb+rYrHFQsTrRpuWt3fBS37km+O1VZj8YlcnNeph3OZ1PxUY1I6QoyWz8v12K777awoQd+4xJb1gtVqM1jS55Vuo3dlMdTPD0ZERBSqdAuwZsyYodehqI37R9+hWFGUj1PSOqnaPiEsApPSO7ss6xQVi5eGngIAeGbIBJd1pgAG+laZG1STQTxB/NjOtYrHlcosuBe5aLTZ8M3R/ZiQ1sk5H5rzGCyI4ZWyhnp8dHgXZnTp7dNx3ANsl+BB8PGaJa5XLQkc12O77lhrtUjPu+VjFCNXqt3XBJSWMWhEREShRPd5sPbv34///e9/ePvtt1FYWAgAOHLkCKqqqvQ+lU+OHDmCK664Aueccw5mzpwZ7Oa0KzHmMEzp0BWRJv/Mcy02Pstf5G4Cve3iJbfvN8cOONfb7XZ8f/wQPj6yG7dvWuqxbZ1bF7WTEuXAf8k7jPUBLAwS6t49uB2/nMzFg9tXOZfpcUVJZbCkxho12OTnqJIa0yUWVttVnHtwQors+cTboHkXkWOIH8SX7w8REVEw6XaHW11djfvvvx8///wzzGYzrFYrJk6ciLS0NLz44ovo1KkT7rnnHr1O57P7778f99xzD7Kzs1FSUqK8A7UaUpkjfzjkVpJdKK/W+x8VHF2v6qwWRIgUA7lt01LEmsOxtbwIAFArMmHsArexYWLBYHlDPR5ctwIA8P3E871ub1tS3Jx5KhRkoAxehFjue9gkxmDZJOKI7/MPqT6XXDBigEE2wyXcTk9KExE7CANCFrkgIqK2QLc70aeffhqbNm3Chx9+iI0bN7r8Iz5p0iQsW7ZMr1P5bO/evYiKikJ2djYAIDk5OcgtIj0FMoM1/9BO2fXHvAyyfjpxBMdqqnDRyh/xzO4NzuVjUjoAAA5WVziDK7XiRIp/uFcvpJabfF/H8rl3VZXMOEkEPIV16iuvygYjBumqhcI2SXWtlQveSuvrVLZQmrCgi8t7xPiKiIhaKd0CrF9++QV33nknxowZA5PJ9Rf3Tp064dixY6qPtW7dOtxwww2YMGECsrKy8Oeff3ps8+mnn2Ly5MkYPHgwLrnkEmzdKl80QOjIkSOIjIzEddddh+nTp+OTTz5RvS+FPmMI1Vpxn3RYrU+O7MadW5p+lBAGQb7c9IvdrwqzWkplt0PN5tJC7K7QP/tcI/I+eBOzuwf6LpkaFfNgjU9VN0bR/XjurDabZHU+YZukXqNcnHOgoky6TTL7CUl1s1Vb5KPOasGiYwdR2uB7sEdERKQH3boI1tfXIzExUXRddXW1R9Alp6amBllZWZgxYwZuueUWj/U//vgjnnrqKcybNw9DhgzBggULMGfOHCxevNiZjbrgggtEj/3NN9/AYrFgw4YNWLRoEWJiYnDllVdixIgR6Nevn+o2Uugy+fC7QZjBiEYfK6sJPbVrvdf7VloadWsHIJ4piRGMg6uxWBDlp3Fx/vBA8xgpvbs2OoJiX7uoyU8eLT7xr9CRGvng3I6Wbohy3fF+zD+MQYLxVfbmtrhXfZUK3uXeBbnuuGozUMIAy2U+L5UH+DpvP77I24vfT+bi1WGnqjspERGRH+l2NzV48GAsWrQIp5xyise6n3/+GUOHDlV9rEmTJmHSpEmS6+fPn49LL73UWZxi3rx5WLJkCRYuXIhrr70WALBo0SLJ/TMyMpCdnY309HQAwNixY7F7926vAyxjCKRMHG0IhbYEm9nk/XugZ3DlFwbpTIPiZ29o2aa8oR65NZXoFtsy8bPNYG8114/w5jsQbTYYDJrPYzYYXfcR7m5wXS527F9P5Moe32g0OIM4uSkyjtdVwyA4/qayAry0dyMeGTTGpRnuAaGjTXKBTqTJJPm+GGV+5xDuYxfsXiso7GGXeF/cHa+rBtDUbba1XL/tGf+tIm/x2iFvBOu60S3Auu2223D11Vdj9uzZmDp1KgwGA5YuXYoPP/wQP//8s27d8BoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR0jOzsbhYWFqKqqQmRkJDZu3IizzjrLq/aYzUakpMQqbxggSUkxwW5C0NVGtN3BG+HhZiRLXG9K12FjhMG5zd++X4yyhnrcnTPSuT4pKRop0aFzLcsRZjoC8f2LjAjTfJ642AiXfaJKwp2PY2IinI+jYyJEj31x7yx8vFd6jF9KSqwzKLLWymSSDK5/F37KPwIAeOfQdtwxZIRzeWSE6xg9R5vcJ0wWijKbkZQg/jcnorFBtu1OgrFma0pPOB/HxIq/L+5io1re11D6W0zy+G8VeYvXDnkj0NeNbgHWiBEj8OGHH+KFF17AY489Brvdjtdeew1DhgzB/PnznQUlfFVaWgqr1YrU1FSX5SkpKThy5IiqY5jNZsydOxeXXXYZAGDq1Klet89isaGiQv1gdH8xGg1ISopBaWk1bFJlydqJCsEN24ejz8RXefsQaw7Hf3L3BrFV+qivb0RRsXjhjLyTpYgWKWThcMeqJZg3aAxGpmSgrKEeALCzoKVQRmlpDT7bsRPpkdGY1qm7ru3Wm3COr6KiShyoKseWsiLM6NJLtwnP+8cnY1fzGK/6+kYUS7zvUupqXPeprG4ZI1QleFxRVSd6bFu9fJn2ouIqZ2GKUpFJrR1yElJRXOJ5fIMNKC9v2a+xwXXsmaNNcgGWzW6X/JtTLdPFVfh6hfOFNVhazlVRWavqPa+vb2m31s+IAo//VpG3eO2QN/S+buLjoxAWpjzsSdcBF8OHD8dnn32Guro6lJeXIz4+HlFRUXqeQpLYmAI5kydPxuTJk3U5dyh90W02e0i1JygELz81PAo39srG13n7gtceHVVbLLBaxbsxvrh7E+4fMFJ0ncP/jh7A8KR053PhRMk1jY34svl9mtqhGwDgRF01UsIjESZSKj6YhBMuW2x23LqxaR6wrtFxLq/PF5Fur1nr98oAg8s+wsdWl8c20WNLjc0SHs/xJ88icU0AQL+4JNHjmw1G2dfkWGexSm9jtdsl/+ZYVRy76fgtbReOx7JY1f0tW17YUgSm3f/ta0X4bxV5i9cOeSPQ141uVQRXrVqF2tqmXyIjIyORkZHhl+AqKSkJJpMJRUWuJapLSko8slrUPrXl3tlJ4RGSRQfWuU0WfF6nHh7bbCordHl+rKba+bjR5nqT/lfhMcxZ9zumr/jBu8b6kVWiGEKxTCZHK2HhCG/miJKrIuhSyU+PyXpl1lnt4gU7DHB9jVLHkCugIRsEqixSYbELg2VByXaVRUbqFSZkJiIiCjTdAqxrrrkGI0eOxMUXX4xnnnkGv/32G0pLS/U6vFN4eDgGDhyIlStXOpfZbDasWrUKOTk5up+PWh+xm2Gp7Obc3tmtaoLdMKNR8sbTvUBHtIqKgMK5tNz3f1Yw/5a7ozVVKNFQFttut+PN/VuxON+1G2+91YpdFSWihRTu3rIcD29fLX48l8ctz+pt/ilS4lXQ7vaa7C7l0cUfazyB4JH0Meywi8Y6uytLXfYSm9BaiVyA5U2ZdmFQqpTBIyIiClW6dRFcuXIl1q9fjw0bNmDt2rX46KOPYLPZ0LNnTwwfPhwjRozA+eeru5Gtrq5Gbm5LBa2jR49i165dSE1NRVpaGq6++mrcfffdGDhwILKzs7FgwQLU1dVh+vTper0camMskjferSvfZYBBdflrsc06RkZLbi81H5G7RpsVN2z4A4D6EulljfX4Mf8wAGBqx27O5c/t2YDVxSdwe98cnJHR1bm8tKEOO2XmuJLKAKkt7a2VN0d130cYSEll4Lwldwib3S4agHWPiXdZKjVBt1yGTS449CbASouIQnFz4B7i9TyJiIgk6RZgJSUl4cwzz8SZZ54JoGkuq9WrV2P+/Pn48ssv8dVXX6kOsLZv346rrrrK+fzxxx8HAMydOxe33HILpk2bhpKSErz66qsoLCxE//798f777zvnwKL2Tew+cWmh+omu5YQbjWiw2TAoIQXby4t1OaZWctkKq93mnJtILAOQX1fjHGflTjoIdVVv1d4lSyyruKm0AKuLm6rGbSwtdAmwiupbsmNi4ytd5kvSJRskT6m7mliQ5L6P5GS/OgRYcq/bZreLBkndouOc7T4tvYvk/gery2WPLfUbhdoufjapzB4zWERE1ErpWuSiuroamzZtcmaytm7dioiICJx66qkYPny46uOMHj0ae/bskd1m1qxZmDVrlq9NpnbijIxM/PuQZ8nrCJO2XrKnpHXG7X2b5nQ7d9m3urRNCwPkMwo3b1iCt0c0FW+R2uyjw7tEl5+sr3E+bpAZ1yI87rfHDuL8zj2lG9RMeONcY2lEtDkMDwq6/7kHKK7d/qyIdOvu6HojLljurwyWwmHFVrsvs0sED95mauyuMw1LskE82DEaDM6lkUYTaq0Wj20A+XFtVpkASy1hy/ZWlgmWq/sssxNSXbq6Kp5PY0EkIiIirXQLsGbMmIE9e/YgJSUFI0aMwNSpU/Gvf/0LWVlZ/MeMAkrsakuPcO0a1zU6Drk1lRgQnyJ5nE/HnIUrVv/sssxs0G3YoncMgNzd9NHaljLVWruevbZvi/Ox2izVuwe345xO3Z1ZMylWjQHF1rKWG2axVyEMUISVEJVecb3VimVFxzA2pSNiZEraux9L7c2+UEl9HRpsVoQ3j21ybXNgM1hiaw1ouUaMBgNyaypF95cb1yZf5EJmlSDIkTqG0vuyp6IUr+zbjCqL9Hxb7soa6nHVmp9xcWYfXNm9v+r9iIiItNDtbnHPnj0wm83IycnB0KFDMWzYMAZXFDLCjK6X+os5E/HeiNORITMmKSGsZTLYmV16A2jKhAXTLydysUAiA+XOl+5yB6pcu4XVWS147+B2HKou9yiGsa2spaukzW73qEYIuAZBcukgq90Om92ODwWvUexGW5i1+vVky3hNpaDyq7x9eHnvZtkCHt4QO+s3xw7g5g1LnM+lqgh6E7x5nF9pDJbIBnsqS/HozrXO5werK0T3l6vS522RC+E6qfmylKorvrJvM3JrKlHSPKebGquK82ED8J82Mm0DERGFJt0yWOvXr3d2D/zll1/wwgsvICwsDMOGDcOIESMwcuRIVvmjoHEPsCJNZnSMUr78nxw8DmaDAQMSUnBZ176IUlGZz99+aC4WIaXRZsXvJ/NQquHG090D21e5PF984ggWHTuIRccOYt7AMS7rhN0J79qyHHsqS/G/8efCLHjP1XSJ+/jwLvwnbx9u7ZPjslzsJl4YlOyvkh4j5M5ROGNDaQGK6muRGqFuKglvs0z5dS1l8CWrCHp5bLUZNjvsosH2sdqWtkkVuACAeomug4B8YRT5NrVwv9YclH4gsNpZBoOIiEKTbneLUVFRGDduHMaNGwcAaGxsxKpVq/Dee+/hhRdegMFgwK5d6n55J9LbQEFXQKWuYULZiS1zq4VCcKXGl3n78HnuXl2PKRyfk+YWlFgEN9l7KpumZihrrHcJXtR0iXNkFX4+4VrKXTyD1bJMS45ceFN+44Y/8dW4aZLbCk+rHAIpbyEVVOkRJsidvSmDpf2YjoIpETLXvffdG4UDyCS2UDi2UrdUqbMSERH5m653jCUlJVi/fr3zvz179sBms6FPnz6ailwQ+UKsYl2EqWWOn7eGnxbI5gSc3sEV4Dr27KaNf7qss4hkEhzLDlaVo0NkjNsYLG23uRYdAyzhkWqtFuwoL8bABOlxeKqPq+Il+bWKoMwxbHbxDJaQAQbnuESHtcUnMTa1IzJksnx6zIPlzbEBwMTu50REFKJ0C7DOOuss5ObmwmQyoX///hg9ejRuvvlmDB8+HImJiXqdhshrrw87FZFGE5LDI2W3+3LsNBh576ZaUX2tszKgg9Vmx/6qMty+6S90iYrF3f1afmARu2+uEozDcWTBHDaXFeB0QQl3wDVI0zLO031urTUlJ1wCLKmsiR5zVbnMg6VLOXKVZdChHACKvYWOsXZywZlsF0HZIhdQjIyVgkJvCs7kSRTyICIi0pNuAdY555zjHGcVFaVuXAORP7iPt3LoHhOvuO8V3bIQbfbua/FyzinYUVGM9w7u8Gr/1urfh3bi34d2YtGEc53LLHabs+T20doqxaIOm8oKJY/vqMInJCyAUN7YMtZMa6jiHgRsLBVvh9Jx1ZxX+B6cqG0pia9HkQvlKoJKGSzpZUrZMSGr3e7MLKkdgyV9bPn14RLfcznfHT+keR8iIiKtdAuwbr31Vr0OReSTGHMYbu6d7VGaXY0OMlUFlfSOS0TvuESc26knrlv/O07W1Sjv1IYsOnbQ+dgO6bLkYswGg2hXQADoHBXrsUx4bGFQpLXbmHuAIDVHmB5jd4SnWlNyQtP2vmy7ruQkJqR2kt1frFut44eKVwTl+90JP9dPDu/GF3l78eGoM1UUD9E2Zk2MWOBNREQUCnSd1CcvLw8PP/wwzjvvPEycOBHnnXceHnnkEeTl5el5GiJFZ3fsjuHJ6V7s6XvfQJPBgOFJ3py7dTshCChtzeXWnc8VusRNSusieVyx4Ezq5js+LFxVW6WOc6BavCKhchdBNWUwpOZ7UtxV8Yxy2aJ9VWV4Ye9G2WOJxaWOaQqkyqgDwO7SlhL9X+Q1jf1bUnDUo33u1LxkPbplAk1zn32RuxdlPlTVJCIi0kK3AGv79u244IIL8Msvv2DQoEG48MILMWjQIPzyyy+48MILsWNH++o2Ra2TXkOvrmrnk5iuKT6BMkHXvR3lxTJbA5Em6WyEWDnukoY60W21BivfHT+Efc1dGQFgcrp4oKd3F0HXff07DxbgOa+ZO7EMlhqf7d8NwLVUv2M8nVyApCZ2UhqbpvZ9+yJvLz45shsPbFupansiIiJf6dZF8JlnnsGAAQPw3nvvuYzBqq2txXXXXYdnnnkGH330kV6nI9LVTb0G49eTeRiT0kH1PhFGk+QkrLHmMIxISsf60gK9mijq/E498e3xg8obBsD+qjLn409z97isE04cXGFpQDrUd8V0z2AtKzyGZyQmChbOO6XWPVuX45vxTePH4swtGbCt5UXOx7oEQRqXK/V2dKlK6GP7xE6lJYM0Y8UPLfup2F7N+6nXLFe7mgubHPaywIXVbkdFYz2SFIrjEBEROeiWwdq2bRvmzJnjUeAiKioK11xzDbZu3arXqYh0N61TD7w09BREapjrqltMnOx6LdXtvHVNjwF+P4dawolr5bwvUgTkcHWF5PZ7BRkmAPjlRK7ktl81z6WlRYOt5VZeKlBRijVqZSbjVT62d+e8bNVP+PehpveyTuT8f+uapdgmOd4GOI7gydFl0OvzK2aw1Km3Nv0IEm40YopbNUo1nty5Dleu+UUxC0hEROSgW4AVERGBsrIy0XXl5eWIiIjQ61REIeH+/iPRNVo+yPKn7tFxMHtRSc1f1IaT20W6C+5wK58u9EFzEHGspgqrivJhVAhcD7rdCCsV2BDyZ8V06S6C3mm02/DN0QPIq6nEg9tXe6zvFZug+lhrik/oNubJ8YLkAmF1h9HWniiJbqaO7ovhRpPLfHhqOQqSbPRzNpqIiNoO3e7OTj31VDz//PNYv369y/L169fjhRdewGmnte3JXan9SY2IwuvDTpVc7x4G/Kv/SH0bEMCJVv+jYvJiLa05WlOl6fxWuw3Xb/gDT+xah2O18vveummp8/G5y77FBcu/E83wiPmz8KjocrkueHa7XbLLotBvJ8WL/TgCG7vdjryaSk0BIQD8etIzkOkQGa0YiArli1S89DbgUtNd0Zcxa1KkxpE53k+TweD1WDNAn0qSRETUPug2Buvee+/FTTfdhFmzZiElJQUpKSkoKSlBcXExhg4dinvuuUevUxGFDKPBgC/Hnq2YSTqnY3eMTe2o67nlutXprU5irJm3btjwh6btH9i2yvnYm2pwx2ur0VNFRkeuYp7cPsLxWlo5ApI/Co7ipb2bcG7HHrih92DJG/qksAiUCgqIfHP0gMc2WousiE2sLRdQdI+Jx+HqCnSMjtG0n3Mbu+P/ZebYUnkMB6UuueWNDQH9zhARUfvlc4BVV1eHpUuX4tixY7j88ssxa9YsHD58GIWFhUhLS8OQIUMwYcIEPdpKFJKizWGiy4UZBF9+OffVjM698M0xz5twvVV6EZyotU3QrVDt2DaLYGyVlmyOmOMy48tqVGbHpDjihM+aC4N8n38IN/QeLLptr5gE1NusLgGWmFqrBTEm8etSrTqrBb9KdPOrbGwAAOTXiLwvqlI9TRvJBVFKGaxy9/dARZVGXwJh7/uPEhFRe+NTgJWXl4fZs2fj2LFjzmWxsbF46aWXMHHiRJ8bR9SaCW/p/dGbb2B8MgDgnRGTcf166YxQlNksW/GwtVHbr3mJW3e/PC+ryAFAbk0lShvqRCvJ/Zh/2OvjAi337e4TU4teMgZ1Y8osNpuma65HTAJq3ALk9w7ukKzKKHdodVUEm/9fLoOl8DqPuH2eUlt7O8+YO4ZXRESklk9jsJ577jkYjUZ8+umn2LJlC3744Qf0798fjzzyiE7NI2q9/J21cmRyOkfFym5nMhjx5biz/dqWQKpWmTGqaM6yOHxyZLfodo5PSemG/so1v4gu93VSaaliDmJLDTLbi22rVpw5zOOociXvTTJdYtW0zxlgyWyrtfS89PvI0IiIiALLpwBr06ZNuP322zF8+HBERESgV69eePTRR3H8+HEUFLDiErVv/q5BobYIQKTRBJMhdKoNBopwAuFIkwl1VvEMniMQnrtxiVfnMfn4QYt9jOcu+xb/ESlzboBB1edugLYAX+uUAnKvWUtPOrlsnNYiF1KZKr3CK4ZpRESklk93XYWFhcjMzHRZ1rVrV9jtdhQV+dDXnagN8PeQDbU3oKemdwEAXNi5pz+bE3KWFR1veSLzVjkKPOSq6EJYVF+LdSUnXZZprfrnrqShDnsqSlVvr+pzNxj8GuCbZQL2E2ome3ZUTlTeRDXJTJXE4sL6Wn2OT0RE5Kb9/axNFCAri/NVbffAAO/Kt6vtQhXe3J1rTs9BXp2nLXjrwDZskJjHSEsBjNlrf8W8HWuwpazQuUwpwFIKiFYW5+OOLcsQpWKS63CjUfUEwP7somqWec/Wlxbgu2MHZfdXNQZL4fpOdRsPJ5XBkjqO2tL9REREWvlcRXDOnDkwiUzeOHv2bI/lq1at8tiOqD2Quo9MDAvHmBTvyrefkdHV+fj09Ez8XiA+z5KvXdjaAqngCgAabGpDlhb/2rYK/x13DowGA6wKgcD5y7/DvIFjFI9Zq+KGf2RyBha5BS8D4pOx022i5pN1NchUGJun1aCEFOck0UpdTt85uF12veMdkws+lQLTSLeAlBkmIiIKFT4FWHPnztWrHUTtTnpEFOYNUr7xlnJ2h27Ox7f2zZEMsIQZmgcHjMJjO9d6fc62qtKtIIYaM1f+gBiTGXf2G6647XsKAYcaN/XOxlkdumKhW8l99+AKaMp0aR1XpeTMjK7OAOtAVblzuTdzSzmCIdky7QoBk3tAJZUNk1quNcPXqDIQP1pThdSISI8AkIiI2g8GWEQB4LjXHZqYhk3N3ctu7j0EmdFxLtsNjE/GDpEbZndmg+sNtFyWyii4kRyd0gH945OwS8WYn67RcarGJYWarm7vqRqXr17s1bmqrRY8sXOd83liWDjKRIK1o7VVXh1faFhiGkwGo6qxSZEms+4dBLsJ3ldh8HPT+j+1H0zFRMNax2DZADy+cy0uzeyLPnGJLsvFmMVmV5bxZd4+xQmc82oqceOGP9ElKhZvj5is6fhERNR2cAwWUQBcnNkHAFwyVlEiXWvDJMpfu98Kaqmw5m0mY3BCilf7BVujzYrHA5ils9hbbuH9Wa3R8TlWWJSzbTa7XdPYMjXl3xsFrzNFZD4wLZxdBOXKtCtc42JrVxefwN1blrtuJ3EcuUId3trfnNnTI6AmIqLWiwEWUQAkN9+QGg0GPDl4HC7L7Iv+zRMFA8D7I07HyzmnIMzoGXQBwNU9Brg892W8ib/n5wq2/LoarC4+EZRz+3O8m5Yj2+x2XT9lk8GAasFExL4G384ugs2Xsdg/RIpdBCUCJ2Eg2HQuqTYQERH5BwMsIj8Zmpgmujw7MRWzuvdzySx1iIpB77hEyZti98yILzeHam+O1QRiXXQupNDaeVMwwx9ssGsOpOW2N8Lg/JEAaMqmReswxsgRaJlFMreW5vfSbrdj3o41+ODgDq/PIrrUD/MotO2fLoiISC0GWER+om8yQ7+bwcu69sW9/UZgVHKG7HZq2n9tz4F4MWeiTi3zzZyeA4PdBJQ11vvt2Fq6etrt2q4/AwyyWVGjwYAeMfEtz2GQ3DpCIgsrxtENUKy73rKi4/jm6H7U26xYV3LSo7iH0jfCUYZdsny7vyeqIyKidosBFpGfdG7O7nQX3Jh6S+om0RthRhMmpHVCz5gEAEDH6BifjqdlrI8/jUySDxhbO+1dBPX7XIwGg0uAN7VjN8my8onhEYrHc1zOjjnEaiSO9e9DO73q4re88DguWvkjfjx+SHIbpfL63giNbwIREQUbAywiP5nVrR+u6JqFRwaOVr2P1E2xmjFX746YjO5uFfQyIqMlt5+Z2RuzuvXDW6ecobp9YkJlTFeoBHqhwGw0aspg2WF3FmIJF+mu5/7edpC5rk7W1Sieb1tZU7n3FUXHFbeVyjTJdfH7+ug+AMAHh3ZKjuViBouIiPyFARaRn8SYw3B5tyykRkT5fCw1t4KdomLx+vDTnM+fHDwOH4yUDp6iTGb8rXsWOkaLj6OSClhOTevsfGxAaPxqf2lm3zYfYKkJZCend8HwpHSc16mHpsDXjqaJq/8z9myc07GHx3qT27F8fa+3lBXCbrfjw8O7FLe1CgKhkoY6xe0jjCbnmEWr3SYZiGkNsKTGVAoFq7gKERGFFgZYRK2ANwPyfak0CHjeVDtc1JzpCCUZkVFtPsBSM21Tx6gYzBs0BjHmMByqLlfeoZnj+ooxh4l+6tXWpgqCl2b2wZiUDog3h6s+tpTjddWqthMGQutLTjofy13d5uZrwWqX/hZYNX6nIkWmVXC3TEVGjoiI2j4GWEQhRBgjPJ093vnYm1DJ1x5QPWITRJe7dzv0V1zTW+L8Yk7U1aBGUEbcV5dl9tXtWIF0oKolqCprUF9ww+VSEfk8HcHIld3744EBo7yeW83hr8JjuH79H6LrnhsyQfTcko1zY0BL1U07pL87SmXg3cXqEFQSEVH7wACLKEQNEpRTt9tbxsio5e098N+6ZuHufsMxSdAV0OGzMVMR5Vae219jsLQEiNWWRt0mjn0p5xS/zmflLTXvszDbo6bYRMuxtZ3HV3U2q+S6GFOYy/NyQWVGYcvksrqun58+XQRD74ogIqJQxQCLqBWwAfh79/6q5rC6uXc2hiWluQRoWmRGx+KUtM6iXe7ECiD468ZTSxdHo8GAGHOY8oYKhielo09cotcBVpSKbmTeUtMiR2VIAMhOSFV/bMHrDXYg4X7dfXv8oPOxcJXU1WEwuM6r5W2Z9kabDRtKC1q259TERESkEgMsolbA8Wu9mjmGzu7YHY8OGusxObEa53XqgXGpnSTXu2c3DM3/8wctt7NGGDRlbJSYRAJJNZ4aPF6XQE+Mmm55Z3Xs5vN5pEqmB4r7yxQWtlDOSzWJU/EZKAVYCw7vxMPbV6venoiIyIEBFlEr4Pj13N+3eP/Xc5Bk9ibeHI4ItwxNemSU38Zg2e120YyZGL3a4DiMNxmsGZ17oXdcIu7KGqZPY9xY7TbZ9Zd37Ys0LytWhgmC8XWCQhKBMjwp3fnYvbjKxtJCwTM1n4sBYYIfIuoluiPKv5vA/44ddHmu5rt3TsfuKrYiIqK2jgEWEeGdkZPxQs5E2Up8n42d6nz87ojJeHDAKGS6zbslZ2xKB01t6hAVE/A5thxZIqkKinK6aHgvvBHeHDS8Oew00fV/65rl8lxLl7Y5PQc6H6frMK2AL9wzdQPik1vWCZZLTXTsvp0UuYDVYvNcpyaDlRCmXxaViIhaLwZYRK2A1DgSvWRGxyErLkn19p2iYjG6OWBSEwQNiE/GPf1GiK7rG5courxzVGzAxwP5ksEyOP/fP612dD3sGiMeyLkHJlp6tKULKkMGY+LoWHMYMiKjMS6lo2yQL1wl9RkZoG6eLrmAaXNZoccyNW+nr1MjEBFR28AAiyiEGCVvbh1dBEPvBk7N7fidWcNcCg843NtvBF7MOUV0HzvsqsuBd44SnyzZW0adKhK6UzOGTi/eFmXYXlGsc0uUlTbU4/0Rp+P+ASM9rqfBgmIdxfV12FBagIK6GtlxVmquGrkfLcS6FaqZi47jtIiICGCARRRSrukxAD1j4vHYoDEAgIu69AYATErrAsD3ua38QuFudt6gMc4MyYikdJeM1YQ06YIasAOT07uoasLpGZmqtlPiyIr4q0z7o82fK6D+tXkrkMGcr2qtFmcw7Z59Es679uHhXXh4+2pcs+43yWOpzmDJBKBie8ttf6i6HBWNDUHJ/hERUegxK29CRIHSISoGrw471fl8do8BuKJbP4R5WdVOLzObAz0xSreUwvWPDBqDqsYGXLZ6seI5p3fphaM1Vfgh/7DituE6BROOyotedRFs6SMoKtxoRO/YRABAn9hEXJzZB38UHPWileqkqhxLdX3PQV4dPyU8EsWCCn++iBQUT2l0G/8klRXKr6uRPJ6vXQTFAiWpzfNrq3HLxqWIMJowo0svxfMSEVHbxwwWUYgLdnAFuBYacKf0q737WqXqbQ5J4ZGyXQTHp3ZUeST1fMlgldTLBxsNNhsiTCZ8M/4cvJAzUVO2Q2kS5aGJaaLLY0zyv6Gdnp6J8zr3VN0OoYcHjfZqPzHRJunufpq7xRoMsKoYtGiVC7BEPhqpDNb/rf8dQFO3wpDMMBMRUcAF/86NiFQL1hgsNRkBKe6BhFK5cZfzyqzrLxP0yRmT0gGXZvYVXdcSYGn/0/h9c6ZN6Z0KN5pgNBg0lZYfJxNM3pE1DPMEXQ+FLhNUFnxl6CSP9X0kCoyoEemnSZXjw8JdnqsZ+yRUbWlUtZ1eGSyXbUJwjCQREQUeAyyiVqS0oT4o500Oj5Rcp3Vgv1zmwJ1sRTlNZ23xfz0H4W/dskTXOYobuGew3hB025TieB+KFDJZDmrb3ys2ATf1zpZcH9EcsIkxC5Yni0zELLZfd9Xl5vUbbyQMTKLcsm7qw/EWqRHS16uDluuwqR12rCg6joe3r0adRIl4hldERAQwwCJqVWJkKqf5w1vDT8OdWcPQKzZBcpu82kpNx0wOj0R2QqqzgAcADIpPEd1WmEka4zGPlnc3+HbYJf/wrSjKbz5vy7Hv7z8S3WLiFY97TY8BAIATddWq2iFdMdLVhZ17IVbmc5cLcIXBiVhWRux96KS6IqPreePN4RLbKSuor5U+i0IgNCalA7IFlQbV0lrkwm6346ld67GhtADLCo+L7ic8YlmQfgwhIqLgY4BF1AqpvTn3VWZ0HE5VqHbnXpTAnXuSxGgw4MnscZjdHJAAwP0DRuK2PjkeQZQwsEhxy6L1ik1AcngEzu3YQ/b84m2Sf/+EmZ1uKjM6HZqr3an9ZNSWoBczu3t/52P5cuwt68RO50sbtGZrpMaJAcDh6grJdUpl4x8YMAqDE8QDdDk2DV1VAdfXK5UxFAa7RTJBIxERtW0MsIjIJ30VJihWU8whPiwcZ3bo6pGp6RgV43wc65YhiTSasGDUFNzQe7CG1sIjMuggKAPusKuixPlY7fgzR7Byfid1RSN8Ga9zUWYf52O5rm7CWg9iQbnYZ6M25nI/rVFhv0clxokBQE6idAbKkVWU402gaJHN/HmuEwZPjSLzZLlv48u4RSIiat0YYBG1IqE4iD4jMtolo+IvZ3fs5lFNz5cMjMP7I89wPnZUS0wUZMvUVhR0bJUQHoEvxp6NxweNld1e7RggpbOXypRKt7tksNS+DrXvqWv7lQIKg8GACani854pBelK3P8hU/POWmQyr2KfjfC97BAZ47EeAH4UTCngr7nUiIgo9DHAImpFHOWs48ICOxZLyUWZfXBV9/6Y1rG7xzott5ly44lSI6KwcPw5zudWPwSbjm6Io5IznMvcA4fre4lnzISBSaw5DGaF8vpqSomrES1Tit2lW5vI+j9O5nks8y68kt4zKy4JTw4eBwC4rKt49UafuX1G7m0TK1cvl8ESC7CEH5dU8FQvyGwpldYnIqK2i/8CELUiN/fOxsjkDDymkB0Jhksy+2CywngtJUohhzALo7V8t5pzOIIp4e2z+/aS3dk0JiysXtXH08b1PfJs4KEa6bFPSrpExyE7pWVcVa1IZb30iCi8kDMR2c3vmVRg4m2o6ah46P4P2Y5y13Fb1SJts8iMwRILsLaWFzkfO65Dueyh/Ng4IiJqyxhgEbUi6ZHReHjgaPSUqeoXTGLd0LR049MSNHl7++ro6vX28Mke5dfFWuqeVZOq6Ke1Q5hY6fvzOmkv2CF3ZrvLY893bLQgU6eVyWDAe5OmOJ+LFQNxP6NU90P3z/1iwRgzoXD3rKAjIHa7xjaUFojuLyTXRVCpAIbNbked1YIr1/wiuY3WMvBERNR2SPctISLSyNfqhikRUQBcu3S9MexU0e52csFY//gk7KoolT1Xl2jPcuRGkRt2R9bl7eGTUVRfiySJOcHcgweldyIhLAIGuHfj89xLaWJmufhV+B6JZY8mpXlmHPvHJ2NZkXgZcjlqusQpFcJw+Hv3/vgqb5/HcvegxXFGb666j4/sRoWlAf/Xc5DIeZT3VyrDrnV+OCIiajuYwSIi3VQ0Nngs03Lze2lmX1zYuSeez5noXNYtJh6dReZmkgs7+sUl45PRZ+Gt4ad5rFPTRVAotTno6xIdi5wk11LjXQTtct8zRcVkt5nuWR+RN8uXTIhwz0iZsVpC53Tq7tW5xN479yDD18p67u+FIxBWOu6sbv3Qo3kus9PTM53LFx076LHt7ydz8WXeXtnj2ezK5WYYYBERtV8MsIhIN412z/LVWm6po81mzOk5yDPwEKF0A5sYHoEwkaxKeoRnWfaezTffvWMT1TVUjNsL7RAZg0skuro5uGfhooyeQZBSgCX3/rq/Ry8KAldAfJyQcHJnx6NJaZ1l2wAANdZGj2XuR9d7/jbH8ZSOWmVpwPNDJuL1Yad6BMnuXtq7GSfqahTPrRRisYsgEVH7xS6CRKQbsZtKPUqpi1FTsl4ssxEm0t3wscFjsbm0CBPSOgJQHxRGGE3OxyfrajwCtJzENHwp0tVNyvQuvXC4pgKri084lynfqEu31j2Acg9wlILUizP74sru/RTO32R/VbnHshKZIhB6UiotX22xIMJkQveYeBxxm9S43mrF2we2od5mxW19clSdzwY7lIpAssgFEVH7xQwWEekmkN2iTCrG/KjZBmgaDzUpvbPq7R2md+nlfCwWCKmZG8qhb1wiYsxheGDAKJdtfOoiqLBroOdVa1QYT6aV2Jg5Ma5Bteu2y4qO4deTufir8Bi+O+7ZZVCMHcrXup4ZrD2VpdhcWqjb8YiIyL+YwSIi3QxMSAEAJIZFoKxRvgiAt+7pNxzrSwqckwLL8fdkrzGCioIjfajIB8BlYmKzwegsI65Y5EJmXYTJ5PLc/ZZfKQuj97sXbjSJLvc2FHG0TyksFhbgcL8ktpS1lF/fUVGi6rx2u10xQ6Xnjw13bF4GAPh+4vm6HZOIiPyHGSwi0k1yeCS+HjcNH49uKd+t9036xLTO+EfWUNnskCMz422ApfbWuMrSUtRDLHgQ/oEdn9pR8jjx5nBEC4K11wXl45Vu1OVe4rmdemB8akfnRL/uQUGgCzGkNRcMcTciKd2r4zleu1IGyyDxGHC9RtaVnFR1XjuA307mym6j9r3dUFqAt/ZvVbW9t3O/ERFRYDHAIiJdRZrMLje8SuNj9JSd0DSh7dDEpht29wDLvciDFKWb3dPTM9ExMhrxYRHOZWLBnPB9+EffoZLncS9fLiwh70tXsyiTGff1H+mc6Nf9Bj3QXQTF9ItLwmCpyZsVOK4tLf+QuV+P3hTesNvt+J9IBUIhq8r39uHtq/FD/mFsUtEFkOO6iIhaB3YRJCL/Clx8hQcHjkJudSWy4pMAeI6B6huXpOo4SpmCf2QNhd1ux+Yy+Zti4dnDRDJcjm6AcmO/pAKsm3oNxo8njmB8aifZNghp7iIYgM8uPdKzqqN28g21yHSz3F0pP1+aGDVhjtbsYL3NorhNRWOD5DxsREQUOpjBIiK/Epsby1+iTGZncAW4Bi53ZQ1TfRw12Qc11RGF24j9sR2d3AEAME6m+6DUjfq0Tj3w+rBTEaVyfiuxYyllRALRI+30jEzljSTk1lQCUJ7AeGVRvvOx+8fmOIYWajJ/2gMszykO3F255hcsL9Q+CTQREQUWM1hE5FeVAQyw3Am77QkDLyVqb46VthJ2PxMLyGb36I/hyekY3FwcRIzarmZqeGawgtvl7PMxUxEXFu71/lWWprm3lLqh9oxNcD7WIymnlPkDlIuTuHthzyaclu4ZbLpnU3/IP4QJaeqzlkREFHjMYBGRXwWim5kUYRfBWLP6G3m1cYf3M1Q1CTOaMCwpXbT7oIPWG3U5nl0fvS+goUaOwtgqX4IrIaWMUoTL++v7BSnX5dDhkNt8W2pcsXoxzl32LeqsLd0FD1S7zi8WyIwwERF5hwEWEbULsYIqfUr0KiagxyTLes6nJNQvLklx/NaOcuWy5TO79AYAPDxwtMc6PQucRJmkg9A/Th5VfRyl7oRqbCgpUNzm89y9itvsrypzeV7eHDz9JegGWGd17TpYJ9OVsNFmRbnE9Agn62rQaNN3HjIiIhLHLoJE5FetsbJ0gk6ZFX26o+n3BvaPT8aA+GSMSemAGc2BkZzt5cWK21zbayCu7jFAdJ1e2ctB8SnoERuP744fEl2/zy1QkWuHHkHf0doqn48BAMskxlMJP/Nwo9vvoDKXw/+t+x1FDXX4cuw0RJtb/nk/WFWOWzctxaD4FDw9ZLxPbSYiImUMsIjIr0KhFLhWSeGReCFnIlJ8rNimR4ChZwbLbDTi2SETNOzh27n1ymANTkzBgapyyfXdY+KxR6YaoN5TBcidS4tjKgK1GJNr5rXWKl1tsKihDgBQ0lCHaHNLqf/dzRMob69QDpiJiMh3DLCIyK/UFATwp+eGTIBZpgy6lCyVJd3l6HFj768ugmrITeYciP2dx4EBa2UmAf579/64f9tKyfVyEw0Hy58FR7G6+IToOmEXVffuqhUW5TFY7t0g5cb4yWm0Wb3el4ioPeMYLCLyq/Ag36D1j09Gn7hEvxxbKcPlzSS27oJZ6S8lPCpo5xZSGssWo2F8nR7j4vTwwp6NkuuEQfXyItduhPFuxVpKG+qwq8J1rJxwegKb3Y7Pcvdobt97B7dj+oofcKK2WvO+RETtHQMsIvKr1thFUK3M6FjZ9Xrcy6upWKe309K7AIDG7oSeTLplsOSFRsjkKi0iCvsry5zP7XY7lhYcVRWwCMcA5lbLz9N19drfcNeW5Tgu6G4orDy5ujgfhfW1GlreZNGxgwCAvwqPad6XiKi9Y4BFRH4xPCkdADAgPjnILfEn/9/a6xWkaHFH1jB8P/F8pET4NgZNr+xlnsJYJaWuiMKsVaAq6RXW1+L2zX9hW1kRAGBbeTGe27MRc9b/rrivMCPXz23+tgpLA2qtFvx+Mhc1FoszAD8uCNwsgn65R33MQFVZG33an4ioPeIYLCLyi4cHjkaN1aKpPHpr48/Q58nB4/DZkT2Y1a2fH8/iX3r9glfWUI8wgxGNEtk8pc9BuF5NZUQ97aooweDEVJyoq1G9j7BbaJfoOI/1F6/8EQDwa3yec5kwT9xot6HWakGUyYyPDu9y2ddqt8Fmt6seW8XS7kRE2jHAIiK/MBoMbTq48rfsxFRkK0zUG+pMXhQXEbOprBCRRhMaJXqbaikmoufEzerO59noKoXJgi02G6otjXhj/1Z0ioyR3E5YFVBYXfCVvZtwsLoCbww71WOfv6/5FWWN9fh+4vkqWs8Ai4jIGwywiIi8ZDQYcGHnnpLFIIJZoCIUjE7JCMh5tPSibAhwwOAIsIRNfHnfZtl9nti1TjZjJ+bZ3Rucjw9WVwAAVhbne2xXJjERsdVux66KEmTFJbpkt5QCrD2VpUgKi0B6ZLTqthIRtXUcg0VE5IM5PQdhepdeouvaW3g1q1s/RBhN+HDUmXhz2GkYm9LRY5uPRk/x6tgzZSZG1lKt0Zshbb6Mg/siby8OV1dgv2AyZKny7EJagispcvH950f2YHt5MRptNmwrK8J/8/bh3q0r8Nb+barbUdZQjzs2L8M1637zua1ERG0JM1hERH4SjAqAwXRZ1764NLNPU1GJCPFtok3a/9npGh2H8zv3xKdu5cbNzYGPUvwjXD2tY3f8ciJX8/kPNWeFvDF34xKv9/WF3Nvyae4eIHcPzuvUA98dP+Rc/ntBHm7tm+N83mCzSh7jRB1LuBMRiWEGi4jIT7yZ4Li1U5pnSm026Ons8c7HaRFRonNdpUU0dUvTksHyJsC7p98IxW3uVbFNoFVZlCsALi1wLcPunvWS6yJYLRj3Jed4bRXu37rSJYtHRNSWtb9//YmIAqRbdBwu6tIbDw4YFeymhIwwown/13OgYkAyKCHF+dgxlm1qh24u2zhiNWFQN72zeHdNB2+6baaqKFc/Ia2TF0f2r0iTCSOap0vwlh7jCN8+sA1by4vw0LbVPh+LiKg1YIBFROQnBoMBs3sMwOiUDsFuSki5oHMvTQGJrTksmttniMtyRxBmENlWSBiAJZjDPdYDQHeRcugORoMBV/cYoLa5IaNrdLxiQFlhka9oKEdt3tBR6MOXcxERtSYMsIiIKKSJJVEu79oX1/UcBMA1gLK4dWnrFZOAKwVzicWGiQdYo2SCYCMMSAyTGFQmEBZiXULtsKNeZgyVGBvsLqXs7TIhmtrkVjC6ypY31GNlUT7s7biS54aSAty+aSmK6ms171trteDTI7txUsP8bUTUIrT+NSAiImqW0TzGKjHcM7iZnJ6JyObxVMJMisXthvqVYZM8Soj3ik3wOJ7cXFpGlePG/jPubLw7YrKqbQPh+T0bvZpY+fGd65yP5cKTz9yKjkhR+/4BwPLC48irqVS9vZQ7tyzDk7vWYVnRcZ+P1Vo9vGM19leV49Mj6j4nof/k7sXnuXtx/9aVfmgZUdvHAIuIiELSo4PGYEpGV/xfz4Ee64Q37cLgaHhSmuJx7xMZ/1VYL/1LvdrwINxoQqeoWJVbh651JSedj+USQHsqS1UdT+37l1dTiad3r8eNG/5UuYe0/ObMy8Gqcp+PpcRut6NRY6Yw1DkyVydlvhdEJI0BFhERhaTO0bG4tW8OksI9i0xI3bSPTemI14edKnvcDlExHlmsPwqOSm6vVBmxrWuwWfHc7g04IAhWCjR0HRMGw0sLjkl22ytrEJ8E2ReB6CD4wp6NmL7iB5Q21AXgbNp5c/mGGXl7SOQLfoOIiKjVkep2ZjAY0D0mXnF/ParjBdIlmX2Ccl477HjvwHYsLTyG2zYtdS6Xmly40WbD8doql2XCMvrP7FqPL/bvxv1bAlO2PRBjsJYUNpW631Fe4vdzeUOu1L4ULd06icgTAywiImp1hN0C5QoxSLFqvPEO9u3myqL8oJzXDmB18Qnn86M1VaKZpi1lhQCAR3eswXXr/8AOwdgv93v1l7dtxOayQmfZdqvdjgNV5aIVIPVof6DU2dTNCxZof8pkZ6W0th8giEINAywiImp1wgVdmCKNJs375+pQSEFv4TLdso66ZYUCpditAt0NG/7ArDU/e2z3r22rAACbmgOtzc3/D0hPBF1jbZoI+fMje3DbpqX4T+4+XdosFMhAwR/tV6usoR5Ha/S7RrT+AEFErhhgERFRq/HooDG4uXc24gTl1mPDwnFvvxF4KeeUILasxUVdenu1X4MXXbn8Lb+uxusxaFWWRly88kfFSn6/nswFAGwtL3Iue+fANsXy4sdqqvDD8UOy3QDFsmLlDfWos+qTbRKeu6wxeGOwZq35GTds+AO1Kl7XW/u34puj+2W3sdhD71okak0YYBERUasxLCkdZ3fs7rF8Qlon9IlL9Pq4/eOTPJYlhkU4S8VrMbsVTkosZ6zKibIPVbcUwbDbgQ8O7pC94XeU1Bfr4vnd8UN4fvdG2fNdv+EPvHVgm0sXRnfuGaxGmw1XrPkZl69aLHtstQ5WVzgf11qtzuIfX+ftw8PbVwe8q51SWX6LzYYf8g/j34d2KmzX0u72OJeY+3x6RFq1ywBr27ZtuOCCC5z/DRgwALt27Qp2s4iIKEi6RbsWxng6ezwWjD4T7448HYB3ldj0dH3PQbhXpLy8v3WMjMaP+YdVbXvLxpYiGF/k7cXyomOq9pO6f99eUYxdFcqFIwqaM10n62o8Ajo7mjJWji5vDc3l1Bt1ytDUu53vmnW/YXnhcXx4eBc2lBaoar9Le+12n7rniQVYyYJ55NQe2eIy2XT7sqooHxeu+B5LvRi71tZ8mbfPZdoGUq9dBliDBw/GokWLsGjRIrz55pvo0KED+vfvH+xmERGRTqZ17I6pHbqp3j7WHOZ8bAAwKCEFJoMRJi8jq+yEVK/2k9IpKhYT0jrpekw1YsxhXt9g11rVzQ0lV6Tkri3LATRlnqSq4dlhR2lDHa5d95tLpUOgaazdFWt+xrwdq1W22ndP717vfLz4xBFN+z6xax2mL//eGQhqFdM8+baQ67Wo7tMUvtfeFJEJVdvLi1GuMB3AE7uaJtp+bo98BrW1qGpswDO71mO3xmD/RG01Pjq8C/N2rPFTy9q2dhlgCS1evBhnnXVWsJtBREQ6uql3Nub2GeLVvnrcTqZGeM7d5YtgZdD2+3mi3hN11ShrbFDcbvqK7zF9xfei6+x24ERz17zjtdUu6xwZnY2lTUU39Oyy12izKmb3pAp8SFldfAI22HGi1rsJfjMiPbu0Ckuuq331jfaWAM8l2Arh7oL/t+53nLvsW8n1eytLce/WFbpMZN2afHl0H5YVHcedzT9WqFUjyM4qjYd02FRagPu3rkR5o/5z2rU2IRlgrVu3DjfccAMmTJiArKws/Pmn55fh008/xeTJkzF48GBccskl2Lp1q1fnWrx4Mc4++2xfm0xERK2YsBhClEl9VcIIown39/fsunexzvNWab1Rby3mrPtd0/Z7Kks9li08dsCZ6QLk533SM8D6Om+/cw4sKd5O2OuIiTaXFmrqopUQFuGxTBhgqe2yuKui5X3+q/k1ris5iUtW/aS522Og5Nc1BddSBUwcVRYrLMoBfVty0MsfSYTfldlrf1W1z4PbV2NreRG+yN3r1TnbkpAMsGpqapCVlYWHHnpIdP2PP/6Ip556CjfffDMWLlyIrKwszJkzByUlLV964Rgr4X9WQZeFY8eOoaSkBNnZ2X5/TUREFMIE991PDB6nerevx03DuFTPrnvCLocOM7r08qppQPDHgAWT8IZeLLNT0uBave+69S1BW6eoGJd1Vh/zk0eqK3DD+j9wrKbKWZJejqOLYEFdDSpVZOoc7t26Ao02Gx7YvsrnLlrC4LzGolxlMM9tCoP65oD16V3rUWu14N0D231qj7csNhv+PJaLGkuj7HY2iY9Y2N134dEDuGXjEtSr7MbamuXqWL5frTqF9/VwdQW2lrVUDVX6TFsjz866IWDSpEmYNGmS5Pr58+fj0ksvxcyZMwEA8+bNw5IlS7Bw4UJce+21AIBFixYpnufnn3/WpXug0Rj8f/kcbQiFtlDrweuGvNXWrh274GX0S0j2WC9VqtxkEv+dMlwkC3Z6Rld8c/SAV+0zGY1t5r3WSpidMhiVr7lCQXcmYUBhNBrwe0Ge8/mSwqOYnJGpqS03b1wCoKmCoVqHqsudBUB+nHSBqn3KGxuwqazA+XxHRTH+fXAn/tYtCyNTMqR3NHi+PwaDASWNdXhz31b0iGkp5iL1Pm52CxztsMNoNKC+eVzYvqqygF+LNZZGvLF/K/48eRQjkzMwb/AYyW2lrpEwwXfyg0M7AACbygtEfyBxaAvfuQlpnfDtsYMAxF/PuuKTSI+MQrcY10I/BrdttbwXVthkt5/b/D36ZsI5+OboAXxyeDfmDRojf217KVj/VoVkgCWnoaEBO3bswI033uhcZjQaMW7cOGzevFnTsRYvXowHH3zQp/aYzUakpMT6dAw9JSXFKG9E5IbXDXmrtV47EUaT84YRACIjWzJOYn/TY6vFx1RJ/f2PFskUdEqNF9lSncSEqJD6tyZYNlYUYmb/fqq3LxOMBUlJicX2nS3ZsOd3b8S5ffsgyuzfW6HPjrV0l9LyGdYLkqD3bFkBAHh4+2qsmXGF5D5x8ZEe5yiw1OKq1b8AgEtJ++TkGNEfDgZa0gHB7wDR0eEexwz0tThn8SIcb87ErCs5KXv+hKRoJIR7dpU0VHr+GJIQFy15rB5xCUH5zhXV1uL93VtxVd+B6BTj+/kjj0r/bVtx4hge3t5UAMb9uiowuo6jUnovlh5v+fEiPNwsub1wHF9sQhQ+Wb4bAPBbUR6m9vU+y68k0P9WtboAq7S0FFarFamprhWaUlJScOSI+mo9x48fR0lJCQYPHuxTeywWGyoq1A3+8yej0YCkpBiUllbDJpUfJ3LD64a81dqvneeHTsQtG5Y4nw+LTcXnAM7IyERxsWeXmqoq8UlkxbYFXMcBZSek4rzOPVBRJv9vhQHSRQgqK+pQbAh8V59Q89uxXPxT4j1XUlxchV0lrmXMF+87gFPSO+vRNEmrTua7tEGtqmr5a67OasH28mIMTUpzriuvqEWxuQon61q6Um4qKvA4BgCcKKpAuNEz02qrdf1xYNPJk5iS7JrpKyyqdBnb5W/H3bq5yb2PxSVVsIR5djl7YqNnV8vqqjqXY20ubcnehcGg6fPSy0NbV2FDaQEWHtqvOuMp52RFy2twfz1vbdssua680vXvlWN9RWMDbt+4FP3jk2G12zG9Sy+8tnez65xw9Y0oLq5CRWMDqi2N6CjoqntCUIimpLTlcWOj1S/vt97/VsXHRyEsTHmcbqsLsKTY7XZNs8136tQJv/32my7nDqWbC5vNHlLtodaB1w15q7VeOz2i4zEyOcNZQKB/XDI+Hj0FiWERoq9Hqnqa1Gs3Cca9nJreBWNTOqK4XvyG+bY+OThZV4Mu0bF4Xqo0tL3pXO6ZNwAwGwzOSXvbA2+vN5vNjo6RMTggmBB5b0UpJsh0EdObXNvdC3BIbetY/vyujVhZnI9rBBNb22x2rCrMx2M71yq25f/W/o4uUbEYm9oR0wSTd7ufd31Jgceyd/Zvw5yeg7CvshS9YhMRZjRiTfEJLDx2AA8MGCU6BtHd98cPoc5qwZkduooW57h3ywocr6vCR6Ndh3IYRNootKWkSPWUBo9sX4PvJ57vfP5V7j7nY7td//s7u92Oz3L3oH98MoYlpYtus6G0JSDWev4tZYXoGBmDdEE1yaWCQiwexxM8dV9ndSsW41j/4cGdOFFX46zc+ZdIoZelBcdwY69sXLbqJwBNY1Ujm6cQsArOIzyH0ufqq0D/WxWSRS7kJCUlwWQyoaioyGV5SUmJR1aLiIhIraTwSE0/1I1L6ahqO8c8Qu5zan0+ZiqeHDwOZ3boilnd+8EgUynQMS/Sx6PPwoejznRZ1ynK+25E6RFRXu/b2nx8eLdH1sVRPdJqt+OXE7keBTPc9YjxvpunnK1lRTh/+Xcuy946sE102+WFx1FjacTK4qbM2L8P7XSuswNYUXRc1TkL62uxqawQb+53rcLsfgt6enomfj2R67Lsu+OH8N3xg7hzy3K809zOx3auxfbyYnx3/KDiueutVrx9YBs+PLwLV6z+WXSb7RXFKGmo95g82mSQv3V1H0OmRJhtFlYTrbVaFMvSX7P2V3x8eLfqcx2uqcDnuXvx0HZ187I5gu5dFSUoqJMv3Z9XU4l/bVuFa9apTx7IzXHmHvCvKzmJN/ZtUT2324uCH4uERS+E77HwFEqfa2vT6l5NeHg4Bg4ciJUrVzqX2Ww2rFq1Cjk5OcFrGBERtQvvjTgdF3Xpjdv75qja3nETEeM21icuLBzZiep+GHQEX9FmM1J1DIou65ql27FC3X/y9mJfVZnLMsf93X9y9+LVfZtx1ZpfPPYTFsrQYx4osWN8eHinyJbint69XrJsdl5NpeYAw517+37MP4xX9m322G51UdN4rsUnjrjMe7TomHSAtbeyFLsqStBoly6l794G9/aYDAa8e2A7fjh+SHQbs8YbdYugLcKg4mhtFV7cu0lyvw2lBSior8V/8lxLkpc31OPeLSvwSHMQJWybUnU9d3M3LsFNG/7EXVuWKwZO7x/coenYgPi0BTvLi3Hl6p9dqvwBwLwda/CThomz1wqmF3CZi01wSmGAJzep+47yYpfum61BSHYRrK6uRm5uy68lR48exa5du5Camoq0tDRcffXVuPvuuzFw4EBkZ2djwYIFqKurw/Tp04PYaiIiak0mpnbCupKTmNqhm6b9OkbFYLagW5ayppuIMKMJ2Qmp2FpeJLqVXPLMH+NdPh1zltcT2gbT+pKTGJGsU7Wx5vu7L/P2ia5+78B2LDp+EH/v3h8Xdu4F+bBAWbWlEZc2d5v677hzUGNtRLQpDHsryzQdp0ZiridhNssb3x07iGK3LJ5FIhgSXpPzBeetkim5/c/NywA0XXtyGlyySq7qbVZ825wlO6dTj+ZtWm7UtX5XhAGQ1S3g+LPgKO7IGia630m3Sa2Bptd+xZqWjFyjzYpr1/2O0ckZuLJ7f5eKmO72VJYiwRzusizXrWS+nG1uf1fsdjue2LVOdh/31wsAL+3dhNLGenx0RH1mTonwExFeT1aZ917onq1NRV6E3TlDXUgGWNu3b8dVV13lfP74448DAObOnYtbbrkF06ZNQ0lJCV599VUUFhaif//+eP/995Gc7Flal4iISMxp6V2QFZeEDlHK1aV8SVwIbxCTRKqbqaFH5sRdQliESzGE1uKRHWvwxdizdTlWz9gE/HEyTzKIWNR8I7/g8C78ejLX5+mefxF0tfsybx/+k7cXESKFJoKhzmrBOwc957iKNplFAzqr4D0TlsZX48tc14A2r6YSmdFxzufCaodqJocW3pxr/YyEx9+pYRJlk8gk0sVu78PCYwdR0lCHn04cQYZgXJS7eqsVdzQHn8KxoVoIhxftqSjFXVuWKf4gcMQtgLPZ7cj3w98Em0RXROFSm92OBptVtPBKaxSSAdbo0aOxZ88e2W1mzZqFWbNmBahFRETU1hgMBnSO9n8ZZpfuTiq3u7ffCMSHheP+bStl9mgidUM5Ob0L/ig4Kruv8Nf+1PBIFCmMQQoV7uNyvHW4ugILj6mbm+x4bTU6RvpW6tkx/xLQMoGye9GSYJGadFfqmt0hCEa2lIlnZZcXHkdpYz3Oa840Ofzs1tXs0R1r8N7IM5zPf8gX7/4nRRhgmUTmO5LLjtTarIgFsLIoX3IboCk7FWUyw2QwoKi+Fq/t2+Jy/JN11R7Zs48O73I+LnALvoTF2YRdV1PDxaeEaDqPTWasUstrvGPLMtnXIuW3k3nKG3lD8PYLf1D4Irele+XK4nzMWPEDbukzBGcJehW4dxfVMk42mFrdGCwiIqJAc1TA8obw1k7uZlHYNWtCWidV47O6x8RLdmFSM2hcOO6htQRXgLqshhpiwZXLPD1u1fCkfon3hlRX0WARdm0T8jaY3VNRiqd3r8c7B7bBare5ZLzq3IJK9+BDmElS854Lq9ENik9xWbe5tBAXuBUQEbp67a9478B2PCnTna68sR6XrfoJdzZnmdzHmeXVVOK69X/gtk1LJY/xY/5hl+eO7oKlDXW4t7kLHADZ8Wly173a70SDzYpGiaB+Z0Wx6HJfCT9DYTvdA22gqVsuACzOP4IDVeUuwbtcoBxqGGAREREpGJmcgUlpnfHQgFGa9xXesMvdLEZ5EcS9PuxU9IxNEF0nN2jcwehDp7c3hp3q9b6+kqt+5qsr1/yClUXH8W+RogF6BXbBoqZ8uh5u27TUJYvy7bFDLuOq3Mldh2oqa68rbelS99aBbXh851oU1NWgqrEBD2xfpbj/IoXKh0eqm7rSOTJN7tff3spSAJB9je52V5aisrEBRW7TN8hlkcQCDLvdjg2lBarHB85c8QMuXvmT6Dp/Xd7Cw64qls8UGg0G7K8qw+v7t+C2TUtduqdKdeUNRSHZRZCIiCiUhBmNuKvfcK/2Fd5crC8Rn/TVfTs9qBnLIFcaXkkwxw49vWu9345d1liPJyWO39oDrEC1/kBVucvzDw7twESZuankfgtQymBZbDaXOeYK62tRWF+L/Npq0fm1fGW32z0CKW+vi10VJUiS6RKoxl+Fx/Cc1Px5IuxoClTOXfatyDr/XCHC9+dDQbdJMTVWi0vxnRprS9GU1pTBYoBFRETkR8JbAtnxNhpuHjpFxSjebFyS2Qd7K0txade+mLdjjeg2ESYfgqQgDoXY73YDHyit5/ZOnD+Kpagl19VQLvNjVchaXLjie9HlZY31HkUcvCUMPOYf3unR3c89C6VWnc3q89dod3P2TA+NGjJwWpQ11uNAVTkSwsKVN0bTVAQOwvLsrSmDxS6CREREfqT2V+EJaZ0Rbw7H7O79RY7h6u3hk/HeiNNlj5cYHoHncyZipEhJ85jmrmLulc2eHDxOVVsB7dmv54ZM0LR9KFKaiDjUSV2JUgUu9OTtzbtVTR9BEXrGkhZBG7456jlu7wu3ubDU+lghm+PODmBN8QmUCq5DLd18leaS2lAqnWH3xe2b/sJjO9fiTpky9VLUlnIPNcxgERER+ZHa7kPxYeH4bOxU0XXu1cn8MS8WANUTHwPaE1j949vmVCpTOnR1Kb8ebN2i4yQzN1IZrJkrf/BnkwAAJ+o8541y6BgZgzqrBU/sXIchbtfgmwe2enU+q475xsUnDut2LKH8uhq8tn+L8obN1hafxHN7NiAlPBILRk8BoK3witJ4NKn51YIpWdCF0uKnDJs/MMAiIiIKkBhzGKplJmKVorZrjWoiN9qfjREP7qRoKZccKnM9+YMvhUL8Qa5YiiWIGYBfZYo35NdV46KVPwIANpW5ZlmkSsAr0as75AcHd2CVYF4uvbmPV5NzqLpp2+KGOhTV1+JQdQV2lPun8l+oyBcE5q2piyADLCIiIj8SZrDGpnTQNNfMq0Mn4UhNhcskrHLGpHRwmaTV4awO3VxKIgtvPe/rPwLRJjPiNQZxWsKKJwaP1XTs1iSUwqtEhc8wmDeo3kyeq0SPsuVK1M6TFgjrBV34btzwp27zwQHK84AFy1rBddOaughyDBYREZEfCW8JRiV3AABMSuusat+esQk4LT1T9bm6RIlPnHxLnyGSbRqf2glDk9JVn0MoqrlIRkZEtOx2sWadM3AhJJQmPrXZ9Z2rK9TJBVFt8V04XF3hfKxncAVAdh6wUMEMFhEREQFwLZc+NqUD3hp+GjpFxfjlXHI3lfHmcFRYGnQ7l9FgwLsjTkdeTRVKGurwvEypaLOxKQi5tGsf/Cd3n25t8FZCWDjKG/V5L/JrpccWBVqFpQEVlfp9xqFOLqPR2kvqkydvC54EAzNYREREfvDooDEYl9IRZ3Xo6lxmMBiQGR0Hk8E///zK5VLeHSlfddDdC0MmeixLdJtXKCk8EtmJqYqTGjuCzIsy+3isiw9CditOx3Mera0SXR5qY7PaIrkS7v6cjJqCQ2s35mBigEVEROQHw5LScf+AkYiUKTqgN7nqgrHmMOQ0V2hTUzQjLixMdr3wTEoBY1xzWXix9l0lUpbeWxNTpSez9Zfi+lrR5f3jkwLckvZHbjwjM1htT3qkfFfkUMIAi4iIqI1QyiTd2icH41I64qEBoxWPpWWeq34SwcQ/+w7FZ2OmIqw5gyV2xKTwCJGl3jm7Y3fdjqWWVA7FX1nKQBnYCsrqv3twu+S61jNah9qi1v3tJyIiIqcOCr/wpkdG4/4BI9E1RrkqYZhR/BYhuTkgijW3ZLikutxFmkwu3XrEAkCpMK6rysqJoUquXHprcFnXvsFuAlGr1bq//URERIT5o87EsZoqRJl9/2f9jqyhOFJdidSIKNH1H4w8Ew02qzMrBchlzgxuz0QCLMG+M7v0xn+P7gcATO3QTTZDIaZbEIKyjIhonKyvcVk2Ob0LzBIBamsR1obnLiPyNwZYRERErVxaRBTSIqKwp7LU52PJlYU3oCmz5Z7dMhoM+PfIM2AyGPH3tb84l7sXgBALOpIEhTPKGupbttVQ/nxSWmdc32uw6kHwehZAEDvWrX1y8PaBbbqdIxhad3hIbU1YK+ty27paS0RERJKCWbcuPTIaKRGReG7IBOeyDTKTy/5fz4GYmNoJveMSncuE3Q7lCna4O1Rd4Qyu/tl3qMf6MzO6eizTy+iUDh7LzEaj4ni4UBdK83sR+WtqC39hgEVERNRGdIlq6iI3KCHFL8dXc8/dX2VxhLM7dsc9/Ue4LBuY0LKvUeYX69lulQdzayqdj7PiPAtu+DNWGC9RuVBLgBhKBsWn4KnB41hmPoQEozpmqBkl8kNGKGOARURE1EZEm83477hz8NTgcX45vtbK1xkayyoLK++ZBPf3z2SPd3YlTIuI8uiiKJxLq1NUDKZ17I5RyRnOZe7BQqmgK6IvPhx1puRrlCoSAgBDE9N0Ob8/PDhwFAYnpnoEpXdlDQtOgwLg+4nnB7sJkm7tMwTLio4HuxlB1yc2MdhN0IQBFhERURsSYTKFTPeuczv10LS9sNXCDNbAhBTn+C2xVyY8j8FgwE29szExrbPkeWqsFk3tkpIaESWZ55HrlqjX+f3B0bXRPSgNlWuqvZnSoVtQz39Zpv7VJD8fM1XzPmOZwSIiIqK2SOs9doQPleikuqgZDAaPshJiWwpvcJS668WY5SdV9kaXqFiMTemAq3sM8FiXLlGhMRQ43iv3gKo9dRn8etw0vx17/qgzg5INPC29i1f7+SOuDvfi70JrC/AZYBEREZFfmGXGUQm7GyaHRyI5PMKlW537/ZSteQcDPLsqivdcNIg8Evfu8MkKW2hnMBjwrwGjMLNLb+eyDpHRuK1PDv7uNoZMSq/YBF3aco6GCZgdgZT7e6bm/ra1zV02Ka0zLs7s47E8UsMcZlpvpNMiojApvQsu7NxT456+ub1vTkDPJyfC1PanAGCARURERH4RLTMvl7DK3vxRZ2L+qCnIFoxNcr+fd5RDF5tLS4wwIFDaJyE8Qna9HLmxVu66RsfhzA5dVRfAeGXoJG+b5fTfcefgfA038y0ZLNflYu9hb7cA8MnB43BJc8Dy8egpGlsaWDM698Jd/YY7g90YLyaGntG5l6rs5+hkz+5tsRKTc4txL+riDbXfG71kJ6Sq2q61T8gthQEWERER6eqZ7PH4R98cJIVHeqz775Tz8eqwSS5zYpkMBud/Du43hI6slcHgOfeU2Pxawi5tevcumpzeBQ8PHA0ASAiLwDU9BmCSzJgvB0erA1VhcERSOiJMJk3d+xxts7qlCWusjbjUbTxOstvnazQYcFX3/vh+4vmin30ocf8Mhialaz5GZnQcHhs8VjaYGJmcIZo9smuoGBMf5v0PAA5arrhPx5zlfCxsptlgVJ2lNKo84YMDRmloWevBAIuIiIh0NTAhBadLFHnoEhvnMveVuzeHnYaXh57isTyxOcsU5/bL/5DEVMUucGp+vb9Tw7iYf2YNw0hBlcIZXXqLzoflS3uknJEhPRG0O8dYF2/iuWM1VR7LruzeD4PiW6YAsLkFCa2pNL0ebY0ymdE7NhFPZktX7Tw9PdOlOqaDTfAjQbiGLKg3Phx1pqYxTAluAd3ZzYU23h0xGW8OP03VGLJAZ8xCDQMsIiIiUsn/N01dY+LQOzbRIyj4R9+hGJaUhjuzhrl0r3pi8DjRblouXQRVNPvU9C74V/+R3jZbE7W/7ovRcuPqyPR5U6DCPb9ia16wvaLYucw9y+Xvm8q7huj3+XhUSdS4/9QO3TA2VTmodn+PHISLP5WoqhfVPFZpU2mBxta16BgZg1Qfi6rc3GcIFo4/F+nNUxKIBYzuWlOw7Q8MsIiIiCjk9YxNwKODxqJjVAxOTe+M09K74Ons8ZLbu5R8V3n77O+bQke3MLnzKM33EyMzrs3d6c3ZLm8qsLlPVu2erQJcszCA/9+/i3rpVzLcva0ap3jDTb2zXQKNVyXGy9lgE10u7OYqNQ7JEUyXNNRpbJ3+hGMN1XzO0W10bJVa7fvVExERkWqB/E1abohKuNGEOxS6KYUJSkGrbbfJhwBByyTMcgHfBZ17wmK3YURShuj67jHxLtsuOnZQdLuPR09xjoNyP9upaZ2xpPCYbBtj3bKCYm+NRwbLbaPU8EgU6RQcvDzMs9uoL3wNBt337xmbgKy4JFQ01qOwvhaW5vfGareLZiylMltCjm6nFq0zfLvwZV+gwW71WDYyOQM5ianYXFYkuZ+W4i9Kzu2obT69UMAMFhEREYUc90IWWg0WZmBU3kv7NteO+vbK3dybDUackdHVOebslaGTXMaY2QSnkWutsMiEe7dCNfMQuQebYudyz2q5n+fJ7HGIU6iyp7ZoQmq4vnOHuX8Gevx48ELORLw38gyXK8FqtyPSZMblXfvitj45zuXndOqBeHM4buqdDaCpMIzQAwNG4ubmdeYgdrf77USex7IwoxGPD3Ydd3Z5V/0nJHZIiQjtgiliGGARERFRyPEtvHIdJ6K2i2CgbmO1jKPqFZuAG5tvtJuIvzNykxcLMygv5kzENBXzYnkGgcptdt+nU1Qsru05UHG/YPDnDbBw/jJHEHpFt344s0NL4Ze0iCh8Nnaq87MYmJCC63oOcq4fk9LROR+XcC41rfLrarzeFwDqbBZV203r2N2ly67aa1xuTizHDwtna5jHLVQwwCIiIiJZPZq7pV3RLSvILVFPeHvnnpkSZmcuFUw0KwzEXh92quhx/9ZV/D1QMzmtWGgUYzJjQHyyYBv50NI9M5XYXPFNrnuj8GY3PiwcmSqyRt4UgRC7qfSl26VQlIaxZ97o01zZMisuyedj3Z013PlYTVdAB4tdfLxWfFhLUZeBgmtF6JPRZ4ku12qOW0DcN1bd+2GAAakaSvM/NmgMLsvsi76xiTg9Xbwy5t+7D8D3E8/36K7aGjDAIiIiIlmT0zPx1bhpmNJcrjkQfBp2gqa5sWZ37487soZ5BAfC+ZyulJjEtXtMvOhkuX+TCDJHJGfgrA7d8Ejz/FhyhBmlz8ae7dI9TOplvz7sVFzXc1DT3FbNXfxSI6KQ0VzZzfH/YoQxTkFdrcu8YVd164crRIJG96BUTZwk1sVSKZOhNB9URkQ0Xh06ye8T0p7fqSfuyhru/PweGOBasVAuQ+iuQ1SMM9joprILJADk1lSKLheOJ3xmyASP9WaDwdml1FdT3b7jPWLjJbZ0ZTA0ve55g8bg/RGnK14vQ5PSMat7PxgMBszuIf4dbM2FCBlgERERkSjHL8ddo+P8foPrztcxWABwUWYfnJbexeMmP1KiW5L7DZ2WrnwmgwG39BmCEcnixSlcz2/GGRmZuKpbP5gMBlVjv7rHxOP8zj1hMBjwUs4puLxrX5zTsTvu6TccZ3fohtv7DpXcV5iNssPuklW6pGtfDEgQz4oI6XmvO3/Umaq3TY6IQE9BlztvJKqYqNdsNGJSemfENWeLxqR0dK67r/8IvJhzCmZ07qX6nK8Mm4THB43F4ETpSYjduc8/5dAzJh4XdO7pnEZAS7An5q3hp+GlnJaiIaeld5HcVu0PHY5rbHhSOjpExWhqj7Br6bxBY5yPW3F8xQCLiIiIxL05/DT8q/9IDEtKC/i5kzV0N1LiXsVNqsiEvydHFQaNt/cdiktECgOouaHtGhOHK7r1g9loRHpkNG7uM0R2riNhAOe4Eb6iWxau7zVYQ+s935su0bEa9m+RFhGFp7PHY1BCCq7o1k92W28zmed36okHB4zCSzmn+Pypdo+JR2J4BCamdVa9T0JYBHI0fm+ksnkGgwH/13MQxqY2BX3pEeLZSkcA+PbwybLnyYyOc3520SYz/iEIztX+GCHWRpfnGt514bbDk9Kdj/XqXhoMLNNOREREopLDI503dYE2OCEFN/fOxsD4FOWNNTJJ3PxpL+ugja/dHr0l/DXdEVxeLugWqKZdYu/FtT0GIi0iCp8e2aO5TYMSUvB09nhYbDZkxSVhbEoHfHh4l6DNBiSGh+MGlUFg37hE7K0sAwD8o28OTs9oKSgh2nVRw827IyjtHZuAczp2R7aGrJQWVrVZW7emO/a6pudAXNm9v6oS6VEmMz4aPQXRJrPbeMWm/38mezwWHTuIi1QW2PBmMmsHq9vYs8cGjUFZY71L18jWhgEWERERhRyDwaBb9TD3X9OlMljuBQniw8IxJqUDesTE4/Pcvbq0JRA6u3XRcslgibx2Nd0xHbtdnNkHX+XtAwDEmMNwedcs55gw0f0Ujms2GvFCzkQAcAmwzu/cA3MEVfXkxJjMeDHnFJy77FvR9ff3H4EX927C8dpqVcdz53jPDAaDW0VHfYlN5ixG7j11BFdGGDwmgnYnliV2HHtgQgoGJsj/uNExMtpZpdA9S6wl3Ipp7oqc3DyObKggi9VasYsgERERtWnuMUXv2EQAnpPpeu5nwAMDRil2Y9OX72mul4dOcnkufPl9m6vlCYnXrnPXdBSxsXgzuvTGDIlMh7BcvhZaMiJK71i/+GS8O+J0DPIyGxqojmrDmgOLUQrj+Eob6l2ei7VvgES1QWXqX+2zgoIbvnSvDTea8MXYs/HByDO8PkaoYQaLiIiI2jT3m/Ws+CQ8OXicxyS3chMAT0jthGpLo1/aBzRV8/sx/zBGqiiSocQ9CBLe/IoFPEqV/JqO0eS8Tj1wpLpCdXZxdEoHDE9Kx66KEtRY1c2pBDQFRWqpDUlv75uDOet/B6AtaJK7LvQ0MjkDbw0/DR0i5YtEyM0d5SCWlUwKi0CdzSq7n7fvi3sGS2u81RpLscthgEVERERtmti9ntg4Grl7wnv7j9CtPWIu6dpXtOiFHjxuft2oCVAch4gymXFXv+Gy2wqFGY2YN2gM3ty/FT/mH1a9n1IWx5W6EEtrdbtgUDNHWZhbkCz36oUf/Yejpyhsra00unAso3sGy98FY0IdAywiIiJq04RjkPo0dw9U2s4f9Cg97w2lm111Y398e296NZdaVzsvlJaPwr35er/LQapNIklNe8S2aarKp/TGaij+IfiQ3L873WPUzZ/VVjHAIiIiojZNeOv3zJDxqrbzB3/fqF/RNQv1Il3AlAJHLUUuvHVGRldEm8zITlCuwDelQ1evx261B1d0y8JD21er2lbrx+Z1F0G3ddM6dsM7B7ZpPHvbwauXiIiI2jTHuKaJqZ0QLlPxLr55ktnW6vJuWZjdY4DHcqWbvUCUjzcZDJiY1hkJ4dKT/j6TPR6XZfbFLb2HKB6vX1yS83GoZZj8bVhSOhZNOBf945Mkt3FkJbVmZb0NsNzPYzIYXea0am+YwSIiIqI2rVtMPL4YM9VZDlpKZnQcbuqdjZ5+6t4UrHmw/N31US9qSoM7pEVEYU9laUCCK/cxT6HAZDCif1wydlWUYmii54TGjvdFcwZLw7Wi1PX0/3oOwsmda3Fdr0GqM25tBQMsIiIiavNiVWanpuk091Zr4v8RWPqz2u3oGZOAA9XlHkU89ApkHx00Bvm11UiUyboF0xXd+qF7TDxGpXSQ2cp/n5xSdcUu0bF4e8Rkv50/lDHAIiIiIgqAnRXFQTv368NOlZ0QWEmoVYWzw+4cF6ZlziwthiWlA9K98IIuwmTC5IxM0XWOcXX+/NRCL68XOvjeEBEREQWAJVh9BNFU1a2jD2XKR6X4Pj+XnnrGJOD2vkPRLToOjwwa47KulfSI9CvHpebPOby86XraXj4aBlhERERE7Zp84PdM9njZ4iCBdHWPATAAOD0jE91j4vHG8NPQX8OkxO1FsKYEUPJ0tnQVz7aEXQSJiIiIAmBSWudgN0GT14ZNwq7yEgwIoQDm4q59MKNzr1ZTuCNYYpsLuiSoHHsYYTSJlvhXkhIeiWiT+nCib1yi5nO0RgywiIiIiAKgtYUEPWIS0CMmIdjN8KA4r5eK5E2ojSnT2619cvDuwe24sls/Vdt/MXYqbF4kvf496kxV7+Rbw09DlaURYSGSCfU3BlhEREREARCqWZfQ7EzmvVDtHhdI6ZHReGDAKNXbexv4mFRe05nRcV4dv7XiGCwiIiIiPzI334QmhYVmue/QDPu8J1ctMSMyGgDQKzb0MnPUdjCDRURERORHL+acgh/zD+PSrn2D3RRRI5Iz0D8+CaeldQl2U3zy2KAxWFp4DONTO0lu83LOKThUXYHsxNQAtozaGwZYRERERH7UMzYBc/sMCXYzJIUbTXhuyMRgN8NnQ5PSMTQpXXabuLBwBlfkd+wiSEREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOjHY7XZ7sBvRmtlsdlittmA3AwAQFmZCY6M12M2gVobXDXmL1w55g9cNeYvXDnlDz+vGZDLCaDQobscAi4iIiIiISCfsIkhERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhtwKefforJkydj8ODBuOSSS7B169ZgN4lC3GuvvYasrCyX/6ZOnRrsZlEIWrduHW644QZMmDABWVlZ+PPPP13W19fXY968eRg9ejSGDh2KW265BcXFxUFqLYUKpevmyiuv9Pgb9NBDDwWptRQq3nnnHcycORNDhw7F2LFjMXfuXBw+fNhlG/7NITFqrp1A/t1hgNXK/fjjj3jqqadw8803Y+HChcjKysKcOXNQUlIS7KZRiOvXrx+WL1/u/O+zzz4LdpMoBNXU1Mj+I/Tkk0/izz//xMsvv4yPP/4YBQUFuPXWWwPcSgo1StcNAFx++eUuf4PuvvvuALaQQtHatWtxxRVX4Msvv8T8+fPR0NCAa665BnV1dc5t+DeHxKi5doDA/d0x++WoFDDz58/HpZdeipkzZwIA5s2bhyVLlmDhwoW49tprg9w6CmUmkwlpaWnBbgaFuEmTJmHSpEmi6yorK/Hf//4XL7zwAsaOHQug6eZn2rRp2LZtGwYPHhzIplIIkbtuHKKiovg3iFx88MEHLs+ffvppjB07Fjt37sSwYcP4N4ckKV07DoH6u8MMVivW0NCAHTt2YPz48c5lRqMR48aNw+bNm4PXMGoVDh48iAkTJuD000/HXXfdhRMnTgS7SdTKbN++HY2NjS5/g3r16oVOnTrxbxApWrhwIUaPHo1zzz0XL730kscvzUSVlZUAgISEBAD8m0PquV87DoH6u8MMVitWWloKq9WK1NRUl+UpKSk4cuRIkFpFrcGQIUPw7LPPolu3bigoKMAbb7yBK664At999x2io6OD3TxqJYqKihAZGYnY2FiX5SkpKSgqKgpSq6g1OP/889G5c2ekpKRg9+7deOGFF3D48GG88sorwW4ahQi73Y6nnnoKo0aNQq9evQDwbw6pI3btAIH9u8MAqw2y2+0wGAzBbgaFsFNOOcX5OCsrC0OGDMFpp52Gn3/+GdOnTw9iy6i1EftbY7fbg9ASak0uvvhi5+OsrCykp6dj9uzZOHbsGDp37hzEllGoePTRR7F37158/vnnLsv5N4eUSF07gfy7wy6CrVhSUhJMJpPHrzYlJSUeWS0iOfHx8ejevTszn6RJamoqamtrUVVV5bKcf4NIqyFDhgAAcnNzg9wSCgWPPfYY/vjjDyxYsAAZGRnO5fybQ0qkrh0x/vy7wwCrFQsPD8fAgQOxcuVK5zKbzYZVq1YhJycneA2jVqe6uhp5eXkccE6aDBo0CGFhYS5/gw4dOoTjx4/zbxBpsmvXLgDg36B2zm6349FHH8Uvv/yCBQsWIDMz02U9/+aQFKVrR4w//+6wi2Ard/XVV+Puu+/GwIEDkZ2djQULFqCuro7dvEjWM888g9NOOw2dOnVCQUEBXnvtNZhMJkybNi3YTaMQU11d7fLr3tGjR7Fr1y6kpqYiLS0NM2fOxFNPPYX4+HjExsbi8ccfx4gRI1jNq52Tu25qa2vx3XffYdKkSUhMTMSePXvw1FNPYcyYMejdu3cQW03BNm/ePHz//fd48803ERMTg8LCQgBAXFwcIiMjERcXx785JErp2snNzQ3o3x2DnR1XW71PPvkEH3zwAQoLC9G/f388+OCDyM7ODnazKIT94x//wLp161BWVobk5GSMGDEC//jHP1T94kPty5o1a3DVVVd5LJ87dy5uueUW1NfX4+mnn8YPP/yAhoYGTJw4EQ8//DC767RzctfNRRddhLvuugv79u1DTU0NOnbsiClTpuCGG27wKF5A7UtWVpbo8qeeegozZswAAP7NIVFK105+fn5A/+4wwCIiIiIiItIJx2ARERERERHphAEWERERERGRThhgERERERER6YQBFhERERERkU4YYBEREREREemEARYREREREZFOGGARERERERHpxBzsBhARUevz2muv4fXXX/dYPnbsWHz44YeBb1Ab0tDQgJdeeglbtmzB9u3bUV9fjz179khu/8gjj6CsrAwvv/wyrrzySqxduxYAYDabER8fj759+2LKlCm4+OKLER4eHqiXQUTUbjHAIiIir8TFxeH999/3WEa+qaurw9dff43s7GwMHToUq1evlt3+r7/+wq233up8Pnr0aPzzn/+EzWZDSUkJ1q5di+effx5ff/01FixYgPj4eH+/BCKido0BFhERecVkMiEnJ0fVtnV1dYiMjPRvg9qI+Ph4rF27FgaDAZ988olsgLV3717k5+dj4sSJzmWJiYkun8sZZ5yBGTNm4PLLL8dTTz2Fp556yp/NJyJq9zgGi4iIdHX06FFkZWXh22+/xd13340RI0bghhtuAACUlZXhoYcewrhx4zB48GBcdtll2LJli8v+FRUVuOOOO5CTk4MJEybgrbfewjPPPIPJkyc7t3nttdcwevRoj3NnZWXhk08+cVn21Vdf4ZxzzsGgQYNw2mmn4b333nNZf++992LGjBlYsWIFzjvvPOTk5ODyyy/Hvn37XLazWq145513cNZZZ2HQoEE45ZRTcO+99wIAPv30UwwdOhTV1dUu+6xevRpZWVnYvXu3pvfQYDCo2m7JkiUYPHgwUlJSZLfr168frrjiCnz33XeoqqoCABQUFOC+++7D6aefjuzsbJx11ll46aWX0NDQ4Nxv5syZuO+++zyOd88992D69OkaXhERUfvBAIuIiLxmsVhc/rPb7c51zz77LGJiYvDKK6/g+uuvR0NDA66++mqsWLECd999N9544w0kJSVh9uzZKCwsdO5333334a+//sL999+PRx99FCtWrMAPP/zgVfvef/99PPLIIzjjjDPwzjvv4PLLL8crr7ziEYTl5+fj2WefxY033ogXXngBJSUluP32211ez0MPPYTXXnsNU6dOxTvvvIN7770XNTU1AIDzzjsPVqsVP//8s8txFy5ciIEDB6Jfv35etV/J0qVLMWnSJFXbjh8/Ho2NjdixYwcAoLS0FImJibjvvvvw/vvv49prr8U333yDxx9/3LnPxRdfjMWLF7sEjtXV1fjll18wY8YMfV8MEVEbwS6CRETklbKyMgwcONBl2fz589G1a1cAwJAhQ/Dwww8713311VfYt28fvv/+e3Tv3h0AMG7cOEydOhX//ve/cc8992Dfvn347bff8NJLL2HatGkAmsYUnXbaaYiNjdXUvqqqKrzxxhu48cYbMXfuXABNQUZtbS3eeustXH755TCZTACA8vJyfP7558522e123HzzzTh48CB69eqFAwcO4Ouvv8a//vUvXHXVVc5zONoYHx+PKVOm4JtvvnEGHo5A5I477tDUbrXKy8uxadMm3H///aq2z8jIAAAUFxcDaMr23XPPPc71w4YNQ1RUFO6//3488MADCA8Px7nnnounn34aixcvxsyZMwEAP/30ExobG3Huuefq/IqIiNoGBlhEROSVuLg4zJ8/32VZjx49UFZWBgA49dRTXdatWrUKAwcORJcuXWCxWJzLR44cie3btwMAtm3bBgAu3QFjYmIwbtw4bN26VVP7Nm3ahJqaGkydOtXlfGPGjMGbb76JEydOoHPnzgCAzp07O4MrAOjVqxcA4OTJk+jVqxfWrFkDALJZm4suugizZ89GXl4eMjMz8dNPP8FisfgtEFm+fDmSk5MxYMAAVdsLs3GO5wsWLMCXX36Jo0ePor6+3rkuPz8f3bp1Q2xsLM466ywsXLjQGWAtXLgQkydPRlJSkn4vhoioDWGARUREXjGZTBg8eLDHckeA5T4uqLS0FJs3b/bIegFwZr2KiooQExPjURBDaYyRmNLSUgDAOeecI7o+Pz/fGWC5Vz8MCwsDAGfQUVZWhujoaNks2ujRo5GZmYlvvvkGt912G7755hucfvrpSExM1Nx2NZYsWYJJkyapHq9VUFAAoOW9XLBgAZ555hlcd911GDlyJOLj47Ft2zY8+uijLsHWRRddhCuvvBK5ubkAgPXr1+Pdd9/V+dUQEbUdDLCIiMgv3G/8ExISMGjQIDzyyCMe2zrmZ0pNTUV1dbVH1UFHtzaHiIgINDY2uiwrLy/3OB8AvPPOO6IBWo8ePVS/lsTERNTU1KCqqkoyyDIYDJg5cya+/PJLXHDBBdiwYYNHQQ292Gw2LFu2DI899pjqfZYvX46wsDBngLt48WJMnToV//jHP5zbHDhwwGO/kSNHolu3bli4cCHsdjvS09MxYcIE318EEVEbxQCLiIgCYuzYsVixYgU6deokmZFyZMT++OMP5/im6upqrFy50iWwycjIQHV1NU6ePOkcW7RixQqXYw0dOhSRkZEoKCjw6K6o1ZgxYwAA//vf/zBr1izJ7aZPn45XX30V999/PzIyMjB+/Hifzitly5YtqKqqwtixY1Vtv3v3bnz22Wc477zznO9jXV2dx8TD3333nej+M2fOxOeffw4AuPDCC51j14iIyBMDLCIiCogLL7wQX3zxBa688kpcc801yMzMRFlZGbZu3Yq0tDTMnj0bffr0weTJk/HII4+gqqoKaWlp+OCDDzy6DE6cOBGRkZG4//77cfXVV+Po0aP44osvXLaJj4/H3Llz8cQTT+DYsWMYOXIkbDYbDh8+jDVr1uCNN95Q3faePXvi0ksvxdNPP43i4mKMHDkSFRUV+Pnnn/HSSy85t8vIyMDEiROxZMkSXH/99R6ByGuvvYbXX38de/bskT3f0qVLUVtbi127dgFoyjYBTQFo586dsWTJEvx/e/cdJ0V9/w/8NbPXG1c5uAOOfsBxR+9NEBVbEFARJXxt8Wc3JkYTYxIwGsTv1xg1JtFoEBG7EKyAhaKAFOlwHP2Ao10/rt/ezO+PYfd2b9vs7uzu7O7r+Xj4kJudnXlP2d3Pez5txIgRdmvTqqqqsGvXLkiShKqqKmzZsgUffvghunfvbjXk+tixY7F06VIUFBSgW7du+Oyzz1BcXGw3nhkzZuCll16C0Wjk8OxERC4wwSIiIr+Ijo7G22+/jZdeegmvvPIKysvLkZqaioKCAqtBLZ577jnMnz8ff/nLXxAXF4dbb70V+fn5VkOgp6am4uWXX8bzzz+PBx54AHl5eXjhhRfMtV4mv/jFL9CxY0csWbIEixcvRnR0NLp3726znhp/+tOfkJWVhY8++gj//ve/kZqaareGaurUqVi3bp3dATEaGhqQmprqcl8LFixASUmJ+e9HHnkEALBw4ULMnDkT69evxw033GD3vVu2bMHs2bMRERGBxMRE9O3bF4899hhuuukmqxqrBx54AJWVlXjppZcAAFdccQWeeuop85xlljIyMlBQUABASTaJiMgxQW4/rBAREZHOLFq0CKtXr8Z3330X6FBceuSRR1BaWop3333X5rW5c+di9OjR5mHjPXH+/HlMnDgRq1evthr50JeqqqowceJE/OEPf8BNN93kl30SEQUr1mARERFpoKioCPv27cPXX3+Nv/71rzavG41GHD58GC+//LJX+8nMzHTZxFArtbW1OHr0KN5++23Ex8dz7isiIhWYYBEREWngvvvuQ2VlJW699VZMmzbN5vWIiAjzfFrBYv/+/Zg3bx6ys7OxaNEixMbGBjokIiLdYxNBIiIiIiIijYiBDoCIiIiIiChUMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSSESgAwh2kiSjtVUKdBgAgIgIEUajPmKh4MH7hjzFe4c8wfuGPMV7hzyh5X1jMIgQRcH1PjXZWxhrbZVQVVUf6DAgigLS0hJQU9MASZIDHQ4FCd435CneO+QJ3jfkKd475Amt75vk5DiIosH1fr3eExEREREREQFggkVERERERKQZJlhEREREREQaYYJFRERERESkEQ5yQUREROQnsixDklohc5wGt4iigObmZhiNRg5yQaq5e98IAiCKBgiC65ECnWGCRUREROQHra2tKC8/C0lqDXQoQamsTIQkcZh2co+7940oGpCW1hkGg+vRAh1hgkVERETkBzU1FRBFA1JTMwF494Q8HEVECDAaWXtF7nHvvpFRVVWGmpoKpKRkeL5Pj99JRERERKrIsoSmpnqkpHRERERkoMMJShERIgDWYJF73L1vEhOTUVl5AbIsQRA8G66Cg1wQERER+ZipiZLBwGfbRHpm+ox60xyVCRYRERGRj7UNasGmgUT6pnxGvRmIhgkWERERERGRRphgEREREZFuPPvsfDz11OOBDkMzZ8+ewfjxw3Hs2JFAh2Jjx47tGD9+OOrr6z3eRn19PcaPH44dO7ZrGFlwY0PgMNLaCoiiMsY/ERERkSvPPjsfDQ31eOaZ5wMdiksHDxbijTf+iYMHD6ChoQHp6RkYOLAAv/3tHxAZGdwDi+zYsR0PP3yv+e+UlFQUFAzC/fc/guzsLh5vNz9/EFauXIXY2FgtwqRLmGCFiVYj8O27Ijqkyxh1DYc4JSIiotBRWVmBRx99ABMnXoYXX/wH4uLiUFJyGmvXfntp3jHtEyyj0QiDwftJad3xwQf/RUxMDM6dO4e//e15PPHEr7BkyXsezdlkNBoRGRmJtLR0H0SqPaPRiIiI4Ehd2EQwTDTUKv+vLmP1FREREWnju+++wdy5N+Gyy0bjppumY8WKj61eHz9+OD79dAV+9auHcPnl4zBv3mwcOnQQR44cxj333I6pU8fj0UcfQGVlhc2233zzNVx77eWYNu0yvPzyC2htdTxB8969e9DU1IjHH/89+vTpi+zsLhg5cjSeeOL3iI6OMa+3a9cO3H//3bj88nG4+uop+M1vHkFTUxMA4KuvPsedd87FFVdMwPTpV+HZZ+ejpqbG/N4vv/wM1157OTZsWIdbb52FKVPGoqqqCmVlpXjssYcxZco4zJ59A9avX4trr70cX375mcN4jx07gl/96iFMnToe06dfheee+zNqa2tdnu+UlFSkpaUjL28gHnroVzhx4hhKSk4BADZsWIfbb78VU6aMxezZN2DZsiVWI+GNHz8cK1cux+OP/xKXXz4OH374rt0mgq6u6cmTJ3D//XdjypSxmDdvNnbv3mkT544d23HXXT/H5MljcMMNV+PNN1+zisXVOTM1q/z2269x//13Y/LkMdiwYR0qKyvxpz/9DjfccDUuv3wcbr/9Vnz//Tqrfd944/VYunQx5s//PaZOHY+ZM6/Htm0/4ty5c/jlL+/H1Knj8Ytf/A9OnTrp8nx7igkWEREREbmtsHA/5s9/EldeeTXefvsDzJ37P3j55RewYcM6q/XeeusNXH/9dCxevAzp6Rl4+uk/4uWXX8D99z+Mf/7zPzh//hxef/0fVu/ZsuVHnDlTgr///d948sn5+OqrL/Dee+84jCU1NRXNzc344YcNkB0M/3byZDEeffQB5Ob2x+uvL8Hf//46hg0bYV7faDTinnvux1tvvYc//3kRjh49gr/+dZHVNurr6/H+++/g979fgLff/gDx8fF45pk/obKyEq+++jrmz38W77//jtM+TRcvXsTDD9+HAQPy8J//vINFi/6GU6dO4tln5zs527ZMiWNLixG7d+/CX/4yH7fcchuWLv0Qv/zlb/Dxxx/g448/sHrPm2++hsmTp2Lp0g9x+eVX2mzT1TWVJAlPPvkbxMTE4PXXl+CRRx7DP/7xktU2Llw4j8ceewT5+YPw1lvv4eGHf42PPnoPH3/8vnkdtefstdf+jjlz5mLZso8xePAQNDU1oX//PPzv//4Nb7/9Aa688mo89dQTOHHiuNX73n//HQwbNgKLF7+LwYOHYsGCP+D555/BzTffijfffAcRERF44YXn3Drf7giOejYiIiKiELNvo4ALvnuIblfHbsDAcdp0Ffjgg3cxcuRozJt3JwCgW7ccHD58CO+99zYmTrzMvN51103H5MlTAQBz5vwcjz76AO65534MHjz00us3YOXKT6y2HR0djSeeeApRUVHo0aMnTp8+hfffX4Zbbvm53VgGDizArbfOwx//+FskJiZiwIB8jBgxCtOmXYvExEQAwDvvvIX8/EF45JFfm9/Xq1dv87+vv/4G87+zs7vgwQd/iV/96kFI0p8hikqdREtLCx577Hfo2bMXAKC4+AS2b9+KxYuXoU+fXADAr371OO644zaH5+2TTz5A//4DcPfdbX2qHn/897jtthtRWVmBlJRUh+81qa6uwptvvoaMjI7o1i0Hjz32CObNuxPTpl1rjv9//udOfPzxB7j55jnm91111TW4+urrzH+XlJy22q6ra7pt2xacPn0KL7/8L6SmpgEA7rzzHvzhD781b2PFio+RlZWNRx75NQRBQE5Od5w9W4J3312Km2++1a1zNnv2bZgw4TKrZbfcMtf871tv/Tk2bfoe69Z9i9tvv9u8fNy4iebreccdd+HLLz/D6NFjMXbseADAzTfPwYIFT0GSJPO11RITLCIiIiJyW3HxcVx22eVWywoKBuHbb9dYLevVq4/536ZCeY8ePS2WpaKystLqPX369EVUVJT574ED8/GPf5ShtrYWy5d/iKVLF5tfW7r0I3Tq1An33/8w5syZi+3bt2L//r1YtmwJli1bgjfeeBvp6Rk4cuSwVeLX3sGDB/Cf/7yOI0cO4+LFi5CkVhiNRlRUlCM9PQOAkviZkitAaS4XGRmJ3r37mpf17t3X6aAaR44cxrZtW3DFFRNsXispOe00wZo+/SoAQENDA3r37otnnnkekZGROHr0EPbu3Y3Fi/9tXre1VYIsW0+W269ff4fbBlxf0+LiE+jUKct8HQElubV04sRx5OcXWPVNy88fhH/+8xXU1dW6dc769Rtg9Xdrayvefvs/WLv2G5SWlsJobEFzczO6ds2xWs8ycbZ/z6XBaDSitvYikpI6OD0nnmCCRURERBQAA8fJwLhAR+Gd9gM8yLJss8xyYALTS9bLBJtEwNHAEYIA3HDDLEyZcoV5WXp62yANKSmpuOKKabjiimm4++77cMstM/Df/35iVVtkT0NDA37964cwevQ4/OlPzyIlJRnHjx/H73//G7S0tJjXi4mJsXqfLDuO1dm+Jky4DP/v/z1g81pGRobT9/7zn/9BbGwsUlJSERcXZ15eX9+AX/ziPkyYMMnp+2NiXI8W6PyayipHo26/Det/qz1nsbHW5/vdd5fik08+xMMP/xo9evREbGwsFi16BkZji9V67e8vADAYLNMeZZkk+WbgNyZYREREROS2nJwe2LNnl9WyvXv3ICenu9fbPnSoCM3NzeZarP379yE9PR3x8QkAoKrWISEhAWlpaWhoaAAA9O7dBzt2bLdqSmZSXHwC1dXVuO++h80Jm5p5nXJyuqO5uRlHjhxGnz5KjcyRI4etkrL2+vbNxfffr0fnzlluj/6XlZVtlVhZbvPUqWJ06dLVre215+qa5uT0wNmzZ6yaMu7fv9dq/e7de+D779dbJWb79u1GRkZHxMcneHTO2mLZjYkTL8OVV04DoPSbKyk5jU6dOntz2JrjIBdERERE5FBtbS0OHy6y+q+09AJmz74VW7f+iKVLF+PUqZNYuXI5vvhiJebMsd9Pyh1NTU343//9C06cOI7vv1+HpUsX4+abb3W4/saN3+PPf/4jNm/eiNOnT+H48WP45z9fwfHjxzBunNIUb+7c27F372689NILOHbsCI4fP4YPP3wPjY2NyMzshMjISHzyyQc4c6YE69Z9i3ffXeoyzpyc7hg+fCSef/4ZHDx4AAcPHsDf/va/iIyMdFhLM3PmTaisLMfTTz+FgwcPoKTkNDZv/gGLFj3ryakCAPzP/yj9jN566w0cP34Mx48fw5o1X2HJkjfd2o6razpixChkZWXjmWfm48iRw9ixY7tVs0QAmDHjRpw5U4KXXnoBJ0+ewNq132Dp0sWYM0fpO+XJOTPp2rUrtm79Efv27cWxY0excOECVaMv+htrsMIEJxcmIiIiT2zfvtVmAIKbbpqDRx75NebP/wv+85/XLg24kImHHvqV035Oao0aNRoZGR1x//13o7XViKuvvh633jrX4frdu/dAVFQUXnrpBVy4cB4xMTHIyemOZ555HkOHDgegDNjwwguv4LXXXsXKlZ8gJiYW+fkFmD59JlJSUvDkk3/C66//Ax98sAz9++fh/vsfxlNPPeEy1qeeWoCFC/+M+++/G+npGXjggV/imWf+aNWHzFJGRkf84x9v4l//egW//OX9aGlpQefO2S6b9zkzZsw4LFz4At566w28/fZiREVFonv3npg58ya3ttO/f57TayqKIhYufAHPPfc0fvGLecjO7or7738Yjz/+S/M2OnbMxP/930t49dWXsHLlJ+jQIRk33TQHN954i3kdd8+Zyf/8z104c6YEjz56P+Li4jBjxk0YOXKUW8foD4LsaCxLUqWlpRVVVY6H4vQXURSQlpaA8vJau+1Ja6uATZ8qFZZXzpNsXqfw5Oq+IXKE9w55IpzvG6PRiLKyEqSnZwfNZKl6ExEhwmjUfxnm5MkTuPXWG/HGG0tdDipBCl+eM3fvG2ef1eTkOERGum7WyU84EREREZGHtm3bgqamJvTs2QulpRfw97+/iJ49eyE3t1+gQ9OtUD9nTLDCBJsIEhEREWnPaGzBv/71d5w9W4L4+AQMHjwUDz/8a7dHFwwnoX7OmGAREREREXlozJjxGDNmfKDDCCqhfs44iiAREREREZFGmGARERERERFphAkWWWluVP4jIiIi7bR1LQmv0ROJgo/yGfWmOxj7YJGVdR9yKHciIiKtiaIBgiCitrYaCQkdAIRGZ37/EmA0MkEld7lz38iora2GIIgQRdfDsTvCBIuIiIjIxwRBQGpqR1RUXEBjY12gwwlKoihCkvgAmNzj7n0jCCJSUzt6NaIhEywiIiIiP4iMjEbHjl0gSa2QWRHjFlEUkJISh8rK+rCbpJo85+59Iwim2mbvapiZYIWouhrgwkkgZwAg+qCnnSxzbi0ivao4DxzdLSB/vIyYuEBHQ0SWBEGAwcDil7tEUUBUVBQiIpqZYJFqgbpvOMhFiNq4UsDhHSLOHNF+27vXC1j3oQDW0hPp0/bVIirPCTi8g09BiIiI/I0JVqiSlYJVY53jAlZ1GbB9jYCGWvc2fb5YQEuTgOYGbwIkIl+TWgMdARERUfhhghXGtq0RUHFOQOEWPuUmIiIiItJC2DYCzsvLQ+/evQEAAwcOxLPPPhvgiHzESe4kGZUX+ZSbiIiIiEgbYZtgJScnY+XKlYEOI2Rw0AsiIiIiIjYRJA3UXwS+Xiri6J5AR0JElsrPBjoCIiKi8KPLBGvbtm249957MX78eOTm5mLt2rU26yxbtgxTpkxBfn4+br75ZuzZ417pvrq6GjNmzMCcOXOwdetWrUIPSt4OWnn2mPL/o7t0eTsRhS1jM6uViYiI/E2XTQTr6+uRm5uLmTNn4qGHHrJ5/csvv8TChQuxYMECDBo0CEuWLMHdd9+NVatWITU1FQAwffp0u9tevnw5DAYDvv32W2RmZuLIkSO455578OmnnyIhIcGnxxVyWHYj0o0LJ4GyMwL6j+L8MERERIGkywRr0qRJmDRpksPXFy9ejNmzZ2PWrFkAgAULFmDdunVYsWIF7rrrLgBw2b8qMzMTANC7d2/07dsXx48fR35+vkfximLgMw1TDO1jUWakFiCItuua17GzTM0xiYIAUbTue6WHc0HqObpvKPjsWqdcw6xe1st9dW1575AneN+Qp3jvkCcCdd/oMsFyprm5Gfv378d9991nXiaKIsaOHYtdu3ap2kZ1dTViY2MRFRWF8+fP49ChQ+jatatH8UREiEhL00/NV0pK/KV/1QEA4mKjkJYWhUhBAqBMXNUWr7JOZKQBaWmxVsucH5OyTkpqHOISRJTENgNoUfE+0qu2+4aCl/K5TIiLBdBoXurrzyTvHfIE7xvyFO8d8oS/75ugS7AqKyvR2tqK9PR0q+VpaWkoLi5WtY2jR4/ij3/8I0RRhCiKePLJJ5GcnOxRPEajhJqawM+4K4oCUlLiUVlZB0mSYWq/V9/QjPLyZtRWw7ysvNw0s7Dyd0tLq82ytr/tUdaprKxHQxNQX6/2faQ3tvcNBS/lM1hzsQGW7Xe1/kxerASO7wP6jxTQKYv3DrmH3znkKd475Amt75ukpFhERhpcrhd0CZYjsixDUDlO+NChQ/H5559rtm89fdDLz8k4fajtb1lW4pMlwFToaotX+Vu2s8z5MbWtI0mALLeddz2dC1JPuZa8dsHt0ufZ4gELoP1ncsuXAowtAgAZnW7gvUOe4X1DnuK9Q57w930TdAlWSkoKDAYDysrKrJZXVFTY1GqFoy1fOkgyfdD0lK2gicKPklwBLU0BDoSIiEingm5c7aioKOTl5WHTpk3mZZIkYfPmzRg8eHDgAiMi0h0fPq3jExYiIiK7dFmDVVdXh5MnT5r/Pn36NAoLC5Geno6MjAzccccdePzxx5GXl4eCggIsWbIEjY2NmDFjRgCjDkMsYBERERERWdFlgrVv3z7MmzfP/PczzzwDAHjwwQfx0EMP4ZprrkFFRQVefvlllJaWon///njjjTfMc2CRm3zwkPvCSeDMMQEFE2SIrvsCEpGONdQCe38Q0GdI25cFn68QERHZp8sEa9SoUSgqKnK6zty5czF37lw/RUTu2rVOaX169riM7N6O15Nl63m0iEg7Wn22Dv0koOqCgG2r+WElIiJyJej6YJF7BCGwI+1IkuPXSo4C374roLbKb+EQhT4f5EBSq/bbJCIiClVMsChg9m8UIbUKOL6PT8WJiIiIKDQwwQpxTfXBlbzs3yTg0E/BFTORP12sAJobVa6s1UeJH0kiIiLVmGCFuNOHA1wycrOFYskRASf2szRHZE9DLbD5cxEblmv3GTG2AKUlzpvzEhERkXpMsAiV54GD2wTILGAR6Vr9ReX/klG7BGvv9wJ2fiviZKGbb+RzECIiIruYYIWBg9usS0KtRqDsjOUSAScLBVw47dewiMgNTQ3AmaPaZzWlp5VtVpxzvG3mUkREROrpcph20tbJQgGdure11du3UcD5Ytsik7HFs+031nkaGRGptW21gPoa91IdXyZGTLqIiIjsYw1WmNj7fVtxyF5yBcDjCYc9TcxckSSgpck32yYKNu4mVwAgSUyDiIiI/I0JVphoqNW+oKV2EtPiQmDXOgGymwncj18IWPuBqH7ENCLyWFmJe98R7n6eiYiIwgUTLPK5om0iLpwUcHS34FZtV22lUuCrq/FRYEQhqK7aP/u5cIq1Y0RERPYwwSK/ObZHwIEfbQtlDbXAT18LqKkIQFBEIabqgg8SH+ZSREREqnGQCzJrrHf++sUK1+u4Un7GdpmpQHjxG/e311gHXKwEMrrYvla0XUB8kowufd3fLlGw8qbpXtkZID1Lu1iIiIjCEWuwQsjGL7zrrFRxtu0x9cVK24La5s9F7Pyu7ZY59JPg/giCTp6EezJYxoZPlJiqy6yXtzQDxQcEHPiRtzgFJ2MzsGutgPKz/tvnjm/4eSEiIvIWf01DyImDrZpta/NnIk4ddL7OmaMCdq+3zpgqzztPlJy1NPJmouOGWuu/Tx/yfFtEelBcqPRz+ulrkQNKEBERBREmWOTQsb2uO160H4Bi22oRu9Z61mFDlrUbPv7wDt7aFNxajW2fh+1fq/9MMRkjIiIKLJZCyax9way5UcDpQ8CGTwS3RiarONdWGLSpzVJZTrxYqX5/ADyew4soGFSeC85RJg7vELDzO/enaCAiIgpmHOSCzOyNPmbqw7Rxpf0CnrFZgLPspn1Nktpi4ubP3Mv9WX4jukRHH4bj+5RP/KkiGWmdgfgOAQ6IiIjID5hgkddamtxY2YMH8dtWi0jPliEagIHjZEREur8NonCho/zK7OBW5YHJlfO86GhJREQUJJhgkdcqz6vPmprqBciyjKJt7mVaZSXK+odjgQ4ZMjr3AASVm2g1AtvXCMjuI6NLH7d2SxR89JhhERERhREmWOR3ddXAyYOe9Sk5VSTgVJGAiEgJtZb9tJwUKs+dAKrLBFSXCejSh0/QKbQxvyIiIgosDnJBfidpMJp8w0XgyK622/fcCUHVPFqSBNRf9H7/RHrlzXQHjqitLSYiIiImWBQA7Yd210LpaQGFW1wP877zOwE/rBBRcV77GIj0oPyM+mzI3mfxxy8EVJVqGBAREVGYYYJFfrf3e9/cduVnVaxzqfBZ4UYhlEiNViPQWB/oKNxTU2ZnWbmAn9yYd0trLU2+qYUjIiLyFyZYFJSKttu/dY/sEnD2mPUye31Sju0V0GrUPi4KXxuWC9jwsejeqJp+ZGxRnwBKAUpwGuuAtR+I2LaGD0CIiCh4McGikNHSBBzbI2DvD9a3dW2l/cJaaYm67TY1ACcPggkZOdXSqNxnjXUBDsSBtR8oCaBlX0WHA2IEaKSM6ks1avbm5CMiIgoWHEWQQoYs2S+UORqxsLFW3XZ3fCvgYoWApgYZfYZwjDZyTu0dsn+TgPgOMrrn+TQcM9Pnw9gMziVHRETkQ6zBorB16Cf7t3/FOaBouwD5Ukn5YoVSMDUNC19XAxzfp10zKlkCThVpP7phaytw4SRr3vytQUXi3tIElBwRHN6DvtRqbKsp0pvmxkBHQERE5D0mWETtbF8joviAgNJT1stNNRObPhVweIeIksPa7O/McaBwi4jNnymJ3MVKYN9GwevC5uGfBOxaJ+LgVja3MpFl3w9EsXud6HIqAlmDitBjez0bkXPrKgFbvhRReR4Oq9u0iM9dsqx8DoiIiIIdf80orLUagQM/Cnaf6NvMq3Wp0GlqatVQa524tDR5VjBtqBEuxSLg/Elg2yoBZ44KOLzDu8So7Izyf7V9zcLBwa1KP6TS077dT10NsO4jASVH7L+uRQJzZKeIzZ+7f4+0NCnvqSl3slIgcnK2viUiohDBBCsEyDLw45eBjiI4nTwInD6kPNEHlNojT9SUK6Of7d/kXcl09zoRxhZlG2wupb1TRcq5PXvctxlE8QEBzQ0C9m/y7VesZPTNcbDOk4iIyHNMsELAxUqOuuUp09N8QEmSNn/m+CMhy0pfKXsunFS2c+aouutwqgg2w8m742IFcL5Y5couagZkWXa7RqWqVGkq6WlCGiwkSTnX7p4fvY0kGIgmf/boJQ4iIiJfYoIVAjgppzbajzZ4sd3w7uVnBM36iBRuEW2Gk3fH5s9F7F4vqupP1NxovwmkyX//3YCNn7q3/53fCqitErDvh9BO7A9sFrD5c9FhUz9HKs7ZPy+trf5PMuprgK+X2t5rgch1Nnws4OA2++eGuRcREYUKJlhEl7RPVooPOE8eTP146i8qExebuFsYV1Pgrq8BdnwnoLbKevnR3QL2/iC43IapCaTdbV+UHc4V5ojc7v+hRJKU8w201UieLPQ+kTS2AN8uE/H1UhEXK7zenGolKmtVnVEzMqIaTQ2CJueSiIhIz5hgUVg7sb+tsFdx1rbgd3yf4/fWVSvrF7V7In/2mO12HA3pfnCrgOP7HBc4TbWTe34QUHZawO711uuWHBZw9pjg/yZpoZhZXbJng4Af/iuaBwkBgNoq75OCqtK2f+/4NvBfvRcrBOzbqC6OmvLQSIpMUyJolTASERHZE/hfeSIdO7zD9Uekfe1R+9zj6G7gm3dEVJyzfa+jSZABpW/d1++IOLEfMDYpy1qa7a/b3Kj0yfKm+ZmxRZlU2dkIe9VlwNE9nu8jGJj605Wd1japOLpbX0mKvQcBoe7MsUtTIngw+iIREZFaTLCIvNDUYGdhuyTn6G7lY7Z9jXsft8Y6pRB46CfRXAPmqFi45UulT9b5k27twsrpQ0BZiYCd3zmOc8uXIo7uahvpMJRpNZG0SVCNChmil7f+0pQIxuYQPUAiItIFJlhEXlj/kYiyEt8X1kzJlivu9qWynAvJ1eS4Wmtpth4Wv6Yc2L9ZsJ1/LEC0HowimIr0prne3HqPrPRH1Oq87dso4LSTybzra5RBM1SPpklEROQnTLCIfOhkYeD2bdN00U7BtyGAw4lv+lTA5s9E88AdP34houSwgGN7BBzeKTidCFeWgV3rBBz6Sdu0xbLWytnonLIMHNwmoPyM43UstRqB+ov2Y9VrfyB3E6Xj+4AfVogoPqDN/s8cFXBgs+OfqCO7BDTWC9i9XkRVqboaRw4TT0RE/sAEi8iHDm7T9iPW1KA+oWhoV6A/fcjitVqlQGxZa3X6sGfJSkuT/WSk8jzw7XuC1WARlprqlf3VtptL68R+Acf3CvjxCydzkklKXynTICWSBLdqvhwd6QWVtSHlZ5SRBX/6Rt313b7G8bktPaX8v7FeGfREL3NoqUlGGuuVlS5WAkd2KufC0/vIbRa72fqVqLs+bkREFL6YYIUAPpUNLt42gfN03rPCLSLqqpV/f79cxOEdygAaJpbNEM8cbetfduGk7RD2Jk0NwNoPRGxbbVu4PfCjgNYWAXu/d17w1eL23bRSwHfviV43c2xV+X53r2F1mevC/74fBJw8KGCPi/PlL6b7rK7G8TpVpcpKziboVuP0Ybg/dH27G+fcCa9CICIi0kxEoAMgCjWV5wVIkoxWo+1rJUeA/Zu8K4z+8F/PC+BbvhIw6ca2kmn9Rfvr7dsoIi5JxoDRMnatEyGKMqbOtU2FWhqVWKpKBbiTKlkO+ODJA4L2bzE1v2tpAqLj3H+/HpiaCmrdZNDTu8V0XarOu/tG91avKYfTpoCOnDuhj0SUiIioPSZYRD7wzTv2C4zeJlcA0FDrpGDponBrbBZQVaquBFxfI6C+RllXktxLoJwpPwPrpnWebNbiPZYJidpNlZ1WmhWK7S9HkJbZAzXQQ1OjjMKd3m2juUmbWHSZNRMRUVhiE0GiEHKu2PVw4D993faxb2lynlEc+NG9r4jKC8DeH5SRAB3VjrWvefAov7J4kyfNAo0tgsvBGNTWrLUagf2bPM/MvM0LThUBu9f77qvcWXy7NzbjzNF2x37pT9PgJa74M6dlc2oiIvIHJlhEIaS+RsBPXws+KUja62dlqfgAsG2ViLPHlP5QpqG+W5oE5/3G3OxTJsvAsT32Y9n7g6C6id254wK+Xy643/enndOHgJIjgav6Ktzi/Gu8+KCHG1ZxDzU1OF5p06f+/XlxWrN7CRMsIiLyByZYRCHmYqWAr5dq/9GuPO+8AHtsr+PXrSZkbrfa6cOCw1q3hlplvixLVRdgHj0QsH698pz1oBrH9gB7NthPOC9WCmioFbD5cxGFW5Sh4T1Jk1q8nLS2td2AGVqnaq3+nhRaBs4cc2N9H4V3vli/Q+ATEVFoYx8sItKEs+aGzU3KvEWyDJuakeoyAbvX23/f98uVRHHqXMncX6r9CH7tR7mzHHDjyC7lTf1HyYiMdhz7qSIl9oHj/F/FcWSXCDHCw6Eh/aB9AmjJXmJcf1HAvh8C25mt8kJbs8kr51lObhaggIiIKKwwwQoFLDSQzv34ufMaNVe1Y031QGyC8m+9NfMSBBnOqmEKt7hONg5tFxGb0HZgaibN9bXWVsAgA82Nvk2WvB1a354GB/3/iIiI/IEJFhEFl/YJlp2ES5bhchALu5u22NbZY9okFqbaMZf7vvT/VsnxKJT+tP4jJYacAdpntMYWICJSOd87v/PfsZrmgSMiIvIlJlghQGcP9Ik0d7ECKC4U0GeIrGqSX0/7oGkxjL63WnxcY+Su4gPax1NdptRKuqq51Fr5Wff3V3JYmWi71yAfBERERCGJCRYR6d6udUric+aoMpeXnhzdrU1SJtmZmDqU7dsYmKHl3bX/0iTIPQZKEA0abpiIiEJW4B/XEhGpZC+5aqxz/T5ZBg78qK/ErD1f93UKKz6o1i8/q/02iYgoNDHBCgVsI0hhTE0NUvlZ4PQh7xKYvQEeGS+UuDNvmLEF2PKVYB76vazEveHXjc1A5Xlgzdvu/dw11Co1piaBnOuMiIiCC5sIElHI2/u998+Szh4TkD+eTzO0cO64+mTlzFGgulRAdamApFQJO75171p+975n137jSgFSK5MqIiJyH2uwiIhUOryTBW6/s8hpG1Q0B9VK++SqoRY4utt2HjYiIqL2WINFRKTS8b0Cju8VkN2bNVmBILuYM6vVCBhU/qoVbhEgGoDc4equ5cUKARcrBEitMvoM5fUnIiLHWIMVAvhTT+Rf7I/jP60WSdXJg87P+/mT6rd7qkhA8QEBdTXuxVN/aRLjViNQtF3Axcq212QZKD9jHTMREYUfJlhERKRbh3e0/UyZkhuX3HjqJHmYDJ0sVOYI2/xZW3y71gn46RsR3y7jTysRUThjE0EiIgoJ+34QIYqST/chXKpEa2qwrU0rPcWaTSIiYg0WERGFkD0bRLea6B3dJUB2Iyc7X2y77Nhe9e8nIqLQxwQrBMTEBToCIiL9OLhV/U/bhVMCztlJmhyRZcEmgTuyU0R1mfptEBFRaGOCFQIiIgMdARGRH/hoRJ+WRjfDkIDGeutlW77U789pYz2wZ4P1gBxEROQ7+v1FICIisqCXEVObG4ALJ4Onv9XBrQLOnRDw0zfBEzMRUTBjgkVERMHBhxnWxUqg/Ky6dWurXa/TvobLG031QKMXkyy3NCn/b7YzMEe4qq1S+s5Jvh0ThYjCFEcRJCKisGcabv3yWyWPh2631FSvXf/Y9R8rsV05z7NsQNZL1Z+ObPpUOadRMRK69AlwMEQUcliDRUREQcFneYJFxY7UCmxf4/uaHlkCdq0VcPqQ/dcb64DCLYJVTdiBzQKTJY01aVjTSERkwhosIiKiSxrrgYuVLhIsFUmOaeh3WW6bO8tSVakyguGFUwIkSUK3ftav79kgoKpUQH1N27LThwV0zJGRnuV6/0REFDiswSIiIrqkQmU/LFeKCwVUnAO+Xiri7HHb1y1rouwNK19/Ufl/Q7u+V5JRm/iIiMh3mGAREVFQ8NUgDZYJTtF2bX4WK84C+zYq8Zr+DwBHdgnYuFKwGVzBnaZ/zY1AyRHA2KLUdJ0/qf69xmb16xIRkWeYYBEREbnhvIoh2luaBTTW2a53bI+AumoB1aXWy7d+JaDqgu12Gmqt/66pELDzOwH7N4nY9Kky/PrudSIqz6uLfctXHEnQkizzfJBnig8A370voKkh0JGQHoVlgrV3715Mnz7d/N+AAQNQWFgY6LCIiCgInD3mZqFcRe1UdZmAravafpKbG5V9yJL1vo7tEVBdpiyzTOCO71MXU1214/XqqoGda637fXmqplypYfMnWbKuCbxYqRxP+yRVK5LU1tdOjyrOAbvXCx5fB2MLR6B0pmi7CGOzgDNHfb+vVqNv7jVjC/DTN+7VgpM6YZlg5efnY+XKlVi5ciX+8Y9/oFOnTujfv3+gwyIiohAkywIuVlovq6mwn+h4WqBtblT+31gHHPpJMP+tbNT1+yUJ2Py5gNJTAn74r4jyM9avN9apj62qFPjxCxFbvvS8dkhqBS6cdJ2kWR7nhk8EbPq0bZ87vlGO58CPbctamoFNn2lTa/XNO0pzz9LTwI9f6K8mY/saEeeLBZwqcv+9LU3Ad++J2LYqtGr4Guvgl+u041sBO75z79zV18DmewJQPgvfviti8+faX4szR4DyM0otOGkr7M/oqlWrcNVVVwU6DCIiCmGniqwLR6Wn7BeWTh20X8hypaZc2d7OtQJO7Bew4WP3CmO71wmQWtve89M3bcWDM8eADZ+IOLzDdpulp5WaL0vVZcr/ndWWuXJkl4Bd60Sr5Ki9o7uBdR+KOHdC+bupQbDaZ/OlCZYt+52VHAZqLUaJFARvqmgE1F8UsPM7ETXlAo7t0Wcy0mp0Py7TPVhVqs9j8tSGT0Ss/8j3Rd+yEgFlp907dz/8VzTPx2fJ9BChtkr7a8GJtn1HlwnWtm3bcO+992L8+PHIzc3F2rVrbdZZtmwZpkyZgvz8fNx8883Ys2ePR/tatWoVrr76am9DJiIi8trBbfYLWWqZkh1JUubQkiV1heRSO4XB3esFHNkl4MwR5bUT+63Xqb8I7PxOxMaVbfEe2SWgaJt78bcagaLt1rV85ZdGcyw91basfQ3a0d3Kfk4VCeZRF71x+lBbcuhKUDWd8yTW0MqrfMreNAxEupwHq76+Hrm5uZg5cyYeeughm9e//PJLLFy4EAsWLMCgQYOwZMkS3H333Vi1ahVSU1MBANOnT7e77eXLl8NgMAAASkpKUFFRgYKCAt8dDBERhb3mBuDgNt+WxNoX+o3NcNhMr64GiE0ARCe50Pli5b2pnaw3LEtKctViZ0TC9rU4tVXKfgxOShvFhUDxAQHFB4Ar59nPBs4eA/b+IGLk1RKSM6xfqzwv4IcVnp1bZZALGbVVwIEflZNx5TxtH+tXXgDik4CoGG22V10GHN0tYMAYGTFx2myTPBdUybYfNdQCFyuAjt0CHUlg6DLBmjRpEiZNmuTw9cWLF2P27NmYNWsWAGDBggVYt24dVqxYgbvuugsAsHLlSpf7Wb16tSbNA0UxsI8vnP1AEhFR4F1w0CRQS/s3CVa1Fc2NAprqbfdbcU7A9jUCUjJldOwKxCU6367lE3pRFLB/i1Jr1DW3bWeNdQJ22TY2waZPRSSlyRh7vWlbAs6eaIUhVjAnXc3mPjGC+ffMMmpRFLD3B2XJsd0Chl/pPN6WRgEni6wHCDH9TrevbRAE5TXLZoRqftPtFapN2wKAkweVWriKc0BLk4CoGBlTbnG5WStHdwMJyUBmjvK3JCn72LZKqaE8tB0YfJmKDQnul1Pqqtr+XVspICnNrbf7hOkYHB2LLCkPDuI7uK5VMm3jwimlCWzBeEA0eB6Xo3KYJ+VDqVXA5s+Bbv2AnP6AYLFtrcub7T/bWvp+ubK90dfKNg9F/MnVfeMrukywnGlubsb+/ftx3333mZeJooixY8di165dbm1r1apV+MMf/uBVPBERItLSErzahrca62UA9QGNgYiIAuvMUesCxPY19gsUhT+KAGRUnhdUDe8eGWUAoNTqpKUl4FSRMvuxZb+y/RsNqKmwX/NTUy5g82cCWpqB/sMi8dO6RqR3FnHVrbEAgJiYJgBG8/YBwBDRAEBCq1FA1dkoAEoGFBkZgbQ0U1VQu1mYL9n8hYjGurYMKCLSgOTkGLQ0AXFxRvO2ACAuLgppaVEwNrQCaLSKwRlZtv3djYmJRFpaNABg1Y/WsTU3CkhLi3e5XZP6ixIO71Qyz9t+HQ9ji4wPXq5Hdk8DJKkVACAKlufCHiWG2FjlGN2xaktb/LHRsUhLM+DC6Vbs3NCMcddGI6GD/5/syrKMmkoJyclxECwyg8LtLUjrJOLUYSMO7jBi+JQo5A6JdLAV5bhM13jVW8rfPftHo0d/d4vEynvj4qKRlta2v6aGtntDbfmwuMgIQOk0WFsWjbrqZhRuAYaOj0ddpASgwa3tqXU+rhlAi6bbrquRcKLQaN6uATFIS/M83WhtlSFLQESkdwlSSor6z58Wgi7BqqysRGtrK9LT062Wp6Wlobi4WPV2zpw5g4qKCuTn53sVj9EooaYmsEMHNdUDbDBNRERq1NW416appaUVpt+Y8vJa2Pu9KT/nvFlddbmyz5/WKclN2VkJ5eW1kCSgsRHttq/0yzIt+3F1W0LU3GI0r+Pod88yuQIAY0srPv1PHeprBPTIl63eV1/fjNLSZtRU28ZgiqOmHEjuaP20Xxky23r/jY0tuHC+BRXn7MdmuV1XlKHy2+KpqVD+LjnWal6nudnoYpvK+xsamnHqRDPOHgO65zlvrln0Ey7Nx9YWf01NAyLLga8/UJZtWl2PYZerPhTNHNsj4NAOIHc40GOgco1rKoAd6021k8q1PbKvCendmszvazUCh3cCnXsCttdY+bumqhHl5fb3W7QdSEwBsnq1f0V5b319E8rLlf0VFwKFW9rOndpr/oPFCIG1tU1WcSrTDLT9XVcD7NsI9BsBdEi33ZY76i3Kj+7cn86s+8h6ConaWsfnVo1vlgHGFgHTbvesLaYoCkhJiUdlZR0kyfv2nElJsYiMdF3dGXQJliOyLFs90XAlKysL33zzjSb71uKCebd/gAkWERH5gtRWpkdrq3WC4o3WVhnfvidAshjlrrlJhiGibR6w9mTZ8jdXfRz1Ncq67Uc8PLpbwNHdwODJknl7lr/pu9cLuHBKwIDRErr0bYtBaYppvX9ZBvZtcjxPWvuygiwDx/YAGV1g0wSv1eJ3XZJkuwmd9bmwxzSXGrDlK6CpXkBrq4zeg2VIrUrTs/bFpuN7bWumJFm2KmdIrerLPaUlQGy80tTRXaZmmKYYiw8qMZwqkpEzQHmx2SI5b3ujdXzH9wMn9os4sb9tlfb3UNsxWmuoBY7vU85Jpx7tV7h0fi3eW7jF+vypLx+2HYMstX3GJKnduZdk7NsooPK8gG1rZEy5xbvyp2xxH7ePtaZc6TcYE2+97GIVkG2TbLZprLM+B2UlQGaO8ziNLUCEg0pHY4toNz53KefSf+X1oOu9k5KSAoPBgLIy66F+KioqbGq1wgX7VxIRka9UnresutFuu7IMq+QKaJt7qdFO3zGt92/pYoX95aa+c+Vnlf9XnAO+Xiriwin7658/oX6f54uVkRB//EIpijU1KKMwNjcC546r344apr54DReVvnrfLBOxa52HibKDa3C+GPjp67aJjU/sB3Z+K2LTp+4VNVualVqgr5eK2PKVbYz1Fy0mT1ZxCPb6IaoViAEsXO2y9dIDD0lpVYvGOuV8nTkKbF3leD42qRU4sFlA5YW2ZZafs4Za4MCPAprqlYTnxy9EbPjE+tr9+IWI/RtFmwcVJvbmrSs54vz8l59VPvdHdztdLegEXYIVFRWFvLw8bNq0ybxMkiRs3rwZgwcPDlxggcQMi4iIQoSzYeV99XNn2aQJUAqsu9Za1Cpc2rFpJMi9G21jPFUkQJKcFyaP71OSNFm2niS5uRFY/5GIY3sE7N8soLqsbTsXK4HNn6srrsmyMnKjo8Sg8kJbgbf0lIALJ+2PBulM+VmlkH+y3Zxtu9eLKD+rDO0PAId+aov5/Ek7sUqmWjillqP1UsJwdJdg7t9Xc+k8VF2wTpS2rVb+3Wi/G57bWtpaFKKqVLn+ljW3etFY13ZOTJd47w/K+dq3UUTVBQF7v1emaDh92Hqeq5IjwOnDAratarsuJwvbzumutQJOH1LuP5cTfDfZLpMkmK+9O0zX+uhuEbvXu953sNBlE8G6ujqcPNn2aTx9+jQKCwuRnp6OjIwM3HHHHXj88ceRl5eHgoICLFmyBI2NjZgxY0YAow4cDhFKRET+YK9GwWMe/HbJHhR61ezG8in7sb22E0ObmCYpbl/zpkZNBXB4R1vhNj27LbKfvmnbXukpweq1oyoKrc2NSpJQckSZaDp3uP0+ca3tCq+71olI7ihj5DR3LoaATSuBhlolrvbD2p8sFNClj/X2dq8TMekmCdHKuCaoKgW2fqWci/gOMuqqBWTmyBg0SbZbA7N1lXWCebFCQEuTjH0/tC1XhtxvS9TccXiHiLTOEooLBXMTz/gOMtKzXL9XeSDg+PyVngbikpSh+tWwTPYrzgPbV7cd454Nlk0JBexeD5s54CrOCdjypZKQypKElEzlfaZz70jDpWS1sd66YlBpEuq4CR8AVJ4Htq32vs7mfLGAxFQZPfOV5ryWUxs01CpTPgQLXSZY+/btw7x588x/P/PMMwCABx98EA899BCuueYaVFRU4OWXX0ZpaSn69++PN954wzwHVrhhgkVERP5QU65dgvXNMvcLZK4Ks/Y0uzkO1ZGdvmncU3nO+u+yEotaqgrr82pZo6JmiP91H1rHfMaiH5hlLUZLs+22qi64f05NyRWglEGM7WrB7E3YbGyGuZB/bG/b++uqlX8r867ZxnHyoP0YCrfaPy8XK90/HgDmppomB7eKyOrVtp3mRvtzmV046Xh/p4ra+mWpnV/Nci65g1usj7F97e75YgHRcbb7NtX21VUrTQdrqwTUVqnavcJiN6bPae4Ix/EXF2r3vdBqFNDUIGPjShGioe3Yvl8uaj5HnS/pMsEaNWoUioqKnK4zd+5czJ07108RBafueTJO7OfgF0REFDqaGtybtLd9879AKdquPnGzbCLokAycPa7UWLRnmbA56l+mla+XapeQ2ntgfHCr/e2fO+75da2tUmrRXLGc+sCTJoPtB72QZddzdFmqrXK9srM1Th4UkJRme1IbapXJuy0ZLyXfrS3Avh9st1q0zfPr3L726fhe4PBOEUMul+z2Zzy8wzSgij4+u57QZYJF7nFUZdqpOxMsIiIKLeeLPX9i3mKn70iwKj8rmAffcMZeAtbe2vcF9B6iXXMYpTaqHUGpjYqOhcMKJkeDJ3iq4rz95p7uDryhhVYjsOETAZ26A/1HtZ0ArY9Zje1rBKtaSEsNtcKloeEdO/CjgFHTZESonF6tfbPNw5dqiXd+a3sd6msc3D9BJugGuSBbggD0KrD9tnLWXpaIiCgYHdkpoOGiZwUwqxERyaylWbCpbTExtgCbP3PvvFk2fzSRJaU2avd60e7rgGe1RM5s16BfkD2HfrKO39jiun9idTnQ0iRYJXwNtcDGld7FaG94eUv2mvU6Sq7UqqsS8N37IupqlFo5pZmkNto3Nw1WTLBCVL+REuJUdqgkIiIKFsYW/ydJVRfCt7/z2WPCpX5N3vFnrVHJYe1rK+uqlQTwzFHYtA767j0R1U5GvwRgVWu35UsBjXXa1F45mjPOH7Z+JeBkofr1ZRnY+V14PORgE8FQ0e5+7dYvMGEQERGFmuZGAV8vDY+CYSC5qo1Ra/9mESeLtM2If/pGNI946AnLIeWrywRs+MSzwTj0pKVJQNF21+ejoVaZ1LtjNxmlp13NixUanzMmWERERERklz9r7gq3CIhL1GZb7Udm1IKnyRUA7NtorwYvNJIJV3ZvECAZhZDoW6UWmwgSERERkV2lKoaJ14ovkiIKPE/mjQt2TLBCRXDXMhMRERGFVS0HhS4mWERERERERBphghWCJt4YPDNdExERERGFEiZYISgmLtAREBERERGFJyZYREREREREGmGCRUREREREpBEmWERERERERBphghUqOKopEREREVHAMcEiIiIiIiLSiFsJVnNzM/75z3/i4MGDvoqHiIiIiIjISmtroCNQz60EKyoqCv/6179QU1Pjq3iIiIiIiIisyEE0zavbTQQLCgqwf/9+X8RCRERERERkSw50AOpFuPuG3/zmN3jssccQGRmJSZMmIS0tDYJgPcJCbGysZgESEREREREFC7cTrJtvvhkA8Mwzz+DZZ5+1u05hYaF3UREREREREQUhtxOsv/zlLzY1VqQDHlSbJqXJqCn3zbUURBmyxPuEiIiIiMKL2wnWzJkzfREHBcDoa2WseVubJMgyWUvPltHcBNSUabJpIiIiIqKg4fE8WEeOHMF///tf/Otf/0JpaSkAoLi4GLW1tZoFR/7XIcOzHoTRcRoHQkRERER0SRCNceF+DVZdXR2efPJJrF69GhEREWhtbcWECROQkZGBv/71r8jKysITTzzhi1jJGY1a43VIA6pLtdmWPV36yjh9iE0HiYiIiCg0uV2D9dxzz2Hnzp146623sGPHDshyWz45adIkfP/995oGSNpIyfRx3q9y832GBtPzByIiIiIi97idYK1ZswaPPfYYRo8eDYPBYPVaVlYWSkpKNAuOtNN/lOeJzZRbJEy9rW12t+FXBdFMb0REREREfuR2gtXU1ITk5GS7r9XV1dkkXRT8IqIA0eKypmbaWSkIW/0lJLM2jYiIiIi05XaClZ+fj5UrV9p9bfXq1RgyZIjXQZE+JaXJiEuyn5QIDv/QLw7MQURERERac3uQi0ceeQR33HEHbr/9dkybNg2CIGD9+vV46623sHr1arzzzju+iJN0YNQ1oVXjw+nciIiIiEhrbtdgDR8+HG+99Raam5vx5z//GbIs45VXXsGpU6ewePFiFBQU+CJO8pIWyYQgqNuOo1XiEvWRoA0cp/Qh61mgj3iI9CAymp8HIiLSsSD6mXK7BgsAhg0bhnfffReNjY2orq5GUlISYmNjtY6NgkhKJxkXTjnPvkZMk3Xx4cjqBXTuKbEGi8hCUipQfjbQURARETkQROU2t2uwNm/ejIaGBgBATEwMMjMzmVwFCdHgOruJjlOXAcVfGiBi+JUSRl0joWNX5+sPvVxCtI5uEyZXREREROQLbtdg3XnnnTAYDOjfvz+GDx+OYcOGYdiwYUhJSfFFfORnOf2BwzuUf0fFyOiRbz/hGnW1jPqLMpJSlb8b65xvNz3b/vLLb5OwfbWA6jLfZjyGCBmtRuf7iIiSYWzWLo7IaBktTczkiIiIiMKJ2wnWpk2bsH37dvz000/YunUr3n77bUiShJ49e2LYsGEYPnw4fvazn/kiVvKBhGQZtVVtSYBoAPqPllBxVkDBRNlhTU9EJMzJlT2JyUBNmev9Gwy+r00aMFrCuRMCKs45X69jV+DMUe32m5kDnD6k3faIiIiISP/cbiKYkpKCK664Ar/97W/xySefYNu2bXj11VeRmpqKDz/8EE888YQv4iQfGXm1bQ1V177AoEmOkys1cofbr/kyRLq3naxe3nfa6tLX9TrZvWVdNWEkIiIiojblJYGOQD2PBrmoq6vDzp07zTVZe/bsQXR0NC677DIMGzZM6xhJI5HRQFO99bIINxMeVQRlcmJ7RBFI6yyj/Ky67C2ji4wzR33fzK5zTxnlZ9icj8IYb38iItKx5qZAR6Ce2wnWzJkzUVRUhLS0NAwfPhzTpk3D73//e+Tm5kLgyAG6NvRyGXs2AHXV2l8n2Y2KJtGg+e7N8sZK2L/J7YpZpHYCys9oHIwORkwkIiIiCgXBlGa4XRItKipCREQEBg8ejCFDhmDo0KFMroJEYgoweLLvS/2BvBPiEn27/XHTJWT3ljFgjOTbHRERERFRUHK7Bmv79u3m5oFr1qzBCy+8gMjISAwdOhTDhw/HiBEjMHjwYB+ESnrmVX4dRLl5fAcgb6ySpB7YHOBgdKBDuuzzESCJiIiIgonbCVZsbCzGjh2LsWPHAgBaWlqwefNm/Pvf/8YLL7wAQRBQWFioeaAUfDJzZJwvZuE7lGR0kVF6mteUiIiIyBGPBrmoqKjA9u3bzf8VFRVBkiT06dOHg1zonR/7BXnaXC8yRkZLo+NCfHZvGSVHHLyup7K/i1j6DpdwaLv7/cUCacgUGRdOyti1LrjiDjeCIEOW9fRhICIi8o47/f0Dze0E66qrrsLJkyfNkw2PGjUKDzzwAIYNG4bk5GQfhEjhZOTVEpobgV1rHRcOe+Q7TrAEAN3zZJzYH/jCZddcGacPOY6j+wDg0Hb/xCKIMmRJm3PSsZsmmyHSTM4AGcUHAv+ZJyIiAjxIsK699lpzP6vYWE4cRHZ4XM6RkZwBlHkzz4EA9Bkqo3uejHUfulnLonH5LNLBUPWBYDAARp2NyzHyagktTcDO71gbRt7pNYgJFhFRqBODqLjgdoL18MMP+yIO8pPYBKX5UFp2oCPxHUEAomICHUV48Ka2PjlDszA0l9VLRuUFoOFiGBXag6jpBRERhZ/E1EBHoJ5HfbBOnTqFN954Azt27EBVVRWSk5MxbNgw3HXXXejatavWMZKGRAMw9TbZL32VOveUcXyfgB4DPS+5RcdpGJAfdenL0mogJaTIqK307iaP8OjbUb2EZBm1VWGUwBEREYUJtyvb9u3bh+nTp2PNmjUYOHAgbrjhBgwcOBBr1qzBDTfcgP379/siTtKQIPpnsraEZGDqXAl9hnqebCRnAL0HO27b1jVXRlJ62/YTkj3eFdKztEmKuvSVMWC099vq0kfZRmaOBnGFWTk+GA63c08m4URERKHI7We0ixYtwoABA/Dvf//bqg9WQ0MD7rnnHixatAhvv/22pkGSf8QmaF/g06K9bKcewJFd1sv6j5JwcJuAbv1lVJcB+34Q0GuQhIhI+9tQc2QpmcD4GRJ+WGE/6Kxe6s6PQaOajy59ZfQdLqPiLFQPdy8aZEitWqUXMlymKnrNEXSaYcV3kFFXrQQXTG3JiYiIAs0flQNacfsnfu/evbj77rttBriIjY3FnXfeiT179mgWHPlXcsdAR6D+k9M1V2nqGJ8EZPUELrtZQq9B3kcQG+/4tZRM/yZYABwmjI70HaY+4/FFQq0XwfQlTERERKHF7QQrOjoaVVVVdl+rrq5GdHS0tzFREPImqfC0MGz5Pj0MatGpu4xO3WV0HxC4xMXgRkKWkqkMaU8UaBGRvA+JiCh0uJ1gXXbZZfi///s/bN9uPYHP9u3b8cILL2Dy5MmaBUfBI9Iirw7X2oPkjjIKJsqIuDQ8e3QckJ4tI6OLZ4XHxBTX69jUQrm5q45OxqTpmuvetog8NewKGYMmeTGPAPMzIiLSEbfrHX7729/i/vvvx9y5c5GWloa0tDRUVFSgvLwcQ4YMwRNPPOGLOIn8bviVErav8byjjCAAQy9XSn6yLOPrpe5tSzCtbi9hFWSMvlZGYgrw9VLXGW16FlBVKqOxTn3227mnjFNFQZotW4QtCDJk2fY4ktJk1JQH7vjcfRCR1llG+dkgvR4uREYDHdIDHQUREZE2VCdYjY2NWL9+PUpKSjBnzhzMnTsXJ06cQGlpKTIyMjBo0CCMHz/el7FSmDCNBBgdp91j6aRUoPKcihUtyq+pnTTbvU1hOj7Z82OLS5IxbroMQQBklZsxRAITZ8lY83ZbIF36yoCdxCOQcodLKNru/egPcQlATZnybzECaG3xepPasDjdWb2B8ydlVJ53fQ2S0mQUTJKx9n3fXa/MnNBN4IiIiPxJVYJ16tQp3H777SgpKTEvS0hIwIsvvogJEyb4LDgKTzHxymh+WvariolXMSIelERo8GUSInzclXDUNDcSLDurulv70X71y25Wzm/VBfe240udusuaDbSSkinj3Al9JwsRkcDwK2VVNZAdu8mIjPJtPNl9gA4ZEjZ/FnzDG7KFIBER6YmqX9L//d//hSiKWLZsGXbv3o0vvvgC/fv3x/z5830cHmlG32VNG3GJ7o+gp5WO3YDUTN/uI8KLwnJ6tvf7Fw3K/4XgK0urY3G/W04YbJpbLGD8tPv4Du6/RxDU9fvzpR75Mrr1Z7pERETBTVXxaufOnfjlL3+JYcOGITo6Gr169cLTTz+NM2fO4MIFHT0CJ7IwbrqE8TO86DjvJp+NZNguOe5rMXGzIADDpnp+jMkZbf+OjtV3wXbgOM+O07LAntxR38eolRQfPyDwlT5DZPQbER7XiIiIQpeqBKu0tBRdu1oPN9atWzfIsoyysjKfBEbkiNrmcfEdlJowX0vPltGzQEZmN9/vC2irfTJJy/J8W4IAJCYHR/VmVi/161oeUaBqQgMtKkZJVOISwyBhCYNDJCKi4BGqDYSI/CYpDeg9WA7a5na+KJv2Huy/mkNyzlf35ehrmdUQEZEfBcfzYABujCJ49913w2Aw2Cy//fbbbZZv3rzZ+8iIgoXOypmZOTLOF3vwLaTRF1dcooyeBcCRXdpsb9wNEkQXScKIqyRsW+06kxAtv/GC6Itaj7Sc7y6c5s5LSJZRWxVGB0xEFIZUJVgPPvigr+MgX/NjEhBOhSW9EUVg0CTr4dj9bdwN9m+21E4yKs65H1d8kut1nPU5srwfI8O0uWCoczZdQXyyjDo9JTQ6CoWIiHyDCRYFXpgUOLrnyTix3zcHO/gyCWePC8jMcbCCH89x+wQ7LkmGsRkYPFnGd+/5KRCL3Rjcnk6dXElM0Vm1rRNjrpPxzTth8iVDRBTCgumbnEUPIj+JjFI3F5cnOnZT5krSo3HTZUC27gs06LLw7KPVuYeMI7sE5AzQ57VSS29Jq7sDmQybKuGnb4K00yQREemezn4miQgAhl0R/AnIlFskQLhUo9Uur/T1PGN61WMgkJ4tISHA802Z9CyQcb4Y6DtM+4QvpZOMSg+ahHpCNACTZ0tY+4G6pMmbkTeJiIhc4SO8ENHx0ij6nXs4KCgFU72qD3TuAUREyegzVPvExRd1EWmdfbBRNwiCuqPqmS8j1sEw4BFR4TtEuiOCqIw66WrQDq05mistLlHGuOkyMrpov8/EZO236UxktH/3R0RE5AgTrBDRIR2YdV8cCiYGOhJ9iooBptwio8fAwMXgLGWJiPJxkzE3N99zkLo3xCQAE2bIyLs0CXC3fvpr+uZJRJ0cPajwoZgE3+0zEDU23frJEMTA3w/B+mypc8/Anzt3pXQKvpiJKIgE0Rc6E6wQEhMnBOUIfsESsqPaGC3itzMDgv9oUCbK7gWMnyEhd0TwF7Auu1lCup8SkqD7vJpqNlXEHZcETL0t+O8HUm/IZF5vIiKACRaFOUOEjMgY14WCuCTZ3AzTF+I6+G7bANzOAlWvbnHq4hK9Txh8MniCm61mo2J8EIMK0QHarxqR0TIGtxuYxNnQ6CZq74dAJ5oTbwz+Po9ERKQfHOSCzDQr5ATRU/nJt6h74tp3mGw1Cp4nnJ1fAUBKpozK8/45eVaxONilZY1daifZcf8+DcV3AHrky0jOkLHzu+B//hObICMyGqgpd31dRTdqMWMTZDTU+u+DNvpaGbEJftudtlScppg434fhSESkDGNLEH1pEhEFSFQQ9bUN/hIMkRdE0fsBB9SmHV36AskdZRRMCtzT8kGTJOSOkFTVFCUkA32HSxh+pYThV8rI7mO7jtY1ToIA9Bni/aALlsXVxEsj9kXHyf6cbxsAMGGmjMwc53s1Da/vbLLk9gZPlpGQHB7NsZLSQvs4L7vZ/vEFulaPiEhvogP4MMxdYZtgvfHGG7juuutw3XXX4dtvvw10OCGF5QL7IqOAkdNkdLKYDHj4lRISkmX0H+WfQmRmDpDTX/363QcAqZ1slw+5XEKvwRLifd20UQOJqcDoayWM/Zmb59hPN/LAcUrzu5756uOLjFYmrlZDTVM+CgxDhOxWzaU7eg1y/0FO/gQ2lSQifUrJDK4fs7BsIlhUVITVq1dj+fLlaG5uxh133IGJEyciMpJjSpN/pXaC+wV/rdnZvauIMrKV/3SrXXKUlHbpH+6caj9dlohIZaJoNcbdIKGhVmnSpuefGrXJH/lOejZwdLd77+ncA9j7vW/iISIKJ2FZg3X06FEMHjwYUVFRSEhIQHZ2Nnbs2BHosEIHq7A0FYpNhXz11D7UxSfBbyMcuiMhRUZO/7akKjHFeYLVb6S6mpJR14RHjUp6trYJ6fCrJI+/N3JHhMc5JyLyJV0mWNu2bcO9996L8ePHIzc3F2vXrrVZZ9myZZgyZQry8/Nx8803Y8+ePaq336dPH2zZsgW1tbUoLy/Hjh07cO7cOS0PgSio+SqnG3O90qfLJ6MFquHOgWl1EjQoO/sqyfYqNIs3j71edmuI/q657RY4OL5gaIKqhVSN549KdaM/X3sB+2wSEYUQXX6V1tfXIzc3FzNnzsRDDz1k8/qXX36JhQsXYsGCBRg0aBCWLFmCu+++G6tWrUJqaioAYPr06Xa3vXz5cvTp0wezZ8/G3LlzkZqaisGDByMiQpenIqh07inj7DEBHbuyeVBQ8WMNmWnAiYDR8NacMFPC98v984yqS1+/7MZvQrFWVi2/HbpOz3GfITIO79RpcEREGtFlVjFp0iRMmjTJ4euLFy/G7NmzMWvWLADAggULsG7dOqxYsQJ33XUXAGDlypVO93HbbbfhtttuAwDcf//96NZNZScIO0Qx8D8WphgcxSKKgsvR8gTBu2MpGA/0HiwjPsn5NiwLV6IoIDJK+bchQra7//aL1ByL1kTB8T69PW9292exvfaFUU/25ShGURTsJh2Ck+P1GWcxutB+HcHipFmdS4tjyuoFVJc53parvbq6z03ban+/OzPqGhlbvrRep88QGdExrj8Xliz3KTjZr7P72mo902fOYp5hQbR/jnHpNWfbbb++ozjanz+127NkMLi+pwL2HX7pnrdXa+RNEiqKAjqkAZ26yzh3Qv2G1J5vZ+93RQjn7JqIPOZpWctV+dhXdJlgOdPc3Iz9+/fjvvvuMy8TRRFjx47Frl27VG+noqICqampOHDgAEpLS5Gfn+9RPBERItLS9DNBTEpKfLsldQCA5OQ4JKU4KvEo6yR2iERampeTDGS4XqVT12ZcONWC9M4i0tJiMXaahC3fNGPQ2Eikptl2zokySAAazH8np8QhIclfpf9L5yYxBmlp7T8uymuxsVFIS4vyek+RkQ0AlP4PlvdUQ5URQJP5b3X3W53VXzExzq5tPQDAYFGCjo3T5pjUUWKNjopAWlqMzXLr47U+LhNlnbbX0jJiYDpnlu9vuth2LoeMi0fhlnoH2wIMEW3XQ80+Ha1zLq4ZQIudY7G3PnBgUz0uVrVlvXEOrkX1uRYAzXa3Ex0dCVFsBSDDYBCRlhZnN9aEhGikpbUf3Md2vbbPnPJaRKQBSYlRABrbHVfdpe1afl5st9f+3KWkxCEu0fIzrbyWmhoPg6ERzq5DRKTt/p3ty94yNdfSkfHXRePgTy0oO6uu71JEhAGm4xEFAWlp8ShPsL2WMTGRAIxux5OUqmwTAC6fBSx7Qf1xpaUloNJOLGqlpsbD9H3iSGxsJEyfByIitSIjDUhLi/X4/bblY98KugSrsrISra2tSE9Pt1qelpaG4uJi1du57777cPHiRSQmJuK5557zOB6jUUJNTYPrFX1MFAWkpMSjsrIOkmRZJaFk7FVV9Whx8Ps/5nrgZCGQ3bcF5eW+/+Hr1AuQRSCjSyvKy2sBAAUTARlGlJfbrl9fA1jWJ1RV1qPJb7/Pyn4vXmy0E5vyWkNDM8rLPSuQWGppadum6bwo+25b3v41x6yf1DQ22r+2yhMdZV1Jksz/bqjX5pjUUfbZ1Gxsd2y258JRvZKyjvJaepaMmKRGu++vqW7bRkVFnd3tmdZvNTreX/t9Olunvt7RsdgXFQegqm279Q6uRW2t4/iamlogScrrra2Sw1hra5tQXt7UbqntetafOQFGYytqLjaaX287LuHSdi0/L8qyvLEy9m+yPA9t+6msqkeD1SG2XSOji+sgy7LN/i3ZO/b2y9RcS0cS0huR0gkoO6vu/UZjq3lfptjr6mxjb2pqURVTv5EyDm5tWy+7j6TqM2NPeXkt6pzcV644+kxZamhgckVE7mtpaVVZ/rHmuHzsmaSkWERGuh6pK+gSLEdkWXar6cEHH3yg2b61uGBakSTZboKlLLf/nsQUIG+s6f2+jc8UUuee6venHE7btXV2LNpzdv5MhSRt7oGufYHK8wJ6DZKs9iXbOX7XrD8LzmO8dBxW6/v/HMMmxrZzb7NuO8o6yms9CmSre8by/bLNctvtmdaXXRQUHb2//Tq2+3Qubyyw4eO27Tq6FpbHGJcoo9cgGXt/EC+9p2092Ums9rdt/5yYEjbT9mWLbbYd16XXrT4vyrLs3m0JVvt4bD9fzq+Rvficxd5+ub39e5pUtL/GAJCWJaP8jLrttT+3JmrnL0vOsI7d9pqqPy5Jkm2+b90htbo+j7Ls+bkm1zK6yCg9Hbjzm9JJRuU5Xl/SXttvmWdsy8e+pctRBJ1JSUmBwWBAWZl154mKigqbWi0ComKVmyna81pV8pNOPYDLbpbQa5B22+yaq1z/zj0cf6mMvCIagiAjb4x+HhQASp+82AR9xeQPMR7MVD9+hmx+aBGMvCmO6fEO6TPE+6gElb/O5jneiICA566JyYHdP5FeBF2CFRUVhby8PGzatMm8TJIkbN68GYMHDw5cYDo1caaMy26WEBFCcyiHch/pqBjX67gjd7iMybdISHEybHPnHAOunKdMTKonk2+RMX6GHovP9vUaFA7zB1nUlGi41Ugvu376Q5+hPri+Ovwuy+wGRMW4f3VjE1W+J0DHHBMfPN8lgTLxRknzKQN8ISlV/zES6TLBqqurQ2FhIQoLCwEAp0+fRmFhIUpLSwEAd9xxB95//32sWLECR48exfz589HY2IgZM2YEMmxdEg3aF9oDKauXjGgPnvCHLQHmURqdrqbDgp4o6jMue3IGyOiZr9QYZoTBNAVaXBelaRvQrb8c9hNPJyQHOoI2kdHAZTe7fw+Pny7rsjbRLEi+S+zp0teNM+vFRYiJA7r20/VVVATxtSTPBdtl12UfrH379mHevHnmv5955hkAwIMPPoiHHnoI11xzDSoqKvDyyy+jtLQU/fv3xxtvvGGeA4tCS2yCMtxwh3QZOQMCHQ3pXaC+hAUR6D9KxslCoPSUhlH48IDUFqV8kegOnizjwinvmzZqFVpEpAxji3YHGhMvo7FO3fZSO2m224BR26QxUIKtcBa0eKLJR4Ig9beiywRr1KhRKCoqcrrO3LlzMXfuXD9FRIEkCEDBRB1/tHQcGlkLpUuVfKnLaVKavo9q9LUSpFbb5VExQJc+3m9fq8mrI6MBo5YD3HlZ0LSX1OYMkFF8gCVYT4RLLam9b4MR0yRsW6UuA0510pyciNTT+TMnIgoInZbhRl4tIbu384RCb+mGr+KJ7wBMnCVh5DR1eyiYEJg+YklpQHJH320/voPvtt0hw7d3U+4Ix9vvkS8jIbnt9Zg4GbnD9XZ3t6MmPBfreDuwTX6A7nPdsHf63Dil/u4PKRp0fk+Tbui0WOIQEywib/nxUx+Oo+pZSs5Q5lPyVISHdfZ9h1sX2toXCgL1dDwm3sm+292XnXp4v7/OPZXjTs8Krvtw/AzJHLs7UhwkhvHJ2hx/kpNW7TFxwNifhd9ImkOnysju4/kxd9bgPrdn0CRvErfwuoZqdEiXMeZ6CWIYlUITU3gfeCNY+mSbhNGtTRT8xv6MX9DuMERan6/kjkD3PBlDp6ovLBkiZHRv1/fPVGs07AoJ6dkyuueFx3UZMEbG8Csl5OQhqMqMcYneT1WRnNH27yw1yVoQnR89iU+C7qaMmHijhMwc59NdOBOT4N3+vS5Yqnh/Zo5/z3lMvHbNe4NFYpANE6C3hztRQTbdEBMsoiBi0GWvSf0RBGDKHAmT242GJghA32Ey0rM833aXvrJ57qG0zsDQy2WrkRpDbZTL5Iy2kTsNBmVABr89dfbw992TfmlxSc5ft5rqQF/lDt1QOzlyQHiRpJjmpkvxdAhzP52X6DjPd6Tra9eOr2sy9N6v1V9GXs3z4A0mWETe0uF3UGKKDEGUg65KXUsRkd413Yu4lDSpGebeUsduSpPCsT8Ljb4gI6/W+X1kJzY1T4pNk3CbGOzcK6an+sHW789S78HW92HOAN9Fq/eRBEPd0Cmy/URJzzdokEvrHJonVxBlr2v9wx2fhxOFoNHXKT+0ui4Y61zeGBlF24DeQ9z7ARUEWDUpTOsMHNmJoJjA0x3B1lzDEx3SgcmzJXOybeLPK+ntvmLbNU9Tajl888Xg7sMIf3L3iEVRhiQJQVWbEQwTdocSQ4SMYVfI+OYdQJJC68d26OXBc9/rFZ83EYUgQfBjM64QYK/pT1wiMGSK7HU/gQ7pwISZEoZODa0frPgkYML10Rg33XfHpYczFhnt2YOKQPXLax9rp+5Az3z/xRITr4er5p5egxzXNvv6IVVsgozR12pY223v9Ks4Bj6M07e4RP9+rvR4P+gxJmdYBCOioJM3VtK0qZPvC1H+T3hN82R1SPPdPrr1jQh8R3WdNolKUnPeVcSp5ta87GYnCYLofi2sM54O9KBnvQZ5/l5vB4dIz1Z5r2jEm35aviSIsvo+bkFW0NaCJ6Oghppg6icIMMEioiCU3dt1vxg1hk2VkJgqo+/QIPvmViFvnIx+IyX0GxV6x+YLvp7zSivRsbZxRsX4b/8Dxwf+PHXpG6DaQTvL0rMDfz4sBVsh1CShA5Ddy7fBR7QbVVaz+8gPCV/XXPvL0zycMkOviXYoYYJFRCHFnZqitCxgzHUyYuJ9s/1AiowCuvXTd78Yn7FT4GlfuGovZ4D6QkdiilKwNs2PluDDyY7b65Duv33Z421trzcDzySmyoAgo/8oGZNukhDfgYVEd8WEwCinntyCgiBj0s0yJt/SVtsbnyRjyBT/DUbk6W9HYorscAThYGs2Z4+zJrrBLEiKCkREzuVPkJDdR/ZZc5uhUyWkZMro4cf+LOHO3sh+NlQWMLr1Bzp1lzH8Kvs/5qKo9FdSQxCUTuCmwUw6dgMKFeJOkgAAKUlJREFUJvi/kFAw0f19BrI8lpkjo0sfz98/+loZU29TRrWMjnWztkanBVF/FJAtd1Ew0f5JczWYh6c1JT7h4TkzGGwfOGV08TyMjl0v/aPdqemQbv9csdbIPkMkMHiy6++yYEsmOYogEYWEzj182z8kPQtI11MhI4RNukmCscW72o72IiIdFy69JQhApx7Anu99snmH/F2bmtPfu/M3aJJ3IxgKgueFrCArm3nMVZfE9qNKmuQMsL9cD+KTZXTLlVG4JfB1ApFRMlqalbtpQLsJsZPSZPQeLKNDBrD2fX3fcfFJQFN9oKNoE2zJkxqBv1uJggCL1RQMTCNNJSQH9x0bHasUADwW3IfvlKfDhpumCUjp5Pm+TfNcRUZbx+DOgDOiCEy5MQZjrtfHRYqICmwcmveZ8nB7WiXr2b1lrwf+aC+lo+M+SIHUvtmeICiDlgRDs2x7A9/Y69/pqSQHtXjhhAkWEVGIGDFNxsBxErK9aIZlqVN3bX8k+w6TQqKJZSCPoHueZ+8bOlXGxFkSktpNwpyS6f7RjLlORpbFgAS5wy22oWJznXMMPh3d0mcC9JS9/TxsbvPTDTt1roTEFNvEQyt5Y2QMm+z77MVp0uvje6CTxq0w+o203/QuItJ2mVa/GwAwwM3Blfw5kqa/MMEiIgoR0bFAVi9tnkZ36Ssjf4K2P/bd84A+Gg4ZHo48bTYpirAZzKXPUMmj2oaYeCejePozCfHRrRTfQba7aX/VTAiC9d67D1BZK6Txuc8d7l4fP183We2aC/Qbaicz8JA/v4nyVfbR7DtMdpgUeaJbP8025VPRsW2DXSRnuDFkv44xwSKisGfvaV5YcPIbZogIzXbxzmhdY+eO7D7BM2S0r6R21nehKqMr0GOgjJHT7BeAu/WTkZii/TFERJr6r7kWrMO0uyPYbvGUTBmde6hb1xCh35EeI33cnLZHPjBokoQhl8voqtX3YQAxwSJSIViG5ibPiAZgwkwJk2eH5nCxJu7MHRYsyZWWYXZI9/NIXxbB542RMfJq7+8/f9WyaH2Wxt0gYegUH557DW4UQQD6DJWR3NH+68kdZZuBDxwRI5T1YuK1PeboWE03Z6ar7wONYlFzrhLaJ8x29u3qCqptMjlsquTW53fQJN//Xhku3aedesgYebVvvxtFEcjMCY4+bGqw2EjkRMFECZ26y0jLCmAQevphC2GxCUBkdKCj8K0BY2RcdrPvf5Sj3ZhXzBOi6PyH3pvCYKAmsXVEbTQjr5bQPU9GZjf3tu/OufJlITs+SdtRI9vL6ungTHp4uQeMkZCULiMzx7P3j7lORq9BEnL6e/Z+R/dpv5HW/eOCSYeMtn/7I3lQc791bl+r7cGp7a+yP5K75QxP7z13TLxRxrgbJBRMkBHvx/n+kgI8358WmGAROdGpuzK0c7jVYDGnC02CAETF+G77426QMHC8hNRM3+0DACIdHMPA8RJSO6nrr2IacTHQo8ip5uLJeXKG0n9DCPR3lYPTGR+AkS1NIy527CYjTuPCYZc+wOhrZI+bF8cnAb0GeZ5UDhjtYK6lWGDgOO3PtSy31WZY6uwocfWA5cihHbu1jVYZm2C9j4Df4+04+73s1l92ODS+OwLV9DMyyvWIrmN/5l0ybO/8xSUCE28M7hYlnAeLiIg0EZ/k5fDqKnTspsw1s+lT25/lrJ5KTUXledfb6ZoLSJJk8xRYi4cLEVFAc6OKFYMkt3OLnRM4fobkcdO1nAEyig/YvyquTl9OfxlRMUqTvopzbcuze8soOeL8SqdkAhVndTK6mbc3pZP3d+ouqx65btQ1Mk4eBE4fattg78Eyzh7zzSO5UdfIOF8s29TyaV2Tmpgi42Klb47B1w8rew2SUVYS2EeiCcm+2a5e+6KppbPnAETUnsGHzWaCWai007anx8BQLHlrY/BlsiY/6KIB6DFQeVKqldHXScifIGm6zVAQl+j50N0dMjz/LAii0uyq/b7zxrreZsEEZTS3PkNdr9ux66U5xhz0zYKs1O4KTpq2ujO/Wddc7b4fOnaV0bGrunUTkoH+I6337bOaFVm5b3oM9G3TUUBJ5DqonLep16DAfDc7Sio7pANX/Nx+TY+7o0B6I62z7FYfXysh2mSGCRaRzqVkKk9c/dEmPZhExwGDL5Mw5rrQOy+WhTqf/vYE8Q+baTLlRA8n3vWFpFSoHi0s6OnhtLsTg6N73cHyqBhliGs1TQAHXSbj8lslRDt54h6fBHRzMlnuyGl6OKEqBPF3hiOiAU6vnaVO3d3bttVVtXPu7DVRdvdOEARg1DUS+o+2/i30ev40Nwy7Qlb14MJSnyESkjNkZPf2UVABxiaCRDonCOqeuIajjm526Kfg4+gJ+fArZVScc39QB03w4+hYGJ4bQfB+cl1f19J4y1eDoQwYI2PPBgF9hgX2xnEUs2VUQ6ZIAbtOrmoKO6Qr/yV0kLBtdXDUnXTqgZCYeN4RJlhEXgqHeUcoRAXxvRsV4/7TZDW0OiWmZoLRcTKa6kPksX+ADiMyWkZLk5c7D6J73RAJGJvdf18w3WWmGqNO3YHMHMmc4JivtZ8PxpvfcT3dWik+HmAokHQ1VYAKTLCIyFaQfZFR6LL8URUEPRVlnIuKUUbBiowCvn3XNx8oT/tnJiTLqK0SlGGxL51S0aDfczvpJhlyGDzJmnijhJYmYMe3gkcJVjAYPFlC5TnBqi+T5Wd80k0ypFbZp4Xpbv1knCyCz0c71YqWd35SuoyaMkGTkQ3JOSZYREQ6FvrFSvXG3RBcZ8PuKFhOCo5qC5VDpkgoPSV4PD/fyKtl1FXL6HBprpnBl0mazTvTuSdwfJ822zIJpmkyvMkDY+LcGzlt7M8kyDKw+TPPT5CzvkeeNntM7ayM0piebTvCXXxS26Ag9oiib653Vq+2f/cbKSN3hJPPm6Mp04Lr68fu8Y26WklgvW3SGgjxHYLrAgThKSYinwuu7zEKA4YIOeRH50tKA7J6yUjt7PwDmNEFyOji+Yc0IhLm5ArQti9jUroMVoH7h2k0zYgoGcZmARGOJkp3cKv0GSrZbVI27AoJZ48JyOoFHPhRWWZvEvaUTPsb7tQdiEuUkJACfLvMt/dCRlcZpaec72PENAkd2g2376/mZpa7iVI5kb29BNOdeAsmSjhzTLDbhFqL/oJacac/W3wHGd36+S4WX9DJaSYiItJG3KW5uKLjgutJgSD4ZpJYfzIlbhGRMowtTLT8YdKNMlqNsttNRi1rdSyldVaG3bZkGk3RsqA/aJIMY4vt+wXBOoH3pdh41+s4HD7fgjcJlwB1zySzewP1F2V07iHjxy8cV9PZq5l2p/asU3dlfjNfiu8go67au8+3O3Pjdc2VdT8QTHtBVPFORETkWnQsMHGWhPEeNCnUXUoQZPlWTBww+RYJw6/0feBu7SGAF9bbM+Gq8G+IUPr8+VJWL9uj8PU+9UZQm0k5IBqA3OGy1eTVGV2A2AQZfYa0DbEuikDeGP9PP+JOH9deg5V1+430LM6O3YLsi80DrMEiIlu6K2WGr0BdiujY4P4BjFHxZNuerrnAhVMycgYE9/H7mrMn6pFRQGOwfIf48DLHJshoqA2WE+Gcv2qk3KaD0+vNLWSIACbMtLMFi+PydW2UiSyrP5kpHYGpc6Wg6h/pb0ywiIjIbMz1Es4dF9DVyaSo/uTvjuWR0cDoa5lcBQVeprAU0JwqADvvMRBoNfp/v64wuXKOp4eIiMwSU4A+Q4Ovvbs/9MiXERUrez3XTK9BEpIzZMQnaxKW3+igskD33BkFkEgNbwfkmDpXQlYv2ePmfIE0cJyEpHTZYX9BPWMNFhERkQp9hsjoM8T77fQaBKt5gJxiVhNUYuKB4VdJiI0Htq/hxfMn0SBDavXdOQ/kMO2GCGXgkfKz7h+fKAbv4DlZvez3/wsGrMEiIiIiXfKmuGwa+c7fUjNhdyLXgBUTwyTPS8/WZjt6LM4LAjDsChlpWXqMjuxhDRYRERG55kZBPeZSghGb6P8C4fArJZSebjcRs6Mw9Jh8sAztVCBPj7/mzwoEQZCRO0LGhZMCklUMbU/OMcEiIiIiTUVGAZNnSzD4shbJQUk7tROQ2kldMTzCj6WgEC6bq+bT+8EPDBFA/ngJURZzOEVEAi1N+pnA1xs5/YGc/t6nsPYmpg43bCJIRKRnLJWRHqkog0VG63+ksT7DTAcSWtVGY67X14AGo6+VUDBB0mQQEMuvxKho/1+3zj2VyZhNhl0hI62zjAFjQuse8sS4GyQMuVyyaiI7bKoUFvNetafzrz4iIgpnSanK/5MzAhsHaa9gopIEePrEXIsiW3Ss63W04s8iZmJKgHbsQFIa0KmH9tvt1h/o0kfGqGt8n1A6ah6YlKokWXGJPg9B9+KTgIx2feHSsgBDu1FpO6Tr4Kb0sRCo0CQKDNMkkokpof9FQRQouSNkJKTI6OyDwhkFVqfuQHKGhOhQHdpc49rn6DgZTfUC4jvwN8ckIhJ+qzkK5CiCoaRgooSO3QIdhe8xwSLy0MirZVRekJEZBl8URIESEan0CwhbOinURcfJ6NpX+2Bi4u0v7zFQxqlDQGpn+69rToD257rd9tTmW+nZQMkR2+WjrpFRdlpGVm/3whDYVilwgqiJt7+Snk7d/bOfQOPHjshD0bFAp5zQHlWIiAgAJt0o+7Wmqc9QGZNny4iMcrxO9zwlg0lM1UkW6oLaKPuNlDFokm2Tt5g4oEtf9f3aBk2S0He4FBKDL7hr+FX66oPWXkyccjc4rI308y09ZY5k3azUleD4yAVUGH7siIiIyBv+KF+5eniV0x/o1F1CWQmwf5N3T7oGjJJx4Ed9PC0zRACZOd5vx7SNi5X2X9f7ACQOqbhMqZm+D0MVBx+UkVfLKD0tI7uPf8NxxOdzxunjo+VXwfrxIiIiojCn1SAVXfoCEZEap406LVQOmSIhd4TEobQd8cPTg5h4oGuukyRXp/cOqccaLCIiHeqaK+NUkRAWnYGJ9MDXfZX0UmbO6BLoCEhPYuL9kFGGYZNCJlhERDrUf5SM3OEyRIPrdYn8LgwLTN4K1CmL7wDEJclIzwpQAEGgUw8Z54vtp8BJ6TJqygQkpfk5KD/p0ocfZl9ggkVEpFNMrkLDhJkSvl/OFvlhK8DlV1EExt/AQrQzzkYDHjlNhrFZRlSMBxvWS7Wl1kL1uDTEb3wiMku6NPlfSscAB0IUQmITAENEaBVwg2301OQAfKcF2SkKexFR9j+jogjPkisKa6zBIiKzEVfKaKiVkZAc6EiISM9SOgGpnWVkdguOxDEQQ5UHx5khk3BNiH0+gmCYYoJFRGaGCDC5IiIIogxZclzkFEVg+BVMIVQJ15K7nwVbrWqgjbhKwpmjArL7evBmfvRdYhNBIqIwkzdWQnKGjE7dAx0J6dXY61mC0gxPJelQSiaQN1aGwQ99fcPxI8AEi4gozGT3Via6DESzKQoO8R2AngVKsSjSQd8Uco4VKv4la3Sb8m4nLTDBIiIi8rHeQ5RiW/cBwVN86zFQRs8CGaOuCZ6YiTymYUY8cJyE6DgZOf352QlXfH5JRETkYzn9gaxeEiKjPNxAAKpDDBFA78GhUUA09c+JjAmN4yFbeuqDldULyOrFey2cMcEiIiLyA4+TK/KaIABT5kicW85N3frJmjW987cpcyS296OAYYJFRLrA/kBE5EuWw1Fn95Fx9hiQlOa//Qfjd1y/kcGboXD4cQqkIPy4E1EoGXm1hBP7BHMfFSIiX8sbI2PAaP82K+ueJ+NiZXD1wwsm3fNknC8W0G+kFOhQvJaSqfw/LavdvRKkt0441t4zwSKigErOAAZPDtJfDSIKWv7usxMZBQydwu86X+mQDlwxV4IQAsO3xSUCk2dLiNBpYuLuXdx7sAxjM5ATRg8XmGARERHpXfiUSwImLhGobgJiEwIdCTnjLDEOheTKJDLazkIdDeThjshoIH9CeH2JMcEiIiKisDdokowTB5Th6Um/fD7ohuzg30RuYIJFREREwUujp/ox8UC/ESxRE5H3mGARERERkdti44GkdBkpHe2/PvFGCWIINdsjUosJFhERERG5TRCB0dc4rvWLifNjMEQ6wucKREREFLx03qpP5+ERkQ8wwSIiItK7IB09jEhrPhtePxg+YzrJ1oPhVAUaEywiIiIiH2FhlEKNTvI8XWMfLCIiIiJSpXNPmQNXELnABIuIiIjIR0LtaX/++FA7IiLt8RkEERERkdbYNjCoWF6uhGQlieyQHphYKPiFfIL18MMPY8SIEXj00UdVLSciIqIgwkSGNDZymowR0ySkZQU6EgpWIZ9g3XbbbVi0aJHq5UREREQUviKi4HDyZCI1Qj7BGjVqFOLj41UvJyIiItIMuywFhZz+yoXq0pcXjLwX0ARr27ZtuPfeezF+/Hjk5uZi7dq1NussW7YMU6ZMQX5+Pm6++Wbs2bMnAJESERERUajqPhCYOEtCTv9AR0KhIKCjCNbX1yM3NxczZ87EQw89ZPP6l19+iYULF2LBggUYNGgQlixZgrvvvhurVq1CamoqAGD69Ol2t718+XIYDAafxk9ERETkFPuIBQVBAGJ03rApKkb5f2Q0a9n0LqAJ1qRJkzBp0iSHry9evBizZ8/GrFmzAAALFizAunXrsGLFCtx1110AgJUrV/olVmdEMfDfnqYY9BALBQ/eN+Qp3jv+JSA0zrUv7hvLTenxHHl77fR4TIHQdh4EO8vCQ7+RgCDK6DEwsMcuCoLqudACfY0C9Vul23mwmpubsX//ftx3333mZaIoYuzYsdi1a1fgAmsnIkJEWlpCoMMwS0nR+eMX0iXeN+Qp3ju+JYr1AGQYDCLS0uICHY5mtLxvqs+1AGgGAF39HhsMyrUTBE+vXR0AfR2THkRGGQC0AgjPc5PVJZB7V+7JlJQ4xCW6yrD0df/6+7dKtwlWZWUlWltbkZ5uPQlBWloaiouLVW/nnnvuwZ49e9DQ0ICJEyfi9ddfR79+/Rwud5fRKKGmpsHt92lNFAWkpMSjsrIOksSqY1KH9w15iveOf0gSAAhobZVQXl4b6HC85ov7prYWMNVq6OkcSa0AIECSPLt2w6Yq29DTMQWS6d5paWk1L+O58Tflc1ZZWY+GZnXrBvoaaf2dk5QUi8hI112QdJtgOSLLMgRBfTXf66+/7tZyT+ipcCFJsq7ioeDA+4Y8xXvHx+S237tQOs9a3jcRUYCpMKencyTDu2tnmoNJSbLJTJahx+sdHi6dd1lWcV/q6xr5+7dKtwlWSkoKDAYDysrKrJZXVFTY1GoRERFReErPBnoWyEjP1kdBjohIt/NgRUVFIS8vD5s2bTIvkyQJmzdvxuDBgwMXGBEREemGIAC9B8tIzgh0JEREioDWYNXV1eHkyZPmv0+fPo3CwkKkp6cjIyMDd9xxBx5//HHk5eWhoKAAS5YsQWNjI2bMmBHAqImIiIiIiOwLaIK1b98+zJs3z/z3M888AwB48MEH8dBDD+Gaa65BRUUFXn75ZZSWlqJ///544403zHNgERERERGR/xh028FIPwJ6ikaNGoWioiKn68ydOxdz5871U0RERERERNTe2J9JaG4EIqMCHYn+MQclIiLSOQ7fQESBlpAc6AiCh24HuSAiIgp76mclIZ1xY0YZIgoxrMEiIiIiIiLNTJkT3hO4McEiIiLSK7YNJKIgFBEZ6AgCi00EiYiIdI6tzYiIggcTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiouDADokUBJhgEREREfkIB4IkCj9MsIiIiIiIiDTCBIuIiIiIggOrBCkIMMEiIiIiIiLSCBMsIiIiIgoOHOSCggATLCIiIp1iaygiouDDBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIyFfYzpMo7DDBIiIiIiIi0ggTLCIiIiIKChxEkIIBEywiIiIiIiKNMMEiIiIi0lh0rPX/iSh8RAQ6ACIiIqJQM3CcjMM7gV6DOMoFUbhhDRYRERGRxmLigfzxMuISAx1JaElMVf6flMbElfSLNVhEREREFBR6FQDRcRI6dg10JESOsQaLiIhIpxI6KP+P7xDYOIj0QjQAXfoAUTGBjoTIMdZgERER6dTA8TJOHgS69WNzKCKiYMEEi4iISKeiY4E+Q5hcEREFEzYRJCIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijQiyLMuBDiKYSZKM1lYp0GEAACIjDWhpaQ10GBRkeN+Qp3jvkCd435CneO+QJ7S8bwwGEaIouFyPCRYREREREZFG2ESQiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgQrBCxbtgxTpkxBfn4+br75ZuzZsyfQIZHOvfLKK8jNzbX6b9q0aYEOi3Ro27ZtuPfeezF+/Hjk5uZi7dq1Vq83NTVhwYIFGDVqFIYMGYKHHnoI5eXlAYqW9MLVffPzn//c5jvoj3/8Y4CiJb147bXXMGvWLAwZMgRjxozBgw8+iBMnTlitw+8cskfNvePP7x0mWEHuyy+/xMKFC/HAAw9gxYoVyM3Nxd13342KiopAh0Y6169fP/zwww/m/959991Ah0Q6VF9f7/RH6C9/+QvWrl2Lv/3tb1i6dCkuXLiAhx9+2M9Rkt64um8AYM6cOVbfQY8//rgfIyQ92rp1K2677TZ8+OGHWLx4MZqbm3HnnXeisbHRvA6/c8geNfcO4L/vnQifbJX8ZvHixZg9ezZmzZoFAFiwYAHWrVuHFStW4K677gpwdKRnBoMBGRkZgQ6DdG7SpEmYNGmS3dcuXryITz75BC+88ALGjBkDQCn8XHPNNdi7dy/y8/P9GSrpiLP7xiQ2NpbfQWTlzTfftPr7ueeew5gxY3DgwAEMHTqU3znkkKt7x8Rf3zuswQpizc3N2L9/P8aNG2deJooixo4di127dgUuMAoKx44dw/jx43H55ZfjN7/5Dc6dOxfokCjI7Nu3Dy0tLVbfQb169UJWVha/g8ilFStWYNSoUbjuuuvw4osv2jxpJrp48SIAoEOHDgD4nUPqtb93TPz1vcMarCBWWVmJ1tZWpKenWy1PS0tDcXFxgKKiYDBo0CA8//zzyMnJwYULF/Dqq6/itttuw2effYa4uLhAh0dBoqysDDExMUhISLBanpaWhrKysgBFRcHgZz/7GbKzs5GWloaDBw/ihRdewIkTJ/DSSy8FOjTSCVmWsXDhQowcORK9evUCwO8cUsfevQP493uHCVYIkmUZgiAEOgzSsYkTJ5r/nZubi0GDBmHy5MlYvXo1ZsyYEcDIKNjY+66RZTkAkVAwuemmm8z/zs3NRceOHXH77bejpKQE2dnZAYyM9OLpp5/GoUOH8N5771kt53cOueLo3vHn9w6bCAaxlJQUGAwGm6c2FRUVNrVaRM4kJSWhe/furPkkt6Snp6OhoQG1tbVWy/kdRO4aNGgQAODkyZMBjoT04M9//jO+++47LFmyBJmZmebl/M4hVxzdO/b48nuHCVYQi4qKQl5eHjZt2mReJkkSNm/ejMGDBwcuMAo6dXV1OHXqFDuck1sGDhyIyMhIq++g48eP48yZM/wOIrcUFhYCAL+Dwpwsy3j66aexZs0aLFmyBF27drV6nd855Iire8ceX37vsIlgkLvjjjvw+OOPIy8vDwUFBViyZAkaGxvZzIucWrRoESZPnoysrCxcuHABr7zyCgwGA6655ppAh0Y6U1dXZ/V07/Tp0ygsLER6ejoyMjIwa9YsLFy4EElJSUhISMAzzzyD4cOHczSvMOfsvmloaMBnn32GSZMmITk5GUVFRVi4cCFGjx6N3r17BzBqCrQFCxbg888/xz/+8Q/Ex8ejtLQUAJCYmIiYmBgkJibyO4fscnXvnDx50q/fO4LMhqtB75133sGbb76J0tJS9O/fH3/4wx9QUFAQ6LBIxx599FFs27YNVVVVSE1NxfDhw/Hoo4+qeuJD4WXLli2YN2+ezfIHH3wQDz30EJqamvDcc8/hiy++QHNzMyZMmIA//elPbK4T5pzdNzfeeCN+85vf4PDhw6ivr0fnzp1x5ZVX4t5777UZvIDCS25urt3lCxcuxMyZMwGA3zlkl6t75+zZs3793mGCRUREREREpBH2wSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItJIRKADICKi4PPKK6/g73//u83yMWPG4K233vJ/QCGkubkZL774Inbv3o19+/ahqakJRUVFDtefP38+qqqq8Le//Q0///nPsXXrVgBAREQEkpKS0LdvX1x55ZW46aabEBUV5a/DICIKW0ywiIjII4mJiXjjjTdslpF3Ghsb8fHHH6OgoABDhgzBjz/+6HT9DRs24OGHHzb/PWrUKPzqV7+CJEmoqKjA1q1b8X//93/4+OOPsWTJEiQlJfn6EIiIwhoTLCIi8ojBYMDgwYNVrdvY2IiYmBjfBhQikpKSsHXrVgiCgHfeecdpgnXo0CGcPXsWEyZMMC9LTk62ui5Tp07FzJkzMWfOHCxcuBALFy70ZfhERGGPfbCIiEhTp0+fRm5uLj799FM8/vjjGD58OO69914AQFVVFf74xz9i7NixyM/Pxy233ILdu3dbvb+mpga//vWvMXjwYIwfPx7//Oc/sWjRIkyZMsW8ziuvvIJRo0bZ7Ds3NxfvvPOO1bKPPvoI1157LQYOHIjJkyfj3//+t9Xrv/3tbzFz5kxs3LgR119/PQYPHow5c+bg8OHDVuu1trbitddew1VXXYWBAwdi4sSJ+O1vfwsAWLZsGYYMGYK6ujqr9/z444/Izc3FwYMH3TqHgiCoWm/dunXIz89HWlqa0/X69euH2267DZ999hlqa2sBABcuXMDvfvc7XH755SgoKMBVV12FF198Ec3Nzeb3zZo1C7/73e9stvfEE09gxowZbhwREVH4YIJFREQeMxqNVv/Jsmx+7fnnn0d8fDxeeukl/L//9//Q3NyMO+64Axs3bsTjjz+OV199FSkpKbj99ttRWlpqft/vfvc7bNiwAU8++SSefvppbNy4EV988YVH8b3xxhuYP38+pk6ditdeew1z5szBSy+9ZJOEnT17Fs8//zzuu+8+vPDCC6ioqMAvf/lLq+P54x//iFdeeQXTpk3Da6+9ht/+9reor68HAFx//fVobW3F6tWrrba7YsUK5OXloV+/fh7F78r69esxadIkVeuOGzcOLS0t2L9/PwCgsrISycnJ+N3vfoc33ngDd911F5YvX45nnnnG/J6bbroJq1atskoc6+rqsGbNGsycOVPbgyEiChFsIkhERB6pqqpCXl6e1bLFixejW7duAIBBgwbhT3/6k/m1jz76CIcPH8bnn3+O7t27AwDGjh2LadOm4T//+Q+eeOIJHD58GN988w1efPFFXHPNNQCUPkWTJ09GQkKCW/HV1tbi1VdfxX333YcHH3wQgJJkNDQ04J///CfmzJkDg8EAAKiursZ7771njkuWZTzwwAM4duwYevXqhaNHj+Ljjz/G73//e8ybN8+8D1OMSUlJuPLKK7F8+XJz4mFKRH7961+7Fbda1dXV2LlzJ5588klV62dmZgIAysvLASi1fU888YT59aFDhyI2NhZPPvkknnrqKURFReG6667Dc889h1WrVmHWrFkAgK+++gotLS247rrrND4iIqLQwASLiIg8kpiYiMWLF1st69GjB6qqqgAAl112mdVrmzdvRl5eHrp06QKj0WhePmLECOzbtw8AsHfvXgCwag4YHx+PsWPHYs+ePW7Ft3PnTtTX12PatGlW+xs9ejT+8Y9/4Ny5c8jOzgYAZGdnm5MrAOjVqxcA4Pz58+jVqxe2bNkCAE5rbW688UbcfvvtOHXqFLp27YqvvvoKRqPRZ4nIDz/8gNTUVAwYMEDV+pa1caa/lyxZgg8//BCnT59GU1OT+bWzZ88iJycHCQkJuOqqq7BixQpzgrVixQpMmTIFKSkp2h0MEVEIYYJFREQeMRgMyM/Pt1luSrDa9wuqrKzErl27bGq9AJhrvcrKyhAfH28zIIarPkb2VFZWAgCuvfZau6+fPXvWnGC1H/0wMjISAMxJR1VVFeLi4pzWoo0aNQpdu3bF8uXL8cgjj2D58uW4/PLLkZyc7Hbsaqxbtw6TJk1S3V/rwoULANrO5ZIlS7Bo0SLcc889GDFiBJKSkrB37148/fTTVsnWjTfeiJ///Oc4efIkAGD79u14/fXXNT4aIqLQwQSLiIh8on3Bv0OHDhg4cCDmz59vs65pfqb09HTU1dXZjDpoatZmEh0djZaWFqtl1dXVNvsDgNdee81ugtajRw/Vx5KcnIz6+nrU1tY6TLIEQcCsWbPw4YcfYvr06fjpp59sBtTQiiRJ+P777/HnP/9Z9Xt++OEHREZGmhPcVatWYdq0aXj00UfN6xw9etTmfSNGjEBOTg5WrFgBWZbRsWNHjB8/3vuDICIKUUywiIjIL8aMGYONGzciKyvLYY2UqUbsu+++M/dvqqurw6ZNm6wSm8zMTNTV1eH8+fPmvkUbN2602taQIUMQExODCxcu2DRXdNfo0aMBAP/9738xd+5ch+vNmDEDL7/8Mp588klkZmZi3LhxXu3Xkd27d6O2thZjxoxRtf7Bgwfx7rvv4vrrrzefx8bGRpuJhz/77DO77581axbee+89AMANN9xg7rtGRES2mGAREZFf3HDDDXj//ffx85//HHfeeSe6du2Kqqoq7NmzBxkZGbj99tvRp08fTJkyBfPnz0dtbS0yMjLw5ptv2jQZnDBhAmJiYvDkk0/ijjvuwOnTp/H+++9brZOUlIQHH3wQzz77LEpKSjBixAhIkoQTJ05gy5YtePXVV1XH3rNnT8yePRvPPfccysvLMWLECNTU1GD16tV48cUXzetlZmZiwoQJWLduHf7f//t/NonIK6+8gr///e8oKipyur/169ejoaEBhYWFAJTaJkBJQLOzs7Fu3TqMGDHCbm1aVVUVdu3aBUmSUFVVhS1btuDDDz9E9+7drYZcHzt2LJYuXYqCggJ069YNn332GYqLi+3GM2PGDLz00kswGo0cnp2IyAUmWERE5BfR0dF4++238dJLL+GVV15BeXk5UlNTUVBQYDWoxXPPPYf58+fjL3/5C+Li4nDrrbciPz/fagj01NRUvPzyy3j++efxwAMPIC8vDy+88IK51svkF7/4BTp27IglS5Zg8eLFiI6ORvfu3W3WU+NPf/oTsrKy8NFHH+Hf//43UlNT7dZQTZ06FevWrbM7IEZDQwNSU1Nd7mvBggUoKSkx//3II48AABYuXIiZM2di/fr1uOGGG+y+d8uWLZg9ezYiIiKQmJiIvn374rHHHsNNN91kVWP1wAMPoLKyEi+99BIA4IorrsBTTz1lnrPMUkZGBgoKCgAoySYRETkmyO2HFSIiItKZRYsWYfXq1fjuu+8CHYpLjzzyCEpLS/Huu+/avDZ37lyMHj3aPGy8J86fP4+JEydi9erVViMf+lJVVRUmTpyIP/zhD7jpppv8sk8iomDFGiwiIiINFBUVYd++ffj666/x17/+1eZ1o9GIw4cP4+WXX/ZqP5mZmS6bGGqltrYWR48exdtvv434+HjOfUVEpAITLCIiIg3cd999qKysxK233opp06bZvB4REWGeTytY7N+/H/PmzUN2djYWLVqE2NjYQIdERKR7bCJIRERERESkETHQARAREREREYUKJlhEREREREQaYYJFRERERESkESZYREREREREGmGCRUREREREpBEmWERERERERBphgkVERERERKQRJlhEREREREQa+f8effSXsUdM9gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 11])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, 1/Day\")\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "948d53f6", + "metadata": {}, + "source": [ + "A pretty visual reduction in variance can be seen\n", + "\n", + "##### Zooming in" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "185d7f36", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAUGCAYAAACMyxAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd7wcVfn/PzO7t+bm5t7c9EogIQmBFBIIvamIVAEbUqSJiAj4VRQFCwoqX1QU/QkWpIkoti8IiIjSeyCd9N6T2/u9uzvz+2PnzJw5c6btzu7Okuf9euWVu7tTnjkzc855ztMUXdd1EARBEARBEARBEHmjlloAgiAIgiAIgiCI9wukYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARQQoWQRAEQRAEQRBERJCCRRAEQRAEQRAEERGkYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARkSy1AOWOpunIZLRIj5lMqkinoz0mEQ10b+IN3Z94Q/cnvtC9iTd0f+IN3Z/4EvW9SSRUqKrif97IzrifksloaG/vjex4qqqgqakOnZ190DSqAR0n6N7EG7o/8YbuT3yhexNv6P7EG7o/8aUQ96ahoRaqmvA/dyRnIwiCIAiCIAiCIEjBIgiCIAiCIAiCiApSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIoCQXBEEQBEEQRFmg6zo0LQM9JvkkVFXB4OAg0uk0JbmIGbncG0UBVDUBRfHPFOgFKVgEQRAEQRBE7MlkMmhp2QVNy5RaFBvNzSo0jdK0x5Fc7o2qJtDUNBaJhH+2QDdIwSIIgiAIgiBiT2dnK1Q1geHDRwPIz8IQJcmkgnSarFdxJPy90dHe3ozOzlY0No7M/bw570kQBEEQBEEQRUDXNQwM9KKxcRSSyYpSi2MjmVQBkAUrjuRyb4YObUBb217ougZFyS1dBSW5IAiCIAiCIGINc/NKJMg2QBQW9ozl4/ZJChZBEARBEAQRa6ykFvFxDSTer2SfsXwSqZCCRRAEQRAEQRAEERGkYBEEQRAEQRAEERm33/4d3HLLV0stRskgR1aCIAiCIAiCKAC33/4d/POfT+L88z+BL33JrnDceust+Pe/n8GnPnURzj//E/j4x8/2PNY3vvFtjBkzFtdddzWeffYl1NbWOrZpbW3Br3/9S7z11htob29Dff0wTJ8+A9dccz0mTz4gyksDAOzatRMf//jZeOihP+LAA6ea319//VegF6FY2cc+dhYuuOAinH/+Jwt+rjCQgkUQBEEQBEEQBWLUqNH497//hS984QZUVlYCAHp6uvHyyy9g1KjR5jaPP/6Muc/99/8W69evxe23/6/5XV1dHVauXOF5rptvvhG6DnzrW9/DmDFjsW/fXrz55uvo6uqK/Lq8qKurK+r54gYpWARBEARBEARRIA45ZBY2bdqIV155Caec8kEAwHPPPYuDD54BVc1G6yQSCTQ1jTD3qa6uRjKZtH3nR1dXF5YvX4Zf/vK3mD17LgBgzJixOOywOZ77aZqG3//+ATzxxN/R1taKyZMPwJVXfh7HHHMcAKCzsxM/+ckdePvtN9Df34/Ro8fgyis/j1NO+aBpdbvkkk8BAObOPRy/+MWvcfvt30FfXy9uuy2rIF577VWYNm06Mpk0/vWvp1FdXY1rrrkeRx99HP73f2/Hm2++htGjx+LrX/8WZs06FADQ1taGn/70f7F06RJ0dXVi4sTJuOKKq3D88SeZx9y9exfuuutO3HXXnQCAV15ZBABYunQx7r3351i7dg0aGhrxgQ98CFde+XlTwS00FINFEARBEARBEAXk9NPPwtNPP2F+fvrpf+D008+K9Bw1NTWoqanByy+/iFQqFXi/hx++H88++wy+9rWb8dBDf8I555yPm2++EWvXrgYA/Pa392DLlk348Y9/jocffgzXXfdl00L1m988CAD4+c9/hccffwbf//6drud56qknMHLkaPz2tw/j9NPPxh133IbvfvcWnHDCyfjd7x7BAQdMwW23fct0LRwYGMDMmbNw550/xUMP/QmnnvoR3HLL17B58yYAwPe/fydGjRqNz33uC3j88WdMC+COHdvxla9cjw984FT8/vd/wre+9T28/vqruPfen4dv1BwhBYsgCIIgCIIgCshpp52Bd99dhObmfdiyZTM2blxvWrOiIplM4qabvoV//OPvOO20k3DttVfhvvt+hW3btrruMzg4iIcfvh833/xtHHHEURg/fgLOOec8nHDCSXjiif8DAOzZsxvTpk3HjBmHYNy48TjqqGNw5JFHAQAaGhoBAMOGDUNT0wjU1w9zPdf06TNw8cWXYuLESbjsss8ik8lg4sTJOPXU0zBx4iRcdNFnsG3bVuzbtxcAMGbMGHzqUxdh2rTpGD9+Aj796Ytx2GFz8MIL/wEA1NcPg6qqqK2tRVPTCNPa9/DD9+O0087Axz72KUycOAlz5szDF75wA5544u9FiQsDyEWQIAiCIAiCIApKU9MILFiwEP/851Po6urEiSeegtraIZGf5wMf+BCOPfZ4LF68CCtWLMfLL7+IRx55ED/4wY+xcOHRju23b9+G/v5+XHfd1bbvU6kUDj98AQDg7LPPwze/eRPWrVuDI488GieddApmzpwVWraDDppm/l1ZWYkhQ+owZcqB5neNjcMBZF0DR40ajUwmg4ce+h2ef/457Nu3D+l0CoODg5g4cbLnedavX4cNG9bhmWeeNL/TNA0DAwNoaWnBiBHB3S5zhRQsgiAIgiAIgigwZ5xxFu699xfo7e3Ft799W8HOU11djaOPPg5HH30crrzyanz5y9fhoYd+J1Ww+vr6AAA/+tHP0dTUZPutqqoKAHDsscfjL395Aq+99grefvsNXHPNlbj00ivxmc9cEUquZNKudiiK/TtFYQV+NQDAH/7wMP7616xL4pQpB6KmpgZ33HEb0mlv98e+vl6cd97Hce65H0cioSCTsaxWDQ0NoWTOFVKwCIIgCIIgCKLAHHvsCbjzzh+gpqYW8+bNL8o5FUXBpEmTsGzZUunvU6ZMQUVFBfbu3Y05c+a6Hmf48CaceeY5OPPMc/D73z+Axx//Oz7zmStQUVEBAMhktMhlX758KU444SSceuppAIB0Oo0dO7ZjzJix5jbJZIXj3NOmTcemTRsxYcJEJJMq0unoZfODFCyCIAiCIAiCKDDJZBJ/+tPfoSiKaa3JlY0b15sWJgBQ1QRGjBiBb33r6zjzzHNw0EFTUVVVjcWL38FTTz2BT3/6EulxamuH4BOf+DR+9rMfI5PJ4LDD5qCrqwtLl76LkSNH45RTPoj77vsVpk+fgSlTDkJfXx/eeusNTJ6cddNraGhEVVUV3nzzNYwYMQIVFZWRpWifOHEiXnzxeaxYsRy1tbV45JEH0N3dbdtm7NixWLLkXZx88gdQUVGJhoYGXHjhJfjc5y7HT3/6I5xzzkeRSFRg06YNWLFiOb7whesjkc0PUrAIgiAIgiAIoggMGRKN8nH11ZfbPtfV1eGJJ57FjBmH4NFHH8aOHduhaTrGjBmDSy+9EhdccLHHsa5FY2MjHnzwPuzatRNDh9Zj5sxDcOmlVwLIppC/556fY9euXaipqca8eQtwww1fAZBVGm+44Ubcf/9v8Otf/xKzZ8/FL37x60iu8TOfuQI7d+7Al750DWpra3HuuR/HkUcutG1zxRVX4847v49PfvKjGBwcxCuvLMK0adNx99334je/uQef/eylUNUEJkyYgNNOOzMSuYKg6MVKp/E+JZXKoL29N7LjqaqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Y5YnlJTKjc0wp9c7o3Xs9bQUIuKioTvMShNO0EQBEEQBEEQRESQgkUQBEEQBEEQBBER8bKxEgRBEARBEEQA7lqzGG+07CrqOY9qGosvTZ9X1HMS5QdZsAiCIAiCIAiCICKCLFgEQRAEQRBE2ZG1JJE1iYgfZMEiCIIgCIIgCIKICFKwCIIgCIIgCKIIvPvuIhx33AJ85jMXQNPs6cOPO24BXn31ZQDAFVdcjLvu+l/b7w8//ACOO24BXn75Bdv3119/Db73vW/mJM+LL/4X//M/1+KMMz6A445bgI0b1zu26ezswK233oJTTz0Rp512Mn74w++hr68v1Hnuu+9XuOIKey2uN998HR/84HH49a9/mZPsjz/+N1x77VU49dQTcdxxC9Db6yyb9Oabr+Ozn/0MPvjB43DuuafjgQd+i2JUqCIFiyAIgiAIgiCKyLZtW/Hcc/9y/X3evPlYvPgd23dLlryLUaNG275Pp9NYuXIZ5s2bn5McfX19OOywObj66i+6bnPrrd/Epk0bcddd/w933HEXlix5Fz/60Q9yOh/jhRf+g69//cu44oqrcdVV1+R0jIGBfixceAwuvvgy6e/r1q3Bl798PY4//kQ88MCj+NrXbsH//d9f8cc/PpKP6IEgBYsgCIIgCIIgish5530cv/3tvUin09LfDz98ATZt2oj29nYAQCaTwfLlS3HhhZ+xKVjvvbcC/f39mDdvQU5ynHbaGbjsss9iwYIjpb9v3rwJb775Gm666ZuYNetQzJkzFzfccCP+/e9n0NraktM5n3rqCdx66y34n//5Ki644KKcjgEAn/jEp3HxxZdi1qxDpb//97/PYcaMmbjkkssxYcJEHHXUMbj44kvxpz89UnArFiW5IAiCIAiCIIgi8qlPXYRnnnkKjz/+N5x//iccv8+ZMxeqqmLJkndw0kkfwJo1q1BbW4uPfORM/OIXd6GzsxP19fWmVWv8+AkAgKVLF+MrX7nO89w33vgNnHrqRwLJuWLFMtTXD8OMGTPN7xYsOBKKouC991biuONOCHHVwGOP/QH33vsLfPOb38Mpp3zQ9tuzz/4Td975fc/9f/SjuzFnTrDEJoODg6isrLJ9V1VVhebmfdi1ayfGjRsfSvYwkIJFEARBEARBEEWktrYWl1xyGR566D6cfvpZqKmpsf0+ZEgdpk2bjsWLswrW4sXvYO7cw1FbW4upU6dh6dJ3cfzxJ2Hx4ndw+OGW9WrGjJm4//4/eJ57+PDhgeVsbW1xbJ9MJjF0aH1oC9bGjetx990/wS233OpQrgDguONOwCGHyK1RjJEjRwY+35FHHoU///lR/Pe/z+HEE0/G7t278Mc/ZtumtbWFFCyCIAiCIAiCeD/x0Y9+DI899igee+wP+MxnrnD8fvjh8/HGG68ByMZfHXts1lo0Z87hWLz4HRx99HFYsWIZbrjhRnOfqqpqTJgwMWJJFcl3OhRF9r07o0ePQXV1DR555EEsXHg0Ghvtiltt7RDU1g7JQ047Cxcejc9//lr84Affxa233oyamhp8/OMX4P77N0JRChslRQoWQRAEQRAEQRSZyspKXH75Vbj77h/j3HM/5vh93rz5ePTR36O1tQXLli3Btdd+CQAwd+483Hffr7B69Sr09fXZElxE7SI4fHgT2trslqp0Oo2uri6HguTHkCF1+MlPfo7rr78G1113Ne6++1dobGw0f4/aRRAALr74UnzykxehtbUFw4Y14J133gYAjBs3LpTsYSEFiyAIgiAIgiBKwGmnnYE//OFhPPzwA47f5syZB1VV8dhjj6KysgqTJx8AAJg9ex42btyAl156HmPGjLW5ukXtInjoobPR0dGBNWtWY/r0GQCyqeZ1Xcchh8wKfBzGsGEN+NnPfokbbrgG119/NX72s3tNJStqF0GGqqoYMSK733//+28ccsihoZXDsJCCRRAEQRAEQRAlQFVVXHXVNfjOd252/FZbOwQHHzwDf/3rYzjqqGPM7+vr63HAAVPw97//BSeddIptn7Augp2dHdizZzeam/cBALZu3YJMJoPRo8egvn4YDjhgChYuPAZ33PE9fOUrX0c6ncZPfvK/+NCHPozhw5tyuuasknWPQ8kK6yLY0tKM1tYW7NixHUA2xquqqgrjx09EbW0tNE3DH/7wByxYsBCapuGZZ57Cc8/9C3fffW9OcoeB0rQTBEEQBEEQRIk44YSTMG3awdLfDj98Afr6ejF37uG27+fOPRx9fb05179ivPLKS7jssgtx4403AABuueVruOyyC/HKKy+Z23z729/DpEkH4Prrr8GNN16POXPm4itf+YbtOMcdtwBPP/2PwOetrx+Gn/70l0gmk7jhhs+jra0ttOz/939/xWWXXYg77rgNAHD11ZfjsssuxOrV75nbvPzyC7j66svxuc9ditWr38PPfnYPDj10duhzhUXRi1HO+H1MKpVBe7uzcnSuqKqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Ugm4+WAlUyqSKe1UotRMnbt2olPfepc/P73f8bEiZNKLY6NXO6N17PW0FCLioqE7zHIgkUQBEEQBEEQRE68+eZrOPvs82KnXJWSeC0BEARBEARBEARRNnz0o84MiPs7ZMEiCIIgCIIgCIKICFKwCIIgCIIgiFhj1bTdf+PQiGKRfcZC1lG2QQoWQRAEQRAEEWtUNTtlzWTSJZaEeL/DnjFV9U9m4QbFYBEEQRAEQRCxRlFUVFXVoqurHYlEEkAe5oXIUZBOk2UtnoS9Nzq6utpRVVULJQ8TFilYBEEQBEEQROyprx+OlpZdaG7eWWpRbKiqCk3bf9O0x5lc7o2qJtDYOCqv85KCRRAEQRAEQcSeRCKBkSPHQ9MyiEsVV1VV0NhYi7a23v26TlkcyeXeKEpWwcrHegWQgkUQBEEQBEGUCYqiGC6C8UBVFVRWViKZHCQFK2aU8t5QkguCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIIjYsruvB2lNK7UYBEEQBBEYUrAIgiCIWLK7vwdXLvoPvrz05VKLQhAEQRCBIQWLIAiCiCXbe7sBABu6O7C6s7XE0hAEQRBEMEjBIgiCIGJJTSJp/v3YtnUllIQgCIIggkMKFkEQBBF7GiqrSi0CQRAEQQSCFCyCIAgilujc3xUKDVcEQRBEeUAjFkEQBBFLdN1SsXrSqRJKQhAEQRDBIQWLIAiCiCW8Batfy5RMDoIgCIIIAylYBEEQROzRdf9tCIIgCCIOkIJFEARBxBKN06o0kIZFEARBlAekYBEEQRCxRyMTFkEQBFEmkIJFEARBxBKds1qRgkUQBEGUC0n/Td6fzJo1C1OnTgUAHHroobj99ttLLBFBEATBo3F/6+QiSBAEQZQJ+62C1dDQgMcff7zUYhAEQRBucDqVRvpVJPxp61qs627HLYccWWpRCIIg3rfstwoWQRAEEW9sLoJkwYqEh7esBgCs7mzFjPrhJZaGIAji/UksY7DefvttXH311TjuuOMwffp0PP/8845tHnnkEZxyyik47LDD8IlPfALLli0LdY6Ojg6ce+65uOCCC/DWW29FJTpBEAQREbxKRTFY+TOQsWqJdVPhZoIgiIIRSwtWb28vpk+fjvPOOw9f/OIXHb8//fTT+MEPfoBbb70Vc+bMwYMPPogrr7wSzzzzDIYPz67InXPOOdJj/+1vf0MikcB//vMfjB49GuvXr8dVV12FJ554AnV1dTnJq6pKTvt5HSvKYxLRQPcm3tD9iTc53R9uUz3svoSDvnTa/LtXSzvuCbVvPKH7E2/o/sSXUt6bWCpYJ554Ik488UTX3++//3588pOfxPnnnw8AuPXWW/HCCy/g73//O6644goA8I2vGj16NABg6tSpOPjgg7Fp0yYcdthhoWVNJlU0NeWmmHnR2Dgk8mMS0UD3Jt7Q/Yk3Ye7P0MFq8281oRSkr92f6Oni0oZUOccuenfiDd2feEP3J76U4t7EUsHyYnBwECtXrsTnP/958ztVVXHMMcdgyZIlgY7R0dGBmpoaVFZWYs+ePVi7di0mTpyYkzzptIbOzr6c9pWhqgoaG4egra0HGkV1xwq6N/GG7k+8yeX+8H1rKp1BS0t3ocTbL9jR1WH+3d7VZ7YnvTvxhu5PvKH7E18KcW/q62tQUZHw3a7sFKy2tjZkMhmMGDHC9n1TUxO2bNkS6BgbNmzAt771LaiqClVV8Y1vfAMNDQ05y1SIF0rTdHpRYwrdm3hD9yfehLk/fNxVRqf7mi89KSvuKq1pjvakdyfe0P2JN3R/4ksp7k3ZKVhu6LoORQnmY3n44YfjySefLLBEBEEQRD5otjTtNHHJl14uBiutaR5bEgRBEPkQyyyCXjQ2NiKRSKC5udn2fWtrq8OqRRAEQZQzllKlk4KVN70ZS8FK6aRgEQRBFIqyU7AqKysxa9YsvPbaa+Z3mqbh9ddfx9y5c0snGEEQBBEptjTtJZPi/UOaU6rSpLASBEEUjFi6CPb09GDr1q3m5+3bt2PVqlUYMWIERo4cicsuuwxf/epXMWvWLMyePRsPPvgg+vv7ce6555ZQaoIgCCJKdHIRjBTeCkguggRBEIUjlgrWihUrcMkll5ifb7vtNgDAtddeiy9+8Ys4/fTT0drairvvvhv79u3DzJkz8dvf/tasgUUQBEGUPzpnw9JACla+8CpVmlwECYIgCkYsFayFCxdizZo1nttcdNFFuOiii4okEUEQBFFseJWKYrDyh7cCpsiCRRAEUTDKLgaLIAiC2D/gFQLKfpw/NhdBsmARBEEUDFKwCIIgiFhiU7DIRTBveJWKLFgEQRCFgxQsgiAIIpbwShUlucgfPqaNFCyCIIjCQQoWQRAEEUt4t0CdLFh5wyupg1qmhJIQBEG8vyEFiyAIgogl9hgsUrDyhW/BQbJgEQRBFAxSsAiCIIhYYncRLKEg7xMopo0gCKI4kIJFEARBxBJSCKLFluqempMgCKJgkIJFEARBxBJewaI6WPmj2f6m9iQIgigUpGARBEEQsYRPbEEKQf6QkkoQBFEcSMEiCIIgYkmGCg1HCq+kUlZGgiCIwkEKFkEQBBFLeBWAsgjmD6+kksJKEARROEjBIgiCIGKJTkkuIoWsVgRBEMWBFCyCIAgilvDqAMUP5Y8taQgpWwRBEAWDFCyCIAgiltgtWKRk5YtdYS2ZGARBEO97SMEiCIIgYokmfCadID90smARBEEUBVKwCIIgiFgiWqwo0UV+2LMIEgRBEIWCFCyCIAgilohKQFoXbVpEGPjMgeRuSRAEUThIwSIIgiCKyv2b3sNNS1+11bmSIbqxpTRSsPJBJwsWQRBEUUiWWgCCIAhi/+Kv29cDAFoH+zGyqsZ1O7FWU4osWHlhzyJIEARBFAqyYBEEQRBFg7dadacHfba2qwGDWqYAEu0/UNp7giCI4kAKFkEQBFE0etMp8+9frV/hua1oryIXwfwgCxZBEERxIAWLIAiCKBoDnBVqRWeL57ailYUUrPywZREkCxZBEETBIAWLIAiCKBr9GUvBOqppjOe2GrkIRgqvU5F6RRAEUThIwSIIgiCKxkAmbf49tnqI98aGFlCpZocqsmDlBxUXJgiCKA6kYBEEQRBFo5+zQvnVtWIWrISiACCrS77wMViidZAgCIKIDlKwCIIgiKIxwLkIan51sIyfFSiFFGm/wZ5FsGRiEARBvO8hBYsgCIIoGrzVyq/QMLOyKKYFi7SCfLArtNSWBEEQhYIULIIgCKJo8EqVn4sgI0EWrEjgVSqKZiMIgigcpGARBEEQRYNXsHwtWDqzYGU/k1tbfmiURpAgCKIokIJFEARBFI2gVivA0gFUsmBFgr3QMGlYBEEQhYIULIIgCKJo8FYrv2K3um6PwSLyg1eqSL0iCIIoHKRgEQRBEEUjw9Wy8pvkWxYs9pnUgnywZxGktiQIgigUpGARBEEQRSPN12IKmEVQJQtWJNhdBAmCIIhCQQoWQRAEUTQyYWKwWB0sKjQcCfYk7dSaBEEQhYIULIIgCKJo8DFYms8knykBlosgkQ82CxY1JkEQRMEgBYsgCIIoGnwWQb9JPvudXASjgZJcEARBFAdSsAiCIIiikQmRKpxZuBSWpp20grygNO0EQRDFgRQsgiAIomhktPBWFNWMwSKlIB+4picXQYIgiAJCChZBEARRNHgXQd8sgro9BquceGjzKtyxalGs0qGTgkoQBFEcynHcIgiCIMqUTIhU4ez3cswi+Ni2dXi5eSdSIbImFhpe1/NLMEIQBEHkDilYBEEQRNHI2JJc+GQRNC1Y5Zvkws9KV0w0SnJBEARRFEjBIgiCIIpGOicLVsHEKTiZGClYtiyCMZKLIAji/QYpWARBEETRsFmw/LIIMgsWcxEsQ6UgTgqWLclF6cQIja7raB7oK7UYBEEQgSEFiyAIgigamRDFbnUxTXsZkolRDJbdXbF8VKzHtq3DpW/9G8/u3lJqUQiCIAJBChZBEARRNNIal0XQZ5LPflXLuAxWnCxYvMVQi49Yvvxl+zoAwFM7N5dWEIIgiICQgkUQBEEUjUGNT3LhvS37vdySXPBKVawULLM9ywt2/zNlqWITBLE/Um79LEEQBFHGpLSM+bdvDBbsMVjlAm+lS8fJRdBsT7WsamL1ZNIA4pWRkSAIwgtSsAiCIIiiEc6CZY/BiqtSoOs6nt29Bdt7uwGEK6ZcTFh7JhSlrFwEGV2pwVKLQBAEEYhkqQUgCIIg9h96Mynzbz+FSYzBiivLO1pw97qlAIAnjz8bS9v3mb/Fy4KVRVXi5boYFKXMLJkEQey/kAWLIAiCKBrdaV7B8kbMIhhXnaB1sN/2+dcbVph/x0mR4Qs3x0eqMJSn1ARB7H+QgkUQBEEUDV7f8HOfM5MysDpYhRIqTypUayjVdB3NnMIVKwXL+D+hqGVZU6wc3RoJgtg/IQWLIAiCKBq8W6DffLlcklxUKNZQurKjxfZbRouPi6BpEVTiq6yK8IpgXGPwCIIgREjBIgiCIEqCbwyW8bOlXsVzgs1bsJ7ZvQVVasL8PBgrBSuLUkYugnz7zapvKqEkBEEQwSEFiyAIgigJvlkEBQtWXJWCJGfBenHfDhw2zFIEerikHqXG4XJZBm6C/Vra/Lu+orKEkhAEQQSHFCyCIAiiaOi2vwPGYMW80LB4FSkuc+BAJoP4wJJc8J/iDd9+WllITBAEQQoWQRAEUSKCWrBYCFZcDS6iopjia30VWxgPrDTt8bYI8gxwhanjVFOMIAjCC1KwCIIgiJIQuA5WzC1Y/MT/2BFjbQpWrNSYcnQRzJCCRRBE+UEKFkEQBFES/NI/sAl13LMI3rNhufm3CsXmIhin1OKOumKlFCYgfRkrBosULIIgygVSsAiCIIiS4GdBMS1YpktbPCfYO/t6zL816EjH1EXQak/xm/hicxEsoRwEQRBhIAWLIAiCKBq8TuU3vbcsLuWDpus2C1YclRhmwYqTdc0NsmARBFGOkIJFEARBlARfC5YYM1RogSIgo+sYtMUNlVAYAV3XocBSWONqEeThswhmdLJhEQRRHpCCRRAEQRQNflLvN71nablZkotyMGBouo5+jU/NXhyhu9Mp/HfPNgxq7mnhdWSVK6XMFFZGnJRVgiAIL5KlFoAgCILYP/G1oBg/KzFPcsGT0XUM8G5tRTrv1Yv+g/bUIB7avAoPLDxVuo0Oe1uWg8LKPyNvtu4uoSQEQRDBIQsWQRAEURL8LBKaIwYr/hpBW2rArlQVSYtpTw0CAJoH+123YS6C1sAf//Ysh1TyBEEQIqRgEQRBECXBtw6WMblOlJEFq5+zXgHFsWAFVUJMddVoz3KIaCoHGQmCIERIwSIIgiBKgn8MVpZyqtuUEZSdYsj80r6dAbe0J7koBx9BsmARBFGOkIJFEARBFA1+uhx08swMWOUw1eZrYAEoihIzoKX9NwKLweKShhRQpqggCxZBEOUIKVgEQRAR8ezuLfjeyrccVgxCjq8Fy2hHtYxcBMV7XwwFoVJNBNpO1w1roNGcWlmoWJaMTZXVJZSDIAgiOKRgEQRBRMTd65bizdbdWN3ZWmpRAvPcnq1Y09lW9PMqCFAHS0jTXg42F2etpsLLnOKsZg0VVb7bWy6ChZEnSvhEKOVQt4sgCAKgNO0EQRCRUy5JGfb29+Kna5cAAJ48/uyinJMpVQoUX+sOm1ybLoJlML9OixasIsic5pS6SbVDXbfTzRis8nER5JUqqoNFEES5QBYsgiCIiAnqslVqBsV4oSKiKkFisEQLVvxJCxasYlhdeAuWl9sfq4NlxbTFX2PRuGekHOQlCIIASMEiCIKInHKJGUqqlpzFihtjZ1GgBM4iyNqzHKbXWgmyCKZ4pc7jhKwOVnlZsLi/y0FggiAIkIJFEAQROeIkO668zKX3bvUoUFsIVEUJXAdLKSMLlnhFxUgzHsqCBSsGqxweU779yiMpB0EQBClYBEEQkWCbCJbDzBXAg5tXmX+LBXKLgV8zWdYu8Zt4Ma2uoaTnTwV09dQBoNxcBLm/qSYWQRDlAilYBEEQETCgZcy/yyFNu2ixCjpJjwpV8Z/g67oOFfGvg+V1HcVo1ZRuPXveyn0ZugjaLFgEQRDlASlYBEEQEdCfsSa5v1i/tISSBKN1oHQKFpvk+2YRRDYpQ9zxVGqK7CLoqV7pootg/FUs3i2wXCzDBEEQpGARBEFEwIbuDvPvTT2dJZQkGEnV3v2nHPWbCgOz9gSqg2UkZbA+F06ufPBquWK0atqmYPnFYCllZcHiIQWLIIhygRQsgiCICPjBqrdLLUIoxHTiKc7FsdAoyFqmgiRpLweFwGviX5Q07dy9DKSDlFMMlq3QMEEQRHlAChZBEEQE9BdRQYkC0SWQfc7oOm5a9ioe2bK6oOdXofhbsKBDVeKfQ9DrOophdMkEzLSXbU+urlgZaCx2JbAMBCYIggApWARBEPslaUHBYkWHd/X1YEVHCx7durYg59VDWCScykk8J9jeaSUKL7MesFGz1iBLXS2HtOf2QsMEQRDlASlYBEEQETCyqqbUIoRCzHTI3MzUopiLlGBZBA2LS9xNWKXOGsmf3Vtpysa0qeVjwBIKDZeDxARBEKRgEQRBRMJpYyaXWoRQOGOwsp8TSnGGBQWKb9ICDfYiw3GdXnumaS+C0EGd6HRkU96bMW1xbVAOnSxYBEGUIaRgEQRBRIBaBunEeRwWLCOGrBjXoSjZLIZpXfeJX9KhKErsFQK/2lOFxqaE+MaD8QprTBuUg7fIxV9agiCILKRgEQRBRAA/sT20vqmEkgTDYcFiLoJF8sdLGoqcX1KGMvAQxN6BPtffil0c18/pMusiGPcWtRD1xTi6CaY0DU/t3ISu1GCpRSEIIiaQgkUQBBEB/ES6HCawYpKLYhUaZlYT5orodV5dFxW++E2u13W1S79ng2sxFIKgcUrZtPcW5VBXSpQwjhL/v/VLcc+G5bhnw/JSi0IQREwgBYsgCCIC9ICpsuNCWphcDxougsVwG1NgFTr2ShBhxQxZn+PG6s5W6ffFVLL1gG502fZUYt2eIuLzGEeZX9m3EwCwpQwKjBMEURxIwSIIgogAW6xIGVgGMi5JLgoNaxnmIiha0ng0PevShjhbBDnZeCnVAC6QUcE/bm7nY88kK/JcLjitbPF7t9jiRG0yWWJJCIKIC6RgEQRBRECY+k5xQLRgpfRiRgspSBougqIcPNkYrPhnEWTYFKwiFvO1WbBczse+VrgWLUcXwWJkZQwLe3OKlYGTIIj4Q70BQRBEBPCT3HKYuGZcYrCKJbmlYHnEYMHu0hZ/LEmLasGy/e1iwWJ/KPbU93GnHCxYjGQZWQYJgigspGARBEFEgGb7O76TQIbDgsUUrEIrh8bhk0a1W08FS9ftg1QMFVd+Ss3Pr5mCVWyJvSPamIug37bxoXzUK7JgEQRhQb0BQRBEBNhrEZVQkICwulcnj5oAwIojKQYKrMmoZwwW4p+UgZdJ5iJYjGfB5p7qckL2NZ/2vhxiBUUZ42wdTpKCRRCEAfUGBEEQEcBP+8rBgtVvKFRDk5UA5C6CXhn+coUdscIniyCflCHONFZUAQAOHFIPu4tg9v9iZGUMkkXQ+p4r3FxIoSKiHN4lhhr3h5UgiKJBChZBEEQE2C1Y8Z8U9mcMBauiAoA8TbtWoMQXigIkDD81t+QaZlIGJd5JLpiCeHjjKJu7Y7tRdPYfOzcVXIZgdbAMhVXhv4lji3pTfhITBLE/QgoWQRBEBPAr7cXMx5cr/VoaADDMsGANMlc9bgZbCAsWg7lTick2GGzyr8JSsuI4uWbp7hMlTHBgr8Hmso3xf7nFYIkugXFevIivZARBFBtSsAiCICLAVosoxpNAxoBpwTJcBHVmwbLY0tMV+XmZ4uSXpt1Kxx3vnHdMCS1lgoMgFiwrBotL1B7/x7SsklwUckGCIIjyghQsgiCICCi3QsOmi6BoweL45YZlBTm3AgUJ3yyChgWL165i2K6WgmVXA6fVNQAo/iDr7iDIZREsmjT547BglUiOIJTDwgpBEMWBFCyCIIgIKLdCwwOGi6BpwTKTXFjS96ZTkZ/XTHLhk0VQ4ywuccbNRbChMpv8YtawpoLLYE9y4V0Hyx7TFv8n1WHBirES41VygCCI/QtSsAiCICLAlhyiDCauA0ZSi7qkmOSC36ZwE8aEj4sgb3Gxvosfbi6CrOhsMdzG7Gna/bcxvyuMOJEiKlRxljlVwPeFIIjyghQsgiCICNDKLIvgYCY7GaxJJJFQFGmSi75M9BYsdnzLkOJvcYlzWvGudDZboGjBYjFmxXYbc7dK8YWG42kVfGzrWnzhnefN+EDAuVgRZ6vbe52tpRaBIIiYQAoWQRBEBNjqYMV3DmjCLFhVagKVqmoWHuZF78tk0J9JR35uBVYhXre2YkpqNotg5CJExqNb1wIAegRlVDWELoY10249ddsmS5wLDT+0ZTW29HZhWUez+Z1DxHiJTBAEIYUULIIgiAjQytRFsFJVUaEkTAuWaCFYWaBVeStVuEsWQXO7uDsJZmke6Ld9NtPQF0GJsSmpri6XBjGvKwbAptSzd8lUyGMotRrzOEGCIIoPKVgEQRARYI+Did8kUGRQy6BSVaEoimnBksm9r78v0vPq4oTZx4Jls7hEKkm0iK6ALEtisV0EXRUQrj3jDlP+edQYmzErVZpKEQRhh3oFgiCICAjiphUndN1ScirUBDRkrS3F0AcUhS8eHCTrXXwn1wwdOmYMbTQ/FzMGy/bsuelXxv/loLD28zFYQhr8OMocR6saQRClhRQsgiCICCi3JBcadFPJqTBW4FPSNNPRXgs7mmp+diuMa7d0Zb+LVJRI0XTdZmVJFDOLoCCH1zaKosQ2yQWDdxE0nxelNBbBIPAyxVE+giCKDylYBEEQEWCb5JbBirau6+YAYKYU17QiZWmzMgO6WVz4Noy3OpBFvAzTglWM9uRO4XY+XeIiGNeFAN5FkCkscXYR5J/hYijUBEHEH1KwCIIgIsBuwSqhIAHRYLnpsRpOKd05PS/UpbSnBgC4p7YWLRfZ7+LbsOeOP8hmbUsU0eJidxH0sWBxpZvj2pq8gsWuLRHjVP38W5OhYsMEQYAULIIgiEgoTwtWdtKaVIvnzsZ4ZvcWAMC/jP9FmChxj8AaXlkNFcCBdcNsgiaKmEWQd7vUIbdM6TaLYJxbFLY6WOxSmKIdN6ubqNCWQ4kGgiAKDylYBEEQEaCXWQyWDitjN3NnS0tcBAtxJUGm92a2wWxGjAJIEQ26rkM12m9FR4v5vapkB9hiWrDUAG6JMW5Kk14uBmuQq9cGxM+C5VSwyIJFEAQpWARBEJFQbhYsTddNS4apYBUhi2BQ5VOmmMSxVXXoUF2UFlVRiqNgGaew3BIl2xj/K1B8a5CVmt60pWD1GcpWTTIJIH4ypwWFKhMz+QiCKA2kYBEEQUSAPZNYCQUJiEwxkE5eC6AghDGiqHzMUAwtg5oud7lToSChqEV1EfSK+5KJEcPmBGApVQDMAtjVzIIVM5nfbNlj+0xZBAmCAEjBIgiizNjc04mN3R2lFsMBr5zEbZVdBq8Y8G5jcZGcWQEVJd4xWK4WLCXrJlhMa6apYEnOyZ7JbExbnFsU6MmkzL810/3Ru25aqehOD9o+UxZBgiAAIFlqAQiCIMJw7bsvAACePP7s0goiYK9FVDIxApNVDAwFi2Vo83Ati+68AWOwzCQX8VYGNLhbsFQUyUWQZdoLkLlQVfgsgvF8UDOa5XZnJrmIaRbB6oR9GkUWLIIgALJgEQRRRuzt7y21CK7Y0rTHbhpoR9d1m6LD/s+muCiC7IqCs8ZNAQA0VFRKNykbC5auSwv3KkDxXATNTHtGkgvJOW3fxbBB+fTmsjQriiL9seSs7263fSYFiyAIgBQsgiDKiCXt+0otgit2C1a8J1lmwgNmwTL+bx3sx9O7Nku3jfrcRzWNAQC0pwY9N+RrS8WxVXXo0oFUUZSsi2ARLVjJABYsW6HhQgoVkpQmV7DEemhxSyDzj52bbJ93x3gRiCCI4kEKFkEQZUOcXe/sFqx4JmRgmGm9he+/teINPLt7a8HPrwDY3NNlySOzuPCWCyWe7mGAPZbtgNqh5vcKjCyCRZDakeRCGoPF5LJKDcepPQc5BUt8lwC7oh0nPjJmsu3z33asL5EkBEHECVKwCIKIPWwCXpVIOL6LC8WoHxUVTFE1LVge2xbqOqq5eymmugbsMVhxziLIJ7lYMHy0+b2iFC+LILtJXsWNzeeTd7mMUXPaLVicYOazanyMkcwAUJussH1urKgukSQEQcQJUrAIgog1z+zagnNffQrbervMVM1ANrlAnBAnfnGOw7IsWPYkF8U6OwCcPGqC+c2AJlGwuKx3TBlrGxwovHgh4S1YKheLpcBq30K7CdqKMrudz9KvHPvFgZSeMf+WScXaOG4ugmIbHt44skSSEAQRJ0jBIggi1vxi/VKkdQ2P79hom8xoEqtHKdE4hQAoD3dGM8mFpwmrMHWwKtUEpg9tBAAMZDKObfg4MWYV6NfSju1KjQ6dswTyCpZiWrYKr2BlCe4iaP8uDvRwxYV1ScIY1fMhLSGGqONrhgCgNO0EQWQhBYsgiLKBV1paBvtLJ4gENq8Kkiq71DiSXBTz3FyzsLbKSJRl1n4qFFSo2aEqJbF0lRpdt5Jc8PWwFMXbZS9SGYz/PQsNc+qULOthqfknl1yFv8tM6t19PQCA/ky8lGwmX9K41+kYv/cEQRQPUrAIgsDHX3sKZ778RKxXXxXYJ6qrOttKJ4wEZjVgk+o4uV+J6KbyksXLRbAQV2EWOPbYxlICs9YuIJ4KlgZLYVEFC5aXAhkl7H4mzDTtkm2M/6VFkWPAwYY1E4D0odvW1w0AeHzHxiJJFAwzg6PKlOn4PaMEQRQfUrAIYj+nOzWIPsNFa01na4mlcUdRFJvSMqa6toTSOLEmucyKUEppvGFTwFJbMhSP7IB8DJZpwYrZ5FXnrGyAvT1VWIrhgOZ0gYxUDuN/TwtWzJOGVKnWdIR3cdR13aaIx9VyXUEWLIIgOEjBIoj9nD5u8vdejBUswD5xjJu1TZzklocFiykGHttGfW7ub6+JPq8QMDnjpBAAvKKa/d82oCqKmfWy0AoWwzsGy/qu31hQ6S+SXEHgFRN7DJbd0nkEl6kxDpgugmTBIgiCgxQsgtjP4ScEsQ0kR3aSxU8c0zFzFzNjhsogBstWYwrFzSKYTQphP6+spXgZzRTdRZAvDEwRUFwsWFWGBWswUywXwQCFhhXgP3u3AQB+s2FFQeUKA79g4ozBUvCpiQcDAIZXVhVTLF+Y4mpasGLWLxEEURpIwSKI/Rx+MlbBpUGPI3wxUlntpKjRdB3NA32Btg2SyS0u8Nah7P+eW0d+bkWwnEmtfcZXKmfBipvSamW4g/G/PU17VZFcBHf2ZxNAeNbBEu45ALSl4pP23m750W1/KwqQMBo5ri54lgUrnvIRBFFcSMEiiP0cPlZoMEYuQwCwj1NuFCjY1N1hfi6GgvWztUtw6Vv/xuaeTt9t2WTbTHIR43mWmPq6mLFYOqyYGstF0LmdZcFSTEUsbkqr5qGoKoqCSmPSXWgFKxPAghVnl1VAsGDxdYb1bLsmXZTHjd0dWNHRUgwRpTBxkgpTAMmCRRAEKVgEsd/DrxzL6hGVEj4lc4Wqop1bcU8XIYsEc6V6tXmn77ZimvY4T2gtxcD+v4xCxGCJdaOkSS64Wl1WDFZu52wb7Mft772FtV3RZp4UFVWHBSuRBGBXsO5ZvwxnvvwEulKD0cjANQpTQrzrYMUTzRZ3ZY/BAp+RUXDBu27xi7hp2avoTZcmfbvpImhYK8mCRRAEQAoWQez38JOxYgXjB8W+qq2jK50yPxczo9zftm/w3cZK0x7/LIKlLN7K143ychE0E0jAUshytWD9v/XL8HrLbvzPkpdz2t8NUVG1pWnnLFiDxsKFput4yqj39Mv1y6KRgWsTKy28VwyWJePoqvhk4rQ5Ber2XxR4K+MA0Fqi7IJWHSyyYBEEYUEKFkHs5/CKQNyKePKr2s/s3oL2Qd6CVbyJTBDF01GLKNYWLMs6xP8vI+oFeb5ulBLAMqUo+acVf6Nld077+aFzboz8/4A8BqsrbVmt2iOKf+ItuUFdBG+cfjgA4OgRYyKRIQrsViun/KqHMg4AvZmU9PtCw55JMwYrzisrBEEUDVKwCGI/x+YiGGML1oCWwXaj2CgQv5ViJo3pIhhDV6G/bV+PK99+zkwWIlMMCokuKHbm95JJM3suE4piWtri1qJiwWZ+QFVgpWlnsY19nBvbzPrhkcjAv79WoWH3JBcJRTHd2eL0iPKyiOkusrff2zJcOhfBLFYdrHj1SwRBlIZkqQUgCKK08JOxuMVgedWUiV1GOTHRQOzUAeB3m94DANy07BUAdpc2N6KMJbPigOxJIWRnYEpghaJGmvq+N51CbbIi7+MAzoLNNguWwlmwjPeqh7MQR/Wu8Vn1WKY9mYugmTQEljUoTs+ozYJlq4nFaqE5t+PpKZEFi+GWhIMgiP0TsmARxH4OP2kdjFkNF6/JSrEVrDafGA8rTXv8swi2GwkWrAK5RbJgifW3PCxnKcPqU6kmPBWxsLy0b0cER8kiFmy2xWBBcbgIbu3tMn/vjcgdly1CDEkkPZNcWG6h8Ux7r7v8beJjxVzZUZoi6WYMlkoWLIIgLEjBIoj9HF6J8bIYlQKvCWCxV99TPsqnVgYWLBE20S5Wrgu3+luy+2xasFQ1UoVgXE1d3sdgiAWbVa4dFViZ5di19HBJWqKaiDML1uQh9VySC+exWdOpnMtlnKwtdquVPR4rm0nSe7sndm4stIhSmAwVZMEiCIKDXAQJYj+HVwTiNjnwkidusoqZ+eJkHXCj2EkETSsKs2B5WM6YkpBUVNPSFYW7YpSX7HR5tGcRZAMse1Z5q1VUzwdLW55QvC1TGvd8xjGmzc2CxWKwFInMvHvkofVNhRTPFdNyzQohx8wLgCCI0kAWLILYz9H0+CpYXhRbgfGzOLDg+6SZ5KLQEuXOLCPBgkwxEInyMtixRMuZ7BwZ3uLC9o9AmCgti+wZVE0Llj2LoGhR6uUsWFE9v0zJSCqqZ4kAWV2xOC0C2JUqXfhenkmSt9SNqx1SSPFcMetgkQWLIAgOsmARxH5OnF0EvSwWxZbUr7Axk7Uc0rQzmEJQLEOWmFnRK/26pbwoedfBssuQ9yEAZJNUXPrWvwFY03+7i6DiSJvex1mwono60pJsi7L3mH3DW7BipWDZat7ZfnCtg8Vbi0p9LRSDRRAED1mwCGI/J84WLC9p4mbB4mNcgGiz70UNiwUy9QEPDSvKdPOmBUusgyXZlndps+pl5SZLTcJaS8xEdF/+sn2d+bcqdRG0rpNZmfgyCFE9vywFfFLlsi16JLlQoXhuVyq8LFjZYtPZz7zM6Rj0Xey0lEWQIAgeUrAIYj8nzjFYpVawGiuqzL/92kYzLVjxdxHcbGSzYxPtYmURdBQ49igey9o7a5kx9s/xvG6JEfJhV1+P+bcspkzlLFjMomSv9RSNHC0D2eyW1WoiUKFhRbEG/lJbfXjck1wA4JRsvtkyMVCw2H2sIAsWQRAcpGARxH5OxuaaE58JFwBPDasYslYahWKBIBYsHSq8M+PFjSLnuLAm+eb53ZVR3uLCtsu1Tfm9IksuwR2HyZdQ7C0qWjX0AixmpIzncnhltakoS+tgySxYMXpG3ZJcAO61u+ztWRrFpiM1ACBbTiArR3zalCCI0kEKFkHs52i6fMISB7xjsAovaxj3yez0TkFPOhtnM6iVpmhzx+CAWUPKDzFdeqEx07QLsV+y+8zHYKkelq4gaKJFJAIOHtpo/s3k4/UrVbG+txQsi6gsaWa2RdW7IDNfFDmeLoL2e2S1j10p5y+Nl75Uis1gJtuyI6tqAMRLaSUIonSQgkUQ+zk2C1YJ5ZBRahdBvm380i/rug5VAZZ1NAMAfrpuSSFFk7KttwsXvvkv/GTN4kDbm7FQHvnao2xlTbRgeaQLl8Vg+eQZcaUQE3FeiZVlYxzQNC7GzFCwbO9aNHKw5CsJhXdJlLgImhasmGYRFETRue/dklzoIRZACoXpIsiS28SoTQmCKB2kYBHEfg4/MYkyoUGhKcZEJowFKxuMb02wd3IxOsViUeteAMDLzTsDba8I/8t+ixQ3C5aHS1uC277TcMcKf9rorbR8TSumqPIugm+27HbUGSukq2JS8bZgsW/sWQQjESESxPvC268UKJ7xekDpFBvzOVXjZxUkCKJ0kIJFEPs5hXCfigovhS+qbHBe8G3jG4MF3VYHqRSEjUPxktdy34sO0yolqG9SCxbvImh815NJY29/b+jz2lOAR3NFfMp1WSueOW6KT4xZJGKY9zxrwTJivjxcLpUyyCIIyFL6O5VHe4Ke0tjfmQxJsmARBMFBChZB7OfEOclFyV0EQ0zgmCtTKQnrJsXklSlaXm6DuSLeMy8lzlKwVJss77btDX9e23FD7y6lP8O5CBryre5qM78bU11r/m26CNpkishF0My2aFmwPJNcKIqp4PZwhY9LjfhsWG2mQ1FcimFzu8QlTXvc+lCCIEoDKVgEsZ+jcYpD3JJceFFsF8G0z/k06AVRSsIQWsEKYMEqRL55MfZLZqm00rTbvw8rjXjsqBQb3oLFFJYBTumqUhMOBbIQljQzyYXiLGzMw1waeUvre52teKc1vMJaDJgibMZgSbMIWizvaCmJkmVZsJhVkCAIghQsgtjvscVglVAOGZ5ZBIsegxUsTXspydWCJbUOFMAeF8qCxSW54AnrhunnepYrNhdBSRbBSjXhqcBG8fz2Z9L43ab3AAAJVTUVvV39zvi/u9ZmE5/8Y+cmm5z/t2ND3nJEgeM+2ax+ltWN31BUlld2tEQq09+2r8c965d5bmPFYJEFiyAIi1LPBwiCKDG8G1wu8S2FxGuuwtSd7b3dWBHxxIphzyLoZ8EqjFtdGHKNwZJJXYiCqVaiBRjn9VdAxHitdV3toRRJUUkvpAWLl7VStYZXptTZMuBFIMNL+3aYfycUBa80Zz8/u3ur534JTk4+WUcpERVfftnHzYIlNmLUb9/vNr2Hp3Zt9ix7wOROelgPCYLY/yAFiyD2czKCG5xfOvJiEiQG6+p3/oublr2K/gJMFMNbsBRHsdliElZ5MBUcD5GjnC6yyaiZ1twjMxwfM8TzzO4t+Mu2dYHPKerFUcVgySxYU+uGcd8pThdB7jqjmIizpBZAdoLfHTCmim/T3pjEYblZGnXAiMFi37vvk1QLM6XxUuhZr8DuRZwShxAEUTpIwSKI/Zw9gtWqEJaL3AnuIvhmy55oz6zrtslSKkiadgU4c+yUSOUIg59lR1T+FH/9KlIcdbA8suwxy6rMJfDhLasDn9NhwYqqDhb3nrDrOGHkeIyrGYJPTJxmfC/Iwru3RSBHklOwdvf34uLJMwEAk2uHeu7Ht2lc1AFRMXHmEJTUwRK2qlQTBZHNa9FJMy1Y5CJIEIQFKVgE8T4mrWm+A/7TuzYXR5gc8LRgCb/ebcSYRIU4pRrwsZANaBl0pAYxrKIyUjnC4HevJwoTb+bS5uWqF60FK/u/ow6WlwUrT/VPbJLoCvzyCpbxv6Lg1ws+gEsOmGl+BuRtGEWZgQrVapsBLYOGyioAwJbeLs/9+Ge01KUFTITmMC1Y5jPDNuOcB4V9CpWq3SvBDZMnyepgkYJFEARIwSKI9y2aruO8V5/E9YtfDL1fXPASRYzZmD60MdJzi+3Q46Fg7ejrNv8+e/yBkcoRBt/YJJckE8WaY+uiBctDATGTB0iEm1BTF/qc5ueInm+/rJKyc9qVg2hdBCuUROB3t4Kz9MRFwRIVXz63qQK5tVO8t4XKIuhl1ecXAhTEq/8kCKJ0kIJFEO9TBrQMNACbejpD7RcnB0EvdNgnqVOHNkR6fHGiNOgR6M7H41QnkqhUVTSUwJLVlRoMtb2V5MI+yT66aQwumjwDQLSp+01rBAQLluQUZmFcQ8ZzOMV1Qm1wBcsZgxW9BcsNh4tgAeRgVKqqZzIGN+I6CbDFYMF6Vm1KqrBPSRQs439VyRZwLpf+kyCIwhJJ3zo4OIh77rkHq1cH94snCKKwpHJMVhGnFVi/NO28FcEvy19YxIQBXhPqCkV1fPaL2Yqa/kwaLzfv9NxGlEhUdBjXTJ2N4Ya7WZRYqddFuSQugsb/bGLNZ8YL84w6swhGQ5BYRVnckCVH/s8Hr1BUqGpOMUilznzJcBYatv7nZfS691H2XfziTcajb7ESt2Tvd5z6T4IgSkckClZlZSXuvfdedHaGWyknCKJw5KpgReVCFQVekuiwx1xEHX/Rlc5ag5iLmpdLWFJQsBKKWvRsjO2pAd9tHAqWZG5966FHobGy2n2nPBAtWKqHiyB7DllKcV6JDSOSo9BwZAV+reO4KilC3JA9yUX+MvDX8qHRk3AQl8Uwl2PECVExViXKqih7lNfCv71+LoLZNPLZDKJxbU+CIIpLZN4Bs2fPxsqVK6M6HEEQeeLl0uZFnNIMe9bBEi1YEU9smIJUnUjaPstgZx5fMwRANuC9UO5KbuSiUJtJLjgF4dD6JuOv6C0bZgyWkL1QptRrwrZDkhXWb6EsWHIZ8iVIe4sukPZzR2vBGlpRCUVRMKKy2vPOibGKm3o6Y7Go4lSW7NYhSZ1hB1G+cxqnVHn1LRqshQJViVf/SRBE6YhMwbrxxhvx6KOP4ve//z22bduG3t5e9PX12f7FiS1btuDCCy/EGWecgfPPP7/U4hBE5ARVsNiEmrmERexplydeExsdGY2fBEVrMWJpuGsMt6sgge5jqrMKVkJRbRO0YsAXjB1dXRtoH1madjHpQZSPA3u2xJgvryQXTAkckkw6fgt0zgKkadeEFP5uCo3XdUbRrpphZ/nYhKnmd6qiOOITAeDUMZMAAJ+eNN1xnIEcF2OiRKYIs+8UKOZkxTsGK7p3zl4f0GNxRdctiyy5CBIEYZD03yQYn/jEJwAAt912G26//XbpNqtWrYrqdHnzjW98A1/72tcwe/ZstLa2llocQqAjNYD6ZGVs4gPKkcGAFg02UUzGsFCmp4ugbl9ZjnoVnlmsqhJZBcu72CiLLbJc3zRkJ+LFytLWl7YUrDEuCpbYRrI07Vbii0LAWSTgncHOnFwb2zBLIgDs7u8JfkYxyUXgPd0JOpH3SkMfxePKJvMVXIFd1qYadNO90hDC+D37/0fGTMY/d28BkLs7cZQ4FSzuO8Uli6Bo9Yqw77IVGfeqgwXdbFNVUWLRlmHY09+LYRWVtveLIIj8ieyN+v73v182k+G1a9eipqYGs2fPBgAMHz68xBIRPOu723HD4pdw7Iix+PrMI0otTtnyfzs2BNqOKQ57B7JW5p50CiOragomVxi8pksa9IIWRWbtwhIHBAmuZz0gi9sqpoLV61OnC5DFYDmVKdGtIcosgmJmQPF72XdMHn6PXf29WctBgLYtRKHhlGDmfa/TZZFOcGvjFYIo2jUjWPkATsHSdSS45rGKPGe/XNg0JmYKlpDkQrdUrGyMk3M7pwUrumfVbsHySnJhtX92YSU+C1R+dKcGccXbz2FkVQ3uP/JDpRaHIN5XRKZgnXfeeVEdCm+//Tbuu+8+rFixAvv27cO9996Lk08+2bbNI488gvvuuw/79u3DzJkzccstt5gKkx9btmxBdXU1rrrqKuzbtw/nn38+LrroosjkJ/Lj7ZY9AIBXm3eVWJLy5sV9OwJtJ044n9uzFVceeGghRMoB7+xdhVSwmIugqWB5yWL8zya3zHKQ1jUki5QI+w9b13j+vry9Gdu5el2AvA6WqXQVQC+0XATZ//IkF80Dfeak301BHdAygVbdHZaRCCbhogVLzDjJKLiLoKRWGJvsZ3QdFdy27LJZe/ZnLLfAXOM1I8VhabS7YBa7DpZmU7Dc+5kMLEU/6yIYmQgFp8Mo67BvIF4hHATxfiBym/D69euxYsUK7N69G+effz5GjhyJLVu2oKmpCXV1wWqX9Pb2Yvr06TjvvPPwxS9+0fH7008/jR/84Ae49dZbMWfOHDz44IO48sor8cwzz5jWqHPOOUd67L/97W9Ip9N455138Pjjj2PIkCG4+OKLsWDBAsyYMSOna1bFnMN5wI4V5THLDf7a49QO5XRvxImGl8yi4nBg3bD4XKNkcq0iu0qcXd/mZGduOhHJnjGOXcVZsNyOrSuWi6CqKkgwly2leM/LZqHeGX/ejK7j68tfc+yTULPy8pYgtp+laCmRXEP2GPZ2YodVuHba0duNz779H05GFaqqYELtUCzvaDG/79PSqK3gVQgXxJTwLvdkUesevLJvJ74wbY7N5U5GRrG/M+NrhkiP6dWX6XB/noLCpv2sjQBO2RKukz2j7J4z11cASBlHKuV7rwunVhT+uVSQMGTTFd3xjJrHQHTXwMvz4r4dWNA0Wr6driNhPs+KZz+RK4Uae3TuOdagI+nz3BNyymlusL9RynsTmYLV09ODb3zjG/jXv/6FZDKJTCaD448/HiNHjsRPfvITjBs3Dl/72tcCHevEE0/EiSee6Pr7/fffj09+8pNmcopbb70VL7zwAv7+97/jiiuuAAA8/vjjrvuPHj0as2fPxqhRowAARx99NFavXp2TgpVMqmhqCl70MiiNjUMiP2a5MGSfVX9n+PAhsXM9LYd70zloT9nt9Ywqhh/RCWMn4KVd2zFlZGNBnulcqOt21mJKqAo0TUeyIoFUtfVsVFRmu7Oo7k9NX7ZQ8JDqSqADSFQkXNulXunP7lNVgaamOlRVZGWpb6zFsALUk/KjQpDVrQBtbU0VmprqMGSvVRSZ7Te0O5uqvaamMrLnYU9b9rmsNtqpdkf2vHVDq81zvNm917ZPY0Mtmhrr8JUFR6ByeQKPb866vg4ZVo2mIf5ypXvt/UdVdYXjenRdx7defAMAcMyECfjIpCnhjlmRlLZRSyJr2aqoSKAtmUK3brlxKoqSd7vWtGfbb2id1X6VxrM3rLEW9dyzV2m8Hw3DatHUVIcPDz8Qt658EwDwfOtOzJ0wtqR9G5OPLaAMa6jF8NpsLGEioWLYsFpzO/MZNd47Rs2Q6J5V/h7/Z882fPfo4+QKiKHINjXVIZlQoUEvWP8Z9f1pTVqW14qhlRheXe2xNeFHOcwN9ldKcW8iU7B++MMfYvHixXjggQdw+OGH29z1TjzxRPzud78LrGB5MTg4iJUrV+Lzn/+8+Z2qqjjmmGOwZMmSQMeYPXs29u3bh+7ublRXV+Pdd9/Fhz/84ZzkSac1dHZGZ15XVQWNjUPQ1tYDrZx8DSJkjGp18nuau3xXk4tFOd2b1kH7xKOlpdtlS2AwlZ18K+nsNXV09KEl4b59Menq7nd8x1ygBgZTuPnNV8zvBwayk4Wo7k97Zy8AQMno5vnc2rGtI7ttajCDlpZu6JmsRaC5pRvpSrn7WNQcMKTetGKlUhmbrG4uYAP92Wvq67VkZPt1G23f2zvg+fwERVUV0+I4OJhGS0s3+vuz5+3s6rPO22NfHOjq6EOLlv3t4vHTTQVrb0s3qvv9F19a+nttn3sk1zPAucv19Qz6Xu++PnuSjXRak+7T2Z09956eHlz4n6dtv2manne7dhr3qL/Xktl89lq7kaqw7muf8X50dfajRbGf98nNG/Cl2fNL2rf1G/KpStaVtLWtBxV92WvRNA1dxjjbP5A2r7Wjw35vO7v7InlWAaBZuMfb9rajvqLSsV1G05FUjPfGaLp9zV2Rxl4Wauxp6bKusaW1G3qVfxwn4aSc5gb7G4W4N/X1Naio8C/qHpmC9eyzz+Lmm2/GUUcdhUzGPpiPGzcOO3YEiwfxo62tDZlMBiNGjLB939TUhC1btgQ6RjKZxLXXXotPfepTAIDTTjstcPyWjEK8UJqm77cvaoa77sFMxp4JKwaUw73p5zLKJRXFU14zmQAXHB+X65MlJGCWfk0HOo0YAsCKzYjq/gwaE9VKI7tixqNdWJYxxTg/c9NKZbSitWUtF4+k6/Z+KZ1xiSHRnf0X+2zWbpJskyvM7Yq1E2T3TJbwwvitUrEGtYFMJpBcYgY42fOd4sasBLzfFyDbL/HokD8b7FJ29/U6foviPTOfO+4esVildEaDluBcwLj2Fc87zqjfVsq+zdYPGTJmzGuC9axw8ov9g65F96yKde/602nUJZwuqZquZ61umm5GW6YzWkHc7aK+P3y/kNaK11e9XymHucH+SinuTWQK1sDAABoaGqS/9fT0IJHw1/byIWhGKcYpp5yCU045pYASEbnCx9WkNQ3weXQ6U4O4a+1inDv+IMxuGOG98X7CIDdw+vUpLGCfKQVxGh5kMevMgiXGjkUtN7P6sEQKnlkEmWxmkgumlJU+Oxvg/gzI6mCJRNmuZjp7ocCx/RyK8MmeIW/KkHps6un0LPxsQ0yeILmPKdt98r/ioCUQGN3pQcd3UbQri7W0JbkwF0rk5+PHyU9OPBh/2rYWRzWNiUCa/NCFa9Ghm++/wj0FfJISh4IVoTxiHOtARm4F1qE7yg6USyZBvn+i+l0EES2RLbEcdthhrnFP//rXvzBv3rxIztPY2IhEIoHm5mbb962trQ6rFlGeBM3exHh8xwa83boH35AE8e+v7OLqBPkN9mwiljAsNXGaG8hEYZMYMRtclOnEASvteW0ygIIlpMtmMkaZ1cwPe/rqYG1j1cFyUgi7MbtnYnp4Xdeh6zruWb8MrwvZQxPCwtmk2qEAgk9iM8J24mfAfp+CLHKu7WqzfXa7zUxyeS+W/7NhWX2soTzhMskXn1EAGF1d4yFfcWHSmgsoum57bmUZJyU2w8jk+c+ebbbPm3s7pdtpOmxZBLPfxagT9eCdtn3m3+UiM0GUC5EpWNdffz2effZZXHrppfjzn/8MRVHw4osv4sYbb8QzzzwjzQaYC5WVlZg1axZee82aTGuahtdffx1z586N5BxEaeEnOF71Rxi8mxiR5TcbV9g+e6WmzugaFFidQbxWX52yuFraIhabpS4emszGXXi1i1XfKfs5UQIFywu3yZNpzfC0/kd3DVYtJucZ1nd34Kldm/Fai13BElOdh1VeHVYOyW6BrWEGYrp7N0TZ7XKFOqUUsw6WJE2707pjf0Z5+eIwuTYVLMn7rUBeB8vtGFHwl+3rbZ//37plrmd1WLBK35yB+NO2tebfsoUHgiByJzIFa8GCBXjggQcwODiI733ve9B1HT//+c+xbds23H///aFinHp6erBq1SqsWrUKALB9+3asWrUK+/ZlV1suu+wy/PGPf8Tf//53bNiwAd/5znfQ39+Pc889N6rLIUoIP5ENMvE5eGhjIcUpS0ZU2gsFeyoHyBbDjVu2RjfYan2hJ4XMRbCpsto4n/u2bNLHJlgs/iI2LoKuFqwsUgtWAR4Hy+XLOD83mXazVotyhLUSiNvJ9tvNJcIIYgkdV23PSOWW0KDQr5S0DpbipmAZv7sUJS41uqAs6tBNt7yd/T2m3LY6WAGU51wZU11r+9zgkg1UB19PrrxcBHli8AgQxPuKSOtgzZ8/H3/4wx/Q39+Pjo4O1NfXo6amxn9HgRUrVuCSSy4xP992220AgGuvvRZf/OIXcfrpp6O1tRV33323WWj4t7/9rVkDK+40D/ShsbLa4foSVxa37cWIqhpMNFxzCs1KrtaNn4tgRtfxs3VLCixR+XHiqPFY0Wm1o6YDCZfHTdOzky5ZjEOpkUnCu0CNrqrFnoFe123zOrdxwIoAyhJTvtgksBQWLHsBVvffeERXPelx85JKPJa7i6CbkiImubHaNpjyasYeGX/LFKh71i9zbB/kmAxZdrnsOd1bNgqX1oyg2Gf/zv7vpljyzcwrM6WGSWBaqHXg/3ZuBGC8R+y6bK6wbkfJnzkNI7F7t5U46wOjJ0q302E9z/2GW3EcFNawlKPMBBFnIlOwmIteTU0NqqurUZ1HPYWFCxdizZo1nttcdNFFuOiii3I+R6nY1tuFz7/zPE4cOR43zpif9/F0XccL+7ZjVn0TRgkrblGwurMV31yRrQ/z5PFnR358GU/t2mz+nfKxYG3r7SqwNOWJOFR6DZ467JPbOA2zMrH5CZhX3FG+sIlcIoDFTBMmunGLxXBbUfde4ol+AYgpotaRLQuWW7ZQ0bIa1g3LsvKoSOuaVOnlF3KCLDCIW4ytltdY8WrBKGybnhYsQcrudMqQiXcntB+nlJhWYC6JTfOAVQJFlbSmM9YwOsTSBrI2MmMKjc/MErqrr8dV6Y4r5Wh1I4g4E5mL4OWXX44jjjgCH//4x3HHHXfgueeeQ1tbm/+O+xnL2rPJOV7cF03a+rda9+DHaxbjmneej+R4Il9Z+or/RgXEzwJQLlbAohMiAYSmZ2MIoqzbEh1OuZOGwpPS7VOCQk0PkgHcqDRhosWeyyBJWqLC6/rdZA9yzyO1YAluYKp5eh1tqQHpPqKMbkkc3GDXnlQsZU7khJETLBmDHNQ45nEjxuHEkeNx4eTp8u08TYP5tyxzoeOVjwRXVoDRm07hvc5Wx7Zxihky3UetYCtb/87+fKNlt2Mf83OE8jAF67QxkwHIF/ss66jhGmwIOeBSdy7OxEHJJoj3E5FZsF577TUsWrQI77zzDt566y089NBD0DQNBx54IObPn48FCxbg7LOLYwGJM9VcrZredAq1SWddjTDsMIKt+8uwQ3fjhJHj8ZKhgPp1+kklHkWI44Y4FfBLMc5bCeI00MokYZPCzT2d5oTGdeN8zs1ZPgBvi4MYg1XyJBcBJ55mkgPpb9EjTkgZmg7cuvJN6T6iHGpIF0HmRpdUVUDLSJ9vmwUrwDHZ1tOHNuLcCQe5bldo18snd20CAKR0q/+XWU+ZGy0gdxGMg/WCvUO8Aq3abJ0BnsiI3rdBLYNXjWyWdcYYLVssMc9miPaB0ZPwr91bhLT/5UGc+n2CeD8QmYLV2NiID33oQ/jQhz4EAOjt7cUbb7yB+++/H4899hj+/Oc/k4IF+4Tr9ZZd+MDoSaH2T2saPrfovziwrh43H3JksEEnIjK6XhSLUUOFFUzsN4mKo80lDohuTp7KgRH/IkuDXGqswHzrGnilis8yGbWLoBgTEiZNu8yKUEpcLVjG/15ucVHG5IlxQEGeObHPyTXJhWXBcu7HYmeAoNfrjGeSUegYLEZnKmX+LYvBslmtJEpLHCbX5rvOuQDbXZedMhaqFh5fGJotgsrd1e2W6yo1W7RRLEQdVw4YUo/NPdn085RFkCCiJdIkFz09PVi8eLFpyVq2bBmqqqpw0kknYf78/OON3g+wzgwAfrZ2SWgFa1d/D/YM9GLPQC/aB+UuNYUipWWQSET6yLieh+E3QaVBQU4YC5YOHQnbVDBGbcrXTRIsSo5Noz618X8Qa5SZ5IJZsNTSTlwdsSk+adplvxbGgsUmpPYkFykPC7yopIS1DoqWSNl+qZAWLMsS502BPQRNKlXrnTAtfNyVqBJXO8Bqyz1cFsVSwdqDj8F6lksyIWsv8auomrRPsxTuIcaYJypYHYMDGGIoX6xJ2X0oFxfBiTV15pwkTsmNCOL9QGSz5fPOOw9r1qxBU1MTFixYgNNOOw0333wzpk+fXjbpn4vBE0ZWJCC3IOcKbiBtHugreBpgniA1qaJgLxfY7DeJisPKaxwJOsEGuEKZVuhDbLC7lNnd8Ap+biGBgF+qe4Crg4USZBEMIJ9IEAtWlIhp2tnY4NW3iPc7bGpxy/KpGjI498vYgpD8j2vF3PmasFyJssX5RQc/Cx9vwWIFk/m4plIhutm+tG+HbYyUXk2BYrD48iBDJC6Cb7bsxvfeewsfmzAVgPUcmxasMlGwNnELvnEeS9OaZpa+IIhyIbInds2aNUgmk5g7dy7mzZuHww8/nJSrArCt1ypwWZVIFOw8vekUvrn8ddt3mZDFOHOlJ225u/jFBogrhXEaJDK6jt502n/DAiA2g1c7ZrMI8imzCydXWEQrkvh3cc7tn0VQXH23rCXxiMVwS2LgZcEqSBZBYRLNzuDVTuIglXOSC2ZVlGzDnz9Mwgd/C1ZxXAR5ZAqoTdHnRGqszD3bb9SI7/o/dm4Sfvd3EYyq8+KPMkTiIvifPdsAWMWITRdBY0weiJGL4D92bMStK9+UWon5gtnx6Kmc/HnbOnz01Sexsbuj1KIQRCgiU7AWLVqEe+65B1OnTsWzzz6LCy64AEceeSQ+97nP4Te/+Q2WLFkS1an2ax7fscH2uVBTzRf37cDi9n2274plwerj4iG8LADP792GGxa/ZPtueUdzweQKyw9XvY1Pv/FM0V05AedkxGvSqOnZiaBZyDNGNiyZK5ZbYhPeMtGfSeNHq9/B8vbcnwezHRQjBszHzRKwFJZEAMtM1HjWwXJVofzveZRXIKa1FtNby3BL0x7UOsinaedl4OGPJTuqruu2Cba5jY+yX0gXQTel1E/BqlCshbljR4wFAEysrctPmAgQM0zynDp6UqAHMapnlW+7GsNFkLdgNQpFh9l7VMFlOI0Lv9q4Am+37sGi1r227x1xunFaWeN4cPMqAMDTXPkWgigHInMRrKmpwTHHHINjjjkGAJBKpfD666/jN7/5DX784x9DURSsWrUqqtPtt2zgVnGyHWK0KtbTuzbjj1vX4viR4xy/FWs1nlewvDr9+za+5/ium7N+lZrXDbebNV1tWNg0pqjndhQZ9UvTHlMXQVsMlkFSlT/zvNxP7tyEF/btwAv7duRcv423SqmKEkzBMj4HSYxRTNzTtLvvUwhDoVUHy7BgGSfxmjw5XARDJmYwswh6KGb275y//2jNu3hx3w48etRpGFpRaSkDgSSQk+9CxuvNcrc+mYWP77urOFerKjU7BShmsiQ3mLSyeldT6obZSzIYfVYhXFt702nbs8Xc/ngF2y3Girnw+9VvLAWi0idmHo5LX0UQ7xcizVjQ2tqKRYsWmf/WrFkDTdMwbdo0SnJhcPDQBqztagcADM/TPSNsat3XmnfhyZ2bcPMhR5huDyK/XL8MAPCWxCe/WDV9+jN8kgv3c1ZIfLKr1cIn4QiLlRXLqSwUCocFwy/JBZ9FMEbjrDXpstjU3Ykjho/G2617XPdri8BqyCtNqqJ4u1kKikPYVOKFxr3QMFNW3PeN0qJpWfrY+f0Rt8k3yYXsevwsWKxu4equNhwxfHTwJBcu77oKpWALGUxBybhZsFTLgmW6tMUgZkiMwXL7HQDOeuUf+NGc4yJPctE80IdL3/o3GowiwaeOnmQu6PAKynOGiyCDyRxnBUt8XfYKVuO4J4yKQykBgghDZLPRD3/4w9i6dSsSiQRmzpyJhQsX4gtf+ALmz5+PhoaGqE5T9vCrREfnYNU4pL4Jb7buNo4Vbt/vr3obQDZ4+CNjD/DcdpfEZSddpGqUfE0Xr1MmJQNxnDvhry97DQlVwe2HHVPwc4mt4LY6qevZaYsCfrIYnzY0J7LcvW5LDWBkVY3rtgCwrrs9snNnXQSDWbCYRSgZszTtbmLwhX5FCpJFUIhV60gN+u7jSNMeNsmFsR2b/Ip9SkbXzD41K6O76xT7O18XQT+LaBB4Sz9/Hj8XQT7jYEJRUKmqtjT1pcKrOXRdd/z+8JbVOGvcFHHLvGRgC4vtxnOpKIrpUpkOoDSx976YBcaDIi4ssMLT5u8x6asI4v1CZArWGWecgSOOOAJz585FTY1z8kNk4Qe9XFa5DhhSzylYelFXyIs1aNhXXt3PKUvXHUc3BzZwrehsKfo5GW6Kp0yBiVcLMlcsS77pQxuliS7YNe/s63ZMHvJBMVwEg6RpZxahkhcaFvC1YHntHOElmHIYt++1ll2++4jua+GzCDILljw5xpI2e5yeeNTn9263jsXOKcSShSWhKEjrGv539Tu4ePIMjK0ZEvoY/+Ay0h48tMF2bJussPrRD46e6LCqVShqLCwuTAFYY2Q25NGgOxSEtKY5lK58H1XRjU6F5ZLsNf5ZrsHxVbC6BPf5EcIi1ZquNiwYPrqYIoUjHl0pQQQmsiQX1113HY4++mhSrnzgJ1y5BMLas13pOQXR5zrpK9Zk0TX7lYAsbWssFSzhc+tgP25Z/hpWdBRO4RInkW6WQNPyAs6VsWBShcd0EeTmhIfUD5fGabBt+UybeZ2b0wUSOcZgxSZNu18dLMnvhYjLEeNsghRkFV3GkiETCViFhv2zQfIyMvgJP2tjy0XQz4Il/519+9K+Hbhj9SLPY7ix0UixPaGmDpOH1Jvfs/b6956t5n1l44RsUUpRCueuGAbvRDw66g23PUZa17n7kCXf103cXVWUQFYphds+CjkKwa82LLd9FhcvH926tpjihCaGTUoQnkRaWGDbtm349re/jbPOOgvHH388zjrrLHznO9/Btm3b/HcuY7pTg1gVcMU8qPIQZH8NeiC3BZFcJ33/3Vuc++gWOyBSIbNgxaQb5u+TDh3PcEH8v9+yGkvam3HTslcLdn5HmnaXdjQtL4rCTVLi0YaAM7YJyCovXrWwZM9FLvC1rXxjsIz/mcJS6hgsUdla1em0CgDBBoAonwYrDjH7OUi9IPFOM1e/oAsU7BlPqnIFS4zlFJ9/3lrKjiXWPXPD7XfeiiRzxw7CiSPHAwCuPugw2/dMeX29ZTfeMuIUtxuLDrJU3SoKkywiV84Zf6DjO03XMa7GnukwrWvcwkY0GVDFZ0OBYmUE5TTAY5rG2nc033vjODEZh7wQr7U2Eb/4ZZ44ZbcliCBEpmCtWLEC55xzDp599lkceuih+OhHP4pDDz0Uzz77LD760Y9i5cqVUZ0qdly/5CXcuPSVQEoWH0iai3L0arPlUpPRdfwxh1Wn32xcEXofwFmXpBBour0b9RqoZG5icbFg7e7vMf/WdeAXRvIQoDgB0I407a4ugrwLXhwtWGwiG0LBirggJUth710Hy7IEAnwdrGJasNxxe+e962BFj6bzz1uw9hFd2l4z+sC3PJKc2M4puAiK74Y4sRQl4hX2XharZPd0dMXtdz5+Ktenlb0DoiWffzdY+nt2///LuTvyxOGdZ/fFK1ERnxgqxbkIRlV8XGwHRbHuP2/BqhOSRKnm//HKHuqF+O71xiAOT6R1sL/UIhBEzkS2ZHHHHXfgkEMOwW9+8xubm2BfXx+uuuoq3HHHHXjooYeiOl2s2GMMYlt6ujCzfrjntnzHG9ZPW9N17BnotX0uh5WyMIgDU7+HC5HcRTBykXLiqkX/Nf92uJ0UMCVyRtfxzeWvY4VQD8zdgmW5tsU1CguwT0JVRZFOStkEza1OVlj4mk1+SQnMN1mog1WqGCz+tF4ymLXPArg/RiKXcKxc2ue4keMcNfq8MJNcmC6C9t/FfkSUiP/97nVLcOqYSdw2+b/LYmxMUKz6XvIYNUCeCEhEVeJhHWCPQhCZAaAzNWhaiJOKgrSef88lLnqqUJBQnYslDkVMKDsQRwVrWl2D7XNc4kO9+OrSV8y/y0BcgrAR2VLv8uXLceWVVzpisGpqanD55Zdj2bJlLnu+f6jwKipjkMlDwRI7RLE4Z6HdPKbWDSvo8QGnpcXL2hbXLILvCa5L4n2WWd6iYnNPJ5Z1NDuSFri1CptsqopiujOVvgUtRNc7RkIWgxWx4HycTVJRoQH4z55tpruV7OSsQ7VqLhXRRdDl+tdKkgYwvO55IR5T0eKQS/vMHJpdxJrfOCrQ9qIiIvYRDuXCw0VQ3Mevyw8Sx5brggAbDxx1wmw14/yPrUCJxcIUa1Pv/pFzkdd1sw3YdeY7BopjrKIEzAxoiGwmYMlLimgZYVj92gRrUByVQBF+jhOHRQCCCENkClZVVRXa29ulv3V0dKCqqkr62/uJIAOlzYIVclQTJyNbezuF3wvbAU0f2ljQ4wPya3AbNOOaRXDfQJ/ts1j8eKlgXYqSF11cgFzTtHMueLGsgyWZRD6xc5OnS1BUGbz4mk2sXtBdaxfj2yvecGzLzmjFYAVLqFAMqri6RyJBYleivAIzdsk470cnHBT6GCyr2+qgca+wT8L97on49IgxfRkuZXiuLoI8p4yeEGArOys7WvBK804AToWEj7MKYg3KJrnI7y63Dfbj3vXLTW+OXGASeL3b4pDJkndEZbWuTdqdelQoZhvy1i2xvcwkF+z3GLz3DNaeg4J1rhwsWDzlJi9BRKZgnXTSSfjRj36ERYvsGZEWLVqEH//4xzj55JOjOlVsCbJaKCapCIOzfov9i0Knhi1G7JBs8uN21nfa9gbav9iIz8F9G+3xh/lMQvz4244N0u9dY7A4y4uZ5CKGK4V8i46orJZOwpjcv9v4XiTn5BNs8EoK76ZrbWu5EwLWpDeXLJ+5wt+3oGf1ssAUws4qKianjZkc+hjs3vcEjBlh/aZboWHnLbJ/IT5rAxk+ktbXhOVLLsrBd1a+af4tuhy/2cLHpgVwEUT+CsFDm1fjyV2b8krc41domG3FwxYdWdxl5C6CigJFUYy0+u5HFwuMx8GTguGmmJSbwhKHUgIEEYbIYrBuuukmXHPNNbjooovQ1NSEpqYmtLa2oqWlBfPmzcPXvva1qE4VW4JkL7P5cYfs4MROe1dfj+1zoSdzuaSVD4us09d0PbBbXRwGNnHCNCBk7qpJJNAXID11lLjGYBn/K4pizsVK34IWMhfBT0w8WKrkvNuWjcuR1dHJ7dyW0uRXuJh3JwRKH4PF4/VOBErFHuEl8FbBwOcXCKuQWGnaWXyM9/Z+l9uvpc2t/C1Y/teXy6IQv4+okDRWVmGXkWQnyKS02XAdy6fYMEtGIFrvw2Apws42Y0kl+HuX1jXOghVNshZxjGP9TlJRPZNSic9zHBb6GOwZcJTuMBMcFd+lcU9/L4YkKxzJQrwIknGUIOJE3gpWf38/XnzxRezYsQMXXHABLrroImzevBn79u3DyJEjMWfOHBx33HFRyBp7/LKXZXQd3elB83PYLlh0EVwkWHAyIVZ4+jNpVAvZs/wG41JZsDK6hgrB2Oo2kMfBNcPPknlIfZPU+hYFJ4wcj5f27TA/J4wCuW7tYlmwYuoiaPzPr9InXJJcMKbWDcP67o68z82UoyDKvRiTYylYpV919Zrsscl5IWpeyWUxzmsmBQh/DLFAKk9/Jo2PvfY0AOCPR52GuopKXxdBsXX8fu/PpF1jA0WCXF4urxtveRSfz0qu/wmzKPbnDWtxetOkHKQBZgxtjKxPUwUF+oyxB+ADo7NyiUoCU3pMpTvPzkt02+djKvl3WTyNw4IVo06UebaIErH+rVJNoL+Iykt/Jo0r3n4OVWoCfz32jMD7iS6OBBF38lKwtm3bhksvvRQ7dlgTurq6Otx11104/vjj8xauHOA7Ur9JyleXvmJbKQrbCfttH2Yw/eeuLThXiH94ZvcWz32KUZ3ezYIlssalrk8cBrahPqtysqfk5uWvYUN3Bx5eeCoqPGJm/BgpTD6TioqMnnFdoeTr+cQyi6AkBktV7PF3KqwaVRldw/zho6JVsAK5/rK/mAWr+DFYbmfykiGIehDlFVh1sIwJaY6KXU0iIY3BfI+Ly/rqslfxy/knm9dfY6T/Fi3Kfojv1KCm2bJvehFMwQrfwvwtFS1Y/NFkda/c6BgcCCmDbt7HMJYIN2RZEVUAn5862/zMx7OmNM28l2yxMH8Llr29FO59DvLcJCKypEUJWxgVF9m0EilY7B6GfQ/7YphGniC8yCsG684774SqqnjkkUewdOlSPPXUU5g5cya+853vRCRe/OFXtbb3SbKLcYiuS22DA6EsLn4dTBh3pFHVzlXgvS6xQcz9ohAWrJaBflz21r/x7O6tAOTuTLIJIks6IBIHlyw/EUQZmwf6sLS9Gd3pFDb2dLrsFYwuzkIKcPEqLqmgzULD3PJA6VvQgsnCu98qsNfBqk0mUWM8D/3pTGQZ0VLm6ngIC5bxOVYugl4KlmnBKpIsgmudnwXIDbe6ZNXc4sTW3i5ouo5njYWjTuPdEPtRR0yWcEwvl0Rf6YM8Ozk8IvwuYkZN/nidqew1swRFXzp4nusxw2Q3fb15F85/7Skz0UiUrtk2BctDppSumW6N1S7jQVhECxY7fVJVbQuMbkku2P9xWOhjWBYsefxaZcR1A/14N4Slc0x1rfm3mCyKIOJOXm/W4sWLccMNN2D+/PmoqqrCQQcdhO9+97vYuXMn9u4tjAtU3OC7rHs3LPdMiSyyZ6AX928KHpD/Iuf6JSOMhUlWzLGpqlqyJVBjrA4WQsF6atcm7Bvow93rlgCQu1TJJqlu/vC/yrGIcpSIA9m4miG2z2INH97dMV8Xx960ffLIJivfe+8tbO3pcpU1YQRzZ7+LD8uMjIt9GleYVSg0rAAYV1MHILtiH1WSDqvGjoqDhzZ4biu6jJVCwdJtf1uf2Jsye9gIzB42Aj+cfaz5m9cA4DXdznUCaSa5CKDYHT9iHC6ePEP6m1tdshohC9y6rnZz0eLpXZtRrSacsUbCYfzeQd3WulG4COZgweL2EZUQfsLMYqNGGH37BOM9kRGmWO8PVr2NQU3DV5a+gv5MOpJFDSsmKJiCBWQXKQFgiGFBy1cMcQxlsiR9XK2ZnHFLcqHp1pMi3iP2/kzz6dui5u51SwNvy9fuioO7dRh29nVLx1xi/yEvBWvfvn2YOHGi7btJkyZB13U0NxcuFXWcELvRRa3hFEu3rG8yDqitt312pA8WelCviYJsAKh2cU0zFSzDfSJKRUuMW5NnEZQoWDHubMOsgPvtGxax/fjV4Ldad3tub1qwYrT6urQ924/s5BK6KAD4J1WBYk6END26GDIWQJ9QVNQmvL2pnVkEA9TOKRLsHo+sqsH3Zx+DQ4c1mb+ZdkuPeayoAAxkMvj4a0/jztXvhJaFTZLMtNYeE+ivzVyAT046WPqbqijSfiEhDGli+1cnko4EM+JR/B6fnnQab7bsNuTw3jaQgpWLBcvDRfAgrl5hj7HgwixZQyvcXflkLpdu8HFS77TtzXlRo2WgH2e+/ARuXPqy2fAJ2+KJdwsyBbK+ohJA/hlQxYU7M8mFyt5n3TiPHKsfikcfai+ObJeJedywenJRpbqPEl7iuLRpUK5a9F9c8+7zpRaDKCHxe6PKDeGl/8PWNQU71RDBz130e+cnE4vb9uKsV/5hTgQAoKlSbqFiPL1rs/T7as6C9eiWNfjk609jW280KzOyGjMiUgtWGXW2YQaGfJUbcRDlJ00yOdgEhc/QFKeWPWHkeADAKaOsWkGKYMEC7MHlfBuM8HnmvTAtWKriSAgjItbBSiglmGi5nIv1CzIXMC8Fx+2nbb1dGNAyvhZ1IGudfWTLavQa7j0/WrrIJpPb2b89a6HncZmL4MqOFjy0eZXZzs7n336GmkQSaV3zzEjmVLjs39y07FVzcuqfHCRAFsGILVifmHgwTjLeG3ZsZtmuS1a6HjOMiyC/bXUimfNz/qpRy2tVZxvaUwOOY/tZsJi7pzmO5Pm6iXHM7PxM+XCzoogLBnHpQ3l5RQvWc3u2AQA293QhqSi+scNRwStyfuNdPmVtCKLU5J1F8Morr0RC4v986aWXOr5//fXX8z1d7Ijilc+ESEPO05ayByXzCta9G5YDAH6+bikWNo0BIHRWko5tW688hozVAEppGh4xFMi/bl+PGzz8+RlL2vYho+uYP3yU9PdKwWomtWCFcBFk7Orrwe2r3sanJx2MY0aM85UzSsRBw8tNLKNrwipjfoiDKP9cyVqMZWbqzaRj6SLIpOcXF1QothV0RbEsCRldt7VBPtfCW7B8g/i5emKANdEqVQwWf9p2w41qWKWz2LsVOxJicu1ntuG4Y9UirO5qQ9vgAL548Bzze2YVdzvvpNqhnsdlLoJfM+ouzR42AnMbR/pao+orKrGrvwedqUEzG6HD6hHhPcsxxMwXXkIxUUhVIoFPTDwYL+zbYfadLKGAV9HpXBWsGjWR83vGiiUDlpXNlsDGRyZ2XVEpNo46WMb/Zl07TbObzw3Yc6xw/VAc0Gxji1ym1sF+KJBbhAvB/MZReNPwpsjoumeMq83VOSZtGhZN10O53xLvH/JSsK699tqo5Chbonjl05omVVKd5/I+G9+pi/VBxP1lxzpi+Gi81rLL8b3lImgNPs/t2RZIwbplRVapfvL4s6W/iwG2QS1YXv7Yf9q6Fg9vWQ0A+P6qRa7n9uMfOzZiSXszvnHIEaEmH6K0XgPXc3u2YWy1FaOVzyCyuafTHLgYfHzXVonVkZ1vVn2TNU0r8UD27O4tOKiuAQfVDTOtJLaYKwVIcLdDAbC+K5s1cF1Hm/Cc58Y7rXuxp783646oKLho8gxzxRfIPn8266ApmxWzwbYrFm7XmvYIZmfyzmsYib9uX2+6CwHuyk8YZWyTEf/0zO4tmNM4wvz+RMPCIr5WlxwwE6OrajCaC26XkXURtEi5BPLzHNU0xrR4eFlsxTvm9Qz5dQtBWiqXd97LRRBwlgkY0DJQ4J3QYGilu3XL7fhAdqzJ1fLO9+3sHvL6u5+LTX9GVLDy67u86mABnIugcL2sOZiyGxc36yB1NytUFaqiFK3b50vVpHUNSY+7bHcRLKBQEcO3e4YUrP0WUrBiQFrXUGUsi/Vn0vjZsndwfMNYTKyxr+L6dYB8bBSricVSTOu6jvYUV4MrRGdVawSO+1mNckFMSR40i2DK4wKYcpUPb7TsMhNmbOzuCBUI7JiwecjaPNCH0VXWZDKfMeQrS172/P2lfTvw1Rnzbd9l+CQXBUjLHZaN3R1mEDSvGPOZ31Q4XQTZxOi2d1/H8ZzFMpeJTvNAH7698g0A1mq6WHvpwjf+hbvnnYjlHS04ZdQE1xisXFayl7TtQ28mFZnllc8UKcKmNnMbR+Le+adIFRvxEsJcE5+KeWWHlUKdvfei9WVq3TAc3ii3dvOI95+5iImi6bqOY0eMxavNu3Du+IPwx61rfa8hzCTdT9l0+31ew0gz2U0u75uXiyD/Hbv3A5kMqtSENGvjaWMm45ndW0KlzBeV21xHhhlDGx3Zde0lGbxl8nJ/zQVxjGPvddLQ+txqSjnqYMXED4B/zt3u0aTaoXirdY85FhSalVwpBb++hP85Lm0aBL48gqyOJ7F/QHc9T6JYqeIVo79sW48/rF+Nzy96Hj9ctch2fH8LlnUcNhCwice7bfbMdbJjuXVgo6tqkVQUpDTNXMljaX8Z77Ttxa0r3zRjLYISlQWLtwJFwb3rl5t/5zt2eylYnanByNwg/GqZjK9xthE7n6oo5nVGlYUvF9pcavHwkz9FESfmnBukjrxdBIOkA+5Op3Dd4hdx19rFeGDzKiuLoFk3J3cXwVtWvI7vr1oUel8vlQGQd/b8hHtCbZ1rsXRN1/G7TSuxoqMlVG0lHj6VNrPwiRP+oJP8oNvpsO5JUlHl98XHr9DrNvhJ4eZN+d1DjzKzOeY7hsjaQowB7NfSrqUtWNrs7y9+M3AtLF4RSXN1wYD8r0escecFGwcsy1Fep3YkRWHPSTJg0pqo5IgKsQ/h7029EY936phJrlk5o2a7EIaQ0jR8c/nr+J8lL0mTZ2kRjY3FZsCmYJWP3ES0kIKVJ5G4CHKddstAv/n3K8077Sm8XfZnhTCZ+0Ja00xrFRto9w7Ya1zJzO1iP/DTeSfg9LEH4MLJ01Ghqq6FjHVdx7dXvIG3W/fgn1yx4tc4//qgyDpRvkzuGy278O0Vb6A7lZ0Ef3rSdHxq4sH43znHYkRldWQPNN8phs2u5FbQUcZTuzbb7kUhV+maKp21z57YsRFAtgQAm8qUcjhwq/XGT/wVKLZJGD8FSyqKoCCGvxr+fvPv5nzBssIUsb9uX2+ek02oo4jB2tqbX000hui+yBNEUdGh463W3fjb9g24admrtgQzYZQtvl3Z37m+r24WC/H90WFfRJAVgBYXFMK8g36LL24WGEVRzGc63/dNpsSZzx+yys+gpjniXRn8ZPDHa94NdE5+n7Su2ReJAh3B2lcklAVLYxb4aNpSnOSLCpaYqZfBxIxbDJa4EMl/YmVZKtQEEi515aKmX7P378/u3oLF7fuwtqsdL0uS5vBjaTkpWIO8N1EZyU1ECylYMcBzsLetDMr3P3DIMADWquLvORc5a2U9gBzCuacMGYZrps5GbbICFUoCaU2THue7771l/s13Jv+72hqs3TpHcbxi+x/TNFa6zW3vvY132vaaGQ+HV1bjogNmoLGyGooQl5ErG7s7bAlEwhqwxCtl1zTRpQYN3+5R98WfnjTd/FumvDA3pWwh4uyVru9qj1aIEPxw9SLp9wuHjzH/dtTB4m5QUlVtbZhLc7oFXX9n1kJH1kuG9YyKFqxwTySf9bM1oDVBhi0OTXBf5PGav/I/8ZZF3noh1l3zglewEm4WrIDmYnG7HazIu8RF0KyvpCimMmLvc/1w38LPRdBLgWW/eE0c/7JtHZa1e5c8kSmblgXLegbdrJPXTZtr/h22zAjALFjW5zAWLNnkky+c7Pc8OOO28utAxey0poJltJ3bIiM7fVSxYFHRKRSe5+8Nu7aE8V4UQ4ER+8+/bF9v/i3zwMhvqax0DGTsLoLE/gkpWHkiM2v7DTB1yQp8/7BjzM9eg30GOjK6jk++9rQZFyLCBk7WYT6xc6Pk2PaBSrZKK8rNPxw6dFsHyA8gb7fuMf/mJ6e8+5/bKo4mTASZvDWJpKlkyTqo3kzWepDklm95a18+PLh5le1z0BWo7tQgfrzmXWwRkkmwa/zohIMc+xw5fHRBU9E2cJnj3KxDjFWGb/wLAdJvF4vhlVVIKorNvYklnoDtmyxJVRWUixxO6jKnUxTFdYK1xbA2sccx1xisOzgFsy+E8uKF2QPkaMEC7ErVf/ZayT4GvNKdC9fOZx90KzQcdDFDHLjuMbKmyrz9NE7BDHJfHHFcHnL4yStrc4Zf22/s7sADm1fhG8tf89xOGoMFS8FPaXYrjMiwiuDJLWSkOSUWCKdc+FqwfNqIPZdRWbAcdbCM/0XXUvE8ZgxWzOpg3b12ie2zzB09YSxYFSPGSXwGpwypd9kyiyZRCMuBQXIRJEAKVt7sEVzvAHmNprZBy/Xv5FETbIVLRSWDR9N1LGnbhx6PyXGFWQQxOzhM5aqfu3Vgf+VWjsxzC5/5yUGX4Q7FJphusTJ8B8orWG4DDn+9g5wvf9adx32wSnODQ9SIK71BO8i/79iI5/dux682LLd9z+QfkqhwTBcmD6n3TZ+fD3y6a7/rYEor48dr3sWvN6yIVJ6wZEsYqLb00hWqarvvfJsmFEWIwcqhPXPYZW9/ryELi/fJzUWQdy0R70eueFuwPCwsilMhAoDn924PdF5x6iyb4IsWIC95vLabYcSESmNLZX2Kb8RaMILKK98ZnrKIZTjckCkhfF04MR5XhHe3ndswMtA5h3P15dK6PQZrIEQyJKkFi2tTv5IAZgxWRGnanVkEs/+ztmMKmDhOWy7C0cgRFRt77G7GvFx8ghBWV67QiM/6KC6pjnine9Np08MCiI/SGgR+4amc5CaihRSsAiCzav2UW0m6cNJ0TKi13MW80o9mhNVBwKlUMPeYJ3duAgAsGD7a/I3VDxLnARu6OxznCtMRuFmLkpxywmcI5AfSNZ1t+P3m1Y6isBu6281MRrwbmNckVS3AIyxOWIKa+Lf3yYsvWxM84EOjJ9l+S2tazqu/PLJnDsg+K585YCYAYFd/j6MtGyssC5cYo/H83u14YufGnJMa5MOBxsIAS3HLJ0ioUFXbZJ2/W5Pr6vNO055b4Ve7LMzi5mc19KInpAXLnhDHwozBkkzEg8inw32g8FRURAuWNNud/XNgC5ZwrOn1TMESZACnYBjpqAHv9NXie1yo6ZFbQoRnd2/B5W/9Gztc6hKKMsmUPN7iwu6xm8JuLxrsXy5ElCCtabY+cmVHS8BjyDPT8vJU+sS/sr3ZPvkm2BAtamLSGrckF+ysftuVGplFSIWC5sF+6Mivvwp7fkB0G7bf66WcclWfrCyzLILOhGPE/gcpWAUgpTsnpO+0Wb7tdRWVqE4kMc9YLbQHCDtXxsTikOJEZa0RM7OapbvN0SIShd847yLIy7mE6yy/vPRl/HHbWrzVuhsZ7pQVagKDhu9yJWel8LqGZIiip0ERlZCgVgi3wYndUwUKnt2z1fZbbyadkwUrpWn41YblWNOZved/2b5Oup0C4NgRVjxbi6AYnzZ2MgDg8wcdZrtf/ETl5uXFLxDOhiRWhLuGs/hWKAkhBkvBxyZMBQDMbhoZMr7GSS5zNFbviU126yuqoCJbxDNX3BT75oE+LG7bG+LdthR8kZ6AWT9dLTUeIoh92Rstux3biEpf4BgscRHEWKVyWBZ0KxFChSLvU8RLeLXZWQvQjXx6H7esnXevW4q9A315lZvgLVh/2pZNTb+r3+ltwW8LBL+eNLcqmLVgWb81cdYt3+NInnF+oi2W8XAjTIp5L8S+njUNc5t+eV82cZNDkTe+8EuGUWp4qVjfyr/b/+KSVBX6/IDdW4T36gGAoZzrKuv/y8UaxL/T5CK4/0IKVp7I/NfdrAkispTBDv9/3dmp+LnFLedWENkkJ8jKXpgxQewMZcfgV6e+v+ptx7adqZStI0rrmhnnVZ1IBoqXiNpF8FcbljuK9QbtINMuDci7KPFJJ4DsgGbLIhjwHjy3Zyv+sXMTvrw0W/vqPa7GEI+qKDbLlBgzwya4FWrCtebIe53yY0eNTNHUjElANfe8VQougoDlauJovhwGt3xWSlVuxbu+ohIdqUGfPdyRuRpv6unApW/9G99c8QZe3Gd31eO33tDdge+seAOarjsScPAEebZ1XXdN5uDVVmK/JUvWkKuLnaiIudUnAoAOw9UuabNghVlVdr/GMPKLg61f3Tm3BRs+5tUN3hVytbEI47ctEPx6+PZLCWnaw9RTkj3j/L11S8zhtU8+aLouFICwH/fJXZvwqw3L8YqQIZe9B37JMEqNPSuf5uhH+eQMhUDsE3h5RGWbbfuBURPNecJfJKENcaRcY8eIaCEFqwCs6GjBmS8/gWveed7TvUoNsJqq6bqjsxZN6SK833KGm6j6EcaC1ZtJSzvj321aaf7tlo3NdkahI2LHrFItK4XXgO3XFmH5h+FmyRN0MuZ2uXyQ/YF1zpi4XFwEuzjLw683rLDdcx4VCho4N0BR+WfnE0V3UxYLCS8ba7OMMQnwisECrI6MzxoHFM+CJSOpqNBCTrTGcbXKZM/d682W8u83cV7Uthd7+3ut+BDJNjMN1zoZtommmwHLo63cfjqGs6iKMgW1RIj3320So0PHNsOFmsWaiNvnc7vDTOtF5YV9clv8cmuLNyWWQMe+3OKdb+2mEEklGGnbxNj+znWGWFSQPeO8pTWsgpXvq5sRlA72V7XR/8xvHCUdI9iJ2aJiZ8D4uUJzeKM9po5vbWbBsv1eYGVAPH7GQ8FiiSIqVRV7Dc+Lh4QEVHGFv5JysboR0UMKVp7I3p0fGbVEtvZ24dxXn5L6mQPyQUFWk+W+jStt34mKy8mjJmSP57FCvdXDn988t3HqSw6Yia/OmO+7/W1cenYG7x7i163osHc+W3o6zYE64ZPkguG3cikWMs4F2SprWtOwpqvNNkC4TU74OkQyhTAXF0H+THzWSMd2ioKkqppugm6TLUXJza3hgU3v4cq3n4tk5ZNfSGCyaEaSC9uqtuKMwVK4FXte9FyGtnwsWPy+srIBS9r24UuLXzKTYojwiQj8Vvfd6hrZjqcmPLMINgZw59Lhrkh5tZR7aQZ7G/EENUSI75ppwRKTBHF/1yUrAvUpIl6bhlGwRJn9lAK35zBIXT52rt39vb7uavwkW5a0SQbfP2R0zfb51pVvBjoG4FzIUWG3Gq0IGM9lxmDlqWKxpDoMJsnnpx4GAJjGJZDiYedlY3N7ajDveLAoGFVVa/usC4qxKjxLhY5zEhdL+fFInCexhD9B+rm4oXkojsT+AylYeRKkO5LFHgBWJr4+Lg5HtDBouo7tfXblSOwUTxqZVbCOHznOcY6X9u1A22A/ntxlX3UbW13r2JZ1riePmoATRo53vR6GzGqysGkMnt29BR2DA6hNyt0IGTWJpG0CdM+G5dhoJN9QECzlLa9sXjx5huP3EVXO4rphkZ3//k3v4ctLXsbfQ7gsqFCkCmEuRTrbA66QsrMlhSxY5rl1+3amHAEGhbvXLcFftq/H7v5ePLwl/5XFlJB5SdN1aHBOTCtUIQaLm5JpundWziDkM0mTKdy8DLeseB3rutvxrRXykgv8mTN+CQACTDwUxTuLoOe+3B5uz4NXW7m1vVfr+tWVYojvkWmpF7ZjbTi2utamqMuSXBxhJAcaz1kRo5JXJjMj7Ap3kLhTXnHt9slGySsU6wLWwPNyEfTin7s24xmjhqF4HMBIbsS1adCFHnOfPPUDllTHRGEuv/ZMvSKyRQzZAkmxcXjE8GONrttqjgHRjJee8nhYsFLCbyzT8W6Xxag4Qy6CBEAKVt4EmYyJ1csZa4ykFH/auhZnv/IPnPnyE44Vu7vWLnbsJ5r12YC7vKNZOqnZ0dfj+G6qZCXOzV0sDH/Zvh53r1uKP25bi1U+LkxJRXHIy7Ib8imVvWOwrEe4RzKRiKJvk7mxsGQVL3E1o/ysaYoCx4AG2DNMBlUIHt/hbrXiYTJVuMQGcLYE28o4PzkYI1HGAeDZ3VbCjv/bsRFbe+RZFINicxGEPXaNx+EiqHDxLLq3BaszNYg7Vi3ynEg+tXOz629njp3idQk2RYSJKFsVFhdNrP3tK8wifFuIlmy3FOVeFqyguNax83he3Vx7vfYJbMEStnPzEmAxnczF1KtPSQqT6SCEaVKnW2tu94N/T6868FDf7f0SmYSVI6PbnzQxTbsX/2/9Mvxi/TJuX8GCpcgXofywLFj5IboIsmfCTyL++llpjKCx2IVElvQFAN7raMGAljELEX9g1EQA2Wx9hUR8TrwsWGx+JMZElwOU5IIASMHKmyAvj1/n3MxldhP912XKkTixYivZrYMD2CnZXoZs0se8NWSrsrcderTrsYZL3IzcshHZ3eGcK87s0hTO2uM1ePODIT/hl50vV7wmurz8fvdZheKYZIlE7aLBJk+WBUs8PlNigHouYUsug4Kb0gAAXalBV7c4Bq/8abpuysDa7JGjPozfHfFBQ/m2u/GwCbcO70WPX21Yjpebd+IHkqQrjGc8MmmNqPJ2qePPzN6jMOFsskKgPIOcK2Zw9z7jHnPf/+Lwk/CLw0/y3pl7VN2UJR3ZGMC71y1x/Nbv4jY6tkausGdlzM+CJU4o2SS3wlSwWOIc3h0Vtt+c7e6hEOZhwZIp4GEtrmePPzDwtpdPOUT6fdhEQeKCU1rTA8Wp2trcuM5BIUY5odhbdF7AulyWu2UULoKcO7JpJfZW4PjvrcWs4pe3EJFlJQayii4P6/sLrQw4LMwBXOkukXimxJ1C1rYkygdSsPIkn7oR5004CABwUN2wUPuJK6x83EbQtNCyd17nJtthCNOB8Kt6GcMNjIcpa6rivdrMsBWllEwUosguJS2GKXH/8msFRbHXCZOxNqCLTlDY5YvFqBmcvQWfnHSw+YmfDAUddL0Cuy944xlc/vZznklf+Gdj30CfQ8EaVlFlZgvkFxkU8MqMaMGyy84sjt0B05PXBK4LZJyPO50YF+JYvZWscPPKmGzSymctFd32ZHdJN9wss1htdsCQehzgUoTccQx4J5F4YudGPLt7K7b0dOKv29eb27q18aeETJq54BqDJWzHnjdm5WdlCu404mR5ghQhzgexPSyrq/WdW31BnmFc0hovxAQmNS6ZX8MqWOIiTVrXArk2v9liZT9kiymbhEK4atYcbTJ9qP0a3IjOgmWPwRpq1JFkY2KHSx/H9zPui1nFR+xzmEiiZEFqThZCHr4PFPvDEcZc4OMTpxVUpkLA33qKwdp/IQWrhDDFKGyXJiZu4CftlZIJIb/1DGPAkk0irHgc7zghkXAKFhdnA91xXDZQ8vFKXsM3PxjKVr+jmCzJJrpsTtKVHvTczraPSwwWz9NcfAJPZ2oQd61ZjM3ChMQP0YLlyCLIxecw95Cx1bWOIPYg7Oz3t56yZBi6rqNLsNaKA+xaw0UkiOLMPuoQsggKt599rJeUVwCAd7l6dQBw7/wPSLdzw27BysLej3Xd7bZtpS6tPvF4TVyMRJDJEP+OhV044Td3VbC4r7/w7gu4f9N7eMlIHy9aJxhibCZL0pOVMTcLltskhgXKVyjZfnEVqxXocUzxWr1aOZ/lG/6ZZfxkzWLf/dh9vGLKLM/txGQYbm3Lv191hkLBs6KjBV9e8jJ2Gd4RzYISmNI0m6s0ILfEtXOLf2lNk26jChas4C6j+cdg6YbVPKEouO3Qo3HamMlmXDOT6t02ebZWu9UrPhYspy02+43YpyvcFrbtJYug+eCVRVCsEanBWaerXODHoDBJX4pNfyaNby5/Ha/s2+m/MREaUrCKwL8krmtA7qllxZVIPpUtP2ixVf6ugKv1ZgyWpD/zklE2ARcny2zy3sNZ/DRJ522mNA8cg8UPDYI/P+SJAoLySWPlTHZ+NuC2Dlormlt7vWOQ+LiysDy4eRX+s3cbvr7sVQDudcgcchqn86vPooCf8IlZwoI9oUMSzsmZm0A/XbsEF7zxDHZzLq2ibKu6svW3ZDEx9u8UwYLFWxXlsle7JIgQk080CS6B/i1hbaEI77eYaVFm/eabWjaxsdeNCyCN7r1wEgQdTmXY+s1Jy0B2Iu0WgyLKsXD4GO63YDgULONcYpsNChYsmcCsTXPJMJiPhVyVWLBWd8lrzsmC5v3KYIgKFrsvDjm448je9VuWv4Y1XW349cYVAJzK7GstzsLMgzLrLP+3rqNNYg1yLJyETNufjyrA5EsoCuY2jsS10+Y4+h63fjfBTaUqXBazSgFfIoT/7G6RtnPryjfxmTefjcyyJS548s8Sb73VdR2tgwNlG78kvq9xeBZkvLB3Oxa378MPVy8qtSjvS0jBKgJuhVr5wPwwiAqWLDnBQXXDzL9/awyMALDaWMGVZTZkYsgsQV7Br9J4Lpdtrnj7OfO7VZ2teFlYOdFMGeR1wkT4AW9A6MRURXXtoLtSg3hh73abIsif57MHzjKL28oVLAs2ieOVLRlpzVnYMShs1Zgpy3NDxiYwq+c2QQnk1AHwcQaii+C/d2/Flxa/hN60u0vs2q529Pu4zLI2/s/ebQCAJVzxWXEQYvdGNom1F0e1T8T4u+X25DRJsmVtD1DKwA8+Loq9leyaxYmpzIWIf5dkCxdeLoSyR523YIV99PjN/75jg3QbWd/FFEs392nxfvJZ8QJnERS2W+nSxzKXW5Y8yMtyzxDd9Ly65yhckLUASjN/r9k2CR93YzHLq1vJCn6BTtbXsvOxfo5tMbwy66oou88yV2BbXArk71s2Bsv+bgfBVFbzULGYy62sj2ZfubpZcs+wacGKwaSatYZfvStxMYixqG0v2lIDeYVC2OQRTiCOrWx8Wh4wPX9cEZ/DAQ/X+FIiZm4kooUUrBLC+rygKbcZfCevQpFm4rHVNum3JgwjPdKwauZEzDnATB3a4Lqf3yrTkGSFdOB+ZvcWbOjpsH3HMgYpimLGOf1p6zoATteUajVhu54vTptj+z2hKK6yfe+9t/CjNe/i/7iJI7/t6WMPsCxokoGSb6LedNrVHYqnZbDfttIZ5uUTB+ugihqbeLBJy2Pb1tl+5yffivWlrS00XcfP1i3Buu52PG8oRrIB983W3fjG8tds33WmBvHlJS/bjsXDP7viNaY8JjxiMVAzYYBgFeVPx98j0TIFAFe/81/b589KMrR5PekHDqnHgsZRllxs0uKyaixza9OFdnee3/t35/Hyt2B5XbTsGthZfrTmHek+4nPPWwmCPtdu24kTG2ZdkVlURPj26fBZLMmFo5rG2D6HUc5sFmXjWvwLudtxy46YUFQ8evRpqE0mPfty9hNrY+Z2KUPW2uKzK5NeFZ7SoM9sFF5kVsyns538Ds8vcrK/g4wJhUYXromN8eJ9dnMR5A4UiTziAoeb4rE3YD22uCL2zX4Lj8T7E1KwiszchhHm32zyG3a1ho+5UhV70POrzVmLkFuAuTjIMzKca1XYh8JvopeAu6LjBh+vxIpfvtW6x7bNI0edZlMGTxg5HrfOOsr8nFQU1+xnzKrIJ5Vg1zGhpg4VasJSsCTH4K0PGnRXN1Ce0dW1tpXOML7l4kQ2aGuKk3wH5uTbGmR16A4Fi5cjo+v4+GtPSw8nJun46/b1ZrpdwDnA8sf+yVp74oGUhwVLrINlrWA7ogiksgVRTg4b1uT80mO/T0462HZPxUyTDgudzELl8rfs9M76MHKFLPcYLP8dZKv07L3pc8kiKD73svgVP9YL8WyMfKaBvFR8RkyvY4ZJcT7apdwB/yx+eMxk6TZp2zvorgh44dXdDKusQl1FZaD6d6xBvO6VzJJk61OgS5Ve8V0PeoWyhCFhYfLJ+ht2fDGOksE/wyzGsNnFJbOYsGsSrWpOBcu7/dxcy8PicOEV+ggmh+jeevth7lmM44jonFCuro5EfpCCFQENFZVorKjC2Gp7gcrTJIPl97h050FWMIdIgo6bbOmZFdQlKzDVyET4TyPFtD1du3xFn9GTTuHcV57EZsM8Hzao1K/zUJXwqUpVBVjUak84MISz3P1s3omokiT0mNtoKbAJRQ0VgyUOsGZxSckx+JW3jK6b2cm8OHRYk23g8JvA8kqRGHfRMig/32cPPBSfP+gw7hxZ3NyJdHM7K5i4J5O2Tf55pSilaaFWZkU3Nq8g5w4hzoe5I/pZsHh03Z44hT+bYtvOS2rvc7hRJcR1iYWGnemt87NgiUHhMlix5iy5LfN7FfqUTby8nmuZQsK/E0EVrH0uk9dc5jEyZYBNRLOubu4HDfOIiGnrZTG444Qixwy7y25uFiw/ZTChKLb6c7LfAUteWUZU07tC5q4qPNuyBQbVZkqHo4HdXPQY+bgIpgO4CLqxvtvyxGiqzHpVDLjUv/RjfVc7dgdIGBQE1h5swZUtLDpcBIXtRaJSENhx2Pm2CaU92LMt9gNzGkZiaLIidFbXUiEuJAZNFEW8vyAFKwLmNY7Cw0d9GLM56xQgdzFSbCvv/ogrPED25WXFDNmgMKrKvbaM3wC+qrPV1iGEGbb5QqZuqIoqjX2YVDsUBw0Z5rKPgroKu3K5h5vouaW2TygqxtUMwbyGkVAVJZQywGS0FCz3GDBewdJ03TfpBFOUR1XV4LQxk/HZA2e5WhRe2bcTZ778BM599SnTJz1jDv7ZV9atiPPJoybgjHFTzM9ssuv2osvuXk86hbu54sf89ad0LZTSWifE7jmSmng8PSxOS1bAmJ8E9WbS9jpY3CHdFKwg2SXFVVTxeCKVgoJlui0ae4nxNbJ4G3uBSu8YrCCyZdsjN8s061uWdTS7biOzYHktHPnF01UEtMqcP2Gq4ztd1/HUrk3S7ZkrscySa37DiZbSNXSnBnHuq0/h7nVLXeUIY8E6wOizJxv/yya1bpZmWdIZPwvWtw450vbZb8HAL8mHqFDJ7pWX0scfVRMWQngZeAVdPMOdc47Dh8dMxgVcSYl5DSPzyubIy8RkEPFbDOPLo1jWovBKyaCWwQ1LXsKVb/8n9L4yRAneNGKvRa8MWRJG/t2OKtU4u+eyvhXg69k5f/Ny+Y8bbunxif0LUrAigHUWYhcss7DwBIkLkK0QZ3TdsZIX1J9/LKdgsZTf4rsfJjYgiGWKdYzi5GHKkHpXbU6BgnPHH2T77qEtqwPJ9Kv5p+C7hx6F9tQANMgn6DLMARZ2C5asUx/NKbSarmN8bZ3nsdkxFUXBtdPm4JzxB7kO2iyjT1rX8GcjZopNxv2CZd3Sl7thWrCE7fiVRZuLoKY7nkmvItRDhOfUYcEK8A7Is43Za7/xWQQdxTXZqil3kaIcG7kVaEYipE+duOoqFhoWLVZ+CpRsUOYnpW6ZEO3H03NcOgkWpC+beFWqqtQ6B8jdFG3xKwEtWLLj6HC6ETPOHpctyCsrY8FbcRkpLeNZcJoRxto/vrYO98w/GT+ee7ztfPyj6Nbiaclk109hmlk/3PbZTyET43ScvzMLlt3tjKfBcFeXHcGe5EKXTqL9FNYDhtTji9Pm2Nzio8ribXkJ5DctquAytuq6jm+veAM/91DSeWQLqvnA2pzVRDtmxFjb9yL810/s3Gj+nYlIQ2DnTbr0rWKWQ34hxStpVdwQ5zpkwdo/IQWrhPx1+3rX37572FGuv2m67jCVe40x4soh49p3X8Ar+3Y6ij2GCYbvD2AhYoNmi1AEWdN116x0qhJ8siWiCLUzntvr7krFD86sExQtWDJLA19HKaPrvh2/vJaT5y4ArMGeV0R0Xbcl92Ar4rLz+J5C99+OHxrSuuZoD7Gu0SJukiveQ3HlNIhv/4GSgrjik+GWYp59B9gVBnGCcfe6JY5zhLVgiduLE9IgWQTtdbCsv/syafxz12ZbyYXhLinkP3fQYaa7YnYiyyyzHsJLCLJqLVPCKtQENgrJaxgyhcQegxXMBUha887jHWTXft20uYGOn9I07A3g9humSVOahom1Q83spNYz62/BWs3FMTL3b7/+sVoYI2YIhYdF2ILCPeuXY6/ELZQ937rwmTGrfrh5bTLrFP88u3k+OOtgyVvYnuTG6u/zmX57xWD5LTp+dPyB5t9Wmvbs2PhO2178a/eWQNmCo4p1YrAzDjfCCliX43QRdLYfv+gUpC9Y3LZX+tzwsOOI1n5W0JndA/as8PfZbaE2joizotgqhnGV630CKVgRwLqApe3yIoRuuFkjnj/7E1gwfLSrv7Gm66hSc7NgicPakzs34aHNq4RjBTqUub8fqqmoCPE40F3TvypQhFiz3AkaDG6miBcULNnqU0pwEfRboZKtCgdxL2KTKF6p0WDVtLlu2hxMrWswf3PPriYnrHUjLXERFFeyv8MVVpSlB17FpdRe2SFPr83zgdGTHN+JEy82QdjZ041lRup3VZg0vM7V6xHvh2xRIWwMltOCZZzLuHeiu6pfkgv+mfrdxpX4f+uX4VcblpvfuS1OnDH2AMw3shk2D/SZ1siwWQSD1NmSWeGTiuJqBZA98x1cse6gbS6beHs5K7PzMtdqm2uyZJGBV0y95fCXlSHef1kdLLcz/oXL/vmOUQzbz/25Qk3YrJwHSBYqeFg/+e89W/GDVVkrOt8/m4tKOju+/R5/cPQkz/Zo5eLmsn2tpE8MuEAkZhFl5DP5Zm5+nS4137yYUGN5MPCulrw01y1+0Vc+sURAvlhuj+xe2S1EDKsN7Uoww09B2NHXjW+ueAOXc2VYZLAFmWph/sIULtbnsWQrfH9htqvnGeKBeJ+jLNZMlA+kYEUBi7UI+Q4dP2Kc9PtaYzXHTTHI6LqjpomXgsVbOMQXfUWnM4NhmIlYe4B0xqxjFIO8NT2rYMkmYwoUjOCsNPkMnGLyAR67e4591YzJJesc+QxpGWhSawSPmMABCOZepOk6blr6KnZxQc+PbVtrynrqmMkYVW21k9sEVWx7hpmm3VeSLO+27rWtsk6tG4ZKj3TNojwZXccmbmXUK76HESSOjp3lld07zO8sN5TsNf6DWwwQb6ns/ZFbsNzvsxiT4ig0HCCLoFuSC1n2MsfiBCcau57b3nsbbxsWxbCuVFUBLMiya0gLbpr85FPWztJsjT7IJPOaBLJ7wc7PW1Kl1hZdd81AajtugDeH9fOH1Nuv01TAA1iwZJNKWZ8i0mjUqgqyWNXMlfNY192OtKbZCkwzi5ibi6BbnS3GPzmXS3kElswCL29fWxZRzur1z91bbFlLw8Dc+GQF493u8hVTZuGkkePxgdETHdvqsKuQm3o6fV28n9q5ObC8QRDjytgwdeTw0QCymXcBeR2seY1WrUU/y1rQsgZsQUYMn2DPEnuHM8JiJ/93oEyXJcaR5CIv2ypRrpCCFQFmIgGuMzjJ6Li8+KgQYyTCD1iHcP70GV13XS3nucpIssH7qw9qGkb4DLZh5mFBJm09hltTr5A6PqVpGNAyGFlVjVMFKwUbEMYYqY35LvWmGQtCSOhd+2uYzdXP7iLI/pcNLj0Z61o0PVjSBBFxNV+WuGNpe7NDCX5kyxrbZz5WTTwmezaPbBrtKUvQyfe2vm7bpLpKTXhmflMFpUPTddzLWWGC8DcPV1qGTFk1XZokt0a8XzKrbRDLJ7+F2A5iFkExvsLXRZD7WbZI4KZ4KpC/w2EtWHMbRvluI3MR/PGad23f87FAMgVLdBcKguw4Xm8ge2bNvSQPhQKYdczSuh4o7iSIFfqrM+bjr8ec4ai9JpvUuvUjMsUriLWPWSGDxBW1CZkZF7fvk9aUY99UKCrquCy3SdWqYuXXcllXL+f3quDe7eZNwV979qzW53vXh+tfGDLFiuH27syob8RXZsy3ubbaS2PYL9JPwTqYqzcZhVsZ609Ye+3u78GZLz9h1oc7c+wBWZnZ9vz95o7jFytb7ZPkicH6LLE/qxDinWUJR1gcc2zd7TicSS7iKXNcCyC/XyAFKwJYF8B3BpcfOMt3Pz8fel4xauD+1nTdMfmTT1yYe5nVOc5tGIlTuNU2GX6WlS9Pn+f5O8+JI8ebSQrYCiarB9NrrMBXJ5KOGSETISFZtfKLJWB8aiLLNOXeufFp8FknyCZNbPW3VYgd03XdVmdMCxCDJUNs5kmcpZERZBLFJzwR7x17LqYPbURSURzHY1mlwky++YmnAsVTwRKPqkG3Kct8Vktm6TiLy4IYVDbZFkyup3dtNt2qTDmE+yVNH+6WScHg+4cdg8umWO+5Y9HD2J2tXooKUUqXZAjljs+7CMoS5uiwXwevnMnjSBxfeSLG1o2SLFSkXAZovuYY3y5uj/Mfj/4I/nj0RwLLJuuj/iIU0eZh7pR2m6bz71mGNS2jaYEC04MsTCiKIr1/iqCAZ/+WH0M2QTt51ATfc7NFrZpksAkwT1rT8LrRP8hkUBTFphzzfYso7gYhiYzbhNP5HrpYsGB/pvj7ECZJ05aeTjy0eZVvQhe3Q8rcdHklU7zM3X3eMUoNldY4/7FXn8q7WLHp9m7I9BdhsSohJOjixR20JVbxHt+Clldgi618DDPAuQiCKVjOGoh+WS7jhBh2EUelUNd1PCDISURL+F6XcIXvDIKkG/YbBnilih+8MrqGCjEGS3I0Jg+rfXFU0xg0VFaFji1hXDx5BvoyaczjVrb9Jr/HjhiLF/dl3baYa1il0TZs9aSCW/kUj8v+5zv4ER4WKZ6kkC735X07sKe/Fx+bOM3cRrW1q33VzPILt3eO4krnzr6enDp9/prPG3+Q1OUnSKIP2WTzumlzsL2v2zaQNVZWo1nw8WeB/G2DwYti8hY9RfG2QIit4swiaH0eVlGJ7X3O1c1LpxziK5M8eUK27X69cQUAYGz1ENPV0qFgeezvxuyGEdjOPQuilUCMsekRXPoGBIvWQCZjT//PtZ6bm6um65LMkfK3MqwFS0SW9OHRrWul2/7GaHPA3i5u70mdpN6fF8vbna6lf/JSsEyLs7uFReEWILJujv6ESdPuPB8csri5oC4Yblmgh1dWoTM1GMjyd9PMBbhz9bu4durs0PLpANZKioSbWTlhX6F19uIWL+/bYfucXWiRx2Dxx1jr4u4nxmC5xWT5cf3il5DWNQwVykmIuE2QeYXIPL8hwNbeLscVdqa93Tp5q3ZK17Czr8c3ds4Lq8i4vFXMTKkSayrvcRJVFjy2MDlUeN/ZOGdmETS+tytY7ll944aokMYxi2A5tGO5QxasCOG7sKEV3h024L/6eSDnMiYqAg5fdeHzbYce7Rju3jBWI8Os8PF8ctLBuHTKIXb/dyafy7DGT1KHGYMRmxgwl6mk4tyb9fvbjQB9Ftw/XDKgubF3ILtayFaT7lj9Dh7YvMo2cPBnZtm5FhvJSiy3CftxxUninWveyamzslkUFPnzELQukMipYybj8il2K2pCUaRZ9oBgKbll2ypQfGIv7OdqHujD6YZbCmAfeNxacESVf/yITAKx7fg4NvFcKzqcsYiyhQhxP9uiiktcpA4d3alB/Muw4DJLnZiB89GtdtfPVZ1tuHP1O+jLpF0n024uZTKFMz/1Sk4QFxO+HbtTKY8tg7NIsEj6wVbjZe8YrzAwZTCta66p5nly7ErN8/HnB9wD+EdW1eD5vdvwu40rDatEsBPPaxyFPxx9GmYIKduDoeOoprGWbIac/BOnSCbA2W3sz+U0zvUNyPapsi5TfOe2C4VoZdvt6e+1nTvM+Ma8O/wK+4qLIRWKio+OP1Dq1s2U/+zCov0iRTd5N3miwqu2F/+9+St3U57fu52Ty3t8syVq8diWLc6JLoWmt41mT3LBy73ByEzaLinbEXfiaHWL+lkjnJCCFQEy87qMWcIg55UcAHC3YGmQrFpzf/9oznGY2zjSdaDJJUsSDy/Ls3uyKdDd6lqoioLZw7IFmFmgNZuIskmPW5ILnuf2ZIvOdvsMUDyv7NsJwLlq6NbZiRkR2WWKk1jZYJNLB8ordyoU6f2SJTfIFZm7pflbiJT4/D1QFO/4DrFZvr9qkW92qlyGImkWQA+fOPF+TZa4Z8oQJ478PRPbgf2i6TpWcSvxLCapX7BoieUSgOwk7e/bN7jW1OPbj5dMtuARpmZTlOS6oBOUIIsQx3CKAuPutUtwK5fxEuAD6eUWFpF8rIKyeCWvQsM/XrMYf9uxAe2pgdDunrmg6fYkNLrwvwJ71ruEorgqnPJFKrkFy76fiysht93Gns5AXhmPbl2DR4X4VYbfQoHozvv3487ElUaMswivAIjS9xRZwWLnd7Vgwd1FkFduw2TJ9WpLtjjniMFyJLmwu+vzsLlAOcD6nThai+Ko9L3fIAUrAtjERfQrFjl97BTbZz7+RH5c629+hS4jcQviBxi2Qu7Wqe5wWRUMCj+RZJnM3NypVEUxsxGxTHamBcvmIujcT0aQ4syMWpfA2y2cWxc/MLAijEyxdZs8yQabXFwAHPFSISdr07j07N+etRDfnrXQc3svF4swljJeQVehhJ64uylYTHkRlZggWeZkIiQ82lOcPM9pGGn7PLa6FkGQxQhYMlkTaD5WifUT4qq42zPfkRpwfTbcBknZoUqjXhVewfLLXnfsiLGY05Bd5OGtRs/u2Yq3W/fYFVOmYCHYpChXd+vsuWCcS64k84j9S77unjJmNDitXP/iMv/JYrB4su59weTSXJwhxYQVbnXRxHbnP7/HlYHgeWTLGjyydY00btDvVocZd3iZxeP2upQlYQQpvB4GXwuW8RCye7m+u0Oq1PplyeXxusa0WxZBxe6O7yW36F4YR4ZVVKJSVc047jgqWEHKcBD5QQpWBAQd6nYJbgiKouBQYfLI1y3hj8sHu0pdBLmtmT9zELe9XJDFBblN0BOw4hr4mCvAuqaE4pyk5xPbYJ7bRaavLXvV/JufNLAzsiQLimQbQN5Z5mvBcoub8eKqg6wV1COGj8YRw70zBVr1yPxXjr14p80qJOy+Yu10J2IwqycguAgaG4v3zW2S9ZO5x1tyhLTYiPdLfJ+6AlpKFeEe8rD7q+k6XthrxaCwCYK40us2CUrp7rYUt4Fb5t6WrwXrygNn5TRgFEK9OpRLee4XizShps5x7XyrsVV1BYrtnrkl8ODxKgHhh5XkgpPLw4JVaCbW2a244lNnWrBcZLEluRB+c6St1j0KDXO3yi29vFPBsp5MmcLN38uURFnwWyDjFazDG0d6bJmtA8cQr9JPfbpv03s+W4SDnd1tLBRdBP+9ZyueMZTqiVx5BT/LGt+fdnl4yDAXQfG9YfdMA3MRdMaOMS+DyXnEpBWLlKahQlFjHTcWx7iw9xukYEWJzzvUIfEd5mM/fnH4SXjwqFPNz/zk7UUuSFg2mefHGzbh0Fy683xWXd3293IRZJ3MoEPBslwExb2jWPR2c6vi4Ts+VqeItZ+b0iGbvLLsRx8ZM9n8zs8qZMt85XE+N8IqoWzgl3WsQ0JkGeMzi7Fn9N75p9i2sdwyvV+KnkzaoYx9YJR3lktGpctihNd3DPEdEp+VoK6oXq5avIXiNa7IMcv6GCSTIZBNBDLgsirssCoY/78gJBXgfwvDkZzSvnD4mNDP6BlcvF2UXDh5uvm3n4LFTy5lijjrlxTF7iIYxGpRGaCPcYM1Jb/w5qZKixO0QrgIXjbd7vImPluiYuXldSBuKw5ZshTmgHNs+dSkgx3bAPbMqeJ+svu2rdfu7tYxOGCLJZW9Lzz8Aqff8+a2IAT413OMMm12Tzpl1gRzj8FyjlGvNmdd6we5cSJMjO56IWMkT8rFgpUUXQQlyTlmG1boclAMBjUNFWoi1pkP46j0vd8gBauIjOdWhGQcMKTelhzDbQzVdN0xNvEvMOuUuoUUsklhtSpK3OJwEooVWzQoKDBsNUuW4pVNNuc3+tficePqgw7zlA2wdzKdhgLMOn8F8s7Ry4I1vb7RzIg23s8F1HYngrvXcLuEgg2mss7+iOFjwh1MEGGM4FLHXEeDdOEsqQiDTw9+xRT3cgd85jmZdcZrUBN/CWqJEA/ppeTyFooPcXXerIKtwdjZ3+06AQxSpJaRy8IK7/ackLiAsTpy3zv0KGm2sw+NnoSzxx1ofr5w2szQMsjgJ7l+KaKTkjTxvGWBn5AnmFKs64EmlX7uiV7wbcksLG63sMuRfS76Xryuwu56JV6/GIMlkvCwwjstOR51sLjPbsmixO/5Z3u4xOrFZz5tGxzAhW/+C9e9+4Jtm2qPPoD3NPGbl9otWHaKOaV92YhBBtyzdFpzAqfMfP/pl1iC74de5xaTRILGYMlcBM0ENCHcFQtNWtPwbttem7u3rutI6xoqVNWU369QcymgJBeFhxSsCLCClb1f/A9z1g3GXGNVRn5gq3M5b4JVTFY2wX9q12bHd+LN/aAxyStETAS/EsbLWqUmwLpSNokQJyVJRXVcExPxuBHjcpaJxbgdLGSw4unlCgazNM9Vqhj4a5dN1jHxNbTYpNtvhYifGPKKaFDCWrD4FNSMKjWB+mRlzlZNJnNCUTC6ylKy2EAaZJGMuZSwdlZguYOcM/5At90woqoGN04/HD+Ze7y0JbZ5xBqK9ybXIdvL7c6K59HN53lEZTUajQmgaK1wO9SqzjbXczjeGw9Zc8lIyRfplj2fXolqgGyMB5/K+rrDDg8tg/S4nCx+Sg4/4bXeaQvefYy/Z0FcBPNxt+Zb89xXn8Jj29a5WrD6BAtmIQbuRiFbpzgpFPtBUZ3yaguHy6Cum8fj+3ixT3Pr4/i06p+YOM32PMiyjvJeB5uMbHRi/7CwKbvI9JkDnIsA04c2WrL79Bb8uyC33AXHb07hBf/uur377HnnX20mIt+3+Nbj4sSU1XNksGQhDhdBlxgs/v5b41d8FIM/bVuLb614A/esX2Z+l+YWjpli65fcpBQEKaRO5AcpWBEgzjtkQ8JZ46ZIV1rPGuc+geSPs6DRctXJeMRk8IjbMLeaKMzVfIZDwD6J4VcQk6rqsGCJk7GEqjgGLdaxBi1gKIOd10vRYbWn+BWopNHZW6vddtjx+EGCKWcJxYo5y/jcJT7lfNIjA5cbYbdvMWpd8YNlWtdc3TuDwNpAURT8cv7JpsXRVLACHGNXfzadPn+bfjrvBPz1mDN8lc4TR03AwUMbHdvdOH2+534O9yfhdzE20m07L+nYb5purdbfcPA8R30sIPtMyeqg+WEvNOxNLm/9KZy7ZqPEMsAmrm712ti7fuHk6fgEV38uX+zp8b2tj/b+xtn2zC3LEYNV4ImcqJw/tHmV64KEo6BtARbJRHdH0YJlpWnXpSLwFk6H5Ua4MI1zwphYa3l2iAs9bl1TDSfrhJo62z2WuQjyY4BYHoHBTiWzgPH4jp82mYMv5GyRZBHNZw7M2vJDoye5LgSxdrNbsOxKjvi3DFsWwYy7MjboluRCsGCx8XR3f69km/goWK8377L9D1ju5bWJpOnKKmaMjQPkIlh4SMGKEK/H9bBhckuV1wTyHa7WC29uzmZg8n85xEGtwnQR893VF7HD5SdY/GpZbSJpXmNKcBE091VUx/FYZ+rl3ucHP8F1g2XE4y1ZTOGQBaEDVscks66pnILlNyjx7aAqSmiLVFiXwj3GYMUyg2m6joyumxmcgGwcIM/M+kZ4wSvAVYmE6f5mTU79HzaxBo0CBRVqIlAMnRsnjhrv+btjFVS4V27B9SJe99isg8Wt1vNxPvw7/NDmVWY85smjJgQ6NyCbbGSP/cmJztiVMHEUDN71U5aGm93npKI6ylCwfQDggknTcemB/gWjg8JPxP3cO2UWLP65tJJc2GOwcmmvfHHr10ULViHcvEVEC57pIujyyKtQXAVzWLA8XQQV22fpubjvRev/5p5Os69j8O97v4sCwLbwW9TxHXu5n8VkOV778nFipkx5TIL5PsftiqS1/nTnuf0m4zaLsIcCxGpfijF0ZpILYd+tXMZfZiGVJSkpFZsN+fix3CqmbHmGxFGZ4d8Jt4zLRH6QghUB4kSX/8Q6DreU7F5d+V5h9YZ/WacaKbq9zPE1QuIC1eigwhTrdUO0OPGKED/pHlVdy1mw5C6CCUVxWMRY556XBcto3XXd7XjZJYal2ajjwrvNmZmVJPEa2W2zHVOjpB0TXFIPv06V75STqhreghVuc5OOwaxSySbnvAVLrAcl3heRczl3UMAaBFuMdg0yrHRIXATDElY5Fe+NOCXY4Bqobd/PrRAqYE3UHt6yGhuN4/HTR34C89ft682/Dw8Rd8jPNXjJ5ksyneVi9FAUBTfPPAI/nH2s53a9mRQum+JUoPLNWOpGwqW/kcFbLGRtwAfzm1ZveCe5uGTyDHzOpQ5SPri9L6KLVhRZVv1I6Zpt4uVMqOIug9hnOmKwuCyCtkycsL//bqUWVEEJExfiFguFqNd1tZt/uyWSeMkn0UVQ+Cu94u3n7L95dIiyREP5KFimwggFq7k6fDxsrOvmYvzYneE9MPx8ZvjFXK+FCdb24qKImOSCuWSyjL6Ad5KmYtMy0G9bGOTH8hRn1VcDzgVKAS9THJNwvB8gtTUCnEOA9c19R3wQO/p6pAHggPdqGb+CX6GottieE0aOR6WawKxh2VXj2w49GreseN22/0IhcQHrTC85YKY5QXly1ybX83vhtGBZ11GbsAfUsgHULamFAsUxEWMKT351Zqx971j9jnSblsF+PL5jIxY2WS6YTBaZKxdgdUwy2RKKGsg1ERBjsNTQk6awMVuzh43Aso5mzDLc39hKID85EV1Jqj1Wtn5w2DGYMmSY7Ts2Sfn+qkV48vizQ8ZgMSH893EQch/RgiVOAPNR7BlMpOVcplAFVhunNA0Pb16FYwVLqPhcVakJ10mhoz6SsavosvfB0RNxqIsV3Y+jR1hFet0m1UOTlahOJHFM01hbxsR8M5a6wbuO+b0HsgD9Ts6ywFbVoVjvfFrTbJNOkU+4ZLfLF7eJTpg6TFGR1jSpPG4LIWlds75zxB7ZP/OFhvnjiGdzu7d8P8W7ZduPLz/uu6125UtkU3eH1Io8sqoG+wb6MLnWO034cSPH4d9cKQo3OURkrq7BggHk8ErP83u3S7dhYx2/kMb2ytWC5RYj9XrzLuwd6ENCURzbVAiKCJOHt3SxPq3UMVjdqUFc/va/beN1ZcJepxTIXlMy4FygFPBjRz7PGeEOWbAiRGb+b6ysdo3nALxXIqsEFzJW/2GMYRU6ZsRYDDM6ormNI3Ht1Dm4/bCjzX3ETEtssBpaUYmrpx6GCbXeWQ29cChY3CRddO2yshpmJzXiQKIqzolYhnM9ypWgdX9+s3GFrQMUB/UVnS22IGlWDFK2Om93EfQeCPJNchF26jrXsGqwASqtWyttbry4131V1y9dcRb3jvuL0+YAgLW6amyaSxFV/j36+iELfLcXU+2L45/bc+dwdQrgIsijKIrZ6b7cvBN/2rYO1y1+0baN811wP4cGHd2pQYc7MC//sIpK3HDwvIIpOwAweUjW8lntElsRNfy757cwYQ/wz27LB52badph3bMBLVOSQpxuZxQV7EKkaRf507Z1NuufFYNlIMigQXd9d6VZBF2Ow38O0ieqiuJ4zsR3hveaWNHZAi/c3rfvHXo0zht/ED7NlQiQMb9xlKvbqpeLoLT8R14ugllURXEtfWElueCdZ8PHYAWxYN2+6m0A2WsSFwzY/Xtw8yq0DPSbE37+/ptZBEusrDQP9iMjxGjy95uNq7Z47BhY3UR4t+M4KoDvB0jBigKjDzhv/FQAwBUHuqeWFvHyVxYnsF+fuQDnT5iKaw6aLd3+tLGTMafBvQiiM4A491FafCG9FCFnZijhd4lywaws+cgY5uHmM+owtxT+3P+3Y4P5N+vgkxLZVCiYPzzr4rXAp/BvJRf7lFQU/0xNAmEVEdEfPB1AieVXtvjirkCwybNXty0+F/m4CPL7jDbihg6RxAQljVg3cZAOkikyux2E7dyv0O3++Cn+uz3iR0RWd7bhU288g19tWGGTjr+nhXLT42H3Uuyz6pLyNNv5wvdlfH3Besn5bGnaJccaNGOwrH6oWPFX4jvllmXO2TcUQcMS0IX/FSj4LDfWHchZs8WrcHzWrUUNsR8IEoPFk1BUVCeSOG88l2lXOGOoCaTLKSfU1uHyA2c54odkuFmcvaTwyk6bC+xZUgB8ZOxkx+/DXErCsKEwjAuZLQYrwLsjxvft7e8z//7dppUuadot63IpkSXx4Ps91m5JNd6FhvmYP3IRLAykYEUA6wKOHjEWfz7mdM/U0iJeKxv8qsiEmjqMqKrBZVMOwbAcY6jEwSqfmy+alPmOcJSRHpZ14KJi50w5bHfxePL4s80OS9z34yEykYVRzgZ1q9OUrfTzPuzsniUkCkZ1IoFLD5iJm2ceYdbhcoM/TUJRXLMvTXCpnxZW9xR92JnSuMbFPx+wpyyeOtTuDuhnXXxky2pvBYuTX7fFZISHV1rYhK1eUkNHVRQkVcX1vWOFdWXxRDLGGsrcUEmdGdnzp8Lf4rKuq90x8RZh7r/P7s66IjFXX3Zk3mW3kJYrdnzW/qLSXTgXQeu4/Lt54qjxeGThh23K9Vxu0UkmzX/2brOOC7u1vdCI1hQ3Vx1RwSq+esVNwkxLs7sy5IjB0p0Kj2xBxeEiGOBK2TbnTZhqfvcXIwsdI8yk/MOjncpIVHilaZcpWE/s3Oi+vaZha0+X6zF5C5bM/fADoy2rFt/KbJwIZcHi/k7p/guF44QxjX/ue9Ips3/m739cXARlyjOvQKU1mQUrfgoMn9lQRzxTyZc7pGBFAD/IBFnd4pnfOAqHN47Elw6e5/jNXiAz+iE1H+uQmHKZl7WhsgoPHnkq7jvig8Z57PuK7gEyCxZDnKDJapS4ESbZ0NutexznVCWTdsA7BqsuWYEKNYGjR4xFdSKJk0a6Z7P7x04r/o2P3RJxS2TiFR8lg19Ne2zbOvxt+wafPezJWRxudD5+So9uXYvdfdlA4BMl7cBbVtI67zIU/rnk92DviuwoqhHvJ1qe2LNy7IhxeOK4s1wTTYiTmQ+NmYTPHXgofjrvRE+ZeNn8Lu/McVNw1vgpntswl6d13e2cbNbvtrg679PlDf8eHN001mPL6HCb8KmKgmGVVbYJzUxO2fLqR7Mugtm/32nzjtMpNn3C4ktvCdM+88qTozaWS/NaCRfYZ/n7ruu67XkNZsFyvu/tQsmDMG5lw1yKG0eBpwVLMmC90bLbdfufrl2Ma9593rWwr2ZasBSpt4XbpL9STUDXdZvS41dyRLcpGP5tLcak8+9zpZow+2O+b0nExEVQpuAxF2mAs2ApaqxdBEWJfrp2cUnkeD9DClYE5DOBqVAT+O6hR9tWkxhhixKGRXb0oOmpPz3J7ofOxzlUqgk0VVWbCoA4SM4RiivzxXlF3AoYB6HGJ833EE5BeWTLGsc5eYnearUGOsvH2vn6iFYdr271HK4GmrjfPG7VfWtvFz574KH4iFCouiZQDJQFWwV/t20vHtq8KtA+NtcRj8yRDPEbFsMxikv3zeBTgKc0zdQQcrNgOWWQuehlM44pkhVt69xekzrRKpZQVJw1/kDTLVE8l0NOSGoaCTRVVvuueLrLmP2eX/CIsheRnZV/D2Zz7/aP5x4f4ZntNFVW44SR420uaoDl3sve0eow74jife+PN5KR8JnNosZNcRSt/m4uaIWEvf+8pfkQw9I6gyvEy29jfcFialg6bt31fQ+rYJnbeGwaZoJbiMVMhmcMlptbsssz8YKRUOgtbnFQdi5FkcfZ8s/aCdwCWEbXHeNWGAvW8o5mz20ZEzkrFt/fVahW2RZbvTu2QFhiF0FZ38zH+PGu96VyEVzd2WqW/XBDvKdL24PdNyI4pGBFQSn8NSJgV5+VZnRmfSO+PWshfiZZiZchDkJ8By6mYReVp/mCdUBRgCONLH5i9iZ+BeuyA8LV0VEURWo5YXxk7AHS79k57YGr3GqeRwyW+JWXknxgneVy56WENlVV45zxB+IgIzU/I6wF66ldmwEE70in1TWAf7jdapXxXDttru0zayvxmQBgu540Vzw7txgsay+vCRJLoy9OuCyrpHeXeMbYKThtzORAyoPUggX/WDtVUXyLncqOzd8dXvmdJ0nZHiWyewv4p/jPB0VR8NUZ83HOePuii1kSIsNKQjgVLHfV1LnQw/qA2cNG4IvT5uDL0w/HpSH7oTCU2pHoSo/4YbErUxQF04Y24J75J+P2w47JfmdubN+WvW2sb+UrOeY7fJqJGjyOFKZodCEnRV7zbDcFy09yt+vuMRZyVChCohfjuJwwtckKPHjkqQCyyrvY1/srWLxVM1hMzzauxAV/7aqimPdLrHcGhLuXhUAWY/ZeR6v5t7kAq5bORfArS1/BTcte9dzGWXaBiBpSsGJMlK+kTBngX7CEouKI4aPRkGN8l8yUzxCVB3ECrCoKxtfU4bGjT8f/CK6S/L65rCx67eE2oLFz1kriagArIYbMRVC8Vq/0p7yHnXh/TuEsmldMyU56xImsV/Y/GcdLCiPLOMVQcr9xyBG27x0KlmTQPnaE3UWMKTKyiW5SUcx6JylNwxazqGR+95lJVSFJbsAyjqV13ab87jAGe7+YoapEAtdOm2PK7S2TXAH3S7mtAJhVPxw3HDzXtWad27vAvuUVrKsKUK+JRyzLwBji8v4UEvb+jTcypE4b2uDYxusOi+/vgXX1eODID+F7hx2F2mQFTh41Ia8C2H6UOtj8vIlTHcXGGW592cTaoWabuGcRzMKnrXa90pD9vMxFUCQTwl+8ZBYsFxn9rG9uVr6frVsCIFurT7YY5pZpcTAXBUv4uV+wuPLnkiWi+dDoSebfy9qbzULRfK1JsVZWqZDNG9ZzdRPTXPkT9mwWK27sj1vX4k0Pt1Iex/tc4Fjd/RFSsCIgl7TSQfCtGB+Cn0sGTf4FkylgYfDKHOTn5sHcemqTSadlLM8MaF6DpVgnzJTHR17eRVBUWsQVcJZZ6yDOWiXbNmtV4RRe7remqqw1I9/+75gRweJjvnTwPPzt2DMwsqpGcBG0IwucFhUpr8FQUaz0ynztpFyuU6aIf+aAmTh4aANuO/Ro83cVijnx7zTSmy9rb8brxqAUZVIG2furQMGYGqc7oWM7RcEHR09y1BljyF1qufeZ097DWjq95XJ+VyVM3u474oP40ZzjUFckBevMsZbLHmuXa6fOwQWTDnYs2GRxV04di0FQMKKqpiiZGIHSK1iAf3ZQ5l7slpQHkGUNNCadquXmZVqwhHc37BvI7rlXXx9mgluo8RzwtmC5lfXo83Ep9pN2c0+ndCbhTFRlKTDib/51sOy/i0lidnAZ62T94sHcQkjLYD/aUwOo4FzsgPhkEfRTeK0SM3zJlsK/11t7uvD7LavxvffeMr/r9UhcEYe+5v0OKVgRUA56vyz5Br9glu8E4sV97vWSZJPBSybPMP/2DDzPs3G9dj+sYYQ0W5tfW/Ad6CeFgqPiBO28CQfhi9Pm4NZZRzllE9wfnt29xfaZwZQW/n75uZDJCHqPFUUxz8nXUhttZIe05JLFoAkWPJ+4qpWGn/jzXCa3fN8nNkEaVV2Ln8w9AXMbR5rPoKoo5grqrzeuwFmv/APfWP6aJX+B6jaZsinAVMHV07kNF3fgIo/svcjoulVouEgKAeB85kdX12KGJEV+oeBdIJksDZVVuHDyjNAZVx2ZVou8qssmskEspIVCZpkGrHd5U08nAHv2RRFHFkHh2GmXGKyc3IMV/33DWD2iqDE2xGVRw0sKt2m7W9Fiht+1Kci66w5NVmAKl1xCnGCz69Z03XFMv0K0ouw9GfvE/idr3/WUV6bUin2xVQer1C6CTvnnci797PpURTEzDRfD6vaSZA72x21rXben4sKFhxSsGFPod5LvYAuZNUs2SeHjb7wmMVH557vx1ZnzHd95WTFe3b3DnGAkOBcAt/NVqAl8eMxkqeul3YKl2AYplZvkWIqMdb9GCspOEA4UMjcFYVb9cHzmgJm4c85xjngXmWIsfuc3GLIrWtvVHlo2Hru7q7vrJp86V7YoEOWEWvb6somEl3WHl4Cf7PKp4GWLFmKx7M8eOAtfmX54cIFzpJAuVYHOz/0d5P55beJ4nwu8fHZ0k92KzhcpLRVuSr2oNH3vUNmikfyYbN8KLtU26xls8ZPIvc/PxR1cRhR9wI9cYjS9vFKYlW+q4O3QL7EU8u7Nfm79rL7bo0d/xObJIk76TWsLdIfy9WrzLmzk3OCcAtk/ijLvG+jjNpUoWJI2FxV9K017aRUDmQWL/4Zdn8qNNcVQCidKsg23DPS7bk8xWIWHFKwIKPUEI1eidEFsqKjCXXNPMFOz88gGLH4CUcjW8+uLZSv9vGwjOEtR++AA/ue1F7Coda+5nbNIZnBsVeo96gcxy1O+d8vtOT1smHvNJUVR8PGJ0zCzfnhOsScZc5VawU0zFjh+H12VdZfjV+xzcdHhJwuyvdl3XiUBALtrZr7IEpyYcgQ8D+9yySeHkV1DRtdtbXfO+INwkpA0Jn8kymuJh2ZbDbQgCpbHccRrKbSic5qQaOe9ztainNcLt/vJHudqNYG6ZAXmSUoZuMZgGfuybIjZ1XYry525vxJexbL6cGs/sS5dGLeyKFwEZTGngI+LoPH/iSMn2N512aPA1y70c/VKCCY5prgMFWKh2Luj6ZaCxY+P317xhofs3i6FfGIfWaiZbCIqlgExLVgldhGUnd9eMyz7P1/f08uCpes67l2/HP/Z424RDoImsYF6hW6I96E8Z7HxhhSsGHPJATMxorIa35h5hP/GOeDnax8G1cgoJUtXLZss8ApFIScTXm4sgLwN+EnaFw+eCyBbi0oM3E2qztpVYVY/+fFDbANZm/B9dFQrYjfNWIBvzVoYybFksDouqgIcN3KcwyXz6BHZFXw+mDkXRY4f4GRDmRmD5aNgRflOyLJdsVN3pgcdv5kycJMaXh7VZ1Gi1MHfpYJXCAI6wbp+60zIk7NYgRBdalnsSjFdPEXckvuwSfSgpvmmvxcfRbaYx+pTre/ukGYRzKW5zSQXvKImHCmcBSsHIQTcDuG9qMksH/b+cEKN0zKxy0gCATiLUIuIi0Y/mXc8PjR6Ej4turfDUrBYX8L3P10hCtGKSt9Axmp/mQVItvgnurQzT45SlCjgkfXr9vHHcn1l77GXEvxW6x48uWsT7sqzDpUsSYrXcy/K1JVOlVx5fb9BClYEFGoMnlBbhwcWnho4OYGMK6bMwsmjJkjrW318glUsWMz+FhYvJYn/7afzTnB857UCLkukkCuTORM6O7+fBWtkZdYVb2RVjaOzkk3Ww1hAxCQXlS6TaQbfHUbRESrIKj1hi2MD2bT+YTBXTSvskzfWBuz3U8dMQi7wyoVsADddBLlVRRm5tIUbL+zd7vjOb3X88imH2OKGeHlsha8l1+AWJB8lYkILoPRpk/kJcV4WLNmxC7yu6xYXGUsXQeMV06H7em24xWDxlhnrlc1PqWXyirultAwe2PQeNvd0hnIri8KC5fYcvtosLwoMWBYF8fzVkgUnfhFGlpW0kyu0LD5LU4YMw/UHz0WdUNOPJRjRuCQX/Hm8WsUv6+ARw0e7/uZW31JUHFkNws6U++JUMZAtZIlp6gHDIh7ARfAHqxZFIpfsHG410gBrweRQzoNlWcAaZkQwSMGKgDibVs+dcBC+PP1w6YDIT+ROFYrYBoFPIR3UKsAC/G0dt8e+I6tq8KmJB0vdy8Iyu2EEHj/uLFwxZRZ+efjJAOTZE/lJD3OveKdtL5oFf+akRMEK4y4qJrmYyK1UyhUsXonI31oxWyj4HIZVnW3+G3EkDUX5dSGFLGsDdj11Lim//eCVKtlkis805jV5jTLznUwOv6fjvAlTXeWxW7AkClY48XLiW7MWYvrQRnzzkCPN77yyyRUDvi3cXLNs23vcBHEhqtBJLtyexYVGbNZRTfJMp6VAR7a0gQ53xdPVcmPGFzXYjifbJ2iLf/6gw/DB0RMxtnqIsZ99z6d3bcFftq/Hte++gFQIq0ch7vhBRjbQ9tQANrjEMlmFgRWbBXCRZJLMu8/JLFirOq26TGESWKmKYovB4s8TxrMgIyjY07kFObGfclNoOwRFKi4Klmxxkx+P2bOuAIFcBKPyRgkbm6aZ76QV87d/+kAUDlKwIiHOKlYw3DJHecG7LnplvZJZifiJkN8k5qIDZuC4kcFqOHnBfKLPnXCQWSdH7pqgSP/+xrLXhO1USSam4M8C73KYUBR88eA5GFVVg9sPOxoAcOkBM3Ht1DnmNvyponjiipmmtcIYqEVLKbsO04c/xwubzCXwqJJMstk8IaNrnlaJXJKHhCHs6ji/OMFbR0tl4Dh4aCN+PPd4LGwag1rDujageaeRLjT8OxdIwfKwYQ2tqMQYzs250AqW2/Fn1g/HA0d+CF8vkHt4UA79/+zdd5wcdf0/8NfMXsvdpVzu0nsnpFMChNACSBNpShMQBBSQAIqCIiIoiOIPRUCxIHwREBAIUoQACQkJ6b33nku5nutlb+f3x+7szczOzM7szuzM7r2ej4dy2TLz2amf93w+n/enWzHujUweLkkdleN4m0V7ZZH/XayTkCHRLXxJ/2G4b/SU6DVcWaYQJJQputEZzTGlx4kx1cr9+rU+g3HT0LHRf1coEj7I2kIhVcZV5cO0TxTZZWXZQsdxrjfORtVDxE63dQiqMVjK9Zh1W43XgmWW2tzqWPCAIKIwKxvH2losfd4teoGMpPO3IAiWugg6Vi6bvVqirZSKa6aTY5AJcK4/TCeWCYdkImNPlOOt7ho50fBzejcA5dOwVA2St3qjMZs0WSlLEGJuDnZ+yVTFPFxZgohBhV3x0tTzo699c9Ao1eeV67KbflrPgejEvu6Tb9Tn9Rms6iYjap7wJXosFGRl4/EJp6FCaEW/LgUIaSpU8tiP0qYGjDJIk/6bCdMcTVgzqEshDjTVq17TW3y2IBp2s1Mef6oskzZbENzQPTsXje1BNMSZp8dtyt+s14XR7nIG5XfFkUjl3O1rk1GlVQBQ4nKwb8W9oyerssvJT+eNrqXa8+ezI/vwxdGD0W5IyvcrW5tjXhMgJPwUXblmCeqWgVR3Y1WW5aSevU0D0k8O78Wfd67H1Eg3Ou0RoTdBvDKphF4LVqJdTEVBQEiC7hgsM9p9ZhZwXT94jPmXTXTPzkFpUwNa2ttdnfDbjF6LUyhOC1YqsgjaaaUFoAiizYcmUOLYguWATDgmExlUrTwZzbpWDcrvioFdCnFZ/+HR19TjjWyv2rJRFtPBKxm1YMV+TkTfSPcUK5/XUt4grHxvco+O+X70WmnsS92BK3c10ZZbbk2IN3mjFSf07I3rRh4X93NGQXMyXSb1mKVpV7ookknuOs2gcwA4pAjQlNvID9ecw80NALwfdC5YfCASfznh/6qSZnjURdAvFR0B6rLIFXurgeezO9ZhY20lllUdiSxPGUx1/PecSLbLU4v7Jvy0Xzm1BSRJ1dKQ6rmTlNsnJJkn8vjzzvUAOsbLCII6yNRLw67cRvoBVse2sHOvEAUB7cougop9b5piXvOe9qGqHLDdPnwcrh8SDrAu7T8MAHBmrwGWyxftJmiSJMht8bIIdiRvEWIeIOpxKqHNv/Zt1X39msUfo16nW6XeeeaX606mYIBFAGJTolphtTk5WxTxwonn4PYR4zvWl6KnJneOnGB7PaLlACv2vUQHSFupGPbr0hHMJbrNBnYpTHoZAFRdXqyQW7AGRrpmyt3LlJNbJlsmq1KVQEB/vpfYz105cAReOPEcXKd9sgv1OIRv9B+O4QXd8LOxJxm3YKXw/jgsgXnV3KA8c/ZG5qgzEy8gVF4Km9rdbZ0zOhadSLTgCKGjLMquY/FKpz32o9M1KL4o1+8EAPeNnoy/nTgDp5X0SziTZ0AQ8MrUr4UTNUBdEU51djRl0D++e7Gt/SlAUHV11aucqwOs8G/77Mg+fHRoDwB1y9PM0ZNgVbgFS9LtPmYW92rf++3WlXhpz6Zoa478G3pkd4xx/P6ICXh72sUY2bUHAOB7w8cjnm5Z4WDTy26Cui1YqiQXHdkg5XpOKsZgGWloD+Ljw3tjXpei73dkh2QWQWexiyABSL4FKx5t1xFlQOFmN5yeikHrVn7h2G5FqrLZ6XcOJB4g2I1vEw0SLuw3BC/u3pTUMgCgv6blTulHo6fgD5qUs3IA3zMnDy+ceA56ZIdvlGK0Bctaxc0JqXpKpzfsQ2/NWYKoO0mk9vPFOXl4NjJR6I4kJ2Z2wuD8rtFJt70kWHzKbpXy/HdzAnbAOJBSHqJf7zcMHx3e42o5jISfwof/lqAeX6JHPi7r2tpU88B1dJsScFzXImytq+6odAoCAoIYHRebIwbw+0nT0U0zT5MVxbl5KMjKRrsUUk3RkeoWLOXW6ZGTC6FR8V6c648ohLvCyeJlrZN/27M71gEIZx0cGnn40S0rBwMUD9XiCUBAUApF16l88Kqd68qoPLJZB3fh40N7cXbvgdE5nrTLUGZJvajfUPx998bov6cqMg/K5Cy09W3WU8Y7TW8Mlt48WFBkrG33OHBpMWl1C3nY0pvp2ILlAN88bUxCIk8Nk6moKi/cbk7UbCeZBhAeh6NUYNL1MT8r9vlEotvEbrUw0eDIrKuKU+uf0WdQTHc3ZT/vQfld0TVSgZD3fUhRAXObly1Yeg8TzMrTVVHRUmURNPxO+l+L7FJul6lJZN2Tj71UdpMxWpXyOCnOjZ1iw21yS7f8IAQIn6PxxmDVRFoW/rZrAxoVrX8d3aYUE9oaZBEEwkk+5IDLrnCiBvVrdpJcOEF7ftq7rgk4vlvP6L/0uk8rf0675rc9s31ttEVpvMkk8npEwXiiYb2J06PvGbzeHGrH7CP7omPglNkNtbR1kGad7KTyww9tlsJU0t8fOi1Y6Li2H2iqj9sNvke2/QcKSgUmU4zodSOVy6zMVMoAy1kMsByQCVWaRFqwkqmopqoFSzXWy8J6RJ3tMMHgJtXfxpNBI7cND89TVpRtL2lF4mNNOrZBVWuzyefMZcUJyLUVsFyDi7+8FL0uRG5JVQVatz6is2qzffntIR3dBlXzYCVTsAyjPK8H6UzKalcq56AyWpMyOPdi0uE/n3g23p52MXIDAc14oo7Kox65rAO6FKoq5AcjYwlFITWt1tpuoG1SKKX7VXuvsbNmUQBO6tkHVwwIzw+l20VQcXzoJfDoSPluY8WITdOuDAwHF3ScWzWtLarus2bBl5KdbMV6XXkDmgdyXtBL2iUhHHi9smczttVVh1+MtMzKXtq9OeZ7yi55yf6ioSZdtvVS28vHVZdAFi4fMDxSHiZqdxLv007IgAjL7S6CWlYTSSTLbguW3lYYFekj7obLBxjPU2bGiRYsu/NmKHWL87RNeyPtatASqJ0Hy+0WrK5Z2aZjCZwkPxkcrOj+pxfkm41/7J6tP9eccjv1V4zNS+WlyC+3YuWpkMhY0uhyIv/NU1wz+ikypbrB6HhXVi7rPBjQHxDEaPct+RzdUV+DY5GyGF2vHjjuRADhDIj6406E6P7qqCQ7e9TqFS0YClm6x5XkONNamJ+VhZuGHBedv9HW/IiR7TEtMqWFbhfBOBOry2/bfXgZTdMeObuVvTTkbsztUgg3LPsU31r8cXQfWr0W2Okpo3eP6ZhXyruWFqMxcV8eOoi39u+IZskVob5mf6qTbr85iTGeT2xejuci3UIB80yZc8sOxATB0YQ1inTybMFyFgMsB2RCF8FEgqWAIOLx8afhmSlnJrVuNx8sqp76G6zolalfU5Ql9jMHGutjXvOaEwFWIp6edAZuHz7edN4zIDZzlVFAJpcnlKIWrPP6DE7ZeJabh43Fr8afiluHjTP9nNXWSOU+V26nkhxv0nlbfWqdSkk9rIl8VRnU3jd6SpIlsrTKGDmK+Yc2Hqt0tQzxKI/OD0p3R17TL7lcgQ5KId0WiNZQuyKzWrgy53QWWb37cVAKxW11B4AfRwJEJ1w9eHR0/ka7LViAIsW33vgZ5RiskGRYebZLjGQwlNfZJZCF748IJ4qSV1Ef7Bj/9GX5wfB7FtdnZyL3H+hM/WJl4l636QUh7ZKEulb1gxDtPterfzQrzhE7P0mSJCypPKIK2vRa1pS03TOVQXhHMg4GWE5igEUAEhuDBQCTi3phpMG8Qlalah4so7UU5+bhqoEjccuw43Xf3+eDgfxaCXcRTDKCGdOtCJcNGB73c9maAMsoVbC2spWKhxXjFOMb3JQtBnBCUW9VOv54E1ubUaUPV/ytnLw5/R/1JEBRMUnmWiJ/V5lgoNihFg0jcgruLpoutMrxR4lemx2jOD7lbsVGD6vkY3l3/THdCXLnHj0Q00XQ8RYszb/75eWjLRRCtoXzrMSl8W72xr6GPyFf4/WCJWVPrqAUMuyNYPfBqd68hEMiLVfyQ7Amxbx3cpIbqz3LLomkZrdCbx44eZsou7LVtrXiuR3rcLipwfKyk6HfRVCKCeBjx+HF0hsbZYXeMREvwGrUtJYpW7ACkag+mV4tFIsBlgPSuVLz6/Gn4oejJ8fc4FMpVWNizNZzy7DjcdXAkbrv/WjMCTGv5Xhc6clyoAUrXitUMrTbx6iLTMeA98i/XStRWI4YwDU68025SfmbkjnSjZJceJEEwa+sdMV6d9olmFYcDkrHdus4B+TvqsYLunxpygtk4Y1TL8RLJ58XfW2gZmxnD5vjM52mDFrla4bRZpGfhG+tq9at8CpbsKymfLerWpPCO4RIC5bBQyllF9tk5lEzY68LuBQpi3FrTUjTRVDb8pDotpX3jdzdLCAI0CYlUXZFk1tarbRg9crtYrme8U/F+aDUMel1Rxme2roSnx7Zp+ou5ybttg5EUttrH5RpHxbqHQOtqjFY1oMbvWAq3mTa2vIoJ0SOtmAxTbujGGA5IJ0DrClFvXFun8GeliFVAVai3Yf0nmp6PRY00VnslVvg4eNPdqYwOnIsTm4ZM9GwS8fCr8afiik9euGKAcNTnjRAWWlLpoXOKMmFsnUw0a5BnUluIICHjj8ZH06/VFV5lbdptjLDaQqu7l2zc9StnJr35QnG8wNZ+NnYk1wvj5ZyXJv8lN7omq188KM3V1EIsa0kbl/+20Lhs8Koi2AvRUuJW+OB1S1Y5uuQ7y1mXQQlVZILKablIV46fSPy3JZyBV4UOkqrndMKAPpExihaSTqRbyG4+tX4U3HXiAnR5caUTyfoPNoczoF/sMnZrvz1ba345calWFtdrnpdmwhChABJij2+tJter3U9XquTEb1joj0UMj2ytOXpaD/uSCfPFixncR4sJ6Ryds8MlKougnoZAq3Q694W0nla1NflAfFAuA97fbANQ/MTm+RVuaWLXOz+FO9pmkzeI/JNy60KzglFvXFCUe/wOlN8vqrHAarfO6VnYmnFBdUyO/5u0klt7Ba/3IoTLYcgCKhu7QgCtC0rQOoenikr3drjc0afQegSyMKEHsXonp2LG4ccF52cNRWUDwjitYwoK5nddVrevtF/OJZWhpMAmKVpd5LcDctKBruAS6VRBVVxViFZasHq+Ls9FMJOzbx4UpItWEGpI8CSX5NXqTw/RAEoa260NEGtla6uJxT1Bkw6VkTTtKu2STQEjLt8O/5zcAdWVZdhVXUZPjrjG9HXtWOwREFAO6SYB3exLVix61B2EbRTer37a3ukFc2wu6i2BUuRadLKhMhkHwMsBzC8SlKKNmBibT4GAZbO5+IlM3DCM1POxOrqcpzde2BiC0hRcGF1Rng5UDjaEn4KmYrWpVSmawbMA7o7R06I+/2BXQqj8wvJlDfmVD2g8KtkJheWVJXF8HZcVnk0+pqbc/Qpmc1xFhCEaLIEACnv4qo8X17ftw2AcWVQ+TuGFHTFVxXq96cU9cLyqiMA3BuDpSWfK0YtWDcMOQ7rar4C4GILlo3FysGTMrPbH7auxoyhQzE5Lzx+VJXkQpLw8MYlqmXI7yY6Bku+fouKMEFvYto11eX44/a10X8LMD42nGgN1pu4V35o5XSvkprW2BZYQC/A0m/B0/5avd/flmCadr2Wr3CAJSIo6T9ki2nBUiW50PQkIUewiyB5riWJVKV2JNpyYSX7VDLLt6NvXgEu7jc05a0wdk0t7mPpc9otW5+ClNSpDrCU69MGQ1b2419OPAevn3qB6rXVim4ruYEATktigt3OTFlRlffNccpxWSkqh2jwt9/ImQH3GiT+UVY0W3RaU7MEIbqdj0TGaLnfghWKrLtjyw5QjLs6TjEWNeDS2FpV5TpOTTo6UW3k2rC5tgpzjh7AQ8sWdnxGUgZY5hPf2iGvU05eIQpCNOBfWHEIbaGQqpVjWdVR3e+bLTsZeq16gsUWrGNtLahoaQIAfFlWiiPN5kkx5pUdjP5dHvkeEPvwMEsQI9slNvBSUv7zw0N78JN1C9HQ3pGR0U4aQd19Dsl0G2sDvJCiBUuMBvNswXKSn6/lacPfVV3/M3pS5LTylsQm1rVaIU+H4yBVZVR2D/qRSapr7Q2hrLnJ4JPOcWsguxFVUKXZATkWyiIKQkyZla2qxTldUGAj/bFTkmk5clIypVA+9ZYrHNNL+ht82j2CSQuWHxltc2XFVy9Ne7YYiJ7zByJjZlL1exsVlVnlOalcv1sPX5QBzy83LcVKTWCiJAdPZmWxGkAlMg8W0PFQsS7YqlrG/w7vUQUSeZreHWbrc2LLRrsI6hyB8bbIz9Yvxs3LP8eq6jL8ftsq3LZirunnlct7Y/+26N/aIKQwKxstoXbVxMtAbECjTL7yt10bsKW2GitMjgMzehMCy10E9dLbAx332q/KD+GZ7WtUmSLlcZZswXIWAyzyzLDIzOODTWYgd5Lc998uqzcpv7cqAd6Mmzmr9wDD97SVK2VXKLc4Pe9OPHotWL84fipuHz4OhXEmbDaiTDzQIycn5Yk7fCWJg1pZUd1QE55vStli7cU5nR5dPvU3unKeI70AK0uI7SiVql9bqshq2GpQkXQrwGoOqSvfj25aBkA9p5RMLpnZOR2vGtzROpFYF0G5C96owh6qrmXb62pU69b27jBtQXFg0+q3YIXFizn3N9YBAFZU2g9qlK1W2tYjOetoQ5t6X1r5vQl3ETRotQwIAi7qNxQvnXxedP4ymbztfrt1JeYcPRCdX09QPMDjGCxrrPa64hgsB6TDE0c/+t3E07G/sQ7HpWheomQGwzv5OS8l2nUkGeZPNTveG5rfFSf3tNa1MBmpnhhcNb4m8t9TkuzSN7Zbz2g3wYAgejJXUibci5WtcPLfWaqsj6nnx8vINweOxDsHdype0S/koMicSYB+F0FlC5bM6aAmWxDjJtlpM5h/yK3gttkg+czu+mMxrznRgiW/bffXaLPJCYounQBQ19aqauXQXnfsdFFLhF6A1ZEx0doylBPNS5Jk6b6tDITkdQ/oUoCTe/bBhkigop3TSvt7u2XFPkzT+x1W1LXFdqVvl0IICOEqfe+8fFzcbyh653bB7CP7sKLqqOHE8AI6sn/qdT2kWGUtTSjMiz99Rid+7OkcH94P00J+VnbKgivA/eAiHU4mLwIssxuYsjVJ74m3G1J9viorSnpdWxLxrYGj8P3h4/F/U88HkJrkIH41vLA7huZ3xTWDRtn+rrI6IVeIvN6WqX4AYIU2/b9RZQ0AZkQS8OhNohoQBNV4lvBrzm7v30ycFvczel2sAPcekhk9ANFLXR6dE9CkLPG650YzxFkrXlTHJNBykgt14KIdg1WvabUxHYPlUpILmdnSjY7Xn21YbPidEkWWXeWDg/Ck1SL+dtK5uG34+Oj1QvtAQS7Pg8edCEB/fLE6oLF2b5AkCV+UHYj+W76nt0uSahsHBAGnFPeNtiobhU7KLujtXs8/kyas1qPYgkWdRk+X0pKfWNQbq6rLMKKwhyvLd5Jfxs3IlJVJq3NnJUtZCRhZ2B1DC7phYveSlKzPqcpzliji0gHDVf9ONb8cS9miiOdPPCeh7yorXvJuSvU8WFqpTsJiiWZXm3Ulkiuc2labEQXdAYSTNqg/7+zvHaCZqFmPdqzJPaMmoSHoXrIleS4zLe2kyEDHMWnaRTBeC1bkvwlnEVS0YCnPgVapXbXuWk3QYHYVcmI3y2VR/vqOYNKkxc/gWiV3k9OjDPyVx2hQCqmut/L5qj3e5WBdnig8BKC2rRXdFN3ClV0PrT77XFdTgS8UCTjk/SFB/2FFRxdKs3M2vVqwFpSX4lhri+oemEpW73wMsKjT+N6I8a4s99Fxp6Al1I48i7PUeymVfazP6jUAjXH6KitbsLqkaPsJqqd8Iu4zScLhBGUlp1uCY67icbqSaoU/wqvkKINEed+oJob2INbxYXgVU0E1m9BarnBqW6S7ZOmf3063GhktbURhd3TLysGamnKM7lqENTUdmTi/1neIo2XQEgUB47sVY2OtukL/WGQslpI2i6CeuGOwEs4iGP6vsgVLGfC3alqwtMyCHCceVsjlU563cqOL2WGUyIS+oiqo6lhfWyikSjIUPd4NWrDU8xQGVd1C7d6PW9rbcUiT/VCCFN0GesdMdH4/SLqtyqoWrDTp9/3U1lUAgEv6D/NknKzVh4v+rxGmAT926aAOz51wFkobGzDUpWQagiCkRXAFpLaL4E8iXSPMKLs0pC7A6uDL1oIEZKeo9U9pSo9eWFp5BGMUaa7TzXl9BuPDQ+ExGTcOOQ6AOy2OdvhxLKf2smF2HZGf7msrc71yuxgs29lrktHWO6moD749ZAwa24P4x66Njq7TiiEFXWMCLFlBVjYaIgkvzCrLMqvbLNEWrHaDFqz2UCjhe4gTrSNyWdQ92eLPp2Z1XkYl5cM/ZdnbQu3oqkjm0tFFUD+LoHIf1LS1qOYsUy433latbm3Gjcs+i3m9XZKiv1zvfibfYyUJ+Pe+bTHvC+jowpouLViycKCT+uul1Z6U6VEr9Dkf3g9JYVhBdwyLdE/p7Px2+cxX3KhyA6kJEpTna3pkbIvPixas8/oMRkAQcWYKMj+65YoBI6IBVqFOqnsvjg4/HpPa+oRZ/cKoi6DVZSfN4FwQhXBltzAr25PurUYBJgBkK8ps1jpY1dqMHlm5MUFOt6wcVXc9+X27DwjkY08OSASoN6cgCAm3cjgxxlZ++KBOThN5z+R79e2x2RrjKczKARBuLZK3R7sUQgjqMXWiQQtWSyRzpLJc2+tqNJ+xvk20XWtl4cq+cWIUQdGCtUQnk7IIIfp7Emnp81I4c2Lq12v1+tF5R0Y7yH+3Q3LTeX0G4ZfjTvG6GAnxIsmFmQJFq1WqkgsoK7Cp6F6QiutDkUvjC83kBgK4sN8QVZCcbtRzIBmPX0glPz6wsxOQyJW8g5F5ruJxOgOm0eZTZSyN9GYYaGG8llOUx5f2FyuvfcrWqROK1GO35ArwZ0f3q17XjoWS/207yYW2BQtCzPXSLMDSlkOp1WLAbVq+yH+V97F4AdbOuhrMXP2l7XUp1yFnpZQnrVb2GDB6oNAS+azyHqNteVSnaTc/x7IN7o/hLoLh5egGWJH/hiQJxTmxQX44TXv4U1+Wl5qWwW+8yslhtRrFFiwH1OikzKTM9aPjTkAoTbPt+O0JlV4Kc7cpK9WpmBOrR3Yuzuk9MDrvmxtyPEhykQmUu18v2Paiu54fW7DsMAqYjH5VscMPB5TrGVbQDXsaasOvK964tP9w5AeyMDXJ6RLsUFd+1VtDmTRBeYWeVtw/Oh0D0NFSrc3EqPXcjnXhtdg8lDqSXMjBgaa1BuYtbGZaHbj3KMcTRUXHYCm6MkbmhAKA+9YuSGhdyoBHbsFqiwZYsUkutC1YcoCmPJ+bNd0InRjzFJKkjnXp7PBAtNUPGNm1O9Yfq1C9LwLR7qnppqatBX0C+SldZ1sohFCALVgp43QfciK3tEmpSYVulTrYSU3FMl6l2vH1CQLuH3MCrhw40rV1pHul3Cvx9r8nXQR92IRl5/iym3Z9iOMPHjrK2lUx95DyN2SLIi7sN9S1zLJ6AiYPdpQtWLmKynuW5oN2axp2nwN2pGnvaMFSjo0NITYDo1WOdBFUjCeSHW1pBBDO0CdJEvY31OGyrz7Eewd3JbUu5abraMEK/4YcGwGW8h53TNPCp2qJi7OvjMZHhSQpOv2Hfiu8EC273gNWQRBwfLdi85X71K0r5mCeImV9KlS3Nlv+LAMsBzC8onThuxYsRaXHkxasDAlM/FgpTwfxtpoX13Y/7kk7yWCMxgPKFb37x0yJvnZKT+dbkJQxibIi7HXykHgtWL8efyqmFffDBYqMhtoKs91nuXaDmo6JfCNjsDQJnEKShCabXf2GROaQciKBgrxv9VrRWkLt+M+BHfjg0G4AwD/3bLK0zJAk6T4kV74mt2DJ/80WFF0ERf0kFx3ZIDtee790t+oz7TaSXFS1xqb0B8LbQg6I9c5TeR1PblmpezwIEJAbCETHCKZbg8HT29akdH3vqiZcN8cAywHplnmFEndan35eFyEpvguwlF0EPWjBcnqSU6/4sVKeDuIlAfAibbHXgYAe7Rx1eSZZK+PNydY9Mi8QAFzm8jw2ynJ7faaLimtNSFNnyBZETCnqjYeOP1kV0JRoWtjsds+z+5u182DJadqfP+HsSLklNFrsTnbd4NH44ejJNktgTq8FS+mN/dts18e+8dWH+On6RTGv67dgmXQR1AQvylZAI+qgyXzf/nXXBt3XQ1JHy5pe99xmRbm0rWxARwAoPxg50Ght7KRXrI4jlyQJO+pqMPfIfvxt8zrH1v+/w3stf9bra05G4OzXncdPJp/sdRGSojcPhpdU3fVSFCaIJl110hVbsBJjtNW+1ncwRhR2180s6LY6H47pvWzAcIztVoRbh43DwC6FplMwxHto4XaSGWWFVjlnkNeBq/JaEwKwrbY67nfGdy/GHSMmoFukq6PdJEV2t++hpvD2kifglbfZgC4F4fVDshzAfHvIcTi3z2BHr+ry7/ng0G78PZJqX9lqU5iVk9BDs021VTHbVtmSIz+YlAMtdYAlt2DpB1hmrb/KoMxsz2rHbimFIHWMDdP57crup2b3f3n9d62eZ1ISb62tLo9pBQSA+YqJl2Xb6qrxw7UL8PS2NXhp60bUezDOjEkuHMAWLEoXfmvBUqcATtE6FX9nSmDideUxXRlVau4ZNTmVxVDZWhe/4p1qXbNz8PtJZwAArhg4wvSz8aYMUJ5zbsxDp1zk3kiCC8D7Vl7t+p/b2fFU/RSDZBuCIODr/YdhaeURrK0ptx1gHWlutPX5HfU1qn/LwbC8zw41NeCTw/tsLdNJym34waHd+N6I8arWrIKsrISnrFhaeRjTSjqmnFDeKeX7ZrSlSBG0yOtrDqqDILle6MRcejUG3QOBcNAtd13UtjRr6SUakfet3+oGepRziCn9v22rcXbvgarX1iiSwwDeZFBmC5YD0mX2a0peuu/q47uHB7OeWNTb45KEebE9lTe8jBmD5XUB0lSPnFzcPHRs2k674Efa6RZmjpoEEcCVkcDM9QDL8HVvz3Xt+vc21EYr6t8aZJ4AR95OdrsIrqous/V5I8rrZE2bcWXfjBOXer0HScptkisGEn5oZhaMyi1XbTqBjGjURTAkJ7mwtn6ze6HZRPLBUChavnjnk9EYLMD/AZbdsWHa7pKJJmdJBluwHMAWLEoXF/cbiv55BTi+e0+viwJA/VQpVcGO8h60sOIQHkzJWt2VKS1xXvjmoFFeFyGjKDPfnVrcFxf0HYKv9RkcrRwrj1R35r7TPxe87g6sd4qKgoDuFrq1yd81qwRfOWAEZh/Zh0aT7mR2ydvMagt5liAa14cceJqmvUcENdujOLdLwseUtoUjpJPkQi9Ne5ZBF8GCSPfigOX7mvH2MQuU26SQaZp2JbMxWGZzmPmB3fJpx4J60RDCB58O0J7klHkGRzIhleTFTtSXTgKCgBN79lal3vWS8uljqrq5ZUqrlZLXT+eJZMpgYWnlEQDG0zG4MwbL6HWvz5HY9beE2i2NDZGvWXevmo8yg5aWHDGAO0dOSKqE2p4NdvbPmK5FOEfTTQuAo32/tYt6/5B6PE5RTq6qFcdOq4dZLS7agiXFJpOQ16edSPnifkMjZbb2+81K+uyOtYbvPb55ueUAS9sFFPDDeWFNrYWxqb/fugp/2LYaQOzZ5lSANbKwu+XPMsByAFuwMt9zJ5yNd6dfgrwsfwQmmUL5lDBladpTtJ5UKm+xN9aCyC3xWhCUDzjcHoOlft3rM1+/gmel4qf8xN2r50f/HtO1KPp3liiiLcmEWz8Zc4Lq31YfRh3XtQi/nXi67jgXR5NcaJb28p7Nqn+HJEl1/AVtVKrzNQ8d23WSXHxxNJxMYUttVfQ9+YGCdk25gXC3PrePuiPNjdFWy0QeHnp9VhjRBsdWujB+WV6KL8oOorSpHtvralTvOdVF0M5YLgZYDrBzElN6CgiCb1p9MoknAZbnFS3nVZsMgiZKpXhJBpRvuxFgKa8k1w8eE/3b68pOMoPsd9cfi/6t7AKozHKZLYromZOr+t43bU5uXpido0rBb7UF69bh45AtmnQPdEi84rRLkqrMdsaL9cnLV/1b+Vvkyv3iysMAgJ2K/WEnqYuZZGqRcvINvVWZrV6AP++HW2urcOlXH6oC6HjHljIg/v7KL/Bleanh+8nYrUicE4/X15yM4MXgOaJM0FMxz0uqxhEpu0RM6dErJet0mxcZkoj0BBTdp87vMzjmfXWSC+erIMqryMQeJR2ve1yRbE/iFDXKDqcdC6Tt4tcvkl7dDrnlBbB+TZaTdbh9HYrXQhOSJFUZFmoq2Wa09bi2UCgmucjJPfsAAC6JdP8D1Me7nlR0wZOTV+htH7P1K9/LjZOBMJV+vO4rAOpJfeO1YOmNL1NyIsAqtTlHGAMsBwQ5DxZRQvoqKgCp6guuHOwu3zDT3VSDNM+Ufh45fqrXRUiKMoX1ZEWAI3O9i6Dib+Xyva7sGAUfym5+RvICBgGWYltniyIEQVAFWYl1GbOfZVVOKGDWyuBELak5zjyO7ZKkGterNy+UEe3+aZNC0cBWfq9vpJVrsuLBXKJp4fXYzZQnk8cn6QXEZqVTbiu7rZ2pZnZsTexegpaQeXIXJwIs24k2kl4jcQwWkQO8eMDsThel1BuQwJNq8pc3T70Qx9paMSC/0OuiJEV5TmlTJWvludDtWtlSpRyP43ULVkhRTxhR2B27It3MSnLzjL4SZdSSpJfNTlkfSSRzovIrlluwRP1xSNrlJSteQrF2KaSqSPe1cV3UVsCDoRByxQBaBSH6ntyKosxQp0yhLgL4xbhTUp7V9aVIVzq9ta6tKdd5Nda1g0fj9f3botkPlSRJSur8qQ+2oSHYFtMN08j0kv74quKQ6rWy5ibDz4cg4c39202X6URPM7tbwOuHOhnh3D6DvC4CUdpLVXY/t7OYecGNrlaUWoXZOWkfXAHqoEZv/h5lNbZQpzLnJGWw53W2NGXbyy7FGJ5krnuiTjCrHteaQAuW4it2uwi63VM53gOxkKT+/X/esU73c1frTM0gB1Hy9+XxXCKEaHAsB6+qlkNFmfKzsnFyzz4JzzOZ7ObT21/ayYWP76Y/RYsgCCjIytZtab1/3UI8tmlZwuW6Yels3LpiDhotZMwE9DP1PWeSSTEkSfjf4b2my2x3oKeZ3SCTd+UkDS/ohgv6DvG6GERpL1WxjqoLTIYEWJnyOyj9BRTNJnpdtFI5ZlnVRdDjU8Soi2Ay564yOJO3tbIlJpFWByGBLpzR4M6RjoDG4i1d24JV0dqs+7nGYGx3snZJwv/bugo3LfsUbaHw3FKiICAgCJDr5rrzYCn+1mYiDJfZ+jaRPylJkqq7oF6rkh69gFrbu0FvXKSsIdiGpvZgzLG6va4GK6qOWiqDHjkRnJVU64B6QuS2UCjS9TPWP046F4C17n9OdBG0+zCEAVaSzGbYJiLrvBiDlUlzYj1/wtn4+0kzvC4GdXLKSrl2sk/A/VYOI163YLkRYAlxWrCSTdtt9ftWxjq5udv/36TpACJjsCwcYA3tsS0pIUnC/PJS1LS14mhzI0KQEBAEiIKAdimE8pamaGY6ZYCl3Eb5OoFQ9+zcmNeMhct+75ov8cjGpdFXzyjpb+nbeseStlteTpxuuwBQ0WLcHS8ZVgP+NxTd/a5c9BHuWDk35jOD87siPzJtjpWHNo50EbR5OjHAIiJfSF0jTMeKjAaPp6OhBd3Qv0v6dzGjzKE3BsvtVg4ldVIEb5NRGVXwrFz2jEp+TJGGXO6aqdy+CY3BSqALtRxI6yVp6Ahsk9/+Rq1B3bJzAIR/e6IVaWULR3OoY16pQGQM1i82LIm+bzS2T28ql2xRxHunf91SGeQi7G6oxRrF2Cm9lkRlq5Yc5OntrluHjVP9W++hh5ZyvyeaeEO2V5HWPJFbvATgsM7k2t2ycqJd49mCRUSkQ+5WMaLA+gzpyVBe9NwYZE/UmSnrMXrVEafmo7FCOZYjlevVY1TttxLEKOfBMuLYGCzl3xa/bpbkQn/JiTHahcqKdqLtFMokJPVt4RYuQQgHNyFIONjUkaLbqAXLKKlLvGQvstpgq25Ao/ez7xk1CUMLuoXLHvmEXgDQNRJ8yqykY59z9IDpuu0oUwRHW+uq8ejGpahs0e+6aebsXgNU/75uyOho4LnHwtxUVs//jccq8cjGJbqteGzBIqK08ofJZ+KOERNwpuYC6pZ4TxyJKHHKaoxepUZOdZ2Xgu71yuQv8TLQuc2wi2CCgccDx52oCjjkdOGqLoLJtmCZlE05h6G8nfVamOyMQYrHaFkBxW93ogXrr7s2AAgHv6Iii6BMFWApNlGyKdtvWvaZboCoF3QV5+ThR6OnqF6zsnorAdY6ReuZcs3N7eap0PUoj6entq7CyuoyvLRnU1LLAYAe2bmq41MvMYaS8rhYXHHIMOvgwxuWYHV1OT47sj/mPXk3WE3/z9oFEXlqYH4hBnqUPS0VlTyizmSgoptqQSB2TEpJbhf8+YSzVRV0p/3ntItiWoaCHrdgGVX8E21ZO7PXAMwrOxj9t1wBbVcFWEmOwTL5frfsHFRpkkiY/RQ3e4CLit+e6PZUHh9ya1W4i6AYExxnCx33DXVSkMTaLLpmZaMukmEvpHOc6Ke/F2K6DloJ1nMtdIvfcKwSu+uPYXhhd1VwV9bchMEFXeN+P57m9nYcaWpAWUuTajJwM3I5zuk9ECFJwuB8dTnind/K4+I3W1ZGl6UdoyZnitzdENtqLC/ByjYE2IJFRJ2YtvsEESUnNxDAM5PPxL2jJhtWxoYUdHP13MvPyo7p/uv1fJXKLNHn9B4Y/btRJ+GC1qkGE4krK7/aNOMAMCCBMZlGEzXLGdtkepNI67dgOcco4AugowVL21JptVWpui2225qcpl37G7IUzVZ6qfLtqlOkL9cLEHW3oRAb0FkJqK20YAHAv/dvi6y7Y+3Kvw821uNIc0Pc5cxVdDeULas6gt9vW42HNizGHp1ARq9nibzmi/oOwU+OOxGCIEAQhOgDnVYLk1BrKccwai2tPIIttVXqMtgM3hlgEVGn1Tu3i9dFIMo4I7v2wPl9jdNBe8H7MVgd679teEfigSWVR+J+9+FxU/HhRVdgfPdi1evq7pihmPUMyrff2mDURbCfJt23XmXebAs70YJ1YlEf3dcD0RasUEwgbdSqpH21TacLqQj936lswVJ2EXRi4nplIC4fs3qBq4DY4NFozN03+g9XlNFatX9p5RH8357NqvIot9Edq77AbStis/tpaScMlm2rqwYAHG5SB2mVLc1o0umKKK9b21VQTtpxqMk82NM7//X2uXKbKjM5AvYfFjDAIqJOK5nZ6YmIrBoYCVB6ZOeoUnf3sJDGWxQE9O6SH22d0RtvFU14EHmtOMEumFa6CF43eDQONNbHvK4XwzoZ1maLIrplxbZ8KrsIVmq6LRplzdNe++t05mgSBUE1J5NMmX1WGdRkmQQvJ/cMB4fK1kuZssVGGSBHu5XqbEQBAgKitgVLf923Dj8++ndBlvWRQe8c3KkK7tpstgJbSZmvDaZ+tVl/QuPFlYd1X7eSdj5cFmtdL5Wvacsm7xurtQaOwSIiIqKMVuBxQpuzew9CuyThhKLeAMIBUGVrM7rYmCpCbp3J0kkqIQdtcotDovNrmU3E/pcTzsGuhhqc03sQvrX4fzHf1U1CIVeyHXqYpZfmXy5nY3sQ+xrrVO9lCQJuHHIc9jbUYqGiNUVbmvmROa60y9WOM1OuT/u3WQvWI8dPRU1bC1ZXl6nGzgHApB4lWBppyVSO1QuGJOSIRmOwYtdnNAYrIIh44cRzUNbShCKbgbcyQ59ei09Nawt65Og/JIjXbQ8A2jU/blecjJna3xgv4YSIcBZIvTFayyuP4EhzA0IS8DULLe52uwgywCKiTufsXgOQk0FzYBGRvgeOOxGzD+/DjD6DPC1HQBDwtb5DVP8G7HVdPLv3QOysP4aL+w0FoO5OJoum7E4woFFW8LXLGFzQ1TTJQSo6YepVcuVub9U6wVBAEHHN4NEAgIULP4i+nisGEIyTFU8UBHQJBNDUbhwoKCv8ZnNMCYIQCW5i94tyGcpWHzmg1g1chdgAy6xHxqD8rgl1GV2gCDzlAEu5DzYeq8T0XvoTITebbDeZlVYuFc1PzIkzpiw3IKKpvV032JtVuiv691mRpDFm56NyAgQrGGARUafz4+NO9LoIRJQCZ/YakLIpIOwQdbr5xXP5wBGY1KMEg/PD3QH1Kt4i7C9XSfmkv81CC4RKCiIsvU5q8rbUa6VQjqm5e+QkPL9zHa4cOAKX9BuKv+/eiBm9B0XTsmsJEJAtBNAE4+1Qr0hQYWUM1mnF/fB2lx3IEUXsjrQOKVvljim6KsrBrt6uFCIZDpXsjvkZoBlX179LQcxYpg8P7Yn+LQcpVjsK6nWv1JK77oUDm/gHkHYLx5s4OVsMB8jxgr12ScLzO9fFvF7V2hzNeNoSWYbVZxccg0VERESUQom0YImCgGEF3aPf1fuq3F3LarY4LWV5+uUVGH6uOCc2QZAc8Imq18KcGu06LDLWTMls2coK+IX9huDD6ZdiWEF3HNetJ/4w+cxoum+9KTt21tege5xslw3BjoDISgKJ/Kws/PWkGbhswHDd9+9ePT/6d9Bmkgu7rZa/nXi66t/xpi1pk2JbsH67dSU2HqvEi7s3xkxFYGXeLPkbt6+YgxuXfhb382ZdBPWOefn9eMGe0TQKNy3rKFNDJONnwOLRzACLiIiIKIXkyrjemCKrJJ1B9/ePmYITinrhwbGJtdLLFc2BXQpNu5zpBR56XahGRCaAHdO1KKHyaP107Em4bvBoXBfp9qdeWyxt4gntb5KDEr0EDu2SFJNIQmuoIuAra240/ayqHBYq6e1ylzyd90QhtgUr2aRNrXEm45a7CGqP2Z+uX4T/lu7GwnJ1xsDtdTVx1xmSJEiShLKWJtQGW+NvlZgugh3bIE+n27+cOj9esGdlGodWg0yGRthFkIiIiCiFxARasLQ6Woc6Knz9uxTiV+NPS3iZcqtJvPmj9Fqm5G6Jyq9+f8QEDC/sjhm9nRkD1zMnD98echxmHdwZfc2swhuv255ZS6KA+K0QY7v1tLwu1bIVHzXqzmk2eW5AiJ1o2Orav95vGHbU16iyWQL6SSz03jcqrzyfV1sohHllB/HsjrVxyxKChN9tXRX99+QevbCmphxZgqgb9GgD08OKoFavBTHLcguW8bZul0IICGL04QOzCBIRERH5UCJdBLXkiq5Reu5EyK0m8VpuZMpV6wV8BVnZuHzACIdK16HGZJJYJbPU6YBx5j1ZvNYK5fvx1qX6nmK9RsdAUKdLnkwUhMhEyB3d7Mpbmiyt+46RE3RfH5BfgKMtxq1w8pg8veQqSh8c2o2X92y2VJZ2SVLNlbWuphwAcP3g0fjXvq0xn9fuDXk+LUA/wM2NtGrVt5lP6G3WgtUWCiEQEKP7yerpxi6CRERERCl0fKTlY2L3koSXoRfQJEvOytYYNO9SFa1s6lRqUzG7YP+8QgDA0MgYKuU6lXOAxWtVijduKV4AphQv4YKScqlGLUcdWQSNy6VstVlTXW55/Xp+OHqK6fttZlkNgeigwAOaVPlm2g1/u/46tLvrxMi0B4D+vpS7suql21d6cstKw/f+uH2NuqwWWyoZYBERERGl0HeGjsU9oybjh2PMK7VmOlqwnAtp5Ilo43WpGt+9GIB64lwpyRTxdpzXZxDuH3MCnpgwDYA6YLln9OTo3/HSeJuVVYjzvpadFixliS/qN0T3E+0hOcmFsYCqBS257V6Uk4f/nHaR4fvxugjK7CRY2asJxnpEgmOj7a59mHCSIsDS+0ZeZP67hjhjsMzm31pUcRiSJNluwWIXQSIiIqIUygtkWZrc1IxekovkyUszr0RfP3gMRhX2wMk9+3SUJxUTYUVkiaIquAuXO1wAZQVfL/GBknn3Snttg1k2+moqPzowv1D3M9qsfQO6FKA0kkZd3vfNikA4O8HMkUpdTCbkNkpyIWuKBDF2As0FmgmeGyLjuIyCRe2rygCza1YOjqARwwq6RSdIln9PY9C8i6DS6SX9sKjisOo1CR2tauwiSERERJSh5IAm2exxSvKi4gVLuYEApvfqHx3jArgV8Fmj3ATKim281pR4XQC1LSlmn7aSpr1jOYLu30ra1OHfHTYu+rfe7rlWkVkxUWbHUptqzqpY8pipLzVBkx1yy2lBVrZ++TTbSrl/skUR751+Cf405azoa7liALmBQLTLq5VA68djToh5TYJkmMrdCAMsIiIiojQjtyQ4WZGTAw7DcTYmomPCPIiwlJV+ZcnjjYsy7wIoxQRgZq0z2XYCLM1q5bFkSh3zYIX1yM7FCUW9IADonRs7D9lQnTnCnFTaVA8AaDWZtLc11G45AQkA9MnL1319SlEv3de12025/0QIyBYDqteyRAGFWdloaG+DJElxu74WZGXrtgSGJEWWTM6DRURERJSZpI4mLOeXncSXnEy6kax4JTELsEKI3bT9uxhPvmwrTbvm74fHTY35TDCkSSohAI+NOxX/nf51R7oD2rW08ggAqLL+aZkFX3oaDFqUjFoetdtY+W/lvhzbLTzv2pQevVGYnYP2SHAVL8AyCoo+PLS7o4ugxd3MMVhEREREaUbusORoC1ak9pjIeCq5Rc3JLouJUAZB8ZJUBOKlade8/4vjYwMhq+vSLlm5jr55sYFbe3QMVmT5ECAIgmGZ481j5ZT/27vF8L1mgwDmqoEj8a5i7jKZUZc9o9ZAbWCpasFSbJaHj5+KA431mFhUgrcPhdfb1B5ES5wA0OjhwEuKtPMcg0VERESU4dxoMUqoi6DNJABuKVKkaY8nbgCmeP+7w45HX4dasJTBgNHX2qJZBK1t135d9LvbOWWAyW+XfXJ4b8xr04r7YWhBbBdIoOMhgVaWKOp2edQmvxAVYYzyPOienRvNdFmYHR7P1RAMxm3BsrILrYaxDLCIiIiI0syYruFuUHJF0glnRzLzXdhvqO3vdszL5R/JBp/KCvfwgu6mn7XTgqVXrrN6DVD9+6PDu/HYpmU43Nwof8mUnSQbiQjGm2EYwFsHdsS8JgjmkxP3iMxVpZQtivjV+FNNWwwB4y6CSnLCjIb2NgstWGF9DcaGAUB9W6vpMmTsIkhERESUZm4fPh6ju/bAGZqKeTKuHDAC47r1jE6EbIcbEx8nK15JWuN0q1P+lskGiRdk2QlONCyv40djpqgy8G2prTYsi5tOKOqFfQ11qNRMznu0pRFHImni7RAgmLaIat8REQ4We+bkYVIP9UTcXbPUwZgyqDKan6swEsA1BttQEyc4qo9kGzy5Zx98eGiPpfIaYQsWERERUZrJz8rCRf2GotAgpXUiskQR47oXJzWOyuMhWGpxytInLzYbn5KdVqn8gPX9oNy+8l8iBJxa3Nf4OzqvTSvuZ3mdVj027lS8PPV83RT2z+9cZ3t5AUEwnZw4qHlPOc5K2+1SmxVS+f7BSJZDrS6RybOXVB7B09tWm5Y1GBn3VtNqnAmxWCeDox4GWERERESUlJBPxmApxWv1yRYDGGfSWhdvniwAuGf0JBzXoyfO6TMw7md1sb611QAAzTFJREFURVYhCAIePn4qhttItx5vTFFCxREEiIKA/0y7KOa9ypaOVq2TinpbWl5IkkwDrJBmfqksC93+9N43yjwoL+9jnfFhOQatjhebdJGNN7datGyWPkVEREREFEc6dREMf0b/U09POgNf6zsYAPDNgSMNv39hv6F4ZcZF6BKwPupGGbhp1949O1f/OzrBxqrqMsvrtCsvkIU7RkzAT8acGH2tTpH17+dxxkfJQpBME0NoJy5WdrW0MxG0URdNs7nQ3p12ie7rE3qU4D+nXaz7ntVkJhyDRURERERJkSu78Sb3ddOPx5yg+reVqrDR+KAxkbmUXj/1AnTLik3EkBRlFkFNKb/WdzDW1JRbWowIIZoe3w1f7z8MAPD7basAAPXB8BimUYU9kC2K6JdXgMPN5uOy4rVgaZNnKCdzjtdVNV6afcA8+YfZ8vOzYkOky/oPj7s+GVuwiIiIiCgpPznuBIwq7IGfH3+yZ2U4LpJZUWZlLJlcvTeqEHfPznV8bi/lurRLnl7SX/c7eiXoFkngYCWFuhPk8VJZkTzzVroohiSgj0lWPm2AaCdZiLIFyyiEixfw3zNqkuX15dlqpSQiIiIiSsKwgu7445QzMbKwh2dl0AZC9lqwBFw5YITjZdIjqJuw1O8ZBHN6XRnlliG3U7RryV33tKnl9YQg4aSi3rh31GT8cfKZpssDYicTNi2HclsZtJJlifrb8/bh4wAAPQy6ZOoxGrOlWzbLnyQiIiIi8qlE2pnkerkgwNGU91ZZHbOmF3e1R4JDO9kOnSAHgd8ZOhanl5hnMhyS3xWCIOD8voMxzCCBRxdFdzztZMJmlOOhjMZ56QWffztpBi6LBNNmrZNXacbe2Wpds/zJDLJhwwZcdtll0f8df/zx2LJli9fFIiIiIqIEaQMNK8GLcoJks/manCTqpGlPxNmRgDBekJOsMzWBp1zmLFHEtYNHG37v+sFjVO8bJYhQZuazEyxa+azeZ4oUrVbK938wcqLqc9+KCbCst651yiQXEyZMwPvvvw8AKC0txY033oixY8d6XCoiIiIiSlRMgGWhri4HVQIEyym4vaCXUe+24eNxZq8BOK5bkc43nDO9pD8WKCZBVgauwwq6Y0L3Ymw4Vqn6zqX9h+H6IWNUrxm1Fim3+876Y6r3TizqbZgtUZnkQjLoIqhd4x0jJiBfMXecsqXpSHOj6rOipvXLThfBThlgKc2ePRsXXHCB18UgIiIioiRoK9N2UsYLAjA4vyuuGTQKo7u6G7AoW3IsJ9DQ+Vh2ZGJot/XVJKnQFrmXYvLdh48/GbMP78O1g4xbtrRyA8aB7cAuhYYBljKkOmAw0bB2s03qUaL6t3Ki45Z2ddIO7fCtbBtj3XzZRXDFihW44447MH36dIwZMwbz5s2L+czrr7+OGTNmYMKECbj66quxfv36hNY1e/ZsXHRR7GRqRERERJQ+tBVgS0ku5DFYECAIAm4cOhanFPd1vnAKOYoWG6shoJeziw0v7K76t7Y1TdlyOKF7CR4dfyq651hPHmHWcmjWadNKl05tAGvWrVAbfGnHb+WkexfBxsZGjBkzBldeeSVmzpwZ8/7HH3+MJ598Eo899hgmTZqEV155Bbfddhtmz56Nnj3DM3JfdtllusueNWsWApFIubS0FFVVVZg4caLuZ60SDTKUJLMsJ5dJzuC+8TfuH3/j/vEv7ht/4/6xLjcrS7WdBEGIu92UlfREtnEi+yc3SzHmSIxfRgCAhd+SKoKg/r3KoCVg9fco5GlasFTfFwxe17yn974oxrZhZomi5hjpeG9ar36qgEwbsOcE0ryL4FlnnYWzzjrL8P2XX34Z11xzDa666ioAwGOPPYb58+fjvffew6233goA0TFWZj799NOkuwdmZYkoLi5Mahl6iopSM6cB2cd942/cP/7G/eNf3Df+xv0TX99e3VSV/fwu2XHraIFIsBMQhaTqc3b2T0NuR867nkUFKO5iPE+UrGv3Liju5nx9MxG5OVmqbdUlr2NM08DePWzPG1aYp57IWbnsvIPZuq8DQDehOfp395xc3f0nVKnLUtKzEMX5Hfuqa2tH98aSkq6m5ezRPR/Z2dZasXwZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL36RVHmCwRBqa5uSWoaSKAooKipAdXUDQqHUZLMha7hv/I37x9+4f/yL+8bfuH+sq65qUP27pTmIykr9sTmyYDA87kaSEPezehLZP/XNHYFBTXUjxEajJOMdqqrr0b3NH0k42traVdvqhMJeeB+7cHbvgajS7AMrpKB6uymX3dTUqvs6ANQc60hKMb5bz5j39Vqwamsakd3Usb66uo46fLz9X9Amoq2t3VKQlXYBVnV1Ndrb21FSou4nWVxcjH379llezqFDh1BVVYUJEyYkXSY3LnihkMQLqU9x3/gb94+/cf/4F/eNv3H/GPvD5DPQGgrFbB8J8bfZpf2H4Znta3HNoFFJbV87+0dSfE6SrH2vTef3eUWAoCrLiUW98Y+TzkXvvPyEyqgc0/XtwWNUywgpklBol10Q6Ahjxncr1l13TIglqZejTD4Yr+xS/Dg4Ku0CLCOSJNlqkuzfvz/mzJnjYomIiIiIyG1GWf+sZBE8r89gnFzUx1ZShmQlMjFwyCANeaqcUdIfCysOAdBPuNGvS+JdWAOCEF3+pf2HWf7eoPyuuH34ODQEg7jY4HvaTa038bCZE4p6YXV1eXhZNr7nyyyCZoqKihAIBFBRUaF6vaqqKqZVi4iIiIg6J6sV4lQGV4A68NOb36pHdk7Ma/mB7JjXUumB406M/m0n/b0VAUHAT447EbNOvwSFmt9+bp9BAIBvaib9lV02YASuHzLGcBJjbVmNPmdEGdfa+WraBVg5OTkYN24cFi9eHH0tFAphyZIlmDx5sncFIyIiIiKKQ5nsTq81668nnYvnTzhb9drAfG8TXAiCfuY9J2QJIkRB0E2DPrprEd6ZdjFuHnZ8QsvWltVu6+GamvKOZdkILH3ZRbChoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyC7vZ7FJF1YKlU8bCrGwUZmXjvtGT8cz2tbhusPVJe1PB6a0aL+jJCyQeriTbgqValo2v+jLA2rhxI2666abovx9//HEAwN13342ZM2fi4osvRlVVFZ599lmUl5dj7NixePHFF6NzYBERERFR5+bP8EpdUTcLLs7rMxgnFfVBd50ug14KJjEe7Lw+gzDn6AEMK+iGPQ21AJILeuLRTp2VVICV7i1Yp5xyCrZt22b6mRtuuAE33HBDikpEREREROnErwGWGGcMllKPFI8Ps2JF1dGEv3vvqMn4ztCx+M+BHdEAK8tm4gk7qhQp8YHY7W3nGMnoJBdEREREREZ+M2EapvToha/byEiXSspWq0QyCqYzQRBQlJOnCnTcbMH65MCemPUnys53fdmCRURERESUiIk9SjCxh38zS6vHYHlYEA8pA8uA6N/2nmnF/bC48jAAtmAREREREfmSKougbzsyukvZGLSjrtqzckzsUYIRBd1xi0GWwtNL+kX/TvsxWEREREREmUhZUfdrpkO3KQPLtTUVJp90V44YwJ9OOMvkE4mlp2cLFhERERFRinTWboFKLaH26N+5OvNf+YUyqGIXQSIiIiIiH+psiS30fHioI/nEzFGTPCyJOUH1N7sIEhERERH5TkAQ8eBxJ6Jrlr/mt/JKN5/N86XURTHJMVuwiIiIiIh86oxeAzC5qJfXxfCFbBfnwbpmxHHRv5+cMM32908o6h392854OQZYRERERERkanz3YleWm+VimvZJxR1B7IQEUvcru3OyBYuIiIiIiBzjVkuTmy1YbaGQY8tigEVERERERL7nZgtWSJIcW5adLoJMckFERERERKacTH4oQkAI4eAny8UWrDFFRTi1uC+m9Eh+vJudn88Ai4iIiIiITNlJUx5PtihG58LKcnFisIAg4pHxpyAUSr4ly056fXYRJCIiIiIiU06GQQFFsJInpkd7T46NCZEZYBERERERkSk7Y5Diubjf0OjfeQHrgYuX2IJFRERERES+dO3g0dG/7bQMeeGEol6YZDPFe3q0yRERERERkWec7CKYrQiq7LQMeeFX40+z/R22YBERERERkSknk1wEfB5UJYstWEREREREZMrpmOjS/sOQH8h2dqE+wQCLiIiIiIhMOd3m9P0RExxeon+wiyAREREREZmaUtQbAHBqcV+PS+J/bMEiIiIiIiJTF/YdgkFdCjGqaw+vi+J7DLCIiIiIiMiUKAiYYDNdeWfFLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA4RJEmSvC5EOguFJLS3hxxdZnZ2AG1t7Y4uk5zBfeNv3D/+xv3jX9w3/sb942/cP/7l9L4JBESIohD3cwywiIiIiIiIHMIugkRERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgOUTR44cwf3334+pU6di8uTJuPLKK7Fr1y6vi0UAZsyYgTFjxsT877HHHvO6aBRRX1+PRx99FGeccQYmTZqEr3/96/jvf//rdbEI4X3zq1/9CmeddRYmTZqEm266CTt37vS6WJ3SihUrcMcdd2D69OkYM2YM5s2bp3q/paUFjz32GE455RRMmTIFM2fORGVlpUel7Xzi7Z+33noLN954I0444QSMGTMGDQ0NHpW0czLbPzU1Nfj1r3+NCy64ABMnTsQ555yDJ554AvX19R6WuPOId+489thjOP/88zFx4kSceuqpuPPOO12vYzPA8oFjx47h+uuvR05ODl588UV8+OGHuPfee1FQUOB10QjAO++8g6+++ir6v5dffhkAcOGFF3pcMpI9+eSTWLJkCf7whz/go48+wnXXXYef/exnWL58uddF6/R+/vOfY8WKFXj66afx3//+FyNGjMAtt9zCiocHGhsbMWbMGDzyyCO67//mN7/BvHnz8Mwzz+DVV19FWVkZ7rnnnhSXsvOKt3+amppwxhln4I477khxyQgw3z9lZWUoKyvDgw8+iI8++gi/+c1vsGDBAvziF7/woKSdT7xz5/jjj8dvfvMbfPzxx3jppZcgCAJuu+02hEIh9wolked+//vfS9ddd53XxSCLHn/8cem8886TQqGQ10WhiEsuuUT661//qnrta1/7mvTiiy96VCKSJElqamqSxo4dKy1YsCD6Wnt7u3TaaadJb7zxhoclo9GjR0tffPFF9N+1tbXSuHHjpNmzZ0df27lzpzR69Ghp/fr1XhSxU9PuH6WlS5dKo0ePlurr61NcKpKZ7R/Zxx9/LE2YMEFqb29PUalIkqztmy1btkijR4+WDh486Fo52ILlA1988QXGjx+PmTNn4rTTTsOVV16J999/3+tikY7W1lZ88MEHuOqqqyAIgtfFoYgpU6Zg7ty5OHr0KCRJwsKFC1FWVoZp06Z5XbROLRgMor29Hbm5udHXRFFEdnY21qxZ42HJSGvjxo1oa2vD6aefHn1txIgR6N+/P9auXetdwYjSVH19Pbp27QpRZFXbTxobGzFr1iwMHjwYffr0cW093Os+cODAAfz73//GiBEj8NJLL+Gqq67Cz3/+c8ydO9fropHGnDlzUFdXhyuuuMLropDCww8/jMGDB+PMM8/E+PHjcffdd+PJJ5/E2LFjvS5ap1ZYWIhJkybh+eefR3l5Odra2vDSSy/hyJEjqKio8Lp4pFBRUYG8vDwUFhaqXi8uLua+IrKpuroaf/nLX3Dttdd6XRSKeP311zFlyhRMmTIFCxcuxEsvvYSsrCzX1ufekskySZIwYcIE3HfffQCAsWPHYuPGjXjjjTdw7rnnels4Unn33Xdx5plnuvrUg+x77bXXsGXLFvz9739Hnz59sGTJEjz00EPo27cvJk+e7HXxOrXf//73ePDBBzF9+nQEAgGceuqpOPPMMyFJktdFIw29VnnuJyJ76uvr8f3vfx+jRo3CnXfe6XVxKOIb3/gGTj/9dJSXl+Of//wn7rvvPrzxxhvIyclxZX0MsHygpKQEw4cPV702YsQIrF+/3qMSkZ7S0lIsXrwYzz33nNdFIYXm5mb88Y9/xAsvvIAzzjgDAHDcccdh/fr1eOWVVxhgeWzIkCF48803UV9fj5aWFhQXF+Pqq6/G8ccf73XRSKGkpARNTU2or69XtWJVVVWhpKTEw5IRpY/6+nrcdtttyM/Px3PPPedqCwnZ07VrV3Tt2hVDhw7FpEmTMHXqVMydOxcXXXSRK+tjF0EfmDJlCvbt26d6be/evejXr59HJSI9s2bNQnFxMc4++2yvi0IKwWAQbW1tCAQCqtdFUXQ3QxDZUlhYiOLiYhw4cAAbN27EjBkzvC4SKYwfPx7Z2dlYvHhx9LU9e/bg0KFDfEhBZEF9fT1uvfVWZGdn44UXXlCNPSX/kSQJra2tri2fobUP3Hzzzbjuuuvw97//HRdccAFWr16N999/H3/605+8LhpFhEIhzJo1C5dffjmfSPlMYWEhpk6dit/97nd4+OGH0bdvXyxevBizZ8/Gk08+6XXxOr0FCxZAFEUMGTIEO3fuxBNPPIGzzjoLZ555ptdF63QaGhqwf//+6L8PHjyILVu2oKSkBL169cJVV12FJ598Et26dUNhYSEef/xxnHTSSZgwYYKHpe484u2f8vJyVFRURD+zfft25OXlYfDgwZzWJQXM9k+XLl3w3e9+F01NTfj973+P+vr66FQUPXv2jHkASM4y2zetra348MMPcfrpp6O4uBhlZWX4+9//jry8vGivFzcIEjtY+8KcOXPwzDPPYN++fRg8eDBuv/12XH755V4XiyK++uor3HrrrZg9ezaGDRvmdXFIo7y8HE8//TQWLVqE2tpaDBgwAN/+9rfx7W9/2+uidXofffQR/vCHP6CsrAw9e/bEN77xDcycOZNPdz2wbNky3HTTTTGv33333Zg5cyZaWlrw29/+Fv/73//Q2tqKM844A7/85S/ZRTBF4u2f5557Ds8//3zM+//6179wyimnpKKInZrZ/pk6daruewAwd+5cDBw40O3idWpm++baa6/Fz3/+c2zcuBG1tbUoLi7GSSedhB/84Acxw3OcxACLiIiIiIjIIRyDRURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERE5LrnnnsOY8aMifnfzTff7HXR0t6yZcswZswYbN++Pea9WbNmYcyYMWhoaPCgZEREnVOW1wUgIqLOoWvXrnjxxRdjXiMiIsokDLCIiCglAoEAJk+ebOmzzc3NyMvLc7dARERELmAXQSIi8tTBgwcxZswYfPDBB3jggQdw0kkn4Y477gAA1NTU4JFHHsG0adMwYcIEXHvttVi3bp3q+7W1tbj//vsxefJkTJ8+HS+88AJ+97vfYcaMGdHPPPfcczjllFNi1j1mzBi89tprqtfefvttXHLJJRg/fjzOOecc/OMf/1C9/9Of/hRXXnklFi1ahEsvvRSTJ0/Gddddhx07dqg+197ejr/97W+44IILMH78eJx55pn46U9/CgB4/fXXMWXKlJiue0uXLsWYMWOwdetWm1vRmp/+9Ke6XTVvvPFGV9ZHRNQZsQWLiIhSJhgMqv4dCASifz/11FM4//zz8ac//QmiKKK1tRW33HILamtr8cADD6Bnz5544403cPPNN+Ozzz5Dr169AAA/+9nPsHz5cjz00EMoKSnBSy+9hP379yMry/4t7sUXX8Qf//hH3HbbbZg6dSo2bdqEP/3pT+jSpQtuuOGG6OcOHz6Mp556CnfeeSdyc3Px1FNP4b777sNHH30EQRAAAI888gjef/993HrrrZg6dSqOHTuG2bNnAwAuvfRS/O53v8Onn36KK6+8Mrrc9957D+PGjcNxxx1nu+yhUChm+4ZCIdW/77rrLlx77bXRf1dUVOBHP/oRhg4dant9RESkjwEWERGlRE1NDcaNG6d67eWXX8bgwYMBAJMmTcIvf/nL6Htvv/02duzYgY8++igaAEybNg0XXnghXnrpJTz44IPYsWMH5syZgz/+8Y+4+OKLAQCnnHIKzjnnHBQWFtoqX319Pf785z/jzjvvxN133w0AOP3009HU1IQXXngB1113XTQgPHbsGN54441ouSRJwg9+8APs3r0bI0aMwK5du/DOO+/g5z//OW666aboOuQyduvWDV/72tcwa9asaIDV0NCAzz77DPfff7+tcssuu+yyuJ8ZPHhwdHu3tbXhpptuwuDBg/Gzn/0soXUSEVEsBlhERJQSXbt2xcsvv6x6bdiwYaipqQEAnH322ar3lixZgnHjxmHgwIGqlpmTTz4ZGzduBABs2LABAFTdAQsKCjBt2jSsX7/eVvnWrFmDxsZGXHjhhar1nXrqqfjLX/6CI0eOYMCAAQCAAQMGqFp9RowYAQA4evQoRowYgWXLlgGAqnVK65vf/CZuvvlmHDhwAIMGDcInn3yCYDCIr3/967bKLfvjH/+IQYMGqV6bP38+nn/+ed3PP/7449ixYwfeeecd5OfnJ7ROIiKKxQCLiIhSIhAIYMKECTGvywFWcXGx6vXq6mqsXbs2ptULQLQVpqKiAgUFBTEJMbTLsqK6uhoAcMkll+i+f/jw4WiApc1+mJ2dDQBoaWkBEP5N+fn5pq1op5xyCgYNGoRZs2bh3nvvxaxZs3DuueeiR48etssOACNHjsTo0aNVr2nHhcnefvttvPXWW/jLX/7C7oFERA5jgEVERL4gj12Sde/eHePHj8ejjz4a89mcnBwAQElJCRoaGmKyDlZWVqo+n5ubi7a2NtVrx44di1kfAPztb3/TDdCGDRtm+bf06NEDjY2NqK+vNwyyBEHAVVddhf/85z+47LLLsGrVqpiEGm5Yt24dfvWrX+Guu+5StfwREZEzGGAREZEvnXbaaVi0aBH69+9v2CIlt4h98cUX0fFNDQ0NWLx4sSqw6dOnDxoaGnD06FH06dMHALBo0SLVsqZMmYK8vDyUlZXFdFe069RTTwUA/Pe//1Ulx9C64oor8Oyzz+Khhx5Cnz59cPrppye13njKy8sxc+ZMTJs2DTNnznR1XUREnRUDLCIi8qXLL78cb775Jm688UZ897vfxaBBg1BTU4P169ejV69euPnmmzFq1CjMmDEDjz76KOrr69GrVy/885//jOkyeMYZZyAvLw8PPfQQbrnlFhw8eBBvvvmm6jPdunXD3XffjSeeeAKlpaU4+eSTEQqFsHfvXixbtgx//vOfLZd9+PDhuOaaa/Db3/4WlZWVOPnkk1FbW4tPP/0Uf/zjH6Of69OnD8444wzMnz8f3//+91VZFYFwevnnn38e27ZtS2ALxnrwwQfR0NCAb3/726p094WFhRg5cqQj6yAi6uwYYBERkS/l5ubiX//6F/70pz/hueeeQ2VlJXr27ImJEyequrb99re/xaOPPorf/OY3yM/Px/XXX48JEybg008/jX6mZ8+eePbZZ/HUU0/hBz/4AcaNG4enn3462uolu/3229G7d2+88sorePnll5Gbm4uhQ4fGfM6KX/7yl+jfvz/efvtt/OMf/0DPnj11W6jOO+88zJ8/XzchRlNTE3r27Gl73Ub27t2L+vp63H777arXp06dildffdWx9RARdWaCJEmS14UgIiJykjzH1BdffOF1UeK69957UV5ejn//+98x791www049dRTo2njiYjI/0SvC0BERNQZbdu2De+++y4+//xz1VxZsmAwiB07duD666/3oHRERJQodhEkIiLywJ133onq6mpcf/31uPDCC2Pez8rKis6nRURE6YNdBImIiIiIiBzCLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDsnyugDpLhSS0N4ecnSZWVkigkFnl0nO4L7xN+4ff+P+8S/uG3/j/vE37h//cnrfBAIiRFGIv17H1thJtbeHUFPT6NjyRFFAcXEhamubEApJji2Xksd942/cP/7G/eNf3Df+xv3jb9w//uXGvunRIx+iGIi/bkfWRkRERERERAywiIiIiIiInMIAi4iIiIiIyCEMsIiIiIiIiBzCJBdEREREKSJJEkKhdkgWx9yLooDW1lYEg0EmUfAh7h//SmTfCAIgigEIQvxMgWYYYBERERGlQHt7OyorDyMUarf1vYoKEaEQ04D7FfePfyWyb0QxgOLifggE4mcLNMIAi4iIiCgFamurIIoB9OzZB4D1J+RZWQKCQbaO+BX3j3/Z3zcSamoqUFtbhaKiXomvN+FvEhEREZElkhRCS0sjiop6Iysr29Z3s7JEAGwh8SvuH/9KZN907doD1dVlkKQQBCGxdBVMckFERETkMrmbUiDAZ9tEfiafo8l0+2SARUREROSyjqQWyQ2eJyK3hc9Rq4lo9DDAIiIiIiIicggDLCIiIiIiIocwwCIiIiIi33jiiUfx8MMPeF0Mxxw+fAjTp5+E3bt3el2UGKtXr8T06SehsbEx4WU0NjZi+vSTsHr1SgdLlt440pKIiIiIdD3xxKNoamrE448/5XVR4tq6dQtefPEFbN26GU1NTSgp6YXx4yfipz/9BbKz7WVu9JvVq1finnvuiP67qKgnJk6chLvuuhcDBgxMeLkTJkzC++/PRpcuXZwoJkUwwCIiIiKitFZdXYUf/vAHOPPMs/HHP/4F+fn5KC09iHnz5kYmdnY+wAoGg0lNRpuIt976L/Ly8nDkyBE888xTePDBH+GVV95IqBzBYBDZ2dkoLi5xoaTOCwaDyMpKj9CFXQSJiIiIKCFffDEHN9zwLZx99qn41rcuw3vvvaN6f/r0k/DBB+/hRz+aiXPPPR033XQNtm/fip07d+B737sZ5503HT/84Q9QXV0Vs+x//vNvuOSSc3HhhWfj2WefRnt7u2E5NmxYj5aWZjzwwM8xatRoDBgwEFOnnooHH/w5cnPzop9bu3Y17rrrNpx77um46KIZ+MlP7kVLSwsA4JNPPsJ3v3sDzj//DFx22QV44olHUVtbG/3uxx9/iEsuORcLFszH9ddfhRkzpqGmpgbl5eX48Y/vwYwZp+Oaay7Hl1/OwyWXnIuPP/7QsLy7d+/Ej340E+edNx2XXXYBfvvbX6O+vj7u9i4q6oni4hKMGzceM2f+CHv37kZp6QEAwIIF83HzzddjxoxpuOaay/H666+oUo1Pn34S3n9/Fh544D6ce+7p+M9//q3bRTDePt2/fy/uuus2zJgxDTfddA3WrVsTU87Vq1fi1ltvxDnnnIbLL78I//zn31Rlqagw32Zyt8q5cz/HXXfdhnPOOQ0LFsxHdXU1fvnLn+Hyyy/Cueeejptvvh4LF85Xrfub37wUr776Mh599Oc4++xp+Na3LsOKFUtx5MgR3HffXTjvvOm4/fbv4MCB/XG3d6LSIwwkIiIiyjAbFwkos1LHEwBIzqR37z0YGH96EvmnFbZs2YRHH30It912B84++1ysWbMKzzzzexQXl+DMM8+Ofu7//u9FzJz5Q9x33/145pn/h1/96hH07NkTd911DwoKCvHLX/4Mf//7X/Dggw9Hv7Ns2VLk5ubh+ef/gQMH9uPJJ3+FkpJeuP76m3TL0rNnT7S2tuKrrxbgzDPPhiDEbq/9+/fhhz/8AS6//Ju4//6fAgBWrFgKKZKPOxgM4nvfuwuDBg1GZWUFnnnm/+EPf/gdHn30iegyGhsb8eabr+HnP38MBQUFKCgowIMP/hC1tbX485//DgB49tk/mI5pqqurwz333InLL78K9913Pxobm/Dcc3/AE088iief/H+Wt78cOLa1BbFu3Vr85jeP4r77foIJEyZh//59eOqpJ5CdnYOrr74u+p1//vNvuPPOmbjvvp8gEAigtPSgapnx9mkoFMJDD/0EvXv3wd///gqOHavBM8/8XrWMsrKj+PGP78U3vnEFHnnk19i1ayeeeupxdO3aFVdffT0A4PHHf4m6urq42+xvf3seM2f+ECNGjEJeXh5aWlowduw43HDDzcjPL8CXX87Dww8/iFdeeRNDhw6Lfu/NN1/DHXfMxPe+dydefvlFPPbYLzB69BhcffX1+OEPH8Bvf/trPP30b/HMM3+xvL3tYIBFRERERLa99da/MXXqqbjppu8CAAYPHoIdO7bjjTf+pQqwvv71y3DOOecBAK677kb88Ic/wPe+dxcmTz4h8v7leP/9d1XLzs3NxYMPPoycnBwMGzYcBw8ewFtvvW4YYI0fPxHXX38THnnkp+jatSuOP34CTj75FFx44SXo2rUrAOC11/4PEyZMwr333h/93ogRI6N/X3rp5dG/BwwYiLvvvg8/+tHdCIV+DVEMd/pqa2vDj3/8MwwfPgIAsG/fXqxYsQwvv/w6Ro0aAwD40Y8ewC23fNtwu7377lsYO/Z43HZbx5iqBx74Ob797W+iuroKRUU9Db8rO3asBv/859/Qq1dvDB48BD/+8b246abv4sILL4mW/zvf+S7eeectVYB1wQUX46KLvh79tzbAirdPV6xYhoMHD+DZZ/+Knj2LAQDf/e738Itf/DS6jPfeewf9+w/AvffeD0EQMGTIUBw+XIp///tVXH319di3by9WrlxuaZtdc823ccYZZ6teu/baG6J/X3/9jVi8eCHmz5+Lm2++Lfr66aefiUsvvRxZWSK+851b8cknH+HUU6dh2rTpAICrr74Ojz32MEKhUHTfOokBFhEREZEHxp8uAafH/1xWloBg0JlWJyft27cHZ599ruq1iRMnYe7cz1SvjRgxKvq3XCkfNmy44rWeqK6uVn1n1KjRyMnJif57/PgJ+MtfKlBfX49Zs/6DV199Ofreq6++jb59++Kuu+7BddfdgJUrl2PTpg14/fVX8Prrr+DFF/+FkpJe2Llzhyrw09q6dTNeeunv2LlzB+rq6hAKtSMYDKKqqhIlJb0AhAM/ObgCwt3lsrOzMXLk6OhrI0eONk2qsXPnDqxYsQznn39GzHulpQdNA6zLLrsAANDU1ISRI0fj8cefQnZ2Nnbt2o4NG9bh5Zf/Ef1se3sIkhRSff+448YaLhuIv0/37duLvn37R/cjEA5ulfbu3YMJEyaqWhEnTJiEF154Dg0N9ba22XHHHa/6d3t7O/71r5cwb94clJeXIxhsQ2trKwYNGqL6nDJw7tkzvD3Vx1wxgsEg6uvr0K1bd9NtkggGWERERESUEG1XPEmSYl5TJiaQ31K/JsQEAnpd/OTvX375VZgx4/zoayUlHUkaiop64vzzL8T551+I2267E9deewX++993Va1FepqamnD//TNx6qmn45e/fAJFRT2wZ88e/PznP0FbW1v0c3l5earvSZJxWc3WdcYZZ+P73/9BzHu9evUy/e4LL7yELl26oKioJ/Lz86OvNzY24fbb78QZZ5xl+v28vPjZAs33qQRrP1e7DPXfVrdZly7q7f3vf7+Kd9/9D+65534MGzYcXbp0we9+9ziCwTbV59TJMMLrCgRiXwuF3HlwwQCLiIiIiGwbMmQY1q9fq3ptw4b1GDJkaNLL3r59G1pbW6OtWJs2bURxcQkKCgoBwFKrQ2FhIYqLi9HU1AQAGDlyFFavXqnqSibbt28vjh07hjvvvCcasFmZ12nIkKFobW3Fzp07MGpUuEVm584dqqBMa/ToMVi48Ev069ffdva//v0HqAIr5TIPHNiHgQMH2VqeVrx9OmTIMBw+fEjVlXHTpg2qzw8dOgwLF36pCsw2blyHXr16o6CgMKFt1lGWdTjzzLPxta9dCCA8bq609CD69u2XzM92HLMIEhEREZGh+vp67NixTfW/8vIyXHPN9Vi+fCleffVlHDiwH++/Pwv/+9/7uO66G5NeZ0tLC37/+99g7949WLhwPl599WV861vXGn5+0aKF+PWvH8GSJYtw8OAB7NmzGy+88Bz27NmN008Pd8W74YabsWHDOvzpT09j9+6d2LNnN/7znzfQ3NyMPn36Ijs7G++++xYOHSrF/Plz8e9/vxq3nEOGDMXJJ5+Cp556HFu3bsbWrZvxzDO/R3Z2tmErzZVXfgvV1ZX41a8extatm1FaehBLlnyF3/3uCd3PW/Gd79yKjz/+EP/3fy9iz57d2LNnNz777BO88so/bS0n3j49+eRT0L//ADz++KPYuXMHVq9eqeqWCABXXPFNHDpUij/96Wns378X8+bNwauvvozrrguPnRoyZChOOmmqrW0mGzRoEJYvX4qNGzdg9+5dePLJxyxlX0w1tmARERERkaGVK5fHJCD41reuw7333o9HH/0NXnrpb5GEC30wc+aPTMc5WXXKKaeiV6/euOuu29DeHsRFF12qSm6gNXToMOTk5OBPf3oaZWVHkZeXhyFDhuLxx5/CCSecBCCcsOHpp5/D3/72Z7z//rvIy+uCCRMm4rLLrkRRUREeeuiX+Pvf/4K33nodY8eOw1133YOHH34wblkfeeRXePzxx3DXXbehpKQXfvCD+/D444+oxpAp9erVG3/5yz/x178+h/vuuwttbW3o129A3O59Zk477XQ8+eTT+L//exH/+tfLyMnJxtChw3Hlld+ytZyxY8eZ7lNRFPHkk0/jt7/9FW6//SYMGDAId911Dx544L7oMnr37oP/9//+hD//+U94//130b17D3zrW9fhm9/sCJAffvgxPPnkry1vM9l3vnMrDh0qxQ9/eBfy8/NxxRXfwtSpp9j6jakgSJLkv1GTaaStrR01NcapOO0SRQHFxYWorKx3rV8oJYb7xt+4f/yN+8e/uG9SIxgMoqKiFCUlA2xPlpqVJSIYDMX/IHlCu3/279+L66//Jl588dW4SSUozK1tlsi5Y3au9uiRj+zs+N062YJFRERERJSg5cuXobGxCcOHj0B5eRmef/6PGD58BMaMOc7rovnWihXL0NLSkrHbjAEWEREREVGCgsE2/PWvz+Pw4VIUFBRi8uQTcM8999vOLtiZZPo2Y4BFRERERJSgadOmY+rUaV4XI62cdtp0nHbadK+L4RpmESQiIiJyWceDeY5zI/K38DmaTGMaAywiIiIil4liuMrV3h70uCREZEY+R0XR3hxlSuwiSEREROQyQRCRm5uPuroaBAJZAOw8HhcQDLLly7+4f/zL7r6RUFdXg9zc/KTGgzHAIiIiIkqBbt16orLyMCoqDtn6niiKCIWYpt2vuH/8K5F9I4oBFBX1Tmq9DLCIiIiIUiAQCKBXrwEIhdphdRZSURRQVJSP6upGzlPmQ9w//pXIvhGEcICVbDZDBlhEREREKSIIQqSLoDWiKCAnJwdZWa2swPsQ949/eblvmOSCiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIyLdqyoEF7wioPup1SYiIiKxhgEVERL61cZGA5kYB6xYIXheFiIjIEgZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYRETkW421TM9ORETphQEWERERERGRQxhgEREREREROSTL6wJ4Zdy4cRg5ciQAYPz48XjiiSc8LhERERmSvC4AERGRNZ02wOrRowfef/99r4tBREREREQZhF0EiYgopXatAw7vsfkl5rogIqI04csAa8WKFbjjjjswffp0jBkzBvPmzYv5zOuvv44ZM2ZgwoQJuPrqq7F+/Xpb6zh27BiuuOIKXHfddVi+fLlTRSciIhOtLcCudSI2LPTl7YeIiChpvuwi2NjYiDFjxuDKK6/EzJkzY97/+OOP8eSTT+Kxxx7DpEmT8Morr+C2227D7Nmz0bNnTwDAZZddprvsWbNmIRAIYO7cuejTpw927tyJ733ve/jggw9QWFiYUHlF0blHq/KynFwmOYP7xt+4f/xN3i+CJMS8ZkRSjruSuG/dwnPH37h//I37x7+83De+DLDOOussnHXWWYbvv/zyy7jmmmtw1VVXAQAee+wxzJ8/H++99x5uvfVWAIg7vqpPnz4AgJEjR2L06NHYs2cPJkyYYLusWVkiiosTC8zMFBUVOL5Mcgb3jb9x//hb9+5dADQBQNxrpyRJABoBAKIoorg43+XSdW48d/yN+8ffuH/8y4t948sAy0xrays2bdqEO++8M/qaKIqYNm0a1q5da2kZx44dQ5cuXZCTk4OjR49i+/btGDRoUELlCQZDqK1tSui7ekRRQFFRAaqrGxAKMW2Wn3Df+Bv3j7/J+6fmWMf1srKy3vQ74RYsIfJ3KO7nKTE8d/yN+8ffuH/8y419061bF2RnB+J+Lu0CrOrqarS3t6OkpET1enFxMfbt22dpGbt27cIjjzwCURQhiiIeeugh9OjRI+EyuXFChUIST1Sf4r7xN+4ffwvvG0HxtzFVgGXh8xRf2X7g6D4B406XIGqGwfHc8TfuH3/j/vEvL/ZN2gVYRiRJgiBY62N5wgkn4KOPPnK5RERERP6ydn44quo9WEKfIR4XhogoQ6VdGqeioiIEAgFUVFSoXq+qqopp1SIiIqJYoZDXJSAiylxpF2Dl5ORg3LhxWLx4cfS1UCiEJUuWYPLkyd4VjIiInMXeNkRElIZ82UWwoaEB+/fvj/774MGD2LJlC0pKStCrVy/ccssteOCBBzBu3DhMnDgRr7zyCpqbm3HFFVd4WGoiInINgy1HMaE0EZF7fBlgbdy4ETfddFP0348//jgA4O6778bMmTNx8cUXo6qqCs8++yzKy8sxduxYvPjii9E5sIiIyKcYKBERUYbzZYB1yimnYNu2baafueGGG3DDDTekqERERJRqqliMTS7O4vYkInJN2o3BIiIiIiIi8isGWERE5H/sWmhqxxoBu9Z5XQoiIgIYYBERUQoxTnLHng0Cdq2zcUtnF0EiItcwwCIiIv9jQEBERGmCARYREaUOm7CIiCjDMcAiIiJ/kgz+pqSxQZCIyD0MsIiIiIiIiBzCAIuIiPyPTS5ERJQmGGAREZGKJAGVh4C2VneWndgXHS0GMWAlInINAywiIlI5shdYNUfEqs9ZC89U3LNERO5hgEVERCrHysPV79pKVsPjaW4EVnwmoOqo1yUhIiK/YIBFRES+pOoV6NNYb+caAdVHBKz8lLdTIiIK4x2BiIj8z6djsELtXpcgQT4NWImIMgEDLCKiTqy+Bti4SEBrs9clISIiygxZXheAiIi8s2K2gLZWAZIETJjus2YiZXHY4kJERGmCLVhERJ1YW2s4cmlrUbzIYIaIiChhDLCIiCh1OA+WLwgMoomIXMMAi4iIKEHKiZNXfia4MjkzERGlFwZYRETkf2nQ4lJ1RMD+LV6Xwlg15+oiIkoJBlhERJQyyp5+8Vp7lK1D6dJFUAr5NxIsO9BRNilNticRUTpigEVERJ5QJdbIEH6OW1TjrvxcUCKiNMcAi4iIPMFWFCIiykQMsIiIKHUS7fbn3553MVqagPKDDCCJiDorBlhEROQJWwFIGgUriz8QsOYLEVWHvS6JsTTanEREaYcBFhFRhti5VsDuDV6XwpyqAStDa/ltLeHmtvoab8thKkO3PRGRH2R5XQAiInLG7vUCAAHDJ4S8LooxRcU+UwMsv5K47YmIUoItWEREnYiVinXKhjuxku+ZnDyvS0BElLkYYBERdSLLPxGw6nN/ZIzI9FYUP/88MeB1CYiIMhe7CBIRdSLHKuTgyvvqf9wAy/siUgpJUvh/Ih/9ElGa42WMiIg8Ifl4qFhGUgSspTv80YqptPR/Aua+LmR8yyYRZT4GWERElDJ2Ei3UH3O3LK7zWaCgLE7pTv8FWHVVAiRJQKjd65IQESWHARYREXkiXoBVUdoRBLQ2+y8gSDs+C/isKjsAbFwkIMQWTyJKExyDRUREaqmKZdK0wk8u0xx/a+eFnwX3Hiyh9yAPykNEZBNbsIiIyBOZnuSCY4mcxa6DRJQuGGAREVHq2BiDlY7xSSjY8Xdjrb+6NaZjwNeQ7uPwiKhTYoBFRNRJ6VW4d6wWsG9zagKDTGzBUo4T8mMiiXTT3OB1CYiI7OMYLCKiTujoPmDdl7HP2PZsdDcokAz/ofPZNAywBMZUSVNuwkC2Z8UgIkoYW7CIiDqhzcsYCXQ26RKwKoupClh5yBJRmmCARUTUCXlWV1XUntfOF1FT5lVBknN0H7DhKyFmsuTSnebfa2sN/4+IiDIXAywiIkJLozfrXT7b+Dbk5xaXdV+KOLxbQOVh9evtQfPQdd6bIua96dGt18fbU8WgnGzAIqJ0wQCLiIhQV83qayLipQ6vq05NOaxIl/iKiCjdMcAiIl9rbgQObldnZyMHeBRP2arkZ0BEsORDH91mM2B7+lFzI2JaMomoc2MWQSLytRWfCmiqE9AeDGHI8V6XJnP4YQyWgx/1joA0KWgG8Gkj64J3wkH0aZeG0LXI48IQkS/46NEaEVGsprpwrYpd2ByWDpvTocAl2Aos/0TA4T3OLI9IT1Od1yUgIr9gCxYRpQU/Jzwgdzi1z0t3AjXlAmrKBfQb5nBf0wTLKEmcM8uKdNpG7MZMRDK2YBFRWtCmw/ajykPAod1elyJzHNjmTO3al8G5B2Xy5XbQYVROv8da6xewSkVEYWzBIqK0kA5Ph1fNCVew+g4JQQx4XJg40qllwNcSHIMlSakPGCoOpXiFRESdFB+3EFFakJ9qp8tTeL9rbvAmwvJk/1n4qe1x0q07zcntYHVZrU2MqomIUoEBFhGlBSkEtLUAn78qYssyf1cUGQOml4pSYO7rIvZtTt06+aAgAT467XesEbD8EyEtui4TUeoxwCJygSQB9TXpMW4onVQdDf/XqbE5rsngynNFKbD0fwKaG7wuiXXxjpa9m8Of2LYyhbdEl44RBm6psWdDOGlKIzMHEpEOBlhELjiwFVj8gYhtq3weCKQROxXH3euBNV8InlU2M7mSu3quiNpKATvX8thORgYfIkREnR4DLCIXHN4Trnwe2OZxQTKNxVrpzrUiyg8KaGl0tziGOkHtOeEgshNsGyOZHHgTEVEHBlhElLE8a8HyYp0mKz20C1j5mYBmrwJOBcYYEdwQxozStLPRlIjSBAMsIkoPElSDaZrqPStJfD6rPG9cJKLqiIAF73Rc8ov6+KyQLvJDiv9QCL47LoiIyB0MsIgITfVA6c406MKkKN+mxf59nO377QggkMGzILYH1f/esdr8Vuf2kbR1hYA5r4nutSBKBn93EulwvhFR58IAi4jw1X8FbFosomy/1yUxpq1EtbV6U45MVledgpW4XBk+uAOY+28RR/Za/47b9fP9W8IhnPL8cisoWPiegNpKd5adKnY2TX1NeOqG/VvdKg0RkX0MsIgIUihcAUyrlMMpemp9aDdQeSj+51qaOv5OiyfqOs02Sz5M/1vCjkjmzt3rvWnhzMs33vmpOC6aGwRft+46bV8kxf7W5R4du51nUxORDel/NyUiXaEQEGyz8Ln2jr8rDqVfbaG1ObZLmFNC7cDGr0SsmiMi2BbulmjUOvDl24rLqSdZLux9POk9nQ5BpEVOHvXNjcZLcyvAaqh1Z7lERJQYBlhEGWrx+wK+eEOMG3wc3tPxd/UR/wZYenXTYBsw/z8iFn+gX+5kK7StLR1/790koHSngKX/i3/ZzKDYgxDujnp4t/phRCLcCrDkVhxZXbV/z2O7VNvMhz+Lk8kTkR4GWEQZqrEuXBtRdl3TY6WVyxek2H82HAv/3VTvTs1LmXWvrcXkgxqVpS4UJkOkKvh0cj3rFwjY8JWYfLdDRaHSohupz/gwvkL5Qa9LkNm2rRSw9H8CA1lKOxmcR4qIMk3pLkUVS/Lv0+NwC0Jqa9C21+ZVbTVOQUOh8H71U5bDykjX2Zry5JbDoMoao5ZCP24/v16DMoXcOtvUICG/q8eFIbKBLVhEmc6HlZJEVRz04zPsWGLA6xLEl+yWdOuwWvCOgLn/FpOuTPvxSJEkP5bKf/Zs1N9O21b6cPtpihSvxwARdQ4+ekZIRG7IoPgqbRT0SIOt7rO6asUhoKEGaG2OFCzJTejLPdDJ56uyqqZM//XG2tS3DMcjaM4jtxLuEFF6YQtWJxIKhSsx7UkO1CZKrXCFStui4WV3oXjdgroUpKYc6chov62eI2LbSvNbUuVhCyvwWeCopPzt1WVAc4N3ZfE1H+9DLSFOLUqSgAPbO8aLplprM7B2vmAYtBKROxhgpZmmemDjIgFN9fa/u2udgNVzRGxd5v+7V4j92h2T9mME5MPVRw+uP39NxIFtxu9XHRYy/xj2YH+s+tzCLctHx4mWMsBav0DEgncz5xbcUAvs3pB8pkUg3JKZLrQtWNrjr6IU2LJUxKL3vdnXu9cLKNsvYPnszDnWiNIBz7g0s36hgEO7BGxYaD9IqohkNjuyz/gz5QeBg9sTLJxDqo8Cc14TPS9Hutq2UsDu9R3/Prjd24C6vib8UKC1ObHvJ1V6m5VtO61iW5YZXz53bxCwd6O9dSfNx4EFhfkxSYNTlnwoYOcaEQccuG63B/3/EFCmDbDaWtX/9rqVMl6WWCcCYiKKxQArSVII2LMx9qLqlpbG8H+bkxlIa3KTX/OFiM1LRU+fvssDnDcv5eGZiH2bBexc27Ht6mu8KwsArPg0/FBg+6rkKk1u1033bAQ+f1V0bNLWitLEfm+qKuExT94zhY9/l98CrD0bw5NnOyHUHl5Oc4OzO8Bv20xL20Vw2cf+um+ZnecHdwBzXhdxdH/qykPUWfjrSpCGGuuAHatFbEmDbnfxKlSJtjA4LSvb3udDIXtzFFFqtbWED7yEjy+D49bpiteO1eHLoVGL34Ft7p/jwTZg7r8FbFzk/rr8Phg/6d3rx4q5w2Vqbkju2rdjtYjSnYLtufCaG8LjeuqqE193pkjnBxXbVoQLn/T8bkQUgwFWkuRKSspuNA7coI0WsWudPy6y8QYNay37WMC8t0TfBIh+k84VABWdAzfe6eDHOraZuqpwS8ChXe7vtERb2JKWbjslDjtb0cmeAaF2YMG7Yvjal+IHTJuXhcf1rJ6TKReXWJJkLeV6xlxffY7bmdINAyynpLjS4Ma4FLtPMf2iriq8NbzuCkfe8qIr0dYVAqqOpH69ZEGKKmRexYvKbLDlB1Jb+5RbzTL5oda2lQK+fFtE2QHzz9l9IJhqh/d6XQKizsnnlwZylA+zsemx86RKTtxBaSDBOqDhYSupF7lmXmLLT8b+LQJWfha+jObl+/zE8gm9reRKcOzGMtPoKfrONTYK69ND18vxV/u3hLff4d3m29HvLSuhNEoYQpRJGGD5VEsTsOBdAQd3OLdMW/GVT2+4WqvndhzCfh8M7Zl0v78aHLiNdYLqpbL9zv7QmnJ7n/f68PN6/UlJ48JLIX8GMrs3WC+XWbGaG70ZrxdqBxa8I2Dlp8a/Q5LCWWfdxPsKESWCAZZPHdgWzsa0eYl6FzlxrbdVIfCA358IJuJYBbB1ucCUuKmWxAlzdF+SB2ICX3eqLndknz8qhqEQsH6BgKMmU0MABr872fIbbP+kWr2TLJMPdok+g4K1tQIL3hHx5TuC/uddvFbXHwNamgSETO5XpTvDD1pc5dud1rkc2u11CYjsYYDViWRyf3kAvr4RLvtYxP6tzrZIWmU3YPVyYuKy/YitjKc64E70OPL6+FNOYvul6HqFRBvA6SVwqDgIHNkrYN2XiluNbh/B2JeSTetvtD9WzxW9e9Chl6glwePG6tZpbQY2LBRQV2V/HfK0IMFW907CdoN9YeW6VXXY/YtD3P3j9XnfSexay+oqpRcesQ6RJKDqqL8TRXg5t5UdmdiCJUvVfGnJcKs7kJXduna+qKqMS1LHGAI/tMiYcaR4Dv5GOflLKhzZF54c/Mhe9etWA5k5r8feivZv1S//0v8lnx484c2c5Cb1IrDbvkrA4T0Cls826WqXwvIo7d8KzH1dRPlBjwpggc8vO46oqxJ8P20DUbphgOWQxloBKz8VseYLdys1ciWzqd6F9Ui6f7qurhpYPVdAY13kBQd+2u71wKL3BcOno17R+2nBNmDLMgHLPxHQ3JjyIsXwU4XC7fEVjvLThksxubVp+0r1EW6xscqW2koBG7/qWE/lIaCp3t4yEr3ESKFw5ki74/Nkh/ek/umRnPGv3SzZgUfH7tbl4SrI3k2xZfPNg7ZOcl4n3WJMRCoMsBxWfdTdi1RrU2LLrzoCtDT68wK65gsBFaX6k6vaebKpbOHYuVZEwzEhqQr60X1A5eHEvw+Ex7sdqzD/zJZlAg5sE1BTLmDHauN9dHg3Eurmk9vF/nf8QvVU1WJFx4knsc0NwL7N7nRRy0SpTqAjn+sNx4BVc0QsnJWaW1n1UQH7twhY/omD6+tEx4khnVPNLwFWRamAxR8IOLDN65K4ixl5iZzFACsDVBwClnyoaAHSsXmJM3erI3uBsgPOdteSu821y90rFcu281RN9/cnUc51X4pY9Xnyp8iyj82XUXmo42+j4KChFtjwlYglH9kvT89+PqnBpajCpOymm8hxKgHYtT75wtaUC77v1piu5Mp3c4Pzyz60y/llmnH7ELG7fElypyvz0X3Ask+EaItaPH4JsACgvkbAlmWZXV1K9lrV3AAs/4TzAhLJMvuK4TONdYh2AWs4Fg4enBiztXqOiLpq89YPKySDf9TXhAO4mjJg/QIRa+eJWPaJC3e/yCIT3SZydxOl2kqfjd3R2WxWime1UuIIP20vryQSmOl8R/lUePXccDfQjJQmc+xZsXFR57stKo/dlZ8JmPemiJbG+NdOO0fzui9FHCsXsN9iS1BtAq31XsiAQx5A8vfJ7avCvTDkeQGJOrssrwvQmXz1XvjCM+bkELatCP8tisDIKf6+RG9aIqCuWsDKzzteq60Q4Nat5che5yqhO9eKEAMhDB3n2CKdJxn8bfSZTsqRKQqk1D4ZXztPwPk3hkteUepuFOLlg4SUh41OrzAN417Lu9vKBxWfkbu5H6sEuhTaLZVD5UH4YR6lTrLXj3RJokWUKryCuWDR++YpceXgCgi3aEkhYN2XAg7vSUHhEhG58Iba07AWAgfmM0ohL+rI2q3jqxY/JasZEwzK3x4E5r0pYPPS1B0PkmRvXY5ue7/uRwcYBckJJ7Xxcls5mLrdwSKYbpMMPrR8nQnYVcnu1BQcFL69NxHpYIDlgoZjAjYutlaxOrRLQOWRcBCwYWHqdockhRNfxEsI0NoMHKvI/IkcQ+2p6YanVzFU3TSMtkWSu2D3BugmEUmlhNau+FIih4kynfexCiDYJuDgdpe2Q4qO48O7gXn/EdBYm5r12RF3yiBJci0d9L7N4ZTfbS0d+7e5EdjwVez+9sElx9CmxQI+f1VM6ZQO5QeATcvSYA6JOLYsS+7c3rRYwBdviNi6XH85lYeBJR+pxzuX7U+fB3hmkg1e3Din0mFaEyIjDLB8wIuJXUt3Ais/E7HuS/0arCSFW9VU73vBjWz0UjhphHK7L/5AwLy3HKzUOF1uC3ev8lIYZizcuUbEoV3OjPlLWCLbJMm79oaFImorE1htgskxUmHDVyLamgXs2eijip2F3o+hduDff2jE2vnOlbtSMdHstpWxt7MtywQc3m1hfT7alKU7w4U5ui88Hqq6zOCDDh5wm5YIWPtVG5oUSUNSHYRaPecajhm/d2BbcjtS3vb7twqAEFugVZ+LqKsSVMmXGGC5ZwdTx1MaY4DlEjvjPLy4sFVFKiYd40LUasrCrWqJpJ3ftyX8lN0RTqR01vz76F5g0X9FbFJkVmysC//dFHkyWbbf4ZVa/GyiP7e9HVgzV4ybsTCt6XWlsvC1RAIscohiBzU5mPGvtjI8F5Xe/ElKrU3OrdMtRsfw9lUCqo4IWDE7dee0aiJks5NLfs+D+q/yoV8i987GunBrfrwMlKY/zYfBiJ5EpzlJiAvbpEHbSp9G233DVwLHpXVyGVwb6xxiLkAOWb8wsTunJIXHmG34Sv/QaqoHVs3RnxuqqS751jwrLVBHI08cD+0y/o2pHKejkuANxGy7HbWZNCSVAX/cdcUruhtlTXSZFr/X2qypyDqxbg8o9538QMms+AGHUyoZPRyyxE/b2WTMoJFgG/Dl2ym4RvlpO0XI1/iGY4mNr133pYBDuwRsiNdlOgMaT+JNz6KafNqH+1orDYoIAFjzhYjDuwWUHfC6JOQlBlh+kMRVw61xQ8FWd+4u21YIqDwkYMVnscsPtukkILBZjHlviimfx8aOHatFbFuh/lFu3zTKDvizplBTDnz+qvvJXeTtaydwdDPInP8fEV/9N/l9kupAeOfacKuR+QdTUhwAwG4rc5U5cOjX1yS/jIQYbMvmBuCLN0SEQu6e16k8vgTA8rHT0iigpRFY9H5i1ZeWyFQp8Vo3TbeuPy+ptnB8k/v8OE6WUocBlg8dqwxh59rkruChEFC6C2hpCnc1kbvApVpTfXgsgUx+KhtSPDlT3lflPvCylsb4iTi0YlqmXK4oHNlrryvGvi2C9a44FjmaejwFFavaSkQCTfPkLsqfZdjq4xN2NltzQ3rV0CpKwwHN8k/S65aRzFZuaw0/wNq32V/7quJQ/M+kIzvnz5fvJH8cJt16ng5MfkMwHQOsdGnCiti5RlTNhUidS3rdLdNUezAc6Fj18avJDxw4uA3YtEjEik8F3XEKqUp2sHCWiHVfiti0WAjf0GzetIKtAha8q/5S9VHgyD6DLzhEeR2Pt63WLxCx5gvNqRTnd+7ZqL8uPww0Vrb4HKuwH+DGU1sJLP2faDs7ZVN9/M/XVoVwTDvmKlXbNMX7Liao1ll/cyNUYw0TldKJrmN4c1LMe1PEvLfcv0UanfOGCUXtjO8N2bymSKb/TAtHHGoRT+V8eTJJSt292enxQckcK5LkTbKvVDi8JxMidUoEA6xkWTh3vnxHwJdvG29qbQXb6Em9na5UddXhgjXW6hcwqfELZgyusqU7BVQcSuympUy7LEnAik9FrP9STHzOG5sSGusQ526za53ieFB8tvKQkFiXJBdasMr2A8s+FrF2nrPHSq3JHHF2aSuPH77chNVzHSivzdpCsE0zniE1qzVflhQeg1G6I/nU1WaaG2Epi2DCOmv9xOYcanqSCq7TMboCsH6hGD4mk+XBcbd6bjhNvJUHssG28FQriT6Ua6pT/zvp3Z3gAvZtBj5/VcQXbwm+eMBox5G94V46RHoYYKWAnfFMW5cbv5fKebLs2rlWwJ4N5tfY5gbo37RsXFT3b+n4e7PFucYSoiiTExVn3VWEgEUfCDETOG9baW19VUeAeW8JqD6aXDn2GGRiqzoSfl2ZCjsZdoPrYxVA+cH0qF07Np2BgxWMA9sERx6klO4UTB/6LHhHRENNeD2+i68MvpxuFTkVGxvELJFPvGVL0f9zpixxObhPnOj+5kULVuWh8EqNpttQWjtfwMrPRBzaafwZs59gafoCh9TXhOcPqy4DqsuABbM6ph+Qp1dobxPiHgN+Om2rjoR7ryyc5d96GXmLR4YPrJvfsRv2bUmPCqXW7vUCdqyJfzgle9M6oJgkNtVN763NwFcfNVu6+VmpeLQ2I1oxVYnMQVa6Q/WSStn+8DxmbS1CeALhBO88+7eGB42rVq+zrPagexkrjSz7WEx6XhtA8XtMtpGye4ok2d+ccsUoWavnJn5JdrPysXmpfrkO7UzBOZiel0TXuLo5/FSDJVPyVCtVCUylAqT2/rl5qYC6qvCUAytmi2iuF7A+kYdSPjo+G+vifwaAr8pMqcUAK8OkqttcQiRvngo6ZedaYN+2diz5SEB7MDzw37Afu5WLqsG2OFYRTj+8aYl+N0IAWDs/sVNXu/13rjHeIcrPLp8tYNF/RUe795mx3MLgwM2rpRH4/LWO7RlsA9qak1+uk6RQ+Ljw27wqYkDzgpW5k2zy4pKhPP6SbSGOvzKXl5+gYKvXY+9ckuoDyuX1pcM9Na1bjJOk99MlCag8zEyOmc7hmUlIZvnphoOO7hNwdJ+A076emlpYSxMACcjNt/6dZG8GiX6/rhrYs1HAmJMk04v95mWCYcpgZWVjy7LwXCrDJrh752iqB3asFnDEbC4rO4PeLRQ3+hnFcuuqOrqudOsZ+522ViArO/U3+1Vzkn9GpM0AmcquM1bt2QjsXCtiyPEdO1CSwuMXDu8RcPKFHtRgJECIs/mVpVo+O8H1eLA7VszuWKnbGVht7zmbxbGVPECx7C3LUvv81W918GST+wRbgawcqH6YZPUho1Mbw8axEgoKaKqX0KXQoXXHkchP3LZSwODjJBT2cLo0qVW2H1j3pYiuRRJOu9RvRz45hS1YLgm2Cji635t1798qxKQ7t8LuU6Yv3xZj0+WaLKOpXgiPw/LAitkCjuwRsH2V+XaprRBwrEJAW5xxc3LqeW0K1mAbUF6a3P1RWWld/EGc4ApAU52AA9uTWKHGqs8FbF0h6N6bla8d3QfM/4+AQ7vDGdfiTWppa1JQF+456Xwbk7vzaOd427ZSRG2lgEoPUgGXHRBQddj6572aKiIRNeX+LavdksljKf0s1I7Un6DxxvuYzDMWL0g6shf44k0R+zarX1d2+zazdr6I1XMFZ5J12LBwlpjwPdqs/qC7uSzsb+3Yz4PbBSz9X+zStq8SsOxjwZ+ZCHV+p5xBV05GRpmJAZaLyvZ7c/Ic2u3JamPWrb3g7t0k2E7NrZVoV4NgW3i9ba3utbLUVQNLPxKwZq6IWgu/02h8kbJ8VhNsbF/p3KncVC9g/xbBsCZXXxMeYL3uSxGtzQI2fhVedyJBPdmjzKjph65B8nkls5oR1ZYkfqcftpEVh3Z5OKFxAuTrcCgoONJttaZcsDWVSTK0h0Rzo/0U4XKCBiPyw6Ydmi7YdiZ9ryiNjK+Nw+4x3tIErPzM+EsNx+wtz0nK68f+LdCtL2iTQgEddYsmjx7gploolKHddzMMAywXpUu/YycncJW7kgHwbZOBcr/UaudMsrqMyH+Vv3fJh6Ktp/S71xsEWC6eldo5YhLZRavnCKYPD6RQuLIoSbEVDKsrdfTQ8elxaEsquxUlQ1GG1XMFbF6S/MGcJjFSwmorgI2LRCz+wOK28tkGsTPJOhCeokJv7InbY90ajoUDo9bI+MrGOgE1ZeEsmOsW2NuorU3mn1c9eFDeEk3me6o6EvtaswspwHeuEVLfqpnAbWDrClZPjSx+X8C8t/TPIzsObgfWL/Bpy18G4BHsJocqPLVViJlsV6adyyIRuzc4d7FVnqi7DAKI2C/F/8jeTYmVBzAPdJf+T/RkvJwZNwOsqiPW5xqpNOj+1RrnydmW5QIWfyCidAewx8FjK2l+CEAc5PcHOE5lVkymFcqsVUSe5qDK7SQWcTSnqOXGLYk8oNu3Wa9lwoHCmFj0fjiDnaSYX6w8Mo2BW71NQu0Cdq/rWHblIcHwXr7ys9RUx+IlwkrZZcWpFu5OSH6Qm0z9T5LC2WGP7BXw+Wuipy2XmYoBlouO7BWwd3P8z8Wz9CMRzQ36F+UNX+nsQptXyLpIZjgnKmzKZRi10MR8R/PvvPzYgmxfZf1pTdypWzTF2rrcX+lim+vNy5PM4OsjewXLczbVJ9g//GAklf4RO2OuNJycvHHrCjGxfeyQHasFR+blMeOXWMsv5ZAZTbQOCdi4SOiY5iCNuNrtMYEdmEh59K5hO1anfj+IovtHbIumtUv7b7eUH0RMvaHiEGyPsQq2WqwbJLAprc75mM4qD3ldAgOa/bVmXubvi1RjFkGXOTk2xi1O3mKcGIfT3Ki/DKeasbU3C6uTsSq/ptcPPFWSfeoXflqbeM7sVPz2Rf919rzZv1VA9xL93+x2FWvPRiHpjGS6CUc6y/3Q7d/pcVRo9+e1pDjxgSt0trl2PF8qZMQ5ZPAb1ut0e1xtM+tqc2O4C2XPvhJO+przJ8rhPfE/k+7CCbP89ugplt+mJskE/q/9k222T2WPzv1Wmyd0KGTyRFqh2qx/eYK/deVngiPdMTsTv9VddFt7U8TJFjmZ6kGBX+7ffilHBtvm4kO7hLpLC7HZVONJ9WFi1P3Jze7YqWJ4nXXgAnysIvzfZMds6QayuhNEJbWa6Hra272ZKicRTiUDag+GxzEm3BPJbzfsDJABlxdv+fKYtHmCVZQK2LzEPHGBG3atE9BUb54OV2nbCu/GdFQdST4DolMqdQZDU2K2rRQMszmmk3Vfio6m6vcTN1oZ/BoHGmUSDLWHK1DlLqfjrym39jll5kABwOq5/q5KLHpfv3yiv4ttjcH54cRpY2UZddXAwR2aDKIWeptIJstPtkv10o8EfPWeiMba5JaTCmvmCZjzuohgW3LL2fCVgBWfijhocSoAv14DM0kmXF46LeObrf1L68EdiV+O4w2aNRJqB9ba6Pdrax4lJeWVRPB/coB4Srd7FxBYHVcHAJWHYz+77ktn0jo7oT0YHmyf6Fgzv9m5xgeX83Q6t+Td7nWZFYefXvIHANi3JTy5+RqXA5ld66ydCw01+lnyLPN6m6cLDy9N7cHwfFzxLPlQxOYlImorOl77/DUxbvKYYGvsfJP1NeEusGstjhM20nAs/P3aqqQW45jDu4E1X+jf+yoORhJWJNnLQX5ALicXsp3GPTNug77CMVhpzO2brVUbFiZ2ZjY3AvXMXOMtmxUdo2QrVh3dJyT9pM4JVUeAbsUpXGGyNy+d7/tx/IiEcOY+p1qbASArO7E5X+I9RffL5rNSjtpKwbeD5f2yHROS1oWPI9HfFrknHN1v72vaMXR71gvoeb69G8zS//mjTuM0uXt6xUEJvQfrfyYr27n1lR0A1s4T0WeIhOxcYNSU8H/NZPKp4JXMPJoppRLtWlh5SEh9H3jJnxVTO5zoW15b6d3Epn5IzZuqlMiycoMJRpsbw8FIvGkI6qtjX/NrS+z2lQKO7HXuJItXMTBidU46P21Go6fYgoC0qQFZCYb9cuymySb1hF/2USZprAN2rk0s6VFzo/V7ttwj6eg+AQe3C9juQYZOYgsWeUwUgFT3GEv3G0dTnDTuVshPCgPZzm4MO10+OztJAhb9V0B7MFx7Lu6vPhMa64AuBfJA/DTZrlL8edL8yDcPXYyyykv+OQJirp+agikfoFQeBvZuEjBhuk8vun7ZqElw69g1W+y2lQKqjwKnXGRxv2bAdnbC9lWJP9hb8E74u+fdEL/GpN3cljKPch85jgEWeSoVLVh1yjE2vIioON2aVGbQUqOU7gGuU6rLEAmuwrRdJ796L9zFY9JZ3GCO8+kmNTp7Eh5/6qDGunDq7x691a+bVfBXfR6+wG9e6mLBdCRyjdnqYLdWP3Dz18hjBZsarG1oz7ZsZu1SAPHv2WX7BfQaaGG/aD7S2iQgFJIyI/GLT3BTkqdSfTJzrgcf8GnlNtW0Y4Ram2I/Y1axtjvNQSqk1a6VUzoHE0/U05ms+lxAbaWA/VvUx6Q2u6pecKPtRn6s0vHiJaSmrKNc2t+V9lLwc+ym50+5OBek9mB4Qma7DxrrqoC9G318vCRYtMrDzhYjU1l9gMMAizyVqlntZX5Jtd6Z6V2bWnSCC9f5LBpY96W9y3FbkqmMXSGlz/kllzTYKpjPneeyZmX3HR9vPqOuyXYyi8pqfXIddnKsoF8E26yn20/W9pUm28/FTdseDCfhSPbByNblAtZ8Idoeo7TkI9HyGE+nWekSqh3za7lF12f3RL+qs5idkgEWdTqpnu+L1FoaYl+zmh7aSV7fS5IeO+H1DzBQHSc9s11dCp1dHhCeS84vrVZVOtMZpDN2AfbW8tkCln8ioq0lueOqdJeF7t5W33T4EN+yTMC6+SJ2rEpuweUHw//1Q0scz5v0YWWeN4ABFhGlWHNj7E1RCgG71nlQGA9ZnUxz5WfpVQEPtTtb3oALI4VrygS06ByHXuhW0vG3b5JtJGnflvQ7br10eLf+61aOB+1nnJrXz1KrbpygQA4anD4S5DlAy0vDcyu6rbkRWPaxf6dKSES6xHM7VgvYtzl16zu6z3oLVTwMsIg6MSnkj0pQsA3YtS7FlyOP7zAbF1nb9lUGFR12d01cY63XJeiwZ0OG7UcJ2LZCNDxuU6WpHlg9V0CtT8Z7mZHnScok7e3A56+KmPOaC8dB5NrdVCeYJ4BxaNU71wg4ViFg1Rwf7KcMu1zEs2ejgG0rw9s92GYxI2KCmhvCXfWXfOTMfmYWQSLynB+ypKWadmJOSp2KUm57t/jlyfiWZQIqSoWUjUfyTORQbm50p7XXjNm+rq0I/zcUEuJ80v/idQlLZCL0lNLb/DqvHauwmIHQA63NwPz/hAOfGdeFHJ2YWeb0fvRBOE5ElHrs806+kwlxn8Xzyu1KqRxEB1szYaOaC4XC8yTNe9M/vQCUb6VrkGv1HrF+obvlUGpvi/+ZRO1eL1hKntRwDFg1R7A88XGilNt/m2IaBT9m0NXDAIuIOiUGWOkhU8YlWZEJP9XqaTXvLVY/nCAgnFXPu7XHp5zvL1001Ia7OO7bEv+YrnBibJbFE0duxXFh0QCsjQ3e8JWAykMC1s5Pbr+GLCaLAIAmRXIst+4JTlcJeIVLkp0DhIiIyFD61UNj8cFFWmvWyfIafa8RqHI4S2iq1FaFE680GIy/1HYDPLAtfDJuWyHGP6b9fsw7XD45CAsm0Zq2dxMw5zXR8hhJZVBVXdaRATLV7LS8M8BKlt9PLCLSxRYs8ptMiK/IeabXKocPmm0mc1steEfEyk8tVhvdvL4msOy1XwioOiJg+SfhxCctjUBrc/i3NtYK+OJNQb2dbaxDcmD+v1Tfjuzc/0LtwNr5Ao7ui7wg/9wkCr19Vfg4kgNZOzZ+JWLNF6In9/D5b1svLwMsIuqcGGCRz5QdSP8Qiw8unHVgO/D5a8C+bUEE28LbVzsxu5NHjdH8cIf32FuO3w4DubWlrUXA0v+JWPaJequ1BwXf9Ug6uCOcrMVrR/eH5w9d92U4ZJBbk/x0rre3A6u/EHDE5nFql53My8wiSESdkp9uDkSZovKQ9xXCTLJlabhS+9VHLcjOBQaNEbB7vXobNzuYulo02H0bFmbW8/jmBp0fqrgn2Lo/CO7cTDYvCW/zYeP1l2+1u1qypQt5NSl7nMmqpRCwa4OAPkMkVJQCFQcFVBwU0HeY/UhZCsWfMkOSgLwC61uTARYRERFljE1L/B/kNRwD9m4SMHKKSYVN8zPaWgTsXq/5iAAs/sC54EcQzcdhWebiA6xEFp3MtBhH9sb5bqSL4OIPgdpK5wNRo2BvxxoBxf0tbA3NR1qakkuMIii6CIZCQH010LWnuwmJ9BZdujOc+XD3egGDxiR3wB3ZazxdTG1lOHPhluWCfmBugAEWEXVK+zb7vxJGbGkk+2rTYBLulZ8JaGkSEmgdkODmaL32oIAF7zqxfP/vAye1NEmorUziNydwnbOaZKL6qIB9WyQMGRv+95dvGweByuvtkT1Abr7xciUAO1YL2LdZwMgpIQyfYK08euTumaKN+NRoPsO21vBy7MwLZ9YKvPR/iQXNmdXmS0Rk0f6tnasCkK48655C5JK188PBFQC02J3Th5ct1yTzMOedvzjYT9MF21bYq+4H24D1C0Ws0EtqomjBKt0Z/vPInuQOzC//I+CLN9TLiLc7yg/qr3PemyLmveX9idIpW7A2bNiAhx9+OPrvHTt24N1338XYsWM9LBUREWl5lY6XyC1l+y1W/nRqmIL+y52LxQ2QTBXby5bzYBtUSTgMu94lUEarXQPNfr8boUtbqyJqS4B2G4Xaw2eKUStfRSmQnQt0L0lodZZ0ygBrwoQJeP/99wEApaWluPHGGxlcERERkW80HItfla2rTkFB0kTZfnW3sESq6pIUrqzXlDtWLNvK9gMNNc6HMdVlwIrZCXRc025IRRbBVE0En8h69m4Ctq8ScNblQXTp0fF6KASsnhveDl+7KdI30YWAutN3EZw9ezYuuOACr4tBREQ6hE5/lyIyxqyNHbatFLF5aeIXjANbgc9fFdBwDKivTu12VbYYWW09a6wTbLW02QmulL9+0xL195TBjgNTYlmSSFIOea6travVzVhWttnquQIqD9lfp5Ivb10rVqzAHXfcgenTp2PMmDGYN29ezGdef/11zJgxAxMmTMDVV1+N9evX6ywpvtmzZ+Oiiy5KtshEROSCVD0hJfJCsNXmF3g+uFaZ37FGBCBg3xaPN7KNH+javE8WNoFkId9KdRmwYaFgOSGHkZryOCsyeVv7VkgnWNNu8opSAavmJBci+bKLYGNjI8aMGYMrr7wSM2fOjHn/448/xpNPPonHHnsMkyZNwiuvvILbbrsNs2fPRs+ePQEAl112me6yZ82ahUAgACDcPbCqqgoTJ05078cQEVHC8gqsz/dClG7sZp6zM9Fppmq3mHJdFARUHw1fQ+wwe6gjuPTERxSFjgx6Qux7RpobBVuZ9+IRhPDyDu3Sf18UBVWa9uj3oF/OFbPDrxX0AEZO0luf+nuqZdgINOPtFnm5ezcDW5fHrs/o+2bbPh5fBlhnnXUWzjrrLMP3X375ZVxzzTW46qqrAACPPfYY5s+fj/feew+33norAETHWJn59NNP2T2QiMjHsrMCAOxPHElEnVuWmIsVn9ptIgTy8rIB6PdJE9u7ALCb+jG+7t3z0aM4HClVFbQB6Ch3UVE+gCbd7+Xn56C4OAeAE5OXAUU98tG1SMTs5frLKy4uRFZ2E4AQIHQEd6F2EbvXBjByYjaKeikjvvByssVsFBfnxrxefVREcXF+9N/FxYXRT7S3SwCsZWdsqTe/TxQVhaPsT1eof5e8vsP5rQBim9nC7ye2bX0ZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL37hcAmJiMgpwWA72C+KiOyqrmxBIteO5uY2w+9VVjYltMx4jhxqRHU10K0nUF8H1TqqaxoN19nY0IrKylbHyrRlTWMks57R769HMBh+P9QenrQYABrrJGxfG8T2tUFc8B0JddVAYY+O5TQ1t6GyUhnAhF9vqJVQWVkf/Xf477DwFB3WfteR/eYP4aqrGxAKSZFGsY5lyutrbNBfl7JsdqVdgFVdXY329naUlKhzKxYXF2Pfvn2Wl3Po0CFUVVVhwoQkZkYjIiJXcaJhIkpEotcOs+9JVgYeJWDV5+FlzrguFJl0t2MdoZDxOiVJivl8MnasMV9OKCQBkvlnDu6UsGmRiH7DOjakJMm/Q6b/+5SfcfJ3hUKS7naU1xfe57HrMtv28fgyyUUiJEmy1Te2f//+mDNnjoslIiIiIqJMcWinu63pwbbYjHnLZxuvc+daEdVHXS2SbeUHwuU9rJh8uLEWSSe6cITNoLupPv5njKRdgFVUVIRAIICKigrV61VVVTGtWkRElN7YgEVEflFe6u7yV8wWsGO1umreXG8e1K383P9dqMsPClg4S0BDLdBYF//zoZA/rv0LZyUeJqVdgJWTk4Nx48Zh8eLF0ddCoRCWLFmCyZMne1cwIiJynh/uskSUdg5sS+x7ktlwHpevR01xgik96ZJZsq1FwKL/ivjqPfPQo7UZmPOaiLmvOxSiCAZ/K7ixW305BquhoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyg7aWxAIPs25hYiDBwpBlnnR5dCHC8mWAtXHjRtx0003Rfz/++OMAgLvvvhszZ87ExRdfjKqqKjz77LMoLy/H2LFj8eKLL0bnwCIioszABiwiSiWza86AURJ2rU2PFiOvNNZ6XQK1YJsicYlm525aLKDUpXF1vgywTjnlFGzbZt62e8MNN+CGG25IUYmIiMgLDTWszBBRCplEWE5O6pu24lyS65O9Zjt8ya84FMLmpcDYU2Lfcyu4AtJwDBYRERERkRvM07Snrhx+dGg3XO9W4EbIc2Cb4N7CDTDAIiIiIiIC2C/ZxMavnA8byvbH/4wTtq8S4s7h5SQGWEREREREMG+lqiljl2WnW4HWzk9NKLJ3U2r3HQMsIiIiIiIAxyqMK+IVpQywXJchm5gBFhER+VqfIeyzQ0TkB6F295ZtZRLidMEAi4iIUq73YOtB04BRDLCIiPygrsq9JqalHwnYtiIzmrB8maadiIgyW16+1yUgIiI/CbYJCLZ5XQpnsAWLiIiIiIjIIQywiIjI39hDkIiI0ggDLCIiIiIiIocwwCIiIiIiInIIAywiIiIiIiKHMMAiIqLUy4xMvFHde3GgGBERhTHAIiKi1MuweKTfsAz7QURElDAGWERERERERA5hgEVERKlno4tgurYN9eybriUnIqJkMMAiIiJyQ4aNMyMiImsYYBERka+la5zSo1dq11cygC1mRER+wACLiIh8LV3Dht6DUlvy4RPTdUsREWUWBlhEREREREQOYYBFRESUAYR07UtJRJRhGGARERF1IunYlZDjy5w1bDy3J5GbGGARZSAxizdPItI3cnL6XR+Gjku/MhNR58UAiyjDFXRnxYTSXBocwuyeR2mFxyuRqxhgkW3ZeWlQ26Go/sO5v4jcVtzP6xJkOAYERJRGGGARZbih470uQWYr6ssAtjMbOk7CjGtDyO/mdUnYikbW8VAhchcDLKIMx0qXu0ZOCgdY3UoYaHVWWTlelwCYdHYo7me6FUuYfkX8z/kRL2MO4wYlchUDLKIEiQFWqAko6gOcf0MIA0byeCDvdC+O/5n8ruH/ERGRuxhgkX2sR4bxCSBFCLySUhoYOYUXbyKiVGC1gKgTKCxixcptBT4Yg5NJivqkxzGb3y09ygmkd+uVGPC6BJlFENLnuCVKRwywiBKUUAOWRzc1Nra5r2dfr0uQYdLkoB0wwusSRAhIm21m1+DjJAZYRJRWGGARpUifIRJEnnFEGSOvQPJV99BE46vcLv5uzejey9/lS0sZGowT+YWPbg2UNnivy0jDJ3DHEnVG3Uq8LgGlGuMrIncxwCLKQIncPHN8/hSbOpdMqABKqT6lEtxo6bCtvZhuIiuH10QiSgwDLKJEJXLDT4eaDEUdf1oIJ56XnvMG+V2XAvPKK6u2qcNtrS+vwOsSuIj3IiJXMcBKE70H8RZoRU5e6rZTpt2fOCFxrIGjgOL+XpciM+V28boE7uM5RUTUOTHActigMe5U8IdxfExcRX0knH21v7dTqupb/t4K/ubWOUz2KM+VlHe1c0gqy51MMMc4UJ92u5yQQa3ZDP6J3MUAi2zza13npPO9LdmEMzLn5tuZFfX26xFOZCyZCnMyR/zA0RJ6D+4c50wJW7OJyCIGWJQxvE6XnJ3r7fqV7Na1+g3vHBUkS/hkN2UE0dpxl2lP27u6NPG3V9sp0/YPEVGyGGARJUow/aensnOAXoMkDJ8YvyJ32qUhjD+dARal3vTLJYw7PX7Lb7p2ETRy2qXO/6BM7iLo9/IREWlleV0ASkMZVtnJVFPOsbajsrIjlTPWYsK4HVKmSyEwoBDYtMjrkmSABI/bwh4SL+mdEFsdidzFFiyHZdqTVjI2clJm7WzebymlMvCAO25qCANGeXNdsFthHnVCuOVw6kVpcB3LwGOFiDIbAyyiBBX1TeBLrCi4YuDoNKgk+lTfodx2Thl8HDDuNPe2Z16+8bLtBljDxgNfuykUbsFOslyu0xQwvyuP2aT5fqcTpTdbAVZrayteeOEFbN261a3ykAG2jGUGz+5pvJla1tk2Va+B7lxcSgYkvtyuPdPjgtfckNqjpbDI5E0PD1y3u5tplx/wcHBDz77pcWzG09muc0SpZivAysnJwV//+lfU1ta6VZ601WeIhFMu9jZNd1GfzLjwp0J2rvPbqqC744tMXCJ3zzS64wayXDzW02g7ZKLTLwth6oW8ltklIHMfxHl1SuboTIY96SwJ407jlBxEZM52F8GJEydi06ZNbpQlrfUfIaF7idelSI1MuIef9nXnf0VegeOLTFwm7CQTOXnqf3PAduYo6O5tC0XaEpC5571H57ded8/sXGDAKCA7J803Nq+ZRK6yHWD95Cc/wRtvvIHXXnsNBw4cQGPj/2/vzsOkqO69gX+ru2ffNwYYZgYYmGEYZphh3xFEJYrKEhci+mj0JvoqMffNfWNcbqKJEU2uMWpyc2O4GkyMRr2o0Rg0cRdwXxAvwSVRAVH2ZRZgmDrvHz1L90wvVdWnqk51fz/PwwN0V1f96pxTp+pXy6l2dHR0hP1JaR7vc73El8BVDDfO9Cp1hSuJlQxJrHJT4bjDrtsCQyXj1ZScAmHbO6wSpWnJWeZAhHVzaCONedIs5OgpM8d7Be+LcPTnT/PeehCpyvR5wrPPPhsAcOONN+LHP/5xxGm2bNmSWFRkWvEQAcG7FpQ2YpzAZ1tS4fDdXXnFwN6dcuc5/XQdGx9PjjGBRrfo6DymYff24P89cUilSJAzzhBoPwSsf0y97TiZEywVz3ooGJJhJUMFhtYAW14N/7xqDPDP99yJiSjZmE6wbrrpJmi8H2eAnh2bW/u3SScJvP6Ue/WiaQJCOLx8jx1M+ANQYq+s+QSErkAgCXC66vNiDS4QQckQgb071SxjfxrQeSzkA5sKMxl3EzLWad459p0JS9YEKwmbkmsq6wTqp0ZuKMm4zRK5xXSCtXTpUjviIAPqp+rY8qqcs+gVowRGtQi88JD5+ZUOBb78NPyz2csEXnyYvXM8E04UeO0v7pbTuJkC773UF0PPTpW1101GQShemJ44kNKi/NuknsGHXn3SnSuQgTSB4519K5CWIX8ZzSck9+0LnmivHjFmcpJm4USKsbzH+eijj/Doo4/iv/7rv7B7924AwKefforW1lZpwXmSjX3XkJGJ/b7/yEcZEUZIMqJsmMCMM5J7h26ElZ1+YVno/+xrLJbm7OGDGB6AWVc2zO0IDEhgUykohdQBiMxcJdI02L5dZecLDKoK/jtpbxN3aPv2+ZM/+dCS405nsolXXpHhBaY3tba2Nlx55ZVYtGgRrrvuOtx+++3YtWsXAOBnP/sZfvnLX0oPkmyQ4A4rt1BKFABSeXj55M8K3HhnTF6x44v0NDuuqBiSxM1/7DQdg4eLYFu0aRNIzxw446S9RdChttI4S04BFg5K0oqgpDf5FLZdWUwnWDfffDPefvtt/Pa3v8Vbb70FEdKjz507Fy+99JLUAMkeKh3b8OqDs5ws7sJBDi6s29CRQGGZ9Z1ESrTHVFhHCTKyrLWjYbVA0xzhSFsKXYYbCZYT65iW7vwyE1E7gQep5E2qb1teYjrBevrpp/Fv//ZvmDZtGvx+f9h3Q4cOxY4dO6QF5yle60+5EaWuaHXvpTbRf3sLiV3TgPLhXtsgSUVNcwUaZobfd2c6iXFwu3LtXYw2r6PXrkrnlbgdgTWaJiJeGSUi80wnWEePHkVhYWHE79ra2gYkXSSP3WcWEhndqv+LX81w44yJUi8FtkEy3Wc/e2myPljiTXOWpVZ9JNw92XS8Gmm2gTR7lqWEkBXuPOpeGMmuqNztCMhVXjrRqjjTh2GNjY147LHHIn731FNPoaWlJeGgvKz/2c2GGWoejERKahJ5FiPSSwtVNbzBmVt33NQ8N7whWl3fyjr3z2Zm5QKZufLiKHLhuTDVJNL8/abHnrUWg9UYE33RdLwYvNTXJauO1iTvwN3CYk15qjcBLz3faHpXceWVV+Lpp5/GhRdeiIceegiapuGFF17A//t//w/r1q3DypUr7YjTsypGuR2BfNKbt8JbdH6pNzbm5nl62IAS+TFuUYmWSEeqhvRM4cpAFWaZaUKZ2cGXPqtiZJPzsQweEVzm8AYLy1Z4ewWACQvsLc/sfJM/iFJeLfPVPPnmdQVu9NnqdCdEyc1D25rpBGvSpEn47W9/i2PHjuFHP/oRhBC48847sW3bNtxzzz1oamqyI07lmanzrDzzLSQ7z/RPPEPlq0leuOM1p0BgUKXxKwvFg03M3KW6ye63jQyqjPOD/nHG2MQ0TZ1bKE86X8eoZuf3GLmFwILzdNROlLtsu0YENTNXu/sT0/OPEnwy3aasUheea/Kl4KGycuXEoFJ5mOHVuIlUZOkwY+LEifjDH/6AN998Ey+88ALeeustPPDAA5g4caLs+JLS9EUCgTRzByKJPOMUiUpJjRtn8I2K9UB7pDJ0+vJ1Zq7AxJOML9MXMHd7pFvPn8xaEv7D2gkCfpPbjBe4uR36bDh5kOg8ayfxqo5hEjeHYbXy5hVN0xyH6jaBcskvARpnWYtzfJK/7DmatPTk65eTQXa+xXpR6NjQ60wnWBs3bkRHRwcAIDMzE+Xl5cjKsvjG2mRi8uWTPivPMchs+IpsROmZot/Ld71tVIuzO5uqOoHM7ARnovX7WyZJ8/T5gZIhcualafDUbQaqiVWliT6fNHh4Yr+XTkb7VaSvjWVQJRLvR+LIMXtrZT9ObbKDqq39rqxCbhyusNBWdYkVU17NjjlRg6qCZShrf6kaL7UQ04f5X//61+H3+1FfX49JkyZh4sSJmDhxIoqKErgun0QMDeHrgR2uU1S6khaRya3ZZ2F9cgoE2g4qWhAqhWWiLrzUCfc3tEbg849jF3xVvcBnW1SqnKBAevxpSBLJ1Z+eoeFIu41nvaNMUzFKYMdH6rRlvx9oPkGXftdIshISL9zlFgp8+ak6bcGLGmYIDK0RKCgFtm1NvrLMzgMO7nY7CmNMJ1gbNmzAG2+8gTfffBOvvfYa7r33Xui6jpEjR2LixImYNGkSzjjjDDti9QYbjuxKK4Iz9eIFLH9AYOqpAhv+ZMNDLwmWdct8HZ9t0bB3p7XSMPM+nBGNfRPPXqpD14H1jwbLJD0TaDtoKQSpopaCin10vLKP8X1escDRDhVXKsjIaJ7DRstNsOado+O5PxrcRtUtOlsom6yrFJjFWMZM1lFVD2MJloPrO6jKuWV5nkrtkOAPBK9IW32Vgerde90kgZ3/UD3KINMJVlFREU466SScdNJJAID29na88soruOeee/Dggw/ioYceSukES/YFrNpJOqrrB35eNFig9QDQeST63IbVCmz/IMr3ibRPU0+cBx+oH/CxJiCEuxtJ2TCgbJjA0/dGjyPWqkbswKLMKjOnb06yHqR2gje6MXNXQofVAh+/a08cuUUCrfs15BQAez+3OBMXDljSMgB/mkBXp1dq3ENS4AA0jVd7koKlrd8HIDUfP1NSwj24zbuAQJrAcYv7maJygTQP3SVh6Y0mbW1tePvtt3uvZG3atAkZGRk44YQTONCF5J1pRmbkg8fJJwu88VcN+3b2fRb6gPmwWoGx02IkWJQw3cRORZla8PDBnqzQ7XyP0YQTBXb+Q6CyDkrewqeUOMWT0f1MUEaW8HS7lWlUi0D7IaB2ksD7G+S2r0SKuNrgLauaT0Do5uIOPTlFNrPQpNjLKUqBilH68QcHmE6wli5diq1bt6KkpASTJk3CwoULce2116Kurg6a8g/U2MeNXcDoFoHXvgDGzQouvX6qwMuPBOsgXlU4VVUqtghT696vYgNpwPHO4L/1LmkhqUvFCpTBpg02+I4te+YdypbtV4Hj2NDVqp0o4PMHD95bD7gVkQQS6yo7r2+EzfflzTZhRkePnLNM4IWHkq9TUWDTsWTKV3Ts2aHhH5sSqJMEq3NUi46P3u4765WeJXBM4Vu4lZdg0cnct4xsFHjv5dStS9Pncrdu3YpAIIDm5ma0tLRgwoQJKZ9cAejtYZ0c5KKgFFiwQmDIiOD/Q9+VFS2Oou6XxhZ54OWx8biyBiF150/r+/fMM5PgHgkb7ia1JkrNirhT9H3v5eateFfqVFefngmMnSaQU+DM8qJKtC15uS1KluHAgMOe3vYdVliGhN/Dl2h3ELZ9a/a8PoLUkfD2qfj+MZTpK1hvvPFG7+2BTz/9NG699VakpaVhwoQJmDRpEiZPnozm5mYbQqVIzB7sTJgv0HZQIK/Y6C8EorXoyafoeP0pRd7YmoC5X9XxwsOR16N/XxBaEoWlff/ueWlo1PrwUKfgPvPjqHvx/E56VvxE0lEyypAHt47pPBqssK7jLgdikNHkKjtPoP1w7Mbo8wvoXZGnkf0C555lmbpV0YP9kWsU7zNitTWiWEwnWFlZWZgxYwZmzJgBAOjs7MTGjRvxm9/8Brfeeis0TcOWLVukB+oV0s+eSd6u/YHgyxRNLT/KOuXKGJk/wTsTZBR3Rqz3vySwAJUT0EGVAru2GXhmItH2p/jO003DRrsdgb1Khgrs2RG9AaXMIYvNK3qkzb4Xu+UVCRzer8W9bcvIfs/osOctJwqsfzTePe7G5iVF97qlp/DrPmM+S+OxDdnIazDCeGz9evbZHgs7KVka5GLfvn144403ev9s3boVuq5j9OjRHOTCTgluMVZ2wQnvum3cyp0+ds8vESgbkoaPN3efMo6zbgUKv0B5/AkCf/1d+AokWlWZuQJHWvvNxcBMayfq+OBNZxPRVL6NKOGkOdbvQ74rGwZsfT3BZSUDD7e1pjkCRzsE9n2h4R+bnFmmX9FbxGI1++p6D1dyiKE1wME95n4je9Q6uxODcTP7EqzRE3R8+JaaJ0GTVXJsKcaYTrBOOeUUfPbZZ70vG546dSouv/xyTJw4EYWFhTaE6DESWs+iC7PwxG87APTb2bjRMhPMsAZVSovEVb6AwIzTgX+8E2WCOHuFvZ9rGDbahgq0uDcKPcjWBvzD2vwzMoEJ83W8/ayGjv6JVgxDRgAfvBn6SeRycqz589SfFHbftulPE6idILDl1YEHSFl5Ah1xbjMzwou3nsrkDwDFg4H9X0a/VRyA3I3TSJnHWp7kjiLe7PwBgeEN5kaVVZWllytb2EYaZup4f72x2/L7D4JBBinadyUUlmZvn9wwQ8f7G+S1NdMJ1mmnndb7nFVWVgpfM+/PzCAXcRSU+NAyT2DnP4HSYdbmEakROr29+fwC9VNT6XxF9I3/aLuzcbgltzD4TqWOVhtmHqspyWzckptsZZ2A0IEvPgWOH7MW6ODhAiUVIupBiZNiroEAhjcIHNgd+VmYytF+bPtQzvCbWTlAZR2w5dXo02RkK9D/SGybqZ7wqSjmLeYeY6l9WfhN6PPLrl7SMLBsbnJyKdAjRzW0Bnh/g7z5mU6wvvWtb8lbehKSNYhgeTVQVtlvbg5s6SObRNiQrZEuYIWOVhhL2bDgGVAv64k/0svttCj/jvWZbHYvw7M7F4V68TFTBDQN+OJT66WZlgFU1ADvr5cYmE1qJ0Yv/GE1cRIsA0UUSBfxE1WF6t/TDDbZjKzg81oFZTD37sXuSbPzBdoPaTEXafTkpdNVnwxJr5X3k/X+1sJvUvkWbepTVC6w/0vjLcj24x3JC7B0+Ltt2zasXr0ab731Fg4cOIDCwkJMnDgRF198MSork+SeMKtsHKbdiX58VLNAzXiB5x7QcLxTQ04BcHh/+DRF5YnHM7QG2PERUDEqgZnEkcgbw3s0zBD4+2vA6AlxbpFRnYHQiwfbH4Y0cbazRPbfgbT401jh4dYjjRcPrMqrgH++J1BZ58HgzUhg9TQfMP304Awsvdze7LIVqoreNq1QTGbNP1dA6DFWwM7Oy8WO0cNVJlVapkDnEYcqIqTQy6vNJVheY/p+k82bN+PMM8/E008/jXHjxmHx4sUYN24cnn76aSxevBjvv6/S6w+dY3RDbZ6nh2XJ2fnGN3HNF3wx4Iwz4t/sHelAxuiSNA2YuVhg0sm6uREHTRjZJDD9dB014+3r4ka1JD7v7DxgwokCeZFGTIx0G2aCd3DVT7XnRv6iQcG/S4ZEnybS/fdFFpKuwcPNl/vspTrSMsJ/N3aajnEzjZWH2S460vYxfm5w2/L6VVfZhtUK12+1C12607vjQHrw5b7VYx1esEsyor0+IIpB/e+0SJSBCo65RI8dNTfOcv/hLX8g2M4pAgPtUfN5rNH1U+XgyaPqsUBWrsC4WXpSXP2NxfShxC233IKxY8fiN7/5TdgzWB0dHfjGN76BW265Bffee6/UIL0k1hnasmEi4UEfCh0amS4jK/hn5z9iTJTIEOsaIictJuQVAYf2Rv8+LSOx+VuRW5jY7ytGxX6mxKpRzQL5xQJlkZ7pi1GP+Ybfl9anemz/QSvi0ICs3OALJw/s6vt4WK25eSQqIztYf7HalDIc3DH5fMD4uQKv/YWDRlC42Ut1ZOW6HUWfvGI1DnTNNPPiIcD0RTo2PpHY2bkxk3X8/XWbntF0qFi92j3Y96KEyEJvqZUzv+DfPn9wLdLSBTotPi8cT2a2wOylwX9v+8CWRSjD9Nb43nvv4ZJLLhkwwEVWVha+/vWvY9Mmh8ZyVVWMrWxQtRqdf7IYP9dceQ6tEdA0gYoERvOLd4uTqgeQ/gAwZKS5s5TpmdbKKawM3GryCm1qqrYJMwpK409jhMxbBBWqYuc43JbiLc6O5MrKFeSeA0NbtrWehhbtNVAJLlNWzGlWRgB0wOARybOlNp/g/tVGO+QWApMX6pi9NFhXJ5wt0DzPnnUtrej7d6JNv2SoUOakSiSmE6yMjAwcOHAg4ncHDx5ERoYLlw0UMnqigC+gboUnE7OjN1WPFViwQhgepMPUbVFJcBBti37lMqhKzrYR2klLYyG0SScn5w5XadzWkprPg+/BUoGt8Tm58v36YSt3UVhdViRhg1lFOGIuGSKUbBxmE/eiQcG7loDgetpxsmLs9ASvePeLqXaisO2ZaRlMJ1gnnHAC/uM//gNvvPFG2OdvvPEGbr31VsybN09acF6UXwzMP0edBKthOg8AQxntNGYt0THzzNj1GG9ejrcC2R2iDR1s8WA5Vw/HTEmsdLPzov/eTOLulYFBCgclVl5Gt5t4S5Gy01ane3Wc48dxzj/3bkhGjDfEOD2Qiozl+WQ892ljXSUy68SvUgATF5g7jhnR6FwjyMpLjrsUnODrn3EkWG6JPmZiN9MJ1ve+9z1UVlZixYoVmDlzJs444wzMmjUL559/PiorK3HVVVfZEaf6YmzPY6fpyC8RKK9yLpweFaOdX2YyyM6zPppcVb1AWaVwvtN1/llz1yQ6EEXE7aJ7hTOygGmLdMw9K/ZO3ZYXR9ukZV78WKPWt10Nwcx8I4SvcvtMNkIkVtoTT4pzgGxyU5q4QIQPxuHhxqBpQE6+jBlJmIcdJNxCWTLU3G9GSxjgSsVleY7kNtkzu2G1AiObhKFlJHpyMRGGD1OOHDmCF154ATt27MDy5cuxYsUKfPLJJ9i9ezfKysowfvx4zJo1y85YPWtYbbBBOCkVzqiouopjJjtY16oWQg+X+rZ4i/X5AH9AoOt45AI0clvK2One2LFmZAtDt10ZXpsE2pzXnsFKpStudoZp5rYgI0WeUwCMmyXw5l/d7wB72ojmC94ulp0PS9uI2XcCDYjD8i8Tk3C76T+DOCtSPVag8yjw+cexJ2yaq2PTC7GvIcho8/64J2IFapoF2g5o+OIT99uro+I9s25xtmOn9c041jwGjxCoGAW8+VeLC0qQoQRr27ZtuPDCC7Fjx47ez3Jzc3Hbbbdh9uzZtgXnWR7ahrJyBTpaPRRwImw8gpBWgqbHG5e14BjcvD/E6GK0fu8pi1IuFaNcPNp1qCzGTNHx99dsGk0sDkdWMcZCeEu0BIruDmIm5woksZoGTDwpGIgr73tTtN5Mi1N26ZkCdZPiJ1ilJq96WRWv2OedK5CWDmx60ZFw+nihPdgco9tFYGgv/NOf/hQ+nw/33Xcf3n33Xfz5z39GfX09rr/+epvDI6uMdvDNJ1jfEyR0djfhe2/jx+3UkPbK8MAzWAmJVeUGY22Y0TcTu97xFpVDB11VY5xZDoAB7ylz5BmsGHL73ZOvRBMOCWLKVxROABVIUgAkXGlefAZLBmlt3en1sWkjldbXKNGJeFSKl52hBOvtt9/Gt7/9bUycOBEZGRmoqanBD3/4Q3z++efYtWtX/BmQslQd2nX83OgHIvVTdUxbFH8vkJYBzDtXkQMaFZ5j8QoJ62Rk59o0R2B0iyLtw0ZGz+RGK7JYRTm0xmw0Erl4YFtaYX7huUXC9EmfAc/5JeP2HsHwBpPlK6FcRoyLvExF8id1ebmAZMSuQcntsn9I+aVerqhuCpZzLIYSrN27d6OyMvwNuVVVVRBCYM+ePbYE5jWWm67Lbd7O9ppv8f0Eo1p0lFdH/z6Q3n0AbSD4AaPW2EWFDd/tQS5klYGE9agcE3y4taY5egKVkQWMaEx8WYb1K5/gbY1SZhVVyRAxcMRFk/UUyEiCHbNkmTn2L8PnF64/5yfrKoDZ+YxyYeCAnMLIy+wZsTDayciEyyjVr7TYVdURyqOyzvl25dVqcUSU6tB8kuopSuFXj3WmHbhzo34y8ugxiB1hj5mso2GGjuqxcuc76WQdlXWiL/nyaJn3qBoTXIGkeRGjkdVIYFXN/DQtHZiyUGBQZfxp3ZLoyGxGDKoWA0ZcjDYCY6TyzcgWqK6XF09ZhcSXHEUoPhm3azm18yVgULSRdRWqgokLBAYPF6ifqlBQDul5gXOio7a6IVLvGu0qpdn5WJlGlVtJnRTvNvxoRTLzDIG6STqGjLSn0Jxqz4YXc8kll8DvH7hzvPDCCwd8vnHjxsQjSxVJeHojLRMYMkL+fIsHJ/geJYmxyFh43SSBYbUCOQXAllckLCMJ21KiUmE0TUNCymHwcOM/a5gh90WOeYUSz+klsEH7AgJ6lBEkaycKfPq/7jec+mnJfUQ2tEYgs/udc6Frqmly++qcAoG2g331OeUrOvZ/AXz4dnhbjFbjuYXB24lVJ6uvC13TeecIdB0XeOd5czP3+QR0XYsaV9gLe7Uo/3aAEye57JCeAbS7HYQBVl8/kJ0PVI8Fuo4L7PxHXx3JGqHZ5+s3KJZNDCVYV1xxhd1xJBVvbrIW2PVwqokJB1UJ7PrMuRKXeRZK8wV33soyW6wGpjdUfBaqM9pPUvGsYSit399A9Ntmk6HfMnKQmZYuMOVUgfWPRp5YlaS8ovv5tilf0fHaX1LsZhOJdTBupsCrT/bNsLAMOLR34HQp3lVE5A9YO9tfN1lgy6sDK3HcLB0Hd2vIzpMQnEOGNwh8+Hb0Bhn3cQUb+pOa8QJv/s39jmrmmTrWP5ZA3xRnowtte3WTdeQURJjI/WKIiglWCvD5BfQuTc7LDA1wqr1rWnAUxKfvNbZEo3H1vsDOZCxJR8I6pWdKPFPUr1oqRgns+EiL9JUnRHsGy451CSbzIvIOKhaPFWxPQh0r7JHjhWN9oQyhA2MkUzcT1mfKbGcKtNmk3B+YMKwWOLBLIKdAoP1wX2EMHQkM7X/bl4PPYFlROCj+PJ2u7rQMAxM5EJSZ99tFYqbqraxOQakzV6qiSbHTYqkjtIOftUSgZb6OovII0yWyjAR+6wajG7M/oMAe2kHxDgbyimJ/H0vPA+KmGCz+qvr4E7p5oDNmio5RMQbZSIjJ9dI0YPrpAuPnJt62rRdp+LJT5SC0rCL4d/Fgd+OwIlYdJTJIi2x25WpOSvhqu0Lbk6YBjbMFRja5HUk/BspoaI2FipBU9jPP1DFnWfKPbNtjcIzBzPqzsnlU1kb+PCxpthETLEnCKl+Bji60s87MBsqGRZnOmXAGUKCIwuQaeK9WqqoZn1jZ9DwoLVvowZ9q7QkIvo9KpQOMeAlNWaQBQcwWrF2bkVtXOCQ0rPppAuPn6hg9QcJKONDQjS6ioFT+sjNzgmUUqa0WlABlwwTGTLHnAFSdPsRaO1EnfpPcftSgn/LqGOVv82FCTgGQbuWkpEelZSQ+smP0ZydF+LN+3YY3CMdOdjHBksSznZsdVBm21oSw9814KNeys6h65u0PBEeTk8LIbCSuVCBd3ryc4lZfMtb2QRVcWDMFOuZAGlBeDUQYI8rbopRttOHOTc1a60u2ej/zAS3zRe+LtEOTMBkt1/MnGzXYd8U8AZ6/Uu3iIBxusnT3iYL6t7/8Eue2dCZYCcrKD45sVz7c7UgoIps7xMHDBQrL5G2wSvXfir2fxUopZ2YD2fkeypjh3oGelKFrE6xraQdj3qrypDL1KwkUvlIdYGyNswUC6cKBExPGaDD4bI4VsVZRjdUfyNDY6XIW1XOrm5UTkYH0ficSZAQkYT75JcC4mTpmnBEjaVd4e+15JKZ4MDBkuDtnt5hgJSg9A5h0ski+s5MJiPTg45CRAoWDVO2J+4nRaRSUhG8yTXMEpiRyQOFxwTp1aP0tLiba7bFkQKQyj7VTtakplFUGzzzWT9UHLD/T7EFNxPhTdxvuEfEZoJjPYEX+3FKibqH4Q+MNC8WhqiwZAsw/V0R8ttkU1Q5SU2BT6EmEcg1cbTVSPfVTgfnLMjBmsvlYHNs/WajXoTVyRzq24wXtg6oir1jPLdk+HzB/WZS3hNuMCVaKM9u3B0dliWzWEh3j5+oR781vnCUwZWG0PaJDjHYwMaarHW/xNL9d6+tQOfYM7R1ICy+cKQuFqasOOYXBv9PSU2AvTjFFOtse7UF/fwCYdppAZd3A72YtERgyUiAzRyC/uPtDk9tFMg9db1pKrrQ7qz14uLz3zGXl8bUUoWLtl6adJtA0Rzd255GBZ319fmDI8EDUfsQVZhq0A+2meqyEkxERDK2J/HnUix4ObugefD83yWRmu6qbrMd8SWl2Hjz1fgsrfH7Fjj5s7BhD13T8XIH/fQVomC6w8Qlt4IQG4ygZAjTP01FQArzwcGJlmVMQPHtVNEig63hCs1KKYi1MuumLBPZ9KcKGH0+Ezx88gRMmSQ807XyeJTtXQ9shgYxs4EibfcuRJVJZJJJguNFkxvVvtyb5/ALTTxfQu5J/32vF6BYd/jTg76+FZz4ZWeZeuO6oJN0BVIwydzI2YQqUo0r5Nimuut7jDz4qsMF5VX5J8KxfXnGEL00cI2gaMKgSyMhOPKae96BVj018XipJ0tygV0FpsC9xjYIFPKzW/aBmnpaBitECTbOdj6VniRG7aJP9tupXcXw+eQFmZgM5+Ym9SiNRMotbkzzDEY3oHRTFLaoM8lEyJPh3aUWEApYQY6KjASYjJlg2UGWDsp3i66lp7tyb7ygnhhG0Z/LUk+IFNHi4whtgtLqJ9mJRyXU5qtn9ssnJ96FxZvgztFZWU/r+z+QJHNVVxTu54IF1kMpi07cyXL/dRev+VhxdbpHA3LN0tMx3JsrhDSqXhjN4i2CScmJH4/MBoyfoUq5GJKJ4sEC6O88wypdAvbm9X2Z3GkcKF1BBmUDjLLejkEf1qySOcLvDiSDZ6yUtQ6DzqPMFn1Cxmg03ZPqKUdGX7IVk2k2RyifqHUhxKjgtU6DzyMAZRquCQVXC8Hv/8opEjDkZoPCJYF7BSlJGdzSJNrYR44ChIxOcSYImnSzQNEfentWOfbQTCaBKxxZDa4LRmHqoNc4KJPvBky0UOQgpHSoMjS5n5KBJkVVKDQpdIbe8GIUbjNnQ5p9rSxi2iruO/Sfo7uczcwUaZrjf6cdqP5rmfnxOMPvqhcxs49tdxSigdqJ672+TgVewKGXIHG7UrJGN3uuIzR6YhE4+bqbA2OkiOKqS9FU3OUNVil7lkTMV4UgSrfABd7JSLclRLR6jXIs7ge2ytEJg+4da1OG0o7FlVSXOdP5y3Zb68GrbDGNiHTQfMHgE8MGb9oXjFl7Bcsm4mQI+vzovKUwFPoPvKrPjalMgXf48Vdc7ZK3RztamHQu3sORkORlLkQZRXi1QPVbSyib4XHzc/i/mKBfm9G8XkdoJr4ZHJ7toyiqBGWfo0e8y8WhdBNIivPPN7HsDvU6BdZMVgh1X0Zhg2cjnj95zlA4FFpwnUDzYwYAi8GjfZqto71VQnQJ9XUSqxpWIkU0e2XJ4htUT7ChTnx+omyQwqNLdtjp7qW74XU8yRhFMKR4oG00L3j0i6x1RPSdALb3Q2kXJntR7bf2mn65jVEtfUjW8Qf4yPNZEvWP+cl2tl86RYaw3uQz3u/EmlHiWOxElQ4Tro74xyZFcBklYnj3lU1AmsGubeysYOiphKKciUm1bCbuTIjQ2K12Kxw5qIzJYP9NO0/HlZxqGdD/zPXg4sGeHwBefKFbBySgZ2lmP7uaSVxQ81vvobfsWxUNJmwTSjN+S1qNmvI7pi5xtyeyakkey9IHx2qRbbbbnOboKBd5Z5BQ3368jhdHGYrJKVThoz8yOHbSMM8p2rGfPO7/KjQ7bn0SbW8lQgeFxbtt0u2mNGi+gaQKNswzeMiWxfvwxrnTmlwCjW0TvCVCfH2iaI1BUbm8DSXQbcLs+U5UKfTSvYCmkYjSQHeVsX7KJPTKPc3GQelQ9nqppFqiqT6JXAsRQN1nHkBHOjH5plZu3pJRVCmzbqrn6bq+sPOBIu2uLt3zkWD81eAXYtrZloErc2sc0zxPwxznxaqpF2bAe+SXAghXC0TKadLKOzz/WUDEa+GSzc8slMmJ4g8An75vfIJhgJSnVkxSv3a+bKCfqQ/Eqj8+uFZDU1jTNvoSjtEJgz45gAaSlJ/heEAnsXFcn1DQJvL9Rs230ztKhwWeLMt18B6DLG7zVxUdqW0rsDpQIIjGlFXLm4/TxQ/Hg4PssVad+hNHFqlJHBm+1q00lMNpxz3vB/IHYJZBTYG2fzAQrSaVaAhOV57OOFCD6/R1nMq+K1RSb5wns+iyYZFWPBT5+17GwklLFaKB8uPHBFayI9myRJYr3U45te4qXgxM0WC/v7Lzg89/P3m/v0x/pmQLHIrx4Vgav9/PJyO46cWuzD6QDc5bppkd5zikwNh2fwaLklQI767CzQkmyvqZfTGnoR2rz+YIPbY+bKQYkBZnZAsMbeNhhlqnkKkr7Uf1OgEgyc4JtJSdfxkNYic/CiNzuA5ac/MRjsLzWNq1rw4y+Z5mcKE47TyoAwdv5qupTqD/yYB9gViJXo70uM8fANtN/PQ2uNxMsIoWY7bBCr1TWTRLILxGYeJJab0W3lDBFEmuf7oH9fWFZvw8Mrvecrwq5V0tsNKTGAxWR5KYsFKidpKPahmGH7dI4W2BEo0DDDIvtJ8ZofOlZlsOSomJU37+9unX0xO3zBV8tY+eBtWrH7HbGU1phb4uYtijkWCCBFQnwXjdLmGARJYmsXGDaaQIlQ9yOhCJpmCkwZkrIDk/hoy0rB1CDKgXKJD0D4jiF68KszBxg+FjEHUzBiJjNQOKRZ0ZWcIS4iM/9JVg3mdnhV5GicqENeO4KQE+8Ht1ezI7sPICV9Y5Sx3PP0tEy396CzC82Nl28KDLcfNZUAVY3UyZYpJzyarcj8A7P7aDtEqMcVHkeMS0dqBrjdhT2SctwO4LUktGdjGRkKdLAFSZr8AennHC2jppmhe5EcLCJ2bGoSSfrGDdTR5rJZ20A2HYJyx/g/tsVDpY5L/wphNsaUD9V98ztUGRM3B0mjw/JDDs6Sg92vnWTBXx+8Pk8AzKygOZ5cfYtCo30mp4Z5Xk0sqR4sKQZxalAMyfzkiW5GlQlsOszDWXDBLZ/YHGlEigLlYuRCVaKS88EsvMECvo/H+IWiVuLShtesnSmoVrmO3uGtWffZbYo80uCQ6wGh1pVSIwVaZyt472XeINBqrDSPWRkBQdFoXDRDnIHVTobRyz5JQLth8z9ZtaiDABHbInHtCTcnxmSpJtbItXZNEeg47AwPLKeVT4P7g6ZYKnEhU5L8wEzFzv7UkFKDmXDgn87ts+xmGENrQECaTqKyqVHpIwhIwV2/mNgwcjcrE/8mkK3LAFSGx67vyhUeCG8meUk0iYc6Mh6FjH1VGF6eUrto0XEf6Y8perIhETq0OczOGy5xbJpnqdjx4cahtZY+70UFmNngqUSl3oqr3YKpJhoQ11b/J0smqbmc30yz8gl/PC2Af6QvUXLfB1+m4eDdpLrB4nsgxPiteLTNHgvaIrL1PO+rH9DBlUGB1CKSuFyZIJFZNLYaQKa5vohmXpYJIa0nKhj2981VNbJm6f0fUycGfZcvXSVwjvWZBMIBG+zVVW0rmfSKSauurr8DJYnuk91m4BtEj0B3ftzEeXzCJrn6fAHgDf/GvksnBMn1JKVkxcUPHhXYxJLwc4rlrrJit2S1K1qDFAx2uSPUrhuOchFuLIKYMKJA18oHMZEmZTFOrtnUVaO9FnKl2Ltxg093VblGGDwcIFJJ7vQJydwVaDYi7cFe21fwe1QukGViPm6lZwCoGqMQONsa9tjbpG9lea1JhwPh2mnpFNdn/g8km1DV5qKz2QkqdCzcAWlQtoxzqzFOhpm6CgZKmmGNnByEEHePh0USAs+zC5tNDYbWX4tgyqJguj3dwxOt09bFqdKudvFhkLTNGDMFIEhI6zF4cUBI7yIxUzkIaXDRPj7UTxwAOiBEKlbdj5QMYqJBXWL1Q4MtJHZSx264hVykJ6RFfzb51PnyD23UAAQ0GIccam8ybnyLkGVC0Qi9rVqG5XA++iYYCmEGxqFqps0cMOumyhQ0+RCMHYy2e65mRC5p3GWDk0TGDU+/lF3eqaEBZrc4Ec2ClTWCUw9TZ0Ea/rpAgtWxB6tV51oHRatTJK9QLrX20jympWb7IVhnaYF359qh6JygZEJHG+lbIK1evVqLFq0CIsWLcIzzzzjaiz103RUjRFydkakJCtJQW6h7CjcURzjXnIzXDmL6hXRyobZKEk2ZCSwYIVAfonbkUQWSAfqpwrkFZn8oY3biqaZuC2L26xSTJ34NriPqq4Xpm7Tq4lxMmPqqTqmfMVkgpFkbayyDva+55LDtBu3detWPPXUU1i7di2OHTuGiy66CHPmzEFamjvjDlfWAsl/uobs4IV+ctxMgece0KKfhWPTJ/KUpLzbgv2QYSyqxNRNlleCBaUSZuJAhSZjlxFPSl7B+vjjj9Hc3Iz09HTk5uaioqICb731ltthkR1U2apVicMFaenBl9TOWszdslMGVQXL2guDEpC6CYsScZnoNpSI1yp2j+FcqssBd0qYicPCLaBOtVnZi2mcpeYozypRMsF6/fXXcemll2LWrFmoq6vDc889N2Ca++67D/Pnz0djYyPOPvtsbNq0yfD8R48ejVdffRWtra3Yu3cv3nrrLXzxxRcyV4FUoIE7LUX4A4j5gLcpXj6IMqioOzEqr7bWgMfPFZi/XEdWrsSgiMxKgW3VLkruurSwv6i/CJXm6aQ/hvLqGF+qvM4OxqbkLYLt7e2oq6vD0qVLsXLlygHfP/nkk1i1ahVuuOEGjB8/HmvWrMEll1yCdevWobi4GABw5plnRpz32rVrMXr0aJxzzjlYsWIFiouL0dzcjEBAyaJIefPO1fHcA0qeByCyTWZ28Kqf1RdKahpiv2eLjFH5QIF6KZmMKGbSKXrvCIumOVnArEznWenn2DfGpWRWMXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPxVzGeeedh/POOw8A8H/+z/9BVVWV5Xh9PnktrWdeic4z+FBt4nGFnn2Rup6aFvEhT63f5xkhA3+YXb7Pp4X1AbF+b2Q9E6kbny/y+vaYtUSg63j4vLUIy+lfPv3/b0W02OK1of7faRE+M7V8E21twLIltNNobdItvvQY34W2E02zbTs1I1Z7CbbT+NtPvO0kOLPw6c2Kt82EztPONhE630jrYfSzeBLp2xJtSzLKL1q7CusHwz6PH3OkqwqakbZngeEy7FdPkWJMpE2UDkmgLvu3oTizMtNuBrSRkKtklvvyBNptrG1AC6mUsH6i+99ahErr/c5AfFH7TwPb5ZCRAhlZsefRU879p7CyncbrqyOVY7Tp+3+eaD8XOo8BcZhc10hxG41OyQQrlmPHjuH999/HZZdd1vuZz+fDjBkz8M477xiez759+1BcXIz//d//xe7du9HY2GgpnkDAh5IS+ffhFBXlWPxlGwAgMzMNJSUZCceRkXkUwHEAkLSewfiKirORleMb8HluTgZKSvqfem8zufzu6Ytzum9La4/7+z05nQCOGVqOuboJxlJcnIPM7OibZUnYiFzB3+TnZQE4EjZdYWE2Ckp8vdPk5kYqL3OxFRWFxtbW+63f70NJSXbU3/WWkwj+P5DmR0mJmVOkPcvPRlauD4FABwAdgIaSkoFlHPAHv/dpA7/fmX0MQGfv+pgTjKOgIAslJRYvGTmmr8yADgBAdnY69E4Budup+ZgyMiL1OcHvsrLSUVQUzBgj14+x7QQAfL52ACJG+4wdZ05vH9PX1kMPjILlF/yusDAb+cX2ZFg+XUdPHRYX56CnnwqPo4fZPrDPFyHbhvG+zfrywn+fA3/A6kFysJ59vsj1fLy9C339Y3AZgYCxPmhvbl9/3yOxvjQSc2WY1t3/ad392+FdxwEcDZsmWD/G++hQifQLPX1vT2yh/W2kw01jywrGmJeXiZKSvkPR3no3uH2npfXsN8wuPzyOHnl5mQgt96LCvr429LtIy8jJyUD/OuuZLj39CICuAb/NyIh1jNW3nw9tr5GWPX9JhFULmUdoOQf6lVlBQRaK4+77wsuppDgHPn//uu/p70P3Bd19aVE28goj96VH2gVC+z8rbdXvD7abePPIzw9vbwP1rWda9zHN4d3h26I/YGyf4LkEa//+/ejq6kJpafjQKSUlJfj0008Nz+eyyy7D4cOHkZeXh5tvvtlyPMeP6zh0qMPy7/vz+TQUFeVg//426LqVa+XBBn/kSCf27u2MM218R4/0zXPv3taE59czr/372tF+ZODnrW1HsXfv0Yi/Mb787un3tcHnA8bNANIyY/++rS3+cqzVTXCe+/a1IcNwMwn+5tDhDvTfeR040N7dFccqL3PL2b+/Dekd4Z8BQFeXHqUsIpWThuPHu0y2ke6y2d+OzKPA8eM9n4mI8+n5XoiB33e0h6+PuW0n+LuDBzugJX5OwmY969je++/29mM2bKfmYzp6NFKfE/yuo+MY9u/vjLH9GN9OdD04ffT2GTvOtt5tpq+tCyEQXn7Bfx842I5Om25ZOnywL6Z9+9rQf1vvv30N/MyY9pBtw3jflmhb6vl9G/wWjzJ66lnXI9ez7gt+n1so0H44+G+jfVBba1+MPVpbE+lLIzFXhp39+rfWCDHu3x9+kBuvjw6VSL9wvKt7nt2xhbap9CyBjsOx2m40wd8cPnwEe/f2fdpb7wa3787OvnmZW354HD0OHz4S9tn+A319beh3ocvo2X7a2ga2n57pjh1DxN8ePRr589DY2lrD+ysr6xdazsf7ldnBgx0QcbfTfmXcfXwVaZrw48/uvnR/O451RZ7z0Y7w+Vtpq109bbTfPHrqpsehQ0eQsRcx9M2js7Mr4rbYdVxHWnr8k7GeS7CiEUJEvDwbzR//+Edpy7aWCMWfZyIJlhBy4hKir0zlrGdwfroQ3R1p+OdiwOchvzGZ1PRMP3QUuv8f/RfBkYOMLcdc3cRar9i/CT3Q6YtT9O6AAEDoZuYbfTl98wg96IxWFv3LyWqb67cOcdqaQPTv9X71ZyWOgW1SRd23PQT62oYQwobt1HxMkeu/+/YYX1/ZRq6fSG0xCsvr2n9bjLy/CN3uDMVjUWgMuhi4rYevm9k+sI+1vs368oL61ktLsH8SUeIIpAMnnC0QSAeevd9cmxAh8+/9THpdmyzDfu06tE8L/Tx2OwlfdvzpDOq/zYXENrJJ4P31RmKKHOOAflfErvdo8zG//Mi/71/GYsD2EL1eY23H0fvoWG03cv+Q0H623zJ75he/7Rtvd+H7gvj71/79cSLHvvHmEf9YbOB8RL9t0Wh0nkuwioqK4Pf7sWfPnrDP9+3bN+CqFlGycfJlu1bPPJN95p6lo/OodwawmHiSjm1bNVTWyZ83n4VXn/FTnjHEqOj0zOjfWZ0nmWNXXySl7cigTCAJirEe2flSZ0fdFHqk25j09HQ0NDRgw4YNvZ/puo6NGzeiubnZvcCSVEb3LdCaj3skp7nZgWXnCTTOUqzOw0+IhUmVzj4jC8gtdDsK40qGAM0nCLkHYQ5WtlOLSpX2azsWpCMU2zN4QtmwYKkNHq5O6WmawIlf0z1zws5xCfYnSp6jbmtrw2effdb7/+3bt2PLli0oLS1FWVkZLrroInz3u99FQ0MDmpqasGbNGhw5cgRLlixxMerkNLwhOLpdxSh1OgUvsvIOqIgX4Ptv8DYdUEw6WSDT6jgrFgW6n3+yfFaayCoemKvLjrrxQn2n+C432Va/YjSQV6wjr8j8b21rrloCd6qotg3ZEM/YqcFWWFoBZOUNfNYwHiUTrM2bN+OCCy7o/f+NN94IALjiiiuwcuVKnHrqqdi3bx/uuOMO7N69G/X19Vi9enXvO7BInkAaUDfJhq4u2XrPOFTri1Q0dqrAVn/wnv5YWJYkW7K+DDRlJLA/CaQJHO/UkFMgL5xkk2K7a1toGlDAp1giktH/Gp6FwQlLK0RvnxBIA2YvEXj63iRIsKZOnYqtW7fGnGbFihVYsWKFQxERJchKB5Jie7XMHGD83OgrPXi4wEfvaBhS42BQlBJ8PmD8XB3pVl/ESkqw0s3OXCzQdlAoc/CrZK7f7/ZsJ2JUshzIFk4+W+5ku1IywSKSQaUOWtYZcic7ItWMGAeUDNWRxwvVZIPy6ggfqtSJkDShL7DPyAr+UV1apBePu9Q+pe6GvLRPixerwuuS7F1ZUTlweL/bUYTz3CAXRF5kKcFys0c0tWxnAtV8wVsszL5xnpKUwgcz5CyzTaGsEhg9Qcf009V5L0O8dRhcHeG9Ow5vA5F6ei8NuhPJnGWx20BS3j6chOs0eoJA4yx1tmeACRaRM7zWoVnYcSfljoiIXNHzLObIRvlZhKYFr4hbGXDALWbe8ylbrBrIyQemn65jylcsHty6vN9wejCnZGG2OdrdfP0BYMhIe5dhFm8RJHKApc7FY2foU/n2xVSWVyxweJ+G/FI2AJJn2Ghg8PDUGULa0vGn08lJlOXlFQGtBxyNxD6p1I0psq7JenKWCRY5yucX0Ls0BCLdT57EPNeBeC1ecs3EBQL7vxQYVOl2JLFpPgGha8jKczsSMipVkiu7ZGQJHO2Q0JkrciDuNteOW7g/lidOWeYUCLQd1Cy9fLk/JljkqBPOFug6Lqy/e8EMdkqOcjWJZF27Jj0zygARipm1OJgIlg1zOxKSLsZLyL1CZg7TM/R8WSWw/QOJM5Yov0Tg0F4N+R4atKioHBgxTqB4iLMZZyo9dzx+rrvPUU1cIPD5xwJV9YnPiwkWOSqQxrOSMsk+niivFjiwy4Mv+03xM6y8PTO+rNzgHxV57go32UdCW5i9VKCjVWD/l5JmaIMpXxE4fkx4al+jacHBFJzSPE/Hl58GE+Ue5dWJL1+1FhG6/3L7ZF1mDjCySc68mGARUa/xcwWEMHfAl1so0HpAs3zwqqXQ2TlbMLnyPM0HzFysIxAAXnhY7gYxrBb48jOB6no2lFSRlhH8E0ywJIqxXzB7ksfn88aJPDdPfgyqBAZVhhfs0FEWt2PVsqoUwASLCMFL/wBQWCb3IGTqqTr0LqmzDGdDp2l2hzLhRIFtW4HhDebKrnmejvbDknay3HmkjGSt6hwJ9/xHkpYOTDvVpeTK4crydNsQMf8bkVPr25M89SwvtyD4d1oGk3anebqNpxgmWEQIjoI0e6mOjGy58y0olTOf6nqBvTsx8MFLBfZvmTnWbptQfVAEIiIaqKwSaJqro7DM7UiC+9j9XwLFgwX2fZF4+pHIQBahe8Gpp+rosvPkahJx8iqhk8tigkXUTdXnMwCgbrICmZTCVK472/GUpm1UeTZqwom6MrGQTTxUv5oGDFZkYJuaZoHcQoHSCuD5BxMsRE303s2SKFknV8m7mGAReZmHdsp2Kq8Gxk4TGNWQjWNd7W6HQyRVaYXbEagtKU8/JeVKyef3A0NrAF3C4HOjxouBJzJM7GOz+NJiCsEEiyjF+fxuR5A4TQOqxgB5hT7s3et2NA7jgRiR96m8HXtgGHwVQiseDIybqaNAgVsnyX1MsIgUlZ0HlFYIFA6yZ887eaGOo+0cNj8tQ6DzqPVREMkdKh+PEiVMhYyhHydC8vp2PbTG7QiM83pZq44JFpGqtOAIfXYpGmTbrD1l9lKBzqMCGVluR0KG2HCUxwONcGOn694sFAWTEssUKn+FQiEZbN5O+LxoEN9AQ0rJ8MB7MSi5BNJSfJAMon6GjQ6+P4vIaTw2j0NGAVnImJvmSHjILcXwChYpYfoiHXs+R9gbyxPFsyiUEtjOKdXxEgvZ1A8mS/ea6PFQyRDj05p96XSy4hUsUkJeMTBiHJOiUMkw+AQ5IMV2Zg0zBHx+gYbpKbbiRG5xcJAL5bZqxY5JpISj2DolK17BIlLMhAU62g4CmZJfekyUDEqGACd+LcJwypTC2BhcJzszcrBKfX4BvUtDVp5zy1SCTdms0n0zXzRMlLpKhwb/GKJyR0ZkE6V34OSapGgXCq+DwqElZOaZAnt3Cgwe7nYk0WXnCbQf1pBT6HYkZBQTLCIiogiS4oCdKEFO3raXnQsc63D2pb1ZucGBXVQ24wyBY0eF6TtbisoF9n+pIb/EnrgoOiZYlHQaZ+k4dtTtKJLXiHHK3SWf2pgEJI5N2hZsmhaYaYtOF7ADy2uaI/DJ+9zP9OfzW3tsYNLJAsc7BdLS5cfkRU5uMkywKOkMGel2BMlt9ATu+JTC6iBSTsv8xIa1VmqzNhCMrHgzc4AxU8zPjVebI9M0SEmuEh0ZMBXrhwkWERGlthTc+ZO9yoZZ/CHbIjlGg2KpfFLhMO1ERB7H944kiOVHFF8KJn/JeOUl0XWafy5fOmwEEywiD0vCvp9SUF5xMMNJy3A5EPKk3KJg+8lOtWG2ncITEEkl0RNyAT7PZQhvESQiIldNO01A6AI+nvIjCybMF9j+IVA91vuZgJmTZk6dYDP0nmHvFz2lAr4Hi4iIUoWmAZrfveWXDInyhQuXiOcv15PntiSH1iMzBxjVzCN8IiOSpn9RHBMsIiJKWcMbBEY2qXNwHkhzOwJykxjwDyKSxcnckjdkEHkYD8aIEjNkhOB2RErLzlMk20qRKx+BdEXKmzyNV7CIPGjSyTp2b9dQVul2JEREJEukHGbWEsfDCJdi+caMMwRefDhYE34eJXvKvHPUGeGQTYfIg4oHA8WDU2yvRyRRbqFA6wENWbluR5LEBFLmqoedVBn8JVWqMjMbWHCeDl0HNEXKnoyJOxItB7kgIiKyz/RFAl3HBYccJiUYHTq7+QQd7zzv7FF/Kp7K8/mDf3R1LoiQxzA3JyKilKP5+D4X26XKJQ8HDaoCAmnOpjzagH8QpS6jozDyChYREVEEPJ60Zs5XdXQd53DQyaJ5nsDmDUDjzFS8lkVkDRMsIiIikiYz2+0IklvZMGDnP4HiaO9vk6ygFJh5RuzkyugtjnYKpAtksO3ZQoX69RomWEREREQqiXFAWz9NYFC1QFmFc+F4wbyzBS87G5CdB+z/EsgpYNZkJyZYREQelpYJ4JDbUSQpHqyRggJpQHmV21GohyP+GVM7SSA9ExhWywTLTmyOREQeNO00HdVjBSpq3I6EiIi8Ii0dGD1BOPuKihQ8WcUrWKS8eefqqbhtEsWUXwLkl/AMJBFF5uMRXsJ47GGeyoPbOBkbNz9SXhqHUiYiIjJlaA2w/wuBoTU8EUPO4YAYQUywiIi8jjs0IurH7wea5rBzIHIDn8EiIiIiUgjTotSg8u10oXwmsgWvrJPdeAWLiIiISAU8OFWLzfXhldvp0jKAmvE6svPdjsQ7mGARERERKcTMFQMiJ9SMdzsCb2GCRUREROSmflcyBg8Hvvi0Z4AKXtYi8homWEREREQK6EmlfH5gwnyP3D9G5BEcpp2IiAzjYRhRcvDqtuyVZ4lUwwEhnDFmssCez4G8IueWyQSLiIiIyE080CayzfAGoKre2bMAfIySiIiIyE0evwKUlRv8O5Du8RVxGK/8JS9ewSIiIiJSgFcvZGVkAbOW6EjPdDsSIjUwwSIiIiKihGTnuR2B9/AZrOTFBIuIiIiIKILcIoHsXLejIK9hgkVEROSwrJzuv3P5EAaRqjQNmL5I8EoTmcYEi4jI63iM7jmBdGDeOTr8aW5HQkSxMLlKXCoWIUcRJCIickFaBuDjXpgoZRWUirC/U1GynmTiFSwiIiIiIodVjALSs3QUlbsdiXv8fmDmmToCSZZoMcEiIiIiInKY5gMGVbodhWQW7gfMKZAfhtt4cwIREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiKyRwqO084Ei4iIiMhFqTtIN1FyYoJFREREpIIUPNNPlIyYYBEREREREUnCBIuIiIiIiEgSJlhERERELqppCj6FVTuRT2MRJYOA2wEQERERpbLyamDBeTp8frcjISIZeAWLiIgoAo0DDpCDmFwRJQ8mWERERBEI3q1FREQWMMEiIiIiIiKShAkWEZHH8UoLERGROphgERERRcBnsIiIyAomWERERBHwyiAREVnBBIuIiIiIiBLGC/9BTLCIiDxuyIjgpZZhtbzkIhNvESQiIiv4omEiIo8bVAXMWaYjI9vtSIiIiIhXsIiIkkBmDq+4EBGRO/JLg3dQFA7inRQAr2AREREREVECJp0k0HpAoKDU7UjUwASLiIiIiIgsC6QBhWVuR6EO3iJIREQUAYdpJyIiK5hgERERERERScIEi4iIKAIOGkJERFYwwSIiIiIiIpKECRYREVEEvIJFRERWcBRBIiKiEI2zdbQfAtIy3I6EiMj7UvFkFRMsIiKiEENGuB0BERF5GW8RJCIiIiIikoQJFhERERER2cLndzsC5/EWQSIiIiIikmrWEh2dR4FAmtuROI8JFhERERERSZWdByDP7SjcwVsEiYiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYCWZonIR9jcRERERETmHg1wkmZb5Aof3CRQOcjsSIiIiIqLUwwQryQTSgKJyt6MgIiIiIkpNvEWQiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJkvQJ1re+9S1MnjwZ//qv/2rocyIiIiIiIquSPsE677zzcMsttxj+nIiIiIiIyKqkT7CmTp2KnJwcw58TERERERFZ5WqC9frrr+PSSy/FrFmzUFdXh+eee27ANPfddx/mz5+PxsZGnH322di0aZMLkRIREREREcUXcHPh7e3tqKurw9KlS7Fy5coB3z/55JNYtWoVbrjhBowfPx5r1qzBJZdcgnXr1qG4uBgAcOaZZ0ac99q1a+H3+22Nv4fPp0mfl8x5khysG7WxftTG+lEX60ZtrB+1sX7UZUfdaAZn5WqCNXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPORJrNIGADyUludLnW1TE2xdVxbpRG+tHbawfdbFu1Mb6URvrR11y6qYNAOD3G7v5z9UEK5Zjx47h/fffx2WXXdb7mc/nw4wZM/DOO++4F1g/x4/rOHSoQ9r8fD4NRUU52L+/DboupM2XEse6URvrR22sH3WxbtTG+lEb60ddcusmeOmqq0tHIC3+HXLKJlj79+9HV1cXSktLwz4vKSnBp59+ang+3/jGN7Bp0yZ0dHRgzpw5uOuuuzBmzJion1thxwal64IbqqJYN2pj/aiN9aMu1o3aWD9qY/2oS07dBBMsYXA2yiZY0QghoBm9ARLAXXfdZepzIiIiIiIiq5Qdpr2oqAh+vx979uwJ+3zfvn0DrmoRERERERGpQNkEKz09HQ0NDdiwYUPvZ7quY+PGjWhubnYvMCIiIiIioihcvUWwra0Nn332We//t2/fji1btqC0tBRlZWW46KKL8N3vfhcNDQ1oamrCmjVrcOTIESxZssTFqImIiIiIiCJzNcHavHkzLrjggt7/33jjjQCAK664AitXrsSpp56Kffv24Y477sDu3btRX1+P1atX974Di4iIiIiISCWuJlhTp07F1q1bY06zYsUKrFixwqGIiIiIiIiIrFP2GSwiIiIiIiKvYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREVEcmmZsOiZYREREREREkjDBIiIiIiIikoQJFhERERERURxCGJuOCRYREREREZEkTLCIiIiIiIji4CAXREREREREDmOCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJAm4HQAREREREZGqGqbrOLhHg89vbHomWERERERERFFUjAYqRgvD0/MWQSIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJJoQQrgdhJfpukBXly51nmlpfnR2dkmdJ8nBulEb60dtrB91sW7UxvpRG+tHXbLrxu/3wefT4k7HBIuIiIiIiEgS3iJIREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwVLEF198ge985zuYMmUKmpubsXTpUnz88cduh0UA5s+fj7q6ugF/brjhBrdDo26tra24/vrrMXv2bIwfPx6LFi3Co48+6nZYhGDd/PCHP8TcuXMxfvx4XHDBBfjoo4/cDislvf7667j00ksxa9Ys1NXV4bnnngv7/ujRo7jhhhswdepUtLS0YOXKldi7d69L0aaeePXzxz/+Eeeffz4mTJiAuro6tLW1uRRpaopVPwcOHMCPfvQjnHLKKWhqasK8efPw4x//GK2trS5GnDribTs33HADTjrpJDQ1NWHatGm47LLLbD/GZoKlgIMHD+JrX/sa0tPTsXr1ajz++OO48sorkZOT43ZoBODhhx/Gyy+/3PvnnnvuAQAsXLjQ5ciox6pVq7Bx40b87Gc/wxNPPIHly5fj6quvxmuvveZ2aCnv2muvxeuvv45bb70Vjz76KGpqanDRRRfxwMMF7e3tqKurw/e///2I399000147rnn8POf/xy/+93vsGvXLnzrW99yOMrUFa9+Ojo6MHv2bFx66aUOR0ZA7PrZtWsXdu3ahauuugpPPPEEbrrpJrz44ov493//dxciTT3xtp2xY8fipptuwpNPPom7774bmqbhkksuga7r9gUlyHU//elPxfLly90Ogwy68cYbxYIFC4Su626HQt1OO+008V//9V9hn5188sli9erVLkVEQgjR0dEh6uvrxYsvvtj7WVdXl5g+fbq4//77XYyMamtrxbPPPtv7/0OHDomGhgaxbt263s8++ugjUVtbKzZt2uRGiCmtf/2EeuWVV0Rtba1obW11OCrqEat+ejz55JOisbFRdHV1ORQVCWGsbrZs2SJqa2vF9u3bbYuDV7AU8Oyzz2LcuHFYuXIlpk+fjqVLl+Kxxx5zOyyK4NixY/jTn/6EZcuWQdM0t8Ohbi0tLXjmmWfw5ZdfQgiBl156Cbt27cKMGTPcDi2lHT9+HF1dXcjIyOj9zOfzIS0tDW+//baLkVF/mzdvRmdnJ2bOnNn7WU1NDYYOHYp33nnHvcCIPKq1tRV5eXnw+XiorZL29nasXbsWVVVVKC8vt205rHUFbNu2DX/4wx9QU1ODu+++G8uWLcO1116LZ555xu3QqJ+//e1vOHz4MJYsWeJ2KBTiuuuuQ1VVFebMmYNx48bhiiuuwKpVq1BfX+92aCktNzcX48ePxy9+8Qvs3r0bnZ2duPvuu/HFF19gz549bodHIfbs2YPMzEzk5uaGfV5SUsK6IjJp//79+M///E+ce+65bodC3e677z60tLSgpaUFL730Eu6++24EAgHblmffnMkwIQQaGxvx7W9/GwBQX1+PzZs34/7778eJJ57obnAU5n/+538wZ84cW896kHm///3vsWXLFtx1110oLy/Hxo0bcc0112Dw4MFobm52O7yU9tOf/hRXXXUVZs2aBb/fj2nTpmHOnDkQQrgdGvUT6ao864nInNbWVnzzm9/E6NGjcdlll7kdDnU744wzMHPmTOzevRv//d//jW9/+9u4//77kZ6ebsvymGApoLS0FCNHjgz7rKamBps2bXIpIopkx44d2LBhA+688063Q6EQR44cwW233YZf/epXmD17NgBgzJgx2LRpE9asWcMEy2XV1dV44IEH0NraiqNHj6KkpARnn302xo4d63ZoFKK0tBQdHR1obW0Nu4q1b98+lJaWuhgZkXe0trbikksuQXZ2Nu68805br5CQOXl5ecjLy8Pw4cMxfvx4TJkyBc888wy+8pWv2LI83iKogJaWFnz66adhn33yyScYMmSISxFRJGvXrkVJSQlOOOEEt0OhEMePH0dnZyf8fn/Y5z6fz94RgsiU3NxclJSUYNu2bdi8eTPmz5/vdkgUYty4cUhLS8OGDRt6P/vnP/+Jzz//nCcpiAxobW3FxRdfjLS0NPzqV78Ke/aU1COEwLFjx2ybP1NrBVx44YVYvnw57rrrLpxyyil466238Nhjj+H22293OzTqpus61q5di8WLF/OMlGJyc3MxZcoU3HLLLbjuuuswePBgbNiwAevWrcOqVavcDi/lvfjii/D5fKiursZHH32EH//4x5g7dy7mzJnjdmgpp62tDZ999lnv/7dv344tW7agtLQUZWVlWLZsGVatWoX8/Hzk5ubixhtvxKRJk9DY2Ohi1KkjXv3s3r0be/bs6Z3mgw8+QGZmJqqqqvhaFwfEqp+srCx8/etfR0dHB37605+itbW191UUxcXFA04Aklyx6ubYsWN4/PHHMXPmTJSUlGDXrl246667kJmZ2XvXix00wRuslfC3v/0NP//5z/Hpp5+iqqoK//Iv/4LFixe7HRZ1e/nll3HxxRdj3bp1GDFihNvhUD+7d+/GrbfeivXr1+PQoUOoqKjAeeedh/POO8/t0FLeE088gZ/97GfYtWsXiouLccYZZ2DlypU8u+uCV199FRdccMGAz6+44gqsXLkSR48exc0334w///nPOHbsGGbPno0f/OAHvEXQIfHq584778QvfvGLAd/fe++9mDp1qhMhprRY9TNlypSI3wHAM888g2HDhtkdXkqLVTfnnnsurr32WmzevBmHDh1CSUkJJk2ahMsvv3zA4zkyMcEiIiIiIiKShM9gERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkScDtAIiIyHuivfR0+vTp+O1vf+t8QEnk2LFjuO222/Duu+9i8+bNOHr0KLZu3Rp1+uuvvx4HDhzAz3/+c5x//vl47bXXAACBQAD5+fmora3FySefjLPOOgvp6elOrQYRUcpigkVERJbk5eVh9erVAz6jxBw5cgQPP/wwmpqa0NLSgldeeSXm9C+++CK+9a1v9f5/6tSp+L//9/9C13Xs27cPr732Gv7jP/4DDz/8MNasWYP8/Hy7V4GIKKUxwSIiIkv8fj+am5sNTXvkyBFkZmbaG1CSyM/Px2uvvQZN0/D73/8+ZoL1wQcfYOfOnZg9e3bvZ4WFhWH1smDBAixduhTLly/HqlWrsGrVKjvDJyJKeXwGi4iIpNq+fTvq6urwpz/9Cd/97ncxadIkXHrppQCAAwcO4Pvf/z5mzJiBxsZGnHvuuXj33XfDfn/o0CF85zvfQXNzM2bNmoVf/epXuOWWWzB//vzeae68805MnTp1wLLr6urw+9//Puyzhx56CKeddhrGjRuHefPm4Te/+U3Y99/73vewdOlSrF+/Hqeffjqam5uxfPlyfPjhh2HTdXV14de//jVOOeUUjBs3DnPmzMH3vvc9AMB9992HlpYWtLW1hf3mlVdeQV1dHf7+97+bKkNN0wxN9/zzz6OxsRElJSUxpxszZgzOO+88PP7442htbQUA7Nq1C1dffTVOPPFENDU14ZRTTsFtt92GY8eO9f5u2bJluPrqqwfM76qrrsKSJUtMrBERUepggkVERJYdP3487I8Qove7n/zkJ8jJycHtt9+Ob37zmzh27BguuugirF+/Ht/97nfxy1/+EkVFRbjwwguxe/fu3t9dffXVePHFF3HNNdfghz/8IdavX48///nPluJbvXo1rr/+eixYsAC//vWvsXz5ctx+++0DkrCdO3fiJz/5CS677DLceuut2LdvH7797W+Hrc/3v/993HnnnVi4cCF+/etf43vf+x7a29sBAKeffjq6urrw1FNPhc33kUceQUNDA8aMGWMp/nheeOEFzJ0719C0M2fORGdnJ95//30AwP79+1FYWIirr74aq1evxsUXX4y1a9fixhtv7P3NWWedhXXr1oUljm1tbXj66aexdOlSuStDRJQkeIsgERFZcuDAATQ0NIR9ds8996CqqgoAMH78ePzgBz/o/e6hhx7Chx9+iCeeeALDhw8HAMyYMQMLFy7E3Xffjauuugoffvgh/va3v+G2227DqaeeCiD4TNG8efOQm5trKr7W1lb88pe/xGWXXYYrrrgCQDDJ6OjowK9+9SssX74cfr8fAHDw4EHcf//9vXEJIXD55ZfjH//4B2pqavDxxx/j4YcfxrXXXosLLrigdxk9Mebn5+Pkk0/G2rVrexOPnkTkO9/5jqm4jTp48CDefvttXHPNNYamLy8vBwDs3bsXQPBq31VXXdX7/YQJE5CVlYVrrrkG1113HdLT07Fo0SLcfPPNWLduHZYtWwYA+Mtf/oLOzk4sWrRI8hoRESUHJlhERGRJXl4e7rnnnrDPRowYgQMHDgAATjjhhLDvNm7ciIaGBgwbNgzHjx/v/Xzy5MnYvHkzAOC9994DgLDbAXNycjBjxgxs2rTJVHxvv/022tvbsXDhwrDlTZs2Df/5n/+JL774AhUVFQCAioqK3uQKAGpqagAAX375JWpqavDqq68CQMyrNl/96ldx4YUXYtu2baisrMRf/vIXHD9+3LZE5OWXX0ZxcTHGjh1raPrQq3E9/1+zZg0efPBBbN++HUePHu39bufOnaiurkZubi5OOeUUPPLII70J1iOPPIL58+ejqKhI3soQESURJlhERGSJ3+9HY2PjgM97Eqz+zwXt378f77zzzoCrXgB6r3rt2bMHOTk5AwbEiPeMUST79+8HAJx22mkRv9+5c2dvgtV/9MO0tDQA6E06Dhw4gOzs7JhX0aZOnYrKykqsXbsWV155JdauXYsTTzwRhYWFpmM34vnnn8fcuXMNP6+1a9cuAH1luWbNGtxyyy34xje+gcmTJyM/Px/vvfcefvjDH4YlW1/96ldx/vnn47PPPgMAvPHGG7jrrrskrw0RUfJggkVERLbof+BfUFCAcePG4frrrx8wbc/7mUpLS9HW1jZg1MGe29p6ZGRkoLOzM+yzgwcPDlgeAPz617+OmKCNGDHC8LoUFhaivb0dra2tUZMsTdOwbNkyPPjggzjzzDPx5ptvDhhQQxZd1/HSSy/hRz/6keHfvPzyy0hLS+tNcNetW4eFCxfiX//1X3un+fjjjwf8bvLkyaiursYjjzwCIQQGDRqEWbNmJb4SRERJigkWERE5Yvr06Vi/fj2GDh0a9YpUzxWxZ599tvf5pra2NmzYsCEssSkvL0dbWxu+/PLL3meL1q9fHzavlpYWZGZmYteuXQNuVzRr2rRpAIBHH30UK1asiDrdkiVLcMcdd+Caa65BeXk5Zs6cmdByo3n33XfR2tqK6dOnG5r+73//O/7whz/g9NNP7y3HI0eODHjx8OOPPx7x98uWLcP9998PAFi8eHHvs2tERDQQEywiInLE4sWL8cADD+D888/H17/+dVRWVuLAgQPYtGkTysrKcOGFF2L06NGYP38+rr/+erS2tqKsrAz//d//PeCWwdmzZyMzMxPXXHMNLrroImzfvh0PPPBA2DT5+fm44oor8OMf/xg7duzA5MmToes6PvnkE7z66qv45S9/aTj2kSNH4pxzzsHNN9+MvXv3YvLkyTh06BCeeuop3Hbbbb3TlZeXY/bs2Xj++efxzW9+c0Aicuedd+IXv/gFtm7dGnN5L7zwAjo6OrBlyxYAwatNQDABraiowPPPP4/JkydHvJp24MABvPPOO9B1HQcOHMCrr76KBx98EMOHDw8bcn3GjBn43e9+h6amJlRVVeHxxx/Hp59+GjGeJUuW4Pbbb8fx48c5PDsRURxMsIiIyBEZGRm49957cfvtt+POO+/E3r17UVxcjKamprBBLW6++WZcf/31uOmmm5CdnY2vfe1raGxsDBsCvbi4GHfccQd+8pOf4PLLL0dDQwNuvfXW3qtePf7lX/4FgwYNwpo1a3DPPfcgIyMDw4cPHzCdET/4wQ8wdOhQPPTQQ/jNb36D4uLiiFeoFixYgOeffz7igBgdHR0oLi6Ou6wbbrgBO3bs6P3/lVdeCQBYtWoVli5dihdeeAGLFy+O+NtXX30V55xzDgKBAPLy8lBbW4t/+7d/w1lnnRV2xeryyy/H/v37cfvttwMATjrpJFx33XW97ywLVVZWhqamJgDBZJOIiKLTRP9hhYiIiBRzyy234KmnnsKzzz7rdihxXXnlldi9ezf+8Ic/DPhuxYoVmDZtWu+w8VZ8+eWXmDNnDp566qmwkQ/tdODAAcyZMwf//u//jrPOOsuRZRIReRWvYBEREUmwdetWbN68GX/961/xs5/9bMD3x48fx4cffog77rgjoeWUl5fHvcVQltbWVnz88ce49957kZOTw3dfEREZwASLiIhIgssuuwz79+/H1772NSxcuHDA94FAoPd9Wl7x/vvv44ILLkBFRQVuueUWZGVluR0SEZHyeIsgERERERGRJD63AyAiIiIiIkoWTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJL8f7OHFRknddK3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 18])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, Hz\")\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_xlim([5.8, 13.2])\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlim([5.8, 13.2])\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "13ba292c", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "[1] Springford, Aaron, Gwendolyn M. Eadie, and David J. Thomson. 2020. “Improving the Lomb–Scargle \n", + "Periodogram with the Thomson Multitaper.” The Astronomical Journal (American Astronomical \n", + "Society) 159: 205. doi:10.3847/1538-3881/ab7fa1.\n", + "\n", + "[2] Huppenkothen, Daniela, Matteo Bachetti, Abigail L. Stevens, Simone Migliari, Paul Balm, Omar Hammad, \n", + "Usman Mahmood Khan, et al. 2019. “Stingray: A Modern Python Library for Spectral Timing.” The \n", + "Astrophysical Journal (American Astronomical Society) 881: 39. doi:10.3847/1538-4357/ab258d.\n", + "\n", + "[3] Thomson, D. J. 1982. “Spectrum Estimation and Harmonic Analysis.” IEEE Proceedings 70: 1055-1096. \n", + "https://ui.adsabs.harvard.edu/abs/1982IEEEP..70.1055T.\n", + "\n", + "[4] Thomson, D. J. 1990 “Time series analysis of Holocene climate data.” Philosophical Transactions of the Royal Society of \n", + "London. Series A, Mathematical and Physical Sciences (The Royal Society) 330: 601–616. \n", + "doi:10.1098/rsta.1990.0041.\n", + "\n", + "[5] Lomb, N. R. 1976. “Least-squares frequency analysis of unequally spaced data.” Astrophysics and Space \n", + "Science (Springer Science and Business Media LLC) 39: 447–462. doi:10.1007/bf00648343.\n", + "\n", + "[6] Scargle, J. D. 1982. “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of \n", + "unevenly spaced data.” The Astrophysical Journal (American Astronomical Society) 263: 835. \n", + "doi:10.1086/160554.\n", + "\n", + "[7] Slepian, D. 1978. “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete \n", + "Case.” Bell System Technical Journal (Institute of Electrical and Electronics Engineers (IEEE)) 57: \n", + "1371–1430. doi:10.1002/j.1538-7305.1978.tb02104.x.\n", + "\n", + "[8] D. J. Thomson, \"Jackknifing Multitaper Spectrum Estimates,\" in IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 20-30, July 2007, doi: 10.1109/MSP.2007.4286561." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8d79e398", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb.txt b/_sources/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..080f1b969 --- /dev/null +++ b/_sources/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb.txt @@ -0,0 +1,779 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectrum example\n", + "\n", + "This tutorial shows how to make and manipulate a power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create a light curve\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy` into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, noisy, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot it to see what it looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIeCAYAAABENbUUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3OUlEQVR4nOydeZhcRbn/vz1rkpnsM9kgC7KEgCwJAZSwyCWAREAWuShrWAT0XpTFBfSKwassPwRUEJUrCIgRlM0gigGUhLCHhDUGAmQlC1knk0yS2fr3x6HmvKe6zr5Vdb+f55lnerp7uqtPn1NV3/q+71uFYrFYBMMwDMMwDMMwDJMqVXk3gGEYhmEYhmEYphJg8cUwDMMwDMMwDJMBLL4YhmEYhmEYhmEygMUXwzAMwzAMwzBMBrD4YhiGYRiGYRiGyQAWXwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkQE3eDTCV7u5urFy5En379kWhUMi7OQzDMAzDMAzD5ESxWERraytGjBiBqip3f4vFV0RWrlyJkSNH5t0MhmEYhmEYhmE0Yfny5dh5551dH2fxFZG+ffsCsA5wv379cm4NwzAMwzAMwzB5sXnzZowcObJHI7jB4isiItSwX79+LL4YhmEYhmEYhvFNR+KCGwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkAIsvhmEYhmEYhmGYDGDxxTAMwzAMwzAMkwEsvhiGYRiGYRiGYTKAxRfDMAzDMAzDMEwGsPhiGIZhGIZhGIbJABZfDMMwDMMwDMMwGcDii2EYhmEYhmEYJgNYfDEMwzAMwzAMw2QAiy+GYRiGYRiGYZgMYPHFMAzDMAzDMAyTASy+GIZhGIZhGIZhMoDFF8MwDMMwDMMwTAaw+GIYhmEYhmEYhskAFl8MwzCMsfz738DttwPr1+fdkvC8/Tbwy18CGzfm3RKGYRgmK2rybgDDMAzDRKG7G5gyBViyBHjjDeD//i/vFgWnsxM49lhg5Upg4ULgttvybhHDMAyTBex8MQzDMEbS3m4JL8ASMCaxebMlvADgnXfybQvDMAyTHSy+GIZhGCPp6lLfNoHOTvv29u35tYNhGIbJFhZfDMMwjJF0d9u3qZgxgY4O+/aOHfm1g2EYhskWFl8MwzCMkbDzxTAMw5gGiy+GYRjGSKjzxeKLYRiGMQEWXwzDMIyRmOx80bBDFl8MwzCVA4svhmEYxkhMzvli54thGKYyYfHFMAzDGEm5OF9ccINhGKZyYPHFMAzDGAnnfDEMwzCmweKLYRiGMRIquEwLO6TOV1eXee1nGIZhosHii2EYhjGScnG+AHa/GIZhKgUWXwzDMIyRlEvOF8Dii2EYplJg8cUwDMMYSTk5X1x0g2EYpjJg8cUwDMMYSbnkfAHsfDEMw1QKLL4YhmEYIykn54vFF8MwTGXA4othGIYxEpNzvlh8MQzDVCYsvhiGYRgjMdn5ksMOOeeLYRimMmDxxTAMwxiJyTlf7HwxDMNUJiy+GIZhGCMpJ+eLxRfDMExlwOKLYRiGMRIquIpFpxjTHXa+GIZhKhMWXwzDMIyRyGLLJPeLnS+GYZjKhMUXwzAMYySy2DJJfPEmywzDMJUJiy+GYRjGSNj5YhiGYUyDxRfDMAxjJOXkfLH4YhiGqQxYfDEMwzBGIjtfJpWbZ/HFMAxTmbD4YhiGYYzEZOeLww4ZhmEqE23F19SpU1EoFDx/truMVq+99hpOO+00DB06FL169cIuu+yCSy+9FB9//HHGn4JhGIZJC5NzvrjgBsMwTGVSk3cD/Jg0aRJ222035WPV1dUl9z300EP4yle+gs7OThx44IHYZZddMHfuXNx+++3485//jDlz5ri+HsMwDGMOstgyKeyQnS+GYZjKRHvxdeGFF2Lq1KmBnrty5Uqce+656OzsxG9+8xtcdNFFAICuri5MnToV999/P8444wy8/PLLKBQKKbaaYRiGSZtycr5YfDEMw1QG2oYdRuFnP/sZ2traMHny5B7hBVgO2a9+9Sv0798fr776KmbOnJljKxmGYZgk4JwvhmEYxjTKSnw9+uijAIAzzjij5LHGxkaceOKJAIBHHnkk03YxDMMwyVNOzhfnfDEMw1QG2ocd/utf/8Jbb72F1tZWDB48GAcddBCmTJmC+vp6x/NaW1vx/vvvAwAmTpyofK2JEyfi97//PebPn596uxmGYZh04ZwvhmEYxjS0F1/33XdfyX3Dhw/H3Xffjc9//vM99y1ZsqTn9qhRo5SvNXLkSADA4sWLPd9z69atvu0K8hyGYRgmPcrJ+WLxxTCVzbPPAlu3AlOmAFyWoLzRNuxwv/32w89//nO8/fbb2Lx5M9asWYOZM2fikEMOwapVq3DiiSfi2Wef7Xl+a2trz+2GhgblazY2NgIANm/e7PnejY2Nvj8jRoyI/yEZhmGYyHDOF8Mw5cBbbwFHHgkcfzzw9NN5t4ZJG23F1+WXX45vfOMb2HvvvdG3b18MGTIERx99NObMmYMvfvGL6OjowGWXXZZ3MxmGYZicYOeLYZhy4K237NtvvplfO5hs0FZ8uVEoFHDttdcCAN544w0sX74cANC3b9+e57iFBG7ZsgUA0K9fP8/32LJli+/PypUrk/g4DMMwTERMzvnighsMwwioEy674kz5oX3Ol4px48b13F6xYgVGjhyJ0aNH99y3bNky7LPPPiX/J4TamDFjPF/fLWyR0mXSEivDMEwZYrLzxWGHDMMI6GIMi6/yxzjnCwDWr1/fc1s4Xv369cNuu+0GAJg7d67y/8T9EyZMSLmFDMMwTNqYnPPFYYcMwwio4Gpvz68dTDYYKb4eeOABAJbgGjt2bM/9J598MgBg+vTpJf+zZcsWPP744wCAU045JYNWMgzDMGkiO18mhR2y88UwjICdr8pCS/H1+uuvY8aMGeiURtLu7m7cdddd+N73vgcA+MY3voHa2tqexy+77DL06dMHTz/9NP7v//6v5/6uri58/etfx6ZNm3DggQfimGOOyeaDMAzDMKnBzhfDMOUA53xVFlrmfC1ZsgQnn3wyBg4ciAkTJmDo0KHYtGkT3n77bSxbtgwA8JWvfAU//OEPHf83YsQI3HPPPfjKV76Ciy66CHfddRfGjBmDV199FR9++CGGDh2K6dOno8AbKDAMwxhPOeV8ccENhqlc2PmqLLR0vvbbbz9cdtll2HvvvbFw4UI88sgjeOaZZwAAX/rSl/DEE09g+vTpqKkp1Y6nnXYaXn75ZZxyyin48MMP8eijj6Krqwv/9V//hTfeeKMnL4xhGIYxm3JzvorFfNrCMEy+sPNVWWjpfO2yyy649dZbI///AQccgIcffjjBFjEMwzC6UU45X93dVvtJJD3DMBUC7bu44Eb5o6XzxTAqtm8vnWwxyVEsAm1tebeCYYJTTs4XwHlfDFOpcNhhZcHiizGCN98Ehg8Hxo0Dtm3LuzXlyYknAgMHAg89lHdLGCYYJud8qcQX530xTGXCYYeVBYsvxggeeQTYtAl47z1gzpy8W1N+rF4N/PWvVrjDfffl3RqGCYYstkwOOwTY+WKYSoWdr8qCxRdjBDQcjleHk6elxb69eXN+7WCYMJSb88Xii2EqE3a+KgsWX4wRUMFl0uq2KWzZor7NMDpjcs4XO18Mwwi44EZlweKLMQIWX+nS2qq+zTA6w84XwzDlADtflQWLL8YIWHylCztfjImUU6l5gEOqGaZS4ZyvyoLFF2ME1IY3aYJlCux8MSZictghO18MwwjY+aosWHwxRkBXhLljSh7Z+SoW82sLwwTF5LBDzvliGEbAzldlweKLMQIOO0wX6nbxZsuMKbDzxTBMOUAFFxfcKH9YfDFGwOIrXeQ8L877YkzA5JwvFl8MwwjY+aosWHwxRsDiK13kPC/O+2JMwFTnq7u7VDgCXHCDYSoVFl+VBYsvxghYfKULO1+MiZia8+XWh7HzlSxLlgBnnAH86ld5t4RhvCmXghsrVgBnngn8/Od5t0RvWHwxRsDiK13Y+WJMRBZbpvQNbpMrFl/JcvPNwB//CFx6KbBuXd6tYRh3ysX5uvVWYPp04LLLLCHGqGHxxRgBi690YeeLMRF2vhgvVq60fnd1ARs25NsWhvGiXApufPCBfXvt2vzaoTssvhgj4FLz6cLOF2MipuZ80T6stta+zTlfybJtm32bF+0YnSkX54s6zNyfucPiizECdr7ShZ0vxkTKwflqbLRvs/OVLFR8mXJuMJVJueR8UbfLZAcvbVh8MUbA4itd2PliTKQccr769rVvs/hKFna+GFMoF+eLxVcwWHwxRsDiK13Y+WJMhJ0vxgsWX4wpyM5XsZhfW6LS0QFs3Gj/zeLLHRZfjBGw+EoX2eli8cWYQDnkfLH4Sg8OO2RMQZ7XmHi+ykVtWHy5w+KL0Z5i0XkRs/hKlmKxVGxx2CFjArLzZUrf4OZ8cYJ6srDzxZiCfH6aKFzk6obcn7nD4ovRHjn+2eR4aB1pby/t+Nn5YkzAVOeLww6zgcUXYwrlMM+RxZeJAjIrWHwx2iOvnvAgmiwql4udL8YETM354oIb2UCPpynnBlOZyPMaFl/lDYsvRntYfKWLyuVi56uyWLsWeOwxoK0t75aEg50vxo1ikZ0vxhzY+aosWHwx2sPiK13Y+WKOPRY4+WTgiivybkk4TM35ohOrhgb7Nouv5OjocJ4fppwbTGVSDs4X3WAZ4JwvL1h8MdrD4itd2PmqbLq7gfnzrduvvZZvW8JSDs5XbS1QX2/d5slKclDXCzDn3GAqE1lsmegasfMVHBZfjPaw+EoXdr4qGzopNe3aKoecr9paoFcv6zY7X8khiy/Tzm2msigH54vFV3BYfDHaw+IrXdj5qmzo9WTatVUOzldNDYuvNGDxxZgE53xVFiy+GO2RxZeJnZLOsPNV2Zgsvsoh54vFVzpw2CFjCsVieThfcs4Xiy93WHwx2sPOV7qoXK4dO8zs/Jnw0O/ZtO+8HJwvGnbIOV/Jwc4XYwqqfsu0vhjgTZbDwOKL0R4WX+ni5nJx6GFlUE7Ol4niq6bGLrjBzldysPhiTEF1bprmGhWL7HyFgcUXoz0svtKFiqwBA9T3M+WLyeJLFlumtN+r4EaxmE+byg0OO2RMQdVvmeZ8bdpU+jlYfLnD4ovRHvkCNmWCZQrU+Ro+XH0/U76YLL7KxfkS4qtYNG/SpSuyi2jauc1UDqpr3rR+QA45BFh8ecHii9Eedr7ShTpcVHyx81UZmCy+TM35cnO+AA49TAoOO2RMoRycLznkEOCcLy9q8m4Aw/jB1Q7ThTpcw4ap79eJri6gutr98WLRCoEAgKoqoH//TJplLCaLr3JxvkTOF8ATlqQwNexQnNNVvDReMbDzVXnw5c1oDztf6WKS8/X000BTE3DSSercmE2bgHHjgEGDrJ8BA4Cjj+Y8Gi9MFl/llvMFsPOVFCY6XytWAGPGAHvvDbS05N0aJivKoeAGi69wsPhitIfFV7q45XzpKL7uvdcSWH/5C7B0aenjTz4JvPuu876nnwbeeSeT5hmJyaXmy8X5YvGVPCaKrwcfBJYvBxYuBGbOzLs1TFaw81V5sPhitIfFV7oIkVVba7lFAh3DDtva7Ntbt5Y+TieuhYJ9W56IMTbl5HyZIr7Y+UofE8MO16yxb9O+jilvyjXni8WXOyy+GO1h8ZUuQnz17Wv9yPfrBO3MVZNUOsFqbLRvmzaQZQm9nrq7S90knZHbakrfwM5X+pjofFH3gPusyqFcnS/OX3WHxRejPSy+0kU4XI2NTsGio/NFzwU/8dW7t32bV+Dcka8nExwCQTk4X1xwIx1MFF/UPeA+q3IoB+eLww7DYZT4+s53voNCoYBCoYAf//jHJY9Pmzat53G3n4ULF+bQciYOLL7SxVTnSzVJpecGdRNMG8iyRL6eTLq+yiHni8MO08HEsEM6geWJa+VQTgU3qqrshU/TPkOWGFNq/oUXXsDNN9+MQqGAok/psv322w/777+/8rH+XHfaOLjUfHp0d9u5UyY4X2HCDqnzxeeMOyaLL1OdLw47TB8TN1nmsMPKpJzCDgcPtq61bdtYfHlhhPhqa2vD1KlTMXz4cBx44IF47LHHPJ9/0kknYdq0aZm0jUkfdr7SgxatMM35YvGVDPKxMelYmZrzxQU30sfEsEN2viqTcgg7FCGzzc3A+vXWbQ6hdseIsMOrr74aixYtwp133snOVQXC4is9qLtlgvMVJueLww6Dwc5X9ng5XzxhSQbTwg537HD2uSy+KgfTna+2Nrs6Z3MzUFdn3eZz2B3txdezzz6L2267Deeccw6mTJmSd3OYHGDxlR7U3SoH58st54sHAXdMFl+m5nzJzhctuMHOVzKY5nzJpbpNmnwz8TDd+aKObVMTi68gaB12uGXLFpx//vkYOnQofvaznwX+v3nz5uGqq67Chg0b0L9/f4wfPx4nnHAC+tKZJWMM8gWs+yBqErLz1auXlTDb3a2n8+VXcIPDDsNjsvgqR+eLxVcymCa+5GpxPHGtHEx3vui529xsLybxOeyO1uLrW9/6FhYvXoxHH30UAwcODPx/jz/+OB5//HHHff3798cvfvELnHPOOb7/v1W1e2uE5zDJwM5XesjOV6Fg/W5pMdP5MlF83Xsv8NJLwA9+AIwYkf37myy+OOeLccO0sENZfOncZzHJYnq1Q+rauoUdPvQQ8I9/AN/7HrDLLtm2T0e0FV8zZ87Eb37zG3z5y1/GSSedFOh/dt11V1x33XU47rjjMHr0aADAggULcMMNN+Cvf/0rzj33XFRXV+PMM8/0fJ1GmvjC5I4svopFayCtrs6nPeWE7HyJ3y0t+jtfYcIOdZ3IrF0LXHCBdT43NgI33ZR9G0wWX+x8MW6Y5nzJYYcmTb6ZeJjufNFzl4Yd7thhzdfa2oBzz7V+F4vAb3+bTzt1Qkvx1dLSggsuuADNzc247bbbAv/f2WefXXLfpEmT8Pjjj+Mb3/gGbrvtNlx++eU47bTTUCfODkZ73PZzYvEVH+puUfElP6YL5VZw4+OP7TavWJFPG+Rjo/sklVIuOV/0XJVFAxMN08QXhx1WLqbnfG3ebN/u398WX4D12TZssAtyrFyZbdt0RcuCG5dddhlWrFiB22+/HU1NTYm85rRp01BdXY21a9fi5Zdf9nzuli1bfH9W8hmUGX6b6TLRoe6WSIkUv7dssVapdCJq2KGuExl6HufleMjXkkmDviy2TOkXZOeLnqssvpKBww4ZUzBdfMnzCFpAqL3deS2a9LnSREvn69FHH0VNTQ3uuOMO3HHHHY7HFi5cCAC466678PTTT2PYsGF44IEHfF9z0KBBGDJkCFatWoUVPkvMDQ0Nvq/XpXtPXkaw+EoPL+eru9vqNPv0yb5dKorFcAU3THC+dBRfJl1bpjpfLL7Sh50vxhRMDzuU5xHU+WLxpUZL8QUAnZ2dmDVrluvjS5YswZIlS3pyu/zo6upCS0sLAHDVQ8Ng8ZUeXs6XeFwX8dXV5XTiyiHni7aLxVd4TM35ksMOqfjinK9kkI+j7uc153xVLqYX3JDnEVR87djhFF+6X4dZoWXY4aZNm1AsFpU/5557LgDgf//3f1EsFrFkyZJArzljxgy0tbWhUChg4sSJKbaeSRoWX+nh5XzJj+eNfB6UQ7VDdr7iwc4Xo6JY5LBDxhzK3fmiY5tJnytNtBRfUVi2bBnuv/9+bFfMYB577DFceOGFAIAzzzwTw4YNy7p5TAxYfKWHn/Olk/iSVwLLQXzRdqnO8ywwWXyZmvPFBTfSxcQxg8MOKxfTc77kLWs47NAfbcMOw7JhwwacffbZ+NrXvobx48djp512wrZt27BgwQIsWrQIAHDkkUfiV7/6Vc4tZcKiGkj5Ak4GP+dLp3Lz8mQkTM6XrhMZdr7iITtfxaL1Uyjk056gsPOVLqpjqPt5zeKrcjHd+ZK3rOGCG/6UjfgaOXIkvvvd7+LVV1/F+++/j3nz5qG9vR1NTU04/vjjccYZZ+D0009HVVXZmH0Vg4mrmKYgr1jR3/LjeRPE+eKcr3htUP2tM6pQsq4uS9DojOx8UbHI4is+qmOoc9hhVxewfr3zPpOuQyYe7HxVHpoPUaXcc889uOeee0ruHzx4MG644YbsG8SkDouv9HDbZFn1eN6UY9ghO1/xkJ0vwGq/7uJLHONCAaiqsgRYVZVdYZSJh2nO18aNpdt6sPNVOajGJ5O+fzFPqKmxhBcX3PCHbSDGwcqVwJw5+uzvJJcXF5hwAX/wAfDaa3m3whu6YiV2WNDF+Vq1ynkulmPBDc75io5KeAF6OxwC8b3X1lq/CwX7fM1TfK1ZA8ye7X5sTcE08SWHHAJmTb6ZeJSL89W3r9WXsfPlD4svpoetW4FPfxo47DDgd7/LuzUWbheqzgMpAKxYAYwbB0ycCMycmXdr3BErVg0N1so7oIfztW0bsM8+1rn4299a95Vj2CE7X9ExWXyJY0wdurzF144dwP77A0ccAdx+ez5tSArTwg5V4kvXPotJnnLJ+RJzB8758ofFF9PDu+9a4Q8A8Nxz+bZF4OYG6D5BfPllu5N58cV82+JFW5v1m+7lRW+Lx7Nm0SI7B+KFF6zflVBwIw/H2VTx5TaZ1nmSLZCdLyB/8bV4MbB6tXX7X//Kpw1Jwc4XYxLl5HwB7HwFgcUX0wO9KHQptGCq+KLHT+fORrgtVKjQVSsdQuFEG8ox54u2q7s7n/PaVPHl5nyZ0H5dnS+BSgyYhGniS95gGWDxVUmYLL66u+35jnC+vHK+TPlcacPii+nBJPGl+wVMj5/Og6g4vm7iK6+2q8LxwuZ8mRZ2COQTeigfG50nqRSTnS8dxRc990wXX359g25w2GFlY3LBDRodoxJfsvNlyviSNiy+mB5oB6BLlTtTnS96/HTuRE1wvkQbw+Z8meZ8Afkcb/la0vVYyZic8+UVdrhjRz4FL+j1pHJiTMI054vDDisbk50vOtcRYYec8+UPiy+mB9oB6O586TyQAmaEHRaL5Se+2PmK3wbdry1BuTlf9HzN47qj596GDeacBypMFl/CNWDxVTmYXHCDznWCOF+mfK60YfHF9MDOV3KY4Hx1dNgFHkwUXzt2lBaocMv50vk7oLD4Co7JOV9ezheQT+ihfO7Jm/6ahGnVDqnTOHy49ZsnqZWDyc6XvMEy4C2+ikW9r8WsYPHF9GBSzpfuEywTnC96bKng0kF8qfa/kgWUqkAF7dTp59D1O2DnKzrl5nzlLb7ka93kvC9Tna+aGqC52bqt64IRkzx0fBLCRdcxS4YuNAcpuAGY89nShMUX0wM7X8lhgvNFJ/rU+ZI7zjwIUnCDPqb6v9pae3Kra2fPzld0yjXnC9DD+So38aXzeSGOdVOTvWjU3a13m5nkoH2u2OpF13mDTBDny2ucrlRYfDE90Ingtm16dPx0wk33n9J1Mi0wodqhm/jSwfkKEnZIHxPQc7a62p7c6nq+yINQHse73KodmtB+HZ0v+VoyueiGSc5XsWiLr+ZmpyDXtd9ikoV+z2KeY8p3r3K+vApuAOZ8tjRh8cX0IA9OOoQe0sloQ4N9W9eBVEA7JF06mmLRmSNVDuJLbp9p4ktH50vXYyVjqvNVLNrH3HTnK49NwYNgkvhqbbX7tubmUteAKX9UzpfOuVH0ug+b8wWYM8akCYsvpgf5gmDxFR3dnK9Nm4AJE4D997cT6emxNVV8eYUzVFXZk1sdvgMVnPMVHVPFF22fTs5X2Jyviy8GRowAZs5Mr01RMSnskDqMLL4qE5O2SPnFL4ChQ4Ff/tL6m3O+osHii+lBviB0yPsyVXzplvM1Ywbw+uvAm28Cf/mLdR+d6OtWcIN+v6INQXK+xASruhooFPR3vlh8RcfUghv0+OokvsI4X2vWAHfeCaxeDdxxR7rtigI9flWfzHJ0Pa/ff9++PWwYhx1WIqqwQ/l+XbjlFqtvuOEG6292vqLB4ovpQUfniwoXk8SXbtUOW1rs25s3W7/dwg5raizhAuhR7TBKzld1tfVbd/Gl4ybLul9bAlNLzdPvXOewQ6+cr9Wrgz0vL+hnEavxup4Xs2fbtw8+mJ2vSkQVdgjoOW5t3Wr9XrPGCj+MkvOl67WYJSy+mB50d77EhQ3of/Hq5ny1tdm3RUfoJr4KBbvz1MH56uqy/o4ivnQv28vOV3TKzfmi16AO4svL+aKCiy7s6AI9fmI1Xtfzgoqvww9n8VWJuDlfOn7/ov/q6LAWctn5igaLL6YHLriRDF1dTrGjQwcqVqsAf/EF6CW+AKutQQpuyFXkTHO+WHwFx9ScL1OcLy/xRR/btCmV5sRCJb50PK+3bwdeftm6veuuwE47cdhhJWJSzhdt09q1/jlfLL7UsPhietDd+aLiS+eLlwodQI+2qpwvt02W6d95CUeV+Aqb8wXoL750cL641Hy2BMn5yuM8CFNwgz6mu/MlJoTFortgz4uXX7b72MMPt36z81V5iD6YVuil9+sE7b/WrnUu0qvE19atpX21jp8ra1h8MT3omPPlts+XzhMs+bjpMICa7nzt2BEv50uH70CFjs6XKQMjO1/Josr5cislT8VXa6t+x1wcv6oq53HVrZ005PCII6zf9JzQtd9ikoVGbOguvmTnSxV2SBdzVc64jp8ra1h8MT2Y5Hyx+ApHmJwvQD/x5RZ26FZqXhZfnZ167kmkwybLpoYdllvOl27iq7PT3dWSi2yIIj66II5f797OY6zbuS3newFO14AnqZWB+J5ra/X+/ru7nYte69Y554lijkY/g6oP0e06zAMWX0wPnPOVDLJo1aEDrRTxJSbeYsJFBwEdzxkdnS8dj5MKdr6SRXXuuYUeyvfrlvdlgvjq6ABeeMG6vfPOwJgx1m0OO6w83Jwv3b5/+fqhzlefPqWFrgC1+NJhTpQ3LL6YHnQPOzSl2qGOzpcq7NBtk2Ugf/GlEiVBCm64hR2qXlMHdMj5MlV8lXPOF4uveLiJL52E+Wuv2YtiRxxhb++h8+SbSQfqfOk8ZqnEl1hspvMzFl/+sPhieuCww2SQj5sOA6if8yUX3BCdZ2dnPknqSRfcAPTs8Fl8RYedr2RRXV9BxZduRTeo+BJ9AaDXua0KOQT0Djtj0sGUnC8v50vkewEsvoLA4ovpQXfny5Rqh/Jx06GtUcMOAT3ykMLmfMml5gE9RLCMDpssu1U73LYN+OEPgdtvz75NQaAiS7gG8v15UiwCt94K/OQnzmNskvPltoGyqc6XTuJr1iz7tpv40rHP0pEnnwSuvBJYvjzvlkRDnJdhnK9f/xqYNs05tqeN3B6a80Wdr6oq+7pT9Ss6zInypsb/KUylwM5XMujofEWtdghY3wGdGGZB0tUOAT07fB2dL3GcHnwQ+NGPrNvjxgFHHZVtu/ygzlddnd1X6CK+nnsOuOIK6/YeewCnnWbdNkl8qZyv7m5g/XrnfTo5X93ddl/Rq5e+YYdif68hQ4CxY+37dV8w0o0dO4DTT7eKvmzcCNx9d94tCo/oc2tqgjmf8+cDX/uadXvkSOCCC9Jtn0AeK1autM9R6nwB1udwm6fpPH/LCna+mB644EYyyMdNh0p75ep8+eV86R7Co3PBjWXL7PtmzsyuPUGhE2kdC6vQ47dkiX3bLeyQXoM6i6+NG0tDPnVyvujn0DnsUByzkSOdzq3ufZZubN5sV9tcuDDftkTFzflyE9+LF9u3aT+TNvL5SNtBnS/AeR77vU4lwuKL6YGdr2RQHbe8OxvqfInJSZCCG/LzsoJzvvJrg/ibDvw0REoXqACg37Mu7gY9rvR71dX5CprzpbpPJ/FFj52uYYddXfZ56pZvC7DzFQR5018Toc5XkDGLjudZjmvy9UMdb5Xz5YaOY3HWsPhietAx54sOPqaIL9Vxy3sQDVtwI2/xFbTaYZicLx07fJ2dL3q8X3tNj/6A4uZ86S6+dC24IdrYr599nyrnSzXB1Sns0Et86XJu0GtL7ns57DAc9Ds1VXyFzfmi43mW45rXe8nOl3xeB32dSoHFF9OD7s6XKaXmVcctz0G0WCzfsMMwzpeOExmdN1mmx6uzE3jxxezaFAQ550ugS99A20G/Vzfnq6bG/jtP8TV8uJUwD6gnsypBprPzpWPYIT0fvJwvnqT6Q8VXS4ue/bwfcZyvLD+v1/XDzlc4WHwxPejofNFBiq4M6zKIqlAdtzw7m+3bnTlnJoqvIAU3ikV7Qm5K2GHezlex6F7tUD7etDS2DpSb8wXYfVweDqh4zz59gMGDrdtBww5Ncb50GTeCii8ThUTWyNe7XAxGd7q77XEraMENE5wvL/Gly3WYJyy+mB7kC6K1Nf9CEWKQqqvTfyIt0M35kkvRbttmfa9Bc77yaLuX80XPA/oZ6CBsSsGNvHO+VHtliTbJols38aV7zhc934LkfAG2+Mra+eruttvbqxfQ3GzdLrecL13ODS/xpbtbrxvyd2pa6CHtD4IW3MhLfHmJJi64EQ4WX0wP8gXR1ZWP60ER719fr+cKpgrdcr5U+4Ds2KF3zpdXwQ2ak0I/Ax2EOecrGKrrSLRJPmdffjkfR8aNcna+shZf8kJMU5N1u62ttP8wzfnisMPyppzEl+4FN7zeSw475Jwvb1h8MT2oLoi8875MFF+6VTukHbVg2zbzxJcQA0HElylhh3k7X6rryC3scMcO4JVX0m9TUMot5wvIT3zJfYFwvoDSHC+TnS9dzg0OO0yOchJfuhfcYOcrOVh8MT2oLoi8875MFF8mOF9UfNXXO/eZEfcJdBNfdIUtjPjScSKTd8GNMOIL0Cv00FTnS55sUXQQXzTsECidzFIxNnCg9dsU8aXLuUGvc3mSqnufpRvyd6oqCKMzdN7FBTcqBxZfTA+qC4udLyfLlwMffuj9HN3El5/zJed7AfmLL7lzpgU36uvt9vnl0uTlfK1fD7z1lv/zdAw7dMv5AvTa78vN+dJlgh0k7FB2vsS12NGR7ecII77E3zU1wOjR1u2WlvzzgwXyZ+Gww3gsWAB8/HG4/ykWs9uewiTn6/XXSxcq5MUY+fvv6rJCvuk5wwU3zIfFF9OD7s4XnUjncfEuXgx86lPArrtaA4sbuoUdujlf4tjqKL7k73fLFnuyXVdnt9mv4EYe4mvLFmDsWGDffYEHHvB+rsrhy3ISG9T5GjTI+v3CC/oMnG7Oly7tC7vJMpDfXl9yzlcQ8dXUBAwYYN3u7FT3M3nAYYfJ8eSTwN57W+NeGEfpppuAiROBgw9WF/VJEvk71VV8/fa3wPjxwD77OL9/L+ervR34xjeAz3wGOOEE+34dww7Z+QoHiy+mB5NyvvK4eJ9/3u58nnnG/Xm6OV9Bwg5laMepg/javNm+TcWXX9hhHqvI8+bZ5Y69zhOgtE2q0u9ponovlfg64ADrd1ubPqWcTa12GKTgBpCt+JLdIuFoAcAbb9i3i0V7ctvcbIsvQJ+iG9Tp79PH6Xzpcm6YUu3wn/+0fm/dGm6fP+GQL1gArFmTfLsopjhfzz5r/V6xAvj3v+37/XK+Zs60bv/zn/bCnI4FN3iT5XCw+GJ60M35KhadoWZ5r2DSAdNtorFjh/o4cthhOLzEl1vYoS7OFx38/SakqvM4y+MdtNph//727bwroApMyvkKW3ADyE981dcDhxxi/03z/LZutT+LLL50yfuiY1bfvvmPGypMCTukC3dhRA09zmnPIUwRX/S7pG30y/kSz6XVp9n5Mh8WX0wPuokvOvmrrweqquzCEHkMorQ9bhMNt+OlY9ihqeLLzfnyy/nKSgDTgdVvQqo6L7LM+woSdlhX5xQFupSbL4ecL12dr6Ym4NOftv6eN8+OgKDndnOzU5TrIr5otIbp4itv5ysJ8ZV29IwpBTfod0mPpVep+bY25wKeOJZ5FdxIKueLxReLL4agW8EN1QAlBtK8xZebo+F2vHR0vkzK+aLHVfecLzr4ezlfxaJaKOgivugG5/Qc0UV8cc5XcsjiCwAOP9z63dVl5foBzkkjzfkC9Ak7pAtgjY0cdhgHOnaEETXsfJVCxx96LOXFGNqXrVrlfA1xLE13vnTpo/PEKPH1ne98B4VCAYVCAT/+8Y9dn/f0009jypQpaGpqQu/evbHnnnvi+9//PrbkXT1Cc3R3vgB9xFdY50u3nK/Nm+34cR3Fl3wu0omd7HyJz6GL+ArqfLmdw7qIL+p85X0+qNA95yuu85XleSAX3ABs8QXYoYfsfCVDJYUdZu18rV+ffpGPKLiFHXo5XytXOl9DHEvdqh1WV3vvFRr0dSoJY8TXCy+8gJtvvhkFeUMiiVtvvRVHH300nnzySey999444YQT0NLSguuuuw4TJ07EOl09aQ3QreCGaoASHVPeOV9uEw16vOiKq25hhxs32rdVnWTek22/nC8xQaQFKlSOQh4TmaA5XyaJL5OcL93Fl+7Ol7j2qfgSBRRk8WWC86Wj+FItLAp0CjukzpcpOV9dXc7xTReC5HzJBTdk8SWOZV4FN9yun759S/cK5bBDb4wQX21tbZg6dSqGDx+OL37xi67Pmz9/Pq688kpUV1fjiSeewKxZs/CnP/0JH3zwAY466ii8++67uOSSSzJsuVno5nyZGHZIj5cozy3/b9aowg6peNTR+fLafFh2YsTEsVycryyPd5Bqh1TsAvqIL7ecL10m2EEKbuia8wUAw4cDu+9u3X7lFas9dO1S14IbsvPFYYfRMdH5AvTM+4rifMlhh62t1vPpeZGX+KLbUcj5XgCLLz+MEF9XX301Fi1ahDvvvBP9aZyDxPXXX49isYjzzjsPxx13XM/9ffr0wV133YWqqio8/PDDWLhwYRbNNg5xQdDBShfnS1zIQnzlcfEGCTukx0sX8eXnfJkgvihuToyf+MrqO6AD/44d7mLF7RzO2/kSuWjsfMWDfr/t7bZY9NpkWSfxBdjuV0eHtdGrnPNFh2N2voJjYtihrjlfqu9Ux7wvOv7QY+lXap6yZUvpeJ5XwY3hw+3bQcRXQ4P6dSoV7cXXs88+i9tuuw3nnHMOpkyZ4vq89vZ2PPHEEwCAM844o+Tx0aNHY9KkSQCARx99NJ3GGo7oBAYOtO9j58smjvOlc9ihn/jKQziGEV/iPNHR+QLczxVdww7F/W4FNzjnKxhu7q1X2CE9zjqJL8AKPfQKO9TF+RJ9cK9e1vE1TXxVV9shXHk7X1HDDuk1mIfzpaP4Clpq3ssxam0tHc/zcr5GjLBvy8U2gNLzul8/9etUKjX+Tymlu7sbr776Kp555hnMmzcPa9aswcaNGzFw4EAMHToUBxxwAP7jP/4DBx54IKqqouu7LVu24Pzzz8fQoUPxs5/9zPO57733Hto+OSsnTpyofM7EiRPx3HPPYf78+Z6vtVUVpxXhOSZRLNoXxKBB9sqMLs6XDuKLtqe11er0qUso7hfo4nypTtVydL78Ss1nMUjRTWgFmzYBQ4eWPldX50vc71Zwg52vYMjHdvt2y9nSsdS8quAGABxxhH179mxr02JBc7NzsUkX8SX6YLEab1rYYaFgnRft7fmLLzrR37LFOodV44VMnjlfgFniy8v5klE5X3kV3AjrfPXrZ4dRsvMVUnx9/PHHuPPOO/Gb3/wGKz/JBCyKUmME4SyNGDECl1xyCb761a9iyJAhoRv3rW99C4sXL8ajjz6KgdSOUbB48WIAwIABA9BXJcMBjBw50vFcNxpVZ1KZQzsAuprJzpeNPBBu3ux0CQE9c75MLLjh1Tm75SCpnK+sQ3haW0u/a+F8Pf88cP75wJQpwK236u18dXTYxyuPsMOrrgIeeQS4807gc59TP8eknC/Ae5FAoEPYIb32R48GRo0Cli0D/vlPZ1L94MHO9usWdiimAbo7Xyqno67O6kfynqTKY8fatcAn0yhPdMv5mjEDuOIK4MILrb4lD+h3uX69vXjrtcmyzJYtpYupeTlfVHypptzyeU2fk/d5rQOBxNeOHTvw//7f/8ONN96ItrY21NTU4IADDsAhhxyCvffeG4MHD0a/fv3Q0tKC9evX4+2338YLL7yAN998Ez/4wQ9w/fXX46qrrsK3v/1t1HvVnyTMnDkTv/nNb/DlL38ZJ510ku/zWz+5whtoYKmEEFWbaek0BoDzYujTx+7883S+VKEwOomvTZtKxRc9XoMH27fz7GzKoeAGReeCG6q8CHGsf/5z4L33rJ/vfc+9PVkeb7fjTCf+WRfc2LwZ+H//z3IRb7nFXXyZ5nyJ71VH58st7BAAjjwSuPde67ZYa915Z6sv1rnUvFhD1V18qaZE4nzOc9GuWCwdO6KILx2cr5/+FPjgA2DaNOC73y2tzJcF9LovFoENGyz32KvghkzeYYf0vT71Kes4FotOISZg8eVNIPE1duxYLFu2DPvssw/OP/98nHnmmWhqavL9v3Xr1uH3v/89fve73+Gaa67B3XffjQ8//ND3/1paWnDBBRegubkZt912W5AmJkqQ/cA2b96METTo1XBk67tvX2t1Jk/ni66kikE+z1LzKvElY6LzZaL48nO+VGGHWXwHqnAXcZ589JF9n6hapSJL58ttEKSTrqydr7Y2e5IvV/uimJbzZYrzJfcHP/wh8PHH9vnbp481gQWs9jc0WOeLDs5XZ6f9WUwNOwTs8znPcaOjo/R4BS26oZv4EuemKIBEr7OskL/Ldess8eVVal5G5XxleY7Q73XUKOCmm6xc0CuuKH2ul/jSZREkTwKJr969e+PPf/4zTj311FAv3tTUhMsvvxyXX345/vznP+Oaa64J9H+XXXYZVqxYgQcffDCQyAPQE2rolYslRFU/mvmnwMs9E3Tp0osnhNwBNDZa4itP54uKGxEKqZPzpZpslEvBDdpx6i6+VIUM8nK+VOJLnCdyFUTa3vp6+3PoEHZIz5msN1mmbfLK3TDN+RLfq47Ol1vOFwDssgvwt7+5/++AAdaEUAfni/a/poQdejlfukVMBM2lyjvsUG4nPd5bt+YjvuTvcu1aYNy40sUYeUGGopPzVVMDXHml9aNCPq/79LHG5a4udr6AgOLrnXfeiVU4AwBOO+20wOLt0UcfRU1NDe644w7ccccdjsdEmfi77roLTz/9NIYNG4YHHngAY8aMAQBs2rQJra2tyryv5cuXA0DPcxkblfgC8nW+6GAunK88S83Lk07VZEPnghs1NXZHTztwHXO+vCZJYXK+dBBf4jyhj+3YYbs7gDVR1El85el8BRVfuud8yeebqc6XH/37W66YbuLL5LBDHZwv1aJdFPGlg/NFj7fqc2WBSnzJ99fW2gVX3PZdldsvtgaRi3+lgdcehTKy89W7t/U/LL4sAomvuMIryut0dnZi1qxZro8vWbIES5YswejRowFYoZF9+vRBW1sb5s6diyOPPLLkf+bOnQsAmDBhQsiWlz9yByC0a1tbdhe2DHWWZOerq8vqdLKM3Y7jfOkwiA4aZIUPyagmWzU1djy3buIrzD5fWRfcUIXltLRY703dRvl8aGy0/1eHnC9ZnGcpvuj32NZm/dAqe6rnlaPzlaUIdyu4EQTRN7e1WZ/Nb1KWJvIGy4CZYYc65HwlJb50KLhBj2NehardxJdblV7VeNXaqm5/R0c2czSvPQpl3MTX9u0svgBN9/natGkTisWi8ufcc88FAPzv//4visUilixZAgCoq6vDF77wBQDA9OnTS15z6dKleOGFFwAAJ598cjYfxCDki4oWfMyrs/JyvoDsB9IgOV9uzpcO4SNuEbwq8VUo2JMCU8SXDqXm3Zyv9eud98lhh/R608H5ksMO83K+APc8EzfnS5cJdpR9vkx0vmh13LzzvsrF+SqnsMO8NlmmkQU6Ol+iX1O5SW4LGCrnS/XaaZGE8wWw+AIiiq9ly5ZhxowZWLFiheP+d955B0ceeSQGDhyI8ePH46mnnkqkkUG56qqrUCgU8Lvf/Q5PPvlkz/1tbW244IIL0NXVhVNPPRV77rlnpu0yAVXBDUFeeV9ezheQ/UAaxvmSj2FeK5hdXfbA07+/enXMbbKVl/jq7nZOrGXccpD8wg7zKrjR0qIOg9FZfOkSdgi4T/jcnC9dJthBCm7okvMVN+xQkLf4UjlfJoovXcMOoxTcyMP52r7d2YfpKL5UYYeqRUOKm/OV1XnitXAkI5/XvXvnm7OvG5HE109/+lOcfPLJjuIWW7duxeTJkzFr1iy0tLTgjTfewIknnohFixYl1lg/JkyYgJtvvhldXV2YMmUKjjzySJx++unYbbfd8Mwzz2Ds2LH49a9/nVl7TMIt5wvIL+9L5XzRTinrCzhMzldjY/YTfxV0AtenjzrRWDfx5fe9mpjzpRJftD1UqOclvqiA0aXgBuAuvkytdugVukPPa10KbvhBna+8875UzpfJYYddXd4LUWkSx/mixznLnC+ahiDn2AryiOTp7i4991Rhh6IfU+39BuTvfHmFTMuw8+VNJPE1e/Zs7L777hg7dmzPfdOnT8eaNWtw0kkn4fXXX8ePfvQj7NixA7fffntijQ3C5ZdfjqeeegrHHnss3nzzTfzlL39BY2Mjrr76arz66quBqydWGm45X4Be4ksn58ur1HzfvtnnG6mgA01Dg1p8ueV46Cq+wuR86SK+5BVjXZwvekzouZFnzldc50uXCbappebD5nyx8xUe0adWV6ujEXQYO6LmfBWLzuPc3p7u4iO93pub7duiz+3udh7DPJwv1XcY1fnSJewwas4XwOILCFhwQ2bVqlU44IADHPc9+eSTKBQKuO2227DTTjth3333xR/+8Af885//TKShgnvuuQf33HOP53MmT56MyZMnJ/q+5Y4svmiCe95hh7172xMCesFnfQEHCTukzhftfPJyvmhH3aePelXbNOdL55wvMeAPGmRNnrdtcw87pOcHFV95Fdzo3ds+p3UKOzQ150s+31SbLOsmvqqr/SdVMro7XzqKLzEeuAldOWoirCBOgqjiS+XUbdnizIFOEnq9Dx1qF5USbZXH3jycLy/xFTbny63gRhbEKbjRqxeLL0ok52vjxo0YJF1JL730Evbaay/stNNOPffts88+JXlhjJ7IF1UWzteWLcCNNwKPPqp+XAzkdGVVZ+eru9vuGPv21SPsUBZfUcIOs257OThfzc32eesWdqiD80XbQI+pTgU3yjXnq7q6tFprVZX9WfIQX2FDDgFn/5y3+DKt2qGbqNJh4U41yd+40f/6Uj2e5gIu/U6HDbNvi35DXszSxfkSi0pBnC9RKLytTX0sueCGeUQSXw0NDVhLRsQlS5Zg1apVmDRpkuN5NTU16NRlJGQ8kS8qOhlMq+P87W+Bq64CvvQlYOnS0sfFKjxdWdVJfMnOl7zqqkPoSJCwQxOdr6AFN6qr7YEr7UnMjh32tdLcbJ+3bs6Xbjlf9Dzwcr50zPnKswqqG345X26TF3GNmiK+uNpheMQ15Jbbo8PYoRIpxSKwYYP3/6mOcZqpC7LzJdBdfImKjH4RGwAwcqR9W7VdTFYCPYzzxQU3vIkkvvbaay/MmTOnR4BNnz4dhUIBhx12mON5y5cvx1B6NTDaIocdZrHfzIcfWr+7u4H333c+1tUFbN5s3dbF+fIruPHRR/btYcP0WL1Mwvnq7Mw26dtvsuGWg+QWj57VahsVCU1N9qR082ZgzRrnc01zvuhkQEfnq6rKFty6iy9xbFV7lwH5iC/Rt0URX3ntTaaCTvJNyPkKGnaYB7QPoALbL/QwT+eLtlO0Xx638wg7VH2H7e3WcVEVsZBF+S672LflsQRg58tEIomvc889F9u2bcPEiRNx8skn49prr0Xfvn1x4okn9jxn+/btmDdvHsaNG5dYY5n0kDuALKqb0feUV8ZoZ0071DyrHfo5X9S9Gz1ajwE0iYIbgB4b/wrChB0C2XX4NDeJhh0C9kKDQHa+dBZf9fVWeJx4XMecr6oq/VZV3cQXzQtVkafzFSW3KOvQXi/ouGFCtUNTwg5Hj7ZvRxFfaTpf9P0aGuzb4pzW1fkCrGPp53xVV/s7XybkfFHx1dXl3IetEokkvr761a9i6tSpWL58Of7yl7+gV69euPvuu9GXxM7MmDED27Ztw+GHH55YY5n00E18qSodAnqFHW7a5OxAZPFVKNjt1SF0JKrzBbD4CgKdlNCwQwCQd9yQnS/qgmR5rINUOxSDaFbiy60ks9fzaNU4XSbYbpss04qoKkwLO9RJfJWL86Vb2GFc8ZWV80XFlzjGOjhfbt/hunX+BTeamoB+/ey/8xRfSTlfQP59Rd5EqnZYKBRw991349prr8WaNWuw5557olFaxttjjz3w6KOP4jOf+UwiDWXSRV59oRdOFuJL7pyp+NIh56tYLBVfnZ3WACU6fFl8AdZx7OzUI3TERPHVp0/pSmVdnVP0euV8iecD2Ysv6tjIiwuy+Kqttb6H7dvzc77ouSHnfAH5OV9Bcr5MCTukRXmCOF/FYmlRjjRISnzluSkwoHa+TBRfOhxT2geMGWPf9ttoOc+cLxOdL7+CG83Nzr5CdXx1LDWvyvmSxZdbzmMlEEl8CUaOHImR1A8l7L///th///3jvDyTIbo5XzSkz018Zbly0tmptslbWrzFl+hsdBhAwxbcyEKAq5BzoeTBsr7e+V0EzflK+zuQxdeqVe7PlcMOdRBfXgU3gOwKsMiTi40brWMlr7TKYlt857qIL7l/2r7deVzdnC/xPXR3W8fCb4U5Ll1d9jEvR+dLt7DDri67HTqHHZrufOkqvqqq7IUjOexQ5Xw1N7v3FYI8Cm749Uvy47TgBqDPQkheRAo7rK6uxgUXXOD7vK9+9auoCbtpCJMLeYgvevF5OV86hB26dW60nUuW2Lep8wXoETri5nzpnPOlcgd0DTukK8JNTc7zVkZ2vmpq7OOtg/iSc77o41k7X4C6wpqb86XLoK5yvlTOjEzWe33Ra9t08SWOb6FgH0fdJnz0eJsSdjhqlH3bT3ypBG6ezpcO+3zRNgwZYt92c77o99/U5N5XCLJ2vgoFu4qwG/IG4hx26CSS+CoWiygGzJYL+jwmX0x0vnQQX7SdwvkaMsQe+PN2vugA2tCgnly5Wf8svsLhlfMl4+Z8iceyImi1Q/p4HuJLNeHTOeeru7vUKd++Xe3MyGQtvuj3GaXghg5CQSCOb2OjHa5povjSOexQt4Ib9HqnubO6Ol8jRti3k3K+si64EdRToX0D3WSZvlalEkl8BaWtrQ21acdMMImQt/gy3flqbwdWrrRu0xAN0fnoMICqnK9evdxzSvISX25VAAWi9Llot0p85V1q3k98tbeXOl9ZiRtKFPG1Y0e6laqCii+dc75Un4HuAwfo43zR861cnC86WdUt7DCs86XDwp2JYYe6Ftyg4mvduvA5X36vnybiuw06rafnNztfTlITX5s2bcKcOXMwfPjwtN6CSRC3ECgg/2qHOpSadzsGop0rVtgTUpX40iF0xE18uaGj8yUm2bT0uWgb/T8dCm74hR26OV9Zii/aBr+cr6w2Wo7qfOmU86X6DLLzxeIreajzJTDR+dLBTRRjR1WVFfomvmcuuBGeoM6Xm/gqB+dLzvnKu6/Im8AJWZ/61Kccfz/00EN49tlnlc/t7OzE6tWr0dXVhYsvvjhWA5lsSNv5am+3wvJ23139nvLKGA3n09n5Eu1UFdsA8g879Cu4kYX46uqySq2PHRuscpvbvi1ym+rrrclp0LDD9vbkqsd99JElZgcOtO8TAqGx0TqufmGHXjlfWVW5c6t2qMr5ks+HKBP1sG0SqCZ8Oud8BRFfuoQdJpnzlWe1w2JR7XyZKL50OKZi7OjTx+qLmput6A6dnS/VfolBxdeKFdZ547VoFhU61xk2zL69dq1TjLmFHfo5X1mdI2GdLyG+CgU7YkV+rUolsPO1ZMmSnp9CoYAtW7Y47qM/K1asQFVVFU499VRcd911abafSYg0xVexCBxyCLDHHsDtt9v304svqPOV18oJ7dxo5yza6Sa+8g479HO+vHI8kjoHvvhFYNw44Jprgj3fy/mSY8iB4OJLfk5Unn/e2vRyzBhnIQghEJqarN9RnS8g+8EUCL7PF5CuO1cOOV9u4kv3sEOTN1kWpfwB57E1Pewwb+dLLIA1N1u/163zDjvOc5Pl+nq7EISb+FKFHT7/vDVujx6tLu4TF9qf9+oFDBpk3XZzvuj3Xw7OV+/elgDTpa/QgcDia/HixVi8eDE+/PBDFItFfOlLX+q5T/756KOPsGXLFvzpT3/CAK/lX0YbvMRX3Ing2rXAa69Zt//+d/V7ejlfuhXcoNWKVM4XTU6mIW951J5JKuwwzjnwt79Zv+l370VQ8SVXB/QrNQ8k0+H/9a/Wd7l5M/DCC/b9mzdbv8X5Gtb5yiqsj+KW80VdpazFl2qCHCTnS6ewQ9V5FtT5om5vmpNWQdywQx2EAuAcQ3R2vmhfqnPOF3W+AGDwYOt3R4e3k5Wn81VdXRqOHsT5+sc/rP6kpcXZpyeFPL8S7teqVc7vV4xV48ZZv+vrgb32Ui/U0GqDuuZ87b239fvTny79v0oXX4HDDkeT5fxzzz0Xhx12mOM+xmzSdL5oZ0zfJ2jOl25hh0OHWmF0gL/zJdvsWdefyTvskFZ9Czoppt+rPEGlkxI5lyuI89XRoS63HwYqBMR5QTfhFsctTLVDWXxt3w706xevnUFwE18U05wvHSbYcQpu0POGLkKlRbnkfLnl09FJqg7nBu1L3SrN6hB2KDtf8nnp1j/lmfMlxFdbWzjni14DabjN9Lqoq7NK9y9YYL2vKNQF2PObiy6yzuGxY635hmrhtl8/e/6hq/N1553Aww8DX/iC9bcufYUORNqE63e/+13S7WByJs2CG0HEl1u1w6oqPZKn6TEQ4ReAPTlS7fEFlK5gZi2+6Cpf797Ziy/6HQcVX17VDmmbgoqvpFfmaf6R6r3Fd9zQYLVD9bll50te8Miq6EZU8ZV1wY0wOV86OF9xcr5UYc1pUi77fLk5X4WCfR3qcG6YEHZYLNpjh3C+ZPE1cqT6f3VxvtzEl6g0S+cS9Dlpi6/aWucc4cMPnY8B1mc4/3z7flVfMWBA9uIrrPM1bBjwX/9l/80FN2wiVTtcvnw57rvvPrz77ruuz1m4cCHuu+8+rFixInLjmOzIyvmiq3hB9vnq399ZeCCvhE23sEPZ+erf3zl5ynsQFat8vXtbE9SsxRf9jqI4X3TfFsB5POViJn6l5ulz46Byvujr0iRjei7Q0Di/sEOdxJeq4IbOzpcOE+w4OV8mO195FtzwqiQprjvdnC9dww6pABF9cNBFgbydLzkcXTV2yQKLXgNp9G3y/IqmJtAFUjdHSRQ9odDvI+sc4aDOlwwX3LCJJL5uu+02nHfeeZ4bKBeLRUydOhV33HFH5MYx2SF3DvQiScv5kgtu0NNJdO5y6JYOYYfU+dq0yVqBX77c+luOxM17YiKvXmZdcIN+R9SpCPo/8kKAKuxQHFe3UvNJr8wHFV+Ac4BsanLmI3gV3MhKfNE2uIVj6hp2qHPOl0nOV7kU3HBzvgDzxJcu4wbgHnbohur608n5AkpDD7MMO5SdL4FwaFUUCqULCrSf0DXsUEaXvkIHIomvmTNnYty4cdhzzz1dnzNu3DjstddeePLJJyM3jskOuXMQpUGBbMIOu7vtTq9YdDpfFB3EV0ODPSC1tFhJs+KzyJ1q3iuYsviSV7Z1d75kR0glvorF0pCirMSXeD35+hHQCUtzs31MdSy4obP4UlVYo+KLOl80zzAvKinni4Z86pjzBejlipoQdigXagLiOV9btwZffAtL2IIbQGnRjbTFl1xUQyW+/ASNfE7TfkLXsEMZFl82kcMOd9ttN9/n7bbbblguLAFGa1SV4uhEMQ60c3QTX4A9eG7bZj/m5XxlefHKSdJiINq0yb3SoXiuIM+wQyEWw4Qd0rbrKL7k1eEsxFdHh3PiEcb5ksWXV6ivTmGHeYov6ljIQoR+31QAyI/lgeo86+hwfgYdna+oe7eJa0wX8WW685X3oh11htxyvtxQHWOaQ5Y0cri5OIc7OqzHdHO+6uqiiS/5nM5afBWL7HwlSSTx1dbWht4BSob17t0brWn6zUxiqFbukxJfQZwvwF4VdtvjC9DD+aqrs9vV0uJe6RDQJ3zELexQd+dLDsdzC0GUxRc9T5IUwOvXO//2E1/0/G1qCu585SG+3CaCbpssZ9EmeUNSipvzBeQvvtz6Jlo4RBfnK27BDUAP8eXlKupUCbMcwg7DOl9Aenlfcri5HEEQxPnKuuDG8OGl7pGfm5S380X726jOFxfcsIkkvoYPH47XX3/d93lvvPEGhtDqBIy26CC+ROdMJxw6hh1S8bV1K/DBB/ZjOoUddnTYx8jN+coy5ytKtUO58qYq7FD8T5CcryT2rFO1NUrYoQ45X+KYVVX5l73Ow/kaPty+LR972fnSaT+nIOKL7udFMS3nCygtfpMHQZyvvEU5YEbYocr5oudlWOcLSC/vy63gBmCd26pzMuuwQ7mvr6oqrRYZ1vnKuuCGPC5HgQtu2EQSX4cddhjee+89PPzww67PeeSRR7Bw4UIcfvjhkRvHZEdW4ot2EvLFZ4rzVV/v7PjefNO+7SW+sh5EVQOoCaXmdQ47lAVAnLBDnXK+amrUA6rI/wT0E18mO18NDc79pyj19fax5rDD4Hg5X6aFHbLzFRy3nC/A3fnKu+AGUJqiENb5yrrghhyREgUOO7SJJL6++c1volAo4JxzzsHPf/5zR2hha2srfv7zn+Occ85BVVUVvvGNbyTWWCYea9YAhx1mhfIMG2atvPzkJ9Zjpjhfea2cyDlfdCB69FH7tk5hh6qk6TzDDqNUOwxScAPQV3y5hR22tzv/R3b4sq526Ca+6GdRia9vfhM45BDg3/9Ork30e6Rhh+ecY4mxr37VLrIikCuF6Sq+Nm60frvlewloWHMazJ0LTJgAfOc7yYgvec+9pFm3Dpg8GfjSl5zvcffdwH77WRu5ejlfpoUd5p3zlVTBDboRc1bOl9xP6VhwAyidK+ie85W08xW2zR99BBx5JHD22ekVb8mSSOJrwoQJuP7667Ft2zZcccUVGDRoEEaNGoVRo0Zh0KBBuOKKK9DW1oYf//jHOOigg5JuMxOR228H5syxRNiaNcCKFcAPfwhs3pxuwY1yzPmiK/KiHf37O8vQi+eqXiML6GQkSsENHXK+ZPFF2yQLW9U5LD8v7iAlb/brF3ZIz5NRo5ztp4N83mGHbuKLtldeUX73XeAXvwBefBG4887k2wQAn/qUfXvzZmD1auC3vwXeeMMegMXEmrZfV/ElcMv3EtCCPmkwbRowfz5w000AzSDQ1fl64AHgmWcskfXUU/b93/++FXlw2WXBnK+8zwvA3LDDKAU36P/k4Xy5iS8dnC+vhVoVeed85e183X8/8Oyz1u/nn4/2/joRSXwBwLe//W089thj2HfffdHV1YUVK1ZgxYoV6Orqwr777otHHnkEV111VZJtZWLy7LP2bdGhdnVZHamX89XREa90s0p8ySvXgN050wmHV85XloOSLL6+/nXgc5+zQgfGjAHGjQN+9rPSjRDzHERVDmJ1tbMDNE18eeV86eh8ffnLwIknAmecAUyZ4jymdAJQU5OPq0tLB6sGVPpZZGdu9Wr7782bk28TABx3nLXSOWaMsy/YuNH+vkX4Hv3O83Y44oovMbFqbU1eMHR1Ac89Z/89a5Z9W1fxRRc9xDVYLNr3r1jhDP82vdqhjmGH1MUK6nwNHGjf1kl85VlwQ/SppjlfboubYYgzf6PzGXkR1EQiHkKLE088ESeeeCLWrFmDZcuWAQBGjRqFoUOHJtI4Jjm2bQNeecW6vfvuwGc/C9x3n/V3W5u3+AKsASBqMrZKfKkGQbFySS8yXZ2vXXcF/vUv///LcxB1O469e9vfQ9CCG1HbnoT4ClJwwyvsMEn3MUrO11/+Yv/tJr5qa/NZWPBzvrzCDun5laRAkCswin5q2jTg2mut2zt2lDpfOoUd+n1/fmGHVGhu3uycxMbljTecYplONnUtuEEny2KckPMm582zb5te7VDHsMPqauu8bW0NvskyHXfSDjssFKwfeZFIh7DDNJyvSiu4Qc+rtLYtyJJY4kswdOhQFlya88or9gV6+OHOi2DrVn/xtWNHMuJLtEE1OVE5XzqKrzDHIc9B1M1B7NXLnnzp7nzJ4XhBC26kFXYYttqhDD2mdCVYdiSzdr6iiC96fiXZXrcVVvl89HK+8hZf9DMUCqWRA0GdL8Ca6CYpvmbPdn9MV+eLLlSI68bLSdE57NBtoYaiU9ghrco5YIAlonR0vsT1H7fgRhoh30HEV5xqh5UQdkjfX/7+TCRy2CFjFjS05PDDnR1qEOcrTt4XHfBEuKGX+NKx1LxccCMouoQdys6XQEfxJa+wBdnnK2ip+aRzvvycLxmV81VTY03QdXS+3HK+dBBfpuR8qYRW0IIbQPJ5X3QskIkrvjo744Wou6FyvtyclPr60skhhx2GQ+V8AfZ4HCXnK23nS3zHphTc2HlnZ5qC7jlfeRfcoOdVOThfgcTXrbfeivaYPUB7eztuueWWWK/BRIeudh5+uLNDbWvzLrgBxBNf8oDX0aG+8IIU3Mir2mHQybVMnoOom/OVpfii33MlVjuUUTlf4nrLY2EharXDHTucEzDdnK+8J9n0/VVCK2jBDSBZ8dXd7cz3kolb7RBI59jTyZaf86U6thx2GA5VwQ3AHo+3bXNvV9YFN8T7qZyvIAU3isV8wg7r6oCddrLv9xM09LyurnYuoFea81Ux4uvKK6/E2LFj8Zvf/MZRVj4ILS0t+OUvf4ndd98d3/72tyM1kolHezvwwgvW7VGjrOR12qHKYYeiE6MDQBbiK2zBDRPEly5hhyY5X0FzvnTY5yts2KHKCRXPz2MPlDBhh3IuhW7Ol65hh6rNlMM4X0mWm1+wAFi/3rpNK3EK4jpfQDrnLp0s+zlfqmNLz6O8y1SbUO1QVXADCLbRcl7Ol7j+w+Z8ycc3q4IbgDP0MEzYYZ8+2Z8jSThfcaI7KjLs8NFHH0VVVRW+9rWvYdiwYTjrrLPwu9/9DgsXLkRRijEoFov497//jbvvvhtf+cpXMGLECHzjG99AbW0tHqUbIjGZ8dprdoci9rx2Czukm6qm6XwFLbiho/iKmvOlQ7VDwCm+vD5LTY3tKphQ7dBt0p6UAO7uTjbsUJCn8xWm2qFXwQ0dnC+Twg7zcr5oBMR//3fp+Ri34AaQTj8X1/nKa9xQYXLYYZBwWJ1yvoKILznHKyvnC3CKrzBhhw0NzsWmLM6RpJ2vsNdhuTlfgfTrF7/4RRx33HH4xS9+gdtuuw3Tp0/HH//4RwBAVVUV+vfvj379+mHz5s3YtGlTjyArFosYNWoULr30Ulx66aWoC2MZMIkhhxwC7s4XvTiyDjuUna8+fdxj98XrZEXUnC9dwg6jOF+AdQ5s25aM+AIsAVPls+Sja9hhS0vppD4J8WWK8yVPaui6W5ITWrfCKWGcr7wn2EnmfCXpfNGx4JhjgH/8w76vpsZ5DMOQdj+nKrgRxvmSz408pyImiC+3sMMgiwJ5O19uBTcGDLDbTD+fLuIrrPNVKFiv5TafShqdcr4qxvkCgLq6OnzrW9/C4sWL8fDDD+Oss87CzjvvjK6uLmzYsAFLlizBhg0b0N3djZ133hlnn302HnnkEXz44Ye48sorWXjlCE2wPuII67dbzlcW4qu93TvnS0w25HwvQA/nq1IKbgB2+5MSX0EcCa9qh16bLNPXpgIvKVEjhxzS14tS7VCgg/MVpeCGbs6XTmGH9HzQxfkqFu2xoG9fYP/97cU4IHrIIZCt8yXGiajOV97nRhDxJSbWgF5hh0EWBXR1vmhb/JyvpIvGqApuANGdLzF/y/Ic4ZyvZAmtX6uqqnDyySfj5JNPBgCsX78ea9asQUtLCwYMGIAhQ4Zg8ODBiTeUiUZXFzBnjnV76FBrjy/APezQa7ITlajOV7mJL9MKbgD2OZCk+PLruL2qHQbZZLm62r2KVNLiK8mww6yLydCNzkWIqVwW3avgBl0hNjHn65lngHffBc47z3lNJIGOztf779sbY0+aZB3bI44Afvxj67444ivtRSZV2CF1UnbaCfjoI+u2X85X3q5oEPEF2K6GTs6XKuxw5kzr3Dr/fOscoseXjjt5OF9UfNG2eDlfxWK8fU1VJO18iflbXV1pteq00Mn5qkjxJTN48GAWWxrz9tt2p3f44fakVMeww9ZW637RMcr5XnL7TMj50iHssL7eOSDR7z5t8SV/z0GS3aOGHcpVrwS6iy/RvqxDalXhfTU17snhoiS+qA6Wd8GNODlfq1cDn/+89V6dncA3vhGvzTJxc77SKDUvii4BtuP12c9ax62zU2/nS1VwgzopU6YA//d/1m2vaoeAPuKruto7zFNMrPPM+aqrc15XcsGNJUusY9/VZfUL//VfpZuk9+5tLdTkUXBj2za7Pb162W2hk3fV2LZtWzbia8wY9f0q5LBD+j9ZO19ccCM+vM9XmbNokX17/Hj7tlfBDUHWBTe2bLFXLwFg2LDS55jsfOUVdiiL2BNOsCbRY8cCe+7p/RppOF9h/qemBjj2WGvgbGgAJk+2H3MLO5QnNEm5j2mHHWa9sKBayZQHVXrsCgV7gi6HHSYZykU/Ow0fTTLna8kS+znvvRe5qa7Edb7SCDukxWJ23dX63dAAnHmmdfuEE6K/dh4FN+hk/oQTgN12s85R1efQMezQb3Ivrr08ww7pQh1Quigwb559PMV1JC/qiD4jzhzCC699vjZvtm/X19vzHq+wQyD5vC/xHVZXO/u03Xe352XHH+/9GgMG2GkjnwSe9Vx3lVBwg55X7Hwx2rN0qX2bWtxyzpef+IpzcYdxvtzaK9Bhk+UwHY8OYYdy+OappwIrVgBNTf4rWDqIr9GjgZUrrUGLTkq9wg4pSU0M5UqHgNnOl2owra11Tjzk9vbqZT2ehfMlh48mmfNFj28ak/Ekna+kwg7dwt3uvhv44Q+dq/BhSdPhLxb9na8hQ6woj7Vrrc1rZXQMO/QTX1lOrGXE8ZbFl+x80fFaXFNy/522O+O1zxe9durr7c/jFXYIpCe+5LlDdTXwyivAqlXAyJHer1EoWKHSH31kbRlEX4/DDs2DxVeZE0R8bd2absENVYU41YW3fTvw4Yfq9gryqnYoBkC/UBGZvMIOu7vtVT9V7tyIEcFeRwfxBTiTpQVu1Q7lgUH3sMO8nC/VcfZyvgB7YrNpk/NYpiG+vNrS3h4v5yvKFghhiOt8NTZaorK7Oznny018VVUBu+wS77XTdL7odw1YE6+uLqfz1bev9ZlUwgvQM+wwqPOVZ9ihvEed7HxRZ0m0kx7f6ur0HTyvnC9ZfAV1vlT3xcFNfAFWP+cnvATV1bbwoq9XaQU3OOwwRf7whz/gnHPOwX777YchQ4agtrYW/fv3x0EHHYTrr78eWxSlc6ZNm4ZCoeD5s3Dhwhw+TX5Q8UVXNnUsuAEA77xj39bJ+RIDS9iinXmFHba22oUTVLlzQRHnQFdXtElqUuJLhSxs88j5SiLsUAfnK6j4Eu2XXcAsxFeYnC+/9qQtvuJWOywU7Os2becrCdLs51Sr3Fu3Op0vv+OpY9ih31iiY9ihKudLoBJfWThfYcQXdb7E+JiF8yWOTVTR4kaW5wg7X8mirfP1q1/9Ci+88ALGjRuHCRMmYNCgQVizZg1efPFFvPrqq7j77rsxa9YsjFAs4e+3337Yf//9la/bP85M1EBE51hbCwwfbt+vY8ENwAodEajCYPIWX2EnLXmFHbqVmQ+LHHoatipcEqXm3cg67JCKrz59nMnwJm6yHMf5kksx5yG+knK+0jjW9DVl9wDwd74Aa6K7cWP6zlcSpOl8qVa5t2xxOl9hxJcpzldeYYddXXYb/XK+li2z/84r7NCr4Iac8yU+T3e3XdHQreBGkojPnvSOS6Y5X1xww0Zb8XXzzTdj9913x6BBgxz3r1+/HieddBLmzJmDK6+8smezZ8pJJ52EadOmZdRSvRHO18iRzkRPHQtuAPo6X0FXK2XyCjt0KzMfFvkciCu+glQ7DLrCFjTsMCkBLNye6morx2TJErM3WQ4ivlQ5X36vlVS7wjpfJoUd+okFwJ7otrRYYpfmv0UhasXWIKR57qpWuVtbwzlfHHYYHLc9voBS8UUja/ycr7Q+R5SwQ8D6nPX1+eZ8xSVLgZ608xX2Oiw350vbsMODDz64RHgBVmn76667DgAwc+bMrJtlFC0tducjC5naWvsCoiFqeTtfK1ZYvxsb1Xk+eTtfpoQdUvGVlPMV5RyQP3M5hB0OHmwfF5M3WQ5b7RDIRny5iWg/5ytMaFmW4kt2uWpqgvUj4rrt6EhmMpiV85X0RNDP+aqr8z+eOoUdBo2iEJ+pszP5TX+9cNvjC7Cuf9Gu5cstZ1ZgUtghYH/OchBf3d3BFjbjoFPO1/bt6X/etNFWfHlR80lPWp/0CFJm+FUOFB0R7aDoxUEHtDTFl+prHD1avdJbKNidrGniK6+wwySdr7CkmfPl5nylLb6am0tXpZN2vnQPO/R6raTaFcf58mtPntUO+/YN5mIlXW7e1LBD1Sr3li228xUkhFOXsEOaOxs07BDIduHOy/kC7EWBxYud97uFHdK8pDREZFTxJT5nOYgv+h5poVPOF2C++5Vo2GGxWMR9992H119/HaNHj8ZXv/pVNKiu3hi0trb2hBSeeOKJyufMmzcPV111FTZs2ID+/ftj/PjxOOGEE9A3SC9dRviJr4YGKyaadlBZFNyQqx0OHGhtekpRtZe2savLjJwvHcIO83S+4oivQsEZKiuTZc7X1q32gNzcbOcShBVfqsdUwifPUvMUt4IbXq+VVLuyyvlKW3zJQ2CQkEOgtNx80AqlbpRTwY3WVtv5CnI8dQk7DPMdyItLSecLuUGPt+x8AdaiwMcfl97v53wB1rUWdeKugrofbpssC+Swwyydr7QKbshjW5p+RBKbLCctvoL2pToS6RDefPPN+MlPfoKHH34YRx55ZM/9J598Mh5//PGev++55x68+OKL6B02UYQwc+ZMTJ8+Hd3d3T0FN1pbW/H5z38eN954o/J/Hn/8cUc7AKvQxi9+8Qucc845vu+5NUA2X5Dn5A2tRKQqXuHnfGUVdjhoUHjxtWNHtquBUXO+VJOSjz6yip94CYu4pFFwI2vx5dfBu22ynEapeVrdr7nZHrC7uqwJgImbLOvufMkiWmzzIAoCiImXW87Xxx/bBQHq6oBPf9p+bpbiq77eOq7ivqBrgOx8WbiFHUZ1vvIMO4wqvrIc67zCDgH38SSI+OroSFZ8yRs6i9+in6C4OV8mF9zI8hwJOsZ5UVVlLaoWi+HbK3+fpjtfkaZ/f//731FdXY3DDz+8575//etfmDFjBpqbm/HNb34T++67L9566y3cc889sRq4YMEC3Hvvvfj973+PmTNnorW1FWeccQbuueeeksqFu+66K6677jrMnz8fGzZswIYNGzBnzhwcf/zxaGlpwbnnnos//OEPvu/Z2Njo+6OqsqgbQcMO6epRHgU3VLldXht+ik42qxXMYjG5sMMbb7T2ohE71KdFUgU34oaexhFffh28fGzTzPmilQ6bmkoHPdM3WY5bcCPJCa2X+BbtoZMjVc7XrFmWU3TggdbPfvsBxx1X+h5A+qXma2qcxy2q8xUXU8WXapLV0mLfH+R46hJ2GOY7yCtqwi/s0G08Ed+7LIjS/BzynmICVT+lKrgBpO98FYvBx7SwZHmOJOF8AXab4xTcAMyveBhJfL333nvYe++9UU3O9oceegiFQgF//OMfccstt2D27Nno169fILHjxWWXXYZisYj29na8//77uPnmm/H3v/8de+21F2bPnu147tlnn42rr74a+++/PwYOHIiBAwdi0qRJePzxx3HppZcCAC6//HK057FrYQ4ECTuUyWKTZdn5UokvP+cLyG4Q7eqyY9XjVjsUl8OMGem2X9ewwzDVDv06+KBhh0nk3dHjOXBg6feaRKn5qiq1M5MWujtfQcWXyvm6997SfmfmTNstydL5ksWXDs5XWiWvgWycLxopEeR4mhh2mNT4GxZ6bamClsI4X9XV6Z4b9NoNIr7yKLiRRKEKN7LM+Urqc0QtwFJuOV+RxNf69etLnJ85c+agqampJwyxb9++mDRpEhbLWZkRqa2txa677oorrrgCf//737Fx40acddZZ2BbwKpk2bRqqq6uxdu1avPzyy57P3bJli+/PypUrk/hYqSLEV6FguS0yqpCCPMIOw4qvqCsnUQk6sVYhT9KpIE6zs9Sl4EacaodRww7TcL7oZ+/du1T4JbHJMmB/5rw2zTRFfNGBV5XzJSZUdXXAqFH2/aqiAGmLr9raynK+kl7bVE2yVq2yb4d1vkwJO6TnTNJhcF74tTFs2GGaoXFhxFddXT4FN5II13PDtIIbQHLiqyKdr+7ubmwnZ+zWrVuxYMECTJo0yfG8gQMHYsOGDfFaqODggw/GXnvtheXLl2Pu3LmB/mfQoEEYMmQIAGCFqGfuQkNDQ6Af3RET/REj1KJB9RHyKrgho5PzFWd/HJGnAlg5KHTTxzQ7S12dryTFV9B9vpIYoOgATcsti/em50jUnC/6v7o6X3kW3KDv7+d8CQ4+GNh339LXpudB2pssR3W+5D2V4iKuX9onJUXWYYdxxJcpzhd1nXQSX35hhzo4X6p2hwk7VN0XlaBjQxTY+TKXSOJr1KhRmD9/fs/fM2fORFdXV4n42rhxo3KvriQQ4udjVdkdBV1dXWj5ZPmwEqoetrXZFYnchEwY5yvOamaQghuUujpg6FD318tafMUN1xHHlBZAASrD+cpDfKkKNQiSEl9uYYd+E1udnK8g1Q512mSZtkflfKmef/jh6glK1mGH9DgGdb7SCjtMoyJamu6GaoWbiq9yDTvUVXwFdb5EGLXuYYdpF9xI0/nKq+BGHOcr6hjH4gvA5z//eSxbtgxf//rX8Ze//AVXX301CoUCvvCFLzie9/rrr2MUjflIiHXr1uGNN94AAOyxxx6B/mfGjBloa2tDoVDAxIkTE2+TbogqX4B78Yo8ww69Cm6MHu1dCTBP5yuK+BL/o8p9SwsxWSsUgq+0q9BZfNFzlYojWfwUCvE3+qSvX1/vHnboN7j6OV9ZnttJ5nwVi8lsetndbedXqr5/uvGswMv5OuIItethQs5XWmGHaYgvk5wvU8IOdRVfbot5svhSVXHNW3zlUXCDfmaTci1lkna+uOBGBK6++moMGzYMv/71r3HKKafgvffew5lnnok999yz5znz5s3DypUrccghh4R+/QULFuAPf/iDI7RR8N577+G0007Djh078JnPfAb77LMPAGDZsmW4//77lf/z2GOP4cILLwQAnHnmmRg2bFjoNpmGX7ENILuCG2FzvrxCDoFs3QEgOfHl9bpJI8RX//7xStrrLL7ocaWDpdekPeoxDxp26Hd+qB6n11xckRiGJMWX/HpRUZWOpqgmg6qcL/H3Zz+rLuGfp/gqR+cra/EVtuCGjmGHfn2FruLLzfmSXWWV+Ep6zDOh4EZWOV9p15HTLefLdOcr0iEcNmwY5s2bhzvvvBNr1qzBQQcdhLPPPtvxnHfeeQdf/OIXccopp4R+/Y8//hhnnXUWLr74YowfPx4777wz2tvbsWzZMsybNw/d3d0YN24cHnzwwZ7/2bBhA84++2x87Wtfw/jx47HTTjth27ZtWLBgARYtWgQAOPLII/GrX/0qykc2jiDiK0/ni3aaUcWXCTlfgHuHm0XYYZyQQyB+6Gmcaod+A1V1tSUsu7vVpccpcUUNPf+9wg79JlSFgvUceixNcr68zv/Ozvgru37ljFXvLxYX5OdPnGgJHVUJ/zxLzeflfEXdKD4IaU4CVSvc9Psr102WdRBfqus5aNihuO6yKrhBr/Mg4osLboQj6VLzlV5wI/IhHDp0KH7wgx+4Pn722WeXCLKg7L333vjJT36C5557DgsXLsT8+fPR0dGBQYMG4aijjsIpp5yC8847D/Wk9xo5ciS++93v4tVXX8X777+PefPmob29HU1NTTj++ONxxhln4PTTT0dVmjvbakRU8aVK/gfSFV/9+tmTaMBffGVd7TBuzpfb/2QRdhin2Aagt/MFWOfCjh3piy8v5ytM2CFgHVO3JGzdCm4EzfmSXy/JNnm1B3B3vsQ2lOx8WZST80Up102WqfhKsgCEHyaFHbrt8xW34EaS4qtcCm4kJSLZ+bKIJL7OP/98HHrooTj//PM9n3fPPfdg9uzZuPvuu0O9fnNzM773ve+F+p/BgwfjhhtuCPU/5UwSYYeFgtVh7diRfLVDkdcBWBPZxka7EqDOzpcJ4mv7drvNSTpfupWaB6xju2OHd84XkK74CuN8AdYxbW21/1Y5X6aVmgeSmdS6TaYEXs6Xm/hSOV/0s2dRap62O6jzVVtrLZC1temf85V1wQ0KVztMlrBhh+IcDRJ2mHfOFxfciE5SzlfUMU7up00XX5FsoHvuuQdz5szxfd7zzz+Pe++9N8pbMDGhlfXcap74hR0C9sWdZs5Xba1zAA0qvrq7k0ny9yOu+Mo67DCpMvOA/s6X+D78cr6SLrgRNexQ/D9Fh1LzbtUOs875ihN2SCdfhQJw6KHW7Tydr0LBal8U5wuwr192vixUxZNNqnYYJoRdV/ElL+jttpv1u6vL/gH0F1+y81Vfb/clXHCjlDQKbtBF+DDvD5gfdphqDF5XV1fFhPnpwHPPWfva7LEH8Mor1n3NzWqHC/B3vgC7840jvlRV/mTxRQdQt+qMgqxDSOLmfGVdcCOpMvNA9uKrWAwfdgioS49T0iy4ESXskJJlqflVq4AvfAH47/9O3vnKO+yQPn+//WzhkkfOl3wORxVf4vqNK746O+2FKlPFV02NWnzlXe1wzhzgyCOBIAE+5eZ8DRrkzNmmlYzFdZlkPuDixcDkycBVV1l/x6l2KBfc6N3bPuamOF8mF9wAgl+LtAquwHTnK8Yh9GfRokXoH3f2xwTmW9+yRZdg113dnx/E+UpCfKmcL3oh1dQATU3Au+9a77fTTt6vJ0+mku7QZEzL+TLZ+aJOZhjni7Yti4IbccMOKVk6X7/9LfC3v1m3zzmntA1xC27EJY7zRRdwjjhC/Toq5yvNTZbFe9MJanNz8NcRw+fWrda1E3Vz5DCT/ihkUXCjTx+1y5V32OGPfww8+ywwdy4wdap3ddkw3wMVEDqJr759rbZt3265XvJCVJphh9deCzzzjPVz0UXJiq9evazX2LrVTPFlmvMFWG0OMs6rrtmKEV8/+tGPHH+//vrrJfcJOjs78c477+CFF17A5MmT47WQCURrq9X5A9bJ3K+fNeB71ETxLbgBZCO+amuBq68Gvvtd4MIL/S9G2rHu2KH+HEnCYYcWSYgvvzDRsB286vvwKjWf9ibLQc4P+Tkq50uEZBQK0drrBt3/b8GC0vc1ueDGwQcDX/oSsHy5tRAlyGOTZfE+4jNceKEVmbD//sBeewV/HbnoglsUgx9Ziq+0nK8+fdRCK++www0brN9btljfkdd4VA7OV1UVcP311kLOD38I3HGH/Vh7e7rVDp991r69caNT6AYpuFFXZ+exiwgRKr5Em1l8lZKG89XR4TzP3VBds6aHHQY+hNOmTUOhUEDxk1nz66+/jtdff93zfxoaGnDNNdfEaiATjOeftye2F18M3H67//9kFXaoKrhBJ5W1tVYolLRHtyu0Y82iCpRpBTeSDDukbc/C+QrbwasGMy/nSxR7CStqvDZZ3r7dXkyIEnboVmG0qyveIKdi7Vr79gcflLbBxLBDmvP15z+XPp7nJsvivffcE3j55fCvIy80JSG+ks47kV8zrYIbDQ3JOF9Jf9/0XNq2rfzFFwBcdpn1AwD/93/2/SrxlZRAWLrUWUhMdk2COF+AtSC5Zo09TtJcSNHWJOcV5VLtMCnnSxUGHua9BRXjfF1zzTU94utHP/oR9t9/f3zxi19UPreurg4777wzjj32WAwZMiSxxjLuzJ5t3xZVvvzIM+xQFl9hoB0ri69SdHK+wlY7DFtRSXVsvXK+isVoosYr52vLFu/2yATJ+QKCh2SEgYqvjRtL3zes+BLhR0D+myy7oSq4kVW1w7iTraT6Ona+7NtJO1/0/PETSSaIr7A5zlmFHdI5jngtOo/wE1+inf37W+JLjJPU+RKLaKYU3Miy2mEazlfQa7HinS+BEF8//OEP02gTE4G0xZcIFYwSBlVO4ivJTZa54Ib389MQX0A0UeO1yTIdBOLmfKVdEpuKL1Ub5OMin7vypGbwYOCjj6zbeTtfbuhQcCMqlS6+6Abqbs5XkLDzNK8r2fnywgTxFfZckfNfvcRXnDFPFl/t7c6+Psgmy4C9INnaal374vPK11pSYd/lUnAj6U2WAXa+QtOdRX1vJjBtbXahjT32AIYNC/Z/qhAWr5yP9vZoA7ef+Ap7IWctvrjghoWO4ks1mHmVmges8zhInDnFy/mi4itutcMoq4JhWLdOfb+q1Hxtbamwkdve1JS/+IrifLH4Spa0JoFUdKicr8ZGf/ENpBt2WG7OV9hzRf7us3S+6GsHyfkC7DGxWHQuRvXq5ZyXbN8efpxQUY45X0kW3AhCOYovrgNfBrz8sn0SB3W9gHDOFxA99DDIPl9hkPMg0obDDi10FF9RnK8ok0M68a2rSzbs0M35Svr86Ohwhhqq2kDfX/VZ5BXlpib7dtLiy+97FJSz85VUfqupzhedYKmqHQYt259V2KHfdxRmIc8U8SXnBYu1+SQLbqxaBbz3nvO+jo7g1Q4LBbs9NBpkzRrn/6RxzMtFfOXpfKn66IoJO1SxcuVK/Otf/8JHH32E7S69TqFQwA+8Su4xsaErQrTEsh9hCm4AyYovOmEK2yGZVnAj62qHOocdhql2mGbYYVjoRpyFQrJhh1k5X+vXuz8WVXwNHmzfTkLEsPPlJKmFprih036klXtCr62GhlKxFSTfCzA/7DCLcU4QNtKDXl+qze6TEAjPPVd6XxjxJfptwLkgScVXfb3zPElKfJVLwQ3x+tXV8cIxueCGReSh4YorrsDtt9+Ork/O/qK0A5oozsHiK31mzbJvh3G+VJZ6GuJLntzIsdrlnvNVLs5XFMcoTrXDIOdF1LDDsNCkbCDZsMOsnC+3fC/6vjo5XybnfMml5qNiYtihjs6XiWGHee/zpQo7VkH7CdpO1SbLUc8NOeRQvFYY8SXwcr7chGQcyqXgRlILSlxwwyLSYbzlllvws5/9DIVCAcceeyzGjRuHfv36Jd02JgDt7cCLL1q3R48GRo0K/r/V1faeF4KsnC/qgATp4Ckm53wNHWp3+Fxww/v5OoUdyknZaYUdpul8ueV70TbQtnjlTYjn0m5f15wvletBJypZbLIcFVPEl1gNLxbTFV+qnK+g7ROY4nxVVdnjcx7iK+h54ia+kiy4oRJf7e3RxBddkFy92vk/aYuvcii4EfczJJXz1dlZmvdnEpGGhrvuugs1NTWYOXMmPve5zyXcJCYMc+fag3IY10vQ0OAcELxKTachvmprw1vYpuV80c5h991t8ZW289W7d/yVtpoaaxLQ3V0epeZVbQqC7HylFXaou/NFz4f+/ZMXi2k4X3lsslxppeYB67O2t6cbdig7XzqEHablfAHW95+X+Ao6dtBznIrlpMIO168H3nqr9H4v50s+tkHFl5uQjEO55Hwl5eYnJb4A63yLu8CcF5EKbnzwwQc49NBDWXhpAA05DJPvJZCLbmRdcCNKZ2Razhf9n913t2+nLb6S6pTi7PWWR7VDr02WAb3DDtN0vrzEl6raoepcLxTsY9C/f/KOQlbOV5riq1hMp+BGnIWmrMQXkOwKfFLOV5abLHtBHw/yPYjUAFOcL5X4irvwJSJ7AGeOaRphh1xwwx3dnC/A7NDDSOKrb9++GD58eNJtYSLwwgv27SjOV17iK86FbFrO1+TJ1u+BA4Ejj7TvT6uzFMckyP43QdBZfLm5M17PiyO+xLHIapPlJEnC+QKAY46xfk+ZkryjEGWT5TDOVxbii4ZUV0rYIWAfZx2dLx02WS4Wgddft2737x9sccw08ZVGwQ3qTu29t/O13PqLoGGHcsGNNMRXuRXciNunJVVwAzC76Eakw3jYYYfhjTfeSLotTAQeegh47TXgpZeA3XYL//9yxcMsxFd7u72TvGniK4rzdeyxwPvvW6t2L71k359WZ5nUqrsgSfFlYrXDYjHdsENdc77cPstDDwELFlgToZtusu83wflShR0Wi8ltqCq/diWJL3G+6JjzpYPztXChvQBy6KHBcp1NEF9phx3S16TCiS7iAsk7X0nNLbjghpOkCm4AZouvSM7XNddcg/fffx+//e1vk24PE5L6euCQQ4Arrog2ecg77DDKhWxawQ0A2HVXa+DIorOME9KpIi/nK2q1w6TDDun3lEbYYR7Ol7zoErTgBmAd3332sSaPSTtfaed8qZwvINkJeaWKrzScLz/xZVLOV5QtYaj4kgpKp0bSYYdpia80Cm6YHHaYdsGNpOYVHHZoEWlo2Lx5M6644gpcfPHFmDlzJo4//niMGjUKVS6j4OFR4uGYTHCbhAniiq9isXRiE7czMq3gBiWLzjJp50t85izEFz03dAk7pJPeJKodys9xKzWfZs7XhAnOvXPCOF8UHcRXFOdLVQgmqesl7DnsRRriK+nVd0EeYYcmVTuk4ivolEiIge5u67im9d0JikX9qh3Sc4C6VlELbtDXoNEAposvE50vDjsMyec+97mefbwefvhhPPzww67PLRQK6Eyjli+TCGGcrygdp2qyHbczMq3gBiWLzjKpxFhBHOerHKodqsSXiZssC/HVqxew1176iy/V92ia8xX3GuSCG/btpJyvNPf5chuPikW7OFZDg7X4EQRZDKQtvmjfmFTYYdxoD6+ww7jOF3UTWXx5k6fzRb9nUW0XqEDn6/DDD0chqQB5JlfSDjtUTcg6OuwQSdNyvuJOXNLuLKnTmHfOl8r1NLHaIT3HVAU3vPbJU5HXJstilbepCRgzRt2GOOIriUltHjlfAIcdJkEWYYf19db7iPeIkvOV5KJGd7dzAu82YV+8GPjoI+v2IYcEH/fkHKS0y2pHGevSLrhBJ9hRxRdtY2OjcwIv4IIb3iTlfMUtuNGvn13RueKcr2effTbhZjB5kXbBDdWkpr3dLPGVZMhO2p1lkhM/gTgHurqsH7/JrkD13evgfCUddujXHpk8nK9i0RZfzc3WhuyqNtD3DzL50iHsMAnnK8ljXaniK42CG3LYIWBNnjdutG8HIa2wQ7k/c5uwRwk5BNIRA15EOU/cxJc45knmfAUNO/RyvqqqnBN4+j/0/0xwvvIouJGk8xWl4Ea5iK9IBTeY8iEP56ury54Am1BwI8mww7Q7yzQ6+qjngOq7z6LaoV/OV9jjTj+zKuzQrz0yeThfmzbZx1YlvnQMO2TnyyzxlYXzBThDDfMOO2TxlV+1Q6+CG145X/LrCLIIO0w6bDSrghtJRtTEzfmiAtzksEMWXxWOLL6SLrjhNiFLap8vLrjhJE3nC4gvvkwPO/RzvnTdZJkW20hSfGW9ybKqTX7Ol98my4AZ4itOX5dk6LQb4txVhRtHxc35EuQddii/ltuEXeR71dcDBx0U/PXTcGK8iOt8+YmvrApuVFd7V25VhW9yzpc7SeaxxhVf/frZt012viINDbPpMk4AuNqhvqQddug30JlUcKO6OnjInRtpd5ZpO19hBs8o4its+7MOO1TlfPm1RyaPUvNUfDU1AcOHO3Nnytn5UgnasIVggtDSYk3qkqx2mFRfl6XzBVjXGJ3IRiUp5yvoIkFrq/U+UUOrVRP2FSuADz+0bh98cGlInBcmOF9p53wFDTuUr7VevexKtEGcr7RyvspBfCXZpyUpvkx2vmJVOwwCVzvUmzzCDr3eLwh55XwlETJgcs4XoJ/zpUO1Q4quzhctqdzcbLlFo0YBH3zgbEOQfb4oSYsvr8mUW5vCOF9phR1ecw3wv/8LXHklcO656veOgolhh4B1nNMSX3GdL7fv+umngS98AdhzT+C114J9d0GcL1pVNOw6tAniK6tqh1VVzu/ba5NlILz4YufLnSSdr7gFN6gArzjny63aYXd3N5YuXYrly5cDAD772c+iNumzjUkUP+fLrapbUMpBfAmnxATxpVPOl+rzZRF2qPq/OKEvqpyvQsF6H/n8NsH5am62fk+YYImvYcPsdo8ebX22YhHYZRf/1zXV+UpafN1/v/X73nuBM89Uv3cUTBJfaeSz0pVtIb722AN45hlrBXzIkGCvE+Q8ve8+q294803g7beB/ff3f90gzteCBfbtz3zG/zUpJoivtDdZFudAQ0PpOeYWdgg4r508ww7TrHZYKFifu6vLHOcrShQKhx1+gl+1wzfffBNTp05FQ0MD/va3v0V5CyYj8na+olzIeYUdJiG+0i64wc5XNtUOxWsmIb6yzvlqarJ+//SnwG67Wav9wj0aMwZ44AHg/feBCy7wf92sxZcI/ZX3ffEiC+dLnCOtrVxwA0iubxOTq/p6+7q+5hpg0CDgyCNLxy83goQdLl1q3w468Q7ifNFrb8SIYK8ryFN8BR3v/MIO6bGP43z16VO6iOYlvuh5rovzlcY+bXV1VlvTLLiRZJ8mb58Q9v0rOuzQj3333RePPPII9t57b9x000246qqr0ngbJgHyKrghiLISVFNjT8CyLLiRtPOVRmepk/OVV7XDLMIOAfXxjRJ26OZ8pVlwA7DCDq+7rvS5//mfwV83602WAev40RVPHZwvcS3v2KGegEbFxE2WgeSdLzpODRsG/PjH4V4nSNjhkiX27aDHOojzpVr4CIoJzpdf2GGhYOeXxim40dBQeo6l6XwltbCbZtiheM1t27JzvuJ+hijnNP2ey8X5Sq3a4ZgxY3DggQfivvvuS+stmASgYYfV1fb+WwIdxRdgd6xZOl9JTFo45yv4/+gSdqgquAGohZ+upeblnK+kyHqTZaD0+IV1vqJs/u0H/a7o/kFxr0Fatc0k5yuphSUxuZLD48NCzxFVv9TZaW+CDATv5+TXUn1HqoWPoJggvvycLyDeNgRuzlcc8VUuBTfoa2aV85Wk8xXFYWbxFYDm5mYsoctJjHbQFUVVx5DGJssUE8RXkgU34oZg+JFkYqwgS/Gle7VDOewwSHtk5A0/6cQwq1LzSZF12CFQOpEK63y5Tb7jQM8psQEwkMwCSBJ9XZIbxbuRZthh0PBCN0RuDKD+rj/6yNk3peF8NTaGq3QImC2+6HUZdQPuYtF5DiSV8+UWdlhTY1+zSYsveg4mSRbiK2/ni/f5CkF7ezteffVV9InbazKpQlcU0xBf5eR8JTFpESEYQPoFNyrB+QoqvuJMDFUFN+TX9LpPhh5P+TOmXXCjqgoYODC519VBfIV1vqKcl36YIr6S2C7DjTQLbsR1vgD7u1B91zTfC4jufHmJryiLHmmEwXkRN+yQ/n8Szhc9nlmEHdLfSRfcSKv2XKU5Xw0NdoQWO1+ErVu3Yu7cuTj11FOxfPlyHHnkkUm/BZMgYZyvKKEkaRTcAMwVX/R1TAk7jFrxMq9qh7o7X/Q5cvvTdr4GD/YXK2HIepNlILzzJQvEpMVXV5czl5GKryQmXOKcSyLnK62QQyB556ujw36dJNZwxXmg+v6jii/5vJEFQVcXsGGDdTtsvhdgnvNFSUJ8yVsNeIkvr3z1oM4XYB/zpJ2vtBxn8bpZFdxIsoJrFPFVW2svxpjsfEWanlUHWDorFosYMGAAfhw2M5bJFDqo+ZV21sn5Eu1Ku+AGnVglNXERn7kSC25k4Xyp/k8n8ZWH8yVyvpIMOQTMcL6ChB3GEV/y95RkzheQrPNlkvhS7fEVB6+wQ1l8RSmBLdi2zd6PasMGK3QOiHbtRZmoxiFt8RW276WT64YG50JLe7v/Pl9ubZSdr6oqu71piS+Tna8kI2riOl81NVZ/sGVLBTpfxWLR9aempgajR4/GhRdeiHnz5mHs2LFJt5lJEA479CaNXIk0O0vdC27kVe0wzsTQreBG1LBD2mb5M6bhfLW12YOU7uLLb5NlIJ7zlUbYoTyhTDrsUHzeShZfuoYdql6LTijj5lpm7XzRczlK2CElDedLDttPKuervt4OZWPxVUqSzldS4gswW3xFGhq6/WZQjDGkXXAjbfElVrKTEhoydDAyQXxVmvNlYthhoWA9r729tP1pOF9xSl37YYLzRTcirVTnK8mKrW4kXe0waefLK+xQrgsWNecLMFt8peV8RQ21V50DdXV2SGpSOV/0uSy+SknS+YobdlhdXR5hh6lWO2T0p1cve8XHbyVfR/EFpBt6aJr40t35MjHs0K3gRlTxBdjHNAvnK61Kh0A+4ks+xkEKSIjXonlEFJ2dL3HOCfEYBZOcrz//GTj0UODEE+37sg47TMr5ols8lGvOl9s5noTzJYcdyq+VpviSXz8qWRXc6Oy0Q1yTJsl5RaEQvqiJl/OV1mdOGxZfFU6hYFvwIk5dfjxOfhW9aOhAIohbcANIV3ylEXaYZsGNtJ2vMMJFp1LzSYUdJlHtELAHf/maS8P5Wr/evl2JzhfgnKCkHXaYlvMFRO/rshBfSVU7/NrXgOefBxYssO9LokKnm/PV3Q0sW+a8r1LDDqOILxoKSEkj7FB+LS/xRfeDorcB61ylgl4lvoBkjnlWBTfoeyVN0vOKsO6iPC4IIV4sZnNdpEEs8bV+/XrccMMNOPbYY/HpT38an/70p3HsscfixhtvxHo64jNa84MfAKNGAVdeqX48TfEVt+AGkG7eF31tVfujwM5XsP8p17BDALj6auua+853nPen4XzRwSnpnT/SFF9ujlbYnC/A6XylHXaYlvMFRO/rTHG+2tudiwU1NcDYscDUqbGaBsB90evjj0v7NQ47DHeu+EUgiHOjuzvcteYlvtrbvcXXuecCe+0FnHwycMABpa9N3S96jdE+MomcoqzCDul7JU3S8wpxXgftz+RcYCqmN2+O3548iHwYZ86cia985SvYtGkTisT3W7BgAZ5++mncdNNNmD59Oo455phEGsqkx+WXWz9uiI5VJ/GVxIQkCHTAS1p8pVHtUKdNlrMoNZ/1Jsv0WMQRX1//uvUjk7SYAaJPqIJA25tEiE5ezlecY+0VdpjENRh3oamzM/mKrSqSmATSye6xxwJPPhmvTRS3cUwOOVQ9xw3VOU+/o0oSX3L+jUp8Ada5EXSvuThhh3vuCbzzjvtrDxgArFpl3aaflRZ3YfFV+ro6OF+0YMqmTcCwYfHblDWRxNeiRYtwyimnoK2tDfvuuy/OO+887LrrrgCADz/8EPfccw9ef/11nHLKKZg/fz523333RBvNZEsc54t2jiy+LCp5k+Usqh2q/i+LTZZFYYc4pBF2mJX40nWfL/paWVQ7pBM2HZyvNL9/ShIFN5IuskFx2w8pjvgK43xFCfkVVfiyCq+Keq74RSDIoXH0nPbCreCGeJ0g1VHdyML5KhbLQ3yl5XwlIb5aWuK3Jw8ihR3ecMMNaGtrw7Rp0/D666/jm9/8Jo4//ngcf/zx+MY3voF58+bh2muvRVtbG2688cZIDfvDH/6Ac845B/vttx+GDBmC2tpa9O/fHwcddBCuv/56bNmyxfV/n376aUyZMgVNTU3o3bs39txzT3z/+9/3/B/GHR3DDvMQX0EHDD9oCEbShUM57FA9Ga+utgvLpBV2mERMfxphh+UuvvLO+fKa8FSq+Io6CaROR9LiS3z29nZnkn7SzpdbwY0ozhctTpD2tipA+mGHQLhzw8/5ChKm7AadwLuJr7jV9Lq67HOtXMRXkhvHb9sWrGCGPC5Q4UxzbE0ikvh65plnMHbsWFxzzTWuz/nBD36AsWPH4umnn47UsF/96le4//770dnZiQkTJuC0007DxIkT8fbbb+N73/sexo8fj5UrV5b836233oqjjz4aTz75JPbee2+ccMIJaGlpwXXXXYeJEydiHe0NmUDoWHAjbgn8oKThfKWZIFtppeaDhh2K8u5AdPElJ5anIb7ScL6i7N0TFHqsTXC+sii4oXrfOMQtuJGV+EqiX0t6by+KaF+x6Py+5TLzQPLOV21tadGHoCRd+tyLqAWm0hJfcQpu+OEmvpIMO6SfNa2CG0lv8aAi6YgacU4Xi8HazM7XJ6xevRoTJkzwfd6ECROwevXqKG+Bm2++GevWrcM777yDJ598EtOnT8czzzyD5cuX49BDD8X777+PK6UKEfPnz8eVV16J6upqPPHEE5g1axb+9Kc/4YMPPsBRRx2Fd999F5dcckmk9lQy7HxZJB12CCQvvkx3vsKKR+poCdw+d9RwT3F+0Y04Ve1LQuym7XwlPQHQYZPlIM5XlqXmVe8bhySdr7QmgID+zhf97PSYpOl8CfHV3FzaTwUlL/EVN+wwbfHlV3DDjyBhh3GdrzQWQ2WyqHaYtPMVNpeRna9PaGhowMcff+z7vI8//hgNEZevDj74YAwaNKjk/sGDB+O6664DYBX9oFx//fUoFos477zzcNxxx/Xc36dPH9x1112oqqrCww8/jIULF0ZqU6UiOuGOjvB7KrD4KiXNlapKc75UZY7dBuG4zpccdmqK81XuYYdBJl0mhx3GLbhhUthhFs4X4OwD0sr5KhZt8RVni4eweyLFIYuwwzD9r1fYIc2nAuI5X/SzJpnzlYX4yrrgRpLOFxBefFVXV7Dztf/++2P27Nl46623XJ/z5ptvYtasWdh///2jts2Vmk++/XpyxbS3t+OJJ54AAJxxxhkl/zN69GhMmjQJAPDoo48m3qZyJuo+TwCLLxWmOV9uK8Zh2iJIWnwBwTfdjSq+xGfOQnxxzpf6tSlxna8sww6TzI8AzBFfOhbcUI1jxaItvgYPth9PwvlqbbX79zibm5vgfOURdgg4r4eknK+0wg5NFl9pFdwA2PkKxVe/+lV0dHRg8uTJuOOOOxyFLLZs2YLbb78dRx99NLq6unDRRRcl1lgAaG1txbRp0wAAJ554Ys/97733Hto+uVImTpyo/F9x//z58xNtU7kTJ7+KXjSqwZTFVzKvqXq9vJ0v1WdLutohENz5iht2KIuvNMIO2flSvzZFN+eLc74sTAo7FN/Zpk2WSAIAWpQ5Cecrbpl5ARVfYSNPwpJW2GHU0DiVE0pfK474yqLgRrmIr7RKzQPRxJdcat5EIg0NX/7yl/H3v/8dv//973HppZfi0ksvxeBPlo3E5srFYhHnnHMOTj/99FgNnDlzJqZPn47u7m6sWbMGL774IlpbW/H5z3/eUUlx8eLFAIABAwagb9++ytcaOXKk47lubA1wxQV5TrmQlPjKquBGsQg8/TTQty/wmc9Ee32BaQU3TM/5SsL5cvs/E8IOTXO+qqrsUthJiy83RyuO89XVlXzOF1c7tDCl4AZgHxMacrjHHsBLL1m3g/YRXs5X0uILsNqdVNVdFboV3FCJcfpadHzW0fmi51EW4iutght5O19yLnA5hB1GPoz33nsvPvvZz+KnP/0pPvzwQ0cVwV133RXf+ta3cPHFF8du4IIFC3Dvvfc67jvjjDNwyy23oD+5elo/Wb7yyjFrbGwEAGz22RJbPI+xSFN8peF8PfWUtUEnAPz739Zmi1Ghr22C86XTJsvlEnZIC254vW/SOV8miC/AarNceSwq4jN7ffdxnC9ALWCS3GSZooP4SrPaJcVE54uKr113tRcSkna+4uR8yRPVLMRXbW2wRQ1BHgU3gOScryxyvtIqdpNFwY00na8gfRqHHUpccskleP/997F8+XK89NJLeOmll7B8+XIsWrQoEeEFAJdddhmKxSLa29vx/vvv4+abb8bf//537LXXXpg9e3Yi78F4EyfnK49NlufOtW+//nq01xeYXHCjUpyvNMMO6UQsi7BD2nYTwg4BZxn3uAQRX/IkJozzBahXWnUOO+SCG8ngFnYoaGoKX9lXdd6I7ygN5yvtvC9xXMKeJ35bfiRRcMPP+Qp7rR10kP2ahx9e+j7y+0ch62qH5ep8eYmvinO+KDvttBN22mmnJF7KldraWuy666644oorMGnSJHz2s5/FWWedhXfffRe9e/fuCTX0CgcUuWn9fDbcCLIZ8+bNmzFixIgQn8BcohZcAJwXjWrFLg3xRQfwuPlgpuV8pRF2WFNjTXC7u7MtNa+D80Wfm0XYYaFgfW633KQolJv4iut8JS2+OOzQwsSCG/Kxqa+3jnESBTfibrAsyFJ8ic+dhPhK0vmqq7NfLynnq6kJeP99SyTvu699v2kFN7LIf0/6c9A2RxFfdXXWdbFtm7nOV+Ch4dVXX8WqVaswbtw47E4zUxW89957WLhwIUaMGOFa/CIOBx98MPbaay+88847mDt3Lg477DCMGTMGALBp0ya0trYq876WL18OAD3PdSNIefyuJGJsDCHOykoeYYdUf1ea+Eqrs6+vt45FmO8/jvOl2r/LjbA5X93dVjuCDNb0/MlCfAG2+DLF+RLHMS/xFdb5UvUJOjtfXHAjGVSLiCrxJd/vRZYFN+hrp0VU8ZV2wQ16LiRVcAMAhg+3fiimOV9ZiC/dnC/AChs1WXwFCjtct24djjrqKHzta1/DABoo68LAgQPx9a9/Hccccww2pXRkhEAS+42NHTsWfT65aubSuDOCuD/IBtGMTVLiSzWYplFwIy3nK6lYe9OcLyDaRttxqh2GaXvYsEO3tqnwEl9phB3S12HnS00U5yuvsMNKKjVvUsENL+dLvt+LoAU3ksr5SrOyL6Cf8yXEDz0Xkiq44YZpBTeyFl86VDsE7NBDU8MOA4mv+++/H1u2bMG1116L5gBLOM3NzfjRj36ETZs24f7774/dSJl169bhjTfeAADsscceAIC6ujp84QtfAABMnz695H+WLl2KF154AQBw8sknJ96mcsa0fb7oalWUlWKKadUO03S+gOxyvsKIr7Bhh0Dw85ieW1kU3ACce1IlgUniS5wfSTtffgU3OOwwPiY5X0mJL3a+LNIOO6TngupaLhSCR0r4YVrBjbjOeBB02WS5ULD7e+EDtbYmU+wpawKJr7/97W9oaGjAueeeG/iFzz77bDQ2NuKvf/1r6EYtWLAAf/jDH7BdMdK89957OO2007Bjxw585jOfwT777NPz2FVXXYVCoYDf/e53ePLJJ3vub2trwwUXXICuri6ceuqp2DNO+bsKxLSwQ5NyvpJOkNXJ+cpLfPmFHQLRxFdWYYfsfJWP88UFN8KhQ86XfL8XQXK+CgXnBs5hCZsfE4e0wg7jFtxwc75omHpSmBZ2GLd/CIIuYYf0e6ZBeD4FzLUk0GF8++23cfDBB6M2xNlTW1uLgw46CG+99VboRn388cc466yzcPHFF2P8+PHYeeed0d7ejmXLlmHevHno7u7GuHHj8OCDDzr+b8KECbj55ptxxRVXYMqUKTjiiCMwZMgQPPfcc1i1ahXGjh2LX//616HbU+kkVXCDxZeFqTlfgJ7iK82wQ/p5swo7TNr5SrvUeN7iK6zzZZr4SjLnK63Vd8CsaodZ5nwNGhRPHGTlfNHKrjo4X52d9rXl5nwJ0hJfXHDDQpdNluk5JZebHzgwfruyJNDQsGHDBgwbNiz0iw8dOhRz5swJ/X977703fvKTn+C5557DwoULMX/+fHR0dGDQoEE46qijcMopp+C8885DvaKHuPzyy7HPPvvg5ptvxiuvvIKtW7di1KhRuPrqq3H11Ve7bsDMuJOm85VEzhcX3LAx3fkSxyNMBx+09HilO1/V1clOUgQmiK80nS8OO7RIwtHXJeyws9PKT/U7t4LkfMXJ9wKyE19xQuT8xFeUUHv6Wd0KbgiS7Neqq63zYMcOFl8CXZwv+t7U+TKx6Eagw1hfX+9Zwt2NtrY2pUDyo7m5Gd/73vdC/59g8uTJmDx5cuT/Z5ykWXAjCecri4IbtbXJdfCmbbIM6O180fOzqso99r/Sc77SmninIb68rjXeZDkcJoYdVlUl31bV9S+7wnIhJ78FNzfna/t2QOxYEyffC8hOfMU5T9LYZJlOOd3CDlXvlQR9+ljHI27YYbkU3Mjb+VLlApu+11egnK9hw4bhzTffDP3ib775ZiTHjNEL0wpuUPEVNwFVvHZSrheQXcGNJAck0eauruAugWpi4lbtcOtWYPVq+/yKGnbo9X+VXu0wrZAzccyTSHout1LzaVU7LBaD98UmVTsUk90+fZIroCAIk/MlP+Z2rN2cr6SKbQDeE9WuLj1yQ9MIO3TL/0s77BCwxV4lFdzw6k/SdL6CCMZydL4Cia9DDjkES5Ys6akWGITnn38eixcvxiGHHBK5cYwexMn5ooNTVpsspxF2mKT4Mtn5AoKfA6rPppqsPPKINUEZPtyetER1vrwG4SjOl1fOV9rOV9KTKpOcL95k2UYOsW5vBw44wLpeXnvN//9NdL6SDjkE/MMO6+rU/dx//ifQty+gKKKsPOe3b09ug2XAXXx9/DGwyy7Wz+rV8d4DSF580esyrvjyc76SFl/i/KuUghvf+hbQ2Aj87Gfqx/N2vvxyvsrW+TrzzDNRLBZx0UUXoSXAp9y0aRMuuugiFAoFfOUrX4ndSCZfdKx26NXhpBF2mJb4SrraYVrOVxTxRb97MTiqJrm/+11pB7zzzsHblqb4yjPnq5LDDsvF+Uqj4MacOcD8+cCGDcCf/xyufaaIr6SLbQDBCm7IfcTGjdYxbm8HfvrT0td0c75WrbL/HjIkXrvdJqqPPgosXw6sWAHMmBHvPYDkww7dxFfQvtct/88k58uEsMOuLuC226xr9q671M9pbbVvJzEXClvBs2Kdr8mTJ+Ooo47CggULcMABB2DGjBkoFoslzysWi/jLX/6CiRMnYuHChfjc5z6HY445JvFGM9mSlPiqqyudKEWdnFRX2/8riwF2vix0El/i/1WTFdpxfvGLwLnnAj//efC2lVvYoWnOl5j4dHZa4XBx4FLzpcgLTR9/7Pzbj6ycL/pZ4xbcyMP5UoUd0knn66+XrrCr+tuuLuCDD+z7R42K1WxP50uQxMp/ks5XdbUzbDRKSKpb2GHaBTfo+3V0xBujs7j24oqvVavs60HkKcosW2b9rq0Fhg4N/x4ySRfcMNH5Cjw0PPDAA5g0aRLee+89nHzyyRgwYAAmTJiAIZ8s63z88ceYN28eNm3ahGKxiN12262kFDxjJknlfNXUWB0n7SDiTFh79bI6C/p63d3OvytNfKVdah6IJr7q6qzBVDXJFR1+bS3w2GPh25aV85V1wY3u7mAV1/zIyvkCrPZGnQjRfEAv0RK0uiUlr7DDJCaFVVXWZ25vt85Hmk8UpP/ISnwVCtb31tkZrV8rFtN1vqLkfNE+rFi0XMcvfMG+j543fftaThkALFxo3z96dLx2u+XH0PPAbdIchiTFl3z9pl1wIy3xBVjnJA1xC0MWrnNc8bV0qX3bTQgtWWL9HjUq/ngEpFNq3jQCi6/BgwfjlVdewX//93/jj3/8IzZu3IhnnnkGhU+WN4QTVlVVhTPOOAO33XYbBlBpyhhLUvt81dRYHWea4ku+kOMkoHZ22u1X5atFJc2CGyY6X2LiEHUXiHINOwSsYxj3dbMUX52d0SdCQc9dU5yvqqpkJiqAde6pxFeQ8zgr8QVY52pU8UWvNV2cL9nJnT3bXXw1NqrF15gxsZrtOlGl5wF16KISRyjI43gS4kuHghuiHVHFVxbXXpSxmeInvjZtsjcxjruQIEh6k+WyFl8A0K9fP9x333249tpr8de//hVz587F2k96gObmZhxwwAE4/vjj8alPfSqVxjL5kFTYoRBflLjiC3AO2nKCbBznK409vgDzna+g5wD97sV3pap2KCYOjY3R2kY/p9cgbNomy4DVzjjiS+xXBGQnvqK+T1DxJfYrExPfsM5XVjlfae2zp6vzBcTLV0xzjy8g3CbL4jE59Hf2bOff9HHaf1HxFTfs0C0/hhb1KEfnS4eCG3I7wmJC2KGf+KKPJyW+6uosp7xYrNyCG5GGh1122QWXXnpp0m1hNCVN8RVngiI6M9rhyB2l7uIr6YIb9HgnteoOxK92mJXzFTRczSTnKw5ZDP6y+IpKGNe2vt6+1vN2vuh5LiYUQLKLH3ShqVzFl9tkOym8nK+amtK9xXbsKO3r5s61RKJon+x8CVautH4PHRo/aiKI82WS+DKh4AZ9vzgVD00TXx0d1jlNj2ca4qtQsM7rtjYuuMEwriSZ8yW7FHH2chGdDu3gTBNfaTlftbXJ7pOTVthhd7c9uEV1vsot7FB2vuJgqvjym0zRz5KE85XUJst0QpCk80XFF3U8dBVfURaV0na+vHK+xGNyPydPvDs7gRdfdP4tUC0eJTFZzSrsMMlqh2mGHfrtKZYEcthhVLK49uhYH1d8AaViKA3xBdjnddRNlhsa7HHCROeLxRfjS1LOV3W187Xirgxz2GEpQarFRSEp8VUsOvMo6PcV1flKM+zQq+BG2pssA+x8uUE/S97Ol+gTC4VsxFcc5yutjV4FSTlfWed8uYkv1cSbhh66OV+CtMRXsWiW8xUlz1mXghu6O1+FgnohOiiimIZA7h/p43mIr2JRPa8pFOzQQ3a+mLIkqU2WZecrKfHV1WVfnPJgGafgBp14Jym+sii4kfSeIklUOxTQc4Ku2CbhfJVD2GFSYgbIptoWbW8cERNVfIV1vlTnbxJhh7W1zgWENHK+4hTcELlyaSKuAd3DDuWcr6DOF+AUX245X4K0xFdrq/MY5+18qUrNU0wvuBGVrFxnVQpGEIrFcM5X3OIxFHFe+7XZqwquWOxi8cWUJUk6X2mIL8C+gCvd+RKvp5PzJU/66ESXrtjqWO3Qq+BGFjlflRp2mKbzpSIJ56uuzjkBT8P56u6OHnaYdsghYE7BDfGdid9hnK+XXrLHFbnUvEwS4qu21l5gEGMSFeBA/s5XuVU7NKngBqCOAgrCunWlYkt+DSG+qqqAnXeO1j4Vos1+zpfXuCCcr5aW+HtMZg2LL8aXJMSXKLucpPiSNx8FzMv5Cno8//EP4MwzgVdf9X6ejmGHNTXOwZGuZCXhfGUVdphHtUMTwg7pMc9DfIV1vlQkJb7Scr7ouUcnGeUkvvIsuBFEfDU32/eLftjP+UrCKRDFCQB38ZW08xV2ISntghvlEHaYZshvVPElu16Au/M1YkSyETXU+fISTl7jgnC+OjvjieQ8YPHF+JJEwQ1x0dCLN+7khE5IRCcnX4A0JDEsujhfxSIwdSowfTrw7W97P5eGQCVJkuLLJOfLS3xVVTnfj52v7MSXmOiKksV+pOl80WuOTsDTqHbo9t5e5CG+yrHgxjHH2LdfecX6nUXOF2AfD9Ee3ZyvtEvN+xXcqPSww7TEV1ubfa4lme8FuG8eLhPE+QLMK7rB4ovxJYlNlsVFk0bBDcA97BCInveli/jasAFYvdq6LUoYu5GW8xXlHKCTUjfxZVLOl2rwpK+pY86XSeJLzg/14r/+Cxg0CLjyymCvnVXYYRbOF0VX8dXdrd7Tz4ssC26IDZTFsRGPeTlfu+5q3xbjTBY5XwAwbJj1e+XK0tBTwBJfccOu0gw7jJLnrMs+X7oX3ACiF9zwE1/Lltm30xRfXqGHXlVwTS43z+KL8SWJsEOV85WG+FKtUkUNPaQdQty9WihhByLaQfp1rpXofOW1ybL8mmltshyHLMJe8nC+zjzTmoBed12w184q7DCtnC+3iVuQ/ljOa0qTOMWE0g47lEPfOjttwaJyvtrbnW2iEz1xTL1yvgYMAPr1i9tqCxG+2NEBrFpV6nx1dwcr2e2Fbs5Xnvt8meZ80U3Yw4hwP/GVVqVDIJr4YueLqShYfOXrfNEO0u+z6JrzRfNy3MSXaft8ya/JmyxnJ76AcPvYZRV2yM6XfTus+Eo77JAW/mlvV18bsjtG20QneuKzeTlfSU5W6WstXVoqvoD4eV+6iS86ltPzXzVvSHq8S6rgBh1nssj5AsK5X3KZecA570mr0iGQjPhi54spa9LK+Uqj4IYqREBn8RXkeIYRX6Y5X3TCoHPOV1WVeoBPO+yQc76Swe96SGKT5SyqHcqUk/hK2/kC7GPgJr68wg7pRE98Ni/nKy3xtWSJWnzFzfvKqtph2IIbffo4F+9MDDukFSvTQLUQHQQ/5yutDZYBFl8svhhfqqvtjiNqzpfoHLMuuAHoLb4qxflyq3aYhPMV9JyKU+2wvl7ttKQRdsjOV/KTqXIpNS/jdx53dtrXm+7iK23nC7AXSHbsCCa+/Jwvr4IbSToFsvMl53wB5et8yeeCiWGHaV975Sy+vHKBOeyQKXtE56qT81UpBTdoaEB7u3ciexabLAc9B8I6XzqHHbpNftn5ymeT5bCklfPV3W3/r45hh1nlnAiiOByCtAtuAM5xLKzzpXvYYVznK86G7H7iq1Cw7wsrvmQXNItqh0nv85X2tRdlcXTzZrVb5Ca+Ro2K1DRX2PlimABEFV9iYpJVtcMknS/6f0mKrzgFNwD376Cry0621cH5ohs+m1pqXnzWLMUXO1/Jn79pOV/0+pWdryQXQKIW3MhTfOkYdhhVfNXWOifkcsGNqqpSwZik+KIumo45X/K5ruqHw+4BR8MOvd7L7f3ikHTYoY7OF51X0MIwKvHV3Jz8ggiXmmeYAOjofAXZZJk+Fpa0nK+wzoYsvtw+D+2kdMr5SrvUfBZhh27iK+1qhyy+kkH13dD7ooovOaG+0p2vONUOswg7DJvzJdrU0KDuP2hYvTxGJCm+mpvt10/L+Uoz7BAIJ76KRQ47DENc8bXnnvZtMe9pbwc++si6nXTIIeBsMztfDOMCHbTCoEPYoW7iK0wIxpYt1j5fFLfPQ19LB+crbLVDHZ2vPMIOTdtkmR5zXcWXX7GUJJwveZNl3cRXmtXWBEk5X7rkfFEBoPps4rypri79jpKcsBYKdtjXhx+qhVY5ia/2dvvYyi5oFuKrVy87x7cSnC+V+Fqxwo6kSbrSIZB8qXkWX0xZQgetMHiJr0otuAHYx8FPBKgSYoM4X2mLr1WrgBkzgnWapuV87dgBPPII8H//Z59PboOn7pssx8njCEoemyyHxW0yKBYF2PlKhiDi6733gOeeK92PSMecLxr65uV81dQ4x4jevYGmpmTbLsSc2xgcJexw+3bg8cctJy3Naof0OUEWvrzOhSzEV6Fgv69oy/vvA089FW7zcJ3FF80lV4mvNIttAMlvssxhh0xZomPYoakFN4Dgq4BhxJe8Cp8kdPBoawMOPxz44heB73xH/fzubnuQClrtMGqeR9KbLF95JXDqqcBFF9nnb5Zhh6Y5X6aGHdLzMinxpbPzpUPBjVWrgE9/2uo/ZsxwPib67tra5PsvQdScr4YGdUgldb7oGDF6dLh96IKgmgAPG2bfjuJ8ff3rwIknAscdF+9codEcQHznK2/xRd+3rQ1Yvx7Yf3/gmGOA3/422P8Xi/YxTdt1jhKZsmyZfZuKLzG/0FF8sfPFVBxJiS+TCm6kKb7EcYgivtw616ycr5dftlYBAeChh0pXsIFSF8PP+WpoiL4PysiRwIgR1u2DDnJ/XlDn6+WXS+/7zGfUzxX3jx3rTFqOA+d8Zed8xRVf8oLHqFHAzjtbf3udi2Fx++5otUUVWYsvvypx8+bZx+z5552PuVW3SxJxDGhOEb2fHqNt2+zjJztfov+g41uvXsB++1l/H3108m1XTYB32cW+HcX5euUV6/drrwH//rd9f5RzhfavXmG+QcTX5s32bTkcXRZ6bu8XF3Eub90KvPqqvTjwpz8F+3/6OXV0vjZutG/TSoZi3rN+vX0fFflJkYT4qqmx+wvTnK8UTlmmHImS80XdD9U+XyYV3HBbeY5K0FVA1Q70eTtfK1bYt1evBhYtAvbYw/l8ucP0q3YYNd8LsD7ra68B77wDfO5z7s8LKr7EY7W1wK9+ZYUPHXec+rnXXmu95wEHJLeJpsml5nUVX37OV9R2y85Xba01UXv7beDII6O9pgqv/qejw33lP2vx5ZcATyMT5MmSW3W7JKF9ABUrKvFFJ6duBTeo81UoAP/8pyVovPqhqKjybnbZBXjxRet2FOeLfh+0X4/i1PilFIRxvui5Qc8p+lpp7gsI2JP6tjbnIugLL1jXvd8xyvLaiyK+aN9FHSQx76HXR5zx2Y0kxBcA3HyzdT4MH55c27KAxRcTCNHRdHVZP0E6O1UOR1phh6KjS6vgRl7iS5ecL6+BZvbsUvElF//wE19R870Ew4b5r84FDecTg1KfPsAFF/i/5jHHBGtjULjUfDabLKcRdggEOxfD4ie+3B7PIueP4hcGRBfH5MfdqtsliZv4EveL4kDd3c5CR0FyvgBg0CDg859Pvt2A2vn61Kfs21GcL9ViZW1ttJBJP+crjPii5wY9p+hr0fE57bBDOg5v22Y5uG7REALTxRcV83HHZxVJbLIMABdfnFybsoTDDplARKkUpxIDaRXcSNP5qq9PztUQpF1wI03nS2b2bP+2uFU7FBOGNFbWZOj55ldwA8hmsqqCnS9zcr7SdJspfuLLjTydL1UYEF0ccxNfaYYd0nGMhrbRYyNu0/YFqXaYNn5hh3GdL0HU8ySo+AoyfwjifFHSFF/d3VaRGMqsWf7/n+XChyoKyA/RN9DQPUDtfOUpvtIcF/KExRcTiCjiK0vna/t2a0BUTUTiFtxIOt8LiOd8uX2eNEvNy+XiKaqBKEjYYXu73eY0OneZQiFY7qJ4LIvS3CpMdr6iihgg+5yvmhr7/iSdrzQwUXz5OV90gt3V5cyvSgu/sEP6HPp4Q4N6ixDZ+UqTESNK3ydOzpec9yaIep74FT4Sj3d1qfOEKX7Ol3ytpRl2CAALFjgfUy04yuTlfAWd79BxTrXnVhLbwHjB4othAkA7jzjOV5oFN+hAQt8nrvOVhvgKknwsSrrL5OF8Ae4DyLJlpSLRS3yJPMC0Y8pVBBG9eYuvtApupPV5Ktn5ykp8ydfe4MH2bZ3EF50oq5wvt7BDen8WBTcAd/GlOk5CEMruTZbOV3W1XcxFEMf52rFDLYLScr7CbMBNz428nS/AymumzJnj32eYEnZYV2ctrIrvJyvnK2ibWXwxFQ3tOMNusguk43zJVjsdwAcNcj4WBfF/eTlfy5er789jk2WgdAA58UT7trwSGMT5SjumXIVpzpcJYYembrJsctihqO4JBAuhBfRwvtwKbtD783a+VMdJCEK53xbnTVaTQrnoxrBh9rkR1vly2zw4CefLK+wQ8O/X6LnhlvNFSdv5kvu1zZuBN97w/n+TxBdgz3PY+coGFl9MINLI+Uq64AYdTJIQX1mEHXZ2uodgUDeJrnTnUXADcA4gffsCl15q/x1FfOXhfAURX1ntzeIGl5rPxvlKotR8XmGHVHyVm/OVlfjyy/miyM6XHHaYhfMFOPO+Ghut80L0nWGdL1XIIZB+zhdgnvMloKH3fqGHuosvObdZFl9ifK6qSmcOxOKLYQJgQsENOpgEESteFIvZiC/AfSCiZeZpNcE8Ss0DzgHk0EOBQw6x30fO+wpS7TAP5ytM2GFeBTdMc76SEl9+Va3ikGW1wzSQxRetpqiT+ArjfG3fbrcvq7DDqM6Xm/jK2vmi4qu52fot+s6wzlee4stvDhG24Eaa+3xRJk+2b/sV3cjy2ouyyXJQ56uxMfkNw+n70fdUkfaWAnnB4osJhO7Ol1fYYZSCGx0ddm5SXuKLOl9jx9q389hkGXB28EccYQ1OYiPZRYuc+WlyW1TVDtOOKVfh53x1ddnfOztfwTDB+VIVizE17HDgQGefpJP4amiwj6lfwQ3AnmRnFXYYNedLCEI5VzdP56upyfrt53xt22Yd361b7b4N0DvsULeCG4IpU6zrDwCee855PGV0d77CiK808BNf4tiy88VUNFFWVlQrFkkW3JBzvpIMO6SdQZoFN4Dw4ksH5+vww52/AWswEsjFP/ycL13CDrNyMrxIw/mqrk5vgmiC+CoU1KvlSW+ynBb02mtuDn6OZFFwhVIo2JNlv7BDwJ5k5xF2aFrBDcDb+dq+vfQ8Pvdcq+2NjdbP7rvbmynTY77nnvZtHQpu6JDzpToPd9kFOOww6/b69cC//+3+/yaLr2Ix/W1g6LxAFl/f/KYVvfTQQyy+mAonKeeL5irE3ZGcxiK3tCRbcCNt8RVk8iQGSSBY2GHanZT4vvr3Bw44wLpNN5p8+233tvhVO9Ql7FAH8ZWk85VFCKUJ4kv1miaFHdbX26HUu+0WPIQra+cLsMPE/MIOAbXzpWPYoargRne3na+b1aRwzz1tF3fXXa3ftO+kC1qrVwP33ef8/w8/BP78Z+s2PebHHGN/7qjjcho5X/L+aqrXArITX6NHu495MjqLr2LRXXx1d1vfT9rOF31POt/atg247TbrHLjjjvIVX2X0UZg0SUp8TZoETJsGbNwI/Od/xm/XyJHWBojLlqXnfHntsROVIAPR2rXW77o6YMgQ+/68nK8bb7TaccYZ9vlA4/Fpu8JWO9TF+cpjsiqTxibLpomvNCZTtbXO6zqJfb6yCjssFIB77gH+9Cfg298G/vAHdRtk8jifqfNVLDrzRcrF+erocJ4zWTlfO+0E/OY3wIsvAt/5jnUf7TtbW+0+ef16+/5evez+WXXMR4wA7r8f+MtfgO99L1rb0gg7VOV7ya8FZBd2OHq0+5gnk6XrHFZ80UJfcsENwDr+4vxOW3xt2eLslzdvtttG2wGw+GIqkKTEV6EA/PCHybVr9GhLfG3d6nSK4uZ8Zel8uR3Pdeus383NwTrXtFeIxo+3BmiKW7t0LzUvcrvkXCAdnK80Nlk2TXxl4XyZVO0QAI4/3vqR30s38SUmp52d1gSfTmKDiC8T9vnq6MhvRf7CC60fgZvzRZ3HffcFXnnF+RxZ8H7pS9ZPVNIouKEKOZRfC8jG+erXzzq3gwodnQtuqPotOs/5+GP7dpoLoyrni57DW7aUr/PFYYdMIKJsspzFigWNgae70Dc22p2KiWGHxaK7+ApScCPNVXiKW7vCFtzIepNlQH3cdRBfJjtfUUUMkP4g65XzZYL4okTJ+cpafAGleV9Bwg6zcr7odxe24EZnpz5V2GjfSSeu9NjTzZlFv5t0qCc9tqrjEfSc7ey0P4eb85VHwQ2xx1pQoaNz2KGf+BJRN0D2YYd0XtDayuIrUzo6OvDMM8/g29/+Ng488EAMGDAAtbW1GDZsGE488UQ88cQTyv+bNm0aCoWC58/ChQsz/jTlQVKbLCeNm/hqaLA7PB3Fl9/KdUuLfX9TU7DONe1NllXIRU/c2qKb8wWoFxF0EF/sfGWf80Xzd8KQVdihTNCJrJvASBPqVsh5XzqFHVLCOl+As7/Lc1JI+046caXHnoovN+crLn5hh0HdWrr/Wp5hh/IxEXONoEIny2svCfFFXyMr50u8J21zpThfWn6UWbNm4eijjwYADBs2DIceeigaGhqwYMECPP7443j88cdx0UUX4de//jUKig0I9ttvP+y///7K1+7v5mMzniQVdpg0VHzRykN9+lgXdmtrNPFF/ycP54uuPEUJO8zD+QobdpjnJsuA+rhnXR1ORRql5tMc/Ol3q7P48nK+AEuAhZ3EsfNVitdeX27OVx77fLndH1R80QU6dr6SK7jhV2Zefi1AT/GV5bUnoku6u4PNd1Rty9P5am+35gXV1c55wZYtzj6WxVfKVFVV4dRTT8U3v/lNHCbqen7Cgw8+iDPPPBN33nknJk2ahHPOOafk/0866SRMmzYto9ZWBiaIL7piJsQXoKfzFVZ8uTlMlDycryDiSy41L6od5rnJMuDvfJXTJssmOF9phyl7OV/i/U0UX7pVO6QTZioAikV35yuPfb7c7g9S7RBg50smKfHlt8Gy/Fpu7xcXWZDqLL4KBes9tm1LPuwwi5wvwGp3Q0PpfnV0XsebLKfMf/zHf+Chhx4qEV4AcPrpp2Pq1KkAgPvkOqpMakTJ+cpCfIk4bJmGBruT1L3ghmogEvlegD4FN1SY7HzpGnaYZBifELomiK88ww6BaHlfeYUdmlBwA3AKALlCIH08b+eLHhvVc0x0vuixHzbMzrsV/W7WYYfsfKVLmPlOmIIbWThfgH090XkBYFXGFpST86Wl+PJj/PjxAIDly5fn3JLKIW7OV1qD04gR6tfu00fvnC+/lWuvsEO345/HRDBowQ1dcr5MKLiRlPOV1eBvivjyCzuM0nYdnC+dxRd1MeSQQ/p4HgU3BHJBINVxEmOAm/jS0fmix37gQFukiX43z7BDrwVcKr50KjUvxJeOBTeAcJE+Ojpf4nqSnS96PpST+DLyoyxatAgAMNxlN8B58+bhqquuwoYNG9C/f3+MHz8eJ5xwAvpmtbxehugadlhTY4VULF3qvJ86X9u3l+4340feBTdo59fUFCymOw/ni34OL+fLq9phbW12E0O/87iccr6y+iymiC9Vqfm4lRpZfJXiVnBDDjmkj+dZcEM+LvLfvXvb/Zdbf6e789W/vyXSWlrSc77SCDt0c76yqHZoqvOVRM6XTs4Xiy9NWL16Ne655x4AwKmnnqp8jijKQenfvz9+8YtfKHPEZLaqlugiPKec0FV8AVanKIsvmvPV3W21JYwblHfYoex8FQrW52lry2+TZRUi1nzHjujVDrNyvYBwYYem53yZ7HyltckyxeSwQ53Fl5vzpRJfWRfcUB0DP/FFJ+E6hh0Gcb4GDLCfp3u1Q12cL3pMevUChgyxbwvomPfSS9ZG6BdfbO2JqbP4Yucrf4z6KJ2dnTjrrLPQ0tKCffbZBxdffLHj8V133RXXXXcdjjvuOIz+ZJliwYIFuOGGG/DXv/4V5557Lqqrq3HmmWd6vk9jlrNBQ9BdfMlQ8QVYHVJU8UVfJynC5nwBVgfuJb7yKsnaq1ep+AqT85WlIW1C2GEazpdp4suUnC8dnK8gBTdk9zlN3Jwv1XqleJxOuHRzvqgY1LHgRhDnq18/Z9hhsZh82CH93lT9TZoFN9IQX3V19sLi6NF25Iyb+PrqV4G33wbefBN44YXsxVeYNAsdc77EYgDnfGnIJZdcgmeeeQaDBw/GQw89hDqpJz377LNx9dVXY//998fAgQMxcOBATJo0CY8//jguvfRSAMDll1+O9qDqgekh7A7qQDabLAOl4ku4RFHaLNDN+QL8E2rzKDUPqFfcvMSXXO1QV+dLB/EVx/nKysUrh02WAbPEV9iCG1m2za3ghlfY4YoV1u/GRv3El6nOlzi2ffta7RPP6+622p6083XKKcDw4cCeewJHHln6uGkFNwDg61+3zodPpo8A3POclyyxfi9eXPpYls5XR4c9xrrhJ742bLBvpzk+9+tn3xbnbqU4X8aIr29+85u46667MHDgQDz11FPYY489Qv3/tGnTUF1djbVr1+Lll1/2fO6WLVt8f1auXBnn4xiHSc5Xnz62ABOELbqhS8GNQsFKlgb8wwryKDUP2AOLW8ENudR8V5c1OIiV1yydLxPEV1WV7VKw85Uc5VTtMGzYYZYhtG6l5lXOV2ur9b0vW2b9PWZMuNzcsCTpfOlScMNvny8hhunzWlvt76OmJplzd9ddre9xwQL1hD2oW6uL8wUAt9xiHav/+i/7PrdtX8Rt8R1knT8cpCiXwE98UdIcn1Uuuex80fOhnMSXER/lyiuvxC9+8QsMGDAAM2fO7Kl2GIZBgwZhyJAhWLVqFVaIZTYXGgJ48F1xlngNRGfxJZebF1+fzuIraMGNwYPtgcVPfJnifHV1WauuxaL1d5bOl9+kVYeCG4B1zNrbzRBf5bLJsknOlyniy8/5KhaBRYvs46gKIU+SuM4X/X9TnC/xfdDnbdlifx9J5th5XbdJOl/y95jm/ELuN1Tzis5Ou//assVaXMzL+RLt8pq3qNrmll6R5visyg+VnS/q4pWT+NLe+frOd76DW265Bf3798fMmTMxceLESK/T1dWFlk++Xa56GB6dxZfK+QLiiS/6/Dz3+RIhh4C+zlcQ8SVXO8yjzDxgRsENwD4/KrXgRlbVDll8JU9NjX1N+xXcAIA33rBvpy2+kiy4oUvOF63GKPrV9nZbHKqcLyq+0gzzpJhWcMMNumgjzgEqxAHr2OYtvrzQxflShSjLzheFN1nOiKuuugo33XQT+vfvj6eeegoHHnhg5NeaMWMG2traUCgUIgu4SkbXTZYBYORI598mOF9ek6dt2+yQECq+xHfgFtOdZ8ENwC7pr2qLPMnNY4NlwIywQ8D+/kxwvpISX2nniJZrtUOv/lg8lvVCgnAs3Apu0OOepfhKK+wwz0lhoWCLXdGvqsq1yw6Z+D7SrC5JCVtwo7raXRjmKb6A0gVHWXxt2ZL9Qp5bOKSKMOIrzcVRVYiy7HxR2PnKgP/5n//BjTfeiAEDBgQSXsuWLcP999+P7Yqz7rHHHsOFF14IADjzzDMxbNiwVNpczui6yTJgdYT0KxUdtqkFN1TFNgD/mO68JoK0XaJT9ys1n5fzZUK1Q4CdrzxyvkzaZDlswY2sxZdY0XZzvmh//eab9m0dxZfuzhdQuoGyyj3K2/kKG3Y4YIB7/l/e4kvOc5bFV2treeR81denO5cI63zlfZ0liZYfZcaMGfjJT34CANhtt93wy1/+Uvm8pqYm/PSnPwUAbNiwAWeffTa+9rWvYfz48dhpp52wbds2LFiwoGdT5iOPPBK/+tWvsvkQZYbOYYeANWivXm3dTiLsMM+CG/IGywK/mO68nC9Z5NbXe4cddnfr63zplPMFmOF8pZHzlcZkSiW+ktxkOctrTuewQ8Be0d661Wpfba1TfI0YAXz0kXU7b+dLvs805wso3cPLz/lqabHHxDzEV5CCG24hh/JrAXo6X+Laq63NZpuHMPMdv02WBWkvjFay86XlR9lA6lzOnTsXc+fOVT5v9OjRPeJr5MiR+O53v4tXX30V77//PubNm4f29nY0NTXh+OOPxxlnnIHTTz8dVVltdlJmmCC+RBFLE8IOvVauVXt8Af6fRwfna/t2q3ys/N3TFUzO+fLHJOdLVGcUm5lHRfwvrfaYJGmGHdbWplulTyaI+OrstMOT83K+AGtS1dTkDDscMcK+LUQYUFo8KWni5ny5FdzIe1IoFrBaW63Qbz/ni+7jpFPYIW27W7ENoFQw6ya+qPOV1bWXRs5X2gujKueLxVeOTJ06FVOnTg31P4MHD8YNN9yQToMYI8SXIEnnq1BIxwGJEnboF9Odd84X4Kz+JKittXPBgHxzvkwJOzTJ+QKSqc4o/jetiVSamyxnfa4EmchmnfBPUYkv2fmSqa8HhgxJt12qRSnT9/kCnHt4bd+uLtdOF7nWrLFv61Rwo63Nvg7LxfnK6tpLI+crS+dr0yZrDPBqezmJL7aBmEBEyZ/KUgzQFVOxkpdEzlfv3umsaMfN+fITX3k6X3JbTK12yDlfwQkiFteuBZ5/3l3kiP9Nq69Is9Q8iy8nqnLzbs6XYNSo9MOzqqtLJ+rysZG/S7ewQ51yvuRiGqpy7XSRKw/xFeScDVJmXn4tID/xFSTnKw/na8cOqw2zZ6v7ZF3EV3293e6WFm/XC8j/OksSFl9MIKI4X2lXL6Ok5Xy57X0Rl6Diyy3ny6/ghk7Ol0nVDjnnKxqivW4CZvt2YPx44NBDgZ/9TP2ctMVXGqXmadhhlgTJn9HJ+QL8na+0870EfjleUQpu5O18yRsoh3G+8gg7dDtng5SZl18LyK/gRkeH1W/o4HzRcXjbNmDyZOCII4Bvfav0uaq+ob6+dKE5i7FZfM+bNnkX2wBYfDEVSHW1fWHqGHZ44IH2IDlhgvU7jvgSg1e/fvHbpsJrIIqa85WX86VyGINssizIauUVMC/ssFycrwUL7Nye6dPVz1m/3vqd1oBfTs5XkBAu3Zwves0PH176P1mJLz+xZWLY4eDB9u01a/ydL5rzlVX/S50Vtz3fVIVCVKiu5SyRF0J1c75WrwZeecW6/c9/lj5XNc4VCqWLzVlEpYjvudKcrzL6KEyaiNynHTv0FF9DhlgFNxYvBqZMse6LKr66uuyJIBU/SZJG2KFOzpfcFrovWXe3c2KYlruowrSCG0k5X2mLAzH5dGvv0qX27ddftwZaOrnavt1ejU9rEl7JOV9Zt0/lfPmFHerqfFFnSNeCG/TYLV2qdpDydr5U54RMUOdLl4IbgNV36eZ8vfuufZsu5grcFhl79XJ+liydr82b3c8LQd6LHEnCzhcTGHlvCz+yLgDx6U8DJ5xgX6BRxdfGjXaBCBr2lyReK9duYYdhCm7olvMlT3Jp+3UVXzo4X52dzmIlYchSSPo5X1R8dXdbuV+UZcvs22lNwtOudpgluud8qaqYUbdjp51K/0dX8WWC8yWLL79S82JbFiA750t1TsiowiVV5B12KI958nich/NF3+e99+zb69aVjiFu45yc95Wl8wUAK1e6P69QyKZkf1aU0Udh0kZcpFGcrzwGp6gFN9ycpyQJ4nz16+f8DCY5X7qKL1PCDmk7o4gCQK+wwyVLnH/Pnu38m4qzLJ2vuBtEm+J86RR2WFUFDBpUOpFKu8y8II7zpWvBjSDOF3UxaNuzEl+9etnHPojzZULBDUAddkh2S8qsb3Bzvjo6So93UPGVpfMFACtWuD8v72ssaVh8MYGJI77yuHCiOl95iy8RJiC7bn4FN3QoNa/K+ZI3mdTZ+dKt4AYQPfRQJ/FFxRVQKr6oODMx7JALbjjxCjtsaLD6A3lyzTlf0fFyvlRhh5Sswg4BZ3EFFaY4X3IUiiy+RNqC/Nw0oePo4sXOx+icBnDvG/Jwvlh8MYwPLL6Sw018dXbaq2bye+vqfKnCIf2cr7wmhqblfAHRi27oLL5efdWZA0QfT8sBkSdscasdFov2581aqBcK/kVZdHW+hJihz6muVocipoGf8yVvjRFEfOU9MRwyxB4fqPNVV2ffX1OjXujKsuARLa6gwkTnSyW+aJ5VHuKL5ljL7QH0cr7o98zii2EUiE6kksRXWjlfbivXdMUsrPgSx7uqKtvYaA47TJ5yd746O4GXXlI/borzRc+fPM4Vv73g8lxI8HK+xGSfPmennbIbI/zEl3xfkIIbeTtfhYK1TxrgFF+ye6RyMrIUX6I9LS2lAgEon4IbeTtfMrLzpVPOl5vzJVeaZvHFVCziItW14IZMmB3fKW6l3pPEreCGl+sWtOBG1iFQQaod0sGxu1vfsENxX1VVvhOqcnK+tmxx5kAIaOhhFuIr6YIb9PzJ+pqj76mj8+VVcEOIGbrinVXIIRBefAXZ50uHiaE4hlu32ts6yO6RysnII+ywWFTv6RS11LxuOV95iC+v94kqvrJ2vpYvt28PG+Z8ng7XWJKw+GICEzbsMMtNllX45Ui5kWfYIRV+XjlfXmGHee55orvzFTTnK0/XCzDX+VIJGCqsPvc5+7ZKfA0enN5ksNKcrzzFV69edvtaWqzJthx2SAVanuJL9d25OV+6brIMOI+h6DN0c77oRFsVehh1k+W8xzwdxFcY50vXnC+xaACU7gXI4oupWMQg1dUVbKKSt/NlYs6X13sHLbiRp/MVdJNl3cMO8xZf5eR8UfF16KF2TtdLL1lt7Oy0B900J+FpOl95ii8dC24UCs7iCnRyqnK+sqp0CPgX2JDvc3O+aPluHSaGqmtHFjC6OF+AuugGFWRy2Bklb+fLr+AG7Qd1FF9urn3epebpWMfii2E+wWtvKsHcucCnPgV8+cvOC1xX8bVhAzBxInDQQXbHn7X4evppa/Corgb+8z/d31tX58uv4Iaq2mFeVQWDhh3mWWwDMM/5EpOfrq7SPWXkSoZHHGHd3r7dKryxYoUtfNIUX0k4Xxs2AAceaPUXtJ/II+xQnMs6Ol+APanatMm5x5duzpeX+Kqqcj7f7XvWwflSCVg5dM8U56ux0Xscy1t8+TlfFB3El1vBDTHvEORdap7C4othPiHIvll33GGVOX3wQWdYka7i66GHgNdesyaBf/qTdZ/oqGprvVff4lBb6+x0urtLE5B32cX5d9CCGzrkfMnC2835qq+3Vsmzgg4uqpwDXZwveq15Dexe5OF8AaUiRs7nOvxw++/Zs7PJ9wKScb4ee8xaYHr1VeAPf7Dv57DDUgYOtH5v2uScaIvJ/siR9n177plZswKJr6FDrd8jRjj7J7fvWYeJYVTnK4+CG4C38+WV7wXoX3CDonPOl3wcZQGXddghRRZfOixwJIkGXQZjCn6uAQB8+KF9e80a+3YeFw5tr5v4WrXKvi32xhAdVVNTesKgqgr49a+B229XC9kjjnBOUgH/ghs65Xxt2WK3pa7OXXxlGXIIWJOPvn0t4UWTewW65HwNHmzfpvkDYchLfHV2Ov+Wy8jTRYVZs4Cdd3Y+nhbydVFbG95hpIVDFi60b7P4KmXkSEukFovAe+/Z94swt/POA954w3repEnZtSuI+LrhBuCmm4Dzz3fer7PzpRJfQZyvvMIOVc6XGDf8HBednC9VwQ2KDs6XW86X3La8C25Qyt35KrOPw6RJEPEll5QW5HHhiJCR9nZ3p452SkuXWhMFcV9aIYeC00+3foISNOdLJ/HVt68lYN2qHWYtvgoFa5Ly9tvAsmVWW2hIpC7OFy22Ig+cQRHniLxvURp4iRjaJ4wcaQ34I0YAK1cCzz8PfOYz9uO6hx1St/T99+3bXO2wFPpd/vvf9m3htAweDPz+99m2CQiW8zVpkloQ6iy+Royw2kHPY92cL9X+b4Ji0Rzx5Zfz5fbcNImS8yWPc3kX3BBUVZXOv8pNfHHYIRMYP/HV2al2E4D8LhzRIbk5XzQWeulSa3IlPlva4issQXO+dCi4ISapovP2CjvMGjEpbG8HVq92PqZLzhc99+KKryw+SxDxNWyYda4UCraru3WrFcon0D3sUEwOAaf40r3gRh7toy7mggX27SydFhVBnC833PpWHSaGNTVOFxkI5nzJE+408Qo73LbNDr33m/TnLb50DDtUiS8RZRBFfBUK2QjzxsbSxcHGxlIBrsM1liQsvpjA+OV8rVzpPoHRVXzRTmnJEu9S73kTNOdLh4Ib8gqmPMkV50/WzhfgnBTKTq0uzlcS4itLIekmvnbssEN7qbCiIbVvvmnfNsn5otdgHucLrT4rFzkB9HK+qPjK0mlRkYb40sH5AkqvHz/nq1evbNvuVXCDXlt+4quqyjlhz1t8eVVTzqpvkPuzIUPsvMq2NmfRmyDiq6Eh/YgJwBJ5qv3oWHwxzCf4OV9uIYdAfheOGFiDiK+VK60fgW7OV9Ccr7wLbnR32+JLDKJytcO8wg4B5wSFnrN0CwWdxJdcqSooWeavuYkv6oS7iS9BY6NdpCENkna+vF47C/y2I9BJfKnCDvMijvjSueAG4C++ZFGT9Xfh5XzRaytIrhE9//MMtdcl50t+r9Gj3ceRIOIri3wvgeo8lc9VXa6xpGDxxQTGRPEVxvkqFoH58+2/dRNfujpfcrvoCpub86Wj+Mp73yZKkjlfeTpftMw8dRz32qvUWR49Ot3Kl0k4X27iK8+wQ0B/8UUn2nmHHQbJ+XLDNOfLL+ww6+8iKecLcF5zeTtfuogv2q4xY9wjKIIU3Mgi30vAzhfDeBBHfOU1OInOSBUmWSyWugpz59q3dRZf8ucpFu3JY97Ol2oQpd//9u12mBSLLzUm53xREeNWRr5QAA47zPkaae/1JF8XtbXxwg4pOoovej7nIb4GDMi/wIOKcs35AsKHHZaD81UoZLtdCaBnwQ3AOZ7KzpcYR4rFYM5XluKLnS+G8YB2In7ii5aTrq7OvnMUUOdLzotoaSktDkDFl245X3SlXna+6OfIupOqrbW/3x071IMoneRSZyzvFXk38ZV3wY2+fe2B0QTxRb9fei567eElhx6mWWYeSNf54rDDUkRlUZm8na844kvONRLo4nzJ15Cf85W1+BLVb4FS8RXW+RLnfx7H3gTna/Ro5xxGLDTTHFFdwg5Vzld9vbPPZvHFVCz0QlU5STTE6Kyz7Nt5XjSiMyoWSycoqkktzU3QzfkC3MMo6YQ364lgoeDMrfNzvrZutW/n4XwNGWK3V1fnq1Cwz7+4OV95hh16ia8jjnD+nbXzVVPjvTm0Cp2cL79IhLzFF6D+Tk12vgB1/6rLxDCs85W1EK6qAvr1s27LYYdRna+8xdfmzeqCNwLdnC+vcU4n56tQcLZBlwWOpGDxxQQmaNhhnz7AySfb9+d50dCO75xzgK9/3RZYKvFFO1EdxZdbAREqLPOYCFBRqBpEaWhI3uKrqgoYNcq6LfZ2A/IvzS0jVi3XrrXb+I9/WJvTnn229fP//p/a9ejstMs26yq+9t3XnoipHk8aP+cryCbLnPMVDh2dL/lYhP3uVM/XZWIoqtsBVn8ri5i8nS/AnmiXi/O1caP3c3UpuCHmO179Av1ceRfcoL8BfRY4kqLMPg6TJl7iq1i0Nq0FrNCHffe1rOSWlnwnsnRwefBB6/ebbwJz5vg7CjqKLx2dL8DZLrdBtKrKchfyFl+AdY4uWmRNpjdssDZ81cn5Auzzr6PDWl0tFIBTTnGGbQLWZ/nP/3TeR88PHcTXwIGlg3l1NXDoocDf/mb9naXzVShY52NSOV8cdqhGFUqqk/MVZQNynZ2vXr2A4cOt7R369y/9bHnnfAF2iFlc50uMHXn01W7iq3fv0hDELK89+n2OHu1cTA7ifNGFkbzDDuU26HKNJQU7X0xgvMTXxx/bE77Ro61JzWWXWX/TEMSsOeOM0sHy9detTskrl6ZQAAYNSrVpkXArIKKL8+WW8wXYE10qHvISX6q8L51yvoDSVctFi0qFFwB88EHpfXTLhCFDkm+bjEp8dXYCK1ZYt93yuf77v63rc//9gYkT02yhOn8gjPgqFtn5CovuYYdRjotKfOnifAHARRdZ49d555U+lne1Q8B2OXbscC4ShXW+zjnH+pznnJNo8wJBzxsqvlQLtllee2eeaQnuL3/ZEjSqqrle4mvffYEJEywR+eUvp99eQSU6Xyy+mMB4bbKsCi+aNs1a3brtttSb5srppwOrV1sTV1FdbetWYP16b/E1cKCeF3sQ5yvvsEO3QVRMUOgkV4dJoUp86eR8Ada5SnMqP/tZ+7ZKkNHnpu0oAWrxtXKlfdutDccdZ12Lc+emf97GFV9iDzsVLL7U6Bh2mIb40mmsmDbNCum75ZbSx3RwvuhEm7pfYZ2vq66y/v/nP0+saYGh5w0Nn1QtdGV57X3ta5YY/OMfrb9VBTe8xrnqauDVV63F9KOOSretFHa+GMYDL+fLLbeD5nTkxaBBwG67AWPH2vctXeoUX/LKi44hh4C7+KKTrzxCoGgump/zRdHJ+dI15wuwBk56jY0fb9+mYZwCr1yrNFCJr6Bt6Ns3G+eAXheqfBE/8eUWcii/dlbQ9/QquBEltC4pdHS+6GS4HJ0vwH3c7d3beS7kGXYIOIVLWOcLyDY0jkKL9VABmbfzBTi/+/p6++8gOV+AdX5kWWwDYOeLYTwJKr7SLhkdFdqupUudOV9yyJOu4kt0lp2dTrdLF+drxw4rP0ngV61IJ/Glu/NFr7G99rJvq5yvrK/HOOIrK+I6X24hh0D+1Q69nK88z2VaWVRguvOlc8ENP+QKcnmGHQJO8RXW+cobWklZkLfzpUKMI0HCDvOCnS+G8cBLfGUd5hQFecJNnS9TxJfbRsu6FNwArDAyganiK+8BEwguvkx3vrKCXhdRxJeX86Vz2GGe5zKtLCqg5azzoNzDDv2gfXLezhd1jaI4X3miOnd0cL5kRJs2brT6CR3FFztfDONB2Jwv3XATX1VVVsI/RbcNlgVu4kuXghuAU3zRlStV6FNeA9NOO9kTb9Ocr5oaK4xW4Od8ZS2+hIjRrU9QOV9h9vmiK/Py58k77FBX8QU4j1VdXf6TqHIvuOEH7ZPZ+YqOauFw4MDScyHvsYTOZTZs0G+cA9z3o2Pni2EQLOywrg4YNiy7NoWBTgKWLLHF1+DBwC67OJ9rgvNF8750cr6oo6ir81VTA+y8s3VbuLa6DUr0HFy3zm7nzjs7ByUv8TV4cDYTLNV+WbqFIifpfO29t/Mxdr7cof1u3iGHADtfeTtfbgU36PWlw3nih2rs6t27VDjmff3Ji3i6RXgApWGHKufLpAWOILD4YgITRHyNHJlfcrcfI0Y43Q6R89XcXLqSbZr4ytv5op04zaXTteAGYH/nGzZYq646F9z44AN7lXj0aOekSQ477OiwS7xn5Th5hR02NOixbYNfzpffJst0Zf7Tn3Y+lrf48iq4kfcEiwrvvIttAJVRcMOLvMWXW8ENcX317m2GmHUTX3LIZN7Xnyy+dBvnAM75YhhP3MTXpk12kQUdVrjdoG7HokX2pLWpyUqUpZ2pruKLduTsfMVDDkPVzfkaNMhKkAeA+fPt+8eMcYZvyc7XRx/ZJdHzEl/Foi2+Ro+2P0eeJFntcMwYZ+5SHtecX8ENcT7nPfkrN+dL1TeYNDHUKexQ5XyZkO8FqMeuXr1K25/3WOLlfOXdNkFtrXMhgHO+GIYgi6+WFuAf/wAeeMC+X4fcDi9E+6hb0NxsTQ5p2znnKxy0XdT5ooO7SeIr7wkrYB2vwYOt2/R8Fe0Wg5UsvvLItZLFl7zpug7Q8y9I2OGOHcC8efb9ck6KnMuUNSaGHergfFV6zpfuzpcJ+V6A+tyRww5ra/OPBDJBfAFOUc7ii2EItLNpaQH22w/4/Oetjf0Euky03FA5c6Jzom3X1fkKkvOVt/jats363aePc1KimqDkOTHU3fkC1OehLL7ksMM8cq3oOdfRoV+xDcCaBImJUBDxdfrpwAEHABddZP1tkvjq7LTdTxZfTio954uKg7xzvlT7fJnsfMlhh3lfe0DpfpE6jnOAWnxx2CHDwHmhPvOMc4IlOOSQ7NoTBdVEUExwJ02yfvfrB+y+e3ZtCkOQnK+8ww4F8gqmagUwT+drp53s22vW6BkLr3JgxTksXEUdnC/azkWL9BRfALDPPtZvkbPlJr42bgRmzLBu/+Mf1m+5FPahh1q3+/a1w5mzxEt8+W2kmiU772yfA/vum29bACv3VzjK4nwIg+nOl6jsW18PjB2b/furwg47Ouxz1nTxRce9vK89wNk3r1+vV99AmTDB+r3XXvY1ts8+9rxBLnJkOmWmJZk0oRNSkdAPAGeeCeyxh+WEHXVU9u0Kg2oiKDqnb3/beny//fQNfdDV+VJ14vIgqlvYoTwJoJ9BF/EVxfnKY889sXABALNnO797nfJAZ8wAnnoKOPlk62838TVnjr156tq11m3Z+brySqvA0H775TNhNEV8VVcDM2da58Vpp+XbFsDqc2bNAubOjdYeWXxVVemR0xiUCy+0+r7ddlNvCpw2qrBD2ofpOvbKmOJ8yfuq6ep8/fznwBFHAJMn2/eNGWNdqytXAqecklvTUoHFFxMYtwv1xhudLoLOeDlfvXsD556bbXvCYkLBDYE8iOosvjZtcv6tw6AJlIqvQsGa8AO287VtmxViJlYI83CdRo2y3mvpUuDFF53OsU7O16hRwAUX2H+7ia/Zs+3b7e2W6yU7X3n3F17VZ3USX4C1OLfHHnm3wmbvvaOvpMv9q0muF2CdN2ecke/79+5t9VvC+TJtg2XAHOdLXmTUVXwNGmQtDMiICINyg8MOmcCoOpJddzVHeAHe4ssETCi4IdDd+ZJXYHUclORzc/hw+zqk+RpUiAvx1dhobfqZFYcfbrflscfs+3USXzJumyzPmuV83tq1+m0Ca4rzVW7IfUO55aJkgeh7hfOl27UVBLeCG7o5X/Iio47jXCWipfjq6OjAM888g29/+9s48MADMWDAANTW1mLYsGE48cQT8cQTT3j+/9NPP40pU6agqakJvXv3xp577onvf//72EKvcCY0qgtVTLhMQbgGFFPFVzk4X3kOTiasCMo5X27FC0TYTnc3sGyZ/dwsw6GOOMK+/fHH1m+dN10H1M5Xa6tV5ZCydq1+q/MsvvLBdOdLB0Tfy85X+vTqZY9nsvjSoX2Vipbia9asWZg8eTJ++tOfYsWKFTj00ENxyimnoLm5GY8//jiOP/54XHzxxSiKoHzCrbfeiqOPPhpPPvkk9t57b5xwwgloaWnBddddh4kTJ2IdrYPNhKIcxFevXqWTQV3LyqvQdZNlE50vupnnpk16FtyQFwbc9kwSRTfWrLEH16xzrVR9gc6brgPqTZZfeKG08qHsfOkwQQwqvnQ5l8sFFl/xEc7X5s3WtWai82VKzhfgFLvcN+iBlsNiVVUVTj31VMyePRurVq3CX//6Vzz44IN466238MADD6C6uhp33nknfv/73zv+b/78+bjyyitRXV2NJ554ArNmzcKf/vQnfPDBBzjqqKPw7rvv4pJLLsnpU5mP6kKlq92mIIdBmSS+dM35Ug0yulc7LBScg5KOzpeX+FI5X3lWGdxtt9KFDZ1DDgG180XzvQRUfNXX53ONybDzlQ/yd89hh+GhUQebN5ev86XLOELDPHUc5yoRLcXXf/zHf+Chhx7CYYcdVvLY6aefjqlTpwIA7rvvPsdj119/PYrFIs477zwcd9xxPff36dMHd911F6qqqvDwww9j4cKFqba/XKmpcYYx7byzXpXMgkLb3K+fWZMTdr6SxW1Q0uWcCCq+hPOVR6VDQaFQ6n7p3j8EFV/r1tkTRF1W5k0quFFOsPMVHznk20TnS3Vd9eqlt/O1ebNz3sDiKz+0FF9+jB8/HgCwfPnynvva29t7csHOUJTyGT16NCZ9Ug/50UcfzaCV5Ueh4LxYDz/crBK7AhM2U3bDreBG3s6XqeJL93AM2ZWlYkYVdpj3/lqyE26a87VtG/DKK6XPo86XLivz7HzlAxfciI9c7KgcnC8xP9It5wuwx7nubmDDBvt+XdpXiRgpvhYtWgQAGD58eM997733Hto+mYFMnDhR+X/i/vnz53u+/tatWwP9VCJ04DEx5BBwTghNCjkEzHK+ghTcyDt8SwxKXV3OQUkX8WVS2CFQ6nyZJr5eftl2kT77WfsxWnBDl5V5L/Glo4tbLrDzFZ9ycL7kMa93b0uA6eh8UbEriiEB+oxzlYhx4mv16tW45557AACnnnpqz/2LFy8GAAwYMAB9Xa7ekZ+UuhPPdaOxsdH3Z8SIEQl8GvOQnS8TKRfn65ZbrFLiRx9tV40C9BFffs5Xr175O6e6D0r19c7JiF/BjbzF1157Wfu15NmGMMjii4Yc0k09V6+2XDFAn5V5dr7ygXO+4lOOzlfv3tZvnZ0vQM9xrhIxSnx1dnbirLPOQktLC/bZZx9cfPHFPY+1fnL1NtAZiUTjJ1f15s2b021oGTN4sPV72DBg7Nh82xIVutnnqFH5tSMK1Klrb7cGrqefBu69175f14IbKvGVN3RQWrvWvq3LoAnYAmbECKfgUuV8rVhh/a6tBYYOzaZ9lKoq4HOfs//ebbfs2xAGWXzRoIgTT7QXB2gunS4r8yy+8oGdr/jQ/QfXry8f5wtw9ru6RNZQsUvHORZf+WHUms0ll1yCZ555BoMHD8ZDDz2EupTOnCD7gW3evLki3a8bbwRuvRW48sr8XYuo7L478MMfAi+9BFx2Wd6tCcfuuwPf/z7wyCPWBOvDD637qZmrq/MlVzvUQXzp7nwB1jV3003Af/+3835V2KHYtHTQoPxKvP/v/1rt+I//sIry6EyhYB2n7m5LfG3caD82cqR1HNevd4ovXVbmueBGPrDzFR+63+ayZWY6X/J1JcTXyJFWH/j888Cll2bfLhXsfOmHMd3GN7/5Tdx1110YOHAgnnrqKexB7QugJ9TQKxdLiKp+/fp5vpeXeybokjeCqRBOOsn6MZ1p0/JuQXR+/GPrp6PDWkGUT3ldCm74OV86TArpoKRjwQ0AmDLF+pFRhR0K8UVFZdbstRfwzDP5vX9Yqqtt8SWOX12ddU43N1vii54buqzMs/OVD3LfwM5XeGg48pIlzsUDXa4vP9ycLwD4n//Jti1+0PGA+wY9MCLs8Morr8QvfvELDBgwADNnzuypdkgZ80kZsE2bNvWEIMqI6ohjdK9/zDABqK0FDjmk9H5dnS8dww5VIqVQMGNCJTtf3d32CjIVlYw34rvu7LTF14AB1nmgChvSZWWexVc+sPMVHyq+li410/nyEl+64TYe6LTIWGloL76+853v4JZbbkH//v0xc+ZM10qGY8eORZ9PZiNz585VPkfcP2HChHQayzAZoyp6YorzpYP4Ug1KdXVmhNTKOV+bNwPFovV3ns6XaYjzsqvLLlwjjp+qII8uk0MWX/nAOV/x6dfP7nuXLi2vnC8dYfGlH1qLr6uuugo33XQT+vfvj6eeegoHHnig63Pr6urwhS98AQAwffr0kseXLl2KF154AQBw8sknp9NghskYlfjKYyVWNcEz1fkyZbIqhx3SipfsfAVHnJcdHfYxFMdPJb50mRyy+MoHdr6SQbhfy5fb111VlR7jQhDkdurcbrfFOBZf+aGt+Pqf//kf3HjjjRgwYICv8BJcddVVKBQK+N3vfocnn3yy5/62tjZccMEF6Orqwqmnnoo999wzzaYzTGYcdFDp5Iqdr+C4OV8mIIcdipA5gMVXGMR52dJS6hzq7HzR89RLfJlyPpsCO1/JIMRXZyfwydat6NvXjKgDwL3gho6oxoPqaj5380TLNZsZM2bgJz/5CQBgt912wy9/+Uvl85qamvDTn/605+8JEybg5ptvxhVXXIEpU6bgiCOOwJAhQ/Dcc89h1apVGDt2LH79619n8hkYJgt69QIOPti5P1EeK7E1NXbVOIFftUMdVuRNFl9ezheHHQZHTEDWr7fvM8354mqH2cEFN5KB5n2JsENdFjaCYFLYoWo8MGWcK1e0FF8bNmzouT137lzXHK7Ro0c7xBcAXH755dhnn31w880345VXXsHWrVsxatQoXH311bj66qtdN2BmGFM5/PD8xVehYA1GoupeTU3ppE9H58vkQYmdr2SgBTcE4rzgghuMDIcdJoOq7plJ0zOTxJfJi4zlipbdxtSpUzF16tTI/z958mRMnjw5uQYxjMbIeV95hB0CTvHV2FgaPqKj+FINSqZMVuWCG1R8sfMVHNXk2QTnq6rKdptZfGUHhx0mA3W+BLosbATBJPElwjlFWDXA4itvtM35YhgmGJ/9rHMCkNdKLJ3kqSaoOoov1ZZ/pgxKsvjighvRUE2evcSXThNEIQQ6OqzNU3/yE+CFF5xhiCy+koWdr2Rg8ZUdVVWlYx33C/nC4othDKexEaA7MOQlHuhgpBpEdRRf1dWlQtEU8VVdbQ+gctghO1/BUYkvr4IbujhfgFN8fe971uauU6Y489d4kpUs7Hwlg0p86XRt+WFSwQ2gdEHOlHGuXGHxxTBlwCWXWL8nTgR23jmfNlAxFcT50mVSKAsVkwYlUXSDna/oeDlfOud8Afa52t4OiNTolhZnDqgu11m5IPcP7HxFo6mpVLDodG35YZr4MnmcK0dYfDFMGTB1KrB6NfDii/mV6vVzvuRqhzo4X4DZK4Ii9FDO+WLxFRwv56tXr9JzWafVeep8LV1q309qVrH4Shh2vpKhUCh1v3S6tvyornaeC7qLL5PHuXKExRfDlAlDh+a7Cmti2CFQOiiZNFkV4mvrVi41HxUv5wsoDT3UaXVeTP7Wr3eKb4pJ57MJcM5XcsjiS6drKwh0DNNdfLHzpRcsvhiGSQQTC24AZg9KNOyQna9ohBFfhYKz0EneCCEg9klSweIrWdj5Sg6TnS/AeW3pMp65YfIiYznC4othmEQI63zp0vmbHI4hhEB7O7BunXW7UDBvBTlPvMIOAaf4Um2hkCdBtpXQ5TorF9j5Sg55ry/T+i12vpiosPhiGCYRwhbc0GWl0ORBibowq1ZZv/v3L82vY9zx2ucLcBbd0G1l3u9cranhcyFp5GPOzld0THe+TBJfJi8yliPcLTMMkwic85U9IuwQsPZ5AjjkMCzyeVkoOCeBsvOlE37Ol0nnsilw2GFycM5XdrD40gsWXwzDJIKf86VrtcNycb6KRes3F9sIhzx57tfPea5S8aXbyrxKfNHryqRz2RQ47DA52PnKDnlc4IWZfGHxxTBMItDO3GTny6QJK3W+BOx8hUM+L+XjZ5LzVSgAJ5xg/80TrORh5ys5hg93ilfdri8/6PWlu/gyeZwrR1h8MQyTCKZusmzyoKSqvMfOVzjk81I+fjrnfMlCYPhw4Oij7b91ucbKCXa+kqO6Ghg50v5bt+vLD5OdL5PGuXKExRfDMIlgas6XyYOSSnyx8xUOk50v+VwdPRo4/HD7bxZfycMFN5KFhh7qdn35YZL4MnmRsRxh8cUwTCKMG2f9LhTs2xRdxVe5FNwQsPMVDj/na4897InV3ntn06agyC7M6NFWe3ff3fp77Njs21TuVFc7txtg5ysen/mM9btvX6cLZgJinBs0CBg6NN+2+ME5X3rB3QbDMInwla8AHR3AzjsDu+1W+vj/b+/eo6I47zeAP8udLLCAN+TmNVGjFEFAUzHFWxTvVq23IKgxtdYYrNfk6JFWG2+1LaLRNkfF69GjVQIhUYwBkShECxop0WrEIIoKKhcRZJH39wc/KIRFgYWZneX5nLPn6Mzs5GGyMvud7zvvGGrxxc5X6/aqzpejIxAXB1y+DISESBSqgXQVXyoVEBNT+ZoxQ55cxs7cvPLZegA7X/r66KPK4bK+vsrrfK1aBbi7A2+9ZTjns/qw82VYWHwRUbOwsADee6/+9YY626GST0osvvT3886FruPn71/5MjS6ii+gsuPFrlfLqVl8sfOlHzs7YNEiuVM0jUYDfPCB3CkaRskXGY0Rhx0SkSQMdcINJZ+UOOxQf68admjI6iu+qGXVPO7sfJESWFryMRSGhMUXEUnCUIcdWlnVPhEZSlHYEOx86e9Vww4N2c+/QHXuLEuMVqfmcWfni5Si5u82Fl/yYvFFRJIw1OJLpard7VDSSYmdL/2x80WNxc4XKVHN321KushojFh8EZEkDLX4ApR7RZCdL/0pufNVswho00Z3MU7Nr+ZxZ+eLlEKp5zljxOKLiCRhqPd8Aco9KbH40p+xdL7Y9ZIOO1+kREo9zxkjFl9EJImasx2qVHWHTMmJww5bL2PpfLH4kg6LL1IipZ7njBGLLyKSRM0vKVZWtR9UKreaX7gNqSP3Kro6Xyy+GkfJxVfNL1AsvqTDCTdIiZR6njNGLL6ISBI/L74MiVKvCP68+LK2VlZ+Q8Bhh9RY7HyREin1PGeMWHwRkSQMufhycvrfn5XU+fj5sEMlZTcUP+9cKKn4qvn/+/XXZYvR6nDCDVIipZ7njBF/bRCRJGoWX4Y25GHePCApqfILrLe33Gkarmr4phCVf1dS4WAofn5RwNA+my8zbRrwxRdAu3bAiBFyp2k92PkiJXr3XeCrr4C2bYGAALnTtG4svohIEobc+erUCUhIkDtF46lUlUMPi4sr/86rmY1X83OptOPn5AR8/bXcKVofdr5Iidq3B06fljsFARx2SEQSqTnboaEVX0pW874vpRUPhkDJxRfJo+b9Mux8EVFjsfgiIkkYcudLyWoWXxx22Hg1P5c8ftQQ7HwRkT5YfBGRJFh8tYyak26wc9N47HxRY/GeLyLSB4svIpKEIU+4oWTsfOmHnS9qLHa+iEgfLL6ISBLsfLUM3vOlH3a+qLHY+SIifbD4IiJJsPhqGRx2qJ+anQseP2oIdr6ISB8svohIEpztsGVw2KF+OOyQGouzHRKRPlh8EZEkeM9Xy2DnSz8cdkiNxWGHRKQPFl9EJImaw3PY+Wo+7Hzpp+bnksePGqJm54vDDomosVh8EZEkvLwAJydApQICA+VOYzxGjao8ps7OgLe33GmUZ+jQyk7Ga68BQ4bInYaUYMSIyn9z7doBPj5ypyEipVEJIYTcIZSosLAQGo0GBQUFsLOzkzsOkSIUFwOPHwNubnInMS4//VT5RbBmF4wa7v79ym4shx1SQ2VnAw4OtYf9ElHr1tDagA1zIpKMWs0vKy2hUye5Eyibk5PcCUhpXF3lTkBESmWwww6vX7+OiIgIhISEwMPDA2ZmZlCpVFi3bl297wkLC4NKpXrp69q1axL+FERERERERJUMtvO1Y8cOhIeHN+m9np6e6Nu3r851Gt5RTUREREREMjDY4qtPnz5YunQpvLy84O3tjU8++QT79+9v0HsnTJiAsLCwlg1IRERERETUCAZbfL333nu1/m5iYrAjJImIiIiIiF6JFQ0REREREZEEDLbzpY/U1FSsXLkSjx8/hkajgZeXF8aOHQtbW1u5oxERERERUStllMVXTEwMYmJiai3TaDTYunUrZs2a9cr3FxcXN8s2REREREREVYyq+OrWrRs++eQTBAYGotP/P/gmIyMDGzZswBdffIHg4GCYmppi5syZL92PjY2NFHGJiIiIiKgVMariKygoqM6ygQMHIiYmBosWLUJERAQWL16MKVOmwMLCQoaERERERETUWrWaCTfCwsJgamqK3NxcpKSkvHTbp0+fvvJ17949iZITEREREZExMKrO18s4Ojqiffv2yMnJQXZ29ku3VavVr9zfixcvmisaERERERG1Aq2m8/XixQsUFBQAAGc9JCIiIiIiybWa4is6OhrPnj2DSqWCj4+P3HGIiIiIiKiVMZriKysrCwcOHEBpaWmddVFRUXjvvfcAADNnzoSTk5PU8YiIiIiIqJVTCSGE3CF0SU1NxYIFC6r//uOPPyIvLw+urq5wcXGpXn7ixAl07NgRly9fhpeXF2xsbODl5QUXFxeUlJQgIyMDN27cAAAMHjwY0dHRzTKVfGFhITQaDQoKCmBnZ6f3/oiIiIiISJkaWhsY7IQbhYWFOmclzM7OrjVhxvPnzwEAbm5uWLFiBS5evIibN28iNTUVZWVlaNu2LcaMGYMZM2Zg6tSpMDExmmYfEREREREpiMF2vgwdO19ERERERAQYQefL0FXVrIWFhTInISIiIiIiOVXVBK/qa7H4aqKioiIAlcMdiYiIiIiIioqKoNFo6l3PYYdNVFFRgXv37sHW1hYqlUq2HMXFxXB2dgYA3Lt3r0EPiKaG4/FteTzGLYvHt+XxGLcsHt+WxePb8niMW5ahHF8hBIqKiuDs7PzSOSbY+WoiExMTuLq6yh0Dpqam1X+2s7PjP+hmxuPb8niMWxaPb8vjMW5ZPL4ti8e35fEYtyxDOr4v63hV4dR/REREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEuBDlomIiIiIiCTAzhcREREREZEEWHwRERERERFJgMUXERERERGRBFh8ERERERERSYDFl4IdPXoUAQEBcHBwgFqthqenJzZt2gStVit3NMW7fv06IiIiEBISAg8PD5iZmUGlUmHdunVyR1M8rVaLM2fOYNmyZfD19YW9vT3Mzc3h5OSEcePGITY2Vu6IRuHgwYOYNWsWPD090b59e5ibm0Oj0cDPzw/r16/H06dP5Y5odJYvXw6VSsXfFc0gJCSk+ljW9yotLZU7plEoKyvD1q1b4e/vD0dHR1hZWcHV1RWBgYE4cuSI3PEU6/bt26/8DFe9EhMT5Y6rWFlZWVi4cCF69OgBa2trWFlZoUuXLggODsaVK1fkjqeTmdwBqGlCQ0MRHh4OMzMzDBkyBDY2Nvjmm2+wYsUKxMTEIC4uDtbW1nLHVKwdO3YgPDxc7hhG6ezZsxg+fDgAwMnJCf7+/lCr1cjIyEBMTAxiYmLw/vvvY+fOnVCpVDKnVa4dO3bg/Pnz6NWrF7y9veHo6IgHDx7gwoULuHjxInbv3o2zZ8/C2dlZ7qhG4fz589iyZQtUKhU4iXDzGThwILp3765znampqcRpjE92djZGjBiBjIwMtG3bFgMHDoRarcadO3eQmJgItVqNqVOnyh1TkWxsbBAcHFzv+oyMDFy8eBG2trbo16+fhMmMR0pKCoYPH46ioiK4uLjgnXfegampKS5fvox9+/bh0KFDOHToEKZMmSJ31NoEKc6JEycEAGFjYyP+/e9/Vy/Pzc0VHh4eAoBYsmSJjAmV77PPPhNLly4VBw8eFD/88IMICgoSAMTatWvljqZ4Z86cEZMmTRKJiYl11h0+fFiYmpoKAGLv3r0ypDMeycnJ4tGjR3WW5+XlCX9/fwFATJs2TYZkxqe4uFi8/vrrwsXFRUyYMIG/K5pBcHCwACD27NkjdxSj9ezZM9GzZ08BQISFhYmysrJa64uLi0VaWpo84VqBwMBAAUDMmzdP7iiK9Ytf/EIAEO+//36tz++LFy/EqlWrBABhb28vSkpKZExZF4svBfL19RUAxLp16+qsO3funAAgLC0tRX5+vgzpjFPVFwF+oWp5c+fOFQDE0KFD5Y5itBITEwUA4ejoKHcUo7Bo0SIBQMTGxvJ3RTNh8dXyVq9eXf3FlaSVnZ0tTExMBACRnJwsdxxFysvLEwAEAPHw4cM668vLy4W1tbUAIFJTU2VIWD/e86Uwd+/excWLFwEAM2bMqLPe398fbm5ueP78Ob788kup4xHpzcvLCwBw584dmZMYLzOzyhHnlpaWMidRvoSEBERERGDWrFkYNWqU3HGIGkSr1WLHjh0AgGXLlsmcpvWJjIxERUUFevfujf79+8sdR5Eac/5q27ZtCyZpPN7zpTBpaWkAAEdHR3Tp0kXnNj4+Prhz5w7S0tIwffp0KeMR6e3GjRsAgI4dO8qcxDgVFRUhLCwMADBu3Dh5wyjc06dPMWfOHHTo0AF///vf5Y5jlOLj43H16lUUFRWhTZs28PPzw6hRo3jhQE+pqanIy8uDs7MzunfvjqtXr+L48eO4d+8eHBwcMGjQIAQGBsLEhNfoW0JkZCQAYO7cufIGUTAbGxsMGjQI586dw6pVq7Bt2zaYm5sDACoqKhAWFoaSkhIEBgbCzc1N5rS1sfhSmMzMTACAu7t7vdtUfciqtiVSivv371eflCZNmiRvGCMRFxeHQ4cOoaKionrCjaKiIowcORIbN26UO56iLV26FJmZmThx4gQcHBzkjmOU9u3bV2dZx44dsXv3bowcOVKGRMbh+++/BwC4urpi5cqV2LRpU62JYjZu3AgvLy9ERUW99PsGNd7Zs2dx8+ZNWFhYICgoSO44ivbZZ59h1KhR+Oc//4nY2Fj4+PjA1NQUaWlpuHv3LoKCgrBt2za5Y9bBSxoKU1RUBABQq9X1bmNjYwMAKCwslCQTUXMoLy/Hu+++i4KCAnh4eOC3v/2t3JGMQkZGBvbu3Yv9+/cjLi4ORUVFmDFjBiIjI6HRaOSOp1hxcXH4xz/+gWnTpmHChAlyxzE6np6eCA8PR3p6OgoLC/HgwQPExcXhl7/8JXJycjBu3DgkJCTIHVOxHj16BKByNM3GjRuxYMECXL9+HQUFBTh9+jTeeOMNpKWlYfTo0Xx8TTPbvXs3gMqRB4Y2HE5pevTogQsXLuCdd97B3bt38fnnn+P48ePIzMxE9+7dERAQADs7O7lj1sHii4gMwvz583HmzBm0adMGx44dg4WFhdyRjEJoaCiEECgrK8PNmzexZcsWfPXVV3jzzTf5bJkmKigowNy5c9GuXTtERETIHccoLV68GIsWLULv3r1ha2uL9u3bY/jw4UhKSsL48eOh1WoRGhoqd0zFqupyabVaTJ8+Hdu2bcMbb7wBOzs7DBs2DKdPn4aVlRXS09Nx+PBhmdMaj8LCQhw7dgwAMGfOHJnTKN+3334LDw8PpKen49ChQ7h//z4eP36MmJgYaLVazJ071yCHdrL4UhhbW1sAQHFxcb3bVD081RCrfSJdPvzwQ+zatQsODg7VV12peZmbm6Nbt274wx/+gK+++gpPnjzBu+++i5KSErmjKU5oaCiys7Oxbds2XrmWmEqlwh//+EcAwJUrVzgxTxNVfZcAoHOUgbu7O0aPHg0A+PrrryXLZewOHz6MZ8+ewdXVFSNGjJA7jqLl5+dj4sSJyM3NxfHjxzF9+nR06NABDg4OGDNmDE6ePInXXnsNu3fvRnx8vNxxa2HxpTCdO3cG8PKZ4KrWVW1LZMiWLFmCrVu3wt7eHnFxcdWzHVLL6d+/P958803cuXMHly5dkjuO4pw4cQJmZmb49NNPERAQUOt18uRJAMCuXbsQEBCAadOmyZzW+PTq1av6z9nZ2TImUa6uXbvq/LOubXJyciTJ1BpUDTkMCQnhZCZ6io2NRW5uLrp27apzxsiayw3tAgIn3FCYqi+mjx49QmZmps4ZD6u+THl7e0uajaixli9fjr/+9a/QaDSIi4uDj4+P3JFajar7Rh8+fChzEmUqLy/H2bNn611/+/Zt3L59G506dZIwVetQdb8SULuDQw3n7e0NlUoFIQTy8vJ0zgaXl5cH4H/3kZN+MjIykJKSApVKhdmzZ8sdR/GysrIAvHyUV9V9zY8fP5YkU0Ox7FYYV1dX+Pr6AgAOHTpUZ31SUhLu3LkDS0tLPnOGDNrKlSuxefNmaDQanD59uvpzTS0vLy8PV65cAQAO8WyC/Px8CCF0voKDgwEAa9euhRACt2/fljesEaq6B8nOzg49evSQOY0yOTk5wd/fH4DuroBWq62+uODn5ydpNmO1a9cuAMDgwYPr7TZSw7m4uAAArl27hoKCgjrrtVotUlNTAaDeRzPJhcWXAn388ccAgA0bNlR/sIDKq4ELFiwAACxcuJAzmZHBWrVqFTZu3Ah7e3sWXi0gIyMDBw8eRGlpaZ11//3vfzFlyhQ8f/4cAwYMgIeHhwwJiep3+fJlREdHo7y8vNbyiooK7Nq1q/ocuGjRourn+lDjrVmzBgCwfv16JCcnVy8vLy/HkiVLcOvWLdja2rJL0wy0Wi0OHDgAgM/2ai6BgYFQq9UoKSnBvHnzquc7AICysjIsXrwYWVlZMDc3x+TJk2VMWpdK1HywAynGhx9+iK1bt8Lc3BxDhw6FWq3GmTNnkJ+fj4EDB+L06dOwtraWO6ZipaamVheyAPDjjz8iLy8Prq6u1VdbgMp7P/gw4MaJjo7G+PHjAVQ+ELx37946t2vbti3+8pe/SBnNaCQkJGDw4MFQq9Xw8vKCq6srysrKkJWVhdTUVFRUVKBXr144efIkn+HTzEJCQrB3716sXbsWq1atkjuOIkVFRWHixIlwcHCAt7c3OnTogPz8fKSnp1cPNZo+fTr27dsHMzPePaGPdevWYfXq1TAzM4Ofnx+cnJyQmpqK27dvw9raGkePHq2eeIOa7sSJE/j1r38Ne3t75OTkwMrKSu5IRuHAgQOYPXs2ysvL0a5dO/j6+sLc3ByXLl3C3bt3YWJigu3bt2P+/PlyR61NkGIdOXJEvP3228LOzk5YW1uLPn36iA0bNojnz5/LHU3x4uPjBYBXvjIzM+WOqjh79uxp0LHt1KmT3FEV6+HDh+LPf/6zGDlypOjcubNQq9XCwsJCODk5ieHDh4sdO3aI0tJSuWMapeDgYAFArF27Vu4oinXr1i0RGhoq/P39hYuLi7CyshKWlpbC3d1dTJ48WcTGxsod0aicOnVKBAYGCkdHR2Fubi7c3NxESEiI+OGHH+SOZjTGjBkjAIgFCxbIHcXoXL58WYSEhIiuXbsKS0tLYWFhITp16iRmzpwpUlJS5I6nEztfREREREREEuA9X0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9ERGQwVCpVo18BAQEAgICAAKhUKiQkJMj6MzSH8PBwqFQq/Otf/2ryPgoKCtCmTRv0798fQohmTEdERE1lJncAIiKiKsHBwXWW3b9/H6dOnap3fc+ePVs8l5Ryc3MRFhYGX19fTJo0qcn70Wg0+Oijj7Bs2TLs27dP57EjIiJpqQQvhxERkQFLSEjA4MGDAeClHZysrCw8e/YM7u7ueO2116SK1+wWLlyI7du3IzY2FqNGjdJrX6WlpXB3d4eZmRkyMzNhaWnZTCmJiKgpOOyQiIiMgru7O3r27Knowis/Px+RkZFwcXHByJEj9d6flZUVZsyYgZycHBw5cqQZEhIRkT5YfBERkVGo756vkJAQqFQqREZG4vr165g6dSrat28PtVoNX19ffP7559XbpqSkYNy4cWjXrh2sra3x1ltv4cyZM/X+N0tKSrBlyxYMGDAA9vb2sLKyQo8ePbB8+XI8evSo0T/Dnj17UFxcjKCgIJiY1D1FP3/+HJs3b0a/fv1ga2sLCwsLODk5wdfXF8uXL8fjx4/rvCckJAQAsH379kbnISKi5sXii4iIWoXU1FT069cPV65cwdChQ+Hp6YlLly5h4sSJOHbsGKKiojBo0CBkZ2dj6NCh6NGjB5KTkzFy5EgkJSXV2d+9e/fQv39/LF26FDdu3ICvry9GjRpVXSD5+Pjgp59+alTGqKgoAMCwYcPqrKuoqMDo0aOxfPly3Lx5E4MGDcLkyZPh4eGB3NxcbN68GVlZWXXe17dvX7Rr1w7fffcdcnJyGpWHiIiamSAiIjJg8fHxAoB41SnrV7/6lQAg4uPjay0PDg6ufv+6detERUVF9bqtW7cKAMLV1VU4ODiIffv21XpvaGioACCGDRtWa3lFRYUYOHCgACDmzp0rCgsLq9dptVqxZMkSAUAMHjy4wT/ns2fPhIWFhTAxMam1vypnz54VAISXl5fO9RcvXhR5eXk69z1u3DgBQOzfv7/BeYiIqPmx80VERK2Cn58fPv74Y6hUquplv/vd7+Do6Ijs7GwMGzYMQUFBtd6zatUqAEBiYiK0Wm318lOnTuHbb79F3759sXPnTtja2lavMzMzw6ZNm9CnTx/Ex8cjPT29Qfn+85//oKysDK6urrX2V+XBgwcAgEGDBulc7+PjgzZt2ujcd+/evQFUdv+IiEg+LL6IiKhVCAwMrFV4AZWFUpcuXQBA58yCbdq0gaOjI8rKymrdwxUbGwsAmDRpEszM6j61xcTEBG+//TYA4Pz58w3KV1Vc1VdAeXt7w9TUFLt378b27dsbNYSwap9V/w0iIpIHiy8iImoV3N3ddS63sbF56fqqLlNpaWn1slu3bgEAVq9eXe/Dnz/99FMAlc/taoiCggIAgJ2dnc713bp1w9/+9jdotVosXLgQzs7O6Ny5M6ZPn46DBw+irKys3n1X7fPJkycNykJERC2DD1kmIqJWQdfsgY1ZX1NFRQUAwN/fH926dXvptlVD/l7F3t4eAFBYWFjvNh988AF+85vfIDo6GklJSUhKSsLhw4dx+PBhrFmzBufOnUPHjh3rvK+qsHNwcGhQFiIiahksvoiIiBrJzc0NADB+/HgsXbq0WfbZvn17AHjlFPUdOnTAvHnzMG/ePADAtWvXMGfOHFy4cAErV67E3r1767ynap8dOnRolqxERNQ0HHZIRETUSIGBgQCAo0ePQgjRLPvs3bs3LCwskJ2djaKioga/r2fPnlixYgUA4PLlyzq3qZr0o1+/fnrnJCKipmPxRURE1Ejjx4+Hr68vvvvuO8yePVvnfV1PnjzBzp07UV5e3qB9WltbY8CAAaioqEBKSkqd9d988w2+/PLLWrMuAoAQAl988QUAoFOnTjr3feHCBQDAkCFDGpSFiIhaBocdEhERNZKJiQmioqIwevRo7N27F8eOHYOnpyfc3d1RVlaGW7du4erVq3jx4gVCQkJ0zoioy4QJE5CYmIjTp0/XedDy999/j8WLF8POzg7e3t5wdnZGSUkJUlNT8dNPP0Gj0eBPf/pTnX2mpaXh0aNH8PPz03k/GBERSYedLyIioiZwdnZGcnIydu7cCT8/P1y/fh3Hjh1DUlISAGD+/Pk4deoUrKysGrzP2bNnQ61W48CBA3jx4kWtdWPHjkVYWBh8fX1x69YtHD9+HAkJCdBoNFi5ciXS09PRt2/fOvuMjIwEAPz+979v8s9KRETNQyWaa7A6ERER6W3hwoXYvn07oqOjMXbsWL32VVpaCjc3N5ibmyMzMxOWlpbNlJKIiJqCnS8iIiIDsmbNGtjb2+scQthYERERyMvLw/r161l4EREZAHa+iIiIDEx4eDhCQ0Nx9OhRTJ48uUn7KCgoQNeuXdG9e3ckJydDpVI1c0oiImosFl9EREREREQS4LBDIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpIAiy8iIiIiIiIJsPgiIiIiIiKSAIsvIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpLA/wFYNv5CU/sxtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc.time, lc.counts, lw=2, color='blue')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `Powerspectrum` class to create a `Powerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize power to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "ps = Powerspectrum.from_lightcurve(lc, norm=\"leahy\")\n", + "print(ps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Powerspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Powerspectrum(lc, norm=\"leahy\")\n", + "```\n", + "However, we recommend using this explicit syntax, for clarity. Equivalently, one can initialize a `Powerspectrum` object:\n", + "\n", + "1. from an `EventList` object as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(events, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally.\n", + "\n", + "2. from a `numpy` array of times expressed in seconds, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(times, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Powerspectrum.from_lc_iter(lc_iterable, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterable` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.)\n", + "\n", + "Since the negative Fourier frequencies (and their associated powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"\\nSize of positive Fourier frequencies:\", len(ps.freq))\n", + "print(\"Number of data points per segment:\", ps.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Powerspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the power spectrum.\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of power spectra averaged together. For a `Powerspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curve.\n", + "6. `nphots1` : The total number of photons in the light curve.\n", + "7. `norm` : The normalization, one of `leahy` (Leahy et al. 1983), `abs` (absolute rms), `frac` (fractional rms), or `none`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1. 1.125 1.25\n", + " 1.375 1.5 1.625 1.75 1.875 2. 2.125 2.25 2.375 2.5\n", + " 2.625 2.75 2.875 3. 3.125 3.25 3.375 3.5 3.625 3.75\n", + " 3.875 4. 4.125 4.25 4.375 4.5 4.625 4.75 4.875 5.\n", + " 5.125 5.25 5.375 5.5 5.625 5.75 5.875 6. 6.125 6.25\n", + " 6.375 6.5 6.625 6.75 6.875 7. 7.125 7.25 7.375 7.5\n", + " 7.625 7.75 7.875 8. 8.125 8.25 8.375 8.5 8.625 8.75\n", + " 8.875 9. 9.125 9.25 9.375 9.5 9.625 9.75 9.875 10.\n", + " 10.125 10.25 10.375 10.5 10.625 10.75 10.875 11. 11.125 11.25\n", + " 11.375 11.5 11.625 11.75 11.875 12. 12.125 12.25 12.375 12.5\n", + " 12.625 12.75 12.875 13. 13.125 13.25 13.375 13.5 13.625 13.75\n", + " 13.875 14. 14.125 14.25 14.375 14.5 14.625 14.75 14.875 15.\n", + " 15.125 15.25 15.375 15.5 15.625 15.75 15.875]\n", + "[9.75294222e-02 1.37192421e-01 6.62062702e+00 5.42273987e-01\n", + " 1.26707856e-01 7.14262683e-02 1.46986106e+00 9.35172244e-01\n", + " 2.04574831e+00 4.88638843e-01 1.46127864e+00 3.24027874e+00\n", + " 2.95907471e+00 1.46905530e-01 1.42916439e+00 3.58020047e+02\n", + " 3.04922773e+00 2.14088855e+00 3.89197375e-01 3.48148529e-01\n", + " 2.32409725e+00 3.72418140e+00 5.10604734e-01 5.98258473e-01\n", + " 1.75462401e+00 2.24000263e-01 1.06137267e+00 1.07517074e+01\n", + " 1.14917349e+00 4.59646030e-01 1.30278344e-01 2.09102366e+00\n", + " 2.17910753e-01 5.49240044e+00 7.32466747e-01 3.46833517e+00\n", + " 1.93866299e-01 3.93997974e-02 1.97441653e+00 4.28610905e+00\n", + " 2.93970456e-01 2.72920344e+00 4.52529974e+00 5.42552369e+00\n", + " 3.00538316e+00 3.14413850e+00 1.65733555e-01 6.16733137e-01\n", + " 2.85338470e+00 5.56565439e+00 1.60825816e+00 2.83059003e+00\n", + " 3.84807029e+00 6.35749643e-01 2.52661012e-01 9.73415923e-02\n", + " 2.64107250e+00 1.31206307e-01 2.20321939e+00 2.08750811e+00\n", + " 4.61234244e+00 1.15633604e+00 3.60363976e-01 2.24498998e+00\n", + " 1.71646651e+00 3.38371881e+00 3.32514629e-02 1.67607504e+00\n", + " 1.77957522e+00 6.92787087e-01 3.35553415e+00 1.94034115e+00\n", + " 1.16770721e+00 3.76130715e+00 4.34584431e-01 5.72348179e-01\n", + " 1.14572517e+00 1.41890460e+00 1.64121258e-01 1.96499122e+00\n", + " 3.52679951e+00 2.58201128e+00 1.05541840e+00 3.76982654e-01\n", + " 3.81558230e-01 1.09665960e+00 3.52309943e+00 3.00115328e+00\n", + " 2.81888737e-01 3.46916554e-02 4.78900280e-01 5.10837621e+00\n", + " 7.05428845e+00 1.79144555e+00 1.45542292e+00 4.14645129e+00\n", + " 5.47936328e-01 1.43060457e-01 3.85238243e-01 2.86842673e+00\n", + " 7.07492195e-01 2.11192195e+00 8.18724669e-02 3.11165001e+00\n", + " 2.71594888e+00 8.22251145e+00 4.21393967e+00 4.85809743e-01\n", + " 1.66578478e+00 4.52801220e-01 1.39963588e+00 3.83710679e+00\n", + " 8.29760812e-02 2.04827673e-01 4.46966187e-01 4.58682373e+00\n", + " 5.11398498e-01 7.53864807e-01 1.49293643e-01 1.48889204e+00\n", + " 1.55536424e-01 1.34814529e-01 1.31907922e-01 1.49852755e+00\n", + " 8.75140990e-01 9.00289904e-02 4.72042936e+00]\n", + "0.125\n", + "1\n", + "256\n", + "7984.0\n" + ] + } + ], + "source": [ + "print(ps.freq)\n", + "print(ps.power)\n", + "print(ps.df)\n", + "print(ps.m)\n", + "print(ps.n)\n", + "print(ps.nphots1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAIECAYAAAAdL2E2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4tElEQVR4nO2deZxUxbn+n56VWYBhHRRQEBEXUEFQ45Ig4oYat0SNiZFEjcZLiF5NQozE5GqM0WgurjGJGu8vmsQN4oILbnFHDIpiEFEhgsq+zgDDLOf3x7Gm6pw5+366n+/nM585093TXd19TlU99bzvWwVN0zQQQgghhBBCSEYoS7sBhBBCCCGEEKJCkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBVpN4AY6ejowNq1awEAtbW1KBQKKbeIEEIIIYSQ8Giahq1btwIA+vbti7Iye7+EIiVjrF27Fo2NjWk3gxBCCCGEkNhYtWoV+vfvb3s/w70IIYQQQgghmYJOSsaora3tPF61ahXq6upSbA0hhBBCCCHR0Nzc3BkxpM55raBIyRhqDkpdXR1FCiGEEEIIKTrc8q4Z7kUIIYQQQgjJFHRSUqa5udnxb0IIIYQQQkoNipSUqa+vT7sJhBBCCCGEZAqGexFCCCGEEEIyBZ2UlGlqajL8rVY9IIQQQgghpBShSEkZVu8ihBBCCCHECMO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmC1b1ShjvOE0IIIYQQYoQiJWW44zwhhBBCCCFGGO5FCCGEEEIIyRR0UlKGO84TQgghhBBihCIlZbjjPCGEEEIIIUYY7kUIIYQQQgjJFBQphIRg6lRgjz2AV15JuyWEEEIIIcUDRQohAVm9Grj5ZmDJEuD229NuDSGEEEJI8UCRQkhAtmyxPiaEEEIIIeGgSCEkIK2t8njHjvTaQQghhBBSbFCkEBIQihRCCCGEkHigSCEkIBQphBBCCCHxQJFCSEAoUgghhBBC4oGbOaZMc3Oz498ku1CkEEIIIYTEA0VKytTX16fdBBIQVZhQpBBCCCGERAfDvQgJCJ0UQgghhJB4oJOSMk1NTYa/m5ub0djYmFJriB8oUgghhBBC4oEiJWXq6urSbgIJCEUKIYQQQkg8MNyLkIBQpBBCCCGExANFCiEBoUghhBBCCIkHihRCAsLqXoQQQggh8UCRQkhAzE6KpqXXFkIIIYSQYoIihZCAqCIFANra0mkHIYQQQkixQZFCSEDMIoUhX4QQQggh0UCRQkhAKFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQExixKKFEIIIYSQaKBIISQgdFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQGhSCGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHirSbkCp09zc7Pg3yS4UKYQQQggh8UCRkjL19fVpN4EEhCWICSGEEELigeFehASETgohhBBCSDzQSUmZpqYmw9/Nzc1obGxMqTXEDxQphBBCCCHxQJGSMnV1dWk3gQTELFLMfxNCCCGEkGAw3IuQgNBJIYQQQgiJB4oUQgJCkUIIIYQQEg8UKYQEhNW9CCGEEELigSKFkIDQSSGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHihSCAkIRQohhBBCSDxQpBASEIoUQgghhJB4oEghJCCs7kUIIYQQEg8UKYQEhE4KIYQQQkg8UKQQEhCKFEIIIYSQeKBIISQgFCmEEEIIIfFAkUJIQChSCCGEEELigSKFkIBQpBBCCCGExANFCiEB0DSgrc14G0UKIYQQQkg0UKQQEgCziwJQpBBCCCGERAVFCiEBoEghhBBCCIkPihRCAkCRQgghhBASHxQpIXjwwQdxyimnYJdddkFtbS322Wcf3HDDDWi1msGSooIihRBCCCEkPirSbkCe+e1vf4shQ4bguuuuQ2NjI1599VVcccUVeOedd3DPPfek3TwSIxQphBBCCCHxQZESgkcffRT9+vXr/PuII46ApmmYPn16p3AhxQlFCiGEEEJIfDDcKwSqQBEccMABAIDPPvss6eaQBLESJBQphBBCCCHRUHQiZfHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667znOeyYsvvoiqqioMGzYszNsgGYdOCiGEEEJIfBRduNftt9+OGTNmBPrfiy++GDNmzEBFRQUmTJiA+vp6PPfcc/jJT36CRx99FE8//TRqamps///f//43ZsyYge9973vo0aNH0LdAcgBFCiGEEEJIfBSdkzJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPn277/2vXrsXJJ5+M3XffHddee21Ub4dkFIoUQgghhJD4KDon5bzzzjP8XVbmTYddc801AIBp06ZhzJgxnbf37dsXt912Gw4//HDccsstmD59Onr27Gn43y1btuC4447Djh078MILL6Curi7kuyBZhyKFEEIIISQ+is5JCcKnn36KefPmAQDOOuusLvcfdthhGDx4MFpaWjB79mzDfS0tLTjppJOwbNkyPPXUU9h5550dX6u5udn1h2QfihRCCCGEkPigSAHw1ltvAQB69+6NoUOHWj5m7NixhscCQHt7O84880zMmzcPs2fPxogRI1xfq76+3vGHZYvzgZUgaW0FNC35thBCCCGEFBtFF+4VhKVLlwIAdtllF9vHDB482PBYAPiv//ovzJo1C1dddRXa29vx+uuvd9639957M3m+iLEr9tbaClRVJdsWQgghhJBigyIFek4JAMdckvr6egDA5s2bO2978sknAQDTp0/vklT//PPPY/z48V2ep6mpybEtzc3NdFNygJ1I2bGDIoUQQgghJCwUKSFYtmyZ7/9hUn1x4CRSCCGEEEJIOChSAHTv3h0AHJPWhQMSdQiX+TWZOJ8PKFIIIYQQQuKDIgXAkCFDAADLly+3fYy4Tzw2KkQYGckXFCmEEEIIIfHB6l4ARo8eDQBYt26dITFe5c033wQAwx4qpHSxEyMUKYQQQggh4aFIATBo0CCMGzcOAHDfffd1uf/ll1/G8uXLUV1djUmTJkX62k1NTYafVatWRfr8JB5UJ6VQkMcUKYQQQggh4aFI+YLLL78cAHDttddi/vz5nbevW7cOF110EQBgypQpXXabD0tdXV2XH5J9VJGifmUUKYQQQggh4Sm6nJT58+d3igoA+OijjwAAd9xxBx577LHO22fOnImddtqp8++TTz4ZU6dOxU033YSDDz4YRx55JOrq6vDss89i48aNOPTQQ3HVVVdF3l4mzucTs0gRlaUpUgghhBBCwlN0ImXz5s2YO3dul9tXrFiBFStWdP7d0tLS5TEzZszAoYceiltvvRWvvvoqWltbMWzYMEybNg2XXHIJqmLYAIOJ8/lEFSn19YCI0qNIIYQQQggJT9GJlPHjx0PTtMD/f/rpp+P000+PsEWkGGG4FyGEEEJIfBSdSMkb5h3oueN8PrATKXaliQkhhBBCiHcoUlKGifL5RHVMamutbyeEEEIIIcFgdS9CAsBwL0IIIYSQ+KCTkjKs7pVPKFIIIYQQQuKDIiVlWN0rn1CkEEIIIYTEB8O9CAmAuQSxgCKFEEIIISQ8dFJShtW98gmdFEIIIYSQ+KBISRlW98onqhihSCGEEEIIiRaGexESADophBBCCCHxQZFCSAAoUgghhBBC4oPhXinDEsT5hCKFEEIIISQ+KFJShiWI8wmrexFCCCGExAfDvQgJAJ0UQgghhJD4oJOSMixBnE9Y3YsQQgghJD4oUlKGJYjziXBSCgWgpkbeTpFCCCGEEBIehnsREgAhUiorgaoqeTtFCiGEEEJIeChSCAkARQohhBBCSHxQpBASAIoUQgghhJD4YE5KynCflHwiREpVFUUKIYQQQkjUUKSkDPdJySd0UgghhBBC4oPhXoQEQIgRihRCCCGEkOihk5Iy3Ccln9BJIYQQQgiJD4qUlOE+KflEFSnl5UBZGdDRQZFCCCGEEBIFDPciJACqSAGkm0KRQgghhBASHooUQgKgVvdSf1OkEEIIIYSEhyKFEJ+0t+uhXQCdFEIIIYSQOKBIIcQnwkUBKFIIIYQQQuKAIoUQn1CkEEIIIYTEC0UKIT6hSCGEEEIIiReWIE6Z5uZmx79J9qBIIYQQQgiJF4qUlKmvr0+7CcQnFCmEEEIIIfHCcC9CfKKKFHMJ4rY2WfmLEEIIIYQEg05KyjQ1NRn+bm5uRmNjY0qtIV5Q3RKzkwLoIqa6Otk2EUIIIYQUExQpKVNXV5d2E4hPnMK9AF3EUKQQQgghhASH4V6E+MSLSCGEEEIIIcGhSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRCfOFX3AihSCCGEEELCQpFCiE/cqntRpBBCCCGEhIMihRCfMNyLEEIIISReKFII8YmbSFHvJ4QQQggh/qFIIcQndFIIIYQQQuKFmzmmTHNzs+PfJHtQpBBCCCGExAtFSsrU19en3QTiE4oUQgghhJB4YbgXIT5hCWJCCCGEkHihk5IyTU1Nhr+bm5vR2NiYUmuIF1iCmBBCCCEkXihSUqauri7tJhCfWIV7id8ARQohhBBCSFgY7kWIT5iTQgghhBASLxQphPiEIoUQQgghJF4oUgjxCUUKIYQQQki8UKQQ4hNW9yKEEEIIiReKFEJ8wupehBBCCCHxQpFCiE8Y7kUIIYQQEi8UKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITihRCCCGEkHihSCHEJ6zuRQghhBASLxQphPiE1b0IIYQQQuKFIoUQnzDcixBCCCEkXihSCPEJRQohhBBCSLxUpN2AUqe5udnxb5I9KFIIIYQQQuKFIiVl6uvr024C8QlFCiGEEEJIvDDcixCfUKQQQgghhMQLnZSUaWpqMvzd3NyMxsbGlFpDvECRQgghhBASLxQpKVNXV5d2E4hPhAgpLwfKvvAihVhR7yeEEEIIIcFguBchPhFOiipMysv1H4AihRBCCCEkLBQphPjESqQAMuSLIoUQQgghJBwUKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITIVLUil7q3xQphBBCCCHhoEghxCdChNBJIYQQQgiJB4oUQnzCcC9CCCGEkHihSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRAfaJq7SGlv138IIYQQQkgwKFII8YEqPuxECiCFDCGEEEII8Q9FCiE+UEO57EoQmx9HCCGEEEL8QZFCiA9Uh8TJSaFIIYQQQggJTkWQf9q4cSOeeuopPPvss5g/fz5WrVqFDRs2oFevXmhsbMQBBxyACRMm4JhjjkFDQ0PETSYkPShSCCGEEELix5dIeffddzFjxgz89a9/xfbt26FpmuH+rVu34tNPP8X8+fPxpz/9Cd26dcNZZ52FH/zgB9h3330jbTghaUCRQgghhBASP55EyurVq/HTn/4U99xzDzo6OtC3b18cf/zxOOSQQ7DPPvugT58+6NGjBzZt2oR169Zh4cKFePXVV/Hiiy/izjvvxN13343JkyfjmmuuQf/+/eN+T4TEhleRwsR5QgghhJDgeBIpw4cPx5YtW3DCCSfg3HPPxfHHH4+KCvt/Pfroo/Hf//3faGtrw6OPPoq77roLd911Fx566CFs2LAhssYTkjR0UgghhBBC4sdT4vyBBx6IefPm4ZFHHsFJJ53kKFBUKioqcMopp+DRRx/F3LlzMXbs2FCNJSRtWN2LEEIIISR+PImUOXPm4IADDgj1QuPGjcOcOXNCPUfW+PDDD3HhhRdizJgxqKysxJAhQ9JuEokZOimEEEIIIfETqLoX0Xnvvffw2GOP4cADD4SmaQxlKwEoUgghhBBC4ifQPinLli2LuBn55MQTT8SKFSvw8MMP46CDDkq7OSQBKFIIIYQQQuInkEjZbbfdMHz4cFx44YV48MEHS9ZBKCvjXpilBkUKIYQQQkj8BJplDxkyBB999BH+8Ic/4IwzzkC/fv0wduxYTJs2Dc888wxaWlqibqdnFi9ejJtvvhmTJ0/GqFGjUFFRgUKhgKuvvtrT/z/wwAMYP348evXqhbq6Ouy333647rrr0MqasgQUKYQQQgghSRAoJ+Xjjz/G0qVL8cwzz2DOnDl4/vnnMX/+fMyfPx/XX389qqurccghh2DixImYOHFiolW9br/9dsyYMSPQ/1588cWYMWMGKioqMGHCBNTX1+O5557DT37yEzz66KN4+umnUVNTE3GLSZ4odZHS2go8+ywwZgzALY8IIYQQEheB45WGDh2K888/H/fffz/WrFmDf/3rX7j22msxceJEFAoFPP/88/jZz36Ggw8+OMr2ujJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPnx5z60nWKfUSxFdeCRx3HHDYYUBHR9qtIYQQQkixEll1r9GjR2OvvfbC/vvvjz322AN33nkntm/fHtXTe+a8884z/O01b+Saa64BAEybNg1jxozpvL1v37647bbbcPjhh+OWW27B9OnT0bNnz+gaTHJFqTspr76q/16yBFi3DujXL932EEIIIaQ4CSVSNE3Dm2++iWeeeQbPPPMMXn31VezYsQOapqGhoQHHHXccJk6cGFVbY+PTTz/FvHnzAABnnXVWl/sPO+wwDB48GMuXL8fs2bPxjW98I/BrNTc3h7qfpIuTSFH/LlaR0tQkj7dsoUghhBBCSDwEEim///3v8cwzz+D555/Hxo0boWmaZR5KoVCIur2x8NZbbwEAevfujaFDh1o+ZuzYsVi+fDneeuutUCKlvr4+8P+S9Cl1J8UsUgghhBBC4iCQSLnoootQKBSw55574rzzzsPEiRNx+OGHo1u3blG3LxGWLl0KANhll11sHzN48GDDYwFg69atmD17NgC9mMDWrVvx4IMPAgDGjRuHXXfdNa4mk5QodZGiChNVsBBCCCGEREngcC9N0/Dxxx9j3rx5aGhoQO/evXHAAQdE2bbE2PLFzKuurs72McIB2bx5c+dtq1evxte//nXD48Tfd999NyZPntzleZpcZnbNzc1obGz01G6SPKUuUuikEEIIISQJAomUuXPnGvJQXnjhBVxxxRXo1asXJkyYgIkTJ+Koo46yDZ0qFoYMGQJN03z9j5MQItmnlKt7aRpFCiGEEEKSIZBIGTduHMaNG4ef/vSn2L59O1588cVO0fLQQw/hwQcfRKFQwNChQ3HUUUfh9ttvj7rdkdK9e3cAzknrwgHp0aNHpK9tfk0mzmebUnZStm83lh2mSCGEEEJIXATeJ0XQrVs3HH300bjuuuswf/58rFy5Epdddhmqq6vx8ccf4w9/+EMU7YyVIUOGAACWL19u+xhxn3hsVNTX1xt+GOqVbUpZpJhFCXNSCCGEEBIXkeyTYt59fv369Z1hUNXV1VG8RKyMHj0aALBu3TosXbrUMkztzTffBADDHiqk9ChlkWIWJXRSCCGEEBIXgUTKhg0b8Oyzz3aGeImKV5qmoVAoYP/99+8sRXz44YdH2uA4GDRoEMaNG4d58+bhvvvuw89+9jPD/S+//DKWL1+O6upqTJo0KdLXNifSM3E+21CkSChSCCGEEBIXgURKv379oGlap1sydOjQTlFy5JFHonfv3pE2Mgkuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlSuS7zTORPl+UskgxixKKFEIIISpNTcDq1cBuu6XdElIMBBIpDQ0NOPLIIzuFSZaqeM2fP79TVADARx99BAC444478Nhjj3XePnPmTOy0006df5988smYOnUqbrrpJhx88ME48sgjUVdXh2effRYbN27EoYceiquuuiry9jJxPl+UcnUvs5PCnBRCCCGCrVuBESOAzz4D/v534PTT024RyTuBRMratWujbkdkbN68GXPnzu1y+4oVK7BixYrOv1taWro8ZsaMGTj00ENx66234tVXX0VrayuGDRuGadOm4ZJLLkGVeVYaAdyBPl+UspPCcC9CCCF2/OtfukABgAceoEgh4YkkcT5LjB8/3vfeJSqnn346TueVRWygSJFQpBBCCBF8/rk8fu+99NpBioeiEyl5g4nz+aKURQpLEBNCCLFDuCgAsGSJPg7GEIBCSojA+6S0trbihhtuwMEHH4xevXqhvLzc8qeigjrIibq6ui4/JLuUskihk0IIIcQOVaS0telChZAwBFIQLS0tOPLII/Haa6+5hlaFCb0iJGtQpEgoUgghhAjUcC9AD/naZ5902kKKg0BOyowZM/Dqq6/i6KOPxuLFi/Htb38bhUIBLS0tWLhwIX7yk5+guroa06dPR0dHR9RtLiqam5u7/JDs4iRS1L+LUaSwBDEhhFijacDcuXr53VJFdVIA4N//TqcdpHgI5KQ88MAD6N69O/72t7+hZ8+eKBQKAIDKykrsvffe+PWvf41DDjkEJ598MkaNGoWvfe1rkTa6mGB1r3zhVIK4rAyoqNBt7mIUKSxBTAgh1tx2GzBlCtCvH7BsGVBbm3aLkscsUpg8T8ISyEn54IMPcNBBB3VubChESnt7e+djTjzxRIwePRo333xzBM0kJBs4OSmAFC6lIFJaWwGLSt6EEFJSaBogpjpr1pTu5JxOComaQCKltbUV/fr16/y7pqYGgL5HicqIESPw7rvvhmhe8dPU1GT4WbVqVdpN8kR7O/DII8D8+Wm3JFlKWaRYhXcx5IsQUuosWAAsXiz/XrMmvbakRXMzYJoC4oMPinMsJMkRSKQMGDAAnysZUmLn9kWLFhke99lnnxncFdKVvFb3+utfgZNOAg4+uGuyXDFTyiLFKryLIoUQUur89a/Gv0tRpFjNA1jhi4QlkEjZa6+98OGHH3b+fcghh0DTNFx33XWdifL//Oc/8dJLL2HEiBHRtJRkirfe0n+3tgILF6bbliShSHG/jRBCSgVNA/72N+NtpShS1FCv8nJ5zJAvEoZAIuWYY47BihUr8MYbbwDQd3nfe++98eijj2LgwIE44IADcNRRR0HTNFx00UWRNphkg+3b5XEpFSRTRYrVFkClJlLopBBCSpnXXwc++cR429q16bQlTVQn5cAD5XGp5ueQaAhU3euss85Cnz59OhPny8rKMGvWLJx22ml49913sWrVKpSXl2Pq1KmYPHlylO0tOswlh/NSglhNmC6l1XQhPiorgS/qRRgoZpHCnBRCCDFidlEAOikTJwKvvaYf00khYQgkUvr27YtvfvObhtt23313LFiwAIsXL8b69euxxx57oE+fPpE0spjJawliVaTkRFdFgnBSrEK9gOIWKXRSCCFE0t4O3H+/flwo6KFfAEXKl7+sj4U7dtBJIeEIFO714osv4pVXXrG8b8SIEfjSl75EgVLklHq4V6mJlI4O6++5lFw0QghR+ec/gZUr9eNJk+TtpShS1HCvwYMBkY7MCl8kDIFEyvjx4zF9+vSo21KS5LUEcamGe3kVKR0d+ipbsbB1q1wlVKGTQggpVdRQr29/G2ho0I9LMSdFdVJ23hnYe2/9uK0NUOosEeKLQCKlV69e2HnnnaNuS0mS1xLEDPeyvl/dhb6YVo9UIVqm9BpJihQrkUS888YbwJVXAsuXp90SQvLPjh3AQw/px3V1wPHH67vNA6XppAiRUl8PdO8O7LOPvI8hXyQogUTK/vvvjyUsfl3SqOFedFIkpSBSGhvlcVIiZfFiYI89gGOO0Vfm8sx77+kboX5RrT0R2tuBr34V+J//AS69NLnXJaRYeeYZYP16/firX9WFSt+++t+bNhVX/+8FIVLE+rVwUgAmz5PgBBIpU6dOxbx58/D4449H3R6SE0rVSVGre1lRrCJFFSNf7N0KIDmB+pe/6CEDTz8NvPpqMq8ZB2+9BRxwgL4R6h/+kNzrfvQRICJJ3303udclpFhRQ73OPFP/LZwUoLRCvpqa5Bghxgc6KSQKAlX3Gj16NKZMmYJTTjkFkydPxmmnnYYhQ4agpqbG8vG77LJLqEaS7FGqIkU4KaoYUVFvV/dUyTuqGFFFSlJOyqZN8lisXuaNjg7g+9+X185jjwEXXpjMa6uThJykvRGSWbZtA2bO1I979tQdXsAoUtaska5CsaMmzYv3vPvu+mJeayudFBKcQCJl6NChAABN03DnnXfizjvvtH1soVBAW97jM0gXGO5lfX+xOinqd6wOvEmJlG3b5LEqWPLEH/8IzJ0r/3777eReW50kbNign5t2QpsQ4szs2bJPPPVUoLpaPy5VJ8WcNA/omx2PGAEsXKhX+GpttR83CbEjkEgZPHgwClY72RHfFMNmjjlpciRQpKTjpKgiZfPmZF4zSlavBqZNM9726af6aqs6sYkLc7jF6tXAoEHxvy4hxcgTT8hjEeoFyJwUoLSS51UnRR0f9tlHFymtrcCSJcY8FUK8EEikLFu2LOJmlC7FsJljqTgpmibLCpeaSFHFiJo4n9R3n3eR8qMfARs36sdikzNAd1OOOir+1zeHW6xaRZFCSFDWrZPHo0bJY3O4V6lg5aQAXZPnKVKIXwIlzhNSips5qjkmpSZSVDHS0ACI9LOknBT1fMubSPnnP4H/+z/9uKEBuPpqeV8SIV/t7cD77xtvY14KIcFR+0N1nZEixShSmDyfTVat0r+PDz/U90DLMhQpKVMMmzmWikhRRUcpixRRBx9guJcbO3boyfKCX/9aJtkCyYiUjz4yXq9AcYqU7du5lw5JBrU/rK2Vx6Wak+IU7iVg8nx2uOMOYORIYPhw4IUX0m6NM55EymeqTA5BVM9TTBTDZo6lEu6lOileqnsVk0hRxUj37lKkMNzLmRtvBBYt0o8PPBD43veAPfeU50kSIsVqclBsIuXxx4HevXUBSKFC4kb0e7W1QHm5vJ1OilGkDBsmF/Ty5qQ8/jjwla/IDTuLCXX+Joo+ZBVPImX48OGYNm0aNmzYEOhF1q9fjx//+McYPnx4oP8n2aK93bihXqk4KQz30qmvlyEOdFLsWb1a3zwRAMrKgN//Xv9dVSVXGN9/3/je4sBqclBsIuWOO/TPcc4cPYSBkDgR/Z45pbRUE+eFSFEXsAB9nBwxQj8WFb7ywk9/Crz4op5PWGwUnUg5+uijcd1112HQoEH41re+hTlz5qDFHD9goqWlBU899RS+8Y1vYNCgQfjtb3+LY9Q4B5JbzF99W1txTcjtoEjRUcO9duxI5n3mUaQ8+6xs9/e+B4weLe/bf3/9d0dH/JsrloKTogqT1avTawcpDUR/qE7IAX3XeZGvV0oiRYR7qS6KQCTLt7bmawFh5Urj72IiTyLFU3WvmTNn4plnnsEll1yC++67D3/9619RWVmJ/fffH3vttRf69OmDHj16YPPmzVi3bh3+/e9/Y8GCBWhtbYWmaRg5ciRuvPFGTJw4Me73QxJATWIWNDXp4RbFTCmLFLtwL3Ffnz7xvn5a+6R0dACXXaa/5owZXVdOnXjtNXl88snG+4RIAfSQrwMPDNFIF4STUijIUKhiEint7XrejaCUJockHYRIseoP+vUDPvmkdHJStmyR44PV5pXm5Pm99kqmXWER3/G2bfpCbEWgWrjZRJ3DFYVIAYCJEyfi3XffxZw5c3DLLbfg6aefxhtvvIE33ngDgL5po6YEA1dXV+PEE0/ElClTKE6KDCsTrbmZIgUoXpFi56SI++IWKWlV95o9G/jd7/TjQw8Fvvtd7//7+uvy2CxCVFclzrwUtbLXiBHAsmX6Z1lMbsOnnxqvtVKZHJJ0aG2VY6CTSFm3Tl/kKPNYnuijj/Tqf3H3pVFjtdu8Sh6T59vajAtjTU36d1MsFJ2TonLUUUfhqKOOQktLC1555RW89dZbWLVqFTZt2oSGhgb0798fY8aMwSGHHILqrL97EggrkVIKyfMUKTp1dcbBOYm8lLTCvd55Rx77qfuxbRvw1lv68Z57Ar16Ge/fd195HKdI+fhjeb3us4/erv/8p7icFHMICZ0UEidqDqaVSBF5Ke3twIYN3kTHnDnA0Ufriz/LluVrwc+u/LBA5KQARsczy5jzbLdsKV6R0q1beu3wQmADq7q6GhMmTMCECROibE/Jkccd563CvXLQ7NCwBLG+6lJZ2TXcK27MIkXT9PCluFmyRB77Ocfnz5fFJb70pa739+wJ7LabLiIWLNAnNGqVoKhQk+b33htYvlwXKWvXFk8Ig1mk0EkhcWK3R4rAXOHLi0h59FH995YtugM7aVK4NiaJXflhgbpAk5d8QvOia1IFYpIiT04K90lJmfr6esNPo7qdd0axC/cqdliCWIqTJEVKa6s+iVf/dqnbERmqSPGz6ZUa6nXwwdaPEXkpW7fGl1CqipR99gFE96JpxTOZp5NCksSvSPHCp5/K47xNiN2clKQXtKKAIiU7UKQQ3zDcq3SdFDEom3NS4sSqRG9SK3LqBNiPEPciUpLIS1FjwFWRAvgL+brrLmDUKOBvf4uubVFBkUKSxI9I8boQoIqUvLgNAjeRklRo8EMPAaeeCrz5ZvjnMrez2ERKnhLnKVJSJo87zpdquJcXkaLeHqdIWbMGuP/+5CpdmUVKkjkpVudbEgP55s3GibwfJ0VU9qqvNyaOqpgrfMWBcFLKy/Xdhfv3l/d57Wq2bAGmTAEWLgSuvDL6NobFHOdeLA6RXzRN/54mTtRD+kg8xO2k5E2kuIV7lZXFv69Weztw7rnAzJnA9Onhn49OSnagSEmZPO44z3Cv9J2UU08FzjgDOOec+F5D0N4uJ+hphHtZOSlJiDPzCr3Xc3zFCjnpOPBA+1yTuEWKWtlr+HB9MAripDz8sPwOslYVTNPopAjefBO49VZ9f54//Snt1hQvbiLF74aO7e3GiX7eRIrdbvMqYryIa6xYtUqOCVHsa1IqIqWiIp5cyCihSCG+YbhXuiJl1Srg5Zf143nz4nkNFatqNmmLlCQGcjUfBfAuUryEegHAwIEyqVZUAosSc2UvIJhI+X//Tx5v2qSXVc0KK1d2dbhK1UlZtkwe58CQzy1ROymrVhlz7pLcByoKhEjp0cN+HykxXsTVb69YIY+jyFcsFZGSdRcFoEghASjVcK+sVPd65RV5nMRk3WpQznJOyvr10ZyP5hV6r+FeqkixquwlKBSkm7JqVfQ7G5srewH+RcqKFcBzz8m/NS1bA7ZVwYHmZutzpthRz58sfEe/+AWwyy7Agw8m+7pPPKHne82YEc/zR52TooZ6AflzUpx2mxeI8aKpSW4oGyXLl8tjq/mJXyhSsgNFCvENnZR0q3sJFwXQP3d1FS4OzLvNA8nmpPgRKQsW6IPl4MHhV9SDOinqTvMHHeT82DiT581J84B/kfLXv3adVGRppdeuKlpcbkpbW7acJBU1ZCjtSdWWLcBVV+mTx//+72Q/s5//XL+WLr4YePzx6J8/aiclzyJlyxb5eVglzQvEuNHR4S+3zytROymlkjhftCLlxRdfxCvqci4pKZiTkq6T8tJLxr/j7kDdnJQsiZRHHtE/9w0bgBdeCPe6QUTKjh3Av/6lHw8bZpywWBFnXkoUTooa6iXYuDFUsyJFFSmDB8vjOPJS3n8fGDAAGDkynokWoAvC//kf4LLL/E+2suSkLFgghcny5V37rDhRiwace27054KbSOnZU8b5F7tIcavsJYh7vGC4lz+K3kkZP348pkdRQoHkkjyHe6lJ4H7JgkhpauqavxD3oJa2SPFT3WvdOnkcdiJpFilenm/BAjkAOIV6CZIQKeXlwB576Me9eslz102kLFgAvPtu19uzKlLUzzsOkXLXXfr5tWgR8OKL0T8/oAvrK68EbrgBuPNOf/+ripS0J7rmPuree5N53dZWo4u2ahXwve9FG2LkJlLKymTyfCmJFKdwrx495HHcIoXhXu6IMSrru80DAUVKr169sLOTbCZFTV7DvbZt08Ne+vXT45X9DlxZEClz53YN70pDpKiDc5ZyUtavl8dhRMqmTV0nGF6EuBrq5ZQ0LxgxQg4UUSbPW1X2AvQ8GFGG2E2kqC6K6lJkUaSUlwNjx8rb4wj3UsPn4sp5+fhjeayGdXohS+FeZsH9wAPJbMC6enXXfn3WLOCee6J7DTeRAkgHdc0a93FGnWAD+RIp6jnn1UmJ4/2pOSl0Utwpeidl//33xxLzMiMpGfIa7vX888Dixfrk9eKL9VAAPx1aFkSKVdhE3DkCVjkpaYd72b3nqESKXUK224TDa2UvQUWFvkkioDs3YnBcuBD44Q+B0083Tly9olb2EqFeAhHytWaNfa5Aeztw3336cWWlfq0IsiJS1PLDu+5qnCTF4aSoIiWuUE71/PW7KV2Wwr3MgnvjRmD27PhfV/0Mhg+Xx1OnGqufhcGPSGlpcR8b8+KkbNjQ1V3OYrhXW1v4PM1izknRtBIQKVOnTsW8efPweBxZaSTzWNmpeXBSzBPPu+8GjjjCe1WlLFT3slpdTcNJqaiQDkCWclKiCveyWoNpbzcKVSuESKmpAfbd19triZAvTQN+/WvgsMN04XLTTfoK9G9/67nZnVglzQuESGlvN35eKs89J1dJJ03S82sEWREpa9fK82D33YPt9O2V5mbjJDcuV0AVKUuWeP+s29uNe9ikOanasUMX2YCxn0wi5Etd2f/mN4HJk/XjLVuAb387miIjfkQK4C6Y8yBSNm0Chg7VnV+1aloWREpHR9fPMOz1WcxOijovKVqRMnr0aEyZMgWnnHIKvve97+Gpp57C4sWL8cknn1j+EHuam5u7/GSdvDopVqvjr72mh4l4WbX066REERtrfn01nEiQhkgB4t+gS5BGuJcqUgoFeex0nq9aBSxdqh+PHWt/jphR81KuucZYYlo8r1/UpHk7keL03Gqo19lnAw0N8u+sVPdSr+fdd/e/iZ4fFi82umhJOCkAMH++t/8zu2LbtukrymmwaJHsK085RYYXPvpo/AJXXXAaMECfUO+6q/73Sy8BN94Y/jW8iBQ/56J5gr1lS/YqyL3xhn7da5pere2pp/Tb3XabF8QpUlav7nquhx17i1mk5Gm3eSCgSBk6dChuvfVWtLW14c4778SkSZOw9957Y+jQoV1+dtttt6jbXFTU19cbfhrVGURGyatI+egjefzYYzLO/tNPgcMP7zo5NOOlBHHv3kBtrX78+uvRlgd++2058a6okLfHLVKswr0AOUBnNSclTN6AeQIscBI+fkO9BKpIEaihKkHeh1VlL4HaxVjtIN/crO8yD+iVio4/3ihSsuKkqNez2UmJWqSozhSQnEjxGvJl5QanNbFSQ73GjgXOPFM/3rEDeOiheF/bLFJ69NDzUcRCw69/HV4AqP1dXZ31Y7yei5s3W/efWYtMUCf9HR3AGWcAH3yQjcR5NR9FQCfFHvWzKdrE+cGDB2OXXXbBrrvuil122cXxZ7CacUmKgryHe9XW6iEs8+YBhx6q37Z9O3D//c7/79VJOeYY/XjNGmvnIyhqqNfhh8vjuFe203ZSvFb36uiIx0kROSOAsxj3uomjmYMOAr7yFT1E7Jvf1Fd8FyyQ9wd5H2JSrVb2Erg5KbNmyfd5+un6QJZFkeLkpEQd7kWR4h1VpIwerZ/TgrhDvqxW9r/yFdlfbtgQvuiB6A+rq+3HAa+hh+akeUHYhaeODuDWW4FbbonGlTH3wZs2AV/9qlwo6NnTXrAB8TopVp9hWJFSzDkpeXNSKtwf0pVlUWWgETSZZvfNzc2Zd1Py6KS0tclQnN1311fWGhuBO+7Q9z0A3IWWF5EC6CEOM2fqxzNn6jkGUaAmzR9/vF4IAEg/3KulRf9svIY3+cWrk7J5s3FAjkKkDBxonHA4ned+NnFUKS+X36VY8dU0/VjT/L8PtbLX7rt3HYjcRIo51AvQJyGCLIqUYcN0kVdXp39HeXVSzDlCXkWKOjkXpDWxUit7jR6tu8vDh+vX1Asv6JPKQYPieW2zkyJQz9+mJucJtRuiP7QL9QK8OynmUC9B2D59zhxgyhT9eLfd9EW5MKgiRfRLixfL25xcFCDe6l5WIoXhXvbkTaRwx/mUqaur6/KTddSTvKZG/511kbJ8uRQZahKwaD/gvsLmVaQcf7zczGvWrGhq9GuadFIaGowr9UmGe1mJFCBeJ82rSDGvQgcVKRs3ytXP4cONExq752xr0505ANhlF+ckUisKBWPuS6Egz02/K7/r18tB2ira1kmktLToSfOA/j6E05hlJ6VQkO9TTA6LxUlZurTrbVZkxUnp6JAiZfBgoE8f/fsRboqmAX/9a3yvr4o19TyPsmS6F5HiNSdFFSlqCHHYPl0VEGroZ1DUMf+nP9WFp4pbf5c3J8V8jrS2JlNCOwlUAUeRQooS9STv00f/vXVr9pL9VMzx6wKRPwK4T2q9ipTevYHx4/Xjjz+23hDPLx98IAe7Qw9NNpFZ7bCtclKAeCdE6iRdiL84RYoa6jV8uPEcsRPj770nX89PqJcT4nX9vg/1c1AnSwKRyAx0FSnvvSfP88MP1zemA/TvWhxnLXF+0CAZWy3e77p10eWDbd9u7D+A5EQKAPzrX+7/lxWRsnSpvDbVXCs15Osvf4nv9cXn0Lu3cQKWtEgJ4qSoYZlhRYr6/1EIdnXM32svveqg6IuBdEWKVU5K1E4KUDxuSkk5KS+99BJOP/10DBo0CNXV1ThXKaY/Z84cXH755Vjptb4ryQ3qSS5EChB+h+84sUuE9uOkeClBLDj5ZHk8a5Zb69xR81EOO8yYiJh2uBeQnEhR9x8wr2yZQ2WCno/mc0V1UuxEijpQmhPVgyLOTb/vQ/0czCuegLOTolaTOuAAeVwoSGEchZPy/PN6cYE77gj2/xs2yPepXs/i/NA0/TFR8MEHXRdg4lhVtdtTw0vIl1W4VxqlbM2hXoLdd5chkO+8I0sUR4mmSZGihnoB0YmUjg75HXkVKU4iQRUpe+0lj8MuBMQpUrp1AyZMMJYidiu3HmfifNROSlubtcihSEmHwCLl6quvxvjx4/Hggw/is88+Q2trKzQlrqVnz574zW9+g4dFmRhSNKgXsDoJynLyvBeR4sdJsavuJTjpJHks8lPCYE6aV2OskxQp6oQ9KZGinm/qBNv8vpNwUuyeU33/6oAcBvG6fsO9VJGiLiKotwlXxCxS1FX7MWOM90UpUq6+Gpg7F7j00mDhkHbOaBxliM2hXkA8TooqqtTqbl5ESlacFHPSvErcCfSbN8trxZwjEZVIUa9/J5GiXndO56E6wVYXN8L26arIieI6MIsUALjoIuBvfwOuuko/diLpcK8wTord+VGMIqVoq3s98cQT+PnPf46BAwfi/vvvxyqL7MsDDzwQ/fr1w2OPPRa6kSRb2DkpWc5LMSfZCiorpW0dVU4KoMdjjx2rH7/9dvjdjkXSfHW1/rx1dTKHIakd52trjRZ/GjkpaYgUL06Kl70T/BJFuJeVSCkvlyu9Tk6KuTSyKlLC5lmJ1d3m5mATCrtFhzjKECclUtTv7UtfkudRXkWK+fw54wzZfzzxRPSvbZc0D0QnUrxe55WVQK9e+rGXcK/ycqMwzXK4l5jYFgr6d3rFFe6FCOISKVYbOQLhnJRSEilF66TMmDED1dXVeOKJJ/C1r30N/dSRQWG//fbDEqutm0muUU9y0RED2RYpYuW1qspYWUZNUI4qJ0VwyinyOEzI1+efy/aPG6d3LGVlsuNPykkxD8pp5KQ4iRRzuFfQUqNql7Xbbt4S5+32kgmDOC9bW/1tzOcW7gXIz3H1aik4Wltl6ePhw41uHSD/bm8Pf62rk54g35MXkRJV8nwaIqVfP+lkffKJ9X42Klmp7iXCvXr1kpsoCvr3B4YM0Y+XLo2moIiK08aCUS2o2BURsUK4el5EyoABxrE0DyLFD1VVMvogyvFqzRrra5EixZ6SECnz5s3DgQceiH3MWxmb6NevH3NSihDRYVVXR5uQGBcdHXKSv9tuRjcA8B5Wk5ZIUTeZVPdHEZPGtERKGjkpSTgpakJ2ba23xPk4RIr6un4m8m5OCiA/xx07ZPjWokVyADOHegHRFmtQ30+Q78lOpOQ53Ev93nr3lk4s4Jw839Qkr1G1b0t6UrV6tdzcb//9jdXqBEKkbN4cfZW4LDkpgBTMmzdbT5pbW6X4HDgw2jxD9f+juA6iCBGKY18tNdRLPd8Y7mVPSVT3am5uxgBzL2DBpk2b0JHlkk8kEKLD6tbNWyhM2nz+uZwUqRMaQVxOyp57yootL70UfLBQ90dR91wRg1pS4V5pi5SqKuNEOQ6RoiZki/ALL+d43CLFz3vx46QAMuTLLmleEGUZYlWkhHVS1PDNqJ2UHTuks6Y6S0mLFKeQLzVkb+hQeZx04rxTqJdAiBQgfAismayKFKCrywvo45JwkwYOjDbPUP3/jRuNY1cQopjYivEqLpGi7hsexklR26f2ecUiUkrCSWlsbMSH6ihhw+LFi7njfBEiTnKzk5JVkWI3oRF4dVL8VPcC9JUd4aZ0dABB07NE0nyhABxyiLxddPpbt/oLB/KDWh/ePPlOOielpsZ5tdGqupffkBJzPgqQfriX0+ta4cdJAaxFipuTElakqJOeIGJSOKM77WT8fqJ2Uj78UF5b6sQ7jupeZpEybpz820mkqGFOal5D0pMqu8peKmoI2H/+E+3rO4V7pS1SrM5FdYI9aFB8Tgrgba8dJ8KGewHxOynqAmRUTopaWrkYRUrRJs4fdthhePvtt/GKGodi4rHHHsOHH36II444InDjSDYRHYDZSclquJddJSBBECfFrbqXQC1FHLTK16JF+u899jBOFNWVt7g6UFV4ppWTIs43s0gxO0jmgbi93f8KoipSxLniJdwrzsR5ILiT4kekqCFFVpPMrDgpTU1y1dx8PQdJnG9pAf7wB+DZZ7vep4Z6qSIlCSdl2DB5jTuJFNVBUPfaSHpS5VTZS1BKToqbYFYTvqMO9zL3jWEFe5QipaUluutHLf2u9gVR5aSoYrcYRUrROimXXnopCoUCTj31VMyaNQttpmXcJ598Eueddx4qKyvxgx/8IJKGkuygOil5CPeyi18XiMmg26TWb7gXABx4oOzonn7a/wC5Y4ecxJnrUzhN2KPCaVBOOtyrWzfngdxqtdDvKr16rmQp3MvPRF6IlIoK+4mUWaS0t8uV8KFDrcPEVFEcRqS0tho3WnT6jpYt08ub3nyzfJzTokOQcK877gAuuAA45hhZOECQpkgpFGTI12efyXwPM1kTKdXVwIgR1o+JU6TkzUkxixS13wgjUjSt6/+HDX2MUqQA0Z2bqpOiRklE5aRQpKRPIJEyZswY3HDDDVi7di1OO+00NDQ0oFAo4KGHHkJDQwOOP/54rF69GjfccAP2jmpnM5IZ7MK9suqkuIkUr2E1QURKWZncM6WlBXjqKW//J1DFh7naUhIbOjpNvpMWKX7DvQD/IqWYwr369LFOXga6ipQPPpCvYRXqBUSXOG+eQDgJsOnTgdtvB6ZO1Se4115rDEszh2/27CmTx72uHr/3nv67vR245RbjfWmKFMBb8rw6OR82TH7nSU6qmprktTNqlH3/mISTYs5dA+IRKW7XuZtgNouUigq5MBGmP9+2zbgIYPf6fsiDSKGT4o2SSJwHgB/+8IeYPXs2xo0bh23btkHTNGzZsgWbN2/GqFGj8Mgjj2DKlClRtpVkBLtwr6w7KeXlXctiAt5XrIOIFMBY5euRR7z/H+AsUpLY0NGrkxJm4F+wwDlm2otI6eiw3mE8qEgpFOQE2E91r7Iyo7gIQ9hwL7ukeaCrSHHaxFEQVbiX+Rpzem9qOMeaNcBPfwp897vyNvOiQ1mZDLPxOjFT38u99xr/FiKlosK4I3gaIsUu5Et1UnbaSV6nSSbOv/OOzP+yC/UC9Bj/igr9OC6RMmBAV3GeBycFkP1bmO/O6n/tBHtHBzBtmu4kOk3Co1h9j1OkNDQYQ1ujSpwv9pyUohYpAHDMMcfg9ddfx+rVq/HGG2/g9ddfx6effoq3334bJ5xwQlRtJBmirU3v2ID0wr2WLQPef9/bYzVNhofsuqu1uPDrpBQKXcsYO/GVr8hjD/UmDHh1UtII94oiJ+Xee/UV6j33tP7s1dCgmhp7YbZ5szwvVfzmOwiRMmiQXDH0k5NSX2/vXvglSLhXS4tso10+CmAUKatXu1f2AqITKX6cFPWcKLMYraycUXV/Ci+FE9RrZ9s24J579OO2NmDxYv14jz30/k5MsOMUKeXlckIXRKTEkaDshpfKXoD+3nbZRT+OMnG+tVVOxM2hXkA2RYrqAsQtUuwE+7PPAr/5jZ6T9fe/2z+nuGYLBX8LdCrqeBXFualp8jMcNMg44Wa4lz0lkThvpk+fPhg7diwOPPBA7GTVQxBbmpubu/xkGbMKTzrc68MP9TCcvfYCXnvN/fFr18pO22pCA3ifDIqJid9OWhVzfid3xR7u9dxz+u81a2TYjYo62Dg5KVahXoD/MCnhxqhVkioqZKEEt3CvqEK9gGDhXlar8Vb06yfF1KpV7pW9gHScFHFffb3uakyeLBcIevTQxa0ZMTncvt3b52Z+L7fdpk+APv5YXvMiallMhOKs7iXyUQB9YUWIzTfftBZdItyrvFx/bBoixUtlL4FwszdujG6vFHWzS6vdEbp1kyI3a4nzDQ1yfFBFStDNLv2IlA8+kMdWG4IK1OiJoIswUTspa9fK61BdVAIY7uVESTgpf/7zn7FCXQYggamvrzf8NKpLnBnEHJuatJPy1FOyJOgLL7g/3i0fBfDvpARZSRK7CVuFJDmR5XCvykrZyQXtwNXP2+o51Amtk0ixCxfzI1Ks8lEE4jx3C/eKUqQECffyUtkL0IWXuH/lSilSBg/uWqBBEJdI8eKk1Nbqydh3361/T9dfr/cFav8j8FuG2OxCfvCBLp7VfBQhUoRYjdNJUcWlmjy/erVx9V0gnJTGRn0iLq6Rpqbod3W3QzgphQKw777Oj1XzUqJyU9QJtpVIKRRk/5UFJ0XTpEgRLgogv7uOjuCb0Vq56nbXgVqMwek6VEVKUKIWKeYSznE4KY2N6eR4xUlJiJTvfve72HXXXbHnnntiypQpmDVrFjYnvXMUSYUsOCkCLzHnXkSK35wUr+WHVcQEL0qRkna4FyAHnqDfvToQWz2H+n1066YLFbGSrr5nVaSooXh+BvqlS+Wx+VwRk2Gr59M02fa4RIrXcC8ve6QIxHrIf/4jB2A7FwWIrrpXkHAv9bMYOhS47DLg4IOt/8dvGWKr93LbbcmKlLY2eT6bHTCnkK/2dukiiFVfcQ6Gmej6ob0dWLhQPx4xwlo4qsSRPG8OebMiaZFSWyvPW/NYtX69HEutRAoQvE/346SkJVKimC6aN3KMykkxRw+I77lYREpJJM5PnjwZgwcPxgcffIDbbrsNp512Gvr06YODDz4YV1xxBV544QW0ht3itERoamoy/KxStw/OIGaRkrST4lekqOVKrTZyBJJ1UrZv97fKk6VwL6tBOWwH7tdJKRSs47ZVB0FNdvQzSVMnIObqQGKyYXWOq5tGph3u5WW3eUH//l1vcxIpPXrIVcUwothPuJf4vFWR4obfMsTivey5p1yF/8c/gDlz5GPiFinq4oWTSHnjDeN9a9fKnC3R9qgng25s3izHBavCJGbiFilWTgqQvEgB5LloFstWSfNANH16UJHiNC5l0UlRi2rE5aR0755O+GSclISTctddd2HZsmVYvHgxbr31Vpx00kno3r073njjDVxzzTU48sgj0atXLxx77LG44YYbom5zUVFXV9flJ8ukHe6lhuSk5aSEESmAv1XoLIV7WU3Aw3bg6jnj5qSISbuVSFEdhEGD5LEfkeKUUOgU7uUm5IISJNwriJOiYpc0DxhDiZII99I0ayfFDT/hXi0t8vX79gW+9z39uL1dhpOWlcn9R+ISKU65RAceKI/nzjXeZzU5T6o0uMBpw1cr4g738uKkBA2D8ytSxLm4bp2xsIc5VEkQl0gJG+6lbjsQlKgT582fYRw5KbW1xS1Sij5xfvjw4fj+97+Phx9+GOvWrcPcuXPxq1/9CuPHj0dbWxuefvpp/OQnP4mqrSQDmFV4VZWctMcd7tXeriezCvyIlEIB2G0368ck4aSoK/N+Qr7yEu61fbvMFfKDXycFiE+kONngQqS0tXXd8DOOPVKAYOFefpwUK5Hi5KQA8jyOMtzL7jvasUNO7OJyUtTrpqEBOP/8rpX7dt9dng9hRYrd5NhJpOy8s6yI9cYbxj0wrCbnaYoUL2tsaTspbW3Bvz/RH6rFNJwQ52JHh/E7TsNJsTr3mJPSFfEd19YaK+0lmeMVJyXhpFjR2tqKLVu2dO6VInah14rhWyWdWJ3gbknFUfHJJ8YJoh+RYl5pUYm7uhdgdFLiECl+BrRt24AnnvAmbNxESticJDeRYq7uBcjPYft2+Z1E7aSYO2+nMsRxiZSw4V5+nZQBA+xXoQWqSAnatXt1UtT3HJeTYhYpgwbJzVcF6n7EQap7tbYCv/+9Hm66997GSlQCt6psIv+muVnmfwDWk/OoV6zd8Osu7LyzFIJRiRS3xHkgmvxJv6XGVcGsChM7kRKFO66e06JktlWlu+3bjeed3XXY0SH72ayKlMGDjX12FE6KOF+SzvGKm5ISKW+//Tauv/56HHPMMejVqxeOOuooXHvttViyZAmOP/54zJgxAwvVHpXkHqudZ5MSKeY9RtxEysaNctJml48CGCeDpRDu9f3vA5MmAV62MnKbgIcdePwkzpudFPU11cm5KlL87JPi1Hk7hTUm4aQkEe7lFOolECJlx47gq5VenZSgIsVP4rx6LYrr6aKLjI9RRYrqpLiJNE0DHnwQ2Gcf/Zr7+GN9f6eHH+76WK8iBQBef10eZy3cy4uTUlGhTyqBeJwUuwKZUYsUL6jnzowZ8jgpJ0V1rczXgrnksN31HFV4UFyJ8z166M9dUSHFbxSJ86K9SV9PcZO3xPmKIP905pln4rnnnsO6deugaRoqKytx8MEHY+LEiZg4cSIOPPBAlPvZ7Y7kBquJXBQJiV4wi5TNm/XJgp3tribN2+WjAN4ng1FU9wKic1Jqa/V4+Y4Of+FeYm+S117TJ1JOK4Jew72AYB24OsFxC/cSA6R5IO/TJ/pwL7ucFKvn9LuS7JWkw73cQr0A4zm4aZNR4HslbiclTLgXAEyYoFepEhs5WokUTdPDripsRtAXXwR+9KOuie6A9cTcr0i54AL92C3cK4nE+SDn/5Ah+uewYYP+HZj7Nr8IkdK7t/3EK4rNZ/2KlAsu0DdL3LhR3yT0ssv08ykpkTJsmBw31641ihY11Auwvw6d+kU/eB0r3MYk8RiROK/299XVer8RRbiX2UkB9HbbOXV5QZ3DBZnLJE0gJ+X+++/HunXrsO++++Lhhx/Ghg0b8M9//hPTp0/Hl770JQqUIsYt3CvO6D41aV5gt4kf4C1pHkjeSQkiUgqFrqv0dpWunOjokBOb9nb3ya8fkRI23CuIkyLetzrJC1rdqxjCvZJyUoDgeSleq3upt/upJ6K+7yBOSqEA/PjH+nFlJfDlL8vHqIO6XV7Dq68C48cbBYq6C/snn3T9HzeRMnq07Hfy7qQA0SbPa5rs05zCFcM6KWqpca8ipVcvYNo0/bijA7j8cv1YiJSqKmN4YtQiRc3DNAv2pEWKlzDE735Xrzr41FPOz7V+vWyXcOXU9gV1Ulpb5f/aiZS8I95fVVXwjTmTJJBI6d69OzRNw4IFC/DNb34Tp556Km644QYsWLAg6vaRjGHVYUWRkOgFs5MCRCNSvDgp7e1SgKUR7tW9u9wxWUVMrLwOaGvWGBPc3f5P7ZStVrPDrE6azxe/ifOA/HzEedDQYLw/KpHi5KRkKdxLfA5iTxkngjgpUYgUr/ukBHVSqqvlORDESQGA73wHePZZfZNCdRLkRaS88YbsK/bZB3j8cV24CIKIlG7d5E7u778vFzqyIFKCOimCsCJl82Z5TjmtcocVKdu3y0IOfhzTH/xALpz84x/6uSBClXbe2divxylSzILdq0iJKodBOP+A9Xn52Wf6Zq1r1+r7FDlhVx1NtC+ok2JVqa5YRUoeKnsBAUXK+vXr8corr+CXv/wlxo4di+effx4/+tGPMGbMGDQ2NuKss87C3XffzV3pixAnJwWINy/FyklxmoSoIiVsToqasJ9GdS+7cAgxqHkN9zIPTG4DobpyaCWSwnTg5s/aa+K8k5PSu3ewyT3gHHudtpPidzNHNxcFMO6T0revcbC3Iy0nxY9IAeTqdBAnBdBXGCdM0EWGiheRop5HV12l53/V1MgwtCAiBQC+9CV5LFwa4SD06CE/o6QT58M6KWHzUrwkzQPhRUrQsM7aWuAXv5B///d/y+9bDfUCohUp1dXGa9rNSbGb2EflpBQKzvtqqe1RxbcVdiIlrJNiVU6+WEVKHvJRgIAipby8HF/60pcwffp0/POf/8SGDRvw2GOP4Yc//CEGDBiAv//97zjvvPOw6667Yq+99oq6zSRF0hIp5vLDAieR4mUjR8DbpDasSAkb7uUmUtRKV06EESlWhOnAzedK0HCvjg75mYYRKV5KELu1O0qRUlEhzzUv70PTpJPiRaRUVwOHHaYfn3aaN+s/DpEStZMCSEGwYYNzaWz1PZg38LTCi0ixm9SJMsKfftq1TV5EilXyvJjMqZPzPDgp6qaPYUWKl93mgfRECqA7cyNG6MfqXjdxiBQxZvToYQwlSzvcC3Dec0Tdx9qqAp6KeSNHQVgnxaovLzaRIj6bohYpZmprazFp0iTceOON+L//+z9ceumlqK6uhqZp+OCDD6J4CZIRnMK9gPiS51essJ4UeHFSGhudJ49eVqzV104q3Ku1VbbHTqSot3vpQNWETcB7uJcXkeL3u3cKmxJ4SZzftEmGYfTpE42TEjTcK8rEeUC+Fy/vY+tW+R7ckuYFTz4J/POfwE03eXu8OpEPujeP1+peqhgM6qQAziGhToUprPBS5tTuPBIipaOj63UoREqhYN8Os0hpbpbnnp1ISSJxPm0nxcseKUC6IqWiAvjVr7reHqeTYhYpTrveA8mKFKv35kekmMsPC4KUCFex+o6zLFKWLfNfFrkknBSVFStW4O6778Y3v/lNDBgwAGPGjMENN9yA7du3o7KyEocffngU7SQZIU4n5e23gXfesb5PDfUSK1KAvUhpbpZhAE75KEB2nRQvEyi/GzqaV8/cOl3RaduJvDA5KU5VsgRWToq59LJ5FTpIwjmQvcR59XW9hHv5SZoX1NXpieFeq7yon30enBTAOeQrDifF7jxS3QNzyJf47hoaum4mqf6/yCOaO9d+l/U8OCmDBkW3V4qX3eaB8EU+wlbxO/VU4MADjbeZQyzDCkxNM4oUp0p3aTgpYrxqapILSwJVbG7d6jyX8BLuFaSIT5wiZc4cfe6ihv6F4YEHgKFD9ZDUIONcUYuUWbNmYcqUKdhzzz2x66674rzzzsNf//pXrFmzBiNHjsTFF1+Mxx9/HBs2bMALL7wQcZNJmjjtkwIEFynz5umJoaNHA2++2fV+Nb9Ejc22EyleQ70A/zkpQcr21dRIcROXSPEyqPlxUnbskO87jnAvv06KXbiXWaRUVcn8GT/7pHgtQZykSBHv2csg5Kf8cFDykpPitQyxXeK8HX7DvaycFMBepDiJy0JBuikbNugOmCDNcK8gTkpFhZxchk2cz4OTAujf37XXGm8zOynV1fKcCSJStm+XoYQ9ehjPJzeRYjexj2qfFMB4bpr7UdVJAZzdFLfEeSBYEZ84c1JuvBH44APg6quj2RRy9mz997JlwEsvef+/kkicP/XUU3Hbbbfhgw8+wKBBgzB58mTce++9+Pzzz7FgwQLccMMNOO6441Drd2QhmcdpnxQgeLiXiLHu6NBXCMyoIkUNe7CbgKgDn1rhxAovK+9hnZRCQbopXid3XkSK3w0d/eSkeBmUo85JMQ+SXkSKeZf1QsFfmJQga9W9AH/vI4iT4pe4qntZTY6iSJwHvDspXsK9/DopVjkpgFGkmHOqnFD7vlmz5HFcIuXWW/V8JbFnjBVBJ+8i5GvdunDtzHrivMoRRwDHHCP/Hjq062P8FkNRUfvznj3180+0Vb0OtmxxL1RidVvY1Xenc9OPSBE5KfX1xvFAvd6ChHzFmZMi5irt7cFDZVXUts6b5+1/OjqkiM2LkxJoM8eTTz4ZRx11FCZOnIjhw4dH3SaSYeIK91Ino+oKoUAN9/IiUtTJuFvVospKPfTAad+QKDZA6tVL73jTDPfy46R4ybWIMidF0/Tb1PPJrbrXpk3WSce1tXp7goiUQqHrJn1O4V5xJc6rrysm8k7J7Xl1UgD9ezaXTE7SSamu9rayGCbcy06kbNokRZofkTJnjjxWw5wqK/X3sn17uJyU118HpkzRj+vr9c0IrQjipADG8Lf//AcYOdJ/G4F8JM6r3HEHcP75usM/blzX+3v00AVFkO9O/R/RT/brp7ddvQ7Mu80Ltm3reh3GkZMCuIsUu8UFTZNOyuDBxj5Rvd62bzeOFV6IM9xLfe4tW5zPVb/P51WkRFVOOkkCiZSHH3446naQnBBX4rw6IXnzTf151OcVTkp1tR6DKXZat5uAqJNxdXM/KwoFvWN2mtRGsVouJnibN+uCyG3P0zjCvYI6KUnkpIjnUCc6QcK9gHBOSnV1VzHgxUkpKwu2A7sT6uTcaiKvYnaU4iCOxHnAenKUpJPidcfzOESKl8pegrFjZd+nvo7ZQejeXf+cw0yqfvYzeWzuN1TUfsKPSDEnz4cVKdXVziF7YcepqApk7Lor8PTT9vere1952X1dRb0mRT/Zty+wdKl+nolxx+77tFtAECQpUuyclE2bZN9gFS4nCOukxClSoigwpD6HVYi8FVG6YkkRSXUvUjok4aS0txs3P+vokDkmw4bpq9xiEmZXuUfthN1ECuCeoBzFKprfCl9Rh3u1tHSdsKUZ7mUlIMydt5fqXlYOQhCRIjpwq4HYS+J8fX30O/j6KQKQRLiX+tlH6aRYvbegO84D/hPnveSjAN4mQXYTgX795N9qOKofkVJfD4wa1fV2K5ECBJ9UPfec/iNwep6gVdiiqvAlXIEBA5yvv6w4KW6Ia6ytzX8pXSsnRQh2NazQTqS4hXtFKVLMY49XkeJUKEFtX5AyxHGKFPV/o8gVU6+7zz5zXkgQ5NFJCSVSFi1ahAsvvBAjRoxAfX096uvrMWLECHz/+9/HokWLomojyRBJiBTAGPK1YoV8XRFdKDpeL+FeXkSKW4JyFE5KHCLFT7iX1QZZUYZ7hc1JsXoOKyelrk4mxpudFDE5V0WK1yovTlVPvCTORx3qBRgnfW5FAJII96qokOdClCLFTbjEEe7V0SHP/7icFHXSVFYm3ZT//Eeel35ECmAM+RKYJ2thRIqmGV0Ut+cREzt1R3EvRCFSWlvl9+uUjwLkT6QA/kO+7MK9BOKzUsdH9b3E7aTYbTTa2mq8DgB7keI0tod1UqzG+ShEiqbF66QA3kK+oiyCkBSBRcqf//xnjB49Gn/84x+xZMkSbN26FVu3bsWSJUtwxx13YPTo0bjHLoiV5JYkwr0Ao0hRk+ZFOWEhUpqarFdMREdWWeltVTkJJ8XvrvNRh3uZ81EAb5MPwH4CXlUlJ25hc1Ks2mMlUgoF+b7dwr06OrxXefEqUuxKJ8ctUrLgpADyPI4qcR5wd1LiCPfaskUKBa9OSphwL0CKlKYmeX37FZdmkVJebny/gDwXd+zwP1l77DFZyETgxUnx2y+qIiVohS919d1NpKjnUCmIFDFmWG3oqE701eqXVuNflKvvdhN+K0ES1kmJKtyrulrmKAYVKdu36xEigiiclLAipaidlH/96184//zzsWPHDhx//PGYOXMm3nnnHbzzzjuYNWsWTjzxROzYsQPnn38+3vQaLEdyQVJOyhtvyEmKmjRvFimAdciX6IR32snb6l7STkpUIsVPuJeVHRw23Eu9L85wL7WsMOAuUoLsleJUmtEu3EtdIYtj4uLnfSThpADhRUoSTkqPHrIKn52T4ncjR8C/SDEX2bDKSwnrpDQ2du3j7Fas3ejoAK64Qv4tnteLSPEbkjdokHz+oE6K16R5QH8t0cZSECnmcC9ACnY/IiWJnBRzqBcQTKSYE+f9YvUdFwrhwyfN5xtFincCiZTrr78eHR0duPPOO/HII4/gpJNOwsiRIzFy5Eh89atfxT/+8Q/cddddaGtrww033BB1mzPDhx9+iEmTJqG+vh59+/bFRRddhOYwuxnmADeREpWT0toqV/NUJ8Uc7gV0nYTs2CE7Yy+hXoCcBLW3G8sNC7Kak+In3MvKSQkb7gUE78C9hHuJgcacVK2KFHVyLj5jP2FS5tfyE+61davclCxtJyVpkbJtW7C9CLzmpITZcb5QkH2EnZPidyNHwN8+KWZhDUQjUvbYw9iXWDkIQUNUHnhAbqg7diyw//76sUjitiKoSK+slInPUYgUNycFkG0sVpFilTjvFu5VTCIlDicFiF6khA330rSu4+ebb7qHNpdM4vxLL72E/fffH9/5zndsHzN58mSMGTMGL774YuDGZZlNmzZhwoQJWL9+PR544AHMmDEDDz30EL797W+n3bRYcQv3ispJAWTIl5uTYhYp6sDlVaS4rVhn1UnxM6CFcVKc3nPQDtyPk2InUrZulYOZulu3n8m9wCncq6JCTlDV54tzjxTAn9gSk93u3YOXyfZC2ApfdtW9zKifc5CqaWJytnat9eDtdyNHwJ+TYnUeqSJFhDj5FSllZcBBB8m/oxIpbW3Az38u//7Vr+R11tFh/R2pZdv9OimADPlauzbYxM3rbvOCYhcpbk6KWaQ0NBjPubQS563yJcPmpARxUuwW5sKKFPP/hXVStm+Xi2OC9euBjz92/r+ScVLWrl2Lvfbay/Vxe+65J9Y6FanPMXfccQfWrFmDRx55BMcddxy++c1v4vbbb8fDDz+Mf/3rX2k3LzbiCveymkgKkSKclKoqueeJk0jxmzQPuE8Gs5qT4ifcy6+T4vU9iw582zZj3K0bfnJSzIOjOpCLjb3UwdavSGlrk52+XectnlM9x+PcIwUIFu4Vp4sCGM85vyFfmua/ule3bv4SsgWij9ixw3pS4HcjR8BbYq6TSFH3BgnqpADGkC+ryXkQkfL//p++IzYAfPnLwFFHuT+P+r0F6RfD5qXQSTHiJdxL0+QYufPOxr41rcR5KydFtNWM13CvsE6KOq8R18HWrf7GOKvntfo77PMJ3EK+SiZxvqGhAZ+ohd5t+OSTT9DTa++fM2bPno0JEyagf//+nbd99atfRX19PR577LEUWxYvVhveRRHuJTrHsjI5cL3+un67Wn5YrJRHLVLUyaBVR512dS+71+zWTX4Pbqva6uciVnSjzEkx/48bfkSKnZMCyB101WRxvyLFy0AsznNVpCTppDi9D02Tk904k+aBcBs62rkPTsLFb6iXwK0McVzhXl6dlDAi5bDD5LHVruV+RUpbG/DLX8q/f/UrYyy+3fME3chREFakeN1tXiD6qpYW67BeJ0TfJvbViouoE+fN4V6bNsnrbeed3ce+pMO9xHfU1mbdv4jvvEePrn1DVCWI1QqSQLhNi63+J6yToj6f2nf5ESlF7aSMGzcOr776Kp5TC6mbeO655/DKK6/gINWXjpnFixfj5ptvxuTJkzFq1ChUVFSgUCjg6quv9vT/DzzwAMaPH49evXqhrq4O++23H6677jq0WvRm//73v7u4SRUVFdhjjz2KuvyyupeEqEnvtIeEV9TJ6Fe+oh+3tAAzZ8rXFKFegHEiFrWT4haGFEVOih8npXt3+40fzZWunBBOSn29dKS2bZOTfDNec1LUiZXTnhRmrM4Vv+Fedu3wK1K8dN5iEmYX7hXH6qrXcC+xQSgQv5MSRqTYvQcnJyWoSGlslMdWK7VxJc477bcjrjvAWqSofYQTEyYAl14KnHaavnu5Gb8T3ffekyLhqKOkCHITKWH7xbBliP0kzgPhQpPtJrBRE7eTYh4f3URKEtW91Otzn33ksVXIlxApVt93VE6K+VwOW4Y46nAv9dwV8yWAIqWTH/zgB+jo6MCJJ56IH//4x3jvvfc6SxAvXLgQl112GU488cTOxybF7bffjqlTp+Kee+7BwoUL0e7Dl7v44otx+umn45VXXsGBBx6IY489Fp988gl+8pOfYMKECdhmuno3bNiABovlt169emG9ueB3EWG1SlhWZh0K4wd1QqJedHfeKY9VkeJU3SurTkrQcC+3CZS6Q7ETqsXvpfqP11Amqzh7L7g5KW1tcuKdBZFidY7H7aR4DfdKqvwwEI9IicNJUVfWrWLe03BSamoAYb6bRUqPHtIVdaNQAH77W+DBB+XzqfidVP373/J4wgR57DZhjtJJCStSVFFqR5hy+XGWGleJWqT06iVF1dq1ziIlyZwUO5GiblZqFilbtsjvwWpsjypxPmqREme419ChMox0/nzncLSSSZw/5phj8LOf/Qzbtm3DDTfcgH333Rfdu3dH9+7dsd9+++F3v/sdtm3bhiuuuAJHH3101G22ZeTIkbjssstw7733YtGiRTj77LM9/d+sWbMwY8YM1NfXY+7cuXjqqafw0EMPYcmSJRg1ahRefvllTJ8+PebW5wO7AThMrC9g7aQAxl2PRWUvIN6clKw5KW4iRQxGTuFeauc+cKC3gdDre1bj7P1MNNw+Z6s9UgRWn0mYcC8vsbpiEtbaKkNFshLupQr1JEWK38R5dZBUz6k4nBR1pVUNCxLEXYLYbhIgRP1nnxk3sYvSAfM7qVLNfzVAIG4nJWjfIRB9fZ8+3opFRCFS4sxHAaKp7lVVJc+/sjLZJ1iJlCRzUtxESk2NsdqYWaS4FUqIKnHe3JdnzUkx586MHasfNzcbr2UzJeOkAMBVV12F2bNn44gjjkB1dTU0TYOmaaiqqsKECRMwe/Zs/FINck2A8847D9dffz3OOuss7Lnnnijz6Mlec801AIBp06ZhzJgxnbf37dsXt912GwDglltuwSZlVOvVqxc2WiwjbtiwAb3jjrdIEbtQBqt4fT+oE5KhQ41hEQI7JyXJnJSysuDxyD16yBA5txXo1lb5mXgVKU4bt6lJ82YnxW4g9BrKpE40onRS1O/BKXFeEMZJ8bLCZPWccSfOew33Sqr8MBCdk6K20/ze2tqkCAiyQg+k46R0dEgBa3ceieulowNYsSLfIiWskzJ4sOwT/YqUjg7Z14tSxm7kTaT4XQQQfbm5f1TLcfsN94pSpFRUyNdTxx0hUhobjY6YX5ESxknZsUNe01l3UtTrrr4eGDdO/u0U8lVSIgUAjj32WDzzzDPYsmULVq5ciZUrV6KpqQlz5szBscceG1UbY+XTTz/FvC++1bPOOqvL/YcddhgGDx6MlpYWzJ49u/P2vfbaq0vuSXt7Oz744APHymfNzc2uP1nGbpUwzCZZgNFJKRSMbopAFSlqaISdSOnWzfvkw6uTUl8vB1W/lJVJweHmpFglQNrhpcKXOjANHGhfClJFtLGqylmYBRUp4lRXJ352IsVvuJfbwGvGT04KINsed05KFsO9wlT3shMp5vemPi6KcK+onBS3mHcvjpwaHvnee/HkEgUVKVVVwG67eX+esE5KVZVcSBJV+ryydq0UhHGLlB075GvFLVL8VGw0Ix5vPp+FSGluloVoAP8iJYqJrbmcb1ubXGRpbDSGLybppJgn/lZtBqIRKVE6KUFFSlFW9/rwww9x3XXX4aKLLsIll1yCe+65B9u2bUN5eTn69++P/v37o9wuwzejvPXWWwCA3r17Y6hVmRQAY7/w0sRjAWDSpEl4/vnnsUbJFH700UfR1NSE448/3vb16uvrHX8avQTWpohbuNe2bV3rd7vR1iYHANFhmkVKZaVxcFc3a7MTKTvv7F1QeHVSwq6Wi5AvN5HiZwLlZeUtiJOirvA6fY5hnRS1+ozXcK80E+fV58xiuFeWnRR14uDkpITZbV6gTmKSclK8nEdqP/b22/I4yu/NT8hQW5ssPTx8uDEvJm4nBZACY9UqfxW3zH2aF4KKlKTKDwPBw700zd5JUfvYd9+Vx35yUioqvOdMOWEWKWqp4ShFil8nxek7znq41wEHyL9L1kn53//9X+y999746U9/ijvuuAM33XQTvvvd72LEiBFYuHBhnG2MlaVLlwIAdlFHDhODBw82PBYALrjgAvTu3RsnnXQSnnjiCdx333248MILcdJJJ3WKmmJD09zDvQDvm+cJrFZNzSJlt926VriyEinbtkkB4HXgUl8XcHdSwiBEysaNzrvDBhUpXp0UL4nzXvfd6NFDvq8gIqW+Xp4/YZyUuEsQW1Wxy8pmjnlMnHdyUqIQKX37yoRhK5EirjFzqV0n8iJS/EyqPv5YigNzEIBb3xLF5F2E9mqateNlhypS4nZSkhQp1dX6ohzgT6SoZZXtwr0Ao0gZMMA9J8Utx8ovZpFiLn7gVDrcLZQ7TAlip748a+Fe5vOxZ09gxAj97wUL7AVa0SbOv/zyy7j00kvR1taG2tpajB49GsOGDUOhUMCKFStw2mmnocPv8nlG2PLFGVfnsAxU/0WvtFnpMRoaGvDcc8+hR48e+NrXvoYf/OAHOPnkk/GXv/zF8fWampocf1ZZ1crMCG1tcmJtF+4F+L8ArSajw4cbwzXUpHmB6Hi3bZOTGnWQ8yNSnJwUTYuusouYzLe3O39OfkSKl/AAv07K9u3yM/Uy6RVuyooV3je7UvOQxOeqfiZqh5o1J0WIlKxs5piWk+I3Zt5rToq6Qh9UpJSXy/h2q8mvEFg9engvKesmUrxMArImUuzyUbw8TxROipp/uGKF9/8LK1L8TDaTFCl+ysqrWFX2EqgiRfQjffvq56jXcK+owoPEOdXaqve76pTHLFKKxUmxCvdyWqR0wyo0TYR8tbYahahK0Topt9xyCzRNwznnnIOVK1fizTffxAcffID58+dj2LBh+PDDD/Hkk0/G3dbMsccee+DJJ59Ec3Mz1q1bh9///vedgsaOuro615+s4hTPGKb+vNWqqTkvRc1HEVglzwdJmldf19wewBjCFnYi6rUMcdThXk5OitVAqLbNy+RJiJS2NuNr2aEmRtfWyvMnqpyUUg73ynJOil24VxxOCiAXOlat6hqGKtruNdQL8OekeMlJUfMD8ihS7Hbo9oMqMJIUKVl1UoBgIkXt+53CvQRifExapJjHHrNIqauT51KSifNJhnu1twcrkSywaquXvJSiFSmvvfYaBg0ahDvuuMMwid53330xY8YMaJqG119/PbZGxkn3L84+p4T1pi/OiB5WM6OQ5Clx3mmV0GqV2St2k9EjjpDHVrUIohQpTh11lMnRXnedjzrcSx3QBwxw/x+/u2D7zUtRJ6F1dcYQALHC5FTdK84SxF6qeyWVOJ/FcK+qKtmuuKp7RSVSxESmvb1r7prXEt8qUYR79etnPeGLUqTU1Eh3KCknJWy4F2Dsp9wIIlKC7hyeB5HiVGxFHSsF4jPzmpMStZMC6OeUWaQAMi/FTqSo7rtKmMT5JJ2UoM9j9Xxi7uVXpBRV4vyqVaswduxYVFkUIj/si61pV1ttDZoDhnyxm9Ryh9Ii4r4h6s5TEZGnxHmnAThMaUe7Sj7nnAN8/evASScBFoXXDJMxsZIch5MSZUiP171Sog73Ep+LsPjdqnv5DR8KI1JUJ0V1WPw6KeqKeBw5KWk4KX7DvQoFf85AUMQ5F8ZJUa+FuESKXRni7dtlf+bn81L7vaAipVAwuimCKEWKmmfjNtEVIqVQkHHtgiSclLTCvfIgUlpavK+4ew33Eojx0es+KWmIlHXr9DFB4FYUJyonJe59UoI+j8BqcWD//WVhg5JzUnbs2GG5uzog3YUddjtbZZzRo0cDANatW2dIjFd58803AcCwh0op4jSRC+OkqBMSdVLWrRtw//3ArFnWA0MenZQ0wr2s9hPw46T4yUkBgokUq0HASaTU1RkHqYYGY2EFrw6EIKyTUlYWbjJtR3W1fJ9eShCbP4e4EOdxGCelrk5+1nGHewHGUJEg5YcBo5NiNQnyuqdE3CIFkNe402RI04D339ePhwzpep0l4aSEDfeqqrKehFuRN5ECeJ/MOokUp3CvqirZx6QtUsT1qlb4EmP7tm3yurUK9QLCOSlO43wcTkqY5Hmr87GmBhg5Uj/+97+t52FFmzhfzAwaNAjjvvDJ7rvvvi73v/zyy1i+fDmqq6sxadKkyF8/T4nzThO5qBPnvZBUTkpcTkpS4V5r18rVKPGZuA2CcYd7mROjrcIwnBLny8qM/2MWUl4dCEHYxPkw++c4USjIc9PLZo5J7SMrREpTk3Gl0w3ztW733qIO9wKMTkqQ8sNANOFeQDIixVxFyYpPP5X3W4XUVlfL92zVt0RZgli0xyvisX5KzedRpHgN+QrqpBQKsr+02lRVFEKJuroX4O6kADLkyy0fxdzGLOWkJBHuBchSxB0dcvFBJY9Oiueq1x9++CH+7//+L9D93/72t/23LEEuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlCnr6WXLzSJYT5c14DfeKInHeC3l0UtII97IKi3AbBJMM96qrM1Y68eKkAPp7EG03tzHpcK84Qr0ENTX6NWX3Ptrb5aQ77nwUgTqx37zZ+wTb/DnX1OjXgZOTEqaLtAv3CuqklJfrkzpNy49IaW7WJy1WFcyc8lHU51m3Lp7NHAH9POjbV+/DvTopaql5r6FeQHGLFKfEeSeRAujX4datXd2HOHIY7ERKdbVst1WFLy8iJUwJ4iQT582v5xc7kaJ+blbnTVGLlFdeeQWvvPKK5X2FQsH2/kKhkJhImT9/fqeoAICPviidcscdd+Cxxx7rvH3mzJnYSTnLTz75ZEydOhU33XQTDj74YBx55JGoq6vDs88+i40bN+LQQw/FVVddlch7yDJxhXvF4aTU1/ubOCblpKQR7mUl3NxyUvyGe/Xtq39327YFC/dSV0L9iBSBeYJXWalPKNvbk0mcj3PiIl7X7n2oe+6kIVI2bvQ+wU7TSVEnOUGdlEJBdxZaWoKXIAaMol4Ql0gB9D7MKo8rrEiJwkkBdKGxdq2+oGInqFSC5KMAxS1SnBLn6+pk/yxQRYoYz83XodfwRT/YVfdqbJTjgOqkiL1SvGwv4BaO6YTTd1xRob//7dv9i5SODus5URQ5Kd26GTfYdCuxncfEeU8iZZdddkEhjliGiNm8eTPmzp3b5fYVK1ZghbJE02Jx9s6YMQOHHnoobr31Vrz66qtobW3FsGHDMG3aNFxyySWWRQOiwFzNK8vVveIK94rDSfHjogD5dlLcBjSrAb2iQv+st26NprpXoaBPvN5/XxcpmuYcgmH+ztU8CnH+OFX3Aozv2zw5F2FSW7bEF+4V5f45TriFeyW5R4ogaBlis0gR110SOSlRhHsBziLF6yTA7KSo+TlRYV6ICCNSAOfV4OrqcLuRDxqkb0LX1qZPSt3qxwQVKUHHqbyJFKvvum9fQK0PZHZSgGREinpebtwoRYj6nVuFe6mLbXZOSqGgn4t+Cg4I3IqgdO8eTKTYjT9RhHs5OT5W53fROinLli2LuRnRMH78eGghdsg5/fTTcfrpp0fYInfc9lXJEnGFe0XlpGzZIi/8MCIlazkpbpWv3cK97ELgune3FylBJr5CpGzbpn8fVsmaAnNOiroGEIWTIp43LpGydWu0++c4YTeRFyRZflgQdNd586RHFWCqsM1q4jwgz9Uow73iEJdekq+9iBTxPNu36xvFid3QAXkdh41aNlf4ikukqCviWRYpXio2mvEjUsrKjEIgLZGydKl0gd1EipdwL0CKlCjDvQC93WvW+BcXdo+PItzLfN35cVLyIlJKPnGeeMdruFdUJYjdUFcf164Nvts8IMODzO0B0q3uVV/vXq1JTW61CveyG9CdavEHmfiqISxu6xrmnAOrMAw3kaIO5HYixfxadngZjM3hXnGXHza/blubPkk0k4aTEnTXeTsnBTB+B1HsOA8Y9+CJykkRfY7VSq3XSYA6KQfi+d68xNELkdLYaFxA8fo8diu6fvFb4SuoSAFkW7MsUrxs0GvGTaSoi0aNjUbnSxUp6jpv3CLlww+NbRKEESminVGGewHOjuK6dfY7yNstcsbtpFg9v/g+y8rCOZ9JQpGSMsVS3SuqxHk/TkqhIN2UtWuDJ82L57JbTYpyMuo33MvrKq+T4LD7XNT/MXewQqSoG/e5oW4j5JaX4qUEsVN1L8Cbk2J+LTuChHvFvZGjwK2ccjE4KYDxvUXlpAByQhNF4jzg7KR4zUnp1s04KUtDpKxfLyeAdi6K2/PE4aR4qfBVSiIlSidFYB4f1f5VPa/jWHmPW6SIdsbhpAD656N+RlddpX+2Z59t/bzqNaO2O6iT0tEh+0dzO91yrsT3mRcXBaBISZ26urouP1nFa05KUuFegOx4160zDlx+RQpgP6mNcoCqrJSflZdwL68TKPE4p5yUigrjapoYyDo6uk5+1ZK2XtPR/FT4CrtPCuCckyKeVzyPWxRokHCvpJwUt3LKqpOSdZHi5KSo7y1KkSJCvjZvls8bNicFCJeTAhivlzREipdQL6fnUXOywvaLfjd0TFqkJLUgIYi6uhfgLFLsNnSMO3FeddxVkaK21ZyTUl1t7/qJ+4HgOSlq2XcVq+ugvR343e/04/vuk+WaVdTzTBUpQZ0UdTwzTxfdrnnxmeQlaR6gSCE+iCvcK8yEREzKWlqAJUvk7UFEShJOCiA7WDsnpa1NCj2/TsqmTV0n5KJz32knY9Ucp4FQrM77mfT6ESnmcB63cC+rTlVdbbNaWRPfZ0eH9YRSxcvk0hzuFWWukhNu5ZTTDvcKI1KScFKskufTzkkBjHkpcYsUq4luWJGyfbv9ZMkvfsO9wrjmoq/ZutV6UmmFXcnXuAjjpFRVWfdh6gKVk5MSt0hRzyeR0wcYRUplpbwmzE7KTjs5L5yJdgZ1UurqrKvLWV0Hc+fKcVzTrEPzohYpXksl00khkdDc3NzlJ6tkLXEeMK64vPOOPM6qkwLICZ6dSHEqJWmHGNTa2oyd844dsnqKecXRbiDcvl1+Bn4mT0GdFDVvAPDupHz728CXvwyccQYwfnzX+/3sleIlTKeyUiYNJ+mkZDHcK2h1L6t9UgRxOSlWZYiTcFLSFiluifNeRYrd80TZLwYN9+rTx//kWW2rl1BQQL7Xmhr3HMEoCCNS7AqteA33SlKkqKiLCYAUVatX69eaWIxxCvUCgjspbq6g1Rj1xBPGx1iN6VGHe6nzK6dwLycnJU8iJSepM8VLsVT3iircy++EJEqRkrSTsn27/mPu/IOs8pqrwYj34lRMwG6lVe1o/UyedtpJDylra/Mf7qUOkl4T53feGfjnP+1fwyxSnEIEvE4ua2v17yfJxHk/4V55SZwXhSrSclJUkRLUSWlt7Vpq28+kLkknJapwL7WfiGqPFECfWHfvrrfTzUnp6JBOit9QL6Cra+vl2o0qrM0rcYiUcePk8UEHGe+zK2ARh0jp1k3uYaVirujWvz+weLH+2S9dKm93Eymine3t+ljkNUE8CpGyfj0wbJj18wLpOyni+8yTSKGTQjzj1GFVVcnOIEy4Vxgn5Yu9OwG4d2RW2FVRitrqdytDHESk2FWDUcMivDopQXMcysuBwYP14yQS593w46R4FSni+08rcd7qfeQpcV4IEfF9ujkpFRXGkrdBUPsCc7hXt27+B2z18WY3xY+T8uUvy2PzpDEKvIqU7t2dF3XsnifqflH0TytWOOeQrV0r++coRIoXikGkHHAA8PTTwKxZwNFHG+/zkpMS1cS2ULAWhlYiRbBggTx2W4BU2+nHTXHb88p8HaxaBfzrX8bHqH2x+XkB44JJUCfF6borRieFIiVliqW6FyAvkLTCvQQNDcFWX+0sb3Gx19REU7bPrQxxWJGiDmpOxQTs/sfvRo4qIuRr40bnwdWck+IU7lVV5b4DtRVBw72cVgzFoJBWuJeTk1Je7r6nTlSEre4lPmM3JyWKya/VXimizX5DvQDjnj5hRMro0cArrwDPPWcULFHhJFK2bpULCXvt5Rzjb/c8TmEnQRAhX1u3OrtzYZLmgXyIlNpa2ed5ESnq5qJOfcBRRwEnndT1+7Yb++LaodzcxqqqrteinUjx6qQA3kWKWrHLq5Py5JNdH+MW7tXQID/rOJyUmhp53pjPbU2jSCEBKJbqXoCcUCSZOG8lUoKEeplfW21T1AOUWxlidYD2Oomy2/zLq5OidphRiBTA2U3xs09KEBcFCO6kOK3ci+dMMnHebgIhCFKJLSyqAxGnkxI21AtwdlL8hnoB0YkUADjkEOCII+L53pwS5xcvlm6FU6iX+XnidFK8VvhKWqSoeX5JiZRCwbmsvJkwhSCAZHNSgK79Zf/+Xa+BoCJFve68Js97ya8yXwfmUC/A3Unp3l0+f1CR4rQ4UCjYP39bm7zmWd2LFCVuHVZYJ6VQ8K/woxQpbk5KVBPRJMO9gjgpYXIcgoiU2lpdGIjv3uykBO1Qg4iU6mrnCaOYjO3YYRSYaTopQSqxRYFbAQgr/DopUYgUs5PS3i7P96idlLgmdUFwclL+/W957CZS7BYzonZSvFb4SlqkRP0+veJHpLjtkeJGkjkpQNf+0hzqBUQjUrw6KX5FysaNeuicGau+0Pzc4nniCPcC7J8/j7vNAxQpxAdenZTmZvd9KVTEhKSmxv+KYh6dlCTDvYLkpITJcQgiUsQAad6/IEonxcqBUPFqg6uDghqZmVZOyo4dcuKYVNK8QEwiVq40lhJ1Ig0npW9fWZFp5UrjRDttJyVOnKp7eU2aB+wdmTidFKcKX0mLlKQ3chQkKVKS3CcF8C9SVNHqNr6r7QzipHjJSXnmGTl2q+eglZNizl102rneb1utzkc7JyWO/KIkoEhJmbyWILbqsMRA1dbmvi+FSpjJaNxOSmurfN9xOClRiRS7cC8nJ8Vu8pFEuJc4zbt1kzG05s47rEhxq4qlYl7ht0OdNKsiJa0SxGkkzQvEd71jh/GzsKO9XfYL4ruxem/qjspRiJSyMjkJWrkyXPlhID8ixSmJNqhISSInBciWk5K2SNm6VR9TnYjSScmKSFH3dVGJw0nxUgRFbfOcOfL4G9+Qx37CvVpajAV6vOJ2PqpOirpYnKW+yQ8UKSlTX19v+Gm0ulozgpsSD7pXiugUg0xIrCZmUTopcQxQSYV7rVghq4/U13cdvLIQ7qWuwJpFijjfksxJCeqkpFWCWGx0BhhXHpNALaHrVs0NsF7ksHpvaj8ThUgBZMjXqlXGiUQQJ8VpEpSl1Uq1xLOdSKmqAoYOdX4eLyIlyupeAEUKYDw33Vbd4xIpcU1szW10c1IEFRXuizFhnRQvIkUVF2edJY/dEudVJ8X8ul5xu+5E+zs6kvku44YihXjGa7gX4E+kqOFefjHvsQFE66TEUcEpDifFLDg6OoDJk+Xgddpp7v8jCLM6L0oQA95EijoJFZ3r9u36uSZWD0tdpDi9jzRFip/NOwHrKn5WTkqUe6QIxOpre7uxVHkxOymAPC/V67u1FViyRD/eYw/3ioVeEuejdlK8hHtVVwdzD/MiUvyUIY4ycT6LOSmCAQPcKz0mkZMiGDPG6ES6OSn19e5lgt3w6qSYHxtXpba4oUhJmbyWIHYK9wL8rRCEDesxh3xl3UmJIyfFHO51003As8/qfw8cCNx4Y9f/iaO6V3W1/PyXLbN/nBCx6meudq5r1sjjJERKkHCvtWv134VCdJNpt9c0h3upn5NdeERcRCFSrJyUOESKmjz//vvyOK6clIqKZHYmd8Mq/v2tt+QCgFuoF6D36yJXME4npW9f+dl6cVJ23jlYVTS/K9lZECluG6bmPSfFvNs8oC/mma8hL2N7kBLEQUXKpEn664l+zClxvqZGfz9hnRSvOSmA8XrN2gKKVyhSUiZPJYjjCPdqb5cXT9AJSVQiJQ0nJY5wrzfeAKZNk3/fc4+12HAL96qqCvadiMnrqlX2druTkwIYHYKkq3s5oV6eIt63vj7e0r9ZDffyK1KsJjxJOymAUaTE5aRkZRIgrvEtW+T5+sc/yvuPOsr9OdTN9+wS56OYvBcKxg0drdi2zTph2Q9hnJQ4HVMzfpyUYsxJKSvruvDiZZPmsCWIvSTOC447Tv8txnSnxHlx3rltsuqGWy6YnQjKUiiqHyhSiGf8hHt5XSEIu6s40FWkWK3KeCGNnBQ3J8XrgKM+7q235Hd1ySXAkUda/49Y2QGsw7369Ak2+VYnr5980vX+1lYZ02uVkwIk66S0t+s/gHvnbTVpjnvikodwL6vv2UwWnZS4ShBnZRIgzs32dr1tmzcDf/2rvE9N+vXyPHE6KYAM+dqwwfqaDZuPAvgPtykFJyWLIgXo2qf5FSlRJs6bz/FevYCDDtKPxSKgk5Mi3nOQzUStns+qTebnp5NCSgrRYZWXW8cx++lUBWqHGIWT0rdv8AswKSelpkZuGOgkUurrvYeMWA1MI0cC11xj/z92K6RCpAQtaeu2wm73naufrzr5jluk+Om8nerSx0VWw70aG+WE3W+4l1XivJWTEtXkVxUpixfL47jCvbIS821etb33XikuvvUt75NuK5ESx+TdLS8lapGS5XAvNd9GhJbaUYz7pADBREpcifNlZcb7jjlGjs9irNy2rWsfbd7CIKyTEkVOCkUKKUrcQhlUsaBWiHLCar8Mv6ivGzTUC0jOSSkUpJviFO7lZwJVVWXsnKuq9AmJ28BirsW/fbt873GJFHUF1i7cK2onxWmfFD8DcRoiJavhXmVlssKX33Avq8T5OJ0UdXKjnn9BnBS1/8t6uJe5zPjvfy//vuAC/8+jljWNw0lxq/BVSiJFXXRQ+0MrVJESRHjb5aQkUd2rosIYXaCSlJPi9TtWrycR6gXYR0e0tcl+TzxvlInzVv2jFyclK4soXqBISZk87pNi11n5WfkRWIWA+CUqkZKUkwLITs3JSfE72Kgd/69/Dey7r/f/EYNcFPtuuIkUu0lo1OFeXvdJ8TMQZzncy2rPoLgRImXzZmvBreIW7hVnTopdCGhYJ8U8CcqySJkzB3jnHf344IOB/fbz/jyin9A0KU7idlIoUuSxm0gJEiKskma4V//+9hW7zO6w38T5KHNSAONne+yx8lhd0FPHdKvnjaoEsRqurUInhURKHvdJseuswjopUYR7ReWkiI46rgFKrOBu3izzIQD9WLym3wnU8cfL3xdf7O1/RKe7bZu+6hOmspfAj0hRV2DtEuezHu4V98TFbgIByMlLQ4Nx8pwUfpLnrSY8aeSkqMSVk5KVlUp1UqVW+PPjogDWG7+KyVJ5eXTnXhLhXlVVMty2WERKEjkpUU5s1fPJacqTpZwUADjzTP332Wcb26Y6KeoYavW8UYV72bXTzklh4jwpevLgpHjpxOywmjDF7aQAxhXoMLb9n/4ELFwI/OMf7rXkBeYyxEmLFC9OStzVvfzY4GmEe6mTQDsnJelQL4EfkWJ1rZeVyf5E3G8XDhiG2lrryVuUOSmaJv/OyiRAPTc//FD/3dAAnH568OcRfaI6WYqqul0S4V6AnMhlWaSo17S6aGOFGDcqK4Ode24iparK+5jihThFSlwliAHgF7/Qx6Z77jHe7sdJiSpx3kupZDopJDR53CfFS05KEJESdEJyxBH6ZKOiAjj55GDPYX79uJ0UO5ESZlOusjJgn3387c9gLnMZZrd5QX29/F8/OSlpJc77WWFKI9xLfV31fbS0yMlJXkUK0PW9xeGkAF0nOOZEWK/YiRT1OCuTAKtz89vf9v+5WokUcR1HWTXfT7hXGNc8qEhJcocAtbqiVyelR49ggtEuRCouZ3DXXaWLKSpkWaH2a2Vl3vq5sCWI3fqEvn27fsbqWKku9Fk9b1QliP06KXkVKS57zZK4yfK+KGbcOizVSUkycb5fP2D5cn0SFGaylpaToq68hN052C/mMI4oclIAfRBav16faLS1GavB2U1Co06cr6zUX7etLd/VvQD9c9q40TjRT7Oyl8BPGWK7+PaaGv0aiDMnBdBDvtTKXj16BFsdthMpWZwEWJ2bfkO9zM9jdlKiHMLEjuIdHc7hXmGqOAL5cFLKy/XJ77p13kVK0DHDbTPHqEVKbS3w4ovA/PnA179u/zh1PG9s9LYAFyZxPujGvH7CvcIkzre3y/7R7rqzE0FMnCdFjaa5OylVVfICSdJJAfTXDbuanEZOCpCuSDE7KVGEewFy8treDnz+ufE+u5yUqBPnAWsHwkzYxPkkJi7iM1DfR5qVvQR5clLMeSlB8lEA++pecSUZh8EsUg4/HNh7b//PYw4LBdxXdINQUSG/J7OT0tEBfPaZfhwm1AswihRRrcyOOMIPvSIWH7wmzgfJRwH0ybk4Z62qe8UhukeNAs45x/kzVfs1r6HcYRLng4YuJpU4r/aNXpwUhnuRkkFsvgc4n+Ai5CtJJyUqspCTkrZIiSLcCzAOKOYIRi9Oivq5xy1Ssl6CGLB+H1kQKYMGyUE9qEgRx3E7KeZJTlCRYlfdK4uTAPO5GcRFMT/P5s26OLPakDUKRMjXqlXGcWfNGt0VBaITKZrmXJ4ckOejmj+VFEKkNDXZt7OlRYrloCIF6HodAukXgthpJ3nueRXXYRLng57Ldk5K1OFeXhZN7Z6fifOkqPE6kRMhQuvXG6tW2RFF4nxUWCUPJpGTklUnJUy4l5oMaRYpXnJSVMIMkOL5nSYieQn3AvTrsKNDP85CuFdVlZz8B6nuBRi/I01LzkkJen3lKdxLvb779AFOOy3Y85gnPuo1HLWTKESKphld2KiS5gF/yctq7k1UBQK8oi4+2LkpYSt7CcT4l0ROildqaoC//x2YOhW4+mpv/+PXSWltlQ5d0MI7dk6K1SJnmMR5L3sTMXGelCReT3DhpHR0uO+bAMQ3IQlCZaWMeTU7KeXl0XbUWQz3iqq6F+BcmcZLuJdK1sO9khApVjtCZ8FJAWTI16pVzpMCNycFMG4mCkS7Sh+Hk2IX7pWVScDw4bJPu+CC4H2YWaTEmUxuV+ErCyIlabyUIY5KpJjDvTQtfZEC6JsmzphhDC11wq+TsmyZXFAdPtx38wD4S5yvrpYlsONwUtTztBgS5ylSiCe8nuB+k+ez5KQUCl0tb3GRR1lmEyj+cC8nJ8VLuJdKmPNCzeWwiz3303lXVRmLAADJOimA/PyyJlIA5+R5NycF0K+7YnBSspKT0tiob+J46616+dSgpOGkABQpfkVKmDHDPPa1tso+Myvnsxf8liBeskQe7757sNfs2VPOD9wS59XjOERKRYX8LumkkNDkZcd5r+FefssQR5U4HxXmlXdxkUc9Ec1KuJddda/q6nDfRxCR0q2bdfWWKJwUtfCDGb8Jz+bJShKJ81ZFHbIQ7gV4T5734qRs3ZqvnJSsh3sBeon2iy6Sq7dBMDuuXsJOgmK3oSNFivVjog73EmGXWSwE4QW/JYjF/kFAcCelrEz2J26J8+qx33Avr+HnViIoi4soXmAJ4pSpT7KmYQj8hnsB3pyULCXOq20wOylRi5QshnupIqV373DOkVO4l11OSqGgd67qZwBEI1IA/Vyz6pz9Ti5ra41tTDrcK69Oilt1L/GYYnBSsiRSosC8mBFnWd4shXu1t8vvNasiRe2LohApHR16gYK8ns9+w72icFIAfeFxwwb3cC9AXk9+nRSviwPdu+vnC50UUjJ4VeF+d53PUrgXYHRSOjriKbMJGJ2UxYvlZCdLIiUMXp0Uc0drNeGPUqRY4bfz9tLmqHEK9yoUwhU5CItXJ8VpnxSB6qQUCtEOpn36GEP1oihBrJ47WcxJiQqncK84nZQVK/SJ1uLFwPvvy9uTEilplh8GvO06H3VOCqCPy3RS/CHGzI0bZXETu+qg4vxrbpaP9UIYJyWv/RNFSsrkZcd5rye433CvLCXOA0YnRc1jiHoi2qOHnNwtWACccYYuVNIUKatXy+8j7KS3e3d5nngN9xL/ZyaK6l7m11UJG+6VtEgxh3v17ettk7O42GUXeRwk3Mv83sTEsLY22jywsjKjeI4z3CtPkzovOCXOx+mkPPCA/tp77gm89pp+W3V1+EUUryIlriIOXvHipKg5jVE4KUC+RUpFhewP/Tgp9fXhHGmx8NjRIYWjm5MCGIWwG16vO/H8LS2yjDedFBKIurq6Lj9ZpBQS5wE5YWprM4ZhRT0Ql5UBd90lO/9Zs3Shogq7MAOOV9TXUCeYYScBhYKcEDpV9zKLFKvPOWtOipc2R41TuFea+ShAfDkpcSxaqCFfDPfyTpJOSrdu8nuyKnZx6KHhxWsQJyWrIkUNg9t55+CvVSwiBZDtdXNSWlv16l6A7qKEOa+syhDbiYqgu857PR+tzu+89k/MSSGe8LpKmPfEebWjVifXcayWT5gAPPoocOKJemc6a5a8r66uaxWpOFDf19Kl8jisSAH0ValPPtHPg/Z2ubrlFEIRZ7iX02ZoAr/hXoVCMpMXs9hqbpaT+TTzUQD9OxPx2F7DvdTP2S4nJY7+QE2eL5XE+SgQFYO2bYvfSQGA//kf4Je/1D/HQYPkz5AhwJlnhn/+vIgUddHPTqQsXy6PBw8O/lrmUuB5FinV1fp35+akqOWHw+SjAF3LEA8dKgVIoWC/J5if5Hm/Tor4n1698uv0UqQQTwQJ98pj4rzakagiJa7V8okTjUJFkESoF9B18iGIIsdBOCkdHfq5ICbTTt953pyUqEtTe3nNbduME5a0RQqguykbNug5BKogVREisVs342eWpJOihhIFPce97JOSp0mAV7p317/DzZvjn7yff77+Exd5ESmVlXIBwC4nRRUpaj6PX5xyUvImusV7cRMpUeWjANa7zotzyzxOBN113m9Oivr86meh9mFZh+FexBNBwr38OilZGNiTdFIEEycCjzxifP9JiRTAOqwsCifFLnleTEJravSwNxXz51xV1fUxfrAKkzITJicliXwUoOv7UM/NtMO9ABny1dYmd282Y7cxnFlIxilSLrhAX40/5RRgv/2CPUcpOimAsSJR3E5K3HhdyU5bpAByEcLNSenVK1wbzeFeeV15B+T15xbuFVVlL8A63MuuOmjQXeeDOimA/CwqK8ONqUmTo6aSNPHaYVVXy4vHT+J8t27ZuHCSdlIERx1lFCojR8b7eipxiRR1hd9KpFhNQs2fc1h3Le7qXkmJFPP7yEr5YYGXvBSxIGH+TtW/N22S4RdxiJTRo4GPPwYefji4A6aKFPXcKSWRkoXJexjy4qQAchFiy5auzkBHh8xJCRPqBRRXToq4/rLkpKgEdVKC5KSYnZS89U0M9yKe8GP99umjX5x+EuezEOoFGNuhrlwlMRk96ihg3jxg9mzgW9+K//UESTgp6qRard5kxvw5hx0ckwj3SgLz+8hiuJfAbq8Uu2tdfW9qnxHXpDBseF5ZmR4m2dZWWk6K6CdaW417QeTRSQlS3SutnElz8rwa0rVmjTwHKVIkXhPn43RSNC16kRLGSaFIIUWNnwG4b199NXXdOn2lx8khiTO0IwhpOSmCkSOTdVEAa5ESRU6Km5NiNQk1i5SknZQ8hHtt25a9cC8vZYjtwr3U96a6r1npE6yoquoqUvI8qfOCeq5//rk8ppMSL04iJap8FMB4zhZD4jygX5+aZr8wIZyU+nrjoloQzInzLS16HwEkH+7l5KTk7bvMQIANyQN+JnIieb6jo+vu4Way7KQklZOSNlbvLU4nJWvhXn4TRBnu1ZUw4V52TkrWRQpQWk4KRUp87XFCFSnm5PmoKnsBxemkAPYhX62tsqLl7ruHd1jN4V5OgiKKcC+nsbGYnBSKFOIJv+FeAre8FDFxycqEJG0nJQ2STJxvbZWbS3kJ98piTopdKck4yVO4l5VIaW2VuSZOOSl5clIAihQgn32jmgOZdZGiXt/m5PkVK+RxnCIlb+ez2l47kfKf/8g+KWw+CtA13MtJpIR1UurqnCNUrJwU8X3m7bukSEmZ5ubmLj9ZxG+4l8BJpGganZQskGS4l1uMd5xOShz7pDDcS7ZBtNFKpDityqrfUZ5FSp4ndV5Qz3XV8cpK3+2HQkH2NVkXKU4bOkYZ7lVM1b28OClR5qMAXZ0U1SExjxNhc1LcFgaKyUlhTkrK1OdkGcqP9et113n1ObMy0NFJ0TuxKL6PPn301Z6ODvlZqiLFS05KEonzfieXWUicF59nRUXwTQmjpFDQ81IWL9ZFijkO3G63efPfeREpasy7IM+TOi9YLWa4rehmmfp6fc8Xp0linkRKWCfFnJMi8inM9+UBtR+3S56PsrIXoPdj1dV6P+DmpMQtUsxOSkeHjGDIm0jJafdCkiYOJyULlVPMqBMm9T2XkpPSu3c0GxSWl8tzwauTEnW4l5d9UsT3XFXl7X2rA0Da4V79+mVnkihCvrZu7bo44bQfUp5zUkqxBLFKHvNRBH6dlKxU91KJ00nJc06Kl3CvqJ2UQkGGfLk5KUHDvcT56HbdmZ0UdTElb99lRoa30qWpqcnws0otg5QhgooUJyfFaXU1LewGolJyUqII9RKIvJTVq/XV9TTDvdxEiteJ5Ze/rA9GVVXACSeEa59X7DZzzEKol0Ct8GUuQ+zkmqp/q4/Lg0gp1ZwUQZ77RVWkaJr1Y9yc3yTwkjjft2+0Czp5FylmV8iKqJ0UQIZ8xZE439Ym34tfJyXPfRPDvVKmLidLUUHDvZycFFWkZGVCYtfRF7OTYn5vUSTNCxobgXff1TvJzZvdVybTTJz32nn37q1PwrdtMwryOFHfx8qVcnKchaR5gTl5fswY+bfTgoTdtZ+VPsGKUs9JEeRk+LJETOTa2vQ+wGpcy0K4l9rHqE5Kezvw2Wf6cVgXBegqUlThljeR4sdJiaL8sECMnWY3OYrEefVc9JuTkue+iU4K8UTc4V5Zd1LyPBi7YRXuFRXm5Hm3lck0SxD7GYjr6pITKIA+KRZhXWpiepZFiorTIofd554HkdLRISsEFXtOSrE5KVbJxWayIFKqqmTemSpSVq2SeSNh81GAro5mnie2bk5KayuwbJl+HEX5YYGaPK+G4pmvndpa2Z97dVLUc9RPuFfenRSKFOIJPye518T5vDgptbV6fkWxkkS4F6CHKmQ5JyXLnXehID8vde+hLIV7OYkUJyelrMz6s8/ywoAQKYB0U/I8EfCCXeJ8XlH7ms2brR+TBZECyOtcFSlRJs0Dxol93qt7uTkp//mPFHhR5KMI1AU+NeTVLObV6nJeRYofJ6W6Ws5ZKFJISRBHuFdenJQ8rxZ6IUknxS3cyzwRCDs4VlbqP0C+RQpgfY3kxUlxyz+zOheysnBhhXqumEVKWZleda3YKDYnRe337CaKor9SJ31pIETKpk3yfItapJRSTkoc+SiAvUhxuna8hnt53W0e0EWQeM2mJooUUgL4OclrauQEI2+J81btKOZ8FCBekeLXSSkrMwqVKM4L8Tp2+6QECfdKA6vPK0siZeBAOZHzE+4FeBcuWUF1UkTfmJfzKCjFlpOi9ntuTkra79Oqwpe6kWMcOSl5FiluTkrUlb0EariXk5MCyOspSLiXl8UB1anJsytGkUI84VeJi3j9vCXO00mJL9zLS04KYJwMRSlSrJyUjg5p+2d9hcnq3MxSuFdFhS5UgOJ3UpzCvbJ+HgWl2JwUP+FeaZ+LVrvOx+mkmHNS8jaxdRMpSTgp6vdjdZ14qS6n4jf0UHVS8pxfRJFCPCFO8ooKb7a3ECnr1nkr70gnJT3irO7llDjvpdxzFOeFeA4rkZInGzzr4V6ALEO8bp3x83YTKXl2UkpZpKTtMITBS7iXOIfTfp9WTkrcOSl5Filu4V5JOClq5T+ra0fc1t5uXyZZJaiTQpFCSgK/A7BYjW9vNyb6qmTRSbGaLOV5tdALaqURIN5wLy+boyXppORJpGQ93Asw7pWiTqLcJjx0UrJPt25dc23y3De6OSmalu1wL/X6Eg5mGMrK5HltTpwXeX15wauTUlcHDBgQ3evajZ1O4V6At5AvvyJFPL+mARs2yNvz1j9RpBBPiAvd64qKlzLEWXRSKiu7OkXF7qQUCsZVxShFijq4enVS4hQpZlcvT6uFWQ/3Auw3dCwFJ6XYc1LUZFxB2pP3MLg5KTt2yPLSab9Pp5yU/v2jm3iK61B1Urp1i65Eb1I4OSltbcDSpfpxlOWHAfux0y1U0kvyvJ8SxObnV3ODKVJIUSIudL9OCmCfPJ/FxPlCoWtb8rxa6BV1wI4yJ6VbN6BnT/3YnDhv19Gqn3cUEz51smsesPLkpJjPy+rq7AloO5FSbE6KU3WvrJ9HYTCfb3nuG90S57NSfhjouut8W5vcyDGKUC+B6GPUnJQ8im4nJ0UtPxxlPgpgDPcSVFYaFzUEfp0UPyWIzc+vLhTn7fukSCGe8DsA+3VSsjQhMbclaxPBOIjLSQFkSFLaTgrQNeQrTyLF/Hn175+9Fc4onZSsLFxYYa7upWmlKVLSnryHwW2SmCWRYk6c//xzvegHEK1IERNYs5OSN5yclLjyUQDrsdNOUIRxUvzkpADGOVje+ieKFOKJOMK9suikAKXppOy3n/57xIjovwuRl7J5s9FVSypxvphFStZQJ0xqzLzf6l5p70vhhjncq7VVhhJm/TwKQzGJlLw6KWvWRJ80L7AL98obTk5KXJW9AKChoettdoucYXJS/FT3AvItUopwyykSB3GHe9FJSZf//V/g0EOBo46KfnVeTZ5ftkwe233n6mr8zjuHf331dcx7peQpJ8U8uc9aPgoQPNzL/N7SnhS6YRYped6HwA/mcuV5XsBxS5zPktOvLvqZRUoUe6QIVJEixoG8TWoBZ5ESp5NSXq6HN6vFguyukbgT54slJ4UihbiiaTLuOq5wLzop6dK3L/D978fz3OqKv0hYBOwnohdeqMcN77UXsMce4V+fTkpy9OypD75btvgL9zK/t7QnhW44iZSsn0dhKFYnJevhXtXVens3b9ZzUtSNHONwUtra5PvPo+h2CveK00kB9JAvVaTYLXL6DfeKKiclb/0TRUrKNKtnnsXfWUCt9+21w6KTQgSqk6JOBuzOpf79gTvvjO711UkxRUq8FAq6m/Lee7pI0TT9Nr85KVnqD6ygSNHJ8wKOm5OSJZEC6M7p5s3xhnupfbKobJZHkeLFSYm6/LCgVy/jYlzWnJS8fZ/MSUmZ+vp6w0+jOqPLCEE2AqKTQgRWk+maGuPeLHHi5KQw3Ct6RMhXS4ssl+q3ulfeREqeN0vzQzE5KRUV8prKupMCyOt940bg44/l7XE4KSpZ7xetsHNSOjpkyPFuu8VTeMScPB9H4nwp5aRQpBBXgqwSqk5K3hLn6aREi5XuTnISynCvZLHKSyk2J8W8UlsqOSnF5KQAMuQrD06Ker2//bb+u1CIJm9PUCwixc5J+fxzvcgFAAwZEs9rm8sQR5U4L85Hq20SrFCvTfX8zvo4Z4YiJWWampoMP6tWrUq7SV0IMgDX1soLKU/7pAB0UqLGSqQkOeirE15zNCVFSvS4iZRidFLydB6FwZw4n4XJexjERDEPIkV1TkW414AB0e4GXywixc5JUQu3xCVSvDopQcO96uu9OUB24ihv/RNzUlKmLgu9nwtBQxn69tU7U7dwr6qqbJUbpZMSLVaT6SQnoWpZyI0bjfflaXKZl3AvNfxEiBTRh5SVWU+q8uaklKpIKaZwL0CKri1bZP6UIMsiRRBlqBdgLUjyeD7bOSn/+Y883nXXeF7b7KREHe7l9Vy0e928fZ90UogrQQdgEfK1bp3cQ0BFrK5mbUJCJyVa0g73Ule21q833pennJQ8OilixVdc6zU11quAeXdS8nQehUEVKdXVel5HnhEipa2taxWoLJUgBqxFSpTlh4HicVLsREoaTkrU+6R4nY/YvW7evk+KFOJK0AFYJM+3tTnXoc9SqBdAJyVqunfvKm6TXJl0Eil5WgE3n5dZdVKswr3cNoajk5IP1L6wGBZvnCaKpeikFItIUa9Pdf6ShJMSJNzLTwlir9cdnRRSMgQdgN0qfNFJKQ0Kha5uSlaclDxNLtXzsq4ue9eNYOBA6ZaYc1LsFiTy7qTk6TwKgzqxysLEPSxOu85nTaRYOacUKdYUCvI6TNpJ8Zo4r55Tbk7Kjh1yK4iwTkre+ieKFOJK2HAvwDp5Pg9OSkVF/i7qLJIVkbJhg/G+PIXpqJ9ZVkO9AH0Cv9NO+rFXkZI3J0XtE0pJpKiT+mJYvHHaKyVrIiWtnJSs94t2iHZbOSm1tcb5SZR4dVLKy2U/5yZSgpyLdo/LW/9EkUJcCRvuBXR1UjTNfeKSFmp7vFbSIM6YJ9VJTkLVla08Oyl5ESmADPlauVL/jN3CvcznQxYmhU6oTor6/oD8Tuq8UMxOSh7DvZiTYo/ZSdE0KVKGDIlvXPeaOK/e5xbu5Xe3ecAoglSyPs6ZoUghrsThpOzYIZPps7ZqqraH+SjRYHZSkhz0q6vld5pnkaJ+ZlkXKeoK7/LlxeekMNyLTkrSpJWTktfz2eykrF4tj+PKRwG8J86r97k5KX53m3d67bx9nxQpxJWgG5U5OSlZ3W0eMLaHIiUa0nRSADlw5FmkDBoETJigl/D99rfTbo0zavL8kiXy2KuTQpGSTfr1k/36nnum25YoyJOT0q2bcYJaVibDKqOimJ2UJPJRAO/hXoCcX7g5KX53m7d77UIh2n11kiDnBQRJEoTZJ0VgFinq5m5Zm5Co7SmG1cIskGZOCqAPHCtW6CJF3Q8hT2E6hQLwzDP6gJV18ayKlA8+kMfF6qQE7SPzRlUV8OijwAsvAOeem3ZrwuOUOC8W0gqF7PQN/fvLCevOO0dfArqYRYpa2StOkVJbqwsBsbO9U18t5hctLfrj7QREVE5KdXX+wtfppBBX4gj3opNSWmRBpAD6uawK5LytgBcK+Tgn/YqUYnJS8jqp88rBBwPTpmW3BLYfvJQgrq3NzsRO/cyjzkcBijtxXnVS4gz3KhSMboqTqFDzV+6/3/5xQXJSrB6bhzHODEUKcSWOcC91opg1kUInJXrM4V5Jh0/YlSHOm0jJC3Yixa7/MN+edZFSqtW9ig0vJYizEOolUEVK1PkoQHE6KR0d+l5tSTkpgFF8OM0hvvENefy97wELF1o/LkonJW9QpBBXgoYyODkpWQ73opMSPVlxUgBjGWJOLuNBFSmLF8tjuwWJsjLjZChrfYIZc3Uvnkf5xEviPEVK9K+TBGq7t29PzkkB9L2iAL0fcxIVZ54JfOc7+vHWrcCppwKbNnV9XFQ5KXnsmyhSiCtBB+DaWtlR5ClxfsgQGRs6YkSqTSka0k6ctytDnKeclDzRp4+8rpcvl7c7XevqfXkSKeacFJ5H+cFL4nypi5Q8TmwBY7tbWqST0q1b10WzqLnySuCww4Abb9RLAdtRKAC33gqMHq3/vWSJLlpE5VNBVE5KHvsmihTiStBwr0JBuil5Spzv1w945BHg2muBqVPTbk1x0KePvlouSNNJYbhX/BQK1pMop/5DPSey1ieYKdXqXsWGXbhXR4cco7IkUoYOlcd77BH98xdjTgpgdFJ22SX+HKPDDwdeegm44AL3x9bUAA8+KBfSZs4Err/e+BjmpBDiQJjKNSIvZd064+pAlp0UADj2WOAnPzEOYiQ45eXGVUDmpBQ/asiXoFidFJ5H+cQucV5dRMuSSPnmN4FzztEXz449NvrnL6ZwL/U6/OwzOdGPOx8lCLvtBvzlL1I8/fSnwD/+oefSAMHDvYohJ4UliIkrixbJ44YGf/8rREprqz4IiEl/lp0UEg/9+wOrVunHWXFShACvrDQ6PSQ8YURKliaGVqilXylS8ou60qw6KerKdZbGp+7dgT//Ob7nL1aRoubFxZ2PEpRJk4Dp04H/+R/dyTv5ZP2z328/Y54KnRRCFDZtAubM0Y8HDgT23tvf/9slz2e5uheJBzUOOCsiRUwu89h5Zx0rkVIs4V6FgjxnmJOSX8rLpSC2EylZF8xRUkwiRW23KlKy6KQIfv5zo0O2fTswdy7w/vvyNlb3IkThscfkpkSnneZ/tdmuDHHWw71I9Ki7IycdRkeRkjx+nRTx+F698jExFCFfrO6Vb0RfpIZ7lapIKaaclLw5KYAummfNAm66CTj9dGD33Y3319RY96t2mAVNHr9LhnsRRx58UB6fdpr//1edlNWr5THDvUqPCy7QXblDD+3a+caNWwliTiyjx6+TcvXVejjpySdHv5N2HAiRwnCvfNOjB/D553RSAP26q6iQuRBAfs/nPDopgP55/+AH+g+gR7O8/bYedn/wwf62RSgGJyUHQwFJi6Ym4Mkn9ePGRn1y6Re1GsmiRcDxx+vHdFJKj0MP1RMY09i92a0EcR5XmLKOXydljz2AP/whvvZEjSpSwhQXIekiJnJbtujFXQqF0hUpgH6Nqq5SXvtG9TpcskQeZ9lJsaJnT+ArX9F//MKclBLnww8/xIUXXogxY8agsrISQ7Iu0X0ye7YcfE85xbnetx1jxsjj+fPlMZ2U0iQNgQLonbVYnWe4VzIMGtT1tmJakLByUgoFuccSyQci3KujQy6elbpIUcmrSFHbLeYblZXGsONipxicFIqUELz33nt47LHHMGTIEIwcOTLt5kTOQw/J4699Ldhz7L23HMzfekveTieFJEmhIEO+KFKSoabGWHYayO+ExworkVJdnZ4QJ8Gw2nVeHZ9KTaSYr9G8XrNWffrgwcEWW/MKnZQS58QTT8SKFSvw8MMP46CDDkq7OZGybRvw+OP6cZ8+waxGQF+5GDVKP168WNb7ZnUvkjRmkdLRoU8wgfwOxFnHHPJVTNe6Wt2LYje/WO06n9USxEmgXqPl5fnID7PC6lossmAXV7jjfIlTVsQbKzz1lOyowyayipAvTQMWLNCPGe5FkkaIlC1b9Ip1QqAAnFzGRTGLFLW6lwiL5XmUP6ycFIZ76eT5fLaakOctHyUsdFJiZvHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667Dq2ipi6xJWxVL5XRo+WxCPliuBdJGnOFL1Zkih+zSMnjSp4dQqS0trIAQ55xc1JKWaTk+Xymk1IcOSmZNvJuv/12zJgxI9D/XnzxxZgxYwYqKiowYcIE1NfX47nnnsNPfvITPProo3j66adRw9mxJS0twKOP6sc9ewJHHhnu+ayS5+mkkKQxixS14lceO+88UApOCiDDWHke5Q9VpNBJMQqTPIsUOil6H6WWlM5j/5RpJ2XkyJG47LLLcO+992LRokU4++yzPf3frFmzMGPGDNTX12Pu3Ll46qmn8NBDD2HJkiUYNWoUXn75ZUyfPt3wP3/+859RKBRcfx5ULYYi5ZlnZGf91a8aB+Mg7LuvTFYTIoVOCkka84aO3CU8fkrBSQHkpDaPk4BSR11tppNCJ6WYKBSM53ce+6dMOynnnXee4W+vOSDXXHMNAGDatGkYoyzj9+3bF7fddhsOP/xw3HLLLZg+fTp69uwJADjllFNw8MEHuz73wIEDvTY/t0RR1UulpgbYc0/gvff0n5YWY0nAvCbmkXxh3iulb1/5dx477zwweLDx72JakLBavMnzpK5UsXJSSrm6V7GIFDopOt27yw2M8zjOFd308NNPP8W8efMAAGeddVaX+w877DAMHjwYy5cvx+zZs/GNb3wDANCzZ89OwRInzeoSTYD746a1FZg1Sz+urweOPjqa5x0zRhcobW3AwoVSpBTTpIVkG7OTwpyU+CmVcC8Bz6P8wcR5I8UiUszXYnm59d5NxY6aPJ/H7zPT4V5BeOuLzOzevXtjqLrducLYsWMNj02S+vp6x5/GxsbE26TywgtSdZ9wQnQntTkvRaxUFdOkhWQbp3AvTi7jobHRuLlhHgdJO6zOGZ5H+YMliI2o12iez2dz2wcOLM2oDYZ7ZYylS5cCAHYxL+EpDP4iBkE8Nihbt27F7NmzAQAff/wxtm7d2pmzMm7cOOyaQ28xyqpeKuYKX8JJKbUBgKSHk5NSTJPnLFFWpod8ffyxLlaKaSM1OinFARPnjRSLk2Jue6nlowhUJyWP/VPRiZQtXyyF1Dn0LPVffGubRY8UkNWrV+PrX/+64Tbx9913343Jkyd3+Z8mUQbGhubm5lTdlJUr9d81NcBxx0X3vPvvL4/ppJA0YLhXOnzjG8CvfgWcckraLYkW5qQUB0ycN1IsIsXcp+dwzTgS6KSUMEOGDIGmab7+xyye0s5BMfOPfwDLl+ubLkbZOffsCey+O/Dhh/pzi4306KSQpOA+Kelw9dXA977XNYk+79BJKQ6cnJTKSmO4YilQLCKFTooOnZSM0f0L2eg0+RduRg+1d0qJevOWoBlg8OB4JhSjR+siRc0FoJNCkoIliNPDIfo2t1CkFAdOifOl5qIAxSNSzNdiqYoU9fzO4/dZdInzQ744E5cvX277GHHfkFI9a1NCTZ4XUKSQpFCL9zHci4SFIqU4qKvT95MAZLiXCEcuRZFSrJs5lmq4l7pAtNNO6bUjKEXnpIz+IkN73bp1WLp0qWWFrzfffBMADHuopIU5RyXtnJQ4sfq4Ge5FkqK8HGhoADZupEgh4bE6Z/I8qStVysr01ebNm+mkAMaFwzz3i3RSdM4/H1i6FBg+HNh777Rb45+ic1IGDRqEcePGAQDuu+++Lve//PLLWL58OaqrqzFp0qSkm9eFurq6Lj/FilrhS0AnhSSJCPmiSCFhoZNSPIiQGHPifCkuohVjuFehUHw5cV7p0we44w7gssvSbkkwik6kAMDll18OALj22msxf/78ztvXrVuHiy66CAAwZcqURDZvJJJ+/bpuplSKgwBJDyFSNmyQZbCBfA/GJB0oUooHkZ66ebO+oXFrq/53Ea8Z2lIsIqW8XO6LsvPO1tcryT6ZDveaP39+p6gAgI8++ggAcMcdd+Cxxx7rvH3mzJnYSQm2O/nkkzF16lTcdNNNOPjgg3HkkUeirq4Ozz77LDZu3IhDDz0UV111VXJvxAFzgn/Wqn1FzZgxwIoV8m86KSRJhEjp6ADWrJG3c3JJ/EKRUjyoTooagV2KIkVNtM5gXR9fjBkDvPEG8JWvpN0SEpRMi5TNmzdj7ty5XW5fsWIFVigz3RY1buMLZsyYgUMPPRS33norXn31VbS2tmLYsGGYNm0aLrnkElRlRFZnsbpXnIweDTzyiPybTgpJErXC1+efy2NOLolfuE9K8aAW+ly1Sh6XokgZPx448ED9czjjjLRbE45HHwWefx449ti0W0KCkmmRMn78eN/7kKicfvrpOP300yNsEQmLOXmeTgpJElWkfPaZPObkkviFTkrxoIoUsaExUJoipboamDtXd5vLcp4Q0L9//oVWqZNpkVIKlFJ1L4AihaRLr17ymE4KCYPVOcPzKJ+oIU6lLlIEeRcopDigSEmZYq7mZcXAgUDfvsDatfrfDPciScJwLxIVDPcqHlQnRe0XSmx4JiRzUCuTRCkUjG4KnRSSJKpIYeI8CQPDvYoHOyeFi2iEpAtFSso0Nzd3+Sl2VJHCQYAkiSpS1HQ3roATv1CkFA90UgjJJhQpKVNfX2/4KeZ8FMFZZwGVlfrq1RFHpN0aUkqoIkWFk0viF4qU4oE5KYRkE+akkMQZNUovb1goAA0NabeGlBIUKSQqmJNSPNBJISSbUKSkTKlV9xKoVZYISQqKFBIVrO5VPLAEMSHZhCIlZUqtuhchaWInjrkCTvzCcK/iQQ33EpUnAYoUQtKGOSmEkJKhutq6WAMnl8QvFCnFg+qkqLCwCyHpQpFCCCkpzCFf5eX6DyF+YE5K8aA6KSp0UghJF4Z7pYy55HAplCAmJE169wZWrJB/c2JJgkAnpXiwc1IoUghJF4qUlKmvr0+7CYSUFGYnhRNLEgSKlOKBIoWQbMJwL0JISUGRQqKA1b2Kh5oaoMxiNkSRQki60ElJmVItQUxIWlCkkChgTkrxUCjobsrGjcbbKVIISReKlJRhCWJCksUsUjixJEGwEilWt5F80L17V5FSU5NKUwghX8BwL0JISWHeK4VOCglCZaXx76oqfUWe5BNzXopdCBghJDl4CRJCSgqGe5EoMJeupiOXb8wihUEOhKQPRQohpKSgSCFRoYZ38TzKN+a9UihSCEkf5qSkDPdJISRZmJNCoqK6Gti2TR6T/EInhZDsQZGSMtwnhZBkoZNCooJOSvFAJ4WQ7MFwL0JISUGRQqJCFSl05PINnRRCsgedlJThPimEJAvDvUhU0EkpHuikEJI9KFJShvukEJIsdXVARQXQ1qb/zcklCQpFSvFgdlJqa9NpByFEwnAvQkhJUSgY3RROLklQKFKKB4Z7EZI9KFIIISUHRQqJAuakFA8M9yIke1CkEEJKDlWkcHJJgqIKXIrdfEMnhZDsQZFCCCk56KSQKGC4V/FAJ4WQ7EGRQggpOShSSBQw3Kt4oJNCSPZgda+U4Y7zhCQPw71IFNBJKR4oUgjJHhQpKcMd5wlJnl695DEnlyQoFCnFgznciyWICUkfhnsRQkqOPn3kcU1Neu0g+YYipXigk0JI9qBISZmmpibDz6pVq9JuEiFFz8knA/36AQMGAMcdl3ZrSF5RhQnDBvNNdbW+yauAIoWQ9GG4V8pwx3lCkmfgQGDFCv1YXQ0nxA90UoqHQkF3U9av1//m0ExI+tBJIYSUJFVVFCgkHBQpxYUa8kWRQkj6UKQQQgghAaBIKS7U5HmKFELShyKFEEIICQD3SSku6KQQki0oUgghhJAA0EkpLhob9d8VFUDPnum2hRDCxHlCCCEkEKowoUjJPz/+MfD558BJJ3XdN4UQkjwUKYQQQkgA+vWTx/37p9cOEg0HHQS8+mrarSCECChSCCGEkACccQbw8stAQwNwxBFpt4YQQooLihRCCCEkAD16APfck3YrCCGkOKFISZnm5mbHvwkhhBBCCCk1KFJSpr6+Pu0mEEIIIYQQkilYgpgQQgghhBCSKeikpExTU5Ph7+bmZjSKYu2EEEIIIYSUIBQpKVPHbW0JIYQQQggxwHAvQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKaoSLsBxIimaZ3Hzc3NKbaEEEIIIYSQ6FDntuqc1wqKlIyxdevWzuPGxsYUW0IIIYQQQkg8bN26FfX19bb3M9yLEEIIIYQQkikKmpvXQhKlo6MDa9euBQDU1taiUCjE9lrNzc2dbs2qVatQV1cX22sVI/z8wsPPMBz8/MLDzzAc/PzCw88wHPz8wpPkZ6hpWmfUUN++fVFWZu+XMNwrY5SVlaF///6Jv25dXR0v7BDw8wsPP8Nw8PMLDz/DcPDzCw8/w3Dw8wtPEp+hU4iXCsO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCmzkSQgghhBBCMgWdFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEgpUR544AGMHz8evXr1Ql1dHfbbbz9cd911aG1tTbtpmaa1tRXPPvssfvSjH2HcuHFoaGhAZWUlBgwYgK9+9at4/PHH025iLvnxj3+MQqGAQqGAq6++Ou3m5IYdO3bgpptuwmGHHYbevXujW7duGDRoEI477jj8/e9/T7t5meaTTz7BlClTMGLECNTU1KBbt24YOnQozjnnHCxYsCDt5mWCxYsX4+abb8bkyZMxatQoVFRUeL5Gn3nmGUyaNAl9+/ZFTU0N9txzT/zsZz9DU1NTAi3PBn4/v46ODrz66qv4+c9/jsMOOwx9+vRBZWUl+vbti6OOOgr33nsvSq0ga5hzUOW2227rHGPOO++8mFqbPcJ8fh0dHbjnnnswceJE9OvXD9XV1dhpp50wYcIE3HbbbQm0HoBGSo4f/vCHGgCtoqJCO/roo7VTTz1Va2ho0ABohx12mLZ169a0m5hZ5syZowHQAGgDBgzQjj/+eO3000/XRo4c2Xn79773Pa2joyPtpuaGV155RSsrK9MKhYIGQLvqqqvSblIuWL58ubb33ntrALS+fftqJ5xwgnbGGWdohxxyiFZbW6uddtppaTcxs7z++uta9+7dNQDawIEDta9+9avaKaecog0dOrSzb7z//vvTbmbqiLHC/ON2jd54440aAK1QKGhf/vKXta9//evagAEDNADaiBEjtDVr1iT0DtLF7+e3ZMmSzsf07t1bO/roo7UzzjhDGzduXOftJ5xwgtbS0pLwO0mPoOegykcffaTV1dV1jjHnnntujC3OFkE/v40bN2pf/vKXNQBajx49tGOPPVY788wztcMPP1xraGjQDjjggETaT5FSYsycOVMDoNXX12v/+te/Om9fs2aNNmrUKA2Adumll6bYwmzz7LPPaqeddpr24osvdrnvb3/7m1ZeXq4B0O65554UWpc/mpubteHDh2sDBw7UTj75ZIoUj2zdulXbc889NQDaL37xC23Hjh2G+5ubm7W33norncblgH333bdzQUH97Nrb27UrrrhCA6A1NDRo27ZtS7GV6fPHP/5Ru+yyy7R7771XW7RokXb22We7XqPz58/XCoWCVl5ers2ePbvz9ubmZu3II4/UAJSMgPb7+X344YfahAkTtCeeeEJra2sz3PfCCy9odXV1GgDtl7/8ZRLNzwRBzkGV9vZ27fDDD9fq6+u1c845p+RESpDPr6OjQxs/frwGQLvgggu0LVu2GO5vaWnR5s2bF3fTNU2jSCk5xIrM1Vdf3eW+l156SQOgVVdXaxs3bkyhdfnn3HPP1QBoRx55ZNpNyQVTp07VAGiPP/545wBCkeLO9OnTOyfZxB9r167tXE1cvXp1l/vb2tq0mpoaDYA2f/78FFqYXbxco1//+tc1ANp5553X5b5ly5ZpZWVlGgBt0aJFcTY1k4Tt46666ioNgDZs2LCIW5Yf/H6GwtW79dZbtSuvvLLkRIoZL5/fnXfeqQHQjjnmmARbZg1zUkqITz/9FPPmzQMAnHXWWV3uP+ywwzB48GC0tLRg9uzZSTevKBg9ejQAYPny5Sm3JPu88MILuPnmm/Htb38bkyZNSrs5uaG1tRW33347AOBHP/pRyq3JH9XV1Z4f27dv3xhbUnzs2LGjMy/PaozZddddceihhwIAZs6cmWjbigGOL/5YvHgxfvazn+ErX/kKvv/976fdnNxw0003AcjG+EKRUkK89dZbAIDevXtj6NChlo8ZO3as4bHEH0uWLAEA7LTTTim3JNs0NTXhu9/9LhobG/G///u/aTcnV8yfPx9r167FzjvvjN133x3vvvsufvnLX+KCCy7AtGnT8Pjjj6OjoyPtZmaW+vp6HH744QCAK664wlAspKOjA7/4xS+wbds2HHfccRg8eHBazcwlH3zwAbZu3QpAjiVmOMYEh+OLd9rb23HOOeegUCjgzjvvRKFQSLtJuWDVqlVYsGABysvLccghh+Djjz/GtddeiwsvvBCXXXYZHnjgAezYsSOx9lQk9kokdZYuXQoA2GWXXWwfIwZl8VjinZUrV+LPf/4zAOC0005LtzEZ57LLLsPSpUsxc+ZM9OrVK+3m5Ip33nkHADBo0CBMmzYN1113naHiz29+8xuMHj0as2bNcrzWS5k//vGPmDRpEv7whz/g8ccfx9ixY1FeXo633noLn376Kc4++2zccsstaTczd4hxo6GhAd27d7d8DMeYYGzdurVzhZvjizvXX3895s6di9/97ncYNmxY2s3JDWJ86dOnD/70pz/h0ksv7VL1dbfddsPMmTOx7777xt4eOiklxJYtWwAAdXV1to+pr68HAGzevDmRNhULbW1t+Na3voVNmzZh1KhRuOCCC9JuUmZ5+umncccdd+DMM8/EySefnHZzcse6desA6CvRv/nNb3DRRRdh8eLF2LRpE+bMmYM99tgDb731Fo4//niWFLdhxIgReO2113D00Ufj008/xT/+8Q88/PDDWLp0KXbffXeMHz8ePXr0SLuZuYNjTHxcdNFFWLp0KXbeeWdcfvnlaTcn0yxcuBBXXnklDjnkEEydOjXt5uQKMb6sX78eU6dOxUknnYR3330XW7ZswWuvvYaDDjoIH3/8MY499tjOx8YJRQohEXDhhRfi2WefRZ8+ffDggw+iqqoq7SZlkk2bNuHcc89Fv379cPPNN6fdnFwiXJPW1lZ84xvfwC233II99tgDPXr0wMSJEzFnzhx069YNCxcuxN/+9reUW5tNXnnlFYwaNQoLFy7Efffdh5UrV2L9+vV49NFH0drainPPPRfnnntu2s0kBABw1VVX4Z577kG3bt1w//33o0+fPmk3KbO0tbXhnHPOQVlZGe666y6UlXGa6wcxvrS1teFLX/oSHnjgAYwcORL19fU4+OCDMWfOHDQ2NuLzzz9PZK8UfnslhLDfm5ubbR8jNtriKqJ3fvjDH+LOO+9Er169OleyiTUXX3wxVqxYgVtuuYVJyQFRw2isHLtddtkFxx9/PAB9Qz1iZOPGjTjllFOwZs0aPPzww/jGN76BxsZG9OrVCyeccAKefPJJ1NbW4q677sLzzz+fdnNzBceY6Lnxxhvx85//HNXV1Zg5c2Zn4QFiza9+9SvMnz8fv/zlLzFixIi0m5M73MaX7t2741vf+haAZMYX5qSUEEOGDAHgXBlE3CceS5y59NJLcdNNN6GhoQFPP/10Z/UVYs3MmTNRUVGB2267rcsqzPvvvw8AuPPOO/HMM89gwIABdAIs2G233SyPrR7z+eefJ9KmPPH4449jzZo1GDZsGA466KAu9++222446KCD8Pzzz+OZZ57BEUcckUIr84kYNzZu3IgtW7ZY5qVwjPHOzTffjEsvvRRVVVV46KGHcOyxx6bdpMwjqsY9+uijXaqULlu2DIDeB4wfPx6AXmWSSLI2vlCklBBiAr1u3TosXbrUssLXm2++CQAYM2ZMom3LIz/+8Y9x4403omfPnnj66adtq9kQI21tbfjnP/9pe/+yZcuwbNky7Lrrrgm2Kj+MGTMGhUIBmqZh7dq1lhWo1q5dC0DG/xPJJ598AsB5Jb9nz54A9Lhs4p0RI0agtrYWW7duxZtvvmkp8DjGeOPWW2/F1KlTOwWKcEeJN15++WXb+1auXImVK1cm2Jr8sMcee6B79+7YsmVL5zhiJsnxheFeJcSgQYMwbtw4AMB9993X5f6XX34Zy5cvR3V1NfetcGHatGm4/vrr0bNnT8yZM6fzcyXObNy4EZq+iWyXn3POOQeAHn+taVrnqhcxMmDAABx22GEArO321tbWThF44IEHJtq2PDBw4EAAunO3adOmLve3trZi/vz5AGBbqp1YU1VV1TmZthpj/vOf/+DVV18FAJxyyimJti1P/P73v8eUKVM6BcoJJ5yQdpNyw9tvv207xlx55ZUAgHPPPbfzNmKkoqKis6CNXTjXnDlzACQzvlCklBiiKsi1117bORADurty0UUXAQCmTJnSuZJIunLFFVfgN7/5DRoaGihQSCqIwfbXv/41Xn/99c7b29racOmll+Ljjz9G9+7d8Z3vfCetJmaW4447DnV1ddi2bRvOP//8zhwJQN+M8JJLLsEnn3yCyspKfO1rX0uxpflk2rRpKBQKuPvuu/Hkk0923r5161ace+65aG9vx2mnnYY999wzxVZmlz/+8Y+46KKLKFBIalx++eWorKzEH//4Rzz22GOG+66//nq8/PLLKC8vx3/913/F3paCRilZcvzwhz/ETTfdhMrKShx55JGoq6vDs88+i40bN+LQQw/FnDlzUFNTk3YzM8kjjzyCk046CYC+Kdk+++xj+bi+ffvit7/9bZJNyz2TJ0/GPffcg6uuugpXXHFF2s3JPFdffTWmT5+OiooKHHjggRgwYADmz5+PZcuWoaamBg888ABDRGz4y1/+gu985ztoa2tDv379MG7cOFRWVuLNN9/Ep59+irKyMtx666248MIL025qqsyfP79z8QoAPvroI6xduxaDBg3qdKQAPQ9A3WDwd7/7Hf77v/8bhUIBX/nKV9C/f3+89NJL+PzzzzFixAi8/PLLJVE4w+/n9/bbb2PMmDHQNA177rmnZc6UQOzJVewEPQet+MUvfoFf/vKXOPfcc/GnP/0ptjZniaCf3z333IPvfve76OjowNixYzFkyBAsXLgQ77//PsrLy3H77bfj/PPPj/8NaKQk+fvf/659+ctf1nr06KHV1NRoI0eO1K699lqtpaUl7aZlmrvvvlsD4Pqz6667pt3U3HHOOedoALSrrroq7abkhqeeeko77rjjtN69e2uVlZXa4MGDtcmTJ2uLFi1Ku2mZ5+2339YmT56s7bbbblp1dbVWVVWl7brrrto3v/lNbe7cuWk3LxM8//zznvq7pUuXdvnfOXPmaMcee6zWu3dvrbq6Whs+fLj205/+VNu8eXPybyQl/H5+Xh9fSlO3MOegmSuvvFIDoJ177rnxNzwjhPn83njjDe20007T+vfvr1VWVmoDBgzQvv71ryfaP9JJIYQQQgghhGQK5qQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRT/H/nb65T8rLR1wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(ps.freq, ps.power, lw=2, color='blue')\n", + "ax1.set_ylabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the power spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together power spectra from multiple segments of data.\n", + "# Averaged power spectrum example\n", + "You could use a long `Lightcurve` and have `AveragedPowerspectrum` chop it into specified segments, or give a list of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here.\n", + "## 1. Create a long light curve.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and a signal in count units, with the same properties as the previous example. We then add Poisson noise and turn it into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4dklEQVR4nOydd7hUxfnHv3sL7dJBQFSwoIDGhqhRxIoaSzCIibHFGjX6s2HvMbEnWKJGTQJqErEiEWM0CLFhR7CBCAooSFF6517u3d8fx8OZnZ05Z9opu/t+noeHvVtmZ8+ZM2e+87ZcPp/PgyAIgiAIgiAIgih5qtLuAEEQBEEQBEEQBOEGEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJNWl3oFRpamrC/Pnz0aZNG+RyubS7QxAEQRAEQRBESuTzeaxatQrdu3dHVVW6NjQSeIbMnz8fW221VdrdIAiCIAiCIAgiI8ydOxdbbrllqn0ggWdImzZtAHgnsW3btin3hiAIgiAIgiCItFi5ciW22mqrTRohTUjgGeK7ZbZt25YEHkEQBEEQBEEQmQjdoiQrBEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAmZF3j19fX405/+hP322w8dO3ZEixYtsOWWW+KII47AU089JfzM+PHjceSRR6Jz585o2bIl+vTpg2uvvRarV69OuPcEQRAEQRAEQRDJUZN2B8KYN28eDj/8cEybNg2dO3fGgAEDUFdXh7lz5+KNN95AXV0djj/++ILP3H333Rg2bBhyuRwGDhyIrl274s0338Stt96K0aNHY+LEiejcuXNKv4ggCIIgCIIgCCI+Mivw1q1bh0MPPRTTp0/Hb3/7W1xzzTWora3d9PratWsxY8aMgs9MmTIFl156Kaqrq/HCCy/giCOO2PTewYMHY8KECTj33HPx7LPPJvpbCIIgCIIgCIIgkiCzLpq33XYbpk+fjrPPPhs33nhjgbgDgFatWmG33XYr+kw+n8fpp5++Sdz57x0xYgSqqqowevRoTJ8+PYmfQBAEQRAEQRAEkSiZFHgNDQ148MEHAQCXX3650mfq6+vx4osvAgBOPPHEotd79uyJAQMGAADGjBnjqKcEQRAEQRAEQRDZIZMumpMnT8bixYvRvXt39OrVC59++imee+45zJ8/Hx06dMDAgQNxxBFHoKoq0KczZszA2rVrAQD9+/cXttu/f3+8+eabmDJlSiK/gyAIgiAIgiAIIkkyKfA++eQTAMCWW26Jq666CnfeeSfy+fym1++44w7svvvu+Ne//oUePXoAAGbPng0AaN++Pdq0aSNsd6uttip4r4w1a9ZE9lHlPQRBEARBEARBEEmSSYG3ZMkSAF7SlPfffx/nn38+LrzwQnTr1m3T31OmTMFRRx2FyZMno7a2FqtWrQIA1NXVSdtt3bo1AGDlypWh3++/jyAIgiAIgiAIopTIZAyeb61raGjACSecgPvvvx877LAD2rZti0GDBuGVV15BixYt8Nlnn+HJJ59MubcEQRAEQRAEQRDZIJMCj3WxPOecc4pe79GjB4466igAXlFz9jNhrpN+ofO2bduGfv/q1asj/82fP1/vRxEEQRAEQRAEQcRMJl00t912W+Fj0XsWLFgAANh6660BAMuXL8eqVauEcXhz584teK+MMDdPn8bGxsj3EARBEARBEARBJEkmLXj9+vVDLpcDACxevFj4Hv95P16ud+/eaNWqFQBg0qRJws/4z/fr189pfwmCIAiCIAiCILJAJgVet27dsN9++wEIXDBZGhoa8PrrrwMA9tprLwBAs2bNNrltjho1qugzX3/9Nd5++20AwJAhQ2LpN0EQBEEQBEEQRJpkUuABwI033ggAuO222/Duu+9uen7jxo249NJLMWvWLLRp0wann376pteuuuoq5HI5PPLII3j55Zc3Pb927VqceeaZaGxsxNChQ9GnT5/kfghBEARBEARBEERC5PJsgbmMcfPNN+P6669HTU0N9tprL3Tr1g2TJ0/GnDlz0LJlSzzzzDObrHY+d999N4YNG4ZcLocDDjgAXbp0wZtvvokFCxagd+/emDhxIjp37mzdt5UrV6Jdu3ZYsWJFZNIWgiAIgiAIgiDKlyxpg0wLPAAYN24c7rnnHrz33ntYtWoVunXrhkMOOQRXXnml1BI3fvx4DB8+HO+//z7WrFmDHj164LjjjsPVV18tLYKuS5ZOIkEQBEEQBEEQ6ZElbZB5gZdVsnQSCYIgCIIgCIJIjyxpg8zG4BEEQRAEQRAEQRB6kMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARhwfr1QD6fdi8IIlk2bACamtLuRTpU8m8nCFesW5d2D8obEngEQRCG/O9/QOfOwP77k8gjKoepU4EttgB23BFYuzbt3iTLlClAt27ALrt4Qo8gCH1OPBFo1w545JG0e1K+kMAjCIIw5JBDgDVrgIkTgQkT0u4NQSTDL34BLFkCfPEFcO+9afcmWY46Cli+3BO5tDglCH3mzQOeeAJoaADOOCPt3pQvJPAIgiAcsHp12j0giGSYPj14vHBhev1IgwULgsfLlqXXD4IoVT77LO0eVAYk8AiCIBxQXZ12DwgiGcgd2aN587R7QBClB7tBRMQHCTyCIAgH1NSk3QOCSJ5cLu0epAcJPILQ5/PP0+5BZUACjyAIwgEk8AiismjRIu0eEETpMW1a8Lh37/T6Ue6QwCMIgnAACTyCqCzIgkcQeuTzXoIin7Zt0+tLuUMCjyCIiuHyy4FBg4BZs9y3TTF4RKVAMXgeJPAIQo9FiwqTEzU2pteXcof2nAmCqAjefBP44x+9x8cdB0ye7Lb9KtouIyqQSo7Ba9Ys7R4QRGnx1VeFfzc1pdOPSoCWJARBVARs5q4pU9y3T1YNgqgsaFOHIPRoaCj8mwRefND0RBAE4QC6URGVSCVb8GhThyD04O+TdN+MDxJ4BEEQDqBYAoKoLGhxShB68NcM3TfjgwQeQRCEA2ixR1QiZMEjCEIVsuAlBwk8giAIB9CNiiAqC7rmCUIPEnjJQQKPIAjCAXSjIojKIi0L3syZwFVXuc8ETBBxw18zdN+MDyqTQBAE4QCKJSCI8iYr1of99wcWLgTuuIPcRInSgmLwkoMseARBEA6gnUiiEqmkGLz16wv/TktcLVyYzvcShC1Z2SSpBEjgEQRBGECuJgRRWfACj655gtCDBF5ykMAjCIIwgAq2EkRlsW5d4d/kHkkQetDGaHKQwCMIgjCgvr7wb4olIIjyJosWPBKZRClBMXjJQQKPIAjCAF7gZWGxRxBJU0kxeFm04NG8Q5QS5KKZHJRFkyAIwgASeARRGcybB3zxBdCmTeHzaVzzvKhsbASqq5PvB0GYEJfAy+eB998HWrcGdtrJTZulTmYteKeddhpyuVzov/W8v8QPfPjhh/j5z3+Orl27okWLFthmm21wwQUX4Lvvvkv4VxAEUa5s2FD4Nwk8gig/1q0DdtsNGDQIuOuuwtfSsOBt3Fj4N7m4EaVEXALvjTeAH/8Y2Hln4Kuv3LRZ6mTegjdgwAD06tVL+Fq1YNvq2WefxQknnICNGzdizz33xDbbbINJkybh/vvvxzPPPIOJEydK2yMIglCFYvAIovz573+BJUu8x089VfhaGps6/MYSzTtEKSGyQLvg7beD9idNArbbzk27pUzmBd5ZZ52F0047Tem98+fPx6mnnoqNGzfi4Ycfxtlnnw0AaGxsxGmnnYZ//vOfOPHEE/Hee+8hV0mBAwRBOIdcNAmi/GPwwn5fGhY83nGJt+gRRJaJy4K3Zk3wmDY9PDLromnCPffcg7Vr12LQoEGbxB3gWfoefPBBtGvXDh988AHGjRuXYi8JgigHSOARRPkTJvDIgkcQesQl8NauDR7TNeFRVgJvzJgxAIATTzyx6LXWrVtj8ODBAIDnnnsu0X4RBFF+kMAjiPKnKmSVlIYFjwQeUcqQBS85Mu+i+eqrr+LTTz/FqlWr0KlTJ+y111448sgj0bx584L3rVq1Cl9++SUAoH///sK2+vfvj3/84x+YMmVK7P0mCKK8oRg8gih/sm7BIxdNopSIKwaPBF4xmRd4f//734ue23zzzTFy5Ej85Cc/2fTcnDlzNj3u0aOHsK2tttoKADB79uzQ71zDjhSL9xAEUb6QBY9IgnweWLUKaNs27Z6IoRi8ZCELHlHKkItmcmTWRXPXXXfFvffei88++wwrV67EokWLMG7cOOy7775YsGABBg8ejNdee23T+1etWrXpcV1dnbDN1q1bAwBWrlwZ+t2tW7eO/Ne9e3f7H0kQRGK4XoyRwCOS4PjjgQ4dgL/+Ne2eiCGBlywk8IhShlw0kyOzAu+SSy7BhRdeiJ122glt2rRBly5dcOihh2LixIk45phj0NDQgIsvvjjtbhIEUSK4XozRQouImzVrgGee8RZBTN4wIkHCYvCy4KJJ8w5RSvDXTD7v5t5MAq+YzAo8GblcDjfddBMA4OOPP8bcuXMBAG3atNn0Hpn75OrVqwEAbSN8XVavXh35b/78+S5+DkEQCeF6MUYWPCJuaEylT9aTrFAMHlFKiOY0F/McuWgWk/kYPBF9+/bd9HjevHnYaqut0LNnz03PffPNN9h5552LPueLwa233jq0fZmLJ0sjjSCCKClcX7Ik8Ii4KYUxVckummmcH74OHi1FiFJCtCnS1ARUV9u1Sxa8YkrOggcAS5Ys2fTYt9y1bdsWvXr1AgBMmjRJ+Dn/+X79+sXcQ4IgsgZZ8IhSoxQWKmlYsZIk7BxkwYJXCmOEIHzisuCRwCumJAXek08+CcATdb179970/JAhQwAAo0aNKvrM6tWr8cILLwAAjj322AR6SRBElojbgkc3FcI1pTCmKlngZSEGj1w0iVJCdM24mOdI4BWTSYH30UcfYezYsdjIzVxNTU0YMWIErrnmGgDAhRdeiNra2k2vX3zxxWjVqhXGjx+PvzIpxxobG3Heeedh+fLl2HPPPXHYYYcl80MIgsgMZMEjSo1SWKiU+7gnCx5BuINi8JIjkzF4c+bMwZAhQ9ChQwf069cPXbt2xfLly/HZZ5/hm2++AQCccMIJuPHGGws+1717dzz66KM44YQTcPbZZ2PEiBHYeuut8cEHH2DWrFno2rUrRo0ahVy5Bw0QBFEECTyi1OAXKo2N9rEqrin3cR/2+7JgwaPFLFFKxCHwNm4svB/TNeGRSQverrvuiosvvhg77bQTpk+fjueeew4TJkwAABx33HF48cUXMWrUKNTUFOvTn//853jvvfdw7LHHYtasWRgzZgwaGxtx/vnn4+OPP94Up0cQRGVBSVaIUoMfs+wudVYo93GfdQseuWgSpYQsyYoNfOJ8EngembTgbbPNNrj77ruNP7/HHntg9OjRDntEEESpE7cFj24qhGv4MbVmDcBUBMoElSzwyIJHEHrEEYPHb3zRNeGRSQseQRCEa1wvxviFVrkvdInk4ceUpMRrqpT7uM+aBY/KJBClTBwummTBE0MCjyCIioBcNIlSg1w004cseAThjiQEHrkte5DAIwiiIqAkK0SpIXLRzBrlPu6zZsGjGDyilIkjBo9cNMWQwCMIoiKgOnhEqUECL33IgkcQ7ogjBo9cNMWQwCMIoiKoJAveyy8DJ50EnH46MGlS2r0hTCEXzfQJ+31ZsOBldTG7cCFw+eXA88+n3RMiS5RKDN7LLwOXXgrMnWvfVlpkMosmQRCEaypF4K1bB/ziF8CqVd7fU6YAH32UapcIQ8iClz5Zt+Bl1UXz1FOBceOAP/4RWLQI6NIl7R4RWaAUBN6aNcARR3iP33gD+OADu/bSgix4BEFUBJWSZGXJkkDcAaW9A1npkMBLn6zH4GXVgjduXPB4+vT0+kFkizgEnusYvMWLg8el7AFDAo8giIqgUurgUcB5+cCPWXLRTJ6sW/BK4frO5dLuAZEVRJsiWYvBa9bM7vNZgQQeQRAVQaW4aPI3u6z0i9CnFCx4aVixkiRrFjyqg0eUMqXgolkucxoJPIIgKgLXC6GsFjqnjGLlQykIvKyM+7jIugUvqzF4BCGiFFw0y2VOI4FHEERFUKkWPBJ4pQtl0UyfrFnwStFFkyB8SsGCVy7XFAk8RyxeDDzzDLByZdo9KeT994G33sqmyTmf9/p2333Av/9dPhcVkU2yWgevoQEYOxb4+mv7PgHFIqDcF+BZYuNGby778ks37cVtwVu4EBgzxsu8akq5j6+sl0l44w3gvfeS7wdBmFAKdfDKZU4jgeeIX/7SS01+yilp9yTgo4+AvfcG9tsPePvttHtTzLvven278ELgpz8FRo5Mu0dEOZNVC94f/gAccwyw++7FizcTyIKXHg884M1le+7pRozFKfDyeWDgQODYY716ZaaUy2JIRtZdNB97DPjxj7NdCiWLG8xEOojGQtYteKU6fkngOWD9emDCBO/x2LHp9oVl2LDg8XnnpdcPGR9+WPj35Mnp9IOoDFwvxvhkB6btX3ut9/+yZW524kVJVkr1BlVqXHyx9//y5cB//2vfXpwCb/XqwNL4wAPm7VSywMuCBc/nssuS7QdBmFCKMXj8vb5UIIHngC++SLsHYtibTxbTFPPB4RQsTsSJ6105VwLPdRuiOC0SeKVJnGUSXN0TKlngZcGC55PFe7wPzT+ETynG4GUx9lkFEngOmDo17R6IybrAa2gI/5sgXMLfRGwXHXzckgtXSBdtiKw85KZZmsRpwXMlTipZ4GWhTIJPVYZXczT/ED6lGIOXxezFKmR4SigdSOCZwQs6suARccJP2rY3gaxa8EjglQ9xCjxXY6KSBV6WLHgk8IhSII4YPNcumqVQnkaFDE8JpQMJPDNI4BFJwk/atjcV3oKXFYEncicp90V4uRKnqxAJPDWyZsErRRdNurcTPqXgohmna3ySkMBzQCUKvKVL7V0qKQaPSIolS4rHq81NpbHRvr2mJuD774ufy+eB774z7xtZ8LKBi4yoZMFLn7DfZ/Pbly7Vv+fl85Vnwfv++2Atk88Xz5lEaZGEwLNdS5IFjwDg7eLPmlX4XBZveC4F3vjxQNeuwI47FqeK14Fi8IgkeOEFoFs3r04li82iQxQHo9veoEFev/g2fvYz7/q6/36zvpHAywYuMq9lUeDxVqss3u9cEocFb8IE79rfcUe9+17Ye7Ms8EwX3I8+6s2Fhx7qHetBg7y/qaRS6RJHDF7cWTRJ4FUo339fPBiyIlTich859FBvwv7yS+D5583bIRdNIgkGDxaPLZuFqagwtE57X30FvPpq8WdWrw5KrVxwgVnfRDejcl+EZxGb4uE+/Hlz0aasbVVI4AWY/vZBg7z738yZwFNPqX+u0gTe6ad7423CBO/f//7n/X3mmW77RyRHKbhokgWPACAeSDZWLZckEYPn0oJHAo9IEpubisg6o9OezLrjwuojihcgC17yxGHBc3keTdvix3klCzwXm6grV7rpS5YFnotxu2iRfRtE+rhOstLQULyWpDIJHhmeEkoD0cDMogUvLoHXurX5Z3lBl5XjRlQGNjcBWwue7L0ubiTkopkNXFjb+PPW0ODOM4MEnhpZyqIZ9n1ZFnguNm9XrbJvg0gf1xa8OO535KJJACCBZ7vzwkIWPCJJXFvwdG4qskV6XAKv3BfhWSQOCx7g7lyaLoJcZ6PNOnFb8HTuzWF9yXIWTRcbTCTwygPXMXhxeKyQiyYBgFw0bXapSeARaZKmBU+2MHRh9SEXzXTgj3EcFjzA3TxJFjw1yIJnj4sxu3q1fRtE+pSiBY9cNCuUSrPg8SmabXapSeARaZJmDJ7svS5EAblopgM/N5LAKw/Cfl/SdfBKVeCRBY/wcR2DF8f9jix4BADxQDIReOedB3ToAPTsCYwebd8vHlcCb/Hiwr9tFjEUg0eosHYtcPjhwIEHAsuWuWs3zSyacVrwbF00N2wAjjoK2G8/tzWnZs0C9twTaNfOaztrSROmTwf22CPI3KcLf+7ictF0NU+SwFMjSxa8UnXRdLEpsXy5fRtE+ri24MXhsUIxeAQA8cDUddGcPRt48EFvAvvmG+D22510LZbdRX7BRy6aRNzccgswbhzw+uvAVVe5a9e1i6ZOe6pJVnSv4Xze/oZ3773Af/4DvPWWeakGEX//OzBpkpc18K23iusSps3Pfw5MnuzV3nr5Zf3P82MijjIJgLt50nRRxY+lpK1YSRN3DJ4OlWzBI4FXHriOwUvCgkcumhWKix1W3vVAJ21yGOyF5Gp377vvCv8mF00ibt59N3j8zjvu2k3TRVM1yQrv9hdFfb14TtK54X30UfD4tdf0vj+MFSsK/87aruhnnwWPZ8zQ/zw/JuKy4JGLZrJkyYJXqgLPxZh16b1BpEcpxuBl7V6lSoanhNLARQyeKBW2C9hFpKvJP04LHrloEiLYa6y6Op52dYmrTAKfSED3+pLdiHT6xs4VLmP3+Os7y8LAZC6Kw4JHLprpkyULXqnWwXMh8JYsCR67vA8QyVIKLpoUg0cAcOOimYTAy6IFj5/0yYJHiGCvD5eLGJubgK0FT/bdvMDTvb5kriQ6v5VdPMUp8LKc+MVkDi51C56qWCGBF+Dit+uIxFKx4PH9dHGtswLPpv4ukS6lkGSFsmgSAOKx4LkqsxCHwKMYPCJp2OsjyxY8nZuK7L38zcqVBS8LAo+f17IsDLJswYtL4KmeD6qDF5AlC16WNkz4vrgYs0uXBo9J4JUupRiDRxa8CsVFHTx+wGfZgscLPIrBI+ImLoGXpgVPNtb5G4nu9eVC4JGLZmVa8FTPdaVZ8EqlTEKWBZ6LvrHXU12dfXtEOlAMXnKQwLMkyzF4LHG5aGYlBu/BB4FLL6VMW+VIXC6aacbgJW3B0+lbUi6aWREG48cD55xT+FyWLXim8+SHH3q/009aZGplqTSBVypJVrK0QSoKv3j5ZeDcc80SGPHU1tq3kWXeeAM4+2zg44/T7omc6dO98/nKK3qfoxi85KhJuwOljosbcBIumq6Isw6e6Q3q7be9OoKAdyE+9JB5n4jsUSoumi4seLZJVrIcg8fPa1mwOOTzwKGHFj/vwoKXtTIJ/ft7///lL97v5tsmgScmbhdNFxtDQLYEHt/P9euBI47wHv/nP145KJftlxsHHOD9/8gj2U0+d/DBwIIFwMMPe2NY1YhQiha8Uo3BMxJ4TU1N+OCDDzBhwgRMnjwZixYtwrJly9ChQwd07doVe+yxBw4++GDsueeeqMpS5G8MVFqSFT5texZcNNkdpIcfJoFXbsSVRdO1i2YcMXi615ds7jAVeC4X71m04MnKULiw4JWriybF4AW4+O0657NUXDT538SWgpo71779ch9zPlkS7TwLFgSPGxqAZs3UPifaFHEdg2d73OKIIU0DLYH33Xff4S9/+QsefvhhzJ8/HwCQF5ytMWPGAAC6d++Oc889F7/+9a/RpUsXB93NHnFY8PJ57znbxWwcAo8f6FlIslIpk32lQhY8dWQ3SnLRFCNzvSlHF82otsmCJyZuC54rgZelRWjcGbLLfcyVGvX16gIvThfNli29ede1Ba9Ux5uSwNuwYQPuvPNO3HHHHVi7di1qamqwxx57YN9998VOO+2ETp06oW3btlixYgWWLFmCzz77DG+//TY++eQTXH/99bjttttw1VVX4fLLL0fz5s3j/k2JIprgbQUe4F0wLVua9cknCYHn0oJnunAp1YuPUCOLAi+uMgkq36PablVV0CdTC55LsphF06XAoyQr5UmWLHiVnEUzrH0iXXS81uJ00Wzb1o3AiyNJUBooCbzevXvjm2++wc4774wzzjgDJ510Ejp37hz5ucWLF+Mf//gHHnnkEdxwww0YOXIkZs2aZd3pLOEii6Zsl7YUBJ7LGDw/LkTXqzfpTGZEsmTRRTMuC57K96i226xZIDKyIPCyWAdPFlvhwoK3caP3r8Yi0j1JgUcWPDFkwdOH74urvAI+5TzmSvG3ZUXgtWsHLFpEFjwfpaV0y5Yt8cwzz+Djjz/GRRddpCTuAKBz58645JJL8Mknn+Cpp54qO+sd4CaLpos2RJSaBU/UvgqlevERapSKBU/npqI6zm0seKzLjM5vjStsutxdNEXnytaKF5fAa2ykGDxVwn4fWfDE8H2Rxbq6ar+cEIXsZB0dgec6Bo/dpGvTxr490edLdbwp3cqnTp2KoUOHWn3Rz3/+c0ydOtWqjSwSRwwe4GbHKw6Bx/fVZQye7LkoSvXiS5vVq4F//hPgjerr1gFPPgl89VU6/fJZuRJ4/HHg66+D57JgwZs0CXjppeDvVq28/+Nw0bSJwWMFXhYseOXuoik6V3//u91mXVwxeA0NZha8777zfhNLU5NXhPrxx4vL6JQDZMHTJ24L3rp1wNNPq5VcWL0aeOIJ+8ydceHf57791vs77mNnSj7vlZR57bXi19Ky4M2a5WVRB7z7nemmZlR/snCvMkHJecRVJsxyzKgZRxZNILupccmCVz5ccYVXP3DrrYGZMwNXst/+FrjzTm837PvvgbQM7//3f8A//lH4XNp18BYsAPbZp/C5li29XcQ4XDRdWfBMC527JIsWPJcumqJzdf753rm+8EL99gC3ZRJYGhrMyiQMHgy8917hc01NwPHHe4u/vfYqfr3UyVIMXqkIPBeln8LE85Il3pirrfVq3/qbbCIuuggYORLo1s0TUVlbhp57ridAt9nGEyyiMJgsOL+99VZQUsavpemThsDbuDEoJwEAdXXFCcJMz3VFWfAIOZVmwYszi6aofRVKwYUhizz4oPf/nDmF1ro77/T+X7UKmDYt8W5tghd3QPoumi++WDhGmzcPhHEWLHh8DJ5PHH3TJYt18GQWPJP5V3auLrpIvy2fuFw06+vNFjEi8dbU5Ik7AHj/ffu+ZY24LXguyqvothM3/Bg1cdFU+T0NDdEbCiNHev8vXFicpTgLPPGE9//s2d54crmJ7hJ2HrvsssLXdM6vK4G3dCkwb17w90EHucsAzfcnS9eWDkYC75tvvsHYsWMxjz268Fw5DzroIHTo0AG77747XtEtcV+CxCXwSiUGb90685ucaKFCFrx0kAm5rLiH+KTtoslXe2nRItgljCMGLw0XzbgsAVm04MkEnsnGlYuyCDxZc9EUkYXzGCdkwdPHhZuh6u/RWX9kfTPYT8zEEse8YgJrReQFna0Fz+RezLbTooUnlF0JPNFnsz52RBgJvD/+8Y8YMmQI1jB3xzVr1mDQoEF4/fXXsWLFCnz88ccYPHgwZs6c6ayzWUR00rPiopmEwGtqMre6uYrBK/cFRhzw41YWHlvOAs/FuKmtDfqUtTIJpgIvrt3KLAo8mYumya552Gdk3xNFXBY8kcAzPe9ZOI9xkqUYvFKx4LlIsqL6e3TOQdbHan19di147P3ERuCJzpfJeWHbOeIIr39xWfBs20sLI4H3xhtvYPvtt0fv3r03PTdq1CgsWrQIP/vZz/DRRx/hd7/7HTZs2ID777/fWWezSJZdNNlBGpfAA8x2mGQXi60FL2v+9VmFd1WpRIFnMmHzN7bFi4Mxl8UyCT5ZdNHMwmIrKQve55/rtwck66Jp2m4p7mzrkKUsmmTBsyPri/SGhsq04JlcR6J1X5wWvCzcr3QxWg4vWLAA2267bcFzL7/8MnK5HO677z7ssssuuO6669C7d2/873//c9LRrFLpZRIAsx0m2e+zjcEjgafG998X/l2JLpomE7boeMQp8NKw4CXlopmFxZZM4Lm24JnGsroSeLwIIwueOlmy4IUd6yxcTz4uLHgk8DyyYsFr0SJ4zPep3AReRVvwli1bho4dOxY89+6772LHHXfEFltssem5nXfeuShOr9wQnfT58+ULB9U2XAs8V7iy4Mkmb9syCZUm8BYv1htrPnw68+nTxeckrWyusu91tVEBuBd4cbhBphGDl7SL5rx56d08k7LgmVYIcnVvEGU1LIUYvMbGwkQKIhYuDF9gbtwYpKA37YOMLNXBKzcLXhwumsuWeck58nng00+9kje2c8/cue6uAdF1mUULHn8+047BIwueGKPlcF1dHb5nTABz5szBggULMGDAgIL31dTUYGOWZp0YEJ300aOBnj299L0qxOWiyeJqcGbRglepLpqTJgHduwM9eng3Lh14C159vbjuXVoWPNnC2+Uka3IDEB0Pkxi8LBc6T9JFc8QIYKutgP32S8fVL6kYPFOB56pMAt+OSZkE2RiKq2ZUPu9lxttqqyDjL8+LLwJbbAH07Su+pzQ1eaUbttyyuH6fKq4teCblKWSfNW0nblyUSYjj9/TtC2y+OTBgALDLLsCeewL7728+99xzj3f//clP3PQvyxY8VuDxorPcLHiiz1aMBW/HHXfExIkTN4m8UaNGIZfLYeDAgQXvmzt3Lrp27WrfywwjO+lLlngXv2kbri14Lm66sjZMdphI4NkzZIh3HJcuBe69V++zvMADvBpvPGkJPNnCW3cch924XVjwTj/dzEUz6TIJabtoipIqNTUBZ53lPX73XeCLL9x/bxQuLXhhbmimRZZduWjy7Zi4aMq+10awhDFvHvDmm97j884Tv+foo73vnzXL21jlefddYMoU7/Gpp5r1w7UFz8ZyWioumkmVSQD0xVl9PfDOO8Hfb7/tecKYcMkl3v+vvOLdh23JcgweK574eTONJCuiHBNxumhWjAXv1FNPxbp169C/f38MGTIEN910E9q0aYPBgwdves/69esxefJk9O3b11lns0jYSVe9MEtF4MluRGkLvEqNwWNdl3Sz9PEumoB4HJrcmF0gW3jrTtquEySwN7K99gLuuKP8YvD498ZV68uVi6ANLgWe/3vatgUefRR4/HFgs82851auNOpeplw0ZWMorppRuu2I5kDRPOeyHybXBn+cyUVTrY04cbHecnGvFGXRzIrAY88hf7zIgpdNjJbDv/71r3Haaadh7ty5eP7559GiRQuMHDkSbdq02fSesWPHYt26ddh///2ddTaLhA3Mujq1NpIodB6nwDNxIXAZg1epFjyWVq303i+y4InGYVruIa5cNF2nFWevy2uv9RbwWY3Bq60NHttYF10sfkTzWRZ2RGUbI6J6VFH4x6221rMWnXiiJ/YAtwIvaxY8G8EShovxoRomEUbcFjydeaNULHhZLZNg+11huKpPmVUXzbBzaFvo3OT4izb2yYJXSI3Jh3K5HEaOHImbbroJixYtQp8+fdC6deuC9+ywww4YM2YMfvzjHzvpaFZxIfCSyKJZzha8OMpBlBotW+q9X9WCl9buoWzhrTtpu16csULFt5DFGYOXhoumyNrDtmWCLD4qbcISFK1fD3C3tVD848ZuMrVr5/2/cqU3H+vOT0kKvKh2Za/z4t2VwHNhEXEh8MLGKVnwxJSaBc/Fd7kQYvX1xeMtKxa8sN+XRQuezTktFwuekcDz2WqrrbDVVlsJX9ttt92w22672TRfEoSddBsLXikJPEqykj66Aq9SLHhh48nWgueLnqy6aLJB8TYxeC68CVQEXhqbMy4Fnv972EWGb8HbuNFrT/c6jUvgiVw0o8aI7HVe5LhaCGVF4LneJLIReKVqwTNB9bhkxYLn4l7Z0FD8e0rBgpd2DB5Z8MQYLYerq6tx5plnRr7v17/+NWpqrDRk5gk76WzdkDCScNGMc8J1acEjF00zVMeaj6rAS2v30FUMXhIWvCwlWYnDRdPFXCRqg/+eNAReWOyq6bEXCTwAWLFCrz22TRYXMXguLXim74tCV+CJFo662YVFZCkGr1SyaLroi+ocmaSYDMPFvTLLSVZcCbw4LXis3KAYPEOBl8/nkVec2VTfV6q4mPzjsuCxZM2CpxrPoYJrgTdihJf6+P777dtyxfr1wMEHe6Ji662Bt94qfF138lF10Uxr99BVFs0kBV4cmSqzkGQlKQue7vk4/XRghx2AW24BttnGi4nUJcqCp0OUwDOJw8tSmYQ4Ftz+vLbHHsANN3jz7k03eSnsXYTvsxtZ7LnQQfR7/Gu+XFw0m5q8rMzNm3tlJ/7zH/O2gGRFV5JiMgxXLpqlGINXbnXwKtqCp8ratWtRy24jW3LFFVcgl8shl8vh5ptvlr5v/PjxOPLII9G5c2e0bNkSffr0wbXXXovVq1c764uPix21UnfRTDsGjz1+7AVuyllnecVLL7ggndpcIsaNA1591TtuX39dXBdKd7yIdrYrzYJncgNgb3I2MXiq3617c2evn1Jz0dTp45QpXqbKmTOB664D5swBbr01XLCJCHu/CwueH4MHmAm8LLloxrHgvuMOb16bPBn4/e+9efe3v/WKULsYd6zAa9/erA3RcfGtzeXiovn++8C//uUd8/nz9cvu8JAFzwyy4Jm1Q1k0xcQm8JYvX46JEydi8803d9Le22+/jeHDhyMX4cdz991349BDD8XLL7+MnXbaCT/96U+xYsUK3Hrrrejfvz8WmxY8keBiARmXiyZ7AbgWeKwp3CRWIi6B59rN69tv3bZnyqpVhX/zAk1X4InenyULXhIxeK4teID6hkBcu9Ol5KJpI/BkYkm3r0la8ErdRTOOBfcHH6i/N+raEr3OCjzd+Ecf9vccfTTwxhvpWfDictHk7y8mY5UlSdHl4ruyYsETXZck8KLboTp4YpQD5LbddtuCv5999lm89tprwvdu3LgRCxcuRGNjI8455xyrDgKeJfC0007D5ptvjj333BP/+te/hO+bMmUKLr30UlRXV+OFF17AEUccsenzgwcPxoQJE3Duuefi2Wefte6TT5YteGy7LgYn215dXXATsBV4LVsGk5jJ72Y/Y+uiyd+wp04FttzSrk0X8MeYX+Dq3txF7xc9R1k0C2FvZL6FjB1zTU1qVmTV37Fxo172xVJy0dQVGCxMRZ7I75GRzycbg5clC57LMgmm7wP0jnF9faFVWgXWFd30nuoflz33BF54wXuclgUvKiSkqcnsHsgfG9t5nyx4ZtTXF8/15eai6SrJSpxlEsrFgqcs8ObMmbPpcS6Xw+rVq0NdHps1a4af/exnuPXWW606CABXX301Zs6ciRdffBFPP/209H233XYb8vk8Tj/99E3iDgBatWqFESNGYNttt8Xo0aMxffp09OnTx7pfgBuBJ2rDxaLKtcBjf4+twGPbYgWeyUTrUuDxC76pU4HDD7dr0wX8eFi4sPBvncVLU1O4H3xtbdAeuWgWEmXBa2xUE3i6u/aqrsdxlElwkc3QtYumzHKiM2+uXx9ugdEd+/7vYcdDVgWey0LnPDr9CxPYPOvWhQs8/lzm8wDrsGMi8PL5oF32GsyiBQ/wzpHJPZC/brIg8JKMwcuKwGtoKJ7rK8GCRzF48aA8FcyePRuzZ8/GrFmzkM/ncdxxx216jv/37bffYvXq1Xj66afR3tTx/Qdee+013HffffjVr36FI488Uvq++vp6vPjiiwCAE088sej1nj17YsCAAQCAMWPGWPWJxYVPfKlY8HiB5+PCgif6DpO2bAUevwibOtWuPVfwE+iCBYV/64wX2bhkBZ4PuWgWElYHT6dNnXFuusPPCjybEg5ZdNGUvVfnOoiK13PhopnVGLw4LXg651FH4OmejxUrCseDyTiWJfCyseDZWK6jjq3popa/bmznfXLRNCPLhc7D+mFb6Jxi8OJB2YLXs2fPTY9PPfVUDBw4sOC5OFi9ejXOOOMMdO3aFffcc0/oe2fMmIG1P9wt+vfvL3xP//798eabb2LKlCnO+ugiq1WpCzzbOniswDP53Wy/XAu8adPs2nMFvzjhF6c6x002Lv3x0qxZsPAqZxfNOCx4qteZCzET9d6su2jqZnFUea/OdRAlLsqpTIKLLJppu2jqng8+U7Bt7GJcFjydazNqfjG1RJGLpn0brlw0+byElWDBy5rAqzgLHssjjzyCM844w3Vfirjsssswe/ZsPPjgg+jQoUPoe2fPng0AaN++PdpIAjT8ouz+e2WsWbNG6R8QnwXPxaKKnbRcT4JZtuDNn+9lwnz4Yf22+EXYtGlmN/HXXwd+9Svgvff0Pysiajy4WByzAs9HRbx/9x1w7rnAAw+o9yEKVxY8FzF4b7/tncs333Qn8OKy4MXhovn5515JgiefVG+DR6UOngvRqzNvJmHBy0qZhCRdNHXOo87iNep88PM0X+vTpcDLYhZN3bZY+OumlCx45VQmIcsWvKzF4JEFLxqjKuRz587Fq6++ir333hu9e/cWvmf69Ol4//33cfDBB2NLgywV48aNw8MPP4xf/vKX+NnPfhb5/lU/pIGqY5UHR+vWrQEAKyPutP77VKhUC16rVsFjFzF4oudVYY9VLgf83/8BY8Z49ez23x/o21e9LX5orFzpuUN2767XpwMP9P7/xz/clFqImkBdumiyY0VlAXbuud7xBoD99gN23VW9LzKyVOj8B89u/OMfwMCBwfOyGDzbfvGk7aJ5wQXe/48+CvzkJ2bp5l3H4Llw0UzaglcpLppxxuDpwCfMNtk0TcKCl0UXzbgteCrJYCrBgsePn6yWSWhsDD/OFIOXTYwsePfddx9OP/300CLm+Xwep512Gv785z9rt79ixQqceeaZ2GyzzXDfffeZdDExKAYvWxa8xsZAbAD6FjTRIsxkYeYalwIvyoLHjhWV3UP2eOukPQ/DVaHzsPFk66LplwophRg8Vy6hS5eqt8PiWuC5cNGMWjjpzGuyZBxxxOC5KJOQFQtenDF4fOp/suDJ4Y9NY6Od6IkaAyrHrRJi8ETXZRYteFFzYdoumq7LJJSLBc9I4I0bNw59+/YNzUTZt29f7Ljjjnj55Ze127/44osxb9483H///ejcubPSZ3y3zDUhfjd+1s+27Laq5H1R/+bPnw8gPguerYumnzLZx7XAY42cLgWebQwefyx1Cx+LFmG6bcRBkgKPPYa6u4eu6hBmyYLH4p+HZs2C3xp3DF6WBB4fH6KKSpIVF5YMnXnTpcCTCQFXMXhsm+VkwRMtXrfYQvzeqPPF7zfzc0hTk938kQULnkoWTRNE142N5UjFgheF6m8p5SyaotjYLFrw4hB47Foha2USysWCZ+yiOZD1VZLQq1cvvPXWW9rtjxkzBjU1Nfjzn/9cZAGcPn06AGDEiBEYP348unXrhieffBJbb701AK/A+qpVq4RxeHPnzgWATe+VEebm6dP4w+gJm+BtyiTYWvD4NivJgseiK85Ei7AsCLyoY+wyBo89hrq7h3ELvDRi8Fj888CKp1KIwbNx0WRx5QImaitpF82ohZPO2JdlW3TlotmiRXBNxCXw0iiTIKJdO+Dbb4uf152LRNZBURr6MOLIohmni6YrCx7gXR+yepNRuBB4SVrw0hJ4KtdluQq8mppg3FEMXjwYCby1a9eiJbsql9CyZctNsXG6bNy4Ea+//rr09Tlz5mDOnDmbMnn27t0brVq1wtq1azFp0iQcdNBBRZ+ZNGkSAKBfv35GfRLhIktfHC6afJtxFDr3yVIMHlnwouFFgN+2aQweS9YseHG5aLL1uExi8KLGOVuLMEsWPJcLyLRj8KIEgwsLXrNmnjhbv95O4DVv7lbgiVw0XYkH24WQTFTozkWiOaShwTsfqlSKBU903di4BrqIFXQx3lTPj8lx49s2OV78+awEF03/uLECj2Lw4sHIRXPzzTfHRx99FPm+jz/+GF26dNFuf/ny5cjn88J/p556KgDg97//PfL5/KYC7M2aNcNRRx0FABg1alRRm19//TXefvttAMCQIUO0+yQjqy6acQi8UrDg8b9zyRK9tkSLMJ04kbiIS+CxQsWFi6ZtmQofVzF4cbpo+pjE4EXdfDp2DB5nSeC5dAGLo0xC1lw0gcCKZ5NFkz2X5VImQTaW4hZ4OmQtBi8uC14pu2i6mK9cbJq4suBl0UXT5WaYf+5Zd3+y4MWD0XJs4MCBmDFjBkaPHi19z3PPPYfp06dj//33N+6cLldddRVyuRweeeSRgti/tWvX4swzz0RjYyOGDh0aGjuoiwsLgeh9//oXYODdKm3TtRsDm0XTtg4e25aLGDxWZPCpssN49VXgb38rfl7XgiearN54A3jmGbcLZBYXAu+TT4DHHiucrDdu1Lv5TZniZVu03XVMIgbPxoIXt4umqcCLo0wC3/60aV6GWh3njCy6aCZhwQMCgWcTg8depy4Wo08/Dfz3v4XPJZ1kRTZ+ZAJPt0yCaJNIZwOgvh74+9+Dv11Z8HRdY1mStOCtWwe8+CLwn//otTV9uvg+yuLSRTPsfXHERMs+44/P+fOBv/4VWLgwug2+fy+8UJi0zG/XZi3ogrhcNPnnPvwQePxxtbk3SuCpjp+PPwZGjgQWLfLua9On21nw0j5XLEYumhdddBEef/xx/OpXv8K8efNwxhlnbIp5W7VqFUaOHIlrr70WVVVVuPDCC512OIx+/fph+PDhGDZsGI488kgccMAB6NKlC958800sWLAAvXv3xkMPPeT0O8MGtu1O5oEHAl99BfTood2t2C14tbWBe1+WLHiNjZ510V888MVuZcycCRx8sPg1XYHHH/vp04EDDvAeP/aYV1NNl7jq4LELx6ee8v7xrF9fmFQnjHvv9f6fPRu46Sb1PrHk8+5i8Fzc/Fn8m7hM4LlaBLu24LmKwVu9Gjj0UO/6+vRT4J571NoULSD5MZ21GLw4LHj5vJ4bM5tkpbra+9uFwFuzpvgaSzrJisyiKcuBFnW++DFua8F74AHg6quDv+Oy4OmM+6SyaALAK68AV1zhPX7nHeDHP45up74e2HvvaGt1OVjwZJa2I4/0RMOAAcDEieFt8P374gvx+/bbD5g7FzCoOOaEOAQeb2377jugf3/v72++Kbz2wtoBzC14q1d76+zly4PnunUDdt65+L2qY+nNN9XelwRGFrx+/frhtttuw7p16zBs2DB07NgRPXr0QI8ePdCxY0cMGzYMa9euxc0334y99trLdZ9DueSSS/DKK6/g8MMPxyeffILnn38erVu3xtVXX40PPvhAOSunKuzEeO65ha/ZTlAbN3o7CybELfBqagJxYCvw2JgI1zF4qha8p5+Wv6brosn/hvvvDx6feaZeWz5JWPBkmFjjfvc7/c/4rF4dnQhGFdcumv5YSNKCZyp84rDgvf12sHnii3kVROPXRuC5cNFMyoLnl0pobLSrree7NLkQeCKStuDJREDLluJEKFHnSyX+WmeeHDas8G+RwEuzDt7pp0e3rYrouvkhZQEAz7tDhW++UXNFTioGL2w+9sWEan+ivtcfnx9/7P2vYsnRuQf9kF8wFZKw4L3wQvD3NdeotwOYl0n47LNCcQd4llfRulF1jKR5nniMI2Yuv/xy/Otf/8Iuu+yCxsZGzJs3D/PmzUNjYyN22WUXPPfcc7jqqqtc9hUA8OijjyKfz+O6666TvmfQoEF46aWXsGTJEqxfvx4zZszArbfeKsysaQs78IcNKxQKSWaBimrTtcCrrg6EmcskKyYumrzAYwWZqgUvrJC5rgUv7Aauk8GNJa5C5yoCL+kYgDBR7jIGz5WLZhwxeJ06BY+zFIM3dap6Oyyi8ck/5yIWKcsWPEA/Do8VeP6CyEUdPJP3uLbgyVxWa2sL7wk+uhY8WxdNHpGLpisLnqpQZL/vV78CPv8c+CEtwaa2TBCNKdaFVvUeUKPoE5ZUmQRZG+PHA+efr9aG6ve6iMHjYT1nXNRGNiWOJCt8DJ7u2BWVSWDHn0p7Mjdx0WdVr/XPP1d7XxIYuWj6DB48GIMHD8aiRYvwzTffAAB69OiBrl27OulcKcAO7KoqYNddg79tyiT4mOwQAqVlwWNj8Gwn2nXrCo/ZkiXeb49K/sEuhnlcCjzVGyBPqVnwAO/Ys0JFlTBRnrYFzyduCx5bINvU/VYU46DbBo9LgefKRXPvvYH33hO3GUYSZRKA4lp43bqptysSeFm34Nm6aNbUeJuHP5St3UTSFjweUZkEFxY8wOu7yr2BH2d9+pjPFSxRAk/1WlA9vkmVSZB9z667AgsW6H8XiyjbpW47UcdhwIAgVtZFKQdTkrDg6d6PXbhoyjaTRb9Hpb2GBuDLL6PflxRWAs+na9euFSXqWNiBUF1dGF/hwqWFv8mpUkoCz2UMHn/DbWoCli4FojxzwyYoWxfNJASeixg8GaYWvKlTAZMcSy4teLZJkGTfF3cMHtu+iWXLj9nS7VfUe1mBF2b15hGNX37eMO2jqQdA0klWADsLXtwumq4seLYumqYWPBWBl0ULnv+cyr2B/Y2mVgsRouNiYsFTPb5JCTzZazU19seN/8y6dfprhajvZcNXysWCJxJ4jY3ZF3gq/Zs5M10hzuMoqXnlwlvwTLL4hA1EVRfDqDazLPBsYvDy+egLWeUYhk1QthY89viYCryoYxynBc9G4JkQJvCStuDJPi+rg+fKgseOkywJPHbRpxPwr2LBM92kMBV4SbloshYWXYHnj6eqKjsXTRcL6iRdNEW16pJOssITVwye7DkR7G/0+2Oy5uBx5aKputB3seGg8j7ZuK+psT9uIhdNFxm3WWzDV1yRhAVP997uQuDJ1oamFjzTNU9cKAm8u+++G/WWhdnq6+tx1113WbWRRXgLnsmuUNj7dNL8h7XZ0OBlaDJ1+eTbZAWeiQufrOSC7iSm8n6VY5iUwMtCDJ5LF8043PnCBHnSdfBkn7eNwYtaUJguPvz31tSYCU9Afd7SaTNOF01WDGQxyYrrGLysu2jGZcHTddEUWVNcCTyXhc5lz4mIy4LnykUzDQueiZdGHBa8xYs9C45NGzxZEXhR57+hQf1aYAud+6Ql8Fxb8EpS4F166aXo3bs3Hn74YazSKX4EYMWKFXjggQew/fbb4/LLLzfqZJYpFQve6tWev/5ll5m1B8gteBs36i+8Xbloqrzf1oJn66LJTo5Zi8ELiz30Cdu9DZv4s2DBs3XRVBF4JkIq7LubNUvXghdHcijR+OUXBEm7aKaRZEW3Fl6SAi/pJCtRMXg8SbtoskkggPjKJMieExGXBS+LLpqlZsEDgnJIqkQdB9sM465QmQt1z30WYvBcW/CmTYt+T5IoCbwxY8agqqoKv/nNb9CtWzecfPLJeOSRRzB9+nTkubt0Pp/H559/jpEjR+KEE05A9+7dceGFF6K2thZj+AqOZUCpWPB8bIyoMoEH6Ltpsu+3SbKisqBT2TXnL+hf/zp4bFsHj22bXzSokqYFL+zchgm8b79V7xNLqVnwTGLwwsZ5q1bZddFk0emXyvg0FaHlGoPHL+bLrUyCbOPM1ILn2kWTnxuzYMETLWpN5woW0XFhj3eWLXgmMXimazXV7/WxLUyfFQueK4HHXi8uY/BMyyS4tuCpFLdPEiV7wjHHHIMjjjgCf/rTn3Dfffdh1KhReOKJJwAAVVVVaNeuHdq2bYuVK1di+fLlm0RfPp9Hjx49cMEFF+CCCy5AMxVzQYnBXnRxWfB0i+PqfLdpm/wu64YN4puyDPbmy8aoxOGiqXKhsxf00UcDd94J/PWv3t+l4KIZZ5KVsGMctrOra/n0KYUYvDgteDYCj3XRNHEdzefdlXpgUbn5m5ZJMHXRzHoMHt9muZVJkL3PNAaP7X8+b++iyS9XXFnwRMfZRDzHnWSFJcsxeGHjTXR+qqq88xeHBU/0nrBlb7nE4AFq515kgfafz7qLpssxmxTKSVaaNWuGyy67DLNnz8bo0aNx8sknY8stt0RjYyOWLl2KOXPmYOnSpWhqasKWW26JU045Bc899xxmzZqFSy+9tCzFHVC8eDdZmIVd5PX18lodYcQx0Fxa8FjR1L69+DtUcCXw2P5fconXJ9+yaOui6SLJij/hyMo9mFrwRAupsPfzhO3s6gpjH9+CJxLDSdfBk/32OGPweIFnYn2rro4nuyeLqQVPtlmVtIumSwueTpkEVWQCL+sWPNuNTRcxePX14vZ1NgD4uZE9r1mw4MWdZIWlnCx4/nVka/lUFXhhVJoFjx+/7EaJ7ppVVAfP1EWzVy/gvPPCP+vSrTgptJebVVVVGDJkCIYMGQIAWLJkCRYtWoQVK1agffv26NKlCzqZFL8qUfgYPNcumoC3y8AuEly0aQI7WVVX2wk8VjTZ1PFReb+uBc9fvNfVef20teC5jMHr0MGrL8cTZ6HztCx4m21W7PLgMgavHC14ti6aSQi85s3FC0bT7zZNJe6yDl4cLppJCzxXFjxbIVhTY1/oXDZn64wP/jxmIQYvySQrLKoWPNV1QJoxeCKBF5eLpq3Ay2IMXvPm4vOs66JZVeX9890zk47Bq68PNty6dIn2ripFC551HbxOnTpVlKDj4WPwXLtoAt4uw3bb6fUrrE3Vmjuiz/m4suDxN/O0LHgygff999kokyATeNXV3u+LMwbPVODV1+uPtXw+2FUTCbykLXilGoNn6qIZR6weUHh9tWghFk+mLprs/JFFF00XMXhVVYUxeLpu+1kskxBmwRN5FuhY8GSbSzrzJD+WshqDF1eSFZYs18HTTaTlz61JuWiGUYoumm3bil0bdS14rMCzjcEzEXjsb9hss2iBV4oWPKqDZ4lLC57M/W7hQrcLW1PXOXaCcSXw6uoKj1kcMXgqE7FI4MXhomkag+e30aZN4fN+sem0YvCiFl26Y23VquBcdOlS/HrWY/DSFnj+e01dNHXGhqkFT+YWXMoumknG4PGv6bYlI+kkK2ExeKJ5UicGTzbv6GwA8Oc/axY8vz9JWPBcu2i6GI8qbaVtwYs6rjoWPFOBZ1May4c9/zJvMlOB5z8fRwxe2G9nBV6XLtEb0aVowSOBZwm/eGcXVboTlGzxf+yx3kX14IPq/XIp8PJ54JhjgDvuCJ7jBZ5uLTxfNPECL2sWPMA7XjqTpGsLXlNT0Ca/6PYFX5wWvLBzErXo0h1r/K4aT1ZcNNnjxl63++8PfPihebtAdlw0d9lF/b1R8C6atu3Jkqy4dNGsr1e/7sMEHrsp4yIGD9CfJ0styYpos9PURdO0zmqYwEvagjdvnlfm6B//KO5DEjF4pVomodIteE8/DWy+OXDDDfqfZeEteCJ0BR6b6CYOgffYY0C3bsDNN4s/TxY8IhJRoKc/gehOUNXVwNZbi9+zZg0wfLh6v8K+W9ci9dJLwNixhc+5tOCxF7ruJBZ3DB7gnWMdAevagsceEz5Xke+2lZaLZtRx0R1rS5cGjzt29DKasmTdRRMAjjsuut2wcTtkiPniQybwTFw0RRZUFp1+sdeXbMyZWqFNXTRVrmkTiwR/jTdrFohQGwseW2IlDoGXtAVP9r6aGrH7adQ9RmbBY5N42Qg89l6ftAXvl78Evvii8DmRBc/WRVPmRVTuSVbKNQbv+OOBRYuA3//ebKz6LFsWPJZFZKmsAcMseC5cNNk58ttvvXCP668Xf54tx6Qi8FxanZOCBJ5D+KxWuhNUVZUnpI4/HnjiCeCKK4ABA4IFkU42TZcWvAULip9zJfD83VXTBAJxuGj6v8sXeICeUOG/j939NJlkefH5yiueiHjtNXuBp5Lc1jQGD9Afa7yl569/BU49NXiuqUlv1zxpF00AmDMnvM2w33DFFcBpp7kpk2CbRbOmxhtrKu9V7ReQHRdNFauE6rwWJvCAYNfblYum7kZYqVnwRAJPp6YYO1+zAk9VgGzcGF5XL2kL3ltvFT8XR5IVmXUmyxY8XS+NJC14UddpkjF4qudQhF/Au7YW6N1b/B6V8yVKsuJ/1kUdPJWs4D68iyZZ8IhQ+AlXN3C6uhrYeWfgySe9Hbs77gAmTgyseqYxITy6i26RCBDVwVNl48bgRuCLKBOhovp+Uwse69qjc8z472N3P00mab5vgwYBzzwDHHBAMNZ0dsCyHIPHJ/Lp1g149FFgn32C523cZVniEnimbV51lXfN87G8Sbpo8plyBw0Cnnoq+r1RsGOI3WVlSdJFs6kpuK7CrgGTrICi8eDH4bkSeFm24LlIsiI6hlHXq8xF08SCJ5rXVq8OHqcVg8cSh4tm69ZicV2qMXiqFjxbgXfjjUC/fuHvUe0fi0uBZ5N7YcYM73Hv3oUb3ywq59RlDJ7Ie04m8ERrBt6CRzF4hBT2hmTjoinCX4C4Eni6bnOiBZCNBY/9/qwIPLb/vIsmoDc5hk3qLgQei4nbVpIxeDYJatgJ10SsRL3XlYumrtutrE3RHAKYCzzb8g0iFzAWE4EnS6DBf3cUti6a7IKVT1wke18YOhY807i+UonBc5FkRSQyotp16aIpup+xAs/Ggif6HWHHVjamXSZZ8b+DdSdmybIFT9dLw9Vx469PkfUz7Rg8FlOB9+WXwXfvtJNdDDUv8FzH4InKq8j6RhY8Qhl2cJi6aMoGmD/hrl9vtjjg0b3QXQs89vttBV4SMXiAnYum6msyVAWe6rHLsgVPZukxEStAOi6aUcjGgEzgmQha//OsC4zO54FogWeSZEVmnQHclEkwsdC0bl34GjsPu3bRbGxUn0tkZRIA/XmylMok8O7FPkm6aIrOOzuXubbghV1LvvWEJw4LnqxExYYNamsPl3XwSqlMQk2NmcCLmkPZ+7NtfJdpXdqpU4PHYQJPpX+8W6XrGDyZBU/UN90kK2TBq2CSsOAB6jd2lwJP1C9XFrwsxuDZumjGacHjJ1eTRR87NuKsgwfYu2j6ZNmC50rgsb/RxFqTzxe6e7P/m1hVRK5MsveqtitbvANuXDRVF/DsuOUteOzGjmuBB6i7aWbNguc6yYrrGDyXLppRAi/JGDx2gc0SRwxeba3cChJXUiIZpVQmoaamsByKj00MXk2N3aYOj6kFjx1/O+5oZ8FTjcFTuafqWPBEx4510ezcOdpFs+ItePl8Ho899hguueQS3HPPPVhjOqJKkDgteCZCyqXAE7VVXW1eJsGlBS+OGDz/Qo/DRfOrr4AjjvDS6T/8sFp7IvdRH5NFn0sLXlIumqYWvCRi8NJ20XzlFeCww4CBA4v75P8/ZQpw2WV6i/goC55OwhvXLpqmMXjvvAP8/OfAmDHBc7wFj93YcSXwTGrhZS0GL+0yCToWvLgFni9AdQXec88Bjz9e/LyJwOOv8ah2wohy0QTU3DTjdtEUjQvTGDyXFjxTF82wvvOZc5MQeF9+CZxwAjByZPCcqgUvao756isvgaAP66L59dfAffcFr6ncU11Z8Nq398Z9OVrwDKpyAcOHD8ctt9yC0aNH46CDDtr0/JAhQ/DCCy9s+vvRRx/FO++8g5YyWV1GJGXB27AhPGaEb1OEbeFuIDsumq4FXrNmwc2bXfix8RdRRE3qL7/s/f/22142TFnaYb5vfv9YknDRDPs9cSZZYX9bHBa8OF0083mxFQLQd9GMGk8XXghMn174nH+82DaHDwd+9CMvS6cMHYHnv1+ltqNrF01+nFRXe32Jugb23df7/9lng+d4gReHBY+ds00FHjuedLMWJ5lkxfZ9tbXA9tvrt8u+zs7XHToEj21cNHfaKXjMnouwa51n6FDx82HHfuZM8fMiC56JUMnng88lZcEzddHs0yfI6OiTFQue6xi8XC55gXf00V45jiefBI46CujaNXARrq0FevUC3nxT/NmoY3jMMYVikbXg8SQh8HwLnl9vl2LwfuCll15CdXU19t9//03Pvfrqqxg7diw222wzXHTRRdhll13w6aef4tFHH3XV10zjwoInG+xpW/BEE4trF804Y/B0XDTZhXvHjsHjxYvd9gnwzhFbXyaqb0D2YvDiLJPgwoIXl4sme9xE123YJoprC97ChcXPiXapAeC//w1vi1+08H0Je38YKgLPVLizO906dfB8khB47Hgxra3HzkdsvUjdtkzfk5QFr6YG+PWvgYMPBnbYwXOfAoqve956xr7OztfdugWPTS14u+4K3HJL8LdtAiMek0RWrpKF8JslsnuCiQVvu+3E79NdLHfvDhx0EPB//1f8vizE4MkseFHjLer+5FLgqWzss7UWv/3W+98vz9WuXfG6jyXqGPKWaDYGj0fXRdPfYMnlxP3jj92GDcFGm1/vlbJo/sCMGTOw0047oZq5Qp599lnkcjk88cQTuOuuu/DGG2+gbdu2eFzkj1CG2Fjw+LgZnrQFnsyCZ1omQWTBizMGT9eC5+Pv7ACFAblRmFoiZMQp8GQp61nSLJPgY2rBS6tMwooV+n0yFXii10XuW0C0oOcXLaI2or477H1xxOBVVwfnw2QR5CIGLyp+xMTKwv9Gdj5i40d023r9dWCrrYrfk6UyCbW1wIQJnmWateaxoo6/ftn22Pl6iy2CxyYWvMsu81yc2ePPW/BUCBubuiIFcJdkhb+/yGqj6lrwvvwSuPxy8ft0LcozZwL/+594/nJhwXORZEUUg2djwdu40a6PYXUcVfC/2z/v/nrPJgaPpapKbvlWEXiiMgmA2ALNHzs+wQpAFrxNLFmyBN27dy94buLEiejcufMml802bdpgwIABmD17tn0vS4BSisEjF81iRDWx/J0dILsCzzYGr6YmemLLQgwe28esZdEULXzC3PBULHg6i7YwgcffKKMK2+u6aKqOuTjLJLDJCFwIPDYGz1WZBNcCT2c+ErUlGgeuLHgukqz48Lv87DWrKvA23zx4bJJltXnz4oWoiQUvLoFna8HjMxfL5ghdC17z5vK2dOdePiuw7H0qr4kseLYumnHE4OXzdhY8/v2myfX88+4LJ5cCb8GC8O8OQ7apFpfAqxgLXlNTE9YzM+CaNWswbdo0DBgwoOB9HTp0wFJdX5ISRbT7HofAU11whH23KwteHHXwNm7UC1x3nUVTZsHT2TEvJQteTU20a0KSMXgqZRJcxeDZTNjseViypPj1MIGXhAVP5qIpi1HwMYnBUyHOMgmsYMmqi6ZJvUp+AWO64SRqS7TwTjrJSpgFj0V27YcJPH++7thRLwmPD3veRQtaEwte2HExec1VkpW4LHhhbenG4IV5E+h6acRlwYujDp6NwOPnQt3NVv+6U7Xg6R7DqqroGo9hyASe6B4XJvD8eZUseD/Qo0cPTJkyZdPf48aNQ2NjY5HAW7ZsGTqygQNljCjFuaskKyaukFmOwWO/n4/BA9wIJPYGrHIe/P6zNyTTBZUrF0KfuAVenBa8OFw0k7Tgyc4Pex5E8ZlJCTw2QQKLCxdNlRg8EwtenDF4ablo6ljwTMqZuHTRNLXguU6yEhaDxyK79vnvYV/z5+suXQp/q4mLpmjByI7htF00s2rBcynw/N/qwoIXR6HzmprCecPHJgYPcCvwdO/FfpbkOC14Jq+x/RO9X2TB448dO3/68yrF4P3AT37yE3zzzTc477zz8Pzzz+Pqq69GLpfDUUcdVfC+jz76CD169HDS0awjcq/KqovmqFFeanVVXFnw/vc/4JFHgOXLg+f4GDzZ98mQTXrsRW4ag1dXF7RTzhY8G4En2tVlF0RxlElwJaDjtOCFxeC5TLIia0vmohkl8OK24LmKwXPpoplEmQQXLpo2FjwVgZe0BU/FRRPQd9Fcvz5IDLHZZnpz5OuvA3/7W+EGTZQFz4WLpomngasYPFWBp2LB40v6yNrSmXvZDLK6Ai/Mguc6yYqudVHWPxYbK6OtwGtsFG90uBJ4YZlnbQRelAVvyRLgqquCv1UteKUo8IzKJFx99dV49tln8dBDD+Hhhx9GPp/HySefjD59+mx6z+TJkzF//nwczxa+KGPitOC5FngAcPjhXl2SbbaJbktF4EVN/rNmAYcc4j1mF1C8iybg3XBUK2vIdmRbtgzEhanAA7wFwjffxBeDp9M3oHhytV04xmHBa906GA9xlEnIQhZNdpyIbiguLXgm2fdMLXhxxOCx9fLCYvDIRTO8zbgteK6SrNi+z9ZFk4+vURV4c+cCBx7oPd555+B50TXj2oJnYt1zVSaB30CU/Z60LHgyTw4f0xg8001D0WdqagrXNT621xT7e5N20dy4sXBd56/JZG7+Li14ccbgXXllkCEUcJdkRWddkhRGFrxu3bph8uTJuOmmm/Cb3/wGjz76KB577LGC90ydOhXHHHMMjj32WCcdzToiC14+r+e3m1SZBL9v//qXWluiSaqqSi/19xNPBI/DyiQAehOZLIcPO9lGTbL5fPCd/A3J391ZvFj9AnZtwQsrdJ6EBU83Bo9dMMdRJsEmBo+9OYVZ2aK+iz0Pt91WvAi0TbKiumiLcnOzEXiuyiTwFoKsuWjyC7O4s2iaxIE1a1boUWBrwRNlz123LjqrnwpJWfBkLpqs+NVx0Xz66eDxp58Gj11Z8MKOi25ZlVwu6IOtwIvDRTOXk28kAHrrItl9wMc0Bs/vY1QbMngL3h57eHVGVfsm6x8LWwsvaRfNxsbCc24Tgyf6nVVVXoZaEboCj70eoyx4n38ePO7cGfjxj73Hovuczroja9Y7wFDgAUDXrl1x/fXX4/7778evfvUr5Dh76ymnnIIxY8YUxeWVKyILHqB20pMuk+CjGh4pm1h0YhtEu1uA3IKnCl9bRfR9UceC/T6RBQ/wzpFqvqBKctEUjUd2kZB2Fk22vQ8/BObN84q1AmqLZNnYYa/JHXbwrLzsHldSMXiycyNz0YxClNjA1oIXt8CzddHkFyxxx+Cpzg+i3XN/w8lW4MnOqe/aGNXGZ58Bd94pfp9tkhXVGDzXFjzZuY7DgrfvvsCLLwZ/67p0s8fEtlYaf33KFvA6SVaaNZPXJAP0LHiiDOUsphY89rELC15VFTBpEnD11cHzOjF411wDXHJJ8XvSFHiiOcjERVM0dqqqvDnkmmvEr0WhUyaBPXZsP2fPDjakozwvosZs2Qi8M844AyNHjox836OPPoozzjjD5CtKDtMU5/l8MFCTFni2GTldCjzTXchp08TP68TghQkoE7eoShd4uVxwvl0lWXFhwevWDejUKTiny5dHj1sVCx7gLbxZd+ekYvB0XTR1XIbiEHhhMXim1w1rKWhs1HeV4Xd8s1Imgd099+czf+wuXmxn8ZRd86obEzvsYB+L49qCJxJ4XbqoW09l5zqOGLyddircYNW1+LPHxFbgqbpV6ljw/GPmIgYvyoJnGoMHuLXgAd7v7t1b/J6o/m2zDdC+ffF7TGsE8/dm3c1W3oJnI/BE6wC/Dt4uu4hfi8I0Bo/dOGC9jaIEXtSYNRlDcWMk8B599FFMnDgx8n1vvfVWketmuSKz4JksqHhMyiSoTKBhNxWWJASeyU3q++/lO9mswIs6B2ECyiSxQZICL+06eCKBV1UVnFdXZRJcxOD5bbDnVJQBU/Z5FtHChU2TnZQFT9dFU2c+krUhe78MPq7SRR28MJdD2XiVjZskLHgmMXjsXO8vWnyBl8+rexQAxYshmWhXFRrV1fZCPSpBkI9qDJ7IRXOzzQrd3MLuUzoCz9aCV1tbWBhbd74wLami0i8XZRL8NlzE4LHjQddFU9WC56JMguixznzLh734pGXB42PwbFw0Rd/tb5KI2lO5pkxj8GQ5L8iCp0ljYyOqdH2EShSTBAn860lb8FRikAD5xKITgyebFGxi8GTumWy7gJ4Fj++nSXHhUrLghe3mi97PI7PgmQq8OLNo+u3pnFMdgWezYAPMvAB0XTR1diFLxUWTF3iyuUjF3RbITpkE0e45uzmhk2hF1YIXdk/wz7VffNz2PMrGjmpRcVUXTUBtkbxsmfh5kUXA1oJXW1u4IZQlF00XFjyXAs8myUqUBc+li6bocdT5YPsni1lMSuCJrqe4LXiA+PpSGR+mZRJkAk90n9Ox4FWcwJs5cybasaueMkbmJ+7Cgue6Dp5PkhY8WX9sLHiswNt++8LXdFw0w5KYkIummQXPF9hpxuCtXw9MnlzcBr9IXrjQy6AnIg4LXjm5aKaVZMX/Hb6bD3s+ZONV9tv5BUtWyiSEWfCA8M2JfN6Lk1u/3rNSf/VVYf9sXDRFWQhF74tC9Xyr1sHz/+aTrABqi2TZ/O7KgsfPbTbzhQsXzcZG4KOPCseZq0LnLgSeaCHuog5enC6afPu6FrwwK5LKuZ06FXjpJWDBAv0smvxcx8fg2ZRJEH23fy5F7enkrmDbAqJdNEWuv0B5WvCUyyT87ne/K/j7o48+KnrOZ+PGjZg6dSrefvttDBo0yK6HJUIpWvBsBZ5fnyafjxZ4ojaaNRNn6lOdbFmBt/POwMyZwd+uYvBMXDRNLUwysizwRDd91oLX0OD9E2Xti+ob+xldC14+D+y/vyfefPzfyS6SP/gAOOoor80pU4rjAWQZ7ETHjC2YrWIJ4YnDRVO2CJZRKjF4/OJP5TpQFXhZcdG0seANHw5cfjmw1VZe3Sd2gWUq8PiFUVwWPB5VC57/t8iCp1JGQza/xxGDV1vrxf/4909di78LC95ZZwGPPlroeVBba1cmwb9eogSejmt3lAVPN3ujTUkrFpkFT+daV7Gsq7qRPvYYcNppwWfuuqvw9SgLHj/XbdxY2L+4LHii9lxb8GQxeCy2MXglLfB++9vfIpfLIf/D1f/RRx/ho48+Cv1MXV0dbrjhBqsOlgouLHhJlkkA7AWev3O+YYOZwGN3ME1uUosWBY+3267wNZ0yCWECStXtjsW1BY/9XnbxCaQbg9fUJP7O4cO9fz5r1oiDx6O+y8aCt2aNJ95YRC6a114bPD7nHOCddwo/I7qO/AxxPLW13r+GhvDdUtnxjMOCxwvwqDEisqDaWvB40e7SRVMk8GRzkarAY4W6qotxHGUSRLvnW2wRPCcrEQN44g4QW6ZtLXhRGVpN5qEwTOvg5XJeUiVAzQqiI/BcxODlct49cMUKOwueaQzeo496/7ObUWEbcUm7aPJiESg/Cx4/b9hY8MaPL/ze//yn8HVdgce7aPpzUFUVsPnmnpWwZcvgPS5j8HQFnk6ZBFMXzbK24N1www2bBN7vfvc77LbbbjjmmGOE723WrBm23HJLHH744ejCbjmWMaYWPN4HW4RLgbfHHl66eMA+Bg8IBF5Uv0RtsAttE4HHLuT4JC6uLHi2FrIoVCYFPisci0n/+J1H0xg89pwfcICXHrq+Hjj0UOChh4LX1q5VF3iuYvDCdr1lU9Lq1cXPyQSejJoa7zyE9VF2rZjMIVExeLzAS9uCF2YhMBF4ft9UXDRVY/DY7IZhZQNkbceZRXPHHYPnwmKQwzCNwVO14Ll20dTNoulbNjt2LN6kCOubjoumCwseEAg83Rg8l1k0WcLmtqRdNP1NMnZT03UWzbRj8FQseKoCj9/YYot5A/Yumuya6u23gQkTvM2w448P3i9D10VTZXzYlklQcdFkx2/ZW/B8fIF34403xtGnkiTOGDyXAu/ii4FTT/UuIBcWKRXXF1kb7ELbVuDxF3WpCDyV9/JZ4VjSdNFkx2KLFsDhhwd/s4JbJ9GKqxi8sMQE/DH0ES1GdAWe/x0uBV6SFjzRfBQ2PkwEnuwzJteNCxdNfse3Q4fgseomWNwCz+9j797eOGlqshN4Jlk0VS14rl00Vevg8S6aog3EsM0q2W+PKwYPCLxYknbRlB0H37IoIsqCx3p0+HOkaR0837UfKLyXyJKs5PPifqdhwdNx0XRpwYsSeOvWed8nu25F9wrRHAQAW28NnHkm8OqrwXMuXTTjjMEzddEsawseS5NuoaEKIKkyCbYCz8/etXx5+gKPvQGbLIDYY8ELvObNvePZ2GjnomkSO+Na4PkLlpYti100k8iiqSLwwuKYdASerEyCCwue34bMgidyTxJ9l2zRArgTeH7ykHzeLgbPRuD5bfgxh6LfpJtkpaZGfqPMiotmq1beImH9evU5Mo4YPNHuecuWwLbbAl9+CXz+efiCTYZtmYQsW/DWrQss8ex1HmXBC4uvjtOC54cArF3r9U10XnRcNFXvATLLdFgZkygLHvvdtjF47D0jyoIHeOdA1G9VC56twHNRJsE2Bo+/r4jKqKxdW1j7LezzYRY8H1VjRpZi8CiLJqFNUklWbOvgsdm7VBcvUS6aQLTAi9tFk7+omzVTW2zz7WTZgicSJjYxeH6SnLgFnk4mTRULnspEKkuOAgCdO4s/oyrwVCx4YedCdg3zixeVG7trF02VuBLZ+2XwC1uXdfD8tlxm0ayu1p8jdSx4NmUSAK9Itv/6nDlqbbHEHYOnuvuuavnSicETJVgBguMvO/a6As9FDB6glkkzSuCxc7jqPUBmmbYpdC4qNySbN6IW8Ow9Q0XgycZcmCcH27+0XDRV6lP6Y6WpKfy4Ra3BgPB7cVQMXpTAS9pF03WZBLLgccyfPx+vvvoqvv32W6yXrFpyuRyuv/56m68pCZJ20YzauQ0TeP6uoar7Udhv8Pvm2kXTv2nK3EXY76ypKZ4YXQk8k4WZS4HX2OhlwQPEroU2AlQliUZYH8MEnq6Lpj+eVWLwdGooiWjWzIsJXL68+Hkekxg82ed8VCx4flsNDXYumvyxMp2PbEQZn2RFt05dWJv+8WavgxUrxJlbVQWeP0d+9130HNnU5C1e2GsvzjIJgCfwnn/eezx1qmfR08E0Bo8/5jYWPJ1zrZNFk028JRJ4Jha8uOrgAcUCj43/9IkSKX57jY3q9wCZmKytld8PojaX+XILQJCIjb/mRceMXdOw94woF01AT+CJ6o2y4yJqbeWvTVwkWeHn2ygrUkOD3INEReCF3YtVyySwqAq8sCQrruvgqbpo6pZJKEULnrHAGzZsGO6//340/vCr8tw2lp+QpVIEXpwWPHbArlwJ7LOPlx1t3LjCoHuWMNct/6aybp1aCvskXDTZPixeDPzoR97kMnGil7FJBBvQzR879jkd1wZ+8kzbgrd0aXBDEVnwbPqnEmMV1i47+du4aD78MHDFFcCllxaLAR9dC17Ucd1ss2KB59KC50LgqYzfKBdNHtP5yKUFL44yCew5OfhgL47uySeBww4Lb18kdngLniy+5+uvgYMOKs5mGWeZBCCw4AGewPvpT9XaY/tnUybBhQVP51zLYvD475k5E9hrr+Bv0Qai7HvDSk5EuWjaxOCpZGkOczf3qa315mMXAk+2Hgiz4H3xBdC3b/A3ez2qCLynnvKyGJ92GnDPPfoumrLzKhIK7LnjN+T+/GcvWdiVVwLXXFP82WXLgAEDvPf37FncDhBfDB6QrMDjY/BEljFVMZtkDJ6piyZZ8H7grrvuwj333INcLofDDz8cffv2RVt2K6oCSapMwtixweMrrwReeEH8GdlEzxdYXbVKvGvIwv8G9v1xCLx77gGmTfMen3lmcbpfnyiBp+p+keUYvLAEK4AbC17aMXjnnuv9f+ONhYtVGwte1Dnv3LmwbiIgXtiIzk9SAk/FRTPKgqf6ftHrMrcjFt0YvLjKJHTvXvj6smXAyJHRAs8ft3V1wTitqgrmSN9Cx8e+AsDo0eJSBVFlEmwteNtvHzz++mu1tlhsXTRdWPB460fYuVe14PGILHiyhByieCXAO+6iY6U7HwHRFjyZ9VTVgsd/RxhhLpoygRdmwTv//EKhyws8Hv43/fKX3v/33gvccYfcRdOFBY+F30Q7/3zv/2uvFQu8K67wYl8BYMYMcb9sLHi77Rb8feiheu2pCLyw61u1TAKLCxdN0fjIYpmEirHgjRgxAjU1NRg3bhwOPPBAx10qTZIqk8ASlkVNdiHzAk/mFsLC3jSOPhq45Zbgb//i9N0qZS6VohuPKAgeKFy0vPSSvF+qFrxSjsGTxZT4JCXwROc2yzF4/HF95ZXCv9mdcx+XLpph59WlwIuKweNJ24IXlrXVxkXztNO8xCOffgq8+ab3HG9xCBN477zj1W78xS+8v/k5UiTwZBsXccTgsYsW9rFJcgiRwGvTxtvsS6pMAnuumzcPnyNUY/B4ZPeXjRuLRYzsXPbuLX7exIIXVwweoJ8sJCxjqOxaD7PgTZhQ+HeUwAs7d2vW6FvwZHOHqgUvn1cTFVOmiJ93FYPXqxfwt78B774L+InrVe/xKgJv8WL5a7ZJVkyzaLIJxXySiMHTddGsGAveV199hf3224/EHUNSMXgsO+wgbzdM4OkW72Z/w+OPF96U2Mm7vl7eVx0LXteuxe5zIrIq8EwWqjLCauABxcdf5ztVBR7g/SZ+QnQZg+cjK3RuY8E76yxg0KDC10UCL20XTdmOYpIWvDgEHu92G4eLZocOwAMPePGqfhId/hyECbyddw4KPwOF42PFCrGbuOx6c10mgY8x1t3s4BElc2jb1hN4SSVZkW3kiFDNoskTlqVZVeCx7rAqfQojLIsmYO+iyX9HGGECTzZ3qBQ693Ep8Nh7iYskKyy615LsGLjMon7mmd4/H5cCL8wVWadMgo+qMSNM4PmPdTZvAHkdvLjKJJSiBc8oi2abNm2wuSwwqkIxqWEF2Am8rbeWt6tqwVNJtCKLiwLUBYaOwOMnUdmFwwo8fuJnXTSjzkGaSVaiJoU4XDT5HSwVgSf6TXwdPBbTMgnsTcZVDJ7o94k8ykXvSzMGT8XFWDcGT2c+kgls2ftlJOGi6RM2TkTtixYDgJplRcd6alMmgd+RthF4/rHn+6iSNZSfN2TeGroWvKj5RxaDp+OiGXX8ZXOULMbdVQyeqQXP1kUzTODJ5jeZi6aoLR2Bx7e7dq3cgqe7cRU1RnQ3XmQCz0UMnuy3uRR4YcmEki6TwF5D/D1BJctu0mUSStGCZyTwBg4ciI8//th1X0oa2Q6OiyQrsvS5YRkmZcKNTSAAqFnwZFYVQF3giSamTp2Cx3wWPBZRnAv7fUlZ8NKIwYuy4CXhoilrOw4XTfa9rix4omtHJPBEv1E0dsLq4JW6i6ZMGMtuti6TrLgWeHzfwix4PK4Fno2LJi9CdTxEZH3j++hbklavlp+HUrPgyVw0RcdfNkfFbcGL2myVtW1rwZOtD8IEnkzc+PHyLOzaJCqJBi861qyJt0wCS9haTTTnqQg8nWtdJQeDyxi8MAteWjF4/GMfU4En6qd/HlhXXLLgSbjhhhvw5Zdf4m9/+5vr/pQsotS7gBsLHiCeJMMmD50YvCjCbsY2FjyZKOZvPqIbCBBMSCKBx7qalHIMXpQFL04XTXZM6wo8UxdNmcBzbcETuWiqCjxbC57LOnhJuWjKbra6FrywGDyT64afj8IWbK4FXtwumjILXtQGYtg58fsmctH0ERXBzufVY/D8RCZhRG3AsJjG4LEbiFHHX9dFM6kYPNm5jCsGr0WL8CyNomMuuj/PnRs8jrLgiQSeKxfNqDHCXqv8/C/6rGzuNnXRdGnBk20cssRpwbNx0RT99qhzZ2LBC5t3bGPwTOKh48YoBm/lypUYNmwYzjnnHIwbNw5HH300evTogSrJ1bf//vtbdbIUkF3gRx0FfPghsMsu4s+p7OAA3qTLXyRhAyqOGLzq6mKroY3AYwkr1TB1KjB4cPHzrsokhAm8qirvX1NT5SVZad482MGzseCZCDx+rNnUwVO14InGbxZcNE0Ensy6b+pRoGvBq68H/u//vPbYzHBhFjwgugYV308dF00dgcfH4ImI20XTv/Z0XTTD5mGZBY8XGu3bF74uWohGncewDcuoDRgW0yyabLumLpqyGoOuCp2z4+yWW7xYYTa1geoGjt/eqlVeIrQTT/T+yQhz0Qz7PevXFwouQJzs7csvg8dRAo+3Krl00RRdH6IkK4A4KRP/fa5dNFXWf3HE4H38MXDddcCQIcAZZ3jPRZVJiIrB03XRjEvghcXghRlUVC14jz/uleC58Uagf//i17OEkcA78MADN9W5Gz16NEaPHi19by6Xw8YsSlvHhFnwBg8G5swRf07VghdmdubJ59UFXlhWJR/ZbjlQuECKS+B98UXxc42NwQUuCgzXKZMQVs8N8Nqpr09H4PlFzoEgeQRLnAKvRYtgghf1U7UOno6Lpn8jCNtdU5lI43TRVBF4Sbloyl7zn2/ZsvAmHTXedF00ZefixReBv/7Ve7zPPsHzUQKvsTFa4LHWpLgEno2LpusyCWEumqYCjy21sPvuXhZNH9HvFW2YiDKLsu9XFXibbw7MmxfdZ0DPRZPF1IIn+w0mhc5Fx5Cf06+8EnjvveBvVQseex948UXv39Ch8vEd5qIZ9ntEAo8vNwMU1iM0seC5ctHU2QTg71MbNxYfP5UEWWlZ8HRi8K65xis/NX68txHQokW4i2Z1tXiNZuOiGRaDF9Ue4F7gqcTgNTR49Rr9+YItU1Y2Am///fdHLiwArAIJyzgXVqtI5QIH9Fw0160LT76w3XbB39Ony7+T/x7RBWAag8eXPwgTeMuWFT/HW91sYvBYkSsqGVFb631fGjF4US4ScbposmMuLhdN/tyoCDxdC55qkhUXAs/vtx8kLpomXRY6l80B/vMTJgAnnBDMQVHXAtse+zt1LXiLFgWP2QVgbW34PNfYGD4XAIXnnx8n7DGMOwbP1EVTZSOmqSkYJ2EumqLfFDYP+OPxF78AnnnGq+X15JNe7dGwz4s2TPbbDzjySG+R2K0b8M03hf0Ki1Vl29tpJ08QjBtXmMnUx8SC9/jjhX/rxODdcAPw2GOFxySsTzYWvG239TImjhjh/b1wYeFnZNcrP6+IrpkZM7zssCLCLHhhc4TIgsXeo/bd15vDb7opeE60bmC/g7fghblo6sYW61jw+PuU6oYp304aMXj5fHDddu4s37j3j/Xkyd7/69d7Vl+ZwJO5ifuoCryoTLCi365jwWPPacuWnnWNHYP+edB10eTd4b//Phgn/MZE2Qi81157zXE3Sp8oc7OMOGLwwtwua2q87Ju+22FYLT2fMAueiYvmV18Vu76ExWGIfg8v8ERZNFUFnmoikzQseP7ruVy0C4Fu/2TuWj7sTlhcLpp8u/4NJWzh7sKCJ4rBc+miCcjd1JKw4Pm/ZZ99vOtNNUZHtAgFChexbM0i2blgfyO72KipCbfQ2WZg9K+TxkZ3FjwXLpq6FjxZkXO+fV0Lnt/nqiqvULtP1Dwi2jCpqfEsRT6HHRbUm9RJ5lNTA9x/v/y9ujF4f/lLsXuiqgWvWTNvYcguDkWYWPBk19bf/ga8+iowa5Z6GAb/naI5bupUM4EXNj5FMWjsORk3rtiyK+qbTgyeigXPNIsmey2tXq3WpgjTLOquLHjs92y5ZbHA23xzYMEC71gvWVK4keCL9rAyCbJsw6oJBUWv2bpoysokAF4NwWOPBXbd1fvbPz5hG7+iPlRXB2vlpqbCscrPs1kUeEZJVohiwix4YdgIPNnkESXwWrTwCmoCwOefq9+MRbuEJgJP1E7Yrr2KwAtz0bRNZJKmwPO/U3Z84o7BC2vbRZkEWZ/531sqFjyVHU2TMgm6FjT2t4RZtXhk8ajs97PPy9qT/UYVF80oouZM2caOqK+yhYtKnHKcMXhhlnsbgSd7LWoeV0mKYloeyHUWTdH1qRqDF+Z2KuuTjQXPx/9efq5UdT0U3R/CNm9NyiQAYgte1FwbtXjnBV5YDJ6LLJoyC57IRVMFPl7c9DqwicFjr9mOHYvXi1tuGXz+nXcKX/PnGlsLnu5GpEsLnujzomte10XTz8Hgf5ZdK4qOV9YggecI2Q5OFHFY8MJq2/l987ODrV8vjw/0UbXghWVxCiu1AIQLPNHvcemi6d9gWrUqji9g+5tGofMw91hA30WTrS+jI/BE/Qyz4FVXB8+FxeDJ+hy3BS9uF01AX/zIBJ6sH2Hfwf4W1vqr46KpsqmQtsATnVuZa2spuWiGJTewcdGUnS8TCx6PTpysTpIV2eaObAEouj5VXTRF878IVzF4Pv73rl+vJmL550XXqiz7NGBWJgEQCzzV65ElLMlKWAyeroumjgUvykVT1hbfJ1YURF3rrix47DXfvHmxJ9IWWwSPeQc8/5yGxeDJNsJUr/koC57LGDwf0Typ66JZXR08X4oWPCMXzTfeeEPr/ZWWRTNLLppt2hSmvWYF3pgx3uOpUwvj8mTf48pFU1fgmVrw2AtTFg8FBDcYkXsm27c4YvBUF9yuLHiiCS4OF03AW7Rs2GBmwYs7Bi8JF03ZudUtk+C3JbpuVG74fluNjW5cNFVqA4UJPNXkGyrvCRNTaSVZibJipGnBk6Ej8LJuwZMlygrrW1YseIAnblq39h6rZod0YcGrrpZbMfzjHuWiGbW5IfpMnGUSou6vOhY8UfkQvg32OZW4fVcxePx6aLPNCktV+BY8oFjgubLg6Qo8dj3mMoumj2hTJ+zekcsVhh/47coseGUr8PwsmipUYhZNUwteVJkEHhWB16FD4cTkD2q2vo+sDIFPEi6aujF47GQUVQcPkC+QGxuBpUu9xyL3TLa/acbguRJ4ooVaXAKvrs5LkONC4KlY8JYvB0aO9OLOohakcRU6j8NFE5AnrVCx4Pltbdgg79P06cDYscDs2cFzMhdNGytlVAxenC6aOufSdQxeLuf99o0b1eaHMAteHAJPx0UzaQuebgxeEi6aLmPw+O9dsyYQeKqWKdEc9+WX3nXIj/GGBrElzn8f31abNsE1EGbB8xfIPEm4aJrG4IUlWeHbDMtMzuMnZvvoI+C557x4sKj+qVjwpk/3Shz84heFeQz49RC7lqmq8pIg+Xz4YWH7MgteQ4M8k6+P6qZOHDF4rl00/ef4uYm9n1SEBU+WRbOpqQlff/015v6wdbDPPvugNiolmoTHH38c//3vf/Hxxx9jwYIFWLZsGVq1aoXevXtjyJAhuOCCC9DanwU5xo8fj7vuugvvv/8+1qxZg549e2Lo0KG4+uqrpZ+xJcqCJ6vvpGrBC0v9ysMLPDa7Ge+iCXhxeGG4TrKia8HbsKH4RqUTgwfIBd6SJcHiNcqCZyPw2F3QqPeyRFnw2IWjysJOR+BFxeBFlZfwb8wmLpomMXiXXRZko3v44eB50XkXuWK5jsFz6aIpa0v2PD/NRWXk3H334t15mQVPxXVUZqVMMgbPxkWztjYoMSETeLKxG7YTryrwVC14Ua7Tqrhw0WTHRdRc5MKCZ+qiyR+zhobgN6u6aMZtwfOxicFrbBRn0pRZomTXQuvWwTUguq7D1geAvsBjXTT5jVoXWTTZkiBse1EWPJnAi7JaDh3qiap+/cL7pxKDN2yY9/9//gOwjnT8eohdy/B/88gseOzxyHoWTRMXTdl5Y/vKWvAqxkUzKovmJ598gtNOOw11dXX4z3/+Y/IVePDBB/H222+jb9++6NevHzp27IhFixbhnXfewQcffICRI0fi9ddfR/fu3Qs+d/fdd2PYsGHI5XIYOHAgunbtijfffBO33norRo8ejYkTJ6KzqKCYJVEWPNbtgkW1TMIxxwD//rdXWHHSJO85lRg8vmCt3zf2gg+L2WO/x1WZBF2BB3iTK7srpeOiCcgvvqgEK2x/bQReXZ34xmobgwd4x27jRnMLnuzGYhODBwSLpaQseL64A4I00IDcosLjwkVTRfy4FHjs8bvzTuDaaz3304svFrelI8iyGoMXtVmkk2QlzBrburUn8GTjV8eCB+jNI6ylhF9cRV0LcbhoRpVrAbxMfT6zZ8uLhANuYvB0kqyExeDJ4r3CiCsGDygcbzYCDxCny5dtvsiuBVYQhVnwVCy7Pn7/m5qK74usiyYvuG3r4G2xBXDWWcHfOmUSdCx4/HN//Svw4IPF71PZ4Bed2zffLPybXw916FD499Zbi9sG5Ba85cuDxzK7iGpsfJSLpm0Mnuh+HuWiqRIvym4wlKKLZixJVnbZZRc899xzmDhxIv7whz8YtTF8+HAsXrwYU6dOxcsvv4xRo0ZhwoQJmDt3Lvbbbz98+eWXuPTSSws+M2XKFFx66aWorq7Giy++iNdffx1PP/00vvrqKxxyyCH44osvcO6557r4iUVE7TLJFgmqFryzzvJ8qt95J5iIVVw0ZQJPx7UvbIfOpNC5qcBj4YOKw8ok8N/Pwu7IRLlo2sTgyRYOthY89jVTgSfztnbhoul/p2xsxBWDx44XVZfppLNo8sfd1oK3777A/PlezTs+xjDKgidCxUUzjRg81ZgfW4EXtUFhKvBsXTSjkubE4aIpc5lj4d3+w1CJ6fOJ24Kn8tvC+uTagsf2xyYGDxBv3sraVBF4YTF4KpZd/jMiwci6aPLnQ/YdKsfp9dc9t1V2g4JtL6pMgmwjXCXuUHZso6xQQPTaCIi24O24o/yzMgueH7oCiEMagMK5SNdFM6zMAWBXJgEws+Dxz7VoUdoWvNiyaG699dbYc8898fe//93o83vvvTc6CqpOd+rUCbfeeisAYNy4cQWv3Xbbbcjn8zj99NNxxBFHbHq+VatWGDFiBKqqqjB69GhMV6nurUmUBc9W4AFeoGxNTfSCXkXgsTdBVYHnKgZPNRCbJUzgqbpoimB3ZFRcNFVu5i4FXlQMHhCcA1MXTdlvsimTAMjdjlhUXTR1s2iy40U16VFSSVZkBaxlhc4BNYFXW+sVuQ3LBCtqR3YjVXHRLKUYPJ0yCUC0i7FOFk1Ab6MoymLmWuBFbfjJkl6w6Ag8UxdN9nM6Frwwq7OJwIs7Bs/H1oInsjrZCLywMgkmFjzRtcW6aPLnw8aCt/nm4RlpTV00VTasZcdWZf2nskEpSrLC/t29uzixGCCvg7dsWfBY9lkgOkMzm7mbRVbKh/1cGHHE4PHHumXLcAse+7sqSuABwGabbYY5UTn4Daj54Sw0Z66a+vp6vPhD1dUT+SqnAHr27IkBAwYAAMb46SMdwg4W0WCTLRJ0BJ5PlKsPH4PH4n8HO/ijFgQuYvBYV0ORxcjGgicSeLylQHbx6VjwwtphKRULnn98XAi8MBdNQN8KYmvBE2WOjSIq9sjHpkxCPh+M3SiBp2vBC/udYTdh2Zhmxxx7zEvFRdMmBg8oFHhRCxTR9/OYumiKRGiYYI9D4Km4MfbtGzzWseDpJFmJw4LH/ra0YvDY7zWJwZNd+yJRIht/YTF4PmEumiYxeKL7gksXzagYt7AyCa5i8ER/+8RhwWvevFjg5XKFGzAsMhdNFQseEC3wZM+z4zDuLJoqZRJE/WjRQl4mASj8DRUl8Orr6/HBBx+gleqMqciqVavw29/+FgAwmEn9OGPGDKz9YWbs37+/8LP+81OmTHHaJ6BwgPGmfsCNBc8naic4LAbP76eqi2ZjY3HdNBZdC55soouaxHj3iCiBV1WlL/BkFryw+A0RovMiuwxcxOD558DURVO2QGEXliYxeCrFzl3G4LGYWPCScNFkj5kLgRcV28q/JmpHFgCvEhNi4qIZJvCy6KKZz4sXtnG6aCZtwXPhotm+fVBva9q0cOGjY8GTbe64qoOXlAUvbGMiLhdNFxY8dnFv4qKpK/CWLw/6qOqiqSKEo4QYvwnPjxOZi6ZKDJ7N+s/WRdM/rzKBZ+OiCUTHd8ue55OZqH7Ox3WZBNFzLVsGbYsSbrHHPYsCzyjJShhr1qzB559/jptuuglz587FsbL8sIqMGzcOo0aNQlNT06YkK6tWrcJPfvIT3HHHHZveN/uH/N7t27dHG9angGGrrbYqeG/Yb4iCfw87MNgLI3i/uB3VMgksOi6avAWP/a7qau/7w4RBVHkD1ULntgJP14LHf5fspqaSZEXFYgEAn37qpSMWvUf2u8Pay+f1LHhJumh+9x3w3nvi9/qoCDzVQue8cHr/fe+GJVuQsROxjgWPr5foSuDV13uJX3bYIXjOtQUvbIyE3YRFbfNtyergmVjwwgT3Rx8VZ/3zaWwEPvig8PjbumiqWPAAb/G3fLlnGe7d23vOJIumrB88URa8uF0016/3zsWee3rfpSqCdtoJ+PZbz71r4cLCxCssLix4sgWV6JzG6aKpYsGbOdPLaCnqD/+9Ki6accTgydyV40iy4n9GdF9g78mqLpoffAD89KfF3kFR66s4yySofNbUgse/N8pFE9C34LFjR8WCp7oZ4RMl8GwteNXVQV07Fy6avPUOKFOBV62wJZ7P59G+fXvcfPPNJl+xiWnTpuGxxx4reO7EE0/EXXfdhXaMY/CqH3yy6kJmaL9EwkrZ1ca9Twf2kIgmVZmLpmoWTRabGDy+ncZGu+QouhY82Y1I1HaXLsFkbyLw4nDRlB3zf/0LGDJEnm3KRODJ3OJk/TMtdK5iwWPbXr3aW+SybpCi/qnE4Mn6HBaD99vfAtdcA+y6KzBlitjl10TgAd75iLJQmbhoHn+8N0aOPjp4Lg0XTVULXpjAs0myEhWD96tfeZtS7HHyuewy4J57Cjet4iqTABSO3y+/BA44wJt33ngDGDhQPauuTxwxeHG4aNbXe8d/wgTg//4PuO8+tRg8wEvm4IfGT50qF3guYvDiSLJi4qIZtRCdNMkTyuxn+WvA1kUzTgsee08zKZMgej4sBo+N/VIVeDff7G0M/eIX4u8BotcILsskhIklFtMYPD+uzb/3RSVZAYAePcTtyyx4LDYxeCreJ3G4aALesWtocJNkRUTWBZ6Ri2Y+n5f+q6mpQc+ePXHWWWdh8uTJ6O1vdxpy8cUXI5/Po76+Hl9++SWGDx+Ol156CTvuuCPeYAuBpAw7CM46q3hQyCwYrDun6s0lKpbDn6hqasKTCKgIgygXMJMYvLC+sLCLA35yjSp0DqgJvDB3VlHfZMdqyBDvf5F7LuBZbvzqHBddFD0p8t/lKsmK6HzqWvDGjy9Mody8uVhksWNPtPPLt8sSZsHzf+fHHwOLFok/z/ZPduNka+XJ+iM6PyaFzv/1L+//f/87eC4qvkT3+Km4aKpa8PhFsm6SFdM6eEBhGnOWe+7x/mcXgDplEnTPJbu4vOqqYNwdf7z3v66Q0onBi7ovhJ1PWxfNhgZP3AHA/fd7/6uWEth+++AxW3+Vx0WZBFcumrZlEqIseGPHFv4dtRlmkmQlzhg8tm+uyyREOUvxY1+W8RkoPs5s34DoRBz8vTtsnMja8OG9uGwseLvuKn6e/W38eqiuDvjRjwo/f9BBgVA78sjg/f45DZs34ojBY+eAe+8tfl1H4MnGBT/n6pZJYC14IspS4DU1NUn/bdiwAbNmzcJf/vIXbB1WfEOT2tpabLfddhg2bBheeuklLFu2DCeffDLW/TA6fbfMMPfK1T9cwW3DRusP74v6N3/+/ILPsIOgRw/g3XcLd6Fl3VLJ4sgTtRPsD7pmzcIXUyqxW64teDoCr1u34HFUDF5UALWKK5lMDOvG4Ilo1cpzK3ziCeDWW9XctVQFno4Fjw/GBvRj8Hi3X9nCQCVTq6qLpmwcy/rOTv6yMXfGGcBzzxWOM5XUx7ZZNH2iBB47TckWCC4seKJ+qrh7yj4LmMfgAXLRLsI2Bi/smLHnh60n5i+IdOcCHRdN9nyLds/DFlW2hc5FY03VjZG9h4lcmnxclEkwrYPnukxC1EKUTzgj+r26MXhJWvDY+4CrMgmqAi/qfPzzn8FjUWKfKAseO1b4enz8cZJd7yILO7vBCMjnbxUL3vbbe+Wx7rxT3j9+PZTLAS+95B0ff2OsfXvgrbeAJ58ErrsueL9/TsPmM5UYPBsXzYEDvU0ldoMo6v4ZVSZB1Lc4LXg6JYiSItYsmnGx9957Y8cdd8TcuXMx6Yeq376YXL58+SZ3TZ65c+cWvFdGXV2d0j8WfhDsuWew0wvId39UXAR5ohb0bNxW2OBUid2KivHRrYOn46IZZsHTjcFTWYjKFu6qMXhhNGsGbLMN8MtfegtHXYEXtgjy+9fUFD0pin6vrgWP3y1TCQ6PGqthnw37DnYcyCzgYQuPIUMANieTigVPVeBFjZUoF01dgaciylRdNMMseHHG4Im+D5CPa9sYvDCLADvFs7v7/nmK00WTPd+ixVWcMXj84hRQd2NkBR67eclj6qJpasFTjcFT9aLRseDxwsOFBS/JOnjs867KJITF4LFECbzBg4OY2OnTw632orUQO1b4OdZG4PHYWPAA4Mc/Bi6/HBg0SNw/fj0EeGW1TjqpMIZyp528dSm7aaSyYRWHiyb7fC4HHHyw98/HhQWPn3NtYvBElKUFLwv4Auu7H+4ivXv33pSx0xd9PP7z/fr1c94f0SBQSROvkuSDx5XAS9KCF+WiyRbM9FEVeM2bm7to+gtRf9dLhIpQiVqk8IsOFYGnunjXqWkouhHoxuDxfWZd5lhsBJ6qBY8VErLFWdS5CeunTQxe1IQfJfDYm6orC56LJCtx1sHz4RwksGSJvD0e9rey/ZZlC5XBLi7ZPUP/M6Yumhs3RouCKIHnukwCO6ajYsjDFt3sPUzVgqeTZMW0Dp5qmQTXFrwNG7z4TRbRXJ5kDJ6uiyZ7PMMseCZlEmQb3z5RgruqKkgesn49MGuWuG+yfugIPN3kNCw2MXgssnEsuq+HIXL/D1uLxO2i6aNjGfdfD5vDwyx4qmUSKi4Gz2fJkiW4/fbbcfjhh+NHP/oRfvSjH+Hwww/HHXfcgSWyO7IDFi9ejI8//hgAsMMPaemaNWuGo446CgAwatSoos98/fXXePvttwEAQ/yAKYeIBoFKFkETC17UQkHVRTPJGLwoF022Pz62FjwdgRcWi6MiVKJ28UwEnq6LZlj/fHRuBDILnupEpjI2TLJosqgIvKgbZ1g/43TR1LHgyRYIujF4+XzxjTPJJCsqLpqAl2afRSYWonZh2d+qa8FjxxMr8HK5YvGogo74Z8+3roumrQVPtGGj6saoKvDiLJMQNSZcl0kIGwczZqhZ22xdNHVi8Fxb8FzF4EWtoWRts9kh+XkjykIW5qLJj5M0LXg+snGsK/DYPrty0bSpg+cTl8CzKZNQkRa8cePGYYcddsC1116LV155BdOmTcO0adPwyiuv4JprrkHv3r0xzk+npcm0adPw+OOPY71gu2jGjBn4+c9/jg0bNuDHP/4xdmZyal911VXI5XJ45JFH8PLLL296fu3atTjzzDPR2NiIoUOHok+fPkb9CkM0CHQEXl2duntIVJY/1oIXNjhduGiyk0mYu4WtwPMXPH7KW1dlEnQFnsxFJWqS59tnJx6VLFOqAk+WjMNHJwaP7TPbR9WJLGkLnk4MCItLCx4v8PJ5+fGyddFsair8/aZxc65dNDduFAs830qvspDh3dpk7n46Gzu67tXs/M2Oi6oqs1hclfnIhz3foqo/cdbB410083l1EdSxY3B+w1w02Vu7aZkE1fpzgHsXTdVC56K4sCRdNHUEnswSxY6NOMskiDa4dQUef7yjLGTsPS5qXpRd8yoWvDVrxOdS14LHnuf164OxJ7qvhyGy4JkKPD6+W9XyGSXwoix/KgKPXeM2Nuq7aEZZ8Nj7XNkIvJkzZ+LYY4/FsmXLsPPOO+Puu+/G2LFjMXbsWNxzzz3YddddsXTpUhx77LGYOXOmdvvfffcdTj75ZHTu3BkDBw7ECSecgKFDh2LPPfdE37598dprr6Fv37546qmnCj7Xr18/DB8+HI2NjTjyyCNx0EEH4fjjj0evXr0wYcIE9O7dGw899JDJT45ENAhkbhcs/k1QNcEKEL1w9i/2pF00H38cOPXU8HZUhQrgZZ30v3PlSm+S3Hlnz7f8s88K+yC6ybqy4LG/u39/4NJLg78vv9yb/MIWM34fRX37+msvyceHHxZ/RtU6w7bdtStwww3y97pw0UxC4KnG4LETrOxGEnXjjMtFc8kSLz5km23E7+UFHt/PMBfNFSuAvn2B114TfzdPWGygTR08/vj89a/e9SCK4/I/p7KQ4RdqOhY82W+1icHj27e1kqkKvObNxXOTaxdNtm+8tbihofD+FSaCqqqCbMGyc3bppcCwYcHfrpOsiHCdZEW10LlI4Il+b1wumitWFM/vNhY8kzIJqi6aIoEXJbirq73SHD788dax4PG4jMEDii2EgFocGQt7jHv08NZDa9bYW/CamuTjuLY2XMSym03XX+9tSPmJXfznRYjGocxa7zN6tJcs5uST9Sx4330H9OoFLFhQ/Jrs+4EKteDdfvvtWLt2LX7729/io48+wkUXXYSjjz4aRx99NC688EJMnjwZN910E9auXVtQjFyVnXbaCbfccgsGDhyIefPm4YUXXsC///1vzJs3D4cccggefPBBTJkyBT0EhT0uueQSvPLKKzj88MPxySef4Pnnn0fr1q1x9dVX44MPPkBn/+7jGNFFHmXBa2wM0umqumcC0Qtn/7mkXTQB4O9/F09kUTF4otfatQt2r1et8uoxTZ3qZdl7+unCPrDH38+hoyPwVMpJ+Nx1V3Cj++Mfo61mfh9ZeCEweHDxZ1Rj8PjXfv97+XtNBV7YRLbvvuLPu3TRVLHgyRYuOvGRUS6aLVoEC1gR7Jh78UWvwPEPuZ2KsMmieccdhYWTAfVrS8WCx4+pSy4JHrMe7vxnzz5bfj34feB/p6iwOZ9iX7aBEnWTjrLgyVKQA/LFZS5nb8GL+rx/vmU756YWPLYeG0uYi+a6dXoiyN+s/O674rll/Xpv/mQxjcHTseCFHXt2vKou1pOy4Nlm0dy4sViUqcTgsfejPfYI2jfJonnYYcXPiVw0u3Ytfl/UWKuq8koQ+cyeLe6brH9hYog/TrJzIRozbLIQH5E11e9fVZW+wAO88fXHP+oLPN7tNir+Lqxv7Fx0883eGGHvF7K1lyhSKspF87jjvDHz+OPe5jgQ3jf2eM2Z4wlQvt8s5RaDF7H0EeNbw24IMRVcf/31GDVqFMaPH6/d/mabbYZrrrnGpGsAgEGDBmEQm24oAUTl/qIE3pIlwc1Bx4IXtVDQzaLpx/KJLhQdC57PunWFbkWsm5qOi+YOOwQTkShYne1Ds2ZeWuDnnw8sbCoZDf0blqqLps8XX4QvDkV9ZOGPA59UAjBz0fRpahKfex2Bx964wlwRRoyI7peti6aNBc+Vi+b55wMHHqjmrgIU10Li0RF4vFVl3rzi9sKudV0LHj9e/Rtj167AD6HOAPRuav5x5vv5f/8HfPWVV1DZv6XwfTKNwZMJvMMO87wNwhIqyxaXSbho+udblr3OROCdd57ncSAizEVz/frC+1eUCPI3Kzds8LKPsveCL74ofr/rGDwRYcde170NsLPgyUIdqqu982niohl2DFeuLDxnKha8v/7Vuzb69we2287rW0ND8fdGlSEAgL33Bh56yCv4/re/FX6O/a1suRofFYtq8+be8auvL/aUSsKCJ9ocHjnS24R76qngPiCKo1axQrGIzvOcOUD37sHfKgIvl/P6vX6998/UPZPtk2xjjx0zJ50E9OzpzWs/+1nxe3Vi8Px5SsWC58OW4IkSeLmc13YpW/CMBN7ChQsxdOjQyPf169cPo0ePNvmKkoP1A/dhJyeRi6ZJBk0g2tVH10UT8C5w0cSgE4Pnw8ffsANfNU5om22848cKPBl+H37yE++fqD1XSVZ8pk0DdtlF/hlZH0V9k6Fb6JxlzRpx7I7OTh8rQGQC7w9/AGQhrWyfZYtOVRdN2Thmd5TjdNHs2DEo+hwG+12ywHofmxg8fuFTW6u+k2liwaurA26/3XusIqpFyARe586e5W/DBjcCTyZm2d/95z97C9cwwgRenC6a+by6BU/VRfOYY4AHHjDr27p1wf2rVatoSwOfaIWdh/gkGEAyLpphv89E4KlY8NavF29KiubyXM47tqtWyV00a2vV50v2vStXFlrHVARely6FxadlLsGqWXzPOQc48cRA4Ili8NiYex9Vl9m6Ou888hvpNhY8GxfNnj29OaZly8BiHWbBU3FbB+TrAJVyTzwtW3pjdN06O4EX1Xf2OLZuDdxyi/y9KjF4YZ/h4Y9XLhdcr1Gbg7L7FUvWBZ6Ri2ZdXd2m8gRhfPfdd0X14soV0eQUVSaBXbS4isFjs7upumiK2vExseDxYkw1loz1j/YFs47A44ly0WxqCn6fagyez9SpejvItgJPx/IJyMWFTh08FQte2OTustC5igVPNsG6cNFUvQGz3xWnwOOtfzpWEH7hIjpuqhsxUQKPFQOyGDx/BzzsenXtoqly/aVlwVu3Lui3bHHFZkXlr1/RXBm16As736wFT+V2HlYLT2TRSiLJiqoFT3VxrGLBmzFD/Jps7PnHVmbB0/HiYM8BbznSjcED5JkSdZKEiM4jK2aj1lBhiI4d+z389/vEZcHzUUmUBZjdX3zyebMx7Pc7yoIXVgMPiO67zhiJisEToWPBa91a/hr//f5xLGULnpHA22233fDGG2/g008/lb7nk08+weuvv47ddtvNtG8lg2xXk83uGCXwXMXg8VafsN1WXQuL6IIQ3RT4BYbqwortgy/w/EnId/cRYSrw2H7qWvCmTtW7oE0EnmkMHiBPq6/joskeExOBl3QWzTgteKo3YJcWPDbBBn8++c9GjaewBa6Ki6asn1HXALtok8Xg+b8lTIS6dtFUuf5UY/BU9zBVY/CiauAB4XObaC4Pmz+A8PPNxuCp/NawUgmqSUdYdOvgiQg79iaLYxULnui3AvK5RCRS2DEb1jf+/LLngJ+HdOvgAXKLse3i3ZUFz79WeU8pNsZNRFwxeD5RtUyj+sfjUuD5/VaJwdPtE4vtJkAUpgIvyvtDZsFj/y5LgffrX/8aDQ0NGDRoEP785z9jNbPyXr16Ne6//34ceuihaGxsxNlnn+2ss1mFDfJlyeWCCcqli6bqzUrnpm5qwRNdJKYCj8XPjMVa8GSLPNmEFrVjnnWBZ+OiKRMXaQk8XRfNJGPwwq6DNAUeENxcXVrwTFw0WfxyB7LPsmy5ZXGb/O/0N3H8mAdRH12XSbC14LHjmV00hKFqwYuqgQfoCzwbCx7ropmGBS/uGDwT9zYVC55M4IkSlQDRFjzV7L1A4TmIKuDtY2LBMy1Yzwu8qiqzMgn8+2QWPFnfkrTghcXg2VjwADsLXpIumqabOaqf4eG/j71uVV00+fexGxFlKfB++ctf4pRTTsH333+PCy64AO3atUOXLl3QpUsXtGvXDhdddBG+//57nHLKKTj++ONd9zlzhJXV8xdicblohk1CzZqF3wSjLCwzZgBsrpoowegTJvBU2+BdNPN54Ntvxe+V3ZjitODNnAkohKFK25dNdOvXA6ec4qUBZrOR6lrw+Jv6nDnA0UcDV10VPKdT6DxpF03VGLwNG7yUzIcfLm9Lx4Lnt9HUBPzmN8GYS8NFEwgW+CtXAqNGAYcc4pVG4BcVUdeVrgVPtb3ly4Ff/hI44wzxOd5qq+I2ZRY8tt2NGz2L/QkneOUgZNV2ojadlizxrtNf/7pwDLt00RTFuopQjcFTseCpuhyKvjuqbzysBU/FZY634M2e7c09V17pJdPhMY3Bc1UHjz1eqhuQuha8Xr2Cx7JkFP6x3bAhmGNVBZ6OBU+3Dh6gZsEzWbyzGweizQxdF02+Rq6NBc9FmQSRi+bq1V484umnB2Jf1YInuk55C55qHKnfb9skK7J7o39dpGnB448Xa2iJunfI7ldbbBE89o/7TTcBDz8c3dekMUqyAgCPPfYY9tlnH/zxj3/ErFmzsHjx4k2vbbfddrjssstwzjnnOOlk1hGlAfaR7SwBAHPIQlOv8+i4aKoKPNGi4PzzC/9WvfmFpWVWbaNvX+9/drISZQ4E3Lhoht3cZH1+6SX5Z3hULXh//CPwz396j9mMc7YxeCedBLz9duFz/rHdbTcv7TCPrP5RGi6ast//9dfA8OHyPoR91kfUz2ee8TK/qbbhwx4P0TXPwt+Ioyx4J53kPf7f/7wMbSw6Lpomhc55/N/51VfBol2UdKhTJ+83rFwZ/BZZDJ7fT78o7XPPAU8+qdYP2XPnnAO8/37xe2xcNE0FXpZdNMNeX748WKzpWvDmzweOPx744AOvbIgI00WfaxfNZs3UUtUDahY8P8FKs2be/cz/W1YTl0/K1qZN4bW5887BPXC//Qo/G7eLZlwxeKzrr2is61rwAO/Y+fNXlIUs7DeHra1YwtYO7dsHj/313m23AU88Ufg+GwteU5OdBa+xMbzUk6mL5saN3rh0FYMnO/5h1yz/GnvtRfVFFoO35ZbBPWXDBmDKFOC3vw1vKy2MLHg+5557Lr788kvMnTsX7777Lt59913MnTsXM2fOrBhxd9xx8uLeQGEMGQ8bU6a6SADCF878hR4m8KIsLHyFC9mF/Oc/F/5t6qL54oueNfSOO4LFFTsByxbMabho6qIi8DZuBF5+Ofh70iS1Poh+P+8Owos79nMXXujtsPOLBpcWPNs6eDI3uDlz5N8va4tH1E9eFJi4aEahI/CirG42SVZsLHgsEyYUP9e8OXDrrd51feWV3nNhFjzWUrBkifg9LKJ5k+2bSNyx3xNGy5bixUPcLprsgtyVi2bU+czl5GOI3YhUWXBvv33w+PPPPXEXhqnblujeJjuvKhZP1YUx3yeZBc+fM+vqCsepisDz73V8ivlf/hLYay+v3iwLf37ZccNvuJq4aLqIwQsTeK1aqVvwnnjCm0/8jJz8+0Quri4seCYxeGym3unTvf///e/i99nE4AF2MXiAuHaxj0qx+bA+mVp5+etbdt2EHTt+c4M9TqJ+i7zN+PbZjPn19eLSL1nB2ILHssUWW2AL1m5ZQYwYET7AwrJA6hSPZQnbjTS14KlkhZMtEn7zG6847rXXen+bCrwjj/T+sai4G5ha8Ngbn47Aa91anvBFhkpM2apV8t0oWxdNEf5xa9YMeOEF7zH7/WkmWQlbsLCopKs3SbLC71raxkiI4MdtmMDj4RcbOoLMNgYPEB8P0UK3eXPPE4D1BlB10WT79c9/el4OBxxQ+FnR8VE5VyrnyU9dz28slaKLpsoxqa0V94sV2iouc127emVFli6Vx6Hp9E0nBk92XlVcNHUEnooFz/+emprCMR7logkEi1k+iyZv+fHhfzc7bsLuxywqFjzTMgk+VVXe8VKx4DVvLh4bv/yl949FVnM4iRi8MIHXs6d3XteuDa4F0TVkUybBNskKEC7wwiyUQLjAq6szj9Pk71OyDf6w9feyZfLXRH0R5T3g38fWP66vVxfnaaDctQ8++ABjx47FTFkwBMOMGTMwduxYTGJNEBWKP2lu3Bi+I6Ej8JJy0eQJm8BlYkDUJx1UBJ6szbhi8KJcFqL6AoiP5cqV8snCVZKVqM+x1NQE/Uk7i2arVtGF22WYuGiaCjwdCx5//EXiXiZsderPAfaFznlkrkI8osWBLMkKUFjAm188itoSHR9XAg8Qz8tJJllx5aIpszKxyM45K/BU7lO5XLDLzZa+keGyDl6WLHhsgiYVgRdlwVOda4HC60JV4IWdBxcumkBhEqWmpmCTta7OO0ZsGzprIpnASyIGL0wAVVUF4SZffeWde5HAs7XgmSQKYvsdtl4IE7CAngXPJgbPtcATHUuRUGbvy61bAx06FL6/5AXe4sWLccghh+A3v/kN2rNOxRI6dOiA8847D4cddhiW++XmK5Qw4cMOWNVgYkA9YNzGRTOfV4+DAgonCxdZNEXtimBFCE/YohZQF3hhu6Oqn1EVeDILnqs6eCwqNwKRi3EaLpq5nPi4q1ieVX3t2f7w4yEtgScba/zvDouhANwnWdGx4EV9VmbB42N3RQsN0fFRmWNUz5NoXi7FMgkqyM65rsADCt2YonCZZEVF4MnCGlSTUwD6Fjx2HMneLxIpqvdOHRdNk1gmFy6aQHAum5qKN7hzucJ+6wg8kfXT/56wvumUSTCx4AHBtZDPe26aovenUQdP1YIX9fui3EZdxeCZuGguXar2XT4iYwSb3K9Pn+L1QskLvH/+859YvXo1brrpJmymkM9/s802w+9+9zssX74c//QzRlQoKgKvulpv9zAJC96aNcWTedgucNjvtBF4UTdd1dTRSVvwogSC6DisWOHORVNWB49FZcyJXIzTsOAB4uMeJWxkbbGI+smP4SQEnghVF03Zzc8nTBCIrg1XFjzRdcXfENm2ZBa82lrxZo+Ji2Z1tXoyDdEikxd4qptzScXgicIBVH6vbI7RjcED9ASeqduWaNzKrnXXFjz2eEZZ8HiBJyPKRVPHgmfiohk2RlTKJOhsrDQ1iTe42X5nzYJnkn0UKLwWpk4VCyaXdfBU11iqFjwbF03AvEyCCwteGKJ+i8qM+bGTgCfw2Htafb35hloSKB2a//znP6irq8OpYdlEOE455RS0bt0a/xZFlFYQskyEQKH/ueqCAyhekDY2Ag8+CDzySPEADRNlbDtr1wL33RdkUxTVnAtLaKEq8Fy7aIZN0Gm6aEYl0NC14KXhogmIBZ6qT71M4DU0AH/6k5f2XzUGDxAvdqMyVUb1UdZPfgzbutCIULEYuBJ4cZVJYDEVeOyYl8Xg6Vjwos63zjkSLTL5BZWqwEszBs+Vi6bqb/XrmKqgkyDI1ILHHvvnn/fmHh9bF80oCx7voinDxkXTRQxe2BwXhwVPlIOAjWfV8WoyjcELm+dcxOABhQJv2jT3MXjvvhskk9LJBOvKgheXi6aLGLwwRPOOyILHbiL37VtswZPVtcwCSre6zz77DHvvvTdqNVbntbW12GuvvfDpp58ad64cCBM+/qJMZyIDit1NRo0CzjvP+/vyy4PXmjULb5sdqH/6U5DGukcP8c3ORQyeawueSuYvwK5MgonA69OnMHMlP0m6jMGL00XTP76yMglh51Pmovm3vwEXXRT+eVULnorAM8miyY9h1aQ6ri14qsllonYRk0iyIloAqQg8FtZSwM8brix4OnOQaP7k3UdVY3JVLXhs3EgWXDSzZMFz4aIJeBkpt90W+PGPg2vdtQWPddHs2jV4XvY9Ll00WaEUdj9mCVvIs9dlPh/8fpsYPHZTyr/O2D7obAbLXDSjLHi5nPc9omPiIgYPKNzs+PxzoFu34vfYbCCyG+86bsZsv22SrETFBbqKwTNx0Qwj6h7mX6d+YiDAS7DCrxdUvIjSQunQLF26FN1EozKCrl27Ygm7/VeBqLho6rgiAMU7wbffHvzN1gSrrfUKI++2m3cRPv+8vB22RtFjjxVb8Dp08NLpywizVLp20WRvrnw2LRZXZRJ0Y/BatfKyqz7yiDc5HHIIsM024W0C2YjBu/hi739/oyAOF81rrgkeyxa63bsXPyc67irCy4WLpuo0lpSLZpTFjsd1khXR9aIq8MKOEWspiLLgNW8ubl+nJmAUorm5oaHwt3bt6pUZyeWKS8bIvjcsBs/PY1ZVJb4OAH2Bp7KrLzvnbAwKm2AgDIVIjk24TLKis2H0j394YsU/F64teGySlRNOAHbYwfsOWT1Al0lWVGPir7jCa3effYDdd5e3L7Oi2ljw2H7513bUpqwMUwseID/v7DXKZv7kibJwsTWOV68Wj0VXWZrD1kM8KiWoAHsLns76LywGT9bHsLlNdq3x3+UjsuA9+aT33j32AA4/vHC8bNhQBha85s2bY43KVjnH2rVr0VxnS6EMCZtoXQi8hobCAcdeFLW13oQ6aZIXk9Wxo7wdlqoq4Lvvgr+HDwfOPjs8W1ySMXjvv++JqBYtvF1YGWm4aP74x8C4cd4Oap8+3sKvU6fi98li8Fxl0VSJwRP95rvv9gSYv0CLQ+Cp3MxEFoA0XTTDgrVZbMokiJCNNZsyHS4seKKbvksLHi/wRDF4KtatsO9QQTQ3b9xYnNRg7FhvE4BdzPGouGg2Nnq7/ADQq5d89zwOF03ZOWd3qNki5mFUVXkLL5XvNXXbMi2T4NOypXjHXgVdC16zZl781cqVxfdhH5cxeKr345NP9kRehw5qMXj+50Uum7oxeKLEIKpWbh7TGDzAO1ai+wj7/WF90bFw8dZ/H1UrVNi8vMsuwF/+otYO31bYfdQ2Bi/NLJpHHumtZUXzlqrA+/nPgYMO8q7bqqrSsuAp3eq6deuGTz75RLvxTz75xMjyV06E1RLzlb+ui2aYwGPxn6+uFt9UwurHsRa8nj2jU4EnGYPXurUnnqKIqw5emMBr167QPUa24Muyiya7+84KPN81xzaLporLpGjaMHHRzOWib54qLpphyYpYknLR1N1v07XgRV2nopu+SFjoCrywMgnV1YXuVKYCT+ccqbho1tZ64yxM3AFqi9fZs4N5KczNMUkXTRZdy5xKltskYvBE39GihVn2QUDfguf3QSbugGgXTZ0YPJ2s1qINSB7ZeLOx4MUl8HSyaLLfzcN+f9g41skyyc9rPi4seDvvrNaGD5+DQUapx+Bttpn3vXx7qmUSgMK5vZRi8JT2Dfbdd1/MmTMHb7NBRRG89dZbmD17Nvbdd1/jzpUDMuHDqn5dCx7v6iMTJ1E37DALHivwVG7qYTcUmxg80UJS9Xi5KpOgI/BUBaxoojNNsmIq8FT66h+XfD44hqoTNvuajgVv++3VSwZEWQhUbpwqFjxVknLRtLHguXDRVLXgidpRsRSIyiQAhfOBTPwm7aKpes2ruGhOmxY8NhF4fn0xHhsXTRZVCx5gdlxEuHDR9C2KLDYCT9eCp0KUi6aOm77rmHjZ/GETgyeq3WbqosluxOha8FRcNMMEXpTA4NchNha8sPOlksiHhf3dYVYo0xg81xY8mxg80TlWteCFtZV1C57SsDrppJOQz+dx9tlnY4WC79fy5ctx9tlnI5fL4YQTTrDuZCkjm2hFGaRU4V19ZBOUjcBjXTRVbupJumia1J2ycdHUicFTXdSIJvmVK+U3NV0XzVWrwq1OYfUDWUTCXXXC9gPYAb1Fxfbbi5+XLejDUBlvIoFnuiunKvByObX3uhJ4YQsnVxY8lUQFou9nCSuTwJMlF00VVKwTU6cGj00Ensx6Z+OiyeIyts4niSQrov7wAk8nmiSq0HlTU/C86nGIy0XTRUy87F6q21YSFjxXMXiqFrwo2M0FmcBzYcGLEmI8qi6aWY/BU1nHqMaCmwi8krfgDRo0CIcccgimTZuGPfbYA2PHjkVeMKvl83k8//zz6N+/P6ZPn44DDzwQhx12mPNOlxJxC7wwC17UwkPVRVPlpi76nevXA//7X2GGJhcumqourWnE4Kku9kQWohUr5JYj3SQr+Xy4CFDtp+i86uzI+d+zYAHw5pvepK1iwROhmq2QReXGqeKiqYrqgkk1nbXsN+u6aLoukyC66Yt2MkU3v7Bj6/ezqUm8KcAuCtMSeKtXAy+/HPytOqepxOCpCjz2N4wfH8yxNjWZon5H8+bRrvosJuJBhMhta+VK73fz6Iig6mo3Frw1a7z7nD/Wv/kmSFsf1ScWl0lW2L9dhEzIvGF0LXhZjMFTEXg6fRHBblzFFYNnY8GLw0XznXe8DJ9pxuD5qGaFVxF47Jro1VeBWbOivz8tlG91Tz75JAYMGIAZM2ZgyJAhaN++Pfr164cuP5h3vvvuO0yePBnLly9HPp9Hr1698NRTT8XW8VJBtpMmShGsimoMngsXzepqtcxpIiFwyinAs88Wvs/WgldVpb7TmkaZBNUbpmghFibwdF00/fZkfTUReP741Zmw/b4tXAjsvz9w553RY6BXL/HzJgLP1IIXt4um6hiOQ+C5KHQuul5EGwqixUyYCGH7yc6XaQk80dy8bh3wxhvB3yauiLIFo++iWV3tZV2Uwf7Ga64BnnvOExWycevCRbNLF/N6rWFEtcnv6ufzwMEHA4sWFb837NzyrzU0uInBu+wy7/+hQ716tH36FG522Lhoqlo/+DGfy3lzzIYN7l0044zBY8+BTvp7WZmEOCx4qsmDWGpqgsRRccXg2VjwwgSeqYvm7bcD99wDXHJJ8JxNDF7SLpphBhB/DOTzwH/+E/39aaF8CXXq1Anvv/8+Tj75ZFRVVWHZsmWYMGECnnzySTz55JOYMGECli1bhlwuh5NOOgnvv/8+OkdFnVcAcVjw4o7Bq64OsgZ26KBvAvcXZry4A+wFnk5ReFdlEpKy4K1daybwZN/pT4giV6akLHh8v6+4InwMdOoEHH+8+LU0Bd7116t9n+qN2j/+Rx/t/X/QQfL3iW6wvMBjS6VE9SsuCx5fS6l1a2Dw4OL37b57kETnd7+T91Mk8NiFVVoxeDwmLpoyl68FC7z/t9hCvcYn4GVK3rChcNHsz9tVVYWLLBlR51zHPRMIP85+spE+faI3OPld/XXrgA8/FL/3wQfV+1NfL44DU0F0Dxo92stCzFuyVecEURyZjjv8Hnt4j8880/tflAEZMHPRlM0fpi6ajY1igXfLLcFzOhkhZRY8/zoL65tuDJ7uhjwQbcFTLT/iMgYv7iQrgDeH33ln8HfSZRJ8VAWev2atqvLWKrLv05kr0kRrud22bVv8/e9/x0033YR///vfmDRpEr7/wdSz2WabYY899sDRRx+NbcNy11cYsuQjScTgmbpoVlUFSTpU457CYvBYbAWezuQal4tmmJuS6q616BitWydf+JlY8PyFhui7knbRZBHtfm67LXDvvUDv3vIxZxKD5yLJyhNPAMceq/Z9Oi6aAPD4456r2cEHy9/btm2xqyNrLXv8cS+Vs2q/4orBY9vt0gWYOFF8zmprgffeAz7+2KsrJOsn+5tF/ZHNm3G7aPKYWPBkcYh+iHvUWBf9hvXrCxfNv/gF8Otfe8Jsyy2j+5ekwBs+HGjf3isrE7VA4wWeKIHUmDHemPvxj+Xt8L+vvt6NBY9F1DcTC55uDB4AvPSSd835UTEuBZ7rJCsyC16fPt5mxZo1wMCBan0DxAKPdfMOu7/rWvBatTL3oJDF4LHF0MMIu0Z1LXiqLppR10XUeS8lF82f/hSYMMGb63r0CG/P1MsnSTSX2x7bbLMNLrjgAtd9KUtULHhZc9Fkb6KqVhNVgWcbg6cjhl0JPH4i0I2HEyFyU1u/Xu66ZfKd/gI5TYEn6pvoZtKiRWDNkpGWBe/nP1ffhde14LVtGy0e27UrTHoEFI6TIUOix52uBc8kiybLT38qj6UEvJun6AbK9pM9B6LzKLtm43bR5HHlotnQEGzKRI110W/kBV6LFuEbBzwqLpo6hB3nNm2An/1MrR3ebUskovbZxys4Hwa/YLQReDJRKprbbGLwVMskAN6idMiQ4G9/we86Bs/GRVMWg8dey74lUgeRi6bq/V03Bs+ktLN/LcgseGHxtqJ2RMRlwYvagNGZT7OeRTOXU5szbWMyk0LDy5kwQSZ82MFqm2RFdgFG3bBkk/uqVdG1pnj43ynL4OjCRVOVqAWVaR08E39+HpkFz6WLZpgFT/UmFYcFT7QTZ1MyIAyVRYdonPi/1a+/5vL7AL3FZNTvVrmmkkiywqJzzFiiYvBYZMewFFw0RcecdXGNsuCJju+6deaCBXBvwTPxOhDBu22JBJ7KIo9fIMZhwRMtQnWs+v57dcskiJBZ8LJQJkFmwTOlujr4vf6xU42xl90LZS6aJnOb/xlZDJ4LgecqBk8n9hHQOx4mCZV8XFvwTO9RQLZLI7CQwIuZJGLwZLsJUTdR2aTKZtA0ddE0yQYpgp+0suCiqZPNTIZLgRenBc+mTIKsb6KJWuW4pVEmQXe3VtdFUwUXAi+JMgm6fRIRFYPHEhYEr/odUcTloik65mwFIpNzzlvw0hZ4OglPwlBx0Uxa4OlY8EwsxiYumjz+3JXFMgmyGDwb/GtVJPBcumjqCiDAnYtmXHXweMu/j45VVgWduTluF00bgVcqkMCLGZFla8MGty6apgJP9jor8FStJmzg6YYN8h2OJC14/KKW75OpwHPhoikSXevXuxV4/u8VpapP00XTtD9xWfDCXDR1BV7SFjw/o1cUuhY8WxdNU4GnE4MXliRK9TuiUJmbXVnwWOFi4qJpa8Hj38+LeJcumjYCT1SKV+W642N/47DgiRahJhsKJi6aPFExeKq1OPnvdmXBM01wI8M/dl995Z3ruASeTiZZn6gkK23aqLXjskyCrC32uldZz7gUeCIXTb/uqOs6eKb3qFKCBF7MsANrzRqgXz8vU+CECcHztklWZALP1EVz8eLgsc6imr2hyAReWjF4Dz7o/ZYzzgieU3Xh4CelOF00ZUUzwyYjmTus6yQrJmUSVL9HZVzo3sAA+xi8LAi8MMul7Q48kC0LnkzgiY5rEgJPZb5xldU3bYHHH08+RjItF02VGDwTqwqfdVTnWpedc5H4NBlvLl00GxvFVjed9lyVSYiqg2cDuxmz996FgsBlDJ6JwIuy4Om2I8LGRVPWjsp1GmcM3tKlwHbbeUmivvwy+jMyyIJHxAI7sYwd62WOW7MGeP754HnbGDyTzIuAfGKzFXjr18uFiu6C2SaLJjtR+ZbORx4RJ9II6xfbTt++blw0L7yw+Dl/p0q33U6dxM9nNcmKCJUCyjY3VtX3ZFHghV2DtmnORX8D9jF4Ll00q6qCm/jZZwevH3KI2XfriAuVuVnVshV2DoBC4WISg+faRXO33Qr/7t1brz1XFjyVGDyTxZqNBU92HzK1LvLtunTRBArvASqlA3hclUnwf9+6dYXHyoXA22674PEHHwCvvRb8rSPw/N8hi8HbZ5/g8S9+odY31oLHX/vsnBZFXC6aLOyxcm3B043B+93vgG++KfQq43FZJkGVAQPMP5skFWCkTBf2YpEt3nVdNF3F4MleX7IkeKwT96RiwdPdBbax4MnKMG7Y4P12nSya//sf8MILwAUXuHHR/M1vvFT3dXVeu//7X/j7w9pt1Qp4+WVg3DhP7F17rfd8FsokqB6PPn3U3vfee8CoUV5x0Zkzo9+v6jZUVeUtHvkkK3HF4Om0GybwXKTod1XoXPZ9OrCf888B+xtvv90b4z/6kbfZIiLqnOvMIVHvHTtW3b0q7hi8desK3RBtXTRvu8071kuWAEccEV54XbWPKq/xqLhomljwbASeTOwuX178nIkFb8OGYsubrcDz1xm2FjwbF83evb05PJ8HPv00eN6FwLvrrsKi05MnB491BF67dt6Yl7lo9uoFPP20V87h8svV+iaz4F15JXDNNWptAG7LJKh4QKjcX2QeRFFtR73e1ATMnl38ns6dC40QLsskqDJihFcnb+xY8zaSgARezLAXnaj+F2BvwTN10ZS9zl6wpi6aMgtekgJPZtnasMGzGLHCJ2oiO+igoBg1n7KeRfVG1axZIMTGj49+f1T/Dj/c+8cWlw+z4KkKA5HA04kLUT0eqlnE9trL+7dggZrAU53EfcHPW/B0b5pZddEsZQse21aHDsCtt6q3IUJnDgnbfDvlFK8chCpRdfBsXTTXry/czdZdNPPnbNttgT//Wa+NsPZUX+NxlWSFx6bQec+e3tjgk6rYWvD4UgkmCVF8ZDV4/TZNM5nauGiyyUSmTAkeuxB4vXt7VrsDD/T+NhV4bduGC7zaWq90TlTtURZRmYQuXbwNKx3iKpNg856wEgs8NmUSfFwJPBsLXu/enjeYbI2ZFchFM2bYiYUtTsxiG4Nn6qKpcvG6jsHTDdS3cdGsrQU6dix+3r/ZsZkSddz/XLhosqiICNWbO9tWmAVP9fdGWfBcucOpZhET9csFfj8bGgoD9MvFRdN1kpUkLHgmlgaV9+u6ecuuFRvrbhIxeLr9c536O8kYvKRdNKuqxBZk0b3YNKnPmjXZcdF0ZcFjN/Jcu2jy7bMCL2y+4r/bF0rsuTSpHcjClknw2zVpx2UMnuyY63oB6BR913HRDBN4ss/IiCMGzyTpW9KQwIsZFYGXtSyaLDqDmC2sKrLgNW+uFmvFf4ZFVwyLLIb+zS4ONzyTSVtl5021XbatMAueqltFUi6acQk8kaVEBCvwbBbJSZdJMLHguUiykoQFz7Qtlxa8XE7+ft0FlY6LZpRrfBxlElj3Qt3fJiLJGLykXTQBN7XLeNixtnZtPALPZZIVXQuj7Ji52rDr3Fm8iRzWPv8a607pY1I7UNam6cZV1GfisOC5Fng6FjzZvZtf06Ul8EohCycJvJjhs2iKiKsOnqmLJotJDF5Dg9hs36WLfqIM/iLUPVaiyZ4XPi6tNCY7kVGLKTbJhE5bYRY8VeFjWwdP9XjYCn8ZsmuDh70Bq8ZmikjagueiBltWC52r9kX3u3XnENkGXNYteDYCr317vc+KSDIGzyQBU1ICz5WLpo3AYzdcbV00bSx4vmsrjysLHiA+Lzoumv5xCXPR1EVUJsGknSTKJOi+R2a4EGFTB8/HlcBzIdCyLvJI4MUMO7EkHYOXlosmIL4J68bfidC1dqpY8FzGWcVhwdNpk7fgPfQQ8MtfFr/PxIJnUibB5HiooHrOVAUea8HLmsBzHYP38steFrBHHvH+Fh2jqHaTcNE0bculiyYgn59J4IUTh4umzIJnIvDefrswSYbu8erVS+19phY81y6aCxYAP/kJsHChfr9clUmoqhJ7a2RJ4LGbff6azVbgRSWPMmmHJw4XTd0YvCixpWPBu/12cRITPu4tzTIJLsdtHJDAi5moRUDr1voXOnshr16dvRg8QJxNzIXAc+mi6S+GdC/SpAWezo2YbWv1ai9bpwhVC14SLpp+8hod4nTRzJrA69pV/ppOEhmfKVO8xa1fEzJLhc6z5qIZ9v40BV4cLpps+vcjj9T7rIg4LHiyGDwVorKd6p7PH/1I7X02Fjx//qqq0hex/Nx9wQXAf/8bPJdGmQRAnDHZ5UJZ1L6JwAOC4+8qBg8IPGvSFniy79cVeP37B4+HDAl/r04MnowOHQr/VrkuROffxK2bhwRehRM2sfTsCdx5p/7E3bp1IFy++CJeF02XAk83wYoIFy6afDZI3Yk2bJKKw0VTp39sW2y5C56kBF7U8dhvP+Dvf1fri6xfYSRtwYsjBm+HHby6iaKxrPp9ssVtPl94jHbaCRg+PHpMJmnBS9tFMymBpxODF4cF7/LLPWF31FFe/SlbkojB69dPPdPn+PHAnnvKX9c9XjvsAFx3XfT7dH4re52uXBnMtSbWBn7uHj3avF+uLHiAOPGZy4WyqP2wa5Vff4muU1cxeEDgPeM6Bk9XsLiy4F14IXDMMV4W7z/9Kfy9OhY8GfzcaGLBc+VayR+f3Xf3SmhkhYx7kJY+tbXeBMK7Z/7tb8CZZ5q3u9NOXkrgRYvkF005WvBcumj6k7fuzTNsQsmSiyabSpgnC0lWRo8Gjj1WrR9h/eKprg76qCpkk47B02333nu9BfhWWxU+rzo2ZNcxX3j3o4/Ubn6lbMHTnUNcxeCpFjqvrjaLcbS14LVuDbz4ot5nwog7Bq9XL+DDD9Xb2Wsv4P33vY0SUeFkE5Hx+997Lmp33SV/j879hV28rlxpl5BDlmTFJ40YPEC8YeJS4InaD7tW+WuRz1IOuHXRtGnHZciDqxi8Fi2Af/3LeyzzJvPRicGTwd/LTASeC/dMvt1jj/XWNKYeBnFAFryYyeXEk4vthcr6mc+fL35P1HfkcuEDvXlzvUVMVAxe1ix4/s3J5OZpKqpFlLMFL6zvuudS1i8e9hjYumhmoQ6ej+g3q45dmcDjY3hV+1/KMXhZteD5C4O2baO9OmQWPNO6bnHgKgaPPRasi6ZpmnLZcTE9XlG/RWf8sr/J1oLHJ8ji++GiTIKJi6boenIpXHQFHi9K+CR2/HtsXTRt2nHhVqjz/ba1NHVfV/l9WRV47OZaViCBlwA2CzMZKhm8VL4j7ALWvYGWWgyeqQUPkB9bk0VCXDF4YQLPlQUvanINOx5xCTz2NRMXTTbjnO4iXvUGnCWBxy4iTeojisiyBc+VwIurTIJK5uI4YvBc48qCl8sF43L16mC86mR4ZnEt8KI+l5bA4+duvo20XDR5i3h1tbsFt6h9IPxaDRN4/nVqG4PnyoJnkkworC1Rv3RdNPk2w3DhoulC4Lly0WTbjbJepgEJvASI24InwncNjSKsH7oCj51ESyGLpo37S1YteM2aBeddJLJ9XAg8lcD/sL7rnktZv3jY46kr8GxdNKOs4j6uBJ7q2KiuFguV+nqz6yDqvGc5Bi8tF03ZItlHxzIVR6Fz17gSeEDwe5ctC54zteDJjktcFjxTF80VK+w2IfkMyPwxz4qLputxGreLpqv1QhZS7IvGALs2cJ0F21UMHttOmhY89viQBa9CSUPgqd6swvqhu0MaZcHTrXUmQvcmLKuDx05iLgVeHBY8XXcmFcuCqsBj2+LLJNgKmSxZ8NgxwNarNFl8xCXwbGv5iBbErIumywUHuWgWw/Zr0iTgqqu8JFmAtzjwry9XAi9tC54rF00gWMSx4QhZcdFMwoLnIgbPlQVv40bggQe8BHHseDMVeK7Hqa3AY3/rffd5Fq2sxOC5hu9DbW3hb3V9bqLGnGoMHttvctGUk4E9hPInDoHXqZMnXr77Tvy6avtxuWiyO60+fHpbE3TdoviaKYB3s7MpIBv2mTiSrOguJFu2DFIxy+CTdah8t4nAC3uPjQUvbBywfdaNwQPsBV5NTfRkb3LjzOW8z7Ft6y4eFywofC4ugWd6A82ii6YsA6mNwFuyBLjjDmDECC/hh06JBL4tn1Jy0XSR2Mq0Vl/SMXg6v5UXeK4seLYxeOz3jx8PPPWU95i9llTb4+d91+NUdF8Ju1bZNcI22xS+97bbvMyyWYnBc42oyPvWWwe1Erfc0u33uXLRZMeaiqdaXAJv++2ByZO9x6prqiQhC14CxBGDB4S7PKpOHmEXsK7AYyfWpUsLXzvoIGDXXfXa83n0Ue+CHDwY6N5d77M1NcDppxc+t2FD4cLfZbpi1y6auRxw0knu2gO8G9o996i1xSZ88EW7jsALs6CZ7sAD8bloAl6cj8r3yIjLggcU90dn7Ios8qYumlFkyUWT/7yuwBs6VOx94KKEhp/pls14K9qU4ikFC55sDFRV6SeLEL3/5z/X7xOQ7SQrvIumP+eaiNm4LHi+uAMKN8NK1YJ3/vmesGvd2suC+ItfFL4+e3Z2YvBcw/ehpgYYOdIbb1tuCVx/vdvvi0PgpRmDd9ddQOfO3r8//MFNmy4hgZcAogW3i4s7bCGvOmmGuXraCDzWRXPqVGDCBPMA4VNP9QSjn4pXl5EjgUceCf6O04LnykXziSeAmTM9l6TLL7dvz2faNGDePPXdpurqYMHpW4t1BF6YJcvGZTeuLJpAaQk8nXmkFFw047Dg8eNM13K8xx7ejjafCt9VAp7GxsK0/SqxynGUSXCNy00w/vc+8QQwcKB+O4D8uJjGgkUdZ537C2stXrgwEFAm8etRAs80Bs/mPUD8Ak/XgteqFTBjhne8d98d+OlPPfdTn/p6t3XwbNpxjchFs29f4NtvPWFrmshIhguBV11d2G++BJkI/vy7suB17+6tp+bOdW/tdAEJvASIw0VT1q6PqO6NiDCBp3txy3bGu3Sxz/6kkjo8DDYWz4UFL+4kKy1benWeunVz055P27b6bq7+4sJfhOoIPFlmqTZt7CZZ1Rg83Tp4QLYFHn/uXMbgucxkl6UYPF7gmcR+1tUVjwWTBDyi37J0aaGrvUo5GVE7WbPgyeZCk7HBL/xsSu5k2YLXrFlwjX/1VfC8icDjyyTwawJTC57Ne4D4XTRraorbVMn6y84LXbsGjzdsqCwXTcA7R3EIUBcxeHw7Kl46cbloAt7Y0l1TJQUJvARIQ+CFFblm2XFH+Wu6FjzZwikqxiwJ+N1MWwuey91p0fGxySwWdrxN2vUXU2vXejvKLgSejXsmoC7wVJPJyCx4JhO3yo3R9PyWu4tmHBY8PobO9ObO98NkbIi++/vvK8uC50Lg2dxTsizwgOA6ZeMyTQQtf89j3Sl1+6Xy3qxY8ETfoXut8skzKsVFM+4+ubDgAfYCLwvW0yQggZcAccXguUgvHJeLJksWdjfCBF7aWTRFx8fm3KomIFGFXXB+/72exUfmohmnwDMZb+SimQ2BF0cMnixJii58P0wT8PB8912hBc9U4GWt0HmcAs/mniI7LqbC36WLJiC+Tm1dNFevLp6Ly9VFU/QdutcqL/DK1YInisGLk6wIPJcWvCxDAi8B0rDgqdKjh/w1Fxa82tpsXEx8NkiT+j0scWfRzJIFjxd4Oqm707bgqVKqAs+Fi6ZNKnYZWXbRNIVv15XA4y14KtaaUkiyIpsLXSyQ47DgmYYAuLbgia5TWwueKKu1TqIbly6apS7wyikGT+aiGQcqdXNJ4LmFBF4CJCXwtt1Wv42wC85FDF4WrHeAewue7DMmE0eSAs9k3LGLi+++03PRlAVA2wZvh40rk8Wfyxg8lfFEWTTFJJFkxZS4BN533+m7aJZymYS0XTRdF9Z2WSYBiMeCx2e1BtTj9AG3Fjze08f1+XDxHZVqwXPdJ/Y6dTmGRMXowyCBR8RGUgKvZ09gt928x+edp97OTTeJn3fhopmF+DugWODFkWRll13Mfq9IrJjc0MPaA4C99zbbpZZZ8FQmyWuvFe/KxWnBu+SS4PVnn1Vrj70e2fhVE/e+OC14/CZKmoXO/aySoiRKaVrwSk3gff+9GxfN9euDRXttrX1iK1tKyUXzkEPctsdiGoPHYnI/YOcKdgPBZ+1a9bZcxuDxxysJC57ueou9tkshBm/0aLPPxSHwrrnG+3/77YHevYPnVcaHaK3AZs0cPtz7nz2eMi8hlt69C0uN7LVX9GfKgQwYicufpGLwamuBV14BPvhA74Z11VXe4n/ECOCZZ4LnXbholoIFz4WL5h13AGedZbao4o9R69Z2RTNFIvNvf/PqeZlgY8HbemuvTMaYMcHED8Qr8Dbf3PvOBQuAAQPU2mNvbPPnB49NXKPiFHj8cbONwbOx4F14obep0bcv8KMfFbqBuSx0bhuD52oBGWcMnr8Ab9FCTZDKju+qVd7/aVvvALeJqOJMsvLEE8BRR5m3l4QFz2QeYtth5zQfHYHn0vrCk4TA070vu7bgxSXw/vEPr4bfvvuafT6O5CO//S2w//5Av37AkCHB8yrlDPjr/NxzvTJRLVp4JZ4OOsh7XteCV1cHfPIJMH68t4Fic72XEiTwEiCpOng1NV7BxSOO0GunWTPg8MM9ccjiwkUzKxY8PmW0awvekUcCHTua9Y2/+ey4o93uu2i8DR1qViwXsLPgAUCfPt6EzxKnwKupAbbbzvunikzgmeycJynw0rTgVVcHG0k25RuiPmcbg+fKkpWEBW+zzdT6KzsmK1Z4/2dB4Lksk8BfUy4teMcdZ7ewTSIGz2QeYr0PFi0qft21Bc/0GMYxVnVrXfK4jsGLy0Vzhx3srFFxWPBqa731JFB4napY2niBd8QRQehR9+7B87oWPMDbND/9dLX3lgvkopkASblo2u6+8BOtCwteVgRe3GUSXPp0h2U2VUF0zE1qf/nYCjygeKzaxuBFCTxd2M/4VpCaGjNRzLYlc/E0vf7542Ybg7dhQ7CzajN/8GMuSzF4OskkwuD74Sp2d9GiwC1Y1VIju/b81PpZEHhxuWhWVdndP11bLeJ20czlgE6d9NoAvDESZg1Oy0WTf28SFjxdkrDgubCW2W5eJRmDp1KyiB9DsvOom2SlUiGBlwBJCTzbNm0FnmjXrBRcNF3syGVJ4PHHvLbWbmzYuGjK+mRrwaupkd/cTM6n6PioWlN42OMiE3imN3fXLprsIs9mwRGnBc/WRdOVwOP7YTI2RL/viy+CxY+qpUZ27fkxeOUs8Fq0sFvYuj42cbtodupkfn8Jm2fTdNFkx0DWBR6/XiinJCtxZ9HUXf/xczUJPDtI4CVAUjF4aVvwmjd3GyvhkrjLJGRJ4PHH3NZdpWPHYEHlyoJnK/ByObkVz+RciG5sJnEv/PfLBJ7pAtW1i+a6dcFjmzHsyoJXSi6aJoiOsW6CFVk7LFkQeC5dNNn7iu09JWmBZ+uiaZNwy5XAc+2iyb7X1QYMS5wumlmKwbM9dkla8FTgf4/sPJLAU4MEXgKUootmixb6N8JcrnjHJSsWvOrqYFEUR5mELAk8/pjb7mZWV3uxnYC5Bc+1wAPkY8ulBc8EFRdN0xtznAIvCxY8Fy6a/LGNy0UzjjZUNxWi2smCwHNZdoMdF7b3FNfHxnWhc95F03SjCciuBY+db9nNVlfE6aJpMp/EZcGz3byKI8kKC1nw0iWTAq+hoQETJkzA5Zdfjj333BPt27dHbW0tunXrhsGDB+PFF18M/fz48eNx5JFHonPnzmjZsiX69OmDa6+9FqvZAlcJUioCj23PdAHO77jYTrQu8X9fHElWbAXeoEHB4y23tGuLjxtzcQ4239z7f/78bMTgidr0cRFTCZgLvK239v7ffHN5DEy3bmZt28TgicSmK4GXJQsezy9+ETy+9lrzdpIQeKrjImqMx1FbTBeXi0WXFryk6+DpHocddij822bDL2yeve469XZEv6FDh8K/TQWeapIMHVwLvCVLvMdt2rhzzTa9PtgkejqJxETwY9e1x5Vue6oxeHGPn3Ihk1k0X3/9dRx66KEAgG7dumG//fZDXV0dpk2bhhdeeAEvvPACzj77bDz00EPIcVfb3XffjWHDhiGXy2HgwIHo2rUr3nzzTdx6660YPXo0Jk6ciM6+OSIhRDcUFxafOGPwTAUef0HauJe4pnlzb9cyjjIJtufzoYeAv/4VOPZY+125Pn0K/3Yh8Pr29dIMmx63OCx4soWayfFz6aJ5xx1e6uqjjwZuvLHwtZ/8BLjySnMXIpsYvOpq4K23gNNOA2bO9J7LmsCLY6d7n32Af/4T+OYb4KKLzNtxsSkXdVx23FGtnVJw0ZT9VpPr06XAc10f0LUFb489vJJFr7/uCf5hw8z7Jppnf/Yz75o4/3z1dkS/oXt389IoumnudbG18rL3luXLgVmzvMf8vVUVly6ajzwCPPCAl5nadqOU74Pr9VpcFry4x0+5kEmBV1VVhaFDh+Kiiy7CwIEDC1576qmncNJJJ+Evf/kLBgwYgF/96lebXpsyZQouvfRSVFdX44UXXsARP2x1rF27FoMHD8aECRNw7rnn4lnV6seOECW9cHGTidNF05XAs3EvcY1/HrJowdtuO+D22+3a8OF3fG3jEQDxwjOrAs8Ely6aPXoAt97qPeaP0a23ArvvbtYuYOeiCXj1kv7wB2+RB2TPRTMOC15tLXDSSXZtuOiHShuq1ppScNF0Gc/D3i9tF++ud/xdW/AA4IwzvH+2iObZ884Dftg/V0b0G7p18+qNhr1Hpb04LDAu10KffBJkGja1prrcuOraFfjd78w+y8PPE64FHsXgpUsmXTQPPvhgPPvss0XiDgCOP/54nHbaaQCAv//97wWv3Xbbbcjn8zj99NM3iTsAaNWqFUaMGIGqqiqMHj0a06dPj7X/PK6FmI+rRZUPe7Gb7gzxF2TWLHhA9ssk2NKpU+HE6sKCJ7qxlbvAc7E54XojwMZF04e9zl1l0cxSmQSeUonBq6vzajWpUMoWPJWCxzzshpytBa8UBJ4rRPdxk/uBaLz5bvs+OtdZ3C52LjaFfPzSI4C5wIsryYotcVvwbAWebJ4jgadGJgVeFLv/sAU+d+7cTc/V19dvis078cQTiz7Ts2dPDBgwAAAwZsyYBHoZ4NqVUtYuWfDCkQm8LFjwXNOzZ/CYtdKYYivw+Ik7zhg8E1zG4LG4Tvhha8EDCuefuCx4ptdDVhdCgBuvi7BjvOOO6uOjlAWeCX75ByB7FjzXLpouEd3HTQSe6FzyAk/n+ojbgmd7zNmkbCyqLtQq/UlT+Pvwc6vr9Zrutap63uIeP+VCSQq8mT8EkGzOzDAzZszA2h+2o/v37y/8nP/8lClTQttfs2aN0j9VkhJ4FIMXjizJShZi8FzjJ/oAgDlz7Nvr1at4IWPzm8MK8KpSiRY8mxg80WeyFoMXV0FgF7jI9hcl8FQpBYEnG5smQrm+Pnhsa8FzveOfZQue6D5u4rIvc9E0JW4LjItjLrqGys2ClzUXTdW5gSx4amTk1qnOwoUL8eijjwIAhg4duun52bNnAwDat2+PNpLc5Fv94P/iv1dGaxerTway4GUD/3itX5/tMgku2Gab4PG8efbt1dQAvXsDn34aPGfzm124zWU1Bo/FddFtFxY89jpnnRmyYMHL6k43EL/Ak5XUEBE1jrIg8Fy6aLICL2sWPNeFzl0Sl4tmy5bF2Zp1yLqLJuBdQ+wGWOvWXny1CVktdJ41C54qJPDUKCkL3saNG3HyySdjxYoV2HnnnXHOOedsem3VqlUAgLqQ2csXbitZp+oEiCsGz3W7HTsGj01350ohBg+wt1xk3YJ3+OHBYzZNvA19+xb+nfZvdnnziEvgqcYUqMJ/3lXNP8Buwcbu1FZVmQvZLFvw2PGgI8ZYwn7LAQeYtQkUz7uu052b4PK8sQLPdmOHTXL005/atQVEj/WsWfBMxi7/G+rq7OKo2VT/Bx9s3o4MNtvlrruatcFvkvTube6mnVULXtZi8FTZZ5/g8eDB8XxHOVBSAu/cc8/FhAkT0KlTJzz77LNoFtM25erVqyP/zZ8/X7m9UnHR3Gsv4JxzPHFgmsGL19esaEwb9nixySXK0UVz8GDgwgu9+np33OGmTb7uke7C5dlnvSyOzz3npj/8+N93X2D0aLO2RNeOi0Qwri14PLYumiznnmveD/ZGbrOgdbXTPXq027EGeGnhb7/dS0/++utmbfC/7/bbvYyGZ57plUjRYeRIYMAAYPz44oVZr15m/XOJyzIJbAyercA77jjg7LO9kiUPP2zXlgpZisHr2tVM4PG/oVUru/nxuuu883DcccAVV5i3I2PPPYGrrvLE4zPPmLXBLy9t1jJZ3bhy+RtV2ldhxAhv7h4/Xv6eU0/15syjjgLuvde8f+VOBoaYGhdddBFGjBiBDh064JVXXsEOXDVQ3y0zLDbOL3TeNmJmCrMC+jRq+OuIyiS4wLUFL5fz6rHZwB+6LAkf9nixw6QcLXi5nPuJj7cS6P7moUO9f65gz+eQIXaLeX4MtGnjRozFPU5sXTR9xowpLrCsAzvH2cxDrhZCxx6rL5hUuPJK758p/G/Zaitg3Diztk4/3fsHeK5VX38dvGZTHNsVLi0UrAXPdl83l0tG2PlkKYumqxiyujq7RFmtWpkLL1Vuu83u8/w4syk3VCoumq7vTybXqkqJkKoq4G9/M+tTJVESFrxLL70Uf/rTn9C+fXuMGzduUxZNlq1/yCqxfPnyTe6aPH7Wza3ZDBQJUCoxeC5wUXMtLthFqK0Fjz/Wri0zWSRr4p0d/y7TYgNurHeA+yyaUe2rIJp/bEtpxGnBy8K85gr+t7i6F/AWPNNsfy5xGYPHxtlkIb4wDNfli2zg5zFXWSBtXTRLAX59ZTNHloqLZqm1T4ST+WXpFVdcgbvuugvt2rXDuHHjpBkye/fujVY/qItJkyYJ3+M/369fv3g6K6FU6uCVO3Fa8CoBEnj6xG3BY13XVBEtkG0FXtYseFmF/y2uxAqfHCHLLpq2ZF3g8S6QWXLRdGXBs3XRLAX4cWYzR2bVghd3iYEs/MZKJtMC76qrrsIf/vAHtGvXDq+88gr23HNP6XubNWuGo446CgAwatSoote//vprvP322wCAIUOGxNNhCaUSg+cCjeoRiSMTeC5i8CoBWxdN17Dn03bsJyXwXFvwWEu0KqJjZWt5d2XBy+pOtyvisuDxCXKycMxclklgcZk9Nw54gZclC56pwBNZ8FzUMs0yLl00s7pxtXx5vO1nYR6qZDIr8K677jrccccdaN++faS487nqqquQy+XwyCOP4OWXX970/Nq1a3HmmWeisbERQ4cORR82xVICVJKLpsmCMylcWvCycKyTppwtePznXS1eXGfR5HEl8Fxa8Gx+I7lomsEmhs6Ku7hLF02WrFvw+CpLac6TvNg0FXi8KK+rs58zsk4lWPDiFnhZv1bLnUzeOseOHYtbbrkFANCrVy888MADwvd17twZf/zjHzf93a9fPwwfPhzDhg3DkUceiQMOOABdunTBm2++iQULFqB37954yDaLiAGVJPDY8goSb9rUIBdNO7Im8Fy5BQKlZcHr0AFYtsx7bNLPOFw047TgZWFec0VcLppbbBE8jiPtvAnkoumR5vjl5xtXWRJbtbK3xGYdlwIvq54JnToFj03LSYRR7lberJPJW+fSpUs3PZ40aZI0pq5nz54FAg8ALrnkEuy8884YPnw43n//faxZswY9evTA1VdfjauvvlpaBD1OkqqDl4UJ44ILvPTdy5YB//xn2r0phHWxYPPwkIumGuSiqU8cMXgvvwwcdphXzP744/U/H4eLpiuxndWdblfEZcG76CLg0Uc9i+5f/uKmTVtclklgKTWBl/Y8edllwN13A7//vbs2fbFz1VXAH/8I3Hyzu7azQtwumlmoVXn++V42ymXLgKeect/+9tsDP/uZd8/K2nqwEsikwDvttNNw2mmnGX9+0KBBGDRokLsOWVJT493UfNcUVzd1ftLIwk53mzbAF18AjY3ZuxGzO3CsSxO5aKqRNQteKSRZiSOL5l57AQsXer/fZLGc5SyaZMEzo1MnYNYs7x6TFUEcVz8oBk+PP/wB+N3v3AoKf7647TbghhuyIVZcE7eLZhZcXJNYr40ZA6xbV55jJOuU0a0zu+Ry3g73unXe365ufPziLu0biU91dfqLfxHsDhwr8MiCp0Y5C7y4YvDiyqLJZ9DVobq6eMPJdk6iMglq8L/PpQjK2nGSjfVKi8HLQkyk68U1ey8o14V73C6aWSkplcR6rVzHSNbJwNRTGbh0J5ORtRt81mAn6BUrgscUg6dGOQu8UorBsyWXK/y9LhYarlw0RcennOa1uFw0s0hcYz3rAs9m86VUyIo4iZM4LXhVVdm3RBOlTwaWG5WBy8WojHJeLLhAJvDIgqcGxeDpE3cWTVPY3+vCVciVBS+XK28RFJeLZilR7mUSst4/F2TBvTBu+PPoMgavrq78k9QQ6UMCLyHIgpc+MhdNisFTgyx4+mTRggcUCgsXizWXGU35Y1ZO11o5i9ekyLooJoFXHsRpwasECyiRPhlZbpQ/JPDSh52gGxqCx+SiqUY5C7xSi8GzJU4Lnu1vzGLyKFeQwLP/zVl3gayEeKNKEChxxuBVgkAm0ocEXkIkIfAqcbGgg2xSJRdNNbLmorn33sGNc9997dpKyoKXFbccth8uFmvNmgF77uk9tj0X/DHr3NmuvSxBLprAgw/qf+a++7z/u3cHDjrIbX9ccMcd3v/bbJO9+q9xUAkCJc4yCZVw/Ij0KaO90WyTRAxeOe10x4FsgiYXTTWyZo3acktg5kwvntK2SGtSMXhZgbVgu1hs5HLAhAnA5MnAfvvZtcVeW127FhbjLXUq2YL33nveddWnj/5nzz8f6NcP2GGHbIriyy7zNjZ23NG7BsqdShAocbpoVsLxI9KnApep6cC6lVTSTT1LkAXPLVk4Bltv7aadpCx4WcG1wAO8mkoHHGDfztKlweOddrJvL0tUssDbaSfzsZbL2VuG46SqKtjYqITNP3LR1IMfE5Vw/Ij0yej+cvmRhItmU1M87ZYLsgmaYvDMKKeFTFIxeFmhvj54nOXFRrkLvCxao+KinOaLMCrhd1aCBcqliyZZ8Ig0IIGXEEkIvMbGeNotF8iC55ZyOgZ8bBxfrNiUSnHRjIsdd0y7B27JmptzklSC8AEqwyqb5TnDFbzAszmvFINHpEFGlx/lRxIxeCTwwqEYPLeU8+LUlTDL6jFirf1kwUsOft7IStKdJMjqZodrKuHekOU5wxUuy11QmQQiDSpkyk0fctFMn2bNxAtukxtypSxWwqANhWiyKvBYsly3q9wFXiVRKWK2Es5xJVigXLpPkwWPSANapiZEXALv1FODx/36uWu3HMnlxBOrySK8UhYrYWzYkHYP3NK+vfd/z57u2iyFjYCsxYEdfLD3f20t0LFjun1xTSUs/lnKTaCrUK4umgMHBo8rodYfCTyi1Kmw2016xCXw7rkH6NsX2GMPYLPN3LVbrrRqBaxcWfhcpS26XLF+fdo9cMtbbwHPPgucfLK7NkvBgpe1Belf/wr84x/A0KFp98Q9lTbX/Oc/wGOPAYMHp92T5CjXc/zEE8DIkcCRR5bGxpUtLgUeuWgSaVCmU1H2YMskuLwBtG8PXHmlu/bKHbLguaPcBN6OOwI33OC2TRJ4+my7LXDjjWn3Ih7KdfEvo0cP4Prr0+5FspTrOd5ii8o6ly7v8WTBI9KgAvZhskESMXhENKKJtVxvyHHAjuNyE3hxUAo73Vlz0SxnaK4pf+gclwcbN7pri8okEGlQAsuP8oAEXjYQuUaUgpUlK7CW6HKLwYuDUhhbNB8lBy3+y59SuOaJaNhSMrbw1kASeEQSkMBLCBJ42cCVBa9SXTTJgqdHKSz2aD5KDhJ4BFEauBR4PBSDRyQBCbyESKIOHhGNqxi8SoW14JHAi4ZcNAkWmmvKn0rd/Cs3XLpo8pAFj0iCElh+lAdshstOndLrR6VDMXh2sJkNDzwwtW6UDFld0O+7b/B4553T60elkdXxQLijbdvgMd1bSpdddw0eH3KI27ZJ4BFJQNNPQhx3HPDKK179mMMOS7s3lYvINYJuwur8/vfAwoWeJe83v0m7N9knqwv6f/4TuPBCoH9/YK+90u5N5UDWnfKndWvgoYeA0aOB225LuzeEKQcc4GUo//xz4IEH3LZNLppEEtDSNiHatAFGjUq7FwSVSbCjro7GsQ5ZddHcZhvghRfS7kXlkc+n3QMiCc45x/tHlDa33x5Pu2TBI5Igo8sPgogHisEjkoTGFsHS1JR2DwiCSBsSeEQSkMAjKgreNSKXy66VhSh9SOARLGTBIwiCXDSJJKClLVFR8DtnpvF3leqiSehBmwcECwk8giDIgkckAS0/iIqCn1jJwkLECY0vgoVcNAmCoNI0RBKQwCMqCt41wtSC17mzfRtE+UMCj2Bp3z7tHhAEkTbkAUQkAQk8oqJgaxQB5uLsJz/xauN07Ai89pp1t4gyhVw0CZa99waOPhpo1w4YPz7t3hAEkRT33OOVybruurR7QlQKZHsgKgpe4JlaWHI5b4G2cSNZ8Ag5tFNLsORyXnkKmjcIorK46CLg/PPpuieSg/aXiYqiXbvCv20nW5qsCYLQheYNgqg86LonkoQEHlFRuLLgEQRBEARBEEQWIYFHVBSuYvAIgiAIgiAIIouQwCMqCrLgEUlCMXgEQRAEQSQNCTyiomje3PvnQxY8giAIgiAIopwggUdUHKwVjwQeQRAEQRAEUU6QwCMqDlbgkYsmQRAEQRAEUU6QwCMqDrZUAgk8giAIgiAIopwggUdUHKwFr74+vX4QBEEQBEEQhGtI4BEVByvw1q5Nrx8EQRAEQRAE4RoSeETF0bp18HjNmvT6QRAEQRAEQRCuIYFHVBytWgWPSeARBEEQBEEQ5QQJPKLiqKsLHq9bl14/iPKnf//g8VlnpdcPgiAIgiAqB6oCRlQcrMAjiDjp2BGYOBGYNAk4/fS0e0MQBEEQRCVAAo+oOEjgEUkyYID3jyAIgiAIIgnIRZOoOEjgEQRBEARBEOUKCTyi4iCBRxAEQRAEQZQrJPCIioPNokkQBEEQBEEQ5QQJPKLiIAseQRAEQRAEUa6QwCMqjp12Ch7vsUd6/SAIgiAIgiAI15DAIyqOXr2Ae+4Bjj0WePLJtHtDEARBEARBEO7I5fP5fNqdKEVWrlyJdu3aYcWKFWjbtm3a3SEIgiAIgiAIIiWypA3IgkcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMqEzAq8L774Avfddx9OO+007LzzzqipqUEul8PNN98c+dnx48fjyCOPROfOndGyZUv06dMH1157LVavXp1AzwmCIAiCIAiCINKhJu0OyHjwwQdx7733an/u7rvvxrBhw5DL5TBw4EB07doVb775Jm699VaMHj0aEydOROfOnWPoMUEQBEEQBEEQRLpk1oL3ox/9CJdddhkef/xxfP755zjllFMiPzNlyhRceumlqK6uxosvvojXX38dTz/9NL766isccsgh+OKLL3Duuecm0HuCIAiCIAiCIIjkyawF76yzzir4u6oqWovedtttyOfzOP3003HEEUdser5Vq1YYMWIEtt12W4wePRrTp09Hnz59nPeZIAiCIAiCIAgiTTJrwdOlvr4eL774IgDgxBNPLHq9Z8+eGDBgAABgzJgxifaNIAiCIAiCIAgiCcpG4M2YMQNr164FAPTv31/4Hv/5KVOmJNYvgiAIgiAIgiCIpMisi6Yus2fPBgC0b98ebdq0Eb5nq622KnivjDVr1kR+n8p7CIIgCIIgCIIgkqRsBN6qVasAAHV1ddL3tG7dGgCwcuXK0Lb89xEEQRAEQRAEQZQSZeOiSfx/e/ceF1Wd/3H8PYCAgoCIFxBRs8J9KKupqLvieq1VNK3oZg8VWrfdrawsy1sX7br7qEf1ULO1dkutpQet13LtohZe0MQLbJtbmS7eMCvUBAJFhe/vjx4zP4kBZoYhmDOv5+PB4wHnnO9nvuec+ZxzPsw53wEAAADg7yzzCZ79tsy6bp20f9F5REREnbFc+UL0kpISxcXFudFDAAAAAGhclinwunbtKkk6c+aMSktLnT6Hd+zYsWrL1qau2zztKisr3e4jAAAAADQmy9yimZiYqFatWkmS9uzZ43QZ+/S+ffv+bP0CAAAAgJ+LZQq84OBgjR07VpL01ltv1Zh/5MgR7dixQ5J0/fXX/6x9AwAAAICfg2UKPEmaPXu2bDabli5dqg8++MAxvby8XFOnTlVlZaXS0tLUo0ePJuwlAAAAADQOmzHGNHUnnMnLy9Ndd93l+Pt///ufTp48qfj4eHXq1Mkxfc2aNYqNjXX8/eKLL+qBBx6QzWbT0KFD1b59e23btk0nTpxQYmKicnJyFBMT0+D+lZSUKDIyUsXFxfUO2gIAAADAuppTbdBsB1kpKSlRbm5ujemFhYUqLCx0/F1RUVFt/v3336+kpCQ9//zz2rVrl8rKypSQkKA5c+Zozpw5tX4JOgAAAAD4umb7CV5z15yqdAAAAABNpznVBpZ6Bg8AAAAA/BkFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWERQU3fAVxljJEklJSVN3BMAAAAATcleE9hrhKZEgeeBsrIyRUVFSZI6d+7ctJ0BAAAA0Cx8++23ioyMbNI+UOA10PHjxxUeHt7U3fA7ZWVliouLkyR9/fXXCgsLa+Ie+Re2f9NjHzQ99kHTYx80PfZB02MfNL1L90FsbGwT94YCr8EiIyNJpCYQGBjo+D0iIoJ98DNj+zc99kHTYx80PfZB02MfND32QdO7dB8EBDT9ECdN3wMAAAAAgFdQ4AEAAACARVDgAQAAAIBFUOABAAAAgEVQ4AEAAACARVDgAQAAAIBFUOABAAAAgEXYjDGmqTsBAAAAAGg4PsEDAAAAAIugwAMAAAAAi6DAAwAAAACLoMADAAAAAIugwJO0YsUKDRs2TG3atFFYWJh69+6tZ599VhcuXPAo3t69e3XTTTepQ4cOCg0NVbdu3XTPPffou+++83LPfduFCxf00Ucf6aGHHlJycrKioqLUokULdezYUePHj9f69evdjjl//nzZbLY6f7788stGWBvflZGRUe82O3funNtxyQPXHD58uN7tb//ZunWrSzHJA+f279+vRYsWKSMjQ0lJSQoKCpLNZtNTTz1Vb9tNmzYpNTVVMTExatmypXr06KGHH35YP/zwg8f9OXjwoDIyMhQfH6+QkBDFx8crIyNDBQUFHsds7tzdB1VVVdqxY4cee+wxpaSkqG3btmrRooViYmJ09dVXKzMzU56MFbds2bJ6c+SDDz5o6Oo2S57kQWMeU/wtDzzZ/q6eI9544w2X++GvOdDQa09fORcEedzSIqZPn64FCxYoKChII0aMUHh4uD7++GPNmjVL69at04YNG9SyZUuX461cuVITJ07UxYsXlZycrG7dumnPnj166aWXtGLFCuXk5Ojyyy9vxDXyHVu2bNHVV18tSerYsaNSUlIUFhamzz//XOvWrdO6dev0hz/8QUuWLJHNZnMrdu/evdWnTx+n8yIjIxvadUsaPHhwre/NwMBAt2KRB64LDw9Xenp6rfM///xz7d69W61bt1a/fv3cik0eVPfXv/5VCxYscLvdiy++qAceeEA2m01DhgxRhw4dtG3bNj3zzDNatWqVcnJyFBMT41bM7du365prrlF5ebl69uyplJQU7du3T8uXL9fKlSu1adMmDRo0yO2+Nnfu7oOCggINHjxYkhQdHa3+/furTZs2Kigo0KZNm7Rp0yZlZWVp1apVCg4Odrs/3bt3V0pKitN5nTp1cjueL/A0DyTvH1P8MQ882f51nSOOHj2q7Oxs2Ww2DR061O3++FsONOTa06fOBcaPrVmzxkgy4eHhZu/evY7pRUVFJikpyUgyM2bMcDne8ePHTatWrYwk88orrzimX7x40UyaNMlIMsnJyaaqqsqr6+GrPvroI5OWlma2bt1aY15WVpYJDAw0kszy5ctdjjlv3jwjycybN8+LPbW29PR0I8ksXbrUK/HIA+8aM2aMkWTuuOMOl9uQB8797W9/Mw8++KDJzMw0X3zxhZk8ebKRZJ588sla2+Tl5RmbzWYCAwPNe++955heVlZmRo4caSSZtLQ0t/pRVlZm4uLijCQzZ86cavPmzJljJJnOnTub8vJy91bQB7i7Dw4ePGhGjBhh3n//fXPx4sVq8zZv3mzCwsKMJPP444+71Y+lS5caSSY9Pd3TVfFZnuRBYxxT/DUPPNn+dbnzzjuNJHP11Ve71c5fc8DTa09fOxf4dYGXnJxsJJmnnnqqxrxt27YZSSYkJMScOXPGpXgPPfSQkWRGjRpVY15paamJjIw0kswHH3zQ4L77g6lTpxpJZuTIkS634cLWfd4u8MgD7yksLDQBAQFGktm5c6fL7cgD19jf+3VdWN10001Gkvn9739fY97hw4cd++eLL75w+XUXL15sJJkrr7zSVFZWVptXWVlprrzySiPJLFmyxPWV8VGu7IO6PPnkk0aS6d69u1vt/PXi1hlX9kFjHFPIgx81JAfOnj1roqKijCSTlZXlVltywLnarj197Vzgt8/gHT9+XLt375Yk3XbbbTXmp6SkqHPnzqqoqNB7773nUsw1a9bUGi88PFzjx4+XJK1evdrTbvuVq666SpJ07NixJu4J3EEeeM+yZctUVVWlnj17auDAgU3dHb9z/vx5x/MYzt7PXbp0cdw+aH/fu8K+7K233qqAgOqn4YCAAN1yyy2SyBFXcJ7wXeRBw61atUpnzpxRdHS0rrvuuqbujiU4O6b44rnAb5/By8/Pl/TjPf3dunVzukz//v117Ngx5efna+LEiXXGKy0t1cGDBx3taov35ptvOl4bdTtw4IAkKTY21u22eXl5mj17tk6fPq3IyEhdddVVuvbaa9W6dWtvd9MysrOz9dlnn6m0tFRt27bVgAEDlJqaqpCQEJdjkAfetWzZMknS1KlTPWpPHjTMV199pfLyckl1v5+3bdvm1vvZvmxdMS9dDrVryHlC+nFwg0ceeUTfffedwsPD1atXL40fP97t52j8hTePKeRBw73++uuSpEmTJrl1rr4UOVCds2OKL54L/LbAO3TokCQpISGh1mU6d+5cbdm6HD582PF7bTHdiefvvvnmG8fFbVpamtvt7Q/KXioyMlILFy7UlClTvNFFy3E2+lZsbKxef/11jR492qUY5IH3bNmyRQcPHlRwcLAmT57sUQzyoGHs79GoqKhaL2DdfT+Xlpbq1KlTkurPkaKiIpWVlSksLMytfvuL8vJyLVy4UJJn5wnpxwEOtm/fXm1aaGio5s+fr1mzZjW4j1bjrWMKedBwhw8fVnZ2tiTP/wkokQOXqu3a0xfPBX57i2Zpaakk1bmxwsPDJUklJSUux6srpjvx/NnFixc1adIkFRcXKykpSX/84x9dbtu9e3c988wzys/P1+nTp3X69Gnl5ORo3LhxKi4uVnp6ujIzMxux976nd+/eWrBggfbt26eSkhJ9++232rBhg37961/rxIkTGj9+vDZv3uxSLPLAe+z/mfXkP6nkgXd4+zxxacy64tpjuhPXH9111106dOiQ4uLiNHfuXLfaduzYUQ8//LByc3NVVFSkkpIS7d69W1OmTFFFRYVmz56tZ555ppF67nu8fUwhDxpu6dKlMsaof//++uUvf+l2e3KgurquPX3yXOD2U3sW8fTTTxtJZvDgwbUuM3fuXCPJXHPNNfXG2759u5FkJJkLFy44XWbDhg1GkgkODva43/7A/oBr27Ztzf79+70W95577jGSTLt27UxFRYXX4lpVVVWVmTBhgpFkevfu7VIb8sA7iouLHSORXjpalzeQB/+vvsENMjMzjSTTqVOnWmO8+uqrjofkXXH8+HFHjhw4cMDpMl999ZVjma+//tqluL7K0wEmnnjiCSPJhIaGmpycHK/26fnnn3cMsvbNN994NXZz1NCBbjw5ppAH/8+T7V9ZWWkSEhKMJPPyyy97vU/+lgPG1H3t6YvnAr/9BM/+EWtZWVmty9i/tDAiIsLleHXFdCeev7rvvvv02muvqU2bNtq4caOuvPJKr8WeP3++AgMDVVRUpNzcXK/FtSqbzabHH39ckvTpp5+6NIgBeeAdWVlZKi8vV3x8vH772996NTZ54DpvnycujVlX3Eu/MJc8qemFF17QY489ppCQEK1Zs8YxuIG33HfffYqJiVFFRYU2bNjg1dhW5MkxhTxomE2bNuno0aNq2bKl00E/GsrfcqC+a09fPBf4bYHXtWtXSXWPvGWfZ1+2Ll26dHH8fvTo0QbH80czZszQwoULFRUVpQ0bNjhGMvKW6OhotW/fXpJUWFjo1dhW9Ytf/MLxuyvbjDzwDvvtmRkZGTVG1moo8sB19vfomTNnqt1Ocyl338+tW7dWdHS0pPpzJCYmhueOfmLRokWaMWOGgoODtWrVKpefD3ZHYGCgrrjiCknkiCs8OaaQBw1jP0ekpaV59AXz9fGnHHDl2tMXzwV+W+DZd+CpU6dqfSByz549kqS+ffvWGy8iIkKXX355tXYNiedvZs6cqRdeeEGRkZHasGFDrSMKNURlZaWKi4sliVEEXWR/AFhybZuRBw33+eefKzc3VzabTbfffrvX45MHrktMTFSrVq0keff9bF+WHHHP4sWLde+99zqKu7Fjxzbaa9mPfeRI/Tw9ppAHnjl9+rTWrl0rqWGDq9THH3LA1WtPXzwX+G2BFx8fr+TkZEnSW2+9VWN+Tk6Ojh07ppCQEKWmproU8/rrr6813g8//OAYeeqGG27wtNuWNHv2bD333HOKjIzUxo0bHfvF2959912Vl5fLZrM1SgFpRVlZWZJ+LNwSExNdakMeNMxrr70mSRo+fLguu+wyr8cnD1wXHBzsKCKcvZ+PHDmiHTt2SPr/970r7MtmZWWpqqqq2ryqqiq9/fbbksiRSy1ZskTTpk1zFHfjxo1rtNfKy8vTV199JUkaMGBAo72OVXh6TCEPPJOZmamKigp1795dQ4cObZTX8IcccOfa0yfPBW49sWcxa9asMZJMeHi42bt3r2P6yZMnTVJSkpFkZsyYUa3N6tWrTWJiohkxYkSNeMePH3cMjPDqq686pl+8eNFMnjzZSDLJycmmqqqq8VbKxzz88MNGkomKijK7du1yqc2iRYtMYmKimTx5crXpR44cMW+++aY5e/ZsjTZr1qwx0dHRRpKZNGmSV/puBfn5+eadd96pMSBKZWWl+fvf/25CQ0ONJPPII49Um08eNI7z58+b9u3bG0kmMzOzzmXJg4ZzZXCDvXv3GpvNZgIDA83777/vmF5WVmZGjhxpJJm0tLQa7XJzc01iYqJJTEysMa+srMzExcUZSWbu3LnV5tkH94qPjzfl5eUNWDvf4Mo+ePXVV43NZjPBwcFm3bp1Lseu7ThVVlZmXnrpJVNSUlKjzZYtW0zXrl2NJJOSkuL6iviw+vZBQ44p5EH93B1kpU+fPkaSefrpp+tdlhxwzpNrT187F/h1gWeMMffee6+RZFq0aGFGjx5t0tLSTFRUlGOEzZ9u1KVLlxpJpkuXLk7j/fOf/zSBgYFGkhk4cKC55ZZbzGWXXWYkmQ4dOtQ6Uo4/eueddxyjA/Xv39+kp6c7/flpkT1v3jwjyQwdOrTa9Pz8fEfBPmTIEHPrrbeaCRMmmCuuuMLxOsOHDzelpaU/41o2b/Z/crRp08aMHDnS3HbbbSY1NdUxOpckM3HixBoFIHnQOFavXu046Ti7mLoUeeC+vXv3moEDBzp+YmJiHCfQS6f/dLSyF154wUgyNpvNDBs2zNx8880mNjbWSDKJiYmmqKioxmtlZ2c7trczOTk5jn+E9OrVy9x6662mV69eRpIJCwszn3zySaNsg6bm7j7Iz883NpvNSDI9evSo9TyRnp5e47VqO059//33jhECBw0aZG6++WZzww03OLa/JJOUlGTZkRs92QeeHlPIg5o8PQ4ZY0xeXp6RZAIDA83x48frfS1yoCZPrz2N8a1zgd8XeMYY8/bbb5vf/OY3JiIiwrRs2dL06tXL/OUvf3E63G99F7bGGLNnzx5zww03mHbt2png4GDTpUsXc/fdd/vNULOusm/L+n5+uq1ru7A9efKkmTVrlhkxYoRJSEgwYWFhpkWLFiY2NtaMGzfOvPXWW6aysvLnW0EfUFBQYKZPn25SUlJMp06dTGhoqAkJCTEJCQnmxhtvNOvXr3fajjxoHOPGjTOSzF133VXvsuSB+y490db1c+jQoRptN27caEaPHm2io6NNSEiIueKKK8ycOXOc/gf8p69VmwMHDpgpU6aYuLg406JFCxMXF2emTJliDh486K1Vbnbc3QeuLu9sO9d2nKqoqDCPPvqoGTNmjOnWrZtp3bq1CQoKMu3atTOjRo0yr7zyiqW/QsTdfdCQYwp5UFNDjkPTpk0zkkxqaqpLr0UO1OTptaedr5wLbMYYIwAAAACAz/PbQVYAAAAAwGoo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAADNhs1mc/tn2LBhkqRhw4bJZrNp8+bNTboO3rBgwQLZbDatWrXK4xjFxcVq27atBg4cKGOMF3sHAGjOgpq6AwAA2KWnp9eY9s033+jDDz+sdX6PHj0avV8/p6KiIs2fP1/JyclKS0vzOE5kZKTmzJmjhx56SG+88YbTbQcAsB6b4d96AIBmbPPmzRo+fLgk1flJ1NGjR1VeXq6EhAS1atXq5+qe102bNk2LFy/W+vXrlZqa2qBY586dU0JCgoKCgnTo0CGFhIR4qZcAgOaKWzQBAJaQkJCgHj16+HRxd+bMGS1btkydOnXS6NGjGxwvNDRUt912m06cOKG3337bCz0EADR3FHgAAEuo7Rm8jIwM2Ww2LVu2TPv379ctt9yi9u3bKywsTMnJyXrnnXccy+bm5mr8+PFq166dWrZsqV/96lf66KOPan3Ns2fP6vnnn9egQYMUFRWl0NBQJSYmaubMmTp16pTb67B06VKVlZVp8uTJCgioeYquqKjQc889p379+ql169YKDg5Wx44dlZycrJkzZ+r06dM12mRkZEiSFi9e7HZ/AAC+hwIPAOAX8vLy1K9fP3366acaOXKkevfurT179uj666/XypUrtXbtWg0ZMkSFhYUaOXKkEhMTtXPnTo0ePVo5OTk14n399dcaOHCgHnzwQR04cEDJyclKTU11FGH9+/fXkSNH3Orj2rVrJUmjRo2qMa+qqkpjx47VzJkzdfDgQQ0ZMkQ33nijkpKSVFRUpOeee05Hjx6t0a5Pnz5q166ddu3apRMnTrjVHwCADzIAADRj2dnZRpKp75Q1dOhQI8lkZ2dXm56enu5o/9RTT5mqqirHvIULFxpJJj4+3rRp08a88cYb1dpOnz7dSDKjRo2qNr2qqsoMHjzYSDJTp041JSUljnkXLlwwM2bMMJLM8OHDXV7P8vJyExwcbAICAqrFs9uyZYuRZK666iqn83fv3m1OnjzpNPb48eONJPPmm2+63B8AgG/iEzwAgF8YMGCA5s6dK5vN5ph25513Kjo6WoWFhRo1apQmT55crc0jjzwiSdq6dasuXLjgmP7hhx9q+/bt6tOnj5YsWaLWrVs75gUFBenZZ59Vr169lJ2drX379rnUv//+9786f/684uPjq8Wz+/bbbyVJQ4YMcTq/f//+atu2rdPYPXv2lPTjp5gAAGujwAMA+IUxY8ZUK+6kH4uxbt26SZLTESvbtm2r6OhonT9/vtozdevXr5ckpaWlKSio5jcOBQQE6De/+Y0kaceOHS71z17A1Vak9e3bV4GBgXr99de1ePFit263tMe0vwYAwLoo8AAAfiEhIcHp9PDw8Drn2z8tO3funGNaQUGBJOnRRx+t9QvYX375ZUk/fq+dK4qLiyVJERERTud3795dL774oi5cuKBp06YpLi5OXbt21cSJE5WZmanz58/XGtse8/vvv3epLwAA38UXnQMA/IKzUSndmX+pqqoqSVJKSoq6d+9e57L22yPrExUVJUkqKSmpdZl77rlHN998s959913l5OQoJydHWVlZysrK0rx587Rt2zbFxsbWaGcvHtu0aeNSXwAAvosCDwAAN3Xu3FmSNGHCBD344INeidm+fXtJqvfrFTp06KA77rhDd9xxhyTpyy+/1O9+9zt98sknmj17tpYvX16jjT1mhw4dvNJXAEDzxS2aAAC4acyYMZKkFStWyBjjlZg9e/ZUcHCwCgsLVVpa6nK7Hj16aNasWZKkf//7306XsQ/00q9fvwb3EwDQvFHgAQDgpgkTJig5OVm7du3S7bff7vQ5u++//15LlizRxYsXXYrZsmVLDRo0SFVVVcrNza0x/+OPP9Z7771XbTRPSTLG6F//+pckqUuXLk5jf/LJJ5KkESNGuNQXAIDv4hZNAADcFBAQoLVr12rs2LFavny5Vq5cqd69eyshIUHnz59XQUGBPvvsM1VWViojI8PpSJvOXHfdddq6das2btxY48vO//Of/+j+++9XRESE+vbtq7i4OJ09e1Z5eXk6cuSIIiMj9cQTT9SImZ+fr1OnTmnAgAFOn88DAFgLn+ABAOCBuLg47dy5U0uWLNGAAQO0f/9+rVy5Ujk5OZKkP/3pT/rwww8VGhrqcszbb79dYWFh+sc//qHKyspq86699lrNnz9fycnJKigo0OrVq7V582ZFRkZq9uzZ2rdvn/r06VMj5rJlyyRJd999t8frCgDwHTbjrYcHAABAg02bNk2LFy/Wu+++q2uvvbZBsc6dO6fOnTurRYsWOnTokEJCQrzUSwBAc8UneAAANCPz5s1TVFSU09st3bVo0SKdPHlSf/7znynuAMBP8AkeAADNzIIFCzR9+nStWLFCN954o0cxiouLddlll+nyyy/Xzp07ZbPZvNxLAEBzRIEHAAAAABbBLZoAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBH/B+lJ1xUb/OFxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy = np.random.poisson(long_signal*dt)\n", + "\n", + "long_lc = Lightcurve(long_times, long_noisy, dt=long_dt, skip_checks=True)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `AveragedPowerspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 50515.52it/s]\n" + ] + } + ], + "source": [ + "avg_ps = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm=\"leahy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check how many segments were averaged together by printing the `m` attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(\"Number of segments: %d\" % avg_ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AveragedPowerspectrum` has the same properties as `Powerspectrum`, but with `m` $>$1.\n", + "\n", + "Let's plot the averaged power spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAIeCAYAAAAxuAm3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABonklEQVR4nO3deXgT1f7H8U9KS4EWKGsBAVlEFEQBARVQkU0UN8QVF1Bc0Iu4gIoLohf1KopXFvW64HavehUEXOAqiyICCijIosgioLKp7DSF0pLz+2N+aZImadN0pkmb9+t5+tBkJpOT0GTmM+d8z7iMMUYAAAAA4ICkWDcAAAAAQPlF4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcExyrBtQnnk8Hu3atUuSVKVKFblcrhi3CAAAACg5Y4yys7MlSbVr11ZSUvh+DAKHg3bt2qXMzMxYNwMAAABwzB9//KG6deuGXc6QKgAAAACOoYfDQVWqVMn//Y8//lBaWloMWwMAAADYw+1254/k8T/mDYXA4SD/mo20tDQCBwAAAMqdouqUGVIFAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAx3AdDhu53e5CbwMAAACJhsBho/T09Fg3AQAAAIgrDKkCAAAA4Bh6OGyUlZUVcNvtdiszMzNGrQEAAABij8Bho7S0tFg3AQAAAIgrDKkCAAAA4BgCBwAAAADHEDgAAAAAOIbAAQAAAMAxBA7g/337rfTKK1J2dqxbAgAAUH4wSxUgaf9+qUcPK2zs2SONHBnrFgEAAJQP9HAAkn7/3dez8fPPsW0LAABAeULgACQdPRr6dwAAAJQMgQMQgQMAAMApBA5AUl5e6N8BAABQMgQOQPRwAAAAOIXAAYjAAQAA4BQCByACBwAAgFMIHIAIHAAAAE4hcACiaBwAAMApBA5A9HAAAAA4hcABiMABAADgFAIHIAIHAACAU5Jj3YDyxO12F3ob8cs/ZFDDAQAAYB8Ch43S09Nj3QREiR4OAAAAZzCkClBgrwaBAwAAwD70cNgoKysr4Lbb7VZmZmaMWoPioIcDAADAGQQOG6WlpcW6CYgSgQMAAMAZDKkCRNE4AACAUwgcgOjhAAAAcAqBAxBF4wAAAE4hcACihwMAAMApBA5ABA4AAACnEDgAUTQOAADgFAIHIHo4AAAAnELgAETROAAAgFMIHIDo4QAAAHAKgQMQgQMAAMApBA5AFI0DAAA4hcABiB4OAAAApxA4ABE4AAAAnELgABQ4jMrjkYyJXVsAAADKEwIHoOBeDXo5AAAA7EHgAETgAAAAcAqBAxCBAwAAwCkEDkAEDgAAAKcQOAAFX3uDwAEAAGAPAgeg4IDBxf8AAADsQeAAxJAqAAAApxA4ABE4AAAAnELgAETgAAAAcAqBAxBF4wAAAE4hcACiaBwAAMApBA5ADKkCAABwSnKsG1CeuN3uQm8jfhE4AAAAnEHgsFF6enqsm4AoETgAAACcwZAqQME1G9RwAAAA2IMeDhtlZWUF3Ha73crMzIxRa1Ac9HAAAAA4g8Bho7S0tFg3AVEicAAAADiDIVWACBwAAABOIXAAInAAAAA4hcABiAv/AQAAOIXAASg4YNDDAQAAYA8CByCGVAEAADiFwAGIwAEAAOAUAgcgAgcAAIBTCByAKBoHAABwCoEDEEXjAAAATiFwAGJIFQAAgFMIHIAIHAAAAE4hcAAicAAAADiFwAGIonEAAACnEDgAUTQOAADgFAIHIIZUAQAAOIXAAYjAAQAA4BQCByBqOAAAAJxC4ABEDwcAAIBTCByAKBoHAABwCoEDCc/jCb6PwAEAAGAPAgcSXqhwQeAAAACwB4EDCS9UuKBoHAAAwB4EDiQ8ejgAAACcQ+BAwiNwAAAAOIfAgYQXavgUgQMAAMAeBA4kPHo4AAAAnEPgQMKjaBwAAMA5BA4kPHo4AAAAnEPgQMIjcAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER+AAAABwDoEDCY+icQAAAOcQOJDwqOEAAABwDoEDCY8hVQAAAM4hcCDhETgAAACcQ+BAwiNwAAAAOIfAgYRH4AAAAHAOgQMJL1SBOEXjAAAA9iBw/L+pU6eqX79+aty4sapUqaLWrVtr3Lhxys3NjXXT4DB6OAAAAJyTHOsGxItnn31WTZo00dixY5WZmanFixfr4Ycf1qpVq/TWW2/FunlwEIEDAADAOQSO//fJJ5+oTp06+bfPOeccGWM0atSo/BCC8onAAQAA4ByGVP0//7Dhdeqpp0qStm/fXtrNQSkicAAAADgnrgPHunXrNHHiRA0aNEht2rRRcnKyXC6XHn/88YgeP2XKFHXr1k01atRQWlqaTjnlFI0dOzbiuowFCxaoYsWKat68eUleBuIcReMAAADOieshVS+99JLGjx8f1WPvuusujR8/XsnJyerevbvS09P1xRdf6P7779cnn3yi2bNnq3LlymEf/9NPP2n8+PG65ZZbVK1atWhfAsoAejgAAACcE9c9HCeddJJGjBihd955R2vXrtV1110X0eNmzJih8ePHKz09XUuWLNHnn3+uDz/8UBs2bFCbNm20cOFCjRo1Kuzjd+3apUsuuUTHHXecnnrqKbteDuIUgQMAAMA5cd3DcdNNNwXcTkqKLB89+eSTkqSRI0eqffv2+ffXrl1bL774os4880xNmjRJo0aNUvXq1QMee/DgQZ133nk6cuSI5s+fr7S0tBK+CsQ7AgcAAIBz4rqHIxrbtm3TsmXLJEkDBgwIWt61a1c1atRIOTk5mjVrVsCynJwcXXzxxdqyZYs+//xzNWjQoFTajNgicAAAADin3AWOFStWSJJq1qyppk2bhlynQ4cOAetK0tGjR3XVVVdp2bJlmjVrllq2bFnkc7nd7iJ/EP8oGgcAAHBOXA+pisbmzZslSY0bNw67TqNGjQLWlaS//e1vmjFjhsaMGaOjR4/q22+/zV/WqlWrkIXj6enpdjUbMUQPBwAAgHPKXeA4ePCgJBVae+ENCgcOHMi/77PPPpMkjRo1Kqig/Msvv1S3bt1sbiniBYEDAADAOeUucERry5YtxX5MVlZWocvdbjdXKC8DCBwAAADOKXeBo2rVqpJUaP2ENyiU9PoazGBVPoQKF9RwAAAA2KPcFY03adJEkvT777+HXce7zLsuEluocEEPBwAAgD3KXeBo166dJGn37t0BReH+vvvuO0kKuEYHEhdDqgAAAJxT7gJHw4YN1bFjR0nSu+++G7R84cKF+v3335Wamqrzzz+/tJuHOETgAAAAcE65CxyS9OCDD0qSnnrqKS1fvjz//t27d+v222+XJA0dOjToKuMlxXU4yiYCBwAAgHNcxhgT60aEs3z58vyAIEm//PKLdu3apYYNG+qYY47Jv3/69OmqX79+wGPvvPNOTZgwQSkpKerRo4fS0tI0b9487du3T126dNGcOXNUuXJlW9vrcrnCLsvKyqLIPE6NHi39/e+B96WmSocPx6Y9AAAA8c7tdudfaqKo49y4nqXqwIEDWrJkSdD9W7du1datW/Nv5+TkBK0zfvx4denSRS+88IIWL16s3NxcNW/eXCNHjtTdd9+tihUrOtp2lB30cAAAADgnrns4ypqCQ6j8r8NBD0f8GjlSevrpwPtcLsnjiU17AAAA4l256eEoawgUZVOo3gxjrJ9CRskBAAAgAuWyaBwoDv/AUaFC6PsBAAAQHQIHEp5/sPAv7eFq4wAAACVH4EDCCxc46OEAAAAoOQIHEp5/TwaBAwAAwF4Ujdso1CxViH/+wSI1NfT9AAAAiA6Bw0beqcFQthA4AAAAnMOQKiQ8isYBAACcQw+HjbKysgJu+1/4D/GLonEAAADnEDhsxIX/yiaKxgEAAJzDkCokPHo4AAAAnEPgQMILVzRODQcAAEDJETiQ8JilCgAAwDkEDiQ8hlQBAAA4h8CBhEfROAAAgHOYpcpGXGm8bGJIFQAAgHMIHDbiSuNlExf+AwAAcA5DqpDw6OEAAABwDj0cNuJK42UTReMAAADOIXDYiCuNl00EDgAAAOcwpAoJz1ur4XJJyX4RnMABAABQcgQOJDxvsEhOlipU8N1P0TgAAEDJETiQ8LyBo0KFwMBBDwcAAEDJETiQ8AgcAAAAziFwIOH5Bw5qOAAAAOxF4EDC89ZqFOzhoIYDAACg5AgcSHgMqQIAAHAO1+GwkdvtLvQ24lO4WaoIHAAAACVH4LBRenp6rJuAKNDDAQAA4ByGVCHhUTQOAADgHHo4bJSVlRVw2+12KzMzM0atQaQoGgcAAHAOgcNGaWlpsW4CosCQKgAAAOcwpAoJj6JxAAAA5xA4kPDo4QAAAHAOgQMJj6JxAAAA5xA4kPDC9XBQNA4AAFByURWN79u3T59//rnmzZun5cuX648//tDevXtVo0YNZWZm6tRTT1X37t117rnnKiMjw+YmA/YKN0sVPRwAAAAlV6zAsXr1ao0fP17vvfeeDh8+LGNMwPLs7Gxt27ZNy5cv12uvvaZKlSppwIABuuOOO3TyySfb2nDADsZYPxJF4wAAAE6IKHD8+eefeuCBB/TWW2/J4/Godu3a6tu3rzp37qzWrVurVq1aqlatmvbv36/du3drzZo1Wrx4sRYsWKDJkyfrjTfe0KBBg/Tkk0+qbt26Tr8mIGL+oYIaDgAAAPtFFDhatGihgwcP6oILLtDgwYPVt29fJSeHf2jv3r11zz33KC8vT5988olef/11vf766/rwww+1d+9e2xoPlFTBwEEPBwAAgL0iKhrv1KmTli1bpo8//lgXX3xxoWHDX3Jysvr166dPPvlES5YsUYcOHUrUWMBuhQUOisYBAABKLqLkMGfOnBI/UceOHW3ZDmAn/1BBDwcAAID9opqlCqG53e5CbyP++IcKisYBAADsF1Xg2LJli5o0aWJzU8q+9PT0WDcBxUTROAAAgLOiuvBfs2bN1KJFCw0ZMkRTp06lEBxlFjUcAAAAzoqqh6NJkyb65Zdf9Msvv+jVV1+Vy+VS27Zt1bNnT/Xs2VNnnnmmUlNT7W5r3MvKygq47Xa7lZmZGaPWIBLMUgUAAOCsqALHpk2btHnzZs2dO1dz5szRl19+qeXLl2v58uV65plnlJqaqs6dO+cHkESZnSotLS3WTUAxUTQOAADgLJcpeLnwKK1YsUJz5szRvHnztHDhQh0+fNh6ApdLeQk6NsXtdufXdWRlZRFI4tDmzVKzZtbvV14pjRwptWtn3b71Vulf/4pd2wAAAOJVcY5zbZulql27djrxxBPVtm1bHX/88Zo8eXJ+6ADiVcFZqigaBwAAsFeJAocxRt99953mzp2ruXPnavHixTpy5IiMMcrIyNB5552nnj172tVWwHYUjQMAADgrqsDxr3/9S3PnztWXX36pffv2yRgTsm7D5XLZ3V7AVhSNAwAAOCuqwHH77bfL5XLphBNO0E033ZQ/M1WlSpXsbh/gKIrGAQAAnBX1kCpjjDZt2qRly5YpIyNDNWvW1Kmnnmpn2wDH0cMBAADgrKgCx5IlSwLqNubPn6+HH35YNWrUUPfu3dWzZ0/16tVLTZs2tbu9gK0oGgcAAHBWVIGjY8eO6tixox544AEdPnxYCxYsyA8gH374oaZOnSqXy6WmTZuqV69eeumll+xuN2ALisYBAACclVTSDVSqVEm9e/fW2LFjtXz5cu3cuVMjRoxQamqqNm3apFdeecWOdgKOYEgVAACAs2y5DkfBq47v2bNH3usJpqam2vEUgCMIHAAAAM6KKnDs3btX8+bNyx9GtXnzZklWIbnL5VLbtm3zp8c988wzbW0wYKeCs1RRwwEAAGCvqAJHnTp1ZIzJ78Vo2rRpfsDo0aOHatasaWsjAacULBqnhwMAAMBeUQWOjIwM9ejRIz9kMBuVxe12F3ob8YeicQAAAGdFFTh27dpldzvKhfT09Fg3AcVEDQcAAICzSjxLFVCWETgAAACcZcssVbBkZWUF3Ha73crMzIxRaxCJgkXjSX4RnMABAABQclH3cOTm5mrcuHE6/fTTVaNGDVWoUCHkT3Jy4mSatLS0oB/Et4I9HC6Xr5eDGg4AAICSiyoN5OTkqEePHvrmm2/yZ6oKp6jlQCwVnKVKsgLH0aP0cAAAANghqh6O8ePHa/Hixerdu7fWrVun66+/Xi6XSzk5OVqzZo3uv/9+paamatSoUfJ4PHa3GbBNwR4O/38JHAAAACUXVQ/HlClTVLVqVf33v/9V9erV5XK5JEkpKSlq1aqV/vGPf6hz58665JJL1KZNG1122WW2NhqwC4EDAADAWVH1cKxfv16nnXaaqlevLkn5geOo3xHahRdeqHbt2mnixIk2NBNwRsGicck3tIrAAQAAUHJRBY7c3FzVqVMn/3blypUlSQcOHAhYr2XLllq9enUJmgc4q7AeDorGAQAASi6qwFGvXj3t2LEj/3b9+vUlSWvXrg1Yb/v27QG9HkC8CVc0XnAZAAAAohNV4DjxxBO1cePG/NudO3eWMUZjx47NLxL/6quv9PXXX6tly5b2tBRwADUcAAAAzooqcJx77rnaunWrli5dKknq1q2bWrVqpU8++UTHHHOMTj31VPXq1UvGGN1+++22NhiwE4EDAADAWVHNUjVgwADVqlUrv2g8KSlJM2bMUP/+/bV69Wr98ccfqlChgoYNG6ZBgwbZ2V7AVhSNAwAAOCuqwFG7dm1dc801Afcdd9xxWrlypdatW6c9e/bo+OOPV61atWxpJOAUisYBAACcFVXgWLBggSpUqKAuXboELaNmA2UJReMAAADOiqqGo1u3bho1apTdbQFKHTUcAAAAzooqcNSoUUMNGjSwuy1AqSNwAAAAOCuqwNG2bVtt2LDB7rYApS5U4KBoHAAAwD5RBY5hw4Zp2bJlmjlzpt3tAUpVqFmqKBoHAACwT1RF4+3atdPQoUPVr18/DRo0SP3791eTJk1UuXLlkOs3bty4RI0EnMKQKgAAAGdFFTiaNm0qSTLGaPLkyZo8eXLYdV0ul/I4VYw4VdgsVZLk8UhJUfUDAgAAQIoycDRq1Egul8vutpR5bre70NuIP4XVcHiXEzgAAACiF1Xg2LJli83NKB/S09Nj3QQUU2FDqiSrjiMlpXTbBAAAUJ5w7hYJrbCicYk6DgAAgJKKqocDoWVlZQXcdrvdyszMjFFrEImiejgIHAAAACUTUQ/H9u3bbXkyu7YTr9LS0oJ+EN+KKhoncAAAAJRMRIGjRYsWGjlypPbu3RvVk+zZs0f33XefWrRoEdXjAadEUjQOAACA6EUUOHr37q2xY8eqYcOGuvbaazVnzhzl5OQU+picnBx9/vnnuvrqq9WwYUM9++yzOvfcc21pNGCXSIrGAQAAEL2IajimT5+uuXPn6u6779a7776r9957TykpKWrbtq1OPPFE1apVS9WqVdOBAwe0e/du/fTTT1q5cqVyc3NljNFJJ52k5557Tj179nT69QDFQtE4AACAsyIuGu/Zs6dWr16tOXPmaNKkSZo9e7aWLl2qpUuXSrIu8GeMyV8/NTVVF154oYYOHUrQQNyiaBwAAMBZxZ6lqlevXurVq5dycnK0aNEirVixQn/88Yf279+vjIwM1a1bV+3bt1fnzp2VmprqRJsB21A0DgAA4Kyop8VNTU1V9+7d1b17dzvbA5QqisYBAACcxYX/kNAoGgcAAHAWgQMJjRoOAAAAZxE4kNCYpQoAAMBZBA4kNIrGAQAAnEXgQEIrqmicGg4AAICSIXAgoVHDAQAA4CwCBxIagQMAAMBZUQWOBQsWaNGiRXa3BSh1FI0DAAA4K6rA0a1bN40aNcrutgClzj9QJP3/p4EL/wEAANgnqsBRo0YNNWjQwO62AKXOGyj8QwYX/gMAALBPVIGjbdu22rBhg91tAUqdN3D4hwyGVAEAANgnqsAxbNgwLVu2TDNnzrS7PUCpInAAAAA4K7noVYK1a9dOQ4cOVb9+/TRo0CD1799fTZo0UeXKlUOu37hx4xI1EnCKd8gUgQMAAMAZUQWOpk2bSpKMMZo8ebImT54cdl2Xy6U8BsIjToXq4aBoHAAAwD5RBY5GjRrJ5XLZ3Rag1FE0DgAA4KyoAseWLVtsbgYQG9RwAAAAOIsrjSOhETgAAACcReBAQqNoHAAAwFklChxff/21rrjiCjVs2FCpqakaPHhw/rI5c+bowQcf1M6dO0vcSMApFI0DAAA4K+rA8fjjj6tbt26aOnWqtm/frtzcXBlj8pdXr15dTz/9tKZNm2ZLQwEnUDQOAADgrKgCx//+9z898sgjOuaYY/TBBx/ojz/+CFqnU6dOqlOnjj799NMSNxJwCjUcAAAAzopqlqrx48crNTVV//vf/9S6deuw651yyinasGFD1I0ra9xud6G3EX8IHAAAAM6KKnAsW7ZMnTp1KjRsSFKdOnW0ePHiqBpWFqWnp8e6CSgmAgcAAICzohpS5Xa7Va9evSLX279/vzweTzRPAZSKULNU+ddzUMMBAABQMlH1cGRmZmrjxo1Frrdu3To1atQomqcok7KysgJuu91uZWZmxqg1iAQ9HAAAAM6Kqoeja9eu+uGHH7Ro0aKw63z66afauHGjzjnnnKgbV9akpaUF/SB+GSN5O+DCzVJF4AAAACiZqALH8OHD5XK5dOmll2rGjBnKKzDu5LPPPtNNN92klJQU3XHHHbY0FLCb/2g/ejgAAACcEVXgaN++vcaNG6ddu3apf//+ysjIkMvl0ocffqiMjAz17dtXf/75p8aNG6dWrVrZ3WbAFv5hggv/AQAAOCPqC//deeedmjVrljp27KhDhw7JGKODBw/qwIEDatOmjT7++GMNHTrUzrYCtvLvmAvXw0HROAAAQMlEVTTude655+rcc8/V7t27tXnzZnk8HjVq1Ej169e3q32AY8L1cDCkCgAAwD4lChxetWrVUq1atezYFFBq/MMEReMAAADOiGpI1ZtvvqmtW7fa3RagVNHDAQAA4LyoejhuvPFGuVwutWjRQj179lTPnj3VvXt3VatWze72AY6haBwAAMB5UQWOQYMG6YsvvtD69eu1fv16vfTSS0pKStKpp56aH0C6dOmilJQUu9sL2IaicQAAAOdFNaTq9ddf15YtW7Ru3Tq98MILuvjii1W1alUtXbpUTz75pHr06KEaNWqoT58+GjdunN1tBmzBkCoAAADnRT0triS1aNFCt912m6ZNm6bdu3dryZIleuKJJ9StWzfl5eVp9uzZuv/+++1qK2ArisYBAACcV6LA4S83N1cHDx7MvxaH9+rjxhi7ngKwFT0cAAAAzivRtLg//PCD5syZo7lz52rhwoU6fPiwjDGqVq2a+vbtm1/PAcQjisYBAACcF1XguOqqq/TFF19o9+7dMsYoJSVFp59+en7A6NSpkyr4H8EBcYiicQAAAOdFFTg++OADuVwunXzyyRo9erR69+6tKlWq2N02wFEMqQIAAHBeVDUcVatWlTFGK1eu1DXXXKNLL71U48aN08qVK+1uH+AYisYBAACcF1UPx549e7R06VLNnTtXc+fO1ZdffqnZs2fL5XKpdu3a6tGjh3r16qVevXqpYcOGdrcZsAU9HAAAAM6LKnBUqFBBZ5xxhs444wyNGjVK2dnZmj9/vubOnat58+bp/fff1/vvvy9JOv7447V27VpbGw3YIZKicWo4AAAASqZEs1R5ValSReeff77OP/98rVy5Uu+8844mTZqkw4cPa/369XY8BWA7ejgAAACcV+LAsXXr1vypcefNm6e//vpLkvJnrzrjjDNK3EjACZHMUkXgAAAAKJmoAseMGTPy6zc2bNggyQoYLpdLJ510Uv70uGeffTazVyFu0cMBAADgvKgCx6WXXpr/e6NGjfIDRo8ePVS3bl3bGgc4iVmqAAAAnBdV4LjkkkvUq1cv9ezZUy1atLC7TUCpoGgcAADAeVEFjmnTptndDqDUMaQKAADAeVFd+A8oDygaBwAAcF6JAsfatWs1ZMgQtWzZUunp6UpPT1fLli112223ce0NxL1wPRxJSaHXAQAAQPFFPS3um2++qSFDhig3N1fGmPz7N2zYoA0bNuiNN97Qyy+/rIEDB9rSUMBu4YrGvbfz8ggcAAAAJRVVD8f333+vm2++WUeOHFHfvn01ffp0rVq1SqtWrdKMGTN04YUX6siRI7r55pv13Xff2d1mwBbhejj8b1M0DgAAUDJR9XA888wz8ng8mjx5sm644YaAZSeddJIuuugivfnmm7rxxhs1btw4vffee7Y0FrBTJIGDHg4AAICSiaqH4+uvv1bbtm2Dwoa/QYMGqX379lqwYEHUjQOcFK5o3P82gQMAAKBkogocu3bt0oknnljkeieccIJ27doVzVMAjqOHAwAAwHlRBY6MjAz99ttvRa7322+/qXr16tE8BeC4oorGC64DAACA4osqcHTs2FGLFy/WF198EXadL774QosWLdJpp50WdeMAJ1E0DgAA4LyoAscdd9whj8ejCy+8UPfdd59+/PFHZWdnKzs7W2vWrNGIESN04YUX5q8LxCOGVAEAADgvqlmqzj33XD300EN64oknNG7cOI0bNy5oHWOMRo0apd69e5e4kYATCBwAAADOi/pK42PGjNGsWbN0zjnnKDU1VcYYGWNUsWJFde/eXbNmzdJjjz1mZ1sBWzFLFQAAgPOivtK4JPXp00d9+vTR0aNHtXv3bklSrVq1VKHg0RsQhwrr4fAWjVPDAQAAUDLFChwbN27UtGnTtGXLFqWmpqpt27a64oorVLlyZdWtW9epNgKOKGyWKno4AAAA7BFx4Hj++ed133336WiBI7BRo0Zp1qxZOumkk2xvHOAkajgAAACcF1ENx8KFCzV8+HDl5eWpSpUqateunZo3by6Xy6WtW7eqf//+8ng8TrcVsBWBAwAAwHkRBY5JkybJGKOBAwdq586d+u6777R+/XotX75czZs318aNG/XZZ5853VbAVhSNAwAAOC+iwPHNN9+oYcOGevnll5WWlpZ//8knn6zx48fLGKNvv/3WsUYCTqBoHAAAwHkRBY4//vhDHTp0UMWKFYOWde3aVZL0559/2tuyUrZx40YNGTJE7du3V0pKipo0aRLrJsFhkRSNezySMaXXJgAAgPImoqLxI0eOKCMjI+SyatWq5a9Tlv3444/69NNP1alTJxljtHfv3lg3CQ6LpIZDskIHMz0DAABEJ+oL/5U3F154obZu3app06bptNNOi3VzUAoiDRzUcQAAAEQv4mlxN27cqLfffjuq5ddff33xW1bKkpLIXommsKJx/yFWBA4AAIDoRRw4Fi1apEWLFoVc5nK5wi53uVxRB45169Zp9uzZ+v777/X9999r7dq1Onr0qMaMGaOHH364yMdPmTJFL7zwglauXKkjR47ouOOO0zXXXKO7775bKSkpUbUJ5UekPRwUjgMAAEQvosDRuHFjuVwup9sS5KWXXtL48eOjeuxdd92l8ePHKzk5Wd27d1d6erq++OIL3X///frkk080e/ZsVa5c2eYWoyyJpGi84HoAAAAonogCx5YtWxxuRmgnnXSSRowYoXbt2ql9+/Z68skn9e9//7vIx82YMUPjx49Xenq6vvrqK7Vv316StGvXLnXv3l0LFy7UqFGj9Oyzzzr9EhDHqOEAAABwXsRDqmLhpptuCrgdaZ3Fk08+KUkaOXJkftiQpNq1a+vFF1/UmWeeqUmTJmnUqFGqXr26fQ1GmULgAAAAcF65q5Tetm2bli1bJkkaMGBA0PKuXbuqUaNGysnJ0axZs0r0XG63u8gfxC+KxgEAAJxX7gLHihUrJEk1a9ZU06ZNQ67ToUOHgHWjlZ6eXuhPZmZmibYPZ1E0DgAA4Ly4HlIVjc2bN0uyCt3DadSoUcC6kpSdnZ3f47Fp0yZlZ2dr6tSpkqSOHTvq2GOPdarJiBGGVAEAADiv3AWOgwcPSpLS0tLCrpOeni5JOnDgQP59f/75py6//PKA9by333jjDQ0aNChoO1lZWYW2xe1208sRx5ilCgAAwHnlLnBEq0mTJjLGFOsxhYUaxD96OAAAAJxX7mo4qlatKkmFFmx7eyaqVatWKm1CfCoscPj3eFDDAQAAEL1yFziaNGkiSfr999/DruNd5l0XiamwWaro4QAAALBHuQsc7dq1kyTt3r07oCjc33fffSdJAdfoQOJhSBUAAIDzyl3gaNiwoTp27ChJevfdd4OWL1y4UL///rtSU1N1/vnn2/rcXIejbKFoHAAAwHnlLnBI0oMPPihJeuqpp7R8+fL8+3fv3q3bb79dkjR06FDbrzLOdTjKFno4AAAAnBfXs1QtX748PyBI0i+//CJJevnll/Xpp5/m3z99+nTVr18///Yll1yiYcOGacKECTr99NPVo0cPpaWlad68edq3b5+6dOmiMWPGlN4LQVyiaBwAAMB5cR04Dhw4oCVLlgTdv3XrVm3dujX/dk5OTtA648ePV5cuXfTCCy9o8eLFys3NVfPmzTVy5Ejdfffdqlixou3tLXhdDq7DEd8oGgcAAHBeXAeObt26FfvaGP6uuOIKXXHFFTa2qHBcl6NsYUgVAACA88plDQcQCf8gkVTgk0DgAAAAsAeBAwnLGyQqVJBcrsBlBA4AAAB7EDiQsPwDR0EUjQMAANiDwIGE5Q0SoQIHPRwAAAD2IHAgYRXWw0HgAAAAsEdcz1JV1hS8sjhXGo9v3iBR8CrjEoEDAADALgQOG6Wnp8e6CSgGajgAAACcx5AqJCyGVAEAADiPHg4bcaXxsoWicQAAAOcROGzElcbLFno4AAAAnMeQKiQsAgcAAIDzCBxIWIXNUkXROAAAgD0IHEhY9HAAAAA4j8CBhEXgAAAAcB6BAwmLWaoAAACcxyxVNuJK42ULPRwAAADOI3DYiCuNly0UjQMAADiPIVVIWPRwAAAAOI8eDhtxpfGyw+Px/U7gAAAAcA6Bw0Zcabzs8B8mReAAAABwDkOqkJD8QwSBAwAAwDkEDiQk/xBB0TgAAIBzCBxISPRwAAAAlA4CBxISgQMAAKB0EDiQkCgaBwAAKB0EDiSkono4qOEAAACwB4EDCYkhVQAAAKWD63DYyO12F3ob8aOoWaoIHAAAAPYgcNgoPT091k1AhOjhAAAAKB0MqUJCInAAAACUDno4bJSVlRVw2+12KzMzM0atQWGKmqWKonEAAAB7EDhslJaWFusmIEL0cAAAAJQOhlQhIVE0DgAAUDoIHEhI9HAAAACUDgIHEhKBAwAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJiaJxAACA0kHgQEKihwMAAKB0EDiQkAgcAAAApYPAgYRE0TgAAEDp4ErjNnK73YXeRvyghwMAAKB0EDhslJ6eHusmIEJFFY27XNaPMQQOAACAkmBIFRJSUT0c/vcTOAAAAKJHD4eNsrKyAm673W5lZmbGqDUoTKSBIy+PGg4AAICSIHDYKC0tLdZNQISKKhqXrKFWOTn0cAAAAJQEQ6qQkBhSBQAAUDoIHEhIBA4AAIDSQeBAQipqliqJwAEAAGAHAgcSUiQ9HN4gQtE4AABA9AgcSEgMqQIAACgdBA4kpEhmqSJwAAAAlByBAwmJHg4AAIDSQeBAQqJoHAAAoHQQOJCQKBoHAAAoHQQOJCSGVAEAAJQOAgcSEkXjAAAApYPAgYREDwcAAEDpIHAgIVE0DgAAUDrCHGohGm63u9DbiB/FKRr3eCRjJJfL+XYBAACUNwQOG6Wnp8e6CYhQcYZUedcP1xMCAACA8BhShYRUnKJxiWFVAAAA0eKcrY2ysrICbrvdbmVmZsaoNShMND0cAAAAKD4Ch43S0tJi3QREqLiBg4v/AQAARIchVUhIkcxS5X8/PRwAAADRIXAgITGkCgAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJqTgX/pMoGgcAAIgWgQMJKZKicXo4AAAASo7AgYTEkCoAAIDSQeBAQiJwAAAAlA4CBxISs1QBAACUDgIHEhJF4wAAAKWDwIGERNE4AABA6SBwICFRwwEAAFA6CBxISAQOAACA0kHgQEIqbtE4NRwAAADRIXAgIRW3aJweDgAAgOgQOJCQGFIFAABQOggcSEgEDgAAgNIRZkJQRMPtdhd6G/HDGyCSkiSXK/Q6BA4AAICSI3DYKD09PdZNQIS8ReDhejcKLqNoHAAAIDoMqUJC8vZYFBY4KBoHAAAoOXo4bJSVlRVw2+12KzMzM0atQWEiCRwMqQIAACg5AoeN0tLSYt0ERMgbIJIL+QQQOAAAAEqOIVVISPRwAAAAlA4CBxJScWs4KBoHAACIDoEDCam4s1TRwwEAABAdAgcSEkOqAAAASgeBAwmJonEAAIDSQeBAQqKHAwAAoHQQOJCQKBpHosjNjXULAACJjsCBhETROBLBkCFSerr00kuxbgkAIJEROJCQGFKF8m73bunll6UjR6SnnpKMiXWLAACJisCBhETROMq7b77x/f7bb9Ivv8SuLQCAxEbgQEIqbg8HNRwoaxYvDrw9b15s2gEAAIEDCam4ReP0cKCs8e/hkKQvvohNOwAAIHAg4Xg8vvHs1HCgPMrNlZYuDbzviy+sv30AAEobgQMJxz88EDhQHq1aJWVnB963a5e0enVs2gMASGwEDoS0e7d07bXSmDHlb3abkgaODz+Ubr9d2rHD/rYBdvCv32jZ0vc7w6oAALFA4EBIw4dL77wjPfKINHNmrFtjL//wEOksVd6i8eXLpcsus65rcPfdzrQPKCn/+o0HH/T9TuE4ACAWCBwIsnu39N//+m6//HLs2uKESHs4QhWNjxzpu++zz5i9CvHJ28NRpYp09dVS3brW7a++4srjAIDSR+BAkDfekHJyfLdnzZJ+/z127bGbf0gozpCquXOlOXN89+3fL33/vf3tA0pi2zbp11+t3zt1klJSpO7drdtZWdJ338WubQDg7/BhaefO8jd0G8EIHAjg8VjDhQre99prsWmPE6Kp4cjLC+zd8PIPIEA88B9O1bmz9W+PHr77GFYFOGfJEqlJE+m886yDaYSXm2udDKlfXzr1VOm99xg1UJ4ROBBg9mxp0ybr9/btfQfdr71Wfr4Iogkc06f7ejOaNvXdT+BAvCFwALFx6JA12cqvv1pDbt94o/D1t2+X9u4tnbbFow8+8H1frVghDRggHXecNH681RuL8oXAgQAvvuj7/ZFHpAsusH7fvl369FN7n8vtli691Ppxu+3ddmGiKRrfutX3+0svSc2bW79/8035/2LMzpamTpXWr491S2LnwAFr5/jhh/Hf9e8/Q9Xpp1v/Nm1qnXX1Lj90qNSbBZR7Tz4pbdzou/3MM+FP1M2aJTVuLDVrFnyRzkRgjDRuXPD9v/4q3XWX9d7MnVvqzYKDCBzIt2WLL1Q0aiT17SsNGeJbbnfx+OTJVs/B9OnSW2/Zu+3CRFM07tW9u9S7t9Srl3U7N1dasMDe9sWTDRuk006TLr9catVKGjYscc7IHTxodfH362cVXV95pTVD2YQJsW5ZeIcP+3riWraUatXyLfP2chw5Ii1aVPpti5XVq6Xjj5cuvpghLojshMHHH0unnGId+EZ6gmHtWunppwPv27zZOllTUE6ONHSotS/at086/3xp5crInqc0TZtmhahffrF/2/PnW70akjWc6osvrGFoXnv3StddV/5P6CUSAkc5t25d5FcXfuUV35frLbdYB9y9e/vOjH7+ufUFapfPP/f9/tVX9m23KNEMqfJ66inJ5ZJ69vTdV16HVX3yidShg7RmjXX76FFp4kSpRQvrb6W8Xgxx/Xqra79uXevfGTMCJ1F4/PH43Ql+/71vFirvcCqvRB1WNWKEFZw//lh67rmSb89b0/bvf5ffz0A8OXLEvm39979SRoZ1Mu2330KvM368dMkl1sUzx48P7DEMx+ORbr3V99nznpCSrBBSMLRMnBi4L923z9rXxlMv8pdfSv37Sw89ZAX2K66Qli2zb/v+n8Xhw6VzzrF6fVavlrp2te7fuVMaO9a+50SMGTgmKyvLSDKSTFZWVqk//7ffGpOebsygQcbk5RW+7uHDxtSpY4xkTHKyMTt2+JY98YR1v2TMAw/Y07bDh42pUsW33fr1jfF47Nm2l8djzMaNxrz7rjFTpxpz6JB1//r1vue95prwj//5Z996kjGXX+5btmePMUlJ1v0nnWRvu2MtL8+Yhx8OfO3NmgX+f0nGtG9vzNKlzrVj505jLrnEmNtuM+bgwfDr/fKLMVdcYcyNNxqzf3/Jnu/2262/f//XKRlTr54xrVr5bj/1VPG2vWSJMW+9ZUx2dvTti8Qzz/ja+Oqrgct27PAt69TJ2XYUR26uc9v+5ZfA/8e0NGO2bi3ZNp9/3re9M84wZt264j1+6VJj3n/fmK++MmbDBmNisGsoE3791Zh+/azv2XPPtd6rkti715iaNX3/d9WqGfP22779Tl6eMXfcEfzZv+66orc9ebJv/ebNrc95x46++z77zLfuX38ZU726db/LZUybNr71GjWyXnc8OOec4PdCMqZbN2M+/7xk2167NvA1HzkSuHz9emNSUqzllSsb89tvJXs+OKc4x7kEDgfFMnAcOGBM7dqBB8s5OeHXf+cd37pXXhm4bMcO30FYZmbwl0M0vvwy+IuspDsUY4xZudKYv//dmL59A1+/ZEyTJsZ8+GHgl93114ff1oYNvvUqVLC+BP116uRbvn17ydseD3bvtnbuBYPWwYPG/P67MVdfHbisUiVjli8vfJt//WXtMPbuLd7B5TXX+J7n1FOtQFDQ999bf5Pe9c4/v+hwXVBWlvU3k54e+Npq1bLCzvz51jbXrvWFzJo1rc9YJF58MTCkObnz7NfP91xr1gQvb93aWpaUZP1/xNq//mUF2R49nHlf7r8/+Hvm2muj317B71XvAdHzzxtz9Gjhj/3hB2N69w59EFe1qjFnnml9xhLdkSPGjB0bfIIjNdX6nB4+HN12H3gg9Ht/6aXGbN5szIUXBt5fsaLveXfvDr/dP/8MDDKzZ1v3T53qu++cc3zr+4eaG26wTl6dcorvvuOOCzzhFwsLFwaeDPT/jvX+vPde9Nu/9Vbfdp55JvQ6d99dvNBnh/HjrQD05JOl83x22b3bOqaKBQJHnIh1D8fUqb6zBN6DsXBnWLt08a331VfByy+7zLd8yhTf/QcOWGdvt20rXttCffm//nrodXNzrQO/q68u/Az2zz8Hvt5wP/5nlG68Mfz2Dh0yJiPDWm/YsODlDz7o287bbxfv9cejw4eNOf30wJD17LPBPU9ffWXMySf71jv2WCtUhPLcc76DdP8Dh9q1rQO/cOHV/+De+9O0qfV/7PX558EhQTLmnnsif80rVxrTsGHg49PSjHnssdC9Kv4h6Iknit7+2LHB7cvMNGbRosjbGCmPx3dgUL166APgYcN87Zgxw/42FMfixdbfmH/AmzXLvu3n5Ph6bVNSjKlRw/dcixdHt81HHw38fPj/v551ljE//hgceH/7zZiBA62z2UV9N/XpY39Pr9fu3casWlX09hcsMOYf/4hNIP36a6vHuLD3qGVLY774onjb3brVCobeIHH55YHb9P+/SU425o03jLnzTt9948eH3/b11/vWGzDAd39enjHHH+9btmSJ1RvmPXlXpYpvv/nHH4HrtmlTeK+u0847L3C/fOiQ1WPq38ZTTolu23/+aZ2o8gbtfftCr7dnT2CQW7YsuufzeIz56COr97qwz/3EiYF/E2+8Ed3z2c3jsb7L9u61/l5+/tmY6dONGT3amIsuMqZxY1+bY3Hik8ARJ2IdOIwx5n//8324Jas71P/M7OHD1pAj7/LWrUPvkObMCVzniiuMadHC90VdrVpwD0BhTj01eEdyww2h133jDd86d90VfptDhwZur2ZN64tz9GjrDGqondfNNxfezvXrrV6RUGfN/XtpCuspKQs8Hmvonff11KlT+E790KHAHp4ePYJ7L55+uugDrGefDb19/wN775lG70HpokXW8CT/oU9t2wbefu21ol/z0qWBB6EVKljBNlRPite6db4gVKNG+ADs8QQPS/N/rpQUaxiGnTZtCjxwDWXGDN86N97o3MFtUfbts3ocQ/1NPPSQPcOs/vtf3zavvNKYF17w3e7YsegeiYL+/NMXcJOTrbBa8DvH+3d0zDHGnHaaMRdcEPj9K1kB/dFHrTO4V11lBZVq1XzL33mn5K+9oF27rDZJ1nd3qINZj8cKyN7v9K5di99bGK09e4y56abgEDB0qHWQNWJEcMAbMyby7d98s+9xd99t3Td1qvV94r/N6tWNmTvXWr5mje/+Vq1Cf1bmzfOtk5ER/N3x6qu+5ZdeaszFF/tujx4duO5vvwUePD7ySOSvz07ffedrQ+PGgSeFjh61/q69y1esKP72H3ss+P8inPHjfeueeWbxv69++smYXr1820hOtr4HCm7n3/8O/hxXrGgNSy+OffvsGyK6aJH1XVHw776wHztP2ESKwBEjWVlZAT9//PFHzAOHMdYZ6apVfX+UnToZ85//WDuegmeIX3gh9DaOHrW6egv7Yx8yJLL2/PWXb6d2wgm+A8rjjgu9/kUX+Z6jWrXQO8uDB3077cqVrTON/l8qHo91VqBp0+jaHIp/HYrdNSh791ohr7T+bP75T997UrmyNVSpKFu3Bna1jxjhW/aPfwS+z716WUO1One2eke8//9VqgSPWfbv3ahVyzqj49+j4h9AJGsYUXa2NTzH/4B+/vzwbV+wIPgz4d97Uhj/M5p//3vw8qNHA8+OSlYX/a5dxnTvHnj/sGHRncmcMMEanjNunLVdY6zPdGHtMsb6u/LvOerdO/yJgj//tEJ1NENYZs60Duofeyx4B+zxWAHA24Yzzgj8jEvWiZGSnq3r1s23vS+/tNrhf/Y81BlM79C/UPyHePh/b3zxRfjw5P+TkWEF7FDvp38QrFPH93/qLzfX+v++6y7r/6Y47rknsC2tWwfWnuTkWCd8Crb5sceK9zzF5fFYPeYFh+ycemrwGe0ffgjugY1k6JH/90m1aoG9sTt3+oZSNWkSPAzRv+d/4cLAZVlZVm2bd/nLLwc/9+HD1r6h4Ptav37o7/affgqsXSis3qgk+5ulS60e4lDb8B+W+eKLwctfesm3vLATgKEcOmRM3brWY5OSrKFshTlyJLBX5cMPI3ueffusz2uoejzJmFtu8Q0x/+ijwIN6/1q9+vUjH73x7LPWY2rWtD5LM2dGP/wvN9eYE0+MLGSkp1snB+64w/qMlDYCR4x43/RQP7EMHMYEn80N9dO8eeHj0v3PEErW0JiOHX0H3ZUrFz7W1cv/zOO99wZ+qRfcgWRlBZ8hDPUl6H8mqahhUk88YQ2bcbmMmTat6PYWxr/rOdSY+eLKzbXeZ+//VcOG1pk4J89Ef/554EHof/8b+WMXLAj8Un/33cBJBiRjHn88+HG33+5bftFFgcsGDPAt8xZn79sXupfq9tsDz8L6H+jXqmVNGhDq9XqHV0jGnH125PUYxli1Pd4dVEZG4AHqL78E17lMmOBbfuRIcGFqlSpWiJk3L7Kz7v4Hp97P4bXXWkMmvffNmRP+8QXrGipWtM6mZmdbO9dJk6wx596/idNPL16x+44dvqGIkhUy/UPl66/7llWvbsyWLdbf9zPPBO7469WLfuiZf51Wy5a+z8/cub77MzOtHqq9e62DKG+PXbVqxnz6aeD2fvvNep+933MFD0IOHLAOzi+6yKrTycz0heqKFY0ZPrzo78b+/X1tGzgwcNnhw9YZcu/ydu0inyBh8+bgkO59nTNmWAfgZ50VuMzb9qSk4ANtu2zdGnjGX7JOAkycGL5n5ejRwPH/4XpI/fkfQIcbBrl5c+jhnW+/7XtswToC/+GJZ54Z/rMbalhlYb2b/t9h4fZlq1dbYef444tf7zFrlu+zPWCAbzIVYwJ7derXD1zmtWeP77NQp074YbHPP2/VUv7tb9b/6Zw5voNyyTrhGYmPPgo8RimsFtXjsXorvKHG+9O4ceCJIsk6SH//fd9r8e5PcnICPw+nnRb6ffD366+B2/H/jF1zjRWUinMI+Nprvm3UrWu19dxzrb/lAQOsIekffGDti4rbU2s3AkeMxHPgMMYav1vwTFLNmtbObfr0og8qPB7rg/P229a2vF80/gdQTz9ddDtuvDHwwGjkSN/tDz4IXHfatOAP8YknBvdetG/vWx7JWM/9+4s+uxKJceN8z/v88yXb1vz5gWfy/X/OOy/0wXNJrV8feHD44IPF38akSb7HFzyj9I9/hH7Mvn3WAaV3PW89wdq1voOd2rUDz/7n5FgH1t7HPPlkcBDLzbWGE3nXOeYY62z6iBHWgf/zzwcefPXpY4zbXfzX7P83PHq0dZb74osDx4InJYWvS3r11dD1Ro0bWwf/4QLQzp2+uoRwP0lJhR+MejzW56pRo+DvgnB1BgMGRB56CwYuyQrQ06dbvUj+xcAFP+8LF/qG/kjWexTqzHFR/HsjnnsucJn/AejJJwef0PAecI8b53vNgwf7lt13X2RtyMmxwlSkPVjbt/tmL/J+NxpjHaiEKjbv0SOyM6j+n5nrrw88gysF7hMqVbJOOPjXqjRuHNzrs3On9f/coIEVFIt7QuT99wN7GCWrpyGSovl163yPOemkwp978eLAA+ji7oazs33fj/7F419/7fusVK5c+HDi/fsD/19PPrnwoWq7dgXOYrVyZeDy3bsDe1Yeeijy17NzZ/DB+Gmn+UKL/8megp8bf1dc4Vvvo4+Cl3/2WeHfUZJV0xIJjydwxqxBg0L38G3bZg1h9H+OSpWsv2Xvd/zbb4cOBt7vOO/B+59/Bg5vGziw8L8z/zAT7ju0cmVrH/Hmm4WffMjODvwO/PrryN6nWCFwxEi8Dqnyt3GjdaZm2DDrIMmO8Ybr1/s+ZA0bFj6LlcfjK9KtVMk6czBzpu/Ddccdgetfd13gAVHBnbEx1heX9/4OHUr+eopj1Srfc/ftG902fv89cIiJ96fggUGlStZQmQ0bCj/LUxS32xrvv3hxYLfthRdGd7bE4wk9HGPs2MIf9957vnUbNbIOzPx3eKHCq8djnaUubMjXvn2RdUdfemn0Xd6bNoXvrpesg+qCB9MFrVplDc3xPxjx/zsuuFPyeAJn0unTxxoqU7Dn8uSTI3sNWVlWb0e413HccVZPoPd2uPDo7/PPAz+vBYca+YelcPVTf/4ZPCXnLbdE/n+Vne37rgg1w9Avv4Q/6GjQIPD2jTda/0/eM8LVq0fWixutl1/2PXezZlYI8e8Brlw58P/7yisL/8yuWOH7bq5Z0woOBw8GF01LVvDwjlnPzbXOqnqXXXGF74BrypTgmbouuyzyXsIlSwLDdmam9VkpTmjp3Nn3+HDfBR6P1fPgXe+VVyLfvj//nozx463vzxYtfPcVdmDuNWpU6H1XOP7TW597ru/+vLzg8Nm8eWTv3dGjwTMQ+n//Tpni+zuvXbvwcOa/z7700sBleXlFF/536VJ0e/0tXx54IJ+WZgWtvXut1/7224EnziSrx3DLluBtLV0a/Dm/4ILg45YVKwJ7wv/5z9Bt++GHwM/Y9u3WCbTrrgv93S5ZPbk33xz6WMm/9vHCC4v3PsUCgSNOxEPReGnxPxB6//3w6/30k2+93r2t+/bu9X1g27b1rXvkiG/nWq1a4Bh1/w+if7Gz3YW4RfGfGSgtzQoCHo9VN3PDDdZwlLfeCr9DmDUrMEhJ1nCJhQutx0ydGni2w/vjclnBrWtX60zjgAHWQcTFF1u9IT16WDvb006z3tNWraz6lVCzOknW8pJcw+LQocB558eNi+y98995Xnpp+N6N4vrll8CDkoI/115b8rDtX4jq/TnmGKvnJdysXaEcOmR9Zs4/P3BoW9u2gWP5/YcN1q1rzWxjjHWA/fbb1k68Zs3iDYkzxqp38h7gt25t9bCsXOnrCfH/m/v44/Dbyc62Dn78P4t79wYOFfL+nHBC4Qc0ubnW+HD/x5xxRmTjqf2HwYSbAveRR3zr1KplHVSuWGEdlPkv8x7ke38PNTzQTkePBh4k+/cCVKtmne1cvDiwTXfeGf77xf/z5X9g7PFYw1u8Q9hOOSV4WuJffw08iHvuOavIPdxnqlWroicO2b3bKoT1PubKK60hOsX1yiu+bRQ8SeX1ySe+dVq2jP7zXrB43L8e5owzIiusz8uzhgLPnBnZcx46FPg+ea/jcd99od/7SK6H9NxzvvXr1bOm7y04Q5/3p6hpYXNzfT3UKSmB31P+/zcdO1p/s6++ag0r7NvXCj1r10b2PvibNCm4NzIjI3g4YGam1ZtaGP8gf+654Ud3vP++b7tJSdbfVEH+Ia7gfi8nx5q455ZbQk8tfM01gScMdu/2feaSkqyhc/GOwBEnEilw+I+N7tw5/Hr+s074j7/1zkPucvm67/1nALnqKiuAeL8gXS7roHLPHt+XUPXq0Q2PKSn/GZUGDw5dXN+nT+A49tzcwGl1vQfZr7wSvAM7cMD6si7ObBXF+alRw57hWn/9ZQ2Pmzo18sds3Bj6bHNRvSOROnTI6hGaN8/qyv77363xsXaMe/31V99O9/TTrR6bkl6jZvXqwB3TySdbZ/w3bgzsbQg1jKGkwgW8v//d97zp6eFrlR56yLfeWWf5DoI9HqtGwvv/XLFi5MWNBYdApKRYBy1vvRV+Ok3/oBmu/sDjsc6qf/RR6J6T994LPrjJzCydqUrXrg2uuahdO/BM/iefBH4fhLoQpf/Mgk2ahH6dq1ZZY97D7Z6mTAn/vXHppdZJIP8ZtqpVC31QZoz1mfMf8tK5c/Sfl337fP8/NWsGv7bDhwOLjUtaq+ffy+T9SU2N7sA5Uv6zR7ZpE3jCLTk5sFe5qNmeli8P7FXyXrhvx47AWae8B/GRnHwaMcL3mIkTrfsOHAgcsmX3cKDt262akHDT3w8YEHrChVA8Hl/9WGH8v9fS0gKvO+V/3HPssYX3wublWTVpw4cHfr6HDPG14d57ffeHm7Uz3hA44kQiBQ6PJ7AbNdz4zL59feusWuW7378OxHsWyP8+71nbJ5/03XfPPYGzK4W6VkZpePPNyA7sq1a1ZlLavj1wBh3J6pkoaqjGmjXWAf0VV1hnjooay+/9qVjReu7ata0zfWedZfWGDB1qDZOJ9UULx4wJPrgqKx+X3btDd9uXxNq1gTPbtG4deFBw0032Pl9RPJ7AMdvNmgX34Pz4o+8gICXF6sksaM0aq9jxm2+K9/zffRdcb+L9u774YmtY2H33WTtr/2lqw03xHaklSwL/H7wHVaXBf+rQY44J/X76F99LVq+vd+aho0etnlLvsv/8J/q2+NevSNYJinfe8b2369YFD/8cOjT4wM+/eLpWrZJf5NC/Vqjg7EX+71+XLiWfdOOtt4L//iKpVyyJo0cDe439hxRNnGh993g/cw0ahD+JkpVl9Sh6H+s/m6Ax1kkZ/6Gsjz4aWftWr/Y9xjuU2f/gvH//6F97UTZvtoY7enuEI+nViNbRo4FDnhs0sP52jx4NrB39978j3+aMGYEnDEaMCJyYIjW17FxdncARJxIpcBgTOLOC/wWQvPynka1XL3An8MEHvseOHGkt8x5kpKT4zrj89ZfvQ1m9emBvQqidcmnYujV4Z9Sjh7WTnzYteLyo/9mNChWiK7r0ysqyhjFs3Gh9Qe3YYe2IDhzwDe+Kd4cPB+4Q7erdKMvWrQs9lK5Zs+LNqGUXtztw51qlinW2+oUXrL89/2FADz9s//P/+ad1ZjDUexLux46A8Pvv1ljs4cPtm18/Ejk51pncSy+16oXC8T8B4/1p2TIwJLRrV7Ievaws3wxeffuGHtZ24EDgxWG9weT5561ejAULfAdYLpc1zKSk/OuF/IfYrl/v20ckJwee2IqWf/G4ZL0fpfH38NVXwf+/N9zg+1737zEKNw24/9DP9u1D1/95PNb+aty44r0u/+tp+V/zKyXFmUlOCtqwwTrQd7Kuyhjr//+MM3yv9ZRTAuut2rYt/mfsnXcCQ6T/RAD33uvIy3AEgSNOJFrgyM72FRMmJwfvmL780veBKjjF4I4dgWek/C8+VPAiZqEKlLt1c/SlFenpp61hNY89FnzGe+/e4LOE3jMl8T4DRWn57jurxqRXr9gMi4tHGzcGntl3corSSPz2W+hxyP4/zZsXbwrd4jp61HoP7rgjcJazgj+NGoUfclWeeDxW6As3Fl+yxuqXVG5u0dOveutC/Gchk6yhTf49RXYF0rw8XwCtUMGagcnjCbzQm50Hbt4hsJUq2TMFeqT8pw7u1ClwitZ33vEtu/XW4Md++mngSYJIrzUUqQkTArfv/f2ee+x9nnjw55+BocCOz5h/aPH+ZGQ4H6DsROCIE4kWOIwJvLpywen6/GsWQnU/ensrKlYMHB9acFrM5cuDP6SFFarHi9mzfYWAPXv6in6BcDZt8hViF+fKyk7ZuNEK/OEO9u04uI1UXp41BfYXX1hnd7/6yjqTvmhR6dRaxJPcXKt26uyzA/8/evUq/bZs3Rp8zQPvzznn2Hv18gce8G37uecCZ75r3NjeoZm5udZ+5scf7dtmJLZssc6gn3568IUADx70TSBQq1ZgTcyBA4FB9LXX7G/bX38F11PUrBndRABlwdq1wbNhlfQz5j+1vuT8UD27ETjiRCIGjm3bfNNs1qxpjTP2jtXt0MH3oQp1tsy/58L7JepyhV7Xf8rGzMySTRNbmnJyrOEyZWGoE+LDoUPWBAnx5OhRK/g/8YQ1nCojwzr4Q+ytWmUNxxowIPKrJDth2bLA7+l69Yp/kbqi/Pyzb/snnBAYhJ2YWCEe+ddXzZrlu9+/BrJXL+f2Of7XtZECL3RaHn35ZWDI8i8ij9bjj1s92G3bOttD7ITiHOe6jDFGcITb7VZ6erokKSsrS2lpaTFuUem49lrpnXcC7zvhBGndOusjevLJ0sqVwY974w3pxhsD7zvjDGnx4uB1p06VLr/c+v3hh6UxY+xpOwDAHsZIM2ZIX38t3Xqr1LKl/c/RubP0zTeB9118sfW8iWDGDKlfP+v3666T3n5b+vZb630xRqpcWVqzRmrWzJnn/+gj6ZJLrN+PP956rpQUZ54rXsyYYR1zXHONdM899mxz1y6pevWy994V5ziXwOGgRA0c69ZJ3bpJO3eGXj5ihPTMM8H3//KLdNxxgfc9/bR0333B6xojTZxoPcejj0oVK5a01QCAsuaVV6ww41WlirR2rdS4cezaVJpycqTMTGn/fik9Xdq6VerSRfrxR2v5s89Kw4c79/x5edZJxu++k/7zH+n00517LsQfAkecSNTAIVlfQkuXSrNnS3PmSEuWSEePSsnJ1u/t2wc/xhjpmGOkHTt8961fL7VoUXrtBgCUHfv2SfXqWQfekjR2rHTvvTFtUqm78UZrhIBkhY1Fi6zfTz3V6u1ITo5d21C+Fec4N6m0GoXEkpxsdek++qj15bd7t/S//1lnQUKFDUlyuaQzz/TdbtWKsAEACC8jQ7rjDuv3Ll2ku+6KZWti46qrfL97w0aFCtKrrxI2ED8IHCgV1atLffpIp5xS+HpnneX73TsuFACAcJ56SvrpJ+mLL8reGHg7dO8u1a0beN/w4VK7drFpDxAKgQNx5dprpQ4dpDZtpKFDY90aAEC8q1BBOvHExK3lS072TaIiWQXio0fHrj1AKAQOxJXq1aVly6RVq6T69WPdGgAA4t/tt0tpaVbR/OTJ1r9APGF0HwAAQBnWqpW0ebM1YQsn6xCPCBwAAABlXJ06sW4BEB5DqgAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwAAAADHJMe6AeWZMSb/d7fbHcOWAAAAAPbxP7b1P+YNhcDhoOzs7PzfMzMzY9gSAAAAwBnZ2dlKT08Pu5whVQAAAAAc4zJF9YEgah6PR7t27ZIkValSRS6Xy7Hncrvd+b0of/zxh9LS0hx7rvKI96/keA9Lhvev5HgPS4b3r+R4D0uG96/kSvM9NMbkj+apXbu2kpLC92MwpMpBSUlJqlu3bqk/b1paGh/SEuD9Kznew5Lh/Ss53sOS4f0rOd7DkuH9K7nSeA8LG0bljyFVAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAwX/gMAAADgGHo4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIGjHJgyZYq6deumGjVqKC0tTaeccorGjh2r3NzcWDctruXm5mrevHm699571bFjR2VkZCglJUX16tXTRRddpJkzZ8a6iWXSfffdJ5fLJZfLpccffzzWzSkzjhw5ogkTJqhr166qWbOmKlWqpIYNG+q8887T+++/H+vmxbXffvtNQ4cOVcuWLVW5cmVVqlRJTZs21cCBA7Vy5cpYNy8urFu3ThMnTtSgQYPUpk0bJScnR/wZnTt3rs4//3zVrl1blStX1gknnKCHHnpIWVlZpdDy+FDc98/j8Wjx4sV65JFH1LVrV9WqVUspKSmqXbu2evXqpXfeeUeJNmdPSf4G/b344ov5+5ibbrrJodbGn5K8fx6PR2+99ZZ69uypOnXqKDU1VfXr11f37t314osvlkLrJRmUaXfeeaeRZJKTk03v3r3NpZdeajIyMowk07VrV5OdnR3rJsatOXPmGElGkqlXr57p27evueKKK8xJJ52Uf/8tt9xiPB5PrJtaZixatMgkJSUZl8tlJJkxY8bEukllwu+//25atWplJJnatWubCy64wFx55ZWmc+fOpkqVKqZ///6xbmLc+vbbb03VqlWNJHPMMceYiy66yPTr1880bdo0/7vxgw8+iHUzY867ryj4U9Rn9LnnnjOSjMvlMmeddZa5/PLLTb169Ywk07JlS/PXX3+V0iuIreK+fxs2bMhfp2bNmqZ3797myiuvNB07dsy//4ILLjA5OTml/EpiJ9q/QX+//PKLSUtLy9/HDB482MEWx5do3799+/aZs846y0gy1apVM3369DFXXXWVOfPMM01GRoY59dRTS6X9BI4ybPr06UaSSU9PN99//33+/X/99Zdp06aNkWSGDx8ewxbGt3nz5pn+/fubBQsWBC3773//aypUqGAkmbfeeisGrSt73G63adGihTnmmGPMJZdcQuCIUHZ2tjnhhBOMJPPoo4+aI0eOBCx3u91mxYoVsWlcGXDyySfnnxzwf++OHj1qHn74YSPJZGRkmEOHDsWwlbH36quvmhEjRph33nnHrF271lx33XVFfkaXL19uXC6XqVChgpk1a1b+/W632/To0cNISpgwXNz3b+PGjaZ79+7mf//7n8nLywtYNn/+fJOWlmYkmccee6w0mh8Xovkb9Hf06FFz5plnmvT0dDNw4MCECxzRvH8ej8d069bNSDK33nqrOXjwYMDynJwcs2zZMqebbowhcJRp3jMljz/+eNCyr7/+2kgyqampZt++fTFoXdk3ePBgI8n06NEj1k0pE4YNG2YkmZkzZ+bvDAgcRRs1alT+ATOKZ9euXfln+f7888+g5Xl5eaZy5cpGklm+fHkMWhi/IvmMXn755UaSuemmm4KWbdmyxSQlJRlJZu3atU42NS6V9DtuzJgxRpJp3ry5zS0rO4r7Hnp721544QUzevTohAscBUXy/k2ePNlIMueee24ptiw0ajjKqG3btmnZsmWSpAEDBgQt79q1qxo1aqScnBzNmjWrtJtXLrRr106S9Pvvv8e4JfFv/vz5mjhxoq6//nqdf/75sW5OmZGbm6uXXnpJknTvvffGuDVlT2pqasTr1q5d28GWlD9HjhzJr2MLtY859thj1aVLF0nS9OnTS7Vt5QH7l+JZt26dHnroIZ199tm67bbbYt2cMmPChAmS4mP/QuAoo1asWCFJqlmzppo2bRpynQ4dOgSsi+LZsGGDJKl+/foxbkl8y8rK0o033qjMzEw9//zzsW5OmbJ8+XLt2rVLDRo00HHHHafVq1frscce06233qqRI0dq5syZ8ng8sW5m3EpPT9eZZ54pSXr44YcDJsrweDx69NFHdejQIZ133nlq1KhRrJpZJq1fv17Z2dmSfPuSgtjHRI/9S+SOHj2qgQMHyuVyafLkyXK5XLFuUpnwxx9/aOXKlapQoYI6d+6sTZs26amnntKQIUM0YsQITZkyRUeOHCm19iSX2jPBVps3b5YkNW7cOOw63h2sd11EbufOnXrzzTclSf37949tY+LciBEjtHnzZk2fPl01atSIdXPKlFWrVkmSGjZsqJEjR2rs2LEBM9c8/fTTateunWbMmFHoZz2Rvfrqqzr//PP1yiuvaObMmerQoYMqVKigFStWaNu2bbruuus0adKkWDezzPHuNzIyMlS1atWQ67CPiU52dnb+mWf2L0V75plntGTJEv3zn/9U8+bNY92cMsO7f6lVq5Zee+01DR8+PGj20mbNmmn69Ok6+eSTHW8PPRxl1MGDByVJaWlpYddJT0+XJB04cKBU2lRe5OXl6dprr9X+/fvVpk0b3XrrrbFuUtyaPXu2Xn75ZV111VW65JJLYt2cMmf37t2SrDPETz/9tG6//XatW7dO+/fv15w5c3T88cdrxYoV6tu3L9Nch9GyZUt988036t27t7Zt26aPPvpI06ZN0+bNm3XcccepW7duqlatWqybWeawj3HO7bffrs2bN6tBgwZ68MEHY92cuLZmzRqNHj1anTt31rBhw2LdnDLFu3/Zs2ePhg0bposvvlirV6/WwYMH9c033+i0007Tpk2b1KdPn/x1nUTgAAoYMmSI5s2bp1q1amnq1KmqWLFirJsUl/bv36/BgwerTp06mjhxYqybUyZ5ezNyc3N19dVXa9KkSTr++ONVrVo19ezZU3PmzFGlSpW0Zs0a/fe//41xa+PTokWL1KZNG61Zs0bvvvuudu7cqT179uiTTz5Rbm6uBg8erMGDB8e6mYAkacyYMXrrrbdUqVIlffDBB6pVq1asmxS38vLyNHDgQCUlJen1119XUhKHrMXh3b/k5eXpjDPO0JQpU3TSSScpPT1dp59+uubMmaPMzEzt2LGjVK7Fwf9eGeXt4na73WHX8V6UibN7kbvzzjs1efJk1ahRI/8MM0K76667tHXrVk2aNImC3Cj5D1UJ1ZPWuHFj9e3bV5J18TUE2rdvn/r166e//vpL06ZN09VXX63MzEzVqFFDF1xwgT777DNVqVJFr7/+ur788stYN7dMYR9jv+eee06PPPKIUlNTNX369Pyie4T2xBNPaPny5XrsscfUsmXLWDenzClq/1K1alVde+21kkpn/0INRxnVpEkTSYXPcOFd5l0XhRs+fLgmTJigjIwMzZ49O38WEYQ2ffp0JScn68UXXww6O/Lzzz9LkiZPnqy5c+eqXr16nKEPoVmzZiF/D7XOjh07SqVNZcnMmTP1119/qXnz5jrttNOCljdr1kynnXaavvzyS82dO1fnnHNODFpZNnn3G/v27dPBgwdD1nGwj4ncxIkTNXz4cFWsWFEffvih+vTpE+smxT3v7GeffPJJ0GybW7ZskWR9B3Tr1k2SNVsifOJt/0LgKKO8B8O7d+/W5s2bQ85U9d1330mS2rdvX6ptK4vuu+8+Pffcc6pevbpmz54ddlYWBMrLy9NXX30VdvmWLVu0ZcsWHXvssaXYqrKjffv2crlcMsZo165dIWdS2rVrlyTfeHn4/Pbbb5IKP8NevXp1SdY4ZkSuZcuWqlKlirKzs/Xdd9+FDGvsYyLzwgsvaNiwYflhw9tricgsXLgw7LKdO3dq586dpdiasuP4449X1apVdfDgwfz9SEGluX9hSFUZ1bBhQ3Xs2FGS9O677wYtX7hwoX7//XelpqZyXYQijBw5Us8884yqV6+uOXPm5L+vKNy+fftkrIuHBv0MHDhQkjVe2RiTfzYKgerVq6euXbtKCt2lnZubmx/oOnXqVKptKwuOOeYYSVaP2v79+4OW5+bmavny5ZIUdvpwhFaxYsX8A+NQ+5hff/1VixcvliT169evVNtWlvzrX//S0KFD88PGBRdcEOsmlRk//PBD2H3M6NGjJUmDBw/Ovw+BkpOT8ydzCTdkas6cOZJKZ/9C4CjDvLNbPPXUU/k7Vcnq9bj99tslSUOHDs0/w4dgDz/8sJ5++mllZGQQNhAT3h3nP/7xD3377bf59+fl5Wn48OHatGmTqlatqhtuuCFWTYxb5513ntLS0nTo0CHdfPPN+TUFknXhurvvvlu//fabUlJSdNlll8WwpWXTyJEj5XK59MYbb+izzz7Lvz87O1uDBw/W0aNH1b9/f51wwgkxbGX8evXVV3X77bcTNhAzDz74oFJSUvTqq6/q008/DVj2zDPPaOHChapQoYL+9re/Od4WlyEWlml33nmnJkyYoJSUFPXo0UNpaWmaN2+e9u3bpy5dumjOnDmqXLlyrJsZlz7++GNdfPHFkqwLWLVu3TrkerVr19azzz5bmk0r8wYNGqS33npLY8aM0cMPPxzr5sS9xx9/XKNGjVJycrI6deqkevXqafny5dqyZYsqV66sKVOmMAwjjP/85z+64YYblJeXpzp16qhjx45KSUnRd999p23btikpKUkvvPCChgwZEuumxtTy5cvzT0RJ0i+//KJdu3apYcOG+T1FkjVu3v9idP/85z91zz33yOVy6eyzz1bdunX19ddfa8eOHWrZsqUWLlyYEJNGFPf9++GHH9S+fXsZY3TCCSeErDHy8l7zqbyL9m8wlEcffVSPPfaYBg8erNdee82xNseTaN+/t956SzfeeKM8Ho86dOigJk2aaM2aNfr5559VoUIFvfTSS7r55pudfwEGZd77779vzjrrLFOtWjVTuXJlc9JJJ5mnnnrK5OTkxLppce2NN94wkor8OfbYY2Pd1DJn4MCBRpIZM2ZMrJtSZnz++efmvPPOMzVr1jQpKSmmUaNGZtCgQWbt2rWxblrc++GHH8ygQYNMs2bNTGpqqqlYsaI59thjzTXXXGOWLFkS6+bFhS+//DKi77vNmzcHPXbOnDmmT58+pmbNmiY1NdW0aNHCPPDAA+bAgQOl/0JipLjvX6TrJ9JhWEn+BgsaPXq0kWQGDx7sfMPjREnev6VLl5r+/fubunXrmpSUFFOvXj1z+eWXl+r3Iz0cAAAAABxDDQcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwDEiSZNmsjlchX68/zzz8e6mbDJihUrVKFCBd1xxx0B98+fPz///7swW7ZsyV9vy5YtUbdj//79qlWrlk477TRxLWAATkiOdQMAAIG6dOmi4447LuSyVq1alXJr4JQ77rhDlStX1qhRo2LajurVq+uBBx7Qvffeq7ffflsDBw6MaXsAlD8EDgCIMzfddJMGDRoU62bAQVOnTtWiRYt07733qm7durFujoYOHaqxY8fqgQce0FVXXaXU1NRYNwlAOcKQKgAAStk///lPSdLgwYNj3BJLpUqVNGDAAO3YsUPvv/9+rJsDoJwhcABAGeSt99iyZYs++ugjde/eXTVr1pTL5dL8+fPz19u7d69Gjx6ttm3bqmrVqqpSpYratGmjxx9/XNnZ2SG3nZeXp+eff15t2rRRpUqVVKdOHfXv31+rV6/Wm2++KZfLFdQD8+ijj8rlcunRRx8NuU1vXUK3bt1CLt++fbvuuecenXjiiapSpYqqVq2qjh07atKkScrLywtaf9CgQXK5XHrzzTe1efNmXXfddapXr55SU1PVvHlzPfzww8rJyQn7/n3//fcaOHCgmjZtqkqVKqlmzZo65ZRTdO+99+rXX3+VJL3xxhtyuVw699xzw25n+/btSklJUeXKlbV79+6w6/lbsWKFFi9erNNPP10tW7aM6DHF4f2/KOqnIO//6QsvvGB7mwAkNoZUAUAZNm7cOE2aNEkdOnRQnz59tH37dlWoUEGS9NNPP6lPnz76/fffVb9+fXXt2lUpKSlaunSpRo0apQ8//FDz589X9erV87fn8Xh0+eWXa8aMGapYsaK6deumGjVqaMmSJerUqZNuvPFG21/DggULdMkll2jv3r1q0qSJevXqpZycHC1dulR33HGHPvnkE3366adKSUkJeuwPP/ygO++8UzVq1NDZZ5+tPXv2aNGiRXriiSf0448/avr06UGPeeaZZzRy5Eh5PB4df/zxuvjii3Xo0CFt3LhRzz77rFq3bq1BgwZpwIABuv/++zVnzhytX79exx9/fNC2Xn75ZeXl5em6665TrVq1Inq9M2bMkCT17NmzeG9UhNq2bRu2DmPdunX69ttvlZQUfL6xbdu2qlOnjpYuXaodO3aofv36jrQPQAIyAIC4cOyxxxpJ5o033oh43QoVKpiPPvooaHl2drZp3ry5kWQefvhhk5OTk7/M7Xabq6++2kgyN9xwQ8DjJk2aZCSZzMxM89NPP+Xfn5uba2677TYjyUgyAwcODHjc6NGjjSQzevTokO398ssvjSRz9tlnB9y/Y8cOU6tWLeNyucyLL75ojh49mr9s165dpnv37kaSeeyxxwIeN3DgwPy2PPTQQyYvLy9/2erVq01aWpqRZBYvXhzwuI8++shIMpUqVTLvv/9+UDt//PHHgNf90EMPGUlm2LBhQeseOXLE1KtXz0gy33//fcjXHUrXrl2NJDNz5syQy73vVVG76M2bN+evt3nz5iKf99dffzX169c3ksykSZNCrnPRRRcZSebf//53kdsDgEgROAAgTnhDRLgf/4N177o33nhjyG299NJLRpK54IILQi4/ePCgqVu3rklOTjZ79uzJv/+4444zksxLL70U9JhDhw7lH2DbFTjuv/9+I8kMHTo05OO2bt1qUlJSTJ06dYzH48m/3xs4Tj311ID7vYYMGWIkmb///e8B97dt29ZIMuPGjQv5fAVt27bNpKSkmOrVq5usrKyAZe+9956RZM4444yItuXlDUObNm0Kudw/cET6U1Tg2Lt3r2nVqpWRZO69996w6z3wwANGkrn77ruL9ZoAoDAMqQKAOBNuWtwTTjgh6L7LLrss5DZmzpwpSbryyitDLk9PT1eHDh00a9YsLVu2TL1799a2bdu0ceNGSdK1114b9JhKlSrpiiuu0IQJEyJ+LUUpqp3HHHOMWrRooZ9++kkbNmwIGtZ0wQUXhKxHOPHEEyVJ27Zty79v586d+uGHH5SUlBRxsXaDBg102WWX6b333tO///1vDRkyJH+Zt9Zh6NChEW1Lktxut9xutyRFNASrsClqs7Ky9OGHHxa5jSNHjuiSSy7RTz/9pKuuukpPP/102HW9bfrjjz+K3C4ARIrAAQBxpjjT4jZp0iTk/Zs2bZIkXXfddbruuusK3cZff/0lSdq6daskqXbt2kpPTw+5btOmTSNqV6S87TzzzDOLXPevv/4KChyNGzcOuW61atUkSYcPH86/77fffpMk1a9fP6BupSjDhg3Te++9pxdeeCE/cKxatUoLFy5UZmZm2NAXyv79+/N/r1q1apHrv/nmm2GXbdmypcjAYYzRoEGD9NVXX+nss8/OL/oPx/u+7d27t8i2AUCkCBwAUIZVrlw55P0ej0eS1KdPH2VmZha6jWOPPdb2doVrT7j7L7vsMqWlpRW6jVA9AqGKn+12+umnq1OnTlq6dGn+gbu3d+OWW25RxYoVI95WRkZG/u8HDx7MP8B3ysiRI/Xee++pVatWmjFjRpHX1/AGoho1ajjaLgCJhcABAOVQo0aN9PPPP2vw4MERn4E/5phjJEm7du1SVlZWyF6OLVu2hHys96D74MGDIZd7p5oN1c4NGzbo/vvvV4cOHSJqZ7S8vSE7duzQ/v37i93Lce2112rSpEk65ZRT9M477yg5OTlgiFUkqlSporS0NLndbu3evdvRwPHiiy9q7NixatCggf73v/8FhJ1wvFP7FhVSAaA4uA4HAJRD5513niTpgw8+iPgxDRs2VLNmzSRJ7777btDynJwcTZkyJeRjvWFl7dq1IZd7azXsaGe06tWrp1NOOUUej0evv/56sR57xRVXqH79+poxY4aeeOIJud1u9evXTw0aNCh2O9q3by/JmrbYKR9//LGGDRumqlWraubMmWGHnhW0Zs0aSdKpp57qWNsAJB4CBwCUQ7fccouOPfZYTZkyRffff3/InoedO3fq1VdfDbjvrrvukmRdPO7nn3/Ov//o0aMaMWKEtm/fHvL5unfvrqSkJH3++ef66quv8u83xmjChAlhaw3uvfdeZWRk6LnnntO4ceN05MiRoHU2b96s//znP0W+5kiMHj1akvTQQw+FbNNPP/0UMjSlpKTotttuU15enp599llJxSsW93fOOedIkr755puoHl+UpUuX6uqrr1ZSUpKmTp2qtm3bRvxYb5u6d+/uSNsAJCYCBwCUQ2lpaZo5c6aaNGmisWPHqnHjxjr77LN1zTXXqF+/fmrdurUaNGigUaNGBTzub3/7my688ELt2LFDp5xyivr06aOrr75aLVq00Guvvabbbrst5PM1atRId9xxhzwej3r06KFzzjlH/fv3V4sWLTRixAiNHDky5OMaNmyojz76SDVq1NCIESPUqFEj9ejRQ9dee60uvPBCHXfccWrWrJkmTZpky/vSr18/PfHEEzp8+LAuu+wynXjiibrqqqt08cUXq3Xr1mrdurWWLFkS8rG33nprfg3EySefrLPOOiuqNlxyySWSpDlz5kT1+KI88MADys7OVsOGDfXuu+9q0KBBIX8KWrFihXbv3q1OnTpx0T8AtqKGAwDKqdatW2vVqlX617/+penTp2vVqlX65ptvVLt2bTVs2FAjRoxQv379Ah6TlJSkadOmacKECZo8ebLmz5+v9PR0de3aVdOnT9eKFSv00ksvhXy+f/7zn2rcuLFee+01LV68WOnp6erSpYs++OADHThwQE899VTIx5111ln68ccfNWnSJM2cOVPLli1TTk6O6tatq8aNG+vaa69V//79bXtfHnzwQXXv3l0TJkzQggULNG3aNFWtWlWNGjXSfffdF/bsft26ddW2bVstWbJEf/vb36J+/nbt2qlz585avHix1q5dmz+Fr12OHj0qyeoZ2rx5c9j1Cs6A5b1dktcGAKG4jDEm1o0AAJQNb775pm644QYNHDiw0Clby6P169frhBNOUPXq1bVt2zZVqVIl6m1NnTpVl19+ue655x6NGzfOxlZG5/Dhw2rUqJFSUlK0efPmImezAoDiYEgVAAAReOSRR2SM0W233VaisCFZ0wB36dJFL7/8clxcZG/ixInatWuX/vGPfxA2ANiOwAEAQBgff/yxBg8erNNPP13vv/++6tWrp/vuu8+WbU+cOFGHDh3SmDFjbNletPbv36+nnnpKnTp10vXXXx/TtgAon6jhAAAgjOXLl+v1119X1apV1bNnTz333HMRXc8iEu3atcuvt4il6tWr519/AwCcQA0HAAAAAMcwpAoAAACAYwgcAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBj/g+IT/wTorwWDwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_ps.freq, avg_ps.power, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Powerspectrum` or `AveragedPowerspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the power spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / meanrate$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times meanrate$. See *insert citation*.\n", + "* `none`: No normalization applied. This is the default." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 56159.93it/s]\n", + "200it [00:00, 56752.64it/s]\n", + "200it [00:00, 43677.02it/s]\n" + ] + } + ], + "source": [ + "avg_ps_leahy = AveragedPowerspectrum.from_lightcurve(long_lc, 8, norm='leahy')\n", + "avg_ps_frac = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='frac')\n", + "avg_ps_abs = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAASmCAYAAADYniQgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT59sH8G+YslFRQEVw0LrFOupGEUFRq9ZdB+CqtY5Wrata7dBWq9Zabat14K5a956gFa1a9xYHuKkiokRk5Xn/8M35ERIgQEIO+P1cVy7NmXcOJ8md+3nOcxRCCAEiIiIiypGZqQMgIiIiKiyYOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBFRnnh5eUGhUCAsLMzUoWhp0aIFFAoFIiIiTB0KERUxTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYgKTFJSEmbPno2GDRvC2dkZxYoVw7vvvouxY8ciLi5Oa/nU1FSsWrUKvXv3RpUqVeDo6AgbGxu8++67GDFiBB4+fJjjPs+dO4cPP/wQLi4usLa2RrVq1TB79mwIITSW8/X1hUKhwNq1a7Pc1syZM6FQKNC9e3e9Xm9YWBgUCgVCQkKgVCoxYcIEVK5cGdbW1nBzc0NwcDAePHiQ5fonT55E9+7dUaZMGVhZWaF06dLo0KED9u/fr3P5kJAQqd/ZpUuX0KNHD7i7u8Pc3BxTp04FoNn/659//kG7du1QsmRJODg4wNfXF3///be0vT179qBVq1YoXrw47O3t0bp1a5w5c0av105UZAkiojzw9PQUAMSyZcv0Wv7BgweiZs2aAoAoUaKE8Pf3F507d5a24+XlJaKjozXWuXfvngAgnJycRMOGDUW3bt1EUFCQKFOmjAAgSpUqJaKiorT25evrKwCI8ePHCysrK1G1alXRs2dP4evrK8zNzQUAMXLkSI11Nm7cKACIxo0b64w/PT1deHl5CQDi8OHDer3mZcuWCQCiU6dOolatWsLZ2Vl06NBBdOzYUZQuXVoAEJ6enuL58+da6y5atEiYmZkJAKJOnTqiV69eonHjxgKAACCmTp2qtU5wcLAAIAYNGiSsra2Fl5eX6N69u+jQoYOYNWuWxrEZM2aMsLCwEHXq1BE9evQQPj4+AoCwtrYWkZGRYv78+cLMzEw0btxYdO/eXbzzzjsCgLC3t9d5zIneFkyciChPcpM4qVQq0aRJEwFADBgwQLx48UKal5qaKkaPHi0AiJYtW2qs9+LFC7F161aRnJysMT0lJUVMmDBBABBBQUFa+1MnBwDE77//rjHv4MGDQqFQCHNzc3Hv3j1pelpamvSazpw5o7XN7du3CwCiVq1aOb5eNXXiBEAEBgaKhIQEad6zZ8+kZGX69Oka6124cEFYWFgIhUIhVqxYoTFv165dwsrKSgAQ+/bt05inTpzUSWN6enqWx0ahUIiVK1dqzBs1apQAIN59911hb28vDhw4oHF8unTpIgCIgQMH6n0MiIoaJk5ElCe5SZx2794tAAgfHx+RmpqqNT89PV3UqFFDABAXL17UO4YyZcoIMzMzjURMiP8lBx9++KHO9dq0aSMAaCUlM2fOlJK7zAIDAwUAsXDhQr3jUydOdnZ24uHDh1rz//zzTwFA+Pn5aUwfMGBAtvEPGzZMABCtW7fWmK5OnN555x2Rlpamc131senWrZvWvLi4OCnx+uKLL7Tmnz59WgAQFSpUyPI1ExV17ONEREa3c+dOAECXLl1gYWGhNd/MzAzNmzcHABw7dkxr/vnz5zFnzhwMHz4c/fv3R0hICEJCQpCWlgaVSoWbN2/q3G+HDh10Tq9atSoAaPUvGjhwIGxtbbFmzRrEx8dL02/evIl9+/bB2dkZffr00eMVa6pXrx7c3d31jkM9/lRISIjO7Q0YMAAA8PfffyM9PV1rfqdOnWBubp5tTEFBQVrTSpQogZIlS2Y539vbGwD06ltGVFRpf4IRERnY7du3AQCTJ0/G5MmTs132yZMn0v+VSiX69u2LzZs3Z7vOixcvdE4vX768zumOjo4AgNevX2tML168OPr27YuFCxdiyZIlGDNmDADg119/hRACoaGhsLW1zTYWQ8ShTqQqVKigc71KlSpJ68XFxaF06dIa8728vPIck729PeLi4nTOd3BwAAAkJyfnuH2iooqJExEZnUqlAgA0bdpU+tLPSvXq1aX/T5gwAZs3b0aVKlXwww8/oH79+nBxcYGVlRUAoHHjxjh+/LjWFXJqZma5L6qPGDECCxcuxG+//YZRo0bh9evXWLZsGRQKBT799NNcby+vceSHjY1NjsvkFFNBx0xUWDBxIiKj8/DwAAB07NhRquLoY/369QCAdevWoVatWlrzo6KiDBNgBtWqVYO/vz8OHDiA3bt34+HDh3j+/Dnatm2bY9JnKGXLlsWtW7dw+/Zt1KhRQ2u+uoJXrFgxlChRokBiIqI3+JOCiIyubdu2AIANGzZkWR3S5dmzZwAAT09PrXl79+7F06dPDRNgJiNHjgQAzJ8/HwsWLAAADBs2zCj70qVFixYAkOV9AJcuXQoAaNasmc4+Y0RkPEyciMjoOnbsiPr16+PkyZMIDQ3V6MekFh8fj99//x1paWnSNHXn6V9++UVj2evXr2PIkCFGizcoKAiVK1fGnj17cP78eVSqVElK/grCyJEjYWFhgS1btmDVqlUa8/bt24eFCxcCQK6qd8bWr18/VKlSBfPnzzd1KERGxcSJiPLl22+/RcOGDbN8nDlzBmZmZtiyZQt8fHywfPlyVKhQAU2aNEGvXr3QpUsX1KlTB6VKlcInn3yikThNmTIFCoUCkydPRq1atdCrVy+0atUKNWvWRMWKFdG4cWOjvCYzMzONCtPQoUOhUCiMsi9datasiQULFkChUKBv376oW7cuevfujaZNm6JNmzZITk7G1KlTERAQUGAx5eTu3bu4fv260aqARHLBGi8R5cvt27elPje6qK94K1OmDP755x+EhYVh3bp1uHDhAk6ePIkSJUqgTJkyGDJkCD744AMUK1ZMWvfDDz/E4cOH8fXXX+P8+fO4desWKlasiKlTp2LMmDFGTRwCAwMBALa2tujfv7/R9pOVwYMHo3bt2pg1axaOHj2KCxcuwMnJCUFBQRg5ciRat25d4DEREaAQuelwQET0lpg0aRKmTZuGwYMHS01jRERMnIiIMnn06BGqVauGFy9e4NKlS1JfKyIiNtUREf2/8ePH48GDBzhw4ACeP3+OIUOGMGkiIg2sOBER/T8vLy/cvXsXbm5u6NGjB3744QdYW1ubOiwikhEmTkRERER64nAERERERHpiHycTUalU0ngntra2BTpGDBEREb0hhMCrV68AAC4uLjnep5GJk4k8ffoUrq6upg6DiIiI/l9sbCxKly6d7TJsqiMiIiLSEytOJmJrayv9PzY2FnZ2diaMhoiI6O2kVCqlFqCM381ZYeJkIhn7NNnZ2TFxIiIiMjF9+huzqY6IiIhIT0yciIiIiPTExImIiIhIT+zjVECUSmW2z4mIiEj+mDgVEHt7e1OHQERERPnEpjoiIiIiPbHiVEASExM1nmccN4KIiIgKByZOBYTjNBERERV+bKojIiIi0hMTJ5K9f//9Fz/88AP+++8/U4dCRERvOTbVkaylp6ejQ4cOePz4MW7fvo1FixaZOiQiInqLseJEsqZUKvH48WMAwM2bN00cDRERve2YOJGspaWl6fw/ERGRKTBxIllLT0/X+X8iIiJTYOJEssaKExERyQkTJ5I1VpyIiEhOmDiRrGVMllhxIiIiU2PiRLKWMVlixYmIiEyN4zgVEKVSme1z0o0VJyIikhMmTgXE3t7e1CEUSqw4ERGRnLCpjmSNncOJiEhOWHEqIImJiRrPlUolXF1dTRRN4cHhCIiISE6YOBUQOzs7U4dQKLHiREREcsKmOpI1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlnjAJhERCQnTJxI1jgAJhERyQkTJ5I1VpyIiEhOmDiRrGVMllQqFYQQJoyGiIjedkycSNYyN8+xuY6IiEyJiRPJWubmOSZORERkSkycSNYyJ0rs50RERKbExIlkjRUnIiKSEyZOJGvs40RERHLCxIlkjU11REQkJ0ycSNbYVEdERHJiYeoA3hZKpTLb56QbK05ERCQnTJwKiL29valDKJRYcSIiIjlhUx3JGitOREQkJ6w4FZDExESN50qlEq6uriaKpvBgxYmIiOSEiVMBsbOzM3UIhRIrTkREJCdsqiNZY8WJiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I13quOiIjkhIkTyVrmChMrTkREZEpMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHI6AiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHACTiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk56+v7771GvXj04ODjA1dUV3bt3R3R0tKnDKvJYcSIiIjlh4qSnw4cPY/jw4Thx4gT27NmDZ8+eoW3btqyAGBlHDiciIjmxMHUAhcWePXs0nv/xxx+oWLEirly5glq1apkoqqKP96ojIiI5KbCKU1paGi5duoSDBw/ir7/+wsGDB3Hp0iWDfRGuWrUKH3/8MerVqwdra2soFAqEhYVlu86pU6cQFBQEZ2dn2NnZoWHDhli/fr1e+0tISAAAlChRIr+hUzbYVEdERHJi1IrTq1evsHLlSmzZsgVHjx7Fq1evtJaxtbVF06ZN0blzZ/Tp0we2trZ52tekSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dw+jR4/Oct309HSMGTMGQUFBKFeuXJ7iJf2wczgREcmJUSpOz58/x5gxY1C2bFkMHToUe/fuxatXr+Dm5obq1aujUaNGqFatGlxdXaFUKrF371588sknKFu2LL744gs8f/481/tcvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE7NMvIQQGDJkCO7evZtjRYvyjxUnIiKSE4MnTr///ju8vb0xZ84cWFlZYcSIEdixYweePn2KBw8e4MKFCzh69CguXryIhw8f4unTp9i2bRuGDRsGS0tLzJ49G97e3li4cGGu9uvv7w9PT0+9lj106BBu3bqFjz76CD4+PtJ0JycnTJw4ESkpKVi+fLnWekIIDB06FAcOHMDBgwdRqlSpXMVIuceKExERyYnBE6ehQ4eiTJky+Ouvv/DgwQP89NNPCAoKQvHixXUuX6JECbRv3x4///wzHj58iA0bNsDd3R1Dhw41dGiSiIgIAEBAQIDWvMDAQABvrqLLSAiBTz/9FDt37sShQ4fg4eGR7T6USmWOD8oZK05ERCQnBu/jtHLlSnz00UdQKBS5D8bCAl26dMGHH36INWvWGDo0SVRUFADA29tba56bmxvs7e2lZdQ+/fRTrF27Ftu3b4eNjQ0eP34M4E3iZ2VlpbUde3t7I0T+9mHFiYiI5MTgiVPv3r3zvQ2FQmGQ7WRFfUWck5OTzvmOjo7SMmq//fYbAKBZs2Ya08PDw9GiRQvDB0kAWHEiIiJ54ThOehJC5Gr5xMTEbOcrlUq4urrmJ6S3AitOREQkJ0Yfx6lhw4ZYvXo1UlNTjb0rvakrTZmrSmovXrzIshqlLzs7uxwflDNWnIiISE6MnjidPHkS/fr1g4eHByZPnowHDx4Ye5c5UvdtytyPCQAeP36MxMREnf2f8oOdw/OGt1whIiI5MXri9Oeff6Jp06b477//MH36dFSoUAHdunXTumqtIPn6+gIA9u3bpzVv7969GssYir29vcaDzXT64S1XiIhIToyeOHXv3h2HDx/GxYsXMWjQIFhbW2Pjxo3w8/NDrVq1sHDhQp0jihtTq1atULFiRaxZswbnzp2TpickJGD69OmwsrJCv379CjQm0o0VJyIikhOFyG2v53x68eIFwsLC8Ouvv+LGjRtQKBRwdHRESEgIhg4dmucmssWLF+Po0aMAgIsXL+LMmTNo0qQJKleuDABo2rQpBg4cKC2f1S1XYmJiMGvWrGxvuZIXmZvmMnYOT0xMZJ8nHYQQMDPTzO0/+OADbN261UQRERFRUaNUKqUhhPT5Pi7wxCmjAwcOYP78+di2bRsUCgUUCgUCAgIwevRotGrVKlfbCgkJ0Tnat1pwcLDWLVJOnjyJKVOm4NixY0hNTUXNmjUxatQo9OjRIy8vJ1dy+4d6G6Wnp8PCQvPCz6CgIOzcudNEERERUVFTaBInpVKJFStWYMGCBbhy5QoAwNzcHOnp6VAoFGjbti1Wr16d76vb5IqJU86Sk5NRrFgxjWmBgYHYs2ePiSIiIqKiJrffx0bv45TZjRs3MGLECJQtWxbDhg3DlStX4Ofnhy1btuD58+dYtGgRvLy8sHv3boM3l5kSr6rLPV0dwdnHiYiITKlAKk5CCGzbtg0LFizAwYMHIYSAjY0NevfujREjRqBGjRoayyuVStSuXRsvX75EbGysscMrENndgoYVJ910jafVokULhIeHmygiIiIqanJbcTL6yOEzZszA77//jrt370IIAQ8PDwwdOhSDBg1CiRIldK5jZ2eHpk2bYuXKlcYOj2RMV8WJwxEQEZEpGT1xmjBhAgCgSZMmGDlyJDp37gxzc/Mc16tRowaaN29u7PAKTOZbsPCWKznT1SzHpjoiIjIloydO/fr1w8iRI1GnTp1crTdmzBiMGTPGSFEVPDbF5R4rTkREJDdGT5wyDwFApC92DiciIrkp8KvqiPSlK0lixYmIiEzJ6BUntRMnTuDAgQN48OABXr9+rXMZhUKBJUuWFFRIBUrXyOGUPVaciIhIboyeOKWkpKBXr17YsmULgDdDE2SlKCdO6ksdSX+sOBERkdwYPXH69ttvsXnzZtjZ2aFv376oWrUqHB0djb1bKgJYcSIiIrkxeuK0du1a2Nra4sSJE6hWrZqxdydbHI4g91hxIiIiuTF64nT//n34+vq+1UkTwOEI8oIVJyIikhujX1VXvHjxLEcIJ8oOK05ERCQ3Rk+c/P39ceLEiWw7hRPpwooTERHJjdETp2+//RbPnj3D1KlTjb0rWVMqlVoPyh5HDiciIrkxeB+nFStWaE0LDQ3Fd999hz179qBdu3YoX748zMx052z9+vUzdEiywOEIco/3qiMiIrlRCAO3oZmZmUGhUGhNV+9G17yMimpFIbvXnZiYyM7jOoSHh8PPz09jmr29PV6+fGmiiIiIqKhRKpVScUOf72ODV5z69euXY3L0NuJwBLnHzuFERCQ3Bk+ceFNf3VhRyj12DiciIrnhTX5JtlhxIiIiuWHiRLKlK0lSqVQc2oKIiEzG6COHZ3Tt2jVcv34dL168yPLLr6heVUe5l1WzXHp6OiwsCvTUJSIiAlBAidM///yDwYMH4/Lly1kuI4SAQqFg4kSSrJrl0tLSmDgREZFJGP3b58aNG2jdujWUSiUaNWqE2NhY3LlzBz179kRUVBTOnTuH9PR0dO7cGY6OjsYOx2QyD3jJATBzll3FiYiIyBSMnjjNmDEDSqUSv/76K4YMGYLQ0FDcuXMHq1evBgBcvnwZ/fr1Q1RUFI4fP27scEyGA2DmXnYVJyIiIlMweufw8PBwVKpUCUOGDNE5v3r16tixYwdu3bqFadOmGTscKkSySpxYcSIiIlMxeuL06NEj1KhRQ3pubm4OAEhJSZGmubu7w9fXF5s2bTJ2OCaTmJio8YiNjTV1SLKXVWWJFSciIjIVozfV2djYaHTkdXBwAADExsbCw8NDmu7o6Ih79+4ZOxyT4QCYuceKExERyY3RK05ly5bF3bt3peeVK1cGAI3+TEIInDlzBsWLFzd2OFSIsOJERERyY/TE6f3338eVK1eQlJQEAGjTpg0A4PPPP8fOnTtx8eJFfPLJJ7h16xbq169v7HCoEGHFiYiI5MboiVNQUBBev36NHTt2AAAqVaqEwYMH49GjR/jggw/g4+ODRYsWwcrKCt99952xw6FCJGNlydLSUud0IiKigmT0Pk4ffvghUlNTNaYtWLAA3t7e2LBhA549e4aqVati4sSJqF69urHDoUIkY2XJ2tpaOo9YcSIiIlMxyfDLZmZmGDVqFEaNGmWK3VMhkbGyZG1tjcTERK3pREREBYk3+SXZylxx0jWdiIioIBVYxUkIgd27d+PYsWN48uQJ3n//ffTv3x8A8OTJE8THx6NSpUrSOE9ETJyIiEhuCiRxOn/+PHr06IGoqCjpZr6pqalS4rR//3707dsXW7ZsQYcOHQoipALHe9XlXuamOl3TiYiICpLRm+ru378Pf39/3LhxA23btsXMmTMhhNBYplOnTrC0tMTWrVuNHY7J2NvbazxcXV1NHZLsseJERERyY/TEafr06YiLi8PcuXOxY8cOjBkzRmsZW1tb1K5dG6dOnTJ2OFSIZKwsWVlZ6ZxORERUkIyeOO3ZswdVqlTBiBEjsl3Oy8sLjx49MnY4JsN71eUeK05ERCQ3Ru/j9PDhQ3Ts2DHH5RQKBV68eGHscEyG96rLPfZxIiIiuTF6xcnOzg5PnjzJcbk7d+6gRIkSxg6HChFWnIiISG6MnjjVrFkTp0+fxtOnT7NcJiYmBufPn0fdunWNHQ4VIqw4ERGR3Bg9cerTpw9evnyJgQMH4tWrV1rzU1JSMHToUKSmpqJPnz7GDocKEVaciIhIbozexyk0NBSrV6/Gtm3bUKVKFbRp0wbAm7GdRowYgW3btuHu3bvw9/dHjx49jB0OFSKsOBERkdwYveJkbm6O7du3o1evXnjw4AEWL14MADh79izmz5+Pu3fvokuXLti0aZOxQ6FChhUnIiKSmwIZOdze3h6rV6/G5MmTsWvXLty+fRsqlQoeHh5o27YtfHx8CiIMKmSySpxYcSIiIlMpsHvVAUCVKlVQpUoVnfN2796NJ0+eoF+/fgUZEslYVk11rDgREZGpGL2pTl/ffPMNQkNDTR0GyQgrTkREJDeySZyIMmPFiYiI5KZAm+reZkqlMtvnpC1jgsR71RERkRwwcSog9vb2pg6h0GHFiYiI5IZNdSRbHI6AiIjkhhWnApKYmKjxXKlUwtXV1UTRFA4cAJOIiOSGiVMBsbOzM3UIhQ4rTkREJDcGT5y++eabPK13//59A0dChR0rTkREJDcGT5ymTp0KhUKR6/WEEHlaj4qurK6qY8WJiIhMxeCJU/PmzZkAkUGoEyRzc3NYWPzvVGXFiYiITMXgiVNERIShN0lvKXWCZG5uDnNzc2k6K05ERGQqHI6AZEudIFlYWLDiREREssDEiWSLFSciIpIbgydODx8+lNV2qPBixYmIiOTG4ImTt7c3xo8fj/j4+Dyt/+zZM4wdOxbe3t4GjowKG1aciIhIbgyeOAUEBGDmzJkoV64c+vTpg/379yM5OTnbdZKTk7F371706tUL5cqVw6xZsxAYGGjo0KiQYcWJiIjkxuBX1W3evBkHDhzA559/jjVr1mDt2rWwtLSEj48PqlatipIlS8LR0REvXrxAXFwcrly5gvPnzyM1NRVCCNSoUQNz5syBv7+/oUOjQoYVJyIikhuj3HLF398fFy9exP79+zF//nzs27cPJ0+exMmTJwEACoUCQghpeWtra3To0AHDhg1jwkQSjuNERERyY9R71bVu3RqtW7dGcnIyIiMjcfbsWcTGxiIhIQHOzs4oXbo03nvvPTRu3FjjlhpEgGZTHStOREQkBwVyk19ra2v4+fnBz8+vIHZHRUTGprqMFScmTkREZCocx4lkK6uKE5vqiIjIVJg4kWyx4kRERHJTIE11BCiVymyfkzZWnIiISG6YOBUQe3t7U4dQ6LDiREREcsOmOpIlIQQrTkREJDusOBWQxMREjedKpRKurq4mikb+VCqV9H8OgElERHLBxKmA2NnZmTqEQiVjcsQBMImISC6M3lR35MgRREZGGns3VMRkTI44ACYREcmF0ROnFi1aYPLkycbeDRUxrDgREZEcGT1xKl68OMqUKWPs3VARkzFxYsWJiIjkwuiJk4+PD6Kiooy9GypiMlaVMncOZ8WJiIhMxeiJ04gRI3Dq1Cns3LnT2LuiIiRzxcnMzAwKhUJrHhERUUEy+lV1derUwbBhw9C5c2eEhISgS5cu8PLygo2Njc7ly5cvb+yQqBDIXHEC3iRQqamprDgREZHJGD1xqlChAoA3AxouWbIES5YsyXJZhULBL0UCoF1xAt4kUKmpqaw4ERGRyRg9cfLw8JCaWIj0lVXFKfM8IiKigmT0xCk6OtrYu6AiKPNwBBn/ZcWJiIhMhfeqI1nKPABmxn+ZOBERkakwcSJZyq7ixKY6IiIylQJLnP7++290794d5cqVg7W1NQYMGCDN279/PyZOnIjHjx8XVDgkc6w4ERGRHBVI4vTdd9+hRYsW+Ouvv/Dw4UOkpqZCCCHNd3JywowZM7Bp06aCCIcKAVaciIhIjoyeOO3evRtfffUVypYti/Xr1yM2NlZrmQYNGqBUqVLYsWOHscOhQkLXcASsOBERkakZ/aq6n3/+GdbW1ti9ezeqV6+e5XK1a9fmrVlIoms4AlaciIjI1IxecTp16hQaNGiQbdIEAKVKlWIfJ5Kw4kRERHJk9MRJqVTCzc0tx+USEhKgUqmMHQ4VEqw4ERGRHBk9cXJ1dcXNmzdzXO769evw8PAwdjhUSOjqHM6KExERmZrRE6emTZvi3LlziIyMzHKZHTt24ObNm2jZsqWxw6FCQtdwBKw4ERGRqRk9cRo9ejQUCgU+/PBDbNmyRetLb8+ePRg4cCAsLS0xfPhwY4dDhQRvuUJERHJk9MTpvffew+zZs/H06VN06dIFzs7OUCgU2LhxI5ydndGuXTv8999/mD17NqpVq2bscKiQyG4ATCEE+8MREZFJFMgAmCNHjsSuXbtQv359JCUlQQiBly9f4sWLF6hZsya2bduGYcOGFUQoVEhkV3HKPJ+IiKigGH0cJ7XAwEAEBgYiLi4Od+7cgUqlgoeHB9zd3QsqBCpEshuOAHhTkbK0tCzwuIiI6O1W4Df5LVmyJOrVq4cGDRoUqqRp06ZNaN26NUqUKAGFQoHo6GhTh1SkZTccAcCKExERmYbRE6ewsDDcv3/f2LsxOqVSiebNm+Obb74xdShvBX0qTkRERAXN6E11/fv3h0KhgLe3N/z9/eHv7w8/Pz84Ojoae9cG1bdvXwDApUuXTBzJ24EVJyIikiOjV5xCQkLg4eGBGzdu4Ndff0WXLl1QsmRJNGzYEJMmTUJERARSU1PzvZ9Vq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXr893LJR/2Q2AmXk+ERFRQTF6xWnp0qUAgKioKBw4cAD79+9HREQETp48iZMnT+L777+HjY0NmjZtitatW2P06NF52s+kSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dy/PcZBhZDcAZub5REREBaXAOod7e3vjk08+waZNmxAXF4cTJ05g2rRpaNGiBdLS0rBv3z6MGzcuz9tfvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE3NMvMi4WHEiIiI5KvCr6gAgNTUVL1++lMZyUlcPhBB53qa/vz88PT31WvbQoUO4desWPvroI/j4+EjTnZycMHHiRKSkpGD58uV5joXyjxUnIiKSowIbx+ncuXPYv38/Dhw4gKNHj+L169cQQsDR0RHt2rWTOo4XhIiICABAQECA1rzAwEAAwOHDh/O1D6VSma/5bztWnIiISI6Mnjj17NkThw4dQlxcHIQQsLS0RMOGDaVEqUGDBhqVhIIQFRUF4E3zYWZubm6wt7eXllF79uwZ7t69i1u3bgEArly5gufPn6N8+fIoUaKE1nbs7e2NEPnbgxUnIiKSI6MnTuvXr4dCoUCtWrUwZcoUBAQEwNbW1ti7zVZCQgKAN01zujg6OkrLqG3btg2hoaHS83bt2gEAli1bhpCQEOME+hZjxYmIiOTI6ImTg4MDXr58ifPnz6N3795o1qwZWrduDX9/f9SuXdvYuzeYkJCQXCVIiYmJ2c5XKpVwdXXNZ1RFl64BMFlxIiIiUzN64vTs2TOcPHkSBw4cwIEDBxAeHo59+/ZBoVDAxcUFrVq1QuvWrdG6dWuUK1fO2OEA+F+lKXNVSe3FixcoXrx4vvZhZ2eXr/XfdroGwGTFiYiITM3oV9WZm5ujUaNGmDx5Mg4fPoz4+Hjs2LEDI0eOhJubG9atW4eBAwfC09MTVatWNXY4AP7XtylzPyYAePz4MRITE3X2f8oPpVKp9aCs6WqqY8WJiIhMrcCHI7C1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3CiQGHx9fQEA+/bt05q3d+9ejWUMxd7eXuPBZrrs6eoczooTERGZWoENRwAA9+/fl4YkOHjwIJ48eQIA0tV2jRo1KpA4WrVqhYoVK2LNmjUYMWKENJZTQkICpk+fDisrK/Tr169AYiHdWHEiIiI5MnritGXLFql/k7ppTAgBhUKBGjVqSMMS+Pr65utqu8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgTwpnKxePFiBAYGonnz5hq3XImJicGsWbPg5eWV9xetQ+bO4uwcnj1WnIiISI6Mnjh9+OGH0v89PDykRKlVq1YoXbq0wfZz9OhRrdG+IyMjERkZKT1XJ04A0LJlSxw9ehRTpkzBunXrkJqaipo1a2LGjBno0aOHweJSY2fx3GHFiYiI5MjoiVOnTp2k4QcM3eE6o7CwMISFheVqnQYNGmD37t3GCYjyJacBMFlxIiIiUzB64rRp0yZj76JQyHwVHa+qy15OA2Cy4kRERKZQoJ3D32a8BUvu6BrHiRUnIiIytQIbjuDq1asYMmQI3n33XemS/HfffReffPIJrl69WlBhUCGha+Rwdg4nIiJTK5CKU1hYGIYMGYLU1FQIIaTpUVFRiIqKwrJly7Bw4UIEBwcXRDgmwavqcoedw4mISI6MXnE6ffo0Bg0ahJSUFLRr1w6bN2/GhQsXcOHCBWzZsgUdOnRASkoKBg0ahH///dfY4ZiMnZ2d1oOyxuEIiIhIjoxecfrxxx+hUqmwZMkShIaGasyrUaMGPvjgA4SFhaF///6YPXs21q5da+yQqBBgxYmIiOTI6BWnv//+Gz4+PlpJU0YhISF47733cOTIEWOHQ4UEK05ERCRHRk+cnj59qtfNe6tUqYKnT58aOxyT4U1+c4cVJyIikiOjN9U5Ozvj7t27OS539+5dODk5GTsck+FwBLnDihMREcmR0StO9evXx7Fjx3Do0KEslzl06BAiIyPx/vvvGzscKiRYcSIiIjkyeuI0fPhwqFQqdOjQAWPHjsXly5fx6tUrvHr1CpcuXcKYMWPQoUMHadmiKjExUeMRGxtr6pBkTdcAmKw4ERGRqRm9qS4wMBBffvklpk2bhtmzZ2P27NlaywghMHnyZAQEBBg7HJPh8AO5o2sATFaciIjI1Apk5PBvv/0Wu3btQsuWLWFtbQ0hBIQQsLKygp+fH3bt2oWvv/66IEKhQiKne9Wx4kRERKZQYPeqa9OmDdq0aYP09HTExcUBAEqWLKlRRSBS09U5nBUnIiIyNaMlTjdv3sSmTZsQHR0Na2tr+Pj4oHv37rCxsUHp0qWNtVsqIlhxIiIiOTJK4jR37lyMHTtW68tt8uTJ2LVrF2rUqGGM3cpa5nGbOI5T9tQVJTMzMygUCgCsOBERkekZPHE6evQoRo8eDSEE7Ozs8O677+LFixe4ffs27t+/jy5duuDq1aswMyuQ7lWywXGcckeddGdMllhxIiIiUzN49jJ//nwIIRAcHIzHjx/j33//xY0bN3DmzBlUqlQJN2/exJ49ewy9Wypi1BWljMlSxiSKiRMREZmCwROn48ePo1y5cli4cKHGJfi1atXCzz//DCEE/vnnH0PvVvY4jlPu5FRxYlMdERGZgsGb6mJjYxEUFAQrKyuteU2bNgUA/Pfff4berexxHKfcUSdGGRMnVpyIiMjUDF5xSklJgbOzs855jo6O0jJE2VEnRlk11bHiREREpvB29dCmQkNXxYmdw4mIyNSMMhzBzZs3sWLFijzN79evnzFCokKGFSciIpIjoyROkZGRiIyM1DlPoVBkOV+hUDBxIgAcjoCIiOTJ4IlT+fLlpQEL6X84AGbu5DQcAStORERkCgZPnKKjow29ySKBA2DmDitOREQkR+wcTrLEihMREcmR0W7yS5oSExM1niuVSri6upooGvljxYmIiOSIiVMB4QCYuZPTAJisOBERkSmwqY5kSddwBKw4ERGRqTFxIllixYmIiOSIiRPJjkqlkv7PihMREckJEyeSnYxJEStOREQkJ0ycSHYyJkWsOBERkZwwcSLZ0afixMSJiIhMgcMRFBDeckV/+lSc2FRHRESmwMSpgPCWK/rLquJkZmamcxkiIqKCwqY6kp2M1aSMiZNCoZCes+JERESmwIpTAeEtV/SXsZqUsXkOeJNIpaens+JEREQmwcSpgPCWK/rLquIEvEmkUlJSWHEiIiKTYFMdyU5OFafMyxARERUUJk4kOzlVnDIvQ0REVFCYOJHssOJERERyxcSJZCer4QgyPmfFiYiITIGJE8lOVgNgZnzOihMREZkCEyeSHVaciIhIrpg4kezo0zmcFSciIjIFJk4kO/p0DmfFiYiITIGJE8kOK05ERCRXHDm8gCiVymyf0/+w4kRERHLFxKmA2NvbmzqEQoMVJyIikis21ZHscABMIiKSK1acCkhiYqLGc6VSCVdXVxNFI2+85QoREckVE6cCYmdnZ+oQCg19Kk4AoFKpYGbGoikRERUcfuuQ7GQ3AGbGRIpVJyIiKmhMnEh2smuqy/ic/ZyIiKigMXEi2cmuqY4VJyIiMiUmTiQ7rDhRWloaBg8ejK5duyIhIcHU4RARSdg5nGSHFSfatGkT/vjjDwBA7dq1MXnyZBNHRET0BitOJDusOFF4eLj0/927d5swEiIiTUycSHZYcaLDhw9L/z9x4gSePXtmwmiIiP6HidNbTKVSITExEUIIU4eiITcVJyEEVCpVgcVGxvfff//h6tWr0nOVSoUDBw6YMCIiov9h4vQWGzBgABwcHPDdd9+ZOhQN+lacUlJS0KVLF9jY2GDdunUFFh8Z199//601bc+ePSaIhIhIGxOnt9SpU6cQFhYGAPjuu+8QGxtr2oAyyG4AzIzPFy5ciM2bNyMlJQXffPNNgcVHxnXkyBGtaXv27JFdZZSI3k5MnN5Sc+bMkf6fkpKC33//3YTRaNK3qW7u3LnS/69cuYLo6Ghjh0YFQN2/SaFQoHHjxgCAR48e4eLFi6YMi4qge/fuYeDAgVi+fLmpQzGI1NRUDBs2DIGBgViyZAmSkpJMHVKRxMTpLXT37l1s2LBBY9qvv/6K5OTkPG3v33//xa1btwwRGoC8dw7ftWuXwWIwhsJ4FWBqamqBVnri4+Nx4cIFAICPjw969uwpzWNzHRlSSkoKPvjgAyxZsgQhISE4deqUxvyEhAR8++23OHjwoIkizL2lS5diwYIF2LdvHwYOHIhy5cph7Nix+O+//0wdWpHCxOktNG/ePOlL3NbWFsCbDrl//vlnrre1bds21K9fHzVq1MDt27cNEp++FafMz+WaOF25cgUNGjSAo6MjPvvsMzx9+tTUIWVJCIGzZ89i6tSp8PHxgZWVFbp161ZgydPRo0elfTVv3hxt2rSR5hWGxGnPnj3o2LEjIiIiTB1KkZeWloZXr15pTU9PT8ecOXPQp08f3Lt3L8v1p02bhnPnzknPp06dKv1fCIFevXrhq6++QuvWrbFkyRJDhq7Ty5cvMW/ePOzatStPP7JSU1Pxww8/aEx79uwZfvzxRzRu3BhKpdJQoZIgk0hMTBQABACRmJhosO2qVCrx2WefiaVLl+qcn5CQIBwdHQUAYW1tLTZv3izFUadOHaFSqXK1v06dOknrz549O89xv3r1SsTFxQkhhPj666+lbe7cuVNjuU8//VSaB0BMnTpVuLu7CwDCxsZGvHr1Ks8xGJpKpRILFy4UNjY2GjE7OjqKadOmCaVSma/tX79+Xezdu1ekpaVpzbt27ZrYv3+/3n/PtLQ0sXr1alGlShWNWNWP9evXZ7t+UlKSiI+Pz8vL0DBmzBhpn5s2bRIqlUpUrFhRABCWlpbixYsX+d6HsSQkJAgHBwfpb/zgwQO9112zZo1o0aKFmDt3rkhNTc122eTkZPH8+fNcv1flSKVSiV27donvvvtOxMTE6L3eq1evROPGjYVCoRB9+vQR//33nxBCiGfPnom2bdtK51C7du10rn/69Glhbm6udZ7/888/QgghNm7cqDXvt99+y/8LzkabNm2kfVWsWFHMmjVLPHv2TO/1w8LCpPWbNGki+vbtK6ysrKRp48aNM2L0hVtuv4+ZOJmIsRKnH3/8UdrulClTtD5c58yZI80fNGiQUKlUon79+tK0w4cP672v169fCzs7O2ndoKAgrWVUKpXOL/a0tDQRFhYmQkNDRa1ataQPsVatWokuXbpI29yzZ4/GeiNGjJDmeXp6ilevXokBAwZI03bv3q13/Mb0/Plzjdeh61GlShXpA19NpVKJU6dOid27d4u///5bnDlzRsTGxmptPyoqSjr2QUFB4vnz59L6c+bMEWZmZgKAGDBgQLZfsOnp6eLPP/8UVatWzTbWSpUqieTkZJ3bCA8PF6VKlRIWFhbim2++Eenp6Xk+bg0aNJD2+eTJEyGEZrK8devWPG87O48ePRJt27YVrVu3Fv/++2+etvHTTz9pHLOuXbvqtd6VK1c0vsTfe+89cerUKa3lHj9+LEaNGiUl4tbW1sLT01M0a9ZMHDp0KE8xm9K5c+dEy5YtpdddrFgxMXnyZL0+DzP+uAIgSpYsKWbPni0qVaqkde7euHFDY93Xr1+L6tWrS/Pr1q0r/b9NmzYiMTFReHh46Hwf/PLLL0Y5FocOHdK5P2dnZ3Hu3Lkc109LSxPvvPOOtF5kZKQQQoirV69KyZOFhYW4fPlyvmPdtm2bCAgIECtWrMj3tnIrISFBREZGit9//13n52JeMXEqJIyVOI0cOVLjjRcaGipSUlKEEG+qAp6entI89Zto9erV0jQ/Pz8xe/ZsERISIjp27Cj9AtNl7969Gvuyt7eX9iWEEGfPnhUODg6iWrVq0pegWsYELrvHgQMHNNabPn26NG/Dhg1CCM1fh8OHDzfIccyPpKQk0axZM43XMXToUHHz5k0xePBgjS/Jxo0bi6SkJCHEm1/RGSt46odCoRCrV6/W2Ef37t01lnn33XfFxYsXRWhoqNb6X375pc44lUqlzv01btxY/Prrr+L+/fvCz89Pmj5v3jytbaxevVrjVy0AERAQoJUQ6uPFixfSsalevbo0ffv27dK2P/nkk1xvNycpKSmiadOm0j4sLCzE9OnTdSb8WUlLSxMVKlTQOpbbt2/Pcd2goCCt9czMzES3bt3E+PHjxbx588SYMWOEra1tlu+TEiVK5KrCldGTJ09E3759xZgxY8TLly815h04cEA0bNhQ9OzZ02CfU7GxsWLQoEFCoVDofC1lypQRW7ZsyXL9mJgYrSquruOn/v+IESM01p8wYYI0z8fHRyQmJgovLy9pWsa/R0BAgBg3bpzGtletWmWQ46CmUqlEo0aNpO3Xrl1bY39t27bNcRt//vmntHyLFi005k2ePFljXk6Vyvv374uBAweK4sWLi379+omEhARp3ooVKzSOrTGSJ5VKJZYuXSqGDx8uBg4cKHr37i3atWun8TcCILZt22awfTJxkqnExESNR2xsrFESJ5VKJWbPnq1xgvn6+ooPPvhA44M345sxOTlZlClTRucHUPny5TWSoYyGDx+utfyxY8ek+d26dZOmT5w4UZqekpIiypYtK80zNzcXtWrV0npjABDh4eEa+4yLixOfffaZWLBggfQBkJCQICwsLATwpsSd2yaMuLg48csvv4jdu3fnu/kjPT1d43UXL15cbN68WWOZS5cuSc2LAET37t1FfHy8aN68eZZfBI6OjlJTxsmTJ7P90tD1yPxL+b///hMNGzbUWKZJkybiwIEDGsfg33//lea7uLhoVLa+//77LPdXtmxZsWHDBikp1OXVq1diyJAhon379mLp0qXir7/+0pkgvXz5UkrOrKysxPjx46UP89TUVBERESF++ukncfv27Wz/NgkJCSIkJET06NFD45d35h8b6kfTpk3FnTt3st2mWsYmb1dXV433T2JiolCpVOL8+fNi2bJlGj8idu/erXHMatasmePfslixYqJFixaiRo0awsnJSeM9nfFvt3LlStGzZ09x/PjxbGPPeL56e3uL06dPi/T0dDF9+nSNL8mPPvooX++P1NRU8fPPP2vErH7PDho0SFhaWkrTLCwsxNWrV3VuJ+OPhtDQUK0fEXXq1BFnzpyRkisHBwfpfDl69Kj0miwtLcWFCxeEEEIsXrxY6zhbWVmJGzduCJVKpZF8uLi4SN0K1B4+fChOnDiR4/GJj48Xc+bM0ficzPjDoHr16iItLU1cu3ZNlC9fXgBvfjhlPg9TUlJEbGysUKlUIj09XdSoUUPaRuYfm69evdJI6rNK/OLj48WECRO0ktLKlSuLs2fPirCwMK1k18LCQmt/ag8ePBA1a9YUJUqUEN27dxcrV64UT58+zfb4CCHEokWL9PpMmzZtWo7b0hcTJ5nK7gQwZOKktn79emFtbZ3lPiMiIjSWz+5LcPny5VrbV6lUOn9hf/fdd0KIN192Gd+Azs7OUv+UjBWuoKAgqV9ScnKy+OWXX0SpUqWkD4x79+7p9XozlvyvXbum1zqvXr0SM2bMEM7OztK6LVq0EGfOnNFrfV0+//xzaVt2dnY6m1yEeNPHImMzZ8mSJTXWGz9+vBg9erRG5ap169ZCpVKJFi1aSNPGjh2r8aGp/mJdu3atmDdvnjRNoVCIiRMnitWrV4sdO3aIypUrS/McHBzE1q1bs/zQ/+ijj6RlR40aJcLCwrSSrsGDB4t9+/ZpJA3Am4QvODhYHDx4UGu7gwcPzvKcW7t2rcay/fr105hfqlQp0a1bN1G8eHGNL7TMzTIZhYSESMtaW1uLWbNmiZUrV2p8UQ4ePFgjWXBychJ//fVXjn93X19faZ2dO3cKf39/jb9bxqYhd3d3ceTIEZGamqrRRLpmzRqRkpIiZs6cqXFuZIx55MiR4uHDh9J+nz59Ktzc3KRlFi5cKNLS0jSSQRsbG633u5quJiJLS0uNCkjGR8aq471798S4cePEr7/+mmN17tixY1pJoYODg5g5c6Z4/fq1EEKIGzduiICAAGn+yJEjtbYTERGhcQ6o+9Vt375dtGjRQnz22WdS38GM59fcuXPF8+fPNSruGb94U1JSpL506sekSZM09p0xQRs6dKg0/dSpU8Le3l4AEH/88UeWxyApKUm89957GttPSUkRtWrVkqZt2rRJWv67776TpmesGj969Ej6kWlra6vRRNewYUOd7+OdO3dKy7i6uopbt25J81QqlVi2bJlwcXHJ8v1obW2tkTRl7Avp6OgoJaAZ9ezZU2s7ZmZmomnTpuL7778XFy5c0Ir12bNnWcbh4OAgGjVqJAYPHix++eUXcenSpSyPdW4xcZKprE5Iff9QefH333+LEiVKSPspXbq0CA4OFnv37tVaNjU1VUybNk18/vnnYunSpRodDatVq6bVb+XKlSvSfG9vb+n/fn5+Qggh1q5dq/U6Z8+eLVQqlahXr540TdcH+osXL0RYWFiWH/a6zJo1S9rmnDlzhBBvqiqnTp3Sil2lUonVq1eLcuXK6fx7qDuc/v7772LXrl3i4sWLIioqSly+fFmcO3dOnDp1SkRGRorw8HCxZ88esWbNGjF37lyNvlbm5uZaHdsz2759u8aXtPrL/+TJk9Iy8fHxGtW5jEmMut/RixcvROfOnQXwpmqRMVnL2Cyh61GmTJkc+1Dcvn1bqzku42P69OnSB+CjR480ktiMj88++0z6W2RMnnU9Mjc7JSYminHjxmUbB/CmevH48WOdxzq79YA3SYcQb943maufn376aZbVszNnzkjLvfvuuyI9PV1ERUVl+8PF3NxctGvXTnreqFEjjS8RpVIpLl26JPbv3y9WrFgh/vjjD3H//n2d+8/4pWhnZ6fROTrj9KNHj2qsl5qaqpF063o/KBQKjS9ACwsLcfjwYfHzzz9LyQLw5gdHVk2Fp06dEsWKFdPYbmhoqM6/U1xcnLSss7OzxsUeqampGklGdkmKEEJcvHhR473Sq1cv6XmzZs20kr2lS5dK8728vLQu3rh3756U0CoUCnH69Glx584djR8LVapUyfIHSMbPh4zni/r/9erV01j34cOHUiXdzc1Nqvz37t07y/Nqx44dWR6PjM3y5ubmom/fvmLXrl1alW4rKyvx+eefi1OnTmn0/1I/RowYIVJTU0WHDh2kaWXLlhV3796V9pUxwc3uUa1atSyrv507dxYXLlwQUVFR4uHDh0a9GIKJk0wVVFNdZnfv3hW///67OHnyZK477Wbs95G5z0HGTuizZ8+WfslZW1uLpKQknX1nypUrJw4ePCg9z8tVfFnJmMhVq1ZNBAYGSv1lGjRoIHX4jYuL02iaAN78CurVq5dGFSa/j5w+1NV++eUXaZ3y5cvrbJ7I2JyT8bFu3TppGZVKJa5du6b15a5SqcSQIUOy/NDS90qmUaNGaa1fs2ZNjV/Iaunp6WL37t0iODhYuoJT/ejdu7e4ePGixpfu1KlTxZAhQ6TKX+Y+Ghndvn1b45e/k5OT6NGjh6hWrZrGF1DGvjpxcXEaVZnAwECtJofQ0FCNc/H58+daTUBVqlQR33//vdbfKDg4WFrm119/laZnrBgAb5pCM76nMj5OnDih198hK7qqd+bm5hoVDgcHB439ZDz36tWrJ5KSksQXX3whTStevLh0scXYsWOl6Vn1TXJxcdH6sfDw4UONxL9u3bo5Nh1mrC6GhYVJ0+fPny9Nf++99/Tqg9aqVSutOJ2cnHSe96mpqaJHjx6iUqVKWkmm2owZM6Tt1K9fX+dFFbr6hWZsCixWrJjOK/r27duntV7GC0z++usvjQqhvb298Pb2lpKrzE21mcXExGTZJUP96Natm0az4OvXr8WwYcOk+Z999pm0j8TERI0Li6pUqSKePHmileAuWLBAREREiNGjR2skiupHqVKlxPnz58Xly5el42JjY6ORiBkbE6dCwlidww1px44dUozvv/++xpsyY9PE9evXRf/+/aXnW7ZskX5tu7q6avyyLl26tPT/lStXGixWlUqls49Uxg/7kJAQjQ9xAKJ9+/bi4sWLQog3TYVz5szRaLrL7cPMzExqrtTXunXrxPjx47Pt3Jv512q9evVylQhfuHBBrFu3TsyZM0eMGjVKfPnll7m61PnZs2eibt26wt7eXgQHB4tjx47plfQmJSWJefPmaVTWMlaNgoODNZY9ceKE1HSTnaioKPHPP/9Iv8Lv3bunUTHx9/cXR44cEcnJyRq/0IOCgoRKpRIRERFSU/P777+vcxgL9XASmaslwJsKRv369UX9+vWlvjnOzs4a7+X09HSxaNEi8dNPP4no6GghxJtO5BMnTtTYVt++fXN8vTl5+fKlRlOTvb292LNnj0hKShKtW7eWpltbW4tevXqJrVu3apznGZOZo0ePimnTpmkkF6mpqToriX379tWqVPXu3VvcvHlTJCUlaTTpNmnSRK+/7bFjx6R1GjZsKIQQ4s6dOxrNl1klNplt27ZNK+Y///wzl0f3f5KTk3UO2ZGx/+iQIUM01vn33381qo+rVq0SERERGpWqrDpt79u3T2OZjImaukKampoqHj9+rNf78dmzZ+Lrr7/WaIkA3lRqM1/BnPk1REREaO0jNjZW4wdn3bp1Nbp96Epwb968KX7++WeN5usSJUpoJGHffPNNjq/FkJg4FRKFIXFSqVQavxzUlzzHx8dLvwwqV64shBBi1apV0nIZ29yHDRsmjh49qvVB4+7unuXl7XmVuZOvp6enRjNixkfx4sWlq/IyS0hIEHv27BGLFi0SkyZNEsHBwaJPnz4iNDRUDB48WHz66adi1KhRYvz48WLy5Mlizpw5YuXKlWLv3r3SF6ShPX/+XOMLqrBdfr5lyxatBKRatWoGPfcvXbqklfRm/EJzdnbWaO569eqVOH78eJYXP6hduHBBvP/++zkmzWPHjtU71m3btgl3d3dRpUoVjT5L+fHPP/+I4sWLi8qVK2s0vyqVyiybTzMnr9mJjY2VfpxUq1ZN/P3330KIN/2sPvjgA41tWlhYaFwd5uHhobNpTpfMnztnz57VuLpz8ODBeh+T9PR0jSEK9H2t2dm/f7/Ga1VXTNSJnZOTk1T5jY+P1+hX9emnn0rbefjwoejcubPw8fERV65cyTL+zH2vgDdV9PwM+/Hy5Uvx448/iqZNm4qpU6fma/y7O3fuZFnJUg+LoEt8fLzO95WXl1eBj8fHxKmQKAyJkxBvBuZTx+nn5ydevXol1q1bJ01Td+B88OCBzjfOkSNHhBBCNG7cWGO6Ia+IUEtISBBDhw4VI0eOFJGRkUKlUonk5GTxww8/aHyBtmrVKsv+InJ2+vRp0apVK/H999+bOpQ8OXLkiHRFla2trUHGlMns8OHD0iCUmR/5vXT61q1bYs6cOaJZs2bSDweFQiHMzMxE3bp1cz0EQ3p6usH7baSnp+tswkpMTBRjx47VuAgBeNN8l5vE7cWLFyIyMlLrR49KpRILFizQ2j7wptkltxdcLFiwQKMaov5/+fLlNS6P18emTZuEmZmZaNCggcEGUFX3+7KxsZGa5jI22aqrWn369JGmNWzYME8/Fn/44QeN42lmZiZOnz5tkNdhKJcvX9aqYulTSU1ISBBNmjTRWE+fizEMjYlTIVFYEqfU1FSNDy4rKyvpqjcAYv/+/dKymUvYZcuWlX4Vbd26VeODVJ/LUg3p7t27YsKECWLp0qX5+qVG+XPt2jUxZswYvZta8iI2NlaEhYWJvn37SsM+hISEFImRtvPr9evX4s8//xT+/v6ifPnyWVZd8yohIUFMnTpVI3nNadT5rLaj68pCXf2A9PH69escR2TP7faWLVumkfyHh4dLcbZp00Zs2LBBep5xOJHcio2N1RiqIWPVSk5OnDgh9V20t7fXOyF/+fKl1BetY8eOJnmfMnEqJApL4iSEEEuWLNH5C97e3l7jF9TQoUM15n/22WfSvPT0dOkS7dz2ASLKK5VKVWRuT1KYPHnyRMyfP1/jh1VuDRw4UOPzJDdNdKaQnp4uNcuZmZlpDJWR32qnuvN/uXLlDHJrI2M5deqUGDBggNb4ezlRX9ySU7O5seT2+1ghRAHe+pwkSqUS9vb2AIDExETY2dmZOKKsCSGwefNm7Nq1CxEREbh16xYA4PPPP8ecOXOk5TZu3IiuXbtKz48dO4ZGjRpJz1NSUvD06VO4u7tDoVAU3AsgokLn9OnTqFevHgCgfPnyuHjxIhwdHU0cVfamTJmCb775RmNaly5dsGHDhnx95qWkpGDfvn2oX78+XF1d8xsmZZLb72MmTiZSmBKnzO7du4enT5+iZs2asLCwkKbHxcWhVKlSEEKgfPnyiI6OZoJERHn2/fff48CBA5g1axbq1Klj6nBydOvWLVSuXFl67urqikuXLsHFxcWEUVFOmDgVEoU5ccrO1KlTsWzZMsyaNQvdunUzdThERAWqRYsWOHz4MABg+/btaN++vYkjopwwcSokimriRET0Nrt58yYmTJiAgIAADBo0yNThkB6YOBUSTJyIiIhML7ffx2YFERQRERFRUcDEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9GSR8yJkDBkHbFcqlSaMhIiI6O2V8TtYn5upMHEykVevXkn/d3V1NWEkREREBLz5blbffiUrbKojIiIi0hNv8msiKpUKT58+BQDY2tpCoVDkaTtKpVKqWMXGxvJmwf+Px0U3HhfdeFx043HRjcdFt8J6XIQQUiuQi4sLzMyyrymxqc5EzMzMULp0aYNu087OrtCcqAWJx0U3HhfdeFx043HRjcdFt8J2XHJqnsuITXVEREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREeuIAmERERER6YsWJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMRJpk6dOoWgoCA4OzvDzs4ODRs2xPr163O1jeTkZHzzzTfw9vZGsWLFUKZMGQwePBj//fefkaI2ngcPHmDu3LkICAhA+fLlYWVlBTc3N3Tp0gUnTpzQezsRERFQKBRZPsLCwoz3IozEy8sry9fTokWLXG1r9erVaNCgAezs7FC8eHG0b98eZ86cMU7gRhQWFpbt31mhUKBVq1Y5bqewni+rVq3Cxx9/jHr16sHa2jrHWF+8eIFRo0bB09MT1tbW8PLywhdffIHExMRc73vv3r3w9fWFg4MDHB0d0bJlSxw8eDAfr8Zw9D0uqamp2LhxI4KDg1G1alXY29vDwcEB77//Pn777Tekp6fnar+GfI8aQ27Ol6lTp2b7noiOjs7Vvm/cuIHu3bvDxcUFNjY2qF27Nn777TfI+bo1C1MHQNrCw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHj85xGyqVCh07dsTevXvRsGFDdOnSBVFRUVi8eDEOHjyIf/75B6VKlSqAV2MYv/zyC2bMmIFKlSohICAApUqVQlRUFLZs2YItW7ZgzZo16NGjh97b8/X11fmB5ePjY7igC5CTkxM+++wzreleXl56b2PatGmYNGkSPD09MWTIELx8+RJ//vknGjdujIMHD6JJkyaGC9jIfHx8MGXKFJ3z/vrrL1y+fBmBgYF6b6+wnS+TJk1CTEwMXFxc4O7ujpiYmCyXVSqV8PX1xblz5xAQEIBevXrh7NmzmDVrFg4fPowjR46gWLFieu131apV6Nu3L0qVKoWQkBAAwLp169C6dWusX78eXbt2NcTLyzN9j8utW7fQtWtX2Nvbo1WrVvjggw+QkJCA7du3Y+jQodi1axe2bdsGhUKh974N8R41ltycL2rBwcE6Y3d2dtZ7v1euXEHjxo2RlJSE7t27o0yZMti5cyeGDh2KK1eu4JdffsnFqyhAgmQlNTVVVKpUSVhbW4uzZ89K058/fy7eeecdYWVlJaKjo3PcztKlSwUA0atXL6FSqaTpv/32mwAgBg8ebIzwjWbjxo0iIiJCa/qRI0eEpaWlKF68uHj9+nWO2wkPDxcAxJQpU4wQpWl4enoKT0/PfG3jxo0bwsLCQrzzzjvi+fPn0vSzZ88Ka2trUbVqVZGenp7PSE0vOTlZlCxZUlhYWIjHjx/nuHxhPV/2798vfU58//33AoBYtmyZzmW/+uorAUCMGzdOY/q4ceMEADF9+nS99vns2TPh7OwsXFxcxL1796Tp9+7dEy4uLsLFxUW8ePEiby/IQPQ9Lvfv3xcLFiwQiYmJGtMTExNFvXr1BACxfv16vfdriPeoMeXmfJkyZYoAIMLDw/O93+bNmwsAYteuXdK05ORk0axZMwFAHDt2LN/7MAY21cnMoUOHcOvWLXz00Ucav2adnJwwceJEpKSkYPny5Tlu548//gAAfP/99xq/ij7++GNUrFgRq1evRlJSksHjN5YPP/wQvr6+WtObNWuGli1bIj4+HhcvXjRBZEXDsmXLkJaWhi+//BJOTk7SdB8fH/Tq1QtXr17F0aNHTRihYWzZsgVxcXFo3749XF1dTR2O0fj7+8PT0zPH5YQQWLx4Mezt7TF58mSNeZMnT4a9vT0WL16s1z43bNiA58+fY/jw4ShXrpw0vVy5chg2bBiePn2KzZs35+6FGJi+x6Vs2bIYOnQo7OzsNKbb2dlh1KhRAIDDhw8bJUZT0Pe4GNKNGzdw5MgRtGzZEm3btpWmW1lZ4dtvvwXwv+8xuWFTncxEREQAAAICArTmqZsWcnrDvn79GidOnMC7776r9WZQKBRo3bo1Fi5ciH///RfNmjUzTOAmZGlpCQCwsND/dI6KisLcuXORlJSEcuXKwc/PD2XLljVWiEaXnJyMsLAwPHz4EI6Ojqhfvz7ef/99vdfP6bwLCwvD4cOH0bx5c0OFbBLqJGDgwIG5Wq+onS9qUVFRePjwIQIDA3UmCU2aNMHevXtx7949eHh4ZLutnM6hqVOn4vDhw+jXr5/B4jeFvHzeAPl/j8rNkSNHcOLECZiZmcHb2xv+/v6wt7fXe/3szpemTZvCzs5OtskpEyeZiYqKAgB4e3trzXNzc4O9vb20TFZu3boFlUqlcxsZtx0VFVXoE6e7d+/iwIEDcHd3R82aNfVeb82aNVizZo303MLCAsOHD8ePP/4Ic3NzY4RqVI8fP0ZoaKjGtPr162Pt2rWoVKlSjutHRUXB3t4ebm5uWvMyni+FWUxMDA4ePIhy5cqhTZs2uVq3qJ0vatl93qin7927F1FRUTkmTtltq6icQwCwdOlSALq/8LOT3/eo3GTuQ+js7Iyff/5Z78Q4u/PF3NwcFSpUwJUrV5CWlpbrJNXY2FQnMwkJCQCg0VySkaOjo7RMfraRcbnCKjU1FX379kVycjJmzJih1xdYqVKl8MMPP+DSpUtITExEbGwstmzZgsqVK+Onn37C2LFjCyBywwoNDcXBgwcRGxsLpVKJs2fPom/fvjh16hRatWqFly9f5riNhISEIn++LFu2DCqVCiEhIXonO0XxfMnIkJ8V2W2rqJxDixYtwu7du+Hn54egoCC91zPEe1QuateujaVLl+L27dtISkrCnTt38Msvv0ChUCAkJATbtm3Tazv6nHsqlUqWx0ZeaRyRntRfgEeOHMGgQYPQt29fvdarXr06qlevLj23s7NDx44d8f7776NWrVqYN28exo0bh9KlSxsrdIPL/MvPx8cHK1asAACsXLkSf/zxh9Qv422lUqmwbNkyKBQK9O/fX+/1iuL5QnmzY8cODBs2DJ6enli1alWu1i1K79HOnTtrPPfy8sKwYcNQtWpVtG7dGpMmTcIHH3xgougKBitOMqPOvrP6ZfbixYssM/TcbCPjcoWNSqVC//79sWbNGvTp0we///57vrfp5uaGjh07Ii0tLVfjQsnZxx9/DACIjIzMcVknJ6cie74AwIEDB3D37l34+fmhQoUK+d5eUTlfDPlZkd22Cvs5tGvXLnTt2hWurq44dOgQ3N3dDbLd3LxH5a5Vq1aoVKkSLl68KP29s6PPuadQKODg4GDQOA2BiZPMZNcX4PHjx0hMTMyyP4JaxYoVYWZmlmV/gpz6NciZSqVCaGgoli9fjl69eiEsLAxmZoY5jV1cXAC8GdemKMjN6/H29kZiYiIeP36sNa8wny9qee0Unp2icL7k1PcoN3/77LZVmM+hnTt34sMPP4SLiwvCw8NRsWJFg227KJxDGalfz6tXr3JcNrvzJT09HXfu3EGFChVk178JYOIkO+pL7vft26c1b+/evRrLZMXGxgYNGjTA9evXtQYyE0Jg//79sLOzQ7169QwUdcFQJ00rVqxAjx49sHLlSoN2zFVXDuQwIJ0h5Ob1GOK8k6u4uDhs3boVJUqU0GpmyI+icL54e3ujTJkyiIyM1PryViqViIyMRIUKFXLsGA4UzXNo586d6NKlC0qUKIHw8HBUrlzZoNsvCueQmlKpxOXLl2FnZyclUNnJ7nw5evSoNDCrLJl6ICnSlJqaKipWrJjtAJh37tyRpj98+FBcvXpVY9BCIYreAJjp6ekiODhYABDdunUTqamp2S7/5MkTcfXqVfHkyRON6f/++6/O5efOnSsACG9vb5GWlmawuI3t6tWrQqlU6pzu5uYmAIjDhw9L058/fy6uXr0qHj58qLH89evXi+wAmD/99JMAIEaMGJHlMkX5fDH0AJhKpVJcvXpVxMTEaEx/9uyZcHJykvUAmBnldFx27dolrK2thZubm7h27VqO20tJSRFXr14VN2/e1Jie2/eoqWV3XF68eCGuX7+uNf3Vq1eiV69eAoAIDQ3Vmn/16lVx9epVrek5DYAZGRmZvxdjJAohZHxDmLdUVrdciYmJwaxZszRuuRISEoLly5dj2bJl0i0OgDfVmaCgIOmWK76+vrh58yY2bdoELy8vnDhxolDdcmXq1Kn4+uuvYW9vj5EjR+os33bq1EkaNFS9/JQpUzB16lRpGS8vL1haWqJevXooV64clEol/vnnH5w9exbOzs7Yu3cvGjRoUECvKv+mTp2KOXPmoHnz5vD09ISdnR1u3LiBXbt2ITU1FRMmTMD06dOl5cPCwhAaGorg4GCte1FlvOVKly5dpFuupKSkFLpbrmRUs2ZNXLp0CRcuXMhyyIqidr4sXrxYGrD04sWLOHPmDJo0aSJVTJo2bSo1WyqVSjRp0gTnz59HQEAA3nvvPZw5cwb79u1D/fr1cfjwYdjY2EjbjoiIQMuWLeHr6yuNxaOW8ZYr6lsgrVu3Dk+fPsW6devQrVu3Anj1WdP3uFy7dg0+Pj5ITk5Gz5498e6772pty8vLS+MzNzo6GhUqVICnp6fG/dpy+x41BX2PS3R0NCpWrIj69eujatWqcHNzQ2xsLA4cOID79++jZs2aCA8PR8mSJTW2rx6EOXO6cfnyZTRp0gRJSUno0aMH3N3dsXPnTly+fBnDhg3jLVcod06cOCHatGkjHB0dhY2NjWjQoIH4888/tZZTV2F0/Tp4/fq1mDp1qqhUqZKwsrISbm5uYuDAgXrdakJu1K8zu0fGY6C+LUDmW2X88MMPomXLlqJMmTLC2tpa2NjYiCpVqojPPvtM41dyYRERESG6d+8uvL29haOjo7CwsBBubm6iY8eOYu/evVrLL1u2TAAQwcHBOre3atUqUa9ePWFjYyOcnJxEUFCQOH36tJFfhfGcOHFCABANGjTIdrmidr7k9H7J/Pd//vy5+Oyzz4SHh4ewtLQU5cuXF6NHj9ZZIVLfhsbX11fnvnfv3i2aNWsm7OzshL29vfD19RX79+83wqvMPX2Pi/o1ZvfI/Prv3LkjAGjdWiW371FT0Pe4JCQkiE8//VTUr19flCpVSlhYWAgHBwfRoEEDMXPmTPHq1Sud21dvR5dr166Jrl27ihIlSghra2tRs2ZNsWDBAo2WErlhxYmIiIhIT+wcTkRERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EbzEvLy8oFIpsH3PnzjV1mGQgZ8+ehbm5OYYPH64xPSIiQvp7Zyc6OlpaLuP92HIrISEBJUuWxPvvv691/zIiudO+UyoRvXUy3tAzs2rVqhVwNGQsw4cPh42NDSZPnmzSOJycnDBhwgR88cUXWLFiBYKDg00aD1FuMHEiIgwcOFDjTu9U9Pz111+IjIzEF198gdKlS5s6HAwbNgwzZ87EhAkT0LNnT1hbW5s6JCK9sKmOiOgt8NNPPwEABgwYYOJI3ihWrBg++ugjPHr0COvWrTN1OER6Y+JERHpR94eKjo7G1q1b4efnhxIlSkChUCAiIkJaLj4+HlOmTIGPjw8cHBxga2uLmjVr4rvvvsOrV690bjstLQ1z585FzZo1UaxYMZQqVQpdunTBxYsXERYWBoVCoVURmzp1KhQKBaZOnapzm+p+Oy1atNA5/+HDhxg1ahSqVq0KW1tbODg4oH79+pg/fz7S0tK0lg8JCYFCoUBYWBju3LmDvn37ws3NDdbW1qhUqRImTZqE5OTkLI/f6dOnERwcjAoVKqBYsWIoUaIEateujS+++AIxMTEAgGXLlkGhUCAwMDDL7Tx8+BCWlpawsbFBXFxclstldPbsWRw7dgwNGzbEu+++q9c6uaH+W+T0yEz9N12wYIHBYyIyFjbVEVGuzJ49G/Pnz0e9evXQpk0bPHz4EObm5gCAK1euoE2bNrh37x7c3d3RtGlTWFpa4uTJk5g8eTI2btyIiIgIODk5SdtTqVTo1q0btmzZAisrK7Ro0QLFixfHiRMn0KBBA/Tv39/gr+HIkSPo1KkT4uPj4eXlhdatWyM5ORknT57E8OHDsX37duzYsQOWlpZa6547dw4jR45E8eLF4evri2fPniEyMhLTpk3D5cuXsXnzZq11fvzxR4wfPx4qlQrvvPMOOnbsiKSkJNy8eROzZs1C9erVERISgo8++gjjxo3D/v37cePGDbzzzjta21q4cCHS0tLQt29flCxZUq/Xu2XLFgCAv79/7g6Unnx8fLLsp3T9+nX8888/MDPT/p3u4+ODUqVK4eTJk3j06BHc3d2NEh+RQQkiemt5enoKAGLZsmV6L2tubi62bt2qNf/Vq1eiUqVKAoCYNGmSSE5OluYplUrRq1cvAUCEhoZqrDd//nwBQLi6uoorV65I01NTU8Unn3wiAAgAIjg4WGO9KVOmCABiypQpOuMNDw8XAISvr6/G9EePHomSJUsKhUIhfv31V5Geni7Ne/r0qfDz8xMAxNdff62xXnBwsBTLl19+KdLS0qR5Fy9eFHZ2dgKAOHbsmMZ6W7duFQBEsWLFxLp167TivHz5ssbr/vLLLwUAMWLECK1lU1JShJubmwAgTp8+rfN169K0aVMBQOzcuVPnfPWxyukr4c6dO9Jyd+7cyXG/MTExwt3dXQAQ8+fP17nMBx98IACIlStX5rg9Ijlg4kT0FlMnQ1k9MiYd6mX79++vc1u//fabACDat2+vc/7Lly9F6dKlhYWFhXj27Jk0vXLlygKA+O2337TWSUpKkhIFQyVO48aNEwDEsGHDdK53//59YWlpKUqVKiVUKpU0XZ041a1bV2O62pAhQwQA8c0332hM9/HxEQDE7Nmzde4vswcPHghLS0vh5OQkEhMTNeatXbtWABCNGjXSa1tq6qTu9u3bOudnTJz0feSUOMXHx4tq1aoJAOKLL77IcrkJEyYIAOLzzz/P1WsiMhU21RFRlsMRVKlSRWta165ddW5j586dAIAePXronG9vb4969eph165dOHXqFAICAvDgwQPcvHkTANCnTx+tdYoVK4bu3btj3rx5er+WnOQUZ9myZeHt7Y0rV64gKipKq7msffv2OvvrVK1aFQDw4MEDadrjx49x7tw5mJmZ6d0pu0yZMujatSvWrl2LlStXYsiQIdI8dV+gYcOG6bUtAFAqlVAqlQCgV9NedkMDJCYmYuPGjTluIyUlBZ06dcKVK1fQs2dPzJgxI8tl1THFxsbmuF0iOWDiRES5Go7Ay8tL5/Tbt28DAPr27Yu+fftmu40nT54AAO7fvw8AcHFxgb29vc5lK1SooFdc+lLH2axZsxyXffLkiVbiVL58eZ3LOjo6AgBev34tTbt79y4AwN3dXaNfV05GjBiBtWvXYsGCBVLidOHCBRw9ehSurq5ZJq+6JCQkSP93cHDIcfmwsLAs50VHR+eYOAkhEBISgsOHD8PX11fq3J8V9XGLj4/PMTYiOWDiRES5YmNjo3O6SqUCALRp0waurq7ZbsPT09PgcWUVT1bTu3btCjs7u2y3oatCo6uTs6E1bNgQDRo0wMmTJ6UERF1tGjx4MKysrPTelrOzs/T/ly9fSomKsYwfPx5r165FtWrVsGXLlhzHZ1IndsWLFzdqXESGwsSJiAzCw8MD165dw4ABA/SuiJQtWxYA8PTpUyQmJuqsOmV1aw918vDy5Uud89WX+OuKMyoqCuPGjUO9evX0ijOv1NWpR48eISEhIddVpz59+mD+/PmoXbs2Vq9eDQsLC42mO33Y2trCzs4OSqUScXFxRk2cfv31V8ycORNlypTB7t27NZK2rKiHVMgp2SaSC47jREQG0bZtWwDA+vXr9V6nXLlyqFixIgBgzZo1WvOTk5OxYcMGneuqk66rV6/qnK/uy2SIOPPKzc0NtWvXhkqlwtKlS3O1bvfu3eHu7o4tW7Zg2rRpUCqV6Ny5M8qUKZPrON577z0Ab4aLMJZt27ZhxIgRcHBwwM6dO7Ns0szs0qVLAIC6desaLTYiQ2LiREQGMXjwYHh6emLDhg0YN26czkrQ48eP8ccff2hM++yzzwC8GUTx2rVr0vT09HSMGTMGDx8+1Lk/Pz8/mJmZYe/evTh8+LA0XQiBefPmZdkX54svvoCzszPmzJmD2bNnIyUlRWuZO3fuYNWqVTm+Zn1MmTIFAPDll1/qjOnKlSs6kz9LS0t88sknSEtLw6xZswDkrlN4Ri1btgQAHD9+PE/r5+TkyZPo1asXzMzM8Ndff8HHx0fvddUx+fn5GSU2IkNj4kREBmFnZ4edO3fCy8sLM2fORPny5eHr64vevXujc+fOqF69OsqUKaN1g9lPP/0UHTp0wKNHj1C7dm20adMGvXr1gre3NxYvXoxPPvlE5/48PDwwfPhwqFQqtGrVCi1btkSXLl3g7e2NMWPGYPz48TrXK1euHLZu3YrixYtjzJgx8PDwQKtWrdCnTx906NABlStXRsWKFTF//nyDHJfOnTtj2rRpeP36Nbp27YqqVauiZ8+e6NixI6pXr47q1avjxIkTOtf9+OOPpT5CtWrVQvPmzfMUQ6dOnQAA+/fvz9P6OZkwYQJevXqFcuXKYc2aNQgJCdH5yOzs2bOIi4tDgwYNOPglFRrs40REBlO9enVcuHABv//+OzZv3owLFy7g+PHjcHFxQbly5TBmzBh07txZYx0zMzNs2rQJ8+bNw5IlSxAREQF7e3s0bdoUmzdvxtmzZ/Hbb7/p3N9PP/2E8uXLY/HixTh27Bjs7e3RpEkTrF+/Hi9evMAPP/ygc73mzZvj8uXLmD9/Pnbu3IlTp04hOTkZpUuXRvny5dGnTx906dLFYMdl4sSJ8PPzw7x583DkyBFs2rQJDg4O8PDwwNixY7OstpQuXRo+Pj44ceIEPv300zzvv06dOmjcuDGOHTuGq1evSkMnGEp6ejqAN5W6O3fuZLlc5iv21M/z89qICppCCCFMHQQRUVbCwsIQGhqK4ODgbC+VL4pu3LiBKlWqwMnJCQ8ePICtrW2et/XXX3+hW7duGDVqFGbPnm3AKPPm9evX8PDwgKWlJe7cuZPj1XdEcsGmOiIimfrqq68ghMAnn3ySr6QJeDP8QpMmTbBw4UJZDDb5yy+/4OnTp/j++++ZNFGhwsSJiEhGtm3bhgEDBqBhw4ZYt24d3NzcMHbsWINs+5dffkFSUhK+/fZbg2wvrxISEvDDDz+gQYMG6Nevn0ljIcot9nEiIpKRM2fOYOnSpXBwcIC/vz/mzJmj13hI+qhTp47UH8mUnJycpPGbiAob9nEiIiIi0hOb6oiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnKhQ8/LygkKhyPYxd+5cU4eZJ+rXFh0dbepQci0iIgIKhQItWrQwdShUBLRo0QIKhQIRERGmDoUIFqYOgMgQmjRpgsqVK+ucV61atQKOJmchISFYvnw5li1bhpCQEFOHQ0REemLiREXCwIEDi1wCcvDgQaSmpqJs2bKmDoWIiP4fEycimapUqZKpQyAiokzYx4neGhn7DG3duhV+fn4oUaKERt+JJ0+eYN68eQgKCkKFChVgY2MDR0dH1KtXDzNmzMDr16+z3P6rV68wd+5cNG3aFMWLF4e1tTU8PT3RoUMHrFmzBgAQHR0NhUKB5cuXAwBCQ0M1+mNNnTpVZ7y69vXDDz/gvffeg4ODA2xtbVG9enVMmjQJ8fHxWsur9+vl5QUhBBYtWoS6devCzs4OTk5OCAgIwPHjx3W+rpMnT2Ls2LFo0KAB3NzcYGVlBVdXV3To0AEHDhzQ8+jrR30cAGDZsmVo1KgRnJycpOOQ8XWoVCrMmzcPtWrVgq2tLdzd3TFkyBA8e/YMAJCcnIxvv/0WVapUgY2NDcqUKYORI0dCqVRq7VelUmHRokVo0qQJnJ2dYWlpidKlS6N27doYPnx4rvuZJSQkYNKkSahZsybs7OxgbW2NMmXKoEmTJvjqq6+Qmpqqtc7x48fRtm1bODs7w97eHvXq1cPSpUu1jotaxmORlazOoStXrmDKlClo0qQJypYtCysrK5QsWRL+/v5Yv369zm1l7Lf26tUrfPXVV6hatSpsbW21Yjh9+jR69+6N8uXLw9raGiVKlEBgYCB27dqVZaz37t1D//794e7ujmLFisHb2xtffvklkpKSslwnOyEhIVAoFAgLC8OdO3fQt29fuLm5wdraGpUqVcKkSZOQnJyc5fp//vknWrVqhRIlSkjv5f79++PGjRs6l9fn8yXj33HVqlVo0KAB7O3tUapUKfTq1Qt3794FAAghMH/+fPj4+MDOzg4uLi4ICQnBf//9l6djQQYmiAoxT09PAUAsW7ZM72WHDRsmAIh69eqJXr16CV9fX3HkyBEhhBArV64UAETZsmWFr6+v6Nmzp2jVqpWwt7cXAESjRo3E69evtbZ99+5dUa1aNQFA2NraitatW4uePXuKZs2aCScnJ+Hp6SmEEOLJkyciODhYVKpUSQAQTZo0EcHBwdJj8+bNWvHeuXNHY19xcXHCx8dHABCOjo7igw8+EF26dBEuLi4CgKhQoYLWOnfu3BEAhKenpwgODhaWlpbCz89PdO/eXbzzzjsCgLC2thb//POP1mtr1aqVMDMzEzVr1hRBQUGiW7du4r333hMABAAxd+5crXXCw8MFAOHr65vj3yUj9TaHDRsmzMzMRNOmTUWvXr3E+++/L6KjozVeR69evYSNjY1o06aN6NSpkyhdurQAIOrUqSMSExNF06ZNpePTvn174eTkJACItm3bau03NDRUABDFihUT/v7+olevXiIwMFB4e3sLABp/l5wolUpRo0YNAUCUKlVKdOjQQfTs2VO0aNFCuLm5CQAiPj5eY53169cLc3NzAUDUqFFD9OrVSzRt2lQoFAoxatQo6bhklPFYZCWrc2jAgAECgKhSpYoIDAwUPXr0EI0aNRJmZmYCgPj888+1tqX+m77//vuifv36ws7OTrRt21b06NFD+Pv7S8vNnTtX2o6Pj4/o2rWraNq0qbCyshIAxNdff6217atXr0p/P3d3d9GtWzcRFBQkbGxsRKNGjUSjRo0EABEeHp7j8VcLDg4WAMTIkSOFo6Oj8PT0FN27dxf+/v7CxsZGABCdOnXSWk+lUol+/foJAMLCwkL4+fmJnj17Su8TW1tbsXv37iyPdXafL+q/4/jx46Vtd+3aVZQvX14AEB4eHuLZs2eie/fuolixYqJNmzaic+fO0rGpVauWSE5O1vsYkHEwcaJCLS+Jk7m5udi6davOZa5cuSKOHz+uNf3Zs2ciICBAABAzZ87UmJeeni7q1asnAIiAgADx33//acxPSkoSO3fu1Jim/lDPLu6svvR69OghfYE9ffpUmv7y5UvRtm1bAUA0btxYYx31l6z6i/b69evSvLS0NNG/f38p/sx27dolHj58qDX92LFjwtHRUVhaWor79+9rzMtv4uTo6Kjz75DxdVSqVElER0dL854+fSolOjVr1hQNGjTQOD63b98WxYsXFwDE0aNHpekxMTECgChXrpx49OiR1j6vXLkiYmJi9H4Ny5cvlxK0lJQUjXnp6ekiIiJC48vv0aNHwsHBQQAQc+bM0Vj+wIEDolixYgZPnCIiIsStW7e0lr927ZooV66cACBOnDihMU/9N1V/ges6Vnv27BEKhUK4uLiIw4cPa8y7cOGCtO2IiAiNefXr1xcARPfu3UVSUpI0PSYmRvqRkdfECYD48ssvRVpamjTv4sWLws7OTgAQx44d01jvt99+EwCEi4uLOHv2rDRdpVKJKVOmCADC2dlZ632uz+eLOp6SJUuKc+fOSdNfvXolmjZtKp27mc/tJ0+eiMqVKwsAYtWqVXofAzIOJk5UqKk/rLJ6ZPziVi/bv3//PO3r+vXrAoCoX7++xvQtW7ZIv5Rfvnyp17bymjjFxMQIMzMzoVAoxPnz57XWuX//vvRFGxkZKU3PmHBs27ZNa71Hjx5JVafMX/bZmTBhggAgFixYoDE9v4nTN998o3N+xteRORkVQog5c+YIAEKhUIiLFy9qzR8+fLhW1ePkyZMCgPjggw9yFWtWZs6cqTMJysp3330nAIiGDRvqnD9y5EiDJ07ZWbhwoQAgvvjiC43pGRMndQUls/fff18AEH/99ZfO+evXrxcARJcuXaRpR48eFQCEnZ2dRqKrtnnz5nwlTnXr1hUqlUpr/pAhQ3Sea+pEbd68eVrrqFQqUatWLQFATJs2TWOePp8v6teR+f0ihBCbNm3K9tyePXu2ACBCQ0Oz3D4VDHYOpyIhq+EIqlSpojWta9eu2W4rPT0dEREROHbsGB49eoSkpCSINz8yAADXr1/XWH7Pnj0AgI8++gj29vZ5fQl6OXLkCFQqFd577z3UqlVLa37ZsmURGBiIrVu3Ijw8HI0bN9aYb2FhgTZt2mit5+bmhuLFiyM+Ph5xcXFwc3PTmB8XF4edO3fi0qVLiI+Pl/roREVFAdA+JvmV09/IwsICAQEBWtO9vb0BAOXLl0eNGjWynP/w4UNpWpUqVeDg4IBdu3Zh2rRp+Oijj1ChQoU8x16/fn0AwMyZM1GyZEm0b98eJUqUyHJ5df+X3r1765wfHByMn3/+Oc/xZCUxMRG7d+/G2bNn8fTpU6SkpAAAHj16BCDrv2np0qXRrFkzrelPnz7FyZMnYWNjgw4dOuhcVz2u17Fjx6Rp6tffpk0blCxZUmudjh07wsnJCQkJCXq/tozat2+v1T8MAKpWrQoAePDggTTt/v37uHXrFoA3xz0zhUKB0NBQfP755wgPD8fEiRO1lsnp3AWAoKAgrWnqczOnczvjuUumwcSJioTcDEeQXWfaqKgodO7cGZcvX85ymRcvXmg8j4mJAaA7STM09Yd8dl/s6qvxMn4hqLm7u8PS0lLneo6OjoiPj9fqAP/HH3/g888/19mpWi3zMcmv7P5GwJvXYWGh/fGlTlzLly+vcz0HBwcA0HiNDg4OWLZsGUJDQzFp0iRMmjQJ7u7uaNiwIdq0aaOVEP/www+4du2a1rZnzZoFFxcXtGjRAuPGjcOPP/6I4OBgKBQKeHt7o0mTJujYsSM6dOgAM7P/XZdz//59AFn/TfOTxGVl+/btCA0NRVxcXJbLZPU3zepvc+fOHQghkJSUBGtr62z3/+TJE+n/Ob1+dQf48+fPZ7vNrGR1Ljg6OgLQPBfU75mSJUtK8zPL7v0F5HzuZhWT+hzL6tzWde6SaTBxoreOjY1NlvO6du2Ky5cvo3379hg7diyqVasGR0dHWFpaIiUlJccvBLnL+IWtj9OnT+Pjjz+Gubk5ZsyYgQ4dOqB8+fKwtbWFQqHAokWL8PHHH0vVOEPJ7m8E5Pw6cvs6u3TpAn9/f2zbtg1///03IiMjsXnzZmzevBlfffUV9u/fj5o1awJ4U2E8fPiw1jamTp0KFxcXAG+SqyFDhmD79u04evQoIiMjsWzZMixbtgz169dHeHg47OzschVjXqhUKq1pDx48QI8ePZCUlISxY8eid+/e8PLygr29PczMzLBv3z4EBgZm+TfN6m+j3pe9vT26dOliuBeRT7k9F/Irp3MXyD6mgo6Xco+JE9H/u3btGi5cuIDSpUtj8+bNWr/61M1Smal/PeqqQhiaejDM27dvZ7mMep4hBs7csGEDhBAYPnw4xo4dqzU/q2NSGDk5OaFv377o27cvgDeXxw8fPhxbt27FsGHDpGRJ39t+eHl5Yfjw4Rg+fDgA4NSpU+jTpw9OnTqFmTNn4uuvvwbw5u907dq1LIc8yGq6lZUVAODly5c656empkrNbhlt374dSUlJ6Ny5M2bMmKE1P69/Uw8PDwBvKkRLly7VOwFQn6fZDfmgruoamzqWuLg4vHjxQmfVyZDvLyqcmNoS/T/1+D9lypTRWSpftWqVzvXUfYbWrl2bbXNWRuovvbS0tFzF2Lx5c5iZmeHcuXM6my4ePXok9blq2bJlrrati/qYeHp6as17/fo1Nm7cmO99yJWHh4eU3Jw7dy7f26tfvz6GDh2qtT1fX18AwOrVq3Wut2LFCp3TS5UqBSsrKzx79kzn+D579+7VeX5l9zcVQkhjjuVWmTJlUKtWLbx8+VI6B/Whfv179uyRYsto27ZteP78eZ5iyq1y5cpJTXFhYWFa84UQ0nRDvL+ocGLiRPT/3nnnHZibm+PixYtaVYXt27fjp59+0rneBx98gDp16uDhw4fo1q2bVr+R169fY/fu3RrTypUrBwDZ9qXSpXz58ujWrRuEEPj444819qVUKjF48GC8fv0ajRs31uoYnhfqDrTLly/XqGy8fv0aQ4cOxZ07d/K9D1M7e/Ys1q1bp3Ogxe3btwPQnWRkZfPmzVIn/oxSU1OlhCLj9gYMGAB7e3scP34c8+bN01gnIiICv//+u879WFpaonnz5gCASZMmaezv/PnzGDZsmM711H/Tv/76S6MilZ6ejq+++kqj43ZufffddwDeDOyqPnYZCSFw4sQJ7Nu3T5rWrFkzvPfee0hMTMSnn36qMSjlvXv3MGbMmDzHkxfq/X377bcaP06EEPjuu+9w7tw5ODs7Y9CgQQUaV3aqVKmCKlWq4OTJk6YO5e1goqv5iAwiL+M4ZXdptvrSbzMzM+Hr6yt69eolDfY4adIknZeFCyFEdHS0ePfdd6UB8gICAkSvXr1E8+bNNQbAVDt//rwwMzMTZmZmwt/fX4SGhooBAwZojP+SVbxPnz4VtWvXFgCEk5OT6NSpk+jatasoVaqUAHIeADM3xyc+Pl6aXrJkSdGpUyfRpUsXUbp0aeHg4CAdr+DgYI1t5Xc4gqzk9Dpy2u+yZcu04lVf7m5jYyOaNGkievbsKbp27Sr9Pa2srHQOeJgV9TFxcXERrVu3Fr179xYffPCBNIhh2bJlxb179zTWWbt2rTQAZs2aNaVzR6FQiM8//zzL4/LPP/9IA0u+8847omvXrqJRo0bC0tJSBAcH6/ybpqamirp16woAwt7eXrRr1050795deHp6CktLSzFu3Didx1Dfv+nPP/8sLCwsBABRuXJl0a5dO/HRRx+J1q1bS8dg3LhxGutcvnxZOn/LlCkjunfvLtq3by9sbW1Fw4YN8zUAZlafDbrOBSHeDDnQt29fAbwZALNVq1aiV69e0vlgY2Mjdu3apbU9fT5fsju/83Nuq7ebm+NDeceKE1EGP/30E5YsWYI6derg9OnT2LVrF2xtbfHnn3/i22+/zXI9T09P/Pvvv5gxYwaqV6+O48ePY9OmTYiJiYGvr69WX5JatWph48aNaNSoEU6cOIGwsDAsWbIEZ86cyTHGkiVL4tixY/j+++9RoUIF7Nu3Dzt27ICLiwsmTpyI06dP63Vljz6cnZ3x77//YujQoXB2dsbu3btx/PhxBAQE4MyZM/Dx8THIfkypYcOG+OGHH9CyZUs8fPgQ27Ztw759+2Bubo5PP/0UFy5c0DmEQ1ZCQkIwfvx4VKlSBVeuXMGGDRtw/PhxeHh4YPr06Th//rxUcVTr2bMnIiIiEBgYiJiYGGzduhUvX77E77//jjlz5mS5r/fffx+HDx9GQEAAHj9+jJ07d+LVq1f4+eefsWzZMp3rWFhYICIiAhMnTkTZsmVx8OBBREREoE6dOjh+/HiuXqsuI0aMwNmzZzF48GAoFAocPHgQW7Zswa1bt1CnTh3MmzcPI0aM0FinWrVq+PfffxESEoL09HRs2bIFV65cwfDhw3Hw4EGpabsgKBQKrFixAmvWrEHTpk1x+vRp/PXXX3j16hVCQkJw9uxZtG3btsDiIflRCGHgy2GIiMig1OMQ8eOayPRYcSIiIiLSExMnIiIiIj0xcSIiIiLSEwfAJCKSOfZtIpIPVpyIiIiI9MSKk4moVCo8ffoUAKT7fhEREVHBEkLg1atXAAAXF5ccbxfExMlEnj59CldXV1OHQURERP8vNjYWpUuXznYZNtURERER6YkVJxOxtbWV/h8bGws7OzsTRkNERPR2UiqVUgtQxu/mrDBxMpGMfZrs7OyYOBEREZmYPv2N2VRHREREpCcmTkRERER6YuJEREREpCf2cSogSqUy2+dEREQkf0ycCoi9vb2pQyAiIqJ8YlMdERERkZ5YcSogiYmJGs8zjhtBREREhQMTpwLCcZqIiIgKPzbVEREREemJiRPJ3r///osffvgB//33n6lDISKitxyb6kjW0tPT0aFDBzx+/Bi3b9/GokWLTB0SERG9xVhxIllTKpV4/PgxAODmzZsmjoaIiN52TJxI1tLS0nT+n4iIyBSYOJGspaen6/w/ERGRKTBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNYyJkusOBERkakxcSJZy5gsseJERESmxnGcCohSqcz2OenGihMREckJE6cCYm9vb+oQCiVWnIiISE7YVEeyxs7hREQkJ6w4FZDExESN50qlEq6uriaKpvDgcARERCQnTJwKiJ2dnalDKJRYcSIiIjlhUx3JGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnkjVWnIiISE6YOJGscQBMIiKSEyZOJGscAJOIiOSEiRPJGitOREQkJ0ycSNYyJksqlQpCCBNGQ0REbzsmTiRrmZvn2FxHRESmxMSJZC1z8xwTJyIiMiUmTiRrmRMl9nMiIiJTYuJEssaKExERyQkTJ5I19nEiIiI5YeJEssamOiIikhMmTiRrbKojIiI5sTB1AG8LpVKZ7XPSjRUnIiKSEyZOBcTe3t7UIRRKrDgREZGcsKmOZI0VJyIikhNWnApIYmKixnOlUglXV1cTRVN4sOJERERywsSpgNjZ2Zk6hEKJFSciIpITNtWRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGu9VR0REcsLEiWQtc4WJFSciIjIlJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ5HQEREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ6ASUREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnPW3atAmtW7dGiRIloFAoEB0dbeqQ3gqsOBERkZwwcdKTUqlE8+bN8c0335g6lLcKRw4nIiI5sTB1AIVF3759AQCXLl0ycSRvF96rjoiI5ETWFadVq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXry+YgMng2FRHRERyIuuK06RJkxATEwMXFxe4u7sjJiYm2+XDw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHjy6gyMlQ2DmciIjkRNYVp8WLFyM6OhpPnjzBkCFDsl02LS0NgwYNgpmZGY4cOYJFixZh9uzZOH/+PN555x1MnDhRK/EaP348FApFtg8yLVaciIhITmRdcfL399d72UOHDuHWrVsIDQ2Fj4+PNN3JyQkTJ05ESEgIli9fjq+++kqaN3r0aISEhBgwYjI0VpyIiEhOZJ045UZERAQAICAgQGteYGAgAODw4cMa00uVKoVSpUoZJR6lUpmv+fQGK05ERCQnRSZxioqKAgB4e3trzXNzc4O9vb20TF48e/YMd+/exa1btwAAV65cwfPnz1G+fHmUKFFCa3l7e/s874v+hxUnIiKSE1n3ccqNhIQEAG+a5nRxdHSUlsmLbdu2oU6dOujatSsAoF27dqhTpw62bduW521SzlhxIiIiOSkyFSdjCwkJyVV/qMTExGznK5VKuLq65jOqoo8VJyIikpMikzipK01ZVZVevHiB4sWLF1g8dnZ2BbavoowVJyIikpMi01Sn7tukqx/T48ePkZiYqLP/U0FRKpVaD8oZb7lCRERyUmQSJ19fXwDAvn37tObt3btXYxlTsLe313iwmU4/vOUKERHJSZFJnFq1aoWKFStizZo1OHfunDQ9ISEB06dPh5WVFfr162e6AClPWHEiIiI5kXUfp8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgQAWFhYYPHixQgMDETz5s01brkSExODWbNmwcvLyxQvA4B2Z3F2Ds+ZEIJ9nIiISFbylDg9f/4ce/fuxcGDB3HmzBnExsYiPj4exYsXh6urK+rWrQs/Pz8EBgbC2dk5z8EdPXoUy5cv15gWGRmJyMhI6bk6cQKAli1b4ujRo5gyZQrWrVuH1NRU1KxZEzNmzECPHj3yHIchsLN47qlUKq1prDgREZEpKYQQQt+FL168iJ9//hlr167F69evkd2qCoUCxYoVw0cffYThw4ejVq1aBgm4qFAqldIgmYmJiUysdEhOTkaxYsU0pgUGBmLPnj0mioiIiIqa3H4f61Vx+u+//zBhwgQsX74cKpUKLi4uaNeuHRo3bozq1aujZMmS0gCTcXFxuHTpEo4dO4YjR45gyZIlWLZsGUJCQjB9+nSULl06/6+yEMp8FR2vqsuZrmY5VpyIiMiU9Ko4OTk54eXLl2jfvj0GDBiAdu3awcIi55wrLS0N27dvx9KlS7Fz5044OTkhPj7eIIEXNgqFIst5rDjp9uLFC62R4Fu0aIHw8HATRUREREVNbitOel1V16BBA5w6dQrbtm1Dx44d9UqagDcdtjt37ozt27fjxIkTqFevnl7rEQG6K07sHE5ERKakVwa0f//+fO+ofv36BtlOYcWr6nJPV7Mcm+qIiMiUZD0cQVHCprjcY8WJiIjkxigDYCYkJGR7xR2RPtg5nIiI5CZPidOlS5cwb9483LhxQ2N6eHg4KlSogBIlSqB06dIICwszRIz0ltKVJLHiREREppSnxGnevHkYNWoUbGxspGlxcXHo1KkTYmJiIIRAXFwcBg4ciLNnzxos2MKMN/nNPVaciIhIbvKUOEVGRqJ69erw8PCQpq1cuRIvX77Exx9/jOfPn2PFihVQqVT45ZdfDBZsYcab/OYeK05ERCQ3eUqcYmNjUb58eY1p+/fvh7m5Ob777js4OjqiT58+qFOnDo4fP26QQOntw4oTERHJTZ4SJ10DE544cQI+Pj4oWbKkNM3b2xsPHjzIX4RFRGJiosYjNjbW1CHJHitOREQkN3kajsDR0VEjIbp69SqePXuG3r17ay2b3YjZbxMOR5B7rDgREZHc5Kni5OPjg2PHjuHmzZsAgCVLlkChUMDX11djuTt37sDd3T3/UdJbiRUnIiKSmzwlTh9//DFSU1NRt25d1KlTBz/99BNKly6Ndu3aScu8fPkS586dQ40aNQwWLL1dWHEiIiK5yVPi1K1bN0ydOhVpaWk4f/48PD09sWHDBlhbW0vLrF+/HqmpqVpVqLcVhyPIPY4cTkREcqMQ+RjiOyUlBS9evICLi4vWvLt37yI+Ph6VKlWS7jr8Nsuur5c+d2N+Gx05ckQr8XZycsLz589NExARERU5SqVSylP0+T7O173qrKysdCZNAFC+fHmtIQuIcoMVJyIikhve5LeAJCYmajxXKpUcBDMH7BxORERyk+fEKS0tDRs2bMDBgwfx8OFDvH79WudyCoUCBw8ezHOARQWb4nKPncOJiEhu8pQ4PXnyBAEBAbhw4QJy6iLFcZwor1hxIiIiuclT4jR27FicP38elStXxieffAJvb284ODgYOjZ6y+lKklQqFYQQTMiJiMgk8pQ47dixA66urvjnn39QokQJQ8dEBCDrZrn09HRYWLB7HhERFbw8jeOUlJSEJk2aMGkio8qqWY79nIiIyFTy9LPd29sbSUlJho6lSMs84CUHwMxZdhUnIiIiU8hTxWnAgAGIiIjA/fv3DR1PkWVvb6/x4FAEOWPFiYiI5CZPidOwYcPQvn17+Pn5Ye/evVCpVIaOiyjLxIkVJyIiMpU897BduHAhfH19ERQUBAsLC7i7u8PMTDsPUygUuHXrVr6CLAo4AGbuZVVZYsWJiIhMJU+J071799CsWTPcu3cPQgikpqbi7t27OpflZeNvcADM3GPFiYiI5CZPidO4ceNw9+5dNG3aFKNGjYK3tzdv5EsGx4oTERHJTZ4SpwMHDsDT0xP79++HtbW1oWMiAsCKExERyU+ex3Fq0KABkyYyqoyVJUtLS53TiYiIClKeEqdq1arh2bNnho6FSEPGylLGJJ0VJyIiMpU8JU7Dhw/H4cOHcenSJUPHQyTJWFnKmDix4kRERKaSp8SpT58+GDNmDPz8/LBw4cIsr6gjyg9WnIiISG7y1Dnc3Nxc+v/QoUOzXVahULBCQHnCxImIiOQmT4mTEMIoyxZlvFdd7rGpjoiI5CZPiRNvsZJ7HOcq91hxIiIiuclTH6cjR44gMjLS0LEQachYWbKystI5nYiIqCDlqeLUokULtGjRAocOHTJ0PEUW71WXe6w4ERGR3OQpcSpevDjKlClj6FiKNN6rLvfYx4mIiOQmT011Pj4+iIqKMnQsRBpYcSIiIrnJU+I0YsQInDp1Cjt37jR0PEQSVpyIiEhu8tRUV6dOHQwbNgydO3dGSEgIunTpAi8vL9jY2Ohcvnz58vkKkt5OrDgREZHc5ClxqlChAoA3YzQtWbIES5YsyXJZDoBJecWKExERyU2eEicPDw8oFApDx0KkgRUnIiKSmzwlTtHR0QYOg0hbVokTK05ERGQqeeocTlQQsmqqY8WJiIhMhYkTyRYrTkREJDd6JU4PHz40yM4MtR16O7DiREREcqNX4uTt7Y3x48cjPj4+Tzt59uwZxo4dC29v7zytXxQolUqtB2UvY4LEe9UREZEc6JU4BQQEYObMmShXrhz69OmD/fv3Izk5Odt1kpOTsXfvXvTq1QvlypXDrFmzEBgYaJCgCyN7e3uNB+9TlzNWnIiISG70uqpu8+bNOHDgAD7//HOsWbMGa9euhaWlJXx8fFC1alWULFkSjo6OePHiBeLi4nDlyhWcP38eqampEEKgRo0amDNnDvz9/Y39eqgI4XAEREQkN3oPR+Dv74+LFy9i//79mD9/Pvbt24eTJ0/i5MmTAN4MdCmEkJa3trZGhw4dMGzYMCZMABITEzWeK5VKVp1ywAEwiYhIbnI9jlPr1q3RunVrJCcnIzIyEmfPnkVsbCwSEhLg7OyM0qVL47333kPjxo01vuzednZ2dqYOodBhxYmIiOQmTwNgAm++yPz8/ODn52fIeIgkrDgREZHccBwnkq2srqpjxYmIiEyFiRPJljpBMjc3h4XF/4qjrDgREZGpMHEi2VInSObm5jA3N5ems+JERESmwsSJZEudIFlYWLDiREREssDEiWSLFSciIpIbJk4kW6w4ERGR3DBxItlixYmIiOQmT4nTkSNHEBkZaehYiDSw4kRERHKTp8SpRYsWmDx5sqFjIdLAihMREclNnhKn4sWLo0yZMoaOhUgDx3EiIiK5yVPi5OPjg6ioKEPHQqQhY1MdK05ERCQHeUqcRowYgVOnTmHnzp2GjodIkrGpLmPFiYkTERGZSp5u8lunTh0MGzYMnTt3RkhICLp06QIvLy/Y2NjoXL58+fL5CpLeTllVnNhUR0REppKnxKlChQoAACEElixZgiVLlmS5rEKh4Bcd5QkrTkREJDd5Spw8PDygUCgMHUuRplQqs31O2lhxIiIiuclT4hQdHW3gMIo+e3t7U4dQ6LDiREREcsORw0mWhBCsOBERkezkqeJEuZeYmKjxXKlUwtXV1UTRyJ9KpZL+zwEwiYhILvJVcfr777/RvXt3lCtXDtbW1hgwYIA0b//+/Zg4cSIeP36c7yCLAjs7O60HZS1jcsQBMImISC7ynDh99913aNGiBf766y88fPgQqampEEJI852cnDBjxgxs2rTJIIHS2yVjcsQBMImISC7ylDjt3r0bX331FcqWLYv169cjNjZWa5kGDRqgVKlS2LFjR76DpLcPK05ERCRHeerj9PPPP8Pa2hq7d+9G9erVs1yudu3avDUL5UnGxIkVJyIikos8VZxOnTqFBg0aZJs0AUCpUqXYx4nyJGNVKXPncFaciIjIVPKUOCmVSri5ueW4XEJCgsbVUUT6ylxxMjMzkwZdZcWJiIhMJU+Jk6urK27evJnjctevX4eHh0dedkFvucwVJwBSPydWnIiIyFTylDg1bdoU586dQ2RkZJbL7NixAzdv3kTLli3zHBy9vTJXnID/JVCsOBERkankKXEaPXo0FAoFPvzwQ2zZskWrArBnzx4MHDgQlpaWGD58uEECpbcLK05ERCRHeUqc3nvvPcyePRtPnz5Fly5d4OzsDIVCgY0bN8LZ2Rnt2rXDf//9h9mzZ6NatWqGjpneApmHI8j4LytORERkKnkeAHPkyJHYtWsX6tevj6SkJAgh8PLlS7x48QI1a9bEtm3bMGzYMEPGSm+RzANgZvyXiRMREZlKvu5VFxgYiMDAQMTFxeHOnTtQqVTw8PCAu7u7oeKjt1R2FSc21RERkakY5Ca/JUuWRMmSJQ2xKSIArDgREZE85ampLiwsDPfv3zd0LEQSVpyIiEiO8lRx6t+/PxQKBby9veHv7w9/f3/4+fnB0dHR0PHRW0rXcASsOBERkanlKXEKCQnBoUOHcOPGDdy4cQO//fYbzMzMULduXSmRatKkCSwtLQ0dL70ldA1HwIoTERGZWp6a6pYuXYro6Ghcv34dCxYsQMeOHeHg4ICTJ09i+vTpaNWqFYoXL442bdpg9uzZho6Z3gKsOBERkRzleTgCAPD29sYnn3yCTZs2IS4uDidOnMC0adPQokULpKWlYd++fRg3bpyhYqW3CCtOREQkR/lKnDJKTU3Fy5cvpbGc1F9uQghD7YLeIro6h7PiREREppav4QjOnTuH/fv348CBAzh69Chev34NIQQcHR3Rrl07qb8TUW7pGo6AFSciIjK1PCVOPXv2xKFDhxAXFwchBCwtLdGwYUMpUWrQoIH0JUeUF7zlChERyVGeEqf169dDoVCgVq1amDJlCgICAmBra2vo2Ogtlt0AmEIIqFQqmJkZrKWZiIhIL3n65nFwcIAQAufPn0fv3r3x4YcfYvbs2Th//ryh46O3VHYVp8zziYiICkqeKk7Pnj3DyZMnceDAARw4cADh4eHYt28fFAoFXFxc0KpVK7Ru3RqtW7dGuXLlDB0zvQWyG44AeFOR4jhhRERU0PJUcTI3N0ejRo0wefJkHD58GPHx8dixYwdGjhwJNzc3rFu3DgMHDoSnpyeqVq1q6JhN4vvvv0e9evXg4OAAV1dXdO/eHdHR0aYOq8jKbjgCgBUnIiIyDYN0ErG1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3DDELkzu8OHDGD58OE6cOIE9e/bg2bNnaNu2La/wMhJ9Kk5EREQFLV/DEQDA/fv3pSEJDh48iCdPngCAdLVdo0aN8h2kHOzZs0fj+R9//IGKFSviypUrqFWrlomiKrpYcSIiIjnKU8Vpy5YtGDZsGKpUqQJPT08MHDgQa9euxZMnT1CjRg189tln2LlzJ+Lj4xEREZHn4FatWoWPP/4Y9erVg7W1NRQKBcLCwrJd59SpUwgKCoKzszPs7OzQsGFDrF+/Ps8xZCUhIQEAUKJECYNvm7IfADPzfCIiooKSp4rThx9+KP3fw8NDGr+pVatWKF26tMGCmzRpEmJiYuDi4gJ3d3fExMRku3x4eDgCAwNRrFgx9OzZEw4ODti4cSN69OiBe/fuYfTo0QaJKz09HWPGjEFQUBA7vxtJdgNgZp5PRERUUPJUcerUqRMWLFiA69evIyYmBkuWLEGvXr0MmjQBwOLFixEdHY0nT55gyJAh2S6blpaGQYMGwczMDEeOHMGiRYukIRLeeecdTJw4USvxGj9+PBQKRbaPzIQQGDJkCO7evZtj9YvyjhUnIiKSozxVnDZt2mToOHTKze1aDh06hFu3biE0NBQ+Pj7SdCcnJ0ycOBEhISFYvnw5vvrqK2ne6NGjERISovc+hBAYOnQoDhw4gCNHjqBUqVJ6r0u5w4oTERHJUb47h8uFui9VQECA1rzAwEAAb66My6hUqVJ6Jz9CCHz66afYuXMnDh8+DA8Pj2yXVyqV+Zr/tmPFiYiI5ChfidPVq1fx888/Izw8HA8ePAAAlC1bFn5+fhgxYkSBjuEUFRUFAPD29taa5+bmBnt7e2mZvPj000+xdu1abN++HTY2Nnj8+DGAN53DraystJa3t7fP876IFSciIpKnPCdOYWFhGDJkCFJTUyGEkKZHRUUhKioKy5Ytw8KFCxEcHGyQQHOivsrNyclJ53xHR0dpmbz47bffAADNmjXTmB4eHo4WLVrkebukGytOREQkR3lKnE6fPo1BgwYhPT0d7du3x4ABA1CpUiUAwO3bt7FkyRJs374dgwYNQvXq1VGv3v+xd+fxMdz/H8BfGzlEEglCHCFxtc6KK+77rFJVd4tQqqqo0qKH0gM9SNXVyxFn3dQRNxGhiKtu4r5DiJBDrn3//vDb+e5kd5NNZLObeD0fj32wM5+Z+exkduc9789nPlMnWyttDfrBoTliY2PTnR8XFwcvL68XqVKeZmwATGaciIjI2rIUOP3888/QarWYN28eBgwYoJpXrVo1vPnmmwgKCsJ7772HadOm4e+//86WyqZHl2kylVV68uQJChUqZPF66Li4uOTYtvIiYwNgMuNERETWlqXhCPbt2wc/Pz+DoElf//79UatWLYSGhma5cpmh69tkrB/TvXv3EBsba7T/U06Ji4szeJFpxprqmHEiIiJry1LgFBUVZVbH70qVKiEqKiorm8i0Zs2aAQC2b99uMG/btm2qMtbg6uqqerGZLn3GOocz40RERNaWpcDJw8MDN27cyLDcjRs3THbWzm6tWrVCuXLlsGzZMpw4cUKZHhMTg8mTJ8PR0RH9+vXLkbrQi2PGiYiIbFGW+jjVrVsXW7duxe7du9GyZUujZXbv3o39+/ejQ4cOWa7c3LlzERYWBgA4deqUMk03ZlPjxo0xaNAgAM+zEXPnzkW7du3QtGlT1SNXrl+/jqlTp8LX1zfLdXlRaTuLs3N4+phxIiIiW5SlwGn48OEIDg5Gp06d8NFHHyEgIABly5YF8PyuuqCgIOX2/eHDh2e5cmFhYVi4cKFq2v79+7F//37lvS5wAoAWLVogLCwMEyZMwIoVK5CcnIzq1avjxx9/RM+ePbNcj+zAzuKZw4wTERHZoiwFTu3atcOXX36JSZMmYdq0aZg2bZpBGRHB+PHjjY7kba6goKBMPw/O398fW7ZsyfI2yTZkNAAmM05ERGQNWerjBADfffcdgoOD0aJFCzg5OUFEICJwdHREy5YtERwcjG+++SY765qr8a66zMloAExmnIiIyBpe6JEr7du3R/v27ZGamoqHDx8CAIoUKaLKDNBzfARL5hgbx4kZJyIisrZMBU6XLl3C2rVrce3aNTg5OcHPzw89evSAs7MzihUrZqk60kvI2Mjh7BxORETWZnbgNH36dIwZM8bghDV+/HgEBwejWrVq2V65vIR31WUOO4cTEZEtMitwCgsLw+jRoyEicHFxwauvvoonT57gypUruHXrFrp27Ypz587Bzi7LXabyPN5VlzkcjoCIiGyRWZHOrFmzICIICAjAvXv3cOTIEVy8eBHHjh1D+fLlcenSJWzdutXSdaWXCDNORERki8wKnP799194e3vjjz/+UGVOXnvtNfz6668QERw8eNBilaSXDzNORERki8xqqouMjESHDh3g6OhoMK9x48YAgPv372dvzfKYtMMPcDiC9DHjREREtsiswCkpKQkeHh5G5xUsWFApQ6ZxOILMYcaJiIhsEXtzk01ixomIiGyR2cMRXLp0CYsWLcrS/H79+mW+ZnkMhyPIHGMDYDLjRERE1mZ24JT24br6NBqNyfkajYaBEzgcQWYZGwCTGSciIrI2swKnMmXKQKPRWLouRIqMnlXHjBMREVmDWYHTtWvXLFwNIjVjncOZcSIiImtj53CyScw4ERGRLcrUQ34p6ziOU+boMkp2dnZKMzEzTkREZG0MnHIIx3HKHF1GST9YYsaJiIisjU11ZJN0GSX9YEk/iGLgRERE1sCMUw7hOE6Zk1HGiU11RERkDQyccgjHccocXWCkHzgx40RERNbGpjqySbrAyFRTHTNORERkDQycyCYZyzixczgREVkbAyeyScw4ERGRLWLgRDaJwxEQEZEtYufwHMIBMDMno+EImHEiIiJrYOCUQzgAZuYw40RERLaITXVkk5hxIiIiW8SMUw7hAJiZw4wTERHZIgZOOYQDYGZORgNgMuNERETWwKY6sknGhiNgxomIiKyNgRPZJGaciIjIFjFwIpuj1WqV/zPjREREtoSBE9kc/aCIGSciIrIlDJzI5ugHRcw4ERGRLWHgRDbHnIwTAyciIrIGDkeQQ/jIFfOZk3FiUx0REVkDA6ccwkeumM9UxsnOzs5oGSIiopzCpjqyOfrZJP3ASaPRKO+ZcSIiImtgximH8JEr5tPPJuk3zwHPA6nU1FRmnIiIyCoYOOUQPnLFfKYyTsDzQCopKYkZJyIisgo21ZHNySjjlLYMERFRTmHgRDYno4xT2jJEREQ5hYET2RxmnIiIyFYxcCKbY2o4Av33zDgREZE1MHAim2NqAEz998w4ERGRNTBwIpvDjBMREdkqBk5kc8zpHM6MExERWQMDJ7I55nQOZ8aJiIisgYET2RxmnIiIyFZx5PAcEhcXl+57+h9mnIiIyFYxcMohrq6u1q5CrsGMExER2So21ZHN4QCYRERkq5hxyiGxsbGq93FxcfDy8rJSbWwbH7lCRES2ioFTDnFxcbF2FXINczJOAKDVamFnx6QpERHlHJ51yOakNwCmfiDFrBMREeU0Bk5kc9JrqtN/z35ORESU0xg4kc1Jr6mOGSciIrImBk5kc5hxopSUFAwePBjdunVDTEyMtatDRKRg53CyOcw40dq1a/HXX38BAGrUqIHx48dbuUZERM8x40Q2hxkn2rNnj/L/LVu2WLEmRERqDJzI5jDjRHv37lX+f+jQITx69MiKtSEi+h8GTi8xrVaL2NhYiIi1q6KSmYyTiECr1eZY3cjy7t+/j3PnzinvtVotdu7cacUaERH9DwOnl9jAgQPh5uaG77//3tpVUTE345SUlISuXbvC2dkZK1asyLH6kWXt27fPYNrWrVutUBMiIkMMnF5S4eHhCAoKAgB8//33iIyMtG6F9KQ3AKb++z/++APr1q1DUlISvv322xyrH1lWaGiowbStW7faXGaUiF5ODJxeUoGBgcr/k5KS8Pvvv1uxNmrmNtVNnz5d+f/Zs2dx7do1S1eNcoCuf5NGo0HDhg0BAHfv3sWpU6esWS3Kg27evIlBgwZh4cKF1q5KtkhOTsawYcPQrl07zJs3DwkJCdauUp7EwOkldOPGDaxatUo1bc6cOUhMTMzS+o4cOYLLly9nR9UAZL1zeHBwcLbVwRJy412AycnJOZrpiY6OxsmTJwEAfn5+6NWrlzKPzXWUnZKSkvDmm29i3rx56N+/P8LDw1XzY2Ji8N1332HXrl1WqmHmzZ8/H7Nnz8b27dsxaNAgeHt7Y8yYMbh//761q5anMHB6Cc2YMUM5iRcoUADA8w65y5cvz/S6NmzYgLp166JatWq4cuVKttTP3IxT2ve2GjidPXsW/v7+KFiwIEaOHImoqChrV8kkEcHx48cxceJE+Pn5wdHREd27d8+x4CksLEzZVtOmTdG+fXtlXm4InLZu3YrOnTsjJCTE2lXJ81JSUhAfH28wPTU1FYGBgejTpw9u3rxpcvlJkybhxIkTyvuJEycq/xcR9O7dG19//TXatGmDefPmZWfVjXr69ClmzJiB4ODgLF1kJScn44cfflBNe/ToEX7++Wc0bNgQcXFx2VVVErKK2NhYASAAJDY2NtvWq9VqZeTIkTJ//nyj82NiYqRgwYICQJycnGTdunVKPWrWrClarTZT23vrrbeU5adNm5blesfHx8vDhw9FROSbb75R1rl582ZVuY8++kiZB0AmTpwoJUqUEADi7Ows8fHxWa5DdtNqtfLHH3+Is7Ozqs4FCxaUSZMmSVxc3Aut/8KFC7Jt2zZJSUkxmHf+/HnZsWOH2X/PlJQUWbp0qVSqVElVV91r5cqV6S6fkJAg0dHRWfkYKp9++qmyzbVr14pWq5Vy5coJAHFwcJAnT5688DYsJSYmRtzc3JS/8e3bt81edtmyZdK8eXOZPn26JCcnp1s2MTFRHj9+nOnvqi3SarUSHBws33//vVy/ft3s5eLj46Vhw4ai0WikT58+cv/+fRERefTokbz++uvKMfTGG28YXf7o0aOSL18+g+P84MGDIiKyZs0ag3m//fbbi3/gdLRv317ZVrly5WTq1Kny6NEjs5cPCgpSlm/UqJH07dtXHB0dlWljx461YO1zt8yejxk4WYmlAqeff/5ZWe+ECRMMflwDAwOV+e+//75otVqpW7euMm3v3r1mb+vZs2fi4uKiLNuhQweDMlqt1uiJPSUlRYKCgmTAgAHy2muvKT9irVq1kq5duyrr3Lp1q2q5ESNGKPN8fHwkPj5eBg4cqEzbsmWL2fW3pMePH6s+h7FXpUqVlB98Ha1WK+Hh4bJlyxbZt2+fHDt2TCIjIw3WHxERoez7Dh06yOPHj5XlAwMDxc7OTgDIwIED0z3BpqamyvLly6Vy5crp1rV8+fKSmJhodB179uyRokWLir29vXz77beSmpqa5f3m7++vbPPBgwciog6W//nnnyyvOz13796V119/Xdq0aSNHjhzJ0jp++eUX1T7r1q2bWcudPXtWdRKvVauWhIeHG5S7d++ejBo1SgnEnZycxMfHR5o0aSK7d+/OUp2t6cSJE9KiRQvlc+fPn1/Gjx9v1u+h/sUVAClSpIhMmzZNypcvb3DsXrx4UbXss2fPpGrVqsr82rVrK/9v3769xMbGSunSpY1+D2bOnGmRfbF7926j2/Pw8JATJ05kuHxKSoq88sorynL79+8XEZFz584pwZO9vb2cOXPmheu6YcMGadu2rSxatOiF15VZMTExsn//fvn999+N/i5mFQOnXMJSgdPHH3+s+uINGDBAkpKSROR5VsDHx0eZp/sSLV26VJnWsmVLmTZtmvTv3186d+6sXIEZs23bNtW2XF1dlW2JiBw/flzc3NykSpUqyklQRz+AS++1c+dO1XKTJ09W5q1atUpE1FeHw4cPz5b9+CISEhKkSZMmqs8xdOhQuXTpkgwePFh1kmzYsKEkJCSIyPOraP0Mnu6l0Whk6dKlqm306NFDVebVV1+VU6dOyYABAwyW//LLL43WMy4uzuj2GjZsKHPmzJFbt25Jy5YtlekzZswwWMfSpUtVV7UApG3btgYBoTmePHmi7JuqVasq0zdu3Kis+8MPP8z0ejOSlJQkjRs3VrZhb28vkydPNhrwm5KSkiJly5Y12JcbN27McNkOHToYLGdnZyfdu3eXcePGyYwZM+TTTz+VAgUKmPyeFC5cOFMZLn0PHjyQvn37yqeffipPnz5Vzdu5c6fUr19fevXqlW2/U5GRkfL++++LRqMx+llKliwp69evN7n89evXDbK4xvaf7v8jRoxQLf/5558r8/z8/CQ2NlZ8fX2Vafp/j7Zt28rYsWNV616yZEm27AcdrVYrDRo0UNZfo0YN1fZef/31DNexfPlypXzz5s1V88aPH6+al1Gm8tatWzJo0CApVKiQ9OvXT2JiYpR5ixYtUu1bSwRPWq1W5s+fL8OHD5dBgwbJu+++K2+88YbqbwRANmzYkG3bZOBko2JjY1WvyMhIiwROWq1Wpk2bpjrAmjVrJm+++abqh1f/y5iYmCglS5Y0+gNUpkwZVTCkb/jw4QblDxw4oMzv3r27Mv2LL75QpiclJUmpUqWUefny5ZPXXnvN4IsBQPbs2aPa5sOHD2XkyJEye/Zs5QcgJiZG7O3tBXie4s5sE8bDhw9l5syZsmXLlhdu/khNTVV97kKFCsm6detUZU6fPq00LwKQHj16SHR0tDRt2tTkiaBgwYJKU8bhw4fTPWkYe6W9Ur5//77Ur19fVaZRo0ayc+dO1T44cuSIMt/T01OV2ZoyZYrJ7ZUqVUpWrVqlBIXGxMfHy5AhQ6Rjx44yf/58Wb16tdEA6enTp0pw5ujoKOPGjVN+zJOTkyUkJER++eUXuXLlSrp/m5iYGOnfv7/07NlTdeWd9mJD92rcuLFcvXo13XXq6Dd5e3l5qb4/sbGxotVq5b///pMFCxaoLiK2bNmi2mfVq1fP8G+ZP39+ad68uVSrVk3c3d1V32n9v93ixYulV69e8u+//6Zbd/3jtWLFinL06FFJTU2VyZMnq06S77zzzgt9P5KTk+XXX39V1Vn3nX3//ffFwcFBmWZvby/nzp0zuh79i4YBAwYYXETUrFlTjh07pgRXbm5uyvESFhamfCYHBwc5efKkiIjMnTvXYD87OjrKxYsXRavVqoIPT09PpVuBzp07d+TQoUMZ7p/o6GgJDAxU/U7qXxhUrVpVUlJS5Pz581KmTBkBnl84pT0Ok5KSJDIyUrRaraSmpkq1atWUdaS92IyPj1cF9aYCv+joaPn8888NgtIKFSrI8ePHJSgoyCDYtbe3N9iezu3bt6V69epSuHBh6dGjhyxevFiioqLS3T8iIn/++adZv2mTJk3KcF3mYuBko9I7ALIzcNJZuXKlODk5mdxmSEiIqnx6J8GFCxcarF+r1Rq9wv7+++9F5PnJTv8L6OHhofRP0c9wdejQQemXlJiYKDNnzpSiRYsqPxg3b9406/Pqp/zPnz9v1jLx8fHy448/ioeHh7Js8+bN5dixY2Ytb8wnn3yirMvFxcVok4vI8z4W+s2cRYoUUS03btw4GT16tCpz1aZNG9FqtdK8eXNl2pgxY1Q/mroT699//y0zZsxQpmk0Gvniiy9k6dKlsmnTJqlQoYIyz83NTf755x+TP/rvvPOOUnbUqFESFBRkEHQNHjxYtm/frgoagOcBX0BAgOzatctgvYMHDzZ5zP3999+qsv369VPNL1q0qHTv3l0KFSqkOqGlbZbR179/f6Wsk5OTTJ06VRYvXqw6UQ4ePFgVLLi7u8vq1asz/Ls3a9ZMWWbz5s3SunVr1d9Nv2moRIkSEhoaKsnJyaom0mXLlklSUpL89NNPqmNDv84ff/yx3LlzR9luVFSUFC9eXCnzxx9/SEpKiioYdHZ2Nvi+6xhrInJwcFBlQPRf+lnHmzdvytixY2XOnDkZZucOHDhgEBS6ubnJTz/9JM+ePRMRkYsXL0rbtm2V+R9//LHBekJCQlTHgK5f3caNG6V58+YycuRIpe+g/vE1ffp0efz4sSrjrn/iTUpKUvrS6V5fffWVatv6AdrQoUOV6eHh4eLq6ioA5K+//jK5DxISEqRWrVqq9SclJclrr72mTFu7dq1S/vvvv1em62eN7969q1xkFihQQNVEV79+faPf482bNytlvLy85PLly8o8rVYrCxYsEE9PT5PfRycnJ1XQpN8XsmDBgkoAqq9Xr14G67Gzs5PGjRvLlClT5OTJkwZ1ffTokcl6uLm5SYMGDWTw4MEyc+ZMOX36tMl9nVkMnGyUqQPS3D9UVuzbt08KFy6sbKdYsWISEBAg27ZtMyibnJwskyZNkk8++UTmz5+v6mhYpUoVg34rZ8+eVeZXrFhR+X/Lli1FROTvv/82+JzTpk0TrVYrderUUaYZ+0F/8uSJBAUFmfyxN2bq1KnKOgMDA0XkeVYlPDzcoO5arVaWLl0q3t7eRv8eug6nv//+uwQHB8upU6ckIiJCzpw5IydOnJDw8HDZv3+/7NmzR7Zu3SrLli2T6dOnq/pa5cuXz6Bje1obN25UnaR1J//Dhw8rZaKjo1XZOf0gRtfv6MmTJ9KlSxcBnmct9IM1/WYJY6+SJUtm2IfiypUrBs1x+q/JkycrP4B3795VBbH6r5EjRyp/C/3g2dgrbbNTbGysjB07Nt16AM+zF/fu3TO6r9NbDngedIg8/96kzX5+9NFHJrNnx44dU8q9+uqrkpqaKhEREeleuOTLl0/eeOMN5X2DBg1UJ5G4uDg5ffq07NixQxYtWiR//fWX3Lp1y+j29U+KLi4uqs7R+tPDwsJUyyUnJ6uCbmPfB41GozoB2tvby969e+XXX39VggXg+QWHqabC8PBwyZ8/v2q9AwYMMPp3evjwoVLWw8NDdbNHcnKyKshIL0gRETl16pTqu9K7d2/lfZMmTQyCvfnz5yvzfX19DW7euHnzphLQajQaOXr0qFy9elV1sVCpUiWTFyD6vw/6x4vu/3Xq1FEte+fOHSWTXrx4cSXz/+6775o8rjZt2mRyf+g3y+fLl0/69u0rwcHBBpluR0dH+eSTTyQ8PFzV/0v3GjFihCQnJ0unTp2UaaVKlZIbN24o29IPcNN7ValSxWT2t0uXLnLy5EmJiIiQO3fuWPRmCAZONiqnmurSunHjhvz+++9y+PDhTHfa1e/3kbbPgX4n9GnTpilXck5OTpKQkGC074y3t7fs2rVLeZ+Vu/hM0Q/kqlSpIu3atVP6y/j7+ysdfh8+fKhqmgCeXwX17t1blYV50VdGP+o6M2fOVJYpU6aM0eYJ/eYc/deKFSuUMlqtVs6fP29wctdqtTJkyBCTP1rm3sk0atQog+WrV6+uukLWSU1NlS1btkhAQIByB6fu9e6778qpU6dUJ92JEyfKkCFDlMxf2j4a+q5cuaK68nd3d5eePXtKlSpVVCcg/b46Dx8+VGVl2rVrZ9DkMGDAANWx+PjxY4MmoEqVKsmUKVMM/kYBAQFKmTlz5ijT9TMGwPOmUP3vlP7r0KFDZv0dTDGWvcuXL58qw+Hm5qbajv6xV6dOHUlISJDPPvtMmVaoUCHlZosxY8Yo0031TfL09DS4WLhz544q8K9du3aGTYf62cWgoCBl+qxZs5TptWrVMqsPWqtWrQzq6e7ubvS4T05Olp49e0r58uUNgkydH3/8UVlP3bp1jd5UYaxfqH5TYP78+Y3e0bd9+3aD5fRvMFm9erUqQ+jq6ioVK1ZUgqu0TbVpXb9+3WSXDN2re/fuqmbBZ8+eybBhw5T5I0eOVLYRGxururGoUqVK8uDBA4MAd/bs2RISEiKjR49WBYq6V9GiReW///6TM2fOKPvF2dlZFYhZGgOnXMJSncOz06ZNm5Q61qtXT/Wl1G+auHDhgrz33nvK+/Xr1ytX215eXqor62LFiin/X7x4cbbVVavVGu0jpf9j379/f9WPOADp2LGjnDp1SkSeNxUGBgaqmu4y+7Kzs1OaK821YsUKGTduXLqde9NerdapUydTgfDJkydlxYoVEhgYKKNGjZIvv/wyU7c6P3r0SGrXri2urq4SEBAgBw4cMCvoTUhIkBkzZqgya/pZo4CAAFXZQ4cOKU036YmIiJCDBw8qV+E3b95UZUxat24toaGhkpiYqLpC79Chg2i1WgkJCVGamuvVq2d0GAvdcBJpsyXA8wxG3bp1pW7dukrfHA8PD9V3OTU1Vf7880/55Zdf5Nq1ayLyvBP5F198oVpX3759M/y8GXn69KmqqcnV1VW2bt0qCQkJ0qZNG2W6k5OT9O7dW/755x/Vca4fzISFhcmkSZNUwUVycrLRTGLfvn0NMlXvvvuuXLp0SRISElRNuo0aNTLrb3vgwAFlmfr164uIyNWrV1XNl6YCm7Q2bNhgUOfly5dncu/+T2JiotEhO/T7jw4ZMkS1zJEjR1TZxyVLlkhISIgqU2Wq0/b27dtVZfQDNV2GNDk5We7du2fW9/HRo0fyzTffqFoigOeZ2rR3MKf9DCEhIQbbiIyMVF1w1q5dW9Xtw1iAe+nSJfn1119VzdeFCxdWBWHffvtthp8lOzFwyiVyQ+Ck1WpVVw66W56jo6OVK4MKFSqIiMiSJUuUcvpt7sOGDZOwsDCDH5oSJUqYvL09q9J28vXx8VE1I+q/ChUqpNyVl1ZMTIxs3bpV/vzzT/nqq68kICBA+vTpIwMGDJDBgwfLRx99JKNGjZJx48bJ+PHjJTAwUBYvXizbtm1TTpDZ7fHjx6oTVG67/Xz9+vUGAUiVKlWy9dg/ffq0QdCrf0Lz8PBQNXfFx8fLv//+a/LmB52TJ09KvXr1Mgyax4wZY3ZdN2zYICVKlJBKlSqp+iy9iIMHD0qhQoWkQoUKqubXuLg4k82naYPX9ERGRioXJ1WqVJF9+/aJyPN+Vm+++aZqnfb29qq7w0qXLm20ac6YtL87x48fV93dOXjwYLP3SWpqqmqIAnM/a3p27Nih+qy6jIkusHN3d1cyv9HR0ap+VR999JGynjt37kiXLl3Ez89Pzp49a7L+afteAc+z6C8y7MfTp0/l559/lsaNG8vEiRNfaPy7q1evmsxk6YZFMCY6Otro98rX1zfHx+Nj4JRL5IbASeT5wHy6erZs2VLi4+NlxYoVyjRdB87bt28b/eKEhoaKiEjDhg1V07PzjgidmJgYGTp0qHz88ceyf/9+0Wq1kpiYKD/88IPqBNqqVSuT/UVs2dGjR6VVq1YyZcoUa1clS0JDQ5U7qgoUKJAtY8qktXfvXmUQyrSvF711+vLlyxIYGChNmjRRLhw0Go3Y2dlJ7dq1Mz0EQ2pqarb320hNTTXahBUbGytjxoxR3YQAPG++y0zg9uTJE9m/f7/BRY9Wq5XZs2cbrB943uyS2RsuZs+ercqG6P5fpkwZ1e3x5li7dq3Y2dmJv79/tg2gquv35ezsrDTN6TfZ6rJaffr0UabVr18/SxeLP/zwg2p/2tnZydGjR7Plc2SXM2fOGGSxzMmkxsTESKNGjVTLmXMzRnZj4JRL5JbAKTk5WfXD5ejoqNz1BkB27NihlE2bwi5VqpRyVfTPP/+ofkjNuS01O924cUM+//xzmT9//gtdqdGLOX/+vHz66admN7VkRWRkpAQFBUnfvn2VYR/69++fJ0baflHPnj2T5cuXS+vWraVMmTIms65ZFRMTIxMnTlQFrxmNOm9qPcbuLDTWD8gcz549y3BE9syub8GCBargf8+ePUo927dvL6tWrVLe6w8nklmRkZGqoRr0s1a25NChQ0rfRVdXV7MD8qdPnyp90Tp37myV7ykDp1witwROIiLz5s0zegXv6uqquoIaOnSoav7IkSOVeampqcot2pntA0SUVVqtNs88niQ3efDggcyaNUt1YZVZgwYNUv2eZKaJzhpSU1OVZjk7OzvVUBkvmu3Udf739vbOlkcbWUp4eLgMHDjQYPy9jOhubsmo2dxSMns+1ojk4KPPSREXFwdXV1cAQGxsLFxcXKxcI9NEBOvWrUNwcDBCQkJw+fJlAMAnn3yCwMBApdyaNWvQrVs35f2BAwfQoEED5X1SUhKioqJQokQJaDSanPsARJTrHD16FHXq1AEAlClTBqdOnULBggWtXKv0TZgwAd9++61qWteuXbFq1aoX+s1LSkrC9u3bUbduXXh5eb1oNSmNzJ6PGThZSW4KnNK6efMmoqKiUL16ddjb2yvTHz58iKJFi0JEUKZMGVy7do0BEhFl2ZQpU7Bz505MnToVNWvWtHZ1MnT58mVUqFBBee/l5YXTp0/D09PTirWijDBwyiVyc+CUnokTJ2LBggWYOnUqunfvbu3qEBHlqObNm2Pv3r0AgI0bN6Jjx45WrhFlhIFTLpFXAyciopfZpUuX8Pnnn6Nt27Z4//33rV0dMgMDp1yCgRMREZH1ZfZ8bJcTlSIiIiLKCxg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmewzLkKWoD9ge1xcnBVrQkRE9PLSPweb8zAVBk5WEh8fr/zfy8vLijUhIiIi4Pm5Wff4FVPYVEdERERkJj7k10q0Wi2ioqIAAAUKFIBGo8nSeuLi4pSMVWRkJB8W/P+4X4zjfjGO+8U47hfjuF+My637RUSUViBPT0/Y2aWfU2JTnZXY2dmhWLFi2bpOFxeXXHOg5iTuF+O4X4zjfjGO+8U47hfjctt+yah5Th+b6oiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxAEwiYiIiMzEjBMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgZONCg8PR4cOHeDh4QEXFxfUr18fK1euzNQ6EhMT8e2336JixYrInz8/SpYsicGDB+P+/fsWqrXl3L59G9OnT0fbtm1RpkwZODo6onjx4ujatSsOHTpk9npCQkKg0WhMvoKCgiz3ISzE19fX5Odp3rx5pta1dOlS+Pv7w8XFBYUKFULHjh1x7Ngxy1TcgoKCgtL9O2s0GrRq1SrD9eTW42XJkiX44IMPUKdOHTg5OWVY1ydPnmDUqFHw8fGBk5MTfH198dlnnyE2NjbT2962bRuaNWsGNzc3FCxYEC1atMCuXbte4NNkH3P3S3JyMtasWYOAgABUrlwZrq6ucHNzQ7169fDbb78hNTU1U9vNzu+oJWTmeJk4cWK634lr165latsXL15Ejx494OnpCWdnZ9SoUQO//fYbbPm+NXtrV4AM7dmzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHZ7gOrVaLzp07Y9u2bahfvz66du2KiIgIzJ07F7t27cLBgwdRtGjRHPg02WPmzJn48ccfUb58ebRt2xZFixZFREQE1q9fj/Xr12PZsmXo2bOn2etr1qyZ0R8sPz+/7Kt0DnJ3d8fIkSMNpvv6+pq9jkmTJuGrr76Cj48PhgwZgqdPn2L58uVo2LAhdu3ahUaNGmVfhS3Mz88PEyZMMDpv9erVOHPmDNq1a2f2+nLb8fLVV1/h+vXr8PT0RIkSJXD9+nWTZePi4tCsWTOcOHECbdu2Re/evXH8+HFMnToVe/fuRWhoKPLnz2/WdpcsWYK+ffuiaNGi6N+/PwBgxYoVaNOmDVauXIlu3bplx8fLMnP3y+XLl9GtWze4urqiVatWePPNNxETE4ONGzdi6NChCA4OxoYNG6DRaMzednZ8Ry0lM8eLTkBAgNG6e3h4mL3ds2fPomHDhkhISECPHj1QsmRJbN68GUOHDsXZs2cxc+bMTHyKHCRkU5KTk6V8+fLi5OQkx48fV6Y/fvxYXnnlFXF0dJRr165luJ758+cLAOndu7dotVpl+m+//SYAZPDgwZaovsWsWbNGQkJCDKaHhoaKg4ODFCpUSJ49e5bhevbs2SMAZMKECRaopXX4+PiIj4/PC63j4sWLYm9vL6+88oo8fvxYmX78+HFxcnKSypUrS2pq6gvW1PoSExOlSJEiYm9vL/fu3cuwfG49Xnbs2KH8TkyZMkUAyIIFC4yW/frrrwWAjB07VjV97NixAkAmT55s1jYfPXokHh4e4unpKTdv3lSm37x5Uzw9PcXT01OePHmStQ+UTczdL7du3ZLZs2dLbGysanpsbKzUqVNHAMjKlSvN3m52fEctKTPHy4QJEwSA7Nmz54W327RpUwEgwcHByrTExERp0qSJAJADBw688DYsgU11Nmb37t24fPky3nnnHdXVrLu7O7744gskJSVh4cKFGa7nr7/+AgBMmTJFdVX0wQcfoFy5cli6dCkSEhKyvf6W8vbbb6NZs2YG05s0aYIWLVogOjoap06dskLN8oYFCxYgJSUFX375Jdzd3ZXpfn5+6N27N86dO4ewsDAr1jB7rF+/Hg8fPkTHjh3h5eVl7epYTOvWreHj45NhORHB3Llz4erqivHjx6vmjR8/Hq6urpg7d65Z21y1ahUeP36M4cOHw9vbW5nu7e2NYcOGISoqCuvWrcvcB8lm5u6XUqVKYejQoXBxcVFNd3FxwahRowAAe/futUgdrcHc/ZKdLl68iNDQULRo0QKvv/66Mt3R0RHfffcdgP+dx2wNm+psTEhICACgbdu2BvN0TQsZfWGfPXuGQ4cO4dVXXzX4Mmg0GrRp0wZ//PEHjhw5giZNmmRPxa3IwcEBAGBvb/7hHBERgenTpyMhIQHe3t5o2bIlSpUqZakqWlxiYiKCgoJw584dFCxYEHXr1kW9evXMXj6j4y4oKAh79+5F06ZNs6vKVqELAgYNGpSp5fLa8aITERGBO3fuoF27dkaDhEaNGmHbtm24efMmSpcune66MjqGJk6ciL1796Jfv37ZVn9ryMrvDfDi31FbExoaikOHDsHOzg4VK1ZE69at4erqavby6R0vjRs3houLi80GpwycbExERAQAoGLFigbzihcvDldXV6WMKZcvX4ZWqzW6Dv11R0RE5PrA6caNG9i5cydKlCiB6tWrm73csmXLsGzZMuW9vb09hg8fjp9//hn58uWzRFUt6t69exgwYIBqWt26dfH333+jfPnyGS4fEREBV1dXFC9e3GCe/vGSm12/fh27du2Ct7c32rdvn6ll89rxopPe741u+rZt2xAREZFh4JTeuvLKMQQA8+fPB2D8hJ+eF/2O2pq0fQg9PDzw66+/mh0Yp3e85MuXD2XLlsXZs2eRkpKS6SDV0thUZ2NiYmIAQNVcoq9gwYJKmRdZh3653Co5ORl9+/ZFYmIifvzxR7NOYEWLFsUPP/yA06dPIzY2FpGRkVi/fj0qVKiAX375BWPGjMmBmmevAQMGYNeuXYiMjERcXByOHz+Ovn37Ijw8HK1atcLTp08zXEdMTEyeP14WLFgArVaL/v37mx3s5MXjRV92/lakt668cgz9+eef2LJlC1q2bIkOHTqYvVx2fEdtRY0aNTB//nxcuXIFCQkJuHr1KmbOnAmNRoP+/ftjw4YNZq3HnGNPq9Xa5L6xrTCOyEy6E2BoaCjef/999O3b16zlqlatiqpVqyrvXVxc0LlzZ9SrVw+vvfYaZsyYgbFjx6JYsWKWqnq2S3vl5+fnh0WLFgEAFi9ejL/++kvpl/Gy0mq1WLBgATQaDd577z2zl8uLxwtlzaZNmzBs2DD4+PhgyZIlmVo2L31Hu3Tponrv6+uLYcOGoXLlymjTpg2++uorvPnmm1aqXc5gxsnG6KJvU1dmT548MRmhZ2Yd+uVyG61Wi/feew/Lli1Dnz598Pvvv7/wOosXL47OnTsjJSUlU+NC2bIPPvgAALB///4My7q7u+fZ4wUAdu7ciRs3bqBly5YoW7bsC68vrxwv2flbkd66cvsxFBwcjG7dusHLywu7d+9GiRIlsmW9mfmO2rpWrVqhfPnyOHXqlPL3To85x55Go4Gbm1u21jM7MHCyMen1Bbh37x5iY2NN9kfQKVeuHOzs7Ez2J8ioX4Mt02q1GDBgABYuXIjevXsjKCgIdnbZcxh7enoCeD6uTV6Qmc9TsWJFxMbG4t69ewbzcvPxopPVTuHpyQvHS0Z9jzLzt09vXbn5GNq8eTPefvtteHp6Ys+ePShXrly2rTsvHEP6dJ8nPj4+w7LpHS+pqam4evUqypYta3P9mwAGTjZHd8v99u3bDeZt27ZNVcYUZ2dn+Pv748KFCwYDmYkIduzYARcXF9SpUyebap0zdEHTokWL0LNnTyxevDhbO+bqMge2MCBddsjM58mO485WPXz4EP/88w8KFy5s0MzwIvLC8VKxYkWULFkS+/fvNzh5x8XFYf/+/ShbtmyGHcOBvHkMbd68GV27dkXhwoWxZ88eVKhQIVvXnxeOIZ24uDicOXMGLi4uSgCVnvSOl7CwMGVgVptk7YGkSC05OVnKlSuX7gCYV69eVabfuXNHzp07pxq0UCTvDYCZmpoqAQEBAkC6d+8uycnJ6ZZ/8OCBnDt3Th48eKCafuTIEaPlp0+fLgCkYsWKkpKSkm31trRz585JXFyc0enFixcXALJ3715l+uPHj+XcuXNy584dVfkLFy7k2QEwf/nlFwEgI0aMMFkmLx8v2T0AZlxcnJw7d06uX7+umv7o0SNxd3e36QEw9WW0X4KDg8XJyUmKFy8u58+fz3B9SUlJcu7cObl06ZJqema/o9aW3n558uSJXLhwwWB6fHy89O7dWwDIgAEDDOafO3dOzp07ZzA9owEw9+/f/2IfxkI0Ijb8QJiXlKlHrly/fh1Tp05VPXKlf//+WLhwIRYsWKA84gB4np3p0KGD8siVZs2a4dKlS1i7di18fX1x6NChXPXIlYkTJ+Kbb76Bq6srPv74Y6Pp27feeksZNFRXfsKECZg4caJSxtfXFw4ODqhTpw68vb0RFxeHgwcP4vjx4/Dw8MC2bdvg7++fQ5/qxU2cOBGBgYFo2rQpfHx84OLigosXLyI4OBjJycn4/PPPMXnyZKV8UFAQBgwYgICAAINnUek/cqVr167KI1eSkpJy3SNX9FWvXh2nT5/GyZMnTQ5ZkdeOl7lz5yoDlp46dQrHjh1Do0aNlIxJ48aNlWbLuLg4NGrUCP/99x/atm2LWrVq4dixY9i+fTvq1q2LvXv3wtnZWVl3SEgIWrRogWbNmilj8ejoP3JF9wikFStWICoqCitWrED37t1z4NObZu5+OX/+PPz8/JCYmIhevXrh1VdfNViXr6+v6jf32rVrKFu2LHx8fFTPa8vsd9QazN0v165dQ7ly5VC3bl1UrlwZxYsXR2RkJHbu3Ilbt26hevXq2LNnD4oUKaJav24Q5rThxpkzZ9CoUSMkJCSgZ8+eKFGiBDZv3owzZ85g2LBhfOQKZc6hQ4ekffv2UrBgQXF2dhZ/f39Zvny5QTldFsbY1cGzZ89k4sSJUr58eXF0dJTixYvLoEGDzHrUhK3Rfc70Xvr7QPdYgLSPyvjhhx+kRYsWUrJkSXFychJnZ2epVKmSjBw5UnWVnFuEhIRIjx49pGLFilKwYEGxt7eX4sWLS+fOnWXbtm0G5RcsWCAAJCAgwOj6lixZInXq1BFnZ2dxd3eXDh06yNGjRy38KSzn0KFDAkD8/f3TLZfXjpeMvi9p//6PHz+WkSNHSunSpcXBwUHKlCkjo0ePNpoh0j2GplmzZka3vWXLFmnSpIm4uLiIq6urNGvWTHbs2GGBT5l55u4X3WdM75X281+9elUAGDxaJbPfUWswd7/ExMTIRx99JHXr1pWiRYuKvb29uLm5ib+/v/z0008SHx9vdP269Rhz/vx56datmxQuXFicnJykevXqMnv2bFVLia1hxomIiIjITOwcTkRERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5ELzFfX19oNJp0X9OnT7d2NSmbHD9+HPny5cPw4cNV00NCQpS/d3quXbumlNN/HltmxcTEoEiRIqhXr57B88uIbJ3hk1KJ6KWj/0DPtKpUqZLDtSFLGT58OJydnTF+/Hir1sPd3R2ff/45PvvsMyxatAgBAQFWrQ9RZjBwIiIMGjRI9aR3yntWr16N/fv347PPPkOxYsWsXR0MGzYMP/30Ez7//HP06tULTk5O1q4SkVnYVEdE9BL45ZdfAAADBw60ck2ey58/P9555x3cvXsXK1assHZ1iMzGwImIzKLrD3Xt2jX8888/aNmyJQoXLgyNRoOQkBClXHR0NCZMmAA/Pz+4ubmhQIECqF69Or7//nvEx8cbXXdKSgqmT5+O6tWrI3/+/ChatCi6du2KU6dOISgoCBqNxiAjNnHiRGg0GkycONHoOnX9dpo3b250/p07dzBq1ChUrlwZBQoUgJubG+rWrYtZs2YhJSXFoHz//v2h0WgQFBSEq1evom/fvihevDicnJxQvnx5fPXVV0hMTDS5/44ePYqAgACULVsW+fPnR+HChVGjRg189tlnuH79OgBgwYIF0Gg0aNeuncn13LlzBw4ODnB2dsbDhw9NltN3/PhxHDhwAPXr18err75q1jKZoftbZPRKS/c3nT17drbXichS2FRHRJkybdo0zJo1C3Xq1EH79u1x584d5MuXDwBw9uxZtG/fHjdv3kSJEiXQuHFjODg44PDhwxg/fjzWrFmDkJAQuLu7K+vTarXo3r071q9fD0dHRzRv3hyFChXCoUOH4O/vj/feey/bP0NoaCjeeustREdHw9fXF23atEFiYiIOHz6M4cOHY+PGjdi0aRMcHBwMlj1x4gQ+/vhjFCpUCM2aNcOjR4+wf/9+TJo0CWfOnMG6desMlvn5558xbtw4aLVavPLKK+jcuTMSEhJw6dIlTJ06FVWrVkX//v3xzjvvYOzYsdixYwcuXryIV155xWBdf/zxB1JSUtC3b18UKVLErM+7fv16AEDr1q0zt6PM5OfnZ7Kf0oULF3Dw4EHY2Rlep/v5+aFo0aI4fPgw7t69ixIlSlikfkTZSojopeXj4yMAZMGCBWaXzZcvn/zzzz8G8+Pj46V8+fICQL766itJTExU5sXFxUnv3r0FgAwYMEC13KxZswSAeHl5ydmzZ5XpycnJ8uGHHwoAASABAQGq5SZMmCAAZMKECUbru2fPHgEgzZo1U02/e/euFClSRDQajcyZM0dSU1OVeVFRUdKyZUsBIN98841quYCAAKUuX375paSkpCjzTp06JS4uLgJADhw4oFrun3/+EQCSP39+WbFihUE9z5w5o/rcX375pQCQESNGGJRNSkqS4sWLCwA5evSo0c9tTOPGjQWAbN682eh83b7K6JRw9epVpdzVq1cz3O7169elRIkSAkBmzZpltMybb74pAGTx4sUZro/IFjBwInqJ6YIhUy/9oENX9r333jO6rt9++00ASMeOHY3Of/r0qRQrVkzs7e3l0aNHyvQKFSoIAPntt98MlklISFAChewKnMaOHSsAZNiwYUaXu3Xrljg4OEjRokVFq9Uq03WBU+3atVXTdYYMGSIA5Ntvv1VN9/PzEwAybdo0o9tL6/bt2+Lg4CDu7u4SGxurmvf3338LAGnQoIFZ69LRBXVXrlwxOl8/cDL3lVHgFB0dLVWqVBEA8tlnn5ks9/nnnwsA+eSTTzL1mYishU11RGRyOIJKlSoZTOvWrZvRdWzevBkA0LNnT6PzXV1dUadOHQQHByM8PBxt27bF7du3cenSJQBAnz59DJbJnz8/evTogRkzZpj9WTKSUT1LlSqFihUr4uzZs4iIiDBoLuvYsaPR/jqVK1cGANy+fVuZdu/ePZw4cQJ2dnZmd8ouWbIkunXrhr///huLFy/GkCFDlHm6vkDDhg0za10AEBcXh7i4OAAwq2kvvaEBYmNjsWbNmgzXkZSUhLfeegtnz55Fr1698OOPP5osq6tTZGRkhuslsgUMnIgoU8MR+Pr6Gp1+5coVAEDfvn3Rt2/fdNfx4MEDAMCtW7cAAJ6ennB1dTVatmzZsmbVy1y6ejZp0iTDsg8ePDAInMqUKWO0bMGCBQEAz549U6bduHEDAFCiRAlVv66MjBgxAn///Tdmz56tBE4nT55EWFgYvLy8TAavxsTExCj/d3Nzy7B8UFCQyXnXrl3LMHASEfTv3x979+5Fs2bNlM79puj2W3R0dIZ1I7IFDJyIKFOcnZ2NTtdqtQCA9u3bw8vLK911+Pj4ZHu9TNXH1PRu3brBxcUl3XUYy9AY6+Sc3erXrw9/f38cPnxYCUB02abBgwfD0dHR7HV5eHgo/3/69KkSqFjKuHHj8Pfff6NKlSpYv359huMz6QK7QoUKWbReRNmFgRMRZYvSpUvj/PnzGDhwoNkZkVKlSgEAoqKiEBsbazTrZOrRHrrg4enTp0bn627xN1bPiIgIjB07FnXq1DGrnlmly07dvXsXMTExmc469enTB7NmzUKNGjWwdOlS2Nvbq5ruzFGgQAG4uLggLi4ODx8+tGjgNGfOHPz0008oWbIktmzZograTNENqZBRsE1kKziOExFli9dffx0AsHLlSrOX8fb2Rrly5QAAy5YtM5ifmJiIVatWGV1WF3SdO3fO6HxdX6bsqGdWFS9eHDVq1IBWq8X8+fMztWyPHj1QokQJrF+/HpMmTUJcXBy6dOmCkiVLZroetWrVAvB8uAhL2bBhA0aMGAE3Nzds3rzZZJNmWqdPnwYA1K5d22J1I8pODJyIKFsMHjwYPj4+WLVqFcaOHWs0E3Tv3j389ddfqmkjR44E8HwQxfPnzyvTU1NT8emnn+LOnTtGt9eyZUvY2dlh27Zt2Lt3rzJdRDBjxgyTfXE+++wzeHh4IDAwENOmTUNSUpJBmatXr2LJkiUZfmZzTJgwAQDw5ZdfGq3T2bNnjQZ/Dg4O+PDDD5GSkoKpU6cCyFyncH0tWrQAAPz7779ZWj4jhw8fRu/evWFnZ4fVq1fDz8/P7GV1dWrZsqVF6kaU3Rg4EVG2cHFxwebNm+Hr64uffvoJZcqUQbNmzfDuu++iS5cuqFq1KkqWLGnwgNmPPvoInTp1wt27d1GjRg20b98evXv3RsWKFTF37lx8+OGHRrdXunRpDB8+HFqtFq1atUKLFi3QtWtXVKxYEZ9++inGjRtndDlvb2/8888/KFSoED799FOULl0arVq1Qp8+fdCpUydUqFAB5cqVw6xZs7Jlv3Tp0gWTJk3Cs2fP0K1bN1SuXBm9evVC586dUbVqVVStWhWHDh0yuuwHH3yg9BF67bXX0LRp0yzV4a233gIA7NixI0vLZ+Tzzz9HfHw8vL29sWzZMvTv39/oK63jx4/j4cOH8Pf35+CXlGuwjxMRZZuqVavi5MmT+P3337Fu3TqcPHkS//77Lzw9PeHt7Y1PP/0UXbp0US1jZ2eHtWvXYsaMGZg3bx5CQkLg6uqKxo0bY926dTh+/Dh+++03o9v75ZdfUKZMGcydOxcHDhyAq6srGjVqhJUrV+LJkyf44YcfjC7XtGlTnDlzBrNmzcLmzZsRHh6OxMREFCtWDGXKlEGfPn3QtWvXbNsvX3zxBVq2bIkZM2YgNDQUa9euhZubG0qXLo0xY8aYzLYUK1YMfn5+OHToED766KMsb79mzZpo2LAhDhw4gHPnzilDJ2SX1NRUAM8zdVevXjVZLu0de7r3L/LZiHKaRkTE2pUgIjIlKCgIAwYMQEBAQLq3yudFFy9eRKVKleDu7o7bt2+jQIECWV7X6tWr0b17d4waNQrTpk3LxlpmzbNnz1C6dGk4ODjg6tWrGd59R2Qr2FRHRGSjvv76a4gIPvzwwxcKmoDnwy80atQIf/zxh00MNjlz5kxERUVhypQpDJooV2HgRERkQzZs2ICBAweifv36WLFiBYoXL44xY8Zky7pnzpyJhIQEfPfdd9myvqyKiYnBDz/8AH9/f/Tr18+qdSHKLPZxIiKyIceOHcP8+fPh5uaG1q1bIzAw0KzxkMxRs2ZNpT+SNbm7uyvjNxHlNuzjRERERGQmNtURERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDhRnlejRg1oNBo4OTnh4cOH6ZZt3rw5NBoNQkJCcqZymRASEgKNRoPmzZtbuypE2Y7HN+UWDJwoTwsPD8fJkycBAElJSViyZImVa2RbfH19odFocO3aNWtXhYgoV2DgRHnavHnzAAClSpVSvSciIsoKBk6UZ8XHx+Pvv/8GACxevBiurq44deoUwsPDrVwzIiLKrRg4UZ61atUqPHnyBNWqVUOLFi3Qs2dPAOZnnfbu3Yu2bduicOHCKFCgAPz9/bF48WKjZRMTE/Hzzz+jdu3acHNzg6OjI4oXL466detizJgxePTokcEyt27dwvDhw1GxYkXkz58f7u7uaNSoEf744w+kpqaa/TnN6Rui0Wig0WiU90FBQdBoNLh+/ToAoGzZskoZY3287ty5g1GjRqFy5cooUKAA3NzcULduXcyaNQspKSlm1xUAJk6cCI1Gg4kTJ+LGjRsYOHAgSpcuDQcHB/Tv3x8A0L9/f2g0GgQFBeHChQvo2bMnihUrBhcXF9StWxf//POPsr5Dhw7hzTffRNGiReHs7IwGDRpg165dRrcdERGB9957D2XLloWTkxNcXV3h4+ODN954AwsWLMjU5wCAnTt3olOnTvDy8oKDgwMKFSqEihUrok+fPggNDTUon5CQgIkTJ6JixYpwcnJCiRIlEBAQgBs3bqj2iz79fWGM7m+p23c6ycnJWLJkCd59911UqlQJBQsWhLOzM1599VWMGDECd+7cMbo+/X5++/btQ6dOnVC0aFHY2dmp6pCQkIBp06ahfv368PDwQP78+fHqq69izJgx6fYlXLRoEerWrYsCBQqgcOHCaN++Pfbt22eyfHquXbsGjUYDX19fiAj+/PNP1K5dGy4uLnB3d0fbtm3x77//mlw+s99B/X396NEjjBw5EuXLl4eTk5Py/dP/O965cweDBg1CyZIl4ezsjGrVqql+f86fP4933nkHxYsXR/78+VGjRg2sWLEiS/uCco69tStAZCm6H6j33ntP+XfevHlYvnw5fvnlFzg7O5tcdt26dZg1axYqVaqEdu3a4c6dOwgLC0O/fv1w4sQJTJs2TSmr1WrxxhtvYNeuXShYsCCaNGkCDw8PPHjwABEREfj555/xzjvvoHDhwsoy4eHhaN++PR49eoQyZcrgrbfeQkxMDEJCQnDgwAGsW7cOGzZsgKOjo0X2TYUKFRAQEIDVq1cjLi4OXbt2haurqzK/ePHiyv9DQ0Px1ltvITo6Gr6+vmjTpg0SExNx+PBhDB8+HBs3bsSmTZvg4OCQqTpERESgZs2acHR0RKNGjSAi8PT0VJU5duwYhg0bBm9vb7Rq1QrXr1/Hv//+iy5dumDlypWwt7dHjx49UK1aNbRq1Qrnz5/HwYMH0b59e+zZsweNGzdW1nX69Gk0atQIT548wauvvoqOHTsiX758uHXrFkJDQ3H79m0MGDDA7PovXLhQKe/v748WLVogISEBt27dwvLly+Hp6YmmTZsq5ePj49GqVSscPHgQLi4uaNu2LZydnbFt2zZs3rwZb7zxRqb2X0YiIyPRt29fuLu7o3LlynjttdcQFxeHEydOYObMmVi+fDkOHDiAChUqGF1+1apV+P3331GpUiW0bt0ajx49gpOTE4DngXT79u1x6tQpFC5cGHXr1oWbmxuOHTuGn3/+GatWrUJISAh8fHxU6/z4448xY8YM2NnZoXHjxihZsiROnjyJ5s2bY/jw4S/0eQcMGIBly5ahSZMm6NixI06cOIEdO3YgNDQUe/fuRb169VTlX+Q7GBUVhTp16uDx48do0qQJateubVDuxo0byvQmTZrgwYMHCA0NxaBBg/D48WM0atQIbdu2RcmSJdGiRQvl2O7VqxcAKBd6ZIOEKA+6cOGCABAHBwe5f/++Mr1SpUoCQBYtWmR0uWbNmgkAASCTJ09WzQsJCRFnZ2cBIFu3blWm7927VwBIzZo15cmTJwbrDA8Pl6ioKOX9s2fPxMfHRwDIkCFDJCkpSZl3+fJl8fX1FQDyxRdfqNazZ88eASDNmjUza7o+3WdKS1ePq1evGl3u7t27UqRIEdFoNDJnzhxJTU1V5kVFRUnLli0FgHzzzTcmt53WhAkTlPr06dNHnj17ZlAmICBAKfP999+LVqtV5s2YMUMAiLe3txQqVMjgbzly5EgBIK1bt1ZNHzBggLK+tOLj42Xv3r1mfwYRkbJlywoA2bdvn8G8yMhIOXbsmGrap59+KgCkUqVKcvv2bWV6XFycdO7cWfm8EyZMUC2n2xcLFiwwWo8FCxYIAAkICFBNf/Lkifzzzz+SmJiomp6UlCSff/65AJAOHToYrE//OzB79myD+VqtVho1aiQAZODAgapjPjk5WUaPHi0ApEWLFqrlNm3aJADExcVFQkNDVfMmT56sbDO94zitq1evKsv5+PjIhQsXlHkpKSny3nvvCQBp27atarmsfgd1+xqAtGrVSmJiYgzqpH98DxkyRJKTk5V5GzZsEADi5uYmPj4+Bsf29OnTBYBUqFDB7H1AOY+BE+VJY8eOFQDStWtX1fSffvop3R9n3UmjZs2aRufrTgpt2rRRpq1cuVIAyIgRI8yq2+LFiwWAlCxZ0mjQsHr1auXHNSEhQZlujcBJtx+HDRtmdP6tW7fEwcFBihYtqjoBpEd3YilcuLA8fvzYaBldsODv72+w3uTkZClcuLAAkO7duxssGxUVJQDE0dFRdULs0KGDADAIaLKqQIEC4u7ublbZ+Ph4cXNzEwCyZcsWg/l3796V/PnzZ2vglJGSJUuKnZ2dQbCv+w60bNnS6HJbtmwRAOLn56cKCnRSU1OlWrVqAkBOnTqlTG/durUAkLFjxxpdr5+f3wsFThs2bDCYf/fuXQEgTk5OqmMhq99B3b52cHCQy5cvG62T7vguU6aMalmd1157zaxj+/r162bvB8pZ7ONEeU5KSgoWLlwI4H/NdDr9+vWDvb09QkNDcfnyZZPr6Nevn9HpAQEBAICwsDClD0StWrWQL18+zJ8/H7Nnz8bdu3fTrZ+u/1CvXr2Upg99b7/9NgoVKoSnT5/i6NGj6a7L0jZv3gzAdLNBqVKlULFiRaVZMjNat24Nd3f3dMu8/vrrqr5ZAGBvb4+yZcsCADp06GCwTJEiRVC4cGEkJSWp+tr4+/sDAD788ENs27YNz549y1R90/L390dMTAz69euHo0ePQqvVmix77NgxPH36FJ6enmjfvr3B/OLFi6Nt27YvVB9T/vvvPwQGBmL48OF477330L9/f/Tv3x8pKSnQarW4dOmS0eW6detmdLrumOjatSvs7Q17e9jZ2SlNlAcOHADw/DsZFhYGAOjTp4/R9Zr6zpnD3t7e5H4tVKgQEhMTVcfCi34Ha9asiXLlyqVbpxYtWiB//vwG0ytWrAjA9LHt6+sLACb7oJH1sY8T5TmbN2/GvXv3UKpUKbRr1041z8vLCx06dMCGDRswf/58TJo0yeg6dCdmU9MTEhLw8OFDFCtWDOXLl8cvv/yCzz77DMOGDcOwYcPg4+ODBg0aoGPHjujevbuq/8Pt27fT3YZGo0HZsmURHR2tlLWWK1euAACaNGmSYdkHDx7glVdeMXvduhNEesqUKWN0uq4/lqn5bm5uePTokSo4+uyzzxAWFoadO3eiffv2cHBwQI0aNdC0aVP06tULdevWVcqeP38eP/zwg8F6GzdujEGDBgEA5syZg44dO2Lx4sVYvHix0mG+ZcuW6Nu3r6put27dyvAzmzoesiouLg59+/bFunXr0i335MkTo9NN1VV3TIwfPx7jx49Pd90PHjwAADx8+FD5W2T03cqKEiVKmOxjV7BgQURHR6uOhRf9Dlr62AXwwoE9WQ4DJ8pzdJ3Cnz17hmbNmhnM1/0QBgUF4dtvv0W+fPmytB0RUf4/fPhw9OjRAxs2bEBYWBjCwsKwfPlyLF++HBMmTMC+fftQokSJLG3nRaWXCTF32W7dusHFxSXdskWKFMnUutPrnK9jZ5d+Ujyj+foKFCiAHTt2IDw8HFu3bsWBAwdw4MABHDlyBIGBgRg6dChmz54NALh3756StUxLFzhVrlwZFy5cwPbt27F7924cOHAA+/btw+7du/Htt99i3rx5JrMr2cnU3/fzzz/HunXrUKlSJfzwww+oW7cuPD09lSC+YcOG+Pfff1XHsT5Tfx/d9ho3bozy5cunW7eqVaua+zFeSGaOg+yQ08cu2RYGTpSn3L17F8HBwQCeX+Xu37/fZNk7d+5g69atRu9munr1qtFldCNs58+f3yBQ8PLywvvvv4/3338fwPOsxXvvvYd///0X48aNU07EusE4dVfuxui2ryubHt2J8OnTp0bn64YcyIrSpUsjIiICY8eORZ06dbK8HltSt25dJbuUkpKC9evXo1+/fpgzZw66deuGFi1aoHnz5iYDCn329vbo0KGD0mT45MkTBAYG4ptvvsEHH3yALl26wMXFRfk7pjdCu6l5Wf37rly5EgCwYsUKvPbaawbzM9u0qlO6dGkAQOfOnfHpp5+atUyRIkXg5OSExMREXLt2zWhAlZOj12f3d5BeLgx5KU8JCgpCamoq6tWrB3l+84PR15gxYwCYHtPJ1KNZFi1aBOD51bax/h36KlWqhLFjxwIATpw4oUzXjfeyYsUKo+n4devWITo6Gm5ubqhdu3a62wDUJ4GkpCSD+bo+KcboTsqmxmJ6/fXXAfzvJJzX2Nvbo1u3bkqTrv7fKSsKFiyIiRMnwsPDA/Hx8bh48SIAoHbt2nB1dUVUVBS2b99usFxkZKTR6cD//r7nzp0zmCci2LJli9HldGOHpR0SAAC2bduGqKgo8z5UGrpjYtWqVWYFl8Dz/dyoUSMAwNKlS42WMTVGmiVk93eQXi4MnChPmT9/PoD/deI2RdcRddOmTUo/DH1Hjx7FTz/9pJoWFhamNOV88sknyvTdu3cjODgYycnJqvIigk2bNgFQn7y6d++OMmXKKINK6gctV69exejRowE8b/4z1rk0LR8fH1SsWBGPHz/Gjz/+qJoXEhKCr7/+2uSy3t7eAIAzZ84Ynf/ZZ5/Bw8MDgYGBmDZtmtHA7OrVq7niGYBz5szBhQsXDKbfu3cPR44cAWA8yDAmPj4egYGBRo+dffv24fHjx8iXL5+yf52dnTF48GAAz48d/RsIEhIS8OGHHyIhIcHotlq3bg3geWBx9uxZZXpycjLGjh1rciT8ypUrAwBmzpypmn7hwgUMGTLErM9pTOfOnVG3bl0cPnwYAwYMMLoPoqOj8fvvv6uO7ZEjRyr10XUa1/npp59w7NixLNcps7L7O5gTdOPKvUgnesomVrmXj8gCQkJClFuPHz16lGH5WrVqCQCZOnWqMk13K/aIESPEzs5OqlatKr1795ZmzZqJnZ2dAJCPP/5YtZ5ffvlFAEjBggWlefPm8s4770iXLl2UW/3d3d3l+PHjqmUOHz6s3Hbs4+MjPXv2lA4dOii3pLdr185g/J30hh1Ys2aNaDQa5Tbx7t27S+3atUWj0cjXX39tcjiCWbNmCQBxdXWVt99+WwYOHCgDBw6U8+fPK2X27t0rnp6eAkCKFSsmLVu2lHfffVc6duwo5cuXFwBSr169DPe3ju527bS33evL6BZ83d9pz549RucbG2ahRo0aAkDKli0rnTp1knfffVfatm2rjM3VsmVLo7fXGxMdHS0AxM7OTmrUqCHdunWT3r17S4MGDZS/w9dff61aJjY2Vvz9/ZX93alTJ+nevbsUL15cihQpIv369TO5X3TjPDk7O0ubNm3kzTffFG9vbylYsKB8/PHHRocj0D8mqlevLr169ZKWLVuKg4ODtGzZUho2bGh0H2a0b0VEbt++rQwf4OLiIg0bNpRevXrJ22+/LX5+fpIvXz4BYHA7/kcffaTst+bNm0vv3r2latWqYmdnp3yOrAxH4OPjY7KMqSE3svIdNGfoh4yO76we27r1Zmb/kGUw40R5hq7ZrVOnTihUqFCG5XVXbsaa67p06YIdO3agePHiCA4OxuHDh1GrVi0EBQVh+vTpqrKdOnXCxIkTUbduXVy5cgVr165FSEgI3N3dMW7cOJw+fRp+fn6qZerWrYsTJ07go48+Qr58+bBu3Trs27cPNWvWxG+//YZNmzZlatTwt99+G5s2bUKjRo1w8eJFBAcHw8HBAcuXL8c333xjcrkPP/wQU6ZMgY+PD4KDgzFv3jzMmzdPlRFp2rQpzpw5g/Hjx8Pb2xvh4eFYtWoVTpw4AS8vL0yYMAF//fWX2XW1lkmTJuHDDz+Eh4cHDh48iFWrVuHs2bOoV68eFi5ciK1bt2bY/Krj6uqK33//HT179kRiYiJ27NiB9evX4/79+3j77bexa9cug/3u4uKCPXv2YPz48fDy8sK2bdsQGhqKVq1a4ciRI+neVbZixQp89dVXKFGiBEJCQnDw4EE0adIEx44dMzi2dN5++23s3bsXrVq1wt27d7Fhwwbcv38fEydOxJYtWzI90ru+kiVL4uDBg/j999/h7++PCxcuYPXq1cqQA0OGDMG2bdsMsjWzZs3C/PnzUbNmTRw8eBDBwcEoUaIEdu3ahbfeeivL9cmK7P4O0stDI2JmIzUREVnMxIkT8c0332DChAkGz6sjItvBjBMRERGRmRg4EREREZmJgRMRERGRmdjHiYiIiMhMzDgRERERmYmPXLESrVarjNxboEABg6dkExERkeWJCOLj4wEAnp6eGT5HkIGTlURFRcHLy8va1SAiIqL/FxkZiWLFiqVbhk11RERERGZixslKChQooPw/MjISLi4uVqwNERHRyykuLk5pAdI/N5vCwMlK9Ps0ubi4MHAiIiKyMnP6G7OpjoiIiMhMDJyIiIiIzMTAiYiIiMhM7OOUQ+Li4tJ9T0RERLaPgVMOcXV1tXYViIiI6AWxqY6IiIjITMw45ZDY2FjVe/1xI4iIiCh3YOCUQzhOExERUe7HpjoiIiIiMzFwIpt35MgR/PDDD7h//761q0JERC85NtWRTUtNTUWnTp1w7949XLlyBX/++ae1q0RERC8xZpzIpsXFxeHevXsAgEuXLlm5NkRE9LJj4EQ2LSUlxej/iYiIrIGBE9m01NRUo/8nIiKyBgZOZNOYcSIiIlvCwIlsGjNORERkSxg4kU3TD5aYcSIiImtj4EQ2TT9YYsaJiIisjeM45ZC4uLh035NxzDgREZEtYeCUQ1xdXa1dhVyJGSciIrIlbKojm8bO4UREZEuYccohsbGxqvdxcXHw8vKyUm1yDw5HQEREtoSBUw5xcXGxdhVyJWaciIjIlrCpjmwaM05ERGRLGDiRTWPGiYiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimcQBMIiKyJQycyKZxAEwiIrIlDJzIpjHjREREtoSBE9k0/WBJq9VCRKxYGyIietkxcCKblrZ5js11RERkTQycyKalbZ5j4ERERNbEwIlsWtpAif2ciIjImhg4kU1jxomIiGwJAyeyaezjREREtoSBE9k0NtUREZEtYeBENo1NdUREZEvsrV2Bl0VcXFy678k4ZpyIiMiWMHDKIa6urtauQq7EjBMREdkSNtWRTWPGiYiIbAkzTjkkNjZW9T4uLg5eXl5Wqk3uwYwTERHZEgZOOcTFxcXaVciVmHEiIiJbwqY6smnMOBERkS1h4EQ2jRknIiKyJQycyKYx40RERLaEgRPZNGaciIjIljBwIpvGZ9UREZEtYeBENi1thokZJyIisiYGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmkcjoCIiGwJAyeyaRyOgIiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimMeNERES2hIET2TRmnIiIyJYwcCKbxuEIiIjIljBwIpvGATCJiMiWMHAim8aMExER2RIGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmnMOBERkS1h4EQ2jRknIiKyJQyczDRx4kRoNBrVq06dOtauVp7HjBMREdkSe2tXIDepUaMGtm7dqrx3cHCwYm1eDhw5nIiIbAkDp0ywt7dH8eLFrV2NlwqfVUdERLYkzzTVLVmyBB988AHq1KkDJycnaDQaBAUFpbtMeHg4OnToAA8PD7i4uKB+/fpYuXKlyfLnzp1DiRIlUKFCBQwYMAD37t3L5k9BabGpjoiIbEmeyTh99dVXuH79Ojw9PVGiRAlcv3493fJ79uxBu3btkD9/fvTq1Qtubm5Ys2YNevbsiZs3b2L06NGq8vXq1UNQUBAqVaqE27dv4+uvv0bLli1x/PhxODk5WfKjvdTYOZyIiGxJnsk4zZ07F9euXcODBw8wZMiQdMumpKTg/fffh52dHUJDQ/Hnn39i2rRp+O+///DKK6/giy++MAi8Xn/9dXTv3h3Vq1dH+/btsXnzZly9ehWbNm2y5Md66THjREREtiTPBE6tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOHCdNdRtGhR+Pr64urVqy9SbcoAM05ERGRL8kxTXWaEhIQAANq2bWswr127dgCAvXv3pruO6OhoXL9+Hb6+vkbnx8XFpbt8RvPpOWaciIjIlryUgVNERAQAoGLFigbzihcvDldXV6WMzmeffYZOnTqhTJkyuHXrFr744guUKlUKHTp0MLoNV1fX7K/4S4gZJyIisiUvZeAUExMD4HnTnDEFCxZUyujcvHkTvXr1QlRUFLy8vNCsWTMsXrwYBQoUsHh9X2bMOBERkS15KQOnrFi+fHmmysfGxqY7Py4uDl5eXi9SpZcCM05ERGRLXsrASZdpSptV0nny5AkKFSr0QttwcXF5oeXpOWaciIjIluSZu+oyQ9e3KW0/JgC4d+8eYmNjjfZ/ehFxcXEGL8oYH7lCRES25KUMnJo1awYA2L59u8G8bdu2qcpkF1dXV9WLzXTm4SNXiIjIlryUgVOrVq1Qrlw5LFu2DCdOnFCmx8TEYPLkyXB0dES/fv2sV0FSMONERES2JM/0cZo7dy7CwsIAAKdOnVKm6cZsaty4MQYNGgTg+cN6586di3bt2qFp06aqR65cv34dU6dONTk+U1al7SzOzuEZExH2cSIiIpuSo4FTbGwsIiMjER0djUKFCsHLyyvbxjsKCwszGO17//792L9/v/JeFzgBQIsWLRAWFoYJEyZgxYoVSE5ORvXq1fHjjz+iZ8+e2VInfewsnnlardZgGjNORERkTRoREUtuYNu2bVi/fj127dqFy5cvG8yvUKECWrZsibfeeksZtftlEBcXpwSNsbGxDKyMSExMRP78+VXT2rVrh61bt1qpRkRElNdk9nxskYxTamoqfvvtN8yYMQOXL1+Gfmzm6uqqDDAZFxeHiIgIRERE4M8//0SFChUwYsQIDBkyBPny5bNE1awm7V10vKsuY8aa5ZhxIiIia8r2zuFbt25FtWrVMGLECFy/fh1vvvkmZs2ahWPHjiExMRFPnjzBrVu38PTpUzx79gxHjhzBjBkz0LFjR1y7dg0jRoxA9erVlbvb8greVZd5xoIk9nEiIiJryvamOjs7O3h5eeGzzz5Dv3794OnpafayUVFRWLhwIX766SdERUXlqZOkRqMxOY9NdcZFR0ejcOHCqmlNmjRBaGiolWpERER5jdWb6r777jt88sknWXqGm6enJ0aPHo0PP/wQv/zyS3ZXzap4V13mGcs4samOiIisyeKdw8k4dg7P2L1791CiRAnVNH9/fxw6dMhKNSIiorwms+fjl3IATMod2DmciIhsjVUHwLx69SpOnjwJHx8f+Pn5WbMqZIPYOZyIiGyNxTNOGzZswNtvv43Dhw+rpv/888945ZVX8Pbbb6N27dp47733LF0Vq+JDfjOPGSciIrI1Fg+cFi1ahK1bt6Jy5crKtPPnz2PcuHEQEdSoUQMFChTAwoULsXHjRktXx2o4HEHmMeNERES2xuKB0/Hjx1GjRg24ubkp05YuXQoAmDNnDo4dO4bw8HDky5cPf/75p6WrQ7kIM05ERGRrLN7HKSoqCjVr1lRNCwkJgbOzM/r37w8AqFSpEho3bowzZ85YujpWw+EIMo8ZJyIisjUWD5yePXumenxKamoqjh07hvr168PR0VGZXrJkSRw8eNDS1bEaDjeQecw4ERGRrbF4U12xYsUQERGhvD948CASEhLQqFEjVbmEhAQGF6TCjBMREdkaiwdODRs2xH///Yfly5cjJiYGkydPhkajQevWrVXlzp07h5IlS1q6OpSLMONERES2xuJNdWPHjsX69evx7rvvAgBEBLVr10bTpk2VMjdv3sT58+fz9JAEaYcf4HAEGTMWODHjRERE1mTxwKlWrVoIDg7GpEmTcP/+ffj7+2PKlCmqMitXroS7uztatWpl6epYjW44dzIfn1VHRES2hs+qyyEajcbkPD6rzrg9e/agZcuWqmmurq54+vSplWpERER5TWafVWfVR668TDgcQeaxczgREdmaHA2cDh48iJCQENy6dQsiAm9vbzRv3hwNGjTIyWpYBTNKmcfO4UREZGtyJHC6fPky+vXrp4zTpGsd1DVf1atXD4sWLUKFChVyojqUSzDjREREtsbigdOdO3fQpEkT3Lt3DwUKFED79u1RtmxZAMC1a9ewdetWHDx4EE2bNkV4eDhKlSpl6SpRLmEsSNJqtRCRdPuMERERWYrFA6evv/4a9+7dQ9euXTFnzhwULVpUNT8qKgpDhw7F6tWrMWHCBMydO9fSVaJcwlSzXGpqKuzt2T2PiIhynsXvqitVqhQ0Gg2uXLmiesSKvqSkJJQrVw5arRZ37tyxZHVsRmZ78b+MVq5ciZ49expMT0hIQP78+a1QIyIiymsyez62+Mjhjx49QuPGjU0GTQDg6OiIxo0bIzo62tLVoVwkvYwTERGRNVi8vcPb29usUbLj4+PzdP8mjhyeeaYCJN5ZR0RE1mLxjFP37t0REhKC27dvmyxz+/Zt7N69G926dbN0dazG1dVV9eIYThkzFTgx40RERNZi8cBp/PjxqF69Olq2bIlNmzYZzN+8eTNatWqF1157DRMmTLB0dSgXMZVZYsaJiIisJdub6tI+IgMA7OzsEBERgc6dO8PDwwO+vr4Ang9H8PjxYwBAgwYN0LFjR+zatSu7q2QTOHJ45jHjREREtibbA6eQkBCT80QE0dHRRjuBHzhwIE+PzcO75jKPGSciIrI12R447dmzJ7tXSS8pZpyIiMjWZHvg1KxZs+xeJb2k9DNLDg4OSE5ONphORESUkyzeOZwoq/QzS05OTkanExER5SQGTmSz9DNL+oETM05ERGQtOfbAryNHjmD16tW4cOECnjx5AmNPetFoNHn2rjrKPGaciIjI1uRI4PTpp5/il19+UYIljUajCpx07/PyXXWUeQyciIjI1li8qW7VqlUIDAxEqVKl8Mcff6Bt27YAgG3btmHWrFlo0KABRATjxo3D7t27LV0dq4mLizN4UfrYVEdERLbG4hmnP//8E/ny5cOuXbtQsWJFHDhwAADQpk0btGnTBkOHDsX48ePx888/o0ePHpaujtXonrxM5mPGiYiIbI3FM07Hjx9HvXr1ULFiRZNlvvnmG5QoUQLff/+9patDuYh+ZsnR0dHodCIiopxk8YzT06dPUaZMGeW97gQYGxurZGHs7OxQr1497N2719LVsRo+ciXzmHEiIiJbY/GMU9GiRZXn0QGAp6cngOfPqdMXFxeHJ0+eWLo6VuPi4mLwovSxjxMREdkaiwdOvr6+uH79uvK+Zs2aEBEsW7ZMmXbv3j3s3bsXPj4+lq4O5SLMOBERka2xeODUqlUrnD9/Xskwvf766yhcuDB+/PFHdO/eHaNHj0a9evUQFxeHrl27Wro6lIsw40RERLbG4n2cevXqhTt37uDmzZvw9fWFi4sLFixYgF69emHNmjVKudq1a+Pzzz+3dHUoF2HGiYiIbI3FA6fKlSvjr7/+Uk3r1KkTIiIisHHjRjx69AiVK1dGp06dkC9fPktXh3IRZpyIiMjW5NgjV9IqWbIkPvjgA2ttnnIBZpyIiMjW8CG/ZLNMBU7MOBERkbVke+B0584dm1oP5V6mmuqYcSIiImvJ9sCpYsWKGDduHKKjo7O0/KNHjzBmzJh0RxqnlwMzTkREZGuyPXBq27YtfvrpJ3h7e6NPnz7YsWMHEhMT010mMTER27ZtQ+/eveHt7Y2pU6eiXbt22V01ymWYcSIiIluT7Z3D161bh507d+KTTz7BsmXL8Pfff8PBwQF+fn6oXLkyihQpgoIFC+LJkyd4+PAhzp49i//++w/JyckQEVSrVg2BgYFo3bp1dlfNquLi4tJ9T4b0AyQ+q46IiGyBRe6qa926NU6dOoUdO3Zg1qxZ2L59Ow4fPozDhw8DADQaDUREKe/k5IROnTph2LBheS5g0tE9l4/Mx4wTERHZGosOR9CmTRu0adMGiYmJ2L9/P44fP47IyEjExMTAw8MDxYoVQ61atdCwYUPViZEI4HAERERke3JkHCcnJye0bNkSLVu2zInN2aTY2FjV+7i4OHh5eVmpNrkDB8AkIiJbY7UBMF82Li4u1q5CrsOMExER2RoOgEk2ixknIiKyNQycyGaZuquOGSciIrIWBk5ks3QBUr58+WBv/79WZWaciIjIWhg4kc3SBUj58uVDvnz5lOnMOBERkbUwcCKbpQuQ7O3tmXEiIiKbwMCJbBYzTkREZGssHjiFhoZi//79lt4M5UHMOBERka2xeODUvHlzjB8/3tKboTyIGSciIrI1Fg+cChUqhJIlS1p6M5QHMeNERES2xuKBk5+fHyIiIiy9GcqDmHEiIiJbY/HAacSIEQgPD8fmzZstvSnKYziOExER2RqLP6uuZs2aGDZsGLp06YL+/fuja9eu8PX1hbOzs9HyZcqUsXSVKJfQb6pjxomIiGyBxQOnsmXLAgBEBPPmzcO8efNMltVoNMwmkEK/qU4/48TAiYiIrMXigVPp0qWh0WgsvRnKg0xlnBhcExGRtVg8cLp27ZqlN0F5FDNORERkayweONFzcXFx6b4nQ8w4ERGRrWHglENcXV2tXYVchxknIiKyNTn2rLp9+/ahR48e8Pb2hpOTEwYOHKjM27FjB7744gvcu3cvp6pDNk5EmHEiIiKbkyMZp++//x4TJkyAiCjT9P/v7u6OH3/8Ed7e3hg6dGhOVCnHxcbGqt7HxcXBy8vLSrWxfVqtVvk/B8AkIiJbYfGM05YtW/D111+jVKlSWLlyJSIjIw3K+Pv7o2jRoti0aZOlq2M1Li4uBi8yTT844gCYRERkKyyecfr111/h5OSELVu2oGrVqibL1ahRg49mIYV+cMQBMImIyFZYPOMUHh4Of3//dIMmAChatCj7OJGCGSciIrJFFg+c4uLiULx48QzLxcTEqPq10MtNP3BixomIiGyFxQMnLy8vXLp0KcNyFy5cQOnSpS1dHcol9LNKaTuHM+NERETWYvHAqXHjxjhx4gT2799vssymTZtw6dIltGjRwtLVoVwibcbJzs5OeXQPM05ERGQtFg+cRo8eDY1Gg7fffhvr1683yBZs3boVgwYNgoODA4YPH27p6lAukTbjBEDp58SMExERWYvFA6datWph2rRpiIqKQteuXeHh4QGNRoM1a9bAw8MDb7zxBu7fv49p06ahSpUqlq4O5RJpM07A/wIoZpyIiMhacmTk8I8//hjBwcGoW7cuEhISICJ4+vQpnjx5gurVq2PDhg0YNmxYTlSFcglmnIiIyBbl2LPq2rVrh3bt2uHhw4e4evUqtFotSpcujRIlSuRUFSgXSTscgf6/zDgREZG15PhDfosUKYIiRYrk9GYpl0k7AKb+vwyciIjIWizeVBcUFIRbt25ZejOUx6SXcWJTHRERWYvFM07vvfceNBoNKlasiNatW6N169Zo2bIlChYsaOlNUy7GjBMREdkiiwdO/fv3x+7du3Hx4kVcvHgRv/32G+zs7FC7dm0lkGrUqBEcHBwsXRXKRZhxIiIiW2Txprr58+fj2rVruHDhAmbPno3OnTvDzc0Nhw8fxuTJk9GqVSsUKlQI7du3x7Rp0yxdHcoljA1HwIwTERFZW44MRwAAFStWxIcffoi1a9fi4cOHOHToECZNmoTmzZsjJSUF27dvx9ixY3OqOmTjjA1HwIwTERFZW44FTvqSk5Px9OlTZSwn3YlQRKxRHbJBzDgREZEtyrHhCE6cOIEdO3Zg586dCAsLw7NnzyAiKFiwIN544w2lvxMRwIwTERHZJosHTr169cLu3bvx8OFDiAgcHBxQv359JVDy9/dXTohEOsY6hzPjRERE1mbxwGnlypXQaDR47bXXMGHCBLRt2xYFChSw9GYplzM2HAEzTkREZG0W7+Pk5uYGEcF///2Hd999F2+//TamTZuG//77z9KbplyMj1whIiJbZPGM06NHj3D48GHs3LkTO3fuxJ49e7B9+3ZoNBp4enqiVatWaNOmDdq0aQNvb29LV4dyifQGwBQRaLVa2NlZ5d4GIiJ6iVk8cMqXLx8aNGiABg0aYPz48YiPj0dISAh27tyJXbt2YcWKFVixYgUA4JVXXsG5c+csXSXKBdLLOOnmM3AiIqKcluNnngIFCqBDhw4IDAzEokWLMHr0aDg5OUFEcPHixZyuDtmo9IYjANjPiYiIrCNHA6dbt25hwYIFePfdd1G8eHHUqlUL06ZNw7Nnz+Dg4IAmTZrkZHWy7MMPP4RGo8GsWbOsXZU8K73hCAD2cyIiIuuweFPd+vXrlf5NERERAJ73UdFoNKhWrZoyLEGzZs1yxd12mzZtwr///ouSJUtauyp5GjNORERkiyweOL399tvK/0uXLq0ESq1atUKxYsUsvflsFRkZiQ8//BDBwcHo1KmTtauTpzHjREREtsjiTXVvvfUWZs+ejQsXLuD69euYN28eevfune1B05IlS/DBBx+gTp06cHJygkajQVBQULrLhIeHo0OHDvDw8ICLiwvq16+PlStXmiw/YMAAjBgxAtWrV8/WupOh9AbATDufiIgop1g847R27VpLbwIA8NVXX+H69evw9PREiRIlcP369XTL79mzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHq8rPmjULcXFxBtPJMtIbADPtfCIiopySZ+7nnjt3Lq5du4YHDx5gyJAh6ZZNSUnB+++/Dzs7O4SGhuLPP/9UBuV85ZVX8MUXX6gCr/Pnz+O7777DwoULeQt8DmHGiYiIbFGORQHnzp3DkCFD8Oqrr8LV1RWurq549dVX8eGHH2bL2E2tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOFCZfrBgwfx4MEDVKhQAfb29rC3t8f169fx8ccfq5an7MOMExER2SKLN9UBQFBQEIYMGYLk5GSIiDI9IiICERERWLBgAf744w8EBATkRHUQEhICAGjbtq3BvHbt2gEA9u7dq0x76623UKdOHYNy/fv3x4ABA4xuIy4uLt06ZDT/ZceMExER2SKLB05Hjx7F+++/j9TUVHTs2BEDBw5E+fLlAQBXrlzBvHnzsHHjRrz//vuoWrWqQYBiCbphESpWrGgwr3jx4nB1dVXKAICHhwc8PDxU5RwcHFCiRAlUqFDB6DZcXV2zr8IvIWaciIjIFlk8cPr555+h1Woxb948g+xMtWrV8OabbyIoKAjvvfcepk2bhr///tvSVUJMTAyA501zxhQsWFApQ9bBjBMREdkiiwdO+/btg5+fn8kmLQDo378/Zs2ahdDQUEtXJ9tcu3Yt3fmxsbHpzo+Li4OXl1c21ihvMTYAJjNORERkbRYPnKKiotCiRYsMy1WqVAmnTp2ydHUA/C/TZCqr9OTJExQqVOiFtuHi4vJCy7/sjA2AyYwTERFZm8XvqvPw8MCNGzcyLHfjxg2TTWfZTde3Sb8fk869e/cQGxtrtP/Ti4iLizN4kWnGmuqYcSIiImuzeOBUt25dHDhwALt37zZZZvfu3di/fz/q1atn6eoAAJo1awYA2L59u8G8bdu2qcpkF90QDLoXm+nSZ6xzODNORERkbRYPnIYPHw6tVotOnTphzJgxOHPmDOLj4xEfH4/Tp0/j008/VZ77Nnz4cEtXBwDQqlUrlCtXDsuWLcOJEyeU6TExMZg8eTIcHR3Rr1+/HKkLGceMExER2SKL93Fq164dvvzyS0yaNAnTpk3DtGnTDMqICMaPH290XCVzzZ07F2FhYQCg9JWaO3euMmZT48aNMWjQIADPMxdz585Fu3bt0LRpU9UjV65fv46pU6fC19c3y3UxJm1ncXYOTx8zTkREZItyZADM7777Do0aNcLUqVNx4MABPHv2DADg5OSExo0bY/To0Wjfvv0LbSMsLEw12jcA7N+/H/v371fe6wInAGjRogXCwsIwYcIErFixAsnJyahevTp+/PFH9OzZ84XqYgw7i2cOM05ERGSLciRwAoD27dujffv2SE1NxcOHDwEARYoUUZ0MX0RQUBCCgoIytYy/vz+2bNmSLdun7JXRAJjMOBERkTVYLHC6dOkS1q5di2vXrsHJyQl+fn7o0aMHnJ2dUaxYMUtt1malvYuOd9WlL6MBMJlxIiIia7BI4DR9+nSMGTPGICswfvx4BAcHo1q1apbYrE3jI1gyx9g4Tsw4ERGRtWX7XXVhYWEYPXo0UlJSUKBAAdSsWRPly5eHRqPBrVu30LVrV2i12uzeLOUxxkYOZ+dwIiKytmwPnGbNmgURQUBAAO7du4cjR47g4sWLOHbsGMqXL49Lly5h69at2b1ZmxcbG6t6RUZGWrtKNo2dw4mIyBZle+D077//wtvbG3/88YfqTrLXXnsNv/76K0QEBw8ezO7N2jwXFxeDF5nG4QiIiMgWZXvgFBkZiTp16sDR0dFgXuPGjQEA9+/fz+7NUh7DjBMREdmibA+ckpKS4OHhYXRewYIFlTJE6WHGiYiIbFGOjeP0suNwBJnDjBMREdkiiwROly5dwqJFi7I0P68+I47DEWQOM05ERGSLLBI4pX3UiT6NRmNyvkajybOBE2UOM05ERGSLsj1wKlOmDDQaTXavNtfjQ34zx9gAmMw4ERGRtWV74HTt2rXsXmWewOEHMsfYAJjMOBERkbVl+111RNkho2fVMeNERETWwMCJbJKxzuHMOBERkbUxcCKbxIwTERHZIo7jlEM4jlPm6DJKdnZ2ys0GzDgREZG1MXDKIRzHKXN0GSX9YIkZJyIisjY21ZFN0mWU9IMl/SCK0eFEvAAAONhJREFUgRMREVkDM045hOM4ZU5GGSc21RERkTUwcMohHMcpc3SBkX7gxIwTERFZG5vqyCbpAiNTTXXMOBERkTUwcCKbZCzjxM7hRERkbQycyCYx40RERLaIgRPZJA5HQEREtoidw3MIB8DMnIyGI2DGiYiIrIGBUw7hAJiZw4wTERHZIjbVkU1ixomIiGwRM045hANgZg4zTkREZIsYOOUQDoCZORkNgMmMExERWQOb6sgmGRuOgBknIiKyNgZOZJOYcSIiIlvEwIlsjlarVf7PjBMREdkSBk5kc/SDImaciIjIljBwIpujHxQx40RERLaEgRPZHHMyTgyciIjIGjgcQQ7hI1fMZ07GiU11RERkDQyccggfuWI+UxknOzs7o2WIiIhyCpvqyOboZ5P0AyeNRqO8Z8aJiIisgRmnHMJHrphPP5uk3zwHPA+kUlNTmXEiIiKrYOCUQ/jIFfOZyjgBzwOppKQkZpyIiMgq2FRHNiejjFPaMkRERDmFgRPZnIwyTmnLEBER5RQGTmRzmHEiIiJbxcCJbI6p4Qj03zPjRERE1sDAiWyOqQEw9d8z40RERNbAwIlsDjNORERkqxg4kc0xp3M4M05ERGQNDJzI5pjTOZwZJyIisgYGTmRzmHEiIiJbxZHDc0hcXFy67+l/mHEiIiJbxcAph7i6ulq7CrkGM05ERGSr2FRHNocDYBIRka1iximHxMbGqt7HxcXBy8vLSrWxbXzkChER2SoGTjnExcXF2lXINczJOAGAVquFnR2TpkRElHN41iGbk94AmPqBFLNORESU0xg4kc1Jr6lO/z37ORERUU5j4EQ2J72mOmaciIjImhg4kc1hxolSUlIwePBgdOvWDTExMdauDhGRgp3DyeYw40Rr167FX3/9BQCoUaMGxo8fb+UaERE9x4wT2RxmnGjPnj3K/7ds2WLFmhARqTFwIpvDjBPt3btX+f+hQ4fw6NEjK9aGiOh/GDi9xLRaLWJjYyEi1q6KSmYyTiICrVabY3Ujy7t//z7OnTunvNdqtdi5c6cVa0RE9D8MnF5iAwcOhJubG77//ntrV0XF3IxTUlISunbtCmdnZ6xYsSLH6keWtW/fPoNpW7dutUJNiIgMMXB6SYWHhyMoKAgA8P333yMyMtK6FdKT3gCY+u//+OMPrFu3DklJSfj2229zrH5kWaGhoQbTtm7danOZUSJ6OTFwekkFBgYq/09KSsLvv/9uxdqomdtUN336dOX/Z8+exbVr1yxdNcoBuv5NGo0GDRs2BADcvXsXp06dsma1KA+6efMmBg0ahIULF1q7KtkiOTkZw4YNQ7t27TBv3jwkJCRYu0p5EgOnl9CNGzewatUq1bQ5c+YgMTExS+s7cuQILl++nB1VA5D1zuHBwcHZVgdLyI13ASYnJ+dopic6OhonT54EAPj5+aFXr17KPDbXUXZKSkrCm2++iXnz5qF///4IDw9XzY+JicF3332HXbt2WamGmTd//nzMnj0b27dvx6BBg+Dt7Y0xY8bg/v371q5ansLA6SU0Y8YM5SReoEABAM875C5fvjzT69qwYQPq1q2LatWq4cqVK9lSP3MzTmnf22rgdPbsWfj7+6NgwYIYOXIkoqKirF0lk0QEx48fx8SJE+Hn5wdHR0d07949x4KnsLAwZVtNmzZF+/btlXm5IXDaunUrOnfujJCQEGtXJc9LSUlBfHy8wfTU1FQEBgaiT58+uHnzpsnlJ02ahBMnTijvJ06cqPxfRNC7d298/fXXaNOmDebNm5edVTfq6dOnmDFjBoKDg7N0kZWcnIwffvhBNe3Ro0f4+eef0bBhQ8TFxWVXVUnIKmJjYwWAAJDY2NhsW69Wq5WRI0fK/Pnzjc6PiYmRggULCgBxcnKSdevWKfWoWbOmaLXaTG3vrbfeUpafNm1alusdHx8vDx8+FBGRb775Rlnn5s2bVeU++ugjZR4AmThxopQoUUIAiLOzs8THx2e5DtlNq9XKH3/8Ic7Ozqo6FyxYUCZNmiRxcXEvtP4LFy7Itm3bJCUlxWDe+fPnZceOHWb/PVNSUmTp0qVSqVIlVV11r5UrV6a7fEJCgkRHR2flY6h8+umnyjbXrl0rWq1WypUrJwDEwcFBnjx58sLbsJSYmBhxc3NT/sa3b982e9lly5ZJ8+bNZfr06ZKcnJxu2cTERHn8+HGmv6u2SKvVSnBwsHz//fdy/fp1s5eLj4+Xhg0bikajkT59+sj9+/dFROTRo0fy+uuvK8fQG2+8YXT5o0ePSr58+QyO84MHD4qIyJo1awzm/fbbby/+gdPRvn17ZVvlypWTqVOnyqNHj8xePigoSFm+UaNG0rdvX3F0dFSmjR071oK1z90yez5m4GQllgqcfv75Z2W9EyZMMPhxDQwMVOa///77otVqpW7dusq0vXv3mr2tZ8+eiYuLi7Jshw4dDMpotVqjJ/aUlBQJCgqSAQMGyGuvvab8iLVq1Uq6du2qrHPr1q2q5UaMGKHM8/Hxkfj4eBk4cKAybcuWLWbX35IeP36s+hzGXpUqVVJ+8HW0Wq2Eh4fLli1bZN++fXLs2DGJjIw0WH9ERISy7zt06CCPHz9Wlg8MDBQ7OzsBIAMHDkz3BJuamirLly+XypUrp1vX8uXLS2JiotF17NmzR4oWLSr29vby7bffSmpqapb3m7+/v7LNBw8eiIg6WP7nn3+yvO703L17V15//XVp06aNHDlyJEvr+OWXX1T7rFu3bmYtd/bsWdVJvFatWhIeHm5Q7t69ezJq1CglEHdychIfHx9p0qSJ7N69O0t1tqYTJ05IixYtlM+dP39+GT9+vFm/h/oXVwCkSJEiMm3aNClfvrzBsXvx4kXVss+ePZOqVasq82vXrq38v3379hIbGyulS5c2+j2YOXOmRfbF7t27jW7Pw8NDTpw4keHyKSkp8sorryjL7d+/X0REzp07pwRP9vb2cubMmReu64YNG6Rt27ayaNGiF15XZsXExMj+/fvl999/N/q7mFUMnHIJSwVOH3/8seqLN2DAAElKShKR51kBHx8fZZ7uS7R06VJlWsuWLWXatGnSv39/6dy5s3IFZsy2bdtU23J1dVW2JSJy/PhxcXNzkypVqignQR39AC69186dO1XLTZ48WZm3atUqEVFfHQ4fPjxb9uOLSEhIkCZNmqg+x9ChQ+XSpUsyePBg1UmyYcOGkpCQICLPr6L1M3i6l0ajkaVLl6q20aNHD1WZV199VU6dOiUDBgwwWP7LL780Ws+4uDij22vYsKHMmTNHbt26JS1btlSmz5gxw2AdS5cuVV3VApC2bdsaBITmePLkibJvqlatqkzfuHGjsu4PP/ww0+vNSFJSkjRu3FjZhr29vUyePNlowG9KSkqKlC1b1mBfbty4McNlO3ToYLCcnZ2ddO/eXcaNGyczZsyQTz/9VAoUKGDye1K4cOFMZbj0PXjwQPr27SuffvqpPH36VDVv586dUr9+fenVq1e2/U5FRkbK+++/LxqNxuhnKVmypKxfv97k8tevXzfI4hrbf7r/jxgxQrX8559/rszz8/OT2NhY8fX1Vabp/z3atm0rY8eOVa17yZIl2bIfdLRarTRo0EBZf40aNVTbe/311zNcx/Lly5XyzZs3V80bP368al5Gmcpbt27JoEGDpFChQtKvXz+JiYlR5i1atEi1by0RPGm1Wpk/f74MHz5cBg0aJO+++6688cYbqr8RANmwYUO2bZOBk42KjY1VvSIjIy0SOGm1Wpk2bZrqAGvWrJm8+eabqh9e/S9jYmKilCxZ0ugPUJkyZVTBkL7hw4cblD9w4IAyv3v37sr0L774QpmelJQkpUqVUubly5dPXnvtNYMvBgDZs2ePapsPHz6UkSNHyuzZs5UfgJiYGLG3txfgeYo7s00YDx8+lJkzZ8qWLVteuPkjNTVV9bkLFSok69atU5U5ffq00rwIQHr06CHR0dHStGlTkyeCggULKk0Zhw8fTvekYeyV9kr5/v37Ur9+fVWZRo0ayc6dO1X74MiRI8p8T09PVWZrypQpJrdXqlQpWbVqlRIUGhMfHy9DhgyRjh07yvz582X16tVGA6SnT58qwZmjo6OMGzdO+TFPTk6WkJAQ+eWXX+TKlSvp/m1iYmKkf//+0rNnT9WVd9qLDd2rcePGcvXq1XTXqaPf5O3l5aX6/sTGxopWq5X//vtPFixYoLqI2LJli2qfVa9ePcO/Zf78+aV58+ZSrVo1cXd3V32n9f92ixcvll69esm///6bbt31j9eKFSvK0aNHJTU1VSZPnqw6Sb7zzjsv9P1ITk6WX3/9VVVn3Xf2/fffFwcHB2Wavb29nDt3zuh69C8aBgwYYHARUbNmTTl27JgSXLm5uSnHS1hYmPKZHBwc5OTJkyIiMnfuXIP97OjoKBcvXhStVqsKPjw9PZVuBTp37tyRQ4cOZbh/oqOjJTAwUPU7qX9hULVqVUlJSZHz589LmTJlBHh+4ZT2OExKSpLIyEjRarWSmpoq1apVU9aR9mIzPj5eFdSbCvyio6Pl888/NwhKK1SoIMePH5egoCCDYNfe3t5gezq3b9+W6tWrS+HChaVHjx6yePFiiYqKSnf/iIj8+eefZv2mTZo0KcN1mYuBk41K7wDIzsBJZ+XKleLk5GRymyEhIary6Z0EFy5caLB+rVZr9Ar7+++/F5HnJzv9L6CHh4fSP0U/w9WhQwelX1JiYqLMnDlTihYtqvxg3Lx506zPq5/yP3/+vFnLxMfHy48//igeHh7Kss2bN5djx46Ztbwxn3zyibIuFxcXo00uIs/7WOg3cxYpUkS13Lhx42T06NGqzFWbNm1Eq9VK8+bNlWljxoxR/WjqTqx///23zJgxQ5mm0Wjkiy++kKVLl8qmTZukQoUKyjw3Nzf5559/TP7ov/POO0rZUaNGSVBQkEHQNXjwYNm+fbsqaACeB3wBAQGya9cug/UOHjzY5DH3999/q8r269dPNb9o0aLSvXt3KVSokOqElrZZRl///v2Vsk5OTjJ16lRZvHix6kQ5ePBgVbDg7u4uq1evzvDv3qxZM2WZzZs3S+vWrVV/N/2moRIlSkhoaKgkJyermkiXLVsmSUlJ8tNPP6mODf06f/zxx3Lnzh1lu1FRUVK8eHGlzB9//CEpKSmqYNDZ2dng+65jrInIwcFBlQHRf+lnHW/evCljx46VOXPmZJidO3DggEFQ6ObmJj/99JM8e/ZMREQuXrwobdu2VeZ//PHHBusJCQlRHQO6fnUbN26U5s2by8iRI5W+g/rH1/Tp0+Xx48eqjLv+iTcpKUnpS6d7ffXVV6pt6wdoQ4cOVaaHh4eLq6urAJC//vrL5D5ISEiQWrVqqdaflJQkr732mjJt7dq1Svnvv/9ema6fNb57965ykVmgQAFVE139+vWNfo83b96slPHy8pLLly8r87RarSxYsEA8PT1Nfh+dnJxUQZN+X8iCBQsqAai+Xr16GazHzs5OGjduLFOmTJGTJ08a1PXRo0cm6+Hm5iYNGjSQwYMHy8yZM+X06dMm93VmMXCyUaYOSHP/UFmxb98+KVy4sLKdYsWKSUBAgGzbts2gbHJyskyaNEk++eQTmT9/vqqjYZUqVQz6rZw9e1aZX7FiReX/LVu2FBGRv//+2+BzTps2TbRardSpU0eZZuwH/cmTJxIUFGTyx96YqVOnKusMDAwUkedZlfDwcIO6a7VaWbp0qXh7exv9e+g6nP7+++8SHBwsp06dkoiICDlz5oycOHFCwsPDZf/+/bJnzx7ZunWrLFu2TKZPn67qa5UvXz6Dju1pbdy4UXWS1p38Dx8+rJSJjo5WZef0gxhdv6MnT55Ily5dBHietdAP1vSbJYy9SpYsmWEfiitXrhg0x+m/Jk+erPwA3r17VxXE6r9Gjhyp/C30g2djr7TNTrGxsTJ27Nh06wE8z17cu3fP6L5ObzngedAh8vx7kzb7+dFHH5nMnh07dkwp9+qrr0pqaqpERESke+GSL18+eeONN5T3DRo0UJ1E4uLi5PTp07Jjxw5ZtGiR/PXXX3Lr1i2j29c/Kbq4uKg6R+tPDwsLUy2XnJysCrqNfR80Go3qBGhvby979+6VX3/9VQkWgOcXHKaaCsPDwyV//vyq9Q4YMMDo3+nhw4dKWQ8PD9XNHsnJyaogI70gRUTk1KlTqu9K7969lfdNmjQxCPbmz5+vzPf19TW4eePmzZtKQKvRaOTo0aNy9epV1cVCpUqVTF6A6P8+6B8vuv/XqVNHteydO3eUTHrx4sWVzP+7775r8rjatGmTyf2h3yyfL18+6du3rwQHBxtkuh0dHeWTTz6R8PBwVf8v3WvEiBGSnJwsnTp1UqaVKlVKbty4oWxLP8BN71WlShWT2d8uXbrIyZMnJSIiQu7cuWPRmyEYONmonGqqS+vGjRvy+++/y+HDhzPdaVe/30faPgf6ndCnTZumXMk5OTlJQkKC0b4z3t7esmvXLuV9Vu7iM0U/kKtSpYq0a9dO6S/j7++vdPh9+PChqmkCeH4V1Lt3b1UW5kVfGf2o68ycOVNZpkyZMkabJ/Sbc/RfK1asUMpotVo5f/68wcldq9XKkCFDTP5omXsn06hRowyWr169uuoKWSc1NVW2bNkiAQEByh2cute7774rp06dUp10J06cKEOGDFEyf2n7aOi7cuWK6srf3d1devbsKVWqVFGdgPT76jx8+FCVlWnXrp1Bk8OAAQNUx+Ljx48NmoAqVaokU6ZMMfgbBQQEKGXmzJmjTNfPGADPm0L1v1P6r0OHDpn1dzDFWPYuX758qgyHm5ubajv6x16dOnUkISFBPvvsM2VaoUKFlJstxowZo0w31TfJ09PT4GLhzp07qsC/du3aGTYd6mcXg4KClOmzZs1SpteqVcusPmitWrUyqKe7u7vR4z45OVl69uwp5cuXNwgydX788UdlPXXr1jV6U4WxfqH6TYH58+c3ekff9u3bDZbTv8Fk9erVqgyhq6urVKxYUQmu0jbVpnX9+nWTXTJ0r+7du6uaBZ89eybDhg1T5o8cOVLZRmxsrOrGokqVKsmDBw8MAtzZs2dLSEiIjB49WhUo6l5FixaV//77T86cOaPsF2dnZ1UgZmkMnHIJS3UOz06bNm1S6livXj3Vl1K/aeLChQvy3nvvKe/Xr1+vXG17eXmprqyLFSum/H/x4sXZVletVmu0j5T+j33//v1VP+IApGPHjnLq1CkRed5UGBgYqGq6y+zLzs5Oaa4014oVK2TcuHHpdu5Ne7Vap06dTAXCJ0+elBUrVkhgYKCMGjVKvvzyy0zd6vzo0SOpXbu2uLq6SkBAgBw4cMCsoDchIUFmzJihyqzpZ40CAgJUZQ8dOqQ03aQnIiJCDh48qFyF37x5U5Uxad26tYSGhkpiYqLqCr1Dhw6i1WolJCREaWquV6+e0WEsdMNJpM2WAM8zGHXr1pW6desqfXM8PDxU3+XU1FT5888/5ZdffpFr166JyPNO5F988YVqXX379s3w82bk6dOnqqYmV1dX2bp1qyQkJEibNm2U6U5OTtK7d2/5559/VMe5fjATFhYmkyZNUgUXycnJRjOJffv2NchUvfvuu3Lp0iVJSEhQNek2atTIrL/tgQMHlGXq168vIiJXr15VNV+aCmzS2rBhg0Gdly9fnsm9+z+JiYlGh+zQ7z86ZMgQ1TJHjhxRZR+XLFkiISEhqkyVqU7b27dvV5XRD9R0GdLk5GS5d++eWd/HR48eyTfffKNqiQCeZ2rT3sGc9jOEhIQYbCMyMlJ1wVm7dm1Vtw9jAe6lS5fk119/VTVfFy5cWBWEffvttxl+luzEwCmXyA2Bk1arVV056G55jo6OVq4MKlSoICIiS5YsUcrpt7kPGzZMwsLCDH5oSpQoYfL29qxK28nXx8dH1Yyo/ypUqJByV15aMTExsnXrVvnzzz/lq6++koCAAOnTp48MGDBABg8eLB999JGMGjVKxo0bJ+PHj5fAwEBZvHixbNu2TTlBZrfHjx+rTlC57fbz9evXGwQgVapUydZj//Tp0wZBr/4JzcPDQ9XcFR8fL//++6/Jmx90Tp48KfXq1cswaB4zZozZdd2wYYOUKFFCKlWqpOqz9CIOHjwohQoVkgoVKqiaX+Pi4kw2n6YNXtMTGRmpXJxUqVJF9u3bJyLP+1m9+eabqnXa29ur7g4rXbq00aY5Y9L+7hw/flx1d+fgwYPN3iepqamqIQrM/azp2bFjh+qz6jImusDO3d1dyfxGR0er+lV99NFHynru3LkjXbp0ET8/Pzl79qzJ+qftewU8z6K/yLAfT58+lZ9//lkaN24sEydOfKHx765evWoyk6UbFsGY6Ohoo98rX1/fHB+Pj4FTLpEbAieR5wPz6erZsmVLiY+PlxUrVijTdB04b9++bfSLExoaKiIiDRs2VE3PzjsidGJiYmTo0KHy8ccfy/79+0Wr1UpiYqL88MMPqhNoq1atTPYXsWVHjx6VVq1ayZQpU6xdlSwJDQ1V7qgqUKBAtowpk9bevXuVQSjTvl701unLly9LYGCgNGnSRLlw0Gg0YmdnJ7Vr1870EAypqanZ3m8jNTXVaBNWbGysjBkzRnUTAvC8+S4zgduTJ09k//79Bhc9Wq1WZs+ebbB+4HmzS2ZvuJg9e7YqG6L7f5kyZVS3x5tj7dq1YmdnJ/7+/tk2gKqu35ezs7PSNKffZKvLavXp00eZVr9+/SxdLP7www+q/WlnZydHjx7Nls+RXc6cOWOQxTInkxoTEyONGjVSLWfOzRjZjYFTLpFbAqfk5GTVD5ejo6Ny1xsA2bFjh1I2bQq7VKlSylXRP//8o/ohNee21Ox048YN+fzzz2X+/PkvdKVGL+b8+fPy6aefmt3UkhWRkZESFBQkffv2VYZ96N+/f54YaftFPXv2TJYvXy6tW7eWMmXKmMy6ZlVMTIxMnDhRFbxmNOq8qfUYu7PQWD8gczx79izDEdkzu74FCxaogv89e/Yo9Wzfvr2sWrVKea8/nEhmRUZGqoZq0M9a2ZJDhw4pfRddXV3NDsifPn2q9EXr3LmzVb6nDJxyidwSOImIzJs3z+gVvKurq+oKaujQoar5I0eOVOalpqYqt2hntg8QUVZptdo883iS3OTBgwcya9Ys1YVVZg0aNEj1e5KZJjprSE1NVZrl7OzsVENlvGi2U9f539vbO1sebWQp4eHhMnDgQIPx9zKiu7klo2ZzS8ns+VgjkoOPPidFXFwcXF1dAQCxsbFwcXGxco1MExGsW7cOwcHBCAkJweXLlwEAn3zyCQIDA5Vya9asQbdu3ZT3Bw4cQIMGDZT3SUlJiIqKQokSJaDRaHLuAxBRrnP06FHUqVMHAFCmTBmcOnUKBQsWtHKt0jdhwgR8++23qmldu3bFqlWrXug3LykpCdu3b0fdunXh5eX1otWkNDJ7PmbgZCW5KXBK6+bNm4iKikL16tVhb2+vTH/48CGKFi0KEUGZMmVw7do1BkhElGVTpkzBzp07MXXqVNSsWdPa1cnQ5cuXUaFCBeW9l5cXTp8+DU9PTyvWijLCwCmXyM2BU3omTpyIBQsWYOrUqejevbu1q0NElKOaN2+OvXv3AgA2btyIjh07WrlGlBEGTrlEXg2ciIheZpcuXcLnn3+Otm3b4v3337d2dcgMDJxyCQZORERE1pfZ87FdTlSKiIiIKC9g4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGayz7gIWYL+gO1xcXFWrAkREdHLS/8cbM7DVBg4WUl8fLzyfy8vLyvWhIiIiIDn52bd41dMYVMdERERkZn4kF8r0Wq1iIqKAgAUKFAAGo0mS+uJi4tTMlaRkZF8WPD/434xjvvFOO4X47hfjON+MS637hcRUVqBPD09YWeXfk6JTXVWYmdnh2LFimXrOl1cXHLNgZqTuF+M434xjvvFOO4X47hfjMtt+yWj5jl9bKojIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMHwCQiIiIyEzNORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZONio8PBwdOnSAh4cHXFxcUL9+faxcuTJT60hMTMS3336LihUrIn/+/ChZsiQGDx6M+/fvW6jWlnP79m1Mnz4dbdu2RZkyZeDo6IjixYuja9euOHTokNnrCQkJgUajMfkKCgqy3IewEF9fX5Ofp3nz5pla19KlS+Hv7w8XFxcUKlQIHTt2xLFjxyxTcQsKCgpK9++s0WjQqlWrDNeTW4+XJUuW4IMPPkCdOnXg5OSUYV2fPHmCUaNGwcfHB05OTvD19cVnn32G2NjYTG9727ZtaNasGdzc3FCwYEG0aNECu3bteoFPk33M3S/JyclYs2YNAgICULlyZbi6usLNzQ316tXDb7/9htTU1ExtNzu/o5aQmeNl4sSJ6X4nrl27lqltX7x4ET169ICnpyecnZ1Ro0YN/Pbbb7Dl+9bsrV0BMrRnzx60a9cO+fPnR69eveDm5oY1a9agZ8+euHnzJkaPHp3hOrRaLTp37oxt27ahfv366Nq1KyIiIjB37lzs2rULBw8eRNGiRXPg02SPmTNn4scff0T58uXRtm1bFC1aFBEREVi/fj3Wr1+PZcuWoWfPnmavr1mzZkZ/sPz8/LKv0jnI3d0dI0eONJju6+tr9jomTZqEr776Cj4+PhgyZAiePn2K5cuXo2HDhti1axcaNWqUfRW2MD8/P0yYMMHovNWrV+PMmTNo166d2evLbcfLV199hevXr8PT0xMlSpTA9evXTZaNi4tDs2bNcOLECbRt2xa9e/fG8ePHMXXqVOzduxehoaHInz+/WdtdsmQJ+vbti6JFi6J///4AgBUrVqBNmzZYuXIlunXrlh0fL8vM3S+XL19Gt27d4OrqilatWuHNN99ETEwMNm7ciKFDhyI4OBgbNmyARqMxe9vZ8R21lMwcLzoBAQFG6+7h4WH2ds+ePYuGDRsiISEBPXr0QMmSJbF582YMHToUZ8+excyZMzPxKXKQkE1JTk6W8uXLi5OTkxw/flyZ/vjxY3nllVfE0dFRrl27luF65s+fLwCkd+/eotVqlem//fabAJDBgwdbovoWs2bNGgkJCTGYHhoaKg4ODlKoUCF59uxZhuvZs2ePAJAJEyZYoJbW4ePjIz4+Pi+0josXL4q9vb288sor8vjxY2X68ePHxcnJSSpXriypqakvWFPrS0xMlCJFioi9vb3cu3cvw/K59XjZsWOH8jsxZcoUASALFiwwWvbrr78WADJ27FjV9LFjxwoAmTx5slnbfPTokXh4eIinp6fcvHlTmX7z5k3x9PQUT09PefLkSdY+UDYxd7/cunVLZs+eLbGxsarpsbGxUqdOHQEgK1euNHu72fEdtaTMHC8TJkwQALJnz54X3m7Tpk0FgAQHByvTEhMTpUmTJgJADhw48MLbsAQ21dmY3bt34/Lly3jnnXdUV7Pu7u744osvkJSUhIULF2a4nr/++gsAMGXKFNVV0QcffIBy5cph6dKlSEhIyPb6W8rbb7+NZs2aGUxv0qQJWrRogejoaJw6dcoKNcsbFixYgJSUFHz55Zdwd3dXpvv5+aF37944d+4cwsLCrFjD7LF+/Xo8fPgQHTt2hJeXl7WrYzGtW7eGj49PhuVEBHPnzoWrqyvGjx+vmjd+/Hi4urpi7ty5Zm1z1apVePz4MYYPHw5vb29lure3N4YNG4aoqCisW7cucx8km5m7X0qVKoWhQ4fCxcVFNd3FxQWjRo0CAOzdu9cidbQGc/dLdrp48SJCQ0PRokULvP7668p0R0dHfPfddwD+dx6zNWyqszEhISEAgLZt2xrM0zUtZPSFffbsGQ4dOoRXX33V4Mug0WjQps3/tXfvQU1deRzAvwEiYAIoCgbkjWlFhkJbiG5BqaiVddoiCz7oQgF12zqCtV0RqXah3XXXWl+LqLW1QtWFpbUKbtGh2hWcYgtW6aoQFGvAKuD4KkpAXjn7h5MMMa8bDRLw95nJjJ57zsnvXk7gx72Hc2Zgx44d+OmnnzB58mTTBD6A+Hw+AMDKivtwrq+vx+bNm9HR0QE3NzdERERg7Nix/RViv+vs7EReXh6amppgb2+PkJAQTJw4kXN7Q+MuLy8P5eXlmDJliqlCHhDKJGDRokVGtRtq40Wpvr4eTU1NmDlzptYkITQ0FKWlpfj111/h7u6uty9DYygrKwvl5eV4/fXXTRb/QHiY7zfAo39Gzc3x48dRWVkJCwsLiMViTJ8+HUKhkHN7feMlLCwMAoHAbJNTSpzMTH19PQBALBZrHBOJRBAKhao6uvzyyy9QKBRa++jbd319/aBPnC5fvoyjR4/CxcUFAQEBnNvl5+cjPz9f9X8rKyukpqbi448/hqWlZX+E2q9aWlqQnJysVhYSEoKCggL4+voabF9fXw+hUAiRSKRxrO94GcwaGxvx3Xffwc3NDZGRkUa1HWrjRUnf9xtleWlpKerr6w0mTvr6GipjCAB27doFQPsPfH0e9TNqbh6cQzhixAj885//5JwY6xsvlpaW8Pb2Rm1tLXp6eoxOUvsbPaozM62trQCg9rikL3t7e1WdR+mjb73Bqru7GwkJCejs7MRHH33E6QeYk5MT1q5di3PnzqGtrQ3Xrl1DUVERxo0bh02bNmHFihWPIXLTSk5OxnfffYdr165BLpejuroaCQkJOHnyJKZNm4a7d+8a7KO1tXXIj5fc3FwoFAokJSVxTnaG4njpy5TfK/T1NVTG0KefforDhw8jIiICs2bN4tzOFJ9RcxEYGIhdu3bh0qVL6OjogEwmw5YtW8Dj8ZCUlISDBw9y6ofL2FMoFGZ5bcwrjSOEI+UPwOPHj+NPf/oTEhISOLXz9/eHv7+/6v8CgQBRUVGYOHEinnnmGWRnZyM9PR3Ozs79FbrJPfibX1BQEHbv3g0A2LNnDz777DPVvIwnlUKhQG5uLng8HhYsWMC53VAcL+ThfPPNN0hJSYGnpyf27t1rVNuh9BmNjo5W+7+XlxdSUlLg5+eHGTNmYPXq1Xj11VcHKLrHg+44mRll9q3rN7M7d+7ozNCN6aNvvcFGoVBgwYIFyM/PR3x8PD755JNH7lMkEiEqKgo9PT1GrQtlzt58800AQEVFhcG6Dg4OQ3a8AMDRo0dx+fJlREREwNvb+5H7GyrjxZTfK/T1NdjH0KFDhxAbG4sxY8bgv//9L1xcXEzSrzGfUXM3bdo0+Pr64uzZs6qvtz5cxh6Px4OdnZ1J4zQFSpzMjL65AC0tLWhra9M5H0HJx8cHFhYWOucTGJrXYM4UCgWSk5PxxRdfIC4uDnl5ebCwMM0wHj16NID769oMBcacj1gsRltbG1paWjSODebxovSwk8L1GQrjxdDcI2O+9vr6GsxjqKSkBH/4wx8wevRoHDt2DD4+PibreyiMob6U59Pe3m6wrr7x0tvbC5lMBm9vb7Ob3wRQ4mR2lH9y/+2332ocKy0tVauji62tLSQSCc6fP6+xkBljDEeOHIFAIEBwcLCJon48lEnT7t27MW/ePOzZs8ekE3OVdw7MYUE6UzDmfEwx7szVzZs3UVxcDEdHR43HDI9iKIwXsVgMV1dXVFRUaPzwlsvlqKiogLe3t8GJ4cDQHEMlJSWIiYmBo6Mjjh07hnHjxpm0/6EwhpTkcjlqamogEAhUCZQ++sbL999/r1qY1SwN9EJSRF13dzfz8fHRuwCmTCZTlTc1NTGpVKq2aCFjQ28BzN7eXpaYmMgAsDlz5rDu7m699a9fv86kUim7fv26WvlPP/2ktf7mzZsZACYWi1lPT4/J4u5vUqmUyeVyreUikYgBYOXl5ary3377jUmlUtbU1KRW//z580N2AcxNmzYxAGzp0qU66wzl8WLqBTDlcjmTSqWssbFRrfzWrVvMwcHBrBfA7MvQdTl06BCztrZmIpGI1dXVGeyvq6uLSaVSdvHiRbVyYz+jA03fdblz5w47f/68Rnl7ezuLi4tjAFhycrLGcalUyqRSqUa5oQUwKyoqHu1k+gmPMTPeEOYJpWvLlcbGRqxfv15ty5WkpCR88cUXyM3NVW1xANy/OzNr1izVlivh4eG4ePEi9u/fDy8vL1RWVg6qLVeysrLwwQcfQCgU4u2339Z6+3b27NmqRUOV9TMzM5GVlaWq4+XlBT6fj+DgYLi5uUEul+PHH39EdXU1RowYgdLSUkgkksd0Vo8uKysLGzduxJQpU+Dp6QmBQIALFy7g0KFD6O7uRkZGBv7+97+r6ufl5SE5ORmJiYkae1H13XIlJiZGteVKV1fXoNtypa+AgACcO3cOZ86c0blkxVAbLzt37lQtWHr27FmcPn0aoaGhqjsmYWFhqseWcrkcoaGh+N///oeXXnoJzz33HE6fPo1vv/0WISEhKC8vh62trarvsrIyTJ06FeHh4aq1eJT6brmi3AKpsLAQN27cQGFhIebMmfMYzl43rtelrq4OQUFB6OzsxPz58/H0009r9OXl5aX2PbehoQHe3t7w9PRU26/N2M/oQOB6XRoaGuDj44OQkBD4+flBJBLh2rVrOHr0KK5cuYKAgAAcO3YMo0aNUutfuQjzg+lGTU0NQkND0dHRgXnz5sHFxQUlJSWoqalBSkoKbblCjFNZWckiIyOZvb09s7W1ZRKJhP373//WqKe8C6Ptt4N79+6xrKws5uvry4YNG8ZEIhFbtGgRp60mzI3yPPW9+l4D5bYAD26VsXbtWjZ16lTm6urKrK2tma2tLRs/fjxbtmyZ2m/Jg0VZWRmbO3cuE4vFzN7enllZWTGRSMSioqJYaWmpRv3c3FwGgCUmJmrtb+/evSw4OJjZ2toyBwcHNmvWLHbq1Kl+Pov+U1lZyQAwiUSit95QGy+GPi8Pfv1/++03tmzZMubu7s74fD7z8PBgf/7zn7XeIVJuQxMeHq71vQ8fPswmT57MBAIBEwqFLDw8nB05cqQfztJ4XK+L8hz1vR48f5lMxgBobK1i7Gd0IHC9Lq2trWzJkiUsJCSEOTk5MSsrK2ZnZ8ckEglbt24da29v19q/sh9t6urqWGxsLHN0dGTW1tYsICCAbd26Ve1JibmhO06EEEIIIRzR5HBCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIoQQQgjhiBInQgghhBCOKHEihBBCCOGIEidCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIuQJ5uXlBR6Pp/e1efPmgQ6TmEh1dTUsLS2RmpqqVl5WVqb6euvT0NCgqtd3PzZjtba2YtSoUZg4caLG/mWEmDvNnVIJIU+cvht6PmjChAmPORrSX1JTU2Fra4v3339/QONwcHBARkYG0tLSsHv3biQmJg5oPIQYgxInQggWLVqkttM7GXr27duHiooKpKWlwdnZeaDDQUpKCtatW4eMjAzMnz8f1tbWAx0SIZzQozpCCHkCbNq0CQCwcOHCAY7kPhsbG7z22mtobm5GYWHhQIdDCGeUOBFCOFHOh2poaEBxcTEiIiLg6OgIHo+HsrIyVb3bt28jMzMTQUFBsLOzw/DhwxEQEIC//e1vaG9v19p3T08PNm/ejICAANjY2MDJyQkxMTE4e/Ys8vLywOPxNO6IZWVlgcfjISsrS2ufynk7L774otbjTU1NePfdd+Hn54fhw4fDzs4OISEhyMnJQU9Pj0b9pKQk8Hg85OXlQSaTISEhASKRCNbW1vD19cXq1avR2dmp8/qdOnUKiYmJ8Pb2ho2NDRwdHREYGIi0tDQ0NjYCAHJzc8Hj8TBz5kyd/TQ1NYHP58PW1hY3b97UWa+v6upqnDhxApMmTcLTTz/NqY0xlF8LQ68HKb+mW7duNXlMhPQXelRHCDHKhg0bkJOTg+DgYERGRqKpqQmWlpYAgNraWkRGRuLXX3+Fi4sLwsLCwOfzUVVVhffffx9ff/01ysrK4ODgoOpPoVBgzpw5KCoqwrBhw/Diiy9i5MiRqKyshEQiwYIFC0x+DsePH8fs2bNx+/ZteHl5YcaMGejs7ERVVRVSU1Pxn//8B9988w34fL5G259//hlvv/02Ro4cifDwcNy6dQsVFRVYs2YNampqcODAAY02H3/8MVauXAmFQoGnnnoKUVFR6OjowMWLF7F+/Xr4+/sjKSkJr732GtLT03HkyBFcuHABTz31lEZfO3bsQE9PDxISEjBq1ChO51tUVAQAmD59unEXiqOgoCCd85TOnz+PH3/8ERYWmr+nBwUFwcnJCVVVVWhuboaLi0u/xEeISTFCyBPL09OTAWC5ubmc61paWrLi4mKN4+3t7czX15cBYKtXr2adnZ2qY3K5nMXFxTEALDk5Wa1dTk4OA8DGjBnDamtrVeXd3d1s8eLFDAADwBITE9XaZWZmMgAsMzNTa7zHjh1jAFh4eLhaeXNzMxs1ahTj8Xhs27ZtrLe3V3Xsxo0bLCIiggFgH3zwgVq7xMREVSyrVq1iPT09qmNnz55lAoGAAWAnTpxQa1dcXMwAMBsbG1ZYWKgRZ01Njdp5r1q1igFgS5cu1ajb1dXFRCIRA8BOnTql9by1CQsLYwBYSUmJ1uPKa2XoR4JMJlPVk8lkBt+3sbGRubi4MAAsJydHa51XX32VAWB79uwx2B8h5oASJ0KeYMpkSNerb9KhrLtgwQKtfW3fvp0BYC+//LLW43fv3mXOzs7MysqK3bp1S1U+btw4BoBt375do01HR4cqUTBV4pSens4AsJSUFK3trly5wvh8PnNycmIKhUJVrkycnn/+ebVypbfeeosBYB9++KFaeVBQEAPANmzYoPX9HnT16lXG5/OZg4MDa2trUztWUFDAALDf/e53nPpSUiZ1ly5d0nq8b+LE9WUocbp9+zabMGECA8DS0tJ01svIyGAA2DvvvGPUOREyUOhRHSFE53IE48eP1yiLjY3V2kdJSQkAYN68eVqPC4VCBAcH49ChQzh58iReeuklXL16FRcvXgQAxMfHa7SxsbHB3LlzkZ2dzflcDDEU59ixYyEWi1FbW4v6+nqNx2Uvv/yy1vk6fn5+AICrV6+qylpaWvDzzz/DwsKC86RsV1dXxMbGoqCgAHv27MFbb72lOqacC5SSksKpLwCQy+WQy+UAwOnRnr6lAdra2vD1118b7KOrqwuzZ89GbW0t5s+fj48++khnXWVM165dM9gvIeaAEidCiFHLEXh5eWktv3TpEgAgISEBCQkJevu4fv06AODKlSsAgNGjR0MoFGqt6+3tzSkurpRxTp482WDd69evayROHh4eWuva29sDAO7du6cqu3z5MgDAxcVFbV6XIUuXLkVBQQG2bt2qSpzOnDmD77//HmPGjNGZvGrT2tqq+rednZ3B+nl5eTqPNTQ0GEycGGNISkpCeXk5wsPDVZP7dVFet9u3bxuMjRBzQIkTIcQotra2WssVCgUAIDIyEmPGjNHbh6enp8nj0hWPrvLY2FgIBAK9fWi7Q6NtkrOpTZo0CRKJBFVVVaoERHm36Y033sCwYcM49zVixAjVv+/evatKVPrLypUrUVBQgAkTJqCoqMjg+kzKxG7kyJH9GhchpkKJEyHEJNzd3VFXV4eFCxdyviMyduxYAMCNGzfQ1tam9a6Trq09lMnD3bt3tR5X/om/tjjr6+uRnp6O4OBgTnE+LOXdqebmZrS2thp91yk+Ph45OTkIDAzEv/71L1hZWak9uuNi+PDhEAgEkMvluHnzZr8mTtu2bcO6devg6uqKw4cPqyVtuiiXVDCUbBNiLmgdJ0KISfz+978HAHz55Zec27i5ucHHxwcAkJ+fr3G8s7MTX331lda2yqRLKpVqPa6cy2SKOB+WSCRCYGAgFAoFdu3aZVTbuXPnwsXFBUVFRVizZg3kcjmio6Ph6upqdBzPPfccgPvLRfSXgwcPYunSpbCzs0NJSYnOR5oPOnfuHADg+eef77fYCDElSpwIISbxxhtvwNPTE1999RXS09O13glqaWnBZ599pla2bNkyAPcXUayrq1OV9/b2Yvny5WhqatL6fhEREbCwsEBpaSnKy8tV5YwxZGdn65yLk5aWhhEjRmDjxo3YsGEDurq6NOrIZDLs3bvX4DlzkZmZCQBYtWqV1phqa2u1Jn98Ph+LFy9GT08P1q9fD8C4SeF9TZ06FQDwww8/PFR7Q6qqqhAXFwcLCwvs27cPQUFBnNsqY4qIiOiX2AgxNUqcCCEmIRAIUFJSAi8vL6xbtw4eHh4IDw/HH//4R0RHR8Pf3x+urq4aG8wuWbIEr7zyCpqbmxEYGIjIyEjExcVBLBZj586dWLx4sdb3c3d3R2pqKhQKBaZNm4apU6ciJiYGYrEYy5cvx8qVK7W2c3NzQ3FxMUaOHInly5fD3d0d06ZNQ3x8PF555RWMGzcOPj4+yMnJMcl1iY6Oxpo1a3Dv3j3ExsbCz88P8+fPR1RUFPz9/eHv74/Kykqtbd98803VHKFnnnkGU6ZMeagYZs+eDQA4cuTIQ7U3JCMjA+3t7XBzc0N+fj6SkpK0vh5UXV2NmzdvQiKR0OKXZNCgOU6EEJPx9/fHmTNn8Mknn+DAgQM4c+YMfvjhB4wePRpubm5Yvnw5oqOj1dpYWFhg//79yM7Oxueff46ysjIIhUKEhYXhwIEDqK6uxvbt27W+36ZNm+Dh4YGdO3fixIkTEAqFCA0NxZdffok7d+5g7dq1WttNmTIFNTU1yMnJQUlJCU6ePInOzk44OzvDw8MD8fHxiImJMdl1ee+99xAREYHs7GwcP34c+/fvh52dHdzd3bFixQqdd1ucnZ0RFBSEyspKLFmy5KHf/9lnn8ULL7yAEydOQCqVqpZOMJXe3l4A9+/UyWQynfUe/Is95f8f5dwIedx4jDE20EEQQogueXl5SE5ORmJiot4/lR+KLly4gPHjx8PBwQFXr17F8OHDH7qvffv2Yc6cOXj33XexYcMGE0b5cO7duwd3d3fw+XzIZDKDf31HiLmgR3WEEGKm/vKXv4AxhsWLFz9S0gTcX34hNDQUO3bsMIvFJrds2YIbN27gH//4ByVNZFChxIkQQszIwYMHsXDhQkyaNAmFhYUQiURYsWKFSfresmULOjo68Ne//tUk/T2s1tZWrF27FhKJBK+//vqAxkKIsWiOEyGEmJHTp09j165dsLOzw/Tp07Fx40ZO6yFx8eyzz6rmIw0kBwcH1fpNhAw2NMeJEEIIIYQjelRHCCGEEMIRJU6EEEIIIRxR4kQIIYQQwhElToQQQgghHFHiRAghhBDCESVOhBBCCCEcUeJECCGEEMIRJU6EEEIIIRxR4kQIIYQQwtH/AdfmYgIM7O74AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a power spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized power spectrum.\n", + "## 1. We can linearly re-bin a power spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_ps.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_ps = Powerspectrum.rebin(avg_ps, 0.25, method='mean')\n", + "lin_rb_ps = avg_ps.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_ps.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a power spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_ps, log_rb_freq, binning = Powerspectrum.rebin_log(avg_ps, f=0.02)\n", + "log_rb_ps = ps.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Like `rebin`, `rebin_log` returns a `Powerspectrum` or `AveragedPowerspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_ps))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectra of normal-distributed light curves\n", + "\n", + "Starting with Stingray 0.3, we can also get Leahy-normalized power spectra of normally-distributed light curves.\n", + "Let us calculate such a light curve by subtracting the noise level and normalizing\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURfrHv7OJtOQMEg0ICCrBnFAQI4qYAAMm9MzCGbg7sycmTHjGUzGAEVFMiPAzoaeCBEEkg4ASJIcl7e78/mh7p6amqruqunqmZ/b9PA8PM7M9NdXdVdX1rTdULB6Px0EQBEEQBEEQBEFkPXmZrgBBEARBEARBEARhBxJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCAWZrkC2Ul5ejj/++AM1a9ZELBbLdHUIgiAIgiAIgsgQ8XgcW7duRbNmzZCXl1kbGgk8Q/744w+0aNEi09UgCIIgCIIgCCIirFixAnvttVdG60ACz5CaNWsCcG5irVq1MlwbgiAIgiAIgiAyxZYtW9CiRYsKjZBJSOAZ4rpl1qpViwQeQRAEQRAEQRCRCN2iJCsEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AMXgEQRAEQRCVkLKyMuzZsyfT1SCIrKCwsBD5+fmZroYSJPAIgiAIgiAqEfF4HKtXr8amTZsyXRWCyCrq1KmDJk2aRCKRihck8AiCIAiCICoRrrhr1KgRqlevHvnJKkFkmng8jpKSEqxduxYA0LRp0wzXyBsSeARBEARBEJWEsrKyCnFXv379TFeHILKGatWqAQDWrl2LRo0aRdpdk5KsEARBEARBVBLcmLvq1atnuCYEkX24/Sbqsask8AiCIAiCICoZ5JZJEPpkS78hgUcQBEEQBEHkPMuWLUMsFsPMmTOVvzNq1CjUqVMn7fVo3bo1Hn/88Yr3sVgM77//vvJvfPnll4jFYpRIp5JCAo8gCIIgCILIClasWIFLL70UzZo1Q1FREVq1aoUbbrgB69ev9/1uixYtsGrVKhxwwAHKv3feeedhwYIFQapshVWrVuHkk0+2WuZdd92Fgw46yGqZRDQggUcQBEEQBEFEniVLlqBbt25YuHAh3njjDSxatAjPPvssJk+ejMMPPxwbNmyQfnf37t3Iz89HkyZNUFCgnmOwWrVqaNSokY3qB6JJkyaoUqVKpqthhXg8jtLS0kxXI6chgUcQBEEQBEFEnmuuuQZFRUWYOHEijj32WLRs2RInn3wyJk2ahN9//x3//Oc/K45t3bo17r33Xlx00UWoVasWBg8eLHSNHD9+PPbdd19UrVoVPXr0wCuvvJLk2si7aLpWr9deew2tW7dG7dq1cf7552Pr1q0Vx0yYMAFHHXUU6tSpg/r16+O0007D4sWLA50776L53Xff4aCDDkLVqlXRrVs3vP/++0K3z59++gndunVD9erVccQRR2D+/PkV53X33Xdj1qxZiMViiMViGDVqlPT3X3rpJXTs2BFVqlRB06ZNce211wIQu5tu2rQJsVgMX375JYCEu+inn36Krl27okqVKnjppZcQi8Uwb968pN957LHHsPfee1e8nzNnDk4++WQUFxejcePGuPDCC7Fu3Tr9C1jJIIFHEARBEARBRJoNGzbgs88+w9VXX12Rrt6lSZMmGDhwIN566y3E4/GKzx955BEceOCBmDFjBm6//faUMpcuXYqzzz4bZ555JmbNmoUrr7wySSTKWLx4Md5//3189NFH+Oijj/DVV1/hgQceqPj79u3bMWTIEEybNg2TJ09GXl4e+vbti/Ly8gBXIMGWLVtw+umno1OnTpg+fTruvfde3HrrrcJj//nPf2LEiBGYNm0aCgoKcOmllwJwXE+HDh2Kjh07YtWqVVi1ahXOO+88YRnPPPMMrrnmGgwePBizZ8/G+PHjsc8++2jX+7bbbsMDDzyAX3/9FWeffTa6deuG0aNHJx0zevRoDBgwAIAjFI8//ngcfPDBmDZtGiZMmIA1a9bg3HPP1f7tygbtg0cQBEEQBFHJ6dYNWL06/b/bpAkwbZr/cQsXLkQ8Hkf79u2Ff2/fvj02btyIP//8s8Kl8vjjj8fQoUMrjlm2bFnSd5577jm0a9cODz/8MACgXbt2mDNnDv7973971qW8vByjRo1CzZo1AQAXXnghJk+eXPG9fv36JR3/0ksvoWHDhpg7d65W/J+MMWPGIBaL4YUXXkDVqlXRoUMH/P7777jiiitSjv33v/+NY489FoAjsE499VTs3LkT1apVQ3FxMQoKCtCkSRPP37vvvvswdOhQ3HDDDRWfde/eXbve99xzD3r16lXxfuDAgXjqqadw7733AgAWLFiAn376Ca+//joA4KmnnsLBBx+M+++/v+I7L730Elq0aIEFCxZgv/32065DZYEEHkEQBEEQRCVn9Wrg998zXQt/WAudH926dfP8+/z581OEyiGHHOJbbuvWrSvEHQA0bdoUa9eurXi/cOFC3HHHHfjhhx+wbt26Csvd8uXLrQi8+fPno3PnzqhatapvvTt37pxUT8DZqLtly5ZKv7V27Vr88ccfOOGEEwLU2IG/H+effz7+/ve/4/vvv8dhhx2G0aNHo0uXLth///0BALNmzcIXX3yB4uLilLIWL15MAs8DEngEQRAEQRCVHB8jTsZ/d5999kEsFsOvv/6Kvn37pvz9119/Rd26ddGwYcOKz2rUqGGrmkkUFhYmvY/FYknul6effjpatWqFF154Ac2aNUN5eTkOOOAA7N69O5T6eMHW1d3DTcdVlHeH5cnLc6K9WOEt2wScvx9NmjTB8ccfjzFjxuCwww7DmDFj8Le//a3i79u2bcPpp5+OBx98MKUsV6wSYkjgEQRBEARBVHJU3CQzSf369dGrVy88/fTTuOmmm5KEx+rVqzF69GhcdNFFWhtRt2vXDp988knSZ1OnTg1Uz/Xr12P+/Pl44YUXcPTRRwMApkyZEqhMnnbt2uH111/Hrl27KjJrmtS7qKgIZWVlnsfUrFkTrVu3xuTJk9GjR4+Uv7uCetWqVTj44IMBQGufwYEDB+KWW25B//79sWTJEpx//vkVf+vSpQvGjh2L1q1ba2U+JSjJCkEQBEEQBJEFPPXUU9i1axd69+6Nr7/+GitWrMCECRPQq1cvNG/e3Dd2jufKK6/EvHnzcOutt2LBggV4++23KzJJ6ghFlrp166J+/fp4/vnnsWjRIvzf//0fhgwZYlSWjAEDBqC8vByDBw/Gr7/+is8++wyPPPIIAL16t27dGkuXLsXMmTOxbt067Nq1S3jcXXfdhREjRuDJJ5/EwoULMX36dIwcORKAY+E77LDDKpKnfPXVV/jXv/6lXIezzjoLW7duxd/+9jf06NEDzZo1q/jbNddcgw0bNqB///6YOnUqFi9ejM8++wyXXHKJrzCt7JDAIwiCIAiCICLPvvvui2nTpqFt27Y499xzsffee2Pw4MHo0aMH/ve//6FevXpa5bVp0wbvvvsu3nvvPXTu3BnPPPNMRRZN0z3n8vLy8Oabb+Knn37CAQccgJtuuqkiiYstatWqhQ8//BAzZ87EQQcdhH/+85+44447ACApLs+Pfv364aSTTkKPHj3QsGFDvPHGG8LjLr74Yjz++ON4+umn0bFjR5x22mlYuHBhxd9feukllJaWomvXrrjxxhtx3333KdehZs2aOP300zFr1iwMHDgw6W/NmjXDt99+i7KyMpx44ono1KkTbrzxRtSpU6fCNZQQE4vrRKsSFWzZsgW1a9fG5s2bUatWrUxXhyAIgiAIwpedO3di6dKlaNOmjZYYqCz8+9//xrPPPosVK1ZkuipajB49Gpdccgk2b97sGzdHmOPVf6KkDcihlSAIgiAIgqiUPP300+jevTvq16+Pb7/9Fg8//HDFJt5R5tVXX0Xbtm3RvHlzzJo1C7feeivOPfdcEncEABJ4BEEQBEEQRCVl4cKFuO+++7Bhwwa0bNkSQ4cOxbBhwzJdLV9Wr16NO+64A6tXr0bTpk1xzjnnaMcgErkLuWgaEiUzLEEQBEEQhArkokkQ5mSLiyZFKBIEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAh8eWXXyIWi2HTpk0AgFGjRqFOnTqh/uagQYNw5plnSv/O1+Guu+7CQQcdpPUbxx13HG688Uaj+hHhQgKPIAiCIAiCiDyDBg1CLBbDAw88kPT5+++/j1gslqFa6XPeeedhwYIFma5GEn//+98xefJk6+XGYjG8//771sslvCGBRxAEQRAEQWQFVatWxYMPPoiNGzdaLXf37t1Wy/OiWrVqaNSoUdp+T4Xi4mLUr18/09WwRjrvZxQhgUcQBEEQBEFkBT179kSTJk0wfPhwz+PGjh2Ljh07okqVKmjdujVGjBiR9PfWrVvj3nvvxUUXXYRatWph8ODBFW6LH330Edq1a4fq1avj7LPPRklJCV555RW0bt0adevWxfXXX4+ysrKKsl577TV069YNNWvWRJMmTTBgwACsXbtWWjfePbJ169aIxWIp/1xWrFiBc889F3Xq1EG9evVwxhlnYNmyZRV/Lysrw5AhQ1CnTh3Ur18ft9xyC+LxuOIVdeBdNEtLS3H99ddXlHnrrbfi4osvTnH7LC8vxy233IJ69eqhSZMmuOuuu5LOCwD69u2LWCxW8V7EypUr0b9/f9SrVw81atRAt27d8MMPPwAQu5veeOONOO644yreH3fccbj22mtx4403okGDBujduzcGDBiA8847L+l7e/bsQYMGDfDqq69W1H/48OFo06YNqlWrhgMPPBDvvvuu0jWLMiTwCIIgCIIgiKwgPz8f999/P0aOHImVK1cKj/npp59w7rnn4vzzz8fs2bNx11134fbbb8eoUaOSjnvkkUdw4IEHYsaMGbj99tsBACUlJXjyySfx5ptvYsKECfjyyy/Rt29ffPLJJ/jkk0/w2muv4bnnnksSAXv27MG9996LWbNm4f3338eyZcswaNAg5XOaOnUqVq1ahVWrVmHlypU47LDDcPTRR1eU3bt3b9SsWRPffPMNvv32WxQXF+Okk06qsFKNGDECo0aNwksvvYQpU6Zgw4YNGDdunMZVTeXBBx/E6NGj8fLLL+Pbb7/Fli1bhK6Wr7zyCmrUqIEffvgBDz30EO655x58/vnnFecFAC+//DJWrVpV8Z5n27ZtOPbYY/H7779j/PjxmDVrFm655RaUl5dr1fmVV15BUVERvv32Wzz77LMYOHAgPvzwQ2zbtq3imM8++wwlJSXo27cvAGD48OF49dVX8eyzz+KXX37BTTfdhAsuuABfffWV1m9HjYJMV4AgCIIgCILIMN26AatXp/93mzQBpk3T+krfvn1x0EEH4c4778SLL76Y8vdHH30UJ5xwQoVo22+//TB37lw8/PDDScLr+OOPx9ChQyvef/PNN9izZw+eeeYZ7L333gCAs88+G6+99hrWrFmD4uJidOjQAT169MAXX3xRYR269NJLK8po27YtnnzySXTv3h3btm1DcXGx7/k0bNiw4vUNN9yQJIbeeustlJeX47///W+FVe/ll19GnTp18OWXX+LEE0/E448/jmHDhuGss84CADz77LP47LPPlK6ljJEjR2LYsGEVQuipp57CJ598knJc586dceeddwIA9t13Xzz11FOYPHkyevXqVXFederUQZMmTaS/NWbMGPz555+YOnUq6tWrBwDYZ599tOu877774qGHHqp4v/fee6NGjRoYN24cLrzwworf6tOnD2rWrIldu3bh/vvvx6RJk3D44YcDcO7flClT8Nxzz+HYY4/VrkNUiLzA2717N5599lm8/fbbmDt3LkpKStCgQQN06tQJgwYNSjG9AsCkSZPw6KOP4scff8T27dvRqlUr9OvXD8OGDVPqaARBEARBEJWK1auB33/PdC2UefDBB3H88cfj73//e8rffv31V5xxxhlJnx155JF4/PHHUVZWhvz8fABAt27dUr5bvXr1CnEHAI0bN0br1q2T5o+NGzdOcsH86aefcNddd2HWrFnYuHFjheVp+fLl6NChg/I5Pf/883jxxRfx3XffVYijWbNmYdGiRahZs2bSsTt37sTixYuxefNmrFq1CoceemjF3woKCtCtWzdtN02XzZs3Y82aNTjkkEMqPsvPz0fXrl1TrGqdO3dOet+0aVNP91QRM2fOxMEHH1wh7kzp2rVr0vuCggKce+65GD16NC688EJs374dH3zwAd58800AwKJFi1BSUoJevXolfW/37t04+OCDA9Ul00Ra4K1cuRK9e/fG3Llz0aBBAxx55JGoUaMGVqxYga+//ho1atRIEXiPPfYYhgwZglgshqOPPhqNGzfGN998g/vvvx9jx47FlClT0KBBgwydEUEQBEEQRATxsLBE8XePOeYY9O7dG8OGDdNyh2SpUaNGymeFhYVJ72OxmPAzV+hs374dvXv3Ru/evTF69Gg0bNgQy5cvR+/evbUSfXzxxRe47rrr8MYbbySJpm3btqFr164YPXp0yndYy1+m8Lo2qlSrVs3z73l5eSlidc+ePSnHie7nwIEDceyxx2Lt2rX4/PPPUa1aNZx00kkAUOG6+fHHH6N58+ZJ36tSpYrWOUSNyAq8HTt2oFevXpg3bx7uuusu/OMf/0hqRCUlJSkpZmfMmIGhQ4ciPz8fH374IU4++eSKY/v06YPJkyfjqquuyongSYIgCIIgCGtouklGgQceeAAHHXQQ2rVrl/R5+/bt8e233yZ99u2332K//farsN7ZYt68eVi/fj0eeOABtGjRAgAwTfNaLlq0CGeffTb+8Y9/VLhZunTp0gVvvfUWGjVqhFq1agm/37RpU/zwww845phjADgJUn766Sd06dLF4IyA2rVro3Hjxpg6dWpFmWVlZZg+fbr2XnmFhYVJCWlEdO7cGf/973+xYcMGoRWvYcOGmDNnTtJnM2fOTBGXIo444gi0aNECb731Fj799FOcc845Fd/r0KEDqlSpguXLl2e1O6aIyCZZGT58OObNm4fBgwfjzjvvTLmJ1atXT2lkw4cPRzwexyWXXFIh7txjX3zxReTl5WHs2LGYN29eOk6BIAiCIAiCCIlOnTph4MCBePLJJ5M+Hzp0KCZPnox7770XCxYswCuvvIKnnnpK6M4ZlJYtW6KoqAgjR47EkiVLMH78eNx7773K39+xYwdOP/10HHzwwRg8eDBWr15d8Q9wLFANGjTAGWecgW+++QZLly7Fl19+ieuvv74iycwNN9yABx54AO+//z7mzZuHq6++umJTdVOuu+46DB8+HB988AHmz5+PG264ARs3btTeb7B169aYPHkyVq9eLd3aon///mjSpAnOPPNMfPvtt1iyZAnGjh2L//3vfwCcWMlp06bh1VdfxcKFC3HnnXemCD4vBgwYgGeffRaff/45Bg4cWPF5zZo18fe//x033XQTXnnlFSxevBjTp0/HyJEj8corr2idZ9SIpMBzA1wB4Oabb1b6zu7du/Hxxx8DcG4kT6tWrXDkkUcCQODMQgRBEARBEETmueeee1JcArt06YK3334bb775Jg444ADccccduOeee4xdOb1o2LAhRo0ahXfeeQcdOnTAAw88gEceeUT5+2vWrMG8efMwefJkNGvWDE2bNq34BzhGiq+//hotW7bEWWedhfbt2+Oyyy7Dzp07Kyx6Q4cOxYUXXoiLL74Yhx9+OGrWrFmRHMWUW2+9Ff3798dFF12Eww8/HMXFxejduzeqVq2qVc6IESPw+eefo0WLFtK4tqKiIkycOBGNGjXCKaecgk6dOuGBBx6osLb27t0bt99+O2655RZ0794dW7duxUUXXaRch4EDB2Lu3Llo3rx5hRZwuffee3H77bdj+PDhaN++PU466SR8/PHHaNOmjdZ5Ro1Y3DQCM0R++OEHHHbYYWjWrBl+//13zJ49G++99x7++OMP1K1bF0cffTROPvlk5OUl9OmcOXPQqVMnAMCWLVtSglEBYMiQIXjsscdwzjnn4O233w5Uxy1btqB27drYvHmz1GROEARBEAQRJXbu3ImlS5eiTZs22pN1ovJSXl6O9u3b49xzz9WyUOYaXv0nStogkjF4P//8MwBgr732wm233YaHHnooKbjywQcfxMEHH4z3338fLVu2BAAsXboUgJOKVSTuAFT4RrvHyti+fbtvHVWOIQiCIAiCIIhs47fffsPEiRNx7LHHYteuXXjqqaewdOlSoZccET0i6aK5fv16AE7SlAcffBBXX3015s+fj82bN+Pzzz/HfvvthxkzZuDUU0+tyKKzdetWAOIMOi5uitstW7Z4/n5xcbHvv2bNmtk4VYIgCIIgCIKIFHl5eRg1ahS6d++OI488ErNnz8akSZPQvn37TFeNUCCSFjzXWrdnzx70798fTz31VMXfevbsic8//xzt2rXDnDlz8Oabb1ZsXkgQBEEQBEEQRDBatGiRkomUyB4iacFjXSyvvPLKlL+3bNkSp556KgBnU3P2O16uk+5+F35+sdu2bfP998cff+idFEEQBEEQBEEQRMhE0oLXtm1b4WvRMatWrQLgpGEFgE2bNmHr1q3COLwVK1YkHSvDy83TxW9PD4IgCIIgCIIgiHQTSQtely5dKvbZWLdunfAY93M3rq5du3aoXr06APkGk+7nphs/EgRBEARB5AIRTKJOEJEnW/pNJAVekyZNcNRRRwFIuGCy7NmzB1999RUA4JBDDgHg7KHhum2OGTMm5Tu//fYbvvvuOwAIvDcIQRAEQRBENlJYWAgAKCkpyXBNCCL7cPuN24+iSiT3wQOAyZMno2fPnqhbty4++eQTHHbYYQCA0tJSDBkyBCNHjkTNmjWxcOFCNG7cGAAwffp0dOvWDXl5efjoo49w0kknAXBuRp8+fTB58mT069cP7777buD6RWmvC4IgCIIgCFVWrVqFTZs2oVGjRqhevXqF1xRBEGLi8ThKSkqwdu1a1KlTp2IjepYoaYPICjwAuO+++3D77bejoKAAhxxyCJo0aYLp06dj2bJlqFatGt55550Kq53LY489hiFDhiAWi+HYY49Fo0aN8M0332DVqlVo164dpkyZggYNGgSuW5RuIkEQBEEQhCrxeByrV6/Gpk2bMl0Vgsgq6tSpgyZNmggXRaKkDSIt8ABg4sSJePzxx/HDDz9g69ataNKkCU444QTceuut2H///YXfmTRpEkaMGIEff/wR27dvR8uWLXH22Wdj2LBh0k3QdYnSTSQIgiAIgtClrKysYj9hgiC8KSwsRH5+vvTvUdIGkRd4USVKN5EgCIIgCIIgiMwRJW0QySQrBEEQBEEQBEEQhD4k8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AAo8gCIIgCIIgCCJHIIFHEARBEARBEASRI5DAIwiCIAiCIAiCyBFI4BEEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCCTwCIIgCIIgCIIgcgQSeARBEARBEARBEDkCCTyCIAiCIAiCIIgcgQQeQRAEQRAEQRBEjkACjyAIgiAIgiAIIkcggUcQBEEQBEEQBJEjkMAjCIIgCIIgCILIEUjgEQRBEARBEARB5Agk8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQRADmzAE2b850LQgivSxcCKxdm+laZIb584F16zJdC4LIXrZtA6ZNA+LxTNckdyGBRxAEYchrrwGdOgHt2wO7d2e6NgSRHr78EthvP6B168ondCZMAPbfH2jbFti0KdO1IYjso7wcOO44oHt34K67Ml2b3IUEHkEQhCEXXeT8v2oV8Omnma0LQaSLM85w/t+xA3jwwczWJd2cfLLz/9atwPPPZ7YuBJGNzJ8P/PST8/qeezJbl1yGBB5BEIQFyNWEqCxs3Zp4XZkt19TnCUKfn3/OdA0qByTwCIIgLFBYmOkaEASRTqpWzXQNCCL7mD070zWoHJDAIwiCsEBBQaZrQBDpJxbLdA0yBwk8gtCHteA1bJi5euQ6JPAIgiAsQBY8orJArokOJPAIQp9ZsxKvW7XKXD1yHRJ4BEFUGh56CBg4EPj9d/tlkwWPqIyQBY8gCFU2bgSWL0+8p8Wi8KApCUEQlYJp04Bbb3Ver10LfP653fLzaLmMICoVVapkugYEkV3Mm5f8vqwsM/WoDNCUhCCISsGMGYnXkybZL59WIgmicpGfn+kaEER2sWtX8vvy8szUozJAAo8gCMICtBJJEJULWtQhCD14QUfPzfAggUcQRKUg7MkYrUQSlZHKHINHfZ4g9OD7DPWh8CCBRxAEYQFaiSSIygVNTglCD7LgpQ8SeARBVArCtjTQZI+ojFRmC16mXDTjceDXX2lyTGQfZMFLHyTwCIIgLECTLYLIbXhBl6nJ6dChQIcOwHnnZeb3CcIUsuClDxJ4BEEQFqCVSILIbXbvTn6fqT7/2GPO/2PHZub3CcIUsuClDxJ4BEEQBvCr+bQSSRC5zY4dye8piyZB6EEWvPRBAo8gCMKAPXuS39NKJFEZqUwxeCUlye+pzxOEHmTBSx8k8AiCIAzgN2yllUiCyG14C14UJqdkRSSyCbLgpQ8SeARBEAZEJR6HIDJJZbbgRUFc0bhDZBNkwUsfkRV4gwYNQiwW8/y3c+dO4Xd/+uknnHPOOWjcuDGqVq2KNm3a4LrrrsPatWvTfBYEQeQqZMEjiMrBCy8Al18OLFqU/HkmJqcU+0tkM2FZ8HbsAG68EbjjDhKNLgWZroAfRx55JPbZZx/h3/Lz81M+e/fdd9G/f3+Ulpaie/fuaNOmDaZNm4annnoK77zzDqZMmSItjyAIQhVe4NFDhSByj0WLgMGDndcvvZT8t0z0ed5zoLQUKCpKfz0IwoSwLHhvvw088YTz+vjjgeOOs1NuNhN5gXf55Zdj0KBBSsf+8ccfuPjii1FaWornnnsOg/8alcvKyjBo0CC8/vrrGDBgAH744QfEKpNfCUEQ1t2pyIJHELnPnDmJ1/wYkgkXTd5xqbQ0/XUgCFPCsuAtX554vXq1nTKznci6aJrw+OOPo6SkBD179qwQd4Bj6XvmmWdQu3ZtTJ06FRMnTsxgLQmCyAXIgkcQuR+Dl+cxS8pEn+cFHi0sEdlEWBa8bdsSr6lPOOSUwBs3bhwAYMCAASl/Ky4uRp8+fQAA7733XlrrRRBE5rE9EeVdpeihQhC5h9e4QRY8gtAjLAseK/CoTzhE3kXziy++wOzZs7F161bUr18fhxxyCE455RRUqVIl6bitW7di0V8R0N26dROW1a1bN7z22muYMWNG6PUmCCK3IQseQZAFL92QwCOyGbLgpY/IC7xXX3015bOmTZvipZdewkknnVTx2bJlyypet2zZUlhWixYtAABLly71/M3t27f71kvlGIIgcheKwSPSQXk58McfwF57ZbomlRMvARsFgUfjDpFNpMOCR33CIbIumgceeCCeeOIJzJkzB1u2bMGaNWswceJEHHHEEVi1ahX69OmDL7/8suL4rVu3VryuUaOGsMzi4mIAwJYtWzx/u7i42Pdfs2bNgp8kQRBpI+wkK2TBI8Lg5JOBFi2Axx7LdE0qJ14WPHLRJAg90mHBoz7hEFmBd9NNN+H6669Hx44dUbNmTTRq1Ai9evXClClTcMYZZ2DPnj248cYbM11NgiCyBMqiSWQb27YBbk6wIUMyW5fKStQteDSZJbIJvs/E43aezWTBSyWyAk9GLBbD3XffDQCYNWsWVqxYAQCoWbNmxTEy98ltf7WAWrVqef7Gtm3bfP/98ccfNk6HIIg0YXvQ55OskAWPsE0mLES6UAxeeiEXTSKbEfUZG/2ILHipRD4GT0T79u0rXq9cuRItWrRAq1atKj5bvnw5OnXqlPI9Vwy2bt3as3yZiydLGY2qBJFV2O6yZMEjwobaVLQhF02C0EMk5srKgPz8YOWydh0aNx2yzoIHAOvXr6947VruatWqhX322QcAMG3aNOH33M+7dOkScg0JgogatlfbKQaPCBuavGcer8liFCx41EaIbCIdFjwSeA5ZKfDefPNNAI6oa9euXcXnffv2BQCMGTMm5Tvbtm3Dhx9+CAA466yz0lBLgiCiBFnwiGwjG9pUri9sRE3g0bhDZDMyC15QyEUzlUgKvJkzZ2L8+PEo5e5SeXk5XnzxRfzjH/8AAFx//fUoLCys+PuNN96I6tWrY9KkSXjhhRcqPi8rK8PVV1+NTZs2oXv37jjxxBPTcyIEQUQGisEjsg2+zUYxJi/X273XZJFcNAlCjzAseOXl5KIpIpIxeMuWLUPfvn1Rt25ddOnSBY0bN8amTZswZ84cLF++HADQv39/3HnnnUnfa9asGUaNGoX+/ftj8ODBePHFF9G6dWtMnToVS5YsQePGjTFmzBjEcj0qnCCIFMJ20aSHCmEbvk3t2AFUr56ZusjI9XYfNQseCTwimwnDgldSYre8XCGSFrwDDzwQN954Izp27Ih58+bhvffew+TJkwEAZ599Nj7++GOMGTMGBQWp+vScc87BDz/8gLPOOgtLlizBuHHjUFZWhmuuuQazZs2qiNMjCKJyEbaLZq5bMoj0w7dZ1g0pKuR6u/caN6JgwaPJLJFNhGHB48dFWvRwiKQFr02bNngswK6uXbt2xdixYy3WiCCIbIdi8IhsQyTwGjXKTF1kVGaBRxY8gtAjDAseL/DoWewQSQseQRCEbSiLJpFt8JN3suClHxJ4BGEPsuClDxJ4BEFUCsJOskKrhoRtyEUz85CLJkHYgyx46YMEHkEQlYLKZMGLx4H584GlSzNdEyIIJPAyj5c1gCx43mzYkPvtg9AjDAsem0ETsCPw4nGA2XI7KyGBRxBEpaCyxODF48CJJwL77w+0bQtcf32ma0SYkg0CLyrtPizIRdOMd98FGjcGjjoqmtt7EJkhHRY8G32id28n3vnll4OXlSlI4BEEUSmoLFk0//wTmDQp8f7NNzNXFyIY2SDwotLuw4JcNM045xxnov2//wHTpmW6NkRUSEcMXtA+sXIl8PnnTr0uvTRYWZmEBB5BEJWCyrIP3tatye/37MlMPYjg8G2Kd0WKApVZ4JEFT40dOzJdAyIqZIMFL1e2yiaBRxBEpSDsJCtRmeiGEY9AZAbKopl5oi7wqH8T2UQ2WPDyckQZ5chpEARBeFNZYvAoo1juQC6amSdqLpr8uJMNFjyCcMmGLJq58swkgUcQRKWgsmTRJIGXO5DAyzyURZMg7JEN++DlyjOTBJ4lpk8HhgwBZs/OdE0SlJcDjz8OPPJINB8CZWVO3QYMAP75T2DTpkzXiMhlomrBW7MGGDYM+Pjj4HUCSOBlkvXrnbHsvffslBe2wPv6a+Dmm4Fly8zLyPX2FXUXzQcfBB57LPeFNpEbkAUvfRRkugK5Qteuzv9ffumIvSjw5pvATTc5r2vVAgYPzmx9eD75xJlcuBQXOxNdggiDqGbRvOyyhLhbuxZo2DBYvUjgZY7rrwfGjHFeL18OtGgRrLwwBV5pKXDssc7rTz8F5swxKyfXhUXUXDR5gbdggbO43KQJ0L9/+uujQq4krSCCk4598Gxb8MrLszMuLwurHD3WrUu8njEjc/Xg+e9/E6//85/M1UMGv2ocZBWZIPywPRG1leyAtdz98ot5fVx4ERCP0z5U6cIVdwAwdWrw8sIUeGxmwyDtrjILvChY8FxefDG99SAIE7LBgsfXsaQkWHmZggSeBWbNynQNxLCTuiiuoPHp26PoRkrkDvygH1T08IO+jcmejTJEIoCseNkJZdHMPFG34LlE2cKQ622EUCcbsmhmQ+yzChEeErKHbBB4URz8+TTztF8XESb8QyToQ4Df28mGiCKBR7CEuQ+erTaR65P3bLHgRfEZ70KLt4RLNuyDRwKPqGDmzEzXQEy2WfBI4BFhIvKrD0IYFjwbk26RCCCBl52EOdEggadG1LNouuTnp7ceOpDAI1xEVu+oW/BsLqylExJ4FsgGC55tSkqCd0oSeES6KClJHbSDPATKy4PH4MXj8k3JgzxQyIIXDWxMarNB4OV62wrLRbOkRP/78Xjls+DxY2G2xkMRDtlgwePrSBa8SsquXcDcucmfRWVFMywXzSlTnEx/XbsG60gUg0ekg4kTgQYNnKyyLEH6qWiSpVvemWcC9eqllnHBBUCdOuZJE0jgRQMbE9FsEHhRed6FRRgumlOmAI0b6z9DS0vlvxlFLx0X02f7m286Y2Tfvs77M88E6tYF3njDWtWINEMxeOmDBF5A1qxJHbyiYokKy0Xz+OOdycvMmcCHH5qXQzF4RDro3Ts1Xg4I9hAIWt7SpcD48al9YNs2YPRoZ0y5/HKzuokeRrk+CY8iYQg8m9YL0/bPt6Vcb1thCLyePZ1+OmMG8O676t/jt2ZhyUULXv/+zhj5/vvOFlQffOC8HzDAZu2IdJINWTRJ4BEAxA2Jn7RlirBcNFkhJprompQjek8QYRLkISCaaOtM9mQTdRsTeLLgRYMgY6NLmIuHppNuEngJTJ+xrFDbuFH9e17XOhcFHsuKFcHLIDKPbQve7t32vcFI4BEAxA0zKgKPrVtY7hs1aph/lwQekUmCPFSCWvBkE0Mbwdwk8KJBGBa80lJ7C3embcJ2sqKoE6Usml51yXWBt3Vr8DKIzGPbghdGUjESeASAaFvwWMISeEFEGX+dKAaPSCeZtODJjrVh9SGBFw1s3EvRfct0cpTKZsGLUhbNymzB27IleBlE5rFtwRM97yjJikOEh4TsIMoCL4wkK/zqcZBVarLgEZkkkzF4sgcauWhmL/z4FYYFT/Q7Nss2+V6uC7wobXRemS14JPByA9sWvDCed7liwSvIdAWyHVsCb8IEYNw4oFYt4G9/A9q2DV63MJKsbN6c/J5i8IiwiceBl15y4lauvNLefk9BJqZBLXhhumgGdVmJx4FXXnFcoq66CigsDF4nwLlm//kPsGAB0KmTM87ZKtsG27Y59WvfHujTR//7fJsIy4K3Zw9QrVo4ZavAt/NcXzwgF83g2BB4mzYFL4PIPOmw4NE+eA4k8AJiIwZv/XrgjDMS3/v1V+Cjj4LXLYzVxdWrk9+TBY8Im/HjExkla9QALr7YTrlRtODxD5J4XH9xJugDb/Jk4JJLnNd5ecA11+j9voxXXgFuuSXxvmlT4Jxz7JRtg7vvBh55xHm9YAGw77563+fbBFnwcoMoWfAqs4vm+vXByyAyTzoseJRkxSHCQ0J2YOMB/McfyaJw8eJgdXJhO5KtwZ8XeEFWqSkGj1Bh5MjEa3cCboMoxuDxAk93LNmzR5xKXedc2f337r1X7/e9WLQo+f2SJfbKtgHbtj79VP/7YVjwRGOiLYFHWTTVIAtecEjgES7ZaMEjgVdJseGiyZcRRgyfLRdNsuAR6YbtH7bcMwH7Lpo2smjyDxLd/iVzJdGpG3uNbbrf8eNalIWByRicLguerYUwsuCpQQIvODba7Lp1iddR3tSd8CYbLHiUZIUAYMdFk2+MtgReGDF4Ni14JPAIFdjB3+YkxraLps5kT/bbfCpw3f4lexBFUeBFOXbLZCxKZwyeDfiyVd0NK5sFz2uyaMNFU6cMr2sdJdHD19O2wKtVK3h5RGYgC176IIEXkChb8MLYB8+mBY8/TxJ4hAh2clBgMWrYtoumTnmyCQ8v8HT7VzYJvCgLgyhb8MISeKr3gyx4CaJkwYvSfRDt3xiUP/9MvK5ZM3h5RGagffDSBwm8gNiw4IUl8MIIAF+zJvm9TQtekIdAPE4CMVeJootmUAuerK3zDxKy4KUHG94E2WDBY79rOgmnLJoJbIgqncVXr7pEKYadr4v73ta+ucXF5uVkC9kwnzGpYzbsg0cCjwAQbQteGPvgRTEGb88e4JBDgObNgZkzzetDRJOwBF4uWvBsx+DZnDRG1YJ3/fVA7drJn0XZgmd6Tx55xHFtu+cecdmq5ZIFL0GUXDSjLvCuugqoUwcYPTp4+VGON7TBsGFOX2UTjEWNUaOccfPaa/W+l4374GXrNgk53k3CJ8oCj8WWi+aGDcnvoxCDN2oUMG2a48Jx5pnm9SGiSWWy4AWNwZOJCrLgiSkrcyZR/HWOigXPZhbNm28Gdu4E7rxTXLapBa8yCzwb564jzLLVgrdlC/Dcc04fueCC4OVHYewIkwcecPrq9ddnuiZyLrnEGeP+85/gWwRFzYLH14cEXiUlDIFXWmp/ZdCWwOMnF1GIwfv998Tr334zrw8RTciCF7zcKAq8KAgD2YM7yha8sGLwyIInJkoCL1steDt32i0/19tctqEzXoZpwXOfXbYteNna3kjgBSSMLJqAnYd4GElW+LpGIQYvWzsfoQY72EYlyUpYFjy+T+j2LxsCj73GNuN4+XOLwiq8TOBFxYIXRYFX2Sx4YWfR1Lmf2WrBsx1PFoWxg0gg2ntVRpgWPNfV3rbAy9b2RgIvIGEkWTEpQ0TULXiiCZ/JAzPXJxiVnSi6aIZlwVP5HS/YOhQViT/3w+Y1ZomiBU8WPG/Dgrdrl/2JBhDePnhkwRMTJQtetgo822En2TrhViGM5HhhE1Tg2bLguQLPdpKVbG1vJPACEoaLpkkZIsIQeDYteKJztJWVicgdouiiGZYFT+V3VMutUiXxOooCLwoPTZnAs2HBA4K7poVlwSsroyyaqkRJ4GWri6aOAFAhl5/5/LXLBsFHFrxoQgIvIJVd4Nm04Mk+8yNbO1+mWbsWeOghYPr05M83bgQefRT48cfM1Mtl1Srg4YeBRYsSn0VB4H38MfDJJ4n31arplxeWBS+bBF4UJmlhWvAA4P77g42RYQm8PXvMBN6iRU4CCJbycif2me+ruULYWTQrg4umbYG3cSPw+OPAd9/5H7t2LTBiBDBrlt062MJ9zv3yi/M+bOunKeXlwKuvAmPGpLb7TMXgTZsGfPut87qoKPEsjseDPV9yZRHLYkRL5aSyCbygMUJeZQFmD6koTBSzkVtuAV55Bahb19n+wnXpu+66RCrrrVszt+dQ//7AV18lf5ZpF81ly4DTTkv+rHp1px9EwYJnw0XT1ljBUxktePff77SPf/5TvzwgvPjs3bvNsmgedVTqXqjl5UCvXsDChc5Ede3a4PWLElGy4GWLwOPraSLwvK7ttm3ATTc5rzdscJ5hMi64APj8c+d1aWl4C1imnHOOI1JuuUW8n++OHcmLdZniww+Biy92Xtepk/y3TFjwdu8GTj458b64ODVBmOl2Grnihk4WvIBUNoEXRQteNrgwRJFXXnH+37gRmDs38Tm7T9GCBemtEwsv7oDMJ1mZNCn5fdWqiTrligUvLOGVTRY8E9dKmRj/17/0y3IJKwbP1ILHizvAuY8LFzqv//wzeN2iRtgWPHLRFKM6Ds2Y4f13V9wB0Ux371qgAOf+2pxj2eTeexOvhw9P/lsmYvA2bQLWrUu8P+us5PlBkOcYuWgSAMLLopktAm/HDvOHnK0YvGztfFHi55/Fn9t2rQlKpl00mzRJfl+9eqJOUbDgseWaWvDCmihmkwXPxDPBayJmOkaG5aK5e7d5DB5PFIR6mHhdFxvnTi6aamXI0OlbUV8M3rPHbp4Dm7ALhvwCWCYseOx39t4beP755PlBkP4g6mfZOM6RwAtIZc+iCZitdsfj9iYvYWwHkevw137mTPFxUfH/d8m0iybfPnfvTriBRMGCx9aBLHj+yASeyaq510Rs1Sr98gASeFGAXDT1SafA0yHqbVXkOh0VC17VqonXtgWeyTOHLefAA525n609XEXfjcKCpC4k8AJS2V00AbMVJtkkJWgMXtT866MK69oAyAPQyYKXDH89tm2LrgXPVOBVJguezGXLtgXPNMFDNgi8KNzHMMkWF80o3YeoCrwoiWARu3fbzXNgEy+BFzTJSlALnrvIyrpoBrnXtrdyyBQk8AIiE2c6A3+2CzyTFSbZ+ZEFT4943GySsXp18vuZM8XlZMqCJxtMoybwgGhZ8LLJRdPtt5l0m0qXBU9mIffDVgweP2ERCTzTCUzYVhG/9qHSfoK0sbAteOSiqVaGDfbsSbSF3buDb2MC2B2/RC6aZMHzL8d9BodpwYu69VcECbyAiBrCM88Ahx2mPnikQ+DZapyih5FNC15QgWeaNSkbWbIEaNtWr6258AJvwwbg999Tj8uUBU/2ULP5MDXpE6LrESULXja5aJaVARMmAI0aAZddFs5v+pGuGDxTC56tLJqi1Ou6WTRl7Zv/3OZE6KqrgAYNnAx+IqZOBZo3dzLbysaGCy902hifIEkV2wKPr2dlcNE0EVJhxOB17gzsuy9www1AzZpODPXll+vXzeW995z2ecMN5mWwiPplFC14fJ0yHYOXDoFHFrxKiKxh/vijE/SpQjoEno3GWV4uHkxNVphI4AVn4EAnbb9OW3PhBR4ALF6c+lmmLHgy1zmbg6xJWfz1OOqo6FrwouSiGY+LLXgnn+y4C7/0ktOW041NC57XJNbNMqmLLRdNvhwTF01ZGwprz6g1a4DnnnMWn/r0ER/Tq5cT3/jxx8Cnn6b+fdYs4PXXnTZ24olm9bDtohnENbYyZdEMQ+CtX+885558MuFp9eKLTiZpE/r1c9rnk08CW7aYlcEictGMigWvsDDxeuvW5L9FxYJny0WTBB4BwPum//GHWhnpyKIZZjA4xeBlhu+/T7xeuVLvu6J056Jrb8OFxQTZxFt3kPVq90EteFWrOhPQKFnwbLho8sfasJqWlaWWw/8OP2lIBzYteO61r1YNGDIEuPXWxP5cmzYZVS9SAk/2d77d2xIaKvdg8+bEa9GYxi4amLZj21k0+fLIRVOtjDCx8ZyzIcSibMFj56T8/JQseNHEaFep8vJyTJ06FZMnT8b06dOxZs0abNy4EXXr1kXjxo3RtWtXHH/88ejevTvyctyk4tUwVTeIzhYXTdmDKEoxeDne3KTUqKF3vMiCJ2qHmXq42BJ4XpOEoDF4b70FdOhgZsFTPTYTWTRFE1BWLJog6u/8mJSJ+Fmvjc5LS/X2XXSvcfXqwIgRzuuxYx3rgE2BZzLxDVPgmWyYroJu/xQJuA0bwq2HjUy8ZMETk84JtY1rZ2POFuUsml4iOGiSlTAseEHajy0Rmmm0BN7atWvx/PPP47nnnsMff5mn4oJRddy4cQCAZs2a4aqrrsIVV1yBRo0aWahu9PBqRFESeDYGy3RY8IKuTldWgVe9ut7xIoFnK0OqDWQTb91BNkyB5wqoqFrwbAm8XbvCEXh8naIk8ADn2tesqV6Wez7sKnKdOs7/mzY547HuOWaDBY+fvNsSGjbif8MWeCZWwSCCOFsteCbzmTBcNIP+lhc2npWifhkVC55Xf8yEBU807wtzH7ycteDt2rULDz30EB588EGUlJSgoKAAXbt2xRFHHIGOHTuifv36qFWrFjZv3oz169djzpw5+O677/Dzzz/j9ttvx/Dhw3Hbbbfh5ptvRhV21pEDZIvAC9NFk2LwMk9YFrxMrR7asuDZXn1n+6UreqIag2fLRXPXLj2hI0LFgpcJvAReSUlwgVe7tvN/ebnzW7rXMRsEnulxfthwmzONrWKxPYZURoEXZhnp3otQhi0XTV6wZoMFLyoxeOSimYySwGvXrh2WL1+OTp064dJLL8XAgQPRoEED3++tW7cOr732Gl5++WXccccdeOmll7BkyZLAlY4SXoOLqntPtgg82cQi0zF47HnaEHh//OFkxzr9dKBVq+Dl2eLTT4FvvwWaNQMuuij5bzquZAC5aJqUBUTfgheGi6YNS4qKBU+XqVOdJBqnnAJ88AFw3HFA+/Z6ZciS+QDm115kwQMcK56uwItSFs2wBN6nnzoJKg47zMmW2acP8PXX+olpRJacP/9MvNYdI11E7TQWM9+ihr9/OvczTBfNr78GPv/cyQp50UWJ+FET0inwwvRO0sGWBY+38kfFghemwAsag+eOuZRkJRmlIa9atWp455130K9fP63CGzRogJtuugk33XQT3nnnHdxxxx1GlXS55ZZb8PDDDwMA7r33XvzrX/8SHjdp0iQ8+uij+PHHH7F9+3a0atUK/fr1w7Bhw1CsalZTxOumqzYIWw9xnnS5aGY6Bs+2i+agQc6DbtQoYNq04OXZ4OefnYmsy6pVyX/XvW6qSVay3YKXDoGXaxa8MASeqH0GSa+/ZQtw+OHJ59W4sbPVh06iJT8Lng7udZMJvM2bgRYt9MrMhhg80+MA4Icfksc1ALjuOvXv+8GOc/XqmZUhugd5ec7nuWLBW7kS6NEjcT5z5zoJpExJp8BL5295YcuCx89hssGCF5UYPLLgJaM0Hf7ll1+0xR3POeecg19++cX4+9999x1GjBiBmE8Qw2OPPYZevXphwoQJ6NixI04//XRs3rwZ999/P7p164Z169YZ10GEjQE3Wyx4svMxcaWx6aLJ1suGwPv8c+f/n36yk/rYBnzX+fnn5Pe67UVkuYiSBc/WNgm23au8LHg6K/qqY4PufQ3DRdNW8gC/39GZZH3/fer316zR769+MXg6uPVhV5F5C54uue6ief/96seawHoquO6yuvDnc+ONCStLrgi8BQuSz2XOHPOygtZFt4yoCDxbFryoZtGMsgWPkqyIUZoO28qEaVpOSUkJBg0ahKZNm+KMM86QHjdjxgwMHToU+fn5+Pjjj/HVV1/h7bffxuLFi3HCCSdg/vz5uOqqq0yrLyTKAo8t17YFjzWEBhV47ETUZPLCfifoNgn8BJ0XUpmCH0D5iazudRO1zWyw4GU6yYpXDB6gXr+wJi8yF80g7qNhuWgGSa8vs8bo3NN43K4FT8VFU5dcF3g619jvvEWLK6wFzzQZh3udunRxLFuPPpro81Fy0RRtRaIK3z+DjvuV0UUzrG0SssGCF8UYPHLRzJJ98IYNG4aFCxfi+eefR22PZbjhw4cjHo/jkksuwcknn1zxefXq1fHiiy8iLy8PY8eOxbx586zVzYZPfFgCj/192zF4QQUee35sBkiTTsnWK+haBH8uM2cGK88W/ADKx9DpTBLice8BjB0kKQYvGS8LHmBf4MXj5uIs22LwdOoo6+c646ZoMsUSRgyeLiTwEujej3g8eZw0eaay/a+w0InxjMUS7S9KFjyVv8vgr03QcZ8seGaINjonC55/OeSiKcZoOrx8+XKMHz8eK7ndlX/55Rf06NEDdevWxcEHH4zPXV+3AHz55ZcYOXIkLrroIpzCO+sz7N69Gx9//DEAYMCAASl/b9WqFY488kgAiW0cbBBlgceWa9tF06YFjxV4QS14QVOtsxvnAk4ShyjAD6C//578Xqe9yNql215YYRA1C14UXTRZsREk7tb2sTazaAbFtgVPdqxOP/Cy3gF2LHjseqQtgZdLMXheSW54dO/Hli3JzyaTZ6ookQMQTRdN3bJYstmCFxWBRxY8NdK1Dx5Z8AwF3iOPPIK+fftiOzM6b9++HT179sRXX32FzZs3Y9asWejTpw8W6qbCYti2bRsuvfRSNG7cGI8//rjnsQsWLEDJXz2hW7duwmPcz2fMmOFZ1vbt25X+AZXXRZPNBhdU4LEp/k0EHnutglrw+ElYVC14W7cmv9e5brJ26X7OCgOy4CWTbgseoHdvszmLZtQEXhQseGFl0XQ3cvf7LZ2/6x4H6Ak8v/vBuyfyXg4mz1S2jbL3NYoumoA9gZdNFryouGhW5hi8oElWyIIXDkbT4a+//hr77rsv2rVrV/HZmDFjsGbNGpx55pmYOXMm7rnnHuzatQtPPfWUceX+/ve/Y+nSpXjmmWdQ1ydn79KlSwEAderUQU1JLuoWf6Uwc4+VUVxc7PuvWbNmAOwIPNFx2eSiaTIBZMuqVk38uUlZ+flO5su2bYEBA/QfwPwkbM4cs8F/5EigeXPgxRf1vyvCrz3YEHhuW2YFnsrq4axZwL77AmefbWfTWSA9Ak+1T7zwgnMv//Of7LLg2RJ4n37qbBdyww3qZfCoWPCCWBm9fkeGbQueXxZNctFMReca694P2wKPtQ6QBS9YPVSeE5XVgsf37yhY8OLx7LPgUZIVQ4G3atUqtG3bNumzCRMmIBaLYeTIkejcuTP+9a9/oV27dvi///s/o4pNnDgRzz33HM4//3yceeaZvsdv/cukUcNjx2d3i4QtFlMjZosFL2oumrIYvKACDwD69QOWLgXeeAP48ku9svhJ2M6dTgppXa6/3tlP7/LL9b8rwm8A1blufnsQsm1FZfXw9NOBRYuAsWOBCRPU6+GFrSQrNrYxGTzYuZfXXitOshK2BS/TLpqPPgosXw48+aR4/0QVomjB87Me2c6iybt/65TJkksCL0wLHrsHHmD2TGXPRWTBS7fAS6cFL8hiXWUUeCaWNv5+RtWCV1rq3faiGINHLpqGAm/jxo2ox6Ux+/7779GhQwc0b9684rNOnTqlxOmpsHnzZlx22WVo2LAhRo4caVLFQGzbts333x9//AEg2gKP/f1scdEMmmSlrMyZjLosWqRXlmiV3W+lPx34DaA2Y/DYtqKyerhiReK1iRgWYWubhLBcNPPyEhP5sC14mXbRZDEdl2xb8GwIPL+2rTOuyWK1wrDgZSoGL4y2HWYMHj9u796tL1qi5qKZLgtePB7MNdtGW8o2F00TS5uoX0YxBs9vLIyKBY9cNJNR2uicp0aNGviTWR5btmwZVq1ahdNPPz258IIClBr0nBtvvBErV67EW2+9hQYNGih9x3XL3O7xxNj214hfq1Ytz7K8rIAuZX/dba8BPpMCj9+Ty7aLJnuJMp1khb1W/LXUFWfZKvBsumiy11B39dDSjiqRctFkce8DK56iasELQ+CZYtuCZ8NF069t64xrMiFgS+BVqZJoe7lkwRMdu/fewOLFqZ/rjkWiMaS01MmGqYrsvua6iybgXO+qVc3K86uHynWrDBY8/n7u2RPNLJp+8w8TgZefnzj/MPbBIwueocDr0KEDpkyZgj///BMNGzbEmDFjEIvFcPTRRycdt2LFCjRu3Fi7/HHjxqGgoABPP/00nn766aS/uVscvPjii5g0aRKaNGmCN998E61btwYAbNq0CVu3bhXG4a34y9TgHmuDqFrwgqQgl5ENLpr8eeqsEANiN6pcE3jssQUFifvq/q9rwWOJmsCz4aLJIhJ4UY3Bs+WiaVoXlihm0bRpwZMJgeJip32UlwdLspKrAk+EbCckv/vFL7aKxpDdu+0IvFx30QSc6+2T+sC4HjYteF7HqVpYTa4bX7aJpU3FRTMbLHgmSVYKCsSLyrrlAGTBk2Ek8C6++GL873//Q7du3dClSxd88sknqFmzJvr06VNxzM6dOzF9+nQcf/zxRhUrLS3FV199Jf37smXLsGzZMrRq1QoA0K5dO1SvXh0lJSWYNm0aevTokfKdadOmAQC6dOliVCcRURV4/G/bjsGz6aJpU+Dx571hg15ZUbXg+bUHUxfNKlVShV1lseCZDNjudQ7bglevXqLtRslF06R/Avb3wbMh8Pzats6qtJelp3ZtYOPGYBa8qlWdtP+AnSyaoomkLYGneh9lk2+Zg43uWCRa3Nu9O9n7xI/K6qIJBLMcpdOC53VNwvCokJVtw4IX1Ri8MFw0CwsT3wvDgkdJVgxj8K644goMGjQIK1aswAcffICqVavipZdeSrKajR8/Hjt27MAxxxyjXf6mTZsQj8eF/y6++GIAwL333ot4PI5ly5YBAIqKinDqqacCcDJ68vz222/47rvvAAB9+/bVrpMMGxNIURnvvQf88INZnUS/nS0umiYDrZeLpk5SiClTgJdfTv1cV+CJrvX//gd88IH5oBOWiybrgjN3LjBmTPL93LVLr85z5gCjRwdPrZ+OJCtBXDRZ61gYFjzWMz1KLpqlpcCCBcBrr+mtLEfRRdOmBU+WjANIuGkGFXii39Itx2XcOIDPf5ZuC56sj4dtwVNlzx4nUZdLZcqiCTjX+7PPgEmT9MpauBB45RXvY9JlwVMd90yeyzJL25o1wKhRqUl+VH7300+Bjz5K/mz7duDHH/XrZ5MwBJ5IjM2aBbz9tlo/Za9dkCQrv/wCvP46sG6d81xbtCiYBS/IvN02RgIvFovhpZdewm+//YYff/wRv//+O84666ykY/bbbz+MGzcOF110kZWKqnDbbbchFovh5ZdfxgQmnV9JSQkuu+wylJWVoV+/fth///2t/aZXww66AnXUUckJLHTgf9u2i2ZRUWKSGyULXllZsvuoqsBbvBg4+mhncObRFXj8tV64EDjiCODMM4F33tEryyUsF0124vj668DAganH69zfRx4BLrjA+d+UeDy6Fjx3NTVsC56pwGPPKQwXzW3bnH5y0UXAv/6lXqbogc232XS7aIYVg1fA+cWwAs80yUdBQaKd2XDR3LAhdWxMt8CTCV6ZwPO7X3zfE40hOtfuhReAoUMT721Z8LLFRXPSJOCkk4BevdQFxp49zvjg99xNVwxeGC7zsrLd9nnGGcAllwD9++uXMXs28PXXqccdeijw++/6dbRFWBY89rN164CDDgLOO8/J2KxaDmDuorl9u9NeL7wQaNjQea4dc4z4fFTbkm7m9jAJ5FDVokULdOvWrWL7AZaDDjoIZ5xxhlEMnildunTBiBEjUFZWhlNOOQU9evTAeeedh3322QeTJ09Gu3bt8Oyzz1r9TfaBwafEDyrwSkuBl14yq1cYFjz2fAoLE+IgyjF4IsEmwkt46Qo8/r4/8UTi9YUX6pXlEpYFjxUqMkxiAHQm/zxbt8rPJ9MCz3X7CjsGjxV4Nu6tLQvelCnA2rXO68ceUy9TNIHk23Q2Z9GUufIBCYFXWhps83R3QmRD4ImIisCrXj31GgL+90slwZZO+7jmmuT3tmLwbLloip4lNgXe998nXs+YoVbOb7+pPXPTlUXT628HHaT/WywyC55rwZk82b8MnTHv11/Vj7VNWDF4LmVljoeTy803q5cDJPqmbpKVOXMc93mWVasSzzgW1Xs1Z47acenASODl5+fjsssu8z3uiiuuQAG/nBkyN910Ez7//HP07t0bP//8Mz744AMUFxdj2LBhmDp1qnJWTlXYScottzjuaS7p9CH3K9O2i2ZBQTCBF6YFj429ULXgNW0q/5tuohavB7hpdwhrmwSVLGmmMQCm+yh53TObSVaCTM6iasELW+CpTvR4VAReLmbRBIJl0mQFnjt25LrAKyxMfia4+N0v2wKPJ6wsmuXl6uWw53jppY5L2wUXyMtWRXRd2IRjqs8A1edbuix4st+ZMAG44Qb93/L6XRv74PGwXhim8c82SIcFT/fZbsOCJxuDRO1BtX6zZ6sdlw6MpptuPJzqsTYZNWoURo0a5XlMz5490bNnT6u/K4Nt2Pn5QPfuifeZFHhhu2iGJfCCxuDxq7wbNjj3yM9S5ZUcJKgFj79uJvhNTGzE4MkwzeL122+AScJarxXgdFvwZMNX2BY81k3NRPjEYuYB517HzpypXg6LqP3yn5kK2cMPd2JcZb8jI90WPMCZUDRrpl6ue56sBc+GO5nXb5n+Xfc42eSqqAioVs2x5LOk24LHE5aLJuDUXSVBFT+p7dwZqF/fu2wVRNfFTeoDqD8DVCf6mY7B69bNEXm6v+X1uyUl+u3L7zqccIITlwfY2RvZFJsCz+0z/PPJhsDTfebJFpNVsj6L2LoVWLrU/7h0YSnnnZiSkhIU6uQkzkJ4gWeyD4dXQ1y/3qxeldVFU4TI3O5VH56gAi8dFjzTGDwVF01TC96sWWbf87Lg6bbjoAJP9nvsymoYFjx22DQR72zMFmDPgvfLL4nX7dqplyk6B1sumuz4EUULHivWTS14BQXBXDRVnkVREXjZYMGz6aIp+0yEqJ3ZyBzoJ/BUnwGq1zddWTRlfysoCL5nmsiCFzRenyfo3MgW6bDg6fYlPwueyj3VEXgqfevnn/2PSSehCbxNmzZhypQpaOrl+5YDsA07L89s0PA6TicLpFeZNix4UXTRLCvzX0VViQnwGqB0B23+HNjrY7rekUkXTa/VW69rb2rtiZKLpqxvhm3BM518sBafMAQeiywZhogwXTRNx4+wsmjKkqwAwVw0K0sMXmGhY8HjybQFL6wsmrLPRPgJPFMLnqhN5bIFr7DQvsArKbEv8Nh+EHWBp2rNlsXgZcJFUzbXME2yYjrnCQtle0Lbtm2T3r/77rv4UpIuprS0FKtXr0ZZWRmuvPLKQBWMOuwDIz8/MfADdlagVJOE+JW5eTOw337Av/8NnHOOWZkyF023c7Pn7octgadyvIpItinwvHzzo2DBsxmD51WvMCx46XbRlB0TZgxeXl7yQoCJ8AliwQsj85xoYh0kmyB7LDsJiqIFL1ti8Gyl4Fc9jo3xYomKBS8WS560humiqXrN/NzSMh2DpyrwMp1FMwwL3qZNwAEH6JWRKxa8eNw5F5X5TZgxeLr3VDa/NhV4pnOesFCebrr7zQHONgnbtm3DNo+Zb1FREc4880zcf//9gSoYdXgXTXY134bAM7XgicpcuBA491zz5BcygRePO4MP67bmB3vdgsTgqTyw163Tqw/guJ/Nn++8Dirw2LKjIPBk2yTI8Fq99fqbe/10SZfAU5lkqAg82xa8GjWS20mUXDRNjgP09zXS+W1TF81MxeCpEo8nxupctOCxFiIWNwaPR9eCJ9voXJWqVZOFTVhJVgB7Lpo2BR4bAxllC56Jl0YYAg9IjRv1W/j2az+mY5ttVMbCXbv85zfsmBZlC56pi+aiRf7HpBPl6ebSvyIH4/E42rZti7PPPhsPP/yw8NiioiI0bNgw7Rk0MwFvwTPZaNFP4Olax3R+Wwf2IcTG4AHOAKAj8NiHb9264t/QrVOQY/gH0xtvAF26OK9tumhmY5IVr7K9Vnb5h50qNpOsmKbQdpH1o6AxeF6/zQu8dLpouiuxOr+lgsrkxIaLZtQteDKrlUqZuZZkRTauRMWC5yXwbMfgmVjwwhZ4LLlkwcvLMw+nUf1d9hivsIxscdFUua+7djnPLi9Y40IYMXiZTrKSSREuQnm62apVq4rXF198MY4++uikzyor7CQgjCQrrl93zZp69bIRc8fDW/BYK8bOnUCtWuplsQ9fdgIUhsBTuRZsx5w0CTj4YGeSUVKiv00Cf99tCDx3gOXdhlxMY/BUkqx4XWOvlV1dYeziDrr5+cGTBaXDRTMMC16mXDR1rq+pwJO14XS7aEbdgsePt7lmwZMdZyMGb/du8XXSFXgsUXDRZM8xbBdNFlULnur1teEy7KI7xrvXKx0Cb8+eYAIvW1w0ATURKFqgAMKx4OkkWWnbFjjpJODpp533omtt0+qcLoymmy+//LLtemQtNpKs+DWcNWv0BV4YDU3mognoJ1phRVMQgWfLMsDeR3fyXlxsFjgdpsCrV0+cWTVMF01TC15QgdewYeoKW7pdNFWSrNiOwbPhomlqwTMVWX6w/ZS3jLhQFk3vMoPE4EUxi6aXwAtqwZONPTrtgx+rK5uLJkuULXi6XhrpFnhe6Ai8qLhoVq0qHht1BV5eXmIRNxP74O3aldjkvEmT1HGbx+aiRLowyqK5YsUKvPrqq5jvEWQzb948vPrqq1i5cqVx5bIBtgObWvD8jjOJw/NqaKYDBVtPkYumDu4DuKgoWAyeyoMxiMADgrtosmUHzaLJ7nkEJFwFTV00VSx4Xu3Fa2V3zx79tlZennDRbNIk9e/pdtHMhAWvuDi4i6apBS8dAk9kndEtz4aLpp9VQif1dxhZNGUumiqZg73KkhEVgVdUJF540rHg2RB4/P1n72sQC142umhGOQZPdxHP7UfpctH0IltcNNn5HTuesaj0LV6Uuf3IlgVP556y22c1aeK/+J6NFjwjgTdy5EhccsklnpuYx+NxDBo0CE+7Ns8chU+yEiQGT7aC8MorwKhR5pMDHl2XQ8BJmDF+fOJ9UAue+wAuLjbf80v1eJWOyd5HVzS5/uRRyqLJW3KbN3f+D3ObBFMLHqDf1jZsSNTPhsBLh4sm22/Hjw/+4M+kiyZ7XL166sf6wVvwRFAWTe8yTdsEX5aMqAi8wkLxszDdFjz+/tuKwTNx0YzHgcmTgR9/TK0DWfD0/hYlC55OkhUTgVdSAowda56N3YXtC7LtcUwteO7ntvfB27zZOXdZkj3WcGJL4OWEBW/ixIlo37499t9/f+kx7du3R4cOHTBhwgTjymUDoiyabmOzJfD++1/gkkuAiy9Wr5fXb+sKlk2bnIQj7CaONgUee95hCLygFrwdO4JlIQzqoum6MLB1c3FFaKZcNP1WdnXbGvsgClvgBZlksElWWAvegw8CL7wQrF516kTDRfPAA9WP9UNF4Jlu5RCWBW/PHjNhzI/jtWolXPpsCTyT/UL9iJLAyxPMTEwteOyENIgFL5Mump98AvTsCcydm1ofsuDp/U6UBF7YFrybbgLOPhvo3Vv/uyyswLcp8MK04I0c6Zz76aeLv88KvMaN/V00g2TdzhTGLpr77LOP73H77LMPVqxYYfITWQk/4JoIvNtuc17XqpX6kJs2Tb0uXg1Nd9L9zjupA7wtF83iYudhaZpAwFYMHlsOL/AAPUuUVxZN0cTFD9666A5Y555rdt1sJlnxW9nVbWts5s1atYDRo5P/rjuhSoeLJv9guPpq7zLjcXmbzM93RGKmXDTZ44qLgVNP9f8tFWy7aKbDggeYTVj59pCXl0hAZSMGD8htgVdUJB4ndSbL7LjDWqJV20c8nnrv+Xh79zhdTFw0Tzst9bMwBJ5s8UXVgqd6fTOZRTObBF7QGLznn3f+nzUrWAzfkiWJ161bi49RGZNkFjwTgSdKOCTK5P799+Lv84vJ5KL5FyUlJagme0ozVKtWDVtNc6VnIfwqgonAu+8+4MsvgeXLgQULnAmua8nQEVE2LXiiThPEgldenhBMrogyFXhhuGiKBJ7ONeOvPftdk1U4vm5vvw383/85rrvsdVOdbOi6aJrG4AHB4hcLC4H+/YEffkg8VNh9dFQI6qKpkmRFV7TLJjennuq4QrdpkzkXTT6W7M03gcGD/Y/1g72vskWFdAq8eDzRdr22oFEd17wEHpBw09TZJoG/F0EseNmWZEV0T/zaMNuv2AU5E4EnEvbsVCbdLpoiwnDRlFlnomzB013ECyMG7+STxYnwohSDZ5r0LB4HZs50XjdtCrRoIT5O5Z7KLHi2kqyIkjPJIBdNCU2bNsVM9457MGvWLDRq1MjkJ7KOWCzxUAoi8PLzgWOPdQbavfcGBgxwsgkC5jEhPLodXTQhCyLwduxITNLTIfCCumgCehY8/vdYQWJD4FWtCvTo4fzPim/V9pauLJpAsPhFd6J3yCGJWEMgmLssi62Nzv1cO1TrdOCBTp8H7LhoBk3+kp/v9IETT/Q/1g/3HHjXUZZ0umju3p3ol17bu9gSeO7EmWLw/I+TuWj69VebFjzRfWcFnm0XTZNxKgwLXrVq4gXdKMfg6V67MCx4hx8udmm3acELKvBMci8AwMqViWyTBx0ULIbapgVPlHBIZncSlc0LPBtZNHPCgnf00UdjwYIFGDt2rPSY9957D/PmzcMxxxxjXLlsgm0cugKPnZSJcCeTO3eqWy/CFnhBXDTZgcYVUe5DRdeNIAyB59bF1ILnVScTNwmR+HQxWdW3mWQlbAuei4k1yu/YMLJoqiBrj2w5Nlw0Y7HkGAcV2ONEEyHRb6ngtvuiIvk4Z2rBMxF4bLvlBR5rPVId13hrG49rwdu1y1w0VqYYPBMLnorAU71uonvElmnbRdOrXosXiz8Pw4JXVCTfg1DlXCtrDF5Bgdj6GTTJiqn7uQhTCx5ryznwQLsCL10WPNF94GPwyIL3FzfccANisRguuugiPPHEE0lumFu3bsUTTzyBiy66CHl5ebj++uutVTbKBBF4rFuVCLdDlZfbGfR0O7ootT9vwdNJKc7+vpskJMwYvEy7aLKYrMKJ4gNdMi3wbFvw2N9i+4OpwAvLRZNd5bZlwQsq8OLxxEPP/T67QqpbN5sCz72vMuuMbnlBXTTZdssLPLbf23bRBNSteBSDl0ymLXhsmem04MmcpcKw4PHbFrGoPOOzIYtmGC6aBQXi7QOCWPDy85OfM5ly0WTbn5cFz8RFk30+yTZBVy0LkFvwbAi8SpNkpUuXLhg+fDh27NiBIUOGoF69emjZsiVatmyJevXqYciQISgpKcF9992HQw45xHadIwnbIN3XJi6aIkwsZTYteLJVMFMLHvv7UXHRZB/8bl3CEHiLFwP77ee4HP7jH2rliayLLiYCTyUeiiWdMXi8i6YLO+HTmVSlw0UzDAuezn197TXHtbNZs8Rn7lji/j9jBnDWWf4TMN5Fk68Li85+bKzAs+2iqSPwPvgA6NoV+M9/Ep9li8DLNQuerE5hWvBsuWiaWvBGjkxNHAV4X7NZs8SfhyXwZJNklTg81etr2h5FY62pBc9kSyvZ7+bniwVekBi8oHG3PCrP4p9+Ag49FLjzzsRnbPsLYsGbPh3o3j3xnrXg/fab0zfYv/mhY8ET1c1NslKnjnNO5KLJcPPNN+P9999H586dUVZWhpUrV2LlypUoKytD586d8d577+E2NyVkJUC0+p5JgWfTgicaWIK4aIoEXlRcNKtUSUwu2ImeTnIEvzotXAj88QcwfLjaJvZeLpqs4FO9dum04On6/Weji6ao33qJR1l7FHkBeB3vcvvtTpYzti2JJjHjxiULGxE6Lpr88V6491VmnQHMLXiFhYk6+vWBM890Jhr335/4LB0Cj3XfUh1L+DLZNqebtTiKAs/LRVO0LqxjwduyJfHalsA77rjEa7YNq4q8eByQOTR5jbELFog/t+WiyXoGeVnwbGadNbXgHX642nEu6XTRtG3BY7OLq5Tlh8q878gjnb0W77nHSfQHOIm/AKdt7LuvucA79thEmUCyBY/H1ILHzt9YvCx4bhLDXHTRNNx22aFPnz7o06cP1qxZg+V/3bmWLVuicePGViqXTdhw0UyXBS/IpNslKhY82y6arGBi8wOtXateJ52Hxdat4v3eRHUD7LtoBt0mIeoxeEEteLLv+1nwtm6VZ6Sz7aIpsgi539fdakXHRdM9XmVvR7efelnwTAVeQYHTb0tLzeJU+Ox3YQg8E1cr/hwbNEi81xmP+LJMj0mni+b55wNffOEkeJg3D1i2zOmv8XhiAscLK/YesCnQ99or8dpU4J15ZmILIyB5EllerjYh9Rq3vK6ZrM62LHhseywqkj8TVCx47LOqXj3ggAOAr79OPU53weHoox3Pl0MOAb79Vr0s0RifLS6apaVmC7gyVJ7F7P1bvx5o2TLxvdq1nTZn6qLJ/z5rweMxFXixmGOB5tsqfx+2bUvUx5UrtE2ChMaNG6N79+7o3r17pRR3QHYJPBsWvIIC8xXlKLposhY8F1Z4qVjadH5P51jbAo9/oPu5Q3g9WHI9Bk/FgidaMfSy0ui6aPq1EdF95100Xfwstjoumip1c1GJwTO1zLoCj/0dHdJhwTOJn+PLZMcjVsDolvX1187EjSeIO5lOOX7HuW3khReATz9Ndj1mRR1fH/Y9O16z52oi8G691bF+swsBJi7jXr/tdc38LP7pEni6Frxp04ALLhAfp7u4NnEi8N//iseibLbg+Xl62HTL1n0Wu9fHve+uZTdIkhWWvDz5OZkKPEDsYsz/Dr8HnspvVpoYPCKVMLNomiQzsemiKSrLtotmLgk8nXNQOdYryUpQF01+vzQR6bTgyWLwMuWiqZJkRWRB84qz0nXR9GsjovJELpqAv8VW10XTRODZtuCxyQhMVrltCDyR5ZPFZIsDXuCxa6c645GoLFE7iIoFj5/Ey7b74CdcIoFXpUpimyHATOCJJrQmLppe/djrb34LQkFjydhrUlQk3iYB0I/Bq1JFXpbu2CvzSOCPU/mddGbRDLpoEkTg8XNFXc8t9/q4990VTjYF3qpV8r/5IRN4Ihdjvm4igZeLLppKAu+xxx7D7oD24d27d+PRRx8NVEaUSUcWTSBaFrwwYvB00+Xa2ujcbd7sxMd0QhWmBc9GkhWbAi9MC162JFn588/Uv5sIPFMXTVn/BIJZ8MIQeF4WY1PLLGvBsyHw3My+gFnad1F/MumnXha8yiTw2OvJ9lkvC547gWvcOPlcbQk83kVTBRMRB8j7hS0LHi/wbFnwqlSRl6VrwZN5JADRyaIp2k8z6D54QVw0+bHLNIumqgVPV9x4ibiwLXj8Hngqv5mzLppDhw5Fu3bt8NxzzyVtiaDC5s2b8Z///Af77rsvbr75ZqNKZgOiyZnu3lPpSrLy6adOog9VbAm8JUuAKVO8LXiy35MhG/TYB4upBa9+/cQ90XGJirqLpixBhQxdCx5bXpRj8Gy5aIrioYIKPFWLjyyTpWxCJMuQJ/otmy6atmPwZC6ambLgkcCzdxy/iKVrwSstTSy6NGmiN0leuhT46qtkMZMOC14mXTRVBZ5uDJ6XwNOZLOfnJwS1qG/ZsOCZWF54gSc616ACz6YFz8SbZs+exHm6zw7ZPTWx4MkIIvBEFjz22u3ZAzz/fOK9zRi8rLTgjRs3Dnl5efjb3/6GJk2a4IILLsDLL7+MefPmIc6NbvF4HL/++iteeukl9O/fH82aNcP111+PwsJCjBs3LpSTiALZFIO3dq0T/KwqWlSyaPqt7v35J9ChgxMs/dpric+DCjzZsewqvI6IYicDeXmJzp9JF80wY/BULHi6MXjshDnTMXhhuWiy90F0DWxa8Excu0wteGG4aMbjiXLD2AcvCi6a2RSDJxN4Jq7AYRwX1IL3558J0aUj8DZscNLAH3ecE+/l4ifwbMTgBXHRDLI/Il+vdFnwdAWei66Lpuje2NomgR8rRQthQQVekHvLtzcTgcfe8zBi8GSEacG77Tbgs88S7225aLpJoKKEksA744wz8Ouvv+Khhx5CgwYNMGbMGFx++eXo2LEjioqK0KBBA7Rt2xYNGjRAYWEhDjjgAFxxxRV466230LBhQzz00EOYO3cu+vTpE/b5ZAyRwCsv13MDS5fAA5zOr6q3RR03Ly958PZzZXr55cQxc+YkPhcJPJ1J2rJl4s/ZVRy/axGPi100gYTAW7NG/UFu24IXdgxeEAue6KHPJiPIdAye1/VlU6nLkP0We93vuy/17zZj8ExW901j8EQWvKACj7fK2tgHz6aLJrsYBIRvwVMdH3jX7Fq1Es8CXQsef71Ek9GdO82297B9nGoMnkzg8e5Xqs+W0aMTe9393/8lPk+Hi6aXdUzUL2KxRB1M2haLzRg8ts3KrFqAnoumbKHPxdRFMxbT37NYVD+3jt27O/vbyo4R4XcdYrHE+afbgldWlnzP/WLwvO6DSPjk5QEXXSQ+PswYvO+/T7yuUsXZFxUQty2dfh416x2gkWSlqKgIf//737F06VKMHTsWF1xwAfbaay+UlZVhw4YNWLZsGTZs2IDy8nLstddeuPDCC/Hee+9hyZIlGDp0KIpko0aOIJuc6Zh1ZRMfk2yVKgOWn7uWi2hgicX0Yhtkbl7u5MokjTgAzJwp/pzt5H7XwktAuas7ZWVO2mAVsikGz2vCrVKuqD2yk4RM74PHnuu4cU572Wcf573KJFnFgtetGzB1KnDvvYnP0uWi6ZeFjL+3ooyfsrq541hQF01+AmnDgmfTRZMfB6PiosmvnsdiifEoqIum6J7G48mbefOw9+f994Fhw/yP80LVRVNmwZO5aLLWzcaN1RfBZOcehotmw4bAG28k3uuOF+w1CbpXmk0LHrtQGovZSbLiJ/BMXTTZ1zYEXlER8MMPwNlnJz7XseCddx4wYEDqMaZjmw0XTVsWPFHbycsDnnsOOPfc1L+FacFjr/ns2YntsEQLmWz79WuzURR42vvg5eXloW/fvujbty8AYP369VizZg02b96MOnXqoFGjRqhfv771ikYdr9V3rwkSa9ZNpwUPUBuwAfkgpWPB41fJXYK4aMbjwKxZ/r9nQ+ABzqSKzcgmozK5aIraYyzm3NcNGzKfZIXtB4ceCjRt6tzTRYucrQx27vR2W1SJwQMckcfep6DbJITloqmT1c2Wi6aqBc+Gi2ZZmfNPZYLgwt//sLNoqvZTdvXcnVw1bux4Laxb55Tj9Wxh4QWe7J5u2qS2f+OppyZvWiz7LS/SZcFjz1V3LAPsWfDY3+7bF2jbNvFeV+DJFoNsCDzZIpCOBc8dH21b8Gxm0XRf79plR+ABjgXvtNOAd9913usIvJ49xQs3phnGbQg8HQue1zUU/XZenlPW2WcDb7+d+jc/2GunE4PHuv7uu2/ic5nAc6+j37gWtQQrQMCNzgGgfv36lVLQ8ZhmwBNNqHhsJ1lx8XqosERV4C1bJnezY3/Pr2N6CSg+7qVTJ/96pTPJSqZdNEXtMS/PjsCzvQ+eWwZ/T1u1kn9fVeAByfsgpSuLpm2Blw4XzTCzaLq/JxJ4skmlDYEXRgweuwDnTq7Ytvvnn8l7xOnUz0vgyfoD3zaCWmJVXJX59yoxeLzAcy1Ju3d7j5EybwNRXzdZcOL7gep4IeoXYVrwZPdVJwbPT+DZtOCZumiyZdsSeHz5OgJPFhtrS+DpetOUlelZ8HQzt7vtTHTOKn3K1IInaleAuG1luwWP9sGzhEn8DOA/MQDCs+CpCjwVVxo/gSebUPDbJADqQoW13vGrvjouml4ukCZbJWRbFs0gLpqi++5a8IDMx+CJFlB0shGquGi6sJaPoDF4qi6afmUFEXi2XDT5jZRtZ9HMy1OLs5KVnw6BZxInJbLgmWbS5Osnuwcq7dbNahiWwOPRzaIpSoGu4uYmyoYLhOOiqSPw/Cx4QVLp898pLLSTRTMqFjyvJCvsa5sCL8j8z8v6r3tvdZOs8HVNhwVPVp6uwGPHM78YPNm2ZH6eF9lowSOBZ4lcFngqFjy/wUd0HWKxxKBhIlTY+Ds3UNbFVOD5uWiqkM6Nzm24aIZlwQOcVUMdl0qbMXhPPQV88knivXuerGhfvhy44AKgXz+xNVglyYpLWBa8IC6a/IQoEy6a/ATSZhZNV2yoTHJl14qfYLDW/6jE4IkseF7j0bRpQI8ewGOPAVdcAbz5ZnL9ZM8aFddir02n2eP8UD1O14LHx+ABagJPlpk0jCQrhYXJC0K6Lt02LHjjxztZrdlYQK8kKzoWPLeMyhSD56JzP3grlFccmF9Z8+cDxx/vxJj3758aU+on8Pixjhd4QWLwdAWeSvsIasHj25KfwMvGJCuBXTQJh6gJvHS4aLoDUmmpvwVPVEaNGomOafKQmj8/8fqgg5KzI9ly0XQDcAH5Ci+PbQseO8jatuAFicGLx8XtsUcPYO7cxDE7dshddHlUYvBUBtJdu4Drrkv+TOSiedttzv6MANCmDfDII8nfEd2fggLx5NZtz+XldmPwgrhoih7aXqTDRdNmFk23bioCz8SCp2K1AMIReH4WvBUr5N898kjnOnz5ZerfvBZ1VBYm0i3wgsTg6Qg8mWAOY5sEN5lJtWrO+JgJF80zznD+nzIluV4yi6RKX+CzUQex4LnnUplcNL1Ehl9ZI0cCX3zhvF68OPVa6Qq8srLkuZErnGRjh6mLpg0Lnk4MnsyCRy6ahBTTGDzRhIonqhY8IDGAmwg8VjyZPKRYn/IGDZL/ZiuLJrsaZBLjZuNYVljySV6CxuAFcdHcsycxGejWzUm80KuXs20AO0nWcdNUicFTGfxF7VHkoumKOwCYMCH1O6J+JJu0sJYkr/sq6ythZNHkV90z7aJpy4LHP6SDCDz+frIh5SpbabD1AcK14LVvn/js55/l3/UaC/xi8GREzYLn56JZXJwa4+117U0FnqmLJpCw4mXSRZPF1j54NmLw3Oc7uzgYRpIVvzJkhCHwvMYOv7LWrUt+v2BB8ntbFrxYzBGTBx4I3HRT8vEyomjBU3HR1BF45KKZw2SLBe+VVxLuJUFj8AB1gScqg51omzyk2N/kV210smiqbkOgWi/bLpqs6xB7zYDMumiybbFuXeCjj4CJE51Ji6nAsxWDJ7O8AanX0EXkTqQj8AC1fZVkfVg2hphsgux+X1fgiVw0vRYAMhWDx7vZ2HTRZBeLTMZIUX/SeSa4iCZXBx6Y+Ey2RYwfQWPwssWCx7pi+03kS0tTJ8guYbloAgm37nRvkyCrs5fA87PgifaTNbXglZUlxkn2WZINLpq2Y/BUt0ng52C//Zb83i9cQiTwRItMAHDttc74c9ppycfLyLQFj62bjosmWfAIAHYEns0sml7Z/9yNqL3cyFi8HhpuBzCx4LEPYJOHFDvg8Z26SpVEpw/iohnUBdLGse6EpUqV1BTmmXTRZNuiVxyTqQXPtsBz2wPb7lhEAk9UjpfAU5kwyPow+5BiXwdx0QxiwXOveV5esMm8agxelFw03XusKvDSZcGrUyeR5fLnn/XiW9n62bDgBRXqYVjwdu1KnAO7kONnBfnzT7klzpYFj3fRBBICb+tWefsPw0VTZpkOYsETnZ+pBY/1zvETeIC8H4g+j6qLpiwGT9WCx497fEiJGy4hQ+SiKVpkYlHd81mUwTNTFjwdF01KskIASJ8Fz09IicplKShQWzVkUXHR9FtdEpUhegD7/R6LyD/cpahIffBW3YYg0wLPTfnNEsRF001QYcOC5xXHpJOeOUyB51471jWYRdWCJ0scACSupVcdVQReLJY4/yAumkFi8GSr0jrlAeHsg2fTRZNvuwUFaq5zovoA4cbgAU68MeAsnLAuxqpEwUWT3f/VDx0LnszbwW+S7JWwxlYMnpcFD5CLLj8XzVgs0eZU25bsPnslWfGz4ImeozL3br9rxi4Kss8S3TbnJ44zLfD4TJBeY0d5ufd1U5kbej2LdSx4Lmx9o2zBM3XRzPYkKyTwLJFOF83ly/3dc7xct8IQeCYWPC8XzUWLEok6ZLi/WVCQ+iCpUkVtss2W436PxcRFU+dh4fcA2LMn4Tokci0M4qKp4oLnVa6qwPOz4O3Z4wT679wpj8HTnVD5uRXXq5f6uQ0LXhAXTX7y4p5/kCya/LUy9SiQTdRUHmq8i6btLJpuuS6ffuq0J15AqGQDBpLHSD8vh7lznU16f/op8VmYFjwg2U2T3SpGlSi4aOrca9UsmqtXA++/n3gfpsCz7aIJyK+9n4smoO7G5/dbpha8eBz44YfEe7cMPsOtC3/vSkudPus+K2QCT3dxSDQ+ifIluN/fswf45htvT6lFi5z4tnQnWfErT0XgeT2LVWPwWFQteFGMwSMXTU3i8TheeeUV3HTTTXj88cexXXdnxSzGxkbnKgJvyRKgQwfg4IOBjz9WK5eF3X9n5041l890xOCxg9jcuUC7dkDHjsmZMXnYgG6+c1apojbZBsLdhsAPv7r9+Wfitci1MIiLZlQE3t/+5qTr7ts33Bg8FpFYthGDF8RFU/bA8SrLLwZP9XjR32WLVjrlAenPovmvfznt6bHH/Osqqk9+fmKM3LJFPoGfMsUZo847D/j88+Tv89iKwQMSFjzALA7PK+5WJfsr67rrdZwXOgJPdR+8zZuBG25IvNeJwfMSeH4bnQdJsqIi8PysUGx5Nix4JjF4H38MnHhi4j1bhspG1v/4h9NnjzvOuZ66Ak/HvZWFbxdXXAEccwxw7rni43/9FdhvP2d+Mn16ajn8a5sxeIC3gFcRePzWCV7f5zc6Fwkn1XPNtAWPrVtYWTRzxkVzxIgRqFevHr5wc7L+Rd++fXHppZfiySefxNChQ3HkkUdih0rqpRzA1IInm1CxsAPkd98lzOy33iovV3bZ2dVpQC0Oj39oXH554nUYMXiPP57ovLKBFkgMdqLEDazoC5JkJdMumqJNe1mCuGi619zPRdMkBk9H4L34ovP/hAnhuWgedljyez4bKWBX4AV10QTsuGjyZMJFM4x98PiHdJcuqcd8841/+W67vfhi5//993fq546R8bjcdY4v3yVsC17r1onXqlu3sIgseO77TFjwvFye2boB3hY8HtECoszNbeNGcRn16onP08Y2CYC5BU82VoQp8LymcoMHJ7/3E3j8vXv4Yef/n35y5jdhumiy1ld2jhCPO0noAODDD8XlXXNNQtDPmZNaDhDMgte7dyJ+fcQIvfJUnv8bNsj/ZmLBs+GiKfIOycYsmjljwfv000+Rn5+PY445puKzL774AuPHj0fDhg1xww03oHPnzpg9ezZGjRplq66RJl0umixeD0bZAM4LPBU3TbZzPPdc8sq4O3iXl+tPRGUWPPY6eO31xFrwvARelJOs+JWpI/DCctEsKxOvUtsSeKK6AfYEXvXqzqa+LGwfEP2eqByXbHLR5LHtopmpGDzemnTuuY4V4Z57Esfw7UR0rdx2+9RTwFtvJfaRUhkjZROqIG5WLOzkiu1fOoH/IkSWAp1sjukWeKoxeDw6Md6yMYp1h2XJdhdN2cJutWpmFrxVq8T1AdQseCxeAk937PC7N2w/ULmPMoFkK8lKcbFjGRw3LrGPq00XTTZGlcckBs+Gi2YsljqWpCMGT3ej80oj8BYsWICOHTsin7lC7777LmKxGN544w08+uij+Prrr1GrVi2MHj3aWmWjTLqyaLJ06CAvV/awYF00vY5jYTvHwIHJAy47eHs9XHRi8EQdVISXwGOtekGSrIS9TUImLXhue/Oz4AHicwpD4LH3wpbAu+CCVIudqsAzTbKSLhdN2wJP5lEQRJSpxuAFcdHMywNOOcVZYZfVzcuCV1zsiES3jwUReLYteNWqia0OgL5bUCwmTqxkIvCCtAkVzxXR372yaPLYEHisOyyL7X3wAD0XzbAseFWrysc3mQXPbxHMzzOCPz9e4Pntgycqw+9zF92+JBO5tpKsAI4L6JlnJsqx6aLp5YocNIumqQWPf+3+th/pzqLpN97kjIvm+vXr0axZs6TPpkyZggYNGqBHjx4AgJo1a+LII4/E0qVLg9cyCwjTgldQIB7Y+JT5LF4WPJWHCovMbQtIHsi9BhjRdZC5aPLuMrJVJ1ULni2BlwkXTfbcRTF4Nlw0/SZYQPoEHhu2ayvJikjsiPqOqFxdC55NF80gMXi2XTR1f5+Fd9EMI4umi9eKspfA47Et8ILE4PETK93FDtF3vQSeTLDYtOCpLGy6mFrwRDF4svqlw4Ln56IpsqrJXErDisGrUkXfgjd/fupnOha89euT/7ZtW7hJVoIslqgIPNvzP5sWPB2Bp2LBs+GiyZfj4rdwYhKDF4+Ti6Yv5eXl2Mm0hu3bt2Pu3Lk48sgjk46rW7cuNng5/eYQYSZZicXEExGvzq7qoqkbgyfKVuniNcB4uUfx5fICT5YpzpaLpujBK3ofdRdNXQujqoumrGz2ftvaB48VeLYseKKBW2TBE51jOjc6N1mVT5eLpt+k3wt+/Agji6aL19jrNwaxRMGC504m+YmV3/PFS3C4dePr6J5vebm4v4omRl730W9yJkumJMI0Bk9nn9UgFrwwXTRl5xiWwKta1TsGT3RfRc9n9rnlF4PHL+Bu26a/D56pBY8tj792ovsqE3im+xJGXeClYx88/rVKefzfVS14IoupS1CBlzMWvJYtW2LGjBkV7ydOnIiysrIUgbdx40bUE+Ujz0Fk7ky9e3unslbp4IB4IuI1oQ/DRVO04THbAXQFnqwcviPJMsWxSVaCZNH0suC5e8UBmcmimUkXTXagDGLB00mm6x7Lt7VsEXhBXDRNLHiytsbvl+hi6qKpK/B27QIuuwwYNCh58ixKiMT+hupkWbYK67WibGrBky2CpctFk59Y+Qk8r3FAtqjDWrRlliS+DJnA448XoeOiqZpFk4ftp6YCr317/zrZyqJ5992JGFAX2Vgnew5v2QKcdBLw2mvedTEReIB47BI9n3/9NfHaz4LHiw4vC15YSVaAVBdUUTvxSl7nkimBp/L8d6/1jBnAyScDL7yQ+JvIRTMdWTQB8bn79W8TF00vzwHVLJqvvupcux9/TD42Zyx4J510EpYvX46rr74aH3zwAYYNG4ZYLIZTTz016biZM2eiZcuWVioadWQumvE4cMYZ8u+pPuh0LHjxuLcFr27dxHuVLGzu74hWWoNY8Fi8VnFF++GVlSU6lCwGT9VFkx3ERNfZrVsY++D5HcveH9EG3TYEnkpyn3S5aLrH8u0hUwIvnS6aNmPw3M9r1kz+PF0C7+OPgZdecrLSsWHYXhY8QO3exuPhu2iquLFnyoLn1xe8xmH3u+3aJT7r2tX/fEX9ibXSex3v93c22kPUNkwteCx+11+2CCWLR7OVZIUf02+7Lfm9qgs2e36ffQZcdJH3FkgmMXiAWODMm5f6GZu12M+CpyPwbCRZkQk8/jnl98xjsZVkRYTNGDzXWjpsmJO1+vrrE+fkZcHLzxfP0VRdNMOw4MmscV5JVrzmBSpJVnbvdrZ1mjAhOaGXSn0zgZHAGzZsGJo0aYJnn30WZ511FhYsWICBAwdi//33rzhm+vTp+OOPP3DEEUdYq2yU8doz6rff5N8LYsGTDR4lJfLGVlDgBPG6zJ4t/00X2Wo5oJ5khe/8EyYkv/cSeCIvX97qFsRFkxVRDRqk/t0dYDMRg8eep2hlKsxtEtg2JyqbfSDwD3FVgcffG/dYr9W1TFvwvCZAbj1lmUcB+YPYxEVT1n7c73z+ObD33v7H898Dku+prsBj+xQ7AfSKwVOpH+DtZsNeQxUXTZlYt51FUzfWx51MAPoWPK+Jnju5Pecc59+BBwJvvJE8tvgtdLi/f9RRwOmnO99t08b72nuVd8ABzkRz//2Bb79NPdYkBu+NN5Lf68Tg3XOPcz7spuledQoSg9e2bfIWA3w2Stl15C30oufnL7/I62JqwRO5KLLPgaOPdrYsueMO77qZWvDC2gfP/V0Wnee4aQye11jmoiIY4/FE+xJ5+rjtZfVq59ipU533O3cmtoHxisHjEz25qLpoiuodlgWvalXHGs7i3gcvg4rfuF1e7jzX3D7A7lHMlx0VFMLoU2nSpAmmT5+O559/HmvWrMEhhxyCCy+8MOmYX375BWeccQbOOussKxWNOiqbAotQDTbXcdH0crssLAT22ccZxHft8nYfdbFtwVuyxHmA8vWSITofFYGn6qLJxgCIBkfd+AYdF02/Y1n3WD/LgO0YPFsuml4Cj6+ze1/59mA7yUrYFjzA6dui306Hi6Z7LoceCixYoN4XZPGorMDLz0+MW7Ly2HNk+68NC57XmBmLJepny0UzExY8L9eoIALPrXNeHvD224nP/RaKRNe8oCB5+5HevYGJE+X1YuH75xNPyI/VzaL5wgvA+ecnf6bqolmtGnD77c4/L2y5aALO1kNffAEsXJg6VqoKF9Gi06xZjnVWhJfA82qfIgseey8nTPBekHAxteDZcNGU1U3FgieDrVcmXDTZPtuiReo1bdnSMTSsXQssX568aO4KFq8smrLM5qpiVvQ3P4GnY8Hj28UddwB9+wKdOzvvTV008/OdssvLne+yc0XRxvBRw0jgAUDjxo1xu8coeOGFF6aIvlxGlmTFjzAseF4Cr6DA+XfAAc6mogsWOOZzL3cb2wJPVI6XVUQUE8JvTh4kiyY7GIrcIDPpoun+pkwA61rwRMkSwnDRdFf84nE9gecSFRdN0xg897s2BJ6bSU80uVF54OflJe6FqcBjKSpKTPRUBB7/3aAWPD+39oKCZBdur7KzQeDpZtH0Godlf/MbR1Syq+pYLnSytepa8ET9U1XgeT0HWWy5aLq4IkbVisT/puj5IItdB+RxpVWrei/AiCx4fovUos/Y+ouSrGQii6apwCsokJdpQ+CpPOPZfl27tvOPvcetWjkCr7wcmDw5+bvuWONnwROh6qIp+ht7zURtztSC5yLq87oWvPx8558r8Ni5Ij+WRtGCZ+Sieemll+Kll17yPW7UqFG49NJLTX4i67BhwQtD4Mn8jN3sYPE4MGeOdx29BJ5JkhVROboWPHag87Pg+QkCt9M2aOBdt0y4aHpde0Bf4LGDoo6Lpq7Ay8tLTJaiKPBE2yTYzKLJ14FFNQZPZZNVFYEHqC92qFjw2HrpnqOfBU9X4MkeyqKyskngsRNpXQue1zggmzT5eQJkUuDpWvCCCDxWTHhhYsHzWjxxx8o9e5KPUxUuoueDl3eOyTYJgL8FT2YF4bEdgxeGiybfTlTi74DkfSYzYcGrUiXVE6lVq8Trzz5L/pstC57Xtfbby9G2BQ/wF3j8fZPF/7LzSC+BF0ULnpHAGzVqFKZMmeJ73LfffotXXnnF5CeyjrAFnmjQVRF4fBJTt9Gz6Z+9VvoAOzF4bF39gll5VFw0+TLZJCte2fni8cQKomifObcsILMuml7WFBcVgSe6DyoWPL8YPNFEOYjAM43Bmz3bsUibWPBE90I0wVLZ6Fz2XUDfgierm9dvyASel1CcMSO5bux5ihYGvH7fS+B5jXNBXTTZz2xtk2Aji6ZrRRXVS0RYLpoyct2CpxqDZyLwbFrw2LoA6sJFJvBE4rO8XNymq1Rx2ihfFttHRBY89nr6Jclh6+DCCzyTjc51kqywsO2CTwTClykbB7zGoPnz5fv4AmpJVtj7UVLieF7x95+fD/FzmRYtEq/5/AcyC96ePeFa8MKKwXMR9XkV936WSinwVCkrK0Oe13KtB6NHj8ZFF12EAw88EI0aNUJhYSFq166NQw45BMOHD8c2j1njpEmTcMopp6BBgwaoVq0a9t9/f/zzn//0/E5Q/ASeSpICW9sksIKofv3kv7l1Yzdw9RN4Nlw02fPUddHcssV/QPNy0eR/ny/bHdhE8XdsfTNhwfNz0XR9xNljVX8vzG0SALnbEYtNC95TTzk+9127JrcP0fnVqqVWl6AumiJMBJ5fMhUeXQte375OcoR33kl8JuuTQQReUZFdC57XpuJBXDSrVUucpw0LHqA3jnjtPxXERVOGbYHnd442LHiy/iVqt15WENZSoSrwwnLRBJLHS1XhIjrnzZuBZctSP9+2TVxnty/w/ZP1dhBZ8NiMtn6JOPjvAN4WvPz85PE2ky6aOgLPvb/btzv5BmT7z+kmWenfH+jWDbj44uRj+PkQO5cpKgKaNk28d5OquLhtnx83du5MXL+gMXhRtOB5PTvYct2yy8uT7yM/TuaMi6YqCxcuRG2RL5QCzzzzDF5//XWUlpaiS5cuOOecc9CtWzfMmTMH//jHP3DwwQfjjz/+SPneY489hl69emHChAno2LEjTj/9dGzevBn3338/unXrhnXr1gU9LSF+Ak+2f4qqBa9TJ+d/NkbMxILn1m2ffRKf8Zm7eNIRg+e32S0/KOkkWQHkg4XfPnNs3YLE4MkGyKAumkDi4a4r8Nwyw4jBAxKTFq998FQFnsqK+XXXOf/Pnw/873+Jz1UGcllddJOsBHHRlGXR9CqLvS+sN/zVVycf5yfwPv449TP29226aNqMwQvLRTMWSywC6FrwZIJFR+B5WfD82lgYAk9m2WVht9/5/Xfv37NhwbPlosmK6TBdNG0KPBULHgCsWJH6mWw8lvUFdjHMy4In69deMXjxOLBxY/Lf2I3Oi4uTBZkNF80LLhDXjb8ufDvx2nqKh70fO3YAjz/uXz+VGDy3b7Nbz7Cfu8fzAs9rtzKZBY89X1lsqqpnjZ8FLxMxeCrxouzzKqeTrNzDbfowc+bMlM9cSktL8csvv+C7775Dz549jSo2YsQI7Lvvvikbpa9fvx5nnnkmpkyZgqFDh+INJh/yjBkzMHToUOTn5+PDDz/EySefDAAoKSlBnz59MHnyZFx11VV49913jerkhV+Sle3bxZN81Syad94JdOgAdO8OHHyw8xCWTRTYCYnMRZN9CKq6CWZS4G3alDyB0EmyAsgflH4ZNN3ygWAumjVrih+OQV003b/t3GnuoimboAR10XQnLbt2Ob8rusey8w8ag8dmCVN1mbZtwQsag6diEWE/v/hi4NRTnUWgffcVl6Wzyihz0WQ/tx2DFxUXTcBpv+vXyyfEmbLgeWUK9aqXF34CjxUd/N6KLm7GOsBxDzzySPnvhWnB0xV4sngvL0wseF4xeLoumipJVgDx4oSs/akIPK8YPBXLrot7Xjt3pp4La8Hj70eQLJr33ONkemXdFXUseKYCD5CPh7oxeDK8LHhVqiT3TR5ZDB5rC2HnXiyxWCLLpK6Lpp/1MgwLnt+zg69H9erqLppRtOApC7y77roLsVgM8b9mgzNnzsRMH9++GjVq4A52QxQNDj30UOHn9evXx/33349jjjkGE92czH8xfPhwxONxXHLJJRXiDgCqV6+OF198EW3btsXYsWMxb968pD37bOBnwdu2DWjYMPVzVQte9eoJs3xRkbfAU7Hg6cRueQ3gJklW/JIQiOAHV5UkKyqTbR0L3p49jhgSuaGwiH6ruFjsi2/TgqcycRRNrFQEXhALHuBMklUzV7J1c9EVeOzEJp0CT6We7nWrVi15wmTiosl+XqUKINuVxkvgySaoYbho2rbgheWiCfi7GMv6m58lI2gMnvsbokyhQDgWPBURxMZ1+22/E6UYPBOBF2YMHrugENSCJxIlQQSeVxZN2X30iq8S9S0vgRfERfP88+ULX6K68GXqCDz+M9kzw5bA4+dDbAxelSpOkhU+s6aLzILHCjwvR7yCAuf3vdyJRXMMvzlhGDF4ui6aXgJv9+7k+WBWW/DuuOOOCoF3zz334KCDDsIZZ5whPLaoqAh77bUXevfujUaivPMBKfjrLlRhes3u3bvx8V9+RgMGDEj5TqtWrXDkkUfim2++wbhx4zBs2DCrdWIbi6ixySYJqgKPxc9l0KbAi8fVLXgqG53L/PS9LFRA6uDq56LJTyRVXDRlSVb4bIZ+ExKZwFM9lsUvBg8I7qIpE3i2YvAAp/3rCLygFjyvTLIyVF00gyRZKS9P/E6NGt4CT9dF06uNeIkL2fWUuWgGsVL6xeDZyJBqw0UTSHYxFm1TkSkLHuA9qQpD4LGiQ+au5YYRAOqJu4DMZ9FUOTeeqLloysYkkSiRlSkTIX4xeH4uml7WGdG8aOtWfQueiqXTTwSEacFTcS2VnZvf3Ajwt+DFYk7eha+/Tv2uzIK3fn3itejZ7eKORbqZTNnrKzr3dGfRBFLvU7VqyQKPvSaAc95uv8lqgXfXXXdVvHYF3p133hlGnTzZunVrRV369OlT8fmCBQtQ8ldL7datm/C73bp1wzfffIMZM2ZYrxfbMESrJGEIPBULHp9kxRVXqhtks/Wz4aIpm4T6rVLx19Qvi2Zenn0LHuBcK78Jiei+yGLwgrjHuugIPL9spix+Fjz2HqgIPBFRF3i2XTTZa+aVPIMvS8VF01Tgicpms4cB+jF4srHAhgUvnS6aLiUlqZPNMAWenwXP635myoJXs6YT271okZPNtqxMzeJi24Knm2QlXS6aNrNoqrpopsOCZ+Ki6WXBW78+cd42LXh+FpswBd7WreLv6iZZkeGXZAVwLOwigSez4KkKPNmCmovK5+mKwdPds7F69UTZ27al3kdW4GW1iyZLueqIZoGJEydizJgxKC8vx5o1a/C///0PW7duxUknnYQHH3yw4rilS5cCAOrUqYOakiCBFn85X7vHytjulRVCcgzbOUV5XGQTXNUsmiw6Ao+34Lm46ZD5fXd4/CaQYQq8goLE9dG14Lnfd7ERgwfIr/natcAttwD77Sd+KMsefl6DArsxtV8MHmCeRdMkBm/48OQNU0Wix6bAYwfw2bOB884DzjgDEBjrAZi5aJaWplpqbLloTpwIPP98cvYz3loQNIumqcBTsVLasuD5xeANHAh89ZU45uOnn5x2x7oCpsNFE3Ae7Pff74ztjzziTHplbdcv3bkNC57XHp82BN6HHwKvvgrcfDNwyCHqIujAAx2Bt2MHsHAhIIuEyPYYPB0XzV27gBtvBL75Rlwf/ndtJlmxLfC8smjqJFnxsuCxi66qAu+884Dly5OT0LG/I/tuWAKP/y3Zd01dNPkxxivJitsfWAs7i8yCx14PPwseoJfJFPB30QxqwXMzYJaXm2fRZC14fDIgwLnurtzIagteppg7d27KXnoDBgzAo48+mpShc+tf0rqGh49F8V+jxRY+JaPkOB3YBsampHVRieNQnYj6TejZya2X73RRkb/A83sQ68bg+WWYY9lrr0SaZ68YPFGSFUDN6rN2beK1zJtYZaPRIUNSM1ux8BPWWCxZwInw21rCJagFTzZBkVnwfvkF+Mc/kssR3Ve2K+oKPK8YPPc6v/22I/JEXV7Fgrf33sDixcmf7dmTPEHUzaIpEz+9ezv/jx2b+IyfuHu5aMquk+pE2abACzMGb/Zs4L77gBEjUv92yCFOW2WvYTpcNAHgpZcccQk47e2xx/STmejE4HltdO5Xlo0kK65zzLvvOvdeR+C592fOHDsCz0YWzTBj8PxcNF97DXj22eS68GEKQffB03HRjLoFj/0NfmyXxb/v2uX0SbePuugIPN46w7cTnW0S+Cmm7LsqAk/UJsvLkxcj+Ri8hg0TC+SuAOnQQVy+zILHoiLwZG1VZXGyWzfg55+T/+63cKLi3sq7suu6aLIxeCLYOW8ULXiBtkn4448/MHr0aDz00EO45557hP/uvffeQBW88cYbEY/HsXv3bixatAgjRozAp59+ig4dOuBrkb05Q7CNYMAA4Ljjkv8um+Cy1r4GDdR+y28l2G10VaoEFwa2LHhu45fVR/SA2muvxOuwLHjsw0SWHU5lou0l7gAnyPm664DmzYHPPkvUzWs1n/0tWwKPfxB4IRN4S5YkHycrRyU+08RFk0W2VsM+rGUTj3HjnD2KvOoTRhZNFz+Bx06sZC4+YblohiXw/GLwAODRR8Wfix74QV00vSzj7OSSFZWjRjn/6wopHQue3yJdmC6aIgcWVRHUunXitWAXowqy3YKn46L5ww/yurjIFsO8Elf4lQmIhYWsTJnAY8cpkyyaujF4LPz94AUee94//pj6fT8XSLbd888Svp3I+pXourFZnIFgFrwTTgCOOir1c/Y+8vOhwkJg2DAnr4C7fdDhhwPnngs0a5Y8xrpzIK/xLAwXTfb6PvxwsmcGENyCB6SOuboumqwFTwR73XPKgjdkyBA89dRTKPvrrOLcMpabkCUWi+H2228PVksAhYWF2HvvvTFkyBAceeSROPzww3HBBRdg/vz5qFatWoVbppd7pbvReS3RLseC47zYsmULmjVrVvGebQSFhcAXXwAvv5zYm0pWpEqSDx6/iYLbUf0mUyr7u+kIPJVydFw00yHw2ImobOKu4qLpR5UqziD2xBPOQ6qgwCnLSwSwv6XioqmS5ZO/boC+iyY/2Ktct7AEHjuoutlleWQTj06dHAveaacBn3wiro9ukhWdWEF+dZo/R3ZiL5sgZMJFM0wLngxZGw3qounVV9jJJTv5c7+TLoEnmlyF6aIpckVSFUGsa5goa7CLTmiCrgUvHTF4OhY8PqOoqH5RdtFkP/fKommyD56uwOP5808nLGLtWuc6888/PysP++zixTB/nWTXTeRC7bWnHIuKFapqVce9t7wc6NnTmVu69XHbkui5fs89wN13J65HLAa89ZZzjebMSRzvinavcckviyYQzEWzXj1g+nTgyiuBF15wPgsagwekjrlBsmiKyEmB9+ijj+Lxxx9HLBZD79690b59e1/RZJNDDz0UHTp0wC+//IJp06bh6KOPRuu/lg43bdqErVu3CuPwVvy162drdplRgJebp0sZdzdFjYCtgkx3qiT54PFLi88KPK/GmU4Lnp/AY/2lXZo3T7w2EXg6Keu9Jp4qLpp83Xnc68QmudmxQ13gqVjw3O94CRDeVx/Q3yaBrzO/WimqV1gCj32QFheL6+JlIYjFvOuZSQseO7HPJYHnZ8EDnPvIxg/ruEfpuGh61UUm8ERuUSrobLfC3m+RwAvTghdE4LGLlOyzjSfbLXiqMXilpY7bsawuot81cdEMU+Cx1zPTFjyeggJnX+DPPnOSgvz+e/LCsJ+FjG33pgJP5ELNIxu/VZKsuOTlyRebRQIPEI8xsVhynV3R7iXwwnDR5D939/d0UbXgqRgxgmTR9CqffQZE0UXTSOC9+OKLKCgowMSJE3Ec74uYJlwRtvavIKp27dqhevXqKCkpwbRp09CjR4+U70ybNg0A0KVLF+v1EXVOlSQTKkk+eFjLm2iioGrBU9k/za9D6Ao8r4e5u2G3i6oFr6jI39zuNxH1isVREXjVq3s/rPgJcxgumu53vASeyEVTd5sE1ZWqIAJPlBVVBNteatTQF3hA5gSeX5IVFYGnG4PHx24A6XfRVLHgzZoFsEO4TCz49Xv2XEXnaWLBy8uT70HnBV8vr+ugKvCibMGzJfB0s2jqPgvYc1PdJkHVRXPhwtS+oCPwVF00w4zB87Pg2Y7BY/ETePn5jmvfZ58572fN0hN47FjOu2jy1172rJJlyGYJ4qLJImvHooVbL0Rut5l00eTLAtQteF5zXH4hzCSLZjZb8Ixi8BYvXoyjjjoqY+Ju3bp1mPWX38N+++0HwNl779RTTwUAjBkzJuU7v/32G7777jsAQN++fa3XSdTIVASe+xCsUUN99ZDfl41HV+AFseCxg8mcOfKHh18MnuhvIgvepk3OKp3fRudAOAJv9uzkssrLgQUL/FfxeFHg1m3TJuAvw3IKJha82bO9B0ZTF810CzwTC57OBIPFq566SVb4FciNG+Wuanyb0RV4GzY4fcFFxYLn1osliAWPLysed/qDyGPBXaFVseDx+6jJxIJOvw/iosn2m/x8M1dtlYUiF/Z+i9yjvCZVQZOs8Isk8Xjy/fR6TtWvn6ib7J6Vlia7iNneB090TzPloinaD9BP4IW90bluDJ6fBS9IFk32XEUL3KoCz4W/3joCz89iF8SCt3Wr+LrrCjz2Pq9YkbA66sTWA+FY8Nws1PPnJ/cJFRdNF78M1oCTpXf3bj0L3urVjjtvkCyaInIyyUrNmjXRVJQq0hJz587F6NGjsVOwDLxgwQKcc8452LVrFw477DB0YnK/3nbbbYjFYnj55ZcxYcKEis9LSkpw2WWXoaysDP369cP+stReATC14LkPQVXrHeA/UciUi+Z33wHHHit+4Kns58b/rWHDxGebNzsdtGVL599XXyXXQfSbOi6aXoMiO/k57zzgzDMT7/v1A9q1c+rmBV++e17r1jkJWJjmWoFqDB573Y44ArjwQvmxNmLwVAeydAs8Wb0yZcH77TdnkeKv3VlS8NsHz0vg/fGHUy7r/qUq8FRcF00teLff7vQHUVIY93sqExlVgefnZmNL4LHk5ZmJKBOBV62ad1bIMFw0eYG3e7e6lSs/P5GNWLaw0bcv8PTTife2LXgiMpVkhY+/A/Ri8Gzsg8eP70FcNE0seKL+LrLgiXIQqAi8Aw9MvOfHDT8XSK+xPEgMnghRQjCVGDwW9j536eI8A/78U+6iKYO34LmeHSKKirwXwFlvggEDnMy5N96Y+LtNC94TTwD77usknXGvnaqLZosWjvjk6y37faCSWvCOPvroCgtaGKxduxYXXHABGjRogKOPPhr9+/dHv3790L17d7Rv3x5ffvkl2rdvj7feeivpe126dMGIESNQVlaGU045BT169MB5552HffbZB5MnT0a7du3wLJuv2CKiVVY/gbdrV8IdRjXBCuA/cU6nBY8fTP73P2+3EF2B58YxbtnipEHeutXp+PwebMXFiY54xhnO/2FY8ADg448TK2fvvy//HovMggc4D+CTT079jokFDwAEBuwKdAQeu8rnNZANHOhfr7AEHlsv2QPYpgWvbl3vxRj2tyZOdB6esnoFcdH8979TJ1umAk/FRfOppxKvr7lGXta//y2vg1s//jzdLSRY+AyMpi6abFsVnefRR4vLBeSTy1gsfQJPtnJu6qJ5ySXiz70EXkmJnghy+8eaNamTtM2bgY8+Sv7MdgyeCK9r77fnoAjVGDxVC55uFk3VbRLKylKt6SoC79ZbE6979EiUz6+5x+OJusjuY//+4noByecqshn4tbW8PGfC78J7w+gkWeEJYsG74YbUz0TzIhWRwiLaQP2++/QFXlFRYpGipMTfeue1EMZ6E7hT8iefTPxd5o7tZvdk8bPgucJx6lTHU4T/Dg97vXbtcjKLiuoi+6xqVW+Bxz4HoijwjGLw7rjjDhx22GH473//i8svv9x2ndCxY0f8+9//xjfffIN58+ZhxowZ2LNnD+rVq4cTTjgBZ511Fi655BJUEbTkm266CZ06dcKIESPw448/Yvv27WjZsiWGDRuGYcOGSTdBD0rnzqmf+e0Dxu7BlkkLnhtPIjpWJwbPhZ9gsKtDfjF4bLn77ZcYPHftklvJXBfNn38G/u//Eg+UsAQe4PyW1+SQRxaD54VJDJ5Laan4N3R89dn2K3NFaN7cEd5+9Qoag5dpC15BgfPQOvRQb5cctp6yxCAuOklW+LJ4V6lYTC0WATCz4F1yidNHGjUCunb1/q4Mt0z+Xl5wgbPyW1zsWMSB1IelbRfNoUOBc85JTuTCI7NUmVrwdOIz3fstE3heLpoigdeiBXDbbWqLMXwM3o4diedXfr7/BNJdrCwtdcQiu/0Pv9cVYH8fPBFe117XvY2vk5eLpmgdXDSWFxY6v71rl1zguXunAuoWPMARFqxQUhF4d9wBtG3rzGvcPdV2707tlypJQvbe23kuz5oF3HRT8vfYc2Vj51xUYiILCpzjtm9PnWfpJFnhCRKDd889zvzl1VcT22SIngfudVDNLCzbc499Jqm04VjMqff27U7/No2/Y+ski7tm78FFFzmZQGvVcvY15dGJwXN/T/W5B/hvrs4en5/v/1yNuoumkcDbsmULhgwZgiuvvBITJ07EaaedhpYtWyJPciWOOeYYrfIbNmyIf7A7KWvSs2dP9OzZ0/j7JjCeohX4WfBMMmgC3gIvHk98pmrBc8sRNXhdCx6Q2tFVN+xmf6tjR+dY96Gzc6f8QeqeR4cOyZt5+rloxuNqAk/0EJg5U7w3jQyZi6YXutsksGzZIp686iRZYR+u7D1lr+VNNzkTAL96BbXgqSRZsSHw+P7knmudOsDf/uZdDv9bssB6Fz+B57VNAj/x8WtPMrdF0XtAvCDhuv56ZVT1QmbBq1nTsbp7lStz9zN10bzmmtQ9EHlk1oP8/HAteKWlCRdXWXpy3Y3Ou3cHrr5arW48rAWvuNh7NR9I3SqBFXgii1amLXi61g9AzUVzzRrxwoRsLC8uThV47DlWqeKdnZaldu2EoNi8OVk8yfose+7VqwODByfey9qbarKcHj2cNugKPJEFTyTwVF1mXYHHWyt1YvB4gljwatVy+tuKFQmB52XBUxV4on4aj+snWQGcem/f7m/B89oiAfDvv2wbKSoSW3RdVGLwvL7Dw18vdislv2eHbEGSJeoumkYC77jjjqvY527s2LEYy+4CyxGLxVAaRWlrGdFKEzuBsynwvCakvChQFXi7d4tFjk6SFRd+BVnV1ZC9Hm7gNCvwVB5MLH4r5m5QMPs7IkR1njVLr0N7uWjKMHXRBJyHiUjgiSYzsgmKioumqkVWNiGWPVhMYvDCdNE0WWH1E3h+++DVrJlYtefL4sWhn8DTddH0Ks9LLPIUFyfGPlkMnnsuXuXadtFU6X+qMXiFhWpJV1QFHhur4+eiCaRmRRVZ8PwmfV5/Zy14KhNuPpNmx46J9yKLVqZj8EwEnoqLpiyKRda3atRwUv3LLHiFheoCr3HjhMDjxw7dGDwguMADxNeMPVc2qZqLqsArLnY8omQWvFhMvDARdgyeX6IsWwLPxArt1tsrjADwt+D51d3Glihe6Ag8dislv2eHrsCLoswxEnjHHHMMYn7LeJWItm3Fn+fnO52Ij2FwsWHB4yekqlYf/u8qE3BVgcc/hFSFCosbOM0KPC8XTRFemQP5euoKvJkz9Tq0icAL4qIpExc6kxn2msgsZSouwID/no08UUuyonK/ALsumnl5zurppk3BLXhBXTT5ern7Pvr1gTZtEolg3DL583QXErzKte2iaVPg1arlTMz9UBV4flskAKlimL1ftgUeb8Hzw2urBJsWPB0XTVWBp2r9UHHRFJ0rIO8z7rWVCbwqVcTJi4DUejdpkohRClPg6WSBFHnUsOfarFnqd3QEHl8e4O8CqSPwZM8qL5f9dAk8k0UKt94lJXZcNGWoLggD4Vvw2Hvl9+yQLUjWrZtwY89JC96XX35puRrZDbtCyVNc7HQgUdpw1u1IJ8mK18OK7ahFRd6Nzk/g/f47MGhQ4r2oc4p0vpfAU50ouxY8d7AqKwNWrhQfKxvQ/CwNQQTeTz8Bf/+7/Ds8qi6apaVO/EM8DrCezUEF3tq1wJ13Jic40MmiKXPRVBV4YcbgvfkmMGmSPLmEicCLx4H770+0uTAseH4CD3Aerq7A+/xzYPRoJ9Cc/67fOdoUeG55u3c749rNNzsPzrvuSj2udeuEwPOz4LHllpY69/P2252J8rx58nrwsOVv2+Zcr3r19BeabAs81Rg8FYHHlxW2wHOfXyYCb80ap2106pS8PYJLOix4XtfeROCpuGiyFrxGjRIx96K5AJC4ttu3J6yy7DmqZlIGku9BNljwatQQe5zoCjzX04dPQiQTAV5iSMXTAdC34LnjWtWqiTJVk6yIrrGpwLNlwZPdd3ePZtUFYf7vNix4fN3Y2HVTF82WLRMCz30OvPACEFL+xkAYCTwimeOPl//NdR0QrbylQ+B5dRK/Cfi//pWclUrV+mYag8fiJq1hHzq//SY+Vvbg85tQsYOibgweAPznP/Lv+JUhGxRfeAEYPtx5za4A68bg8Q/1q68GeE9q93syC7SKBS+oi2ZQC97vvwPXXiuvA2Am8CZOdNq/3+97/ZZstd2Fb3MygQc49/PEE53XY8c6iwAstl00VQXe3LnOPwDYZ5/U45o0cc5z587EhEJmwWPLLS11MtQ+/LB3PfxWYW++ObGowZ5TUAsee81q1fIvC1C34LGWXxWBxwsdE4Hnl6TDbTO6Au/334ErrgA+/FB+fKZj8Nw+X1ioPtFWcdH85Rfn/4ICJzHRp58670VbDQDJ13bHDkf0sH21bdtEdtn27ZO/K3LRdOGfBbr74AF2BJ6XBa+4WNzWdQUe4AhkN27Mz0Lm1S9s7IPHnpPrgfSf/6SOa0EseIB5DB7gnJdof0MXvxg8Wd3Lypw2YboIoLJfK/8dv7qxfc/PYCHzOGnVKrF4s2uXs/UCG68aJYy2SSASHH64d/C624lEvvMqsRYivFzfeIHnleHLbwI+alTye9ngwq/cm7povvaaE3d0/fWJ68E+dGQub5lw0dRFxUWztNSx0Liwe+MFteCJwmTdOt16q+MSyyedyKQFjz9fWfJb1w3JC1OBp1OGC3s9vPoekNrmRNfS7QdsH9q2LbXfp9NFky/P5Z13Uj+rVs2xdNesmUhS42fBc+vEb5UgQiSu2LqxFmu2rancz2rVxB4KIgueCmG6aLKI+pRf+8jLk18T1jVeZcK9336J17Nne4s7wG4WTdl4pOKiqWr54Osk6+fuZLJmzeT76GfBAxLCh723V1wBHHmkE6vG9zW+v7LWMH7ybmLBk2Vt1XHRFFk9WQueqK2LchuMHOn0ufvvT3zmt4+gDRdNEwseu+jlCv5XXkk9LhMummy9RXv0ufj1eVn/deuk46LpZcGT9RsvgccvsrLzGL+s8TILHpsxf9cuYMYM+e9nGiML3tdff611vG4WzWxiwgTvyZA7aIpWVU02WAW8Y/BsWvC8fpflzjudjutaPEwFnpsune2wXg8dl3S7aFar5r3iJYJvI6LrsGWLPEOdrRg8Fve61ajhDFLxePI1Y6+rTOCly4Inm+iqbOpsIvD43wuSxlrldwFvCx5PFAWeaKypUgW4917g7rsT5+dnwXPrxJ7ja685lqFevZK/K7o+KvdKZdEmFnPGZX6SEAWBp+py6KJyTYqKxG2B3c5H1YLnuiSqbJdr04InK8u2wFNx0WQ3AGeFiqrAa9w4+RyrVgWmTElNqgN4j5dez2OWsC14bsr58vLEebGuv3xbr1ZN3G6vvdZZVGevQToEnkkMXps2jsDfujXRF0SCMBNJVth6e8WLe50f4C3weCu033l6WfBMBJ6X67yo3vz8GUitc5cuide7dqlb/TOBkcBzs2iqUFmyaMpwB83S0tS9ydgGayrwwnTR5PEawNlBK0gMHt9ZVASeqYumqsDjy2/QIHVDVT/4QUJ0HTZtkg8WQV00RbAPAlGWsfz8hItF0CQrQWPwqlUTZysM2m4BcT15t5QwBB7/IBYNqTL3GL49+1kLw3DR5BHVwe1XbLtWteCx9axVSyx2RJ+p3APV+1Sjhj2BF1YMnoqLpgpFRWL3QdaCp7IvWSzmeAR8/rk8MRZLOix4KoJY1bWNr5Os77ECj23jKi6aIgueew6iZ4RomwQXVYHndR9Ukqyo9ClX4LmJlNy6FRc7YwWbxt6rrfHXQLbnsNtGMhWDl5fnWHy+/dYJMdm4UXxeQZ4vNix4XgLP6/wAed3dOtnKoilKVAh4C6x16+R/UxV4bD3q1Usek3NS4MmyaJaXl+O3337Dir9mv4cffjgKbfi3ZTFsZ9u1K7lRsQ1W5cHpoirwCgvNBV55udPZ2AHc61bK3PkAsxg8UbkiiorkVq+wXDRr1/YXeO6mtS4qAm/zZnsWPL8Mjm4d/aha1WmnmXbRjMWc684P2GFZ8FTulwjVBzWgJvBULXiy1U2XTFnwRP3KxIJXWCheSRYJYNWJpgqihTde4KkuzplY8GQC38s7IYjAE6FrwQOcJFmff652bDZa8FRi8GQWPBmqAk+ElwWPbw+yxQWvNXsVC57K2Jef73ynrEy8wF2nTqK96Sx68zF4Lulw0fSzcB10kCPwAODnn8VtQXU8UonBi4oFzx0jbWXRlAk8r3bn5Xoq+p4oc/nChYnPOndOvr67d/vvC5pJjASeXxbNn3/+GYMGDUKNGjXwySefmPxEzsALH9FKU9Wq5q5dboPctCmRoIA9zkvg8a6eGzc6jbd6dce0zXcwr87iJfBMtkkQlSvCayIaloumSrykn8ATXQcvC14YLpoqK9YigWcy6eCF3IYNTtmqAg9wrjsv8PyEjV8dAXF/4ttwOix4InJR4PHXkn3vJfBEK8kmLpqFheoPZdkkk223fivc7O+6pNtFUwXZPdeNwQMS29yoYDOLporAW7vWsaK59829l+ly0ZQhEngmi2mAmYtmUIGns7BSXi4OUbEh8HRcNG0kWfHr/2xfmDnTvotmeTkwdarzOi9PvSxbFjy/GDxbWTRNLHheqFrwFi1KfNapU6rRRrY3ZRQIxbjYuXNnvPfee5gyZQoe9kuDluN4CR+dvYVY+InCggVO4HXz5smZJnVcNKdOBZo2dVLAbtgg3nfKK6FFpgSe10PZloumicDzS6Ahc9HMRAyeF+w+hC5BLXgzZzp7HrVoAaxaJf6uTODxyAZ9Fr+Jh0iIelmhg/wWi4rADkPg8RNjWy6aomukYsETlcsLvIIC8UqyiYumzj0Sjc2lpcntWdX7Il1ZNEWLJn4uvIBdgeduc6OCqQVP9GxTEXhTpjiZ8Pi9rGwnWZG5aMoIy4KnKvBU+yWLroumey/LysQCj02mpbpwwn4f0BN4BQXy87YRgwck94WZM4O5aIqei2+9lairThtm6+21eO93fjZdNE0seGELPJYDDkgVeDKX6ygQmvdo69at0b17d7z66qth/URWoCLwdNwzgdSJwjXXOI1syxYnA6VLURFwxBGJ91demVwO24D//nensa5fDzzwQPIWDi6XXCKvk6rA05lc8eWKYDO28ei4aHoNjHxH90sbDACPPAKcdVbifatW8rq5ZDIGz6VBA+f/vfZy/vcTeCZJVgYNctrahg3yDFSiuCbRZNdvKwLA/+GpYsHz8uXX+S2WIBY8/qESJAbPxIInmmiIJkAqFjwWWQyeyIKXlycWHH73wLbAYzdoPvlktd/1WjBYtizxulEj8THpdNFks5mqjH2A97jMkw4LHv/5unXAY48lxy/pxODpWvDOOCPxOb/FiYvIu8dU4LHt1ut53KFD4rXXfr7ub8fjyeer66LJWvDYMczt2+x5qCxKuJgKPEA+DrPnFo/L+6yfEGX7wu+/iwVT0G0SRL/lh6rAC2rBs5VF00TgsVsdef2WC9s33PFg2LDEZ336pO45qptwL50YuWiq0rBhQ/z4449h/kTkCcOCx2+TwMZIsBaRoiJngvDFF85E+vLL5eWwbNqUbMHr3BkYMgQ46ih5ndIZg/fEE8DSpc7fLr1U/t2wXDT9JjnPPedkAz35ZODQQ4Fjj00d1GUumpm24P3vf04K7vPOc96LBF7QJCsqCWrYVMQuYVnwVASeSrIIld9iCSLwVM6bxbbAE01SVAWeiqWgrMw/Bq9OHXF/CduCt2dPqgVv2jRg0iTvRTAVC148nsi217y5ePNnIL0umuzihup+ra4brMok3WYMnso2CS7btjnXzq1jmDF4bds6GbfnzUt9DrsEcdHkz0/1efz00473zuGHez/X+PbmthVdF03WgieKG2PPQyc3n0zg+SVZcX9bNEln+6hXXfwsXGy/cuMPeWyFALzxhlo5fL28PECCZNEEMptF89ZbncXiW25J/ZuqBe/WW51xuHt3J0Mw226jbsELTeDt3r0bU6dORXUdO3sOIhtoy8uTUwTrwLuUyR5MbgM97jjnn+zvPHl5yQLvn/8Ezj3Xu07pdNHs1St1o1cRmXDRPPHExKaXDRqIBxa+bi5RiMHbZ5/kFStW4MXjzqQtqIumSjpt0ebrphY8PxcOFYHn5VLHki6Bp3LeLLYFnmhYF12jIBY8ftwoLExkdQXU3BdF6IxBKgKvqMjZyLprV/XflbWn5csTfdcrji2sLJp+sJuY+1FQoNZvbGbRVHHRdKlWzSw5BV8nFRdNAOjd2/knQ5QoRFVA8fdO9XncsKHjveOHrL2ZZNEEnHsn2pxbtBm6CkEseLJ2z14nr2zNOgKIt/67BE2yAjiLyirzIhdVgWeaRdMkyYptC15xMXDzzcBtt6WW55dkxb0+tWsn9xE+yUqULXjWXTS3b9+OadOmoV+/flixYgV69Ohh+yeyCtlAy6r+oDF4fgJPhuzv+fnJAk/loZ5Ogad6vfweFqbbJHitdKq6+YgGFy8Lnle5MmugHzoxeG5aa0B90sH+TUfg7b+/+p5wXjGm7m/5JdRQEXiq2HbRlLU1mwLPJAZP1YInKkc1mYPItZv9XZVNwL1+QwWR+zwv8FTHNBWBx+4b5xXHJvNOKC317xMybAs81euSjiya+fmp7a5aNbP9wwB9F00VbMbg2X4ey8YPkyyagNyCp+rGzCPbJiGIiyZ7nbwWKnTaLz+uiY7xwut++QlNnkxY8DIVgye6x34WPNm1zqYYPCMLXr5Ca4zH46hTpw7uu+8+k5/IGWQDrekm50D4Ao+34Km45bDnya8g247BU41ZzIQFT1XgieqzaZN81VLXgrdli1OWSXA5C99+CwvVLXixWGJfIx2BJ1uFVEluw6PS3mwKPNX2HYupPdSzyYInEniisr0mbl4xeECytcTUgmfbRVO1z6sIvJkzE69VLXjsdVLZF1KGynmoumgC9gSejRg8tz7s9bFlwRMJvPLyRFsNIvDCcNE0eR6rCLwgFjyRwFP1mgDCj8HTqQtPXl5i/78wBZ6us1zYFrwoZdEUueGaJFlxy3KJegyekQUvHo9L/xUUFKBVq1a4/PLLMX36dLRr1852nbMKmfAJIvD4GDyZOAliwWOTrJha8H76yUkA8/33ib/pWvBEg6/q9YqywBO5UW3aJHev0hV4gHfgtOpkRtR+dVwu3LrNnAnccIMTZK5iwROhmuCBxVTgmbq5qU6YqlRRS9WfTTF4opVMkVD2urZuPcvLxaup7Gey9hC2i+a6dcA//pF4r9rnVawTqhY8tqyrrwYmT3Zem7ZbwP88atTQe1aFacGbPBkYM0avLP5veXliN0EV2Enl1KnOPfjpJ+f9s88mu+anw4LH151dwLMREy9ru0GyaIqsp6YWPNN98Njf5lG14KnALlyJFmFsxOAFseB5PU9MLXhDhzoxnmHvg2dqwVN10eRhP//iC6e/RxUjC165qQ9IJSRsC55KDJ4MFRfNKlXEGQ152Dq453n44akDY1AXzcJCMzdI2xudy1Ctm2jiu2mT3HJkIvA2bQLq1hX/zUTguXXTWZFj6/bkk8Avv/gP8occIv48Gyx4qg9q1esv63uZdtEUreqKFhRE9fc6d/b6sSujIoGXDhdNlbHZpgVvzhzn/+rVgb33lpfFnuNPPwE9ezr3VSbwmjf3r5/feei4ZwLq11k38UJ5uXO+IryyCPJj6K5d5hY8dnHm5Zed/197DfjkE+Bvf0s+Nh0Cj7+GsZgzdpeURMtF08+Cx94/NsOnH34WPL8kKyJkMXhsHLAqBQVOGblowZO1y8WLnQX+M8/0P9YlLAueaGwT1aVDB2D6dOc1n/mc/Z5rkQX0YkXTTWjbJBAOMoHHdqig2ySEIfDcPYLq11ezNIjOUzSQBRV4OmLYlgUvjBg8kYAoKZFP0HS3SXDLA8wsNC6i+6rqNiT6ncmT5d8pLgaOPx447TTx38MSeKKJN39/3nvP3u8BiT77wAPONbrzTvFx+flikcQ/7D75RL1eKhY8v34qWtXl63TkkcBJJ6Ue16GDk266Rg3gww/l9WQFnui6mlrwoiDwZBNEN1trs2ZqyWhYdu5MHj86dnSSaBxwgDPR0qmfCB33TL/yTjrJ6QOXXuq/FQ4/6RMtJBQUOFu7jBypXp9du8xj8ESTym3bgHHjxHVTIYiLJgBcd51zDs8957wXZUAGwhN4QbJoun3o9tudBFtNmgBPPaVWN0B87eLxxP3Veb67yCx4uvM1QB5b7NK6tVo5UYzB82uX77+vfmymY/Bee80ZMzt0AG66Sa+8KGJkwSPUCcOCx7to2hZ4sVgiSYfqpNrL558laAyeTYHHPmB0LHheA14QF80dO+QTPxMLnjtBFt0PWxY8nS0IXEQuKvvv77hxetUrUwJv2zazuE8v3PO89VbnQeLVburUSZ3Usg/k9evl6fRF9QorBo9l4EDnYSlbHPrgA6cdiFzLXNh7IGr/snsStosmj4mLpmiSF48nNjn3a+uic9yxI7lvHXww8OKLiS0L/LBtwfO6zpde6kz8VMYhftLHbgTvsnSpUz8dK1cQC55sUimaKKfDggc4HhIPP5w4D/f/MGPwbGXRdOtapw6wcKFTrmk/Za+da2Xxure6Lpo1aojboBd+As8r3pYlExY8mwtmQSx4JtskuKi6aHboAKxc6T9mFhVFO/bOJZDAW79+PV544QV88cUX+P333wEAzZs3x/HHH4/LL78c9evXt1LJbCYdLpqyTmMq8EpKEp3JVODJUken04IXloumTiyEDJkFT+b9bCLwXAuebYEXxIIHiFfiior865QJF81YTO/Bqepqw/6mX5upU8dJny9DRXymI4smS/XqetlLXWQWPFH79/JA8CJTFjy/Badt2xL936+ti86R9wCoUkUvriydAq+wUH0M4id9ogzBRUX+95UfB3fvtuOiySIa21TbW7Vqib0DTQQekHwOMguezRi8IFk0ZdZTNymJDkVFTtllZYlrp/p8102yortIzX6HP28Xr3hbUTkiworB80PnekTdggeojZm6Aj9TGAu8iRMnon///ti0aRPizGx+7ty5mDRpEh5++GGMGTMGJ554opWKZiui2DTAbhZNmQ+wqcBjN3VWnVTz5ynL5pYLLpphCbwdO+TC2MRFMywLnkmSFRaZwPMjExa8qlXVrB86vwfoTSb9ksuo9Kl0W/BMJkH89/wEnuwa2lxxVhHPtlw0WeFiasEzFSxAemPwdJ4D/KRPJPBUxAVvAeAteKZJVrx+A9DLrFujhjM+mrho8rhjt1dW63S7aPpZ8EyJxZy5webN9gSeLAZPV3wC0bfgsWNt1arJC5x+6LTLqMfg5RpGp7hw4UKcddZZKCkpQefOnXHJJZdg778iwpcsWYJRo0Zh5syZOOusszBjxgzsu+++ViudTfAT5D17nP9tCjxZwL6pwGMzaKpOqvPznXq55yfbGySowNPxf+cfShs3OufjDlqmFjyTTVN5RC6aJSXyAdVvNVxEWBY80yQrfL38juPJlMCz/XuA3oTG67xVV7vTkUVT9ns66MTgyeqYDS6aYQg8kQVPB/48XIuIi80YPNNVf5kFT6UP8NfcVpIVliACD3Da27Zt+hudi1CJwTPJ3mgri6ZNgQckBN6CBU75NgUe+zoMgae6eGIzBk9WVrVqiWunMrbZdNEUWfB27Uq2zHp9R4aqi2auYZRk5YEHHkBJSQnuuusuzJw5EzfccANOO+00nHbaabj++usxffp03H333SgpKcGDDz5ou85ZBTuwbN7sBLzXrw989FHi86AxeFEQeEDyA0Xmn5zOGDy2Az/5pHPdzz8/8ZnqA4Cvc5gWPJMsmjK3Ti8Lnmo9RRbooC6aIiulSn2CBLd74eWiqSvwbGfRBLz7YNAVeMBeFk2TevHoxOBFxUVT1cLrF4PHChc/q63oHHkLno5FSnR8mzbJ7227aKpiy4LHYzvJCiCum0l7M3XRZHHHLt7Lx217BQVmbTeMLJq6bVUE21c7d052o7OZZEXHo8PFb5sE1TLDsuCxsNfKtsDT3Qfvzz+BFi2Apk2B+fPNygT0XDRzCSOBN3nyZLRr1w533HGH9Jjbb78d7dq1w6RJk4wrlwuwnWX8eGd1ac8eYMKExOdBY/BkiTn8OqdssFi7NvFaZ+8xVuDJLHi6q0xBBB7/W/E48Pbb4kQaXg8AtpxDDrEj8G67LfWzPXvM9sFr2FD8eTpi8ExcNEWobMURi+mvnua6BS9okgTReyBaFjzWSjlkSOLvvXub/bbOZNJvvCksdCYfKoTtollSYi5YgNTr0r178nudtPWAPYGnYsEzFXimViTZYtOGDamfBRF4Nlw0geTzdNuezj2w5aLpnl9JiZMcysWGBY/dYmHu3MTekICeBY8VYy5svzrmmMTrSy5Rq5uXBc8rW6OsHBFBYvBk5ai0EZsumvxizt13OyKPTTLGi2HbMXgqnHqq+XfTidEprl69Gv369fM9rkuXLhg7dqzJT+QM7MAis7QE3SbBtgWPHXhtW/B0V4GDCDyZS9HOnc41VBV4+fnAd985qeivvNKOi+agQc5DrkYN4M03kx9GuuVWqwZ89RUwaZIjlG6+2fk8HVk0TSx4Ijp1Ujtu+nTgnXecLIzunmFeqAzisVjCHS2owDNJsuKHDQseW69si8Fjz/HOO52MoQccAOyzj9lv64whfsd+8olZhtWwYvBY63hQgffgg87WA+vXO2Jadr116ugSxIInSnBg4jYXJMmKbLxytxdiMRF4u3enLt4G8X7ZuTPRZ90xzobA03XR7NQJ+P575/W0aYnPbQi8J54Avvkm0Y9++CHxNx2BV7euIypkFrzWrR0PrOnTna0pVJAJvHvuSV608iMdFjy2L6k8p3T2BNSNwRMlF2vcOLFPM5AZF82RI53n0GuvmZeRDowewzVq1MBa1swjYe3atahh4leVQ7ADi0yIheWi6TeA2457UrHg6cZxBBF49eo5Awo/AO3cCdSsmZjE5+X5DzyHH+78A5KT0PDoJFy44Qbn9fjxasd7ccwxzj92vzYvC57qwz2oBU/1d1SDzA880Pm3eLGawNPZQJYVeO7EL+oWvEy5aPqtFttw0XQFHvtZrVrAP//pXYbfPdcZQ7weX4MGyTfcFuHnoskKF9MsmuxkR3fSzE+UWrQAHnpIrwyWdMbg2bDg6Sy6NG0KNGgArFuX/LktF03AicOzKfBcbAo8XRdNdpyfOjXx2obAa9PGWeTs1s15byrw6tTxFniFhY4FR8eK414bVuA1buzs+6dDWPvgBTlGJwNnkCyaLo0a6Qs820lW2rRx9mmMusAzctE86KCD8PXXX2P27NnSY37++Wd89dVXOEg1/2uOwg4sog1ageglWWGxbcFr1Ei9PLZMF51rlZcnFpTuwy4MNzyTia3KyptquWxZXhY8mTWZJ10WPN1hQvWeybKS8rj13L3buTYqG+SKyEaBF1ULnnvvdPuUTQteUZFarIoKUc+iKXs+mZINMXhBkqyIxizReGMq8LZts+eiKRJ4pskxgrhoysZ5WxtHd+yYuE5LliQ+14nBc+viJfB0EcXgmcQdpsOCx7Zh2wIvSBZNF34OmQkXTUB/3p4JjATeFVdcgT179qBnz554+umnsY25w9u2bcNTTz2FXr16oaysDIMHD7ZW2WyEHVi2bhUfk6kYvLAE3q5dYgtevXr6Azk/oOleqzAEng0XTRaVlTedvZRcvCx4QQRe0CQrIv5KwquM6j1TdR9x2xkfBxmFJCtecbC5HIPnkkmB53V8EPGfjiyaumMRGz9mkrGWJ50xeCYumkGSrADqXgc6wowXeGFY8GzG4Om6aHbuLP7cRpIVwDnn9u3Fn8vQjcEzqavIRTOIUBSRDRY8kyyaPPycLlNZNPPyzBLupBMjgXf++efjwgsvxJ9//onrrrsOtWvXRqNGjdCoUSPUrl0bN9xwA/78809ceOGFOO+882zXOatgBxbZ3nC5YsFzO1F5uXg1WDf+DkjtQLoev6LfDNOCZzL4q2QkVB1IeAvet98mXEFZZIMnT7qSrOhO0MIUeKqxmSJUJ2HpjsFj6zVvHnDrrcCPPzrvReOHX7npyKJpWpbfg1t3DJEdH6Rt+GXRNHHR3LEjmGBhBV69enrfFZHOffBMJlpTpiTHP+leL9W44SAWPF0XSBZ+7C4pAe67D/jjD+ezTLho1qwpXsyzZcEDxMJbR+CxzwIXWxY8NnuoSTnZbsHTyaI5fLgzf+GxJfBsZNG02W7DwEjgAcArr7yCp59+Gm3atEE8Hse6deuwbt06xONxtG3bFs888wxGjRplsarZid8kID8/2MrLjh3REXjsuYqyienG34nQFcMqAk+3k9oWeDbjmdiytm8Hjjoq8UBnMbHguQ8m2y6aum67fL28UBV4rItmOgSeTpurW1f+NxOBN3asE1t16KHOe9E18jsPsuAF80bws+D5ZS8OYx88dnyWWVp0SGcMng10r1e7dmrH2XDRNMkgzAu8ESOSY74ykUUTELtp2pwoi8o3EXjxeOL62xJ4gDh5lCrpiMFjBZ5KHdks3n7jho4FDxDPIxs08P6OCFH7MrH689iyPIdFoFO86qqrsGjRIqxYsQLff/89vv/+e6xYsQILFy7ElVdeaauOWY3fBHHQIP3Vx9q1ExOA+fPDFXgm2yQA4mxiJhY8HhsCz50EuddNt5PadtG0aQ1hy+ITALBExYJXrVrynpCqpMuCpzvxCMNF88ADga5dxX9TbRte/Ya/Ruef72/lSkcMnmlZlcFFU2UfPN22e889zmStQQPgP//R+66IsGLw2GQ0sRhw2WVq5bz5pvfv6o7dhxwC9Ojhf5xO+2W3i9m8OdFOTPoTP3bzu1qZuskGcdEEgGbNUj+zKfB0y+f7kmjbHHaOFcRFE0hcP9sxeLptxJYF71//cuZZdesCr7/ufaxODJ4MfsHTJMlKfr4d90q+XeXlOVbyqGDBSAk0b94czZs3t1FUzuG61/HB13fcAVxxhZOGWpdYzFkp+eYbYMUKuTXGdB88FlOBJ1p5iYrA45OF6A6MXgNKGBY8nTLZsrwS3QYReLYseG+9BZx2mr5rCV8vHnfLA0D9PNPtoqkzocnPdzLOzZ+fGl+i+nsywcBmDgWcfutlMXRJRxZN07JsZtH0Oj4sF828PP86yix4bJ10J83NmztpyfPy7KxMhx2Dt88+Tqr6mjXVyjnvPOCUU4C2bcWLXyZZRydPBgYPBv77X/lxOs8Xtp9u3pwYv0wEHns+ojhs20lWVBe3RG3bpsATle/VV/nFFtG5sq7PtmLnbMfg6WIrBq9hQ+C335w5rp9o0smiKYN/lplY8GxdR/b69OsHvPyycx3+9S875QdF2YI3depUjB8/HgsXLvQ9dsGCBRg/fjymsRudVFJiMfHgsvfeZuLOhXVD+P138TF+ndNve4CqVfUmMVG04HklWTEVeLGY/DtRsuB5bedgy4IXRODVqWMm7vh6ef0tqjF4uhOaWAyoXz/1c9W2IRN4fJImVZfsdFrwouqiaduC51qm6tTxnyipbHRuMhZVrWrP7chWDB57LUpLEwKvTh11cedSs6a875mIjFgs1WWMx1TgbdqUaCcmCSF493q+Hply0RT1J5uubroCj19s8bPgZVLgBU0Movv7qvelqMjpP35l2rDgRVXg7d6tPx6FjdJprlu3DieccAJq1qyJmTNn+h5ft25dXH311SgpKcGSJUtQx0ZKriymSpXUbQNMV7hd/DJ4uZs3+1FUJJ8E6962bIvBC7I6mp9vln1QRFgxeF4WPFtZNP0GV6/rESTNsJ/A277deZ3uGDxVv37TyTePatuoVUvsScAKvIICdbcVv/qTwEtFNQZPZdwNw0XTNrYseG78mZu8yx27TKcVNgUeYLcvyASeDRdN/pmViSyaQGp/KiiwEw8lKx+IpsAzeQbYzNoYiznnwp+/rosmX6YXujF4InivMhOBZ0sos9eHHXujglK3ev3117Ft2zbcfffdaMhGVEpo2LAh7rnnHmzatAmv+znlVgJEg0vQFSu/fcOKitQGAz8Liw5+FjyTZBo8uhYfmcCLx4M9PNNpwdMps7AwMXh5Zbey4aKp4sfuVXfdbIayenn9TdeCV1aWvBijO4kH1NqTyWQyiMDLy0uO73HZvdtsXyy/+27TRVO3f2aLiybbzuJxPYEXRpIV29iMF3IncewGx7ko8NjJ66ZNwRYh+bHbpgXPzd5tw0XTdju1KfDcZ57NGDzR72QK/lzy8pLnBraTiOhk0ZRRp07ytcukBY8tV5YlP5MoCbxPPvkENWrUwMUXX6xc8IUXXoji4mJ8ZJJBIccIMjGTwW7oKULHtC7DtgUvyITeRbdjygQea8HKtMCzacGLxdSyadlw0VS5bl51D9OC56Ir8IDk/SqjJPBEK92m1gEX3oJni1yy4IWxTcLnnzvuPA884LwvKUncB5W4Z9E55qoFD0g863QS0ciQXRfTyWw6LHhBXTR37ky95qYxeKtXO3GMTZoACxbolxd1gceeR6tWzlwmKjF4tuHbbmFh8HP1woYFr06d5HJMkqyE4aKZtRa8OXPm4NBDD0Whxt0uLCzEIYccgtmzZxtXLlcIQ+BVrQq0aSP/u+rDystnWCfBilsnF5HA69BBrzyXww9PvNaN4xOd386dwTaQBeQP3DAseK1a2S0PAK66Sq0sdnLr7m0YZNLBEpbAYwWuLMMsD3vfggo8letiGu/D10dnHPETeDYf5lEWeLoLTaJ9u4BgLpqAs1AybJjzev36xOcqSW5EbSxqFjyv+6A7dogmcfvso1eGS5QteHySlZIS57XJOBSWBe/xx4GVK51n/HvviY/xgh/3bVuJdAVenz6J18OGpT5vJ06MTgyebUQCb+jQxPuBA+3+nq0YPF2BF5aL5rXXJl5HceMApS65YcMGNDHIkNG4cWNMmTJF+3u5RhgCD/CeIKsOmh07AosXi/+mu0LK1odN8NGvH3Dxxf7B6DLefBN44gmgd299F81YzMk2et55if3gbAi8sC14Z57pDEq1awM33RS8PJfBg52FgUsuUS+ruNhx91yzxvnMteCpDJJeAitIaK7XZCxXLXiAUx930gfYEXgmLpp+RCmLptt+2fc6DBrkxLOOGwfMmZP4XLdtyPpLPJ7oW4DaIpbMghc0yYpNZPfNzSytA3/tOnRQX6TikV2XqAm8desS2T5N4tfDEniy2G7VSTO/wGJ7IUK0gOPVV486CnjuOUe03nqrE7/9zDOJMYPfa9iWi2am+6eoDoWFwPXXOwtFdesCp55q9/dsZNGsWjW57aqMJWG5aF54oTN2l5cDF1xgp0ybKJ1mlSpVsN3NWqBBSUkJqmR6GTEChBGDJyvXhU+mIOOgg4Dx48V/CyLw2AHx6aeDxd+1bOls0mqKO4CffrrzPmoCTyRaL7oI6NtXvyxZeS7/+hfQooVeeU2aAIsWpQo8lesm80uvVi3Ygz3bXTRN+38QC57IIh81F03RBCDoPni1agUTeMXFzh5xjRsnr9iaJOBxk4WwbN6cHFtmKvCiZsGTtU2TtsFP/J54Qt/DxCXKFrxq1RKJLxYuTDzHbQg8fiw0FXhBjgHCd9EsKnLqwp6vX18dPDjxukYNYOTIxCLorl2566LJ16GoyLlWt98ezu/ZsOC5yWFcVJ7xYQm8vDzgllvslBUGSi6aTZo0wc8//6xd+M8//2xk+cs1wrLgeQ1a7ITBC69kLUEEHotKTFjYeD3sMu2iKbo+JsLCq7wg5bpdeNOm5GunMhjLBF7QxLqqLpqq2UJtCrywXDSB1PrYjMHLVRdNPrmMqbjmyzVpG6JzWbMmebxWmcxncxZNG+nhgzxTohyDF4sl+qmu6Ofhn3l80i3TGLwgxwDhC7xYLPU3dPsqW6dduyqXi2aY2IjBA/QFnmij88qA0uU84ogjsGzZMnz33XfKBX/77bdYunQpjjjiCOPK5QqZEHiqeG23QAJPTtgWvCD31suCF0TgAc5kVMdFUybwTFffXVQteKqw982NNTQtK2wXTRabMXi56qIpyh5qAl8PW21j9erctODJ2pNJ2+Anfqb7ZwLy62LaZm1vGSIaG4MKvG3bUjc7t23Bi0oWTdFvkMATk26BZyOLJiDeysKLsCx4UUdJ4A0cOBDxeByDBw/GZnc3Vg82bdqEwYMHIxaLoX///oErme1EWeC1bi3/mw2BV1gYjc4UZYGXLRY8wJmI6giCTFvwVMmmGDyWqMbgRcmCZ2vz2TAFnq0YPFbgZTrGJ6oWPNl1Md1jzLbAE/XToAKPTeLjomPFCNOCF0Y7DSrw+OyIlSkGLyzy8vz7mKoFj99yxg8SeB707NkTJ5xwAubOnYuuXbti/PjxiAuCvOLxOD744AN069YN8+bNw3HHHYcTTzzReqWzjXTF4LVvr1+GV4eyIfCCrLTaJF0umiZlia5RkFVNr2tuUj/WZUzXgifLCBimwGvaNPFaYdtOAMkPNtaCZ3If0umiGVTgsXtZRdVFM+g+eGEJPJN7qOKiqTKZl2XRzIYkKzZi8MKw4JmSDoEXNAbPTdbCwlv0vLAp8MJOsgIEtxLy+5tFPQZP9TnHw7dd22MG25ZtWoF1LXj8glAUrKfpQFEvA2+++Sb2228/LFmyBH379kWDBg3Qq1cvDBw4EAMHDkSvXr3QoEEDnHXWWViyZAn23ntvvPXWW2HWPWtIlwWvaVPgjDOc1w8/rF7Oyy+LP9d1oxMJvCi4ZwLJ12rXrnAseGeeabaqL7pGLVvql+NVHgD072+2Ss1b8HSSrNx2m/jhE6bAu/Za5/pVrQq8/75aeWx/XLUq8bpePf26hZlkhRcrmdwH7913nQdy1672HqBRtuDZiMFTcdFUSUglKmf37sTm6UVF5hYpW0TVgiea7F9xhXl5fueTKQse2+7ZMc2Fj8nzwubknC8rDIHHi0jde5BNLppVqgAffGD23TAseM8/74w9vXoB++6b+FylfYgMDq1bJ/Z9fued1HqqxOB17JhsADnnHP/v5ALKzb5+/fr48ccfce211+KNN97Axo0bMXnyZMT+eoq4Fr28vDwMGDAAI0eORJ2gs7gcISyBxw+MhYVOKu+1a/VW/AYNctLh3nuvkz3KhSx4cvjvTJoEHH+8Wd3cyZhrFG/e3HxLCUB8zWfPdgY5E2QumqoWvOXLnY2d2f2GwhR4tWo5WT+3bVPbUwxIftCtWJF4bTKxCtNFk190yaSLZr9+TnuoW9e5Tq64MCnL63tBBZ6tiVQ6YvDq1FErV3Z93Y3AMx1/B2RPDN7Spd6hCn5E1UWTHStWrkz9O7vdih82LXg86bDg6S52eAm8KLlofvMNcMAB5s/TMATeFVc4i90NGgDHHZf4XEWI8XOK555zspnm5QEbNybmRboWvIIC4OefgV9/deYHunsLZytaXbJWrVp49dVXcffdd+Ojjz7CtGnT8OdfG541bNgQXbt2xWmnnYa2bduGUtlsJV0umu7+QibuHA0bpq6K6g4aov1nomLBYwfsMFw0mzQxXzFnxR3gndlUBdE1b9vWvH4yC57qim3VqqlWiTAFXmGh809V3LnfcWEFnklfYq+Lm/Kcx3RSw1+3oNsk7NqVuJ8mD3f3gcu3uUwKPL5d2rJkheWiycbgqU7kZX1v40bzutkmWyx4QSd7UXXRrF49sV0A63buorPzVbYLPF28YvCiZMErKgr2LA3LRdP12mEXYlSEGL+Q07Jl4jqxi966Ag9w7kGnTmrH5gpGXbJNmza47rrrbNclZxENYGG4aAYtk+/cZMGTw3/HZtCuV2ZTFfhrHosFmxDxMXgmLn18Ww0q8LwmBSb3QtR36tQxm3ywv1+7tjj+xbSvBhF4omtuw+oGpLY5my6aQffBUw3c94M/J5NyReeyeHHCXU51Ii+7Jm6CoEzH3wHhxeBVqRLsnvLXJugCQNhZNGvUMBMs7pYLovEHsC/wdJK2sAtf6UiyogtvwYtqDJ7ttms7Nk133sG3Idl91E2yUlmx9OgjvEhXDF5QkcFPZnUn4SIxFxULXtgCz+a+KrYteMXFwR4ErPXNxIIH2Bd4sZhcfJncT9Ekw3QLT/b3ZSn6TSeo/HULGoPHTvKCjB9RsuDxZdiy4NlYxBGVsWBB4rVqm/OrSy5b8II+U7ItyUqQrYS9xlnbMXg658m2gagLPNaNHbBjgTYthyfqAk93gZ9/Lsruo4kFrzISSYG3Z88eTJ48GTfffDO6d++OOnXqoLCwEE2aNEGfPn3w8ccfe35/0qRJOOWUU9CgQQNUq1YN+++/P/75z39im86IZpF0CbygZbKDWlGRfoxJXl6qm2ZULHgFBYnBIwwXzShb8ESuszpUqZJINqKbZMWFb0tB98ETleli0g9E3zGdWLFtQ3aepg9m2xY8Ng4nyPjBt7lMCjx+khCWBS+MMoK6aLpEQeDJ2oDJ/WC/E/SZQgLPIZMumuw1U4nN0sW2BY8VEbaSstkQtlEXeEEteLK5i26SlcpKJAXeV199hZ49e+KRRx7BypUrcdRRR+Gss85Cw4YN8eGHH+K0007DlVdeKdyq4bHHHkOvXr0wYcIEdOzYEaeffjo2b96M+++/H926dcM6mb9CiKQzBi8I7KBWp47Z4MEPrEHFhS1iscT1iqIFr2vXxOu99w5WFi8qgj7sAKBZM+f/lSv1kqy42Lbgicp0MbkXNgVe8+bO//Xryy14KpkSRQQReKK6sAIvVyx4/Lh1+umJ19dco18n03qI8Lsubj8LWk4UBJ7segke275UJgsen8KgXTu977N4jbPXXqtejugc+PFE10XTJQwLjG2B504ba9QwmxfZdNE85JDE6yDJgYDUtmvb44oseJklkgIvLy8P/fr1w9dff41Vq1bho48+wltvvYXZs2fjzTffRH5+Pp5//nm89tprSd+bMWMGhg4divz8fHz88cf46quv8Pbbb2Px4sU44YQTMH/+fFx11VVpPx/RRNSGS1+YAs/UwsJ3SJPg8LCwKfD4+xf0fr78MnDZZU62yaBl8dkybQg8NziZjUXItMCTTdRMHsA2Bd6//+1kEnv99dRyu3VzMt2apu4PIvAKCoBPPkne+sGWi2aUYvB4TjgBeOIJYMgQ4P77zctJh8BTTQKQzQLPBJsWPNvbR9gWeIcfDjz4IHDKKcCllwJ33GFeN9E4e9RRwN//Dtxyi3o5onNo0cL/GBlhT9BNMtyysPd0/XonThYwz0RtU+C98w7wt785/9evb1aGC992bc/XKAYvs0RS4B1//PF49913cfTRR6f87bzzzsOgQYMAAK+++mrS34YPH454PI5LLrkEJ598csXn1atXx4svvoi8vDyMHTsW8+bNC7X+PLJsl7bLDToRYju76QSc75BB3EtsE6YFL+i179QJ+O9/gZ49g5UDAJ07J7+3IfBEbqOZTLIiKjMINmPw9t/f2QvopJNSH1jPP++kkDYlSAweAJx8cvK+l7lowRN9//rrgREj5BZVFWy4Yfudi2r8rd/iSpSTrJhgU+Cxi1Q2sC3wYjFHfH38MfDii8GyfIrG2bvucvbJ1fGuEZ3DXnslv9dZ8GPLs30/ALuL3VOnJl6bxsfbdNFs2RJ4+mng7LPNvu9VB9sCL6gFT/Z99nqSi6acSAo8Pw4++GAAwAomn/nu3bsrYvMGDBiQ8p1WrVrhyCOPBACMGzcuDbVMwE9EbT18w3bRNCEbBZ6JxSzMJCtBqV07+f7ZcLsQPdh0zjlohlYRNgWeqO/YeNjZtvQG2QfPhb0XuRiDxxOlGDyv69KwYW4lWZHV0WRxkxUBQccz2xNC2wLPJiJPHJMFPxWBp9PPwo7Bs7nYzdbPND4+zI3Og8C3XdvztaAWPNnzkmLw1MhKgbdw4UIAQNOmTSs+W7BgAUr+mq1069ZN+D338xkzZoRcw2RsC7GwyrUh8PhVwWwQeFFw0bTNPvskXrt7bAUhqAWPn9Rlg8Cz0XZtt5MgLpou7EM9G1w0ozARAsxix3i8rvFBB6mLn2wQeDbv265diddBLXi2XbqiLPBE42xYAk9HuIftohn0mufliduvTQteFMa1sAVeUAueDIrBUyODQ48Zq1evxqhRowAA/fr1q/h86dKlAIA6/9/efYdHVaV/AP8OIY0kJEAACSR0gkIEgQAKSFcEBBErgsDPdVdZLIhKs2BDFxQXEJfVRbDAojQFUeoCElCKsAqi9BZ6TaUleX9/vDvJJJkkU+5kJne+n+e5D2HKmXPLOfe895x7blQUIoq4wSX2f4PGrZ8tSoYD00s58hkrfwrw/OUePE8+B88IDRoA27bp39b7B9xxww26L22DRXeCFSOCM18domnL1wO8r77K+9usQzSNYp091h3FrYszkyuV1BDy5QDPlUDZNsBztwePAZ7z6dg737k6URTg+wEeoGWoYN5cfVC2r9ZrvtaD5+hFAgZ4jilTPXhZWVkYOHAgUlJSkJCQgL/85S+576X97wmvYcUMLA//X82Wmppa7O+Eh4eXuMQ4Ot0ZSi/Ac7dSs03PqElWfLEHLytLgzwrX5hF02i2VxrdOREXlSbg/XUui0M03R0uaEQgVVSD1Mghmq6upycmWTGKEcd7cevizL1WBRtCBfPmywGeK4wM8GybCJUquZcWUPJx4WsBniszWxdch/Bw90Zh2DafjNgHBbk6iZWtgvVk/fqup+upxyS4y9fuwXOU7eQy0dGe+Q0zKFMB3hNPPIE1a9agSpUqWLBgAYJ8oYQ4wFP34BU8ibt7Qm3TRu8DCQjIP7W4M8pCDx7g/tA0Tz4HzwjDhul0/eXKAdOnG5OmO7OmAcCf/6z/2lyXcYu9AM/VtO2VHXdnKAOM78Er2LB3twfPVq9ezqdlZdvodmcSKaOudFuPAyMnTb7xRp0FFdAJkVxRcP0GD9ZtVbky8Kc/OZfWvffqv6+8UrietT6qw5uMvAfPNsBzN3gdNkwbhQEBwJIl7qUFlLw+vhTghYXln0XXUfaeT+ZOgDd9utbfoaE6+ZHR7r5bAzKLBVi0yLU0Ch5ncXGu58dXe/AK5sHo9porF2H79dN/i5s9dvRoPY4DA4Evv3Qtb/7Ax5qlRXvmmWcwc+ZMVKpUCatWrUKjRo3yvW8dllnc0Enrg84rljCVmiMPRE9NTXW4F6+sDNGMiAAOHQLS0lzveSsY4PnClWQrIwM8X+/Bi4gA9u0DLlwwrrFXcN86u84zZgCjRgF16xqTH9v9ec89wOTJrj8XqGDZqVDBmAsxnr5X06gA7/33806srrC9UutOg9aohtA//qHHmrvPibJlsQA//gicOOF6Y6/g+nXvro9uiIhwvndg/nzg6FFdx2+/1XxZuXqvkJE81YPn7jmlYkXg8GH3znPO8Oa5oWAQdvPNrvWuG92DV6+eHq8irgWcJQkMBH77DTh7tvC9go4qeJy5Mxu1rwZ4Bc8Fpf2MSHsWLACOHCm+nVCpktZ96em+1Ynga8pEgDdy5EhMnToVUVFRWLlyZe4smrbq/O9MfunSJaSlpdm9D88662adEs76xQ3ztMp24oYMo3varDwROIaFufdwciOm5PcU2/1gG8MbEeAZNVOfkUJDjb2SX3DfujL9d8GH+LrD9vgPDHQvcPTELJ+A5wM8V9Kzd9K96Sb38mHbg+cLAZ7FYtyFBFvly7t3Jb/gugQFOf5w84LKlcsLYAs2cnw5wHPlHjzb+2yMaIS6e54rTnBw/oDUl3rwjJokxN0AD/DM0ExbwcGuB3fW79vyhwDPF9IvV86xutuTZdgsfLBZmt+LL76IyZMnIzIyEitXrixyhsz4+HhU+N9l5G3W2SUKsL7eokULz2S2CKX1mARfGyboazw5RNMfuNuDZzTb/enusV/wZFtWAjzbhqSj7NU/7l6Yse3Bc6fhYm/7mKleK7guRp0LCvZExccbk647PNWA9aVRIfYUHCDkSwGeUdP8GxHg+TpPB3i+cIeRJ55BaMsX1tGf+XSAN3r0aEyaNAmRkZFYtWoVEhMTi/xsUFAQev3vJpK5c+cWev/IkSPYtGkTAKCfO2ORXFBWhmgawYnJRUud7fYyugfPH/hygGfEw7BteSrAM7qn15Xy5okAz9d68HyVpwK8gkGFL2wzI+/Bs8UAz3EFJ0tztQevYD3mDwFewbJpxh68Cxc8m74vrKM/89kA76WXXsLf/vY3REVFlRjcWY0ePRoWiwWzZs3C8uXLc1/PzMzEY489huzsbPTv3x+NGzf2ZNYL8acA73+TmQJw/0RuNAZ47nF3iKbRjAzwCp7MXZ1FtiBP9+D5SoDna/fg+Sp7QzSNcO5c0b/hLf7ag1ew7vBmPVmwXDdt6lo6Bc/l4eHuz2bq6/xhiObFi55Nnz143uWTzdQlS5bgrbfeAgA0aNAA04uYBjA6Ohrvvvtu7v9btGiB9957D8899xx69uyJjh07olq1atiwYQNOnjyJ+Ph4zJgxo1TWwZY/BXh33gl8+KH+PWKEd/NSkO32sn1SBodoOqbgeHdvb4Oy2INnxDZ74IG859c5cN2rEE/34LmzL3y1IWQUT/Xg9esHzJmjf48bZ0ya7jLyHjxbvh7g+VIPnsWiowZycvT/Rt2zFB7uexdwjeYPQzS7dAH+/nf9++mnjU/f9tEvTZoYnz4VzycDvAs2/cbbtm0r8p662rVr5wvwAGDEiBFISEjAe++9hy1btiAjIwNxcXEYM2YMxowZU+RD0D2pYEXhqcckeLtHBdDpiV9+Wa8ov/66t3OTn20FnZKS9zd78Bzjaz14tse/P92DN326NiLj4/XRJs4qaz143j7OjOSpAO+ee4AXXgAyM3UKcV/gqf3GAM85y5frYz2efda4NK2B4urVwMyZwFNPGZe2r/B0gOcLE9L17p3XXpswwfj0o6OBL74AVqzQ36HS5ZOnziFDhmDIkCEuf79bt27o1q2bcRlyU7lyeiK33tBq1BXpgvfz+MKVbovF9wI7K9sK9dKlvL8Z4DmG9+A5zxMBXnQ08PHHrn+/4LpaLO4Pt+I9eI7x1BDNgABg4kRj0jJKUfvN3+7B83Y92b27Lkayngu6dtXFjAoeZ+70fvpqgFca7bVHHtGFSp/P3oNnNkY2RotipoaQJxgZ4Hn7pO0NZg7wSusxCb7wOA2LJf/2Cgtzv9HtyVk0zVSveaoHzxd5qn7w9QDPtiwA5hzK6AvBiad5epKVgscJkdF8oLnhH2wbo546qZupIeQJHKLpHl8boumvPXhGsK2DjGisGdWDZ7EU3kZmqtf8KcAritnvwTP75COAfwR4nhyiGRbmGxf7yNx4iJWS0ujB83aD29dxiKZ7fLkHz5/uwTOC0QGeUffg2fu+mcqap4Zo+hNfD/AKTn5mRgzwnGPvOYJEnsYAr5RwiKb32Vaqtg+I5hBNx5i5B6+0hmj6ynFju72M7sFzd18UPK7MVK+xB6/wPWrOMmomSE/xh8a7P6wjAzwq6xjglRIGeN5XVKXKHjzHFLxnwNvBSvv2mqdy5dy/0b9g2fHUc/B88X4cIxobwcFA5876t7sTOhQsWzfc4F56vsTfA7zy5fMeo+OMWbP03/r1gU6dDM2SIaxPcmrSBGjZ0rt5KQ3+EKAYeQ+evQfFE3maHzZTvaM07sHzx6DDGQzw3FPwngFvB3jVqgHHjulD6+Pi3EurtIZo+orr1/P+NqqxsWIFsHcvcNNN7qVje5zVrWtcsO0L/HmI5t69QESEawH7kCHAbbcBsbG+WfcOG6bPFKtTB9i40du58Txf70U1AnvwqKzzwarSnGwrC0/1tLl787rZGRng+WrDvTT5QkOrcmVd3OVvAZ71kS2AcY2NwEBjHmZ78WLe382auZ+eL/HnHryaNd2bObBRI+Py4gmNG+u/vlAvepo/BCienmSFyNM4RLOUlMYQzexsz6RrFuzBM5avBi+uKLgunhqi6Ss8EeB5QvPm3s6Bscx8f2FJ/GVd/WE9fbnOMErBAM+d2VHZg0fewACvlDDA876irpoxwHONmbZBwXvjjJoJz1cDPNshmr58NdlsAV7But+fpkr31bJgNAZ45lAwwHOnrDLAI2/wo9OLd5XGPXgM8IoXGmp/kgsO0SRPKQvHiS8/t8vsQzT9ib8Es/4Q4PnyRSGjGNlOY4BH3uAnVa73eaoHz7YBVL++cemaUbly9k9MrjS6fHE2xNJ2+bK3c+D7ykKA52v3gdne/1i7ttey4RH+HOD5C7PuY9s2jD8EeEY+b5EBHnkDA7xS4qkAb9Ei4L77gL//HWjQwLh0zcpexcoAzzVXrng7B8ZauhS4+25g3Trj0iwLAZ6vPTj666+BXr2AJUvMV878oXfH1qZNQJ8+wMKF3s5J6THrPt6wQffl3LnmDWJtMcCjss4Piqlv8NQQzXr1gPnzjUvP7IwK8Mh8PXi9e+tipLIQ4PlaD17HjrqYkb/VNbfeCnzzjbdzUbrMGuC1auVf+9LIIcUM8Mgb2INXSkpjkhUqmb2KtSw0wn2F7XFsth48TygLx5avBXhm5m8Bnj/iPjYH24mo3MUHnZM3MMArJQzwfAOHaLqHAZ5zGOCRLdb95ucvk8mYnZEBXsH2gj/cw0jex6qolDDA8w0couke2xkXzTZE0xMY4JEt1jXm568X/8zGyACvIPbgUWlggFdKGOD5BgZ47qlSJe/vshC8eFtZuJpfoYK3c+A/WNeYH+tFc/DkfmSAR6WhDDQ/zME6aUBAANC+vXfz4s8Y4Lnns8/034AA4K23vJuXssBXG3tffKH/Vq0K9O/v3bz4E189Hsg41asDzZvr36+/7tWskBseeSTvkS0LFhibNgM8Kg1s2paSli2Bfft06t3YWG/nxn8xwHPPLbcA+/drL3RcnLdz4/t8tUH/yCNAkya6D335QedmI+LtHJCnWSxAUhKwe7fOPEllU0QEsHcvcOoUkJBgbNoM8Kg0sGlbivicOu/jg87dV7++t3NQdvhqgAfk9TJQ6cnJ8XYOqDSEhQGJid7OBbmralVdjMYAj0oDh2iSXylYsVosZeM+KSqbfDnAo9LHAI+IGOBRaWDTlvxKwYqVwzPJkxjgkS0O0SQiBnhUGhjgkV9hgEeliQEe2WIPHhHx0TRUGhjgkV8xKsC76aa8v1u2dD0/ZG4M8MhW3bp5fzds6L18EBGRuTHAI79infbYytUAr1Ur4NVXgV69gK++cjtbZFK8v5NsxccDEyYAd90FLF3q7dwQUWlZsQLo0gWYP9/bOSF/YRHhXQGuSE1NRWRkJFJSUlCxYkVvZ4cc9NNPwK235v2/alXgzBnv5YfMbcUKoEePvP+ztiUiIjInX4oNeH2Z/EpkZP7/8x48IiIiIjITBnjkV4waoklERERE5IsY4JFfYYBHRERERGbGAI/8SkhI/imKGeARERERkZkwwCO/YrHk78VjgEeeZLF4OwdERETkbxjgkd9hgEdEREREZsUAj/yO7UyafE4ZEREREZkJm7fkd2x78C5f9lo2iIiIiIgMxwCP/I7tsyczMryXDyIiIiIiozHAI78TEZH3d3q69/JB5sdJVoiIiKi0McAjvxMenvc3AzzypNjYvL+rV/dePoiIiMh/MMAjv2Mb4GVney8fZH6NGwOvvAK0bw+sWuXt3BAREZE/YIBHficszNs5IH/y2mvAhg1AQoK3c0JERET+gAEe+R3bHjwiIiIiIjNhgEd+hwEeEREREZkVAzzyOwzwiIiIiMisGOCR32GAR0RERERmxQCP/E7XrkC1avr3pEnezQsRERERkZHKezsDRKUtNBTYuhXYvRvo3t3buSEiIiIiMg4DPPJLcXG6EBERERGZCYdoEhERERERmQQDPCIiIiIiIpPw2QBvz549mDZtGoYMGYKEhASUL18eFosFb775ZonfXb16NXr27Ino6GiEhoaicePGGDduHNLT00sh50RERERERN7hs/fg/eMf/8CUKVOc/t7777+P5557DhaLBR06dED16tWxYcMGTJgwAQsXLkRSUhKio6M9kGMiIiIiIiLv8tkevKZNm+L555/HnDlz8Pvvv2PQoEElfmfHjh0YOXIkAgICsGzZMqxfvx5fffUVDhw4gK5du2LPnj144oknSiH3REREREREpc9ne/D+9Kc/5ft/uXIlx6Jvv/02RARDhw7FXXfdlft6hQoVMHPmTNSrVw8LFy7EH3/8gcaNGxueZyIiIiIiIm/y2R48Z127dg3Lli0DAAwYMKDQ+7Vr10a7du0AAIsXLy7VvBEREREREZUG0wR4e/fuRWZmJgCgVatWdj9jfX3Hjh2lli8iIiIiIqLS4rNDNJ116NAhAEBUVBQiIiLsfiY2NjbfZ4uSkZFR4u858hkiIiIiIqLSZJoALy0tDQAQFhZW5GfCw8MBAKmpqcWmZf0cERERERFRWWKaIZpERERERET+zjQ9eNZhmcUNnbQ+6LxixYrFpuXIA9FTU1MRExPjRA6JiIiIiIg8yzQBXp06dQAAly5dQlpamt378I4dO5bvs0UpbpinVXZ2ttN5JCIiIiIi8iTTDNGMj49HhQoVAADbtm2z+xnr6y1atCi1fBEREREREZUW0wR4QUFB6NWrFwBg7ty5hd4/cuQINm3aBADo169fqeaNiIiIiIioNJgmwAOA0aNHw2KxYNasWVi+fHnu65mZmXjssceQnZ2N/v37o3Hjxl7MJRERERERkWdYRES8nQl7tm/fjmHDhuX+/8CBAzh37hxq1aqFmjVr5r6+ePFi1KhRI/f/77//Pp577jlYLBZ07NgR1apVw4YNG3Dy5EnEx8cjKSkJ0dHRbucvNTUVkZGRSElJKXHSFiIiIiIiMi9fig18dpKV1NRUbN68udDrycnJSE5Ozv3/1atX870/YsQIJCQk4L333sOWLVuQkZGBuLg4jBkzBmPGjCnyIehERERERERlnc/24Pk6X4rSiYiIiIjIe3wpNjDVPXhERERERET+jAEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSpg3w5s+fj06dOqFSpUoICwtDs2bNMHHiRFy/ft3bWSMiIiIiIvIIUwZ4zz77LB544AFs3LgRrVu3Ro8ePXD06FGMGjUKXbp0weXLl72dRSIiIiIiIsOZLsD7+uuvMWXKFISHh2Pz5s1YsWIFFi5ciH379iEhIQFJSUl4+eWXvZ1NIiIiIiIiw5kuwJswYQIAYPTo0WjRokXu69HR0fjwww8BAB988AFSUlK8kj8iIiIiIiJPMVWAd/z4cWzduhUAMGDAgELvt2/fHrGxsbh69Sq+++670s4eEXnbiRPA9u3GpXflCvDdd8D+/calSVQWrF5tbFnyZSLA1av6d2YmsGwZsHOn9/KTnQ0cOADk5HgvD0SuOnwYmDMH+OILLU9GuXIFuHbNuPTKOFMFeDt27AAAVK5cGXXr1rX7mVatWuX7rCGWLgUGDwYGDNCK/9gxwNkewg0bgPHjgUmTgKNHjcnXlSvASy8Bo0fnnZzclZEBfPIJ8PzzwIwZQHq662ldvAi88ALQqxfwl78Ahw65ntYffwDr1umJ2F0imjdfqyiys4FTp4DUVP2/iG6zixddS+/IEWDVKiApSY8VKxHg55/1t7wpPV3zcfEisGQJ8M03ru3fixeBt98Gpk4FmjYFWrYE3n3X9XwdP67bbcYMoEkTPX6bNwf27HEunZUrgbFjgR07gKFDNb3sbGD+fC1f69e7tr6bNwN/+pOuZ5s2wNy5zn1fROuxuXONqzcAPcZmzgRefRX49NO8dTt92rWGak6O1kci+Y9fZ4gAv/4KfPUVcOGC5m/hQtfWW0SD/Sef1Lr8+++BFSuAX34BXJ3cKztbj42oKD3OkpJcSwfQhtSSJcDZs3mvLVgAPPqo5tER16/r8TVxItC9ux5fP/2k+fz5ZyAry/l8XbuWt73T0/X/ly5pmleuaCBTXDk4dUqPg6KcOZN/nZ118SLQrh1QuTJQq5YuvXvruv/+u2tpXroEvPOOHmvOlvHVq7Uea9AAuOkm4K9/1fO8u3ML5OTotjRqdNP27UC/fsDf/qZpnzwJLFrkXNk6eRJ47TVd5337gMmTtc48cwbYuhU4d67kNHJygE2bgLQ03ZfJyZqHX3/Vxd0g+ehR9+pJEd1Wtsfw2bNaJ5086V7ejLZvn+Y1K0vzu3ix8+3VAwf0+B04EBg0SNvNrrbbLlzQevbjj7V+jIgA6tYFfvvNtfRsvf8+cMcdwBtvuN7G8jYxkalTpwoAad68eZGfefrppwWA3HfffUV+Jj09vcTlxIkTAkBSvv1WxGIR0UM0b4mKEvnuO5HDh0VycorP+Jo1IuXK5f9+XJzILbeI9Okj0revyAMPiMyeLbJ7t8iGDSIHDhSfZmamfs+aXo0aIt26ibz4osikSSKffiry++8i6enFpyMikpUl8t57Ir17F17PypVFXn5Z5NKlktNZuVLkww9Fli/X9GJjC6e1apVur927RdatE9m3r+jtd+WKyIIFIv/3f3n7oEcPkUceEalSRSQmRt8rKW/Z2SKbNun61a+v28qap2bNRMaOFVm6VD/niKwskRdeEKlZU+Ttt0Xmz9dtf9ttIu++KzJihMjw4bqujvjjD5HJk0WqVs3LV8OGIpUq6d/h4SKzZpV8nFmlp4v065d/21etKnLXXSK33irStKm+Vr68yKBBIufPF53WiRMio0aJVKumeUpM1G3Ytq3ISy+J/Ppryfm6dk1kyxaRjAzddpMni7RvLxIaWvh4mzSp+LSuXs3bT8eOicyYoXkrmA6g++XECZHVq/VYKyqff/ubSK1aIk8+KfLMM7pd7KUHiDz6qMhHH2n5K84nn9ivNwouvXqVXEb/+1+RkSNF/vpX+2UUELn7bpF//rP4Y/j6df337bfz1xu33SYSGSnStavI4MEiTZqI3HijlonipKWJJCfrdt25M++4si4TJmg5sFhEEhJETp4sPj1bZ86ING+u6YSE6L+33iqyeLHI999reba3P/fuFXnlFa1zv/hCy7e97VWlipbT334rPh979ujv7dghMnBg0fsxPFzrpi++cLycXrum28c2nYAAzdfMmbrfi5KRIfLNNyJHjoj8/LPIwoUiN92Ul06DBiJBQXn/j4zUc0Jxx9rZs/a3V1CQyM0359WXZ844tn4HDujxHRycl5ZtmbA9JyYkiKxfXziNzz7Tz9WuLfLLL1qOk5K0fD39tL5uTeP++3Ud7MnJEdm+XcvutGmaztSpekwVVz6ffNKxdbXauFHkqad0e1vTeOwxkW3b9HyclVX4O+fOibz6qshDD2l9XFReunfX/X74sNZ99tKyXd+dO0WWLdNtsny5SJ06eWl17ap1Z9euIrffrueX4uq0I0dE1q4VWbJEz7kFz+133JG3zv365S8DOTma3x9+EDl1Ku/13bvz58neEh2tnyvOkCHFp9Gkif6+iMjlyyKbN+t5xJ6sLC13e/ZoXfr443ntvdtu0zJ+991a1iZP1jaKtV4taj88/HBeXho1EqlePX95iInR9t/x47p/MzLsp3X1qpb5mTNFFi3SPK5YocfMO+/oOfbsWV2H06e1Liy4nr//LjJ+vJ4TrflbvVqP2Xbt7G+/4GCR118vvl7LydHjY/RorQsLptG4sW6vBx4QadVK2w0lSU8XqVvXfp5iYrStO3hw4fPU+fP6W6+9JjJ0qEjr1nqc3XyzSL16Is8+K/LVV/nTu/HGvO2ekpL/OLW1ebOkdO4sACQlJaXkdfAwi4iId0NM40yYMAHjxo1Du3btkFTElc5x48ZhwoQJuOOOO7BixQq7n7FYLA7/ZgqAiiV9qH594IkngGHDdFjHpk1ASIheAVm1Sq/ku+KRR4AhQ4BmzfRqw/XrQKdOmuY//uFYD1RgoF5xvvNOzUelSnpV5bffgB9/1KuyW7eWfAUjMBCoVw/o0AF48UW9urhmDbBxI1Czpl71/de/HFuvqCi9wml1ww1At276Gzt36nrVqQNs26ZD7krSrJnmKTUVuPVW/T8AnD8PTJig+bL2ipWkYUMgIAAICwPatweqVtWr4leu6FXFiAjN35EjjqUHaE9L27bAAw8A5cvrvsvJAXr00N6cpUsdSyc0VLd7w4ZA375A//66fXbu1HX99lu98rZ7tw6RcFTt2sBbbwE9e+rxkZoK3HefHh+O9OAmJOjV/pgYoGtX/e01a3Rda9XS7f/HH0B0tKa/b1/x6bVvr71lrVoBL7+s5WnjRl235cuBihWB2Fjgv/91fB0B4MEHtRctMlLzM3Wq9mI5emzYat1ar0x+843ul5tu0qv1CQl6rDhT5uvU0SuJ5cvrFetu3XR55hlgyxbtAXPUI4/o95KTtVeiWjXt2Rk6VPOXne14WuXL68iFlBRdx8cf19ELEydqOn/8ofskPFzLhCP1UUSE1pfvvKO9oi+/nHc1Nj1de09vukmvApdU9lu21O199KiWiyZNgFdecb6HokUL/e7OnXqlfsgQrZ+2btWeBWcNH64jNXbv1vWNi9O6+/Bh7UnbskX3z4YNJfc89ekD3Hyzrmvv3lo3LVoEPPecayNBoqOBe+7R7bt/vx4jCQmat4UL9Yp5ScqVA2rU0DLYqBFw9916pb9+fT0uli/XujI52bm8RURoecrO1vz85z/Av//tXBpBQXqlv21bPVcmJwN792oddOCAc2lZvfWW1td9+uj/V6/W/zdqBEyZoueCs2cdq0eqVtXt1bcvcNtt2qN2//1alpxVsaLWGy+8ACQm6rGblKR1yLvv6rndGVWqAB98oHnbs0frjZo1tc7829+0Keyohx4Cnn5a8zNzZv7RD4mJuv0czV9goLYZKlfW80t8vJ6f69bVHroRI0pOo2ZNoHNnPaZOnNB998orwO2363EsoueC557TY9cZFSpo+YyPB0aN0v+PHq3b79QpPXc5IyBAz/FRUVq31qmjx9aPP2r964zoaK2PRozQkRVTp+b1aFasqPW6o+eX/v313Hb2rNYZNWvqvmneHPjoI8fbMYC2+aZN03U8eVLPI6GhwA8/6DETFaXHR8HhneXL2x9FUKmSlqcHH9QeYVfKer162ma3bo82bbQ9GR2dV1//9htSAUQCSElJQcWKJUYHnuXtCNNIb731lgCQdu3aFfmZsWPHCgC54447ivwMAIeXFNsrjNOmFb5K7cxSt672PgUH61KwV89Xlrg47YkbNKjo3oziejlsl06dtEeyZ09j82iv98e6dOsm8v772tNk7/2ICO1BsvYQ+NLStq1IfLz+Xa1ayVeYi1sqVNBeH2tPoCNLvXp6ta24zzi670taYmP1qpptT4Onlxtu0KW4z4SEiAwYoFcjf/xRe2KNWueQED0+//zn/Ff5nV0GDtQrjUVddbUuUVHFv+9IL6MzS9Om+XtVjDpO3KkrY2Ly/g4P154e214lZ5eXX9Yr5s8/LzJunPa8FHdMObKN331X0yvus6GhzpVlX1wsFr2Cf+utxpT78uVFWrQQCQx0L50KFXSkwp//LPKf/+T13HhradRIexnbtcs7HxS3VK6c19Nd3BIfX3SviLeXsDDtCTQirSZNtJwX106wLlWquH/8uLrYjibyhaVmTZHOnY053732msh99xmTr//7Px21ceyYlg1nv1+5ctHb35FjxGZJwf9iAx/owYO3M2AkrwzRDAkRadNGhyhYZWaK/OUvGrzcemvJJ/Bq1XQYwcWL+v1r17T7/8oV7Qo+eVLk2281oHrkEU27pIMuMFAbed9/L9KypTZYRo8WmTNHl/HjdaiEoyfR6tW1gTFlinbvWx06pN3qjhaCjh11mNuUKfmHVmRnazd/lSoiFSvqsJCnn9Zhg7aVq8Wiw5Ss/+/USeTzzzUf48drUDZxom67LVs0WCspTyEhOqxi2rTCQxaOHdMhD9ZhfgEB2ggsaZ82aqRDZgIDtVG7dKlWaN266dCXgkOviluionS445YtmqecHB0uYB0SMX9+yQ31gkt8vA4rExE5elQbCo0b553cn3xSX+/cufh0atfWhs/x49rwWb5ch6ScPCnywQf5h4U5ulSrpulYXbmiQ2fuucf5tKpX1+FNe/bokJQDBzS9f/9bh7p16aLDykran82a6ZDpRx7RIVAF7dunJ5gFCxwLzGJjdUjc4MH6//vv12Pv2rW8NH/9VY9vR06mAwbo8KgnnxR58828YUEXLmi5uP12x7dZcLDI3/+ux9e1a1ov/fKLpnHPPboNhw4tOZ0KFfSCRJ06OgR4xAjdj6mpeRfCmjUTmT5dP1evnv3hO9YlICB/4NWggciuXbqely+L/Otfuq+ffbbk/Vm3rg5/X79e1/PcOR2eZx36fv681lGtWhWfTni47sMbb9T8vftu4WPDWmZnzXKuYRQRIdK/vw5tsjp8WM8Fo0Y5Vw5iYrRuXL1a0zh3TvMzcaLuj8WLdXhZcWkEBuqw/7179dhMS9M0Hn9c66ekJD2PtWxZ9LBo62LdDgkJeo775hvdd8nJeet68aLWK+fPl5ye9bxwzz1at06erLcEWIeXJydrvopLo1MnvfD3/vuaxiuvaJ178qRuL1u//eb4ubNiRb2YGBqq33nmGc1bSooOv584Ubfh3XdrmbGXRtWqWk5uv13r7u3b8+dn1y49Bq3lolcvPZcWl68aNfRCZrlyWh4+/VSP0+xs3a/Nm+uQ8xUrCg/pt7f07atl/O23dZvt26dp7dyp+6VdO/uNb4tFpEMHHapqOwS4RQu9UHLpkg77tQ4ffvddrWMff1zroSZNtI4prmz16qV5+/vf8w9dPXpU22/OlKXatfPql9hYrXevXNH8Wc8D//63nk+bNct/AamoZdgwka1bRfbv12Pj44/zhgSePattvtat9RgNCys6nVtv1eP3lVe07rjzTr3g9N57msadd+r69uql7ZOC26zgMR0erp/997+13rAO8T98WId9p6frcenIdgsO1vNU69aaZlqanvPWrxf58kttR5Z08djeMnhw/rJw5YrI3Lna3urTx/5xUbGitk+2bs0/LH32bK3nrLenXLqk5cJ6ATEmRvNfTHsr5eabxVcCPFMN0Vy6dCn69OmDKlWq4FwRN9/ee++9WLx4MZ5//nlMmjTJ5d9KTU1FZGSkY92wv/0GvP663jQbFKRd4TVr6pClxEQdMujEsFAAOrnG0qU6scjXX+vwtyFD9EbrcuX0xvmEBP2siL5eoULhdPbs0aEHZ89qN/ahQ9oFfcst2v3ctq12jUdFabpFEdGhTx9/rMMKz5/XG2k7dtT1jIrS4RMNGxa/XiKFt8WRIzqsp3p1HeoXFKTDJIKCdEhLcU6f1gkjjh/XIV5ffpl/+GSDBjpcrohJeXJdvKiTYbRurcMiNm/WYXLp6UCXLjqMq1MnXcfr13U4EaBDFkJC7Ke5a5cON6pbVyc7WLYMCA7WbV6lig7LiYgAHn5Yh4kU59w5HY6SmKjDvD75RPdtYKAOZczO1qES16/rEI9HHtHtZ2W73dPTdR2tr69dq8O+duzQYY+ZmXpMLFumw1qKc/UqMH26DntJT9ehEQ0b6n60WHTIV1ycHicnTuj2qls3f95sHT2q+69pU91mkybpsIlWrTT9oUN1iNns2brPnnlGh5qU5OhRHW64bp0O0UxM1GHLfftqPhs0KDkNqx07dAhUgwY6LOfRR3X7V6+ux0yLFjosOjRUh8McOaLbICDAfnrp6TosJS1Ny/D8+TosNT5ef8c6PLok27frkLYDB3QY7K5dWqYbNtThcy+8oOWlTRsd9lOSLVu0PNWvr/n6+GM9BseM0WO2WjUdKmXP5ct6zNaqlb+8Z2XpBDGffqr/79IF+PxzHbJjsej22r5dy0nTpkXXSV99Bfzzn8BddwH33qtDhI4f12F0995b9La25+BBrWurV9e6PClJj7HGjfW4q1JFP1dcWbdauVKHMqWn6z5r3lzzFRSkx339+lrv1q+vx0T58kWn9dFHuj9jY7VM/vqr/lunjk7S07evDgELC3OsDIjocZWcrOeOunV12FFmpq5706Z59ZojMjJ0+Ndnn2mZCg3V73/yiZavAwf0N4KDS05rxQotRzVqaN1Rtaoe/2lpeoyEhOg+jYwsOo0rV3SIp/XWiDNntCxah8N37+74ugE6hHXLFt2X27YB8+ZpmW/bVuums2e1Pvr4Y83b9et6LiyqTABaLtas0ePt8GHdNk2aaH0RF1d8frKy9Pxdv76Wi6tXtRwtWKBlPTJSz+tBQZruG29oGU1P1zwV1wYR0WNq8mQti92765DI3bt1O7zwguaxJFev6jDIffv0nB4crEPmbr457zOnTuk+iYkpOT1bKSlaNlNSdNmwQddtwAC9/aGouiInR7fRyZM6PDY6Wmd33LFDy1dGht6mYK3LBwzQzx48qPu6uDJqlZysdc+OHbqd77lHy8bVq9oWTEhwvA24c6fuhyZN9LdPn9Y6rXZt3Z/O2LVLh43u3at5ePll3Rdz5uj26tev+OPVKilJz98tW2p9MWuW1kOVKun56sABPVf37FlyWrNn63HbpImWm6go/TclRYfMdu2qvzVxov7WBx/osViU9HTdtvPm6XDYkBDgqaeAG2+0//lTp/S4rFQp77WMDM2DtX6/ckUnl8rK0nZWhQp6Hk1ORurttyOyZk2fGKJpqgAvOTkZsf9rCB88eNDuTJpxcXE4duwY5s6di4cfftjl33IqwLM6flwbY84WwpJYG37ONFr8lYhWkMuWaRA6cqQ2Glxx7Jgut97qfIBeVmVn6wk9Kkobfb7A3kUBV9M5e1ZP8MVdzHBWUpLeL/D44/YvsnjL/v3a6CvpIokzjNoXp09rQODtexg84cwZbeC2besfdbb1gpG1qWHWutL22M/K0ka9IxdKypKUFN2X/nDcAnoB8swZDe7cPW6vXtV7yJo2db3NQT7PpdjAQ0wV4AFA69atsXXrVrz55psYN25cvveSkpLQoUMHBAcH4/Tp04gs7mpfCXxpJxIRERERkff4UmxgqufgAcDYsWMBAO+88w622zyE9fz58xg2bBgAYPjw4W4Fd0RERERERL7IdD14APDMM89g6tSpCAwMRNeuXREWFoY1a9bg0qVLaNeuHVatWoXQ0FC3fsOXonQiIiIiIvIeX4oNTBngAcBXX32F6dOn47///S+uX7+O+vXrY+DAgRgxYgSCiprAwQm+tBOJiIiIiMh7fCk2MG2A52m+tBOJiIiIiMh7fCk2MN09eERERERERP6KAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmUR5b2egrBIRAEBqaqqXc0JERERERN5kjQmsMYI3McBzQUZGBqKiogAAsbGx3s0MERERERH5hNOnTyMyMtKreWCA56bjx48jPDzc29nwOxkZGYiJiQEAnDhxAmFhYV7OkX/h9vc+7gPv4z7wPu4D7+M+8D7uA++z3Qc1atTwcm4Y4LktMjKSBckLAgICcv+uWLEi90Ep4/b3Pu4D7+M+8D7uA+/jPvA+7gPvs90H5cp5f4oT7+eAiIiIiIiIDMEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUlYRES8nQkiIiIiIiJyH3vwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQAPwPz589GpUydUqlQJYWFhaNasGSZOnIjr16+7lN7PP/+M+++/H9WrV0dISAjq1q2Lp556CmfOnDE452Xb9evXsWbNGrzwwgtITExEVFQUAgMDccMNN6BPjtehegAAF9pJREFUnz5YtmyZ02mOHz8eFoul2OWPP/7wwNqUXUOGDClxm125csXpdFkOHHP48OESt791+eGHHxxKk+XAvj179mDatGkYMmQIEhISUL58eVgsFrz55pslfnf16tXo2bMnoqOjERoaisaNG2PcuHFIT093OT/79+/HkCFDUKtWLQQHB6NWrVoYMmQIDh486HKavs7ZfZCTk4NNmzbhlVdeQfv27VGlShUEBgYiOjoa3bt3x5w5c+DKXHGzZ88usYwsX77c3dX1Sa6UA0/WKf5WDlzZ/o6eIz777DOH8+GvZcDdtmdZOReUd/mbJvHss89iypQpKF++PLp06YLw8HD85z//wahRo7B06VKsXLkSoaGhDqe3YMECPPzww8jKykJiYiLq1q2Lbdu24YMPPsD8+fORlJSEBg0aeHCNyo7169eje/fuAIAbbrgB7du3R1hYGHbv3o2lS5di6dKl+POf/4wZM2bAYrE4lXazZs3QvHlzu+9FRka6m3VTateuXZHHZkBAgFNpsRw4Ljw8HIMHDy7y/d27d2Pr1q2IiIhAy5YtnUqb5SC/f/zjH5gyZYrT33v//ffx3HPPwWKxoEOHDqhevTo2bNiACRMmYOHChUhKSkJ0dLRTaW7cuBF33HEHMjMz0aRJE7Rv3x67du3Cp59+igULFmD16tVo27at03n1dc7ug4MHD6Jdu3YAgMqVK6NVq1aoVKkSDh48iNWrV2P16tWYN28eFi5ciKCgIKfzU79+fbRv397uezVr1nQ6vbLA1XIAGF+n+GM5cGX7F3eOOHr0KNauXQuLxYKOHTs6nR9/KwPutD3L1LlA/NjixYsFgISHh8vPP/+c+/rZs2clISFBAMjIkSMdTu/48eNSoUIFASD//Oc/c1/PysqSgQMHCgBJTEyUnJwcQ9ejrFqzZo30799ffvjhh0LvzZs3TwICAgSAfPrppw6n+eqrrwoAefXVVw3MqbkNHjxYAMisWbMMSY/lwFh33XWXAJDHH3/c4e+wHNj38ccfy/PPPy9z5syR33//XQYNGiQA5I033ijyO9u3bxeLxSIBAQHy3Xff5b6ekZEhXbt2FQDSv39/p/KRkZEhMTExAkDGjBmT770xY8YIAImNjZXMzEznVrAMcHYf7N+/X7p06SLff/+9ZGVl5Xtv3bp1EhYWJgDktddecyofs2bNEgAyePBgV1elzHKlHHiiTvHXcuDK9i/Ok08+KQCke/fuTn3PX8uAq23PsnYu8OsALzExUQDIm2++Wei9DRs2CAAJDg6WS5cuOZTeCy+8IACkW7duhd5LS0uTyMhIASDLly93O+/+4LHHHhMA0rVrV4e/w4at84wO8FgOjJOcnCzlypUTAPLTTz85/D2WA8dYj/3iGlb333+/AJA//elPhd47fPhw7v75/fffHf7d6dOnCwBp1KiRZGdn53svOztbGjVqJABkxowZjq9MGeXIPijOG2+8IQCkfv36Tn3PXxu39jiyDzxRp7AcKHfKwOXLlyUqKkoAyLx585z6LsuAfUW1PcvaucBv78E7fvw4tm7dCgAYMGBAoffbt2+P2NhYXL16Fd99951DaS5evLjI9MLDw9GnTx8AwKJFi1zNtl+55ZZbAADHjh3zck7IGSwHxpk9ezZycnLQpEkTtGnTxtvZ8TvXrl3LvR/D3vFcu3bt3OGD1uPeEdbPPvTQQyhXLv9puFy5cnjwwQcBsIw4gueJsovlwH0LFy7EpUuXULlyZdxzzz3ezo4p2KtTyuK5wG/vwduxYwcAHdNft25du59p1aoVjh07hh07duDhhx8uNr20tDTs378/93tFpff555/n/jYVb9++fQCAGjVqOP3d7du3Y/To0bhw4QIiIyNxyy234O6770ZERITR2TSNtWvXYufOnUhLS0OVKlXQunVr9OzZE8HBwQ6nwXJgrNmzZwMAHnvsMZe+z3Lgnr179yIzMxNA8cfzhg0bnDqerZ8tLk3bz1HR3DlPADq5wUsvvYQzZ84gPDwcTZs2RZ8+fZy+j8ZfGFmnsBy475NPPgEADBw40KlztS2Wgfzs1Sll8VzgtwHeoUOHAABxcXFFfiY2NjbfZ4tz+PDh3L+LStOZ9PzdqVOnchu3/fv3d/r71htlbUVGRmLq1Kl49NFHjcii6dibfatGjRr45JNP0KNHD4fSYDkwzvr167F//34EBQVh0KBBLqXBcuAe6zEaFRVVZAPW2eM5LS0N58+fB1ByGTl79iwyMjIQFhbmVL79RWZmJqZOnQrAtfMEoBMcbNy4Md9rISEhGD9+PEaNGuV2Hs3GqDqF5cB9hw8fxtq1awG4fhEQYBmwVVTbsyyeC/x2iGZaWhoAFLuxwsPDAQCpqakOp1dcms6k58+ysrIwcOBApKSkICEhAX/5y18c/m79+vUxYcIE7NixAxcuXMCFCxeQlJSE3r17IyUlBYMHD8acOXM8mPuyp1mzZpgyZQp27dqF1NRUnD59GitXrsRtt92GkydPok+fPli3bp1DabEcGMd6ZdaVK6ksB8Yw+jxhm2Zx6VrTdCZdfzRs2DAcOnQIMTExGDt2rFPfveGGGzBu3Dhs3rwZZ8+eRWpqKrZu3YpHH30UV69exejRozFhwgQP5bzsMbpOYTlw36xZsyAiaNWqFW6++Wanv88ykF9xbc8yeS5w+q49k3jrrbcEgLRr167Iz4wdO1YAyB133FFiehs3bhQAAkCuX79u9zMrV64UABIUFORyvv2B9QbXKlWqyJ49ewxL96mnnhIAUrVqVbl69aph6ZpVTk6O9O3bVwBIs2bNHPoOy4ExUlJScmcitZ2tywgsB3lKmtxgzpw5AkBq1qxZZBofffRR7k3yjjh+/HhuGdm3b5/dz+zduzf3MydOnHAo3bLK1QkmXn/9dQEgISEhkpSUZGie3nvvvdxJ1k6dOmVo2r7I3YluXKlTWA7yuLL9s7OzJS4uTgDIhx9+aHie/K0MiBTf9iyL5wK/7cGzdrFmZGQU+RnrQwsrVqzocHrFpelMev7qmWeewcyZM1GpUiWsWrUKjRo1Mizt8ePHIyAgAGfPnsXmzZsNS9esLBYLXnvtNQDAL7/84tAkBiwHxpg3bx4yMzNRq1Yt3HnnnYamzXLgOKPPE7ZpFpeu7QNzWU4Kmzx5Ml555RUEBwdj8eLFuZMbGOWZZ55BdHQ0rl69ipUrVxqathm5UqewHLhn9erVOHr0KEJDQ+1O+uEufysDJbU9y+K5wG8DvDp16gAofuYt63vWzxandu3auX8fPXrU7fT80ciRIzF16lRERUVh5cqVuTMZGaVy5cqoVq0aACA5OdnQtM3qxhtvzP3bkW3GcmAM6/DMIUOGFJpZy10sB46zHqOXLl3KN5zGlrPHc0REBCpXrgyg5DISHR3N+44KmDZtGkaOHImgoCAsXLjQ4fuDnREQEICGDRsCYBlxhCt1CsuBe6zniP79+7v0gPmS+FMZcKTtWRbPBX4b4Fl34Pnz54u8IXLbtm0AgBYtWpSYXsWKFdGgQYN833MnPX/z4osvYvLkyYiMjMTKlSuLnFHIHdnZ2UhJSQEAziLoIOsNwIBj24zlwH27d+/G5s2bYbFYMHToUMPTZzlwXHx8PCpUqADA2OPZ+lmWEedMnz4dTz/9dG5w16tXL4/9lrXuYxkpmat1CsuBay5cuICvv/4agHuTq5TEH8qAo23Psngu8NsAr1atWkhMTAQAzJ07t9D7SUlJOHbsGIKDg9GzZ0+H0uzXr1+R6aWnp+fOPHXvvfe6mm1TGj16NCZNmoTIyEisWrUqd78YbcmSJcjMzITFYvFIAGlG8+bNA6CBW3x8vEPfYTlwz8yZMwEAnTt3Rr169QxPn+XAcUFBQblBhL3j+ciRI9i0aROAvOPeEdbPzps3Dzk5Ofney8nJwZdffgmAZcTWjBkzMHz48Nzgrnfv3h77re3bt2Pv3r0AgNatW3vsd8zC1TqF5cA1c+bMwdWrV1G/fn107NjRI7/hD2XAmbZnmTwXOHXHnsksXrxYAEh4eLj8/PPPua+fO3dOEhISBICMHDky33cWLVok8fHx0qVLl0LpHT9+PHdihI8++ij39aysLBk0aJAAkMTERMnJyfHcSpUx48aNEwASFRUlW7Zsceg706ZNk/j4eBk0aFC+148cOSKff/65XL58udB3Fi9eLJUrVxYAMnDgQEPybgY7duyQb775ptCEKNnZ2fKvf/1LQkJCBIC89NJL+d5nOfCMa9euSbVq1QSAzJkzp9jPshy4z5HJDX7++WexWCwSEBAg33//fe7rGRkZ0rVrVwEg/fv3L/S9zZs3S3x8vMTHxxd6LyMjQ2JiYgSAjB07Nt971sm9atWqJZmZmW6sXdngyD746KOPxGKxSFBQkCxdutThtIuqpzIyMuSDDz6Q1NTUQt9Zv3691KlTRwBI+/btHV+RMqykfeBOncJyUDJnJ1lp3ry5AJC33nqrxM+yDNjnStuzrJ0L/DrAExF5+umnBYAEBgZKjx49pH///hIVFZU7w2bBjTpr1iwBILVr17ab3ldffSUBAQECQNq0aSMPPvig1KtXTwBI9erVi5wpxx998803ubMDtWrVSgYPHmx3KRhkv/rqqwJAOnbsmO/1HTt25AbsHTp0kIceekj69u0rDRs2zP2dzp07S1paWimupW+zXuSoVKmSdO3aVQYMGCA9e/bMnZ0LgDz88MOFAkCWA89YtGhR7knHXmPKFsuB837++Wdp06ZN7hIdHZ17ArV9veBsZZMnTxYAYrFYpFOnTvLAAw9IjRo1BIDEx8fL2bNnC/3W2rVrc7e3PUlJSbkXQpo2bSoPPfSQNG3aVABIWFiY/Pjjjx7ZBt7m7D7YsWOHWCwWASCNGzcu8jwxePDgQr9VVD118eLF3BkC27ZtKw888IDce++9udsfgCQkJJh25kZX9oGrdQrLQWGu1kMiItu3bxcAEhAQIMePHy/xt1gGCnO17SlSts4Ffh/giYh8+eWXcvvtt0vFihUlNDRUmjZtKu+8847d6X5LatiKiGzbtk3uvfdeqVq1qgQFBUnt2rXlr3/9q99MNeso67YsaSm4rYtq2J47d05GjRolXbp0kbi4OAkLC5PAwECpUaOG9O7dW+bOnSvZ2dmlt4JlwMGDB+XZZ5+V9u3bS82aNSUkJESCg4MlLi5O7rvvPlm2bJnd77EceEbv3r0FgAwbNqzEz7IcOM/2RFvccujQoULfXbVqlfTo0UMqV64swcHB0rBhQxkzZozdK+AFf6so+/btk0cffVRiYmIkMDBQYmJi5NFHH5X9+/cbtco+x9l94Ojn7W3nouqpq1evyssvvyx33XWX1K1bVyIiIqR8+fJStWpV6datm/zzn/809SNEnN0H7tQpLAeFuVMPDR8+XABIz549HfotloHCXG17WpWVc4FFRARERERERERU5vntJCtERERERERmwwCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERE5DMsFovTS6dOnQAAnTp1gsViwbp167y6DkaYMmUKLBYLFi5c6HIaKSkpqFKlCtq0aQMRMTB3RETky8p7OwNERERWgwcPLvTaqVOnsGLFiiLfb9y4scfzVZrOnj2L8ePHIzExEf3793c5ncjISIwZMwYvvPACPvvsM7vbjoiIzMcivKxHREQ+bN26dejcuTMAFNsTdfToUWRmZiIuLg4VKlQorewZbvjw4Zg+fTqWLVuGnj17upXWlStXEBcXh/Lly+PQoUMIDg42KJdEROSrOESTiIhMIS4uDo0bNy7Twd2lS5cwe/Zs1KxZEz169HA7vZCQEAwYMAAnT57El19+aUAOiYjI1zHAIyIiUyjqHrwhQ4bAYrFg9uzZ2LNnDx588EFUq1YNYWFhSExMxDfffJP72c2bN6NPnz6oWrUqQkNDceutt2LNmjVF/ubly5fx3nvvoW3btoiKikJISAji4+Px4osv4vz5806vw6xZs5CRkYFBgwahXLnCp+irV69i0qRJaNmyJSIiIhAUFIQbbrgBiYmJePHFF3HhwoVC3xkyZAgAYPr06U7nh4iIyh4GeERE5Be2b9+Oli1b4pdffkHXrl3RrFkzbNu2Df369cOCBQvw9ddfo0OHDkhOTkbXrl0RHx+Pn376CT169EBSUlKh9E6cOIE2bdrg+eefx759+5CYmIiePXvmBmGtWrXCkSNHnMrj119/DQDo1q1bofdycnLQq1cvvPjii9i/fz86dOiA++67DwkJCTh79iwmTZqEo0ePFvpe8+bNUbVqVWzZsgUnT550Kj9ERFQGCRERkQ9bu3atAJCSTlkdO3YUALJ27dp8rw8ePDj3+2+++abk5OTkvjd16lQBILVq1ZJKlSrJZ599lu+7zz77rACQbt265Xs9JydH2rVrJwDksccek9TU1Nz3rl+/LiNHjhQA0rlzZ4fXMzMzU4KCgqRcuXL50rNav369AJBbbrnF7vtbt26Vc+fO2U27T58+AkA+//xzh/NDRERlE3vwiIjIL7Ru3Rpjx46FxWLJfe3JJ59E5cqVkZycjG7dumHQoEH5vvPSSy8BAH744Qdcv3499/UVK1Zg48aNaN68OWbMmIGIiIjc98qXL4+JEyeiadOmWLt2LXbt2uVQ/n777Tdcu3YNtWrVypee1enTpwEAHTp0sPt+q1atUKVKFbtpN2nSBID2YhIRkbkxwCMiIr9w11135QvuAA3G6tatCwB2Z6ysUqUKKleujGvXruW7p27ZsmUAgP79+6N8+cJPHCpXrhxuv/12AMCmTZscyp81gCsqSGvRogUCAgLwySefYPr06U4Nt7Smaf0NIiIyLwZ4RETkF+Li4uy+Hh4eXuz71t6yK1eu5L528OBBAMDLL79c5APYP/zwQwD6XDtHpKSkAAAqVqxo9/369evj/fffx/Xr1zF8+HDExMSgTp06ePjhhzFnzhxcu3atyLStaV68eNGhvBARUdnFB50TEZFfsDcrpTPv28rJyQEAtG/fHvXr1y/2s9bhkSWJiooCAKSmphb5maeeegoPPPAAlixZgqSkJCQlJWHevHmYN28eXn31VWzYsAE1atQo9D1r8FipUiWH8kJERGUXAzwiIiInxcbGAgD69u2L559/3pA0q1WrBgAlPl6hevXqePzxx/H4448DAP744w/83//9H3788UeMHj0an376aaHvWNOsXr26IXklIiLfxSGaRERETrrrrrsAAPPnz4eIGJJmkyZNEBQUhOTkZKSlpTn8vcaNG2PUqFEAgP/+9792P2Od6KVly5Zu55OIiHwbAzwiIiIn9e3bF4mJidiyZQuGDh1q9z67ixcvYsaMGcjKynIozdDQULRt2xY5OTnYvHlzoff/85//4Lvvvss3mycAiAi+/fZbAEDt2rXtpv3jjz8CALp06eJQXoiIqOziEE0iIiInlStXDl9//TV69eqFTz/9FAsWLECzZs0QFxeHa9eu4eDBg9i5cyeys7MxZMgQuzNt2nPPPffghx9+wKpVqwo97PzXX3/FiBEjULFiRbRo0QIxMTG4fPkytm/fjiNHjiAyMhKvv/56oTR37NiB8+fPo3Xr1nbvzyMiInNhDx4REZELYmJi8NNPP2HGjBlo3bo19uzZgwULFiApKQkA8MQTT2DFihUICQlxOM2hQ4ciLCwMX3zxBbKzs/O9d/fdd2P8+PFITEzEwYMHsWjRIqxbtw6RkZEYPXo0du3ahebNmxdKc/bs2QCAv/71ry6vKxERlR0WMermASIiInLb8OHDMX36dCxZsgR33323W2lduXIFsbGxCAwMxKFDhxAcHGxQLomIyFexB4+IiMiHvPrqq4iKirI73NJZ06ZNw7lz5/D2228zuCMi8hPswSMiIvIxU6ZMwbPPPov58+fjvvvucymNlJQU1KtXDw0aNMBPP/0Ei8VicC6JiMgXMcAjIiIiIiIyCQ7RJCIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJvH/mxYVFivF7zcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_norm = (long_noisy - long_noisy.mean()) / long_noisy.max()\n", + "err = np.sqrt(long_noisy.mean()) / long_noisy.max()\n", + "\n", + "long_lc_gauss = Lightcurve(long_times, long_norm, err=np.zeros_like(long_norm) + err, dt=long_dt, skip_checks=True, err_dist='gauss')\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10, 6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue', label='Original light curve')\n", + "ax.plot(long_lc_gauss.time, long_lc_gauss.counts, lw=2, color='red', label='Normalized light curve')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 46520.67it/s]\n", + "200it [00:00, 39276.19it/s]\n", + "200it [00:00, 43715.71it/s]\n" + ] + } + ], + "source": [ + "avg_ps_gauss_leahy = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8, norm='leahy')\n", + "avg_ps_gauss_frac = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='frac')\n", + "avg_ps_gauss_abs = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAASmCAYAAAAzqZ8jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1/8H8HfC3ojIcIED98AW98CN0lq1blsVq63Wqv22tba1tto9ftpph62tWK2ttnXWrQVUHLgXDhzgQBEBGWGT8/sj5pKQAAETEvD9ep77QO489+Ym95PPOfdcmRBCgIiIiIjKJDd3AYiIiIiqAwZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRFQh/v7+kMlkCA8PN3dRdPTu3RsymQyRkZHmLgoR1UAMmoiIiIgMwKCJiIiIyAAMmoiIiIgMwKCJiEwuJycHixcvRpcuXeDu7g57e3s0b94cc+fORUpKis78BQUFWLVqFZ555hm0aNECrq6ucHBwQPPmzTF79mwkJiaWu82TJ0/i6aefhqenJ+zs7NCqVSssXrwYQgit+YKDgyGTyfDHH3+Uuq7PP/8cMpkMo0ePNmh/w8PDIZPJEBYWBoVCgbfeegtNmzaFnZ0dfHx8MGnSJNy6davU5WNiYjB69GjUrVsXtra28PLywpAhQ7Br1y6984eFhUntzM6ePYsxY8bA19cXVlZWWLhwIQDt9l6HDh3CE088gdq1a8PFxQXBwcHYt2+ftL7t27ejX79+qFWrFpydnTFgwAAcP37coH0nqtEEEVEF+Pn5CQBi+fLlBs1/69Yt0bZtWwFAeHh4iP79+4vhw4dL6/H39xfx8fFay9y4cUMAEG5ubqJLly5i1KhRIjQ0VNStW1cAEHXq1BFxcXE62woODhYAxJtvvilsbW1Fy5YtxdixY0VwcLCwsrISAMTLL7+stcw///wjAIhu3brpLX9RUZHw9/cXAERUVJRB+7x8+XIBQAwbNky0a9dOuLu7iyFDhoihQ4cKLy8vAUD4+fmJ+/fv6yz7008/CblcLgCIDh06iHHjxolu3boJAAKAWLhwoc4ykyZNEgDE888/L+zs7IS/v78YPXq0GDJkiFi0aJHWsZkzZ46wtrYWHTp0EGPGjBGBgYECgLCzsxPR0dFiyZIlQi6Xi27duonRo0eLZs2aCQDC2dlZ7zEnepQwaCKiCqlI0KRUKkX37t0FADFlyhSRkZEhTSsoKBCvvfaaACD69OmjtVxGRobYuHGjyMvL0xqfn58v3nrrLQFAhIaG6mxPHRgAED/++KPWtD179giZTCasrKzEjRs3pPGFhYXSPh0/flxnnZs3bxYARLt27crdXzV10ARAhISEiPT0dGlaamqqFKh8/PHHWsudPn1aWFtbC5lMJn777TetaVu3bhW2trYCgNi5c6fWNHXQpA4Yi4qKSj02MplMrFy5Umvaq6++KgCI5s2bC2dnZ7F7926t4zNixAgBQEydOtXgY0BUEzFoIqIKqUjQtG3bNgFABAYGioKCAp3pRUVFok2bNgKAOHPmjMFlqFu3rpDL5VpBmBDFgcHTTz+td7lBgwYJADoByeeffy4FdiWFhIQIAGLp0qUGl08dNDk5OYnExESd6X/++acAIPr27as1fsqUKWWWf+bMmQKAGDBggNZ4ddDUrFkzUVhYqHdZ9bEZNWqUzrSUlBQp6Hr99dd1ph87dkwAEI0aNSp1n4keBWzTREQms2XLFgDAiBEjYG1trTNdLpejV69eAIADBw7oTD916hS++OILzJo1C8899xzCwsIQFhaGwsJCKJVKXL58We92hwwZond8y5YtAUCnPdHUqVPh6OiI1atXIy0tTRp/+fJl7Ny5E+7u7nj22WcN2GNtQUFB8PX1Nbgc6v6lwsLC9K5vypQpAIB9+/ahqKhIZ/qwYcNgZWVVZplCQ0N1xnl4eKB27dqlTg8ICAAAg9qSEdVkut9iRERGcvXqVQDAO++8g3feeafMeZOTk6X/FQoFJkyYgPXr15e5TEZGht7xDRs21Dve1dUVAJCbm6s1vlatWpgwYQKWLl2KX375BXPmzAEAfP/99xBCYPLkyXB0dCyzLMYohzqIatSokd7lmjRpIi2XkpICLy8vren+/v6VLpOzszNSUlL0TndxcQEA5OXllbt+opqMQRMRmYxSqQQA9OjRQ7rgl6Z169bS/2+99RbWr1+PFi1a4NNPP0XHjh3h6ekJW1tbAEC3bt1w8OBBnTvh1OTyiifRZ8+ejaVLl+KHH37Aq6++itzcXCxfvhwymQwvvfRShddX2XI8DAcHh3LnKa9MVV1mouqEQRMRmUyDBg0AAEOHDpWyN4ZYu3YtAGDNmjVo166dzvS4uDjjFFBDq1at0L9/f+zevRvbtm1DYmIi7t+/j8GDB5cb8BlLvXr1cOXKFVy9ehVt2rTRma7O3Nnb28PDw6NKykRExfiTgohMZvDgwQCAv/76q9SskD6pqakAAD8/P51pO3bswL1794xTwBJefvllAMCSJUvw3XffAQBmzpxpkm3p07t3bwAo9bl+v/76KwCgZ8+eetuIEZFpMWgiIpMZOnQoOnbsiJiYGEyePFmr3ZJaWloafvzxRxQWFkrj1A2lv/32W615L168iOnTp5usvKGhoWjatCm2b9+OU6dOoUmTJlLgVxVefvllWFtbY8OGDVi1apXWtJ07d2Lp0qUAUKGsnalNnDgRLVq0wJIlS8xdFCKTY9BERJXywQcfoEuXLqUOx48fh1wux4YNGxAYGIgVK1agUaNG6N69O8aNG4cRI0agQ4cOqFOnDl588UWtoGnBggWQyWR455130K5dO4wbNw79+vVD27Zt0bhxY3Tr1s0k+ySXy7UySzNmzIBMJjPJtvRp27YtvvvuO8hkMkyYMAGPP/44nnnmGfTo0QODBg1CXl4eFi5ciIEDB1ZZmcpz/fp1XLx40WTZPyJLwvwuEVXK1atXpTY2+qjvbKtbty4OHTqE8PBwrFmzBqdPn0ZMTAw8PDxQt25dTJ8+HU899RTs7e2lZZ9++mlERUXhvffew6lTp3DlyhU0btwYCxcuxJw5c0waNISEhAAAHB0d8dxzz5lsO6V54YUX0L59eyxatAj79+/H6dOn4ebmhtDQULz88ssYMGBAlZeJiFRkoiINDYiIarj58+fjo48+wgsvvCBVhxERAQyaiIgkt2/fRqtWrZCRkYGzZ89KbauIiABWzxER4c0338StW7ewe/du3L9/H9OnT2fAREQ6mGkiokeev78/rl+/Dh8fH4wZMwaffvop7OzszF0sIrIwDJqIiIiIDMAuB4iIiIgMwDZNVUypVEr9mTg6OlZpHzBERESkTQiB7OxsAICnp2eZz19k0FTF7t27B29vb3MXg4iIiEpISkqCl5dXqdNZPUdERERkAGaaqpijo6P0f1JSEpycnMxYGiIiokebQqGQaoA0r9H6MGiqYpptmJycnBg0ERERWYjy2hmzeo6IiIjIAAyaiIiIiAzAoImIiIjIAGzTZGIKhaLM10RERFQ9MGgyMWdnZ3MXgYiIiIyA1XNEREREBmCmycSysrK0Xmv2B0FERETVB4MmE2M/TERERDUDq+eIiIiIDMCgiSzWueXLETl4MO6dP2/uohAREbF6jixTQXY2vKZMQWshEHXzJoLPnDF3kYiI6BHHTBNZpMxbt1BHCACA0+3bZi4NERERgyayUEV5edL/cqXSjCUhIiJSYdBEFqkoP1/6n0ETERFZAgZNZJGYaSIiIkvDoIkskrKgQPpf9qBtExERkTkxaCKLpJlpsmKmiYiILACDJrJIzDQREZGlYT9NJqZQKMp8TfppBk1WDJqIiMgCMGgyMWdnZ3MXoVrSagjOoImIiCwAq+fIImllmtimiYiILAAzTSaWlZWl9VqhUMDb29tMpak+lJr9NDHTREREFoBBk4k5OTmZuwjVEts0ERGRpWH1HFkkrUyTGctBRESkxusRWSRRWCj9z0wTERFZAgZNZJHYpomIiCwNgyaySJptmtjwjoiILAGDJrJIQiNoYqaJiIgsAYMmskjMNBERkaVh0EQWSTPTZGXGchAREakxaCKLpHn3HDNNRERkCRg0kUUSrJ4jIiILw6CJLJJmpgkAlCVeExERVTUGTWSRSgZNhbm5ZioJERGRCoMmskia1XMAUKTR2SUREZE5MGgii8RMExERWRoGTWSRdNo0lcg8ERERVTUGTWSZmGkiIiILw7u5TUyhUJT5mvRjpomIiCwNgyYTc3Z2NncRqidmmoiIyMKweo4sEzNNRERkYZhpMrGsrCyt1wqFAt7e3mYqTTVSVKT9Mi/PTAUhIiJSYdBkYk5OTuYuQvXETBMREVkYVs+RZWKmiYiILAyDJrJMzDQREZGFYdBElqlEpknJx6gQEZGZMWgiy1QyaGKmiYiIzIxBE1kkGds0ERGRhWHQRJapRNBUsodwIiKiqsagiSxSyUwT2zQREZG5MWgiy6RUar9kmyYiIjIzBk1kkZhpIiIiS8OgiSxSyaCJbZqIiMjcGDSRRWKmiYiILA2DJrJIshJtmphpIiIic2PQRBapZNDEhuBERGRuDJrIIjHTREREloZBE1kkecmG4GzTREREZsagiSySTAit16JEEEVERFTVGDSRRWKmiYiILA2DJrJIJTNNJZ9FR0REVNUYNJFFkpdsCM6754iIyMwYNJFF0gmaePccERGZGYMmskg61XMMmoiIyMwYNJFFsiqZaWKbJiIiMjMGTWSRdDJNbNNERERmxqCpHJ988gmCgoLg4uICb29vjB49GvHx8eYuVo1nxbvniIjIwjBoKkdUVBRmzZqFw4cPY/v27UhNTcXgwYNRyDY2JiVnmyYiIrIw1uYugKXbvn271uuff/4ZjRs3RmxsLNq1a2emUtV8Jds0MdNERETmZvJMU2FhIc6ePYs9e/bg77//xp49e3D27FkUGekiuGrVKkybNg1BQUGws7ODTCZDeHh4mcscOXIEoaGhcHd3h5OTE7p06YK1a9catL309HQAgIeHx8MWncrATBMREVkak2SasrOzsXLlSmzYsAH79+9Hdna2zjyOjo7o0aMHhg8fjmeffRaOjo6V2tb8+fORkJAAT09P+Pr6IiEhocz5IyIiEBISAnt7e4wdOxYuLi74559/MGbMGNy4cQOvvfZaqcsWFRVhzpw5CA0NRf369StVXjIM2zQREZGlMWqm6f79+5gzZw7q1auHGTNmYMeOHcjOzoaPjw9at26Nrl27olWrVvD29oZCocCOHTvw4osvol69enj99ddx//79Cm9z2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eaUGXUIITJ8+HdevXy83k0UPT+fEZKaJiIjMzGhB048//oiAgAB88cUXsLW1xezZs/Hvv//i3r17uHXrFk6fPo39+/fjzJkzSExMxL1797Bp0ybMnDkTNjY2WLx4MQICArB06dIKbbd///7w8/MzaN7//vsPV65cwfjx4xEYGCiNd3Nzw7x585Cfn48VK1boLCeEwIwZM7B7927s2bMHderUqVAZqeJ0Mk0l2zgRERFVMaMFTTNmzEDdunXx999/49atW/jyyy8RGhqKWrVq6Z3fw8MDTz75JL7++mskJibir7/+gq+vL2bMmGGsIumIjIwEAAwcOFBnWkhICADV3XKahBB46aWXsGXLFvz3339o0KBBmdtQKBTlDlS+km2aZMw0ERGRmRmtTdPKlSsxfvx4yGSyihfC2hojRozA008/jdWrVxurSDri4uIAAAEBATrTfHx84OzsLM2j9tJLL+GPP/7A5s2b4eDggDt37gBQBX22trY663F2djZByR89OicmM01ERGRmRguannnmmYdeh0wmM8p6SqO+883NzU3vdFdXV2ketR9++AEA0LNnT63xERER6N27t/ELSQCYaSIiIsvDfprKIUq2rSlHVlZWmdMVCgW8vb0fpkiPhJInpoyZJiIiMjOT9dPUpUsX/P777yiwoGeGqTNMJbNJahkZGaVmoQzl5ORU7kDlsyrxWsYuB4iIyMxMFjTFxMRg4sSJaNCgAd555x3cunXLVJsymLotU8l2SwBw584dZGVl6W3v9DDYELxySgZNbNNERETmZrKg6c8//0SPHj1w9+5dfPzxx2jUqBFGjRqlc3daVQoODgYA7Ny5U2fajh07tOYxFmdnZ62BVXOGsSnxmtVzRERkbiYLmkaPHo2oqCicOXMGzz//POzs7PDPP/+gb9++aNeuHZYuXaq3p3BT6tevHxo3bozVq1fj5MmT0vj09HR8/PHHsLW1xcSJE6u0TKRLqafRt5zVc0REZGYyUdGWzpWUkZGB8PBwfP/997h06RJkMhlcXV0RFhaGGTNmVLpabNmyZdi/fz8A4MyZMzh+/Di6d++Opk2bAgB69OiBqVOnSvOX9hiVhIQELFq0qMzHqFRGyeo4zYbgWVlZbOOkR35WFmxdXLTGHapbF10soIqXiIhqFoVCIXUXVN51ucqCJk27d+/GkiVLsGnTJshkMshkMgwcOBCvvfYa+vXrV6F1hYWF6e3FW23SpEk6jz2JiYnBggULcODAARQUFKBt27Z49dVXMWbMmMrsToVU5M15VOWkpsKhdm2tcYd9fND59m0zlYiIiGoqiw6aFAoFfvvtN3z33XeIjY0FAFhZWaGoqAgymQyDBw/G77///tB3sVkqBk3ly0xMhEu9elrjYry80CkpyUwlIiKimqoi12WTtWkq6dKlS5g9ezbq1auHmTNnIjY2Fn379sWGDRtw//59/PTTT/D398e2bduMXkVmTrx7ruKUerqpYJsmIiIyN5NmmoQQ2LRpE7777jvs2bMHQgg4ODjgmWeewezZs9GmTRut+RUKBdq3b4/MzEwk1ZCsQlmPlWGmSb+UixdRu0ULrXHHPDzweEqKmUpEREQ1VUUyTSbrEfyzzz7Djz/+iOvXr0MIgQYNGmDGjBl4/vnn4eHhoXcZJycn9OjRAytXrjRVsaga0JtpYpcDRERkZiYLmt566y0AQPfu3fHyyy9j+PDhsLLS6bJQR5s2bdCrVy9TFavKlXysCh+jUr7C3FydcQyaiIjI3ExWPRcWFoaXX34ZHTp0MMXqqy02BC/frYMHUa9bN61xZ5yd0TYz00wlIiKimsoiqudK3uZPZKiivDydcbKq7xmDiIhIS5XdPUdkKH1tmqxYPUdERGZmskyT2uHDh7F7927cunULuXraqgCqO8x++eUXUxfFLPT1CE5l05dpkjPTREREZmayoCk/Px/jxo3Dhg0bAKi6HyhNTQ6a1PWkZDi9d88xaCIiIjMzWdD0wQcfYP369XBycsKECRPQsmVLuLq6mmpzVIMwaCIiIktksqDpjz/+gKOjIw4fPoxWrVqZajMWj10OVJwyP19nnBWDJiIiMjOTBU03b95EcHDwIx0wAWCXApXATBMREVkik909V6tWrVJ7/iYqCzNNRERkiUwWNPXv3x+HDx8uswE4kT7MNBERkSUyWdD0wQcfIDU1FQsXLjTVJqoFhUKhM1DZ9GWarBk0ERGRmRmtTdNvv/2mM27y5Mn48MMPsX37djzxxBNo2LAh5HL9cdrEiRONVRSLwi4HKk4UFuqMYy+sRERkbkZ79pxcLodMJtMZr169vmmaioqKjFEMi1PWfvPZc/od/fBDBL3zjta4dABuzDYREZGRmeXZcxMnTiw3MHoUscuBimOmiYiILJHRgiY+oFc/ZpIqTm+bJjOUg4iISBN/wJPF0ZdpsjJDOYiIiDQxaCKLo6/LAWaaiIjI3KrkWnThwgVcvHgRGRkZpfbbVFPvnqNKKKVNk7KwEHJrhk9ERGQeJr0CHTp0CC+88ALOnTtX6jxCCMhkMgZNJNGXaQKAovx8Bk1ERGQ2JrsCXbp0CQMGDIBCoUDXrl2RlJSEa9euYezYsYiLi8PJkydRVFSE4cOHw9XV1VTFMLuSnVmyc0sD6Mk0AaqgycbRsYoLQ0REpGKyoOmzzz6DQqHA999/j+nTp2Py5Mm4du0afv/9dwDAuXPnMHHiRMTFxeHgwYOmKobZsXPLitPXEBwACnNzq7gkRERExUzWEDwiIgJNmjTB9OnT9U5v3bo1/v33X1y5cgUfffSRqYpB1ZAoo3qOiIjIXEwWNN2+fRtt2rSRXltZqW4az9e48Pn6+iI4OBjr1q0zVTHMLisrS2tISkoyd5Esniild/iivLwqLgkREVExk1XPOTg4wFqj0a6LiwsAICkpCQ0aNJDGu7q64saNG6Yqhtmxc8tKYKaJiIgskMkyTfXq1cP169el102bNgUArfZLQggcP34ctWrVMlUxqBpipomIiCyRyYKmzp07IzY2Fjk5OQCAQYMGAQBeeeUVbNmyBWfOnMGLL76IK1euoGPHjqYqBlVHGpkmzfCptK4IiIiIqoLJgqbQ0FDk5ubi33//BQA0adIEL7zwAm7fvo2nnnoKgYGB+Omnn2Bra4sPP/zQVMWg6kgj06SZW2KmiYiIzMlkbZqefvppFJTIDHz33XcICAjAX3/9hdTUVLRs2RLz5s1D69atTVUMqo40uhzIl8ng+KAXeWaaiIjInKq0e2W5XI5XX30Vr776alVulqobjUxTvkwGPAiamGkiIiJz4gN7yfKUyDSpMdNERETmZPJMkxAC27Ztw4EDB5CcnIzOnTvjueeeAwAkJycjLS0NTZo0kfpxItLMNBXI5dJrZpqIiMicTBo0nTp1CmPGjEFcXJz0YN6CggIpaNq1axcmTJiADRs2YMiQIaYsitnw2XOVoJFpKpQXJ0OZaSIiInMyWfXczZs30b9/f1y6dAmDBw/G559/DvGgbYrasGHDYGNjg40bN5qqGGbn7OysNXh7e5u7SJZPqZT+1Qqa2LklERGZkcmCpo8//hgpKSn46quv8O+//2LOnDk68zg6OqJ9+/Y4cuSIqYpB1ZBMM9OkUW3LTBMREZmTyYKm7du3o0WLFpg9e3aZ8/n7++P27dumKobZ8dlzlaCZadJ4FA8zTUREZE4ma9OUmJiIoUOHljufTCZDRkaGqYphdnz2XMXJNBqCF2lkmoRGBoqIiKiqmSzT5OTkhOTk5HLnu3btGjw8PExVDKqONIMmGxvpf1bPERGROZksaGrbti2OHTuGe/fulTpPQkICTp06hccff9xUxaBqSKZRPadk9RwREVkIkwVNzz77LDIzMzF16lRkZ2frTM/Pz8eMGTNQUFCAZ5991lTFoGpIVkqmidVzRERkTiZr0zR58mT8/vvv2LRpE1q0aIFBgwYBUPXdNHv2bGzatAnXr19H//79MWbMGFMVg6ohzaBJaFbPMdNERERmZLJMk5WVFTZv3oxx48bh1q1bWLZsGQDgxIkTWLJkCa5fv44RI0Zg3bp1pioCVVNa1XO2ttL/zDQREZE5mbRHcGdnZ/z+++945513sHXrVly9ehVKpRINGjTA4MGDERgYaMrNUzWlGTQJzaCJDcGJiMiMTP7sOQBo0aIFWrRooXfatm3bkJycjIkTJ1ZFUagakGtUz4GZJiIishAmq54z1Pvvv4/JkyebuxhkQTQzTbCzk/5lpomIiMzJ7EETUUmlBk3MNBERkRlVSfXco0yhUJT5mnTJNYMme3vpX2aaiIjInBg0mZizs7O5i1DtaAZNMmaaiIjIQrB6jiyOTAjpf7mDg/Q/gyYiIjInZppMLCsrS+u1QqGAt7e3mUpTPWhlmjSCJjBoIiIiM2LQZGJOTk7mLkK1oxk0ydnlABERWQijBU3vv/9+pZa7efOmsYpANYT8QfVcIQCZxmNUmGkiIiJzMlrQtHDhQshksgovJ4So1HJUc2kFTdYapyiDJiIiMiOjBU29evVi8ENGoQ6aiqBdPQfNnsKJiIiqmNGCpsjISGOtih5xVg/aNDHTREREloRdDpDFUWealDIZM01ERGQxGDSRxWGbJiIiskRGC5oSExMtaj1UfVkx00RERBbIaEFTQEAA3nzzTaSlpVVq+dTUVMydOxcBAQHGKhJVU+qgqUgmg1yzywEGTUREZEZGC5oGDhyIzz//HPXr18ezzz6LXbt2IS8vr8xl8vLysGPHDowbNw7169fHokWLEBISYqwiUTWlPimV0L57TsagiYiIzMhod8+tX78eu3fvxiuvvILVq1fjjz/+gI2NDQIDA9GyZUvUrl0brq6uyMjIQEpKCmJjY3Hq1CkUFBRACIE2bdrgiy++QP/+/Y1VJKqmmGkiIiJLZNTHqPTv3x9nzpzBrl27sGTJEuzcuRMxMTGIiYkBAMhkMgiNh7Ha2dlhyJAhmDlzJoMlklg9+FuyTRMzTUREZE4mefbcgAEDMGDAAOTl5SE6OhonTpxAUlIS0tPT4e7uDi8vLzz22GPo1q0b7OzsTFEEqsa0GoIz00RERBbCpA/stbOzQ9++fdG3b19TboZqGHWmqUgu1840aTzIl4iIqKqxnyayOOpIvmSmidVzRERkTgyayOJotmmy0qi+ZdBERETmZNLqOQIUCkWZr0mbUCq1Mk1WrJ4jIiILwaDJxJydnc1dhGpFWVhYnGmSy7UzTQyaiIjIjFg9RxalKD9f+l8pl2u1aZKzeo6IiMyImSYTy8rK0nqtUCjg7e1tptJYvsLcXKgr5JhpIiIiS8KgycScnJzMXYRqRTPTJNimiYiILIjJquf27t2L6OhoU62eaqgijecVKq2stDJNcgZNRERkRiYLmnr37o133nnHVKunGqqsTBODJiIiMieTBU21atVC3bp1TbV6qqE0M01CLoe1vb30Wqbx3EIiIqKqZrKgKTAwEHFxcaZaPdVQWnfPWVkx00RERBbDZEHT7NmzceTIEWzZssVUm6AaqGSmiUETERFZCpPdPdehQwfMnDkTw4cPR1hYGEaMGAF/f384ODjonb9hw4amKgpVI8qCAul/IZdDJpejCKpHq8hZPUdERGZksqCpUaNGAAAhBH755Rf88ssvpc4rk8lQWFhoqqJQNaKVabJS9Q1eCAZNRERkfiYLmho0aACZTGaq1VMNpZVpehA0qfsBt2L1HBERmZHJgqb4+HhTrZpqsJJtmgBVpglgpomIiMyLz54jiyI0q2kfZJqUDzKWDJqIiMicGDSRRdFXPcdMExERWQKTB0379u3D6NGjUb9+fdjZ2WHKlCnStF27dmHevHm4c+eOqYtB1YRm9VzJTJMVgyYiIjIjkwZNH374IXr37o2///4biYmJKCgogNC48Lm5ueGzzz7DunXrTFkMqkY0q+d0GoIzaCIiIjMyWdC0bds2vPvuu6hXrx7Wrl2LpKQknXk6deqEOnXq4N9//zVVMaiaUWr0CK7ONBWp2zSZo0BEREQPmOzuua+//hp2dnbYtm0bWrduXep87du35+NWSKLZpqlk0MRMExERmZPJfrwfOXIEnTp1KjNgAoA6deqwTRNJtDJN1qqYXmrTZI4CERERPWCyoEmhUMDHx6fc+dLT06Fkp4X0QFldDjDTRERE5mSyoMnb2xuXL18ud76LFy+iQYMGpioGVTP62jQx00RERJbAZEFTjx49cPLkSURHR5c6z7///ovLly+jT58+pioGVTNamaYH1XNFD3oGN1kDPCIiIgOYLGh67bXXIJPJ8PTTT2PDhg06D+Tdvn07pk6dChsbG8yaNctUxaBqRl9DcGaaiIjIEpgsaHrsscewePFi3Lt3DyNGjIC7uztkMhn++ecfuLu744knnsDdu3exePFitGrVylTFoGpGK9NkYwOgOGiyBiDY/o2IiMzEpF3fvPzyy9i6dSs6duyInJwcCCGQmZmJjIwMtG3bFps2bcLMmTNNWQSqZoRGmyaZOtMkLz5NlSUylkRERFXF5M1EQkJCEBISgpSUFFy7dg1KpRINGjSAr6+vqTdN1ZAoKip+oc40aQRNhbm5sLK1repiERERVV0ny7Vr10ZQUBA6depUrQKmdevWYcCAAfDw8IBMJkN8fLy5i1Sj6cs0iQfVcwBQpHl3HRERURUyWdAUHh6Omzdvmmr1VUahUKBXr154//33zV2UR4NGpklWSqaJiIjIHExWPffcc89BJpMhICAA/fv3R//+/dG3b1+4urqaapMmMWHCBADA2bNnzVySR4NmQ3CZukdwzTZNmnfXERERVSGTZZrCwsLQoEEDXLp0Cd9//z1GjBiB2rVro0uXLpg/fz4iIyNRYIQL4KpVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl370GWhhyc0zgl1pkkw00RERBbAZJmmX3/9FQAQFxeH3bt3Y9euXYiMjERMTAxiYmLwySefwMHBAT169MCAAQPw2muvVWo78+fPR0JCAjw9PeHr64uEhIQy54+IiEBISAjs7e0xduxYuLi44J9//sGYMWNw48aNSpeDjESzeu5Bpkkw00RERBbA5A3BAwIC8OKLL2LdunVISUnB4cOH8dFHH6F3794oLCzEzp078cYbb1R6/cuWLUN8fDySk5Mxffr0MuctLCzE888/D7lcjr179+Knn37C4sWLcerUKTRr1gzz5s0rN+gi09KqnlO3abIq7tayKC+vystEREQEVOHdcwBQUFCAzMxMqa8mdS/h4iEexNq/f3/4+fkZNO9///2HK1euYPz48QgMDJTGu7m5Yd68ecjPz8eKFSsqXRYyAj1tmjQzTbx7joiIzMXk/TSdPHkSu3btwu7du7F//37k5uZCCAFXV1c88cQTUiPxqhAZGQkAGDhwoM60kJAQAEBUVNRDbUOhUDzU9EdeeUETM01ERGQmJguaxo4di//++w8pKSkQQsDGxgZdunSRgqROnTrByqpqnyYWFxcHQFVlWJKPjw+cnZ2ledRSU1Nx/fp1XLlyBQAQGxuL+/fvo2HDhvDw8NBZj7OzswlK/gjRaNMkf9CJpdA4T9imiYiIzMVkQdPatWshk8nQrl07LFiwAAMHDoSjo6OpNmeQ9PR0AKrqOH1cXV2ledQ2bdqEyZMnS6+feOIJAMDy5csRFhZmmoI+yvRlmtimiYiILIDJgiYXFxdkZmbi1KlTeOaZZ9CzZ08MGDAA/fv3R/v27U21WaMLCwurUHCUlZVV5nSFQgFvb++HLFUNpi/TxLvniIjIApgsaEpNTUVMTAx2796N3bt3IyIiAjt37oRMJoOnpyf69euHAQMGYMCAAahfv76piqFFnWEqmU1Sy8jIQK1atR5qG05OTg+1/CNPT6YJmtVzbAhORERmYrK756ysrNC1a1e88847iIqKQlpaGv7991+8/PLL8PHxwZo1azB16lT4+fmhZcuWpiqGFnVbppLtlgDgzp07yMrK0tve6WEoFAqdgcrANk1ERGShqqzLAUdHR4SGhuKLL77Ab7/9htdeew12dnYQQuDSpUtVUobg4GAAwM6dO3Wm7dixQ2seY3F2dtYaWDVXDs2g6UE/Tcw0ERGRJTB5lwMAcPPmTanbgT179iA5ORkApLvqunbtWhXFQL9+/dC4cWOsXr0as2fPlvpqSk9Px8cffwxbW1tMnDixSspC+smYaSIiIgtlsqBpw4YNUnsmdXWYEAIymQxt2rSRuh4IDg5+qLvqli1bhv379wMAzpw5I41T98nUo0cPTJ06FQBgbW2NZcuWISQkBL169dJ6jEpCQgIWLVoEf3//yu+0HiUbhrMheDn0ZZo0G4Iz00RERGZisqDp6aeflv5v0KCBFCT169cPXl5eRtvO/v37dXrxjo6ORnR0tPRaHTQBQJ8+fbB//34sWLAAa9asQUFBAdq2bYvPPvsMY8aMMVq51NgwvGL0ZZpgXXyaaj5mhYiIqCqZLGgaNmyY1MWAsRtXawoPD0d4eHiFlunUqRO2bdtmmgLRw1EqpX/ZpomIiCyJyYKmdevWmWrV1UrJu+V491zZNDNNVnZ2qn80Mk1s00REROZSJQ3BH2V8rErFyMrJNAkGTUREZCYm73Lg/PnzmD59Opo3by7ddt+8eXO8+OKLOH/+vKk3T9VMeZkmtmkiIiJzMWmmKTw8HNOnT0dBQQGEENL4uLg4xMXFYfny5Vi6dCkmTZpkymKYFe+eq5jyMk1s00REROZiskzTsWPH8PzzzyM/Px9PPPEE1q9fj9OnT+P06dPYsGEDhgwZgvz8fDz//PM4evSoqYphdk5OTjoDlU6ur8sB9V8w00REROZjskzT//3f/0GpVOKXX37B5MmTtaa1adMGTz31FMLDw/Hcc89h8eLF+OOPP0xVFKpGNDNN1vb2qnFs00RERBbAZJmmffv2ITAwUCdg0hQWFobHHnsMe/fuNVUxqJrRWz3HTBMREVkAkwVN9+7dM+hBvC1atMC9e/dMVQyz4wN7K4aZJiIislQmq55zd3fH9evXy53v+vXrcHNzM1UxzI5dDlSMXE+mSaaZadJo80RERFSVTJZp6tixIw4cOID//vuv1Hn+++8/REdHo3PnzqYqBlUzcn2ZJo0uB8BMExERmYnJgqZZs2ZBqVRiyJAhmDt3Ls6dO4fs7GxkZ2fj7NmzmDNnDoYMGSLNW1NlZWVpDUlJSeYukkXTDJqsHjx7TsY2TUREZAFMVj0XEhKCt99+Gx999BEWL16MxYsX68wjhMA777yDgQMHmqoYZscuBipGptGfl95ME4MmIiIyE5P2CP7BBx9g69at6NOnD+zs7CCEgBACtra26Nu3L7Zu3Yr33nvPlEWgakarTdODYImZJiIisgQmf/bcoEGDMGjQIBQVFSElJQUAULt2bVhp3BFFpCZ/kGkqAKAOlZhpIiIiS2D0oOny5ctYt24d4uPjYWdnh8DAQIwePRoODg7w8vIy9uaohlEHTUXQCJo0Mk3g3XNERGQmRg2avvrqK8ydOxdFJS5s77zzDrZu3Yo2bdoYc3PVQsl+mdhPU9msHlTPaeaT5JpBEzNNRERkJkYLmvbv34/XXnsNQgg4OTmhefPmyMjIwNWrV3Hz5k2MGDEC58+fh1xu0mZUFof9NFWMZqZJjZkmIiKyBEaLYJYsWQIhBCZNmoQ7d+7g6NGjuHTpEo4fP44mTZrg8uXL2L59u7E2RzWUOmhSymTF45hpIiIiC2C0oOngwYOoX78+li5dqnWbfbt27fD1119DCIFDhw4Za3PVBvtpqhh10KRVPfegvyYAzDQREZHZGK16LikpCaGhobDVvMA90KNHDwDA3bt3jbW5aoP9NFWMlZ5Mk9bdcwyaiIjITIyWacrPz4e7u7veaa6urtI8RGVRB01FmtVzGoG4jEETERGZyaPVKpssnrr3LqXGODkbghMRkQUwapcDly9fxm+//Vap6RMnTjRmUaiakjPTREREFsqoQVN0dDSio6P1TpPJZKVOl8lkDJoIQPEJWerdcwyaiIjITIwWNDVs2BAyjQsdqbBzy4qRMk0a/XlZ2dlJ/zPTRERE5mK0oCk+Pt5Yq6pR2LllxZSXaZIplSAiIjIHNgQni6JuCK7ZpomZJiIisgRGf2AvacvKytJ6rVAo4O3tbabSWD71CSmYaSIiIgvDoMnE2Lml4YRSWZxpYpsmIiKyMKyeI4uh1HiuHDNNRERkaRg0kcUozM2V/leWlmli0ERERGbCoIksRpHGY3a0giaNzi3lDJqIiMhMGDSRxdDMNInS7p5j0ERERGbCoIkshrKgoPh/Kyvpf2aaiIjIEjBoIotRWqbJ2t5e+p9BExERmQu7HDAxPkbFcIZkmmQPHrNCRERU1Rg0mRgfo2K4orw86X/BhuBERGRhWD1HFkPz7jnNoElubQ11qCRnpomIiMyEmSYT42NUDFdapgkACgHYgpkmIiIyHwZNJsbHqBhOs02T0GjTBADqh6cw00RERObC6jmyGFqZphJBk/oBK1YMmoiIyEwYNJHFKCvTxDZNRERkbgyayGIoNRqCo2Sbpgf9NlmxTRMREZkJgyayGAZlmqqwPERERJp4DSKLoRk0oWSbJnWmidVzRERkJgyayGJoVs/pZJoeBE1s00RERObCoIkshigsLH5RsssBZpqIiMjMGDSRxdBqCF5Kpkl7LBERUdVh0EQWQ6tNk7V2v6vMNBERkbmxR3ATUygUZb6mYsw0ERGRJWPQZGLOzs7mLkK1odWmqUSmSR008YQlIiJzYfUcWQxRRpcDzDQREZG58Ye7iWVlZWm9VigU8Pb2NlNpLJuyjExT0YMewm2qskBEREQaGDSZmJOTk7mLUG0IzTZNJYIm8SDTBKiCK7k1T10iIqparJ4ji6HZpklWsk2TxrPoCnNzq6xMREREagyayGKIMroc0AyaijQzUkRERFWEQRNZjLIyTZrVc8w0ERGROTBoIothaPWcVieYVOPErliBY7VrY+/48eYuChGRFgZNZDnKyjSxTdMjI//ll/F4aiq6//EHks+dM3dxiIgkDJrIYmhlmmy0OxdQavTbxExTzZWTmoqW6ekAVH1yXfz2W/MWiIhIA4Mmshxs0/TIu/jbb7DTeC3bvt1sZSEiKolB0yOoMDcXOamp5i6GDlFUJP1fMtMkSmSahFKp3Rkm1Qj3N27Uet3i+nXeLUlEFoNB0yNGcfcu4jw8YF27No4sXGju4mjTqHYrs01TdjYO+fmhwMYG0S+9VGXFI9NzO3lS63VtIXDh99/NUxgiohIYND1ijs6YgZY5ObAB4PHJJ5aVrSkj06TZpuna/PnoevMm7ADU/fnnqiodmVheRgZa3L+vMz555cqqLwwRkR4Mmh4hRfn58Neo/miSn4/jn35qxhKVoBHAyUsETdDINHU7dEj6v1FBARL27DF50cj0Lv7+Oxwe/H/C3V0aX/vIEbOUh2q2guxsRPbujcigIOTqCdaro0t//43jHh7YFxCAc8uXm7s4NRKDpkdIzNtvw69kZumrryq1LmVhIU4tWYKkEtUpD8XANk22JRaL//5745XBBKpjm5zC3Nwqz0Kmrl8v/Z81bBgu26mahLfKykJqXFyVloVqvujBg9E7Kgq9jx3DoZAQrWlCqUT0jBmIGjECeRkZZiphxSgLCyF79lk8lpaGnpcvo/Vzz+GcszOiZ8yAUCrNXbwag0HTI8T5xx+l/7Me/A1KScHlTZsqvK69I0ei/axZkD3+ODJu3jROAcvINGm2aQIAzU4HnKKijLN9I0u5eBEH69dHkZ0dDtWti6tbt5q7SGVKjYvD/uefx6G6dZHn4ID7tra4uGZNlW3f+fhx6f+Gzz6Lm23aAFB1PXBhyZIqK0dlRY0di4P16zPzWUVK+945+uGHONCwIY5//nmpy8b+9ht67N0rve4YE6PVJ9iBmTPR/YcfELxuHU43aVIlN84c/7//Q9TYsbh99Gillo95+20E5OVpjWutUKD7Dz8gqn9/YxSRAEBQlcrKyhIABACRlZVltPVm3r4tDnt5iQt//ql3+ukffxQCEAIQF+3tRcTQodLrqBYtKry9S3Z20vKH3nyz0uVWJCeL+/HxQgghIrp0kdZ54ssvteaLbNNGmiYAEdG7t7hhZSUEIHIBkZWUVOkymMLxRYtEolyuVeaCB8f69rFjD7Xu+wkJ4tCbb0rHTWfaW2+JjFu3DF7fla1bxX4/P1GgUVb1cMrFRSiLispc/u6ZM+XOU558hUJkPthmolwulEVF4thnn0nl2NekyUOt39RiV62SynrJzk7kZWYavGzEk0+Kox4eYv/06eUex5y0NJFx69ZDH29LcfbXX0VEnz6lfm+VJjIwUAhAnHZ2Fhf//lsIIURRQYGI6NVLeh/SZDK93ws5aWkiTuP7S/pOCQoSQghxPz5eJJX47B718BCK5OSH3+FSnPr+e1Gk8T1xoH59cfLbbw1+n5VFRSLWwaF4Xx57TJzXeJ0HiCtbtpis/NVdRa7LDJqqmCmCpoKcHBFTp44QgMgAxJEPPtCZ52DdusUXoClTRPqNGyL9wetsQKRcumTw9m7s36/1hRLZrp3OPEUFBaIwL09nfF5mpoiaMEHsa9xYXLKzE4UP1hFTp4446OsrrfPkt99qLRfZrp007YaVlchOSRFRrVoVB27z5hlcflMqzMsTEV27Sl+A+ob7gDj76686y97Yt0/ELFggTnz5pTi3YoVIiIjQ+dIsKigQp1xchADELSsrcW7FCmla7KpV4taDQDLB2lrcOXGizLJe3b5d7Pf3l96D0oaDr7+ud/nslBQR3bChEIA47+Agrm7fXvED9sCZZcuk7e338xNCCJGbni6yHoxLkstFUUFBpddflpPffivOOTqKvU2biuTY2EqtY1+jRtoX4AEDDFru6Mcfay13rFYtvcfx5oEDIqplS5H3YD4FIK5bW4vj7u6qY1fN3DxwQPU+P9ifIkDsDQgQSadOlbvs8UWLtI5ZPiAiunQRh728dM7dqLFjdZaP6NhRK8DN1jimSadOici2bfV+Do67u4vM27eNfiyURUXipKur3m3ua9LEoMApZuFCaZlYBwehLCoSyqIiEdGpk9a59bDBdmFenojo27fMH+imlHLpkjjx5ZcicuRIvdeXymLQZMFMETTdj48Xp52dtTIaeydOlKZf2bpVuojfkctFbnq6EEKIyA4dpGX2NmsmIgYMENENGojoBg1EYkxMqduLHDNG64MdZ2enNf3Y55+LvAdZipK/ziK6dy/zAq0eTi9dqr3cgAHStANz5gghhDj8zjsPlS0zNmVRkVYgp/6FGr9nj4jo318KUgUg7spk4npUlLRsRGio/i/Nxo21vuiiZ83Smp4NiP0zZojo//1PKEose8HeXtxPSNBb1v0zZojcEvPfk8lExOOPi1Pffy8OvfWWNP6qjY3IVyi0lr934YLWOacO2KNnzqzUsdPc/6hx46TxmhdCU3xJx+/ZI9JkMmkbSXK5iHnvvQqt4/axY1Iwox5yABG/e3eZyxXk5OjNeOQ+eN8juncXkaNGiajWrXXWrznclstF6uXLldr/tKtXxb4mTUTEY4+J9Bs3tKad/vFHcdLVVRz09RVpV69Wav0lZSUliYgePaRApeSQAYiIp54qdfmCnBytLLe+QfNHwGVbW61gWzOjkwuIS+vWaX0PxtSpIy2fBYjo2bPF/RKfZ2Nn+WLee0/rvbyrcT4KQFVLUAZlUZHWZ/Hg3LnSNEVysrhubS1NM+TzeXzxYnHKxUUkyeUiatw4aX8LcnK0At1kmUxc27nzofZdn5y0NBERGioi27YVewMCxH4/P3HUw0PcLpH9e5gfaSUxaLIgWVlZWkNSUpLRgyYhVL/6NbNJAhD7/f3FSVdXrWoXzV/ACRERpWZEYurUKXVb6qyW5qD5C1GdCRGAiBw1Shqfefu21hdQPlQZCnV2RHMomYlJvXxZRHboIKLGjpU+xFlJSSLnwfy3rKwq/GWWefu2iBo/XhyYM8coWQzNwC4fEBGhoVrrvXfhgjjh5qb1hZ56+bKqWqCMi0D0rFlCCFXmJUHjC9CQi8YJNzeRk5YmlUFZVCQiQkJ0g6WQEK1f0cqiIq2yar6P8bt3i2s2NqVuP6p583K/TE99/7046uEholq3FmeWLdMKji5v3izNpxmgX7WxEYfefFN6n1MuXRLRM2eKvZMmlVsdduHPP8WR2rVFRFCQVHWpSE4WF+zt9e5DZJs2BlfHaP4Q0PxiV/+yLyooEKe++07sf/FFrXVGjholzRtnZ6d1cSttSIcq4xFnZ6cVhEc3aKD13u2dPFlEN2wozoWHl1n2/f7+0jrira3FmWXLhLKoSEQ+/bTI11j/YS+vh/qMKIuKRPSsWTpV1vdkMhHZtq3W94IAxIFXX9W7nsgRI6R5zjk6iojgYK2AMkUmE8c++0zr3FVn3jNu3RLxGsc4YtAgIYQQSadO6fzgEIDqcyJUVYiagfX+6dO1ylSYlydOfvut3urykmLee09EPfOMVG1YVFCgVY124JVXRG56uojo3Vsat69xY531pF29Kq3j2OefS/NesrPTeZ80f1zekctL/SF18a+/RIynp+73T4MGIvXyZdU5VmJavLW1uHv2rN71nfjyS3FXJhM3rKxEZJs2Iua997S+i0pTWqav5KD+8WwMDJosiPqN0DcYM2gS4kHq9LHHSj3J7gM6v0hLBlqag75f9pqBitYH68EvmFuHDmmNv25tLQpycoQQ2l94+/38pA9QTlqaiHjqKZHy4IupADC4mkTzQ37xr78MWiZfoRBRY8dqtVuIdXDQaUdVEfumTtXa75JfrGqply+LK7a20nzJJX5VRjVvLiI6d1Z9UWpcCJJOnRKRw4dL4467u4uo5s113oe9TZuKi3//rbXeI7Vri6gJE0TMwoUiqmVLne2V1v7pXHi4NN9dmUyc+u47EdWqlcjQWP62XC5Off+9Vnk1j2nE4MHi3oULWuu9sX+/SC2x35rb0Qx+75w4oTPvSVdXcdLVVSs4POTjU2q6/n5CgripEZhft7YWJ778UitguGpjo/Nj4JKdnYjbsKHM9z07JUXce1C+fEBc27lTamsnAHGgXj2tbV+ysxNXtm4VqZcvS+e7AMSZn38WiuRkEdGli04GUOBBBqZbN63Pb+KRI1rHJnrWLFGQk6OV7cwExKnvv9db9lPffaeznfwHx1ffexPRp4+07L0LF0REz54i4sknpcx1aa5s3aoVxAio2thEPP64lMFKjo1VZYsfTD/h5qaznnsXLmgFL2d+/lkIIcTlzZvFgXr1xEFfXyl7e3DuXGm+GE9PIYTQOkdPOztrnS8lf7hctrXVCsQ1s0FJGoFHXmamOOrhIQRUQVxZgeW+KVN0zoPo//1P6/OiXj47JUXa15wS39ua36OJJTJT6h9YJR3y8Sn+jggI0Ape0q5eFVEtW5bZpCAL2u+dZvB51slJp+2YIjlZ63OguZ5DPj4iavx41bWihAtr1pTaXOCeTCaOu7uLyHbtRNSECeLmgQOlHuuKYtBkQaoyaFKLfPpprQ/AZVtbEfH443ovACmXLomIoCAR0a2biJ41S0T07Fn8AdT49ap2aN48rfVKH8RmzYQQqkatJU/26JkzRWFentYHTd14U9P9hASxd/LkUr/k9e6rxheI+pdhyqVL4lx4uN6L6OH588vMkhzy8RGRo0aJw/Pniwtr1oj43bvF5c2bxcW//hKxK1eK00uXihNffSWOfvyxiP7f/0TkqFEioksXrV/l6l+wpUmIiNBJwRcCImrCBK35NH/ZxXh6ShdnAYjYVatUGYFRo0Q+VIFmxNChUsBx9tdfpYbVpQ0RAwaUm51Tt1nSN1yys9P64to7ebLeX+y35XIpoM3LzBRnnJxKXeeBevV0ynDhzz9LvZBrDlGtWundn70BAWUulwmIuI0bVdWr48Zp7YPiwftS2nHaO3GiNO9+f38hhBAxCxaUub0MqLJQJZdTy7h1S1z8+29x9OOPxb4pU8TesDCdwFN6fzSqa9NkMnGkdm2d7aWjOMBQK8zL08pw6Mv2Cqh+3KgvYkWAiFm4UOybMkX7XHRwKDWzePPAAZ1zPaZOHb3zK4uKtL5T4jZu1JquGfCXd2NAYV6eVuYuIjhY63gkRERozZ8cG6v1eTm+eLHOOjXbXEa2by+URUU6Pxb0LSeEEOdXr9apkswAtDJvRz78UGsZdWN3AYjIYcOEEKrqZH0/WgVUgX9pPxxu7N+vFfjclstFxJNPin1Tpui8PzesrMS+adPEgTlzdDKAOQ/OgVuHDmmV/bCXl/TjWAih1SC/rCHG01MKnEtmtyO6dBGX1q0TCRER4t6FCya9+YFBkwWpquq5ks4sWyb2Tp6s8+VQnuyUFOlDVAjofLlp/ho88Mor0gc4wdpaCCHEOUdHnQ/GBXt7VWPiB6+PengYazdV+/dgvVdsbcVhLy8pgIl1cJDaRmXcuqUK7EqU7WDduloXj4cdItu2NejDfWbZMuninAPtdghq9y5c0PlC03eRvXv2rN5G30c//lhv4JSH0jNh+o5vyfY0mVAFKPqqI24fOyYinnxS5zy4D9UdkZrtRxKsrcXeiRO1vihLa3SuLCoSB+fO1Qp4L9vaiqgWLbQD1n79tJbTrJpIh/4sSsmqoCtbtuhU2x2rVUtETZigVQ2tLCrSal+j2ShfM+DNf3BR0dcWJwsos/2gIfQFtnkPzn/N469ZvqixY6Vp5x0cVFVC3btLP7buo/iu2IiBA6V5S8tGZABi37RpWuXKSkrS+mzFW1urAsoyRD79dPFnSeMGk3MrVkjbTgfKvclBCKFqG6WnrKWd+/umTlUFE8HBeqff2L9f+swWAnqzq/qq0lIvX9aqVs/QU6YTbm463xuXN2/W+m5TFhVpZdbjra2l74cCoNxjGzV+fJnfXRmAiHjiCa0s1PWoKOmznAPtwO7i339rBVX7GjcWRQUF4npUlHRdyAfEufBwcXDuXFVD/xLVs+rv6ZRLl0T07NnSuGs2NuVmMI2JQZMFM1WXA8ak+SUZ1by5NF5ZVCT9usgGhCI5WRx3dy++sGjUrcc6OGhdODU/LBVtaFsezeoufcO+Ro20slwCquotdbupwrw8sXfyZHFHzwe6IsN+f/8K3dFxbsUKEdmhg9bFrCTNagYBVePVG/v2GbyN5NhYEbNggYgaP15E9OwpItu2LbdhaUmRTz8t8h5cXKPGjdNpMFyaazt3amWV8krsR+zKldK8tw4dEle2bi13nXmZmeJceLhWI+v9L76odYwieveWqsA039O9EyeKooICETlsmPSrP6JbN73byU5JEVGtW+u8x0VQddlx1slJK7A66eqqtbwiOVlEhIaKqAkTpCxRVlKS7l12GlVelZV6+bLWr/77UGU8Sn4+cx6co4ffeUeravDUd99J6zqzbJmI6N9f6yYFZVGRVpZFPRyoX1/ns3fYy0tcWLNGFBUUqLKGGhd4Qxqrp129KgUm96HqSiQ3PV0r4IwIDTXouNyPj9f50VDyB0dFabZb1Dwn1GXOArSqu4sKCrSqfc84Oaka35c4D0r7TGq1K2zfXvo/US6XtnM/Pt7gu/piV67U2yTjQL16pQbveZmZImbBAr3fO8cXLdKqTo5s107rXIl4/HGt+YsKCkTsypUiok8frR+EF+3ttbKd5QWAxsagyYJVh6DpfkKC9AsiDxCJR44IIVQpZumkftBQPKJfP2mcZmo9YtAg1S/4Eh/OknezGENE585a27hlZaX3riQB1a+pvWFherNBiuRkcXzRIrF38mQR0bu36s4Nf3+xt2lTEdWihYhs00ZEPPaYiOjcWUT06CEiQkPFvilTRMzCheW2fXkYmneslPwSsnRZSUl6bxzQbFhuDPruPtSsjoipU0frPb979qxBd+MdmDNHb9sMnYuOgY1SlUVFImrsWJEmk4mTrq5G6/vnxFdfifsPPl+a1VpZSUk67YkqE0TcT0iQApd4a2sp45B5+7bY27Spzno1fzClQ7eqrSya1al7w8JERNeu0utYBwedOznLotmoOMHautRG0IbKTU8XV0tU70c89ZRWgL03LEyaP6JvX2l8skwmteNRFhWJqGeeUTWd6NGj1O1Fz5z5UOdbaeI2bhR7AwLEcXf3h/4Re3DuXL3tkO7I5WX+wLqyZYvOHXGa15aqxKDJglWHoEkIofVFFdW6tchXKLS+ANT9n2h2mqk5XI+KEoV5eTpfMCXb7RhDVlKSiGzbVkS2aydOfvutKCooEAU5OSLy6ae10sennZ1F/J49Rt++qd2Pjxf7/fzEfn//CnVaaSnyFQpVGxT1F379+kZvn1CyTxrNIU0me6gORZVFReLcihUiont3rYxH4YMfFQfq1dNqz2EIU/Q5VVRQoHe9mbdvi4igIK3skvoHREWOS3ZKijj1/fd674CKnjVLb7sodTuoijj766/S8jesrKQLch4Mv9lD7eaBA+K2XC6SZTK9faNVxtFPPpGqCtXV8Zo3Taizjmd//VW6c7kQUPUvVUG56ek6N4vEeHpaXOemJW+EEdCtrtUnfvdurRsl8mDcrgQMxaDJglWXoOnu2bNaDRczAK0ARN0AOF+h0KmjP+PkJK0nasIErV9a2SkpVbofSadOiYgePUTU2LEVvrCR8SiLikTUhAkiom9fk/asfGHNGhExeLA4Uru2UEBVDVhaO6lHTW56uoiePVsc9fAQN62sVHduGVFOWpqIHD5cq9rF0Ko0TSV7t5bW1b9/pcpVmJdn0K3uFXHym2/EwblzpSBVWVSkld2++NdfWj8YS2snZQjNzjgN6f/LXDTv7jXkSQJqN/btk9oqlmyTWFUYNFmw6hI0CSFUVUF6frlfsLfXmq9k9UvE0KHStNz0dClVH/XMM1W8B/Qoy8vMNGmARvpl3r4t9k6aJA7MmVPpjIjmjy11dZ+l/+jRrCLWDBzPODlVqEqxpOtRUVKfXBEDBxqxxMa3b9o0EdWihdSkw1C56eni2s6dZsugVeS6LBNCiMo+t44qTqFQwNnZGQCQlZUFJycnM5eodHkZGYh5+WXIIyLQ9MYNeD94Uvbe8ePR6/ffpfkihw5Fb42H/t6OiYFvx47S69z795F58ybqPHgAKxFRWbLu3IHS1xeuAPIA3NiwAU2HDjV3scqUdPIkanfoAGuNcdkAkrZvR6OQkIda99Vt25B+/jw6vPrqQ62H9KvIdZlBUxWrTkGTJqFUIn7XLhTl5qLJkCGQyeXStItr1qD52LEAgFOurmifnm6uYhJRDXFo7lw4LF2KnGnT0OXzz81dHIPEeHuj09270uuoMWMQ/OefZiwRGYJBkwWrrkFTWYRSiX2tW8P/8mWkffkl2s+cae4iERFVuUNz56LL//0fAOBo7dp4/O5drR+YZJkYNFmwmhg0ERGR6gdkVJ8+sLp9G602b0bt5s3NXSQyQEWuy9alTiEiIiKDyeRy9I6KMncxyISYNyQiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAHsEr2KaT61RKBRmLAkRERFpXovLe7Icg6Yqlp2dLf3v7e1txpIQERGRpuzsbOk5dPqweo6IiIjIADJRXi6KjEqpVOLevXsAAEdHR8hkskqtR6FQSJmqpKSkMp/K/CjhcSkdj41+PC768bjox+OiX3U+LkIIqRbI09MTcnnp+SRWz1UxuVwOLy8vo67TycmpWp2gVYXHpXQ8NvrxuOjH46Ifj4t+1fG4lFUlp4nVc0REREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYOeWRERERAZgpomIiIjIAAyaiIiIiAzAoImIiIjIAAyaiIiIiAzAoMnCHDlyBKGhoXB3d4eTkxO6dOmCtWvXVmgdeXl5eP/99xEQEAB7e3vUrVsXL7zwAu7evWuiUpvOrVu38NVXX2HgwIFo2LAhbG1t4ePjgxEjRuDw4cMGrycyMhIymazUITw83HQ7YUL+/v6l7lPv3r0rtK7ff/8dnTp1gpOTE2rVqoUnn3wSx48fN03BTSg8PLzM91omk6Ffv37lrqe6njOrVq3CtGnTEBQUBDs7u3LLmpGRgVdffRV+fn6ws7ODv78/Xn/9dWRlZVV42zt27EBwcDBcXFzg6uqKPn36YM+ePQ+xN8Zj6HEpKCjAP//8g0mTJqFly5ZwdnaGi4sLOnfujB9++AFFRUUV2q4xP6OmUpFzZuHChWV+LuLj4yu07UuXLmH06NHw9PSEg4MD2rdvjx9++AGWeo+atbkLQMUiIiIQEhICe3t7jB07Fi4uLvjnn38wZswY3LhxA6+99lq561AqlRg6dCh27NiBLl26YMSIEYiLi8OyZcuwZ88eHDp0CHXq1KmCvTGOb7/9Fp999hmaNGmCgQMHok6dOoiLi8OGDRuwYcMGrF69GmPGjDF4fcHBwXq/qAIDA41X6Crm5uaG//3vfzrj/f39DV7HRx99hPnz58PPzw/Tp09HZmYm/vzzT3Tr1g179uxB9+7djVdgEwsMDMSCBQv0Tvv7779x7tw5hISEGLy+6nbOzJ8/HwkJCfD09ISvry8SEhJKnVehUCA4OBgnT57EwIEDMW7cOJw4cQKLFi1CVFQU9u7dC3t7e4O2u2rVKkyYMAF16tRBWFgYAGDNmjUYMGAA1q5di5EjRxpj9yrN0ONy5coVjBw5Es7OzujXrx+eeuoppKenY/PmzZgxYwa2bt2KTZs2QSaTGbxtY3xGTaki54zapEmT9Jbf3d3d4O3GxsaiW7duyMnJwejRo1G3bl1s2bIFM2bMQGxsLL799tsK7EUVEWQRCgoKRJMmTYSdnZ04ceKENP7+/fuiWbNmwtbWVsTHx5e7nl9//VUAEOPGjRNKpVIa/8MPPwgA4oUXXjBF8U3mn3/+EZGRkTrj9+7dK2xsbEStWrVEbm5uueuJiIgQAMSCBQtMUErz8fPzE35+fg+1jkuXLglra2vRrFkzcf/+fWn8iRMnhJ2dnWjZsqUoKip6yJKaX15enqhdu7awtrYWd+7cKXf+6nrO7Nq1S/qu+OSTTwQAsXz5cr3zvvvuuwKAeOONN7TGv/HGGwKA+Pjjjw3aZmpqqnB3dxeenp7ixo0b0vgbN24IT09P4enpKTIyMiq3Q0Zi6HG5efOm+O6770RWVpbW+KysLBEUFCQAiLVr1xq8XWN8Rk2tIufMggULBAARERHx0Nvt1auXACC2bt0qjcvLyxM9e/YUAMSBAwceehvGxuo5C/Hff//hypUrGD9+vNYvWDc3N8ybNw/5+flYsWJFuev5+eefAQCffPKJ1i+hadOmoXHjxvj999+Rk5Nj9PKbytNPP43g4GCd8T179kSfPn2QlpaGM2fOmKFkNcfy5ctRWFiIt99+G25ubtL4wMBAjBs3DufPn8f+/fvNWELj2LBhA1JSUvDkk0/C29vb3MUxmf79+8PPz6/c+YQQWLZsGZydnfHOO+9oTXvnnXfg7OyMZcuWGbTNv/76C/fv38esWbNQv359aXz9+vUxc+ZM3Lt3D+vXr6/YjhiZocelXr16mDFjBpycnLTGOzk54dVXXwUAREVFmaSM5mLosTGmS5cuYe/evejTpw8GDx4sjbe1tcUHH3wAoPh6ZklYPWchIiMjAQADBw7UmaauSijvg5qbm4vDhw+jefPmOh8AmUyGAQMGYOnSpTh69Ch69uxpnIKbkY2NDQDA2trw0zguLg5fffUVcnJyUL9+ffTt2xf16tUzVRGrRF5eHsLDw5GYmAhXV1d07NgRnTt3Nnj58s698PBwREVFoVevXsYqslmoA4CpU6dWaLmaeM4Aqv1KTExESEiI3gChe/fu2LFjB27cuIEGDRqUua7yzqGFCxciKioKEydONFr5zaEy3znAw39GLdHevXtx+PBhyOVyBAQEoH///nB2djZ4+bLOmR49esDJyckig1MGTRYiLi4OABAQEKAzzcfHB87OztI8pbly5QqUSqXedWiuOy4urtoHTdevX8fu3bvh6+uLtm3bGrzc6tWrsXr1aum1tbU1Zs2ahf/7v/+DlZWVKYpqcnfu3MHkyZO1xnXs2BF//PEHmjRpUu7ycXFxcHZ2ho+Pj840zXOmOktISMCePXtQv359DBo0qELL1sRzBij7O0c9fseOHYiLiys3aCprXTXlHAKAX3/9FYD+C31ZHvYzaolKtht0d3fH119/bXBgXNY5Y2VlhUaNGiE2NhaFhYUVDlJNidVzFiI9PR0AtKpHNLm6ukrzPMw6NOerrgoKCjBhwgTk5eXhs88+M+jCVadOHXz66ac4e/YssrKykJSUhA0bNqBp06b48ssvMXfu3CooufFNnjwZe/bsQVJSEhQKBU6cOIEJEybgyJEj6NevHzIzM8tdR3p6eo0/Z5YvXw6lUomwsDCDA52aes6oGfP7oqx11ZRz6KeffsK2bdvQt29fhIaGGrycMT6jlqR9+/b49ddfcfXqVeTk5ODatWv49ttvIZPJEBYWhk2bNhm0HkPOP6VSaXHHx3LCNyIDqC98e/fuxfPPP48JEyYYtFzr1q3RunVr6bWTkxOGDh2Kzp07o127dvjmm2/wxhtvwMvLy1RFN4mSv/YCAwPx22+/AQBWrlyJn3/+WWqH8ahSKpVYvnw5ZDIZnnvuOYOXq6nnDFXcv//+i5kzZ8LPzw+rVq2q0LI17TM6fPhwrdf+/v6YOXMmWrZsiQEDBmD+/Pl46qmnzFQ602OmyUKoo+3Sfo1lZGSUGpFXZB2a81U3SqUSzz33HFavXo1nn30WP/7440Ov08fHB0OHDkVhYWGF+n2ydNOmTQMAREdHlzuvm5tbjT1nAGD37t24fv06+vbti0aNGj30+mrKOWPM74uy1lXdz6GtW7di5MiR8Pb2xn///QdfX1+jrLcin9HqoF+/fmjSpAnOnDkjvedlMeT8k8lkcHFxMWo5HxaDJgtRVr3/nTt3kJWVVWrbA7XGjRtDLpeX2nagvDYMlkypVGLy5MlYsWIFxo0bh/DwcMjlxjl9PT09Aaj6rKkpKrJPAQEByMrKwp07d3SmVedzRq2yDcDLUhPOmfLaGlXkvS9rXdX5HNqyZQuefvppeHp6IiIiAo0bNzbaumvCOVSSep+ys7PLnbesc6aoqAjXrl1Do0aNLKo9E8CgyWKob6vfuXOnzrQdO3ZozVMaBwcHdOrUCRcvXtTpnEwIgV27dsHJyQlBQUFGKnXVUAdMv/32G8aMGYOVK1catQGuOltgKR3NGUNF9skY556lSklJwcaNG+Hh4aFTrfAwasI5ExAQgLp16yI6Olrnwq1QKBAdHY1GjRqV2wgcqJnn0JYtWzBixAh4eHggIiICTZs2Ner6a8I5pEmhUODcuXNwcnKSgqeylHXO7N+/X+p41eKYu6MoUikoKBCNGzcus3PLa9euSeMTExPF+fPntTojFKLmdW5ZVFQkJk2aJACIUaNGiYKCgjLnT05OFufPnxfJycla448ePap3/q+++koAEAEBAaKwsNBo5a4K58+fFwqFQu94Hx8fAUBERUVJ4+/fvy/Onz8vEhMTtea/ePFije3c8ssvvxQAxOzZs0udpyafM8bu3FKhUIjz58+LhIQErfGpqanCzc3Noju31FTecdm6dauws7MTPj4+4sKFC+WuLz8/X5w/f15cvnxZa3xFP6OWoKxjk5GRIS5evKgzPjs7W4wbN04AEJMnT9aZfv78eXH+/Hmd8eV1bhkdHf1wO2MCMiEs9AEvj6DSHqOSkJCARYsWaT1GJSwsDCtWrMDy5culRxYAqqxMaGio9BiV4OBgXL58GevWrYO/vz8OHz5crR6jsnDhQrz33ntwdnbGyy+/rDdVO2zYMKlDUPX8CxYswMKFC6V5/P39YWNjg6CgINSvXx8KhQKHDh3CiRMn4O7ujh07dqBTp05VtFfGsXDhQnzxxRfo1asX/Pz84OTkhEuXLmHr1q0oKCjAW2+9hY8//liaPzw8HJMnT8akSZN0niul+RiVESNGSI9Ryc/Pr3aPUdHUtm1bnD17FqdPny61a4qads4sW7ZM6oz0zJkzOH78OLp37y5lSnr06CFVVSoUCnTv3h2nTp3CwIED8dhjj+H48ePYuXMnOnbsiKioKDg4OEjrjoyMRJ8+fRAcHCz1s6Om+RgV9aON1qxZg3v37mHNmjUYNWpUFex96Qw9LhcuXEBgYCDy8vIwduxYNG/eXGdd/v7+Wt+78fHxaNSoEfz8/LSevVbRz6i5GHps4uPj0bhxY3Ts2BEtW7aEj48PkpKSsHv3bty8eRNt27ZFREQEateurbV+dUfLJcONc+fOoXv37sjJycGYMWPg6+uLLVu24Ny5c5g5cyYfo0LlO3z4sBg0aJBwdXUVDg4OolOnTuLPP//UmU+dfdH3ayA3N1csXLhQNGnSRNja2gofHx8xdepUgx4dYWnU+1nWoHkM1F38l3z0xaeffir69Okj6tatK+zs7ISDg4No0aKF+N///qf1y7g6iYyMFKNHjxYBAQHC1dVVWFtbCx8fHzF06FCxY8cOnfmXL18uAIhJkybpXd+qVatEUFCQcHBwEG5ubiI0NFQcO3bMxHthOocPHxYARKdOncqcr6adM+V9Zkq+//fv3xf/+9//RIMGDYSNjY1o2LCheO211/RmhtSPlgkODta77W3btomePXsKJycn4ezsLIKDg8WuXbtMsJcVZ+hxUe9jWUPJ/b927ZoAoPO4lIp+Rs3F0GOTnp4uXnrpJdGxY0dRp04dYW1tLVxcXESnTp3E559/LrKzs/WuX70efS5cuCBGjhwpPDw8hJ2dnWjbtq347rvvtGpKLAkzTUREREQGYENwIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCJ6RPn7+0Mmk5U5fPXVV+YuJhnJiRMnYGVlhVmzZmmNj4yMlN7vssTHx0vzaT5fraLS09NRu3ZtdO7cWedZZESWTvfpp0T0SNF8MGdJrVq1quLSkKnMmjULDg4OeOedd8xaDjc3N7z11lt4/fXX8dtvv2HSpElmLQ9RRTBoInrETZ06VeuJ7VTz/P3334iOjsbrr78OLy8vcxcHM2fOxOeff4633noLY8eOhZ2dnbmLRGQQVs8REdVwX375JQBgypQpZi6Jir29PcaPH4/bt29jzZo15i4OkcEYNBFRudTtn+Lj47Fx40b07dsXHh4ekMlkiIyMlOZLS0vDggULEBgYCBcXFzg6OqJt27b48MMPkZ2drXfdhYWF+Oqrr9C2bVvY29ujTp06GDFiBM6cOYPw8HDIZDKdTNjChQshk8mwcOFCvetUt9Pp3bu33umJiYl49dVX0bJlSzg6OsLFxQUdO3bEkiVLUFhYqDN/WFgYZDIZwsPDce3aNUyYMAE+Pj6ws7NDkyZNMH/+fOTl5ZV6/I4dO4ZJkyahUaNGsLe3h4eHB9q3b4/XX38dCQkJAIDly5dDJpMhJCSk1PUkJibCxsYGDg4OSElJKXU+TSdOnMCBAwfQpUsXNG/e3KBlKkL9XpQ3lKR+T7/77jujl4nIVFg9R0QGW7x4MZYsWYKgoCAMGjQIiYmJsLKyAgDExsZi0KBBuHHjBnx9fdGjRw/Y2NggJiYG77zzDv755x9ERkbCzc1NWp9SqcSoUaOwYcMG2Nraonfv3qhVqxYOHz6MTp064bnnnjP6PuzduxfDhg1DWloa/P39MWDAAOTl5SEmJgazZs3C5s2b8e+//8LGxkZn2ZMnT+Lll19GrVq1EBwcjNTUVERHR+Ojjz7CuXPnsH79ep1l/u///g9vvvkmlEolmjVrhqFDhyInJweXL1/GokWL0Lp1a4SFhWH8+PF44403sGvXLly6dAnNmjXTWdfSpUtRWFiICRMmoHbt2gbt74YNGwAA/fv3r9iBMlBgYGCp7ZIuXryIQ4cOQS7X/X0eGBiIOnXqICYmBrdv34avr69JykdkVIKIHkl+fn4CgFi+fLnB81pZWYmNGzfqTM/OzhZNmjQRAMT8+fNFXl6eNE2hUIhx48YJAGLy5Mlayy1ZskQAEN7e3iI2NlYaX1BQIF588UUBQAAQkyZN0lpuwYIFAoBYsGCB3vJGREQIACI4OFhr/O3bt0Xt2rWFTCYT33//vSgqKpKm3bt3T/Tt21cAEO+9957WcpMmTZLK8vbbb4vCwkJp2pkzZ4STk5MAIA4cOKC13MaNGwUAYW9vL9asWaNTznPnzmnt99tvvy0AiNmzZ+vMm5+fL3x8fAQAcezYMb37rU+PHj0EALFlyxa909XHqrzLwbVr16T5rl27Vu52ExIShK+vrwAglixZoneep556SgAQK1euLHd9RJaAQRPRI0odCJU2aAYc6nmfe+45vev64YcfBADx5JNP6p2emZkpvLy8hLW1tUhNTZXGN23aVAAQP/zwg84yOTk5UpBgrKDpjTfeEADEzJkz9S538+ZNYWNjI+rUqSOUSqU0Xh00Pf7441rj1aZPny4AiPfff19rfGBgoAAgFi9erHd7Jd26dUvY2NgINzc3kZWVpTXtjz/+EABE165dDVqXmjqgu3r1qt7pmkGToUN5QVNaWppo1aqVACBef/31Uud76623BADxyiuvVGifiMyF1XNEj7jSuhxo0aKFzriRI0fqXceWLVsAAGPGjNE73dnZGUFBQdi6dSuOHDmCgQMH4tatW7h8+TIA4Nlnn9VZxt7eHqNHj8Y333xj8L6Up7xy1qtXDwEBAYiNjUVcXJxOFdmTTz6pt31Oy5YtAQC3bt2Sxt25cwcnT56EXC43uAF23bp1MXLkSPzxxx9YuXIlpk+fLk1Tt/2ZOXOmQesCAIVCAYVCAQAGVeeVdft/VlYW/vnnn3LXkZ+fj2HDhiE2NhZjx47FZ599Vuq86jIlJSWVu14iS8CgiegRV5EuB/z9/fWOv3r1KgBgwoQJmDBhQpnrSE5OBgDcvHkTAODp6QlnZ2e98zZq1MigchlKXc6ePXuWO29ycrJO0NSwYUO987q6ugIAcnNzpXHXr18HAPj6+mq14yrP7Nmz8ccff+C7776TgqbTp09j//798Pb2LjVw1Sc9PV3638XFpdz5w8PDS50WHx9fbtAkhEBYWBiioqIQHBwsNeQvjfq4paWllVs2IkvAoImIDObg4KB3vFKpBAAMGjQI3t7eZa7Dz8/P6OUqrTyljR85ciScnJzKXIe+zIy+Bs3G1qVLF3Tq1AkxMTFS8KHOMr3wwguwtbU1eF3u7u7S/5mZmVKQYipvvvkm/vjjD7Rq1QobNmwot/8ldVBXq1Ytk5aLyFgYNBHRQ2vQoAEuXLiAKVOmGJwJqVevHgDg3r17yMrK0pttKu1xHerAITMzU+909W38+soZFxeHN954A0FBQQaVs7LUWanbt28jPT29wtmmZ599FkuWLEH79u3x+++/w9raWqu6zhCOjo5wcnKCQqFASkqKSYOm77//Hp9//jnq1q2Lbdu2aQVspVF3m1BeoE1kKdhPExE9tMGDBwMA1q5da/Ay9evXR+PGjQEAq1ev1pmel5eHv/76S++y6oDr/Pnzeqer2y4Zo5yV5ePjg/bt20OpVOLXX3+t0LKjR4+Gr68vNmzYgI8++ggKhQLDhw9H3bp1K1yOxx57DICqSwhT2bRpE2bPng0XFxds2bKl1GrMks6ePQsAePzxx01WNiJjYtBERA/thRdegJ+fH/766y+88cYbejNAd+7cwc8//6w17n//+x8AVQeJFy5ckMYXFRVhzpw5SExM1Lu9vn37Qi6XY8eOHYiKipLGCyHwzTfflNr25vXXX4e7uzu++OILLF68GPn5+TrzXLt2DatWrSp3nw2xYMECAMDbb7+tt0yxsbF6Az8bGxu8+OKLKCwsxKJFiwBUrAG4pj59+gAADh48WKnlyxMTE4Nx48ZBLpfj77//RmBgoMHLqsvUt29fk5SNyNgYNBHRQ3NycsKWLVvg7++Pzz//HA0bNkRwcDCeeeYZDB8+HK1bt0bdunV1Hhb70ksvYciQIbh9+zbat2+PQYMGYdy4cQgICMCyZcvw4osv6t1egwYNMGvWLCiVSvTr1w99+vTBiBEjEBAQgDlz5uDNN9/Uu1z9+vWxceNG1KpVC3PmzEGDBg3Qr18/PPvssxgyZAiaNm2Kxo0bY8mSJUY5LsOHD8dHH32E3NxcjBw5Ei1btsTYsWMxdOhQtG7dGq1bt8bhw4f1Ljtt2jSpTVC7du3Qq1evSpVh2LBhAIBdu3ZVavnyvPXWW8jOzkb9+vWxevVqhIWF6R1KOnHiBFJSUtCpUyd2bEnVBts0EZFRtG7dGqdPn8aPP/6I9evX4/Tp0zh48CA8PT1Rv359zJkzB8OHD9daRi6XY926dfjmm2/wyy+/IDIyEs7OzujRowfWr1+PEydO4IcfftC7vS+//BINGzbEsmXLcODAATg7O6N79+5Yu3YtMjIy8Omnn+pdrlevXjh37hyWLFmCLVu24MiRI8jLy4OXlxcaNmyIZ599FiNGjDDacZk3bx769u2Lb775Bnv37sW6devg4uKCBg0aYO7cuaVmWby8vBAYGIjDhw/jpZdeqvT2O3TogG7duuHAgQM4f/681D2CsRQVFQFQZeiuXbtW6nwl78xTv36YfSOqajIhhDB3IYiI9AkPD8fkyZMxadKkMm+Hr4kuXbqEFi1awM3NDbdu3YKjo2Ol1/X3339j1KhRePXVV7F48WIjlrJycnNz0aBBA9jY2ODatWvl3mVHZClYPUdEZIHeffddCCHw4osvPlTABKi6WOjevTuWLl1qER1Jfvvtt7h37x4++eQTBkxUrTBoIiKyEJs2bcKUKVPQpUsXrFmzBj4+Ppg7d65R1v3tt98iJycHH3zwgVHWV1np6en49NNP0alTJ0ycONGsZSGqKLZpIiKyEMePH8evv/4KFxcX9O/fH1988YVB/R0ZokOHDlL7I3Nyc3OT+mciqm7YpomIiIjIAKyeIyIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoomrJ398fMpmszOGrr74ydzErRb1v8fHx5i5KhUVGRkImk6F3797mLgrVAL1794ZMJkNkZKS5i0IEALA2dwGIHkb37t3RtGlTvdNatWpVxaUpX1hYGFasWIHly5cjLCzM3MUhIqIKYNBE1drUqVNrXPCxZ88eFBQUoF69euYuChERaWDQRGRhmjRpYu4iEBGRHmzTRDWeZhuhjRs3om/fvvDw8NBqK5GcnIxvvvkGoaGhaNSoERwcHODq6oqgoCB89tlnyM3NLXX92dnZ+Oqrr9CjRw/UqlULdnZ28PPzw5AhQ7B69WoAQHx8PGQyGVasWAEAmDx5slb7q4ULF+otr75tffrpp3jsscfg4uICR0dHtG7dGvPnz0daWprO/Ort+vv7QwiBn376CY8//jicnJzg5uaGgQMH4uDBg3r3KyYmBnPnzkWnTp3g4+MDW1tbeHt7Y8iQIdi9e7eBR98w6uMAAMuXL0fXrl3h5uYmHQfN/VAqlfjmm2/Qrl07ODo6wtfXF9OnT0dqaioAIC8vDx988AFatGgBBwcH1K1bFy+//DIUCoXOdpVKJX766Sd0794d7u7usLGxgZeXF9q3b49Zs2ZVuF1Zeno65s+fj7Zt28LJyQl2dnaoW7cuunfvjnfffRcFBQU6yxw8eBCDBw+Gu7s7nJ2dERQUhF9//VXnuKhpHovSlHYOxcbGYsGCBejevTvq1asHW1tb1K5dG/3798fatWv1rkuznVp2djbeffddtGzZEo6OjjplOHbsGJ555hk0bNgQdnZ28PDwQEhICLZu3VpqWW/cuIHnnnsOvr6+sLe3R0BAAN5++23k5OSUukxZwsLCIJPJEB4ejmvXrmHChAnw8fGBnZ0dmjRpgvnz5yMvL6/U5f/880/069cPHh4e0mf5ueeew6VLl/TOb8j3i+b7uGrVKnTq1AnOzs6oU6cOxo0bh+vXrwMAhBBYsmQJAgMD4eTkBE9PT4SFheHu3buVOhZkAoKoGvLz8xMAxPLlyw2ed+bMmQKACAoKEuPGjRPBwcFi7969QgghVq5cKQCIevXqieDgYDF27FjRr18/4ezsLACIrl27itzcXJ11X79+XbRq1UoAEI6OjmLAgAFi7NixomfPnsLNzU34+fkJIYRITk4WkyZNEk2aNBEARPfu3cWkSZOkYf369TrlvXbtmta2UlJSRGBgoAAgXF1dxVNPPSVGjBghPD09BQDRqFEjnWWuXbsmAAg/Pz8xadIkYWNjI/r27StGjx4tmjVrJgAIOzs7cejQIZ1969evn5DL5aJt27YiNDRUjBo1Sjz22GMCgAAgvvrqK51lIiIiBAARHBxc7vuiSb3OmTNnCrlcLnr06CHGjRsnOnfuLOLj47X2Y9y4ccLBwUEMGjRIDBs2THh5eQkAokOHDiIrK0v06NFDOj5PPvmkcHNzEwDE4MGDdbY7efJkAUDY29uL/v37i3HjxomQkBAREBAgAGi9L+VRKBSiTZs2AoCoU6eOGDJkiBg7dqzo3bu38PHxEQBEWlqa1jJr164VVlZWAoBo06aNGDdunOjRo4eQyWTi1VdflY6LJs1jUZrSzqEpU6YIAKJFixYiJCREjBkzRnTt2lXI5XIBQLzyyis661K/p507dxYdO3YUTk5OYvDgwWLMmDGif//+0nxfffWVtJ7AwEAxcuRI0aNHD2FraysAiPfee09n3efPn5feP19fXzFq1CgRGhoqHBwcRNeuXUXXrl0FABEREVHu8VebNGmSACBefvll4erqKvz8/MTo0aNF//79hYODgwAghg0bprOcUqkUEydOFACEtbW16Nu3rxg7dqz0OXF0dBTbtm0r9ViX9f2ifh/ffPNNad0jR44UDRs2FABEgwYNRGpqqhg9erSwt7cXgwYNEsOHD5eOTbt27UReXp7Bx4BMh0ETVUuVCZqsrKzExo0b9c4TGxsrDh48qDM+NTVVDBw4UAAQn3/+uda0oqIiERQUJACIgQMHirt372pNz8nJEVu2bNEap/5CL6vcpV3wxowZI1287t27J43PzMwUgwcPFgBEt27dtJZRX2DVF9mLFy9K0woLC8Vzzz0nlb+krVu3isTERJ3xBw4cEK6ursLGxkbcvHlTa9rDBk2urq563wfN/WjSpImIj4+Xpt27d08Kctq2bSs6deqkdXyuXr0qatWqJQCI/fv3S+MTEhIEAFG/fn1x+/ZtnW3GxsaKhIQEg/dhxYoVUnCWn5+vNa2oqEhERkZqXfhu374tXFxcBADxxRdfaM2/e/duYW9vb/SgKTIyUly5ckVn/gsXLoj69esLAOLw4cNa09Tvqfrire9Ybd++XchkMuHp6SmioqK0pp0+fVpad2RkpNa0jh07CgBi9OjRIicnRxqfkJAg/cCobNAEQLz99tuisLBQmnbmzBnh5OQkAIgDBw5oLffDDz8IAMLT01OcOHFCGq9UKsWCBQsEAOHu7q7zOTfk+0Vdntq1a4uTJ09K47Ozs0WPHj2kc7fkuZ2cnCyaNm0qAIhVq1YZfAzIdBg0UbWk/qIqbdC8aKvnfe655yq1rYsXLwoAomPHjlrjN2zYIP1CzszMNGhdlQ2aEhIShFwuFzKZTJw6dUpnmZs3b0oX2ejoaGm8ZrCxadMmneVu374tZZtKXujL8tZbbwkA4rvvvtMa/7BB0/vvv693uuZ+lAxEhRDiiy++EACETCYTZ86c0Zk+a9YsnWxHTEyMACCeeuqpCpW1NJ9//rneAKg0H374oQAgunTponf6yy+/bPSgqSxLly4VAMTrr7+uNV4zaFJnTkrq3LmzACD+/vtvvdPXrl0rAIgRI0ZI4/bv3y8ACCcnJ60gV239+vUPFTQ9/vjjQqlU6kyfPn263nNNHaR98803OssolUrRrl07AUB89NFHWtMM+X5R70fJz4sQQqxbt67Mc3vx4sUCgJg8eXKp66eqw4bgVK2V1uVAixYtdMaNHDmyzHUVFRUhMjISBw4cwO3bt5GTkwOh+mEBALh48aLW/Nu3bwcAjB8/Hs7OzpXdBYPs3bsXSqUSjz32GNq1a6czvV69eggJCcHGjRsRERGBbt26aU23trbGoEGDdJbz8fFBrVq1kJaWhpSUFPj4+GhNT0lJwZYtW3D27FmkpaVJbXLi4uIA6B6Th1Xee2RtbY2BAwfqjA8ICAAANGzYEG3atCl1emJiojSuRYsWcHFxwdatW/HRRx9h/PjxaNSoUaXL3rFjRwDA559/jtq1a+PJJ5+Eh4dHqfOr27s888wzeqdPmjQJX3/9daXLU5qsrCxs27YNJ06cwL1795Cfnw8AuH37NoDS31MvLy/07NlTZ/y9e/cQExMDBwcHDBkyRO+y6n67Dhw4II1T7/+gQYNQu3ZtnWWGDh0KNzc3pKenG7xvmp588kmd9mAA0LJlSwDArVu3pHE3b97ElStXAKiOe0kymQyTJ0/GK6+8goiICMybN09nnvLOXQAIDQ3VGac+N8s7tzXPXTIfBk1UrVWky4GyGs7GxcVh+PDhOHfuXKnzZGRkaL1OSEgAoD9AMzb1F3xZF3X1XXeaFwM1X19f2NjY6F3O1dUVaWlpOo3df/75Z7zyyit6G1CrlTwmD6us9whQ7Ye1te7Xljpobdiwod7lXFxcAEBrH11cXLB8+XJMnjwZ8+fPx/z58+Hr64suXbpg0KBBOsHwp59+igsXLuise9GiRfD09ETv3r3xxhtv4P/+7/8wadIkyGQyBAQEoHv37hg6dCiGDBkCubz43pubN28CKP09fZgArjSbN2/G5MmTkZKSUuo8pb2npb03165dgxACOTk5sLOzK3P7ycnJ0v/l7b+6sfupU6fKXGdpSjsXXF1dAWifC+rPTO3ataXpJZX1+QLKP3dLK5P6HCvt3NZ37pL5MGiiR4aDg0Op00aOHIlz587hySefxNy5c9GqVSu4urrCxsYG+fn55V4MLJ3mxdoQx44dw7Rp02BlZYXPPvsMQ4YMQcOGDeHo6AiZTIaffvoJ06ZNk7JwxlLWewSUvx8V3c8RI0agf//+2LRpE/bt24fo6GisX78e69evx7vvvotdu3ahbdu2AFSZxaioKJ11LFy4EJ6engBUgdX06dOxefNm7N+/H9HR0Vi+fDmWL1+Ojh07IiIiAk5OThUqY2UolUqdcbdu3cKYMWOQk5ODuXPn4plnnoG/vz+cnZ0hl8uxc+dOhISElPqelvbeqLfl7OyMESNGGG8nHlJFz4WHVd65C5RdpqouL1UOgyZ65F24cAGnT5+Gl5cX1q9fr/NrT10VVZL6V6O+7IOxqTu6vHr1aqnzqKcZo1PMv/76C0IIzJo1C3PnztWZXtoxqY7c3NwwYcIETJgwAYDqFvhZs2Zh48aNmDlzphQoGfooD39/f8yaNQuzZs0CABw5cgTPPvssjhw5gs8//xzvvfceANX7dOHChVK7NShtvK2tLQAgMzNT7/SCggKpqk3T5s2bkZOTg+HDh+Ozzz7TmV7Z97RBgwYAVJmhX3/91eCLv/o8LatbB3U219TUZUlJSUFGRobebJMxP19UfTG0pUeeun+funXr6k2Pr1q1Su9y6jZCf/zxR5lVWJrUF7zCwsIKlbFXr16Qy+U4efKk3uqK27dvS22s+vTpU6F166M+Jn5+fjrTcnNz8c8//zz0NixVgwYNpMDm5MmTD72+jh07YsaMGTrrCw4OBgD8/vvvepf77bff9I6vU6cObG1tkZqaqrf/nh07dug9v8p6T4UQUp9iFVW3bl20a9cOmZmZ0jloCPX+b9++XSqbpk2bNuH+/fuVKlNF1a9fX6p+Cw8P15kuhJDGG+PzRdUXgyZ65DVr1gxWVlY4c+aMTjZh8+bN+PLLL/Uu99RTT6FDhw5ITEzEqFGjdNqJ5ObmYtu2bVrj6tevDwBltp3Sp2HDhhg1ahSEEJg2bZrWthQKBV544QXk5uaiW7duOo3AK0PdWHbFihVaGY3c3FzMmDED165de+htmNuJEyewZs0avZ0obt68GYD+AKM069evlxrsayooKJCCCc31TZkyBc7Ozjh48CC++eYbrWUiIyPx448/6t2OjY0NevXqBQCYP3++1vZOnTqFmTNn6l1O/Z7+/fffWpmooqIivPvuu1qNtCvqww8/BKDqtFV97DQJIXD48GHs3LlTGtezZ0889thjyMrKwksvvaTV4eSNGzcwZ86cSpenMtTb++CDD7R+mAgh8OGHH+LkyZNwd3fH888/X6XlKkuLFi3QokULxMTEmLsojw4z3bVH9FAq009TWbdfq2/vlsvlIjg4WIwbN07qyHH+/Pl6b/0WQoj4+HjRvHlzqfO7gQMHinHjxolevXppdW6pdurUKSGXy4VcLhf9+/cXkydPFlOmTNHq36W08t67d0+0b99eABBubm5i2LBhYuTIkaJOnToCKL9zy4ocn7S0NGl87dq1xbBhw8SIESOEl5eXcHFxkY7XpEmTtNb1sF0OlKa8/Shvu8uXL9cpr/qWdgcHB9G9e3cxduxYMXLkSOn9tLW11duZYWnUx8TT01MMGDBAPPPMM+Kpp56SOiisV6+euHHjhtYyf/zxh9S5Zdu2baVzRyaTiVdeeaXU43Lo0CGp08hmzZqJkSNHiq5duwobGxsxadIkve9pQUGBePzxxwUA4ezsLJ544gkxevRo4efnJ2xsbMQbb7yh9xga+p5+/fXXwtraWgAQTZs2FU888YQYP368GDBggHQM3njjDa1lzp07J52/devWFaNHjxZPPvmkcHR0FF26dHmozi1L+27Qdy4IoepWYMKECQJQdW7Zr18/MW7cOOl8cHBwEFu3btVZnyHfL2Wd3w9zbqvXW5HjQw+HmSYiAF9++SV++eUXdOjQAceOHcPWrVvh6OiIP//8Ex988EGpy/n5+eHo0aP47LPP0Lp1axw8eBDr1q1DQkICgoODddqOtGvXDv/88w+6du2Kw4cPIzw8HL/88guOHz9ebhlr166NAwcO4JNPPkGjRo2wc+dO/Pvvv/D09MS8efNw7Ngxg+7gMYS7uzuOHj2KGTNmwN3dHdu2bcPBgwcxcOBAHD9+HIGBgUbZjjl16dIFn376Kfr06YPExERs2rQJO3fuhJWVFV566SWcPn1abzcNpQkLC8Obb76JFi1aIDY2Fn/99RcOHjyIBg0a4OOPP8apU6ekTKPa2LFjERkZiZCQECQkJGDjxo3IzMzEjz/+iC+++KLUbXXu3BlRUVEYOHAg7ty5gy1btiA7Oxtff/01li9frncZa2trREZGYt68eahXrx727NmDyMhIdOjQAQcPHqzQvuoze/ZsnDhxAi+88AJkMhn27NmDDRs24MqVK+jQoQO++eYbzJ49W2uZVq1a4ejRowgLC0NRURE2bNiA2NhYzJo1C3v27JGqs6uCTCbDb7/9htWrV6NHjx44duwY/v77b2RnZyMsLAwnTpzA4MGDq6w8ZJlkQhj59hciIjIKdT9D/JomsgzMNBEREREZgEETERERkQEYNBEREREZgJ1bEhFZKLZlIrIszDQRERERGYCZpiqmVCpx7949AJCe40VERETmIYRAdnY2AMDT07PMRwExaKpi9+7dg7e3t7mLQURERCUkJSXBy8ur1OmsniMiIiIyADNNVczR0VH6PykpCU5OTmYsDRER0aNNoVBINUCa12h9GDRVMc02TE5OTgyaiIiILER57YxZPUdERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNZLkOHgQ++gi4e9fcJSEiIuJjVMhCKRRAaChw/z4QFweEh5u7RERE9Ihjpoks04kTqoAJAP77z6xFISIiAh7xoOnLL79E69at4ezsDHd3d/Tt2xeHDx+Wpq9btw4DBgyAh4cHZDIZ4uPjzVfYR83Ro8X/37gBJCWZryxERER4xIMmPz8/fPHFFzh16hQOHDiApk2bIiQkBCkpKQAAhUKBXr164f333zdzSR9BmkGTvtdERERVTCaEEOYuhKXIyMiAm5sbIiMjERwcLI0/e/Ys2rZti2vXrsHf3/+htqFQKODs7AwAyMrKgpOT00Otr8Zq2RK4cKH49cKFwIIFZisOERHVTBW5Llt0pmnVqlWYNm0agoKCYGdnB5lMhvByGgQfOXIEoaGhcHd3h5OTE7p06YK1a9eWu638/Hz89NNPqFWrFtq2bWukPaBKycgALl7UHsdMExERmZlF3z03f/58JCQkwNPTE76+vkhISChz/oiICISEhMDe3h5jx46Fi4sL/vnnH4wZMwY3btzAa6+9prPMvn37MHjwYOTk5MDHxwe7du2Ch4eHqXaJDHHiBFAyAXr0qGqcTGaeMhER0SPPojNNy5YtQ3x8PJKTkzF9+vQy5y0sLMTzzz8PuVyOvXv34qeffsLixYtx6tQpNGvWDPPmzdMbdAUFBeHkyZM4cOAABg8ejNGjR+PevXum2iUyhGZWSR0k3bkD3LplnvIQERHBwoOm/v37w8/Pz6B5//vvP1y5cgXjx49HYGCgNN7NzQ3z5s1Dfn4+VqxYobOcg4MDmjZtis6dO2PZsmWQy+VYvnx5pcusUCjKHagcmkHT4MH6xxMREVUxi66eq4jIyEgAwMCBA3WmhYSEAACioqLKXY8QAnl5eZUuh7oxGT0EdXBkbw9MnAhs3Vo8ftgwsxWLiIgebTUmaIqLiwMABAQE6Ezz8fGBs7OzNI/aG2+8gaeeegr169dHamoqvv/+e9y8eRMjRowAAKSmpuL69eu4cuUKACA2Nhb3799Hw4YN2e7JVNLSgMuXVf936AB07Vo8jZkmIiIyoxoTNKWnpwNQVcfp4+rqKs2jlpiYiLFjx+Lu3bvw8PBAx44dsW/fPrRs2RIAsGnTJkyePFma/4knngAALF++HGFhYXq3k5WVVWY5FQoFvL29DdqnR9Lx48X/BwUBDRoAdeoAycnAkSNsDE5ERGZTY4Kmyli5cmWZ08PCwkoNjkrDfpcekmY26fHHVQFSUBCwbRuQmgrExwONGpmteERE9Oiy6IbgFaHOMJXMJqmpO64kC6cZNAUFqf527Kh/OhERURWqMUGTui1TyXZLAHDnzh1kZWXpbe9EFkYdFDk6Ai1aqP5XB0+a04mIiKpYjQma1I892blzp860HTt2aM1DFurePVX1GwA89hhgZaX6//HHi+c5cqTKi0VmkJkJFBWZuxRERFpqTJumfv36oXHjxli9ejVmz54t9dWUnp6Ojz/+GLa2tpg4caJ5C2lKmzerAg43t+LB0REoKFANubmq6ZcuqYbMTKBJE6B5c9Xg5KS6SBUWAnZ2QOPGgJ8fYK3nFElJAQ4dAk6eVDXS7ttXtS6ZTNVQ+/Zt4MwZ1fYDAgBvb9W03FzVnXGXLwNZWaptqS+M9vbA1avF29DMLtWtqxoSE1VB04svAtevAwoFEBgIdO8OdOummqegAMjPV63XwQGwsSluOK5UqrarUADZ2UBOjmqQy1VldXBQDVZWqnHyEr8pNHspF6J4UCpV+5Kaqgr8UlJUj4LJzFRtLydHdUzV63d1BTw9VYObm2qe9HTg/n1V2QFVma2sVMe3bl3A11e1jYQE1ft4507xulxdVfNnZKgGhQJwcQFq11YNzs7a+5OZqdpeenpx+XJzVUN+fvExdHAAGjZUnQcNGqi2kZ8P5OWptqG5Djs71TZdXFTH0tZWNajHu7mp3mMhVNtPSlIdK7m8eN5r14CdO1XDxYuqZbp1A3r2VAXRzs7F75NSWXxuy+WAh0fxvpa8USA3V3VOJiWpjqmzs+p8l8lUNxjcvasqi7W1aprm4OKi+mtvrzqX9J0Tt2+rPlMXL6reex8foF491WBrqzpm+fmqMquPkbOz6ny5cUN1LqekqPbLyUm1j+ptyeWqbeTmFp+v6psh5HLVfF5eqvPD11c1Xv2+5OSojqGHB1Crluq90JSdrdr+zZuqz4t6n+3tVe9vZqZqsLVVbcPLS7We3FzVsgpF8fF0cVEtV/LYFxWp9jM1Vftzl51dPOTlqcrm6KgavLxUz550d9deV36+qoPbGzdUQ1KSqmxOTqpBiOLPQG6u6pzV/H5LTlZ9bu7cUb1niYmqvzIZ4O+v+s6rX191B+/Nm6pt5OWpylGrlmqoW1c1T926qmOflaV679LTVeNr14ZeRUWq+e7eVZXN2Vn1uXVwUJXn2jXV5/r+fdU+2durBj8/oHXr4vdWCNWxTExUrVP9XZWZCVy5ohri41Xz2dkVf/7q1VOVr1694s+ivb1qefX7oFAUvzc5OcXnhPp8zclRHZu0NNVx8fBQfYepv2fU30OA6rsqMVH1fhUWqo5VycHauvi7QX2dyckpPidzc4u/c5VKVXk0hwEDVNuvYhb9wN5ly5Zh//79AIAzZ87g+PHj6N69O5o2bQoA6NGjB6ZOnSrNX9pjVBISErBo0SK9j1GpaiZ7YO/TTwPr1xtnXWrW1qoPrbu76n8bG9UXT8nnwgGqL6hmzYCzZ1VfZpqcnVVfODdv6j4epTSrVgHPPFP8etgwYOPGiu+DlZXqi7ioSPVlQOajvmg/RD9o5bKxUV2IrK1VQ36+6kJkLHK5ar2agXhBgfHWb0rW1qr3wNZW9Tk05nEBVMdG/cPA3l510UtNVR2jyqhbV/Vj7P59VXBjSU9qkMlU55r6R45a3bpAu3aqHzvqAO3OHVXZH+ZS6+amCkwSE1XH1RJZWakCKRsb1T5X5H13cVEtl5pq+DLR0aofVUZQoeuysGCTJk0SAEodJk2apLPM4cOHxaBBg4Srq6twcHAQnTp1En/++WfVF74UWVlZUvmzsrKMt+K+fTVzH9V7sLMT4vp17f0LDzd/uThUzWBlJURQkBBeXuYvCwcOHCxz2LvXaJfPilyXLTrTVBOZLNO0b5+q6kadmk9PV/0i0UyH1qunygY1a6ZKpcbFqbJGly+rfjFZWakGhUKV5r18WfU3O7u4Gs3GRlVV0q2b6q62+Hjgv/+A/ftV2/PwUE0PDFRlFOLiVENamupXo3r7Hh6qbVlbqz4C6uqH/HxVdV/37tr7JwQQGalaT4MGqsHGBjh8WPWL4/BhVbnVVT1yeXGqWaHQrnpRV4GofxUrlcXz5uaqXqvTwWrqzIJm9YNMVlxNYmWlyqap09Xu7sVpbQcH1bFQbyM9vbgaLz1dNY+7u3YVlhCqDEZSUnFVgpWVKvPn56f6RZufX1wdIYRqeVdX1b5lZKjWn5Ki2qYQqn0SQrU9dRWuunzq7ICtbfH5kpVVXB2YmKjaT3XK38FBex15ecXVOdnZxVV8ubnF1YH376vK4O2tqoKpU0e7ys/FBejTRzW4uqrKevmy6ty+elW76kBdrWdjo0r/q/c1JUW1rsJCVRmsrVXVZXXrqv4KUVxFW1RUXA5Pz+JpWVnF+6IeNKstCwu1zwNfX9U53by5at/Uz0lMTFTtr/qcVH3oVevLyFAdu4YNVUOdOtrVXoWFxe8XoHpv1O+RlVXxtJyc4nPkzh1VudTvi7296rirq1QUiuJjrVSqjon6s2RrW7zvOTna1TJ5eapqpbt3Ve+hvX3xZ0hd5a1ZFa0ebG1V+6U+vurqVfVnT/2/rW3x50OhUFVXxsYC586pMg+2tqpjrK6mb9hQVWZ1lbVCoRqA4upqGxtVldfFi8CFC6r1+/io3h9v7+Iq77p1VefBtWuqc+zWLdV3U4MGquosR0fVPqelqc6txMTi6sG8vOLPu7Oz6lw9c0Y1r5q67N7equPg5aXad/V5pVCoxjVqpKoi9PQsfo+yslTfnepjkZlZXM1Wt65q3ervKXWTiiZNVH/VxzQ3V3UO3LqlyvTfvKnapvr7tqio+L10cir+LlA3U9B8bx0ciqspbW1V701Kiuq7TF0Fm5qqWne9esXH0N6++PNTcsjM1K7yUy/XoIHq/NP8zrW2Lr5GWVkBI0eq5jeCilyXGTRVMZMFTaYmhOoLSh0glJSXpzrx1e2XiIgehhCqC7y6/Vl1IIQqQMnIUAVptWpVn7I/wipyXa4xDcHJxNR1+KWxs1N9SRARGYNMpsrgVCcymSq7QjVWjelygIiIiMiUGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGeCRDpo++eQTBAUFwcXFBd7e3hg9ejTi4+Ol6QsXLoRMJtMagoKCzFdgIiIiMptHOmiKiorCrFmzcPjwYWzfvh2pqakYPHgwCgsLpXnat2+P27dvS8OOHTvMWGIiIiIyF2tzF8Cctm/frvX6559/RuPGjREbG4t27doBAKytreHj42OO4hEREZEFsehM06pVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl1r0PbS09MBAB4eHtK48+fPw9fXF02bNsXkyZNx586dSu8PERERVV8WnWmaP38+EhIS4OnpCV9fXyQkJJQ5f0REBEJCQmBvb4+xY8fCxcUF//zzD8aMGYMbN27gtddeK3XZoqIizJkzB6Ghoahfvz4AoHPnzggPD0eLFi1w69YtvPvuu+jbty9OnDgBOzs7o+4rERERWTaZEEKYuxCl2b17NwICAuDn54dPP/0Ub731FpYvX46wsDCdeQsLC9GiRQvcvHkThw4dQmBgIABV9qhTp06Ij4/HpUuX4Ofnp7OsEAIvvPACoqKiEB0djTp16ugtT3JyMho2bIhVq1ZhxIgRldonhUIBZ2dnAEBWVhacnJwqtR4iIiJ6eBW5Llt09Vz//v31Bjn6/Pfff7hy5QrGjx8vBUwA4Obmhnnz5iE/Px8rVqzQWU4IgRkzZmD37t3Ys2dPqQETANSpUwf+/v64du1ahfeFiIiIqjeLrp6riMjISADAwIEDdaaFhIQAUN0tp0kIgZdeeglbtmxBVFQUGjRoUOY20tLSkJCQAH9//1LnUSgUZa6jvOlERERkmWpM0BQXFwcACAgI0Jnm4+MDZ2dnaR61l156CX/88Qc2b94MBwcHqZG3h4cHbG1t8frrr2PIkCFo2LAhbt68iXnz5qFevXoIDQ0ttRzqFB8RERHVLDUmaFLf+ebm5qZ3uqurqzSP2g8//AAA6Nmzp9b4iIgI9O7dGzdu3MDYsWNx7949eHt7Izg4GCtXroSjo6MJ9oCIiIgsWY0JmiqjvDbwf/75Z4XXmZWVVeZ0hUIBb2/vCq+XiIiIzKvGBE3qDFPJbJJaRkYGatWqZfJy8G44IiKimsmi756rCHVbppLtlgDgzp07yMrK0tveiYiIiMgQNSZoCg4OBgDs3LlTZ5r6eXHqeYiIiIgqqsYETf369UPjxo2xevVqnDx5Uhqfnp6Ojz/+GLa2tpg4caL5CkhERETVmkW3aVq2bBn2798PADhz5ow0Tt0nU48ePTB16lQAqgfrLlu2DCEhIejVq5fWY1QSEhKwaNGiMvtXIiIiIiqLRT9GJSwsTG8v3mqTJk3SeYBvTEwMFixYgAMHDqCgoABt27bFq6++ijFjxpi4tIbhY1SIiIgsR0WuyxYdNNVEDJqIiIgsR4159hwRERGRpWDQRERERGQABk1EREREBmDQRERERGQABk1EREREBmDQRERERGSASnVuef/+fezYsQN79uzB8ePHkZSUhLS0NNSqVQve3t54/PHH0bdvX4SEhMDd3d3IRSYiIiKqehXqp+nMmTP4+uuv8ccffyA3NxdlLSqTyWBvb4/x48dj1qxZaNeunVEKXN2xnyYiIiLLYfTOLe/evYu33noLK1asgFKphKenJ3r37o1u3bqhdevWqF27NlxdXZGeno6UlBScPXsWBw4cwN69e3Hv3j3I5XKEhYXh448/hpeXl/H2tBpi0ERERGQ5jB40ubm5ITMzE08++SSmTJmCJ554AtbW5dfsFRYWYvPmzfj111+xZcsWuLm5IS0trQK7UvMwaCIiIrIcRu8RvFOnTjhy5Ag2bdqEoUOHGhQwAaqH6A4fPhybN2/G4cOHERQUZNByRERERJaGz56rYsw0ERERWQ4+e46IiIjIyEwSNKWnp5d5Zx0RERFRdVOpoOns2bP45ptvcOnSJa3xERERaNSoETw8PODl5YXw8HBjlJGIiIjI7CrVpumFF17Ar7/+imvXrqFBgwYAgJSUFDRu3BiZmZnSfHK5HEeOHEGHDh2MV+Jqjm2aiIiILIfJ2zRFR0ejdevWUsAEACtXrkRmZiamTZuG+/fv47fffoNSqcS3335bmU0QERERWZRKBU1JSUlo2LCh1rhdu3bBysoKH374IVxdXfHss8+iQ4cOOHjwoFEKSkRERGROlQqaMjIy4ObmpjXu8OHDCAwMRO3ataVxAQEBuHXr1sOVkIiIiMgCVCpocnV11QqGzp8/j9TUVHTr1k1nXplMVvnSEREREVmISgVNgYGBOHDgAC5fvgwA+OWXXyCTyRAcHKw137Vr1+Dr6/vwpSQiIiIys0oFTdOmTUNBQQEef/xxdOjQAV9++SW8vLzwxBNPSPNkZmbi5MmTaNOmjdEKS0RERGQulQqaRo0ahYULF6KwsBCnTp2Cn58f/vrrL9jZ2UnzrF27FgUFBTrZJyIiIqLq6KGePZefn4+MjAx4enrqTLt+/TrS0tLQpEkTqf8DYj9NRERElqQi12Xrh9mQra2t3oAJABo2bKjTLQERERFRdcUH9hIREREZoNKZpsLCQvz111/Ys2cPEhMTkZubq3c+mUyGPXv2VLqARERERJagUkFTcnIyBg4ciNOnT6O8JlHsp4mIiIhqgkoFTXPnzsWpU6fQtGlTvPjiiwgICICLi4uxy2Zy69atww8//IBjx44hLS0N165dg7+/vzQ9IyMD8+bNw8aNG5GSkoKuXbviu+++Q4sWLcxXaCIiIjKLSgVN//77L7y9vXHo0CF4eHgYu0xVRqFQoFevXhg6dChmzZqlM33q1Km4dOkS1qxZA09PT3z99dcYMGAAzp8/zzsCiYiIHjGV6nLA2dkZgwYNwt9//22KMlW5s2fPom3btlqZppycHLi4uGDLli0ICQkBACiVSvj6+uLDDz/E888/X6ltscsBIiIiy1GR63Kl7p4LCAhATk5O5UpXAatWrcK0adMQFBQEOzs7yGQyhIeHl7nMkSNHEBoaCnd3dzg5OaFLly5Yu3ZthbddWFiIoqIiODg4SOPkcjlsbW0RHR1d4fURERFR9VapoGnKlCmIjIzEzZs3jV0eLfPnz8dPP/2EhIQEg55hFxERge7du2P//v0YPXo0pk+fjjt37mDMmDFYvHhxhbbt4uKCzp074/3338fdu3dRUFCARYsW4ebNm7h9+3Zld4mIiIiqqUoFTTNnzsSTTz6Jvn37YseOHVAqlcYuFwBg2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eUhISKjQ9letWoWcnBx4e3vDwcEB27dvx6BBgyCXs3srIiKiR02lr/5Lly6Fg4MDQkND4eDgAH9/fzRu3FhnaNKkSaUL179/f/j5+Rk073///YcrV65g/PjxCAwMlMa7ublh3rx5yM/Px4oVKyq0/aZNmyI6OhoZGRlITEzE7t27kZaWhkaNGlVoPURERFT9VeruuRs3bqBnz564ceMGhBAoKCjA9evX9c5bVf00RUZGAgAGDhyoM03dkDsqKqpS63ZxcYGLiwuuXr2Ko0ePYuHChaXOq1AoylxXedOJiIjIMlUqaHrjjTdw/fp19OjRA6+++ioCAgLMfgt+XFwcAFUj9ZJ8fHzg7OwszaOWmpqK69ev48qVKwCA2NhY3L9/Hw0bNsT/s3fncVFV///AX8O+b6IsouCCS6bihhooigvmUrmkaCpoWlpqn7SyTNP2LJcy0zRSXLK0XDI3XAGRVFxzS5EEFwRFkGXY4fz+8Df3yzgDDDDjDPh6Ph73oXPvufe+7507c9+cc+ZcJycn7Nu3D0ZGRmjevDkuX76Mt956C4MGDcKAAQPKjUPf54GIiIh0o1pJ08GDB+Hp6YkDBw7A3Nxc2zFVS2ZmJoBHzXHq2NnZSWUUdu7ciQkTJkivBw0aBABYu3YtQkNDkZGRgTlz5uDOnTto0KABxo4dW2EtExEREdVd1Uqa8vLy0Lt3b4NJmKorNDQUoaGh5S4fPXo0Ro8eXaVt5uTkVLhcLpfDxcWlStskIiIi/atW0vTMM88gPT1d27HUiKKG6fHaJIWsrCw4OjrqPA4OVklERFQ3VevXc9OnT0dUVBQuXryo7XiqTdGX6fF+SwCQkpKCnJwctf2diIiIiDRRraRp7NixeOeddxAYGIhVq1aV+8u5JykgIAAAsH//fpVlERERSmWIiIiIqqpazXPGxsbS/994440Ky8pkMhQXF1dnN1XSp08fNG3aFJs2bcKMGTOksZoyMzPxxRdfwMzMDOPHj9d5HERERFQ3VStpqsozfqvxPGBJWFgYYmJiAAAXLlyQ5inGZPL398ekSZMAACYmJggLC0NQUBB69uyJ4OBg2NraYuvWrUhKSsKiRYukh/ESERERVZVM1CSr0bHQ0NAKR/EOCQlReYDvyZMnMX/+fMTGxqKoqAht27bFzJkzMWrUKB1Hq5mqPE2ZiIiIdKsq9+VqJU3R0dEwNjaGn59f9aN8SjFpIiIiMhxVuS9XqyN4r169MG/evOpFR0RERFQLVStpcnR0hLu7u7ZjISIiIjJY1UqafHx81I6HRERERFRXVStpmjFjBuLi4rB7925tx0NERERkkKo15ECHDh0wbdo0DB06FKGhoRg+fDi8vLxgaWmptnzjxo1rFCQRERGRvlXr13OKwS2FEJDJZBXv4AkNbllb8NdzREREhqMq9+Vq1TQ1atSo0mSJiIiIqC6pVtKUmJio5TCIiIiIDFu1OoITERERPW2YNBERERFpQKOkKTk5WSs709Z2iIiIiJ40jZImb29vvP/++8jIyKjWTtLT0/Hee+/B29u7WusTERER6ZtGSVP//v3x9ddfw8PDA2PHjsWBAwdQUFBQ4ToFBQWIiIjA6NGj4eHhgUWLFiEoKEgrQRMRERE9aRqP03Tw4EG8/fbbuHTpEmQyGUxNTeHj44PWrVujXr16sLOzQ1ZWFh48eIDLly/j/PnzKCoqghACzz77LJYsWYK+ffvq+ngMHsdpIiIiMhxVuS9XeXDLAwcOYPny5di/f79SbZNMJkPZTZmbmyMoKAjTpk1jslQGkyYiIiLDodOkSaGgoADHjh3D2bNnkZqaiszMTDg4OKBBgwbo2LEjnnvuOZibm1fvCOowJk1ERESG44kkTVQ9TJqIiIgMR1XuyxyniYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgD1UqaoqOjcezYMW3HQkRERGSwqpU09erVC/PmzdN2LEREREQGq1pJk6OjI9zd3bUdCxEREZHBqlbS5OPjg/j4eG3HQkRERGSwqpU0zZgxA3Fxcdi9e7e243mitm3bhn79+sHJyQkymQyJiYlKy5cuXYo2bdrAxsYGDg4OCAwMxIkTJ/QTLBEREemVSXVW6tChA6ZNm4ahQ4ciNDQUw4cPh5eXFywtLdWWb9y4cY2C1BW5XI6ePXvixRdfxPTp01WWe3p6YsmSJWjevDkKCgrw7bffIigoCAkJCahXr54eIiYiIiJ9kQkhRFVXMjY2BgAIISCTySregUyG4uLi6kX3hFy8eBFt27bFjRs34OXlVW65rKws2NvbIzIyEgEBAdXaV1WepkxERES6VZX7crVqmho1alRpsqQNGzduxNGjR3H69GlcuHABhYWFWLt2LUJDQ8tdJy4uDvPnz0dsbCyKiorQtm1bzJw5EyNHjqxRLIWFhVi9ejUcHR3Rtm3bGm2LiIiIap9qJU2P9/3Rlblz5yIpKQnOzs5wc3NDUlJSheWPHDmCoKAgWFhYIDg4GLa2tti6dStGjRqFW7duYdasWVWO4ejRo3j++eeRl5cHV1dXHDhwAE5OTtU9JCIiIqqlDHpE8LCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06VKnc+fOOHfuHGJjY/H8889j5MiRSEtLq+4hERERUS1l0ElT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX5RgsLS3RvHlzdO3aFWFhYTAyMsLatWurvB0iIiKq3WqUNB09ehQjR46Eh4cHzM3N8eqrr0rLDhw4gDlz5iAlJaXGQWoiMjISANC/f3+VZUFBQQCAqKioGu9HCIGCgoJyl8vl8konIiIiqn2q1acJAD777DPMnz8fZX98V/b/9vb2WLhwITw8PPDGG2/ULEoNKAbb9Pb2Vlnm6uoKGxsblQE509PTcfPmTSQkJAAALl++jIcPH6Jx48ZwcnLC7Nmz8cILL8DDwwPp6elYsWIFbt++jeHDh5cbh6IHPhEREdUt1app2rt3Lz766CM0bNgQW7ZsQWpqqkoZX19f1K9fH7t27apxkJrIzMwE8ChZU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dOwEAycnJCA4ORosWLTBw4ECkpqbi6NGjaN26tQ6PhIiIiAxRtWqavvvuO5ibm2Pv3r1o06ZNueXat29v0I9bCQ0NrXD4gg0bNlR5mzk5ORUul8vlcHFxqfJ2iYiISL+qlTTFxcXB19e3woQJAOrXr4/Y2NhqBVZVihqmx2uTFLKysuDo6KjzODhYJRERUd1UreY5uVwOV1fXSstlZmaitLS0OruoMkVfJnU1WykpKcjJyVHb34mIiIhIE9VKmlxcXHD9+vVKy129ehWNGjWqzi6qTPFYk/3796ssi4iIUCpDREREVFXVSpr8/f1x7tw5HDt2rNwyu3btwvXr19G7d+9qB1cVffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+/BOJhYiIiOqeavVpmjVrFjZv3oxhw4Zh1apVGDx4sNLyffv2YdKkSTA1NcX06dOrHVxYWBhiYmIAABcuXJDmKcZk8vf3x6RJkwAAJiYmCAsLQ1BQEHr27Kn0GJWkpCQsWrSowofxEhEREVVEJsoOrlQF3333HWbOnAng0ajZeXl5sLGxgUwmQ3Z2NoQQWLZsGaZNm1bt4EJDQyscxTskJATh4eFK806ePKn2gb2jRo2qdhzaVJWnKRMREZFuVeW+XO2kCXjUV2j+/PmIi4tTGtiyXbt2+Oyzz1RqoIhJExERkSF5YkmTwoMHD3Djxg2UlpaiUaNGcHNzq+km6ywmTURERIajKvflaj9Gpax69eqhXr162tgUERERkUGq1q/nwsPDcfv2bW3HQkRERGSwqtU8Z2RkBJlMBm9vb/Tt2xd9+/ZFYGAg7OzsdBFjncLmOSIiIsOh8z5NEydOxOHDh3Hz5s1HG5HJYGRkhE6dOklJlJ+fH0xNTat5CHUXkyYiIiLD8cQ6gsfHx+PgwYM4cOAAIiMj8fDhw0cblclgaWkJf39/9OvXD7NmzaruLuocJk1ERESG44n/eg4AhBA4deoUDh48iIMHD+LYsWMoLCyEkZERiouLtbGLOoFJExERkeGoyn25Wh3B1SkqKkJ2djays7ORlZUlJUpaysmIiIiI9KpGQw6cO3cOBw4cwMGDBxETE4P8/HwIIWBnZ4dBgwZJ/ZuIiIiIartqJU3BwcE4fPgwHjx4ACEETE1N0a1bNylJ8vX1hbGxsbZjJSIiItKbaiVNW7ZsgUwmQ7t27TB//nz0798fVlZW2o6NiIiIyGBUqyO4vb09srOzATx6WG+PHj3Qr18/9O3bF+3bt9d6kHUJO4ITEREZDp0/RiU9PR0nT56Ufil35MgR7N+/HzKZDM7OzujTpw/69euHfv36wcPDo3pHQURERGRAtDLkQG5uLiIjI3Hw4EEcOnQIFy9elJa1aNECV65cqeku6gzWNBERERkOvYzTpHD+/Hn88ssvWL58OfLz8yGTyVBSUqLNXdRqTJqIiIgMh86b58q6ffu2NOzAoUOHcP/+fQCQflXXvXv3mu6CiIiISO+qlTTt2LFD6s8UHx8P4FGSJJPJ8Oyzz0pDDwQEBPBXdURERFQnVCtpGjZsmPT/Ro0aSUlSnz590KBBA60FR0RERGQoqpU0vfTSS9IQA97e3tqOiYiIiMjgVCtp2rZtm7bjICIiIjJoWntgLxEREVFdVqOk6cqVK5gyZQpatmwJGxsb2NjYoGXLlpg6dSrHZiIiIqI6pdrjNIWHh2PKlCkoKiqCuk2YmZlh1apVCAkJqXGQdQnHaSIiIjIcVbkvV6um6fTp05g8eTIKCwsxaNAgbN++Hf/88w/++ecf7NixA0OGDEFhYSEmT56MU6dOVe8oiIiIiAxItWqagoOD8fvvvyMsLAwTJkxQWyY8PBwTJ07EqFGj8Ouvv9Y40LqCNU1ERESGQ+ePUWnYsCFcXV1x+vTpCst17twZd+/exZ07d6q6izqLSRMREZHh0HnzXFpaGlq3bl1puVatWiEtLa06uyAiIiIyKNVKmhwcHHDz5s1Ky928eRP29vbV2QURERGRQalW0tSlSxfExsbi8OHD5ZY5fPgwjh07hq5du1Y7OH3z8vKCTCZTmb755ht9h0ZERERPWLWSpunTp6O0tBRDhgzBe++9h0uXLiE3Nxe5ubm4ePEi3nnnHQwZMkQqW1vFxcXh7t270rRp0yYAys/eIyIioqdDtcdpmjdvHj7//HPIZDK1y4UQmDdvHj7++OMaBWhIXnnlFdy+fRtRUVHV3gY7ghMRERkOnXcEB4BPP/0Ue/bsQe/evWFubg4hBIQQMDMzQ2BgIPbs2aPzhGnjxo14/fXX0blzZ5ibm0MmkyE8PLzCdeLi4jBw4EA4ODjA2toa3bp1w5YtWyrdV2ZmJrZv317uEAtERERUt1Xrgb0KAwYMwIABA1BSUoIHDx4AAOrVqwdjY2OtBFeZuXPnIikpCc7OznBzc0NSUlKF5Y8cOYKgoCBYWFggODgYtra22Lp1K0aNGoVbt25h1qxZ5a7766+/wtjYGC+//LK2D4OIiIhqgSo1z12/fh3btm1DYmIizM3N4ePjg5EjR8LS0lKXMZbr4MGD8Pb2hqenJ7766it88MEHWLt2LUJDQ1XKFhcXo1WrVrh9+zaOHz8OHx8fAI9qkHx9fZGYmIhr167B09NT7b58fX3Rtm1b/PzzzzWKmc1zREREhkMnzXPffvstnnnmGXzwwQdYtWoVli1bhokTJ6Jly5a4ePFizaOuhr59+5ab5Dzu8OHDSEhIwJgxY6SECQDs7e0xZ84cFBYWYt26dWrXvXTpEuLi4tg0R0RE9BTTqHkuJiYGs2bNghAC1tbWaNmyJbKysvDff//h9u3bGD58OK5cuQIjo2p3kdK5yMhIAED//v1VlgUFBQFAuR2816xZA29vb/j7+1e6H7lcXqPlREREZJg0ynKWL18OIQRCQkKQkpKCU6dO4dq1azhz5gyaNWuG69evY9++fbqOtUbi4+MBAN7e3irLXF1dYWNjI5Upq7i4GBs3btS4lsnGxqbCycXFpWYHQkRERHqhUdL0999/w8PDA6tWrVJq62vXrh2+++47CCFw/PhxnQWpDZmZmQBQ7gjldnZ2Upmydu/ejbS0NIwfP16n8REREZFh06h5LjU1FQMHDoSZmZnKMkWT1b1797QbmYF48cUXUVJSonH5nJycCpfL5XLWNhEREdVCGiVNhYWFcHBwULvMzs5OKmPIFDVM6mqTACArKwuOjo413g9/DUdERFQ3GW7PbS1T9GVS128pJSUFOTk5avs7EREREQFVGNzy+vXrWL9+fbWWG0J/oICAAHz55ZfYv38/goODlZZFRERIZYiIiIjU0WhwSyMjo3KfMVfpDmQyFBcXV2vdqtBkcMuWLVvizp075Q5uefXqVXh5eek0Tg5uSUREZDiqcl/WqKapcePG1U6adCksLAwxMTEAgAsXLkjzFGMy+fv7Y9KkSQAAExMThIWFISgoCD179lR6jEpSUhIWLVqk84SJiIiIaq8qPUbF0ISGhpY7ijcAhISEqDzA9+TJk5g/fz5iY2NRVFSEtm3bYubMmRg1apSOo32ENU1ERESGoyr35VqdNNVGTJqIiIgMh06ePUdERET0NGPSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk2V2LZtG/r16wcnJyfIZDIkJibqOyQiIiLSAyZNlZDL5ejZsyc++eQTfYdCREREemSi7wAM3bhx4wAAFy9e1HMkREREpE+1vqZp48aNeP3119G5c2eYm5tDJpMhPDy8wnXi4uIwcOBAODg4wNraGt26dcOWLVueTMBERERUK9X6mqa5c+ciKSkJzs7OcHNzQ1JSUoXljxw5gqCgIFhYWCA4OBi2trbYunUrRo0ahVu3bmHWrFlPKHIiIiKqTWp9TVNYWBgSExNx//59TJkypcKyxcXFmDx5MoyMjBAdHY3Vq1dj8eLFOH/+PFq0aIE5c+ZUmnQRERHR06nWJ019+/aFp6enRmUPHz6MhIQEjBkzBj4+PtJ8e3t7zJkzB4WFhVi3bp2OIiUiIqLarNY3z1VFZGQkAKB///4qy4KCggAAUVFRNdqHXC6v0XIiIiIyTE9V0hQfHw8A8Pb2Vlnm6uoKGxsbqYxCeno6bt68iYSEBADA5cuX8fDhQzRu3BhOTk4q27GxsdFB5ERERKRvtb55rioyMzMBPGqOU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dO3UbLBERERmUp6qmqTpCQ0MRGhqqcfmcnJwKl8vlcri4uNQwKiIiInrSnqqkSVHD9HhtkkJWVhYcHR1rtA9ra+sarU9ERESG6alqnlP0ZXq83xIApKSkICcnR21/JyIiIqKnKmkKCAgAAOzfv19lWUREhFIZIiIiorKeqqSpT58+aNq0KTZt2oRz585J8zMzM/HFF1/AzMwM48eP11+AREREZLBqfZ+msLAwxMTEAAAuXLggzVOMyeTv749JkyYBAExMTBAWFoagoCD07NlT6TEqSUlJWLRoEby8vPRxGERERGTgZEIIoe8gaiI0NLTCUbxDQkJUHuB78uRJzJ8/H7GxsSgqKkLbtm0xc+ZMjBo1SsfRPvr1nGIsp5ycHHYcJyIi0qOq3JdrfdJU2zBpIiIiMhxVuS8/VX2aiIiIiKqLSRMZrDfffBNubm7YvXu3vkMhIiJi89yTxuY5zdy8eROenp4AAD8/P6mzPxERkTaxeY5qvVOnTkn/P3v2LIqLi/UYDREREZMmMlBlk6bc3FxcuXJFj9EQERExaSIDdfr0aaXXZZMoIiIifWDSRAZHCKGSJDFpIiIifWPSRAYnMTER6enpSvOYNBERkb4xaSKDoy5BOnfuHAoLC/UQDRER0SNMmsjglE2anJ2dAQCFhYW4ePGivkIiIiJi0kSGp2zSNGHCBLXziYiInjQmTWRQSktLpV/ONWzYEEOGDJGWMWkiIiJ9YtJEBiUhIQGZmZkAgM6dO6NDhw4wMnp0mcbFxekzNCIiesoxaSKDUrY2qXPnzrCxsUHr1q0BABcvXkReXp6+QiMioqcckyYyKGWTpk6dOgF4lDwBQHFxMf755x+9xEVERMSkiQyKuqSpS5cuapcTERE9SUyayGCUlJTgzJkzAIDGjRujQYMGAP6vpglgvyYiItIfE30HQE9WSUkJbt68iezsbDRt2hQ2Njb6Dkly7do15OTkAFBOlNq1awcTExMUFxfj1KlTKCwsxJ07d5CTk4OWLVvCzMxMXyGTluXl5SEmJgZxcXFo2LAh/P390bRpU8hkMn2HRnVQcXExhBAwNTXVdyhak5ubi9LSUpibm8PExISfHS1j0lRHTJs2DQcOHIC9vT3s7Oxgb28PKysrFBUVoaioCPn5+UhMTMT169eVRtZu2LAhWrZsCWtra5SUlKCkpARmZmZo2rQpmjdvjubNm8PBwQEmJiYwMTHB/fv38ffffyM2Nhbnzp1DgwYNEBgYiMDAQLRo0QIXL17E6dOnceHCBVhZWcHb2xve3t5wcnJCQkICrl69iuvXryMnJwfFxcUoKSkBAFhYWEAul0txlU2aLC0t8eyzz+LcuXO4dOkSLCwsIISQ1uvSpQuee+45uLu7o6ioCIWFhSgpKYGlpSWsrKxgZWWFkpIS5OTkICcnB3K5HLm5ucjLy0NeXh6MjIxgZWUFS0tLWFpawtjYGEZGRtKv9hQU+xRCKE2lpaUoLi5Geno60tLS8ODBA2RlZSE7Oxs5OTnIy8uDubm5tH07Ozs4OzvD2dkZ9vb2yMnJQWZmJh4+fCi9NzKZDCYmJqhfvz7c3d3h5uaG4uJiJCUlITExESkpKbCwsICdnR3s7Owgk8mQlZWFrKwsyOVy2NnZoV69eqhXrx5sbGyk4xFCIDs7G5mZmcjMzIRcLpfOQ35+PgoLC6VrxsLCAo0bN4anpycaNWoEmUyGwsJCFBQUQC6XS9vIycmBhYUFbG1tYWtrCysrK5iZmUmTra0t7O3t4eDgAAC4d+8eUlNTkZaWBiMjI6ncjRs3EB0djfz8fKXz7ubmho4dO8LGxkZ6n0pLS6U4jYyM4OTkJB2vpaUlTExMYGpqisLCQty9exfJyclITU2FsbExbGxsYG1tDZlMhvv37+PevXtIS0uDiYkJbGxslCZbW1vY2NjAwsICZmZmMDU1hYnJ/31tKv4IuXr1Kq5evYoHDx7A1dUVHh4eaNiwoRRDYWEhSktLpXNkY2OD9PR03Lp1Czdv3sSDBw9gaWkJa2trWFlZwdTUVOk9y8/PR35+PvLy8lBaWgojIyPIZDKYmZmhQYMGcHNzg5ubGwBI70t+fj7s7e3h6OgIR0dH2NjYwNzcHGZmZhBC4M6dO7h16xZu376NkpIS6XgVn0XFNWxubo4GDRqgQYMGcHR0RH5+PuRyOeRyuXQ+FcekuMYtLCyQn5+PtLQ03L9/H+np6dLnruyUl5eHgoICmJubS++ti4sLnnnmGTzzzDNo1qwZHj58iOTkZNy9exe3bt2SptTUVJiZmcHa2hrW1tYQQkifgfz8fDRq1AgtW7ZEy5YtYWtri9TUVKSkpCAlJQV3797F3bt3cf/+fchkMnh4eKBp06bw8PBARkYGbt++jVu3biE/Px8ODg7SOXR3d4eHhwcaNWoES0tLPHjwAA8ePEBmZiYaNWqEdu3aoW3btqhfv760r5SUFNy7d0+a8vPzpevA0tISKSkpuHHjBhITE/Hw4UOYm5vD3NwcFhYW8PT0RJs2bfDMM8/A2dkZycnJuHXrFpKTk1FSUgJjY2MYGxsjOzsbCQkJSEhIwP3796XrUyaTwdbWFg0bNoSHhwc8PDxgb28PCwsLWFhYwMjISHovFN8Fivel7DVhY2ODvLw8ZGRkICMjAwUFBXBycoKzs7P0uXNycoKTkxPMzMyk83fnzh0UFxfD1NRU7WRrawsHBwc4ODjA1NRU6ZrMy8uTvnNLS0ul+5NiWrVqFdq2bVuNu2UNCXqicnJyBAABQOTk5Ghtu4MGDZK2WxemiIgIpeN77bXX9B4TJ06cOHEyjOno0aNau39W5b7MmqY6wsLCAvb29sjKypKy88eZm5ujefPmaNGiBezs7BAfHy/9dVwdTk5OePjwIUpLS6u1vrGxMUxMTCCEUKr96tatG3r16qVUdtasWTh27BjS09PRqFEjNG7cGKampjhx4gT++++/au1fl0xMTKS/Ji0sLFBYWCj9FZednV3j7ZuZmZX7LD5LS8sqDc1gZmYm1Q4oalNMTU2Rk5OD5OTkcq8nBVNTUxQVFVUp/vJ4eHigf//+6NmzJ27duoWYmBjExsZq5ZzpmqmpKZydnXH//n0UFxdXaV0HBwepNqkiJiYmMDY2VqrhrM0UNV8FBQVVfrZkvXr1UFxcjNzcXOn6U9S+mpqaVnjtmpqawtXVFe7u7igpKcGNGzeUvgdNTU3RsGFDWFlZ4eHDh8jIyND5cCeWlpZwdnZWqs2t6ueqYcOGaNq0qXRO8/Pz8fDhQ9y5c6fODddS3ftOTclEZd+IpFVyuVzqR5STkwNra2utbr+0tFRqOsnLy1OqCq1Xrx6MjY1V1snIyEBRUZFU1SuXy3H9+nVcv34d//33H3Jzc1FcXCw12XTp0gXdu3dHkyZNkJmZiejoaBw+fBh37txBmzZt0LFjR/j4+CA/Px/x8fG4fv06MjIy0LRpU7Rs2RItWrSAo6OjStz5+fkoKCiAg4NDldrh7969i5MnT0Iul0s3fSMjI6kZITc3V6npRdEEomhKKC0tVaqWLi0tlaqDH49D8Vomk0mTkZERjI2N4ejoKFVXW1lZlRtvcXExMjIypGp9GxsbODg4SNXm4v83+xUVFSE1NVVqXjI2Noanpyc8PT1Rr149CCGQk5MjJcr29vZSU1xhYSHS09Px4MED5ObmSjdZIYTUXGZvbw9ra2u114RCYWGhVM1uZGQkNR1YWlpK2zA3N0dJSQnkcjmys7Olm1hhYSHy8/ORnZ2Nhw8fIjMzE6WlpXBxcUGDBg1Qv359pSY/GxsbNGvWTOWcl5SUIC0tTek9MjIykq7r4uJiqZkkPT0dBQUF0vVqYmIi3RxdXV2lc5aTk4OSkhIpDsX5lMvlyMnJkZpWs7OzkZ2dLTVbFhYWqiQqbm5uaNmyJTw9PWFiYoLS0lLcu3dPakJRND8CUNqmvb09GjdujIYNG8Lc3Fz6HCg+b4r3C4DUnPL4e1VcXIx79+7h7t27SElJgUwmU3pfMjMzpSaV3NxcKTkpLS2Fu7s7GjVqBA8PD5iZmUnnJS8vT6lZpqCgAPfu3cP9+/fx8OFDWFhYSJ+h0tJS6XgU6yomc3Nz1K9fXzq/iuZVxWfPyspK6XhKSkqQm5uLmzdv4vLly7h8+TISExPh5OQEd3d3aWrUqJHSOVNcpzKZTKlvUn5+Pq5fv45///0X+fn5cHV1haurK1xcXFCvXj2V5vesrCzcuXMHTk5OqF+/vsryvLw8qXns1q1bKCgokD7vNjY2uH79Oi5cuIALFy4gKytL2p+bm5t0zTdo0ACWlpbSOZPL5ahfvz6aNGmCBg0aKF37paWl0rm4dOkSsrKypGY2d3d36XOn6L/k5eUFS0tLtZ9jIYTU7CiXy6UEvaSkRHovy743im4KZT8LFhYWUjOlmZmZ9B2WlpYmfdcoPn9lmwMtLCykpvTHp+zsbKUmP3d3dzRu3BiNGjWCra0tgP/7zlXcnxSToolaG6pyX2bS9ITpOmkiIiIizVXlvswhB4iIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wGfPPWFlB2CXy+V6jISIiIjK3osre0gKk6YnLDc3V/q/i4uLHiMhIiKisnJzc6VHqqjD5jkiIiIiDfCBvU9YaWkp0tLSAABWVlbVfkqzXC6XaqpSU1P54N//j+elfDw36vG8qMfzoh7Pi3q1+bwIIaRWIGdnZxgZlV+fxOa5J8zIyAgNGjTQ6jatra1r1QX6pPC8lI/nRj2eF/V4XtTjeVGvNp6XiprkymLzHBEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGOLglERERkQZY00RERESkASZNRERERBpg0kRERESkASZNRERERBpg0mRg4uLiMHDgQDg4OMDa2hrdunXDli1bqrSNgoICfPLJJ/D29oaFhQXc3d3x2muv4d69ezqKWnfu3LmDb7/9Fv3790fjxo1hZmYGV1dXDB8+HCdOnNB4O5GRkZDJZOVO4eHhujsIHfLy8ir3mHr16lWlbf3yyy/w9fWFtbU1HB0dMXjwYJw5c0Y3getQeHh4he+1TCZDnz59Kt1Obb1mNm7ciNdffx2dO3eGubl5pbFmZWVh5syZ8PT0hLm5Oby8vPDuu+8iJyenyvuOiIhAQEAAbG1tYWdnh969e+PQoUM1OBrt0fS8FBUVYevWrQgJCUHr1q1hY2MDW1tbdO3aFStXrkRJSUmV9qvNz6iuVOWaWbBgQYWfi8TExCrt+9q1axg5ciScnZ1haWmJ9u3bY+XKlTDU36iZ6DsA+j9HjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrEq3UVpaihdffBERERHo1q0bhg8fjvj4eISFheHQoUM4fvw46tev/wSORju+//57LFy4EM2aNUP//v1Rv359xMfHY8eOHdixYwc2bdqEUaNGaby9gIAAtV9UPj4+2gv6CbO3t8f//vc/lfleXl4ab+Pzzz/H3Llz4enpiSlTpiA7Oxu//fYbnnvuORw6dAh+fn7aC1jHfHx8MH/+fLXL/vjjD1y6dAlBQUEab6+2XTNz585FUlISnJ2d4ebmhqSkpHLLyuVyBAQE4Ny5c+jfvz9Gjx6Ns2fPYtGiRYiKikJ0dDQsLCw02u/GjRsxbtw41K9fH6GhoQCAzZs3o1+/ftiyZQtGjBihjcOrNk3PS0JCAkaMGAEbGxv06dMHL7zwAjIzM/HXX3/hjTfewJ49e7Bz507IZDKN962Nz6guVeWaUQgJCVEbv4ODg8b7vXz5Mp577jnk5eVh5MiRcHd3x+7du/HGG2/g8uXL+P7776twFE+IIINQVFQkmjVrJszNzcXZs2el+Q8fPhQtWrQQZmZmIjExsdLtrFmzRgAQo0ePFqWlpdL8lStXCgDitdde00X4OrN161YRGRmpMj86OlqYmpoKR0dHkZ+fX+l2jhw5IgCI+fPn6yBK/fH09BSenp412sa1a9eEiYmJaNGihXj48KE0/+zZs8Lc3Fy0bt1alJSU1DBS/SsoKBD16tUTJiYmIiUlpdLytfWaOXDggPRd8eWXXwoAYu3atWrLfvTRRwKAmD17ttL82bNnCwDiiy++0Gif6enpwsHBQTg7O4tbt25J82/duiWcnZ2Fs7OzyMrKqt4BaYmm5+X27dvihx9+EDk5OUrzc3JyROfOnQUAsWXLFo33q43PqK5V5ZqZP3++ACCOHDlS4/327NlTABB79uyR5hUUFIgePXoIACI2NrbG+9A2Ns8ZiMOHDyMhIQFjxoxR+gvW3t4ec+bMQWFhIdatW1fpdn766ScAwJdffqn0l9Drr7+Opk2b4pdffkFeXp7W49eVYcOGISAgQGV+jx490Lt3b2RkZODChQt6iKzuWLt2LYqLi/Hhhx/C3t5emu/j44PRo0fjypUriImJ0WOE2rFjxw48ePAAgwcPhouLi77D0Zm+ffvC09Oz0nJCCISFhcHGxgbz5s1TWjZv3jzY2NggLCxMo33+/vvvePjwIaZPnw4PDw9pvoeHB6ZNm4a0tDRs3769ageiZZqel4YNG+KNN96AtbW10nxra2vMnDkTABAVFaWTGPVF03OjTdeuXUN0dDR69+6N559/XppvZmaGTz/9FMD/3c8MCZvnDERkZCQAoH///irLFE0JlX1Q8/PzceLECbRs2VLlAyCTydCvXz+sWrUKp06dQo8ePbQTuB6ZmpoCAExMNL+M4+Pj8e233yIvLw8eHh4IDAxEw4YNdRXiE1FQUIDw8HAkJyfDzs4OXbp0QdeuXTVev7JrLzw8HFFRUejZs6e2QtYLRQIwadKkKq1XF68Z4NFxJScnIygoSG2C4Ofnh4iICNy6dQuNGjWqcFuVXUMLFixAVFQUxo8fr7X49aE63zlAzT+jhig6OhonTpyAkZERvL290bdvX9jY2Gi8fkXXjL+/P6ytrQ0yOWXSZCDi4+MBAN7e3irLXF1dYWNjI5UpT0JCAkpLS9Vuo+y24+Pja33SdPPmTRw8eBBubm5o27atxutt2rQJmzZtkl6bmJhg+vTp+Oabb2BsbKyLUHUuJSUFEyZMUJrXpUsX/Prrr2jWrFml68fHx8PGxgaurq4qy8peM7VZUlISDh06BA8PDwwYMKBK69bFawao+DtHMT8iIgLx8fGVJk0VbauuXEMAsGbNGgDqb/QVqeln1BA93m/QwcEB3333ncaJcUXXjLGxMZo0aYLLly+juLi4ykmqLrF5zkBkZmYCgFLzSFl2dnZSmZpso2y52qqoqAjjxo1DQUEBFi5cqNGNq379+vjqq69w8eJF5OTkIDU1FTt27EDz5s2xdOlSvPfee08gcu2bMGECDh06hNTUVMjlcpw9exbjxo1DXFwc+vTpg+zs7Eq3kZmZWeevmbVr16K0tBShoaEaJzp19ZpR0Ob3RUXbqivX0OrVq7F3714EBgZi4MCBGq+njc+oIWnfvj3WrFmD//77D3l5ebhx4wa+//57yGQyhIaGYufOnRptR5Prr7S01ODOj+Gkb0QaUNz4oqOjMXnyZIwbN06j9dq0aYM2bdpIr62trfHiiy+ia9euaNeuHZYtW4bZs2ejQYMGugpdJx7/a8/Hxwfr168HAGzYsAE//fST1A/jaVVaWoq1a9dCJpNh4sSJGq9XV68Zqrpdu3Zh2rRp8PT0xMaNG6u0bl37jA4dOlTptZeXF6ZNm4bWrVujX79+mDt3Ll544QU9Rad7rGkyEIpsu7y/xrKyssrNyKuyjbLlapvS0lJMnDgRmzZtwtixY/Hjjz/WeJuurq548cUXUVxcXKVxnwzd66+/DgA4duxYpWXt7e3r7DUDAAcPHsTNmzcRGBiIJk2a1Hh7deWa0eb3RUXbqu3X0J49ezBixAi4uLjg8OHDcHNz08p2q/IZrQ369OmDZs2a4cKFC9J7XhFNrj+ZTAZbW1utxllTTJoMREXt/ikpKcjJySm374FC06ZNYWRkVG7fgcr6MBiy0tJSTJgwAevWrcPo0aMRHh4OIyPtXL7Ozs4AHo1ZU1dU5Zi8vb2Rk5ODlJQUlWW1+ZpRqG4H8IrUhWumsr5GVXnvK9pWbb6Gdu/ejWHDhsHZ2RlHjhxB06ZNtbbtunANPU5xTLm5uZWWreiaKSkpwY0bN9CkSROD6s8EMGkyGIqf1e/fv19lWUREhFKZ8lhaWsLX1xdXr15VGZxMCIEDBw7A2toanTt31lLUT4YiYVq/fj1GjRqFDRs2aLUDrqK2wFAGmtOGqhyTNq49Q/XgwQP8+eefcHJyUmlWqIm6cM14e3vD3d0dx44dU7lxy+VyHDt2DE2aNKm0EzhQN6+h3bt3Y/jw4XBycsKRI0fQvHlzrW6/LlxDZcnlcly6dAnW1tZS8lSRiq6ZmJgYaeBVg6PvgaLokaKiItG0adMKB7e8ceOGND85OVlcuXJFaTBCIere4JYlJSUiJCREABAvv/yyKCoqqrD8/fv3xZUrV8T9+/eV5p86dUpt+W+//VYAEN7e3qK4uFhrcT8JV65cEXK5XO18V1dXAUBERUVJ8x8+fCiuXLkikpOTlcpfvXq1zg5uuXTpUgFAzJgxo9wydfma0fbglnK5XFy5ckUkJSUpzU9PTxf29vYGPbhlWZWdlz179ghzc3Ph6uoq/v3330q3V1hYKK5cuSKuX7+uNL+qn1FDUNG5ycrKElevXlWZn5ubK0aPHi0AiAkTJqgsv3Llirhy5YrK/MoGtzx27FjNDkYHZEIY6ANenkLlPUYlKSkJixYtUnqMSmhoKNatW4e1a9dKjywAHtXKDBw4UHqMSkBAAK5fv45t27bBy8sLJ06cqFWPUVmwYAE+/vhj2NjY4K233lJbVfvSSy9JA4Iqys+fPx8LFiyQynh5ecHU1BSdO3eGh4cH5HI5jh8/jrNnz8LBwQERERHw9fV9QkelHQsWLMCSJUvQs2dPeHp6wtraGteuXcOePXtQVFSEDz74AF988YVUPjw8HBMmTEBISIjKc6XKPkZl+PDh0mNUCgsLa91jVMpq27YtLl68iH/++afcoSnq2jUTFhYmDUZ64cIFnDlzBn5+flJNib+/v9RUKZfL4efnh/Pnz6N///7o2LEjzpw5g/3796NLly6IioqCpaWltO3IyEj07t0bAQEB0jg7CmUfo6J4tNHmzZuRlpaGzZs34+WXX34CR18+Tc/Lv//+Cx8fHxQUFCA4OBgtW7ZU2ZaXl5fS925iYiKaNGkCT09PpWevVfUzqi+anpvExEQ0bdoUXbp0QevWreHq6orU1FQcPHgQt2/fRtu2bXHkyBHUq1dPafuKgZYfTzcuXboEPz8/5OXlYdSoUXBzc8Pu3btx6dIlTJs2jY9RocqdOHFCDBgwQNjZ2QlLS0vh6+srfvvtN5VyitoXdX8N5OfniwULFohmzZoJMzMz4erqKiZNmqTRoyMMjeI4K5rKngPFEP+PP/riq6++Er179xbu7u7C3NxcWFpailatWon//e9/Sn8Z1yaRkZFi5MiRwtvbW9jZ2QkTExPh6uoqXnzxRREREaFSfu3atQKACAkJUbu9jRs3is6dOwtLS0thb28vBg4cKE6fPq3jo9CdEydOCADC19e3wnJ17Zqp7DPz+Pv/8OFD8b///U80atRImJqaisaNG4tZs2aprRlSPFomICBA7b737t0revToIaytrYWNjY0ICAgQBw4c0MFRVp2m50VxjBVNjx//jRs3BACVx6VU9TOqL5qem8zMTPHmm2+KLl26iPr16wsTExNha2srfH19xddffy1yc3PVbl+xHXX+/fdfMWLECOHk5CTMzc1F27ZtxQ8//KDUUmJIWNNEREREpAF2BCciIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmoqeUl5cXZDJZhdO3336r7zBJS86ePQtjY2NMnz5daX5kZKT0flckMTFRKlf2+WpVlZmZiXr16qFr164qzyIjMnSqTz8loqdK2QdzPu6ZZ555wtGQrkyfPh2WlpaYN2+eXuOwt7fHBx98gHfffRfr169HSEiIXuMhqgomTURPuUmTJik9sZ3qnj/++APHjh3Du+++iwYNGug7HEybNg1ff/01PvjgAwQHB8Pc3FzfIRFphM1zRER13NKlSwEAr776qp4jecTCwgJjxozB3bt3sXnzZn2HQ6QxJk1EVClF/6fExET8+eefCAwMhJOTE2QyGSIjI6VyGRkZmD9/Pnx8fGBrawsrKyu0bdsWn332GXJzc9Vuu7i4GN9++y3atm0LCwsL1K9fH8OHD8eFCxcQHh4OmUymUhO2YMECyGQyLFiwQO02Ff10evXqpXZ5cnIyZs6cidatW8PKygq2trbo0qULli9fjuLiYpXyoaGhkMlkCA8Px40bNzBu3Di4urrC3NwczZo1w9y5c1FQUFDu+Tt9+jRCQkLQpEkTWFhYwMnJCe3bt8e7776LpKQkAMDatWshk8kQFBRU7naSk5NhamoKS0tLPHjwoNxyZZ09exaxsbHo1q0bWrZsqdE6VaF4LyqbHqd4T3/44Qetx0SkK2yeIyKNLV68GMuXL0fnzp0xYMAAJCcnw9jYGABw+fJlDBgwALdu3YKbmxv8/f1hamqKkydPYt68edi6dSsiIyNhb28vba+0tBQvv/wyduzYATMzM/Tq1QuOjo44ceIEfH19MXHiRK0fQ3R0NF566SVkZGTAy8sL/fr1Q0FBAU6ePInp06fjr7/+wq5du2Bqaqqy7rlz5/DWW2/B0dERAQEBSE9Px7Fjx/D555/j0qVL2L59u8o633zzDd5//32UlpaiRYsWePHFF5GXl4fr169j0aJFaNOmDUJDQzFmzBjMnj0bBw4cwLVr19CiRQuVba1atQrFxcUYN24c6tWrp9Hx7tixAwDQt2/fqp0oDfn4+JTbL+nq1as4fvw4jIxU/z738fFB/fr1cfLkSdy9exdubm46iY9IqwQRPZU8PT0FALF27VqNyxobG4s///xTZXlubq5o1qyZACDmzp0rCgoKpGVyuVyMHj1aABATJkxQWm/58uUCgHBxcRGXL1+W5hcVFYmpU6cKAAKACAkJUVpv/vz5AoCYP3++2niPHDkiAIiAgACl+Xfv3hX16tUTMplMrFixQpSUlEjL0tLSRGBgoAAgPv74Y6X1QkJCpFg+/PBDUVxcLC27cOGCsLa2FgBEbGys0np//vmnACAsLCzE5s2bVeK8dOmS0nF/+OGHAoCYMWOGStnCwkLh6uoqAIjTp0+rPW51/P39BQCxe/dutcsV56qy28GNGzekcjdu3Kh0v0lJScLNzU0AEMuXL1db5oUXXhAAxIYNGyrdHpEhYNJE9JRSJELlTWUTDkXZiRMnqt3WypUrBQAxePBgtcuzs7NFgwYNhImJiUhPT5fmN2/eXAAQK1euVFknLy9PShK0lTTNnj1bABDTpk1Tu97t27eFqampqF+/vigtLZXmK5KmTp06Kc1XmDJligAgPvnkE6X5Pj4+AoBYvHix2v097s6dO8LU1FTY29uLnJwcpWW//vqrACC6d++u0bYUFAndf//9p3Z52aRJ06mypCkjI0M888wzAoB49913yy33wQcfCADi7bffrtIxEekLm+eInnLlDTnQqlUrlXkjRoxQu43du3cDAEaNGqV2uY2NDTp37ow9e/YgLi4O/fv3x507d3D9+nUAwNixY1XWsbCwwMiRI7Fs2TKNj6UylcXZsGFDeHt74/Lly4iPj1dpIhs8eLDa/jmtW7cGANy5c0eal5KSgnPnzsHIyEjjDtju7u4YMWIEfv31V2zYsAFTpkyRlin6/kybNk2jbQGAXC6HXC4HAI2a8yr6+X9OTg62bt1a6TYKCwvx0ksv4fLlywgODsbChQvLLauIKTU1tdLtEhkCJk1ET7mqDDng5eWldv5///0HABg3bhzGjRtX4Tbu378PALh9+zYAwNnZGTY2NmrLNmnSRKO4NKWIs0ePHpWWvX//vkrS1LhxY7Vl7ezsAAD5+fnSvJs3bwIA3NzclPpxVWbGjBn49ddf8cMPP0hJ0z///IOYmBi4uLiUm7iqk5mZKf3f1ta20vLh4eHlLktMTKw0aRJCIDQ0FFFRUQgICJA68pdHcd4yMjIqjY3IEDBpIiKNWVpaqp1fWloKABgwYABcXFwq3Ianp6fW4yovnvLmjxgxAtbW1hVuQ13NjLoOzdrWrVs3+Pr64uTJk1Lyoahleu2112BmZqbxthwcHKT/Z2dnS0mKrrz//vv49ddf8cwzz2DHjh2Vjr+kSOocHR11GheRtjBpIqIaa9SoEf7991+8+uqrGteENGzYEACQlpaGnJwctbVN5T2uQ5E4ZGdnq12u+Bm/ujjj4+Mxe/ZsdO7cWaM4q0tRK3X37l1kZmZWubZp7NixWL58Odq3b49ffvkFJiYmSs11mrCysoK1tTXkcjkePHig06RpxYoV+Prrr+Hu7o69e/cqJWzlUQybUFmiTWQoOE4TEdXY888/DwDYsmWLxut4eHigadOmAIBNmzapLC8oKMDvv/+udl1FwnXlyhW1yxV9l7QRZ3W5urqiffv2KC0txZo1a6q07siRI+Hm5oYdO3bg888/h1wux9ChQ+Hu7l7lODp27Ajg0ZAQurJz507MmDEDtra22L17d7nNmI+7ePEiAKBTp046i41Im5g0EVGNvfbaa/D09MTvv/+O2bNnq60BSklJwU8//aQ073//+x+ARwMk/vvvv9L8kpISvPPOO0hOTla7v8DAQBgZGSEiIgJRUVHSfCEEli1bVm7fm3fffRcODg5YsmQJFi9ejMLCQpUyN27cwMaNGys9Zk3Mnz8fAPDhhx+qjeny5ctqEz9TU1NMnToVxcXFWLRoEYCqdQAvq3fv3gCAv//+u1rrV+bkyZMYPXo0jIyM8Mcff8DHx0fjdRUxBQYG6iQ2Im1j0kRENWZtbY3du3fDy8sLX3/9NRo3boyAgAC88sorGDp0KNq0aQN3d3eVh8W++eabGDJkCO7evYv27dtjwIABGD16NLy9vREWFoapU6eq3V+jRo0wffp0lJaWok+fPujduzeGDx8Ob29vvPPOO3j//ffVrufh4YE///wTjo6OeOedd9CoUSP06dMHY8eOxZAhQ9C8eXM0bdoUy5cv18p5GTp0KD7//HPk5+djxIgRaN26NYKDg/Hiiy+iTZs2aNOmDU6cOKF23ddff13qE9SuXTv07NmzWjG89NJLAIADBw5Ua/3KfPDBB8jNzYWHhwc2bdqE0NBQtdPjzp49iwcPHsDX15cDW1KtwT5NRKQVbdq0wT///IMff/wR27dvxz///IO///4bzs7O8PDwwDvvvIOhQ4cqrWNkZIRt27Zh2bJl+PnnnxEZGQkbGxv4+/tj+/btOHv2LFauXKl2f0uXLkXjxo0RFhaG2NhY2NjYwM/PD1u2bEFWVha++uortev17NkTly5dwvLly7F7927ExcWhoKAADRo0QOPGjTF27FgMHz5ca+dlzpw5CAwMxLJlyxAdHY1t27bB1tYWjRo1wnvvvVduLUuDBg3g4+ODEydO4M0336z2/jt06IDnnnsOsbGxuHLlijQ8graUlJQAeFRDd+PGjXLLPf7LPMXrmhwb0ZMmE0IIfQdBRKROeHg4JkyYgJCQkAp/Dl8XXbt2Da1atYK9vT3u3LkDKyuram/rjz/+wMsvv4yZM2di8eLFWoyyevLz89GoUSOYmprixo0blf7KjshQsHmOiMgAffTRRxBCYOrUqTVKmIBHQyz4+flh1apVBjGQ5Pfff4+0tDR8+eWXTJioVmHSRERkIHbu3IlXX30V3bp1w+bNm+Hq6or33ntPK9v+/vvvkZeXh08//VQr26uuzMxMfPXVV/D19cX48eP1GgtRVbFPExGRgThz5gzWrFkDW1tb9O3bF0uWLNFovCNNdOjQQep/pE/29vbS+ExEtQ37NBERERFpgM1zRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNVKe1b98eMpkM5ubmePDgQYVle/XqBZlMhsjIyCcTXBVERkZCJpOhV69e+g6FSOt4fVNtwaSJ6qy4uDj8888/AIDCwkJs3LhRzxEZFi8vL8hkMiQmJuo7FCKiWoFJE9VZP//8MwCgYcOGSq+JiIiqg0kT1Um5ubn49ddfAQAbNmyAjY0NLly4gLi4OD1HRkREtRWTJqqTfv/9d2RlZeHZZ59F7969MWrUKACa1zZFRUWhf//+cHJygpWVFXx9fbFhwwa1ZQsKCvDNN9+gU6dOsLW1hZmZGVxdXdGlSxe89957SE9PV1nn9u3bmD59Ory9vWFhYQF7e3v4+flh1apVKCkp0fg4NekLIpPJIJPJpNfh4eGQyWRISkoCADRp0kQqo65PV3JyMmbOnInWrVvDysoKtra26NKlC5YvX47i4mKNYwWABQsWQCaTYcGCBbh58yZeffVVNGrUCKampggNDQUAhIaGQiaTITw8HFevXsWoUaPQoEEDWFtbo0uXLvjzzz+l7Z04cQIvvPAC6tevD0tLS3Tv3h2HDh1Su+/4+HhMnDgRTZo0gbm5OWxsbODp6YlBgwZh7dq1VToOADh48CCGDBkCFxcXmJqawtHREd7e3hg7diyio6NVyufl5WHBggXw9vaGubk53NzcEBISgps3byqdl7LKngt1FO+l4twpFBUVYePGjXjllVfQqlUr2NnZwdLSEi1btsSMGTOQnJysdntl+/UdPXoUQ4YMQf369WFkZKQUQ15eHhYvXoxu3brBwcEBFhYWaNmyJd57770K+w6uX78eXbp0gZWVFZycnDBgwAAcPXq03PIVSUxMhEwmg5eXF4QQWL16NTp16gRra2vY29ujf//++Pvvv8tdv6qfwbLnOj09Hf/73//QrFkzmJubS5+/su9jcnIyJk2aBHd3d1haWuLZZ59V+v75999/MWbMGLi6usLCwgLt27fH5s2bq3Uu6Mkx0XcARLqg+HKaOHGi9O/PP/+M3377DUuXLoWlpWW5627fvh3Lly9Hq1atEBQUhOTkZMTExGD8+PE4d+4cFi9eLJUtLS3FoEGDcOjQIdjZ2aFHjx5wcHDA/fv3ER8fj2+++QZjxoyBk5OTtE5cXBwGDBiA9PR0NG7cGC+99BIyMzMRGRmJ2NhYbN++HTt37oSZmZlOzk3z5s0REhKCP/74A3K5HMOHD4eNjY203NXVVfp/dHQ0XnrpJWRkZMDLywv9+vVDQUEBTp48ienTp+Ovv/7Crl27YGpqWqUY4uPj0aFDB5iZmcHPzw9CCDg7OyuVOXPmDKZNmwYPDw/06dMHSUlJ+PvvvzF06FBs2bIFJiYmGDlyJJ599ln06dMH//77L44fP44BAwbgyJEj8Pf3l7Z18eJF+Pn5ISsrCy1btsTgwYNhbGyM27dvIzo6Gnfu3MGECRM0jn/dunVSeV9fX/Tu3Rt5eXm4ffs2fvvtNzg7O6Nnz55S+dzcXPTp0wfHjx+HtbU1+vfvD0tLS0RERGD37t0YNGhQlc5fZVJTUzFu3DjY29ujdevWaNeuHeRyOc6dO4fvv/8ev/32G2JjY9G8eXO16//+++/48ccf0apVK/Tt2xfp6ekwNzcH8CiJHjBgAC5cuAAnJyd06dIFtra2OHPmDL755hv8/vvviIyMhKenp9I233rrLSxbtgxGRkbw9/eHu7s7/vnnH/Tq1QvTp0+v0fFOmDABmzZtQo8ePTB48GCcO3cOBw4cQHR0NKKiotC1a1el8jX5DKalpaFz5854+PAhevTogU6dOqmUu3nzpjS/R48euH//PqKjozFp0iQ8fPgQfn5+6N+/P9zd3dG7d2/p2g4ODgYA6Y88MkCCqI65evWqACBMTU3FvXv3pPmtWrUSAMT69evVrhcQECAACADiiy++UFoWGRkpLC0tBQCxb98+aX5UVJQAIDp06CCysrJUthkXFyfS0tKk1/n5+cLT01MAEFOmTBGFhYXSsoSEBOHl5SUAiDlz5iht58iRIwKACAgI0Gh+WYpjepwijhs3bqhd7+7du6JevXpCJpOJFStWiJKSEmlZWlqaCAwMFADExx9/XO6+Hzd//nwpnrFjx4r8/HyVMiEhIVKZzz77TJSWlkrLli1bJgAIDw8P4ejoqPJe/u9//xMARN++fZXmT5gwQdre43Jzc0VUVJTGxyCEEE2aNBEAxNGjR1WWpaamijNnzijNe+eddwQA0apVK3Hnzh1pvlwuFy+++KJ0vPPnz1daT3Eu1q5dqzaOtWvXCgAiJCREaX5WVpb4888/RUFBgdL8wsJC8cEHHwgAYuDAgSrbK/sZ+OGHH1SWl5aWCj8/PwFAvPrqq0rXfFFRkZg1a5YAIHr37q203q5duwQAYW1tLaKjo5WWffHFF9I+K7qOH3fjxg1pPU9PT3H16lVpWXFxsZg4caIAIPr376+0XnU/g4pzDUD06dNHZGZmqsRU9vqeMmWKKCoqkpbt3LlTABC2trbC09NT5dr+9ttvBQDRvHlzjc8BPXlMmqjOmT17tgAghg8frjT/66+/rvCLWXHD6NChg9rlihtCv379pHlbtmwRAMSMGTM0im3Dhg0CgHB3d1ebMPzxxx/SF2teXp40Xx9Jk+I8Tps2Te3y27dvC1NTU1G/fn2lL/+KKG4qTk5O4uHDh2rLKBIFX19fle0WFRUJJycnAUC8/PLLKuumpaUJAMLMzEzpZjhw4EABQCWZqS4rKythb2+vUdnc3Fxha2srAIi9e/eqLL97966wsLDQatJUGXd3d2FkZKSS6Cs+A4GBgWrX27t3rwAgfHx8lBIChZKSEvHss88KAOLChQvS/L59+woAYvbs2Wq36+PjU6OkaefOnSrL7969KwAIc3NzpWuhup9Bxbk2NTUVCQkJamNSXN+NGzdWWlehXbt2Gl3bSUlJGp8HerLYp4nqlOLiYqxbtw7A/zXNKYwfPx4mJiaIjo5GQkJCudsYP3682vkhISEAgJiYGKnPQ8eOHWFsbIw1a9bghx9+wN27dyuMT9FfKDg4WGruKGvYsGFwdHREdnY2Tp8+XeG2dG337t0Aym8qaNiwIby9vaWmyKro27cv7O3tKyzz/PPPK/XFAgATExM0adIEADBw4ECVderVqwcnJycUFhYq9a3x9fUFAEydOhURERHIz8+vUryP8/X1RWZmJsaPH4/Tp0+jtLS03LJnzpxBdnY2nJ2dMWDAAJXlrq6u6N+/f43iKc/58+exZMkSTJ8+HRMnTkRoaChCQ0NRXFyM0tJSXL9+Xe16I0aMUDtfcU0MHz4cJiaqvTuMjIykZsnY2FgAjz6TMTExAICxY8eq3W55nzlNmJiYlHteHR0dUVBQoHQt1PQz2KFDBzRt2rTCmHr37g0LCwuV+d7e3gDKv7a9vLwAoNw+Z6R/7NNEdcru3buRkpKChg0bIigoSGmZi4sLBg4ciJ07d2LNmjX4/PPP1W5DcVMub35eXh4ePHiABg0aoFmzZli6dCneffddTJs2DdOmTYOnpye6d++OwYMH4+WXX1bq73Dnzp0K9yGTydCkSRNkZGRIZfXlv//+AwD06NGj0rL3799HixYtNN624uZQkcaNG6udr+h/Vd5yW1tbpKenKyVG7777LmJiYnDw4EEMGDAApqamaN++PXr27Ing4GB06dJFKvvvv//iq6++Utmuv78/Jk2aBABYsWIFBg8ejA0bNmDDhg1S5/jAwECMGzdOKbbbt29XeszlXQ/VJZfLMW7cOGzfvr3CcllZWWrnlxer4pqYN28e5s2bV+G279+/DwB48OCB9F5U9tmqDjc3t3L71NnZ2SEjI0PpWqjpZ1DX1y6AGif1pDtMmqhOUXQAz8/PR0BAgMpyxZdgeHg4PvnkExgbG1drP0II6f/Tp0/HyJEjsXPnTsTExCAmJga//fYbfvvtN8yfPx9Hjx6Fm5tbtfZTUxXVgGi67ogRI2BtbV1h2Xr16lVp2xV1xFcwMqq4Iryy5WVZWVnhwIEDiIuLw759+xAbG4vY2FicOnUKS5YswRtvvIEffvgBAJCSkiLVVj5OkTS1bt0aV69exf79+3H48GHExsbi6NGjOHz4MD755BP8/PPP5daqaFN57+8HH3yA7du3o1WrVvjqq6/QpUsXODs7Swn8c889h7///lvpOi6rvPdHsT9/f380a9aswtjatGmj6WHUSFWuA2140tcuGRYmTVRn3L17F3v27AHw6K/bY8eOlVs2OTkZ+/btU/urpRs3bqhdRzFytoWFhUqS4OLigsmTJ2Py5MkAHtVWTJw4EX///Tfef/996SasGGhT8Re7Oor9K8pWRHETzM7OVrtcMaxAdTRq1Ajx8fGYPXs2OnfuXO3tGJIuXbpItUrFxcXYsWMHxo8fjxUrVmDEiBHo3bs3evXqVW4yUZaJiQkGDhwoNRNmZWVhyZIl+Pjjj/H6669j6NChsLa2lt7HikZeL29Zdd/fLVu2AAA2b96Mdu3aqSyvanOqQqNGjQAAL774It555x2N1qlXrx7Mzc1RUFCAxMREtcnUkxyVXtufQXq6MN2lOiM8PBwlJSXo2rUrxKMfOaid3nvvPQDlj9lU3uNW1q9fD+DRX9nq+nOU1apVK8yePRsAcO7cOWm+YjyXzZs3q62C3759OzIyMmBra4tOnTpVuA9A+QZQWFioslzRB0UdxQ25vLGWnn/+eQD/dwOua0xMTDBixAipGbfs+1QddnZ2WLBgARwcHJCbm4tr164BADp16gQbGxukpaVh//79KuulpqaqnQ/83/t75coVlWVCCOzdu1fteoqxwR7/2T8AREREIC0tTbODeozimvj99981SiyBR+fZz88PAPDLL7+oLVPeGGi6oO3PID1dmDRRnbFmzRoA/9dhuzyKTqe7du2S+l2Udfr0aXz99ddK82JiYqTmm7fffluaf/jwYezZswdFRUVK5YUQ2LVrFwDlG9fLL7+Mxo0bSwNGlk1Ybty4gVmzZgF41OSnriPp4zw9PeHt7Y2HDx9i4cKFSssiIyPx0Ucflbuuh4cHAODSpUtql7/77rtwcHDAkiVLsHjxYrVJ2Y0bN2rFM/1WrFiBq1evqsxPSUnBqVOnAKhPMNTJzc3FkiVL1F47R48excOHD2FsbCydX0tLS7z22msAHl07ZX8skJeXh6lTpyIvL0/tvvr27QvgUVJx+fJlaX5RURFmz55d7gj3rVu3BgB8//33SvOvXr2KKVOmaHSc6rz44ovo0qULTp48iQkTJqg9BxkZGfjxxx+Vru3//e9/UjyKDuIKX3/9Nc6cOVPtmKpK25/BJ0ExblxNOsyTlujlN3tEWhYZGSn9vDg9Pb3S8h07dhQAxKJFi6R5ip9bz5gxQxgZGYk2bdqI0aNHi4CAAGFkZCQAiLfeektpO0uXLhUAhJ2dnejVq5cYM2aMGDp0qPRzfnt7e3H27FmldU6ePCn9tNjT01OMGjVKDBw4UPrZeVBQkMr4OhUNLbB161Yhk8mkn4K//PLLolOnTkImk4mPPvqo3CEHli9fLgAIGxsbMWzYMPHqq6+KV199Vfz7779SmaioKOHs7CwAiAYNGojAwEDxyiuviMGDB4tmzZoJAKJr166Vnm8FxU+yH/9pfVmV/cxe8T4dOXJE7XJ1Qym0b99eABBNmjQRQ4YMEa+88oro37+/NPZWYGCg2p/Qq5ORkSEACCMjI9G+fXsxYsQIMXr0aNG9e3fpffjoo4+U1snJyRG+vr7S+R4yZIh4+eWXhaurq6hXr54YP358uedFMY6TpaWl6Nevn3jhhReEh4eHsLOzE2+99ZbaIQfKXhNt27YVwcHBIjAwUJiamorAwEDx3HPPqT2HlZ1bIYS4c+eONESAtbW1eO6550RwcLAYNmyY8PHxEcbGxgKAyk/u33zzTem89erVS4wePVq0adNGGBkZScdRnSEHPD09yy1T3rAa1fkMajK8Q2XXd3WvbcV2q3J+SDdY00R1gqKpbciQIXB0dKy0vOIvNnVNdEOHDsWBAwfg6uqKPXv24OTJk+jYsSPCw8Px7bffKpUdMmQIFixYgC5duuC///7Dtm3bEBkZCXt7e7z//vu4ePEifHx8lNbp0qULzp07hzfffBPGxsbYvn07jh49ig4dOmDlypXYtWtXlUYDHzZsGHbt2gU/Pz9cu3YNe/bsgampKX777Td8/PHH5a43depUfPnll/D09MSePXvw888/4+eff1aqCenZsycuXbqEefPmwcPDA3Fxcfj9999x7tw5uLi4YP78+fjpp580jlVfPv/8c0ydOhUODg44fvw4fv/9d1y+fBldu3bFunXrsG/fvkqbXBVsbGzw448/YtSoUSgoKMCBAwewY8cO3Lt3D8OGDcOhQ4dUzru1tTWOHDmCefPmwcXFBREREYiOjkafPn1w6tSpCn89tnnzZsydOxdubm6IjIzE8ePH0aNHD5w5c0bl2lIYNmwYoqKi0KdPH9y9exc7d+7EvXv3sGDBAuzdu7fKI7iX5e7ujuPHj+PHH3+Er68vrl69ij/++EMaVmDKlCmIiIhQqaVZvnw51qxZgw4dOuD48ePYs2cP3NzccOjQIbz00kvVjqc6tP0ZpKeHTAgNG6aJiEgnFixYgI8//hjz589Xef4cERkO1jQRERERaYBJExEREZEGmDQRERERaYB9moiIiIg0wJomIiIiIg3wMSpPWGlpqTQar5WVlcqTromIiOjJEUIgNzcXAODs7FzhswGZNOmYXC5Xen3v3j00bdpUT9EQERFReVJTU9GgQYNylzNp0jEbGxt9h0BERERawKRJj1JTU2Ftba3vMIiIiJ5acrkcLi4uAB51m6kIkyYdS01NVXotl8ul5jlra2smTURERAaisn7GTJp0TJG9EhERUe3GIQeIiIiINMCaJh2rqHmOiIiIag8mTTrG5jkiIqK6gc1zRERERBpgTZOO5eTkKL0u+9NGIiIiqj2YNOkYhxQgIiKqG5g06djjj1F5/DURERHVDkyadIyPUSEiIqob2BGcDNaJEyewcOFC3L9/X9+hEBERsaZJ19gRvHoKCwsxePBgpKWl4ebNm/jhhx/0HRIRET3lmDTpGDuCV09GRgbS0tIAAFevXtVzNEREREyadI4dwasnLy9P7f+JiIj0hUmTjrEjePUwaSIiIkPDjuBkkJg0ERGRoWFNk46xI3j1MGkiIiJDw6RJx9gRvHry8/Ol/zNpIiIiQ8DmOTJIrGkiIiJDw6SJDBKTJiIiMjRMmsgglU2UiouLUVxcrMdoiIiI2KdJ5zhOU/U8XruUn5/P4RuIiEivmDTpGG/01fN40pSXl8dzSUREesXmOTJIZX89B7BfExER6R9rmnSM4zRVj7qaJiIiIn1i0qRjHKepepg0ERGRoWHzHBkkJk1ERGRomDSRQWLSREREhoZJUwUWLFgAmUymNHXu3FnfYT0VmDQREZGhYZ+mSrRv3x779u2TXpuamuoxmqcHfz1HRESGhklTJUxMTODq6qrvMJ466ga3JCIi0qda3Ty3ceNGvP766+jcuTPMzc0hk8kQHh5e4TpxcXEYOHAgHBwcYG1tjW7dumHLli3llr9y5Qrc3NzQvHlzTJgwASkpKVo+ClKHzXNERGRoanVN09y5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWLKXyXbt2RXh4OFq1aoU7d+7go48+QmBgIM6ePQtzc3NdHtpTj0kTEREZmlpd0xQWFobExETcv38fU6ZMqbBscXExJk+eDCMjI0RHR2P16tVYvHgxzp8/jxYtWmDOnDkqSdfzzz+Pl19+GW3btsWAAQOwe/du3LhxA7t27dLlYRGYNBERkeGp1UlT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX4Tbq168PLy8v3LhxoyZhkwbYEZyIiAxNrW6eq4rIyEgAQP/+/VWWBQUFAQCioqIq3EZGRgaSkpLg5eVVbhm5XF7hNipbTo+wpomIiAzNU5M0xcfHAwC8vb1Vlrm6usLGxkYqo/Duu+9iyJAhaNy4MW7fvo05c+agYcOGGDhwYLn7sbGx0W7gTykmTUREZGiemqQpMzMTwKPmOHXs7OykMgq3bt1CcHAw0tLS4OLigoCAAGzYsAFWVlY6j/dpx6SJiIgMzVOTNFXHb7/9VuV1cnJylF6z5qnqhBBMmoiIyOA8NUmToobp8dokhaysLDg6OtZ4P9bW1jXextOuqKgIpaWlSvM4uCUREelbrf71XFUo+jI93m8JAFJSUpCTk6O2vxM9eeoSJNY0ERGRvj01SVNAQAAAYP/+/SrLIiIilMqQfqlLkJg0ERGRvj01SVOfPn3QtGlTbNq0CefOnZPmZ2Zm4osvvoCZmRnGjx+v9f2mpqYqTf/995/W91HXMGkiIiJDVKv7NIWFhSEmJgYAcOHCBWmeYkwmf39/TJo0CcCjB++GhYUhKCgIPXv2VHqMSlJSEhYtWlTh+EvV5eLiovVt1nVMmoiIyBDV6qQpJiZGZRTvY8eO4dixY9JrRdIEAL1790ZMTAzmz5+PzZs3o6ioCG3btsXChQsxatSoJxY3VYxJExERGSKZEELoO4i67N69e0qv5XI5mjZtCuDR8AT8tZ2q2NhY+Pn5Kc1r1KgRbt68qaeIiIiorpLL5dLwQJXdl2t1TVNtwOa5qmNNExERGaKnpiM41R5MmoiIyBCxpknHHh8hXC6Xs/apEuoSJA5uSURE+saaJjI46pKmkpISFBUV6SEaIiKiR1jTpGN89lzVldcUl5eXB1NT0yccDRER0SOsaSKDU15THPs1ERGRPrGmScfYp6nqyiZH5ubmKCgoUJlPRET0pLGmiQxO2eTIyclJ7XwiIqInjTVNOsY+TVX3eNJ09+5dlflERERPGmuayOCwpomIiAwRa5p0jH2aqq5sR3BHR0fp/0yaiIhIn5g06RifLVd15dU0cYBLIiLSJzbPkcFh8xwRERki1jTpmFwur/A1qSqbHLF5joiIDAWTJh3jr+eqjjVNRERkiNg8RwanbHLk4OCgdj4REdGTxpomHeOv56pO0eHb3NwcVlZW0nwmTUREpE9MmnSMv56rOkVyZGlpCUtLS5X5RERE+sDmOTI4TJqIiMgQMWkig8OkiYiIDBGTJjI45SVNHNySiIj0iX2adIzjNFWdIjliTRMRERkSJk06xnGaqqaoqAglJSUAAAsLC1hYWEjLmDQREZE+sXmODErZxIg1TUREZEhY06RjHKepapg0ERGRoWLSpGMcp6lqHk+a2DxHRESGgs1zZFAeT5pkMpmUODFpIiIifWLSpKGpU6dCJpNh+fLl+g6lTis7rIAiWVI00TFpIiIifWLSpIFdu3bh77//hru7u75DqfMer2kq+y+TJiIi0icmTZVITU3F1KlTsWHDBpiamuo7nDqvoqSJg1sSEZE+1eqkaePGjXj99dfRuXNnmJubQyaTITw8vMJ14uLiMHDgQDg4OMDa2hrdunXDli1byi0/YcIEzJgxA23bttVy9KQOa5qIiMhQ1epfz82dOxdJSUlwdnaGm5sbkpKSKix/5MgRBAUFwcLCAsHBwbC1tcXWrVsxatQo3Lp1C7NmzVIqv3z5csjlcpX5pDvqkqayHcGFEJDJZHqJjYiInm61uqYpLCwMiYmJuH//PqZMmVJh2eLiYkyePBlGRkaIjo7G6tWrsXjxYpw/fx4tWrTAnDlzlJKuf//9F59++inWrVsHI6NafZpqlYpqmoQQKCws1EtcREREtTob6Nu3Lzw9PTUqe/jwYSQkJGDMmDHw8fGR5tvb22POnDkoLCzEunXrpPnHjx/H/fv30bx5c5iYmMDExARJSUl46623lNYn7aro13MAm+iIiEh/anXzXFVERkYCAPr376+yLCgoCAAQFRUlzXvppZfQuXNnlXKhoaGYMGFCufup7IG8fGBvxSqqaVIsd3BweNJhERERPT1JU3x8PADA29tbZZmrqytsbGykMgDg4OCgcnM2NTWFm5sbmjdvXu5++IDemtEkaSIiItKHWt08VxWZmZkAHjXHqWNnZyeVIf1h0kRERIbqidQ05eTkIDU1FRkZGXB0dISLi0utrJFJTEystMzjD+itjcepT0yaiIjIUOksaYqIiMCOHTtw6NAhJCQkqCxv3rw5AgMD8dJLL0l9inRJUcNUXm1SVlYWHB0da7wfPqC3ZirrCM4BLomISF+0mjSVlJRg5cqVWLZsGRISEiCEkJbZ2NhITWByuRzx8fGIj4/H6tWr0bx5c8yYMQNTpkyBsbGxNkOSKPoyxcfHo1OnTkrLUlJSkJOTA19fX63vNzU1Vem1XC5H06ZNtb6fuqKicZoeX05ERPQkaa1P0759+/Dss89ixowZSEpKwgsvvIDly5fjzJkzKCgoQFZWFm7fvo3s7Gzk5+fj1KlTWLZsGQYPHozExERp1O2IiAhthaQkICAAALB//36VZYp9Kspok4uLi9LEhKlibJ4jIiJDpbWkaeDAgXj48CEWLVqEO3fuYPv27XjjjTfg4+Oj8sw2MzMzdOzYEdOmTcOff/6JO3fu4Ouvv8aDBw8wcOBAbYWkpE+fPmjatCk2bdqEc+fOSfMzMzPxxRdfwMzMDOPHj9fJvklzTJqIiMhQaa157tNPP8Xbb78NKyurKq/r7OyMWbNmYerUqVi6dKnG64WFhSEmJgYAcOHCBWmeYkwmf39/TJo0CQBgYmKCsLAwBAUFoWfPnkqPUUlKSsKiRYvg5eVV5dhJu5g0ERGRodJa0vThhx/WeBtWVlZV2k5MTIzSKN4AcOzYMRw7dkx6rUiaAKB3796IiYnB/PnzsXnzZhQVFaFt27ZYuHAhRo0aVeP4qebKJkUcEZyIiAxJrR7cMjw8HOHh4VVax9fXF3v37tVNQGqwI3jV8DEqRERkqPSSNN24cQP//PMPPD096/xz3FxcXPQdQq2iSIrMzc2lByUzaSIiIkOgsxHBd+7ciWHDhuHkyZNK87/55hu0aNECw4YNQ6dOnTBx4kRdhUC1kCIpKpsoMWkiIiJDoLOkaf369di3bx9at24tzfv333/x/vvvQwiB9u3bw8rKCuvWrcNff/2lqzD0LicnR2l6vLmOlFWWNHFwSyIi0hedJU1nz55F+/btYWtrK8375ZdfAAArVqzAmTNnEBcXB2NjY6xevVpXYVAtoy5p4uCWRERkCHTWpyktLQ0dOnRQmhcZGQlLS0uEhoYCAFq1agV/f39cunRJV2HoHZ89VzWKmqSyiRKb54iIyBDorKYpPz9f6ZEoJSUlOHPmDLp27QozMzNpvru7O1JSUnQVBtUy7NNERESGSmc1TQ0aNEB8fLz0+vjx48jLy4Ofn59Suby8vDr9kNucnByl13K5nL+oK0dRURFKSkoAMGkiIiLDo7Oapueeew7nz5/Hb7/9Jj2qRCaToW/fvkrlrly5And3d12FQbWIutHAH/8/kyYiItIXndU0zZ49Gzt27MArr7wCABBCoFOnTujZs6dU5tatW/j333/r9LAD7NOkOSZNRERkyHRW09SxY0fs2bMHAQEBaN26NUJDQ7Fr1y6lMlu2bIG9vT369OmjqzCoFlH3CBXg0QOeZTKZShkiIqInSacjgvfp06fChGjWrFmYNWuWLkPQO/Zp0lzZMZjK1i7JZDJYWloiNzeXSRMREelNrX72XG1Qlzu5a1t5zXOK17m5uRzckoiI9OaJJE3Hjx9HZGQkbt++DSEEPDw80KtXL3Tv3v1J7J5qiYqSJkVzHWuaiIhIX3SaNCUkJGD8+PE4fvw4gEedwQFI/VO6du2K9evXo3nz5roMQ6/kcnmFr+n/VFbT9HgZIiKiJ0lnSVNycjJ69OiBlJQUWFlZYcCAAWjSpAkAIDExEfv27cPx48fRs2dPxMXFoWHDhroKRa/46znNldcRHGDSRERE+qezpOmjjz5CSkoKhg8fjhUrVqB+/fpKy9PS0vDGG2/gjz/+wPz58xEWFqarUKiWKK8jeNnX+fn5EEJItZVERERPis6GHNi7dy/c3d3xyy+/qCRMAODs7IyNGzfC3d0de/bs0VUYepeTk6M0paam6jskg6VJ8xwAdgav4+7evYv33nsPhw8f1ncoRERKdJY0paenw9/fX+k5c48zMzODv78/MjIydBWG3llbW6tMpJ6mSROb6Oqu4uJiDBo0CN988w0GDBiA06dP6zskIiKJzpImDw8PjTo95+bm1tn+TIaoqKgICxYswMiRI3Hx4kV9h6NE06QpOzsbS5cuRXBwMC5cuPDE4iPd+/7773H27FkAj67V0aNHq4x1RkSkLzpLml5++WVERkbizp075Za5c+cODh8+jBEjRugqDCojMzMTAwcOxMcff4zff/8d/v7+iIqKqvb2zp8/j7S0NK3Fp2nS1KdPH8ycORObN29GUFAQ7t+/r7UYtK2oqAj//fcfCgsL9R2KxgoKCpCQkIDs7Ownut+bN29i3rx5SvPi4+Px1ltvPdE4aqK4uFjfIRCA0tLSSstcvnwZwcHBePHFF3Ht2jWV5SdPnsS+fftq1Wd3+/btaN++Pfz8/DB58mQsXboU0dHR0i/XSQuEjuTm5oru3buLFi1aiL/++ktl+a5du0TLli1F9+7dRW5urq7CMDg5OTkCgAAgcnJytLbdv/76SwwfPlz8/vvvas/nrVu3RNu2baV9KyYzMzOxZcuWKu9v3rx5AoBwc3MTycnJKstLS0vLXffevXsiNjZW7Ny5U6xZs0asWrVKHD9+XMyePVuKa+/evUrrTJw4USV2xTRgwABRUlJS5WPQlVu3bolVq1aJoUOHCltbWwFAmJubi27duom33npL7NixQxQXF6usl5eXJ5KTk8X9+/fFw4cPRX5+vtrtX716VXz55Zdi3759oqCgQJpfWFgoIiIixOLFi0V0dHSF74EQQhQUFIjTp0+L1atXiylTpojnnntOuLm5CZlMJgAIExMTsWDBAlFUVFTuNq5evSrWrl0roqOjKyyniRdeeEF6T1966SVhY2Mjvd68eXONtl2RwsJCERMTI86fP1/pOSvP3bt3RY8ePYSFhYV4++23RXZ2tkbrFRcXi+XLl4uRI0eKhQsXiuPHj4vCwkKVckVFReKff/4R69evFz/99JPYuHGj2Lp1q1bOuz4UFRWJs2fPihUrVoiZM2eKVatWiQsXLmj0OS4pKRHff/+96Nq1qwgJCRFr1qwR//33n7hw4YL49NNPRadOnYRMJhOhoaFqP0Pp6elixowZwtjYWLq+7OzsxLZt24QQQqSlpYlx48ZJy5ydncXbb78tLly4oPXzoHDt2jURFBQkGjRoILp37y4mTZokli5dKu7cuaPR+iUlJdJ3srqpb9++IiEhQSux3rp1S5w9e1Yv111xcbFIS0sT165dK/f7sTqqcl/WWtLUu3dvlcnPz0/IZDJhZGQknJycRMeOHUXHjh2Fk5OTMDIyEkZGRsLPz08EBgZqKwyDk5OTozSlpqbqJGkaOXKktF0bGxvxyiuviNWrV4vPPvtMvPbaa8LNzU1a7uTkJHr16iW9lslkon///uK5554TrVq1En5+fuLAgQPl7mvXrl1KH8gXXnhB6Wbz119/iYYNG4p+/fqJ27dvS/NLS0vF559/LkxMTMr9cCumyMhIpX2++eabSsufeeYZ4eLiIr3++uuvq3S+SktLRUJCgvj999/F7t27RVpaWpXWV7e96OhoMXToUCnpqGhq0qSJ+P7770V6err4888/xciRI4WFhYVSGWNjYzFixAhx48YNaR8//vijsLS0lMrY29uLsWPHivHjxwsHBwel9Tt06CDCw8OVvlwKCwvFvn37RGhoqLCzs6s0TgDCz89PiqGgoEBcuHBBLFy4UHTo0EGpnKOjoxg9erT4+eefxdGjR8WdO3fKTUJu3LghlixZIlauXCkOHTok1qxZI23H1dVVZGRkiPDwcKXj/OSTT8T+/ftFRkaGSE1NFXFxcWLr1q1i586dIi8vr8L3Jzk5Wfz4449i/fr10o2ooKBA/PTTT8LLy0tp3+PHjxcbN24U9+/f1+i9v3r1qtI2AAgPDw+xY8cOUVRUJBISEsT+/fvFjh07lLaZkJAgevTooXK+ra2tRZs2bUSXLl1EQECA6Nq1q9J7/vjUpk0bERERIW23qKhIREREiFWrVomrV69WGHtUVJTo3r276NGjh/j000/FqVOnRG5urti7d6+YOnWqaNmypfDz8xN//PGHSkJTWlqqcZL58OFDsW/fPjFv3jwRGBgorK2t1R6LnZ2dGDNmjHjw4IHa7Vy/fl307NlTo+sWgOjTp4/IzMwUQjy69pcvXy7q1atXbvnx48eL+vXrl7t84MCBIikpSSkmuVwujhw5IrKysio8B6WlpeLEiRMq18Gvv/6q9AdC2cnBwUGcOHFCZTsXLlwQJ0+eFP/++6+4ceOG0h8c5U2WlpZi0aJFapOdwsJCcfz4cfHdd9+JV155RTRv3lzUr19fDB8+XKxZs0YkJSWJ3377TfTr10/6fvP09BRLliyRzu/jkpOTxaeffiref/99sWLFCrFr1y7xzz//iIyMjAqvmxMnTojBgweL9u3bizZt2oiWLVsKLy8vYW9vr3Q8586dq/B8V4VekiaZTFbtycjISFthGJyKLmJtJU3FxcUqX9rlTU2bNhVXr14VhYWFIjQ0tNxyxsbG4vvvv1e5uJOSkoSTk5NK+V9++UUIIcTff/+tdPN3d3cXp06dEkVFReK1117T+MsuLi5Oab8bNmwQAISRkZGYPXu2yMvLEwcOHFCqFfnzzz9FRESEWLFihfj888/Fnj17xMOHD4UQj75ozp07JxYuXCgGDhwonJ2dVfbp7e0txowZI6ZPny4++OAD8dlnn4mvvvpKfPHFF+Kzzz4Tn3zyiViwYIH46KOPxIcffijeffddMX36dDF58mTRuXNntcfh7OwsBg0aJLy9vTU+9scnCwsLMW/ePDF06NBqb8PKykrUr1+/0kTJxcVFdO3aVQwePFjlL3Fvb2+leZpMlpaWYuDAgeKXX34ROTk5Ijk5WbzxxhvC1NS03HUUtUqlpaVi9OjRGu2nQYMGYv78+SIlJUXpusnPzxcLFy5UuSk988wzwtPTs8JtymQy0a1bN/HJJ5+Iffv2iStXrqjU4h4/frzCm/Dj58vIyEj4+/uLt99+u9zEobrToEGDxJQpU1Su7V69eolff/1VKbHMyckR06dPL/e41c1v166d+Pnnn8X8+fNFr169hIWFhXBwcBAjR44U4eHhKude8X0wZMgQYWRkVKVjadeunUhNTVX6jlu2bJmwsrLSaP2y571Dhw5i3bp1Kp9BKysr8cknn4hRo0ap3Ya9vb146aWXhJmZmdJ8W1tbsXLlSpGcnCw+/PBD6fvQy8tLJaFSXMeHDh1SSpAV18HLL7+stG1114Stra2IiYkRQjxK0AMCAso9biMjI7Fo0SKRlZUlTpw4IVatWiUaN26sVMbJyUkEBgaKmTNnio8++kgEBgZqfF7VTba2tuJ///ufuHbtmnS8GzZsEI6OjuWuY2NjI5555hkxYcIEqVY8Pz9fvP/++xpfK0eOHCn/plhFekmaIiMjazTVVRW96dqsaSoqKhL79+8Xr776qkqNg2IKDAxU+iIqLS0VH330kTA3N5fKPP4X7euvvy41FxQWForu3btLy9q0aaP0QYyNjVX7V5qlpaXw9/dXmhcaGio++eQTsWLFCvH999+LkJAQ8cwzzwiZTCZ8fHxUmihKS0tFTEyMiI+PV5o/d+7cCs+xTCYT7dq1U6qV0vXk5uYm5s2bJ06ePKn01/mDBw/En3/+KYKCgtSu5+zsLIYMGSIGDRokgoKCKvyLd8KECeKVV15RSoJsbW3F6NGjxdKlS8tN4spOdnZ2Ijg4WCxZskRERUWp/MUYGxsrmjRpUuE2OnfuLBYsWCBGjhxZaUJmZWVVYY0JAPH8888rJeoPHz6s8Cbx+GRmZia6d+8uRowYIaZPny6aN2+u0Xr9+vUTgwYN0ujmYW9vLxwcHISDg4PSzbldu3YiJiam3Pe3vMnLy0ts3bpV/Pjjj2LMmDHC09NTWFtbKyUvzZs3l5rwfvrpJ7Fs2TKxcOFC0bVrV433Y2xsLLy9vcXgwYNF06ZNNVqnqslO8+bNRXBwsPjyyy9F7969yy3n4eEhRo4cKZYsWSL27t0rvvnmGzFs2DCl2oTWrVuLO3fuiKNHjwofHx+Vc7Z//34RHR0tPv30U9G/f38xYMAAsWzZ3I8xngAAT2VJREFUMpGUlCRiY2PV/nGnmEaPHi1u3bolfbd89913SjXgQ4cOlWokHzx4IJYtWybc3d2VtqEuufT29hZ3795V+gxpWjM2btw4kZ2dLTIzM8WJEyeUWgOsra3FW2+9pfRd/fjk6OioVOOokJWVJaZPn65RDbhiMjc3L/c+0qRJE9GnTx+1ywYMGCAGDRpUpWtGcd20atVKaZ6pqamwtrYW9vb2on79+qJFixaia9eu4vnnnxevvPJK7a9pIvWeVPNcWQUFBWLXrl3i+++/F1u3bhUnT55U+1egQlZWlrh3754oLCwUxcXF4v3331e6eJ2cnES7du2Uvri8vLxEenq6UrNg2Q9lr169hJ+fn8qHw9TUVKqVKi/2qvQrKSoqUtvEUdlUr149MXDgQPHRRx+Jt99+W3Tv3l3lL8qqTh06dBDr169X6mdUnvPnz4uQkBDRunVrMXr0aLFr1y6VRPHhw4di1qxZSl/mTk5OYseOHUrn69ChQ+LAgQNKzXClpaXi2LFjYty4ccLX11e0adNGNGnSRHh4eIiXX35ZbNu2rdImLSGEyMzMFCEhIcLMzExYWlqKDh06iNGjR4uFCxeqJLCFhYXiyJEjYunSpWL69Oli4MCBKjeasjeBOXPmiJUrV4q3335bDB48WIwaNUrphlP2WK5fvy42btwopk2bJvz9/cWAAQPE66+/Lj777DMxatSoSmvAZDKZeO2118TcuXNFt27dpGRgwIAB4u+//5b2lZ+fLw4fPizee+898eyzz2r83vfu3VupVvPXX38Vvr6+on379mLYsGHi3XffFTNnzhQtW7ZUWm/SpEnlNuuUlpaKvLy8Cvt8lpSUiI0bNwoPDw9pm5aWlmLkyJHik08+ES1atKgwbktLS7F06VKRkJAgVq5cKV544QXxzDPPiNDQULFt2zaRnZ0t9uzZI3x9fVXW9fT0LPfG+vjUsGFDMW3aNPHrr7+Kmzdvlns8V69eVToWdYnPG2+8oVGfscuXL4tGjRoprRsQECBOnjyptvyJEyfE1KlTlT5fZWVkZIhXX31VJR4TExPRoEED6XWbNm3EqVOn1NZgtWrVSsyYMUMpQbC0tBRr1qxR+d6Ty+Wif//+as+nl5eXeOONN8TYsWPFCy+8ICZPniyuX79e4fmIjY0VL7zwglJXDcXUqFEjMXbsWLFixQpx+vRp6V5w7Ngx8cEHH4iAgAAxbtw4cejQIekPwUuXLonJkydXmMiNHj1a7N27V4SFhYmPPvpIhISEiMDAQOHt7V3ueqampuLzzz9/on2mmDQZMF11BNe29evXl5tEmJqaSl889+7dU2kOeOaZZ0RGRobIz88XY8eOlebb2dmJw4cPaz3WlJQUMX78eDF8+HAxe/ZssXr1avHLL7+I6dOnCx8fHyGTyYS1tbUYPHiw+P7778XVq1fVJmb5+fni0qVL4sSJE+LQoUPizz//FNu3bxd//vmn+Ouvv8SuXbvE3r17RUREhDhw4ICIiooSJ06cEP/8849ITEysdifiyly5ckWMGzdOhISEKPURe5IKCgqq1dm+pKREREVFiddee004OjoKCwsLMXPmTHHv3j2txnfz5k3x3nvviYYNG6pcrz179hRnz55VKv/w4UON+rElJSWJn3/+WXzwwQdizJgxws/PT7Ro0UKaWrduLd55550qdUq9du2a+PHHH0VUVFRVD7Nccrlc/PTTT2Lz5s1KCUVpaak4cuSICA0NFT4+Pko1aX5+flKTSmVKS0vF3r17xbx588T69eulZqiioiIRExMj5syZI7p3767SL8/b21v8/PPPGv0hofDff/+p7W7Qvn17ER0dXaXzcuvWLTFgwADRo0cPsWvXLq18Rg8cOCBatmwp6tWrJ9577z1x69YtcfPmzQqbe1u2bCl++eUXpR+AXLt2Taxdu7bCDtp5eXli8ODB0naMjIzEzJkza3zvSElJEfv27RNbtmwRiYmJNdrW/fv3xcKFC5WOv0GDBlLH+vLI5XKxceNGERgYKK3XoUMH8c8//9Qonupg0mTAakvSJMSj/hr9+vUTjRs3lvqgyGQysXr1aqVyv/32m3RMLi4uUqdhIR592a5evVq8+uqr4tKlS0/4CB7Jzc2tlb8wqmuKioo0qt2qqfz8fJGYmCiOHTsmzpw5o7NktjYqKSkRN2/eFPHx8To5L4WFheLcuXNi7dq1Ys+ePWp/JaqJmzdvSn2QnJycxMqVK6u9LV1Q1wn++vXrKjWr9evXFytXrqzR909BQYF4//33xfDhw1U6hRuS4uJi8ddff4lvv/22yj+suXHjhjh48KDaX44+CVW5L8uE0O0ADqdOncIff/yBq1evIisrS+14ETKZDIcOHdJlGAZDLpdLD/HNycmpNSOECyHw4MEDyGQy1KtXT2XZwoULERMTgy+++ALt2rXTU5REVFfI5XIcPXoUXbt2haOjo77D0ciVK1cwaNAgJCcnY8aMGfjwww9hb2+v77CoElW5L+s0aXrnnXewdOlSKVGSyWRKSZPitUwmQ0lJia7CqLalS5ciLCwMSUlJMDExQceOHfHll1+ia9eu1d5mbU2aiIiockVFRRBCVPgIMTIsVbkv62xE8N9//x1LlixBw4YNsWrVKvTv3x8AEBERgeXLl6N79+4QQuD999832Adzenp6YsmSJTh//jxiY2PRvHlzBAUF4cGDB/oOjYiIDJCpqSkTpjpMZzVN/fr1Q2RkJC5fvgxvb29MmDAB69evV6pRmjdvHr755hscP34cPj4+ughDq7KysmBvb4/IyEgEBARUaxusaSIiIjIcBlHTdPbsWXTt2hXe3t7llvn444/h5uaGzz77rFr72LhxI15//XV07twZ5ubmkMlkCA8Pr3CduLg4DBw4EA4ODrC2tka3bt2wZcuWSvdVWFiI1atXw9HREW3btq1WvERERFR7mehqw9nZ2WjcuLH0WlFdmZOTI2V0RkZG6Nq1a7UfGjt37lwkJSXB2dkZbm5uSEpKqrD8kSNHEBQUBAsLCwQHB8PW1hZbt27FqFGjcOvWLcyaNUtlnaNHj+L5559HXl4eXF1dceDAATg5OVUrXiIiIqq9dFbTVL9+fTx8+FB67ezsDABITExUKieXy5GVlVWtfYSFhSExMRH379/HlClTKixbXFyMyZMnw8jICNHR0Vi9ejUWL16M8+fPo0WLFpgzZ47apKtz5844d+4cYmNj8fzzz2PkyJFIS0urVrxERERUe+ksafLy8lJKQjp06AAhBDZt2iTNS0lJQVRUFDw9Pau1j759+2q87uHDh5GQkIAxY8Yo9Z+yt7fHnDlzUFhYiHXr1qmsZ2lpiebNm6Nr164ICwuDkZER1q5dW614iYiIqPbSWfNcnz598NlnnyExMRFeXl54/vnn4eTkhIULFyI+Ph6NGzfGH3/8AblcjuHDh+sqDElkZCQASL/iKysoKAgANGomFEKgoKCg3OVyubzC9StbTkRERIZJZ0lTcHAwkpOTcevWLXh5ecHa2hpr165FcHAwtm7dKpXr1KkTPvjgA12FIYmPjwcAtR3TXV1dYWNjI5VRmD17Nl544QV4eHggPT0dK1aswO3btytM8hT9tYiIiKhu0VnS1Lp1a/z0009K84YMGYL4+Hj89ddfSE9PR+vWrTFkyBAYGxvrKgxJZmYmAJQ7OqudnZ1URiE5ORnBwcG4d+8enJyc0KVLFxw9ehStW7fWebxERERkWHSWNJXH3d0dr7/++pPebbVs2LChyuvk5OQovWbNExERUd3wxJMmfVHUMD1em6SQlZWllecbcbBKIiKiuklrv55LTk42qO08TtGX6fF+S8CjX/Hl5ORUOBAnERERPd20ljR5e3vj/fffR0ZGRrXWT09Px3vvvaezxEXx2JP9+/erLIuIiFAqQ0RERPQ4rSVN/fv3x9dffw0PDw+MHTsWBw4cqPCn+QBQUFCAiIgIjB49Gh4eHli0aJH0839t69OnD5o2bYpNmzbh3Llz0vzMzEx88cUXMDMzw/jx47W+39TUVKXpv//+0/o+iIiISPe0+sDegwcP4u2338alS5cgk8lgamoKHx8ftG7dGvXq1YOdnR2ysrLw4MEDXL58GefPn0dRURGEEHj22WexZMkS9O3bV+P9hYWFISYmBgBw4cIFnDlzBn5+fmjevDkAwN/fH5MmTZLKl/cYlaSkJCxatEjtY1RqSiaTlbuMD+wlIiLSr6o8sFerSZPCgQMHsHz5cuzfv1+ptkkmk6Hs7szNzREUFIRp06ZVKVlSCA0NVTuKt0JISIjKA3xPnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVXn/mmDSREREZLj0njQpFBQU4NixYzh79ixSU1ORmZkJBwcHNGjQAB07dsRzzz0Hc3NzXe3eINy7d0/ptVwuR9OmTQEwaSIiItI3g0maiDVNREREhqwqSZPOHthLREREVJc8NYNb6ktqaqrS67LNc0RERFR7MGnSMRcXF32HQERERFrA5jkiIiIiDbCmSccef4CvXC5n7RMREVEtxKRJx/jrOCIiorqBSZOOyeXyCl8TERFR7aCzpCk6OhrGxsbw8/PT1S5qBcXYD0RERFS76awjeK9evTBv3jxdbZ6IiIjoidJZTZOjoyPc3d11tflagx3BiYiI6gadJU0+Pj6Ij4/X1eZrDXYEJyIiqht01jw3Y8YMxMXFYffu3braRa0gl8tVJiIiIqp9dFbT1KFDB0ybNg1Dhw5FaGgohg8fDi8vL1haWqot37hxY12FolfsCE5ERFQ3yIQQQhcbNjY2BgAIISCTySoOQiZDcXGxLsLQu4qOvbKnKRMREZFuyeVyqYKjsvuyzmqaGjVqVGmy9DRgR3AiIqK6QWdJU2Jioq42XauwJomIiKhu4AN7iYiIiDTApImIiIhIAzpPmo4ePYqRI0fCw8MD5ubmePXVV6VlBw4cwJw5c5CSkqLrMIiIiIhqRKcP7P3ss88wf/58lP2BXtn/29vbY+HChfDw8MAbb7yhy1D0hg/sJSIiqht0VtO0d+9efPTRR2jYsCG2bNmC1NRUlTK+vr6oX78+du3apasw9M7GxkZp4i/niIiIaied1TR99913MDc3x969e9GmTZtyy7Vv356PWyEiIiKDp7Oapri4OPj6+laYMAFA/fr163SfppycHKVJXY0bERERGT6d1TTJ5XK4urpWWi4zMxOlpaW6CkPvOE4TERFR3aCzmiYXFxdcv3690nJXr15Fo0aNdBUGERERkVboLGny9/fHuXPncOzYsXLL7Nq1C9evX0fv3r11FQYRERGRVugsaZo1axZkMhmGDRuGHTt2qDyQd9++fZg0aRJMTU0xffp0XYVRY19++SU6d+4MW1tbuLi4YOTIkXxEDBER0VNIJsoOnKRl3333HWbOnAkAsLS0RF5eHmxsbCCTyZCdnQ0hBJYtW4Zp06bpKoQaGzBgAEaPHo0uXbqgoKAA7777Lu7cuYMLFy7AxKTqXcKq8jRlIiIi0q2q3Jd1mjQBQEREBObPn4+4uDilgS3btWuHzz77DIMHD9bl7rXuxo0baNq0Kc6fP4927dpVeX0mTURERIajKvdlnT9GJSgoCMePH8e9e/dw8uRJHD9+HHfu3MG5c+e0kjBt3LgRr7/+Ojp37gxzc3PIZDKEh4dXuE5cXBwGDhwIBwcHWFtbo1u3btiyZYtG+8vMzAQAODk51TR0IiIiqkV0+hiVsurVq4d69eppfbtz585FUlISnJ2d4ebmhqSkpArLHzlyBEFBQbCwsEBwcDBsbW2xdetWjBo1Crdu3cKsWbPKXbekpATvvPMOBg4cCA8PD20fChERERkwndU0hYeH4/bt27ravCQsLAyJiYm4f/8+pkyZUmHZ4uJiTJ48GUZGRoiOjsbq1auxePFinD9/Hi1atMCcOXPKTbqEEJgyZQpu3rxZaU0WERER1T06S5omTpwIT09PtGrVCtOmTcOOHTuQlZWl9f307dsXnp6eGpU9fPgwEhISMGbMGPj4+Ejz7e3tMWfOHBQWFmLdunUq6wkh8MYbb+DgwYM4dOgQ6tevr63wiYiIqJbQWfNcaGgoDh8+jGvXruHatWtYuXIljIyM0KlTJ/Tt2xd9+/aFn58fTE1NdRWCisjISABA//79VZYFBQUBAKKiopTmCyHw5ptvYvfu3YiKiqp0IE65XF6j5URERGSYdJY0rVmzBgAQHx+PgwcP4sCBA4iMjMTJkydx8uRJfPnll7C0tIS/vz/69etXYV8ibVE8GNjb21tlmaurK2xsbFQeHvzmm2/i119/xV9//QVLS0vpOXlOTk4wMzNT2Y6iBz4RERHVLTrvCO7t7Q1vb29MnToVQgicOnUKBw8exMGDB3Hs2DHs378fBw8efCJJk+KXb/b29mqX29nZSWUUVq5cCQDo0aOH0vwjR46gV69e2g+SiIiIDJLOhxwoq6ioCNnZ2cjOzkZWVpY0SriOh4qqESGE2qm8hCknJ0dpohr45BPAxweIidF3JERERLqvaTp37hwOHDiAgwcPIiYmBvn5+RBCwM7ODoMGDZL6Nz0Jihqmx2uTFLKysuDo6FijfXCwSi3Jzn6UNJWUAEuWAP7++o6IiIiecjpLmoKDg3H48GE8ePAAQgiYmpqiW7duUpLk6+sLY2NjXe1eLUVfpvj4eHTq1ElpWUpKCnJycuDr6/tEY6JyZGc/SpgAID1dv7EQERFBh81zW7ZswYMHD9CuXTts27YNGRkZiIqKwrx589C9e/cnnjABQEBAAABg//79KssiIiKUypCe5eX93//z8/UXBxER0f+ns6TJ1tYWQgicP38er7zyCoYNGyYNJKkvffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+vFb3mZqaqjT9999/Wt1+nVU2aSr7fyIiIj3RWfNceno6Tp48Kf1S7siRI9i/fz9kMhmcnZ3Rp08f9OvXD/369avRI0nCwsIQ8/87Cl+4cEGapxiTyd/fH5MmTQIAmJiYICwsDEFBQejZs6fSY1SSkpKwaNEieHl51ei4H+fi4qLV7T01mDQREZGBkYkn9NO13NxcREZGSqNqX7x4UVrWokULXLlypVrbDQ0NVTuKt0JISIjKY09OnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVSuGishksnKXVfY05adadDSgaCr18ABu3dJvPEREVCfJ5XJpjMXK7stPLGkq6/z58/jll1+wfPly5OfnQyaToUTR6beOuXfvntJruVyOpk2bAmDSVKGICGDAgEf/r1cPSEvTbzxERFQnVSVp0vmQAwBw+/ZtadiBQ4cO4f79+wAg/aque/fuTyIMvWDzXDWV7fzN5jkiIjIAOkuaduzYIfVnUjyaRAgBmUyGZ599Vhp6ICAgAFZWVroKg2qrx/s0CQFU0NRJRESkazpLmoYNGyb9v1GjRlKS1KdPHzRo0EBXuzU4j48KLpfLWfukibJJkxBAYSFgbq6/eIiI6Kmns6TppZdeQr9+/dC3b1+1D8glqtDjTXJ5eUyaiIhIr3SWNG3btk1Xm65VFJ3LqIoeT5o4wCUREenZE31gL5HGHk+S2BmciIj0TOdJ05UrVzBlyhS0bNkSNjY2sLGxQcuWLTF16tRqj81Um+Tk5ChNqamp+g6pdlDXPEdERKRHOh1yIDw8HFOmTEFRURHKDgcVHx+P+Ph4rF27FqtWrUJISIguw6DaiEkTEREZGJ0lTadPn8bkyZNRUlKCwYMH49VXX0WzZs0AAP/99x9+/vln/PXXX5g8eTLatGmDzp076yoUvWKfpmpi0kRERAZGZ0nTN998g9LSUvz888+YMGGC0rJnn30WL7zwAsLDwzFx4kQsXrwYv/76q65CodqISRMRERkYnfVpOnr0KHx8fFQSprJCQ0PRsWNHREdH6yoMvWOfpmpi0kRERAZGZ0lTWloaWrduXWm5Vq1aIa0OP1fM2tpaZSIN8NdzRERkYHSWNDk4OODmzZuVlrt58ybs7e11FQbVVqxpIiIiA6OzpKlLly6IjY3F4cOHyy1z+PBhHDt2DF27dtVVGHonl8tVJtIAB7ckIiIDo7Okafr06SgtLcWQIUPw3nvv4dKlS8jNzUVubi4uXryId955B0OGDJHK1lWKsakUE587pyHWNBERkYHR2a/ngoKC8OGHH+Lzzz/H4sWLsXjxYpUyQgjMmzcP/fv311UYVFsxaSIiIgOj0xHBP/30U+zZswe9e/eGubk5hBAQQsDMzAyBgYHYs2cPPv74Y12GoHf89Vw1sSM4EREZGJ2OCA4AAwYMwIABA1BSUoIHDx4AAOrVqwdjY2Nd79og8Ndy1cSaJiIiMjBaT5quX7+Obdu2ITExEebm5vDx8cHIkSNhaWmJBg0aaHt3VFcxaSIiIgOj1aTp22+/xXvvvYeSkhKl+fPmzcOePXvw7LPPanN3VJcxaSIiIgOjtT5NMTExmDVrFoqLi2FlZYUOHTqgWbNmkMlkuH37NoYPH47S0lJt7Y7qMiHYp4mIiAyO1pKm5cuXQwiBkJAQpKSk4NSpU7h27RrOnDmDZs2a4fr169i3b5+2dldrcJymalA3JhOTJiIi0jOtJU1///03PDw8sGrVKqXOz+3atcN3330HIQSOHz+urd3VGhynqRrUJU0c3JKIiPRMa0lTamoqOnfuDDMzM5Vl/v7+AIB79+5pa3dUl6mrVWJNExER6ZnWOoIXFhbCwcFB7TI7OzupzNMmJydH6bVcLmdtU2WYNBERkQHS+ThNTzuO01QNTJqIiMgAaTVpun79OtavX1+t5ePHj9dmKFSbMWkiIiIDJBNCCG1syMjICDKZrHpByGQoLi7WRhhat23bNqxcuRKnT59GRkYGbty4AS8vr2pvTy6Xw8bGBsCjpjvWRKkRHQ0EBCjPc3cH7tzRTzxERFRnVeW+rLWapsaNG1c7aTJkcrkcPXv2xIsvvojp06frO5ynA4ccICIiA6S1pCkxMVFbmzIo48aNAwBcvHhRz5E8Rdg8R0REBkhrQw7oy8aNG/H666+jc+fOMDc3h0wmQ3h4eIXrxMXFYeDAgXBwcIC1tTW6deuGLVu2PJmAqXLqEqT8/EcjhRMREelJrf/13Ny5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrCcUOZWrvFqlggLAwuLJxkJERPT/1fqaprCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06aInoLykiU10RESkR7U+aerbty88PT01Knv48GEkJCRgzJgx8PHxkebb29tjzpw5KCwsxLp163QUKWmsvEemMGkiIiI9qvXNc1URGRkJAOjfv7/KsqCgIABAVFRUjfZR2QN5+cBeDZRNjmxtgexs1flERERP2FOVNMXHxwMAvL29VZa5urrCxsZGKqOQnp6OmzdvIiEhAQBw+fJlPHz4EI0bN4aTk5PKdhRjPfy/9u48Lqqq/wP4Z5B9dUEFRUEU08jEQvTJBXHDzFITRX1UcMktt0wzTcMWS0vTXLKFR7EUwzSXRB9cEn3AXEpcUlQ0JFcSF5ABEZjv74/zm4Fhtjs6wwz4fb9e9wVz77nnnnvnLt8599xz2RMoHxzVrs1BE2OMMatQ5W/PGSM3NxeAuB2njbu7uyqN0o4dO9CmTRtEREQAAF555RW0adMGO3bsMG9hn2YVgyZt4xljjLFK9lTVND2O6OhoREdHS05f8QW9XPP0GDhoYowxZoWeqqBJWcNUsTZJKS8vD7Vq1XqiZfBrUUygfHBU/vvgoIkxxpgFPVW355RtmSq2WwKAW7duIT8/X2t7pyeRnZ2tNvz1118mzb9aKv/0HNc0McYYsxJPVdAU+v8vgd2zZ4/GtKSkJLU0plK/fn21wd/f36T5V0u6bs/p6oqAMcYYqwRPVdDUrVs3+Pv7Iz4+HidPnlSNz83NxSeffAJ7e3uMGDHCcgVkAt+eY4wxZoWqfJum2NhYpKSkAADOnDmjGqfsk6ljx44YM2YMAMDW1haxsbEIDw9H586d1V6jkpWVhcWLF8PPz88Sq8HK44bgjDHGrFCVD5pSUlI0evFOTU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGVlq5mR7K4MjGBnB31xzPGGOMWUCVD5ri4uIQFxdn1DwhISHYvXu3eQpUQXZ2ttpnuVzO7ZoMUbZdcnISgxIHTYwxxiyoygdN1q5+/fqWLkLVowyOHB05aGKMMWY1nqqG4KyKUAZHXNPEGGPMinBNk5lV7CFcLpdz7ZMhHDQxxhizQlzTxKwPB02MMcasENc0mRm/e85IRLobgnPnlowxxiyIa5qYdSkqKvufG4IzxhizIlzTZGbcpslI5QMjJycROGmbxhhjjFUyrmli1qVi0MQ1TYwxxqwE1zSZGbdpMlLFoMnOTvQMrlBw0MQYY8yiuKaJWZeKQZNMVlbbxEETY4wxC+KaJjPjNk1GKv+EnLI9k5MTIJdz0MQYY8yiOGgyMxcXF0sXoWqpWNNU/i8HTYwxxiyIb88x68JBE2OMMSvFNU1mJpfL9X5mFegLmrhzS8YYYxbEQZOZ8dNzRtIXNBUViafobLiClDHGWOXjqw+zLtqCpvIdXHJtE2OMMQvhmiYz46fnjKTr6TmlwkLA2blyy8QYY4yBgyaz46fnjKTv9lzF6Ywxxlgl4ttzzLpw0MQYY8xKcdDErAsHTYwxxqwUB03MunDQxBhjzEpxmyYz436ajCSlIThjjDFmARw0mRn302QkQzVN3OUAY4wxC+Hbc8y6GOqniWuaGGOMWQjXNJkZ99NkJG7TxBhjzEpx0GRm3E+TkThoYowxZqX49hyzLuWDIm4IzhhjzIpw0MSsi7Kht0wG2NuL/zloYowxZgU4aDLgyy+/hK+vLxwdHdGxY0ecOnXK0kWq3pRBkZOTCJyU/1eczhhjjFUyDpr0iI+Px6xZs/DRRx/hjz/+QLNmzRAeHo68vDxLF636Kh80KXHQxBhjzApw0KTH0qVLMX78eIwYMQKBgYGIjY1FSUkJ4uPjLV206ouDJsYYY1aqSgdN69evx7hx4xAcHAwHBwfIZDLExcXpnef48ePo3bs3atasCRcXF7Rv3x6bNm3SSPfo0SOkpaWhe/fuqnG2trbo0qULfvvtN1OvClMyFDRx55aMMcYspEp3OTB37lxkZWXB09MT3t7eyMrK0pv+wIEDCA8Ph6OjIwYPHgw3Nzds2bIFkZGRuHr1Kt5++21V2pycHJSWlmr0qVSvXj1cvnzZLOvDUBYUle/Qkju3ZIwxZgWqdE1TbGwsrly5gtu3b2P8+PF605aUlOCNN96AjY0NDh06hG+//RZLlizBqVOn0Lx5c8yZM8dg0MXMjIhvzzHGGLNaVTpo6t69O3x9fSWl/fXXX3H58mUMHToUQUFBqvEeHh6YM2cOHj16hHXr1qnGe3p6okaNGsjOzlbL559//oGXl5fO5cjlcoMD06GoqOx/DpoYY4xZmSodNBkjOTkZANCzZ0+NaeHh4QCAgwcPqsbZ29ujTZs22L9/v2pcSUkJkpOT8a9//UvnclxdXfUO/AoVPbT1Bl7xfw6aGGOMWUiVbtNkjIyMDABAQECAxjQvLy+4urqq0ii99dZbGD16NF588UW88MILWLx4MWxtbTF06NBKKfNTh4MmxhhjVuypCZpyc3MBiNtx2ri7u6vSKA0dOhS3b9/GnDlzkJ2djeDgYCQlJcHd3V3ncrS9oLfiZ39//8dZhepP2ytUAMDWVgwlJRw0McYYs5inJmh6XFOnTsXUqVMlp6/4gl5XV1dTF6n6Kt+dQPnaJeXnBw84aGKMMWYxT02bJmUNU8XaJKW8vDydtVCskui6PVf+MwdNjDHGLOSpCZqUbZkqtlsCgFu3biE/P19reydWifQFTcrbddy5JWOMMQt5aoKm0NBQAMCePXs0piUlJamlYRbCNU2MMcas2FMTNHXr1g3+/v6Ij4/HyZMnVeNzc3PxySefwN7eHiNGjLBcARkHTYwxxqxalW4IHhsbi5SUFADAmTNnVOOUfTJ17NgRY8aMASDeGxcbG4vw8HB07txZ7TUqWVlZWLx4Mfz8/CyxGkxJ19NzQFnQVFwMlJYCNWpUXrkYY4wxVPGgKSUlRa0XbwBITU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGmqWM2rog4A4udTD09JxSYSHATyVWX9u2AVOmAK+9BqxYAchkli4RY4wBqOJBU1xcHOLi4oyaJyQkBLt37zZPgaoKIkAut77AQ8rtOWU6V1fx2hUHh8opG6scN28CUVFAXh6wahXQogUwaZKlS8UYYwCeojZNlmJ1r1FJTweefRaoWxf4/HMRQFkLqUHTkSNASAjg5gYsX145ZWOVY9o0ETApzZgBnD5tseKwak4uB+7ds3QpTIcIOHcO+Ptv6zq3VyMcNFUXDx6IQZ+DB4GXXgLOnxe3wt55R1ykFArjl5eTA7z7LrB582MVVyupQdNrrwHHj4v2TW+9Bfx/Gzark5cnbjUtWABs2gRcuWK9JzIi4OpV4NAh4IcfgI8/BtauVX+Jsrnt3i22U3lFRcCQIVXjAYBLl4AtW4CCAuPmIxK93TPpiIDMTHEOqCgjA/jxR3GO0qWgAPjgA/Hj0csL+PJL9WPz7l1g+nRR67l7t2hHaW7Z2cCBA48f8MjlwODBQGAg4OsLuLuLH5cTJohtxUxCRmStZ/Hq4Z9//lH7XP41Kvn5+Ro9iD+2L78UQcwrrwCRkeKvs3PZ9Ph4YORI4NEjzXkHDgS+/hrIzxcnizp1gEaNdC+ruBgIDQV++0183rcP6NatbDoRkJIC+PsDDRuqz1tQAKxbJ2q8cnLEUFICPP+8ONnt2iXS7dkD9OhRNt+4ccC332ovj7c3cOqUOAFa2r17QFwcsGOH2AYVL4b16gFdu4o2O+Vf/PzgAZCYCNy4AdjZicHVFejVC/D0LEunUABffCECmzZtgNdfF9tJJgP27gV+/hn480+gbVuxjBYttJfz4UMgKQlITQX++AM4cQK4f18zXevWYt959lnNaRcuiIvTb7+J77pPHyAsTDPglaKgQJzsr1wRn7/9VtyeO3VKfJ44UXw2h//9D0hIEDWXPXsCHToA9vbG5bFlC/Dvf4sgr0kT4KuvxHdnyMWLwOjR4nsICgI6dxZDQIA4fp2dxXd14oT4nk6dEp+dnMRQt66Y/8UXH2vVAYhtbmeneayWlABnzojzQePGj59/RdnZYp/57TdRa3zpEtC8ufhB969/AZ06Afo6Gr54ERg1SmwzFxcxX5cuImjYtk3UtABAgwZiH3/uubJ5iYCffgJmzhTBSXmRkUBsLPDf/wJvvgmUP3c3bCgCqIkTNbfTkyIS5+933ikLAl1dxTE3bpxYV0MyM4F+/XTXyjo7ix9CU6YYfojm0SORT24u0K6dejOOW7eADRvEtnn1VXGsmKPN4b17YlklJSJgLSoS4+7eFcO9e8D48SY758vlctXbOwxel4mZFQCdQ35+vukW1L49kTj8xODiQhQWRhQYSOTurj7t5ZeJVq0iqlFDfXz5YexYoqIi7ct6+231tH5+RA8eiGkKBdGYMWK8gwPRhg1l82VnE7Vtq3uZ5Yf//U/3MmvUIJo7l6h7d/V1Ki2Vtq3u3SPas4fo44+JXn+daNgwohUriH7/nejRI6M3PRERXbhANHEikbOztPUDiF56iWj1aqIhQ4icnLSn8fAgWrZMlOvaNaKuXTXTuLgQublpnz88nGjdOqLt24n27RN/o6I09wl9g6Oj2F9+/51o/XqiOXOIgoK0p3VyEt/LxIlES5YQbdtGlJOjvq0KCogWLyYKCSEKDSV64w2ifv3K8ggLE/vRuXPq26VlS6KRI4m++oroyy+Jpk8nioggGjqUaNcu3d9/SQnRd9+JZb38sijXqVNEBw/q3p6vvCLWOTPT8He/YgWRTKaZz+DBRBs3Ei1YIModGSnKfvWqKOvy5bq/d2MGmYwoOpro+nWxn+zeLT536UL0wQdiedo8eCC+J2U+zz4rjrO4OKIRI4jq1CmbFhFBdPp02bw3bxL9/LNYllyuf/v884/Y/lFRRM2aGV4fDw+ivXs18yktJVq6VOyPUrdNzZpEhw6J+Q8fJurQQX16xXNg7dr683NzE8escl8rKRH7+NixYlvok5lJNG1a2X7w999Ed+8S9e2rf5nvvy+OB6VLl8Qx+NZbRDExRJ98ov5dubkR9e5N5O+vuV+2bUuUmCjOxUrZ2USbNxNNnSquIw4OZent7Yl69CBauFCUs+L2attW7OPFxerrqlCI805goLg+dO4szrOzZ4vtt3On2J8ePlSfr6CAaMYM/dcm5XDsmP7tbYT8/HySel2GyZbKtKqUoKmkhGjSJKJ69QzvaGPHlu3gO3fqv8iHhhLdvq2+rO3btad9800x/eOPNafNmyeCCn9/6Se7ixfVl5uWRuTjQ9SuXdnBcvMmUf36ZfMMHSouFp06ET33HNHw4UTffEN09izR/v1Es2bpvtgrBzs7Ik9PcaAHBhK1bk3UqpX4v2VLomeeIQoIEOvi4yPSurpqz6tpU/G9rF8vTny9eomTuLEXRUAsu/yJ0dSDt7cIFKZNE0Hahg1inU2Rt60tUZ8+4uS6ejVRgwa609rbE50/X/a9f/ON9OW0aCHyv3KlLOBPSSF64YUnK3/LluKC//77RGvWiABt924xVPwB0bixtDwbNlT/XLOm9sDLmMHFRfs+YmND9NprRN9/LwLfvDxxPPj5Gb+M7t2JmjdXH+fgIILzZcvEsam8EF69Ki7EhgJDbceEg4M4PymdPk3UsaN6mkaNNLejTCYCo9aty8Y5Oopjr+IywsNFYL51q/YfEX37EiUkiG1X8SIeGioCuIAA9e2ckKB5fs7MFD8MbG01l1Hx3DF4sDhWKp4rZ80S5+3PP9cfNAYEiHVSundPnJu1pW3QQL38TzL4+Ihzf3a2+HH3yivS5vPwIJowgej4caIjR8QxLHWZSUkGL41ScdBkRfLz89WG7OxsyV+O0YqLRW3CmDFEtWqVnXyaNhW/3r/7Tv0XC5HYWSMixC/uiAhxcSj/S6NJE3HyOnuW6MwZ9RPcjBnqQde0abp3cDu7sv8bNiT673+JMjLEQZ2TIz5/9BHRwIFEixZpX7+KZScSv0if9GJjysHFRQRK5U9c5T18SLR2rWZAUqeOOHnEx4sgKy5OBIDaltGwoagp27mTaNQoESx7eorvbscOolu3RG2Kvouiu7tIv3070Y0b2staUCDWRVcebduK5Vy4IC48o0cTeXk92fb76CPN73z1alErVX4fkjJ4ekpL16yZCIbWrxc1LI+7DrNnixqIuDjjAtxJk4jy80Wtwy+/EL37rjiGhw4VNXD9+okfHlu3itqJ/HzxYyYri+iLLx4/EFcOzs5i+9rYqI93dRWBQ/kfJlIGe3sRtGj7vuztRVAzc6ZYn5s3xfd87RrRTz+JQEaZ1s5O1FZMmqRZtqlTRQ2XQiHOI2vWiLS3bon8HjxQz6v80KKFOE7Kn08uXhQ/tABxPG3apD79xo2yGnR9g62tyJtInNcmT9YeLFUcatdWDxKJRBBaPk3FALHi8PLL4nyqTUqK9IAkIIDo3/8WP7AbNVKf5u0t9vPYWO0/QO3sNGu9H2f/tLcX+/+YMUTjxxNNmSJq1ZYtE9/zL7+IGkwTMSZo4jZNlcyoe6dPoqRE3JOuXdv4e85Hjoj749nZutMMGCDaBqxYAUydqjn9009FO4mZM8VhoPTcc6JhpY+PcWXS5/33gY8+Uh9Xo4buxpsvvCDaQbRrBwQHi/ZER46INhZnz4q2Xfn5YrxCAdjYlA01apT9b28vOuF0dBRtMPr3B954A6hZ03CZiUR7i+PHRVuW8HDt7WiOHxftEI4cEZ/79RPtLurUMbyM0lLRNuz8edFmSC4XbSZeegl4+WXNDkR1+e9/ge+/F21oWrQQQ+vW2tu5EIn2Dn/9BVy+DKSlifZC16+rp+vXD/jwQ9F2LiNDDM7OQN++uvfXwkKR38mTop1F48Zi/j//BJYuFQ866PL886LdSL16og3evn2ibdDw4aKhuW253leIRNuhxETRxu7IEf0PS8hk4inO8l0j5OQA69eLthhNm4qhtFTk+csvon1S48bAf/4DdO+uO28pcnJEo+bVq0UXHK++KtrnPPecKENsrGgrp01oqChD06bAnTuiXdylS6JNXJcuIr+CAtHGbOFCcU6wsxPTO3cW7Ut27xYPEeji5CSOi8hI0fZKXzchxcXiO0lI0D69aVNRXimvvHr0SLQH2rBBfK5fX+xzo0apf9/l0x89KvZtd3ftee7bJ9ZF2fYOEG0Ua9cueyjG3h6YPBlYs0b9yTx3d/HgSni4OC6V+0FoqGijqK0d6ddfi4bc5clk4pw7YIB42CQvT6xb58762ysVFQFbtwLHjolj6ORJcY5TfpedOwPt24t1USISx9fhw2J/7dGjbNsRiYdwli4Fdu5UP88DooH9N9+IB3fkcrGPZGWJv1evivPSzp2aD060bSvahWprR2kmxlyXOWgyM7lcrvFZ2e2AWYOmJ3X1qriApaVpTvP3Fw1TPTzExSQ0VDR6Vho7VhzsMploED10qDhowsLEQauvkefjIBIX9oKCsguUvb04IaWkiBOhu7s44Hv0sI4G48ZQKESAJZOJE25V6+xRoRBP5f34ozjBT5smnuoxtbQ00Wg9M1MECdeviwv2tGniQve4vcjn54s8s7LEcPt22bQaNUQAGhxsXJ7374tGzHZ2j1cmXXkqg/jySkqAX38VF8kLF8RQVARER4sLso3Eh6gfPhTbwddX/SETIvFj48ABEeT//ru4ILq7i0By6lTjjrnSUhHYfP992ThnZ2DuXBF0SA32AbHvrV8vzj/Dh5umb7r8fGDxYhGsjh4tHsgoLQVGjBD7X0XOzsDbb4uy16qlPu3hQxFE6jum16wBxowR2zkwUASN7do9+Xoo63Wkfv/6ZGaKc35srAikhw0TP1LKB2Da5OWJJ2bXrhU/nN56S/zQ1hbUmhEHTVZEpudgsOqgCRC/7H/8UZwAb94UFyJbW/H0VvlfARkZorakoEA8MfTLL+o7/c2b4omW0NBKPxgYYxZQWCiCgce9ICsU4mmy//xHPAm8cKFpa6fNobgYGDRIPMGnFBUluhx50ifu0tJE7e2rrxr/ZGdlKioSwbul+yM0EgdNVqRKB03GOHtW/JIdONC6D2rGWNVBVLVqVouKgHnzxA/MadOMr4FkFsFBkxWpsrfnGGOMsaeAMUET3ysxMw6KGGOMseqBgyYz01bTxBhjjLGqh4MmM3M1xdMajDHGGLM4fmEvY4wxxpgEXNNkZvn5+WqfyzcEZ4wxxljVwUGTmXFDcMYYY6x64NtzjDHGGGMScNDEGGOMMSYBB02MMcYYYxJwm6ZKVr4Ddu6ziTHGGLOs8tdiQy9J4aCpkhUUFKj+56foGGOMMetRUFCgt39Fvj3HGGOMMSYBv7C3kikUCuTk5AAAnJ2dIXvMN3iX7+8pOzubuzb4f7xddONtox1vF+14u2jH20W7qrxdiEh1F8jT0xM2Nrrrk/j2XCWzsbFBvXr1TJqni4tLldpBKwtvF91422jH20U73i7a8XbRripuF6mvPOPbc4wxxhhjEnDQxBhjjDEmAQdNjDHGGGMScNDEGGOMMSYBB02MMcYYYxJw0MQYY4wxJgEHTYwxxhhjEnDnlowxxhhjEnBNE2OMMcaYBBw0McYYY4xJwEETY4wxxpgEHDQxxhhjjEnAQZOVOX78OHr37o2aNWvCxcUF7du3x6ZNm4zKo6ioCB9++CECAgLg6OiIBg0aYOzYsfjnn3/MVGrzuX79OpYtW4aePXuicePGsLe3h5eXFwYMGICjR49Kzic5ORkymUznEBcXZ76VMCM/Pz+d69SlSxej8tqwYQNCQkLg4uKCWrVqoU+fPjhx4oR5Cm5GcXFxer9rmUyGbt26Gcynqu4z69evx7hx4xAcHAwHBweDZc3Ly8P06dPh6+sLBwcH+Pn5YebMmcjPzzd62UlJSQgNDYWbmxvc3d0RFhaG/fv3P8HamI7U7VJcXIwtW7YgKioKLVu2hKurK9zc3NCuXTusXr0apaWlRi3XlMeouRizz8yfP1/vcXHlyhWjln3x4kUMGjQInp6ecHJyQuvWrbF69WpY6zNqtpYuACtz4MABhIeHw9HREYMHD4abmxu2bNmCyMhIXL16FW+//bbBPBQKBfr27YukpCS0b98eAwYMQEZGBmJjY7F//34cOXIEdevWrYS1MY0VK1Zg0aJFaNq0KXr27Im6desiIyMD27Ztw7Zt2xAfH4/IyEjJ+YWGhmo9UQUFBZmu0JXMw8MD06ZN0xjv5+cnOY8FCxZg7ty58PX1xfjx4/HgwQP8+OOPeOmll7B//3506NDBdAU2s6CgIMTExGidtnnzZpw9exbh4eGS86tq+8zcuXORlZUFT09PeHt7IysrS2dauVyO0NBQnDx5Ej179sSQIUOQlpaGxYsX4+DBgzh06BAcHR0lLXf9+vUYPnw46tati+joaABAQkICevTogU2bNiEiIsIUq/fYpG6Xy5cvIyIiAq6urujWrRtee+015Obm4pdffsHEiROxa9cu7NixAzKZTPKyTXGMmpMx+4xSVFSU1vLXrFlT8nLPnTuHl156CYWFhRg0aBAaNGiAxMRETJw4EefOncOKFSuMWItKQswqFBcXU9OmTcnBwYHS0tJU4+/fv0/Nmzcne3t7unLlisF81qxZQwBoyJAhpFAoVONXr15NAGjs2LHmKL7ZbNmyhZKTkzXGHzp0iOzs7KhWrVr08OFDg/kcOHCAAFBMTIwZSmk5vr6+5Ovr+0R5XLx4kWxtbal58+Z0//591fi0tDRycHCgli1bUmlp6ROW1PKKioqoTp06ZGtrS7du3TKYvqruM3v37lWdKz799FMCQGvXrtWa9v333ycANGvWLLXxs2bNIgD0ySefSFrm3bt3qWbNmuTp6UlXr15Vjb969Sp5enqSp6cn5eXlPd4KmYjU7XLt2jVatWoV5efnq43Pz8+n4OBgAkCbNm2SvFxTHKPmZsw+ExMTQwDowIEDT7zczp07EwDatWuXalxRURF16tSJANDhw4efeBmmxrfnrMSvv/6Ky5cvY+jQoWq/YD08PDBnzhw8evQI69atM5jPd999BwD49NNP1X4JjRs3Dv7+/tiwYQMKCwtNXn5zef311xEaGqoxvlOnTggLC8O9e/dw5swZC5Ss+li7di1KSkrw3nvvwcPDQzU+KCgIQ4YMQXp6OlJSUixYQtPYtm0b7ty5gz59+qB+/fqWLo7ZdO/eHb6+vgbTERFiY2Ph6uqKefPmqU2bN28eXF1dERsbK2mZP/30E+7fv4/JkyfDx8dHNd7HxweTJk1CTk4Otm7datyKmJjU7dKwYUNMnDgRLi4uauNdXFwwffp0AMDBgwfNUkZLkbptTOnixYs4dOgQwsLC8PLLL6vG29vb46OPPgJQdj2zJnx7zkokJycDAHr27KkxTXkrwdCB+vDhQxw9ehTPPPOMxgEgk8nQo0cPfPPNN/j999/RqVMn0xTcguzs7AAAtrbSd+OMjAwsW7YMhYWF8PHxQdeuXdGwYUNzFbFSFBUVIS4uDjdu3IC7uzvatm2Ldu3aSZ7f0L4XFxeHgwcPonPnzqYqskUoA4AxY8YYNV913GcAsV43btxAeHi41gChQ4cOSEpKwtWrV9GoUSO9eRnah+bPn4+DBw9ixIgRJiu/JTzOOQd48mPUGh06dAhHjx6FjY0NAgIC0L17d7i6ukqeX98+07FjR7i4uFhlcMpBk5XIyMgAAAQEBGhM8/LygqurqyqNLpcvX4ZCodCaR/m8MzIyqnzQ9Pfff2Pfvn3w9vZGq1atJM8XHx+P+Ph41WdbW1tMnjwZn3/+OWrUqGGOoprdrVu3MHLkSLVxbdu2xcaNG9G0aVOD82dkZMDV1RVeXl4a08rvM1VZVlYW9u/fDx8fH/Tq1cuoeavjPgPoP+coxyclJSEjI8Ng0KQvr+qyDwHAmjVrAGi/0OvzpMeoNarYbrBmzZr48ssvJQfG+vaZGjVqoEmTJjh37hxKSkqMDlLNiW/PWYnc3FwAULs9Up67u7sqzZPkUT5dVVVcXIzhw4ejqKgIixYtknThqlu3LhYuXIg///wT+fn5yM7OxrZt29CsWTMsXboU77zzTiWU3PRGjhyJ/fv3Izs7G3K5HGlpaRg+fDiOHz+Obt264cGDBwbzyM3Nrfb7zNq1a6FQKBAdHS050Kmu+4ySKc8X+vKqLvvQt99+i927d6Nr167o3bu35PlMcYxak9atW2PNmjX466+/UFhYiMzMTKxYsQIymQzR0dHYsWOHpHyk7H8KhcLqto/1hG+MSaC88B06dAhvvPEGhg8fLmm+wMBABAYGqj67uLigb9++aNeuHZ5//nksX74cs2bNQr169cxVdLOo+GsvKCgI33//PQDghx9+wHfffadqh/G0UigUWLt2LWQyGUaNGiV5vuq6zzDj7dy5E5MmTYKvry/Wr19v1LzV7Rjt37+/2mc/Pz9MmjQJLVu2RI8ePTB37ly89tprFiqd+XFNk5VQRtu6fo3l5eXpjMiNyaN8uqpGoVBg1KhRiI+Px7Bhw/D1118/cZ5eXl7o27cvSkpKjOr3ydqNGzcOAJCammowrYeHR7XdZwBg3759+Pvvv9G1a1c0adLkifOrLvuMKc8X+vKq6vvQrl27EBERgfr16+PXX3+Ft7e3SfI15hitCrp164amTZvizJkzqu9cHyn7n0wmg5ubm0nL+aQ4aLIS+u7737p1C/n5+TrbHij5+/vDxsZGZ9sBQ20YrJlCocDIkSOxbt06DBkyBHFxcbCxMc3u6+npCUD0WVNdGLNOAQEByM/Px61btzSmVeV9RulxG4DrUx32GUNtjYz57vXlVZX3ocTERLz++uvw9PTEgQMH4O/vb7K8q8M+VJFynQoKCgym1bfPlJaWIjMzE02aNLGq9kwAB01WQ/lY/Z49ezSmJSUlqaXRxcnJCSEhIbhw4YJG52REhL1798LFxQXBwcEmKnXlUAZM33//PSIjI/HDDz+YtAGusrbAWjqaMwVj1skU+561unPnDrZv347atWtr3FZ4EtVhnwkICECDBg2QmpqqceGWy+VITU1FkyZNDDYCB6rnPpSYmIgBAwagdu3aOHDgAJo1a2bS/KvDPlSeXC7H2bNn4eLiogqe9NG3z6SkpKg6XrU6lu4oignFxcXk7++vt3PLzMxM1fgbN25Qenq6WmeERNWvc8vS0lKKiooiADRw4EAqLi7Wm/727duUnp5Ot2/fVhv/+++/a02/bNkyAkABAQFUUlJisnJXhvT0dJLL5VrHe3l5EQA6ePCgavz9+/cpPT2dbty4oZb+woUL1bZzy6VLlxIAmjJlis401XmfMXXnlnK5nNLT0ykrK0tt/N27d8nDw8OqO7csz9B22bVrFzk4OJCXlxedP3/eYH6PHj2i9PR0unTpktp4Y49Ra6Bv2+Tl5dGFCxc0xhcUFNCQIUMIAI0cOVJjenp6OqWnp2uMN9S5ZWpq6pOtjBnIiKz0BS9PIV2vUcnKysLixYvVXqMSHR2NdevWYe3atapXFgCiVqZ3796q16iEhobi0qVL+Pnnn+Hn54ejR49WqdeozJ8/Hx988AFcXV0xdepUrVW1/fr1U3UIqkwfExOD+fPnq9L4+fnBzs4OwcHB8PHxgVwux5EjR5CWloaaNWsiKSkJISEhlbRWpjF//nx88cUX6Ny5M3x9feHi4oKLFy9i165dKC4uxuzZs/HJJ5+o0sfFxWHkyJGIiorSeK9U+deoDBgwQPUalUePHlW516iU16pVK/z55584ffq0zq4pqts+Exsbq+qM9MyZMzhx4gQ6dOigqinp2LGj6lalXC5Hhw4dcOrUKfTs2RMvvPACTpw4gT179qBt27Y4ePAgnJycVHknJycjLCwMoaGhqn52lMq/RkX5aqOEhATk5OQgISEBAwcOrIS1103qdjl//jyCgoJQVFSEwYMH45lnntHIy8/PT+28e+XKFTRp0gS+vr5q714z9hi1FKnb5sqVK/D390fbtm3RsmVLeHl5ITs7G/v27cO1a9fQqlUrHDhwAHXq1FHLX9nRcsVw4+zZs+jQoQMKCwsRGRkJb29vJCYm4uzZs5g0aRK/RoUZdvToUerVqxe5u7uTk5MThYSE0I8//qiRTln7ou3XwMOHD2n+/PnUtGlTsre3Jy8vLxozZoykV0dYG+V66hvKbwNlF/8VX32xcOFCCgsLowYNGpCDgwM5OTlRixYtaNq0aWq/jKuS5ORkGjRoEAUEBJC7uzvZ2tqSl5cX9e3bl5KSkjTSr127lgBQVFSU1vzWr19PwcHB5OTkRB4eHtS7d2/6448/zLwW5nP06FECQCEhIXrTVbd9xtAxU/H7v3//Pk2bNo0aNWpEdnZ21LhxY3r77be11gwpXy0TGhqqddm7d++mTp06kYuLC7m6ulJoaCjt3bvXDGtpPKnbRbmO+oaK65+ZmUkANF6XYuwxailSt01ubi69+eab1LZtW6pbty7Z2tqSm5sbhYSE0GeffUYFBQVa81fmo8358+cpIiKCateuTQ4ODtSqVStatWqV2p0Sa8I1TYwxxhhjEnBDcMYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhijDHGGJOAgybGGGOMMQk4aGKMMcYYk4CDJsYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhi7Cnl5+cHmUymd1i2bJmli8lMJC0tDTVq1MDkyZPVxicnJ6u+b32uXLmiSlf+/WrGys3NRZ06ddCuXTuNd5ExZu00337KGHuqlH8xZ0XPPvtsJZeGmcvkyZPh5OSEefPmWbQcHh4emD17NmbOnInvv/8eUVFRFi0PY8bgoImxp9yYMWPU3tjOqp/NmzcjNTUVM2fORL169SxdHEyaNAmfffYZZs+ejcGDB8PBwcHSRWJMEr49xxhj1dzSpUsBAKNHj7ZwSQRHR0cMHToUN2/eREJCgqWLw5hkHDQxxgxStn+6cuUKtm/fjq5du6J27dqQyWRITk5Wpbt37x5iYmIQFBQENzc3ODs7o1WrVvj4449RUFCgNe+SkhIsW7YMrVq1gqOjI+rWrYsBAwbgzJkziIuLg0wm06gJmz9/PmQyGebPn681T2U7nS5dumidfuPGDUyfPh0tW7aEs7Mz3Nzc0LZtW6xcuRIlJSUa6aOjoyGTyRAXF4fMzEwMHz4cXl5ecHBwQNOmTTF37lwUFRXp3H5//PEHoqKi0KRJEzg6OqJ27dpo3bo1Zs6ciaysLADA2rVrIZPJEB4erjOfGzduwM7ODk5OTrhz547OdOWlpaXh8OHDaN++PZ555hlJ8xhD+V0YGipSfqerVq0yeZkYMxe+PccYk2zJkiVYuXIlgoOD0atXL9y4cQM1atQAAJw7dw69evXC1atX4e3tjY4dO8LOzg7Hjh3DvHnzsGXLFiQnJ8PDw0OVn0KhwMCBA7Ft2zbY29ujS5cuqFWrFo4ePYqQkBCMGjXK5Otw6NAh9OvXD/fu3YOfnx969OiBoqIiHDt2DJMnT8Yvv/yCnTt3ws7OTmPekydPYurUqahVqxZCQ0Nx9+5dpKamYsGCBTh79iy2bt2qMc/nn3+Od999FwqFAs2bN0ffvn1RWFiIS5cuYfHixQgMDER0dDSGDh2KWbNmYe/evbh48SKaN2+ukdc333yDkpISDB8+HHXq1JG0vtu2bQMAdO/e3bgNJVFQUJDOdkkXLlzAkSNHYGOj+fs8KCgIdevWxbFjx3Dz5k14e3ubpXyMmRQxxp5Kvr6+BIDWrl0rOW2NGjVo+/btGtMLCgqoadOmBIDmzp1LRUVFqmlyuZyGDBlCAGjkyJFq861cuZIAUP369encuXOq8cXFxTRhwgQCQAAoKipKbb6YmBgCQDExMVrLe+DAAQJAoaGhauNv3rxJderUIZlMRl999RWVlpaqpuXk5FDXrl0JAH3wwQdq80VFRanK8t5771FJSYlq2pkzZ8jFxYUA0OHDh9Xm2759OwEgR0dHSkhI0Cjn2bNn1db7vffeIwA0ZcoUjbSPHj0iLy8vAkB//PGH1vXWpmPHjgSAEhMTtU5XbitDl4PMzExVuszMTIPLzcrKIm9vbwJAK1eu1JrmtddeIwD0ww8/GMyPMWvAQRNjTyllIKRrKB9wKNOOGjVKa16rV68mANSnTx+t0x88eED16tUjW1tbunv3rmp8s2bNCACtXr1aY57CwkJVkGCqoGnWrFkEgCZNmqR1vmvXrpGdnR3VrVuXFAqFarwyaHrxxRfVxiuNHz+eANCHH36oNj4oKIgA0JIlS7Qur6Lr16+TnZ0deXh4UH5+vtq0jRs3EgD617/+JSkvJWVA99dff2mdXj5okjoYCpru3btHzz77LAGgmTNn6kw3e/ZsAkBvvfWWUevEmKXw7TnGnnK6uhxo0aKFxriIiAiteSQmJgIAIiMjtU53dXVFcHAwdu3ahePHj6Nnz564fv06Ll26BAAYNmyYxjyOjo4YNGgQli9fLnldDDFUzoYNGyIgIADnzp1DRkaGxi2yPn36aG2f07JlSwDA9evXVeNu3bqFkydPwsbGRnID7AYNGiAiIgIbN27EDz/8gPHjx6umKdv+TJo0SVJeACCXyyGXywFA0u08fY//5+fnY8uWLQbzePToEfr164dz585h8ODBWLRokc60yjJlZ2cbzJcxa8BBE2NPOWO6HPDz89M6/q+//gIADB8+HMOHD9ebx+3btwEA165dAwB4enrC1dVVa9omTZpIKpdUynJ26tTJYNrbt29rBE2NGzfWmtbd3R0A8PDhQ9W4v//+GwDg7e2t1o7LkClTpmDjxo1YtWqVKmg6ffo0UlJSUL9+fZ2Bqza5ubmq/93c3Aymj4uL0zntypUrBoMmIkJ0dDQOHjyI0NBQVUN+XZTb7d69ewbLxpg14KCJMSaZk5OT1vEKhQIA0KtXL9SvX19vHr6+viYvl67y6BofEREBFxcXvXloq5nR1qDZ1Nq3b4+QkBAcO3ZMFXwoa5nGjh0Le3t7yXnVrFlT9f+DBw9UQYq5vPvuu9i4cSOeffZZbNu2zWD/S8qgrlatWmYtF2OmwkETY+yJNWrUCOfPn8fo0aMl14Q0bNgQAJCTk4P8/HyttU26XtehDBwePHigdbryMX5t5czIyMCsWbMQHBwsqZyPS1krdfPmTeTm5hpd2zRs2DCsXLkSrVu3xoYNG2Bra6t2u04KZ2dnuLi4QC6X486dO2YNmr766it89tlnaNCgAXbv3q0WsOmi7DbBUKDNmLXgfpoYY0/s5ZdfBgBs2rRJ8jw+Pj7w9/cHAMTHx2tMLyoqwk8//aR1XmXAlZ6ernW6su2SKcr5uLy8vNC6dWsoFAqsWbPGqHkHDRoEb29vbNu2DQsWLIBcLkf//v3RoEEDo8vxwgsvABBdQpjLjh07MGXKFLi5uSExMVHnbcyK/vzzTwDAiy++aLayMWZKHDQxxp7Y2LFj4evri59++gmzZs3SWgN069YtfPfdd2rjpk2bBkB0kHj+/HnV+NLSUsyYMQM3btzQuryuXbvCxsYGSUlJOHjwoGo8EWH58uU6297MnDkTNWvWxBdffIElS5bg0aNHGmkyMzOxfv16g+ssRUxMDADgvffe01qmc+fOaQ387OzsMGHCBJSUlGDx4sUAjGsAXl5YWBgA4Lfffnus+Q05duwYhgwZAhsbG2zevBlBQUGS51WWqWvXrmYpG2OmxkETY+yJubi4IDExEX5+fvjss8/QuHFjhIaG4t///jf69++PwMBANGjQQONlsW+++SZeffVV3Lx5E61bt0avXr0wZMgQBAQEIDY2FhMmTNC6vEaNGmHy5MlQKBTo1q0bwsLCMGDAAAQEBGDGjBl49913tc7n4+OD7du3o1atWpgxYwYaNWqEbt26YdiwYXj11VfRrFkz+Pv7Y+XKlSbZLv3798eCBQvw8OFDREREoGXLlhg8eDD69u2LwMBABAYG4ujRo1rnHTdunKpN0PPPP4/OnTs/Vhn69esHANi7d+9jzW/I7NmzUVBQAB8fH8THxyM6OlrrUFFaWhru3LmDkJAQ7tiSVRncpokxZhKBgYE4ffo0vv76a2zduhWnT5/Gb7/9Bk9PT/j4+GDGjBno37+/2jw2Njb4+eefsXz5cvznP/9BcnIyXF1d0bFjR2zduhVpaWlYvXq11uUtXboUjRs3RmxsLA4fPgxXV1d06NABmzZtQl5eHhYuXKh1vs6dO+Ps2bNYuXIlEhMTcfz4cRQVFaFevXpo3Lgxhg0bhgEDBphsu8yZMwddu3bF8uXLcejQIfz8889wc3NDo0aN8M477+isZalXrx6CgoJw9OhRvPnmm4+9/DZt2uCll17C4cOHkZ6eruoewVRKS0sBiBq6zMxMnekqPpmn/Pwk68ZYZZMREVm6EIwxpk1cXBxGjhyJqKgovY/DV0cXL15EixYt4OHhgevXr8PZ2fmx89q8eTMGDhyI6dOnY8mSJSYs5eN5+PAhGjVqBDs7O2RmZhp8yo4xa8G35xhjzAq9//77ICJMmDDhiQImQHSx0KFDB3zzzTdW0ZHkihUrkJOTg08//ZQDJlalcNDEGGNWYseOHRg9ejTat2+PhIQEeHl54Z133jFJ3itWrEBhYSE++ugjk+T3uHJzc7Fw4UKEhIRgxIgRFi0LY8biNk2MMWYlTpw4gTVr1sDNzQ3du3fHF198Iam/IynatGmjan9kSR4eHqr+mRirarhNE2OMMcaYBHx7jjHGGGNMAg6aGGOMMcYk4KCJMcYYY0wCDpoYY4wxxiTgoIkxxhhjTAIOmhhjjDHGJOCgiTHGGGNMAg6aGGOMMcYk4KCJMcYYY0yC/wPWC9k+PSFAWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.plot(avg_ps_gauss_leahy.freq, avg_ps_gauss_leahy.power, lw=2, color='red', zorder=10)\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.plot(avg_ps_gauss_frac.freq, avg_ps_gauss_frac.power, lw=2, color='red')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.plot(avg_ps_gauss_abs.freq, avg_ps_gauss_abs.power, lw=2, color='red')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the Leahy normalization, being normalized by the variance, yields *exactly* the same result in the Gaussian and the Poisson case, while the fractional rms (that depends on the mean count rate) and the absolute rms (that depend on the variance and the mean count rate) change." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Pulsar/Phase Dispersion Minimization.ipynb.txt b/_sources/notebooks/Pulsar/Phase Dispersion Minimization.ipynb.txt new file mode 100644 index 000000000..4f875520e --- /dev/null +++ b/_sources/notebooks/Pulsar/Phase Dispersion Minimization.ipynb.txt @@ -0,0 +1,333 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import phase_dispersion_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Phase Dispersion Minimization in Stingray\n", + "\n", + "Phase dispersion minimization (PDM; Stellingwerf (1978)) is a method to search for strictly periodic signals in constant light curves (white noise only). Like Epoch Folding, it relies in folding a light curve at a given trial period, splitting the folded light curve into phase bins, and evaluating the resulting profile. \n", + "\n", + "Epoch Folding evaluates how much the means in each phase bin deviate from the global sample mean, given the variance of the measurements. A periodic signal will generate a maximum in the Epoch Folding periodogram across many trial periods. In contrast, Phase Dispersion Minimization evaluates the *variance* in each phase bin and compares this to the global sample variance $\\hat{\\sigma}$:\n", + "\n", + "\\begin{equation}\n", + "\\theta_{\\mathrm{PDM}} = \\frac{1}{\\hat{\\sigma}} \\frac{\\sum_{ij}(x_{ij} - \\bar{x}_j)^2}{N - M} \\;\n", + "\\end{equation}\n", + "\n", + "for $N$ measurements in the light curve split into $M$ bins, and $\\bar{x}_j$ the mean of measurements in bin $j$.\n", + "\n", + "If a periodic signal is present in the data at a given trial period, the PDM statistic should have a *minimum* at that period.\n", + "\n", + "## Simulate a dataset\n", + "\n", + "Let us simulate a simple data set: we create a sinusoidal light curve and add Poisson noise:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 300\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "\n", + "counts = np.random.poisson(counts)\n", + "\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pulsation search with Phase Dispersion Minimization\n", + "\n", + "Let us assume we have already an estimate of the true period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the phase dispersion minimization.\n", + "\n", + "The first thing we need to do is *fold* the light curve: for every data point, we convert the time of that bin to its corresponding phase. We then split the resulting phase-folded light curve into $M$ phase bins, where $M$ should strike a balance between generating enough bins to accurately represent the structure in the phase curve, but also few enough bins that the number of measurements in each bin is meaningful.\n", + "\n", + "In regular epoch folding, we calculate the mean flux (or counts) within each bin as a useful statistic. Let's do that first, because it gives us a nice visual representation. Note that when using a light curve (rather than event arrival times) in `fold_events`, you need to use set the `weights` keyword to the array of fluxes or counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCOklEQVR4nO3de3wU9b3/8feQbDYJhiUByUVDxApBLrVcPBC0IiWEi4C3ipZKuUlRKzQKWhGRYBUqVaAHvNT+UDgg4LGA1eoBQSXK4aIEsCKIUhGhEKNtSAiEJCTz+4PD1jUJkM18s7vZ1/Px2MeDnfnud74zLJ/hvXOzbNu2BQAAAABwVJNADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChoqqqSocPH1ZcXJwsywr0cAAAAAAEiG3bOnbsmFJSUtSkSe3Hrwhb5+nw4cNKTU0N9DAAAAAABImDBw/q4osvrnU+Yes8xcXFSTq9QZs1axbg0QAAAAAIlOLiYqWmpnozQm0IW+fpzKmDzZo1I2wBAAAAOOflRdwgAwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jN/1apV6t+/v1q2bCnLsrRz585qfZSVlWnChAlq2bKlmjZtqqFDh+rQoUM+bQoLCzVixAh5PB55PB6NGDFCR48eNbdiAAAAAMJeQMPW8ePHdcUVV2jBggW1zr/qqqv0u9/9rtY+srOztXr1aq1YsUIbN25USUmJBg8erMrKSm+b4cOHa+fOnVqzZo3WrFmjnTt3asSIEY6vDwAAAACcYdm2bQd6ENLpe9SvXr1aN9xwQ7V5X375pdq0aaMdO3boRz/6kXd6UVGRLrzwQi1ZskS33nqrJOnw4cNKTU3Vm2++qf79+2vPnj3q0KGDtmzZoh49ekiStmzZooyMDH366adKT08/r/EVFxfL4/GoqKiI52wBAAAAYex8s0FIX7OVl5eniooKZWVleaelpKSoU6dO2rRpkyRp8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvkI6bOXn5ysqKkrx8fE+0xMTE5Wfn+9t06pVq2qfbdWqlbdNTWbNmuW9xsvj8Sg1NdXZwQMAAABo1EI6bNXGtm1ZluV9/90/19bm+6ZMmaKioiLv6+DBg0bGCgAAAKBxCumwlZSUpPLychUWFvpMLygoUGJiorfN119/Xe2z33zzjbdNTdxut5o1a+bzAgAAAIDzFdJhq1u3bnK5XFq3bp132pEjR7Rr1y716tVLkpSRkaGioiJ98MEH3jZbt25VUVGRtw0AAAAAOC0ykAsvKSnRvn37vO/379+vnTt3KiEhQa1bt9a//vUvffXVVzp8+LAkae/evZJOH61KSkqSx+PR2LFjNWnSJLVo0UIJCQmaPHmyOnfurMzMTEnS5ZdfrgEDBmjcuHH64x//KEn65S9/qcGDB5/3nQgBAAAAoK4Ceuv3DRs2qE+fPtWmjxw5UosWLdKiRYs0evToavOnT5+unJwcSdLJkyd1//33a9myZSotLVXfvn31zDPP+NzQ4l//+pcmTpyo1157TZI0dOhQLViwQM2bNz/vsXLrdwAAAADS+WeDoHnOVrAjbAEAAACQzj8bBPQ0QiAQbNtWaUWlkb5jXBFnvcslAOD8mKzVEvUaQMMgbCGs2Latnz63WXkHCs/d2A/d0+L1yp0Z7MABoB5M12qJeg2gYYT03QiBuiqtqDS68952oNDoL7EAEA5M12qJeg2gYXBkC2Fr28OZio2KcKSvE+WV6v7Yekf6AgD8m5O1WqJeA2hYhC2ErdioCMVG8U8AAIIZtRpAKOM0QgAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMhADwCoiW3bKq2odLzfE+XO99lQy4hxRciyLCN9A4A/QrlWm1wO9RrAGYQtBB3btvXT5zYr70BhoIfil+6PrTfTb1q8Xrkzgx04gKAQ6rVaol4DMI/TCBF0Sisqje+8u6fFK8YV4Vh/Ma4IdU+Ld6y/mmw7UGjkF2QA8Eco1mqJeg2gYQX0yNZ7772n3//+98rLy9ORI0e0evVq3XDDDd75tm1rxowZev7551VYWKgePXro6aefVseOHb1trr32WuXm5vr0e+utt2rFihXe94WFhZo4caJee+01SdLQoUM1f/58NW/e3Oj6of62PZyp2Chnd7SS86d4WJalV+7MMHY6jalfXwHACaFSqyXqNYCGFdCwdfz4cV1xxRUaPXq0br755mrzZ8+erTlz5mjRokVq166dHnvsMfXr10979+5VXFyct924ceP06KOPet/HxMT49DN8+HAdOnRIa9askST98pe/1IgRI/T6668bWjM4JTYqQrFRoXG2q2VZITNWAHBSKNVqiXoNoOEEtNIMHDhQAwcOrHGebduaN2+epk6dqptuukmStHjxYiUmJmrZsmUaP368t21sbKySkpJq7GfPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venq6w2sFmMPF3AAQGkzUa2o1EHqC9med/fv3Kz8/X1lZWd5pbrdbvXv31qZNm3zC1ksvvaSlS5cqMTFRAwcO1PTp071HvjZv3iyPx+MNWpLUs2dPeTwebdq0qdawVVZWprKyMu/74uJip1cRqDMu5gaA0GCiXlOrgdATtDfIyM/PlyQlJib6TE9MTPTOk6Sf//znWr58uTZs2KBp06Zp5cqV3iNhZ/pp1apVtf5btWrl08/3zZo1Sx6Px/tKTU2t7yoBfuFibgAIDabrNbUaCD1Be2TrjO//emPbts+0cePGef/cqVMntW3bVt27d9f27dvVtWvXGvuoqZ/vmzJliu677z7v++LiYgIXAoKLuQEgNJiq19RqIHQFbdg6cw1Wfn6+kpOTvdMLCgqqHe36rq5du8rlcunzzz9X165dlZSUpK+//rpau2+++eas/bjdbrnd7nqsAeAcLuYGgNBAvQbwXUF7GmGbNm2UlJSkdevWeaeVl5crNzdXvXr1qvVzn3zyiSoqKrwBLSMjQ0VFRfrggw+8bbZu3aqioqKz9gMAAAAA9RHQn15KSkq0b98+7/v9+/dr586dSkhIUOvWrZWdna2ZM2eqbdu2atu2rWbOnKnY2FgNHz5ckvT3v/9dL730kgYNGqSWLVtq9+7dmjRpkrp06aKrrrpKknT55ZdrwIABGjdunP74xz9KOn3r98GDB3MnQgAAAADGBDRsbdu2TX369PG+P3ON1MiRI7Vo0SI98MADKi0t1d133+19qPFbb73lvdNgVFSU3n77bf3hD39QSUmJUlNTdd1112n69OmKiPj3wxVfeuklTZw40Xtnw6FDh2rBggUNuKYAAAAAwk1Aw9a1114r27ZrnW9ZlnJycpSTk1Pj/NTUVOXm5p5zOQkJCVq6dKm/wwQAAACAOgvaa7YAAAAAIJQRtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGBAZKAHAMNsW6o4Ya5/V6xkWeb6B4BwQb0GgEaHsNWY2bb0Qn/p4FZzy0jtKY1Zww4cAOqDeg0AjRKnETZmFSfM7rgl6eAWs7/EAkA4oF4DQKPEka1wMXmfFBXrXH/lJ6QnL3OuPwDAadRrAGg0CFvhIipWimoa6FEAAM6Feg0AjQanEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwAaDduWKk6Y698VK1mWuf4BIFxQrwE0EMIW4ATbll7oLx3cam4ZqT2lMWvYgQNAfVCvATQgTiMEnFBxwuyOW5IObjH7SywAhAPqNYAGxJEtwGmT90lRsc71V35CevIy5/oDAJxGvQZgGGELcFpUrBTVNNCjAACcC/UagGGcRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jPftm3l5OQoJSVFMTExuvbaa/XJJ5/4tCkrK9OECRPUsmVLNW3aVEOHDtWhQ4d82hQWFmrEiBHyeDzyeDwaMWKEjh49anjtAAAAAISzgIat48eP64orrtCCBQtqnD979mzNmTNHCxYs0IcffqikpCT169dPx44d87bJzs7W6tWrtWLFCm3cuFElJSUaPHiwKisrvW2GDx+unTt3as2aNVqzZo127typESNGGF8/AAAAAOErMpALHzhwoAYOHFjjPNu2NW/ePE2dOlU33XSTJGnx4sVKTEzUsmXLNH78eBUVFWnhwoVasmSJMjMzJUlLly5Vamqq1q9fr/79+2vPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venp6w6wsAAAAgLAStNds7d+/X/n5+crKyvJOc7vd6t27tzZt2iRJysvLU0VFhU+blJQUderUydtm8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvoI2bOXn50uSEhMTfaYnJiZ65+Xn5ysqKkrx8fFnbdOqVatq/bdq1crbpiazZs3yXuPl8XiUmppar/UBAAAAEF6CNmydYVmWz3vbtqtN+77vt6mp/bn6mTJlioqKiryvgwcP1nHkAAAAAMJZ0IatpKQkSap29KmgoMB7tCspKUnl5eUqLCw8a5uvv/66Wv/ffPNNtaNm3+V2u9WsWTOfFwAAAACcr6ANW23atFFSUpLWrVvnnVZeXq7c3Fz16tVLktStWze5XC6fNkeOHNGuXbu8bTIyMlRUVKQPPvjA22br1q0qKirytgEAAAAApwX0boQlJSXat2+f9/3+/fu1c+dOJSQkqHXr1srOztbMmTPVtm1btW3bVjNnzlRsbKyGDx8uSfJ4PBo7dqwmTZqkFi1aKCEhQZMnT1bnzp29dye8/PLLNWDAAI0bN05//OMfJUm//OUvNXjwYO5ECAAAAMCYgIatbdu2qU+fPt739913nyRp5MiRWrRokR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3s/MnTtXkZGRGjZsmEpLS9W3b18tWrRIERER3jYvvfSSJk6c6L1r4dChQ2t9thcAAAAAOCGgYevaa6+Vbdu1zrcsSzk5OcrJyam1TXR0tObPn6/58+fX2iYhIUFLly6tz1BxFifKT0k65WB/leduBACoMyfrNbUaAM4toGELocu2bZ25l2O3x9arVNEBHQ8AoGbUawAInKC9QQaCW2mF+V80u6fFK8YVce6GAIBama7X1GoAqB1HtlBv7z/QR7EXOH9r/BhXxDmfqQYAOH8m6jW1GgBqR9hCvcVGRSg2iq8SAAQ76jUANCxOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMiAz0ANAIVJyQyg18lVyxkmU53y8AhCsT9ZpaDQC1Imyh3mL/0N5Mx6k9pTFr2IkDgEOM1GtqNQDUitMI4R9XrD6samd2GQe3nP4VFgDgP9P1mloNALXiyBb8Y1m6pXy6YlSmvIczFRvl4Fep/IT05GXO9QcA4cxUvaZWA8A5EbZQD5ZKFS1FNZWcDFsAAIdRrwEgEDiNEAAAAAAM4OcthB/bdv76gnKuVwAAR5mo1RL1GkCDImwhvNi29EJ/6eDWQI8EAFAbajWARoLTCBFeKk6Y3Xmn9jz9zBkAgP9M12qJeg2gQXBkC+Fr8j4pyuEdLQ/3BABnmajVEvUaQIMgbCF8RcWevjMX0FBMXYMi8R9HNF7UajQ0k7Vaol6HGcJWqKlLAeAiYCB4mL4GJbWnNGYNO3DTuGkD0Lg1xPWC1OuwQtgKNRUnpJkpgR4FgLoyfQ3KwS2nl8ERAHO4aQPQ+DXE9YLU67BC2KqjUS98IFdM4P5xuKtO6r/q+Jk9rg6a9v92OvoLSpVte//8i4UfKKKJc31/dx1/sfADlTWJDom+TfnumMf9v/dUZjk35krbVoxOqlRux/8e4cvn77HVCsf+Ht32Sf2p4DZJofOdDlXuqpP6r6/N/icslOo1tbo6U/WaWt1wTNVqiXrd2FSUHj+vdoStEFNmufWLxFfPq61t2/r062P65liEdOyo0XGhYZwp0o6Klj6saqcn7HmS2IE3hDIr2rmdbJUz3aBunP5PGPW68XG8XlOrG5yjtVqiXocpwlaosazz3sFXVtn6pqzU6HAucEeKH9jMKrPc+tTVQe0rdhtbxpVNPpNbZTqlGGPLABoTp/8TRr1uHEzXa2o1EHoIW2Gia+vmamLgQswmlmRxgadZlqXpLZ6S2y5zvOvIqlK98M3PHO8XgP+o1yHMUL2mVgOhi7AVJppYFud4h7I6HNGsi8rvXMsBIDhQr0OcgXpNrQZCV5NADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAv8LW9u3b9fHHH3vf/+Uvf9ENN9yghx56SOXl5Y4NDgAAAABClV9ha/z48frss88kSV988YVuu+02xcbG6pVXXtEDDzzg6AABAAAAIBT5FbY+++wz/ehHP5IkvfLKK7rmmmu0bNkyLVq0SCtXrnRyfAAAAAAQkvwKW7Ztq6qqSpK0fv16DRo0SJKUmpqqb7/91rnRAQAAAECI8itsde/eXY899piWLFmi3NxcXXfddZKk/fv3KzEx0dEBAgAAAEAoivTnQ3PnztXtt9+uV199VVOnTtVll10mSfrzn/+sXr16OTpAAMD5cdsnpSrn+y2z3JJlOd8xAIQp6nX48CtsXXHFFT53Izzj97//vSIj/eoSAFBPfyq4zUi/n7o6aHqLp9iBA4BDqNfhw6/TCC+99FL985//rDb95MmTateuXb0HBQA4P2WWW5+6OhhdRvuK3XLbZUaXAQCNHfU6PPl1GOrLL79UZWVltellZWU6dOhQvQf1XceOHdO0adO0evVqFRQUqEuXLvrDH/6gK6+8UpI0atQoLV682OczPXr00JYtW3zGNXnyZC1fvlylpaXq27evnnnmGV188cWOjhUAGpxlaXqLp4zsXN32SWO/vgJA2KFeh6U6ha3XXnvN++e1a9fK4/F431dWVurtt99WmzZtnBudpDvuuEO7du3SkiVLlJKSoqVLlyozM1O7d+/WRRddJEkaMGCAXnzxRe9noqKifPrIzs7W66+/rhUrVqhFixaaNGmSBg8erLy8PEVERDg6XgBocJalMiva+X4NXE8AAGGNeh126hS2brjhBkmSZVkaOXKkzzyXy6VLLrlETz31lGODKy0t1cqVK/WXv/xF11xzjSQpJydHr776qp599lk99thjkiS3262kpKQa+ygqKtLChQu1ZMkSZWZmSpKWLl2q1NRUrV+/Xv3793dsvAAAAABwRp2u2aqqqlJVVZVat26tgoIC7/uqqiqVlZVp7969Gjx4sGODO3XqlCorKxUd7fsLQExMjDZu3Oh9v2HDBrVq1Urt2rXTuHHjVFBQ4J2Xl5eniooKZWVleaelpKSoU6dO2rRpk2NjBQAAAIDv8uuarf379zs9jhrFxcUpIyNDv/3tb3X55ZcrMTFRy5cv19atW9W2bVtJ0sCBA3XLLbcoLS1N+/fv17Rp0/STn/xEeXl5crvdys/PV1RUlOLj4336TkxMVH5+fq3LLisrU1nZv8+pLS4uNrOSAAAAABolv+/T/vbbb+vtt9/2HuH6rhdeeKHeAztjyZIlGjNmjC666CJFRESoa9euGj58uLZv3y5JuvXWW71tO3XqpO7duystLU1vvPGGbrrpplr7tW1b1lluizlr1izNmDHDsfUAAAAAEF78uvX7jBkzlJWVpbffflvffvutCgsLfV5O+sEPfqDc3FyVlJTo4MGD+uCDD1RRUVHrjTiSk5OVlpamzz//XJKUlJSk8vLyauMqKChQYmJircudMmWKioqKvK+DBw86t1IAAAAAGj2/jmw999xzWrRokUaMGOH0eGrVtGlTNW3aVIWFhVq7dq1mz55dY7t//vOfOnjwoJKTkyVJ3bp1k8vl0rp16zRs2DBJ0pEjR7Rr165a+5BO33TD7XY7vyIAAAAAwoJfYau8vFy9evVyeiw1Wrt2rWzbVnp6uvbt26f7779f6enpGj16tEpKSpSTk6Obb75ZycnJ+vLLL/XQQw+pZcuWuvHGGyVJHo9HY8eO1aRJk9SiRQslJCRo8uTJ6ty5s/fuhAAAAADgNL9OI7zjjju0bNkyp8dSo6KiIv3qV79S+/bt9Ytf/EJXX3213nrrLblcLkVEROjjjz/W9ddfr3bt2mnkyJFq166dNm/erLi4OG8fc+fO1Q033KBhw4bpqquuUmxsrF5//XWesQUAAADAGL+ObJ08eVLPP/+81q9frx/+8IdyuVw+8+fMmePI4CRp2LBh3tP/vi8mJkZr1649Zx/R0dGaP3++5s+f79i4AAAAAOBs/Apbf/vb3/SjH/1IkrRr1y6feWe7wx8AAAAAhAu/wta7777r9DiAGrntk1LVudvVqT8AgKOo1QBQM7+fswU0hD8V3BboIQAAzoFaDQA18yts9enT56ynC77zzjt+Dwgos9z61NVB7St2G1vGp64OKrO4tT8A+ItaDQDn5lfYOnO91hkVFRXauXOndu3apZEjRzoxLoQzy9L0Fk/JbZcZW0SZ5Za4vhAA/EetBoBz8itszZ07t8bpOTk5KikpqdeAAEmSZanMig70KAAAZ0OtBoCz8us5W7W5/fbb9cILLzjZJQAAAACEJEfD1ubNmxUdzS9cAAAAAODXaYQ33XSTz3vbtnXkyBFt27ZN06ZNc2RgAAAAABDK/ApbHo/H532TJk2Unp6uRx99VFlZWY4MDAAAAABCmV9h68UXX3R6HAAAAADQqNTrocZ5eXnas2ePLMtShw4d1KVLF6fGBQAAAAAhza+wVVBQoNtuu00bNmxQ8+bNZdu2ioqK1KdPH61YsUIXXnih0+MEAAAAgJDi190IJ0yYoOLiYn3yySf617/+pcLCQu3atUvFxcWaOHGi02ME0ACqbFuVVc6+bNsO9GoBQKNiolZTrwFz/DqytWbNGq1fv16XX365d1qHDh309NNPc4MMIETtPHhUpTrpaJ8XuCPVITlOlmU52i8AhCsTtVqiXgOm+HVkq6qqSi6Xq9p0l8ulqqqqeg8KQMNw9EF7NSgpO6UqfiwFgHoxXasl6jVgil9Htn7yk5/o17/+tZYvX66UlBRJ0j/+8Q/de++96tu3r6MDBGDOd3/B7No6XmWWMw8lr7Jtbf/qqCN9AUC4M1WrJeo1YJpfYWvBggW6/vrrdckllyg1NVWWZemrr75S586dtXTpUqfHCKABRFiWIpo4dPoIB7gbHbd90sjfa5nlljhtCThvjtZqiXrdCJmo19Rq//kVtlJTU7V9+3atW7dOn376qWzbVocOHZSZmen0+AAAQeBPBbcZ6fdTVwdNb/EUO3EAcIiJek2t9l+dTgN+55131KFDBxUXF0uS+vXrpwkTJmjixIm68sor1bFjR73//vtGBgoAaFhlllufujoYXUb7it1y22VGlwEAjZ3pek2t9l+djmzNmzdP48aNU7NmzarN83g8Gj9+vObMmaMf//jHjg0QABAglqXpLZ4ysoN12yeNHS0DgLBjqF5Tq+uvTmHro48+0hNPPFHr/KysLD355JP1HhQAIEhYlqMX43txnQgAOMtEvaZW11udTiP8+uuva7zl+xmRkZH65ptv6j0oAAAAAAh1dQpbF110kT7++ONa5//tb39TcnJyvQcFAAAAAKGuTmFr0KBBeuSRR3TyZPUnl5eWlmr69OkaPHiwY4MDAAAAgFBVp2u2Hn74Ya1atUrt2rXTPffco/T0dFmWpT179ujpp59WZWWlpk6damqsAAAAABAy6hS2EhMTtWnTJt11112aMmWKbNuWdPrJ5v3799czzzyjxMREIwMFAAAAgFBS54cap6Wl6c0331RhYaH27dsn27bVtm1bxcfHmxgfADQs2zZ2q3MAgIMM1GtqNZxW57B1Rnx8vK688konxwKgEaqybSO3jm1inT6q7ijb1qP/nKT0it3O9ouzctsnjXxHyiy35PR3BGjEqNc4G2q1f/wOWwBwPrZ/ddRIvxe4I9UhOc7RHbjbLjO+4/7U1eH0jgVeph6Y+amrg6a3eKpR78QBJ1Gv/41aXR212j+ELQCOa2Kd3rmWlJ0ytoySslOqsqUIQ7V5XKsVRh7m29h/wTtfZZZbn7o6qL3B/yy1r9gtt11m5qHMQCNBva4Ztfo0anX9EbYAOM6yLHVIjlOV7XzfVbZt7NfX7yqzolXWpHEW/qBgWZre4ilj18eZ+gUWaGyo1zgranW9EbYAGGFZlplfMQ2cL44AsSwzv2TyHQHqhHqNs6JW10udHmoMAAAAADg/hC0AAAAAMIDTCAGYYeh5VZW2rRidVKm4SxQAOIJ6DRhD2ALgPNPPP4mWPqxqpyfseZK4WxQA+I16DRjFaYQAHNcQz6u6sslncsv5X2IBIJxQrwGzOLIFwCinn38SWVWqF775mWP9AQBOo14DziNsATDK6eefVNoGHgYDAKBeAwZwGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgFu/AwhZbvukIqosR/sDADiPeo1wRdgCELJ4WCYAhAbqNcIVpxECCCllcuvDqnZGl/Gpq4PKLLfRZQBAY0e9BjiyFXJs21bVeT6QvYont6MxsizdUj5dMSpT19bxirCcOy3ljDLLLRnoF41HpW2r8nyL8XmgXqNRol4DhK1QU2VL2w4UBnoYQIBZKlW0yqxoRTRhJ4uGYX8nEG3/qlClig7gaIBQQb1GeOM0wjBwgTtS1DcAqJ+qBlgG9RoAGheObIWYJpbUPS2+zp+xOMQOAI75UWpzVTSJcbxf6jUANC6ErRBjWZYi2A8DQEA1sSxOiQIAnJNl21yVez6Ki4vl8XhUVFSkZs2aBXo4gDPKj0szU07/+aHDUlTT4O5X0onyU+rwyFpJ0u5H+ys2it+M8D2Gvn8nSooU+2Tr03+e/JViL/A40i9wTgZrKvUaAWPye90AzjcbcM0WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADAj6sHXs2DFlZ2crLS1NMTEx6tWrlz788EPvfNu2lZOTo5SUFMXExOjaa6/VJ5984tNHWVmZJkyYoJYtW6pp06YaOnSoDh061NCrAgAAACCMBH3YuuOOO7Ru3TotWbJEH3/8sbKyspSZmal//OMfkqTZs2drzpw5WrBggT788EMlJSWpX79+OnbsmLeP7OxsrV69WitWrNDGjRtVUlKiwYMHq7KyMlCrBQAAAKCRC+qwVVpaqpUrV2r27Nm65pprdNlllyknJ0dt2rTRs88+K9u2NW/ePE2dOlU33XSTOnXqpMWLF+vEiRNatmyZJKmoqEgLFy7UU089pczMTHXp0kVLly7Vxx9/rPXr1wd4DQEAAAA0VkEdtk6dOqXKykpFR0f7TI+JidHGjRu1f/9+5efnKysryzvP7Xard+/e2rRpkyQpLy9PFRUVPm1SUlLUqVMnb5ualJWVqbi42OcFAAAAAOcrqMNWXFycMjIy9Nvf/laHDx9WZWWlli5dqq1bt+rIkSPKz8+XJCUmJvp8LjEx0TsvPz9fUVFRio+Pr7VNTWbNmiWPx+N9paamOrx2AAAAABqzoH+U95IlSzRmzBhddNFFioiIUNeuXTV8+HBt377d28ayLJ/P2LZdbdr3navNlClTdN9993nfFxcXE7gAIMScKD8l6ZRDfVUq1pGeAADfVddaHeOKOOf/9YNF0IetH/zgB8rNzdXx48dVXFys5ORk3XrrrWrTpo2SkpIknT56lZyc7P1MQUGB92hXUlKSysvLVVhY6HN0q6CgQL169ap1uW63W26329BaAQBMsW1bZ3bB3R5br1JFn7X9+YrRSe1xpisACHv1qdW7H+2v2KigjzGSgvw0wu9q2rSpkpOTVVhYqLVr1+r666/3Bq5169Z525WXlys3N9cbpLp16yaXy+XT5siRI9q1a9dZwxYAIDSVVpi/02yMK8L4MgCgMWuIWh0Mgj4Srl27VrZtKz09Xfv27dP999+v9PR0jR49WpZlKTs7WzNnzlTbtm3Vtm1bzZw5U7GxsRo+fLgkyePxaOzYsZo0aZJatGihhIQETZ48WZ07d1ZmZmaA1w4AYNL7D/RR7AXNnOms/Lj05Ok/hsrpKwAQCupaq0PpB6+gD1tFRUWaMmWKDh06pISEBN188816/PHH5XK5JEkPPPCASktLdffdd6uwsFA9evTQW2+9pbi4OG8fc+fOVWRkpIYNG6bS0lL17dtXixYtUkRE6PxFAQDqLjYqwsFTTYJ+lwkAIcnZWh1cgn6thg0bpmHDhtU637Is5eTkKCcnp9Y20dHRmj9/vubPn29ghAAAAABQXchcswUAAAAAoYSwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AAPDXifJKI/3GuCJkWZaRvgEgHFGvEa4IWwBCVvfH1pvpNy1er9yZwQ4cABxCvUa44jRCACElxhWh7mnxRpex7UChSivM/AoLAOGCeg1wZAtAiLEsS6/cmWFk53qivNLYr68AEG6o1wBhC0AIsixLsVGULwAIdtRrhDtOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGcC9OAAhxtm0bfahnjCtClmUZ6x8AwgX1OvwQtgAghNm2rZ8+t1l5BwqNLaN7WrxeuTODHTgA1AP1OjxxGiEAhLDSikqjO25J2nag0OgvsQAQDqjX4YkjWwBQgxPlZnZWJk/x2PZwpmKjIhzr70R5pbo/tt6x/gDABBP12vTpeNTr8EHYAoAamNppmTzFIzYqQrFRlHUA4cVEvTZ9Oh71OnxwGiEA/J8YV4S6p8UbXQaneABA/Zmu19RqOIVIDQD/x7IsvXJnhpEdLKd4AIBzTNVrajWcRtgCgO+wLItTOwAgBFCvEQo4jRAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwABu4QIAOKcT5WaeNxPjijD20FAACEcm6jW12n+ELQDAOZl67kz3tHi9cmcGO3EAcIiJek2t9h+nEQIAahTjilD3tHijy9h2oNDIQ6QBIJyYrtfUav9xZAsAUCPLsvTKnRlGdrAnyiuNHS0DgHBjql5Tq+uPsAUAqJVlWYqNYlcBAMGOeh2cOI0QAAAAAAwI6rB16tQpPfzww2rTpo1iYmJ06aWX6tFHH1VVVZW3zahRo2RZls+rZ8+ePv2UlZVpwoQJatmypZo2baqhQ4fq0KFDDb06AAAAAMJIUB9rfOKJJ/Tcc89p8eLF6tixo7Zt26bRo0fL4/Ho17/+tbfdgAED9OKLL3rfR0VF+fSTnZ2t119/XStWrFCLFi00adIkDR48WHl5eYqIiGiw9QEAAAAQPoI6bG3evFnXX3+9rrvuOknSJZdcouXLl2vbtm0+7dxut5KSkmrso6ioSAsXLtSSJUuUmZkpSVq6dKlSU1O1fv169e/f3+xKAAAAAAhLQX0a4dVXX623335bn332mSTpo48+0saNGzVo0CCfdhs2bFCrVq3Url07jRs3TgUFBd55eXl5qqioUFZWlndaSkqKOnXqpE2bNtW67LKyMhUXF/u8AAAAAOB8BfWRrd/85jcqKipS+/btFRERocrKSj3++OP62c9+5m0zcOBA3XLLLUpLS9P+/fs1bdo0/eQnP1FeXp7cbrfy8/MVFRWl+HjfZw8kJiYqPz+/1mXPmjVLM2bMMLZuAIDTTpQ7f6viWEd7BABQq/0T1GHr5Zdf1tKlS7Vs2TJ17NhRO3fuVHZ2tlJSUjRy5EhJ0q233upt36lTJ3Xv3l1paWl64403dNNNN9Xat23bZ30K9pQpU3Tfffd53xcXFys1NdWBtQIAfJfTz3CJ0UntiXa0SwAIe9Rq/wR12Lr//vv14IMP6rbbbpMkde7cWQcOHNCsWbO8Yev7kpOTlZaWps8//1ySlJSUpPLychUWFvoc3SooKFCvXr1qXbbb7Zbb7XZwbQAAZ8S4ItQ9LV7bDhQaXw4AwD/U6voL6rB14sQJNWnie1lZRESEz63fv++f//ynDh48qOTkZElSt27d5HK5tG7dOg0bNkySdOTIEe3atUuzZ882N3gAQK0sy9Ird2aotMLZ01IkSeXHpSf/vRwAgH+o1fUX1GFryJAhevzxx9W6dWt17NhRO3bs0Jw5czRmzBhJUklJiXJycnTzzTcrOTlZX375pR566CG1bNlSN954oyTJ4/Fo7NixmjRpklq0aKGEhARNnjxZnTt39t6dEADQ8CzLUmyUid1QUO/aACCkUKvrJ6jXcv78+Zo2bZruvvtuFRQUKCUlRePHj9cjjzwi6fRRro8//lj/9V//paNHjyo5OVl9+vTRyy+/rLi4OG8/c+fOVWRkpIYNG6bS0lL17dtXixYt4hlbAAAAAIwJ6rAVFxenefPmad68eTXOj4mJ0dq1a8/ZT3R0tObPn6/58+c7PEIAAAAAqFlQP2cLAAAAAEIVYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwCAcHOivDIo+wIA/JvT9ZV6HZ4IWwDQwLo/tj7QQwAAnAO1Gk7gNEIAaAAxrgh1T4s31n/3tHjFuCKM9Q8A4cB0rZao1+GGI1sA0AAsy9Ird2aotMLMaSQxrghZlmWkbwAIF6ZrtUS9DjeELQBoIJZlKTaKsgsAwYxaDSdxGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHcagXAaeUngrMvAMC/OV1fqdeAUYQtAKc9eVmgRwAAOBdqNRBSOI0QCGeuWCm1p7n+U3ueXgYAwH+ma7VEvQYM4cgWEM4sSxqzRqowdBqJK/b0MgAA/jNdqyXqNWAIYQsId5YlRTUN9CgAAGdDrQZCUlCfRnjq1Ck9/PDDatOmjWJiYnTppZfq0UcfVVVVlbeNbdvKyclRSkqKYmJidO211+qTTz7x6aesrEwTJkxQy5Yt1bRpUw0dOlSHDh1q6NUBAAAAEEaCOmw98cQTeu6557RgwQLt2bNHs2fP1u9//3vNnz/f22b27NmaM2eOFixYoA8//FBJSUnq16+fjh075m2TnZ2t1atXa8WKFdq4caNKSko0ePBgVVZWBmK1AAAAAISBoD6NcPPmzbr++ut13XXXSZIuueQSLV++XNu2bZN0+qjWvHnzNHXqVN10002SpMWLFysxMVHLli3T+PHjVVRUpIULF2rJkiXKzMyUJC1dulSpqalav369+vfvH5iVAwAAANCoBfWRrauvvlpvv/22PvvsM0nSRx99pI0bN2rQoEGSpP379ys/P19ZWVnez7jdbvXu3VubNm2SJOXl5amiosKnTUpKijp16uRtU5OysjIVFxf7vAAAAADgfAX1ka3f/OY3KioqUvv27RUREaHKyko9/vjj+tnPfiZJys/PlyQlJib6fC4xMVEHDhzwtomKilJ8fHy1Nmc+X5NZs2ZpxowZTq4OAAAAgDAS1Ee2Xn75ZS1dulTLli3T9u3btXjxYj355JNavHixTzvre7cqtW272rTvO1ebKVOmqKioyPs6ePCg/ysCAAAAIOwE9ZGt+++/Xw8++KBuu+02SVLnzp114MABzZo1SyNHjlRSUpKk00evkpOTvZ8rKCjwHu1KSkpSeXm5CgsLfY5uFRQUqFevXrUu2+12y+12m1gtAAAAAGEgqI9snThxQk2a+A4xIiLCe+v3Nm3aKCkpSevWrfPOLy8vV25urjdIdevWTS6Xy6fNkSNHtGvXrrOGLQAAAACoj6A+sjVkyBA9/vjjat26tTp27KgdO3Zozpw5GjNmjKTTpw9mZ2dr5syZatu2rdq2bauZM2cqNjZWw4cPlyR5PB6NHTtWkyZNUosWLZSQkKDJkyerc+fO3rsTAgAAAIDTgjpszZ8/X9OmTdPdd9+tgoICpaSkaPz48XrkkUe8bR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3jZz585VZGSkhg0bptLSUvXt21eLFi1SREREIFYLAAAAQBiwbNu2Az2IUFBcXCyPx6OioiI1a9Ys0MMBANSm/Lg0M+X0nx86LEU1De5+ASAchXhNPd9sENTXbAEAAABAqArq0wgBAKiX8hPB2RcA4N/qWl9dsdI5HvMULAhbAIDG68nLAj0CAMC51LVWh9Bph5xGCABoXFyxUmpPc/2n9jy9DACA/0zX6iDBkS0AQONiWdKYNVKFodP+Quj0FQAIWvWp1SH0gxdhCwDQ+FhWyJxiAgBhKwxqNacRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGRgR5AqLBtW5JUXFwc4JEAAAAACKQzmeBMRqgNYes8HTt2TJKUmpoa4JEAAAAACAbHjh2Tx+Opdb5lnyuOQZJUVVWlw4cPKy4uTpZlOd5/cXGxUlNTdfDgQTVr1szx/vFvbOuGwXZuOGzrhsO2bjhs64bDtm44bOuGY3pb27atY8eOKSUlRU2a1H5lFke2zlOTJk108cUXG19Os2bN+MfXQNjWDYPt3HDY1g2Hbd1w2NYNh23dcNjWDcfktj7bEa0zuEEGAAAAABhA2AIAAAAAAwhbQcLtdmv69Olyu92BHkqjx7ZuGGznhsO2bjhs64bDtm44bOuGw7ZuOMGyrblBBgAAAAAYwJEtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYMuSZZ55RmzZtFB0drW7duun9998/a/vc3Fx169ZN0dHRuvTSS/Xcc89Va7Ny5Up16NBBbrdbHTp00OrVq00NP6TUZVuvWrVK/fr104UXXqhmzZopIyNDa9eu9WmzaNEiWZZV7XXy5EnTqxL06rKtN2zYUON2/PTTT33a8b2uWV229ahRo2rc1h07dvS24Xtd3XvvvachQ4YoJSVFlmXp1VdfPednqNX+qeu2plb7r67bmlrtv7pua2q1f2bNmqUrr7xScXFxatWqlW644Qbt3bv3nJ8LlnpN2DLg5ZdfVnZ2tqZOnaodO3boxz/+sQYOHKivvvqqxvb79+/XoEGD9OMf/1g7duzQQw89pIkTJ2rlypXeNps3b9att96qESNG6KOPPtKIESM0bNgwbd26taFWKyjVdVu/99576tevn958803l5eWpT58+GjJkiHbs2OHTrlmzZjpy5IjPKzo6uiFWKWjVdVufsXfvXp/t2LZtW+88vtc1q+u2/sMf/uCzjQ8ePKiEhATdcsstPu34Xvs6fvy4rrjiCi1YsOC82lOr/VfXbU2t9l9dt/UZ1Oq6q+u2plb7Jzc3V7/61a+0ZcsWrVu3TqdOnVJWVpaOHz9e62eCql7bcNx//Md/2HfeeafPtPbt29sPPvhgje0feOABu3379j7Txo8fb/fs2dP7ftiwYfaAAQN82vTv39++7bbbHBp1aKrrtq5Jhw4d7BkzZnjfv/jii7bH43FqiI1GXbf1u+++a0uyCwsLa+2T73XN6vu9Xr16tW1Zlv3ll196p/G9PjtJ9urVq8/ahlrtjPPZ1jWhVtfd+WxrarUz/PleU6v9U1BQYEuyc3Nza20TTPWaI1sOKy8vV15enrKysnymZ2VladOmTTV+ZvPmzdXa9+/fX9u2bVNFRcVZ29TWZzjwZ1t/X1VVlY4dO6aEhASf6SUlJUpLS9PFF1+swYMHV/s1NdzUZ1t36dJFycnJ6tu3r959912feXyvq3Pie71w4UJlZmYqLS3NZzrf6/qhVgcOtdo8anXDo1b7p6ioSJKq1YPvCqZ6Tdhy2LfffqvKykolJib6TE9MTFR+fn6Nn8nPz6+x/alTp/Ttt9+etU1tfYYDf7b19z311FM6fvy4hg0b5p3Wvn17LVq0SK+99pqWL1+u6OhoXXXVVfr8888dHX8o8WdbJycn6/nnn9fKlSu1atUqpaenq2/fvnrvvfe8bfheV1ff7/WRI0f0P//zP7rjjjt8pvO9rj9qdeBQq82hVgcGtdo/tm3rvvvu09VXX61OnTrV2i6Y6nWko73By7Isn/e2bVebdq72359e1z7Dhb/bZfny5crJydFf/vIXtWrVyju9Z8+e6tmzp/f9VVddpa5du2r+/Pn6z//8T+cGHoLqsq3T09OVnp7ufZ+RkaGDBw/qySef1DXXXONXn+HE3+2yaNEiNW/eXDfccIPPdL7XzqBWNzxqtVnU6sCgVvvnnnvu0d/+9jdt3LjxnG2DpV5zZMthLVu2VERERLVUXFBQUC09n5GUlFRj+8jISLVo0eKsbWrrMxz4s63PePnllzV27Fj993//tzIzM8/atkmTJrryyivD+lel+mzr7+rZs6fPduR7XV19trVt23rhhRc0YsQIRUVFnbUt3+u6o1Y3PGp1YFCrzaJW+2fChAl67bXX9O677+riiy8+a9tgqteELYdFRUWpW7duWrdunc/0devWqVevXjV+JiMjo1r7t956S927d5fL5Tprm9r6DAf+bGvp9K+ko0aN0rJly3Tdddedczm2bWvnzp1KTk6u95hDlb/b+vt27Njhsx35XldXn22dm5urffv2aezYsedcDt/ruqNWNyxqdeBQq82iVteNbdu65557tGrVKr3zzjtq06bNOT8TVPXa0dttwLZt216xYoXtcrnshQsX2rt377azs7Ptpk2beu828+CDD9ojRozwtv/iiy/s2NhY+95777V3795tL1y40Ha5XPaf//xnb5v//d//tSMiIuzf/e539p49e+zf/e53dmRkpL1ly5YGX79gUtdtvWzZMjsyMtJ++umn7SNHjnhfR48e9bbJycmx16xZY//973+3d+zYYY8ePdqOjIy0t27d2uDrF0zquq3nzp1rr1692v7ss8/sXbt22Q8++KAtyV65cqW3Dd/rmtV1W59x++232z169KixT77X1R07dszesWOHvWPHDluSPWfOHHvHjh32gQMHbNumVjuprtuaWu2/um5rarX/6rqtz6BW181dd91lezwee8OGDT714MSJE942wVyvCVuGPP3003ZaWpodFRVld+3a1ef2lCNHjrR79+7t037Dhg12ly5d7KioKPuSSy6xn3322Wp9vvLKK3Z6errtcrns9u3b+xTCcFaXbd27d29bUrXXyJEjvW2ys7Pt1q1b21FRUfaFF15oZ2Vl2Zs2bWrANQpeddnWTzzxhP2DH/zAjo6OtuPj4+2rr77afuONN6r1yfe6ZnWtIUePHrVjYmLs559/vsb++F5Xd+aW17XVA2q1c+q6ranV/qvrtqZW+8+fGkKtrruatrEk+8UXX/S2CeZ6bf3fSgAAAAAAHMQ1WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgCEtQ0bNsiyLB09ejTQQwEANDKELQBAozdq1ChZliXLsuRyuXTppZdq8uTJOn78eKCHBgBoxCIDPQAAABrCgAED9OKLL6qiokLvv/++7rjjDh0/fly33nproIcGAGikOLIFAAgLbrdbSUlJSk1N1fDhw/Xzn/9cr776qnd+Xl6eunfvrtjYWPXq1Ut79+71zvv73/+u66+/XomJibrgggt05ZVXav369T79P/PMM2rbtq2io6OVmJion/70p955tm1r9uzZuvTSSxUTE6MrrrhCf/7zn42vMwAgsAhbAICwFBMTo4qKCu/7qVOn6qmnntK2bdsUGRmpMWPGeOeVlJRo0KBBWr9+vXbs2KH+/ftryJAh+uqrryRJ27Zt08SJE/Xoo49q7969WrNmja655hrv5x9++GG9+OKLevbZZ/XJJ5/o3nvv1e23367c3NyGW2EAQIOzbNu2Az0IAABMGjVqlI4ePeo9kvXBBx9o0KBB6tu3r+666y716dNH69evV9++fSVJb775pq677jqVlpYqOjq6xj47duyou+66S/fcc49WrVql0aNH69ChQ4qLi/Npd/z4cbVs2VLvvPOOMjIyvNPvuOMOnThxQsuWLTOz0gCAgOOaLQBAWPjrX/+qCy64QKdOnVJFRYWuv/56zZ8/X7t375Yk/fCHP/S2TU5OliQVFBSodevWOn78uGbMmKG//vWvOnz4sE6dOqXS0lLvka1+/fopLS1Nl156qQYMGKABAwboxhtvVGxsrHbv3q2TJ0+qX79+PuMpLy9Xly5dGmjtAQCBQNgCAISFPn366Nlnn5XL5VJKSopcLpckecPWmfeSZFmWJKmqqkqSdP/992vt2rV68sknddlllykmJkY//elPVV5eLkmKi4vT9u3btWHDBr311lt65JFHlJOTow8//NDbxxtvvKGLLrrIZ0xut9vsSgMAAoqwBQAIC02bNtVll13m12fff/99jRo1SjfeeKOk09dwffnllz5tIiMjlZmZqczMTE2fPl3NmzfXO++8o379+sntduurr75S796967saAIAQQtgCAOAcLrvsMq1atUpDhgyRZVmaNm2a94iVdPoUxS+++ELXXHON4uPj9eabb6qqqkrp6emKi4vT5MmTde+996qqqkpXX321iouLtWnTJl1wwQUaOXJkANcMAGASYQsAgHOYO3euxowZo169eqlly5b6zW9+o+LiYu/85s2ba9WqVcrJydHJkyfVtm1bLV++XB07dpQk/fa3v1WrVq00a9YsffHFF2revLm6du2qhx56KFCrBABoANyNEAAAAAAM4DlbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADDg/wOZVCSCE2gOPQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 16\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, folding at the correct period (blue line) generates a profile that looks approximately sinusoidal, whereas folding at a different period (orange line) does not. \n", + "\n", + "For Phase Dispersion Minimization, we are not interested in the *mean* in each phase bin, but rather the *variance* in each phase bin, which we'd like to _minimize_, not maximize. We can also calculate that using `fold_profile`, using `mode=\"pdm\"` (the default is Epoch Folding, `mode=\"ef\"`):\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIOCAYAAABOCBf1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFgUlEQVR4nO3de3QU5f3H8c+QbDYJhjWBkosGxIIol1puPwhaEblfvVWk1BxARNSfUBS0IiLBKlSqgAXvBw3l6s8KVquCoIJSLkIAK4IgihgKMVZDQiAkIZnfH5StaxIgm3myu9n365w9J7vz7DPPDLvf5bPPzKxl27YtAAAAAICj6gV6AAAAAABQFxG2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAZEBnoAoaK8vFyHDh1SXFycLMsK9HAAAAAABIht2zp69KhSUlJUr94Z5q/sAFq3bp09cOBAOzk52ZZkr1ixwmf5a6+9Zvfu3dtu2LChLcnevn17hT66detmS/K53XzzzT5tfvjhB/uWW26xGzRoYDdo0MC+5ZZb7Ly8vGqNNTs7u8J6uHHjxo0bN27cuHHjFr637OzsM2aIgM5sHTt2TJdffrlGjhypG2+8sdLlV1xxhW666SaNHj26yn5Gjx6tRx55xHs/JibGZ/mwYcN08OBBrVy5UpJ0++23Kz09XW+++eY5jzUuLk6SlJ2drQYNGpzz8wAAAADULQUFBUpNTfVmhKoENGz169dP/fr1q3J5enq6JOnrr78+Yz+xsbFKSkqqdNnu3bu1cuVKbdq0SZ07d5Ykvfjii0pLS9OePXvUsmXLcxrr6UMHGzRoQNgCAAAAcNbTi+rEBTIWL16sRo0aqXXr1po4caKOHj3qXbZx40Z5PB5v0JKkLl26yOPxaMOGDVX2WVxcrIKCAp8bAAAAAJyrkL9Axm9/+1s1a9ZMSUlJ2rlzpyZNmqRPPvlEq1evliTl5OSocePGFZ7XuHFj5eTkVNnvjBkzNG3aNGPjBgAAAFC3hXzY+vG5XG3atFGLFi3UsWNHbdu2Te3bt5dU+fSebdtnnPabNGmS7r33Xu/908dlAgAAAMC5qBOHEf5Y+/bt5XK59MUXX0iSkpKS9O2331Zo99133ykxMbHKftxut/f8LM7TAgAAAFBddS5sffbZZyotLVVycrIkKS0tTfn5+fr444+9bTZv3qz8/Hx17do1UMMEAAAAUMcF9DDCwsJC7du3z3t///792rFjhxISEtSkSRP98MMP+uabb3To0CFJ0p49eySdmq1KSkrSl19+qcWLF6t///5q1KiRdu3apQkTJqhdu3a64oorJEmXXXaZ+vbtq9GjR+v555+XdOrS7wMHDjznKxECAAAAQHVZtm3bgVr52rVr1b179wqPDx8+XJmZmcrMzNTIkSMrLJ86daoyMjKUnZ2tW265RTt37lRhYaFSU1M1YMAATZ06VQkJCd72P/zwg8aNG6c33nhDkjR48GDNmzdP559//jmPtaCgQB6PR/n5+RxSCAAAAISxc80GAQ1boYSwBQAAAEA692xQ587ZAgAAAIBgQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMCAyEAPAKhttm2rqLTMSN8xrghZlmWkbwAIJyZrtUS9BlA7CFsIK7Zt69fPbVTWgTwj/XdsGq9X70jjAxwAasB0rZao1wBqB4cRIqwUlZYZ/fDeeiDP6DexABAOTNdqiXoNoHYws4WwtfWhnoqNinCkr+MlZer46BpH+gIA/JeTtVqiXgOoXYQthK3YqAjFRvEWAIBgRq0GEMo4jBAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADAgoGHrww8/1KBBg5SSkiLLsvT666/7LF++fLn69OmjRo0aybIs7dixo0IfxcXFGjt2rBo1aqT69etr8ODBOnjwoE+bvLw8paeny+PxyOPxKD09XUeOHDG3YQAAAADCXkDD1rFjx3T55Zdr3rx5VS6/4oor9Mc//rHKPsaPH68VK1Zo2bJlWr9+vQoLCzVw4ECVlZV52wwbNkw7duzQypUrtXLlSu3YsUPp6emObw8AAAAAnBYZyJX369dP/fr1q3L56UD09ddfV7o8Pz9f8+fP18KFC9WzZ09J0qJFi5Samqo1a9aoT58+2r17t1auXKlNmzapc+fOkqQXX3xRaWlp2rNnj1q2bOnsRgEAAACAQvycraysLJWWlqp3797ex1JSUtSmTRtt2LBBkrRx40Z5PB5v0JKkLl26yOPxeNtUpri4WAUFBT43AAAAADhXIR22cnJyFBUVpfj4eJ/HExMTlZOT423TuHHjCs9t3Lixt01lZsyY4T3Hy+PxKDU11dnBAwAAAKjTAnoYoSm2bcuyLO/9H/9dVZufmjRpku69917v/YKCAgIXzsnxkrKzN/JDjCvijK9ZAED1UK8BmBbSYSspKUklJSXKy8vzmd3Kzc1V165dvW2+/fbbCs/97rvvlJiYWGXfbrdbbrfb+UGjzuv46Boz/TaN16t3pPEBDgAOoV4DMC2kDyPs0KGDXC6XVq9e7X3s8OHD2rlzpzdspaWlKT8/Xx9//LG3zebNm5Wfn+9tA9RUjCtCHZvGn71hDWw9kKeiUjPfwgJAuKBeA6hNAZ3ZKiws1L59+7z39+/frx07dighIUFNmjTRDz/8oG+++UaHDh2SJO3Zs0fSqdmqpKQkeTwejRo1ShMmTFDDhg2VkJCgiRMnqm3btt6rE1522WXq27evRo8ereeff16SdPvtt2vgwIFciRCOsSxLr96RZuTD9XhJmbFvXwEg3FCvAdSmgIatrVu3qnv37t77p8+RGj58uDIzM/XGG29o5MiR3uVDhw6VJE2dOlUZGRmSpNmzZysyMlJDhgxRUVGRevTooczMTEVERHift3jxYo0bN8571cLBgwdX+dtegL8sy1JsVEgfmQsAYYF6DaC2BLTSXH311bJtu8rlI0aM0IgRI87YR3R0tObOnau5c+dW2SYhIUGLFi3yd5gAAAAAUG0hfc4WAAAAAAQrwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABgQ0bH344YcaNGiQUlJSZFmWXn/9dZ/ltm0rIyNDKSkpiomJ0dVXX63PPvvMp83VV18ty7J8bkOHDvVpk5eXp/T0dHk8Hnk8HqWnp+vIkSOGtw4AAABAOAto2Dp27Jguv/xyzZs3r9LlM2fO1KxZszRv3jxt2bJFSUlJ6tWrl44ePerTbvTo0Tp8+LD39vzzz/ssHzZsmHbs2KGVK1dq5cqV2rFjh9LT041tFwAAAABEBnLl/fr1U79+/SpdZtu25syZo8mTJ+uGG26QJC1YsECJiYlasmSJxowZ420bGxurpKSkSvvZvXu3Vq5cqU2bNqlz586SpBdffFFpaWnas2ePWrZs6fBWAQAAAEAQn7O1f/9+5eTkqHfv3t7H3G63unXrpg0bNvi0Xbx4sRo1aqTWrVtr4sSJPjNfGzdulMfj8QYtSerSpYs8Hk+Ffn6suLhYBQUFPjcAAAAAOFcBndk6k5ycHElSYmKiz+OJiYk6cOCA9/5vf/tbNWvWTElJSdq5c6cmTZqkTz75RKtXr/b207hx4wr9N27c2LuOysyYMUPTpk1zYlMAAAAAhKGgDVunWZblc9+2bZ/HRo8e7f27TZs2atGihTp27Kht27apffv2lfZRWT8/NWnSJN17773e+wUFBUpNTfV7OwAAAACEl6A9jPD0OVg/nX3Kzc2tMNv1Y+3bt5fL5dIXX3zh7efbb7+t0O677747Yz9ut1sNGjTwuQEAAADAuQrasHX60MDThwNKUklJidatW6euXbtW+bzPPvtMpaWlSk5OliSlpaUpPz9fH3/8sbfN5s2blZ+ff8Z+AAAAAKAmAnoYYWFhofbt2+e9v3//fu3YsUMJCQlq0qSJxo8fr+nTp6tFixZq0aKFpk+frtjYWA0bNkyS9OWXX2rx4sXq37+/GjVqpF27dmnChAlq166drrjiCknSZZddpr59+2r06NHeS8LffvvtGjhwIFciBAAAAGBMQMPW1q1b1b17d+/90+dIDR8+XJmZmbr//vtVVFSku+66S3l5eercubPeffddxcXFSZKioqL03nvv6amnnlJhYaFSU1M1YMAATZ06VREREd5+Fy9erHHjxnmvbDh48OAqf9sLAAAAAJwQ0LB19dVXy7btKpdblqWMjAxlZGRUujw1NVXr1q0763oSEhK0aNEif4cJAAAAANUWtOdsAQAAAEAoI2wBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGSgBwCzbNtWUWmZsf5jXBGyLMtY/wAQLqjXAFD3ELbqMNu29evnNirrQJ6xdXRsGq9X70jjAxwAaoB6DQB1E4cR1mFFpWVGP7glaeuBPKPfxAJAOKBeA0DdxMxWmNj6UE/FRkU41t/xkjJ1fHSNY/0BAE6hXgNA3UHYChOxURGKjeKfGwCCHfUaAOoODiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AoDK2bauotMzxfo+XON8nAIQrajUAnBlhC0HHtm39+rmNyjqQF+ihAACqQK0GgLML6GGEH374oQYNGqSUlBRZlqXXX3/dZ7lt28rIyFBKSopiYmJ09dVX67PPPvNpU1xcrLFjx6pRo0aqX7++Bg8erIMHD/q0ycvLU3p6ujwejzwej9LT03XkyBHDWwd/FZWWGf/w7tg0XjGuCKPrAIC6jFoNAGcX0JmtY8eO6fLLL9fIkSN14403Vlg+c+ZMzZo1S5mZmbrkkkv06KOPqlevXtqzZ4/i4uIkSePHj9ebb76pZcuWqWHDhpowYYIGDhyorKwsRUScKtDDhg3TwYMHtXLlSknS7bffrvT0dL355pu1t7EBYytGxVLJMTn6z11yUjE6oSK5neuzElsf6qnYKOc/aGNcEbIsy/F+AcB/oVuvqdUAULmAhq1+/fqpX79+lS6zbVtz5szR5MmTdcMNN0iSFixYoMTERC1ZskRjxoxRfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59tHv3bq1cuVKbNm1S586dJUkvvvii0tLStGfPHrVs2bJ2NjYQbFt/jZqmjvX2Sk8423WspN3R0pbySyS7j7Od/3g9URGKjeJoVwB1XIjXa2o1AFQuaK9GuH//fuXk5Kh3797ex9xut7p166YNGzZIkrKyslRaWurTJiUlRW3atPG22bhxozwejzdoSVKXLl3k8Xi8beqs0uOnPrgN6lRvr1R63Og6AKDOo14DQJ0UtF9D5eTkSJISExN9Hk9MTNSBAwe8baKiohQfH1+hzenn5+TkqHHjxhX6b9y4sbdNZYqLi1VcXOy9X1BQ4N+GBInjv/tcsfUbONffsQLFPnWpY/0BAE6hXgNA3RG0Yeu0nx6rbdv2WY/f/mmbytqfrZ8ZM2Zo2rRp1RxtEHPFSlH1neuv5KRzfQEA/ot6DQB1RtAeRpiUlCRJFWafcnNzvbNdSUlJKikpUV5e3hnbfPvttxX6/+677yrMmv3YpEmTlJ+f771lZ2fXaHsAAAAAhJegDVvNmjVTUlKSVq9e7X2spKRE69atU9euXSVJHTp0kMvl8mlz+PBh7dy509smLS1N+fn5+vjjj71tNm/erPz8fG+byrjdbjVo0MDnBgAAAADnKqCHERYWFmrfvn3e+/v379eOHTuUkJCgJk2aaPz48Zo+fbpatGihFi1aaPr06YqNjdWwYcMkSR6PR6NGjdKECRPUsGFDJSQkaOLEiWrbtq336oSXXXaZ+vbtq9GjR+v555+XdOrS7wMHDqzbVyIEAAAAEFABDVtbt25V9+7dvffvvfdeSdLw4cOVmZmp+++/X0VFRbrrrruUl5enzp0769133/X+xpYkzZ49W5GRkRoyZIiKiorUo0cPZWZmen9jS5IWL16scePGea9aOHjwYM2bN6+WthIAAABAOApo2Lr66qtl23aVyy3LUkZGhjIyMqpsEx0drblz52ru3LlVtklISNCiRYtqMlQACF62bfaS3q5YiR+WBYCao16HnaC/GiEA1BkmPmRtW3q5r5TzqbP9/lhqF+nWlXyAAwgPpgIR9TosEbZCTXUKAD9eCQQP25Ze6iNlbw70SKove9OpeuLk5chDlan/hFGvgeAQyrVaol4HIcJWqCk9Lk1POaemsYaHAqAaSo+b/fBOaiuNdPjbzJLj0hPNnesv1Bn8Txj1GggSpmu1RL0OM4StMLCl/BK1dvFRDgSNifukKIffkxynb14t/CeMeg0EERO1WqJehxnCVqhxxUoPHjqnpsdLTqrDo2tUJLd28aYGgkdULId4hDqH/xNGvQaCELUaDiBshRrLqsYb/6SKFG10OAAQlhz/Txj1GgDqonqBHgAAAAAA1EWELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYEBnoAQA4d8dLyoz0G+OKkGVZRvoGgHBkol5Tq4HQQ9gCQkjHR9eY6bdpvF69I40PcQBwiIl6Ta0GQo9fhxFu27ZNn376qff+3/72N1133XV68MEHVVJS4tjgAJz6JrNj03ij69h6IE9FpWZmzQAgXJiu19RqIPT4NbM1ZswYPfDAA2rbtq2++uorDR06VNdff71effVVHT9+XHPmzHF4mED4sixLr96RZuQD9nhJmbHZMgAIN6bqNbUaCF1+ha29e/fql7/8pSTp1Vdf1VVXXaUlS5boH//4h4YOHUrYAhxmWZZiozjqFwCCHfUawI/5dRihbdsqLy+XJK1Zs0b9+/eXJKWmpurf//63c6MDAAAAgBDlV9jq2LGjHn30US1cuFDr1q3TgAEDJEn79+9XYmKiowMEAAAAgFDkV9iaPXu2tm3bprvvvluTJ09W8+bNJUl//etf1bVrV0cHCAAAAAChyK+Dii+//HKfqxGe9qc//UmRkRynDAAAAAB+zWxdfPHF+v777ys8fuLECV1yySU1HhQAAAAAhDq/wtbXX3+tsrKKlzUtLi7WwYMHazwoAAAAAAh11Trm74033vD+vWrVKnk8Hu/9srIyvffee2rWrJlzowMAAACAEFWtsHXddddJOvUbEsOHD/dZ5nK5dNFFF+nJJ590bHDB6On39ym6/nmBHsY5KS0r9/497/19ckX4NZFZuZJjuuc/fz6/7ispqr5jXRsdN3ywr2tPZFmRxv7n77nv79PJiJiAjudchOKYTTK5P0KxXlM/ag/7uvaEat0L1XGHshPHCs+pXbXC1unf1mrWrJm2bNmiRo0aVX9kQF1l24osP2Gs+5P1oiXLMtY/UOt4zyBQeO0B5473S434denA/fv3Oz0OILTZtm7+9DalHP2nsVX8K+5y/V/bF+t0QUIY4T2DQOG1B5w73i815vd12t977z299957ys3N9c54nfbSSy/VeGBAKIksP2G0EEnSBUc/UWT5CQ4NQJ3AewaBwmsPOHe8X2rOr7A1bdo0PfLII+rYsaOSk5Nl1dEkWpktX/8gV0xxoIdxTsrKbe/fH+//QRH1nPt3iiwr8v699UCeTkY4N71sctySJNuW23b239Bt/3f7RzdepmIr2tG+X8wdKknasv8HFddzrm/j+xpe7h8dguH0v6MpJsf8475D5T1jcn+EYr0OxVothWa9plbXnlCs1ZK5cYdira4tpUXHzqmdX2HrueeeU2ZmptLT0/15OhA4tq1Hvp+glqW7jK2i2Ip2tmCUn70JEMp4z6CCWqjVEq89oDp4v/jHr8vZlJSUqGvXrk6PBTDObRcb/fD+3NVKxZbbWP8AEA5M12qJeg2gdvg1s3XbbbdpyZIlmjJlitPjAWqN09Phkk59cIfRYbUAYJqJWi1RrwHUDr/C1okTJ/TCCy9ozZo1+sUvfiGXy+WzfNasWY4MDjDJ8elwAIDjqNUAQplfYeuf//ynfvnLX0qSdu7c6bMsnC6WAQAAAABV8StsffDBB06PAwAAAADqFL8ukAEAAAAAODO/Zra6d+9+xsMF33//fb8HBAAAAAB1gV9h6/T5WqeVlpZqx44d2rlzp4YPH+7EuABUwm2fcPR3KcpsWzE6oSJx+WMAcJKT9ZpaDYQuv8LW7NmzK308IyNDhYWFNRoQgKqd/qV1R0VLW8ov0eP2HElc4AYAnOB4vaZWAyHJ0XO2brnlFr300ktOdgmEvWLLrc9drYyuo1O9vXKr2Og6AKCuM12vqdVA6PFrZqsqGzduVHQ0v4UBOMqyNLXhk3Lbzn/ARpYX6aXvfuN4vwAQlgzVa2o1ELr8Cls33HCDz33btnX48GFt3bpVU6ZMcWRgpx09elRTpkzRihUrlJubq3bt2umpp55Sp06dJEkjRozQggULfJ7TuXNnbdq0yXu/uLhYEydO1NKlS1VUVKQePXromWee0YUXXujoWAFjLEvFlvNfZJTZtuN9AkBYM1CvqdVA6PIrbHk8Hp/79erVU8uWLfXII4+od+/ejgzstNtuu007d+7UwoULlZKSokWLFqlnz57atWuXLrjgAklS37599fLLL3ufExUV5dPH+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sRERGOjhcAAAAAJD/D1o+DjUlFRUV67bXX9Le//U1XXXWVpFMX4Xj99df17LPP6tFHH5Ukud1uJSUlVdpHfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59amVbAAAAAISXGl0gIysrS4sWLdLixYu1fft2p8bkdfLkSZWVlVU4DywmJkbr16/33l+7dq0aN26sSy65RKNHj1Zubq7PGEtLS31m3FJSUtSmTRtt2LDB8TEDAAAAgOTnzFZubq6GDh2qtWvX6vzzz5dt28rPz1f37t21bNky/exnP3NkcHFxcUpLS9Mf/vAHXXbZZUpMTNTSpUu1efNmtWjRQpLUr18/3XTTTWratKn279+vKVOm6JprrlFWVpbcbrdycnIUFRWl+Ph4n74TExOVk5NT5bqLi4tVXPzfE1wLCgoc2SYAAAAA4cGvma2xY8eqoKBAn332mX744Qfl5eVp586dKigo0Lhx4xwd4MKFC2Xbti644AK53W79+c9/1rBhw7znWt18880aMGCA2rRpo0GDBumdd97R3r179dZbb52xX9u2ZVlV/07FjBkz5PF4vLfU1FRHtwsAAABA3eZX2Fq5cqWeffZZXXbZZd7HWrVqpaefflrvvPOOY4OTpJ///Odat26dCgsLlZ2drY8//lilpaVq1qxZpe2Tk5PVtGlTffHFF5KkpKQklZSUKC8vz6ddbm6uEhMTq1zvpEmTlJ+f771lZ2c7t1EAAAAA6jy/wlZ5eblcLleFx10ul8rLy2s8qMrUr19fycnJysvL06pVq3TttddW2u77779Xdna2kpOTJUkdOnSQy+XS6tWrvW0OHz6snTt3qmvXrlWuz+12q0GDBj43AAAAADhXfoWta665Rr/73e906NAh72P/+te/dM8996hHjx6ODU6SVq1apZUrV2r//v1avXq1unfvrpYtW2rkyJEqLCzUxIkTtXHjRn399ddau3atBg0apEaNGun666+XdOoy9aNGjdKECRP03nvvafv27brlllvUtm1b79UJAQAAAMBpfl0gY968ebr22mt10UUXKTU1VZZl6ZtvvlHbtm21aNEiRweYn5+vSZMm6eDBg0pISNCNN96oxx57TC6XSydPntSnn36qv/zlLzpy5IiSk5PVvXt3vfLKK4qLi/P2MXv2bEVGRmrIkCHeHzXOzMzkN7YAAAAAGONX2EpNTdW2bdu0evVqff7557JtW61atTIyUzRkyBANGTKk0mUxMTFatWrVWfuIjo7W3LlzNXfuXKeHBwAAAACVqtZhhO+//75atWrlvQx6r169NHbsWI0bN06dOnVS69at9dFHHxkZKAAAAACEkmqFrTlz5mj06NGVXizC4/FozJgxmjVrlmODAwAAAIBQVa2w9cknn6hv375VLu/du7eysrJqPCgAAAAACHXVClvffvttpZd8Py0yMlLfffddjQcFAAAAAKGuWhfIuOCCC/Tpp5+qefPmlS7/5z//6f19K4QPt31CEeWWY/2V2bZidEJFcjvWJwDA2XpNrQaAs6tW2Orfv78efvhh9evXT9HR0T7LioqKNHXqVA0cONDRASL4vfTdb5zvNFraUn6JHrfnSHIuyAFAOHO8XlOrAeCMqhW2HnroIS1fvlyXXHKJ7r77brVs2VKWZWn37t16+umnVVZWpsmTJ5saK4JIsdzaUn6JOtXba2wdnertlVvFOqkYY+sAgLrOdL2mVgNA1aoVthITE7VhwwbdeeedmjRpkmzbliRZlqU+ffromWeeUWJiopGBIshYlm4qmaoYFat9k3hFWM59oxlZXmRmtgwAwpGhek2tBoCzq/aPGjdt2lRvv/228vLytG/fPtm2rRYtWig+Pt7E+BDULBUpWsVWtCLqOXvOFgDASc7Xa2o1AJxdtcPWafHx8erUqZOTYwGAwLNtue1ix7t12ycc7xMAwpqBek2thtP8DlsA6pZy21ZZubPfVNezTh1mHDJsW498P0EtS3cFeiQAUCkTtVqiXgOmELYASJJ2ZB9RkZz9Ru88d6RaJceFzAe42y42/sH9uauVii0ulQ3APyZqtUS9/ilqNZxC2ALCWLV+1dwPhcUnVW5LEaHx2e1jdONlKraiz96wmoottxQi/5kBEBxM12qJev1T1Go4hbCFGiu3bancuf7qcdJ1rfnxN5jtm8Q79mFVbtva9s0R799Ovj5OM33IS7EVreJ6zoctIJCcfD9Sq2uPqVotUa8B0whbqLHTRdopMTohUTNrXYRlOXdVyR99WDv9+jgt1A55AYKBk+9HanVgOFqrJeo1YFhtzEyjDqpnnSqextdjfA0woTZeH6cPeQFwZrXxfqRWhy7qNWAWM1vwi2VZapUcZ6R4uu0TUu5/14PQY/L18eNDXgCcnan3I7W6bqBeA2YRtuA3y7KMnEgbUc6Hdl1g6vVh4nwCoK4z8X6kVtcd1GvAHGb+AQAAAMAAwhYAAAAAGMBhhACAs3LbJxw9JMhtO/+jrAAAZ+s1tbrmCFsAgLN6MXdooIcAADgH1OvgwmGEAIBKFVtufe5qZXQdn7taqdhyG10HANR1pus1tdp/zGwhqHHoEhBAlqWpDZ+U2y42topiyy1x2fCQR60GAsxwvaZW+4+whaDGVDgQYJalYis60KNAkKNWA0GAeh2UOIwQQYdDlwAg+FGrAeDsmNlC8OHQJQAOKbNtlZXbjvWFH6FWA3BIdWt1PevUj3GHAsIWghNT4QD8ZP8oFG37Jk9FcqaWxOiETndlE7xOoVYD8FNNanXHpvGKCI2sxWGEAIC6xcHrNAR0HQBQl4VLHWVmCwBQZ/0y9XyV1otxpC9XeZH0nSNdAQB+pLq1ul6IzGpJhC0Apti2kXM5ymxbMTqhInHSPM6unmUpwqFP5Xp2CH26A9VBvUaAOVmrgw1hC4DzbFuPfD9BLUt3mek/WtpSfoket+dIqpvFGQBqBfUaMIpztgA4zm0Xm/vg/o9O9fbKLXNXQQOAcEC9BsxiZguAUaMbL3P0amWR5UV66bvfONYfAOAU6jXgPMIWAKOKrWgV13Puw5vfOgIAM6jXgPM4jBAAAAAADGBmK8TYtq1z/YHtcr5RAgAjym1bZedajM+xPwBA3UPYCjHltrT1QF6ghwEAYW1H9hEV6USghwEACHIcRhgGznNHhtSPvwFAMKqND0zqNQDULcxshZh6ltSxaXy1n2NZfHoDQE38uI62bxLv6FXbTqNeA0DdQtgKMZZlKYLPYUCS5LZPKKLcuTeE2+awMJybCMtSBFNQwDmjXiNcEbYAhCx+vwUAQgP1GuGKc7YAhJRiubWl/BKj6/jc1UrFltvoOgCgrqNeA8xsAQg1lqWbSqYqRsVq3yReEQbObym23BLnzQBAzVCvAcIWgFBkqUjRKraiOW8GAIIa9RrhjbBVTZ0uSlB0/fMCPQzAEZFlRdK3p/7u1CxBJyNigrpfSSotK/f+1tz/NEuQK4KjofETJcek3FN/dmwaL0XVd6Rbk69r4ExMvvao1wgYQ7W6tpw45taKc2jHqx4AAAAADCBsAQAAAIABhC0AAAAAMCDoz9k6evSopkyZohUrVig3N1ft2rXTU089pU6dOkmSbNvWtGnT9MILLygvL0+dO3fW008/rdatW3v7KC4u1sSJE7V06VIVFRWpR48eeuaZZ3ThhRdWezz/e01zNWjQwLHtAwKq5Ji06dSfY69p7tzx0qb6lXS85KSeWfulJOnua5orNiroyxhq2fHCfGnLqb/HdLtYsed5nOnY4OsaOCOTrz3qNQLEWK2uJQUFBXrwHNoF/czWbbfdptWrV2vhwoX69NNP1bt3b/Xs2VP/+te/JEkzZ87UrFmzNG/ePG3ZskVJSUnq1auXjh496u1j/PjxWrFihZYtW6b169ersLBQAwcOVFlZWaA2CwAAAEAdF9Rhq6ioSK+99ppmzpypq666Ss2bN1dGRoaaNWumZ599VrZta86cOZo8ebJuuOEGtWnTRgsWLNDx48e1ZMkSSVJ+fr7mz5+vJ598Uj179lS7du20aNEiffrpp1qzZk2AtxAAAABAXRXUYevkyZMqKytTdHS0z+MxMTFav3699u/fr5ycHPXu3du7zO12q1u3btqwYYMkKSsrS6WlpT5tUlJS1KZNG2+byhQXF6ugoMDnBgAAAADnKqjDVlxcnNLS0vSHP/xBhw4dUllZmRYtWqTNmzfr8OHDysnJkSQlJib6PC8xMdG7LCcnR1FRUYqPj6+yTWVmzJghj8fjvaWmpjq8dQAAAADqsqAOW5K0cOFC2batCy64QG63W3/+8581bNgwRUREeNtYlu8vktu2XeGxnzpbm0mTJik/P997y87OrtmGAAAAAAgrQR+2fv7zn2vdunUqLCxUdna2Pv74Y5WWlqpZs2ZKSkqSpAozVLm5ud7ZrqSkJJWUlCgvL6/KNpVxu91q0KCBzw0AAAAAzlXQh63T6tevr+TkZOXl5WnVqlW69tprvYFr9erV3nYlJSVat26dunbtKknq0KGDXC6XT5vDhw9r586d3jYAAAAA4LSg/8GDVatWybZttWzZUvv27dN9992nli1bauTIkbIsS+PHj9f06dPVokULtWjRQtOnT1dsbKyGDRsmSfJ4PBo1apQmTJighg0bKiEhQRMnTlTbtm3Vs2fPAG8dAAAAgLoq6MNWfn6+Jk2apIMHDyohIUE33nijHnvsMblcLknS/fffr6KiIt11113eHzV+9913FRcX5+1j9uzZioyM1JAhQ7w/apyZmelz3hcAAAAAOCnow9aQIUM0ZMiQKpdblqWMjAxlZGRU2SY6Olpz587V3LlzDYwQAAAAACoKmXO2AAAAACCUELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGBAZ6AEAAGrGtm0VlZYZ6z/GFSHLsoz1DwDhgnodfghbABDCbNvWr5/bqKwDecbW0bFpvF69I40PcACoAep1eOIwQgAIYUWlZUY/uCVp64E8o9/EAkA4oF6HJ2a2AKCO2PpQT8VGRTjW3/GSMnV8dI1j/QEATqFehw/CFgDUEbFREYqNoqwDQLCjXocPDiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAyIDPQAACCY2LatotIyY/3HuCJkWZax/gEgXJis19RqOIWwBQD/Ydu2fv3cRmUdyDO2jo5N4/XqHWl8iANADZiu19RqOIXDCAHgP4pKy4wGLUnaeiDP6MwZAIQD0/WaWg2nMLMFAJXY+lBPxUZFONbf8ZIydXx0jWP9AQBOcbJeU6vhNMIWAFQiNipCsVGUSAAIdtRrBLOgPozw5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvmxEjRsiyLJ9bly5dfPopLi7W2LFj1ahRI9WvX1+DBw/WwYMHa3tzAAAAAISRoP4a4PHHH9dzzz2nBQsWqHXr1tq6datGjhwpj8ej3/3ud952ffv21csvv+y9HxUV5dPP+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sREc4dJgQAAAAApwV12Nq4caOuvfZaDRgwQJJ00UUXaenSpdq6datPO7fbraSkpEr7yM/P1/z587Vw4UL17NlTkrRo0SKlpqZqzZo16tOnj9mNAAAAABCWgjpsXXnllXruuee0d+9eXXLJJfrkk0+0fv16zZkzx6fd2rVr1bhxY51//vnq1q2bHnvsMTVu3FiSlJWVpdLSUvXu3dvbPiUlRW3atNGGDRuqDFvFxcUqLi723i8oKHB+AwHUyPESZ68U5XR/AIBTqNcIV0Edtn7/+98rPz9fl156qSIiIlRWVqbHHntMv/nNb7xt+vXrp5tuuklNmzbV/v37NWXKFF1zzTXKysqS2+1WTk6OoqKiFB8f79N3YmKicnJyqlz3jBkzNG3aNGPbBqDmuGIUAIQG6jXCVVBfIOOVV17RokWLtGTJEm3btk0LFizQE088oQULFnjb3HzzzRowYIDatGmjQYMG6Z133tHevXv11ltvnbFv27bP+EN1kyZNUn5+vveWnZ3t2HYB8F+MK0Idm8afvWENdGwarxgX53MCQE1Qr4Egn9m677779MADD2jo0KGSpLZt2+rAgQOaMWOGhg8fXulzkpOT1bRpU33xxReSpKSkJJWUlCgvL89ndis3N1ddu3atct1ut1tut9vBrQHgBMuy9OodaUZ/bDLGFXHGL2MAAGdHvQaCPGwdP35c9er5Tr5FRET4XPr9p77//ntlZ2crOTlZktShQwe5XC6tXr1aQ4YMkSQdPnxYO3fu1MyZM80NHoAxlmXxmyoAEAKo1wh3Qf3qHzRokB577DE1adJErVu31vbt2zVr1izdeuutkqTCwkJlZGToxhtvVHJysr7++ms9+OCDatSoka6//npJksfj0ahRozRhwgQ1bNhQCQkJmjhxotq2beu9OiEAAAAAOC2ow9bcuXM1ZcoU3XXXXcrNzVVKSorGjBmjhx9+WNKpWa5PP/1Uf/nLX3TkyBElJyere/fueuWVVxQXF+ftZ/bs2YqMjNSQIUNUVFSkHj16KDMzk9/YAgAAAGBMUIetuLg4zZkzp8Kl3k+LiYnRqlWrztpPdHS05s6dq7lz5zo8QgAAAACoXFBfjRAAAAAAQhVhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAA4L6R40BAMHheEmZkX5jXBGyLMtI3wAQjkzUa2q1/whbAICz6vjoGjP9No3Xq3ek8SEOAA4xUa+p1f7jMEIAQKViXBHq2DTe6Dq2HshTUamZWTMACBem6zW12n/MbAEAKmVZll69I83IB+zxkjJjs2UAEG5M1Wtqdc0RtgAAVbIsS7FRfFQAQLCjXgcn/kUAAAHl9Mncx0vKFOtojwAAarV/CFsAgIBy+hCVGJ3Q7mhHuwSAsEet9g8XyAAA1LrauPjG6fUAAPxDra45ZrYAnFJyPDj7Qp1k8uIbKjkmPfHf9QB1itP1lXqNM6BW1xxhC8ApTzQP9AgQZsydzM1HG+owajVqGbW6ZjiMEAhnrlgptYu5/lO7nFoHAMB/pmu1RL0GDAmPSAmgcpYl3bpSKjV0GIkr9tQ6AAD+M12rJeo1YAhhCwh3liVF1Q/0KAAAZ0KtBkIShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAZGBHgAAhJvjJWVB2RcA4L+crq/U6/BE2AKAWtbx0TWBHgIA4Cyo1XAChxECQC2IcUWoY9N4Y/13bBqvGFeEsf4BIByYrtUS9TrcMLMFALXAsiy9ekeaikrNHEYS44qQZVlG+gaAcGG6VkvU63BD2AKAWmJZlmKjKLsAEMyo1XAShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1GHr5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvG9u2lZGRoZSUFMXExOjqq6/WZ5995tNPcXGxxo4dq0aNGql+/foaPHiwDh48WNubAwAAACCMBHXYevzxx/Xcc89p3rx52r17t2bOnKk//elPmjt3rrfNzJkzNWvWLM2bN09btmxRUlKSevXqpaNHj3rbjB8/XitWrNCyZcu0fv16FRYWauDAgSorM/cbCgAAAADCW1D/iMDGjRt17bXXasCAAZKkiy66SEuXLtXWrVslnZrVmjNnjiZPnqwbbrhBkrRgwQIlJiZqyZIlGjNmjPLz8zV//nwtXLhQPXv2lCQtWrRIqampWrNmjfr06ROYjQMAAABQpwX1zNaVV16p9957T3v37pUkffLJJ1q/fr369+8vSdq/f79ycnLUu3dv73Pcbre6deumDRs2SJKysrJUWlrq0yYlJUVt2rTxtqlMcXGxCgoKfG4AAAAAcK6Cembr97//vfLz83XppZcqIiJCZWVleuyxx/Sb3/xGkpSTkyNJSkxM9HleYmKiDhw44G0TFRWl+Pj4Cm1OP78yM2bM0LRp05zcHAAAAABhJKhntl555RUtWrRIS5Ys0bZt27RgwQI98cQTWrBggU87y7J87tu2XeGxnzpbm0mTJik/P997y87O9n9DAAAAAISdoJ7Zuu+++/TAAw9o6NChkqS2bdvqwIEDmjFjhoYPH66kpCRJp2avkpOTvc/Lzc31znYlJSWppKREeXl5PrNbubm56tq1a5XrdrvdcrvdJjYLAAAAQBgI6pmt48ePq1493yFGRER4L/3erFkzJSUlafXq1d7lJSUlWrdunTdIdejQQS6Xy6fN4cOHtXPnzjOGLQAAAACoiaCe2Ro0aJAee+wxNWnSRK1bt9b27ds1a9Ys3XrrrZJOHT44fvx4TZ8+XS1atFCLFi00ffp0xcbGatiwYZIkj8ejUaNGacKECWrYsKESEhI0ceJEtW3b1nt1QgAAAABwWlCHrblz52rKlCm66667lJubq5SUFI0ZM0YPP/ywt83999+voqIi3XXXXcrLy1Pnzp317rvvKi4uzttm9uzZioyM1JAhQ1RUVKQePXooMzNTERERgdgsAAAAAGHAsm3bDvQgQkFBQYE8Ho/y8/PVoEGDQA8HAFCVkmPS9JRTfz94SIqqH9z9AkA4CvGaeq7ZIKjP2QIAAACAUEXYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMCAy0AMAAMCYkuPB2RcA4L+qW19dsZJlmRmLwwhbAIC664nmgR4BAOBsqlurHzwkRdU3MxaHcRghAKBuccVKqV3M9Z/a5dQ6AAD+M12rgwQzWwCAusWypFtXSqWGDvsLocNXACBo1aRWh9AXXoQtAEDdY1khc4gJAIStMKjVHEYIAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChwrZtSVJBQUGARwIAAAAgkE5ngtMZoSqErXN09OhRSVJqamqARwIAAAAgGBw9elQej6fK5ZZ9tjgGSVJ5ebkOHTqkuLg4WZbleP8FBQVKTU1Vdna2GjRo4Hj/+C/2de1gP9ce9nXtYV/XHvZ17WFf1x72de0xva9t29bRo0eVkpKievWqPjOLma1zVK9ePV144YXG19OgQQPefLWEfV072M+1h31de9jXtYd9XXvY17WHfV17TO7rM81oncYFMgAAAADAAMIWAAAAABhA2AoSbrdbU6dOldvtDvRQ6jz2de1gP9ce9nXtYV/XHvZ17WFf1x72de0Jln3NBTIAAAAAwABmtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYcuQZ555Rs2aNVN0dLQ6dOigjz766Izt161bpw4dOig6OloXX3yxnnvuuQptXnvtNbVq1Uput1utWrXSihUrTA0/pFRnXy9fvly9evXSz372MzVo0EBpaWlatWqVT5vMzExZllXhduLECdObEvSqs6/Xrl1b6X78/PPPfdrxuq5cdfb1iBEjKt3XrVu39rbhdV3Rhx9+qEGDBiklJUWWZen1118/63Oo1f6p7r6mVvuvuvuaWu2/6u5rarV/ZsyYoU6dOikuLk6NGzfWddddpz179pz1ecFSrwlbBrzyyisaP368Jk+erO3bt+tXv/qV+vXrp2+++abS9vv371f//v31q1/9Stu3b9eDDz6ocePG6bXXXvO22bhxo26++Walp6frk08+UXp6uoYMGaLNmzfX1mYFperu6w8//FC9evXS22+/raysLHXv3l2DBg3S9u3bfdo1aNBAhw8f9rlFR0fXxiYFreru69P27Nnjsx9btGjhXcbrunLV3ddPPfWUzz7Ozs5WQkKCbrrpJp92vK59HTt2TJdffrnmzZt3Tu2p1f6r7r6mVvuvuvv6NGp19VV3X1Or/bNu3Tr97//+rzZt2qTVq1fr5MmT6t27t44dO1blc4KqXttw3P/8z//Yd9xxh89jl156qf3AAw9U2v7++++3L730Up/HxowZY3fp0sV7f8iQIXbfvn192vTp08ceOnSoQ6MOTdXd15Vp1aqVPW3aNO/9l19+2fZ4PE4Nsc6o7r7+4IMPbEl2Xl5elX3yuq5cTV/XK1assC3Lsr/++mvvY7yuz0ySvWLFijO2oVY741z2dWWo1dV3LvuaWu0Mf17X1Gr/5Obm2pLsdevWVdkmmOo1M1sOKykpUVZWlnr37u3zeO/evbVhw4ZKn7Nx48YK7fv06aOtW7eqtLT0jG2q6jMc+LOvf6q8vFxHjx5VQkKCz+OFhYVq2rSpLrzwQg0cOLDCt6nhpib7ul27dkpOTlaPHj30wQcf+CzjdV2RE6/r+fPnq2fPnmratKnP47yua4ZaHTjUavOo1bWPWu2f/Px8SapQD34smOo1Ycth//73v1VWVqbExESfxxMTE5WTk1Ppc3Jyciptf/LkSf373/8+Y5uq+gwH/uzrn3ryySd17NgxDRkyxPvYpZdeqszMTL3xxhtaunSpoqOjdcUVV+iLL75wdPyhxJ99nZycrBdeeEGvvfaali9frpYtW6pHjx768MMPvW14XVdU09f14cOH9c477+i2227zeZzXdc1RqwOHWm0OtTowqNX+sW1b9957r6688kq1adOmynbBVK8jHe0NXpZl+dy3bbvCY2dr/9PHq9tnuPB3vyxdulQZGRn629/+psaNG3sf79Kli7p06eK9f8UVV6h9+/aaO3eu/vznPzs38BBUnX3dsmVLtWzZ0ns/LS1N2dnZeuKJJ3TVVVf51Wc48Xe/ZGZm6vzzz9d1113n8ziva2dQq2sftdosanVgUKv9c/fdd+uf//yn1q9ff9a2wVKvmdlyWKNGjRQREVEhFefm5lZIz6clJSVV2j4yMlINGzY8Y5uq+gwH/uzr01555RWNGjVK//d//6eePXuesW29evXUqVOnsP5WqSb7+se6dOnisx95XVdUk31t27ZeeuklpaenKyoq6oxteV1XH7W69lGrA4NabRa12j9jx47VG2+8oQ8++EAXXnjhGdsGU70mbDksKipKHTp00OrVq30eX716tbp27Vrpc9LS0iq0f/fdd9WxY0e5XK4ztqmqz3Dgz76WTn1LOmLECC1ZskQDBgw463ps29aOHTuUnJxc4zGHKn/39U9t377dZz/yuq6oJvt63bp12rdvn0aNGnXW9fC6rj5qde2iVgcOtdosanX12Latu+++W8uXL9f777+vZs2anfU5QVWvHb3cBmzbtu1ly5bZLpfLnj9/vr1r1y57/Pjxdv369b1Xm3nggQfs9PR0b/uvvvrKjo2Nte+55x57165d9vz5822Xy2X/9a9/9bb5xz/+YUdERNh//OMf7d27d9t//OMf7cjISHvTpk21vn3BpLr7esmSJXZkZKT99NNP24cPH/bejhw54m2TkZFhr1y50v7yyy/t7du32yNHjrQjIyPtzZs31/r2BZPq7uvZs2fbK1assPfu3Wvv3LnTfuCBB2xJ9muvveZtw+u6ctXd16fdcsstdufOnSvtk9d1RUePHrW3b99ub9++3ZZkz5o1y96+fbt94MAB27ap1U6q7r6mVvuvuvuaWu2/6u7r06jV1XPnnXfaHo/HXrt2rU89OH78uLdNMNdrwpYhTz/9tN20aVM7KirKbt++vc/lKYcPH25369bNp/3atWvtdu3a2VFRUfZFF11kP/vssxX6fPXVV+2WLVvaLpfLvvTSS30KYTirzr7u1q2bLanCbfjw4d4248ePt5s0aWJHRUXZP/vZz+zevXvbGzZsqMUtCl7V2dePP/64/fOf/9yOjo624+Pj7SuvvNJ+6623KvTJ67py1a0hR44csWNiYuwXXnih0v54XVd0+pLXVdUDarVzqruvqdX+q+6+plb7z58aQq2uvsr2sST75Zdf9rYJ5npt/WcjAAAAAAAO4pwtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAMLa2rVrZVmWjhw5EuihAADqGMIWAKDOGzFihCzLkmVZcrlcuvjiizVx4kQdO3Ys0EMDANRhkYEeAAAAtaFv3756+eWXVVpaqo8++ki33Xabjh07pptvvjnQQwMA1FHMbAEAwoLb7VZSUpJSU1M1bNgw/fa3v9Xrr7/uXZ6VlaWOHTsqNjZWXbt21Z49e7zLvvzyS1177bVKTEzUeeedp06dOmnNmjU+/T/zzDNq0aKFoqOjlZiYqF//+tfeZbZta+bMmbr44osVExOjyy+/XH/961+NbzMAILAIWwCAsBQTE6PS0lLv/cmTJ+vJJ5/U1q1bFRkZqVtvvdW7rLCwUP3799eaNWu0fft29enTR4MGDdI333wjSdq6davGjRunRx55RHv27NHKlSt11VVXeZ//0EMP6eWXX9azzz6rzz77TPfcc49uueUWrVu3rvY2GABQ6yzbtu1ADwIAAJNGjBihI0eOeGeyPv74Y/Xv3189evTQnXfeqe7du2vNmjXq0aOHJOntt9/WgAEDVFRUpOjo6Er7bN26te68807dfffdWr58uUaOHKmDBw8qLi7Op92xY8fUqFEjvf/++0pLS/M+ftttt+n48eNasmSJmY0GAAQc52wBAMLC3//+d5133nk6efKkSktLde2112ru3LnatWuXJOkXv/iFt21ycrIkKTc3V02aNNGxY8c0bdo0/f3vf9ehQ4d08uRJFRUVeWe2evXqpaZNm+riiy9W37591bdvX11//fWKjY3Vrl27dOLECfXq1ctnPCUlJWrXrl0tbT0AIBAIWwCAsNC9e3c9++yzcrlcSklJkcvlkiRv2Dp9X5Isy5IklZeXS5Luu+8+rVq1Sk888YSaN2+umJgY/frXv1ZJSYkkKS4uTtu2bdPatWv17rvv6uGHH1ZGRoa2bNni7eOtt97SBRdc4DMmt9ttdqMBAAFF2AIAhIX69eurefPmfj33o48+0ogRI3T99ddLOnUO19dff+3TJjIyUj179lTPnj01depUnX/++Xr//ffVq1cvud1uffPNN+rWrVtNNwMAEEIIWwAAnEXz5s21fPlyDRo0SJZlacqUKd4ZK+nUIYpfffWVrrrqKsXHx+vtt99WeXm5WrZsqbi4OE2cOFH33HOPysvLdeWVV6qgoEAbNmzQeeedp+HDhwdwywAAJhG2AAA4i9mzZ+vWW29V165d1ahRI/3+979XQUGBd/n555+v5cuXKyMjQydOnFCLFi20dOlStW7dWpL0hz/8QY0bN9aMGTP01Vdf6fzzz1f79u314IMPBmqTAAC1gKsRAgAAAIAB/M4WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAz4f8yKY8XX6ew7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, this looks very different, and not quite as easily recognizeable. What you see here is the nominator of the second term in the PDM Equation written in the introduction.\n", + "\n", + "We'd now like to try calculating this profile for a number of trial periods, and then calculate $\\theta_\\mathrm{PDM}$. Our null hypothesis is that there is no variation in the data except for measurement noise (e.g. Poisson statistics as we have here, or Gaussian noise). This is implemenented in `stingray.pulse.search.phase_dispersion_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used.\n", + "\n", + "Let's do that:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, pdmstat = phase_dispersion_search(lc.time, lc.counts, frequencies, nbin=nbin)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADr80lEQVR4nOydeXxU1fn/P3f2yZ6QnYQQdgQEBGRRRFxAUEtdsfZr3Vu1/bWUVlvcili1aqXUqrgVZXGhlaptXYAKKgiCICL7DoGQkH3P7Pf3x51z5tw7ezJJJuR5v168SGZuZu7M3DnnPOfzPJ9HkmVZBkEQBEEQBEEQBBEX6Lr6BAiCIAiCIAiCIAgfFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEEYauPoGzGY/Hg9OnTyM5ORmSJHX16RAEQRAEQRAE0UXIsozGxkbk5+dDpwutlVGQ1oGcPn0ahYWFXX0aBEEQBEEQBEHECSdPnkRBQUHIY7o0SPvyyy/x7LPPYvv27SgrK8P777+PH/7whyH/5osvvsDcuXOxZ88e5Ofn44EHHsA999yjOmbVqlV45JFHcOTIEfTv3x9PPPEErrnmGtUxL730Ep599lmUlZVh2LBhWLRoESZPnszvv+2227B06VLV34wfPx5ff/11xK8vOTkZgPJBpKSkRPx3BEEQxFlCczPw/PPq2375SyAxsWvOhyAIgugyGhoaUFhYyGOEUHRpkNbc3IyRI0fi9ttvx3XXXRf2+GPHjmHmzJm4++67sWLFCnz11Ve47777kJWVxf9+8+bNmD17Nh5//HFcc801eP/993HjjTdi48aNGD9+PABg5cqVmDNnDl566SVccMEFeOWVVzBjxgzs3bsXffr04c93xRVX4I033uC/m0ymqF4fS3FMSUmhII0gCKInotcDZrP6tpQUCtIIgiB6MJGUQUmyLMudcC5hkSQprJL2u9/9Dv/+97+xb98+fts999yDnTt3YvPmzQCA2bNno6GhAZ988gk/5oorrkB6ejreeecdAIoidt5552Hx4sX8mKFDh+KHP/whnnrqKQCKklZXV4cPPvigza+poaEBqampqK+vpyCNIAiiJ9LcDDz7rPq2+++nII0gCKIHEk1s0K3cHTdv3oxp06apbps+fTq2bdsGp9MZ8phNmzYBABwOB7Zv3+53zLRp0/gxjM8//xzZ2dkYNGgQ7r77blRUVIQ8P7vdjoaGBtU/giAIgiAIgiCIaOhWQVp5eTlycnJUt+Xk5MDlcqGqqirkMeXl5QCAqqoquN3ukMcAwIwZM/DWW29h3bp1eO655/DNN9/gkksugd1uD3p+Tz31FFJTU/k/Mg0hCIIgCIIgCCJaup27ozaHk2VrircHOkZ7W7hjZs+ezX8ePnw4xo4di6KiInz00Ue49tprA57bvHnzMHfuXP47Kw4kCIIgCIIgCIKIlG4VpOXm5qrULgCoqKiAwWBAr169Qh7DlLPMzEzo9fqQxwQiLy8PRUVFOHToUNBjzGYzzNoCcYIgCIIgCIIgiCjoVumOEydOxNq1a1W3rVmzBmPHjoXRaAx5zKRJkwAoDo1jxozxO2bt2rX8mEBUV1fj5MmTyMvLi8VLIQiCIAiCIAiCCEiXKmlNTU04fPgw//3YsWP47rvvkJGRgT59+mDevHkoLS3FsmXLAChOji+88ALmzp2Lu+++G5s3b8bf//537toIAL/61a9w0UUX4emnn8asWbPw4Ycf4n//+x82btzIj5k7dy5uueUWjB07FhMnTsSrr76KkpIS3m+tqakJ8+fPx3XXXYe8vDwcP34cDz74IDIzM/36rREEQRAEQRAEQcSSLg3Stm3bhqlTp/LfWT3XrbfeijfffBNlZWUoKSnh9xcXF+Pjjz/Gr3/9a7z44ovIz8/H888/r+qxNmnSJLz77rt4+OGH8cgjj6B///5YuXIl75EGKPVm1dXVWLBgAcrKyjB8+HB8/PHHKCoqAgDo9Xrs2rULy5YtQ11dHfLy8jB16lSsXLkyouZzBEEQBEEQBEEQbSVu+qSdjVCfNIIgiB4O9UkjCIIgvJy1fdIIgiAIgiAIgiDOdihIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAii27LzZB0abM6uPo2YQkEaQRAEQRAEQRDdku0najDrxa9w/z93dvWpxBQK0giCIAiCIAiC6JZsPVYLADhZ09rFZxJbKEgjugUffleKdfvPdPVpqPi2pBbbT9R09WkQBEEQBEH0WPaVNQAAbE53F59JbKEgjYh7Khpt+NW73+GON7dhy9Hqrj4dAMDRyibc+PJm/N/rW9HicHX16RAEQRAEQfRI9pdTkEYQXUJFg53//OuV36G+tesLQ59bcxAuj4xWpxun62xdfTrdHlmWIctyV58GQRAEQRDdCLvLjSOVzQCAVgrSCKLjOFnTgqv/thH//f40v622xcF/Pl1vw3NrDnTFqXG+P1WHj3aV8d8rGpQgzeX2dNUpdWs8HhnXLt6Ea17aBI+HAjWCIHoeHo+MMw204UcQ0XK4oglu79qBgjSC6EBWbDmBXaX1+MXbO2B3KV+22ha1crbndENXnBrnhXWHVb+XN9iwbv8ZDPvDaqzafqqLzqr7cqq2FTtK6vDdyTrUCAE5QRBET+HB93dh/JOf4fMDFV19KgTRrdhX1sh/tjk9Z9VmLwVpRFyRZDLwn/+7U1GrapuVhXuyWbmv2d61NWCHK5sAAL3TrACUIO3zA5Wwuzz4Ok5q5roTR6qa+M/ssyYIgugpbD5SjXe/OQkA+GRXeRefDUEonKxpgbMbZAjtL1Nv3Ntd8X/OkUJBGhFXOIUdkCVfHYMsyzzdsXe6EhQ1d7FRR4O3Jm5IbjIA4Ey9DSU1Lcp9XdBIsauD1vZy1JtLDvirpgRBEGczDpcHj3y4m/++5Zj/Rl9JdQueW3MA1U12v/uIsxO3R8bznx3CFwcru+T5P91dhsnPrMdL64/w2+JVodpf3qj6/WxKeaQgjYgrRGeePacbsO1ELeq8C/eC9AQAQLM9ui9gi8OFWS9+hcf+syfiv/nqcBVe+vywn5mFLMvcuGSQN0grb7DhJAvSWjs3YFqzpxzD56/Gss3Ho/o7t0fGx7vKUF7f9TUQRyp9SloNKWkEQfQgPt5VhsMVTchINEGSgOPVLX61aYs+O4i/rTvM1Tbi7Gf1nnIsXHsQv3zHV/rRmfzneyWTadORKgDAz9/+Fhf/+fO4dLNmzo4MCtIIooNodai/XFuP1XAlrYApaVEqRztP1mPnyTq88dVxrNkTWSrJ/H/vwTOfHsDOU/Xq83O64XQrgdvgHG+QVm/DyVqlgWJnK2mbjlRDloHtJ2qj+rsvDlbgvre+xaPCDm5XcVQI0uqoJo0giB7EqVplg+/yoTk4Jy8FAPzS5neerAMAlNadXY16AxGvak1n85E3SKpvdeKLA52rpsmyzNsdHa1qhs3pxie7ylBS06LKfIkHqprsqGpyQJIAq1EPwH8d2Z2hII2IK9gOiEEnAVACoFqupClBmt3licpJUQyc/vDvPWiKIMir86plFZodTaaiGXQSijMTAQD7yhvh8OZAd3aQdqJaGTDrokwTLK9X0mb2lXe8CcuRyqaQQaQ46JNxCEEQHc3rG45iyrPreYDUlTTYlPkoNcGI8cW9AABbjtXw+5vsLhytUsZI7XwULff/cyeueemrLlFmIuFoZRNGLVjT5Q7OXU2Lw4XP9p/hv3/43ekQR8eeI5VNqGpS5uLKRjt2ldaDxc6NtvhS0o5U+DwCUq1GAGdXrzQK0oi4ggVpfb0BUHmDjasrLEgDokt5bBD6qpXV2/Dql0fDn4eDOUuqgwYWDKVajchNtQAAD9CU5+rcAeyEN80y2t5xLGWhtLZVdf7R8smuMtzw8qaAO7zl9Tbc9sZWXPrcF7hu8SaVYsZotDlR0eirs4g22BQfh31mW45W4ydLtvIAliAIQuT9HaU4Ud0SdQZCR8Dmp2SzAeP7ZQAAVzEAYE9pPVjW/ZmGttekybKMD74rxY6SOuzSZIi0h+9O1mHh2oMxCfy2Ha9Fg82Fj4UWNz2R9fsrYXN6uFna//adQWMbN4BLqlvw5Mf7omrvsPlojer31bt9GUhtPY+Ogm1g9MtKgtXkVdIoSCOIjsHOgrReSpB2psHG65Syki0w6ZVLNhrzkAbNzs/3p+pCHi/LMv+Sa40sWDCUmmBEr0QTvIIfp9Hm7LR0DbdHxqkab5plmCDN45Hx1Cf7cOeb38Dp9vAg1yODm560hXe+OYlvjtfivzv9d/oe/2gvPhfSNE7V+gdy2tSJttSkNdqcuOBP6zDjr1+i0ebEA6u+x5cHK7F884moH4sgiLOfMm8tblftuD/64W7c/sZWuD0yVyZSrEac31cJ0o5UNmPbcWWhvKvUF1C1p4+azenhqfr7vEYLsZirFvxnD57/7BDW729/64CqZiUILalp6dF9Rz/apcynN0/ogwHZSbC7PPh0d/BSjfoWJ1bvKQ+44fr3jUfx6pdHo6pb16bbrt4rBmnxpaSxzd9+mYmwULojQXQsLDgqzlRMQsrrbVxdSU8wIsGsfAmjqUtjAUxRL+UxT3tVn093l+PF9Yd5E0SGw+3ht2mVNB6kWY0w6HXISjar7vfIQFMnFdaWN9jg8E5kdSGCNFmW8ciHu/HKF0fx2f4K7DndoCr+PV7VdsWp3vv+HDyjVsk8HhmbjygDfYJ3dyvQOR6tUv9dWyz4T9a0osHmwvHqFvzota9xoloJOr+P4W4xQRBnBzanm28G2ZzqRW17sgoipdHmxLLNJ7D+QCVOVDfzFPkUqwHpiSZcPDgLAHDz61vw0fdlqiCtqsne5uBFTMXfX9aA7SdqMeTRT/G3zw61+bV4PDLvUVVa134Tqmpvip3TLfM6756GLMtYv1/Z3LxyRB6uHJEHQKk/D8aza/bjZ8u344PvSv3uY1kuxyKc58V6tH7ejKaTNb7PIpJykc6Eva7+WYmwGpWQhtIdCaKDYDsgLN2xssnOB4X0BBMSvX3UohkoWGA1NFcpyi6tbYUsy3jgvZ14dvUBPK+ZpMRdGG3QIAZpAJCbYvF7vnCqVqwoqfYpYPWtTj8nSofLgyUbj+GHL23CW1tK+O1NNpfq/Tte3Yz6FicOV/inI4aDvR+HKtQWuIcqmlDT7IDVqMfEfr1Ux4owJa1XogmAf1AcCaKqurvUV2O3q7Q+6ILmb58dwkXPrG/XzjRBEN0P0dGWpegdrWzCL97+FoMf+QRvfnWsQ59ftAuva3UK6Y7KnPLizefhsqE5cLg8+PXK7/DV4Sp+vEcGqtvogCuOv/vLG/Gvb0/B4fLgb+sOt9mQpKSmhW+sVjS2fywVMykCpcf3BGxOD39P+2cloX92EoDQpjF7Tivz3skAWTHl3jnuRHVkGTNHKptR1eSA2aDDD0f39rs/7tIdKyndkSA6jVbvzmbvNCv0Oonn4uskJR0kyZuj3RKFnM12EIfkKW6MzQ43jlQ28TTI59cdUk2E4hdcm+7YoAnScgIGaW3baSqta8XP3/4WV/1tQ0Q1ZiU1vp0xt0dGs+Y9+eC7Uiz4717sPFnHjVgAoMnuVL1/x6ubce9b2zHtL1/gsCbYCgcP0s40qVJnWK+fsX3T0StJCcACBa/Mfn9MUTqAtvVJ0wbsGYkmJJkNaHW6ceBMIx7+YBcWrj2oOuZfO0pRUtOCrcfUufehsDndfoFwZ7N27xksXHOgy8+DILorZUKQZnN6UFbfihl/3YD/fl+mOOWW1HXo84uNd+taHKp0RwBINBvwyi1jcPHgLDjcHm7gwDIS2rqxJI6/+8saeKaDw+3BX/93MNifhUS0Pq9sR70co0roAxdvLoKdhZjlYjXqke+tfS+rDx6ksWyYQOUCrI7xRHVLRPPGjhKlTnNkQRrvBSvSGEdKmtPt4eUa/bISubsjKWkE0UGwL1eS2YBsIZUw1WqEXich0ZvuGI2SxoKmnBQLV2y+OuxLHZBl4KH3d/HfW6JR0lIDBGlt2Gn64mAlLnvuC3z0fRl2lzbweoRQaHfGtPb1bJK7bGg2vvr9JZgySEmjabK7Vemi247XYtORanhktRIVDlmWeaDb6nSrdvpYTvv44gykJZgCnh8AHKlQznFsXxaktUFJ876WgnQrLhuajaeuHYFzC1IBAC+uP4wVX5fg+c8O8WvL45FR6k2lqYqwOez2EzUY+uineGHd4ajPL5b88aO9eH7dYXznteQmCCI6xMWuzelGSXUL7EKaY0fUs9hdbny6uww2pxt7ywQlrcXJ54tki4HfrtdJePKaEXxTMj/VgoFeRaWt5iHivNTscHPDBQB4b/spVb/KSBFVQdEAClAW0NHC0h0B/1R4QFGKzqZ6I8aZBhueW3MAZfWtfP1hNeqh00nIS1MM08rrbQFrCOtbnHxzU2u85XJ7+BzXZHdFVPO901uzP7IwFf2yEv3uj6eatJKaFrg8MhJMeuSmWKgmjSA6Gvblshj1KpUq3bvQT/ROWlHVpLGcf4sRvb0OkRu9yhlbzB+vbuEyvirdMYS7I6BW0vpkKDVvbUl3/Pd3p1UK3ukAqQ1PfrwPYx5fy4OhE5rUBq36xhYj5xdnICfFwif8JptaSRMn2mjSXprsLlU938EzyuMoOe1KkDmhXy/+XrGUzL2nG9Bsd8Hh8vCFwcR+mfwYbY1g2PPwThqDcpLx+q3jMH1YLs4tSAMAfLzLV/DMJqgzjb5aPnFREIoVX5dAloHn1h7slLqVYLDP+HQM6j8IIl6IZId/3f4z2Hs6+pYhjTanKkDRKmna1KiOsKd/Z0sJ7lnxLZ74aB/2qZQ0J99EZEoaIz/NikeuGgoAmDwwC9neuaatSlqg7IzhvVNw0aAseGTgf3vPBPgrhW3Ha/DS54f9goT9ZWKQ5juvTYerMPwPq7Hi6+jMm6qbfYHeEY2SdriiEZOfWY/73toe1WN2B97aUoK/rTuMZZtP8LmZKac5yWboJKVOL9Cm4nHBxVi7XqlqckD8amnXDIFgtdwjC9NQmJHgZ47WFEdBGtuILs5MhCRJvj5pzrPHdIaCNCKuYBOm1bszwkhL8KaCmNoQpLX6CrPzU5Ug7WtvqsfIgjRketPxjle1qM4BCOHuqAnSEk16bkyidZOM6By9iwijXhkRtUXYtc0OvPnVcVQ3O7DxkFJUrM0/r9ecKwv08r07cSxIa3a4g7pjBgoOg6Gd9A94g7TDFU2obnbAYtTh3II0vvioa3Him+O1mPn8Bjzw3vc4UtkEl0dGssXAU1FlOfp2AkxVZQE8AIwqTPU7jk1wosskuy3cIjFPUEzXH2i/i1lbYRsI5cJCzeX2YNep+qiD256K2yP7fXcqGm34+VvfYt3+4AtVomPweGRcu3gTpv/ly6AbIEcrm3DHm9vw0+Xbonpsh8uDaX/5Epf8+Qs+tqmUNJfbLzWqI3bhD3s3o/698zQOCJtiZwTzpxRBSWPMHtcH/5t7Eeb/YBjPLGlrr7RAafiT+mdiqHfsLQ/xuI9+uAfPfHoAmzWuf2zMB9RK2sbDVbC7PPjiYORNmGVZVitpmiCNKZBfHa7usD5vdpcbmw5XtUkFbA/MgKu22cHnZmaSZtDr+DrjdL3/ZyQGaVqlTPuZloSpS7M53XwTYWRBGswGPQrSlXWNxWvKEU81adzZMUtRmakmjSA6GB6kGfWqVEI/JS3MRHroTCPe+OoYXG6PL0gTlDSWV903MxH9MpUvOEuvECfpuhaHavdQG6SxhtYDcpL5bW1R0tju1GBvDrg2//w/35/mk/lx70DL0h1Zmow2uGFqS543MGXvXaPNhZYgfeaiUdK0z3fI6/C4w1vTMbowHSaDDmmCknbAW8Pw5cFKvis+NDcFRr2OL1KiteFn7QSSvJMaoOwCamELAHGBXtVkR2WjHeOf/AyP/WdP0OcQlcdV209FdX7BkGUZ//r2VMTqgMcj87QscTf9lS+P4uoXNuLtLdRyIBL+vOYAJj+zHmv2+FTWhWsO4qNdZXjli/A9FInYsvt0PXaU1OHAmcagDnTM4fBUbWvYVPfjVc2Y96/vcabBhoNnGlFWb0NVkx1z3v0Obo+sNg5xevwcHm0dEABUNSpjT32rU7WAZPU0kuTbgNQyIDsZVpMvs6TN6Y7e8VpURib278U3QytCPO5p73wkBgQtDpfq97oWJw+eWHCgVf2avBkUgc/PBZcw11Y12VUKaKU3CHS4PdwoI9Y8+K/duPn1LXhtQ+eOA+yaaLL75uYEo+96YJuEZQHmZ7a5DPinO2rf/3DmIfvKGuB0y+iVaOJ9aVma7Uhvdko8uTty0xDvOoxq0giiA3F7ZD6AW7XpjoksSIvMgv+PH+3DY//Zi3X7K7iylWI1oneaVXVccWYCD7TYAkFckHtkdQ62Nkg7r08a/nrTKDx3w0iuGLWlJq3RrvzN4BzFgVKraImBwfEqxY2Rncvw/FTVuQHKe8kmSvaakyw+FZLt1uk1uQztUdJYumOlV51ig7yY7ljpDZQa7S7853ulFwwLTNMFh8dojDHYa0kSlLTcFAtffLDeeoGVNAe2n6hBRaMdXxwIvusrXm/rD1S0qZ+blu9O1mHuP3bi/vd2RnS8uLgTF5rsut14uAoej4y5K7/Db/+5k8xFgsDMYnZ7F/4na1rwnvf71dZm6kTbYXbjgDoIEDkoKDbh1ICXvziCd7aexEvrD/PPGAC2Hq/BS+sPq1KFbS43/16xzS4WtDndnpipBpVBal9ZkJZsNkCnzSvTkJOiKGln2uiiyMbrc/KVOUavkzCubwafZ7WqC5uLHS4P/16UCmPnoTNNkGXFmZeNsSyQYsEBSy2tb3HiiY/24rwFa/Hj178OeH6sR1qyxVePLqpplYJS920HNSFf9a0yDizZ2LEOn1rYmqPZ7uLGIQnCpiPLhgm0iapNdxTHfa3qeqIm8PeLwVIdzy1IhSQp1+PcaYNw9+Ri3DqpL4DY1KRtP1GLqX/+HJ/ubl/TcraxzmrnqCaNIDoQcffDatIjN9VnHJLO0h1ZXVWYII3lth+taubHplqNfLBj9O2ViOIsdZCm3YWpEfK8te6OkiRh1qjeGJCdhBQLU9ICn9vxqma8uP5wwAGkkStpyq6VuJA4eKYRO4WeX8erW/hgm5Vs5rtsYh+yykY73B4ZBp3Ee7klCaYrbFIY4E0TGJavbk8QCey9YGYshyua4PbI3CCEBV2qIE2YaFkqDEt1ZGrph9+VYvTja/HJrsgG8EDpjpIk4U/XjcCcywZixohcAD7raq2SxoK2ULtv4vXmdMv4bF/70+L2etNKygOksARCFaQJky8LIHedqsehiib8a0cp3tt+yq+QvzshyzKOVzXHPNCUZZm3mmAL55c+P8x38Ota2x98E9Ehpg+fCBKkHSj3mUiUhFloMkOMbSdqueLCFnFvbDrOVSEAsDvdfDxm4w/7/f9e34JJf1oXdfp1ICo130VWb8QCTm09WiCy26ukeQPOS4bk4NIh2bjv4v5IMhsEhc43puwvb8CI+avx7Or9qjoxMUhgzo5D81L4HMPGHDamVTXZ4XR7cPfybXhtwzE43B5sO1EbcA5kmQ69Ek388xJt+MX3cEcHOHCK88I4b1PxzoLNPc12N5+bRWWVrVvKwqQ72l2egPMEm6PDKWk7vYZUYibKsPxUPHTlOXydEYsgbcnGYzhW1Yzf/2tXm3qjMtjrYxvCPEgjJY0gYo/4xTIbdMhJFmvSlEGGW/AHSddjsIFO3IFNthj4lxlQ0j4K0kMraYC6GJcraQn+k2qKVTm3QEpai8OFnyzZimdXH8B720/63e9Ld1SCpfIGG+/x9dH3SrDC0g5OVDfzxcfA7CR+LuJigk2mOSkWrpaJAS4LOm6/oC8GZifhkavOAaCkkZbUtOCGlzeF7RfEnm9Y71SYDTrYXR6U1rbyOj5WR5iWEDhIY+tvZvPLAvEVX5egrsWJRz4Mnn4owoIUUUkDgIsHZ2POZYP4IqSqMXBNGnuvbCEMQdj7xTa7Y6GkMWfLQD3uAiEubMQFFTu30/U2fCQEtpE2L41H5v97Dy7+8+cq4xe3R8Y/vjnZJhc6Rk2zg1+3FQ121Lc48c9tPpWalLTOpabZwd3kAF8qtxZxHA+30GSBz76yBq6a/mLqAKRajahpdqg+Y9E4hI0/LGVvd2k9Gm0ubm/eHpiKbzYoS66x3iCApd0nW8IHaWw+bG9NWlayGX+/bRx+M22w8rgprNbNzsehb47V8JoylqoJqJW0Y940uwHZSchM9j0G4AskZVn5vNjnYDboIMuBx6Zq73vUK8mM4kw21/k+a1GN/LYk9kqauFnAPqfOQpXuyNwdTT4lLS+EDb/2+hTr6NnnwILOcN+d77izY5rffewaba+67BBqFetanHhu7YE2P1Y9N3JT1oesmTUFaQTRAbQK1rOSJCEnUE2ad+BqCmJ8oX0sVieVYNLDqNeplLSC9ASYDDqez3ysUtm5137B2U6PLMtcrUoNsPPpU9L8B7FnPj3AU1v2lftcENmkyHan+mUmwqCT4PbIfFeSTWizRuVDJylB5Lr9yoRybkGaSqlisME8P833HrIgpr7FyVNZrhiei7Vzp2BCv17I8O62vbbhKL45XovXNvgHaS63B3/4cDc++r6MP19GgpEHQpVNNv5+sc+MnV+Lwx1wkhmUo053ZIgtGELRHEBJE2G7iFxJq/VNVDanhysrkShp2d6FUjR9+oLBgg1XgB53gdCmO7JrR0zFFN3UgqkS8U6rw42lm5XX8e43vibsXx+txgOrvsejH+5u82OLtuMVjXYcq27m5jWAdyf6LEqViXe+PFipdp8LcM22OFx87ARCO9TZnG6+u+6RfcYW5xak4dIh2QGPZ9/7NEFJk2UZLd7b26scNAsL78dnDceUQVn4yYQi1TGBTEO0sGCqutnRJodZn8ux+rnYmOZwe/gCn22mldXZUNnkCwpFJY1lTGQmmfhYXdloU20CAr6emSkWA4b3VlLzA220VDX7lDT2fRTHPHGDr6zeFrJvWFtgc6r2eRmnvX1M2+IwGg425rQ4fOmOiaZA6Y7qAF2030/2zn+iMsU288YVK0FaVZNdNV8crmjCPcu3Y19ZA9wema81zslL8TtHdt002V3tynDYeqwGTXYXrx97a0uJykwnUjwemW9ysA1yFtjazqIxnII0Im6wOdU7SLkqC35loZ8QxILf5nTjgfd2YrXXDIBNioe8zZlZAJWeYOSDQ19vcNanVwIkSdnVrGyyo1UTALJBsNnh5g56AYO0IDVp3xyvwZubjvPfD1c0ocXhwmULv8DPlm+H3eX2OXxZjdwwhdWHsf/7ZibywZrVT51bkOoL0oQdNK2zI+AL0kSr5ARVSoXyvEy5K61r9Xst207UYunmE3jy432q+jzWsLqqycGVR/aZibvEWseugnQrvz8jQR2k9fcqh+EIlO4okplk9p6bHS63xy9lhOXhh2pWzZROltYTi506caESSUqVGDzYXR7+N82CqiwqfMeqQu+axiusVhHwGfMAPjWiPe0HjlT43vOKRhsvxB+YncQbvlPKY+fxuVe9GOftk3g8wDXLNtoYoWrSSgIEcAkmPYozE3H5OTl+99ldHj7vsPHK5vLA7vLw4LEtNcYi7Lq1GvW4YWwBlt5xPk+xZ0SS7pieYOLuv8Fq3EKhradmmAw6vpHF0hTZ41c3O1Tq2ZkGGw8QeTuaBDFIs/uZVXztbcfSNzORp9cHCtJqWLpjkpkrWWIwyoI0Nn9/e6IuwlcenlaHmzf3BgJbuC/bfAIffV+GZ1fvj9nzMth6pUlId7SKc7PX/EtrHMJSHbOTzXyuFzN/2GcxKCeJZ7SI35EF/92LT/eU460tJ1DX4rPr76XZMAV8Ne0euX2blP/zlgpcPTIPUwdnQZbVAXIwXlx/GI9+uBsf7ChFq8ONRruLny+7plm6Y0eY/3QVFKQRAalvdeK5NQe4yhAL3B4ZD76/Cx/sKFXdvvNkHdbtP6NydgSURTfbHWIqS7B0x01HqvCPbafwt3WHAPgWtKwInO20SJLEHR6LvZb5is2sctuxyma/BXhlox0vrj+MTd7eaia9jp+jCNtp0takPbtakfNHeVMIjlQ04dsTdThS2YzP9leojk8yG/hgy+x22e5l7zQr+vZSJncW1J1bkKpKJ2RonR3F944pdEa9BJOQ1sEmAjFdQrvDJdpYsxqCVKsRvRK9u7xNvnQitjOt10n8vdGmFg3J9e3YaZU0R4QDbSB3RxExgCyrt8HtkWEy6LihCnvfPLJSbxb4OZiSprzOljBKbjhaHe6Au9Ih/0ZzXTLFIFh9ZndV0t7e4lPPxACU/dyWhucMcXFY1eTgqmp+mpV/jyjlsfNgvbCuO68AgOIiqLVXZ2oYUxZCmR8ESk0cmpcCvU7CRYOy+HjHgh2b02ccwsYft0dWZUO0xa1XhAUXmckmbsaQrtmQSo5ASdPpJK56lbdBReJKWoCAkNeleTfwRKfH3aU+5cgj+wI5tpmRZjXy86potONMvTZIU4Kfvr0S0T9bmb+0PdAAXx15ZpLPiIRdC26PjBrv/RcNUnpqfi+kybaXbSdqVA3NAykxbOzYdKQ65mq7rybNZ+olKml5aSxTxa4KXFmQ1rdXIh+/AqU75qRYeMbK594N3sMVjfjSm3ZY1ejgG3xpCUYY9P6hgdWo56UTbVWXZVnGZ942J5cOzcH4fr0AALtK60L+3eGKRjy7+gCWbT6BOSu/wyMf7ubfS4tRB7NBz88RIOMQogfw752n8bd1h2O6a7TlaDXe3lKCOSu/4wPC4YomzHrxK9zx5jZej8D6cQDAZefkIDvZjKHexXww45CaZuUL29Dqgsvt4UEMQ9w9LGRBmrBLz2z4j1U1++0SvbnpGJ5dfQBzVn4HQJnk2GQrEkhJ23ykGluP1cCk1+G5G0cCUHYn2Q6y2yPztI0kswF6ncSDh9N1rXC6PXw3rHealfdiA4CMRBN6p1lV6Y7Prt6Pn7/9LR+8ewvpjuy98zXLVC8MtKYqgLrRNYCAqUQpViPvNVfdZBeUNN9CRFvDd/XIfADA6D5p/DbtwiXSlB6e7hjEwpopadVNdr4oL0izIjvFP50ymELG0iqyeJDWvkngWFWzKs0rWiUN8C2WtD3v2AK0O9ak7T3dgO+8xesA0GT3vS8sMG5Lw/PSulbUtzhVSq7bI/MFqPg9oiCt82AL/YE5yUg06SHLwMkadQBy0DsGXTxYSVc8XWcL2seK1dwMEFT44fm+uWPyAGWB3ydDGUdtLjdaHcpjieOPyiwqRkpaVpJvvNGmHKZEUJMGgI//rJ41GnjT7ADPxZ0jNUoaAHwvOGQCwKk65T2uE2qP2Vha0Wj3c4lkQWrfXgnoz5S0AJu/onGI2ciCNOWzqW62wyMrNcHneq3g26ImBkNbYxxoHmAmJnaXhweesYI9X6vTzbM2EoQgrVeiCSZvPZ+oVLJgOi/Nwq9ftuFnc7r5vJKTYsENY5SNkBVfn4DL7cEbXx3nj1PdbOfvgTajhSFJEt/oFcflaDhU0YSTNa0wGXSYPDAT53rTX78/VR/67zRq+tHKJv7axOvZ1yeNmlkTZznMZEH75bG73Kq+YdEgBk7vbC2By+3Bb/7psx9ng6BYMPuX2aOwed6lfJHPdpe0C1P2hW1xuHgtgYj4Rf7FJQNw07hCzBrVm98mmoewXS22m8d2o9jCPNUaOBgI1Cdt0f8OAgBuOr8Q/bOSeAD24U5fShdLP2ADIEs7PF3XivJ6Gzyyci6ZSWaupAE+m1z2vKdqW/DS50fw0fdlvDBXVNK0u7XiTh0Av/YEALC/TJ1/L+6S7vc2FxXTHSub7PyzSBcCMzFITrYY8LsrhuAvs0fizguL+e3pmkBOG2gHI1y6Izu3mmYHd/DqnW7l6p+IPcC1I8uyn5LW3p06bbqPthF5ILQLBzZZa1XlaecobpYnqltQ0WjD4//d69e8OV4RAzRAvRnDvn+yHJ26UdloxyV//hyXLvzcb9OBPZ+ipKkXOUTssLvcuH7xJty6ZKsqpbiu2TdWFHnHNq0CzDaDLhyYCYtRB7dHVqXgiTCV7bKhOTwLY1hvX2P7n17UD4UZVtwwthCAkmnBxvsUiwFs761GaKoczK03UriSJgRpBqEvJHvuSGCZB9rrOBwej8yDzUCp+izFns11Yv2XaNoC+MxD2DifZvWlO1Y02oI2xe6bmciDtKNVTX7riCrBOMSnpHlU55ORaOa10+1VOEXYOJPC2zCox1SX26NKExRNRmKBOJ+w9yFB41acrymDAKDaEGVKMAu2WABnMSrX2tUj85GeYERpXSte33gM//rWl9FU3exT0jICpDoy2BqioY1K2tq9iop2Qf9eSDAZ+HfzVG1rSDMuNl8WZlj5a9Q6bQPUJ43oQTA5mzUCBZQLf8ozn+Om1wL3OQmHqIws33wCj/1nL7d8BXyDjzaVUOzllRikJo1NGE12V8AFtJjiMaYoA3+67lxVeh0L0o5X+5S0PEGFEgk0yQG+QLDR7oLHI2NfWQO2eFW0ey/uD8BXZyVOgtqm1PmCksbek7w0C3Q6SaWksV0o5mxU2+Lk6gz7X1THtEFMgub33oLzJVtQBFPSAF/QIKY7HqtqBpt704QduTSr7+esZDMSzQZcM7qA55ADwOg+6UgyG3jahl3YDWuwOfH/3tmB5ZuPQ0swd0cGOzeXoJwUZiQgK9l/MtI2tmWvk72m9ihp9S0+F0dtkFbXBiXtTIOS+sKC2UE5yrX14/F9oNdJaHW68dt/fo+/bzyGJWGcOuMFbYDfZPMP0oDoUh6PVjbB7vKgqsnBU0zZ9c0WXvlpVv6ckXwWRHS8/20ptp2oxRcHK7m7qtPt4Qp1WoIJfTOVsU10eJRlmY9Bg3OTuQIWrJ8aG0v7ZSVy59pLBMOQ8f16YcMDl/D6NNE4xGrS87lHVNICudm9teUEfv72txGpbKw3ZJbGCEkcHyOpSQN8TrjM/j5Smhy++p1AqZU8jbLBBo9H5nM+AK5as/GVfYdUShp3nvSlO4qZKgBQ1CsRBelWmPQ62JweVSsEwGfs1CvJBJM3fc2hCdKyk81hW920BbbRxcYF7YbYydpWVSr8uv0VMW0PIj4fK0fQbqKyDVexplp0Uk7XpGuzuTonxQJJkmAx6nHT+X0AAH/6ZD9anW4hy8TBr3lt2YEIqx9vamOQxlrXXDpU+f6lWo38OgmVvsoyIMYWKQYookuvuB4L1SftSGUTdnSAK2hHQ0EageVfn8DlC79Q7baLkw+zez9V24LyBhu2Hqtp006FmPNd3mDDcsGJDvANPpYA9V6MJB6kqZ+f7arYnIEbkIbbqWQTaE2zg3/B81P9lSUgeJDGJj9ZVibFb44rBdPj+2XwAZYVTouw9z1JE6SV1tn4RMZUrr6ZopKWFvJ8lMfyd3dkaIM2MaCbPU5JjThQ3qiajMoD9OgRlTRWw5hkNqjq3cRzFNN+RHJTLfj+D9Pw5+uVtFAWfMiyjN+v+h7/2Xkaz64+oDofj+CMGExJMxl8u9ZsB3RQdpJqZ5sRqOCYTUg6SdnJBaJX0v7xzUmMXLCG271razIiSXfUKsTlDTbVZsXfbx2Ht+4aj0kDMvn1wmoOukvPNPY+sA2DRuH1iYY+0QRp2vqJZLOB9wVk5KdZ+GYHpTvGFo9HxqtfHuW/7zmtZGeISkiKxRBQSTtdb0Nlox16nYQhucn8mEAGIYC6RmfutMFYO3dKwO85m2PEvlIWo57fLjrkBVINXlh3GB99X4aFaw6Ge/k8wNAGaWLmQKTpjqyn5H7NuBwO9l6bDbqA8yurSatosKGu1RmwNvfcAmVTsLS2VVXLlyqkO1Y12Xkt9SiNjXvfXgkw6HU8GNeOgcyCPzOAcYj4HgZyM24vLDOHqUja9Q3L8unbKwEmvQ6nalvb1QpExOn2qN5vbpCiSd/nrRIE4686UUlL8Clpp+ta8cTH+wBA1Xbo/yYU8XT4S4dkY9kd5wNQ3kumvAUyDWEwdbotNWlVTXbs8G7KXzrUt3HCrqtdIVIej3hT98d6DYYabC4e1IsbHL50R9/n9/mBCtz48mZc+twXeOw/e6M+766GgjQCr284ikMVTdhwqIrfJk6gu7056eJO9um6wOkm1U12zHphI5Zs9N+5t2tqjLKSzXj5/8bgqnPzVI8ZyJSDwRbirU43XvniCK5bvAn1rU5VilJlo/8CLlQgA0BVdMu+4GLQIk44wR7LYtTzyaW+xYlvTyi7Nuf1SefHDAjgWMgWHGyXSqxJY6kl7Fz6ZCTAbNBBr5NwbiFT0tTnw3amEkx61X1mg4472AH+O3ViQHfj2EIY9RKa7C5VXzFtUTigTNJsIcQC7TRN6qI4kGoXKyI6ncQXEWyCfmtLCe+X1WBzqQIOMXAJpqQBvh1S9lrG9s0IOBkF2nwQ0ykTvOYkLc7IJylZlvHaBmWR+r7XNIcFs0wZjSQw0Bazn6m38XMzG3QozEjABd6aG1FxBdTpW/EMD9K817u4Yyu2KahtdqKqyY5Nh6vCLla1i7l+WYl+7R16i8Yh5O4YU9bsPaNqfcA2/ZhimWwxKIv3Xv5K2nbvGDosPwUJJgOKvEpaoH5PDm+fRsD/+tdiEYIAdl1ZjT4lrVoM0jTXj6g0Ldt8nM+PwagSgg+RVEFJi8Q4BAAGZidDJykL8Whqsnj9TpC5KzdVObfyBptf420GmwNL61r5e6LXSUg2G9Ar0QSDToJH9n1mIwt8aabJFgMPgFjK4/bjNfjuZB1kWYZLsP9n9VeAzziEvdasZHPIfqRtha1t2GajdhOOKTnD8lMxpkiZz2PVUFs751QGUdLYvFkljOVssyotwcgVsLL6Vly3eBN2nqxDWoIRcy8fzI/vnWbFuz+diBV3jsfrt47FkNxk3vvzsDfoDK2ktb0mbf3+Csiy8l0WyzBGsLq0IN8jWZZx1Dtfntcnnacks3VToHRHtoZze2Tcs2I7th6vgU5STGm6WyokBWk9nNK6Vj7hMfckQD0ABg7SAuedbz5ajZ2n6vH3AEEa+3Jcfk4O3rprPP736ym4Yngu3wFiC3yrKXiQJhbTPv/ZIWw/UYutx2pUC7GqAJNXuHQSseiWDdCi6cYtE4p4OllakMJa8XkabE586x3EzyuKNEhTBsCCdCv0Ogn1rU5s8TYBZYtWi1GP134yFq/eMoanmJgMOtX78qdrR+D8vhm4ZUKRyuBEkiSV2qQ1DslOtuAXUwfgl5cORFEvX/0ASzdye+SACwNRSWNoTUDEoC3QzraIb4JWgrSFa5XdajaZiDUSbBGv10kqwxkt4vklmvQYkpvMG7CKBEp3ZIFQstmABO8kEE26457TDTjknWS2l9SiwebkO7MsgI/IOMT7/WGNTcsbbHwHWBugalON2uOI2Jk08CBNWWQ3qZQ0dbrj/f/ciZtf38IXhUEfU7OYm9C/l8o0xmpUNjN4ulAzKWmx5M1NylzAamp4kKZpet8nw6uSCUradm82AlsYs0wCpsaJlNa1wiMrNTjheiyKalK997thMeq5YYVaSVNfD/WC0uSRgUc/3B1yoyCYkpYmzEmRpjtaTXpel8xqgiOBpQYG22Bkc8mZBntEQZrYL1SSJBj0Op5WymqLRhSk8jG7b69EPhexeeX5dYfxwxe/wm/+uRPvfHMSgGJ6lJZg8lPSmMoTTkk702DDvSu2hx0TtLCMhF5CuqP4mR6tUsbrflmJfPwNVUMVDdqAkM172nUQmzfFz4d9hxQlTXlftp2oRVm9DdnJZvznFxfy7w5jTFE6LhyYCUmSoNNJfK5mZi6hlDSW7dMWJe2zfUoWy2VD1a0wWEZQsHTHyiY7Gu0u6CRlXmPfG+bkKmZJiRu8bo+MZoeLz+lfPjAVr986LmSmVjxCQVoPR+wNUhWkWHoXD9J8twVX0pTHKK1rVU10gDD4GPW4YEAmNwNhg0uLsKMZDFENYjug1YJZBYCAk0y4dBJfkObkj1uQ4duNnTwoEzeMUYrNhwuF6P7PowwYx6qaefAlqnBikMYCK/ZeslSCBJMB53ldDzd6bf9FU4+LBmXxnG4Gm7iSzAaM7ZuBf9wzEfNmDvU7P3ExnxjAsv630wdj7uWDACjW1YDPPKSqyR7QVU+sSWNolbTUCJU0AKoJWrFeVq6jsX2VfPSDZ5pQ0WDDu1tL+AIq0aQP6LjJEAPD0X3SYfAasWixOd34+8ZjOP+J//F0FpWSZgrcAiIUq749xX92uDxYuOYg7C4PclMsfBexPgL1hn0/2CLtjJDuqE31LOqlDtKCLSjqW50xra2IBKfbg3X7zwTcCdemO7YIvQnF8aeuxcnbQ4RLO2KPefP4PtjwwFT8dtpgvigFFAVZkiSubJCSFjscLg/frJo7TdnRZ5t+9dzCXXnf2RhXJjRq3+6tIWELzckDFaX4m+O1ftc0W7SJAUEwxIUaCzisJj0shkBKmnpByjaqEkx6WIw6fFtSx8dp5dxq8PSn+/HO1hKcrmsNqqS1Jd0R8KU8RtMAOFgjawYzDqlutvMUe/F8jXqJzwen63wmD2KgectEdYPu3mkJfKwX0/Qn9Vds1yVJ2Xj717eleOQDpUH9zy7qD71O8tuoqxQcMtl71eJw+7l8Lt10HJ/sLsfizw+He0tUsLE10xugaNuxsNTMflmJXBGMWZAWRNnRjuk+Jc23vhGNQ9jmMRvOZ47IQ2FGaEUZ8G1gMrVQu8EqktzGIM3p9mDDISX1XhukDctPgU5SNggqApjOMCfTgvQEWIx6rvSx1OZAShqgzOVsE9ek16EgPfx7EY90aZD25Zdf4uqrr0Z+fj4kScIHH3wQ9m+++OILjBkzBhaLBf369cPLL7/sd8yqVatwzjnnwGw245xzzsH777/vd8xLL72E4uJiWCwWjBkzBhs2bFDdL8sy5s+fj/z8fFitVlx88cXYs2dPm19rvLLpiG9yqQ6ye3iqthV1LQ6VenAqWJAmPMbu0/XYfqIGC9ccgM3p5qkLZoP6stMqU6F2OrRqEHtOVZAWUEkLnU7CggqXR+ZBXnFmIu6fPhgLZg1DdrIFd00uxvrfXoxrR/cO+jhsR3Sdd9doYHaSahDJSDTxHeWLB2cBADelEFNepgxS7mMDrmjqEQj2HKP7pKmMVrQkhVDStPTLVNd/MKWT5bSzn61GPdITjBDXRdqBPpogTZygRbMZZpRy6EwjHnx/F37/r114y1vXGCrVEVAraSyvPVO4jZ17q9ONNXvKUdFo50XObKBPshj47makfdKcbg/+43XyZDuwy7zmJz8Ylc8n/EiUNKZEs1SuqiYHX0BqvxPMYMCXxuvwC8bWH6jAqAVr8NfPDkX0WmLFv787jTve3IY/e/sHimjTHQFfkCymO1Y123Gm0d+JLhBigXlhRgKMerXSwlKJ2YLzbKtJO17VjD+vPhCzRWU0HDzTCIfLg2SLAVcMz4UkKfWRlY121DarlbQcb8qd3aWkvjXbXdjnVYtYkFbUKxHD8lPg9shYu7dc9VwsUDonT11vGAi9TuLjGLs+rEY9/37XhjAOYddb7zQrbhqnGDEs/vwIAKX29KZXv8biz49g3r92YfqiL7kLq1bda0u6IwAMzlFe374ozEPCpTtmeBtly7LSBgNQpytmJpmRl2qBXifB6ZZxyJvNILZWuaB/JlfwWWpZrrfWra+QfjppQCY2PDAV3z06DS/9eAz/HG6ZUITfTFM2CM1BjEOyks2q90qbispSEKPt76pV0gB18MQCmH6ZSTxIqO7gIE27Wa1V0mRZVhmHaF0ZpwqGOaFgf8dqwEO5OyaZveZoUQZph840odnhRrLFvx440eyrRz1wxn/jQVQxAV+LAJYBlqIp6WC0Ot3CJmb3Us9EujRIa25uxsiRI/HCCy9EdPyxY8cwc+ZMTJ48GTt27MCDDz6IX/7yl1i1ahU/ZvPmzZg9ezZuueUW7Ny5E7fccgtuvPFGbNmyhR+zcuVKzJkzBw899BB27NiByZMnY8aMGSgp8TVRfeaZZ7Bw4UK88MIL+Oabb5Cbm4vLL78cjY3RWd/GM7Is42tBSasWghs2+LEBdM/phohq0sSUyd2lDbhu8WY8v+4wPtldxt36zJq0tPRE9cQRKt0R8M/Vrmqyo17Y7WTtA0TjinA7lUrRuI4/HqAMkj+fOgA/mdgXgBIgFmcmQhciCGLGIP/y1h6J9WiMV24Zi1duGYMJ3kaOjGThHKcMUg+wgXqYibAgSJvaoCVJmOC076OWHCGtDvD15WLNYdnzsnQXMTDT2umntSlIc6vyx0cU+HqqsPpJVogczDSEISp9zCFK3ClmxdU2p5tf5wfK1UpaktnA1c9gE6uWb47VoKrJgV6JJvx86gAAvqB81qj8gL25Hnp/F254eZNfU18WGIrXwqla1r5B/VlO6t8LT183gheGO92yyoQDAF7+/AhkGVj0v84N0pgzXaA+bkzFykr21aWw919MCzpY3sgVtqow9XaBUr3EdEcWEAZqCn82sHDtQbyw/jD+ue1kpz83a+FybkEqkswGvojfc7qeK1hsk85s0PONk7L6Vuw8VQe3R0Z+qkVVwzJjuNJigtWpAspc9smuMgDAdO/94WCBANu7EOeAajGrRLMgrRLqo+6+qB8MOgmbjlTjzje/wQOrvofbI+OiQVno2ysBjTYXV2RCKmkRpjsC4ZW0Q2ca/erkAtmVi+h0En+P2cbtgOwkPt5lJplh0Ot40MVSVsVxXaeT8OPxStCalawcz1oGjNBknxRmJCDVasQVw3Pxr3svwKLZo/DYD4ZxBVSrpFUJQZpBr+ObcuJn4/bI2OlNmSupaYmq9sjXXsfI5zb29w02J//M+2Ul8nRAlim0/OsT+EpQUqMlmAlVOCWt1enmQWx6okl1PVmNeowvzojo+XtprstILPijrUljzaqH56cGXD8N9GYYHTzjH1yzAJmlybIgmV0bKZprkH2HWx1uPueFWx/EM10apM2YMQN//OMfce2110Z0/Msvv4w+ffpg0aJFGDp0KO666y7ccccd+POf/8yPWbRoES6//HLMmzcPQ4YMwbx583DppZdi0aJF/JiFCxfizjvvxF133YWhQ4di0aJFKCwsxOLFiwEoA/6iRYvw0EMP4dprr8Xw4cOxdOlStLS04O23347pe9CVlNS0cCcmwDcxeTy+Bd0IQb1oERZ5wYM03+T2b6EXWLPdzb9ULKWE4aekGcIEaZovXFWTQ5UuViE0z2REMglq1Z9wwWIg7p8+WJXTfV5Rmt8xIwpSMX1Yrt/ziWrQsPwU1eMwFSYY04flIivZzE1YgqGqSQszcOVyxy/l/WQ7wvmpVn6f+L6K56v9TCNxd2SI6Y7MbdGol/iEv7esgV9LbKESbhBmiz+9TsIobyppqtWIif16YXSfNBR7m5nbnR6++8Zq35oDBGlOtxy0oa4Iq+cb1zcDFw3M4rcPyE7COXkpfCeaBQYej4yV35zEN8dr+UKIwRp0im0KmMqpff2SJGH2uD44tyCNn3NtswNfHKzkyl5/IfU2nBoVS5iFdyBlh/WLS7WaePovUzLF3oh7hf59gc7d7ZH5pkKgpqdZSWK6o7I4Zd/H7lK/FymsPidY/6qOhC3OWN3JsHxlPtlzuoHXgokLfW4zXmfD9uNe4yXNxtOMEcoYt+lIFb9edp6qx+l6GxJMep6FEA5tDavFqPNZ8AvXZpPdBZfwXRdVnd5pVt5v87P9SvbEvRf3x9Lbx+HFH5/HFfoks8FvPhFTwqNR0oZ6x8FDZ5r8AhGn24PrX96MG17ejCa7CztKanHBn9bhzU3HAYTerJzo3TRkC+WsZDNPg2TjJ8vo4EGaZpy/6fw+mDkiF7/wbkg9cvU5+Oc9E/1S3ERGFKTih6N7qxbvodwdAQSsSztQ3siDLY8cvE1DINjYkiC0YWDBEzMAU1Q8n2JV3ezAvrIGPPLBbty7YrvqGomGYEFaQpCatOpmh8poxaiXkGjSI8Vi5DWAFwzoFXHtlbYGLVSQltLGdEdWMnNuQeBSkcHezI9DAZQ0ls6uVdIY2o0H9vnZXe6w7Xm6A92qJm3z5s2YNm2a6rbp06dj27ZtcDqdIY/ZtGkTAMDhcGD79u1+x0ybNo0fc+zYMZSXl6uOMZvNmDJlCj8mEHa7HQ0NDap/8QyrR2M7MNVeFUzsqcL60jTZ1U2iw9WkAcA+YSFl0El8QvFT0vyCo9CXpXZBeqq2JaCFbb9M3yI0nLsj4D/hhKqNC0Z2igV/vmEk/z2UsqUdDMWJWqeTcJF3sZGZZA474N5xYTG+eegyDMhODnmcqLiEU9JytUqa9//cVAufrMX3VUwp1CppYjAXrqif7aI63B5e9Gs26FGcmahypwR8u2nhBmG2+Buen8KPlSQJb989Hv+6dxJ/L2wuN5+wD1U0qjYstAutSMxDmFpUnJWIwgwrV21+OCpf1YicLTZrWhxweRWioxqLajaZW016fu0EC9JE2LGVjXbcu2I7fvnuDtS1OFTXt5j23NEwBz5tkCa+16lWI1d92a6tuJg5I7SCCJTe/Ph/92LCU5/hm+M1AVUEUUljGyCBVM3uTkWDjQfF1Z3k8FnRYMOsF7/CP7456VPSvJt9LNVp7+kGQUnzfS5szClrsPFG49oxtH9WEgblJMHplnlLDaaiXTIkO+LFqVmzGWg16mFmFvyaQF00sNE2p/7VpQMxNC8FVwzLxX//34X43RVDIEkShuWn8nTIQNkDbL6xGvUw6iNfirFxxOH24Atviw1GaW0r6lsVh+Jjlc34eFcZSutauattqLT/qUPUwW1Wspm3oWHnX+Adv9jmmHZeTTIb8NKPx+AWb/ZJktmAcX0zQmafBMIszAF2l08RYe85N+gSgrQdJ9VmIYcCqDLBYDXGiWaDr9eWN13u0Q+VMhcWaLJ5rqbZwcffBpuLq3jREiwrQxukZSSaoJMU5bemxcGVvLQEEzcBYddUpKmO7HFD/S4iGodEU8u8y9ufNFg9/8AcZd2ibZwO+II0pqRlJEUWpLU6PBSkdTbl5eXIyVHvyOTk5MDlcqGqqirkMeXlSmpEVVUV3G53yGPY/6GOCcRTTz2F1NRU/q+wsLANr7LzYJanbPCpaXbA7ZH5wGcy6LgU3qhpEn26Tml6qSVY3UOr06ekaSdH7YI+XHCk/cJpF7MsHSAjyYTpw3IwqjAtrBIV6Dy0g2SkTB2SzdM3QgVNWnONZM0uJ6tZYztIsSApCiWN9c6pb3XC5nRz+/2cFAtPD1QHab6FiNbGlw38Sq+x4JMAAJj1vjQkpqJYjDqYDDpVAbpIuJzziwZl4XdXDMET14xQ3S5JEm/0CXjTHb0Tts3pwcnaFpU5h0mv4+kwkfRK40FapmJm8LsZQzB9WA7+b4JSZM9UhEbvbn2FEHwc1RhitHpt/61GPd/9PFmjLL6SQtQXsvd7b5mSsizLSiAiLg42Ha4O9ucxhwcNzeo6OWXiV35OtRr5tdrk/TyCBcWB3FzZzu3Ok3W8vlbb9JRtimjTHe0uT7ezaQ4GSwcGfJtwHc3qvWew82Qd/vDvPXwxz1KVmfnEgTONPBgWPxdWr1tW14qDFY2qvxEZXagEbqdqW5RUx93KvDxzROhMAhGtkiYah2j7hInmIVpVp0+vBHzyq8l4+ZYxfovQ+6cPxrRzcnDPlH5+z5/pTcHWzjvhkCQJ04cpKZ2f7lavR0T16ERNM45VqVsVaOcYkQsGZKrqjZlSCPjcH9nmHKtf0s5hsYKnOzrdqnGWbaYxRUdU0rSW+IcrmuByewKuU7SolDTvJrHN6cYTH+9DSU0LeqdZMW/mEABQ9SM7I6jTXx5s20ZX8CBNPabrdRLv01nZaBecHX2fwfRhOSjMsOKKYZGl/ALqeVvrFK0l2VuTtvFwFc5/8jMs9Sq0oXC6PXzDXpv2ymDO2YfONKnmhLoWB5/jWJ21VknTqsMWoSShUagn7650uzPXujaxD1RrNa49RntbrI4RmTdvHubOnct/b2hoiOtAjX1xLhiQiX9uPwWPrHwp2ISUYjHyHfpmuwtOve/L63B7UNVsV7mkAb4gTSf5am8AZcEbC+MQwD940taQsILeBKMeT94yNuRjiWgVvfZYtf4whLkII5SSBgBXn5uPBpsL5/eNLLc8EkTFRVvHpCXFYoDVqEer043yepugpJn5xCKmKmWGSHfMS7XgjguKkZlsgiHMrrGotLKifRbYD8pJwuGKJuh1ksppMly6o8mgw70X9w96v0XcfRPS6g6UN/JAMdligCRJSDDq0Wh3RWQewoI0ZsLyg5H5+MHIfH6/qDA22Fw4IzQq1boWBlLSTkagpLHr+nuhWWir063qu/ZVJylpNqeb15CxHlUsGBMNHEwGX90Je/+Dvd+B0h2ZElLZaFcZh4jMGpWPzUeqca7XfTXJbIBBJ8HlkVHX4kRuavctNmeIC9fOUtLKvEE4GyN6JZr4Yp+loJfUtPCNM3GsyPUqN0crm7n6MzBA2xIxTbi8wYaSmhYYdBLf2IoE7fhuMeiDZnGIRlqi02A4MhJNePUngeegYfkp+OlF/YKmgIVi5ohcLPnqGP637wzsLjcfH8X+cSeqW1SNwYHQG6DJFiPG9c3AJm+GTXayBbdO6otWpxs3jC0AoDb0AdTjfyzhxiFuX7Nxo17icwf7Loufyw6vE+j44gxsOVaDw5VNuP3Nb7C/vBHrfjMlZIDKNoASzQb+HtW3OrHS2xrgmevP5cEAq29usrv4+Asogct15xXgk91luGViUVhjLkagzT7WC1VLVrIZVU2K8Q4LQMTvz1PXnhvRc4qI6Y69Ek0h17hisFPZaMfSTcdx66S+IR9fNA8K1r+wODMRep2ERrsL5Q02nvmy0ztnFWcm8tep3QBODbLJrzYO6XahDqdbKWm5ubl+SlZFRQUMBgN69eoV8himimVmZkKv14c8JjdX2YUIdUwgzGYzUlJSVP/iFY9H5rucw3unCCmPDr4wTrEaVHUhrZoGvtpeaR6PzBdHIwXbeUCrpKkvuxSLQTUghasFY4s3rUsQgy3eo1XCxF1BneR/nrFGGxRqgzSdTsItE4p4vnYsSBaVtDCTiCRJyEnxNTllQVpOigWzRuVjUv9euHGcbxNC3JHT7nZJkoRHrz4H9108IOw5moQgji2wWeA2yJsWMa5vumrR3d50BrarXtfqUG0uHKpo8is+9jk8uvHO1hLc/NrXGPP4Wu7ayLA53Vw10vYtYxiFIvj6VicqVUqaJt3R6WthwXZUGyNwr2IB3S4hSGtxuHm9H6A4uJYEaBAca0o1adJik21tMCUWqTtcHj91g9Foc/kpX2yX+UyDTXC2U18jf/zhCHz2m4tV6a+iG+bZAFu4AuENVmKFNhV+REEqX/jlpyk9IB0uD59/xIV+vrc35eaj1ZBl5drVGhsAPiWlodXls4NPMEW8MAbUQZrJoFNMB4LUQ6uCtCB9z6JFp5Pw4MyhuOrc/PAHazivTzqyk81otLlUKriopB2vasYJbxAxb8YQTBmUFbZm+RIhTS4r2Yxz8lPw/I9Gc/c9rctwqJ6h7YEpaU63jGavki5+XimamrT6Fie3yb9hrDInrd9fgQ2HqlDZaA+YRifCFvNiTdqZBhvcHhmS5KvXU57bt17ZJ/Sq++5kHX702td46pP9eN9rHBYJgZS0YEGF2NC6jtvvty9QFjeLQ9nvA/5rlEhqKZmJzYjeqUEDQLNBzzdwRPOQnd5MANFpNENjNBc83dHtM/2KYlyIN7pVkDZx4kSsXbtWdduaNWswduxYGI3GkMdMmjQJAGAymTBmzBi/Y9auXcuPKS4uRm5uruoYh8OBL774gh/T3TlZ24IWh1tJIeuVyCfCqkY7d0wSlbQmu9sv3Ug7Gde1OvkC9+bzlVx8NoDYnG7B3VE9EUqSpJqow6U7sibEUweHzrsOl86nRRygrMbQfbdigcWoV73WzsibFgf/xAgGLpbyeKbBxtMdc1Ms6J+VhLfvnoBJ/TP5sWJNWnvSYHQ6ideescURWzz9eHwRrh6Zj9/PGIrCDN+Cob07ZWwBoFUbDpQ3+uW1s+D/aFUz5v1rFzYdqUZ1swMffV+m+lu2YEqxGEKmePpqodTpMyeqW1RqYatXSbKa9H7F3pHUpB2q8C0obJo0IkDp79TRsHo0hpiCpw3S2PvdaHOFTS0VUx49HpkvYE7X2VTObeE4m+rSXG6PSj2tabZHlPrVXpgZFUtNGyM43Br1Op4qzQyeVDVpQoo1oO4rKSIqKfUBatsiQdyEY+NwsA1CMd0xWN+zzkSnk3AFd7n0jTuikrb1eA0cLg+Megl3XliMpXecHzDgFbl0aA4kb0p6oJ5qWiVNq2LECvGzERV2/ry8Jk35XJgxyoDsJJ55Iq5XQqnILreHbyAnmgx8fcLqXpPNBlVNnST5GkCLBkZuj8w3oU5pxrlQBBrbgq2BmIFLZaMdNc2+RtbtQWxF0ysp9GP17ZWo2pywu8KbpbAxKFiqIyOQeQgP0oRNf/H16nWSX209+w7bnG6eKt+d0x27NEhramrCd999h++++w6AYtjx3XffcSv8efPm4Sc/+Qk//p577sGJEycwd+5c7Nu3D0uWLMHf//53/Pa3v+XH/OpXv8KaNWvw9NNPY//+/Xj66afxv//9D3PmzOHHzJ07F6+//jqWLFmCffv24de//jVKSkpwzz33AFC+hHPmzMGTTz6J999/H7t378Ztt92GhIQE3HzzzR3/xnQCbAdoUE4SDHodX/RVNTt4TVqKpni/WdPAV7vgYvb7yRYDrh9TgN2PTcct3tobsU+athYAUE+w4YK0uyf3w6NXnYO7L+oXchepPUqatZN2XsTFe6h0jFihdncM//6wQv4dJXVodrhh0ElB2wGINvfalIRoYZN0o1CTBig7iX/70WiMKkxDodCcst1KGm9iq06dO3imUWXBD/iujeMaC3lt2u0x3gA1KWTALzqVVQipew63h1vsA74dV0VJiz5IE9fnrQ43fzy2/ugM9chPSWsOrqT5xh4XWrwqvkFodCsiqkSNNhd/rYeFlNFIvl9MGYikuXi8c+BMI1qdbq6ee2Rf4+aOhG3eLbppNOZffQ7uuLBYdX8fTYNdcdzVji2BUh0BwTjC5gxrLx8MUZlhc06wFHe2WeRye3g6fXuVtPbCasm/PhZYSWMBW2F6QtgUc0ZxZiLeuG0cXr91bMAxS/v5dFS6o/gdZ5+vSkmz+MbM0rpWLP5CaV79q0sHone61S8LJlSPQLH/YoJZraQBgZ2h2XqJPa72Oo3GLZeNw+JaJlhmhGjDzxtZt3OuzRDn7TABX6LZgI2/m4r37pkIIDLzLGYAFMw0hDEwW91aQpZl/rejhCBNnPtSvCUIIqLxCzOdonTHNrJt2zaMHj0ao0ePBqAET6NHj8ajjz4KACgrK1P1LisuLsbHH3+Mzz//HKNGjcLjjz+O559/Htdddx0/ZtKkSXj33Xfxxhtv4Nxzz8Wbb76JlStXYvz48fyY2bNnY9GiRViwYAFGjRqFL7/8Eh9//DGKior4MQ888ADmzJmD++67D2PHjkVpaSnWrFmD5OTYpZ51JaxXEbM15/auTXY+ISVbDLxuqdnu5umOrJZAu+Biu1UsrznJbPAVcToEJS1ASok4OFjCBFdZyWbccWExUq3GkDuD0bozqpS0MA6TsaKtNsxtJdkSnZLGdrbX7lUaOw/KSQ66kGE7cswSuD2wSZqnOwa4ZgqE1Jv2Pp+2PxILXI5WNnNVRaukiQEU4G9LfFRTjxYMMUg7o7FJF+vSxJo07Y5nqPrCQBNvi9PN0yfZd1+7CdMR+G/s+AdpbFGUKKRas8VAgkmvWswwNbVKWBSJwSZ7/GSzIWSTdwZ77LNBSdvmtbAf1SeNjzPVAUxWYonY+mB47xTcdkGx3wJJW5eSavVdn6LrJhAiSBMW6YEMSCJB3CxkP/vXS6tdBGtaHJDlyAyQOhqmLpysaeWmX2KNFCNYHVAwLh6cHbC/J6AsgMXgtKPSHQ06ibcvCKyksT5pTvzpk/2wOT04vzgDV52bB71OQr8s9XVTE2IDitW6GnQSTHqdEKTZvc/lf11pP/u5lw9C/6xEXDBASYsUg7S6Fgd+84+dQXupsXFdVGaDbRJnCQ2tY5XumGb1WfdHck2bDXq+4RWuLruy0c7bNWj7wmphpQzbS2pR3+rEqdpWVDc7YNRLKvMgMSgNFEBbhHRHNqcld+MgrUvP/OKLLw5p4/nmm2/63TZlyhR8++23IR/3+uuvx/XXXx/ymPvuuw/33Xdf0PslScL8+fMxf/78kI/TXWGmIcwxhy36qpsc3A44xWLkHeab7C4YvM5PA7KTUFZvw4ZDlahosCHbu5BnCyLxi84UilZBSQtU65WmSTWMlF6JJhxmz2XUcct2IHzNlRaxqXaCsXOVNKNe6vAaOEAdmEWiNLJ0RxaQh0pZKM5MhMmgw8Ds0MpRJLAgzbeL6v/eFAo78kntVCHZwM6u4cKMBFQ3OdBkd/F6BqbssPeNvSeFGVacrGn1V9IEZ8dQiE2UmZLGruWjlc24RDEVC62kReDuKGJz+IxDMpPMqGi0R2SE0l60gW0oJY3Xw9pdKovsVKsRZxrssBh1GJSdjJM1rSob/kCKYKTNglnAUHsWBGms4fvE/r1wuq4VdS1OVDU5MDB4WXW7qWqyw+WRoddJfqZSjKIM9fdB3KhSGlqbeUohs+bWkiKkuwUzhgmHWH9mCZLumJtiQV2Lk5cAsMV3ryRzREF/R5JqNaI4MxHHqpqxq7Qe/TIT4XTLMOqVYIMpRKyeLFb0TrPy96GjlDRJUuZDm9PDP19x85Z9/hUNNt4H8NGrzuHzzvjiDOwra0CfjASU1LSoal+1sIV8gkkpcWDXAFfSAswtWhv4yYOyMGNEHtYfqMBXh6tVQdprG45i1benUFLTjAsGZGofio/rmUlmHKpQNuWCbTqKShpbp7U3UNbpJGQkmlDV5Ih444HNgeE29jYcUlpEDO+dElZ5HlOUDotRh6OVzZj+ly+5CdDQvBTVxnCyYPAU6DtvZc2snb6aNFLSiG4Ha7J7jneHgqWqVTf7lLQUq0GwwfYtlK4emY9UqxFHKpvxgxe+UllqA2r53Jcf7AlqwQ+od4OiCdLE3SfW04URfbpj5GperGAqR7LF2OE1cIA6NzuSgStX07pgRAgnsl5JZqz/7cV456cT2n6CXtg14kt39P881OmOsVHSWNCg9PdRdpOZYQVPd/SeC1OF+noXQdqmt2KPtFCIdVAV3oXB2CKlroIVwzvdPuOMBJN/kBYq3TPQxNvicPkWB8k+tzItXx2uwl1LtwXcoW8LbKxghjQh0x1ZTZrgpGk16fl3Jj/V6lu0qHau/QOsSBfwLEvgZG1sXm9X4XR78PVRJQ1u8oAsnnHQHhv+ZZuP46lP9oXcWGWfb26KJWgQIyo7SWaDX48wsV1KMCVNVFLaGqSJtdFsntIah7BNKmampe2R1tWwTbNdp+p86Y0ZCegjBGZ9o1TSwiGah0S6+dEWmIEUD9KETUz2We88VQ+PrGzWikZiv7tiCD6dMxk3j1dq40OlO7Kxhc2HbK5hRlkBlTRhrZBk9q2TWA9Qttnmcnvw3vZTAHxjuRaupAlBTLAN5syASlr71Uw2R0SaOsneq1anW1U3reXzA0qQFkmD+dxUC966awKKMxNR3mDDu15nzZEFaarjJEni5xk4SBNq0mzhjbXiHQrSeiDNdhcf0AdrlLSqJqEmzWJU2WCzupD+WUn48OcX8C/Te9uUQYgNhKKpgfiF4UFaAFVEHBzCuTuKiGlf2nz5aB4HUA92Ce2w34/uOdVOdh2Nqk9aFEoaI1zxb+80a8Cdx2jRpjsGCtJU6Y4xMg5hjaQTTQa/XU9tuiNzN+0rLIjElMdIlbRUwVGQKUIT+yupIaxXmuheaDHqVfV/QLiaNP/Po9Xps7ZmrROaNUHayZoW/Pj1LfjfvjPcijoSmuyuoAYVLLAd0TsNgG9jBwhUk+ZV8bXpjt7Xk5dm8S1awihpkS7gB3r79RyOohFuPLLzZB2a7C6kJxgxLD+FpyK31YZflmU88dE+vPLFURyu8L0320/U4tcrv+NBfJn3OxGqL6Wo7AT6XNjfplgMQXff2RjT0Orkqmd70h2DGYewzQRmUBErZ8dYwez7d56q5/VofXsloo9gqlQUZvyJFtbQWuvKHGtYEM3THQMoaQ7vmmJIXrJqk9Nq0mNIbgoPPqoDBGm7S+uxavsprgYlajbhmJobLt0xR0jRZddFTbMdbo+MLw9V8rTJmmafI6OIT0kT1h9hlLTKJju/7tub7gj4vpNFGZEF9OL5BcvAcHtkrqRdHMbkjTGmKB0f/3Iy7p8+mAe804b5S/8sSA601mCGcY02F2+n01nrq46AgrQeCKtHy0428x1W3yQuKmk+45BWYVciwaRH38xEbufLdmd5uqMw2LCJ0OZ084VmIJtjMeUlmv5kKiUtTb0wiKTmSkSl5nWWkuYd7DvD2VF8Hr0usvRKUUkz6KSYtgMIBdtFbeB90vzPtUBQ0mIVpDESzHoeKGmfg9ULsIau2clmPmmx861vcfLvQ98w6UaszuD7U/VcLZvQT1HSDpxphMvt4butkrc1RLom8AodpPkvKFsdLp7uyDY6moTUFYfLg1+8s4P/rk3lDEZpXSvGPL4Wv/nnTr/7nG4P351mi0txh9tnAKG8FpWKz4M0A1e881OtfNyqUgVp/ueqtd8PBnMTPFjRGFIxindYquOkAZnQ6SRfpkQba9KaHb5NtqOCYc5zaw7g/R2lmPzMethdbm4aEsxcCFAbhwRyZGRB2sCc5KDZBWyR7pF9RiVRK2kB0h21adWsJpd9r5lBTSQ90jqDc70qw65T9bwnWlGvBFUgHG78iRampHVUPRqDzQFMGQ/k7shgtfVatAYfDLdHxl1Lt+E3/9zJFWeWYsiuAfb1DzR2iJvD4hzZK9HMe8RWN9v9NrcCqWmBatKCKT/smLoWpy/lNAafwx9/OByv3DIGFwZIxwyE2MctmHnI96fqUNviRLLFgNGalkyhsJr0+PnUAdj4u0uw9aFLMXmgvwrHguRASi73V2h2+JQ0suAnuhPfnqgDAFUTzV7Che1rZm1QDRZs8cMueKY8sQGwOoCSJjrthFTS2lqTJgyWeantU9KUlMO2/W1b8aU7ds4g0icjAZcOycYtE4oiSq/MTjbz9ySUaUisYddIqHRHq0nprSJJvsVUW9E+fqLZgKG5KarAPVlTk8bISDKpjAwAX7pcZpI5bAB5frESkLHaioxEE84tUMwe6lqc2Hq8hu+2JnhbQ5gNelUxdKggP9Xqu64ZrU5fnzSfcYjyXsuyjD/8ew+3PwZ86V7h2FNaD7vLg52n6vzuK6+3wSMriy9WJC7ucNe1+vpdAUKfNJsv3THBpOcT/rjiDGR56560hfpaIl3A989KgiQpi6BAu+/dhY1ek4LJ3kUXz5Ro42uqFf5OdDVlJiEA8PQnB3C6XgmY8tKCfx+tJj3fJQ8UpA3wXhuhVHuLt+E54PuuxUJJ80t39C7A2QZCvClpw/JToJOU1DzWhFpR0pRAWK+T/Gzz28sArymHNhU+1rA5IFA2hVZBGRJk8zAjSJC29VgN3zBixhYsxVC7/gh0XYnrFTHbRK+T+KbY4YomfLavAoCvdcFRwQiqosGGykY7H9vFwN8apCY+zWrk7WkCuUK2lZwUC6YPy1W1GgiFJPnMwbQZGIyN3o2iyQMzI3YXFTEZdEHrWjNCpDtytbHR5nNmJiWN6E5sO6H0QxrjrXsBfIFVdZNDpaSZDXpVc2HAF8Cw3XyWXsQs+DOCBWnO4MYhbKDR6yQY9ZGnUIhpX9rJKNqaNL1O4l/6aJ0h28p5fdJh1EsY1zcj/MExQKeT8PfbxmH+D4ZFdLxRr+PvcbhUx1iirUcIFNgDwN9vG4e37hwfcuc+EiyaazLRpIdOJ3E1TVQe/YK0BJNf3x6W/iX2cgvGsPxU1WI1O9kMo16HaecoaR4f7yrzmYYIzy2mCIfKudfrJL8C/0abi6t2PEjzBkJ/33gM72wtgU4CrhzB1PLIFvds19sWYHeVpSRmp5i5AlYTQZ80UUlLNBlww9hC7Hx0Gm4cWygoaQ7sK2tAfYuzXemOFqOeL3DDNcCNRz7YUYrrF2/Ct94m1hcOZEFa+5Q08T0Vbd7FhfOSr45h3X71ojQYTN1Js/qrADeOLcDL/zcGv758UMjHYAt11pOqPRb8XEkLYBwCgBuHHKtSFtnarI2uItFs4OovCzZG90lDP28dbJ+MhIAtK9rDxP698Mx15+LJa4bH9HG18GyKAEGa9rMW3f9ExFp7kf9+f5r/fNT7mbIxVLtBG8qCH/DfIGQbEF8cqITLI6Mww8qbhDMV2uZ0Y/qiL3Hl8xt4IJGaYOTqVLDxXKeTMHmgWu2K9rqPFWzzMZiSxupThwZROdsDS0vvH6DeW3TA1PY47Y5QkNbDkGWZ79iP7euz2WWTeJPdxXcL2SSoHTDYIpXtJtV6myqyeoeMADVp9jDGIWz3PNom0mIet1jQLJ5nNLDX1Ja/bQsjClKxa/50/Gba4E55vraQm+oN0kKYhsQarbtjoGsGUJSPSRGmaIQikJIGABO9zbqTzL5+LNpJPD3RxFNi2AZHCQvS0sPn+Ot1Ei4QmoIzt9SZ3gDp091n+GQjnqf4PQvnZMrTQ7w7iuLOsmgcUtlox1Of7AcAPHTlObh+TAGAyHuoseNsAZqciv2s+A63UCOlteBnu5+NNidfCLD3ntXxsV3TY1XNmPHXDfjp8m1c8RfVjmgWMsysQqy96i788aN92HaiFrKspMyylGBWd1jVxpo0MYX0qJCyxT4z1maC1Tprsxq09PGaWQRqhmw26HHF8Nywnxn7zrG6pGibWYsbM6zliqikGfU+g4JGm1PVt0lrZtCVsPpOnaSkrZ1bkIbxxb0w57KBeHxW7AMpSZJw47hCDMju2NR3s6Yu2aoKqnV8M1cnBW96zkovbE4PV+Ndbg8+2V3OjynxXrNsDNXOBQFr0oKkOwK+cYep2YNzUnjQzJS0wxVNqG1R3HxZP80Ek56rU6EyeRbdNFq1CdIWlSoWsDVSIMMpQNh064CG5z+fOgD//X8X4rrzCvzuY+9/RYOdO5xSkEZ0G05Ut6CqyQGTXqdSRlIsBr4wruBBmrc2RCMVs8GSLbR8ShpLd/R3d2y0ObkpQyAlrTBDSVvLSYkujUTsk6YtVm9LyiKb6DtLSQOiq8HrCm6bVIzxxRmYMTy3056TBWVskA1kwR9L/II074Q9dXAWTAadasdOayqTkehT0rTpjpEoaQBUu6NsJ3ZS/0ykWAyoarLji4PKhC9uHrDdXKtRH7aAn6XkDPHuOLPvqiT5HqfZ7sKp2ha4PTLyUy2444K+fJEaysJahDVLbg2wu8rUiBSLkY8RzQ5frWq9xgBCtOBnQarWmjpTk3b23ck6fq6DBfv2aFzo2OLzUDczD/F4ZK5M/uNnE/HWXT6XVfY+tVVJqwuipLHA+3czhqiOD6c0XTIkGya9LmzvpFBoF8/tUtIM/otjq1HPvxsVjXYcONOI2hYnTAZdUOWmK/jJxCJM7NcLr94yFv83Qen1qtdJmHPZIK6kdkfYHFAfoA2LJPmyXvplJQWdQxNNvkwgtom86Ui1apOKm0UxJU3zWIHGDrVxSOAgjSmbQ3KTed82tsEhbgA12n2p3CyYCFVDlWo14uNfTcZ15xVg/tXnBD2uo/EpaWGCtA5Q+ox6HYb3Tg2YnsmUtEYheOzOFvzd98yJNrHNq6IN763uPSFJEqYMyuJNiwGhqawwYFiNev7F4EpaiwOyLPNgTWUcwqzUhS9MoNS13mlWvHXX+Khri7KSlX41OknZvWVFu3pvY8poYa+ps2rSugPXjyngikpnoQ3kA5nNxBJtEJjgnbAL0hOw7jdTVMXZWtUqI9GkcpsDlAazQGRKGgDVYooFaSaDDtOG5eK97afw/g7FQdUaQEmLZAJ64Ioh+N/eM8hLs2DrsRre3NVq1PO/b7a7+cSalqA0pOeF9xEqaWwx3+p0Q5ZllSrOXWOtBqRYfb1ualscyEm28DEiVaOkKUX43vPVvPfJZgMuGpSFigYbjlY1w+7yYPfpegBKDSXbzW6LknaoonulOzY5XGCmmucWpKoCdzGdvS2Ii9ozDUpPPbNBzz+zsUXpuPycHD5/hEt3nDkiD5efk+Nnvx8N2rqk9gRp3IJfGAcSTAb0yUhAfqoFp+tteGn9EQDA8PyUmKcQtoeRhWkxaXsSb2gdfv2CJ4sRVU2OkAGzJCk9wMobbKhpdqAwI4FfozkpZu68CAg1adp0xwAOgmJNWrB0R8ag3GSV0uz2yAHHFotRz50Jw60/Uq1GPHfjyJDHdDRsXRisV1q94BLemaRYDTDpddzYyxChSVq80n3PnGgT2731aGMD1ED9ZGKR6nf25RJNLRIC1MTYnB5UNNp5jYvKOMSkdkoCgqeuTeqfyXecIiXJbMCi2aPwl9mjYDXp+cCREGXaJIPtAPeKE/eunop2ERSsJi1WaHdixfSIgvQE1e/aCTTNauQbGv5KWmRBWkF6ArfqFyf5S721DCzoU6U7JjFn0PAB7KjCNPx2+mBeA8QW3Rajnu8gNzv8GwOL3/FA6pgWlvoMgKc3M1gqKOsJmC4EDo02Fx8jxLpQFmdUNipF/to0ZEmSsOyO8/HpnIvQ3zt2MLMZ0UwgGiWNmZp0t3RHpkSaDDq/67mXsLsstnOIFK1j5vGqFpWZTIrViHsv7q88l6Ash6I9ARp7zlC/h0NcuPFm1sL7xpobXzJU+Q7+x1vHNLpPOoiOh30+gepxAd/nHcw0hKE1D2G1ptOHqTNDtO6OjEDXslGvw5DcZCSbDTyVkaE1lRmck4zeaVaYDUrgcKq2JeDYYjVGpqTFC2zeEJU0t0fm7VdEb4PORJIk1WeQZDF0Sg/ajoKCtB7GtuOKkjamyH+iuaB/pl/eN6DeqU8QFoRiKsHeMkXaT7UaAxZkM4x6Kea9Va4emY+rzs1XnWtCG5sX/r9LBuLxWcNw7ejeMTs/Ino6X0nT1l0GnyTFQCHVaoRBr+MTUYPNCY9H5mYGkSppAPD/LhmA4b1TMF1IKz1P8z0NlO4YTSoHq70Rd6fZgkCWgTKvWx9L+1WlC0XQCJk5NALwCwYahXRH8fxrmh1chU8w+Vz7JEniixa24x2qVlTb+HiQGKRFsZvbP1tZdFU1OUI2wY03QqUXpVgMvIanLa9J65h5rKqZP1+CSQ+jXofz+qTjjdvH4e+3jeuURVGqYI1uMfoHpuFQKWncgt9fXbt0iGLgwzYRRkVhJ060Hf+NOvXnO6J3KiQJYW3jmbMpU+NZ/0ptqi1TsSKpSQOAVfdOwuf3X4xkzdgiBggGnYTizETovP8DSsrjoUBBmkmP/5tQhAn9MjBJ0/4lHmFzJGvdYne5cfnCL3D9y5sA+KevdyZiGnx3CHhDQUFaD8LmdPPBYXSfNL/7dToJN4/vw39nE62qAbJgDStJEl/M7fXmX/vVhWkGvGAqWqxgwVk4I4Vg5KRYcMvEvt06h/lsQDtBd3Tdnnb3NJQ6ZQ0QKLH6zfpWFyqb7HC4PEoKbhQucNeeV4D//r/JKtOFnBQL8oXvlPjczJUxmvYNzNqZLTgtRp1XMVB+1/acYulCgFolC0adoLi0aoI0Md0RULfwOOatc+qjUR7ZAqiCK2nBX6s2SCvOTOSBSTSmEgkmA2+U3p3UNPb+ap08AXhTV5XrpaoNdWl+Slp1c8CgcOrg7E4LYsTAuy0LQVGdZ+OLuDnENgQm9u+lmscCzZ1E7NFu1GnXEo/9YBi2PXQZRoa53nzjlwPNdhevuR9fnKFqTcJNO/xq0gKPOYlmQ8CMG9FKv19WIp/LmOK2u7SeG+yIJBgNuH5MAd796USVc2+8wpU0b8rz4YomHK1qxrcldWiyu/zS1zsT8TPozo2sAQrSehRst1qvk4I245x7+SBcNjQHD1zhcxsMlerFBkAWpGmt0I16He/rAQQ2DYkl7Fw70/iDiD3aesKOvm5Mep1qwg6tpPnuY5Opz4Lfye3381Kt7U7pAoBRwqJQDFYvGZKNK4bl4q4L+0X8WNrvr9Wb0sV2G0/XKcGQOLHytMQIlDTRBVKbHsmMQ1jgle01CSqta8URbzCkTR1i7q1sYRWq1YDo8GbQSUixGPDLSwbi2tG9URxlQ18WpJV5+351B8IV6rPFSrAaEkAxH3G5/Z05WZ80pgaISlpXWYCLaVRtOQe1auZTb9mGjVVw+7vAq9ZkJZtj3neMCIx2o047p+t0UkRlCRmJPiWNqWi9Ek3olWRWmZwFqkmzGHVRbyxnCzVqgwX7edZmZ+nm43B7ZL+/Y6Uh3QX2fjFzL9H19XhVs1/6emciqpndfcO9e10VRLtgO+HpCcag6SiJZgNev3Us7rt4AL9NDNK0iySupJUFVtIA9WTY0YtttvvZWRb6RMegrUHraCVNkiRVSmWoYEBVl+lVg8SatGidHcMxutCX8ig+d1qCCS/fMgaXefupRYL2e8EWPuz1MiVNXAD30ri4hiIiJc0bLLDarwPljbx/UH9NTSrbJWcTfqjNF9Y7B1DGJUmS8P8uHYiFs0dF3KSVwdTMsnobWh1u/OrdHfh4V1lUj9HZhAua2KLX7gocpHk8Mn7w4kbM+OsGv0CNffZMRTpe1cx7AnZ2zQmjvUqa+H23BkjRF11crzpXaYdx4YDMbl3f0p3wz6Zo29rBl1Zt50FaX+9mA2svAwR2d2yL6YUYIAwWxqQfjMyHQSfxNhjDe6fwmlud5L8xGe9o3R3FIO2It9WAVWg635lQkEZ0S1hdgehUFwniRW41qi94tkvFBr9wQVpHL7aTInRHIuIbk179+XW0Bb/2OUIN7GqHRWUSTxVq0qJ1dgyHqKS1VyHW/r2FB2nK62UNSMX0wPQInQFbHW6VWYjNqV7oN2oKyYfmKUHavrKGoEqaNrUs1OdS1CuRq/bRjnFamK12eb0Nnx+owIffncbLXxxp12N2NOGCNLZB5gjQww5QzG52lzbgUEUTyhtsqvtY8M1MM45Xt3S5kpaqUtKi/7wtAdIdAd93RNzQmDUqHyvuHI/5Vw9ry6kSbUCrYLV17MvwqmU1gpLGFGHRmTFQn7S2XNuJJj0/10FCG5BeSWZcPDib/35OXgrPPIq2P2w8wNJDmTLPmoIDvoCtq8YGMUhLpiCN6C4wG+30KJsLBnN3VB5LPTkGamJqFWT8jt5V4cYhFKR1a/yKxju4lhFQT86hio3Fa4stAEQLfpbuGKmzYziG56fy4KPdQZopcJDGNjcCLbwjVdK092uNQxo0xiHMOvtoVTMOeB3XtEraeRonvVCbL0a9ju+QRzvGacn1pmKW19t4Y/KWCNwtuxJtM3AtPiUtcJC2z5sNAfjSSxnssx2Wr3xmVU12XtvW2RbbDLFWqG01aYE3D7nTo3CtSZKECwdmdkhjXiIwfkpaG+d0Md3xuCZIE3ucMSWtvUGaJEkYV5yBZLPBz/jp+jE+Q7IB2Uko8jZ117YW6Q4k8NYtyrjO1DMAPDOiy4I0oQ1UqKyY7gAFaT0IVvytDazCkRgi3dEvSAtglCCmlWgdmmIN2w3r7o4+PR0/d8dOUdLEdMfIatK4kpbAgjRXzNMdrSY9hnhVp/ZO5togj6c7ah5XVZPGDT5CG4fUacwl/GrSWpkFv/JcuSkWpFqNcHtk/rfaFhx9MhJUjWPDbb4w85D2Kmm53s2m8gYbd+qMpAVBVxJeSVPeu2BK2t4yX++mCqF/lM3p5gFq/8wk/t1kgXWX1aS1O93RN6ZYA6Tk00Zf1xIrh1/m7ljT7ODBQyglTZXu2MZr+43bxuHrBy/l5k6MqUOyeZbCoJxkFHlrZa3drB4NEJQ0hwuyLOOYkO54zKuqBTNd6WhUFvzm7r2x0v2uDKLN1DUzJS26BUxSiHRHrQtRfkAlrfNq0pgrH6U7dm86290RCOzsFgiL0WcywmvSvIGHw+3BnlJFkSjOjK7nXyiuGJYLSfIpGW1F+z5qa9IYaUL6WEaSr6YjFFqbdr+aNJs6iJAkiac8Akpz2SRNcCxJEs4TUh7Dbb6w9CJtr6JoyfWmbZ9psOGUN+gOVssVL0RekxZeSasUHCBZAK3XSUixGnhK+36h7UpXkBpT4xD/n7ujunE24Wcc0sY5nfWdPF3Xynuk8SBNKM9gY4vYJqit17ZeJwXc6DMb9Hj+ptH4f5cMwOSBWSjyZlt0R6MzX02aG2ca7NxABAAP2LpOSfN9rpH0EY1nKEjrQbB0x7TE6L44Kgt+P3dH9WPlBqpJM3RekDahn2KXrO2BQnQv/NMdO36oYosAvU4K+XySJPFJlak8SWYDLwJvtLtgNepxTl77AiqRX1wyEDv/MA0XDcpq1+NoXxt7zdoFhTi5ZiREZsGvtWkX0x0dLg+vURMVkCGC+5k21ZEhNg8Ot1D7vwlF+OlF/XD35MgdLwPBApGKRju3y9bW2MUbkdekBQ42VUGaUJPGUh3TrIoZC0tpP8ZTmrommBFVjmhaLDBUKY4G/59JSetaYlWT1icjAeOLM+B0y1wR7tvLP0hj7XvE8T2lA+zbLxqUhd9MGwy9TuJjXlcFM+2BBbXNdheOCqmOgM/xsatMhTKTxXTH7r3ZQkFaD4LtiGZEq6SJNWl+7o6+x+qVaAqoeFhUSlrHTnyXDs3B7sem4+qR+R36PETHog2SOjpNFvAtzhJN4Yu42cDPgjRJklQT0nlFaTGvv4xV7Y/aYjqCIC1CC36xkTWgDtKYaQigHk/EQFZrGsIYHYWSlpVsxoMzh/Kd8raSmWSGXifB7ZF5ipS2xi7eaGiHktZgc/K0TkBdk8aCNJY1wQJY5iLeVXVaYq10Wxa5ep2E3mlWJJj0PCUO8H0/KEjrWmLl7ihJEh656hye/ZCfauGfsZjuKI4tbFzs6ODp4sFZ+PVlgzBv5tAOfZ6OgK0Fmx0uHKlqDnhMVwWfCSYDFxeSunmftO599kRU8Mk22po0YfBK0CyWxYAvkIoGAFaVi1bH7wvoo7TbJuKPrqlJU54jkp23uy4sxrcltRjeO5Xflmo18o2Q8/vGr5KbYNSjDsp5WjXGIQAgSeoFMG8G2xJlTZoQ1DDTkCSzQfX9HCKkOwZT0kYVpiE9wQirUd8p1wGgjCHZyWaU1fsUJZe3h5ghTq2yuZIWJGgKVZO2X6hHA9RBWh2vZVYeV1t33FXGIUa90oi9xeFu82LwX/dNgs3pVn3nLxuag72nGzC+OH6/wz0Bsz52Ke/De6fi+vMK8M/tp9Bf6KdYkJ6AVKsRiSa9xu1T+bmjlSCDXodfXTawQ5+jo2Drwha7mytpA7OTcKjCp6p1pUKYlWxGk93ll0Lf3ejeZ09EBWtIGm1qiNrdUVOTJgRpgZwdAW2fNNqdJMIj7qJKndRDhvdHimAH/WdT+vvdJi5Wzy/OiN2JxRiLqv7GG5gK3+sUi1HVV4wFaXUtDrg9ctBNEDa+MFodvmBA2yONMSgnGTpJUWW0piGMBJMBa+dOgV6SOtWmOifFogrSAMDm8iAp3oO0MOmOgZQ0lupoMepgc3pQ0eh73TXN6tYt2nG+KxdiGYkmtDhaVeYy0SC6+zFuHt8HN4/v095TI9qJ2CtTktqf8v7wlecgxWpUZdlYTXqs/fVFMOh1qrGFpzt2wzTEziJRUNKY5f644oy4CdIG5SThWFUzT23trsTnbEN0CGwnPNoJTdxl1KY7pgs1afkBnB0BjXNWJ+2EE90bs6aOsTMW51o7+mhhTlZGveTX3yueSAiY7hjcdppt6nhkXyAgYne5UdVkR53mPpvLjeomO9btP8NNQ7SLHotRj0uGZCMzyYxRBWlBzzkzyexnUtTRBOr5GK8pj7Isc7UybE2aO3iQNtFbyyu6OzJDGJY1oR3nu3Ih9uDMobh7cjFGCIo2cXYgbsxZDO3vI5aaYMQjV52DUYVpqtuzUyx+ayK25ok266gnwTb2bE4PDnkNWc7vq96c7Mqx4c83jMR//9+FGKn5vLsbpKT1IGrb3Mzat4DTqgxJZgOMeglOtxyhkkZBGhEeUUnrDGdH5XmY9XbbhkU2IY0sSOu0c24L4qZJoMBUq7Qb9TqkWo2ob3Wiptnht6B54L3v8cmucuSkKi5qGYkm1DQ70Opw49F/78FH35fhuvMKAKhVecZrPxkLl0eGMc4UqkAqS7wGaU12F9zeIrGwNWma12BzurHhUBUAYMqgLKw/UImqJjtXTdnmHjOcyk2JHyVt5og8zByR12XPT3Qc4oZuZ7s1/2LqAKzeU44LB2R26vN2J8QN+9PejINJA9Qpwl05NiRbjKpyhO5KfM2KRIfhdHvQ6N1pjVZJMxv0fFdLa8EvSRIP+oIpaZTuSESLdhe1M2DXZlvdoFhPnPH94jfVEVBbi1sDGIcEmliZjXVJjbpAXJZlrNtfAYfbg5M1ivEEU6BsTjdv7P3loUoAgeuXJEmKuwANCFxjG68Oj0zhNBl0QTcIgilpr284itK6VuSmWHDtmAJI3vRTluaorWXWjvOUEkZ0BCa9kJbdyZtel52Tg2dvGEmtfEJg0utgEFLfe6dZkZ1sUW3E0djQfuJvZiQ6BFb8LUlt291gDjmBurcXe3N+B2Yn+90HaHfu6ZIjwiPuonZWimyg1L9o+OlF/TDnsoG468L22b93NKKRT6A+aYEm1jFFig3+10drVLefqm3lmz8Mpqi3Ot28Fq3Sa0TRnSbt7pTuGK4eDRCVNF+QVlbfihfXHwEAzJs5BCkWI3olKgE5q0ur5f01jfw52HVjDhEUEkR76Io5gIgcSZJUmVVDvU69YgPv7thaIN6gK7+HwOoKUizGNrkf3jqxLyYPzFT1NWI8/6PRePenE3BOkEa7YmBGShoRCV2hpLGef2yRGi0F6QmYc9mgTq+dihYxnZP3SRNuSwswsU7sr6SxbDpSpbp9r9BbiyEqadoatkDpjvFKoHTHeG1oHUmQxsZeu6CkvbOlBK1ON8YUpeMHXkMFppoyh8fSOqaQKsG3JEnc4bE7Bd1E90KcA7pjs+eegJgmz9Z/YqYWBWntp/vMmES7YKkrbXXBCmUTm5tqCWq/D6jzyakmjYgEdU1a51wzs8f2gSwDs0b17pTn6yosAWrSwqU7MkOJPacbUN/i5Dbve0838L9hgQIbC1ocbm5mwegqu/a2ICppSWYDmuwulWNlPBGuRxoQWEljgdjUwVncmCE7xYy9ZUBlgx2yLKPEm7Ja1CuB/11eqgVHK5tpEUZ0GOIcQEFafJIgBmleJa0XBWkxhVbMPQRe/N0FjUdFJYTSFohIULs7ds4EnZpgxM+m9A+54XA2IC54AvVJC1iTlmJB/6xEyDLw9bFqfjtT0n56UT8UpFv5PwCoanJwMwsGc8DsDuSlWtEr0YTsZDP6ZioBSrdOd9T716Qx181kIXj2KWk2VDbaYXN6oNdJyE/zGYYwVY0WYURHYe4C8ygiOhKFDfhhXiWtlzfdMVR9LBE53WfGJNpFXRsbWccCi6nzF9xE90bcRaXAPraoLfj9G3gH28iZ2L8XjlQ246vDVeiflYiC9ASupI0pSsdPJhZBr5Pw9VEliKtosPk9RndS0kwGHVb/+iLoJAn3rNgOQGkrEI9ElO5o9Hd3ZPWEYvCcnaxsUlQ02nHCq6Llp1lU5i753o0MCtKIjqIrHH6J6GCp88lmA9+cy0xS1pg0NsQGCtJ6CDVdGKRZyYKfiBLaRe04rKpm1pEpaQAwqX8mVnxdgmWbT2DZ5hMY3SeN1ysNzUvhagz7vKo1za0BtWLTHWBF8Ow1xZu7oyzL+P5UPW+6HbWS5g3uks2CkpbiVdIa7DhR7U11zFA3hD3PayQzLEgdMkG0F3FDl1wW4xO2uTc0L4WnS7N0RwrSYgMFaT0E5u6Y3hXpjkZacBPRIRaNU2AfWwKlO1qMOui81uvBzCAm9uuFRJMezQ5FidlRUgdAsV4WJ+RQ9SPdKd1RxOK9BuMt3fE/35fhl+/s4L+HMvIwez8XsSbNp6T5/i4ryZfuyOrRCjN89WgAcPHgbGx98FJkJbfNZIcgwqFS0mgOiEuYK7BoGscMl9rqf0Co6Z4zJhE13Ea5C744pKQR0aLTSbxJOgX2scVq8jcOkSQJSWYDGmwupFkDjxHpiSb895eTUd/qxKEzjbj/ve8BwM/VVft5mfQ6rt50p3RHEZ+SFl9BWkm1um9d22vSfEuBPl6DkINnmngdmmgawsgO4H5JELFCXCuQkhafTB6YhfX7K3DF8Fx+29Qh2bj9gr6YPiw3xF8SkUJBWg9B25C0M7FQkEa0AZNeB6fbTb31YgyrSZMk9ffxZ1P6Y29ZAwbnBu53CADFmUra26jCNGw6Uo33d5Rigtf5kaFV0s4tSMW2E7UAupcFvwh7TXZXfKU7MlUzN8UCs1GHyQMzgx7La9KEurqGAErakNwU7ta5fn8FAKBPhn+QRhAdCVnwxz/XjynAdef15qmOgLLe+8PVw7rwrM4uuueMSURNbZemO4rujjTYEpFhNiqpdWQ2E1vY99Fq1Ksm159PHRDV4/z5hpG4ZWIRRvROVd2u3fUuzEhAXpoVJ2ta/NLmugtsoyDelLRWb5B2/ZgC/Hb64JDHciXNG2janG7+sxg863USJvXvhU92l/MgkII0orMRsylo3RC/iHMIEXsoSOshpCcoVtK9kjq/hoD6pBFtgS0qSUmLLUxJa+/utF4n4bw+6X63a9MdU61GzP9B995Zjdd0x2a7ooRFkg5m4UqaEpixejRJApJM6qXApAGZ+GR3Of+9T4B0R4LoaMwGPZxuFylpRI+FgrQewuu3ju2y57aQUx/RBljhuIWUtJjCbJM7qs5DG1SHMrPoLpjj1N2xxat0JUbwWZr0yjFMPWP1aElmA3Q69W74Bf19KazpCcZuW0tIdG9MBh1gB6y0UUf0UChIIzocUtKItsCuFeqTFlvOLUjFlSPyMLF/r/AHtwGT3ucUCZwdVszxmu7Y4lDUsARz+KncHERJCxSAFWcmIj/VgtP1NvTpleh3P0F0BmwOoM1doqdCqx+iw7EY9NziO6mbGgcQnY+JJugOwajX4cUfn4f/m1DUIY8vSZIqPemsCNK8am5rnAVprGYsISIlTfk+uT0yXG6Pr0dagDFZkiRMGqCYkFA9GtFVsDmA3B2JngqtmIkOR6eT8LcfnYcWh4vSZoiIoXTH7ovF6OundlYEaXGb7qioYYmmyJU0QLHhD9QjTeTOC4txqKIJPzq/MAZnShDRQ0oa0dOhII3oFC4/J6erT4HoZrCFZ2IEqVxEfCEuqlLOAvXcEsC+Ph5oaYOSBih1aawmLdjnMzQvBR/+/IIYnCVBtI2cFAsOnmlCXir15CN6Jt1/9iQI4qzkvqn90adXAqYMzurqUyGiRExPSu2Cth+xJl7dHVvsLEgLP5Ub9DrodRLcHhl2lweNPEjr/p8PcXby7PUjcfBMo1+bD4LoKXR5TdpLL72E4uJiWCwWjBkzBhs2bAh5/IsvvoihQ4fCarVi8ODBWLZsmep+p9OJBQsWoH///rBYLBg5ciQ+/fRT1TGNjY2YM2cOioqKYLVaMWnSJHzzzTeqY2677TZIkqT6N2HChNi8aIIgwjKpfyaevGYEkkhJ63acdTVp3DgkvtIdm7lxSGTpYGKvtIZW5W+7a4Nx4uwnN9WCiwZlUS8uosfSpaPzypUrMWfOHLz00ku44IIL8Morr2DGjBnYu3cv+vTp43f84sWLMW/ePLz22msYN24ctm7dirvvvhvp6em4+uqrAQAPP/wwVqxYgddeew1DhgzB6tWrcc0112DTpk0YPXo0AOCuu+7C7t27sXz5cuTn52PFihW47LLLsHfvXvTu3Zs/3xVXXIE33niD/24ymTr4HSEIguj+iDb8Z0WQZog/JU2WZd7MOpKaNECpS2t1umF3uX1K2lnw+RAEQZyNdKmStnDhQtx555246667MHToUCxatAiFhYVYvHhxwOOXL1+On/3sZ5g9ezb69euHm266CXfeeSeefvpp1TEPPvggZs6ciX79+uHee+/F9OnT8dxzzwEAWltbsWrVKjzzzDO46KKLMGDAAMyfPx/FxcV+z2s2m5Gbm8v/ZWRkdNybQRAEcZbA0gONeumsaERr8aZv2uKoJs3h9sDl7XMQrZJmd3nQYCMljSAIIp7psiDN4XBg+/btmDZtmur2adOmYdOmTQH/xm63w2JRF5BarVZs3boVTqcz5DEbN24EALhcLrjd7pDHMD7//HNkZ2dj0KBBuPvuu1FRURHyNdntdjQ0NKj+EQRB9DRYYJZqNZ4VqUo+JS1+0h1ZPRoAJEQYCIu90piSlkw1aQRBEHFJlwVpVVVVcLvdyMlRu/7l5OSgvLw84N9Mnz4dr7/+OrZv3w5ZlrFt2zYsWbIETqcTVVVV/JiFCxfi0KFD8Hg8WLt2LT788EOUlZUBAJKTkzFx4kQ8/vjjOH36NNxuN1asWIEtW7bwYwBgxowZeOutt7Bu3To899xz+Oabb3DJJZfAbrcHfU1PPfUUUlNT+b/CQrIuJgii58GMQ86WVLp4bGbN6tFMBh0M+sim8kA1aWQcQhAEEZ90uXGIdpdVluWgO6+PPPIIZsyYgQkTJsBoNGLWrFm47bbbAAB6vbIo+Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOmT17Nq688koMHz4cV199NT755BMcPHgQH330UdDXMm/ePNTX1/N/J0+ebOvbQhAE0W1hytPZUI8G+NI37XGkpPnq0SJPJzV7Pxe7YMFP6Y4EQRDxSZcFaZmZmdDr9X6qWUVFhZ+6xrBarViyZAlaWlpw/PhxlJSUoG/fvkhOTkZmZiYAICsrCx988AGam5tx4sQJ7N+/H0lJSSguLuaP079/f3zxxRdoamrCyZMnebqkeIyWvLw8FBUV4dChQ0GPMZvNSElJUf0jCILoaTAl7WwL0hxuD9zeOrCuptkRuf0+gzWId7jCN7MmCIIgupYuC9JMJhPGjBmDtWvXqm5fu3YtJk2aFPJvjUYjCgoKoNfr8e677+Kqq66CTqd+KRaLBb1794bL5cKqVaswa9Ysv8dJTExEXl4eamtrsXr16oDHMKqrq3Hy5Enk5eVF8SoJgiB6Hhbj2Rak+eaXeEl5bLF77fejUtJ8TblJSSMIgohvunR0njt3Lm655RaMHTsWEydOxKuvvoqSkhLcc889AJT0wdLSUt4L7eDBg9i6dSvGjx+P2tpaLFy4ELt378bSpUv5Y27ZsgWlpaUYNWoUSktLMX/+fHg8HjzwwAP8mNWrV0OWZQwePBiHDx/G/fffj8GDB+P2228HADQ1NWH+/Pm47rrrkJeXh+PHj+PBBx9EZmYmrrnmmk58hwiCILof+WmKMVNRRkIXn0lsYOmbgBKkJcZB774WpqRFcS5MSbM5PWiyU00aQRBEPNOlM83s2bNRXV2NBQsWoKysDMOHD8fHH3+MoqIiAEBZWRlKSkr48W63G8899xwOHDgAo9GIqVOnYtOmTejbty8/xmaz4eGHH8bRo0eRlJSEmTNnYvny5UhLS+PH1NfXY968eTh16hQyMjJw3XXX4YknnoDRqExWer0eu3btwrJly1BXV4e8vDxMnToVK1euRHJycqe8NwRBEN2V2eMKUZiegPH9zo62JTqdBJNeB4fbA5srPurSeCPrKFocsJq0mmY7ZG/WJilpBEEQ8UmXj8733Xcf7rvvvoD3vfnmm6rfhw4dih07doR8vClTpmDv3r0hj7nxxhtx4403Br3farVi9erVIR+DIAiCCIzZoMfUIdldfRoxxWz0Bmnxku7IjEMi7JEG+NIdq5ocABRlzXIW9LEjCII4G+lyd0eCIAiCiHdYMBNvQVpbjEOqGpVWMimkohEEQcQtFKQRBEEQRBh8vdLiI92xPcYhlU0sSKN6NIIgiHiFgjSCIAiCCIOV90qLDyWtPRb8LN2R6tEIgiDiFwrSCIIgCCIMPN3RFR9BWqvXOKQtNWmnalsAAJlJ5tifGEEQBBETKEgjCIIgiDAwG/54SXdsj5LGGlnnpFpif2IEQRBETKAgjSAIgiDCYOY1afGhpLU42lKTpj42L4WCNIIgiHiFgjSCIAiCCIPP3TE+lDSfu2PkQRpT0hikpBEEQcQvFKQRBEEQRBhYkNYaL0qanfVJizzd0awJ0vIoSCMIgohbyNqJIAiCIMJgMcRHuuP3p+rQZHeh2ZvuaG2HkpZL6Y4EQRBxCwVpBEEQBBEGSxxY8Hs8Mm5dshWNNhdvCZAYhXGItiYtl5Q0giCIuIWCNIIgCIIIA29m7eq6mrQzjTbUtjgBAI1taGYtKmmJJj2SqZk1QRBE3EI1aQRBEAQRBqZctTq6Tkk7WdPqd1t07o6+KZ9MQwiCIOIbCtIIgiAIIgxWb1phSxcGaSU1LX63RWMcIippZBpCEAQR31CQRhAEQRBhYIpVq9PVZedwMkCQ1mYljUxDCIIg4hoK0giCIAgiDMxFsSuVtJO1gYK0tlnwk5JGEAQR31CQRhAEQRBhSIiHIM2rpDETE7NBB71OivjvRXdHst8nCIKIbyhIIwiCIIgwMKv7eDAOuWxojnJOUdSjAeqatNxUa+xOjCAIgog5FKQRBEEQRBh86Y5dU5Nmc7pR3mADANwwthAAkJVkjuoxxHRHUtIIgiDiG+qTRhAEQRBh6Op0x9K6Vn4eFw3MxMv/dx76ZiZG9RgmlQV/dAEeQRAE0blQkEYQBEEQYejqII3Vo/XJSIAkSbhieF7Uj5FmNSHBpEeCyYDMRArSCIIg4hkK0giCIAgiDNYurkljQVpBekKbH8Nq0uPfv7gQZoMOuigMRwiCIIjOh4I0giAIgghDglFR0hxuD1xuDwz6zi3pPlmrpDsWZrTP8GNAdlIsTocgCILoYMg4hCAIgiDCYBWaRrc4O19NK6n2pTsSBEEQZz8UpBEEQRBEGMwGHViGYFekPNY0OwAAWclUS0YQBNEToCCNIAiCIMIgSRISvHVpXWEeYnMpz5kgKHoEQRDE2QsFaQRBEAQRAV3ZK42pdxYDBWkEQRA9AQrSCIIgCCICmIrVFemOTEmzkJJGEATRI6AgjSAIgiAiwGrsul5prQ4PAFLSCIIgegoUpBEEQRBEBHRlQ2u711HSSkoaQRBEj4CCNIIgCIKIAGYc0ursgpo0b5BmMdK0TRAE0ROg0Z4gCIIgIqCrlDSn2wOXRwZA6Y4EQRA9BQrSCIIgCCICuso4xCY0z6Z0R4IgiJ4BBWkEQRAEEQFWb7pjs72zgzQP/9lsoGmbIAiiJ0CjPUEQBEFEAE937OSaNJtQjyZJUqc+N0EQBNE1UJBGEARBEBHQ1emOFiOlOhIEQfQUKEgjCIIgiAiwdpFxCEt3tFKQRhAE0WOgII0gCIIgIiDB2DVKWispaQRBED0OCtIIgiAIIgJYn7QWR1fVpFGQRhAE0VOgII0gCIIgIqCr0h2pkTVBEETPg0Z8giAIgogAbhzi7BrjEKpJIwiC6DlQkEYQBEEQEdB1xiGU7kgQBNHT6PIg7aWXXkJxcTEsFgvGjBmDDRs2hDz+xRdfxNChQ2G1WjF48GAsW7ZMdb/T6cSCBQvQv39/WCwWjBw5Ep9++qnqmMbGRsyZMwdFRUWwWq2YNGkSvvnmG9Uxsixj/vz5yM/Ph9VqxcUXX4w9e/bE5kUTBEEQ3Q5Wk9b5FvyKuyOlOxIEQfQcunTEX7lyJebMmYOHHnoIO3bswOTJkzFjxgyUlJQEPH7x4sWYN28e5s+fjz179uCxxx7Dz3/+c/znP//hxzz88MN45ZVX8Le//Q179+7FPffcg2uuuQY7duzgx9x1111Yu3Ytli9fjl27dmHatGm47LLLUFpayo955plnsHDhQrzwwgv45ptvkJubi8svvxyNjY0d94YQBEEQcQtvZk3GIQRBEEQH06VB2sKFC3HnnXfirrvuwtChQ7Fo0SIUFhZi8eLFAY9fvnw5fvazn2H27Nno168fbrrpJtx55514+umnVcc8+OCDmDlzJvr164d7770X06dPx3PPPQcAaG1txapVq/DMM8/goosuwoABAzB//nwUFxfz55VlGYsWLcJDDz2Ea6+9FsOHD8fSpUvR0tKCt99+u+PfGIIgCCLuYDVhXWccQkEaQRBET6HLgjSHw4Ht27dj2rRpqtunTZuGTZs2Bfwbu90Oi8Wius1qtWLr1q1wOp0hj9m4cSMAwOVywe12hzzm2LFjKC8vV52b2WzGlClTgp4be+6GhgbVP4IgCOLsgClpdpcHbo/cac9LzawJgiB6Hl0WpFVVVcHtdiMnJ0d1e05ODsrLywP+zfTp0/H6669j+/btkGUZ27Ztw5IlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGQAgOTkZEydOxOOPP47Tp0/D7XZjxYoV2LJlCz+GPX805wYATz31FFJTU/m/wsLCtr05BEEQRNyRaDbwnzsz5dFGFvwEQRA9ji4f8SVJUv0uy7LfbYxHHnkEM2bMwIQJE2A0GjFr1izcdtttAAC9Xtlh/Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOifbcAGDevHmor6/n/06ePBnx+0AQBEHEN2aDDmwK6EzzELLgJwiC6Hl0WZCWmZkJvV7vp0xVVFT4KVgMq9WKJUuWoKWlBcePH0dJSQn69u2L5ORkZGZmAgCysrLwwQcfoLm5GSdOnMD+/fuRlJSE4uJi/jj9+/fHF198gaamJpw8eZKnS7JjcnNzASCqcwOUlMiUlBTVP4IgCOLsQJIkJHRBXRrVpBEEQfQ8uixIM5lMGDNmDNauXau6fe3atZg0aVLIvzUajSgoKIBer8e7776Lq666Cjqd+qVYLBb07t0bLpcLq1atwqxZs/weJzExEXl5eaitrcXq1av5McXFxcjNzVWdm8PhwBdffBH23AiCIIizF6vXhr8zgzRydyQIguh5GMIf0nHMnTsXt9xyC8aOHYuJEyfi1VdfRUlJCe655x4ASvpgaWkp74V28OBBbN26FePHj0dtbS0WLlyI3bt3Y+nSpfwxt2zZgtLSUowaNQqlpaWYP38+PB4PHnjgAX7M6tWrIcsyBg8ejMOHD+P+++/H4MGDcfvttwNQdkvnzJmDJ598EgMHDsTAgQPx5JNPIiEhATfffHMnvkMEQRBEPMHMQ1qdnVeT1sr7pFGQRhAE0VPo0iBt9uzZqK6uxoIFC1BWVobhw4fj448/RlFREQCgrKxM1TPN7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Jj6+nrMmzcPp06dQkZGBq677jo88cQTMBqN/JgHHngAra2tuO+++1BbW4vx48djzZo1SE5O7vD3hSAIgohPfL3SqCaNIAiC6DgkWZY7z0e4h9HQ0IDU1FTU19dTfRpBEMRZwDUvfYUdJXV45ZYxmD4sN/wfNDcDzz6rvu3++4HExIifc9YLG7HzVD3+futYXDo0eF00QRAEEd9EExt0ubsjQRAEQXQXEnlNWmemO1JNGkEQRE+DgjSCIAiCiJBEsxIoNdk7M92RatIIgiB6GhSkEQRBEESEcCXN3hVKGk3ZBEEQPQUa8QmCIAgiQhLNSpDW3IlBGhmHEARB9DwoSCMIgiCICEnwpjs2U580giAIogOhII0gCIIgIiTJ1LlKmsvtgdOtmDCTkkYQBNFzoCCNIAiCICKEpzt2kpJmc3n4z6SkEQRB9BwoSCMIgiCICGHujp2lpLFURwAwG2jKJgiC6CnQiE8QBEEQEcKUtKZODtLMBh10OqlTnpMgCILoeihIIwiCIIgI6exm1tzZ0USpjgRBED0JCtIIgiAIIkJ8FvydVJPGGlkbKEgjCILoSVCQRhAEQRAR0tk1adTImiAIomdCoz5BEARBREhiJ1vwU480giCIngkFaQRBEAQRISzdscXphscjd/jztTooSCMIguiJRB2ktba2oqWlhf9+4sQJLFq0CGvWrInpiREEQRBEvMHSHWXZl4rYkbA+adTImiAIomcRdZA2a9YsLFu2DABQV1eH8ePH47nnnsOsWbOwePHimJ8gQRAEQcQLVqMektcJvzNSHm0OqkkjCILoiUQ96n/77beYPHkyAOC9995DTk4OTpw4gWXLluH555+P+QkSBEEQRLwgSZKvLs3RGUoaWfATBEH0RKIO0lpaWpCcnAwAWLNmDa699lrodDpMmDABJ06ciPkJEgRBEEQ80ZkOj9w4hCz4CYIgehRRB2kDBgzABx98gJMnT2L16tWYNm0aAKCiogIpKSkxP0GCIAiCiCd8vdI6PkhrdSg1aWaqSSMIguhRRB2kPfroo/jtb3+Lvn37Yvz48Zg4cSIARVUbPXp0zE+QIAiCIOIJX7pjJwRpXiUtgdIdCYIgehSGaP/g+uuvx4UXXoiysjKMHDmS337ppZfimmuuienJEQRBEES84Ut37ISaNG+QRu6OBEEQPYuog7T6+nqYTCY/1WzAgAEwGKJ+OIIgCILoVnRmQ+sWr1pHxiEEQRA9i6jTHW+66Sa8++67frf/4x//wE033RSTkyIIgiCIeIXVpDV1Rk2ak/qkEQRB9ESiDtK2bNmCqVOn+t1+8cUXY8uWLTE5KYIgCIKIV1i6Y0snWPC3OsiCnyAIoicSdZBmt9vhcvnvHjqdTrS2tsbkpAiCIAgiXunMdMdWpzfdkZQ0giCIHkXUQdq4cePw6quv+t3+8ssvY8yYMTE5KYIgCIKIV7gFf2e4O5KSRhAE0SOJ2unjiSeewGWXXYadO3fi0ksvBQB89tln+Oabb7BmzZqYnyBBEARBxBOd6e5INWkEQRA9k6iVtAsuuACbN29GYWEh/vGPf+A///kPBgwYgO+//x6TJ0/uiHMkCIIgiLihc5tZk7sjQRBET6RNnvmjRo3CW2+9FetzIQiCIIi4pyuaWZOSRhAE0bOIKEhraGhASkoK/zkU7DiCIAiCOBvxWfCTuyNBEATRMUQUpKWnp6OsrAzZ2dlIS0uDJEl+x8iyDEmS4HZ3/KRFEARBEF0Ft+DvFHdHZU5NoCCNIAiiRxFRkLZu3TpkZGQAANavX9+hJ0QQBEEQ8UxnWfA73R443TIASnckCILoaUQUpE2ZMoX/XFxcjMLCQj81TZZlnDx5MrZnRxAEQRBxhs+Cv2MzR2xO3+NbKEgjCILoUUTt7lhcXIzKykq/22tqalBcXByTkyIIgiCIeMVnwe+CLMsd9jysHk0nAWZD1NM1QRAE0Y2JetRntWdampqaYLFYYnJSBEEQBBGvMCXN5ZFhd3k67HlEZ8dA8y5BEARx9hKxBf/cuXMBAJIk4ZFHHkFCQgK/z+12Y8uWLRg1alTMT5AgCIIg4glWkwYoalpHpSK2kLMjQRBEjyXiIG3Hjh0AFCVt165dMJlM/D6TyYSRI0fit7/9bezPkCAIgiDiCL1Ogkmvg8Pt6RwljYI0giCIHkfEQRpzdbz99tvx17/+lfqhEQRBED0Ws1EJ0kRzj1hjc1Aja4IgiJ5K1DVpb7zxhipAa2howAcffID9+/fH9MQIgiAIIl4xG5TAqSOVtBYK0giCIHosUQdpN954I1544QUAQGtrK8aOHYsbb7wRI0aMwKpVq2J+ggRBEAQRbzC3RUp3JAiCIDqCqIO0L7/8EpMnTwYAvP/++5BlGXV1dXj++efxxz/+MeYnSBAEQRDxhsWoTJ8dme4oujsSBEEQPYuog7T6+npkZGQAAD799FNcd911SEhIwJVXXolDhw5FfQIvvfQSiouLYbFYMGbMGGzYsCHk8S+++CKGDh0Kq9WKwYMHY9myZar7nU4nFixYgP79+8NisWDkyJH49NNPVce4XC48/PDDKC4uhtVqRb9+/bBgwQJ4PL4d0dtuuw2SJKn+TZgwIerXRxAEQZx9dEa6Yyu5OxIEQfRYIjYOYRQWFmLz5s3IyMjAp59+infffRcAUFtbG3WftJUrV2LOnDl46aWXcMEFF+CVV17BjBkzsHfvXvTp08fv+MWLF2PevHl47bXXMG7cOGzduhV333030tPTcfXVVwMAHn74YaxYsQKvvfYahgwZgtWrV+Oaa67Bpk2bMHr0aADA008/jZdffhlLly7FsGHDsG3bNtx+++1ITU3Fr371K/58V1xxBd544w3+u+hoSRAEQfRczJ2qpEU9VRMEQRDdnKhH/jlz5uDHP/4xkpKSUFRUhIsvvhiAkgY5YsSIqB5r4cKFuPPOO3HXXXcBABYtWoTVq1dj8eLFeOqpp/yOX758OX72s59h9uzZAIB+/frh66+/xtNPP82DtOXLl+Ohhx7CzJkzAQD33nsvVq9ejeeeew4rVqwAAGzevBmzZs3ClVdeCQDo27cv3nnnHWzbtk31fGazGbm5uVG9JoIgCOLsx9KpSlrUSS8EQRBENyfqkf++++7D5s2bsWTJEmzcuBE6nfIQ/fr1i6omzeFwYPv27Zg2bZrq9mnTpmHTpk0B/8Zut/updVarFVu3boXT6Qx5zMaNG/nvF154IT777DMcPHgQALBz505s3LiRB3aMzz//HNnZ2Rg0aBDuvvtuVFRURPz6CIIgiLMXpqTZO0FJSzCRkkYQBNHTaNPIP3bsWIwdO1Z1G1OlIqWqqgputxs5OTmq23NyclBeXh7wb6ZPn47XX38dP/zhD3Heeedh+/btWLJkCZxOJ6qqqpCXl4fp06dj4cKFuOiii9C/f3989tln+PDDD+F2+ybS3/3ud6ivr8eQIUOg1+vhdrvxxBNP4Ec/+hE/ZsaMGbjhhhtQVFSEY8eO4ZFHHsEll1yC7du3w2w2Bzw/u90Ou93Of29oaIjqPSEIgiC6B0xJs3WCkmYh4xCCIIgeR0RB2ty5c/H4448jMTERc+fODXnswoULozoBSZJUv8uy7Hcb45FHHkF5eTkmTJgAWZaRk5OD2267Dc888wz0emUS++tf/4q7774bQ4YMgSRJ6N+/P26//XZVbdnKlSuxYsUKvP322xg2bBi+++47zJkzB/n5+bj11lsBgKdUAsDw4cMxduxYFBUV4aOPPsK1114b8PyeeuopPPbYY1G9foIgCKL70ZlKGrk7EgRB9DwiCtJ27NjB0wl37NgRkyfOzMyEXq/3U80qKir81DWG1WrFkiVL8Morr+DMmTPIy8vDq6++iuTkZGRmZgIAsrKy8MEHH8Bms6G6uhr5+fn4/e9/j+LiYv44999/P37/+9/jpptuAgCMGDECJ06cwFNPPcWDNC15eXkoKioK6WA5b948VRDb0NCAwsLCyN4QgiAIotvQKX3SHCzdkYI0giCInkZEQdr69esD/tweTCYTxowZg7Vr1+Kaa67ht69duxazZs0K+bdGoxEFBQUAgHfffRdXXXUVr41jWCwW9O7dG06nE6tWrcKNN97I72tpafE7Xq/Xqyz4tVRXV+PkyZPIy8sLeozZbA6aCkkQBEGcPbAURFLSCIIgiI4gauOQO+64A42NjX63Nzc344477ojqsebOnYvXX38dS5Yswb59+/DrX/8aJSUluOeeewAoytRPfvITfvzBgwexYsUKHDp0CFu3bsVNN92E3bt348knn+THbNmyBf/6179w9OhRbNiwAVdccQU8Hg8eeOABfszVV1+NJ554Ah999BGOHz+O999/HwsXLuTBYlNTE377299i8+bNOH78OD7//HNcffXVyMzMVAWUBEEQRM+kM5S0FocLAGAhJY0gCKLHEbVxyNKlS/GnP/0JycnJqttbW1uxbNkyLFmyJOLHmj17Nqqrq7FgwQKUlZVh+PDh+Pjjj1FUVAQAKCsrQ0lJCT/e7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Ji//e1veOSRR3DfffehoqIC+fn5+NnPfoZHH30UgKKq7dq1C8uWLUNdXR3y8vIwdepUrFy50u91EwRBED0P1sy6Y/ukKQFgAilpBEEQPY6Ig7SGhgbIsgxZltHY2KiyuXe73fj444+RnZ0d9Qncd999uO+++wLe9+abb6p+Hzp0aNiauClTpmDv3r0hj0lOTsaiRYuwaNGigPdbrVasXr065GMQBEEQPReLseOVNBvvk0ZBGkEQRE8j4iAtLS0NkiRBkiQMGjTI735JksjZkCAIgugRmDuhmXWL05vuSEoaQRBEjyPiIG39+vWQZRmXXHIJVq1ahYyMDH6fyWRCUVER8vPzO+QkCYIgCCKeYEpah6Y7OrzpjqSkEQRB9DgiDtKmTJkCADh27BgKCwv93BEJgiAIoqfQGUqajdwdCYIgeixRG4cwU4+WlhaUlJTA4XCo7j/33HNjc2YEQRAEEafwZtaujlHSZFnm7o5Uk0YQBNHziDpIq6ysxO23345PPvkk4P1ud8elfhAEQRBEPOBzd+wYJc3h9sAjKz9TkEYQBNHziDpncc6cOaitrcXXX38Nq9WKTz/9FEuXLsXAgQPx73//uyPOkSAIgiDiio5W0mwOX/BH6Y4EQRA9j6iVtHXr1uHDDz/EuHHjoNPpUFRUhMsvvxwpKSl46qmncOWVV3bEeRIEQRBE3MCaWXeUksacHY16CUY91YATBEH0NKIe+Zubm3k/tIyMDFRWVgIARowYgW+//Ta2Z0cQBEEQcQizxe8oJa3V2yON7PcJgiB6JlEHaYMHD8aBAwcAAKNGjcIrr7yC0tJSvPzyy8jLy4v5CRIEQRBEvMGUNHsHKWmt5OxIEATRo4k63XHOnDkoKysDAPzhD3/A9OnT8dZbb8FkMuHNN9+M9fkRBEEQRNzBFK6O6pPGlDTqkUYQBNEziTpI+/GPf8x/Hj16NI4fP479+/ejT58+yMzMjOnJEQRBEEQ8wpW0DuqTxpQ0SnckCILomUSd7rhgwQK0tLTw3xMSEnDeeechMTERCxYsiOnJEQRBEEQ8IjazlmU55o/PlDSy3ycIguiZRB2kPfbYY2hqavK7vaWlBY899lhMToogCIIg4hmL0Td9doSaZvM+psVAQRpBEERPJOogTZZlSJLkd/vOnTuRkZERk5MiCIIgiHjGLARPHRKkkZJGEATRo4m4Ji09PR2SJEGSJAwaNEgVqLndbjQ1NeGee+7pkJMkCIIgiHjCqJcgSYAsA3anG7AaY/r4NherSaMeaQRBED2RiIO0RYsWQZZl3HHHHXjssceQmprK7zOZTOjbty8mTpzYISdJEARBEPGEJEmwGPRodbo7REmjPmkEQRA9m4iDtFtvvRUAUFxcjAsuuAAGQ9TGkARBEARx1mA26rxBWuxt+MndkSAIomcTcaTl8Xjg8XgwZcoUftuZM2fw8ssvo7m5GT/4wQ9w4YUXdshJEgRBEES8oZh6OGHrgIbW7DGpmTVBEETPJOIg7c4774TRaMSrr74KAGhsbMS4ceNgs9mQl5eHv/zlL/jwww8xc+bMDjtZgiAIgogXzEbWKy32Shprkk1BGkEQRM8k4orkr776Ctdffz3/fdmyZXC5XDh06BB27tyJuXPn4tlnn+2QkyQIgiCIeIM3tO4QJY2MQwiCIHoyEY/+paWlGDhwIP/9s88+w3XXXccNRG699Vbs2bMn9mdIEARBEHEIqxezUU0aQRAEEWMiDtIsFgtaW1v5719//TUmTJiguj9Qk2uCIAiCOBvpHCWNgjSCIIieSMRB2siRI7F8+XIAwIYNG3DmzBlccskl/P4jR44gPz8/9mdIEARBEHEIa2jdMUoaGYcQBEH0ZCI2DnnkkUcwc+ZM/OMf/0BZWRluu+025OXl8fvff/99XHDBBR1ykgRBEAQRb7B6sQ5R0qhPGkEQRI8m4iBt6tSp2L59O9auXYvc3FzccMMNqvtHjRqF888/P+YnSBAEQRDxCFPSOqKZNVPnrCYyDiEIguiJRNWR+pxzzsE555wT8L6f/vSnMTkhgiAIgugOMAt+Vj8WS1qZkmYgJY0gCKInQlt0BEEQBNEGOkNJs5goSCMIguiJUJBGEARBEG2Auzt2hHGIg4xDCIIgejIUpBEEQRBEG+B90jrAOMROFvwEQRA9GgrSCIIgCKINdKiS5g3SSEkjCILomVCQRhAEQRBtwGccElslzen2wOWRAfhs/gmCIIieRcTujv369YvouKNHj7b5ZAiCIAiiu2DpIOMQ0S2S0h0JgiB6JhEHacePH0dRURFuvvlmZGdnd+Q5EQRBEETcY+bNrGOb7shSHSXJl1JJEARB9CwiDtLeffddvPHGG1i4cCFmzJiBO+64AzNnzoRORxMIQRAE0fNgSpotxkqa3Zs+aTHoIUlSTB+bIAiC6B5EHGHdeOON+OSTT3D48GGMGTMGv/71r1FQUIDf//73OHToUEeeI0EQBEHEHR2tpFmpRxpBEESPJWoZrHfv3njooYdw6NAhvPPOO9iyZQuGDBmC2trajjg/giAIgohLOqqZNatJs1CqI0EQRI8l4nRHEZvNhvfeew9LlizBli1bcMMNNyAhISHW50YQBEEQcYuFuzvGWElzeIM0UtIIgiB6LFEFaVu2bMHf//53rFy5Ev3798cdd9yBVatWIT09vaPOjyAIgiDikg5T0ly+mjSCIAiiZxJxkDZs2DBUVFTg5ptvxoYNG3Duued25HkRBEEQRFyT4FW6mu2umD4uU9KoJo0gCKLnEnGQtm/fPiQmJmLZsmVYvnx50ONqampicmIEQRAEEc8kmZUpNNZBmt3lTXekRtYEQRA9loiDtDfeeKMjz4MgCIIguhWJLEhzuOHxyNDpYmOXz5U0amRNEATRY4k4SLv11ls78jwIgiAIolvBlDQAaHG6Vb+3B2bBb6YgjSAIoscSdS6FLMvYtm0b3nvvPaxatQrffvstZFlu8wm89NJLKC4uhsViwZgxY7Bhw4aQx7/44osYOnQorFYrBg8ejGXLlqnudzqdWLBgAfr37w+LxYKRI0fi008/VR3jcrnw8MMPo7i4GFarFf369cOCBQvg8fiKv2VZxvz585Gfnw+r1YqLL74Ye/bsafPrJAiCIM4uLEYdmHgWy5RHm7eZNSlpBEEQPZeotv3Wr1+PO++8EydOnOCBmSRJKC4uxpIlS3DRRRdF9eQrV67EnDlz8NJLL+GCCy7AK6+8ghkzZmDv3r3o06eP3/GLFy/GvHnz8Nprr2HcuHHYunUr7r77bqSnp+Pqq68GADz88MNYsWIFXnvtNQwZMgSrV6/GNddcg02bNmH06NEAgKeffhovv/wyli5dimHDhmHbtm24/fbbkZqail/96lcAgGeeeQYLFy7Em2++iUGDBuGPf/wjLr/8chw4cADJyclRvU6CIAji7EOSJCSaDWi0udBkdyEnRo/Lm1lTkEYQBNFjiVhJO3z4MK666ir07dsX//rXv7Bv3z7s3bsX//znP1FQUICZM2fi6NGjUT35woULceedd+Kuu+7C0KFDsWjRIhQWFmLx4sUBj1++fDl+9rOfYfbs2ejXrx9uuukm3HnnnXj66adVxzz44IOYOXMm+vXrh3vvvRfTp0/Hc889x4/ZvHkzZs2ahSuvvBJ9+/bF9ddfj2nTpmHbtm0AFBVt0aJFeOihh3Dttddi+PDhWLp0KVpaWvD2229H9RoJgiCIs5eOMA+xO8k4hCAIoqcT8QywaNEiTJgwAevWrcOsWbMwePBgDBkyBNdeey3Wr1+P8ePH4y9/+UvET+xwOLB9+3ZMmzZNdfu0adOwadOmgH9jt9thsVhUt1mtVmzduhVOpzPkMRs3buS/X3jhhfjss89w8OBBAMDOnTuxceNGzJw5EwBw7NgxlJeXq87NbDZjypQpQc+NPXdDQ4PqH0EQBHH2wsxDmmIYpJGSRhAEQUQcpH3++eeYM2dOwPskScKcOXOwfv36iJ+4qqoKbrcbOTnqBJGcnByUl5cH/Jvp06fj9ddfx/bt23lt3JIlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGX+c3/3ud/jRj36EIUOGwGg0YvTo0ZgzZw5+9KMfAQB//mjODQCeeuoppKam8n+FhYURvx8EQRBE94M7PNrdMXtMGxmHEARB9HgiDtJKSkowYsSIoPcPHz4cJ06ciPoEJEltWSzLst9tjEceeQQzZszAhAkTYDQaMWvWLNx2220AAL1emcz++te/YuDAgRgyZAhMJhN+8Ytf4Pbbb+f3A0ot3IoVK/D222/j22+/xdKlS/HnP/8ZS5cubfO5AcC8efNQX1/P/508eTLi94EgCILofiSZY9/QupWMQwiCIHo8EQdpTU1NSEhICHp/QkICWlpaIn7izMxM6PX/v717D4uq2v84/hmG4SYo3hBUEvBelndLLZUy76bWUUrzhlaW/so6ZVqW5DHLCrMsOWmKZp20smMd8xJ60kwrlPIcTVNTESWIo3lJkduwf3/obBkBhRgE5P16nnke2bP2nrWnncsv37W+y5ovM5WWlpYvg+Xg7e2tRYsWKT09XYmJiUpKSlJISIj8/PxUq1YtSVLt2rW1cuVKnT17VocPH9bPP/8sX19fhYaGmtd56qmnNHnyZN1777268cYbNXz4cD3++ON66aWXJEmBgYGSVKy+SeenRFatWtXpBQC4dlXxKIXpjlmONWkEaQBQWRWruuPu3bsLne7nmG5YVB4eHmrbtq3i4uI0aNAg83hcXJwGDBhw2XNtNpvq168vSVq2bJn69esnNzfneNPLy0v16tVTdna2VqxYoSFDhpjvpaen52tvtVrNEvyhoaEKDAxUXFycWREyKytLmzZtcipSAgCo3EqlcEjOhTVpHhQOAYDKqlhB2h133FHgnmgWi+WKUwEL8sQTT2j48OFq166dOnbsqPnz5yspKUnjxo2TdH76YHJysrkX2r59+xQfH6+bb75ZJ06c0OzZs7Vr1y6naYrff/+9kpOT1apVKyUnJysqKkq5ubmaNGmS2aZ///568cUXdd111+mGG27Qjz/+qNmzZysyMtK8n4kTJ2rmzJlq3LixGjdurJkzZ8rHx0dDhw4t1j0CAK5dVUohSDMzae5k0gCgsipykHbo0CGXf3hERISOHz+u6dOnKyUlRS1atNDq1avVoEEDSVJKSoqSkpLM9na7XdHR0dq7d69sNpvCw8O1detWhYSEmG0yMjI0depUHTx4UL6+vurTp4+WLl0qf39/s83cuXP13HPP6ZFHHlFaWprq1q2rhx56SM8//7zZZtKkSTp37pweeeQRnThxQjfffLO+/PJL9kgDAJguVnd0YeGQC5k0Lw+CNACorCxGQakxuMTp06dVrVo1nTp1ivVpAHANeuvf+/Xal/sU0S5Ys/5yU/4GZ89Kr77qfOypp6QqVQq95h3RG3Xgf2e17MFbdEtYTRf3GABQVooTGxR5wnt6errGjx+vevXqKSAgQEOHDi32OjQAAK4ljjVpZ7JcN90x40J1RwqHAEDlVeQgbdq0aVq8eLH69u2re++9V3FxcXr44YdLs28AAJRrpbEmLYPNrAGg0ivymrRPP/1UCxcu1L333itJuv/++9W5c2fZ7XanPcgAAKgsSqO6oyNI87JR3REAKqsijwBHjhzRbbfdZv7coUMHubu769dffy2VjgEAUN65unCIYRg6RyYNACq9IgdpdrtdHh4eTsfc3d2Vk+O63x4CAFCRuHq6Y5Y9V7kXynl5EqQBQKVV5OmOhmFo1KhR8vT0NI9lZGRo3LhxqpKnStWnn37q2h4CAFBOuXq6Y2ZOrvlnpjsCQOVV5CBt5MiR+Y7df//9Lu0MAAAVSRXP89muM67KpOUJ0jysBGkAUFkVOUiLjY0tzX4AAFDhODJpmTm5yrHnyr2EgZUjk+ZhdZPFYilx/wAAFRO/pgMA4E9yrEmTpLMuKB7iyKR5ujM8A0BlxigAAMCfZLO6yeNCQPVHZnaJr+cI0jwI0gCgUmMUAACgBC4WDyl5Ji0z5/w1yKQBQOXGKAAAQAm4sngImTQAgESQBgBAiVTxcF0ZfoI0AIBEkAYAQIm4cq+0TLNwCBtZA0BlRpAGAEAJOCo8umK6YyaZNACACNIAACgR12bSKBwCACBIAwCgRMwgLct1+6SRSQOAyo1RAACAEnDldMcs+4UgzcrwDACVGaMAAAAl4HuhBL9LpjtmXygcYqNwCABUZgRpAACUAJk0AICrMQoAAFAC3h7ns16OLFhJOK7BmjQAqNwYBQAAKAGvC1MT07NckUmjuiMAgCANAIAS8bmQSTuX7brqjgRpAFC5MQoAAFAC3jZHkOaC6Y4EaQAAEaQBAFAiZpDmiumO7JMGABBBGgAAJeLtwumOmQRpAAARpAEAUCJmkJZV8umOF9eksU8aAFRmBGkAAJSAY7pjBpk0AICLMAoAAFAC3nlK8BuGUaJrZeZQgh8AQJAGAECJOKY75hpSlr1kUx4pHAIAkAjSAAAoEcdm1pKUUcJ1aeZ0RyvDMwBUZowCAACUgM3qJpvVIklKzy5ZGX6zcIiNwiEAUJkRpAEAUEIX90orWfEQx3RJMmkAULkxCgAAUEKu2ivNLBxiY3gGgMqMUQAAgBJyVRn+LNakAQBEkAYAQIl5mWX4XROkUYIfACo3RgEAAErIx8M1a9IyzSCNwiEAUJkRpAEAUEKuWpPGPmkAAIkgDQCAEnNFdUd7rqGcXEMS0x0BoLJjFAAAoIS8PdwllSyT5siiSWTSAKCyYxQAAKCEvC+UzCdIAwC4QpmPAvPmzVNoaKi8vLzUtm1bbd68+bLt3377bTVv3lze3t5q2rSp3nvvPaf3s7OzNX36dDVs2FBeXl5q2bKl1q5d69QmJCREFosl32v8+PFmm1GjRuV7/5ZbbnHdjQMArhlmCf4STHd07JHmZpHc3Swu6RcAoGJyL8sPX758uSZOnKh58+apc+fOeuedd9S7d2/t3r1b1113Xb72MTExmjJlihYsWKD27dsrPj5eDzzwgKpXr67+/ftLkqZOnar3339fCxYsULNmzbRu3ToNGjRIW7duVevWrSVJ27Ztk91+cSDdtWuX7rzzTg0ePNjp83r16qXY2FjzZw8Pj9L4GgAAFZyXR8lL8GfmKRpisRCkAUBlVqaZtNmzZ2vMmDEaO3asmjdvrjlz5ig4OFgxMTEFtl+6dKkeeughRUREKCwsTPfee6/GjBmjWbNmObV55pln1KdPH4WFhenhhx9Wz549FR0dbbapXbu2AgMDzdeqVavUsGFDde3a1enzPD09ndrVqFGjdL4IAECF5mMr+Zo0yu8DABzKLEjLyspSQkKCevTo4XS8R48e2rp1a4HnZGZmysvLy+mYt7e34uPjlZ2dfdk233zzTaH9eP/99xUZGZnvN5cbN25UQECAmjRpogceeEBpaWmXvafMzEydPn3a6QUAuPZ5e7huTRrr0QAAZTYSHDt2THa7XXXq1HE6XqdOHaWmphZ4Ts+ePfXuu+8qISFBhmFo+/btWrRokbKzs3Xs2DGzzezZs7V//37l5uYqLi5On332mVJSUgq85sqVK3Xy5EmNGjXK6Xjv3r31wQcf6N///reio6O1bds23X777crMzCz0nl566SVVq1bNfAUHBxfjGwEAVFSuKMGfZb8QpFkJ0gCgsivzkeDS7JVhGIXOxX/uuefUu3dv3XLLLbLZbBowYIAZXFmt5wfIN954Q40bN1azZs3k4eGhCRMmaPTo0eb7l1q4cKF69+6tunXrOh2PiIhQ37591aJFC/Xv319r1qzRvn379MUXXxR6L1OmTNGpU6fM15EjR4r6NQAAKjAvW8k3s868cK6nrcyHZgBAGSuzkaBWrVqyWq35smZpaWn5smsO3t7eWrRokdLT05WYmKikpCSFhITIz89PtWrVknR+vdnKlSt19uxZHT58WD///LN8fX0VGhqa73qHDx/W+vXrNXbs2Cv2NygoSA0aNND+/fsLbePp6amqVas6vQAA1z4fxz5pZNIAAC5QZiOBh4eH2rZtq7i4OKfjcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379r1if48fP64jR44oKCioCHcHAKhMHGvSMkqUSXMUDiFIA4DKrkxL8D/xxBMaPny42rVrp44dO2r+/PlKSkrSuHHjJJ2fPpicnGzuhbZv3z7Fx8fr5ptv1okTJzR79mzt2rVLS5YsMa/5/fffKzk5Wa1atVJycrKioqKUm5urSZMmOX12bm6uYmNjNXLkSLm7O38NZ86cUVRUlO655x4FBQUpMTFRzzzzjGrVqqVBgwaV8rcCAKhoHNMdS1KC35FJo7ojAKBMg7SIiAgdP35c06dPV0pKilq0aKHVq1erQYMGkqSUlBQlJSWZ7e12u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyMl+/rFardu7cqffee08nT55UUFCQwsPDtXz5cvn5+ZXKdwEAqLjM6Y5UdwQAuECZBmmS9Mgjj+iRRx4p8L3Fixc7/dy8eXP9+OOPl71e165dtXv37it+bo8ePWQYRoHveXt7a926dVe8BgAA0sXqjiWa7phzoXAIQRoAVHqMBAAAlJC3K6Y7kkkDAFzASAAAQAl55dnMurBZGleSSZAGALiAkQAAgBJyrEkzjIvBVnE5zmO6IwCAkQAAgBLyyhNY/dl1aUx3BAA4lHnhEAAAKjp3q5s8rG7KsucqPcsuf5+in3vsTKY+3/Gr/ncmUxIl+AEABGkAALiEt4dVWedyi12Gf+o/d2ntT6nmz2TSAACMBAAAuICjwuO5YlZ4jNvzm9PPHlaGZgCo7BgJAABwAW+PC0FaMTNpzQL9nH72tDE0A0Blx0gAAIALeP3JTFqDms4L2MikAQAYCQAAcAGfP5lJy7E776vmaaNwCABUdgRpAAC4gGNNWnFL8GfZnfdV8ySTBgCVHiMBAAAu4FiTdiYzp1jnZV2y+TXVHQEAjAQAALhANW+bJOnUuexinXdpkObmZnFZnwAAFRNBGgAALuD/Z4O0S6Y7pp3OcFmfAAAVE0EaAAAu4O9zIUhL/3OZtEYBvvL3sanvTUEu7xsAoGJxL+sOAABwLXBMdzz5J4O0mYNuVNsG1WVluiMAVHpk0gAAcIFqPh6Sij/dMfNCkObh7kaABgCQRJAGAIBLmJm0PxukUXofAHABIwIAAC7gKBxyutjVHc/vq0bpfQCAAyMCAAAu4CgccjI9q1jnOao7ehKkAQAuYEQAAMAFHNMdz2bZlX1JWf3LcRQOIUgDADgwIgAA4AJ+XjZZLtT9KGrxkBx7rnKN839muiMAwIERAQAAF7C6WeTneX5nm6KW4c+7kTVBGgDAgREBAAAX8S9mGX7HVEeJ6o4AgIsYEQAAcBFH8ZBT54pWPMQRpLlZJHeCNADABYwIAAC4iLlXWhGnO+bdyBoAAAdGBQAAXMQRpBV1uiMbWQMACsKoAACAixQ3k5ZlZtKspdYnAEDFQ5AGAICLXFyTVrzqjuyRBgDIi1EBAAAX8ff+c9UdCdIAAHkxKgAA4CIXpzsWr7ojhUMAAHkxKgAA4CLVij3d0S6JIA0A4IxRAQAAFzEzacWc7kh1RwBAXowKAAC4iKNwyOniluAnkwYAyINRAQAAF3EUDjmZni3DMK7YniANAFAQRgUAAFzEMd0xJ9fQ2Sz7Fdsz3REAUBBGBQAAXMTL5mZmxYpS4dEswW9jM2sAwEUEaQAAuIjFYpGfp7sk6WxmETJpdjJpAID8GBUAAHAhrwtZsYzsYkx3ZE0aACAPRgUAAFzIy3Z+aC1OkOZJkAYAyINRAQAAF3Jk0s4VJUizk0kDAORX5qPCvHnzFBoaKi8vL7Vt21abN2++bPu3335bzZs3l7e3t5o2bar33nvP6f3s7GxNnz5dDRs2lJeXl1q2bKm1a9c6tQkJCZHFYsn3Gj9+vNnGMAxFRUWpbt268vb2Vrdu3fTTTz+57sYBANckb3O6Y+4V21LdEQBQkDIdFZYvX66JEyfq2Wef1Y8//qjbbrtNvXv3VlJSUoHtY2JiNGXKFEVFRemnn37SCy+8oPHjx+tf//qX2Wbq1Kl65513NHfuXO3evVvjxo3ToEGD9OOPP5pttm3bppSUFPMVFxcnSRo8eLDZ5pVXXtHs2bP11ltvadu2bQoMDNSdd96pP/74o5S+DQDAtaA4a9Iyc863IZMGAMirTEeF2bNna8yYMRo7dqyaN2+uOXPmKDg4WDExMQW2X7p0qR566CFFREQoLCxM9957r8aMGaNZs2Y5tXnmmWfUp08fhYWF6eGHH1bPnj0VHR1ttqldu7YCAwPN16pVq9SwYUN17dpV0vks2pw5c/Tss8/q7rvvVosWLbRkyRKlp6frH//4R+l+KQCACq14QRrTHQEA+ZXZqJCVlaWEhAT16NHD6XiPHj20devWAs/JzMyUl5eX0zFvb2/Fx8crOzv7sm2++eabQvvx/vvvKzIyUhaLRZJ06NAhpaamOvXN09NTXbt2LbRvAABIFwuHFGlNGoVDAAAFKLNR4dixY7Lb7apTp47T8Tp16ig1NbXAc3r27Kl3331XCQkJMgxD27dv16JFi5Sdna1jx46ZbWbPnq39+/crNzdXcXFx+uyzz5SSklLgNVeuXKmTJ09q1KhR5jHH5xenb9L5APH06dNOLwBA5eL1Z9akEaQBAPIo81HBkb1yMAwj3zGH5557Tr1799Ytt9wim82mAQMGmMGV1Xp+UHzjjTfUuHFjNWvWTB4eHpowYYJGjx5tvn+phQsXqnfv3qpbt26J+iZJL730kqpVq2a+goODC20LALg2eRdnnzQ2swYAFKDMRoVatWrJarXmy0ylpaXly2A5eHt7a9GiRUpPT1diYqKSkpIUEhIiPz8/1apVS9L59WYrV67U2bNndfjwYf3888/y9fVVaGhovusdPnxY69ev19ixY52OBwYGSlKx+iZJU6ZM0alTp8zXkSNHrvxFAACuKX9mnzQyaQCAvMpsVPDw8FDbtm3NyooOcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379nU6HhoaqsDAQKe+ZWVladOmTZftm6enp6pWrer0AgBULsXKpLEmDQBQAPey/PAnnnhCw4cPV7t27dSxY0fNnz9fSUlJGjdunKTzmank5GRzL7R9+/YpPj5eN998s06cOKHZs2dr165dWrJkiXnN77//XsnJyWrVqpWSk5MVFRWl3NxcTZo0yemzc3NzFRsbq5EjR8rd3flrsFgsmjhxombOnKnGjRurcePGmjlzpnx8fDR06NBS/lYAABWZJ5tZAwBKqEyDtIiICB0/flzTp09XSkqKWrRoodWrV6tBgwaSpJSUFKc90+x2u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyssC+TZo0SefOndMjjzyiEydO6Oabb9aXX34pPz8/l38PAIBrR3EKh2RmO9akFbxuGgBQOVkMwzDKuhPXqtOnT6tatWo6deoUUx8BoJL4x/dJeuafO3Xn9XW04J7m0quvOjd46impShVJUvhrG3Xo2Fl99FBHdQitUQa9BQBcLcWJDZhfAQCAC/2ZwiGsSQMA5MWoAACACzkKh2QWZboj1R0BAAVgVAAAwIW8ilM4JOd8G4I0AEBejAoAALiQF5tZAwBKiFEBAAAXcqxJK1omjTVpAID8GBUAAHChopbgz7HnKvdCfWWmOwIA8mJUAADAhbyLON3RUTREIkgDADhjVAAAwIWKuiYtK2+Qxpo0AEAejAoAALiQI5OWk2so2174lEdH0RA3i+ROkAYAyINRAQAAF/K0XRxaL5dNu1g0xFrqfQIAVCwEaQAAuJCnu5sslvN/vlzxEDayBgAUhpEBAAAXslgs8rqQHcssQiaNIA0AcClGBgAAXMyxV9plpzuykTUAoBCMDAAAuJijeMi5nKKsSWMoBgA4Y2QAAMDFHGX4My+7Ju18AMd0RwDApRgZAABwMc8i7JXGmjQAQGEYGQAAcDFvc03aZfZJy2FNGgCgYIwMAAC4mGO6Y8Zl1qQ5SvDn3VcNAACJIA0AAJfzLsJ0x3MX3vO2uV+VPgEAKg6CNAAAXKwohUPOZV0I0jysV6VPAICKgyANAAAX8ypWJo2hGADgjJEBAAAXc2xmfe4yQVqGGaSRSQMAOCNIAwDAxczpjjlXnu7oxXRHAMAlCNIAAHCxohQOcVR+JJMGALgUQRoAAC7mZe6Tdpk1aVm5F9oSpAEAnBGkAQDgYhcLhxQ+3ZE1aQCAwhCkAQDgYkXZzPocQRoAoBAEaQAAuFhRMmkUDgEAFIYgDQAAFytK4RAyaQCAwhCkAQDgYo7CIZnskwYA+BPcy7oDkOx2u7Kzs8u6G8AV2Ww2Wa38gxK4kmJl0jz4fSkAwBlBWhkyDEOpqak6efJkWXcFKDJ/f38FBgbKYrGUdVeAcsvzQpD2vzNZ+vrg/3R93aqq5evp1MYRwFGCHwBwKYK0MuQI0AICAuTj48M/elGuGYah9PR0paWlSZKCgoLKuEdA+eXIpJ1Mz9YPSSd06ly2+res69TGUTiE6Y4AgEsRpJURu91uBmg1a9Ys6+4AReLt7S1JSktLU0BAAFMfgUIE1/BWzSoeyrFnSZLOZObka+Oo/EgmDQBwKSbClxHHGjQfH58y7glQPI5nlnWUQOH8vGzaOuV2LY5sL0k6e0mQlmPPVZb9fJBGJg0AcCmCtDLGFEdUNDyzQNF4ulsVWNVLkpSeZZdhGOZ7GTkX90/zZp80AMAlCNIAACglNXw9JEm5huG0sbVjPZokebozFAMAnDEyAEWwePFi+fv7l+gaISEhmjNnjkv6A6Bi8HS3ytP9fKYsPevilMe8e6SRnQYAXIogDcUyatQoWSwWWSwW2Ww2hYWF6cknn9TZs2clSYmJieb7FotFfn5+uuGGGzR+/Hjt37/f6VqLFy+WxWJR8+bN833ORx99JIvFopCQkD/dV4vFopUrVxb7vIKCqYiICO3bt69I5xcW0G3btk0PPvhgsfsDoGKr4ukI0i5mzy7ukcZURwBAfgRpKLZevXopJSVFBw8e1IwZMzRv3jw9+eSTTm3Wr1+vlJQU/ec//9HMmTO1Z88etWzZUhs2bHBqV6VKFaWlpenbb791Or5o0SJdd911pX4vReXt7a2AgIASXaN27doUigEqIR+P84WUz+bJpFF+HwBwOQRp5YhhGErPyrnqr7yL2YvC09NTgYGBCg4O1tChQzVs2LB8GauaNWsqMDBQYWFhGjBggNavX6+bb75ZY8aMkd1+8bfJ7u7uGjp0qBYtWmQeO3r0qDZu3KihQ4deth9ZWVmaMGGCgoKC5OXlpZCQEL300kuSZGbgBg0a5JSRO3DggAYMGKA6derI19dX7du31/r1681rduvWTYcPH9bjjz9uZgOl/Nmx//znPwoPD5efn5+qVq2qtm3bavv27dq4caNGjx6tU6dOmedHRUWZfcqboTt58qQefPBB1alTR15eXmrRooVWrVpVlP8EACqQKheyZemZF//uu7iRNcMwACA/9kkrR85l23X98+uu+ufunt7T/E3vn+Ht7X3Fcuxubm567LHHNGjQICUkJKhDhw7me2PGjFGXLl30xhtvyMfHR4sXL1avXr1Up06dy17zzTff1Oeff66PPvpI1113nY4cOaIjR45IOj+1MCAgQLGxserVq5e5n9eZM2fUp08fzZgxQ15eXlqyZIn69++vvXv36rrrrtOnn36qli1b6sEHH9QDDzxQ6GcPGzZMrVu3VkxMjKxWq3bs2CGbzaZOnTppzpw5ev7557V3715Jkq+vb77zc3Nz1bt3b/3xxx96//331bBhQ+3evZt9x4BrUIGZNDNI4/95AEB+Zf4rvHnz5ik0NFReXl5q27atNm/efNn2b7/9tpo3by5vb281bdpU7733ntP72dnZmj59uho2bCgvLy+1bNlSa9euzXed5ORk3X///apZs6Z8fHzUqlUrJSQkmO/nXXvleN1yyy2uuelrSHx8vP7xj3/ojjvuuGLbZs2aSTq/bi2vVq1aqWHDhvrkk09kGIYWL16syMjIK14vKSlJjRs31q233qoGDRro1ltv1X333Sfp/NRCSfL391dgYKD5c8uWLfXQQw/pxhtvVOPGjTVjxgyFhYXp888/lyTVqFFDVqtVfn5+CgwMVGBgYKGf3b17dzVr1kyNGzfW4MGD1bJlS3l4eKhatWqyWCzm+QUFaevXr1d8fLw+/fRT3XnnnQoLC1O/fv3Uu3fvK943gIrFp4A1aXkLhwAAcKkyzaQtX75cEydO1Lx589S5c2e988476t27t3bv3l3geqSYmBhNmTJFCxYsUPv27RUfH68HHnhA1atXV//+/SVJU6dO1fvvv68FCxaoWbNmWrdunQYNGqStW7eqdevWkqQTJ06oc+fOCg8P15o1axQQEKADBw7kK/bQq1cvxcbGmj97eHiU3peh84P17uk9S/UzCvvc4li1apV8fX2Vk5Oj7OxsDRgwQHPnzr3ieY5plQVVMouMjFRsbKyuu+46M9v11ltvXfZ6o0aN0p133qmmTZuqV69e6tevn3r06HHZc86ePasXXnhBq1at0q+//qqcnBydO3dOSUlJV+x/Xk888YTGjh2rpUuXqnv37ho8eLAaNmxY5PN37Nih+vXrq0mTJsX6XAAVTxVHJi0zfyaNwiEAgIKUaZA2e/ZsjRkzRmPHjpUkzZkzR+vWrVNMTIy5tiivpUuX6qGHHlJERIQkKSwsTN99951mzZplBmlLly7Vs88+qz59+kiSHn74Ya1bt07R0dF6//33JUmzZs1ScHCwUwBWUBVBx9qrq8VisZRo2uHVEh4erpiYGNlsNtWtW1c2m61I5+3Zs0eSFBoamu+9YcOGadKkSYqKitKIESPk7n7l76FNmzY6dOiQ1qxZo/Xr12vIkCHq3r27Pvnkk0LPeeqpp7Ru3Tq99tpratSokby9vfWXv/xFWVlZRboHh6ioKA0dOlRffPGF1qxZo2nTpmnZsmUaNGhQkc739vYu1ucBqLgKyqSdyzq/ZxrTHQEABSmz6Y5ZWVlKSEjIl/no0aOHtm7dWuA5mZmZ8vLycjrm7e2t+Ph4c01UYW2++eYb8+fPP/9c7dq10+DBgxUQEKDWrVtrwYIF+T5v48aNCggIUJMmTfTAAw8oLS3tsveUmZmp06dPO72uRVWqVFGjRo3UoEGDIgdoubm5evPNNxUaGmpmNPOqUaOG7rrrLm3atKlIUx0dqlatqoiICC1YsEDLly/XihUr9Pvvv0uSbDabU5ESSdq8ebNGjRqlQYMG6cYbb1RgYGC+6ZceHh75zitIkyZN9Pjjj+vLL7/U3XffbQb9RTn/pptu0tGjR4tc1h9AxeXIpBVYgp8gDQBQgDIL0o4dOya73Z6vOESdOnWUmppa4Dk9e/bUu+++q4SEBBmGoe3bt2vRokXKzs7WsWPHzDazZ8/W/v37lZubq7i4OH322WdKSUkxr3Pw4EHFxMSocePGWrduncaNG6dHH33UaX1b79699cEHH+jf//63oqOjtW3bNt1+++3KzMws9J5eeuklVatWzXwFBweX5Cuq0I4fP67U1FQdPHhQn3/+ubp37674+HgtXLiw0OIYixcv1rFjx8y1a1fy+uuva9myZfr555+1b98+ffzxxwoMDDSnrYaEhGjDhg1KTU3ViRMnJEmNGjXSp59+qh07dug///mPhg4dqtzcXKfrhoSE6Ouvv1ZycrL5XOV17tw5TZgwQRs3btThw4e1ZcsWbdu2zdzvLSQkRGfOnNGGDRt07Ngxpaen57tG165d1aVLF91zzz2Ki4szM4IFrZ8EULH5XJjSeC4rR7kXpn2zJg0AcDllXjjk0vVJhmEUuGZJkp577jn17t1bt9xyi2w2mwYMGKBRo0ZJkvkP/zfeeEONGzdWs2bN5OHhoQkTJmj06NFOgUFubq7atGmjmTNnqnXr1nrooYf0wAMPKCYmxmwTERGhvn37qkWLFurfv7/WrFmjffv26Ysvvij0XqZMmaJTp06ZL0elwcqoe/fuCgoK0o033qjJkyerefPm+u9//6vw8PBCz/H29lbNmjWL/Bm+vr6aNWuW2rVrp/bt2ysxMVGrV6+Wm9v5xzo6OlpxcXEKDg42s3evv/66qlevrk6dOql///7q2bOn2rRp43Td6dOnKzExUQ0bNjQLjuRltVp1/PhxjRgxQk2aNNGQIUPUu3dvvfDCC5KkTp06ady4cYqIiFDt2rX1yiuvFNj/FStWqH379rrvvvt0/fXXa9KkSUXK4AGoWLw9rLJIMiTt++0Pvbc18eI+aaxJAwAUwGIUd5MsF8nKypKPj48+/vhjp3U8jz32mHbs2KFNmzYVem52drZ+++03BQUFaf78+Xr66ad18uRJ8x/nkpSRkaHjx4+rbt26mjx5slatWqWffvpJktSgQQPdeeedevfdd832MTExmjFjhpKTkwv93MaNG2vs2LF6+umni3SPp0+fVrVq1XTq1ClVrVrV6b2MjAwdOnTIrGwJVBQ8u0AxnD0rvfqq5n99UOkXSvC/0+EetWgSpG2JJzSua0NN7l202QMAgIrtcrHBpcosk+bh4aG2bdsqLi7O6XhcXJw6dep02XNtNpvq168vq9WqZcuWqV+/fk4BmiR5eXmpXr16ysnJ0YoVKzRgwADzvc6dO5t7WDns27dPDRo0KPQzjx8/riNHjigoKKiotwgAgKSLUx4d9qT8IYnNrAEABSvTUoJPPPGEhg8frnbt2qljx46aP3++kpKSNG7cOEnnpw8mJyeba8X27dun+Ph43XzzzTpx4oRmz56tXbt2acmSJeY1v//+eyUnJ6tVq1ZKTk5WVFSUcnNzNWnSJLPN448/rk6dOmnmzJkaMmSI4uPjNX/+fM2fP1/S+Q2Po6KidM899ygoKEiJiYl65plnVKtWrSJX7wMAwKGKp7uOnbm4pvnMhXL8rEkDABSkTIO0iIgIHT9+XNOnT1dKSopatGih1atXmxmtlJQUp/2r7Ha7oqOjtXfvXtlsNoWHh2vr1q1O5fMzMjI0depUHTx4UL6+vurTp4+WLl3qtAda+/bt9c9//lNTpkzR9OnTFRoaqjlz5mjYsGGSzq852rlzp9577z2dPHlSQUFBCg8P1/Lly+Xn53dVvhsAwLWjuo9Nh49LHu7OmTPWpAEAClJma9IqA9ak4VrEswsUw4U1aeey7DpyIl1ZObka7Herznmc/3/nlb/cpCHtKm8lYACoTCrEmjQAACoLbw+rmtTxUzVv570lme4IACgIQRoAAFdJVYI0AEAREKQBAHCV+Hq6yy3PVqCsSQMAFIQgDQCAq8TqZlFgtYtrOb3IpAEACkCQBgDAVVTX39v8M/ukAQAKwugA5DF//nwFBwfLzc1Nc+bMKevuALgG1at2MUhjTRoAoCAEaSi21NRU/d///Z/CwsLk6emp4OBg9e/fXxs2bCjrrhVo8eLFTvvkFeb06dOaMGGCnn76aSUnJ+vBBx8s/c4BqHTqVr843ZE1aQCAgpTpZtbIwzCk9PSy+3wfH8liuWKzxMREde7cWf7+/nrllVd00003KTs7W+vWrdP48eP1888//6mPz87Ols1mK/Lx0pCUlKTs7Gz17dtXQUFBBba5mv0BcG2q5+9j/plMGgCgIARp5UV6uvTqq2X3+U89JVWpcsVmjzzyiCwWi+Lj41UlT/sbbrhBkZGR5s9JSUn6v//7P23YsEFubm7q1auX5s6dqzp16kiSoqKitHLlSj366KOaMWOGEhMTZbfb5ebmppiYGK1Zs0br16/Xk08+qRdeeEH/+te/FBUVpZ9++kl169bVyJEj9eyzz8rd/fwjfPLkSU2aNEmfffaZTp06pUaNGunll1+Wr6+vRo8eLUmyXAhCp02bpqioKKf7Wrx4sdkuLCxMknTo0CEtXry4wH6ePn1aTz31lFauXKmMjAy1a9dOr7/+ulq2bGle8+WXX9brr7+u9PR0DRkyRLVr19batWu1Y8cOSVK3bt3UqlUrp2mVAwcOlL+/vxYvXixJysrK0tSpU/XBBx/o5MmTatGihWbNmqVu3bqZ/Z44caKWL1+uiRMn6siRI7r11lsVGxvrFGguWrRI0dHR+uWXX1SjRg3dc889euuttxQZGam0tDStWrXKbJuTk6P69etr5syZTv9NAbhGPX8KhwAALo/pjiiy33//XWvXrtX48eOdAjQHx5RCwzA0cOBA/f7779q0aZPi4uJ04MABRUREOLX/5Zdf9NFHH2nFihVm4CKdD6IGDBignTt3KjIyUuvWrdP999+vRx99VLt379Y777yjxYsX68UXX5Qk5ebmqnfv3tq6davef/997d69Wy+//LKsVqs6deqkOXPmqGrVqkpJSVFKSoqefPLJfH2PiIjQ+vXrJUnx8fFKSUlRcHBwof3s27evUlNTtXr1aiUkJKhNmza644479Pvvv0uSPvroI02bNk0vvviitm/frqCgIM2bN6/Y3/no0aO1ZcsWLVu2TP/97381ePBg9erVS/v37zfbpKen67XXXtPSpUv19ddfKykpyekeY2JiNH78eD344IPauXOnPv/8czVq1EiSNHbsWK1du1YpKSlm+9WrV+vMmTMaMmRIsfsL4MocmTR3N4s83RmGAQD5kUlDkf3yyy8yDEPNmjW7bLv169frv//9rw4dOmQGOkuXLtUNN9ygbdu2qX379pLOZ4mWLl2q2rVrO50/dOhQpwzO8OHDNXnyZI0cOVLS+UzX3/72N02aNEnTpk3T+vXrFR8frz179qhJkyZmG4dq1arJYrEoMDCw0D57e3urZs2akqTatWs7tb20n//+97+1c+dOpaWlydPTU5L02muvaeXKlfrkk0/04IMPas6cOYqMjNTYsWMlSTNmzND69euVkZFx2e8urwMHDujDDz/U0aNHVbduXUnSk08+qbVr1yo2NlYzZ86UdH4K5t///nc1bNhQkjRhwgRNnz7dvM6MGTP017/+VY899ph5zPHfoFOnTmratKmWLl2qSZMmSZJiY2M1ePBg+fr6FrmvAIqufg1vPdglTDWqeJgZfgAA8iJIQ5EZhiFJV/xHxZ49exQcHGwGaJJ0/fXXy9/fX3v27DEDhAYNGuQL0CSpXbt2Tj8nJCRo27ZtZuZMkux2uzIyMpSenq4dO3aofv36ZoDmapf2MyEhQWfOnDGDOodz587pwIEDks5/B+PGjXN6v2PHjvrqq6+K/Lk//PCDDMPId1+ZmZlOn+3j42MGaJIUFBSktLQ0SVJaWpp+/fVX3XHHHYV+ztixYzV//nxNmjRJaWlp+uKLL8ptERjgWmCxWPRMn+Zl3Q0AQDlGkFZe+PicXxdWlp9/BY0bN5bFYtGePXs0cODAQtsZhlFgIHfp8YKmTBZ0PDc3Vy+88ILuvvvufG29vLzk7e2d77grFdSfoKAgbdy4MV/bolSRdHBzczMDX4fs7Gynz7FarUpISJDV6rxuJW+W69JCJhaLxbxuUb6bESNGaPLkyfr222/17bffKiQkRLfddluR7wMAAACuRZBWXlgsRSrcUZZq1Kihnj176u2339ajjz6aL3g5efKk/P39df311yspKUlHjhwxs2m7d+/WqVOn1Lx58X973KZNG+3du9dcR3Wpm266SUePHtW+ffsKzKZ5eHjIbrcX+3Mv15/U1FS5u7srJCSkwDbNmzfXd999pxEjRpjHvvvuO6c2tWvXdloLZrfbtWvXLoWHh0uSWrduLbvdrrS0tD8dNPn5+SkkJEQbNmwwr3upmjVrauDAgYqNjdW3335rFlABAABA2WDFMopl3rx5stvt6tChg1asWKH9+/drz549evPNN9WxY0dJUvfu3XXTTTdp2LBh+uGHHxQfH68RI0aoa9eu+aYyFsXzzz+v9957z6zuuGfPHi1fvlxTp06VJHXt2lVdunTRPffco7i4OB06dEhr1qzR2rVrJUkhISE6c+aMNmzYoGPHjim9hFsddO/eXR07dtTAgQO1bt06JSYmauvWrZo6daq2b98uSXrssce0aNEiLVq0SPv27dO0adP0008/OV3n9ttv1xdffKEvvvhCP//8sx555BGdPHnSfL9JkyYaNmyYRowYoU8//VSHDh3Stm3bNGvWLK1evbrI/Y2KilJ0dLTefPNN7d+/Xz/88IPmzp3r1Gbs2LFasmSJ9uzZY679AwAAQNkgSEOxhIaG6ocfflB4eLj++te/qkWLFrrzzju1YcMGxcTESDo/3W7lypWqXr26unTpou7duyssLEzLly//U5/Zs2dPrVq1SnFxcWrfvr1uueUWzZ49Ww0aNDDbrFixQu3bt9d9992n66+/XpMmTTKzZ506ddK4ceMUERGh2rVr65VXXinRd2CxWLR69Wp16dJFkZGRatKkie69914lJiaaWwxERETo+eef19NPP622bdvq8OHDevjhh52uExkZqZEjR5oBbGhoaL5sV2xsrEaMGKG//vWvatq0qe666y59//33Tuv9rmTkyJGaM2eO5s2bpxtuuEH9+vVzqg4pnQ88g4KC1LNnT7NICQAAAMqGxbh0UQxc5vTp06pWrZpOnTqlqlWrOr2XkZGhQ4cOKTQ0VF5eXoVcAdcSx95webcbKC/S09NVt25dLVq0qMC1f3nx7ALFcPZs/j0wi7gvJQDg2nK52OBSrEkDKrHc3FylpqYqOjpa1apV01133VXWXQIAAKj0CNKASiwpKUmhoaGqX7++Fi9eLHd3/koAAAAoa/yLDLhKoqKiFBUVVdbdcBISEpJvGwAAAACULQqHAAAAAEA5QpBWxshioKLhmQUAAChdBGllxGazSVKJ9+wCrjbHM+t4hgEAAOBarEkrI1arVf7+/kpLS5Mk+fj4yGKxlHGvgMIZhqH09HSlpaXJ399fVqu1rLsEAABwTSJIK0OBgYGSZAZqQEXg7+9vPrsAAABwPYK0MmSxWBQUFKSAgABlZ2eXdXeAK7LZbGTQAAAAShlBWjlgtVr5hy8AAAAASRQOAQAAAIByhSANAAAAAMoRgjQAAAAAKEdYk1aKHJv+nj59uox7AgAoE2fPSpmZzsdOn5bs9rLpDwCgzDhiAkeMcDkWoyit8KccPXpUwcHBZd0NAAAAAOXEkSNHVL9+/cu2IUgrRbm5ufr111/l5+fHRtUoltOnTys4OFhHjhxR1apVy7o7qER49lBWePZQVnj2cLUYhqE//vhDdevWlZvb5VedMd2xFLm5uV0xSgYup2rVqgwYKBM8eygrPHsoKzx7uBqqVatWpHYUDgEAAACAcoQgDQAAAADKEYI0oBzy9PTUtGnT5OnpWdZdQSXDs4eywrOHssKzh/KIwiEAAAAAUI6QSQMAAACAcoQgDQAAAADKEYI0AAAAAChHCNIAAAAAoBwhSAOugnnz5ik0NFReXl5q27atNm/efNn2H3zwgVq2bCkfHx8FBQVp9OjROn78uFObFStW6Prrr5enp6euv/56/fOf/yzNW0AF5epnb8GCBbrttttUvXp1Va9eXd27d1d8fHxp3wYqoNL4e89h2bJlslgsGjhwYCn0HBVdaTx7J0+e1Pjx4xUUFCQvLy81b95cq1evLs3bQGVnAChVy5YtM2w2m7FgwQJj9+7dxmOPPWZUqVLFOHz4cIHtN2/ebLi5uRlvvPGGcfDgQWPz5s3GDTfcYAwcONBss3XrVsNqtRozZ8409uzZY8ycOdNwd3c3vvvuu6t1W6gASuPZGzp0qPH2228bP/74o7Fnzx5j9OjRRrVq1YyjR49erdtCBVAaz55DYmKiUa9ePeO2224zBgwYUMp3goqmNJ69zMxMo127dkafPn2Mb775xkhMTDQ2b95s7Nix42rdFiohgjSglHXo0MEYN26c07FmzZoZkydPLrD9q6++aoSFhTkde/PNN4369eubPw8ZMsTo1auXU5uePXsa9957r4t6jWtBaTx7l8rJyTH8/PyMJUuWlLzDuGaU1rOXk5NjdO7c2Xj33XeNkSNHEqQhn9J49mJiYoywsDAjKyvL9R0GCsF0R6AUZWVlKSEhQT169HA63qNHD23durXAczp16qSjR49q9erVMgxDv/32mz755BP17dvXbPPtt9/mu2bPnj0LvSYqn9J69i6Vnp6u7Oxs1ahRw6X9R8VVms/e9OnTVbt2bY0ZM6bU+o+Kq7Sevc8//1wdO3bU+PHjVadOHbVo0UIzZ86U3W4v1ftB5UaQBpSiY8eOyW63q06dOk7H69Spo9TU1ALP6dSpkz744ANFRETIw8NDgYGB8vf319y5c802qampxbomKp/SevYuNXnyZNWrV0/du3d3af9RcZXWs7dlyxYtXLhQCxYsKNX+o+IqrWfv4MGD+uSTT2S327V69WpNnTpV0dHRevHFF0v1flC5EaQBV4HFYnH62TCMfMccdu/erUcffVTPP/+8EhIStHbtWh06dEjjxo3709dE5VUaz57DK6+8og8//FCffvqpvLy8XN53VGyufPb++OMP3X///VqwYIFq1apV6n1Hxebqv/dyc3MVEBCg+fPnq23btrr33nv17LPPKiYmplTvA5Wbe1l3ALiW1apVS1arNd9v8NLS0vL9ps/hpZdeUufOnfXUU09Jkm666SZVqVJFt912m2bMmKGgoCAFBgYW65qofErr2XN47bXXNHPmTK1fv1433XRT6d0IKpzSePZ+++03JSYmqn///uY5ubm5kiR3d3ft3btXDRs2LKU7QkVRWn/vBQUFyWazyWq1muc1b95cqampysrKkoeHR+ndFCotMmlAKfLw8FDbtm0VFxfndDwuLk6dOnUq8Jz09HS5uTn/r+kYGAzDkCR17Ngx3zW//PLLQq+Jyqe0nj1JevXVV/W3v/1Na9euVbt27Vzcc1R0pfHsNWvWTDt37tSOHTvM11133aXw8HDt2LFDwcHBpXMzqFBK6++9zp0765dffjF/MSBJ+/btU1BQEAEaSk+ZlCsBKhFHOeCFCxcau3fvNiZOnGhUqVLFSExMNAzDMCZPnmwMHz7cbB8bG2u4u7sb8+bNMw4cOGB88803Rrt27YwOHTqYbbZs2WJYrVbj5ZdfNvbs2WO8/PLLlOBHPqXx7M2aNcvw8PAwPvnkEyMlJcV8/fHHH1f9/lB+lcazdymqO6IgpfHsJSUlGb6+vsaECROMvXv3GqtWrTICAgKMGTNmXPX7Q+VBkAZcBW+//bbRoEEDw8PDw2jTpo2xadMm872RI0caXbt2dWr/5ptvGtdff73h7e1tBAUFGcOGDcu3D9XHH39sNG3a1LDZbEazZs2MFStWXI1bQQXj6mevQYMGhqR8r2nTpl2lO0JFURp/7+VFkIbClMazt3XrVuPmm282PD09jbCwMOPFF180cnJyrsbtoJKyGEaeOSwAAAAAgDLFmjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAAAAAMoRgjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAIBrRFZWlho1aqQtW7a49LqrVq1S69atlZub69LrAgAKRpAGACiXRo0aJYvFku/1yy+/lHXXyq358+erQYMG6ty5s3nMYrFo5cqV+dqOGjVKAwcOLNJ1+/XrJ4vFon/84x8u6ikA4HII0gAA5VavXr2UkpLi9AoNDc3XLisrqwx6V/7MnTtXY8eOLZVrjx49WnPnzi2VawMAnBGkAQDKLU9PTwUGBjq9rFarunXrpgkTJuiJJ55QrVq1dOedd0qSdu/erT59+sjX11d16tTR8OHDdezYMfN6Z8+e1YgRI+Tr66ugoCBFR0erW7dumjhxotmmoMyTv7+/Fi9ebP6cnJysiIgIVa9eXTVr1tSAAQOUmJhovu/IUr322msKCgpSzZo1NX78eGVnZ5ttMjMzNWnSJAUHB8vT01ONGzfWwoULZRiGGjVqpNdee82pD7t27ZKbm5sOHDhQ4Hf1ww8/6JdfflHfvn2L+S1LiYmJBWYtu3XrZra56667FB8fr4MHDxb7+gCA4iFIAwBUSEuWLJG7u7u2bNmid955RykpKeratatatWql7du3a+3atfrtt980ZMgQ85ynnnpKX331lf75z3/qyy+/1MaNG5WQkFCsz01PT1d4eLh8fX319ddf65tvvpGvr6969erllNH76quvdODAAX311VdasmSJFi9e7BTojRgxQsuWLdObb76pPXv26O9//7t8fX1lsVgUGRmp2NhYp89dtGiRbrvtNjVs2LDAfn399ddq0qSJqlatWqz7kaTg4GCnbOWPP/6omjVrqkuXLmabBg0aKCAgQJs3by729QEAxeNe1h0AAKAwq1atkq+vr/lz79699fHHH0uSGjVqpFdeecV87/nnn1ebNm00c+ZM89iiRYsUHBysffv2qW7dulq4cKHee+89M/O2ZMkS1a9fv1h9WrZsmdzc3PTuu+/KYrFIkmJjY+Xv76+NGzeqR48ekqTq1avrrbfektVqVbNmzdS3b19t2LBBDzzwgPbt26ePPvpIcXFx6t69uyQpLCzM/IzRo0fr+eefV3x8vDp06KDs7Gy9//77evXVVwvtV2JiourWrVvge/fdd5+sVqvTsczMTDPrZrVaFRgYKEnKyMjQwIED1bFjR0VFRTmdU69ePaeMIQCgdBCkAQDKrfDwcMXExJg/V6lSxfxzu3btnNomJCToq6++cgrqHA4cOKBz584pKytLHTt2NI/XqFFDTZs2LVafEhIS9Msvv8jPz8/peEZGhtNUxBtuuMEpMAoKCtLOnTslSTt27JDValXXrl0L/IygoCD17dtXixYtUocOHbRq1SplZGRo8ODBhfbr3Llz8vLyKvC9119/3QwGHZ5++mnZ7fZ8bceMGaM//vhDcXFxcnNznnDj7e2t9PT0QvsAAHANgjQAQLlVpUoVNWrUqND38srNzVX//v01a9asfG2DgoK0f//+In2mxWKRYRhOx/KuJcvNzVXbtm31wQcf5Du3du3a5p9tNlu+6zpK2Ht7e1+xH2PHjtXw4cP1+uuvKzY2VhEREfLx8Sm0fa1atcwg8FKBgYH5vkc/Pz+dPHnS6diMGTO0du1axcfH5wtCJen33393ukcAQOkgSAMAXBPatGmjFStWKCQkRO7u+Ye3Ro0ayWaz6bvvvtN1110nSTpx4oT27dvnlNGqXbu2UlJSzJ/379/vlD1q06aNli9froCAgD+1/kuSbrzxRuXm5mrTpk35MlwOffr0UZUqVRQTE6M1a9bo66+/vuw1W7durZiYGBmGYU7DLI4VK1Zo+vTpWrNmTYHr3hyZwtatWxf72gCA4qFwCADgmjB+/Hj9/vvvuu+++8wqhF9++aUiIyNlt9vl6+urMWPG6KmnntKGDRu0a9cujRo1Kt+Uvttvv11vvfWWfvjhB23fvl3jxo1zyooNGzZMtWrV0oABA7R582YdOnRImzZt0mOPPaajR48Wqa8hISEaOXKkIiMjtXLlSh06dEgbN27URx99ZLaxWq0aNWqUpkyZokaNGjlN0yxIeHi4zp49q59++qkY39p5u3bt0ogRI/T000/rhhtuUGpqqlJTU/X777+bbb777jt5enpesR8AgJIjSAMAXBPq1q2rLVu2yG63q2fPnmrRooUee+wxVatWzQzEXn31VXXp0kV33XWXunfvrltvvVVt27Z1uk50dLSCg4PVpUsXDR06VE8++aTTNEMfHx99/fXXuu6663T33XerefPmioyM1Llz54qVWYuJidFf/vIXPfLII2rWrJkeeOABnT171qnNmDFjlJWVpcjIyCter2bNmrr77rsLnIZ5Jdu3b1d6erpmzJihoKAg83X33XebbT788EMNGzbsslMuAQCuYTEunXgPAEAl0q1bN7Vq1Upz5swp667ks2XLFnXr1k1Hjx5VnTp1rth+586d6t69e4GFTUrif//7n5o1a6bt27cXuJk4AMC1yKQBAFDOZGZm6pdfftFzzz2nIUOGFClAk86vdXvllVdcXib/0KFDmjdvHgEaAFwlFA4BAKCc+fDDDzVmzBi1atVKS5cuLda5I0eOdHl/OnTooA4dOrj8ugCAgjHdEQAAAADKEaY7AgAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA58v/IU4x99KRSKgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, pdmstat, label='PDM statistic')\n", + "#plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A dip is definitely there at the frequency we expect it to be. \n", + "\n", + "Unlike the Epoch Folding statistic, which follows approximately a $\\chi^2$ distribution, the PDM statistic was shown to follow a beta-distribution (Schwarzenberg-Czerny, 1997). \n", + "\n", + "We can use this beta-distribution to calculate the significance of a peak found in the PDM periodogram, or to set a detection threshold. In stingray, this is implemented in the `stingray.stats` module, using `stingray.stats.phase_dispersion_detection_level` and `stingray.stats.phase_dispersion_probability`:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTVklEQVR4nOzde3hU1b0//vfMZJLJ/UIgFy4hIFdBQLAI1CptRUE9eGnF6rHev1rt85XyrbZUOIfSVo71wFGr4BUUaI/0KUc9PbUqttYjgtxEucnNhCSEhJAQEnKfy/79kd/arL1n75k9t8wkeb+eh0cz2ZnZc9trfdbns9ayKYqigIiIiIiIiBKCPd4nQERERERERBcwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBMIgjYiIiIiIKIEwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBJIU7xPoy3w+H06dOoXMzEzYbLZ4nw4REREREcWJoig4f/48iouLYbcHzpUxSIuhU6dOYejQofE+DSIiIiIiShBVVVUYMmRIwGPiGqT97//+L55++mns2bMHNTU1eOutt3DjjTcG/JuPP/4YixYtwsGDB1FcXIzHH38cDz30kOaYzZs3Y+nSpfj6668xcuRI/OY3v8FNN92kOWb16tV4+umnUVNTg4svvhjPPPMMrrjiCvX3d999N9544w3N30yfPh2fffaZ5eeXmZkJoPuNyMrKsvx3RETUR7S2As89p73t//5fID09PudDRERx09zcjKFDh6oxQiBxDdJaW1sxadIk3HPPPbjllluCHl9eXo558+bhgQcewMaNG/Hpp5/i4YcfxsCBA9W/3759OxYsWIBf/epXuOmmm/DWW2/h1ltvxdatWzF9+nQAwKZNm7Bw4UKsXr0as2bNwksvvYS5c+fi0KFDGDZsmPp41157LdatW6f+nJycHNLzEyWOWVlZDNKIiPojhwNISdHelpXFII2IqB+zMg3KpiiK0gPnEpTNZguaSfvZz36G//7v/8ZXX32l3vbQQw/hyy+/xPbt2wEACxYsQHNzM/7617+qx1x77bXIzc3Ff/7nfwLozohdeumlWLNmjXrMuHHjcOONN2LFihUAujNp586dw9tvvx32c2pubkZ2djaampoYpBER9UetrcDTT2tve+wxBmlERP1QKLFBr1rdcfv27ZgzZ47mtmuuuQa7d++G2+0OeMy2bdsAAF1dXdizZ4/fMXPmzFGPEf7xj39g0KBBGD16NB544AHU1dUFPL/Ozk40Nzdr/hEREREREYWiVwVptbW1KCgo0NxWUFAAj8eD+vr6gMfU1tYCAOrr6+H1egMeAwBz587F73//e/z973/HypUrsWvXLnz7299GZ2en6fmtWLEC2dnZ6j8uGkJERERERKHqdas76ms4RbWmfLvRMfrbgh2zYMEC9f8nTJiAadOmoaSkBH/5y19w8803G57b4sWLsWjRIvVnMTmQiIiIiIjIql4VpBUWFmqyXQBQV1eHpKQkDBgwIOAxInOWn58Ph8MR8BgjRUVFKCkpwbFjx0yPSUlJQYp+gjgREREREVEIelW544wZM7BlyxbNbR988AGmTZsGp9MZ8JiZM2cC6F6hcerUqX7HbNmyRT3GSENDA6qqqlBUVBSNp0JERERERGQorpm0lpYWHD9+XP25vLwcX3zxBfLy8jBs2DAsXrwY1dXVWL9+PYDulRyff/55LFq0CA888AC2b9+O1157TV21EQAeffRRfOtb38JTTz2F+fPn45133sGHH36IrVu3qscsWrQId955J6ZNm4YZM2bg5ZdfRmVlpbrfWktLC5YtW4ZbbrkFRUVFOHHiBH7xi18gPz/fb781IiIiIiKiaIprkLZ7927Mnj1b/VnM57rrrrvw+uuvo6amBpWVlervS0tL8e677+InP/kJXnjhBRQXF+O5557T7LE2c+ZMvPnmm1iyZAmWLl2KkSNHYtOmTeoeaUD3fLOGhgYsX74cNTU1mDBhAt59912UlJQAABwOB/bv34/169fj3LlzKCoqwuzZs7Fp0yZLm88RERERERGFK2H2SeuLuE8aEVE/x33SiIjo/9dn90kjIiIiIiLq6xikERERERERJRAGaURERERERAmEQRoREREREVECYZBGRERERESUQBikERERERERJRAGaURERERERAmEQRoREREREVGE3G43zp8/j2hsQ80gjYiIiIiIKEKHDx/Gnj170NLSEvF9MUgjIiIiIiKKgKIoOHfuHACgvb094vtjkEaWdXZ2orKyEl1dXfE+FVMdHR2oq6uLSpqZiIiIiMiKtrY2eL1eAFD/GwkGaWTZyZMnUVZWhv3798Pn88X7dPx4vV588cUXOHToEJqamuJ9OkRERETUT8gljtHoJzNII8s6OjoAAOfPn8exY8fifDb+qqqq1HNsbW2N89n0D8xYEhEREXX3jwVm0igmOjo6sGfPHpw+fVpzu9vtVv+/pqYGDQ0NPX1qpjo6OlBZWan+3NnZCaA7iGAgERtnz57F1q1b/T4nRETUMzweDzweT7xPg4jAII16QENDg5otky/+IkhLSUkBgKisXBMtFRUV8Pl8sNlsAC5k/Q4dOoTt27ezEYuB+vp6eL1enD17Nt6nQkTU77jdbuzevRs7duxgG0cUZ4qisNyRYk9E/x6PBzU1NertYsGQtLQ09feJQpQ35ufnA+jOpCmKgvr6enR1dbH8MQbEa5rIC8kQEfVVx48fR0dHB9xuNxobG+N9OkRR0dHRkZDrHgTT3t6uyZ4xk0YxIX+wqqqq4PP5oCiKGpSlpqb6HRdvIsuXmZkJoDtI6+joUEsd4xlQKoqSUK9VNCiKogZpchksERHFXn19vabU3ChIUxQFlZWVDOAoIJ/Ph/LycnXp+HhqamrCZ599pln3oLdMWZFLHQEGaRQj8ghGV1cXampq4PF41C+Ky+UCEF7goygK9u3bhwMHDoQ0UtLV1YWysjLTfSfEuWRkZADoDtLa2trU38czkDhw4AC2bdsWVsZJURScOXNGnWOXKLq6utTXnEEaEVHPKisrA3BhYNIoEGtqakJZWRmOHDnSo+dGvUtNTQ0qKirw1VdfxT0gqqurA3Dh83zu3Dls3bpVU9WVqESQZrd3h1YM0igmxAcrKSkJQPeXRHTEk5KS4HQ6NceForOzE2fPnkV9fb1moY9gampqUFlZiZMnT/r9TlEU9fzS09Nhs9mgKIpmGf54ZdIURUFjYyO8Xm9YJZeNjY04ePAgjh49GoOzC5/8XLq6uuJ+YSci6i8URVEHLMeOHQubzYb29na/QUzRBory//6Ii4cFV1tbC+BC/yyexON3dHTA6/XizJkzvWbuu5iPlpWVBYBz0ihGRPAl5p51dHSoWSCn06kGb+EEPnLWpaKiAs3NzZb+TjyWUUZJPg+n04nk5GQA2pHFeAVpnZ2d6hc1nHMQz1efRo8lEViKxVeMyFnKvljOSURUWVmJHTt2JFwlg5iCAHRXtohOoT6bJtpXRVGiMne4oqIiIV8PMz6fD7t27cK+ffvifSoJq62tTdO/iGfGSj/Q0NbWpgY+ibQGghkxeC2+j8ykUUyID1Z6ejqA7kBBBFdOpxMOh0NzXCjkL5qiKJYzROKxjErrxG0OhwN2u10tx5QvPPEqyYu05FK8XnJ5YSROnDgRsNT01KlT+Oyzz/Dll1/iwIEDpvejzwpG0gHwer3qc/P5fDhy5AgqKirCvj8iomiora1Fe3u7piojEYi2xGazwW63Izc3F4A2SFMURTMIGo3Aqq6uDu3t7THZfifYlIZwtLe3o62tDY2NjSzLNyGyaKK/19DQEHFA39DQgIqKipAzmPpBhtbWVrWvkehBWldXl9/aCAzSKCZEB15k0rq6utQLfLQyaWLxkZaWFkspYfFhN7p4iPMQZZhiiwCjY3paqEFaR0cH9u3bh6qqKgDaL7l8X+E6efIk6uvrDTOYLS0tOHr0qPpeB2os9UFauA2goijqEtIdHR04deoUampqUF5envAXZSLquxRFUasJEmGluaqqKnz++edwu93qtTEpKQk2m00N0s6ePatmHsSqj0I0gjTxuPIAaLRKCaurq1FZWRnSNIhg5P5CNNrPvkZRFHXxmZKSEmRlZUFRFDVwM+N2u1FfX2/6vTh69CjKy8tDrgASJY1iK6WzZ8+qn7lE7w+Iz5fL5VL7oix3pJgQgUFKSoo6AVJc+JOTk6OSSUtLS1PvR6zCWFZWZjpCZyWTJoJHkUkzOqanyYFOsHNoa2vD3r17cfbsWXXuXTSDNJ/Pp77+RnvciQukPApkdJGRV3YUr3m4r6/X60V7ezvcbjcOHz6syaBZLYUlIoo2j8ejXv/010FFUXo0cFMUBVVVVWhubkZTU5PfwGRWVhbS0tLg9Xrx+eef4/Tp037Xz0Dl61aJ67xoPw4cOIDPPvssKvctOvTRuC9BDtK4DY+/8+fPo7OzEw6HA/n5+SgsLASAoPO/ysrKcODAAXWRD5nP51MHBEJ5zcU0CwAYNGgQAGj6g4kepInnmp6eHlEfWY9BGvkRHyyHw6FmpcQFVJ9JC3UUTW5cRDDV3t6Os2fPorKyEgcOHDBcBlbeu03fOMqlmEDiZtLMzuHs2bM4dOgQ9uzZo17c5Ocr35eiKDh//nxYHQT5vgIFaQUFBQHPubOzE16vFzabTa29Drc8Qr6IyQvUAAhYYtTS0oLt27f3ihWfiKj3kYMFcZ3yer2oqqrC9u3b8dlnn/XYXNyuri71Gut2u/0GJm02G6ZMmYLc3Fz4fD4cPnwYp06d0txHpJk0edCupaUFHR0dqK+vR2dnp7rSZLhEuxaN85QxSAtMfI7S0tJgt9vVksdggbJ4r4yqbeT3L5TS1ebmZni9XiQlJal9EPn7FU5/syfJQRpXd6SYMgrSRLAhz0kLZ9UkOaASJY8dHR3q/SuKgoMHD/pdJOQPuz5r0xPljl6vFydOnMCOHTtQX19v+e+CZdK6urqwb98+1NXVwev1ajYK1y/I0draitraWuzZsyesOVvy4+uDNK/XqwZFeXl5ATNk4r1KTU1VF2kJN5Nm9L4MGDAAANQR44MHD/p1OBoaGtDZ2YkzZ86E9HiJuMjJmTNncOLEiYRugIj6G7kNEsHJ/v378fXXX6tBUzSzPoHo51fL5Y6C0+nEJZdcgkGDBmlWNxYDaZEGP/r55KIkH+ieqxbJvD15Pk80FjiR71dgkOZP7usBF6qQAq0GqiiK2gcwavflz1ko1T/i85OTk6NupaR/3EQoOzYjnqtcJcYgjWJCfBEcDof6pRVfWLncEQg9+JEbFzmTJl9A3W43jh8/rvm7QEGaPpMmlzuKQDCScse2tjbs3LkTJ06cQHt7u2YDUT35wub1ejWNuNE5iCDO6XRiypQpmDp1qubv9eWO4rHDaRDl96q1tVVzwTt37hwURYHL5UJqaqr6Whqdswjw0tPTIw7S5NLa4uJiDB06FCNGjADQPbJWXV2NM2fO+M1TEK9bqB2PI0eOYPv27QnVYB87dgwnTpxIqHMi6u+MMmn672gsO41dXV2or6/XZJkAbZAmrtOCzWbD6NGjNW2gKB2LZpAGXFgFUPQHjh07FvZAkzxo6PF4/Dq34b7OVuakdXR0JHTnP9qqq6vVgWZ9kJacnAy73Q5FUUw/L/KK1UYBdaRBWnZ2tqZiS5bIJY9G5Y7R2P6BQRr5McqkCU6nEzabLeyRArlMwyiTNnjwYAD+85Hki6hZkCa+1PI5i1HESFLlZ8+eRWdnpzqZ1Wz0tKKiAp9++qn6ZdUfZxTIiGPS09ORnZ0Nu92uPo7H49FclDo6OtRS0HBGcOXHl/fZAS6sqpSbmwubzeYXpLW1tanvtWhQMzMz1ePCHf2UOxujR4/GyJEjkZaWhqSkJPh8PjVjqB/ZE+ce6uOK7Fx1dXVY5xsL4jXoqVF5ot7Eakfn7NmzYW9VYtQpNcqkiWuguEbHMisv5v3U1NT4BWn6Nk+WlJSEcePGwWazIS0tLWqZNH37JV6TcePGwW63o6WlJWB5m6IoqKysNJzOoH/f5HM9efIktm7dGtbApNw+yNk6+XE/++wzHDt2LOT77o06Oztx7NgxHD58GMCFtkf052w2m9p/MmuPgi2Gpi93tPLdlVcizc7Ohs1mU0svxXnJ55to5M+WnEkDIr9GMEgjP+JDJS9nL4hOebgrPJrNSRNf/IEDBwLwv6DKH3R9x1yfSUtKSlJrgsUiGJGUuYn7F42dUUPk8XhQWVkJj8ejTnYVz0l8YQMFaeK1sNls6murz6TJF7twNifVP748einmo+Xl5QGAJkg7f/48du7cqV7YRYOakZERtXJH+aImz3UTHQFFUTSfNfEeuN1uzTFWH+/06dMJccGXSziMOom9ZT+iRCcGJfSfkTNnzuDAgQMJ8VkgY4cPH8a2bdsCDsiIVXH37dsX1mCcmGd24sQJzX0KYl8y8V0V171YBmlisM8oSDMqd5RlZ2dj+vTpmDJlitrpjnRDa6PvSFJSEgYMGKApkzPT1NSEsrIyw2139OX38v00NDTA5/P5Lc9uhf4zo8+EisDvzJkzPVJu3tbWFtdrumin9dMp5PZX7pcZCRakyd8beYXUQMTiYXa7XS11FFM/kpOT1c9wol6n5ZUdHQ6HGlQCDNIoyuRNMs0yaeJ3gLUP4NmzZ9VVgOQRQHExaGtrU798mZmZfvPg9I8TbE6aGEEEugOrSEdhxN+Ji4c+wwV0d/rFOYrzFv8NlM0TF0I5GBavrVz2IX/pAeORX6vPQxANo9vtVs81JycHwIXX0uPxqB2EhoYGuN1u9ZwzMjIizqSJ56fvbGRnZ/sdKx7D4/FoHk8sB/zpp58GnaMmXgOv12u4MlUkRIYulIBV/lzry6t27dqFPXv2cK5aFJw8eRI7duzQLDTT1dWFw4cPo76+PqR5ptRzurq6cPr0abjdbsMMjCBG4eUsU7D7PXLkiHrdEwNrJ06cUK8h+u+jXM0RzSW2A50j0D0oJj8nK0EacGEp8OTkZLX9iGS+l5wpEETlRbDsi/w7o8ES0caItk9u28T/6+/byhwl8XzF+Znt7+nxeGJebt7e3o7du3dj//79MX2cQOT2Rh4Elj9Hoi8SjUya/ngzIljOzMxUB9hFfysjIyOibZ96glzqCCCiajM9BmmkIV/0jII0MYIYypfm0KFDOHToEDo7Ow0zaeKCLUYhRCMgLyZiZU6afKEZN24cxo8fj6ysLE3AEQ7xdykpKep96UeL5IUtxHmLYEYEaUbnoM+kyc9DDgbl1L+4iIW66ae86TdwIUgTDZXT6fTLlLrdbvWi6/P51OeZkpKC5OTkgHPXrDDKpAEXgjS73a5+5sR56huPzs5ONDQ0wOPxBOzIyQMQQPfG3dEMgE6ePIljx46FtM+P/LmWG7euri54vV50dXWhpaUFXq8XX375pWakn6wTnws5I1FRURFwaw+KPzl4DtTZkzMxVjqF1dXVqKmpQVlZGXw+n+ZzcfjwYb+Mh8/n03xXxXVPXvUxmlk1RVH8AioRaAWak2bEahAVjDyQKtoHUXlhlkmTr7ni+egHGOV9WMV+b+Jn+Vh5z7qTJ09i+/bt+PTTT02fk8/nU7/X4n71nw35PAK1HdFw5swZ+Hy+uO7Xpl8tMVAmzWqQpm9DxWsq7tNKP0WejyYUFhaipKQEI0eOjHqQ5vP5sG/fPhw8eDAqfQB9kAZceP6RDuQwSCMNOXNjs9n8MjwiQLA6SiDvzSVvrpmUlASHw6F2wIELI3Tigy4++PoPebByR3EfYsJ0sL28RJBldpE2WuxEvoA1NTVpRuHEUvniYiZPJNWfQ6AgTW74Rdmmy+VSs12hNrjiscXft7S0QFEUw9dPDr7k11vM5RLnI5c71tXVYdu2bSHtbxYok1ZaWopx48ZpNlUH/C/68iprgT6P8gXeyhyKUIWzhHSgTJrQ3NyMhoYGNDY2oqqqqs9l1vQL7MSC+H6K96atrU0zsMIgLTHJQVqg72qoQZr4PJw7d05dRCkpKQnZ2dnwer2oqKjQXC/kTJrdbtd0wBRFwa5du7B79+6ofTeNOr9isC/YnDQjcsljJOcEdLcNw4YNQ25urjo9wej+vV4vduzYgS+//NLvd/L3Xbx3qampatsvjpUDCXHbkSNHcPz4cXUgy6zdFudrs9nUNk+fLevpIA3wHyzsSXJfyixIk9cKMKL/fumvneI1Fa95KJk0OUhzOBwoLS1Fenp61IO0c+fO4ezZszhz5oy6J20kxHOW+3HRWoafQRppyPPRRMpWfEHkTrzVL41+dUJxkRD3JS4IwIUgTZ9J03/Ig5U76gXLpFVVVeHo0aM4dOiQ4cXTbEVKQay4KPb2EOV4ovGRywL1i3eIL7f8OshBpXi9iouLkZ6ejuHDh2sCxXPnzmHXrl2WAiPxPMTFUzT2ciZNkM9XP+opnpN8nNiMvKurK+hGmEbnpO9s2Gw2lJSUYODAgX6ZNKMgTdwWaNRKztqJ1zCayz2LDkAoHX75fOXXWf6sNjc3q/MxRHatr1AUBQcOHMCOHTv83tdz586Zbm4fCjkIFK+dPthlkJZ4PB6PZh6S1UyalYEXcYzH41FLYDMzMzFs2DAA8CuFljNpDodDM0jpdrvR0dGB9vb2qHUixbVArm4QWSuPxxOXIE2+Vg8bNgyTJk3yW6xLv7JfZ2cnzp07B5/Pp7luye+ReF/lOc7iWH3Zo6IoajAl2kyzMkVxH8nJyX59Cv0xQHegEKvgqaOjQ5Otjdc2MPpyR6NKlkCZNHmqgQhC9GsHBMte6sntt1x1JIt2kCZ/v8vLyyPObhoNdLPckWIiUPpbznpZ/QDKv5cbUv2+HMCFDJo+kxYoSJMbT7MgLVAmrbm5GeXl5QC0G4bKF+tgmTTxBZcnUNfV1amjs/KS9vJFRjQ6NpvN8LWVG6j09HRcdtllKCws1ASKVVVVaG1tNd3UuaGhAUePHtWUfohSRfEYgTJp+vlfgsik2e129fWVy1GsMit3lAUL0jo7O/02ATciZ+2iuY+JuB/x/MOdkyZP7Jdvb2pq0nRW+9JS/SIAVRRFc30QwduBAwciDqDk10t8TsRtoiPBIC3xnD17FoqiqN9VUaGgJ1+3xXGByFUOAFBbWwugu4OYm5uLpKQkv8eRqxrsdrtmlFxfQhYN8lyqiy66CHl5eSguLlZ/L641Vsodxf0A0cmkGQWGRuWU+syZ2SbH4n7lBSKM5qH5fD7N/RQVFQGwFqSJc9a3TfI5yXOzo00/59WojXS73Th06FBYC6RYFUq5o7zUviBen5SUFMOBTrnU0WyhNUVRcPz4cXWfPfH+yf0kvWgGaT6fT30/XC4XfD5fxKt7GiUKWO5IMSHvkSaIC6fVTNrp06dx9OhRv7lkohMmlvEHAmfSxBw2fUdav2gEoJ2oqWeWSfN6vX7Zs9bWVrS3t2Pbtm0oKyvT/J1ZkCYv/iHOXQRNYjlZo0yaXOooLwwiXltxwZM7BeJ48bhGc21kZWVlOHXqFM6ePatpZOXAR24k9eegz6QJ8maT+gtrKBcls3JHmVmQJj4758+fV99DK5m0WARp+n3+rNI/vlzmI3R0dBgOCvQFcqmJ/FqIMulwFsjR0783Pp9P/QyJwQYGaYlHdKSKiopgs9lMs8j6lQGDfT86Ojo013xxzRCLFogSPkDb0ZLbRvn2QPOlwyU+8ykpKSgoKMAll1yiyaoJ8cikGXWkjeak6YM0+b0z2j/U6XT6naf+fEUA43Q61dI4syBN/K3Y+wswD1LEdSBWJY/6Ba2M2p3Tp0+jrq7Ob4/YaDJbOETuOzmdTvX1MlsEJC0tzbBPI39uRfvc2dmpedy6ujqcPHkSZWVlmukWcv9DL5pB2rlz5+DxeNTN34Huz5WV++7s7MSRI0dQXl6OhoYG9TrCTFo/4vF4UF5eHrPR8vLycnUEQ1AUBadPn9bshRUsSAv0ASwvL8epU6fQ3NxsGKQZrSQEXAjOxIpUgHZ/LkGUl5SXl6sX+6SkJL8VEAWzTFpVVRU6OjrgcrnUEfXW1lbU19fD7XarpVZy515fry2XcaSmpvqVVYjRJKNzMJqPJh+rn4AryMGJvMmqPkCRl7+VS3Hk11cO0owyafLvxWuUnJysuaBGEqRZyaTpG27RwRaNtFzqaWVOWqyDtFAaErMgLdB59ZUgrb29XdN50c8BEiLt+Opfr7a2NvU+GaQlLvGdysvL06wErCfaFXE9CLY5sbgPeeALuHCtFnOZgQtVHfpyx57KpOk7rpEGaZHM/bSSSZNL6PRBmVm5o1GQ1tXVBZ/P5xckiFL6tLQ0zfw1o++v/BqK90vec0/83uFwYMCAAQD892eNBo/Ho865CrS/nvi8t7a2xuwabxakyu+pvBaB/vMiB2lG2+/IQZr8forrvNgrT/y/PN2ip4I0cS4DBw5EWlqa2p+y8t6LBYcqKiqwf/9+VFdXawJN+XXknLQ+qq6uDhUVFWoWJ5o6OztRUVGBr7/+2m+Vs6+++gpHjhzRlHQIAwYMgN1uVzvpQOAvjbwXh37kBtA2NOILoh8llIMd/d40Ho8Hx44dQ0VFhZqmDlT2YXSuXV1darA6YsQIzaic+LJ2dXVpsoH6TJocBIm5e/LyxMCFhl8edTp+/DgOHTqk2VtDpi931Acw+uOB7guePrCXOxBiHxJxLnKQFmhOmnjNbDabOudOZAcF/cU1lpk0r9ervi7iPZPfV6tz0mIZpOmX6w5E//ji82T0vRLflb4SpOk3FI9mkCa+D0bfC/H9lr+vDNISjzzCbjanCLgQpIl2KtjeTOI+8vLy1OuOy+VSrzM5OTnq9U88rr7c0SyTFu05aWZb4OjPIxj59Qt33lWgTJo8d90oC9bS0qK5Jppl0uQqG3lBKEFk0tLS0pCUlGS4XY8gd/7l10m/L6U+6xNt8qrK4nyN2gf5OhWrLUGsZNIA83lp8sCy0fY74vfieQ4ePBjAhTnADQ0Nmucp9z96Ikjz+XyaIA240Eezslm6PtHQ2tpquOorwExanyU+sM3NzYZ18ZGQ/16MZjQ2NqrLend0dBh+aQcMGIArrrhC7aTLv9efk9xomS1LLHfIs7KyMGTIEIwaNUpzjDwvTdxHSkqKegEXWS6j7JyeUbnjiRMn4PV6kZmZiYEDB6qP19LSon5Z5aWOxWOIi5eYICuXOsr7swHaTZnFObS2tuLkyZOoq6tTV5cLlknTPzc5EyTTl/3IF1g502ZW7mgUpAmi7Gb8+PG46KKLNL+LRibNapAmZ07l5W6FeM1J0wcCVjv9wcod5ddFNHhi4KKsrMxSw5KoxLmLz79ZkBbOQin19fXYtWsXjhw5or434j2XH1cePOlrq2b2FjU1Nfj00081n2X9qrOBgjQx4JiRkRHwOEFcs9PT09WBHpFRBbqv28OHD0dqaqqaVQu0cEgsyh2tZNKsZtGA7qDGbrfD6/WGvaJtsMVK9B17OeARAyPyYhPi+y6/z/J2AfJcY7ndFc8H8J+/LjPKpAEX2if595Fu0xOIlcFB/WBSrII0K6s7AuZBmj6glm8D/Fc5LC4uhsPhQGtrK2pra/22kDHrf+hFK0iTSx3FAmqij2YlkyYP8ADalVb101I4J62Pki9c8hekpqYGW7dujejLK18Yzpw5g5qaGnz11VfqbfJqgvovrb6U0OxLI39hjTZ9lv9W3O9FF12kKTEBtCN/cuc62AqORvSlhm63W50zNnLkSNhsNnWOVUtLi2FZhvgCyvt2yXOFxEicHKTJS++L85NXPhSvjVmQFui9kOfyiQuGfl6afiRT/K289YHZnDT9BUdsiDpo0CC/0V2RYRUXPf1F6dSpU9i/f7/hZyGUhUPkDUdTU1P9zsPosY0eKxpBmn5j8nCDNP356rcSGDBggLqwjBgk6erqQmVlJSorK2OSce8p+s1xo5lJE5/32tpavyWh5SBNvhYl6kapfZnH48HXX38Nt9utrpILdL//4vslZzz1wZfH41Gv0XKQFigQkUu2Bg8ejOTkZHURCmHw4MGYPn26JpMmX4/FtdFKJs3r9WL//v2aLR+CsZJJCyVIk9s4s/nLgVhZoCvQfDJ5mX39XqP6Trp8P+IYeWl2IPQgTWwpJJ6LfH4pKSlBt+mJhFmZrP5c9duuxCKrZ2V1R8BakBas3BHo/oyKBW+OHDmClpYWOBwO9bPY05k0OYsmPg/ytIlAA3Uej0d9PUSfp6uryzTDHKiPEcrAI4O0OHG73di7d6/fxrfyB16O7MXysJGs/KPvEB45cgRdXV1qh1+eXxWsjMLsA6hfjtXoA2plRSrxJXe73ZqLXDhBmn6UTLyWaWlpasfN5XL5zVEALjT2RvPoxLLL8m1Op1M9Vm5YxG1GFwGzckezn/WPJzrv+sbXaN8tMVoZrNxR/7NRQCQMGjQI3/rWt1BYWAhA+zmrr6/H0aNH0dDQYDjAYKXcUZ5vKO4jPT3d8D23Mict0nLH5uZmfPrpp2qprVxXL39urRCPL56fPpOWnp6OyZMnY/LkyZqGUZTqxqIh7yniOYrrTzSDNH1jnpKSonbs5JIdeXVSljz2vJMnT6rvlXz9kkvEHA6HaZAm2khRrmilJFj8LjU1FXl5eZg5c6Y60KUnrhOKoqjnKZcZWpmTdvbsWXWVXatznqKdSQMuZAvDCdL0FSVG9EGaUUdUfo/a29sN9+mUVx4W9xFpkAZAE1jL5ynmT+mfZ7QYVXDo+2Li/NPS0tTnGotsmlmFgr6PYbbQjFEmTUwLqaioUPuncp9myJAh6mufmZmJyZMnq++b2SCxXjSCNEVR1NdUXhxIDKZ7vd6Aa0GI64Zcfh1oz0KjgLyxsRH79u3Dzp07LZ83g7Q4OXPmDJqamgLOyzBaECFYqUJ5eTn27t1r2Pk0yswMHjwYl156qfqBEh0Yo4BFJn9pTp06hT179qirMcrPJVi5oxn5AmAWpA0ZMsTv+EDnKr5MYgUnEaAB3Z1ko/I58cWUz1lePES/+Ic8Yik3LPrzy8/P97s//fma/Sw/XnZ2tpqu1y8eYtSBF/clN4RmI0Hyz4EuoIA28ybOobW1VZOp1ZdjyvP9Ag0KyEGluMjm5ubCbreHVGoZrUyaqK8/ffo0fD6femF3uVyGpXuBiMfXz4mQG/bs7Gy/lU/F73vrnmlyp1c8d7POrniO58+ftzwfTx9wpaen+w00yAMdRn9DseV2uzWLWMnzlvQdd3nFX/lzor+WByt3lLcU0c8fNiK3g3LgaLZwiNFnSL4OHzlyJGj5k6IofoM+QqAFm4KRq0VCJV87zRbokhcnkbM0+mPkQU59xhS48L0Uq+fJ0waA7vdEHCNPU2htbdVsoRMsSDNaoj+U+cRWWRkcFG1Ienq6uohJLFaalB9X/lzq21/9isqAtgRZLhF1u904duwYysvLoSgKCgoKNH2rlJQUTJ48GRMnTsSll16KzMxMS4PEMrm/GW5Z+rlz5+B2uzWljkB3/0IMYAQaRJHfI6OF1cwyafLn6dChQ+rWIlYxSIsTUfYmRiEEs0ya+HIFW53p1KlTfvsqCeLDkpaWhqlTp+Ib3/gGRo0apRkVkRfCCES+2Jw8eRLnz5/XLPMufhduJk2+AMgdefHlTkpKQmlpqXoewTIxwIWLpbj46Ufn5GXlBREUGy1q0tzc7FfuCACjRo3C6NGjNaM1+uc8ZswYDBgwAIMGDQq6YpfRe1FcXIwBAwaom1s7HA74fD5N58Tos6IvKZGXow43kyboG0Ex7088H33nQP5sBAvcxfsu7ltcZI0WLTG7AEZjTlpXV5caKHq9XjQ3N6sj0/LFO9RMmuhs6BcO0b/3+o6lvtyqt5Bfn2Bz0sRo5d69e/HFF19YauDE/YvvdG5urt9nWF60SH9OFHunTp2C1+tVvzfyXnn6jo/cRskDlWZBmn6hCkEeDbcyWGgWpMkdMP3ApJ7c0W1tbUVFRUXAxxTHy1u3CNHKpIXa0bWyeba8DL+86JW+bF7OpBm9pqLdFO+tHNgB3d9bESjKpdK7du3C9u3bcerUKZw6dcpvwbFAmbRgZc/Nzc04cOBAWJULVsod5RJc8VxjWXoJaFe31AfeRpk0OYCVqzo6OzvVvQZHjx6NsWPH+t1fVlaWWroPQFMqGUq5o6IoYQfRYgPr/Px8v/MzWilaTw7SxLl6vV7TIFPfx5D3qp08ebLl82aQFgc+n08NouQRZUB7gZAbGnG7fo8X/f2KD4HRh01enSozM1PT4Qs1SJOzU+ICI48qiHOONJMmFugQ5y2+HHl5eXA4HOpcAnnid7D7Eh0BeTQFgCaTpt+IUT5nURpz9uxZv3JHcT/FxcWaC4H8Bc7MzITT6cTEiRMxfvx4vwuGlXLHtLQ0TJw4ERkZGZqRIDkQMmpQ9CUlQlJSkl/2NJRMGmA+Uilq0ltaWqAoCs6fP4/6+npN+VCwzK38+PJ8NPFf/cTw2tpabNu2TfM9iEYmraamRvP9O3v2rDqXRmyEC4QepMmdDXlwQ/9dMRr9N8umxXuOldfrRUNDg+FrLL8XRqVG+iCtvb1dLce28rzEMaWlpZg+fTqGDBnCTFqCEW3g4MGD/SbvG41O6+fJeDwedYBEXMszMjKQkpKifvb05M6wFTabTbPYBRD6ZtbiOiyeY1VVld+85/LyclRWVqKxsVGzv5e+bYgkSJMXDwl1Kf5AKzsKcsde7njLbaMccMlBmn4xMXkAVQRR4hj5vXM4HOp7L1b2PHr0qFqKPnToUPVab9Y+iQXJAl27y8vLUV9fH9K8QsHK4KBZlibajCptjPoXchAizlX+/MtVTSJ4c7lc6p6GwYj7F9d1IPBnSz7HcNo1s1JHwcoKj3JJqhzYGlVbAf7ljvJ7blS1ZSauQdr//u//4oYbblA7tG+//XbQv/n4448xdepUuFwujBgxAi+++KLfMZs3b8b48eORkpKC8ePH46233vI7ZvXq1SgtLYXL5cLUqVPxySefaH6vKAqWLVuG4uJipKam4qqrrsLBgwfDfq4y/f5h8pdR/gDKI4tyNG725TXKwp05c0Yd5TBbiAK48AUJ9MWVybX68vMwy6TJH2ArmTS5rEI+p+LiYhQUFKC0tBRA98If06dPN51ToH9sMXHUaOEJEeikpaWpI/BGX0DREZCzGEbL4svk56wPDgOdr9HPRozKfERDLGcIxX3JI5f68zN63HAyafImsTabTZ14u2/fPhw4cED9jFpZRlp+fHkrCHGxlzOZooPW1dVluA9XuHPSFEVRF5wR51BTU4OWlhZ1i4JwM2nyMtFyCar+vRfvZUpKimZPIb3a2lps3bpVPd94qK6uxv79+/32ZQS0I/PieQcK0uROpZXOi3z/YuSdQVr3Z6usrCyi/bKiQQzWAN0dJP18KStBmpjoL5cZi8WNAGgWIhFE4BZoUE9PfD7NMmnByh3lwaqsrCz4fD41m9bY2Ig9e/ao2+58+eWXOHr0KADjgbFAK/AGY7fb1c5hqPPSrGTSjFZl1GfB5ExaR0eHaanYsGHD/O5X/FcfYE+cOBHf+MY3cMUVV2D48OHq7SUlJRgxYoT6s9w+KYqiCYblc9AHAT6fT22rwtm/1qjdkYMleWVHOUsTiyBN/qwG6g/K12XxOhllt2VGGSoz8mrXQPDtJOQgOpwgTQwI2O12w/6XuB60t7eb9glE3yo9PV0zBUPcHiyTFsqgtCyuQVpraysmTZqE559/3tLx5eXlmDdvHq644grs3bsXv/jFL/B//+//xebNm9Vjtm/fjgULFuDOO+/El19+iTvvvBO33norduzYoR6zadMmLFy4EE888QT27t2LK664AnPnztUs4vHb3/4Wq1atwvPPP49du3ahsLAQV199dViTbvXkFf4AaOqo9WU64uIgf3DMGlj5S33+/Hl0dnbi4MGDOHz4sGblRqMPiPjAiaAr2IfI6AulH+WWM2nyyIGVoEMu9ZCze2lpaRg3bpx6odevdGh2X+LCfvz4cQD+pY7itvHjx2P8+PGaUSL9OdtsNs2cMv0+LEbsdrt6AQsWpFnJpOnJpSaAtiZffjyz7JhRgx9pJk1+7cTrX11drX7GxaiVlc+D/Pjy85GDNPnxxedQzixGmklrampCR0cHkpKSMGbMGAAXGq6BAweaLktcW1uLHTt2GDbwckOp3w9O3C7Lzs7GmDFjMHHiRMPVtQRxnRIDNPEgXnujebRyg2/U+Bpl0gQrJUdGI//6z7t+5dX+EKRVVVWhsrISJ0+ejOt5iK1VHA4H0tPTw8qkGc0tBqAupNTQ0OBX2SGCNP1qwoHoM2mBluAPlElLSUlRBxdPnTqFr776Cvv27YPH40FmZqbapojvjdHAWCSZNACGFRcyMcClLymzmkmz2Wzw+XyaUkX5eejnpJmViuXl5althjhe9Ink+WnAhX6B2DrhkksuwYQJE1BaWqoJGuT2Qd5yQ55CAfhfB1paWtT3OJz5fGZbNwhinqXoy8irGYtB+fLy8qhcn4zaO7P+hT5Y1C/woS/HNcpQmZEzdeLnYAFeJEGauK5kZmaa9n/FORm9xx6PR/0ei76seO5mmTR9QG5lkTQjcQ3S5s6di1//+te4+eabLR3/4osvYtiwYXjmmWcwbtw43H///bj33nvx7//+7+oxzzzzDK6++mosXrwYY8eOxeLFi/Gd73wHzzzzjHrMqlWrcN999+H+++/HuHHj8Mwzz2Do0KFYs2YNgO4O7jPPPIMnnngCN998MyZMmIA33ngDbW1t+MMf/hDx8zYL0uT5NGKkXnTsrARp+iyWvCeF+MIDxgGY2SiAGaPRgECZNKPSymD0cxCsbtxpRNRJ6+c06Q0aNAgZGRmG5YAyOUgLlkUDLozwpqenBw3SxDL5QiiZJnllLTHp2mwBk1CCtEgyafKSu3K5iLgYWnl+ZkGa2JA2Pz/fsOMkSizF7UD4QZr4Lubk5MDlcmlG40XZrdFo7OnTp9He3h5wdUt9kGaWSbPZbCgqKtJ8RkVQV1VV5beEf3Nzc9zKHsW5GI0Iy50+o/kG+vdFHhwzG2Hu7OyEoiiaEnL94Ir4HMvf2f4UpInOc7xXBRUDNFlZWZpybTHibRSkyfNogQvlkvrraUZGBtLT06EoiiaTfubMGfh8PqSnpxvOPzZjFKSFUu4ol9Xl5OQgJydHXXhILLQwZcoUTJgwQdPRDZZJCydI0w/+6lVVVWH//v1qEF9TU4PPPvtMDW4DPaacpRBZTH25Y3JyshrMyZVC+vbHZrNh9OjRyMnJUVcNHjVqFKZMmRKwagbobhPk9lk+P0BbjeR0OtXbzTJpcgmcvJesVXK7YzQnTXwnxUCjXEUkFtepqKhAeXl5SI8b6FxkZu2v2WqdRtnc5ORkv+A5kECrlpqJRpAW6BwDLawj2n55/qJ+kNRqJq1XBWmh2r59O+bMmaO57ZprrsHu3bvVF8rsmG3btgHo/qDt2bPH75g5c+aox5SXl6O2tlZzTEpKCq688kr1GCOdnZ1obm7W/NPr6upSPwTyXgvAhTfRZrP5TaaXv1xmKzzqOy9yqZPcmEQjSAP8P2yB5qSFmkmTz8nKCoDBZGVlYfTo0erPwQKlYIt5ZGdnq7cFy+QJ48aNw2WXXRbya2vl9dKPMov/pqSkaM5Pvi/5QhmoQxCsFEEwC9Lsdrt6AZRHaK1sRC7Iq3npA7ZZs2ahsLDQMJMmT0yONJMm16QDF+Ymulwu9fNk1OEXjZxRJs1o5dKurq6ApSiC3EjU1tbi66+/VgdmxP1Gum1HJMR1yiioMip3BIyvd4A2SDMKMM6fP4/t27fjyJEjmtde/z02Ko/tL0Gax+NRv3PxWBW0ra0Nu3fvxpkzZ9S2UQwgOZ1O9T05f/58wEyayDyYzS0GLmTT5CBNBA4FBQWWy7IA/86WfD3UzynXrw4or3IosgUXXXQR0tLSMHDgQFx66aUYN26ceu0aNWqUej00GhiTB0dDLXcELvQ5zp07Z/o9kv9bW1uLjo4O9RoS7DFFkCleA6NyR7n6RTyO0f3m5ORg8uTJ6vVWrHQbynsnMwrS5NfYLJOmX2Ux1JLHQOWO7e3tanWPeO3kDFVXV5d6Ha2vrw97ZUMhGpk0oyAtlFJH8Xfy8VYqdSJZ4VEeFDIj+ihG769cjioEWtQH8J+TZmVPWCO9Kkirra1VL75CQUEBPB6POkptdowo+6mvr4fX6w14jPhvoGOMrFixAtnZ2eq/oUOH+h0jGqf09HTNXhGAtuOi/0DKF34r5Y56Pp8vqpk0o2MCZdJcLhdyc3ORk5MTciYtlHMKpKioCGPGjMHo0aNDmkMGGE8KFUvlWp2EHgr58ULNpMn19vogLZxMmhj5DMas3FGUNOmFkv7Pzc3FqFGjMG7cOL/fiXMzK0ESC/DIgY/RPKhg5Jp0oHuOSV5eHkaNGqWeg76hl9+LYEGavsZdvj8jckMu7ls8rny9MFpAIdY8Ho9m83g9ucE3mm+g70zIHUqj65zcuQy0XHh/zqTJGYF4BGmnT59GS0sLjhw5onZ85U6TXIoXrNyxtbUViqLA6XQaBjMicBMd3I6ODvUxQyl1BPzbS/2KhfrPjXxNkedTi2tORkYGvvGNb+Diiy/26zQmJydj3LhxyMnJMTxPeS5MOEFaamqqGhiL1e5k4tojXjf9VgbBrtX6DJYcpMlZK3FboCAt2owG8YzmZevXBRDfG/F7UZ1hdZVBs3JHn8+HgwcPwuPxICsrCyUlJerfyAGSXJEQTrmlYLbysdV974y+k/n5+XA6neriYFbpSyVDCdJOnjyJbdu2WR589Hg8avsYbiZN9NvlDHywaqs+Ue4YDn2jKz508u1Gx+hvi9YxssWLF6OpqUn9ZzRhXlyU9HtFANoSILkTqe+wBAvSjDI78ghfoIVDBCsTG/Ujfl6vV9OZks89KSkJkyZNwuTJky2PuOi/BJEGaUB3oGblghLsCwh0L1oyYsQIDB48OOLz0gs3SBNz0eT92+QsTShBmugoyJOxA9FPzDbKpIlzkll5fjabDYMHDw5YpiQ/vj5I02/GKl9ArY7K6TNpKSkpuOSSS9RgHfDv8MsBY1tbm99jyaPz8opX4rZA3xWjhtxoJalQ92WJBv1CH/rH189x0QfNgYLnQJm5zs7OgIscDBw4EMnJyQHfs75KzgjEI0iTV2XUr3gIaBc/ChSkud1uTafJ6DtitjdmVlaWpfJ0mdEcYbl91L+WRnv8WZlzIwwYMACTJ082rdAYOXIkhgwZEtLiJzIx+KxfWMXn82mCM7nsVJx7sGAqOTnZb2XGrKwsFBcXaxbxEM/NbPuXWJDbB6O+kFEmra2tDR6PB3a7XQ2aW1tbcfz4cWzdutXSvo1m5Y5NTU1oaWlBUlISxo8fr/lMydckuU/V0NCAtrY2VFZWhlx2aRZUhjsnDehePXPWrFkhlQ/r7x8IrdxRZNr104bMiD63y+UKOG1DDtL07ZUI1M3m9xv9HK1yx9CLmuOosLDQL5NVV1eHpKQktdE1O0ZcmMTclUDHiBro2tpada6J/hgj+kmyRuQgTbyJwTJp+i+jWbmj+PsBAwb4TQyXg7RAC4cIoWTScnNzUVdXB5/P57evRrgpXiD6mbRIHtvoi5WcnKxZhSqajBqPQMR8G7GylpxJA7pXumpsbNR0ioJdJO12O8aPH2/5nPXL4MuL0Ih9Vbq6ujBkyBC1xMPq87NCvijqt7KQRzP1c/68Xi/OnTuH2tpaNDc3IzMzExMmTNB0quQscaDMqTwaK2fRgO4OSXt7u+bvjTJpRts+BHosuSE3CtLECGy4nbpw6K9Rbrdb83nTB1JJSUmaVS3F+Yu5KzKjMi1xf3IAYPSZLigo8LuG95cgTc6kicGDnrym6gcX09PTNZ9xo/2z9HOwkpKSNAuAmC1lrV8eXNyf1dJ0mb69FIMnDofDL2sPGJc6W5nTa9XAgQNDWqTB6O+PHTumbgAtXkP5OytvE5SSkoIRI0bg9OnTmsENM/n5+epnTQSn8lQDwH+grqeDNCFYJk3eU1VcP+Wtd5qamoJW0hhN1/B6L+yvlZGR4fd6iGulvAIm0N0HPXXqFLq6uuB0OjX902Dka6rD4QjaN9OvHmxl0+lQBJtuoadvD60GqVbmowEX5gSKwQrxvsolp2b9J6PzkwNyuSy6T5c7zpgxA1u2bNHc9sEHH2DatGnqB8fsmJkzZwLofmGnTp3qd8yWLVvUY0pLS1FYWKg5pqurCx9//LF6TLhEKlU/8R/QRtriDTdqBDo7Ow1HReQvfXZ2NpKTk9ULsJxdiFa5ozj/rKws00ZInmwdqkQP0mIp1EwaoC1PkDNpADBkyBBMnDjRb2NRo/8Pl1kJkDj/iy66CMXFxSguLg7r+Vl9fKPVufQXSPlcvV4vDh06hPr6enR1daGhocEvkyNGTEVm0oz8vPSjoIC25FFRFMM5aVb3KpQ3E9Vn0sT1QZyPfl5FrOk75Ppsg74TblbuaJT1CJRJA0Kb6yifg7y4Ul/j9Xr9Vibu6Wya+EyIzo9+hd1gmTTgwjVOfJ7NRvD1mxNbWULejNlqu0ZlkOLxBCsb9fY0p9OpBltyNk2fFRKBcFpaGgoKCnDJJZdY6qAPHDhQDQTMnrc+WI5XJs0sewVAXYwJ6B6INgpmrXyHzOakBVoxU7xu4jsrzrOtrU19TLPBejNyW2Ol/ZXbF8B8gYxwhZpJE/MRxWcn2kGazWZT32O55FEMOOgHlaxm0gDt+92ryh1bWlrwxRdf4IsvvgDQvWDHF198oS6Fv3jxYvzwhz9Uj3/ooYdQUVGBRYsW4auvvsLatWvx2muv4ac//al6zKOPPooPPvgATz31FA4fPoynnnoKH374IRYuXKges2jRIrz66qtYu3YtvvrqK/zkJz9BZWUlHnroIQDdb9bChQvx5JNP4q233sKBAwdw9913Iy0tDbfffnvYz1fe5DFQkKZfllrcnpKSon5ZjUaT5QZh8uTJmD59utrJCZZJCycgKi0txUUXXYTCwkLTi7EYBY9GkBbK3hKR0tdM94YgTZ6zIS4ygUaOQ71IBiNnnuSOirh90KBBGD16NOx2u+liJpHQZ6aF9vZ29fsiHkvOpnV0dPh9N8yCtGCjpmJ1LnEfwYI0+dytlNjK5MybfgVL/aqqPZ0lMsqkGf2sD9L05y8HafLCEfrsmnz/4jW2+pnWd+j7IrGnmDxHqCeDNLnKYsKECRg1apRfGbXRZ1X/HRDnLt5/s0yafp5jJB1Ms2BMf12WyzGFWGTSokFk4uR5PWZBWqjZR5fLhYkTJ/oNCuqPkfV0kGaU3dKXO544cQIdHR1ISUlBcXGx4bXfynfIbFXhQAMH4touAgyXy+UXZIS6QqvR3DjxsxE5kyZvDxWvTNrAgQPxzW9+U13rwcq1Wp5TaGX1SaN5aeLv9YNK8jkbrXauD9LCnZMW13LH3bt3Y/bs2erPixYtAgDcddddeP3111FTU6PZu6y0tBTvvvsufvKTn+CFF15AcXExnnvuOdxyyy3qMTNnzsSbb76JJUuWYOnSpRg5ciQ2bdqE6dOnq8csWLAADQ0NWL58OWpqajBhwgS8++67mombjz/+ONrb2/Hwww+jsbER06dPxwcffBBRyZAYFUlPT4fD4VC/BGIPM6MVz/STXB0OB9ra2tDe3u538dTXv8u182Z12IKYZG91nzSg++I9ZMgQ9TEFUVImf4l6WyZNPH4kI7CRCLXcEbhwUW1ubjac86EXiyBNlAvIn1mjuRipqanq9yFar634zIrvgfgedXZ2Gu7JJsqVREAh5oKKEhP5+2W0upMZUZIVLJMmjwSGE6QZvWf6Scrynjs9KVgmTT+KbCWTlpWVhY6ODrV0RH7+8v2bLettRgzIiDk4iZT1iBbRGc/OzlYzrz0ZpInvgRigMerwiu+AOC/93C9A+3mQR76NyN/DaAZp4mf97SkpKWhtbU34TBpwYW6NKAUX/QrgQomxeB7hLIwVbJn8eGfSBLNyx/Pnz6tZtNGjR6vXp7S0NE0wG0qQ5nA4NNfnQJk0fVbP5XKhqKgI5eXlyMzMxOnTp/0e+/Tp02hqasJFF11k2H+TK6lCyaSJaq5oB2mhLhwCaLOAVjJpTU1N8Hg8SEpKstR3F0FaY2Mj3G43nE6naZBmtMqlTO4PRTL1J65B2lVXXRVwQvvrr7/ud9uVV16Jzz//POD9fu9738P3vve9gMc8/PDDePjhh01/b7PZsGzZMixbtizg/YRCLnUEtIGR2+02LHcEtCtEOZ1OtLW1oaamBtnZ2ZqlgI0mdupXEwKMAzDRUZEbyFDIjymeV6RBWiwWDgn18c02Kow1OeNjdcK56MCIEdCMjIygS7gnJydDUZSodSLERUl8Fs2CfbmRjtb7qs+kORzd+7N1dnaqk4yNGicRUMirj4WbSRP3IwI9OVhubm42DNLEHJdQP+9GDYM+E6XfNLSniMBXdLrNyh3lOWmAf5Amf07S0tLUYKqzs1Pz/I2yF6F8Z8X9dnV1WQrEexvx+R8wYIC6EnJPBmly+XWg61laWlrAuS9ykCZvYG9EfA/lapRwOphm5Y7628UgmdHqjomWSRPz5zs7O3H+/Hnk5OSo17jc3FzNogyxWL1YH5DHK0iTPz9yJk2sWTBw4EDNPDzxOg0YMMBvs3Qj+sFxeXsaK5k0ISUlRZ2L2NjYiNOnT2sGAN1uN44cOQKfz4cBAwYYzh00y6SZXSdFQOTxeDT7w0WrrxDuILF+QY5AxLXO6hYBubm5sNlsOH/+PHbu3Ilhw4ap/fZAmTSz8zcK0npVuWN/Iy8aAmiX05U3sBXLUosPoxykiYmiZ86cweeff67ZD0qQPzBGm26aNWxGf2eV/gMrXwSCrVJnJhEyaeJxw92bJVziixzKY4uOgGgIrNRgT5s2DZdddlnUSkn1QY6VIC2WmTT9pvBGjZMcUJgtIhFKJs1oQQ8xstze3u6X7RLnrc8cBHtd9CW5wIVOgbxPEWCeSauursahQ4eiOhdLURS1Uy4+g3JAIA8YGa3uKJ+/vtxRXyIuHs+osxRKwy9ep1DnefQGcvlzXl6e4WsYrrKyMr9FqszOATCeYyiTA4JgQVqwFeXkTnckFRFmmTR9yZjRtSNRM2nAhe9mU1MTFEVRgzR9Bz8WQRpw4b00ypjGglFfyCiT5vV61TJD/ZYCI0eOxLRp09QKomDfIX21hFG5Y6A5aYL8udcvjQ90L3Inrplm+7jJwaLV6RTiPMT1Q7/oViQiDdKCVYcoiqIGaVYWvAG6P+uTJk1CWloa3G43vv76a78ycUHOSAYKdIHIyh0ZpPUgfZAGaCdn6hsSfWYgKSkJAwcOxKRJk+B0OtHa2qpu1imPSMmdevlDEiiTJv5W/E2oQYn+CxeNhSH0QWNPB0r6UqyeJF6zUB5bP1prpQZbZNOiRb94h9l731OZNH3ZTbBMmj6jI/5f3KfVTBoAv0yaw+FQV3gEjFf9MsqCB2L03smdxECZtNOnT+PYsWOoq6sLeWGRQBuKijljNptNvdbpN7kHtA2+2Wq2+iDNqIMiX9tkoXx3Am1k2tuJrEh2dra6yioQeZDW2dmJyspKHD9+XPOe+Xw+HD58WLMoRTyCNLl8LZJSLbMBR7kdlTu+4vOt368y0YjMQHNzM9xut/oeyh1au90es3MXbUBPZNEA4zlpZoNiRn014EJ1RrDvUGNjo7onr3gced6SPLBkdJ0yWzAH8C9DVBQF1dXV6u/NtgUIdeEQ+XHlEvJo9cPE+5+amhrSfVotd2xtbUVHRwfsdnvQ8ltZTk4Opk2bhlGjRqmDsmarqRptbSSTA8p+sQR/b6ZfNEQwy6QB3W9mV1eXJpMGdKdkBwwYgNraWr/lUc1KpoLtkyY/bjijWvpyR/0IUjjE5G+Px9PjWTTgwnOKR5CmD9St0HeArARp0ZZImTSHw4G0tDSkpqYaLmsvXls5kyYCD/1eOUB3g2XlXOUFPeROWnp6Opqbm9Hc3Iz09HTTIE10aK0+lj6wMArS9KOO58+fx5EjR9SfQ+mwd3Z2YseOHRgwYAAuvvhiv9/LHXKjzozcOdFvAi4HaWJbCcHs/szOPZTOX6CNTHs7Uf4sOirRCtLkv29ra1M7tGI7i9raWnV7HKtBmnxdMHr/5M9DsKy2USYt0jlpZgsuyJk0uWRXtLmJnEmTy7BTU1ORkpKiztdNS0uL2eCovMl1T9Dv4wlo30O5vyF+Z7Zoinxd9fl8fisb79u3DwAwceJEzePIjycPDprdvyB/b8Rca7EvbVtbm2YOsNlAU6gLh8jnEepiTFa4XC5MmjQp5O+G1UyayKLl5uaG3H+02+0YPHgwiouL1e0OjCQnJ6O9vd20rU5JSUFbW5tme5mQzyWkoylsYvKhfp6QUZCmT6HqgzT938n/1X/g5RR/KJm0UMUikybfbzyCtHhm0rKzs5GVlRXSPijyZplJSUlh7QkUKatBmhjRN5qLFS45awxceN/kUTSjz6X83THKpIkgzerrKUos6+vrNSuzivOoq6vTnGckmTSjxkM8H7kcQx40aW9vx/79+zXZp1BWf2xpaYHP5/Nb0l2+f6D79QoUpBmtnqovRUpOTobL5VKzaPq9ewKdeygdCtHhb21t7fGNv2PJ6/Wqi4aIDIl+ae1w6YM0o9u/+uordaErIPJMmnzdCLYQgPh7eTXQSDNp+qyafLt+dUB5bmQ82q9gMjIyYLfb4Xa71WuSyGqI9yFWpY7Ahe9cT2UZg63uCGjbB7ON0sVx4nf668/p06ehKAoURVEHfcTjyJnYQAMH+lJ2/WskVxTU1NQAuPD91l/DxEB/qAuHyI8jrvXRHmyQtzawSm7nA12rxeCUvmQ1FGKgMFifOVAQB3S/B71ydcf+RDSU8o7lgPZNNJtMbxSk6evfjRYNkf8m2D5p8t9GI0iTvzyRBDmRBI6REvty6CeM9gSn04lLL700pL+x2WxwuVxoa2tDVlZWj5eHAtbLHW02GyZNmhTV1fTMlsDNy8tTy0ECjSDKC4fIDa8cdFiRk5MDh8OheQ2SkpJQUFCAEydOoLGxUdNoGn2vAeuZNPlv5ayBUQlWZ2cnvvzyS3WBjMzMTE1G3gp5HyEjcvbQKEgzWsTBKJMmOkKXXXaZuoCOHGC0tLQgJSVFswKaPKIcynVHZAzEtgnBgolE5/F4cPz4cTQ1NcHn86mZXCB6mTSjbLN4bPn/Dx8+rL4vwb5DYmERRVFMO6+TJk2Cx+MJet3QzzkVq62FSv6bQFk1/XdN3lsxEdntdmRmZqKpqUnt6Iu2Li0tDefPn4/pIjr5+fkYPXq0OqgVa8HKHYELi80A/qWOMnmhta6uLk0QJRYdAWC48JjdbtdcO82uU/Lq0vogTSxq1tXVpSYASkpKcPbsWfh8PnR0dCA1NRWKomD37t3w+XzqgK/VhUOA7razsrIyooV3ok0+X6/Xa3r+Vt7HSKWnp6O+vt50MEMOpuUkTCirLTOT1kPEnI9AQZr+iyC+SEYdXvF34ndmqyRZXd3R6HFDEatMWiQlmJHKyMjAN7/5TYwYMaLHHztc4qIQj1JHwHomDei+wOm/D5EwGxXNycnRZBjNjpczaZEEaXa7XdPxEO9Jamqq2gk6ffp0VOakie+Hy+VSz13OpOlXwiorK1Mb8EsuuSSsfdTEsWaLjcjXMXkwSV9KKr8XRkGaXCIk3j/xWjY0NGD37t3Yv3+/en/61f5C6VDY7Xb1tegLJY8NDQ2ora1VP7vFxcXqoI3cdkSSNTQL0sTt+fn5sNvtaG5uVj+TwQIWebNas/cvPT3d0sCZ+HtxbuHOpwm33FG0+fEY5LNKbieKi4vVPahKSkowdOjQkCo5QmW321FcXNxjFR9G8/ODZdICMRrsaGlp0Vw/jBasMhocDHT/ycnJhts9ABeWmLfZbMjIyNBsCC/+K/qWclbPav8sJycH48ePV783iRCkydlIs2BH3kIiludcUlKCqVOnoqCgwPD34j2Ur48sd0xAnZ2damNpFqTJpUNmK8YYjbhbLXcMtk8acKETGk75gTzKrS/viEaQFq9ykUQsUwmkuLgY2dnZpheNWLOaSYvlYwtyJ1+UgsgjXkaNpb6jBVwI0kIp/ZEn38vfJ/G+WAnSrGSCxH2npaUZLpwi7kN8/8VzGTFiBFJSUvyuI1bImTSjTr48Yiiej9xoGpX5yPMMzEqRAGjuD+ieTyNGTJOTkzWvdagZ/L60eIh4P3NzczFjxgzNHqDidTdbFTPUxwCMg7T09HR1FTzAv3NoRgR3kQY3+gGXcDtrVssd5QEJt9ttur9SIikqKkJOTg7GjBmD0aNHq88pLS0NI0eOTMi5dOGyUu4of0aCZWCMgjQ5iwZc+F4E+gwFq2wy6o+J28SiQOnp6bDb7Zqybfm/wIU+Zihz0gBg0KBBuOSSSzBgwICYBu2hCLZ4iNw2xXK6ishGmw3+iPdJ3oMw1IQDyx17gLhYZ2Zm+n1gRGmUvNmn0ag/ELjcMZSFQ8w+JLm5uZgwYULYWZiUlBQ19R/pHmlCvIO03kbspRIvoWTSok3/GZF/Hjt2LEaMGBFwVUmjhUPk1RhDGfE1C9IGDhyIY8eOobW1VV3mWX6NQs2kDRw4EG1tbRg4cCCOHz+uOXd9Y2y0yl04pW/ysT6fz+885UyZmP8gVsh0Op1Byx0DTbBOT09Heno6kpKS1I2DxfVVzFcSE7lDzZpkZGTg9OnTfSKTJl5DsRCEzG63a/aFC7cjrs+kiRU95fe3oKAA1dXV8Hq9QfdIE0aMGIHhw4dHfO3QB2XhBmlWyx1FSWlra6vmc5TIQVpaWhomT54c79PoEVbKHeUFu4INyumrmQCoq22LfdSM5iGZlbeb3b9R9ln8TgxQiQEmfZAmX8vk66o4H6urZufm5vZYWaoVYjqBWZAm79Maz76jfjXicNolZtJ6gFmpI9D9JZVHJ4xGl41+1pesBAvS5AuJWeNns9mQn58fdqM9atQojBgxQg08zZ5HKMQFqi+N6PVl8QzSzBpcwHilLiuZNDloCGVuSXJysjoSK3eSnU6n2tiJic2RzElzOBwYMWIEMjMzDTNp8jL3RnvzGHU0gpGPNSp51Adh+kAw0MIh+vM3er6XXXYZpkyZonZM5CBNvNbhdMhFB6cvBGnBskfRmJcmfw7kwQw5SHc6nWoJXSiZ6GhcN/Tfn3BH1K1m0oALS3VXVFQAMA6SKT6sVBWJ70ugRUP0x8rXNdEZ11eymH1uAn0mxfXNaNBc/5kSx+rLHY2qAuTBu946+G22wqN4XxNlDp1ZfzwUzKT1gKamJjgcDtP5N0OGDEF1dTUURTGcpyEYdeZEGZHZfixGCyHEquOclZWlXlCiNSetoKAAiqJEtEIP9Rx9kNaTjUCgQY1gx4sRN7lESu54imWpQzF8+HCUlZVh0KBBmttzcnJw9uzZqJQ7Gj0feRRR3C4CNH3jJXc0RCYkGPla4vV6/RpC/Sq1Zll//WR6sWBEoCBNlpGRgXPnzmk2xhbXv3A65KKj097eDq/X22s7MIC1IK21tTVqQRrQ3TEUm8DKj11SUgKXyxXV+adWxCKTFmhOGtAdpJ04cUJ9DRI5i9bfWCl3FANrVvbV0g90yFu16AckzD43gT6TBQUFyMnJCVjuKBhl0uTVJWV2ux0ZGRkYMGBA3OauR8qo3LGsrAwnT57E1KlTI9q8Ppr0QVo458MgrQd0dHQEnOzscrkwaNAgnD59OuBIur5TI8qI2tvbTUf79QsHhLvCVaiilUlzOBwYPHhwNE6JeoD+s5UomTQj+uBI7JMjeL3esEodhQEDBmjKHgX9dSCShUNkRvvEAf77LQL+WS4x2GOlI6sP0sx+L15Ls86M3JERr73b7VZLeII9f/3Kc8nJyZqALVRiY/euri60trb22g4MEHwkORqZNHkxkI6ODvV91T+2zWZDYWFh2I8TLv33Pxpz0oKVPqalpSEtLU19LRikJQ79AKJ8m5Cfn4+ZM2da+qzov0Mia5Wenu7XDwun3FGs1hzosQURpIktFMQWKUbbbIiFmMQebr2Rvl8LdJea+nw+NDc3q+9rvDNpcmk5EF6QxnLHHpKUlBTwDSotLUV2djaKi4s1fyMzS82LCaFOp9PvmHh1mqOVSaPexWzxjp4QSSZNnvsoZ59D3SPNiszMTNPR+aSkJHVltVAbGH0mTV/SIm/oLTJmcs2+1ZLHUMsdxahvR0cHvF6vGoTpR5tFx0OM/gZr0PRBmtPpxMCBA5Gbmxv2wI54n+Wl/HujYJ0Co/0AjSiKYrqKpz5bJDqpiTKKrV+UoScyaTabTTMnuKezh2ROzqQJZosTWako0JeKy4NPgRZPs1ruaOWxAe3KvjabTf3Mff31137H6s+lt9KXO8oDqkYrpceTnPUM57VnkNZDgs2pcrlcmDJliqY0KlinU3wAxQIERqMuwYK2WIlWJo16l0TKpIUSpOm3kACgZqmB6AZpdrtdk6XRn2dpaSlGjhwZ8v2K+9EvECQacBF46DsGoWRVfD6fpmOvz6TJ8z3E44hR3vPnz6sdebHIh0x09sPNpIlyx0mTJhlmMK3QT/SuqqrC8ePHe90G18HKHfWfFTOHDh3C9u3b/QJ4uWRMdArb2to0tydCBynUOZ5GQgnSgO7V8MRWAom6R1p/ZNQ2RbKXqH5OmpxJA7T9sXDKHQOx2+3q9VO/VYAY6JcXrAu0YFZvpC93lFeXNdpzOJ4imcIAMEjrMeF8GYNl0vTL9ydSkMZMWv8UzyBN/zkLpdzRqDPndrtjEqQB2jKoaL1GZoM64r8i+NFfi0JZPESfedEHaeI+5AVLxDyPlpYWv46MTJ91sBJky+9LNIICcQ3t6OiAz+dT5zkYlQ0lsmAjyUZZBT2fz4f6+nq43W7NFjHAhY6pzWZTBxza2to0n49E6CDJ5xDrJfiF9PR0TJkyBZdccklEQQBFV7TbJv3ibfoybrPtQPSVE5E+vj5IGzBggCYwSE9P73NBmj6TZhakJcJAUSTbwgAM0npMLII0/WadRkFavMrPmEnrn+JZ7thbMmmANkiL1mtkFqTpM2lmCypYyaTpAzl9kCYvGiI6qGlpabDb7fB6vaivrwdgHKQFmqtnRnRQ9PMJwyVn0jo6OtQMmtlSz4lIzmaZvSZWgjSx+AAAvyBV7gSJdkcuOQpnqelYkD/r4XbYbDabpjxYCNTGZWVl9dgmzWRNtNsm+fPU3t6ufkdEkBbLTBpwYVBLXzVgt9s1K4bLm1yL3/d2+jlp8iqWLHeksISzhHywckf9fRoFafqFQljuSLEU73JHuWMYaSZNXpAnFkGaONdYB2lWM2lWgjT9MfpOvn5lR6D7GiSCKXnzVb2UlJSQR3zF/TidzqgEBXImTQQcQPCywEQiB9KRBGly9swsSEtOTobDcWEjZzGfMBE6R0B0MmmA/3cJMA/YKDHprw+Rvmc2m029doptlpKTk/3m4uofKxpz0gBg5MiR+OY3v2m46bYcpKWnp2uCtL7wWdWXO+qDNJY7UsgizaQZ1U/r79Os/t3sAhFLcrlTX7gokDXxzKTJjy+PfpsJlklrbGwEEN7y+8E4HA7k5eXB4Qi+aWoo9ynTz0nTzxUTQil3DJZJM2scRUdCZGaMgjQg9AyjCP6itY+inEmTg7TelEmTR5HNvgORBmkiWBffFdH2iL9JhM4REJ05aYB2OwuBA5G9SywGrMX1oqamBoB2MSSzIC1ambRA1QMulwvjxo3DyJEj+0W5oxykdXZ29qlyx8S4kvYD4XxYxOpUPp/P8Iulv0+zTTPjkUkDuvcaaW5ujlonlBJfPDNpwIU9wRwOR9AgzWzlN3EhFaOjYvPpaJswYQK8Xm/UOrTByh2Fnih31D+GfrTXLEjLyclBbW2t5vwDGTBgAEpKSqL2Holgw+12axr+3phJC/S5CjVI03829J0gl8uF8+fP9/lMmtVyR0pMoj8FROc9Ky4uxpEjR9TvinxdkwfNYzEnLRh5Q21xXvLgeW8mZ9LkFYOB7muaGFRKhOtQJNvqAAzSeky4Hxaxx5HRl9lKuSMQv8Zk/PjxAPzLDKjvineQps8eBSIaLK/Xa5hJE2IVpEVrHpVglsU0m8sqRJJJs1LuCGiDtJSUFNPnLWfSrL6HpaWlQY+zSiyd7fV61SAd6F2ZNCujyMGCNJ/P5zc6HegxRNsjr96ZCMR5RDpHzuVyob29XZORYLlj7xPt96ywsBC1tbXqSopWMmnR2BYiVMnJyRgzZkzEK1omCnlOmliTwel0qvNxxaBSImT0mUnrJcItxwlUMqgf/Tf7AMSj3BFgcNYfxbvcMdQS22HDhqGlpUUzAqr/HsUqSIu2YOWOQiwzaWZZHLF4iM/nM82iAd2d4fT0dLS3t5tWBsSay+VCa2trr52TZmXSfLAgraWlRbPtQKA5acCFIE38TSJ0joAL5xFpZ/jiiy9GR0eH3wIM+fn5cLvdUSu3pdiKdlWRzWbD6NGjsXv3biiKorm2paSkIDk5GYqixCWTpifPU+vt5HJHecVgfZl6IgwWibJz/efAqsS4kvYDkWTSAPNNF4VA+7HEq9yR+p/elEkDgJKSEr/b5O9qenp6r+mABVs4RIhknzR5o2xRaiIzCxDE4iHByp9tNhumTJkCr9cbtwY2JSVFk0UCemcmLZJyR1G+lZmZifPnz8PtdsPn86l/ZzYnTUiEzhFw4bMd6fkkJSX5LXUOdJcsU+8Ri+xneno6xo8fj5aWFr+tVaZNm2b6uHa7nRnYMMnljuJanZaWBkVRNEFaIgwW2Ww2pKeno7W1Nax9E+P/DPqJWARp8n0GevPjlUmj/ifeQVo0FquRL+y9JYsGhD8nTXRkvV6vpiMuE8GXCABEtsnn80FRFJw9exaZmZmm5Y5A9xyJlpYWDBw4MODzCFQV0BOMrqW9KZMWjXJHEaTl5eWp73NnZ6da7mdW7igkQucI6P7+FhcXB/3MUf8QqxLVgQMHGn7GjAb4xOMmykBGbySXO8qZNLnSw+FwJEx/95JLLoHb7Q6rOiQxrqT9QKQbaRpdUGw2G5xOJ9xut+VMGkduKJbiXe5otApbqOTval8I0oLNSROLrCiKgq6uLr9ricfjwY4dO/wGhVpbW+H1enH27Fns378f+fn5pitIAsDgwYMxePDg8J9gDzFqSHtTJi3SckePx6NulZCZmYmUlBR1Hyh9kCY6ofrXLFE6oA6HA6NHj473aVCCSISqoszMTBQXF/vtC0nWyUGanPWXN7VOlGsQ0H2dDLciJzHCzD4uKSkp7AtCoEwaYD6SKWMmjXpKomTSIhnJFxdTm83WqxrScOek2Ww2tZMtN3JCU1MT3G432tra1N+L4+WVtZqamhJqE9Fw9ZVMWrjljmVlZejq6kJqairy8vIMy2H15Y767Gdvfv+p70qEAWsxj01efZFCI19r3G63Wk4f6Z5kiYg99h4QSYMVLEgTI5tG9fICgzTqKfLny8peZbF6/EgaYLES1sUXX9yrLvRWVnfU7xUk5OTkALiwN5xMXopdEIGMz+dTgwIRyAG9u4Hs7Zm0SModz507h1OnTgGAuhqcvHec+BvxepiV3Pfm95/6rkQI0ihy+lUq09PTYbfbA67S3Fuxx94DIvmwDBo0CJmZmRg0aJDh78eMGYNJkyYFHPFPhBQ/9Q/6z1pPB2niuxbpYh9FRUXIz8+Pxin1GP0eOEZZRbMNjvPy8gBALXOTBQrSvF6vZh5AoDlpvYUcbIjPU2/KpEVS7lhZWQmg+/MvAnd9kCYm5jscDs37bPS6ESUS9oX6DvnaI7Z46YtBWu9tSXuRSD4sWVlZmDp1qunvrdS6ctNN6inxbgSHDh2K5OTkPrXccCjsdrua5RDBmMie+Xw+02uRmHvX2tqKjo4OzZLq+pX+7Ha7ej9er1cNCmS9uYGUM2kZGRlobGzslZk0q+WOiqKonxURiMmLIJgFaWlpaZqAn0EaJTpm0voOh8OhXuuMgrTePFAo41BCD4h3g8VyR+op8W4EU1JSMGzYsLh/5+JFLnGUO9DB9otyOp3IysoCoC157OrqQldXF2w2G8aMGYOkpCRkZWWpjyOXO8p6cwNps9mQmZkJu92uvia9JZOmKEpI5Y6A9rkZZUL1QZooaZU3dga0QRo7wJSI4t0+UfTI7x8zaRSReH9Y4p3doP6Dn7X4MlvR0cqyz3l5eWhubkZDQwNyc3Nht9vVLFpaWhoyMjIwffp0OBwONZuiL3cEzOe99SaTJk2Cx+PBuXPnAPSeOWkiMwaEFqTJm8Pq/zZQJk0mgjSzklqieGP71HeIgSS73a5uIi5ft+Ld744WBmk9IN4fFmbSqKfInTOOVPa8YBtYB8pw5eXl4cSJE6ivr0d9fT0cDoc6V01klMS1TFxHjModk5KSen0nXaxWGGw/sUQi9jMDggfKYr6ooijq38gLgsifE3l1R0VRTDNpIvsYaBEronji1I++Q7x/GRkZ6rVOlOK73e5eXc0h6xvPIsElUpDGCxPFkjz/iQMCPU98v81Wegx0LRJ7YomMidfrxZkzZ9TfGd2fUbljvK930STvx5PI2trasGvXLjU4tpLNEvMXRZAmB9tGQZoopTTLpKWkpGDGjBlsYyhhsdyx7xDvn75tSklJgdvtjnjxsETBIK0HxLvTwhQ/9SQGafETLJMW6Fpks9lw6aWXor29HS6XC3v37lUDNrMgDbjQuRcLi/SVEUwg8H5iiUTsVWel1FEwC9L08xntdjtSU1PR3t6OxsZGdY80fSbN6uMSxQv7Qn1HXl4eGhsbNYscAcCIESNw9uxZdXXa3q7vtKYJLN4NF8sdqSdFY68yCo9ZkFZcXAyPxxN0W4GUlBR1DtKECROwd+9eOBwOteZfMLqO5Obm9rkgrbdk0sT5JScnw+FwmG7ZItMHoIGW7s/NzUV7eztOnjypPk5fep+pf2Amre8oKipCYWGhX8VAXl6eWqbfF/Aq2wPiHaRx9Ih6klnJHcWe2WsfTsOVmZmJyy67zHB+k1zWKh530KBBOH36tN/IZm/WWzJpIsDKyMjAJZdcYulvzII0o+BrwIABOHXqlLqQjFEWjSjRsS/Ut/T2uc9WMEjrAfEO0jgnjXoSM2nxE+3XPlBn3OFwqB18p9OJjIwMzJgxIyqPmyh6WyYtlPddH6QF2l8tJydHE5Tr56MR9QbMpFFvw6GEHhDvERuWO1JPkldaop4lOtg90QGR3994D0TFin7T50QVjSAtULmjw+HQzPFgJo16IwZp1NuwF9UPMMVPPYlBWvwMGjQIeXl5KCwsjPljyZ2cvjo/STxHRVF6RZAWyvsQSrkj0F3yKDCTRr2R+MzbbLZ+USpHvV/fbFlJQ963iKNHFGssd4yftLQ0y3OSIiW/v309kwYgoVcsjXW5IwDNnEZm0qg3YttEvQ2DtH7A4XBg3LhxQTc4JYoGZtL6h/5Q7ihG3BVFgdfrTdiMobx8vlWhZtJSU1MxePBguN1uZtKoV2KQRr1NYrY4FHVWlmQmigazZeCpb+kP5Y5iYEveTywRxXpOmjBq1KhwT5Eo7sT2IuK/RImub7asRBQ3Q4YMgcPh6FNLsZO//lDuCHQ/T6/Xm9ArPEYzSOurATdRWloaJk2axHJd6jXiXo+0evVqlJaWwuVyYerUqfjkk08CHv/CCy9g3LhxSE1NxZgxY7B+/XrN791uN5YvX46RI0fC5XJh0qRJeO+99zTHnD9/HgsXLkRJSQlSU1Mxc+ZM7Nq1S3PM3XffrZa6iH+XX355dJ40UR+WlZWFMWPGIDk5Od6nQjHUH8odgd6xV1o0Fg4JNieNqC/Izc2Fy+WK92kQWRLXq/GmTZuwcOFCrF69GrNmzcJLL72EuXPn4tChQxg2bJjf8WvWrMHixYvxyiuv4LLLLsPOnTvxwAMPIDc3FzfccAMAYMmSJdi4cSNeeeUVjB07Fu+//z5uuukmbNu2DVOmTAEA3H///Thw4AA2bNiA4uJibNy4Ed/97ndx6NAhDB48WH28a6+9FuvWrVN/ZqeTiKhbfyh3BHrHXmk9MSeNiIh6VlwzaatWrcJ9992H+++/H+PGjcMzzzyDoUOHYs2aNYbHb9iwAQ8++CAWLFiAESNG4LbbbsN9992Hp556SnPML37xC8ybNw8jRozAj370I1xzzTVYuXIlAKC9vR2bN2/Gb3/7W3zrW9/CRRddhGXLlqG0tNTvcVNSUlBYWKj+k1e3IiLqz/pLuWNvyqTFek4aERH1nLgFaV1dXdizZw/mzJmjuX3OnDnYtm2b4d90dnb6palTU1Oxc+dOtVTD7JitW7cC6G6IvF5vwGOEf/zjHxg0aBBGjx6NBx54AHV1dQGfU2dnJ5qbmzX/iIj6ImbSEkckQZpYFCWckkkiIoqduAVp9fX18Hq9KCgo0NxeUFCA2tpaw7+55ppr8Oqrr2LPnj1QFAW7d+/G2rVr4Xa7UV9frx6zatUqHDt2DD6fD1u2bME777yDmpoaAEBmZiZmzJiBX/3qVzh16hS8Xi82btyIHTt2qMcAwNy5c/H73/8ef//737Fy5Urs2rUL3/72t9HZ2Wn6nFasWIHs7Gz139ChQyN9mYiIEhLnpCUGsT0AEFqAJQI6n8+nZtFCvQ8iIoqduC8cot/1XVEU053gly5dirlz5+Lyyy+H0+nE/PnzcffddwO40OA8++yzGDVqFMaOHYvk5GT8+Mc/xj333KMZYdywYQMURcHgwYORkpKC5557DrfffrvmmAULFuC6667DhAkTcMMNN+Cvf/0rjh49ir/85S+mz2Xx4sVoampS/1VVVYX7shARJTRm0hKDoihQFAVA+OWO8pw2s/aXiIh6VtyCtPz8fDgcDr+sWV1dnV92TUhNTcXatWvR1taGEydOoLKyEsOHD0dmZiby8/MBAAMHDsTbb7+N1tZWVFRU4PDhw8jIyEBpaal6PyNHjsTHH3+MlpYWVFVVqeWS8jF6RUVFKCkpwbFjx0yPSUlJQVZWluYfEVFfJAKCpKSkPt2xT/RMmpwFizRI68sZUSKi3iZuQVpycjKmTp2KLVu2aG7fsmULZs6cGfBvnU6nuhfTm2++ieuvv15TegMALpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvGx4jNDQ0oKqqCkVFRSE8SyKivklcc/t6xz7RM2nivOx2e0jBslGQ1pczokREvU1cr8iLFi3CnXfeiWnTpmHGjBl4+eWXUVlZiYceeghAd/lgdXW1uhfa0aNHsXPnTkyfPh2NjY1YtWoVDhw4gDfeeEO9zx07dqC6uhqTJ09GdXU1li1bBp/Ph8cff1w95v3334eiKBgzZgyOHz+Oxx57DGPGjME999wDAGhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abburBV4iIKDGJxZf6+sawiZ5JC2fREED7vLhHGhFR4onrFXnBggVoaGjA8uXLUVNTgwkTJuDdd99FSUkJAKCmpgaVlZXq8V6vFytXrsSRI0fgdDoxe/ZsbNu2DcOHD1eP6ejowJIlS1BWVoaMjAzMmzcPGzZsQE5OjnpMU1MTFi9ejJMnTyIvLw+33HILfvOb36gjwg6HA/v378f69etx7tw5FBUVYfbs2di0aRMyMzN75LUhIkpkmZmZmDRpEtLT0+N9KjHVWzJpoQZYzKQRESU2myJmHFPUNTc3Izs7G01NTZyfRkTUC1VUVKC8vBxFRUUYM2ZM6HfQ2go8/bT2tsceA6IU3J49exb79u1DRkYGpk2bFtbfDRw4MLLnSEREloQSG8R9dUciIqJEleiZNHllxlAwk0ZElNgYpBEREZngnDQiIooHBmlEREQmEj2TFo0gjZk0IqLEwyCNiIjIRG/JpEWycEhnZyeA7r0+iYgoMTBIIyIiMtEfMmkM0oiIEg+DNCIiIhOJnkmLxsIhXV1dAC7sfUdERPHHII2IiMhEX8+kyT9zThoRUeJgkEZERGQi0TNpkc5JE1wuF2w2W9TOi4iIIsNhMyIiIhOJmklrbGxEUlJS2Jk0fUDG+WhERImFQRoREZEJOZOmKEpCZJs6Ozuxb98+OBwOdR5ZOEGa3W5XM4Scj0ZElFhY7khERGRCDn4SpeSxtbUViqLA4/GgpaUFQOhBmv5vGKQRESUWBmlEREQm5LlbiVLy2N7e7ndbOEGa/NxY7khElFgYpBEREZkQZYFAYgdp4azMKAdpzKQRESUWBmlEREQBJNriIcykERH1fQzSiIiIAhBZKgZpRETUUxikERERBZBImTRFUdQgLSMjQ709kiAtOTnZb980IiKKL16ViYiIAkikIK2jowOKosBut6OgoABAd7AVztYAIjDjfDQiosTDII2IiCiARArSRBbN5XIhNzcXQPiliiJIY6kjEVHi4WbWREREASRikJaamoqMjAxMmDAh4iCNmTQiosTDII2IiCiARAzS0tLSAAD5+flh35cIzuS5bURElBgYpBEREQWQiEFaampqxPc1fPhwDBgwANnZ2RHfFxERRReDNCIiogASKUhra2sDEJ0gzeFwICcnJ+L7ISKi6OPCIURERAEkSpCmKAo6OjoARCdIIyKixMUgjYiIKIBECdLcbjcURQHAFRmJiPo6BmlEREQBJEqQ5vP5AIS/LxoREfUeDNKIiIgCSJQgTTy+WDqfiIj6Ll7piYiIAki0IE2cDxER9V0M0oiIiAJIlCBNlDsySCMi6vsYpBEREQWQKEEayx2JiPoPXumJiIgCSJQgjZk0IqL+g0EaERFRACIo8ng86hL48cBMGhFR/8ErPRERUQBy5kpks+KBmTQiov6DQRoREVEAclAUz5JHru5IRNR/MEgjIiIKwGazqSWGiRCksdyRiKjv45WeiIgoiERYPITljkRE/QeDNCIioiASIUhjJo2IqP/glZ6IiCiIRAjSmEkjIuo/GKQREREFkQhBGhcOISLqPxikERERBZGUlAQgMYI0ljsSEfV9vNITEREFkQiZNJY7EhH1HwzSiIiIgkiEII2ZNCKi/iPuV/rVq1ejtLQULpcLU6dOxSeffBLw+BdeeAHjxo1DamoqxowZg/Xr12t+73a7sXz5cowcORIulwuTJk3Ce++9pznm/PnzWLhwIUpKSpCamoqZM2di165dmmMURcGyZctQXFyM1NRUXHXVVTh48GB0njQREfUqiRCkMZNGRNR/xDVI27RpExYuXIgnnngCe/fuxRVXXIG5c+eisrLS8Pg1a9Zg8eLFWLZsGQ4ePIhf/vKXeOSRR/DnP/9ZPWbJkiV46aWX8Lvf/Q6HDh3CQw89hJtuugl79+5Vj7n//vuxZcsWbNiwAfv378ecOXPw3e9+F9XV1eoxv/3tb7Fq1So8//zz2LVrFwoLC3H11Vfj/PnzsXtBiIgoISVCkMaFQ4iI+g+boihKvB58+vTpuPTSS7FmzRr1tnHjxuHGG2/EihUr/I6fOXMmZs2ahaefflq9beHChdi9eze2bt0KACguLsYTTzyBRx55RD3mxhtvREZGBjZu3Ij29nZkZmbinXfewXXXXaceM3nyZFx//fX49a9/DUVRUFxcjIULF+JnP/sZAKCzsxMFBQV46qmn8OCDD1p6fs3NzcjOzkZTUxOysrJCe3GIiChhVFRUoLy8HEVFRRgzZoz1P2xtBaQ2CwDw2GNAenrI57Bt2zZ0dXVh6tSpyMzMDPnviYgovkKJDeKWSevq6sKePXswZ84cze1z5szBtm3bDP+ms7MTLpdLc1tqaip27twJt9sd8BgRxHk8Hni93oDHlJeXo7a2VnNuKSkpuPLKK03PTTx2c3Oz5h8REfV+iZBJY7kjEVH/Ebcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTAwDIzMzEjBkz8Ktf/QqnTp2C1+vFxo0bsWPHDvUY8fihnBsArFixAtnZ2eq/oUOHhvfiEBFRQkmEII0LhxAR9R9xv9LbbDbNz4qi+N0mLF26FHPnzsXll18Op9OJ+fPn4+677wZwoQF99tlnMWrUKIwdOxbJycn48Y9/jHvuuUcz8rhhwwYoioLBgwcjJSUFzz33HG6//Xa/0clQzg0AFi9ejKamJvVfVVWV5deBiIgSV7yDNJ/PBzE7gZk0IqK+L25BWn5+PhwOh19mqq6uzi+DJaSmpmLt2rVoa2vDiRMnUFlZieHDhyMzMxP5+fkAgIEDB+Ltt99Ga2srKioqcPjwYWRkZKC0tFS9n5EjR+Ljjz9GS0sLqqqq1HJJcUxhYSEAhHRuQHdJZFZWluYfERH1fokQpOnPhYiI+q64BWnJycmYOnUqtmzZorl9y5YtmDlzZsC/dTqdGDJkCBwOB958801cf/31fuUfLpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvq8eUlpaisLBQc25dXV34+OOPg54bERH1PfEO0uTHDVTRQUREfUNSPB980aJFuPPOOzFt2jTMmDEDL7/8MiorK/HQQw8B6C4frK6uVvdCO3r0KHbu3Inp06ejsbERq1atwoEDB/DGG2+o97ljxw5UV1dj8uTJqK6uxrJly+Dz+fD444+rx7z//vtQFAVjxozB8ePH8dhjj2HMmDG45557AHQ3gAsXLsSTTz6JUaNGYdSoUXjyySeRlpaG22+/vQdfISIiSgTxDtLkRUMYpBER9X1xDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTnqMU1NTVi8eDFOnjyJvLw83HLLLfjNb34Dp9OpHvP444+jvb0dDz/8MBobGzF9+nR88MEHXPaYiKgfineQxkVDiIj6l7juk9bXcZ80IqK+obOzE9u3bwcAXHnlldazWVHaJ625uRmff/45XC4XLr/88pD+loiIEkOv2CeNiIiot5AX65AX8egpIpPGRUOIiPoHBmlERERByMFRPEoeWe5IRNS/8GpPREQUhM1mUwM1j8fT448vLxxCRER9H4M0IiIiC5KSutfaYiaNiIhijVd7IiIiC5hJIyKinsIgjYiIyIJEyKQxSCMi6h8YpBEREVkQz0wayx2JiPoXXu2JiIgsiGcmjeWORET9C4M0IiIiC0SAxIVDiIgo1ni1JyIiskBk0rhwCBERxRqDNCIiIgsSIZPGII2IqH9gkEZERGRBPDNpLHckIupfeLUnIiKyIJ6ZNJY7EhH1LwzSiIiILOAS/ERE1FNCvtq3t7ejra1N/bmiogLPPPMMPvjgg6ieGBERUSLhEvxERNRTQg7S5s+fj/Xr1wMAzp07h+nTp2PlypWYP38+1qxZE/UTJCIiSgSJkEljkEZE1D+EHKR9/vnnuOKKKwAAf/rTn1BQUICKigqsX78ezz33XNRPkIiIKBHEM5PGckciov4l5Kt9W1sbMjMzAQAffPABbr75Ztjtdlx++eWoqKiI+gkSERElgnhm0ljuSETUv4QcpF100UV4++23UVVVhffffx9z5swBANTV1SErKyvqJ0hERJQIRCbN5/NBUZQee1xFUZhJIyLqZ0K+2v/Lv/wLfvrTn2L48OGYPn06ZsyYAaA7qzZlypSonyAREVEikLNYPVnyKLJo+nMgIqK+KynUP/je976Hb37zm6ipqcGkSZPU27/zne/gpptuiurJERERJQq73Q673Q6fzwePx6Nm1mKNQRoRUf8TcgvT1NSE5ORkv6zZRRdd1GMNFhERUTw4HA74fL4ezaTJpY42m63HHpeIiOIn5HLH2267DW+++abf7X/84x9x2223ReWkiIiIEpEYjOzJxUO4/D4RUf8TcpC2Y8cOzJ492+/2q666Cjt27IjKSRERESUiESjFI5PGII2IqP8IOUjr7Ow0HEF0u91ob2+PykkRERElonhm0riyIxFR/xHyFf+yyy7Dyy+/7Hf7iy++iKlTp0blpIiIiBIRM2lERNQTQl7p4ze/+Q2++93v4ssvv8R3vvMdAMDf/vY37Nq1Cx988EHUT5CIiChRxGNDa25kTUTU/4ScSZs1axa2b9+OoUOH4o9//CP+/Oc/46KLLsK+fftwxRVXxOIciYiIEoIod2QmjYiIYimsNfMnT56M3//+99E+lz6rq6sLXV1d8T4NIiKKkKIo8Hq96OjosHZd7+qCQxfQebu6AKfT8mN2dHTA6/VCURS2JUREvVgo13BLQVpzczOysrLU/w9EHEcXrFy5Ei6XK96nQUREPczZ1YWZn36quW2bzwd3cnKczoiIiOKlo6PD8rGWgrTc3FzU1NRg0KBByMnJMdxMU1EU2Gy2Hi0BISIiIiIi6mssBWl///vfkZeXBwD46KOPYnpCfdH/+3//jxlGIqI+4PTp0zh69Chyc3MxYcKE4H/Q2gqHbun8mYsWAenplh/z66+/xqlTpzB06FAMHz48xDMmIqJE0dzcjH/7t3+zdKylIO3KK69U/7+0tBRDhw71y6YpioKqqqoQTrP/SE5ORjJLW4iIej2XywWHwwGbzWbtuu52A7oFPxzJyUAIbYLNZoPD4UBKSgrbEiKiXiyUa3jIqzuWlpbizJkzfrefPXsWpaWlod4dERFRrxGPzay5BD8RUf8TcpAm5p7ptbS0cHEMIiLq07iZNRER9QTLS/AvWrQIQHfZxdKlS5GWlqb+zuv1YseOHZg8eXLUT5CIiChRxCOTxiCNiKj/sRyk7d27F0B3Jm3//v2amsrk5GRMmjQJP/3pT6N/hkRERAnC/v8vAiJKEHsCgzQiov7HcpAmVnW855578Oyzz3K1QiIi6ndEoOTz+UzL/6NNBGl2e8gzFIiIqJcK+Yq/bt06TYDW3NyMt99+G4cPH47qiRERESUaOVDqqWwaM2lERP1PyEHarbfeiueffx4A0N7ejmnTpuHWW2/FxIkTsXnz5qifIBERUaKIR5DG1R2JiPqfkIO0//3f/8UVV1wBAHjrrbegKArOnTuH5557Dr/+9a+jfoJERESJwmazqSWOPbXCIzNpRET9T8hBWlNTE/Ly8gAA7733Hm655RakpaXhuuuuw7Fjx0I+gdWrV6O0tBQulwtTp07FJ598EvD4F154AePGjUNqairGjBmD9evXa37vdruxfPlyjBw5Ei6XC5MmTcJ7772nOcbj8WDJkiUoLS1FamoqRowYgeXLl2tGRe+++261MRb/Lr/88pCfHxER9S3yvLRYUxSFmTQion7I8sIhwtChQ7F9+3bk5eXhvffew5tvvgkAaGxsDHmftE2bNmHhwoVYvXo1Zs2ahZdeeglz587FoUOHMGzYML/j16xZg8WLF+OVV17BZZddhp07d+KBBx5Abm4ubrjhBgDAkiVLsHHjRrzyyisYO3Ys3n//fdx0003Ytm0bpkyZAgB46qmn8OKLL+KNN97AxRdfjN27d+Oee+5BdnY2Hn30UfXxrr32Wqxbt079OZRdwomIqG/qyRUe5WwdgzQiov4j5CBt4cKFuOOOO5CRkYGSkhJcddVVALrLICdOnBjSfa1atQr33Xcf7r//fgDAM888g/fffx9r1qzBihUr/I7fsGEDHnzwQSxYsAAAMGLECHz22Wd46qmn1CBtw4YNeOKJJzBv3jwAwI9+9CO8//77WLlyJTZu3AgA2L59O+bPn4/rrrsOADB8+HD853/+J3bv3q15vJSUFBQWFob0nIiIqG8TQVpPlDvKj9ETK0kSEVFiCLnc8eGHH8b27duxdu1abN26VW2sRowYEdKctK6uLuzZswdz5szR3D5nzhxs27bN8G86Ozv9snWpqanYuXMn3G53wGO2bt2q/vzNb34Tf/vb33D06FEAwJdffomtW7eqgZ3wj3/8A4MGDcLo0aPxwAMPoK6uzvLzIyKivqknyx3l+WgM0oiI+o+QM2kAMG3aNEybNk1zm8hKWVVfXw+v14uCggLN7QUFBaitrTX8m2uuuQavvvoqbrzxRlx66aXYs2cP1q5dC7fbjfr6ehQVFeGaa67BqlWr8K1vfQsjR47E3/72N7zzzjua0cif/exnaGpqwtixY+FwOOD1evGb3/wGP/jBD9Rj5s6di+9///soKSlBeXk5li5dim9/+9vYs2cPUlJSDM+vs7MTnZ2d6s/Nzc0hvSZERJT44lHuyFJHIqL+xVKQtmjRIvzqV79Ceno6Fi1aFPDYVatWhXQC+pHBQJuDLl26FLW1tbj88suhKAoKCgpw991347e//a3agD377LN44IEHMHbsWNhsNowcORL33HOPZm7Zpk2bsHHjRvzhD3/AxRdfjC+++AILFy5EcXEx7rrrLgBQSyoBYMKECZg2bRpKSkrwl7/8BTfffLPh+a1YsQK//OUvQ3r+RETUu/RkkMZFQ4iI+idLQdrevXvVcsK9e/dG5YHz8/PhcDj8smZ1dXV+2TUhNTUVa9euxUsvvYTTp0+jqKgIL7/8MjIzM5Gfnw8AGDhwIN5++210dHSgoaEBxcXF+PnPf47S0lL1fh577DH8/Oc/x2233QYAmDhxIioqKrBixQo1SNMrKipCSUlJwBUsFy9erAlim5ubMXToUGsvCBER9QoiYOrJOWkM0oiI+hdLQdpHH31k+P+RSE5OxtSpU7FlyxbcdNNN6u1btmzB/PnzA/6t0+nEkCFDAABvvvkmrr/+es0GowDgcrkwePBguN1ubN68Gbfeeqv6u7a2Nr/jHQ5HwFHRhoYGVFVVoaioyPSYlJQU01JIIiLqG1juSEREsRbywiH33nsvzp8/73d7a2sr7r333pDua9GiRXj11Vexdu1afPXVV/jJT36CyspKPPTQQwC6M1M//OEP1eOPHj2KjRs34tixY9i5cyduu+02HDhwAE8++aR6zI4dO/Bf//VfKCsrwyeffIJrr70WPp8Pjz/+uHrMDTfcgN/85jf4y1/+ghMnTuCtt97CqlWr1GCxpaUFP/3pT7F9+3acOHEC//jHP3DDDTcgPz9fE1ASEVH/wyCNiIhiLeSFQ9544w3827/9GzIzMzW3t7e3Y/369Vi7dq3l+1qwYAEaGhqwfPly1NTUYMKECXj33XdRUlICAKipqUFlZaV6vNfrxcqVK3HkyBE4nU7Mnj0b27Ztw/Dhw9VjOjo6sGTJEpSVlSEjIwPz5s3Dhg0bkJOTox7zu9/9DkuXLsXDDz+Muro6FBcX48EHH8S//Mu/AOhuDPfv34/169fj3LlzKCoqwuzZs7Fp0ya/501ERP1LPJbg11d/EBFR32ZTFEWxcmBzczMURUFubi6OHTuGgQMHqr/zer3485//jJ///Oc4depUzE62t2lubkZ2djaampqQlZUV79MhIqIoOHbsGKqrq1FSUqKZ72yotRV4+mntbY89BqSnW3qsyspKlJWVoaCgAOPGjQvzjImIKBGEEhtYzqTl5OTAZrPBZrNh9OjRfr+32Wxc2ZCIiPo8ru5IRESxZjlI++ijj6AoCr797W9j8+bNyMvLU3+XnJyMkpISFBcXx+QkiYiIEkU8yh0ZpBER9S+Wg7Qrr7wSAFBeXo6hQ4eyPp6IiPolETBx4RAiIoqVkBcOEYt6tLW1obKyEl1dXZrfX3LJJdE5MyIiogTE1R2JiCjWQg7Szpw5g3vuuQd//etfDX/fE+UfRERE8cLVHYmIKNZCvuovXLgQjY2N+Oyzz5Camor33nsPb7zxBkaNGoX//u//jsU5EhERJQyWOxIRUayFnEn7+9//jnfeeQeXXXYZ7HY7SkpKcPXVVyMrKwsrVqzAddddF4vzJCIiSggsdyQiolgLOZPW2tqKQYMGAQDy8vJw5swZAMDEiRPx+eefR/fsiIiIEgyX4CciolgLOUgbM2YMjhw5AgCYPHkyXnrpJVRXV+PFF19EUVFR1E+QiIgokYiAiUvwExFRrIRc7rhw4ULU1NQAAP71X/8V11xzDX7/+98jOTkZr7/+erTPj4iIKKGw3JGIiGIt5CDtjjvuUP9/ypQpOHHiBA4fPoxhw4YhPz8/qidHRESUaOIRpHF1RyKi/iXkq/7y5cvR1tam/pyWloZLL70U6enpWL58eVRPjoiIKNH01BL8iqIwk0ZE1E+FHKT98pe/REtLi9/tbW1t+OUvfxmVkyIiIkpUPbUEv6Iofo9JRET9Q8hBmqIosNlsfrd/+eWXyMvLi8pJERERJSqRSVMURRNIRZucqWO5IxFR/2J5Tlpubi5sNhtsNhtGjx6tCdS8Xi9aWlrw0EMPxeQkiYiIEoUcMHm9XiQlhTy92xKRqbPZbAzSiIj6GcstyzPPPANFUXDvvffil7/8JbKzs9XfJScnY/jw4ZgxY0ZMTpKIiChRyAFTLEseOR+NiKj/shyk3XXXXQCA0tJSzJo1K2Yjh0RERIlMZLZ8Pl+PBGnMohER9T+WIy3RGF155ZXqbadPn8aLL76I1tZW/NM//RO++c1vxuQkiYiIEokI0mK5wqMIAJlJIyLqfywHaffddx+cTidefvllAMD58+dx2WWXoaOjA0VFRfiP//gPvPPOO5g3b17MTpaIiCgROBwOeDweljsSEVFMWK6h+PTTT/G9731P/Xn9+vXweDw4duwYvvzySyxatAhPP/10TE6SiIgokfTEhtYsdyQi6r8sX/mrq6sxatQo9ee//e1vuOWWW9QFRO666y4cPHgw+mdIRESUYHoiSGO5IxFR/2U5SHO5XGhvb1d//uyzz3D55Zdrfm+0yTUREVFfI4K0WM5JYyaNiKj/snzlnzRpEjZs2AAA+OSTT3D69Gl8+9vfVn//9ddfo7i4OPpnSERElGBEdouZNCIiigXLC4csXboU8+bNwx//+EfU1NTg7rvvRlFRkfr7t956C7NmzYrJSRIRESWSnpyTxiCNiKj/sRykzZ49G3v27MGWLVtQWFiI73//+5rfT548Gd/4xjeifoJERESJhuWOREQUSyHtSD1+/HiMHz/e8Hf/5//8n6icEBERUaJjuSMREcUSh+eIiIhCxHJHIiKKJQZpREREIWK5IxERxRKv/ERERCFiuSMREcUSgzQiIqIQsdyRiIhiiUEaERFRiHqi3FEEgCx3JCLqfyyv7jhixAhLx5WVlYV9MkRERL0BM2lERBRLloO0EydOoKSkBLfffjsGDRoUy3MiIiJKaD0xJ40LhxAR9V+Wg7Q333wT69atw6pVqzB37lzce++9mDdvHhsPIiLqd3oik8aFQ4iI+i/LEdatt96Kv/71rzh+/DimTp2Kn/zkJxgyZAh+/vOf49ixY7E8RyIiooTSk0vwM0gjIup/Qk6DDR48GE888QSOHTuG//zP/8SOHTswduxYNDY2xuL8iIiIEg7LHYmIKJYslzvKOjo68Kc//Qlr167Fjh078P3vfx9paWnRPjciIqKEFOtyR0VRoCgKAGbSiIj6o5CCtB07duC1117Dpk2bMHLkSNx7773YvHkzcnNzY3V+RERECSfW5Y7y/TJIIyLqfywHaRdffDHq6upw++2345NPPsEll1wSy/MiIiJKWElJ3c1nTwRpNpstJo9BRESJy3KQ9tVXXyE9PR3r16/Hhg0bTI87e/ZsVE6MiIgoUYnsltfrhaIoUQ+k5JUdGaQREfU/loO0devWxfI8iIiIeg2RSVMUBT6fL+oliVw0hIiof7McpN11112xPA8iIqJeQw6ePB5P1IM07pFGRNS/hTxEpygKdu/ejT/96U/YvHkzPv/8c3UFqnCsXr0apaWlcLlcmDp1Kj755JOAx7/wwgsYN24cUlNTMWbMGKxfv17ze7fbjeXLl2PkyJFwuVyYNGkS3nvvPc0xHo8HS5YsQWlpKVJTUzFixAgsX75cs0qXoihYtmwZiouLkZqaiquuugoHDx4M+3kSEVHfYbPZYjovjXukERH1byGt7vjRRx/hvvvuQ0VFhRqY2Ww2lJaWYu3atfjWt74V0oNv2rQJCxcuxOrVqzFr1iy89NJLmDt3Lg4dOoRhw4b5Hb9mzRosXrwYr7zyCi677DLs3LkTDzzwAHJzc3HDDTcAAJYsWYKNGzfilVdewdixY/H+++/jpptuwrZt2zBlyhQAwFNPPYUXX3wRb7zxBi6++GLs3r0b99xzD7Kzs/Hoo48CAH77299i1apVeP311zF69Gj8+te/xtVXX40jR44gMzMzpOdJRER9j8PhgMfjgcfjifp9s9yRiKh/sykW02DHjx/HpEmTMH36dDz66KMYO3YsFEXBoUOH8Nxzz2H37t3Yt28fRowYYfnBp0+fjksvvRRr1qxRbxs3bhxuvPFGrFixwu/4mTNnYtasWXj66afV2xYuXIjdu3dj69atAIDi4mI88cQTeOSRR9RjbrzxRmRkZGDjxo0AgOuvvx4FBQV47bXX1GNuueUWpKWlYcOGDVAUBcXFxVi4cCF+9rOfAQA6OztRUFCAp556Cg8++KCl59fc3Izs7Gw0NTUhKyvL8utCRESJb9euXWhtbcWkSZPMt6JpbQWkNgsA8NhjQHp6wPuuq6vDoUOHkJOTg8mTJ0fnhImIKK5CiQ0sD9E988wzuPzyy/H3v/8d8+fPx5gxYzB27FjcfPPN+OijjzB9+nT8x3/8h+WT7Orqwp49ezBnzhzN7XPmzMG2bdsM/6azsxMul0tzW2pqKnbu3Am32x3wGBHEAcA3v/lN/O1vf8PRo0cBAF9++SW2bt2KefPmAQDKy8tRW1urObeUlBRceeWVpucmHru5uVnzj4iI+iZR7hjLTBrLHYmI+ifLQdo//vEPLFy40PB3NpsNCxcuxEcffWT5gevr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj171Llxa9euhdvtRn19vXrMqlWrcOzYMfh8PmzZsgXvvPMOampq1Pv52c9+hh/84AcYO3YsnE4npkyZgoULF+IHP/gBAKiPH8q5AcCKFSuQnZ2t/hs6dKjl14OIiHoXEUCx3JGIiKLN8tW/srISEydONP39hAkTUFFREfIJ6Pd/CbTfzNKlSzF37lxcfvnlcDqdmD9/Pu6++24AFxrLZ599FqNGjcLYsWORnJyMH//4x7jnnns0o5GbNm3Cxo0b8Yc//AGff/453njjDfz7v/873njjjbDPDQAWL16MpqYm9V9VVZXl14GIiHqXWC4cwtUdiYj6N8tBWktLC9LS0kx/n5aWhra2NssPnJ+fD4fD4ZeZqqur88tgCampqVi7di3a2tpw4sQJVFZWYvjw4cjMzER+fj4AYODAgXj77bfR2tqKiooKHD58GBkZGSgtLVXv57HHHsPPf/5z3HbbbZg4cSLuvPNO/OQnP1HnwRUWFgJASOcGdJdEZmVlaf4REVHfxEwaERHFSkirOx46dMi03E+UG1qVnJyMqVOnYsuWLbjpppvU27ds2YL58+cH/Fun04khQ4YAAN58801cf/31fg2Zy+XC4MGD4Xa7sXnzZtx6663q79ra2vyOdzgc6shlaWkpCgsLsWXLFnVFyK6uLnz88cd46qmnQnqeRETUNzGTRkREsRJSkPad73zHcE80m80WtBTQyKJFi3DnnXdi2rRpmDFjBl5++WVUVlbioYceAtBdPlhdXa3uhXb06FHs3LkT06dPR2NjI1atWoUDBw5oyhR37NiB6upqTJ48GdXV1Vi2bBl8Ph8ef/xx9ZgbbrgBv/nNbzBs2DBcfPHF2Lt3L1atWoV7771XfT4LFy7Ek08+iVGjRmHUqFF48sknkZaWhttvvz2k50hERH0TFw4hIqJYsRyklZeXR/3BFyxYgIaGBixfvhw1NTWYMGEC3n33XZSUlAAAampqUFlZqR7v9XqxcuVKHDlyBE6nE7Nnz8a2bdswfPhw9ZiOjg4sWbIEZWVlyMjIwLx587Bhwwbk5OSox/zud7/D0qVL8fDDD6Ourg7FxcV48MEH8S//8i/qMY8//jja29vx8MMPo7GxEdOnT8cHH3zAPdKIiAgAyx2JiCh2LO+TRqHjPmlERH1XbW0tDh8+jLy8PFxyySXGB4W5T9rBgwdx5swZjBo1CoMHD47SGRMRUTzFZJ+0trY2PPLIIxg8eDAGDRqE22+/PeR5aERERH1FT2TSWO5IRNQ/WQ7S/vVf/xWvv/46rrvuOtx2223YsmULfvSjH8Xy3IiIiBJWLBcOYbkjEVH/ZnlO2n/913/htddew2233QYA+Od//mfMmjULXq+XI31ERNTvxDKTxtUdiYj6N8tDdFVVVbjiiivUn7/xjW8gKSkJp06dismJERERJTJm0oiIKFYsX/29Xi+Sk5M1tyUlJcVkBJGIiCjRyUvwR3sNLmbSiIj6N8vljoqi4O6770ZKSop6W0dHBx566CGkS6tU/dd//Vd0z5CIiCgByQGU1+tVg7ZoYCaNiKh/s9yi3HXXXX63/fM//3NUT4aIiKi3sNvtsNlsUBQl6kGayKQxSCMi6p8styjr1q2L5XkQERH1KjabDQ6HAx6PBx6PR1NpEimWOxIR9W8coiMiIgpTLBYPURRFnePGTBoRUf/Eqz8REVGY5MVDokVk0QAGaURE/RWv/kRERGGKxV5pDNKIiIhXfyIiojDFotxRBGk2mw02my1q90tERL0HgzQiIqIwxTKTxiwaEVH/xRaAiIgoTLHMpDFIIyLqv9gCEBERhYmZNCIiigW2AERERGGK5eqODNKIiPovtgBERERhYrkjERHFAlsAIiKiMLHckYiIYoEtABERUZiYSSMiolhgC0BERBQmZtKIiCgW2AIQERGFSQRpzKQREVE0sQUgIiIKkwjSRGAVDQzSiIiILQAREVGYmEkjIqJYYAtAREQUJjmTpihKVO6TQRoREbEFICIiCpMcSEUrm8YgjYiI2AIQERGFiUEaERHFAlsAIiKiMNlstqjPS2OQRkREbAGIiIgiEO0VHhmkERERWwAiIqIIMJNGRETRxhaAiIgoAgzSiIgo2tgCEBERRUAEUwzSiIgoWtgCEBERRSDamTRxPwzSiIj6L7YAREREEWC5IxERRRtbACIioghwdUciIoo2tgBEREQRYCaNiIiijS0AERFRBGIVpIn7JSKi/odBGhERUQS4uiMREUUbWwAiIqIIsNyRiIiijS0AERFRBLhwCBERRRtbACIioghEM5OmKAqDNCIiYpBGREQUiWgHaQKDNCKi/ivuLcDq1atRWloKl8uFqVOn4pNPPgl4/AsvvIBx48YhNTUVY8aMwfr16zW/d7vdWL58OUaOHAmXy4VJkybhvffe0xwzfPhw2Gw2v3+PPPKIeszdd9/t9/vLL788ek+ciIj6hGgGaXLJJIM0IqL+KymeD75p0yYsXLgQq1evxqxZs/DSSy9h7ty5OHToEIYNG+Z3/Jo1a7B48WK88soruOyyy7Bz50488MADyM3NxQ033AAAWLJkCTZu3IhXXnkFY8eOxfvvv4+bbroJ27Ztw5QpUwAAu3bt0jSmBw4cwNVXX43vf//7mse79tprsW7dOvXn5OTkWLwMRETUi0VzdUc5SLPZbBHfHxER9U5xHaZbtWoV7rvvPtx///0YN24cnnnmGQwdOhRr1qwxPH7Dhg148MEHsWDBAowYMQK33XYb7rvvPjz11FOaY37xi19g3rx5GDFiBH70ox/hmmuuwcqVK9VjBg4ciMLCQvXf//zP/2DkyJG48sorNY+XkpKiOS4vLy82LwQREfVascik2e12BmlERP1Y3IK0rq4u7NmzB3PmzNHcPmfOHGzbts3wbzo7O+FyuTS3paamYufOnXC73QGP2bp1q+l5bNy4Effee69fg/iPf/wDgwYNwujRo/HAAw+grq4u4HPq7OxEc3Oz5h8REfVt0VzdkYuGEBEREMcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTY3ifb7/9Ns6dO4e7775bc/vcuXPx+9//Hn//+9+xcuVK7Nq1C9/+9rfR2dlp+pxWrFiB7Oxs9d/QoUNDeEWIiKg3kjNp8sIf4WCQRkREQAIsHKLPXimKYlrisXTpUsydOxeXX345nE4n5s+frwZXopF89tlnMWrUKIwdOxbJycn48Y9/jHvuuUf9vd5rr72GuXPnori4WHP7ggULcN1112HChAm44YYb8Ne//hVHjx7FX/7yF9PnsnjxYjQ1Nan/qqqqrL4MRETUS4n2RVEUBmlERBQVcWsF8vPz4XA4/LJmdXV1ftk1ITU1FWvXrkVbWxtOnDiByspKDB8+HJmZmcjPzwfQPd/s7bffRmtrKyoqKnD48GFkZGSgtLTU7/4qKirw4Ycf4v777w96vkVFRSgpKcGxY8dMj0lJSUFWVpbmHxER9W1yQBXpvDQGaUREBMQxSEtOTsbUqVOxZcsWze1btmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9BcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXdd0PNtaGhAVVUVioqKLDw7IiLqL+RFPhikERFRNMR1Cf5FixbhzjvvxLRp0zBjxgy8/PLLqKysxEMPPQSgu3ywurpa3Qvt6NGj2LlzJ6ZPn47GxkasWrUKBw4cwBtvvKHe544dO1BdXY3Jkyejuroay5Ytg8/nw+OPP655bJ/Ph3Xr1uGuu+5CUpL2ZWhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abborxq0JERL2Nw+GAx+NhkEZERFER1yBtwYIFaGhowPLly1FTU4MJEybg3XffRUlJCQCgpqYGlZWV6vFerxcrV67EkSNH4HQ6MXv2bGzbtg3Dhw9Xj+no6MCSJUtQVlaGjIwMzJs3Dxs2bEBOTo7msT/88ENUVlbi3nvv9Tsvh8OB/fv3Y/369Th37hyKioowe/ZsbNq0CZmZmTF5LYiIqPcSQVqkKzwySCMiIgCwKZHOciZTzc3NyM7ORlNTE+enERH1YTt37kRbWxsmT56sHRRsbQWeflp78GOPAenphvdTW1uLw4cPIy8vD5dccknsTpiIiHpcKLEBh+qIiIgiFK0NrZlJIyIigEEaERFRxBikERFRNLEVICIiipAIqhikERFRNLAVICIiihAzaUREFE1xXd2RiIioLxBBWrirO7a2tuLcuXNqkMcgjYiof2OQRkREFKFIM2nHjx9HY2MjUlJSADBIIyLq79gKEBERRSjSIM3tdgMAOjs7ATBIIyLq79gKEBERRSjSIE1fJskgjYiof2MrQEREFKFIV3dkkEZERDK2AkRERBGKdOEQBmlERCRjK0BERBQhljsSEVE0sRUgIiKKkAjSPB5PWH+vD9LE/RERUf/EII2IiChCTqcTQHhBmqIozKQREZEGWwEiIqIIiSBNLKUfCkVR/G5jkEZE1L+xFSAiIoqQnEkzCroCkbNoBQUFcDqdSE9Pj+r5ERFR75IU7xMgIiLq7ZKSLjSnbrcbycnJlv9WDtLGjh0LALDZbNE7OSIi6nWYSSMiIoqQzWZTA7VQSx5FkGaz2dR/RETUvzFIIyIiioJw56WJII3z0IiISGCLQEREFAXhrvDIII2IiPTYIhAREUVBuJk0sdAIgzQiIhLYIhAREUUByx2JiCha2CIQERFFQaQLhzBIIyIigS0CERFRFDCTRkRE0cIWgYiIKAoYpBERUbSwRSAiIooCru5IRETRwhaBiIgoCphJIyKiaGGLQEREFAUM0oiIKFrYIhAREUWBvLqj2PvMCgZpRESkxxaBiIgoCkQmDQhtXhqDNCIi0mOLQEREFAV2ux0OhwNAaCWPDNKIiEiPLQIREVGUhLPCI4M0IiLSY4tAREQUJeEsHsIgjYiI9NgiEBERRQmDNCIiiga2CERERFHCII2IiKKBLQIREVGUyMvwW8UgjYiI9NgiEBERRQkzaUREFA1sEYiIiKIkkiDNZrPF5JyIiKj3YZBGREQUJaLc0ev1Wv4bZtKIiEiPLQIREVGUiM2sGaQREVEk2CIQERFFiQi0ROBlBYM0IiLSY4tAREQUJcykERFRNMS9RVi9ejVKS0vhcrkwdepUfPLJJwGPf+GFFzBu3DikpqZizJgxWL9+veb3brcby5cvx8iRI+FyuTBp0iS89957mmOGDx8Om83m9++RRx5Rj1EUBcuWLUNxcTFSU1Nx1VVX4eDBg9F74kRE1OeIQItBGhERRSKuLcKmTZuwcOFCPPHEE9i7dy+uuOIKzJ07F5WVlYbHr1mzBosXL8ayZctw8OBB/PKXv8QjjzyCP//5z+oxS5YswUsvvYTf/e53OHToEB566CHcdNNN2Lt3r3rMrl27UFNTo/7bsmULAOD73/++esxvf/tbrFq1Cs8//zx27dqFwsJCXH311Th//nyMXg0iIurtRCaN5Y5ERBQJm6IoSrwefPr06bj00kuxZs0a9bZx48bhxhtvxIoVK/yOnzlzJmbNmoWnn35avW3hwoXYvXs3tm7dCgAoLi7GE088ocmK3XjjjcjIyMDGjRsNz2PhwoX4n//5Hxw7dgw2mw2KoqC4uBgLFy7Ez372MwBAZ2cnCgoK8NRTT+HBBx+09Pyam5uRnZ2NpqYmZGVlWfobIiLqvTo7O7F9+3bYbDZceeWVQGsrILVZAIDHHgPS09Uft27dCo/Hg2984xtIS0vr4TMmIqKeEkpsELdhu66uLuzZswdz5szR3D5nzhxs27bN8G86Ozvhcrk0t6WmpmLnzp3qnjRmx4ggzug8Nm7ciHvvvVfdo6a8vBy1tbWac0tJScGVV15pem5EREQiG6YoCqyOgTKTRkREenFrEerr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj17oCgKdu/ejbVr18LtdqO+vl49ZtWqVTh27Bh8Ph+2bNmCd955BzU1NYb3+fbbb+PcuXO4++671dvE44dybkB3gNjc3Kz5R0RE/YcodwSszUtTFIVBGhER+Yl7iyCyV4KiKH63CUuXLsXcuXNx+eWXw+l0Yv78+WpwJRrGZ599FqNGjcLYsWORnJyMH//4x7jnnns0Dafstddew9y5c1FcXBzRuQHAihUrkJ2drf4bOnSo6bFERNT3yG2ElXlpcraNQRoREQlxaxHy8/PhcDj8MlN1dXV+GSwhNTUVa9euRVtbG06cOIHKykoMHz4cmZmZyM/PBwAMHDgQb7/9NlpbW1FRUYHDhw8jIyMDpaWlfvdXUVGBDz/8EPfff7/m9sLCQgAI6dwAYPHixWhqalL/VVVVBX8hiIioz7DZbCEtwy8HcgzSiIhIiFuLkJycjKlTp6orKwpbtmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9xcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXed5vbS0lIUFhZqzq2rqwsff/xxwHNLSUlBVlaW5h8REfUvoSzDLwdpgSo1iIiof0mK54MvWrQId955J6ZNm4YZM2bg5ZdfRmVlJR566CEA3Zmp6upqdS+0o0ePYufOnZg+fToaGxuxatUqHDhwAG+88YZ6nzt27EB1dTUmT56M6upqLFu2DD6fD48//rjmsX0+H9atW4e77roLSUnal8Fms2HhwoV48sknMWrUKIwaNQpPPvkk0tLScPvtt8f4VSEiot7M4XDA7XZ3B2AmpfaCPB+NQRoREQlxDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTmax/7www9RWVmJe++91/DcHn/8cbS3t+Phhx9GY2Mjpk+fjg8++ACZmZlRfx2IiKjv0JQ7hhCkERERCXHdJ62v4z5pRET9z549e3D+/HlMnDgRA1yugPuktbS0YPfu3UhOTg5a6k9ERL1br9gnjYiIqC8KZ+EQZtKIiEjGVoGIiCiKwlk4hEEaERHJ2CoQERFFkcikWdknjUEaEREZYatAREQURSx3JCKiSLFVICIiiiIRcDGTRkRE4WKrQEREFEXMpBERUaTYKhAREUURFw4hIqJIsVUgIiKKIi4cQkREkWKrQEREFEUsdyQiokglxfsEqLshd7vd8T4NoqCcTqfaASUiY1w4hIiIIsUgLY4URUFtbS3OnTsX71MhsiwnJweFhYWw2WzxPhWihBROJo3fJyIikjFIiyMRoA0aNAhpaWlspCmhKYqCtrY21NXVAQCKiorifEZEiYmZNCIiihSDtDjxer1qgDZgwIB4nw6RJampqQCAuro6DBo0iKWPRAY4J42IiCLFViFOxBy0tLS0OJ8JUWjEZ5bzKImMcQl+IiKKFFuFOGOJI/U2/MwSBcYl+ImIKFJsFYiIiKIolHJHRVEAMEgjIiIttgrUp5w4cQI2mw1ffPFFzB9r2bJlmDx5cswfh4h6F3nhEBGEmWEmjYiIjLBVoJDcfffdsNlssNlscDqdGDFiBH7605+itbUVwIUgSfzLzMzExRdfjEceeQTHjh3T3Nfrr78Om82GcePG+T3OH//4R9hsNgwfPjzmz+mqq67CwoULY/44RNQ/iEyaoihBgzSRbWOQRkREMrYKFLJrr70WNTU1KCsrw69//WusXr0aP/3pTzXHfPjhh6ipqcGXX36JJ598El999RUmTZqEv/3tb5rj0tPTUVdXh+3bt2tuX7t2LYYNGxbz50JEFG1ywBWs5FH8niulEhGRjEFaAlEUBV1dXT3+L9hIr15KSgoKCwsxdOhQ3H777bjjjjvw9ttva44ZMGAACgsLMWLECMyfPx8ffvghpk+fjvvuu0/TaUlKSsLtt9+OtWvXqredPHkS//jHP3D77bcHPZedO3diypQpcLlcmDZtGvbu3et3zKFDhzBv3jxkZGSgoKAAd955J+rr6wF0ZwY//vhjPPvss2r278SJEyG9HrJ169Zh3LhxcLlcGDt2LFavXq3+bsaMGfj5z3+uOf7MmTNwOp346KOPwn5MIkosdrtdXWAn2OIh4vcM0oiISMZ90hKI2+3GihUrevxxFy9ejOTk5LD/PjU1Nehy7Ha7HY8++ihuuukm7NmzB9/4xjfU391333341re+hWeffRZpaWl4/fXXce2116KgoCDgfba2tuL666/Ht7/9bWzcuBHl5eV49NFHNcfU1NTgyiuvxAMPPIBVq1ahvb0dP/vZz3Drrbfi73//O5599lkcPXoUEyZMwPLlywEAAwcODOt1eOWVV/Cv//qveP755zFlyhTs3bsXDzzwANLT03HXXXfhjjvuwNNPP40VK1aoHbhNmzahoKAAV155ZViPSUSJyeFwwOPxMJNGRERhYSaNIrJz50784Q9/wHe+852gx44dOxYA/DJVkydPxsiRI/GnP/0JiqLg9ddfx7333hv0/n7/+9/D6/Vi7dq1uPjii3H99dfjscce0xyzZs0aXHrppXjyyScxduxYTJkyBWvXrsVHH32Eo0ePIjs7G8nJyUhLS0NhYSEKCwvD7iz96le/wsqVK3HzzTejtLQUN998M37yk5/gpZdeAgAsWLAAp06dwtatW9W/+cMf/oDbb7+d81GI+hh58ZBAOCeNiIiMMJOWQJxOJxYvXhyXxw3F//zP/yAjIwMejwdutxvz58/H7373u6B/J8oqjfbZuvfee7Fu3ToMGzYMLS0tmDdvHp5//vmA9yfmuckbgs+YMUNzzJ49e/DRRx8hIyPD7++//vprjB49Ouh5W3HmzBlUVVXhvvvuwwMPPKDe7vF4kJ2dDaA7Q3f11Vfj97//Pa644gqUl5dj+/btWLNmTVTOgYgSh9Vl+FnuSERERhikJRCbzRZR2WFPmT17NtasWQOn04ni4mLLQd5XX30FACgtLfX73R133IHHH38cy5Ytww9/+EMkJQX/aFqZS+fz+XDDDTfgqaee8vtdUVGRhbO2RnS0XnnlFUyfPl3zO7nzdccdd+DRRx/F7373O/zhD3/AxRdfjEmTJkXtPIgoMYjMWKAgTVEUljsSEZEhBmkUsvT0dFx00UUh/Y3P58Nzzz2H0tJSTJkyxe/3eXl5+Kd/+if88Y9/xIsvvmjpPsePH48NGzagvb0dqampAIDPPvtMc8yll16KzZs3Y/jw4aaBX3JysqVNZwMpKCjA4MGDUVZWhjvuuMP0uBtvvBEPPvgg3nvvPfzhD3/AnXfeGdHjElFiEkFXoHJH+XcsdyQiIhlbBYqJhoYG1NbWoqysDP/93/+N7373u9i5cydee+010xHj119/HfX19erctWDEXK777rsPhw4dwrvvvot///d/1xzzyCOP4OzZs/jBD36AnTt3oqysDB988AHuvfdeNTAbPnw4duzYgRMnTqC+vl7tOI0dOxZvvfWW5ee8bNkyrFixQl2MZP/+/Vi3bh1WrVqlHpOeno758+dj6dKl+OqrrzQrWP7whz+MS7krEUWflXJH+XfMpBERkYxBGsXEd7/7XRQVFWHixIn4+c9/jnHjxmHfvn2YPXu26d+kpqZiwIABlh8jIyMDf/7zn3Ho0CFMmTIFTzzxhF9ZY3FxMT799FN4vV5cc801mDBhAh599FFkZ2erI9c//elP4XA4MH78eAwcOBCVlZUAgCNHjqCpqcny+dx///149dVX8frrr2PixIm48sor8frrr/uVd95xxx348ssvccUVV2j2gqusrERNTY3lxyOixCWuL4HKssWAkLxkPxEREQDYlFA3ySLLmpubkZ2djaamJmRlZWl+19HRgfLycpSWlsLlcsXpDIlCx88uUXCHDh1CXV0dRhUXY/Af/qD95WOPAenpaG1txa5du+B0OjFr1qz4nCgREfWYQLGBHjNpREREUWZlCX4uv09ERGbYMhAREUWZlTlpXH6fiIjMMEgjIiKKMitL8HP5fSIiMsMgjYiIKMpE4HX+/HmcPXsWbrfb7xiWOxIRkRm2DET/X3t3Hldzvv8B/HU67YuypE6kRSj7kowiNRNlzXLJviTGDBczY5s7Lo1JY4sGU3cYlTGuZYRxQ6SxLxPRDGqUFDI1/SwJaVGf3x9u3+uoKDp18Ho+Hucxzvf7+X6/n8+7M+ec9/ksXyKialaapOXm5iI3N7fclWLZk0ZERBVhkkZERFTNjI2NIZPJXjg3jXPSiIioIpq1XQEiIqK3TZ06deDq6op7GRnIBfDkyZMyZdiTRkREFWFPGhERkQrIZDJoa2sDKL8njXPSiIioIvxkICIiUhEdHR0AT4c2CiGU9nG4IxERVYRJGlElREREwMTE5LXOYW1tjeDg4GqpDxG9GTQ1/zer4PneNA53JCKiijBJoyoZP348ZDIZZDIZtLS0YGtri1mzZuHRo0cAgPT0dGm/TCaDkZERWrVqhalTpyIlJUXpXBEREZDJZHBwcChzne3bt0Mmk8Ha2vqV6yqTybB79+4qH1deMuXj44Pk5ORKHV9RQnf27FlMnjy5yvUhojeXTCaTErXn56UxSSMiooowSaMq8/LyQmZmJq5du4aAgACEhIRg1qxZSmUOHTqEzMxM/PbbbwgMDERSUhLatWuH2NhYpXIGBgbIzs7G6dOnlbaHhYWhSZMmKm9LZenp6aFhw4avdQ5TU1Po6+tXU42I6E1R0QqPnJNGREQV4SeDGhFCoLi4uMYfz8+TeBkdHR2Ym5vD0tISI0eOxKhRo8r0WNWvXx/m5uawtbWFt7c3Dh06hC5dumDixIlKX1Q0NTUxcuRIhIWFSdsyMjJw5MgRjBw58oX1KCwsxLRp06BQKKCrqwtra2t8/fXXACD1wA0aNEipRy41NRXe3t4wMzODoaEhOnfujEOHDknndHNzw/Xr1/HJJ59IvYFA2d6x3377De7u7jAyMkKdOnXQqVMnnDt3DkeOHMGECRNw//596Xh/f3+pTs/20OXk5GDy5MkwMzODrq4uWrdujaioKADA9evX0b9/f9StWxcGBgZo1aoV9u3b99K/DRGpn4qSNM5JIyKiinAJfjVSUlKC48eP1/h1u3fv/lpfEvT09FBUVPTCMhoaGpgxYwYGDRqE+Ph4ODk5SfsmTpwIV1dXfPPNN9DX10dERAS8vLxgZmb2wnOuXr0ae/bswfbt29GkSRPcvHkTN2/eBPB0aGHDhg0RHh4OLy8vqX0PHz5Enz59EBAQAF1dXWzcuBH9+/fHlStX0KRJE+zcuRPt2rXD5MmTMWnSpAqvPWrUKHTo0AGhoaGQy+VISEiAlpYWnJ2dERwcjAULFuDKlSsAAENDwzLHl5SUoHfv3njw4AF+/PFHNG3aFImJiVI9p06disLCQhw7dgwGBgZITEws9zxEpP443JGIiKqq1nvSQkJCYGNjA11dXXTq1OmlScq3334LBwcH6OnpoUWLFvjhhx+U9hcVFWHRokVo2rQpdHV10a5dO0RHR5c5z61btzB69GjUr18f+vr6aN++PeLj46X9z869Kn2899571dPot0hcXBz+/e9/44MPPnhpWXt7ewBP5609q3379mjatCl27NgBIQQiIiLg6+v70vPduHEDzZo1Q7du3WBlZYVu3bphxIgRAJ4OLQQAExMTmJubS8/btWuHDz/8EG3atEGzZs0QEBAAW1tb7NmzBwBQr149yOVyGBkZwdzcHObm5hVe28PDA/b29mjWrBmGDh2Kdu3aQVtbW7qJbenx5SVXhw4dQlxcHHbu3ImePXvC1tYW/fr1Q+/evaXzu7i4oE2bNtI+V1fXl8aEiNQPhzsSEVFV1WpP2rZt2zBz5kyEhITAxcUF3333HXr37o3ExMRy5yOFhobi888/x/r169G5c2fExcVh0qRJqFu3Lvr37w8AmD9/Pn788UesX78e9vb2OHDgAAYNGoRTp06hQ4cOAIB79+7BxcUF7u7u2L9/Pxo2bIjU1NQyiz14eXkhPDxcel56vxtV0dDQQPfu3VV6jYquWxVRUVEwNDTEkydPUFRUBG9vb6xZs+alx5UOqywdQvgsX19fhIeHo0mTJlJv19q1a194vvHjx6Nnz55o0aIFvLy80K9fP/Tq1euFxzx69AhffvkloqKi8Oeff+LJkyd4/Pgxbty48dL6P+vTTz+Fn58fNm3aBA8PDwwdOhRNmzat9PEJCQlo3LgxmjdvXu7+6dOn46OPPsLBgwfh4eGBIUOGoG3btlWqIxGph5claexJIyKi59Xqz3crV67ExIkT4efnBwcHBwQHB8PS0hKhoaHllt+0aRM+/PBD+Pj4wNbWFsOHD8fEiROxdOlSpTL/+Mc/0KdPH9ja2uKjjz6Cp6cngoKCpDJLly6FpaUlwsPD4eTkBGtra3zwwQdlvmSXzr0qfdSrV081gfgvmUwGuVxe44/ykqYXcXd3R0JCAq5cuYL8/Hzs3LmzUotqJCUlAQBsbGzK7Bs1ahTOnDkDf39/jB07VmnZ6op07NgRaWlp+Oqrr/D48WMMGzYMf/vb3154zOzZsxEZGYnFixfj+PHjSEhIQJs2bVBYWPjS6z3L398fly9fRt++ffHLL7+gZcuW2LVrV6WP19PTe+F+Pz8/XLt2DWPGjMHFixfh6OhYqUSYiNQP56QREVFV1VqSVlhYiPj4+DI9H7169cKpU6fKPaagoAC6urpK2/T09BAXFyfNiaqozIkTJ6Tne/bsgaOjI4YOHYqGDRuiQ4cOWL9+fZnrHTlyBA0bNkTz5s0xadIkZGdnv7BNBQUFyM3NVXq8jQwMDGBnZwcrKytoaWlV6piSkhKsXr0aNjY2Uo/ms+rVq4cBAwbg6NGjlRrqWKpOnTrw8fHB+vXrsW3bNkRGRuLu3bsAAC0trTJfio4fP47x48dj0KBBaNOmDczNzcsMv9TW1i5zXHmaN2+OTz75BAcPHsTgwYOlXtfKHN+2bVtkZGS8cFl/S0tLTJkyBTt37sRnn31W7muUiNQf56QREVFV1VqSdvv2bRQXF5dZHMLMzAxZWVnlHuPp6Ynvv/8e8fHxEELg3LlzCAsLQ1FREW7fvi2VWblyJVJSUlBSUoKYmBj8/PPPyMzMlM5z7do1hIaGolmzZjhw4ACmTJmC6dOnK81v6927NzZv3oxffvkFQUFBOHv2LN5//30UFBRU2Kavv/4axsbG0sPS0vJ1QvRGu3PnDrKysnDt2jXs2bMHHh4eiIuLw4YNGyr8QhIREYHbt29Lc9deZtWqVdi6dSv++OMPJCcn46effoK5ubk0bNXa2hqxsbHIysrCvXv3AAB2dnbYuXMnEhIS8Ntvv2HkyJHSr9mlrK2tcezYMdy6dUt6XT3r8ePHmDZtGo4cOYLr16/j5MmTOHv2rHS/N2trazx8+BCxsbG4ffs28vLyypyjR48ecHV1xZAhQxATE4O0tDTs379fmj85c+ZMHDhwAGlpaTh//jx++eWXcu8nR0Tqr/Q9Twih9H7DOWlERFSRWv9keH6onRCiwuF3//znP9G7d2+899570NLSgre3N8aPHw/gfx+C33zzDZo1awZ7e3toa2tj2rRpmDBhglJiUFJSgo4dOyIwMBAdOnTAhx9+iEmTJikNs/Tx8UHfvn3RunVr9O/fH/v370dycjL27t1bYVs+//xz3L9/X3qUrjT4LvLw8IBCoUCbNm0wb948ODg44Pfff4e7u3uFx+jp6aF+/fqVvoahoSGWLl0KR0dHdO7cGenp6di3b5/0hScoKAgxMTGwtLSUeu9WrVqFunXrwtnZGf3794enpyc6duyodN5FixYhPT0dTZs2lRYceZZcLsedO3cwduxYNG/eHMOGDUPv3r3x5ZdfAgCcnZ0xZcoU+Pj4wNTUFMuWLSu3/pGRkejcuTNGjBiBli1bYs6cOdKXtuLiYkydOhUODg7w8vJCixYtEBISUunYEJH60NDQkD7XCgoKcP36dRQWFkrzdNmTRkREz5OJqt4kq5oUFhZCX18fP/30EwYNGiRtnzFjBhISEnD06NEKjy0qKsJff/0FhUKBdevWYe7cucjJyVH6NTI/Px937tyBhYUF5s2bh6ioKFy+fBkAYGVlhZ49e+L777+XyoeGhiIgIAC3bt2q8LrNmjWDn58f5s6dW6k25ubmwtjYGPfv30edOnWU9uXn5yMtLU1a2ZLoTcHXLlEVPHoELF+OjIwMPHnyBDKZDNeHDUOj5s2lH/JcXV3Zm0ZE9A54UW7wvFr7VNDW1kanTp0QExOjtD0mJgbOzs4vPFZLSwuNGzeGXC7H1q1b0a9fvzIfcLq6umjUqBGePHmCyMhIeHt7S/tcXFyke1iVSk5OhpWVVYXXvHPnDm7evAmFQlHZJhIREQH437y00t9FHz58KO2r6uJNRET09qvVJfg//fRTjBkzBo6OjujatSvWrVuHGzduYMqUKQCeDh+8deuWNFcsOTkZcXFx6NKlC+7du4eVK1fi0qVL2Lhxo3TOX3/9Fbdu3UL79u1x69Yt+Pv7o6SkBHPmzJHKfPLJJ3B2dkZgYCCGDRuGuLg4rFu3DuvWrQPw9MPT398fQ4YMgUKhQHp6Ov7xj3+gQYMGSr1+RERElfH8kMbSJO1VVtglIqK3X60maT4+Prhz5w4WLVqEzMxMtG7dGvv27ZN6tDIzM5XuX1VcXIygoCBcuXIFWlpacHd3x6lTp2BtbS2Vyc/Px/z583Ht2jUYGhqiT58+2LRpk9I90Dp37oxdu3bh888/x6JFi2BjY4Pg4GCMGjUKwNMPzYsXL+KHH35ATk4OFAoF3N3dsW3bNhgZGdVIbIiI6O1RuhJu6X9LVyTmfDQiIipPrc1JexdwThq9jfjaJaqC/85JKykpwePHj6Gjo4NTLi4o+e+9EvX09NClS5dariQREdWEqsxJq9WeNCIioneBhoYGDAwMADydn1b4zHYiIqLn8dOBiIioBun9txcN4HBHIiIqH5M0IiKiGvTsMGEmaUREVB4maURERDXo2Z40DnckIqLy8NOBiIioBrEnjYiIXoZJGtEz1q1bB0tLS2hoaCA4OLi2q0NEbyEmaURE9DJM0qjKsrKy8Pe//x22trbQ0dGBpaUl+vfvj9jY2NquWrkiIiKU7pNXkdzcXEybNg1z587FrVu3MHnyZNVXjojeOVw4hIiIXoZL8KsLIYC8vNq7vr4+IJO9tFh6ejpcXFxgYmKCZcuWoW3btigqKsKBAwcwdepU/PHHH690+aKiIukmr5XZrgo3btxAUVER+vbtC4VCUW6ZmqwPEb2dtLW1oaGhgZKSEs5JIyKicjFJUxd5ecDy5bV3/dmzgf/ew+dFPv74Y8hkMsTFxUn3/AGAVq1awdfXV3p+48YN/P3vf0dsbCw0NDTg5eWFNWvWwMzMDADg7++P3bt3Y/r06QgICEB6ejqKi4uhoaGB0NBQ7N+/H4cOHcKsWbPw5Zdf4j//+Q/8/f1x+fJlWFhYYNy4cfjiiy+gqfn0JZyTk4M5c+bg559/xv3792FnZ4clS5bA0NAQEyZMAADI/puELly4EP7+/krtioiIkMrZ2toCANLS0hAREVFuPXNzczF79mzs3r0b+fn5cHR0xKpVq9CuXTvpnEuWLMGqVauQl5eHYcOGwdTUFNHR0UhISAAAuLm5oX379krDKgcOHAgTExNEREQAAAoLCzF//nxs3rwZOTk5aN26NZYuXQo3Nzep3jNnzsS2bdswc+ZM3Lx5E926dUN4eLhSohkWFoagoCBcvXoV9erVw5AhQ7B27Vr4+voiOzsbUVFRUtknT56gcePGCAwMVPqbElH1kMlk0NXVRV5eHnvSiIioXPwJjyrt7t27iI6OxtSpU5UStFKlQwqFEBg4cCDu3r2Lo0ePIiYmBqmpqfDx8VEqf/XqVWzfvh2RkZFS4gI8TaK8vb1x8eJF+Pr64sCBAxg9ejSmT5+OxMREfPfdd4iIiMDixYsBACUlJejduzdOnTqFH3/8EYmJiViyZAnkcjmcnZ0RHByMOnXqIDMzE5mZmZg1a1aZuvv4+ODQoUMAgLi4OGRmZsLS0rLCevbt2xdZWVnYt28f4uPj0bFjR3zwwQe4e/cuAGD79u1YuHAhFi9ejHPnzkGhUCAkJKTKMZ8wYQJOnjyJrVu34vfff8fQoUPh5eWFlJQUqUxeXh5WrFiBTZs24dixY7hx44ZSG0NDQzF16lRMnjwZFy9exJ49e2BnZwcA8PPzQ3R0NDIzM6Xy+/btw8OHDzFs2LAq15eIKqd0yCOTNCIiKg970qjSrl69CiEE7O3tX1ju0KFD+P3335GWliYlOps2bUKrVq1w9uxZdO7cGcDTXqJNmzbB1NRU6fiRI0cq9eCMGTMG8+bNw7hx4wA87en66quvMGfOHCxcuBCHDh1CXFwckpKS0Lx5c6lMKWNjY8hkMpibm1dYZz09PdSvXx8AYGpqqlT2+Xr+8ssvuHjxIrKzs6GjowMAWLFiBXbv3o0dO3Zg8uTJCA4Ohq+vL/z8/AAAAQEBOHToEPLz818Yu2elpqZiy5YtyMjIgIWFBQBg1qxZiI6ORnh4OAIDAwE8HYL5r3/9C02bNgUATJs2DYsWLZLOExAQgM8++wwzZsyQtpX+DZydndGiRQts2rQJc+bMAQCEh4dj6NChMDQ0rHRdiahqShcoev79j4iICGCSRlUghADwv2GDFUlKSoKlpaWUoAFAy5YtYWJigqSkJClBsLKyKvcLiqOjo9Lz+Ph4nD17Vuo5A4Di4mLk5+cjLy8PCQkJaNy4sZSgVbfn6xkfH4+HDx9KSV2px48fIzU1FcDTGEyZMkVpf9euXXH48OFKX/f8+fMQQpRpV0FBgdK19fX1pQQNABQKBbKzswEA2dnZ+PPPP/HBBx9UeB0/Pz+sW7cOc+bMQXZ2Nvbu3au2i8AQvS1MTEwqtaARERG9m5ikqQt9/afzwmrz+i/RrFkzyGQyJCUlYeDAgRWWE0KUm8g9v728IZPlbS8pKcGXX36JwYMHlymrq6urtFKaKpRXH4VCgSNHjpQpW5UvXRoaGlLiW6qoqEjpOnK5HPHx8WWGRD3by/X8QiYymUw6b2ViM3bsWMybNw+nT5/G6dOnYW1tje7du1e6HURERERUvZikqQuZrFILd9SmevXqwdPTE99++y2mT59eJnnJycmBiYkJWrZsiRs3buDmzZtSb1piYiLu378PBweHKl+3Y8eOuHLlijSP6nlt27ZFRkYGkpOTy+1N09bWRnFxcZWv+6L6ZGVlQVNTE9bW1uWWcXBwwJkzZzB27Fhp25kzZ5TKmJqaKs0FKy4uxqVLl+Du7g4A6NChA4qLi5Gdnf3KSZORkRGsra0RGxsrnfd59evXx8CBAxEeHo7Tp09LC6gQERERUe3gwiFUJSEhISguLoaTkxMiIyORkpKCpKQkrF69Gl27dgUAeHh4oG3bthg1ahTOnz+PuLg4jB07Fj169CgzlLEyFixYgB9++EFa3TEpKQnbtm3D/PnzAQA9evSAq6srhgwZgpiYGKSlpWH//v2Ijo4GAFhbW+Phw4eIjY3F7du3kfeatzrw8PBA165dMXDgQBw4cADp6ek4deoU5s+fj3PnzgEAZsyYgbCwMISFhSE5ORkLFy7E5cuXlc7z/vvvY+/evdi7dy/++OMPfPzxx8jJyZH2N2/eHKNGjcLYsWOxc+dOpKWl4ezZs1i6dCn27dtX6fr6+/sjKCgIq1evRkpKCs6fP481a9YolfHz88PGjRuRlJQkzf0jIiIiotrBJI2qxMbGBufPn4e7uzs+++wztG7dGj179kRsbCxCQ0MBPB1ut3v3btStWxeurq7w8PCAra0ttm3b9krX9PT0RFRUFGJiYtC5c2e89957WLlyJaysrKQykZGR6Ny5M0aMGIGWLVtizpw5Uu+Zs7MzpkyZAh8fH5iammLZsmWvFQOZTIZ9+/bB1dUVvr6+aN68OYYPH4709HTpFgM+Pj5YsGAB5s6di06dOuH69ev46KOPlM7j6+uLcePGSQmsjY1Nmd6u8PBwjB07Fp999hlatGiBAQMG4Ndff1Wa7/cy48aNQ3BwMEJCQtCqVSv069dPaXVI4GniqVAo4OnpKS1SQkRERES1QyaenxRD1SY3NxfGxsa4f/8+6tSpo7QvPz8faWlpsLGxga6ubi3VkGpS6b3hnr3dgLrIy8uDhYUFwsLCyp379yy+domq4NGjsvfArOR9KYmI6O3yotzgeZyTRvQOKykpQVZWFoKCgmBsbIwBAwbUdpWIiIiI3nlM0ojeYTdu3ICNjQ0aN26MiIgIaGryLYGIiIiotvEbGVEN8ff3h7+/f21XQ4m1tXWZ2wAQERERUe3iwiFERERERERqhElaLWMvBr1p+JolIiIiUi0mabVES0sLAF77nl1ENa30NVv6GiYiIiKi6sU5abVELpfDxMQE2dnZAAB9fX3IZLJarhVRxYQQyMvLQ3Z2NkxMTCCXy2u7SkRERERvJSZptcjc3BwApESN6E1gYmIivXaJiIiIqPoxSatFMpkMCoUCDRs2RFFRUW1Xh+iltLS02INGREREpGJM0tSAXC7nF18iIiIiIgLAhUOIiIiIiIjUCpM0IiIiIiIiNcIkjYiIiIiISI1wTpoKld70Nzc3t5ZrQkREteLRI6CgQHlbbi5QXFw79SEiolpTmhOU5ggvIhOVKUWvJCMjA5aWlrVdDSIiIiIiUhM3b95E48aNX1iGSZoKlZSU4M8//4SRkVGN36g6NzcXlpaWuHnzJurUqVOj137bMbaqxfiqDmOrWoyv6jC2qsPYqhbjqzpvYmyFEHjw4AEsLCygofHiWWcc7qhCGhoaL82SVa1OnTpvzAv3TcPYqhbjqzqMrWoxvqrD2KoOY6tajK/qvGmxNTY2rlQ5LhxCRERERESkRpikERERERERqREmaW8pHR0dLFy4EDo6OrVdlbcOY6tajK/qMLaqxfiqDmOrOoytajG+qvO2x5YLhxAREREREakR9qQRERERERGpESZpREREREREaoRJGhERERERkRphkkZERERERKRGmKS9IUJCQmBjYwNdXV106tQJx48fr7Ds+PHjIZPJyjxatWollSkqKsKiRYvQtGlT6Orqol27doiOjq6JpqilqsQXADZv3ox27dpBX18fCoUCEyZMwJ07d5TKREZGomXLltDR0UHLli2xa9cuVTZBbVV3bC9fvowhQ4bA2toaMpkMwcHBKm6Beqvu+K5fvx7du3dH3bp1UbduXXh4eCAuLk7VzVBL1R3bnTt3wtHRESYmJjAwMED79u2xadMmVTdDLaniPbfU1q1bIZPJMHDgQBXU/M1Q3fGNiIgo93tFfn6+qpuidlTx2s3JycHUqVOhUCigq6sLBwcH7Nu3T5XNUFvVHV83N7dyX7t9+/ZVdVNenyC1t3XrVqGlpSXWr18vEhMTxYwZM4SBgYG4fv16ueVzcnJEZmam9Lh586aoV6+eWLhwoVRmzpw5wsLCQuzdu1ekpqaKkJAQoaurK86fP19DrVIfVY3v8ePHhYaGhvjmm2/EtWvXxPHjx0WrVq3EwIEDpTKnTp0ScrlcBAYGiqSkJBEYGCg0NTXFmTNnaqpZakEVsY2LixOzZs0SW7ZsEebm5mLVqlU11Br1o4r4jhw5Unz77bfiwoULIikpSUyYMEEYGxuLjIyMmmqWWlBFbA8fPix27twpEhMTxdWrV0VwcLCQy+UiOjq6ppqlFlQR21Lp6emiUaNGonv37sLb21vFLVFPqohveHi4qFOnjtJ3i8zMzJpqktpQRWwLCgqEo6Oj6NOnjzhx4oRIT08Xx48fFwkJCTXVLLWhivjeuXNH6TV76dIlIZfLRXh4eA216tUxSXsDODk5iSlTpihts7e3F/PmzavU8bt27RIymUykp6dL2xQKhVi7dq1SOW9vbzFq1KjXr/AbpqrxXb58ubC1tVXatnr1atG4cWPp+bBhw4SXl5dSGU9PTzF8+PBqqvWbQRWxfZaVldU7naSpOr5CCPHkyRNhZGQkNm7c+PoVfoPURGyFEKJDhw5i/vz5r1fZN4yqYvvkyRPh4uIivv/+ezFu3Lh3NklTRXzDw8OFsbFxtdf1TaOK2IaGhgpbW1tRWFhY/RV+w9TE++6qVauEkZGRePjw4etXWMU43FHNFRYWIj4+Hr169VLa3qtXL5w6dapS59iwYQM8PDxgZWUlbSsoKICurq5SOT09PZw4ceL1K/0GeZX4Ojs7IyMjA/v27YMQAn/99Rd27Nih1HV++vTpMuf09PSs9N/sbaCq2NJTNRXfvLw8FBUVoV69etVaf3VWE7EVQiA2NhZXrlyBq6trtbdBXakytosWLYKpqSkmTpyosvqrO1XG9+HDh7CyskLjxo3Rr18/XLhwQWXtUEeqiu2ePXvQtWtXTJ06FWZmZmjdujUCAwNRXFys0vaom5r6TNuwYQOGDx8OAwODaq2/KjBJU3O3b99GcXExzMzMlLabmZkhKyvrpcdnZmZi//798PPzU9ru6emJlStXIiUlBSUlJYiJicHPP/+MzMzMaq2/unuV+Do7O2Pz5s3w8fGBtrY2zM3NYWJigjVr1khlsrKyXvlv9rZQVWzpqZqK77x589CoUSN4eHhUa/3VmSpje//+fRgaGkJbWxt9+/bFmjVr0LNnT5W1Rd2oKrYnT57Ehg0bsH79epXWX92pKr729vaIiIjAnj17sGXLFujq6sLFxQUpKSkqbY86UVVsr127hh07dqC4uBj79u3D/PnzERQUhMWLF6u0PeqmJj7T4uLicOnSpTLfidUVk7Q3hEwmU3ouhCizrTwREREwMTEpM4H6m2++QbNmzWBvbw9tbW1MmzYNEyZMgFwur85qvzGqEt/ExERMnz4dCxYsQHx8PKKjo5GWloYpU6a88jnfZqqILf2PKuO7bNkybNmyBTt37izT8/4uUEVsjYyMkJCQgLNnz2Lx4sX49NNPceTIEVU1QW1VZ2wfPHiA0aNHY/369WjQoIHK6/4mqO7X7nvvvYfRo0ejXbt26N69O7Zv347mzZu/kz+gVXdsS0pK0LBhQ6xbtw6dOnXC8OHD8cUXXyA0NFSl7VBXqvxM27BhA1q3bg0nJ6dqr7cqaNZ2BejFGjRoALlcXuZXhOzs7DK/NjxPCIGwsDCMGTMG2traSvtMTU2xe/du5Ofn486dO7CwsMC8efNgY2NT7W1QZ68S36+//houLi6YPXs2AKBt27YwMDBA9+7dERAQAIVCAXNz81f6m71NVBVbekrV8V2xYgUCAwNx6NAhtG3bVnUNUUOqjK2Ghgbs7OwAAO3bt0dSUhK+/vpruLm5qa5BakQVsf3rr7+Qnp6O/v37S8eUlJQAADQ1NXHlyhU0bdpURS1SLzX1vquhoYHOnTu/Uz1pqoqtQqGAlpaW0o/kDg4OyMrKQmFhYZnvb28rVb928/LysHXrVixatEh1jahm7ElTc9ra2ujUqRNiYmKUtsfExMDZ2fmFxx49ehRXr1594fh8XV1dNGrUCE+ePEFkZCS8vb2rpd5vileJb15eHjQ0lP/XKX1zFUIAALp27VrmnAcPHnzp3+xtoqrY0lOqjO/y5cvx1VdfITo6Go6OjtVcc/VXk69dIQQKCgpes8ZvDlXE1t7eHhcvXkRCQoL0GDBgANzd3ZGQkABLS0vVNEYN1dRrVwiBhISEd+qHM1XF1sXFBVevXpV+WACA5ORkKBSKdyZBA1T/2t2+fTsKCgowevToaqy1itXE6iT0ekqXJN2wYYNITEwUM2fOFAYGBtJqjfPmzRNjxowpc9zo0aNFly5dyj3nmTNnRGRkpEhNTRXHjh0T77//vrCxsRH37t1TZVPUUlXjGx4eLjQ1NUVISIhITU0VJ06cEI6OjsLJyUkqc/LkSSGXy8WSJUtEUlKSWLJkyTu9BH91xragoEBcuHBBXLhwQSgUCjFr1ixx4cIFkZKSUuPtq22qiO/SpUuFtra22LFjh9KyxQ8ePKjx9tUmVcQ2MDBQHDx4UKSmpoqkpCQRFBQkNDU1xfr162u8fbVJFbF93ru8uqMq4uvv7y+io6NFamqquHDhgpgwYYLQ1NQUv/76a423rzapIrY3btwQhoaGYtq0aeLKlSsiKipKNGzYUAQEBNR4+2qbKt8bunXrJnx8fGqsLdWBSdob4ttvvxVWVlZCW1tbdOzYURw9elTaN27cONGjRw+l8jk5OUJPT0+sW7eu3PMdOXJEODg4CB0dHVG/fn0xZswYcevWLVU2Qa1VNb6rV68WLVu2FHp6ekKhUIhRo0aVuY/UTz/9JFq0aCG0tLSEvb29iIyMrImmqJ3qjm1aWpoAUObx/HneFdUdXysrq3Lj++x9Ft8V1R3bL774QtjZ2QldXV1Rt25d0bVrV7F169aaao5aUcV77rPe5SRNiOqP78yZM0WTJk2Etra2MDU1Fb169RKnTp2qqeaoFVW8dk+dOiW6dOkidHR0hK2trVi8eLF48uRJTTRH7agivleuXBEAxMGDB2uiCdVGJgTHEBEREREREakLzkkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiIiIiEiNMEkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiOgtUVhYCDs7O5w8ebJazxsVFYUOHTqgpKSkWs9LRETlY5JGRERqafz48ZDJZGUeV69ere2qqa1169bBysoKLi4u0jaZTIbdu3eXKTt+/HgMHDiwUuft168fZDIZ/v3vf1dTTYmI6EWYpBERkdry8vJCZmam0sPGxqZMucLCwlqonfpZs2YN/Pz8VHLuCRMmYM2aNSo5NxERKWOSRkREaktHRwfm5uZKD7lcDjc3N0ybNg2ffvopGjRogJ49ewIAEhMT0adPHxgaGsLMzAxjxozB7du3pfM9evQIY8eOhaGhIRQKBYKCguDm5oaZM2dKZcrreTIxMUFERIT0/NatW/Dx8UHdunVRv359eHt7Iz09Xdpf2ku1YsUKKBQK1K9fH1OnTkVRUZFUpqCgAHPmzIGlpSV0dHTQrFkzbNiwAUII2NnZYcWKFUp1uHTpEjQ0NJCamlpurM6fP4+rV6+ib9++VYwykJ6eXm6vpZubm1RmwIABiIuLw7Vr16p8fiIiqhomaURE9EbauHEjNDU1cfLkSXz33XfIzMxEjx490L59e5w7dw7R0dH466+/MGzYMOmY2bNn4/Dhw9i1axcOHjyII0eOID4+vkrXzcvLg7u7OwwNDXHs2DGcOHEChoaG8PLyUurRO3z4MFJTU3H48GFs3LgRERERSone2LFjsXXrVqxevRpJSUn417/+BUNDQ8hkMvj6+iI8PFzpumFhYejevTuaNm1abr2OHTuG5s2bo06dOlVqDwBYWloq9VZeuHAB9evXh6urq1TGysoKDRs2xPHjx6t8fiIiqhrN2q4AERFRRaKiomBoaCg97927N3766ScAgJ2dHZYtWybtW7BgATp27IjAwEBpW1hYGCwtLZGcnAwLCwts2LABP/zwg9TztnHjRjRu3LhKddq6dSs0NDTw/fffQyaTAQDCw8NhYmKCI0eOoFevXgCAunXrYu3atZDL5bC3t0ffvn0RGxuLSZMmITk5Gdu3b0dMTAw8PDwAALa2ttI1JkyYgAULFiAuLg5OTk4oKirCjz/+iOXLl1dYr/T0dFhYWJS7b8SIEZDL5UrbCgoKpF43uVwOc3NzAEB+fj4GDhyIrl27wt/fX+mYRo0aKfUYEhGRajBJIyIiteXu7o7Q0FDpuYGBgfRvR0dHpbLx8fE4fPiwUlJXKjU1FY8fP0ZhYSG6du0qba9Xrx5atGhRpTrFx8fj6tWrMDIyUtqen5+vNBSxVatWSomRQqHAxYsXAQAJCQmQy+Xo0aNHuddQKBTo27cvwsLC4OTkhKioKOTn52Po0KEV1uvx48fQ1dUtd9+qVaukZLDU3LlzUVxcXKbsxIkT8eDBA8TExEBDQ3nAjZ6eHvLy8iqsAxERVQ8maUREpLYMDAxgZ2dX4b5nlZSUoH///li6dGmZsgqFAikpKZW6pkwmgxBCaduzc8lKSkrQqVMnbN68ucyxpqam0r+1tLTKnLd0CXs9Pb2X1sPPzw9jxozBqlWrEB4eDh8fH+jr61dYvkGDBlIS+Dxzc/MycTQyMkJOTo7StoCAAERHRyMuLq5MEgoAd+/eVWojERGpBpM0IiJ6K3Ts2BGRkZGwtraGpmbZjzc7OztoaWnhzJkzaNKkCQDg3r17SE5OVurRMjU1RWZmpvQ8JSVFqfeoY8eO2LZtGxo2bPhK878AoE2bNigpKcHRo0fL9HCV6tOnDwwMDBAaGor9+/fj2LFjLzxnhw4dEBoaCiGENAyzKiIjI7Fo0SLs37+/3HlvpT2FHTp0qPK5iYioarhwCBERvRWmTp2Ku3fvYsSIEdIqhAcPHoSvry+Ki4thaGiIiRMnYvbs2YiNjcWlS5cwfvz4MkP63n//faxduxbnz5/HuXPnMGXKFKVesVGjRqFBgwbw9vbG8ePHkZaWhqNHj2LGjBnIyMioVF2tra0xbtw4+Pr6Yvfu3UhLS8ORI0ewfft2qYxcLsf48ePx+eefw87OTmmYZnnc3d3x6NEjXL58uQpRe+rSpUsYO3Ys5s6di1atWiErKwtZWVm4e/euVObMmTPQ0dF5aT2IiOj1MUkjIqK3goWFBU6ePIni4mJ4enqidevWmDFjBoyNjaVEbPny5XB1dcWAAQPg4eGBbt26oVOnTkrnCQoKgqWlJVxdXTFy5EjMmjVLaZihvr4+jh07hiZNmmDw4MFwcHCAr68vHj9+XKWetdDQUPztb3/Dxx9/DHt7e0yaNAmPHj1SKjNx4kQUFhbC19f3peerX78+Bg8eXO4wzJc5d+4c8vLyEBAQAIVCIT0GDx4sldmyZQtGjRr1wiGXRERUPWTi+YH3RERE7xA3Nze0b98ewcHBtV2VMk6ePAk3NzdkZGTAzMzspeUvXrwIDw+Pchc2eR3/93//B3t7e5w7d67cm4kTEVH1Yk8aERGRmikoKMDVq1fxz3/+E8OGDatUggY8neu2bNmyal8mPy0tDSEhIUzQiIhqCBcOISIiUjNbtmzBxIkT0b59e2zatKlKx44bN67a6+Pk5AQnJ6dqPy8REZWPwx2JiIiIiIjUCIc7EhERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqZH/B5kQnyGaY1xiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.stats import phase_dispersion_detection_level, phase_dispersion_probability\n", + "\n", + "# number of trials (the number of independent frequencies)\n", + "# we searched over\n", + "ntrial = int((frequencies[-1] - frequencies[0]) / df_min)\n", + "\n", + "# number of time bins in the light curve\n", + "nsamples = len(lc.time)\n", + "\n", + "pdm_det_level = phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=ntrial)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(pdm_det_level, label='PDM det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, pdmstat, color='gray', label='PDM statistics', alpha=0.5)\n", + "\n", + "#for c in cand_freqs_ef:\n", + "# plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "#for c in cand_freqs_z:\n", + "# plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's also calculate the significance of the deepest dip:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The probability of the minimum at 0.8313536003155265 Hz is: p = 4.221416326686607e-15\n" + ] + } + ], + "source": [ + "min_idx = np.argmin(pdmstat)\n", + "\n", + "pval = phase_dispersion_probability(pdmstat[min_idx], nsamples, nbin, ntrial=ntrial)\n", + "\n", + "print(f\"The probability of the minimum at {freq[min_idx]} Hz is: p = {pval}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb.txt b/_sources/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb.txt new file mode 100644 index 000000000..9f8ed18fa --- /dev/null +++ b/_sources/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb.txt @@ -0,0 +1,910 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import epoch_folding_search, z_n_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulate a dataset\n", + "\n", + "Let us simulate a pulsar: we create a sinusoidal light curve and use Stingray's event simulator (in `Eventlist.simulate_times`) to simulate an event list with that light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 3000\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.events import EventList\n", + "\n", + "# use the light curve above to simulate an event list for this pulsar.\n", + "events = EventList()\n", + "events.simulate_times(lc)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pulsation search with epoch folding.\n", + "\n", + "Let us assume we have already an estimate of the pulse period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the epoch folding.\n", + "\n", + "Epoch folding consists of cutting the light curve at every pulse period and summing up all the intervals obtained in this way. We get an average pulse profile. In this example, where the pulse was plotted twice for visual clarity. If the candidate pulse frequency was even slightly incorrect, we would have obtained a much shallower pulse profile, or no pulse profile at all." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHlElEQVR4nO3de3wU9b3/8feQbG4ISwgmISVEPGq4eilRCMd6OYmAgqitpRSboiKKVRELVvFS0cMp1iNiBRWlKFXUtFSweDkRUgH1xz1ACxXRVkWohKgNGyEhWZL5/UFZXXPb3ex3r6/n45HHg+x8Z/OdYfLZvGe+8x3Ltm1bAAAAAICg6hTuDgAAAABALCJsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGK4OxAtmpqa9Nlnn6lLly6yLCvc3QEAAAAQJrZt66uvvlJOTo46dWr9+hVhy0efffaZcnNzw90NAAAAABFi79696tWrV6vLCVs+6tKli6RjO7Rr165h7g0AAACAcKmpqVFubq4nI7SGsOWj40MHu3btStgCAAAA0O7tRUyQAQAAAAAGELYAAAAAwICwhq2ZM2fKsiyvr+zsbEmS2+3WHXfcoUGDBqlz587KycnRT3/6U3322Wde71FfX69bbrlFPXr0UOfOnTVmzBjt27fPq011dbVKSkrkdDrldDpVUlKigwcPhmozAQAAAMShsF/ZGjBggPbv3+/52rFjhySptrZWW7du1b333qutW7dq2bJl+uCDDzRmzBiv9adOnarly5ertLRU7777rg4dOqTRo0ersbHR02b8+PHavn27ysrKVFZWpu3bt6ukpCSk2wkAAAAgvoR9gozExETP1axvcjqdWrVqlddr8+bN0znnnKNPP/1UvXv3lsvl0qJFi/T888+ruLhYkrRkyRLl5uaqvLxcI0aM0K5du1RWVqYNGzZoyJAhkqSFCxeqsLBQu3fvVn5+vvmNBAAAABB3wn5l68MPP1ROTo769OmjcePG6aOPPmq1rcvlkmVZ6tatmySpoqJCbrdbw4cP97TJycnRwIEDtW7dOknS+vXr5XQ6PUFLkoYOHSqn0+lp05L6+nrV1NR4fQEAAACAr8IatoYMGaLnnntOb775phYuXKjKykoNGzZMX375ZbO2R44c0Z133qnx48d7pl6vrKxUUlKS0tPTvdpmZWWpsrLS0yYzM7PZ+2VmZnratGT27Nmee7ycTicPNAYAAADgl7CGrYsvvlg/+MEPNGjQIBUXF+v111+XJP3ud7/zaud2uzVu3Dg1NTXpiSeeaPd9bdv2mvO+pfnvv93m22bMmCGXy+X52rt3r6+bBQAAAADhH0b4TZ07d9agQYP04Ycfel5zu90aO3asPv74Y61atcrrgcLZ2dlqaGhQdXW11/tUVVUpKyvL0+bAgQPNftbnn3/uadOS5ORkzwOMeZAxAAAAAH9FVNiqr6/Xrl271LNnT0lfB60PP/xQ5eXlysjI8Go/ePBgORwOr4k09u/fr507d2rYsGGSpMLCQrlcLm3atMnTZuPGjXK5XJ42AAAAABBsYZ2NcPr06br00kvVu3dvVVVVadasWaqpqdGECRN09OhRXXnlldq6datee+01NTY2eu6x6t69u5KSkuR0OjVx4kRNmzZNGRkZ6t69u6ZPn+4ZlihJ/fr108iRIzVp0iQ99dRTkqTrr79eo0ePZiZCAAAAAMaENWzt27dPP/7xj/XFF1/oxBNP1NChQ7Vhwwbl5eXpk08+0YoVKyRJZ555ptd6q1ev1gUXXCBJmjt3rhITEzV27FjV1dWpqKhIixcvVkJCgqf9Cy+8oClTpnhmLRwzZozmz58fkm0EAAAAEJ8s27btcHciGtTU1MjpdMrlcnH/FgAAABDHfM0GEXXPFgAAAADECsIWAAAAABhA2AIAAAAAA8I6QQYQbWzbVp270ef2qY6ENh+eDQDoGOoygEhG2AJ8ZNu2rlywXhV7qttv/G8FeelaOrmQD3YAMIC6DCDSMYwQ8FGdu9GvD3RJ2rKn2q8zrgAA31GXAUQ6rmwBAdhyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMoBIRNgCApCWlKC0JH59ACBSUJcBRCKGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYAAPpAAMq21o9KldqiNBlmUZ7g0AgLoMIFQIW4BhBbPKfWuXl66lkwv5YAcAw6jLAEKFYYSAAamOBBXkpfu1zpY91apz+3a2FQDgH+oygHDgyhZggGVZWjq50KcP6dqGRp/PsgIAAkNdBhAOhC3AEMuylJbErxgARArqMoBQYxghAAAAABjA6R3EJNu2/Rpnz4xTAGAWdRlAPCJsIebYtq0rF6xXxZ5qn9dhxikAMIe6DCBeMYwQMafO3ejXB7rEjFMAYBJ1GUC84soWYtqWe4qVlpTQ6nJmnAKA0KIuA4gnhC3EtLSkBGaeAoAIQl0GEE8YRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMRwdwDwlW3bqnM3ttuutqH9NgCAjvG1JkvUZQDxi7CFqGDbtq5csF4Ve6rD3RUAiHvUZADwDcMIERXq3I1+f6gX5KUr1ZFgqEcAEL8CqckSdRlA/OHKFqLOlnuKlZbU/od1qiNBlmWFoEcAEL98rckSdRlA/CFsIeqkJSUoLYlDFwAiATUZAFrHMEIAAAAAMICwBQAAAAAGELYAAAAAwAAGWSOo/HnuisTN0oFiPwPwFfXCPH/3scR+BuIFYQtBE8hzVwry0rV0ciEfOH5gPwPwFfXCvECfOcZ+BuIDwwgRNIE8d2XLnmq/zwbGO/YzAF9RL8wL9Jlj7GcgPnBlC0a099yV2oZGFcwqD2GPYhP7GYCvqBfm+fLMMfYzEF8IWzCC566EBvsZgK+oF+axjwF8G8MIAQAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMYMochF1tQ/vPGfGlDQAgONqrudRkAPANYQthx/NGACCyUJcBIDgYRoiwSHUkqCAv3e/1CvLSlepo+4GRAAD/BVKXqckA0DaubCEsLMvS0smFqnP7NxQl1ZEgy7IM9Sr8GFIJIFwCqcuxXpMlhlQC6BjCFsLGsiylJXEIfhNDdwCEE3W5OeoygI5gGCEQZgypBIDIwpBKAMHC6SsgzBhSCQCRhSGVAIKFsAVEAIbuAEBkoS4DCAaGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1rA1c+ZMWZbl9ZWdne1Zbtu2Zs6cqZycHKWmpuqCCy7Q3/72N6/3qK+v1y233KIePXqoc+fOGjNmjPbt2+fVprq6WiUlJXI6nXI6nSopKdHBgwdDsYkAAAAA4lTYr2wNGDBA+/fv93zt2LHDs+yhhx7SI488ovnz52vz5s3Kzs7WRRddpK+++srTZurUqVq+fLlKS0v17rvv6tChQxo9erQaGxs9bcaPH6/t27errKxMZWVl2r59u0pKSkK6nQAAAADiS2LYO5CY6HU16zjbtvXoo4/q7rvv1ve//31J0u9+9ztlZWXpxRdf1A033CCXy6VFixbp+eefV3FxsSRpyZIlys3NVXl5uUaMGKFdu3aprKxMGzZs0JAhQyRJCxcuVGFhoXbv3q38/PzQbSwAAACAuBH2K1sffvihcnJy1KdPH40bN04fffSRJOnjjz9WZWWlhg8f7mmbnJys888/X+vWrZMkVVRUyO12e7XJycnRwIEDPW3Wr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAAAAB8FdawNWTIED333HN68803tXDhQlVWVmrYsGH68ssvVVlZKUnKysryWicrK8uzrLKyUklJSUpPT2+zTWZmZrOfnZmZ6WnTktmzZ3vu8XI6ncrNze3QtgIAAACIL2ENWxdffLF+8IMfaNCgQSouLtbrr78u6dhwweMsy/Jax7btZq9927fbtNS+vfeZMWOGXC6X52vv3r0+bRMAAAAASBEwjPCbOnfurEGDBunDDz/03Mf17atPVVVVnqtd2dnZamhoUHV1dZttDhw40Oxnff75582umn1TcnKyunbt6vUFAAAAAL6KqLBVX1+vXbt2qWfPnurTp4+ys7O1atUqz/KGhgatXbtWw4YNkyQNHjxYDofDq83+/fu1c+dOT5vCwkK5XC5t2rTJ02bjxo1yuVyeNgAAAAAQbGGdjXD69Om69NJL1bt3b1VVVWnWrFmqqanRhAkTZFmWpk6dql/96lc69dRTdeqpp+pXv/qV0tLSNH78eEmS0+nUxIkTNW3aNGVkZKh79+6aPn26Z1iiJPXr108jR47UpEmT9NRTT0mSrr/+eo0ePZqZCAEAAAAYE9awtW/fPv34xz/WF198oRNPPFFDhw7Vhg0blJeXJ0n6xS9+obq6Ov3sZz9TdXW1hgwZopUrV6pLly6e95g7d64SExM1duxY1dXVqaioSIsXL1ZCQoKnzQsvvKApU6Z4Zi0cM2aM5s+fH9qNBQAAABBXwhq2SktL21xuWZZmzpypmTNnttomJSVF8+bN07x581pt0717dy1ZsiTQbiJO1DY0dmg5ACC4qMsAol3YH2oMRIqCWeXh7gIA4BuoywCiXURNkAGEWqojQQV56e03/IaCvHSlOhLabwgA8Bt1GUAs4coW4pplWVo6uVB1bt+HoqQ6Etp91hsAIDDUZQCxhLCFuGdZltKS+FUAgEhBXQYQKxhGCAAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGJAY7g4g8tm2rTp3Y7vtahvabwMA6DjqMgBEB8IW2mTbtq5csF4Ve6rD3RUAgKjLABBNGEaINtW5G/3+QC/IS1eqI8FQjwAgvlGXASB6cGULPttyT7HSktr/sE51JMiyrBD0CADiG3UZACIbYQs+S0tKUFoShwwARArqMgBENoYRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMSAx3B+An25bcta0vd6RJlhW6/gBAPGmvBn8bNRkA4hphK8rYDYdlzf5Oq8sbew1RfcnrPn24pzoSZPFHAL7Btm3VuRt9bs8xhLhi27KfGSFr70afV/GnJkv8TqE56jIQ3QhbUabO3ai0NpYn7NuowfetUJ1S2n2vgrx0LZ1cSFGGpGMf6FcuWK+KPdU+r8MxhHhiNxz2K2hJ/tVkid8peKMuA9GPsBVtHGnqd+SZZi+nqV4VKTf69VZb9lQfC29JHAY4FuT9+UCXOIYQX755smvwkSdVq+RW2wZSkyV+p+CNugxEP34To0xqUqIqHris+YKGw9LDx/5ZcU+xlNS51feobWhUwaxyz7/b0t5yxKYt9xQrLSmh1eXfPIaAePTmL0Yq7YSurTfwoyZL1GW0j7oMRCfCVpSxLKuVs1Vfv5aWlCj5eEaLwoyWpCUlcFYUaEP7vyOB1WSJuoyWUZeB6MTU73Eo1ZGggrx0v9YpyEtXqqP1M2oAgMBRlwEgNnGKJA5ZlqWlkwuZ3QgAIgR1GQBiE2ErTrU+HBEAEA7UZQCIPQwjBAAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHciQvAONu2/ZplTWKmNQAwyd+6TE0GAkPYAmCUbdu6csF6Veyp9mu9grx0LZ1cyIc7AARZIHWZmgwEJmKGEc6ePVuWZWnq1Kme1w4dOqSbb75ZvXr1Umpqqvr166cnn3zSa736+nrdcsst6tGjhzp37qwxY8Zo3759Xm2qq6tVUlIip9Mpp9OpkpISHTx4MARbBaDO3eh30JKkLXuq/b4aBgBoXyB1mZoMBCYirmxt3rxZTz/9tE4//XSv12+77TatXr1aS5Ys0UknnaSVK1fqZz/7mXJycnTZZZdJkqZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoISFBkjR+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oUCc23JPsdKSEtpsU9vQqIJZ5SHqEQDEt/bqMjUZ6JiwX9k6dOiQrrrqKi1cuFDp6eley9avX68JEyboggsu0EknnaTrr79eZ5xxhrZs2SJJcrlcWrRokebMmaPi4mKdddZZWrJkiXbs2KHy8mOFYdeuXSorK9Nvf/tbFRYWqrCwUAsXLtRrr72m3bt3h3x7gXiWlpSgtKTEdr7aDmMAgOBpvy5Tk4GOCHvYuummmzRq1CgVFxc3W3buuedqxYoV+uc//ynbtrV69Wp98MEHGjFihCSpoqJCbrdbw4cP96yTk5OjgQMHat26dZKOBTan06khQ4Z42gwdOlROp9PTpiX19fWqqanx+gKiWW1Do2objrbxxfAQAAgl6jIQ+8I6jLC0tFRbt27V5s2bW1z+2GOPadKkSerVq5cSExPVqVMn/fa3v9W5554rSaqsrFRSUlKzK2JZWVmqrKz0tMnMzGz23pmZmZ42LZk9e7buv//+QDcNiDgMAwGAyEJdBmJf2K5s7d27V7feequWLFmilJSUFts89thj2rBhg1asWKGKigrNmTNHP/vZzzxDBFtj27bXbDktzZzz7TbfNmPGDLlcLs/X3r17fdwyIHKkOhJUkJfefsNvKMhLV6qDYSMAYAJ1GYgvYbuyVVFRoaqqKg0ePNjzWmNjo95++23Nnz9fLpdLd911l5YvX65Ro0ZJkk4//XRt375dDz/8sIqLi5Wdna2GhgZVV1d7Xd2qqqrSsGHDJEnZ2dk6cOBAs5//+eefKysrq9X+JScnKzk5OVibC4SFZVlaOrmQZ6kAQISgLgPxJWxhq6ioSDt27PB67ZprrlHfvn11xx13qLGxUW63W506eV98S0hIUFNTkyRp8ODBcjgcWrVqlcaOHStJ2r9/v3bu3KmHHnpIklRYWCiXy6VNmzbpnHPOkSRt3LhRLpfLE8iAWGZZltKSImLiUQCAqMtAPAnbb3qXLl00cOBAr9c6d+6sjIwMz+vnn3++br/9dqWmpiovL09r167Vc889p0ceeUSS5HQ6NXHiRE2bNk0ZGRnq3r27pk+frkGDBnkm3OjXr59GjhypSZMm6amnnpJ0bOr30aNHKz8/P4RbjJhg25K71vf2jjSJs5EAYA51GUAEi+jTKqWlpZoxY4auuuoq/etf/1JeXp7+53/+R5MnT/a0mTt3rhITEzV27FjV1dWpqKhIixcv9jxjS5JeeOEFTZkyxTNr4ZgxYzR//vyQbw+inG1Lz4yQ9m70fZ3codK1ZXywA4AJ1GUAES6iwtaaNWu8vs/Oztazzz7b5jopKSmaN2+e5s2b12qb7t27a8mSJcHoIuKZu9a/D3RJ2rvh2HpJnc30CQDiGXUZQISLqLAFRI3pf5eS0lpf3lArPXxK6PrTFobYAIgH1GUAEYiwBQQiKS06zooyxAbxij9m4w91GYhscVqXCVtALIuHITZxWrzRBv6YRSSjLjdHXY59cVyXCVtAvIimITa+iuPijTbEwx+ziA3U5WOoy7EvjusyYQuIF9EyxMYfcVy84aNY/GMWsYO6fAx1Ob7EWV0mbAGIDXFWvOGjWPxjFogW1GW0JM7qMmErFjX4OE6aMdKIJXFWvBFFfK3JEnUZsYW6DBC2YpKvZ4kYI414xQkJhJI/Z+6py4hX1GXEKMJWrHCkHfuQ3rvB93UYI414xQkJmBZITZaoy4hf1GXEKMJWrLCsY8XHl6lWGSONIKptaOzQ8pDhhARCyZ+aLFGXEVTUZSByELZiiWVRfI7jGR8hUzCrPNxd8A0nJBBq1GRv1OWQoS4DkYOwhdjDMz6MS3UkqCAvXVv2VPu8TkFeulIdCQZ75QP++AXCg7psHHUZiEyELT9d/cwmOVKjuygkNx3Rc//+908XbVJ9p5Sw9ifYkpuO6LkD/j/j46cL1rS5L/zZb5Gyj032uZN17IPaV50sadzT7Q8VaWyyPf/+6aJNSujU+h9apvZzpPz/ITCmjvvExjq98O9/T3quQkcTUoPSX3/7EY2oy4H1IxLqsj81WaIuo2XR+LvaHnfdYZ/aEbYQ0yZllqreauMX2j6ihVXjQtij2GFZlhI44QzAT9Rlc6jLQOQhbCGm1VspbZ8RaQpdXwAA1GUA8YWwBQBom20r2a73uXm9lcx9NgBgEnU5ahC2AACts2098OU05bvf83mV9x39dV/GHD7YAcAE6nJU6RTuDgAAIleyXe/XB7ok9XW/59cZVwCA76jL0YUrWwAAnzCxAQBEFupy5CNsAUCsMDyGn4kNAMBP1OW4R9gCgFjAGH4AiCzUZSjAe7a2bt2qHTt2eL7/05/+pMsvv1x33XWXGhoagtY5AIBvGMMPAJGFugwpwCtbN9xwg+68804NGjRIH330kcaNG6crrrhCS5cuVW1trR599NEgdxMA4CvG8ANAZKEux6+Armx98MEHOvPMMyVJS5cu1XnnnacXX3xRixcv1ssvvxzM/gEA/HR8DH+rX2184AMAgo+6HL8CClu2baup6dgdd+Xl5brkkkskSbm5ufriiy+C1zsAAAAAiFIBha2CggLNmjVLzz//vNauXatRo0ZJkj7++GNlZWUFtYMAAAAAEI0CCltz587V1q1bdfPNN+vuu+/WKaecIkn64x//qGHDhgW1gwAAAAAQjQKaIOOMM87wmo3wuP/93/9VYiKzyQMAAABAQFe2Tj75ZH355ZfNXj9y5IhOO+20DncKACJFsn1EyU3tf8m2w91VAIgL1GVEk4AuQ33yySdqbGxs9np9fb327dvX4U4BQKTwdSrejxP/Q/dlPCyp/QdR1lvJPLASAAJEXUY08StsrVixwvPvN998U06n0/N9Y2Oj/vznP6tPnz7B6x0AhEG9laz3Hf3V14+HUfY5+g89d+AKn9q+7+iv+zLm8MEOAD6iLiNa+RW2Lr/8ckmSZVmaMGGC1zKHw6GTTjpJc+bMCVrnAMQI21ayXe9T00bbVqqOqE7JhjvVBsvSfRlzfOyzrfu/nK4+R//h89v3db+nZLue56oACB8f63JE1GSJuoyo5VfYOv5srT59+mjz5s3q0aOHkU4BiCG2rQe+nKZ8P85GKkXa3HSafm0/Kl+GfxhhWT5/6N7ZY75PfwAk20d8Hv4CAMb4W5cjoSZL1GVEpYDu2fr444+D3Q8AMSrZrvcvaP3b2Z0+ULLqdVSpBnoVZL7+AdBkvisA0J5A6nJU1WSJuoyIEfA87X/+85/15z//WVVVVZ4rXsc988wzHe4YgNgzKbO03Q+/xKY6PfP5j0PUIwCIb+3VZWoy0DEBha37779fDzzwgAoKCtSzZ09Z3EwIhJaPY+2T7SMBvX2yfcSns33+zt5Ub6WovlPbYauRqXoBRBs/7kuNtrpMTQY6JqCwtWDBAi1evFglJSXB7g+A9gRyD5SffB2/zuxNAOJeCGqyRF0GolVAYauhoUHDhg0Ldl+AsGrvrGGgZyODLZCx9u87+h8729mGQKbVNT17U7J9RAlNrf/BECn/JwDMiIa6HOh9qdFYl9urycfbAPhaQGHruuuu04svvqh777032P0BwiYaZyPy5R4oycdhJX5Mqxuq2Zu4TwBeDA+fReSJtrrsa02WorMuU5PRDHW5XQGFrSNHjujpp59WeXm5Tj/9dDkcDq/ljzzySFA6B5gWyFlDX85Ghoov90D5JQJmb6pXsjY3naazO33g8zqR9H8CQ0I0VAvhF811Oeg1WQp7XQ6kJkuR838Cg6jLPgkobP31r3/VmWeeKUnauXOn1zImy0BU8eshicf4e/Mx/GRZ+mHDfUpVvb7bO10JPuxr/k9in6nhs4hA1OXIEkBNlvg/iQfUZd8EFLZWr14d7H4A4ePHQxIRKpbqlKJ6K0UJnfiwhregDp9FZKIuRxhqMtpGXW5dwM/ZAgAgHIwM1QIABIy63LqAwtaFF17Y5nDBt956K+AOAQAAAEAsCChsHb9f6zi3263t27dr586dmjBhQjD6BQAAAABRLaCwNXfu3BZfnzlzpg4dOtShDgEAEA7tPdMpMY6nLgaAcGitLkfTvV9BvWfrJz/5ic455xw9/PDDwXxbAACMi7ZnOgFArGutLv8065WomUSnUzDfbP369UpJiY4NBwDg+DOd/LG56TTVK76mLgaAUAmkLkeygK5sff/73/f63rZt7d+/X1u2bNG9994blI4BsaK9oUnHRdMlccSO9o7P5ACHzvl63EthPvb9eKZTo21r66fVqlOyCvhdjWrUZUSycNflsB/3PtTlaHpWV0Bhy+l0en3fqVMn5efn64EHHtDw4cOD0jEgVvg6NOl9R3/dlzGHD3aElKmhc/68b9iPfR+f6dTYZKtOjN6IBdRlRLJw1+WIOO5j6Fl7AYWtZ599Ntj9AGLK8Uvgff14snpf93tKtutjprggcgVyfL7v6N/umcRA3lfi2EdoUJcRySKpLnPcB1eHJsioqKjQrl27ZFmW+vfvr7POOitY/QKimx9Dk5LtI9yYj9Dy4/g8zqdhJX6+L8c+Qoq6jEgWAXWZ496MgMJWVVWVxo0bpzVr1qhbt26ybVsul0sXXnihSktLdeKJJwa7n0D08fUSuI/3tQBBZWqIhj/vy7GPUKMuI5KFuy5z3BsR0GyEt9xyi2pqavS3v/1N//rXv1RdXa2dO3eqpqZGU6ZMCXYfAQAAACDqBHRlq6ysTOXl5erXr5/ntf79++vxxx9nggwAAAAAUIBXtpqamuRwOJq97nA41NTENUgAAAAACChs/dd//ZduvfVWffbZZ57X/vnPf+q2225TUVFR0DoHAAAAANEqoGGE8+fP12WXXaaTTjpJubm5sixLn376qQYNGqQlS5YEu48AIpiphy8CAAJDXQYiR0BhKzc3V1u3btWqVav0/vvvy7Zt9e/fX8XFxcHuH4AIxzSxABBZqMtA5PBrGOFbb72l/v37q6amRpJ00UUX6ZZbbtGUKVN09tlna8CAAXrnnXeMdBRA5Dj+kER/+PLwRQBAYKjLQGTy68rWo48+qkmTJqlr167NljmdTt1www165JFH9L3vfS9oHQQQgUw9fBEAEBjqMhCR/Apbf/nLX/TrX/+61eXDhw/Xww8/3OFOAYgCph6+CAAIDHUZiDh+ha0DBw60OOW7580SE/X55593uFMAgH+zbZ/OVHPDOwCEgI81WaIu4xi/wtZ3vvMd7dixQ6ecckqLy//617+qZ8+eQekYIogfhUViWEJHtDeDlKcN4oNt64Evpynf/V64e4JIQ10OGWb2gwc1GQHwK2xdcskl+uUvf6mLL75YKSnel6nr6up03333afTo0UHtIMIsgMLyvqO/7suYwwd7AJhBCt+UbNf7/aHODe9xgLocUtRlHBdITZaoy/HOr7B1zz33aNmyZTrttNN08803Kz8/X5ZladeuXXr88cfV2Niou+++21RfEQaBFJa+7veUbNczbtxHx2eQ6ssf1WjDpMxSn36nuIIR+6jL5gVSl6nJ8cXXmixRl+OdX2ErKytL69at04033qgZM2bItm1JkmVZGjFihJ544gllZWUZ6SjCr73Ckmwf4QxgIAKYQUqieMebeitF9Z34QxneqMuGMLMf2kFNhq/8fqhxXl6e3njjDVVXV+vvf/+7bNvWqaeeqvT0dBP9QwRpt7C0c68R2sAMUgACQF02iLoMIAj8DlvHpaen6+yzzw5mXwAAAAAgZgQctgDAtCbb9unMfCfr2HBmIBC2bavJbr9dk+1DIyCG+VqTJeoyOqa9uhxNxxdhC0DE2vrpQZ/anZCcqP49u0RN4UXksG1b7+3/Sofqj4a7K0DE87UmS9RlBM6XulyQl66EKDm0LNvmVJ0vampq5HQ65XK51LVr13B3p2MaDku/yjn277s+k5I6h76tSZHSDwTEtm39cMF6bdlT7dd67z0wQmlJEX7+yN9jM9aP5QioL7UNR9X/l2/6tU5BXrqWTi4M7h+R1GVEqEBrshSDdTnWj+MI+YzypS5HwrHlazaI8N8AAPHGsiwtnVyoOndju21rGxpVMKs8BL1CPNhyT7HSkhLabZfqSOBsPeKGPzVZoi4juFqry6mO9mt1pCBsxbuG2o4tBwywLCvsZ6wQf9KSEiLjuKMuI8JQkxEuEVOXOyC6e4+Oe/iUcPcAAAgY30RdBhBuvtTceKrLHRAxYWv27Nm66667dOutt+rRRx/1vL5r1y7dcccdWrt2rZqamjRgwAD94Q9/UO/evSVJ9fX1mj59ul566SXV1dWpqKhITzzxhHr16uV5j+rqak2ZMkUrVqyQJI0ZM0bz5s1Tt27dQrmJkcORJuUOlfZu8H2d3KHH1gMAE+I9YFCXAUSSeK/JQRQRYWvz5s16+umndfrpp3u9/o9//EPnnnuuJk6cqPvvv19Op1O7du1SSsrXDxmcOnWqXn31VZWWliojI0PTpk3T6NGjVVFRoYSEY+M5x48fr3379qmsrEySdP3116ukpESvvvpq6DYykliWdG2Z5PbjjIQj7dh6ABAsBIyvUZcBhFsgNVmK3bocJGEPW4cOHdJVV12lhQsXatasWV7L7r77bl1yySV66KGHPK+dfPLJnn+7XC4tWrRIzz//vIqLiyVJS5YsUW5ursrLyzVixAjt2rVLZWVl2rBhg4YMGSJJWrhwoQoLC7V7927l5+eHYCsjkGXF3iw6AKILAcMbdRlAOAVSk6XYrstB0CncHbjppps0atQoT1g6rqmpSa+//rpOO+00jRgxQpmZmRoyZIheeeUVT5uKigq53W4NHz7c81pOTo4GDhyodevWSZLWr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAQZMcDhq9ffKADgDn+1mTqcrvCGrZKS0u1detWzZ49u9myqqoqHTp0SA8++KBGjhyplStX6oorrtD3v/99rV27VpJUWVmppKQkpaene62blZWlyspKT5vMzMxm75+Zmelp05LZs2fL6XR6vnJzczuyqQAAAADiTNiGEe7du1e33nqrVq5c6XUP1nFNTU2SpMsuu0y33XabJOnMM8/UunXrtGDBAp1//vmtvrdt217PQGnpeSjfbvNtM2bM0M9//nPP9zU1NQQuAAAAAD4LW9iqqKhQVVWVBg8e7HmtsbFRb7/9tubPn6/Dhw8rMTFR/fv391qvX79+evfddyVJ2dnZamhoUHV1tdfVraqqKg0bNszT5sCBA81+/ueff66srKxW+5ecnKzk5OQObSOCzLZ9G0fMVKQAYJ6vNVmiLgOIW2ELW0VFRdqxY4fXa9dcc4369u2rO+64Q8nJyTr77LO1e/durzYffPCB8vLyJEmDBw+Ww+HQqlWrNHbsWEnS/v37tXPnTs+kGoWFhXK5XNq0aZPOOeccSdLGjRvlcrk8gQxRwLalZ0ZIezeGuycAAGoyAPgkbGGrS5cuGjhwoNdrnTt3VkZGhuf122+/XT/60Y903nnn6cILL1RZWZleffVVrVmzRpLkdDo1ceJETZs2TRkZGerevbumT5+uQYMGeSbc6Nevn0aOHKlJkybpqaeeknRs6vfRo0fH70yE0chd6/+HOlORAoAZgdRkiboMIO6Efer3tlxxxRVasGCBZs+erSlTpig/P18vv/yyzj33XE+buXPnKjExUWPHjvU81Hjx4sWeZ2xJ0gsvvKApU6Z4Zi0cM2aM5s+fH/LtQZBM/7uU5MOHNVORAjHFtm3VuRt9bp/qSGjz3lwEia81WaIuAzGGuty+iApbx69YfdO1116ra6+9ttV1UlJSNG/ePM2bN6/VNt27d9eSJUuC0UVEgqQ0nkUDxBnbtnXlgvWq2FPt8zoFeelaOrkw7j7YQ46aDMQl6rJvwv6cLQAA2lPnbvTrA12Stuyp9uuMKwDAd9Rl30TUlS0AANqz5Z5ipSUltLq8tqFRBbPKQ9gjAIhv1OXWEbYAAFElLSlBaUl8fAFApKAut45hhAAAAABgAGELAAAAAAzgeh/Cx7aPPavFFw0+tgOihS/HNMc9Qs3XusyxiVjU3nHNcY8AELYQHrYtPTMisIdiArHg4VPC3QPAG3UZ8Y66DAMYRojwcNcG9oGeO/TYQzGBaORIO3YM+4vjHqEQSF3m2ES0C6Quc9zDD1zZQvhN//uxh2L6wpEmxdGD8BBjLEu6tsz34bPHcdwj1HytyxybiHaB1GWOe/iBsIXwS0qTkjqHuxdAaFgWxzsiH3UZ8YS6DIMYRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMSw90BAABMqW1o7NByAEBwxVtdJmwBAGJWwazycHcBAPAN8VaXCVswo6G2Y8sBIECpjgQV5KVry55qn9cpyEtXqiPBYK8iAHUZQJjEc10mbMGMh08Jdw8AxCnLsrR0cqHq3L4PRUl1JMiyLIO9igDUZQBhEs91mbCF4HGkSblDpb0bfF8nd+ix9QAgiCzLUloSH3HUZQCRIl7rcvxtMcyxLOnaMsntx1AUR9qx9QAAwUddBoCwImwhuCxLSuoc7l4AAI6jLgNA2PCcLQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAxLD3QEAQOywbVt17ka/1kl1JMiyLEM9AoD45m9dpiYHF2ELABAUtm3rygXrVbGn2q/1CvLStXRyIR/uABBkgdRlanJwMYwQABAUde5Gv4OWJG3ZU+331TAAQPsCqcvU5ODiyhYAIOi23FOstKSENtvUNjSqYFZ5iHoEAPGtvbpMTTaDsAUACLq0pASlJfERAwCRgrocHgwjBAAAAAADCFsAAAAAYABhCwAAAAAMiJiwNXv2bFmWpalTp7a4/IYbbpBlWXr00Ue9Xq+vr9ctt9yiHj16qHPnzhozZoz27dvn1aa6ulolJSVyOp1yOp0qKSnRwYMHzWwIAAAAAChCwtbmzZv19NNP6/TTT29x+SuvvKKNGzcqJyen2bKpU6dq+fLlKi0t1bvvvqtDhw5p9OjRamz8esrK8ePHa/v27SorK1NZWZm2b9+ukpISY9sDAAAAAGEPW4cOHdJVV12lhQsXKj09vdnyf/7zn7r55pv1wgsvyOFweC1zuVxatGiR5syZo+LiYp111llasmSJduzYofLyY1NX7tq1S2VlZfrtb3+rwsJCFRYWauHChXrttde0e/fukGwjAAAAgPgT9rB10003adSoUSouLm62rKmpSSUlJbr99ts1YMCAZssrKirkdrs1fPhwz2s5OTkaOHCg1q1bJ0lav369nE6nhgwZ4mkzdOhQOZ1OTxsAAAAACLawTrZfWlqqrVu3avPmzS0u//Wvf63ExERNmTKlxeWVlZVKSkpqdkUsKytLlZWVnjaZmZnN1s3MzPS0aUl9fb3q6+s939fU1LS7PQAAAABwXNjC1t69e3Xrrbdq5cqVSklJaba8oqJCv/nNb7R161ZZluXXe9u27bVOS+t/u823zZ49W/fff79fPxcAAAAAjgvbMMKKigpVVVVp8ODBSkxMVGJiotauXavHHntMiYmJWrNmjaqqqtS7d2/P8j179mjatGk66aSTJEnZ2dlqaGhQdXW113tXVVUpKyvL0+bAgQPNfv7nn3/uadOSGTNmyOVyeb727t0bvI0HAAAAEPPCdmWrqKhIO3bs8HrtmmuuUd++fXXHHXeoZ8+eGjFihNfyESNGqKSkRNdcc40kafDgwXI4HFq1apXGjh0rSdq/f7927typhx56SJJUWFgol8ulTZs26ZxzzpEkbdy4US6XS8OGDWu1f8nJyUpOTg7a9gIAAACIL2ELW126dNHAgQO9XuvcubMyMjI8r2dkZHgtdzgcys7OVn5+viTJ6XRq4sSJmjZtmjIyMtS9e3dNnz5dgwYN8ky40a9fP40cOVKTJk3SU089JUm6/vrrNXr0aM/7AIgPtm2rzt3YfsN/S3Uk+D2MGQDgO+oyYl1YJ8gIhrlz5yoxMVFjx45VXV2dioqKtHjxYiUkJHjavPDCC5oyZYpn1sIxY8Zo/vz54eoygDCwbVtXLlivij3V7Tf+t4K8dC2dXMgHOwAYQF1GPIiosLVmzZo2l3/yySfNXktJSdG8efM0b968Vtfr3r27lixZ0sHeAYhmde5Gvz7QJWnLnmrVuRuVlhRRpRIAYgJ1GfGAIxVA3NlyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMmIVYQtA3ElLSuCsKABEEOoyYlXYpn4HAAAAgFjGKQQAMaG2oe3ZrNpbDgAILuoyQNgCECMYyw8AkYW6DDCMEEAUS3UkqCAv3a91CvLSlepo/SZsAEDgqMuAN65sAYhalmVp6eRCHogJABGCugx4I2wBiGqWZRmdwcrXewr4YwEAjqEuA18jbAFAG3y956AgL11LJxfywQ4AhlGXEU24ZwsAviWQew627Kn2a9gMAMB31GVEK65sAcC3+HPPQW1DY8zPuGXbts/7IlBMEQ2gLdRlb6brsi/rUZd9Q9gCgBaYvucgWti2rSsXrFfFnmqjPyfW/zAC0HHU5WNCUZepycHDMEIAQKvq3I1+f6D7Oo0zU0QDgP9M1eVAarKv7x3POD0AAPDJlnuKlZbkW4jy5YZ0pogGgI4JZl0OpCb7+t7xjLAFAPBJWlJC0IfwMCwIAAIX7LpMTQ4+hhECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABieHuAAAgOGzbVp270ef2qY4EWZZlsEcAEN+oyyBsAUAMsG1bVy5Yr4o91T6vU5CXrqWTC/lgBwADqMuQGEYIADGhzt3o1we6JG3ZU+3XGVcAgO+oy5Ai6MrW7Nmzddddd+nWW2/Vo48+KrfbrXvuuUdvvPGGPvroIzmdThUXF+vBBx9UTk6OZ736+npNnz5dL730kurq6lRUVKQnnnhCvXr18rSprq7WlClTtGLFCknSmDFjNG/ePHXr1i3UmwkAfvF1CEptw9dtttxTrLSkhDbbFswqD0r/ACCe+DMskLoMKULC1ubNm/X000/r9NNP97xWW1urrVu36t5779UZZ5yh6upqTZ06VWPGjNGWLVs87aZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoIeHYQT1+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oQBi2jc/WIPBtqUfLliv9/bX+LVeWlKC0pIiorwDQFgFsy4HWpMl6nI8C/v/+qFDh3TVVVdp4cKFmjVrlud1p9OpVatWebWdN2+ezjnnHH366afq3bu3XC6XFi1apOeff17FxcWSpCVLlig3N1fl5eUaMWKEdu3apbKyMm3YsEFDhgyRJC1cuFCFhYXavXu38vPzQ7exAGJaJJyVLMhLV6qj9bOnABBPqMsIt7CHrZtuukmjRo1ScXGxV9hqicvlkmVZnuF/FRUVcrvdGj58uKdNTk6OBg4cqHXr1mnEiBFav369nE6nJ2hJ0tChQ+V0OrVu3TrCFoAOSXUkqCAvXVv8HJfvj/49u/77hmnf+sON1QDimem67E9NPt4f6nL8CmvYKi0t1datW7V58+Z22x45ckR33nmnxo8fr65du0qSKisrlZSUpPT0dK+2WVlZqqys9LTJzMxs9n6ZmZmeNi2pr69XfX295/uaGv8vGQOIfZZlaenkQqM3NPNBDQC+M12XqcnwR9jC1t69e3Xrrbdq5cqVSklJabOt2+3WuHHj1NTUpCeeeKLd97Zt2+uXoKVfiG+3+bbZs2fr/vvvb/dnAYBlWVE7Fr+9+xmCfR8aAIQCdRmRImxHYUVFhaqqqjR48GDPa42NjXr77bc1f/581dfXKyEhQW63W2PHjtXHH3+st956y3NVS5Kys7PV0NCg6upqr6tbVVVVGjZsmKfNgQMHmv38zz//XFlZWa32b8aMGfr5z3/u+b6mpka5ubkd2mYAiDSRcD8DAOBr1OXYErbnbBUVFWnHjh3avn2756ugoEBXXXWVtm/f7hW0PvzwQ5WXlysjI8PrPQYPHiyHw+E1kcb+/fu1c+dOT9gqLCyUy+XSpk2bPG02btwol8vladOS5ORkde3a1esLAGLB8fsZ/MEN3gBgDnU5dlm2bdvh7sRxF1xwgc4880w9+uijOnr0qH7wgx9o69ateu2117yuQnXv3l1JSUmSpBtvvFGvvfaaFi9erO7du2v69On68ssvvaZ+v/jii/XZZ5/pqaeeknRs6ve8vDy/pn6vqamR0+mUy+UieAGIev48K0biHgUAMI26HF18zQYRO5h13759nocQn3nmmV7LVq9erQsuuECSNHfuXCUmJmrs2LGehxovXrzYE7Qk6YUXXtCUKVM8sxaOGTNG8+fPD8l2AEAkiub7GQAgFlGXY1NEXdmKZFzZAgAAACD5ng3Cds8WAAAAAMQywhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGJIa7A9HCtm1JUk1NTZh7AgAAACCcjmeC4xmhNYQtH3311VeSpNzc3DD3BAAAAEAk+Oqrr+R0OltdbtntxTFIkpqamvTZZ5+pS5cusiwrJD+zpqZGubm52rt3r7p27RqSnxmP2M/msY9Dg/1sHvs4NNjP5rGPQ4P9bF649rFt2/rqq6+Uk5OjTp1avzOLK1s+6tSpk3r16hWWn921a1d+QUOA/Wwe+zg02M/msY9Dg/1sHvs4NNjP5oVjH7d1Res4JsgAAAAAAAMIWwAAAABgAGErgiUnJ+u+++5TcnJyuLsS09jP5rGPQ4P9bB77ODTYz+axj0OD/WxepO9jJsgAAAAAAAO4sgUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsh9sQTT6hPnz5KSUnR4MGD9c4777TZfu3atRo8eLBSUlJ08skna8GCBc3avPzyy+rfv7+Sk5PVv39/LV++3FT3o4I/+3jZsmW66KKLdOKJJ6pr164qLCzUm2++6dVm8eLFsiyr2deRI0dMb0pE82c/r1mzpsV9+P7773u141j25s8+vvrqq1vcxwMGDPC04Vj29vbbb+vSSy9VTk6OLMvSK6+80u461GT/+bufqcv+83cfU5MD4+9+pi77b/bs2Tr77LPVpUsXZWZm6vLLL9fu3bvbXS+SazNhK4R+//vfa+rUqbr77ru1bds2fe9739PFF1+sTz/9tMX2H3/8sS655BJ973vf07Zt23TXXXdpypQpevnllz1t1q9frx/96EcqKSnRX/7yF5WUlGjs2LHauHFjqDYrovi7j99++21ddNFFeuONN1RRUaELL7xQl156qbZt2+bVrmvXrtq/f7/XV0pKSig2KSL5u5+P2717t9c+PPXUUz3LOJa9+buPf/Ob33jt271796p79+764Q9/6NWOY/lrhw8f1hlnnKH58+f71J6aHBh/9zN12X/+7uPjqMn+8Xc/U5f9t3btWt10003asGGDVq1apaNHj2r48OE6fPhwq+tEfG22ETLnnHOOPXnyZK/X+vbta995550ttv/FL35h9+3b1+u1G264wR46dKjn+7Fjx9ojR470ajNixAh73LhxQep1dPF3H7ekf//+9v333+/5/tlnn7WdTmewuhgT/N3Pq1evtiXZ1dXVrb4nx7K3jh7Ly5cvty3Lsj/55BPPaxzLrZNkL1++vM021OSO82U/t4S67Dtf9jE1ueMCOZapy/6rqqqyJdlr165ttU2k12aubIVIQ0ODKioqNHz4cK/Xhw8frnXr1rW4zvr165u1HzFihLZs2SK3291mm9beM5YFso+/rampSV999ZW6d+/u9fqhQ4eUl5enXr16afTo0c3OsMaTjuzns846Sz179lRRUZFWr17ttYxj+WvBOJYXLVqk4uJi5eXleb3OsRw4anJ4UJfNoSaHFnXZfy6XS5Ka/f5/U6TXZsJWiHzxxRdqbGxUVlaW1+tZWVmqrKxscZ3KysoW2x89elRffPFFm21ae89YFsg+/rY5c+bo8OHDGjt2rOe1vn37avHixVqxYoVeeuklpaSk6D//8z/14YcfBrX/0SKQ/dyzZ089/fTTevnll7Vs2TLl5+erqKhIb7/9tqcNx/LXOnos79+/X//3f/+n6667zut1juWOoSaHB3U5+KjJoUdd9p9t2/r5z3+uc889VwMHDmy1XaTX5kTjPwFeLMvy+t627Wavtdf+26/7+56xLtD98dJLL2nmzJn605/+pMzMTM/rQ4cO1dChQz3f/+d//qe++93vat68eXrssceC1/Eo489+zs/PV35+vuf7wsJC7d27Vw8//LDOO++8gN4zHgS6PxYvXqxu3brp8ssv93qdY7njqMmhRV02g5ocetRl/918883661//qnfffbfdtpFcm7myFSI9evRQQkJCswRdVVXVLGkfl52d3WL7xMREZWRktNmmtfeMZYHs4+N+//vfa+LEifrDH/6g4uLiNtt26tRJZ599dtyederIfv6moUOHeu1DjuWvdWQf27atZ555RiUlJUpKSmqzbbwfy/6iJocWdTm0qMnmUJf9d8stt2jFihVavXq1evXq1WbbSK/NhK0QSUpK0uDBg7Vq1Sqv11etWqVhw4a1uE5hYWGz9itXrlRBQYEcDkebbVp7z1gWyD6Wjp05vfrqq/Xiiy9q1KhR7f4c27a1fft29ezZs8N9jkaB7udv27Ztm9c+5Fj+Wkf28dq1a/X3v/9dEydObPfnxPux7C9qcuhQl0OPmmwOddl3tm3r5ptv1rJly/TWW2+pT58+7a4T8bXZ+BQc8CgtLbUdDoe9aNEi+7333rOnTp1qd+7c2TMrzZ133mmXlJR42n/00Ud2Wlqafdttt9nvvfeevWjRItvhcNh//OMfPW3+3//7f3ZCQoL94IMP2rt27bIffPBBOzEx0d6wYUPIty8S+LuPX3zxRTsxMdF+/PHH7f3793u+Dh486Gkzc+ZMu6yszP7HP/5hb9u2zb7mmmvsxMREe+PGjSHfvkjh736eO3euvXz5cvuDDz6wd+7cad955522JPvll1/2tOFY9ubvPj7uJz/5iT1kyJAW35Nj2dtXX31lb9u2zd62bZstyX7kkUfsbdu22Xv27LFtm5ocLP7uZ+qy//zdx9TkwPi7n4+jLvvuxhtvtJ1Op71mzRqv3//a2lpPm2irzYStEHv88cftvLw8Oykpyf7ud7/rNZXlhAkT7PPPP9+r/Zo1a+yzzjrLTkpKsk866ST7ySefbPaeS5cutfPz822Hw2H37dvXq1jGI3/28fnnn29LavY1YcIET5upU6favXv3tpOSkuwTTzzRHj58uL1u3boQblFk8mc///rXv7b/4z/+w05JSbHT09Ptc88913799debvSfHsjd/68XBgwft1NRU++mnn27x/TiWvR2f/rq1339qcnD4u5+py/7zdx9TkwMTSM2gLvunpf0ryX722Wc9baKtNlu2/e87yAAAAAAAQcM9WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgDEtTVr1siyLB08eDDcXQEAxBjCFgAg5l199dWyLEuWZcnhcOjkk0/W9OnTdfjw4XB3DQAQwxLD3QEAAEJh5MiRevbZZ+V2u/XOO+/ouuuu0+HDh/WjH/0o3F0DAMQormwBAOJCcnKysrOzlZubq/Hjx+uqq67SK6+84lleUVGhgoICpaWladiwYdq9e7dn2T/+8Q9ddtllysrK0gknnKCzzz5b5eXlXu//xBNP6NRTT1VKSoqysrJ05ZVXepbZtq2HHnpIJ598slJTU3XGGWfoj3/8o/FtBgCEF2ELABCXUlNT5Xa7Pd/ffffdmjNnjrZs2aLExERde+21nmWHDh3SJZdcovLycm3btk0jRozQpZdeqk8//VSStGXLFk2ZMkUPPPCAdu/erbKyMp133nme9e+55x49++yzevLJJ/W3v/1Nt912m37yk59o7dq1odtgAEDIWbZt2+HuBAAAJl199dU6ePCg50rWpk2bdMkll6ioqEg33nijLrzwQpWXl6uoqEiS9MYbb2jUqFGqq6tTSkpKi+85YMAA3Xjjjbr55pu1bNkyXXPNNdq3b5+6dOni1e7w4cPq0aOH3nrrLRUWFnpev+6661RbW6sXX3zRzEYDAMKOe7YAAHHhtdde0wknnKCjR4/K7Xbrsssu07x58/Tee+9Jkk4//XRP2549e0qSqqqq1Lt3bx0+fFj333+/XnvtNX322Wc6evSo6urqPFe2LrroIuXl5enkk0/WyJEjNXLkSF1xxRVKS0vTe++9pyNHjuiiiy7y6k9DQ4POOuusEG09ACAcCFsAgLhw4YUX6sknn5TD4VBOTo4cDockecLW8e8lybIsSVJTU5Mk6fbbb9ebb76phx9+WKeccopSU1N15ZVXqqGhQZLUpUsXbd26VWvWrNHKlSv1y1/+UjNnztTmzZs97/H666/rO9/5jlefkpOTzW40ACCsCFsAgLjQuXNnnXLKKQGt+8477+jqq6/WFVdcIenYPVyffPKJV5vExEQVFxeruLhY9913n7p166a33npLF110kZKTk/Xpp5/q/PPP7+hmAACiCGELAIB2nHLKKVq2bJkuvfRSWZale++913PFSjo2RPGjjz7Seeedp/T0dL3xxhtqampSfn6+unTpounTp+u2225TU1OTzj33XNXU1GjdunU64YQTNGHChDBuGQDAJMIWAADtmDt3rq699loNGzZMPXr00B133KGamhrP8m7dumnZsmWaOXOmjhw5olNPPVUvvfSSBgwYIEn67//+b2VmZmr27Nn66KOP1K1bN333u9/VXXfdFa5NAgCEALMRAgAAAIABPGcLAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAb8f4lIUwygpTlNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 32\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/period, nbin=nbin)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/1.1, nbin=nbin)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Therefore, typically we try a number of frequencies around the candidate we found with the power spectrum or other means, and search for the frequency that gives the \"best\" pulsed profile. \n", + "How do we evaluate this best frequency?\n", + "We use the chi squared statistics. \n", + "\n", + "We use a flat pulsed profile (no pulsation) as model, and we calculate the chi square of the actual pulsed profile with respect to this flat model:\n", + "\n", + "$$\n", + "S = \\sum_i\\frac{(P_i - \\overline{P})^2}{\\sigma^2}\n", + "$$\n", + "\n", + "If there is no pulsation, the chi squared will assume a random value distributed around the number of degrees of freedom $n - 1$ (where $n$ is the number of bins in the profile) with a well defined statistical distribution ($\\chi^2_{n - 1}$). If there is pulsation, the value will be much larger.\n", + "Stingray has a function that does this: `stingray.pulse.search.epoch_folding_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgRUlEQVR4nOzdd3xT9foH8E92mu49oJQCZU8BWSp7CSIXFefFvVAUgQuX6+9qXaBcBQQUr14FLig48Sqo7CFLoMgolF2gQEspbdORNPP8/kjOaUNbSNu0aZvP+/XK60WSk5NvQ5tznvM83+crEwRBABEREREREblN7u0BEBERERERNTQMpIiIiIiIiKqIgRQREREREVEVMZAiIiIiIiKqIgZSREREREREVcRAioiIiIiIqIoYSBEREREREVURAykiIiIiIqIqUnp7APWB3W7H5cuXERgYCJlM5u3hEBERERGRlwiCgMLCQsTFxUEurzzvxEAKwOXLlxEfH+/tYRARERERUT2RkZGBpk2bVvo8AykAgYGBABwfVlBQkJdHQ0REdaq4GFiwwPWxl14C/P29Mx4iIvKqgoICxMfHSzFCZRhIAVI5X1BQEAMpIiJfo1AAGo3rY0FBDKSIiHzczab8sNkEERERERFRFTGQIiIiIiIiqiIGUkRERERERFXEOVJEREREVCOCIMBqtcJms3l7KEQ3pVAooFQqa7zsEQMpIiIiIqo2s9mMzMxMGAwGbw+FyG06nQ6xsbFQq9XV3gcDKSIiIiKqFrvdjvT0dCgUCsTFxUGtVtf4Kj9RbRIEAWazGVevXkV6ejqSkpJuuOjujTCQIiIiIqJqMZvNsNvtiI+Ph06n8/ZwiNzi5+cHlUqF8+fPw2w2Q6vVVms/bDZBRERERDVS3Sv6RN7iid9Z/tYTERERERFVEQMpIiIiIiKiKmIgRURERETUgDRv3hzz58+v9uuXLl2KkJAQj43HVzGQIiIiIiKf8thjj0Emk5W7jRgxQtqmefPm5Z5v2rRptd4vOTkZXbt2rfLrKgt49u3bh2eeecatfVQUdN1///04efJklcdDrti1j4iIiIh8zogRI7BkyRKXxzQajcv9N998E08//bR0X6FQ1MnYbiYyMrJGr/fz84Ofn5+HRuO7mJEiIiIiIo8RBAEGs7XOb4IgVGmcGo0GMTExLrfQ0FCXbQIDA12ev1EAs3XrVtx6663w9/dHSEgI+vXrh/Pnz2Pp0qV44403cOjQISmztXTpUgDA3Llz0alTJ/j7+yM+Ph4TJ05EUVGRtL/HH38cer1eel1ycjKA8lmm5ORkNGvWDBqNBnFxcXjppZcAAAMGDMD58+fxyiuvSPsAKs50/fTTT+jRowe0Wi0iIiIwbtw46bmPP/4YSUlJ0Gq1iI6Oxr333lulz7qxYkaKiIiIiDzGaLGh/Wvr6vx9j705HDq1d05trVYrxo4di6effhorV66E2WzG3r17IZPJcP/99yM1NRW//fYbNm7cCAAIDg4G4GjBvWDBAjRv3hzp6emYOHEipk+fjo8//hh9+/bF/Pnz8dprr+HEiRMAgICAgHLv/d1332HevHlYtWoVOnTogKysLBw6dAgA8MMPP6BLly545plnXDJr11u7di3GjRuHV199FcuXL4fZbMbatWsBAPv378dLL72E5cuXo2/fvsjNzcXvv//u0c+voWIgRUREREQ+Z82aNeUCkxkzZuCf//yny/3/+7//k+7PmjVLyvaUVVBQAL1ej9GjR6Nly5YAgHbt2knPBwQEQKlUIiYmxuV1kydPlv6dmJiIt956C88//zw+/vhjqNVqBAcHQyaTlXtdWRcuXEBMTAyGDBkClUqFZs2a4dZbbwUAhIWFQaFQSJm1yrzzzjt44IEH8MYbb0iPdenSRdq/v78/Ro8ejcDAQCQkJKBbt26V7suXMJAiIiKfJggCMvONCA9QQ6OsH/MfiBoyP5UCx94c7pX3rYqBAwdi8eLFLo+FhYW53P/b3/6Gxx57TLofERFR4b7CwsLw2GOPYfjw4Rg6dCiGDBmC8ePHIzY29oZj2LJlC2bNmoVjx46hoKAAVqsVJSUlKC4uhr+/v1s/x3333Yf58+ejRYsWGDFiBO68807cddddUCrdP80/ePBgpRmroUOHIiEhQdr/iBEj8Je//AU6nc7t/TdWnCNFREQ+beOxbHyzPwPLdp3H6ewibw+HqMGTyWTQqZV1fhPn/7jL398frVq1crldH0hFRES4PH+jluFLlizB7t270bdvX3z99ddo3bo19uzZU+n258+fx5133omOHTvi+++/R0pKCj766CMAgMVicfvniI+Px4kTJ/DRRx/Bz88PEydOxB133FGlfdyo8URgYCAOHDiAlStXIjY2Fq+99hq6dOmC/Px8t/ffWDGQIiIin5aWVQAAMJitWHP4MtJzir08IiJqqLp164aZM2di165d6NixI7766isAgFqths1mc9l2//79sFqt+OCDD9C7d2+0bt0aly9fdtmmotdVxM/PD2PGjMGCBQuwdetW7N69G0eOHHF7H507d8amTZsqfV6pVGLIkCGYM2cODh8+jHPnzmHz5s03HVdjx9I+IiLyaVn6EkQBUMhksAkCzl4tQqK3B0VEtc5kMiErK8vlMaVSWWn53o2kp6fj008/xZgxYxAXF4cTJ07g5MmTmDBhAgBIzSQOHjyIpk2bIjAwEC1btoTVasXChQtx1113YefOnfjkk09c9tu8eXMUFRVh06ZN6NKlC3Q6XbmSuqVLl8Jms6FXr17Q6XRYvnw5/Pz8kJCQIO1j+/bteOCBB6DRaCr8+V5//XUMHjwYLVu2xAMPPACr1Ypff/0V06dPx5o1a3D27FnccccdCA0NxS+//AK73Y42bdpU+XNqbJiRIiIin5apNwIAmoU7Tk6yC03eHA4R1ZHffvsNsbGxLrfbbrutWvvS6XQ4fvw47rnnHrRu3RrPPPMMXnzxRTz77LMAgHvuuQcjRozAwIEDERkZiZUrV6Jr166YO3cu3nvvPXTs2BFffvklZs+e7bLfvn374rnnnsP999+PyMhIzJkzp9x7h4SE4LPPPkO/fv2kzNLPP/+M8PBwAI61sM6dO4eWLVtW2r59wIAB+Pbbb/HTTz+ha9euGDRoEP744w9p/z/88AMGDRqEdu3a4ZNPPsHKlSvRoUOHan1WjYlMqGrT/UaooKAAwcHB0Ov1CAoK8vZwiIioDo145xeM+HUFhrSLxsa0K1DIZXhuzSdQBQV6e2hE9V5JSQnS09ORmJgIrVbr7eEQue1Gv7vuxgbMSBERkc+y2wVk6h0ZqKahflAr5LDZBZy5yqYTRER0YwykiIjIZ10rNsNstQMAArUqRAZqAADHLhd4c1hERNQAMJAiIiKfdTnfMT8qQKOEQi5DVJCjvCMtk4EUERHdGAMpIiLyWWIgFah1NLGNYkaKiIjcxECKiIh81iUpkFIBAKKDHIFUWmYhbHaf78VEREQ3wECKiIh81uX8EgClGakQnRoqhRxGi40L8xIR0Q0xkCIiIp91+bqMlFwmQ5Dz31n6Eq+Ni4iI6j8GUkRE5LMu613nSAGATq0AAFwr5sK8RERUOQZSRETks65vNgEAfs5AKqfI7JUxERFRw8BAioiIfFKJxSYFS2I5H1AmI1XEjBQRVU1JSQkee+wxdOrUCUqlEmPHjvX2kKgWMZAiIiKfJM6B8lMpoFGWHg5LAylmpIioamw2G/z8/PDSSy9hyJAh3h4O1TLlzTchIiJqfApKLACAEJ0SMkEmPe6ndhwaOUeKqGauXr1a7dcGBATAz8+vwudycnIgCK7LE0RGRlZp/wMGDEDnzp2h1Wrxn//8B2q1Gs899xySk5OrO2QAgL+/PxYvXgwA2LlzJ/Lz82u0P6rfGEgREZFPKjJZAQA6tRIoEzPpVJwjReQJUVFR1X7tokWL8MILL1T4XLt27ZCTk+Py2PWBlTuWLVuGKVOm4I8//sDu3bvx2GOPoV+/fhg6dGi1xky+h6V9RETkkwwmG4DSUj6RH7v2EfmEzp074/XXX0dSUhImTJiAHj16YNOmTd4eFjUgDKSIiMgnFZsdGSl/jWtxBudIEfmGzp07u9yPjY1FdnZ2hdv+/vvvCAgIkG5ffvllXQyR6jmvBlLNmzeHTCYrdxNTuYIgIDk5GXFxcfDz88OAAQNw9OhRl32YTCZMmjQJERER8Pf3x5gxY3Dx4kVv/DhERNSAFDszUuKcKJHOed9gtsHgDLaIqPFRqVQu92UyGex2e4Xb9ujRAwcPHpRuY8aMqYshUj3n1TlS+/btg81mk+6npqZi6NChuO+++wAAc+bMwdy5c7F06VK0bt0ab7/9NoYOHYoTJ04gMDAQADB58mT8/PPPWLVqFcLDwzF16lSMHj0aKSkpUCgUFb4vERGRGCQFXFfap1LIoFHKYYQjK6UL43RiouqoLLvjjoCAgEqfS0tLq9acqJrw8/NDq1at6vQ9qf7z6tHh+g4r7777Llq2bIn+/ftDEATMnz8fr776KsaNGwfAMSkwOjoaX331FZ599lno9Xp8/vnnWL58udRicsWKFYiPj8fGjRsxfPjwOv+ZiIioYZAyUhrXQEomkyE8QI18A3Ct2Iz4MJ03hkfU4FW1k567IiIiamW/nnLs2DGYzWbk5uaisLAQBw8eBAB07drVq+Miz6s3l9nMZjNWrFiBKVOmQCaT4ezZs8jKysKwYcOkbTQaDfr3749du3bh2WefRUpKCiwWi8s2cXFx6NixI3bt2lVpIGUymWAylU4iLigoqL0fjIiI6iVpjpS6fPVCmL8aZwxmLspLRFV255134vz589L9bt26AaheZ0Gq3+pNIPXjjz8iPz8fjz32GAAgKysLABAdHe2yXXR0tPTLmZWVBbVajdDQ0HLbiK+vyOzZs/HGG294cPRERNTQFJdtf36dMH81cNXMhhNEjdTWrVvLPfbjjz96ZN/nzp3zyH6o/qs3Xfs+//xzjBw5EnFxcS6Py2Qyl/uCIJR77Ho322bmzJnQ6/XSLSMjo/oDJyKiBslgdpT2+VcQSIX7awAAOWyBTkRElagXgdT58+exceNGPPXUU9JjMTExAFAus5SdnS1lqWJiYmA2m5GXl1fpNhXRaDQICgpyuRERkW8RF+S9fo4UAIQFOLp5MSNFRESVqReB1JIlSxAVFYVRo0ZJjyUmJiImJgYbNmyQHjObzdi2bRv69u0LAOjevTtUKpXLNpmZmUhNTZW2ISIiqojUtU9TQUZK58hIcY4UERFVxutzpOx2O5YsWYJHH30USmXpcGQyGSZPnoxZs2YhKSkJSUlJmDVrFnQ6HR566CEAQHBwMJ588klMnToV4eHhCAsLw7Rp09CpUyepix8REVFFpK59qooyUmoAjq59REREFfF6ILVx40ZcuHABTzzxRLnnpk+fDqPRiIkTJyIvLw+9evXC+vXrpTWkAGDevHlQKpUYP348jEYjBg8ejKVLl3INKSIiuiGx2URlXfsAIIelfUREVAmvB1LDhg2rtB2kTCZDcnIykpOTK329VqvFwoULsXDhwloaIRERNUZSs4kKSvvEQIqlfUREVJl6MUeKiIioronrSOkqykjpHIFUbrGZa78QEVGFGEgREZFPutE6UsE6R9c+q11AsTNzRUREVBYDKSIi8jlmqx0WmyPTpKugtM9PpYBa4ThE6o2WOh0bERE1DAykiIjI54itz4GKS/tkMpmUlco3sOEEETUsn376KeLj4yGXyzF//nxvD6fRYiBFREQ+R1yMV62UQ6Wo+FAY7OcIpJiRImqcsrKyMGnSJLRo0QIajQbx8fG46667sGnTJm8PrUJLly5FSEjITbcrKCjAiy++iBkzZuDSpUt45plnan9wPsrrXfuIiIjqmtixr6LFeEUhYiBlYCBF1NicO3cO/fr1Q0hICObMmYPOnTvDYrFg3bp1eOGFF3D8+PFq7ddisUClUrn9eG24cOECLBYLRo0ahdjY2Aq3qcvxNGbMSBERkc8pMlXesU8kZqTymZEicp8gAMXF3ru52WVz4sSJkMlk2Lt3L+699160bt0aHTp0wJQpU7Bnzx5puwsXLuDuu+9GQEAAgoKCMH78eFy5ckV6Pjk5GV27dsUXX3whZbYEQYBMJsMnn3yCu+++G/7+/nj77bcBAD///DO6d+8OrVaLFi1a4I033oDVWlpqnJ+fj2eeeQbR0dHQarXo2LEj1qxZg61bt+Lxxx+HXq+HTCaTlgi63tKlS9GpUycAQIsWLSCTyXDu3LlKx6nX6/HMM88gKioKQUFBGDRoEA4dOuSyz3fffRfR0dEIDAzEk08+ib///e/o2rWr9PyAAQMwefJkl9eMHTsWjz32mHTfbDZj+vTpaNKkCfz9/dGrVy9s3brVZdwhISFYt24d2rVrh4CAAIwYMQKZmZku+/3iiy/QoUMHaDQaxMbG4sUXXwQAPPHEExg9erTLtlarFTExMfjiiy/KfU6ewowUERH5HIPJuYZUBR37ROIcKZb2EVWBwQD861/ee/+//Q3w97/hJrm5ufjtt9/wzjvvwL+CbcXyOUEQMHbsWPj7+2Pbtm2wWq2YOHEi7r//fpcg4PTp0/jmm2/w/fffQ6EovTjz+uuvY/bs2Zg3bx4UCgXWrVuHRx55BAsWLMDtt9+OM2fOSGV3r7/+Oux2O0aOHInCwkKsWLECLVu2xLFjx6BQKNC3b1/Mnz8fr732Gk6cOAEACAgIKDf2+++/H/Hx8RgyZAj27t2L+Ph4REZGVjrOUaNGISwsDL/88guCg4Px73//G4MHD8bJkycRFhaGb775Bq+//jo++ugj3H777Vi+fDkWLFiAFi1auP9/AuDxxx/HuXPnsGrVKsTFxWH16tUYMWIEjhw5gqSkJACAwWDA+++/j+XLl0Mul+ORRx7BtGnT8OWXXwIAFi9ejClTpuDdd9/FyJEjodfrsXPnTgDAU089hTvuuAOZmZlSFu6XX35BUVERxo8fX6WxVgUDKSIi8jniGlL+msozUiF+jrWk8lnaR9SonD59GoIgoG3btjfcbuPGjTh8+DDS09MRHx8PAFi+fDk6dOiAffv2oWfPngAc2Zbly5dLAYvooYcewhNPPCHd/+tf/4q///3vePTRRwE4MkZvvfUWpk+fjtdffx0bN27E3r17kZaWhtatW0vbiIKDgyGTyRATE1PpmP38/BAeHg4AiIyMdNn2+nFu3rwZR44cQXZ2NjQaDQDg/fffx48//ojvvvsOzzzzDObPn48nnngCTz31FADg7bffxsaNG1FSUnLDz66sM2fOYOXKlbh48SLi4uIAANOmTcNvv/2GJUuWYNasWQAc5YaffPIJWrZsCQB48cUX8eabb0r7efvttzF16lS8/PLL0mPi/0Hfvn3Rpk0bLF++HNOnTwcALFmyBPfdd1+FAaenMJAiIiKfI64h5X+DOVJsNkHUOImLbMtkshtul5aWhvj4eCmIAoD27dsjJCQEaWlp0kl8QkJCuSAKAHr06OFyPyUlBfv27cM777wjPWaz2VBSUgKDwYCDBw+iadOmUhDladePMyUlBUVFRVLgJTIajThz5gwAx2fw3HPPuTzfp08fbNmyxe33PXDgAARBKPdzmUwml/fW6XRSEAUAsbGxyM7OBgBkZ2fj8uXLGDx4cKXv89RTT+HTTz/F9OnTkZ2djbVr19Z64xAGUkRE5HPERXZvNEcqRCrtY/tzosYkKSkJMpkMaWlpGDt2bKXbiXOdbvZ4ReWBFT1ut9vxxhtvYNy4ceW21Wq18PPzc/MnqJ6KxhMbG+tSpihypzugSC6XS8GpyGIpvQBlt9uhUCiQkpLiUvoIuJYnXt/8QiaTSft157OZMGEC/v73v2P37t3YvXs3mjdvjttvv93tn6M6GEgREZHPMbiRkQrhHCmiqtPpHPOUvPn+NxEWFobhw4fjo48+wksvvVQuwMjPz0dISAjat2+PCxcuICMjQ8pKHTt2DHq9Hu3atavy0G655RacOHECrVq1qvD5zp074+LFizh58mSFWSm1Wg2bzVbl973ReLKysqBUKtG8efMKt2nXrh327NmDCRMmSI+VbcYBOEoIyzaFsNlsSE1NxcCBAwEA3bp1g81mQ3Z2drUDm8DAQDRv3hybNm2S9nu98PBwjB07FkuWLMHu3bvx+OOPV+u9qoKBFBER+RyptO8GzSaCxK59nCNF5D6Z7KbNHuqDjz/+GH379sWtt96KN998E507d4bVasWGDRuwePFipKWlYciQIejcuTMefvhhzJ8/X2o20b9//3Jle+547bXXMHr0aMTHx+O+++6DXC7H4cOHceTIEbz99tvo378/7rjjDtxzzz2YO3cuWrVqhePHj0Mmk2HEiBFo3rw5ioqKsGnTJnTp0gU6nQ46NwLHygwZMgR9+vTB2LFj8d5776FNmza4fPkyfvnlF4wdOxY9evTAyy+/jEcffRQ9evTAbbfdhi+//BJHjx51mbs1aNAgTJkyBWvXrkXLli0xb9485OfnS8+3bt0aDz/8MCZMmIAPPvgA3bp1Q05ODjZv3oxOnTrhzjvvdGu8ycnJeO655xAVFSU15di5cycmTZokbfPUU09h9OjRsNls0ly02sT250RE5HPE0r4bZqQ4R4qo0UpMTMSBAwcwcOBATJ06FR07dsTQoUOxadMmLF68GICjtOzHH39EaGgo7rjjDgwZMgQtWrTA119/Xa33HD58ONasWYMNGzagZ8+e6N27N+bOnYuEhARpm++//x49e/bEgw8+iPbt22P69OlSFqpv37547rnncP/99yMyMhJz5syp0Wcgk8nwyy+/4I477sATTzyB1q1b44EHHsC5c+cQHR0NwNEF8LXXXsOMGTPQvXt3nD9/Hs8//7zLfp544gk8+uijmDBhAvr374/ExMRyWaMlS5ZgwoQJmDp1Ktq0aYMxY8bgjz/+cJl/djOPPvoo5s+fj48//hgdOnTA6NGjcerUKZdthgwZgtjYWAwfPlxqbFGbZML1RY0+qKCgAMHBwdDr9QgKCvL2cIiIqJbN/OEwVu7NwNShrTGpd1z5ds1/+xvOGgQM+mAbAjVKHHljuHcGSlTPlZSUID09HYmJidBqtd4eDtWB5ORk/Pjjjzh48KC3h1KOwWBAXFwcvvjiiwrnopV1o99dd2MDlvYREZHPKXKuI6W74RwpR/vzQpMVVpsdSgWLOIiI6iO73Y6srCx88MEHCA4OxpgxY+rkfRlIERGRzxGbTQTcYB2pIG3pIbKgxIowf3Wtj4uIiKruwoULSExMRNOmTbF06VIolXUT4vDyGhER+RxxQV7dDZpNKBVyBDozVvkGtkAnIgIcpX31rayvefPmEAQBGRkZN1xrytMYSBERkc8pNonNJirPSAFAMFugExFRJRhIERGRzxEzUjdqfw4AwWILdAZSRER0HQZSRETkcwymm7c/B0oX5S1gIEV0Q2wCTQ2NJ35nGUgREZHPERfk1alvXNoX4udoMMFFeYkqplI5LjYYDAYvj4SoasTfWfF3uDrYtY+IiHyKIAhSaV+ARgnAVum2QWJpHwMpogopFAqEhIQgOzsbAKDT6SCTybw8KqLKCYIAg8GA7OxshISEQKG48QW1G2EgRUREPsVktcPurOjQaZSAtfJAKoTNJohuKiYmBgCkYIqoIQgJCZF+d6uLgRQREfmUImdZHwDoVArAWvm2pc0m2P6cqDIymQyxsbGIioqCxcKLDlT/qVSqGmWiRAykiIjIp4iNJnRqBeTyG5cghTgDKT1L+4huSqFQeOTklKihYLMJIiLyKe4sxisK0CpdXkNERCRiIEVERD5F7Nh3s8V4AcBP5djGaLHX6piIiKjhYSBFREQ+pdjsXEPKjYyU1hlIlZgrb0hBRES+iYEUERH5lKpkpKRA6gad/YiIyDcxkCIiIp9SuhjvzTNSUmkfM1JERHQdBlJERORTDM6gyLEY741pVY7DpNHCQIqIiFwxkCIiIp9SJGWk3Gg24dymhIEUERFdh4EUERH5FINZnCPlfmmfxSbAamPnPiIiKsVAioiIfEqxc0HeqjSbAIASKwMpIiIqxUCKiIh8SlWaTWiUpYdJNpwgIqKyGEgREZFPqUqzCZlMJpX3cZ4UERGVxUCKiIh8SrHZ/WYTABtOEBFRxRhIERGRTyldkPfmGSkA0CrZAp2IiMpjIEVERD6ltNmEm4GUlJFiswkiIirFQIqIiHyK1P7c3dI+5xwpZqSIiKgsBlJERORTipwZKXe69gGlLdDZtY+IiMpiIEVERD5FzEi507UPALv2ERFRhRhIERGRz7DbBan9uc6NBXmB0owUAykiIiqLgRQREfkMQ5lgyN/t0j527SMiovIYSBERkc8wOFufy2WlAdLNsNkEERFVxOuB1KVLl/DII48gPDwcOp0OXbt2RUpKivS8IAhITk5GXFwc/Pz8MGDAABw9etRlHyaTCZMmTUJERAT8/f0xZswYXLx4sa5/FCIiqueKnWV9/molZDKZW6/xY/tzIiKqgFcDqby8PPTr1w8qlQq//vorjh07hg8++AAhISHSNnPmzMHcuXOxaNEi7Nu3DzExMRg6dCgKCwulbSZPnozVq1dj1apV2LFjB4qKijB69GjYbLx6SEREpcTFeN2dHwVwjhQREVXMvQLxWvLee+8hPj4eS5YskR5r3ry59G9BEDB//ny8+uqrGDduHABg2bJliI6OxldffYVnn30Wer0en3/+OZYvX44hQ4YAAFasWIH4+Hhs3LgRw4cPr9OfiYiI6i8xkHJ3MV6A7c+JiKhiXs1I/fTTT+jRowfuu+8+REVFoVu3bvjss8+k59PT05GVlYVhw4ZJj2k0GvTv3x+7du0CAKSkpMBisbhsExcXh44dO0rbEBERAZA69rnbaALgHCkiIqqYVwOps2fPYvHixUhKSsK6devw3HPP4aWXXsJ///tfAEBWVhYAIDo62uV10dHR0nNZWVlQq9UIDQ2tdJvrmUwmFBQUuNyIiKjxKxJL+9RVKe1zHCpZ2kdERGV5tbTPbrejR48emDVrFgCgW7duOHr0KBYvXowJEyZI210/IVgQhJtOEr7RNrNnz8Ybb7xRw9ETEVFDU9XFeAEuyEtERBXzakYqNjYW7du3d3msXbt2uHDhAgAgJiYGAMpllrKzs6UsVUxMDMxmM/Ly8ird5nozZ86EXq+XbhkZGR75eYiIqH4rMomL8VYhkFKztI+IiMrzaiDVr18/nDhxwuWxkydPIiEhAQCQmJiImJgYbNiwQXrebDZj27Zt6Nu3LwCge/fuUKlULttkZmYiNTVV2uZ6Go0GQUFBLjciImr8xHWk/KtU2sf250REVJ5XS/teeeUV9O3bF7NmzcL48eOxd+9efPrpp/j0008BOEr6Jk+ejFmzZiEpKQlJSUmYNWsWdDodHnroIQBAcHAwnnzySUydOhXh4eEICwvDtGnT0KlTJ6mLHxEREVBmHSl27SMiohryaiDVs2dPrF69GjNnzsSbb76JxMREzJ8/Hw8//LC0zfTp02E0GjFx4kTk5eWhV69eWL9+PQIDA6Vt5s2bB6VSifHjx8NoNGLw4MFYunQpFAr3rzgSEVHjV1yNjBTnSBERUUW8GkgBwOjRozF69OhKn5fJZEhOTkZycnKl22i1WixcuBALFy6shRESEVFjUWwWF+Rl+3MiIqoZr86RIiIiqksGk7iOFNufExFRzTCQIiIin2FwBkO6KizIq2VGioiIKsBAioiIfEaJs2GEX1XmSKlLu/YJglAr4yIiooaHgRQREfkMMaskzntyh7bMtiYrW6ATEZEDAykiIvIZ4jwnbVUCKWXpoZIt0ImISMRAioiIfIaUkapCaZ9SIYdaIXd5PREREQMpIiLyGSXVKO0DAA079xER0XUYSBERkc8QS/OqGkhxLSkiIroeAykiIvIJgiBIgZC4NpS7Sjv3MZAiIiIHBlJEROQTzDY77M7u5doqzJECymSkzOzaR0REDgykiIjIJ5SUCYKqPkeKGSkiInLFQIqIiHyCWNanlMugUlSxtE/Frn1EROSKgRQREfmE6izGK2KzCSIiuh4DKSIi8glix76qzo8CShfwNTGQIiIiJwZSRETkE5iRIiIiT2IgRUREPqG6i/ECpVksg5mBFBEROTCQIiIin1CT0j5mpIiI6HoMpIiIyCeUlvZV/dCnU4vrSDGQIiIiBwZSRETkE2o0R4qlfUREdB0GUkRE5BOkOVLVKO3TqZiRIiIiVwykiIjIJ0hzpKqRkdKplQAAg9nq0TEREVHDxUCKiIh8Akv7iIjIkxhIERGRT6hJICU1m2DXPiIicmIgRUREPqHEXP05UsxIERHR9RhIERGRTxCzSTWZI8VmE0REJGIgRUREPsFosQOoWWkfm00QEZGIgRQREfkEY01K+1Qs7SMiIlcMpIiIyCeUeKDZhMlqh90ueHRcRETUMDGQIiIin+CJOVJl90NERL6NgRQREfmEmpT2aZSlh0uW9xEREcBAioiIfERNSvvkcpn0OnbuIyIigIEUERH5iJosyAuU6dxnYec+IiJiIEVERD5CCqTU1Tv0cVFeIiIqi4EUERH5BLEkrzrNJoDSjBRL+4iICGAgRUREPsBuF2CyVn9BXgDwc3buY0aKiIgABlJEROQDSqylwU91uvYBgE5alJdzpIiIiIEUERH5gLLleFolS/uIiKjmGEgREVGjJzaa0CjlkMtl1doHm00QEVFZDKSIiKjRk9aQqmZZH1AmI2VhIEVERAykiIjIBxjNNWs0AQA6qdkE50gREREDKSIi8gE1XYwXKM1miUEZERH5NgZSRETU6ImBVHXXkAJKu/YZLcxIERERAykiIvIBYqe9msyRYrMJIiIqi4EUERE1eiUeLO1jIEVERAADKSIi8gEeKe3jOlJERFQGAykiImr0PFLap2LXPiIiKsVAioiIGr3Srn3VP+zpWNpHRERleDWQSk5Ohkwmc7nFxMRIzwuCgOTkZMTFxcHPzw8DBgzA0aNHXfZhMpkwadIkREREwN/fH2PGjMHFixfr+kchIqJ6zBNzpLggLxERleX1jFSHDh2QmZkp3Y4cOSI9N2fOHMydOxeLFi3Cvn37EBMTg6FDh6KwsFDaZvLkyVi9ejVWrVqFHTt2oKioCKNHj4bNxgMdERE5iKV9WnbtIyIiD1F6fQBKpUsWSiQIAubPn49XX30V48aNAwAsW7YM0dHR+Oqrr/Dss89Cr9fj888/x/LlyzFkyBAAwIoVKxAfH4+NGzdi+PDhdfqzEBFR/eSJBXl1aschk80miIgIqAcZqVOnTiEuLg6JiYl44IEHcPbsWQBAeno6srKyMGzYMGlbjUaD/v37Y9euXQCAlJQUWCwWl23i4uLQsWNHaZuKmEwmFBQUuNyIiKjx8kwgJWakrBAEwSPjIiKihsurgVSvXr3w3//+F+vWrcNnn32GrKws9O3bF9euXUNWVhYAIDo62uU10dHR0nNZWVlQq9UIDQ2tdJuKzJ49G8HBwdItPj7ewz8ZERHVJ9IcKQ+U9tkFwGS1e2RcRETUcHk1kBo5ciTuuecedOrUCUOGDMHatWsBOEr4RDKZzOU1giCUe+x6N9tm5syZ0Ov10i0jI6MGPwUREdV30hypmmSkyryW5X1EROT10r6y/P390alTJ5w6dUqaN3V9Zik7O1vKUsXExMBsNiMvL6/SbSqi0WgQFBTkciMiosarxOLIINWktE+pkEOtcBw2DezcR0Tk8+pVIGUymZCWlobY2FgkJiYiJiYGGzZskJ43m83Ytm0b+vbtCwDo3r07VCqVyzaZmZlITU2VtiEiIvLEHCmgtLyPGSkiIvJq175p06bhrrvuQrNmzZCdnY23334bBQUFePTRRyGTyTB58mTMmjULSUlJSEpKwqxZs6DT6fDQQw8BAIKDg/Hkk09i6tSpCA8PR1hYGKZNmyaVChIREQGemSMFOBpO6I0WBlJEROTdQOrixYt48MEHkZOTg8jISPTu3Rt79uxBQkICAGD69OkwGo2YOHEi8vLy0KtXL6xfvx6BgYHSPubNmwelUonx48fDaDRi8ODBWLp0KRSKmh0siYio8RAzUjWZIwWUZrQMZmuNx0RERA2bVwOpVatW3fB5mUyG5ORkJCcnV7qNVqvFwoULsXDhQg+PjoiIGgsxg1TT0j4xECth1z4iIp9Xr+ZIERER1Qajh0r7NCrHYdPEZhNERD6PgRQRETV6JR5qNqFVMiNFREQODKSIiKhRs9jssNgEADUPpJiRIiIiEQMpIiJq1ErKBD1iIFRdGqXj9cxIERERAykiImrUxPlRMllpIFRdYrMJZqSIiIiBFBERNWolZkf2yE+lgEwmq9G+xEDMxIwUEZHPYyBFRESNmtFDjSYAZqSIiKgUAykiImrUPLUYL8CMFBERlWIgRUREjZq0GG8N15ACyizIy4wUEZHPYyBFRESNmqfWkAKYkSIiolIMpIiIqFGrjTlSzEgREREDKSIiatTE0j6tB0r7mJEiIiIRAykiImrUSjNSNT/kaZTMSBERkQMDKSIiatQ8OkdKxYwUERE5MJAiIqJGzZNd+8SMFAMpIiJiIEVERI2aJ9eR0jozUiztIyIiBlJERNSoebJrHzNSREQkYiBFRESNmifnSDEjRUREIgZSRETUqHGOFBER1QYGUkRE1KhxjhQREdUGBlJERNSoGS2O7JFn2p8zI0VERA4MpIiIqFEr8Whpn+OwabbaYbcLNd4fERE1XAykiIioUfNk176y5YFmG7NSRES+jIEUERE1ap6cIyVmpADAZGEgRUTky6ocSC1btgxr166V7k+fPh0hISHo27cvzp8/79HBERER1ZQnu/apFHIo5DIAQImVDSeIiHxZlQOpWbNmwc/PDwCwe/duLFq0CHPmzEFERAReeeUVjw+QiIioJjy5jhRQmpViRoqIyLcpq/qCjIwMtGrVCgDw448/4t5778UzzzyDfv36YcCAAZ4eHxERUY14co4U4CgRNJhtzEgREfm4KmekAgICcO3aNQDA+vXrMWTIEACAVquF0Wj07OiIiIhqQBCE0jlSas9MC2ZGioiIgGpkpIYOHYqnnnoK3bp1w8mTJzFq1CgAwNGjR9G8eXNPj4+IiKjaTFY7BGeXck+X9jEjRUTk26p8ee6jjz5Cnz59cPXqVXz//fcIDw8HAKSkpODBBx/0+ACJiIiqS5wfBXima1/Z/TAjRUTk26qckQoJCcGiRYvKPf7GG294ZEBERESeIpb1qRQyqBQeLu1jRoqIyKdV+aiyZMkSfPvtt+Ue//bbb7Fs2TKPDIqIiMgTxNbnnspGAYDGua8SZqSIiHxalQOpd999FxEREeUej4qKwqxZszwyKCIiIk/wdMc+gBkpIiJyqHIgdf78eSQmJpZ7PCEhARcuXPDIoIiIiDxBnCPlyYyUlhkpIiJCNQKpqKgoHD58uNzjhw4dkhpPEBER1QdiQwityjPzowBmpIiIyKHKR5YHHngAL730ErZs2QKbzQabzYbNmzfj5ZdfxgMPPFAbYyQiIqoWsUU5M1JERORpVe7a9/bbb+P8+fMYPHgwlErHy+12OyZMmMA5UkREVK+IwY6YRfIEZqSIiAioRiClVqvx9ddf46233sKhQ4fg5+eHTp06ISEhoTbGR0REVG2mWshIaZTMSBERUTUCKVHr1q3RunVrT46FiIjIo0ozUp4s7WNGioiI3AykpkyZgrfeegv+/v6YMmXKDbedO3euRwZGRERUU2LXPo1Hm004gjKTlRkpIiJf5lYg9eeff8JisUj/JiIiagjEYEdbCxkpMUgjIiLf5FYgtWXLlgr/TUREVJ+VriNVG80mmJEiIvJlVT6yPPHEEygsLCz3eHFxMZ544gmPDIqIiMgTameOlLO0jxkpIiKfVuVAatmyZTAajeUeNxqN+O9//+uRQREREXlCrWSkVMxIERFRFbr2FRQUQBAECIKAwsJCaLVa6TmbzYZffvkFUVFRtTJIIiKi6pDmSHlyQV6p/TkzUkREvsztQCokJAQymQwymazCtucymQxvvPGGRwdHRERUEyZmpIiIqJa4HUht2bIFgiBg0KBB+P777xEWFiY9p1arkZCQgLi4uFoZJBERUXWUONd68uQcKQ0zUkREhCrMkerfvz8GDBiA9PR0jB07Fv3795duffr0qXEQNXv2bMhkMkyePFl6TBAEJCcnIy4uDn5+fhgwYACOHj3q8jqTyYRJkyYhIiIC/v7+GDNmDC5evFijsRARUeNgsoilfZ7LSGmZkSIiIlSj2URaWhp27twp3f/oo4/QtWtXPPTQQ8jLy6vWIPbt24dPP/0UnTt3dnl8zpw5mDt3LhYtWoR9+/YhJiYGQ4cOdekaOHnyZKxevRqrVq3Cjh07UFRUhNGjR8Nm45VCIiJfJ2akPDlHSlqQ18JAiojIl1U5kPrb3/6GgoICAMCRI0cwZcoU3HnnnTh79iymTJlS5QEUFRXh4YcfxmeffYbQ0FDpcUEQMH/+fLz66qsYN24cOnbsiGXLlsFgMOCrr74CAOj1enz++ef44IMPMGTIEHTr1g0rVqzAkSNHsHHjxiqPhYiIGpfS9ueez0iJQRoREfmmKh9Z0tPT0b59ewDA999/j7vuuguzZs3Cxx9/jF9//bXKA3jhhRcwatQoDBkypNz7ZGVlYdiwYdJjGo0G/fv3x65duwAAKSkpsFgsLtvExcWhY8eO0jYVMZlMKCgocLkREVHjYxLnSDEjRUREHlblQEqtVsNgMAAANm7cKAUxYWFhVQ5IVq1ahQMHDmD27NnlnsvKygIAREdHuzweHR0tPZeVlQW1Wu2Sybp+m4rMnj0bwcHB0i0+Pr5K4yYiooZBzEhpPdlsokxGShAEj+2XiIgalioHUrfddhumTJmCt956C3v37sWoUaMAACdPnkTTpk3d3k9GRgZefvllrFixwmVNquvJZDKX+4IglHvsejfbZubMmdDr9dItIyPD7XETEVHDIXbW03i02YQjKBMENpwgIvJlVT6yLFq0CEqlEt999x0WL16MJk2aAAB+/fVXjBgxwu39pKSkIDs7G927d4dSqYRSqcS2bduwYMECKJVKKRN1fWYpOztbei4mJgZms7lck4uy21REo9EgKCjI5UZERI1PbWSkdGXKBI1mzpMiIvJVbq8jJWrWrBnWrFlT7vF58+ZVaT+DBw/GkSNHXB57/PHH0bZtW8yYMQMtWrRATEwMNmzYgG7dugEAzGYztm3bhvfeew8A0L17d6hUKmzYsAHjx48HAGRmZiI1NRVz5syp6o9GRESNjMnq+QV5lQo51Ao5zDY7DBYbQm/+EiIiaoTcCqQKCgqkrM3N5kG5m90JDAxEx44dXR7z9/dHeHi49PjkyZMxa9YsJCUlISkpCbNmzYJOp8NDDz0EAAgODsaTTz6JqVOnIjw8HGFhYZg2bRo6depUrnkFERH5ntJ1pDyXkQIAnUYBs8EOo9nq0f0SEVHD4VYgFRoaiszMTERFRSEkJKTC+UfivCRPrt80ffp0GI1GTJw4EXl5eejVqxfWr1+PwMBAaZt58+ZBqVRi/PjxMBqNGDx4MJYuXQqFwrMHTSIialhsdgFmm+fbnwOO8r58WFBsYmkfEZGvciuQ2rx5M8LCwgAAW7ZsqbXBbN261eW+TCZDcnIykpOTK32NVqvFwoULsXDhwlobFxERNTzmMo0gPJ2R8lM79mfgHCkiIp/lViDVv39/6d+JiYmIj4+vsJseu98REVF9IXbsA2ohI6V2HD6NFpb2ERH5qiofWRITE3H16tVyj+fm5iIxMdEjgyIiIqqpEmejCaVcBqXC04EUM1JERL6uykeWytZoKioquuF6UERERHWpthpNAGUCKc6RIiLyWW63P58yZQoAx7ylf/7zn9DpdNJzNpsNf/zxB7p27erxARIREVVHSS20PheJpX0Gdu0jIvJZbgdSf/75JwBHRurIkSNQq9XSc2q1Gl26dMG0adM8P0IiIqJqEBfj1XhwMV6RlJGyMCNFROSr3A6kxG59jz/+OD788EO314siIiLyBrHZhKZWMlIs7SMi8nVuB1KiJUuW1MY4iIiIPMrkbH+urYWMlJ9U2sdAiojIV1U5kAKAffv24dtvv8WFCxdgNptdnvvhhx88MjAiIqKaEDNStTNHyhGcsf05EZHvqvLRZdWqVejXrx+OHTuG1atXw2Kx4NixY9i8eTOCg4NrY4xERERVJpX21eYcKWakiIh8VpUDqVmzZmHevHlYs2YN1Go1PvzwQ6SlpWH8+PFo1qxZbYyRiIioyqTSvlrs2lfMOVJERD6rykeXM2fOYNSoUQAAjUaD4uJiyGQyvPLKK/j00089PkAiIqLqMEmlfbWXkWJpHxGR76pyIBUWFobCwkIAQJMmTZCamgoAyM/Ph8Fg8OzoiIiIqqm0/Xktdu1jaR8Rkc+qcrOJ22+/HRs2bECnTp0wfvx4vPzyy9i8eTM2bNiAwYMH18YYiYiIqsxkrc2MlOPwaWQgRUTks6ocSC1atAglJSUAgJkzZ0KlUmHHjh0YN24c/vnPf3p8gERERNUhZqRqI5Dyc2akis0s7SMi8lVVDqTCwsKkf8vlckyfPh3Tp0/36KCIiIhqqrRrXy22P2dGiojIZ1X56KJQKJCdnV3u8WvXrkGh8PxVPyIiouoocZb2aWohI+XPBXmJiHxelQMpQRAqfNxkMkGtVtd4QERERJ5gstRe+3O/Ms0m7PaKj4tERNS4uV3at2DBAgCATCbDf/7zHwQEBEjP2Ww2bN++HW3btvX8CImIiKqhRFxHqhYX5HW8j01qPkFERL7D7W/+efPmAXBkpD755BOXMj61Wo3mzZvjk08+8fwIiYiIqkGaI1UbGaky5YIGMwMpIiJf5PY3f3p6OgBg4MCB+OGHHxAaGlprgyIiIqopUy1mpORyGfxUChgtNjacICLyUVW+hLZlyxaX+1arFSUlJS6lfkRERN4mZqRqo/054CjvM1psbIFOROSj3K53+OWXX7B8+XKXx9555x0EBAQgJCQEw4YNQ15enscHSEREVB2mWmx/Drg2nCAiIt/j9tHl/fffR0FBgXR/165deO211/DPf/4T33zzDTIyMvDWW2/VyiCJiIiqSirtq6WMlNgCnaV9RES+ye1AKjU1FX379pXuf/fddxg6dCheffVVjBs3Dh988AF+/vnnWhkkERFRVZWW9tVuRqrYxNI+IiJf5PbRpbCwEOHh4dL9HTt2YNCgQdL9Dh064PLly54dHRERUTWVONeR0tRCswmgtAW60cKMFBGRL3I7kIqLi0NaWhoAoKioCIcOHUK/fv2k569duwadTuf5ERIREVVDibV2M1I6zpEiIvJpbh9d7r33XkyePBnLly/H008/jZiYGPTu3Vt6fv/+/WjTpk2tDJKIiKiqTJbanSMlrh3FQIqIyDe53f789ddfx+XLl/HSSy8hJiYGK1ascFmUd+XKlbjrrrtqZZBERERVIQhCmYxU7Zb2GThHiojIJ7kdSOl0unLtz8u6fn0pIiIibymx2CEIjn+LTSE8TWp/zjlSREQ+qXYKx4mIiLzIUGaRXD+2PyciolrAQIqIiBodcd6SRimHQi6rlfdg+3MiIt/GQIqIiBodsSW5rpbK+srum6V9RES+iYEUERE1OmJGSuysVxukdaRY2kdE5JMYSBERUaMjzpGqrUYTQNn25yztIyLyRW4HUs2aNcO1a9ek+4sWLUJBQUGtDIqIiKgmjObaL+0Tm1gwI0VE5JvcDqQuXrwIm630YPGPf/wDOTk5tTIoIiKimhBL+2qrYx9Quj5ViXPhXyIi8i3VLu0TxAU6iIiI6pk6yUipHYdQceFfIiLyLZwjRUREjY44b6k2m01olGJGioEUEZEvqtIR5j//+Q8CAgIAAFarFUuXLkVERITLNi+99JLnRkdERFQNYkvy2mw2wdI+IiLf5nYg1axZM3z22WfS/ZiYGCxfvtxlG5lMxkCKiIi8ri5K+7QqR1GHkRkpIiKf5HYgde7cuVocBhERkedIzSbqICNlttphtwuQy2W19l5ERFT/cI4UERE1OtKCvKramyOlLdMR0GRleR8Rka9xO5C68847odfrpfvvvPMO8vPzpfvXrl1D+/btPTo4IiKi6jBKzSZqMSOlLD2EsuEEEZHvcTuQWrduHUwmk3T/vffeQ25urnTfarXixIkTnh0dERFRNdRFaZ9SIYdK4SjnYwt0IiLf43Ygdf26UVxHioiI6iuxAURtZqQAQKtk5z4iIl/FOVJERNToiF37/FS1G0hpnPsX34+IiHyH24GUTCaDTCYr91hNLF68GJ07d0ZQUBCCgoLQp08f/Prrr9LzgiAgOTkZcXFx8PPzw4ABA3D06FGXfZhMJkyaNAkRERHw9/fHmDFjcPHixRqNi4iIGra6KO0DSlugs7SPiMj3uN3OSBAEPPbYY9BoNACAkpISPPfcc/D39wcAl/lT7mratCneffddtGrVCgCwbNky3H333fjzzz/RoUMHzJkzB3PnzsXSpUvRunVrvP322xg6dChOnDiBwMBAAMDkyZPx888/Y9WqVQgPD8fUqVMxevRopKSkQKGo3QMoERHVT6WlfbXXtQ8ouygvAykiIl/j9hHm0Ucfdbn/yCOPlNtmwoQJVXrzu+66y+X+O++8g8WLF2PPnj1o37495s+fj1dffRXjxo0D4Ai0oqOj8dVXX+HZZ5+FXq/H559/juXLl2PIkCEAgBUrViA+Ph4bN27E8OHDqzQeIiJqHAx10LUPKC0dNHGOFBGRz3E7kFqyZEltjgM2mw3ffvstiouL0adPH6SnpyMrKwvDhg2TttFoNOjfvz927dqFZ599FikpKbBYLC7bxMXFoWPHjti1axcDKSIiH1XnpX3MSBER+ZzarXlww5EjR9CnTx+UlJQgICAAq1evRvv27bFr1y4AQHR0tMv20dHROH/+PAAgKysLarUaoaGh5bbJysqq9D1NJpNLKWJBQYGnfhwiIqoHxOYPtd61T2w2wUCKiMjneL1rX5s2bXDw4EHs2bMHzz//PB599FEcO3ZMev76hhaCINy0ycXNtpk9ezaCg4OlW3x8fM1+CCIiqjfMVjusdscSHTpV7V4v1LD9ORGRz/J6IKVWq9GqVSv06NEDs2fPRpcuXfDhhx8iJiYGAMpllrKzs6UsVUxMDMxmM/Ly8irdpiIzZ86EXq+XbhkZGR7+qYiIyFvKtiJnaR8REdUWrwdS1xMEASaTCYmJiYiJicGGDRuk58xmM7Zt24a+ffsCALp37w6VSuWyTWZmJlJTU6VtKqLRaKSW6+KNiIgaB4PF0WhCKZdBrazdw5zUtY/tz4mIfI5X50j94x//wMiRIxEfH4/CwkKsWrUKW7duxW+//QaZTIbJkydj1qxZSEpKQlJSEmbNmgWdToeHHnoIABAcHIwnn3wSU6dORXh4OMLCwjBt2jR06tRJ6uJHRES+pa4aTQClXftY2kdE5Hu8GkhduXIFf/3rX5GZmYng4GB07twZv/32G4YOHQoAmD59OoxGIyZOnIi8vDz06tUL69evl9aQAoB58+ZBqVRi/PjxMBqNGDx4MJYuXco1pIiIfFRdNZoASkv7TCztIyLyOV4NpD7//PMbPi+TyZCcnIzk5ORKt9FqtVi4cCEWLlzo4dEREVFDZDDXzWK8ALv2ERH5sno3R4qIiKgmxMV4xbK72iTNkWIgRUTkcxhIERFRo1KXpX0apdi1j3OkiIh8DQMpIiJqVOqy2QQzUkREvouBFBERNSoGS91lpKSufVZmpIiIfA0DKSIialSMzjlSddlsghkpIiLfw0CKiIgaFbG0T1snzSbEOVIMpIiIfA0DKSIialSMdVjax4wUEZHvYiBFRESNijcW5GXXPiIi38NAioiIGpW67NqnUTIjRUTkqxhIERFRoyJlpOpgjpQYrDGQIiLyPQykiIioUTF4o2sf258TEfkcBlJERNSoFJucGSlNHcyRUjoOo2arHTa7UOvvR0RE9QcDKSIialQKTY6MVKBWVevvVbbFusnK8j4iIl/CQIqIiBqVwhILACBQW3elfQA79xER+RoGUkRE1KgUljgyUkF1EEgp5DKoFDIAbDhBRORrGEgREVGjIQgCipylfQGa2i/tA7goLxGRr2IgRUREjYbRYpOaPtRFaR9QNpBiaR8RkS9hIEVERI2GWNYnlwG6OliQFwC0Kseh1MiMFBGRT2EgRUREjYYYSAVolJDJZHXynlqlI2AzMZAiIvIpDKSIiKjRKO3YVzfzo4Cyi/IykCIi8iUMpIiIqNEQM1J1NT8KKC3t4xwpIiLfwkCKiIgajdLW517ISLG0j4jIpzCQIiKiRqPI5CjtC6jTjBS79hER+SIGUkRE1Gh4p7TPEUixax8RkW9hIEVERI1GgTcCKaU4R4qBFBGRL2EgRUREjUaRFEjV/Rwptj8nIvItDKSIiKjRENufB2jqLiMlLvxrMDOQIiLyJQykiIio0Sjt2ld3gZQYtBWZrHX2nkRE5H0MpIiIqNEQg5m6LO0TOwQWMpAiIvIpDKSIiKjR8EZpnxi0ifOziIjINzCQIiKiRsMb7c/FoE0M4oiIyDcwkCIiokaj0AulfWLQxjlSRES+hYEUERE1GmJWqC4zUlIgxdI+IiKfwkCKiIgaBYvNjhKLHYC3SvsYSBER+RIGUkRE1CiUDWTqstmE2LWvyGyF3S7U2fsSEZF3MZAiIqJGQSyt06kVUCrq7vAW5JyPJQiAwcJFeYmIfAUDKSIiahQKvDA/CgA0SjmUchkAdu4jIvIlDKSIiKhREEv76rKsDwBkMllpeR/nSRER+QwGUkRE1CgUeaH1uUjMghUwkCIi8hkMpIiIqFHwRutzUYDGEbxxLSkiIt/BQIqIiBoFsbQvyBsZKQ1L+4iIfA0DKSIiahTEbFBdz5ECSrNgbDZBROQ7GEgREVGjYDA7259rFHX+3lKzCZb2ERH5DAZSRETUKBjMjjWc/FR1H0iVZqQYSBER+QoGUkRE1CiUOBfD1am9kJFyNptgIEVE5DsYSBERUaNgdGaktF7MSBWZOEeKiMhXMJAiIqJGwejMSPl5ISMVyDlSREQ+x6uB1OzZs9GzZ08EBgYiKioKY8eOxYkTJ1y2EQQBycnJiIuLg5+fHwYMGICjR4+6bGMymTBp0iRERETA398fY8aMwcWLF+vyRyEiIi/z5hwpsVMgS/uIiHyHVwOpbdu24YUXXsCePXuwYcMGWK1WDBs2DMXFxdI2c+bMwdy5c7Fo0SLs27cPMTExGDp0KAoLC6VtJk+ejNWrV2PVqlXYsWMHioqKMHr0aNhsNm/8WERE5AXenSPFQIqIyNfU/WIbZfz2228u95csWYKoqCikpKTgjjvugCAImD9/Pl599VWMGzcOALBs2TJER0fjq6++wrPPPgu9Xo/PP/8cy5cvx5AhQwAAK1asQHx8PDZu3Ijhw4fX+c9FRER1Tyzt884cKUezCZb2ERH5jno1R0qv1wMAwsLCAADp6enIysrCsGHDpG00Gg369++PXbt2AQBSUlJgsVhctomLi0PHjh2lba5nMplQUFDgciMioobNWC/an7PZBBGRr6g3gZQgCJgyZQpuu+02dOzYEQCQlZUFAIiOjnbZNjo6WnouKysLarUaoaGhlW5zvdmzZyM4OFi6xcfHe/rHISKiOiYFUl4s7StiaR8Rkc+oN4HUiy++iMOHD2PlypXlnpPJZC73BUEo99j1brTNzJkzodfrpVtGRkb1B05ERPWC0YtzpMSMVLHZBptdqPP3JyKiulcvAqlJkybhp59+wpYtW9C0aVPp8ZiYGAAol1nKzs6WslQxMTEwm83Iy8urdJvraTQaBAUFudyIiKhh8+YcqQBt6ZRjzpMiIvINXg2kBEHAiy++iB9++AGbN29GYmKiy/OJiYmIiYnBhg0bpMfMZjO2bduGvn37AgC6d+8OlUrlsk1mZiZSU1OlbYiIqHGz2wWUWOwAvDNHSqNUQK1wHFIZSBER+Qavdu174YUX8NVXX+F///sfAgMDpcxTcHAw/Pz8IJPJMHnyZMyaNQtJSUlISkrCrFmzoNPp8NBDD0nbPvnkk5g6dSrCw8MRFhaGadOmoVOnTlIXPyIiatxKrKXLXXhjjhTgKO+7Vmx2Npzw88oYiIio7ng1kFq8eDEAYMCAAS6PL1myBI899hgAYPr06TAajZg4cSLy8vLQq1cvrF+/HoGBgdL28+bNg1KpxPjx42E0GjF48GAsXboUCoV3DqZERFS3xEYTAKBVeue7P8AZSLHhBBGRb/BqICUIN5+QK5PJkJycjOTk5Eq30Wq1WLhwIRYuXOjB0RERUUNROj9KDrn8xs2IaktpC3QGUkREvqBeNJsgIiKqiRKL99aQEunUjkDKUCY7RkREjRcDKSIiavAMXlyMVyS2XS82MyNFROQLGEgREVGDJ86R0nqp0QRQGkgZmZEiIvIJDKSIiKjB8+ZivCKW9hER+RYGUkRE1ODVjzlSjvc2sLSPiMgnMJAiIqIGr7Rrn/cCKT8pkGJGiojIFzCQIiKiBq8+NJvwZ2kfEZFPYSBFREQNntjgwbtzpFjaR0TkSxhIERFRgyfNkWKzCSIiqiMMpIiIqMGrD3OkmJEiIvItDKSIiKjBqw9zpNhsgojItzCQIiKiBq+kHqwjJTab4IK8RES+gYEUERE1eGLwUh/anxeztI+IyCcwkCIiogbPWC+aTTjemxkpIiLfwECKiIgavPowR4rrSBER+RYGUkRE1OBJ7c/rQWmfwWyD3S54bRxERFQ3GEgREVGDVx9K+/w1pe9dYmVWioiosWMgRUREDZ6xHpT2aZWl783yPiKixo+BFBERNXhSIOXFjJRcLpMCOYOJgRQRUWPHQIqIiBo8Yz2YIwWUlvcZLGyBTkTU2DGQIiKiBq8+zJEq+/7FzEgRETV6DKSIiKhBs9sFlFjsALyfkdKpHC3QuZYUEVHjx0CKiIgatLId8rydkdKJpX1mlvYRETV2DKSIiKhBK5v9Kds5zxt0ZdaSIiKixo2BFBERNWji/CitSg65XObVsejUjtI+BlJERI0fAykiImrQSupJxz6gbEaKpX1ERI0dAykiImrQjOb60WgCYGkfEZEvYSBFREQNmpj90Xq50QTA0j4iIl/CQIqIiBo0vdECAAjSqrw8ktKMlJGlfUREjR4DKSIiatDyDY5AKsxf7eWRlFmQlxkpIqJGj4EUERE1aLkGMwAgROf9jJS/mgvyEhH5CgZSRETUoOUVOwKpMF19ykixtI+IqLFjIEVERA1anjMjFVoPSvv82WyCiMhnMJAiIqIGLbfYMUcqtB5kpEqbTTCQIiJq7BhIERFRgyZmpML8vT9HiqV9RES+g4EUERE1aFJpXz3ISLHZBBGR72AgRUREDZrYbKI+zJESM1KcI0VE1PgxkCIiogbLZheQb6w/c6T8NWIgxdI+IqLGjoEUERE1WHqjBYLg+Hd9WEdKp3KU9llsAiw2u5dHQ0REtYmBFBERNVji/KhArRIqhfcPaTpnRgoACkuYlSIiasy8f9QhIiKqJmkx3nowPwoAVAo5gv0cmbHcYpOXR0NERLWJgRQRETVYucX1p2OfKNwZ1OUUmb08EiIiqk0MpIiIqMHKN4iNJrw/P0oUHuAIpMQgj4iIGicGUkRE1GDlGupP63NRuL8GAHCtiKV9RESNGQMpIiJqsKQ5UvWptC+ApX1ERL6AgRQRETVYefUxIxXgzEix2QQRUaPGQIqIiBqs3OL6sxivKMKZkbrGjBQRUaPm1UBq+/btuOuuuxAXFweZTIYff/zR5XlBEJCcnIy4uDj4+flhwIABOHr0qMs2JpMJkyZNQkREBPz9/TFmzBhcvHixDn8KIiLyFjEjFeZfj5pNSHOkGEgRETVmXg2kiouL0aVLFyxatKjC5+fMmYO5c+di0aJF2LdvH2JiYjB06FAUFhZK20yePBmrV6/GqlWrsGPHDhQVFWH06NGw2Wx19WMQEZGXiIFUSD3KSElzpFjaR0TUqCm9+eYjR47EyJEjK3xOEATMnz8fr776KsaNGwcAWLZsGaKjo/HVV1/h2WefhV6vx+eff47ly5djyJAhAIAVK1YgPj4eGzduxPDhw+vsZyEiorpX3xbkBVjaR0TkK+rtHKn09HRkZWVh2LBh0mMajQb9+/fHrl27AAApKSmwWCwu28TFxaFjx47SNhUxmUwoKChwuRERUcNiswvINzrmSIXUp3WknKV9eqMFZqvdy6MhIqLaUm8DqaysLABAdHS0y+PR0dHSc1lZWVCr1QgNDa10m4rMnj0bwcHB0i0+Pt7DoyciotqWU2SCIAAKuUwKXuqDYD8VFHIZgNLSQyIianzqbSAlkslkLvcFQSj32PVuts3MmTOh1+ulW0ZGhkfGSkREdedKQQkAIDJAIwUu9YFcLpNKDXO4KC8RUaNVbwOpmJgYACiXWcrOzpayVDExMTCbzcjLy6t0m4poNBoEBQW53IiIqGHJ0jsCqeig+pONEoX7c54UEVFjV28DqcTERMTExGDDhg3SY2azGdu2bUPfvn0BAN27d4dKpXLZJjMzE6mpqdI2RETUOIkZqeggrZdHUl4EF+UlImr0vNq1r6ioCKdPn5bup6en4+DBgwgLC0OzZs0wefJkzJo1C0lJSUhKSsKsWbOg0+nw0EMPAQCCg4Px5JNPYurUqQgPD0dYWBimTZuGTp06SV38iIio/vv1SCaC/VTo2yrC7ddkOQOpmOD6F0iFs3MfEVGj59VAav/+/Rg4cKB0f8qUKQCARx99FEuXLsX06dNhNBoxceJE5OXloVevXli/fj0CAwOl18ybNw9KpRLjx4+H0WjE4MGDsXTpUigUijr/eYiIqOp2ns7B818eQKBGicPJw246D1aUpXdke+pjRkpsfpHDQIqIqNHyaiA1YMAACIJQ6fMymQzJyclITk6udButVouFCxdi4cKFtTBCIiKqTTa7gLfWHAMAFJqs0Bstbi+um11Yf0v7SjNSLO0jImqs6u0cKSIiavy+3Z+B41mF0v2qZHDEZhMx9TCQkhblLWZGioiosWIgRUREXrH5+BUk/3zU5bGqtAsvnSNVH7v2iaV9zEgRETVWDKSIiKjObUq7gqf/m4ISix0D2kSiW7MQAO4HHgazFYUlVgD1s7RPbIBxOb/EyyMhIqLawkCKiIjq3L+3nYXNLmBMlzh8NqEHYp2Bh7td7sSyPn+1AoFaVa2Ns7riQ3UAHIGh0Wzz8miIiKg2MJAiIqI6pTdYkHLBsZD634a3gUohr3Ip3JWC+tuxDwCC/JQI1Dj6OV3KN3h5NEREVBsYSBERUZ3aduoqbHYBSVEBiA9zZG7EBWzdD6Tqb8c+wNF1tqnzZ8vINXp5NEREVBsYSBERUZ3acjwbADCobZT0WESgo8udu1376vNivKKmoX4AgIt5zEgRETVGDKSIiKjO2OwCtp5wBFIDywRSVS3tE+dI1deMFFA6TyojjxkpIqLGiIEUERHVmT8v5CHPYEGgVonuCaHS45FSRqqqpX31r/W5KD7MkZHKyGVGioioMWIgRUREdcJktUnrRg1pFw2VovQQJM6RcrdrnxhI1cfFeEVNnRmpi8xIERE1SgykiIioTry/7gRSLxUgVKfC30e2dXku3BlIGcw2GMzWm+5LnEsVGdgAMlKcI0VE1CgxkCIiolr37f4MfPZ7OgDgX/d2KTe3yV+tgFblOCTlFN48KyWWAIqZrPpIzEjlGywoLLF4eTRERORpDKSIiKhW/ZaahRnfHwYAPNu/BYa0jy63jUwmK22BXnzjeVIGsxUG5yK3EfU4IxWgUSJU51gsuLrlff/dfQ59Zm/CwYx8D46MiIg8gYEUERHVGpPVhr//cBh2Abi/Rzz+PqJtpduK5X05hTcOpMSMlVYlh79a4bnB1gIxK1WdhhOHL+bjzZ+PIVNfgg/Wn/D00IiIqIYYSBERUa3Zcvwq8g0WRAdp8M5fOkImk1W6bWSAe2tJXS1T1nej/dUH4jypqmak8g1mTP76IKx2AQDw+6kcnMgq9Pj4iIio+hhI+bjUS3rM3XASJRabt4dCRHUk32BGkenmDR084X8HLwEA7u7aBErFjQ854lpS127SAr0hzI8SiWtJncp2Pwj6Ykc6bp+zBWevFiM6SIPbkyIAAJ/9fhaX841YtPkURi/8Hd+lXKyVMRMRkXsYSPm4N38+hgWbTuG31CxvD4WI6oDeYMGQudsx9qOdEAShVt+roMSCTccdi+/e3TXupttHuLmWVEMKpG5zBkG/HMly64LVoYx8vLnmGApLrGgbE4jPJvTA5CFJAIDvUi6i77ub8f76k0i9VIB5G07W+v8hERFVjoGUD7Pa7Dh8KR8AcP4a2/NSzekNFhy+mO/tYdANbEi7gpwiE05nFyFTX1Lu+Z8PXcavRzI98l6/HcmC2WpHUlQA2scG3XT70mYTNy7tE+dIiYv41md9W0agSYgf9EYL1h+7ctPtt5xwBJ6D2kbhl5duR+emIbilWSgGtImUtunUJBh+KgUu5RuReqmg1sZOREQ3xkDKh53KLkKJxQ4AuJTPQIpqRhAEPLlsH8Ys2oktziwE1T+/pZYGSSevuJabnc4uwqSVf+LFlX9Cb6h5u26x9GxstyZuzWWKDXbMJzp4IR82e+WZloaUkVLIZbine1MAjhbwN7P95FUAwND20ZDLHZ+ZTCbDksd6IvWN4Tg76078POk2KbBad5TVBERE3sJAyoeVzRxUtzUv+Y7z14rxztpjSM8prvD5HadzsP98HgDg0+1n63JojYrRbMP5axV/xjVVZLJi+6kc6f7p7CKX579xnujb7AKOZRZg37lcDPjXFuw8nYOqOnWlEHvP5ToCiVuauvWaAW0iEapT4VK+EetvECA0pEAKAO5zBlI7Tufg4g0W59UbLFKb8ztaR7o8J5PJEKBRSsHVsA6OFvLrj2UhLbMA/zt4CUbzzUsHbXYB9hsEqaL953Ix84fDdTaXjogarm/2Z+CjLafd+m5pbBhI+bBDF/XSvy/l1zyQyikyYeo3h/D7qas13hfVP4s2n8Znv6dj7Ec7setM+RPrj7aclv69++w1HM9iyVF1TP/+MAa8v1X6jC9cM6DAQ4u5bj6eDbPVLt0/daU0kDJb7fi+TPOCY5kFWL77PM5dM2DVvptnUq63cq/jNYPaRiEmWHuTrR20KgUe6Z0AAPh8R3ql2zW0QCo+TIceCaEQBGDP2dxKt9t5Jgd2AWgZ6Y8mIX433OegNtFQymU4eaUIoxb8jpdXHUSfdzdh5d4Llb7mwjUDur6xHtO+PXTTMf9r3Qms3JuB79zIonmT2WrH/w5euum8OiKqHZfzjZjx/WH8a90JLN52xtvDqXMMpHxY2YxUZn5Jja8kvLM2Dd8fuIgP1p+s4ch8w6a0Kxg+bztSL+lvvnE9cNgZeOuNFkz4fK90op9vMGPJznTsOZsLlUKGWxPDAABLd57z1lAbrCKTFetSsyAIwIo953EoIx+D527F8ytSPLJ/sawvMcIfgGsnuY1pV3CtzNyktMwCpDgzjMcuV+13tMRiw/cHHEHZQ7c2q9Jr/9o7ASqFDPvP51W6CK3YHj0ioP7PkRK1jAwA4DjpqIxY1nd9NqoiwToV+rQMBwDYBcdnkW+w4B+rjyC3kjlmPx++jEKTFT/8eQl70ysP6ABH6TfgCKjrs1m/pOHlVQcx57fj3h4KVdPhi/l4Z+0xtzKq9YndLtywBBlwzEX3dEOYBZtOYeYPh2/63p50o/f64cBFiD/i++tPYOsJ3yrtZyDlo0osNhzPLD2JMtvs0tos1fHnhTys/tPR5vhEVqFPpnerasnOczhxpRD/+b3+l8EZzFbppPu2VhGw2gW8+NWfmLv+BHrN2oQ3fj4GALi3ezz+NrwNAGD1n5eQb7hx0wBy9fvJqzDbHBmjjceyMfvXNFhsAvam58Jqs9/k1Tdmswv43VnW93z/lgAcJ8viQV4s62sbE+gYy6mrUqb6bE4xDGb3S7zWH7sCvdGCJiF+bgUFZUUFaTG6s6PDn9g6/Xrigr0RgQ0jIwUAcc4MU2WBlN0uYFsVAikA+Med7TCmSxyWPXEr/vjHELSKCoAgAH+cvVbh9mKgBgBzfjte6QnetSKTFIylZVbetv3klUJpzN5w9LIe/919DgAqDbrrK0EQkHeTpiq+4v31J/HZ7+n48o/z3h6K2y7nGzH2453onLwOf/v2UIUVGPkGM4bN3447F+zwSNUP4Dh3m7fxJFbuzZAudNW2N38+hlve2oDNx8s3yxEEAd86KxlaRPpDEIAnlu5D8k9Hyy1jkXI+F+cqmRrQkDGQ8lHHswphtQsI91dLJSTVmSd19LIeH6w/4VIqYrTYcCGXzStuxGYXpAP/puPZMJptmPnDEST/dLTCFslLdqZj2a5zdTvIMtIyC2AXgMhADT6b0AMd4oKQW2zGgs2nYbLa0To6ANOGtcbrd7VHj4RQtI0JhMlqx/8OXvbamBuiDWmlByqzzS6VgVlsAs7X8G/q5JVCFJZY4a9W4K4ucVDIZSgsseJKgQkWmx1/ON9r2jBHIHyloPQgKAio0mKwB5wH+OEdYqCQV33B3MHtogBUXAZXYrGh0Dlvp6GU9gFAbIijvLGyE6p953KRqS9BgEaJPi3C3dpnu9ggLHiwG/q3joRCLkM/Z4ZqdwWBVJHJKp14iRm/zZU0hTlVZu7ciSuFFQbxJRYbHvx0Dx79Yi/SvJC1stsF/PPHVIjX7M5cLYbJ2nAyGh9uOoVub23wuav3FbngnBN6syxpfZGWWYC7P9qJwxf1KDbb8G3KRTz6xd5yFyYWbzuDs1eLkZZZgPGf7PZIEJGRa5CyP9tO1v7vjiAI+OHPi9AbLXjmvylYc9j1mL43PRfnrxngr1bg++f64q4ucbALwNJd59B79iZMXuVoXLT/XC7uWbwb936yu0oX5RoCBlI+Sizr69Q0WAqkqnrFxG4X8NSy/Vi4+TTOXC2GTq1AszDH4pOcH3Njp7OLpEnchSVWTP/+MFbuvYClu85hwhd7XebEnL1ahDd+PobXfzqKDC8FqEecZX2dmwTDT63Av//aHdFBGgT7qfD+fV2wbvIdeHFQErQqBWQyGe7vGQ8AWLUvA5fyjZj1S1qjvBLlSTa7IHU7HNY+utzzp664H8hUZN85x0nKLQmh8FMrkBBeulBsWmYBjBYbgrRKDGwbhUCtstzrq1LiddRZCtixyc1bnlektzOQSMssKHfVXpwLo1bIEVTBOOsr8Xu2opbzAPCjM/s2smMMtCpFtd6jT0vHmlW7zpQPpHafuQarXUBCuA6P90sEAHz1h2M+ld5owcJNp3Dbe5vx5s/HXAIps9WOsznF0BstLhd5fk3NlEpBt3ghGDiWWYADF/Lhp1IgQKOEzS5IzVMEQcBHW07jp0OuJ30HLuTh632VzyEDHJmGrEr+jzylxGLDEmfp88a0m7fEb8zsdgGXnZ/3vnO5DaKa5fX/HcXVQhPaRDvWeZPLHBeeylb1XCkokcrbIwLUuJRvxJtrjtX4vcs2e9p+0lFhcOpKocvc1+pIyyxwlui5fv5nc4qR7+zgarULmPLNIeQWm5FdUIIZ3x3GpJV/AgBGd45DqL8aCx/shhVP9kKX+BBYbAJ+PHgZ/1h9BP9adwKA4/tbnD/bWDCQqmdMVhuOXtbX+iKLhzKcJ8ZNQ9AkVMxIVe0k/cglPTL1JdCpFZg+og2+ebYPejnnxxyv5Or1+WvF+L8fj3gtIKgvDlxwTcn/7Dzgy2SOKzwTPt8rXbXZUGbtmcquIAOO13mqfABwHOxn/nAYc9efwBHnWjUdmwQDAJqG6rB12kDse3UI7u3etFxr67Fdm0CtkCMtswBjP9qJT7efxfvrT1RrHGarvcZBRH0nCAI2pl1BnsGCYD8V3hrbESqF4zMVS+3KNoa4GaPZhuHztuOpZfulx/adc/zO9Wzu+BtNigqQ9rvf+Vz3hFAo5DK0K7PmkxgAHLvsXiBltwtSOVj7uOoFUhEBGml8f6S7BgVl50e501K9vihb2nf993uJxYY1hx3z1/5yS5Nqv0fvFmGQyRwXarILXIMB8er1HUmRuNfZRfD3UznIKTLhLx/vxAcbTuJinhH/3X0Of15XMrT+aBZue28zJny+V3rsyz2lAcnvJ6ve1bGmzjmzGB3igqSAXSxXP3AhD/9adwJ/+/aQdIKZbzDj0S/2Ysb3RyotiSqx2DBqwe8Y8eH2Wm1esTHNUfoKAEfd/Luq764UVC/4zCk2Sf9HeQaLSxBfH124ZsDec7mQyYAlj/fE0PbRaB7umHN6Mqt07As2nYLJakf3hFD859GeABy/lzU9tyu75ueRS3q8++txDJ23vUZzBG12AU8s3Ycp3xwqdxFGrC64pVkI2sUGwWy1Y/3RLMzbeBJf789AdqEJWpUcE/omSK+5LSkC/3uhH1Y+3RsKuQxrj2TijzLZxk+3n2lQ2eObYSBVj5itdnROXo9RC3a4lNXUBjEj1aVpMJo6A6lLVSzt2+S8kta/dSQmDmiFjk2C0TbW9YB2vSU7z2HFngs37MjlC8Qvpy5Ng6XHIgI0+O65PgjRqXAwIx+TvvoTVpvd5YplZYHUr0cyMf7fu/HiVwc8Mj67XcCUbw5i5d4MLNh8Gr86mxR0alI6Xj+1AmplxV8hof5qDO8YAwC46pzP8vupnGpNjp238SSGztsuzZfJLTZ7rItdfXCtyISRH/6OZ5c7GkoMahuF6CAt/vNoTyx++Bbc3dVxYl2VE4w/M/Jw4kohNqZdwakrhRAEAfucBzIxkGodHSjtVzyx7OF8ruziuQ/1cjSLcDcjlZFnQJHJCrVCLjVYqA6xkcL15X0NcX4UAMQ6OxcazDbpJFq05Xg2CkusiA3Woneie2V9FQnRqaX/u+vL+8Sr13e0jkTr6EC0igqA2WbHpK/+xNmrxQj3VyM6SAOrXZCCOjHjt3DzaRSWWLH3XC7OXC3CiaxC7D+fBzGO3X8+t1rlOhabvdoT5jNyHcerpqF+aBvjPO44KyF2nnb87CarXcqOfvb7WRSWOMZ4qJL5VGevFiPPYEG+weLShdTTvt1f2h0zLbPgpp/BrtM5Uka5vhEEAf9YfQS9Zm3CrF/SKt3OarMju7B8sHU53/WxvekVz+9zZxxzN5zEF7V8biHOBb+tVYR0cUT8Lj3hvOB3/loxvnZ2Op0+vA3axQZCKZch32DBZX0Jtp28in+tOw5LNea9nrtuaYxPnF3yvjtwsVr7A4Dtp65KmfId1y118afzb6VH8zCM7hzreK+Ui/jJWbY/e1wn7Ht1CDrEBeN6fVqG44UBLaX7f+2dgJggLa4UmPB9SsXzXxsiBlL1iFopl8ptjmVWv5NbYYkFzy1PwYo9FU/cLDJZcfqq46Ssc9OQapf2bUhznNQPaVdahtTOefW8stI+MS3tjZr6+kTMSD0/oKV0svLCwJbonhCGzx/tAY1Sjk3Hs8tdPd199lq5ExaD2Yq3nCUDqZf0NW5KoDdaMO27Q/jlSOk6PgZnN6VOTct/WVbmYecJeESABoEaJfRGCw6V6RTpLrHc7buUi7haaMLA97dizMIdFc4l85a1hzOxu4JyKnf8dOgyjmcVQq2UY0SHGLwypDUAxwWKkZ1ipczM9Yvn3kjZBgG/pmbhYp4RWQUlUClk6BofAqD04L/tRLZ0tbBHQiiA0kAqIkCN4c71io5nFrp10itmrlrHBEClqP4hRizvu/5zbWitz0ValQLh/o4ug9efPIqTte/u2kRaJ6q6+joD0F2nSz+3cznFuJBrgEohkwLUOzs5TorEgGviwFa4y9nkQ2x4MrKjYxtTmbKhdUezsHzPOQCOEtT4MD9YbII0x85dZ64WYeD7WzHyw+3VCqbECor4MB3axYrHHcfvfdnlGVLO5yGnyCSV0gGotFNq2ZPUL/dccKnSsNrsuO+TXbh70Y5qn7ACQJa+RFoiRK2Qo8Rix9mrlV8kuVZkwqNL9mLC53tRXAtrehnM1ht+/uk5xbhjzhbM21BxN97Pfj8rlYh+uv1shYtOC4KAZ5enoPesTS7dgoHyF3D/qGSe1Dtrj+HBT/egsJKLaMcyC7Bg0ym8ueaYRxYTr4g4XwgAxpXJHLd2nveccJ73zN1wEla7gP6tI9GrRTg0SgVaOb/HUy/pMf27Q/hoyxkpKKsK8Xc09rolJfINlmqt9we4LhR+/Ty1shkp8Ttj//k8FJttaB6uwwM94xGoVVW67xcHJaFHQihigrR4eUgSnrzNUVb80yEGUlRLxBOYsmU0NruAE1mFbqeE/3fwMn47moX/+zEV/y7T0/+bfRlYufcCUi/pIQhAXLAWkYEaqbTvZhkpg9mK3GIzBEHApXwj0jILIJcBA9tGSdu0cX6hnM81VPilLzahOHHF/Z+nvisocUykdMeRi3psSruCM1cdX4Y9m4fhX/d1wfMDWuLhXo7UePeEMHz4QFcAwPcHLsIuOMpX4sP8YLbapautoo+3nJFqzC02oUaLK+85ew2DP9iKHw44vuTeHdcJMUGOL+yoQA2ig9xbDwhwnAh//UxvrH3pNtze2jF3Y9uJm3f4strsmP1LGr7ZlwGD2SoFELvPXMOSnenQGy04d80gXfGrbXa7cMPgNOV8Hl746gAeX7q3Wpmy9UcdGcfpw9vgk792RzPnxRSRGPCczSl2O0gu+/3xy5FM6Wp2R+ccN8BxASQuWIvL+hLkFJmgUsjQxRlkDW0fjW7NQvBc/5ZIjAiAViWH0WIrdzW0wvd2XiTpEOt+0F0RsUz4xJVCZOpLf6dLA6mG0/pcVFHnvrNXi6RM8/ge7i1cfCP9Wjn+1racyJbmm2x3nrh3TwhFgMZx4WaU86QIAEJ1Kjx4azwGlfkuB4C7usRJ/xbju+/2X8Q3+xwnk4/1TcRtrSJd3sMdp7MLcf+/9+BinhEnrxRVqZGJKMP5PRcfqkMbZ0YqLbMQRrMNB87nS9sduJCHz7afhcFsg875u59aSTv/svNPzDY7Fmw6Jd3ffuoq9p3Lw6GL+govagiCewsd/3zoMuwC0LN5KDo7L0zdqLzvYEY+LDYBRoutWheibuTXI5no+fZG3P/v3ZUej38+dBkXcg34cNOpch1mj17WY/avjpKyW53Z7FdXp+LP60rXvz9wCZuOZ8MuOALxsi7lO84JxMBgb3puubGcv1aMz35Px+6z11yyeWWVvXBwpEyg/O9tZ3Dv4l0eCa4OXMjD+WsG6NQKDO8QIz3eRspIFSEts0Camyd2sAUgZWz+d/CSVHG0+kD5YOJqoQl7zl6r9P/jXI7j85rQpzkAQKdWYIizOY+YSa6K3GKzy/SBwxfzpTb0RabS42+3ZqFIjPB3Kfse3zP+puXVaqUc3zzbB7v+PggRARoMaOP4vnD8Xtfsom99wUCqnhH/2Mp+sU779hCGz99e4aKYW05kY9SC312u2pa9KjH71+NYsOkUvt53AdO/P4yZPxyRrh6J2YWyGanK/njzis3oM3szbnlrA7q8sR4PfLobgOPAHOZfekITHqBBZKAGglD+CrrNLkhX+PINFqnkqzrm/HYcL3x1oMbZF094dXUq7v1kt7RGT2UOX8zH3R/twJPOeSvNw3UID9BgeIcYzBjR1qVMbkTHWDzXvzQlPrR9NAa1cXxZlm1BWlhiwWfOg5tW5Xj92RxHqdY/Vh/BztM5bgesRSYrXvn6IHKKzGgZ6Y+vnuqFB25thtfvag+ZzJEhqapeLcIRHaSVXuvOydaPBy/j39vP4tUfj2DP2WtSVy6rXcC/t5ceyD/eevqGWamMXANe+19qjebjWWx23PvJLvR9dzMuXDOgxGLDdykXXX63v9jpKCUpsdjx65GqHcjyDWbsdQY5QytoMAE4Spe0KjnMVrvb3TDLZnyPZxVi0WZHmZJY1gc4SjNn3tlOut+xSbDU5CDUX43VE/vhqdtbQCGXSaVT7mSSxSCuuvOjROEBGulEc/y/d0vvLQYdzZ1rYTUkcc7OfZfLBIZLnd04B7eNQosalEKK+rQMR6BGiexCk5T5rmh9qtbRAdJV8if6JUKnVqJH8zAp0GoS4odbEkKk8r2XBicBcAT0ZpsdtyaGoXeLMNyR5LxI4mYbdLtdwMQvD7jMQfozo+ptnMVjSdNQP7SODoBM5giy1x3NgtlmlwK/vel50rHz1VGO3/fT2UUVrlkkNsQZ6DzZ++HAJSnoLTtB/ugl178DQRBw3ye7MeD9rZVmTETrjzkCidGd49DB+Tdyo7UEy5Yh/nkh3+U5QRDwytcH8cKXB6qc1fv3tjN4/ssDKDbbpDXbikxWbDx2xWX+Stm28m+vTcN/fj8rHVMcxxfH79WqZ3pjWPtomG12PLs8RZozdbXQJFVMAOUzHmJ2dmTHWKiVcmQXmqSmIaKyF82W7zlfYcBatiRNDDhLLDZ8uOkU9p/Pw1YPdLgTy2OHtIuGTl3a6KZNjDjf1PFdKwjAqM6x0pxiANL/9a+ppYHknvRr5ZZDmPz1n3jg0z0Vduk1WW3Sd8d9PZri/fu6YPmTvfDU7S0AOIJUsftvRb8Pv5+66vL/BzjWgLLYBHRsEoTYYC0sNkH63jiUkQ+74PguEC+ijurkCCAVchnuvcW9Cz9yuUzKtLeMDECwnwolFrt0nltYYsHQudvw5NJ9bu2vvmk4LY/qQE5ODkymqp/cBwQEwM+v4lXoc3LcP5EFgFiNGTaDHgdPmVFc3BZbzuil9O/HW0/jvu5NoVTIkZubiwKDCVOW7UROkRnPfJaFlU/3RkSABtsPn4GtxIqh7aKxIe0K/vU/11/OH/caINfo0LlpCIDSq6QGsw1H0i8jQCXDTwcvY3C7KMQEO57bdOwKcq85vkTyDECe87uwb5MoXL3qLFNQqxEcHIy2MYG4WmhCWmYhujVzlArp9Xqcy85HSWG+NI49x9LRp2UEbHYBn24/i27NQtC7RTjOZhdh19kcPNCzGZQKOVQqFUJCQqTXnb1ahI+3OjJt4zuHo3206xV80Yo956BVKTC2axMoKygxUigUCAsLq+CVQHFxMQyGm5+0llhs+HXfCdisdny/Kw3do5WQyWTILFHh0SV7MXVYazzcKwGCIOCtNcdgNZughRlGix2DbgmTPruKPNotFAdPKpFyPg+3NVXjUr4NywBsOJaNt8cKUMhl2HbyKkxWOxJCVGgRLMfGtGwcOnUBG45dwZFLBVi+5QjaxARibNc43NYqArHBfhWWDoWHh2P+hpPI1JegWZgOaybdDj+1AmazGT1ilFj9eEeEB2huON6KhIaGQqlUSidwhzLykVdsRqBGjry88idPNruA+Wv2w2YwwAbg/f/tg81QJjsLQKuUIzQkBFcKTFi19wIec3YgAwC73Y5r1xxX8178734cuJCPtPSL+Pjh7m6NNygoCBpNacnY5zvSccB58vL0p5sQoFVib7pj3H1ahuPBnvFYu/eEdND6alsqBjUv/11Q2XfElhPZMBflo1VkAHR2A65erfh3Lt7PiuP6Quw7fg6BKA24dDod/P1dAwqz1Y7T2UWwGQvRPEyLc9cMOHVBjxCdCiNa+rn8H/aKVaJLuAwHMvLRPixEek6r1SIwMFDark10IA5m5OPklSLk5+fDYqn8ZPHgqQuwGUyI1ZjL/b6I3xEV0ev1MJtdO/S9OrAJXv76Ks5d1GPc3F8xc2Q77Dt+Hiq5HAMSSn8fr/+OKKuwsBAlJTeZCF9cDF2xa7bNcPUqFCZTjb8jygqCETaDHifPXwb6NIfeYJGusIslL0ajEUVF1Z9wHxkZicHtovDjwcv4NTULnZuGYNeZaxCsFnQMk7n8n/xjUBPsPJWDse0Cpcd7xiiwMe0amsYqUazPwwMdg3H+mgHP3J6IbSevSifzk4ckQSaToUezIMhLCnHqvB47jpyVqhIqs/1kNtLSLyFArcDwjjFYfUyPPy/kSxl5kdVqrfA7AnAEY+cuZsFms0NnL0axXkCcxoILuQYs/OUAbIZCjOjeEhtPXJMCtqahfnigZzPMXXcC2Tk52HX0rHQMFJ04dxE2gx6DmjdDXq4MKefzsWBtCib0ScCGA6dgswuQq3VIvazHeMSXvu6KY86YzaDHqu2pGNut4hPMa0Um/JF2DoIA3BIlh6XICptBj5QT52EcnFjhd8TBi3rYDI5Aa+eRsxjfsfTv51BGPr7b6QhSbo9XY3C78hdjKvqOSL2kx7u/HYfNWIioABWyC034YsMhXMg14EBGPronhGDu+K4I0CixLy0dNqMVvVuEYc/ZXLzx7R5sP3wGCx7pJZUQ90wIhVwuw9z7u2Lcxztx/HwWHl+8EUseuxXzN55E7rUcxAZpkVlQgpTjhci43EK6aHPq/GXYDHqEK0vQI0qBHemF+DU1C0nOLI/VZpdKX+2mYpy+oMfPe4+jr7NDJeD4ztuVehY2ZwnqnqPpGN8xGNtPZqMw33GycvD0JWm+6fXc+o4AcODEedgMerQIiJb+XhQKBRLCQ6BWyGEw27DWeTHthQGtXL4j4pzndiKZzLGsxPKth/FEP0cgVGC0YGdqOmx2AW99/wf6tIxw+XsSW5/r5DbYDXr0b6YB4CjNDJUbkZNrxoqtjovqPaMVuLVFOM7lFCEuxHGO9OynW1FosqFbsxB0TwhDvsEszQV8uFcCdp7IxP8yr2DTgVNoHSxg859nYDPo0ba5Vvp5ByRo8aXGjDuSIiEzFeLq1dKLiuHh4ZDLy59rmc1m6PWlP3uHUOD3a3psOXgKTbTNsWrvBRw/dwnHzwGHb4tGbLDr34F4HnG9G31HuCM4OBhqdfnKBvE8orDQzUy5QIJerxcAVPu2aNGiSvcdERFR7f2+9LeZQtc31gkJM9ZItzWHLguCIAjt27ev9n4Duo0SEmasEX4/eVUa54Of7hYSZqwRYtrcUu393nvvvYIgCMJ7v6YJCTPWCK98/ae0/3vvvbfa++3fv7/LZzr7lzTp8xg87pFq77d9+/aV/r+9/vrr1d5vRESE8Pr/UoWEGWuEIR9sFQRBENYeviwkzFgjRI14vka/ax1f+01ImLFG2Jd+TRAEQZj01QEhYcYa4cG/z63Rfn8/fEZoMXOtkDBjjbDl+BXpc9iyZUuN9puamirta+jcrULCjDXCDwcyhNTU1Brtd+ailULCjDVC2//7VUi9lC+9R3Z2do32+3TyAmHnacffxYVrxUKb//tFSJixRmj1j7U12m9l3xHPr9gvyP2Cqr3fv7/6f4IgCMK1IpPw1R/nhbfXHBV2n8kREmasETSRzaq934kTJ7qM87PtZ4SEGWuE51fsF/r371/t/YrfERXx5HdEWRMnTrzp63WA8Pp1Nx1q7ztCGxgiCIIg/HdXupAwY40wfN42wW63C4IgCIsWLarR75ogCMJvqZlCwow1Qt/Zm4Sdp64KCTPWCC3u/78a7Tc7O1v6Pbjvk13SeGv6HRH7xEfCwPe3CIIgCKmX8oVn/rtPGPj+FuHr9TtrtN/kT74Rxiz8XTpWLN56WhAEQbh//m812m/E3X8Xxn280+V3YfHW00LCjDU12u/ChQul/VmsNiEjt1iw2+1ClzfW1eg7YtSjkwSL1SZcyjMIs39JE3acuircu3inkDBjjRDWpEW19zvmwceE4fO2CQkz1ggbjmZJYz+XUyToEjpVe7+6Nv2E4fO2Sftb5/xdvuXN9ULbPkOrvd+YNrfU6Duispv4HSF+Fgkz1gj3OH8/avIdIfcLEobP2ybYbHZpnBuOZgkJM9YI7e+dXKPftSU7zgqCIAiv/XhESJixRhg6d6tgsdqEl2Z9XKP9ZmdnV/j5evI8oqyankds2bKlwv1efx6h1+sr/d0RBEFgaV89tv5oFvIMFrSPDcLzzs4nn24/A0EQYLEJNd5/2cYBb97dASqFDHmGmq+0LtboV6Ws7EbOXi2WVq+32Oz4LqW0RjqvhnXPnhhfRcTU+KnsIlzON+J95xoK/VpVvTyuLHGh0t9Ss2C22qX1W8S5LdU165djsNkF3NkpBgPaRN38BdUgTlz/oYK68Koa3DYKtydFwGix4ell+z3Wqnj1n5fx0sqDsNsFzNtwEiUWO3olhmGxmxmtqiix2NyaM3Yjf17Ix5bj2eg9exNm/nAEn/2eLq3roVFWby2iiohXh09WoQU7VU6sutnvnMh9Z6dYj7Zy7986Ejq1ApfyjdKyA2XnNlTXo32b4717OuHjh2/x6HjPXi3G5zvSMWrBDqw7egVnrxZj5vdHarTPrs2CcYuzeYpaKcf4Ho4Mkic+h2OXXTvteWJR3fScYhSZrM71vLbgtve24K01acg3WFCTT3rH6Rw8vnQfxn60E59sO4OH//MH9p3Lg59KUaPOl5fzjVIJXtky3oRwf0QFuj+X9noymaMc+ezVItjtgtSV7p7uTZFYg3Jeg7MMPFNvrLCss6bKZo7+2iehxvsTP4fTZRqRiHNUw/1r1mjnWGYBTmcXYrmzIVnyXR2gVMjROqrmpcW+iIFUPSa2o/zb8DZ48rZEqJVyHLqox47TOeUWqayqpChHnaqoVVQgni8zJ6cmuieEQqOU40qBCWeuFuF/By8hq5prTABAdmEJXvvfUSzdmY5fjmS6nDTn1uBzOJ1dhFav/oqnlu2TOhYWlljw9ppj0pyC6io7x+399SdwNqcYARolbmtV/dbGgGPuFAD8djQLe85eQ2GJFREBGmkdi+o6cqkA/moFXhvdoUb7uZF7nPXUO07nlFsbqKoUCjkWPXgLWkT447K+BP/5Pd0TQwTgmGeRelkvtZ2fNrwNhlQyf6kmdp+5hmKzDfIanJAeOJ+Hqc61csTufuLcQ00lremro3W0Y9/ncophbQALZtZ34hwPcf5J1xpeCLmeVqWQmgCJpameCCBUCjnu79nMox0Tmzjnjb291lGiNrxDNPq0CIexhl05g/3UGOFsCPDQrc2kubw3Kz28GbXC0XglPcdxgltYYpHWYauJFX+cx5APtuGDDSel46U4/1JRg+6XCrkMv5/KQXahCXHBWiidpd0TB7SU/l0dZ646vguC/VTlOsjFBFc/kBKDhF9Ts/BdykUcuJAPf7UCT/RLhL+m+rNRTBYb/jh7DXfM2YI7/rUF645mVbv1fkXEpkARAWqM6Bhzk61vTukskTuYkY/953LRZ/YmLHZOaQj3r7xLnjuOZRZg7eEs2AVgQJtI9HVe/I5sYEtK1BecI1XPtYoKQP/WkZDLZXi4VzMs2XkOyT8drdE6On1bhuGD+7uWe3ziwFZYEKzF+Ro2Q9OqFOjRPBQ7T1/D/I2nsOZwJq5WsgBiVST/XDphdUi7KGxMy5ZW3K4OQXDMydmYlo1dZ7ahX6sIHM8qQEauEfkXqj9eq01w+YIWMzB3dYmFJrNma5P0bx0JrUqOi3lGac2Ooe2jILfV/POdOqxNjQ6AN9MsXIdbE8OwNz0Xyf87WuP9BetUeHlIEl5edRBbjmfj7yPbYlOZ7kPVER2oQREc6+YUlFgRolPhFuc8v5rYfSYHL1z32HrnWNVKOarb1NhssyO32Iz2sUFY/UJfzPz+CH5wzqn0ZCAVE6RFoEaJQpO13ORoqjq7IOBqoUlaXLPLdXN1PGHK0NZQyWWw2ATEBmvRsgbzrmpTu9hgXM1xfB+3jQnERw/dAqtdQPcjqah6DzJXvVqEY///DUGornQeRIcaNkFpGqrFFQCplwrQKioQO0/nwGoXkBjhj4oXHHGP1SYgq8AxR/WVoUn4Ysc5qfucUi5DdS8Z3nNLU6SF+aFNdBDm3t8F+cUWpGUVYGi7aHxSg/GKVTHtY4PKZSdr8t0TE+z4fD/ZWtpxePKQ1h45Nr3323FYbI6/vWeXp0Auc2TQ4ktq3lZ+TJc4/HIkE0/dnuiRagCFM8g9lJGP30/lSBfWAUcjnpo4mVUEtcKRRS3b5KghLXBen8iE2qptakAKCgoQHByMM2fOuEywdpcnm00AjsYOf/v+MGRKDd57oCcevNWxHk9usRn952xBockKm7EQtzQNwn8e6ym9zmy14621R+GvVmLGiLaV/lFcP5G8LHEi+c+HLuP1n46iXUwgRneOxb/Wn0S/luFY+NAtlY677ETyj7eexpzfTkjP2U3FEGyOL6t/3dsZ//djKkxWO14a3AoLNp1G83AdgrRKHL5UgGZhOgRqFDjqnMgqkyswpGsLbD6eDaVchgFtIvHePZ3R773NMBQVQbBZEKhR4J2/dMJLqw5K7xmqU2HDK/0rbK6QX2xGscUOpS4IyT8dlUpsAEeHmuLiIlzTO048ZDJgfPemOJVdJF3dvaVZCK4UlOBSfgluTQzFG2M6YOSHOyCTAeNuaYof0woRH+YnLRoJAD9M7It2kdoaTyR/bnkKfivTQnbFk73Qs1kgCgoKMHTeNlwrchxylzzWA13iKw4CBEHA5rRs/O/gJew9l4dbWsdj5TN9yjXluH6SaFVdP0n0m/0ZmP7dYQh2G+wljs/h0792x8dbTuPgRT0e6dUMU4Y5WsbuTb+GiV8ewJP9EvH8wFYu+xUnieYbzLjlrQ2wC8CPL/TD/f/eCUOBHvd2b4KZI9tBJpPhwrVi/GXxLgiCo4WzGOP6qxUoNtvQLEyHqcOS0Do6CLsuFGPWutID+F1d4rDwwW4A4FajjQ83ncKyXefQu0UYPn64O9JzinDP4t2QqbTY+9qd0smA3S6g1+xNuFpowodjW0pr/1TF5uNX8LfVJ+Cn02HNpNuQFB2ITL0RA9/fihKLHSsndECryOplKiv6jvjLxzvx54V8aO1GFJeUntYF+ylRUGKF+DUXpFVi45T+FTZ4qWqzCXd5pNnERx+5PGR44QUogoI82mzCbhfQ993NMNvsmDG2J95ffxItIvyxedoAaRtPNJuoiMlkQkFB9dfvu9lE8nM5RZjyzSFoVAq0jg5Aj4QwvP7TUYToVNj4Sn/8ePAS3l6bhhYR/vj2uT7S8WntcT2S1zqOFd882we3OtveP/b5bmw6lI4ZI9ogt8iMz3ako3/rSMy7vyve/Okofjx0Gc/d0RLP9G9R4XhvNJF82ZYjWPnHBaRlFaJ5uA4/TOyHz7afxeJtZ3BXl1i8MaZjpZ/DvG0Z+Gp/Jp6+PRGvjmqP6d8dwjf7L+Lxfs3xRPdwvLTyT+l4opLLsfLpXigoseBkdhGahenQuWmwS8c3wHHsXrE/C4GB/niiXyK0KgX2pudi/L8d3XGTh8YjUKvA5K8PIVCjwOtjOuCjLWdw/loxljx+Kzo1CcaTS/fiz4zS7+pX72yHe7o3hU6ng06nq/B8IDc3FzZbxZm/+ZtO4r+7HKHhzy/2Q5PQ0qZOf/l4Jy7kWyDX6PBEv0S8dld7l9fm5+cjJf0qnlq2H7cmhmGR87zBbhcwZtEOXNaX4L7uTXF7UgReWnUQraMDseqZ3gAAgxV4aNkRqUqkdXQA1r50O1QKOfR6Pf44fQVPLtsPtUIOs80OpVyGefd3QY/mYdAoFfg+5SLecV5kjA3SYtHD3TDntxPYe14PudaRWR/QJhK7zlyD2dmcYkirQMy+29HR8VxOEeZvPI0Hbm2KGd8dRqHJ9fN5ol9zvDgoSbpfk6ZVBUZHtzqLs6z+lyNZuCU+BP95rCc2pl3BzF/Oo31sEDL1RuQZLJjQJwE6tRLP3dYUlpLKL2iJfx8AMKFPAlYfuIhCkw0D20RiX3oujMrSEr6t0wZIHVDF74hzOUV4/aejGNY+Bg/3dr9M0d1mEwCwKe0KPvs9HZ2bBmFs16ZoHxeECZ//gdTLBXjz7g4Y3bl06QVvNpto2bIl9Ho9goIqvwDDjFQZERERN/ywqrvPqhrQNRB+GzIQplPjL91Ku8yE+avx/MCWmPPbCSj8AjHl7p7lDpqfPFWzEiTxZGR0r0C8ufEiThYAOy9ZoNAFo2/HFpUepK93W6sIzEFpICXXlJ7QdWudgM6t9DhwIR9LUnKh0AXj9s7NMLhtFJ7/8gCm3NUJJ68U4rje0eo6IVyHzx/tgaOXC9AsXIcg5+JvbaIDccji+CLs3TYKY/u0w5IDuTh80fEHe0fnWERHVzzfp+yP8c2zffBnRh7+vJAPm13Ag72aobDEijm/HUdciB8eurUZ4sN0uJxvxKgFv6PEYsf8x26H0WzDnHXH8Xz/lujYIhx9OyTij/Rc/JjmCAAf7dMcH248hUKTFS0j/dEtPgQymazSoNtdLw5qhWvFJrSNCcKozrHSwqWRkZFok9AEf6TnQq2Q47ZOLaXOSBV5ICoKD/Tv6OhEJav4apRarXb7/9wdd3aKxZs/H0ORCUhsGosLuQak5go4li+DQheMiSNvQWSY44A9KjISRzq3RIBaWekipSE6NbonhGLfuTy88OUBmKzALW0S8K9HSoPCyMhIjOieI2WA2kYF4FR2EUoAKJTAjL90wxjnejnawEKXQGpAmXbR7nwOzw7zx5eH8rAvywa94IcLBhMUOkfgsOVENkZ2jMG3+y8iKkiDq4UmBGiUGNEjqVpXMMdHREChC0F8qJ80hyk22A/Ln+yFjFwD+rSv+ZpEZSVFBeDPC/kokftBofPDp3/tjpNXCjGqcxzeWnNMaks+rFsTxMZU/XuosgCrpgIDA29+gUynA67rbOYfGVnuMZfn/f3LdUNzx4ierbH2cCY+2uL4Pbt+fqOfn1+NvyMqotFoPPq3LBK/IyIjI/H766UdNC02Oz7YnolCsw05Ng3WnTFAoQvGQ/3bIiqq9Ht5pCYQS/ZkYHiHGCmIAoCOTcOw9VQuLhpVSM8zQ6ELxp7LFsj8gnDNroVCF4y2iU2q/DPJ5XI8PrgLxvRqi+5vb8TFEkAbGIIcmwYKXTA6tIi/4T67JpTgq/2Z0kK/4ppBw9rHID4uHN+9MgJf7EjH0l3n8MLAVujVwXEhdOhNxjXjLte/mVsTw/D07YnYcfoa7u7dFiE6FRS6EHSND0HzCH+M7dMOVwtNaOoMcCaOvAXPrTggvf7uPm0RGXzj36PKAgAAeHFkANacKEZssBZdkpq5HB/u6NxSWkalomUOQkJCMLhbCH5v3gRh/mqXwPGDCXfgkc//wA9phThTpIBCF4zEplEun/m2vw3A3nO52H8uD3d3jZMW9g4ODsagroEIX3sO+QYLFHDMnRrbpzSQe7B/CNLygY5xwfhrnwRoVQp0Pm3E/iuOMkmtSo7FD3eHWinH4Yv5uGfxLmw8XYiJRiVuaRaK6WvSsfOSGbt/PAu7IgARESr4a5TS+ow92zV3+3fuZt8RkQD6d2mJLSeuYt0ZIxS6YIzr1x6RkZG4QxUA/HJeWpcvQKPEP0e3L13kPLDy+UyDb0nCz6cc86n+OrAT4mKi8f76E3hqaFeUbD4tLbnRJMQPCWXWLRS/IyIjI/FLu8QK910dFZ1HPBAZiQfucL1g0b9LK6Tln0FaHvC4G5+xUqmsle80uVyOyMhIlw6+NxyHx0dANRYTrMWaSbchUKssdyL8RL9E7D5zDZEBGmn9jtoQFahFh7ggHL1cIK003q1ZiNuv7xAXjGA/FfRGCx68NR7fpVyUSgGahenw95Ht8PB/9sDgnPTZu0U4BreLxsm3RwJwXG0X1wwa2dExEbvsmgyAo+b/kDNo6tE8FDKZDC8ObIVnlqcAcARz7pDLZeieEIbuCaUHlSCtCh8+0M1lu7gQP6x75Q5YbIK09tbSx2+Vnn9rbEeMWvC79HPemhiGAW2j8POhy3jw1mYeS5t3bBKMb5/rW+FzLSID8Ed6Ljo0CbphEFWWogZ18lUVoFFi1TO9UWC04FhmAd5em4blu8/DZheQEK5DfJhrK/ugG6yYLhrYNgr7zuVJVzBfHNiqXDbkqdtbSIHUP0e3x5Kd6dhy4iraxgRidJmFSVtGBiAmSCvNUejfpmpf0vFhOgxuG42NaVfww4GL0BtLS083H8/G9pNXXdYRGdAmstplIDKZDPd2Lx8s9Wwe5rJelKeIcwAAR6nf0PbRGOacg/JY3+ZSIDWkghbMVOr+HvFYezhTmgPUpWntBJDeplLI0atFODYfz8bHW8/gwIV8KOQy/OUW1xbU0UFabPvbwHKvF0vwDmbkS5PsrXYBP/55SVpP7frvi6oID9CgSYgfLuUbkXqpQFqM92bzTfu0DIdSLsOBC/l4ctl+lFjs6NI0GL1bOP7mFHIZnr6jBZ6+o+JMWVW8Oso10zO2zIVVjVIhBVEAMLR9DJqG+uFinhHtYoPKtZCuqthgP2ye2h8alaLcsat3i3ApkGoXW/lFirLjE92WFIFH+yRg2e7z0hpZ139fKRVy9G0Z4dLivOxzA1pH4seDjgD2uesyksF+5Y/d4jpPgKM8XlyUvFuzUNzbvSm+2X8R76xNw/+NaoctzgZAYuXCwDZR0KgUWLlX/Hk9e7F9ZKdY6T2nDWuNCc5GFXHBWkQEaKQ54X1bhpcGUTdxR+tIhPur0SoqAG2iA9EmOhBP9EuEn1qBzcezpUCqb8vwelXO17tFGD7ZdqbcOmL1HQOpeqrsSUtZWpUCy5/sVSdjmDykNT5YfwJ5BjMSwvyrdHKmkMvw6p3tsPNMDmbe2Q5XC83YmHYFkYEa+KkVuDUxDO+M7YTp3x+GTAb0SnTdd4/mYVDIZbDZBYwqc6JbVtkvNHFV9SHtonFr8zCkZRVgUFvPd5+7UTei1tGBePaOlli05TT8VAq0iw3CG2M6YESHGI9MPnXHgDaRWLn3QqWfWX0gBsQa5wLCBc76dHcD3+sNahsllZG2jg7A4Ar+33s2D8XzA1rCYrXj9qQI5yK3J/DCwFYu2S6ZTIbbkyLwbcpFdG4aXK1J9Xd1icXGtCvYlJbtEqRuP3kV5usWkBYDkYYgqcx30qB2US4H4NuTItCvVTiuFJikleupYv1aRUgn8EDNO27WZ7e1isDm49lYe9gx22l4h2i3O7qJmY7jWa5rufxr3QmYrI6SrhbVLF0VdW4ajEv5Ruw4fVWqZOjU5MaBbXyYzjGfeNMpKRCYNCjJ6yekCrkMLw1OwvTvDmN8D89koyubi9O7RRjUSjm0Srm0qHNV/H1kOwhwzKUa0TGmyvNQ7+7aBD8evIy7usShVdTNp2OUPZ8a1t71O/eVoa3x06HLSDmfhwc/2wPA8XsqBth3dYmD0WLDyr0X4KdS1Lix0/XGdm2Ci7kGdG8e5rLovUwmQ9f4YGxMc1ygur21+9+rYf5q7Pz7IMhlMun3Ugweywa+t9Xixfjq6N0iHJun9q9Rd0ZvYCBFlRraPtplImJVje8Zj/E9HS1nx/doio1pV9CxTBnA+J7x0sm0uGq2KEirwgf3dUGewYyOTSq+AiQeaNVKudTKXS6XYflTt8JmF8rVodeFFwe1Qr7RjI5xwVAp5AjzV2NU57oLaoZ3iMH+/xuCcP/ydb/1TYe4YKgUMimDV91Aqk10oDQf7bn+LSssA5TJZJgxoq10v0VkABY/UnFL87/2ScDus9fw9O3Vu6I8oHUUFHIZTlwphHhuJTZqAICBbSLxSO8EXMg1uGTD6rukMidMQ9q5BqsymQxfPtW7rofUICnkMtzTvSkWbDoFlUJWYWlUY1H2RG1Iuyi8d09nt18bH6pz+bvpkRCKw5f0MDnntSSP6VDj7oGdmgbj19Qs/HeXIyueFBWAZuE3z3K9OLAV1h/NwvGsQrSLDZKWpfC28T3iMaRdNEJ1NevqdjNRgVqseqY31Ap5tTLqfmoF3ry78nloNzOwbRQ2vHKHW/9XgCOQ8lcrYBdQ7v8qNtgPnzzSHRO/PCBVyEwb1gbxYTqcuVqEDnHBKLHYMKJDDLo2C/F4BYdaKZfmBV+vS9MQKZDqn1S1C1SVVaS0jy29UNCnGnNza5NWpUCLyIbXgp2BFNWJYR1i8OVTvcpdvapspXHAtYyhIt2bheLxfs3ROjrQ5cvck+vnVJVWpcDbYzt57f0BeLQ1cW3SqhRo7yzPlMlQYRmHO2QyGRY/3B2pl/Qucwqrq3PTEOyYMajarw/WqdAjIRR/pOdCEBxlcAPaRGLVPkc7zOf6t0SvFvXrAOaO2GAteiSEoqDEUu3/K3J46NZmWLX3Am5rFeHV76va1jo6EDNGtIVKIcMT/RIrnetYEblchnaxQVIZ0sC2UUiKDsCqfRl4fXR7PFKFSfCV6dwkBACkYM3dZQ7USjkWPdQNH6w/ief6t/R6NqqssDq6iOaJbqY1kVRJ1U5F/r+9+w+qus73OP46HBQUEAkUQRAxSkrbVIi7uIpYRCWbOU6bo+YvsF1TbzjOmja21pjlJLq5atBmSmyaWEntvU4xMi4o2jQoSqvhZiBusmGt2aorCgqf+0eXsx5B5fDrwOn5mPnOeD7n8/38OPP2wJvP9/v5enm4a/tvYiX9eF/t9eIH91X2r3+upR8eVdydAba2hwT/mHR4drPqjWlt/yzBW2m4Z/D2Pl7NThpv5e7gXpo4vL/69PJo1fO+8B/s2qf/7Np3q505ALStF//nC7396UndG+KrP88f5ezhtJk395brlY//Jkl6ZGg/TfmvAZq2qUj3DfTTe7+J7VS/eDnKGNOlx9+kixeltDT7skWLbrrZRGu55OfYxhq+HyRp+69/ruiBt+mH6to2+2PRueorunf5LtvrHU+PVFSYcxME4Fr/+/k3iuzn41DiiLbR3NyAB/ICcJonokM10L+nZrfwMrrO6oFrNlwYPqC3Rt/RRzueHqm3pt/X5X957urj7yz4HG+t4bLHblaL7g398bKqtlxx9+3ZTQP//y/9Ad7d2/zByEBrPXpvMElUJ8elfQCc5u7gXipoYseurm5QgJci+/nob6cvKHbQj5fB8ZduwDGjIgLk7eGuMYP7NHsXUkfdE9JbJ7+v1v2RfTt0B1MAroFECgDamMVi0aaZ96nybLVtIxQAjgnu3UMHn0+QezsmOPPG3i5jjP77moesAkBzkUgBQDvo37uH7XljAFqmvVaiGkT266UNU0a0ax8AXJfL3COVnp6u8PBweXp6KioqSoWFhc4eEgAAAAAX5RKJ1Pbt27VgwQItXbpUhw8f1ujRo/XII4/o66+/dvbQAAAAALggl0ikfv/73yslJUWzZ8/WXXfdpbVr1yo0NFQZGRnOHhoAAAAAF9TlE6na2loVFxcrMTHRrjwxMVGffvppk+fU1NTo/PnzdgcAAAAANFeXT6TOnDmjuro6BQbaP5E8MDBQp0+fbvKclStXytfX13aEhoZ2xFABAAAAuIgun0g1uP7hhjd7avxzzz2nc+fO2Y5Tp051xBABAAAAuIguv/15QECArFZro9Wn7777rtEqVQMPDw95eLTd09EBAAAA/LR0+RWp7t27KyoqSnl5eXbleXl5GjlypJNGBQAAAMCVdfkVKUlauHChpk2bpujoaMXGxurNN9/U119/rTlz5jh7aAAAAABckEskUpMmTdL333+v5cuXq6qqSkOHDtXHH3+ssLAwZw8NAAAAgAtyiURKkubOnau5c+c6exgAAAAAfgK6/D1SAAAAANDRSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA5ymedItYYxRpJ0/vx5J48EANDhLl6Uamrsy86fl+rqnDMeAIBTNeQEDTnCjVjMrWr8BFRWVio0NNTZwwAAAADQSZw6dUohISE3fJ9ESlJ9fb2++eYb+fj4yGKxOHs4+Ak4f/68QkNDderUKfXq1cvZw8FPBHEHZyH24AzEHVrKGKMLFy4oODhYbm43vhOKS/skubm53TTbBNpLr169+HJHhyPu4CzEHpyBuENL+Pr63rIOm00AAAAAgINIpAAAAADAQSRSgBN4eHjohRdekIeHh7OHgp8Q4g7OQuzBGYg7tDc2mwAAAAAAB7EiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFJAC6Snpys8PFyenp6KiopSYWHhTetv3bpV9957r3r27KmgoCDNmjVL33//ve39jRs3avTo0fLz85Ofn58SEhJUVFRk18bVq1f1/PPPKzw8XD169NCgQYO0fPly1dfXt8sc0fm0ddzl5OQoOjpavXv3lpeXl4YNG6Z33nmn1f3C9Tgj9lauXKn77rtPPj4+6tu3ryZMmKAvv/yyXeaHzslZ33kNVq5cKYvFogULFrTVlOBqDACHZGdnm27dupmNGzea0tJSk5qaary8vMzf//73JusXFhYaNzc384c//MGcOHHCFBYWmiFDhpgJEybY6kyZMsW8/vrr5vDhw+bYsWNm1qxZxtfX11RWVtrqrFixwvj7+5udO3eaiooK8/777xtvb2+zdu3adp8znK894i4/P9/k5OSY0tJSU1ZWZtauXWusVqvJzc1tcb9wPc6KvYceeshkZmaao0ePmpKSEpOUlGQGDBhg/v3vf7f7nOF8zoq7BkVFRWbgwIHmZz/7mUlNTW2vaaKLI5ECHBQTE2PmzJljVxYZGWmWLFnSZP20tDQzaNAgu7J169aZkJCQG/Zx9epV4+PjY7KysmxlSUlJJjk52a7exIkTzZNPPunoFNAFdUTcGWPM8OHDzfPPP9/ifuF6nBV71/vuu++MJLNnz55mjhxdmTPj7sKFC+aOO+4weXl5ZsyYMSRSuCEu7QMcUFtbq+LiYiUmJtqVJyYm6tNPP23ynJEjR6qyslIff/yxjDH69ttv9cEHHygpKemG/VRXV+vKlSu67bbbbGWjRo3S7t27dfz4cUnS559/rn379mncuHFtMDN0Zh0Rd8YY7d69W19++aXi4uJa3C9ci7Nirynnzp2TJLvvRbgmZ8fdvHnzlJSUpISEhLaZEFyWu7MHAHQlZ86cUV1dnQIDA+3KAwMDdfr06SbPGTlypLZu3apJkybp8uXLunr1qsaPH6/169ffsJ8lS5aof//+dl/iixcv1rlz5xQZGSmr1aq6ujq9/PLLmjx5cttMDp1We8bduXPn1L9/f9XU1MhqtSo9PV0PPvhgi/uFa3FW7F3PGKOFCxdq1KhRGjp0aNtMDp2WM+MuOztbhw4d0oEDB9p+YnA5rEgBLWCxWOxeG2MalTUoLS3VM888o2XLlqm4uFi5ubmqqKjQnDlzmqy/atUqbdu2TTk5OfL09LSVb9++XVu2bNG7776rQ4cOKSsrS6tXr1ZWVlbbTQydWnvEnY+Pj0pKSnTgwAG9/PLLWrhwoQoKClrcL1yTs2Kvwfz58/XXv/5V27Zta5P5oGvo6Lg7deqUUlNTtWXLFrufv8ANOeWCQqCLqqmpMVar1eTk5NiVP/PMMyYuLq7Jc5588knz+OOP25UVFhYaSeabb76xK09LSzO+vr7mwIEDjdoJCQkxGzZssCt76aWXzODBg1syFXQh7R1310pJSTGJiYkt7heuxVmxd6358+ebkJAQc+LEiRbMAF2Rs+Luww8/NJKM1Wq1HZKMxWIxVqvVXL16tZUzg6thRQpwQPfu3RUVFaW8vDy78ry8PI0cObLJc6qrq+XmZv9fzWq1Svrxr2sN0tLS9NJLLyk3N1fR0dHNboftz11fe8bd9YwxqqmpaXG/cC3Oir2G1/Pnz1dOTo7+8pe/KDw8vKXTQBfjrLh74IEHdOTIEZWUlNiO6OhoTZ06VSUlJbb2ABvn5XBA19SwJeumTZtMaWmpWbBggfHy8jInT540xhizZMkSM23aNFv9zMxM4+7ubtLT0015ebnZt2+fiY6ONjExMbY6r776qunevbv54IMPTFVVle24cOGCrc6MGTNM//79bduf5+TkmICAAPPss8923OThNO0Rd6+88orZtWuXKS8vN8eOHTNr1qwx7u7uZuPGjc3uF67PWbH39NNPG19fX1NQUGD3vVhdXd1xk4fTOCvurseufbgZEimgBV5//XUTFhZmunfvbkaMGGG3He+MGTPMmDFj7OqvW7fO3H333aZHjx4mKCjITJ061e4ZUWFhYUZSo+OFF16w1Tl//rxJTU01AwYMMJ6enmbQoEFm6dKlpqampr2ni06ireNu6dKlJiIiwnh6eho/Pz8TGxtrsrOzHeoXPw3OiL2mvhMlmczMzPacKjoRZ33nXYtECjdjMeYm650AAAAAgEa4RwoAAAAAHEQiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFIAAAAA4CASKQAAAABwEIkUAAAdrLa2VhEREdq/f3+btrtz504NHz5c9fX1bdouAKAxEikAQKvMnDlTFoul0VFWVubsoXVab775psLCwvSLX/zCVmaxWPTRRx81qjtz5kxNmDChWe3+8pe/lMVi0bvvvttGIwUA3AiJFACg1R5++GFVVVXZHeHh4Y3q1dbWOmF0nc/69es1e/bsdml71qxZWr9+fbu0DQD4DxIpAECreXh4qF+/fnaH1WpVfHy85s+fr4ULFyogIEAPPvigJKm0tFTjxo2Tt7e3AgMDNW3aNJ05c8bW3sWLFzV9+nR5e3srKChIa9asUXx8vBYsWGCr09QKTu/evfX222/bXv/jH//QpEmT5OfnJ39/fz322GM6efKk7f2G1Z7Vq1crKChI/v7+mjdvnq5cuWKrU1NTo2effVahoaHy8PDQHXfcoU2bNskYo4iICK1evdpuDEePHpWbm5vKy8ub/KwOHTqksrIyJSUlOfgpSydPnmxy9S8+Pt5WZ/z48SoqKtKJEyccbh8A0HwkUgCAdpWVlSV3d3ft379ff/zjH1VVVaUxY8Zo2LBhOnjwoHJzc/Xtt9/qiSeesJ2zaNEi5efn68MPP9SuXbtUUFCg4uJih/qtrq7W2LFj5e3trb1792rfvn3y9vbWww8/bLcylp+fr/LycuXn5ysrK0tvv/22XTI2ffp0ZWdna926dTp27JjeeOMNeXt7y2KxKDk5WZmZmXb9bt68WaNHj9btt9/e5Lj27t2rO++8U7169XJoPpIUGhpqt+p3+PBh+fv7Ky4uzlYnLCxMffv2VWFhocPtAwCaz93ZAwAAdH07d+6Ut7e37fUjjzyi999/X5IUERGhVatW2d5btmyZRowYoVdeecVWtnnzZoWGhur48eMKDg7Wpk2b9Kc//cm2gpWVlaWQkBCHxpSdnS03Nze99dZbslgskqTMzEz17t1bBQUFSkxMlCT5+flpw4YNslqtioyMVFJSknbv3q2nnnpKx48f13vvvae8vDwlJCRIkgYNGmTrY9asWVq2bJmKiooUExOjK1euaMuWLUpLS7vhuE6ePKng4OAm35s8ebKsVqtdWU1NjW31ymq1ql+/fpKky5cva8KECYqNjdWLL75od07//v3tVt4AAG2PRAoA0Gpjx45VRkaG7bWXl5ft39HR0XZ1i4uLlZ+fb5d4NSgvL9elS5dUW1ur2NhYW/ltt92mwYMHOzSm4uJilZWVycfHx6788uXLdpfdDRkyxC55CQoK0pEjRyRJJSUlslqtGjNmTJN9BAUFKSkpSZs3b1ZMTIx27typy5cv61e/+tUNx3Xp0iV5eno2+d5rr71mS9gaLF68WHV1dY3qpqSk6MKFC8rLy5Obm/0FJj169FB1dfUNxwAAaD0SKQBAq3l5eSkiIuKG712rvr5ejz76qF599dVGdYOCgvTVV181q0+LxSJjjF3Ztfc21dfXKyoqSlu3bm10bp8+fWz/7tatW6N2G7YP79Gjxy3HMXv2bE2bNk2vvfaaMjMzNWnSJPXs2fOG9QMCAmyJ2vX69evX6HP08fHRv/71L7uyFStWKDc3V0VFRY0SRUk6e/as3RwBAG2PRAoA0KFGjBihHTt2aODAgXJ3b/xjKCIiQt26ddNnn32mAQMGSJJ++OEHHT9+3G5lqE+fPqqqqrK9/uqrr+xWYUaMGKHt27erb9++LbofSZLuuece1dfXa8+ePY1WihqMGzdOXl5eysjI0CeffKK9e/fetM3hw4crIyNDxhjbJYeO2LFjh5YvX65PPvmkyfuwGlbchg8f7nDbAIDmY7MJAECHmjdvns6ePavJkyfbdpfbtWuXkpOTVVdXJ29vb6WkpGjRokXavXu3jh49qpkzZza6fO3+++/Xhg0bdOjQIR08eFBz5syxW12aOnWqAgIC9Nhjj6mwsFAVFRXas2ePUlNTVVlZ2ayxDhw4UDNmzFBycrI++ugjVVRUqKCgQO+9956tjtVq1cyZM/Xcc88pIiLC7pLEpowdO1YXL17UF1984cCn9qOjR49q+vTpWrx4sYYMGaLTp0/r9OnTOnv2rK3OZ599Jg8Pj1uOAwDQOiRSAIAOFRwcrP3796uurk4PPfSQhg4dqtTUVPn6+tqSpbS0NMXFxWn8+PFKSEjQqFGjFBUVZdfOmjVrFBoaqri4OE2ZMkW//e1v7S6p69mzp/bu3asBAwZo4sSJuuuuu5ScnKxLly45tEKVkZGhxx9/XHPnzlVkZKSeeuopXbx40a5OSkqKamtrlZycfMv2/P39NXHixCYvObyVgwcPqrq6WitWrFBQUJDtmDhxoq3Otm3bNHXq1JteXggAaD2Luf4CcwAAOqH4+HgNGzZMa9eudfZQGtm/f7/i4+NVWVmpwMDAW9Y/cuSIEhISmtwMozX++c9/KjIyUgcPHmzygcgAgLbDihQAAC1UU1OjsrIy/e53v9MTTzzRrCRK+vHeq1WrVrX5FuUVFRVKT08niQKADsBmEwAAtNC2bduUkpKiYcOG6Z133nHo3BkzZrT5eGJiYhQTE9Pm7QIAGuPSPgAAAABwEJf2AQAAAICDSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA4ikQIAAAAAB5FIAQAAAICD/g/+OXq14vok5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, efstat = epoch_folding_search(events.time, frequencies, nbin=nbin)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat, label='EF statistics')\n", + "plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A peak is definitely there. \n", + "Far from the peak, the periodogram follows approximately a **$\\chi^2$ distribution with $n - 1$ degrees of freedom**, where $n$ is the number of bins in the pulse profile used to calculate the statistics. In fact, its mean is $n-1$ as shown in the figure. \n", + "\n", + "But close to the correct frequency, as described in Leahy et al. 1983, 1987 the peak in the epoch folding periodogram has the shape of a **sinc squared function** (whose secondary lobes are in this case barely visible above noise)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Z-squared search\n", + "The epoch folding statistics has no information on the actual shape of the profile. \n", + "\n", + "A better method is the **$Z^2$ statistics** (Buccheri et al. 1983), which is conceptually similar to the Epoch folding but has high values when the signal is well described by a small number of **sinusoidal harmonics**. \n", + "\n", + "$Z^2_n = \\dfrac{2}{N} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^N \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^N \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Where $N$ is the number of photons, $n$ is the number of harmonics, $\\phi_j$ are the phases corresponding to the event arrival times $t_j$ ($\\phi_j = \\nu t_j$, where $\\nu$ is the pulse frequency).\n", + "\n", + "The $Z_n^2$ statistics defined in this way, far from the pulsed profile, follows a $\\chi^2_n$ distribution, where $n$ is the number of harmonics this time.\n", + "\n", + "Stingray implements the $Z$ search in `stingray.pulse.search.z_n_search`.\n", + "The standard $Z^2$ search calculates the phase of each photon and calculates the sinusoidal functions above for each photon. This is very computationally expensive if the number of photons is high. Therefore, in Stingray, the search is performed by binning the pulse profile first and using the phases of the folded profile in the formula above, multiplying the squared sinusoids of the phases of the pulse profile by a weight corresponding to the number of photons at each phase.\n", + "\n", + "$Z^2_n = \\dfrac{2}{\\sum_j{w_j}} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^m w_j \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^m w_j \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Since the sinusoids are only executed on a small number of bins, while the epoch folding procedure just consists of a very fast histogram-like operation, the speedup of this new formula is obvious. Care must be put into the choice of the number of bins, in order to maintain a good approximation even when the number of harmonics is high. As a rule of thumb, use _a number of bins at least 10 times larger than the number of harmonics_." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDqUlEQVR4nOzdeXwU9f0/8NfsfWSzuS8JJEBAbiggigcoh6hIrf7E1rbi0apfTwoWtX5rg7XQ0gpUrFr9qlisxVbFesuh4oECgtw3JJw5yLn3zu7M/P7Y3YGQBLLJJptkX8/HI48H2Z2d+SyEzL7m/f58RlAURQERERERERG1mCbeAyAiIiIiIupqGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIoqSLt4D6AxkWcaJEydgs9kgCEK8h0NERERERHGiKAqcTify8vKg0TRfd2KQAnDixAnk5+fHexhERERERNRJHD16FD169Gj2eQYpADabDUDoLys5OTnOoyEiog7ldgNPP93wsQceAKzW+IyHiIjiyuFwID8/X80IzWGQAtR2vuTkZAYpIqJEo9UCRmPDx5KTGaSIiBLcuab8cLEJIiIiIiKiKDFIERERERERRYlBioiIiIiIKEqcI0VEREREbaIoCoLBICRJivdQiM5Jq9VCp9O1+bZHDFJERERE1GqiKKKsrAwejyfeQyFqMYvFgtzcXBgMhlbvg0GKiIiIiFpFlmWUlJRAq9UiLy8PBoOhzVf5idqToigQRREnT55ESUkJioqKznrT3bNhkCIiIiKiVhFFEbIsIz8/HxaLJd7DIWoRs9kMvV6Pw4cPQxRFmEymVu2Hi00QERERUZu09oo+UbzE4meWP/VERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIi6kPHjx2PmzJlx30eiY5AiIiIiooTz4YcfQhCEZr+mT58e0+O1Nrg09bq3334bv//979t03Gj2QU3j8udERERElHAuv/xylJWVNXhMkiTcdttt+P777/Hb3/42TiM7t7S0tE6xj0THihQRERERJRyz2YycnBz1KzMzEw899BC+//57fPrppxgyZEhU+3vzzTcxZMgQmM1mpKenY+LEiXC73QCAW2+9FWvXrsVf//pXteJVWlqKjz/+GJdccglSUlKQnp6OqVOn4uDBg+o+m3vdmVWm5o7d3OuBhpUqWZbxpz/9CX379oXRaETPnj3xhz/8oUXvLZGxIkVEREREMaMoCrwBqcOPa9ZrIQhCq14rSRJ+9rOfYdWqVa0KUWVlZfjJT36CBQsW4Ec/+hGcTie+/PJLKIoCAPjrX/+Kffv2YfDgwXjiiScAAJmZmdi0aRNmzZqFIUOGwO124/HHH8ePfvQjbNmyBRqNptnXtfTYLXk9ADz66KN48cUXsWjRIlxyySUoKyvDnj17WvTeEhmDFBERJTRZliH6fDAaja3+EEZEp3gDEgY+/kmHH3fXE1fCYoj+o60kSfj5z3+OVatWYc2aNRg6dCgA4OjRo/j5z3+OyspK6HQ6/Pa3v8WNN97Y5D7KysoQDAZx/fXXo1evXgDQIIzZ7XYYDAZYLBbk5OSoj99www0N9vPSSy8hKysLu3btwuDBg5t9XTTHPtfrnU4n/vrXv+KZZ57BjBkzAAB9+vTBJZdc0qL9JzK29hERUUI7evQoysvLcfz4cXg8nngPh4g6UCRErVy5EmvWrMGwYcPU53Q6HRYvXoxdu3Zh9erV+NWvftVsO9uwYcMwYcIEDBkyBDfeeCNefPFF1NbWnvP4Bw8exM0334zevXsjOTkZhYWFAIAjR460+D209tgRu3fvht/vx4QJE9pl/90ZK1JERJTQXC4XrACCwSAqKyuRlZUFS7wHRdSFmfVa7HriyrgcNxqREPXJJ580ClEAkJubi9zcXABAVlYW0tLSUFNTA6vV2mhfWq0Wq1atwrp167By5UosWbIEjz32GNavX6+Go6Zce+21yM/Px4svvoi8vDzIsozBgwdDFMUWv4/WHjvCbDa36/67s7hWpAoKCppcbvLee+8FEOqxLS4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHYvH2yEioi7I5/MBCF19BsCqFFEbCYIAi0HX4V/RtOZKkoRbbrkFn3zyCVavXo3hw4efdfvvvvsOsiwjPz//rO/74osvxty5c/H999/DYDBgxYoV6vMGgwGSdGruWHV1NXbv3o3//d//xYQJEzBgwIAmKz1nvi7aY5/r9UVFRTCbzVizZk2r31uiimtFauPGjQ3+YXfs2IFJkyap/acLFizAwoULsXTpUvTr1w9PPvkkJk2ahL1798JmswEAZs6ciffeew/Lly9Heno6Zs+ejalTp2LTpk3QaqO7MkFERIlFURQ1SNlsNtTW1sLv98d5VETUnmRZxi233IJ33nkHb775JnJzc1FeXt5gm8zMTPVzZHV1NW655Rb83//9X7P7XL9+PdasWYPJkycjKysL69evx8mTJzFgwAB1m4KCAqxfvx6lpaVISkpCWloa0tPT8cILLyA3NxdHjhzBI4880mjfTb0ummM39XqN5lQtxWQy4eGHH8acOXNgMBhw8cUX4+TJk9i5cyfuuOOOFr23hKV0Ig8++KDSp08fRZZlRZZlJScnR/njH/+oPu/z+RS73a48//zziqIoSl1dnaLX65Xly5er2xw/flzRaDTKxx9/3OLj1tfXKwCU+vr62L0ZIiLq9ERRVNZ++KFSMmOGIv7mN0rJjBlKyYwZSqCuLt5DI+oSvF6vsmvXLsXr9cZ7KC327bffKgDO+lVbW6soSuiz56WXXqr84x//OOs+d+3apVx55ZVKZmamYjQalX79+ilLlixpsM3evXuVCy+8UDGbzQoApaSkRFm1apUyYMAAxWg0KkOHDlU+//xzBYCyYsWKs75u3LhxyoMPPtiiYzf1ekVRGuxDkiTlySefVHr16qXo9XqlZ8+eyrx581r83rqis/3stjQbCIrSOdYuFEUReXl5mDVrFn7zm9/g0KFD6NOnDzZv3owRI0ao2/3whz9ESkoKXn31VXz66aeYMGECampqkJqaqm4zbNgwXHfddZg7d26Tx/L7/Q2uODocDuTn56O+vh7Jycnt9yaJiKhTcTqd+P6rr1D45pvIyM7Djn2HkG7VIfUPf0Bqjx7xHh5Rp+fz+VBSUoLCwkKYTKZ4DyemFEXBzTffjP79+6O4uDjew6EYO9vPrsPhgN1uP2c26DSr9r3zzjuoq6vDrbfeCgBqiTU7O7vBdtnZ2epz5eXlMBgMDULUmds0Zf78+bDb7erX2fpdiYio+/J6vQBC86NW7arAzgoPKh0+uFyuOI+MiOLt66+/xhtvvIF33nkHw4cPx/Dhw7F9+/Z4D4s6kU6zat9LL72Eq666Cnl5eQ0eP3PioKIo55xMeK5tHn30UcyaNUv9PlKRIiKixBKZHxVUBJRUOWERtHD6gnA4HHEeGRHF2yWXXAJZluM9DOrEOkVF6vDhw1i9ejV+8YtfqI9Fbhp2ZmWpsrJSrVLl5ORAFMVGK5ycvk1TjEYjkpOTG3wREVHiiQSpY3V+KABERQuXPwin04lO0vlORESdVKcIUq+88gqysrJwzTXXqI8VFhYiJycHq1atUh8TRRFr167F2LFjAQAjR46EXq9vsE1ZWRl27NihbkNERNQcr9cLRVFwsDoUqALQwBeU4XB7uXofERGdVdxb+2RZxiuvvIIZM2ao9/AAQi19M2fOxLx581BUVISioiLMmzcPFosFN998MwDAbrfjjjvuwOzZs5Geno60tDQ89NBDGDJkCCZOnBivt0RERF2Ez+fDsVovHH4ZBp0eRp0WQb8WlU4/HA5Ht5s8T0REsRP3ILV69WocOXIEt99+e6Pn5syZA6/Xi3vuuQe1tbUYM2YMVq5cqd5DCgAWLVoEnU6H6dOnw+v1YsKECVi6dCnvIUVERGelhO8hVVLlhh0CBmbbIEoyyiucqHP6WJEiIqKzinuQmjx5crN96IIgoLi4+KxLTppMJixZsgRLlixppxESEVF3JIoiFEVBvTeAJGiQnWyCGJRxokJApcMPURTjPUQiIurE4h6kiIiI4iGy9HmtCJwHwGbSQafVQIaASieDFBERnR2DFBERJSSfzwdFUVDlCXVFJJv1SDLqIEOAyx9EVb07ziMkIqLOrFOs2kdERNTRfD4ffAEZ7mDovoM2ow56rQbJZiMAoKSyPp7DIyKiTo5BioiIElIwGITDF0AQGlgMobY+ALBbQkGq1umJ5/CIiKiTY5AiIqKEFAwG4fAGIENAsvlUp7vZqAcAuL1+yLIcr+ERETWroKAAixcvbvXrly5dipSUlJiNJ1ExSBERUUKSJAlOXxCSIiDZpFcfNxv1UCDAG5AQCATiOEIiai+33norBEFo9DVlyhR1m4KCgkbP9+jRo1XHKy4uxvDhw6N+XXOBZ+PGjbjzzjtbtI+mQtdNN92Effv2RT0eaoiLTRARUUKSJAkOXwAyNLCZTp0OLQYtgtDAI0rw+/0wGo1xHCURtZcpU6bglVdeafDYmf/fn3jiCfzyl79Uv+8s9ynNzMxs0+vNZjPMZnOMRpO4WJEiIqKEFGrtC4Zb+05VpCwGLYKKFh4xyCXQiboxo9GInJycBl+pqakNtrHZbA2eP1uA+fzzz3HBBRfAarUiJSUFF198MQ4fPoylS5di7ty52Lp1q1rZWrp0KQBg4cKFGDJkCKxWK/Lz83HPPffA5XKp+7vttttQX1+vvi5yb9Uzq0zFxcXo2bMnjEYj8vLy8MADDwAAxo8fj8OHD+NXv/qVug+g6UrXu+++i1GjRsFkMiEjIwPXX3+9+tyzzz6LoqIimEwmZGdn4//9v//Xmr/ybocVKSIiSkih1r4AJOgbtvYZdAhCA68oMUgRtYKiKHGZX6jRaNSg0NGCwSCuu+46/PKXv8S//vUviKKIDRs2QBAE3HTTTdixYwc+/vhjrF69GgBgt9vVMT/99NMoKChASUkJ7rnnHsyZMwfPPvssxo4di8WLF+Pxxx/H3r17AQBJSUmNjv3mm29i0aJFWL58OQYNGoTy8nJs3boVAPD2229j2LBhuPPOOxtU1s70wQcf4Prrr8djjz2GZcuWQRRFfPDBBwCA7777Dg888ACWLVuGsWPHoqamBl9++WVM//66KgYpIiJKSJFV+2TFgOTTW/v0WgQUDTwBBimi1pBlOS4ftC+99NKoWu/ef//9RsHk4Ycfxm9/+9sG3//v//6v+v28efPUas/pHA4H6uvrMXXqVPTp0wcAMGDAAPX5pKQk6HQ65OTkNHjdzJkz1T8XFhbi97//Pf7nf/4Hzz77LAwGA+x2OwRBaPS60x05cgQ5OTmYOHEi9Ho9evbsiQsuuAAAkJaWBq1Wq1bWmvOHP/wBP/7xjzF37lz1sWHDhqn7t1qtmDp1Kmw2G3r16oURI0Y0u69EwiBFREQJyeMPwB+UIUGArUFFSougXwMxGIDb64vjCImoPV1++eV47rnnGjyWlpbW4Ptf//rXuPXWW9XvMzIymtxXWloabr31Vlx55ZWYNGkSJk6ciOnTpyM3N/esY/jss88wb9487Nq1Cw6HA8FgED6fD263G1artUXv48Ybb8TixYvRu3dvTJkyBVdffTWuvfZa6HQt/5i/ZcuWZitWkyZNQq9evdT9T5kyBT/60Y9gsVhavP/uikGKiIgSjqIoqHOHQpLNbIBBd2rKsFGngRLQAgigmveSIoqaRqPBpZdeGpfjRsNqtaJv375n3SYjI+Oc20S88soreOCBB/Dxxx/jjTfewP/+7/9i1apVuPDCC5vc/vDhw7j66qtx99134/e//z3S0tLw1Vdf4Y477ohqxdD8/Hzs3bsXq1atwurVq3HPPffgz3/+M9auXQu9Xn/uHQBnXXjCZrNh8+bN+Pzzz7Fy5Uo8/vjjKC4uxsaNGxN+CXUuNkFERAlHlmXUe0Jte9kpDa+qCoKApPCHijoGKaKoCYIArVbb4V/xmh91uhEjRuDRRx/FunXrMHjwYLz++usAAIPBAEmSGmz73XffIRgM4qmnnsKFF16Ifv364cSJEw22aep1TTGbzZg2bRqefvppfP755/jmm2+wffv2Fu9j6NChWLNmTbPP63Q6TJw4EQsWLMC2bdtQWlqKTz/99Jzj6u5YkSIiooQTWvo8CADIS7EC7obPJ1mM8DkBh5utfUTdld/vR3l5eYPHdDpds+17Z1NSUoIXXngB06ZNQ15eHvbu3Yt9+/bhlltuAQB1MYktW7agR48esNls6NOnD4LBIJYsWYJrr70WX3/9NZ5//vkG+y0oKIDL5cKaNWswbNgwWCyWRi11S5cuhSRJGDNmDCwWC5YtWwaz2YxevXqp+/jiiy/w4x//GEajscn397vf/Q4TJkxAnz598OMf/xjBYBAfffQR5syZg/fffx+HDh3CZZddhtTUVHz44YeQZRn9+/eP+u+pu2FFioiIEk4wGITLF4QEDXJSTI2eT04KfVBxuL1QFKWjh0dEHeDjjz9Gbm5ug69LLrmkVfuyWCzYs2cPbrjhBvTr1w933nkn7rvvPtx1110AgBtuuAFTpkzB5ZdfjszMTPzrX//C8OHDsXDhQvzpT3/C4MGD8c9//hPz589vsN+xY8fi7rvvxk033YTMzEwsWLCg0bFTUlLw4osv4uKLL1YrS++99x7S09MBhO6FVVpaij59+jS7fPv48ePxn//8B++++y6GDx+OK664AuvXr1f3//bbb+OKK67AgAED8Pzzz+Nf//oXBg0a1Kq/q+5EUHiGgMPhgN1uR319PZKTk+M9HCIiamdOpxN/WvYhvj/hwrSxo3HXhrcbPP9IwSTsObATl/TNwMyfTYtq0jZRIvH5fCgpKUFhYSFMpsYXJYg6q7P97LY0G7AiRURECUeSJHhECbKiQYrF0Oj5NJsREjTwcgl0IiJqBoMUERElnGAwCF9AggQBaU0FKasRQUUDD2/KS0REzWCQIiKihCNJErzhIJVqbbw8cJrVgCC08DJIERFRMxikiIgo4QSDQXgDEmRokGppHKTSrQYEoYFHDEZ1PxciIkocDFJERJRwxEC4tU8RkGo1Nno+LcmAoKKBV5QQDAbjMEIiIursGKSIiCjh1IXvDyULAuzmpipSxlBFiotNEBFRMxikiIgo4dR7/AAAs8EArUZo9Hya1QAJAiRZgcPDm/ISEVFjDFJERJRw6t2hIJVkbrxiHwCY9FoY9KHn6lwMUkRE1BiDFBERJRyHNxSkbM0EKQCwWUJzp+rd3g4ZExERdS0MUkRElHBc3tC8J5u58UITETZL6E73DjcrUkTUtbzwwgvIz8+HRqPB4sWL4z2cbotBioiIEo4rXJGyW5oPUvZwkHL7uNgEUXdUXl6O+++/H71794bRaER+fj6uvfZarFmzJt5Da9LSpUuRkpJyzu0cDgfuu+8+PPzwwzh+/DjuvPPO9h9cgtLFewBEREQdLRKOks8SpJKtJpwE4PGLkGUZGg2vPRJ1F6Wlpbj44ouRkpKCBQsWYOjQoQgEAvjkk09w7733Ys+ePa3abyAQgF7feCXQ5h5vD0eOHEEgEMA111yD3NzcJrfpyPF0ZzwrEBFRwvH4QzfZTU0yNbtNitUEQIAvwHtJEbWYogBud/y+FKVFw7znnnsgCAI2bNiA//f//h/69euHQYMGYdasWfj222/V7Y4cOYIf/vCHSEpKQnJyMqZPn46Kigr1+eLiYgwfPhwvv/yyWtlSFAWCIOD555/HD3/4Q1itVjz55JMAgPfeew8jR46EyWRC7969MXfu3Aa/X+rq6nDnnXciOzsbJpMJgwcPxvvvv4/PP/8ct912G+rr6yEIAgRBQHFxcaP3tXTpUgwZMgQA0Lt3bwiCgNLS0mbHWV9fjzvvvBNZWVlITk7GFVdcga1btzbY5x//+EdkZ2fDZrPhjjvuwCOPPILhw4erz48fPx4zZ85s8JrrrrsOt956q/q9KIqYM2cOzjvvPFitVowZMwaff/55g3GnpKTgk08+wYABA5CUlIQpU6agrKyswX5ffvllDBo0CEajEbm5ubjvvvsAALfffjumTp3aYNtgMIicnBy8/PLLjf6eYoUVKSIiSjjeFgSptCQjJAjwiRICgQAMhuYXpiCiMI8H+POf43f8X/8asFrPuklNTQ0+/vhj/OEPf4C1iW0j7XOKouC6666D1WrF2rVrEQwGcc899+Cmm25qEAIOHDiAf//733jrrbeg1WrVx3/3u99h/vz5WLRoEbRaLT755BP87Gc/w9NPP41LL70UBw8eVNvufve730GWZVx11VVwOp147bXX0KdPH+zatQtarRZjx47F4sWL8fjjj2Pv3r0AgKSkpEZjv+mmm5Cfn4+JEydiw4YNyM/PR2ZmZrPjvOaaa5CWloYPP/wQdrsdf//73zFhwgTs27cPaWlp+Pe//43f/e53+Nvf/oZLL70Uy5Ytw9NPP43evXu3/N8EwG233YbS0lIsX74ceXl5WLFiBaZMmYLt27ejqKgIAODxePCXv/wFy5Ytg0ajwc9+9jM89NBD+Oc//wkAeO655zBr1iz88Y9/xFVXXYX6+np8/fXXAIBf/OIXuOyyy1BWVqZW4T788EO4XC5Mnz49qrFGg0GKiIgSiqIo8ImhIJWWZG52u1SLAUFFA29ARiAQ6KjhEVE7O3DgABRFwfnnn3/W7VavXo1t27ahpKQE+fn5AIBly5Zh0KBB2LhxI0aPHg0gVG1ZtmyZGlgibr75Ztx+++3q9z//+c/xyCOPYMaMGQBCFaPf//73mDNnDn73u99h9erV2LBhA3bv3o1+/fqp20TY7XYIgoCcnJxmx2w2m5Geng4AyMzMbLDtmeP89NNPsX37dlRWVsJoDLU5/+Uvf8E777yDN998E3feeScWL16M22+/Hb/4xS8AAE8++SRWr14Nn6/li/AcPHgQ//rXv3Ds2DHk5eUBAB566CF8/PHHeOWVVzBv3jwAoXbD559/Hn369AEA3HfffXjiiSfU/Tz55JOYPXs2HnzwQfWxyL/B2LFj0b9/fyxbtgxz5swBALzyyiu48cYbmwycscIgRURECUWWZfjEUCtNhq35ilSqRY8gNPAFJAYpom5ECbf/CULjm3Gfbvfu3cjPz1dDFAAMHDgQKSkp2L17t/ohvlevXo1CFACMGjWqwfebNm3Cxo0b8Yc//EF9TJIk+Hw+eDwebNmyBT169FBDVKydOc5NmzbB5XKpwSvC6/Xi4MGDAEJ/B3fffXeD5y+66CJ89tlnLT7u5s2boShKo/fl9/sbHNtisaghCgByc3NRWVkJAKisrMSJEycwYcKEZo/zi1/8Ai+88ALmzJmDyspKfPDBB+2+cAiDFBERJZRAIABvQAIgIO1sc6QsBkjQwMs5UkTdSlFREQRBwO7du3Hdddc1u11krtO5Hm+qPbCpx2VZxty5c3H99dc32tZkMsFsbr5CHgtNjSc3N7dBm2JES1YHjNBoNGo4jTj94pMsy9Bqtdi0aVOD1kegYXvimYtfCIKg7rclfze33HILHnnkEXzzzTf45ptvUFBQgEsvvbTF76M1GKSIiCihuHwigrICCRqkJxmBoL/J7VKtegQVDXyBACtSRC1lsYTmKcXz+OeQlpaGK6+8En/729/wwAMPNAoYdXV1SElJwcCBA3HkyBEcPXpUrUrt2rUL9fX1GDBgQNRD+8EPfoC9e/eib9++TT4/dOhQHDt2DPv27WuyKmUwGCBJUtTHPdt4ysvLodPpUFBQ0OQ2AwYMwLfffotbbrlFfez0xTiAUAvh6YtCSJKEHTt24PLLLwcAjBgxApIkobKystXBxmazoaCgAGvWrFH3e6b09HRcd911eOWVV/DNN9/gtttua9WxosEgRURECaXaEertFzRaWAxaoJliU6rFEGrtC0rw+3kvKaIWEYRzLvbQGTz77LMYO3YsLrjgAjzxxBMYOnQogsEgVq1aheeeew67d+/GxIkTMXToUPz0pz/F4sWL1cUmxo0b16htryUef/xxTJ06Ffn5+bjxxhuh0Wiwbds2bN++HU8++STGjRuHyy67DDfccAMWLlyIvn37Ys+ePRAEAVOmTEFBQQFcLhfWrFmDYcOGwWKxwNKC4NiciRMn4qKLLsJ1112HP/3pT+jfvz9OnDiBDz/8ENdddx1GjRqFBx98EDNmzMCoUaNwySWX4J///Cd27tzZYO7WFVdcgVmzZuGDDz5Anz59sGjRItTV1anP9+vXDz/96U9xyy234KmnnsKIESNQVVWFTz/9FEOGDMHVV1/dovEWFxfj7rvvRlZWlroox9dff437779f3eYXv/gFpk6dCkmS1Llo7YnLnxMRUUKpcXsBACaD/qxzJFIsekjQQFEAp6fpqhURdU2FhYXYvHkzLr/8csyePRuDBw/GpEmTsGbNGjz33HMAQq1l77zzDlJTU3HZZZdh4sSJ6N27N954441WHfPKK6/E+++/j1WrVmH06NG48MILsXDhQvTq1Uvd5q233sLo0aPxk5/8BAMHDsScOXPUKtTYsWNx991346abbkJmZiYWLFjQpr8DQRDw4Ycf4rLLLsPtt9+Ofv364cc//jFKS0uRnZ0NILQK4OOPP46HH34YI0eOxOHDh/E///M/DfZz++23Y8aMGbjlllswbtw4FBYWNqoavfLKK7jlllswe/Zs9O/fH9OmTcP69esbzD87lxkzZmDx4sV49tlnMWjQIEydOhX79+9vsM3EiRORm5uLK6+8Ul3Yoj0JyplNjQnI4XDAbrejvr4eycnJ8R4OERG1ow827sWL/12LFLsdS399U+jeM2cu1xxeQvmSx99ChlyNB67+Aa4YG/0VaKLuzufzoaSkBIWFhTCZmp9zSN1HcXEx3nnnHWzZsiXeQ2nE4/EgLy8PL7/8cpNz0U53tp/dlmYDtvYREVFCqXOFWvssRv05tgQsJiPgARyeli/1S0REHUuWZZSXl+Opp56C3W7HtGnTOuS4DFJERJRQ6sNtembTuW+wm2QxQPYALi9b+4iIOqsjR46gsLAQPXr0wNKlS6HTdUzEYZAiIqKE4vaFVuAzG85dkUq2mFAHwMU5UkREAEKtfcXFxfEeRgMFBQWNlmDvCFxsgoiIEoovvAKfuQWtfcnW0L1LPH5/XE7SRETUeTFIERFRQvGJoYqUqQUVqVSrKfwa3pSX6Gx4oYG6mlj8zDJIERFRQvGJoUBkMZ57jlSK1QgJGngDEm/KS9QEvT50QcLj8cR5JETRifzMRn6GW4NzpIiIKKH4w4GoJUEq1aKHpGjgY5AiapJWq0VKSgoqKysBABaL5az3ZyOKN0VR4PF4UFlZiZSUFGi12lbvi0GKiIgSij8Qrki1YNW+VKsBEgT4ArJ6U0wiaignJwcA1DBF1BWkpKSoP7utxSBFREQJRQzPkbKaWjBHymKAHG7tY5AiapogCMjNzUVWVhYrt9Ql6PX6NlWiIuIepI4fP46HH34YH330EbxeL/r164eXXnoJI0eOBBAqv82dOxcvvPACamtrMWbMGPztb3/DoEGD1H34/X489NBD+Ne//gWv14sJEybg2WefRY8ePeL1toiIqJMKhBeNSDK3pLXPABkCfIEggxTROWi12ph8OCXqKuK62ERtbS0uvvhi6PV6fPTRR9i1axeeeuoppKSkqNssWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTedIjIqJGIqvv2VoQpFIsesgQWJEiIqJG4lqR+tOf/oT8/Hy88sor6mMFBQXqnxVFweLFi/HYY4/h+uuvBwC8+uqryM7Oxuuvv4677roL9fX1eOmll7Bs2TJMnDgRAPDaa68hPz8fq1evxpVXXtmh74mIiDq3YDAUiGxm4zm3TbUaICsCJFmBx8+WJSIiOiWuFal3330Xo0aNwo033oisrCyMGDECL774ovp8SUkJysvLMXnyZPUxo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrchIiICgEBQgiyHglRyC4KU1aCFRhM6VdZ7/O06NiIi6lriGqQOHTqE5557DkVFRfjkk09w991344EHHsA//vEPAEB5eTkAIDs7u8HrsrOz1efKy8thMBiQmpra7DZn8vv9cDgcDb6IiKj7c3hE9c82y7mDlCAIsBhDi1LUn/ZaIiKiuLb2ybKMUaNGYd68eQCAESNGYOfOnXjuuedwyy23qNudeT8CRVHOeY+Cs20zf/58zJ07t42jJyKirsbhDVWVNIIGJkPLToEWkx4BP+DyMkgREdEpca1I5ebmYuDAgQ0eGzBgAI4cOQLg1H0JzqwsVVZWqlWqnJwciKKI2traZrc506OPPor6+nr16+jRozF5P0RE1Lk5w0FKp9O2+KahJn0ocHlEzpEiIqJT4hqkLr74Yuzdu7fBY/v27UOvXr0AAIWFhcjJycGqVavU50VRxNq1azF27FgAwMiRI6HX6xtsU1ZWhh07dqjbnMloNCI5ObnBFxERdX/OcFVJp295Q4bREGrt83GxCSIiOk1cW/t+9atfYezYsZg3bx6mT5+ODRs24IUXXsALL7wAINTSN3PmTMybNw9FRUUoKirCvHnzYLFYcPPNNwMA7HY77rjjDsyePRvp6elIS0vDQw89hCFDhqir+BEREQGA2xeqSOm1LT/9mSJBihUpIiI6TVyD1OjRo7FixQo8+uijeOKJJ1BYWIjFixfjpz/9qbrNnDlz4PV6cc8996g35F25ciVsNpu6zaJFi6DT6TB9+nT1hrxLly7lTeGIiKgBd7giZYiiImUOz6XyBYLtMiYiIuqa4hqkAGDq1KmYOnVqs88LgoDi4mIUFxc3u43JZMKSJUuwZMmSdhghERF1F65WBCmLMbStX2SQIiKiU+I6R4qIiKgjefyhIBWZ99QSZqMBAOBnRYqIiE7DIEVERAnDG64qmfQtD1KR+0gxSBER0ekYpIiIKGGoFSljy4OUNbytGJDaZUxERNQ1MUgREVHCiCxhbm7hzXgBwGoKtfYFgqxIERHRKQxSRESUMCJLmEfmPbVEkilUkQoEg1AUpV3GRUREXQ+DFBERJQx/OEhZomntM0cqUjKDFBERqRikiIgoYYjhBSMi4aglbOFtRUmGJHGeFBERhTBIERFRwvCH5zlZo2ztUyAgEGSQIiKiUxikiIgoYQQjFSlTy4OU1aCDDAGiLEOW5fYaGhERdTEMUkRElDAiK+/ZzMYWvybJGApSQUlR51gRERExSBERUcIIhu8FlRTFHCmrUQdZEQAALh+DFBERhTBIERFRQpBlGUE5VJFKtrS8ImXQaSBoQqdLl09sl7EREVHXwyBFREQJweUTEVm93G5teZACAL0udANft5dBioiIQhikiIgoIdR7/OE/CbBGcR8pANDrtAAAt5+tfUREFMIgRURECcEZDlJarQ6CIET1WoM+VJHyMEgREVEYgxQRESWEyPwmXbi6FA1jOEi5OUeKiIjCGKSIiCghOD2hEKQPh6JosCJFRERnYpAiIqKE4PaFWvv0+ujmRwGnKlJe3keKiIjCGKSIiCghRNryjProW/tMhlD48onBmI6JiIi6LgYpIiJKCF5/KAQZWlGRMhtCFSkfK1JERBTGIEVERAkh0pZnbMViE2YjK1JERNQQgxQRESWESDWpdRWpSJBiRYqIiEIYpIiIKCH4w9UkkyH6VfvMxtBrxIAU0zEREVHXxSBFREQJwRcIt/a1Yvlzi9EAAPAH2dpHREQhDFJERJQQItWkyAp80bCaQq8JBBikiIgohEGKiIgSghhofWufNbzYhBhkax8REYUwSBERUUIQw215kRX4opFkNgJgRYqIiE5hkCIiooQQqUiZ29DaF5RYkSIiohAGKSIiSgjBcFuexRR9kLKZDOo+FEWJ6biIiKhrYpAiIqKEEGhDa5/NHA5SsowA50kREREYpIiIKEFE2vKs4aXMo5FsMap/dnjFmI2JiIi6LgYpIiJKCEFJBnBqvlM0jHotNELolOlikCIiIjBIERFRAlAUBVIwUpGKPkgBgFanBQA4vf6YjYuIiLouBikiIur2xKAEWQlVpJLM0bf2AYBeGwpSLn8gZuMiIqKui0GKiIi6vdPb8ZJMrQtSkYqU18cgRUREDFJERJQA3OHwIwgamAy6Vu1Drwu9ziNyjhQRETFIERFRAnD5QvOatNrWn/Z04dY+L1v7iIgIDFJERJQA3P7QPaQiYag1DPpwRYpBioiIwCBFREQJwOMLtePpdK1r6wNOBSlfOJQREVFiY5AiIqJuL1JF0ulaX5HSR4KUyIoUERExSBERUQKIzGvStyFIGcNBys8gRUREYJAiIqIE4BEjQar1rX3G8Gp//gBb+4iIiEGKiIgSQKQiFakqtYZJrwfAIEVERCEMUkRE1O35xFD4aVNrX7giFWCQIiIiMEgREVECiCwQYWzlzXgBwGQIVaREBikiIgKDFBERJYBIO54x3J7XGuZIkAoySBEREYMUERElgEhFytSGOVIWYyhIBRikiIgIcQ5SxcXFEAShwVdOTo76vKIoKC4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHevot0JERJ2YGJAAAKY2tPaZw0EqGJRiMiYiIura4l6RGjRoEMrKytSv7du3q88tWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTIUk80RERUUhkXpPR0PrWPqvJAAAI8vxCREQAWn9pLlYD0OkaVKEiFEXB4sWL8dhjj+H6668HALz66qvIzs7G66+/jrvuugv19fV46aWXsGzZMkycOBEA8NprryE/Px+rV6/GlVde2aHvhYiIOid/uB3P3JYgZQwHKVakiIgInaAitX//fuTl5aGwsBA//vGPcejQIQBASUkJysvLMXnyZHVbo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrdpit/vh8PhaPBFRETdVzBckbKY2jBHyhwKYZIkQVGUmIyLiIi6rrgGqTFjxuAf//gHPvnkE7z44osoLy/H2LFjUV1djfLycgBAdnZ2g9dkZ2erz5WXl8NgMCA1NbXZbZoyf/582O129Ss/Pz/G74yIiDoTMVxFMoerSq2RFGntk2XIshyTcRERUdcV1yB11VVX4YYbbsCQIUMwceJEfPDBBwBCLXwRgiA0eI2iKI0eO9O5tnn00UdRX1+vfh09erQN74KIiDq7yLzZyMp7rWE16gEIkGRFXQWQiIgSV9xb+05ntVoxZMgQ7N+/X503dWZlqbKyUq1S5eTkQBRF1NbWNrtNU4xGI5KTkxt8ERFR9xVZstzShjlSFqMOMkIX6dw+MSbjIiKirqtTBSm/34/du3cjNzcXhYWFyMnJwapVq9TnRVHE2rVrMXbsWADAyJEjodfrG2xTVlaGHTt2qNsQERFJ4da+JHPrW/sMWg0UgUGKiIhC4rpq30MPPYRrr70WPXv2RGVlJZ588kk4HA7MmDEDgiBg5syZmDdvHoqKilBUVIR58+bBYrHg5ptvBgDY7XbccccdmD17NtLT05GWloaHHnpIbRUkIiJSFAXB8JymyBLmrSEIAnQaLRRJgsvH1j4iokQX1yB17Ngx/OQnP0FVVRUyMzNx4YUX4ttvv0WvXr0AAHPmzIHX68U999yD2tpajBkzBitXroTNZlP3sWjRIuh0OkyfPh1erxcTJkzA0qVLodVq4/W2iIioE/EHJUCJBKnWt/YBgFanRVACPKxIERElvLgGqeXLl5/1eUEQUFxcjOLi4ma3MZlMWLJkCZYsWRLj0RERUXfg9JwKPbY2VKSA0L0Pg37A42dFiogo0XWqOVJERESx5vKHgpRWo4Fe17ZuBb0udP2RQYqIiBikiIioW4u04Wm1mnPePuNcIkHMyyBFRJTwGKSIiKhbc4cXhtDFYO6sQR+qSPlEzpEiIkp0DFJERNStRYJULBYhirT2+cRgm/dFRERdG4MUERF1a55w9Uivb/v6SqcqUmztIyJKdAxSRETUrXn9oeqRPgYVKaMhFKT8rEgRESU8BikiIurWIivsRdry2sKoD92Hyh9gkCIiSnQMUkRE1K1FVtgzxKC1zxSuSIkMUkRECY9BioiIurXIfCaDvu2tfSZDqCIlBjhHiogo0TFIERFRtxZpwzPGoCJlNoaDVFBq876IiKhrY5AiIqJuLbLYRGR+U1tYwkEqwNY+IqKExyBFRETdmhgMteFFVtxrC7PRAAAIsCJFRJTwGKSIiKhbiyxVbopBkLKE50hJEoMUEVGiY5AiIqJuLTKfKbJQRFtYTKF9BKUgFEVp8/6IiKjrYpAiIqJuLbLCnjmmQUpmkCIiSnAMUkRE1K1FKlJmY9tb+5JM4TlSksz2PiKiBMcgRURE3VowHKQs4YUi2sJq0EOBgICkMEgRESU4BikiIurWAmpFqu2tfWaDFjIEBGUZwSCXQCciSmQMUkRE1K1FAo81BkHKEg5SigJ4/AxSRESJjEGKiIi6tWC4Bc9qikFFSq+FrAgAAI9fbPP+iIio62KQIiKibktRFEiSDACwmoxt3p9GI0CrDZ063f5Am/dHRERdF4MUERF1W15RggahZcqTYlCRAgCdLrT6n5etfURECY1BioiIui2nTwTUINX2VfsAQK/VAgC8IitSRESJjEGKiIi6LbcvNI9JpxWg02ljss/IfrjYBBFRYmOQIiKibsvtC1WNdFodBEGIyT4N4SDlE7nYBBFRImOQIiKibitSkYosEBELel2ktY835CUiSmQMUkRE1G1FVtbTaWPT1gecqkhxjhQRUWJjkCIiom7LEwlS4ZX2YsGoD63+5xc5R4qIKJExSBERUbcVCVKGGC00AQAGfXiOVICtfUREiYxBioiIui1vOEjpY1mRMoT2JbK1j4goocUsSE2cOBG9e/eO1e6IiIjaLDKPyaCPZWtfaF/+ICtSRESJrEVnlm3btmHw4MHQaJrPXT/60Y9QVVUVs4ERERG1lU9t7Yt9kBIDnCNFRJTIWnRmGTFiBMrKypCVlYXevXtj48aNSE9Pb7DNvffe2y4DJCIiai1fOOwYDbGbI2U2MEgREVELW/tSUlJQUlICACgtLYUsy+06KCIioliIrKxnjGFrn8kQWrVPZGsfEVFCa9GZ5YYbbsC4ceOQm5sLQRAwatQoaJu5J8ehQ4diOkAiIqLW8gdCrX3GcPiJBbUixSBFRJTQWhSkXnjhBVx//fU4cOAAHnjgAfzyl7+EzWZr77ERERG1SaQiZTLEriJlDoeyYJCtfUREiazFZ5YpU6YAADZt2oQHH3yQQYqIiDq9SNUopkHKGNpXgBUpIqKEFvWZ5ZVXXmmPcRAREcWcGG7tMxsMMdunxRiuSEkMUkREiSxm95F69tln8cQTT8Rqd0RERG0WqRqZY1iRskaCVJALLxERJbKYBam33noLS5cujdXuiIiI2iwQCAcpUwwXm4gEKZkVKSKiRBazS3Rr1qyJ1a6IiIhiIhBuv7MYY9faF6lISZIERVEgCELM9k1ERF1HmypSiqJAUZRYjYWIiCimIivrRcJPLFjD1S1JVnhTXiKiBNaqIPWPf/wDQ4YMgdlshtlsxtChQ7Fs2bJYj42IiKhNgmpFKvZBCgDc/kDM9ktERF1L1K19CxcuxG9/+1vcd999uPjii6EoCr7++mvcfffdqKqqwq9+9av2GCcREVFUJFmBLMvQAkgyx661z6TXQRAEKIoCty+ANN4NhIgoIUUdpJYsWYLnnnsOt9xyi/rYD3/4QwwaNAjFxcUMUkRE1Cl4xCA0CLWfJ5liF6QEQYBWo0VQCrIiRUSUwKJu7SsrK8PYsWMbPT527FiUlZXFZFBERERt5fYFIECBIMS2tQ8AdDpN+BhiTPdLRERdR9RBqm/fvvj3v//d6PE33ngDRUVFMRkUERFRW7nCIUev0UCr1cZ037rw/jx+LjZBRJSoog5Sc+fOxeOPP44pU6bg97//PZ588klMmTIFc+fObdMNeefPnw9BEDBz5kz1MUVRUFxcjLy8PJjNZowfPx47d+5s8Dq/34/7778fGRkZsFqtmDZtGo4dO9bqcRARUffg9oXa7nQ6LTSamN02MbzPUGe8h619REQJK+ozyw033ID169cjIyMD77zzDt5++21kZGRgw4YN+NGPftSqQWzcuBEvvPAChg4d2uDxBQsWYOHChXjmmWewceNG5OTkYNKkSXA6neo2M2fOxIoVK7B8+XJ89dVXcLlcmDp1KiSJN0okIkpkkbY7nTa2IQoA9LpQRcrLihQRUcJq1Q15R44ciddeey0mA3C5XPjpT3+KF198EU8++aT6uKIoWLx4MR577DFcf/31AIBXX30V2dnZeP3113HXXXehvr4eL730EpYtW4aJEycCAF577TXk5+dj9erVuPLKK2MyRiIi6noi1aJYt/UBgD68T1+AFSkiokQV+8t0Ubr33ntxzTXXqEEooqSkBOXl5Zg8ebL6mNFoxLhx47Bu3ToAwKZNmxAIBBpsk5eXh8GDB6vbNMXv98PhcDT4IiKi7iUSpHS6dghSkYqUyIoUEVGiilmQmjhxInr37h3Va5YvX47Nmzdj/vz5jZ4rLy8HAGRnZzd4PDs7W32uvLwcBoMBqampzW7TlPnz58Nut6tf+fn5UY2biIg6P58YClJ6XauaL87KoI+09rEiRUSUqGJ2dvnRj36EqqqqFm9/9OhRPPjgg1i5ciVMJlOz2wmC0OB7RVEaPXamc23z6KOPYtasWer3DoeDYYqIqJuJVIv07dDaZ9CHTp9+VqSIiBJWzILUvffeG9X2mzZtQmVlJUaOHKk+JkkSvvjiCzzzzDPYu3cvgFDVKTc3V92msrJSrVLl5ORAFEXU1tY2qEpVVlY2ea+rCKPRCKPRGNV4iYioa/GFQ057tPYZwlUuX5BBiogoUcVtjtSECROwfft2bNmyRf0aNWoUfvrTn2LLli3o3bs3cnJysGrVKvU1oihi7dq1akgaOXIk9Hp9g23KysqwY8eOswYpIiLq/iJBytAOrX1GVqSIiBJei84ukVXzWuLtt99u0XY2mw2DBw9u8JjVakV6err6+MyZMzFv3jwUFRWhqKgI8+bNg8Viwc033wwAsNvtuOOOOzB79mykp6cjLS0NDz30EIYMGdJo8QoiIkos/kA4SOljX5GKBClfgEGKiChRtShI2e129c+KomDFihWw2+0YNWoUgFCbXl1dXVSBqyXmzJkDr9eLe+65B7W1tRgzZgxWrlwJm82mbrNo0SLodDpMnz4dXq8XEyZMwNKlS9tluVsiIuo6TgWp2FekTIbQOUZkkCIiSlgtOru88sor6p8ffvhhTJ8+Hc8//7waViRJwj333IPk5OQ2Debzzz9v8L0gCCguLkZxcXGzrzGZTFiyZAmWLFnSpmMTEVH3ogapdpgjZTKETp9igDd/JyJKVFHPkXr55Zfx0EMPNaj4aLVazJo1Cy+//HJMB0dERNRakWqRsR0qUka9PnQMLjZBRJSwog5SwWAQu3fvbvT47t27IctyTAZFRETUVpGKlNEQ+yBljlSkgqxIERElqqjPLrfddhtuv/12HDhwABdeeCEA4Ntvv8Uf//hH3HbbbTEfIBERUWsEwiHH1A4VKbMxVJEKsrWPiChhRX12+ctf/oKcnBwsWrQIZWVlAIDc3FzMmTMHs2fPjvkAiYiIWiPSdtcuFSljuCIlsbWPiChRRX120Wg0mDNnDubMmQOHwwEAbV5kgoiIKNaC4YqUOTyfKZYsBn2DYxARUeJp02U6BigiIuqs1Na+dqhIWSKtfRKDFBFRoop6sQkiIqKuIBKkIvOZYkmdIyXJUBQl5vsnIqLOj0GKiIi6JUmKBKnYV6SSwkFKAwW+AFesJSJKRAxSRETULUXa7syGdpgjFQ5SAhR4RC44QUSUiNoUpI4dO8Z7RxERUaejKIpakbK0Q2ufTqeFTiNAAwVeLoFORJSQ2hSkBg4ciNLS0hgNhYiIKDb8wVMX+aztEKS0Wi30Wk2oIuVnRYqIKBG1KUhxgi0REXVGvoAEDULnqPZYbEKj0UCvDZ1C3b5AzPdPRESdH+dIERFRt+MRg9BAgVYjwKiP/WITGo0GunCQcvnEmO+fiIg6vzYFqd/85jdIS0uL1ViIiIhiItRup0CnEaDVamO+f0EQoAvv1+NnkCIiSkRtukz36KOPxmocREREMRNpt9NpNNBo2qf5QqeLBCm29hERJSK29hERUbfjFUPhRq/TQBCEdjkGgxQRUWJjkCIiom4nEm40Gm27BSm9LtTU4WWQIiJKSAxSRETU7USClE7Xfqc5vZ5BiogokTFIERFRt+MVQ/d20rfDQhMRhnBFyicySBERJaKog9THH3+Mr776Sv3+b3/7G4YPH46bb74ZtbW1MR0cERFRa0SqRHpd+wWpyLLqfgYpIqKEFHWQ+vWvfw2HwwEA2L59O2bPno2rr74ahw4dwqxZs2I+QCIiomj5AqGKlE4X+3tIRRjCQSpyLCIiSixRn2FKSkowcOBAAMBbb72FqVOnYt68edi8eTOuvvrqmA+QiIgoWr4OaO0zGvQAAL/IIEVElIiirkgZDAZ4PB4AwOrVqzF58mQAQFpamlqpIiIiiqdIu51B335ByhQOUmKArX1ERIko6orUJZdcglmzZuHiiy/Ghg0b8MYbbwAA9u3bhx49esR8gERERNFSK1Lt2NpnMoTnSAWkdjsGERF1XlFXpJ555hnodDq8+eabeO6553DeeecBAD766CNMmTIl5gMkIiKKViTcRBaEaA/mcEUqEGRFiogoEUV9hunZsyfef//9Ro8vWrQoJgMiIiJqK38wVJFqz9Y+szEcpFiRIiJKSFFXpD788EN88sknjR5fuXIlPvroo5gMioiIqC3E8Ep67VmRshgNAIBgkItNEBEloqiD1COPPAJJanz1TZZlPPLIIzEZFBERUVtEgpShPVv7whWpYBPnRCIi6v6iDlL79+9Xlz8/3fnnn48DBw7EZFBERERtIYbb7cyGdqxImRikiIgSWdRBym6349ChQ40eP3DgAKxWa0wGRURE1BaBcLgxtWOQsoZb+6QggxQRUSKKOkhNmzYNM2fOxMGDB9XHDhw4gNmzZ2PatGkxHRwREVFrBMLzlkx6fbsdw2YOBSlFkRCU5HY7DhERdU5RB6k///nPsFqtOP/881FYWIjCwkIMGDAA6enp+Mtf/tIeYyQiIopKIFwlMrZnRSocpDRQ4Ba54AQRUaKJ+gxjt9uxbt06rFq1Clu3boXZbMbQoUNx2WWXtcf4iIiIohYMBymLsf0qUmaDHhpBgKwocHlF2MPBioiIEkOrLtUJgoDJkydj8uTJsR4PERFRmwUlCToAZmP7VaQ0Gg10Gg1ESYLLJ7bbcYiIqHNq0Rnm6aefxp133gmTyYSnn376rNs+8MADMRkYERFRayiKogYpi6H9KlKCIECr0wKSBDeDFBFRwmlRkFq0aBF++tOfwmQyYdGiRc1uJwgCgxQREcWVKMkQFAUQTt3rqb1otVoAgIdBiogo4bQoSJWUlDT5ZyIios7GK0rQCAqA9p0jBZwWpPyBdj0OERF1PlGv2vfEE0/A4/E0etzr9eKJJ56IyaCIiIhayxuQoIECrUaAUd9+c6QAQK8L7Z9Biogo8UQdpObOnQuXy9XocY/Hg7lz58ZkUERERK3lFSUIUKDTCGrFqL1EgpSXQYqIKOFEHaQURYEgCI0e37p1K9LS0mIyKCIiotbyiEFooECn0UCjifo0FxW9PhTUGKSIiBJPi3seUlNTIQgCBEFAv379GoQpSZLgcrlw9913t8sgiYiIWsodDjV6rdDuQcoQbh30igxSRESJpsVBavHixVAUBbfffjvmzp0Lu92uPmcwGFBQUICLLrqoXQZJRETUUm5fJEhp2r21LzIHy8+KFBFRwmlxkJoxYwYAoLCwEBdffDF0uvadwEtERNQaapDSaZtsRY8lgz60KqAvEGzX4xARUecTdc+DzWbD7t271e//+9//4rrrrsNvfvMbiCLvo0FERPEVae3T6dq3GgUApnBFSgywIkVElGiiDlJ33XUX9u3bBwA4dOgQbrrpJlgsFvznP//BnDlzYj5AIiKiaEQWftB3QJAyGkIVKT8rUkRECSfqILVv3z4MHz4cAPCf//wH48aNw+uvv46lS5firbfeivX4iIiIohK5p5OhA1rQTeEgJQakdj8WERF1Lq1a/lyWZQDA6tWrcfXVVwMA8vPzUVVVFdW+nnvuOQwdOhTJyclITk7GRRddhI8++qjBsYqLi5GXlwez2Yzx48dj586dDfbh9/tx//33IyMjA1arFdOmTcOxY8eifVtERNRNeH2hNnNDO9+MFwDMxtAxAkG29hERJZqog9SoUaPw5JNPYtmyZVi7di2uueYaAEBJSQmys7Oj2lePHj3wxz/+Ed999x2+++47XHHFFfjhD3+ohqUFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6j5mzpyJFStWYPny5fjqq6/gcrkwdepUSBKvDhIRJSKPGGqzi9zjqT1FKlIBtvYRESWcqIPU4sWLsXnzZtx333147LHH0LdvXwDAm2++ibFjx0a1r2uvvRZXX301+vXrh379+uEPf/gDkpKS8O2330JRFCxevBiPPfYYrr/+egwePBivvvoqPB4PXn/9dQBAfX09XnrpJTz11FOYOHEiRowYgddeew3bt2/H6tWro31rRETUDfjC93QyhlfUa08WkwEAEAjy4h0RUaKJuu9h6NCh2L59e6PH//znP7fpfh2SJOE///kP3G43LrroIpSUlKC8vByTJ09WtzEajRg3bhzWrVuHu+66C5s2bUIgEGiwTV5eHgYPHox169bhyiuvbPV4iIioazoVpNq/tc9iDIW1IIMUEVHCidlZxmQytep127dvx0UXXQSfz4ekpCSsWLECAwcOxLp16wCgUbtgdnY2Dh8+DAAoLy+HwWBAampqo23Ky8ubPabf74ff71e/dzgcrRo7ERF1Pr5wa5/Z2HEVqaDE1j4iokTToiCVlpaGffv2ISMjA6mpqWe9wWFNTU1UA+jfvz+2bNmCuro6vPXWW5gxYwbWrl2rPn/msRRFOecNFs+1zfz58zF37tyoxklERF2DGF74ITJ/qT0lmULHkCSpRecnIiLqPloUpBYtWgSbzab+OZYnCoPBoM6zGjVqFDZu3Ii//vWvePjhhwGEqk65ubnq9pWVlWqVKicnB6Ioora2tkFVqrKy8qzztR599FHMmjVL/d7hcCA/Pz9m74mIiOLHH65IdUSQshqNAICgJDNIERElmBYFqRkzZqh/vvXWW9trLABC1SS/34/CwkLk5ORg1apVGDFiBABAFEWsXbsWf/rTnwAAI0eOhF6vx6pVqzB9+nQAQFlZGXbs2IEFCxY0ewyj0Qhj+ORHRETdS2QFPUtHBKlwRSooy5AkCRpN1Gs4ERFRFxX1HCmtVouysjJkZWU1eLy6uhpZWVlRLTv+m9/8BldddRXy8/PhdDqxfPlyfP755/j4448hCAJmzpyJefPmoaioCEVFRZg3bx4sFgtuvvlmAIDdbscdd9yB2bNnIz09HWlpaXjooYcwZMgQTJw4Mdq3RkRE3YAYDlImY0csNqGDAgFQFHj8Adg7YKVAIiLqHKI+yyiK0uTjfr8fBoMhqn1VVFTg5z//OcrKymC32zF06FB8/PHHmDRpEgBgzpw58Hq9uOeee1BbW4sxY8Zg5cqVapshEGo11Ol0mD59OrxeLyZMmIClS5e2aQVBIiLqugKSBC0Aqym6c1JrWAw6yBCghQK3LwB7UrsfkoiIOokWB6mnn34aQGjxh//7v/9DUtKps4UkSfjiiy9w/vnnR3Xwl1566azPC4KA4uJiFBcXN7uNyWTCkiVLsGTJkqiOTURE3VMgEIQWgMXU/tUhrUYItfPJMtx+sd2PR0REnUeLg9SiRYsAhCpSzz//fIOKj8FgQEFBAZ5//vnYj5CIiKiFJFmBLMuAACQZ278iBQA6rRaSHITHF+iQ4xERUefQ4iBVUlICALj88svx9ttvN7p3ExERUbx5xCC0CLWgd0RrHwDodVpIAcDtZ5AiIkokUc+R+uyzz9pjHERERG3mESVoBBkaQeiQG/ICoYoUAHgYpIiIEkqrljQ6duwY3n33XRw5cgSi2LAnfOHChTEZGBERUbTc/iA0UKDXCtDp2n/VPiBUkQIAr8ggRUSUSKI+y6xZswbTpk1DYWEh9u7di8GDB6O0tBSKouAHP/hBe4yRiIioRU4FKW2Hrd4aCWxef7BDjkdERJ1D1HcOfPTRRzF79mzs2LEDJpMJb731Fo4ePYpx48bhxhtvbI8xEhERtYjbH4QABXqtpsOClIEVKSKihBR1kNq9ezdmzJgBIHQVzuv1IikpCU888QT+9Kc/xXyARERELeXy+QEAeq3QcUFKHzqOX2RFiogokUQdpKxWK/z+0IkqLy8PBw8eVJ+rqqqK3ciIiIii5PaGqkI6nQ6CIHTIMQ260KIWPlakiIgSStRzpC688EJ8/fXXGDhwIK655hrMnj0b27dvx9tvv40LL7ywPcZIRETUIpGb4kYWgOgIxnBFyhdgRYqIKJFEHaQWLlwIl8sFACguLobL5cIbb7yBvn37qjftJSIiigdveAlyfQet2AcARkPoWGztIyJKLFGfaXr37q3+2WKx4Nlnn43pgIiIiFrLo1akOjBI6cNBihUpIqKEEvUcqd69e6O6urrR43V1dQ1CFhERUUeLLEEeqRJ1BFP4WGJA6rBjEhFR/EUdpEpLSyFJjU8Wfr8fx48fj8mgiIiIWiPS2mfowIqUyRBabEIMsiJFRJRIWnymeffdd9U/f/LJJ7Db7er3kiRhzZo1KCgoiOngiIiIouELhIJUR1akzGqQYkWKiCiRtPhMc9111wEABEFQ7yMVodfrUVBQgKeeeiqmgyMiIoqGL7zgg1Gv77BjmsOhLciKFBFRQmlxkJJlGQBQWFiIjRs3IiMjo90GRURE1Br+8L2czMYObO0zhkJbgBUpIqKEEvWZpqSkpD3GQURE1GaRlfOMho6rSFkYpIiIElKLF5tYv349PvroowaP/eMf/0BhYSGysrJw5513wu/3x3yARERELSWGg5SlQ4OUAQCaXIiJiIi6rxYHqeLiYmzbtk39fvv27bjjjjswceJEPPLII3jvvfcwf/78dhkkERFRS0SClNnYkUEqPEeKQYqIKKG0OEht2bIFEyZMUL9fvnw5xowZgxdffBGzZs3C008/jX//+9/tMkgiIqKWiCz4YDF1XJBKMoUrUmztIyJKKC0OUrW1tcjOzla/X7t2LaZMmaJ+P3r0aBw9ejS2oyMiIopCZAlySwdWpKzh0CYrMudJERElkBYHqezsbHWhCVEUsXnzZlx00UXq806nE/oOXG6WiIjoTJGKlDVcJeoI1tOqX67wDYGJiKj7a3GQmjJlCh555BF8+eWXePTRR2GxWHDppZeqz2/btg19+vRpl0ESERGdS0CSoYRv1ZFkNHbYcU16HTSCAABw+8QOOy4REcVXi5c/f/LJJ3H99ddj3LhxSEpKwquvvgqD4dQVv5dffhmTJ09ul0ESERGdi0eUoIECoGGVqL1pNBpoNVrIUhBuHytSRESJosVBKjMzE19++SXq6+uRlJQErVbb4Pn//Oc/SEpKivkAiYiIWsIjBqERZGg1gnqT3I6i1WkQkAAPgxQRUcKI+oa8dru9ycfT0tLaPBgiIqLWcvslaKFAr9U0utjX3nTh43lEtvYRESWKFs+RIiIi6szcPhECFOg1QtyClNsf7NDjEhFR/DBIERFRtxBZMS8uFSld6HhertpHRJQwGKSIiKhbiKyYp9NpodF07OnNoAt1yjNIERElDgYpIiLqFlzeUJDS6zq2GnX6Mb0iW/uIiBIFgxQREXULXrUi1fE3hzfoWZEiIko0DFJERNQtuP3hipQ+6gVp28ygD1Wk/KxIERElDAYpIiLqFiIVKYM+DhWpcBXMF2CQIiJKFAxSRETULXjDFSmjoeMrUsZIRYpBiogoYTBIERFRt+ATQ/OT4lGRioQ3BikiosTBIEVERN2CPxykTAZDhx/bqGeQIiJKNAxSRETULUQqUmZjx1ekzOGKVIBBiogoYTBIERFRtxAJMWZTx1ekTIZQeBODDFJERImCQYqIiLoFMRCqSFmMHR+kIlUwMSB1+LGJiCg+GKSIiKhbiFSkrHGoSEVa+4JBBikiokTBIEVERN1CMBiuSMUjSIWrYAGJrX1ERImCQYqIiLoFSQpVg2xmY4cf22piRYqIKNEwSBERUZenKAqC4YUerHEIUpbwkusBBikiooTBIEVERF1eMBhEUJIBxKciZTOHgpQky5BkpcOPT0REHY9BioiIujyPX4SsKFAgIMnc8feRsoWPqYEMl5/zpIiIEgGDFBERdXkurwgAkKCBNbyCXkeymIzQagRooMARHgsREXVvDFJERNTlOb3+0B80Gui0HX9q0+l0MIaP6/T4O/z4RETU8eIapObPn4/Ro0fDZrMhKysL1113Hfbu3dtgG0VRUFxcjLy8PJjNZowfPx47d+5ssI3f78f999+PjIwMWK1WTJs2DceOHevIt0JERHHkDgcpnbbjq1EAIAgCdPrQsesZpIiIEkJcg9TatWtx77334ttvv8WqVasQDAYxefJkuN1udZsFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6jYzZ87EihUrsHz5cnz11VdwuVyYOnWquhQuERF1b+5wO51O1/HzoyJ0ulCQYkWKiCgxxOfSXdjHH3/c4PtXXnkFWVlZ2LRpEy677DIoioLFixfjsccew/XXXw8AePXVV5GdnY3XX38dd911F+rr6/HSSy9h2bJlmDhxIgDgtddeQ35+PlavXo0rr7yyw98XERF1LLc/XJHSaeM2BoM+FOJcXgYpIqJE0KnmSNXX1wMA0tLSAAAlJSUoLy/H5MmT1W2MRiPGjRuHdevWAQA2bdqEQCDQYJu8vDwMHjxY3eZMfr8fDoejwRcREXVdHl8AAKA3xK8iZQi39jFIERElhk4TpBRFwaxZs3DJJZdg8ODBAIDy8nIAQHZ2doNts7Oz1efKy8thMBiQmpra7DZnmj9/Pux2u/qVn58f67dDREQdyOMPtfYZ9fELUsZwiHP5GKSIiBJBpwlS9913H7Zt24Z//etfjZ4TBKHB94qiNHrsTGfb5tFHH0V9fb36dfTo0dYPnIiI4s4XDlKGThCkPD4uf05ElAg6RZC6//778e677+Kzzz5Djx491MdzcnIAoFFlqbKyUq1S5eTkQBRF1NbWNrvNmYxGI5KTkxt8ERFR1+Xzh1r7jHFs7TMbDQAAb7jNkIiIure4BilFUXDffffh7bffxqefforCwsIGzxcWFiInJwerVq1SHxNFEWvXrsXYsWMBACNHjoRer2+wTVlZGXbs2KFuQ0RE3ZtfDIUXszF+QcoSPrZXZEWKiCgRxHXVvnvvvRevv/46/vvf/8Jms6mVJ7vdDrPZDEEQMHPmTMybNw9FRUUoKirCvHnzYLFYcPPNN6vb3nHHHZg9ezbS09ORlpaGhx56CEOGDFFX8SMiou7NHwgFKZPBELcxRCpSPpEVKSKiRBDXIPXcc88BAMaPH9/g8VdeeQW33norAGDOnDnwer245557UFtbizFjxmDlypWw2Wzq9osWLYJOp8P06dPh9XoxYcIELF26FFpt/JbBJSKijiOGw4sljhUpq9kI4FR1jIiIure4BilFUc65jSAIKC4uRnFxcbPbmEwmLFmyBEuWLInh6IiIqKsIBIMAALMpfhUpqykUpEQGKSKihNApFpsgIiJqLUVR1CBljWOQsplDxxYDwbiNgYiIOg6DFBERdWmSJCEQlAGcqgrFQ1K4tY9BiogoMTBIERFRlxYMBhGQZCgQYDXFb45UsiUUpIISgxQRUSJgkCIioi5NlmUEJBkyBFgM8VtkyG4NBSkpGIQsy3EbBxERdQwGKSIi6tIkSUJAUiBDgNUYvzWU7BYTAEBWFLi8vJcUEVF3xyBFRERdWihIyZAVTVwrUkkmPRQIAIB6jy9u4yAioo7BIEVERF1aJEhJEGAxxK8iJQgCtLrQ8R0ef9zGQUREHYNBioiIurRgMAgxPEfKGseKFADow0HKySBFRNTtMUgREVGX5gsEoSgILTYRxzlSAKDXh1YNdHoZpIiIujsGKSIi6tLc4YUdZAgw6+NbkTLoQ0HOxSBFRNTtMUgREVGX5vKFgpReq4VWI8R1LIZwRcrt46p9RETdHYMUERF1aS5fAABgjONCExEmI4MUEVGiYJAiIqIuLRJaTAZ9nEdyagweBikiom6PQYqIiLo0jz8IoHMEKbPRCADw+hmkiIi6OwYpIiLq0jzh0GLuBK19FlMozPn8gTiPhIiI2huDFBERdWnecGgxG+NfkbIaDQAAv8ggRUTU3TFIERFRl+YNhxZLOMTEk9Ucau3zBRikiIi6OwYpIiLq0nxiaI6UpRNUpJLMoTAXYJAiIur2GKSIiKhL84UrUlZTZwpSUpxHQkRE7Y1BioiIujR/IFSRspri39qXHG7tE4OsSBERdXcMUkRE1KWJ4dY+mzn+FSmbJRSkAkEJsizHeTRERNSeGKSIiKhLE4ORIGWM80gAezhI+YMyJIntfURE3RmDFBERdVmKokAMt/YlmeIfpFIsBigQIMkKPD7elJeIqDtjkCIioi5LlmWIwVALXbIl/q19VoMOMgQAQJ3HH+fREBFRe2KQIiKiLkuWZYhSKEhF2uriSaMRoNPpAAAOBikiom6NQYqIiLqsYDAIMShDgYBkc/xX7QMAoz4SpNjaR0TUnTFIERFRl+X2BSArCiQISDLq4j0cAIAhEqS8rEgREXVnDFJERNRlRcKKAg0sBm2cRxNiNITmarm8rEgREXVnDFJERNRlOcNhRa/TQhCEOI8mxGQIVaRcrEgREXVrDFJERNRlOcJBKtJO1xmYwxUpN5c/JyLq1hikiIioy3KHg5SxMwYpfyDOIyEiovbEIEVERF2WqxMGKYsptHogb8hLRNS9MUgREVGX5faHg5ShMwWpUEXKy4oUEVG3xiBFRERdltsXCiumcDtdZ2A1hipSXpFBioioO2OQIiKiLssTrvqYO1GQspmNAACfGIzzSIiIqD0xSBERUZcVaZ8zGztPkEoyhypSPlakiIi6NQYpIiLqsiLtc5bOFKTCi02IAVakiIi6MwYpIiLqsnydMEglW0OtfQxSRETdG4MUERF1WZF5SNZwFagzsFtCYwkEg5BlJc6jISKi9sIgRUREXZYvEKpIWU2dpyJlt5gAAAIUuLngBBFRt8UgRUREXZYYDipJnagiZTUZoNUI0EJBvZcLThARdVcMUkRE1GWJAQkAYDMZ4zySU7RaLYxaDQAF9R5/vIdDRETthEGKiIi6rEAwVJGyWTpPRUqj0cCg1wIA6t0MUkRE3RWDFBERdUmSrCAghStSnShICYIAg14HAHCwIkVE1G0xSBERUZfk9AWggQwAsJs7T2sfABh0oSDl9IpxHgkREbUXBikiIuqS6jwiNFBg0Gpg7kT3kQIAoyFckfKyIkVE1F0xSBERUZdU7fQCAEx6LXThClBnYdSHgp3bx4oUEVF3Fdcg9cUXX+Daa69FXl4eBEHAO++80+B5RVFQXFyMvLw8mM1mjB8/Hjt37mywjd/vx/3334+MjAxYrVZMmzYNx44d68B3QURE8VATDlJ6vR4aTee6LmgyhIKU08MgRUTUXcX1zON2uzFs2DA888wzTT6/YMECLFy4EM888ww2btyInJwcTJo0CU6nU91m5syZWLFiBZYvX46vvvoKLpcLU6dOhRSegExERN1TrcsDADAaOldbHwC11dDtZ5AiIuqu4toLcdVVV+Gqq65q8jlFUbB48WI89thjuP766wEAr776KrKzs/H666/jrrvuQn19PV566SUsW7YMEydOBAC89tpryM/Px+rVq3HllVd22HshIqKO5XD7AAAmY+dZsS/CEglSPt6Ql4iou+pcvRCnKSkpQXl5OSZPnqw+ZjQaMW7cOKxbtw4AsGnTJgQCgQbb5OXlYfDgweo2TfH7/XA4HA2+iIioa4kEKXMnuhlvhMUUCndeP4MUEVF31WmDVHl5OQAgOzu7wePZ2dnqc+Xl5TAYDEhNTW12m6bMnz8fdrtd/crPz4/x6ImIqL05PaEgZTGZ4jySxqzhipRXZGsfEVF31WmDVIQgCA2+VxSl0WNnOtc2jz76KOrr69Wvo0ePxmSsRETUcdzeUJCyWTpfRSrJHK5IsbWPiKjb6rRBKicnBwAaVZYqKyvVKlVOTg5EUURtbW2z2zTFaDQiOTm5wRcREXUt3vBCDjZL56tIpYTDHRebICLqvjptkCosLEROTg5WrVqlPiaKItauXYuxY8cCAEaOHAm9Xt9gm7KyMuzYsUPdhoiIuidv+B5NdmsnDFJJoTH5xCCCkhzn0RARUXuI66p9LpcLBw4cUL8vKSnBli1bkJaWhp49e2LmzJmYN28eioqKUFRUhHnz5sFiseDmm28GANjtdtxxxx2YPXs20tPTkZaWhoceeghDhgxRV/EjIqLuyR+ef2RPMsd5JI2lWE0QBECjyKj1BJBp63zth0RE1DZxDVLfffcdLr/8cvX7WbNmAQBmzJiBpUuXYs6cOfB6vbjnnntQW1uLMWPGYOXKlbDZbOprFi1aBJ1Oh+nTp8Pr9WLChAlYunQptFpth78fIiLqOGI4SKUmWeI8ksYMeh1MOi1cooIat8ggRUTUDcU1SI0fPx6KojT7vCAIKC4uRnFxcbPbmEwmLFmyBEuWLGmHERIRUWckyzICgdBCDunJna8ipdVqYdZroRMVVLv9AGznfA0REXUtnXaOFBERUXPq3T7IigJAQEZyJ6xIGQwwG7TQCRJq3Vy5j4ioO2KQIiKiLqfK4QEAKIIWFkNcmyuaZDAYYNZroYWMaqc33sMhIqJ2wCBFRERdTq0zFKT0Bv057y0YDzqdDqZwwKsOj5WIiLoXBikiIupy6tyhKo/BoI/zSJomCAKs5tAS6HUMUkRE3RKDFBERdTn1Lh8AwGTovKvhWcyhsUVCHxERdS8MUkRE1OU4PKFwYjEZ4jyS5iVbQ6sJOty+OI+EiIjaA4MUERF1OU63HwBgMZniPJLm2cNByu1lkCIi6o4YpIiIqMtx+ULhJMnSeVv7UpNCQcrj9cd5JERE1B4YpIiIqMvx+kLhJNnSeStSaeH7W/lE/1lvPk9ERF0TgxQREXU5Xp8IAEi2dt4glZFsBQAIsgSHLxjn0RARUawxSBERUZfjF0NBKjIPqTOyWc0waDXQQ0atW4z3cIiIKMYYpIiIqEuRJAmiGAAApIWrPp2RwWCASa+FXpBQ5eI8KSKi7oZBioiIuhSfzwdfQIIEDdKSOm9rn8FggMWghQAF1U7eS4qIqLthkCIioi7F5/PBF5QhKlqkWPTxHk6zNBoNTIbQ+Krq3XEeDRERxRqDFBERdSm1Tg8CkowAtMhI6rzLnwOAyRQaXy0rUkRE3Q6DFBERdThJknDs2DH4/dHPHaqocwIANFo9rEZdrIcWU1ZzqPWwzuWJ80iIiCjWGKSIiKjD7du3DwcOHEBpaWnUr62qC7XJJXXiFfsiksL3uap3syJFRNTdMEgREVGHqq2tRUVFBYDQfKdo1ThDQcpmtcR0XO0hsjy7yxP9+yQios6NQYqIiDqMLMvYt2+f+n1rWvvqnaE2uVRb5w9SqbZQkHIySBERdTudu7mciIi6DVEUsXPnTni9Xmg0GsiyDFGM7ka1iqLA5Qm1yaUnJ7XHMGMqO8UGAHB62NpHRNTdsCJFRETtThRFbNq0CfX19dBqtRgwYAAAIBgMQpblFu8nEAjA7QsAEJCV2nlvxhvRIyMZACD6/fAFpDiPhoiIYolBioiI2pU/KOHD9buwcvsxlLkkjBw5EhkZGdBoQqegaKpSfr8fbjGIADTITu78i01kpdqg12pgECScqGNVioioO2FrHxERtZsDlS7c/OK3SPEcg0UQ8f5hQJdTjRtH5cNgMMDn88Hv98NkMrVof36/H25/EAFFiyxby14TT0ajEUkmPWrdfhyprEPvzM7fjkhERC3DihQREbULMShj5hvfo87pRoZRRl6KGbWSEb9+cxv+teEIDAZDaLsoKlI+nw9uUYIILbKSO/fNeAFAEARYLaHK2fGq+jiPhoiIYolBioiI2sVf1+zDjuMO9DAHcfOYnvjlhMG49ZK+AID5H+5GEFoA0QUpp9sDX0CCqGiRZev8QQoAbEmhuVwVtc44j4SIiGKJQYqIiGJuX4UTz31+EAAw4wdpSDLqkJmZiUevHoCirCQ4fEF8vr8GQHRB6mT4ZryKVg+7WR/7gbeDNFuona+6nkGKiKg7YZAiIqKYe+GLQ5AV4Mrz09DLJgAAMjIyoNUImDWpHwDgg50n4RWlqO4lVe0I34zXbIIgCLEfeDvITA0Fqdrw2ImIqHtgkCIiopiqcPjw3y3HIUDB1fmhpc3tdru6oMSUwTkYlJcMVwDYfKQ2qopUnTMURlK6wM14I3LT7AAAl8cT55EQEVEsMUgREVFMLV1XioCkYHyuDLs2AK1Wi379+qnPC4KAu8b1QQBaHKx0tThIKYoCh8cHAEhL7jpBqkdWCgDA6/FCUZRW7+dItQe/++8OPLj8e6zZXQFJbv2+iIio7bj8ORERxYzbH8Rr3x5GtsaJS3JDLW3nn38+rNaGN88d3z8TsqBFjUdERa2rRfsOBAJw+0M3481M7jrLiBdk2aFAQECSUOVwIdNui3ofC1fuxd8+P6iGp/9uOYHzc2z4990XIdnUNeaKERF1N6xIERFRzHywrQxWsQYDrF70zrSid+/eyMzMbLRdskmPIfnpAID95XUtqtSIogiPX0IQGmQld/57SEVYjXpo9KGl3o9URL8E+sqd5Xj60wOQZRlX9wjgtv4KUkwa7Cl34n9X7GhTlYuIiFqPQYqIiGLmzW/3I0fjxKDz7OjTpw969uzZ7LbjBuQCEFBa5W5Re9+pm/FqkNlFlj6PsJrD95Kqji5IVbn8ePTt7QCAXwyzYPrgFIwrTMKfr+4JrUbAu1tPYMX3x2M+XiIiOjcGKSIiion9FU6cKCuDRhBwyZDeZw1RADBhQDaC0OBorQf17nMvxCCKItxiEIEucjPe0yXbwveSqnFE9brH/7sD1W4/fpAJjMk+9bglUIcHL+8DAPjtOztwuJorAhIRdTQGqTgrKytDTU1NvIdBRN1MIBCAJEkdeszl6w8jVeNFYYYV5/fudc7t+2YlwWo2QZIVrN9fec7tRVGE0xdEUNEguwu19gFAWnhOV3VdyytSO47X47PtR9BfV4Wf9NNBp9EgPz8fJpMJgUAA0/qZcGHPZJgD9Zi79APs2buvvYZPRERNYJCKI7fbjb1792LXrl3scSeimPH7/Vi/fj22bNnSYccUgzLWbDkALWQMK8hESkrKOV8jCALOz0sFAHxzoOKc25+sd8EbkBAQtOid0XUWmwCA7MwMAEB9XT28Xm+LXvP06n0o1NZiRI4R2XYzevTogd69T1X6SktKcHNvH/oYnaiprcNbX25r8b6JiKjtGKTiqK6uDgAQDAYRCATiOxhKaIqioL6+vsMrGNQ+KisrEQwG4XQ6m5x7JEkSDh8+DLc7du1gq3dXQO+vR5JRh0uGFrX4ZrnDeoUCxqaSk5DPsZz3kZOhtrg0mxVmg7ZtA+5gvbJT4VBMqPeIOHHixDm333XCgS93H4dRE8SYPhm48MIL0bdvXwiCgJycHHUVxGSTHlcNL4Bf0WPT4Vps23+4vd8KERGFMUjFkcNxqleeVxEpnsrKyvD9999j9+7d8R4KxUBFxanqTlNh6ciRIygpKcHBgwdjdsz/fHsAVsGPgXl2nJeX2+LXDS3IhFGngeR1YcuxurNue6LaCQDIT49++fB4659tQ5VsRZXbj7KysnNetHj28wNI1vjQL8uGvj1yYDAY1Oc0Gg1GjRqFSy65BOPGjcOt103Eefk9ICsKVqzj/2Eioo7CIBVH9fWneuUZpKi9HD9+HMePH2+2fVSSJJSWlgIAqqqq4HK17J4+FD2v19vuVT+3293g3/DMf09ZltWKiMPhUKuR69evb/V8zWO1HhwqDVVCLh7cG0ZjyxeC6JGXi4KMJCQJfnyyueSs21bUhd5LYZa9VeOMp96ZVng1JrgCGlQ7vaisbH5OmMsfxMpdFbALPozslYqMjIxG2wiCAJ1Op1b+7p0yAgoE7D1+EttLylBVVYX6+voWt41H015+7NgxHDlypMXbExG1N5/Ph3379sW006IlGKTiRBRF+Hw+9fvT/9xWFRUV2Lt3L2RZjtk+qWvy+XzYv38/9u/fj23btjXZQnrs2LEG7V/8gNQ+nE4nNmzYgO3bt6uPeTyemAer06tRQOOK1ImycvXfOxgMwufz4fjx4/B6vS1qOWvKfzaUIEXwIj/VghED+kT1WpPJhMF9QwtTbN2zv9ntFEVBjSO0sl/f3NRWjTOe9FoN+mTaUK1YUO3ynzW0rtldASUYwHlWICvZhPT09HPuf0RBBgrysqEowD8+WIsdO3bg+++/x8aNGxtctGvK0aNH8cUXX6CqquqcxwkEAjhw4AAOHToU0/NWR5AkCeXl5QgGg/EeChHF2KFDh3DixAls3bq1Q383MUjFyZkntlhVpFwuF/bs2YOysjJUV1fHZJ+JzOFwYMOGDV12ZcXT20dra2uxefPmBh+iKysrcfToUQBAfn4+gND8Go/n3EtRU3QqKiqgKArq6urgdDpRUVGBDRs2xLS9TlEUtdKRlZUFAKh3OHG0xoN1B6ow643vcdffV2HJpwfw0peH8P2RWjidTnW+ptPpjPqYkqxgzaa9EKBgRN9cJCcnR72PK8cMgkYQ4HPVY1tJeZPbBAIBVLv9AID+eSlRH6MzGJCbDJ+iQ5XLf9YT/fvbypAs+NAvOwnJyckN2vrO5ifjBgMADlQ44A4o0Gg08Hg82Lt3b7OvURQFJ06cgKIo2L9//zmD/enBvDU/L/GiKAp2796NPXv24PBhziNLBH6/H/v37+9ygb8piqK0qGrcXguXybKMXbt2qZ8XOtq53r/f78fJkycBhAoV27dv77C1Bxik4iTyAVev1wOITUVKURTs27dP/WFji1bbHT9+HB6Pp8ueeCM/Z+np6TCZTPB6vdixYwdKS0uxbt067Nq1C8FgEFarFb1791avfMfrl2V3dXrAAUJVwEOHDgE4tehMLLjdbvh8Pmg0GvTq1QtHazxY/PF2XLbgU9z8f+vxyZZS6GU/ggpwxKvH2n0n8Y9Pt6rh2u/3t+jGuKf7dHcF4KmFSa/FpFEDWzXurNRk5GSHbpK0ZnPTH/pPVDvhC0iQoEHf7OjDWmfQP8cGv6JDlUts9ne+wxfA2r0nYdf4UJRta1E1KuKCAQXIzslDmWTDVn8mLrzwQgChymdzx/N4POqFPL/ff86K9OnnlbMFKUVRcPLkyU7zIfbkyZNqxe1cFbquIBgMsuvkHCJt7ZHftV1VTU0NvvnmG3zzzTfYv39/sxc6q6qq8OWXX2LPnj0x/9mor69HZWUlDh061OEV3UAggG+++QZbtmxp9vxUVlYGRVFgtVphMBjgdruxYcMGHDt2rNF4fT4famtrYzY+Bqk4ifwij1w1bktFyufz4fDhw9i1a1eDCkRXulrYGUWqB0Do38vn86GmpgZbt25t9j9hZWUlSkpKOs1y9qf/nA0dOhQ6nQ4OhwOlpaWQZRlmsxn5+fkYOnQoBEFQq1IVFRVcSTKGHA4HRFFU57NUVFTA7w9VV2LZ3hf5uUxJScGa/XV4+/syeMUgknQyeqSacU0/G24anY9HrhuNH47pDwD4akcJ1h86Vb2O9vfG6+v2QwcJg89LwXm52ed+QTMuHFQAANh64HiTz+8rqwMAJFstMOm71op9Eefn2CBCiyqXH4FAoMkPJKt3VUCRRBQkKUi3GpCZmdni/Ws0Gtx4xWiUy8lY/t1xBKFRK4TNVdUjnQuRqtfRo0fPGn5aGqTKy8uxc+fOTrGAjSiK2L//VNuoy+XqNL+jW0MUxQ6/vUFXFAkctbW1Xfbf+8iRI9i2bRtEUYQoijh+/Dh27NjRaDtJkrBv3z7Isozy8nJs27YtpoEn8nepKEpMQ0hL1NTUQBRF1NfXY/PmzY3a1U+f99uzZ08MGTIEFotFbUNet24ddu/ejUAgAFmWsWXLFmzdurVFrcwtwSAVB7Isqyeg7PBVWFEUW/1hau/evSgpKVHLmpF9Op3OLvvLozPw+Xzqh10AOHHiBHbv3o3a2lps27at0XwSSZLUtpHO0FYpy7L6oSc5ORkmkxkZPfviSK0PJTUi6ozZyO07GH369FEXB7Db7UhKSlJ/Gbvdbhw8eLDB3wNF7/R2u8iy1aeL1eTYSPAvdQIPvrEFLlmHoqwkfPg/o/HVw1fgJ8PTkWs3o/C8bNw1cRAuLQp9SP/mUDV2HA+F7miCVGmVG1sPlUMQgIv694BG0/pTyjUji6ARNKhzurDtcOOFGA5VhN5bRrKl1ceIt/NzkiFDgyqPhKAkNxlYVnx/HOkaD4qykpCamgqLJbr3e/n5WeiZZoHDF8Q7359AWloagOaDVOTDREFBAVJSUiDLMo4fD4XZyO+BDz/7Gn/7zyf4+2d7sWrrYZRUueH2B9VzTDAYbHD+UhRFrWrX19dHXeWMtciFIavVCq1WC1mWG1zVdzgcTbY11tXVoays7Jz793g8HXrh6cSJEwgEAnA4HPzdfBaR/1+BQKDDFyCIBZfLpVbTcnNzMXhwqHW3qZ+3I0eOQBRFGAwGaLVa1NXVxXS+8+n/XyK/M2J5EbCurq7ZYHN614bP51PvvRoMBrF//35s2rQJoihCr9cjMzMTNpsNo0ePRr9+/WCxWCDLMioqKrBnz54GF4oOHToUk8/IujbvgaIWOfno9XrYbDbodDp10ndTH7LORhRF9epAz549YbfbkZKSgsrKSgQCAYii2OQKWoqi4PDhwzCZTMjJyYnJ++puzmz/iPxS0mg0kGUZ+/btQyAQQK9eoYny1dXVajm9qqqqyZW2Tt+3wWCA2WyO6Zgj/66BQACZmZnwBYI4Wifiv//dg8/2nUSdJwANZMgQABwCcAjD81PQI9UMQRBwQUEqLszJhsvlwtGjR3H48GH1Q1K/fv1aPS6fzwetVqu2siYSn8+nXuSw2FOxpzqInfsPw2A0IiMlCXaNCKfTFfXcoj179qC+vh4jRoyAwWBQK6j13gDmrT0CRRHwg945uLK3AaIvdMKLVKxTUlJgMpkwujAd/qCEDSU1eHuXA1ajFmlpjnMc+ZTXvj0MiyCiIM2KXrktb0FrSnqyGT1z0lFadhIfbtyPob2yGjx/pCr0/zE3restfR6RnWxEikUPn1+LGneovS8p6dSNhQ+edOHL/ScxSOfBwNwM5OXlRX0MrUbALRf1wpMf7MbfvziISXcMBxC6Ki/LcoOwK4pig/ZfvV6Puro6VFZWonfv3tiweQs++u4Ath2vg6IAR6V69NDWQ4ACQQB6pFhQpctCRrASJpMJI0eOhCAIqKmpafDBq7q6Grm5LV8SP9YiY8nMzERtbS3q6+vhdDrV8+3+/fvhdDphMpnUqrzf78e2bdsgyzKsVmuz/z99Ph82btwIk8mEUaNGQatt32rp6VffgdDniZaukinJCk7UeZFrN0Gn7dzX0SVJgizLrT5nKIrSoNOntra2wf+1riAS4jMyMtC/f6iDwGQywefzwe12qzc993q96oWLoqIi9aJuLNvGz/z/XF5ejj179iAjI0MNeK0VCATU/2ujR49u9Dk48j769++P/fv3qyvTVlVVqRd9gNBn4MjvN0EQkJeXh9zcXNTV1WH79u2orq5WL3ILggCPx4OKioo2fwZmkIqDyInLbrdDEASYzWY4nU54vd6og1QkwdtsNvTu3Vt93GKxwO12N/tL1uPxoLS0FBqNBllZWW26ktxdRf7z5ubmory8XL1yMXDgQLhcLpSWlqKkpASCIKBnz54N5sBUVVU1+tBy+nM7duyA1WrF6NGjYzZeRVGwZ89e7Dp4GEdqPDhQI6Ks2oFa2YQSKRTwdBoBvdJtsJv18Adl7CpzYMvROmw5Gnqv7209AaMO+HFPH8YU2GExhH5FVFdXQ1GUFt9k9XSiKGLjxo0wGAy44IILIAgC/H4/dDpdu3/oiCdZlrFt2zZsO3gC247V4YRTxDcfu6AAyBAkuBQJaZoyZGlceP67WkwZOwL3XdEXRt25/04kSVIXr6isrESPHj3gdDrh8Yt4b3sFKrwpGNbDjv+Z1Aulhw7C7XarS2EbjUaYTCYIggCbzYaLektw+2X896gOn+ysQE5qEoa04N+63hPAG98dRa4QwND8zFYtMnGmCwf0QmnZSWzce7TRz9uxqlClrEcXvIdUhCAI6J9tQ8URbZPzpP6xrhTJgh/9M8zIsFvOejHmbH58QU/835clOFztwUvry3Fpsl6tYEQ+fAGn2vpsNhuMRiPS09Oh0+ngdHux8K0vsWHHPviCClyKEYPStTjfrEVQtKLGG8Qxp4yjtR688N5XGJRtwhXnZ8PhcMBut+PYsWMAoF4kbEuQikwyb8s5KvKB2mw2IxgMor6+Xq3Wi6KoVmHr6urUIFVSUqJeGHM4HM3+fEduIRD5MFtQUNDqcbZEdXV1gwqfw+E4689JpcOHCocH2/YfwdLNtdh/0oNUix6XFmUizWpAqsWAHw7PQ0FGdJ892pPX68WWLVsQCAQwbNgw2O3N3+5AFEXodLpGPx9nVklra2vVf9vWUBQFhw4dgtlsbtUFjmhFVpgEgPPOO099PCkpCT6fD06nU/2/fPDgQciyjNTU0K0SIj/vLpcLsiyrK7IWFBS0OpieHqSCwaC6gE1VVRX8fn9Ut7w4U1lZmfp/rba2tsHnYL/fr76fzMxM1NTU4OTJkygrK1MvUBYWFobCkFaHTYdrEJBCn9Xc/iA8ogSNIEDSpcHoqYBRp0VycjIyMjJw6NAhlJSUtPkzMIPUaWLRflBZWYnKykr06dOnyWqDPyihqiZUQYr8YjaZTHA6na2alBv5QTqzj95ms6mpvalfspH/FJEWh652paYjRCpSGRkZEEUR1dXVSElJQXp6OjIyMiAIAkpKSnDo0CH1KiwQqlgFg0HU1dWpbTURgUAA+/btAxBq55IkKSZh4lB5Hf727tc4fPwEglLDUrXdnow7B/fGhPOz8INeqdCfdiWy0unDZ3sq4fZL8IhBvL+tDHvKnVhZKmLPiVKMH1yAQVkG+P1+uFwu2GzRf4itq6uDJEnwer2oq6uDTqfD5s2bYbfbMWzYsFaFs/YmiiLKy8uRl5cHna51vya3HjiKv6/chnKHH27FgArZBgUCCtItuLB3T0iygrKycvirPVACfiz59AA+2lGOP90wFCN7nX15b7fbrQb7iooK9OjRA8crTuKd74/jYL2ANKsRz/5sJGyaAEoB9e8dAFJTU9W/c5vNhvr6elx3QV9sl1zwVlTjvc1HcemFXiRZz95S9uzaA3D5AshP0aBXuqVVPxtnmjC8N95euxlerwvflVRjdO/Q765Khw9HqxywC8CAHmnn2EvnNiA3GUcPa3HS2XDlPocvgDc3HUO2xo3hPTOQk5PT6pN7klGH3183GL/8x3d48csS/OCabBgQQE1NTYMgFbkQF1nQQqPRQDDb8a8vNqHWEzofmuxZ+NXVI4GTp1aXtNls8AtGfLZ5DzYdrsX+ShdO1Png1tlw5egBapdE//79sXPnziarYS3h9/uxfft2+P1+jB49usWrF57p9CAV+X8TCU+ntzzW1dVBURS4XC71QyzQcPXTM53+AfPIkSPIycmByWRSH6utrcWOHTvQt2/fmFTlIlfgI5WJ5sbm9AXw+/d34d/fHUOuxoFsjRMeOQmAHbWeAN7deqqqtXjNPlzSNwPD81MwtEcKLu+f2aqKlSzLEAThrL/TKyoqUFJSgr59+zb52cTv92Pr1q1qy+L27dsxYsSIJi8yR9rs09PTG1VFIv+3BEFQq/XN/QyWlpaipqYGgwcPbvZnrL6+HkePHoUgCMjOzm73i4CVlZWQJAlms7nB/9mkpKQG93usra1FVVUVBEFA37591YvzkYsYbrcbhw4dUv9PFhUVRT2WYDCo/nukp6erF1YjKioq0LNnz1a9z8iqoRE1NTXo0aOH+n3kc1hSUhJ0Oh1ycnJw8uRJnDhxAl5RwsEaPzb5PTj+7W6s3l0Bh6+5eWEKCnV1OD8F6D9wCC5Ns0Cn18Pv9zf5WS0a3SZIPfvss/jzn/+MsrIyDBo0CIsXL8all14a1T7ODB0ejwdGo7FF/2G8ooQjNW7s3LITLo8Xn20vRbUhFwfrgqhxi7BILnj8fuyu12GgtgLpZg10+wX0ynEhQ6mDxuPAftcROHe5ISuAQaeByx9EnUeEVqOBQSugxhNAvcuDbLsF56VZUV3vgef4LsiSAudBA3pkOlGQbkFBhhUpCF11aG6+w+m//F0uV7cOUl6vF4qitGiuQWQi5eltAXa7HWazGQaDAb169VJPEr169YIsyzh8+LC6hHXkl17kasmZ/zkPHjzYILC73e5WX8mvdvnx1YEqfL3tAPYfOABFlgAIqNSkY3C6BuenAIWZVlw+9oIGv4hPl2Uz4abRp34B3nt5X6w7WI15H+zC7vKT2PCdF9N6eTCx0IyqqqoWf1g+cuQIFEVBz549G7RIRk4Obn8ARw6dwPdVAspFA47VemHQaWA363Feihn5aRb0SregZ5oFVmPsfk35AhLe23oC6w5WY/ORWgQlBWaDFvmpZvTLsWHywBz8oGcK9u7di+rqavh8vqhbGhVFwfvbyvDM21/DLPlQr0nGZSMH49pheSjKssFuOXVF0OXqgw0bNuJQtQ/P79HhQKUL/+/5dbh1bAF+fWV/tSJ4ptP/XzudTpRV1+Gp975HVb0PiiED/7j9ApyXYoaimGC329UVlwA0+FnIzc1FbW0tCgt64plCC+57uhQn6r14YsUmzL/5Emg1TX8gKqv3YunXpTAhgEv6psGg1zf48NhaGal29MlJwe7jNfjnl7sxunfod/j728qgg4Rcuwk9M7vezXhPN7JXKt7/Roe9FU44XKd+D/9741HIoheFdhk90yxtvuo9aWA2rhmSiw+2l+HZb8pxz3AzTp48icLCQgiCAEmS1A9XkfPe1qN1eOTDw0j3i0gy6nDZ+TmYMW0ijEYDNm4sV+eZJCUl4Ty7HaIjA32zkvDRzpOoc3ux9NPt2HigHBfnm9G313nIyMiAwWCAKIpRf1hxu93Ytm2b+gGutrZWnf8bDUmS1H2YzWb1fB5ZcOL0ICVJElwuF/btPwB/UEKKLQler7dFQUoQBMiyjEOHDmHgwFOrV5aWlqrVhaaCVOQDaUsuKEUuRgGhD8Tbt29XpwpEXq8oCj7ZWYHfv78Lx+tC57Bcs4wUnQEX97DjlzdMwu4yJzYfqYVHDGLnCQc+33sSX+6vwpf7Q8G6MMOK+y7vix+NOA+aZn4HnPkejhw5gtLSUuTm5p71d+bx48fh8/mwc+dODB48uNGqlLt374bP54PZbIZer4fD4cC2bdvwgx/8oEHVIxAIYPfu3VAUBdXV1QgGgw0uekXO3zabDT6fT21jPfNc6Pf7cfjwYXVeX58+Td8HL1K9VRSlQTXI7/dj586dyMnJiWmlKhIucnNzG/xsRD6rRX5+Dxw4AADIy8tTw2ak26C2tha1tbXqz0x5eTl69+7d6DNt5O+nuc8ikb9LvV6P3NxcVFdXQ6fTISsnF5t37sfOb3fh2MY6HDjpgkGnQZJRB0UBBAHItZvRK92CIefZMfg8e6OFgiLn2eYCb2TsdrsdvoCEbZUBbD3uRFW9B3srnDgSSEKFfGpVxowkA1IsoVb3JKMOJr0WCkIX40qqgZIq4KMvjmHxF8dwvtmJoakKDnlNmHLRMOSltG6qRbcIUm+88QZmzpyJZ599FhdffDH+/ve/46qrrsKuXbuiSsmnfziJ9H+mpaVh6NChjbatqqrCN1t3Y4fTjLWlHuyvdEEvizhfd6q9S0I5Dkup0EFGT20t9ADSkAIdJNR5ZWw76IRy0IV0wY18bR0cSh0OSc2vhpIqeNBLWwsHgN3QQlIEGIUgPIoB+ypqgf2nXmsVRFyYXI/8jFqsq7EgO9mELJsRfbKSkJ1satA77HQ629wjWlZWhoqKCgwaNKhTzYORJAmbNm2Coii48MILzzm2o0ePNlgqNTKHTafTqT3KpysoKIDP51NvgpqVlQW73Y6ysjJUVVWhX79+6i9Bt9utXuU0Go3w+/3weDywWq04dOgQjEYjcnNzmxyjyx9EjUvE4Ro3vjpQha/2V2HnCQfMENFPVwUBCvIyU/HzyWNwQf98BAMivvvuO/U9tJQgCLi4bwbeu/9SvPRVCRZ8sgdfHHHjWFkF+h12444fZaJv1tlDd21trfp3mJ6ergYpRVGwaU8pNh+uwcGTTigK4FfKsUfKgoKmT9aCAFzQw4KL87S4aswQFOVFfyNWWVawq8yBz/dWYvm6/UjxlcGtGHBECu0rVfDieKUOn+014O9rD2FIlhFj7XXomWYFhHL06dOnxVcf95Q78OT7u/H1gUoM0XlwXooZT908AX3yml55zWKxQKvVoG+mGR9M/AEWrCrBW5uP4ZWvS7FqVwX+eP1QXFLU+Krt6b+r3P4g5rz0CRwOB0w6DZ762VgMPi8UNgRBQP/+/bFx40b1A9vpHyTObC+9+ZJ+eOOLbfhy1zH8+s2t+PP/G9ZkmPrLJ/vgD8q47DwzCtKNsNlsMaksCoKAy4f1xu7jNSjZvwdb9vbAsH4FeP/7w7AIAfTPyYz5vMKONmVwDp62WeHx1OGbfWX4wfChqHT68Nc1+5GjdWF4z1RkZ2fH5H0WTxuEDaU12FblxcpdlbhmSDacTieSk5PVKpHJZILVasXKneV4YPn38AWAvmlJuGFYFgb37wujMXSFPiMjo0GQinygy0424clbJ+PlD77G5tIq7D1Sjv1HNRgVzELvIhnp6enq78OWBilFUbBjx44GCynU1dW1KkhFKhOR3+ORNrCTDi9e/XIf9u3cCbdPhCcI6CDhhY1V8DtrEZSBOksPDDfXwG7SYZsvFSMKMjEgNxlJp13cifyd9OrVC6WlpaisrETPnj2RlJQEp9Op/v5zOp1NVkRKS0tx9OjRc7awAacWrUlNTUVaWho0Gg0kSYLH44HFYsFXB6rwzKcHsL4kFA57plmw4IYh8B/bqf7/t+iAi/qk46I+pwLM+h37sX7nIZwQMvDJnmqUVLkx+z9bsXRdKX47dSAuKGz+302SJOzYsUMN5WVlZejZsyeMRiOqq6tht9vVc5okSaitc6Da5YNblLB/zbco6N0b/Xv3RI7dDA1OrZQ7ZMgQ6PV6fP/99/B4PNi2bRtGjBgBnU6n3uolclFSURTU19c3CGWRf3ez2Qyz2YyKigq1q+R0x48fV/9uTpw4gV69ejXZhXB64K6vr1f3c/z4cTgcDgSDwZgFqdPbTQOGZKw7WIWgpKDWI+J4tQPOw9UQhBq8d8AHZ8URGPR6ZHkzkVJRgiSjFkXZNlgtVqC2FseOHVPfnyRJOHnyZIPPe4qiYOvWrfB6vRgwYECT/8ciFwssFgsM1mScUFKwdp8Laz/eg344AQ0UnJRrYBCCqJRtcCuNq3omBJCh9SElOxfDe6ZheH4qhvWww3Ui1Abco0cPlJeXN2pBPl5ZjT1lDvy3VINVrx2Cyx/EeRonMjUuKBCQmZWDyQUZSLUaMLZPOi4oSGs2/B+t8eDL/VX4Yt9JfH2wChU+LfZV1mJLxR48sbYafbOScGnfNPTVVqEoOxn9i/q26N+rWwSphQsX4o477sAvfvELAMDixYvxySef4LnnnsP8+fNbvJ9IqdTtdqvtVzU1Naivr4fZasPG0hpsPlyLrYer4Ti2J7TSHjQoCWZAgh49TQHYtDpIegsykozINAYxxaqD1aiDolhg0GqQZjNBltLghQGB1AIcqHShsroaSpUfOr0BY/N7QKfRQHRWw2xNRqrdBlkJtQQaHcehCxjh8AXg8gVhMWhhNepgz+4BvT0TR6o9KK12o7TKg0MnHah2B1DtPonXDu5EEKc+CA45z47RtnrYdQHk2c2wn7acrSzLKC0tRXp6Oux2OyRJwrFjx5Cdnd3sFedgMIgDBw6o/0nP9sukvLwckiQhNze3Q+Zl1dTUqEuAVldXq79AAoEAvv/+eyQnJ+P8888HELrqUlpaCuBUb39kefrmRD6o+v1+NZAajUbodDoEAgHU1dUhNTX0gT1yEozc0+n48eNwu90NVsk6eKgEgskGt9aKco+Ag9U+fFtSg0MnG684JEDBBale9E1LweA+PfHD8aPVv1Ot0YgLLrgAiqK0qgVBoxHwy8t646I+6Xjyve3wHqvD7qOVuGbRGlw+sAf+Z3wfDMtPafS6SB95RFlZGQ6dqMaO43XYd9ILX/jE51EMyLZqUGDWYkxOMvLz8yHJMmrcARyr9eBojQdHajyo84hwnCjBp2VBvP3dYRgyemLywBxMHpSNIefZm/3w7g9K2H6sHh9sL8N7W8tQ5fJDgIL+2pNINQkYm2vGgD7Z0Moi6us1oROUO4BPj8lwVNVgfY0X60tqYNBqsHyPiAsH98H4/lnNziOodPrw9Jr9eH39EcgKkKkTcVFhCsYNPA+9c5ufv6DRaNT5jFpJxFPTh2Ha8Dz85u3tOFbrxc9eWo9L+mbgl5f1xmVFGer7dTgc8IoSttcA3+89DG9AQpJBh1snDsMPejc8EVosFhQUFKCkpARms/mslaNLB+bDUXMS/95eh7c3H4ckK3jqxmEN2nxeXVeKtzaHTn43Dc+AIEW/UMbZXD56CN75rhQnKquw4rONEMUAKsuOI0sLjCzq0eWr53qtBjdd1BvvrzmOb/eX486ghCfe24WAz4t+qQoG5SW3uk3mTJk2I57/2Uj8+IVvsLE8CJuxCnnnlSM5OVlt60tJTcOSTw9g0ep9UBRgXL+s/9/enUfHUZ154/9WVe/7KqmlVmu1ZFmWbMvGYAM2BA8EzDZMBiYQNpPkEOCN+TGTEELekMlCTkIyyRACM0mI44EESIhh8hI2D2NjY2K8L7KErNXa91ar963u7492FWpLsiVZcsvm+ZyjY6tV6q571V11n7s8F0/esBrR4GjamhKn0ynvp6fX66HX65GVlQWO45CXk4V/WrMYC5zN+LBpCPuHePxqVyfe/XgYD1+eC5PI5CnvZ7oeiSJD04lOdA2OICryUJhz4Os9AQhDmKAv64ykTkNBqcLbtb3YWteH9sYOJCJBeMU+WPkwkuDRLxrg4oMAUg1wr6hD+6gIbTAGDRfE6+21GGWpz45Vp4TDoIZOyaOC74bHqoU6VwU/p0XziW78v+PbETPmwRLrgyLiB8elOoX+NnIYCo0OPMdB4DloFDz0I81w6AV0dHRMOZCS6t1oNKK7fwib36/H6w1BHO9L3cvVCh5fXlOM+9eWIBEJ4mDHJ9OwfD5f2lKAZDKJmLcX1dlqXJ2jx7duWoL/+lsbntvWjKNdPtz6n39DjceCu1cX4u8WZY8bJW9tbYXX6wXP81Cr1fJ6nEQigfbOTviiwKg2B3UDcRzv6AXvPYEYExBkKli4MHCkC6NMgzbRhiITjxUGH9wOE7J9CZRla1FdXS2nvD527Biqq6vh8/kwMDAAjuNgMpng8/ng9XonDKQ0Gg0Uai3qmtvReLARWxrjGA7FMBiIYcgfhsHXimgshiTj4DQo8Up9GC1hLeJJES6LFiaNAkjEYQm0waRVwKRRwid2Q2vNhl2vkv8mUga7s5nyF0+KqOsexZHmDrQ1DqDZm8D2t0+99zNUKbwQICKJYQgQ0S2a0N/RlnaUXYjgUnsYxQ49nCYNss16KLhUopKxgVQwGJQ/Iw0NDdDr9WnX2KTIcKx9AIdOeNEU8ON/Xu1FLPnJHlVJnRFFxiQuMqpgNxig1hmhyCoGB4Z4NIKeoIiWgSCGTzRAjIXQ2cPjxe4AXtzdDgsXRrl6BDaDBrFmJazJEWiTAWzrPICYzoG6zmFw/am2eG0CSEBAjkmDpW4bXIk+LC0rxPpLp748IN+mw+0Xe3D7xR4kkiL2tfRj245dODEcQsuwiKb+AEYG+uAWRsBzHJip+8xPCoBj53l+7FgsBp1Ohz/96U/4+7//e/nxjRs34tChQ3j//ffP+BzSAtl33nkHn/nMZ/C3PXvRM+SDL5yANxhFX1SBd3s08EdTDXIP74WND0HgORTa9ajId+CaNasw0N6I0dFRlJWVIScnB01NTfLwrMPhSJtX6na7UVqainYTiQQ++ugjxONxuN1ueYdmo9GI5cuXA0g1UHft2oVEIoHq6moolUpEIhEkk8kJF8r5QnG8+s776B70wqvKQm9Mjd7RCFoHg2AMWKzogQKpD4PDqEXx4uXIMmmgT/qRGO6CxaDDZZeuwmB3O7q6uuB0OlFZWTmu7hhjaGnrwMfHjyOeFKGzOGDOKUBfbw/CoSA8BUWwGjUwaZTgklEcPXgAPJfqJfLku2EymWA0Gs8YVIkiQzQhIhxPwhuKYTQcTwWY8SQ6vWEMBKIIx5KIiyKEkzcpnuMQG+pA3O9FUhSRUBnA2zwwaBRAyIfoUAcUPIes0ipYDFrE+tsQDY5CZzAjt7gcjIkQBAU4DuA5LnUzROqGCHDguVQgdXJCBTgw8LwAjgN6TrRisL8XapMNakc+fKEYepuPIRwOIap3IRiJQRzphp9pEEwwKKJ+hOIMiWT6/N4keAyKevSKBmiUSjiMKlxUaMOaBU54lH6MDvZCqVRi5cqVczoS+N/v7cKO2hPY2cejX0yNcK0ssuGayhysLrGj2KmHWiFgcHAQ+w4eRr8/io7hEFoGQxgKRBBjCviYBm5VCAuyjLjxipVwW9Q4fvw4OI5DdXW1HHCOdbC+CTv21aJ5IIBObxgNCTuCLDW9w2XWYG2ZE4UOPWx6FRJJhvbhEPafGMbhzhEYkwEkwWOEaaFXCVjrElFpjmOx23ZyGmSKlA6ZMYZIPInm/gDah0Oo9XJQxkZTI77JVMNjiduMdRXZSDKGQCSBQDSBj3v9ONyZymoGANdV5eC2Eg4sMgqPx5OWBGYi9fX16OvrQ2FhYWoT3Y4OtJ7owP/28HjxkBdJkUGFBKrtPK5aaEe2KxeH9+/BsW4fjkSzUK4YgFOvwJc+uxKXLK2Y8KYiZfoymUynDXp8Ph8OHjyIluEontyXREJkWF/lwqOfXQibQYXXDnbhif+uhciAr11TjpUGL4LBIBYvXjzjxAgT2dU4gH/e9D9wKwLIMWvR4Q2j0KbFv264ftJpqmclGASeeir9sa99DZhm8p+p8oej+PKPX0Q4nkTIWorjA2F4hBE8dLEdlSX5E15rz8Yre9vxgy17USwMweMw4fPXX4WB5qNoH/Tjf/q0ONSfSqX8+ZX5+O5Ni9PWUUoYY/J6pZqamnENRum9o1AoEDQX4dv/rx59o1EADJfoh1GRpUHNkiqUFuRBreCREBnCsST6Tt6XPmodxrFuH4YDUSzg+qDiEugWTRgS9ahS9ILjGHzGYpj1auSqYshRhGA36VBRUQGP04RskwY6pQCRMQwFY+j0hvFx7yjqGlsx1N2OJr+AprgFAJDL++BSBJFr1iLPqoXT6UR2bh76muvB8xzsehUuWrkCHaMMh2uPYaC/D90JAz4aVGDA/8komQoJLFL0gYHD4YQLaiRQoRgAwNAtmuHiR1MNSghQIomOpAVD7JP3lIGLolRIBbQqhYCguQilLisqXCZUuEwoyzYg26gBz3MIBoPYu3cvkiKgyluID1tHcKSuASFvHwaSenSKFuhUAm5dkY8vXl4Eu4aDRqMZN8siLy8vbZ2MNPsGSN3PLr74Ymg0GgwGovjZlh043NiFkMgjwNTwCyZ8ZmEWrsjjUem2IsdmxpEjh8EYQ+GCCvSMhHHg8BH0+mPo94UwFIwhKTKI4NCStEPPxeDiR5FQGSGa8mDnA+D8/QhG42iLm8FzDHm8Dz6mRWvSBqXAwa5Xo9SqwBKdFzlGFRZXVSERGEZgZBh5eXmwWq04duwYtDodckoq0dQfQPNAAG3H6zA87MWxkAGdERUWK3ohQERT0oHAyXuIjQvBI3gRYwJ6RRM8ghcJCDiWyE6bJSHNGkqAhwIikuBxNJEDsyKJGp0XJq0SOqUAZXYxjCYTjBoljBoFDGoFonERwVgq6YGU/CAUSyAYSyIUPflvLAGER+EPBHAipkc2H4CLH4VX1KETNhTadVApBFi0SuSYNdAFOoFoAFqVAmadGkJOOTp9UQQiCXhDMdR1j8IXDGOx4pN1fm1JG5YaA8g1a5BfvhhleU4UOw1go/1ob091kCSSIuKcEmbPQtT1+LG7ZQgftQ7DHu+HhQujSzRjQDSg2KnH+ioXrqtywW3gcPToUajVavj9/tSslksvRWdnJ9ra2lBSUgKHw4Hdu3fDH0lglNOjLWHB4fYhxHsbATGBXtGIXtEk/z2ke24u70MWH4DZbEZl1RJcVZGFZfnWKU03naqPPvoI4XAYBaULUTcs4m+7P0J7/whGI3F0hBU48G/3wefznfa+ed4HUt3d3cjLy8OuXbuwevVq+fEnn3wSmzdvljOLjBWNRtOmDIyOpnre/vGxZ9Av2GBhfiQgoCVhw4KT06Yakw5o9SZc6tGgEAPIMWux5uIadLS1IBKJwGQyyfOoL7nkErnXt7+/H5FIBG63G42NjXI6y8rKyrReISmT26mk5woEAti3bx8EQcBll102pQi8paUF7e3tyM7ORkVFRep1AlG8d6wbHx/eh5FgDCeGwxCZiPpENqJQoFAYTvUSATiRtKJA4YNBxYNxPJo5NxQsBqvowyAzIsCUCMUSKOP6oOZSAUCYKXE86USVogc8GEaZBi1JGwAOTi6APOGT9TIcByh4HhwvICLoERL0iEANTuABxhBLMkTiIiLxJKKJyXfp5iFCiSSiJ9eFGbkINFwCg6IOixV9EE4GjCI4HE3kgIGXg2EAaE9akQCPYmEIDBw+Tjjl55opPRfFAmEQSfCoTeRAgzjKFQMQwaE2kQMtF8cCYRAxlgq8lEiiKemAyDhkqSIo1DPYtYBVq4LLokFJjhXVlRXy1Bip0QJg1huxE+nu7sbx48cRSHDYPmzG64e6kBRFsJNb0fEcYNMq4E72AskoBkQDHHwQHBgEnkNRfi6uWVkJfqgVep1Wzt5XV1eHgYEBCIKApUuXpk1DjMVi2LNnDxKJBLRaLbyjAXQFgP1BM7YfH0Q4lgAPhuQp2+FxYMjnR+BWR5Fv12PdFZdhZYEFB/fvk+srGAyitbUVarUaVVVVUKlU6OzsREdHKluc3W5HWVk5/rJ1O04MBnA4YsPf2kNIiJNfLpd5LHj0swuxwmPGhx9+CFEUsWLFijOOoHR1daGxsREcx8Fms8lz8dVqNXJLF+N37+7FseMtci9gkKmg52KIQwCXXYb7LnbhsmIrnI6zSz8OpDp1PvjgAwBA2FqCr/7xqJwBSeA5JEURHBj+aWUBnriuDLt37wYArF69esaJACbCGMPNz3yA4Z522PlUj+z1y0tx381Xzk1yknMcSAHAU//1F+w63ouGhBNhqHBfWQKXF5tRVVU1bt3IbHj9YCd+99q7gJiAV9TByofk65NFp8ITN1TipqW5Z1W/AwMD0Gq1MBgMGI3E8ey2ZvxxXweU4SG4+FEEmBpNSQcABhfvh50P4kTSCj/7ZJRUakwplEp49QWwG7TQ+Fox6g/gRNKKLD4ALffJHjpRpkBz0o7YJBNs3PwIHHwQfaIRCks2rl3swmUlVmTzAQwPDiAajaKqqgo2mw0ffPABkslk2pR+6dpntVqxZMkSjEbi6BwOYyQUQ//gII7V1qJlJIkmloWkyLBY70exPgEFzyOaECEqNYBKj+ToAJjWDNGUiyRjSIpAZLALQ/09GI2kyiM1KAHAwQWg4+IY5ozQaPVwsBGYkiMYiKvQmky9PyxcGIXCMBwWIy6/5CJcvyQPQe8Aent7EQqFkJWVhWQyiaGhIbmNotfrsXTpUvh8PthsNhw5cgQjIyPyGpXc3FyUlZUhEolg9+7dCEYTONLpw8e9o+gM8eDBoOdSMwukTsZhUYvWhBUAwyKhH6qT7YEhUQ+rGig2ATl2M/IdJpiFGJYtrpAz0UnZbzUmG3p8ERxv60RTWIcP+ziEYp90eEmN6jBTQsMloBI4tHE5iIg8ylg3RIg4Gs+RZ99UCKl2iRQ4lapGscAYh92Zjaz8Yli1ApJ9TVAiieKSYlidOdi5628IhSMoKV8Ii9WBbl84Ffz0tsLv88LLWxAY7oU/FMO+oBVWLgQn/8mMns6kBYNMDxUSiEOYdMr6qXiIWKzoBQ+GfmU2qq0iclRxFJWU4MbVVbDq06+tzc3NcrrzsZ3yEsYYWgaD+O93tuNE/wgGQ0l8GLCjQPDCwoXRLxrQLaZGP8sUA7AqEhjgLNDFR6A4JdgEgCXqQRRbFViwcBE+s7QE5dkTT+WWgpLKyko0NjbK+1q5XC55NFun02HlypVoaGhAZ1c3AkkBQlYJQjERvmAYQy1HITJA48iHNtwPj1WDS1Ysm5NrIgAcP34c3d3dcLvdMJvNOHYsNQ12NJLACW8EG++48YyB1AUxtQ8Yv1DzdKmaf/jDH+Jf//Vfxz0ejCdg4VPzUoMqGxbmZqFUrYGdC+Hu/Czc+JnVOHjwAAIBK3Jzc5GXkwWLUY8DBw7IQZTBYEibOjN2alh+fj56enrAcdy4IXyHI5WlSVpDIy3QHRoaQl5enjzP2mQyTflGZ7fb0d7ejuHhYTDGMDg4CMYYrq2wIzvshEqlQpJT4GBzN2rUWRiMqyH2+hCOqhCMJZEPH8BEBKInU8Am/HAJfghcBA4E4UvYYeSSUPMJiOCgETjoFAwVagEupgbHAdaECE0iiMaoASakgtce0QQGwMDFoGNxKJJx8PERGDACPTgwpEZ+RpkG3qTp5A2SwcxFYOXDCCtNUGiMEDjAzIVQpArCqAQUNjsUGh3EgRYwkUNSycDHTRAUSigEHjxL4DJbDoKcFhiIgU+qkRBFFHMahGMJiGENfLwRRUobGANExsBOvpdS/57yfzCczNgpPy4ydvI4FbQIQK9gMBvUMAs8TEkTVEYL1uQUwagC4t0fQ63goVLw0KgUWLFyFcx6NWw6FXg+tXB5aGgITU1N8p4mWVlZyM7OlheYZmdnz3kQJb1Oc3MzDEjim+s8uKlQxN6P23EkYsb+rjD80TiM0X6AiyIBAUpzNsqsYZQYRRQ69KhatPDk+9gKtVotj0BWVFTIUyCbm5uxdOlSAKkRlPr6eiQSCRgMBlRXV+Ojjz5CiTKJ61fn46e3LsXr//s3tHYPoF/lwkhcgC7mg1WIIN+sRLYuCxadEhzHYaFDgZHhVHAipYe12+2wWCzQ6XTySF5xcbGcEcjlckGlUqGy2A2noR/rs7PhzC/GXw51o7bLB61KgEGjgFGtQLZJg8sXOJFjTn3u+/r6IIoitFrtlLYzcLlccjIIKYgSBAHRaBTermaszeNxSXYx6gbjONEzCJExqBUqXLKoCLdcdcmsBhYKhULOBnaJx4Bn/6EMf9xxBHv7gaAo4BJzEEtz9fjSuiJ5apjZbJ7VIApIXc9/cftyvH4wC+HeVmgQwd+vXTYvMzzO1JWVecg1KWF2FcFgMkHsTXX6zeY0ybFuXuaGIVqDN3cfw1AwhmCUg8Vqw/9ZXIa7VhXAYZh5+mLJ2M5Bk0aJb1y7EP/f3y3A1qNd2L17N7q8IbBkHOpkEGYuAgXPw6Fj0GbnYHmBFTUeC4bb6sElHShbUCpPLWxsdOB4ywn4IkmEolqEEoAXRngH++APhqCOjOBQ1A6cbLjyHJBj0qA024hypQCH0oSa6kVYUVGc9h5ipSVIJBLyNcDpdKKvr0/eGxD4ZI3p6OhoKjmQXo9FuanjO9RhWCIO3DxmxkYkEkFtbS14nofRaEReXh5CoRBqa2tPNiJT2eUYY/jooyAiEQ2MFhtOdPUgEOcwairC8RPd8PcMwBeOw8rC8IfVUHIxxCBiRNTCYVDj8gUOXFpsgdF/AmqeQS0M4OMjfWkbtfb398vl9Xg8qK2tRTAYxP79++V9K6U1XuXl5fj444/R29uLgoICOSNwjsOK6kXlaG1tRc9ICMf7/Gjo5zAcSkKFBKKMQ0fiZPBnUMNlzUWRKoA8pwVXXXYxckxqfPTRRydTkYsAFGntH6vVmkrIEfYjT6+ErdiOL1dXw2S2oN8fxYA/isOdI9j5cS/ivQ1QR+OIJhi8CRUGkhwABr+ggI6LwaaIw+awoNSphzsahU2vxKpLVqEw24xEOIDDhw9DEASsXl2MlpYWdMVUUKvVuGhRSWr93NJSdHZ2IssgYtECh7xP0YhDALPbsWLFCjQ1NWFkZATfKynFsYZmDI0GEWIKBAJBJNRmhDkNooPtCIsCRpQ28GojdGoF9CoFdGoBOpUAnUoBvUqQH2dhH0a6U49XlhbIKe6XLSuFWT/+2ip1znEcl5bhTsJxHEqcBlyzrAgDAwPIyspCXuEC7DjagtraWgxHRNTGjegYGoWOxRBNAO0JFdy8Gk5lFKVGHrYsJ6r1PhSYlbCo9OA44OKLF5527abNZkNXVxdaW1vl9WuxWCxtY2BpM+G+vj4IPIe1NdVpswwaXOzkgEMIMBtgNBrPKqPemVgsFnR3d2NwcFBeB5eVlQVuYAClbGqbbJ/3gZTD4YAgCGmpSoHUBWSyhamPPfYYHnnkEfl7eURquRtWswlWox6Xrb4EPM8jEolgz549EMUEPv64HoFAAIIgyHtF6PV6LFq0CEePHgWA00bNOp0OVVVVYIxN2PAoLS2FQqGAyWRCNBpFc3MzBgcHkZeXJy/AnM60FpPJJK/V6erqkhvf0vx7nU4HrVaL6mgIHk+qQX7gwCgEQUAymURCFBGOJRFJAKKYhM2Zg5HBPnmKG89zUAo8VIINhZ58DA4OIBaLwWazYXhYC51OJy9SXLRoEY7V1SGZFFFdswIqtQaxRGq0adjrRX9/P/y+EcRjMTCkghEFz0GpVMBiNkOl4BEc9UEhpKbs5eTkwO/3IxjkAUgXFRFqdRwR69iF/Sbk5qZ6Wbu6upCTY0RhYSF27/5kB21pg13AiosvvnjWFrNLvUYGgwHRaBTxuC5tJPLDDz/ZD8RsNqMkO70BxfM8nE6nfKPp7OyU0+sDqRGLmaQynQlBEJCTk4Ouri7U1dUhmUigxmPBLYUeFBQU4HB9I5pbWqFUCKipWQZ3lh39/f2oq6uTyzf237FlXLhwIXbv3o2RkRF5TxApZTLP8ygrK4NKpYLH40FraytOnDiBUqUSLk0SrmIb7HYDCgoKcODAAeDkSCLP8zCbzfB6vXJWIOCTht5EnRlA6jMxthGVn58v13lRURE2XFYEINXzPjIygpKSknHTUk9dx3AmPM+joqICZrMZXV1dyM/PB8/zqK+v/2QjwtJiXLOuEHV1dfLzFxWd3ejBZKR9SgKBAEzxIdyx1IbPJZKIizz0ylRHTndnhzyqf+rWC7PFY9fhq+vKIYoLEI/Hz2qfkvlIp9Uiz6JFSa4eGo0Sx/o46PX6OZ2ie/myCrgtGnkth8fjmVI207OhVgi4fpkHhcpROfgGLPIIiCAIuPTSZeB5Hl6vF6MsDkGpSMtwZzaboVcrTmbwVKO6uho2mw3RaBS7d+8GYwzVNRcBvAK9vd3IsVths1oAALt370YkEsGCXPu4zwvHcWn1XVZWhpKSkrTHDAaDfE/cu3cvLBaLvG2DdH8b22Eibcw7lpS8IBQKydnlAoEAIpEIeJ7HksWLEAn6YYvHYbEEsVQlIFFUCLVag4ERvzwjQ6NW4dLVq2DVq+WyhEJZOHr0aFqKd4/Hg0AgICdS4HkeNptNvidL10MpiLLZbMjOzkZPT4+c5lvqHM7Ozobb7YbVakV9fT1K85z4l0WLwCuUaOvqg1KdutdbdMpUhjTG0NfXB6vVKn9m8/Ly5Ma0QqFIqy+pnZJIJOT1zEajEQqBR65Fi1yLFkvyLbhrVSGOH7ehu7sb8aSILE8JDBY7lDyPvq4T6O/pgifPharFlSdH01LTzBZ7Un93prbInUT79++X/3bl5eXy38fpdKKzsxNDQ0Pw+/1ps4RMJhP0ej3MZjNGRkZworUFOgWDKcuEBQsWoL6+Xl6m4Msem7wrBJVKhYqKigmnrwNAXZ0X/dbU53BgYECuh8lmM0hr2G0222nXvEpLRTweDww6JdZftAC2xCDi8Tgeq16McDiCw8c04FU6lFRUIRkYQk97K+x2O/Lz83H48GH5uQRBOGNmVimQkupWqUztXycNbEjt0c7OToiiCJVKNe4+vGDBAkQiETl5ydhMyXNBalNLnwlBELBgwQK542QqzvtASqVSYfny5di6dWvaGqmtW7fipptumvB31Gr1hDdlp1EDvVaJ0uJCuXGk0WhQWFiIlpYWuYcmPz8/LRCy2+0oLy+fNL3pWKcLtBQKhTxEGwqF0NzcjJGREXkDQWB8Q/R0pKlC/f39chAFQN4sUafTwWAwoKenB36/X57zbrVa5ZSiFr0ShYWFqfTe0RE4jakMXYIgYGRkRL5AFxUVIhIJY3h4WI7q3W43QqEQOjs70dDQAA6AQa+D05I+LOyx64FSNxhjiEajYIwhkUh8svdBLIh4DFArBfkiJgXOPM+joKAAfr8fg4ODiEQiUKlUyM7Oloe+pT2furq6MDQ0JF+cjEYjYrGY3CC02WyzmhFMOgcpiYlSqUzrWdHr9XIgdboAWXpfZGdno6urC16vF/F4HAsXLpzxHkczkZubi66uLvkiD0De5NU/1Ae7QY3y8nK4slLvcSmpBs/zpx2Z0Wg0MBgMCAQCctAzNDQEnudRVVUl99Dn5eWho6MDoVAI9fX18u8PDQ3JFzyHwwGXyyUHr1IgJW32N93RO6PRCKvVCq/Xi46ODixYsACMMXnagtFoTFu4G4/H03q1porjOOTl5cnTXRhj6OzshN/vh81mk4O70tJSOYHKXI1cSPuU9PX1IRwOg+M4qBUC1Eg10sLhcNrm03MVSEmkRewXGula4/P55GvQdK7vM6FWq+XkOudaQUFBKqmKIECn0yE/Px9Hjx5NS40uJd3JyclJu7aNvT5mZ2fL11G1Wg29Xo9AIIBkNASe59HfeQIj/T245JJLAKRnbzsTnufHdYxwHIfKykp0dXVheHgYIyMjCAaDMBgM8nXnTMGoSqWSG/F+vx9Wq1UOKm02m3yNb2hokDtPjEYjli1bBp/Ph1AoBK1WC6PROC7Q1ul0qKmpQVtbG3Q6nZzISZrSF4lE5Aa+1WqVM8WWlZWhsbERgUAAeXl54DgOBQUFOHLkCLq7u+VrpvT5NhgMWLFiRdq9u7wwD6fiTnZ0jpWfn4+uri4kk0mYzelJgjiOg9VqldtXGo1m0s6E/Px89PX1QavVoqokX/5bWZR5CA73YWhwAAMDA/J7R9p4XHqd/Px8NDY2yg19l8uVdk82mUzybCApiLJarSgpKYFer0/rgBNFEYIgoLS0VB61lFKSS88tzU6IxWJoaGjARRddJLez+vv75e0IpJkIAOT7q16vnzRxhUKhwLJlyyb82Vhmsxk1NTXy91LnbHd3N7q7u1M5BlQKFBbmojDbCL8O6O1ow+joJ50eVqtVDiDPFNBYLJ90kACpGSfHjh2Tp8tyHIfBwUG5DSo9NhbP86isrER9fT0UCsWcTemTqFQquN1ueaprdnY2VCrVyQGB4TM/AS6AQAoAHnnkEdx5551YsWIFVq1ahV/96ldob2/H/fffP63n4bjU4sxTLwJSWsZQKASlUjnhUKrL5ZqVzfYkOp1O7j1qa2tDLBYDz/PTbjxJgdRY0gVSujADqZTV0k3BarXCaDRiZGQEHo8HDodD3icJSJU1JycHgUAg7cNuNBrT3nhWqxVOpxM9PT3yDuN2+/heQYlU/5Lq6moEAgH4/X5Eo1E4nU4YDAZ5hMBmsyErK0vuzTpw4ABCoRDKy8vlD2g8HpcDQ6kRKJXFarUikUjICUHG7h4+G/R6PdxuN4LBoFwXYy+Mer1e7nWZykij0WjEwoULp7XvyGzS6/WwWCxyJkKv14vR0VF4vV4kk0moVKq0z44gCLjooovOuEEjkLpZBwIB9PT0pE01GduDp1Ao4Ha70dbWhng8Dp7nYbFYMDw8jEgkIvckSY1ulUol3xSBmU9By8/Ph9frRU9PDwoLCxGPx+XnlFLJer1eRCIROWmFlNVspqTGmzTNUKo/lUqFJUuWpO1jMtvG7lMCpD6zbrcbo6OjyM3NRV1dnfw5N5vNF2SQcy5kZWXhxIkTGBoakutwrgOpTDIajbj44ovTHpNSow8NDUGv18sNylMzv6pUKmRlZSEUCo1bD2I0GuX7hHRvi8ViGBwclN/LPM+f1fRTm80Gm82Gw4cPy9c9vV6flhb6TKT9jEZGRmAwGOSgUepwyc7OhslkQlNTk5yKWgp+JhvJkCiVynGzEwRBwMKFC9HQ0CDf2woLC2EwGOB0OqFQKFBTU4NoNCoHmdK9X0q9bTKZ0j7fM73nKJVK5Ofno62tbcKOl7GB1Om269BqU+trTw14TaZU5teOjg40NDTIf/dTR1Dy8vLgdDrh9XoRjUbH3fM5joPT6URXV5fcuVFaWpp2LbdarXC73eB5Hm63GyqVSh5Zldo5ZrMZ5eXlKCsrQywWw4EDBxCJRNDe3o6ioiI5sEomkxgeHkYymYRarYbBYJA/A7OxwflEsrOz5alsUpml96A0+ppIJOTO6tzc3Cl3lgmCAIvFAq/XC61WC6vVKs8kycvLkzu8x7YHJ6JQKFBVVXW2RZ2yU68pAKY1nfCCCKRuu+02DA0N4bvf/S56enqwePFivPnmm2lTdKZi6dKlsNvt43qkeJ5HeXk5GhoaJt1jYC44HA60t7fL0ftUstudauybobi4OO0CodPpYDQakZubK/dOSL+j1WrTNjSWghDpQjNRUDf2g6/RaOSLs3QBPfV8zkRK73rqBSUrK2tcb790U5CyOErlHftcCxcuxMGDB9P20+E4Dt3d3dBqtbM+D1faaXwy0nlKKVyn87yZUlFRAZ/PB4fDgQ8//BCJREJeRDpRkDzVVLBOpxOtra3ydBKj0TjhiI40KiWl0He73dizZ4+8+e+pN32bzSbfEGa6lsxqtcojZn19fWllkjogjhw5krbT+2yM0mg0mrT005KJPhOz6dQA0Ol0wmKxyIGbx+OZ0agbSTe2Y0IaNbmQA6mJjA2kpE4Ii8UyYSfE2E1uxzIajfKsirGbnUsLyIHU/Ws2rpvS/lvSnkXS6MFURrvsdjsGBgbkUfVEIgG9Xp92rdBqtbPagLRYLGnBq7ShqoTn+bRzl0alpNGY2RxtLigomHQblbH33jNd2ybruCkqKoLP58Po6Ohpl0JIM1YmIwVSQCroOPW9ONF9neM4GAwGeeaQdF3kOA5qtRqlpaU4duwYOjo64HQ65W1gAMj/Op1O6HS6OQ+kTCaT3J5Tq9WoqKgY1xaROkele+h0SJu8u91ucBwHj8cDt9s9ri0gjUTOV9PpqLwgAikAeOCBB/DAAw+c1XMYDIZJP6RmsxkrV648q+efrtzcXHnaB2NsRiMmKpUKxcXFCIfDcLvdSCaTcsNXuoAuWJBagzAwMACNRjPhhc5qtSIcDsNut0867D72gz/2TSgNx0s3ybkibbY4GbPZDI/Hg/b2dvmCIfV86HS6cx6gWK1W8DwPu91+VntPnEtqtVq+SVgsFgwODsrBz9kMwY8dgQVSN8WJ/h5KpRLl5eUYGBhAYWGh3BMbCAQmDDrsdvtZB1LSVJWmpib09/en9T6Looja2tq0IAo4vwMMjUYj965K78+xzGYzHA4H/H7/nE/ru9CNXf862ZTzC5nVagXHcYhEInJG24lmfJyO1Anl8/nkESkA8hQ8YPK1JtMlBbqjo6NyZ4LUi38m2dnZ6O/vx/DwsDz6UlxcnNGOsYnY7XaYTCaEQqFZ/XxzHDdpwDl2evdM2wjSlLCWlhZoNBrY7fYZBSNmsxlarRbRaFReCz8VUiAldTaP5XA45FkcBw8elN+nZWVlaG9vRyQSkaeUSeYqkJJmOwwNDSE3N3dce04KpIDU53O6bZOsrCx5uqr0emNnLUnMZvM5XZowXUqlckrTJ4ELKJC6EGk0min/IU9n7OaOLpcL7e3taQsHOY5DRUUFjEbjpPNgpQV/EzVWJWq1Wp5KNbanQRAEeW71udiE93QKCwuRTCah1WrlD/Fcz8GdjFarxerVqzNeJzNlNpvTpgecbe+StOGn2Ww+7XOdOiJ5ug2gbTabfGM8m/VvTqcTTU1NqY1wTy7qlm780vfV1dWIRCJQKBRzvoB/Lo3tXR17Qxz788WLF2fo7C4sDocDarUa0Wh0WhlZLxRjpwJJiWWm2+Gh0+nGJAxKjfRptVoMDqYW1ev1+jPu5TZVUtAWDoflUYupBhvSrIh9+/YhFovJyQLmG47jsHTpUoiieE4bupWVlQiHw2e19lMaYTkbHMehpqYGyWTyjMkVxpKSBdlstnHTSDmOw6JFi1BbWyuPWlksFrhcLmRlZSEajcojXx6PB9FodE5nHRgMhkk7F8aOis+083Gy941SqZRHw+bje/9UU+2AoUDqU0aj0aCmpmbcHGOe59MCrlNNNUNcaWkpvF7vuJvLfBlx4Xn+nGW6m4r53CNzJmN7Di0Wy1n/jT0eDxQKxZSz3U2FIAiz0hmhVqthNpvh8/nk9MIlJSVyViOr1Xpe3BimKisrC6Ojo7O+bpCk4zgORUVFaGhoGLc299OiuLgYPT09yMvLm9G6Qp7nU/tWnRwZt1gsyMrKwuDgIEwmE6qqqmYtE6KUcS4YDMprCKcz+qxSqbB48WJ5rcx8DZwnSrox1862s2s2KZXKab9nnE4nFi9ePOn0XKVSiSVLlshJtEpLS+VMdmPbAbMV9M+UyWQCz/PyfoqzraCgAH19fRfU9e78bcWRGZvLno6J1i+RC9PYtMCzccEVBOG0I56Z5nQ65d5Eo9EIi8Ui965NZwrI+SAvL0/eNoDMrZycHGRnZ39q63o21vxJm80CqUDKbDZj9erVUCqVs16vJpMpbcrgdBv/JpOJRnQvQBzHnXEEh+f5066bng8UCgWqq6vBGJuTqcY5OTkXVBAFAOfnnCJCSMZJmwEaDIZPRfA89iYpTYFdunQpVqxYcUEmCfi0Nuwzger67Ey0PlelUs1JvY6devZpuO6RTx+LxTKvE0HMNzQiRQiZsaKiIhQVFWX6NM4JjUYjZ1kbu4/Npy1BACHzjdVqlTezn8sNjYH0NSSUbIUQQoEUIYRM0aJFixAIBC6o9VCEnO9UKhVWrVp1Tkb2tFotCgoKIAjCvFnTQwjJHAqkCCFkiqQdzwkh88u5SmgkJQghhBCA1kgRQgghhBBCyLRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh06TI9AnMB4wxAMDo6GiGz4QQQsg5FwwC0Wj6Y6OjQDKZmfMhhBCSUVJMIMUIk+HYmY74FOjs7ER+fn6mT4MQQgghhBAyT3R0dMDtdk/6cwqkAIiiiO7ubhiNRnAcl+nTmZbR0VHk5+ejo6MDJpMp06dzQaG6nTtUt3OH6nbuUN3OLarfuUN1O3eobudOJuuWMQa/34/c3Fzw/OQroWhqHwCe508bbZ4PTCYTfYDnCNXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3cyVbdms/mMx1CyCUIIIYQQQgiZJgqkCCGEEEIIIWSaKJA6z6nVajzxxBNQq9WZPpULDtXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3fOh7qlZBOEEEIIIYQQMk00IkUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIJVhzz77LIqKiqDRaLB8+XLs3LnztMf//ve/x5IlS6DT6eByuXDvvfdiaGhI/vmvf/1rXH755bBarbBarVi3bh327NmT9hyFhYXgOG7c14MPPjgnZcyUTNRtIpHAt771LRQVFUGr1aK4uBjf/e53IYrinJQxUzJRt36/Hw8//DAKCgqg1WqxevVq7N27d07Kl0mzXbdbtmzBihUrYLFYoNfrsXTpUrzwwgtn/brno0zU7Y4dO3DDDTcgNzcXHMfh9ddfn4uiZVwm6vaHP/whLrroIhiNRmRlZeHmm29GQ0PDnJQv0zJRv8899xyqq6vlzVBXrVqFt956a07Kl0mZuuZKfvjDH4LjODz88MOzVaR5IxN1+53vfGdc+zYnJ2dOygcAYCRjXn75ZaZUKtmvf/1rVldXxzZu3Mj0ej07ceLEhMfv3LmT8TzP/v3f/521tLSwnTt3ssrKSnbzzTfLx9x+++3sl7/8JTt48CCrr69n9957LzObzayzs1M+pr+/n/X09MhfW7duZQDYtm3b5rrI50ym6vb73/8+s9vt7I033mCtra3sT3/6EzMYDOznP//5nJf5XMlU3d56661s0aJF7P3332eNjY3siSeeYCaTKe2Y891c1O22bdvYli1bWF1dHWtqamI///nPmSAI7O23357x656PMlW3b775Jnv88cfZn//8ZwaAvfbaa3Nd1HMuU3V7zTXXsE2bNrHa2lp26NAhtn79eubxeFggEJjzMp9Lmarfv/zlL+yvf/0ra2hoYA0NDeyb3/wmUyqVrLa2ds7LfK5kqm4le/bsYYWFhay6uppt3LhxroqZEZmq2yeeeIJVVlamtXP7+/vnrJwUSGXQypUr2f3335/22MKFC9k3vvGNCY9/6qmnWHFxcdpjTz/9NHO73ZO+RiKRYEajkW3evHnSYzZu3MhKSkqYKIrTOPv5LVN1u379erZhw4a042655Rb2hS98YbpFmLcyUbehUIgJgsDeeOONtOOWLFnCHn/88ZkUY146F3XLGGPLli1j3/rWt2b8uuejTNXtWBdqIDUf6paxVCchAPb+++9P8czPD/OlfhljzGq1st/85jdTOOvzQybr1u/3swULFrCtW7eytWvXXnCBVKbq9oknnmBLliyZ2UnPAE3ty5BYLIb9+/fj6quvTnv86quvxocffjjh76xevRqdnZ148803wRhDX18fXn31Vaxfv37S1wmFQojH47DZbJOex4svvogNGzaA47iZF2geyWTdXnbZZXjvvfdw/PhxAMDhw4fxwQcf4LrrrpuFkmVepuo2kUggmUxCo9GkHafVavHBBx+cZanmh3NRt4wxvPfee2hoaMCaNWtm/Lrnm0zV7afBfKpbn88HAJPe785H86V+k8kkXn75ZQSDQaxatersCjVPZLpuH3zwQaxfvx7r1q2bnQLNI5mu28bGRuTm5qKoqAj/9E//hJaWltkp2CQnQjKgq6uLAWC7du1Ke/wHP/gBKysrm/T3pKliCoWCAWA33ngji8Vikx7/wAMPsJKSEhYOhyf8+SuvvMIEQWBdXV0zK8g8lMm6FUWRfeMb32AcxzGFQsE4jmNPPvnk2Rdqnshk3a5atYqtXbuWdXV1sUQiwV544QXGcdxpX/d8Mpd1OzIywvR6PVMoFEytVrPnn3/+rF/3fJKpuj0VLsARqflSt6IoshtuuIFddtllZ1egeSbT9XvkyBGm1+uZIAjMbDazv/71r7NTsHkgk3X70ksvscWLF8v3uAttRCqTdfvmm2+yV199lR05ckQe7cvOzmaDg4OzV8AxaEQqw04dBWKMTToyVFdXh69+9av49re/jf379+Ptt99Ga2sr7r///gmP//GPf4yXXnoJW7ZsGdeTL3n++edx7bXXIjc39+wKMg9lom5feeUVvPjii/jDH/6AAwcOYPPmzfjJT36CzZs3z17B5oFM1O0LL7wAxhjy8vKgVqvx9NNP4/bbb4cgCLNXsHlgLurWaDTi0KFD2Lt3L37wgx/gkUcewfbt22f8uuerTNXtp0Gm6/ahhx7CkSNH8NJLL81KeeabTNVveXk5Dh06hN27d+MrX/kK7r77btTV1c1q2TLtXNdtR0cHNm7ciBdffHHSttmFIhPv22uvvRb/8A//gKqqKqxbtw5//etfAWDu2mFzEp6RM4pGo0wQBLZly5a0x7/61a+yNWvWTPg7X/jCF9jnPve5tMd27tzJALDu7u60x5966ilmNpvZ3r17Jz2HtrY2xvM8e/3112dYivkpk3XrdrvZM888k/bY9773PVZeXj6Tosw78+F9GwgE5N+79dZb2XXXXTeTosw7c123Y913333s6quvnvHrnm8yVbenwgU4IjUf6vahhx5ibrebtbS0zKAE89t8qN+xrrrqKvblL395imc/v2Wqbl977TUGgAmCIH8BYBzHMUEQWCKROMuSZd58e9+uW7du3Hqt2UIjUhmiUqmwfPlybN26Ne3xrVu3YvXq1RP+TigUAs+n/8mk3njGmPzYU089he9973t4++23sWLFiknPYdOmTcjKyjrtWpXzUSbrdrLnuVDSn8+H961er4fL5YLX68U777yDm266aabFmVfmsm5PxRhDNBqd8euebzJVt58GmaxbxhgeeughbNmyBf/7v/+LoqKimRZj3ppv790L6f2dqbq96qqrcPToURw6dEj+WrFiBe644w4cOnTogphlMZ/et9FoFPX19XC5XFM9/emZk/CMTImUGvL5559ndXV17OGHH2Z6vZ61tbUxxhj7xje+we688075+E2bNjGFQsGeffZZ1tzczD744AO2YsUKtnLlSvmYH/3oR0ylUrFXX301LfWj3+9Pe+1kMsk8Hg979NFHz01hz7FM1e3dd9/N8vLy5PTnW7ZsYQ6Hg339618/d4WfY5mq27fffpu99dZbrKWlhb377rtsyZIlbOXKladda3W+mYu6ffLJJ9m7777LmpubWX19PfvpT3/KFAoF+/Wvfz3l170QZKpu/X4/O3jwIDt48CADwP7t3/6NHTx48IJMLX+u6/YrX/kKM5vNbPv27WnXjVAodO4Kfw5kqn4fe+wxtmPHDtba2sqOHDnCvvnNbzKe59m777577go/xzJVt6e60NZIMZa5uv3nf/5ntn37dtbS0sJ2797Nrr/+emY0GufsfkaBVIb98pe/ZAUFBUylUrGampq0tK133303W7t2bdrxTz/9NFu0aBHTarXM5XKxO+64I20fnYKCAgZg3NcTTzyR9jzvvPMOA8AaGhrmsngZlYm6HR0dZRs3bmQej4dpNBpWXFzMHn/8cRaNRue6uOdUJur2lVdeYcXFxUylUrGcnBz24IMPspGRkbku6jk323X7+OOPs9LSUqbRaJjVamWrVq1iL7/88rRe90KRibrdtm3bhO/tu+++ey6Les5lom4nqlcAbNOmTXNZ1IzIRP1u2LBBfk2n08muuuqqCyqIkmTqmjvWhRhIMZaZur3tttuYy+ViSqWS5ebmsltuuYUdO3ZszsrIMXaa8TJCCCGEEEIIIePQGilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIIYQQQqaJAilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIOcdisRhKS0uxa9euWX3eN954A8uWLYMoirP6vIQQQsajQIoQQshZueeee8Bx3LivpqamTJ/avPWrX/0KBQUFuPTSS+XHOI7D66+/Pu7Ye+65BzfffPOUnvf6668Hx3H4wx/+MEtnSgghZDIUSBFCCDlrn/3sZ9HT05P2VVRUNO64WCyWgbObf37xi1/gi1/84pw897333otf/OIXc/LchBBCPkGBFCGEkLOmVquRk5OT9iUIAq644go89NBDeOSRR+BwOPB3f/d3AIC6ujpcd911MBgMyM7Oxp133onBwUH5+YLBIO666y4YDAa4XC789Kc/xRVXXIGHH35YPmaiERyLxYLf/e538vddXV247bbbYLVaYbfbcdNNN6GtrU3+uTTa85Of/AQulwt2ux0PPvgg4vG4fEw0GsXXv/515OfnQ61WY8GCBXj++efBGENpaSl+8pOfpJ1DbW0teJ5Hc3PzhHV14MABNDU1Yf369dOsZaCtrW3C0b8rrrhCPubGG2/Enj170NLSMu3nJ4QQMnUUSBFCCJlTmzdvhkKhwK5du/Cf//mf6Onpwdq1a7F06VLs27cPb7/9Nvr6+nDrrbfKv/O1r30N27Ztw2uvvYZ3330X27dvx/79+6f1uqFQCFdeeSUMBgN27NiBDz74AAaDAZ/97GfTRsa2bduG5uZmbNu2DZs3b8bvfve7tGDsrrvuwssvv4ynn34a9fX1+I//+A8YDAZwHIcNGzZg06ZNaa/729/+FpdffjlKSkomPK8dO3agrKwMJpNpWuUBgPz8/LRRv4MHD8Jut2PNmjXyMQUFBcjKysLOnTun/fyEEEKmTpHpEyCEEHL+e+ONN2AwGOTvr732WvzpT38CAJSWluLHP/6x/LNvf/vbqKmpwZNPPik/9tvf/hb5+fk4fvw4cnNz8fzzz+O//uu/5BGszZs3w+12T+ucXn75ZfA8j9/85jfgOA4AsGnTJlgsFmzfvh1XX301AMBqteKZZ56BIAhYuHAh1q9fj/feew9f+tKXcPz4cfzxj3/E1q1bsW7dOgBAcXGx/Br33nsvvv3tb2PPnj1YuXIl4vE4XnzxRTz11FOTnldbWxtyc3Mn/NnnP/95CIKQ9lg0GpVHrwRBQE5ODgAgEong5ptvxqpVq/Cd73wn7Xfy8vLSRt4IIYTMPgqkCCGEnLUrr7wSzz33nPy9Xq+X/79ixYq0Y/fv349t27alBV6S5uZmhMNhxGIxrFq1Sn7cZrOhvLx8Wue0f/9+NDU1wWg0pj0eiUTSpt1VVlamBS8ulwtHjx4FABw6dAiCIGDt2rUTvobL5cL69evx29/+FitXrsQbb7yBSCSCf/zHf5z0vMLhMDQazYQ/+9nPfiYHbJJHH30UyWRy3LH33Xcf/H4/tm7dCp5Pn2Ci1WoRCoUmPQdCCCFnjwIpQgghZ02v16O0tHTSn40liiJuuOEG/OhHPxp3rMvlQmNj45Rek+M4MMbSHhu7tkkURSxfvhy///3vx/2u0+mU/69UKsc9r5Q+XKvVnvE8vvjFL+LOO+/Ez372M2zatAm33XYbdDrdpMc7HA45UDtVTk7OuHo0Go0YGRlJe+z73/8+3n77bezZs2dcoAgAw8PDaWUkhBAy+yiQIoQQck7V1NTgz3/+MwoLC6FQjL8NlZaWQqlUYvfu3fB4PAAAr9eL48ePp40MOZ1O9PT0yN83NjamjcLU1NTglVdeQVZW1ozWIwFAVVUVRFHE+++/P26kSHLddddBr9fjueeew1tvvYUdO3ac9jmXLVuG5557DowxecrhdPz5z3/Gd7/7Xbz11lsTrsOSRtyWLVs27ecmhBAydZRsghBCyDn14IMPYnh4GJ///Ofl7HLvvvsuNmzYgGQyCYPBgPvuuw9f+9rX8N5776G2thb33HPPuOlrn/nMZ/DMM8/gwIED2LdvH+6///600aU77rgDDocDN910E3bu3InW1la8//772LhxIzo7O6d0roWFhbj77ruxYcMGvP7662htbcX27dvxxz/+UT5GEATcc889eOyxx1BaWpo2JXEiV155JYLBII4dOzaNWkupra3FXXfdhUcffRSVlZXo7e1Fb28vhoeH5WN2794NtVp9xvMghBBydiiQIoQQck7l5uZi165dSCaTuOaaa7B48WJs3LgRZrNZDpaeeuoprFmzBjfeeCPWrVuHyy67DMuXL097np/+9KfIz8/HmjVrcPvtt+Nf/uVf0qbU6XQ67NixAx6PB7fccgsqKiqwYcMGhMPhaY1QPffcc/jc5z6HBx54AAsXLsSXvvQlBIPBtGPuu+8+xGIxbNiw4YzPZ7fbccstt0w45fBM9u3bh1AohO9///twuVzy1y233CIf89JLL+GOO+447fRCQgghZ49jp04wJ4QQQuahK664AkuXLsXPf/7zTJ/KOLt27cIVV1yBzs5OZGdnn/H4o0ePYt26dRMmwzgbAwMDWLhwIfbt2zfhhsiEEEJmD41IEUIIITMUjUbR1NSE//t//y9uvfXWKQVRQGrt1Y9//ONZT1He2tqKZ599loIoQgg5ByjZBCGEEDJDL730Eu677z4sXboUL7zwwrR+9+67757181m5ciVWrlw5689LCCFkPJraRwghhBBCCCHTRFP7CCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSa/n+Tg6GQYMqD2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHFCAYAAADPBC+gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7gkV30m/FZ17r45zNzJQRoJSaOEJIQCWSTbAgMOYLyA8a4NayzCencdP+O0rO39vF6Dl8/GCYwxeNckmxyMckBhokaa0eQ7c2duDt19O1XV90fVqT5dXeFUru573ueZZ253VzhVdeqE97zv7ycoiqKAg4ODg4ODg4ODg4ODg4ODg4ODwzPEuAvAwcHBwcHBwcHBwcHBwcHBwcHR6+AkGwcHBwcHBwcHBwcHBwcHBwcHh09wko2Dg4ODg4ODg4ODg4ODg4ODg8MnOMnGwcHBwcHBwcHBwcHBwcHBwcHhE5xk4+Dg4ODg4ODg4ODg4ODg4ODg8AlOsnFwcHBwcHBwcHBwcHBwcHBwcPgEJ9k4ODg4ODg4ODg4ODg4ODg4ODh8gpNsHBwcHBwcHBwcHBwcHBwcHBwcPsFJNg4ODg4ODg4ODg4ODg4ODg4ODp/gJBsHBwcHBwcHBwcHBwcHBwcHB4dP9BTJ9sADD+Dee+/F1q1bIQgCvvzlL3f8/p73vAeCIHT8e+lLXxpPYTk4ODg4ODg4ODg4ODg4ODg4Ngx6imSrVCq48cYb8YlPfMJymze84Q2YmZnR/33961+PsIQcHBwcHBwcHBwcHBwcHBwcHBsR6bgL4AZvfOMb8cY3vtF2m1wuh6mpqYhKxMHBwcHBwcHBwcHBwcHBwcHB0WMkGwt+8IMfYNOmTRgZGcErXvEK/MEf/AE2bdpkuX29Xke9Xtc/y7KMxcVFjI+PQxCEKIrMwcHBwcHBwcHBwcHBwcHBwZFAKIqCtbU1bN26FaJobwjtK5LtjW98I37yJ38Su3btwunTp/Fbv/VbePWrX42nnnoKuVzOdJ+Pfexj+J3f+Z2IS8rBwcHBwcHBwcHBwcHBwcHB0Ss4f/48tm/fbruNoCiKElF5AoUgCPjSl76EH//xH7fcZmZmBrt27cLnP/95vPWtbzXdxqhkW1lZwc6dO3H+/HkMDQ0FXexAMT09jdOnT2PTpk24+uqrMTs7i+effx4jIyO4/vrrQz//6dOnMT09ja1bt2L79u144oknIAgC7r777tDPzREvjh07hvn5ef3zLbfcgmKxGGOJkoUzZ87g/Pnz2LJlC6688sqO306ePImLFy8yv6eSJOGRRx4BANx5551IpVKhlJkjuTh8+DCWl5dx1VVXYWxsDI899ljH7+Pj41hYWMCePXscO/0goSgKHnroIQDA7bffjmw2ix88P4vf/scHcdNwA+97w0245ppr9O3r9XpXP0Hq92cfO4sT1Tzed8swbrhyB5rNJpaXl3H11VfbqtHd4Jbf/SauEmbwrpfuwhvueVXoavX3/vHnsV5bx4d+6h7cfvUO222fOXkJf/S5b6CQzeJv/us7Qy0XEyoV4M/+rPO7++4DSqV4yqPhs4+dwX//xvO4dzfwI1cWmer8Pz5xFn/wtefwo7tF/NiVeWzbtg179+4NtFy/+s+H8K+HZvCfXrcPP3eXeuxTp07hwoULzOcjfcP27duxZ88eXLx4ESdPnsTExETHe+QE0l6k02m0Wi39eCw4e/Yszp07BwC49dZbUSgUmM+bVFy4cAGnTp3C5OQktmzZgkOHDiGfz+O2226Lu2iJBhnHDA0N4cYbb4y7OByMWFxcxNGjRwEAxWIRt9xyS8wlSiZIW0eP0y9fvozjx49jdHQU+/fvt93/qaeeQrVaxf79+/Hss89CluXY2kzSVwCAKIq46667Ii+DVzzxxBOo1+soFouoVqvYvXs3duywHi8tLS3hyJEjjnX72WefxcLCAvbu3Ytt27Z1/HbgwAGsra0BAO6++25XY8HV1VXs2LEDy8vLGB4ett22r5RsRmzZsgW7du3CiRMnLLfJ5XKmKrehoaHEk2wDAwMolUoYHBzE0NAQ1tfXUSqVMDAwEEnZi8UiSqUSRkZGMDw8jJI2+E76fePwj1KphPX1df3zwMAABgYGYixRsmB8N2mMjY1hZWUFExMTTO+Koij6uzUwMIBMJhNKmTmSi1KphGazieHhYYyMjOj1gWB4eBi1Wi2ytp9AlmW9LMPDw8hkMmiIq0jlShgayqJUKnWUp1aroVQqQRRF/XtyjMGBEtJSFqlsHoODg2g2m2g2m4FdkywrUNJ5ZNIFDA6qxwybZMsXS2gpQDZfdLyGQqmMTK6AbD6XjD40lQKMY6OhodhJtoHBIYi5IrJ5xbKNNSKVK0HMFVEqpVAq5TE8PBz4PR4aGoKYW9Hq/pD+3fLyctd7YAXSb5DxZ6VSQalUQrHoXH+Mx2k2m8hms2g0Gkz3iKBUKunv9ODgYF8sni0tLaFUKmF4eFgfq+ZyCXnPEgxSF1jrL0cy0Gw29XfYbduxkZDL5VAqlTA6OqrfIzKPZqnzhUIBgiBgZGQEIyMjqNfrKBQKsdzv1dVV/ZkLgtBTz7xYLCKdTmN0dBSCICCfz9uWn9Rvp35tamoKtVrN9H4Ui0XIsgxA7eecbJ9mYBk/9jXJtrCwoKtJ+hFEhEgeNPk/KnGiJEkAgFQq1VHZFEXh8ez6HMY6Rn9uNpsQRXFDK66M7yaNqakpNBqNrpUVK9DHIJ0Cx8YCee6CIHQNBgRBiK29pd97Uq6lSgMKgEKme9Bi9l6Qv3PpFEQoqLekjmsKqj9rSO13JyWKkdwzck+aLef3VrJpMzjaELX7I2vVgqV+NCV1m5RWJb0MqJ2QTavHrFPPmpyHtQ4b3w/Sh5KxFivIcdyeH+jsY3rU6NIFs7Fqv1xbmODjjd4EXbd5PbdGo9EAAGSzWf07N+0DeT9SqRQymQzq9TqazWYIJXWG8Zn30jyclJ08B6d7SI+H7UCEH+Vyues3uk+VZTmUMQHQYyRbuVzGCy+8oH8+ffo0Dhw4gLGxMYyNjeGjH/0o3va2t2HLli04c+YMfv3Xfx0TExN4y1veEmOpw0NSSDbRMGHppZebwxuMdYw0eq1WC4899hgKhQJuvfXWOIqWCNiRbLlcDvv27XN1PFEUIcsyHzBtUNCTZkJAke/inDjS5yNlWKqqA9d8JmVJxpu+F2kRAlSSIiySjZw1nQpnQGVEShS0czuTJLJM7k2oRep5kHsquSLZ1P4prd3bMAbUOY1ka1Akm9s6TPpRUj7yv1uyw/iecZLNfKzKYQ/y/PulHmwUcJKNDYTM8Uqy0e0KcZjERbIZ0UvzcLckm3ERyQpE2VepVLqINLqfkyQJ6XQ4dFhPkWxPPvkkXvWqV+mfP/KRjwAA3v3ud+OTn/wkDh8+jM985jNYXl7Gli1b8KpXvQpf+MIXMDg4GFeRQ4XdhCUK0Cw+Dd6o9z+sJs/1eh2SJKFcLvdUIx8Wgrp+QrLxleWNCbMFFSPxRm8Xdbnosi1VG1AgIJ8RmUg2Qqjl0iJESGiERbK1ZAhQj5WJiGRzpWQjBMsGbzOdkNLrBfs+LY1kI489jH7JTMnmtg4nTcnWL/0NV7J5A3n+/F71LvizswZRspmFYPGiZAPiI9ns3EVJh1clmxPJls/nkUqlIEkSqtVqR0gjo5ItLPQUyfbKV77StuJ861vfirA08SMpSjajXZSj/2GlZKMbKxITxgmNRoNpu15C0AS4V0UDR3/ATOFiNtCIk2QjWKo0NbuoOyVbNp2CgBbqzXBINkJ+pMTo7LUp7dm0JBaSjdtFWSCK7u2iDU32FqaSLasRYmYkG2u7bXw//Lb7XMmmgp4Mc5KNHZxk601wJRsb7OyiTqCdJUlQsnGSrRuCIGBgYAArKysol8sdJFtUi0nRLOdyhIK4lWx2dlGO/oZVg06vDrB0NpcvX8YjjzyCixcvBlvAmMFJNo4gYTX5Jn/HHZONJsUWKbuoEVaxNARBQC4jQoSCRlgx2TQlWxwkW5PJLqr+L4CTbHYgajTZRb0gdtFUmHbRTLdd1K2SLGi7qBclWz9O0LmSzRs4ydb74M/OHLIs6+0CrWRjbR/oNjkJSjYjemmuEBbJBrTjslUqlY7zGe2iYYGTbD2MOJVsjUZDzy6ZyWQ4ybbBwKpkcwJp+MwCU/YyOMnGESSM5BQ9uEhCTDa6ni9rdtFC1lrJZpa8IZsWIQiKHpPNuI9fEPIjFWGiiJTG6jRbzoM4SWEL5rvR4S3xQWdMtlDsoiliF20/a792Ua/vNbeLdoIm2Qj4ONUZnGTrTdDPq1/e4aBBVGyCIHTE42Jtc2liRhCE2Em2flKytVot23rLmvgAME9+YDw2V7JxmMJqIh/Fy/XCCy+g1WphYGCgKzVuL73cHN4QlJKtXwdxQZNsbm1HHP0F46SZrldJiMlGl2dRs4uyxmQjn0NPfNBSEx/Eo2Rjie9CnnGoRep5pHS7qBslm3ZvI1ay+SXZ4lCy9aNdlCvZvIEnPuh98GdnDjrpgVm2c1YlG2lTOMnmDXQ5aUVhq9Vy3IelHy8WiwCgi4KAbuUaJ9k4TGG16hk2FhYWMDs7CwC4+uqr9QkRH7xsHASlZCPH6TfyKCwlG3+3NibslGxxkmzGcimKgmXNLuomJptKsqUgQkHdYBcNCg1Jit4uqqmbWgxKNkIacR2bPUjiAy9KtjDtokTJ1pC8k2xGG4xfJZuXes5JNg6Cfl0E7Xf0o+U7aNglPQDYlWykrY6bZDOiV+ZU9H2mY9uR52MGN3ZRolK0S3TASTYOU8RhF5UkCSdOnAAAbN++3TRzK2/U+x/kGRP7hZmSza6RJOjXQRy3i3IECePKnZFkM24XV7nW6i20ZEW1i7om2UQIUNBoyaEQh3VNyZYWo6Ox0iTxAcN7yxMfsMGY+IAFhGQTBfYVcLfQs4s2k5P4gNtFVdCLATy0CTv6dXzW7zCSbPz5dYNWotFwk/iA3j9ukq0flGysikA3JJtZhm6jko3HZOMwRRyJD86dO4darYZ8Po89e/Z0/MYnBxsHxsm1XyVbr3QIrOAkG0eQYI3JFjWM9Xy5or7z+bSIdKp7eOFEsqlKtj7KLuoiJpscQ3/eiyBKNuLAdaVk06pkGPc4l1YH87SSzS3JZbdw6iV5Ac8u2okwFLL9DE6ycfQrrIgatzHZzJRscbwvnGQzByHZ6GywXMnGwYQ4lGwrKysAgJ07d1quAPTKy83hHVZKNrckmxk51w/gJBtHUKAn2FZKtqTEZFvSrKJDhYxpeZztoiHHZBOizi6qto8thphsRMkmchLAFiQmm5t6QWKykRFLKDHZiJLNR+IDq+yibo5Bb8tjsqmg2x2uZGMHJ9l6E71KuEQJu0zngLuYbAB7PLGo0CtzBT8kG8s4juYpCDHKSTYOJsShZCPnNPOxc5Jt48A4GSCf3SY+4Eo2NnCSjQMwj7+ZJJJtUSfZsqblsXsvchnVLtqUZEiyEl7igwjVLETN12KwI7TtoqEWqedB7KJEMOZGyRamXZSQbGEkPgDctf2cZLMGJ9nY0a/js40GPm7shlXwfK9KNlEU9b/jINl6lVg1lpOFZHOT+IAeH5Pnwu2iHEyIQ8lmJ9PkJNvGQVBKNp74gA08u+jGBf3Mk65kW/ahZMumRJ0EqTblUEg2IFq7KCHZmpLzeyvzmGxM0BMfgJ0AaJNs6ucw7nHWhmTzGpPNLyHk1y7aL/2NVbvDx6r26Jfnv9HQq4RLlPBrFzWL6RZngrJefeZGlTFt77SCG7so0B2XjSvZOJgQB8lmRx5wkm3jwEiyeVWy9asdISwlW7/dJw5nGOX0QPISH5Byra6rK4UD+bRpeexINlEUkNNimK03pOBJNknWsouK0ZFsZGWbiWRjt0BsZJDqznBLdegEq36MEBMftLpJcbd2UXpM52WBhSvZOmHWhhq/5+hGv47PNhr48+uGE1HjVskGJGsOnIQysMCKxwiSZDNmGDUq1zjJxmGKOOyiXMnGAVgP4unGqtFoONaFfrUjcLsoR1Cgn3nSEx+U6yrJVsqmTbd3ioOST6v/VxrBT/QbVHbRRNpFSZvKOTZb6Eo2rVqw1A9CfIlimHZRLfFBAHZRvxM3TrKZgyc+cAdOsvUmelXVFCXsFvxYYKZki3MObDxnr8wVrEIk2N1DrmTjiARJU7IZt+HoX7Ao2RRFcfS688QHbOAk28aFWdDupMRkM5JmhGQr5uztolYWDUKyrTdaIWQXVduiSO2imrpJYnhvZZ74gAkk8YHsol6oxJeCFLpJ6qBgpmTzG5MN8Nb2e+1/FKUzi2m/9Dc88YE30CQbv1e9A06yOSPo7KI0kkCy9coz96NkY+3fjCQbj8nGwYQ4lWx2dlGO/geLkg1wtoxyJRsbOMm2cWHW5iYtJhspT7lGlGydsRqN21utHhM1UIWKyRYUVCVbtNlFM7pd1Pm5SDH0570IQrKRW8qqZBOgIJXqJqmDQhCJD8ze9SjtosZz9Fu/TMBdF87g96Z/wJ9lN8KIyZakdiUJZWCBsc9j6bPcJD4AuJKNwyPiVLJxu+jGhpWSzS3J1u9KtqDASbaNC7M2N6kx2SrELuohJhvQJioq9RBispHsohH6MUn7yBKTjVwmJ9nsoSvZZPZ60WjJENG2moapZGtIclc9d5v4wOz99vIeuN23V9UQTohjrNzr2CiEaz+iX9/jIOEUusJPTLY40G920TASH1hlF+UkG4cprCYsPPEBR9iwWik3Nl5cycazi3L4g5OSLUkx2dYIyZbLMm1PoJNsGU0RF0Lig7qW+ECMUsmmxWSTXCQ+4DHZ7EHstG5jsglQkA5RyUZINnI+wDvJFbRddKMr2eIYK/c6+rUubETwcWM3nNRQvaZk61Vi1csCSFAx2TKZTMf3YYCTbD0Mq8oZJnjiAw76+Vop2UhdYFWy9VudCcsu2m/3icMZLEq2uO2iRiVbMefNLkqIikoY2UU14iOOxAeSzJD4QOZ2URYY7aIsqLck1S6qxeQK0y4KqGo2IFi7qNUxms0mzp07h3q9rn8XlF20XyfnfKzqDE6y9S56lXCJEk52USfw7KLBwIuSjdx71mdllV2UfM+VbBymSFrigyQ1MBzhgX6+Vkq2XC4HQM0wynKsfhvM85hsHEHBrC4lJfGBsWwk8cGgS7sogR6TrR584gPaLhqZkk27HonB2kgC+fPEB/YwJj5gqR/0sw/DKgoA2RSlZGu6J9nM+lX6b6u2f3p6GqdOncKFCxe6jsVjsqngdlH36Ne6sBHBn103WGKysaipkqpk65W5glXbbFX+Wq2GWq0GACiVSkzncFKycZKNwxRBT+RZwJVsHCxKtnw+D4Ar2TjJxuEXZm1uUpVsenbRrLeYbETJtlaXA7+megyJD4iSreUiuyhXstnDrV1UURTUWzJE7dmHRbIJgtARl418B7C12/R1uFGyVSoVAO14M2bH2egkmxH8HXMGV0P1Lvizc4ZTTDYnJE3J1qvP3Lgg5LQwtLCwAAAYHh7WSTInWGUX5SQbhy2iXp2zGgTabcfRfzAj2ayUbKwx2fqVPOIkG4df2MVpAjpXUmMn2bTsogP5jGl5HGOy6YkPwlGyAdAtg1HATUw2nl2UDW4THzQ1X6kQMskGALlUZ4ZR+lmyxvgx7ufU9lerVcvfuV1UBVeyucdGIVw3Aviz64ZVTDbWNjvpSrZeeeZulWyEZBsfH2c+h5WSzWgjDQOcZOthRK1koyu9nZKNo79hZmvxqmTjiQ/YwEm2jQunxAe0ki1qGMtW1hMfpE23dybZ1MHQWqPVtY9fxGEXTadJTDZ2JRu3i9qDZAglMdmc6ke9pSkOhPDj8RElm35OF5l/reyidpMORVGwvr7esb/VcVjQj8SK2eIwJ9mc0Y91YaOgVwmXKMESk83uviVNyWZEr8wVrGKymd3DVquFpaUlAMDExATzOYzZRbldlIMJSVOyJamB4QgPVjHZFEXRGytWJRttF+2nesNJNo6gYLbimsSYbJKsoNpQB56DOXMlm5NFgyjZyrUQEh9IMgAl0sQHWWKnZ4jSr8dk4+lFbUFeA4mxXuiqsiiUbGnvSjar3+0mHevr613kGreLOoOPVZ3Bxxq9i16NzxUlWDJU9qKSrdfaNiuSzazOLi0tQVEUFAoFFAoF5nNwuyiHJ1hN5DnJxhEm6HpHN4h0Q0WUbKyJD4x/9zqCJtncxPbh6C+4UbLFRbKJoogKpT4rebWLZrSYbI1W4ERYoyVDEJKrZGtnFw21SD2PduID9bNTnSfx0TJiZ58VBrI+SDb6PWe1ixIVG/271SIYC/rRLmo3bu2nMUfQ2CiE60YAf3bdCCMmG0GcJJvbNj9uuBEL0VZRN2M4oy3UqGTjdlEOU1hVzrBgNQgk4CTbxgBd7+hnTg/KWJRsRvVaP9WbsJRs/XSPONhgpmRLGskmCAIqmlU0kxJ0RY+xTE5xUMh+ayEo2eotKfLEBxmyguoi8D23i9pDt4syxmQjmT5J3Qrz2RO7c92EZHMirJzeDbP3gMRjs/qdZxc1h909lWUZhw8f7sjWuhHBLYe9C/7snNFvMdkIes31wqpkUxTFUzw2gE3JFtYz4yRbDyMuu6jVIDUJDQxH+LBSstErO9lsFoDamFk19v0saY/CLrq2toa1tbVAjs+RXDgp2ZKS+IAkPSjl0pZqIdaYbORY9D5+QcdkiwoZNzHZOMnGBGKnVRS2MANEyZZLdQ7iw4CZko11XGT1bthNmmiSzUzJxu2i7mOyra6uYmFhAdPT09EUMKHox7qwUcGfXTf82kWTFpOt35RsxvZndXUVzWYT6XQaw8PDrs7hlPiALkfQ4CRbD8NuIh9GhWFplMI6N0dy4KRkE0UR6XRa/81KzdbPg7iwSTZZlnHgwAEcOHCgr8hJjm44KdmslMVRoINk05RsA7m05Wqw03tBSApJAdZb3aSBHxB1UZRKtqyuZHO+Bp5dlA1EyaZAAEvNIEq2bIQkG0l8ALBPvJzsS6xKtiDtov3QJ9uRbHbb98O1+0E/1oWNAq5kc4Zd4gOnNpue75gp2eJAv5BsVuUnKraxsTHXfbgx8YFRyQaEJ/LgJFsPI2q7KFeycQBsSjZBEPRVAiuSrZ8HAmGTbM1mE5Ik2SoFOfoDZnWJHpC4UcuEWTY/JBv5nBYFpEQBCgQ9iUJgSjZJjtwums1oiQ9Y7KI8uygT6MQQMpOSTa1H2XT4JFtOJ9naz9utks1YPlYlmxk55LZd6Gd1OQ27+8JCslUqFRw+fLivleScZOsf8GfXDatFDRpW941+N5KiZCNIil2U1YLJqmRbWVkBoJJsbkFINlImMyVbWHHZOMnWwwh6Iu8EJyUbX4HfGHBSspEGjVhGWZVscXcKQSIKks14Lo7+hFm7S94x8n8SSLYKRbKZbWPcngY9wMqlRCgAKvWASTbKLhpdTDbtvWW4Bs3VyBMfOIDYfRWollEn6DHZNMFBmM/eaBelz+fVLmo16Wg2mx39gNEu6ibpgvEYpF3ph77FrV3UzHZrxOzsLBYWFnD58uUgi5oocJKtd7FRyHI/sFrUAJz7CPp+JiUmW5KUbLIs44knnsCBAwcct2VVshmTFbiBkUyj+7mwScm08yYcSYWdkk1RlMAHk1zJxgF0rgBZKdmAdmNolWGUK9nYYZxoEdkz/R1Hf8KsLhWLRUxOTmJwcNB02zjKtqbFURvIe1eyASpREYqSrSUjhYjtoul24gOnPllRCJnKWTY7pDrqlnP9qJPsohHYRe2UbE7ttJWywmrSQavYAKDelPAn334eDz0/g7fvqmFqpOi6ntOTD0mS+qpPpuFXyWaM7dOP6OfxWb+DPztn2IlGnOay5P03hurgJJuKRqOBWq2GWq3muK0VySYbxkys4arMQJ6Toigd81FRFJFKpSDLMifZOLrhRLKFfT4jOMm2McCqZCMk20ZTspmtnPsF3bEoisKVbBsIZpNvQRBw3XXXdXyOA3TZiJKtZLCL0mAh2XKaxbJcb6GI4Op3vSWjBAXpGEg2QVHjsqVT1ueVuF2UCfQYm8kuqhFeWTGKmGypjnPS5wvaLrq+vg5AfXeev7SK7504j8fLY8iihQfqq/jp23d7TnyQTqfRaDT6ok+264/9kmz93PdyJVv/gD+7bvgh2czisbHsFwWSYBelz+28uMgW9sovyZZKpdBqtTrmTqIo6sfjdlGOLiTVLsob9P4GPRmgG3Rj/XAi2fp1tS1skk2W5Q4lW7/cNw5z2NkaCOK2i4qiqMdkG/QRkw1Q1UAKBJRDsIsCQEoQI4zJpj4zQVDQlOyvQ9bvTejF6ml0JD5gsYtqzz0jhh+7NpvyH5ONNfEBUbKdWm7h64dnsLrexLaRAjIpAdPL67i4vN6xL8t71M92UVbFCfnObpLKYintdXCSrXfRr2ProEC3h2b9AauSzSxpgt1+YSJJSjYjyWYHKyWb8Th+SDag3acRJRuJZxw2KclJth6FXZwJ4+9Bn5Mr2TY2rJRspOPxqmTrl3rjRLI1WjK+dmgG3zg8g0dOzuPUXNnxmHYkWz+oDTiswRKgN26STRAErFFKNqsyOWVQBAjJBlQawa4sqokPoo7JpinZtPPbgZBsXMlmj46YbGBXskViF80EH5PNahJASLYXFtX+9bqtQ/juR16BH7t+CwDg0VOLvuyiLGXuVdjdFxYCzY+SjZXwjBv9Oj7biODPrhP0/bDrD3pJydYvJBvdNpuRbF7HbmYkG/09t4tydCAMtYwTWJlk3qD3N+hGka4LhPgh3zklPrAKbNnrcHo3P/mDk/if3z3e8d3/+Mkb8RO3bLc8Jh1TQJZlbhfdQOgFJVtQiQ8AEpMNWKtLQD6Ya5JkBZKsQBCjzS5KEh8IUNB0Itm4XZQJgiCAhK1jU7Jp2UW11ydMki2v2UVrrTZB7DYmG6s6gpBsC3X1970TRRSyKbzrjl34zaPP4IW5Cp6/1M5+6WTbocsQ9sQjSnhVstm1O36UbAcPHkSj0cCtt94aal30C06y9S64ks0eVtlBCXpRyUZgtijTarU6nEdhIyiSzWyB1q+SjcydyGeuZOMwBVeyccQFMyUb0E2ycbto97tSb0n4+8fOAACu2TKEzUM5AMD9x+ccj0t3BtwuunHgZgUvTpKtXOsk2cz6AyvCsFPJlgIg6PbTIK6JKIuIki0qpFIp/XyOJBsDmcqhgtxTNzHZtFB/od7fYlY9yTqlwnQbk41FyaYoih6T7VJF3W9Qe+92jRexb1JNiPKXD57uOr4d6JhsrPskHWbXwEKyWf0O+FOyLS8vo1qtWiaESgr64dlzqODPshN0W2pnF3Xa36hkI0iSkq3ZbOLRRx/FoUOHIiuLG5LNOL6l55Vmx/Haf5M+zahk4zHZOEzhpJYJ4yVnjcnG0d9wUrIZ7aJWg8mNkPjAiG8cvoT5cgNTQ3l89QN34Y9+4kYAwNELK47HpTsebhfdOHCjZIsaHSSbFkNtIN9JslltbwViF12rBReTjbbvRalkEwQBKUGACAXNlhPJov7PlWzOEAWBOSYbefbpCGKyFTSSrdpot89BxWSj2/n19XUoigJRFDG9RmIhti2et+4ehQLga4dnsFxtdBy/Wq1icXHRtAz9bBd1q2Sz+h3wrmSjtw9rUhcUuJKtd9GvLpGgQBM7/R6TrVarQZIklMvOYWmCLgvgXPfM+j3jNRAHD/2bWxjtouRz2KptTrL1KJyUbGGekyvZNjZYlWxk5YAmhMyOY/W5V2FHgH/60TMAgHfevhOZlIj9W4cAAKfmK1irmSv+COiOh9tFNw5YiKkk2EXLdbVO2sVkY7GLqtlFg1WyEcugKCgQhehISXUhQj2XY0w2mdyb0IvV89DjsinO9cOY+CAKJVu10W0XZV3Rt8ouSu9PVGypbA6rGhk9QJFsm4by2D1egqwAp+YqHfsfPXoUhw4d0o9hVoZ+Itnc2kVZVBhBEGRJJz44yda76NexdVBwWrj0m100ThiVz3FkQvZjFwW6r4E1hp4djHZRo5KNk2wcHbCquGFOtpxsS5xk2xgwNoqkkbJSslmRbP06iLMiEg5NL+OZc8vIpkS84/adAIDxgRy2DucBAM9eXLU9LreLbkywrOAlgWSraEq2wUBINi0mG4Ii2dpqJqvV6zBAlGwCFDRa9hNziQz8EzBQTzpIhlEZznVDt4tGEJPNzC4aRuKDWq2mnkdOQYaAXFrUEzuQ4+wcL0EBMF+udxyPrOSbhXHox5hsduBKNmv06/hsIyEJQfCTCFZXVj8o2chcIcq23C/JZryPTjH0WGClZON2UQ5TWKmJojin14aJoz9gFajS2PEQJZssy6YNWL9K2q0mS59+5CwA4Edv2IKJgZz+/XXbhgEARzySbP1y3zjMEbeSbW1tDSsr5nZmeuGFKM+IXZTANcmmBY9fqwUYk03qzDAZKclGYrI5kGzt/pWTbE4QRUHNLsqkZFPve1obtoRrF1XrfsXELurFNkN/NiNoVmsSFKhxEBWlMz7d1HABgIDZcqddlJTDrDxcyRYdyZb0fpuTbL0LK8KFQ4XfJH69lF2UVrJFVa6glWxOMfRYYJVdlCvZOEzhZkAW9jmjODdHcsCqZKM7IDM1W78O4szek4VyHf9y6CIA4F137OrY/npCsjnEZaM7A24X3TiIM/GBoig4ePAgDh48aEuUi6Kok2ylrPuYbPTnvLY/sZ8GQrLpaibRsmxhQBRFPRNmw2Gl1G+K+o2Etl2UPfFBOgolW8Z74gMnuyjdX5K/l6otAAIG8xn9HOQ8WzSF9GK5AUluf29HEJklPuj1/sWs/HbvGAvJFoQFK+lKNm457H3wOZk5WF1ZVkiiko3Ayi4KRFcuLyQbfS+NC1NOMfRYQOaj5H7wmGwctmBRNwQNv+w/R3/ASslmjMkmCIJtXLZ+VbIR0O/mlw9cRKMl44btw7h552jHdvu3qXHZ3JBs3C66ceCkIAbC6wcURUGr1XJUo9LZRQfz/uyieY2oWA0h8UGcSrZa04Fk0y6T20WdQRIfyAxVox6DXdRLTDYvSrbF9RZktDP6yrKsbzdSzGK4kIGkKFio1HXCzMyCYywDvUDWL/1LkDHZuJKNI8ngSjZ7+HVl9aKSDYiuzWFZqDD+bpf4wG/SA6C9cGQ8B1eycZgiyUo2jv6Gk5KNbgjt4rL16yDO7D351pFLAIAfv2lb1/b7t6pKtpNz5Y6sdEaQ+2rM1pr0wTqHP7AonMJq950mhfogSAHWNRLJb+KDvB6TzfpdcIs47aKENGu27N9TmRAcvB91RErrYtwo2VIRJD4ohECy2SnZFitNKBB0izZ9PwRBwLVbhqBAwNyaSrI5qRrMJo+93i8HbReliUw/JFvSlWz9Oj7bSAibQOhVbKSYbHGQbGZ9lRXs2mfjYoafvttIiPKYbBy2cCK8wnjJ/TZMHP0BJyUb3Zi5UbL1S70x3p/5ch0/PLsIAHjddZu7tt80lMfkYA6yAhybsY7LRo5nJNn65b5xmMOtki3I+uA04STfrVMqrVIuZboNYE0Y0p9JXKtaU9Ztbn6vqd7stAxGSrJpjBArySbwmGyOSAlqTDYmJZtGsKaE8NX/Ra3u0u8Da0w2q/GV2f7k74UqUY9220UFQcC1W4fU5AcayeY0+elHks0Mfkk2u99ZkXTiox/j820UcCWbPfzOZZOoZCPoVbto2Eo247Mix+J2UQ5TsCgCojqn8dy8Qe9vWCnZCOjPhGSzy2Rm9blXYbw/3332MhRFjb22fbRouk87Lps1yWalZOPvW3/DbayusEg2OyXbukZiZVOinrjAjZKNRj6jqXLQDlrvFyQeWjoGAitNyHGHa5FlMjEKvUg9D5IcQoEzAdsmWMNXsrXtou1FJdaJrpOSzexdnK80AAgYKmQ7vifHUZVs0JVsTpMfY0w2lnInHUEr2fxMWntRycaJmt4Fn5OZg3VMxZVs3hBW4oMwSDZuF+UwhVXFDfMl50o2DsBayUawEZVsCwsLegZG4/351lHVKvp6ExUbwf6tznHZuF10Y8Ktki2Mcxv/Nn5HSDY6s6hd4gOrwan6m6DFmBL0eFp+24Z24oNo7aIAdCUbM8nG7aKOUK2fAliqBbEKk14pCrtorSnrzzMMuyiZOM2V1cUrOyUbIGCuXIcsy8xKNvoe9Xr/Ynffo1ayOS1aJAmkrFzJ1nvgSjZ7OI2pnMYHSVSysZBsvaJkM97HMEg2bhflsAWLIiDqc3KSbWPAjZLNTUy2pA86rdBsNnHkyBEcOXIEQOf9Was18fALCwCA1183ZXmM6zQl22EGkq1er3d8z9+3/gZLWx+FXdROyVZpkHhs7YGM15hsgiCglEtBQdti6dsuSjJMRhyTDWiTZk3JwS4ITrKxIiWoBJvMYCWua9ZNEsctXLtou/4TyyjruMjJSm18F+stCZWGus9wMaN/T79jV0wOQBRUsvri8jqzkk0Uxb6boHtJfGDW5m00JRsn2XoPnGSzR1gx2QiSahftdSWbn76bK9k4XMFpshLGSx4WyZb0wQZHJ5xIto2mZKvXVStOs9nsmuT84Pk5NCQZeydKuHLTgOUxiF30xGzZMgsht4tuTLCs4sUVk42UbV0j2QZyma4yeSPZ0lAg6CqkoJRsUcdkA9rPrelkfSUTI06yOUK3i7pRsglk3/CGvfl0u+8jyQ/cKtmsFq2M5M9arQUZAoYLGeQy3YkPACCbFjExmAMAHL+8Zksg0XZSURT7ZtHUTilht73xb4KNFpMtzPeFI1z0yzscNPoxJpsZsaooSk9mFzXGIQ0juyh5djwmG4cp4lCysVZ0Nw3M6uoqHnroIZw5c8ZP0TgihJNdlDUmW7+QbDSBaCTZvkmsovunbN/VLcN5jJWykGQFH/r8Abztk4/gbZ98BAvltmqN20U3JuJUstGwV7JpdlFD0gNjeZhJNi2AfDMokk3qjMsVZb+ZIiSbg5JNkqPv03sVJPGBojjXDUKwioKz7dovRFFAQcuOu24g2bxkWaM/G5VsZY1k2zKcN92GfDc1lAcAHL+0ZksQ0Z9pkq0f+5e4Eh9wJRtHFOBKNns4KaP8ZheNA1aLNHHbRb30e8Z6yxIyxQlcycbhCklWsrlBuVyGoihYW1vzVTaO6ODGLmqnZOsXuyh9bZIk6fenJSv4wXOzAOytooB6L/drarZvHr2Ep84u4amzS/j2s5c7tgH6h5zkYIPdgNBpkugXrHbRapMo2axjshnjRdGwsos2Wp2DLK8wBr+PlmTT7KJOMdmUzu05rEGUbDJL4oNWdEo2gEp+0Gx1nM+rXdSoTADUfmat3oICdYGGnigY37Gp4QIA4MSsvZKN/txPdlGWmD9m21v9HpRdNOnjHU6y9T7CJhB6FU6kTS8q2QiM8TR70S4ahpItrphsaedNOJKIOEi2MBIfGJlqjuTDOBmwS3xgF5OtX8giK5Lt7GIVlYaEqaE8btAINDv859ddjc2DOWwZzuPIxVV8/7lZPH+pTT4nMf4DR/gwGxCu1pp408cfwpWbBvCpd90ae+KDSl0j2fL2dlHjb2afBaGd+KCpDXyCU7KZnz9M6Eq2FtuKrshJNkeo8dUYEx/oSjb1c9jPvpBNAZXg7KJ0eWVZRiqV0pRsTcgQsWWkAEFY149hSbJdtleyGTOTJmHCGATs2h8vSrWg7KJJVrLR9ahfyNaNBP7s7OHXldUL2UXJd3Er2byQbMZ6GwTJZiUG4XZRDlPEYRdlVbJ5eZF5J9A7CFrJ1uurbVYk28XlGgDgtj1jTBPn67cP449/8kZ85HVX40eu3wIAeO7Sqv47S6wejv6DmcLlgeNzOLNQxXePzeIHx+c6fo9FyabHZLNOfGBmZTP7LIoiSpoiriEFcy3tmGyi6fnDBMku2nSYVPPsouxo20VZlGwSAAUpdE9CwgBRshntol4mG0D3pAmgYrIpArZSdlFayUawZUQl2S6v1rBSaYcfsFKyEYKt3+yiXpTATko2t+gVJRtdTq5k6130C1EeNFgFI077J0nJZkWyGcPZRIGwEh/46bsFQeh4XkYlGyfZODrAlWwcccHYmBtVKPRnlphsvT6Io6+NJtlmVtUJzYumBl0fk+zz3KU1S4VDNpsF0Lv3jYMNZs//kZML+t//67snoChK6CSbrZKtYW0XdUuyCYKAoh6TLZj+Ic7EB4TYaznEZFN4dlFmiKJKsskM1aLRkiGgbcMNm2QraHXXqGRzGsQ7ZRelt5FlGeU6iclWMLWUkv3ymRSGCxkIUHByrq2MtlKyGWPV9Hr/ErRddCPEZKOvsdfHZxsRXMlmj7BjskV9v63GVnHZRZ3aULNt7drnoJKw0CSbsZ8Lqz3mJFuPol+UbJxk6z3YKdnogMkAm5Kt1wdxVkq2GU3Jds0W9yTblZsGIArAcrWJ2TWVrDN2MMSK26v3jcMZkiSZDjAepUi2A+eX8eCJ+ViVbIRkK+W6I1AYB0qAcxIHoogLOvFBHPHOUlowMK5kCw5psV3XnZVsMgQokakYSyQmW8NdTDY7u6jx3ZYkCWu1FhSGxAeCIGgkGzC7uq7/bqVkMy6e9WP/EldMNhpJVrIZ4/MB/VkP+hWcZLOHVVtL4NQ+GAUCLPtFBUEQTGN0Ar1nFzUq2fz23XSGUTMlWxj3h5NsPYo4lWxOFZ036P0NY92j64Ox0yGNmizLXYNKY0fldtD5/PPP49ChQ7HXN7Psoi1Z1smxF00NuT5mPpPC7okSAFXNBlgr2ZI8WOfwB5IQJpvN6qTqzMo6Ts9XIArAT926HQDwv753Qt8nKiUbPdgs2yjZzPZ3TnygHqcekJKtriVmSEcUl4tGOyab/TXI+sCfk2xOUIlIASy1oqGRbFEp2YK2iwLdE4EOJdtIwXSiQPfP5H1aXGvbRc3eZ/pcSZgwBgE7pYQZwozJ1mtKNnrC3uv1YCOCPztz+HFl0e9tEpVsdDmMDqI47KJeFNxG9bcTKcoKMyUb/R0n2Th0OKnKwqgsfth/p2PyTqB34KRko0GvHBjVbH6UbIqiYGZmBouLi2g0Gi5KHzzMlGxLlSZaCjCUT2PLcN7TcYll9HktLpvxXed20f4HIdmGhob0509UbNdvH8GvvO5q5NIinjq7hLOL65bH8QonJRtBtc5uFzVayultyd/kOMTmGbSSLQ6SreWkZOMkGzNSul3UXskmyQpasgJR28es7gUNK7uoUx22W8Skj6EoCmpNCU1JNlWyWZFsAhQsVmpd5zN+NpJsvb6IY3bfk2AXTfJ9pcf6/UK2biQY24Ak17U44CfxgZnKkyAJ7wrdxxnnXL2mZAvTLmpUstHnCRI9RbI98MADuPfee7F161YIgoAvf/nLHb8rioKPfvSj2Lp1KwqFAl75ylfi6NGj8RQ2ZDgp2aI8ZxDn5h1478BOyWbW6VjFZfOjZAsqw1cQMIvJNqcpBq7ZMuT5vbh6s6qAs1KyRWUXlSQJ9XrdeUOOwLG6qhKsQ0NtNSSJx3bH3nFsGsrjHS/ZCQB4TPs+KiUb/Q6u6dlF2Ug2I6xisjUCU7LFGJONJD5wyC5K4otxu6gzUrpd1H47QtISJVvYKjYAKGY0JVszmOyi9HdEEb5WUydPw8Uc8pmUbeIDQRB0C+typb0gZfU+91tMNoKgYrIFZRftBSWbWdINjt5Bv73DQYE1JpsZ6HhsUTrJ7GB0CZDnbiVsCBt+STYjORxmTDb6vGG0yT1FslUqFdx44434xCc+Yfr7H/3RH+FP/uRP8IlPfAI//OEPMTU1hde+9rW6GqCfEKddlCvZNjbslGxGuyhgHZfNWJ/c1IE40lJbwUzJNl+uQ4FKsnnF1bqSLV676KFDh/DYY4/FrhjciDCSbIqi6Eq2O68YBwD8/N17AABnF6uoNlqhvQ9Wdm8AWKur74BdTDY3JFtJi8kWFMlGCI9MKgYlW4pNyaaTLJxkc4QotEk2u7phJNmieO4FQ0w2VjUJy/tBAlmv1ZoABEwNqSppsz6UXgQbyKUhAFiuOmcX3Uh20biVbEm9t3Rd6Jd6sJFgJOz5s+uEH1eWVWZRs+NHhSTbRZOqZKP7Oa8hi1jQUyTbG9/4Rvz+7/8+3vrWt3b9pigK/vRP/xS/8Ru/gbe+9a3Yv38/Pv3pT6NareJzn/tcDKUNF06qsjjOyUm2jQE3SjbAmmQzKtm8kmxxw4xkWyjXAQieMosSkH1PzJbRkuSOe5tOpyMbQK2vr6sWpVrNeWOOwFCv13UF4eCgWhfOLVZxYXkdmZSAW3ePAgB2jBWxf9sQZACn5iqhKdnsSLaKpmQbZLSLGhG2XbSmx2SLnmQjAfebjCRLHMkZeg3ELupUL+ot9bmnBEAUwo/HBrRjshG7KGs7baeuoI8hyzLWtHhsW0cLHfs42UVpks1JybYRrGZRK9mMx07quDdMku2LT0/jS89MB3KsXoOiKDh8+DCOHz8eyfk4QWqOIGKyme2bhPudBLuoUxtqti1L4oOgSDajCtF4viDRUySbHU6fPo1Lly7hda97nf5dLpfDK17xCjzyyCOW+9Xrdayurnb86wX0i5KNgHcCvQO3SjZia3Qi2dw0cElXss2VG1AU4EU+lGw7x4ooZFJotGScWah2kWxRdeicCI8HpC8aGBjQ3xGiYrt5x6huqQSA1107BUUBTs2VAy2D3WCJ/lzWlGxmdlHj9mxKNvU4tcBINrL6HJ+STZKcAgBHv3DWqyCJD2QHJVtdqz+5tNBhowkTfhMfsNhFV9ebkAFsHy12/W5FsgHAarXRpQ4g6Fe7qFslm5vEB1bbsCKpBCZN+AbZHq1Um/iV/3MQH/mng5gvb7wQFLVaDQsLC7h48WKo7xVXstmD1S7qVskWV99tZRftJSUb3e8Z73/Q2UWNfSz5vOHtona4dOkSAGDz5s0d32/evFn/zQwf+9jHMDw8rP/bsWNHqOUMCv2mZOPoHQSlZPOT+CApJJsxa6okSViqNFSrkCDgqs0Dno8tiu39n7+01nFvM5lMZEoDq0kZR7iwjcemWUUJXn/dFAABZxerKNc6B1Z+wKJkEwRBzy5aygajZCPHaThk5GRFTVM0ZWJIfJDR7aIOSjZwJRsrUiLUxAewVwORhBe5CMlVr4kPWN4PRVEgSZJKsikCdowVu343O08pm4IAleitWxDX/W4XpWFXD+zaPKB7IuZnvJskRT4NeuIbZD04s1DRiHHgwLll38frNRgXZMMCJ9ns0W9KNiu7aBJisnkJkxC2ks1IkHIlmwuYrZ7bdai/9mu/hpWVFf3f+fPnwy5iIIhTyeY0UOV20f6GnZLNjmTrx8QHZitFZxdUNdHkYL5DbeQFV1MZRun3Lkq7KH9H44FZPLZHDPHYCK7aPIDRUhaSrOCxUwuBlYFFyaagrRQb9Jj4gAYdk60uBaNkI6qiVCyJD9RrcSLZSJPGY7I5gzXxAUl4kUt3qrPChNEuyroYwmIXJYs6K+tNKBCw04ZkoxfB0ikRQ/kUBEFBRVOdbpTsogRhxGSz2sYKVsRm0hCWXfTcYlX/+5nzS76P12ugSQ8jARIGOMlmDjvVsNl2NFiUbBvZLmpc6PGyuGTse1iflxPMMorS33OSzQZTU1MA0KVam52d7VK30cjlchgaGur41wtwmrCE8TI5VXRuF90YsFOyeUl80Msx2YzXJEkSzsyrA8ntWrwcP7h6qp1hNG67aFInBP0IWZb1hD2kT3rs1CLmy3UUsynctHOkY3tBEHRr8oPHZwMrB4uSrUm9ikElPiAx2eot2VKd4wZEvZOOQclGYrI5k2yKtj0n2ZwgCp0x2azqB1GyZbWmM1K7aLPVcU4/dlG6rZdlGas1NSYbIdnMVuKN/fNYKQMRim7t3mhKtqBINj9KNqdjJQVRkGwHzi/7Pl6vISqSzVjn+ditE6xKNjMkWclmFD7EYRd1uwhhp2Qzzj24ki1G7NmzB1NTU/jOd76jf9doNHD//ffjzjvvjLFk4cBJyRblOf2cm6tkeg9ulWysMdl60S5qRrKdXVSVbNu0eDl+QJIfPH85frsof0ejQ6VSgSzLSKfTKBRUsvYzj54BALzl5m3IpbvJbJLJ9uGT83rCAL9gUbLplry0qFsjge7+wE6pYxWTTVaAluyfZDMmPogSaU1FJTm8py3t93Sqb4ZloUFVsgkMSjb1uecy3X1VWChk1HeTJAMJwi5KTwJWKnXUmhJkCNgxxpb4AADGSlkIUPRybZSYbGaIKybbhleyLbRJtoPnVyDJ/Ve37BCXkg3oz/fYK8KOyZZUu2hUSjY352RRsoWR+IAGj8mmoVwu48CBAzhw4AAANdnBgQMHcO7cOQiCgA996EP4b//tv+FLX/oSjhw5gve85z0oFov4mZ/5mXgLHgLitIsGqWTjE/jeQ1hKtl5MfGBGsp3TlGwkXo4fEJLt3GJVV+MA0dlF6UlbUicE/QjaKioIAmZW1vHtZy8DAN51x27TfXaOlVDMplGpS3j8dDCWUTslG/nclNRtBgwqNj8x2QhRoUBAoyX7ruMqyabEZBdlU7KRCWeGk2yOSJFBOLOSLToFIwkR4DbxAQsJLcsyLi6r/Uspl9HP5ZT4AADGilmIACoNeyWbcb9eH5sFrWQLkmRLupKNtp4FUQ/OLlb0v8v1Fk4GnKgn6YhaycZJNnP0W0w24/nJ/0TJFqWiMclKttHRUQwMDOjOR4Iw7aL+AgZFjCeffBKvetWr9M8f+chHAADvfve78Xd/93f4L//lv2B9fR3/8T/+RywtLeH222/Ht7/9bQwODsZV5NDAGt8myPOxKtm4XbS/4VbJ5hSTzQtZlJTBqfGaGq0WLixXMQFgx1jJ9/HHB3KYGMhhvlzHqfn2KnCUdlEC/o5GB0Kykb7rHx8/B0lW8JI9Y3qcPiNEUcAVkyUcPqfg20cv42X7JgMtk9UKZVMjh+jMooB3kk0URYiigFI2BUUCmpJ/km2dKNlSnVa4KEBIMzslm0TUegIn2Vggippd1GE7EpMtG2FMtgKJyabZRd0q2eyyiyqKopNsYwM5/Xe7c5DfRouqXXSjxWSzu+9mbZpbu6ifsiT13tJ1MchxxvnFdQDAYC6NtXoLz5xbwlWb+29+ZgWuZEsG/IQ+SrKSzTgnI3UsnU6j2WwmjmSz4hXCSnyQzWZx6623dn3P7aIaXvnKV+oPhf73d3/3dwDUh/TRj34UMzMzqNVquP/++7F///54Cx0Solay0ccLQ8nG0TvgSrY2yDXlcuqEZ3alCklWkE2LmKAmQX6wa1xVxF1YqenfRWUXtVMycYQHOh5boyXjc0+oCXnedccuy30EQc02KAB4dmY1kHLYPX/yW13LAFqySPJhJNnsVoDpv4lltOGTZFMUBbWmDAExxWRjSHzQpH5LcZLNESkLAteIWGOyuUx8wGoXvaSRbOMDef13s7GXsX8eLWY0u6i5ks34fvabXZRVyUYjaCWbEUlZLDQiDLtooyXj4opKsr1hv6ok2Whx2eKKyUZ/x8FO2vSKks3KLkquk4TsiaJcVos3TrBrn1mTLnoFt4tydCEOJRtBkEo2bhftPbhVsoURky0p2UWNJNuFxSoEKNg0kAtsskwSKFxcruvfRWkXNfubI1zQ9eobR2YwX65j02AOr79uynIfOmHAJYqQ9QO7508+1zQb81AhOLsooNpPFQhotvzFZCM2awEK0qk4SDb1XHZKtgZFsmVSPPGBE4iSzSmkE4lNmInwuRuzi7K0005OAfpduqwRFRODbZKNzS5KlGxsMdnitj4FBTu7qBEsBJqfxAe9omQLg2SbXqpCUdT34zXXqMnonjm37OuYvQZuF00GWGOy2e1rJiggSIpdlIAIHZKoZCOwU7I5KQ/9givZOLoQtZKNrnxe2H8n8A6gd2CnZLOzi4aVXTRRJNtSBQKAzcP5wCZ020Y0ko0iTqKyi3IlWzygJzmffewsAOAdL9npaCUcyKchQMHsWi2QesGiZKtplrzhQqbjd2P9d0uyFXNqu+BXyUYsg6qSLQ67qHodkmR9Dc2WqrQD2mXksIb6GrQTH1jVj3pL7SdITLYo7aLrTQmKojC1005OAXoScHlVI9mG2tmr7RIfEIwUMxAE99lF+7Hdt3omLJ+dtrGDcdteULIR+O1PSGbRnWNFvFjLjn388ppeHzcCoraL0m1AFO/x7OwsTp48mfj5XL/FZLMTPgDxKtm8kGxhJT6wQpgx2fhorkcRp13UClzJtjFg16Db2UUlSepamaD3MRvAWiEpg1MjyXZ5ZR0CFEwNBUiyaUq26eWafsw47KL8HY0ObQJLwg/PLAEAfvq2Hbb7CIKgWzabkoLFSiOwcgA2JFvLnmTzqmQrZTUlm0PCACeQeGwpUdCyUkZMsunZRa3bLJI8QhQEiCJXsjmB2S6qK9nUz9HYRdNamVQC2i3J5qRkm9dItsnBNslmpmQz7jtS0JRsjZZpX9uv2UXtlGxuSTZ63BHE/UnKOMaIMBIfEJJtx1gRm4by2DZSgKwAh6aXfR23lxCHXTRK4ufUqVM4f/48KpWK88YxwWlBA+jdmGzGchAQki0KotXNIoSTks1oF+VKNo7IELVd1KzTNcJPWXp9ILeRYJWFDLBXsgHtgQXdmNGdlReSLc66QxIf5HI5NCUZC+U6RCiYClDJtn1Ui8m2tI5CoQBRFJHP5yO3i/ajoiGpIPf63JI6oR4tZrB1pGC3CwRBJZHGiur7dnm1brs9C1jsousOSjYWks1sP9UuCt/ZRWsayVbIxDPcyaQ1JZuNt5EQiSnRun/laEO3izpsR6zC2VSESrZMuz+rNlpMiyFOJJseyFqSsFBW3+upETYlG/l/uKiqXCVZQb0lbzi7KA2vJJvZuKUf7aK0PSswkm1BJdl2aVnXb9LUbBspLlvUSjYgWrKcjMuTWq8BNleWXyUbDUVRcODAAZw4ccJTed2gX+yiUSvZOMnG0YW4lGx2lZwr2TYG3CrZBEHosoyaKdkA9kYuKSQbrWSbXatDVhSMFlIYyKUDmywTu+iF5XXceOONuO2222Kxi/J3NBrQE+WzWja2PRPOmWpJfRjXEm5cXvUfl41FyUYCvBtJNuN2rpVsASU+qGmWwXy6TR5EG5ONECROMdkUcBEbG1iVbIRk0x59JM89JQrIaSesNiSmdpp+t+zej4VyHbIsIyUKHTHZWBIfpAUBJY1oLtdbzHbRfmn3WZRsThNEMu5IpVK+xrvG4yUNZjHZ/OIssYtqiZxu3jECYGPFZet3JVsvzOec2loafpRs+vhofR3Ly8uYmZnxXGYn9JtdlCaG6XsZFskW5jvCSbYeR1STBRYVgt9BR5IbZo42jA2ek5IN6I7LZiXZ7lW7aCaTweVV1Z63Zywf6ESeJD4o11tYlwQUCurnqO2iSV6d7CfQ9/zMgkqy7Z0cYN5/vJQFAFwKmGSzmpA6KdmM+7OTbCkt8YFfJZtaPkKyRY1synmVtCmpMdm4ko0Nqu23HZPNCoRkIyLGKJRsAJVhtCkxJz4ArAlgcozLK+sQoWAon9Gz1tK/2yU+kGVZt5NX6t2W0X6NyWbX7nhVsgWl8ErqvQ0j8cF5KiYbANysKdn+7blZ/MaXDuPC8rqv4/cC4lCyRUmymYWDSRpYSLaglWxWxwoKSbKLuskuatU20/eWnuuFNTbiJBtHF6JWsrHINftt5ZPDHG6VbECbZCP2Stpy6oVkS1p20XQ6jRnNnrd9RFUYBNUh5DMpTAyoxMn0UnsgyrOL9ic6STZ1YuJKyaaRbEEo2WhYKtmaJLuovV3ULqOXdUw2/0o2orQrZKNPegC07aKKolhaRpstBRDaCi0Oe5DYeuRuWtUPPSZbhIkPgHZcNqOSzaqcTouYpNxzazWVZCtkOvpaFruoJEkoaclESIZRO5KtX2KymcGvXdQr+dTLSjY/9UBRFJxbVON0EZLtph2jeOP+KbRkBf/w+Dm88o//DX9x/0mfJU8uFEXpeN5cyRYPzKzQRtiNEViUbPR5aOIxrPti1eYTxEmysS4u0aA/0+8JV7JxRAanQVlYdlHWCQrr+fkkvvdg16C7VbIZibpetYum02lML2sk27BKcgQ5mactowRmHXrQ4Eq26EHf51PzKsm2NyaSza59Jp+rTXO7qFEJ49SHGNuTUi4NRVFVXkHYRXPpeEk2UYBlEoeGpmTjSQ/YQEg2mzB3ANokWzrihBdEyUbHZLMDa7a7+bUaREHBcD7dsS1L4gOVZFP7YZLRkW5r+tUuatbusI6bjX0ebRe12oelLFbHTwqCTnzw2NOHsEO6BFFQ9EROKVHAJ3/2Fnz+F16KO/aOoykp+NSDp/wXPqEwkmpREaxRvcc0iZTkNsOvYIRVyWZ2L8J+363somT+FSXRavWZhtXCK1eyccQOFgY4SLhpmABOsvUz7JRsrCSb3wF9Ekg2WZb1ciyvS1hab0EQgE2DKtkQ5LtIkh/QSjb6+GF13vz9jB70fT41XwbAZhdtk2xq/bu0Ek1MtmrD3C5qTIvulmQbyKUBCGi2/K0A15vdMdmiRCZF2kRFi73WDT3xQcTx4noVotBJslnVj7pGsEaZXRSg7KKUkg2wbqfdKNkETclGXwu7kk3N2Futd4dt6He7KI24lGxGJFXJZqb28XOdZy9cQkFoYsdQBrl0pwLopXvH8al33woAmC83sFJtej5PkmEk2Vqt7riIQcFMyRble5zksaKdop7Ars67VbJFMYZOol3UbZgEGvRnmtTkJBtHZIjaLsqiZPP7AiS5YeZow07JZmUXJY28lZLN7UAgCYNTetB0ZKYMCQLGilmkEHw9Jqu/F0zsogBXsvUTyH2utWSs1SQIArBLCxZtB/IOjelKtmiyi1YtEh+QtoC8q/TEzQzGtqCYSwVjF42ZZMtqk0oBQLNlT7JxJRsbjHZRKxAlm5ZcNDKSraAr2SSmdpqVgF5YU7NXD9uQbMbvCAjJJkNAudGdBdA4+ew3u6iZks1JWWZl7wwq8UFS+9SgycTlqhqvdvto3vT3gVwaU0Pqbye1haV+A+16ANT7GfbiKB2OJez3OCkhXJwQtZLNrI0NGk7uoijbciMJ6YVkA6iM2tp7E2bfzUk2ji64tW/6hRv2H+BKtn6Gse6lUim9IXeKyWZUsnkd0CdByUYPmg5Or0CBgKmhfCjvZtsuWtW/i9ouyt/PaEDu85K2or91uIB8xvy9MsNoUSW7osguKisK1lvmSjbyThtJNndKtgDsolrMuLjsoqIoqgkNoKApmV9HU8suyhMfsEEn2RzsSfWYY7IZlWxW5XSa+JHvF8ptki3lMvGBJEkYyKVUko0hJttGsItGrWQzLjQkYbHQDKGRbCPWi0VXbFJDIpyc7W+SLZfL6fc0iuQHUdpFzf5OGpwW+8y2pWGnZDPbN267KJmfRXF++hx+STa63wLc9d2KouD7z13GP/3wPJ69uGoZpsN4rjDqbTrwI3JEgriUbGHaRTl6A2Z20RtuuEH/2wzGxAfG+uSm3tKWGNZ9wkAnybYMCQI2D7dXaoO1i6okW5x20aSuuvcbOkk2AXsnneOxAd0x2RYqDTRaMrI+smo6KdnqTRnka2PiAyslm9N7ocdky6rWtkbL30S0RpRsmXhINkEQIAqCqmSzisnW0rKLcoKNCW27qP390pVs2isQ1bMvWMRk86Nka0oyKvUmsgCTXdT4m24XVQSs1a2VbP1mF7WDW5LNr5KNIJVKQZblxN7bIEk2RVGwsq6O+6yUbABwxeQAHn5hASfnKp7Ok3TQ48V0Oo1ms4lWq4VcLhfoeYxqVk6ydcJt6CMaiqIkMiabnV2UbqviINlYsoua3UtRFCFJkmslW70l4de+eBhffPqC/l0uLeJ9r7gCH37tVab7hHl/uJKtRxG1ks2tXdRLI5vkhplDhZUdZWRkBCMjI5b7sSrZWBo54+pvXPWGEIapVBoHzi9DVkTd8gAErGQb7U58AIRv6emVgVM/gbwDi5qSjSXpAUArwFLIaqzC7Jo/NZvx+Rs/11sSFAgoZVNU7DEVfmOyqfGj/NtF41ayCYKgK9msYrI1JDLYjLJkvQtS1RTYK9nI/U6DXb0QBIqa8pQkBXEaxDu9G6IoYmW9CQEKilkB+Uyq41pYlWylrGYXrbcsF6v6Lbto2Eo2L2Uh46GkK9mCIGkURcHqOlFlW5NspJ87OdffSjZCstHfhQlOsnXCT0w2+rOVks24bxT3xc4uSivZwiwDQdB2UdJGWj2vZy+u4vNPnMNDJ+ZxbGYV7/zU4/ji0xeQEgXctnsUg7k06i0Zf/XgKbQsxl9cycbRhaiVbCzsPw1uF+1PWJFsTrCKyeZFyZaUgSm5lkvlBtZqLWzKpjA+0F6VDMMuulxtolxv6Va6sAdQdqtw09PTSKVS2LJlSyjn3qgg93yh0gSQZUp6AHTWt01DOUwvrePyak1PmuGnLASyLHeQZ7WmDAXdVlHAvZLNSLiXcur+zVYwMdly6e4BaBRgUbI19dhh3C7KAreJD4iYM47EB4BaB8xUZgROEz9RFLGqkWyjhbT+HYFdTDaaZCtqdtGWopLPPLtoJ1hjsvm1i7KoPOKEmcLEaz04NbuG+bIaH9SOZLtik9rPneIkmykURUG1WkWxWLTtI+JSsm2EmGz03MMutizd1kcRk40+t7FsRpKNHsOFAWMbF6ZdVJYV/Lu/fhwLlUbH94P5NP78Z16Ml181CUlWcNPvfhtrtRaenVnFDdtHuo4T5oISXzftUcRlF+VKto0NryQbaXCtlGxu5LpJUbKRazk4vQYAuGHHqB4rCAh2Mj+Yz+hExgUTy2jU2UVbrRZeeOEFHD9+nL+3AYM8S5VkA/a4VLIpiqIrKoNIfkDDWB9qGolhtIoC/mOykUyIfpVsxuyiUUMURaQEkvjA/DqakmYX5YkPmNCOyWa/HbGLktsaXeIDdRJNkoI4DeKdwnEIgoBqQ4IAYFAjn+mJkpld1IxkS4siippllKjZjPv1G8lmBr9KNr+JD4wLEElDUHbRbxyewVs/+QjqLRnDhQz2TtrEZNMWk84uVB1jKPUi/JJs58+fxw9/+ENcunTJ1Xmjsgr2imDCqa0FnBOjCIJg21abnY/eP2jY2UXT6bTvubkbRJn44MxCBQuVBtKigCsmS8imRVy7ZQhf+o934eVXTarlEAXcumsUAPDE6UXTcnAlG0cXoraLsirZnFZsjeiVhplDhVeSzWiP8GNNSRLJpigKnjy3CqCIl14xAaC9Chv0u7ltpICV9SYuLFdx9dRgxzmiVrLRz1GSJP35cviHoqgJBcjqHCvJRu9PYgNeWgnOLgp0r1bXmzJkCIEq2dq2V9Xk15T8ZWGr6Uq25NpFeeIDdyAkG7mb1ko2ohDsJDfCRpHKLgo4t9MsdtH1pgQBCgqZzj6T/tvOLkowkMtiod5EtdHS3yv6/YoyJlsU41gnu6iiKMykW1DkU9KVbEFc518/dBq/96/PIgUZ2yYK+JHrt+hhDMwwNZRHMZtCtSHh3GJVJ936BX5JtmpVTXq1vr5uu11cSrZemcu5cWXZKVmtYGcXjSO7KL0gEGYZjMePQsl25OIqAGD/tmF8+Zfu6mjLady2Zwz/9vwcnjyzhH//su5yhPmOcCWbBZLcSADJVLKx/G51XOPfHMmEX5LNaBc1dgq9ZhedWalhttJEKZvCi3eNd/weOMlG4rJRSra4YrJFKYHfaJBlGavrTbRkIJsWdauwE+j6tnmQKNmCJdmslGwjRWuSjUz8nSxx4+PjyOfzKJVUUpEo2WTFmpxiQRJisomiQ+IDEpONE2xMEPX+wn47PfFBxEq2tl1U7e+c+jend0MQBKw3JKQsSDYzJZvxN4LBYgYygEpdMrU0RRWTTVEUHDhwAE899VTkYz+r++xEsvlNfGBmF3XaP45xsd/YcwDw1w+eAgD8u9t34q0v3q4l3bC+FlFsJ/npxwyjfkk242KVFYy/RxVbsVfmcn5isrFkFjXuG6WN1souSpOtvUKysSjZjl5YAQDs3zZkeRwAeMnuMQDAD88smpaHk2wcXYhLycZKsiW5keXwjiDsovSE2zigZ+kAnOKmRIVms4njl9cgQcRrr92MQq6TaAj63dQzjC7HYxe1ItY4yRYsFEXBUrUJBQL2jJcgMloIO+yiw2pswKBJNjMlm+KgZCP7OfVZ+/btw+23365PQEjweKBNVnjBehKUbIKqZLOMyUbZRbmSzRm6ks1ELUCDKNnIQDc6u6i5ks0p8YFV+YiSTRRkFLT3glXJZsRQPgsFgqmSjZ6MhT2WkyQJKysrKJfLoQaAt1Oy0b8D3ePcoJVsRpKNPqYZ1tfX8dhjj2F6epr5HEHAKvEB67XKsoLZNTVUwXvv3k3Zu+33J+q1fswwGhXJRoPHZOuGn+yivapkA6IjW71kF/WuZNNItq3DtmW6fvswsmkRC5UGTs13ty2cZIsBSW4kgPiUbCx2UTfn75XVDw4VXsldMqggA7UglWxx1ZtGs4UTl8uQFBH33ri1a3UrDLsoAEybxGSLU8mWFGVhv0CWZSxXG1DQXtlnAV0XNmsx2S6FrGRTs4uaJz6g+wpJkpjaDvo3URR0YqzW8F7HiF00G2PiA3WSaUOyEcUVj8nGhJRrJRvb+CUo6Eq2pruYbHZKtpquZOsm2cxIIyu76FAxCwWdSjZaoWU8ZlgTQ5Kdmy5zGHC6t2Z9nNXz8qtkI6Dvs13/ubKygnq9joWFBdfn8AP6PnhpLxerDbRkBYIAjFEqZ3aSLflKNrfPPQ4lG7eLdoNlLhukki1Kks1YBqCbZIsqNl/Y2UUVRcGRC227qB1y6RRu0hIe/NAkLhsn2WJAkhsJIHolm1u7KCfZ+hNe6x3dKbVara7VJDcD+qSQbCcuLaPSaCGfy+Bl+yZDJ9m2x2wX5Uq2aKAq2RpQ4D4eG9mfkGyzPhMf+FGyqTbJ9kCJdaGGRk4LIO9HyVbTiJZcKh4lmyiKanZRoU36GEHIN24XZYPoMiabgGhJtkKmM/GBX7toR0y2bKqL/DCLuWNPspkr2czUcWH1LVGRbGawUrI5kWxBKdlEUWSa9JLforw/9CKosZ6xloMoqMdLuY6Fg34h2WZmZvDwww9jZWWFeR+aZDMmAmOBFyUb4I1A8DKm65W5XBDZRb2SbHHZRc3KFRbMiEgvi0tOdtHppXWsrDeRSQnYt9k5fuNte0YBAE+c4SRbIpDkRgKIXsnmJvGB1/Mn/Z5zeCfZBEHosozSx/GT+CAuHDyrri7fuW8TsmkxApJNzcx1wcQuGqeSjZNswUJVsjUhQ3BFstH1bYpSsvmpG05KtlrTWskGmMcecvNeENUOUaN5ga5ki4lkI0o2NfGB+bNoSAoEqOQRt4s6I6MFWXMK1VdvSQCU2GKyuU184GQXBYB8JtW1Hf3Z2B4b69NIMQcFAiqNdj9sZskJu2+JU8nmpGoLS8lGb2tUapghDpLNGJ/PC8lGrKKbBnOuSIYrNrVjsiV5PrC0tIRWq4Xl5WXmfXpFybaysoKHHnrItUW510g2PzHZ3BB0UYyV7dTLUSvZgiLZnOyiRzWr6FWbB5FLOyc0uo2Ky2Z1Lk6yRYgkNxJAfHZR1gkAV7L1J/woKOkMo1ZKNi8kWxz1RlEUHLu4DAB4zXVbAXSvboVlF51bq+vEQRJisiWF9OwXKIqC5WoTCuDbLlptSFire1eBOSrZWqqSbciBZGO1ixqRy3Ta7rxAzy6aic8uqic+sFWyKboNksMeZFDdkrvVAjQaLRmilrUViINk60x84BSTzc4uSt4BomQz/k7gpGQbKeV0u6hRyRaXXTTqhRonJZtVPKGgsovSi45JU7IFQbLNaQrqTUPuSLbd4yUIArBaa+nZtZMIch1uSLKgSDa374rb93htbU1d6HNBIBqPn+S5XBDZRXvRLhp2e04QlZJNt4o6xGMjuGXXKEQBOL+4jksrnWFUwrw3nGSzQJSNRLPZdH2+qO2iYSnZOMnWW2BNgGEGemBhpWTrlcQH8+UGao0mBAG4fe8kgO53I+h3c6SY0SdvM1onEVd20SgGDhsVkiSpKhMIOlnGArrtLWRTGMqr79usz7hsNIzPnRBYVko2M7uom/cir9nu6kHEZBNjVLIJcEx8AAApMfry9SJyWobNlg0JQUhgIQaSzSrxgVe7aFNWdKtxIZMyXdAxrvxbkWyjpZxuFzWqLaK0i9IEQ9RKNrPfge77YDXJpu+TFyWb0UpvhbhJNrpeuSkHsYtuHsy7GuPnMyns0BT7Sc4w6pZkUxRFf85RKdm8uEQAdBHvrOiVuZyTahiwbiu8EHRRjpXt7KJxJT6wO6cfJZue9EDLLOqEwXwG12xRtzWq2biSrY9RLpfxyCOP4MSJE672S6qSjU8Q+ht+yF3aLmq12t4rSrbpxQpSkFHKplHMZwGEr2QTBAGbBtWskfPlesc5oiDZeEy2aFCutyDJChRFwMRAjnk/Y13Qkx+seI/Lxqpkc7KLeiXZCFlRa/qIydZUyxx34gMBcCTZeEw2NpCEGC0L+y0ANLXfRLSztkb17It6LEF3iQ+sJm8r69pqvqAmAzHbzrgab0WyjZVykBU1Xl1NU9rZ2UXtyu0HcdtFzfpOJ7soPYH0axdNqpLNri66tou6VLIBbfV2kjOMkuug67AdaDLNC8lGk3Ru7KKA+zFiv5NsUcdki0Lhl3S7qBcFt7G8xoWNIxdUku06h6QHNKwso2ESkJxks0BUjUS1WoWiKFhdXXW1H1eyccSBoOyixoGcG7luEuyJ5+fV93Ugn0EmoxIMYZNsADCpkWxza50kWxQydCvCLQnPo5+wXFGfbS6TQj7jHGvCCPKcpob9Zxh1JtkkKEqYMdnUNiOImGwkjlfU0BMfoB2I34hGS43JluIx2ZjQtouqn83GDg2pnfQgLQqRqdiATruooijMMdmsnv1yVZ2M5zOpDhUUDeM5rEi2gXwGKS0+4aLW1tjZRe3K7QdxJj4AzMeqRruoVfsXhF2URclmpoYJG2ahPNxe6+ya2ue4jckG9EbyA7dKNrIdIWfdkmxeiBovC9j0ufqdZIsqJttGs4uakfR+lGwE9PFm1+qYLzcgCsA1U2xKNqBNsj11dsn0XJxkixBRNRKkwrOuiBAkXcnGSbb+RBAkm5mSzU/igzjqzcUFjWQrFfVriINki9ouarY6x5VswWK5qsaiGcybE1dWMNY3omS7HCDJRn+WZKJkcybZPNtFdSWbd5KNxLKKK7uoIAhIiwIAxTm7qBht2XoVRMlmpQwEgLr23ElMtjhINqIYc1IROE38ltfV8WEx06lKoMF6fel0GsMFVX1tJNmslGxhtPFxKtnMfqf/DjvxQS/EZPOjZLusxWSbdGkXBdok23OX3AkPooRXko2Mgcn/iqK4Xlh2axeNimTrp5hsQSjZCDaqXZTOoOyFZLMLv0NUbFduGtDdDiy4cYeqenv+0lrHmJKTbDEgqkbCbWNt3I9l4BAEWGNx+amsSW6YOVQ42VrsYJZd1E/ig6g6DTNcXloDAIwMFPXvIiHZBsyVbFGQbPRnTrKFhxVCslkQV1botouqdSVIko1+1tW6Okm2S3xAqzW8xHMkSjY1S6Q31JNgF9VUdHWLfr4pyaqSjavYmJDXYrI1bRIfECVbNtWpHIoCxC4KqJZRJxWBU7+6UG0CEJDPqr+bTfKsFlzNFAFDGsm2rAWXN5s8eo07xookKtmcYrKZKdncgD5e0mOyGe21bspBxiebPdhFb9+rqk0ePbnQFaA8KfBLstHvGcsx3JBsRnAlWyfczGGCVrLFaReNSsnmRu3rhmSjP7tNekCwbaSA8VIWLVnBsZk2ic9JthgQNclGT0Lc7Gc1sAoarA0TV7L1N4Kyi1op2dys6pHjxYH5FdXKMD48oH9njPnTb3ZR+jzcLhoeCMlmRVxZwdj2TmlKthkfExU7JVul3rawZVLm/UJQMdnqHpVskqzoZEsmRiVbSmvfrK5Dzy7K7aJMIHbRpk1MNkKu5tPWxFRYSIkCstp5q03J14o+AD3bcMGFks2eZMtox7VWspmVL0jErWQzu9d2dlFadeRVyUafu5eUbG6uVVGUtl10yJuS7SV7xiArwBd+eN5V2aOCX5LNrWU0CCUb6xix30k2N0SZEX5jssVhFyX1LA4lm1O7YbfwamcXJUkP3MRjI8e8fru6z2FNDUefi3brBAVOslkgarso4M4ymlS7qHF7L+fgSC6Csov6UbIZ48fEUW+W16oAgE0jnSSbVUyboKCTbOXo7aL05ygl8EnCzMwMLl26FOo5VtaJki3raj/jO7RluAAAvtQA9ko2dXIwkLMmu/3GZCtqx/ZKstEKuGwqPiVbWrOBEuLHiAYJ0s8JNiboiQ9kxXJg3FaydVtoogCxjK43Wo4TXSeV52KlARmCLcnmRsk2UiJKNrUfsUp8EOYiTtzZRe1ispmp+Oh74DUmG10WN0q2KGF2D9y0mUvVpk5+Tw64V7IBwM+8ZCcA4As/PAdJTt68gCbZWK7JSLLRf7sl2dzWCa/Ch34n2fopJpvx3GZKtqgTH7DEcvSiZHvwxBx+8PwsAODG7e5INgC4YfsIAODg+W6SLQxwks0CUSvZAHeWUT9khxdEkfiAI/nwU+/M7KJeVtuMSrY46tBaRSXZtox1Bt0MeyJnpWSLimQzW+XcKCSbJEk4fvw4nn/++VCvmSjZhovuSDYCnWQbIUq2dc9lMU64OpRsDXVRqGQTO853TDafiQ9IdkcAyIgx2kW1czcs+vhGS+KJD1yAKNkURY17ZgZCaOa0dY/ISbYMSX7ArmSzKuNipaEq2TTijsUuavW9KIoYLqj9CCH0zRIf0OUJY9E2iXZRO5KNJjr8kmxAcrOL+lWyERXbWCmLbFr0RDK8Yf8URooZXFyp4f7js8xljwpu521BkmxulWxu32Eeky2YmGxRkmzGZ55OpyGKov4//VuYY1d6wYtuI71kFzXrt545t4Rf/Pun0JQU/OgNW3DLrlHXZbxhG1GyLZueiyvZIkIcJBurko2uyElTsrmdIPTK6geHiqDtoqQD8JL4IC6Sbb0hoVFXSa4dk50rKWEr2SYsYrJFJUM3W+XcKHZRQhQpihLqNa9pQc6HPSrZCLZqSrb5csNXTDPAfBW0rWSzJtlotYYTkWAGogZqeCx/rUXisYkgtycWJVvKyS6q2dT4iIwJOS0mmwKgRakkaTS0dzSXjkfJVsh2k2xeJhsAsFhtQIGgZxv2axcdKWkkW7WTZLM6RtB9rCzLkU3K3YyVze6Dsc8jk8eg7KL9FpNtVkt6sElbEPQyxs9nUnjbi7cDAD73+DmmfaJEL5BsBDwmWydYxiFBKtmiaOeMx02lUrjppptw0003eSZb/ZbDTUw2lv5semkdP/d3P0S1IeFl+ybwP3/qJk9juRs09dsLs2U95Akn2WJAkkk2Gr2uZKOR5IaZQ0XQdlHjRMANyRZljB0aF5aryAgSsikRk5Rd1FimMO2i8+U6ZFmJ3C66kZVsUV3zak2d+I4Uc672M75DI8WMbqvzahklxzKzZlcbGsmWd7aLelWy6XZRrySbRmrlKUVFHEoxZ5JN618FrmRjAanXgBp3z6z9qxOCVds0eruoWnfpxAdW7bSThWmp0oCiCDpx59cuOqbZRVc0Qt/MLkrvG3T/YhzrRjXxo2GnZKP7cTOSzWp/1rLQdlG7vsRMDRM27OyiLOUgiXYmfZBsAPAOzTL6/edmcXHZuxo7DCSZZCPwMrYGOsd4XlWaSZ7LuY3JRl9LUpVsxnMDwNDQEAYG2vOTKOyiRku9n1ikxu/+9/2nsFxt4sYdI/j/fvYWPeapW2waymNqKA9ZAY5eXO06V9D3h5NsFoiqkfASk40uW1KVbF7soklumDlUBGUXtVKy9YJd9PzcCgQoGMhnkMt1EiFhk2zjmgKhJStYXm9GbhfdyEq2qJQX5ZqmZCv6S3wgCAK2jqhqNq/JD4wTLvoe1DQr5kDeWnHnOyabRlQ0fNpFC9lUvCSbaK/Ia7Rk3S7K4QxBIIkFBLQs/KI6ydZDSjZHu6gHJZvZdqNaP7LmYBcNSykdJclGYHU/3NpFjdn6vJJsfatk0zOL5rv2cXMdV24awO1aAoR/ejJZCRCSTLL5WcAGvI9zemUu5zbLuZPS1Ygk2EVZyhUG6OsLOibbidkKAOB33nQdSjZxgFlA1GyHppe7zs+VbH0Gt421cZ+oSDbWhomTbP2NoOyiXgcCiqJ0TQiirjcXFtTVj4Fioes+hE2yZdMiRjXyZW6tHrldlCvZuv8OGmsayUYmwm5BP7Mtw/7ishmVHR12UU3JZpcF1beSjZBsLW/3myjg8plUrP1LWgu+b6XII9lFeeIDduTSIhQAkmSR+EBXssVDshV1kq3la7IBdCc+YInJZqdka5NsTciyYjl5DEspHYeSjWWsbEeyBalko4+TtJhsfpVsJJSFH7sowZtu2goAeOrskqv9woZbB1IcSjYCPySbm3FOr8zlws4uShAHyWaHKJVshGALimSrNSUsVNX37IrJku9ytkm2lY7y2pXVKzjJZoEk20XtSLaw4LTSarU9R38hKLuokbRlJYsUpT2hikvJNrO4BgAYGih2/RY2yQZ0Jj+IK7soJ9nCueZaU9IthaMe7aI0SIbRi8vBKNno+lDTSLbBEBMfFAjJJnm73zUt+H0+HbOSTQvUb6XIa8dk43ZRVpDkB45Ktpiyi5a0usuiZLNbxFQUBUtaTDY3dlGr72mSTVZURbTV5DGsiYeRWIhjvGh1r8lvxmsPQslGn7tflWzELhoEyXbFpGp3O7dYdbVf2IhTycYyRgbcj63Nju9mnNMriQ9Y5rJWyqakxmQzntvutyhINtaFCFa76HK1CUURMDmYsx1vsoJkGCVKNpayegUn2SzQqyQbt4tyhIkg7KJ+Eh/Qg424YrLNL5cBAGND3SsqXtPeu4FOspVrkdtFzQb93C4aHBYrDQhQkBIFDNooxMxgVheCUrKZkQTrhGSzKadZ4gM37wWxBTSakqd7rsdky4T/Xtoho8Vks1LkNSVuF3ULXclmEZON3Gvy6KMm2Qa0uluusyvZzMq4Vm+hKSme7aJmJFsuk0Ihk4IABXNrdcfEB71sF3WjZDMqMejv4ojJ1otKtqDsogCwa1xdyJxeWtfjViYB9DNLml3UCLcLsV6VV70yl2NxZfVaTDaWsVWUiQ9YM5qyKtnIItPeCf8qNgC4XsswemahihVNIcdJtogRVSPhtrEG4mnAwkp80CsNM4eKIJRsQLuuu7WL0gGao+g0zLC4psYGMCY9ACJSslEZRqO2i3IlW/ffQWK+XIcABYVMyjUpYEqyjagTnTASHxACy45ko22mbmOhAG2STVYUXZnkBuvNbrtoPDHZ1GfZtCCkyQSSK9nYoWYYFdCyeBd1ki0uJRtFsvnJLrpUUeOmZdIpPYGG38QHgiCgmG2TbFaJD/rJLmqEk13USslmvEde7aJJVbKZ1UV3JJumZBvyr2TbPJhHNi1CkpVEJT+IU8nmdA+tlGzcLqrCT+IDL1bTjWgXDVrJtlRtQAawNwCrKACMlrLYOaYS+IcvtC2jdmX1Ck6yxQw/SjZ6tY0gKUo2P+fgSC78TFRpYqzRaOjf0f87dQBmA92o681qWbUuTI0Odf3W73ZRHpOt++8gsVBuQIAazykIkm1rwHZRs8QHQyHaRUu5tJpxEwpW191n39btojGTbJk0UbJZJz4AwGOyuUAunbJVspH4d1nR2R4UBkjW3XKt5bgYYkdAL2okG4lPCJgrKViVbKmU2raUcmkIUEkRp8QHvUyyEbiJyWZmFzXeI792UTdKNq/n8QI7IoGF4Lm8SmKy+VeyiaKgT4bPLgRvGV1YWEC5XHa9n9t5G4/JlhywCkYIaEWaVTtJI+l20TDL4NahxKpkW642NSVbt7DBK/S4bBeWO8rASbaIkFS76EK5ju8cnYGiKLYvVNDl50o2DsAfyQZ0Zhilj+NWyZZKpWKZLMuygmpVXVHdPmlNsoVZNppki9ouajZw2Ih20bBItjlNyVbMpj3XITMlm1e7KIG5ko0kPnDOLuqVZBNFETmNoFr2RLK17aKxKtm0+9C0tIsqgGYT5ko2NpB6YRWTjRCX6ZgSHwyaKNm82EUJyVbKtclsr0o2Qh4JgoBSNr2h7aJm57Yj2YwLfH7toixKtjjGx36UbKvrLf29mwwgJhsA7CIkW8Bx2Wq1Gg4fPoyjR4+63teNkk1RFFObYb8p2XohJpuiKLZtLYFZW0FfXy9mF+1pJZuW+GdPQHZRALhRi8v2w9OLTGX1Ck6yWSAOuygLyfaBzz2Dj/zTQRy+sOJYMYOEWyUbJ9n6E34nqvRKHsDu3SegV5KiWJkxYq5cg6i0IAjA9onhrt8jJdnKPLtolIhiELlQbkCEPyUbjS1DqpJtqdrUCSc3sFOykQQNdtlF/cZkEwQB+UwKAtTVTLeoJcQu6qRka0oyBAFIcYKNGYRks1aydcZkizqGJ1GyrdX82UV1ki3vjmQz+55WGBRzKYhA39tFrcAak804WY4ju6jb8/iBGeHKeq3EKjpcyCCf6V6Y8XINO7W4bOcWKq73tcP6urrwRFwVbuCWZCOg76lxwdkOvUCy9cJcji6X27ks/QySSrLZIey5An1s1rrHomRTFDU5jwIhMLsoALzy6kkAwMMvLGC11gxtPpl23qQT9XodTzzxBM6cOYNqtYrJyUncfPPN2LNnT6AFixtxKNlarZatQu3Q9DIePbWAHBQcml7BzbvGu7YJq6KwxtOJg/jgiA5Bk2zkOG4TH8RFsp2bX4MABaVcBgPFQtfvkZBsA6o6iWcXjRaRxmTLuldqmr0PQ4U0itkUqg0JMys11yuBxomlPuCUFTQkCSkAwwxKNrNjsUAl2UQIgoTlqvvJECHZCnGTbETJZqJakWVFVWOJQMRiq55GLqPaRVuSvZItE5OSjSQ+qLhIfGAak02r9wMOSjYrFZrZNmpMNk3JVq5DHorWLkrb58i4NyxY3Vuz+0O3UcY2z0ql4QUsSjZadUOXI2zYKdmc0LaKtjNjB6ZkC9guSsg1L2XySrLR9zFquyjLmIW2RLLuY1aupM7/WNVogHrf6HeQfv/d2DKjHCuzKNnCfDZBKtnIMcr1FpqSDFEUsENrC4LAvs2DuHLTAF6YLeP7x2YxFRIJyUyyPfLII/j4xz+OL3/5y2g0GhgZGUGhUMDi4iLq9Tr27t2LX/iFX8D73vc+DA4OBlrIOBAHyUZkxUYiguBTD54GAAhQJ2MzWocWBdxOkLiSrT8RlF2UwO2qsJnsPsp6Mz2nBsksFfKm96Df7aJWSja7xYF+QTQx2dp20SBisgmCgC3DeZycq2Bmed0zyUYnMADQER9tqMhGshnLyQJBEJBPpyCg6dEumqyYbGZ20SZZwAJPfOAGqpJNcIzJlo4ru2iePfGBXTiOBRMlG8t7ZWYXpZVspZya+GB2pQZ5yt4uGpaSLZvNRkayGeE1JlsY2UXN+s+4Fq+CULKRpAfGfTyRbONqn3UuYLsoIdm8jF+CJNlIUiC79okm2ZzqhbGfc0OuWI33WNALczm3JBvQrWRzUkTbKdnCHqfHbRe1Uvt6UXCT75Y0B8OO0ZKepT0ovHH/FD7+/RfwjSMzeO9VMdpF3/zmN+MnfuInsG3bNnzrW9/C2toaFhYWMD09jWq1ihMnTuA3f/M38b3vfQ9XXXUVvvOd7wRayH6G8YFaWUYvLK/j64dnAAD7t6mxoJ45t9y1XS8p2axUMhzJhZcMgTSclGxuEh/EMRm9tLgKABgsma+oBLHK7QRCsi1Vm3o8oqizi/oZjCUJK+tNfOfZy6jU3a0mh6dkayc+CCImGwBsHdGSH3jIMGqlZFtZb0KEgmxKRDZtHwSYRWFjt39O8/ut+LCL5qiYbHGA3KOmJHf3+ZQSi9tF2dGOydZ9TwE6Jpt7BWUQoGOy+VKyaSQbncWXRclGYEaytWOyAfPldrtgpWQLKyZbNqsS9FG8m1YkZBwkG30co2KNwHjPk6BkcybZ1IX/zVrSA+M+3kg2zS66WA30HtBzLa/P0Hgcp+3pe0q/a05xbY2/uymvnzlZ0DHZZFnGwYMHcfr0aebjBgmz95t1H69xyel7sVHsokEq2ZYqDdUquim4pAcEb9g/BQD4wfNzaMrmcxu/YFKyve51r8P/+T//R+8Qjdi7dy/27t2Ld7/73Th69CguXrwYaCHjQFQdmrHCW62K/O1DpyHJCu66chz/8a6t+ON/eAHPzqxiZb2JYZuYOEHAbGBgBT/kAifZko8kKdnisIvOLq8BAEYHzUm2KJRsI4UM0qKAlqxgtaa2F3Eq2cjnqGMeBYHf/soRfPnARUwM5PDB11yJt79kp+VqWRTxcebLdaQExRPJZvU+TA2pE55LHpIfWCnZiKosl3Ymu0VR7Lh3bq9LjcmmYHndg120RdtFO5OtRAlSp0QoqLdkPV4RQKvbFIhcycYMkl3UMvGBpJFs2ue4lGz+Y7Kp79pgPgNA/dtr4oOOmGzZFARBwUK5BqBgetwwLEayLOv9eBQkm5Nd1GwSHBbJRp+b7i/NlExxkWx+lGyXV1XCdjJAJdv20SJEAag2JMyV63rWUr+gY7E5KcloGK/BKcyP1TUTS7Isy2i1WshkrOdxxnkhy/m8xGQzG9exguU5V6tVLC0toVwuxxJiyo1IwKuSjcBKyRam6yNpdlE/2UXJd8tVlWQLMukBwbVbhrBrvIizC1WcmK1gz3Aq8PvD1Kr80i/9kiXBZsR1112H1772tb4KlQREvWpEQFZFFEXBkQsreGG2jJmVdXz+h+cBAP/+ZXuxf+swxktZNCXgy89c6Ng/DOLBaiXGDFzJ1t/wS7JZKdlYV1nMUmhHWW8WVtTgu5Mj5qsqUZBsoihgYoCo2aIl2YwTDoJezDDakmR877lZACq59VtfOYrX/+kDuuXFiGhisqlKtkJAiQ8AYEuASjZy3UsV1daazziTgVbqGBYIgoCcpgLzkvhgvZEMu2iOItXqBstoUyODRAAiJ9iYkcuIgGKT+ECzChPOPGqSrZQlSjbnoMp2KonFiqoOGnSR+MDq7w4lW06Nyba23kBLkk3VHWGMJ2nlDyEW4hj7xW0Xpe+1WX/Sy0q2TQEq2bJpEVuG1T7sXIBx2YwkGyvMroE1Q6zx/WKJy6YoSmRKtrBJNisnRFRgVaMB3c/Kq5LNzz1lBcvYJkolGyvBy6RkqzahANg7GbySTRAEXc125OKqbVm9wteoo1wuY3V1teNfvyBuku1//+AkfuzjD+GeP7kfd3zs+yjXW9i3aQCvvErNiHH9tmEoAP7xiXOmZfVafifZutsGxu+5OZKFsEi2Xkl8sFJWB3mbR4dMfy+VSshmsxgZGQm1HG3LaDuuSBiwUjJFMXAIGwenl7FWa2G4kMHvvvk6jJeyODVXwd89fMZ0+7BJNllWsKiRV6VsOjAl29ZhdcIzs+xOyUYfhzx/8h0hvFgSNPgl2fIZUVOyebCLakq2fLpblRElUqIIQSBKts4JE1FcpWIK0N+ryKdTUCBYKtnWNatwJiaSbVBTstWaMogj2IuSjcSkGaISjJipKcyUR1bbiKKIXFpERhQgAqjUJds4b0G2d2SMm8lkIpn4OY1ZzMgBOhxFWHZR2kpvdv1xLUL7ismmKdmCTHwAtC2jQSY/CJJkY0leYFb/yHjYjqRjqRtmvyVRyUaOF9dcz7hoaAevSjY7u6jZ5yDAckzjHOvi8jp+/M8fxl/cfzKwMgVpF23HZGtADknJBgA/sn8LAOD5S2tomYTz8AvXo47Tp0/jR3/0R1EqlTA8PIzR0VGMjo5iZGQEo6OjgRYuTkRNspFK2Ww2sVCu43//2wsA1Ng8BB+8Zx8EQc148qItQ0inRDx3aQ1Pnl3St/Ezgfj20Ut40W99E3/z0GnTMqrqulV8/7nLlvfHj5KNI/lw00mZIQy7aFRotGQsr6mDvG0T5iRbOp3GHXfcgWuuuSbUshCSbTFAJVu1WsX09LRpJitj/Bhj59iLJNsDx+cBAHdfOYF33bEbv//j+wEA//TktK4uohE2ybZUbUBWoCvEgkh8ALSVbDMelGwEZko2QCU6wifZUhDgLSZbXSNa4layiaKItHYPicKKgMRkywjtbTmcQWL1SZK5kq3aiDfxQSnXXlAiCTi8TDYWtZhsQ0XvSjbjYhb5briQhggFK7WmbZy3IMdqhJCgSbYwx4JuxqphK9mM5ybHMiNZelHJdnFZ7WNIHFDjPl77TZ1kCzD5Aa2o9EomESWmkxINsCfZ7PY3qxssJBuBmzGaH5KNJZxGUpRsXuyiXpRs9FjZWIYwwGIXJef/3OPncOD8Mj72jefw375+LJBnYpwvsCq4rZRsLVnGaq0JRRGwdzIcku2G7cPYNlJAvaXgzEKwcR8BF9lFCd75zncCAP7mb/4Gmzdv7tv4IVGvGmWzWdRqNbRaLfz5v51EpSHh+m3D+Mov3YV6S0a9JWGk2I5fkc+kcMP2ERw+BfzF/adw2+4xAN47/oVyHb/6xcOot2R8/Psn8DO379TjxsyvreP+52fxwlwFD35L7eT+8G3X46dv29l1HG4X7W+ErWRzyvQUp5LtwRNzkKUmhrJpXL11zHK7KNrESc0uulhpYmcpmHtw+vRpzM3NIZvNYtOmTQA6lWzNZlPPhEWQTqfRbDb151JrSvhvXz+GW3aN4s03bfNdpjDxwIk5AMDLr5oAANxz7WZMDOQwX67je8cu4w3aChdB2DHZSBbBYkb0lWWyi2QjSjaXJJu9kk0taz7DFpONwIs6j/RDKz6yixay8ZJsgiCoz1SLyUZDJXSV2GyNvYpcWoQCQLKYtKw3iJItHoVgJiUinxFRa8qoaGVxyi5qrJtNSdbr/XAhh4UV66Dddu8ZWZw1xsoZzqchripYXTcn2cK0i0ZFshFYWWFphB2TzdgG2SnZei0mW0uScUlTsm2zINm8XsPOMS3D6ELF0/5GKIrSoWTzqkbMZDJoNpu2yQ+CItno2KYs5U2yki0uuBkD+FWy0fvSSIpd9FtHL+m/ferB0yjXW3jp3nE8fXYJ5xar+M+vfxGu3WouJrCCVRvpRcEtiiJWqk0oCpBJp/Q5T9AQBAGvu24zHnzsPM4uVOIn2Q4dOoSnnnoKV199daAFSRqiXjUiJNvMUhmffUyNv/Zf3nA1RFFAIZtCWuie4N29bxKfO72M7x67jOOX13DV5kHm8x65sIJNQzk9dsLv/Muz+orpUrWJrxy4gJ++bScURcGHPv8M6heXoUCdKEiygk/82wt424u3I20RJNzL/eMkW/IRNMnmNhsnPeAwlilsfPXABYhQcNXmAWQzrpvOQNFWsjWAUjAdNxko0gM+KyUbARlkkvN/9rGz+Myj6r9yvYV33r7Ld7nCwEq1iYPnlwEAL9unWvAzKRE/det2/O8fnMTnnjhvS7KFMVCaX6sDUHT1cmAx2TSSbWW9iWqjhWKWre7Sz9k4GVzRSTZnxR09KPVGsml20Wrd1b5A2zKYS6egyHEr2QSIArrtoi0ZIhRuF3UJEquvZRGTrdrUFFMxkpcDuQxqzTqqTXObPdDZphrLSGzZggAMFrJYMNmGgKVeG/tbVckmY3U9XrtoFEo2K5ItSiWbcVtjGAYavaZkm12rQ5IVZFJCeHbRgJRsJFkBgRcySRAE5phqZHsjyPNnIdnIgqaiKLbltSJyk0Cyxa1k8zJ/8atkszpekGA5Jl0PTs2VcWK2jLQo4Fff+CL8wdeP4R+fOI9/fOK8vv3yehNffP+dru5V0HZREiphfDAX6rjt1l1jeOAxAbNr9cCfj+tRx2233Ybz5887b9jjiLpDI7LjLz91Dg1Jxp1XjOPuK1WFxfT0NB5++GHMz8937LNpKI/XX6sG7fuL+08BYOsMP/f4OfzYxx/CK/7oB/jE90/ga4dm8NWDFyEKwI/ftBUA8LcPn4GiKPj64Us4cG4Z6ZSAN920HU/+xj0YL2VxfnEdXz3YnUWWK9n6G35JNivrGH08u449LrvoekPCd49dhgAFV00Nxp5Js02ytROl+IVZvDVayUZ+o38n30uShKYkd1jNf+NLR/D5J875LlcYeOTkPGQFuHLTQIe15e2aOvfBE3M4bxjQh06yVdSkB4Rk80JIAd11YTCfwaBmXSN2HhaYkWzkuyWKZHOCb5KNJD7wpGQjdlExViVbOp1GShSQgtylZGtIKskmCpxkc4Oc5gOVrGKyaeqxOBWCJC7buoNdlMBYN8l7NlLI6AuaVn2PlV2U/mxUsg3lM0hBwWqEdlFCsqXTaU9EVVCwI9nCjsnWa0o2ljJc1GJ+Tg3nIYrmah7vSjaVZAsq8QGtYgPiI9ncKNm8ujeSqGSLe67nRslG4CUmm5kbIAl20W8dvQwAuOOKcfz7l+3Fn739ZkwMZHHj9mG8587dyGdEPHNuGfcfn3N1fq/ZRa1U1GSRaWIgmIzCVrhu6xAUqAnQmq1gk7i5HnX81V/9Ff7wD/8Qn/70p/HUU0/h0KFDHf/6BXHYRRfKdTx5WiXS/usbXqS/MCShRLlc7iibIAh43yuvAAB85cAFXDAJbH1heb3j+8dPLeD/+coRAOoq///49nH80ueeBgD8h5fvxe+8aT8KmRSeu7SGHxyfw8e+cQwCFNy6awwv2jKE0VIW//5lewEAf/5vL0A2DHC9rBBYfeZIHoJUspnFiqHPYQY6u2iUA/TvHruMWqOJ4UIGU0P5xJBs82V1sBgkyWY16SCf6Y6U7rj/9dBFXFypYWIgh/fcuRsA8GtfOoyvHOjMgJwEEKvoy/ZNdHy/c7yIl+2bgKIAn/9hJ0EYhZJNgKIrzYKKyQYAW0aIZZQ9+YHdAFG3izIkaKDfFS/XRIi8cq2FlkmsPDvUEhKTLZvNIi0KyEDqjsnWkiFoSjYrKyBHN3IZUU98YFbnVZJNQVqwHsiHjQGN3K7YKNno74zPnrgLRovZromLEU52UaA7+/VQIYMUVEuqnZItLLtoGCSeEaxKNnpSTL+HxsUn4/33UvYkk2xelWxknkFbRY37+FWyLVQaKNedkww4ISiSLaiYbHaJD2hyh+V9MZ7Pj/AhrJhsrOUJGn7son6VbGGSbG7sooqi6FbR112ninTuvXErnvzN1+IrH7gbH33TdfhZzYHyP797wtVzCjK7KADMafObicGC6e9BYedYEfl0CpKs4GxAlnQC16OOubk5nDx5Ej/3cz+H2267DTfddBNuvvlm/X8OdyCVLJvN4tD0ClKQ8bprN+PGHSP6NqQBN06CBUHATTtGcMfecbRkBX/14KmOSn1+sYrX/cn9eNkffh8f+acDeOTkPN7/D0+jJSv4sRu24H+9/SZsHlIn63smSvjwPVdhuJjBT9yyHQBw3+eewfTSOjYN5nDLrlH92D/70p0Yyqdxcq6Cb1K+blImuoxe7gVHchE0yWb2t109iCsm278cvIgUFFy1eTCWpAtGEJKNxPEKouMm95ZVySaKYoeSjahpf+6u3fjte6/Fe+7cDUUBfv9rx7oscnFCURQ96cHLNasojXe8RFWzGRMghB+TjZBswSrZAGBq2H3yAzsl29q6Wu8KWWey2W9MNqJYEqBgteZugqXHZKNItjiQzWaREgWkBbnrXWhKCkQAKUGIhQjqVRC7qGRpF5UgAEiLnQRTlNBJtrr6zM0sRGbvGcESIdlKWdMFKRpulGxtu2gGKUHG6nqrb2OyWR3b7txh20WNzyNJiQ+8xmQjJNvWEEi2wXwGYyU1JnUQk2BjDLWNomRz2i/KmGy9RrJ5UbLR12tHqPsFy70k519db+DA+SUAwOuu3Wy67S++4grkMyIOnl/GD1yo2YK0i56aK+O5y6qw6Kop9lBYXiCKAraNqkT+ydm1YI/tdof3vve9uPnmm/Hoo4/i1KlTOH36dMf//YKoV40gpvHcpVWkIeNdd+zu2MaOZAOgq9k+/8R5zK3V9W0+9o1jqDQkyArwxacv4Gc+9TgWKw1cv20Yf/wTN+LNN23D9/7TK/HHP3EDPvcfbtcVA++5Sz3/mrZi9IFX7UUm1VatDOYz+Lm79gAAPv79FzrulZ9VE47kI0i7qHEQxxL/xayjC7seraw38YPn5yBAwdUJsIoCwMQAUbIFbxf1omR78swCnru0hmI2hZ+9fRcEQcCv/8g1mBrKY26tjq8c6LaWx4VT8xVcWF5HNiXi9r3dCSzuuWYzxktZzK3V8TSVuTl8JZtqFy1kUr4UTWZ1YStJfuDTLqor2XSSzTm+mx+7qHruNtFGFHSsSJaSTUTaxC7alNpKNk6ysYMkPmhZvIvVhgQBCjIpewVYmCAZRkniA8Bewd9tF1Xb99FiW/Vl1f/YXZ8ZySYIgm4XrTRakEy6EJY+2S2izi5KYPXeG0k0sm2YJBuB3cQ7LqeHnZLNDhdDVLIBwVpGg7aLsiQ+MIObmGysJJuVko0FUcVkiwtxKdnosXKY94BFyXZyrgwBwM07R7B5yNyGOTmY03mIP/3OceYyG+cLfki2P/zmc5AUVQB0xaZwSTYA2DGuJlc5NVcO9LiuRx1nz57FH/7hH+L222/H7t27sWvXro5/ceKjH/2o3jmSf1NTU56OFXWH9uT5VdRbMkYLIu64YrxjGyeS7eX7JnDjjhGsNyX85leOQJIVnJ6v4OuHL0EUgD/96ZvwiqtUxcbkYA5/+a5bdAXCQC6Nn7x1B7YMtzvGKyYH9O1v3DGC116zueN8gKpWKWVTODazih8832a6/ZBscTfAHM4IS8lGf2ZRstExU8LGt45eQkOSsW+yiImBXCJINhJYuNyQUG9JoZNsZko2QRD077/89DQANabZcFG1UGTTIn5OI+w/9cCpLmt5XHhQW5m7dfeoaRKAbFrUlcTHL7dXtcIm2RYqdYhQUMw5WzDNYLcPGUxdXnNPshknnIqiYFWb/LMkUfAbkw1QSTIB7uOyJSUmWyaTQUoUkBEk65hsYjxqq14FHZPN2P5JsqInlCAkWxzPncRkq9StFRx2dlESk220mNXrRhAx2cjf+YyIYlr9bWm9W00VZky2pCU+MC4qhEGyGc+dxMQHnpVsS+GSbEEmPzCSbF7ViElUshl/o8/rNG7hSjbrffzEZBMolXpcdlFy/lOzZQhQ8Prr7LmRX3j5XhQyKRycXmFWswWVXfSHZxb1uHF3XzkRyQIZIfFjJ9le/epX4+DBg4EWIkhcd911mJmZ0f8dPnzY03Gi7tC+eUy1L103NQABhgGjwcZltlLxZ2+/CUP5NI5eXMX9z8/iG0dmAADvvH0Xfvzmbfj0e1+C73z45fjmB1/WQahZ4aNvug5vffE2/MlP3Qigk50GgJFiFu98qUqq/sUDJ7v293L/OMkWPOr1um28B9ZjLC4uAghPyUZ/tuuE4ojJ9q+H1HfpnhepxHMS1CalXBrjpSwUCFipNgPpuO0SH9gp2S6v1nDkwjJSooD33r2745jvuH0nBnJpnJgtuw6iGhYOTa8AAF66d9xym32bBwAAxy+3O9ywSba5spb4gCFjpxns3odNWlgAonRmgdkAEQAaLQkVTeUcGcmWTgFQsFJlJ9kURUGt1baLei1DECAx2dKQUWt0TqiakgxRULhd1CVy2jNtmUiwqto9VpVsQqSLMjSIXXSNUrJZkSdmz562i46OjmLHjh3Ys2eP6bnckmyEPN88qC6KLJq8W/1gF7WC8R4ZFYVGgtFqAukGVnZRFpItKtgp2eyeE0mqE4ZdFAB2ESVbCCRbmHZRAjuSjTUmmxtlqdk7H6ZdlIUUDqoueIVXmy3ArmSjz0UvSLM+u3q9jlOnTqFW8+Y6sIIoiqg1JZxfWocAOJJsEwM5vP0lOwCoTjgWBGEXVRQFf/C1YwCAm3aOYXwgFw3JpinZzsxXAhUEuC75vffeiw9/+MP46Ec/in/+53/GV7/61Y5/cSOdTmNqakr/NznZHXOHBVEq2cq1Fh4+tQwAuGbrUFeD7aRkA4Bd4yX86dtvAiDg0IUVXF6pYSifxodfe5W+zb7NgxgfaKfWtsOeiRL+5KduwhWTA5bEynvu3I20KOCxU4s4NL3csQ1XssWPRqOBxx57zDPRTHDixAkcOnQI8/Pzvkk2Wv3kRclm1SiHBVlW8NQZlWC8Y+8ogOSoTXZPlKCgre7xcx8URdEHc05KNqME/vFTixCh4M03bsV2La4BwVA+g3doHfVfPpCMcAJntJguV0wOWG5zlSZPt1KyhVHnZpbXIUDBYN6fks2sbJNauz/rgmSjj0uXZ1mLHScIbHZRPzHZCHIZUVOysdtFm5KiZ57MJcAumhIFCFBQa3SSGdwu6g2qXVQwVbLpmUWFeO/rgKZkK1OxBK3GPWb1kthFR4oZpFIpXHHFFRgeHjY9F0viA6OSDQAmimoZFyrWJFsYdtGosot6UbIlwS7aS0o2RVFCjclGH3fGJMGbWwQVky2oxAdR2UWjUrJZlbGXlGzGbaKyi87MzODcuXO4cMF9wjCn6zo5V4asKNi3qYg9EyXH4735pm0AgO8du6z3qXYwJj5gzS5Kl/sbRy7hwPllFLMpvFpz0UXRf08N55FOCai3JJwOMPmB65K/733vw/T0NH73d38XP/mTP4kf//Ef1/+95S1vCaxgXnHixAls3boVe/bswdvf/nbHOHH1eh2rq6sd/wB3clw/UBQFxy6tQlIEbBktYbSY7egA6MmvHckGAK9+0Wa8V4uVJgD48Guv0oOF+oHxxSHYOlLAm27cCgD4C20C7WfQxEm2YFGr1aAoCqpVfyt/ZEXl8uXLgUxUycDCC8lGd3RRTJZPzVdQaUjIZ0TsGFGJiqSQbLvGi1DQTnPtl2QjcKNkO79cw6n5MkRBwS+9+krTY//cXXuQFgU8emoBhzUVWZw4q8V0IfYTM1y1WSXZTsy2lWz0anPQKoN6S8Ksll10MJ/xNagwV7KpdtH5AJRsS5U6REFBLp1CKuVczqDsogD0us6CGpVgIG67qCiKSGntXq3eSRQ2W4pmF+Ukmxu0Y7KZKdnUZ1/KiF31N0roiQ8aLUtCxWp8BbRjEI4Wncdxdko2AjPiZLyovlskvqfZ9kGOzaJOXmR1bCsSzUhOhGkXTWLiAy9KttVaS8/6GZZdlJBsF13EFbUCUbJ5yfiYdLuoEWaEsRXIfSDl8kOyOW3TKySbWyWbX7soed52cf6MYLkuQRBw5KK6aHzvDVuZjnvj9mFsGymg2pDwg+dnHbcPQsn29cOqc+jdd+7GUCHbcbwwkU6lMDmQgwAFRy4EN09xXXISk8fsn19bml/cfvvt+MxnPoNvfetb+NSnPoVLly7hzjvvxMLCguU+H/vYxzA8PKz/27Fjh+05Ll68iEceeQRra/4zUJAJ67GLq1AA3LBTtS/RDS79txPJBgA/f/ce3Lh9BDdsH8bPanbOIMoJmFf0//DyvQCAbxyewfnFqievu9VnDn8wi7HlBeS9XlhY0OtjECSbF7soXfejGKCTxva6rcOAQdUVN3aPq0q2lar/DKNWK4xGJZuRZCMJDW7fPWqpDNs6UsC9Ghn/v753wnMZg8BaralnZLUj2a7cNABBABYrDcyXVWIqTLvoJS3rZz6jxknyo2QDut8Jko12bq3O/L4Y3zVy/KVqAykoyKdFfSXfDn4THwiCgHxahADFHcmmxWMTBCCbipdkA4BUWr1X9Xon0dmQZAjg2UXdwi676Lr27IlNOK77SmKylesty/7K1i6qk2zO75mbxAf03yMFtYyzlW6VaNB9rLH/iNIuyqpkMyPZjKoUs/1ZYDxHkmOyuSHZSNKDsVK2K+N08CSbfyUbIdlyObVfjCLxgVm/4zbxAQvpbXY+VoLHzLnAil5QshHEQbKxqoLJPiwWZOM+djg5V8b0cg2iIODe69li1QuCgB+7YQsA4F818oulHH5ItsPanOvuKydM1ZhhQRAEbBrMQwBw9OJqYMftqxHdG9/4RrztbW/D9ddfj3vuuQdf+9rXAACf/vSnLff5tV/7NaysrOj/zp8/D8C6UiwsLKDZbGJlxR/TWWtK+NdDF/AvBy9isdpALpPCDTvUTHd0g+2WZEulRLzqRZvw5pu26gF//cJupfWaLUN42b4JyArw1w+d9mUX5QgWZjYIL6BjdRFy2U+j59UuGscAnTT4128b7ogHlwToSrYA7KJWKi1jp0knPri81sCjp5cAAD96vXkqcIJfetUVSIkCvnvsMh45Oe+5nH5BVGwTA1kM5q0nroVsCjs06+vxy2sddQ8Ivs4Rq83UUK7LnskKu30mBtQVwYYkMxNVVpPOpXIdacjIZ1KRkWw5LfHBiovEB/VmOx6bIAixk2zpDCHZDEo2PfEBJ9ncIJdR75VZdlGiZCtkusmlKKHHZKtZK9ns6mU7u6g/JZsZyUa+G86p311ejYZkI4iqD7e6v1Ykm9kEkX5m/W4XNSN9na7VKumBcR9/JJuqxl6rt7Bac5cAx1geQrLl8+oxg1CyuSESCGjFmFUZglB+RqFkcxuTLQ5EqWSj93GjZCO/uxEtsVzX/31qGgoE7BovYnyA3eH2I9erJNv3j83qsU6t4FfJtlxt6GP0/VuH9eNE0X8LgqAvRseqZAOA+++/H/feey+uvPJK7Nu3D29605vw4IMPBlaooFAqlXD99dfjxAlr9UQul8PQ0FDHP8C6Uhitm14wt1bHa/7f+/HBf3wGp+ZV7+97796LwaLa4Psh2fwMWmq1Go4cOdJFINqttALAL778CgDAF354Xk9V7+X8cTfA/QZj5+AVZo19XEo2s/OHSrJp9sb924aZswtFhd1aoM4gSDYvSrbvHpuFrAjYt2kAU4P2sR6v3DSId96+EwDw+/96TI+VFTXaVlHneBRXackPTlwud93boJVsxAIzpSUo8JP4AOiuC7l0CiOaGmauzGYZNfYzpEzL6w2kBYmZZPMbk00QBMouyh6TbV3PLNquu17LEAQyGY3obJqTbFzJ5g75TAoKBLRsYrIVM9EN0s2g20UpJZsbu6iuZGMI++GWZCN/DxGSzcRKHnRGPCNZFaWSzQosSragSDYC4/NIEsnmScm2QuKx5bt+C4pkK2bTuqJzxodllCbEglKyGeuI1fZGkP0Ba1LFb0w2gP099kqysRJqcSvZvIwBglCyuYnJ5kXJZjy3EZKs4ItPT0MBcO2WIVf1/Ybtw9g+WsB6U8K/PWefvMyKZDM7n1HpB7RFDbvHixguZkz7rbCgKtnadtGg6qfrkn/2s5/FPffcg2KxiPvuuw8f+MAHUCgU8JrXvAaf+9znAilUUKjX6zh27Bi2bNkS2DGNSQi84ItPT+PC8jomSlnctnsM/+6lu/Dh115tGkTTLcnmB3Nzc5ifn8exY8dMG0Or89115Th2jxex3pRwbMY5pp3xuFafOfwhaLsojSBINrdKNqsBeliQZQVHL6qN/g3bk0qyCSjXJTQl65VQFjiRbEYlW60p4elzy5Ah4rY9Y0zn/tA9V2Ewn8azM6v456emPZfVD9SkBwp2jTiTQ/s2t5Mf+AkIzAJigSFkZdB2UYBKfrDqjmQzHn+l2kAaMgoelGxeycN8RrOLulCyEbtoPt05uI2NZMuq96rZMJJsCoSYA/T3InLaczWzi5IVd/Ls4ybZyvWW5STLahFTkhVduTni0i5qrOOTk5MoFAr6IjK9TSmrvdc1WY+rZdwmqLEZ3W5GFfKBVclmF5NNlmU0WjIePbWI09rCeBB2UTvyw8v4uFqt4sKFC577J6PSkMBRyWaR9MC4Dz2x9oItw/4to0TEkE6nO0gyVtDPkCa+rEgRu2OTY9jt3wtKNlaSLSjC1Su8KNkIoorJRvbxomSzwgMn5nB5tY58Jo29kwOu2gdBEPCjmmX0a4cv2m7rNW4l2e6QJmq4fvtIx3GiItnGB3LIiGqMyekl/7Z0wAPJ9gd/8Af4oz/6I3zhC1/Afffdhw9+8IP4whe+gP/+3/87fu/3fi+QQnnFr/zKr+D+++/H6dOn8fjjj+MnfuInsLq6ine/+92ujxWmku1rmrf5A6+6AnddOYHxgZylv59+0YzZ/4JWspFrqtVqmJmZ6freqqILgoBbd6tW12Mza8zn5yRbuKBXaL3eW3pfekIdhF3UWJ+cYhbQ1xDFAJ0kPShkUrhiciBxJNtwMYORYkZPfhCUko0mZ82UbIqiYLHSgKSondKmwTzTgGCslMV9r94HAPjjbz+PSt39Sp1fnF2oYEKoYNP6OVy+fNl2W1rJFhXJtmnQu5KNhlld2KSp5ObKbCoAqwkhIdnymWhisgFAXou/5cYuWtPsokYlW1wgSjZj/J5Gi9hF4yODehGEZAPUe0ijHZMtZrsolV3UrV10db0JUmVHCu6UbEbs2rULt99+O7LZ9nFIeXLpFPKZFGQIOL/YmSQp6D6W9BNkkSzsPtyJ4DDb1opke/LMIh49tYhf/eLhrv1Zy2/cLujEB6dOncKJEyewuLjIVB67c5rVJ0uSjdEu6heExLvgg2QjVtFMJsNMfNCg64nVvM1qezN4IdlY4xYTcCVb5zmjsIvS6ka6rQuTZLO6rv/7pLqoff32EaREwfW9/7Hr1ZjK33/O3jJqXKiwU+8Z53NA2zl0w7bhjv2j6L9FUURKFLBtVG1jiMCCoNFoYGlpyfW9c13yU6dO4d577+36/k1vehNOnz7t9nCBYnp6Gu94xztw9dVX461vfSuy2Swee+wx7Nq1y/WxnEg2r0kezi1UcWh6BaIA3HPtJv17QWing/ZjF/UD+prPnj3LROoR3LJrFABw7BI7yWZ3fg7/CKJDo+v55s3tuFthKNmc5NRRr4IfvrAMALh26xBSopA4kg2gkh+sN3zdB/o5mx3HqGRbqjagANg2VtS/Z8G77tyFXeNFzK3V8dnHznour1ecWaiiILQwUsygXC7bbrtvk6Zkm13rau+DrnNk0jA5qE6C/SrZzOBVyWacdK6sN5ASZOQijMmWJzHZPCQ+SIpdNKcRHC3DZKwpyRC4XdQ1cukUyFvYlDrbHz0mWzpmko3EZLNJfGBlF13UrKKDuTSyaefyu7Vl09sM5zO2JFvQdlFjXNYoxn5OSjajopD+vdmS8OzMKmQAT5xe7Ery5XZRmewbdOIDMndwk5nQ6hxulGxkkYiFZPPzrLdpdlQ/SjZCsmWzWd8kG8CWIZTe3gin/YOwi4atZDMjZ5OsZGNBECQb3aa4JTqDsouuVJv4zrPqgvKLd40xlcGI/duGsHOsiFpTxjcOX7Lczo2SzZRkIzGwt6skW6FQ6Pg/TJAy7NbmNE+dXer4/bnnnsPBgwcd5w1GuB557NixA9/73ve6vv/e977nmJkzbHz+85/HxYsX0Wg0cOHCBfzzP/8zrr32Wk/HCkvJ9q+a3PKOK8YxVuxMTxsEyeZn0ELvQ+4hfV67gduLd6ok23OX1iCb2Deczue1zBzWCKJDo8mFqal2RpogSDYrJZtVWY0riMbvg8bhadX6fL22qpJMkq2oK9mCsoua2YyNMdmWKk3IELBjbKBrfzvk0im8+47dAIBHT1lnfQ4LZxcqECFjpJB1HMRcuWkAogAsV5uYXesc1AetZNNJtgHvKcud3olNQ+oEZc4k9hLLcUmZVl3aRYOJySZCAFzZRdsx2ZJhF83lNJKtZZ34IEltS9KRSQkgj7JhIMEJyUaefVz3dcAku6gVeWJ850n8wZGS8zsG2MdkMwN9vqFCGgqA8waLDGscIVZ4tRN5hdlEzvjZSLKZKdkeOzWPcr0FBep3X37mgq8xCItd1AvJZrwWt7C6X6x2UaICsTom4K/vDCLDaNQkm1O/Q/Znicnm9X30o2RzO5ezK2PQ4ya3iFrJRp/PbUw2SZJcK2TNruvp80toSDL2TJSwTUvm5aW9+qlbtwMA/uqh045zNC8k23y5jgvL6xAE4LqtaliDvXv34iUveQnGx8ddldcLSFlftEVdXH/wRGeCNpIV3pgd3gmuR/L/6T/9J9x33314//vfj7//+7/HZz/7Wbzvfe/DBz/4QfzKr/yK28MlFlaVwi/J9rVDqg3zx27Y2vViBKlk80OykWCg586dQ7PZ7HpxzLBv0wAGc2msN2XMV7zF/OEIFvT99Vpf6ZXnUqmEgYEBddKb7w5wywpSz40TH6eBgNUAPSwcoTKLAskk2XbpSrbg7KJmA3VzJZuAnVoCATfKXqJ6PXB+OdI2oNpo4fJqHSlBwUgx41jmfCaFndqq1snLax2/sQ4+WaAoij5pICSb37ptVjZdycZIsllNOlfXG5FnF1XVaAqWqw3IjEkzjEo2P2UIAnmtX5UMk7GmpPDEBx4gCALS2v1qGu2iJCZbKl4l22BOfT8UBSBFtFpcNNbLpQp7ZlHj/m6VbEMFVck2vRSNki0qks0OrCSbLMv41wPqgvNQXn0WX3zmgutFTCeFuBF+SDa/4z3jQqZdfWq0ZL1PcYrJZvbZbPulpSVTNZ5Osq14T3xAjpvNZj3Vb5Z5m932RkSpZGO1KtIJGdzUOyeHSVKUbG7GAEGTbKzPAGAfV9vdy6PaPObG7cOeSGWCd96+C4VMCsdmVvHQC/Ndv5MFeMAbyUZUbHsnShjMZ/Tvi8Wi67J6gU6ybR6EIKiCocur7XbGa4xz1yOP97///fj85z+Pw4cP40Mf+hA++MEP4siRI/jCF76AX/zFX3R7uMTC7EbSFZ61kl64cEFXhJ2er+DoxVWkRAGvv26qSyFG4mUEoWTzAnLcyclJlEoltFotTE9PMynZRFHATTtHAAAzKzXfSrowIcsypqenUalUIjlfXAjSLko6+BtuuAG33nqrL5Jt06ZN2L17d5eN242SjWV7P5BkBUcudkqXk0iy7Z4oQlH8x2Qza9vslGzL1QZkCNg54U7JBgDXbBlCNi1iudrEmYWq8w4B4ZxmhSplReQzKSY5Pkl+cHJWJdncDj5ZsFRtotaUIQjAuKZa8apks3sn9JhsHkk2Uqa19SbSAntMNjpJiVeSLZdWlWyyApQd0sgT1LWYbIWE2EXzmpJNbnW+qw1JhgC1D+UkmztktFh9RpKNKNlyMdtF8xk1zgsA1CVzAsRqfEUyi44wkmxuFaOdSrYMZEXA+cWNo2QzbmOV+KBSa+HBE2pWvbfesgOFTAqn5yt6kG7jeVgQlpKN7OM38YGT6o/G5dUaFEWNkThukgXXLcm2srKCgwcP4vjx412/BalkCyImG9CetzUa5pmv/ZBstLDDT+ID1vfYaOemv7MDK8kWd0w2AreLEDRhxtqX0KQTfV9Y1YSA+7BUZtd15ILqyNm/bdjXosloKYufvk11K/7lA6e6fjdblLc7XxfJRuKxaUkPogYp60AupQsrHjjezqYaGckGAG95y1vw0EMPYWFhAQsLC3jooYfw5je/2cuhEosgSDZJknDixAmcOHECkiTha4dUq+idV4xjrJS1XBGhG2u64SUvOgvJ5ofkEkURu3fvBqDGuSOkn1Pj8uKdo1Ag4NIyG8nmtvMNCktLS3jhhRdw8uTJSM4XF4JYNaIDFQPqgKJUKvkqVzqdxu7du7tWKJw6AKuVpDDqzen5MqpU0gOg+14kAUTJpip8grGLOinZWpKE5fUmFAB7JlUSys1gIJsWsV+Tgz9zbslzmd3izLxKsk1qRBZLmUnyg9NzahwGevAZVL0jQaMnB3JIi97JKBr2SjZviQ/I/+VaEykozEo2oDsGk1ukUyIKGZJ4gc0yWmslKyZbIa8p2SS5YyGNJD7g2UXdI5PSlGyGmGzEKpyNWckmCIIel63e6m5X6c/GMhKSbYwhsyg5l9uyEQzlzZVsfpQPZjD2oVGSbEZYKdmMZXvizAIkScLEQA57Jgfwhv1q2IwvPdPOtOd2vGsk2ewSH/hR3biF1RjL7jlNU0kPzMrqdpxP7Fi1Wnc/tVWLyXZppQaJUdFshJld1E39M/YjxPljZSNz6nfsEh/Q8z0/SjavdlGWfeht+knJRl8HfQ/8xmRjUXISuFWymZJsmljguq3DvhdNfv7uPRAF1Up5bGa14ze6rCwxN43tm55ZVCO4ogZd1pfvmwTQaRmNlGQDgKeeegqf/exn8Q//8A945plnvB4msQiCZKMbzVarhX/VraJbOs5hjMnWarUsgx/SNqWgJwv0cScmJlAqlSBJEi5dusR0vhfvGoUCYGZlPdFKNnJPvQSW7CXQ9zMIu2jYcOoArCb9dvt4BWnwr9OSHgAJVbKNl6BAwFq9hRqjwscMTjHZ6Gczt6oOcFOpFLaNlrr2Z8HNO9uW0ahwdkFVrk4U2+2sE67SlGxnNJLN7eCTBSSezdaRArMlwQp2bXRQSrZqrQZoJBt9P+zgx+JN9hkqqOdaZiTZ1omaKSEx2fKZNFoQ0ZKVDpKtKckQBG4X9YKMRqI1jCQbickWM8kGtJMfkDJaKZS6lWxqHWFVsrm1i9L3ZLigZqk+v1i1XFwJAklMfEBAytCUFHz0q0fxNw+fwam5Mh45OQ8BCq7bOgRRFPGWm7cBAP7l8IxO9Hgl2ewSH9DkittzeL2fXpRsF6n+y+6YVp+ttje7J5sG80iJAlqy4jq2KEHQMdnCVLIZiQuvSiTW94wef7i5N72iZIuLZPNqF2Wdo1rdy+VqQyfBr9XaL1IGRVGwsLDgKknKjrEi3ni9yl98yqBmI3WVrgMs2UXJtiTR3A3bE0CyXaWSbA+9MK+HJ/GqEnY98pidncWrX/1q3HbbbbjvvvvwgQ98ALfccgte85rXYG5uzvkAPYIgSDZ6m3Pza3ju0hrSmlWUPodRyQa0LaNGJtuJZAtCyUZeEqJmY5343bRjBIAanLpcc35x41KyeWWkew1B20XDhlPdjTImG4kPsJ9aVUkiyTZazCCrKXUuLHu3Xtop2egBgqIomNHOMzVU0O1abmOU3axZy585t+y5zG5BrKljRbXMLKuEJMPo2YUyFEVxbaNgAZ2ZzS8RZPcOTQ6oKoDVWkuPV2YHM5KtKclQJHXgN1DIMZMXfpRsOsmmBZFfXjefzBhR0+yiSVGy5TIiWkoKLVnpmJDRiQ84yeYOTnbRuJVsAByVbFaKJZL4wE1MNje2bHqbwXwaMgRUGhLW6q2ubXo1JpsZsWX8bOzv/vXwDP7ukTP46sEZfPXgRUwvVpFNAS+aUiepd105gU2DOdfhDsyukcUu6oZk82sX9aJks8ssarYPK9Fjdg0pUcCUlsDngkfLqF+SzSrMj1+SzWw8Qis/nQgsu/O5VbJ5Jdno0BBOSrY44IdkqzUlnJqvwOkS6GPHbRc9elFVm+0aL2K4kOm4poWFBRw+fBgnTpxwdY5ffPleAMBXD17EJSo2otn8iKUuiKKIy6s1XF6tQxRUMjAO0GW9eecIBnJpLFYauhIwMiXbL//yL2N1dRVHjx7F4uIilpaWcOTIEayuruK+++5ze7jEwuxG0qwyS+WntzmqsbTXbBnSVybNYkAYg2jGpWQDoKvZCJzON1zIYJcWCP3covPgI26Srd8RhDQ7SoukU6fOomRTFAUnT57E5cuXfZXloKawoldVkkiyCYKA8ZKqUJpmeOesQLdVZiQbfa8vaSTbttFCR71w814RQv7YzCoT4RMEiJJtpGAfaJjG3skSRAGo1Fso11uuB58saCsB8oEp2cze96FCGtm0elwWFYDxGIIgoNaUkIGElCiglGeb/APBkGyDOXdKtmpTfb7FTMp2sh0VcukUWhAhGUi2RosnPvCKrIVdVCfZYo7JBrQzjNZa5godo6OBYLGikWyM2UUB877RCvT5MikRJS3Y9GVq4hRVTLY4xmTGtlKWZU25tggAePlVkxgpZAAouOdFm1DIqtkdU6Kgq9l+eGapQ7Hi9twsJJubZ2CnAmOBFyXbhYCVbE5E4TYfcdkURelIfBCEko3VLmoFFiWbG+Wn2W9cydZ5TrcWbFmW8c0jl/DlAzP41IPd8choONlFw0x8YLwukrxt/9ZhvRykDCsr6m9W5LAVbtg+ghfvHEFLVvDtZy/p35u5nlhINkFox2Pbt2kQxSybOyJo0H1RJiXijivUjKYPHJ/reJahk2zf/OY38clPfhLXXHON/t21116LP//zP8c3vvENt4frKXiJyUbw/MwygHZqWsB8cGVMfuCWZAtKyUb+p4PTswxUr982AgA4v5jcpAIbUcnWC3ZRt0o2GmSf9fV1nD9/HsePH/f8fGtNSVey3bprTD9+Ekk2ABgf1FZ2l4JRshnfD8Ew+Z9b1Ui2saJnZde2kQImB3PIKXV8++EnTeOvBI2zmupguNBWsjnVkXwmhf3bhiFCwbnFqqvYGqy4EKCSjcBqoO0mw6iZkq3WlJERZOTSKb2vYkEgSjZiF11nI9nWamrfOZjPJKKtz6VFNJVUF8nWlGQIPCabJ1jHZFOffVa7nclQsnmzi7Iq2QB312k83+Yhlby4vNpuG+i2Loh3KMlKtsVKHd999jIUqLGH/usbr8F77tqD//6W6/FLr9zbUe6fv3sPCpkULqzU8MJs2RUBRqMflGykX90+Gr5dFGjHZZtZcU+ySZKkHzeMxAd212bV99nFZDOOOd2MPfwo2dzYG437sSrZ4iTZWEBfx8HzizizUIEM4C8eOIVK3XqB1skuylr/Af920SOaku26bUMdZZNlGeVymak8NMhzfp3mxvvesVn9N69KNkEQ9LAx18dkFSXlANrlIpbRB07M+yKHXY88ZFk2DXacyWT6SiFkdiP9kGwvXNYquwnJRjeGxuQHXkk2q2uwg9lxSaZRgI1cIPa68z2gZEvCxCtMBKlkizImmxclGwEpryRJrldoCJ45t4ympGDzUA47xgod5waSR7JNaMTJxRDtovS9ntfSWm8bHXAlg6chCAJu3jGCCaGCE2cvhh5qoNaUcHFlHQIUDGvKErJC6YRXXDUJEQrOLlRdr/Cy4GIIMdms3ne3cdnoY9JKtgJjZlECcj1+yI6hnHq+lSrbe72qkXGD+XQylGwZEU2IaMmyiV0UEMVkJVXpBViRbImyi+pKNvNxR1B2UfoYbpVsgiBg87Da111arXV8byynH8RJshlhnAz/2XePo9qUsGW4gP/8+qv13/MZsWtBfNNQHv9Bs009/MI8Gi12+z19bnribby/Xkg2r2oL4/5ulGyn59UF9b2T5gmxglaytTOMul+YI/MpQRA8xzizItkURbFMXkBvb0RYSjb6fKzvmRfllfGc/aJko7f5ay3+mAIBi5UG/v6xs477WZFsYSjZzMoMAEctlGyKoqBSqXSdzw6nTp3CQw89hHK5jNe8aBMA4NFTC6hqsaDtSDa7mJOCIODJs6p6+JZdo0xlCQNGEvQVWvKDp88uYaXaHi+HTrK9+tWvxgc/+EFcvNjOrHPhwgV8+MMfxmte8xq3h0ssgiDZ6G1Ozaok27Vbh7t+NyPZms2maaMdpV2U/H3ttddi27Zt2LRpk+MxCBM9s7yOy6v2nWBcJJvfgUivIEiSLYpJCquSzckuSkA6Ebd44rTa4L9kz7h+DrPMOUnBxCAh2byntTdr24wDJ3IvFsrqeXaMq9lh7TKk2eGmnSMQBQWXV2qu93WL6aUqFAUYzKVQyLSfH8tK4SuumoQgqEo2CKKngbkdLmiTha0BxmSzAlGyzTFkGDVTsq03JWQEyVVmUSComGzqMVjtom0lW0JINgu7qK5k43ZR18ho9uemgeQgiQ/Iqx7nfSU255qDkq07uyhJfOCezHY7iUylUtisxbqix210mYIYL0WdXZTA7n4oioJnZ1bx5JlFpEQB77lrD/KZzkyOZosfv/DyvShm01heb+KLT533VBY7Jbgfki0qJVul3tJJ2b0TA7ZlsvpsVQYrpfkWjWTzEpPNeE+DULKJYnvBycwyGjXJZoYkxmTrFZJNT34iAHddqRIvn3rglE4uWe1nbDdYx430726VbPR1rdWaOKUR4ETcQ55prVbTxyCsdX91dRWyLKNSqeDKTQPYPlpAoyXj4RcWAJjPFVnqgqS0E6Ddtjs+ks1Y1p3jRewaL6IlK3j8ZHeWUVa4Hnl84hOfwNraGnbv3o0rrrgCV155Jfbs2YO1tTV8/OMfd3u4xMKsUtAV3o2SrVJvYaWiBvW7Zstg1znoF4O2i9KEGvk+aiUbAJRKJezbt49pUrVrfADjpSxasox/99ePY6nirDqIaqBFsFGUbL1mF2VVsplNJMxItmrVm7Lrh2c0ko1q8I0BaJOESc0uenHJO8nmpGQj/zdaMqp1dfK3c0wdVNtlSLPDzTtGIULBzMp66CroM/NqXdg9lu94fizk3k07RjCQFVFrSji/tB6okq3WlDBfVgfm2yglm1+SLQglm9nzrzUlpCDHQrINuLaLEiVbZznjI9nMEx80JC0mmygkjsBPOnLEaiV11neiZMtojzoJdtH1pvnintm4S1EUfew0WgpfySaKIjZrbcPlCJRsUWUXZRkrK4qCB0+ok+hdY0VsGy12/W5GhA7k0rh7X3vSveaQ7MtOYQRYk2xuLIJ+7aJOJISxDETFNl7KYtiCDDYe041dzmzbbZpd1Muioh/7pbFMZvM2M/cEK8lml/ggKCVb2CRb0pVsBG5Itq88cwECFFy9eRCvvmYzdo4VsVBp4LMWarYg7aJuY7LRODazBgDYOpzHuLa4Ssq2trZmu68Z6HmzIAi6mu37z13uKCs9hmHJLnp5tYZaU8ZoMYMrJs2J+ihgVm9frrXvj7zQJtlCV7Lt2LEDTz/9NL72ta/hQx/6EO677z58/etfx1NPPYXt27e7PVxiEYSSjWw/u1ZHSlCwd3KgI6ifWcdN20VpUo98H7WSzS1SKRFvumkbBnNpHL9cxnv+9gmULfzrxuvnJFuwCFLJlqSYbGb1MyiSrSXJePrcEgDgtj1j+vdJjccGAJOaAmGhXOuyTbHCKSYboL6ny9UGRMgoZlIY1mxMXkmnG7YPIyUoWKu3sLDmnSBkwRkt6cHO0XzH93QbqyiKaTrzdErEDVpMiyMX1wJtr0h2pmI2hZFixrRPcAOnd4hkGPUTkw1QLVRRk2yDml3UrZJtKCFKtnwmhaaZkq0lQxR4dlEvyGTU+9UwTEbWtWQq6STEZMsTks2cADHr18r1FlqyWmfHQrKLsijZ3NicWGAkjoJWyrkBff0PnZiHAAU7x4pd99BKyQYAN+8cxWgxi6VqA//4xDnb85ldn9X9pSforEo2+veolGynHKyi9D6s/abT4vBWH4kPjGqbIJRsQDAkm5lqiXxn7D9dq2lc3nu3JJuXmGxxgGWO+2/PzeLG3/k2/us/H8LXD83gybOLEKHgtt1jSKdS+MCrrwQA/OUDp7BiMhZJil2UJD24blvbPUfKQLt8WJ+JcY71Kp1km+1oI83sombnIZ/PL6rv8a27x2IVMJiSbFpctkdPtcPZhE6yEbz2ta/FL//yL+O+++7DPffcA0VRcO6cfSfTS2Ah2VgbrLm1GlKQO+Kx0eewsouSBjadTne8oFEr2dxiuJDBO16yA6PFDA5Or+D9n33KtsHlSrZwECTJlqTsonaWGL8k29GLq6g2JAwXMrhqU1t1mmSSbbiQRVoUoCgKZjzEKQHMLUxmSqbFagMiFIyWsl0DVbcDglIujalBdXBKYlaGBaJOvGpT52SALvPx48fx8MMP6wFhaRCS7fDF1UAnnXRmNkEQAmuDw1SyAXCtZJuamsLY2BhTyAErELvoqs/EB3Er2QCgWmvff24X9Q6SXdSoZNPtoqL6rONst3Ulm0VMNjNinRDJubSIQpa97G7qT7eSTSXZLq12tg1B2uOtYrIB4YzHWMbKjZaEJ84sQgCwc7xkamW1Ip/SKRE37xyBAOAbRy6BBcaymPWf9L3wQrJ5vZdW98uSZJtT+8o9E87x2IIm2ZaqTf09Z4WVks1IcK6srFha9czukV2GUac+nXYCGK83KCUby5jFqNjsRyWb07NYqzXxq188hJX1Ji4s13B8dg0CgJfvG8f4QA6iKOItN2/DzrEi5ssNvP5PH8C/PT/bcQwzdSp9X6Kyix65qJJs+6kQVU5zJpZyke1funcchUwKl1frOHpx1TYmm9l5yOezWvz2OK2igPm79dK9Y0iLAi4srusxUkMj2VKpFD74wQ9aVpDZ2Vns2bPH1cmTDCeSDXB+Wcj2c2t1iFC6SDazFUx6RYTsb0WyebkGlu39TELIvuOlLD7z3tuRz4h48MQ8vv3sZct9op5YbBSSrdfsol6UbMZ9/JJsJB7bbbtHIYrdtsIkkmyiKGIon4EgqLHHvMDYtpmRbKIoYqnSjhNE3luvdlEA2KEpy87MdxNbQUGSFTx6Uo0b8eIdnW0wPYhZXVWJvuXl5a5jXKfZ/F+Yq1gqUryAJtnoY/pVslnBf3ZRbyTb0NAQbrjhBj2JjhvodtEssYuyJT5o20XTgfRtfpFLq4kPAKBWa2eiUxMf8OyiXpDR2h5awasoih4vJwlKtkGiZGvYx2Sj6+aSh6QH9DHcKtlokm3WEEs3SOVuEkm2M/NlNFoyJkoZjBYzrpRsgiDgiskBCIKaMMkuDrFVWczIDPpvVpItyPGelZLNiHbSA+d4bF7scmbXMZTP6HEOL7rMMGoVk40e7ywvL+OZZ57BiRMnbMsXtJINME90Z1VeK1gpJp32o+/1Ro3J9v9++zgur9axa7yI//z6q3HnFRN47TWb8P5XXAFAi7+XEvG/3/li7Jko4dJqDT/3tz/Er3/pMGTZmlR0cz+9KNnM7uXRC+p4dv+29pjXrB/0qmTLZ1K468oJAKr6zy4mm9l5yDt3llKyxQmzejuYz+DFu0YhaInPjL+zgHnkoSgK/vZv/xave93rsLi4aLlNP8MryTa7VkcKSgejDISvZHMLv/GAjPtev30YP3+3Srz+j289D0nufsnofaJWsvU7glSyJTEmm9lv9HUaLdcseOIMIdk6G/wkk2yCIGCokIEABdMe47KZWZjMlEx0xjs/lguCqSF1cHrRIznIgqMXV7Baa2Ewl8a+yWLHb3SbTqyiZgkzRosZjJeykBQBJ+fcZWWyA7G8kDgzfskgp7bUi5KNPjYh2QqZVMfkIEzoJJuLxAeSrKCiqRySQrKlUyIUMQVAQEuW9frWbKlKNpEr2VwjSxIfUCRbvSWDDDVSonWfERVKGiFQ1d4dqxV9um4uavHY3CQ9ANwlPqDvSSqVwtRQ20pOj9XCtIuGTbLZgZz7xKy6wHP91uEOxQkryVbKpbF/q7oIY7eYbHV9ZotURsLDbn+z4wcdk81ayaaRbBEq2QDvllErJRt9rvV19ZhWi7TGe/T3j53FR7/2PFbWm7YkmxUEoR2L02qO6SVRiFslG/2bW5t4rynZzHB4egWfefQMAOD33rwfL941hpfsGcPP3L4TY0W1DSf3ZP+2YXz9vpfh5+/eA0EAPvf4OXz/OVXRZqVk8/Ieu52/kHPXmhJe0FSm+03sojRY2wozccprrlGdCd+jSDYrJZvZ4tJStYlyXUIuLXbxI1HDqt6+4qpJiCTxmcnvTmAeeQiCgO985zuYn5/HrbfeiiNHjlgWsh9gdiOtVhmsIEkSak0JK+tNpAQZ11rYRc1isvWqXdRYUX/h5VdguJDBidkyvvTMBdvzRU2y9TspHESHlvSYbMa6atzXjZpNlhU8SUi2PeYkWxInwYIgYCifhgDgvEeyisUuKopih8LCqGTzkiF0shQ+yUayH92+dxww1A/SxipKO5OzGckmyzJ2jZegQMBzl8r6d35BJglbh4NVslm9Q5NaJtr5ct105ZWGuZLNW0w2P9BJtlybZHNqz8q1dl9N20XjHqOQDKN08gNCEHElm3tk0+rzbFEkG20h035OROKDqkNMNjO76JiLpAeAPyXbxEAWoqAS1AuVesdvZuX2AqvsokB8SraTs2QyOtjxPW3vcmqXSYDsbx91toy6UbI5KYNoBEGyuYnJpiiKbhe1iskWFsm2xWPyA7v6R85FtjGLzwp0ztv+7flZ/D9fOYKDFyv4/nOznuyigHVcNuOY16td1K2SzS3JxhKTjR5TOpUlLFg9i3pLwm98+TBkBbj3xq14+VWTjiR7IZvCb/3YtXjXS3cBAL6pvftOJFuYSjZy7qMXVyDJCiYHc9ikjfnMrtt4PpZz0Nu/6mqVZDs4vYxlrc9wYxe9uLwOBWpyMbJgFhes7Lwv3zcJAQrOL1UhyYrrttWVkm3Pnj149NFHcdttt+GOO+7AF7/4RVcn63W4VbLJsqwrBsaLaYwYpP92suNWq6U38m5INj8Ig2QbLmTw/leqUtv/+Z3jqLe6G42oEx+YNRb9iCAGXUmOyQbY20UBdyTbC3NlLFWbyGe6V1WSrGQTRTESJRsgYEmb/I2Wsh3ki9kxWDBeUoma1fWGrpILGo9o6bfvunLcMuYJPZGqVqtd9UiWZeweL0FWgGcvrXUMvPyA2EW3jaokW9hKtgnNLtqSFZ0wZT2mKIp6QHm3dlE/IOcvaXbRhiTrZJ8VVjWraD4jIpsWE9PWq3HZREiyrJNsLUkLbi0mk8RPMjJpYhdtP1+iGMumRJ1UT4JdtNqwj8kWpF2UBcaYbOmUqLcPl1faZAFrLCEW2IWfiOMdrdRbuKxZDskiuJuYbGSbl+1TbVOPnlwwDYZOjkPvQ8BKsjkhiEVVN0q2ubU6Kg0JogDsHAuOZGMhGbZpSjYSNJ0VVjHO6POSbcxUafR2l1dr+OA/PgNFAVpI4exCBQfPzpvuYzyXEaQ8ViSbFyUbDdaYbGTbsJRsccNYvx84PocPf+EAbv297+LQ9AoG82n81o9d07GN3fsPAG+8fgsA4LvHLqvxVannTM+fWNpRIxHp1S564PwKAJW8MlM0Au04gn5ItqnhPF40NQhFAZ6fUc9pJNnsSFeVZBO6nENxwKqc120dwmghjUZLxszKenhKNoJCoYAvfOEL+PVf/3X89E//NH77t3/b7SF6AmY30otdlJBs24ZzXb+bKXPS6bT+mciWU6mUJ5ItCUo2AHj3HbuxeSiHC8vr+Nzj7eQYXMkWLoJYNerlmGyAO5KNxGN78c7RrlWVJJNsbbsocH4xvJhsC5UGmpKMTErESKEdk80ryaYoCjKiGmNFgILnLq057+QS9ZakJz2468qJruskg1p61brVanUNsGVZxtaRPFKpFFbWW1iuNgNSsqkxfIKKyUZg9Q5lUqKujnGKy2Z8/p120XRkJBtBISMipcVJXHFIfkAnPQCC6duCQC6tZhhtSe1MtpKuZGOfUHOoaCc+aL/X61o8tnxGDOx98oMBLStutdEm9GmYk2zt2Jdu4MYuSm9D+jWzDKNhx2QLc/znpGQ7v1SFAODaLUN6nC+3dlFAtftftXkALVnB9583t4xaXZ9Z4gMWZZDd8aNQspGwCTvGipYqFDOSzU3gd6ttSaKFUy5juRrHs2ZkEr3wZkZyKIqCpiTjf3z7OFZrLdy8cwQ/e6cqJPju0Qso15pd25NzWcFKyWZcWI5CyeZlXGck6MzOZdXuxQFBEPDE6UW862+ewJeeuYC1egubh3L4k5+6CZsGOzPQO5Fst+0ew3gpi+VqE0+cXmSyi1pdu/F7FrsovQ8594HzywBUko0GXf7BwUHTc1rBqh68RHP9nNCSlxnnSE4kGwDcGnPSA8C6nKIo4JadIwCAcwvdC/BO8Dzy+LVf+zV85StfwZ/92Z/hLW95C9bWgp8gxYmgSbatQ90rklbKHDJ5IQRBVDHZgpyI0PevkE3hg6+5CgDw1w+d7tqWJz4IB71mFw06JhvATrKtVJv49CNnAHTHYwN6gGTLh69kO7+kTrw2DeYgUtY2r3ZRcs6JgRxEKDg2s+qp7HZ4+uwyak0Zk4M57Ns00FVGK2uI0TIqyzLSKRFXbh6EDAEXPaxoGaEoSlvJNhKsks0OxD7gFJfNTMlY05TIA4VsIP0EC+jzDBfUvtGZZGsnPQASRLJlRMiaXZQMoAnJlk6lYi9fr4FM7luU9ZmQWcVMKhkkm1YHyxaJD8wWj5Yq4Sc+MCrZAFAZRrtJtjBistFljYNkO6cFs37ZvgnTRQVyDBby6fXXTQEAvnXEOi6bWVnM7i8LaWFEECSbGyUbIbis4rEZj8d6HSwk2xVaogUSE44VZuM4K5INMLeMKoqaSOns4jomBnL45DtvwQdfdw2GCxlUak382fee69oe8GcXNZJsri1rLmKy+SHZnJRLdp+jAF3OJ06rYURu3DGC//u+O/Dor74Gr712s74tq5ItJQr6ft88csmRZKPLYVU+ArdjanLugxrJduP2EdPfATUZFV1GJ1jNsch86dSsOn5nIegBYKFcw/J6EwoEvHhX/CSb3WLSizWS7exiiCSbWQPxIz/yI3j88cfx/PPP45577nF14qTD7EZ6iclGJjKbB7tXJK0aX0KyESWbW7uoH2WJ3XFZYOXBfvNNWyEKwPTSur5KaqZki6Lh3SgkWxCDrijtok6DMLsVOgJjZ2gWX8uIWlPCf/jMkzgxW8bmoRx+5vadXdskmWRT7aJqTLbLazVTS7YTWGKyndMIvKnhvH5e+n+3dYxsPzmYDY1k062iV4xDEAT9OZJrMlOyAeYkGwBct20ECgRcWqn5nnQuVBpotGQIQntyG3ZMNqAdl82tkm29JYMcdqCYt9otcHgj2TqVbGbHigO5tAhJESDJCiRJ0lQRap0k1kcOdmTTxGbVHZOtmO2eSMcBEpOtISloyd3Z4c0Wj3S7qMuYbF6VbG2STWsbKJItDLtoVCSbE84tViEICu7eN9FFdtKTLieSDYBOsv3g+GxHXEACq/G1XeIDNyRbEIuqbpRsp+fsM4vS2wetyCMx4E7PVxxji9IIgmRrSjKenVmFogAfe+v1mBrOo5jL4NXXqLbBzz18Cicut0Unbki2IBIf2I2TwyLZWJSXSVCy0ffm4LRqb7z3hi24dfcYRNGcWKb3s+pHXr9fI9iPXoIsK13320iyWd1Ts3Ambt4XQE2aQ4L0X799uOO3IJRsxu2Jku3SShX1lsSsZDt6Qb3/W0YKGMpH64owg927dfN2lZCcXathzWHsaYSrmGxmuOqqq/D444/j+uuvd3XipMNOycaq3FhvNLGoDZYmSt2VyGwFE2iTbLWaOtBxS7J5VZaESbKVcmm8aEqtqE+fXer4nSvZwgF9fX4HXUlQsrEM0Mn/pZI6CKvV7MkQSVbwoc8fwBNnFjGYS+PT732JTniYnTuJJJsgCChkUsinBShK24LICkVRTAd3xvbgjLbqvyUgko2cc2IgB1EIxy768AsqyXanlmqcnJOOfQl0D6aNCkiy33VbR6BADbjsd9J5QSMtNw3mdEVOUEo2u/ed1O8Zh6DRxrIQC1suLaKQczf59wP6moZYSba6+vtQ0pRs6RQkSsnWkhWIUMuWSWDbknTo2UWpd5HEZCtmzWPRRA1CsikAmq3uWI5mdZMkPhh1aRf1qmQj/dqUjZItiPGS2aJdXEq280vrKNdbSItqTCA7ax4L+XTd1iFsGymg1pTxnWPdajar60tS4gN3SjaVZNsTg5Jt+2gRmZSAekvGxRV29b5Z/XNLsh29sIxaU8JIKYtXXT2pf3/tjnHsnRiAoLTwW1850jUm9aNkMyN+rWD2G8t+G03Jdlgj2W4wqL0IWJVsAHDnFeMYzKUxu1bHM+eX9X3NYrIBzm4dGm7m8Sp5uAxAJaLJoqTxmkRRRLFYtD2vsVxWSrbNQ3nsHi9CUBRcXK5ZkmzGaz6ikWxX2JD0UcKufRopZjAxkIOiAM/OLLs6LvPIQ5ZlbNq0yfS3wcFB/Mu//AtOn+62AvYqzBoEUkkICebU+Jy4tApZUTBcyKBIxQcxnsPY+JIJIPk9apLNz4DUriO5WZNcPn1uyXKfKJVsUZ0vLrBc5/r6Oo4ePWpp905SdlG7em/sAHK5HFKpFBRF0RWhZvi7R87gm0cvIZsS8ZfvulUngo1IspKNDGwmNNXDtMtMnfT9JoM9o5KtUm9hZkWdeE0NFzoGU37topODql30+UtrHVkC/WKt1tRXK++yINnIZzK4JddkpWS7YccIZAhYqDRcr2gZcdFgFaXPE1ZMNgDYPa4Ork4v2Ks8je8bIW9HCtlI47HR7QIZNDolyWgr2ZJGsomQ0VayNSUZokD6+eS1LUlHlgQMN8kuWsp0EzlxICUKKGZTUCCg0epWspnaRSNIfGCuZCMx2cLJLpokJduT2mLvtpE88plUVxvhlmQTBAFve/E2AMD/+u7xrr7Mqg0KimRjIaecYLXwb0qyOWQWpbenlTxBXEdKFLBrXIvL5sIyarZYakeymSU/IDbDl++bRDrVrg/ZbBavuHoSpTTw2KlFfPXgRQBsfU8YiQ/M3m8WJZuR0OunmGzknEuVBi6t1iAKamB7M7gh2XLpFF59jcqPfOto2zJqVPi5meMYiTqnayL7HTi3DAC4yYQ8zOfV9n1oaKjjHXBD4Jtte9vuMYhQw5+wK9nUcl652fz+Rw27ZyPLMnZp4+bnZtyJAQJd3tu5U7VZ9QNxYbwGuqKTCZojyaYFAtwzXoIgCI5BLQmME5h+ULIBakB5AHhaawTMrj9qkq2fwbKyOTs7i7m5OczMzHT9Rte1KJQAQSrZ6JUau7hs3zqipt3+z6+/GndcMW65XZJJNnI/JgYJyeYuLht9v61ItkPTK5AhYDCXxkAu7XoAZwZyT4cLGeRSapKCMw7Ejxs8cXoRkqxg93hRJ7LIOUlmJaOSjcSpqFQqpu/P2EAem4fVY5H23StIPLatFMkWhZJtt6Y8ODPPRrIRXNQyDo4UM5EnPSDlGXFrF80lLPFBRoQE4f9n773j5DjK9PGne/LmpF3tanelVZYsybYkW84BG2MMGEwOd6QDzoCPYO5M+h1gc0c+DHyPeBw5nAFzJBvOARsnybayZGVpFVabc57Yvz96qrempqq7uqdnpkfa5/PRR7Mz3VXV3dVVbz31vO+LRCqlJ9hIpEBaNO8uah/BQHpxyonJFkm7i9rJ0JgvlIf8SEFBNJkULjYz3EXTMdnsJj4g76XM+8lTsjVVixMfuEmysRnogMIr2Xak7dDFdWXcY+2SbADwrmuWoqYsgOMDU7h/Zxe3TSKSjZf4wKmSjZ6/7cDK3iO/xxIpnEnbGWZKFCdKNllFHokFR8g+GfDsOJYQMVOyjc3EDTe369c0ZfwWDAZRHQngDRt118F/e+AgxmfjUs/BS4kPOoem8eKv/g2PHxnI+N4MTpRsxQBpw5F+vc8sb6xAeVppzMIOyQYAN6fdxf+SXlMA9olL+j6KiFfROQREyXZRWtRCo7y8HJs2bcIFF1xgS9xiRbJd2lEHVdHQPTKTdY945PrYdBynh/RnsHJhpWndhQL9vHkE8eJ0BuXDvWO2+rLUynnNmjX4xS9+IUxpTHD06FG8973vxRe/+EXpBngVIpJNURRjQDQbfDRNw4m0X/7i9GTAy+BHyqRhRrLRPtolR7KlgxvuOzuWsaNbaCWb1YBxrkBGyUaO4fVl+rtCKtlkJiD2HN4xViTbVDRhqCpvuqCJewyBl0k2cg/q0y7pdjOM8p4zS+bvPjOKlJYdj43+7FTJpigKGiqCUAAcsLlLZAaiYqMTWYiUbDTJpih67DZ6vqONrJVNulGQK8lGlGFuKtlkxu4laQUAcf8VgX3fzqaVjNUFJtl4SrZxC5Jt3KuJD/w+JDXVULLFkinDXZRWRcxDDiGS+CBDyaYvSsr8mQubYqIy5DfcRUWLz0wlm95/62zGZGtvb8eKFSvQ1GQ+n7H1sTHZ+s6RmGyi917TNDzfqc/9bbWZmZ1zIdmqwgHccf1yAMC9Dx81sjGbtSUf7qIyx/Mgq2Q7PTyNZEpDedBnJNIxa5NTd1Ezm4LEgjthsVlEwywmG2mXGcn24L4eJFIaGspDWeQi2bh7yZoGLG0ox8BEFPc+fERq7nEzJhsPMkS5pmnoGpnGD585haP9k/jFc10Zfd8MpRaT7UifTvCIXEXZc2TssmtXLUDIr+L08DSG0+O36PlZCQlonsGuXS1KekBQWVmJQCAg5b7K+5333LZ01EOFhr6JWSSYonj94fmTwwB0pXZteeHi+5rB7P1MpVJoqQnD71MwPhPH0X75dYqU9fHNb34T9957L5qamvCGN7wBX/7yl/Hzn/8c999/P77//e/jzjvvxKWXXoqLL74Y1dXVeN/73ifdAK+C7UiETfb5fFID1tH+SUzMxuBXFWMSt/K3JyALQIJzRcm2pL4MdeVBxBJ64FCCYsVkA85tkk2GTCTf8/oyTSwXYnFq5U5gR8kmQ7I92zmEREpDW13EcD0QoSRItrTqwa6SjRc3glWy7To9Ag0Kl2TjBW62Uy8wl2H0kIvJDw5062XR7gBWSrZgMIhIRB+vaZdRWoGxMu1SfLxffgedh+4iK9mGp2KWijC6TNKviuUuCjhPfOAdkk3NiMkWT2pQoMGnKp4cW7yOUIDYOlRMNqJkC2TGFiomKsJ+aJqCaCJbycbagbPxJGbS5EyNTXfRYDCIRYsWGQs0M/A2SkhMtpHpuJFAx62YbPScUmx30eMDUxia0u1zEmPUDSUbAPzdZYuxqCaC3vFZI2M5ewwNs8QHTskp3t8yECnZWLueqMc6FpSbjqm5kmymSrYF9t1Fc43J9r87z0KBhtXNlVn3yAjzk0zg7ldeAAD48TMnMTSpK8BlSDY3sos6VbK9cHYUf9jdDZKzo3ssit7xuZjGyZSGY/0T3DKcKNmKSrL1E5KtWngsj4Qym0vKgn6jPLKB6lTJpqqq9Dqevo9dI7MYmY4j6FOxutlcIeamkq21NoyqkL55uL870y7m9YfnTg5DhYbW2ogn5mfA/H6kUin4fSpaa8qgYC7Wswykru5FL3oRnn/+eTzwwANYuHAhfvGLX+COO+7AW97yFnzmM5/B0aNH8da3vhVdXV34whe+YLjclDroG006Okt4ifDXg33pTlSGcChTNcGWb6Vk8/l8QoUJD8Uk2XjlESiKgovbagDoyQ+KpWQ7H0k2q0Gddx9EQTvzBSdKNvY3HskmyjD61FE9tsZV6XhdZvAyyUbGo/q06uGMzZhsNIHEI/MBYNeZ0TTJFsmok/5s16injyckm5sZRklZa1vmDCmekk3TNMOYDgQCRtIMHsmmqirWNOvlnRycRDyHGHI8d1G3lGxm41pFyG9kGDVzGWXfty4Sk80DSrZRKyXbDF/JVmwYMdmS6ZhsCV3J5lMVzxibpQSS+IDnLhpKK9m8MGZXRwLQAMzGrbOLkqQHPlUxEnfkA/Q8Su5RdSRg3NP+dFw2t9xF6fOLrWTbemIIGoDm6gh8amb9vAytoizrvLaHAz58+MUrAQDffOwYjg/wF50EvPtLt8Wpks3J87JSshF0GkkPzIOWOyHZZOxWYM5dtNOGks1uTDaaZDszPK2TAwqwamGlUBwRi8Vw9YoF2NJRh5Q2pywys6HzEZONhtU7fKx/Ep/63T7Ekiksb6zAS9ctRAoKDvdOGOf82wMHcONXn8B/P9WZdb5Mf/WCko3Ue7jXWslm110UAC5Oh0TqHstMPsaSbFaiB6fuorvO6OrcNS1VCFmEn3BKfIuObU3bsTvOjGXVw573bKdOsi2q8SbJJtqwaK8vgwINzxwfli7X1tVdccUV+PrXv45du3ZhZGQEs7Oz6Orqwh//+EfccccdqKmpsVNcSYFeZMsYHY8f7gOgYUlDeVYmOwLRrlGpK9nMyBLiMrrzdHFINlb+7JXFVz4gc51mJBvPIMknclGyEdB9qqJCNwCnpqa4fZHsRlxZ4iQbuQe1DpVsItcUci9HZxIYmIhCURXDNcQNd1H6eJL84KBL7qKj0zGDxKJ39FglGxkPaJKNVUCyRlZbXTlCfhXxZNJ2EFQavMQHbm10WI1rHRILFLots/EkeseLE5Mtg2Qrs6tk86C7KBRKyZYm2ZR5ks0JuIkP0iqwiN87Srb68iA0KJiJJ4SLTdI3Byb096yuPJjX/sobwxVFMdRsxGXULXdRerwvtpJt24khAApaayPcDTr6f/o3GZINAG67eBFWL6zE+GwCt3z9SXz3b8eRoDwDaFi5i7JtEMENkk1WyXYsrQRaapJZlC4vP0o23b47OzpjJDuxgpm7KI9ko0NG/HqHHmNv2YJyVIYDWc+R2BTRqP7+3rK+GcBcjCwZks1K5SpzD+0q2WbjSdzxi52YjsbRUh3BP163HK+/pA0agCN9E4gnkjg5OIWfbj0FAPjqw0cy3MnZOr2uZJuYTWB0Jo6AT8EaE7WXI5ItLSI5y9jgskq2XN1F93bpG8sXmSj0eO2yO7awSCaTaEl77G0/Ncqtg1zbZDSB/WfHoEDDohJSsgG6N56CuaQ5MvDG1XkUPCUbTbKJOv/4bBy7T+lMZ0d9eVb8H7Z8KyVbKZFs9Pm8F5MMQrvSQWfJ8YUytLww0BcKVhJf+nszd9FCk2xOYrLxDOVwOAy/3w9N07JcRvvHZ3G4bwKKAlyx7Bwh2SL6pDwwEc2IBWMFnmKRHmdODur3rrW2DAFf9sLVqbsoq2RToKF3fNYI+p0LiDt6e10ZqsJz4ym5VnqMTSaTpko2+t1RVRV+vw/N1RGo0LD9lPyOFo3ZeBJD6evkxWTL1V3UCh319ki2M8PTSGkKQn4VkYCvaIkP5N1FiZLNY+6iATUrJpsCDeo8yeYI/JhshGTLXNgUE3XlIWhQMB1LCg140jfJApaQXfkC/S7Q94jEZetNt8Mtd1HeZg7djkIp2TRNw7NpJVtrbVmWDcQj2QhkSTafquCH77gE16xcgGgihc//+RA+fN9uJDhzpFuJD9xQCsko2TRNw6FefXPJjKSg25APJVtdedBIDCKrZrMi2dhNeGIXjM3E8cOndQXXZR11xjXRoJVsmqbhJelA+CcHJzEVTZjOPSLblyV3nL6LZrb1Z/90AId6J1BbFsDLNjQjEgzgquUNqIoEMR1L4ljfOO595IihFp6OJfHFPx/ittPsObsR0zFXaJqGvvFZaNDViGZqr1yUbH0T0QwvB1l3X5rktqtkUxTFNOkBD7IbKFaCjWQyiUU1EWhQsP30CA71znmksP1h56kRJFMaFlQEUBkOeGJ+BuRIttqyIGoifsTZwHMm8MbVeRT0jbYTk+3po4NIpVJ6UL+KkKW/vRnJpqqq8Y+cY7VgcKoscWshYjYRXNhWA1XRd5+Gp7JjFeSb9PKKZLkQkDFWzJRsIheJfIGnoqJhNyYbrWabmMhUHD19XFexXdBSJRVcutD3wg5ImyJBHyrSmZLsqNno+0q/u+RedqYzfi5rnHMNccNdNCNjs19FW62+qDxITdBOQeKxrW3ODF1Au/3T4zIZm1mSjTW6yaKnpSYMBcAOGztaNIiKrTzoQ1UkO6NrPt1FASrDqEk2V/pd6hycQgp6PDZFUYruLiqrZKvynJJNdxcl2UXjSQ2qMu8u6hTBAHEXzY7JFvIQyVZfEYQGnQAU2SCknYTcImRXvsDbKAGARkPJlh93UVmiyg3w3vtj/ZMYnIwhFFDRVD2naDZTshHYaXtzdQQ/fscl+PJrN6A86MP+s2M4MzwtVLKdGpwy1NdOSLZCKdniiSSOpJO6rV5oHhrILsnGzrdW12BkGB2Ui4/Ks+NoooFdMxGS7QdPdWJiNoGVTRVYl47xKiLZSDkLq8O4uL0GCvQ+54RkY59Hrko2tvwH9vbg58+ehqIAH3jRMpSnM8cHfCpuWKOThI8f7scf9nQDAD5323oAwG93nTWShrF1el3J1jcehQZFKukBOUeWZFtYHUZzdRgpjZ88xo67qKySjZyTTGnYn858K3ttTsYW0VqxvjyIhsoIZuMpvPpbz+Av+3sAZF/zc536xvTK9HrCC/MzIEcQK4qCFY3mLvIsvHF1HoWVkk00ATx2uB8qNCypL4fP5xO+LKIJze/3Gw+bnHuuKNnKQ36sSk/MR3onpM6JRqPo7e11ZSfECwN9oVCq7qKi9pj1Tx7JBuiZdIBsko3EY5NxFdU0rSSUbJqmBxIFgC4bcdno58wjOkn2ruWNcwY1/Qycjjfs+7x6oT55PXvCmTqMxgEjHttcm9nnSNodj8czFG6RSASKMpdhlG6nklYcNVdHoEDDDiq2pB3Q8dh4/TlXJZtVmzoadJdY2Zhsp4amoUEx3DWLnvhg2l7iA15ZxYDuLqor2VKpFGLxBBRgPvGBQxAlQiqlLzIAYCauP/uwl0i28iBSUDATF5NspG/2GyRbcZRsrLtoKZNsPGw9oc/9F7fXws/ZVOLFZCMQjR+itiuKgtdtbsPLN7QA0De/2DJ8Ph9Gp2P42iOHcfO9T2DPmVGh6s8MbpJsZkq2k4NTiCZSiAR8aK8rky7PDkFEYEmykQyjEskP6LWTSMnG2jCJRAIjk1H8IB2H7EM3rjR+4z1Hsl4jLqMvXacTVccHnJFsTmKy8Z4hj9w5MzyNj92/FwDw3muXGeQhOfbm9Xqf7RmdhqYBL9vQjDdvacfrNrUCAD71+/34xbOn8ZX/O4wH93YjmdI8H5NN0zT0T+jj2oZF5i6VTpRsAHBRWw0ABT1jYpJNxlvHrl3dOx5FNJFCQ0XQ0o2bbZcdlaxoragoCt5y2RJctbwB07Ekbv/ZTnz1ocNZ5z3bqY+/yxfoY4cX5mcCmb67fIHcvSXwztV5EDySze/3m7pHpVIaHjs8oJNsDWWmsk+zCY0sYgpFsvF28pzCSoK6MS1lJWlw6QmYh87OThw6dAgDAwM5tcusTbIYHBzEoUOHPCF9NoMsmci6StAoNLFkpWi0G5MNgKFkm5yczDjmqWN6X7p6+QLLdtH3xosLYfp9IyTbmRyVbGSc0TQNp4f1spY3uatkY4+/ND0uPH4k9/ecp2RjFWlkbJ2Z0a+PGDaqqhoZRqenp7MWPKqqYmF1GH4F6BmbtR0DD6DisdVmu4qSupzArpLtxOCU5dgA6GpGDYrhniOTvdAtiJRsZtc45y7qTSUbIYSisQRUaFAVbxmbpYKg4e6jIZZ24SBKtqCXSLYK3V2UuLLyVOakb/YWiGQTKdmIgs7tmGxWJFs+bCree78tTbJt6ajPaJuVko1HeMmOt1uW1kFBdqwmUu7JoWlAS2EimsDf//ezODEwkVWnnYUw728ZyJAJh/v0uXXVwkqoqvl4mivJZrWGIbFFTwxYK9lEdhxNQPFs3v9+8igmogmsXliJmy9YaDqXEDUbUcC95IKFUKCha2QG4zNitz83STaz8olNF0ukcMcvd2EimsCmxbW488Urs0jmC9tqUB0JGNmvP5JO5vEvN69CRciP/WfH8Yn/3Yf/fOwY/ri3G/vOjnleyZZKzbmLWqm96Odrh2S7uL0GGoA+imRj3X1lYrLZdRc9PaxvrF+2tF7azpF1P5ZRsgFARSSIH73jEvzDVR0AgG/89Rh++MwpRBN6mITZeBJ70okRlqY3er20ppIh2ToaymAx7GWg+NaHh+FEybbj9AgGJqKoDKlYVBsxVbKZxd8pNMlGI59KNgDYmPZb39s1Ck3TLCdgMmHRQUgBYHR0FGfOnLE1WOe6m3Lq1Cn09vZieDh3tU0+IWtwke/NBs5CLVLoenjtNZPBWynZJicnjd+OD0yibzyKoF/F5iW1lu2i3yMvTQgE9ETZWqtPXHaUbLyYbMQYG59NIJpIIehT0VI9t2tNPyva7dLO+8SOT5sX6zuLe7tGjbT3ThBNJI3AzLSSjX2O5FnOzurGEK0gpoMY8+KiBHwqWtPurc+ftD8WnE1n6mzhJD0Ach+DLUm2dEy2idkEhgUx8DKVbFOIQ0VzcwuWLFlSULKK7pOE5EukNINMYZFMaZhK/+Y5ki2gQoOCRPrxzMbj89lFcwCJyQbo7z0wR7KFfd4h2erKdXdR0jaeMoC0k7hp5jsmG43MmGx6vb1j+YvJRqMQ7qL030QpffnyRoMUmZ6eNrUveO2mf7dq+6XpOF79E1HEkpnHqqqKM8PTUKEhEvBhfDaBL//lEA73TuD08Awmo8mMTXA712oXZhv/5LsjkvHY2PJk7pVdonDZAvkMo2T+Zzf1eUo2n0+POzoTS+KX24iKbQVUVTGdS9i14eL6crRUh5HSNDyTJnd54K0pecIHGULaqh9rmoavPHQYe86MojoSwDfedDH8PjXr/fT5fFjbXAUVGl6/uc1QDTZWhvG5V6/HhW01eNHqRly7coGu6j85jERKjqjg/V4IDEzMGvbsiiZztz+nSraL22uhQd+Atfv86LnArrsoIdkuX1ZvdngG3FKy0WsIv0/Fv758Lf7jdRci6Fexv3sc9z1/Bt9+7Bhu+I+/IZZMoakqhLq0LeeF+ZlApu+G/CouaDFXQdLwztV5EPSNlo3J9sBe3Q/56uX18KdVbHaVbMDcjgg5l1enHZJN0zQcPXoUPT09ltea60LEyih70epGlAV9ODM8Y0yOZi87S6AQHD16FMePH89QKVkh14GenE8W5l6FXSWbmXKsGMSSrJKNPZ59pyIRnehOpVJG8oP/e6EPAHDJklqEA9bX5sR1o5Dgu4vaV7KxY5umaRia1ONXLF1QDr8/e/cXmCPZaGPETr0EtWUBrGmugqYBTx4dlC6HxdG+SSRSOiHTXD23UGXJRNJu8i7TLpBmJBu530vq9XtNYkzYAS+zqMzYbgXZ88IBH1rS98YsLhspU09+oWDDBauxZMkSR23LFZqmL0IDafJEFJdtcnZunvVc4oP0OxTX9L6ku4vOJz5wioDfB1VRoACIppVsRC0W9BDJ1lBBsotmK9nYvkkUZE3V+XcXbWhoQGVlpTHeAXMkW/+EuzHZRJt2hXAXJXV0jcxgaCqGgE/B+tZqI/7m5OQkd9PbLZKttbYMTZUhpDQNp5jxVtP0TTEVGv77bZtxUVsNpqMJ/Hl/Dz7623245RtP4ht/PYrPPXAAV37hr7j9pzvw060ncXxgMqPefCvZDJItrWRbw8Q75SHfJBvtLmr1DHibieRvUhdLsh3sGUc0Fsea5irctHZh1jWx4F0jccN8ysSm4cXC5Snbc1WyAcBjh/rwvSdOAAC+9NoNhg3C20y8ZEkdXn1xC+6+dW1Gebde2ILfv/9K/ODtl+C7f78J1WE/JqIJPH64X1rJVgxsT2+IXrKk3kjiJYJTkm1dSzVURcFULIGJaCKjLDsx2WSVbICe+Kc7vXF7+VL7JJvVeyarZKPXiq/Z1Ipf/ePlqIoEMDwVwx/3nMXZ0RlEAj7cfu0yW/e0UJAh2TRNwzfeeJF0ma5d3Y033oilS5e6VZwnYFfJlkppeHCfTmJds0Lv6GaMNLuDSUOkZKPLsEOyTU1N4ezZs+js7LS81nwr2WrLg3jr5UugYG5XUYZkY+83GXzsKPZyJdnI8STmgldhl2TziruomUHvRMmmKJnJD6ZjCSO+xqsuWiTVLi/HYwNYd9G0km3Yfkw2npJtaCoGDcDKpkquiyh7noxBQMC+t8lkEteu1N13/5aDy6gRj625KqOvsM+R/E/cRWVJNvL/4vS9zoVka6mZW0jzFiR2YccIJy6jnYP8vkLKiCc1dI/p7V1cby8ehRugr0lRFMNldFQQl2087Soa8qsI+jON2uKTbCRQv/53bF7JljN8ad+NaJy4i+pjkJdINqJkiydTiCdT3ODuWSRbnhMfAMC6deuwcePGjPeCLLrPjswgkUy57i7KzqOFULKROvZ26a5KqxdWIeT3GbYBSXID8EMhsJ/Ztstg/SKdbDnOxA871K/HOCsLqtiytB4/fueluHZlPZqqwqgI6/1G0/SM1GdHZ/CXF3rxr79/ATf8x99w+ef/ijvv243/3dWVkWEXcDcmG/0dUbJZJT1gy3PiLmp1DYvrddetiWgCAxbqd5EdJyLZgsEgukam4UcKr754keEaa5dkI2r650+OYCrKt494Xhx0GaztIXMPeXZyNJHEx36zBwDw9iuWGBlQ6XrpulRVweL6cvhN/OPCAR9etEq32361owvpSAieU7KNTsew58woAOBNW9otj3dKskWCPjRV62MoUQOzJJuMu6gdJVv32CwSmoamqpDhQi0Dt5RsorH9orYa3PWS1VjVVIkXr23E99+6Gbs+9WK848qOkibZFthQmUtd3d69ey0Hu9tuuw1ve9vbpCsuNdAx2XiEFwBsPzWC/okoKsN+XNiqD6xOlWwikk2GDOORbKRuK5mqWbmykDHK3n11B0J+FX0Ts0baYbYd7HeiXS47g/X5omST3RE0U7IVI6Om2aAvE5ONtxtNJz/42bZTGJqKob2uDLddfG6QbPTYsCQd50BmZ5eAfs6skm14MgYNClY2VQh39WmDwA7Jxuuj16WNtSeODCCVcmaEWWUWJc/RTMkWDoeN39j3gPzfWhOGouhxzUgwXVkYiQ+qs5VsubxvTkg2UfIDUkbf+Cw0DagM+VEvkYnXbbDveJVFhlFe0gPPkGzpbJjxlN4OomSbJ9mcQVGU9AJQM9xF55Rs+jFeuK8VIT+Cfp8Rl40376qqitl4EiNp8rhQ7qLsO7GoJoJIwIdYMoVTw9N5dxd1q3wZ7E3bmhtadXcfNpM0kB8lGwCsb+WTbNtP6m1aUlcGn6pvIrzpkja86dJ2/OQftuCxj1yPd129FO+/fhnue89l+OebVuLypfUI+lX0js/it7vO4sP37cHDB3ozys2Hki2aSBrEwaqFztxFzdplV8kW8vuMjUWr5AciIoC2eehjfD4/usdm4UfScPdlr4kF7xoXVARRFQ4gltKEoSV4JBtP2c5ugsqC3P9j/ZMYmY5hSX0ZPn7L6oxjRJuJbFt4uGxpHSIBH86ORvHM8SGjjTSKrWz7+bOnkUilsKAihM1L6qxPSMMuyQbASAjCutzbcReVDfukaVp6U13B5TbisdHtsnoWsipR3hqppjyEl65vxh3XL8eNa5sM76FSJtnsQOrqLr74YgwO6lLXpUuXYmgo27f8/e9/Pz796U/bqtzrsKtke2Cvnub4prULkY656zgmW11dHXw+H2pr9ZhRdnbReIkZikGymXXG+ooQblzTCAD4313djpRsxSDZzlUlm1fcRd1WsgFzJNvw6Lghk7/j+uXwW8jFCbxOstH3oKOhHD5VwUQ0YQTQtoK5kk3v5ysYJRs7Rjgh2egYKeTvTYtrURnyY2gqhn3pdOR2wcssStfHkmzkXbarZAv6FWM3//nOEen2pVIaetLSfjrxgZtEkMy41lFvHs+GlNE9pt+fxQ1lRSGp2He8xpJk07+vCs8lZ/CCqwow5y4aSzcnFotDVebdRXOBT1WgKJS7aNx77qKKoqC+XHcZnY4lubaLoigYSLtoBv2qodgsNFRVwfJGXeF1tG/CNXdR3qLq1NCU4ZZaSCUbIdnoxEhWJJusckmEdek4PqeHpzEbn1sLbDupzx0k/ACQea8iIT8q0hscW5bW444XrcAv33MZ9n76Jvz8XVvwsg3NAIBnT2S6Izq5n1Zz0OBkDICGRTURqf6Zb3dRAFiajstG4rCKILLjaOKDPmZgOoHZeBIVAeACJks5fR6vLPYaCemy9Tg/LhuPhOTZZTLzr6h9iqLgSO8EVGh4zcZWYy4iEIXFoH8Twa8qRsD/X+3o4pKAxVSyRRNJ/OiZkwA0bFxcKzUn8AgxaZItbVvZVbI5dRftGpmBBuCKZQ1S7SOQHb+cuIta1eFlks1sHMoLyVZTU2O4GZ48eTLnybZUYIdkS6Y0PLhf30l62YaFGcc7UbLV19fjqquuQmOjTkQ5Idl4SjYrssWsXFnIsuMvuWAhAj4Vxwemsnb3aPB2dsy+N0OuuynkeK8r2dwg2YpBLtlVshGw10EfQwzpZw51YXAyira6CG7bKKdiA0qHZEulUgj5fYZc/HDarcMKNJlK3/9kMoVhyl3UbFc/FyUbOTeVSiHgU3Hlct1QePywfZdRTdNwsJtPsrGkMfs86YyZMjHZUqkUtqR3uO0kPxiciiKWTEFVMjMIFlrJ1tEgSbKlVXdLiuAqSoO0hyzuxi2VbNkkW9GVbP5MJVs8kYQKzCvZHGJOyZad+CCQftReua/EZXQmPqdkY9UqZGNkYVW4qH2VBAU/2jeZN5JtZCqGl/+/p/CV/zuCWeqeuAm6zFRKw/6zhGSrAQCUlekbB4lEwkiwlS8l28KqEMqDfsRTGnadHgWguzbvThN/7bX8uUBURzjgw5XLG/DRl+iKpCO9ExnkXT6UbIMTUSgAVkuo2Og258tdFJhzWz2Y3lwTQeSZQa9XaFvv6KA+761qLMvYkDWbS3hrH03T0FoXgQbg6ePWcdlIG6w8N2TWcjRm4imcHpmGAuAVF7Zk/c6KPqzCt7B1bmitQVnQj1NDMzjcO+EpJdsf9/SkExL6s2xZEejNXwLZuYR4CfRNzCKWSGWRbKJrd+IuOjUbN+YNO0kPSD1m7WHbJTrWzOtJVEcxPKWsIKNkszuuSl3da17zGlx77bXo6OiAoijYvHkzli5dyv13LoG+0XTiA55SbPvJYf0lDvtx1fIFmdk2HMRkA+R30VhYkWxmBIYbhp3si1sV9mP9ompoAHacGhGewyOC6OvIRclmF6SuWCzmabLZrruoWUy2Qg6CTpVsZseUlZUhpSl4vnMIISTw/uuWWwY9peF1ko2duFdSCyQZ0MYcff/7J2aRSGnw+1S015WZxqexs+tGQO4rUZCRdhCX0ceP9EuXRdA1MoOJaAJBn4plCzKzR4mUbAQ8JRu9+OLFRbkk7XbwrI24bCRAbVNVOKMfukEE2TnXcBcd4rsWk+/Opndji0WysfNJtZWSLZpWskU86C5KlGzpqTmeSLuLzivZHMOnphMfxFNIpjRD0UZy2nhl3K6vCKWVbAlh3KVCxmMzw4pGnUQ50j8p5eYnA5Y0+PmzpzAxm8B0PImzIzN5XXQrioLOoSlMRBMIB1SsSCv1VFVFJBLJOpb3OVeSDUA6MZFixPF8rnMYsSRQFQ6gKuw3VTGJ6mivL8OqpkpompaxYZKPmGyDk2mSTSKzKNtmJ0o2mXjLRGV2QJJkk43JdrBPj1W6oiGzf5itlXjXqGka2mrLoGkKXugex+g0P5s3a/vy6pEh2XjHAsDhvkloGrCupcKY+2nw1qN2SLZwwIc3bVmsk4nHBhGNZz67YinZNE3D95/UPVg2La5NK5+dkWyy9sOCyjBqy4JIpjQc6B6zrWSj3UWtbOrdZ0aQ0jRUhYNoSysmZSE7tlsp2cy8nkpJySYiQa2u3wx+60OA733ve3j1q1+NY8eO4QMf+ADe/e53Gy5Y5zJESjZex3wgnfDgJRcsRNCv5qxkY0F2FXh++ixokk3TNGOnjq5XhpxwCjtG2dIF5dBOjqN3XOwywCOCnMo33YrJBugqF9ZA8wrcULIVw11URslm111UURQcGIxhOpZAR7UPr97YaqtNXifZ2PdtZVMlHtzXi8N9cko2mkylF39nR3Qjc1FtWZZh4qaSjZBbpB3Xpkm23WdGMTIVQ62NOGA7T+tk/cqFFVlEqijxAQFNsvn9fvh8PiSTSSMxAi/T8+YlNQCAQ73jGJuOo7rM2oXm7AhJesA33gulZGuv04NGT8eSGJiIopGJAZWlZLMRUNdNiEi20Rn+YoWnZGPLKhZITDZCsiXSiQ9U1VvGZqlAUZS0yiSBaCJluIoCQECVd7EqBOrLgxjUIIzJBsy5FzUVKB6bCHMbNRPChYdd0PNMNJHEj7eeSv+ioGtkOq9KNkVRjHhsF7RUZyiTKioqjMzjpH0EbpNsi2oj0Hon8GznEIAVePrYIFLQx2JFUZBKpTLmYVkF2IvXNuF3fzuDEwOTRtbPvCjZJqMAglJJD+g206ooGZKN3AOZayCK9UM9E0imNCMRiqhsGZJNVVXs7Z5EFYCOev68aIdkKw/5saShHAcG49h2Yhg3r1uYda6IZBP1x1QqxbVJRe17oUe3B29a25R1jqg+OyQbALx+cxse2N2FiekRPH6oD5s38ttVSBXbC93jONQ7gXBAxYWLqqXPY58lTXjLnHtRWw0eO9yPXV1jSGmAT5GPyUYr2VKpFHfNTrAjbfM6sc94/TUej2NgYAALFizI2gBnjyWQcRdlyyjG+tIKMko23u9mkCLZAODmm28GAOzYsQMf/OAHz1uSze/3c0mfRw/qqotb1i/M+I2Oyca+LHbVY+zkKwLdaclATLPxZkRWIZVsmqahvlzfsR2ZjiOWSEmTbE6ZZbdisgHeJtlkr9OMZCsGuSSa1NkdfwIZki2Z0vDoMX2X81Xr6oyMg7LwOslGG6+apmFVkz42H5Uk2XiTXSqVMsiVttryjHrYz0BuMdnYiby5OoKVTRU40jeJ504OZ2TAssLf0i6mxOWUV5+Mkg3Q1WzT09MGycYLCLygIoSlDeU4MTiF7aeGccMavgFLYy6zaObY4aaSTWZcC/pVLKqN4MzwDDoHp4QkW9fILAAFS+rt7ZK6BfZ+WCrZCMkW8qKSTe870fTwFqOUbF4dX7wOP1GyJZJGZlHyPVD8Z05AYrLNxJNZC2lCppD4ZIVKeiDCyvQccmJgysgW6JaSzefz4fe7uzEwEYWiABqAM3lWsgFz8djWMwttkvyAIF9KNk3TY5lBm8DzJ4fxrh9vx/6zY9CgGAoUM4LFimT7/d+AU0PTSKRS8Kuqo/tpPk4qGJyMQQGwxqaSza67qN/vN7xFzAgGQFdYRwI+zMSTODk0laVgJ7CjZBuaSqB/KonagILmyky7QIZk461VLllSiwOD/dh6fFCKZOMpy+wo2WicGZ7G6eEZhFUYsbBZuEGyhYN+vOOqJfifh3rw18P9eOv4rGFX0OUTAUghQNbm16xYgKB/yrI/iWBnE0xRFKxtqcIzxwcxMh3HXw/148VrmyyJZrpv0f00mUxm2asEO9MxHe1kFSXgtefs2bM4efIk4vE4Fi9enPW7U5JNVIaXNhdFbZUVrfBg++p++MMfnhcEGyBWsrEDz8BEFGdHZ6AowKUd9VnHsy8LW75sJzMLPC46jtTHKtlYuLkIsZOxJBL0oaYsAA3A0FTU80o2+ngvx2WzYuLZ48zcRb2gZLNScJqRbA+90IuT4ymEAz6sq/fZfuZejB1AgzXEVxCSrX8SMhk6Ra4pPYRkS5MrhVKyAcCF6Zg5+20kP0imNDx+RCfZrl+VbUjaUbIBcxlGWZKN3U0mmceek3QZJZlFF+VByUYg28c7GvQFyQlBXLZEMoW+yXTiA6+4i5bpysaxGX5fG08nPvBmTDa9z0WJki2RTCvZ5t1FnUBRFEO5Ek2kjMyikYAPOn1T/GdOUFcRNLKLihbSXlGy0RlGe9JeBm6RbIqiGO5b7756KTToCqkxgRtdLshUsulzyYVtxSPZ6sqDaK6JIJ7U8MjBvnQsJQWL0wtkXr+QqWP9omrUlvkRS6ZwZngmoyxZ0ItJ3rWOzcQRT6YQ9CvSoQPskmxsnFar4wHdXZy4r77QLXYZtYrJRpNshwemkNBUNFWGoSXlPZDMCIXNS/S14dOC5AdsGCKRks3qPvLa98e93dCgYFFNRJghPBeSjX63X7S6Cc3VYcQTKXzlocNZ7XJLGSuLRw/1AQBuWNNoyw5gj7FLsgV8KtYtqoYGBf/91ImMMkT3k76P9LsvsqtHp2M43Kv3+Y4F7inZAD0kEtsu9lgCszUS73nT5XnJ7uHdD7PQRTJw7eq+9a1v4Z577nGrOE+AJiDoXTg2QCWRoS9fUIGKUGb8NRLniJzDI7vsKNkIzM6hWXAeySYb78op7Ero2+vKQXbJvEyysYy2lzOMyjLvNDnFHuOlmGxWSjb2OPr7/3ryBMa0MC5sr0MiNmtkSpZFqSjZAP2+LakvQ9CnYjqWNAgdM7BjFSmHkGyL07vsZvddNkgrr16eJJ1kf7OTYXRv1yiGp2KoDPuxaXGtsD47SjYgm2RjSU2DZJNMfkCuiWTwo8sCCheTDQCWphd3Jway4/dpmoaxmTg0TSesGirk3XbzAYNkk1Wyhb2rZEs3EYlEAqqizSc+yAFG4oN4ykh6UBb0eeaZEzSUh4zsoqJNIRLAuqm6uCQbnWH0xKDuSukWybbv7DiO9E2iIuTHHS9ajpYa/Vpf6JYf62UxZztqRvnrF9VkHEMSIxHki2Qjx3/spWtw33suw2desRZvvKQNn7ttPSrCwXQ77cdk049TjDmTjOVOSDa6nSxISJelDWXSmdndINmkXEbTLrIHJEg2GSXbgZ5JJKCipTaCRCLB9fjg3SMzAmnTkjooip4FtZ+T+V3GXZSuV7bPaZqGP+zuhgZg1cIqS4InFyUbsSGvXrEAgIZf7+gyEnCx5ReCZOsfnzXIdRLrF3BGstmZR8ixF7XVQFEUbDsxjBe6x2zFZAOs7eqnjg1Cg66Sro7Yt8/MlJd2PMfsKtlkwl4VA54m2e6//3786Ec/cqs4T4DcSLqD0yQbISb2GGnBa4zjRKoJuiwn7qIEVueYkWz5VrJZ+Z2zdbbXlelKtkk+acXu7rFl2zEmcpF9ssd6mWRj+5YVyWZWhpeVbFbuojtODWPn6VH4fX7cfOlaAMDp06dtPXevk2ysssrvU4209kckXEZ5Bn0imUT/hG4ILq6vyKon30q2dWmXnn1dY9LP6rG0q+g1KxZwE1tYKdlY0o2QbKxxSC8YUqkULmqrAaBnN0taKAdn40ljU+aSJZlEoN35gAe7BvgyspDmZHfWNA0j03FoULC0obxoxlCWko2QbALli5ezi4bT0fhn0109mUxCgQZVmSfZnIAo2ebcRdNKNg+SbHXlQaQAobsoAGPx3VRZ3MQHAIzkACSYfq6L4kQiiRMDk/jJtjMAgDdc0oaqcABrmvWx/oCNDRW76J2IYjaeQkXIb2wsEIRCoYy5IF8x2cgxoYAPW5bW4+1XduALr9mAN29pz9q4583JVtiwSCeajg3q8e3skmxW6hJCAIvcMXmwS7KR39jQFVZYK5H8QGTP0nM5uf8v9E4iCRWLaiLQNC0jcRx7Hq8sHilRUxY0kjRsPZGtZpNJfCCqgwY77v1+dzcO9eqxFVc0VgjPc4NkI8+5pSaCDYuqoGnAf6TVbOyzLQTJ9tdDuqvohW01aKyc27gohJIN0Df6SPzC/36q03JtzD47q+QHT6Q9N9rrndlnZqSSHVGL2VrRrA4741shYNZWdp0lC9esukcffRQnTpxwqzhPgCXZWFUaoN/sPWdGAWTK0NlOx1uE5kvJRtdbTJLNahAlv7fVl6dJNu8r2WiUgrsoLxMuDTOy0osx2Whjjfc724+/94Q+Jt128SJcsKIDqqpiYmICo6Oj0m0qBZKNnbxXLdTdJ2SSH9Bj1dxiL4pkKoWATzViargZk41eBPCUbGuaq+BTFQxNxdAzJveePX5YN6joHUsaTpVsBLzxN5VKYXE6JsxsPIWTQ3y3S4K9XWOIJzUsqAyhnckEZeaqIwvbJFt6wXlcoGQbSRNZTuJ9uAX2fbdSso3PeNldNK1kSwKp9OJNBeaVbA6hKAr8qgpAzyo6G/eukq2echdl5ys1HUOLEBkLi6xkA2CEHTg+kLuS7S/7e/Cp3+/DH/Z04/TIDCrDfrzjyiUAgNVEhdSTPyXb6SH9GtYtqoKqZpMWtMuoHSUbW49MW3gwUzHRY7pZGSsaKxD0q5iIptAzNmubxLAikE6l3VAJUWSnTLtKNlZVbwU3lGyapiGZTGIymsDZ0SigKGhLh1MgLnS5kGyKouDKZXqs2GeOyZNsdpVs9Pf9E7P49B9eAADcsKYJ4YBPylVR1CYReM/5hjWNUBXgoQN92HNm1NVwGLJ4JB2P7YbVjZbPjoUbJBsAXLpUdxP+094ekLw8VkQnOd9MyaZpGp44MggFGhY7jJdr5sppZ41tV8nm1RA8soRgwZRsVoP+uQIzBUQyOadMuNCGko2+d27HZOPVJ+su6kantysH1gNqKxia9HZMtlJSssnuGpnJgIsxEFop2awk3PRkf7BnHA8d0OMxvOvqDgSDQTQ3NwPQ1WyyKIaizy7Yd26lkfwgmzxhwTNse8f0RUldeRA+X3YsslxJNvo95CnZwgGfoaSQcRntn5hzC7hWkmSjn6ff78/qS2YkG218+lQFK9Ok5kGTnXQAeD7tUnrJktqs+vKpZJucnMS+ffswOZnZH4iS7czIDGKJ7LFxdDoGDXOx24oB9ppqyqzcRQnJlu0uWmyQ7KJJKEimNEPJNk+yOQdRss3GaSWbP2Mu8ALqy0PQAEzHExl2IKC3cXw2gdm4/g4WOyYbMKdkOzowp2Rz8h5tPT6EO36xC0OTswj5Vbzq4lY8+IGr0VqrLwzXNFdBUfSEMEQ97TZODuvzGW2j06BdRvPpLsqWSWAWj0u2//oUXWWW1BQ8cWQAiYR86Aa6Tt5GZpyK9ba+ACSbQil7ZUJQrF5YBVUBBiejwj4kG5Ota3gaKShYs7AKlRH9PSTxqWRJNt76RFEUXL5MJ1yeODpgbAjw2kGfJyLZZMjHT/7vfozNxLFuURWuX92UdQ003IrJRtq3oCKE2y5uBQB85aHDWdeT7zl5Np7E08f00DB0PDbSTrtwSrK11pahpTqMWCKF/Wn7UNZdlOcBR3C0fxK947MI+VS01kRcU7KxG0Bse3nPzWytyOuvxSBcZWDV1oKRbD/5yU+wfv16RCIRRCIRbNiwAT/96U+dFOVpsEo20uHpgeT00BRGpuMI+OaCb9LnsL7VvEXo+a5ka68rBxRgOp7E8FQ2ccUj2czIITPkshtbSko22fgHovtIK428pGSz2tUj/0/Hknj/z3dC04CbL1ho7Mq3tbVBURSMjIxgYkIu+6bXlWxA9n0jJBuJh2EGeqwi97NndBYKNNSXB43v3FSy0UYDnX2ZBokxI5P8gGQVXb+oOsMtgFcnj2RjVWyAHMlG+tva9Nh/qMf8fm9Pk2ybF9dl/ebmRgf7vvf29mJoaAh9fX0Z3zdWhlAe9CGZ0nB6OFOFp5NscWia4iiorlsQuovOxMFL7EHcRas8qGQLpgnrlKYimdKQSibm3UVzgK5k059pNJEysouWBXyuvk9ugCjZEkkNM+l20ovTvrSKrToSMNyKiwkjw+jQtPGe2V0Ynxmexvt+vgOJlIaNbdV419VL8e5rlxvZNAGgMhJEQ3kICoBtJzLjWqZSKZw4ccKW8pwGae/JtMvr+tZq7nFEyWa2ieeWuyhvDKLnb9r2Ygkvs3o0TcOVyxsQ9PvROz6LRw/2CY+1274D3eOIJvXkUW21kazfZcq04y5qV8kWCfoMtbVIzSYbk+34wCRSUHD96gWGXeCWkm1LRz3qy4PoGZvFvz9wUNgO+n+nSraHD/bj4QN9CPgUfPm1FyLgN/dq4Y2XuSjZNE3Dh25cgYBPwZNHB3E4TTAVyl106/EhzMSTaK4OY21zVUGVbOx5ZON3x6kRAO64ixJX0QvbauD3OXO7lHUXtVpvO43J5pW5mcATSravfvWreO9734tbbrkFv/rVr3Dffffh5ptvxu233457773XbnGeBrmRpIPz4jbs69JfmrXNVUbmMMBayeYk8F8uJBsvqymNfJBssoRWKOAzMt6cFMQGYssrhpKN505pJwZVIcFTspk9d95ntoxCQNR3RP2TR7JpmoYvPXQEJwan0Fwdxudevd44PhwOo7FRzzzZ09Mj1abSJNn0nfljA5OWccJoMpWU0zc+AwX6wpDc43wo2VRVFbo0rydx2SRItsfTJNv1q/np6QH+ZglpN49kI9lFCcyMTxJ341CvWUwYDdvTRtYlS8QkmxtKNhZkkcDuiCqKgqXpGDvH+rNJtpG0ko2NY1QMsCRbSgMmY9n9zcuJD/w+FX5VQRIKEikNyXTmunklm3P4fHMk24yHEx+UBX1p11Y9KxyQubAlJNtCD6jYAKC1NoJwQEU0oRmqUTublJPRBN714+0YmY5j/aJqvGFzKwI+lUsatNWVQYGGrcczkxINDw/j9OnTjkPRaJre9tPDM1AU4FLOuAvMkWwiQoP3G/27HZKNB5Zko7+XJdlSKT3m3M0bFgEA/rC7C2fSCj4ZmC189XlLQUt1GHZeJ6dKNiuSTdO0LE+StS26vSCKyybaNKbrmYnF0Tk0haSm4KXrmm2TbLxNbfoeRII+/MfrLwQA/HTbKTy4ryfrXCuSTUYJlkil8PVHjgAA/ulFK9JqUfG6jCZ2c018QD/ntroyvPGSdgDAA/u6oWlawZRsj6RJ5hetboSiKLbrc8tdVFEUXLNCJ9meOzUKQJ5kM3MX/VuaZNu8uEa6XaJ28tbTbsVkM3NJ9dqayhMk2//7f/8P3/72t/HFL34Rt956K175ylfiS1/6Er71rW/hG9/4ht3iPA2Rkg2Y6zgvnB0FkJn0ALCOyeZEukrXb4dkS6VSwheGoJhKNkVR0FSl7451DvJjA7HlFdNdVFEUY/L1qpqNN4hZkWz0vaEH9UIu/kQTsNXOB91H9pwZxV8P9cOvKvjPN29EHZOyvLa2FsBc1kgrlALJxk6WbbVlCAdUxBIpnLKIE8abRHpGp3WSrTyUVyUbTbKxhoRs8oN4MoUnjqZJNoGrKF0+/RzJZx7J5vP5MuK2iWKyAbrLEwAcNFGyHemfwMRsAmVBH9ZQqmcCN3b3RGMvWSTwxv5laZXaCWbsnYnNud8t8UBMNnJN4YAPwXRss7HpbJfROXdR7ynZAD0uWxIKkknNUAj5FO/t6pYCFIUkPtAQpdxFwx4k2RRFQUWa+B1JK/bpNvamY082VhU/6QEAkAyjGoChKZ0UtEOyfe7BgzjcN4EFlSF8762bkOZCuURWa1od9cSRQUONCABTU/rcRdz1nIAk/7mso96IL8qiqqoKFRUVaGhoyGobgRnJZgdm5EwymcwYu+2QbOS3K5YvwKKaCOLJFD75u/3SNq7Z+7L95DA0AM3pRACycEqy0e6ivD7X1dWFrVu3oru72/jOKi6bjJLtWO8YEkkNzbVluKClCsGgbjuyJBvPpZZ8Tx/Hu9brVjXi9muXAQA++pu9hn0mItmsNpZZaJqGY/2TGJqKo7k6jPdetyyjfKt1gF2Sjd6Q5z3nO160HOGAilODkzg+MFkQkq1rZBr/94JOst24JttNNt9KNnbcuGJ5A3yqgtPDM+mM7fxrZ5+5yDaejSfxXOdc6BFee+20Mxclm6Zp54ySzYwQpMdiO/Og7Svs6enBFVdckfX9FVdcIa0MKRWwJBtvwUUyIm1gZOgyMdnYsqzgVMnGLnzzrWSTHUTp31tqdCOLyPrpY6yYdTsd3g2STVVVw5XMq3HZeNJvO0o2nrFTCDhVshEc6hnDk8cGASj4xC1rsGlxbVYd5NnJGu6lQLKx75yqKljRqBM5R0zistETJNk9no4l0pl+NSysDnOVbOx9p10+Zd5HnnqO3cVf01wFv0Tygx2nRjAxm0BdeTBrs4MG7zmaKdmATJdRM+OTJJo4OzojjBX2/EldxbaxvRZ+TvZTN5Vs7LtO5gDejihRsrEZRonrfn1FCBUhf9Z5hQLvfoiSHyRTGqbSRAtNspmVVWiEAj6koCKRShkqU5/f54m2lSKIu+iR3gkjEybtLuql+1oezsyMS8+z/RP6++YVJRsArGysBKBgeNoeyZZKafhzEhYhJwAAzs5JREFUWqXzpdduQHN1xNT9rbW2DBUhH86OzuBdP95uxKsiG2GE5LALTdNwpHcCGhS84sIW4XGqqmLz5s1Ys2ZN1ve8z3TbST0ybaHP4dXDzp9OSDa/34cb1jQhoOouZawLrggiUkfTNGPuaskzyUbbrWZJuwj5evLkSWNOu8Aiw6gVyQYAh9NK9BvWNmdspvNINh7MSDb6nI/ctBKbFtdiIprAx+7fl9GOXN1FAX1jEgDeeEm7kWndjDBj+xz72Ypko9vGtq+pKoz3XL0UCoCnjg4ihfyOx08dHcQr/t9TGJyMoqU6bMTBKxbJpigKqiMBbGyvgQYFp4ampF12Rc/62c5hRBMpNFeHjQRaTuY5M+WlrJLNyuuplEg2q7Y6IYhtX+Hy5cvxq1/9Kuv7++67DytWrLBbnKdhpWRLpTRjUL6orcb4jV4simKyOVGylQrJZldSqSgKmtMk2ylOXCACN9xFeQME/Xl8fFxKylsqJJtVKnQRyVYsYsmuko3ua3891IffbO9CMqXhxWubjOxlLMjupOyzKyWSjX7Gc8kPxOoq3q559+gsVADNVWGEA3OLf7MFB31vZNRsPCUbPVkD6eQH6Wswcxl9LJ1V9NqVC+BTxeOXmZKNzTRKYEWykfZWRwJYlB7DDgmMfCMe25Js4hdw1/Cwp2TTSTY2w6hOtOrp4YsJ3nxSkybZxhmSbXJ2ru950V0U0JVsGhSkoMwp2TxmbJYKFEVBWVB/d7d2DuGn204B8Ka7KABDyTbGcRclSjYvJD0gWJ4OOzA0le0uZ4YXuscxMh1HRciPq5br6jBRcGxFURD0q/inFy1HedCHZ44P4faf7UA0kTRINuKRYRddIzMYmIzCpyp46bqFts8vlLsoTSiJ4rFZlUFvXNWVBw03sr/slxM/8DZmAeDU0DQGJ6PwqSqaKu2pLJ0q2azcRcl3sVjMULMRNXnn4FSGGpLArP8BQCKZwsn0HPiSC/QEWcQucEqy8X4DgIBPxb2vvwgAsK1zCGMz8azrFT0Pq/vYPz6Ls6MzUFUVb7ikTeo8UfgiN0g2APjHa5ehKuzD6Ewcjx8ZNG1/LvjxMyfx1h88a7io/+r2y7PiW8rOB26SbIBun+ok27S0u6jomZF4bMQNlddeO+3MRclm5fV0LpFsBXEXvfvuu/GpT30KN998Mz772c/i3/7t33DzzTfj7rvvxj333GO3OE+D3EheTDafz4fh6RhiiQTKgz5DDQBkdk6rmGx2Xgy3SLZCuYvaCZZJlGynh6ZAB7N2m2QzU7J1d3dj586d6OrqMj1XURQjXpPX3UXtKNl47qKFHgSdKtl2nBzG7T/diaSWwsrGSnz6FRcI+zIhThKJBFfZw6J0STZ9TDpsQrKxY5WqqugenUmnBdffSZ6SjWf4mQVpFdVLK9nY9gDA+kW64WyW/ODxQ9bx2AB+n3ZLyQbAcAE9JEg2sT2tBuDFYwOKqWRLu4sOTGWcR5RsTtPDuwXeNREl2yhDso2nXUVDftVwKQWczbf5QijdLk1RkSTqEw+PLV7HmuYqXL+6EZd31Bsk+7LGCk+SbIT4JQpMuo0kJltTtXdItpVpNXT/hD0l25PH9DH5sqX1hpJGFIeHPJ+lDeX44TsuRSTgw+OHB/DR3+zF9PRcTDEnarZn0tkF17ZUoZYJGyEDN0k2Xpls2TTJRqtZ7KjAyJy2rkV/dv/3Qh94CWJYiMZIEke0ta4Mfp+aVyWbrLsoXcaZM2eQTCaxoDKExsoQNI0ftsEqJtup4WnEkilUhvy4eHF9xrEs8WVFsrHH885pry9DR0M5NA3YcWrYNSXbztP687pmRQMWUmOJDGnJErt2STYREVEe8uOmtNvmH/b0YCaWtNWPZHCkbwL3/OkAUhrwuk2t+OW7LsHCyrl3Ptf5IHeSrREpDTgzMo1Ekn8/2XfQkmRbuSCn+8hbb/FINrP1NrEpRV5PZnXMk2wcvOY1r8Gzzz6LhoYG/O53v8Nvf/tbNDQ04LnnnsNtt91mtzhPw0rJ1jc2CxUa1rdWZygoeJ1OpGSz08nONSUb/fuCqjB8qoJoPIWzozPcY2ilixmzbgYzko0om2jDjndsKSnZrPzIRfexWIEp7SjZEskUnj85jF9vP4OvPnwYsWQKaxZW4iXrFiIYELu3+Xw+47qsXEY1zTzegFfAe8ZkZ3dP16jwPHYHU1eyzUBRNLTXyZNsgL24bLyMpvT3BCT5wd4uPsl2dnQGh/smoCq6USmCpvGz5UYi+jWWlfGJJDr5gVlMNmAu+cFBjpLt7OgMzo7OwKcqGapnGm7GZKOhaZqpkq2joRyKoi/8SewlABhJf15cZCUbAY9kY91FeUkP6HO9YNSRBEkpTTHcRedJNmdQFD0m24WtNfj5u7dg+ydvxG/fdwXedGm7N0k2osCczo7J5rXEB4CeuQ4ABiZjmI3Lq8meTKtVrlk5NybLkAaXdtTh+2/bDFUB/ri7Cz0jc+pauySbpmnYelxfjG5Zyt/YsEI+lGx2STbZeljvhaUN5SgP+tA7Pou9EsmDRGMkUWB3pIUE+STZ6DbQcepExwGZara5OK6jWeeI7DjStmP9el9b3lQFn8DF0q6SzcpjiSTieLbTPsnGexenYwnsT9tKr93cato2GqK63FKyAcBFbdVYUBHCZCyFp48NukqyaZqGz/7pAJIpDTetbcIXX7Me+/fswnPPPSf97Fi4pWQj513QUoXasiBiiRTODPPjJLPvIO9edo/O4Gj/JFQFhkqY11477eStA2WVbFZrRd6arlgiDit4gmQDgE2bNuFnP/sZduzYgZ07d+JnP/sZLr74YidFeRqWJNv4LBQAFzJxgHgdSBSTrRBKNnaSyjfJZtdvWVEU+FUVdWVBAFqGEoQtw2oAsIIZyUZ+E5EE9ADodSUb/TxFz4MmLdnfi+0uaqVkiyVSeN13t+L//fWYTl4oCt6ypR23XtisB8I26ceKoki7jIpiVXgNvPu2cXEtVAU4MzyD7lF+kgeW7IomUuifiEIB0F6bGetBURSUl5cjEAgY94+GHZKNnphpFVyWki09tu4/y09+8Ngh3VV0Y3stasrESgV6DKT79NKlS3HxxRdnBbwmoJVsvMQ3dJuM5AccJdu240MAdEOrXBDfLF9KNvp58IzlcMCHRTURVCqzeG7vIePcEUPJVpF1TiFhpmTLJtn0v6uYeGxeIlxCgfTiESpSxsLYu2OLl0E/T03TUFsexMb2WgQoxY0XnjlBVUQfT0g/pZULfeP6+9bkkcQHALCgMoSlDeVIafrmi4ytNR1LYEda/UQvAmWVOVcub8BL1zUjhLlyAPsk24GecfSMzcKvKtjY7h2SjQeaUDJT3cqowAzvGQW4Lq3u/r8Xei3bJ6r3+TTJtswlks2MsLHrLlpdrZNqRM1GYmPvTSdLokUNZmSABgUn0q6iq9JZSkk76PqsxhTWLrAi2Qj5++yJ4SxS0YmS7Y97uhFLJlETCWBLR6ZNI6MMdBL/jbdRyz9HwzUrFyAFBfu7x/Dzbae4iYuc4PHDA3jy6CACPgWffJkeV3F2dhaxWCxL2FJoko18VlUFly3X3TtPDPDjJLNt5N3LJ9NJvi5sq0F1WSCneY5nx1op2VhYrRWtiCsvQZZksxO6wFtX6FHwBmcNuu+/Ci1LmWAWYJu88PPuotkTcH1FEIqSGdNIxJrnSrLxXm6WVDVrr9eVbPqOqIanjg3ioQN9+O3OLrz6m0/hS385ZClVBorvLmqlZPvxMyex6/QoIgE/Lu2ow3+8/kL8+23rjZCqVv1Y9vmJyBmvgTdZVoT8xs4uMZRZsPf1QM8EUpqGypAP1RF9zKLv5caNG7Fly5aclWxsvaJd69ULK43kB8cHsnf/Hk/HYyOuoslkEocPH8bQ0FDGcaK4ET6fD9XV1cL+YsdddHXaXfRI74ShUAKA5zqH8Zk/vABAX0CK4KaSjW4X/TxEY9uyBRVoU8dwovMkxsb0BcpI2gAuZmZRgP8uV5dZKdkySTYvGXXEXXRn17jRXr/fu2NLqcKbJFtmLMG58VrBwKT3Eh8Aunu7BgVnR2ekFhfPdg4jlkxhUU0EHemxgyY5ZBby77lmKUJKAod7JwxCUjZzNcEf9ujqpo6GckSCzhK3eMFdVLYeVsmWSqVw8wV6HLr/298r7VlC1ztMzbtLG/KvZLPrLtrc3IxwOIxYLIahoSFDebm7axT79u3D1q1bEYvFLONGnR6ZQTSRQnnQn7Gp5KaSjYdLO3SSbf/ZMUSTmQIC0RrRbNP8x8+cAqAr+lQmPm2+lWxWLo6pVAptdWV49zXL4FMVHO4dxy3feBJ7zowKy+Yhnkzhqw8fwau++TR+9HQnxqbj+LcHDgAA3nFlBxbXl3PXh8Um2QDgiuW6G/Lx/gkpsQvvXj5BVMLpeGy5KALdULJZrRXPRZLNDly7whtvvBFLly51qzhPgO1sdIfY3TWOiWgCtWW+rFhAPFKumEq2UnAXVRQFTVVhKAB+9MxJw3VChmSzwyqzz4Y3eIiMOV5Mtmg06qrsWRaapuH5k8N4+EAfYons6+8bm8FvdnThB0+fwq4zYzg9PI3OwSl86/HjeOePt2N8Vk8jPT4bx+HeCUQTSe7A4kUlW//4LL7+6FEAwN9dvhhXLGtAbXrRLduPZTOMitwavQbRfdvSMeeOwAP7nHef0V0NWmsjxjH0dft8PmGSAPK9kzh3IiVbOODDNSt1Y+I//3o047fZeBJPH9PJtOtX6WPwyMgIenp6cOrUKWF9dp6jHZJtSX05wgEVM/EkTg3pC5PHD/fjrT94FhPRBC7tqMP7rlsmrMuNMZjNhsZ+Fo2VS+uCCCoJDE/pO7/9E1EkkikoCtBW5w2SjadkG2V2wiei+t8id1EvvMP15Xqf2nlmDJNRfa4JCd6peZiDVbLR8NIzJ6hOq20nZjMTH3SPzSKZ0lAR8qO+wjtKNgC4pKMOKehuSjK21lNH9UXg1SsauO+ujPvbhW012NhShpSmYdfpUQD2lGyplIY/7tZJNpIAyAkK5S7KS3yQK8mmaRquW7UAQZ+KE4NThjukCDxShygJlzdWGK7O+STZaKLPLLsobbcQNdvs7KzhVXRiYAp9g8NIJpOYmJiwJNmO9uvz9bIF5Rn2Dbv555Rko6+fRmttGRbVRJBIaTjSN5VxbXaVbA8d6MOBnnEEfQouaMneOJRRBjpRsrHkrOgc8vctGxbhDZvbUFsexNnRGbzhe1vx6ME+Yfk0Tg1N4bXf2YpvPHoUu8+M4jN/PIBL/v0RHB+YQn15EHe8aHlW3bKEJw9W77/d865d2aRvGk9GsYtDLlrFZEumhRMADLuYV6fddoqUbLx7JyLZnCjZvCZc4M1FPHWtnb7kGsl222234W1ve5tbxeWEb33rW+jo6EA4HMamTZvw5JNPOiqHVTbRN/jhg7qC4hUbmrOyl8go2UTyXDOcayQbfbyiKFi/qBpL6sswNBXDB365C4lkKmtCyFXJxjNE2N+s3EWJu6GiKNA0zZKocRvPnhjCG763Da/7zla8+yfbce2XH8MPn+7EycEpbD0+hB881Yn/73/3oXtsBuGAD5cva8CL1zbh4y9dhUjAhyeODOBV//k0Xv2tp/GDpzrx5/09+P2ubkTj2YqXQg+CMkq2L/z5ECajCVzUVoNrmYlGth/LuouWQjw2QGxAXdqh75w9e2Io6xz6eHL+zvTEv6g6bHtMyIeSDQDufPFKAMDv93TjUO+cyvW5zmHMxJNoqgoZSQdEscecPkcRycabjH2qglXpBd3+7nF892/H8e6fbMdsPIUXrW7ET955aRb5Q8ON3T3Sr+kFqYySra1Cv57RaX3X/3j/JAAN1eFARgKBYsCMZGOziw6nsyBWRfhKNi8QLp96xVrcdfMqXLOyCcsXVGD9omoj3tE83IMnSbaI/n5OMu6iR9MEyCVLak0zJBcDWzp0JVvfeBTTUeuxnbgzXU1lvjMjOURz/s1r5lQ+s/GkLZJtW+cQusdmURZU0zEnnd3TQruLplIpjI/rcxwdD1Sm/ezCNZVKoTIcwJVp9YyVyyhvTfLMcX1Bf8mSOkeqPfodlFmgyrqLsrY4oM95deVBtNVFoCCFnlE9tvLs7GxWeIrMOjUc7tPfv6WNFVxxhF0lm504YGQjdH/3OPdcmfclldJw78NHAACbFtciEsy2c8w8jNwg2WSUbKSOxqow3nN1B65duQCz8RTe89Md+NXzZ0zruH9HF275uq58qwr78b7rlmFJfRliac+cD794JarS9hWPJMl1PnBDyVZTHsKKpkoo0PCLbaeyzrMiLPd0jWJsJo6qsB8Xpl2jc7kuXp+wo2qjfzvX3UVlNwpYuHaF73//+/HpT3/areIc47777sOHPvQhfPKTn8SuXbtw9dVX46UvfSlOnz5tuyyRku3xwwPoGplF0KfipjXZGe3MYrI59Q9ny/Oyu6gs28vu8vh9Ku588QqUB314tnMYX3/0qJSSzU6HZ5+lE5KNqJqIEUSMokLgM394AW/43jY81zmMoE9FQ0UQPWOzuPuPB3DdVx7Hm/5rG+750wHMxJNorg7jc6/egBvWNOGClmrcdvEi/Pr2y7GwKowTg1PY1zUKRdHJge6xGXzt4SNCYrlQsFKydQ5O4be7zkJRgLtvvSDjOZJ/gPvuol4n2UQG1CVLagEAxwemMDiZfa30c06mNOxOB81tqQ7llWSTVbIBuuvDy9Y3Q9OAr/zfYeP7v6bjsV2/qtFoo4hkc7pz5vP5UF5eDp/PlxGHTjTGkeQHd/1mDz7/50OIJzXcemELvvv3m7I2Y1i4qWSLxWJGeTJKtgVh/fvhqRhSqRQ6B/VFR01Z0DMkBY9kY91FSaiB5Qxp5WRTK19oqYngfdctx1su78DLL2zBDWuaEJh3F3WEUlOykbiRk2klOWnjkfQi/7Kl9UVrmwittRFURoJIaRoOdI+aHts7NosjfZNQFBjkDsB3AyQQLVw6agJoqAhhIuHD3q4xWyTb/+48CwC4rKMO/hziHRZKyUbbPf39+ry2YMEcSenUXRQAXpJ2Gf2LJMlGt++ZtFL8quV8VaIVnCrZZN1FFUXJmPMAYENrDfxIoXdM94aZmZkxteN2d41ifDaJkF9FW20ZN/ZqvtxFgTmX0T1nM0k2O8TXg/t7cKh3ApUhPzYvruW20Wxdlou7qEh9xdbFzsEhv4rvv20zXrOxFcmUhrvu34tvP348q/zx2Tg++D+78ZFf78FULIlLl9Thzx+6BnfdvBp//ch1+O+3bcaXXrsBb7603bReAjvzgVMlm6gMIiYBgAf2dWfZL1aEJckqetWKBmNcc6LQY9vGI5Xoz6K5FZBXsonUYV6CWYy6giY+8DK++tWv4h/+4R/wrne9C2vWrMHXvvY1tLW14dvf/jb3+Gg0ivHx8Yx/BCKS7dt/O44UFKxbVI1IIPsWminZkkndLa+YMdkKpWSTjclGn7OwKozPvXo9AOA/HzuG5zqHuOeYDaJmkHEXlYnJBswZQX19clLnXLGvaww/euYkFAV4y5Z2/O2u6/DUR1+Ef3vVOiyuL0PQr+/aXrW8Aa/ftAiv29SGpupIxvNYt6gav7/jSvzDVR341MvX4F1XLcUrNrRAUYA/7+/Bj585aRwLeEvJNjYdx0+36WT5Gza34cK2GuHxbpFsXpU1sxAZUDVlQaxeqKurnue4jNLXd6RvAhOzSQR8KhoqQrbHKDeUbKIx486bVsKnKnjkYD92nBrGiYFJPJJ2MaDd9clCzK6k3QwkDh3PjYRtL1HUzcZTqAr78aXXbsDX33gRAhILPTcMD7LgAObuBZv4gDdeVvv0Y8dnE5iNxQ2SrbYsUHSSgveO1whisu1LZ9G7IG3IEnhJyUbA60/zcI6SINnKdZItmUxhKpa2BTUNh9Puapcv8x7JpiiKobTcb5KpGoDhyrRhUXVGIhqzsY33fmuahpmZGWxeXIspLYBdp0cwPi2XZGomlsSf9+uE0hXLGjLqsAs3STZemWzZExMTmJqagqIorpFsN65tgqoA+8+O4+QgP6shfTxpS//ELA736Ul8Ll9WXxCSTVbJRh/Hhki4KE2ykZAzNMnGe4YPvdAHDQqW1JfDpyo5kWyixAdm/Y+QbAd6JjK8d2RJtmRKw9ce0UNp/MPVHcLNPJn7ybYzFyUbex5P4BDwqfjK6zbgvekwGl/8yyF8/ZG5sCBPHBnAS7/2JP6wpxs+VcFHXrwSv3zPZVhUE0mXpeCGNU14/ea2jBh0vHWdk/nADXdRtozm6jAaKkKIxpP4351dGedZuYsSku2aFZkePGw9sjAjlejPItEDYG1bWxFXXoKV6s7JGCgVCOTVr361dIG//e1vpY91G7FYDDt27MDHPvaxjO9vuukmPPPMM9xzPv/5z+Puu+/m/saSbD6fDztPj+C5zmG0+1VsbK+1jBdAQBvUhGgDzm2STbYjsoPyKy9ahGeODeG+7Wfw//56FHesy85MlKuSzYxkI3Ex2AGAHQCbmppw+vRpDA0NIR6PZyxw84Ev/uUQAOBVFy3Cv9+23vj+7y5bjL+7bDE0TTPadujQIfT29nJl+k1VYfzry9ciGo1i69YulIf8uGr5AnQeSuKzDxxEY1UYq8u9lV30UM847nv+NPqiIbRU1+NfXrIq43daFQDIu4vKxmQrFZKNNx5t6ajDod4JPNs5jJeub874jZ5Atp8aQQpAc3UYqqoY115IJZtZYP7XbmzFfdvP4E3/9awRhzDoUzOSCeSDZPP5fFnnie73i1Y34btPnMDF7TX4zCsuQKONIOZujMFk0RGPxxGPxxEMBrMUIKlUKuN6UqkUEJ9F0K8ilkjh59tOYteg3oaa8uIr2Xj1N6TjVnWNTBvj3mw8abjdrWdINi8p2Qh4bknzsAezvulFki0SDCDgU6FowNBkFKlUCgMTUUzHkqgM+bE2naHYa1i6oALHzgD7z44Kj9E0Db/errt8XbUiM8GL2aKKtwiLx+NIJpNYubAStWeAmfFePLK/Gxs3rLNs68MH+zAZTaC1NoIVjeXo7h7LG8lG4JaSjWSrr6ury1gzWNnUtP3D2rYNFSFcs3IBHj88gJ9sPYVPvWKtVPu2pjNir22uQl15EIMukWzke959yNVdFNDj+QUUPsnGG2cfOtALH/Q+zh6Tq5KN/Z6HjoZyNFSEMDMVRe/4LCoryjPqFBFf5Pc/7DmLY/2TqI4E8M6rOrDr2R7T88yUbLJ2Dg12buWRbGb9U1EUfPTm1agM+/GlvxzGvY8cwdhMHKeHp/BIOixTW10EX3/jxdjYXitsB+962Daw7bOCGyQbu24narbHRzX8/NnTeNsVS7KeDc9ddGw6jt3pcC50PLZc5jkr5aUdJdv5lPjASkBEQ+oKq6urjX9VVVV49NFHsX37duP3HTt24NFHHzUCUBYLg4ODSCaTaGpqyvi+qakJvb18qfTHP/5xjI2NGf/OnJnzC+cp2b6TlrNesXwBKsJ+7s3mDej0JJNIJBwZ/U5JNvYl8Kq7KP3dP79kFcIBFQfOjuHU0LRxTr5INk3TsP/sKB492IfBySiXKGDvUXl5OSoqKqBpGgYGBqTb4ARPHR3EU8f0FNUkRhUL3uRmxr7Tf29sr8GNaxYgmdLwvp/vxK+eOwVN0wo+CNKD2IHucfxu11l8/sGD+Mwf9mM6nkRbXRn+9/1XGsGhRbtmdpRsZv3nXCDZjLhsHCUbPTY81zkMQEFLepfQ7piQTyUbAHzwxhUIpYmggE/Blcvr8fU3XoSK0NxihM3eTOD2cxRNtu31Zdj68RvwrbdsskWw0WXlOgaz7jNW4QKmpqaQSqXQUq0/9wf2nDWMuVoPuIvyxq/VC6sQDqgYmY4bAb0PpbO61pcH0Vydee/nlWznPkpByaaqKsqCPijQcKhXzzDXNTIDDQouydG1MZ9Y0aiTf4d6xhEXZCe/f+dZPNs5jHBAxRsvac/4za6SbXpat/nKIhH8/ZUrAABPHu7F8JR1/FuiDrnt4kU5P3s3lWxmx7DzUmNjZhgaGZKNLYsmNt5xZQcA4FfbzxjZWlmwz+jptCqRdvu1ug5Ru3gkm9XxZnFaeUo2Mt+tW1SFgJLCZDSByWgCs7Ozwvn/WP8kTgxMQVVVLGkoyzrGLXdRs36oKAq2LK1DSlNwdmQma41jpWT73hOdAPSMvFXhgPDemtlYovvjlpKNPl80173vuuX45C1rAAA/eLoTjxzsh19V8M4rO/DgB66WJtjY+nKJyea2ko28B6ubKxEJqDjaP4nt6eQivDbS9//p44NIaXoSEmKj0+c4gZl4xex7O0o2nq1crHBEVrAi2ZwkPpBSsv3whz80Pn/0ox/F61//enznO9/JIHLe9773oarKG7tw7Esk2jUB9MU2HdyaPQ+Yu8mnh2fwcNpF6daLFiE22mc6YLGkmN/vN3boCqVk07S5wPyBQEBIKri5CHFDQr+gMoS/27IYv3jqMJ7tHMLi+jIoisJ96e2wyjzJ8jPHBvGVhw5j5OxxVCuzODk4hcu2TKN1QTDjXB4x2tTUhMnJSfT19aGlpUW6HXagaZqhYnvLlsVoqyuTOgfING7MBkpFUfChG5ajqnYMP3i6Ew/s7UbPAmD9bDlOxStQHvSja2Qap4amcWZ4GqeGp3F6eBpBn4qrVzTg+tWNuGp5A8pDUkOKEKqqkyj/9cQJPNB91vh+oZrE0sZyvP3Fa9BUlR0Q2KmSTdM0Q/HDQ6mQbGY7LJd06MbJod5xjE3HUV02p7gkxyc14LFD/dAAtDP9ywtKNkCPZfXb912B3rFZbFlan0GuEeRDycaDk8nWCm6prYLBIKanp41xn1WyJZPJDNUtCZHwsg3NONo3iYPjfvz1bAplfh8aK0OeISnoex1MK8mfOT6EZzuHsaKp0nAVXbcoO7Oa15VsXmpXqUFRlLyr892CoihY3liBrpPT+O7fjuNLNzXpakwouNyD8dgImmsiCAd8iM8m8UL3OC5qq8n4fXgqhn9/4AAA4IM3rMyyUcwWVTx7cWZmBgAQiURwQ3szHnoqhK7xBL79+DF88mV8JRYADExE8UQ6u+mrLl6E5Eh3Rh124SbJxiuTV7aqqmhoyFQCWtVDz/s0eU9Uy9esaMCyBeU4PjCF3+zoMkg3GvT7ommakbn7iuWZLrf5JNmcKNlod1FN01AW9GNpXQjxUaBvbBYVIb/Rn9j5nySDWN5YiZDfl3UM3QbaxrQi2ewSO1s66vDo3tM4OTSFK5lMpqI4aZqm4WDPOA72jCPoU/F3WxZz28L+zbv3ViRbrjHZeCQbrx3vvmYp/D4Fn3vwIK5Y1oB/ffkaLG+0nx3YS0o2tj5VVRHy+3DLuoW4b1cffrbtFC5ZUsdtI/3MSHgUnqsorx477RQp2ay+B6xD6vDWBaWuZLMzBtq+wh/84Af453/+5yxXhzvvvBM/+MEP7BbnKhoaGuDz+bJUa/39/VnqNhmwJNsvnz8DTQNevLYJbfW6tJi3KBQNWHRny3dMNvpYmmQD+B3ETYNUVlJppmQDgPdcuxQhv4KesVmcHp7OKNOJko0nWX5wXzfe/P1nsfP0KIKqgvKgHxPRBD5x/24kknxSir5HZMdxbGzMmMjdwGw8iQf39eAnW0/i0394AfvOjqE86DNSVFtBhn1n/1YVBZ96xVp89fUXIuTT02V/94lOvOOHz+P1392KO3+1B19/9Ch+u+ssdpwawcBEFGdHZ/A/z5/BP/50BzZ+9mHc/tMd+MOebuFuqRUmZhP47c4uHOkbR9Cv4pIltXjzlnb84zVL8fILW1AWynTJdUqy8XZAeSgVks3McGmsDGNpQzk0DXj+ZKaajfSTg72TmIwmsKimDC01+SfZnCjZAOCClmrcsKaJS7ABhSfZ7BD8VnBrDGbdZ6yUbIRkCwX8WNtShTuuX4atH7sB/3D1UstkDYWAyLAhsWyIQnN/FyHZsjf7vEi4zCvZ3AXdP+zMBYWEqurkcEBVsPP0KPafHUX3qK5k82LSAwK/34eW6jAURePG9vz3Bw5iZDqO1Qsr8a6rswkcx0q2sjKEQkFcsawBPiWFH289hZ4xsZ31xz3dSKY0XNhajWULKnLeBJEl2WRgNgbRZdfX19tWFPGUbEAmAfL2NLH242dOIpUSb7SrqorTw9M4OzqDgE/BpWkCQPZaeW10QrKZJUPikWypVMqY55c36Eqf3rTL6NTUlFEujYcO6MTFeoo0Fm1+2CHZ7BI7N65pgt/nQ8/YLI73TxjXw2szXcfvdusb0devXoDqsoDpuOdEySazmWh2jewaWqbMd1zZgQP33Iwfv/NSRwQbW7aIKLILN9xF6d9ev7kVAPCnvT04w6xvWZKtf3wWf9itbxjcsn5hRnm52Dbss5BVstGwsq2JnUPCMNHlec3u4Y2zNNnthGSzLTtJJBI4ePAgVq3KjIl08OBBVxccThAMBrFp0yY8/PDDuO2224zvH374Ybzyla90XG4qlcLkbAIP7u8D4Mft1y6Dqma+FOzxQHanozOMOtlZt0uyqaqKVCplLLLoyYhFPkg2q47ImxDo7xorw3jVRYuwa3c/nj0xjPa6Mu5gYIdkIyCB3v9nzwSAarzp0nbc0tKE/sEh/M/zZ7Dz1DC+/H+H8fG0fJk+n75HoVAItbW1GBkZQX9/PxYvztxNcoKZWBJv/v427Do9mvH9u69ZasQisoIVgWn296s3tqJ8aiW2vtCJZqUWJ2fDmErHOGmvK0N7fRna68qwuK4cw9MxPHaoH3891I/Tw9P4ywu9+MsLvVAVYNXCKmxeXIvXbGrN2Pk+2jeB7z/ZiYqwHxvba3FBSxVGpmM4PTyN7z+yF77xWZQHI/ifd1xmSMSPHz+OM2fOCPunXZIN0J9dPB5HNBpFRUUF95hSI9lEY/CWpXU4MTiFbSeGcOPauQ0Hcvzzp0YB6Gomn28wY/OgEEo2M9cQOxCRbG5P6vkg2dxqI0se85RsNAjJVl1djZGRESSTeqY1n6pkLY6KAVH9hGR7rnMImqZhf7dOsrHx2ABvGnXzSjZ3wFOyeZVkUxQF5SE/tnTU4tAR4IdPdUJJpBAJ+rC2xRueIDwoioJFtREo/TF852/HURXx47Wb2jA6HcMvnzuN+3d2QVGAz796PTfJi5nawUrJFggEsLi+DO01IewfTOIr/3cE//H6C7PKmY4l8F9PngCg2zC8OuyCjo3EK8POosvsGPr9Z11FZeoR9Xf6+9dsXIQv/+UQTg5N47HD/bhhTRO3DEVRDBXbxW21hneCzLWeOHEC3d3d2LRpEyKRiG0lG328bOIDn89nrHXi8Tj8fj+W1IVwEDDisk1O6iEF6P53amgKe9JhES5srUV0cjTrGPq5EDUbfS9YOEl8AOgq/Tduacf253rwxJF+/F1KsyTZkskUfr9LJ15uu3iRafn0eWZKNivXVB7YtSx51rRNLqtkI5BJFGUGnhLJS0o2AFjVVIGrVzTgyaOD+N4TJ/DZV63j3ksAeGBvNxIpH65btQCb06Q3QS7koZWSzY2YbPT7lEwmjXeV/c0LyIeSzTbJ9o53vAPvfOc7cezYMVx22WUAgG3btuELX/gC3vGOd9gtznXceeed+Pu//3ts3rwZl19+Ob73ve/h9OnTuP32222XRW5kMpnErjMjiCWDuHRJHTYtrkVPjz5429kVYDOMAvlTspH66fYVSslm15XKjAh686Wt2Ld3N7rHZnCgexwXXJD90svWQ9+L44PT+L8XeqGgDG+/Ygk+/Yq12LNnD5IVIbx4bROO7I7iu0+cgKIo+OANKxAJzt1L9h41NTVhZGQEfX19aG9vz+keJpIp/NMvd2HX6VFUhv24clkDqiMBLKqN4D3XLJUuh26rSFkoGlABoLk6hOtWN2L16tVYuDBz54TFtSsX4NOvWIsDPeN4YG8P/ry/F52DU4aU/efPnsKHb1yJ912/HI8d6scH/2cXpmL6O/Lf6Mwoq0KJ4qIyP950xZKMGAxWBgd7zTIIhUKYnJw0zTB6rpBsV69YgF8+dwa/292Nf7l5leEakUwmEUuksLtrDEAVXrGhBWMnMzP6yt5PehPBCuzzNNu1loWmacKYbG7H5JJV69qB20o2mZhssVjMWNCSzQJ6MeEFiOaGje21CPgU9I1Hcax/EkfSmfDWcUi2eSXbuQuz3Wf6dy+APOerl9fj58dGMTwVQ70KrG6uhk/1TjtZqKqKtc3VaO0dx46RGD56/z58+/Hj6B6dRSyt+H/b5UtwsSBukl0lGxmTysrK4Pf7oSgKrlrRgIeG4rh/ZxduvagF167MdJv6zt9OoGdsFq21EbzhkraMMp32AXKenaDesmXSILa5z+dDXV1d1u9W9bALQbKQpcf6sqAfb7q0Hd994gR++PTJLJKNLoPEY7uCiscmc639/f1IJBKYmJjIItloyFyHnRjSwWAQs7OziMfjiEQiaKvS58Ce8Rg0TTOUkbQd9/kH9RAs165cgJryEPp0Hi4rljaBzLrNqZINAG6/djnev/N5DE1G8ZvtZ9BqYfMe6BlD7/gsqsJ+XLeqMaM+Xp25KNnM7BzeNbIkG289kk8bw8vuovT1v++65Xjy6CDu234G/3TD8qw2KoqC3rFZ7D4zCkWpx10vWS1Vp9122lWy8Ug2s+yiPp/PSMIYCAQ8uekJ8O16Hslmx+63TbJ95StfwcKFC3Hvvfeip0fPYtLc3Iy77roLH/nIR+wW5zre8IY3YGhoCPfccw96enqwbt06PPjgg44URqQjzcQS2Hd2DCkswO3X6USH2aJQxOzylB75JtloFQMdh4pFMZVsZjtcdeVBXNRei+0nh/HwwT5EK07iw7cucKRkI4vHo/2T+PXhQZSnNFzUVo1/ffnajN3wlU2VeNPmenzn+RF852/H8cc93fjgDSswNtSL7lMD8HXFsaBtmRHYvKGhAYqiYHp6GrOzs4hEImbNML0f//r7F/DIwT6E/Cp++PZLsnYt7JQF2HMXFbH3MlAUBRe0VOOClmrcdfNq9I3PYvvJETy4rwcP7OvBfzx8BA/s68HhvgloGnDpkjqsXFiBXadHcaRvAg0VIbTVlmFZjYrLqyvRUMGPh2c2YdntwyQWo4y7qNcmAxZWg/+L1zZhYVUYveOz+OOeHrx2U6txfOfgFGYTwOL6MqxbVIWtp8VEphnYTQSz8/KhZKONYNIf2LHIbSWbm4aiW4YH6y5K/idjHN1HJiZ0YqqsrMw4z+kmUL4gmk/CAR8ubK3B9lMj+MnWU4gnNdSUBbCoJnv8dZtkdQPzJFv+4HWSrSrsx2s2tmLrTt318oKWbGLYS1BVFZGgD/9+2zo81efD1x89ipPphFQbWqvxli3teO2mNuH5dkg2TdMylGyKosczbq6O4C2bm/Cj53vwsfv34qEPX4PKsE5OdY3oMe4A4JO3rHHNzd1Nks1sTI1EIli9ejXC4bC02s+sbB7JBgBvvWIJvv9UJ546Nogdp4axaXFdVhkA8MxxkvRgLjacVRsSiYSRHZXM46ySjSVfWMiSbGx/CgQCmJ2dNWy5+jIf/KqCkbgPp4ansaRez9hJ7u3W40OGx8UnblkDjHUbZbMkGyEIZJRsVsogM9RWhHFpRz2ePDqAex8+hM9dGYLKqYv8/dRRPdnayzY0S/V3Mxsxl8QHvLlVdB9ooiKfMBNhFJtko/v1ZUvrcHF7DXadHsUPnjqJy8uy7+XTxwahQMNtFy3iqp1zsdXYPsEj2cz4AvocMyECTbLR53jN7vGEkk1VVdx111246667DDcTryQ8IHjf+96H973vfTmXQyaD5zuHEEuksLyxCtendwyc7ArQSg/yOd8kG328bIyDXCHL9soYwpqm4cpl9dA0DTtOjeDn206iNx7Ca9qTGcfI4G+H+/CrZ0+jfzKG8VQlOqpDeM/VS40dZLqcN1/Sio2rl+LuPx7A2dEZ3HX/XjSqE2hRxzGciuI3J57AZ1+5Dq+4sAV+vx/l5eWYnJzE5OSkI5Lt7OgM/v2BA3hwXy8UBfj6Gy92TLDR12K2cyRDsjntD01VYbxsQzNetqEZL9rRhX/9/X4c6tUX9H9/2WJ86hVruZLw8fFx7Ny5U6iyM+sndokUQiqcD0q2gE/FW69YjC/95TD++6lOvGajnnktlUrhSN8ENCh4xYaWjP5CYJdkA2DsWImQDyUb6xZJw23SyMsx2Wh3UVrdFwwGEY1GM4hMeg7nJZ/wEkHBG+cv7ajD9lMj+M0OPaPgek7SA/pcLxl18+6i7qCUlGx0W9973TI8t2sPAGBda00RW2UNY5xWgHddvRS3XbwIjx7qx5qFVVjfak0Q2iHZotEoUqkUFEVBOKxvZAYCASQSCfzjNYvx1+NjOD08jc89eAiff/V6ALoqKZrQF603r5tT3ntJyWZ1jJXHgFkZPAUMkD0/LaqJ4HWbWvE/z5/Bvz1wEL997xVZxx4bmMLIdBxlQX0Tg8DqWkncM4BPspH/zUg2+njRHMvbUGU3llLJBFYvrMKjXSn8ZX8v3nhJG2rKglBVFcmUhnv+pCfpeMuWxVi1sBJHJ+aeL0/NlSvJJtP/VFXFhW3V2HNmFPsmZrH1+ASuXFbPVbIlkils7xwGUIFXXTTnKiqjZOPdexFRIrOWEynZ6N9ESjarzVin8JKSzcwFV1EUvP+65XjXT7bjZ9tO4eKrAggF5gjm7adGcGZkGn41jA+/eCW3rlw2eq1IYR5Rzx4ns0by+/2IxWIlT7I52VzP6Qqrqqo8R7C5CU3T8PjhPmw/pe82vv+GFVmTrp2YbDx30XzFZGPr9/v9ph2kGEo2+ngzIkhRFFy9YgGuX90In6LhV9u78MiBueQWVgvdZErDvz9wAHf8fCcGJqMI+Hx43eY2vHZTG4L+zMCmxjnJJG66YCEevvMa3HH9clzQUoVLFtdiY3st2urLMTodxz/9chfe/4udmJiNGzG9aENDBrPxJL72yBHc8B+P48F9+s7aZ1+5LsNQdIJc3UXdHARfs6kVf/qnq/DKi1rw5dduwGdftU4Yc8HMsOK1h6eCtKtkO5dINrN37s2XtiMS8OFgzzi2ntBdQidmojg5NIUUVLz8wuaMsghk7yc9CVm5jIqUbG6SbLz+7JZB50Q2bgW3lWyxWCxjriH9nadko0k2mcVEIWGmdCZx2Wbien/iuYoC80q28w35dEXKBfQ4t6ShHG+7YgmuWbHAcYDvQoG1z+orQnj95jasb61GNBrFyZMnHSvC2bJJOaHQXGZjsnHgRwpffM0GAMAvnzuNt/7gObz9h8/hgX09UBXg06+4wHS8sAs7JJsde9dpO2QUYPT/vOPvfPFKlAV92HV6FH/a22N8r2kaZuNJ/OdjuiLwxWubMuxjqzmaxD2jjxGRf3aUbGbqdrZ/kI2lWCyG61YtQNvCeszGk/jD7m7MxpPw+Xy47/kzONgzjqqw3yAu6Odr5jIpS7Kx90jmmSuKgoDPhyuXN0CFLu544exYVt9TVRXHBiYxE09iUU3EyEwJmPf3XNxFzcrl2eZeUrLlEpONhtM52kzJBgAvWt2IVU2VmIzG8WznkHFO/8QsvvLQEQDAFcvqszI2W9UjA/b5WinZeP1BlmQD4HmSjXd9uSrZvHWFHsPgZBT/fN8uaJq+Q/6yDXM7Bk4GLLqjOXnh7ZJs9PEkrgVgTrK50ell2V4ZtRV9fy9srcEHb9Czaz59dADHByYt65mYjePdP9mO/3qyEwo0XNxWg9uvW47Xb9YJNtHuN3mGZUE//vklq/DAB67GP9+0EtesXID/72Vr8cEbVsCnKnhgbw9e+c2nMRrT208bGlbX/uC+HtzwH3/D1x45itl4Cpd21OGP/3QV/u6yxVJlWJUPmLPvZqSb28qPpQsq8PU3XozXbRa7lABiI0y0SOYZuXZJtnMpu6gZ6VNTFjTcRP/7yU4kkin89UAvkikNLbXlWNWkL/ScKtkA+eQHIiVbLu6ibJ357M9eVrLRu/qEeFRVNWOTh4D8HgwGM56BV0k2FpuX1IEOZcVLesAzEr0Aet7zUrtKDWZKNp4yt5hg27qpvQYbF9d6qo08mI13Z8+excmTJ3H27Fnh+XaUbLw5l5Ao8Xgcly+rx1sv122kJ44M4PHDutvcm7e0Y00zf9M/VyWbFakiAzfcumSVbGbPq7EqjH+8ZhkA4It/OYTZ9AZFIpnCn/f3om8ihra6CO6+9YKM8+hnwANt+5op2UTXwdpwomug/6bdRUnbyPzl96m49y2XozLkx/B0DD/fdgr/8JOd+MT/7gMAfOjGlagrD2aUA+RGsrG2tt1nrqoqVi2sxDuuaAcAPHKoD4+l+zegJw371mPH8dALfVCg4daLWqAKYjma2coscnEXdapksyo3F3hJySZ6DnNjooIP3rgCCjTsPD2C508OI5HScMfPd2FoKo768iBuXJOdDIXAzXHFSslmRrKZ3R/W9vRqGB4rJZsTks22u+j5gtlYEt9+7BjGZ1Q01YZx3apG7gvHWxSKOhDtLupkZz0XJZvP5zNVXxRDycaTNvOUbDSuWt6Ad05H8OyzvXjohV686dJ2NIXmMm5ORRP425EB7O0aw/GBSeztGkXfeBQhv4p/f/kFqJ89i1AoYPoyAXySgBwb8Pvw4Rcvx/WrG/Hen+3AiYEpfOA3B/HWVQqWpXxYm9KEE5+maXjq2CC++dgxbDuhKyRbqsP4+C1r8PINza4Z2zIEptnfxdppcKpkc0KynU/uogTvuHIJfrrtFB491I9rvvQYyia7UaEAL1q70HJBIQMiC7ciywqhZBMtut2Al2Oy0VmkSYycQCDAdcklz4FWOnuZZGPdSypCfqxbVI29XWMAgHWc2Fb09XrheggURY81FY/HPT++lALy+b67BXacc5v8zxfMxmcyf5qN+WZxe+yQbMQu+9eXr8WWjnpMxRJIpTQE/SpuWd+cVXau/UBWyUbqMqvHDbcuq7JlSDYAePc1HfjFc6fQNTKDzz94EJcvq8cz20/h1NAUAr5afPfvNqOmLDMurhXJJusuSn/PuwbSflEICd66gVZvk/b5fD4sqq/EbZuX4JfbTmAimsBIMg4giGtWLsDfXz63me22ki0Xki2ZTOJ913Rg8sxhHOgZxwfv24OOv55Az9gMRqfjaFIn0KxqWL+oCrdfu8zy3vCug0UuiQ/sxmQTtddN8OaCYpFsPCUi28Zb1jfjzhtX4NHHe/D0sUE89V/PYk/XOBaG/HjZhhYEffkdV2SUbKK1pF0lm6aJM+cWG/MkWwHxw62dGPfXozpSi1s2NCMYyLxVxVCykd0dEq/CCsV2F5VdMNshglKpFD5+y2r80+Hd6B2dxO92nUVLfSUeGTqAk4NTePLYIGKJzHobK0P4r7duxpIqBbt2nRVKlum6zEg2cu5FbTX44z9dhff/fCe2dw7gkYO9eORgH/7l8Qmsa63Fdasacd2qBSgP+nFqaBqHesfxP8+fwbF+fccv5Ffxj9cuw3uvXYZI0N1FlkxGFDNlW7EGQbtKNoJclGzxeBypVIp7rTJBPb0A2Xdu6YIK3LC6EY8e6kf32Cw2lqnY0lqPN17KNzjtKkFklGz0s3JTyWZGsrntLuhlJZvP5zMCzZKsavT4zyPZyDnkdy+RFFY735cuqcPerjFURwJoq8uOh+lVJRswl5zIa+0qJZjN5V7ovzRyXYQXC2bzC1GCmy083FSyAXqM0ZdtyCbV3IZdks1OmU7aIaqDvb9W9kBZ0I+P3LQKd/1mL3689RR+vPUUOnzDqFaAO160ghtg3Yxk0zTNFslmFmaHXAdLbvHOJd/RbSP9kXzXsbAWb7ykDSPTcaxZswYXLGtDdSSQ8Rzoz2ZEk5Ud4QbJBuj378Y1TZiNJ7G7N4WDPePpcoBLO+pxVVMNLly5BNURcdxbq7bRyLeSTaQsLgTJxm5o2EE+lGwi2/H2a5dh6vQL2HZiCHu6xgAo+MQta1A10y3V9lzGFdE9Yvu8FQklAo/7sDqnGPAcydbV1YWWlhbP3Sg3oGlAa20Et9+yAamB40JVWiFjspHjnZJsMrtIxVCymQ26vJc+4FNx64XN+NkzJzA6E8dg1yj2n+w0jllSX4arVjRgRWMlljdW4KK2GpSH/BgZGQEgflnskmwA0FARws/etQXffOwY9u2cwOjkNLR4FNtODGPbiWF84c+HssopD+ox4f7hqg5LP3un4MnuS03JRhtWVko2+hjZPkyIh1QqhWg0yk1YUWpKNpnB/1OvWIvKsB9bltajLXEWiVgUoeDcrrWZgWAFGZKNJtLcVLKxdfJcBtzqz3Y3EmTg5jsXDAYxMzNjkGy0ko2+/+Se0SSb15RsNHj9+4Y1Tfj+U524anmD5eaJ166noqIip4zU85hDKSrZvBgrkAez+cUINi+hdrFDsrHhTui6ZJFrP6ipqUFlZaUwKYEdwsBNty6rsmXsgddsbMULZ8dwsHcCmqahamYWGxZU4rrVTdzjzUi22dnZjHnFSUw2ljyjnz/PFqQX/bwQCeS7cDiM+ooQ6itCWNVcnaXQA/KjZHOy8UvqSiQSUFUFL79wEa6/fiUqQn4014SxqCaC0YFeHD9+3FINKCrbTBhi5SliNr+axWTjERX5hNvuonY3m81saDNByZZ0jNkDx334pxctxzWrFmD3bnOSLZdxxU5MNitxipndyvPio7/3CqxINiceLDmRbGvXrsXu3buxdOnSXIrxJN5++RKsW7MSixZVY+eAWPJpZ8DKVclGl5kLyZZvd1G6I4oGZhZmCiUapO3lQRVv3rIYxwcmEUspuLJxKarCAdy4pgkrGsu5g6IVI21FsokM4oBPxYduXIm9jbMYHBxCZEErjkwE8Njhfmw9PgRNA9rqIlhSX46rVjTgtZtajdTz+YLV7oPV38Uy/lmjle2zZhOW3T6sKAqCwaCR+v1cINlkSJ/F9eX42hsvBgA8/fQZAOJMh/kg2Xg70Wbu97IohruoF5VsgL4gmpmZMdQFPCWbpmkZ7qL0u+TmdeUKq4Xs5cvq8eAHrkYrR8UGiOPBeAFr165FPB43VLXzsI9SVbLxFL1ehdl4R8bdQirZZJGrUiYYDGLTpk3C352QbE4gq2Rj51Pe85qcnISmaaisrMTdr1xnfL9nzx6MjIwI+yLtsssq/9lYxLm4i5Jxmi6fro/3btOJD1glG23Xiew4t0k20k674xBNRgB6aJpXXNiSccyY5Aafla1M/27lLkrOkx1rvaRkc4Nkszs+O1GyEfHM5csa8OG3XoWQ34exsbGMtvPg5rjCa5PVWlLmvtLrAq+G7wD4/baoSrZ8vSBeQFnIn3WDaYiIJPocdsDKNSYbXa8Tkq3Q7qJW4A28Mko2cs8rwn5c2FYDVVVxzTVrjON3794NALjooosy2iI7WAD8xb6VQVxRUYHh4WHUhzS8bf0SvO2KJUgk9YHTJ4jRli/wdh+s3EW9pGRj22N1750YNIDuMjo7OyuMy3Yukmw0aJKFoFBKNrpvmimDZSHjLupWf3Y7JpvbC26yi08r2Vgik91RpJ81eX5eMIJk2sBzbyLwKuEC6M96nmDLDU4N/2KAnd+82k4WZrFSZdxFZbOLiuxnpyQbW0c+4QUlG7m/Zs9r9+7dSKVSuPLKKzPusVX7aBshkUgYcwwwF4+NeAaISDazeVPk8speB28up5VspD+S7+yQbLyNGDuxSkUkmyxoJRv9N68Ou+s4M2WglbuoqD5ALiabyP7KF4fAU7KxbbMDu+fQx5upA2nQ73DI7zM91o02suXz+qtIyWZXkEF78RVa1WgHInIYcE6yeXv7rMiQIdkA8QstUrLl6i4K5KZkKyTJZrZoliHZeEaCGVmUTCYxNjaGsbExofuYm+6iNCoqKgBk7ur5fWrBCTYgs62y7qK0wqVYO+xWhpWbSjZgLi4bj2QzMz68BjOVqgj0LlUxlGy8Ot1UsvHGZa8q2eh30Y020oGgAf25sEQm/YzImEjqJs/Ba0aQE6O8WBsG8ygevEpesfNbqbiLiuYX2paVcRc1S3xAl8kem6uSLV/314kqJ58kG6sY4z0vsslPkuIQWI2TiqJkKMZoEJu3srIyoyw7Sjb2XaBtV9ouMFOyaZqGmZmZjO9okk10bXRsWPb52IlVmiuJLkOyyYgleBDZ1vQ5Zko20fvtdSWbqC/KoJBKNpn7yIMb5D0px66STdZu5SnZvGiPseMmGyey4CTbJz7xCdTV1eVShKdhpkoTDT70ZHC+uovmYnjIEEFmJBv9W64km6gtontUXl4OQN/Vy9fkIUIikcgwQHNxFzUjivMNUd8RkX684+30YbMMo16OHcDCCelDj1XFUrIRuKFkY+u0u9tmB26TbG5L6MkCg/6bXbCwrqL0osZrSjYnxg2BVwmXebiDc0HJ5sUFBw3Rwp62OczeTRl3UVKGmyRbISA7NuViE1rVIXIXZY+n53yWZJN5Z0TPgSjZqqqqMuqxQ7Lx3gXePMvrS6o6l42UtIW0NRwOG8dZKdl4vxfSXZSdo3nnyfQ3GSUbAS9GLg+yKkpeG0UqxUKQbDyiTxb5INmsBCVOSTYnsFJeWinZZNeKpUay8TaOaDvUjt2f01V+/OMfR01NTS5FeBpmSjberj+Q+aKw55ABTNM0x4sYpySbz+crmLuoaDCXqVOGZDNrP/2byH3MyiWRfOax+mx7aZSVlUFV9RTcrAGTT2iahu3bt+P555/P2rVx4i7KsveFhGggE/XPXJVsxADjkWxmhLnXwLqvy4AOei8yCgqtZOO9d7KQicmWD3dRNwxFt4lt2pUH4CvZeItZNjmC10iKXJRsXruWeeQPXiXZ2PnNq+1kIdpUoBVNbpNs9LF0PDA7Y0Ah7q9s2W4oTmSJDtHzom0a1uaRGSd5JFsikTDUY7mQbLw+wtt8E91HNkQC+TsQCKCsrAyBQCBrXiTIF8nG+94M+XQXFdnWvPAdVudY1WmmZBO1z03w+kuxSDaRF5xoPWZGVsrWKQt2Lcxb8/JUiHaVbHSoLLPQAcWGGTlMczoFU7Kd6zAj2ejvrHZZCOgBnExSxVCy5Ztk45Vr9ZuV2oqebM2UeLko2cwMEvpYMzl9WZmeLZQNBJtPEOl/LBZDPB7PIpzsuosWOzAlr71Wux9OSTYzd1GahCiVRRAgPwHIBLu1e91s4F4ezIxp+ne7KEbiA8AdNZvb7xy7mKCVbKy7KI9k85KSDcht57tU1ELzcIZSUrIBme0tFQJYtNAulJKNjQcmi0KSbLJjUz5JNpYUYJ8Xfe9Ym0dmnOSRbEQ5FgwGjU1L4kbshGTjERQyJBtpGzmW/K0oCjZt2oQtW7YIlVpkg5y4u9KwQ7LRvzkh0XMl2azAO9cqJIoVseAkJlshlWxecxe1Ej04VbLlMq6QcnhrQt7YbZdkKxUlG9vX3ei33rtKD8GKZOPtslgFeGVTkRcjJlsh3EXtyCrp40Xt4pFsVi+9DMnGq0t0vsw9InHZiOFRCNBkILvTa+ZHbqVkM3su+YQdw4q3c+g2yebFyYCFE9KH9G96AQPkX8nGM+roepyQVqnUXLBlQjDxNj+8SrK5TQSx7qK0ko3nLkog465SDOTSjlIhMuaRG0qFZOMt2r0+x8i4i8rEZJMh2URKZ9Z29gpkF175VLKJFoOFULIRW7eiokIY9kGGZOO9C3aEDOzGEv23z+fLsnNohMNhXHnllVi9enXWb05JNicbv3ZINifrON79tCLZ7BK8vHPskK1uwEzJ5gS5jM/ss7ASPTgl2XJtG0/JxvZhEXnKlsWCR7J5MQRPPshhb8/sRYbbSjZgrmM5VbI1NjaivLxcyk23WNlF6XJkGXhZJZvICOOpsESB0GV9y3Mh2QqpZKMNJzoQMWBOeLJGFXsvimX4m6kMRTHZnKoCCMkWi8Wy+l6pJD0AnJFU+VSy2V1wKYqSRQLZAf2u0kGQCdzu03Y3Eqzg9vgro2QzcxedV7LNo1RgtmHmlf5LI5dFeLFQKHdRerOEnZeckGxeUrK5QSjYVbKJbBrAPSUbsXXLy8szNml4KhcZJZsVyWalZBP9bQWRx4Jdko0XSqIUlGyi5y569wl4/cZLSjYR0SeDfCjZRPfTaUw2UT1220oLWESiFrYO3hqeBzJ2a5pm2reLDVG/zYUc9t5Vegi0dN0uySZamLOGgt0XY+HChbjkkksyMuaIUEx3USuJMfu9qG1WLz1bnoySjUfq0efR8T9E54tAkh8Ui2SjdwoAva1WOydsPy62nNeJks3pgiUYDEJRFGialpUxq9RINrsTQD6UbDJtsCL3nJBWZDylyaR8K1tyaS8Lt985M5KN3P9SchclyIVk89q1zMNdlJqS7eTJk559z1iIxjo33EWBzHlDND94NfmB3Xk3H0o2EclmpmQTZRe1q2Qj8djKy8szNsPpukSLVF52Wrp+O0KGXEk2EewqT/OtZMtFLOEVJRt7rtvwEslmJgygIUNW8pDrXMcjhcmaQDYmm1XddN8i66xSItmsFMJmsH2Vf/nLX/DUU08Zf3/zm9/ERRddhDe/+c0YGRmxW5ynkQ8lG915gfwaV8VyF6XLkWXgZQceEbPOk6/aickmQ7LZUbKRGGmFgKySzereigaWQsOOko2AniDstFtRFIOQYI3OUiLZAPukTz6UbDKTkOhZsiSQHRCjXzTO5WO8dZNkc3v8pRPdAOaJD2iSNRc1YT6Ry853scezeeQXpaZkI/1wYGAAmqbB5/MJA7J7BaJxPZ8km4hEKXUlWz5INqfuonbV3rxnQOymcDicYUtYkWzJZBLbtm3D7t27hfXzbALRfaTfIdpzJ1cU012Ud16+lGxWJJvIzvFiTDae7ce2TQaFVLJZkZWyghW7oOuQVbLZJdkUZS5UVqmQbDz+pyBKtn/5l3/B+Pg4AGDfvn34yEc+gltuuQUnTpzAnXfeabc4z0OGZGNJDtHxQLZqJJ8djdSlKEpBs4vS5VhJjNk6RUQQ/dLTk7EZyWaWXVSGZLOb+ICcS9Rso6OjwuPchCgmGyHYRM+CvbdmO4qFRCFjsgHiDKNejh3Ag13SJx9KNisFKyA26mRcTUWglWy8idAJAWsFLyvZFEUxxjFVVY1/dF285yBj5BcDuRjlXiZc5uEeSkXJtnjxYtTV1aGtrQ1r1qzBpZdeahovygvgqR2ATHdRpzHZ2PLdVLJ5kWTLpQ6rsu0o2VKpVMZGshMlm6ZpBskWCoUy7E26bB7JNj09jXg8jrGxMaGgwam7qJukNc8F1i7JZrcuGffqQinZZL2S7CjZ8j0ue0nJJlqzsPfTjKy0W6cd8PqrrJLNzlqR9K9SINkI2PdQZn3DwvbM3tnZibVr1wIA7r//frz85S/H5z73OezcuRO33HKL3eI8DR6zS4O3KJSNyUaQz8EmEAhg6dKlBsGWy+BsF7ISY6vjeS+9rCKtGEo2AKitrcXU1BRGR0fR2NhoeqxdJJNJxONxgxgi39Gf2YFP1l3Uq0o2M5VaLruGBKLkB6WmZLMrZea5CwLuKNmcqBpyUbKRawkEAkb5+V50e1nJBugLjWg0aqj7WJWambvouZj4wItG3TxyR6kp2RYuXIiFCxcWuxm2wIbmIPfVrpJN9Dx4SrZ5d1H5OkQkG3s8O7dGo9GsGKZ2lGx0LFtCsqmqimQyaUmy0b/H43FuH7GzxqKJNbdcRdk2sIoWHmg7zKmSTfQ3XZbZOk6mbQRWm8myfc9LMdl4pGwuc4Kb7qJWSjaR/U2Pu7zzciXZZGKysba1nc1rv9+PaDRaMiRb0ZRswWAQ09PTAIBHHnkEN910EwCgrq7OULidKxDtrhDwFoWyMdkI8m0Etre3Y9GiRRl1FcJd1A7jSzPkonbR5bnhLsqWL0OyybL2JClFPtynX3jhBWzbts2IgwGIlWxWAwNPJUh/X6xBkJ2ERKpHGvMkm/1dFp67IOCOks2MeCqGki0fRIuXlWzA3KKDVrSRuujFLM9ddF7JNo9SgZlydf6ZuwP6Poq8BczeTSubwsxliUBkl5nBi0q2fJBsIsUFOzex947YPLL2E5lT4vE4NE0zzg+FQkadZhs19HXQfYeUR7dddB3FUrLJkmY8O6xQJJtVfby2ySrZrLySnCjZyPexWAz79u3D4OCg8JrsgGf7eV3JZnYfecdbfW+3rU6UbHbuaSm5iwL8+O9O7FDbSrarrroKd955J6688ko899xzuO+++wAAR44cQWtrq93iPA0rks2Jkq2Q7qIszBbhbrsI2lGy8V5e9jgrH3EeIeMkuyit+HCqZKupqYGiKJiZmcHs7GyG6ixXTExMAACmp6eN5Bdm7qL0/1Y7J15VstHtnleyieHUXdRMXZsPJZvITVWkZCPP1qw/0jHZyGcZwzwXeF3JRhYd5D7TbuEixQj7DLxGUjgxKIvt/j6PwmOeZHMXoo1JmeyiZkp0AjM1BUGpK9lyWQzbVbKJbD52biWunnS5Mko28pzoeGwEZhs1IpItFotJu4sWWslWjJhsor/pspyIJZy4i8oSvGYkm+iZkd9HRkYwNDSERCKBhoYGbj124JaSLR8km5OYbPTvMnXaAU/Awltvn28km5mSzQ5sX+V//ud/wu/34ze/+Q2+/e1vGyqpP//5z7j55pttN8DLcKJks4rJVkh3URa8wZ/AbaPUbCKwahsNu4EYZZRsPOUc/RsZDEQkm9Xg4Pf7UVlZCcDduGypVMowTOi2idxFrfzIvUqy2VGy8SYhpyTb+Zr4wIz4d0qymbWBJsR49bLn7t+/H9u2bTN1I7XKLpoPoqVUlWykPh7ZyW4ceYWkkF3IplIp9PX1cRf/XjTq5pE75pVs+QdtM9ExHXljLAuzTTK6fCDTrhHZynbGWy8p2djj3axDFCLEimSjlWwy7VPVudie8Xg8Ix4bfQxgTbLJuIvaUbLR81gxlWxukmy883JRdfPO9YKSjZTNbnQ7BW8uyOV+2bUdSDKbYDAoPY5ZxWSTJdjtgqci5inZeBstduxEUiax1b24rpIl2ezMQbaVbO3t7fjTn/6U9f29995rtyjPIxclm1fcRUV1aZrGfYFLScmmKErWgpo+30lMNppkEyU+kLlHNTU1GB8fx8jIiGvxV+gJiEfsAuZKNpl7S//vNSUbjxx1Q8kmSnxQaiQbOwFEo1Hs3bsXLS0txmYIjXwo2USxe3j1ypJso6OjSCaTmJmZMbL3isrkuYvK7tLbhdeVbCQBS1lZWVbZyWSS27+LuQlkBtl29Pf349ChQ2hubsaqVasAeI8wnEd+ME+y5Rck1hZ5n0SJpVjQ46PoeZDveRkprc41QyH7gaySLR8kG7sQtorJFolEMDMzY9g8MkQoaUcgEEA0Gs0g2ewq2egNY8Add1FVVeH3+5FIJEpWyWYWH5f9jtcXclGyybhy88B7blZKNpHIgWS8zfV9NSPZ7JRdVVWFnp4eVFVV2apfURRccskl3PpkRQ8sZNbSTsDrr3aVbLIx2Wh4cdOTXCO5F7Ljqhlsk2wPPvggfD4fXvKSl2R8/9BDDyGZTOKlL32p3SI9C9qlxoxk48Vkk3UXLaQRyGOi2b/dao9VZ5T9nn3pgcxJwUzJRgxCdmKRJdmcxmQD9OQHp0+fxujoqCuTBiBHsvESH4jYdyslW7EWKCIlm1l7ciHZyC4scVlgFaqlQrKx9210dBRTU1Po7+/nkmz5VLIB1iQbawiLYrKx5C8PtDqO7e+yu/R24XUlW2NjI8rLyzNINp/PZ4wRPJJVZie9GJDdvSeLvnkl2/kDXh+dJ9ncBzuu0u8Y4A7JRo9JZhtqXoJsu3JptyzRIatkKysryyDZ7MyRNMlGzueRbHZistEJFHgkm+waKxgMIpFIeELJJns8ry7R33RZhVKy2e17vHOsNv7p/2OxWIYy0gl4whe2bTJYuHAhFixY4GgNICJ67bqL0qSPGXJVstGEmkjJxtZhp3/LEMheAH2/3YjJZvsqP/axj3HddlKpFD72sY/ZLc7TsFKyueEuWsiOZiY9LbSSjT1WVm0FyJNsQCZRxhsseIy8lbuozD2qqqqCoiiIRqOYmZlBKpVCT08PpqamLM8VgSbZRO6ivMQHVjsndKwmwLtKNjODgz7ebh+m1U/0wqFUSTZyH0j7Re9gvpVsIvLJjpKNNi5kSDaekk1mkecEXleyKYqCiooKoTLALPGB1yA7n5D3N9/x+ObhPcwr2fILdn6hx1zA2p2Mt0gj4JFsomPsLHAK0Q/stisfSjbZjVUy5hOVM6tkk7H56Nh4ucRkY91Fec/KjpIN0DeWwuGwbeWRGbwak81tJZtTd1EyDjhRsvFsNDdcRt1SsgHu20Si5ycSNzghOe2AHtfN1ttmSjaZuktByQZk3u+ikGxHjx7F2rVrs75fvXo1jh07Zrc4T8OKZHMj8UEhjUC6LhkW3Y26ZP34RfXyXnoyOZuRZeyxdFuslGxWiQ9kBgefz4fq6moAQHd3N3bu3InDhw/j0KFDlueKwCOAeJ+tdo0I2OthlT9ei8nG6yO5GDR0GbzkB1aEudfA3jfSf0UTQiGUbDzYIdl4xiAPZjHZ6HZ41V20UOpRWmVQSu6iBFbGDS/pRbE3DeaRX8wr2QoDdrwj9giZO60IICs3RCB/JFs+IdvHcumTsgttdmPVTMkGzLnn2WkbIdlisRiXZDOLyUbPzTKJD+yusZYsWYLLLrssZyUUDbskG4+0sFuX6G+6bjOSTQS3lWxERADAiEPNO0d033g2mhskG4+U9cqcYKVkE3kT0PdoaGgIR44cyeiTTsEjlWjb3Gy97SQmG4FX7bGik2zV1dU4ceJE1vfHjh0zdkfOJZjFWDOTMns1Jpss4eJGXbx62PqsjuftgvKUbCKXMickmxtKNkB3GQWArq4uTE5OAoAxITmBrJJNNgguO4CUspItF5IN4GcYLVUlG7lfxVCymRH55Dsrck9EspkR9rIx2dxEPpRs+X7n6Dbznr9XSTZZ46ZQmWXn4T3MK9nyC3a8I+8acc0TkQrFJNnYc/MB2XblMg/ZVbNYxWQjJBuJjeZEyTYzM2OUR5NaTtxF3Uh8kC/Q1+M1JZuoP9hRslmtWc3snJGREQA6wUa7R3pJyWYn7EwhYLXWlVGynTx5Et3d3RgYGMg6Lpf28PqCjJLtXInJBsiRbHZsfttXeeutt+JDH/oQjh8/bnx37NgxfOQjH8Gtt95qtzhPIx9KtmIvYuy+4E4hGyDQSm3FC7poR8lGT+S8Z2NGsomyZ8neo5qaGuMzIdwSiUQWeScL2Zhs7MBn9czpPmnV5wuBQsdkA+Z2YukMo6VGsrETgBnJxou/wJbDfpaF2btP9323SDa6z/NisvHGEDdQiko20mZ6XKSfg9djsllhXsl2/mFeyVYYsHYEedesVEMyYxvPtrOqXwaF6Ad2SbZc2iKrFhTNTbSKnJCjRM0m2zZCppCN40AgwN2oseMuahWTrZgkGy8ERqFINjPvDVIHDav6eCRBLko2QrKR9Y3oHJF3De86aBvcKXgbLl6ZE6xEDzIkGzl2bGws5+ui+4SsqMXJPT2XSLa8Ktm+/OUvo7y8HKtXr0ZHRwc6OjqwZs0a1NfX4ytf+Yrd4jwNWZLNTky2Ync03iBLdxi3BiC7O28y5B9Phi5SYRHwlGy8xTaPZKOfP6/NVqiqqsLSpUuxevVqbNiwwSjX6U6NbHZRUXwOGfUiTb4UazKyI0nmKafOdyUbuW9m7qJ0nzGLE+nkXpq9+2aBrc3ihbDf06Bjgvh8PqG7qNtjbSkq2cizpl3Pee45BMU2SAl4xl1/f39WjMt5Jdv5B954M//M3YfIXZQOMi9SL9Pn88Au6NxWsuUTdtvl9pxKf8/afOw4SN9f2uYZHh4GYE2YAtkkG+0qCpi7i8oo2axItkJvmtD18K6JBe/eu6lk44kEZMHbAHVKsmmaZpBsdXV13HOLpWTzsruoSA1lR8lGPpPEem60h17vitbb5xPJRq+F2c0LO7CdXbS6uhrPPPMMHn74YezZsweRSAQbNmzANddcY7tyr8OKZDNzF/ViTDZAbxer0MonyWYVk83qe3rxyd5vN2OysYOLoijGbpvP58soV/ZFUxQF7e3txt+hUAiJRALRaNSRa7WMuyj9m9WuZqkp2cx2t+njzneSTUbJRr9DZrunTpVsdJZbGqLMorz2m32mvyPhC8gzzMUQsINSVrKRBTJLdpYKyTY1NYUDBw6goqICmzdvNn4zU7J55VrmkX94ZUF1LkHkLkoTM7y5RmYDgVWynWuJD3K1sa3OYa+TR6bQY6Lf70coFMLExARmZmbQ1dUFAGhpabFsC5vogiXZZJRsNMFGjuW5l3pByUbXw2uj6Hg3lGyyNi/7t6g+s41Mu+6iU1NTiMViUFU1K9GErJKNt27Ld+KDYkPk6SEaJ82UbNPT01l2by7tYdfbdOzeXGOysf3Lq+sqGSWbHdgm2UhFN910E2666SYnp5cM2E7Hwsxd1GxXwOfzSQ3W+YAZK+5me2QNolyUbGYvPYHIXZSdCOl6yDMirp2hUMiVexQOhzE1NSWUQ8fjcfT19aGpqSmLhNA0TSrxASmHbic7KbP3jN0ZK5SqRgSWoJUdyN1Wslm9y16DHZJNlHyALgfIn5LNrF6Reo2nUt2/fz9GR0ehKAqWLVuWUb/d/mMX54KSzWp30WskBblPZIyjY1zSm0e8RZlXd07nkRvmlWyFATuuypJsbsVkM6vDjWOdwi7Jlo86ZNxF6XlVVVWDHOvq6kIsFkMoFEJTU5NlW1jblFW/ycRkI/OPqqqGzUlsL68p2cjaI5VKSa3beKRFoUg2K/D6kZX3lajvERVbTU2NJTFUTCWb12KyWYke7CjZgLn75fS6RKQSa4/z+p0d26rUlGy08jfvJNs3vvENvOc970E4HMY3vvEN02M/8IEP2G6EVyFLstlRspHzipW5UCQjZ3/PFWZxmejveUSQ6DgnJBut+KKfJVsf2x6/35+xu+ZE+s2CR+TQOHPmDE6fPo14PI6Ojo6M3+iYFex1uU2yeUXJJjOQ09eWS7vZZ8O6VpQC2Heb9BEeCSTjlsN+dtoOGjIkm4hYo/u5pmnYu3cvxsfH4fP5sG7dOiMuiGiXtBTcRQulZCNjhNXuYrENUgLRMyU7rT6fj7uhQn/2yrXMI//wyoLqXAI7L/PcRfNJsjlRsrHn5gN22+X2xhX9PatkI3GWFEXJmPMVJTujemtrq9QcyZJsTtxFSd8JBALGBrIsyVaMd5uQbDJ151vJRiNXJRt9TXaVbKJ4bHT9Vt4EIiUbvU5xAhEhxWtDoSF6l+3EZHNz80DUX2XW23b6d6mQbPQ8R1ziSaKYvJFs9957L97ylrcgHA7j3nvvFR6nKMo5R7IRmLmL8haCZh3I7/cbk0yhX3ge+VUMJZto4CMvOns+UZgB5tlFyfGEJKPjUolINh6ZymYYdeMeEaNGpGQj3/N+Z4k5npJNUXQXVzpGFf0/oN8ntg/QO3U8P/RCw44Sibe74uT5EEORpJKnn3epkGxeUbKZEexm9Zopg9nP0WgU4+PjUBQFF110UUb6eBFJ62UlW6HeOVbJVmoSfgK2L5SVlQlJtnkl27mNeSVbYcASN+R9Ixmd6Q06GjIkN0uyWW2oyaIQ/cCukq0QJBtvY5XdWKMVaH6/H83NzVJtsSLZZLKV80g2dnMY8BbJRqNQJJvI5iXvm4hkk2kbYB6bV3QOoD+P0dFRAHIkmx0lG6DP6Wy/kgV7X/JtB9oFq3Q0Ez0A4vvPIlclG7v2Y989eg1OYOee0mGYyN9eBLmWmZkZxGIxKIqCioqKjN/sQIpk6+zs5H4+n2BXyWa2WKEXmIV+4fPNirP1WC1ArZRsvECMMrHVgsEgEokEN0YP+yx5k2E+SDYyaYiUbOR72i2U/S0cDmN2dtZwjaLbHgwGEY1GLZVs7Gd68KQN5WJNRrkq2RwNhH6/QTRGo9GM99erkwEL9r7JxGTLp5KNVy/pm06UbLzNDL/fn0Gw8erPF4FVyko2kbsobcAXoj2yEO2gAvq1lJWVZYybtAFb7PFsHoXBPMmWX9DjHe2aHQgEjPg9vDFfZlGVbyVbPmGXZMtHHWYBull7gEeytbS0cOdkHtwg2djYrHQCG6+5i/LqskuyyYKdf81cOEWktln7RBux9PpKVBZd1/j4OFKpFILBIDe+tJXiSUTWEORKstHwmrsojwAnn9nf6b+t1uy5kmzs2o+nqhTZ1jJ1K4qeVJAVgXgN5FrGxsYAABUVFcaYxiMarWD7Ku+55x5MT09nfT8zM4N77rnHbnElAdEAxO7skc/0bzzQk1CxSDbRzlC+lGzJZBLbt2/H8ePHs+qk/6d/Y4/jTXQiQoa4MPBc5tjr5JFsbPBWN+6RlbuoDMlGZKtkQKQJXlK+Gclm9dzpgbYUlGw0cllMK0qm+wTrWlEKYA0os+yihYjJ5ra7qKyhzdY/r2SbA0uy8RazxZyfRLAi2YDsYNrs8/eqUTeP3MDro15ZUJ1LoN9Bevyg50jeXGPHXZTgXEt8wDvezTrY62S9F4BsAjMSiRg2dGtrq3RbVFXNeD6imGxs29nPgG4HsKSdV91FaciQbLLupWZ12Y2TZlWfiCQxE4XwPBNoV1FeXW4o2ZxCRPR7ZU7gvZv0ZzskW662Ol0GfY9oJRtdvsgOk7WtSkG8wJJsoqQesrB9lXfffbfhp0pjenoad999t93iSgKizkB3GHZnwMpdlKDQL7yZu6ibbWHrmZqawuTkJPr6+izPFQ0mdph1K5KNrc9KyeaGGoJWsvEmR2K4ypBswFw8ItIuYqzwdgqsnjttGBSbZCuGkg2AkGQrFbCkf7GUbDLuorLZRUVJEMzaz9afLyVTKSrZWJfcUiHZCHhGORkbrUg2r13LPNzFvJItv6DHO9pVFDAngbxAsuUTbOwiq3bkg2Rj5zjWpgOy58xgMIj169fjwgsvzIirJwPy3H0+n63kOey1BwKBLFuAPsYrSjY7sUp5pIXbJJuZjSVTtqhP8MDre4QDqK6uljpHJKrgbZoBuZFsPHvMSySbjKCEdzx9LLlG0f130h7a1pZVstm9p/RY4XWSjYRtKjjJRssbaezZswd1dXV2iysJWA10wFxmM5kJgHQ0N5VjsjBjxd1sC0/JRv/thpLN7KUnRgPrLkrO4RFtdDvYxagb94i0iTZSCRKJhFFXPB4XTjqhUChDZUdPkjKp063uLbubUQywhoBsTLZcyRRCgk5NTZUkycbuoIoMGMBcUZYryWa2IHAr8YGMks3pbpssSlnJRmAWGw8ovkFKkIuSrdibBvPIL+aVbIWBDMlmFpOtGCSbqHw3QdzlJiYmhMfkSvbJKtl4yhaWUKHH/Lq6OkcLdfLcw+Gw5bOzItlYgk+0Oex0Ye8GnLqLyhxvVle+lGx2SDazzU+Ri7GVko1tL/ndyttHBl5XsvEIcEBsp5rZPnQ8PKfXxWuLXSXbuUiyEeRKssk54WNOFqooClauXJlRUTKZxOTkJG6//XZblZcKzAY6EsfJTrB02r+30DB7ufNBsrGDuYi0EtVt5qZpR8nGDmAsqccSNOQ4lhzMZWBQVRXBYNDIpEQbF+ykQlKqs7+HQiH4/X5DxUbaRe8omqVOLyV3UVmSRFEU7jO0i5qaGvT29mJ0dBQ1NTWmdXoRtEHKy6pLwyz2Ta4SdDPyyS13UTPFMNvX82VclbKSTfQ34I4Lgttg20Hfc1l3Ua9cyzzyg3klW35Bj6tsZlEzZY3MvMyz7UTHOFGy5bMfkEXYxMSEUIRAIx9KNt51krUJu9HtxsYhee68uFl2STbe5jnvcyqVgs/nKymSLVclmxVZ5lTJZqdPmCmpZEhA3n0Q2fiRSATRaNR1JRu7Pi822DULIK9kyxfJRm9i2/UcO1dJtkAgkDXG5Y1k+9rXvgZN0/DOd74Td999d8buRzAYxJIlS3D55ZfbqrxUYBVfjcTGMguuT4NWshUahXIXFb2MMoE6nSjZ2PJp1ZjIBZIMdLxJIB9KNkA3SmKxGGZnZzMCttsh2eiEGzTJxk6UVu6i9ABJ38dik2x2lGw0cn1GhFibmJgwjVnlVdD3jZ4wgWwFstlOpFeVbLzPMoqHUnAXLZaSrVTcRc0MTSt30WKPZ/PIL+aVbIUBbUOQmExkAWI25stsUOZbyZZPlJeXQ1EUJBIJzM7OIhKJZB2Ta3+0unbeHOfENVAWtJKNhR13Ub/fz02+wyuLkGzFGM8LSbLJxK1yqmQT9QmZd9OOyy7vHtDHizbNIpEIRkdHDVc9J6DXRLRIwktzAkuAA/Ix2ehzysrKEAqFEI1GpROX8NoCIGvNYNbnnXqJkDbSa3evgW5XZWWl1AaQGaSfytve9jYAQEdHB6688krHD7QUYXZT6Q7K+jSLQHe0QoM3OOdj8BHtmIhILRr0CyxLsrEvPd0/4/G4bZLNKdFjBZEcmkeyEWiaJnQXJeDFxuAZN1YEphuKsFxRLCVbOBxGJBLBzMwMhoeHAZQuycbGh2FJtnwq2XhGGYFMdlFCHiuKIiTZzIxDduxxQ4XKw7mgZCsVd1ECljgF5pVs5zsKZdOc7yDj3dTUlEGyNTc3AzAf870Qky2f/UBVVVRUVGBiYgITExOmJJtTyCrZeBur+SDZamtr0d/fn6GkIbCrZDOL6UY2gGn7rlSUbDSJ4lTJ5pRks2qbHSUbb4PeipwTkWxWSjY6brVTsB46ojYUEzzbUWSnijaNyW/r16/HzMwMd9yRAatkI+vqfLqLennDk74W1lWU/V0Gtq+0srISBw8eNP7+/e9/j1e96lX4xCc+wQ3YXqoQ7aawoBVPtLpChmQrxsvOM4YKqWQj37GTgdkLTH7nvfTsBEAbdHTyAjJo85JO0O0h5YncRd0i2didGvbdoReMdIy2YDCY4RbKi8lGYBafA/Cuuyg7AVnde/bacnlGRM1WiiQbfR94SjYa+VSymbkOyWY15Y0bTpVs+TLKz1UlmxcNILO5QTYmmxeM63kUBvMkm/sg4wIh2Orq6lBRUQHAnARyi2QjkCWsCql4I4ux8fFx0+Ny7Y9WJBtv7s4HydbU1ISrrroKDQ0NWb+5GZON/ruYyuRiuYtakVgynkG8su30Cd67bWZ/seewpBCvTFrJBuhzulO7iu4fuRKe+YKdjSGrdXFFRQUWLFiQc1tEIZMIzEQtsveU9Bcv2pgEdNuKQrL94z/+I44cOQIAOHHiBN7whjegrKwMv/71r3HXXXfZLc6zsEuy0e6iVh2omDHZCu0uyg7m9HeiOnmDiayPOE2WEUl7IpHA6OgogMyXxmwyFLmL5jo4iHZqzJRs5LdgMAhVVTOUbPQkKSO7Fz133mRUrIFQNAFbtcdNks1M6eVV0M/YimQzuz66P+SiZOPtspplFzXL1kx/R3+WiclWCu6ihTIA2ftVKko2th103yLjICHZ2Odf7PFsHvnFvJKtMGDvZXt7u/E515hsMuS/EyUbe26+QEJ/iJIf5Nofza6dt0kMIGOTmf7fLZvGjAASqeHZ6/f7/abZRel6SkXJRr8LuZBstB3GwkrJJnue08QHdtxFybzME5+w67ZQKGQc41S0I/LQ8dKcYHZPZUk2s/5hBzwlG/0/fRxbn9OYbF62xYquZDty5AguuugiAMCvf/1rXHvttfjFL36BH/3oR7j//vvtFlcSkB2AZPzbgfPDXdRMySbaVbBi7HmTrxkhQ+5zPB7H2NgYgDkSha2PbU++JnYrd1FicPBINnIurWSjd5RkdhB5z50mMEtZyebGM2LdH0qRZBO5i9KQzQ6Vi5KNJZ9owsxKQceL4Uifb2YclqK7aKHUVjKJD7xMsvHmE0AfI0mfJ+PkvJLt/MI8yZZf0ONnZWVlRlzmQijZ6GNkiLZCuojRJJuICMsFZu0XXSdraxYyY7qIZGP7QCAQgM/nM1VvlRrJxltXOKlLJkyR3fJFqsB8Jj6YmZkBoKvUrJRsiqLknGGUF2vaaySb1XrM7Fi37RmWZMunkq2USLaysjLLdYoMbF8pvQh/5JFHcMsttwAA2traMDg4aLc4zyKfSrbKykpUVFSgsbHRhZbaA09mnI9FiCgmG/mONzmYqRXY3TFSh9lLT16Q2dlZTE5OAsgk2XjtEZFsbt0jomRj3UXJhELcL8xINrrPmSnZStVd1K6SzU2SLRgMoqyszPi7VEm2XJRsQG4km2jBRerkqVLJeaL3TvTZTMlWKHdRp8Y0jUKprey6i3rBIAXMN2AAGOM7kE2yzSvZzm2YqeG90n/PBdDvT3t7O3cTj7fhIPP+idRLZsd4CWVlZUZQ/qmpqazf861kY48D5sZBYktabay5CdFGDU/JpihKhppNRLKR9p8v7qKyddDIh5KNfbdpTwkZm5ysdegkGaK1nqqqwpA6sqDL8irJxtugtesu6tZ1sO+XjJLN6QZ2KZFsPBUb/bssbF/p5s2b8W//9m/46U9/ir/97W942cteBgDo7OxEU1OT3eI8C1mSje6gMrsCgN7RNm/ejI6ODhdaag+FdhcVKdnY43jn2CHZePEayMRNyN+ysrKM+A+8nVHyHU1k8X53Ctrw4QXvJjuiNMlGPrMkWz7cRWmSrViTkVMlm+hvu6DVbKVEstHvQi4x2QA5Q0+mHTTM4rGx9VqRbGbGoWhMyBfJxrbNCYqlZCsVd1ECkZKNLGwDgYAnlA/zKDzmlWz5BRkrIpFIViyu813JpiiKpctoLu2Qub9A5j0uppJNhmQjBBuQGT5CRLgWczw38xJhwbN/nJBsMu9Lrko2J4kP6DrtKtlE7aftn1yTH/CUbLT3lBdgpmSTJdncIqpYJZuo/7mhZKuurkZFRYWnuaKqqiooiiKMc2f3vtve0vja176Gt7zlLfjd736HT37yk1i+fDkA4De/+Q2uuOIKu8V5FnaVbHTig1JgaQtFsoliK8m4izoJxEifQ4xCnqsoW5+oLrfVEGQRmEqlEI1GEYlEkEqljLgFPJLNzF2UIBd3UZrApMssFSUbi1zbXVNTg7NnzwIoLZJN1l2U3onMh5JN5MpgllmUPTcfSrZ8uYuS9uTSV7ykZPMiySarZOORbKUwL8/DOeaVbIVBfX09lixZgoaGBiER4gbJxttQZY+xS7IVApWVlRgdHcXExISRddWttsgq2Wh40V2U/kwTa6LNb7qs8y3xgROSTXZDOpfEB7QdJpP4wEzJxrPRSL8l5Jxd0GXxvA28MCfwlGyyMdny5S7KlstrR65tCQaD2Lx5c+6NziNaWlqwcOFCSwJZFrZJtg0bNmDfvn1Z33/5y18uqQWpFeySbLTrnpeNed4uSz4GH9boYuszcxcVseS8ic4s/hJZzJPv6BgibH1W7qJu3SNF0WMOzMzMGCQbMYJUVTVcFWmSjUxSPCUbgVvuol4g2YqtZKPJ2FIa0+h3wUzJZhUbjS4rFyWbyF00F5JN0zQoimIrJlu+VGLkvaFJeqcolAFY6u6iBPNKtnmwmFey5ReqqmLJkiXc32SUVjLEBGC9cBfVY4ZC9AMzJVsh3EVpOw6YI668qmSjSTbymd44J/DCeG5nTsyV2Mmnko3eoJdds5rZZFY2uRMlG3HT6+npQWNjY1acZCuIPHS8NCeYrcesYrK5fR1sW/KpZCsV2FFdW5aVa2MIwuEwN2NcqUKWZKMHoFLYMS+Wu2gu2UV5C372O95gzfZHMyWbiGRz210UyN5hpJVqxDBKJBIGqUAWkISAYydKwFrJxiMjvUqy2VWyuU2yBQIBIzZeIeKXuAVZJRv5TaQYIL/R/zttBw2zzKKic9kyZPpEoZRsvPY6RaHmjnMl8QH5n/QlshFBMjADc6RsoVSC8ygO5pVsxQdv0UhgV8nmFslWSHdRYC6Gz+TkpHA+yAfJJrq/tJ0po153E7LuogTE7uXdH9F4XiySzWoeKaSSTWQfieoLhUIIhULQNA3j4+OOlGw0MWeHZKOVbHR72Tm6vr4eCxcuBAAcOHDAdmw2+n3g3ScvzAl21uH5tmdFpJ6ZerMQtrVXkReSra6uzohrVVtbi7q6OuG/cwVOlGyyMdmKCd5knY8XhR3ceIoU+jj2M90u3kvPI9noa6KVbIC+i0KMDrY+3kKMdgOm/3djgGaTHxDVWjAYzIhTEYvFEIvFDDc7QrKJEh+wkx5v902kIGRJNnZXtJDI1ahyo93Lly9HS0tLSY1p9PM2I9lkAiAXW8lG2sgq8tjvZWKy5dMod4tkK4aSzefzcesrJZKNNdxZJVuhF9rzKDzMbJr5Z14YmLmLytiXsvY2W6aXEAqFEAgEoGlaRiIWoHBKNrY9wJydaJXsyE3komQTlcWO58VyF7V6hm6RbGbniN43mfeCePSMjY05SnxghzSnY0+L3EXZOVpRFKxYsQIVFRWIx+N44YUXbNlX9D2fdxe1hkg5arXepv/3wj0tFOxeq5RM49577zWk0Pfee+95cUPtKtnsZBctJsxkqoVSsokmAqsX2OqlZwPA0ot5XlZRGSVbPjLUmSnZFEVBMBhENBpFLBYzDCOSvQrIdBcl7SULZp/Pl6FUYq+VvR7yG0tuFPMdZ+sutJIN0PsLr894GfR1E2KWgKdkkzGsciHZ3E58wPue1ycK5S7Ka69TFGruIO+6WQw5L28Ssc80HA5nuGcFAgGjn9HqcuD8MgTPd5yPxn8x4URpxTsfMFeyKYqStTAXodAEu6IoqKiowMjICKanpzOy0+VKCrIqEvpv0fxGQogkEgnMzMwYbfByTDYZJRuvrHyjGCRbLu6iZvXV1NSgv79fmmQT2VN2iLlQKCS8hzzi1OfzYd26ddixYwcmJibQ3d2N1tZWYX00eIkPvEay2RG75JvYEq2feM8r34RfKcCujS5Fsr3tbW8zPr/97W+3VcG5ALPBhN5lKYWYbIVyFzWLySab+MAOycabgOlJ3IwwsSLZ3B6gCck2PT0NIDuxAU2ykWPKy8uN82l3UVZ5R4wqtq1mz4OejMi5xezDdN2ivkIjHyRbKYK+b2Ykm4ySrbGxEZqmCdNYy7TDiZJNpCAlkAnYyxpWpeAuWkgDkJBsVvH4CtUeGdhRstF9p1jKh3kUDvNKtuKjECQbDbskW6HAzl8sclWyAdkkm9n8FgqFkEgkDDuSbmM+Yddd1EzJxgvJIzo2X3BCsrHzj926ZD2oaMiMe7SSjTwDJ4kP7MStouOxsWWKNsLC4TCam5tx+vRpW0kQ6PfBqyQbz24slruoEyWbVZvPZdi9VttPyefzob+/P+v7oaEhT++A54LzxV20UEo2WZKNZcntKNkURcmYxNmkB+y5bHvoZyhD9NgBIfzGxsYQj8e5JBugS61JPDYSI4xuWyKRyCIb6HabuYvyJNpAdhrnYoA1IIuhZCtF0M+RTpwB8JVsZmRXe3s7LrnkEkdxNkULrlyzi/K+N4vJRtrgdXdRmT7uJnhjBe93wDvvkkjdyoYAoN1F6TmZV8Y8zl2cj8Z/MSFSL9PfmT0LWZLNSsFjVXa+IWqfW+6idstmN3RVVS3oHMO2S6Rkq6iogM/nMzymaIiUbIWEHZItVxdFGeKLl/xMFmVlZfD7/UilUoadKKNkc+IuSsBuhvHWXrzzrEhrHuh7zhuXvDAn8NZjdkm2fCnZeCSbSMmWzw1sr8Lufbcd1Vs0yEWj0Yw0zKUOngqIB94ui5c7HG/QySfJxipP2Lp554gGE95kLZrQFEVBJBJBMBhEJBLhBt3kGS48Qo9+tm7co7KyMlRUVGBychIDAwMZMdno/2mSTaRkY0k2msDg3S9Zd1GvkGy0QlT23nthEi0WVFXNiL9CwFOy5WszQEQ8uekuatZPRSRtMUi2ZDJp6z4XSskGlCbJxs4NJNEBuf+imGxenpPnkRvmlWzFh5sx2WRINhkUow9YkWy5lssry2x+Y0m2QgkA7LqLhkIhXHHFFZZKNh6BUggU0l20oaEBra2taGpqEh6Ti5JNURRUV1djaGgoqzzR8XT5MmsEKyUbXZ7ZMxVdpxnodbhbngZuQxSOCLAm2dy2Z0XuqfMx2fjIG8n2jW98w6jg+9//foayJplM4oknnsDq1attVe5lyJJsvCD0XjboC+UuKhoYyHdmdYpYclklG72IvOyyy4TXxTuXJvQURTEmFbcXa42NjZicnER/f79QyRaNRk2VbACydqJEJBv73L2uZCP3Ph6Pc+8Be7zZ3+cTRNduV8nmRhtE7qJOsov6fL4MZZKZapjuu8V0Fx0dHcWePXvQ0dGB9vZ2YRmFdoEhdZSyuyg91geDQSOJjIhk88p1zCN/mCfZigczhZld5UsusaiKDav2udEfRQSeyF0UKDzJZlfJxp5DwwtCBjsbT7w+YFfJtnz5cstjAHvkEw07JJtIcOC2u6gZwWrnOnmkHX2+F+YEEVkFyMdkK6S7qEjJdj7GZMsbyXbvvfcC0G/ud77znYyXMhgMYsmSJfjOd75jq3IvgyzyATklW6klPsi3QcqSOnaUbKJ2yZJsTgw23j0gSQTysVhrbGzEiRMnMDo6apTJkmyjo6PQNA0+ny/DLYp3TU7dRdn76AWSjdSfTCYxNjYGQJebs65hBPMk2xzY50Zi9NHvXL6VbDy1LGBfyUa/d36/P2Mjw46SrVjuopOTk9A0DePj46ZlODXGnaIU3UUJeDuoZiRbKczJ88gNZht1Xuu/5ypEYz79nZtKNhmSzYtKNqdtMVOyybiLkphWXiLZZDf5vLBpUkglmwxyUbIB2TGqZd9Nep1lR3Eqche1arMTd1Fe4gOvuYvmomTLt7vovJLNHHkj2To7OwEA119/PX7729+itrbWXssKgCVLluDUqVMZ3330ox/FF77wBdtlyZJs9CBQSjHZCuUuSiYaehBJpVLcQIpWL7DVS2+X4beaDPM5uYfDYVRVVWF8fDzD9Yn+nxhG5eXlWfeJTnAAOHcXZe+tF7KL0vWPjIwA4MfUY48V/X0+ge37JNsi+/7xjnW7DSIlmx2SjcDv9yMajWYlIjFLfMCWU2iSjbdLyUOhDcBzyV1UUZQM8n1eyXb+Yl7JVjyYkUvFJtkKCSuSLddyeTC7v2RsLPTaxImSTQSeTVAKJFs+5x9RTDbZflZRUZERZsEJyeZ1JZvIXdQLcwK7HjNrX77VY7ko2fLpJeJV2L1W2/5Cjz32mN1TCop77rkH7373u42/RS5mVpBVQ/ESH3i5wxXaXZSOqUXXx6szF5LNiWpBlmSjn62b96ipqclQudCLQza2Ia8PE5Ud21aRkk3kLsoOnl5SsgG6mg8wJ9lYeGESLRZ4SjYg833Pt6EqWmjkSrLxvhf1U2JAFtNdVJZk47k35BM8Qp6Gl91FCVh3UUC/Lp/PN69kO88wr2QrPkQbK7Iq3VxItomJCZw6dQpLly5FWVmZadmFQj7cRcnGvxMlG0GxY7LRdrsTkq1Yi3qnSjbZc+zCKlaZVX2qqqKqqgqjo6Pw+XyW7ybpe/R6zg5pztoasmq/c13JxluPFVrJJhOTja1rXskmD0dBebq6uvCHP/wBp0+fzspi99WvftVJka6hsrISCxculD4+Go0aMbEAGKSHLMlGTwBeISjMwJsA8q1k4wUv59VlxdiLJmtyjt3rsFLB0QN8Pib3BQsW4OjRowAyjSGWZKOTHhAQZQ9pJ7kWKyVbqZBspD0kI+W8kk0OrHFjRqrn6xnzDBuaqJYh2dhNC/pdpA1L0TXwxp9iKdmsDMRC785bKdkURcnY5fYCzMYvMl6SRdu8ku38QqFsmnmIIaPgypeSrbe3F4ODgygvL0dHR0dW3YXsA1b34Xwh2URKNp/Ph5UrV0JRFOm2eGE8t0OyFUI9JYrJZuf+VFdXGySbFei+Z1fJFolEhO3Jt5KNZ4t6ASJ3UZl1sdv2u4ySbd5ddA55J9keffRR3Hrrrejo6MDhw4exbt06nDx5EpqmYePGjXaLcx1f/OIX8dnPfhZtbW143eteh3/5l38xzXr6+c9/HnfffXfW97KTfqkp2XiDTj5eFHpxzw6QqVTKuG9OlWzsd7KDPw/FcBcFdDKttrYWIyMjpiSbSMlm9Zl3b63cRb0i/6XrDwQC3B1qgnmSbQ4sSVyMBSiP2CMqNivjWqRCEn0vuga6v5eKkq1Q71xFRQUGBgZMVd6hUAgzMzPSaoNCgSUuVVU1xk4eyXY+BuY931Aom2YeYogWs7JJXXIh2XguV8WCDNnodtlmdi9R9xIbPF/Jjnj1ErDvYEtLi62yvKBMduoumi84ybrJoqamBqdOnZKa48mmm2xYJPoesfHY6N/zoWTjqcJ46rZiwkpQ4vTYXNpCIOMuSnA+2ld5J9k+/vGP4yMf+QjuueceVFZW4v7770djYyPe8pa34Oabb7ZbnKv44Ac/iI0bN6K2thbPPfccPv7xj6OzsxPf//73hed8/OMfx5133mn8PT4+jra2NttKNppM8nJMtkK7iwL83RazOkWMvWxMtlyUbIUk2QCgtbUVIyMjGYFIWcOIp2QTEWu0EeXEXZR3bjFAt6eqqsr2Mz1f4QWSjVcn7SpqVi8vxiVLssmMs7mMC3ZQikq29vZ2tLS0mBrX69evRywWEyYbKTTMNmBqamoQiUTQ2NgIwBvuRfMoHHjv4DzJVlhYEUBWi1tZe9tsPmPHWS8p2djf3SzbSgUTCoUKnl3UzZADpaZkMyNK3IJVTDaZ+mpqarB8+XJUVlZaHsvzDLCjZDP73YokBuyRifSYw84NXpkP3FCy5Ytk460JrZRs55N9lXeS7eDBg/jlL3+pn+z3Y2ZmBhUVFbjnnnvwyle+Eu9973vtFmmKz3zmM1ylGY3nn38emzdvxoc//GHjuw0bNqC2thavfe1r8cUvfhH19fXcc0OhkOVCQiYmGzDn2ublDleoRTddFjsRiBadbP1mSjbeS+80JhuvLrqcfMVkA4D6+npcffXVWW0OBoOYmZlBOBzm7j7S39lRssmSbMWejOj7wWZCYiFroJ8PoK+fJrR4O//5VrLR77lMPDb2XB7JJqsY5ilci0WyeU3JpijW8XDKyspM1aOFhmg3V1VVhMNhbNmyxTiWR9QWezybR/7A20CaJ9kKC1FMNlmbTFbJRmCHZCsknBBhuZZtNcYVg2RzM3mOF5TJhCTWNM1TJFsuSjZFUdDa2ip9LOCMZMtFyeaWu2gu9ykfsENW5ZvYEgksCElJh3din9v5OM/ave+2Sbby8nIjFlRLSwuOHz+OCy64AAAwODhotzhL3HHHHXjjG99oesySJUu431922WUAgGPHjglJNhHs7KyRwbeUSLZ87/pakWy8Ou0QQWYkm1tKtnzHZGProUFINp6KjT1HpGTj3VvRzonXlGx0/VZJD3jXeb7CjpIt3zHZREo2M4hiXLqhZPOqu+g8EWQNqw0YGvNKtvMLZu/g/DtVGDglgNjzAXk3NAKrcbYYSjYW+XQXtRrjaBFBqZNsxRzPVVVFMpn0BMlGJ7RKpVJZJLfb9YnsMhFklWxWpB3pR8SOk7kus8QHXpkPvKRkY+87u86m+5doDPLKfS0E8q5ku+yyy/D0009j7dq1eNnLXoaPfOQj2LdvH377298apJabaGhoQENDg6Nzd+3aBQBobm62fa4dko0MvqTjzbuLZt4zN0k20UvvZAK2IuiKKVMncdlEJJtIySbrLspeL3vPir0opdtllSF4nmSbA339dF8ohruoW0o24j7Nfi9j5OX73XXDXXSeCLKGSMkmS7Kd7+PCuQzRggWYf+6FAm/MB+THNrskW6m5i+ZTyWZVNh3j91wh2YrxXpMQLlZ1m6mR3GwLQTKZFCpJ3YITJRsRn7ihZAP065SJKUiPOV51F7Vjz9g5Npe2EJh5jPH6gZttKQXknWT76le/isnJSQC6K+fk5CTuu+8+LF++HPfee6/d4lzD1q1bsW3bNlx//fWorq7G888/jw9/+MO49dZb0d7ebrs8WZINmBt8ZY8vJsyMlHy9KKIMOFZt4w0mLCmUTyUbLVUu9OTe3NyMWCwmzJTrNPGBrLtosfswqb+qqspWW86nwZ4HVsnGW3jmuy/zDD6i8s3VXVRWyVaK7qLne9+VAeumwBsbRH1oHucmRCpt+rd55BeFche1Q7IVAyIijP3dzbJl3EUJSj0mWzHHc3bNIQL7ez7GIFpwkEgkssI/5FPJJpP4AADa2toQi8W4SjYCK9KO/k72/abtqVJTsnnBXZS3Buatt+lx6Hyyr/JOsi1dutT4XFZWhm9961t2i8gLQqEQ7rvvPtx9992IRqNYvHgx3v3ud+Ouu+5yVJ4ddYzXVEBm4O045stdlOxkuKVkA7Il27Rxl4uSzcpdtNCDdF1dHerq6oS/i4i1UCgEv9+flaFUtBDxKslG2mPlKkofy34+H8GSbDyiJ999mbcYkE0KI0Oy2VGyecFdVDbxQbHfOS/DjpuCF2L4zKNwmFeyFR9WBJDV2MZTT8jWU0pKtnyW7SV30XyRbMXckPISyQbMbaLSIoZ83R+7SjYgkyswK8/KVZKIWGTjqtHt8yrJZrUe4x2bL3dRs7Ufuz6kjz1f59mCkGzPP/98Voyz0dFRbNy4ESdOnLBbpCvYuHEjtm3b5lp5NIljdVPZicvLi6VCuYuS8uyQbGx7eMaDGbPuNPGBaCHulVgQPJglPrj00kuFxK9ooDbzyy8GFixYgJmZGTQ1NVkeO0+yzYF+jn6/3zBMeO97vvoyj3iS3f20ItloY0tG8VBMd1Heov//b+/ew6SozvyBf7t7LgwzzDAyDDPcZIBEBRW5hF2MCq4sXoiXh42XaBQF9THKIz7mokZXTRTdiGxcNZpdg0A0EW/ok6AiPCwIumtUhEWDj4qAtxVdg3Jnruf3h79qTtdUdVd116lzqur7eR4fmZ6erqru06dOvfW+5zhhJlth8nsjv9de736b0m9T8Bhk06/YLCv73wP+M9msbSR14YNCry0H2byU2wVBDo6oyGRjkO2bz7K9vT2USf3ltudlTjavrwcUPkdbiRVejzNKmWwmlovmy2STyZ+HKe9rGPy2e9897rZt2xwbe2trKz799FO/L2csq9F4ufNjf47Jc7LlG6SoSDG20pllXlPp85VwOp3wij0OE8tFC3HLZAPQLYsNKJxybFomW3Nzs+e5FBlkO8h+sZLvzn+YmWx+Mxrsq4j6zWSLUrkoA0GFuZUp5MtkAw7OBZj0fiHO3G4gUXicKiTkn8MoF1VRoumXWyAsyH2JQrko0L3qpJTXAfTf7PYaZLOeo3qc5bTCqKptBl2y6zWTDfjmONvb2z2Xi8rfB3k8mW8bYXO7MeQnky3IclG5vXqZk03ed1Pe07Aoy2T705/+lP33iy++mFPG1dnZiZUrV7qu8hlFbhk+TkzLAsrHaTCkOsXYutCx7myVWi4q/1/+nd87LIU6eqfVRU35bN0y2dwU6tRNC7IVy5TPRxd7uWiYQXWLUx/jN8jmZU62uJSLmta3mMgpY1l+3Om5gHmDawpevnMbP/dwuM3J5rXvDSLIFoVyUZWZbG7vcXl5efYiOswgm5VpVep5N2qZbNZzVWeYWZ+lPYlBBafzbyltyU8Fkj1QVoj8fTA1k81P4MzLdXEQ++OncgxI7s1hZUG2s846K7uB6dOn5/yuvLwcQ4YMwbx583xt3GR+gmxyZ+OlvFSnsMtFgYOdY3l5ebcgm9Pz83Um9s+llAsq+Xn5Anq6T+5O7G2uEPuJqlC5aJQ6TmayHWQvF9WRySbvgxDfLLvuNQAuB7blv3GaH9HrxZiuclFmsgXP/nm6BdnsWdR8b+PLT1YAqeEWAPLat5WVlSGdTmcDQn624/VmRhgKBcKCeG27Qu09lUqhqakJe/bsQc+ePUveD6+GDRuGnTt3olevXiW9jtx2gihVLHU/vGayOf07SFHOZLN4zWSztu31Na3Xc8uw1a2UTDYV16Ju7ZWZbN0pC7JZb2hLSwtef/11NDQ0+NuziComyGYy+8WnyrRmeyablX3lVu7jpTOx3usgIuuFLsSdykVN+XzzlYvme75bkC3KmWwMsh3kJZNNdVu2B69TqVRJc7JlMpmiM9l0zskmB9ms98EJgwKFOd35zvd+WUE2ZrLFn/1Cit+n8AURZBs7dqzn7JioZbLZfx/ka3t5jw877LCit1ushoaGQK4TnYJspmeyhTEmta6nwp6TLehy0UKv5xRMzMetAkLerm5+AmdhZbJZ/GaymfKehkVZkM2ydetWv38SSX4y2ewXtiZzugBWfffDHmQrpVx04MCBqKioQH19fbffFZvJ5nbhFqdyUfvdoDgF2WSmfD66mJbJ1tXVlQ142H+X72+FyJ1g1y34Vuh15IGZrnJR699u7zcz2Qpzyjr2MicfM9niT+4zVGeukjO3jBE/F2LV1dWet+MnyBamQplsKoJscW/v8nHpnGPTGm+YEmQLM5NN/n4HvfBBoX3ON8Zyki+TzZTviFsmm59y0SDHNPJr5ctkk5n2nobF7/F6/pT+8pe/4IUXXsh57Pe//z1aWlrQ2NiIyy+/HK2trb42HgVxy2Szl3LJ/w96390y2dzKRb3sV9++fTFy5Mjsa8kdaSlzstkfk1/HxCBb0JlsUZpX0I6ZbAfZg8RObTysOdnk7foNsgG5ARI5aOY3k81pv4LiJ8jmxrS+xUSFso7tTJ3wmIJnD+rz+xS+Uudk88rpMy1Ulm9CJluQ5aJumWxxbe+pVPcJ7Fku6jwnm6rAsvz9jkomm3xtaN+ubn6yr/1kvZW6P0Du51BVVQUA6NGjR/Z59n03PeYRNL/H6/nZt956KzZu3Jj9+a233sLMmTMxefJkXH/99fjzn/+MO++809fGTVZsJpvpDc7pAjisOdnkIJvT/ti373W/Sg2yue2PyXOylZLJ5nQhEuVMNgbZDjKtXNT63gQVZPM7J5spmWz57sKa1reYyG+5CjPZksN+45BBtvCVWi5aynZYLlr6RPSms/fnLBfNH3xSmckW9MIHXjPZSln4wL5d3ew3JfJdu4ZdLir/e8iQIRg7diz69u3b7fdJvYGpLJNtw4YNOOmkk7I/L168GH/3d3+Hhx56CNdeey3uvfdePPHEE742bjI/QTa/WUU6OV0AhxVkKy8vz26v2HLRfNvxe7HqFGRzCpiaOCebfEfBT5ANcL7bzyBbPJhQLirvh5dBhExu13KAxGnhAy9BFtXzlQSZyRal75wuzGQjO/uYhkG28DmNpeSfdQTZdCiUyaYyyBbn84cJmWwVFRU5/8/HrfwuSE5zsqme+ifom5Z+Mtm8fr/l60BTK3TsUxy0t7cDOHiNLAujXNQtky2dTqNXr14sF5X4PV7Pc7J99dVX6NevX/bnl156Caecckr25+985zv4+OOPfW3cZMUGMEw/0VkXsfLFiuqO2eKUyWbfN3l/VGeyWdwy2Uyeky2VSqGiogKtra2eT/rW526t8Gq9jvx/+flRZMrno4ufTDaV75VbiruX/jSdTqOzszM78LBnslnfcy+ZbPlKB4IQRJAtqYMVP5jJRm6siym3LG1Sj5lsyNmWjnLROPdx9qwtHd/tAQMGoKqqCn369Cn4XN2ZbEELujIgyEy2Xbt2YdeuXRgwYED2Gsf6O1Mz2ewVZW1tbQCcA7hhZLL5qcYrNqklLpRlsvXr1y+76EFbWxvefPNNTJgwIfv73bt3O0Zhoyqu5aJAOF9ap9fzu/CB1y9xsemrfspFTRy4H3HEETj88MOz9fKFyCflQnOyRaEdW9zuwiSRPUjsNDAP4+RoDz75uRBwCpA4lYt6mZNN9Z1v+x1JmddyUWayFWYflNofs2MmW7LI53ITz9Vx5zYnW9DnmnxBNrd/mxBks/8+yNfWmd0VFhPKRcvKytDY2OjpRmEY+5dvTjZV13LytoJqy6Vmsr3//vvYvHkzdu3alX1NaxumBtns84j6CbKpnpPNb+VYnPsdJ8qCbKeccgquv/56rF27FjfccAN69uyJ448/Pvv7jRs3YtiwYb42brKePXvm/D+fKGWyAd2/JGEF2QqVi1r8Bv+KTSV3K3Fwel0To/a9e/dGU1OT5+fnC7KZejLyguWiB1lt1gqw5bsoUdlXuQ0MigmyZTKZnIs4+fFC21cdZLEPlmTMZAuO06DcS5CNAcxkMP2GWNwVyuBSmckm97u6S0Z1louaPlVNKUwoF/UjbplsTmOyINoyUPi7Ueg4rYoHK1AljzVNbSdBZLKFUS6a77lJHbf6fd89l4vefvvtmDZtGiZOnIiamhosWrQop0E8/PDDmDJliq+Nm6xv374YMGAAKisrCz7XXqJlOqscS1cmm1PWh/x8v51JsV/6QiVl8h0Uax9M7bS98BNki9JxMsh2kBxkA5wDyWGWi1rb9TM4tmfB2QdLchmp19cIK8gm9//MZAuOU3mJl8/f/vcUT04ZpfzMw2P/fqrKdiiUySb3wSZlsrFctDQmZLL5EcaYNMw52YKuDPCTyVaoXNT6+46Ojm79v6nJA9a+WcdvjWl1lYuWkslmynsaFr/H6znI1rdvX6xduxY7d+5ETU1Nt2DSk08+iZqaGl8bN53fMjwgGie6sMpF3eZkA5y/oPbtq56TrVBnIQ/c49ChOAXZ3IKHUWjHTqL8+QTByha1bg7oLhctZk42+3PsQbZiMtlUtWf7YEnmNZONQQHvvAZRGGRLFmay6SV/33QH2XTSkckWleyuUkQtMzmMhQ+cMryCCOY6CXqOU6ebZoUy2dy+29bj7e3tOcdvcpANQM640cpk87LwgepyUWay5acsyGapq6tzfPyQQw7x+1KxEdUgW9jlonKQzemuhP2Ohd8gm98TsNcgm599MRkz2eKvpqYGI0aMQHV1NQD3gLr8OxXsg6hiykXln1Opg5Obe/meh1Uuau2HXFJu8VsuGqXvXNj83Pl2+h3f23hjkE0vp/IvQF3f5iXIZlImm/33pUhyuajF9O92mOWi8jxpqrap6qZlEJls1uNWJpv8dyYH2azxbFtbW3a/dZWL+gkKq7qBEhXKg2zUXdQWPrDfFdIRZHMKbFm/t04afoNsbj8X+jsvQTa/r20iBtmSobGxMftvt++6/DsVnC56vW7TLUBiDUq8vFZY5aLWtgoF2byUi7LtunO6iGcmG1kYZNOrUJAtqM+iUCabqQsfsFy0NFHrz8MMslnjeSszSsU2VWWyAYX7iHyZbHImnD3IZt2Ydduubta+tLa2Avjm+jffNad1rCrLRb18rmHewDaR3+ONb68cIvkOUhTuJoVVLmp/PXkC83xBNuvL63d1UUuxmWxOHXKcMiLyBdmAcFLcVYvqfqtiQiab32Xf8wXZZCaUi8qvzUw2dZjJRvnI53IG2cLndNEMqFv4QJa0clH76ybh/BG1/jyMIJtT0oIq1jF4marDz+sBhcc/+RY+kI+7o6Mj52fTy0Wt47WCbE5ZbED3fVZZLuonyMZyUW/M7qkiImqZbGGVi7qVfQHOHWaxmWyl3q3I11mYfCfEr0JBNj91+SZhJps7+6DfPggJY7vy96uYIJvVbv0MtMMuFwXyB9mYyRYMzslGTpjJppd8QauyXDTfTSN5e/LvTMhks/8+qNeWjzcKN/iLFbX+PIwxqfye+J1ix6+gSwT9ZLK5ja+A3OtIeU42qz+KQpDtwIEDALwF2VRnsvl5zaQG2fy2/ehcSRssanOy6SgXledVAvyVi3qdiFHelp/9y9dZ2AcuUe5Q/ATZonScUd3vMOjKZJO/534HZl4z2bwE2cK4y89MNvX8DMqB6GU+UGnkMQ2DbHqYFmTTIYxMNrcgW5z7uKj152HsXyqVyjsvW5CCfv/l70GhaoNiMtncMrNMOifYy0WdFj2Qnwd4X13dL7cxdr79SWqQjZlsGrBcNP92gO5f4ijMySbvr9/XNpHXclGnCUNNxiCbu3zf9bAz2YIMshVqo2HPySZvy+I1yMagQGF+ykucfsf3Nt6YyaZfviBQUJ9FVDPZVM3JJmdqx7m9R60/D2tMag9AhTX1T5ABHq+ZbF6CbPYAlMntpJhyURMy2cK8gW0iBtk0YLlo/u0AB08GXstF/XQmKjPZonZyz8drJlsU2rCbKH8+KoQVUHfbbpCZbH5uZoRZJlBquWhSByt+MJON8mGQTT/7eApQNyebW5DN1IUP7L8P6rWTsLIoEL1xeFhBNvs81kEEc534mQ/XCz83zfItfFAok83kclFrX/yUi6o6v/m59mMmG4NsoZPLIKMwmA+rXNQp+Oglkw1wDwQ5KTWTLd/fRS2Amo8cZHN6/6MaZGMmmzv7wDysE6Pcx/hdfMBtQO3nu6jyzqsdM9nU81Ne4vQ7vrfxxiCbfvZxJcByUYvqctGojdn8itpNE12ZbKq2GfR4ys9NM7lfsX+/5eP2kslm0jnB2sf29nYA3oNs9r8PQimZbCa9p2FgkE2TKAXZdJSL2icvd/qCptPp7O+d7kp42Y68DT/757Yd+Y5N1DsTr5lsUTtOBtncuX3XVfdTTuWiXu9+2ue4dAqyFXqtMIMszGQLVzGZbOwX4k0e+DPIpkcYQSCWizLIBpj/3Q47yOZ3ih2/VAbZCo1J5bGefRxl/75bASu3hAGT2o19X9yCbPJzVS1cVkwmWxiLipkolfJXmh/vnjlEVkcQhbRtHeWiXmvk7SWjXv6m2LtcfjPZot6Z+JmTLaqi/hkFTVe5aFALH3j5txPTykWZyVYaP+UlTr+Lcp9GhTGTTT+nC0HVQbZCF91hC7tc1G+WeFRFrT8P67oh36IAQVLx/nsdo8lBDftx2r//VpDNbf9MOifY99Ft4QNAfZCtlIUPTP8uqsAgmwa1tbXIZDLo2bOn7l0pSE6/VbkaV75MNqfnAM5BNlUX1F7uziQpyMZy0fjRVS7qlMlWTJDNbeVmv3OyhV0uKver1s9ukpp274ef8hLA7DvYFDz7mAbgZx62fJlWQX8WfspFdbSDsMtFo3BzvxRR68/DGpO6zclmeiabk3yBMbfFD+w/t7W1Zf/G+r+p1wfFZLLJx6sik43lot74Oeaywk8hL0aMGIGurq5InOzkk7V8wg76y5JvTja3bRaTyRbUCaBQuWjUgk92TkE2pyBi1I7TKRuPvqErk00+EZcyJ5uXgFu+7bv9HCS3TDZZvt+FVcIbZaUG2fjexhsz2fRzmpMtqQsfWNsvlNlWzGuzXNT873bY5aJhZ7IFcZ2bSqU8X39mMpmcuaQt9p/tQTbgm303sbTR/p76KRf1W7JYSDHlogyyeRPvnjlEqVQqEgE2IPdLojLI5iWTzS6IIFuxmWwsF41muaipd6pM4HZRovozdpqs1mv/6KVE1PQ52fzMyZPkwYof9ru5XPiALAyy6ed0rlFVLmoxdeEDwLnPZ7locaJ20yTsIFvU5mTz+5pumWxeykVNPQ/I+1hWVpb3+FUHtvxkslmSPG5lkI3yciqtAMIJshUKbDHIpk5cFz6QRXnfVdCdyVZquWhQc7KFXS5a6I6rjJls/ngZ3NmDsHxv441BNv3sF4Ly2DJpCx/I2w9qX1guepDp3+2w9s+eyaZqHsIwgmxezuf5VhcFnDPZTL0JL+9Lviw2+bmqMvKKmZMtyeNWP8ecvHeHQisXLSZLSg6yFbO6qJ80Wi+dfFxXF3V6b+NQLhr1zyho9hNiWHefVC984HdONmayRZ/9Ip6ZbGRxys7nZx4ue7mo3B/qDLKFya3NBbEv+W7mRG3M5hcz2ZzZ52RTtc0wFj7I95puZbFu5aJuyREmnRPkffQaZFP1ffeTYBHm2NpUgwcP9vxcs3sqUiKsclGni2I/c7J53S8/GS75tl0ok830E3shcmDC6Y4Iy0Xjx4RMtqDmZPPzXYxSuWiS7wj64adkImoXZVQaZrLp53ZDR/5d0Nvw0s+akMkWxL44BRqSWi5q+nc7rAoYuU10dnbiwIEDAAoHbfyyH0NQc7J55TbvrVu5qNN1jd9tqibvS76VReXnqrohW1dXh0wmg/r6+oLPZZANaGpq8vxcLnyQQG4rcYWRyea1XNTqLOW/9bMdv/vn9LP99aLemcjHYgUxmckWb24XJao/Y3lQ4LddxaFc1OtcQVwN0btSMtko3tzGNBSefDd0wgqyxblc1D7/FsByUVOFNSaV28SePXsghEBFRQV69OgR6HZU37RKp9OeykW9ZrJFoVy0mEw2VeWidXV1OO6445jJpgBHognkVC6q4osiv6bfhQ/kIJvfctFi9s/tb+MUZEulUt0GanEIssmi/hkFTVcmWykLH8jP8/JvJ1EpF1Uxb1Fc+Rlo2vtt9gvxxkw2/exBcBWlTX6CbDoUCrKVwinQwHJRM4UdZOvs7MTOnTsBALW1tUoTJoDgy0W9VivZg2zWz9b74HQT2dQgm7wvustF7fvj53mmfxd147uTQGHNX+KlFNEtDdm6I+Fl34rNZLNz+ts4zckGdJ9A1Eu2oelMPYmawK2EJ8xy0SQufOAnk83CtuuN30w2DgLjj0E2/dzmZNMVZNPVDuz7GNS+sFz0INO/22GNSeU52awgW11dXeDbUR1kK/R6bgsfWD9XVlZ6em2T2k0pc7LpPA5msvkT756ZHIVVWuE0J1sx5aKmZLLFYSBjzwCKQyYbg2zudJWL6l74ICpzsqmYHDyu/Aw0TR1Ykxph3Tgkd243dHQH2cLmFGSz/64YTpPcJ7FcNArnSR3lort27QKgJsimeuGDQu9RoXJRe5AtrplsqspF/WCQzR/OyZZAOspFvU6qX2qQjXOy5RfHIJssDp9RkOzfdR0LH5iQyWZqkE3XhWAU+QmyWSWiQohI92fkDTPZ9Asza9ppcQX5caf9Cku+TLZSsFz0G1H4Xoe98IF1vZROp1FTUxP4dtwqjoJ6Ta8LWdm/79Z3wR6kMjWwJpOP2e/CBzq/7wyy+RPvnpkc6SgX9bu6qJ8BWrEnNC+dRVzLRS1On5H1GURFFE6outjfj7DLReVMNq8DsyAy2aJSLioPmth28/P7mUa1/J38Y5BNP/uFoIqsaftnmsRyUbmNm3DRHYaoBdnC2kf7OKhXr15K2oLqOfGCzmRzuyYwqe1EtVzULu59T6midTVNgdBRLup1TjZ7gMfLF5iZbN7lC7INGDAAqVTK1/LEJjD1JGoC+f0I8wLUaeGDMDPZTC4X7ezsxNdff436+noGBHzwewc1nU6js7OTg8AE4Oqi+pk2J5suqspF5bFbZ2cnysrKEjknWxSONawxqf16qba2Vtm2ZGHPyea28IH1fbcHqdzai0nnhGLKRU0IsjGTzR/zeysKnI5yUbc52ezsJw0v+xVWkC0KJ/dC7EE2+ZiqqqowbNiwbneFTMcgmzv5/ZC/76rbclDlolFYXdQ+AALyB9k+/PBDvPXWW9i+fXtiMhFUYCYbWZjJpp+pc7LFJZNNzna2VodPypxsqVQqUv15WGNSa1oEi4r52Jy2o2tOtmIWPjD1+sB6D8vKyjxPf2JCUJ1BNn84sk8gHeWiXjPZ7GVTfoNsLBfNL18mWxzE7XhKJX/fwszykC96/Q4M3AZzpczJFka5aL45eOTBYWtrKwBgz549DAj4UEwmm/x/ii8G2fSz32xQkXVRTJAtbPmCbKWyl80l6SZNlPrzMINs8pheZSabn+k6vAgik836uayszPX1TA2yWftSKItNfi4z2aLH/N6KAhdWaYVTJluhIFsqlcrJZjMpky0OnUkcg2xB32GLKzmrTPXn7pTJ5nVgJt+1DmpONpMy2aznHThwwIhBU1T4DZxGKfOBShPWjUNy5xYACyOTzelGh/1vwqKqXBToHmQzIbMlLFHqz8O8brDaRFVVlaeATbGs47BntZX6evZ/OymUyZbJZFyvG029hrM+q6qqqoLPNTnIloS+pxScky2BwioXdbpA9rKdsrKy7Go5KjPZ8r2OxdQOulhxD7LF4XiCZA2IdK0uKi984OdknMlk0NXVVVImm3Xc8v6o4DeTzbowOnDgQGjlu3HATDZy4zQHJM8F4dI5J5t1vohzuSjwzdi4tbW1WyZb3MtFgWgF2cIck1qfvapSUYvK82mh1yy08EE6nUZ5eXnOKqsWU68PevfujZEjR6JXr14Fn2svFzUpyGbSe2oiBtkSSEe5qNdMNgC+M9mKnTfNS0ReHrzE4WKNQbbkcQqyqW7LpSx8ID+32Ew2ADlBNpXH66U8iJlswfMaZON7G3/y99uEC5EksveDYQfZ2tvbjV34gOWipYvSTZMwx6TW9ZLqRQ+s4wjq/ffzHjktLgXkZnK6XTeaen2QSqXQt29fz88FzPi+M8jmj/m9FQVOR7monxOk3Fn6XV3Uz3GwXDQexySL2/EEIazMVbdtFlPS4tRfZDKZ7JyNXoNsTv8Omt/VReU5i9ra2nJeg9yxXJTcyG2BgWs97BeCYQfZ5G3KvzMhk83+u2KxXDQa3+swAzuDBw9GY2MjGhsblW5HZZCt1Ey2fOWiUWgvhZhcLhqH91clZrIlkPWlaG1txYEDB3IeC5LVMVoXx07bCSKTzU9nnW/bTtuKW2cdxyBb3D6joMmD/rBO0k4Tkfv5blZWVmL//v05q0alUimMGDECXV1d3VYhdtuHMC5CvGQuyBd/8r/37duX8xrkjuWi5EZuC8xk08OtXFTF5+AWZFORPeaXynJRt0y2JJWLRqE/D7PvaWhoQENDg/LtWO97UG2tmEw2Ochmr8xwS86IQ6KESeWidlH4PurEIFsC1dbWoqKiAm1tbdi8eTMANV/aiooKHHbYYSgvL88+pqJcVGUmWyr1zSTsXV1dRnVsxWKQLXmcMtlUnxitbXZ0dGQf8zM4O+KII7Bv3z7U1NTkPO5nMBl2Jpv1/splqnKprkUOsu3fvz/nNcgdM9nIjXyeNvFCJAncsszCXPjAqVzUhEw2FeWiYZ7PTRCl/jyOY1ITMtmc5ra1/l6+zoxCuagfLBeNrvj3zNRNWVkZxowZg549eypPqW9ubs65MPZbLqoyky3f68jc5pOLojgG2WRxO54g6CwXtQ+EvKqsrER9fX0g+2D/d9Dk1/Zy8Se/J8xk846ZbJSPyXf7k8AeXFJZLmqxZ3LJmdNxLhft6Ogo+twaVVEKssUhe8ou6POpn/GZPbgM5I6p8mWyxTHIxnLR6Ih/z0yOevTogdGjR2dXpJHvAqikOpPNb7molw44Sif3QuIYZIvDSVQlHUE2p++5rosdp/1RtR1rEJSvjImZbMFgJhvJ7CVF/NzDZb8Q1DEnm/yYLmGVi9qDDHEXpZsmcRyTBp3JJvN6Lgecg/ipVMr1ujEOAU97n8IgW3SwXDTBysvLMWrUKHzxxRfo3bt3KNv08gUtZXVRv194e2lXvtePQ2fCIFvyyCfosO6E+S3tUyGswZXTANBrkI0BAe/8vkdRuiij0tnnBON3Klxuc7KFHWTr6upCOp02KpMtqH2xxsZykM0KMsRdlMbhcRyT6pyTTd5mZ2dndmoAeb+itrqoHyaMpy0m7UsUMMiWcOl0Gk1NTaFur5BSVhdVWS4a1Q5aJp+s4nA8QDxOoirpnJPNomNiZlPLRZ3mDeJApTD75+m1XJR9QjJ4yZInddzKRYP8HOznsnyZbHFf+MCE+ZnCFKWbJnEck+qck80631ur1ZeXl3db1CoJ5aJuP4fJpH2JAvN7K4oVkxY+sD/fraOP0sm9EHkwGofjsWOH350J5aI62lpY5aLy69vLRe3ZHfZFEJz2lZz5/TyrqqoAfDM1AsUfg2x6uWWZqZyTTd6GvVzV7W9UcwqyBRUQk4NsYaycbZIo3TSJQ2DHTmWQzct7ZF/8wD4fYxIWPnD7OUwm7UsUMJONQqWiXLSUi+kkz8kWh+MB4nESVYnlouEdb75yUesurJOkXCiVwu/3vLm5GbW1taiurla5W2QIBtn0CnNONqD7TaN0Op2T4RXHclGnTDYdWeI6RGkcHod5wOx0Lnwgb9caQ+UrF5X3MQ5jKxPG0xYG2fyJfuujSFG9umgpmWxuf1tRUdFtv6Iqjid/BtnyYyZbeEE2t0w26zE5y8LqV8LYv7jxOo1ATU0N39uE4OBfrzDnZLO2I5/P3DLZwpYvk43losWLUkVJHMekQWeyyby8pj2TLV+5KDPZ1DFpX6Ig+lEDihSTVhe1/63btlpaWtC7d280NDT4em0TpdPp7KShcekcM5kMMplMYiYA9suEOdl0B9nCKhfNVyolB9nS6TR69OiBtra2UPYvDuIwWCZ1mMmml9ucbGFmssnbNSWTTQ62BVUu2tHRkbhy0cbGRuzevRv9+vXTvSsFxbHv0bnwgbxdeyab9TjnZAuffHODnDHIRqGyvpT5BkClrC6qIshWVVWVnd8nDjKZTOyCbGPGjGGQzYWOTDb768d54QP59QutemcPsu3atSuU/YuDMIOmFD0MsullzyTr6OgAoK7vdwuymbbwgZxZx3LR4tXU1GDUqFG6d8OTOAR27FTOyeblNe1BdHsQP5PJZK8tmcmmThzezzBFZqQ6Z84cHHvssejZsyd69+7t+JyPPvoIp59+Oqqrq9HQ0ICrr746mylA5ij0xZSDJX5XF1VRLho3cVot1VJdXR2rQGiQdMzJBuifFyPM0uhCCx9Yj9mDbE77Ss6S2FeTdwyy6WUPLlljb7ksPqhtWNvJl8nm9DdhCCOTLYnlolESx3NV7969kclkUFdXF8jrBZXJJs/VZ42p5EUQ4jBFjgmVIZY4tm2VIpPJ1tbWhrPPPhsTJkzA/Pnzu/2+s7MTU6dORd++ffHyyy/jb3/7G6ZPnw4hBO677z4Ne0xurHJFwPlLmkqlUFZWhvb2diPKReMmjkE2cqcjk82+Dd3lomFnssn9m3V31SmTLaz9i4Mk9tXkHYNsesmZZEII5UE2a1vW46aWiwaZyWZVeSRxddGoidu0LE1NTejXr19gx1NsJpvV7p3a/1FHHYX29nZUVlY6bieqnwUz2aIrMkG2X/ziFwCAhQsXOv5++fLl2LRpEz7++GP0798fADBv3jxcfPHFmDNnDmpra8PaVSrA6+IHxQTZSvnSJ6XDYJAtWXTMyWZtQ+eFgHXcYcwbke8Cz3of5NVF0+m060CQCuOFJdkxyKaXfJ6x+jsg2CCbtR3rXGa/mQHoD7JZ7JlsQZyH5NLQ9vb2bo+ROeTxR1yoOhY/mWz2clG5/ffs2TPva0f1szA1yMZxWGGxeYf++7//G0ceeWQ2wAYAJ598MlpbW7Fu3TrXv2ttbcWuXbty/iO1vHR6fgJBQWWyJaXDYJAtWUzIZNNxIRDmamRuJULyhZV8UZjJZFgu6lMcBsukjkkXIkkkB7msLDZrQSIV2yk0J5sVhAp7Vfh854JSye+ldXw8d5gpjkG2IPm99rJKQK1277VcmuWiweI4zJ/Y9M7bt2/vtupMfX09KioqsH37dte/u/POO1FXV5f9b9CgQap3NfG8dHrWwEh1JlsSOwwG2ZJF15xsugPYYQ5y82VRyL9juWjxdLcnMhsz2fSSg1wqSkUthYJs9oUX5PmZwuBWLhpEn5VKpbLjN65MbbampibU1dVxrmAXfq+97EE2r1UScTgPmHQDKYnXzKXQ2jvfeuut2YsQt//eeOMNz6/n9IHbVxqxu+GGG7Bz587sfx9//HFRx0LeeS0XBbx9iVWvLho3DLIlixzkCbtc1OnfYQkzyOa2sp09w0K+4MpkMtmBIy+UCktiX03eMcimlxxc0h1kE0JkL8Z1BdksQWePW+M3louabfjw4Rg9ejTP7S6KzWSz+havq+vGYdzAIFt0aZ2TbdasWTjvvPPyPmfIkCGeXqupqQl/+ctfch776quv0N7e3i3DTVZZWZkzNw6p5+Xi1wqy+T1BMchWGINsyWKfkBpIViabieWi1j716NHD89yTdBAvXMiOQTa95H7OCgCFFWSTV6Tv6urKZrEB+stFg84etwfZ2BdSFPm99rL6Er/lonG4xjO1XJR9T2Fag2wNDQ1oaGgI5LUmTJiAOXPm4LPPPkNzczOAbxZDqKysxNixYwPZBgVDXnLZTX19Pb744gtPC1ZYF7KFshbd/tbp33FmDdLYQSaDrnJRuX3pnJMtzGO1l4um0+mc39lLHOrr67Fnzx7U1NQo38eoS2JfTd4xyKaX05xsKrLIvGSyWUE2FXPC+dk/+f9B7QfLRSkOSs1k81ouGsc52Uw5DlP2w2SRWV30o48+wo4dO/DRRx+hs7MTGzZsAPBNSm5NTQ2mTJmCESNG4MILL8TcuXOxY8cO/OQnP8Fll13GlUUN46VD7devHxobGz1/ia0gGzPZCmMmW7K4XZSEtV0g/uWifjPZrO9gS0sLBg8eHHq2RRQlsa8m7xhk08uUOdl0lora9w8IPpPNOlcwk43iopg52Vguqkcc3s8wRWZkf/PNN2PRokXZn0ePHg0AWLVqFSZNmoRMJoPnnnsOV155Jb773e+iqqoK559/Pu6++25du0wuvGaY+PkCDxw4EPv27cuZTNyLJHYYDLIli1t5TVjbDWt7btsP81j9LHxg/Z4BNm90tycym0kXIkkkv98qg2yWfJlsulYWtfbF2j/5/0Fnsrn9TBQFfs/nVl/S0dHhOJbysp2onhNMLReN6vsZpsiM7hcuXIiFCxfmfc7gwYOxdOnScHaIiqYiw2To0KElv0ZSOgwG2ZJFVyab7oUPdJSL+ln4gPzh4I7yYSabXvL73draCkBtJhvg3M/K5aJxzGSzB9V4LqEo8ns+lwPm7e3tnsdSLBcNFm92+sN3iEJn0hcziR1GfX09evXqlXdBEIoPe5aV/FgY2wVYLmo9xiBbMPj+kR2DbHo5BdnCnJNNPs8lKZONfSFFkd/xYSqVyikZ9TonWxzOA6YG2eLw3qoWmUw2io8wM0wKSWKHUVVVxcVAEkRXkE33wgdhlou6LXxgv/jzOjCk7pLYV5N3cchYiDL5/Q97dVG3clETMtmCzh5nuSjFQTHn84qKCrS3t+dksnFOtnDF4f0ME4NsFLowM0wKYYdBcWe1ayvAAyRjTrYwg/n5LqycykV5YeSf7vZEZmOQzTyqg2xyKabcz5pYLspMNiJnXtuwvMKo1+9VWVlZ5Oe+5Zxs0RXdVkeRZdKggJ0ExR3LRcPL2vO78AF5x8Ed5cMgm15WX2f1fZlMRsnNBC+ZbNYNJZPKRTknG9FBxZzPiykXLS8vx9FHHx3pG5umZrKx7ymMQTYKnYnlovLFMFGcmFAuqjOTLYzBld9MNg5O/GOQjfJh+9BPDrKpyiLzEmQzMZON5aJEBxUTrLEyY/2UiwLfzEMdZSYF2WSm7IfJONKn0Jn0xTSpdJVIBXuQLawAj/yd0nEh0KdPHzQ2NmLAgAHKt2V/j7nwgVp8/8iOmWz6yZ+BilJRwNvCByYF2YJe+MCence+kKKolEw2P+WiccBy0ehiJhuFztRMNqI4ss/JFlZb151WXlFRgREjRoSyLTlbTf4/Fz4IDgd3lA+DbPrJ73uYQbZ0Op3TB5u0uqjqTDaeSyiKihkfykG2oIPXJjMpk43jMH/i3zrJOCYF2Swm7QtRkOxZVmG1dd3lomFiuah6uoO2ZDYG2fTTFWSLwuqiqhY+YLkoRZ2f1UUB4MCBA9nHkjAWMDXIloT3vlR8hyh0Jn0xrQ7DpH0iClJSM9nC5HfhA14Y+cc7qJQPg2z6ye+76gCXW5Cts7Mze64zKcjGTDaig4q59rK+z62trdnHktD+TQ2y8TxbWPxbJxnHpBJNk/aFSAVdc7Ixk42ZbEFKUtCW/GOQTb8w52QDnG9mtLW1ZX9vUrmoqkw2tnWKomKuvawgmzXnYjqdTkT7twe2GGSLDo5UKXQmlYsyyEZxp6tcVL5TGffvFxc+CFfc2xP5x8G/fmGWi3Z1dTnezLCCbGVlZVraQZiZbEk4t1I8FZPJZu9TkjKOMuncZtK+REEyWigZxaSOkUE2ijsTgmxx53XhAwbZisfBHeXDTDb9wp6TTX7M3gfrKBW19kXeD5WZbJx2gKKqmGsve2ZqUtq/SWMfVhT4w3eIQmdSYMukfSFSQdecbNYJOAkn4nyZbPLFH1cXLR4Hd5QPg2z6yZ+BqiCXva+1HrP3CTpKRa19AcLLZCOKomJuwqZSqZx+JSnt39SxD8+zhZnzaVFisFyUKDy65mRjJlv3TDbr8aTcgQ2SSXdzyTxsH/qFXS4qP2Y/z5iWyRZUm0yn04m6gUXx5vd7IfcrSWn/Jp3bTNqXKEhGCyWjWJ2krkGQjEE2ijtdKxNZA6AkBJS8LHxgTdYLJGdwGCRT7+aSGeTvGs/nesg3VlT1+25BNvtnbkqQzfp/kH2W9d4m4dxK8VRsoDjpmWwmnNt43eydnnxqSrTa2loceeSRqKmp0b0rWewsKK50BdmSmMmWb+EDq1RUfj4Vh/01OUmn0+jq6mL70MR63ysqKpR9BlErF1UxF2omk0F7ezvPIxRZtbW16NOnDxoaGnz9nRxkS0qQ2bQbjKlUCkIII/bFdAyyUehSqZTvjlWVJAUCKJkYZFMvXyab9Tsrk80p64IKM22gSebhHXa9rO+lyiwyp4V8TC4XVZnJxn6QoiqTyeCoo47y/XcsF9V/buN51rtktFAiF+wsKO7sbTusgYk1GKqsrAxlezp5WfiAix6UxrSBJpmH5aJ6yZlsqtkzxEzNZAt64QOA5aKUXCwX1X9u43Wzd8xko0RjZ0FxZx+IhNXWDznkEIwcORK1tbWhbE8n+8IH9iwL4GAmGy+MimPaQJPMwyCbXmEE2Zwy2YDu5zlTMtlULDjETDZKKpaL6v/O87rZOwbZKNHYWVDc6SwX7du3byjb0s3PwgcmDJKiju8hOWGQTS+dQTbTFz4Isk1aWXrsBylpWC6q/9yWpKlgSsV3iBKNQTaKO13lokniZeEDFRkNSWLaQJPMwyCbXlVVVQCA6upqZdvIF2STP3dTykVVZrIlJZOHyMJyUf3nNl43e8dMNko0dhYUd7oy2ZJEvrCyLq6sxxnkDIZpJRNkHgbZ9BoyZAgaGxu1BNmAbz5/a+7LOGeysVyUkiqJQTbArBU9ed3snf5Pi0gjq8PWNSAjUo1BNvXkTDZ7kM0+KDJhkBRFpt3NJfNw8K9XOp1GTU2N0ve/UJDNYkqQzWk/S1VXV4d0Oo26urrAXpMoCuRy0SRlcpp4bjNpX0zFTDZKtL59+0IIgfr6et27QqQEg2zquWWypdPpbu93kgaGQWImGxXCTLb4yxdkky9EdfWzbplsQfZZjY2NaGhoYD9IiSOXgSep/ZsUZOOcbN4xyEaJlk6n0dTUpHs3iJRhuaJ6LBcNlwkDTTKP9d3idyy+vGSylZWVae8jVGayAWzjlEypVArl5eVob29P1HfApCAbb2Z5l5wWSkSUQMxkU08e7FkXVQDLRYPEclEqhIP/+PMSZNM5/UcYmWxESWaVjCapKsCk7LFBgwahb9++LFf3gJlsREQxxiCbevJ7ak287fQ7wIxBUhSxXJQKYZAt/rxmsuki74+c2cw2SRSMyspK7N27V+v3PGwmZbI1NTWxAsyj5LRQIqIEYpBNPadMNqtUlJlswWAmGxVi0oUIqWX1s3J/alImm8VpP4moeEOHDkVdXR369Omje1dCw3NbNDHIRkQUY8ykCpeVyeY2KOL7XxyTyiXITMxkiz8vCx+YEmRjJhtR8GpqalBTU6N7N0LF8U808dMiIooxZrKpJy9wYL/44+qiwbDetySViJA/PXv2BABUVVVp3hNSJWrlosxkI6JSMZMtmjhaJSKKMQbZwpFOp9HZ2dktk43losGorKzEEUcckZ30mMiuf//+qK+vZ5AtxqKy8AHATDYiCgaDbNHEIBsRUYyxXDEcXjPZ+P4Xr1+/frp3gQyWSqWy2WwUT/luGlkB+B49eoS6TzJ5f7q6uhhkI6KSsVw0mhhkIyKKMWayhcMa/DCTjYhIjXzns5aWFtTX16OhoSHs3XLcH+uGC8B+n4iKx0y2aGKQjYgoxhhkCwcz2YiI1CqUydbY2Bj2LnWTSqVy5mOzHiMiKgaDbNHE0T4RUYwxyBYOK3jGhQ+IiNSIwvnM2icrqxngzRUiKh7LRaOJnxYRUYwxkyoc9gsrZrIREQUrSkE2OZONiKhYzGSLJo72iYhiLAoXJXGQr1zUaQU8IiLyJwrnM/sNl3Q6beR+ElE0MMgWTRztExHFnHxi5klaDbeFD+Tf2f9NRETFM/F85nbDhYioGAyyRRNH+0REMccgm3r5LqyYyUZEVLoolN/bzwUm7iMRRYfVh7AviRauLkpEFHMM8qiXL5NN/jcXPiAiKk4Uy0VN3Eciio7+/ftDCIFDDjlE966QDwyyERHFHDPZ1MuXycZyUSKi0kUpyMZyUSIKQp8+fdCnTx/du0E+cbRPRBRzcmCHA3418mUvMJOQiKh0UQqyyQsfEBFRsrDnJyKKOWayqWddSDGTjYhIjSgF2ZjJRkSUXBztExHFHDOp1GMmGxGRWlEMsrHPJyJKHvb8REQxx0w29fJlsnHhAyKi0kUpyMaFD4iIkotBNiKimGOQTT0vCx+kUim+/0RERYpSkI2ZbEREycWen4go5liuqJ71vuYrF+V7T0RUvCgF2ZjJRkSUXBzxExHFHDPZ1MuXycYgGxFR8Ew8nzGTjYiI2PMTEcUcg2zq5ctesC6yeLFFRFQ8ZrIREVEUcMRPRBRzDLKpZwXQhBAAmMlGRBQ0+/nLxD41X1YzERElg3lnJyIiChTnZFMvX4aF9Z5zZVEiouJFKZON5aJERMnFnp+IKOaYyaae/UJK/pmZbEREpYtSkI3lokREycURPxFRzDHIpl6+iz8G2YiIShelIBsz2YiIkisyPf+cOXNw7LHHomfPnujdu7fjc1KpVLf/fvvb34a7o0REhmGQTT0v5aK82CIiKl4Ug2wm7iMREalVpnsHvGpra8PZZ5+NCRMmYP78+a7PW7BgAU455ZTsz3V1dWHsHhGRsRhkU88eQGMmGxFRsKIUZLPKRdnvExElT2SCbL/4xS8AAAsXLsz7vN69e6OpqSmEPSIiigZr0G9l+FLwuPABEZFaUQqyMZONiCi5IhNk82rWrFm49NJL0dLSgpkzZ+Lyyy/PexeptbUVra2t2Z937twJANi1a5fyfSUiCsPevXuxd+9epNNp9m2KWO+xZc+ePdn3es+ePdi7dy/27dvH95+iYe9eQBobAQB27QL+f3YOkQ4dHR3d+tnKykqNe9RdvnMBERFFl9WXCyEKPjdWQbbbbrsNJ510EqqqqrBy5Ur8+Mc/xpdffombbrrJ9W/uvPPObJacbNCgQSp3lYiIiCg6/uVfdO8BERERkVa7d+8uOCVZSngJxSly6623Oga4ZK+//jrGjRuX/XnhwoW45ppr8PXXXxd8/Xnz5uGXv/xlNjvNiT2TraurCzt27ECfPn2Y4i3ZtWsXBg0ahI8//hi1tbW6d4c0YTsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLUtCCGwe/du9O/fv+B8m1oz2WbNmoXzzjsv73OGDBlS9Ov//d//PXbt2oXPP/8c/fr1c3xOZWVlt1Rzt9VLCaitrY3Ul4HUYDsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLEteF1UU2uQraGhAQ0NDcpef/369ejRoweDZkREREREREREpFRk5mT76KOPsGPHDnz00Ufo7OzEhg0bAADDhw9HTU0N/vznP2P79u2YMGECqqqqsGrVKtx44424/PLLjZsUlYiIiIiIiIiI4iUyQbabb74ZixYtyv48evRoAMCqVaswadIklJeX44EHHsC1116Lrq4uDB06FL/85S9x1VVX6drlWKmsrMQtt9zCgGXCsR2QhW2BLGwLZGFbIAvbAgFsB3QQ2wJZktAWtC58QEREREREREREFAf5l0UgIiIiIiIiIiKighhkIyIiIiIiIiIiKhGDbERERERERERERCVikI2IiIiIiIiIiKhEDLIlxAMPPICWlhb06NEDY8eOxdq1a/M+/w9/+ANGjRqFnj17orm5GZdccgn+9re/ZX//0EMP4fjjj0d9fT3q6+sxefJkvPbaazmvMWTIEKRSqW7/ccVXfXS0g46ODtx0001oaWlBVVVVduXfrq4uJcdI3uhoC7t378Y111yDQw89FFVVVTj22GPx+uuvKzk+8i7otrBkyRKMGzcOvXv3RnV1NY455hg88sgjJW+X1NPRFtasWYPTTz8d/fv3RyqVwrPPPqvi0MgnHW3hzjvvxHe+8x306tULjY2NOOuss/Duu+8qOT7yRkc7ePDBB3H00UejtrYWtbW1mDBhAl544QUlx0fe6RorWO68806kUilcc801QR0SFUlHW7j11lu7xRSampqUHF8gBMXe4sWLRXl5uXjooYfEpk2bxOzZs0V1dbX48MMPHZ+/du1akU6nxb/927+JLVu2iLVr14qRI0eKs846K/uc888/X/zmN78R69evF++884645JJLRF1dnfjkk0+yz/niiy/EZ599lv1vxYoVAoBYtWqV6kMmB7rawe233y769Okjli5dKrZu3SqefPJJUVNTI+655x7lx0zOdLWFc845R4wYMUK89NJL4v333xe33HKLqK2tzXkOhUtFW1i1apVYsmSJ2LRpk9i8ebO45557RCaTEcuWLSt6u6Serrbw/PPPixtvvFE8/fTTAoB45plnVB8qFaCrLZx88sliwYIF4u233xYbNmwQU6dOFYMHDxZ79uxRfszUna528Kc//Uk899xz4t133xXvvvuu+PnPfy7Ky8vF22+/rfyYyZmutmB57bXXxJAhQ8TRRx8tZs+ereowyQNdbeGWW24RI0eOzIktfPHFF8qPt1gMsiXA+PHjxRVXXJHz2OGHHy6uv/56x+fPnTtXDB06NOexe++9VwwcONB1Gx0dHaJXr15i0aJFrs+ZPXu2GDZsmOjq6vKx9xQUXe1g6tSpYsaMGTnPmzZtmvjhD3/o9xAoIDrawr59+0QmkxFLly7Ned6oUaPEjTfeWMxhUADCaAtCCDF69Ghx0003Fb1dUk9XW5AxyGYGE9qCEN/crAUgXnrpJY97TkEypR0IIUR9fb343e9+52GvSQWdbWH37t3iW9/6llixYoWYOHEig2ya6WoLt9xyixg1alRxO60By0Vjrq2tDevWrcOUKVNyHp8yZQr+67/+y/Fvjj32WHzyySd4/vnnIYTA559/jqeeegpTp0513c6+ffvQ3t6OQw45xHU/Hn30UcyYMQOpVKr4A6Ki6GwHxx13HFauXIn33nsPAPA///M/ePnll3HaaacFcGTkl6620NHRgc7OTvTo0SPneVVVVXj55ZdLPCoqRhhtQQiBlStX4t1338UJJ5xQ9HZJLV1tgcxjUlvYuXMnALiOLUkdU9pBZ2cnFi9ejL1792LChAmlHRQVRXdbuOqqqzB16lRMnjw5mAOiouluC++//z769++PlpYWnHfeediyZUswB6aChsAehejTTz8VAMQrr7yS8/icOXPEt7/9bde/s0r6ysrKBABxxhlniLa2NtfnX3nllWLYsGFi//79jr9//PHHRSaTEZ9++mlxB0Il0dkOurq6xPXXXy9SqZQoKysTqVRK3HHHHaUfFBVFZ1uYMGGCmDhxovj0009FR0eHeOSRR0Qqlcq7XVJHZVv4+uuvRXV1tSgrKxOVlZVi/vz5JW+X1NHVFuzATDbtTGkLXV1d4vTTTxfHHXdcaQdERdHdDjZu3Ciqq6tFJpMRdXV14rnnngvmwMg3nW3hscceE0ceeWR2LMlMNr10toXnn39ePPXUU2Ljxo3ZrMZ+/fqJL7/8MrgDDBAz2RLCnj0mhHDNKNu0aROuvvpq3HzzzVi3bh2WLVuGrVu34oorrnB8/l133YXHHnsMS5Ys6ZalYpk/fz5OPfVU9O/fv7QDoZLoaAePP/44Hn30Ufzxj3/Em2++iUWLFuHuu+/GokWLgjsw8k1HW3jkkUcghMCAAQNQWVmJe++9F+effz4ymUxwB0a+qWgLvXr1woYNG/D6669jzpw5uPbaa7F69eqit0vh0NUWyDy628KsWbOwceNGPPbYY4EcDxVHVzs47LDDsGHDBrz66qv40Y9+hOnTp2PTpk2BHhv5E3Zb+PjjjzF79mw8+uijrteXpIeOfuHUU0/FP/3TP+Goo47C5MmT8dxzzwGAudeTmoJ7FJLW1laRyWTEkiVLch6/+uqrxQknnOD4Nz/84Q/F97///ZzH1q5dKwCI//3f/815fO7cuaKurk68/vrrrvuwbds2kU6nxbPPPlvkUVCpdLaDgQMHivvvvz/nsdtuu00cdthhxRwKlciEPmHPnj3ZvzvnnHPEaaedVsyhUIlUtwXZzJkzxZQpU4reLqmlqy3YgZls2pnQFmbNmiUGDhwotmzZUsQRUBBMaAeyk046SVx++eUe956CpKstPPPMMwKAyGQy2f8AiFQqJTKZjOjo6CjxyMgv0/qFyZMnd5sfzhTMZIu5iooKjB07FitWrMh5fMWKFTj22GMd/2bfvn1Ip3ObhpVpIoTIPjZ37lzcdtttWLZsGcaNG+e6DwsWLEBjY2Pe+ZtILZ3twO11urq6ijoWKo0JfUJ1dTWam5vx1Vdf4cUXX8SZZ55Z7OFQCVS2BTshBFpbW4veLqmlqy2QeXS2BSEEZs2ahSVLluA///M/0dLSUuxhUIlM6xPYb+ijqy2cdNJJeOutt7Bhw4bsf+PGjcMFF1yADRs2sApCA5P6hdbWVrzzzjtobm72uvvhCj2sR6GzltqdP3++2LRpk7jmmmtEdXW12LZtmxBCiOuvv15ceOGF2ecvWLBAlJWViQceeEB88MEH4uWXXxbjxo0T48ePzz7nV7/6laioqBBPPfVUzlK6u3fvztl2Z2enGDx4sLjuuuvCOVhypasdTJ8+XQwYMEAsXbpUbN26VSxZskQ0NDSIn/3sZ+EdPOXQ1RaWLVsmXnjhBbFlyxaxfPlyMWrUKDF+/Pi8c7uRWirawh133CGWL18uPvjgA/HOO++IefPmibKyMvHQQw953i6FT1db2L17t1i/fr1Yv369ACD+9V//Vaxfv158+OGH4R085dDVFn70ox+Juro6sXr16pzzyL59+8I7eMrS1Q5uuOEGsWbNGrF161axceNG8fOf/1yk02mxfPny8A6ecuhqC3ack00/XW3hxz/+sVi9erXYsmWLePXVV8X3vvc90atXL2PHjQyyJcRvfvMbceihh4qKigoxZsyYnOXQp0+fLiZOnJjz/HvvvVeMGDFCVFVViebmZnHBBReITz75JPv7Qw89VADo9t8tt9yS8zovvviiACDeffddlYdHHuloB7t27RKzZ88WgwcPFj169BBDhw4VN954o2htbVV9uJSHjrbw+OOPi6FDh4qKigrR1NQkrrrqKvH111+rPlQqIOi2cOONN4rhw4eLHj16iPr6ejFhwgSxePFiX9slPXS0hVWrVjn2HdOnT1d5qFSAjrbg1A4AiAULFqg8VMpDRzuYMWNGdpt9+/YVJ510EgNsBtA1VpAxyGYGHW3h3HPPFc3NzaK8vFz0799fTJs2Tfz1r39VepylSAmRJ0+PiIiIiIiIiIiICuKcbERERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIqEYNsRERERKRVW1sbhg8fjldeeSXQ1126dClGjx6Nrq6uQF+XiIiIyAmDbEREREQBuvjii5FKpbr9t3nzZt27Zqz/+I//wKGHHorvfve72cdSqRSeffbZbs+9+OKLcdZZZ3l63e9973tIpVL44x//GNCeEhEREbljkI2IiIgoYKeccgo+++yznP9aWlq6Pa+trU3D3pnnvvvuw6WXXqrktS+55BLcd999Sl6biIiISMYgGxEREVHAKisr0dTUlPNfJpPBpEmTMGvWLFx77bVoaGjAP/7jPwIANm3ahNNOOw01NTXo168fLrzwQnz55ZfZ19u7dy8uuugi1NTUoLm5GfPmzcOkSZNwzTXXZJ/jlPnVu3dvLFy4MPvzp59+inPPPRf19fXo06cPzjzzTGzbti37eytL7O6770ZzczP69OmDq666Cu3t7dnntLa24mc/+xkGDRqEyspKfOtb38L8+fMhhMDw4cNx99135+zD22+/jXQ6jQ8++MDxvXrzzTexefNmTJ061ee7DGzbts0xa3DSpEnZ55xxxhl47bXXsGXLFt+vT0REROQHg2xEREREIVq0aBHKysrwyiuv4N///d/x2WefYeLEiTjmmGPwxhtvYNmyZfj8889xzjnnZP/mpz/9KVatWoVnnnkGy5cvx+rVq7Fu3Tpf2923bx9OPPFE1NTUYM2aNXj55ZdRU1ODU045JSejbtWqVfjggw+watUqLFq0CAsXLswJ1F100UVYvHgx7r33Xrzzzjv47W9/i5qaGqRSKcyYMQMLFizI2e7DDz+M448/HsOGDXPcrzVr1uDb3/42amtrfR0PAAwaNCgnW3D9+vXo06cPTjjhhOxzDj30UDQ2NmLt2rW+X5+IiIjIjzLdO0BEREQUN0uXLkVNTU3251NPPRVPPvkkAGD48OG46667sr+7+eabMWbMGNxxxx3Zxx5++GEMGjQI7733Hvr374/58+fj97//fTbzbdGiRRg4cKCvfVq8eDHS6TR+97vfIZVKAQAWLFiA3r17Y/Xq1ZgyZQoAoL6+Hvfffz8ymQwOP/xwTJ06FStXrsRll12G9957D0888QRWrFiByZMnAwCGDh2a3cYll1yCm2++Ga+99hrGjx+P9vZ2PProo5g7d67rfm3btg39+/d3/N0PfvADZDKZnMdaW1uzWW+ZTAZNTU0AgAMHDuCss87ChAkTcOutt+b8zYABA3Iy9oiIiIhUYJCNiIiIKGAnnngiHnzwwezP1dXV2X+PGzcu57nr1q3DqlWrcoJylg8++AD79+9HW1sbJkyYkH38kEMOwWGHHeZrn9atW4fNmzejV69eOY8fOHAgp5Rz5MiROYGt5uZmvPXWWwCADRs2IJPJYOLEiY7baG5uxtSpU/Hwww9j/PjxWLp0KQ4cOICzzz7bdb/279+PHj16OP7u17/+dTaYZ7nuuuvQ2dnZ7bkzZ87E7t27sWLFCqTTucUaVVVV2Ldvn+s+EBEREQWBQTYiIiKigFVXV2P48OGuv5N1dXXh9NNPx69+9atuz21ubsb777/vaZupVApCiJzH5LnUurq6MHbsWPzhD3/o9rd9+/bN/ru8vLzb63Z1dQH4JlhVyKWXXooLL7wQv/71r7FgwQKce+656Nmzp+vzGxoaskE8u6ampm7vY69evfD111/nPHb77bdj2bJleO2117oFEQFgx44dOcdIREREpAKDbEREREQajRkzBk8//TSGDBmCsrLuQ7Phw4ejvLwcr776KgYPHgwA+Oqrr/Dee+/lZJT17dsXn332Wfbn999/Pyd7a8yYMXj88cfR2NhY1PxnAHDUUUehq6sLL730UrcMM8tpp52G6upqPPjgg3jhhRewZs2avK85evRoPPjggxBCZMtY/Xj66afxy1/+Ei+88ILjvG9Wpt7o0aN9vzYRERGRH1z4gIiIiEijq666Cjt27MAPfvCD7CqYy5cvx4wZM9DZ2YmamhrMnDkTP/3pT7Fy5Uq8/fbbuPjii7uVRP7DP/wD7r//frz55pt44403cMUVV+RkpV1wwQVoaGjAmWeeibVr12Lr1q146aWXMHv2bHzyySee9nXIkCGYPn06ZsyYgWeffRZbt27F6tWr8cQTT2Sfk8lkcPHFF+OGG27A8OHDc8pcnZx44onYu3cv/vrXv/p4177x9ttv46KLLsJ1112HkSNHYvv27di+fTt27NiRfc6rr76KysrKgvtBREREVCoG2YiIiIg06t+/P1555RV0dnbi5JNPxpFHHonZs2ejrq4uG0ibO3cuTjjhBJxxxhmYPHkyjjvuOIwdOzbndebNm4dBgwbhhBNOwPnnn4+f/OQnOWWaPXv2xJo1azB48GBMmzYNRxxxBGbMmIH9+/f7ymx78MEH8f3vfx9XXnklDj/8cFx22WXYu3dvznNmzpyJtrY2zJgxo+Dr9enTB9OmTXMsYy3kjTfewL59+3D77bejubk5+9+0adOyz3nsscdwwQUX5C1ZJSIiIgpCStgn7yAiIiIi402aNAnHHHMM7rnnHt270s0rr7yCSZMm4ZNPPkG/fv0KPv+tt97C5MmTHRdmKMX//d//4fDDD8cbb7yBlpaWwF6XiIiIyAkz2YiIiIgoEK2trdi8eTP++Z//Geecc46nABvwzVxvd911F7Zt2xbo/mzduhUPPPAAA2xEREQUCi58QERERESBeOyxxzBz5kwcc8wxeOSRR3z97fTp0wPfn/Hjx2P8+PGBvy4RERGRE5aLEhERERERERERlYjlokRERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIq0f8Dz052/mBNPmoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "nharm = 1\n", + "freq, zstat = z_n_search(events.time, frequencies, nbin=nbin, nharm=nharm)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, 15])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Thresholding\n", + "\n", + "When can a peak in the EF or $Z_n^2$ periodogram be considered a pulsation?\n", + "\n", + "Since both the EF and $Z_n^2$ of noise follow precise statistical distributions ($\\chi^2_{\\rm nbin}$ in one case, $\\chi^2_n$ in the other), we can use the inverse survival functions of these statistical distributions to find the peaks that are not expected by noise.\n", + "\n", + "In Stingray, the thresholds are defined in `stingray.stats.fold_detection_level` and `stingray.stats.z2_n_detection_level` respectively.\n", + "\n", + "The `ntrial` parameter should be set to an estimate of the statistically independent frequencies in the periodogram. A good estimate can be \n", + "\n", + "$$N_{\\rm trial} \\sim (f_{\\rm max} - f_{\\rm min}) / df_{\\rm min} =(f_{\\rm max} - f_{\\rm min}) (t_1 - t_0)$$,\n", + "where $f_{\\rm min}$ and $f_{\\rm max}$ are the maximum and minimum frequencies of the periodogram, $df_{\\rm min}$ was defined above and $t_0$ ans $t_1$ the start and end of the observation.\n", + "\n", + "Moreover, the `stingray.pulse.search.search_best_peaks` helps finding the best value for nearby candidates." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfrA8c9sTyMhISQBAgQpEiBURRAFpIqIYME7hdDOcuhFuiKCNEHxqFIsh4AooqLwO8vRguChggjYAEGBiCUcIiWkbf/9sdmRTd0N2d2QPO/Xa1+vnZnvzDw7Isuzz7coTqfTiRBCCCGEEEIIr2mCHYAQQgghhBBCXG0kkRJCCCGEEEIIH0kiJYQQQgghhBA+kkRKCCGEEEIIIXwkiZQQQgghhBBC+EgSKSGEEEIIIYTwkSRSQgghhBBCCOEjSaSEEEIIIYQQwke6YAdQGTgcDn777TciIiJQFCXY4QghhBBCCCGCxOl0cunSJerUqYNGU3LdSRIp4LfffiMxMTHYYQghhBBCCCEqiZ9//pl69eqVeFwSKSAiIgJwPawaNWoEORohhKh6rHYH7x48DcBdbeMBPLb12uD0NLfaHby79xT2nTsB0AJ3cRr9Y/+AsLCgxFSSws8wWM9MCCGquqysLBITE9UcoSSSSIHana9GjRqSSAkhhB/kWmzM2XocgCFdGgN4bIcagvN1lGuxMWfnz8A16r4hxguE1qhR6RKpws8wWM9MCCGqi7KG/MjfwkIIIQJOoyj0axWvvg9qHM1jsX1/lK3O6KDFIYQQ4uojiZQQQoiAM+m1LL+/fbDDcMVxdwty520m2SyJlBBCCO9JB2shhBBCCCGE8JFUpIQQQgghxBVxOp3YbDbsdnuwQxGiTFqtFp1Od8XLHkkiJYQQIuByLTaSp20B4PDMPkGdbCJ51k4g+N0MhbhaWSwWMjMzyc3NDXYoQngtNDSUhIQEDAZDua8hiZQQQgghhCgXh8PByZMn0Wq11KlTB4PBcMW/8gvhT06nE4vFwu+//87Jkydp0qRJqYvulkYSKSGEEH5n0Gp4dXgH9b3F7ghyREWt0P2AUXFioPLFBkWfoRCVgcViweFwkJiYSGhoaLDDEcIrISEh6PV6fvrpJywWCyaTqVzXkURKCCGE3+m0Gm65Nk7droyJVFdtFqFK5YvLrfAzFKIyKe8v+kIES0X8mZU/9UIIIYQQQgjhI6lICSGE8Dur3cGmg78CMLBt3SBHU7yN9hgMOBioPYc+2MEUo/Az1Ev3PiGECCpJpIQQQvid1e5g4oZvALgtJSHI0RRviq0hALdpz1faROryZyiJlBBCBJf8LSyEEEIIIUQxfv75Z7p160ZycjIpKSm88847wQ5JVCJSkRJCCCGEEKIYOp2ORYsW0aZNG86cOUO7du3o168fYWFhwQ5NVAJSkRJCCCGEEKIYCQkJtGnTBoDatWsTHR3NuXPnfLpGt27dGDNmTMUHF+R7CUmkhBBCCCFENfTRRx+hKEqJr8GDB3u0//LLL9U1s/xNEqKrg3TtE0IIIYQQ1U737t3JzMz02Ge32xkxYgQHDx5k6tSp6v4//viD1NRU/vWvfwU6TFGJSUVKCCGEEEJUOyEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrUCwGw2M2jQICZPnkznzp1LvWZOTg6pqamEh4eTkJDA/Pnzi7RxOp3MmzePRo0aERISQuvWrdmwYYN6fPjw4ezatYvFixer1bGMjIxyfcbS7vXSSy9Rt25dHA7PhcgHDBjAsGHDynW/6kYqUkIIIfzOoNWw7L526nugyHaw4pp+c23s//d/aLVaaoSHYcBR9olBUNwzFEJUDLvdzpAhQ9i2bZtHEuV0Ohk+fDi33HILQ4cOLfM6EydO5OOPP2bjxo3Ex8fz5JNPsn//fnWcFcBTTz3Fe++9x4oVK2jSpAmffPIJQ4YMITY2lq5du7J48WKOHTtGy5YtmTlzJgCxsbHl+lyl3euee+4hLS2Njz/+mB49egBw/vx5tmzZwvvvv1+u+1U3kkgJIYTwO51WU2T9qMqwnpROq+G6Wk7CzL+4duSCpXbtSvnlWNwzFKIycjqd5FntAb9viF6Loig+n2e32xk6dCjbtm0jPT2dlJQU9dinn37KW2+9RUpKCps2bQJg7dq1aqJ1uezsbFauXMlrr71Gr169AFizZg316tVT2+Tk5LBgwQJ27NhBp06dAGjUqBG7d+/mpZdeomvXrkRGRmIwGAgNDSU+Pt7nz+PtvdatW0ffvn1Zt26dmki98847REdHq9uidEH9rmjYsCE//fRTkf2jR49m2bJlOJ1OZsyYwcsvv8z58+fp2LEjy5Yto0WLFmpbs9nMhAkTePPNN8nLy6NHjx4sX77c4w+tEEIIUZL8/HzCcE1zbLPZyM3NJTTYQQlxFcuz2kmetiXg9z08sw+hBt/+aetOorZu3Up6ejqtW7f2ON6lS5ciXd9Kcvz4cSwWi5q0AERHR9OsWbM/Yzx8mPz8fDXRcrNYLLRt29an2Mvizb3uv/9+HnzwQZYvX47RaOSNN97gL3/5C1qttkJjqaqCmkjt27cPu/3PXyy+++47evXqxT333APAvHnzWLBgAatXr6Zp06bMnj2bXr16cfToUSIiIgAYM2YM77//PuvXrycmJobx48fTv39/9u/fL38IhBCikrDZHWw59D8A+rSIA/DY1gWpq5rVZmfXqVwijfUICw8nPzub7uYz1ApKNKUr/AyD9cyEqCrcSdSWLVuKTaIABg0axM6dO+nRo4fHOKbiOJ3OMu/pTso+/PBD6tat63HMaDT6EH3ZvLnX7bffjsPh4MMPP+S6667jv//9LwsWLKjQOKqyoCZShft7Pvvss1xzzTV07doVp9PJokWLmDJlCnfeeSfgKo/GxcWxbt06HnroIS5evMjKlStZu3YtPXv2BOD1118nMTGR7du306dPn4B/JiGEEEVZ7A4eWXcAcP1qDHhsByspyDVbWPKdHWoW/IJcEzr+7z1sNlul695X+BlKIiUqqxC9Vv3/PND39Zbdbic1NZUtW7awfft2jzFMl0tLS2PkyJGsWbOmzGs2btwYvV7Pnj17qF+/PuAac3Ts2DG6du0KQHJyMkajkVOnTqn7imMwGDyKDeXhzb1CQkK48847eeONN/jxxx9p2rQp7du3v6L7VieV5nvCYrHw+uuvM27cOBRF4cSJE5w+fZrevXurbYxGI127duWzzz7joYceYv/+/VitVo82derUoWXLlnz22WclJlJmsxmz2axuZ2Vl+e+DCSGEKEKjKHRMilbfB4vFbObaSND//jvfGlw/7jmcTi5dukTNyMigxSXE1UxRFJ+72AWSw+EgNTWVTZs2sWHDBhISEjh9+rRHm9jYWLRaLd27d2fnzp1eXTc8PJxRo0YxceJEYmJiiIuLY8qUKWg0f/7oERERwYQJExg7diwOh4MuXbqQlZXFZ599Rnh4uDpbXsOGDdm7dy8ZGRmEh4cTHR3N8uXL2bhxI+np6V7F4+297r//fm6//XYOHTrEkCFDilxn6dKlPt23Oqk0f8o3bdrEhQsXGD58OID6BzouLs6jXVxcnDqu6vTp0xgMBmrWrFmkTeH/IS43d+5cZsyYUYHRCyGE8IVJr+WthzqV3dDPnDYLT7bRUG/TF9xiuA2A37PM1MjOpmYZ5wohrk779u1j3bp1APTr16/YNufPnycqKsrnaz///PNkZ2czYMAAIiIiGD9+PBcvXvRoM2vWLGrXrs3cuXM5ceIEUVFRtGvXjieffFJtM2HCBIYNG0ZycjJ5eXmcPHmSs2fPcvz4cZ/i8eZet9xyC9HR0Rw9epT77ruvyDXKc9/qotIkUitXruTWW2+lTp06HvsLz77idDrLnJGlrDaTJ09m3Lhx6nZWVlZAVqkWQghRueTn5wNgc/75nZFttklPBSGqsI4dO3o1nqk8wsPDWbt2LWvXrlX3TZw40aONoiikpaWRlpZW4nWaNm3K559/7rFv+vTpTJ8+vdT7F66eeXMvrVbLb7/9VuJxb+5bXVWKDtY//fQT27dv529/+5u6zz3dY+HK0pkzZ9QqVXx8PBaLhfPnz5fYpjhGo5EaNWp4vIQQQlQ/7kTq14t/dvfONtu4dOmS3/6hJYQQomqoFInUqlWrqF27Nrfddpu6Lykpifj4eLZt26bus1gs7Nq1S11Vun379uj1eo82mZmZfPfdd2WuPC2EECJ4ci022s3aRrtZ28i12IIWx/lLOTzymYPR9W5V95ltDrJy8jzG0gohhBCFBb1rn8PhYNWqVQwbNgyd7s9wFEVhzJgxzJkzhyZNmtCkSRPmzJlDaGio2n8zMjKSUaNGMX78eGJiYoiOjmbChAm0atVKncVPCCFE5XQuxxLsEMjPN3PJCuhN6j6bU8uZS2aysrIwmUwlnyyEqPL69OnDgQMHyMnJoV69emzcuJHrrrsu2GGJSiLoidT27ds5deoUI0eOLHJs0qRJ5OXlMXr0aHVB3q1bt6prSAEsXLgQnU7H4MGD1QV5V69eLWtICSFEJaLXanj+7hT1vdXu3QKX/uR0OjEXdO0DGHr2GxS7HafTye+X8itdRarwMxRC+N+WLYFfWFhcPYKeSPXu3bvEfuiKopQ5wM1kMvHCCy/wwgsv+ClCIYQQV0qv1XBPhz8n9akMiZTFYvH4/rlDOYsGGwedcCbLjMUS/IrZ5Qo/QyGEEMEV9ERKCCGECIa8vDyP7XCTjgitDgcKZy5VvkRKCCFE5SKJlBBCCL+z2R188sPvANzcJDbI0bjk5+d7VKS+DYklUq/BxkmyzTbOXswJYnRFFX6GOuneJ4QQQSV/CwshhPA7i93ByNVfMnL1l1gqQbc+cCVS+bY/Y5moac6D9maEhoUAcPLMxZJODYrK+AyFEKI6k0RKCCFEtWSz2biUby2yv0aIEYDzl3IDHZIQQoiriCRSQgghqiWbzUZWXtE1rEKMegBy8sw4HFL5EUIIUTxJpIQQQlRLdrudbHPRRMpk1ONEIc9qx2otWrESQgghQBIpIYQQ1ZTdbiermK59oXoNNjTkWuyVbi0pIYQQlYckUkIIIaolm83GpeK69hm02Jxaci02mQJdCCFEiSSREkIIUS25uvYVrUiFGHTY0JBnsUsiJYQQokSyjpQQQgi/02s1zLyjhfoeKLIdaO5Z+8Jsefxd+Y0wow4tUEOvwerUkGutXIlUcc9QCFG5DR8+nAsXLrBp0ya/30tRFDZu3MjAgQP9fi/hIn8TCyGE8Du9VkNqp4akdmqIXqspsh0MuWYrVrsDvcPGg8azjNCdIVV3hhoG1xgpi81BTl5+UGIrTmV4ZkJUFcOHD0dRlCKvvn37qm0aNmxY5Hi9evX8GtfOnTtRFIULFy749T6iYkhFSgghRLXjdDq5kONKkiJCDBh0fyYmRp0Gp1ULWPlD1pISosrq27cvq1at8thnNBo9tmfOnMkDDzygbmu12oDEJq4O8pOWEEIIv7M7nHx+/A8+P/4HdoezyHagORwOLuZacDohJCyET20RfGqP4HN7BA4UwkNCALhQiRKpYD8zIaoao9FIfHy8x6tmzZoebSIiIjyOx8bGlng9u93OuHHjiIqKIiYmhkmTJuF0ev6/6nQ6mTdvHo0aNSIkJITWrVuzYcMGADIyMujevTsANWvWRFEUhg8fXu7P9+uvv3LvvfdSs2ZNYmJiuOOOO8jIyABgy5YtmEymIpWvtLQ0unbtWu57VjeSSAkhhPA7s83OX1/Zw19f2YPZZi+yHWiuqc9tOFA4luXgftu13G+9lr9ar8WMhvBQ16/SWTmVp2tfsJ+ZEN5yOp1YLJaAvwonLYE2f/58Xn31VVauXMnu3bs5d+4cGzdu9Gjz1FNPsWrVKlasWMGhQ4cYO3YsQ4YMYdeuXSQmJvLuu+8CcPToUTIzM1m8eHG5YsnNzaV79+6Eh4fzySefsHv3bsLDw+nbty8Wi4WePXsSFRWl3g9cfy++/fbb3H///eV/CNWMdO0TQggRcAoKTWqHq+8DzWazkV2QSNU0aYnOz+Y4IerxGuGh5F+CrJw8nE4nihL4GIW4WlmtVubOnRvw+06ePBmDweB1+w8++IDw8HCPfY8//jhTp0712H7qqafU7Tlz5pCWllbs9RYtWsTkyZO56667AHjxxRfZsmWLejwnJ4cFCxawY8cOOnXqBECjRo3YvXs3L730El27diU6OhqA2rVrExUV5fVnKWz9+vVoNBr+9a9/qX9/rVq1iqioKHbu3Env3r259957WbduHaNGjQIgPT2d8+fPc88995T7vtWNJFJCCCECLsSgZdu44HUfsdvt5FvtoCg8fH0dhu7dRLK5vXo8OiyEM7gmpLDb7eh08nUpRFXTvXt3VqxY4bHPnci4TZw40aN7Xa1atYq91sWLF8nMzFQTJACdTkeHDh3UStnhw4fJz8+nV69eHudaLBbatm17JR+liP379/Pjjz8SERHhsT8/P5/jx48DcP/999OpUyd+++036tSpwxtvvEG/fv2KdG8UJZNvBiGEENWO3W4n12LH4dQQFVr0F+zoCCN2NOQVTIEuiZQQ3tPr9UyePDko9/VFWFgYjRs3LrVNrVq1ymzjLYfDAcCHH35I3bp1PY4VnuSiIu7Vvn173njjjSLH3OO8rr/+eq655hrWr1/P3//+dzZu3Fhk8g1ROvlmEEIIUe3YbDbyrXbsKEQXl0iFGbE5NeQWLMobGhoahCiFuDopiuJTF7uqIDIykoSEBPbs2cPNN98MuP6e2b9/P+3atQMgOTkZo9HIqVOnSpzQwf3c7PYrGwfZrl073nrrLWrXrk2NGjVKbHfffffxxhtvUK9ePTQaDbfddtsV3be6kckmhBBCBFyexU6vBbvotWAXeZbgTDaRZ7VjdSrMSD/B7eZkj+PRYQZsaMmzVK5FeYUQFcdsNnP69GmP19mzZ8t9vccee4xnn32WjRs38v333zN69GiPWfEiIiKYMGECY8eOZc2aNRw/fpyDBw+ybNky1qxZA0CDBg1QFIUPPviA33//nezsbACWLl1Kjx49vI7l/vvvp1atWtxxxx3897//5eTJk+zatYvHHnuMX375xaPdgQMHeOaZZ7j77rsxmUwAfPHFF1x77bX8+uuv5X4e1YEkUkIIIQLOiZMfzmTzw5lsnAR+pi2bzUae1Y4DDb9cNHtMNAEQE2bAhoZciw2r1Rrw+IQQ/rd582YSEhI8Xl26dCn39caPH09qairDhw+nU6dOREREMGjQII82s2bNYtq0acydO5fmzZvTp08f3n//fZKSkgCoW7cuM2bM4IknniAuLo5HH30UgLNnz6pjm7wRGhrKJ598Qv369bnzzjtp3rw5I0eOJC8vz6NC1aRJE6677jq++eYbj9n6cnNzOXr0qPz9VwbFGey5IiuBrKwsIiMjuXjxYqnlTyGEEOVjsTlY9elJAEbcmITN4SB5mms2q8Mz+xBqCGxP85MZPzH2X1s4aw/lF6drYPV47S8YFCcjtP/j6P1/Y/TqnTQMMTM7tQcNGjQIaHzFKfwML19EWIhgyc/P5+TJkyQlJanVDCGuBqX92fU2N5AxUkIIIfzOoNPwUNdr1G2bxRHEaOBCwfpQDkXBXRAbpfsfoYorrpgwo6siZa08XfsKP0MhhBDBJT9nCSGEqHYu5poBCClhQHx0mAE7CnaHk6zcyrMorxBCiMpDKlJCCCH8zu5w8t2vFwFoWTcyyNHAxRxXIhUWYoCCPOlbRygmxUlLJQeTXotBbwA7XMiuHIlU4Weo1cgiwUIIEUySSAkhhPA7s83OHcs+BVxjooItK8+VSEWY9Lj79t1rbQ7AYeN+QoGIUCNcgos5eUGK0lPhZxjocWVCCCE8Sdc+IYQQ1U52nmvcU3hIyYtgRoS6Bh9n5VSOipQQQojKRRIpIYQQ1U52QUUqMrTkRCqyIJHKya8ck00IIYSoXCSREkIIUe24k6OIUipSNcJciVSu2YLDEdxZBoUQQlQ+kkgJIYSodnLNrkUmo8JLTqSiwkyAQr7Vjs1mC1BkQgghrhaSSAkhhKh28goSqZphJS8gGh1uxI5CvsWO1WoNVGhCCCGuEpJICSGEqFacTif5loJEKrzkRKpmqAGbU0Oe1SGJlBBCiCJk7lQhhBB+p9NoeKxHE/U9UGQ7UBwOB/kWV1e92jVCeOzmBth3fwaKghYnuoLp0GuG6rGhId9aOSpSxT1DIYQQwSOJlBBCCL8z6DSM7dXUY1/h7UCxWq3kWe2AQlxkKGO7JsEXG4q0iwo1YEdDXiUZI1XcMxRC+NfPP//M0KFDOXPmDDqdjqlTp3LPPfcEOyxRSUgiJYQQolrJzrdgczixoyEm3Ag2c7HtaobpsTk15FutlaIiJYQIPJ1Ox6JFi2jTpg1nzpyhXbt29OvXj7CwsGCHJioB6RsghBDC7xwOJ8f+d4lj/7uEw+Essh1If2S5FthVNFpMOg3HzuTwvd3E93YTxxwm3OHUDDW4uvbZ7JjNwV9LKpjPTIjqKiEhgTZt2gBQu3ZtoqOjOXfuXHCDKtCtWzfGjBkTtPOFVKSEEEIEQL7NTu+FnwBweGYfAI/tUEPgvo7O5eQBYDLoMdsd9H5pH9BKPX7YuJ9QICpUjx0NTidcyi2+ahVIhZ9hIJ+ZEFXRRx99xG233Vbi8XvuuYe3335b3f7yyy9xOBwkJiaW637dunWjTZs2LFq0qELOe++999Dr9eW+hi/ni+LJ38JCCCGCIjrMEJT7nst2VaRCja5/QESH6nHm5nIez39QGHVa9Do9OOBCQfIlhKg6unfvTmZmpsc+u93OiBEjOHjwIFOnTlX3//HHH6SmpvKvf/0r0GGWKDo6OqjnC+naJ4QQIghCDToOTO3Fgam9Al5ZuXBZIhVq0HFg/I18avym2LahJteCvVm5+QGLTwgRGCEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrkq1WazmUGDBjF58mQ6d+5c6jU3bNhAq1atCAkJISYmhp49e5KTk8Pw4cPZtWsXixcvRlEUFEUhIyMDgM2bN9OlSxeioqKIiYmhf//+HD9+HKDU8wp3zfP13oXPdzgcPPfcczRu3Bij0Uj9+vV55plnyrx+dSYVKSGEENXKxYJueiGmsiti4aEGHLmQnRf8rn1CXC2cTmfBzJiBFaLXoihKuc612+0MGTKEbdu2eSRRTqeT4cOHc8sttzB06NBSr5GZmclf//pX5s2bx6BBg7h06RL//e9/cTqdLF68mGPHjtGyZUtmzpwJQGxsLAA5OTmMGzeOVq1akZOTw7Rp0xg0aBBfffVVqedVxL0vN3nyZF555RUWLlxIly5dyMzM5Pvvvy/z+tWZJFJCCCGqlZx81wx8IYayxwbUCDVxAciuBGOkhLha5FntJE/bEvD7lnfsoN1uZ+jQoWzbto309HRSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblMjMzsdls3HnnnTRo0ADAo53BYCA0NJT4+HiP8+666y6P7ZUrV1K7dm0OHz5My5YtSzyvIu7tdunSJRYvXszSpUsZNmwYANdccw1dunTx6vrVlSRSQgghAi7famfYq18AsGbk9Zj02sDdu2AGvhCj3hXHawexm5sU27ZGWAgXgFyzGafTWe5fu4UQlZM7idq6dSvp6em0bt3a43iXLl1wOBxeXat169b06NGDVq1a0adPH3r37s3dd99NzZo1Sz3v+PHjTJ06lT179nD27Fn1fqdOnaJly5Z+vbfbkSNHMJvN9OjRwy/Xr6okkRJCCBFwDqeTvSfPqe8DKd/iqkiZDHpXHD9dBGoU27ZmmIlTQL7FtSivzHAlRNlC9Fp1ds5A39cX7iRqy5YtxSZRAIMGDWLnzp306NGDDRuKLtx9Oa1Wy7Zt2/jss8/YunUrL7zwAlOmTGHv3r0kJSWVeN7tt99OYmIir7zyCnXq1MHhcNCyZUssFu+XXSjvvd1CQkL8ev2qSiabEEII4Xc6jYYHb27Egzc3QqcJ7ldPvsUGQKjRc4zUCO1pHtRmouPPxC4qzIgdDXlWe9AX5a1Mz1CI0iiKQqhBF/CXLxVju91OamoqW7ZsYfv27epaUYWlpaXx2muv+fTZb7zxRmbMmMHBgwcxGAxs3LgRcHWvs9s9x4798ccfHDlyhKeeeooePXrQvHlzzp8/79GmuPMq4t6Xa9KkCSEhIaSnp5fr+tWVVKSEEEL4nUGn4cl+zdVtm8W7rjL+YC5IiAonUhN1vxKqeMZVM1SP3akhvxIkUoWfoRCifBwOB6mpqWzatIkNGzaQkJDA6dOnPdrExsai1Wrp3r07O3fu9Oq6e/fuJT09nd69e1O7dm327t3L77//TvPmrv9vGzZsyN69e8nIyCA8PJzo6Ghq1qxJTEwML7/8MgkJCZw6dYonnnjC47rFnacp9GNKee59OZPJxOOPP86kSZMwGAzceOON/P777xw6dIhRo0aVef3qShIpIYQQ1YrZWlCR8mLWvpphBuwo5FsdXv0iLISo/Pbt28e6desA6NevX7Ftzp8/T1RUlE/XrVGjBp988gmLFi0iKyuLBg0aMH/+fG699VYAJkyYwLBhw0hOTiYvL4+TJ0/SsGFD1q9fT1paGi1btqRZs2YsWbKEbt26qdct6bwrvXdhU6dORafTMW3aNH777TcSEhJ4+OGHvbp+dSWJlBBCCL9zOJz8esG1qG3dqNL74vubpWCMVJjJc7zTr04DJqeDuopF7fdeM9SAo6BrX7ATqcLPUKORiS+EKI+OHTv6Zdru5s2bs3nz5hKPN23alM8//7zI/p49e3L48GGPfZfHV9J5l1fKynPvwpU2jUbDlClTmDJlSpHzy7p+dRX0Tta//vorQ4YMISYmhtDQUNq0acP+/fvV406nk+nTp1OnTh1CQkLo1q0bhw4d8riG2WzmH//4B7Vq1SIsLIwBAwbwyy+/BPqjCCGEKEG+zc5N8z7mpnkfk28LbkJitbkqUuEhnhWpXpZW3GRpTf5lX42uREohvxIkUpXpGQohhAhyInX+/HluvPFG9Ho9//nPfzh8+DDz58/3KKXOmzePBQsWsHTpUvbt20d8fDy9evXi0qVLapsxY8awceNG1q9fz+7du8nOzqZ///5B/9ITQghR+dgKEqmIkLK79kWF6nGgVIqKlBBCiMolqF37nnvuORITE1m1apW67/I+n06nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPAF5//XUSExPZvn07ffoEfvpNIYQQlZetoJoTEWIss23NMAMOp4Ld4STXHNzJJoQQgdenTx8OHDhATk4O9erVY+PGjVx33XXBDktUEkGtSP373/+mQ4cO3HPPPdSuXZu2bdvyyiuvqMdPnjzJ6dOn6d27t7rPaDTStWtXPvvsMwD279+P1Wr1aFOnTh1atmypthFCCCEArDY7DocrkarhRSIVZtCqs2NdzDX7NTYhROWzZcsWfv/9d3Jzc/nll18kiRIegppInThxghUrVtCkSRO2bNnCww8/7DFfv3sqyri4OI/z4uLi1GOnT5/GYDAUWVn58jaFmc1msrKyPF5CCCGqvqzcPxe4jAgtO5FSFIVQo2tSiou53i+OKYQQouoLatc+h8NBhw4dmDNnDgBt27bl0KFDrFixgtTUVLVd4QXWnE5nmYuuldZm7ty5zJgx4wqjF0IIcbXJynNVlTSKBpNBR5617HFPoSY9VjNk50kiJYQQ4k9BrUglJCSQnJzssa958+acOnUKgPj4eIAilaUzZ86oVar4+HgsFkuRVaAvb1PY5MmTuXjxovr6+eefK+TzCCGEqNwuFSRSOp22zB/k3Ex612+OuRYZIyWEEOJPQa1I3XjjjRw9etRj37Fjx2jQoAEASUlJxMfHs23bNtq2bQuAxWJh165dPPfccwC0b98evV7Ptm3bGDx4MACZmZl89913zJs3r9j7Go1GjMayu3QIIYSoGFqNwtAbGqjvgSLbgXCpoKqkK0iOtBqFoR3qYD9wEFDQKk60eK4vYzTouQTkB3myieKeoRBCiOAJaiI1duxYOnfuzJw5cxg8eDBffPEFL7/8Mi+//DLg6tI3ZswY5syZQ5MmTWjSpAlz5swhNDSU++67D4DIyEhGjRrF+PHjiYmJITo6mgkTJtCqVSt1Fj8hhBDBZdRpmTWwpce+wtuBkJPvqkjptbo/47q1KXz3fyWeYzK4xkjlB7kiVdwzFEIIETxBTaSuu+46Nm7cyOTJk5k5cyZJSUksWrSI+++/X20zadIk8vLyGD16NOfPn6djx45s3bqViIgItc3ChQvR6XQMHjyYvLw8evTowerVq9FqtcH4WEIIISqpnIKKlEHv/ddfiMHVNt9q80tMQgghrk5BTaQA+vfvT//+/Us8rigK06dPZ/r06SW2MZlMvPDCC7zwwgt+iFAIIcSVcjqdnMtxJTHRYa6FcC/f9na80pXKLpRIueNyOlzbigLR2Lg8mlCj65jZEtxEqvAzDNQzE0IIUbygJ1JCCCGqvjyrnfaztwNweKZrofTLt0MNgfk6yjW7EhFjQXe9PKud9gs+A9qqbQ4b9xN62TkhRlfiZw5yRarwMwzUMxNCCFG8oM7aJ4QQQgRSXkFVyaTXe32Oex2pYCdSQgghKhf5OUsIIUTAhRp0ZDx7W8Dvq1akCpKjUIOOjKndyJ03n2Rz+2LPCStoa/FizSkhhBDVh1SkhBBCVBvuKcxDfOgWF2Zyde2z2qQiJYSoHBo2bMiiRYvKff7q1auJioqqsHiqK0mkhBBCVBvuKczd4568EW5yVaSsNhtOp7OM1kKIq8Hw4cNRFKXIq2/fvmqbhg0bFjler169ct1v+vTptGnTxufzSkp49u3bx4MPPujVNYpLuu69916OHTvmczzCk3TtE0IIEXD5Vjvj3v4KgAWD22DSB2a5CnNBIuUe95RvtTNuwyFslqQSzwkLcVekHDidTpktT4gqom/fvqxatcpjn9Fo9NieOXMmDzzwgLpdWZbWiY2NvaLzQ0JCCAkJqaBoqi+pSAkhhAg4h9PJR9+e5qNvT+MIYJXHUjBhhDs5cjidfHTkd7Y6o0s8J6KgrcXuwG6XcVJClMXpdGK32wP+8rVibDQaiY+P93jVrFnTo01ERITH8dISmJ07d3L99dcTFhZGVFQUN954Iz/99BOrV69mxowZfP3112pla/Xq1QAsWLCAVq1aERYWRmJiIqNHjyY7O1u93ogRI7h48aJ6nns5oMJVpunTp1O/fn2MRiN16tQhLS0NgG7duvHTTz8xduxY9RpQfKXr3//+Nx06dMBkMlGrVi3uvPNO9djy5ctp0qQJJpOJuLg47r77bp+edVUlFSkhhBB+p9Uo3NWunvre7ghOFzlzwTinsGK69g3UnEULaPGMLdykx4mC1eZKpPQ+zPhXkQo/QyEqK4fDwX//+9+A3/emm24KWsXIZrMxcOBAHnjgAd58800sFgtffPEFiqJw77338t1337F582a2b3ctYRAZGQmARqNhyZIlNGzYkJMnTzJ69GgmTZrE8uXL6dy5M4sWLWLatGkcPXoUgPDw8CL33rBhAwsXLmT9+vW0aNGC06dP8/XXXwPw3nvv0bp1ax588EGPylphH374IXfeeSdTpkxh7dq1WCwWPvzwQwC+/PJL0tLSWLt2LZ07d+bcuXNB+e9bGUkiJYQQwu+MOi3zB7dWt3ODtLitzV2RMhVNpObofyJUcRTZH2bQ4UDB4nDgcBQ9HiiFn6EQ4sp88MEHRRKTxx9/nKlTp3psP/XUU+r2nDlz1GrP5bKysrh48SL9+/fnmmuuAaB58+bq8fDwcHQ6HfHx8R7njRkzRn2flJTErFmz+Pvf/87y5csxGAxERkaiKEqR8y536tQp4uPj6dmzJ3q9nvr163P99dcDEB0djVarVStrJXnmmWf4y1/+wowZM9R9rVu3Vq8fFhZG//79iYiIoEGDBrRt27akS1UrkkgJIYSoNtwz70WEGMto+adwoyuRstkdmC1WQkPLPkeI6kyj0XDTTTcF5b6+6N69OytWrPDYFx3t2c134sSJDB8+XN2uVatWsdeKjo5m+PDh9OnTh169etGzZ08GDx5MQkJCqTF8/PHHzJkzh8OHD5OVlYXNZiM/P5+cnBzCwsK8+hz33HMPixYtolGjRvTt25d+/fpx++23o9N5/8/8r776qsSKVa9evWjQoIF6/b59+zJo0CBC5S9DGSMlhBDC/5xOJ7kWG7mW4M58ZytYCyo8pGhFKtepIdepoXB4YUYdDqerK112vtXvMZaksjxDIcqiKAparTbgL18nggkLC6Nx48Yer8KJVK1atTyOlzZl+KpVq/j888/p3Lkzb731Fk2bNmXPnj0ltv/pp5/o168fLVu25N1332X//v0sW7YMAKvV+79rEhMTOXr0KMuWLSMkJITRo0dz8803+3SN0iaeiIiI4MCBA7z55pskJCQwbdo0WrduzYULF7y+flUliZQQQgi/y7PaSZ62heRpW8gL0sK2DocDm8NVkaoRWrQi1cHSlmRze/IKfTUadBqUgl+6s/Mt/g+0BJXhGQohSte2bVsmT57MZ599RsuWLVm3bh0ABoOhyGQ1X375JTabjfnz53PDDTfQtGlTfvvtN482xZ1XnJCQEAYMGMCSJUvYuXMnn3/+Od9++63X10hJSSE9Pb3E4zqdjp49ezJv3jy++eYbMjIy2LFjR5lxVXXStU8IIUS1kJ1vUatNkWHed+0D0Ot0YLWQkxe8REoIUbHMZjOnT5/22KfT6UrsvleakydP8vLLLzNgwADq1KnD0aNHOXbsGKmpqQDqZBJfffUV9erVIyIigmuuuQabzcYLL7zA7bffzqeffsqLL77ocd2GDRuSnZ1Neno6rVu3JjQ0tEiXutWrV2O32+nYsSOhoaGsXbuWkJAQGjRooF7jk08+4S9/+QtGo7HYz/f000/To0cPrrnmGv7yl79gs9n4z3/+w6RJk/jggw84ceIEN998MzVr1uSjjz7C4XDQrFkzn59TVSMVKSGEENXCxVxzwTuFMKNvM+/pda6ZwHLMwevaJ4SoWJs3byYhIcHj1aVLl3JdKzQ0lO+//5677rqLpk2b8uCDD/Loo4/y0EMPAXDXXXfRt29funfvTmxsLG+++SZt2rRhwYIFPPfcc7Rs2ZI33niDuXPnely3c+fOPPzww9x7773ExsYyb968IveOiorilVde4cYbb1QrS++//z4xMTGAay2sjIwMrrnmmhKnb+/WrRvvvPMO//73v2nTpg233HILe/fuVa//3nvvccstt9C8eXNefPFF3nzzTVq0aFGuZ1WVKE7paE1WVhaRkZFcvHiRGjVqBDscIYSocnItNpKnbQHg8Mw+AB7boQb/d5A4fOoMT768Ca1Wz7szRhSJS21n3E/opPFw2UDv++a9Q27WeR66vQu3dkz2e6zFKfwMA/HMhChLfn4+J0+eJCkpCZPJFOxwhPBaaX92vc0NpCIlhBCiWnCPb9LpfF9nxqh3JS05QRwjJYQQonKRREoIIUS1cCnXlQTp9b5XcgwF5+RK1z4hhBAFJJESQghRLeTku8ZI6fW+jY+CPytSeRZJpIQQQrhIB2shhBB+p1EU+rWKV98DRbb9zd0tz6j/s2ufRlHo1zwW+/dHQQEtoKHo0GGTwZV85VtsAYm1OMU9QyGEEMEjiZQQQgi/M+m1LL+/vce+wtv+lmd2JUGGyypSJr2W5Xe3gOc/KvXckIKJHfKDWJEq7hkKIYQIHunaJ4QQolpwd8szlmOyiRBj8CtSQgghKhdJpIQQQlQL7mqSoRxjpELUrn0yRkoIIYSLdO0TQgjhd5VhHSlzQTXJdNm9ci02kmftBK5T9x027ie00LkhRtc5Fqvdv0GWQtaREkKIykUqUkIIIaqFfGtB175yTH8eajQAYLZJ1z4hROU0ffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBFwIXot+5/qyf6nehKi933MUnm4q0nuGfjUOMZ1Zrfh61LPDTO5zrFaJZESoioYPnw4iqIUefXt21dt07BhwyLH69WrV+p1s7KymDJlCtdeey0mk4n4+Hh69uzJe++9h9NZdEZQf1q8eDGrV6+u0Gvu3LkTRVG4cOFChV73aiX9AoQQQgScoijEhBsDek+LtWjXPkVRiAkzkKuUniCFFUw2YbEFr2ufEKJi9e3bl1WrVnnsMxo9/16aOXMmDzzwgLqt1Zb8w8+FCxfo0qULFy9eZPbs2Vx33XXodDp27drFpEmTuOWWW4iKiqrQz1CayMjIgN2rupKKlBBCiGrBUtAtzz0Dny/CQ1z/uJKKlBBVh9FoJD4+3uNVs2ZNjzYREREex2NjY0u83pNPPklGRgZ79+5l2LBhJCcn07RpUx544AG++uorwsPDAXj99dfp0KGDeu377ruPM2fOqNdxV33S09Pp0KEDoaGhdO7cmaNHj3rc79lnnyUuLo6IiAhGjRpFfn6+x/HCXftycnJITU0lPDychIQE5s+fX+QzlBZbRkYG3bt3B6BmzZooisLw4cMBcDqdzJs3j0aNGhESEkLr1q3ZsGFDGf8Frn6SSAkhhAg4s83O1E3fMXXTd5gDVOVxV6RCLuvaZ7bZmfqfY8y0lt5dx921z2aXipQQ3sq12Hx+2ewO9Xyb3UGuxUZ+oUleijsv2BwOB+vXr+f++++nTp06RY6Hh4ej0xVMWmOxMGvWLL7++ms2bdrEyZMn1YTkclOmTGH+/Pl8+eWX6HQ6Ro4cqR57++23efrpp3nmmWf48ssvSUhIYPny5aXGOHHiRD7++GM2btzI1q1b2blzJ/v37/doU1psiYmJvPvuuwAcPXqUzMxMFi9eDMBTTz3FqlWrWLFiBYcOHWLs2LEMGTKEXbt2ef0Mr0bStU8IIUTA2R1O1u75CYDJ/a4NyD1tBQlbqOnPRMrucLL2y9+AuFLPjTAZ1Gs4nU4URfFbnEJUFe5ZJn2x7L523JaSAMCWQ//jkXUH6JgUzVsPdVLbdHnuY87lWDzOy3j2Np/v9cEHH6hVIrfHH3+cqVOnemw/9dRT6vacOXNIS0srcq2zZ89y/vx5rr227L/PLk+IGjVqxJIlS7j++uvJzs72iOeZZ56ha9euADzxxBPcdttt5OfnYzKZWLRoESNHjuRvf/sbALNnz2b79u1FqlJu2dnZrFy5ktdee41evXoBsGbNmiJjvsqKLTo6GoDatWur3RRzcnJYsGABO3bsoFOnTuq5u3fv5qWXXlI/Q1UkiZQQQgi/0ygK3ZvFqu8dAR50DWAto2vfzZqLaHGioWhsESEFiZTDgdVmx1COmf+uVOFnKIS4Mt27d2fFihUe+9yJgtvEiRM9qkW1atUq9lruiSS8+ZHl4MGDTJ8+na+++opz587hcLiqcKdOnSI5OVltl5KSor5PSHAll2fOnKF+/focOXKEhx9+2OO6nTp14uOPPy72nsePH8disaiJDrg+a7NmzcoV2+UOHz5Mfn6+mqC5WSwW2rZtW+qzuNpJIiWEEMLvTHotq0Zcr24HoyuOu1teWMFU5oW9qP+RUMVR7LEaoX8OQM/Ks1ArCIlU4WcoRGXnXjPOFwbtn6NO+rSI4/DMPkV+ONj9ePcrjg0gLCyMxo0bl9qmVq1aZbYBiI2NpWbNmhw5cqTUdjk5OfTu3ZvevXvz+uuvExsby6lTp+jTpw8Wi2eVTX/Z4uHuBM2d2PjKmxkDfYntcu6YPvzwQ+rWretxrPDkHVWNjJESQghRLbjHXoSZfJ9swqjXolFcX5nZeSX/g0II8adQg87nl+6yREqn1RBq0GEqtERCcecFm0aj4d577+WNN97gt99+K3I8JycHm83G999/z9mzZ3n22We56aabuPbaaz0mmvBW8+bN2bNnj8e+wtuXa9y4MXq93qPN+fPnOXbsmLrtTWwGg+uHKPtl40WTk5MxGo2cOnWKxo0be7wSExN9/mxXk+D/yRNCCCH8zOl0Yre5K1K+J1IAWp0Wh9XBpTxzRYYmhAgSs9nM6dOnPfbpdLoSu++VZc6cOezcuZOOHTvyzDPP0KFDB/R6Pf/973+ZO3cu+/bto379+hgMBl544QUefvhhvvvuO2bNmuXzvR577DGGDRtGhw4d6NKlC2+88QaHDh2iUaNGxbYPDw9n1KhRTJw4kZiYGOLi4pgyZQoazZ+JqzexNWjQAEVR+OCDD+jXrx8hISFEREQwYcIExo4di8PhoEuXLmRlZfHZZ58RHh7OsGHDfP58VwupSAkhhPC7XIuN5lM303zq5qB067PY7DicropUeEjxXfvam9vQPL8duc7ivxr1BevHZJut/gmyDMF+hkJUNZs3byYhIcHj1aVLl3Jfr2bNmuzZs4chQ4Ywe/Zs2rZty0033cSbb77J888/T2RkJLGxsaxevZp33nmH5ORknn32Wf75z3/6fK97772XadOm8fjjj9O+fXt++ukn/v73v5d6zvPPP8/NN9/MgAED6NmzJ126dKF9+/bqcW9iq1u3LjNmzOCJJ54gLi6ORx99FIBZs2Yxbdo05s6dS/PmzenTpw/vv/8+SUlJPn+2q4niDPQyy5VQVlYWkZGRXLx4kRo1agQ7HCGEqHJyLTZ1Bi/3uInLt/3dNeePrFxGzXsdgPXTRqqL8l4el9th435CJ42HsDCP/UOffYNL2Tmk3dOLW1oH/h8HhZ9hZejOJER+fj4nT54kKSkJk8kU7HCE8Fppf3a9zQ2kIiWEEKLKy8l3VZEURaMmUb7S69zJl4yREkIIIYmUEEKIaiA73zWuSast/9eerqBrX16QuvYJIYSoXCSREkIIUeXlmF1jitzJUHm4147KlURKCCEEkkgJIYSoBnLzXd3xdLryjytyJ1L5ZpnoQQghhCRSQgghqgF3FUmnK39FSu9OpCxSkRJCCCHrSAkhhAgAjaLQMSlafQ8U2fYn97gmfaFESqModGwQieOnn0FR0OBEQ/GT2RoLEilzkBKp4p6hEEKI4JFESgghhN+Z9FreeqiTx77C2/6Ua3EnUp5feya9lrdS28Lz28u8hrFgtj+zNThd+4p7hkIIIYJHuvYJIYSo8twVKXdVqTxMej0QvERKCCFE5SKJlBBCiCov3+JKfgp37fOFuyJllURKCCEEkkgJIYQIgFyLjXazttFu1jZyLbYi2/7mniDCWGgx3lyLjXbzP6Vtfhva5rehXX4bcp3FfzWaDK6KlCVIiVSgn5kQ4uoyffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBEQ53IsnMuxlLjtT+7ueMaC7nkeceVaOY+e8+g5R9HjbiHuRMoWvCQmkM9MiKps+PDhKIpS5NW3b1+1TcOGDYscr1evXqnXzcrKYsqUKVx77bWYTCbi4+Pp2bMn7733Hk5n8RPZ+MvixYtZvXp1hV5z586dKIrChQsXKvS6VyuZbEIIIUTAmXRato69WX3vb+6KlKnQGCmTTsvWh64j79VV3GFtWeo1Qo2uRMoaxERKCFFx+vbty6pVqzz2GY1Gj+2ZM2fywAMPqNvaUhb1vnDhAl26dOHixYvMnj2b6667Dp1Ox65du5g0aRK33HILUVFRFfoZShMZGRmwe1VXQa1ITZ8+vUimHx8frx53Op1Mnz6dOnXqEBISQrdu3Th06JDHNcxmM//4xz+oVasWYWFhDBgwgF9++SXQH0UIIYQPNBqFpnERNI2LQKPx/1TeFqsdAFOhrn0ajULT2mE00ZjLvEZIQSJls9krPkAhRMAZjUbi4+M9XjVr1vRoExER4XE8Nja2xOs9+eSTZGRksHfvXoYNG0ZycjJNmzblgQce4KuvviI8PByA119/nQ4dOqjXvu+++zhz5ox6HXfVJz09nQ4dOhAaGkrnzp05evSox/2effZZ4uLiiIiIYNSoUeTn53scL9y1Lycnh9TUVMLDw0lISGD+/PlFPkNpsWVkZNC9e3cAatasiaIoDB8+HHD9m33evHk0atSIkJAQWrduzYYNG8r4L3D1C3rXvhYtWpCZmam+vv32W/XYvHnzWLBgAUuXLmXfvn3Ex8fTq1cvLl26pLYZM2YMGzduZP369ezevZvs7Gz69++P3S5fdEIIIVzc45qMhpK77pUlzGQAwCbfL0J4xT0e0peXze5Qz7fZHeRabORb7WVeN9gcDgfr16/n/vvvp06dOkWOh4eHoytYfsFisTBr1iy+/vprNm3axMmTJ9WE5HJTpkxh/vz5fPnll+h0OkaOHKkee/vtt3n66ad55pln+PLLL0lISGD58uWlxjhx4kQ+/vhjNm7cyNatW9m5cyf79+/3aFNabImJibz77rsAHD16lMzMTBYvXgzAU089xapVq1ixYgWHDh1i7NixDBkyhF27dnn9DK9GQe/ap9PpPKpQbk6nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPwJVJJyYmsn37dvr06RPQzyKEEMI7FpuDZR//CMAj3Rtj0Pn3dz1zQXe8kEKJlMXmYNmuk1itCWVeI8xYkEhJRUoIryRP2+LzOcvua8dtKa7/H7cc+h+PrDtAx6RojzXUujz3cZGxghnP3ubzvT744AO1SuT2+OOPM3XqVI/tp556St2eM2cOaWlpRa519uxZzp8/z7XXXlvmfS9PiBo1asSSJUu4/vrryc7O9ojnmWeeoWvXrgA88cQT3HbbbeTn52MymVi0aBEjR47kb3/7GwCzZ89m+/btRapSbtnZ2axcuZLXXnuNXr16Aa5/Vxce81VWbNHRrkXBa9eurXZTzMnJYcGCBezYsYNOnTqp5+7evZuXXnpJ/QxVUdATqR9++IE6depgNBrp2LEjc+bMoVGjRpw8eZLTp0/Tu3dvta3RaKRr16589tlnPPTQQ+zfvx+r1erRpk6dOrRs2ZLPPvusxETKbDZjNv/ZjSMrK8t/H1AIIUQRNoeDxek/APBQ10YY/NxBwlZQkQo1eX7t2RwOFn/yE1D0F+TCQkNcSZjdbsfpdKIo/u+SKITwn+7du7NixQqPfe5EwW3ixIke1aJatWoVey33RBLe/L1w8OBBpk+fzldffcW5c+dwOFxVuFOnTpGcnKy2S0lJUd8nJLiSyzNnzlC/fn2OHDnCww8/7HHdTp068fHHHxd7z+PHj2OxWNREB1yftVmzZuWK7XKHDx8mPz9fTdDcLBYLbdu2LfVZXO2Cmkh17NiR1157jaZNm/K///2P2bNn07lzZw4dOsTp06cBiIuL8zgnLi6On376CYDTp09jMBiK9GeNi4tTzy/O3LlzmTFjRgV/GiGEECXRKAop9SLV944Az15lKagihRRUlYrTUslBA2goPrZwd9c+hwOHw1HqoHN/KPwMhajsDs/0vWeQQfvnjyp9WsRxeGafIn/edz/e/YpjAwgLC6Nx48altqlVq1aZbQBiY2OpWbMmR44cKbVdTk4OvXv3pnfv3rz++uvExsZy6tQp+vTpg8XiWWXTXzbLqDtBcyc2vvJmxkBfYrucO6YPP/yQunXrehwrPHlHVRPUROrWW29V37dq1YpOnTpxzTXXsGbNGm644QagaGbvza+AZbWZPHky48aNU7ezsrJITEwsz0cQQgjhBZNey78f7aJuB3pMg3vcrHvmveK8bfieUKXkf6SEGfWAgt3hJN9iJSwksIlU4WcoRGUXariyf2bqtBp02qLV6iu9rj9oNBruvfde1q5dy9NPP11knFROTg5Go5Hvv/+es2fP8uyzz6r/9vzyyy99vl/z5s3Zs2cPqamp6r49e/aU2L5x48bo9Xr27NlD/fr1ATh//jzHjh1Tu955E5vB4PpB6fK5CJKTkzEajZw6dapKd+MrTtAnm7hcWFgYrVq14ocfflDHTRWuLJ05c0atUsXHx2OxWDh//nyJbYpjNBqpUaOGx0sIIUTV5Z6yPPQKJpsINepw4PqRLidf1nIS4mpnNps5ffq0x+vs2bPlvt6cOXNITExUe1wdPnyYH374gVdffZU2bdqQnZ1N/fr1MRgMvPDCC5w4cYJ///vfzJo1y+d7PfbYY7z66qu8+uqrHDt2jKeffrrIzNaXCw8PZ9SoUUycOJH09HS+++47hg8fjkbzZyrgTWwNGjRAURQ++OADfv/9d7Kzs4mIiGDChAmMHTuWNWvWcPz4cQ4ePMiyZctYs2aNz5/talKpEimz2cyRI0dISEggKSmJ+Ph4tm3bph63WCzs2rWLzp07A9C+fXv0er1Hm8zMTL777ju1jRBCCGEv6NoXHlJy176yGLQanIokUkJUFZs3byYhIcHj1aVL+au+NWvWZM+ePQwZMoTZs2fTtm1bbrrpJt58802ef/55IiMjiY2NZfXq1bzzzjskJyfz7LPP8s9//tPne917771MmzaNxx9/nPbt2/PTTz/x97//vdRznn/+eW6++WYGDBhAz5496dKlC+3bt1ePexNb3bp1mTFjBk888QRxcXE8+uijAMyaNYtp06Yxd+5cmjdvTp8+fXj//fdJSkry+bNdTRRnoJdZvsyECRO4/fbbqV+/PmfOnGH27Nns2rWLb7/9lgYNGvDcc88xd+5cVq1aRZMmTZgzZw47d+7k6NGjREREAPD3v/+dDz74gNWrVxMdHc2ECRP4448/2L9/v9f917OysoiMjOTixYtSnRJCCD/Is9jpucA1De72cV1x4lRn9Do8s49fu+o4nU4GTVsJTgdLHruX+rF/LlKZa7GpcdTBjAJsN35HyKTxEBZW5FqDnl6N025h1qjbaZVU9kx/FanwMwwxBLZroRDFyc/P5+TJkyQlJWEymYIdjhBeK+3Prre5QVA7mf7yyy/89a9/5ezZs8TGxnLDDTewZ88eGjRoAMCkSZPIy8tj9OjRnD9/no4dO7J161Y1iQJYuHAhOp2OwYMHk5eXR48ePVi9enXABwELIYQomRMnv17IU98HktlmB6dr7FOYqeSufb/hGhRdWnRanRabHXKDUJEK5jMUQghRVFATqfXr15d6XFEUpk+fzvTp00tsYzKZeOGFF3jhhRcqODohhBBVwaXcP5OeCFP5u/aBa+1DmxlyzdYrDUsIIcRVrlKNkRJCCCEqWrbZlUhpNRr0uivrraDXuX5/lERKCCGEJFJCCCGqNHc3PK1Wc8WL6LoTsTxJpIQQotqTREoIIUSVlpPvSnp0FTB21qB3VaTyS1mcUgghRPUgiZQQQogqzZ1IVcQkRO6uffkBXlBYCCFE5VP5loYWQghR5SgoNKkdrr4Himz7S25B9UivL/qVp6DQpFYojrN/gOL6dbG0aP6sSAW+a19xz1AIIUTwSCIlhBDC70IMWraN6+qxr/C2v+SZXdUjfTEVqRCDlm1/vx6ef96raxkL1rsyB6EiVdwzFEIIETzStU8IIUSV5p5hz90t70oY9a51qMxW6donhBDVnSRSQgghqjT3DHuGYrr2+cpUUJGySCIlhBDVnnTtE0II4Xd5FjsDlu4G4N+PdgHw2A4xXPlEECVxj2cy6IveI89iZ8CKL3Dkt1THSP3bcJiQEq5lMrgqUhZr4MdIFX6G/nxmQgghyiaJlBBCCL9z4uSHM9nqe6DItr+4u+EZi6lIOXHyw9lcIAR3GKVFE2IsSKRs9gqOsmzFPUMhhH/9/PPPDB06lDNnzqDT6Zg6dSr33HNPsMMSlYQkUkIIIQLOqNPy5gM3qO/9yT3ZhHt8U5E4hrYm/823GWFrVua1QgsSKat07ROiWtDpdCxatIg2bdpw5swZ2rVrR79+/QgLCwt2aKISkDFSQgghAk6rUeh0TQydrolBq/HvVN4Wm6sbnnvGvSJxNKxJR222V9cKMRoAsAahIiWECLyEhATatGkDQO3atYmOjubcuXPBDaoU3bp1Y8yYMSVue3OO8J4kUkIIIao091TlpmISKV+FFoyRstslkRLiavfRRx+hKEqJr8GDB3u0//LLL3E4HCQmJpZ63dOnT/OPf/yDRo0aYTQaSUxM5Pbbbyc9Pd2fH6dY7733HrNmzarQa0ri9Sfp2ieEECLgrHYHb35xCoC/Xl8fvdZ/v+u5xzO5J4ooEse+X7HYYr26VqjJdQ2b3YbT6URRZGFcIa5W3bt3JzMz02Of3W5nxIgRHDx4kKlTp6r7//jjD1JTU/nXv/5V6jUzMjK48cYbiYqKYt68eaSkpGC1WtmyZQuPPPII33//vV8+S0mio6MDer/qRipSQgghAs5qdzDt/w4x7f8OYbU7/Hov9wx7ISUkUtM2/8Bse32vrvVnIuXA6ZQJH4S4moWEhBAfH6++YmNjmTBhAgcPHmTHjh20atUKALPZzKBBg5g8eTKdO3cu9ZqjR49GURS++OIL7r77bpo2bUqLFi0YN24ce/bsUdtt3ryZLl26EBUVRUxMDP379+f48ePq8W7dupGWlsakSZOIjo4mPj6e6dOne9wrJyeH1NRUwsPDSUhIYP78+UXiKVw98uac0mIbPnw4u3btYvHixWrlLiMjAwCn08m8efNo1KgRISEhtG7dmg0bNpT6vK52kkgJIYTwOwWFulEh1I0KQSGwVRx3RSrEWHonjDqYqYu51OjCTQVjpOyOgHfvC+YzFKKqs9vtDBkyhG3btpGenq4mUU6nk+HDh3PLLbcwdOjQUq9x7tw5Nm/ezCOPPFLsZBRRUVHq+5ycHMaNG8e+fftIT09Ho9EwaNAgHI4/f1has2YNYWFh7N27l3nz5jFz5ky2bdumHp84cSIff/wxGzduZOvWrezcuZP9+/eXGqM355QW2+LFi+nUqRMPPPAAmZmZZGZmql0dn3rqKVatWsWKFSs4dOgQY8eOZciQIezatavUmK5m0rVPCCGE34UYtHz6xC3qdq4lcLPe2QoSqdCCiSJKst34HaFK6dWxMIMeJwpWuxO73Y6+mJkA/aXwMxSisivt/3ONomC6bG23K20begVjIO12O0OHDlWTqJSUFPXYp59+yltvvUVKSgqbNm0CYO3atWqidbkff/wRp9PJtddeW+Y977rrLo/tlStXUrt2bQ4fPkzLli0BSElJ4emnnwagSZMmLF26lPT0dHr16kV2djYrV67ktddeo1evXoAr8apXr16J9/T2nLJiMxgMhIaGEh8fr7bJyclhwYIF7Nixg06dOgHQqFEjdu/ezUsvvUTXrl3LfCZXI0mkhBBCVGlWtSJ15UlPiEGLAwWbw4HNJlOgC1Ga5GlbSjzWvVksq0Zcr263n7WdPGvxVd6OSdG89VAndbvLcx9zLsfi0Sbj2dvKFaM7idq6dSvp6em0bt3a43iXLl08qkSlcXf39Wbs5PHjx5k6dSp79uzh7Nmz6j1OnTrlkUhdLiEhgTNnzqjnWywWNWkB13ioZs1KXsbB23O8ia2ww4cPk5+fryZobhaLhbZt25b6LK5mkkgJIYSo0twJT1gFJFKhBYmU0wm5Zhvh4Vd8SSFEkLiTqC1bthSbRAEMGjSInTt30qNHjzLH+zRp0gRFUThy5AgDBw4ste3tt99OYmIir7zyCnXq1MHhcNCyZUsslj8TxMIVb0VR1KSmPGM0vT3Hm9gKc8f14YcfUrduXY9jRqPR51ivFpJICSGE8Lt8q53BL30OwNuX/bIcCLaCsUxhptITqcGWa9EAbxuOYCqhTYhei8OpgAK55pL/UeEPhZ/h5V2dhKiMDs/sU+IxTaGqzf6pPb1uu/vx7lcWGK4kKjU1lS1btrB9+3Z1rajC0tLSGDlyJGvWrCnzmtHR0fTp04dly5aRlpZWZJzUhQsXiIqK4o8//uDIkSO89NJL3HTTTa7PtHu3T/E3btwYvV7Pnj17qF/fNVnO+fPnOXbsWInd6Lw5x5vYDAZDkTGiycnJGI1GTp06VWW78RVHEikhhBB+53A6+eaXi+r7QHE6ndjtDjRAmKn0X0W/c7r+0eMoZSIHjUZBq9WAA3LM1ooMtUzBeoZClJcv45b81bY4DoeD1NRUNm3axIYNG0hISOD06dMebWJjY9FqtXTv3p2dO3d6fe3ly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs2aNYmJieHll18mISGBU6dO8cQTT/j0GcLDwxk1ahQTJ04kJiaGuLg4pkyZgkZT8jxy3pzjTWwNGzZk7969ZGRkEB4eTnR0NBEREUyYMIGxY8ficDjo0qULWVlZfPbZZ4SHhzNs2DCfPt/VQhIpIYQQVVaexY4GV9IRXkZFyls6nQ4sFvLMMkZKiKvRvn37WLduHQD9+vUrts358+c9ZtnzVlJSEgcOHOCZZ55h/PjxZGZmEhsbS/v27VmxYgUAGo2G9evXk5aWRsuWLWnWrBlLliyhW7duPt3r+eefJzs7mwEDBhAREcH48eO5ePHiFZ3jTWwTJkxg2LBhJCcnk5eXx8mTJ2nYsCGzZs2idu3azJ07lxMnThAVFUW7du148sknffpcVxNJpIQQQlRZl/ItoCZSpc/a5y29VosVyLMEtiIlhKgYHTt29Os6cAkJCSxdupSlS5eW2KZnz54cPnzYY9/lMRVXBXPPGugWHh7O2rVrWbt2rbpv4sSJHm0KX8ebc8qKrWnTpnz++edF4lMUhbS0NNLS0oocq6pkHSkhhBBVVk6+axyTTqug01XMmCL3dXKlIiWEENWaJFJCCCGqrJx8V9VIp9V5NSWxNwwFiVR+KTNYCSGEqPqka58QQogqy12R0mor7ndDfUEilWcpfs0bIUTV0adPHw4cOEBOTg716tVj48aNXHfddcEOS1QSkkgJIYQIiOgwQ6nb/uCeWU+nLblbX3SoHmduLkAp8/X9yaAmUoEfIxWIZyaE+NOWLSUvKiyEJFJCCCH8LtSg48BUzxXvC2/7Q647kdIV/3UXatBxYPyN8PzzXl/TWLBIptkS2DFSxT1DIYQQwSNjpIQQQlRZ7kTKUEETTQAYChbCzbdK1z4hhKjOJJESQghRZeUVJFL6EipS5WEsWAzUItOfCyFEtVZh3yw9e/bkxIkTnDhxoqIuKYQQoorIt9oZ9uoXAKwZeT2Ax7ZJX3EVo8u5xzEZ9MV/3eVb7Qx77SCO/GagKGhwssZwDFMp1zQWXMtsC2xFqvAz9NczE0II4R2vEqlvvvmGli1botGUXMAaNGgQZ8+erbDAhBBCVB0Op5O9J8+p74Ei2/6Qr3btK/7rzuF0sveni0AN97q9OMqYcsKdSFmsgR0jVdwzFEIIETxeJVJt27YlMzOT2rVr06hRI/bt20dMTIxHm0ceecQvAQohhKh6DFoNy+5rp773l/yCZMdoKL56Y9BqWHZXMub/e59xtmu8umaIITiJlBBCiMrFq2+vqKgoTp48CUBGRgYOh8OvQQkhhKjadFoNt6UkcFtKAjo/JlLumfWMJXTt02k13JZcm77aC15f02RwzdpnCXDXPiGEEJWLVxWpu+66i65du5KQkICiKHTo0AFtCWtyyBgpIYQQlYXZ6uraZyxIfiqCWpGSREoIIao1rxKpl19+mTvvvJMff/yRtLQ0HnjgASIiIvwdmxBCiCrKZnew5dD/AOjTIs5vVSl3RcpkKP7rzmZ3sOXwGcz2KK+vGVKQlNls0rVPCCGqM69n7evbty8A+/fv57HHHpNESgghRLlZ7A4eWXcAgMMz+/gtkXJXjUpKpCx2B4+8exjwbnwUQIjRdS2rVKSEEKJa83n681WrVvkjDiGEEFVcSBCm67YUdO0LMRjKbBuCd4lRqLGgImUPfCIVjGcohBCieBW2jtTy5cs5e/Ys06ZNq6hLCiGEqCJCDTqOzOqrbudaAtMtzl01CimhInW5/cavCFXKnkwpzJ1I2QI78VLhZyiEECK4Kqwvxbvvvsvq1asr6nJCCCHEFbNaCxIpUwVONuFOpBzStU+Iqu7nn3+mW7duJCcnk5KSwjvvvBPskEQlUmEVqfT09Iq6lBBCCFEhrAXd70KNZXft85a7ImW323E6nShK6Qv4CiGuXjqdjkWLFtGmTRvOnDlDu3bt6NevH2FhYcEOTVQCV1SRcjqdOGV1dSGEEGXIt9oZseoLRqz6gnxr4Co57pn13MlPaR62NmaEpQn5ztITo7CC6pbd4QzoorzBeoZCVGcJCQm0adMGgNq1axMdHc25c+eCG1QpunXrxpgxY0rc9uYc4b1yJVKvvfYarVq1IiQkhJCQEFJSUli7dm1FxyaEEKKKcDidfHz0dz4++juOAP4AZ1MrUmUnUp84IvnYEYUD7xIpgByz9coC9EGwnqEQVdVHH32EoiglvgYPHuzR/ssvv8ThcJCYmFjqdU+fPs0//vEPGjVqhNFoJDExkdtvvz0ovbfee+89Zs2aVaHXlMTrTz537VuwYAFTp07l0Ucf5cYbb8TpdPLpp5/y8MMPc/bsWcaOHeuPOIUQQgif2B1OHA4HWiA8pOK69pn0OhRFwel0kpNvJVpWAxHiqtS9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOUJDo6OqD3q258rki98MILrFixgueee44BAwZwxx13MG/ePJYvX86SJUv8EaMQQgjhs1yLDQ2uyk24qeISKUVR0Gpc05AHsiIlhKhYISEhxMfHq6/Y2FgmTJjAwYMH2bFjB61atQLAbDYzaNAgJk+eTOfOnUu95ujRo1EUhS+++IK7776bpk2b0qJFC8aNG8eePXvUdps3b6ZLly5ERUURExND//79OX78uHq8W7dupKWlMWnSJKKjo4mPj2f69Oke98rJySE1NZXw8HASEhKYP39+kXgKV4+8Oae02IYPH86uXbtYvHixWrnLyMgAXEN+5s2bR6NGjQgJCaF169Zs2LCh1Od1tfM5kcrMzCz2D1Hnzp2LZPVCCCFEsOTkW1Fwoijede3zhU6nKbiHpUKvK0RVkmuxlfgqPM7vStteKbvdzpAhQ9i2bRvp6elqEuV0Ohk+fDi33HILQ4cOLfUa586dY/PmzTzyyCPFTkYRFRWlvs/JyWHcuHHs27eP9PR0NBoNgwYNwuH4c1mFNWvWEBYWxt69e5k3bx4zZ85k27Zt6vGJEyfy8ccfs3HjRrZu3crOnTvZv39/qTF6c05psS1evJhOnTrxwAMPkJmZSWZmptrV8amnnmLVqlWsWLGCQ4cOMXbsWIYMGcKuXbtKjelq5nPXvsaNG/P222/z5JNPeux/6623aNKkSYUFJoQQQlyJ7IIkR6/RoNVW7EK2uoLr5ZoDN9mEEFeb5GlbSjzWvVksq0Zcr263n7WdvBImUemYFM1bD3VSt7s89zHncjx/xMh49rZyx2m32xk6dKiaRKWkpKjHPv30U9566y1SUlLYtGkTAGvXrlUTrcv9+OOPOJ1Orr322jLvedddd3lsr1y5ktq1a3P48GFatmwJQEpKCk8//TQATZo0YenSpaSnp9OrVy+ys7NZuXIlr732Gr169QJciVe9evVKvKe355QVm8FgIDQ0lPj4eLVNTk4OCxYsYMeOHXTq5Ppv1ahRI3bv3s1LL71E165dy3wmVyOfK1IzZsxg2rRp9O3bl1mzZjF79mz69u3LjBkzmDlzZrkDmTt3LoqieJQfnU4n06dPp06dOoSEhNCtWzcOHTrkcZ7ZbOYf//gHtWrVIiwsjAEDBvDLL7+UOw4hhBBVQ06+q9udTqdFo6mwZRMLrun6HTJXuvYJcVVzJ1Fbt24lPT2d1q1bexzv0qULDoeDr776Sn0Vl0QB6kzW3iyJcPz4ce677z4aNWpEjRo1SEpKAuDUqVNqm8sTOnDNIHjmzBn1fIvFoiYt4BoP1axZs1Lv6c053sRW2OHDh8nPz6dXr16Eh4err9dee82jy2JV43NF6q677mLv3r0sXLiQTZs24XQ6SU5O5osvvqBt27blCmLfvn28/PLLRf7AzJs3jwULFrB69WqaNm3K7Nmz6dWrF0ePHiUiwjW6d8yYMbz//vusX7+emJgYxo8fT//+/dm/f3+F/wIphBDi6uHudqfTVmwSBaDXub5f8qQiJUSJDs/sU+IxTaFkY//Unl633f149ysLrIA7idqyZUuxSRTAoEGD2LlzJz169ChzvE+TJk1QFIUjR44wcODAUtvefvvtJCYm8sorr1CnTh0cDgctW7bEYvmz0qbXe3ZJVhRF7fpXnuWHvD3Hm9gKc8f14YcfUrduXY9jRqPR51ivFuVakLd9+/a8/vrrFRJAdnY2999/P6+88gqzZ89W9zudThYtWsSUKVO48847AVf5MS4ujnXr1vHQQw9x8eJFVq5cydq1a+nZ0/U/4Ouvv05iYiLbt2+nT5+S/wcWQggROKEGXZGuN1fSFccb7mpRaT+qhRp0ZEztBs8/79O19QXXzLcGriJV3DMUojILNXj/z0x/tS2J3W4nNTWVLVu2sH37dnWtqMLS0tIYOXIka9asKfOa0dHR9OnTh2XLlpGWllZknNSFCxeIiorijz/+4MiRI7z00kvcdNNNAOzevdun+Bs3boxer2fPnj3Ur18fgPPnz3Ps2LESu9F5c443sRkMBux2z26YycnJGI1GTp06VWW78RWn4n+m89EjjzzCbbfdpiZCbidPnuT06dP07t1b3Wc0GunatSufffYZAPv378dqtXq0qVOnDi1btlTbFMdsNpOVleXxEkIIUbW4EymdruJ7J6gVqQoY5C6ECCyHw0FqaiqbNm3i9ddfJyEhgdOnT3u83IlC9+7d1V5Q3li+fDl2u53rr7+ed999lx9++IEjR46wZMkStUtdzZo1iYmJ4eWXX+bHH39kx44djBs3zqfPEB4ezqhRo5g4cSLp6el89913DB8+vNRuzN6c401sDRs2ZO/evWRkZHD27FkcDgcRERFMmDCBsWPHsmbNGo4fP87BgwdZtmyZV0no1erKU/oCPXv25MSJE5w4ccLrc9avX8+BAwfYt29fkWOnT58GIC4uzmN/XFwcP/30k9rGYDBQs2bNIm3c5xdn7ty5zJgxw+s4hRBCXH3yLa5ESq+rsK86lUHv7tonY6SEuNrs27ePdevWAdCvX79i25w/f95jlj1vJSUlceDAAZ555hnGjx9PZmYmsbGxtG/fnhUrVgCg0WhYv349aWlptGzZkmbNmrFkyRK6devm072ef/55srOzGTBgABEREYwfP56LFy9e0TnexDZhwgSGDRtGcnIyeXl5nDx5koYNGzJr1ixq167N3LlzOXHiBFFRUbRr167IBHVVSYV9uwwaNIizZ8963f7nn3/mscceY+vWrZhMphLbFR6w53Q6yxzEV1abyZMne2TXWVlZZa5SLYQQovzyrXbGvf0VAAsGtwHw2DbpK75q5K4W6Uvp2pdvtTNuwyHs5mtAAS2wQH+Ckr+VXAx619enOYAVqcLP0B/PTIjqoGPHjuUaY+SthIQEli5dytKlS0ts07NnTw4fPuyx7/KYdu7cWeQc96yBbuHh4axdu5a1a9eq+yZOnOjRpvB1vDmnrNiaNm3K559/XiQ+RVFIS0sjLS2tyLGqqsISqUceecSn9vv37+fMmTO0b99e3We32/nkk09YunQpR48eBVxVp4SEBLXNmTNn1CpVfHw8FouF8+fPe1Slzpw5U+qCaUajsUoPfBNCiMrG4XTy0beungL/vMf1hVx4u6LlFyQ5pXXtczidfHTkdyCagrV7+Scny7y2oaDKlW8LXCJV3DMUQggRPEEbI9WjRw++/fZbj+kkO3TowP33389XX31Fo0aNiI+P91h4zGKxsGvXLjVJat++PXq93qNNZmYm3333XZkrTwshhAgevVbDzDtaMPOOFuj9MKse/JlIGUrp2qfXapjZtwlPaUue1rc4xiBUpIQQQlQuXlWk3LPmeeO9997zql1ERIS64JhbWFgYMTEx6v4xY8YwZ84cmjRpQpMmTZgzZw6hoaHcd999AERGRjJq1CjGjx9PTEwM0dHRTJgwgVatWhWZvEIIIUTloddqSO3U0K/3MFsLEqlSusDptRpSr6tL7se/M9te3+truxOpfKskUkJUZX369OHAgQPk5ORQr149Nm7cyHXXXRfssEQl4VUiFRkZqb53Op1s3LiRyMhIOnToALi66V24cMGnhMsbkyZNIi8vj9GjR3P+/Hk6duzI1q1bPWZPWbhwITqdjsGDB5OXl0ePHj1YvXq1rCElhBDV3J+JVMVPNmEyuL5jLJJICVGlbdmyJdghiErMq2+XVatWqe8ff/xxBg8ezIsvvqgmK3a7ndGjR1OjRo0rCqbwgDhFUZg+fTrTp08v8RyTycQLL7zACy+8cEX3FkIIETh2h5MvTp4D4PqkaLSa0icRKg81kSpljJTd4eSLjPPk28N9urapYB0bi9VeRkshhBBVlc8/07366qvs3r3bo+Kj1WoZN24cnTt35nkfFzUUQghR/Zhtdv76yh4ADs/sUyELbBbmrhYZS6lImW12/rr2a6CZT9c26vWuewRwsgkhhBCVi88jfG02G0eOHCmy/8iRIzgcjgoJSgghhLhS7oqU0Q9JWoi7ImWTipQQQlRXPn+7jBgxgpEjR/Ljjz9yww03ALBnzx6effZZRowYUeEBCiGEuPqF6LUcntlHfZ8XgC5x1oIkx+TlGKkvDQcJVRyEUPaPgiFGV0XKFsCufYWfoRBCiODyOZH65z//SXx8PAsXLiQzMxNwLTw2adIkxo8fX+EBCiGEuPopiuKX7nulcXe787YiFao4CFW861kRYiyoSNkD17UvGM9QCCFEyXz+G1mj0TBp0iQmTZpEVlYWwBVPMiGEEEJUNFtBRSqkYDxTRQo16D3uIYQQovq5op+2JIESQgjhDbPNzpPvfQfAnDtbltG6Yqhd+7ys4jxpbYAWmKPPwFhG21B31z574BKpws/QWMpshEIIIfzPP8vJCyGEEJexO5y8e+AX3j3wC3aHMyD3dCdS7vFMZdnkqMW7jlrYKXsqdnWMlN2B0xmYzxOMZyiEEKJkkkgJIYSokux2dyJV8eOKwgsSKQ1O8q0yY60QQlRHkkgJIYSoktzd7kIMfhgjVZBIKTjJtchaUkIIUR1dUSL1yy+/yNpRQgghKh2n06lWpEK97NrnC51Oi06joMEZkKnchRBCVD5XlEglJyeTkZFRQaEIIYQQFcNs+/NHvjA/JFJarRa9VuOqSJmlIiVEVfXzzz/TrVs3kpOTSUlJ4Z133gl2SKISuaKO44EaYCuEEEL4It9qR4PrO8rbySZ8odFo0Gs15Fnt5ORbK/z6QojKQafTsWjRItq0acOZM2do164d/fr1IywsLNihiUpAxkgJIYSocnItNjQ40WoUjPqKn2xCo9Gg07q+QrPzLRV+fSFE5ZCQkECbNm0AqF27NtHR0Zw7dy64QZWiW7dujBkzpsRtb84R3ruib5cnn3yS6OjoiopFCCFEFRWi17L/qZ7qe6DIdkVydbdzotNo0GpLvn6IXsv+cZ1xLl0GgKJACGWP/VUUBV3BdXPNgUmkinuGQojy++ijj7jttttKPH7PPffw9ttvq9tffvklDoeDxMTEUq97+vRpnnnmGT788EN+/fVXateuTZs2bRgzZgw9evSosPi98d5776Gv4EXJu3XrRps2bVi0aFGFXvdqdEWJ1OTJkysqDiGEEFWYoijEhHsuc1t4uyK5u9vpNBo0mpI7XyiKQkyYATS+j3PS6dyJVGC69hX3DIUQ5de9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOURAoe/iVd+4QQQlQ5eRZXcqPXaVCUshfYLY9AJ1JCiIoVEhJCfHy8+oqNjWXChAkcPHiQHTt20KpVKwDMZjODBg1i8uTJdO7cudRrjh49GkVR+OKLL7j77rtp2rQpLVq0YNy4cezZs0dtt3nzZrp06UJUVBQxMTH079+f48ePq8e7detGWloakyZNIjo6mvj4eKZPn+5xr5ycHFJTUwkPDychIYH58+cXiadwtz1vzikttuHDh7Nr1y4WL16MoigoiqJOPOd0Opk3bx6NGjUiJCSE1q1bs2HDhlKf19VOEikhhBB+Z7bZmbrpO6Zu+g6zzV5ku6K5kxuNRltqImW22Zn6n2M8aanPk5YGTLXWx+z0LvHS61ydOvIClEj5+5kJUZ3Z7XaGDBnCtm3bSE9PV5Mop9PJ8OHDueWWWxg6dGip1zh37hybN2/mkUceKXYyiqioKPV9Tk4O48aNY9++faSnp6PRaBg0aJDHskJr1qwhLCyMvXv3Mm/ePGbOnMm2bdvU4xMnTuTjjz9m48aNbN26lZ07d7J///5SY/TmnNJiW7x4MZ06deKBBx4gMzOTzMxMtavjU089xapVq1ixYgWHDh1i7NixDBkyhF27dpUa09Ws4kfgCiGEEIXYHU7W7vkJgMn9rgUosl2R3ImUTlf674V2h5O1X/4GxKn7Jut+8eoeen1gE6ninqEQlVlpi1VrFAXTZWP9rrRtqKH8/6S12+0MHTpUTaJSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblfvzxR5xOJ9deW/b/n3fddZfH9sqVK6lduzaHDx+mZcuWAKSkpPD0008D0KRJE5YuXUp6ejq9evUiOzublStX8tprr9GrVy/AlXjVq1evxHt6e05ZsRkMBkJDQ4mPj1fb5OTksGDBAnbs2EGnTp0AaNSoEbt37+all16ia9euZT6Tq5EkUkIIIQJOp9HwWI8m6vuKllfwDy19KRNNqHHc3ADr7s9Z7qjj0z0MBRWpfIt07ROiOMnTtpR4rHuzWFaNuF7dbj9re4mLW3dMiuathzqp212e+5hzOZ6TvGQ8W/KkEaVxJ1Fbt24lPT2d1q1bexzv0qWLR5WoNO5lgbzpTnz8+HGmTp3Knj17OHv2rHqPU6dOeSRSl0tISODMmTPq+RaLRU1awDUeqlmzZqXe05tzvImtsMOHD5Ofn68maG4Wi4W2bduW+iyuZj4nUps3byY8PJwuXboAsGzZMl555RWSk5NZtmwZNWvWrPAghRBCVC0GnYaxvZr67fruKpFeV3oiZdBpGNs1idy977Hc7Fsi5Z5W3SyJlBBXJXcStWXLlmKTKIBBgwaxc+dOevToUeZ4nyZNmqAoCkeOHGHgwIGltr399ttJTEzklVdeoU6dOjgcDlq2bInF8meCWHi2PUVR1KSmPGu5enuON7EV5o7rww8/pG7duh7HjMaqO0mOz4nUxIkTee655wD49ttvGT9+POPGjWPHjh2MGzeOVatWVXiQQgghhC/yra6KlE7nv44XhoJEyn0vIYSnwzP7lHhMU6hqs39qT6/b7n68+5UFhiuJSk1NZcuWLWzfvl1dK6qwtLQ0Ro4cyZo1a8q8ZnR0NH369GHZsmWkpaUVGSd14cIFoqKi+OOPPzhy5AgvvfQSN910k+sz7d7tU/yNGzdGr9ezZ88e6tevD8D58+c5duxYid3ovDnHm9gMBgN2u2f1MDk5GaPRyKlTp6psN77i+PwNc/LkSZKTkwF499136d+/P3PmzOHAgQP069evwgMUQghR9TgcTn78PRuAxrHhaDQVO7Nevpdd+xwOJz+eySHP4fsvpkaD69dicyljO4SoznwZt+SvtsVxOBykpqayadMmNmzYQEJCAqdPn/ZoExsbi1arpXv37uzcudPray9fvpzOnTtz/fXXM3PmTFJSUrDZbGzbto0VK1Zw5MgRatasSUxMDC+//DIJCQmcOnWKJ554wqfPEB4ezqhRo5g4cSIxMTHExcUxZcqUUpd78OYcb2Jr2LAhe/fuJSMjg/DwcKKjo4mIiGDChAmMHTsWh8NBly5dyMrK4rPPPiM8PJxhw4b59PmuFj7/STQYDOTm5gKwfft2UlNTAVcWnpWVVbHRCSGEqJLybXZ6L/wEcP1qfaX/MCrM3d3OUMbCtfk2O71f2gcU3++/NKaCRMpila59QlxN9u3bx7p16wBKLAKcP3/eY5Y9byUlJXHgwAGeeeYZxo8fT2ZmJrGxsbRv354VK1YAoNFoWL9+PWlpabRs2ZJmzZqxZMkSunXr5tO9nn/+ebKzsxkwYAARERGMHz+eixcvXtE53sQ2YcIEhg0bRnJyMnl5eZw8eZKGDRsya9Ysateuzdy5czlx4gRRUVG0a9eOJ5980qfPdTXx+ZurS5cujBs3jhtvvJEvvviCt956C4Bjx46VOlOIEEIIEShqRcqPXftMBcmfuYQB8kKIyqljx47lGmPkrYSEBJYuXcrSpUtLbNOzZ08OHz7sse/ymIqrgrlnDXQLDw9n7dq1rF27Vt03ceJEjzaFr+PNOWXF1rRpUz7//PMi8SmKQlpaGmlpaUWOVVU+f8MsXbqU0aNHs2HDBlasWKEOKPvPf/5D3759KzxAIYQQVz+TTst/J3VX3+f7eR0kd3LjnhDCG9sM32LCgQnvZugKKahIWW2BqUgVfoZCCCGCy+dEqn79+nzwwQdF9i9cuLBCAhJCCFH1aDQKidGhAbuf2eaqSJXVte9ydRULoYp3SRRAiLEgkQpQRSrQz1AIIUTpfE6kPvroI7RaLX36eM7EsnXrVux2O7feemuFBSeEEEKUh6VgJj1fKlK+CjUaALDZZLIJIaqqPn36cODAAXJycqhXrx4bN27kuuuuC3ZYopLweRXEJ554osiUh+CaAcXXGUeEEEJUDxabgzkfHWHOR0ew2Lyv+pT7flZ3Rcr7ROp5W13mWOthcXo3g6C7ImUr5jvRHwL9DIUQsGXLFn7//Xdyc3P55ZdfJIkSHnxOpH744Qd1+vPLXXvttfz4448VEpQQQoiqxeZw8PInJ3j5kxPYHIFIpFzJTYgPswGussfzsj0BG94lUqGmwCZSgX6GQgghSudzIhUZGcmJEyeK7P/xxx+LLDwmhBBCBIO1ILkxVfC06pcLK+jaZ/fzxBlCCCEqJ58TqQEDBjBmzBiOHz+u7vvxxx8ZP348AwYMqNDghBBCiPKwFoxbMun1frtHRIgrkXI67djsUiESQojqxudE6vnnnycsLIxrr72WpKQkkpKSaN68OTExMfzzn//0R4xCCCGET6wFVSKjPytSBYmUBic5FplwQgghqhufv2EiIyP57LPP2LZtG19//TUhISGkpKRw8803+yM+IYQQwme2gkQq1Oi/ilSIQY9GUXA4nWTnWYgsSKyEEEJUD+X6qU5RFHr37k3v3r0rOh4hhBDiitnsdnRAiNF/FSmNRoNOo8Fit5Odb/HbfYQQQlROXn3DLFmyhAcffBCTycSSJUtKbZuWllYhgQkhhBDl4XQ61UQq1OC/ipSiKGh1WrDbyZFESgghqh2vEqmFCxdy//33YzKZWLhwYYntFEWRREoIIUQRJp2WrWNvVt8DRbYrisXuQHE6QflzradS43roOhyvvgqARgET3k8codW6Ys8NQCJV3DMUQggRPF4lUidPniz2vRBCCOENjUahaVyEx77C2xUlz2JHoziBssdIaTQKTWuHgTa/XPdSEymztVzn+6K4ZyiEECJ4fJ61b+bMmeTm5hbZn5eXx8yZMyskKCGEEKK88qx2NDjRahSMev+NkQLQ61zXD0QiJYQQonLxOZGaMWMG2dnZRfbn5uYyY8aMCglKCCFE1WKxOVi47RgLtx3DYnMU2a5IeRY7Ck50GkWtGJUa166T/NNSh39a67LQWgeLU/H6Xu5EKi8AiZQ/n5kQomp5+eWXSUxMRKPRsGjRomCHU2X5nEg5nU4UpeiXzNdff010dHSFBCWEEKJqsTkcLE7/gcXpP2BzOIpsV6Rciw0NTnQaDRpN6V9zNoeDxZ/8xFJHXZba67DYXhcbPiRSeleiFohEyp/PTIjq6PTp0/zjH/+gUaNGGI1GEhMTuf3220lPTw92aMVavXo1UVFRZbbLysri0Ucf5fHHH+fXX3/lwQcf9H9w1ZTXfR5q1qyJoigoikLTpk09kim73U52djYPP/ywX4IUQghRtWg1CkNvaKC+r0g5BUmNXquUmUhpNQpDO9TBeuAg6x1xPt/LUNB1MM8iXfuEuJpkZGRw4403EhUVxbx580hJScFqtbJlyxYeeeQRvv/++3Jd12q1otcXHZtZ0n5/OHXqFFarldtuu42EhIRi2wQynqrM64rUokWLWLBgAU6nkxkzZrBw4UL19eKLL7J7926WLVvmz1iFEEJUEUadllkDWzJrYEuMFTwDXU6+O5HSlNm1z6jTMuvWpkzT/1Kue7nHYJlljJQQLk4n5OQE7+V0ehXm6NGjURSFL774grvvvpumTZvSokULxo0bx549e9R2p06d4o477iA8PJwaNWowePBg/ve//6nHp0+fTps2bXj11VfVypa799aLL77IHXfcQVhYGLNnzwbg/fffp3379phMJho1asSMGTOw2Wzq9S5cuMCDDz5IXFwcJpOJli1b8sEHH7Bz505GjBjBxYsX1cLG9OnTi3yu1atX06pVKwAaNWqEoihkZGSUGOfFixd58MEHqV27NjVq1OCWW27h66+/9rjms88+S1xcHBEREYwaNYonnniCNm3aqMe7devGmDFjPM4ZOHAgw4cPV7ctFguTJk2ibt26hIWF0bFjR3bu3OkRd1RUFFu2bKF58+aEh4fTt29fMjMzPa776quv0qJFC4xGIwkJCTz66KMAjBw5kv79+3u0tdlsxMfH82rBrKz+4HVFatiwYQAkJSVx4403otP5dwCvEEIIUR5qIqXTFtsVvSIZCn7RzbfaymgpRDWRmwvPPx+8+0+cCGFhpTY5d+4cmzdv5plnniGsmLbu7nNOp5OBAwcSFhbGrl27sNlsjB49mnvvvdcjCfjxxx95++23effddz1+vHn66aeZO3cuCxcuRKvVsmXLFoYMGcKSJUu46aabOH78uNrt7umnn8bhcHDrrbdy6dIlXn/9da655hoOHz6MVqulc+fOLFq0iGnTpnH06FEAwsPDi8R+7733kpiYSM+ePfniiy9ITEwkNja2xDhvu+02oqOj+eijj4iMjOSll16iR48eHDt2jOjoaN5++22efvppli1bxk033cTatWtZsmQJjRo18v6/CTBixAgyMjJYv349derUYePGjfTt25dvv/2WJk2aAK75Fv75z3+ydu1aNBoNQ4YMYcKECbzxxhsArFixgnHjxvHss89y6623cvHiRT799FMA/va3v3HzzTeTmZmpVuE++ugjsrOzGTx4sE+x+sLnbCgiIoIjR46o2e7//d//sWrVKpKTk5k+fToGg6HCgxRCCFG1OJ1OzuW41l6KDjNUaMLj7tqn86LS5Y4jz1m+HwdNBRUpi1UqUkJcLX788UecTifXXnttqe22b9/ON998w8mTJ0lMTARg7dq1tGjRgn379nHdddcBrmrL2rVr1YTF7b777mPkyJHq9tChQ3niiSfU4kSjRo2YNWsWkyZN4umnn2b79u188cUXHDlyhKZNm6pt3CIjI1EUhfj4+BJjDgkJISYmBoDY2FiPtoXj3LFjB99++y1nzpzBaDQC8M9//pNNmzaxYcMGHnzwQRYtWsTIkSP529/+BsDs2bPZvn07+fneLxlx/Phx3nzzTX755Rfq1KkDwIQJE9i8eTOrVq1izpw5gKu74Ysvvsg111wDwKOPPuoxI/js2bMZP348jz32mLrP/d+gc+fONGvWjLVr1zJp0iQAVq1axT333FNswllRfJ5s4qGHHuLYsWMAnDhxgnvvvZfQ0FDeeecdNXAhhBCiNHlWO+1nb6f97O3kWe0Ve23znxUpr+JY8BldLK3LdS+jwVWRMktFSoirhrOg+19ZP+AcOXKExMRENYkCSE5OJioqiiNHjqj7GjRoUCSJAujQoYPH9v79+5k5cybh4eHq64EHHiAzM5Pc3Fy++uor6tWrpyZRFa1wnPv37yc7O5uYmBiPmE6ePMnx48cB1zPo1KmTx3UKb5flwIEDOJ1OmjZt6nGfXbt2qfcBCA0NVZMogISEBM6cOQPAmTNn+O233+jRo0eJ9/nb3/7GqlWr1PYffvihRyLrDz7/BHfs2DG1X+Q777xD165dWbduHZ9++il/+ctfZIpFIYQQQeVe08kQgC7opoJEylLByaAQwn+aNGmCoigcOXKEgQMHltiupJmqC+8vrntgcfsdDgczZszgzjvvLNLWZDIREhLi5Scon+LiSUhI8Oim6ObN7IBuGo1GTU7drJdV6R0OB1qtlv379xcZt3p5tajw5BeKoqjX9ebZpKam8sQTT/D555/z+eef07BhQ2666SavP0d5+Pwt43Q6cRRMu7p9+3Z1YFdiYiJnz5716VorVqxgxYoVZGRkANCiRQumTZvGrbfeqt5rxowZvPzyy5w/f56OHTuybNkyWrRooV7DbDYzYcIE3nzzTfLy8ujRowfLly+nXr16vn40IYQQfmLUafm/R25U35tt/ks88vJdXQYNPi7G+5b+CCbFiRHvpxYPMbruYbX5v2tf4WcoRKUUGuoapxTM+5chOjqaPn36sGzZMtLS0ookGBcuXCAqKork5GROnTrFzz//rFalDh8+zMWLF2nevLnPobVr146jR4/SuHHjYo+npKTwyy+/cOzYsWKrUgaDAbu94v7ubNeuHadPn0an09GwYcNi2zRv3pw9e/aQmpqq7rt8Mg5wdSG8fFIIu93Od999R/fu3QFo27YtdrudM2fOlDuxiYiIoGHDhqSnp6vXLSwmJoaBAweyatUqPv/8c0aMGFGue/nC50SqQ4cOzJ49m549e7Jr1y5WrFgBwMmTJ4mL823q2Hr16vHss8+qf6DWrFnDHXfcwcGDB2nRogXz5s1jwYIFrF69mqZNmzJ79mx69erF0aNHiYiIAGDMmDG8//77rF+/npiYGMaPH0///v2LzXqFEEIEh1aj0DoxKiD3yrW4utm513jyVitNLqGKb+szuStS1gB07QvkMxSi3BSlzMkeKoPly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs+ePUlJSeH+++9n0aJF6mQTXbt2LdJtzxvTpk2jf//+JCYmcs8996DRaPjmm2/49ttvmT17Nl27duXmm2/mrrvuYsGCBTRu3Jjvv/8eRVHo27cvDRs2JDs7m/T0dFq3bk1oaCihXiSOJenZsyedOnVi4MCBPPfcczRr1ozffvuNjz76iIEDB9KhQwcee+wxhg0bRocOHejSpQtvvPEGhw4d8hi7dcsttzBu3Dg+/PBDrrnmGhYuXMiFCxfU402bNuX+++8nNTWV+fPn07ZtW86ePcuOHTto1aoV/fr18yre6dOn8/DDD1O7dm11Uo5PP/2Uf/zjH2qbv/3tb/Tv3x+73a6ORfMnn8dILVq0iAMHDvDoo48yZcoUNQnasGEDnTt39ulat99+O/369aNp06Y0bdqUZ555hvDwcPbs2YPT6WTRokVMmTKFO++8k5YtW7JmzRpyc3NZt24dABcvXmTlypXMnz+fnj170rZtW15//XW+/fZbtm/f7utHE0IIUQXkF6zpZAzAGimhJtcES1Y/VtiEEBUvKSmJAwcO0L17d8aPH0/Lli3p1asX6enpapFAURQ2bdpEzZo1ufnmm+nZsyeNGjXirbfeKtc9+/TpwwcffMC2bdu47rrruOGGG1iwYAENGjRQ27z77rtcd911/PWvfyU5OZlJkyapVajOnTvz8MMPc++99xIbG8u8efOu6BkoisJHH33EzTffzMiRI2natCl/+ctfyMjIUIsj9957L9OmTePxxx+nffv2/PTTT/z973/3uM7IkSMZNmwYqampdO3alaSkpCJVo1WrVpGamsr48eNp1qwZAwYMYO/evR7jz8oybNgwFi1axPLly2nRogX9+/fnhx9+8GjTs2dPEhIS6NOnjzqxhT8pzsKdGsspPz8frVZb7sW97HY777zzDsOGDePgwYOYTCauueYaDhw4QNu2bdV2d9xxB1FRUaxZs4YdO3bQo0cPzp07R82aNdU2rVu3ZuDAgcyYMcOre2dlZREZGcnFixepUaNGueIXQghRMovNwapPTwIw4sYkbA4HydO2AHB4Zh9CDRU3nmncqh2cOP4jt7RpTNrdt5TaNtdiU+MYr/0Fg+JkhPZ/GCZN8OpX9fRvMnjh7a1EhYex+on7KyT+khR+hgadz7+FClHh8vPzOXnyJElJSZhMpmCHIwJg+vTpbNq0ia+++irYoRSRm5tLnTp1ePXVV4sdi3a50v7sepsbVNg3V3n/5/n222/p1KkT+fn5hIeHs3HjRpKTk/nss88AinQXjIuL46effgLg9OnTGAwGjyTK3eb06dMl3tNsNmM2m9XtrKyscsUuhBDCOzaHg7n/+R6AoZ0alNH6yuQXdO0LMfr2w958u2ts7VDtGbxdyMNdkbLZ/d+1r/AzNPjeqUQIIaokh8PB6dOnmT9/PpGRkQwYMCAg9/UqkYqOjubYsWPUqlWLmjVrljpd5Llz53wKoFmzZnz11VdcuHCBd999l2HDhrFr1y71eOF7lTSDii9t5s6d63W1SgghxNXFUjDxg3v8kj+Fm1z3sNvtXn0/CSGEqHinTp0iKSmJevXqsXr1anQBmLUVvEykFi5cqE7usHDhwgr9ojAYDOo4qw4dOrBv3z4WL17M448/DriqTu4VisE1L7y7ShUfH4/FYuH8+fMeVakzZ86UOl5r8uTJjBs3Tt3OysryqY+mEEKIystcUJEKRCIVVrCIpc3ukERKCFEtTJ8+nenTpwc7DA8NGzYsMgV7IHiVSF0+68Xw4cP9FQvgqiaZzWaSkpKIj49n27Zt6hgpi8XCrl27eO655wBo3749er2ebdu2MXjwYAAyMzP57rvvSh2AZzQa1RWchRBCVC3uGfRCA5FIFVSkbA4HdrsdjUa62wkhRHXhc91Lq9WSmZlJ7dq1Pfb/8ccf1K5d26f57Z988kluvfVWEhMTuXTpEuvXr2fnzp1s3rwZRVEYM2YMc+bMoUmTJjRp0oQ5c+YQGhrKfffdB0BkZCSjRo1i/PjxxMTEEB0dzYQJE2jVqhU9e/b09aMJIYSoAiwFiZTJ6P+uHaFGHU4UcDrJNVuJDMBMgUIIISqHci3IWxyz2YzB4O3wXJf//e9/DB06lMzMTCIjI0lJSWHz5s306tULgEmTJpGXl8fo0aPVBXm3bt2qdjMEV1dDnU7H4MGD1QV5V69eLWtICSFENWW129ECYSbfvpPKI9Sgw4GCFic5+VYiw/1+SyEqJYfDtzXYhAi2ivgz63UitWTJEsA1+cO//vUvwsP//Law2+188sknXHvttT7dfOXKlaUeVxSlzH6YJpOJF154gRdeeMGnewshhKiarFYbWiDU5P/qkFajuLrzORzkmC1+v58QlY3BYECj0fDbb78RGxuLwWCQsYKiUnM6nVgsFn7//Xc0Go3PhaDLeZ1ILVy4UL35iy++6FHxMRgMNGzYkBdffLHcgQghhKi6jDotbz5wg/oeKLJdEewOp+tXRgXCjWV/ORp1Wt4c2hrHm2+B4lql3ohvv1LqtFrsDhu5+dZyRu2d4p6hEMGm0WhISkoiMzOT3377LdjhCOG10NBQ6tevf0VjW71OpE6edC0C2L17d957770iazcJIYQQJdFqFDpdE+Oxr/B2Rci12NDi6oLuTdc+rUahU8OaoLtU7nvqdVrsVsgx+zeRKu4ZClEZGAwG6tevj81m82msvBDBotVq0el0V1w99XmM1Mcff3xFNxRCCCH8JddiR6M40CiKzwvylpeuoIdGrp8TKSEqM0VR0Ov16GXCFVGNlGtKo19++YV///vfnDp1CovFs0/4ggULKiQwIYQQVYfV7uDNL04B8Nfr6wN4bOu1FTNteI7ZhgYneq3i1YKMVruDN/f9it1aGxTQAn/V/o4v/xTUF3Szy7P4N5Eq/Awr6pkJIYQoH58TqfT0dAYMGEBSUhJHjx6lZcuWZGRk4HQ6adeunT9iFEIIcZWz2h1M+79DANzdvh6Ax3bFJ1Jar2ZvtdodTNv8A9BA3Xe39qxPiZQ7Ycsz23yM1jeFn6EkUkIIEVw+/y08efJkxo8fz3fffYfJZOLdd9/l559/pmvXrtxzzz3+iFEIIUQVo1EU+rWKp1+reDQVOMNXjtmGghO9VuNVIqVRFPo1j6W3cq7c9zQEqCIlhBCicvE5kTpy5AjDhg0DXL/C5eXlER4ezsyZM3nuuecqPEAhhBBVj0mvZfn97Vl+f3tM+oqbgS473wyAXqt4lUiZ9FqW392CRYaT5b6noSB+s8W/FSkhhBCVi8+JVFhYGGaz64uqTp06HD9+XD129uzZiotMCCGE8FFOnqsqVBGzMXnLoHN1BMyXipQQQlQrPo+RuuGGG/j0009JTk7mtttuY/z48Xz77be899573HDDDf6IUQghhPCKe1FcfQDXWTIWVKTyrVKREkKI6sTnRGrBggVkZ2cDMH36dLKzs3nrrbdo3LixumivEEIIUZpci43kaVsAODyzD6GGck0iW0RewRTkei9m7FPjmLUTaF/uexoLYpeufUIIUb34/M3VqFEj9X1oaCjLly+v0ICEEEKI8spVK1IVk5h5w6gvSKSkIiWEENVKuRKpffv2ERPjubr6hQsXaNeuHSdOnKiw4IQQQlQNBq2GV4d3UN9b7A6/3Mc9BbmxHBWuFbofMCpODPgWm6ngXhar3ed7+qLwMxRCCBFcPn/TZGRkYLcX/bIwm838+uuvFRKUEEKIqkWn1XDLtXHqtv8SKVfXPkM5KlJdtVmEKr7HZTK4Jpuw2PxbkSr8DIUQQgSX1980//73v9X3W7ZsITIyUt222+2kp6fTsGHDCg1OCCGE8EW+1ZVIlaciVV4haiLl34qUEEKIysXrb5qBAwcCoCiKuo6Um16vp2HDhsyfP79CgxNCCFE1WO0ONh109VoY2Lau3+6TXzDhg1Gv9/ncjfYYDDgYqD2HL2eHFCRtNj9XpAo/Q7107xNCiKDyOpFyOFzdHZKSkti3bx+1atXyW1BCCCGqFqvdwcQN3wBwW0qC3+5jLljLKcToe0Vqiq0hALdpz/uUSJmMrtZWP1ekCj9DSaSEECK4fP6mOXmy/Ku/CyGEEP7knjnPaPC9IlVeoQFKpIQQQlQuXv+ctXfvXv7zn/947HvttddISkqidu3aPPjgg5jN5goPUAghhPCWpSCRCg1oImUAKHYiJiGEEFWX14nU9OnT+eabb9Ttb7/9llGjRtGzZ0+eeOIJ3n//febOneuXIIUQQghvuBOpEGMgE6mCMVKSSAkhRLXidSL11Vdf0aNHD3V7/fr1dOzYkVdeeYVx48axZMkS3n77bb8EKYQQQnjDPeFDqClwiVS4qaAiJV37hBCiWvE6kTp//jxxcX+uX7Fr1y769u2rbl933XX8/PPPFRudEEII4QP3FOShAaxIhRUkbQ6nQ8ZJCSFENeJ1IhUXF6dONGGxWDhw4ACdOnVSj1+6dAl9OaabFUIIISqKuyIVVlAlCoSwy6pf2QULAgshhKj6vJ61r2/fvjzxxBM899xzbNq0idDQUG666Sb1+DfffMM111zjlyCFEEJc3QxaDcvua6e+B4psXymr3YHT4QAFwo1G7+O6Kxn7/7kWndcqYMDh031Neh0aRcHhdJKTb6FmmMnn2L1R3DMUQggRPF4nUrNnz+bOO++ka9euhIeHs2bNGgyGP3/xe/XVV+ndu7dfghRCCHF102k1RdaPquj1pHItdjQ4Ac8qUZlxJdeGD8+X+74ajQatRovDbiMn338VqeKeoRBCiODxOpGKjY3lv//9LxcvXiQ8PBytVutx/J133iE8PLzCAxRCCCG8kWuxoVEcaDWKukhuoGh1Gqx2yPVjIiWEEKJy8XlB3sjIyGL3R0dHX3EwQgghqiab3cGWQ/8DoE8L18RFl2/rKqCrWo7ZjhYneq2myI99pcZ1+Ax2W03A1bWvj+a8z1+OuoL75VosPp7pvcLPsCKemRBCiPLzOZESQgghfGWxO3hk3QEADs/sA+CxXSGJVL4FBSd6jeJ1ImWxO3jk3cNAY3XfYeP+cidSOWabj2d6r/AzlERKCCGCSxIpIYQQAadRFDomRavvK4J7xjxfKlIaRaFjg0jsP/3Ml9Qo9711Otf98mTWPiGEqDYkkRJCCBFwJr2Wtx7qVHZDH+Tku7rV6XRaNBrvqjUmvZa3UtuSO28Hyeb25b63Qef6OpVESgghqg/pFyCEEKJKyM5zJVJ6nXfVqIrkvmeexX9d+4QQQlQukkgJIYSoEvLUilTgF4c36KUiJYQQ1Y107RNCCBFwuRYbXZ77GIDdj3cn1HDlX0c55oKKlN77a+VabHSZ/ylOc8oV3dugd1WkzFKREkKIakMSKSGEEEFxLqdipwp3V6QMet8qUudyrcCVVbEMBVWwfKskUkIIUV1IIiWEEMLv9FoNz9+dor632h0Vfo+8goqUsZzVrWd0GRhwoMfp87lGd0XKj4lU4WcohBAiuCSREkII4Xd6rYZ7OiSq2/5IpPItrvFJvlak3AZp/yBUKV9c7uTN34nU5c9QCCFEcMlPWkIIIaoEc0EiZTIYAn5vo97/iZQQQojKRSpSQggh/M5md/DJD78DcHOTWL/cw12RCjGWryK1y14Do+LkZs1Fn78cQwoqUlY/JlKFn6FOuvcJIURQSSIlhBDC7yx2ByNXfwnA4Zl9/HIPdxITYipfRervtiYAHDbu9/nL0WRwJW8Wm/8SqcLPUBIpIYQILvlbWAghRJVgsboqUqHGwHftc1fBLFZ7wO8thBAiOCSREkIIUSW4K1Jh5axIXQl31z6bTRIpIYSoLiSREkIIUSXYbAUVqWAkUgVVMKtdJpsQQojq4v/bu/P4SMo68eOfqr670+l07nsymcx9nzDcLJeIIsvuD1ddRWHdVdGFH67Xuqv81MVdEGUVZV0XEWUFL0RFBUbkhuGY+57MJJnJfafvu+r3R6eL9CSZyTmdGb7v12tek+5UVz/1pLuqvs/xfSSQEkIIcVZIpdK9QW6H7bS/t8suPVJCCPF2I4GUEEKIM56u6ySHEz24chBIOYdTrickkBJCiLcNCaSEEEKc8ZLJJMnhRX5z0SPldqQDqZSmkdL00/7+QgghTj9Jfy6EEGLWWUwqX3nPcuNnYNTj6QjH4mi6jo5CnmPi60hZTCpfecdCUlv+BAqYAAuTD4Tcw++pohGMJfFMogwTNVYdCiGEyB0JpIQQQsw6i0nlQ5vrsp478fF0BCNxAFKouKwTv7RZTCof2lgFz/VM6/2ddhsmVQFNxx+Jz1ogNZN1JoQQYnqkSUsIIcQZLxCJpX9Q1ZwsVGs2m7ENv28gHDvt7y+EEOL0y2kg9fWvf52NGzfidrspLS3luuuu49ChQ1nb6LrOHXfcQWVlJQ6Hg0suuYR9+/ZlbROLxfjUpz5FcXExLpeLa6+9lra2ttN5KEIIIU4ipem8erSfV4/2k9L0UY+nKzQcSJlNkxtokdJ0Xm0Z5OWkm5dTbl5NuUlNoTiKomC2pN/bN0uB1EzXmRBCiOnJaSD1/PPPc8stt7B161a2bNlCMpnkyiuvJBQKGdvcddddfPOb3+S+++7jjTfeoLy8nCuuuIJAIGBsc9ttt/HrX/+aRx99lJdeeolgMMi73vUuIxWuEEKI3IolU7zvB1t53w+2EkumRj2ertDw0D6zeXJD6mLJFO/7yS4+kFzCBxJLeF9iCbEpXhrN5nQgNVs9UjNdZ0IIIaYnp3OknnzyyazHDz74IKWlpWzbto2LLroIXde59957+eIXv8j1118PwEMPPURZWRk//elP+Yd/+Ad8Ph8PPPAAP/nJT7j88ssBePjhh6mpqeFPf/oTV1111Wk/LiGEECenoLCwNM/4ebpCseEeKbNp8uUodqL19XMUx7TKYLWkg7hgRIb2CSHE28GcmiPl8/kAKCwsBKC5uZmuri6uvPJKYxubzcbFF1/MK6+8AsC2bdtIJBJZ21RWVrJixQpjmxPFYjH8fn/WPyGEEKePw2piy+0Xs+X2i3FYJxf8jCUcTQBgsU6uR8phNbHl45v4nW3/tMtgHR7aJ4GUEEK8PcyZQErXdW6//XYuuOACVqxYAUBXVxcAZWVlWduWlZUZv+vq6sJqteL1esfd5kRf//rX8Xg8xr+ampqZPhwhhBCnUTiWHtpns8x8tryJsg0HccGoBFJCCPF2MGcCqU9+8pPs3r2bRx55ZNTvFCV72Ieu66OeO9HJtvnCF76Az+cz/rW2tk694EIIIXIuOhxIWedAIBWOxnNWBiGEEKfPnAikPvWpT/Hb3/6WZ599lurqauP58vJygFE9Sz09PUYvVXl5OfF4nMHBwXG3OZHNZiM/Pz/rnxBCiNMnEk9xxTef54pvPk8kPv3ECdFYemifbZJD+yLxFFfc/zrvji2bdhkcNmt6n8PDDIUQQpzdchpI6brOJz/5SR577DH+/Oc/M3/+/Kzfz58/n/LycrZs2WI8F4/Hef755znvvPMAWL9+PRaLJWubzs5O9u7da2wjhBBibtHRaewJ0tgTRGf6qbxj8XTw4rBNLpDS0WnsC0870QSAc/i9I3HpkRJCiLeDnGbtu+WWW/jpT3/Kb37zG9xut9Hz5PF4cDgcKIrCbbfdxp133snChQtZuHAhd955J06nk/e///3GtjfffDOf/vSnKSoqorCwkH/6p39i5cqVRhY/IYQQuWVWVb5w9RLj56Smzej+Y4l0IGW3Wqe8j0+b2rAqOuYpBnaZHqlofHZ6pE6sQyGEELmV00Dq/vvvB+CSSy7Jev7BBx/kwx/+MACf/exniUQifOITn2BwcJBzzjmHp59+GrfbbWz/rW99C7PZzA033EAkEuGyyy7jRz/6ESbT9DNBCSGEmD6rWeUfLl5gPE7GZzaQig8HL85J9kiNdLO5G6cy9XK5HDbgrd6xmXZiHQohhMitnAZSun7qVj9FUbjjjju44447xt3Gbrfzne98h+985zszWDohhBBnikQyCYDDPvUeqely2dOBVHyWAikhhBBzS04DKSGEEG8PKU1nb3t6rcAVVZ4Z3beu60Yg5ZpGILVHc2JXdFYoIaYynsHtSL93PJGcchlO5sQ6NKnTX8hYCCHE1EkgJYQQYtbFkine892XAdj/latmdN+pVIpEMj0kL9MrNBXvTSwFYL9tG84pvD5veGjfbAVSJ9ah0yqXcCGEyCWZrSqEEOKMlkwmSaQ0dBRc9tytI5XvTAdSydTsBFJCCCHmFgmkhBBCnNE0TSOR0tBQcFpzl2TI40oHUqlkEm2GsxIKIYSYeySQEkIIcUZLpVIkUjoaCi5b7oa7eZx2ADRdJxiRtaSEEOJsJ4GUEEKIM1o6kNLQdDWnPVJ5dgs66QQQvnA0Z+UQQghxekggJYQQ4oyWCaRSKDlNwKAoCiZz+v394VjOyiGEEOL0kEBKCCHEGS2ZTBIfniPlymGPFIBlOJAKSCAlhBBnPcmdKoQQYtaZVZVbL1to/AyMejxV0UQSXSedbGKSc6TMqsqtF80j9dIroCiY0DFz6sXix2OxWIhFIwQiMx9IjVWHQgghckcCKSGEELPOalb5v1csynruxMdTFRpO7KCh4LBMrkfKalb5vxfPh9d/OSNlsVrSl9XgLARSY9WhEEKI3JEmLSGEEGe0YDQdSFlMJkyqktOyWC3pdaxCUcnaJ4QQZzvpkRJCCDHrNE3nSG8QgIaSPICsx+o0AqBgNAGAbQqJJjRN50hPCC2VTl2uKtCgRKfcymi3zV4gdWIdTqfOhBBCTJ8EUkIIIWZdNJniym+9AMD+r1wFkPV4Otn2MkGL3WqZWrm+/waw0nhuv20bzimWJVOG8CwEUifWYS4zFAohhJBASgghRI4Uuqwzsp9wLAlMLZACKHRa0MNhBpna60dy2GwARGIytE8IIc52EkgJIYQ47ZxWM9v/9YoZ2Vd4OGhxTKGHxmk1s/3T5xO+6x6WxdZPuyxOezoYi8YS096XEEKIuU2STQghhDijRYaDFodt+j1K0+WypXvZYnEJpIQQ4mwngZQQQogzWmQ4aHHaZmao4HS4HOmhfdGEBFJCCHG2k6F9QgghTrtoIsWNP3wdgIdu2oR9kus/Ze0rnp4j5ZxCj1Q0keLGH+8gFVs45fcfKc+RDuYSEkgJIcRZTwIpIYQQp52m67zWPGD8PB3R4R4pl33ygZSm67x2zAfkT6sMGW8FUqkZ2Z8QQoi5SwIpIYQQs86sqvz9RfXGz0lNm7F9xxLpHimXfXpD+z5i6sKCjpmpB3b5w0P74smZ75E6sQ6FEELklgRSQgghZp3VrPLP71xqPE7GZy6Qig8P7XM7ppds4jPmdpzK9MrldqYDqUQyhaZpqDMY8JxYh0IIIXJLmrSEEEKc0eLJTCBly3FJwDMcSMWSGqmUDO8TQoizmQRSQgghZp2m6bQOhGkdCKNp05sTNZKu68SHh/bl2acXSLXrVlo1K9MpXoHTio5CStMJR2d2Ud7ZqkMhhBBTI4GUEEKIWRdNprjwrme58K5niSZnrqdG0zTiyfRwvHzn9Ib2XRFfyYXx1USncWl0Wc1oKAAMhWPTKs+JZqsOhRBCTI0EUkIIIc5YmqYRT6UDqcywulxSVQWzOT392D/DgZQQQoi5RQIpIYQQZ6xkMkk8qaGjkO/I/YK8ADZLJpCa2aF9Qggh5hYJpIQQQpyxQtEEmq6TQiHPNjcS0VozgVREeqSEEOJsJoGUEEKIM1YmWNFRcVpNOS5Nms2anqsVjEiPlBBCnM0kkBJCCHHGCgwHKxazCUVRclyaNLs13SMVlB4pIYQ4q0kgJYQQ4ozlHw6kMsPp5gLHcI9UaIbTnwshhJhb5s6VRwghxFnLpCp88Nx5xs/AqMdTERoOpGxTDKRMqsIHN1SS2r4DUDApOiamt0aTEUjFEtPaz4nGqkMhhBC5I4GUEEKIWWczm/jqdSuynjvx8VQEpxlI2cwmvnr1Itj7m2mXJcNpT2cPnOkFeceqQyGEELkjQ/uEEEKcsUKx4UDKOnfaBZ32dI9UZIZ7pIQQQswtc+fKI4QQ4qyl6zoDoXTQU+hK99iMfDzVRBGhaDpYsQ8Pp5tquXQtfTlUFCgkyXQGzrls6eOLxGc2kDqxDudKcg0hhHi7kkBKCCHErIskUqz/2p8A2P+VqwCyHjun2KMUHu71cUwxkIokUqz/5ivAWuO5/bZtOKe0tzS3wwZANJ6cxl5GO7EOp1pnQgghZoYM7RNCCHHGygyfc9imFkjNhjxHukcqOsM9UkIIIeYWac4SQghx2jmtZlr+/Zpp7yczfM45xUDKaTXT8q+XEL7rHpbF1k+7PAB5w8km4omZ7ZESQggxt0iPlBBCiDNWdJqB1GzId6WH9kkgJYQQZzcJpIQQQpyxMvOQXMO9QHOBx5kuSyKZRNOmtyaVEEKIuUuG9gkhhDjtookUt/98JwDfvGENdotpivtJ90i57FPrkYomUtz+y30k4/On9PqxeJx2ABR0QvEk7imWTQghxNwmPVJCCCFOO03X+cOeLv6wpwtNn3qvTXy4Rypvij1Smq7zhwO9PK0XTrkMJ3LZrZhUBRM6vogknBBCiLOV9EgJIYSYdSZV4a/WVRs/p2ZoyFs8kQLAbbdNe1/XqX2YABPTK5vJZMJmUglrKXzhGNXe6SRTH7HfE+pQCCFEbkkgJYQQYtbZzCbuuWG18Tg8Q2ssJZLp/bid058jdaflGE5Fm/Z+VFXFajERTqTwhWLT3l/GiXUohBAit2RonxBCiDNSStNJpIZ7pGYgkJopiqJgtaTbKf3hmQukhBBCzC3SIyWEEGLW6bpOZHgYnmOKiSVOFIgmUEn3IHkc0x/aF9bTbYsONKY7cM5qTl9eA5H4NPf0lhPrUFFkeJ8QQuSSBFJCCCFmXSSRYtmXngJg/1eumpF9DoXjqOhYTSqOGVhHakN8LQD7bduY7qwmm3W4Ryoycz1SJ9ah0yqXcCGEyCUZ2ieEEOKM1B+IAGC3mDCb51ZQYbOkA7tQdOZ6pIQQQswtOQ2kXnjhBd797ndTWVmJoig8/vjjWb/XdZ077riDyspKHA4Hl1xyCfv27cvaJhaL8alPfYri4mJcLhfXXnstbW1tp/EohBBC5MLAcCBlsVhQ1bnVLmi3pgOpQFgCKSGEOFvl9MoTCoVYvXo1991335i/v+uuu/jmN7/JfffdxxtvvEF5eTlXXHEFgUDA2Oa2227j17/+NY8++igvvfQSwWCQd73rXaSGJyALIYQ4Ow0GwwDYrHNvwdvMUMNQTAIpIYQ4W+V0LMTVV1/N1VdfPebvdF3n3nvv5Ytf/CLXX389AA899BBlZWX89Kc/5R/+4R/w+Xw88MAD/OQnP+Hyyy8H4OGHH6ampoY//elPXHXVzIzDF0IIMff4Q1EA7La5k7Evw5kJpKKyIK8QQpyt5tZYiBGam5vp6uriyiuvNJ6z2WxcfPHFvPLKKwBs27aNRCKRtU1lZSUrVqwwthlLLBbD7/dn/RNCCHFmyQRSjhlYjHemOe3p4C4Sk0BKCCHOVnM2kOrq6gKgrKws6/mysjLjd11dXVitVrxe77jbjOXrX/86Ho/H+FdTUzPDpRdCCDHbAuF0IOW023NcktFcwz1SkbgM7RNCiLPV3EpzNIYT18nQdf2Ua2ecapsvfOEL3H777cZjv98vwZQQQswiVVF458py42dg1OPJCkXSgZTbOfUeKVVReOfSElIHD4ECJkBFn/L+MvIcwz1SMzi0b6w6FEIIkTtzNpAqL09fLLq6uqioqDCe7+npMXqpysvLicfjDA4OZvVK9fT0cN555427b5vNhs0294aCCCHE2cpuMfG9D6zPeu7Ex5MVGU7k4HZOvUfKbjHxvb9eDnf/YVplOVHBcHA3k8kmxqpDIYQQuTNnh/bNnz+f8vJytmzZYjwXj8d5/vnnjSBp/fr1WCyWrG06OzvZu3fvSQMpIYQQZ77I8BpNHtfcG9pXkJcuUzSeJJnSclwaIYQQsyGnPVLBYJAjR44Yj5ubm9m5cyeFhYXU1tZy2223ceedd7Jw4UIWLlzInXfeidPp5P3vfz8AHo+Hm2++mU9/+tMUFRVRWFjIP/3TP7Fy5Uoji58QQoizU2x4/pEnz5HjkoxW4LKjKKDqGoPhBCVuGQUhhBBnm5wGUm+++SaXXnqp8Tgzb+nGG2/kRz/6EZ/97GeJRCJ84hOfYHBwkHPOOYenn34at9ttvOZb3/oWZrOZG264gUgkwmWXXcaPfvQjTCbTaT8eIYQQYwvHkyz70lMA7P9KemmKkY+d1slfjuLDgZQ3zzm9cn31OWCj8dx+2zamvsc0q8WM3WwiGNcZCMVnJJA6sQ6nUmdCCCFmTk7Pwpdccgm6Pv6kXkVRuOOOO7jjjjvG3cZut/Od73yH73znO7NQQiGEEHORpmkkEulEDkX5c69HymQy4bCYMMd1+kMxwH3K1wghhDizSHOWEEKI085hMbHtXy43fp4sXyiKpuuAQnH+1PuPHBYT224/j8h993NBfPWU93Miq9WKw2rCHI4xGJK1pIQQ4mwkgZQQQojTTlEUivKmPtytzx8GQFdM0xripigKRS4rYSU55X2MxWq14rCYMKHRH4jM6L6FEELMDXM2a58QQggxnsFAOpCyWC2nXFswF8xmM/bhAK9/uKxCCCHOLtIjJYQQ4rSLJVN87YkDAPzLu5ZiM09ueN9QKN3LY7Vapl+OPx4mkaie1n5OpCgKLkc6BfqQBFJCCHFWkkBKCCHEaZfSdH6y9RgAX3jnkkm/3heMAmC3Ti8bXkrT+cmbHUDZtPYzFqcjXbZM0CeEEOLsIoGUEEKIWacqCpcuLjF+1k6SsXUi/OF0cOK0W6ddtoyLVB8mdFSmV7aMfFc6m6A/FJ2R/Z1Yh0IIIXJLAikhhBCzzm4x8eBHNhmPw/HpJXcIhGIAOO32ae1npP+yHMGpaDO2P89wIBWKzEwgdWIdCiGEyC1JNiGEEOKME4ymg5M85/QXup0t3rx0IBWOxHJcEiGEELNBAikhhBBnnEg0HZzkO2euR2qmFQ6vbxWNx066+LwQQogzkwRSQgghZl04nmTpvz7J0n99ctrD+gAi0TgA+a6ZC6TWx9awNLqOsD4zl8bifBcAipbCH53+Mc90HQohhJgemSMlhBDitIgkUjO2r1g8HUhl5iHNhAiTS8F+Km6XA6tJJZ7UGAzF8Timl6odZrYOhRBCTI/0SAkhhDijpFIp4vEEAIXDvT5zkdVqxW4xYVFS9AVlnpQQQpxtJJASQghxRolGo0QTKVKoFObN3TlSVqsVp9WEgk5/QNaSEkKIs40EUkIIIc4o0WiUaFIjrpsocE5/uNxsUVUVuzVdvj5fKMelEUIIMdMkkBJCCHFGGQyESaQ0Epgozpu76c8B7PZ0+QalR0oIIc46EkgJIYQ47VKpqSdN6B4KAKCaLLhscztnksuRHno4FAznuCRCCCFm2ty+AgkhhDgrqIrCOfMLjZ8PHznCYq+KzWZFVZRJ7atvKD1MLm8GMvapisI58zxox1pBUVDRUZm5NZ/yhte58oWm3yN1Yh0KIYTILQmkhBBCzDq7xcTP/mEzAIODgwz19/KFcxx4vV7slsmlHR8IpAMpt8s5M+X60Fq4+0/T3tdYMunZg+HotPc1sg6FEELkngztE0IIcdpomsbhw4eNx7HY5NOC+wLpYXJe9/QDqdnmdacDqcAMBFJCCCHmFumREkIIcVrE43H27dtHJBJBVVU0TSM+vLDuROm6TjCcHiZXlJ83G8WcUWUFbgACYUk2IYQQZxsJpEaIx+OTvqgLIYQ4taFghMvufRld17nnYicNC+fznv/ZDcALq0Lk2SeWxjwejxOIxAGFIrd92ufscDzFpfe8BNE1ACjA8+Yd2OJxsEw/tXqZJ90jFY/F8Icikx7GOKqs33wRgGdvvxCnder7EkIIMb6JXlskkBrhnnvuwW6fu4s7CiHEmSilK3SlXAQSSwB48aWXePGllwgm1gHwzW9+E4uiTXh/HclCEjh57fkt9L88MK2yJXSVweg64K2g6ZVXXmGbniRhtU5r3wC6DirlWJUUd9x1Lx516oHfW2WFb3zjG5OqMyGEEBMXjU5sOLbMkRJCCDFrhjQ7v4iupClVZDx3NFmIGY3rbHu5zrYXM5MLCBKYSOgmnEpi2uUzo/HX6g6+vOfH097XWBQl/R4KOmF9+oGZEEKIuUPRdX3m8ryeofx+Px6Ph97eXvLz83NdHCGEOCvEkxrv/cHrNHYOstbRz2uRMuN3X712KYvNfQQCAZYuXUpxcfGE9tne3s4XfvwMXXEb3/34NSwsnYF5UqEQsXvuZWVyEwB7zK9j+/Rt4HJNf9/Abd/7NR19Pq6/7Fz+5vwlU95POJ5izdf+DMDOf/kLGdonhBCzxO/3U1JSgs/nO2lsIEP7RrBarVhnYCiHEEII+M9nD7KvM0C9I8kNG2t47YW3hrXd/XQj/3NtOSZTGF3XJ3zujcYTRBMacd1EVWHezJyzEwmSJhMk0w9NJlN6vzN0PfC48+jo89HnC0+rvMlMAQGr1YLVKpdwIYSYDRM9V8tZWAghxIw73B3g/ueOAnDjukLyrADpQGpBiYujvSHueqGLKpfCLdUTT4HeO7wYr26y4HFMPxlEPKnx3eebSSQqpr2v8RS6071m/b7ArL2HEEKI00/mSAkhhJhx//1CE5oOVy0pZJ5byfrdp/6iAYA3u5L85miCcGTiayz1+4cX43XYURTlFFufWlLT+M8XjvE9rXLa+xpPiTcdSA0Ol10IIcTZQXqkhBBCzKhuf5Tf7GxHQeedNelEEh6Ph1XV6R6kq5aXs7S8iQNd6R6aeGLimeyGAulgpGAWFuNdoYRQAZWZnTpcUegBIBgOT2s/qqKwqtpj/CyEECK3JJASQggxo370SguJlM6lFRoeUwKTycTKZYv57ca3kjfcdOF8PvOL9DpS8fjEsu/puo4/nO69Ksyf+UDq59aDOGchpXh1aQEAkXAEXden3JPW44+xtqaAoUiCl4/0ccniUkyqBFRCCJErEkgJIYSYMaFYkoe3HqNMDXBBRXpI25IlS3CdkAHvwoVvZenrGQpOaN+JRIJQLAEolOTPQLa+06Su1IOOQiKVos8fpMTjnvQ+vvn0Ib773FFSWrq37Dc7O1hS7ubnH9tM/gQXMxZCCDGzZI6UEEKIGfP73Z244gMsdUWoL3FRX19PSUnJqO1G3vwf7fYxkZU44vE44ViKJCql+WfO4ukumwXVks4AdbzbN+nXP72vi2//+QiapvHO6gQfWaxTYFc52BXgX369d0J1J4QQYuZJICWEEGLG/HJrI+VqgOVVHhYsWEBtbS0AkXiK8//9z5z/738mEk9lveZYf4h4/NTzpGKxGKFYkoSuUuK2zXjZL4+t4PzoKiL6zF8aXQ4HAO39kwuk+oIxvvDYHgA+vNLBa31WfntM5WtXVmNSFX67q4Nf72if8fIKIYQ4NQmkhBBCzIjG7gAdnZ2oisIFK+uNIApAR6d9KEL7UAT9hGQObYMRfKFTJ2KIx+OE4kkSmCjNn/lAqgMb7dhmONVEWr47PbSxe8A/qdd96Td76Q/FWFcCG0qgP6rTH9VxJHzceukCAP718b0c65eMgEIIcbpJIJVjnZ2dDAwM5LoYQoizTCKRIJVKnXrDGfToa8fwqhHmF7tYUj9vwq9LaTqvNfaccrt4PE4gmiSpq5SdQUP7AAqH53T1D028R2pvu49n9xxnsbmP9y0yY1bfumQnEwmuXWTn3Np8HAkf/+9Hv+fgocMzXm4hhBDjk2QTI4TjSczx5Kk3nCGhUIi9+w9gNpvZdO7mGVkTRQgh4rEYO7Zvw263s3rtutPznkmNZ3Y0UoDG8tpirM48wiPOp+P9nPHS4S4uW7vgpO/R3ucjkkiRUEyU59vH3M9kjbWPREpLP2+ZueuB11sIwNDgEAO+APbhoX4n860th5hvGmRFmYPCPBsFxWVAU7qMmkbjkaPcMC/Bz3oCDAxq/OKFXXyivALHBPYthBBifBO9vii6zFLF7/fj8Xioue3nqLaZT6k7nmIlRLVpCIC9yXKSmE7bewuRTcelJIjoZjTpqD7jlapBKtV0z8dY5xYFjVI1xJBmJ8bMZXxbaOrDpcTo1PLp1iaemW6lqYMe3X3K18w3DeBRIrSlCujTXSfddjpueeVRfrjhOiLWme31qjf1k69E6dHy6NA8p9zeQYLF5h50FPYly7L+jgvVHlxqOm18VLegADYlMem6F0IIMZoWC9N67w34fD7y8/PH3U7umHLIpbw1udqmnL6eMCFOVKSEWWjqZd5wYC/ObF4lYvxsH+PcUq4GqVD9VJkmN1/nZOwkcCkxdBT6tck3SLmV2Cm3MZMeqpg4Qy9dfVo6+CtSwyicer2qfDW9ZpZft40Khhu1EnYnK9iZrORgqpRuLT10cOTfXgghxOySHine6pHq7O0/adQ507a98TrRaPpCuXDRYkrLyk7be4u3j86ODkCnvKJyzOGjqVSKbW++QWI4a9rqtevIyztz1ug5k0QjESxWKybT7PU+h8MhdmzbZjyum19PVXW18VjTNN58/TUSiYQxrDjg99N4+DD1DQ14vd5Jv2f7UIS/+8/f4FXC3HL1Os7fuGZ0ueJJNnztGQDe/JfLAIzHf1nhp7k3wPp16/j0u0a/NuPfHvwt+1r72LB+HbdfM/52kzGyXBm7zG9g+fT/BdfM9XolUhrrv7aFRXRz8+Yq1q1aRll5xZjbhmJJzv+PZ6nTu/nwxjI2r1tBWXnFqDp0Wt8anb/reD///qPfoio6X/jQNVTmmTFbLLjd7gkNG5/MQsEd7e1oukZ1dc2EthdCiNkWi0Zpa22lvLJy1LqFU+H3+6koKTplj5TMkRrBaTVnXZhmUzweJ5WIYzENt6ymEjP23t3d3QwNDbFw4UJU9cxsuRUzIxqN0tqSnlMR9A2xbNkyLJbsoVzHjrVDKml8Fvu6Oihdtuy0l/VsFwgE2LNzOx6PhzVr1gAQDoex2WwzGlh1tfW/dV4BUvFo1rmlrb0DPfP31jVULclAbzepRIzB3m6qykav+XQqT+w4ToESocbr5JyVi8Y8lykoLCxNB+gua/ozmHm8osFLc+9e9h0+itO6Ycz30HWdoUA6s9/SqqIZO18qKCwsdqL19YOSHqZhNak4rGaY4etBQ4mb/p4AvkiCcMCPs3bsQGTL/m70ZIKqfKgscFBVXobVah5Vhw7rW5+bzQ1l1FWWcayji1889SLXrCgHwOl0snjxYjye8YcStra20tTUxPLlyykuLh53O0gnMWk71gxAbWUFdvuZk/QjlUrR29tLcXExZrPc/ghxNmk5cpz+3h4CvkHWrVs37XNTcoLnfzmT5IjPl525KRKZmeEYwWCQgwcPous6hYWFYy6EKSbO7/dz8OBBGhoaKCwszHVxJs3vf2vo1uDgINu3b2ft2rVYrVaSySQDAwO0trYCUFNTQ2trKz09PdTV1eF0nr75gm8H3d3d6WBgaIhAIEA4HObAgQNUVlayaNGiGXkPXdfp6UlnvystLaWnpwefP0DrQJjWgTC/3NbKoX27selxXFYT6+Z5WbYswNDQEJAO9iYrpek8s+0QZnTWNlSM23LnsJrYcvvFWc9lHvcM+vn91n1Egz52N3exan75qNcnEgn6Q+nhf4srCyZdzvE4rCa2fHwT3H33jO1zPEsr8vlzdw99wZgxGmEsT+zuJF+Jsqgsj/z8fKxW61tlPaEOR3rfxSv490e6ONLtJ7S4DLfNRDgc5tChQ2zatGnM1+i6TkdHB7qu09jYiNfrPWlgHwq9lWY9EAicMYGUruscOHCAvr4+ampqWLDg5IlNxJkvFotx/PhxampqzpjP6Xgyg8dO1Ws8mZ7lydA0jYMHD+J2u6mpOf090ac6/lgsRm9vL5DuqNizZw9r1qwZ1XA8G6S7IkcyN7iZP/LJLqoTpes6hw8fNj5wwWBw2vt8u2tvbyccDnPs2LFcF2VKMp+zoqIi7HY7kUiEvXv30tLSwiuvvML+/ftJJpO4XC7q6+spKioCMIIrMTNGBjgAbW1tNDWlewozQcxMCIVCRKNRVFVl3rx5tA6EuffJPVx01595//+8xlM7W7BoMZI6HI9YeP5wLz/+8y5jMdxYLDahhXFH+vOBbggPYreYuGLD1HoyS735lA8PbX5m+6Ext+noDxBNpEih0lB2+oZgz6TF5W5iupm+YHzcc74/muD5Q7141CgLy9zGd3IiNi2to6y8ks6Um12xEs4991wg3fM53vuFw2GjIS9z43kyI68rJwu8dV2nt7d3Rq5tM6G3t5e+vj5gdEPmmSiZTKJpp55n93bW3t5Oe3u7ca49Uw0MDPDqq6/y6quv0tjYSDg89pp7fX19vPjiixw8eHDGPxs+n4+enh6amppIJk/vnP5EIsGrr77Kzp07x70+dXZ2ous6LpcLq9VKKBTi9ddfp62tbVR5o9Eog4ODM1Y+CaRyJHMiLy0tBabXIxWNRjl27Bj79+/P6oGYSuuyeEum9wDSf69oNMrAwAC7du0a90vY09NDc3Mzc2Xq4cjP2apVqzCbzfj9flpaWtA0DYfDQU1NDatWrUJRFKOlqbu7m0Qikcuin1X8fj/xeNxoTevu7iYWS/euhMPhGVvvKfO5LCgo4JnGIR7b0UkkniTPrFHtdXDNIjfv3VjD56/byHvOWQzAS3ubea2p39jHZM8bP32lETMpVlQVUFUx9Xme5y6vA2DXkfYxf3+4cwiAfJcTu+XMzHC6pNxNHBN9wRiJRGLMG5I/7e9GT8Wpy9MpclknNapAVVX+z19spEvL59E320miGj2E461X2N+f/ttner1aW1tPGvxMNJDq6upi3759HDhwYMLlny3xeJzGxkbjcTAYnDPn6KmIx+O89tpr7Ny5M9dFmdMyAcfg4OAZ+/c+fvw4u3fvJh6PE4/HaW9vZ+/evaO2S6VSHD58GE3T6OrqYvfu3TMa8GTqUtf1GQ1CJmJgYIB4PI7P52P79u1ZveKQ7i3r6OgAoLa2lpUrV+J0OkkkEhw5coRXXnmFAwcOkEgk0DSNnTt3smvXLqNhZbokkMoBTdOMC1DZcCtsPB6f8s3UoUOHaG5uNro1M/sMBAJn7MljLohGo8bNLkBHRwcHDhxgcHCQ3bt3G1/cjFQqxcGDBzl27Jhxc5JLmqYZNz35+fnY7Q6Kaxs4PhileSDOkK2MioYVLFiwAJvNBoDH4yEvL884GYdCIY4ePZpVD2LyRg63G2sS7IkXhqnKBP4tAbj1ZzsJamYWlubxh49v5KXP/QXvW1NEhcfB/Koy/uHy5Vy4MH2T/mpTP3vb00H3ZAKplr4Qu5q6UBTYvLj6pHMyI/EUV3zzea745vNE4qlRj69ZvxBVURkKBNl9bPTivE3d6WMrzp/ZIaeReIor7n+dy6IruCy2gitiK4jos3NpXFKej4ZKXzhFMqWNGbD8ekc7RWqYhaV5eL3erCG2J9bZWC5dUkptoRN/NMnjOzqMIcnjBVKZm4m6ujoKCgrQNI329nQwmzkP/OHZl/nuL57i+88eYsuuYzT3hQjFksY1JplMZl2/dF03erV9Pt+kezlnWqZhyOVyYTKZ0DQtq1Xf7/fT2Ng46ho8NDREZ2fnKfcfDodPa8NTR0cHiUQCv98v5+aTyHy/EonEjJ1jT6dgMGj0plVUVLBixQpg7M/b8ePHicfjWIeTGQ0NDZ2yd3kyRn5fMueMmWwEHBoaGjewGTlqIxqNsn//fuO809jYyLZt24jH41gsFkpKSnC73WzcuJFFixbhdDrRNI3u7m4OHjyY1VDU1NQ0I/fIMkcqBzIXH8twRiWz2UwymSQajU4600g8HjdaB2pra/F4PBQUFNDT00MikSAejxs3ySPpus6xY8ew2+2Ul4+ejyBGD//InJRUVUXTNA4fPkwikWDevHlAumU3053e19d30knbPp8Pq9U64wtnZv6uiUSCkpISookkrUNxfvObgzx7uJehcAIVDQ2F9MKeTaypKaDa60BRFDbVeTm3vIxgMEhrayvHjh0zbpKmM48nGo1iMplOy3jluSYajRqNHE6Pl4P9SfY1HsNqs1FckIdHjRMIBCedMfTgwYP4fD5jzlumB9UXSXDn88fRdYV19eVcVW8lHk1f8DI91gUFBdjtdjbOLyKWTPF68wCP7ffjspkoLJx4SvSHtx7DqcSpK3Qxr+LkQ9B0dBp7gsbPQNbjonwHteVFtHT28oc3Glk1rzTr9cf70t/HisKZXSNJR6exLww4GC4Ws9X8VJZvo8BpIRozMRBKD+8bmSHzaG+QFxt7WW4Os6yimMrKytFlPaEOT2RSFT60eR5f+/0Bvv/CUa64eQ2QbpXXNC0r2I3H41nDfy0WC0NDQ/T09FBfX8/r23fyxzePsLt9CF2H1pSPapMPBR1FgeoCJ33mUoqTPdjtdtavX4+iKAwMDGTdePX391NRMXaGwtMhU5aSkhIGBwfx+XwEAgHjetvY2GjM98r0ysdiMXbv3o2mabhcrnG/n9FolDfeeAO73c6GDRtmNSMnZLe+Q/p+Yqxr/FhSmk7HUIQKjx2zaW63o6dSKTRNm/I1Q9f1rJE+g4ODZ1w22kwQX1xczOLF6REEdrudaDRKKBSioKAASI9oyjRcLFy40GjUnclh4yd+n7u6ujh48CDFxcVGgDdViUTC+K5t3Lhx1H1w5jgWL15MY2MjoVCIYDBIX1+f0egD6XvgzPlNURQqKyupqKhgaGiIPXv20N/fbzRyK4pCOBymu7t72vfAEkjlQObC5fF4UBQFh8NBIBAgEolMOpDKRPBut5v6+nrjeafTSSgUGvckGw6HaWlpQVVVSktLJbvfGDJf3oqKCrq6uoyWi2XLlhEMBmlpaaG5uRlFUaitrc2aA9PX1zfqpmXk7/bu3YvL5WLjxo0zVl5d1zl48BD7jx7j+ECYIwNxOvv9DGp2mlPpAM+sKswrcuNxWIglNfZ3+tnZOsTO1vSx/m5XBzYz/E1tlHPqPEZmtP7+/ilPYo3H47zxxhtYrVY2bdqEoijEYjHMZvOs33TkkqZp7N69m91HO9jdNkRHIM6rTwbRgWIlRVBPUah2UqoG+a83B3nHeWv55F80YDOfuk5SqZSRvKKnp4fq6up0AotYnN/t6aY7UsDqag8fv2IeLU1HCYVC+Hw+dF3HZrNht9tRFAW3283m+hShmMZvWs08ta+bcm8eKyfwt/aFE/zszVYqlASrakomHQjazCYe+ei5xs8A5y6dR0tnL28cah31eWvrS/eUVRfNbCBlM5t45IOriT7ycz6SXDyj+z6RoigsLnPTfdw05jypH7/SQr4SY3Gxg2KP85QZ9MbzN5tq+Z8XmznWH+aB17q4MN9i9GBkbr7grWF9brcbm81GUVERZrOZQCjCN3/1Iq/vPUw0qRPUbSwvMrHEYSIZdzEQSdIW0GgdDPPfv3uJ5WV2/mJJmbGUSFtbG4DRSDidQErXdXRdn9Y1KnND7XA4SCaT+Hw+o7c+Ho8bvbBDQ0NGINXc3Gw0jPn9/nE/336/37hpb21tpa6ubsrlnIj+/v6sHj6/33/Sz0mPP0q3P8zuxuP8aPsgjb1hvE4LFy4sodBlxeu08p41ldQVz94C15MViUTYuXMniUSC1atXnzTjZDwex2w2j/p8nNhLOjg4OK0kCbqu09TUhMPhGNXAMRtSqRRdXV0AVFVVGc/n5eURjUYJBALGd/no0aNomobX66W4uNj4vAeDQTRNIxKJ0NHRQV1d3ZQD05GBVDKZ5NCh9FzWvr4+YrHYhIP5sXR2dhrftcHBwaz74FgsZhxPSUkJAwMD9Pb20tnZaTRQzp8/Px0MmcxsOzZAIpW+VwvFkoTjKVRFIWUuxBbuxmY2kZ+fT3FxMU1NTTQ3N0/7HlgCqRFmYvhBT08PPT09LFiwYMzehlgyRd9Augcpc2K22+0EAoEpTcrNfJBOHEfvdruNqH2sk2zmS5EZ4nCmtdScDpkeqeLiYuLxOP39/RQUFFBUVERxcTGKotDc3ExTU5PRCgvpHqtkMsnQ0NCoTH+JRILDhw8D6eFcqVRqRoKJpq4hvvvblznW3kEyld1S7fHk8/cr6rlsSSnr5nmzUmP3BKI8e7CHUCxFOJ7kid2dHOwK8HRLnIMdLVyyoo7lpVZisRjBYBC3e/I3sUNDQ6RSKSKRCENDQ5jNZrZvT6cBX7169axkGJqueDxOV1cXlZWVU06TvOtIK99/ejdd/hgh3Uq35kZHoa7Iybn1taQ0nc7OLmL9YfREjO/8+Qh/3NvFf/zVKtbPO/laTqFQyAjsu7u7qa6upr27l8d3tHPUp1DosvG9v12PW03QAka9A3i9XqPO3W43Pp+P6zY1sCcVJNLdz++2t3LhuRHyXCcfQve9548QjCaoKVCZV+Sc9GfDpCpsXpDdi3XZmnoee347kUiQN5v72VifPnf1+KO09vnxKLC0emazZ5pUhc11XsKmIJyGOdRLK/JpPWaiN5Cduc8fTfDLbW2UqSHW1BZTXl4+5Yt7ns3MV69bwUd//CY/eLGZddeUYSXBwMBAViCVaYjLJLRQVRXF4eGRF7YxGE5fD+2eUv7vO9dD71HjdW63m5hi49ntB9l2bJDGniAdQ1FCZjdXbVxqjJJYvHgx+/btG7M3bCJisRh79uwhFouxceNGYx7XZI0MpDLfm0zwNHLI49DQELquEwwGjZtYyM5+eqKRN5jHjx+nvLw8K0Pc4OAge/fupaGhYUZ65TIt8JmeifHKFogm+OoT+/n5m21UqH7K1ABhLQ/wMBhO8Ntdb/Vq3fvMYS5oKGZNTQGrqgu4dHHJlHqsNE1DUZSTntO7u7tpbm6moaFhzHuTWCzGrl27jCGLe/bsYe3atWM2MmeG2RcVFY3qFcl8txRFMXrrx/sMtrS0MDAwwIoVK8b9jPl8PlpbW1EUhbKysllvBOzp6SGVSuFwOLK+s3l5efT19RkNAYODg/T19aEoCg0NDUbjfKYRIxQK0dTUZHwnFy5cOOmyJJNJ4+9RVFRkNKxmdHd3U1tbO6XjzGQNzRgYGKB6xLqHmfuwvLw8zGYz5eXl9Pb20tHRQSSe4uhAjG2xMO1bD/CnA934o+OdxHXmm4dYUgCLl63kwkInZouFWCw25r3aZJw1gdT3vvc97r77bjo7O1m+fDn33nsvF1544aT2cWLQMZk1XiLxFMcHQuzbuY9gOMKze1rot1ZwdCjJQCiOMxUkHItxwGdmmambIoeKuVFhXnmQYn0INeynMXicwP4Qmg5Ws0owlmQoHMekqlhNCgPhBL5gmDKPk6pCF/2+MOH2/WgpncBRK9UlAeqKnNQVuygg3eow3nyHkSf/YDB4VgdSkUgEXdcnlM47M5Fy5LAAj8eDw+HAarUyb9484yIxb948NE3j2LFjHD2avsnInPQyrSUnfjmPHj2aFbCHQqEpLwLdH4zx0pE+Xt59hMYjR9C1FKDQoxaxokhlSQHML3Fx6Xmbsk7EI5W67bx341snwFsubeCVo/3c+fv9HOjq5fU3I1w7L8zl8x309fVN+Gb5+PHj6LpObW1t1hDJzMUhFEtwvKmDHX0KXXErbYMRrGYVj8NCVYGDmkIn84qc1BY6cdlm7jQVTaT43a4OXjnaz/bjgyRTOg6riRqvg0Xlbq5cVs662gIOHTpEf38/0Wh00kMadV3nid2d3PfYyzhSUXxqPhetX8G7V1eysNSNx/lWi2AwuIDXX3+Dpv4o/3XQzJGeIH/9X6/w4fPq+MxVi8ddK2nk9zoQCNDZP8Q9v9tBny+Kbi3mxzdtoqrAga7b8Xg8RsYlIOuzUFFRweDgIPPrarlvvpNPfruFDl+Er/x6G19//wWY1LFviDp9EX70cgt2ElzQUIjVYpmR9MLFXg8Lygs40D7A/754gI316XP4E7s7MZOiwmOntmT81ukzwfp5Xp541cyh7gD+4Fvn4Z+/0YoWjzDfo1Fb6Jx2q/cVy8q4ZmUFv9/Tyfde7eITaxz09vYyf/58FEUhlUoZN1eZ696u1iE+/4djFMXi5NnMXLSknBuvvRybzcobb3QZ80zy8vKo8niI+4tpKM3jj/t6GQpF+NGf9/DGkS7Or3HQMK+K4uJirFYr8Xh80jcroVCI3bt3Gzdwg4ODxvzfyUilUsY+HA6HcT3PJJwYGUilUimCwSCHG48QS6YocOcRiUQmFEgpioKmaTQ1NbFsxDp8LS0tRu/CWIHURNNaA0ZjFKRviPfs2WNMFci8Xtd1ntrXzVef2E/7UPoaVuHQKDBbOb/aw0f/6goOdAbYfnyQcDzJvg4/zx3q5cXGPl5sTAfW84tdfPLSBv5ybRXqOOeAE4/h+PHjtLS0UFFRcdJzZnt7O9FolH379rFixYpRWSkPHDhANBrF4XBgsVjw+/3s3r2bdevWZfV6JBIJDhw4gK7r9Pf3k0wmsxq9Mtdvt9tNNBo1hrGeeC2MxWIcO3bMmNc3Xlr8TO+trutZvUGxWIx9+/ZRXl4+oz1VmeCioqIi67ORuVfLfH6PHDkCQOWIRWgzow0GBwcZHBw0PjNdXV3U19ePuqfN1M949yKZurRYLFRUVNDf34/ZbKa0vILt+xrZt3U/bW8McaQ3iNWskmczo+ugKFDhcTCvyMnKKg8rqjyjEgVlrrPjBbyZsns8HqKJFLt7EuxqD9DnC3OoO8DxRB7d2ltZGYvzrBQ400Pd82xm7BYTOunGuOZ+aO6DP77Qxr0vtLHEEWCVV6cpYucdm1dTWTC1qRZnRSD1s5/9jNtuu43vfe97nH/++Xz/+9/n6quvZv/+/ZOKkkfenGTGfxYWFrJq1apR2/b19fHqrgPsDTh4viVMY08QixZnifmt4V0pujiW8mJGo9Y0iAUopAAzKYYiGruPBtCPBilSQtSYhvDrQzSlxs+G4lXCzDMN4gcOYCKlK9iUJGHdyuHuQWh867UuJc65+T5qigd5ZcBJWb6dUreNBaV5lOXbs8YOBwKBaY8R7ezspLu7m+XLl8+peTCpVIpt27ah6zrnnnvuKcuWWZgyIzOHzWw2G2OUR6qrqyMajdLd3Q2kkwl4PB46Ozvp6+tj0aJFxkkwFAoZrZw2m41YLEY4HMblctHU1ITNZqOiomLMMgZjSQaCcY4NhHjpSB8vNfaxr8OPgziLzH0o6FSWePngleewaXENyUScN9980ziGiVIUhfMbivndpy7kgZeaueupg7xwPERbZzeLjoW4+S9LaCg9edA9ODho1GFRUZERSOm6zraDLWw/NsDR3gC6DjG9i4OpUnTGvlgrCmyqdnJ+pYmrz1nJwsqT99SMRdN09nf6ee5QD4++0khBtJOQbuV4Kr0vrxKhvcfMs4esfP/5JlaW2jjPM0RtoQuULhYsWDDh1seDXX6+9sQBXj7Sw0pzmKoCB/e8/zIWVI6dec3pdGIyqTSUOPj95eu4a0szv9rexoMvt7Blfzf/fv0qLlg4utV25LkqFEvy2Qeewu/3Yzer3PO357GiKh1sKIrC4sWLeeONN4wbtpE3EicOL33/BYv42Qu7eXF/G5/55S7u/uvVYwZT33jqMLGkxkVVDuqKbLjd7kn3LCZSGo+8np53+L5NtVhMKoqicOnqeg60D9DceJCdh6pZvaiOJ3Ycw6kkWFxeMuPzChMpjUfeaCeePD1r7r1jRTnfdrsIh4d49XAn69asoicQ5T+faaTcFGRNrZeysrIZOc47rl3O6y0D7O6L8PT+Hq5ZWUYgECA/P9/oJbLb7bhcLp7e18U/PrqDaAIaCvP4q9WlrFjcgM2WbqEvLi7OCqQyN3Rl+Xa+9uEr+eHvX2Z7Sx+HjnfR2KqyIVlK/UKNoqIi43w40UBK13X27t2blUhhaGhoSoFUpmcicx7PDAPr9Ud46MXDHN63j1A0TjgJZlL89xt9xAKDJDUYclazxjGAx25md9TL2roSllbkkzeicSdTJ/PmzaOlpYWenh5qa2vJy8sjEAgY579AIDBmj0hLSwutra2nHMIGbyWt8Xq9FBYWoqoqqVSKcDiM0+nkpSN93PfnI7zWnA4Oawud3PVXK4m17TO+/04zbF5QlNUb/NreRl7b10SHUsxTB/tp7gvx6V/s4kevtPCv71rGpvnj/91SqRR79+41gvLOzk5qa2ux2Wz09/fj8XiMa1oqlWJwyE9/MEoonqLxma3U1dezuL6Wco8Dlbcy5a5cuRKLxcKOHTsIh8Ps3r2btWvXYjabjaVeMo2Suq7j8/mygrLM393hcOBwOOju7jZGlYzU3t5u1E1HRwfz5s0bcxTCyIDb5/MZ+2lvb8fv95NMJmcskBo53DRhzeeVo30kUzqD4Tjt/X4Cx/pRlAF+dyRKoPs4VouF0kgJBd3N5NlMLCxz43K6YHCQtrY24/gyC1KPvN/TdZ1du3YRiURYunTpmN+xTGOB0+nE6sqnQy/g+cNBnn/yIIvoQEWnVxvAqiTp0dyE9NG9enYSFJuiFJRVsKa2kDU1XlZXewh2pIcBV1dX09XVNWoIcntPPwc7/fymRWXLw00EY0mq1AAlahAdhZLScq6sK8brsnLegiI21RWOG/y3DoR5sbGPFw738vLRPrqjJg73DLKz+yBfeb6fhtI8LmwopMHUx8KyfBYvbJjQ3+usCKS++c1vcvPNN/N3f/d3ANx777089dRT3H///Xz961+f8H4yXaWhUMgYfjUwMIDP58PhcvNGywDbjw2y61g//raD6Ux7qDQni0lhodaewG0yk7I4Kc6zUWJL8g6XGZfNjK47sZpUCt12tFQhEawkvHUc6QnS09+P3hfDbLFyXk01ZlUlHujH4crH63Gj6ekhgTZ/O+aEDX80QTCaxGk14bKZ8ZRVY/GUcLw/TEt/iJa+ME29fvpDCfpDvTx8dB9J3roRXFnlYaPbh8ecoNLjwDMina2mabS0tFBUVITH4yGVStHW1kZZWdm4Lc7JZJIjR44YX9KTnUy6urpIpVJUVFSclnlZAwMDRgrQ/v5+4wSSSCTYsWMH+fn5LFmyBEi3urS0tABvje3PpKcfT+ZGNRaLGQGpzWbDbDaTSCQYGhrC603fsGcugpk1ndrb2wmFQllZso42NaPY3YRMLrrCCkf7o2xtHqCpd3TGIQWdTd4IDYUFrFhQy3su2WjUqclmY9OmTei6PqUhCKqq8NGL6tm8oIiv/W4PkbYhDrT2cM23nuHSZdV8/JIFrK4pGPW6zDjyjM7OTpo6+tnbPsTh3gjR4QtfWLdS5lKpc5g4pzyfmpoaUprGQChB22B68djjA2GGwnH8Hc38uTPJY28ew1pcy5XLyrlyeRkrqzzjL86XTLGnzcfv93Tyu12d9AVjKOgsNvXitSucV+Fg6YIyTFocn09NX6BCCf7cpuHvG+C1gQivNQ9gNak8ejDOuSsWcMni0nHnEfQEonz7mUZ++tpxNB1KzHE2zy/g4mVV1FeMP39BVVVjPqMpFeeeG1Zz7ZpK/vmxPbQNRvjbB17jgoZiPnpRPRctLDaO1+/3E4mn2DMAOw4dI5JIkWc18+HLV7OuPvtC6HQ6qauro7m5GYfDcdKeowuX1eAf6OXne4Z4bHs7KU3nnv+zOmuYz0OvtPCr7emL33vXFKOkJp8oA9IBzJd+sw+Av15fbQw5vXTjSh5/s4WOnj5+/ewbxOMJejrbKTXB+oXVM957nkhpfOnJRmBqQ1Mmy2JSee/mep54pp2tjV38fTLFV363n0Q0wiKvzvLK/CkPkzlRidvGf/3tev7mv1/lja4kblsflVVd5OfnG8P6CryFfOfPR/jWnw6j63DxolLufPd5xEL+rDklJSUlxnp6LpcLl8tFaWkpiqJQVV7K31y0goUlR3nlSD/b+lX+++U2nj44wG0XVpKv6caQ91OdjzRN58ixNtr7hohpKmZPOb6uY2DqZ4y2rFPKNBqaLFae3NvFlv3dHG9sJRkNMah141UjpFDp0fKoUENA+gZ8UHNy3K/hCMWxKyEeP74Xv57+7nidForzbDgtKkvVDmq9DmyVVgKKg6PHOvjd4eeIu6soiHdjjgZQlHSj0KtDuzDbnaiKgklVsJtVXENHKXaZaG1tnXAglal3t9tNR08/Dz1/gMcPhTjcnb6W28wqf39RPR+7eAHJaIgdrW8Nw/L5fFlTAVKpFPHBLlaV2biy3MW/vGc1P361hfufPcqedh83fP9V1tUWcON5dVyxrGxUL3lzczODg4OoqorNZjPm4ySTSY63teGLgd9Rzv7eBIdbu1AHjxHXTYR0KwVKBHa349fttGiFzM9X2ZDno7o4nzJfkkVlDlatWmWkvN63bx+rVq3C5/PR29uLoijk5+fj8/kYHBwcM5Cy2+2YbQ72Hz1O445GHmtMMBCO0xeM0x+IkOdrJhaPk9IVSvIs/OxAhKaIg0RKo6LAQb7dDMkEBcEW8h1m8u0WfFoHDm8ZRS6r8TfJZLCbzpC/REpjf4ef3UdbaWns5ehgkueePPHar7PSPIgJjRQDmNDo0PLpaW3J2qrIFOX8ogj1xS5K8u2UeVyYlXSikpGBVCgUMr4jhw4dwuVyZZ1jU5rOvuO97Dw2yJFggD/9sot46q01qlJON/PdKTa6rRTl5WFzujGX1qOgk4hF6QxpNPWGGDh2CC0epq1T5eGOIA9vPU6BEmGxbYjCPDvxoxa8qSEcqSDPtm0n7ixmf9sASk/6XnxvEpKYKM+3s6a6kIpkN2sW1XHN+ROfHlBT6OT959Ty/nNqSaY03mzq4dkXXubYQJimAY0jPUGGerupNg2hKgp6fsepd8pZEEjF43G2bdvG5z//+aznr7zySl555ZVJ7SsQCJBMJtm+azddvjC+SJLBUIzfHXyOpzvtBGLpG/JadZBCNY5JVVhQ5OQ9NU6uumgzvccb8fv9LFq0iPLyco4cOWJ0zxYXF781rtRsZnF1JQ0N6YtlMpnktddUEokE1dWu4RWawe3WWb8+PZ5V13VefrmPZNLEqlWrsFgsRKNRUqnUmBPlfOEEv3zqeTr6Bqm3euiK2+jyR2nuC7Gn3Ydu7sRM+stQvL+H+g4bpfl2XKkAyYF2CvKcXHD+Zvo6jtPe3k4wGGT58uWj6kzXdY61duAPx0ikNPa2dNEatdHd1UkkHKJ23ny8bjv5dgtKKsaevftRFWg5dpzammry8/Nxu92nDKo0TSeW1IgkUgyG4/gjiXSAmUjRNhihNxgjEk+R0DRMwxcpVVGI97eSCAyS0jSeaQ6jFtaSZzdD2EesvxWzqlDao1KQ5yDe00IsFMCZ56GyajFmXaMtbqa9qR9VUdIXQ9IXRFBQlXQgpQBK0Tw8RTpHB+IoSpyoKY++/i4GdzZiK67BF47TdfQAkUiYWJeFULQPbaiDwI5+QkkdcyxAOKGTTGWP702hEtFcKORht1godlvZWFfIRQtLqLUE8Pd1YbFY2LRp3ag6nImewRVVHh792AX85hmFF/Yeo6M7wpP7unhyXxeb5hdy1fJyzltQRH2JC5vZRH9/P70DQ/QEYrQOhGnaepz+YJS4bsan26m2JllY6ubaSzZRXWDj8OHDKIrOquUFRsA50o4DR3jhzSRHe4OogxEO9fRzX3eQ+549QoXHzsWLSqgrdlHospJM6RwfCLPt2AC72oZwp4KkUBnSHbisJi6u0FjuKWRFdeHwMMgQmMBb4qZW01il61xan+Joj4njA2b2DioQ99N0vI0nm2Pwu/2srvZw+dIyUrpOMJokGEtysCvArrZ0VjOAd64s570LFPSon/KyslOe5PPy8oz5jEVFRcy3R7jzfBt/7nTw8M5BXjrSx+tHulhVpHLZkiLKKirZtaOFfR0+dsdKWWzWKXFZ+eg7NnHumqVjvl9NTQ0mk+mUAU9eXh6Lyty832LlzjdT/GZnes7d596xhMI8K7/e0c7/+106+PnMVYsptQ8SCk2s11NBoWp46ISCMm7WOYvFwgeuvpBPP/gnzB0++p9+nSI1Qo3XwcolE2shnKpKYunv86y+C7z33HqeeeEVApEY1/zn8xzujVBrCnHZ0lLKxkmRD6PrcCLWz/PytetW8G+PvcGO1n76/7Cd96leeo91cLwvwL3b4+zsSadSft+mGr7ynhXpoLYkuxfC5XJRWFhILBYzeiBHDmErKyujoqOD955Tx7s88/nS7w7Q0h/mtscbOdc1wNJSO4PmwzTMq8JmVklqOpF4iu7h69JrzQPs6/AxEIyxUOnGqiTp0PLp16KsNHeh7OngK6+G8bhsVFrjlJvDFOU7Wbp0KbUl+ZTl23FaTGi6Tn8oTttghINdfvY3NtPfcZwjARNHEuk5xZWqQoVZYZVXocpbRElJCWWVVXQfPYCqKhS5rGzctIFWv86uvfvo7emmOunitT4zvYEYg+EEg+EEVpIoZh8HOv3ctXs7NpIsNfcBOh1aiArVn76hxISFFK1NjfTrb/1t85QYDaZ0QGs1txDa0kNDhZelFfksrchnUVkeZW47qqoQCoXS82o1OOJX+PGug+zef5zwYDe9KRdtWgFOq4kbNtTwdxfOp8iuYLeaaO3Ozj47NDSUFUj19vYaSRm6u7upq6vjE5c0cMOGGr712AvsamxnqL2ff/t5G5835fMXS0q5pEplebWX8kKP0eNRU7+IzqEIe4/s5k8Ht9HjC9MfipPSdDSO0pQqwqXEqVBBsTpx5lfhVoMogR5MsRg+LYw/oHMoFOD1riT37HoRi0mhyGWjwWtmtXOI8oEwmrOQZHAAXdeprKzE6/Xi8/noHxjA0h/iSE+Qo71BWg4fYmBgkH3PDdAWtbLC3IUJjSOpMEE9PUSwUAlTa4oS1010afkkfYMkfa0cSJahoxgZMtOjhnwkUTGjkdrXw61P9+Mxp1jnHCTfYcFpMfHn3m248/Nx2y247WbybGZiCY1QPJ30IJP8IBxPEoqnCMeG/48nIeInEAxyLO6iTA1SofoZ1JyY1PS8WqvZRIHDQrnHjjMIxII4rGY8Thum8sW0+WIEo0kGw3H2d/jxhVIcH+jn+EC6N6klVcgad5BKj53XBqwsqiqhviQP3d9rfBbiiSQvvr4DT+0S9ncG2NrUz2vNAxQleihQIrRrHuJaHvUlLq5ZWcE7V1ZQnaewZ88ebDYbgUAgPaplQxVtbW20tHRx+coFFBfPZ+vWIIFoEr/ioiVZwK7j/SS6uoklNXYMmOjqGxr+e/gI6xEOpyJUqj5K1fSwvr9fuYjLlpaytsY7oeGmp2I2qZy7sBxloJpIJMLnGpawf0Dj1a2vcbzHgj+aoLWr99Q7AhT9DF9oqKOjg6qqKl5++WXOO+884/k777yThx56yMgsMlIsFssaMuD3p1ve/s8X7qPHVEiBHiCJiaZkIQuHh001popxuPI5v9ZOHb2UexxcdM46WluaiEaj5OfnG+Oozz33XKPVt6enh2g0SnV1NY2NjUY6y+XLl2edzDKZ3E6U2VcwGOTNN9/EZDJxwQUXTCgCb2pq4vjx45SVlbF06dL0+wRjPLOvg4O73mQoFOfYQARN1ziQLCOGmTrTQLqVCDiW8jLP7CPPqqIrKkeVasx6HK/mo093E9QthONJFind2JR0ABDRLRxOlbDS3ImKjl+305QqBBRKlCBVprdO6ooCZlVFUU1ETS7CJhdRbCgmFXSdeEonmtCIJlLEkuOv0q2iYSFFbHhemFuJYleS9GlOVpi7MQ0HjBoKe5Ll6KjDwXD6BHM85SWJSr2pHx2Fg8kSY19T5VJiLDT1kUJlb7IcOwkWm3vRUNibLMehJFho6iOum1AUsJDiSKoYTVcotUapc+kUOcDrsFJRYGdBuZdVy5caQ2N8Ph87duwAYMWKFVPO7jVRHR0dHD58mGBS4bkBD4/vbCelaejDS9GpChQ6zFSnuiAVo1fLo1gNoaBjUhXm11Ry1ablqP3NuJwOI3vf/v376e3txWQysWbNmqwb8ng8zuuvv04ymcThcDDoD9IehG0hD88d7iMST6KikzphOTwFnRp1iGpbjJoiF5dfcgGb5hWwY9ubRn2FQiGam5ux2WysXLkSq9VKW1sbra3pbHFFRUUsWrSY3255jmN9QXZFC3n1eJikNv7pcm1tAZ97xxI21Hp45ZVX0DSNDRs2nLIHpb29ncbGRhRFobCw0BiLb7PZqGxYwY+efoN9h5uMVsCQbsWlxElgQilbxM3nVHBBvZeS4pOnH5+IZDLJSy+9BEDEu4B//PkeIwOSSVVIaRoKOn+zaR5ffucitm7dCsB555036UQA4XiSZV96CoD9X7kqq6Vb13Wuu+8lBjqPU6SmW2Tftb6Bm6+7dMaTk2SVw7YNpzJ8rvnMZ2CSWVQn4+4f/5aXD3dxKFlCBCs3L0pyYb2HlStXjpo3MhMe39HGj379NGhJBjUnXjVsnJ8KnFa+/O7lvGdN5bTqt7e3F4fDQV5eHv5ogu89e5Sfv9mKJdJPheonqNs4kioGdCrUAEVqiGMpLwH9rV7S9M3UIGaLhUHXPIryHNh9zfgDQY6lvJSqQRzKW2voxHQzR1NFxMdpF65WhyhWQ3RrbswFZVy9ooILFngpU4MM9PUSi8VYuXIlhYWFvPTSS6RSqawh/Zlzn9frZfXq1fijCdoGIgyF4/T09bFv716ahlIc0UtJaTorXAHqXUnMqkosqaFZ7GB1kfL3ojs8aPmVpHSdlAbRvnb6ezrxR9PH06W56dLSjR3FShCnkmBAcWN3uCjWh8hPDdGbsNKcSn8+CpQIdaYBigvcXHjuRt61uorQYC9dXV2Ew2FKS0tJpVL09/cb9ygul4s1a9bg8/koLCxk9+7dDA0NGXNUKisrWbRoEdFolK1btxKKJdnd5uNgl5+2sIqKjktJjyxQFFAVhQHNQXPSC+gsM/VgHb4f6NdceG1Qnw/lRR5qivPxmOKsXbHUyESXyX5rzy+k0xflcEsbRyJOXulWCI9YKy19Ux0koluwK0msJoUWpZyoprJI70BDY0+i3Bh9s9SUvi85kiomqNtosPpZ6E5QVFJGaU09XoeJVPcRLKSoX1CPt6ScF19+lXAkyoLFSyjwFtPhi6SDn65mAr5BBtUCggNdBMJx3gx58SphStS3RvS0pQro011YSZLANO6Q9ROpaKwwd6Gi02MpY5VXo9yaYP6CBVx73kq8ruxz69GjR41059XV1TQ0ZDcw6bpOU1+I3zz1HMd6hugLp3glWMQ80yAFSoQeLY8OLd37ucjci9ecpFcpwJkYwoxm1FnGalsf9V4zC5cs4y/WLGBx2dhDuV977TUikQjLly+nsbHRWNeqoqLC6M12Op1s2rSJQ4cO0dbeQTBlwlS6gHBcwxeK0N+0B00He3ENjkgPtV47525YOyvnRIDDhw/T0dFBdXU1Ho+HffvSw2D90STHBqPc+oFr8fl8J22EPON7pDJO/KOeLFXz17/+df7f//t/o54PJZIUqOlxqSFrIUsqS2mw2SlSwtxYU8q1f3EeO3ZsJxj0UllZSVV5KQVuF9u3bzeCqLy8vKyhMyOHhtXU1NDZ2YmiKKO68IuL01maMnNoMhN0+/v7qaqqMsZZ5+fnT/hCV1RUxPHjxxkYSLfe9PX1oes6Vy8toixSgtVqJaWY2XG0g3W2UvoSNrQuH5GYlVA8RQ0+0DWCseEUsMkAFaYAJiVKMSF8ySLcSgqbmkRDwW5ScJp1ltpMVOg2FAW8SQ17MkRjLI980sFrp5aPDuQpcZx6AnMqgZoYIo8hXCjopFuE/bqdwVT+8AVSx6NE8aoRIpZ8zHY3JgU8Spj51hBuC5gLizDbnWi9TeiaQsqioybyMZktmE0qqp7kgsJyQooDeuOoKRtJTaNesROJJ9Eidnyqm/mWQnQdND3dZq4b/5/wMzrDGTuN5zVdH97OioMgLrOOJ8+Gx6SSn8rH6i7govL5uK2Q6DiIzaxiNavYrWY2bNqMx2Wj0GlFVdMTl/v7+zly5IixpklpaSllZWXGBNOysrJZD6Iy73P06FHySPHPl9fynjqNNw4eZ3fUw7b2CIFYAnesB5QYSUxYPGUs8kZY4NaoK3axctmS4c+xF5vNZvSeLV261BgCefToUdasWQOkh5geOHCAZDJJXl4eq1at4rXXXmOBJcW7zqvhnhvW8PifX6W5o5ceawVDCRPOuA+vKUqNx0KZs5QCpwVFUVhSbGZoIB2cZNLDFhUVUVBQgNPpNHru6uvrjYxAFRUVWK1WltdXU5LXwzVlZZTU1PPbnR3sbffhsJrIs5tx28yU5du5cGEJ5Z709767uxtN03A4HBNazqCiosJIBpEJokwmE7FYjMH2o1xcpXJuWT37+xIc6+xD03VsZivnLpvP9ZedO6OBhdlsNrKBnVubx/f+ahE/f2E3b/RASDNxrifEmkoXH718vjE0zOPxTDmb2ngUReE771/P4ztKiXQ1YyfKX168dk5meJyqS5dXUZlvwVMxn7z8fLSudKPfVJPPnMp1a6vJi63jD1v30R+KE4opFHgL+dSKRXxo8zyK86aevjhjZONgvt3C569ewv+9YiFb9rSzdetW2gfD6KkEtlQIjxLFrKoUO3UcZeWsn+dlXW0BAy0HUFLFLFrYYAwtbGws5nDTMXzRFOGYg3ASBnEz2NdNIBTGFh1iZ6yITF+iqkB5vp2GMjeLLSaKLfmsW7WMDUvrsz5DesMCksmkcQ4oKSmhu7vbWBsQ3upt9fv96eRALhfLKtPbt9oiFESLua6kxBixEY1G2bt3L6qq4na7qaqqIhwOs3fv3uGbyHR2OV3Xee21ENGoHXdBIcfaOwkmFPz58zl8rINAZy++SAKvHiEQsWFR4sTRGNIcFOfZuHBhMefXF+AOHMOm6thMvRzc3Z21UGtPT49xvLW1tezdu5dQKMS2bduMdSszc7wWL17MwYMH6erqYt68eUZG4PJiL6uWLaa5uZnOoTCHuwMc6lEYCKewkiSmK7Qmh4O/PBsV3krmW4NUlRRw2QXnUJ5v47XXXhvu9dIAc9b9j9frTSfkiASoclkorC/i71etIt9TQE8gRm8gxq62IV482EWi6xC2WIJYUmcwaaU3pQA6AZMZpxKn0JygsLiAhhIX1bEYhS4Lm8/dTF2Zh2QkyK5duzCZTJx3Xj1NTU20x63YbDY2LluQnj+3poG2tjZK8zSWLSw21ikaKjahFxWxYcMGjhw5wtDQEF9d0MC+Q0fp94cI62aCwRBJm4eIYifWd5yIZmLIUohqc+O0mXFZzThtJpxWE06rGZfVZDyvR3wMdaSfX94wz0hxv3ZtAx7X6HNrpnFOUZSsDHcZiqKwoCSPq9bOp7e3l9LSUqrqFvLCnib27t3LQFRjb8JNa78fpx4nloTjSSvVqo0SS4wGt0phaQmrXD7meSwUWF0oCpxzzpKTzt0sLCykvb2d5uZmY/5aPB7PWhg4s5hwd3c3JlXh4nWrsuatHarQhzscwuDJw+12Tyuj3qkUFBTQ0dFBX1+fMQ+utLQUpbeXBn1ii2yf8YFUcXExJpMpK1UppE8g401M/cIXvsDtt99uPDZ6pNZX4/Xk43W7uOC8c1FVlWg0yuuvv46mJTl48ADBYBCTyWSsFeFyuVi2bBl79uwBOGnU7HQ6WblyJbquj3nj0dDQgNlsJj8/n1gsxtGjR+nr66OqqsqYgDle9rWx5OfnG3N12tvbjZvvzPh7p9OJw+FgVSxMbW36hnz7dj8mk4lUKkVS04jEU0SToGkpCkvKGerrNoa4qaqCxaRiNRVSV1tDX18v8XicwsJCBgYcOJ1OY5LismXL2Ld/P6mUxqp1G7Da7MST6d6mgcFBenp6CPiGSMTj6KSDEbOqYLGYKfB4sJpVQn4fZlN6yF55eTmBQIBQSAUyJxUNmy1B1Dty0ng+lZXpVtb29nbKy93U1dWxdetbK2hnFtgFL+ecc86MTWbPtBrl5eURi8VIJJxZPZGvvPLWeiAej4cFZdk3UKqqUlJSYlxo2trajPT6kO6xmEoq06kwmUyUl5fT3t7O/v37SSWTrKst4Pq6WubNm8euA40cbWrGYjaxbt1aqkuL6OnpYf/+/cbxjfx/5DEuWbKErVu3MjQ0ZKwJkkmZrKoqixYtwmq1UltbS3NzM8eOHaPBYqHCnqKivpCiojzmzZvH9u3bYbgnUVVVPB4Pg4ODRlYgeOtGb6zGDEh/J0beRNXU1Bh1Pn/+fG66YD6QbnkfGhpiwYIFo4ZUnjiP4VRUVWXp0qV4PB7a29upqalBVVUOHDjw1kKEDfVcdXkd+/fvN/Y/f/70eg/Gk1mnJBgMkp/o5wNrCvnrZIqEpuKypBtyOtpajV79E5demCm1RU7+8fLFaNpCEonEtNYpmYucDgdVBQ4WVLqw2y3s61ZwuVyzmqznwrVLqS6wG3M5amtrJ5TNdDpsZhPvWltLncVvBN9QYPSAmEwmzj9/LaqqMjg4iF9PYLKYszLceTweXDbzcAZPG6tWrTKGGW7duhVd11m1biOoZrq6Oigv8lLoLQBg69atRKNRFlYWjfq+KIqSVd+LFi1iwYIFWc/l5eUZ18Q33niDgoICY9mGzPVtZINJZmHekTLJC8LhsJFdLhgMEo1GUVWV1SuWEQ0FKEwkKCgIscZqIjm/DpvNTu9QwBiRYbdZOf+8zXhdNuNYwuFS9uzZk5Xivba2lmAwaCRSUFWVwsJC45qcOR9mgqjCwkLKysro7Ow00nxnGofLysqorq7G6/Vy4MABGqpK+Kdly1DNFlrau7HY0tf6AqclnSFN1+nu7sbr9Rrf2aqqKuNm2mw2Z9VX5j4lmUwa85ndbjdmk0plgYPKAgerawr40OY6Dh8upKOjg0RKo7R2AXkFRVhUle72Y/R0tlNbVcHKFcuHe9PSw8xW1Kb/7rqtwGgk2rZtm/G3W7x4sfH3KSkpoa2tjf7+fgKBQNYoofz8fFwuFx6Ph6GhIY41N+E06+SX5rNw4UIOHDhgTFPwlY1M3hXGarWydOnSMYevA+zfP0iPN/097O3tNephvNEMmTnshYWFJ53zWl1dTSwWSyc/cVq4ZuNCCpN9JBIJvrBqBZFIlF377KhWJwuWriQV7KfzeDNFRUXU1NSwa9cuY18mk+mUmVkzgVSmbi2W9Pp1mY6NzP1oW1sbmqZhtVpHXYcXLlxINBo1kpeMzJQ8GzL31JnvhMlkYuHChUbDyUSc8YGU1Wpl/fr1bNmyhb/8y780nt+yZQvvec97xnyNzWYb86Jc4rbjclhoqK8zbo7sdjt1dXU0NTUZLTQ1NTVZgVBRURGLFy8eN73pSCcLtMxms9FFGw6HOXr0KENDQ8YCgjD6RvRkMkOFenp6jCAKMBZLdDqd5OXl0dnZSSAQMCZJer1eI6VogctCXV1dOr13bIgSdzpDl8lkYmhoyDhBz59fRzQaYWBgwIjqq6urCYfDtLW1cejQIRQgz+WkpCC7W7i2yAUN1ei6TiwWQ9d1ksnkW2sfxEMk4mCzmIyTWCZwVlWVefPmEQgE6OvrIxqNYrVaKSsrM7q+M2s+tbe309/fb5yc3G438XjcuCEsLCyc0YxgmTJkkphYLJaslhWXy2UEUicLkDOfi7KyMtrb2xkcHCSRSLBkyZIpr3E0FZWVlbS3txsnecBY5DXQ301Rno3FixdTUZr+jGeSaqiqetKeGbvdTl5eHsFg0Ah6+vv7UVWVlStXGi30VVVVtLa2Eg6HOXDggPH6/v5+44RXXFxMRUWFEbxmAqnMYn+T7b1zu914vV4GBwdpbW1l4cKF6LpuDFtwu91ZE3cTiURWq9ZEKYpCVVWVMdxF13Xa2toIBAIUFhYawV1DQ4ORQGW2ei4y65R0d3cTiURQFAWb2YSN9E1aJBLJWnx6ooFUNJHihu+/CsDP/2HzhMuTmcR+OtwQX4IK/Nx6gOkncz+5zLnG5/MZ56BTnd9PrMMTUwmfis1mM5LrnG7z5s1LJ1UxmXA6ndTU1LBnz56s1OiZpDvl5eVZ57aR58eysjLjPGqz2XC5XASDQVKxMKqq0tN2jKGeTs49N73Y88jsbaeiquqohhFFUVi+fDnt7e0MDAwwNDREKBQy5jYCpwxGrVarcRMfCATwer1GUFlYWGic4w8dOmQ0nrjdbtauXYvP5yMcDuNwOHC73aMCbafTybp162hpacHpdBqJnDJD+qLRqHGD7/V6jUyxixYtorGxkWAwSFVVFYqiMG/ePHbv3k1HR4dxzsx8v/Py8tiwYUPWtXtxXRUnUoYbOkeqqamhvb2dVCqFx5OdJEhRFLxer3F/Zbfbx21MqKmpobu7G4fDwcoFNcbfqsBSRWigm/6+Xnp7e43PTmbh8cz71NTU0NjYaNzoV1RUZF2T8/PzjdFAmSDK6/WyYMECXC5XVgOcpmmYTCYaGhqMXstMSvLMvjOjE+LxOIcOHWLjxo3GfVZPT4+xHEFmJAJgXF9dLte4iSvMZjNr164d83cjeTwe1q1bZzzONM52dHTQ0dFBPB7HaTVTV1dJXZmbgBO6Wlvw+99q9PB6vUYAeaqApqDgrQYSSI842bdvnzFcVlEU+vr6jHvQzHMjqarK8uXLOXDgAGazedaG9GVYrVaqq6uNoa5lZWVYrdbhDoGBU++AsyCQArj99tv54Ac/yIYNG9i8eTP//d//zfHjx/nYxz42qf0oioLdbh91EsikZQyHw1gsljG7UisqKmZksb0Mp9NptB61tLQQj8dRVXXSN0+ZQGqkzAkyc2KGdMrqzEXB6/XidrsZGhqitraW4uJiY50kSB9reXk5wWAw68vudruzPnher5eSkhI6OzuNyaxFRaNbBTMy9Z+xatUqgsEggUCAWCxGSUkJeXl5Rg9BYWEhpaWlRmvW9u3bCYfDLF682PiCJhIJIzDM3ARmjsXr9ZJMJo2EICNXD58JLpeL6upqQqGQURcjT4wul8todZlIT6Pb7WbJkiWTWndkJrlcLgoKCoxMhIODg/j9fgYHB0mlUlit1qzvjslkYuPGjadcoBHSF+tgMEhnZ2fWUJORLXhms5nq6mpaWlpIJBKoqkpBQQEDAwNEo1GjJSlz0221Wo2LIkx9CFpNTQ2Dg4N0dnZSV1dHIpEw9plJJTs4OEg0GkXTNHRdN7KaTVXm5i0zzDBTf1arldWrV2etYzLTRq5TAunvbHV1NX6/n8rKSvbv3298zz0ez4SDHE3X2d3mM36ei/YOJwLQZj3dRDrQPnbsGP39/UYdniqQOhPqcDxut5tzzjkn67lMavT+/n5cLpdxQ3li5ler1UppaSnhcHjUfBC3221cJzLXtng8Tl9fn/FZVlV1WsNPCwsLKSwsZNeuXcZ5z+VyZaWFPpXMekZDQ0Pk5eUZQWOmwaWsrIz8/HyOHDlipKLOBD/j9WRkWCyWUaMTTCYTS5Ys4dChQ8a1ra6ujry8PEpKSjCbzaxbt45YLGYEmZlrfyb1dn5+ftb3e6rXHIvFQk1NDS0tLWM2vIwMpE6WuMbhSM+vPTHgzc9PZ35tbW3l0KFDxt/9xB6UqqoqSkpKGBwcJBaLjbrmK4pCSUkJ7e3tRuNGQ0ND1rnc6/VSXV2NqqpUV1djtVqNntXMfY7H42Hx4sUsWrSIeDzO9u3biUajHD9+nPnz5xuBVSqVYmBggFQqhc1mIy8vz/gOTHaB84kqKyszhrJljjnzGcz0viaTSaOxurKycsKNZSaTiYKCAgYHB3E4HHi9XmMkSVVVldHgPfJ+cCxms5mVK1dO91An7MRzCjCp4YRnRSD13ve+l/7+fr7yla/Q2dnJihUr+MMf/pA1RGci1qxZQ1FR0agWKVVVWbx4MYcOHRp3jYHZUFxczPHjx43ofSLZ7U408sNQX1+fdYJwOp243W4qKyuN1onMaxwOR9aCxpkgJHOiGSuoG/nFt9vtxsk5cwI9sTynkknveuIJpbS0dFRrf+aiEI/HjYtafX191r6WLFnCjh07stbTURSFjo4OHA7HjI/Dzaw0Pp5MOTMpXCez31xZunQpPp+P4uJiXnnlFZLJpDGJdKwgeaKpYEtKSmhubjaGk7jd7jF7dDK9UpkU+tXV1bz++uvG4r8nXvQLCwuNC8JU55J5vV6jx6y7uzvrmDINELt3785a6X0mhrvZ7fas9NMZY30nZtKJAWBJSQkFBQVG4FZbWzulXjeRbWTDRKbXZDIjDs4GIwOpTCNEQUHBmI0QIzMEjuR2u41RFSMXO89MIIf09WsmzpuZ9bcyaxZleg8m0ttVVFREb2+v0aueTCZxuVxZ5wqHwzGjN5AFBQVZwWtmQdUMVVWzyp7plcr0xszksN158+aNu4zKyGvvqc5t4zXczJ8/H5/Ph9/vP+lUiMyIlfFkAilIBx0nfhbHuq4rikJeXp4xcihzXlQUBZvNRkNDA/v27aO1tZWSkhJjGRjA+L+kpASn0znrgVR+fr5xP2ez2Vi6dOmoe5FM42jmGjoZmUXeq6urURSF2tpaqqurR90LZHoi56rJNFSeFYEUwCc+8Qk+8YlPTGsfeXl5435JPR4PmzZtmtb+J6uystIY9qHr+pR6TKxWK/X19UQiEaqrq0mlUsaNb+YEunBheg5Cb28vdrt9zBOd1+slEolQVFQ0brf7yC/+yA9hpjs+c5GcLZnFFsfj8Xiora3l+PHjxgkj0/LhdDpPe4Di9XpRVZWioqJprT1xOtlsNuMiUVBQQF9fnxH8TKcLfmQPLKQvimP9PSwWC4sXL6a3t5e6ujqjJTYYDI4ZdBQVFU07kMoMVTly5Ag9PT1Zrc+aprF3796sIArO7ADDbrcbrauZz+dIHo+H4uJiAoHArM2PersYOf91vCHnZzOv14uiKESjUSOj7VgjPk4m0wjl8/mMHinAGIIH4881maxMoOv3+43GhEwr/qmUlZXR09PDwMCA0ftSX1+f04axsRQVFZGfn084HJ7R77eiKOMGnCOHd0/1HiEzJKypqQm73U5RUdGUghGPx4PD4SAWixlz4SciE0hlGptHKi4uNkZx7Nixw/icLlq0iOPHjxONRo0hZRmzFUhlRjv09/dTWVk56n4uE0hB+vs52XuT0tJSY7hq5v1GjlrK8Hg8p3VqwmRZLJYJDZ+EsyiQOhvZ7fYJ/yFPZuTijhUVFRw/fjxr4qCiKCxduhS32z3uONjMhL+xblYzbDabMZRqZEuDyWQyxlafjkV4T6auro5UKoXD4TC+xLM9Bnc8DoeD8847L+d1MlUejydreMB0W5cyC356PJ6T7uvEHsmTLQBdWFhoXBinM/+tpKSEI0eOpBfCHZ7UnbnwZx6vWrWKaDSK2Wye9Qn8s2lk6+rIC+LI369YsSJHpTu7FBcXY7PZiMVik8rIerYYORQok1hmsg0eTqdzRMKgdE+fw+Ggry89qd7lcmWNTpiOTNAWiUSMXouJBhuZURFvvvkm8XjcSBYw1yiKwpo1a9A07bTe6C5fvpxIJDKtuZ+ZHpbpUBSFdevWkUqlTplcYaRMsqDCwsJRw0gza67t3bvX6LUqKCigoqKC0tJSYrGY0fNVW1trrNU2W/Ly8sZtXBjZKz7VxsfxPjcWi8XoDZuLn/0TTbQBRgKptxm73c66detGjTFWVTUr4DrRRDPENTQ0MDg4OOriMld6XFRVPW2Z7iZiLrfInMrIlsOCgoJp/41ra2sxm80TznY3ESaTaUYaI2w2Gx6PB5/PZ6QXXrBggZHVyOv1nhEXhokqLS3F7/fP+LxBkU1RFObPn8+hQ4dGzc19u6ivr6ezs5OqqqopzStUVTW9btVwz3hBQQGlpaX09fWRn5/PypUrZywTYibjXGYBbZhc77PVamXFihXGXJm5GjiPlXRjtk23sWsmWSyWSX9mSkpKWLFixbjDcy0WC6tXrzaSaDU0NBiZ7EbeB8xU0D9V+fn5qKpqrKc40+bNm0d3d/dZdb47c+/ixJTNZkvHWPOXxNlpZFrgmTjhmkymk/Z45lpJSYnRmuh2uykoKDBa1yYzBORMUFVVZSwbIGZXeXk5ZWVlb9u6nok5f5nFZiEdSHk8Hs477zwsFsuM12t+fn7WkMHJ3vzn5+dLj+5ZSFGUU/bgqKp60nnTc4HZbGbVqlXouj4rQ43Ly8vPqiAKJJASQkxRZjHA/v7+t0XwXFxcbCwjkBkCu2bNGhKJxIzNwZhLZuPGvvCExSVPfJwrhU4L+vD8vFyEM5Op67lSZ3PJWPNzZ3qR6Iz8/HxjPtfb4bwn3n5mcy772UgCKSHElM2fP5/58+fnuhinhd1uN7KsjVzH5u2WIGCqnFYz2//1iqznTnycC06rme2fPh/uvjvXRTmlsepQpIfWZhazn80FjSF7DokkWxFCSCAlhBATtGzZMoLB4Fk1H0qIM53VamXz5s2nZXikw+Fg3rx5mEymOTOnRwiROxJICSHEBGVWPBdCzC2nK6FRJkGIEEKABFJCCCFOg2gixY0/fB2Ah25Kr8k38rHdkpvMntFEiht/vAMtuhgUBRWdh6yHmXji49PnxDrMVZ0JIYRIk0BKCCHErNN0ndeaB4yfgVGPc1auYz4gH4aLoeUk5cSpjVWHQgghckcCKSGEEKed1aTy3fevM37OaTn+ahmx3/yO25MLclYOIYQQZx4JpIQQQpx2ZpPKNasqcl2MdDmWlRJ+Yojbk7kujRBCiDNJ7poBhRBCCCGEEOIMJT1SQgghTrtkSuOpfd0AXLW8DHOOhvclUxpP7e8hlirIyfsLIYQ4c0kgJYQQ4rSLpzRu+el2APZ/5aqcBVLxlMYtv9oPyPwoIYQQkyOBlBBCiNPCMcfTdTtI5boIpzTX61AIId5OJJASQggx65xWMwe++g7jcTg+9zI7bLPtxKlouS7GuE6sQyGEELklySaEEEIIIYQQYpIkkBJCCCGEEEKISZKhfUIIIWZdNJHi4w9vA+D+v12f49KM7WOJBkzo3G85gj3XhRnDiXVol/lSQgiRUxJICSGEmHWarvPsoV7j57noBc0DgIaS45KM7UyoQyGEeDuRoX1CCCGEEEIIMUkSSAkhhBBCCCHEJEkgJYQQQgghhBCTJIGUEEIIIYQQQkySBFJCCCGEEEIIMUmStQ/Qh7Mf+f3+HJdECCHOTuF4yvjZ7w9k/c7vD5C05iaV98hyZfhjMZJ+P6RG/y6XTqzDXNWZEEKc7TIxgX6KDKmKfqot3gba2tqoqanJdTGEEEIIIYQQc0RrayvV1dXj/l4CKUDTNDo6OnC73SjK3Fw/ZDx+v5+amhpaW1vJz8/PdXHOKlK3s0fqdvZI3c4eqdvZJfU7e6RuZ4/U7ezJZd3quk4gEKCyshJVHX8mlAztA1RVPWm0eSbIz8+XL/AskbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ0+u6tbj8ZxyG0k2IYQQQgghhBCTJIGUEEIIIYQQQkySBFJnOJvNxpe//GVsNluui3LWkbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ8+ZULeSbEIIIYQQQgghJkl6pIQQQgghhBBikiSQEkIIIYQQQohJkkBKCCGEEEIIISZJAikhhBBCCCGEmCQJpHLse9/7HvPnz8dut7N+/XpefPHFk27/v//7v6xevRqn00lFRQUf+chH6O/vN37/gx/8gAsvvBCv14vX6+Xyyy/n9ddfz9pHXV0diqKM+nfLLbfMyjHmSi7qNplM8i//8i/Mnz8fh8NBfX09X/nKV9A0bVaOMVdyUbeBQIDbbruNefPm4XA4OO+883jjjTdm5fhyaabr9rHHHmPDhg0UFBTgcrlYs2YNP/nJT6b9vmeiXNTtCy+8wLvf/W4qKytRFIXHH398Ng4t53JRt1//+tfZuHEjbreb0tJSrrvuOg4dOjQrx5druajf+++/n1WrVhmLoW7evJk//vGPs3J8uZSrc27G17/+dRRF4bbbbpupQ5ozclG3d9xxx6j72/Ly8lk5PgB0kTOPPvqobrFY9B/84Af6/v379VtvvVV3uVz6sWPHxtz+xRdf1FVV1f/zP/9Tb2pq0l988UV9+fLl+nXXXWds8/73v1//7ne/q+/YsUM/cOCA/pGPfET3eDx6W1ubsU1PT4/e2dlp/NuyZYsO6M8+++xsH/Jpk6u6/drXvqYXFRXpTzzxhN7c3Kz/4he/0PPy8vR777131o/5dMlV3d5www36smXL9Oeff15vbGzUv/zlL+v5+flZ25zpZqNun332Wf2xxx7T9+/frx85ckS/9957dZPJpD/55JNTft8zUa7q9g9/+IP+xS9+Uf/Vr36lA/qvf/3r2T7U0y5XdXvVVVfpDz74oL537159586d+jXXXKPX1tbqwWBw1o/5dMpV/f72t7/Vf//73+uHDh3SDx06pP/zP/+zbrFY9L179876MZ8uuarbjNdff12vq6vTV61apd96662zdZg5kau6/fKXv6wvX7486z63p6dn1o5TAqkc2rRpk/6xj30s67klS5bon//858fc/u6779br6+uznvv2t7+tV1dXj/seyWRSd7vd+kMPPTTuNrfeequ+YMECXdO0SZR+bstV3V5zzTX6TTfdlLXd9ddfr//t3/7tZA9hzspF3YbDYd1kMulPPPFE1narV6/Wv/jFL07lMOak01G3uq7ra9eu1f/lX/5lyu97JspV3Y50tgZSc6FudT3dSAjozz///ARLfmaYK/Wr67ru9Xr1//mf/5lAqc8MuazbQCCgL1y4UN+yZYt+8cUXn3WBVK7q9stf/rK+evXqqRV6CmRoX47E43G2bdvGlVdemfX8lVdeySuvvDLma8477zza2tr4wx/+gK7rdHd388tf/pJrrrlm3PcJh8MkEgkKCwvHLcfDDz/MTTfdhKIoUz+gOSSXdXvBBRfwzDPPcPjwYQB27drFSy+9xDvf+c4ZOLLcy1XdJpNJUqkUdrs9azuHw8FLL700zaOaG05H3eq6zjPPPMOhQ4e46KKLpvy+Z5pc1e3bwVyqW5/PBzDu9e5MNFfqN5VK8eijjxIKhdi8efP0DmqOyHXd3nLLLVxzzTVcfvnlM3NAc0iu67axsZHKykrmz5/P3/zN39DU1DQzBzZOQUQOtLe364D+8ssvZz3/b//2b/qiRYvGfV1mqJjZbNYB/dprr9Xj8fi423/iE5/QFyxYoEcikTF//7Of/Uw3mUx6e3v71A5kDspl3Wqapn/+85/XFUXRzWazriiKfuedd07/oOaIXNbt5s2b9Ysvvlhvb2/Xk8mk/pOf/ERXFOWk73smmc26HRoa0l0ul242m3WbzaY/8MAD037fM0mu6vZEnIU9UnOlbjVN09/97nfrF1xwwfQOaI7Jdf3u3r1bd7lcuslk0j0ej/773/9+Zg5sDshl3T7yyCP6ihUrjGvc2dYjlcu6/cMf/qD/8pe/1Hfv3m309pWVlel9fX0zd4AjSI9Ujp3YC6Tr+rg9Q/v37+cf//Ef+dKXvsS2bdt48sknaW5u5mMf+9iY299111088sgjPPbYY6Na8jMeeOABrr76aiorK6d3IHNQLur2Zz/7GQ8//DA//elP2b59Ow899BDf+MY3eOihh2buwOaAXNTtT37yE3Rdp6qqCpvNxre//W3e//73YzKZZu7A5oDZqFu3283OnTt54403+Ld/+zduv/12nnvuuSm/75kqV3X7dpDruv3kJz/J7t27eeSRR2bkeOaaXNXv4sWL2blzJ1u3buXjH/84N954I/v375/RY8u10123ra2t3HrrrTz88MPj3pudLXLxub366qv5q7/6K1auXMnll1/O73//e4DZuw+blfBMnFIsFtNNJpP+2GOPZT3/j//4j/pFF1005mv+9m//Vv/rv/7rrOdefPFFHdA7Ojqynr/77rt1j8ejv/HGG+OWoaWlRVdVVX/88ceneBRzUy7rtrq6Wr/vvvuynvvqV7+qL168eCqHMufMhc9tMBg0XnfDDTfo73znO6dyKHPObNftSDfffLN+5ZVXTvl9zzS5qtsTcRb2SM2Fuv3kJz+pV1dX601NTVM4grltLtTvSJdddpn+93//9xMs/dyWq7r99a9/rQO6yWQy/gG6oii6yWTSk8nkNI8s9+ba5/byyy8fNV9rpkiPVI5YrVbWr1/Pli1bsp7fsmUL55133pivCYfDqGr2nyzTGq/ruvHc3XffzVe/+lWefPJJNmzYMG4ZHnzwQUpLS086V+VMlMu6HW8/Z0v687nwuXW5XFRUVDA4OMhTTz3Fe97znqkezpwym3V7Il3XicViU37fM02u6vbtIJd1q+s6n/zkJ3nsscf485//zPz586d6GHPWXPvsnk2f71zV7WWXXcaePXvYuXOn8W/Dhg184AMfYOfOnWfFKIu59LmNxWIcOHCAioqKiRZ/cmYlPBMTkkkN+cADD+j79+/Xb7vtNt3lcuktLS26ruv65z//ef2DH/ygsf2D75mioAAACtBJREFUDz6om81m/Xvf+55+9OhR/aWXXtI3bNigb9q0ydjmP/7jP3Sr1ar/8pe/zEr9GAgEst47lUrptbW1+uc+97nTc7CnWa7q9sYbb9SrqqqM9OePPfaYXlxcrH/2s589fQc/y3JVt08++aT+xz/+UW9qatKffvppffXq1fqmTZtOOtfqTDMbdXvnnXfqTz/9tH706FH9wIED+j333KObzWb9Bz/4wYTf92yQq7oNBAL6jh079B07duiA/s1vflPfsWPHWZla/nTX7cc//nHd4/Hozz33XNZ5IxwOn76DPw1yVb9f+MIX9BdeeEFvbm7Wd+/erf/zP/+zrqqq/vTTT5++g59luarbE51tc6R0PXd1++lPf1p/7rnn9KamJn3r1q36u971Lt3tds/a9UwCqRz77ne/q8+bN0+3Wq36unXrstK23njjjfrFF1+ctf23v/1tfdmyZbrD4dArKir0D3zgA1nr6MybN08HRv378pe/nLWfp556Sgf0Q4cOzebh5VQu6tbv9+u33nqrXltbq9vtdr2+vl7/4he/qMdisdk+3NMqF3X7s5/9TK+vr9etVqteXl6u33LLLfrQ0NBsH+ppN9N1+8UvflFvaGjQ7Xa77vV69c2bN+uPPvropN73bJGLun322WfH/GzfeOONs3mop10u6nasegX0Bx98cDYPNSdyUb833XST8Z4lJSX6ZZdddlYFURm5OueOdDYGUrqem7p973vfq1dUVOgWi0WvrKzUr7/+en3fvn2zdoyKrp+kv0wIIYQQQgghxCgyR0oIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghTrN4PE5DQwMvv/zyjO73iSeeYO3atWiaNqP7FUIIMZoEUkIIIablwx/+MIqijPp35MiRXBdtzvrv//5v5s2bx/nnn288pygKjz/++KhtP/zhD3PddddNaL/vete7UBSFn/70pzNUUiGEEOORQEoIIcS0veMd76CzszPr3/z580dtF4/Hc1C6uec73/kOf/d3fzcr+/7IRz7Cd77znVnZtxBCiLdIICWEEGLabDYb5eXlWf9MJhOXXHIJn/zkJ7n99tspLi7miiuuAGD//v28853vJC8vj7KyMj74wQ/S19dn7C8UCvGhD32IvLw8KioquOeee7jkkku47bbbjG3G6sEpKCjgRz/6kfG4vb2d9773vXi9XoqKinjPe95DS0uL8ftMb883vvENKioqKCoq4pZbbiGRSBjbxGIxPvvZz1JTU4PNZmPhwoU88MAD6LpOQ0MD3/jGN7LKsHfvXlRV5ejRo2PW1fbt2zly5AjXXHPNJGsZWlpaxuz9u+SSS4xtrr32Wl5//XWampomvX8hhBATJ4GUEEKIWfXQQw9hNpt5+eWX+f73v09nZycXX3wxa9as4c033+TJJ5+ku7ubG264wXjNZz7zGZ599ll+/etf8/TTT/Pcc8+xbdu2Sb1vOBzm0ksvJS8vjxdeeIGXXnqJvLw83vGOd2T1jD377LMcPXqUZ599loceeogf/ehHWcHYhz70IR599FG+/e1vc+DAAf7rv/6LvLw8FEXhpptu4sEHH8x63x/+8IdceOGFLFiwYMxyvfDCCyxatIj8/PxJHQ9ATU1NVq/fjh07KCoq4qKLLjK2mTdvHqWlpbz44ouT3r8QQoiJM+e6AEIIIc58TzzxBHl5ecbjq6++ml/84hcANDQ0cNdddxm/+9KXvsS6deu48847jed++MMfUlNTw+HDh6msrOSBBx7gxz/+sdGD9dBDD1FdXT2pMj366KOoqsr//M//oCgKAA8++CAFBQU899xzXHnllQB4vV7uu+8+TCYTS5Ys4ZprruGZZ57hox/9KIcPH+bnP/85W7Zs4fLLLwegvr7eeI+PfOQjfOlLX+L1119n06ZNJBIJHn74Ye6+++5xy9XS0kJlZeWYv3vf+96HyWTKei4Wixm9VyaTifLycgCi0SjXXXcdmzdv5o477sh6TVVVVVbPmxBCiJkngZQQQohpu/TSS7n//vuNxy6Xy/h5w4YNWdtu27aNZ599Nivwyjh69CiRSIR4PM7mzZuN5wsLC1m8ePGkyrRt2zaOHDmC2+3Oej4ajWYNu1u+fHlW8FJRUcGePXsA2LlzJyaTiYsvvnjM96ioqOCaa67hhz/8IZs2beKJJ54gGo3yf/7P/xm3XJFIBLvdPubvvvWtbxkBW8bnPvc5UqnUqG1vvvlmAoEAW7ZsQVWzB5g4HA7C4fC4ZRBCCDF9EkgJIYSYNpfLRUNDw7i/G0nTNN797nfzH//xH6O2raiooLGxcULvqSgKuq5nPTdybpOmaaxfv57//d//HfXakpIS42eLxTJqv5n04Q6H45Tl+Lu/+zs++MEP8q1vfYsHH3yQ9773vTidznG3Ly4uNgK1E5WXl4+qR7fbzdDQUNZzX/va13jyySd5/fXXRwWKAAMDA1nHKIQQYuZJICWEEOK0WrduHb/61a+oq6vDbB59GWpoaMBisbB161Zqa2sBGBwc5PDhw1k9QyUlJXR2dhqPGxsbs3ph1q1bx89+9jNKS0unNB8JYOXKlWiaxvPPPz+qpyjjne98Jy6Xi/vvv58//vGPvPDCCyfd59q1a7n//vvRdd0YcjgZv/rVr/jKV77CH//4xzHnYWV63NauXTvpfQshhJg4STYhhBDitLrlllsYGBjgfe97n5Fd7umnn+amm24ilUqRl5fHzTffzGc+8xmeeeYZ9u7dy4c//OFRw9f+4i/+gvvuu4/t27fz5ptv8rGPfSyrd+kDH/gAxcXFvOc97+HFF1+kubmZ559/nltvvZW2trYJlbWuro4bb7yRm266iccff5zm5maee+45fv7znxvbmEwmPvzhD/OFL3yBhoaGrCGJY7n00ksJhULs27dvErWWtnfvXj70oQ/xuc99juXLl9PV1UVXVxcDAwPGNlu3bsVms52yHEIIIaZHAikhhBCnVWVlJS+//DKpVIqrrrqKFStWcOutt+LxeIxg6e677+aiiy7i2muv5fLLL+eCCy5g/fr1Wfu55557qKmp4aKLLuL9738///RP/5Q1pM7pdPLCCy9QW1vL9ddfz9KlS7npppuIRCKT6qG6//77+eu//ms+8YlPsGTJEj760Y8SCoWytrn55puJx+PcdNNNp9xfUVER119//ZhDDk/lzTffJBwO87WvfY2Kigrj3/XXX29s88gjj/CBD3zgpMMLhRBCTJ+inzjAXAghhJiDLrnkEtasWcO9996b66KM8vLLL3PJJZfQ1tZGWVnZKbffs2cPl19++ZjJMKajt7eXJUuW8Oabb465ILIQQoiZIz1SQgghxBTFYjGOHDnCv/7rv3LDDTdMKIiC9Nyru+66a8ZTlDc3N/O9731PgighhDgNJNmEEEIIMUWPPPIIN998M2vWrOEnP/nJpF574403znh5Nm3axKZNm2Z8v0IIIUaToX1CCCGEEEIIMUkytE8IIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJun/Axictv5U3X1UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwkdX0//lcdXX3MvefsBbsLy7EggoAIiKACUYyiaGLEBNBvIgpGECMRTeJiFKIYBEXJTxOBaFA8ozFBWEhEcQWWBRbYi4U92d3Z2dmdo6fvqvr8/qj+1FT39N3V18zr+XjwYHamj+qr6lPvfh+KEEKAiIiIiIiIiIiIaqa2egOIiIiIiIiIiIg6HYNsREREREREREREdWKQjYiIiIiIiIiIqE4MshEREREREREREdWJQTYiIiIiIiIiIqI6MchGRERERERERERUJwbZiIiIiIiIiIiI6sQgGxERERERERERUZ30Vm9Au7FtG/v370dPTw8URWn15hARERERERERUYsIIRCNRrF48WKoaulcNQbZ8uzfvx/Lli1r9WYQERFRmwsEAvjc5z4HAPjSl76ETCbT4i2qz0x7PERERER+2rt3L5YuXVryMgyy5enp6QHgPHm9vb0t3hoiIiJqNVsIrHtuK0ZGRnDKsUuxcsUKAEAmk8Fdd90FANi4cSOWLFniy/3996O/w/fXvYzR4GL8+sY/8uU2K+F9PPtu+BRGEAQALEIK6nWfALq6mrYtAPC3d/8Ye0YmcdkfvQl/8vpjGn5/thA4MJ4CACzqC0JlRQMREREBmJiYwLJly9x4USkMsuWRJaK9vb0MshERERHiaRPXPDgCAPjt2Qvd9UE6nXYv09XV5du6IRiOIBAMIxjx7zYr4X08gWAYb0+dDgDYHNyASG9v04Ns4XAXAkELRrA5z0M8beLttz4OANj8hT9CxOAymYiIiKZU0lKMgw+IiIiISrBt2/25q6u74GWEEL7dn5W9P6VMz4+ZTvY8sSyrxVtCREREVJnZvXojIiIiKiOZTLk/h0LBgpfxM8gmg3qaOrvLFWW5pukJchIRERG1MwbZiIiIiEowTdP9uViZgL9BNue2yk2vmunk4zct/55bIiIiokbqmNXbmjVroChKzn+Dg4Pu34UQWLNmDRYvXoxwOIwLLrgAmzZtauEWExER0UxgV1Cu2IhMNn3WB9mymWwWM9mIiIioM3TU6u2kk07CgQMH3P9eeOEF929f+cpXcPvtt+Ouu+7C+vXrMTg4iIsuugjRaLSFW0xERESdrpKeYP72ZHNuq5LmujPZVCYbe7IRERFRZ+ioIJuu6xgcHHT/mz9/PgBnYXvHHXfgc5/7HC677DKcfPLJuO+++xCPx3H//fe3eKuJiIiok1l2c4M8djZgp2kdtUzznarIwQfMZCMiIqLO0FGzybdv347FixcjGAzirLPOwi233IKVK1di586dGBoawsUXX+xeNhgM4vzzz8e6detw9dVXF73NVCqFVGqqofHExAQCgQAymUzOKHsiIiKandKpJN68VEMoFIJtmkjDCfqYpoljjjkG8Xgcpmn6sm4QQsA0M1BhQ1VEU9cipmnida97HZDJABtfwOXaQQCAjex2BAJN2xYAznMAG2Ym3ZTnwTZtXP76pdmfp15nIiIimt0ymUzFl1WEn/UNDfTggw8iHo/juOOOw8GDB/HFL34RW7duxaZNm7Bt2zace+652LdvHxYvXuxe5yMf+Qh2796Nhx56qOjtrlmzBjfffPO03xEREREREREREa1Zswbj4+Po7e0tebmOqUN4+9vfjve+9714zWtegwsvvBD//d//DQC477773Mvk9y4RQpTtZ3LTTTdhfHzc/W/v3r3+bzwREREREREREc1oHVUu6tXV1YXXvOY12L59O9797ncDAIaGhrBo0SL3MsPDw1i4cGHJ2wkGgwgGgzm/+9KXvoQDBw6gp6fH9+0mIiKizvLKK69g2659WLR4MU494Rj3CzwhBLZs2YKhoSEsX74cK1eurPu+TNPEff/5ENZuPojw0pNwz4fPqvs2KyWEQCKRAGIxhL79HYxll4kDMKFcfx3Q1dW0bQGAr/5wLZ5+aS9OOWk1PvveNzT8/oQQGI075SADkcCsHzxBREREjmg0WnHFY8cG2VKpFLZs2YLzzjsPK1aswODgINauXYvTTjsNAJBOp/HYY4/hy1/+ctW3nclkEAgEYBiG35tNREREHSZtAdc/lgKwE5u/cBwihrN8SqfT+MUvfgEAWLFihS/rBkVRAEWDDRWq3ty1SDqdxp133gkAuA4q3pBy1lSbgxsQMQygyesiXQ/AhgpTKE15HuJpE2/48iMAgM1f+CP3dSYiIqLZLVBFX9qOWT38zd/8Dd75znfiqKOOwvDwML74xS9iYmICV155JRRFwfXXX49bbrkFq1atwqpVq3DLLbcgEong8ssvb/WmExERUQezrPLTRf1qcSuEcKeL6urszqTSso/ftjmAgIiIiDpDxwTZXn31VXzgAx/AyMgI5s+fjze84Q144okncPTRRwMAbrzxRiQSCVxzzTUYHR3FWWedhYcffpgln0RERFQXyy4cZDMMA1dccQV2794NTdN8uS8hBIQABBRoWnNb5xqGgc9//vNALIb4V/65qfddiJp9Tk27I2Z0EREREXVOkO2HP/xhyb8rioI1a9ZwMigRERH56tXDsaJ/8/Zn84M3k02b5ZlsuuoEGZnJRkRERJ2iY6aLEhEREbXCY9sOuj+PJzI5f2tEkE0IwIbiBplmKzUbZLQYZCMiIqIO0TGZbERERETNtmskhq37xwAsAADsOBTDor4wAGcS6G9+8xtMTk5i/vz5vtyfbdsty2QzTRM///nPAdPEHzX1ngvTskFGy2KQjYiIiDrD7P6KlIiIiKiE/++3r0DBVJbaK8OT7s+2bWPXrl0YGRnxraTRKRfN9mRrcpDNtm1s3rwZm196Ce0Q1pI96VguSkRERJ2CmWxEREREBRycSOKnG/ZhFWwsNpIYShvYMVK4P5vfPdkEWtuTTYfAe9URAICG1gwekEG2ZpWLaqqC975uqfszERERUbUYZCMiIiIq4F9/twNpy8LR84J4+yIdd7wgmhJkEwIQAtBbGOgxFIF/Nna27P6B5g8+COoa/vlPX9uU+yIiIqKZiUE2IiIiojzJjIX7n9wDBQJnLh9AUNdgw8T2g9GCl/c/k6355aLtZqpctDWZdERERETVYk82IiIiojz7xhKIpS30GCqOnhNBVygAGwoOjCcRTWamXd7fTDYBtDjIJgQQFyriQoVPD61q7uCDJgXZhBCIp03E06ZvrycRERHNLgyyEREREeU5OJ4EAAz2GsjYCq77TQqAE/Ta7hl+4LepwQet7QuWgIrVqdOxOnU6Ei1aLk6Vi1pNub9ExsLqf3gIq//hISQyzblPIiIimlkYZCMiIiLKMzThBNkWdhvT/vbywelBtkYMPmhlT7Z2oOssFyUiIqLOwiAbERERUR4ZZFvQHZj2t5cK9GXzffABFLdccrbSVA0Ag2xERETUOWb36o2IiIioAFkuOq9AkK1QuWgjMtm0Wb5K0zUnk88WzZkuSkRERFSvWb58IyIiIppOZrLNixQIsjUwk822bWayZTV78AERERFRvWb36o2IiIiogIMTKQDAnIg+7W/7C0wY9TuTDWBPtoDulIsKZrIRERFRh2CQjYiIiCjPwWwm20A4N8g2PzsI4eW8ktHG9GSb3UE2PVsvK5jJRkRERB1i+tezRERERLOYZQsMR51MtoGwhkNjwBuP7kJvbw9GY2kcmjyC7cOTeM3iHhx77LEYGxvz7b5ze7I1N8imqipWr14NmCYCW1/CJeoR5/doTZBLlos2qyebqii45DWD7s9ERERE1WKQjYiIiMjj8GQKli2gKkC3oWJcU/D5C5dg1apVWPPLTfjDjiPYfjAKXV+GSy65BBs3boTqU/+0qSCb0vRyUV3X8Sd/8idALAZsuw3fMl5p6v3nc8tFm5TJFgpo+NYHT2/KfREREdHMxHJRIiIiIg859GB+TxDIZlFpmhPwWbWwG8DUhFElm/Hkf7lo8zPZ2o0sF7V9em6JiIiIGo1BNiIiIiKPoXEnyLawNwTLsgBMBdlWzOsCAOw5EgfQmCCbnQ20zfYgW8DtycbBB0RERNQZWC5KRERE5CGHHsggW8oUOP/uFwG8iF9cey4AYCyeQTqdxh133AEAeOtb3+rLfTtBNgAtGHyQTqdx6623AgCuEypOTTmlk5uDGxBp6pY4tCZnssXTJlb/w0MAgM1f+CNEDC6TiYiIqDrMZCMiIiLykOWig55MNqk/EgAAjMXTsDy9wvwtF3UGHzS7J1u7CWSzB0WTBh8QERER1Ytf0RERERF5DI07k0UH+0KwrGjO32SQzRZAwgQ++tGP+jr4wLZt2AIQUNzpms0SCATwN3/zN0A8Dtx1d1Pvu+D26Nly0WzgUeHETyIiImpzzGQjIiIi8sgvF/UKaCp6Qs53lKOJDLq6umAYhm/37c1k05q8SlMUBV1dXeiKRNAO4Sw9m8mmAGjSgFEiIiKiujDIRkRERORRqlwUAOZ0OUG10Vi6QYMPWpPJ1m7k4AMFAhmLJaNERETU/lguSkRERORxMDtddLAviOFD04NsAxEDuw/HMTKRwCMbf4fh4WEcf/zxvty3O10Uze/JZpomHnroIcA0cV5T77mwgD6VyWYxlY2IiIg6AINsRERERFmxlIloygTglIvuN81plxmQww9iKWx77jkAwKpVq3y5f6dcVGayNTfIZts2nn76aQDAuW1QMKp7MtlMi0E2IiIian8MshERERFlyX5sXYaG7qAO27ahKMD5q+ZBVRWoioIBWS6ayLjX87dc1LktrYWN/jUIvFkdAwCoaE2Ay/Bkspl248tFVUXBm4+f7/5MREREVC0G2YiIiIiyZD+2hX1T/dgMTcF3rzoDWrYR/5zIVE82ye8gmwCgaa0L9AQVgXuM7S27fwBQVRWqosAWAmYTerKFAhru+dDrG34/RERENHPN7o66RERERB4Hiww9UD1DCNxMtnhukM2PQJt38EGze7K1G0VRIBPK0ub03nhERERE7YZBNiIiIqKsofEUAKcfmwyy6bruThEFpqaLjnmCbH6RwToBNL0nW7tRVdUtmW1GJhsRERFRvRhkIyIiIsqSmWzeIFtGqDjx73+NE//+14inTQzIctF4Jue6fmeytbInW1yoODH5OpyYfB3iojXLxWZnssXTZs7rTERERFQt9mQjIiIiyhoal+WiQTfIpmkaEpmpIM+crsYF2WzbdieM6i3syQYACWgtvX9FUbJlunbTMtm8rzMRERFRtZjJRkRERJQlBx8MegYfaFrucmlOVwDA9HJRPzPZAAWaymWawnJRIiIi6iBcvRERERFlFSoXlVNFpf5suehEsjHlorIn22wffABMBdkyFjPMiIiIqP0xyEZEREQEJ8B1KDp98MG0IFs4kL389Ov7sQ2yJ5vawp5s7UJVnKUqg2xERETUCRhkIyIiIgIwmTJhOrWamNNlTAXZ1Nwgm66p6MsG2rz8C7JlM9la3JOtHSjZbD6L5aJERETUARhkIyIiIgIwlh1kYOgqQgENpulMmMzPZAOmhh94+RtkU6CxXNQtF02bDLIRERFR++N0USIiIiIA4wknyCbLQWUmm65rOGvFHABwSzgHIgHsgYKeeYugmQkAPvZkA1rSk01RFBx99NGAZUHb8yrOUiYAACrqf1y1UrPDH6wmlIuqijLtdSYiIiKqBoNsRERERJgKsvXlBdkiwQAeuPrsnMvO6TJgQcWiM9+GpandsCzL10w2oPmBnkAggKuuugqIxYDbbsMDwW1Nvf9CmjldNBTQpr3ORERERNVguSgRERERPJlskdwgW6Fy0YHshNHReNoNBPnBmS7qDD5gT7apTDbTal02HREREVGlGGQjIiIiwlRPtvxMNl2fnvg/kO3JNhqbCrL5kclm27Y7+IA92aay+ZpRLkpERERUL5aLEhEREcFbLuoE0GRgJ20Dr/vHtQCAx//2zYgYOgYiBnRYSD/7CzymCpx11lk+Bdk8mWxqc78LTafTuPPOOwEh8FdCxVtSpwAAHg8+j0hTt2SKmg00ZppQLhpPm3jjl/8PwNTrTERERFQNrh6IiIiIAIwl0gCmZ7JpqoYjsXTOZed0OZdRrTQy2SQrP4JslnCCSQKA1oLm+/F4PPuTgiMINP3+87mDD+zmTBfNf52JiIiIqsEgGxERERGAiSKDD4r1ZDOhYkv/G/CXJ2lQVdWfTDa395gCrck92QKBAD72sY8BiQQC372vqfddjKo4QbaMyXJRIiIian8MshERERGh+OADtUCQbU6XAUDBgbSBnp4IEomEP5ls2YwtWwB6k3uyKYqCBQsWALEY4uUv3hSyXLRZmWxERERE9eDgAyIiIiIUH3xQMJMtO/jgiM+DD6aCSQoHH8BbLsrpokRERNT+mMlGREREBM/gg0j5INuciAEVNo4xd+Oll0awePEin4Jszm20oiebZVn43e9+B6TTOL2p91ycDLKZLBclIiKiDsAgGxERERFyM9ls24adzSrTtOmJ/73hAHRF4LTAAbzyCrBo0aC/mWzKVKlks1iWhcceewwAcCraI4tOY7koERERdZCOLRe99dZboSgKrr/+evd3QgisWbMGixcvRjgcxgUXXIBNmza1biOJiIioY8jBB/3hgJvFBgABXccpS/twytI+qNnsMk1V0BvKnb7py+ADGdhTW7tEUyFwihLDKUoMKlpXqikHHzQjyKYqyrTXmYiIiKgaHZnJtn79enz729/GKaeckvP7r3zlK7j99ttx77334rjjjsMXv/hFXHTRRdi2bRt6enpatLVERETU7kzLRjRlAnAy2dLpNABA13VEggH88uNvnHad/i4DiE39289MtmZnseULKQK/DG5u6TYAU8HGZvRkCwW0gq8zERERUaU6LpNtcnISH/zgB/Gd73wHAwMD7u+FELjjjjvwuc99DpdddhlOPvlk3HfffYjH47j//vtbuMVERETU7iaSpvtzXziAZDIJAAiFQkWvMxAxcv7tTyabcxsyg2u2UzUn2GhaLBclIiKi9tdxK7hrr70W73jHO3DhhRfm/H7nzp0YGhrCxRdf7P4uGAzi/PPPx7p164reXiqVwsTERM5/RERENLuMxZ3Mte6gDl1T3SBbMBgsep2BiL/lokIIN2Or1Zls7WIqk42DD4iIiKj9dVS56A9/+EM888wzWL9+/bS/DQ0NAQAWLlyY8/uFCxdi9+7dRW/z1ltvxc033+zvhhIREVFHcSeLhp3AWSqVAuBksiXSFi683RkI8MgN5yNsONNG/c5kE0K4t9HqnmwJoeLNqZMBAI8EX0S4Rdshh040o1y02OtMREREVKmOyWTbu3cvrrvuOnz/+98vWbqh5DWqFUJM+53XTTfdhPHxcfe/vXv3+rbNRERE1Bnyg2zeclEBgX1jCewbS0B4hgD0NyDIJmNJrS4XFQD2IYh9CLZw7MFUsNFuwuCDYq8zERERUaU6JpNtw4YNGB4exumnn+7+zrIs/Pa3v8Vdd92Fbdu2AXAy2hYtWuReZnh4eFp2m1cwGCxZCkJEREQznwyy9Udyg2wly0W7Ajjo+be/mWwsFwXgTvm02JONiIiIOkDHZLK99a1vxQsvvIDnnnvO/e+MM87ABz/4QTz33HNYuXIlBgcHsXbtWvc66XQajz32GM4555wWbjkRERG1u1LlosX0hwNF/1aLnEy2FpeLtgtNc0o2rSZkshERERHVq2My2Xp6enDyySfn/K6rqwtz5851f3/99dfjlltuwapVq7Bq1SrccsstiEQiuPzyy1uxyURERNQhxuJTmWy2becE2cwi1+kO5i6j/CkXdW5D15jJBgC67MlmsXyTiIiI2l/HBNkqceONNyKRSOCaa67B6OgozjrrLDz88MPo6elp9aYRERFRG5OZbL3hANJpZ9KooigIBAIwM4UnW+Y3xvenXBQAlJYPPmgXcsqqLThdlIiIiNpfRwfZfvOb3+T8W1EUrFmzBmvWrGnJ9hAREVFnkplsfeFAztCDUsOTwgF/M9kAwBZOy332ZHPITDa7CdNFiYiIiOrV0UE2IiIiIj+4gw/CRk6QDQAUKFi1oNv9WYoENYzaIYRUp1+YX+WirQqyKYqC+fPnA7YN9dARrFISzu+bviVTNDXbk60J5aLFXmciIiKiSjHIRkRERLPeeMIpEe0LB9x+bHKyaNjQsPaG86ddpycSwn+mTsbxoQm8TdN8CrIBAkpLerIFAgFcc801QCwG3HYb1gZfbPo25JPPgy0aP/ig2OtMREREVCk2/CAiIqJZz81kiwSmZbIV02U431WmTP8y2eRtaCXKVGcTzS0X5XRRIiIian8MshEREdGsJ4Ns3p5sMpOtGDn4wLQByxY+ZrKxJ5ukq+zJRkRERJ2D5aJEREQ063kHHxzIlovKTLZE2sK77nocAPDLj7/RDa4FFBvvDr6IAGwk0/N9zGRT3OBSM2UyGXznO98BbBt/LlS8N70aAPBLYzPCTd8ah645z3UzMtmKvc5ERERElWKQjYiIiGa1ZMZySz57wzp25pWLCghsH550f5Z0VcGA6lw2Y9kdn8kmhMChQ4cAADYUbBdOaK2VOWRuuWgTerIVe52JiIiIKsUgGxEREc1qslRUUxWEtamsqXLlorqu47dYjVB6HCcLxbdMNiGUlgTZdF3HlVdeCSQS0H/446bffyG6KjPZGPQiIiKi9scgGxEREc1qMsjWG9LdyaKGYUAtU7KpqirixhzEUybMGdCTTVVVLF++HIjFEG/6vRema+zJRkRERJ2Dgw+IiIhoVpP92PojRsWTRSXZt8u/clHZk42DDwBA15znoRnlokRERET1YiYbERERzWpuJls44GaylSsVBQDLsrDcPoBJdQxps9u3IFurMtksy8KGDRuAdBonNv3eC5OZbPU+t5VImZb7czPuj4iIiGYeBtmIiIhoVhuLpwEA/eFAVZlslmXh6PhLQABIm4t86snWunJRy7Lw4IMPAgCOQ3tk0jVzuugTrxx2f37+1XGcfcy8ht8nERERzSwsFyUiIqJZTWay9RUJsilQsKQ/jCX9YShFgk+mj+WiAq0ZfOClAFiCFJYg1dJwm5wuKprQk+1/tx5yf/7PZ/c1/P6IiIho5mEmGxEREc1qEwnZk61wuWjY0PD7z7yl5G2YVv1BIJnJBqDlPdnCio3fh55v6TYAgNGkclHbFnjspakg2/+8OISbLz0ZoYDW0PslIiKimYWZbERERDSrjZXJZKtExvJruqjsycYlGuApF23w4IMX9o1jOJpCl6FhSX8Y0aSJhzYNNfQ+iYiIaObhCo6IiIhmNXfwQVBFJuP8XH2Qza9yUWTLReu6qRkjoDcnk+2RLQcBAOcfPx/vPX0pAOAnG15t6H0SERHRzMNyUSIiIprVxuJOYK1LswETMAwDuj61REpmLPzp//cHAMCPrj67YAmhX5ls8jZancmWFArel3ZmjP7I2ILqQo7+kZlswnaeG0VpTBnt2s1OkO2FV8ex41AMAPD4yyPYP5bA4v5wQ+6TiIiIZh5+T0pERESzmsxkCysmACASieT83RYCz786judfHYddJJBm2v5msrW6J5sNBc+LLjwvumC3cPRBIJvSZ4v6g5jF7D0Sx9ahKBQAe0cT2DoUxRlHD0AI4OccgEBERERVYJCNiIiIZjUZZAtlg2zhcPWZS6bvPdlaG2RrFwFd9mRrXJDt0Wyp6OuOHnB/957TlgAAfvnc/obcJxEREc1MDLIRERHRrCani2oiDWB6Jlsl0j70ZAMAIcAgm4fuZrIBtt2Y4QePbBkGALzl+AXu785cPgcAsOtwrOH94IiIiGjmYJCNiIiIZrVo0slgUywn2FZLkM30bfCBANqgXLRd6A0uF81YNp7ceRgAcP4J893fz+81AAAp03Z79hERERGVwyAbERERzVrJjIW0ZQMQgJkCUFuQzc/BB0Iwk00K6CoElIYF2YajKWQsgYCmYPmcqdc9qGuY2+UE2g6MJ32/XyIiIpqZGGQjIiKiWUtmsQUVC7oCqKqKUKj6WZr+ZbK1x+CDdqGrKgScMlrTtHy//YMTTgBtQU8Iat5zPtgXyrkMERERUTl6+YsQERERzUzRpFMKOMcQUBQF4XAYijI9wDUnm9WUzwiGEE1mkPEpyCZvIz/g0yyRSMSJaMWSmIPWl0nqmgIBBYBAxvK/J9vBbJbawt4ggNzXeVFfCJv2TzCTjYiIiCrGIBsRERHNWjKTrd9wgluFSkUjho5n/v6iab83DAPvuuKj+MA3HsFr1HEfM9nQkkw2wzDw6U9/GojFgNtuwzOh55q+Dfl0VQbZgIzlfybbUDZLbbAvNO11XtjrZLINjSd8v18iIiKamVguSkRERLOWDLL1BYoH2UrpMpzvKzO2f4MPBBRoKpdogNObTj6rDclkm3D68C3omV4ivChbLjrEclEiIiKqEFdwRERENGvJctFu3QnghMPhqq4fMTQIwMdy0dZlsrWjgKpCCOe5aGRPNtl/zWuwz3kvsFyUiIiIKsVyUSIiIpq1ZCZbl+b8v1AmWzJj4crvPgUAuO/Dr0cooAEAMpkM/usnP8CbjMPYb/UgY9aXaSUz2YDW9GTLZDL4j//4D8Cy8F6h4C/TxwEA7jNeQvWjIPyhqgqyMbaGZLINZQNog72haa/zoFsuyiAbERERVYZBNiIiIpq1JpIZaLARUouXi9pC4MmdR9yfJSEEXt27BwtU4IDVjVSdmVZTmWytmS4qhMDu3bsBABYUPCl6AQA2WptVpyoqIACzAT3ZDkaz00V7g7BsO+d1HmS5KBEREVWJ5aJEREQ0a0WTJoIwEdRVGIYBXa/8+0dd1/G+970PT5pHw4aCtA9BNqcnm9OLrNnk43nfO9/ZVt/CymmvZp2ZgoUc9GSyxeNTAw6EJ8gWTZqYTJm+3zcRERHNPAyyERER0awVTZoIKiYMXat66IGqqjjppJMwqs8FoCDtU7moM/ig+UE2+XhOOv74tlogqjLIZvsbZIsmM4ilncDowt4QUsmpjLVMxkR3UEdP0Ak3smSUiIiIKtFOaygiIiKipoomMwgpJgxdrTrIJoWMAAD4kskmq1FbEWRrV0p20qrf5aJysmhPUEdXUEcqnXL/ZppO5prMZjvIklEiIiKqQDtVAxARERE1lcxkC+rhqoNstm1jy5YtWKyMIgbhS082WS7aip5s8vEglcLRTb/34mS5aL2DJfLJwNnCbCAtlUq7f8tknKmzg30hbB+e5IRRIiIiqgiDbERERDRrRVMZhLI92aoNspmmiZ/85Cc4DsBGLETGlyAbWlYuKh8PAFzX4mEHXqqqwgZg+Txd1A2y9QYBIKdc1JRBNnfCaAJERERE5TDIRkRERLNWNGkioFgwdBXBYLDo5cIBrext+dWTDWiPctEw/J/mWQtVVWADyPjck23IDbJlM9nSKRjZl9m0nHLRRZwwSkRERFVgkI2IiIhmrWgig14IBHWt6GTRiKFjyz++rext1VvOKHuytapc1Cui2NgSeqal2yC5gw/qzBTMJyeLyiAbzDS+fVEXAECH81oO9oUBcPABERERVYaDD4iIiGjWmkymoUDA0FVoWvlstVLSdTbmz50uyiWapLqDD/wuF3UGHQz2hiCEQCo1Nfhgqiebk93InmxERERUiaoz2VKpFJ566ins2rUL8Xgc8+fPx2mnnYYVK1Y0YvuIiIiIGiaWcoIpwUD9QTbfMtlE6zPZ2okMslmW8PV2veWimUwGQkzdvhtk63Uy2ThdlIiIiCpRcZBt3bp1+MY3voH//M//RDqdRn9/P8LhMI4cOYJUKoWVK1fiIx/5CD760Y+ip6enkdtMREREVLeUacEyTUAHIqGgO8UyXzJj4WPf3wAAuPvPT0eoSH+2TJ2ZVlM92RSoLQ6ypYSCqzPHAgDuDryMUAu3Rb4upu1zuahn8EEymUTaErjrOSeb7eaLnEmjsifbyGQaKdNCUK8vEEtEREQzW0W1CJdeeine9773YcmSJXjooYcQjUZx+PBhvPrqq4jH49i+fTv+7u/+Do8++iiOO+44rF27ttHbTURERFSXaNKEBid7KRIMFL2cLQT+b9sh/N+2Q+5ggkIypp2TDVWLdunJZkHB/9n9+D+7H3aLJ41qbiabf+Witi0wHM2Wi/aFkEqlIATw/CELzx+ykEo7mWz9kQAM3bn/4YlU0dsjIiIiAirMZLv44ovx4x//GIZhFPz7ypUrsXLlSlx55ZXYtGkT9u/f7+tGEhEREfktmjShKTYMXYURKB5kq1TGcoJsxTLiysntycZyUUlm9dWbKeg1EkvBsgUUBZjXHcTBA4dz/p7JONNFFUXBor4Qdh+OY2giiWVzIr5tAxEREc08FQXZrr322opv8KSTTsJJJ51U8wYRERERNUM0mYEGgaBWfz82YCrIVqupIFvrM9naiezJZtv+BdlkVtq87iACmopkMrfnmmma7s+DvU6QjcMPiIiIqJyqBx94TU5OTlvw9Pb21rVBRERERM3glIs6mWy6XteSCACQsYQPQTbn51b3ZGsnMqvP9DHINpQNmA32Oj3XvJNFAcDMDj4AnHJS5zoJ3+6fiIiIZqaq58Pv3LkT73jHO9DV1YW+vj4MDAxgYGAA/f39GBgYaMQ2EhEREfkumsxAU2wEdc2XIJtp15/JJrLlosxkm6KqTpahnz3ZhjxDDwBMy2SzbRuW5QxamAqysScbERERlVb1ivKDH/wgAOC73/0uFi5cWHPfESIiIqJWmsgOPvAvk82P6aLO4AP2ZJsinws/g2zDbpCtcCYbAGQyGWia5ma7DU0wk42IiIhKq3pF+fzzz2PDhg04/vjjG7E9RERERE0hy0WDuh892RRkzPrLReX1dbXqYoMZS/Zk87VcdGKqXNS2baTT6WmXkX3ZFmUz2diTjYiIiMqpOsh25plnYu/evQyyERERUUeLJjNQK8hkixg6dv3TO6b93jAMfP7zn8eG3aN45js/QcaHclEbyE4XrflmaiYfD2Ix4LbbsCu0vvkbUYDMZPNz8MFQdvDBwt6Qm8UWNjTsvPUSrF+/HvF4HJlsX7bBvjAA4CCDbERERFRG1Uu4f/3Xf8WXv/xl3HfffdiwYQOef/75nP8a5e6778Ypp5yC3t5e9Pb24uyzz8aDDz7o/l0IgTVr1mDx4sUIh8O44IILsGnTpoZtDxEREXW2aNKEptQ/+KArqEHAn+miIjtdVGMmm0tze7LV/tzmc8tF+6aCbMFgEIqiIBAIAMBUkC1bLnowmoJl+7cNRERENPNUvaI8dOgQXnnlFXzoQx9yf6coCoQQUBTFbRLrt6VLl+Kf/umfcOyxxwIA7rvvPlx66aV49tlncdJJJ+ErX/kKbr/9dtx777047rjj8MUvfhEXXXQRtm3bhp6enoZsExEREXWuaDIDDaLuwQeRgA4Bxbfpohx8kMvtyWb7t8Y8mA2yLegJIpmMAwBCISeYJoNsslx0fk8QmqrAsgVGJlNuHzciIiKifFWvKD/84Q/jtNNOww9+8IOmDj545zvfmfPvL33pS7j77rvxxBNPYPXq1bjjjjvwuc99DpdddhkAJwi3cOFC3H///bj66qubso1ERETUObw92UoF2ZIZCzf86DkAwO1/eipCASezyjRN/PznP0cqY0GBQMYSdTXnd4JsTpCuFYMP5OOBaeISoeDTmZUAgNsDO9DKsJKWrZ21fCoXtWyBsYSTpTa3y0BidBQAoGgBXPMfGzAxEcUVxwk3k01TFSzoCeLAeBJD40kG2YiIiKioqoNsu3fvxi9/+Us3o6wVLMvCj3/8Y8RiMZx99tnYuXMnhoaGcPHFF7uXCQaDOP/887Fu3ToG2YiIiGiaqGe6aKnBB7YQ+J8XhgAAX/2TqUw127axefPm7L8WAQASGRPdNW6PDLK1arqo9/FcBAX/Y88BAHwVO5u+LV5y8IFfpZoTiQxkwmF/xMDYkFMuqhtB/M8LzmP9i1URN8gGOL3bDowncWA8idcu82UziIiIaAaqOsj2lre8BRs3bmxJkO2FF17A2WefjWQyie7ubvz85z/H6tWrsW7dOgDAwoULcy6/cOFC7N69u+RtplKpnLHtExMT/m84ERERtZ1oyunJVi6TrRhN0/D2t78dQgBP/9fzAGzE02bN2+P0ZAOEUFoSZJOPB+k0tLX/2/T7L0b2p/Nr8MFo3Jkk2mVoMHQVyaRTOhoKBXMuJ8tFAWfC6HN7gaHxhC/bQERERDNT1SvKd77znfjkJz+JF154Aa95zWvcvhXSu971Lt82Lt/xxx+P5557DmNjY/jpT3+KK6+8Eo899pj79/zSVdknrpRbb70VN998c0O2l4iIiNpXNJFGTwXTRYvRNA2vf/3rnZ//exNg20ima+8bJsshBQCtSe04vNzHE4sh3kZBNl3zO8jmZKgNdBkAMDX4wMgNsnkz2Qb7nBJROZWUiIiIqJCqV5Qf/ehHAQBf+MIXpv2tkYMPAGe0vMygO+OMM7B+/Xrceeed+Nu//VsAwNDQEBYtWuRefnh4eFp2W76bbroJN9xwg/vviYkJLFvGOgAiIqKZbjKZQa8Pgw8AIKCryKSBWB2ZbKZneqahc7qoNNWTzZ9y0bFsJttAxAmyyUy2YCi311pOkC3bh42ZbERERFRK1StKv75F9IMQAqlUCitWrMDg4CDWrl2L0047DQCQTqfx2GOP4ctf/nLJ2wgGgwgGgyUvQ0RERDNPPOUEW4IBze37VQ3btrFnzx4AgK4qyABIpOoJsslMNgUBrflBNvfxJBKY1/R7L05rUCZbfySAWCwGy7KgKAqCQSPncoUy2Q6MJ33ZBiIiIpqZ6vvatok++9nP4u1vfzuWLVuGaDSKH/7wh/jNb36DX//611AUBddffz1uueUWrFq1CqtWrcItt9yCSCSCyy+/vNWbTkRERG0mY9nIZExAByJBo6Zp6aZp4r777gMAGMGVSABI1JXJNlUuGtBaM11UPp7r0Pz7L0b3uSebN5NtZGTE+XlgYNrwi9yebGEAwMEJBtmIiIiouJqCbI899hi++tWvYsuWLVAUBSeeeCI+/elP47zzzvN7+1wHDx7EX/zFX+DAgQPo6+vDKaecgl//+te46KKLAAA33ngjEokErrnmGoyOjuKss87Cww8/jJ6enoZtExEREXWmaNKErjjlh5FQoMylyzOyAZpEpva2GWY2iBTQ1JqCfjOVli3l9aslyagbZAu4Qbb58+dPu1wmk3H7+8py0QPjyYp6/hIREdHsVHWQ7fvf/z4+9KEP4bLLLsMnPvEJCCGwbt06vPWtb8W9997bsMyxf/u3fyv5d0VRsGbNGqxZs6Yh909EREQzRzSZgQobAU2FESgdZAsHNGz+wh+5PxcSyPZQqyeTzcpmsgX0wvfRTGHY2Bzc4P7cSoFskE34FmRzykD7DCAajQIA5s6di0D2dbZtG+v/8HsATjZbIBDAgl6ntUjKtDEWz7hDE4iIiIi8qg6yfelLX8JXvvIVfPKTn3R/d9111+H222/HP/7jP7I8k4iIiNpeNGlCg0CwgsmiiqIgYpS+jAyM1VUums1k09XWZ0kpChBpcXBNkq+PbVuwbbum/nlesly0S8QBAH19fTAMJ2gmX2dd12FZlhtkCwU0zO0ycDiWxo79h/DaFQvrHpZBREREM0/Vq5QdO3bgne9857Tfv+td78LOnTt92SgiIiKiRppIZqDBhqGr03px1UIOKkika8+2mspk42RRLyeYpcAWIqdPWq1GY04mWyATA1C4VFQG0LzDDxb2hjCgxPH8xuewY8eOureDiIiIZp6qV3HLli3Do48+Ou33jz76KJYtW+bLRhERERE1UjRpQlPsijLZUqaFT/1oIz71o41ImYWDaEY2yJbK1BYEEkJMZbL5EPSrV1oo+FR6BT6VXoGUaG1mXUBTYUGBLeBPkC2ehg4LmpkAAMyb58xS9b7OUKcH2Rb1hTBXjWMyaSKRSNS9HURERDTzVJ3n/qlPfQqf+MQn8Nxzz+Gcc86Boih4/PHHce+99+LOO+9sxDZSBRKJBFKpFPr7+1u9KURERG1PlosaulY2yGbZAj995lUAwD+++6SClwkGZLloHZlstjOIwWiDTDYTCn5qO8Gnf8Tulm6LpqmwhArb9ieTbSyeQZ+SRCjQi56eHoRCzlAD7+v8p8csBpAb1BvsUnFYSWEyZfqyHURERDTzVB1k+9jHPobBwUH88z//M370ox8BAE488UQ88MADuPTSS33fQKrMpk2bMDk5iTe84Q3uYpGIiIgKi2bLRSvJZKuELPFM1jhdVAjhBtkCbZDJ1k4CquJ7JtsSNYlQYMDNYsuna9Mz2eZqTvbaZCrj26RTIiIimllqWlW+5z3vwXve8x6/t4XqkEqlAADpdJpBNiIiojK8gw/86MlmyMEHdZSL2kIG2VqfydZONFWBBdWXnmyJtIWUaaNLTyMUUDFnzpyCl9OzE2dlkE0IgS7L6eE2mWQmGxERERVW81e3GzZswJYtW6AoClavXo3TTjvNz+2iKtnZPi4iu0AnIiKi4qLJDFTFGXzgRyZbMBtk8yWTrQ3KRduJrjlBNuFDkG00O1lUV5w+enKqaL5AXpAtGo0irDqv7WTKZCYbERERFVT1qnJ4eBh/9md/ht/85jfo7++HEALj4+N485vfjB/+8IcFJzRRYwkh3MWeDLYRERE1k23bOHjwIAYGBjoio9rtyab5E2QzstlwqRp7sjlBNudnZrLl0lUVlvCnXHQ0noYCgXBAhaIoRbMY5XtC3t/Q0BC6QxqiIoRgKg3LsiCEgKK0digEERERtZeqV3F//dd/jYmJCWzatAlHjhzB6OgoXnzxRUxMTOATn/hEI7aRyvBmrzGTjYiIWmFkZATbtm3Dzp07W70pFXGCbP71ZAsa9ZeLTg0+YE82L93HctGxeAZqNsgGAKpaeCkcCEz1ZMtkMhgeHkZ3MIARO4KUaSNt2sxmIyIiommqXlX++te/xiOPPIITTzzR/d3q1avxzW9+ExdffLGvG0eV8WavMchGRESt4O0N2gkmkpmKp4tWIpQNjKXqKRcVAgJKW0wXbSeaO/ig/iDbkVgaKmyEAhoURSkeZNOdctHx8XGsW7cOQgh0R0KwjW4Ia9QtGfXjvUNEREQzR9UrA9u23T4VXoFAgKWKLcIgGxERtZrM6umU41A0aUJT7IoGH4QDGjb83YXuz1IgEMDf/M3fAADWPvkCACBRR5DNdjPZWhNkcx9PPI7wXd/EhuCzAIAwWru+C2gqTKH6Ui46Fk9nM9m0aa+793UO2E7QWK6xurq6cOyxx2LhE8/DPqKwLxsREREVVHWQ7S1veQuuu+46/OAHP8DixYsBAPv27cMnP/lJvPWtb/V9A6k8b5CNgU4iImoFGfzolONQNJFGN0RFgw8URcHc7mDB33d1dQEAwobzBWR9PdmcTLZW9WTzPh4owFy0xwRNd7qoLdxBBLUajTsZjKECQTbv6yyEgeXLl8O2bSxYsADd3d0AgEV9IRw+rHDCKBERERVU9SrurrvuQjQaxfLly3HMMcfg2GOPxYoVKxCNRvGNb3yjEdtIZXi/Se2UDAIiIppZOm0Az2QyAwXCv55s2R5fSbPeclFn6iVNCWgqLKiwfJouqiqFg2xeiqJg+fLlWLlypRtgA4DB3hBsqMxkIyIiooKqXlUuW7YMzzzzDNauXYutW7dCCIHVq1fjwgsvbMT2UQVYLkpERK3WaUG2eMrpHRcK6EX7ckkp08IXf7UFAPB3f3wigtn+a6Zp4qGHHgIAzFm4xLlsprapk1OZbECgReWi7uMxTVwgFPyTuQwA8Hf6XkzP42seQ1dhQYFl+zf4IBSYXiZc7HX2GuwL4TkomExlGGQjIiKiaWr+6vaiiy7CRRdd5P5bCIG9e/fiqKOO8mXDqHIsFyUiolaTwY9O+LInY9lIZ0xAB8LBQNmAmGULfO+J3QCAmy45wf29bdt4+umnAQB/fKkTkLKFQMp0GutXY2q6qNKyTDbv4zkXCr5nLQQA3KS/2pLtkQxNhSVUX4Jso25PNn1akK3Y6+y1UGayJS2WixIREdE0Fa/iNE3DddddVzSIMzw8jBUrVvi2YVQ5ZrIREVGrdVIm22TShK44x8tI2Kj5djRNw/nnn4/zzz8fIcP53lKBQLyGvmzeTLZWDT5wH8/ZZ6O6EGFjyUw2Oxtkq2et4/Rks8uWixYzr9uABQXJjMVMNiIiIpqm4lWcEAL33HMPLr74Yhw5cqToZaj5GGQjIqJW66TBB9GkCQ02ApqKYIGJ6ZXSNA0XXHABLrjgAhiBAHRNgQIglqo+w0kIAVsICNG6nmzu4zn33DYMsjk92ZwprLW/x+R00ZBRW5BtIGLAFgoSDLIRERFRARWv4hRFwdq1azEyMoIzzjgDL774YsHLUPMxyEZERK3WSZlsE0mnL5eh+TP0AHDWQEa2t1s9mWxo4XTRdmXoKmwoMLNvrXrKNEdjzuCDcIGebJWY02XAgopEhuWiRERENF1VmWwrVqzAH/7wB5x55pk4++yz8bOf/ayR20YV8n6T2gknN0RENPN0Uk82mclW72RRIQSGh4cxPDwMwBlYoEAglq4tk63V5aLu4xkZQTu9ik5mn4K07WxjrcEt07IxkTSzgw9qzGTrMmBDQcq0kGGQjYiIiPJUvYoLh8N44IEH8NnPfhbvf//78fnPf74R20VVYCYbERG1khAiJ5Ot3Y9F0WQGmmLD0GvLZpIymQzuvvtu3H333bAsCwFNhQIgnqqnJ5uCgNaaygD38dx7LzIt2YLCZPmsKVTYovZMtvGE86g02AjptQXZ+sMBWFAgBDART9e0HURERDRz1fxV6U033YRf/OIX+PrXv473vOc9iEajfm4XVYFBNiIiaiWR7ZXl/Xc7czLZRN2ZbF6K4gTHas1kA5zJpK3MZGtX8vmwUN+E0dG4E2SLGCpUVakpyKZrKsKG08dvPJ6saTuIiIho5qp4ZVmo39oll1yCJ598Eu9+97tx4YUX+rphVDlvkI3lokRE1Gz5QY/2D7JlsuWiWkVBtpCu4Xc3vtn9uRBFUdyMq3gd5aKA0rLBB14h2PidsdH9uZWmgmxKXUG2sWzmWW/QeQ3zg2yVvM4A0B02gCgwmWAmGxEREeWqOMhWbMF83HHH4cknn8Tll1+OvXv3+rZhraQEgoinLeg1fhPdbLGUiZTpvD7xtFXT4p6IiKhWiUTaPQ4BwGQyjUAdUzsb7UgsDUUIqKqKjFArOm7O7TYAAElzqhQ07bleyhJQFBVCCIzGMlUfi+MpEylLwBJORlsrjuXex5OEgrmKmf1ZBdIWEGjd+kJV4LxWpo1oIoWeGp6foXEn8ywcUJEyBdL29IBoodc5XyRoIDmh4PBkkmsuIiKiWaCaoVaK8PHr5j179uCoo47y6+ZaYmJiAqfc8rtWbwYRERG1OR0W/iL8LADge4nTYKL2/m7tYKY9HiIiIiK/7P7yH2N8fBy9vb0lL+drPYIMsLV7mQgRERERFceVHBEREVH1KioXPfHEE/H3f//3eN/73gfDMIpebvv27bj99ttx9NFH4zOf+YxvG9lse25/L/bvP4De3p5Wb0pFtr+0HUNDQwCAhQsX4rjjj2vxFhER0WxyeOQwNm/e7P779DPOQCQSLnmdDRueQTwWwwknnoD58+c3ehNzfPJHz2HH5hdw0XH9+ODb3oiBOQMlLx9Pmzjji48CAJ7+u7ciYjjLp3Q6jTv/2cn8+p+PnILvr12P3+1O4Pw3vA43vu2Eqrbp0KFD+ML31mLnhMCNH7gYbzq+uc8JkPt4Hjc24uz06wAATxvPIvLJTwBdkaZvk3Tel/8PWvwwrjurHycfezRWHbeq6tu4fe1L+Nff7cSfH2PivBW9OOWUU9DX3+f+vdjrnO8rv3oeGzZswGnL5+IzV76rtgdEREREHWNiIopFX67sshUF2b75zW/ib//2b3Httdfi4osvxhlnnIHFixcjFAphdHQUmzdvxuOPP47Nmzfj4x//OK655pp6tr/lRCaFiKEVXVy1G0MDgrozmCKoKx2z3URU2MTEBI4cOYKjjjoKqtr6BuhE5UQ9xyEACFVwLNJhIagrCGrNP24l0jYCio1uQ0NPJFjV/UcM3b287hkI0BsJIRJQEVBspC1R9WMK6SoUIaAoQHco0JJjuffxhJWpXLaIYiNiaEAL1xehgIYUFGgKoCt2Tc9PLOX0T+s1FAR1Bd1ho+jteF/nfPN6w9AUATOTQTigFRwORkRERDOHaVTeQqOiFcpb3vIWrF+/HuvWrcMDDzyA+++/H7t27UIikcC8efNw2mmn4YorrsCf//mfo7+/v9btphp5J4qyVJeo8+3YsQNjY2Po7u7GvHnzWr05RGXlT3usZNK1vE4rpmJHkxnoioChq74NaAgEAjA0FTpsxFM1ThcVAgKqO02Tphi6ijhUWKL26aKjsQwAJwgMTJ8uWqm53SEAQDJtwrbtmm+HiIiIZp6qvgY855xzcM455zRqW6hG3hOUVpysEJG/UqkUAKd0i6gTWFbuxKVyxyLbtt3rtCTIlsigGzaCugpd9yc7S9M0BDQVmmIjVsUEKkkIAct2vigLaMyMymdoKiyosOw6gmzxNABRd5BtoDsEQEEiY8GyLAbZiIiIyMWvSmcA78kNM9mIOl8m42Rb1HoiSdRs+UG2csci7+VbEWSLJ51Atp9BtkAggICuQIONeCpT9fVlkE1AYSZbAYZef5BtPJGBgqnS5toz2YKwoCCRtrifJiIiohxcxc0ALBclmjls23ZP2mSwjajdVVsu6n1vtyTIlnKyRMNBw7d+Wrquw8gGbRKp6rNQp8pFnawtymXoKkyhwLJFzfvGaNKEChtB3Xmdas5kixiwPZlsRERERBJXcTMAy0WJZg5vsIIZEtQpqi0X9b63m33cMi0b6bRz/13h4hPTq6UoCoKG098tWWOQzbYFhAAz2QoIaEpOJlstXyrG0iY0CBi6AlVVaw6wzukyYAsVKdNGKs0vQ4iIiGgKx1DOAMxkI5o5vBkazGSjTlFtJlsrg2yTKROa4txnVyhY0XVCuoaHP/km92cpEAjgYx/7mPtzKOgE7WoJvMhMNkBBoEWZbO7jSSTQ89178LDxAgAghNZ/gWfoGiwobt86y7KqLvWNpZwgW0BTC2axFXud8/WFA7CyAbrRWBLz5la1GURERDSDMcg2AzDIRjRzMMhGnajanmytDLJFkyZ02NC1qcyzclRVwXELe6b9XlEULFiwwP13JOQE2dI1BNls2872ZGtdJpv7eGIxQAGOU5It2Y5CDE2FgAIbznvLNM2qgmwp00LGEgjAmSpbKMhW7HXOp6kKgoEAkEljbLJ9niMiIiJqPdYjzAAcfEA0c3gnirJclDqFfK/K8rt2zmSLJp1spqCm+Tb0QHKDbDUEyE3LOX6LFmaytbOgrgJQYGeXrtXuH2MpZ62kKsUz2aoRCToB2tEYg2xEREQ0xbfV5YUXXogdO3Zgx44dft0kVYg92YhmDmayUSeSX/YEAgGk0+k2D7JloCk2jComi6ZNG9/8v5cBANe++Vg308yyLPzud78DAJx33nlu+amwTWQsu6pgWdrzhVmrBh+4jyedxllCwb+YiwAA1+oH4F/3utq4z3nNQTbn8hFdgaooBYNsxV7nQiIhA6lJYDyWqmo7iIiIaGaraHX5/PPP4+STT4aqFl9svOc978HIyIhvG0aVY7ko0czhDazJ5t5+TT8kapTOCrKZ0GAjqKsIBCorFzVtG3c+uh0AcPX5K2FgKsj22GOPAQDOOeccdIWdIJsGgXjaQl+48mBZxnSeh1aWi3ofz6lQcKe1BABwtT7U8iBbQMtmSdYYZJvMBtm6DOf6hYJsxV7nQrqCBkYBjMcZZCMiIqIpFQXZTjvtNBw4cAALFizAypUrsX79esydm9vl9dprr23IBlJpQoicwBqDbESdzRtks20btm3XXdZE1Ggy4CGDVuWORfnv82aKpjLQs0G2estFVVXFGWec4f4cDhrQVAW6bSOeNtEXriyIBwCZbKBSURRoamsC6+7jMU2oz2xsyTYUIwOPJpznptZMti7DuX69+9Xu7GTaaKL6SbJEREQ0c1W0uuzv78fOnTuxYMEC7Nq1iyWJbST/teBrQ9TZ8ktETdNkkI3amhAiJ5MN6ICebIqAodffk03XdbzjHe9w/x0IBBDQVOiW7fYAq5TMZNO01mWuuo8nFkO83YJs2f2gJerLZIvoxTPZqtGTDbJNJpjJRkRERFMqWl2+973vxfnnn49FixZBURScccYZRRcn7MnWXPknJ8xkI+ps+UG2TCaDYDDYoq0hKs87fKdjgmywYegB3wcfBAIBBFQFGmwk0lUG2axskK1Ea47ZzM1kE7VmsjmvRyTgTyZbb8TZL08mmclGREREUypaXX7729/GZZddhpdffhmf+MQn8Fd/9Vfo6Sk/4pwaz3tyAzDIRtTpCgXZiNqZ5SlzlEGreoJsW7duRTwex6mnnlqyF2ytJpKZbJBNq7gnWzFCCMTjcQBAJBKBrusI6Co02IilqwsCmdkgWysni7qPJ/uY2kn9QTbn8mHduX69762+bJAtxiAbEREReVT8Fe7b3vY2AMCGDRtw3XXXMcjWJpjJRjSzyKCaqqqwbbvqE0miZpPvUU3T3MBFuWNRqSDb8PAwbNtGMplEJBLxeWtlJpvwpSdbJpPBV7/6VQDATTfdhEAgAENToSsZxKsMssmebK3MZPM+nuvQXgNXgtkgW8auLcgmy0XDPmWy9XWFAADxFL8IISIioilVr+TuueceBtjaCHuyEc0cQgg3yBYOhwEwk43an8xk03XdDbLVmskmhHD/3ajjmdOTzYbhQ5Atn9uTDdX3ZJOZbHoLM9namZwumqkzky2k+xNkG+h2MtkSbRhkGx8fx7Zt23j8ICKiGSl/+GO78W11+a1vfQsjIyP4h3/4B79ukiogT0IURWn7NxvRbGLbNnbs2IG5c+diYGCg4uvIz3QkEkEsFmMmG7U9GWTTNA2K4gQwSgXIhBBFg2zFfvZTNJGGVuV00aCu4RfXnuv+XIyu6whoChSIqssI02Z79WQLwsYvjM3uz61mZIOP6WyQLb9dRjmT2czCkFY8yFbp6wwAc7KZbMk2DLLt3bsXIyMj6Ovrw+DgYKs3h4iIyFebNm1CPB7H6aef3pYD4nxbyf30pz/Fvffe69fNUYXkSYh8czHQRtQexsbG8Oqrr2L79u0VX8dbKiqHHTATgdqdDJhVmslmWVbOccp7WW/gpFFBNtmovpogm6YqeO2yfrx2WT80tXgZpaZpCGSDM9VOnTTt9spk0xTgtWoMr1VjaOHAU5eRfV4zlvPeqfb9ITPZgtmXvNCivNLXGQDm9DjZxqZlugHSdiE/R9UGIomIiNqdEAIjIyOIx+OIxWKt3pyCfFvJPfroo5ws2gLeMh2JQTai1pOBh3g8XvGJjgyoBQIBtyE7M9mo3Xkz2SrpyZb/nm52Jls86QS/QkbA98EKiqK4n115P5UyzfYKsrUbOfhABtmqXevI8t1gNrZWd7loVwiKAqgQGI2nEI/HsW3bNiSTybpu1w+NLrkmIiJqFe95VTsccwupq1xULnBkeQg1n1xAMchG1F68JzeTk5Po6+sre51CQTZmslG7qzaTrVCQTQgBRVGaFGRLwwAQCRkVXydt2rjn9zsBAB86d4Ub8CnEyH52qy0XlZlsgTYpF00LBfdYCwEAH9IOovJnqzHkc56uMcgmBx8Y2ae3UJCtmtc5ENAR0jUkMhaOTKZxeGyfO7TjxBNPrGrb/MYgGxERzVTedWS7BtlqWsn9+7//O17zmtcgHA4jHA7jlFNOwfe+9z2/ty3HrbfeijPPPBM9PT1YsGAB3v3ud2Pbtm05lxFCYM2aNVi8eDHC4TAuuOACbNq0qaHb1Wr55aIAg2xE7SA/yFYJb5BNBs4ZZCPA2a+/8MIL2LJlS6s3ZZpqe7LJxZEMJANTx61mlIvKRvWRULDi65i2jVsf3IpbH9zqBsOKCRrO40pWG2STgw/09vji0oSCW81luNVcBrMNJo0acvBBzZls5YNs1bzOmqYhHHBuY2QijtHRUQDAoUOHWp6BzCAbERHNVDMyyHb77bfjYx/7GC655BL86Ec/wgMPPIC3ve1t+OhHP4qvfe1rjdhGAMBjjz2Ga6+9Fk888QTWrl0L0zRx8cUX59ThfuUrX8Htt9+Ou+66C+vXr8fg4CAuuugiRKPRhm1XqzHIRtSevCc3le6D0mnnpJzlopQvnU7j8OHDOHjwYNv1WZLv0WrLRWXfQaBwUKARAQLLFkilnSBbVxWZbNUIGs7tJtLVBdkyMsimtl8D33ZQbyZbLO18bgIlgmzVUBQFoaCznx4+POp+IWLbNoaHh2u+3VQqVfd+Xz43DLIREdFM0wlBtqrLRb/xjW/g7rvvxhVXXOH+7tJLL8VJJ52ENWvW4JOf/KSvGyj9+te/zvn3PffcgwULFmDDhg1405veBCEE7rjjDnzuc5/DZZddBgC47777sHDhQtx///24+uqrG7JdrVYoyMZFFVHrMZON/OQNrFmW1VaTlLy9QaspF/VmssnLNzqTbTJlQstOyuwOV57JVg0ZeElVGWSzZJCNPdkKMrLv+Yxd3+AD3acgG+D09QOAQyMjmNs3Nel9aGgIixcvrvr2TNPEk08+iXA4jDPPPLPm7WImGxERzVTeIFsikWjhlhRX9UruwIEDOOecc6b9/pxzzsGBAwd82ahKjI+PAwDmzJkDANi5cyeGhoZw8cUXu5cJBoM4//zzsW7duqK3k0qlMDExkfNfJ5ELKFVVK8ogIKLm8J7cxGKxik52ig0+4GeavMGndstuLDT4oNT73fs+zy8vbXQmWzSZga7Y0FQF4WBjMtnC2Qy9VKq6APlUuSiDbIW4mWxmPeWiAoFs5asfQbZwNqA6MeaUii5duhSKomBiYgLxeLzq20smk7Btu+JjRjEMshER0UyVn8nWjudJVa/kjj32WPzoRz+a9vsHHngAq1at8mWjyhFC4IYbbsAb3/hGnHzyyQCAoaEhAMDChQtzLrtw4UL3b4Xceuut6Ovrc/9btmxZ4za8AeTJjaqq7slKO77RiGYbb1BECFHRiOlCmWy2bfNEido6yOYdfFBNTzZv5luh8rZGHMuiSSeTLairOQOD/CQHKqSrzEJtt8EH7WaqXNR5nmoZfKBAIJDt7eZHkC2SDdQmspNkFy5c6H75W2rtWYz3/V9PFjODbERENFN518FCCLfdTjupeoV588034/3vfz9++9vf4txzz4WiKHj88cfx6KOPFgy+NcLHP/5xPP/883j88cen/S1/0qmcWFbMTTfdhBtuuMH998TEREcF2ryZbJWc3DTKrl27MDk5iZNOOonTZokw/XMYjUbR09NT8jreIJtsIi+EQCaTaavyQGo+74Ki3YJshTLZKunJJoNslmU1rVzUCbIJBHWt4UG2aoMkbiYbP+sFGdky2lQNPdmEEIilnNdeButUH4KZXaHskIuMjUAggK6uLgwODuLw4cMYGhrCihUrqloTed//mUwmp29hNdiTjYiIZqr8dXAymaz5eNkoVa8w3vve9+LJJ5/EvHnz8J//+Z/42c9+hnnz5uGpp57Ce97znkZsY46//uu/xi9/+Uv83//9H5YuXer+fnBwEMD0bw6Hh4enZbd5BYNB9Pb25vzXSbw92VpVLiqEwJ49ezAyMlJTeQTRTCQ/m/IEq5K+bPlldBx+QFKnZLJV25Mt//LNKBfVFBuGrub0hPNTV7bXm2lWF2SzssGjAMtFCzKyU1fl4INq3h/JjA1bACoEApqaMwm3HrLkOGVa6O/vh6IomDt3LgKBANLptDtxtFLez3k938wzk42IiGaqQkG2dlPT17inn346vv/97/u9LSUJIfDXf/3X+PnPf47f/OY3WLFiRc7fV6xYgcHBQaxduxannXYaAGeB8thjj+HLX/5yU7e1mQplsjU7yObNQuCCjsghPwvd3d2IRqMVTRj1BtkAJ2iRTqc5/IDaOshWbU+2UkG5xgfZTOiwq85kC+oafvBXb3B/lnRdx5VXXun+DEwNVDDN6qbAynLRVg4+cB9PIoGuHz6AHwS2AgCCaP2xXQ4+SJvVl4tOZoceaIpTLlosM7jY61yMnFCbMm0MDAwAcNZj/f39OHToEOLxuFs+Won8TLZaCCGYyUZERDNW/jq4HYcfNKZWogGuvfZa3H///fjFL36Bnp4eN2Otr68P4XAYiqLg+uuvxy233IJVq1Zh1apVuOWWWxCJRHD55Ze3eOsbpx3KRb3ftnJBR+SQn4W+vj5Eo1G3kXWxEiVZFgpMBdmYyUZSOwfZ5PZ4s4NqDbI1vlw045QMatX1ZNNUBWcfM3fa71VVxfLly3N+1xMOAQCsqjPZsj3ZWhhkcx9PLAYowNla+S8HmmWqJ1v15aJysmi34ayVigXZir3OxXTLIFtmKsgGTAVcve/nSviRydboQHUn27JlC+LxOE477TRfyoWJiKj55DrSMAyk0+mZk8lWyIUXXogdO3Zgx44dft1kjrvvvhsAcMEFF+T8/p577sFVV10FALjxxhuRSCRwzTXXYHR0FGeddRYefvjhsn2QOlk7DD5gkI1oOvlZ6OrqgqZpsCwL8Xgc3d3dBS/vDZx4M9mA+hpg08xQqiebZVk5x4Bmk8eh/EEGxXqitjKTbaIJgw96upxMNtuyYFk2tAqDZjKTzWhhkK2dySCbaedma1VCZrJ1ZUeL+hVg6Q47QbZJU0EoFHJ/L2+/FUE27/PCQVhThBA4ePAgAKe0KBKJtHiLiIioFnId2d3djSNHjszsINt73vMejIyM+HVz01SyUFAUBWvWrMGaNWsath3txpvJ1qqebAyyEU3n/Wz29PRgbGwMk5OTRYNsMpDmDTwwk42kYplsyWQSTz31FBYsWIATTjih6dvlnX6b3+eqWJCt0Hu9qYMPFBuGrlXVky1j2fjBU3sAAB94/VFutpllWdiwYQMAp5WGpmnoi4Sz1xKIpdLojYQK3eQ0biZbC3uyuY8nncYpQsGPrPkAgA9oh9CYDnaVk0E2AcCyBRSleCA3nzeTDSg+WbTY61xMf7cTqDmUCeRsh7z9at/DfpSLMpOtMK5ViYhmhlkVZLv22mv9uimqQqGTGwbZiFrPG2Tr7u7G2NgYotGoO6QlX36pKMBMNppSLMgWjUZh2zYmJiZasVk526Xres7xp1h5dEt7siXS0OAMPqgmky1j2fiHX2wCALzv9KU5QbYHH3wQAHDqqadC0zREgjoEFCgQGI+lKg+yuT3ZWjdd1Pt4joOCfzCPBgC8TxtpfZBNk0E2BaYtoGvlJ8hLsbTznosEygfZCr3Oxaw4agl2WwOYMIPIWLZ7eXn7LBdtH1yrEhHNDHIdKasVU6lUxeuBZumYnmxUGHuyEbWn/CAbAMRisaKXLxRkkz8zyEbFgmzyvdGqfW+hlgVSoW36zdaD+M8Ne7F6cS/ObVGQDYBv5aKqqmL16tXuz4CTVa9qAQgrjWg8AaCvotsybSdAabQwk819PKYJdev2lm1HIQEt+0UinEw2oPIvFSdTzvs0ki0XLRZkq1Z/Vwijwslmm0hkMLfbKRVuZbkog2yFpVIp92eW0RIRdS65Do5EIlBVFbZtI5lMIhwOl7lm81S0wrzssssqvsGf/exnNW8MVY/lotQqQ0NDSCaT05p+k8MbfJA7/VLpzKWCbCwXpXJBtladNHqz0gAnwKQoSsGeWUIIfPFXL6J7LIZdh+N45Mh6fPjkAEJoXrloLOF8BkOG7ktfLl3X8Sd/8ifTfq/pGkwLmIxXHiiRjzfQwkw29/HEYohv/eeWbUchiqLA0FRkLAFbVBdkk+Wi5TLZqqWpCnqCOqIpExNJ0w2y+ZHJVs90UYlrsilcqxIRdT4hRM7aMxgMIpFItF2QraIVZl9fn/tfb28vHn30UTz99NPu3zds2IBHH30UfX2VfVtL/imUycYgGzXDyy+/jF27drVlHXw78H42ZUPsVCpV9DPCclEqpdjgg3bJZPMGLfKz06TnXx3H3pEoNFWBoqp4avcobnvoJRyJpZqWyRZLOsercNDw/ba9dN35HE9WsX90e7IFOPigGENXa8pkk0G2sM+ZbADQG3Ze6/HE1H7aj55s6XS6pvUcM9kK82ay8Xkhoplk9+7dePnll1u9GU2R36akkkSGVqgok+2ee+5xf/7bv/1b/Omf/in+5V/+JeebumuuuQa9vb2N2UoqqlCpDstFqdG83yJkMpmcqWrk8PZLNAzDTWdOpVIFv2mRnyNmslEhxTLZ5M+t2vfK+88PslmWNW2bfv7sPmgQOHZ+N95y8lLc+TwQPTiGPYfjOL1ZmWypNDQAkVCDg2zZz24sUXkmmwwcGS3MZGt3hq4CKQVWNvZU6XtEThcN6f4H2XpCzlJ6okCQrZ5MNiEELMuquqyZQbbCuFal2UIef6sZ7kOdbdeuXRBCYNmyZQgGg63enIaS605FUXISGToyyOb13e9+F48//njOAkXTNNxwww0455xzcNttt/m6gVRau2Wysc/F7OB9nas9iZgt8j+boVAI8Xi8aDozM9molHbtyeYNJkuFvvDJWDb+a+N+6IqNExb1Ym5PGG86rhu/OrgHo/FM0zLZEsk0ugF0hf1ZhKbTadx6660AgJtuugmG4QTvjOznOJ5MFb1uPqsNerJ5H891aJ8GwpIcfpB9qqrPZGtAkK2vQCabHz3ZAOf1qDfI1m7NoFuFQTaaLZ599lkkEgmcffbZvvQepfbmbc8xG87JvKWi8vwKaL8gW9UrOdM0sWXLlmm/37JlCw9aLeA9wWlFTzYhBBcus5B3Jz4bdui18AbZALgHgUQiMe2ypmni8OHDAJwmnpI3k40B7NktP8NLvr+8Pdla8R4pVS7q3Z7fvnQIh2NpzI1oOHpOBLquY+X8LthQMBpPNy/IlnKer+5QY7/pNQw95/4qIaeLBnRmshUTyAbJrCqDbHLwQVBrXLnoRNLfclGgtuEHhXohEstFafaIxWKwLCvnPU8zl3d/NhvOyfJ7AZc6v2qlqsPbH/rQh/DhD38YL7/8Mt7whjcAAJ544gn80z/9Ez70oQ/5voFUWqsz2fIzbLhwmR28rzNLGacTQkwLspXqGbBv3z6YpolIJIK5c+e6v5cHEBlU8fPEkDpL/sLJsiyoqpqzD25Fxkr++9z7s3c/8bNn9wEALlg1F6rqlMAdM9ANAQWjsakgWyPLRTOWjYyZAVSgJ1JdkM3QVHz3qjPcn8sJBZzPbjJdQ5BNa4+sIwM2vht4yf25HbiZbNnNqTaTLag5ly+2L632dQYKZ7LVWy4qh4fUksWc/7mxbduXIR+djl8I02wh94t8n88Os626SJ53ykSEju7J5vXVr34Vg4OD+NrXvoYDBw4AABYtWoQbb7wRn/rUp3zfQCou/0S+FT3Z8r9l5Q59dpht35pUy3vAK5fJZpom9u7dCwA4+uijc4IkmqblnGwxyDY7yd5MXqZpIhAI5JyEt+JkulAmW/6xaCKZwdrNBwEAbzp2LjA5jEAggKXZTLZoykQ8Nb3s1e/jSTRpQoPz2ewOV9eTTddUvOWEhRVfPphd/CXSlX8JYbvlou3xOdcV4C3aeKs3I4d8buQ7o9L3SDwtg2ylM9mqfZ0BoDeUzWRLTL3W9ZaLhkIhJBKJmjLZCgXZZjtWXdBsMdsCLjT7zsmKZbKl02mYptk2JdJVr8ZVVcWNN96Iffv2YWxsDGNjY9i3bx9uvPFGngA2mfdDpapqS8pFGWSbnVguWlr+ZxMo/k2LN4ttwYIFOX9TFIXDDyjnM+Z9P9i2nfO+aMX+t1wmmxAC//rbHUibNo5d0I1l/U5wS9d19EcMdGcDFEPjiZzby//ZD+OJDHTYMHQVQaOxgw/CQWeRl6omyCacx9suQbZ2JPvVWVVmssnBB0b2bdronmzeTLZq1mTeIBtQWz9OBtmm41qVZgvv/obv89lhtgVW84NsgUDAPccaGxtr1WZNU9dX3r29vZwo2kL5J/KtKBflwmV2Yrload6DnPxcFmrMaVkWXn31VQDTs9gkDj8gbwmZbKxvmua0z1679WTbPxbHB//1SXz9f52x8pe//ij38vJ9vWTA6UE4NBbPuT3A/+PJRCIDDTaCmlr1N50Zy8aPn96LHz+9Fxmr/HbJctFUFZ9buw0GH3hlhIIfm3PxY3MuMqI9SliD2RJO+S6pvFzUuYaRfZsWC7JV+zoDQG84O120QE+2arbRW50gTxj86MnGdRmm9aZinzqaqWZbVlMrmaaJeDze6s2Yda95fpANAObMmQMAOHLkSEu2qZD2WMlRTeSHSo6wZbkoNQsz2UorVMbtzUyQB4j9+/cjk8kgHA5Py2KT5EGEwczZyxvI8r4f2qEnZrFMtuFoElf/+9NY98phhAIq/u4dJ+Kqc5ZPWxwt7u8CABwcT0wb3uD3MIeJZAaqIhAMaDUF2T79k+fx6Z88X1HwJRJygqGpTOWfWzldtF0GH2Sg4NPmSnzaXIlMm0wancpkc56ranuy6UrpnmzVvs7AVCbbRIFMNqDyY6T38+stf6kWM9mm41qVZgtmslUnHo/jiSeewL59+6q+7gsvvICnnnqq5YG2Ts5km5iYwJNPPomRkZGKr1MoyDYwMAAAGB0d9XcD68AgWwfLP7lpZbmot0E7zXzMZCvNO/VX0nXdLfWT2WxyoujSpUuLNqxnkI3ka9+OQbZiPdm27J9AKmPhNUv68Ovr3oS/PG8lVFWZdvmlc5xMtoMTiYKLQz8f00TChAqBoK42vHddV7YMttIgmxDCHXwQbJMgWzuSQyFqLReVQTY/e7ZM9WSb+jwqiuLu0ys96fFejuWi/mKQjWaLTg64tMLw8DCSySR27txZ9fMVi8UAOIGiVurkTLYjR44gkUhgaGio4usUCrL19/dDURQkEom2mTLKIFsHyw+ytbJcVC4IuXCZHTp5h94MhbJ7gNzhB5ZluQdm+Q1MIQyyUSdmsh2OpaFC4C/ecDSWz+sqevmj5jp/OzSRLLj9vgbZkhkozQqyBasPsmWTs9iTrQQ3ky37XFX6/nAy2URDgmx9kek92YCpQHKl2+j9nMuycJaL+iO/XJTPCc1UDLJVJxqNAnDWVHKgYyW8PXFlsK1VOvk1l9s7OTlZ8XUKBdl0XXdbmLVLNltdq8xXX32VB6oWkm/MVgbZ5MIlGAwC4MJltmC5aGnFgmze4QcTExOwbRvBYND9fSEMspG3j1mpIFs79WQ7PJmGAoFVC7tLXl4G2Q5PpmCaU8e0RrQ/mEhksplsWhMy2bJBkqoy2ZzXLxhgkK0YGYCUQbZK3vO2LRBLW9Ag3Ey4hmSyJXNfa+/wg0oUCrIxk80fMlhZbeCTqNM0cnjQTOQN7uzbt6/idZR339zqIFsnJz7IbU8mkxVve6EgG9B+fdnqWmWuXr0au3bt8mlTqFrFMtla0ZNNZuiwmezswHLR0irJZJMTcGSKczGcLkqdlskWT9uIpU0oisCqhT0lL794oAuqosC0LOzPDj/wTsv2O5NNBRAMND6TrSckB1RUuGi0bNhCDj5gkK0YIzv4wKyiJ1s8kw3ewoahqTnvLz94p4t6t0feRy1BtvwpwtVgkG06+YUwqy5opuvkrKZmS6fT7r5B13UkEgm3jUsl15VaHWTr5Nfcuy+u9HksFmTz9mVrh318XasMBlRaq516snHhMrt08rcmzVBJJptMZ+7v7y95W8xko3YOshXKZDsw7vQcXNBtoDuoF7y8/GwEAzr6wwGoENh1KOreVkOCbAkzWy7a+Ey27nA2E6nCIFvaczlmshWXXy5ayXpHDj0IKAKaqhQdelArOV3UsgXi6anXsZ5MNl3X3S9fqi0Zzf/MVLsmnIlre65Vabbg4IPKyVLRSCSCxYsXA3Cq9CrhXX+lUqmWrtE7+ZzMu731Btl6enoQCARgWZb72rYSe7J1sPzm6s0uF7Usy/1wcOEyu7BctLRymWyxWMw9AJTqxwYwyEa5gw/k/r5dgmyF3uv7J5xvhpcNhIpeXj4OVVUx0GVAgcDukUn3dw3LZFOa05OtJ5INsllWRcdkb5BNljTSdEFdZrI5/67k/SGHHvQEnTJkP0tFASAc0NzXbLzAhNFaerIpilJzyWg9Pdksy8L69euxdevWqu6z3ckgm/yii2tVmqk6Oaup2WSpaHd3NxYvXgxFUTA2NlZRf7D8Lz9amc3Wya+5n5lsiqK451SlSkaFEBgbG2v4c1XXSuOzn/2sW/9KzdfqclG5g1FV1V0McuEyO7BctLT8bB1JLvC9pSsy8FYMg2xUrCdb/sl0u/Rk2zfmZLItHZjea7BQBnZ/JABVSWD34UkcsyD3c+N3TzYFoqZyUUNT8c3LX+f+LOm6jve9733uz1Jv2OlTmjad5siy/K+YlBtkU1o6XdR9PKkUIr/4Jb4ZeBkAYKA9ju1T00UrLxeVmWzdhvO6lQqyFXudS1EUBb2hAA7H0phIZrAYzvu+nkw2wGkVkEql6s5kq+YzFIvFEI/Haxq40K6EEMxko1mDPdkqJ7/s7unpQSgUwvz58zE8PIyhoSEce+yxJa+b/+VHLBZDX19fw7a1lE7OZKs2yCaEKBpkA5zEheHhYRw5cgQrVqwoeBuHDh3C5s2bsWTJEqxatarGLS+vriDbTTfd5Nd2UA1aXS4qFy2GYTQk64DaV/4OXQhRsq/YbFMsky0YDEJRFPczWi6LDWCQjYqXi7ZD76VC7/W9o8749CV90wPI+YEEVVUxJ5vJtvdwDFig5QTs/M1kM2sefKBrKt5xyqJpv1dVFSeddNK03/eEAgAU2EIglsygv0yQLZNNzVIVpaX7UvfxxGKAArxDa48pXZKRl8lWyXpHZrJ1BcoPPSj2OpfTF3aCbOPxqROvenqyAag5k62e/YI8zsyk47pcqyqKwiFdVTJN082spM7QyVlNzebNZJP/Hx4ermi9zUw2f3i3t5IMQu/lCx3LZfJXNBpFPB5HJBKZdpl4PJ7z/0ZhuWgHa/V0UQbZZi/vTk4IMSN7uNSjWJDNu8gHyvdjA6YOIrVMmaOZoVxPNvm7dujJJoRwg2yL84Jstm27+wrvl0MDEQMqBPYdibm/a0i5aDyd7cnW+HLRrqAOG84xOZoonxWUcier8mS2FEOWS4tqMtmc57aSIFutesLTJ4zWUy4KTA29aWYmmzy5nEnHdZk57l2rzpTH1kjj4+N4/PHHOeCuw3RywKWZMpkMkkkn676nxxnQVM26Q+6XZRCnlUG2mZLJlslkyh7v5DGq2ACjYDCIuXPnAgD2799f8DbkfTT6vIpBtg5WrFyUQTZqtPzXmVlWufL7TnnJklGguiAbn+PZy9uTrVCQrZXZGfnHoZHJNCZSFhQFGOwNFrwskNtLdCDiZLIdnkwiY9mNG3yQzD5fNQTZTMvGfz9/AP/9/AGYVm45zqZNm7Bp06acbVUUBYHsY4wmywdJMmbhEvNmcx/Ptm1IC+C/rQH8tzUAs01iErVkssWqyGQr9jqX0xtybrNQT7Z6M9mqDbLV05PNe9LRaSdrxXCtWhtZStcODcSpchx8UBmZNRUOh91jQjX7B7mvlBUpk5OTLQved3JgNf+5LhesLFUqKskhFkNDQwWfD/naMchGRRUbfNDsnmyGYTT9vqm18l/nTtupN1qxTDZgqidMJBLJyWorxpulxM/X7FQok807eEa+j5q9wBNCTAsMbD8YhRAK+kIB6Hlv//wgFOB8RsKGhnBAg6bYGI2lG5bJNimDbIHqy0XTlo1r738G197/DNKe4ItpmvjJT36Cn/zkJ9MC4Xq2t9pkRZlscp/R2kw29/H8138hDhXXZo7FtZljkW6T5aIbZMuOF61m8EF2CGjJ6aLFXudy+mQmW6J9ykWrzaQDcr/MmSnHdblWDQaDDLJVQb4X+Fx1lk7OamomGTyWpaJAdefRcr8ivyw3TbNlvSw7+TWX2yuPd34E2ebMmYNQKATTNDE8PDzt795Mtkaum9tj1UQ1aceebDOpxICKy9+Je0tMtm/fjn379rVis9pGqSBbb28vAGDevHkV3Zb3QMJsttmp0OADSVEUt6ys2SdD3n29fK9vOxiFDQVzu4NFg/HeHj/yev2RADQIjCUyDQmypU0bqYzz+Qnqqm89hhRFwdFHH42jjz562m0aAee1qqRcVPZk05TWLsvcx7N0KdqxcNXIDj7I1JDJFtYaVy7amw2y+ZnJVm+5aC1l5DMxyFaoXJSBo/IYZOtMzGSrjMxkk6WiQG2ZbKFQyK1QaVXJaH4mWyedh8vnWr4OfgTZFEVxs9kKlYzK167RyQtVr+Z+/etf4/HHH3f//c1vfhOnnnoqLr/8coyOtleD3JmuHctFvdtFM1exk+dEIoF9+/bh5Zdfruh9YNs2Dh8+PGMW81KpINvg4CBOO+00LF++vKLbUhTFPelikG128p585/ehCAQCLTtx9H5u5Ta8dHASAgrmdBlFe0N5t18et/rCAWiwMZ7INKRcNJp0JosCQMjQfQuyBQIBXHXVVbjqqqumTRANZINssVT5TKS0LBfVWhvach/Pn/0ZSo9qaI2pctHqp4tmKzobEmRzM9mS04NstfZkq7VclEG2XMxkqw2DbJ2pk0sHm6lQJlul+wfvxOJAIODeRquCbO0wBKtW8j0qExD8CLIBwKJFi6CqKqLRKCYmJnL+5j2mNjL7sOog26c//Wl3Y1944QV86lOfwiWXXIIdO3bghhtu8H0Dqbhigw+a8eGKxWLuDio/yNZJEXSqTbEgm9xZCSEqmtqyf/9+vPDCC9i7d6//G9lCpYJsiqKgr6+vqnI1efLOINvslH/y7V1c6LreshNHeX+KorjbsP1gFALA3G5j2rEg/5jlvW5f2IAOGxMNymRzJos6WWx6iXJBPwWzr1Osop5s7ZHJ1u5qCrKls2XV2Ze9IZlsIVkuOn3wQbWZbPK9X2s/Tvmc1FIu6i1N7aQTtVKYyVYbBtk6EzPZyjNNE4mEM6CpUJCt3HHFmy1mGAa6uroAtEcmG9BZwdVCmWylnv9Kg2yBQADz588HkJvNZtt2zjG1kX3Zql5p7Ny5E6tXrwYA/PSnP8Uf//Ef45ZbbsEzzzyDSy65xPcNpOJaUS4qhMD+/fvxyiuvwLZtGIaBvr6+nKwA7tRnvmLlot5vBGKxWM7BqxA52UcugmeKQsGEenD4wezmHXwAOO8H77eorZqYV2iy6LaDUahQMLdrerlosYEgTpAtAE2xMRZ3MtnkbfsWZEtkspNFq+/HVqug4TzOeCWZbO5z2Y5Fmu1DThfN2JX3ZJOZbEHNuU4jM9nGfezJ5u2/WA1msuXi4IPaMMjWmTq5P1ezyFLRYDDoZgwDlWeyyX2KzLpvdZCtU/tke1tMdXd3Q1EUWJaFZDKZMyTOq9IgG+BUDh08eDCn0jI/qNZWQTbDMNwMlUceeQRXXHEFAKfJXH46HjVWK8pF9+zZg507dwJwXvPjjz/ezbJRVZXN2WcJ7yLeNE13h+7dWU1OTmLhwoUlb0fuLGda8KhUJlstGGSb3bw92bz/B1pbLpr/Pj84kUI0aaJfUzHQFaioXFT+uy/bk228YZlsGagQMGqYLFpKOp3GnXfeCQC47rrrchbsweyxsaIgW7ZcVPOpjLVW7uMRAn/V0i0pTGayZbLnEJWsd+TgAyP7spcafFCr3uxUBT/LRb1tAoQQFZc4M8iWSz6m/C8kqnlOZyMG2TpTfiYb3+fTySCZHEQmVRtkk8d7b5CtFc93PROlW8l7jNE0DV1dXZicnEQsFvMlyBaJRAA4r5d8Xdo6yPbGN74RN9xwA84991w89dRTeOCBBwAAL730EpYuXer7BlJxrZgueuTIEQDAsmXLsHLlypwdCYNss4d8jQ3DyAmy5WeylSOvN1MW8xKDbOQXIcS0fX1+kK1V053zgwLbDjotBJb0h6FnjwelLi+pqor+cAA6bERTJiyh+B9kS5hQFIGgz0E2AEVL40OG8zolUpWXizYry66UqcfTfidmU0G26nuyBdTGZ7JN1DH4oNTn3LbtioOD9UwX9Z5wzJTjsnyPKIoyreqiEQHXmYJBts5UKODC93muYoGaStdScj8pk0zC4TAURYFt20ilUtOCd43WqZls3u2WGYEyyFZsOFw1QTbDMKAoittDLxgMTuvB1lZBtrvuugvXXHMNfvKTn+Duu+/GkiVLAAAPPvgg3va2t/m+gVRcKzLZ5Ad3YGBgWqSeafizh3wf5PcKy89kq/R2OuWAUKliZXG1YpBt9sr/pg9o30y2nYecz/zRc7sA2EW/XS2UyRYxNAQ1AWEDh+MZzAs3JpOt1nLRgKbitved4v5cibAhM9nKf24zMpOtwttuhgAEbtN3uD+3g4A7XbTyIFs0mc1kyy5ZSi3Oa3mdAW9PNv/KRb3vU9M0Kz6eyOeEmWwO734nf0gXgw/FMcjWmQoFXPg+z1UsUFNrJpscUOZNOmimTu3J5t03K4riPp+lznWqCbLJ20ylUkilUggGg+2dyXbUUUfhV7/61bTff+1rX/Nlg6hyrejJlt8byItBttnDm8kGoGC5aDqdRjqdzimfyjfTg2x+Z7I18mBA7Ul+NrzDBYplsrW6J9v+cafH4mB/BMBkVZlsiqJgTljD4ZiFgxMpLMiWX/jbkw0IBmrLZAtoKv7kjGVVXScUdF6nZLr85zZjZUv81PbJHgsoAn+iH271ZuQI5mWyVfL+mMhOljWyAbpyQbZqX2egcE+2estFFUWZ1pKhErWWiwohcu5nphyXi2WycUhXcUKInCAbSw47R6eWDjZTuSBbuX2DXIvX0s+tETo1k62WYT/VBNkAp++eDLIBze3JVvVK83/+53/w0EMPTfv9ww8/jAcffNCXjaLKFJsu2oxMNgbZZrdiQbb8NNxKRzF3ygGhUiwXJb8U+mKjXTPZ9o0507oG+yIFt6dUJhsA9IWd/cnBaKphPdkaUS5aTCSbyZZMV5LJJrNf2yeTrR3JwQfVTBcdT2SgwnYDdI3pyea81rG0BdPKzWSuNZPN+3Oxfb8QAqOjozn3UWu5aP59zJTjcn6QjWvV8vJfewYkO0enZjU1U36fW6naTDZZzVPNdRuhU1/z/GNVJcfMWoJswNSAPfnayderrYJsn/nMZwo+eNu28ZnPfMaXjaLKFCsXbeQHvNiOqVn3T60nv9UEipeLyvdHuZJRZrJVhkG22avQPrdde7LtzwbZFvWHCm5PqUw2AOiLOPuT/ePpxvRkq6Nc1LRs/O/Wg/jfrQfdIEo54WA2yFbBIi4tAzNt0JNNMgXwv1Yf/tfqg9km59iyJ1u6ip5sEwkTGgSCAc2dBldMLa8zAPSGpj6TE8ncwHglx7dCvReB8hNG9+zZg40bN2Lfvn3u72rNZMs/2Zgpx+ViVR9cqxY3UwOuswEz2cqrpFy01LGFmWz+yN83lzvXiUajbvKGDJ6Vkx9kk6+dHIrQVkG27du3Y/Xq1dN+f8IJJ+Dll1/2ZaOoMvkLskaXixZbBEpcuMwO3te3WCbbwMAAgPKZbAyyVYZBttmrUGCqbTPZRmWQzVm8VNOTDZgquds33n6ZbGnLxofvfRofvvdpNyBWTlfQ2T+mqslka6MgWxoqPpw5Dh/OHId09cvFhqh28EHatJHIWNCymWzlsthqeZ0BQNdUdBnObcu+bJWesAGFey96fy607xdC4MCBAwCARCLh/s7dpiqDbDMxsCKniAJTXwRzrVpe/nuBz1Xn6NSASzOVC7IBpY8thTLZahk045dOzWTLr8gr9cWUbdvYunUrhBCYP3++GyQrp1gmW1sG2fr6+rBjx45pv3/55ZfdEbbUHM0efFBsEShx4TI7eF9fbyabbdvugUsG2arJZJtJ5Qh+B9nyMwZp9ihVQgbkBtla2ZMtZVoYjjqLmCX9hctFy2ayhWUmW7IBmWxOX65ae7LVoivbDD+dKf+5NWXGIstFS5KDD1IVlotOJLPZ1aoTYG3EZFEpvy+b931e7n3s7b3o7X1VKpMtGo0imUzm/N17P/WWi860tVylQbbx8XH3hGy2munvhZmsUwMuzVRuuihQ+j2fP/gAaI9MNrn9nfKaF5uoXehcZ9euXYjFYggEAli1alXFPSKLZbLJmFVbBdne9a534frrr8crr7zi/u7ll1/Gpz71KbzrXe/ydeOotGaXi8o3vbenhVerTvSoubzfPHhPALw7xf7+fgBAPB4v+n6wbTvnvTqTFnH5387Uq9CBZ/fu3di9e7cvt0/tq1N6sh0cdxYwQV3F3B6nXNSbRZJ/eS/57/5skGLvWMr349lE0oSq1F4uWouubI+5SoJsU4MPGGQrxc1kM0VOdn0xMuDVY6juIIFGkX3ZZGDP+z4rd9LjDUAXCrIVOuk4dOiQ+3OhSZDyupWuyWZiuaj3+aikXDQej+PZZ5/F5s2bS97uTF/nMsjWuVguWl4lmWylnrd2KxfNnyjdKfvu/DVhsUy2iYkJ7NmzBwBw3HHHlRyol69YJps3yNao/XnVq7nbbrsNXV1dOOGEE7BixQqsWLECJ554IubOnYuvfvWrjdhGKqLY4AOgMQuAUkMPvNvBHfrM5v3mwbtD9KZPh8NhaJoG27YRj8cL3k7+TnQmZWk1ulw0nU5j586d2LlzZ8ccTKk2pXqyybHx7dCTTQ49WNIfLrpQLRZ8lv/uDQegKEA8bWM0GxzxfbpoEwcfdMtMNrP8ZzTjNsvnBL9SgtljjoACW5Rf68ggW29w+mRev/XmZbJ5v5CsJsjmVeykQwiB4eHhnOtbtsDwRGLadWd7uahUSSabzAyU/y9kdHQUf/jDHzAyMuLnprYVBtk6FzPZyiuVyVauKsxbtdMugw/kfcrtafVrvnv3buzfv7/s5SqdLrpr1y4AwIIFCzB//vyqtiUUcr70TaVSEEJM68kGNC6brerVRl9fH9atW4e1a9di48aNCIfDOOWUU/CmN72pEdtHRXi/wc3/dk7+3e9x26WGHnjvnwfjmc37vvP2i5E7KdmIvaurCxMTE4jFYgVLyfMPAq0+KPil0GezXt4DjxAiJ3BpWVZDpuVReyh08h0Oh6EoCiKRSEun5Xnf5/uPOCf3i/OCbIUy2YqVi2qqgp5gAHZGwdB4Ouc69WrFdNGekPNtayb7uS11TM5kA3GayiBbKTKTTQCwbFG+XFQG2YwmBNmyQdWJxNQJgvyyqdJy0fzPRrGTjomJCaRSKZiWjc0HJrBr0xE88othJJNJXHFsBuetml/1fkHeh2EYSKfTM+KYXG2QrVDZbb7Dhw8jnU7jyJEjmDdvnp+b2zYYZOtcxaZ605RCFQKSqqqwLKvo8ybPdfIzo5nJ5kilUti5cydUVcWiRYtKrntKTRf1rplkFtrg4GDV2yOz3oQQSCaT7nNjGAZ0XXfPX6vJjqtUTasNRVFw8cUX4+KLL/Z7e6hC3oUDM9momYqVi+b3KOju7sbExAQmJyexYMGCordT7N+dyvvZK/RZORRN4XtP7EY8ZSIYUNEXDuDPXn+Ue4JWiLfsJz87cKY8b1RYof2uYRg444wz3G8t26Enm5wsurg/VLSvSblyUcDpa2VPKjgwkcQg/MxkMzGQnTDZtEy2bLmoAoFkxkbYKB4Ml5Ms2ZOttKkgm1JRkE1mlXUbueUojdAb1nPuU95fJpPxPZNNZrE9uz+O328bRkromLCCCELg6V1HkLaAs86aynCt5ItXeeIZDAZnTJDN26tIPv5Smb/yd6Ueu1zr1LJvikajsCzLbanRrhhk61zMZCtNCFEyaaRckM1btePdp7ZrJlsjkm5KkUHISo47xaaLynOd/ME/3szBSimKgmAwiFQqhWg06t6fpmkIBAI5SSJ+qyjI9vWvfx0f+chHEAqF8PWvf73kZT/xiU/4smFUWqHmtvknNn4vJhlkI6BwuagQwv2mQe4EZfZasQmjM7E0BSjcA0Y6EkvjA995Ai8P5w6E2DeawM2Xnlz0NlXV6SckhIBpmu4kOWDmPG9UWLH9rjc7tB0y2abKRaey6/IzeMoNPgCyQTYo2DeWwmC3P49JTpicqzY3k607ZEBRAFUIRFOZ0kE2mz3ZKqGpCjRVgRCAVUFPtomkc5zpNpz1USMz2QYiTlB1NJ52f1dqWppXNZls3lLRF0edx3Xq0l7c8o5z8Pyug/jPtcN4Zu84PvvzF/HHCwVUVXFPdkzThGmabgmNlzzRCAaDbjCo0+VPFgUqz2QrdoLoPYms1vPPPw/TNHHOOefUdMLYLAyydS72ZCvN+94udDwo136j0NADoD0z2SzLwvr169Hb24vVq1c3ZVu8z69lWSXXW/nlovl9TPODbLUev2WQTQ7jkwHSQCCARCLR2iDb1772NXzwgx9EKBTC1772taKXUxSFQbYm8X6I87+dAxqT0VAqvRZgkG22KFQuCsAN/MgDT7kg20zNZCv02QSccrUrvvskXh6exGBvCJeethiHJ9P4yYZX8eMNr+KGi493p9Plk2npmUwGmUyGmWyzSLn9LtD4oTfFFOrJtrg/VHSbKspkiwQgAOwbT+J0n4JsUdmIHgJGjUG2gKbiC5ee5P4saZqGt7/97e7PXpqmwdBU2KZALGUBPcVvP2Nmv4nWW1v67T6edBqhtY/iC7ozXMV5VdpDQFMgzMoy2WS5aFegsiBbsde5EvN7nAbLh6JTkykb0ZNtbGzMOSlQNWw4aOJYBTh7xQBOO2oAxw7oSOwfxK82jeDnGw9g+ckmTlnaD9u2oaoqnn/+eUSjUZx99tnTThK9mWyVbHMnKBVkK/TeqSQDpNZMNm8/oFQqxSAbNQQz2UqT721VLbwWKHcu622NU831GqlYJtvk5CSSyWRDJ2jm8+47yj0X+eWi8lxHfhlkGAZs2y7brqoceUyTmWzy2Cefr5YG2Xbu3FnwZ2od78mKN8gms11YLkqN4v3mQTZetyzLDbLJnZZsKplMJt0FfqHbKfbvTlXos5lIW/h/967Hi/smMLfLwPf/8iwcu6AbQgi8uG8cW4eieGD9HnzkTccUvV0ZZDNNk0G2WaSSxUUj971bt26FZVlYvXr1tBPOnJ5snsEH8neyr4ZUSSZbf5ezGHp1LAks8ecxyWymSECFWmQ6djkBTcUVZy+f9ntN0/D617++4HVkkC1lmogmSi/iTNt5nrQWZ7K5jycWAx55BFfow+Wv1GSGpkKY1fVki1QRZCv0OldiQTbINhydappf6fCBajLZ5InCETOApKWgu0tHT1B1S2xOGOxFwtbw4vMCG/eO4TVL+tz7j8ViEEIgkUjMiiBbocB+JZls8udC+4paM9m871UZqGtXDLJ1Lm/gwrKsGfE59lOl/cWLHVs6KZNNVhjl9zhrpPxMtlIK7Z81TYNpmjnZeFK9QTZvJhsw9Ro2KshW9WruC1/4QsFpgYlEAl/4whd82Sgqr9iUtkZmNJTbMbUqm4Kaq1ijSjmNy/sNgXyveMsbpdkQZJO+8KvNWL9rFD0hHf/+/16PYxd0A3A+Mx8+dwUA4L51u92+TIXI5zKTyeRMPpspzxsVVu7LDaBxPdls28bQ0BAOHTpUcBHiPQ7tH3Pek4s9QTZ5G97b8/4tf/sBYE6Xkwm354hze348JjfQki3XbFa5qKZpCGR7iEUTpU+q5eAD9mQrz9C1qnuyhbMfn0aWiy7ocd673ky2astF89+bha4vP4vbR5KwoGDpgDMIxVueffryuQgHdIzEMtg3lnD/VujEJf925QmJqKAct91VWy5aaH+Vf3u1Btm8l29mZkktGGTrXPkBF752ucqVHlaaydZOQbZimWwyyOb9XaNVk8lW6LiX/8WSfL41Tas5SCiPafmvXaMz2apezd18881uJNArHo/j5ptv9mWjqLxyJyvMZKNGKdaoUgZ+5E5LURSEw84Jd6HA/EzqyZZOp93Hk3/QeHjTEH7w1B4oCnD3B0/HSYv7cq77rlMXY06XgX1jCTy06WDR+5DPczQaLZgdRDNTtUE2P/f9hfqpFfr7ZNrpeQYAg32hnG2qtifbnG7n+iOxNNKm7fZGqsdEMjebqZYgm2UL/OGVw/jDK4dh2bkTU3ft2oVdu3ZNO/YpigIjW/4ZTaRQituTrcVBNvfx7NmDjAD+YPXgD1YPrPapFkVQVyufLpp97UMVZrIVe50rMd/NZPOvXLRQJps8Idg8FIOAgmVzIu5l5HswYuh492lLYEPB83vHYdt2zm3kH3+9v/P2a+v09Zx38IFUTSZbPjnhu9j1S+nETLZKMzGpfbTTpMl2VG+QzTv4oJrrNVK5TDbv7xrNG7CqNJPNe9zL/2Kp3n5swFSQTZKvXdsF2YqlG27cuBFz5szxZaOovEJvTGBqIdFJQbZ0Ot30qXhUu/wgUv77wXvgkSWjlWSyFVr0dwLTNPHkk09iw4YNAHKDkMPRJD7zsxcAAH913kq8cdW8adcPBTT8+VlHAQC++3unHD9j2UibuZ8j+bzKUiGJC6iZrZqebIC/CzzvbRX6fMr33qFJZ9E5vyeIUCB3EE+1mWyRoI7ekA4bittLre4gW8LZ9rAxvblupVKmhQ985wl84DtPIGVOfeZM08R9992H++67b9pzpCiK22NtMln6pNqUPdlaHGRzH8+PfoQYVHwgcwI+kDkBqeqXiw3jTBhVKhp8IDPZgtnNLzcQqtjrXAlZLjoWz7jXrbdctFgmW8aysXU4DkDBUXN73MvIz4qqqrji7KMhoODlQ5M4OJ4oe/LjneAmP7+dfnzxPh9SpUG2Qn/3PoezIZNNZnwwyNY5mMlW2mzNZGvWOVa95aL5Xyw1IsjWdplsAwMDmDNnDhRFwXHHHYc5c+a4//X19eGiiy7Cn/7pnzZkI2m6YicrjQyyVTr4oJr7Hh8fx7p167Bjx476N5Caoli5qOQ98MhMtplcLhqLxdyedN6x36qq4tM/fh5HYmmcuKgXn7r4uKK38edvOBoBTcGG3aM4+fMPYdXnHsSpX3gY24amAmryADMxMZFz3U593qgyxcr0hyeSSKSnp9o3KshWKpPtYNQJIMlSUe82Fcq6LBVk0zQNi/vDEFAQTZnTtqMWbiabXnuQrRhFUTB//nzMnz+/4BeQhsxALRNks9okk819PHPnovHdW2pjaCpsUWlPtmyfMS33xLMR+iMBBDTnWRvJBp79nC4qH2smk8GB8SSSloJFfSHMzZap5h9/TlzUi6UDEdhC4Gcb9pYMsnlLSQOBQMXb3e5qnS5a7O/eDLTZkMnGIFvnyV+jd/pn2G/lgjaVThdt50w2WQHg3c+0IshWy5dLMymTreItvuOOOyCEwIc//GHcfPPN6OubKnkyDAPLly/H2Wef3ZCNpOnKBdka2ZPNz0w2OXmy2ARKaj/5J8r5Oz7vgadUuehMCbJ5A4ipVMp9/289OInHXkogqKu4889ORbDE1MAFvSG87/Rl+MFTezCZDSzE0xbuXbcTt152CoDiqf+d+rxRZQrtd7cOTeA931yHrqCGez/0epy0uNf9W6PKRUtlsskg25L+qTKz/OOBt5S1VLmoqqoY7Ath69AEJpM+BdlkX66A/0G2QCCAa665pujfjYDzuY0nyw0+kNNFWxtkcx9PLIb4V/65pdtSTEBXgCp7sgXUxgfZFEXB/O4g9o8nMTyRxJL+cMUnusWqE+S/5edHURRkMhm8OhqHCRVvWDkXup5GOp2eFmQDgDNXzsN/bYjil8+9isvPXOzebv7n2ftvXdenNZ/uVNWWi5b7YsGvTLZ2DrIJIRhk62DMZCut0oSRckG2dsxk8x7fLMtqeU+2dslky3+t8jPZGrU/rniLr7zySgDAihUrcO655zZ0oVLMb3/7W9x2223YsGEDDhw4gJ///Od497vf7f5dCIGbb74Z3/72tzE6OoqzzjoL3/zmN3HSSSc1fVsbrVxGQCPLRWtNsS1EXpYHgc6Rv1P0Hqjk+GWpknLRQCCATCZT9QFAZpD19vaWv3ADeQOI6XTafX6e2DkKIISrzl2O4xb2lL2dL1x6Ej541lGIGBp2HY7hw/c+jV8+tx9/947V6Arq0z53wWAQqVSq40+CqDhvHyXvyfYX/mszEhkLiYyF9/9/f8C3rzgDqqrmND736/6lUplsQxPZTLa+6Zlshfbx5TLZFvUFACiYTPtzfHD7cum192SrVTAbZIuVC7Jlh57oLZ4u2gkMTYWNyjLZxhMZKBAIapX1ZKvX/N4Q9o8n3eEH9fZk8/7bNE0YhoFMJoN9owmYogdnr5wLTR12byM/qHTS4n787ws6Xoml8PTOQ5BHomLtGmRz6ZmSBeN3uaj3ZKza58b7Xm3nclHv42KQrfOwJ1tplZaLFjq2eAeftEsmm/cLzFJBtnbMZCs2XRSYnsmW/3xXQ1VVGIYxLQuxbcpFpZ6eHmzZssX99y9+8Qu8+93vxmc/+9mGfzMTi8Xw2te+FnfddVfBv3/lK1/B7bffjrvuugvr16/H4OAgLrroomk9jGaCVpSLNiKTrdYGstQ6pcpFvb1cgKlMNu9gAEn+W6bxVrMQEELgueeew7PPPtvyXm7eAKIMso0nMth20BkQ88HXH13R7QQ0FScv6cPK+d148/ELsHJeF2JpC796fj+A6QuCnp6pPjyNZNt2W58QzGQHDx6EEAKGYbifk4c3H8S6Vw7D0FWccfQAYmkLV93zFLYPO++3ZvVk804ePDDhLOSWDEwF2fKPRd73aakgm6qqWJQdnhBNWtO2oxayZDDUgHLRcoLZiabxVJmebFZ79GTrBG5PNrt0TzbbFogmM9Bgu5nE5Xqy1Wt+d+7wg3p7suUHvIQQSKTSGJpIwspmsuX/HZh6jxsBDUfPjUABsPnVMfd2ix2P5UlHpcHBdleoXLRUxUe5wQezIZNNvhdUVWU2VAdikK20enqyecv22yWTzXu+r6qqezxIJpMtGZJWTSZboeNeIzLZgNyS0fxMNm+7BD9VvZq7+uqr8dJLLwEAduzYgfe///2IRCL48Y9/jBtvvNH3DfR6+9vfji9+8Yu47LLLpv1NCIE77rgDn/vc53DZZZfh5JNPxn333Yd4PI7777+/odvVCjOlXJSZbJ2nVLlo/jcNuq67O7P8bDZ5O/Lv1ezgTNNEJpPJKWtolULloi/uG4eAgvNWzcNRcyNV36aiKHj/mcsAAD94ai+A1gXZXnjhBfzhD39o65OCmUgIgd27dwMAjjrqKCiKgpRp4Zb/cb7k+qvzVuA//uosXPKaQWQsgV89P4TRWLphQbZCPZykfeNOQKFQT7b8fbyqqtN6lxULsk341JNtNO68dxuRyZbJZPCtb30L3/rWtwoGo4PZfWI8VTpQ7fZka3G5qPt47rkH7RpaN3Stoumik2kTtgA0CAR1J2BQqG+enxb0Fg6y1ZrJBuSedGQyGRwYS8KygQW9ESybk1uSmr82dD5PYagQ2D40Nu3+JPnelfc1UzLZ6pku2siebHL90o68J7V+Bw6e3HEYT+084sttdaL9+/fj0KFDDb2P/NJBnl/lqifI5t1PFvuysJVBNu+XMvltejpl8EEjerIBuUE2ea4qM7eBxmSzVb2ae+mll3DqqacCAH784x/j/PPPx/333497770XP/3pT/3evort3LkTQ0NDuPjii93fBYNBnH/++Vi3bl3R66VSKUxMTOT81wmK9e9oZLlovXXshcjtbNfFBk1Xqlw0/5sdoHhftnqCbPUsdP0khJhWLprOmNi0fwI2FHwwOzW0Fpe9bil0VcFze8ewdWgi5wBjGEZNz1stJicnYdt2wZJfapyDBw8imUwiEAhg0aJFAIB7f78Luw/HMb8niGsuOBZBXcM3PvA6nHvsXKRtgYc2DSFd5UTEUkplsnnfd/vGkgCAJSWCbKWCCNPLRZ3bmfApk+1IzNlfRBrQk00IgUOHDuHQoUMFj2Nhw/ncJtKlF7im5Vw30OBMq3Lcx3P4MNr1qGxoKkR2umiptYPsxRfSnYESjc5iA6YmjPpVLur9nWVZyGQy2H0kBgsK3nDsvGmZbvlBJUVRsKg/BAUCu4YnYNvTM0uB6ScyMyXIVqpctNB7p9A0ZC/viZgo8/4rd9vt+tw2Ksg2MpnCX/zbU/jAd57ArpHZ14c5mUzipZdewpYtWxp6zsNMttLKtT4qlaxSbOgB0LogW34rjmJBtlZkslWawd3onmwAEAqF3NuR96coSkNLRqteaXpLRB555BFccsklAIBly5ZhZGTE362rwtDQEABg4cKFOb9fuHCh+7dCbr31VvT19bn/LVu2rKHb6ReWi1KrlCsXzVesL5t8P9VSLurtM9DKAK23B5v89xM7RhBPm+gJGXjriQtLXLu0+T1BXLTauf4D6/dO63XXrJOg/CAJNZ4QAnv27AHgHFs1TcOm/eP4+qPbAQA3/tHx6ApmT4ZVBV/9k9fC0DUMTSTx3cf9m9RcSSabgIJDk9Oni+YvVIsds/J/JwcfAMBYwp9MNhlkCwVqz2TTVRU3vf0E3PT2E6rqmxYKOvvERJlMtnYsF9UhcJO+Fzfpe6G3UcjN0JWcTLZixwA59KA/VHhITyG1vs7SfDfI5gSe6y0XBaZnsu0aicEUKt58/IKc6xTLZJvbZaDbUGFaJkZiKfe2vPLLRSvd7nZXz3TRcuWixW6j3LZI7Zod3qgg2/9tHUbasmHZAv/y2Ct1316nkWtg27aRTCYbdj/5A4Y6/TPsNz8y2QolFLRDJhuAlmayCSHK7kO9CiUM5Z/b5GdZ10qea+afp8rXsi2CbGeccQa++MUv4nvf+x4ee+wxvOMd7wDgZJLlB7haIb8UQE5jKuamm27C+Pi4+9/evXsbvYm+aGWQrdaxx4WwXLTzlCoXrSaTLX96VTUHgHbJZMt/TKlUCo9scoL6566aX/cJsywZ/dkz+2CJqf1YK4JsrS7LnU0OHTqEeDwOXdexePFi7Dg0iSu/+xRiaQtnrZiD975uac7lF/WF8cevXQIA+N66XXhmz6gv21EqyCb/Hcs4lwkFVAxEphYv+dki1WWyOUG2pCmQMi2fgmzC7clWS8mgoau4+vxjcPX5x2R7glUmbDjPSTJdegGXymYghozWZrJ5GYrA1foQrtaHYChtFGSTmWx26Ux42YuvN1h5kK3W11la0OO8d/0sF/Xext6RKA7H0rAVDW86bn7O3739grxBNkVRcPzCbuiwcWA8WXB7ZmomW6G1sl/losUuU25bpHbtddqoINujW4bdn3/6zKvYNza7suO9XzQ3MshWqFyU1UJT6hl80M6ZbHJfL/fd+YkNzVjD599HLYMPGp3J5i0bBRo7/KDqFcQdd9yBZ555Bh//+Mfxuc99DsceeywA4Cc/+QnOOecc3zewUoODgwAwLWtteHi4ZPAvGAyit7c3579OUGy6aKN6snkzGJnJNruVKhctdOCRQTY/M9naJcgmH5N8DvYfieLFfWNQFOD8bJZBPc5bNR+L+kIYT2Swfs+4+/tmBdm8i7NOP9nqJK+++ioAYOnSpRiezOAv/u0pjEymsXpRb3aS6PQg0WuXDeCEwR4IYeNra1/yZTtKlYvKv0VTzvtiSX+4ZLZINZlsXUEdvSEdNoDJpFnXZ1wIgdF4GgqAcAPKRcuJBGWQrfgCN23asLKZbF1G7RO0ZgtDV91MNqB4kE1msvUalQfZ6pVfLlrJftr77X+5TLYnXnECFcvm9aAvnJt1ViyTDQCOX9gNDTaGxgoH2WZqT7ZqMtm869xCfwfqy2TLv+xsymRLmRZ+t93pRbZ0IIyMJfDtWZbN5l0DN7L9RqFJk81aJ3dCMK+eTDb5mW3HTDa5j8sPstVyjlWrUm1F8nn3t83oyTZ37lwsX74cK1euzPl9WwXZTjnlFLzwwgsYHx/H5z//eff3t912G+677z5fN64aK1aswODgINauXev+Lp1O47HHHmtp8K9Rip2wNKonm/eDUi7IVkuPCgbZOkd+sLXU4AMgt1zU24Ovnp5s7VIuKg9ifX19AIDfbxuCAoEVc7uxoDdc6qoV0VQFbznBCdat2zHm/j4cDjctyCZ1+slWJ5EZkvPmzcP/u+9p7BtLYOW8Lvz7/3u9e2KdT1VVnLF8DhQIbNg96pYf1qOSTLbRbLbQ0oHcAR/FerJVEmQDnNJTAQXRVH1BtmjKRMYSUCAQDmhFt6EcyxbYuHcMG/eOucGdSsggWzpTPMgWS039LdJGmWyWADbaXdhod8Fqo3MnJ8hWQSZb0lk0d1eRyVbr6yzN9wTZbFtU1JPNW/JaLpPt6VecQMXJy+a4f/f2XsrvySbv/7iF3dAVGwfGnWNWsXLR2Rxky/93/mMXQvhaLjqbMtme3HEEsbSFBT1BfPm9pwAAfrh+L4ajjcvoajfNDrJ59yXN+Bxv27YNTz31VFvvM7zD0ppVLppOp5uyTs9PfJDvA3kO1opMtlKP2/s8NWO6qKqqWL58+bRkqrYKshUTCoUKnmD7aXJyEs899xyee+45AE6J6nPPPYc9e/ZAURRcf/31uOWWW/Dzn/8cL774Iq666ipEIhFcfvnlDd2uViiWVdaoclH5JlcUpegJCjPZZof8k+VKBx/IfjJA7kmFvE7+t8iltEsmmwyG9Pf3I5rMYOuBMeiwceaKAd+abJ+3yikJ+t3LI+5z1dXV1fQgG8tFm0e+ppuGJrHlwAQihobv/eVZmNcdLHodt/dSUEM8bWHLgWjd2+E9jhTLZDscc36/cn5Xzt+L9WSrpFwUAAb7QrCh1J3JdiTbL67LUKFrtWeypUwLl37z97j0m793Szsr0SUz2UoE2SZTJhQAuqZA19snyJaCikvTq3FpejVS/i0X62Zo2emiZQYnycEH3cb0Y1Uxtb7OkvyMmrbAWCJTUV+kcl9iypOLWDKFrQecUvDTl8+bdp1SmWzHzItAg42xRAbxtFm0XDS/J1s7nzBXoppy0VITlIHck7BaJjfO5ky2R7ccBAC85YQFOOeYuXjdUf1ImTb+6cGt2DkS64gMqHo1O8imqmrFg1f8MDIygkQigVisfYdaeKszaqnKqrZc1DRNPPnkk3j22Wfr2/ASimWySV1dztqsFZlspfYb+QMbJO+xxxsUbVSMSe7LGxFkqygsOGfOHLz00kuYN28eBgYGSvYzOXLkiG8bl+/pp5/Gm9/8ZvffN9xwAwDgyiuvxL333osbb7wRiUQC11xzDUZHR3HWWWfh4YcfRk9PT8O2qVXK9WTzO/BQbuiBd1tqWXTIoEstvXKouaodfKCqKkKhEJLJJBKJBAzDyNkRewNzlmVVdALcLkE2uVDq7u7GM3vGYdkCqxeEsagv7FtJ2tnHzIWqAK8cimHeUasxN6y5zyfATLaZxrsIfHizk7Vy4YkLcyZ3FqIoChRFwUmLerBvZwpP7z6C1yztq3tbpGKZbCOTGQAGVs7LDbLlZzaXKhctlGWyqC+M3VAQrTPIdjg79GButl+cfJ6apSvk7N/SGbPoMc4JsgkYmspjYAWcXmmKOymzXJCtS3ee02aUixq6ijldBo7E0hiOJrFioHypjveLq0KvvzzGvrB3FLAs9EYCOHp+77S/W5bl/pwfZDNUgfldARyOpXFgPIljDD3n/chy0eL7OMl7gq2qKkyzun1TJw8+qOd9MDExgXWbdgMA3nriQiiKgr9+yyp86N71+Nkz+/CzZ/ZhIBLAxy44Bh950zH1P4A2JIRoWpDNm82qaRps227KOlm+R9o5acJ77lHsfLbUeXQlmWze89lUKgXLshCLxRp2jluqhQ/Qvpls8m/5azLvFxjePqONOn43ckBIRVv8ta99zQ1Ufe1rX2vZIvCCCy4o+W2HoihYs2YN1qxZ07yNapFWlYuWepMX2sGU491OBtk6Q/57r9zgA8DJZksmk4jH4+jr68sJ2spv22zbGWlfybcV3sVpq74B9S6akkLDhlejUAGct9I5+fEryNYXDuDUZf14Zs8Ynj2QxPvPPApAbkq4bdsN6TNVzZQg8od8noUQePBF59v/d5yyqOz15Ou/erAHD+9M4endo/jQuSvq2pZKerINT6YBGFgxrzvn795m7EDpL2rkIksI4QmyhWALBbE6y0VHs0G2OdkgWzP7sQFAd7a8V4FAImMhYkw/hsZSJhTFaehP5Rmas04ws7v+Yu8P2ZMtEmhekA0A5ncHnSDbRArHznNOcErtp8t9iSm3e+OeI9AUGyvmdeUcayvJZEun01jUF8bhWAYHxpI4Zn43TNN0j7f5JTnNzIBppHqCbMUy2QKBQE1VGLN18MH//mEDuuL7EdEX4Y3HOhmYFxw/H1+49CT84rn9eGHfOEbjGfzzwy/h8rOORnewOZ/TZsqfRJ9MJht2zuN9z2uahkwm0/DPsbcSpROCbLquF33u681kk9fVNC1nPSd/57dymWytCLLJ9VwlmWz52+v9t2wNVKqKrl6N7KVX0Z7syiuvdH++6qqrfN8Iql65wQeNCrJVkskGoOKdiXc7GxUoIH+Vmi5aLEAWiUQwOjrqBqXy30/y27ZKFgJCiJyebK06oMtFkqqq+I/1B5CwVKzsC2FxT+5Jih/OWzUfz+wZw2+3j0wLsgGN++ywXLT55PN8cDKD/RMZdBkazs9OESxFvv4nLOoBMIKndx2pexFfLpPNtgUOZYNYK/LKRWUQQC5KS2Wyyd97M3EW9YUggLp7sh3Jbl9/RAdQWaasn8JGAIoCqEJgMmUWDLJFUyYAAUNnJlsl5NRP2XaweE8257MUzj7lzQqyLegNYtvBKA5FU9PWRbUE2TRNgxACm/c57QiWz+vKOdYWCrLl92RLpVJY1BfCc/sncWBiKgs6P8g2G8pFi2WqlPu3t+m5DJDVkskmT0A7KZOt1n2wEALbD4wCEDh7eR/C2Z6TiqLgirOX44qzlyNt2vijO36LnSMxrN08hPectrT0jXYgbxN6md2UyWSKfjFdK28rFm+5aKPXyZ1S9VBJf69KpouWymQDpgfZ5H03IshWKpNN1/WWDD4wDMN9nxdTqiJPPneyYqdUUNTrSCyNXz63D7/YuB+TSRPzuoOY1xPEZactwZtPKDyMrpHHuqpXHJqm4cCBA1iwIHdjDx8+jAULFrT1h2smaedyUXn/lexMyk1yovZSqEGzpmk45phjoChK0QOX7Msme5gVCrJV+m2b90RCblMryEVTRtHx70/sxlyh4szlA9NObvzwpuPm4c5Ht+P3L4/AsgU0VXFLi+QQiUacQJZaOO3fvx+appWc3kzVk8/zSwdjAAxcuHohQoHy+1L5fjt2XgS6quDgRAqvjiawbE6kzDWLy3/9vUE727YxkcwgYykI6ioW9YZyrpsfZCt3DJFBNm+5qNOTLeNLuehAuDVBNl3XYWgqVFtgMmliQYHuFbFsTzaWi1bGDbKV6ckmM9lCTQ6yyeEHw9kgW7n9dCWZbCOTaUQTKXRpAssGwmWDbAUz2fpDMIWK/eNpWLaYdgIo7yv/NjuZn+Wi3ky2Wkrj5GWDwSCSyeSMz2RLmzYe23YQm/dPAADOO3ZewcsZuop3vnYxvv7odvzXxgMzOsjW1dUFRVFy2qdUwjRNHDlyBHPnzq04UCODFUDjP8fe22/nc7lqqrIKBd3l9QslFHgz8vMHPgHOaygDXn4qlclmGMa0HmeNXGPIfYc3mFxMqWFYhYJs+YQQ+OsfPIvHth1Cd0hHd1DHrsMxZDxTmrYPTwIA/nfLQfz2xjdjboG+xo0MRFe92iy2mEmlUr5H5Km4ckG2Rg0+KLVz99ZVV/pmzc9ko/ZWrFHlsmXLsHRp8YWRDLLJHWb++ym/tKyU/G9/W/W+icfjsG2BH2w4iGjSxOK5PTjGk83j58n8a5f2oyeoYyyewYv7xt3fN3oBVSzIlslk8NJLL2Hr1q383PpMLoQ2DzmLg0teU75UFJja9wc0BSctcXqxbdg9Wte2lDoJtSwLo/EMbChYMa8Lqpq7cKslkw3IHXwgoGCy3nLRuDfI1vxyUU3TnCAbbMRShT+nk9mMK2ayVUaW1cq1dNkgm+r8vdHDuaSpIJtzvCu3ny51siGvf2A8ARUCRw8EoWtqwSCbt39NoSDbQMSAYQSQsoCRyZR7vPWePOYH2Rq5f5+YmMDY2FjDbh8oHWTLf99UWi5qGEZdg77kifZMzmT79z/swplfegRXf+9pjMbT0FQF5x4zp+jl3/XaxQCA3750yC3xn0lkkC0UCiEUCuX8rhJ79uzB5s2bsX///pKX875O3hK7Rq/TOiXIVk0mW7FM1lIJBcWmqnvv22+lMtmCwWDOtjY62OrNZPNuWyGlhmHJbZZVS4We7w27R/Gr5w8gmjJxYDyJ7cOTyFgCr1nSh5vfdRL+4y/Pwp1/dipOGOxBLG3hW795peB2tEUm29e//nUAzpvrX//1X9HdPdV/xbIs/Pa3v8UJJ5zg+wa2SrtPuin25mx0T7Zy36DIbIRKd7LMZOss3p1QNSer3kWF/EYfqO1bc2+pKNC6900ikcC6HYexaTiDLiOMT1x0DJJHhty/+3kyr2sqzjl2Lh7adBC/234Ir13WD8B53kxz+qQ4vxQrF/VOic1kMg35dm62siwLB8aTGE2YFZeKArmLuzOPHsDGvWN4evcRvPu0JTVvS/5nyzTNnKa0Y/G0G2TLJxdZmUwm5yS+2DGku7sbmUzGDcgvyk4XTZk2JpO1n3Qdzk4X7WtRkE1VVRi6E2SLpgpnrriDDxhkq4iRncBqZt+exY4BcvBBQG1s4+R8C3qc492hqHOsKtffrJJMtsOTaeiwsKDb+VxVm8kmMxiWzunGK0OjGJpIuvfr3bc3K5PNtm1s3LgRQgice+65DSmjkvcDFJ4umt8/uNrBB4UuU8m2yOOlHJxQbJ+USCSwceNGLFu2DEuW1L4fr1axIFulWTC2LfDVh7ZhImliUbeB0+YPYPXiXsztKh7kPnZBN1Yv6sXmAxN48MUhXH7WUf48mAaptkWHDKiFw2EIITA2NlZVkE1WgZQLzHrP/VRVbVomW6ecy9UTZPMG2Uv1c7Msy32+mxFkK5XJFgwGc/pee9dwjSCfo0pKVEt98SofQ6lMtu/+ficA4N2nLsaH37gCEwkTC3uDWLUwt1xgIGLgiu8+he/9YTc+/MYV04aItbwnG+AMPACcF/Nf/uVfpqUjLl++HP/yL//i+wa2SqcE2Zrdk63ch5OZbDOb931XzcmgDLJZlpUTFJL7Efm+qmQhkL/IaNVndcMrQ3h61xGkRT++/L5TsHyBiq0NCrIBTl+2hzYdxG+3j+Djb1kFoPEnQsUGH+QH3Bhk849pmtg+PAkLKi6qsFQUyD1xPGP5AP718Z14eldjM9nG4hkIoGCQLRAIuKUTMtDm3c58J510Uk6PqK6g7vTvMYEjk6mC16nEkZhz3b5QfUE2XVVx3VtXuT9Lmqbh/PPPd3/Op2kaApoKVbGKZ7Jly0UDbVAu6j6edBrB3/8B12n7AAA62mdNFMgOPrDKTBd1MtkEAkrlmWzFXudqLPCUiwLls8Iq6ck2MpmCodiY123klIF5r+f9AqtY24Kj5/dg+9A4Do5PBdm8ZZD5J2qNOrbE4/GcIF+jgmylMtmA3NYm8vXRdb3g5FC/MtnkSXq5L6nGxsaQTCZx6NChpgXZhBBFm8NXGmTbMRLDRNJEKKDioevPwzNPPwWg/HvpXacuxuYDE/jlxn1tHWTbt28fXn75ZZxyyikYGBio6Dr5QTZgKoBQCfnlcrnn0Lsv9GayVfo5zmQy2L17NwYHB3OSacqZSZlsxc5jSw09kEplsjX6y/BimWzydzLI1kiFMtmK7TdKZXCXy2R7dTSOX7/onG999IJjcMJgL4o5b9U8nL1yLv6w4zDufOQlfOV9r835e1tksu3c6UQM3/zmN+NnP/tZxTuWTtWsnYQQAuPj4+jq6qqqlKEde7J5t6eWTLZ2D2xS+ZKvYjRNg2EYSKfTSCaT095P1ezk2qFcNGPZ+OlTOwAAf/y6o/HHpyzG6GhuQMPvk4bzVjn9TJ7ZPYrJlInuoN6yctFCWW3kD8uysOPQJGxoFZeKArn73tOPdspyth2MYjyRQV+4tjK5UkE227YxGk/DhlYwyKYoitv8Np1Oly2J8zZpluZ2h5AZAw5PVn4yku9I3Hl/9oV0IFV7kM3QVXzyouOm/V7TNFxwwQVFr6dpGoK6ChUCk0Uy2dyebG2QyeY+nlgMWLcOnwyULk9qBTl9MGWWDrJNJDNOhqBW+XTRYq9zNWS56EhekK3WTDYZZAME5nYHc4Jh+deT++P8TDbpmIV9eOiFfRiaSLr78UInj40+tsRiMffnRh7DqwmyefstFQqyFcpkq6Unm6o65b7pdBrpdLpokK2W4Qr18r7e+Z+XSrO3ntnjrIVOWdoPTan8i/R3vnYx/unBrXhy5xEMjScx2BcqeflWGRsbgxDi/2fvvOPjuMr1/53ZqlXvsmRbcu8l7nHi9B5CElJIAiGUJECol3YD3Hvpl8uF5PKjBEJCSAIBQiBAeiXVsR333m1ZktV7WW2f3x+zszo7O7s7u1pJa/Dz+eQTS9qdOTNz5pz3POd5n5fu7m5Ta2GxEr1IsqWiZNPbLiQ6lwaRjDfbh9rb22lqasLn8zF//nzT7TtVKtGPpvCBSLIn++54posmU7KBer3jUWVW9GTTEM+jPVG6aDIl2283nCCkwFkzSxMSbKDely9fNof33fcOf97axJ3nTGemYI6bVZ5sr7322j89wQbjN6n19fWxY8cODh48mNL34i1YsiFdNJXzn1aynVpItlBOBE3N5vF44nqynSpKtq31Xfh9PnJsFr505WIgduLNtJKttjSXmqIcAiGFXU29wPh6sokBwmmSbezQM+ihb9hPUJFYM6PU9PfEDZbyfAd1pS4UBbY3pK9mM0oX1aAp2UJITC+PJdlg5J3wer0JA6p4KAmb1GZCyVbgNCYdxhqyLKtKNhQGEyjZQDld+MAkCl0qGeT2q/fTaA7wBoJ4/CGshHCEycuxUkvpEU/JFm+cTvZudAz58QZCyJJESa49ZkNWJKiTkWyzJxURUiR63D76h71R3zEi2TQlQqYhkmxjufCLV13UaENab2qeqPBBOp514mJYTKePB9Ezb7ygnVPrU+J4ZLYd2xt6AThjalFKaYQ1RTmsqC1GUeCZXdlH7mvQrsMsSSaSGzk5ORFLBLPfFyvRJntXtLalq0jV+mOqfoGnmpLNTBG/TCjZ4sXQmYRZJdtYtkGDEcmWbN5LpGQzuuduX4A/vNsAwEfWTjPVrmVTi7lkfiUhBf7v5cNRf0sn9d8s0krMbWpq4qmnnqKhoSHmRbz33nsz0rCJxngNEhpL29/fn9L3srHwgdie0+mi/5xIZ6Gswel00t/fH6VkO1U92dbvPQEo1JQVku9SA6axJtkAlkwp5GTvMLua+lg7o2xcSTZR9i1O1Nlq3nyq4kibWtiiLD+HAqd5BZp+7F1eW0J9l5st9T2cN8e4dHkyJFKyeXwB+j1+QoqLaWXGaSVi8YN0VLCleTm0AT1D6ZNsPUPqoiHfYWUwxfOLCIUUjnSoxShmludFCj0oikJHRwcA5eXlMSSZpmSTUOhzG78rg95g1ijZItczPEypAkcVdXNkpuRJfVd2jFCUo/Yrt0/tU0bxTv+wOkbZJAWHVY5Rf8VDvOecCjQl26A3gNsXGLWS7XC7SkiVuOxYZMlwkaelA8UrfKChrMBFcZ4TxT3MkZZ+5kw3VmiIbRmL6tUTqWQDY/9gPckWb5GdbrqoXskmHtMIE0myac9bSzkMhUIpkGzqxs6yqcVx1fDx8N6l1Ww50cMv3zjKJfOrmFqafnXssUKqJJu2ztP8sbQNZ7/fb8ojy+fzRfqxWSWb/v03++y0558qGXOqkWyjKXxwqirZ9O0ZC+j9HBONG8mqi4oQn9eT207S7wlQW+rigrnmY9svXjKHl/a18dyeFuo7h6gLZ2CMZZGflGOmV199lTlz5nDfffdxzz338Nprr/Gb3/yGhx56iB07dmS8gROF8RoktE7m8/lSUoTEIztO5XTRbB6YT0NFuumiEK1ky0S6qDZ5TES/2Xtc3WWdUzuSzieaBMPYkGyLJxcBsLOxFxhfTzbxZ3Gs+ldSsh08eDBl1XGqOB4uOT41DnEVD3oV8co6VXH+7vHutNuSSMnW1q8aMbucdopdxmSgSLKZnUNElIUN5HvTJNm8gWBYJQZ5DvW86b6XnkCQS/7vTS75vzfxBKIr7f7iF7/gF7/4heG7YLFYcIR99frcxtcxGElrnHiSLXI9Dz/MADKX+BZxiW8R2UOxQVG4vw371Uq8RnOAVlm0wCElrAanR7znnAryHFZyws+8Y8CbVEWQ7N042D5ECIlSg6IHGuLFgvr+brVaqStXU2UOhwl9I7WA2A/HYn7RjNxh4kg2/bm1f4skm0huiCTcaDzZTgUlm/i+pHKtg94Ah9oGADhjSmpKNoDrl09m/qQCOgd9fOihTXSNQsU8VtD6gVbIKxnEVFFQ763Wx8wQdeLGsllPttEq2VKN606VtVwmCh+k68k2EUo2bZzRrne8lGzieigdBbf++VitVpp63PzH33bz7af3AXDbmXUpbYLNqcrn/DnlKAo8+PaxyO/1xV0yiZSjpq9+9at88YtfZM+ePTidTv7yl7/Q2NjIueeeyw033JDRxk0kxmuQEM8jBh2JoFVEguwrfHBayfbPjUykiw4PD2eEZNOON97pokPeAO2dXQCsnjtizisGzjBWJFshALua1MXReCrZwHiX81+FZPP7/bS0tNDS0jKmgUp9p7pAmVaen+ST0dCPvWumq6mmOxp7Gfal1z/0QZDYz9r71MVBdZErLjE0WiVbeYH6jvcNp6eW7B5Sv2eVJXKsxqRDJuByuXC5jBUXkiSpBRyAviFjb7mhLFKyQfh6cnKSf3CCoJFs/hD4g4qxks0T9uJzqM87Fc/b0UKSJCoKRlJGk6kIkpJsrQOEkCkNp0+bIdniKdlsNhszKlQPm2MdagaF0eJRTK/N9PwSDAajyIXxThcVfzZSWonzuPZ3Le7QCNt/FSUbpBbX72rsJaSoqZ8VBc6UFU4uu5WHP7KSmqIc6rvcfPThzbh9Y0sMpAoxFVCfWWEEPckm/ttM8QOxj6RKsk2Eku1U92QTxSri3HKqKNlsNht2u52cnJzIODMe6aKias1qtSZViCWKCfXz2Uv7Ozjvh6/zu40N+IIh1s0q46ZVU1Ju453nzADgiS1NEQJfPFemx9qUo839+/dz2223AepNHB4eJi8vj29/+9v84Ac/yGjjJhLjrWSDaPl8Iohty1ZPttNKtn9OjDZdFBJ7spmZALSgRjveePeb9YdasCp+8p025tVWRf1trEm2RTWFSBKc7B2OUkiMF8kmVoPT8K9EsmkYy0ClsUtVsk2vSGzmqodexVxb6qKqwIkvGErbl007ltavxevu6FcXB5OL46fzjFbJVpGvLkTipVkmg0ayFefa425MjRZ2u50vf/nLfPnLXzYMviVJwmlXA9141zGgVRfNApItcj2f+hTxlxITixybBbtFBiQ8gaBhvKMp2SaCZAMoDxNi7f2jV7IdaBkgqEiUpaBkS0SyzapSN2vqw2mx8RQaYzW/6DeUJ0LJZsaTTfy7vgJrppRs2Uqyif0plWvVih4sqy2O+Y7ZflRR4OTRj62iyGVjZ1Mf//vC2KrHU0Wq4ohEJFuqSrZkz2C0nmza89enUifDqZIuakYwIo6Z4tySrYUP9GSVLMusWrWKFStWRPrBeKSLitcnkmzpbC6JzycUUnjg7RMEQgpnTi/lj3eu4bcfW43LnrqFwZrpJSyeXIg3EOLRDSeA2EI4mUTK0WZubm7kha+urubo0aORv3V2dmauZROMiSDZzCrZxO+Mt5LttCfbvzZGky4q7tyl68kWDAYjn5koku3d/erAPKWyLGZRIpp9jgXJlu+0MaNcTSPc1dSbFSTbv4onW7zCD5lEv8dP16AadM+qTI1k04+9kiSxZrpaZXTjsa602qNPnxL7WeeA2s7JpfHTWrX3IV0lW0W4ulz/KEm20lz7qMau0SLHod6/gTiKvKHThQ9SgiRJFLpsKIDHb0yy9YdJtjy7+rwz7SmWDJVhFWZbv2dUSjZfIMTRjkGCyJTlm1eyJUoXnVVVgCxJDAx7ae3zxF08jpVXjX5DeSLTRcW+Iz4H7fN6iwTtHmVKyZZt6aJGJEQq1xopejClKOY7qVzHjPI8fnj9EgCe2dVCKDT+Ba7iQXyPzZBkmSTZzCrZ9CR7qiSb/t/JcKqQbKmkiwKGSrZ000XHKk43GuNEkgvGR8km3lszGxFmlWyNPW56hoOU5Nr57cdWRbI00oEkSdx5znQAHt1Qz7AvGNXWTD+jlKPNNWvWsH79egCuvPJKvvjFL/K9732Pj370o6xZsyajjZtIZKuSzeMPcqClL2JAbmZ3LhMYq8IH4ucmokrkaaSG0aSLih5qWmCh9SezuyzaJCcGqePdbw6caAVgwbRJMX8bayUbwBLNl62pb9w92f7V00U1jFWgsvdkPxYUCpw2ivKcKX3XaNGoBSMbj6Xny6Yn2cTr1qT2U0uNK4tCdHXRdJRsVYXqQsQXCNLnTr2fRZRsrokl2VxhJdugJ17hg0BWpYueCijKsaEg4fUbGytHSDbbSArNeKK6SH1/T/YOj2pH/1jnIIGQgt1mJd+hzpOpKNn0/clms5HrtFOaa8eCwo7G3riLx7GaX/Sxbraki4pKfT3BqL9HoyXZzCjZtDlnLLyC4sGoL5q9VkVR2B72izVSsqW6Ljl3djn5Diudg152hCuqZwqKonDo0CFOnjyZ8nfF60iXZBPtU5IhFSVbPE+2VNNFIbXY7p+VZNOuRVGUU0bJZoTxVLKZFU8karf4fA63qZtMly2swmoZffx22YIqppa46HH7+ePmhqg2TLiS7d5772X16tUAfPOb3+Tiiy/m8ccfp7a2ll//+tcZbdxEYrwnNEiuZOse8nHtfe9wwy/eYcPRLsOOeaqli55Wsp1aGE26qCzLEaJNCxpS9WTTvqdVaRLbNB7oHPDQ19cLwNr5dTF/1yZfIwI8U1gyRfNlyw4l22mSLXPY29yHjEJFviNl5Y3R+zBaXzZ9uqjYz3rC/mK1CQo0jNaTLddpJ99hRUbhaOdgao1nhGQryRs7ks3v9/Pwww/z8MMPx30Xcp2aks3474Oaki0LSLbI9fzxj2Tzm12URMmmpYvm2tS/jTfJVlOkLqhP9gwnNZ1OFF8daFE9GisLXVGeO3roxwujdFFZlpFlGavVSlWhExmFnU29/5Lpook82SwWS8zf9fdorAsfKIoS1V/Ga00ymnTRE11uuod82K0y8ycVxHwn1X5kt8qcO6ccgFf2taX03WTo7++nubmZ+vr6lL+bSrpoKBSKPGMx02GslWyjTRfV/zsZTgXrH0VRTKWLivG7di2BQCByb7Ot8EG8MU7EeBQ+0JNsydRhiea9SL8NV/sOIvGeRbHChnRgtcjcEVaz3fPSIU50DY3ZXJdytDl9+nQWL14MqOa49913H7t27eLJJ5+ktrY2o42bSEyEks3r9cZ9AbqHfHzgwU3sb+lHRuHd+m52NPXHfG6iCx+kqqQ7TbKdWhjtQlXbvdOQKskmGo+OVV9PhDf3NmAhRHFeDnWTYiXLWhCVDglpFmKF0bGSOGswS7KdqirU5t5hHnr7OO8c7UxKQonXPFb3e8/JPiwolOc7Uu5DRmPvaH3Z4inZet0+PGEzajMkm1gBMpWxQ5ZlinPtSJLC0fb0SbbSMfRkUxSFEydOcOLEibjvQa5TvQ+DnliTbF8ghC8QQpLIinTRyPU0NZHNb3Vhjh0FCU/AWOXT71H7p8sa7UkzXqgJexWOVsl2oFUl2SYJ3ofperJpaTwWi4XKAicWQuxs6EmaLjpWSrbxsHzQe1RpSESyaWSk+Dtt7MuUkk0sfGDUf/XqtfFek6RDsm1vVOeYhdUF2K2xsUk613Dx/EoAXtmfWZJtYEB9r9KJX1JRsomfFe+pRrJ5vd6k90VUOyZTNer7eyr9NBQKRT2vdJVs8cYLRVE4evQora2tpo+bSYgxXKqCEe0ZiEVPjKBXDor3fSKVbOOdLiqeM510Ue0YjT1uPP4gRblOVk0ryVhbb145hZV1xQx6A3z2D9tRGJsswJSjjunTp7N582ZKS6MXmL29vSxbtoxjx45lrHETifGa0PTncbvdFBQU0DHg5S/bmggEQ+TYrfx5axP7W/opy3Nw2ewy9uxq54W9bcza08plC0fM18ciXVRcIGVSySZWSTX7ndOYWIwmXRTUoLqvry/yc6qebCLJNhFKtq2HmgCoq640XAzr/VrGAvMm5WOzSPS4/XQMqUHQRFYXBTUYSyShz0YEgiFuf2QL+1rUzQqbRWLVtBJ+eP0SqotiKyuOh5JtT3M/DilERYEzZZLN6H2QJIkzZ5Ty1+0n2Xisi7Uzy1I6Zjwl29GOQWQU8hxW8nMccb+vqWZSCW713y9x2Tne7eFoh7nCQCKi00VHN3ZZZTni5WFN8Rh5To2kDOLxB3HaRu6B6seGmi6aBSSbCCsKd1paIv/OJiRVsoXTi3PCt9qskm00z1lERMnWOzol28FWdXyaUpoPGCvOjL5r5MkmVpqrLHAiSwp7T/YQmpWDHK6aaXTMTM4vwWAwUlExPz8/yqN1LBCPXE+mZNMvELXxX6/SSFfJJtpdBIPBmHuv7yvjTbKl48m27UQvAMumFkd+N1qF03mzK7DIEofaBjnRNURtAnuCVKCRbIDh/Y8HPcnl8XgIhUJx5xX9fKzBZrMhyzKhkFqhNCdBNWdRyaatm+LNE/r+nso7rO9zmfZkc7vdNDY2YrfbqaqqMvzMWEK7HpFEjwf9Wjqe2lePZJ5siZ5dukhFyaa1R1EUNhzroq401zDeTQeZTBfVvnu4Ta2sfdmiSRlJFdVgtcj8+KYzuPzHb7KzqY/X8hXOqs3L+FyUMslWX19v2Aiv15tWbnu2YiKUbKDu8DUNwu2PbKa5L7q0c1megz/euYZSm597u+rZ0uTmc3/czgMfWsE5s1VJdbrposGQwq/ePMZD64/z4bV1fOr8mSNt8vg41jFIj9vPS937sVlk7jp/ZsTYV0Qq59d/5jTJlv0YTboojI2Sbbz6Tb/Hz4GGZgCWzqwx/Exubi6yLONyxa+4OFo4rBbmTSpgV1Mfh9qHKCMzi6Cenh5aWlqYOXNmhFQRn7dWdEKfxgIjJJuiKLxztIuqQmekQEO24pENJ9jX0k+ew0qew0prv4f1R7q47aF3+fMn1lLoig6mxppkc/sCHO0YZJFldOmi+nF1zfSSMMmWmi+buAmiL3xwpG0ACYWSXHvSYNVut0fdr1SVbEW5diQUjnaMQsmWZycUGkr5/CLsVpmvXTEvre/mOu3IkoSMQt+wP4pkGwyTbHYZZFkaU4I+Vdglha/Zmia6GYYoyrGhKBIev3EVvO5wsQxn+DUyS7KN5jmLqClWFy7dQz584eaNRsk2tSwPvKpSKBnJJvYh/cIe1EVQaa6dHAt4vD46BmRqSvJi+t5YkGyais1ms42Lki2VdFFxvhtrJZt2Di2dMNtItnSUbJvr1TnmjDgkWzr9qNBlY1VdCRuOdfHK/nY+dva0lI9hBJFkCwQCKZFsGiRJQlEUPB5P3JhPfOZiH5QkiZycHIaGhhgeHo5LsgUCgZj7lojU0/f3VPqpUVxnFmZINrFy6UTAjB+bBn08Ja49zHxPI2ONfI0zbV2QjpLt/jeP8T/PH0CW4JL5VXxwTS25Dgtt/V78wRAXzK0g15FaDBovXTRef0hWXTQYUjjaMUQQiSsXVafUFjOoKcrhB9ct5pOPbeP1Q51MzZdZOFFKtqeeeiry7xdffJHCwsLIz8FgkFdffZW6urqMNm4iMd4Tmsvlwu128/b+k3zj9U7cviDTy3JZNa2EYbebHH8fH770DGZW5NHV1cX5cyoYCHazv0lVY9z3gWVcNL/SVArd9oYefrO+nhybhbNmlVFb4uLbz+xj6wk1gPvhi2q57E+dP5MTXUPc9egmbF3NKEjsDKgDzD8OtvO7j62O2VVKVZqc6OfTyD6MR7poop0eI0+28UhVVBSFr/xpJ37PMEVOG+vmTzX8nMPhYM2aNWOemrRkchG7mvo40DrE2SWZCVoaGxvp7u6muLiYSZNU7wPtuHa7neHh4SiiDdTr9Xq9kZSL/35uPw+8dRyAC+dWcMc501k9rSSr1DkArX0e7n1JHee+fuU8blo5hcPtg3zo1+9yuH2QO367hUc/uiqKDBnr6qL7W/pRFIUCh0yuw5oRJRuM+LJtb+xh2Bckx27uuOJx9Omih9tUdU1Jrj1pO+12e8S3Rr/QSAZNySYDR9sHkn5ej64oJdtA5JjjDYvFgsMqIwcVet3+qA0qteiBgtM6MQb9pyoKc1Qlm9dvnD7VMaDOFbnh2zne6aIFTpW8H/QG6BhU+6HRuCEuxPTvUp/bT0uf5n2YT/vJnghBo0cikk0jc0SFgSxL1JbkcKA1xImuIeoqi2OOORZ2BNpYoG1IQfalixop2VJdQBpBT4DYbLbI/KknWSaKZEvXk61z0BshhLWq1vrvpHsNF82vVEm2fW0ZIdkCgUCUl1q63mMulytCkpkh2fRwOp0MDQ1FlJ1G0GJeq9Uaib0SKe/0/X28lGxmnvNEVMsVkYpIIJ4nY6okm35uCgaDGZ/jU1Wy7TnZxz3h+DekwAt7W3lhb3QK77xJBTz8kZWGYpp4yLSSrbFbTRV12nMymioq4vJFk7h51RTe3drJhqNdXHLWBCnZrrnmGkB9iLfddlvU32w2G3V1ddxzzz0ZbdxEYrxJtvz8fLYfa+NPuxtwB0s5e2YZP//AMgpzbOzfv5+2Ng85gUGgNLyLIfGBNXV49qsvyCd+t5Uf37SUtZPVF0JRFNoHPPz3s/tp7fewbGoxi2oKeXpXM8/tHnmZHt/SGPl3nsPKxfMr+ev2k/zwxYM09Qzz7K5mvJ5hluVYmFyaz9mzZvDsrhbqu9xc/8sNPPrRVcwLG5xC6umiIk6TbNmP0aaL6gNJvaRdO0e8AGKi0kUffOs4L+9rYakdrlg0icL8+Eq18UibXDxZ3eTY1zqYMZJNu7diYCV6cg0PDxMIBCJ/lyQJp9OJ1+vF5/Pxraf38fA79eG/wasH2nn1QDvvXVLNPTcuwZZBqfdo8Z1n9zHkC3LG1CLev2IKkiQxuzKfhz+6kht+sYF3j3fzxT/t5Ge3nBEJXMZaybbnZH+k6AGkrhaNp+ycWuJiUqGTlj4P2xp6OMtkyqh4HH266LEw4VWa50hKmolmz6mOG6onmw1QaOx24w+GUupHPYInW2hodBsEoZDCyV7Vf6emKAdZNk8WOp1OnDYLTm+AXnd0NcFBbwArIewWKeKXlS0IKdCoqM++RvKlbuI7hlDTRaW46aIqyaaQk6KSbTTPWYQkSdQU5XCwbYC2AT9WjMfpeJ5NAAfb1PesutBJoctBe4LriEeyaT+HQqGodFFQPRvtrX7qOz1cbDBvjaWSTSTZsiFdVCQ7xXSyZOmiqbRdv6gUSTY9JlrJlmq66DtHuwB1cV6aNzLmm/HqSoaL5lXwnWf28W59N31uf4zKPFUMDkarotNJi9QyFoaGhnC73TEWShqSkWyQ2NdNjHm1Kt2J7uNoCh+MdbqomKo4FmmTyZCKSCCeJ1sq6aLiPbHZbPj9/jGJHc1cl/Y+e3x+/uvxHfiDCpcuqOQLF8/hkQ31vLCnlRybhYoCBw1dbva39PO++97hkY+uZGZFvql2pFv4wKjdHYM+1h9Tx5SFk4uxpDkPm8HnL5rNB7btpLlvmIMt/VRWVmbs2KZjplBILZM+depU2tvbIz9r+eQHDx7kPe95T8YaNtEY7wmt2Q0v7WvFQYD3r5jCbz6yksIc9WXWBmCxnDeA3WblZ7ecwdVLqwmEFD79++1879n9DHoCHO8c5D0/eZu/7Whm47Fu7nv9KJ98bBvP7W5FkuD65ZO5Y9005k0qQJbgrJmlvPD5dfzf+5fybxfNBuAP7zbQ7wmwpCafD6yu5boVU/nypXN54hNrmTdJ9Y17//0b2BEu2Q2jU7Kdqubp2YxM3VO9iWcm0kU1E2aIHmQTBQMTkS666VgX//PCAawEOWd2OZNL8yZ8IbxkShGgkmyhUKwkPR1o44tRsCSSLOJEarPZUBSFn76yn4ffqUeS4PvvW8Q/vngeH1g9FZtF4qmdzXz2D9vxB7ODRH/rcAfP7mpBluC71yyMWkTPrSrg/g8tx2aReHZ3C68f7Ij8bayVbHtOqpVFy/PVdyQdQgpi3wdJkiJqtk3hoMUMxOPoPaWOdaiL/7J8Z9JAWSSd0yEO8xxWbBaZYCjEia7Eldz0yGR1UU8gyLr/fY11//sankBq71t+fj5Om4xL8tGrqzA66A1gIYTdKkeNidkADzLrfEtY51uCJ6soNih02VVPtkAsyaYoCh0DXmQUcsJqVLNKttE8Zz20lNGWAbUfajGzCHG81ffNQ2GSbXZVfqT9Zki2eKotcfEjSRJ1Zbk4pAAt/cP4Q7H9LplxdToQSbaxOL4eZtNF9WTnWKSLGinZwDgtT/+78UqxSzdddP3hTgDOnhlNNmVCyVZbmsvsyjyCIYXXD7WndQwRYqoopKfYslgspiqEJpp3tO+bUbI5HA5T74ueVBYzPpKtBzKVLpqMVBHbOZ7IBMmWipJNJJH02QCJ4PV6U7o/ZpRsWt9582AbR9sHKM938P33LWZOVT7/fe0itv3nxay/+wL+etdZ/O1TZzG9LJeTvcNc94sN7G3ui3tcEekWPtDHhdsberjqp2/T0q9aa6ybkznSywiVBU6W1qpKuad3NCb5dGpIOWo6fvw4ZWWpmSefijAziGUCwWCQfo+fbzx3jGBIYW65k+9cPT9qtz4eySbLMlaLzL03LuXDa+uQJHhhXxuPbKjnkfXHaR/wMqsij+9cs5Ablk9mTmU+ly6o5PnPreNHNyzh61fO5/nPrePQdy/nsdvXMDlcveqzF87ksxfOwmaR+OCaqfz0piXkOUfSl8rzVW+4FbXF9HsC3Prgpkiq6WklW/YgEAiwadMmDh48OKrjHDlyhPXr19PT0zPqharD4YjZYQN1ctAbcxpBlGyPR7poMKRw95O7CYYUrpxfxuKawihlzkRhRnkeJbl2Bn0hTvYOR6VwpgNFURKSbKInl7jYkGQrL+xp5aU9LUgS/O91i7l51VSmleXyvWsXcf+ty7FbZJ7f08qnHtuGLzDx7/gj75wA4ENn1rGgujDm72tnlPHBNWql7D9vHfGjGmsl247GXiyEIn5sqZItid6HZbVqKth2YUMkGaLmmfC7qSgKgx4frWGlT3l+csNcMShNhziUJCmcMpqaL1sopNATVo2VuEZPso0G+fn5OK0WnFKA3sHoCqODngBWKYTdIp9OFU0BRTmaki02XbR/OIAvGMJKiFy7JW6K5VhDK37Q0j+iXtTPb+JCTP/OH9ZItsp88vPzsVgslJQYp80kU7LByDiuKSYLnDZqC60oChzqjCUKxkvJNhHpovpNOj3JlqzwQToEoZGSTTy2iFMpXVRRFN4+opJseqV0Jkg2gAvnqQvt1w5knmRLhUwSn6GWImqGZDOaz7VNZ7Mkmxn1ZDwlW7LvQeaUbPEIPaMsifFEKjFAJgofGKWfJ7unra2tbNiwISWPe7OebIfbBtjR2ItMiB/dsISSXGPCcEqJiz9/ci1nTC2ib9jPXY9tY8CT/B3JRLrom4c6eP+vNtI+4KU0z8lNK6dQUzL2/s4XzlMLcaw/0kH7QPz3MVWYjjY3bdrE888/H/W7Rx99lGnTplFRUcGdd94ZVQHlVEe8AaCpqYn169fHDNKpotft461DHWyt7+Lv20/SOhSkJN/FZQur8HpGBuxgMBh5ufX57JFUO1nim+9dwFOfOpvFk4vwB0OEQgpXLanmb586i1vX1PLDG5bw4r+dw/23rmBuVUFUW8SKHZqE9wsXz2bPty7lu9cswhKeG8TBujDHxiMfXcXqaSUMeAN86Neb2FzffdqTLYugeT10dZlXrxihp6eHYDDIvn37IsFAugtVSZIiJJV+0WMmoBcDwPEI0F/Z38bxziEKnFY+fd40JEnKiiqaFlnionkVhJAixMNo7oOosDDakdSuWUwXDSHxk9ePcbBtAIcc4sfvX8oNK6ZEHfeCuZXc/6Hl2K0yL+1r47aH3qVrcOLmCbcvwFuHVXXaTaumxP3c9csnA/DyvrZIet9Ykmzt/R4Otw9ikRRqinPSIgT0XiAizggrH3c29hIKmSNjxR1xsT2HW/qxSUFcNgsFucn9OkarZJMkieJcGxKkRLL1DfvRLrU4d2JJNofDgcOhFnDo7oveFR7SKdlOwxy06qJeg8IHHYPqPFXkVDciJ4q81JRszb2euAvkRObPh9rU/j6rIg+Xy8XZZ5/N9OnTDc9llN6n/1m8D9r5FlSqbdzdElu9N9Mkm6IoEUWIWdIgE+eE+PdE+7ue7NSPp+OtZDuV0kUbut2c7B2OVOgWYeR5lw7Whcm7d452jXpjVVu/paIu0iD2E02JJvq76RGv/wGmlHCpKtn0pJ5I3ie7Tj2RlK6SLV4bzaSUjiUSEZ566Pu8/v038z2xrySrMK1B24To7+9P2kYNZpRsu0/28/xelaD+8JqpnBsulhgPJbl2fvPhldQU5XCiy83dT+5O+t6lWoFZny6q+Tr7AiEunFvBnefNoshlH5e4aEZFPpMKnYRCIR7b2JCx45qONr/5zW+ya9euyM+7d+/mYx/7GBdddBF33303Tz/9NN///vcz1rCJRrzO1NnZSSAQoLe3N+1jb2/o4ewfvMaHHtrE6wfb6RryUZLr5NZ1s7Fb5chLBtGDr15poh+0F00u5P5bV/DeJdVct6yGn9y0NKXqIH19faxfv54jR46gKAoOazTzrg8Ccx1WfvORlaydUcqQL8iHH3o3YjR9Wsk28dD6yWgDWC0o9vv9kb45GlWAtnuXKsmmKEqkj4hKn7FUsj341jEAPrCmFitqu7JByQZw6YIqlWRrHzSsYpQKxGDKTLpoSFH49foGtjUOYLPIfOa8aVy91Lji6vlzKnjwQyvItVvYcKyLq376NruaetNu62jw5qFOfIEgs4pkZlfE3x1bUF3IvEkF+IIhnt7VEuOvkelFoeZnM7cyF6fNktb7JQZY+ndiTlU+DqtMvyfA8a7YxbQRRFJK9Ao73NaHUwpQkmsnNzc30SGA0SnZtO8Uu8IVRtvNtR1Gih4UONV004kk2SRJwulS+1tff/QGXcSTzXpayZYKinLsqpItEEsqt4eLHpTnqvHPRJGXmpLtZO9w3EVWIpLtcPuIkg3MpQNBfEJJvA/av6cXq+/ntqaBGAI+0ySbqLi22WxZlS6qj6vFaw8Gg/iDIfae7KNzKGD4fTOIp2QzWninQ7J5PB7a2trSjoniFeFIRoZqKrYzphbjske/a5lSsi2rLcZulWkf8KZVaVpDIBCIrKuKiooivzMLo3RRzSst0ecTebKJm5d6GPkQp6JkA0xliWjt0LfLDMTYXEM2k2yppItq91NPICX7nrhxbbFYTJNs2j1KpG7UI9l1NfcOc/ujW/CFYFppLp+9YIap4xa57Pz0ljOwyhLP7mrhsU2JyadUlGxin9E+99bhTg60DuCyW7j3xqXkOu1RxxtLWCwWlk4pRkbhsU0n8I7SKkKD6Whzx44dXHjhhZGf//jHP7J69WoeeOABvvCFL/CTn/yEP/3pTxlpVDYg3gCg7SqkwvCL6HX7+PTvtzPoDVBTYGdGeR4r6kr40yfXUlNWBETviogvWjwlmwiLxcL08jzmVuWlnG7U29tLIBCgqamJvXv3xpA0RkGgy27l17etZMmUIoZ8QZ7Y2hzVxkQ4TbKNLcTnl27QFQqFIn1d7G+jWahqE7h+4EwW0Iu/Hw8l247GXjbX92CzSHx4bV3k3c8GJRuoaRkuu5U+b4j2gfhBnhkYqbTESVCfLnqyZ5hDHW6sNhvXnlHDrLLEaYPnzC6P+Dw093m4/pcbeDvs4TKeeGlvKxXyIOtKBmlpaUn4WU3N9uetTaNKozADbZGyYqqavjoaJRvEvhM2i8zCGvXYO02mjMYopsNtOt7eTw5+SvLGh2STJImS3DDJlsLiKuLHFk6JmEiSDSAvXyXZ9Kbbg94AltPpoilDMz/3B0N4/dFjn1ZZtMyl9tmJVrKd7BmOO7/Fi6+6h3x0hquSzkywIaAhkSdbVVUVBQUFEVJB/HxlvkpCdw4F2NcSrZ7INMkmxhLjMYeLaWtmSTbtmsW/e7w+ntvVwov723n/AxvpGfKl5HUltkdsS6aVbEeOHGH//v10d3ebao8eogo6lXTRd46om0RnGxTVMZNGaAZOm4UVYdsDbVMqHWjjr8PhiKR7pkOyaT5bWhwbT42WbL2m9YF43x+tJ5t2Hkh+ndrfNfLQ7DrXqD1GvzuV0kUzqWQTSbZkY6n291QyAxMp2byBIB97ZAsdA15K83O4bFEVSsj8eL5sajFfuWwOAN9+Zh+b6+OPLakUPhDHAe1zD4RFDe9fOYVC18gmzHiQbLIsM7Mij1KXjc5BH3/dFp2u29DQwLvvvhshvU0f1+wHe3p6oiouvPHGG1x22WWRn1euXEljY2YN4yYSRgOAoigpk2wejyfyHUVR+NITOznZO0xtqYu/3nUmVy2p5pzZFdSV5UUWLMmUbIkGitGoe8Rr7uzsZOfOnfh8PkP5uIgcu4V/D7+EL+xtZcDjz/p0UY/H809P6mVi10jrc5IkMXv27MjvR7NQ1SbwVJVsYlVLUQI/Vs9RU7FdtbiaygJnVJpLNsBps3DenPKImi3TSjZxDNGnix5uGyCIzLo5VVQX5ZgaD2dV5vO3T5/FBXMr8AVCfPfZfeNqfusPhnj1QDs5+JlRnhdDduhx9dJqrLLEzsZeDjb3Rv0tkySboii8EybZltaoqfzpBBXiO2l0X5eGU0Z3pEmyaW063jEQVrI5UibZ0iUPi3NHPNnM9plsI9kK89Vn6xnSkWweVclmO61kSwn5DiugzgFD3ujxRyPZSnISFwsYa0wOK9la+z1IsvFCN575s1b0oKYox1RGQiIl2+TJk1m2bJlhuqhVlplS7CKAzBuHOqK+l2mSLRMpl6nAaCGn/1nvyaYn2YLBIPe8sJ/jXUMEkWnsHubTf9iGKPozu6msJ0AyTbJpMUq61j36jUwNiZ5TKKSw/qjmxxZbYVP/nWR9KRQKUV9fb2jJs3aGevz1R9LfoNOOm5+fb1pdpG8fjCi8k6V8Jpt3khU/MCLZxlrJprUpEAiYmm+N+o3RuU5FJZueZEtFyWZEsplVsnm9XtP3KNF1Pb2zhf0t/ZTk2rl17TQcVkvK4/ntZ0/nonlq3H7bQ+8aFtASU+rN+FbqC/7sa+7nrcOdWGSJj541DYDKykpyc3PjVu7NJCwWCxZZ4pL5FQD874sHoyrBt7W14Xa7U0rjhRRItsrKSo4fPw6oA/m2bds488wzI38fGBj4pwoQ47HwehPEZMfYunUrW7ZsIRQK8eBbx3llfzt2q8zPb1mGyxZd/UVbsIiLP3Hg1ga8eEEZZIZkKyoqwmq10t/fz/bt2yPtSbRAOnN6KaumleANwpb6HtNBR6KfxwoDAwNs3LiRQ4cOjcv5JgqZSG8Ty1ZXVVVRV1dHSUkJBQUFSb4ZH6WlpTgcjpgCKmaVbPpdkrHoN009bp7f0wrA7etUD5xsU7IBXDK/ipCi+rJlmmQT32FRyebx+jjSPkgQmYsWVsd8PxEKnDbuvXEJeQ4rB1oHeHX/6E2MzWLz8W76hv0UOSUmFTmTyvHL8hycN0edcJ/eocrktfsgpgKMFvVdbpr7PNgtMnOrVMVKuumiiYjnJaMk2bQ2NXYN4pT8lJpMF7VarTGVzlKBLMsU5diwSDDgCdBh0tNvhGRTSfGJJtlKitUx0+f1RL2rQ75wuqjltCdbKpBlKUI+DXqMSbbinPHbCTdCWZ4Du0UmpMCgL9bzUvxZ/86PFD0wZ/qciGQzgnhP6spcBBQLrx9sN/xMpjYV9J5PY1FYQYQYG6SSLvragXY2Hu+hpW+Yl/e28Oct9QCcP3cSLruF9Ue6+J8XRgpKpRrvjpWSTV8JNVWIfVG8X4lItn0t/fS6/eQ5rCyeXBTz91Q307u7u6mvr+fo0aMxf1sbVsptPNZN0KS3qB6jJdn0acV5eer7GW/xnWze0TI7jEi6dDwMjXzHzL5n+nRR8XeJIN6TRH3lVK0uKhJm40WyAaZVU/GUbIqi8NDbKm9zx7rplBdEKzeHh4dNjSuyLPHTm5dx9swy3L4gH/7NZjbo1KR6KwBI3O/EfirLckTUcMWiSUwpUdtZUVHBypUrI4rTsYT23M6dXcrsyjy6h3z8QBjjjQrDmTqu2Q9edtll3H333bz11lt89atfxeVysW7dusjfd+3axYwZ5vJ8TwUYdTxxd8jMwOPz+fD7/fj9fo619vCDFw4A8F/vmc/CmsKY4EobrL1eb+SBigtBzS/BjJItnQWg1p7CwkKWLVuG0+lkeHiY9vb2qHYaQZIkPn/hLBRgT3Mffe7kg8NEKdk0pWAis9J/BmSSZNOIpbq6OhYvXjyqhWpeXh5nnnkmVVVVUb9PJmmPl86hT0Ho7OwcdWGS36yvJxhSOGtmKfOrw4vjLFOyAZw/twIkma4hHyc60/cpESdzIy8/kWTbd7IHtz+Iy2Fj7SxV3ez3+00HTUUuO7eeqVbv/OlrR8bU9FrES/vaAJhfmYMsSaY8LyIFEPY0EwwpKQefZqClii6rLcIqxabqpIJE479W/GB/Sz8ef/J7bqRkCwRDdPf2I6NQlu+M7Hgna5M2fqSrZLNaZGqK1Htv1peteyisZsodIUa146UDiyxx65pabl1Ti0WOXoCuWLGCFStWJDx2SUEufix4/IGo8WnAE04XzRIlW+R6li7FhsKtljZutbRhYfwXRcmQ61Tv16A3+l3USLZCR6zhfzLEe87pQJYlqsP9ts9jTIDEJdna1fFc82NLfq7U7BzE89WV5uJHZltDb9S9NJtmZhZ6km2slWzicc2QbF2DXn755nE+8vBmfvTSYR7f3MiftzZiQWHtjFIuXDCJe29cCsBv3jnBlhM9hn5UydqiVwcbkWz6ezXeJJuIRM9Jm7/WTC/BZontd6nG+dp1GxEMi2sKyXNY6Rv2s685NUWJhkwp2bR7pG04p0uyJVKyafdAkiTTHoZG6aJmr1P7u91uT+ndF+9JojZOdLpooiIUeoixVCAQYF9zP09uP8melsRxdiZJNrO+bPH62Kbj3exr6cdpk7l51ZSoZ9rV1cWmTZs4cuSIqXPk2C08eNsK1s0qY9gf5CMPv8uB1pE+r/VVsQ8kVsCOtLmlb5indqpWU3esm2aqPZmG1mZJUfjuNYsA+MO7DWw9oabH6u26zMJ0tPnd734Xi8XCueeeywMPPMADDzwQpeh46KGHuOSSS1I6eTYjGclmRrkhThJ/3HiMQEidqD+weioQO6FZrdbIIk5Tj+l3N/x+f8JBOx2fCA3iQOlyuVi2bBn5+SMBXrIF0pkzSlk8uZhgSOGNg21JzzdRnmz6tNt/VowFyTaWSCZp1xfgMDJ693g87Nmzh507d6b9fFv7PPxu4wlgRMUmpopnk5KtMMdGXYX6jr5l4p2LByNPNqPACWDrcZV0Xz2zHJdTJRxFqbgZfOzsaThtMiebmnjs7y/R09OTdtvNQFEUXtrbCijMKh0JapONkRfMraAsz07fkJcdjT1RgW6mFp5aquhZM8pM75bGQ6KgZnJxDqW5dvxBJcZ7yQhGSrYet58cyYfDKlNWlG/a91N7Z9JVsgHUlqjPzawvW0ufGqBWFjgNU7VShcNq4TvXLOQ71yyMFAUC9VldeeWVXHnllQmfW1GODbdix+MPRZFsQ94AVpSsIdki13PRReRKCt+xNfAdWwMOKQtJNod6v4b0Sraw2jHfHq0YMoN4zzldaL5sPcPGhYjiERtauugskySbWJzEzHspnq8gx0ZlYS7BkMKOht7I78U5ORPKk1Srz40WZpVsiqLw+43H+f27DRzrGibXbmHupALyHVZsElyxoIKVdSXYbDYuW1jFv12kWme8cbiLl/e14fYmXw8kU7Lp769IeGjtTIbRkmzxipwlIk5eO6DGA2tnxPqxiW2K93O8NhitsawWmdXh6qXvHE09ZVQsepCJdFEYIdkGBgaSkglG0NZ8RoSKGHOKFW9TTRdNVclmtVoTEsB6iGOYWSXbqZQu+st/HOSlfa0c7xrmlgc28drB+BkY8Ug2s3GjeI/Mpn3HU7L9Zr2qYnvfsslRVTqDwWDE3ku0p0qEzs5Ojhzcz303L+HsmWV4/CG+/MQuAkH1nhqtFc2kDsuyzP1vqPzImuklhmrY8YD43FZNK+GG8Ab71/+6B69vhHcZMyVbeXk5b731Fj09PfT09HDttddG/f2JJ57gG9/4Rkonz2YYDQDiIJgKyeYPhnhxl9qhb183LUZtIE5ompptcFD1ntHOKZZgjlddVPxcOtAPQHa7naVLl0byoUXCzQiSJPGxMCmx+Xg3tz30Lu8ej2+SOFFKtnQZ6VMNpxrJZjZdVL9LAiPPUmuvtlOTDv7fq4fwBkKsqC3mvHCZa9GbIptINoCFk1Uz4PVH0k+9TJQuqqUASJJEMKRwoEl9p8+dUxUxsNYfIxnK8hzcsqqWfNnLpmOd9PX1pd12M9jb3E9zn4c8m8SUYjWoFVMx4sFulfn3y+ZikUJsPNZNnyeY0RSqYEhhQ9jfYu3MsrgLbrNIlEItSdJIyqiwkI4HIyVb95CPXMlHaa4jMleZwWiUbNqcNjVFkq2xR11MTSl2GapIxhuFOTbcig1vIBhFsg16A1hOp4umhTyner/iebLlhUm2ibyvWoXRnmF1vDCtZGvTlGzm3zOjuTEe9JVGV4TJiy0nug0/kwnFcTwl21ini4qp9BrERdXze1r53QZVvb6guoiXv3Au9960jI+tm87/XreQj6+rRZKkyP347IUz+eZV85EkiX0t/dz56Ga6kqSxi+lRepLNqDr4RJBs8TZ54hEn7f0e3g0boV+yoBIjpBrna22P5wd2pubLlkbxA22+t1qtUUULUold9Osvl8uF1WolFAoZEhZmlWxG6aKiHxskJjs1JPJkS9YvRBI8UeVbPYxItlPVk23YF+S53S1sbeilqcfNI+uPc/8bhwEozHUy7A9yxyNbeGJLo2H/NCLZZFkedyVbY7c7kr3xkbV1wEj/6e/vp7e3N+Z8idDU1ERnZyfugT7uvXEJBU4ru0/28cBbIzZiYFzoKlG66IA3yGObVFHDZy6YZaotYwH9+vOrV8yjyGXjQOsAj6w/FvncmJFsGgoLCw0D5ZKSkqxbfI4GZpRsyXb2tM/vb+nH7/NSW+rivNkVkb8bBVciyeb1elEUJcpcM5mSTRxYUx3EjMg7i8XCokWLOOussygpKUl6jJXTSlk2tRiLrPDGoQ5uvH8DH/7Nu/S5YycxfRWj0yRbZnGqkmzJ0kW1ycqor4vPVEtzTgVHOwb505YmAO6+fG7kHNq7bLPZJmyRHg+LwyTbodb+iA9VqtCTbGIKjEawWSwWGnvcBPw+XDYLy+rUnetEvjKJcOc503HKCid7h9nTGJ+MzwQ0ZeI504uxCiktYhBTX1/Phg0bYtLIr18+mUVVufiDIf6w5WRGSbZ9zSN+NksmF8ZVEphFMmWIVvxgZ1Nv0mMZKdm6h3xYCFFi0o9NQ7yKwmagnX9KkUaymdt5bexWn+OUksyQbIqi0DXopWvQGzX3K4rC0NAQQ0NDCWOCIpc9TLKF6BVSiwa9QaxZlC4auR63m5ACXYqVLsXKBFjoJEV+OF3UrUsXbQ+TbOFM4ZTua7znnC5qilQ/mc4htY1mlGxdg166hsxXFtWQCskmns9ms0UqN249MaIqFj2WMjHexfNkG03VyUQwk/Xh8Qf4zjP7kCWFFbUl3HXBLKqLcqLGUn3BBkmS+PBZ07hpVS1Om4U9Tb184U87E15DPK8s7Tzi/CmSbhrBkixeFX1Cxytd9Pk9rSgKnDG1iMnFsb5JRh7SZtVURsQjqFXVQd3I9wVSi+H12QhGc3kwGOTo0aNJ0z9F1WiilNFUlGz6/qMn2cbSk01vXJ+Oki2ZJ9tEp4smexb7mvu56mdvc9dj2/jJP47y561NvLyvFQsK584u5zMXzuXaM2oIhBS+/OddnP2D1/jPv+2Jqrg52uqi4n0xS7IZEauPvFOPosC6WWURNbTWhs7OERWo2ecgrpsrCpz811ULAPi/Vw5xpH0woZLNaHzXzvv6oU78QYV1s8oi7/ZEQN9vS3LtfO3yeQD84rVDDHjSy4DLrtViFiEZyRZvAhDh8/lQFIWdjb3YCfKhM+uQBY+PZCSbtrPhdDqjqvsZKeA0JKswlwiJjms2SLVYLJwzu5yPr5vOLaunYrfIvH6wg2vvW099Z/Ti6DTJNrY41Ui2dNJF9YU+xGfa1dWVcrB570uHCIYULppXwYq6EVJZH+xkE0rznZTnOZBReOtwR/IvGEAfSOl34UC974fbBpBQmFmZh9Oh9gmtb6RKslUVOlk+RZ38/7GvOa12m8Hupj4e36IqiW9aEe0DKAYxra2teL1eTp6MLt0tSRIfWjMFiyyxrWmAfa3qOJYJ9YVWlW3N9BKsFnnUSrZknpypVBg1VrJpPmepkWxTpkxh+vTpVFdXm/6OBu38k4s1T7bkSrZgSOGkpmQryTFUkaSKYX+Q5d99heXffYVhwdPO7/fzox/9iB/96EcJ34ECpxW3os6jvf2DkbFp0KMSl9lCskWu57776EdmufcMlnvPYDgLw0WNZBvyjdx3fzAU2WwI1z1I6b7Ge87pQksX7RhS22hGyXYorGKbUpKDy26emDbagEr2WVDvz/Jadb7b3tAbZSqfyU2FeEo2GJt4LF4alfi7f+xvo6XPQ2WenTXTSyLPQYxL41UWnFGRz/XLJ+O0SrxxqINHN5xI2hb9At9ok0q812aVbOLfM50uGo84eXZXCwBXLppkeDxxDWLWW06cV43G0zmV+ZTk2hn2B00X8dGgj2e15ykSlB0dHTQ2NhoWXhDbL8syxzoGufPRLXzl74fZ39KfFsnmcDiQJCnKkkRDPFJ6LDzZxPs+GiWb2YqS2VL4IBhSaOx28+Bbx7jmvvUcaR+kLM/BrMp8il12qgrsfO2yWZwxtRinw8Y9Nyzh0+fPVO1Oeof57cYT3PDLDbwQLpQmHlt8n9JRsplNF9Vf14DHz+Ob1Zj3o2ePeJwZbXKajWP1GS7XLavhvDnl+AIhvvLnnQyHY2lxjSSOI0abSx0DXrY3qe/MVy6da6odYwUjIvr65ZNZUVuMz+/njYMdMX83g+yLmrIERgOAvsMne1l8Ph+NPcN0DfnIsyncsGJy1N8TkWxutzuiqMjJyYnaVTCrZEuXZBuNUifiU+C08N/XLuLvnz6L6kInxzqHuOa+9VGMv57UO02yZRb63bl0kM3pohC/Qpj2O3HHJhm21Hfz7O4WJAm+dOmcqL+N531IFRaLhdrSXGRCkYkgVeiDWaMCK0EkjoQJjlkVI34mWjBmthKSiDNq1B3gPY3dtA+Y27VLBYqi8M2n96IocM3SamaVRRv1ayRbMBiM/Lu9vT1mbCjPtbKitoSAIvPXHS34g6GMLDrXa35s4R28sfRkA1gS9rs40eWmJ4nqMZ6SDVIn2RwOB1OnTk2LRNLOX1OoBm/NfcNJCze09XvwBUNYZYlJhTkZmdtGC6tFxuV04FOsUb5sw94AEsrpdNE0kBdRso30h67BsAGzLGEL+8hN5H3VCh+0DxpXJzOa1w63hyuLVpjzY9MwGiXbnKp88h1WBr2BKEPrTJJsekVY1GJ3DFJGE5FssizTPeTjnSPqnPmhNVOxWuSYexgKhWK85MRjlOU5uOtc1Sblv5/bH6kKq0e8MSgRyZaMtBAh3r/xSBdt7fOwOZxafOViY5JN/LxIaCWC2HYjkk2WpUjK6BuHUstWiEeyiefV1nmaZY8ewWAQbyDI7zY1csn/vclL+9o46YYX97by6Bv7GdKpapPNPZIkxfVl078vZhVp2nE1mPmedi7N+y0VJZu4losXg+gLhEy0kq1jwMu1961n3n++wLr/fY3vPrsfXyDEhXMreOnfzuG71y7mtrV1fO+ahZw9Q92AUDNZJL506Ry2/+clPPThFVw8X02TvvvJXbT2eaKes3bvzJJsevFOukq2xzY1MOANMKM8l3NnlUc+J475qVZ21pNskiTx39cuIs9hZVtDL+sPqSSjuEZKlFkXCoXYcLSTkCJx5eJJLJpcaKodYwWjfivLEt+9diEOWeFIxyDHOgZPk2yZQjIlGyQffHw+HzvDOy0rp+RR4IxeYBilZzocDqxWq5qyEPaUysnJidpVGM900VShN5OdN6mAv336LJZMKaLX7ecTv92K2zciB4eRiW68djb+VUi2U1XJZjZdFGKVO/pn2taWvBhAfecQX3piJ+//1UYArj2jhrlVBVGfyWYlm0qyuZBRePNwB6E0StvrxzIjxeyWE714AyGKXXZqinNiSLZUlWzBYJDSXCuTCp3ISpAnwmm6mcTfdzSz9UQPLruFuy+fF0MEakGMmCLq9/vp7o5OXw0EAqysK6a80EXPcJBdTb2jXnR6A8HIpoOeZBsLTzaAQpeN6WUqObYjScqofp5RJJmecNp/eaFr3N4F7R3Pc1gozLGhKFDflThlVEsVrSnOwSJLY0qy2e12vvGNb/CNb3wj6ThZ5LIxjA2PPxjpcx6v2ieddlvazz2TiFzPl75E9m0pRCM/J0yy+UbeRc2PrSzXRjAYvUidCEwOp4u2DvgNMyCMlWypFT3QkC7JZrfbscgSS6cWAdEpo5ks9KJX5ohm7mMRjyWLlV8/2I4SUrhwbgVLJqtzvv4eBoPBGLJDg/aZa5ZO4tzZ5XgDIT73xx14A7HxVjzCz2j+FEk9s/cnkySbGSXbc7tbUBRYUVvMpELjKtN6dZT+d0ZIRrIBXBImNp7d1ZLSukEfz4o+e3qSLRgMGiqJfP4gT+1o5pndrQRCCufPKeeD6+YiSbC/qZNrfvoG+4XCQmbmHo1k0/uy6RWUZvpCup5sYh/Xqpkm+44GM4UP9MeZaJLtgbeOsb2hF19QVZHPrszj21cv4MHbVlCSa49aWxiR7Dl2CxfMreTntyxjUU0hvW4/X3xiR5StghHJJqom47VPg2YZlQj6ok4ef5Bfv636pH3i3BlR2XNi+ydNUolxs2tDo3VzdVEOd50/A4BntjcSCIViSLZ4ZN6uxh6OdQ6BJPHFi2ebasNYIl4751YVcN0Z6r16/WAHHl9qY+tpki0OjFh4bcA1a/R9uLWXY52q8mNpdV7My2I0oUmSFFGzaRX3nE5n1K5CMjIs3UVvonRRszBKV63Id/L4nWuoLXXRNeSL+CPpzzdWvhx6iIPFREiWxwtmSDa3282uXbviGs+fKko27Tlqn9FUNj09PQkVVk/tbObCe9/gz1ubCIYULphbwX9cOT/mc9muZKsuysFllegc9JmqHClCUZTIWKEFFnolm8cf5PVDKiG0oq4YWQhO0x1vtM8vqinCKgX5/aaGqDSl0WLIG+D7z+8H4FPnz6Sq0BlDlmokm96wuLW1NaatVovMB86cRhCJLfU9DLrNSfnjYduJXjz+EOX5DmaFfZfG2pMNiCyktaqm8aBfHBzrdBNSFBxWmUmlhaMqspMKxDllWpggPJ7El60hTLJNLVEJjmxQsgEU5djxKRa8AVU56Q0EI0SQy5l9Y0u2oyBHvWfDgnqkY1B9pyvyRwiRiVSyVRU6kSTwBhXcvmDMYjNRuuisFPzYxGOkWvhAG8NXhFNGt9T3xHwukySbeO6xJNkSKdnePtpNQ7cbmwW+cdWCmOcgKsgSKdm08/zw+sUUu2zsa+nn1gffjfFHTaZkE++vSK6kQ7Klu6maSrros7vDqaJxVGzi5zOtyLtwXiUOq0x9l5u9zebjHaM4Tt+/xXhxcDDWmuBPm09wsncYp83KIx9dxW8+sop/v2IBN6+dRZ7DSltXL9f8fD2PbToR420bD5rndjwlm9ZGM+qjdD3ZIlVdQ/DX7U24/UrU7xPByJMtWVXZiSTZ3P4Qv9/UAMDPbjmD/d++jJf+7Vw+dGZd5L6J73a8dHFQi2P9+Kal5NgsrD/Sxa/XH4/xWRT7PyQXEog/J7v/+qrFf97aRMeAl+pCJ1cvrYn6rEjW1tTURL5vhsiLJ2T4yNppVBY4GHR72N3UF7NGMuoPiqLw8NtqOvbqGWVML09tnhsLJBpnb1xWTYHTRr/Hz7O7Tsb8PeFxM9K6f0Lob7SYpqmRYIkWld5AkL9vPYGiwPxJBRS7bDG7IvFILe34WsdPRckGIxNIqulbmViIxFPSOW0WPnX+TAB+9eYxhn0jJeHF6x+PgVcctP7VSbb29na6u7tjSAXtO9r3sqHwgVEAqB8Ytf/n5uZGzGjjFUDodfv4xt/3EAypppt/+9RZPPThlZTkxl5rtivZLLLEvEnquPHGodRSRsX7rV2f+OxlWebxzY30eoMUOG3MrSrAYrFE3vV0Pdm08Wl2ZR55NomTve6U0z8S4XcbT9DWrxac+VjYl0J7jlrf0H7WSLaioiJA9fMTx0/t2q5YPJmyghyG/UFe2JPaZKtHJFV0RmkUuQlj58kGcNE8VQWgmlYnN+rW3rH1x9SF97Sy3JRSRUcL8R3XVHjHOpMo2cJ+bJoZd9aQbC4bPix4/CE8Hg9D4aIHALnO7Btbsh1adoBb8GRr71ff6QrXyMJ0Ip+73SpTme8kiEy/xx938SluNmoph7NTVLJpihgz85Q+XRTUDRSIVrKZVSCZgV7JBmNbYTQeyeYPhvh/rx4BYFVdMVNLXTGb12aUbCJxVFHg5OcfWEa+w8q79d1c/fO3o1JHU1GypUOy6e1B0omlzaaLNvcOs/VED5IEV8TxYxM/n8wQX4QZJVuew8r5c9Qics+EfeHMQJvTxfcjnpINYkm2329qYP2RDtVS5LK5nDt7JBVv8bRJ3LJ6KmdNzcEbCPH1v+7hs3/cgT98XDNKtmQkm5l3JV1PtpPdg7xxsIMfvnyEf3t8J9945gD+4AjBHAopHO80Lu5jRsmWTSTbC3vaGPQGmF2Zx5WLJmGRjdPJte/Ee/81zCjP47+uUjfnf/jiQQbC9gUiySaqupKRbBaLJXKuZL5sUSm4Ctz/pkpe3XHOdOzW6D5XVFREeXk5s2bNilrTJRt7E1WFzbFb+PxFs7FKQd493o1Pib6XRuT6Pw60c6i1D6tF4j1LpyQ893hBn4UnwiopnDtHfddf29/KkXZjSwDD42auif9c0N9osSqNmUXlfa8doXdwGJfdwnlzK6OOoSHegkoj2TTolWxmjDSNzpcMmUwXhdiX8dozaphSkkPnoI/HNp2I/F2c0MebZPtnThk1Q7Jp12806GsBiSzLaS/6U0GyYD5Ruqi+8IEsy1RUqEFYW1ubYWBwz0uH6HH7mVOZz28+vDJiCm+EbFeyAcyvCpNsKfqyGZVtF4P0EBL3v3GUkCKxvK4YiywZqiBSJfUj57XIzJ9UgJUQj21sSOkY8RAMKfwuXBb8rvNm4LRZotpYWKj6P2gVvTSSrby8nPz8fBRFiSJntfcjx+ng+hW1ALy0pzlScSgdaEUP1goVlcbakw3gvDnlOG0yTT3DCVUA4rukKApvHlaVjDPK8yaOZCsPk2xJlGyN46hkCwQCPPHEEzzxxBNJd50Lc2z4FAsefzBMsgWwEsJmkbHbJ77oAQjX89RTjF67NLYocIWVbL6ROUNLFy0PlxbNhmISU0pyCCoSfW5/UiVb56CPHrcfSUqtsihAbW0tS5YsobKyMuln9emiAEumFCFLcLJ3mJY+lajOlJJNnFPEZzKWnrzx3vvHNp6gvsuNy25hVV1RpH1ie0TSM5mSTTvP2hllPHnXWqaWuGjsHuaqn73Nx3+7hT9tbqQ7rLBMxZMtXSWb0c9mkCxdVFO9PBdWsa2sK6GywBn3eEYkWybSRQHes0Ql957d3Wx6s1xfXRQSk2yiwv2dI51846k9yCicOb2M1dOjKyEWFhbislu5c001X79iHlZZ4umdzTwfvleZSBdNpfCBWSXbsC/ID188wEce2sD2xh7cAZAlONI5zCv72vD7/fS5/XzgwU2c/6PX+cTvttKvi3vMKBb148dEFT4IhhT+ukMttHXHuulxFflmPBlF3LRyCmfPLMMfVNgQ3pDUv09mLXFkWY5LvOoh3sfn9rTS2D1MSa6dm1ZONbymBQsWMGnSpJT8MBORbADXnVFNucvKsD/IY+9GFzHT971gSOF/XziIhRBLpxRTXhBblXgikEjsEwgEmFGex4zyPFAUvvP0ftPHPU2yJYARyeZwOJLmqh9qG+D+1w8hoXDenArKikcWdCLMkmyikk0k2eIRH+mSbJlIFxU9NvQvrs0i86nzVDXb/W8ew+uP3eExm6ueLkKhUNIB458FZki2yMBn8HeRWBqP1LBMFj6wWCxUVFQgyzIDAwMxVZ/2nOzjsTAJ862rF2C1JB4Ks13JBjCnQiUgtjb0xARBiSCqC8RnoN3TLSd6aO7zkJ/jYMEkVQFmRLKlq2QDWFhTiJUQ/zjYHiFIRoM3DrXT2D1MYY6N9y4ZkczrlWxaAKX5Y+Xm5lJVpVYg1dSd4phhtVo5b14VJS47Hp+f36yvT6t9/R4/u5rUFO2zDEi2sfJkA3DZrZEdeK0ilhHEBdL+lgEaez1YZYm6cVayieq8aWXq3KjZMMSDli46pSQn8l0YG5ItFAqxb98+9u3bl3Q+KXJpJFsIr9fLgCegVha1ZEdlURCu59Ahsn121JRsHr+YLhqugJsTvbCZSMypyieERMegN6mSTauYOL0slxx7auOAxWKhuLg47XTRPIeVeeExXksZzRTJJloSJJrDMwkjwqHP7efHrx4mhMSa6aXYZCkqHcoo5dZoQzhe22dV5vO3T53FmuklePwhXtzbxlf+sotbf72JXrcvrpJty7EOXj/YTiikRCln0iXZ0nleydJFtfNolQuvWpK4WrRIGqSTLpooprhgbgU5NguN3cORuTQZEqWL+v2qZ6JRuujTO5v58G824w8qLKkpYGVdccw90mKKwcEBbl83jXtuXALAy3tbOdkznPCdjCfcSEfJlihdVN8nXt7XxkX3vsHPXzuKEgoxuSiHT54/iz/eeSaSZOFg2wDP7Wzi2vvWs+GY6hH+4t423vvTt9lzso8Bj5/WPg+DwyNWStmuZDvYOkD7oI/KAkdMOqWIVJRsoN7vz100C1D9bsUNWO1YZoUEFovF9Dpeu48K8Ms3jgHwkbV1SecOcRxORV1q9NlQMMDaGaUoSPz0jeNc/4t3eGzTCfrc/pj+8NTOkxxsG6DALrGitjhr4p5EpKP2Xp47pxyHRV1jmT5uZpr3zwmxM4mL7ERVV/zBEF/58y4IBplelsv8mmJcLpWpNUuyuVyuqFQsUTqa7emikJgsed+yydQU5dAx4OWlveoCL5n5bWNjI2+//XaMb5hYEdAsRmu+2dHRwf79+8cktSGT0BssJ1OyGd2H8VZviQO+UXuMAsB4hQ9kWcZut0d29JuaRkz1QyGFbzy1l5AC711SzZrppQnbJQZe2axkK8qxMr08l2BIYf1h81VVjUg2bZxRFIUX96mKrisWV0fIyEyQbOLnS3LtrKkrRFHgf54/kNJxjPDoBpVAvWH55EiwIT5Hp9MZCWKGhoYi40hubi4VFRVIksTg4CBDQ0NR7bRardhtNlZPL8WCwgNvHaPXnXpV1U3HugmGFKaV5VJTNEIEjXajw+yC7PKFqgrg+T3xU23Ed+nFva0EkaktzcVmkSdMyRbxZEuWLjoGSjaLLHHdsslct2yyYXqJGRTl2PFhwesP4vP5GPB4sUqq8XK2BJsirChcJ3dyndyJheyzVigMK9l8/hCBoPqMNSVbcY76rFO9r5l4znrMn1RIEJnOAS+BQCCKBNdnEGwJF0NZWVeSkXPHg1G6KKhG9jCSMpopkk1vrK5hvNNFf/qPw/S6/cyoyGNhtboBLm6kJPK1M0OygTqf/eGONTz96bP5/EWzqC11Mejx886RrpjjWq1WjnYM8tBbR/jwbzZzyY/f5JW9qkrar0imLAAgMyRbMiUbwNb6Lg63D5Jjs3D10sQkW6rpovrYL1FM4bJbuWCemq2g+cMla4t2T+Ip2fRrpuHhYR544zCf+cN2fMEQly+s4vrlNVFrlkh7XC4sFgvBYJChoSGuXlrDdcsmAwov7GlhyBu/f8cTbmRKySaSO4qi0Njt5vZHNnPHo1s42TtMTVEOX7l4Jtctn8ySqaWsmlbCZy6aA8DGox0c6xyiutDJj9+/lJqiHOq73Lznp2+z6Jsvseb7r/LFP+1gf0t/1pNswWCIbSd6UJD48NppMemUIsT3LpEnm4iVdSWsnlZCICQZFo9JNpaK8V+qSrb9LQMcaB0g32HlQ2fWJfyOvl2jVbL5fD5mVuSxcHIJsiSx5UQPX//rHlZ+7xV+t6mRI+2D7Grs4cltTfzoxUMAXDqvHKfNkjVxTyIeQnteBU4bF8wpj/luIpwm2RJAvNFaRxeVbEYTwD0vHWJHYy9FDonz51bgcDhiTLY1xEvPlOWRRYz2oo02XTQUCrF7927q6+vjXqtRLn86SDQR2K1ypBrJHzY1sL+lP2oCNlJg9Pb2EgqFYtVIe/awadOmlIi20ZJsDQ0NtLW1xfX5yhYkm+D0v0+mZBsPiBOYUXtSKXyg/V4z9+zo6IikBv74lUORipNfu2Je0naJgVc2k2zBYJDzZqtBZyq+bNr1GSnZWvo8NPf5cNktXLxwJKAWJ0ZxvEnlfdIHtB8/uxaLLPHs7hZe2Ze8Kmw8nOgailz/B9fUxpxPq5ylja1aFWe73Y7NZsNms0W82Xp6emIWh1arldmVedQUOhjwBLjv9aMpt1HzY1s7Y4TgNarElirMkmwXzKvAZpE42jEU5RskQk+y+bEwu7qEwsLCcX0PxHdcI9l63X56hozJTY8/SHuYaJmSQU82h9XCPTcu4Z4bl+CwpkeCFubYCCLjCarjVd+AGwsKdoucFYorPeySwj3249xjP45Dyj6STVOySSj0e9T3VCPZCp3pkWyZeM56zK8uUJVsA94o1RTEzmtbwouz5WGya6wgxl2iQnt5mNzTKh9nqrqokR+bePzxSBdtH/BENmDuvmIBzrAPYldXV0zsoCdSrFZrjAot0XgrSRKLJhfy+Ytmc/+ty5ElONQ+QEN3dEpgSJJ581AHFkJqml77IA+9dZRfv32cO367jQvvfYtfvnGUe148wFU/fZsPPLiRT/5uK3f/ZRc/efUwT25rYm9zX0ZJNv1YJEkjZN/j76qWDlctmRR5/+JBJA3MkKnxSKZ4eE/YD85MlVFx/hevTyQ+RDGF3W5nb3Mf//f8HgA+vLaOn92yDBnjdZIkSZECBtq5vnX1AsrzbAx4A/z4H0fitk2vpoNYBT2YI0WM1nHiO/bL149w0b1v8Mr+dmwWiU+eN4OXv3AOSycXRFUVveXMacybVICFEEtqCvjbp87imjNqeOYzZ3Ph3IrIsWUJQqEgL+5t5dndrXGf80RXF1UUhWd3naRzyIvTZuGW1bHplCLEuMNMuqiGz1wwCwWJPSf7GPJGCwPMpoumqmTzBUK8eUSNYz9z4UwKXebmPLMbHGZINkmSeN/KOjZ89UK+dsVc5lbl4wuG2Hmyn2d2NfPFx7fzhT/t5GTvMJUFDtZOLwKyQ2muwUzfXVVXlFJBotMkWwIYKdmcTmdcku21g+388g11wfXli2aQ77Rht9sjizmznmwwkjKqDdpG50xGsomL2IGBAbq6uqIUPfGudbT+W8kmgptWTuWapdWElBAv7m3l+T2tCYOVeL5hQ0OqCafexyARRusLoH2/t7c3pe+NN8z6c+jTLEWMN8mWKNVY/F2iymR6JVBeXh7FxepipaGxkf/42x5+Eg527r58LlWF8f1ENIx32myqEN83zZzzlf3tEWVHMoiLH3HHMxgMsq+5HwW4ctEkcp2xu7+g3hftOaRCeOtJtilFdu5YNx2A//z7Hga96S3qfrdRLThz7uxy6spGFFeiH4skSZFxubtbXUyK6iyNZOvt7Y0JsLTF1sVzVYLs4XfqOdlrfgwCeCfsx2aUKirLctr9zKzqocBp4+zwuZ+PkzKqHaO138uB1gFkWeaGy89j6dKlabUtXYjveI7dQnX4nY2XMtrUo6rY8h1WisLB5limi6YCNfiVGAqq7egfGlY92axS1uzonkqwWi04rDKgRBSlGsFaYI9V3U4U5lTmgyTh9oeiKozq0xQ9/iC7w6lvK8ZYySZJEnPnzmX27NlRc/yaaSVIEuxt7qex253xdFGxnzf3DtPjHqn2nmnoVT2PvFOPLxhi2dQizp9byaRJKknT0tKScBNP327935O1fW5VAZeEVVfP7I4mhB7f2kLfsJ9ip8yGr17I16+Yx6R8G7IkEVBkAoq6cdA75GX3yT7WH+ni+T2t/HFzI/e+fIgv/GknV/7kbZ7aHh3bZ1LJpl2rxx/kpX3qfHHzqsQkBUSPu2bI1HhpWvFw/twKXHYLJ3uH2dbQm/Cz8eI4UUUmfsbuyOGdI13kSH4+df4MvnHVfCyylFBtrl/75DmsvH/5ZGRJ4h8HO3ntgPHmvNi3tOcmPj99uqgoitAjkSfbzsZe7nlxP95AiDOnl/L859bx75fNxWW3xqi17HY7l8yv5P0rJvOHO1dTEfbeK8618+sPr2TXNy/hwHcu48j3ruDcmWos9Ms3j/PE1pMxGwniPdEwniSboij859/3sPVEN5IEX7l8HoU5iefbVNNFNZw1s5SaEheBkMK2cFphOiRbKkq2LfXdDHqD1Ja6uG1tXdI2ajCrZEuWLiq+N5UFTu48ZwYvfP4cnv/cOi6YV0WB00Zlvp21M0q5edUU7r91BYTUc2ZT3BNvjIoah5QQ37t2oeljnibZEiBeuqiRtLelb5gv/mknAB86s5aVtWp+vkiy6V+WRIN1RUUFdrud8nJ10WwUKCZLFxVJPe3cycgWMC53ngqSvbgWWeLeG5dy+QI1le/37zbybtj/w+gF1o6jrwo6UvXG/GA92t0UrS09PT1ZXZnULMmWTUo2SDwJJUoXNSp8oGHy5MkEgiHuf34bf9hUjyTBd65eYFpSnc1+bBD9vq2dUUpprp3OQa9pNVs8T7Zhn59D7QOEkLh++WTD3V+I3sFNhWTTk1d+v5/PXTiLqSUuWvo8/OjFg6aPpWHYF+RPW9TFxofOrI36m74/a+Oy5sempfXDCMnW19cXszjU2ltb7GTN9BJ8gRD/9/Ih021s7/dwqG0QSYIzhVTleH44qcCMJ5uGkZTRxCTbhmMqCblmegklec5xJ5r1xOG0JMUPRvzYXDHfHQ3JpigKbl8Aty+Q9thfFA7sB/1quwaG3FikEHZL9qRNiFAUcCsybkUmG6c7WZZx2ixIEvQOqyoQTcmWb1fvcar3NRPPWY8cu4VpZXkEkWgf8BrOuxaLhT0n+/AFQ5Tm2qkrHXtD6IqKCqqro1P+KgqcEQL+L9uaMlZdVD/ev36wnfN+9Drff+EAvW7fmKeLDnkD/DasYrvzHDWbQvPf7OnpiaoEqEH8d6IY3Ewc+cE1U7DKEkc6hnh1v0q2NPW4eXC92qYLZpdSke/gjnOm8x9XzOEzF8zkL3et4+nPrOPWNbV8eO1UfvPhlfy/m5bynasX8G8Xzeb9K6awMlwR9vF3T0T6PmTWk0271n0t/QQCQeZNKkhYKEpDqumi+jYnI9mcNguXLlCf4eObExdNMqosCvGVbG+fGGTIF2BynsxnL5xlai4x2iSeVOjgjKlFKMB3nt2H32DzUyQh9SSbWMldLMYRb2wy8mSTJIm2AR9vHlbT/r986Rx+f8dqZlaMVC828n+TZZnqohxkJbbNBU4bTpsFWZa4anEVa6aXEkLi9+828sKeVoZ90c9uokg2RVHtYX63sQEZhYvnVXHl4vhebBq0ZymqC81s2EiSxMXz1T65s7GXph53TDGVTJJszb1utjX0oABfvXxeSurreKSSvm+ZUbJB7Fpx3qQCrl8xlY+ePY37P3gGv79jDd9/32KWTilKibgcLyRLF9X+Nj9sM2DqmJlp2j8nkpFs4gTwlT/vonvIx4LqAr52xbyoTie+LEZeHEYTWklJCWvXrqWsrCzyGXFQN/IE0CAq2bTzaWovox0G8VpHo6LQYEaCKssS7185hTPDA/PbR7oIhozbZkSyiTs5qQRnoyXZtM/7fL6UFHTjjVNRyQbxCVrRY85s4QMNrvxC/r6ni6PtfVRZh/n5Lcu41STBBtldWRSiJ26bReaaM9QA4s9bjVWresQj2bYc78IXCFGen8OqaSUJFxwayZbKO6HdV01B5vP5yLFb+O9rFwHwyIZ69rfEr35phF+9eYy+YT+Ti3M4b05F1N/0ZKk+2BaVbPn5+ciyrFbWCntBiko2UO/Rv182F1AXowdazbX1naOqrH9BdQHFubFl1DNBspkZ1y6eX4lFltjf0k+9gceZdoy3w2kI2mJmvKG/pumR4gfGJFtjOB1LK3ogfnc0JNuwP8j8/3qR+f/1IsP+9AiBorCHWH+YZBtyq0o2u1XKCsWVHsPIzPcuZ753OcNZGC5KkoTDKiOh0Of2M+QLRp6Ny6be41TvayaesxHmVxcSVCQ6B41JNlmWo1JFJ1I1/b5l6hzy5LaTY5Iu+vrBdu787VZ8gRDeALx9uHPM00X/uLmRfk+AaWW5XDxf3eDNycmJKN21eDKekm20JFuJy87SqcUoSNz95C4+9vBm7nh0K0MBmFycw6yK3KhYV5IkcnPsVBbmUJrnoLrQyflzK7h6aQ23nlnH5y6axQ+uX8yfPn4mF82riKTsBeJkfphBourWsiyzp6kPCYVbVk811T9FdXYq6aIiwZEMHwin/f19R3NcCwEwriwKxiSbH5k/71I3Ka9aUBJFXMSz+QFj0iIUCrFqWgmFOQ6OdQxF0pX10Ht9G/mAmakIaaRk6xz08tcdrYQUhUvmlXPXeTNinp+eBBdTR5P1pVAoxJrppXz+4rlIsszBtgF+/PIhGrpGilhpx9BvjI81/r6jmUc3nECS4IqFVcyvLjAVB+j7YKI1tx4LaoqYVppLIKTwtx3Npv0tjdJFfT5fwvHl568eJhBSmFqSy6ULkleVFmG03uro6OCtt96io2NkaHrNcQAAmU9JREFUkz4ZyZZIiGA0RqaagjteMLofiqLE5R7MIPuipixCpGqHoiQsfLCtoYe3Dndis0j87JZlOG2WqIW51vFCoVDUpJHqoireYKuHaCyrtUNkw836XaULsxLUUCjEiroSCnNsDHiDHO8cMp0uKv57PEk28Vw9PeYrjIw3TnWSLdFzMpMuGklf9Ae587dbeadVwWaR+eTyfFZWpTaoZ7uSTbsfGoF+/fLJALyyv43uBEGnhniFDzaEUxrPn1sZUxFOPzHGK0Fv5rwauaX9fPasMq5YVIWiwANvHTN9vENtA/zstcMAfPnSOTGm5fGUbBpEkk2WZQoL1d0qLdjQK9kAFlXnc/lCta33vGROzfbMLrXE+VkzyqJ+n2iBYxapLPqKc+0RJd1zBgUQQqEQg94Ae1tVzzZtYTre0KvzIsUPkijZtKIHkD3polr6aq9XvRb3sCdMsmVn4YNshyRJqpIN6B32RZQ8uXYLtvCjzkRMkwnMn1RACJmOcPEDiM5mkCQpUtFzrIseJMOlC6rItVto6Hazp0VNyx4tyeb1+ege8vHGke4IwbZ2RinIMkc6VGPsTCOyEasoPPT2cQBuXzctam7QUkY1iGNEptJFtbasqC0m32mjc9DHqwfaw57EFi6YV4UkSYYES7JzSJLE99+3mEKnhc5BL5vCyuNUlYFGFVZFNPYM0+324bLJSQseaBCPl0q6qDY36wshGGF5bTHzJhXgDYR4Ymtj3M/Fi2eNCh88t7eTTo9MWZ6D2aW2SD8S71Eikk1PSjisFu46fyYAP37lEF2DsT5bekIrHsmWzBJC78nWMeDlk7/bSq8nSInLzt2XzTYkSI3Ol6jInwjtet+3fAr/e/1SXHYLbX3DvPfnb7MpXJVU+4x2neOhZGsf8PCNp/YC8LkLZjGvSt2gS4Vk06Av2JLsu1cunsTUEhfeIHzk4S1sa+hJqbqoWFk4ni/b+iOdvLy/FUmCSxdOSnljxoj41jzQRUukdJVs2rXojyHOJdkU9xiNtVqxEBGpjK2nSbYE0G60KBcVlWyaOfgvw8bXVy+tiSwAxE6nVToEY7LLbBAodsZEg4QkSTEpo+LiN5mSbbQwa2SrKAoWWeLcORUoSOxt7jOtZEuWIx4PoyHZ9Ax2Nvuy6Xfbkg3qRgrHiUwXTUQS6hWdYJwu2jno5fZHtvDW4U7c1nw+cN4iphTnsHfvXlpbjVPkjHCqKNlA7d/zJhWwsKYAf1Dh7ztOJv2+EcnW3j/M4bZ+JAkuDEvf46WLQupKNnEnS1Syafh4OJ3n6Z3NtPUnT0ENhhT+/S+78AcVLpxbwXuXxC4C9GRpIpINRlJGte9p468Y6AYCAb54iVqF65X9bZGqlvGwvaGHV/a3I0tw48op0deQgY2OeAG43+/n5MmTMcHyexarC8yndxqTbEfaBggpEsumFjGpMCfmM+MBfeCjpYvGqzDaKKSLasgaki2cLtrjVd8Bj8eDRQphs5wm2dLBCMmm0Ov2R0i28nxH1jxzDfOrCwiGix/olWwWiwVFGfHwWV43tkUPksFlt3JF2FT+md1qEZp0SbbGbjef/+N2Pv27LTy6oZ4H1zfgC4S4bEEVj3x0FefMVi1RfrfhOMFQZtUtWh/Y2djHyd5hSnPt4YqPIygrK4t698YqXTQUCuG0Wfj6lfO5/9blfP99i/jypXP49W0rmFSsLv71BIs4JydSUJTnO7h5pXpdm+p72dnUa0oFJkJ8vkZzkGasfsn8iqQFDzQYpYuaUbI5nSO2BMmuQ5KkiDXE7zY2EIrTh8yQbF6vl36Pn6d2d+DFytmzygkFg5EYQLz/8VJq9deo3YNrlk1hQXUBA54A3312f4xnrhklW7xziBCVbM/sauaS/3uDzfU9WK0Wrlw8CUec8MLofGaVbOI4tmRqMbesqmVqsZNet59bf/0uf9t+ctxJNkVR+Ppf99A37GdhTQGfPG965G9m5gQ9YZXK5qcsy1gtMlctqWZKSS6D3gC3P7IFt199NsmUbFqMmaj4gccf5D/+tgcJWFJTRE1x6vYCRmt1I0/AVDzZ9DDqr2JqfrbMz5CYEBTbmUrfzZ6ry0JoN1KsLKqvTHOwuZeX96tByCfOHXmJ46kmxME61SDQrJJNa6t4PnHxazQ4jwXJlozt1SaDi+ZXEUKivmuI9v7YRXq2KNn058lmXzatrVr/M+PFp5fIZlO6qJE/BRiniwZDCk9ub+b8H73O20c6cdktPPyRVVx93qqIB8uBAwei5NCJkO1KNnFM0u7TDctVAueJLclTRrUJz263R46z+VgnMmp1xsowuWImXdSsJ1sgMOJ3pHmhicH0kilFrKorwR9UeOSd+qTHe+SderY39JLnsPLdaxca7ujpPVlEkk1UKGvQSDYN8SqSzazI4+yZZSgK/DGJL8yPXlJ95q5fPpkZ5dEVisbSk62xsZHDhw9z8mQ06XrZwiqs4ZTRI+3RVUZDoRCH2wdRkCIL7omA/h2fEU4XPd41ZLgob8hikq0gTLJ5Qha8gRA+rwcLIRzW7Kwumu2QZRmnVVaVbG4/7QPq+JOVJNukAoLI9A77GBxW5xRxcXqsc4juIR8Oq8zCFDxfxgrXhRXRz+/rwB8MmVIViej3+PnOM/u48J43+NuOZoJB1c5gZlUhn71wFj+95QxsFpnrlk/FYZU50TXEX3QWB16vl82bN3PihHGKXTIoioI/GOLZsO/kbWvrcNqix1dZliNxgT4lLJPpotqYXJzr4NIFVdy8aiqfOn8m582piLKgEdOTRCWbeAwjLKrOZ2F1IT7FwmsH2vnxSwci74MZGKV2athc382htiFkSYqQeWaQauEDcQ5MpKIKBoP09PREjnX10mrynVYaut1xvWiTkWx+vx+Px8vLe9sYCkqsnFbKgqkqATw4OBjT9lTSRQFsVgvfuGoBAH/dfpL3/PRt3j3eHfmc3oYoHsmW7D6GQiFCisL3ntvPp3+/nR63n/mTCvjUBbMpzXPEXQuMRsmmVyzmOa187Kw6rlhUhS8Y4vOP7+DpHU0oijJuJNvfdzTz8r42bBaJH92wBKscu25IBCMlm1lo37VZZG5ZU8ecyny6h3z8ZoMaH5pJFwUS+rLd/8YxjncOUZZr48yZpWnNc0brLe3fRll3kL6SzYjIy7aNRaPxXExrNcttRB0zg+37p4N2o/WLbDFX/TdvH0FR4KJ5lVEmkvFINqMCBJlWsonn9flUQ1lRJTLW6aJmywJr93dKSS7TynJRFHh5b6zCKJNKNv1kkczw0agdWupcIBCITL7ZBj3JFs+Lz2hwhWgSJBsKH8RLpROVO96A6iP22MYT/OS1owx4AiysKeDxO89k9fRSJElizpw5kfSQ5uZmU23KdiUbxN63q5dWY7eoRsV7m/sSflevZAsEQ2w82oGMopZw15m2iufTICrZzBDP2j21Wq2G1ZABPrZuGgCPbWrA7Yu/k9rY7eaH4SIJd18+N67iSu/JIiqMxaIHGjRfNg3i+Ku/31o5+Mc3NxkaG4Mq7V9/pAubReKzF86K+ftYpotq45Q+WCty2SNKEr2abWDYR3PfMCGFCSXZ9Oq8muIcbBYJXyBEs66qq6IoNPWEPdmKs49kc9os5Ngs+LDg9Yciff60ki09SJKEI6xke/NQO8/vVuOHinxnQu+kiUB5voM8px1FgaPtqn+jGHdtqVcX3EsmF2G3TnybV9WVMLk4h35vkKMdqaWMKorCHY9s4ddvH8cXDHH2zDI+c940PnneDH76gZV84eLZ2CzqNRblOlg1rRQZhf/42x7u/suuyPlaWloYGhoyPVfrEQqFeHV/G619XsrzHTHFcDRMmjQJWZYj85iGTKaLJhqDRIJFVKzpSbZkqZYXzqvgiqVTscgS+5p7ufzHbxn6bcb7PsSuARRF4YcvHiSExILqAiaZqMiuP2aqhQ+sVquh97WGEydOsHPnTnbv3k0gEMBlt0Y2Fh/dUG94bDNKtvWHWmjscWO12vj++xaRl6du6AwNDUVdDxgXiNMvwsUCBZIksWpaCffcsIQil40DrQPceP8GfvDCAcBcuiiYU7K9fqCdZ3a1YpHVWONvnzqLqWX5UccVIRLoYj83o2TT+yVr7ZMlhZ/dvIyPh8UnL+1p5tldLQQx/86kir5hP49tOsGNv9zA5x/fAcBnL5jF3KqCpASpHvrPpKpk0+C02/jv96k+w8/tbaepxx33furTtePFxsc7h/j560cA+NR5M3BYLSmniortNFJuxROyGK2ZU00XzUY/NkisZBPH4n95ku2+++5j2rRpOJ1Oli9fzltvvZXWceKRbKDe8EFvgJd2q8oAUYoaDI6UaNerJrRFTqovPKRGsolKNv3CKtuUbJIksXq66k/00r6WKLm3GHCMtZKtq6uLt99+m/Z24zLb4gCoqVyyNWVUT7KJvxMRT8kmkiDjuUiJ13eMAkBFUegc9HO4bYDHNtVz9g9e46kdTXS7fRTm2Pn++xbx90+dzaLJI6oASZKoqVFNnfv7+00RQtmuZINY0qfIZY94aCVSs4VCoSgZv8ViYWdTH26Pn2KXlVmVeZHnb5RGoEFT+YZCoZiAwAgisSeqLcX+eNG8SmpLXfQN+2MUDhoUReFrf93NsD/Iqmkl3LJqatxzGj1HbVzWp4pCtC8bGO/wavfu4vmVlOc76Bz08vK+NsN2akTgB1bXMtlA2j+WhQ+0CqpGz+aqJeGU0V3NUe/D/pZ+FAUWTC6iumhiUkUhVp1nkSVqS41TRnvcfga96jswuTizhQ8yhSKXjQAy3qCCL6C2y2k37/dyGiOQJCmiDtze2Muzu1WiWFSyZYsnG0BNSbgyblg1Gk2yZUeqqAZZlnjfssmAxJ5mlfQyG2v9ZdtJNh3vxmW38MhHV/G721czKd+GLGxQj5xHZumUIhZV5+MLhvjj5kYuuvcNvvbX3bS2qbGY1+s1TfCJeHFvKwdaB5BkmZ/fsixSeEQPl8vF8uXLWbJkSdTvzaaLmrkvWn80es9FQklvtC5+PhnJJkkSly6ezM2rplJTYKdryMfnH98Rd+NHRDwl9VuHO3n3eDcWWWbVtJKULVbAfLqouNGUiGTT1jQ9PT3s2LEDn8/HrWEC9fVDHZzoiiUWk5Fs7f0e1h9W+9tXrljAjPK8SFygzZ96D0U99NdotM67bvlkXvviedwcjlV+8fpRdjf1mU4XTaZke/NQB7tO9iFJEj+9+Qy+cPFs7FY54bosXqqwGSWb2A6RZAuFQsiyxFcvn8f/XrcYuwxHOgb5nxcP0zHgzXgW0Ob6bi669w2+/tc9vFvfTaHs4b1z8vjEeTOi2ilJkqm5NlMkm8ViYXltMR9YPZUQMq/ub8fjM76f+hgwnhH/f/5tD75AiHWzyjhnVqlhe80gkZLNrKglmSAjkTos2zYWjdoaL3Xf9DEz2L6swOOPP87nP/95vv71r7N9+3bWrVvH5ZdfTkND4jQeIyQi2Ww2G5uPd6OEgqysK2Z57YhRrTaYixLpeEq2eIO1EcSXPFngKDLgE0WyJeuI4jmX1ZVgt8q09Q6zIWyUqT+GaEA4FiRbb28vwWCQrq4u/deiziOSbNla/CAQCBAMKRzpcLOvZYDtDT3c949D/ONAW8QLQq9uMyLZxlu9Fa/wgT4APNI+wBU/eZsv/2UXz+5u4dmdzXQMeCl0Wjl7ZhlPfupsbl41Ncb8HlRCxWq1EgwGkyoRQ6FQVDpltsJIAfj+sOfXHzc30NpnnDYiBvQWiwVPUGFLfTeyFOKC2WVYheBYDJSNFkramGPGl03sX+IYKJJAFlniY2erarZfv30cj0Glv79sO8lbhztxWGX+532LkCTo7OyMGfNCoVDk3ojPMT9f3d0VyTQRYspoIiWbzSJz4wo1jeb3m6LnmsZuN996eh87GnvJsVm46/wZhufKRLqokSdbMBiM3A+jYPmieZU4rDL9nW28+NbmyDhwoEVVQF4yf2KqimowCnymh71Pj3VEv79aqmhlgSMqLSyTSu3RojDHBkgc7fYy4FGfh9ORvWNLNkOSJOZNyueieZV8ZG0t588pZ2VdMdcvn5xVxKqGKaWqMuZERyzJplWgW5klJBvADcsnY5UljncP09gdX4Ehos/t5/vP7QfgsxfO4tywUjaeesFisWCRJT59/gz+/IkzuWheJYoCf9l0lCc3HY2khGtEh1nsbOzlt2GrgeuWT2bVtMTFJHJzc2M20jJd+EB/TP2x/X5/FLmiEQJmzqP1JYfDQVmegw+vnUq+08qOxl5++urhpO2Lt5GpWRysnVlGvtOWUrydauEDIyWbUZ8T2zA4OMi2bduoKbBx7uxyFAUefOs43d3dNDU1RdRkersIDRaLhaACz+9pJRhSmFFRwE2r64DYFM5kY4r+GuOJKYpz1U3ga8IFJP7nhf0xMUUyks3oOTy6oZ63NKLw8nlRCvRElS3Fd1NcjyYz6tf/LZ5i8caVU7j97DryHFYa+3w8tukEP331ED9/7Qgne835+GrwBoK8drCdB986xhuHOuge8vHIO/Xc/KuNdAx4qSt1cfdlc/jeeUVcNx0kJfpZmJ0PMpEuCiPP6yuXzaXQ5aDH7eOtQ7EbsRD7Dhrdy6d2NvP2kU7sVpnvXrMw8vt0NukSpXKaTRcVPYvNFgPJVpItmeouHSVbdmn1MoB7772Xj33sY9x+++0A/PjHP+bFF1/kF7/4Bd///vdTOpbWmfSEg6IovLS/k51NvVgpilSN0SB+Xuv42sBuRLKZRTrpol6vN2bRmyhddKKUbDl2G3Mq8zneCHc8uoXPXTiLj5w1DcXAm8tms4268IHVaiUQCBh6J8QjCcRnppV97+vrC+/YjE8g7/EH2XC0iy0nutl6oochb5BFkwtZOqWIqgInQ94A/R4/W3YfoqHhBE0+F8WyGysh9u+T8FJPWZ6D9y6pRkKh52gTbl+QGRV5zFvgpyB8noki2ZIVPrBarfxt+0m+9tfduH1BplhlKvIdzKsoZ80Z8ynsOwpKiEJXfNWZJEkUFBTQ3d1NX19fhGgxgnYfJIMd+GyCUQC1blYZK2qL2XKihx+/coj/uW5xzPfEyU6SJP64+STD/iBlLieLJxfg83ojfVuSJGbNmoXf7zfsFzk5OXg8HlO+bPrz2u12vF4vfr8/yivt+uWTufflQ9R3ufnAg5v41a3LKc1Tn23HgJfvPLMPgM9fNJvp5Xn09PSwZ88eiouLo1QJWiAgy9HeVzNmzKCqqiqSFqKHWZIN4KaVU7nv9aO8faSTLfXd1He5eWFPC68eaEfbtP3EuTOoyDdOt8kEEWS08yyOZ0YkW77TxgUzi2k+0sSWQw2sXDCDoD2X5h51UXvxwolLFQXjQDNe8YNGg8qikCG/O0niikVVkX+L7Zs/f35UWxOhNE99d1451EO+pI4vLmf2qGQj1xMIYDtwiCtkNY1RJvv8RyVJwirLLKwp5Oyz50W92xsa0iPZ4j3nTKC2LJ93gcauaGVYY4+HY51DyBIsm5o9JNuUEhc3r5rK5s1trD/SyZXnJTfT/9FLB+ka8jGzIo+PnqVukugV0yLE93tFXQkP1pXw0t5WvvWHNzjUPkBwt8Lli6oYGhqioKAAM+gcVCsqKqEQMyvzuDzNMSyZki0VZUOiRX60L5gn5nyyLCf1xBNJNoA8m8T3rl3EZ/+wnZ+9doRzZpezIkHVWiO7ghf3trKrqY8cm4VLFk7CO9CTUrxtpGTLlCcbwLRp02hpacHj8dDe3s7Hz53OG4c6+NOWBtYVdmOXQuTm5pKbmxtZbxjFca8f7qLH7SPPYeWqM6bGbCZqbUi2TtKvfcRrNSJBvnjJHJ7b3cr6I13sWlhAHsmVbEb3UVEU/u/lQ/zkH0dYZIXV00q5cUV0YSUzSrZUCD0NerP+eEREVb6Nm1dN5fkGheaGQdr6hvnhiwe556WDXDy/kg+dWcfaGaWG98ntC/DGwQ5e2NvKP/a3M+A1JvuvWlLND65bhE1SWL++KeJvaLVaUybZRlv4QIN2DwtzbHzl8vk8/LcmNh7p4JldzbxncXSBrngkm/b7vmE/33lG3cD4zPkzqS3NpaWlP6XrEpFMyaYoCpIkJSTZkq0VE6WkZtuaKpmSTbvWVFSY/1Qkm8/nY+vWrdx9991Rv7/kkkt45513DL/j9XqjKnf09/dH/q033LfZ1FLO33t2Py/tbadEho+cOZXz51TEtAOiO10iJZtZpFv4IBUlWyZ2+s2SbPoJeM30Uuq9Ht5qDfL95w/wxNYmfnjN3KjvGJFs6SjZ7HZ7DMmmHSceSSBOJrm5udhsNvx+P42NjdTWGnt9ZBLHOga5/ZEtHNMtLHef7ItRz9TIfZTLIfJz7EwrsOCSQ8woruT144N0Dnp5aP1xLIRYZFWP1drv4YUHNvCJS5Zw9dKaCVey6Z+p3x+godvN3/f389cTaurgWTNL+fLaWfS2N1NdXc2sWdW88cbhqOPEQ2FhYYRkmzw5vpGvEWGejTAifSRJ4qtXzOW6X2zgT1sa+djZ05hVGU0oimRXr9vHwxsaqAPWzihGY4bEe6n52RkhJyeHnp6elJVs2vm9Xm9MOqPLbuW+DyzjE7/dytYTPVxz33q+8Z4F9A77eXJbU6Ry1B1h/7aBAVUhoq/GFO85yrKckGTNz8+PEPJ6uwCIvt9TSlycO7uc1w92cP0vN0QdZ92sMm5dUxtJ4TVCJjzZNLJwcHAwQv6LCpB4qbxnV0s8cUThUOsAHb2DvNvWDyhUFTiZXBybSjueMFLnRZRsurHwxbCn55yq6GeaCQLTabNw3weWx/zearVyww03mD7OZy+YRY7NCn0BrB61j8+smnijew2R6xkagoM/5D770YluUlwkMoVPd+Mw3nPOBKaHfXube9SiHZo6/y87mgEb154xOW5K40ThMxfO5MPbttHa7+H1A228b218omZHYy+/26QWKfj21Qsi3nIiUWLGY+qSBVV0rKngyXf7OdgxTGBHMxVVNQnnHw2+QIi7freN5j4Py4sdXLygMO1N0LEofJAoXdTtdkcyKbSNXLPn0VuEBAIB3rukmtcOtPPX7Sf5/OM7+NunzqIsz5jQ14+RHn+Q7z6rLuhvXzeN4lyF1oHUNrXHKl1U+1xeXh5VVVXU19czODjImXNqWDK5kH1NXWw52s7amWV0dnZGjmWktnl5XxtbTvTjkFTVdlH+yAZNPCVbvHlEf42ietHouU8pcXHrmbX8+u3j/PqdBj57hiOGZNMTEfoY2RcIcfeTu3hym2pddOb0EtZMK46b7mikZEtGsiVSsOrvifZ/TUGoXXcwGCTXYeW/rp7P1h0yx3t8FPYVsfFYNy/ubePFvW3MrMjjQ2fW8r5lk+kc8LL+aCdvHurgjUMdePwj/a4i38GSKUUcaR/keOcQVlni7svn8rGzpyFJUtQaTk94pjIWaOQ2jF7JBnDlkhq2byliZ1MvX3x8ByW5dtbOKItpazwl2w9fPEDnoJfp5bncGfa6SzSumG2nEQGmZTpZLJaYdFXxuSZbKxptRGSrJ1ui+5Fu4YPsusJRorOzk2AwSGVl9EKmsrKS1tZYQ32A73//+3zrW98y/JvWKbQOIcsW/uvve/ntxhNUyzLnz6ng8gXlMd9LRLIFg0H8fn9aAWC6hQ/MKNkymVphVlIpDg6SJJHrsPKt985na7eN/3n+AEfaB7n9kXf5/BJLpFKckSljOko2u92O2+0mFArRN+xnW0MPm7Y10dPVwcyKPFaFdz9E6P0Ypk+fzsGDBzl+/Dh5eXmUlpaabkeqeOdIJ598bBt9w37K8hycP6ec5bXFFOTY2NnYy/bGXvqH/eQ5rOQ5rUy32ZmRV8zapfPo7OhgaGiIJUvm8v38Ql4/2M4r+9vIs0HRgPqMttT3UD/g4ct/3sV/P7efq6ZZmJXrxZIfpL3fg80iM+BRVXL9Hr/672E/VovE5GIXU4pdVOQ7kA3SM1OB1WpFURQOt/bxcvNhuoe8dLv9HKuvxzbUQXfIhSQV85kLZvG5C2fR1NhAL7Hl7ZP1Yy09sK+vL2rC0ONU8GOD+AHU8toSLl1QyYt72/jBCwd58LYVUX+PGK/bbPzsH0fo9wYpK3IwuyJPGPfMjQnaGGeGZNOn4CYKqNfOKOPJu87iow9vpqHbze2Pbon8zSJL/OC6xVjDJtp67xQN6T5HWZZZvHgxPp8vajyPF3x+9KxpvH5QrW62sKaAC+ZU8N6lNcysMFbKicgIEeR0RkjBoaEh8vPzo0g2TVEinsPr9VJlHcZmken3+Lnt1xvoVHJZZCHKk2+ioPdkA5gdJou31PfQPuChIt/Jyd5hng9XEbxlVfSmRyYIzExh9fRSVk8v5cSJco4fPw5kl5LtVIWeZMtGT7YppXlYLRKBQIA3D3VQ5whypH2QQ+1DOG0lfPnSORPdxBhU5Ds5Z04lG/ef4JH1R3nv6jmR8VaDoig8sbWJbz61F0WB9y6pjlo86pXLIowWYcPDw9TkSVy9tIYHtg9xoruHHzy9gx9MmmLoZyniW0/v5d36bvIdVj534VRCg10ZIdnGo/CB5vHrcrmYPn3E5znZeUTrD22O0wjcb129gC0numnsHuaDD27iD3esoTg3dkGsV/s+8OYxmnqGqSpw8snzZtBUf8z0tWoQ1znxyBejNpgl2SwWS9TGkiRJfPK8Gfz7Y63sbOplRV0JXV1dkdhcTwS093v497/sohSJtbXFTC11xdgCie1KN100Uf/79Pkz+dOWRg51DLG/xcdyV/RaJxEpHQopfOYP23hxbxsWWeI7Vy+kxnPc8P4mIgjipe+lomTTE0Pa9VsslqjiCDabjRy7hSWTC7jr/WdyuG2ARzec4C/bmjjSPsh//X0v33p6X0zl8MnFOVy+sIrLFlZxxpTiyFqj3+NHliTyHCP3yUiZNVqSbbRKNu0Y584px+0LsLs5wMcf3cofP76GBeFq0vE82UKhENsbengsLKb43jWLcFij+9polGxif9WTYVqRPxHacwXzJNuplC4ajxA8nS4ahn5wSbSI/upXv8oXvvCFyM/9/f1MmaLKbEWSLaQo3PvqUR7f1Y0kwR3nzmSaw204ARh1OovFgt1uj3ikjZeSTVtsgboAE88tYqLTRcXz3rBiCpfMr+LO325hT30rf9vRyqULqphdmZ80XzzZ+USSrd/j51dvHOVPh/YTDClMs3RRKHk42DbAP7re5mvvPSPKNF//zCZNmsTAwADNzc3s27eP5cuXG1YpTBXBkMIzu5p5aW8bbl8AbyDEu8e7CYQUlk0t4v5bV1CePxIIGFX+27t3Lx0dHdgFs8ZgMIjdKnPJgiouWVDF8PAwmzapPjDzJxVw0JPHb7b30zno5fX97eyS3TRv6ac9ZM7P0G6RqSnOYXJxDlNKVOJtSkkOZ0wtpkYwTu8e8vHW4Q4cVgsVBQ7Kch14AkEGPH52HWnjnc0N1A/A4WB35DtVsodau8y50yu46aLVkUlJXIDrvSESIT8/H0mSIu+jvqqYhlOhsigk3qX88qVzeWW/Sqy+e7w7yptGe48OdQzz4NsnAYmzZpYhSVJCDxkjiBVGk0Ek9yB6U8AIMyvy+NunzuJrT+5mf2u/2seKXbx3SXWkL4BxFTDxuOmQpUYpSvHu9zmzy3np386hMMdGZYH5KmzisUbryZafn09PTw+Dg4Pk5+dH7okGn88X1d8bGhqwyLB2RinbTvTQMRwCRcFqkZhdmZ81JJsY+CydUsSSKUXsbOzlJ68e5rvXLOLRd+oJhhTWzihlfnX0M8smTzYNYlp0NpB/pyK0DTqxih9Ekw4T3X9F2G02Zpbn0dvi4+O/28q3zivl7SOdBHFy5zkzqEqhcuN44uKF1ew80sSRniG+88w+3rdsMgtrCukf9rO/pZ/HNjVEik6snlbCt967IOr7idKDjN7vjg51o2LJjBp+NL+Un/zpJXoHBrnm5+/wyw8uM0x7VBSFX7xxlMc2NSBJ8P9uXkqV3EfzYHoqDzBf+CBTSjbtmAsWLDCM9+OdR5zvtDlOewcKnDYe/ehqbrx/AwdaB7j1oU08dvuasDdk7DGsVivNvcOR6oVfu3IeLrvV1LW63W56enqorq6OFEKCaEN87RhGY7E4BybyZBM/p42jQ0NDhEIhLp5fxf1FVrwDIXaf7GN5rUx3txpLinGcLxDii0/spHvIx4LSXM6cEUvEifO8GGOmmi6aaAwqzrVz13kz+fELu3n1QBuSxcLq1eYKH/zkH4d5cW8bdovM/bcu57w55bzxhkqGxiPZjO5nsqIQZtNF9ddqpITSnqv2PsyqzOc71yzky5fN4cmtTTy64QTHOoewWSTOmFrM2hmlXDSvkgXVBYbvToEzdkwxSm9Ml2TTkAmSTZIkbFYrly6ootFmZeOJAT744CYe/ehqFk0ujHsvD7b08e31TSgKvG9ZTaSvwuiUbPr+qn/OWl/R/96IZIsXW4vWVRoXk60kW7LU1nQKH/xTRXZlZWVYLJYY1Vp7e3uMuk2Dw+GI2zkihQ98Pl7a28rfm3KQJRv33LiE1ZUyhw4dMk2ygRpUa4v6dHZZxQ6Z7Hua0ahoep2bmxuXZBuLdNFUCh/oJ/BCl41HPrqKL/1uPU1HO3h+Twv7m/vptldy1erCtNJFQ6EQw74ALX3DvNrgZ9+ReloDuQRDhdSVulhdGCJH8bC7uZe9jV1c9bO3mVuVz7pZZSybWkx3RysdTT04e6Goxs3UUhczZ85kaGiIvr4+9uzZw4oVK9IO6r2BIC/tbeP/vXqYI+2xhvzXLK3mf65bHGXoHQ/iojJZxU4Aq0Xm6iXVfPyyFbxztItnX99Ec5sPR8CO5FMzB3NsFvKdVgpybOr/nTZ8gRBNvW6aez34giGOdw7F+CQBLJlSxEVzK9h1so/XDrQTCBnntOdLHmZYvNgtdq5aWE1tiYsil408byel0iAzptUxXSBVxH4jVg9K9gwsFgv5+fn09/fT19cXl2Q71ZVsoBJUN66Ywh/ebeAzf9jG43eeSV043c7vV5WJv97UBuTxwTW1zCztTYmw1KDdw1Q82cwo2TSU5Nr55a3x07gURYmotmLTjTM7qSe637N1KblmkSkiKC9P9aYbGBhg0qRJMYbhfr8/8qy8Xi8tLeri+KIzZnLG1C6KSkqxFU/i2N7tFORMfJq00eJOkiS+evlcbvrVRv7wbiM3rZzK799VNwO0YhkiMkFgun0B5v/XiwDs+/aluOxqH/D5fBG/169+9aumCXmRZMumYFO8ns8pMku96ju3z7GV0W8hZR4ayab3KNKQ6nwc7zlnAhaLhYvmVeKhlyNNIe77x2FKZT8FrgI+fs705AeYIOTnOFhZV8Lxgx4e2XCCRzacwG6VI9VxAayyxL9dPJtPnDsjpuBQovHXaGGjkWzl5eVUVFRw06op/H1HMwd6h7nx/g3ccc50/u2i2ZFYaNAb4N//vCtC9H3pkjlcMLeSAwfUTcR0xzBxsWvUjzKlZBPHjNmzZ8dUuzZLskmSFDGv1zaVLRYL08py+f3tq7npVxvZc7KfD/16Ew/ctiLKH1Scf/77uf14/CFW1ZVw1eJJptqgKAp79uzB7XbjdDopLS01jPG1cxmNxSLRZ8aTzWKx4HA4YtTbV8wt4tnN7Wxr6GFaWS62NtVoXrvPrX0e7npsK9saenFYZT5y9nRkr2o1YaRk09qRjKjR3yOzxM5Hz65jR30HbUfaeXF3M52uvZxfbJxSpx1r09EOfvyKutb97rULOX9uRUIPuESEWbw4Nx0lm7jxEQwGsdlsMf0TYvtRgdPGh8+axofOrON41xCTCp1pj72ZVLJpSDddVH8+i8WC1RLk3usX8ck/7WNnYy83P7CRhz680lAVuPtkH0/t76MnUMriyYX855Xzo443ms0k/dhrRLLpBQziOWGk78SLexwOR6Q/+Hw+HA5H1nqyJVOy/cuni9rtdpYvX87LL7/MtddeG/n9yy+/zNVXX53y8UKhEO8e7+K37xynY8ADch4/u3kZVyyaFAkCUiXZ+vv78Xg8MXJQM0hFyaaZiWuqEkmSyM3Npaura8zTRUejZBM7t9Nm4b+unMd9T7ayo6mX411DvPn0br7/2kk+NjfEnBJb1G5ZPLT3e/jbjpM8va0BS+dRFCRaQ/lMkhXmV+Xxk6vPZHltCdu2baO/v59ltUW83iLz5CEPB1oHONA6ABynQh6gWu6nOzTE/2wcYnZlHpfMr+LyBVOxuQ9E/DTKy2NTiI0QDCnsa+5n/dFO1h/pZHN9d8R3oMBp5ba1dUwpceGwylQWOFk9rcR0sGiGZNPft2AwiNUic87scvKHaujry2PBggWUlZURDCkxKSIiAsEQLX0eGnvcNHUP09jjprHbzfEuN7uaetnZqP6nYW5VPk6bhY4BL11D3jCBZ6PS6WRNocyyaRWcf84Zkc8fPOinpcUd876Ifk2p9uHCwsIIyVZVZVxBcTQKqPFEItIH4CuXzmFLfTeH2we5+YGNPH7nmUwtdTHs8fH87hb6vDYW1RTyn++Zz7bN76ZFsmmkgVYhLdHOXzwlWyKSLRm8Xm9UQKX3A4HMKZmS3e90kKmURs1jbmBgAEVRInOAthAR73FTU5OqdigooLKykq6uLpRggOlluXQ4jatFjTeMPNkA1kwv5YK5FfzjQDsfeuhdBjxqu/UeqZCdSrZ4i7nTSA1aSo9IrKUzfo0HrFYrVovM+1dUY63MYfN2lQS6ZVUduY7sDcetVitnTC2iqNzJhk4bG491MeBRx766YgeLS+G2C5ewfJpx7JPIg0e/sPF4PBFvzbKyMqxWK2WF6kZRYauTv+zp4f43jvHq/nZW1pUgSbDxWBfHOlRvpv+4ch63ra0DElf0NAOtbfqqixoypWTLzc1l0qRJ5OTkGMYiZkk2zcrEarVG5mFtnJlVmc/vbl/NzQ9sZGdTH+/96Xruv3U5S6YUAeGsF2+AB9+u55kDXmQJvvHe+ZH2JmtDX19fZENH22gTYzItzk9UwMFMuqi46NeeS15eHr29vRH19twyO286rDQM2/ndxhMsqC5gYU0hbruXg9tP8t1n99E56CPfaeUnN59BjdRLc3Msyabdy0AgEOXhHG8eSUfJBuCwWvj5B1fyw0dOsul4Fw+vP0Z9UQ+rpxWzSo4+14A3xOG2Af64T90Yve3M2kiRg0SbC+ko2cys5YzuiSzL4XTWUNT3RUWjPkYb+a7EjPLk9hqJMBYkWypxmXgv9H3FarXi8/lw2SQeu301tz+ymY3HuvnQQxu5a46f+ZPysVgsnOwd5ocvHKT+SBuK4uA9iyfxw+uXkGOPPl4mlWz6vqERy/GsGCB5to8kSTidToaHhxkeHsbhcCScDyYSiQofnE4XDeMLX/gCt956KytWrODMM8/kV7/6FQ0NDXziE59I6Th7m/t4pfkwTx31s8jqwWGV+ekNK7h4gbqrk0jKnIhkAzWdSlMSjFV1UVAnC22Bpe32QPZUFzVXeUjhvLkVLJlaxN7mfoZaZA4PeHlqWxtTCqysnl5CkUchr6WfQW+A+s4hTnS5aev30Dvsp2vQy86mPoIhBSd+5lqh0OVkbk0FC/ILWDlvGvNqS6LOne+08Ymza/jaDVNZf7SLtw51cKhtgHIJioMhesjnZKvEobZBDrUd4WevHWF1WYBFRX52dexk6sx5VOQ7mFLiYlKhE4ss4fYF6R32c6htgL0n+9jV1Mem4930DUcHEGV5Dj64ZiofPXuaoQzaLNIl2TToS3pbLYkHcKtFVlNES1wwI/pv7QMeXtzbxvrDndSWubhu2eS4ap+hoSE2b96MXqwXT4lilC5q9p0qLCyksbGRvr6+uJ9JtkuTLUhG+hTn2vn9HWu46VcbONoxxI33b2BqiYv+lqM4gx7s9lzu+8AyHFZLzP0zez+1wNjv9zM8PJywoEA8JVu8dFEz0KdFBoPBmDEv0yRbKpNtMmSqjdp9HxoaYnh4OFIAQUsjFe+x5gFUU1MTlbKbTal2enN7MZj898vm8vrBdrqH1Gv6yFl1Mb6QosppLII6m83Gl770pci/zULc4c2mYDNyPW43/OwXE92cpND6g7gQSEXVPJ6I+FKFQvzvdYv5udTFYF8PFy6Y2Aq+yaDFAWunF/PRK+YSDCmc6BqiosBJW9MJGhsbKZWGgMQkm5l0US1mdblckTEpNzcXr9fLFy+o49IzpvO1v+7mSPtglOK/qsDJzz+wjOW1IwUDRrMAFdsW7/0U449EtjTi9Rn1R0mSmDMnvh9fKiSb1l6NZBMxb1IBT35yLXf+ditH2ge54f4N3LJqKjl2C+62E+w71sgJfz6Qx2cumBVlxaA9u3hK9ebm5si/tTnGKP1N8wXVQx/DxSPZxHugXa9Isvn9foJ+H+9bPpnnW3NpP7aP3Sf72H2yj5PBPjqUk5F78csPLqO2NJdjx0b6kVHKpLY5ZVbJlg6xY7VaOHt2BWV5dpr2S3QNenhudwuPN2ygotDFoDdA16CX0EA7VfIA3lAuq6aV8B/vGVE2iWNgKkq2eJvJ6SjZtH+LJJsYvyeazzMFo0yndGIasW2ZSBcVfw4GgxQ5rDz8kVXc9dg2XjvQxj8OtLHxWCfPdxTxzJ42HEE3M6xw6bwKvnTzGYb3KpOebEZKtqiMp/C7kArJBkRINm3syNZ0UaP+fjpdVIf3v//9dHV18e1vf5uWlhYWLlzIc889l3L1xzcOdTBgC2GT8llUU8jZsysjBBtEl9zWIxnJ5vF4In9LZUGlkVHaoikZxAEzJycn4YCZyXTRdAofxAsitGMUu+ycPbOMG8+bwpstEi+80kbbgIendjYTwMKe18WUKG2iGRmQlk0t4ur5xZT78igtzKempoYjR45EnU9sr8fjoTTPwXuXVPPeJWqZ5aNHj9LY2MiUKVO4Z9JUXj/UztM7W3jjUDvbOsHb2wN0s3/rEN7wq6WlTehNPDXkO1SicO2MMs6aWcbsyryMTDqppovqf47nB5EOKvKd3LqmllvXJH8H4+22xVP5GKWLmp1sNK8tt1v1VjQa8P9ZlGwA5fkO/nDHGm761UaOdQ7R2u9hjsWP027hq1cujhQX0XtIpNIfc3JykpJsoVAoRi6eCSWbPi1yPEi2TCrZMpHSCOo8owW5muI6JyfH8B5rJLLL5Yry2MhWkk3v5TOnKp/rlk3mia1NFObYuG55bKVgcVwbCyWbphJP53sOhwOPx5NVwaZ4Pe4kn80GJCLZsqH/ihDnN1mWWDezhN5eGZs1exSWRtCPdxZZYnpYbXIkrDpLtEGSCslmlLqWm5tLd3c3Q0NDXLJgFivqSvjr9pMMeQMoCrjsFt63rIZSXeVMkWxNB9p1x1tAmvEZ05CJKoCpkGxgPD/VluTwxJ2r+PJf9vLK/jYefqcegGmWbgqlEDMrC/jltWtYNrU46ntagQH9Zhaoz16ba7SfxfZq7ddM1I2uQ7+Y16ClrOlV6eJxxeIHg4MqYTappIBfXbGGv7wU4rXd9XQP+ahw5FLlKmRlnVpkRFMFif1SH+vZbDY8Ho+pgnXiIjwdX0ibzcasynyeOGsuj7+0nu0NvezocnO0a8TntlKWKM21s3BSGV+4YTk2SzRppSEVT7Z4m8ni2iEeIWYUW+n7q155qMHsWjZVZFO6qJGSDUaeg9Nm4f5bl/Pw20d5660O+j3+cLVpiZVTinjvlFymTSqNO26MpZJNJNn0KkQN+g1zI+Tk5NDT0xPZ9NW+n01xDxiPs0bpov/SJBvAXXfdxV133TWqY9SVuiivLueK1QtwtxyJ8k+BaA8hcfDR8o4httOJnkVaEJsqq65JTc18T1/d1AzJlkklWzw5sNE5k5FsGiQlxMfOnkn18HE2HO2kqWcYf0iiDAdOm0xdiYtpUjtFLjuV0+dS5LKzoLqQaWW5dHZ2smdPe5TsUzyf+G+j3TpxsCl02bh6aQ1XL62h1+3jud2tHNy/h+GBPsqwcMybS1PPML5gtGdJbamLhTWFLKguYEVdCYtrChOmYaaL0SrZMkmypQLtfFqAoids46WLmjGl1cNut+NyuXC73fT39xtWh/1nUbJpqChw8sePr+EPmxqpKXJi7ThEgVNmzfyayGeMgiWzyMnJiaTEx4M2aYn+HGOlZNP/O1tJNn0KzGigFT/o7e2lLexFI6pCxAWQ9m+n0xm1iEm1suxYItlC9iuXzaXH7eeqJZMMPVy0Z5RtqiaAadOm0d3dTVFR0UQ35ZSFUTpxtpJsoh9ROurriUK8BbqiKBFSI9GmaiKSTb+QN4qftXhZG+NLcu2G3ot6jDZdtKSkhNra2riV41Mh2TLpnaSHvh8lel5bt24lGAzyi1tW8tcdLRxoHUBBgS6ozglx1blnUFUVTbDByDPwer0xm5Ktra1RBI+eZBM9psTfi9Daqq0H9ESbdj59aiwYk2za71bMmUqpXf3O0qVLDcda8Vz6WE9c65lNF9WUjak+80g8RIA100tZMb2MW4pmqimxDgsFThsFoQGaG45TXl5Oia5KrBlPNv26LNGaVbyeeP3bKO6OR7IZFcAYC2SaZBP7Wirf074rwmg9ZrPI3Lp6CtODdRzpGGJysJorF03izCk57NixI+F9ytS4YuS9JhLL8Ug2M3OYmMUnxv/ZNu/pn42+Ku7pdNEM4opF1dTW1jCpLIfdLbHBgfizfgLQJhv9d0QlW7rBlc1mM02ypaJkG4t0UUgceIgMfDzfHf3PGrPuslu4cN5IMYtzzz03UrVk/fr1AKxZWhVFjhrlVsfzcRkeHo4hCOM9syKXnVtWT6VrZi67d+/GarWydu1aQKJjUCVpCpw2nDZ5zEzEjx8/TigUYsaMGTFtTVXJJu40jDfJJt7bYDAYeU7J0kXFNqfyThUWFuJ2u+nt7Y0JpEXFVbYr2RLtUupRke/kcxfNCr8rR4Ho6xsNySZOpvEg+rFp74Oosko3hUCvZEs1EEgFmSbZjFJgRgONZNPuSW5ubuRZakGORiCLCxpNKa2RpNlAUuh3vvUoz3fw4G0r4n5/rImMQCDAiy+qRvmXXnppSmNmZWVl3KJME4XI9QQCrJvoxphAork8G/qvCLEP6lUC2Yx4453X6438LtFC0Ex1UYi/4NeqthupqBIhE+mi06bFJ/NEk/dkhEE2KNn8fn9kThgY6OfGlVMif9u6VfXCizd+Wa1WHA4HXq+XoaGhCFmlKEqkeE5ZWRmdnZ1xlWyJFqn6GE+W5YgiWyT1jN4Zl8sV8QHTFHWakr6srIzjx48D8TdLxc0+/ZghWgOZTRfV2pmOkg1G4qc8p4OLltZEfaalxRs5vh6JSGV9bC32Ea2d8dJFte8kItmM4ka9Qkojq4wqQmcSiUi2dMiyVBVXqSjZxHZaZImFk4v5+FnLACLelIlInUwo2bTjGCnZ9M8Oogt7mNnIEAVGeiuibIJ+nBXvR7pKtuyKQLIMoVAorkGfNgFAdPqNqADQv1zaABYKhSKDaKrBldYOM99LR8mWyXTReOfSn1NUGOgHXX2wLL70IrTviX/TL7rFQC+Zkk189vHaokdJSUmkckpHRweyLFFZ4KSywEmOPbWdkFQQDAY5cUL1RdHKJI9GyaYfWMYT4u6Gka+Cvj2jKXwAKskGGPqyiSTEqbIISmQqrId2faLXgHgsSH080CbTRCSbkbxcC2Li+bUkg6IokQWYUVrJWJFs6bZXD7GvZ4IY0HbxNbhcrhiPG41I07zBtGI54t+yhaRItshMhEwpBOMhFAqxZcsWtmzZMmY78+OJyPXs2MGpcDWJ0kWzbdwWVfvBYPCUJ9k01RCkr2TTK1vipYtqx0nFUmC06aJmYHZsyoTiZLQkm3ZvYcSPU3+MROOkXlGoHWd4eBiLxcLkyWq6vs/nM1RyJVqkGp3fyJctHqmjta2/vx8YmQNdLhfl5eUUFxfHrSKvbQ5qZK4I0Roo2RpAluVRxaTaucRiRXokuoeJCBdx7BH7hUaIiuIDDeLaLN77bTTWxvP6Ejfz4l1DJiC2VSSExHObQTJPxmTfA3NKNvHnRPfRCJnwZNPOn8iTzUjJZnZz2EjJlm2pohD7bLS2agSjGY9CPbIjgs5SiESLUYcwKn6QKD9ZluVI4KBNUqkGV+LEkQzpeLJlYlFlpjOKuxiJ0kX1OywiySY+E+084vnikWxG6aJiQKC1XU8UJAvcJUmiulr1bzt58qThZ8YCYuDk8XhiBr5kJJt+d8Jo52I8YdTeeIsRkZxNR72g7cYODAzEBKSiH1u27bjooU+tMAONSNGnwo9Gyaa9p4nSPvWVRbVzGm1amIVWWVSSpEggPZYkm/huZELNZpQCMxro/fCM0kW1cUN8/tlOsqWz852pZy9LEufPKef8OeXIWT4eZAoWFM6Xezlf7kVmbFQHo0WmPdnG+jlr/XD//v2Rd/FUIdn0MUSqJJvRYlXMZAgGg4ZKNovFEhmnUlGzjTZd1AzMEgbZoGQzQ7Il6otGvmytra2AqsrV5l7R11Nsv/46urq6IqSYkUWJEckWL6tBv7Gk/SxJEgsWLGDJkiVx731eXh6LFi1i3rx5MX9LJV1U/NtolGza/Gv0viQivZKRykaxdTLf4WRFnlLxZDOTNpwJZCpdVLuPmSTZEinZ9N81c59GM67oSVT9uyUSy0brZu1vyaw4tHHB7/dHbe5nG+Ip2bS2nk4XzTCSkWxGxQ+SsbQ5OTl4vd60g6uZM2cyZcqUmIWxEfQkmzZwj3W6qHYcI2bcCGYKH9jt9ggLLnZ8zRTVSN6pJ8kSkWzieV0uFwMDA3g8nojSSWxLomdWVVVFfX09/f39dHV1xfXySBeackbsX3qSTdytE1VY8XZOtBRkvZJtoireGSnZxipd1Ol04nQ68Xg89Pf3U1JSEvnbqeLHBiPEtjZRmmnzWJBsZqpuxtuIsNlskUVWvB3neNAI9ZycnJi0EvHfmVrMan5ymrJitOnEmVZbaZsq2nFzcnIi74eRkk1DtpNso1GyjfbZO20WfvORVaM6xqkGh6TwG/vhiW5GQmTak22sn7PD4cDv90fU0+Lma7ZCXBiK6fxmSbZEMYUW/2mkRDx/qNzcXDweT1SqYjKMNl3UDMwuvDKhOEmVZNO3SYwVBwYGolIAzRTe0SvZFEWhu7sbgIqKisjcqyhK1LmM0kU9Hg+7d+/GZrOxdu1aw/MbCRnijeciyWaz2VKK2yRJihuri23QX4cRxGscbbpoJpVs2vH0VWeTxbnJBBNmyCH9szUaszNZaTRT1UUzkS6qP18qSjbxPsa7P6MVyGgWIeJ63el0MjQ0FJMuqj+n2djKarVGKpNqKbDZVFFdg/huiemz+gzC0+miGYLoyWT0kumVAZCcZEu0oDUDSZJMEWygBnNlZWVUVVVF5ROPdbqoeJxkEmMwV/jASMlmdE3pKtnE72mBhJ6kMzOgOByOiGT+6NGjGd+p2bdvHxs2bIgylhf7n97vL5HcW2ubnpSYaJJNHyCKef/6ey+qGNKdbLSAXb+ze6pUFtWQqk/YWJBsZuTURko28We9ki0QCEQF7EbQgv7c3NyUlJCjgdECIF2MBQmoLTo0qwC9792ppGSL59lpBpmq2noa2QkjJVumNw0ziblz5zJ9+nRmz57NwoULWbVqVVYuOEToCxJpMEOyGS1W9BDjsUQkG6SmZMumdNFsU7IpihIhes0W3hGfgVb0wu/3Y7FYKCgoQJblGDWWGIOKi1St72jVyI3ObyRkiNdOkWTLy8vL2DNPJV0Uoq8x3XRRra8kItmM3rdkys1ESrbRkmxmlGzx0kXdbjcbNmygoaHB8BypIlNKtrFIF02mZIsXf8d790e7kSD210jF03BMmCxdNJV5Vts415Sr2axkA2O7sNPpohlGIk82MF4UpkqyjWUQKEkSCxcuZO7cuUB0B9Gn3WQyXVQ8V7KBQWtnOumiIllm5CeWCskmXr9o0ijC7IBSW1uLzWbD7XZnNG00GAzS1dVFKBSKDFQQq2TTD9bJdk60yTVbSLZExKmRNyJEe2OlupjWSLaenp6o359KSjaIJSeDwSAHDx6M7DTrMdYkW7zUPo281qvV4pFsO3fuZNOmTQnTSLV3XTNA1toA0QuITBItmSx+MBZEkJYyqlkL6H3vjLyP9BtH2UJSmF3IDg4OsnHjxkhVVRgbgvU0sgdGqcSZjmcyiby8PKZOnUp1dTVlZWWmN00nEqLXlDZWBQKBqBgp0YZqItIARt5NUVGv39zS5otkGy4ixiNd1Ky6Ids82WBkY9Gst5LL5UKSpMjGlxYzFRUVRdqYaKNGvA6RLB0cHDSdLhpvPNcIQIhNHR0NjNJFzZBso1GyaUiULpqukg2i+4VRHCDCrGDCKG7Ux/D6dFGtvX19ffh8Ppqbmw3PkSqMSLZ0xoJ0STaNkJJlOea7yex7jDzZxL/rMdq5TmyPqGSD+Omi2r1MJbbSxm+NXM92kk1Mn9Wni6ZiW5J9EUgWIVm6qJGSLZ5KQ8NolWyjQaIXNtM7v6ko2RJVF9UTQeJOp1G1D/F8mk+TBpEwTcTIx6uQmIo0dvr06QCcOHECr9dLd3c3R48ejVFLpYL+/v7Iy/3/23vzKLuqMv3/OXeseUjNqaQqCQlkIiEJhA4iQ5tGJYosRFQQA0G6FViGZTshCraKLg20NqJ0N0JIgwKKyM8VBMkXE6aWjgTSGINAyEASk0DIUMOt4da9+/dHep/ss2ufc8+594z3vp+1WFRunbpn2mefvZ/9vO9r5WSTJ+yFOvWwOtn4cYj3Rh48qMJFi3WyiQM9IPpOtoMHD2Lfvn2mq4NmIlsphQ/49laVo8TQThHVgJqvlufzectiClZONvFYvBDZiskhJ+OFENTZ2Ynq6mp0dXXp382fjWw2q7z/sqAcFpHC7uDmnXfewfDwMN5++239M7dCcTOjY5j1jScw6xtPIDPqTlXZsJNhMcwaXohZwwuRYeFoCzJuFz6oxPtcCFVBItHFBphPAsV3qtn94M8375PEHJ3yNk7crH6Gi9oV2cLgZGtubgZwXGSzW3gnFosZKr1ykY1/H3D8HcLf1yqRLZfLGRbB3RDZEomEPqaQc5KWgqq6qFW/Ukq4qPyOcupkKyUnWzFONrEasEocMgsXNZt/DQ8PjzM3FINbTra2tjbU19ejvb3d0f5jsRjmzp2LuXPnmoaL2nGymc2Nc7mc/ny5UUGZf6fKySbeOzNzip33LP9OfrxhFNlkw49ZuCg52VyiGJHNTk42ET9FNlmlFfE7XFTsGOw42cQXgJgU1MrJBhiFMjtOtng8bupkc3KNOjs7UVdXh7GxMfzxj3/EK6+8gt27d+Ovf/1rwb81QxToxBXJUp1sYRPZ5OO1cvmIE6xihWKel00MnwCi62Tj14u3XzOnlSonF+COkw0wH5Tx/doR2URHnJmYxRgzONmsnJBhDxd185mrq6vD6aefjra2Nv0z8Z1l5WTjhKXghxMnG2Avh08xDGVzGMraH2CVA0OIYwjhdQG6XfgAqMz7XAj5/cKfNe4aMnMvi+MJs/6E3yc+XjMrHAY4E9n8cDQ6DRcNg5Oto6MDwPG8bOL7p1CfL1bx5OMlMZetlZNNFF/MnGzF5mQDjuWs7u7uRmtrq+U5OKFYJ1sxC79OnWzy81aMk63QYrKZKAQcK1wxODhoSE8hHyNQuPCB+N2lGBE4bolszc3NWLRoUVGi7YQJEwzPBccsX6JZu1Y9+3/961+xceNGHDp0yDUnmxgNJLYFUUQtdF+tkMf7YU2RIGoKciSj3fybhu9z+fjKijDmZCsFs6qfpeSzMqNQY5RXXMycCuLLnx+7KLJZOdkAY8ionZxsopNtZGRk3OoBYO+eaZqGGTNm6P9OpVLQNA3Dw8OWjhwrRAFIFABlwc2uyCYLmLwdWLV5P5Bf6lYChMrJVswzpcrLFnUnG28XqoG5uELlZrioKJirBmX8mVLllrSq1iz/zMnlcti3bx/GxsagaZpBZFM9226KRmF3sqng1ziTySgHVGF3somLIlu2bBkXjs8nbnaq0RHlgdlKPxCe9lsOyJNDLrLx4lBm7mU7i3b82XRbZKtUJ5tKGBHzcDY2NhoWFnk/amfiy0W2ffv2IZ/PI51OGybQsshmFkYoO9mc5mRT9ectLS2YMWOGq889PwbRdBFkuKhVtEAxOdmKLXyQy+Wwbds2ABhXjM9pTjbxu8MksnmBEycboJ5L85yI27dvLznvpHh/+TGlUimlu7iUnGxm4/2wocpRx4/VbmoAERqBWFAoJ1sxIpvYeAH/B/6qDlNsMH6Fi8ovA7NBhPgQ83ugEtmcONmSyeS41SBRoEkmk+MEPXHVyO49a2xsxKJFi7Bw4UIsWbIEDQ0NAMxfIkeOHMHGjRuVv5fzsJmFi4phdaqKKKrVfrGtih1t0OGiZvkcRMQXSykTK5XIVi5ONtULgZ8br/ojUorIJv696tkX87HJgwLVgNpMcAOAHTt24I9//CNef/11AMdCRGKx8dV0vRKw3HSy+SUE8bYs5sUQ9xlWkU0WUvr6+nDw4EHs2LFD79PEHFFeOdmI8BG1nGxRRX6/cEFbVYFdxM54Qp7QqRa2oiyyiW0zKCebGO6YTqf1Mc9f//pXXWTr7e0teCzcscTHnc3NzYbra8fJlslk9MU2/l1cdFOFiwbZn8fjcf04+bgpyHBRq4gkp042MdzTbDHZzHm1e/duDA8PI51Oj2s3Zk41ft3k97mXIpsq73aQuOFk4z8PDAzo1TrdzMnG58GAOnLMDSdbWEU28fk1m0s7+j73Dq38EN0xVk42J4UPNE0zdGZhE9ncDhcVv7uvr09/SckvAzMLtCh+ySKbKJaZTaj5i1uuniR2SHKooeiy4fsSr5eTzqy+vh4NDQ3QNM00wT5n7969yGQyyuSf/f39hmspXkf+M7+WfPArr2rK56EKEQiDyOYkXFS8F3y7UkQ2HrYgvnCiKrLxdqGa+JjlYwPME6/axUpkM8vHBlgXkpF/Hh4exq5duzA2NoaqqipMmzYNJ598snL/Xg3KvXCyef3M8WvMB2by/Q+ryCYLKWLydd6mxPAjXkEV8O/aEsHgdk42Qo34fhHD/err6w3jBxknIlu5houWupBdrMgmzmH4eICPm/mYh4ssJ510kp6/0wqxwABgzMcGjJ8XqXKy8fdPTU2NnuONL/yIz6xTJ5sXaJpmKBoEBB8uapbD2mlONlF4deJkGxoa0nP9nnDCCQXdV07CRUuJ9gGM8zlx32ER2cTraacitmourepn3czJJi6+W4WLOnnPptNpwzGGVWTj53L06FEcPXoUmqbpfVxRfberR1emiGGWIqpY/UIiG2CcYPr9wFuJbGKSRbf3MzQ0hJdeeglbtmwx7FN2sgFQdjyiyMb/VhUuyjsJHkPPO2uxE5dFNlWoIb9H/O/Fa1TsPROTzaps3jwclA9ARPjqDv8OHu4nTib5Ocsim9nKl3gPVJbhoJ1sTsJFgePPXjGDLzkvm7hiGZXJuRMnm5XIJp6vl042GSfhouLq6+mnn46enp5xlu4oOdn8DhflExp59Vp0DPN/hwGr8BLu8BVFNtGdTE628saLnGzEeMQwp6GhIeTzecTjcVRVVVmG0TgR2cRwJbNtwupks1psEdumn4UPgPGLbrzPb2pq0o9l1qxZtgQ2/vdiX2omssnHLv7Mj6m2tlZ3xqkq0KoW3oII/zeraq+ilHBRea5p9syYpeOxGy7Kr6FYRM5JiOmuXbuQz+fR3NxsyPkq/02hcFF5IYxTiptNlRbHi5RIxSLeU5UYaMfJptrWbSebKsKlFCebnCImrPMqfo67d+8GALS3t+vzlWLm/zQCsYFZMtBkMql/zsUOO/mseEMrRbApFlWH6UX+EpXIJv7fzMkGqG2x8uQPUBc+4P/nglMmkzHcF279Fu+nmPCRfx8fiPCXkBsTtYaGBsRiMYM1njM8PKzva2hoaNzEnQtwLS0t+nUYGRkxVLPlHQH/btGaXei+h0lkK1YkKcXJBhxP3rt79+6CZc3DiCiycTce4FxkK/XFbWaHB44//3z1WvV3ZsKaSnzjuQ5F5D7Bq0G5m042v8NFeZtQ3X9xkhT0gJRjR2STqx3y+0IiW3mjcnWEZUJVTojvFz4JrqurMx1fcJzkZONESWTjaUAOHDhgWv1YPGYvRDZVOJ58T+QxTVVVFebNm4eFCxfqhRDsoGma7marq6sbd6+sRDb5PtfU1BgS5gNqkU1cCA+iP5fnc1b9iipPsJN+SNyX2TNjJmrbDRfl19BO3mEzJxsAdHV1KfclRybZrS7K5zBuimz8s7C8E0Qnop0waHk8KwqGPT09+nal5mQT0w4lEgmlq7IUkQ0wjjfD7mTj90a8xuLv7UIjEBtYhX7y342OjhomW3ZEtiAG/VZONjePR+4Y+AM8NjamXFWQRS/AaPtVKet2nGzc7SXn1pMrmsrXQLyv4nmUco1isZiev0R+iYhFDQCjm010uTU1NRlCWcWBk1wiWRX2Z3bfVckegxbZxJAw8XMR8T6Weo96enoQi8Vw5MgRPWQ3KqGigHESJObsE583jpcimxvhoqqKoionm6qfJSebOfL1Ug2uwyiyWeVwUTnZAHv9hxNimobTp07A6VMnICa8rzRNQ29vL3p7e0NTjbUU9POZNAlxMJyu9eF0rQ8xqAWEoFE52UpZODS7z5UOf7+8++67esJz7mIqVWST75NbOdn8mFh3dHQgmUxieHgYb7/9tnIbUfzww8kGmKePEK9tc3OzLhI6gf+NqnqiPGayGk+oRDazdBXyoomf41P5vWn1LlE52Zzccycim9OcbPLY2k7eYdW+xEVOFaq5lfhdZuGiLS0tANTRPnYRnwUxjD0sIhugXog2m4dbLTBOmjQJdXV1iMViyrG8Hfj38zE176OcONnsXlM+7he/K2yIx9XW1jYuPN7pcYfTrxcCxAtpJZilUimMjo5idHRU/5tCZbDDKrJ56WQTVXIxFp1fJ/5gixVz5DwWViKbPKFOpVJIp9MYGRnB0NCQLprIZab5S0DuLGSbultuv6amJhw+fBiHDx9Gd3e3/rkssvX19ekDWF55KZFIoLa2Ful0GgMDAxgZGdGvXyqVsqwSWei+h8nJZlb4wOx45FWhYu9RVVUVJk+ejF27duGdd94BEF0nm1hxFjh2r8XrYifBNOBuTjbGmL5fK5GNi+uJRKJg6KhqkEc52cyRr1fUnGyq8JLBwUGMjY3pIht/j7g9KatKxvHQPy0Z93kymcQVV1xR0neHCf18BgeBVavwUPq1oA/JErltAKUtHJrd50qHPz/8OWtvb9dX+c3C14DiRDY3nGylhmjaJR6Po7u7Gzt37sTu3bvR3t4+bn+ljrGtzl0u3MVJJpMYGRnB8PAw6uvrXXXn9/b2oqamRumA4/MfVeiifP61tbWWeci4kSGbzWJsbAzpdDr0TrZSwkUBoxHA7BzN2kMhUa8UJ5tqLGYnnJW73sR5htmi2YQJE7B371693arGiYUQ3/difuUwiWzxeBzZbNZWuKhZ6C03GCxYsAC5XK5oQ4DsZOPPr9vhosDx8WZYXWyA8VxUhWDIyeYSTkQ2AAa3VKEGxBPFqkKmvMbvcFE5Vx3fn+plYJZUkX+fnXBR0bXAr++BAwdw4MABAMCUKVOU+zNzsrkdcmSWl010qgFGJxt3vTU2No4ryqBysnEKiWziOYVJZHMqkshtoJR23NPTY3hZlYOTDRg/GOPtRiWyiIM7N51sw8PDYIwhFouZintyzpZSnGxeh5fwfcsJbIuBnGzWmK18c9555x2MjY1B0zSDixmgcNFyh3Ky+YM4Hujo6MCsWbP06+tnuKi4EGtFqSGaTuju7kYsFsPAwICysFWpYatWIpt4zcXryN1mfGzppsiWTCYxceJE0+gCs3eIuL2maaiurkYqlTJsb1ZhM8jwfyc52dwKF7UyaxRystnNyVaMk01cwDKb64rX4NChQwCMOQDNxJpUKqW/v4sNGTWb14TpnaCq/ms3J5vs1IvH4yXNU2SRTZ4Di9uZzdHtPotcNI2CyNbS0jLOZSv+3i7Bt7aQIj6IVoMDVbhooQZfXV2N008/HXPnznXhSJ2hWnH0IlzUysnGQ0bF4xF/VllRVcq6KlxUXMXgIht3sXV0dOgdOGBcTSnkZHPrGtXX1yMejxucF2KOtkmTJgEwF9kAuCayqZxsYhGPoEU2u5Nk+aVZyj2Kx+OYNm2a/u9ycbLJ4ip/Hs0s5nKCWieYDQDFogeqwaP4jPPnThbZ5DDSMDjZgNJDRv3KySYPbqLmZFOFTADAvn37ABwLP5Kr25HIVt6QyOYPTU1NSKfT6O7uxsyZMw19uJvhoqqoBXkbO242sT143Q646ARAr7oo4qWTTbzm4vfz8aIXIlshzN4h4s/V1dX6v/m4XJWnWk7LELSTrVAubbecbHaeF6fhouL4amxsTB8HWs1ZZfebONYxE0vEedm7774L4HgoqHj8crXweDyuGxG2bduGXbt2KfsUK8TvEo8jTO+EQqYHkVLdY3aPRXSyif/nuJGTraWlBd3d3Zg6dWrpB+4REydOREdHB6ZPn678vdP2E3xrCylOnWyiyGZHpRUrMvlJGMJFRZHNyskmC1/iQ89VfPFlI+dwk6u4yg+2lZPNq4mapmn64IevePJBUG1trf6C4UUNRkZG9JUg/pLigySx8AEPjxVRiWxivjuVyCaKM0FNSsWXuippqoxZ4vti6ejo0FeB5Xj8MCNeN7kEujg4t1M51Q0nmyw8WeVj48jitiiyic93GHKyiY6/UkNG/Zo4iINpMaeo2TZhGJAC5uElXCTkedlqa2sNEwlV314smdExLPz2Oiz89jpkRo+37dHRUaxatQqrVq0yvOeiin4+P/kJjrAYFg6fgoXDpyDDwtEWZFSFD0pxNZvd50qnuroaS5YswYwZM8a9c+XxhYhTkU1VzEbexqnI5keuxEmTJkHTNBw5cmRchXg/nGxiDirguMjW399vWHjzW2Qzy7EmRvJwx4h8DoBRGDILjfUa8T1ZqE8pVWQTnWyF9uG08EF1dTWqq6uRz+exZ88eW21CHk/xsY5VXi0xz5dYtE3+vVz5M5FIYNKkSWhoaEAul8OOHTuwcePGcUWNrChXJ5tX41lZ8OTfK4dty3nMxWOxe01jsRhmzJihzOUYFurr6zFr1izTeQo52VxC7KS8ENmCwq9wUbljkKsEqjq8QlZU8aHnP4svG/GcRCcbcMzOL7s2xM7Fyskmi3elwoW0/fv3I5fL6S+hxsZGxONxXdjp6+vD/v37wRhDQ0OD/rmZk00Ow7NyssmhuLLIViivoJfwY+Ev30I5leR2W2o71jQN8+bNw/z58/Xw3Sgg3m85Cbx4v8WiB2b3mLexYgbkdpxsZsir1rJ4JX9eyMnm9rNb6HiLxa+cbKKgnk6nlfdfvOdhGJAC5jnZeF/KqaurM9wTs1CqYjk0OIpDg+OFtEwmM65idJTJZDLI/N/zeghJHEJ4xzRu52QDzO8zocbNcFEzV41YNMCOyOZnuChw7J2pSvchHkupTjZVESOzd0dVVZX+Hj906JC+XVicbOICJhfZVG3Ey/7cLuJxFbqHboaLFjoeeXxUKCebpmm62WD37t36mMxJuKidea6c9qO2ttYw/xKvkXxPk8kkFixYgNmzZ+t5tffv32+6L5lCIlsYihM5cbJ5nf5E/h7etsT7K5tagqz0GzROz5UKH5hQjJON/xw1kS3IcNFinWyyyCbmEuOdAa+6Eo/HlQkMrZxsciiYm0JkR0cH3nrrLQwODmLbtm36Kg1feayvr8fg4CD6+/v1XHI8FAE4PkgaHR3Vj5t/xl9K4rmIP8urIfycVCJbUIjHnc1m9cmrXZHNjXacSCTGTeDDDs9pls/nxznZxPttVVmUM3PmTAwODhrCq+1SSGSzykUpDx5l8SqbzaKqqsqWkw0wDuK8GAhYFT/IZDLYunUrent70dbWZvodfq/Op1IpDA0Nmd7/MDrZzN4NjY2NOHDggP55bW2t3p+KiYXFfH9uk0wm8bnPfU7/Oero5zM0hOQ9a4I+nIJQuGjwuBkuajXhj8VihgmzFYXyU3kBP0enDqNCyC4+8d9W77empibs379fr3oqpljxEjsimzgO4FVORbcTRw5xBAqHbLqNLDhYUap7io+5rMZeYjSLiJ0239bWhrq6Or2gmvh9KkSRx04+NtX+5fsqiuWqe6ppGtrb2zEyMoI333zTkUNcFJ3lcFTVsQWB7GTj1xYwNw0U6x4rhJmop5pvl5qTrRygcFGXsJuTrZjCB0Gishl7GS4qd8yA+ctHXqW0Er74NRYdc/KKXiqVwqJFi7Bo0SLLHB+qnGxiXhBRzHKjM0mlUpg9ezaAY7mE+KqnKLIBx3LJDQ8PI5FIGCbpPJxCvK68HYoTZztONp7vLkwim3g8u3fv1gVsfn1U24uE4SUaFPy+8Rc2f05U4aJWA6tUKoXm5uaiJgVmEy6n4aLic8nbNXeWWjnZ5AmIly4xKyfboUOHMDAwoAvlZoh/68dghR+z2f2PgsjGr1kymTQkpzVzsnl5XfmEQFVVMIro59PaiiicDYlswWOVI8qpyGb1XlKFTeZyORw8eNB1YasYzML43HKyqb7bqo/jYyaeF8uvHLN2Ch+ITrZEIoGFCxcqF8P97s9VOAkXlVPY2PkbkcbGRpx55pmWeasKiWxWbV7TNEPeYcCekw04dk525rny/ZFFNtXcS9U/iCYWu6icbOL8MwzvBCvTQ1A52TiqnGxy+hhystkn+NYWUuw62cTCB1buirDgV7io7DATB8CFnGxySJDdcFFV7i7Zpixi5WQDjBN+tzuT5uZmw0s0nU7rL04usvEXQ0dHh2G/mqYZBktibqViRDbx/2EQ2YDjx8uLVkyZMsX02nvhZIsqch4F3h5U+Yq8usdyoly+f+6gsyuy8fYvngdfzZZFRBE5V2NQTjbVAEqFH24rEVVfISKGiodhQAqY52SLx+N6/sREIoFUKqV0PlRyn1DuuJ2TjXCO2cKK6NAoNVwUUItsu3fvxpYtW/SxgrhvwF+RzSx3WqmCnypUi2NHZOP7D4PIxv+zGgeIiP25X2kVZIrNyVasm7JQuhZ+H+Uq8nbbWXNzsx7aLCa0V8EX4oFjczenTrZkMqm/o+XfF0rnUarIxvcTNpFN5WQD1A5NeQHDbfeY2fxJ5d702lUXBcjJ5hJOc7Jls9nIimxehovm8/lxHaSYk63UcFErJ1shrJxsgLciGwD09PToKzxieeu6ujrDdenq6hr3t+IEWUwUbFdkk89HXoENWmQTHVnV1dXo7Ow03Va8VmLelkpEvG/pdNpR7ge3UO2TDwbjcety4+Lggw+MEomEUnyzGhyKxxBUTjazSpgyfq8GTpgwAbFYzDQcWtM0NDQ0IB6PW4YU+4nVCio/j8bGRsOCg1/Oh1wuhw0bNmDDhg0F73UU0M/n+ecRhbMxE/UBElf9wkxks+vSdRIuCqid2WaCg58TQDMhzA1nZTEiW3V1teF6BiGyiccVi8WwYMECLFiwwPaz6fU43A5OcrKpngW32yB/L8tONrvCMnez8Xd9IcRzciqyTZgwwTTaxMwcwZEL0NnByskWlvlBofmYaltysoUDysnmEk6cbDx0j+cciqrI5uaLQPwuOT/U2NjYOJFM/LnUwgd2H4JinGxuXiNN0zB79mzs378fra2thuOqq6tDf38/GhoaDOFQHHHyKw6cinWymXW0QSEez5QpUwqutKl+rkTE+1ZVVWUaXgP4K7KJRQ+sBjkqMS2ZTBo+t7OYEY/Hx4Wc+u1ksyuy+e226u7uxsSJEy3vw/z585HL5QLvBzhmLudEIoH6+nrMmzdPDz/y2/mQy+Xw9NNPAwDOOOOMyA84xfM5JQIBo7IrgDEWiMBSyZiFSYrPn1V/U4rIxvchL3QEES5qFjbrhquuGJGNV7N/5513AATvZAOgHM9aEYZwUZ63OJfLFdy3qs9xux/i95GPceT3o539NTQ04PTTT7c1X43H4/r1dyqyqfLs2Q0XldOH2DkvcTzF7xX/LCzvA/mdZdWu/Q4X5f/maXvEcaB4LOJ7NupjHieQyOYSdnOy8ZVzMW9X1EQ2LwQk8bvkFcZiCx+oHno5LBWIjpONf193d/e4z1tbW9Hf34+enh7l34mDJZXIJtuOzVZOwiqy8f3X1dWhvb3dcluznB+ViOxkkwVrwHuLdyGRzQrxmRPzbqnEN7sVsYJysjkNF/Wz7Raa7PkVumoXeXAnXzOxJLxXk7KYpmHepEb950ogBoZ52qD+cxgxC70BiuvjKvE+l0ohJ1uh8YT4fDrNySbnaZQ/D1O4qN9ONuBYlESYRDanqBZNghjnJZNJ5HI52042jhfuKe7iz+fzGBkZ0cdVToVlu071RCKBkZER2yKbpmmora3F6Oio4d3MUc29VPdUNLFks1lb7dfKyRaWMY0TJ5vXIpt8TeTc56KwrLpvbh5LFHAc+u3RcUQeUXwodFFTqZQhJDJqIpsXoRWiIKaqdKhyzxVysgHHOgAzZd2pI6SQk020KvsdftLT04OJEyeatiU5XJRTXV2N7u5uQwgpYO5kk8NFOUGLbE1NTTh69ChOOOEEW9Z3TlheokEhO9m4wB10uCjvH62EMcAokKicbGNjY7adbPwY/HCyuREuGvQzF2ZUfTWgvqdihT/eVty491XJOH573Zklf0+UqNIYfpveGvRhWGLmCgCKex9U4n0uFTMHl12RzUsnW5jCRf12sgEwFIzyS2SLx+NIJBIYGxsr+fqHwckGjE9RYwYX1bxsfzwv89DQkEFk80pYVpkZCs1zFy5caPhbEVV1UbPtuIlldHS07EQ2J042O4JcMVjltJbNLOK2YlXYMITg+gU52VyCNyY7gpk4KBArI4YRv8JF+b5yuZw+0edipJmTzSq5NYevqMgPP3B8Ih8lJ5sZYm4hFWZONk3TMGPGjHHby2FtYQ8X7e3txeTJk221SXKyHUd2svFnQrXy74fIxhiDpmm2Ky+L7bRQTrYwOdlKCRetxLwWTlENygH1Oysej+uTHDEXIFGemDnZxITdhLeU6mQTBQw7YWh2nGxhqi4apJOttrZWH3vX1NQUvX+n1NTUoK+vr+S8nmLORf6eDcrJZmffPIrE64iBqqoqDA0NGSKFvGrzTnOyiX+jwm64KHB83mi3+IH4ffznsIlsch7RIHOyiYYY8djEn1UCs3hNK+k9SyKbSzgR2cRtuL01rIgPLJ8Ae/Uy4PsSqwpykc3KySbn3RG3qa2txeDgoD5YEH/n1LVgNyfb6Oho6CbCZjnZzJCr9JgVPuAELbIB9tsj5WQ7juxky2QyAILJycb3lUgkbA/MzBxrovjmxMkmCvpBOdl4/2LWNqkCZmHEd4PYflXvWk3T9DYXlmrJhHeIzyBjzLNFQ8KcUkW2VCqFGTNmFBw/O3GyhSlcNKjCB8Cx858/fz5GR0d9LWQzd+5cg8uqWMS2w/vzIEU2O/dQFC286of4uF8sfuCVe64Ykc0Ks/e5CquFTBVRdrJZ5fPzstiA2F5Vc2AxTxsnSME7SChc1CV4Y7IzOBcdFWEOFQXUE2CvnC28MYr5mI4ePWo7J5vquE466ST09vbqSa75qpEYGuTUycYdN+JngPeFD0pBFNYKheCJ2/PQ17A72ZxA4aLHkZ1sQRQ+EO+BU5FNPH6xkIxTJxs/BnH100uRTTUAlEN0zdomhYsWxsnKN3CszWSzWVedbEOjOSz912MFAf7fF85Gdar8B5dDLIZzR+YCAP5fegtKmy57g9gOzBbwnFCJ97lUzBxcTvLkqnLTyhTjZAtDuKgbDiOz77ZzjWtra/Uxs1+kUilbY9NC8EWTsbGxQJ3JTkU2ThAim1dONjmNR7E4SfMjGwRk8vm8IV+bSmST9xs0opON55sTPxfxQ2Qzy0Hf1taG/v5+vYK7ON+uVJGNnGwuUWy4aNhFNm7t5CsIosjm1eoH/37uPhNzsjkpfMC/Ux4sxOPxovLv8O8VJ8gqFT+bzYauiko8HtdzbtlZKZQTpYa98IETKFz0OGYim5852UT7uWzXL9Q/xmLHq3iZiWxOnGx8W68s7aLzjjuDObKwaXa8YXPJhhG7iZI5/Dlwc1LGwLD3yJD+cyXAAOxFWv85jPAiHXzCVuqCWCXe51Ip1clml0Iim9gHB1ld1E8nmxuiR9hJJpOBi2xtbW04cuQIWltbC27rR3SFSmTzOiebuK9Snmmn4aKAucj2l7/8Be+++y4WL16Mmpoag2gnX/uwiGz8enLndX9/PwB15V2znGxunov4PIk/t7e3jys8RyKbs/MNR4sLIbyxNzQ0FNxWFNncWLnxGnlA5HW4KIeLQYXCRa2cbCpk14pTJ5u4Aiq+nOTy0XaOxU9OPvlkzJ8/31YIgKZphpdV2AsfOIGcbMcRcygkEgmlw8APV6bcxziZCPBt+IBaFNny+bwhx2Oh/buZ+F4Fv95i2ANHdc1VkMhWGDEnm53rxdsLXdvKQAwZpXBR/5HzcHL8ENlUC0jiNkGIbHJ/76WTzc6iU9Th7SfI8P+mpiacdtppaGpqKritH042Pu5X5WTzai7HFz75on2xOHmfFxLZBgYGAAB9fX3jwk/D6mSTI8q4yFZfXz9uW7/CRTl2i9Twvj0s19QvKFzUJVpbWzF58uSyc7IBxx4occXXaycbR0y6KlYmkbd3WkVFjrsv1skm5/gRJ/ZhFNmchgCk02kMDw8rnWzyvY+SyEY52Y5TW1uLWCymVxSTX9BiziIv23IikdBzGTLGbFek4tsMDw/rA0YuFnIHLh9oO3GyeZl/TnTRiM+N2eRPhnKyFUbM4WLnesn9F13b8ob3N6LIRvfcP8T3bj6fH5dzyA8nG9+fuPAhH5vXkJPNG6K2aFJu4aKyM7zUtuYkXNQqJ5sYajk0NDSu8nhYRTYx2mN4eFi/rionm9eFDwBncyjVvLmSoHBRF7HbkciFD8KOLGZ5NSiVvy+dTusTZVUiSv7S4Ksldh03xQpEhRR5cQJttq8oIb6U5XsuhtwA0WjHHAoXPU46ncaSJUvGVQOSn3XA22sl9jFiDkanhWT4v8VS7pwwONmA4xP8bDZrcJU6dbJFSdj2G6fhonIbomtb3qgKkET5XR01ZGeGXyKb7CAW73+YwkW9crI5XcCKKlFbNPEzXJQbJuLxuOc52dwW2YDCfYSVk000QGQyGUNfEGaRDThe/fTIkSMAjkV6qa6ruMDo1SI5/65EIlGw7ZDIRuGivhNFJxvgfbio/KKJx+N6R8o7TPGB5uGkXGSz25nIvy/FySbCJ/bFfHcYUYWLqgYDPLllVKBwUSNihTazVTDAv3BR8fmys095sMWfQflzq4mbnyKbmJdNhMJF3UPlZLO6/1GblBGlIYpsYStSVAmIYwaV6OWlyCYi9sFBhIuaFYDwyskmunuiMPcolqiNw/1wsonpQLibzeucbG4twovXpJBYYyWyiZ8NDQ2NqzweZpGNH9vhw4cBqENFgfEuYS/DRe18Z6WLbE7bUHhaXIQRJ7VReNGZOdm8DBdNpVJ6lSBAXVKZi2w8zMzuYLnYfGLyoFC1H/F+Rk18khGdbKqO2slqRpggJ5s5VvkcvLzHspMNKM4ZDBx/nsXPeX9SaP9+FCwxqzBK4aLuId5rO9crapMyojREoZtysgWDSmDyWmQzK7QAhCtc1CsnmxgqGqUxm1Oi1p/7IbIBx8f03GHmdU42ThAim1iATv5b4JiTTR4bhFlk433i0aNHAdgT2bxKhyDO/QpR6TnZKFw0AMRQpiiLbF6Gi8puFL5vOQeaWKrbaeED1X6tkAclqr8T72fYX+yFEEU2VTlyJx1tmCAnmzlmlYm8bssqJ1sxIpuYYNdJWH6x7tZiICeb9zgZlAPeTMo0aJjRXqf/rH+uaWhra9N/jjr6+eTziL1zCDO0Y87yMJ+Z6GSTXbxOMbvPhDXxeBzZbNZXJ5ssZoU1XNRrJ1sU5h2lEDVnsl95gquqqpDJZHQnm9fhopxS25umaXrqIN6ezfoIcV/ZbNYQOSaKbPl8Xo+CEtPgiIRpfiAvSpiJbNzcIVb0FP/eDfh1ISdbYZyabaI1mw4xnZ2dePfdd00flDAhToDz+bwvqx+8Y5Q7UvllUF1djf7+/nHWX7v7Ue3DDDsdcDmJbKLtWlXwIKoiGxU+MMcsXNTr6yTm5HE6ERDbn/iz7GSzoljhvRhU+aB4/gwO5WQrDfE9YWdw5yS02C7VqTjWfeHscZ8nk0lcc801JX9/WNDPZ3AQWLUK69Jbgj6kgojPoNkEyy5m95mwRl68BYJ1sgVZXZSPq/m+/XCylTPkZFMjFz/wS2Rz43nmIpvZPsTtkskkstksRkdHTUU2AHqVTv5dokDF/x0W5GuoKnrAkUU2LlK6RTFOtkoV2QBnzzTNSF1i2rRpOO200yIxUZJFNo4fIlsh+y5PHC6KbE4LH9g9DzsTcfHlHnUBx6rwgfhzFNqwCIWLmmMVLuolbjnZ7PxstX+zf7uJqvqV1eRPhpxshRFXD4NyshHhhXKyBY+qyE4hl0qx+3DiZAsiXBRQV0At5VhUImaliGxRc7IFJbJ5nZON40Z7c7IQapaXTRbZBgYGxn2XX/fCKeJx1dTUWPaRqrGPFyKbEydbJY9bnZxzeFoc4Rt+iWzi95klL1c52YBj8fV28ymJv3eST6xSnWz5fF5/KZeDk43CRc0xqy4adZGtkJPNT5FN5WSTJ39mTjYxkX/U+xev4c85b09U+IDgiM8g5WQLBlkEEvtDt56/qISLAuOrgJZ6LPydx8duwHHRodxFtqhVixbbgZftT8zJxiOAABiqnLuBWTGqUpCvkVV/bVdk40428XjDKrKJx1goAs5r9xh30dmJxPMzSiSsTJ482fa24e6pCE8QB0Piqq+Xqx9m4aLyA8tFtsHBQdNtrPbjSGG20VmIk/modybxeFzPeccHauXmZAvTSzQMmIWL+imy8QlGMeGiUXCyqQof2BXZxO2i9tz5TSwWG1et1gzZgezGu21oNIcL7ngOAPDb685EderY/rPZLO666y4AwNVXXx35Ca9+Pvk8PsVi+OjobADAb1NbUR3wsZmhEtmKfebN7jNhjZnI5mYhpWLCRf12ssm5ptw6Ftm1BFSuky3s4zy/hB0upo2MjGDnzp0AgPb2dtdFNq+dbIWcWWLxAxH+71QqhdHRUeWCZVhFNvG4rEJFxW29EtlaWlrwnve8x1G4qNm/K4Guri7b29KovgJROdm8eFCKzckGOBPZxN87mahWmpMNODZQGxsbU4ZSlIPIVg73yE3kHDF+iWxigRO+z1KdbGK7DJOTTVX4QJ78mYls4ueVOFhxgpPVXNnd7AYMDG+8PaD/rH/OGN555x3956gjnk8eGt5gx97JYT4zN51sZveZsEZe0HE7HxsQficbcHwxQCWylXIsosjG871Visgmj8PDlFtLhV8Lv7xNDA0NIZPJAACmTJni+n78ENms4Pszc7I1Njbq7yz5+8IqspXiZPPiPOzeUzsFA4njRGs2TbiCSmTz4kFRVRctlJONi2yiGFDoheqlk62ccrIBx17KZgJmQ0MD9u3bh4aGhiAOrWgoXNQcOXwlCCcb72OKrS6q+jzKTra3334bb7zxBubOnWvoF8M+cQgaJ2EKYrJkPwTl5cuX6z9HHf18hoaQePBXQR+OLShcNHisnGxu4cTJFiaRzY38cFxQyefzGBsb0/s3oPxFNrPwv7Did0423r46OjpQU1Pj+n7kc3CjvYnPZaE+olC4aENDQ+RENvG47Ips/PyDfAYoXNQZ0R8REo4xCxf1aj+AfSdbKpUyVIOxc1xuOdkKiWzl0JnIDiDxnLq6utDe3h658yQnmzni9RBFNr+qi+ZyOX3iY3dgxgUnxlikcrKJEz4rke3gwYPIZrPYu3evntuB2m1hnK6gJhIJX0S2WCzmiXsgKPTzGRxEJuiDsYkodFPhg2AIQmSzcrIFJbbKeVDFYym1uigX1kZGRgwiW6H3YdTRNE1PdRKFd6Vfwo6YAkbTNM/eQ5qmIR6PO45KsMLJuN1MZOP/rqurM8wboyCy8X6xpqam4PmHqaIniWzOCE+LI3zDr3BRO4UP5P1qmmbIJ2DnAXbLyVYp4aIi5dBhkpPNHLHUd1BONqer7XxALf+NEyebnEjXy/Pl32238AG/HocPH/ZkIlquyM92oWtm5p4myg/eFvzs4wgjsrjkp5ONT8LD4mQD1IUPSh2fyHnZKsXJBhxvR1F4rv3ME8znSx0dHXokkBeI6WTceKbcENlEkVk89yiIbM3NzZgwYQJ6e3sLbut1TjYnUE42Z9DIvgLhD2hfXx927Nhh+MxN+EuRh+6In3FUnXV1dbWeX8DOA1xs/p1KdLLJIls5nBMVPrCGh694HR4uIgpPxUwE0uk0stmsYYU+kUggnU4jn8+Pa8cqzFY23UblZLPKycavRzabxdGjRz0/vnLB6YKAX5OyXC6HTZs2AQAWLVoU+Xupn8/oKGYFfTA2Ed/7fCJG7wJ/CdLJlk6nDYnPxd+FQWRz61jS6TQGBgb0vGyVJLIlk0kMDw9Hon/1U9iZNGkSDhw4gKlTp3q6H35ObrU1JxFIfJ9iSg6xMnsymURNTY2eCsfs+ofpnZBMJjFv3jxb25KTLbqQyFaBNDQ0oKGhAX19fXrJYy86n3Q6jalTpyKVSumDC7siG8fOA1ysY0Xet+oaiDb1MHXQxSKHFZTDOVG4qDXc5h+Ek01ceXQy2ZoxYwaOHDmCxsZG/TNN03DqqacCsC++q6pNuQ3/bl5RThb3xLB8wDhQ5HlEqN0Wxungzmxhx21yuRwef/xxAMApp5wS+Xspns+JiEaeQDGcibt8yuHdFiWCLHwgOtl4UQC33GNOka8D4I2TrZh8p1EmSk42P0W2zs5OdHZ2eroPwFuRzYmTTS76wY9JnDea5fCL6juBRLboQiJbBZJIJLBgwQL09/dj3759OHjwIFpaWjzZl2yFLVT4AHAushXrZOMhZYXcLslkMjK5IAohO4DKIdk6hYtaI05M/BbZ+OQikUg4ujeNjY0GgY3jZIBXbBi5U8TvzuVyhj4llUphaGjIVGRTrbwSapyGKbg9KdOgobupWv+5EtAAdGNE/znMJBIJQw7IYt8FlXif3SDIwgfiuCaXyyGRSIQqXNSttCyiyCZWGqyE94dfiyZuEFb3VCmoUniUgvhc2l0wA6BHOPD2z8NXoxYu6gR+3LxPI5EtOoS/t/o/brnlFjz22GPYvHkzUqkUjhw5Mm6bt956C9deey3+8Ic/oLq6GpdeeiluvfXWsk8KWgyapumOtpNOOsm3/Tp1sjktfOD0gbdTZIFPlMuhMxEHo+VS0ZCcbNaIuXL8LnzACWKl3S+RTRTrc7kcksmkIUHw0NCQ7rDI5/Pj8rUB0Zg4BI08KC/Ud9XV1QGAa9XWqlNxPP/Vv3flu6JCtZbH81WvBH0YtkgkErqLDSj+ma/E++wGfopsjDG9P+X74H3w2NgYEolEqMJF3VrcUolsleBiA6KVY7MchB2ZIMNFxaIfo6OjBpGNH4/4ni9XkY0TJpEtqtfULyIzsh8dHcXHPvYxLFmyBHffffe43+dyOSxbtgxtbW147rnn8O6772L58uVgjOHHP/5xAEdMqChU+ADwz8km799sX7W1tTh69KgnpbH9JplM6qEU5dI58vsmJ7snjiGGr/jtZOOUs8jGv1+8vnIYE/+MTzx5gZehoSFfjq8ccCqmd3Z2orGx0dNk0ER4kPsYehf4iyyyiU4TtxDvqVwtm/fBvI8NKlxUFtkYYySyuQBP8G8nH2vQlIOwIxNkuCjfbzabNeS0BY6PscrZySZfHxLZokNkRLZ/+Zd/AQDce++9yt8/+eST2Lp1K3bv3o2JEycCAG677TZcccUVuOWWW9DQ0ODXoRIWxGIxg3tMtcqYTqcdCUGlTKbt2LqnT5+OyZMnl8VkTdM0pFIpjIyMlM3EPpFI4MQTTywbZ57bBBEuGovFDHlxKkFky2az+gRPlStHrrQ6YcIE7N2715fjKwecrHwDx/q6clgYIexhZwGP8A65uigvXiVWi3drHwAMruB4PI5EImHog4MOF+XXQUwV4IXIVimROt3d3aipqUFTU1PQh1KQckxhwp9jt+ZBTkW2VCqFTCaj5/mVReZkMqkLceIzUQ4iW1idbDTnKkxkRLZC/PGPf8TcuXN1gQ0A3v/+92NkZASbNm3Cueeeq/y7kZERQ4hBX1+f58da6SQSCcsKYLFYDOl02nYlIaeTL7O/NdtXLBYrC4GNw0W2qL5wVIjPPWFEHPT7VV0UgD7pAYIV2fxwOMoVRmWHBQ/VFd0dzc3NushG4aKFCTosfDibwyX/8UcAwC//aQmqkuUvjA4zDRePHqsx+svUq3BPLnEft0S2SrzPbiA62UZHR/VxNQ/bdgNN0/TFG9nJxu8/F9lKzc1XLGZ549x4D3HxIJfL6S7oSnGyxWIxz3JHu41YiKVcxtm9vb1obGxEc3OzK9/ndN7G2z7vV+SxpaZpmDNnDoaHhw3CPols7hL0OCxqlM3Ifv/+/ejo6DB81tzcjFQqhf3795v+3fe+9z3dJUf4g50Hs7q62rbI5rWTrdxIp9Po7++nDrJCCCJclO8jDCKbHwKWHColipkqkS2ZTKKpqUmfMNKzWBgniZK9IM8YXtlzVP+5EshDwyusVv85zLglslXifXYD8T3Dq9bX1NS43v/GYjF9wUh2sgHHK4xyEcpvN6tcXVR855bq+kgkEnq1+4GBAQCVI7JFjYaGBgwMDLjq5AySeDzuqsjpVKyprT32HuLFolRjS5XLsRzmeGEK0SSRzRmBtrhvfvOb+sqU2X8vvvii7e9TvcB4uV8zbrjhBhw9elT/b/fu3UWdC2EfPhji91gF71DtDCBKmXxVYofBQw6i+sIhnBFEuKi8jyAmAvy8/TxXWWQTK7/JIlsikdArqNJEqTCV2FcT9pHFHGoj/iL2c1xkq6+vd30/4vtM7GdFkW1kZAS5XG5c1UE/kJ1s3FHnVnvk4zcS2cLNvHnz8Hd/93fkUjfB6byNO2J5u+fRUIXafzk42cKaky2q19NPAn36r7vuOnziE5+w3GbKlCm2vquzsxP/8z//Y/js8OHDyGaz4xxuIul0OhKJNMsJ/tKxekB7enpQVVVlee84fCA1PDzs+F5WYofBbdeVcr6VThDVRYHSCpK4uf8gRDY5XJR/Jq++nnjiiTh48CBaW1s9P8aoQyIbYQXlZAsWlZPNzVBRjtmikSiy8XxwNTU1gVcXdXthK51OY3BwUA+bI5EtnPCQUUKN03BRbrzIZDLI5/O2oyTKQWSjcNHoEqjI1tra6trkYsmSJbjllluwb98+dHV1AThWDCGdTmPRokWu7INwB9HJZkYqlcKkSZNsf+f8+fMxNjbmeMARdAhSEPDVZUoKXhmIIg9PBl0JTrYgRTY5XJT/TlV2vqenx/PjKwdKyb1JlD9ym6CEzP4iPp9Hjx4Ltw3KycZDyoIY4/ghsomQyEZEEadiTTqd1kOlBwcHixLZovpOIJEtukRmpPrWW2/h0KFDeOutt5DL5bB582YAxyo/1tXV4bzzzsPs2bNx+eWXY9WqVTh06BC++MUv4uqrr6bKoiHDjpPNKcXmPahEJ1tzczMWL15cVsUcCHN4u+aDEoBENq/2JVcXLeRkI+xTiQsihH1EkY1XNyb8Qxw/8X7Qa5HNrPAB/zxIkU12Nbu1MEAiG1EOOBVrNE1DXV0djhw5goGBAdtjqVQqBU3TkEwmI/tOIJEtukRGZLvpppuwZs0a/d8LFiwAAKxfvx7nnHMO4vE4HnvsMVxzzTV4z3veg+rqalx66aW49dZbgzpkwgSx6l/Q8A6jkgblmqaRi62CkEU2P6ptAsGLbHwy4kc6gELVRflnfPJJEyPn0OCOsEIUMah9+I9YURE4JnB5cR9UTjY5XJTna+IhZn7it5ONp/8giChRjDO9GJEtkUhgwYIFkX4nUE626BIZke3ee+/Fvffea7lNT08P1q5d688BEUXjhZOtWESRjSDKEf5C5oMSv17QQYtsra2tmDNnjl5cwEvsFD4YGxsjJ1sJhEFkm1CrntCW26JFTU0NwBgwOIwJyBb+gxAgO9lKwew+E9aIIpsXLjbAnpNNzMnmN3J1Ua8KH3DoXUJEEdHUYLe/5jke+/r69OfLjsgc9Wg2crJFl8iIbET5YCcnm1/4WYGQIIKAt3G+ul8pIpumaWhra/NlX8XmZCPsE/TgriaVwEvf+Idxn6dSKXzpS1/y/Xi8Qj+fwUFg1Sq8VLU56EOyhVsim9l9JgojPpd+iGwqJ9vQ0JAubFVCTjbKT0lEEXHuZXcuyEU2XlglFotVhEFCPEdN0wKdOwc9Dosa5d86idARRpGtEjpqojKRw0X9auv8OU8kEqF41r3EyskmhpLye0ATI+eIbYiuHyHjppONKA5x0uVFZVHg+L0dGxvTC/mI/SyvulldXR1IOzAT2bzIyRblPFNEZcOfEyfPhVwtuFLavyxskcgWHWgkQvhOGMNFqbMgyhU5Kb/fTrZKcG3J11iVky2bzeqfV8I1cRsa3BFWiJMPah/BID6jXjvZeF8LGJ1snKBCuL12sonuaHqPEFGlmLlXLBYz5FmslPYvXqOg322iky4Mc/iwQ8vBhO80Nzejvb3dt1AuK8jJRpQ7QeVzqKSJgJ1wUe6wAMiJVQxBi2zD2RyW37MRALBmxWJUJY+Lpz//+c8BAJdddlnk27t+PrkcPso0fGb0RADAmtTrKK6Gtz9omoZEIoFsNlvS+9zsPhOF4c+lV0UPALXIxu+9SNAim1wEx63roWka0uk0MplM5PsaonKpr69HbW0t2tvbHf1dXV0dBgYGAFTG2BIIfuwjE4vFkMvlQnEsYYdG+oTvxONxzJ49O+jDAEBONqL8CUpkq6+vh6ZpaGpq8mV/QSJXF1UVPhgeHgZQOSEObhP0QDPPGP5nxyH9Zw5jDLt27dJ/jjri+eSg4X/YsaTReYS/zbohspndZ6Iw/Ln0ysUGqNMfqES2ICqL8uMBvCt8AIBENiLyJJNJnHbaaY7/TgxDr5T2H7aKniSy2YdENqKiIScbUe4EVf67rq4OZ555ZkW8iEUnG2NMGS7KnWyVMjB0m6BFNjMSiQQuvvhi/eeoo5/PyAgS/1+0qrWHKRVFJcLzhXlZ0Vl2svG+gIttXOgO2snmVbgocPw626msSBDlRCWGi4qLsmEY+5A5xT7RHxESRAnwwYpcsYkgyoUgy39XyktYFtnEz+VrUCkDQ7cJa+GDWCyGOXPmBH0YrqGfz+AgMoimyFYp/U7YmDp1KpqbmzFhwgTP9mFWyEcMFwaCE9l42/Oq8AEANDQ0YP/+/Z4VlyCIsFKJTjZN0xCPx0PjHiORzT7hGakSRAC0tbVh3rx5aGhoCPpQCMITZJGNXB7uI06s+KQKMDrZOJUyMHSbsDrZiPBATrZgSSQSaG1t9XQfZk42vv9sNot0Oh2YEO+Hk62rqwsTJkygxWGi4kgmk0in0xgZGakoJ2eYQjRTqRSGhoao/7EBiWxERaNpmqerrgQRNEE62SoF8ZqOjo7qP/MVSBES2YojbHlJOPl8Hq+++ioAYNasWaE6tmLQz2dkBL1BH4xDSGQrf2SRTbzX/P4H5WIDjh8PYwyMMU9ysmmahqqqMJchIQjvaG5uxv79+wPLuxgEYXKPzZo1C4ODg+SktQGJbARBEGVMUDnZKgkxHxAPV4rH40qRLUyhjlGCX7dUKhWqwhFjY2N4+OGHAQA33HBD5FfXxfNZGYFiByJceKAV9vJFDheVnWxAcEUPAKPol8vlPHGyEUQlc+KJJ2LKlCkVJTSHSWSrqqqqqGtfCjTaJwiCKGPIyeYPPFSJO9n4dZdFNXKyFUc6ncbMmTMDFVCqk5X37FQjV3ijkDBp0iTU1NSU7E6vxPscFeRwTPH9xid+XlY3LYR4PPl8Xj9Oeu8ShDvEYrGKE3nCJLIR9iGRjSAIoowhkc0f4vE4stnsuITcFC7qHp2dnYHtuyaVwKvf/kBg+w+CGi2PV6teCvowbBOPx9HW1lbSd1TifY4SVjlGp02bhpaWFrS0tPh9WDqapo1zNQPkYCYIonj4OJLG79GCElcQBEGUMSSy+QO/rrKTjU+6OCSyEQRBFIfV+yyZTKK1tTXwcHL5XSC/AwiCIJxATrZoQiIbQRBEGaNpWmiTxpcTfPAj5wqS87KRyEYQBFEcUaiWrcobRyIbQRDFQk62aEL+ZYIgiDInFotRbhiPMXOy8d/xKnMkskWT4WwOn7t/EwDgzk8tQlUF5O0aYRr+KTsdAHBnchsqIQtOJd7nKBEFZzY/Rv4uCOMxEgQRHXp6epBKpdDa2hr0oRAOIJGNIAiizBFFHhrwe4PsZJNFNg6JbNEkzxjWv/aO/nMlkIOG9fkmAEA+YpVGi6US73OUiKKTjfKxEQRRCo2NjWhsbAz6MAiHhO/tRBAEQbiKmeBDuAefSMnhovLPNOEiCIIojig52VTvAoIgCKIyIJGNIAiizCGRzXsKhYsCxwQ2ys1DEARRHFFyslG4KEEQROUSvrcTQRAE4SpmrirCPfh15WG5KpGNQkUJgiCKJwoim1kRHIIgCKJyCN/biSAIgnAVqi7qPfJESiVskshGEARRPBQuShAEQUQBmm0RBEGUORQu6j3ydRWvOc/DRiIbQRBE8UTBySaHi1IeToIgiMqDen4J9n/VpPr6+gI+EoIgCHcYGhrC4OAgYrEY+vv7gz6csiSTyWBwcFD/9+DgoP4e4b+rq6ujd0tEyYzm9J/7+voxljKGhAFAf39/5IVU8XwGRkb0n/tGRjDW1wfkcqo/KxvM7jMRDrLZrKGfzWQyoetT5XdBGI+RIAiCcA7vy5mN6uMas7NVBbFnzx5Mnjw56MMgCIIgCIIgCIIgCIIgQsLu3bsxadIky21IZJPI5/P429/+hvr6eqoCJ9DX14fJkydj9+7daGhoCPpwiICgdkBwqC0QHGoLBIfaAsGhtkAA1A6I41BbIDhRbQuMMfT392PixIkF0xVQuKhELBYrqExWMg0NDZF6GAhvoHZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4UWwLjY2NtrYLX8ZQgiAIgiAIgiAIgiAIgogYJLIRBEEQBEEQBEEQBEEQRImQyEbYIp1O4+abb0Y6nQ76UIgAoXZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4ldAWqPABQRAEQRAEQRAEQRAEQZQIOdkIgiAIgiAIgiAIgiAIokRIZCMIgiAIgiAIgiAIgiCIEiGRjSAIgiAIgiAIgiAIgiBKhEQ2giAIgiAIgiAIgiAIgigREtkqhJ/+9KeYOnUqqqqqsGjRIjz77LOW2//85z/H/PnzUVNTg66uLlx55ZV499139d/fddddeO9734vm5mY0Nzdj6dKl2Lhxo+E7pkyZAk3Txv137bXXenKORGGCaAdjY2P4+te/jqlTp6K6uhrTpk3Dt771LeTzeU/OkbBHEG2hv78f119/PXp7e1FdXY0zzjgDf/rTnzw5P8I+breFRx55BKeeeiqamppQW1uLU045Bffdd1/J+yW8J4i28Mwzz+DDH/4wJk6cCE3T8Oijj3pxaoRDgmgL3/ve93Daaaehvr4e7e3tuPDCC/Haa695cn6EPYJoB3feeSfmzZuHhoYGNDQ0YMmSJXj88cc9OT/CPkGNFTjf+973oGkarr/+erdOiSiSINrCN7/5zXGaQmdnpyfn5wqMKHsefPBBlkwm2V133cW2bt3KVq5cyWpra9muXbuU2z/77LMsFouxf/u3f2Pbt29nzz77LJszZw678MIL9W0uvfRS9pOf/IS9/PLL7NVXX2VXXnkla2xsZHv27NG3efvtt9m+ffv0/9atW8cAsPXr13t9yoSCoNrBd77zHdbS0sLWrl3LduzYwX71q1+xuro69qMf/cjzcybUBNUWLrnkEjZ79mz29NNPszfeeIPdfPPNrKGhwbAN4S9etIX169ezRx55hG3dupVt27aN/ehHP2LxeJw98cQTRe+X8J6g2sLvfvc7duONN7Jf//rXDAD7zW9+4/WpEgUIqi28//3vZ6tXr2ZbtmxhmzdvZsuWLWM9PT1sYGDA83MmxhNUO/jtb3/LHnvsMfbaa6+x1157jX3ta19jyWSSbdmyxfNzJtQE1RY4GzduZFOmTGHz5s1jK1eu9Oo0CRsE1RZuvvlmNmfOHIO28Pbbb3t+vsVCIlsFsHjxYvbZz37W8NnMmTPZV7/6VeX2q1atYtOmTTN8dvvtt7NJkyaZ7mNsbIzV19ezNWvWmG6zcuVKdsIJJ7B8Pu/g6Am3CKodLFu2jK1YscKw3UUXXcQ+9alPOT0FwiWCaAuZTIbF43G2du1aw3bz589nN954YzGnQbiAH22BMcYWLFjAvv71rxe9X8J7gmoLIiSyhYMwtAXGji3WAmBPP/20zSMn3CQs7YAxxpqbm9nPfvYzG0dNeEGQbaG/v5/NmDGDrVu3jp199tkksgVMUG3h5ptvZvPnzy/uoAOAwkXLnNHRUWzatAnnnXee4fPzzjsP//3f/638mzPOOAN79uzB7373OzDGcODAATz88MNYtmyZ6X4ymQyy2SwmTJhgehz3338/VqxYAU3Tij8hoiiCbAdnnnkmnnrqKbz++usAgP/93//Fc889h/PPP9+FMyOcElRbGBsbQy6XQ1VVlWG76upqPPfccyWeFVEMfrQFxhieeuopvPbaazjrrLOK3i/hLUG1BSJ8hKktHD16FABMx5aEd4SlHeRyOTz44IMYHBzEkiVLSjspoiiCbgvXXnstli1bhqVLl7pzQkTRBN0W3njjDUycOBFTp07FJz7xCWzfvt2dE/OCAIQ9wkf27t3LALDnn3/e8Pktt9zCTjzxRNO/4yF9iUSCAWAXXHABGx0dNd3+mmuuYSeccAIbGhpS/v6hhx5i8Xic7d27t7gTIUoiyHaQz+fZV7/6VaZpGkskEkzTNPbd73639JMiiiLItrBkyRJ29tlns71797KxsTF23333MU3TLPdLeIeXbeHIkSOstraWJRIJlk6n2d13313yfgnvCKotyICcbIETlraQz+fZhz/8YXbmmWeWdkJEUQTdDl555RVWW1vL4vE4a2xsZI899pg7J0Y4Jsi28MADD7C5c+fqY0lysgVLkG3hd7/7HXv44YfZK6+8orsaOzo62MGDB907QRchJ1uFILvHGGOmjrKtW7fi85//PG666SZs2rQJTzzxBHbs2IHPfvazyu1/8IMf4IEHHsAjjzwyzqXCufvuu/HBD34QEydOLO1EiJIIoh089NBDuP/++/GLX/wCL730EtasWYNbb70Va9asce/ECMcE0Rbuu+8+MMbQ3d2NdDqN22+/HZdeeini8bh7J0Y4xou2UF9fj82bN+NPf/oTbrnlFnzhC1/Ahg0bit4v4Q9BtQUifATdFq677jq88soreOCBB1w5H6I4gmoHJ510EjZv3owXXngBn/vc57B8+XJs3brV1XMjnOF3W9i9ezdWrlyJ+++/33R+SQRDEP3CBz/4QXz0ox/FySefjKVLl+Kxxx4DgPDOJwMS9wifGBkZYfF4nD3yyCOGzz//+c+zs846S/k3n/rUp9jFF19s+OzZZ59lANjf/vY3w+erVq1ijY2N7E9/+pPpMezcuZPFYjH26KOPFnkWRKkE2Q4mTZrE7rjjDsNn3/72t9lJJ51UzKkQJRKGPmFgYED/u0suuYSdf/75xZwKUSJetwWRq666ip133nlF75fwlqDaggzIyRY4YWgL1113HZs0aRLbvn17EWdAuEEY2oHI+973PvaP//iPNo+ecJOg2sJvfvMbBoDF43H9PwBM0zQWj8fZ2NhYiWdGOCVs/cLSpUvH5YcLC+RkK3NSqRQWLVqEdevWGT5ft24dzjjjDOXfZDIZxGLGpsGdJowx/bNVq1bh29/+Np544gmceuqppsewevVqtLe3W+ZvIrwlyHZg9j35fL6ocyFKIwx9Qm1tLbq6unD48GH8/ve/x0c+8pFiT4coAS/bggxjDCMjI0Xvl/CWoNoCET6CbAuMMVx33XV45JFH8Ic//AFTp04t9jSIEglbn0D9RnAE1Rbe97734c9//jM2b96s/3fqqafisssuw+bNmykKIgDC1C+MjIzg1VdfRVdXl93D9xffZT3Cd3ip3bvvvptt3bqVXX/99ay2tpbt3LmTMcbYV7/6VXb55Zfr269evZolEgn205/+lL355pvsueeeY6eeeipbvHixvs33v/99lkql2MMPP2wopdvf32/Ydy6XYz09PewrX/mKPydLmBJUO1i+fDnr7u5ma9euZTt27GCPPPIIa21tZV/+8pf9O3nCQFBt4YknnmCPP/442759O3vyySfZ/Pnz2eLFiy1zuxHe4kVb+O53v8uefPJJ9uabb7JXX32V3XbbbSyRSLC77rrL9n4J/wmqLfT397OXX36ZvfzyywwA+9d//Vf28ssvs127dvl38oSBoNrC5z73OdbY2Mg2bNhgeI9kMhn/Tp7QCaod3HDDDeyZZ55hO3bsYK+88gr72te+xmKxGHvyySf9O3nCQFBtQYZysgVPUG3hn//5n9mGDRvY9u3b2QsvvMA+9KEPsfr6+tCOG0lkqxB+8pOfsN7eXpZKpdjChQsN5dCXL1/Ozj77bMP2t99+O5s9ezarrq5mXV1d7LLLLmN79uzRf9/b28sAjPvv5ptvNnzP73//ewaAvfbaa16eHmGTINpBX18fW7lyJevp6WFVVVVs2rRp7MYbb2QjIyNeny5hQRBt4aGHHmLTpk1jqVSKdXZ2smuvvZYdOXLE61MlCuB2W7jxxhvZ9OnTWVVVFWtubmZLlixhDz74oKP9EsEQRFtYv369su9Yvny5l6dKFCCItqBqBwDY6tWrvTxVwoIg2sGKFSv0fba1tbH3ve99JLCFgKDGCiIksoWDINrCxz/+cdbV1cWSySSbOHEiu+iii9hf/vIXT8+zFDTGLHx6BEEQBEEQBEEQBEEQBEEUhHKyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEARBEARBEARRIiSyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEESgjI6OYvr06Xj++edd/d61a9diwYIFyOfzrn4vQRAEQRCEChLZCIIgCIIgXOSKK66Apmnj/tu2bVvQhxZa/vM//xO9vb14z3veo3+maRoeffTRcdteccUVuPDCC21974c+9CFomoZf/OIXLh0pQRAEQRCEOSSyEQRBEARBuMwHPvAB7Nu3z/Df1KlTx203OjoawNGFjx//+Mf4zGc+48l3X3nllfjxj3/syXcTBEEQBEGIkMhGEARBEAThMul0Gp2dnYb/4vE4zjnnHFx33XX4whe+gNbWVvzDP/wDAGDr1q04//zzUVdXh46ODlx++eU4ePCg/n2Dg4P49Kc/jbq6OnR1deG2227DOeecg+uvv17fRuX8ampqwr333qv/e+/evfj4xz+O5uZmtLS04CMf+Qh27typ/567xG699VZ0dXWhpaUF1157LbLZrL7NyMgIvvzlL2Py5MlIp9OYMWMG7r77bjDGMH36dNx6662GY9iyZQtisRjefPNN5bV66aWXsG3bNixbtszhVQZ27typdA2ec845+jYXXHABNm7ciO3btzv+foIgCIIgCCeQyEYQBEEQBOEja9asQSKRwPPPP4//+I//wL59+3D22WfjlFNOwYsvvognnngCBw4cwCWXXKL/zZe+9CWsX78ev/nNb/Dkk09iw4YN2LRpk6P9ZjIZnHvuuairq8MzzzyD5557DnV1dfjABz5gcNStX78eb775JtavX481a9bg3nvvNQh1n/70p/Hggw/i9ttvx6uvvop///d/R11dHTRNw4oVK7B69WrDfu+55x68973vxQknnKA8rmeeeQYnnngiGhoaHJ0PAEyePNngFnz55ZfR0tKCs846S9+mt7cX7e3tePbZZx1/P0EQBEEQhBMSQR8AQRAEQRBEubF27VrU1dXp//7gBz+IX/3qVwCA6dOn4wc/+IH+u5tuugkLFy7Ed7/7Xf2ze+65B5MnT8brr7+OiRMn4u6778Z//dd/6c63NWvWYNKkSY6O6cEHH0QsFsPPfvYzaJoGAFi9ejWampqwYcMGnHfeeQCA5uZm3HHHHYjH45g5cyaWLVuGp556CldffTVef/11/PKXv8S6deuwdOlSAMC0adP0fVx55ZW46aabsHHjRixevBjZbBb3338/Vq1aZXpcO3fuxMSJE5W/++QnP4l4PG74bGRkRHe9xeNxdHZ2AgCGh4dx4YUXYsmSJfjmN79p+Jvu7m6DY48gCIIgCMILSGQjCIIgCIJwmXPPPRd33nmn/u/a2lr951NPPdWw7aZNm7B+/XqDKMd58803MTQ0hNHRUSxZskT/fMKECTjppJMcHdOmTZuwbds21NfXGz4fHh42hHLOmTPHIGx1dXXhz3/+MwBg8+bNiMfjOPvss5X76OrqwrJly3DPPfdg8eLFWLt2LYaHh/Gxj33M9LiGhoZQVVWl/N0Pf/hDXczjfOUrX0Eulxu37VVXXYX+/n6sW7cOsZgxWKO6uhqZTMb0GAiCIAiCINyARDaCIAiCIAiXqa2txfTp001/J5LP5/HhD38Y3//+98dt29XVhTfeeMPWPjVNA2PM8JmYSy2fz2PRokX4+c9/Pu5v29ra9J+TyeS4783n8wCOiVWF+MxnPoPLL78cP/zhD7F69Wp8/OMfR01Njen2ra2tuogn09nZOe461tfX48iRI4bPvvOd7+CJJ57Axo0bx4mIAHDo0CHDORIEQRAEQXgBiWwEQRAEQRABsnDhQvz617/GlClTkEiMH5pNnz4dyWQSL7zwAnp6egAAhw8fxuuvv25wlLW1tWHfvn36v9944w2De2vhwoV46KGH0N7eXlT+MwA4+eSTkc/n8fTTT49zmHHOP/981NbW4s4778Tjjz+OZ555xvI7FyxYgDvvvBOMMT2M1Qm//vWv8a1vfQuPP/64Mu8bd+otWLDA8XcTBEEQBEE4gQofEARBEARBBMi1116LQ4cO4ZOf/KReBfPJJ5/EihUrkMvlUFdXh6uuugpf+tKX8NRTT2HLli244oorxoVE/v3f/z3uuOMOvPTSS3jxxRfx2c9+1uBKu+yyy9Da2oqPfOQjePbZZ7Fjxw48/fTTWLlyJfbs2WPrWKdMmYLly5djxYoVePTRR7Fjxw5s2LABv/zlL/Vt4vE4rrjiCtxwww2YPn26IcxVxbnnnovBwUH85S9/cXDVjrFlyxZ8+tOfxle+8hXMmTMH+/fvx/79+3Ho0CF9mxdeeAHpdLrgcRAEQRAEQZQKiWwEQRAEQRABMnHiRDz//PPI5XJ4//vfj7lz52LlypVobGzUhbRVq1bhrLPOwgUXXIClS5fizDPPxKJFiwzfc9ttt2Hy5Mk466yzcOmll+KLX/yiIUyzpqYGzzzzDHp6enDRRRdh1qxZWLFiBYaGhhw52+68805cfPHFuOaaazBz5kxcffXVGBwcNGxz1VVXYXR0FCtWrCj4fS0tLbjooouUYayFePHFF5HJZPCd73wHXV1d+n8XXXSRvs0DDzyAyy67zDJklSAIgiAIwg00JifvIAiCIAiCIELPOeecg1NOOQU/+tGPgj6UcTz//PM455xzsGfPHnR0dBTc/s9//jOWLl2qLMxQCu+88w5mzpyJF198EVOnTnXtewmCIAiCIFSQk40gCIIgCIJwhZGREWzbtg3f+MY3cMkll9gS2IBjud5+8IMfYOfOna4ez44dO/DTn/6UBDaCIAiCIHyBCh8QBEEQBEEQrvDAAw/gqquuwimnnIL77rvP0d8uX77c9eNZvHgxFi9e7Pr3EgRBEARBqKBwUYIgCIIgCIIgCIIgCIIoEQoXJQiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgS+f8Bv9KnmU9JJM4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import search_best_peaks\n", + "from stingray.stats import fold_detection_level, z2_n_detection_level\n", + "\n", + "ntrial = (frequencies[-1] - frequencies[0]) / df_min\n", + "z_detlev = z2_n_detection_level(n=1, epsilon=0.001, ntrial=len(freq))\n", + "ef_detlev = fold_detection_level(nbin, epsilon=0.001, ntrial=len(freq))\n", + "\n", + "cand_freqs_ef, cand_stat_ef = search_best_peaks(freq, efstat, ef_detlev)\n", + "cand_freqs_z, cand_stat_z = search_best_peaks(freq, zstat, z_detlev)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.')\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, (zstat - nharm), label='$Z^2_1$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.', zorder=10)\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray', zorder=10)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', color='gray', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, ef_detlev - nbin + 3])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the side lobes of the sinc squared-like shape are producing spurious candidates here. For now, we do not have a method to eliminate these fairly obvious patterns, but it will be implemented in future releases" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fit peak with Sinc-squared and Gaussian functions\n", + "\n", + "As we saw earlier, if the pulse frequency is stable during the observation, the peak shape is a **Sinc squared function**. Therefore we fit it to the peak with the function `stingray.pulse.modeling.fit_sinc`. \n", + "We have two possibilities:\n", + "\n", + "+ if `obs_length` is the length of the observation. If it is defined, it fixes width to $1/(\\pi*obs length)$, as expected from epoch folding periodograms. The other two free parameters are `amplitude` and `mean`.\n", + "+ if it is not defined, the `width` parameter can be used.\n", + "\n", + "On the other hand, if the pulse frequency varies slightly, the peak oscillate and the integrated profile is a bell-shaped function. We can fit it with a **Gaussian function** (`stingray.pulse.modeling.fit_gaussian`) with the standard parameters: `amplitude`, `mean`, `stddev`.\n", + "\n", + "We also provide the user with the constrains `fixed`, `tied`, `bounds`, in order to fix, link and/or constrain parameters.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_sinc\n", + "\n", + "fs=fit_sinc(freq, efstat-(nbin-1),amp=max(efstat-(nbin-1)), mean=cand_freqs_ef[0], \n", + " obs_length=obs_length)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/sElEQVR4nOzdeXhTddrG8e/pkqQ7lKWlUhYVVAQVUVFcAGVTURlnBh2dUUcddVwZdXAc39G6weiMgOLuKDio4O64C6jgAgqi7Pu+tZSldE2TNDnvH+fk0ACFFrrn/lxXL9vkJDlBaHLneX7PzzBN00RERERERESqLaahT0BERERERKSpUZASERERERGpIQUpERERERGRGlKQEhERERERqSEFKRERERERkRpSkBIREREREakhBSkREREREZEaUpASERERERGpobiGPoHGIBQKsXXrVlJSUjAMo6FPR0REREREGohpmhQXF5OVlUVMTNV1JwUpYOvWrWRnZzf0aYiIiIiISCOxadMm2rdvX+X1ClJASkoKYP1hpaamNvDZiIhIfSorKOK0cbMBmOP+hUTDhNtvh6SkBj4zERFpCEVFRWRnZzsZoSoKUuC086WmpipIiYhEmbggxLgTAUh1e0g0QpCaqiAlIhLlDrbkR8MmREREREREakhBSkREREREpIYUpERERERERGpIa6RERERE5LCYpklFRQXBYLChT0XkoGJjY4mLizvsbY8UpERERETkkPn9fnJzcykrK2voUxGptsTERNq1a4fL5Trk+1CQEhEREZFDEgqFWLduHbGxsWRlZeFyuQ77U36RumSaJn6/n+3bt7Nu3Tq6dOlywE13D0RBSkREREQOid/vJxQKkZ2dTWJiYkOfjki1JCQkEB8fz4YNG/D7/Xg8nkO6Hw2bEBEREZHDcqif6Is0lNr4O6u/9SIiIiIiIjWkICUiIiIiIlJDClIiIiIiIk1Ip06dGDdu3CHffuLEibRo0aLWzidaKUiJiIiISFS55pprMAxjn68hQ4Y4x3Tq1Gmf69u3b39Ij5eTk8NJJ51U49tVFXjmzp3LDTfcUK372F/ouuyyy1i5cmWNz0ciaWqfiIiIiESdIUOGMGHChIjL3G53xM8PPfQQf/rTn5yfY2Nj6+XcDqZNmzaHdfuEhAQSEhJq6WyilypSIiIiIlJrTNOkzF9R71+madboPN1uN5mZmRFfLVu2jDgmJSUl4voDBZgZM2Zw2mmnkZSURIsWLTjzzDPZsGEDEydO5MEHH2TBggVOZWvixIkAjBkzhh49epCUlER2djY333wzJSUlzv398Y9/pLCw0LldTk4OsG+VKScnhw4dOuB2u8nKyuL2228HoF+/fmzYsIG//OUvzn3A/itdH374Iaeccgoej4fWrVtz6aWXOtc9++yzdOnSBY/HQ0ZGBr/5zW9q9GfdXKkiJSIiIiK1xhsI0u3+L+r9cZc+NJhEV8O8ta2oqGDYsGH86U9/YvLkyfj9fubMmYNhGFx22WUsXryYzz//nOnTpwOQlpYGWCO4n3rqKTp16sS6deu4+eabGTlyJM8++yx9+vRh3Lhx3H///axYsQKA5OTkfR77nXfeYezYsUyZMoXjjz+evLw8FixYAMB7773HiSeeyA033BBRWdvbJ598wqWXXsp9993HpEmT8Pv9fPLJJwD89NNP3H777UyaNIk+ffqwa9cuvv3221r982uqFKREREREJOp8/PHH+wSTe+65h3/84x8RP//f//2f8/OoUaOcak9lRUVFFBYWMnToUI466igAjjvuOOf65ORk4uLiyMzMjLjdiBEjnO87d+7Mww8/zJ///GeeffZZXC4XaWlpGIaxz+0q27hxI5mZmQwYMID4+Hg6dOjAaaedBkB6ejqxsbFOZa0qjz76KJdffjkPPvigc9mJJ57o3H9SUhJDhw4lJSWFjh070rNnzyrvK5ooSImISFSraTuQiBxYQnwsSx8a3CCPWxP9+/fnueeei7gsPT094ue//vWvXHPNNc7PrVu33u99paenc8011zB48GAGDhzIgAEDGD58OO3atTvgOXz99deMGjWKpUuXUlRUREVFBeXl5ZSWlpKUlFSt5/Hb3/6WcePGceSRRzJkyBAuuOACLrroIuLiqv82f/78+VVWrAYOHEjHjh2d+x8yZAi/+tWvSExMrPb9N1daIyUiIlHt6+Xbne/XbC9pwDMRaR4MwyDRFVfvX+H1P9WVlJTE0UcfHfG1d5Bq3bp1xPUHGhk+YcIEZs+eTZ8+fXjzzTfp2rUrP/zwQ5XHb9iwgQsuuIDu3bvz7rvvMm/ePJ555hkAAoFAtZ9HdnY2K1as4JlnniEhIYGbb76Zc845p0b3caDBEykpKfz8889MnjyZdu3acf/993PiiSeye/fuat9/c6UgJSIiUW3FtiLn+88X57JuR2kDno2INGU9e/bk3nvvZdasWXTv3p033ngDAJfLRTAYjDj2p59+oqKigieeeILTTz+drl27snXr1ohj9ne7/UlISODiiy/mqaeeYsaMGcyePZtFixZV+z5OOOEEvvzyyyqvj4uLY8CAATz++OMsXLiQ9evX89VXXx30vJq7Bg1S+5vPbxgGt9xyC2C1W+Tk5JCVlUVCQgL9+vVjyZIlEffh8/m47bbbaN26NUlJSVx88cVs3ry5IZ6OiIg0QduKfBE/r1VVSiQq+Hw+8vLyIr527NhxSPe1bt067r33XmbPns2GDRuYOnUqK1eudNZJhYdJzJ8/nx07duDz+TjqqKOoqKhg/PjxrF27lkmTJvH8889H3G+nTp0oKSnhyy+/ZMeOHZSVle3z2BMnTuTll19m8eLFzv0kJCTQsWNH5z6++eYbtmzZUuXze+CBB5g8eTIPPPAAy5YtY9GiRTz++OOAtZbsqaeeYv78+WzYsIH//ve/hEIhjjnmmEP6s2pOGjRIzZ07l9zcXOdr2rRpgNXrCfD4448zZswYnn76aebOnUtmZiYDBw6kuLjYuY8RI0bw/vvvM2XKFL777jtKSkoYOnRotdK7iIhIXqE34uf8Yl8VR4pIc/L555/Trl27iK+zzjrrkO4rMTGR5cuX8+tf/5quXbtyww03cOutt3LjjTcC8Otf/5ohQ4bQv39/2rRpw+TJkznppJMYM2YMjz32GN27d+f1119n9OjREffbp08fbrrpJi677DLatGnjhJvKWrRowUsvvcSZZ57pVJY++ugjWrVqBVh7Ya1fv56jjjqqyvHt/fr14+233+bDDz/kpJNO4txzz+XHH3907v+9997j3HPP5bjjjuP5559n8uTJHH/88Yf0Z9WcGGYjWmU7YsQIPv74Y1atWgVAVlYWI0aM4J577gGsTw4yMjJ47LHHuPHGGyksLKRNmzZMmjSJyy67DICtW7eSnZ3Np59+yuDB1VvoWFRURFpaGoWFhaSmptbNkxMRkUZp0COfsNIuQt0yawoeQtz08fPEp6Y07ImJNAHl5eWsW7eOzp074/F4Gvp0RKrtQH93q5sNGs0aKb/fz2uvvca1116LYRisW7eOvLw8Bg0a5Bzjdrvp27cvs2bNAmDevHkEAoGIY7KysujevbtzzP74fD6KiooivkREJPqEQiZ5RX7n5/jYGIIhU0MnRETkoBpNkPrggw/YvXu3M2IyLy8PgIyMjIjjMjIynOvy8vJwuVz77EJd+Zj9GT16NGlpac5XdnZ2LT4TERFpKnaW+vFXhJyf2yS7AVi6VR+wiYjIgTWaIPXyyy9z/vnnk5WVFXH53qMsTdM86HjLgx1z7733UlhY6Hxt2rTp0E9cRESarK27I9dHtUm12juW5SpIiYjIgTWKILVhwwamT5/O9ddf71wW3n1578pSfn6+U6XKzMzE7/dTUFBQ5TH743a7SU1NjfgSEZHos0+QSnYBqkiJiMjBNYogNWHCBNq2bcuFF17oXNa5c2cyMzOdSX5graOaOXMmffr0AaBXr17Ex8dHHJObm8vixYudY0RERKqyZa8g1TbVau1blltMMNRoZjGJiEgjFNfQJxAKhZgwYQJXX301cXF7TscwDEaMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx4MGDCgoZ6SiIg0EVt3l+PBRzlWS19agov42Bi8gSDrdpRydNvkBj5DERFprBo8SE2fPp2NGzdy7bXX7nPdyJEj8Xq93HzzzRQUFNC7d2+mTp1KSsqekbRjx44lLi6O4cOH4/V6Oe+885g4cSKxsbH1+TRERKQJ2rrbyxWxX/EsvwIgxjBI9cQDkFdYriAlIiJVavAgNWjQIKraysowDHJycsjJyany9h6Ph/HjxzN+/Pg6OkMREWmuthZ6uSZ2gROkCHhJdFkfxO0s1ca8IiJStUaxRkpERKQh+Aq20p0Ney7YtY4EO0jtKPFXcSsRkdqVk5NDRkYGhmHwwQcfcM011zBs2LCGPi05CAUpERGJSuWBICeWzyHGqNQVsXPVnopUiSpSIs3VNddcg2EYzlerVq0YMmQICxcurLXHyMnJ4aSTTjroccuWLePBBx/khRdeIDc3l/PPP58nn3ySiRMnOsf069ePESNG1Nq5Se1QkBIRkaiUV1jOgJifIy8s2ECStUSKnapIiTRrQ4YMITc3l9zcXL788kvi4uIYOnRovZ/HmjVrALjkkkvIzMzE7XaTlpZGixYt6v1cpGYUpEREJCoVlxRzdsyiyAtDftpUWPsXao2USPPmdrvJzMwkMzOTk046iXvuuYdNmzaxfft255gtW7Zw2WWX0bJlS1q1asUll1zC+vXrnetnzJjBaaedRlJSEi1atODMM89kw4YNTJw4kQcffJAFCxY4Va/KFaawnJwcLrroIgBiYmIwDAMgorXvmmuuYebMmTz55JPOfVU+B2k4DT5sQkREpCGE8peRYPjZarSCSt19KRU7Aa2REjlkpgmBsvp/3PhEsINITZWUlPD6669z9NFH06pVKwDKysro378/Z599Nt988w1xcXE88sgjTgtgTEwMw4YN409/+hOTJ0/G7/czZ84cDMPgsssuY/HixXz++edMnz4dsLbt2dvdd99Np06d+OMf/0hubu5+z+3JJ59k5cqVdO/enYceegiANm3aHNLzlNqlICUiIlHJLLIrT7GtIbTnck/IegOoipTIIQqUwais+n/cv28FV1K1D//4449JTra2OCgtLaVdu3Z8/PHHxMRYDVtTpkwhJiaG//znP06laMKECbRo0YIZM2ZwyimnUFhYyNChQznqqKMAOO6445z7T05OJi4ujszMzCrPITk52Wnhq+q4tLQ0XC4XiYmJB7wvqX9q7RMRkahkFG8FoDiuZcTlrgo7SKkiJdKs9e/fn/nz5zN//nx+/PFHBg0axPnnn8+GDdYkz3nz5rF69WpSUlJITk4mOTmZ9PR0ysvLWbNmDenp6VxzzTUMHjyYiy66iCeffLLKqpI0T6pIiYhIVIotsSpSJXGRLTKxFSUAlPmDlPkrSHTppVKkRuITrepQQzxuDSQlJXH00Uc7P/fq1Yu0tDReeuklHnnkEUKhEL169eL111/f57bh1roJEyZw++238/nnn/Pmm2/yf//3f0ybNo3TTz/98J6LNAl6dRARkagUX7YNAK+7FRTvudzwl+COi8GLVZVKTNdLpUiNGEaNWuwaC8MwiImJwev1AnDyySfz5ptv0rZtW1JTU6u8Xc+ePenZsyf33nsvZ5xxBm+88Qann346LpeLYDBYK+dWm/cltUetfSIiEpXc3nwAvJ7IipThL6Vtkr2XVKna+0SaK5/PR15eHnl5eSxbtozbbruNkpISZ4relVdeSevWrbnkkkv49ttvWbduHTNnzuSOO+5g8+bNrFu3jnvvvZfZs2ezYcMGpk6dysqVK511Up06dWLdunXMnz+fHTt24PMd+rrLTp068eOPP7J+/Xp27NhBKBQ6+I2kzilIiYhIVEr0WUGqwtO60qUxgEmnhPA6KQ2cEGmuPv/8c9q1a0e7du3o3bs3c+fO5e2336Zfv34AJCYm8s0339ChQwcuvfRSjjvuOK699lq8Xi+pqakkJiayfPlyfv3rX9O1a1duuOEGbr31Vm688UYAfv3rXzNkyBD69+9PmzZtmDx58iGf6913301sbCzdunWjTZs2bNy4sTb+COQwqV9BRESiUrLf2ismmNh2z4XuJPB66ewuBlI0cEKkmZo4ceJ+93XaW2ZmJq+++up+r0tNTeX999+v8rZut5t33nnnoI8xbNgwTNOMuGzvc+vatSuzZ88+6H1J/VJFSkREok+gnMRgEQChpErjhOOtUcjt463rdmgEuoiIVEFBSkREok+xNaK43IwnNrHSInK3tUC+XcxuQCPQRUSkagpSIiISfYqt0ed5ZjpJnvg9l7tTAGhDAaA1UiIiUjUFKRERiT72ZrzbaElCfOyey+OtilTL0E5AU/tERKRqClIiIhJ97IrUNrMlia5KQcquSKUErCC1Q619IiJSBQUpERGJPkV2RcpsSVJEkLKGTSSUW6PR1donIiJVUZASEZHo46yRaklC5SDlsoKUy2uNRt9V6t9nLLGIiAgoSImISDSyp/ZtM9NJdFXaUtEOUjH+YhIopyJkUuoPNsQZiohII6cgJSIiUccsCgepliRUDlKxLohxAdA+thCAQm+g3s9PREQaPwUpERGJPqXWGqjtpEUOmzAMcFmT+zp6SgHYXaaBEyLStLz44otkZ2cTExPDuHHjGvp0mi0FKRERiS7BCgx/CQDe2BTiY/d6KYz3AJDhsgZNqCIl0jzl5eVx2223ceSRR+J2u8nOzuaiiy7iyy+/bOhT26+JEyfSokWLgx5XVFTErbfeyj333MOWLVu44YYb6v7kolTcwQ8RERFpRsoLnW9DrrR9r49zA5AR7wWgsExBSqS5Wb9+PWeeeSYtWrTg8ccf54QTTiAQCPDFF19wyy23sHz58kO630AgQHx8fLUvrwsbN24kEAhw4YUX0q5du/0eU5/n05ypIiUiItGlfDcAxWYCbrdr3+vjrIpU6zgrSO1WRUqk+kwTSksb7quaUzZvvvlmDMNgzpw5/OY3v6Fr164cf/zx3Hnnnfzwww/OcRs3buSSSy4hOTmZ1NRUhg8fzrZt25zrc3JyOOmkk3jllVecypZpmhiGwfPPP88ll1xCUlISjzzyCAAfffQRvXr1wuPxcOSRR/Lggw9SUVHh3N/u3bu54YYbyMjIwOPx0L17dz7++GNmzJjBH//4RwoLCzEMA8MwyMnJ2ed5TZw4kR49egBw5JFHYhgG69evr/I8CwsLueGGG2jbti2pqamce+65LFiwIOI+//nPf5KRkUFKSgrXXXcdf/vb3zjppJOc6/v168eIESMibjNs2DCuueYa52e/38/IkSM54ogjSEpKonfv3syYMSPivFu0aMEXX3zBcccdR3JyMkOGDCE3Nzfifl955RWOP/543G437dq149ZbbwXg2muvZejQoRHHVlRUkJmZySuvvLLPn1NtUUVKRESiix2kikgkybWfl0E7SKXHlgFq7ROpkbIy+Ne/Gu7x//pXSEo64CG7du3i888/59FHHyVpP8eG2+dM02TYsGEkJSUxc+ZMKioquPnmm7nssssiQsDq1at56623ePfdd4mN3bPm8oEHHmD06NGMHTuW2NhYvvjiC37/+9/z1FNPcfbZZ7NmzRqn7e6BBx4gFApx/vnnU1xczGuvvcZRRx3F0qVLiY2NpU+fPowbN47777+fFStWAJCcnLzPuV922WVkZ2czYMAA5syZQ3Z2Nm3atKnyPC+88ELS09P59NNPSUtL44UXXuC8885j5cqVpKen89Zbb/HAAw/wzDPPcPbZZzNp0iSeeuopjjzyyOr/PwH++Mc/sn79eqZMmUJWVhbvv/8+Q4YMYdGiRXTp0gWAsrIy/v3vfzNp0iRiYmL4/e9/z913383rr78OwHPPPcedd97JP//5T84//3wKCwv5/vvvAbj++us555xzyM3Ndapwn376KSUlJQwfPrxG51oTClIiIhJdvLsBKDKTSHLH7nu9HaRaGFaQ2q3WPpFmZfXq1ZimybHHHnvA46ZPn87ChQtZt24d2dnZAEyaNInjjz+euXPncuqppwJWtWXSpElOYAm74ooruPbaa52f//CHP/C3v/2Nq6++GrAqRg8//DAjR47kgQceYPr06cyZM4dly5bRtWtX55iwtLQ0DMMgMzOzynNOSEigVatWALRp0ybi2L3P86uvvmLRokXk5+fjdlstzf/+97/54IMPeOedd7jhhhsYN24c1157Lddffz0AjzzyCNOnT6e8vPyAf3aVrVmzhsmTJ7N582aysrIAuPvuu/n888+ZMGECo0aNAqx2w+eff56jjjoKgFtvvZWHHnrIuZ9HHnmEu+66izvuuMO5LPz/oE+fPhxzzDFMmjSJkSNHAjBhwgR++9vf7jdw1hYFKRERiS52RaqQJJLcVVekUrGm9qkiJdK8hDfZNgzjgMctW7aM7OxsJ0QBdOvWjRYtWrBs2TLnTXzHjh33CVEAp5xySsTP8+bNY+7cuTz66KPOZcFgkPLycsrKypg/fz7t27d3QlRt2/s8582bR0lJiRO8wrxeL2vWrAGsP4Obbrop4vozzjiDr7/+utqP+/PPP2Oa5j7Py+fzRTx2YmKiE6IA2rVrR36+NWE1Pz+frVu3ct5551X5ONdffz0vvvgiI0eOJD8/n08++aTOB4coSImISHSxh00UmYmRo8/D7Kl9yaY12a/Qq/HnIs1Jly5dMAyDZcuWMWzYsCqPC691Otjl+2sP3N/loVCIBx98kEsvvXSfYz0eDwkJCdV8Bodmf+fTrl27iDbFsOpMBwyLiYlxwmlYILDnA6hQKERsbCzz5s2LaH2EyPbEvYdfGIbh3G91/myuuuoq/va3vzF79mxmz55Np06dOPvss6v9PA6FgpSIiEQXu7Wv0DxwRSoxFA5SqkiJVFtiorVOqSEf/yDS09MZPHgwzzzzDLfffvs+AWP37t20aNGCbt26sXHjRjZt2uRUpZYuXUphYSHHHXdcjU/t5JNPZsWKFRx99NH7vf6EE05g8+bNrFy5cr9VKZfLRTAYrPHjHuh88vLyiIuLo1OnTvs95rjjjuOHH37gqquuci6rPIwDrBbCykMhgsEgixcvpn///gD07NmTYDBIfn7+IQeblJQUOnXqxJdffunc795atWrFsGHDmDBhArNnz+aPf/zjIT1WTShIiYhIdKnc2neAYROeimJAa6REasQwDjrsoTF49tln6dOnD6eddhoPPfQQJ5xwAhUVFUybNo3nnnuOZcuWMWDAAE444QSuvPJKxo0b5wyb6Nu37z5te9Vx//33M3ToULKzs/ntb39LTEwMCxcuZNGiRTzyyCP07duXc845h1//+teMGTOGo48+muXLl2MYBkOGDKFTp06UlJTw5ZdfcuKJJ5KYmEhiNYJjVQYMGMAZZ5zBsGHDeOyxxzjmmGPYunUrn376KcOGDeOUU07hjjvu4Oqrr+aUU07hrLPO4vXXX2fJkiURa7fOPfdc7rzzTj755BOOOuooxo4dy+7du53ru3btypVXXslVV13FE088Qc+ePdmxYwdfffUVPXr04IILLqjW+ebk5HDTTTfRtm1bZyjH999/z2233eYcc/311zN06FCCwaCzFq0uafy5iIhEl4NWpKxF166KIus4VaREmp3OnTvz888/079/f+666y66d+/OwIED+fLLL3nuuecAq7Xsgw8+oGXLlpxzzjkMGDCAI488kjfffPOQHnPw4MF8/PHHTJs2jVNPPZXTTz+dMWPG0LFjR+eYd999l1NPPZXf/e53dOvWjZEjRzpVqD59+nDTTTdx2WWX0aZNGx5//PHD+jMwDINPP/2Uc845h2uvvZauXbty+eWXs379ejIyMgBrCuD999/PPffcQ69evdiwYQN//vOfI+7n2muv5eqrr+aqq66ib9++dO7ceZ+q0YQJE7jqqqu46667OOaYY7j44ov58ccfI9afHczVV1/NuHHjePbZZzn++OMZOnQoq1atijhmwIABtGvXjsGDBzuDLeqSYe7d1BiFioqKSEtLo7CwkNTU1IY+HRERqUtvXQ1LP+CBwNW0Pvc2rjs5g26PfQvAUvc8Er07IG4ioaRkjix+iRR3HIseHNzAJy3SOJWXl7Nu3To6d+6Mx+Np6NORepCTk8MHH3zA/PnzG/pU9lFWVkZWVhavvPLKfteiVXagv7vVzQZq7RMRkegSbu0zk+iwv4pUfAKYEBMoJY4Kin1QEQwRF6smDhGRxigUCpGXl8cTTzxBWloaF198cb08roKUiIhEl3BrH0kk728fqVg3VFjfplLGLlIpKq8gPclVf+coIiLVtnHjRjp37kz79u2ZOHEicXH1E3H08ZqIiEQXuyJljT/fz4ttTAy4rJG8WW5r08ndZRqBLiICVmtfY2vr69SpE6ZpsmnTpgPuNVXbFKRERCS62PtIWRvy7qciBeBpAUA7j886VgMnRERkLwpSIiISPUKhPUHKrGL8OYAnDYDMeLsipSAlIiJ7UZASEZHo4S8GMwRAEVWMPwdIsIJUW5cVpIoUpEREZC8KUiIiEj3sapTPjMeHi0RXFa19bitItY4Nr5FSkBIRkUgKUiIiEj0qTewDSK6qImW39rWMLQMUpEREZF8KUiIiEj0qTewDSDxIa19LoxTQsAkREdmXgpSIiESPvSpSifFVtfa1ACAVK0jt9mr8uUi06NevHyNGjKjx7fLy8hg4cCBJSUm0aNGi1s9LGh8FKRERiR6VJvYlumKJiTH2f5wnFYAks8Q6Xq19Is3KNddcg2EY+3ytXr2a9957j4cfftg5tlOnTowbN+6g9zl27Fhyc3OZP38+K1eurMOzl8aifrb9FRERaQzs1r5Ckva/GW+YvUYqIVgMQKm/oq7PTETq2ZAhQ5gwYULEZW3atCE2topK9UGsWbOGXr160aVLlyqPCQQCxMfHH9L9S+OjipSIiEQPu7WvyEysejNecDbkdVdYQcobCNXxiYlIfXO73WRmZkZ8xcbGRrT29evXjw0bNvCXv/zFqVrtT6dOnXj33Xf573//i2EYXHPNNQAYhsHzzz/PJZdcQlJSEo888ggAH330Eb169cLj8XDkkUfy4IMPUlGx5wObVatWcc455+DxeOjWrRvTpk3DMAw++OADAGbMmIFhGOzevdu5zfz58zEMg/Xr1zuXzZo1i3POOYeEhASys7O5/fbbKS0tjTjvUaNGce2115KSkkKHDh148cUXI57b5s2bufzyy0lPTycpKYlTTjmFH3/8kfXr1xMTE8NPP/0Ucfz48ePp2LEjpmnW5H9Hk9TgQWrLli38/ve/p1WrViQmJnLSSScxb94853rTNMnJySErK4uEhAT69evHkiVLIu7D5/Nx22230bp1a5KSkrj44ovZvHlzfT8VERFp7CpVpKrcjBecYRPxAStIlfuDdX1mIs2GaZqU+Svq/asu3ri/9957tG/fnoceeojc3Fxyc3P3e9zcuXMZMmQIw4cPJzc3lyeffNK57oEHHuCSSy5h0aJFXHvttXzxxRf8/ve/5/bbb2fp0qW88MILTJw4kUcffRSAUCjEpZdeSmxsLD/88APPP/8899xzT43PfdGiRQwePJhLL72UhQsX8uabb/Ldd99x6623Rhz3xBNPcMopp/DLL79w88038+c//5nly5cDUFJSQt++fdm6dSsffvghCxYsYOTIkYRCITp16sSAAQP2qepNmDDBaZ1s7hq0ta+goIAzzzyT/v3789lnn9G2bVvWrFkTsUDv8ccfZ8yYMUycOJGuXbvyyCOPMHDgQFasWEFKSgoAI0aM4KOPPmLKlCm0atWKu+66i6FDhzJv3rxDLs+KiEgzVGmN1AErUm5rjVS83zq+vEJBSqS6vIEg3e7/ot4fd+lDgw/csruXjz/+mOTkZOfn888/n7fffjvimPT0dGJjY0lJSSEzM7PK+2rTpg1ut5uEhIR9jrviiiu49tprnZ//8Ic/8Le//Y2rr74agCOPPJKHH36YkSNH8sADDzB9+nSWLVvG+vXrad++PQCjRo3i/PPPr/ZzA/jXv/7FFVdc4VTXunTpwlNPPUXfvn157rnn8Hg8AFxwwQXcfPPNANxzzz2MHTuWGTNmcOyxx/LGG2+wfft25s6dS3p6OgBHH3208xjXX389N910E2PGjMHtdrNgwQLmz5/Pe++9V6NzbaoaNEg99thjZGdnRyTZTp06Od+bpsm4ceO47777uPTSSwF49dVXycjI4I033uDGG2+ksLCQl19+mUmTJjFgwAAAXnvtNbKzs5k+fTqDBw+u1+ckIiKNmB2kikms1hqp2EAxYOJVRUqk2enfvz/PPfec83NSUlKdPM4pp5wS8fO8efOYO3euU4ECCAaDlJeXU1ZWxrJly+jQoYMTogDOOOOMGj/uvHnzWL16Na+//rpzmWmahEIh1q1bx3HHHQfACSec4FxvGAaZmZnk5+cDVrtgz549nRC1t2HDhnHrrbfy/vvvc/nll/PKK6/Qv3//iPfzzVmDBqkPP/yQwYMH89vf/paZM2dyxBFHcPPNN/OnP/0JgHXr1pGXl8egQYOc27jdbvr27cusWbO48cYbmTdvHoFAIOKYrKwsunfvzqxZsxSkRERkD7+1NqDUTKh6M14Al/WGyjBDePDjDWhxuEh1JcTHsvSh+n//lVDVdgZVSEpKiqiu1JW9A1ooFOLBBx90igSVeTye/bYo7t0mFxNjrc6pfGwgEDldNBQKceONN3L77bfvc38dOnRwvt97+IVhGIRC1rrQhISE/T6nMJfLxR/+8AcmTJjApZdeyhtvvFGtCYfNRYMGqbVr1/Lcc89x55138ve//505c+Zw++2343a7ueqqq8jLywMgIyMj4nYZGRls2LABsGb2u1wuWrZsuc8x4dvvzefz4fP5nJ+Liopq82mJiEhj5bOn8OGhjesAb7riE51vkymnMOCp6zMTaTYMw6hRi11j53K5CAZrryp98skns2LFiipDXLdu3di4cSNbt24lKysLgNmzZ0cc06ZNGwByc3Od98Dz58/f53GWLFlyWGHxhBNO4D//+Q+7du2qsip1/fXX0717d5599lkCgcB+A2Jz1aDDJkKhECeffDKjRo2iZ8+e3HjjjfzpT3+KKLPCvincNM2DLmA70DGjR48mLS3N+crOzj68JyIiIk2D39oXqsT0kHSgilRMDListRNJhpdA0KQiqMl9ItGoU6dOfPPNN2zZsoUdO3Yc9v3df//9/Pe//yUnJ4clS5awbNky3nzzTf7v//4PgAEDBnDMMcdw1VVXsWDBAr799lvuu+++iPs4+uijyc7OJicnh5UrV/LJJ5/wxBNPRBxzzz33MHv2bG655Rbmz5/PqlWr+PDDD7ntttuqfa6/+93vyMzMZNiwYXz//fesXbuWd999NyLYHXfccZx++uncc889/O53vztoFas5adAg1a5dO7p16xZx2XHHHcfGjRsBnMV6e1eW8vPznSpVZmYmfr+fgoKCKo/Z27333kthYaHztWnTplp5PiIi0sj5rCBVSsKBh03AniBFOQDlFQpSItHooYceYv369Rx11FFOJehwDB48mI8//php06Zx6qmncvrppzNmzBg6duwIWG1777//Pj6fj9NOO43rr78+Yj0VWO14kydPZvny5Zx44ok89thjzmj1sBNOOIGZM2eyatUqzj77bHr27Mk//vEP2rVrV+1zdblcTJ06lbZt23LBBRfQo0cP/vnPf+4zzO26667D7/dHDNWIBg1adz3zzDNZsWJFxGUrV650/iJ17tyZzMxMpk2bRs+ePQHw+/3MnDmTxx57DIBevXoRHx/PtGnTGD58OGCVORcvXszjjz++38d1u9243e66eloiItJY+cNBynPw1iN3MpTsCVJef/DA66pEpMmYOHFildfNmDEj4ufTTz+dBQsWHPQ+w3s8VVbVSPbBgwcfcB1/165d+fbbbw/4eGeeeSYLFy484OOdeuqpTJ06tcr7qLznVNjeLYIdO3bknXfeOeC55Obm0r17d0499dQDHtfcNOgrwl/+8hf69OnDqFGjGD58OHPmzOHFF190NgIzDIMRI0YwatQounTpQpcuXRg1ahSJiYlcccUVAKSlpXHddddx11130apVK9LT07n77rvp0aOHM8VPRESEUBACZQCUmp6DhyK7IpUe54cAlAc0uU9EpLKSkhKWLVvG+PHjefjhhxv6dOpdgwapU089lffff597772Xhx56iM6dOzNu3DiuvPJK55iRI0fi9Xq5+eabKSgooHfv3kydOtXZQwpg7NixxMXFMXz4cLxeL+eddx4TJ07UHlIiIrKHPbEPoIQEEg80bAKcINUyzqcgJSKyH7feeiuTJ09m2LBhUdfWBw0cpACGDh3K0KFDq7zeMAxycnLIycmp8hiPx8P48eMZP358HZyhiIg0C3ZbX5AYfMQfeNgEWK19QFqs3dqnICUiDaiqNsGGNHHixAO2STZ3DTpsQkREpN7YgybKjATAOHiQcoWDlLVdRnlAwyZERGQPBSkREYkOfmsPqTKs0bxJB2vtsytSKTFWkFJFSkREKlOQEhGR6BAefW5am+sedGqfXZFKMewg5VeQEqlKY2w7EzmQ2vg7qyAlIiLRodJmvEC1p/YlG/Y+UqpIiewjPj4egLKysgY+E5GaCf+dDf8dPhQNPmxCRESkXthT+4pC1j6CiQfbkNdu7UvGCyhIiexPbGwsLVq0ID8/H4DExEQMw2jgsxKpmmmalJWVkZ+fT4sWLQ5ryreClIiIRAeftUaq1FkjVb2KVKIdpLRGSmT/MjMzAZwwJdIUtGjRwvm7e6gUpEREJDqEW/vwEGOAJ/4g3e1ua79CBSmRAzMMg3bt2tG2bVsCgUBDn47IQcXHx9fKfrMKUiIiEh2cYRMJJLniDt5+ZFekPGZ4jZTGn4scSGxsbK28ORVpKjRsQkREooNdkSrDc/D1UeCskfKErAXJWiMlIiKVKUiJiEh0qDS176Cb8QK4kgBwh+zWPo0/FxGRShSkREQkOoRb+/AcfNAEgMtaI+UKWhUprZESEZHKFKRERCQ6OMMmEkh0Vb+1Lz5YBphq7RMRkQgKUiIiEh2cYROeg2/GC86wiRhCJOBTkBIRkQgKUiIiEh38e/aRSqxOkIpPBKzJfkn41NonIiIRFKRERCQ6OBUpN0nVae2LiXEGTiQZXo0/FxGRCApSIiISHfylgFWRqtbUPnDa+5Ip19Q+ERGJoCAlIiLRwRk24aleRQqcgRNJeLVGSkREIihIiYhI8xcKQsAaY15qVnONFDgVqSSjXGukREQkgoKUiIg0f3Y1CsL7SFW3ImXtJZWsipSIiOxFQUpERJo/e9BEBbH4iCexOhvygjNsItHQ1D4REYmkICUiIs2fXZEqNxIAg4TqVqScYRPW1D7TNOvoBEVEpKlRkBIRkebPDlJeIwGAhPiaDpsoB8BXoRHoIiJiUZASEZHmL7yHFB4APNUNUs6wCS+ARqCLiIhDQUpERJo/f3gzXrsiVcNhE6mGD0DrpERExKEgJSIizZ9vzx5SUIPWPrsilRprtfZpcp+IiIQpSImISPPnLwagKOQGahKkrKl9yapIiYjIXhSkRESk+fOXAlBsBylPfDVf/uzWvhRDFSkREYmkICUiIs2fvwyAMtMOUtVdIxWfCFj7SAF4/ZraJyIiFgUpERFp/gJWRaqsxmukrCCVgBWkVJESEZEwBSkREWn+7IqUFzdxMQbxsdV8+Yu31kgl2PtIaY2UiIiEKUiJiEjzF9jT2lftahQ4FSmPqWETIiISSUFKRESaP3+4tc9d/fVR4KyRcptWRcqnICUiIjYFKRERaf4Ce1r7alaRslr73GY5BiFVpERExKEgJSIizZ//EFv77IoUgAc/ZX4FKRERsShIiYhI8xc4vNY+gER8qkiJiIhDQUpERJq/8NQ+00NCdTfjBYiJgbgEABIMH15VpERExKYgJSIizV94al9N10iBM7kvEZ9a+0RExKEgJSIizV+lqX0JNWntA2cvqURUkRIRkT0UpEREpPkLT+0z3XgOsSKVYPgo81fU9pmJiEgTpSAlIiLNW7ACgn7gEFv74sOtfeVq7RMREYeClIiING/2xD44hH2kwNlLSlP7RESkMgUpERFp3uyJfSFi8BF/CGukKrf2KUiJiIhFQUpERJo3e32UP8YDGIe8RkrDJkREpDIFKRERad7siX0+wwNwCGuk9rT2adiEiIiEKUiJiEjzZleknCBV09Y+l1r7RERkXwpSIiLSvNkVKe8hV6T2tPb5KkKEQmatnp6IiDRNClIiItK8hfeQwg1wCGukrNa+BMqt+9HkPhERoYGDVE5ODoZhRHxlZmY615umSU5ODllZWSQkJNCvXz+WLFkScR8+n4/bbruN1q1bk5SUxMUXX8zmzZvr+6mIiEhj5d+zGS8cQmtfuCJl+ADU3iciIkAjqEgdf/zx5ObmOl+LFi1yrnv88ccZM2YMTz/9NHPnziUzM5OBAwdSXFzsHDNixAjef/99pkyZwnfffUdJSQlDhw4lGNQLnYiI4OwjVRoOUoc4tS85xtrUV5P7REQEIK7BTyAuLqIKFWaaJuPGjeO+++7j0ksvBeDVV18lIyODN954gxtvvJHCwkJefvllJk2axIABAwB47bXXyM7OZvr06QwePLhen4uIiDRCdkWq1HQBhz61L9mwglRZQJP7RESkEVSkVq1aRVZWFp07d+byyy9n7dq1AKxbt468vDwGDRrkHOt2u+nbty+zZs0CYN68eQQCgYhjsrKy6N69u3PM/vh8PoqKiiK+RESkmbLXSJWE7CDlquFLn12RSopRa5+IiOzRoEGqd+/e/Pe//+WLL77gpZdeIi8vjz59+rBz507y8vIAyMjIiLhNRkaGc11eXh4ul4uWLVtWecz+jB49mrS0NOcrOzu7lp+ZiIg0GvbUvmI7SNV42ESlqX2g1j4REbE0aJA6//zz+fWvf02PHj0YMGAAn3zyCWC18IUZhhFxG9M097lsbwc75t5776WwsND52rRp02E8CxERadTsilRx6FDXSO3ZkBdUkRIREUuDt/ZVlpSURI8ePVi1apWzbmrvylJ+fr5TpcrMzMTv91NQUFDlMfvjdrtJTU2N+BIRkWaqlqb2eZwgpTVSIiLSyIKUz+dj2bJltGvXjs6dO5OZmcm0adOc6/1+PzNnzqRPnz4A9OrVi/j4+IhjcnNzWbx4sXOMiIhEOXtqX1l4H6m4Q6tIeUx7HylVpEREhAae2nf33Xdz0UUX0aFDB/Lz83nkkUcoKiri6quvxjAMRowYwahRo+jSpQtdunRh1KhRJCYmcsUVVwCQlpbGddddx1133UWrVq1IT0/n7rvvdloFRUREwhWpMty442KIiTlwe/g+7IqU2ywHTLX2iYgI0MBBavPmzfzud79jx44dtGnThtNPP50ffviBjh07AjBy5Ei8Xi8333wzBQUF9O7dm6lTp5KSkuLcx9ixY4mLi2P48OF4vV7OO+88Jk6cSGxsDT9xFBGR5imwp7UvwX0Irw321L4YQrgJ4A0oSImISAMHqSlTphzwesMwyMnJIScnp8pjPB4P48ePZ/z48bV8diIi0iz497T21XjQBDj7SAEk4NMaKRERARrZGikREZFaFwi39nkOLUjFxkGsNTo9ER9ef6g2z05ERJooBSkREWneKk3tq/EeUmH2OqkEw4c3oIqUiIgoSImISHNXaWpfjUefh1XaS0rDJkREBBSkRESkuas0te+QWvvAqUgpSImISJiClIiINF+hEFR4gcNs7XOFW/vKtY+UiIgAClIiItKc2YMm4DBb++Irt/ZpjZSIiChIiYhIc1YpSJXjIiH+EF/27IpUoqHWPhERsShIiYhI82XvIRWI8WASc9hrpBLwaUNeEREBFKRERKQ5sytS/pgEADya2iciIrVEQUpERJqvgDVowhfjATj8qX2GT8MmREQEUJASEZHmzG7t8xmHG6SsipYbP2X+CkzTrJXTExGRpktBSkREmq9wRQoXwGFM7duzj1TIBF9FqFZOT0REmi4FKRERab7sNVLluAEOfx8pfABq7xMREQUpERFpxuyKlNcOUoe7Riopxg9AmSb3iYhEPQUpERFpvuyKlNe0W/sOc41UUkzAuj9VpEREop6ClIiINF92kCo17YrUYa6RSjLU2iciIhYFKRERab7s1r4yuyJ1yGuknPHndmufv+Lwz01ERJo0BSkREWm+7IpUSSgeOPzWvgQ7SJVrap+ISNRTkBIRkebLrkg5QeowW/s89tQ+n4ZNiIhEPQUpERFpvuyKVHGwdipSHtMKUqpIiYiIgpSIiDRf/nBr32GOP3clAeA2ywFVpEREREFKRESas732kXLHH+LLnl2RcqsiJSIiNgUpERFpvirtI2UY4I47vCAVS5A4KlSREhERBSkREWnG7IpUOS4S4mMxDOPQ7sceNgGQiA+fKlIiIlFPQUpERJqvSq19h7w+CiDWBYZ1ew9+VaRERERBSkREmrFAKWC19h3yZrwAhuFUpRIMVaRERERBSkREmjOnIuU59D2kwsKb8uKnXBUpEZGopyAlIiLNV3jYhL1G6rA4QUoVKRERUZASEZHmLFyRMg9zjRQ4e0klGD5VpEREREFKRESaqWAFBP2AVZHy1FprnypSIiKiICUiIs1Vhdf51prad5gveeFhE1ojJSIiKEiJiEhz5bfWR5kY+IivvTVSmtonIiIoSImISHNlD5oIxHgAoxam9oUrUgpSIiKiICUiIs2VPWjCClIc3j5SoNY+ERGJoCAlIiLNkxOk3ABq7RMRkVqlICUiIs2T3drnM2o3SHlUkRIRERSkRESkuXKClNXad9hrpOx9pBK1RkpERFCQEhGR5soOUuVYFanDXyO1Zx8pVaRERERBSkREmid7jZSX2mrts4dNGH5VpEREREFKRESaqXBFynQBtdDa56yR8uGvCBEKmYd3fyIi0qQpSImISPNkV6TKwkGqlipSifgA8AdVlRIRiWYKUiIi0jz5rYpUiVlba6T2tPYB+AIKUiIi0azGQerVV1/lk08+cX4eOXIkLVq0oE+fPmzYsKFWT05EROSQ2a19paF4oPZa+xLsilR5hQZOiIhEsxoHqVGjRpGQYL2YzJ49m6effprHH3+c1q1b85e//KXWT1BEROSQ2K19JaFabu1TRUpERIC4mt5g06ZNHH300QB88MEH/OY3v+GGG27gzDPPpF+/frV9fiIiIofGrkiVBO2K1OEGKVe4tU8VKREROYSKVHJyMjt37gRg6tSpDBgwAACPx4PX663dsxMRETlUdkWqyG7t87gOc1lweI0UqkiJiMghVKQGDhzI9ddfT8+ePVm5ciUXXnghAEuWLKFTp061fX4iIiKHxq5IeWttat+e8eegipSISLSr8cdzzzzzDGeccQbbt2/n3XffpVWrVgDMmzeP3/3ud4d8IqNHj8YwDEaMGOFcZpomOTk5ZGVlkZCQQL9+/ViyZEnE7Xw+H7fddhutW7cmKSmJiy++mM2bNx/yeYiISDNhB6myWpvaZwWpOILEUaGKlIhIlKtxRapFixY8/fTT+1z+4IMPHvJJzJ07lxdffJETTjgh4vLHH3+cMWPGMHHiRLp27cojjzzCwIEDWbFiBSkpKQCMGDGCjz76iClTptCqVSvuuusuhg4dyrx584iNPcwXTRERabrs1r5y3MTHGsTHHm5rX5LzbSI+fKpIiYhEtRq/qkyYMIG33357n8vffvttXn311RqfQElJCVdeeSUvvfQSLVu2dC43TZNx48Zx3333cemll9K9e3deffVVysrKeOONNwAoLCzk5Zdf5oknnmDAgAH07NmT1157jUWLFjF9+vQan4uIiDQj4dY+XIdfjQKIjQfDuh8PfspVkRIRiWo1DlL//Oc/ad269T6Xt23bllGjRtX4BG655RYuvPBCZ2hF2Lp168jLy2PQoEHOZW63m759+zJr1izAaicMBAIRx2RlZdG9e3fnmP3x+XwUFRVFfImISDNjV6S8pvvw10cBGEalTXlVkRIRiXY1bu3bsGEDnTt33ufyjh07snHjxhrd15QpU/j555+ZO3fuPtfl5eUBkJGREXF5RkaGs/FvXl4eLpcropIVPiZ8+/0ZPXr0YbUiiohIExAOUrVVkQJrnZS/mARVpEREol6NK1Jt27Zl4cKF+1y+YMECZ/BEdWzatIk77riD1157DY/HU+VxhmFE/Gya5j6X7e1gx9x7770UFhY6X5s2bar2eYuISBPhLwXAixtP/GGujwqz95JKpFwVKRGRKFfjV5bLL7+c22+/na+//ppgMEgwGOSrr77ijjvu4PLLL6/2/cybN4/8/Hx69epFXFwccXFxzJw5k6eeeoq4uDinErV3ZSk/P9+5LjMzE7/fT0FBQZXH7I/b7SY1NTXiS0REmpnwsAmzNitSVpDyGKpIiYhEuxoHqUceeYTevXtz3nnnkZCQQEJCAoMGDeLcc8+t0Rqp8847j0WLFjF//nzn65RTTuHKK69k/vz5HHnkkWRmZjJt2jTnNn6/n5kzZ9KnTx8AevXqRXx8fMQxubm5LF682DlGRESiUCgIQWu/pzLcuONqqSJlj0BP0NQ+EZGoV+M1Ui6XizfffJOHH36YBQsWkJCQQI8ePejYsWON7iclJYXu3btHXJaUlESrVq2cy0eMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx77DK8QEZEoYlejINzaV7sVKa2REhGRGgepsK5du9K1a9faPJd9jBw5Eq/Xy80330xBQQG9e/dm6tSpzh5SAGPHjiUuLo7hw4fj9Xo577zzmDhxovaQEhGJZvboc4ByXLjjajlIaWqfiEjUq1aQuvPOO3n44YdJSkrizjvvPOCxY8aMOeSTmTFjRsTPhmGQk5NDTk5OlbfxeDyMHz+e8ePHH/LjiohIM2MHqUCMBzBw19awiYjWPlWkRESiWbWC1C+//EIgEHC+FxERadTs1r6KWGsqrKe2K1L42R5QRUpEJJpVK0h9/fXX+/1eRESkUYqoSFF748/DFSlDFSkRkWhX41eWa6+9luLi4n0uLy0t5dprr62VkxIRETksfitI+Q0rSNXeGqlKrX2qSImIRLUaB6lXX30Vr9e7z+Ver5f//ve/tXJSIiIih8Vu7fPXdkXKlQRYrX2qSImIRLdqT+0rKirCNE1M06S4uBiPx+NcFwwG+fTTT2nbtm2dnKSIiEiN2K19PsMNUIvjz/dUpMpVkRIRiWrVDlItWrTAMAwMw9jv2HPDMHjwwQdr9eREREQOiR2kygkHqdpaIxUef66KlIhItKt2kPr6668xTZNzzz2Xd999l/T0dOc6l8tFx44dycrKqpOTFBERqZG9glRdrJFSRUpEJLpVO0j17dsXgHXr1tGhQwcMw6izkxIRETks9hqpOqtIaR8pEZGoV+NXlmXLlvH99987Pz/zzDOcdNJJXHHFFRQUFNTqyYmIiBwSO0iV4QJqc41Upda+gIKUiEg0q3GQ+utf/0pRUREAixYt4s477+SCCy5g7dq13HnnnbV+giIiIjXmLwWgzAy39tXuPlIefJRXqLVPRCSaVbu1L2zdunV069YNgHfffZeLLrqIUaNG8fPPP3PBBRfU+gmKiIjUmF2RKjWtipS7litSifhUkRIRiXI1/ojO5XJRVmYt4p0+fTqDBg0CID093alUiYiINCh72ERpKB4AT20Nm3Dtae0rrwhimmbt3K+IiDQ5Na5InXXWWdx5552ceeaZzJkzhzfffBOAlStX0r59+1o/QRERkRqzK1IloXBFqnaHTXjwYZrgqwjV3vorERFpUmr8yvL0008TFxfHO++8w3PPPccRRxwBwGeffcaQIUNq/QRFRERqzK5IFQftYRO1Pv7cD4DXr3VSIiLRqsYVqQ4dOvDxxx/vc/nYsWNr5YREREQOmx2kSsKtfbVWkbKCVLwRJJ4KygJBWtbOPYuISBNTrSBVVFREamqq8/2BhI8TERFpMHZrX3FFOEjVVkUqyfk2AR9ef0Xt3K+IiDQ51QpSLVu2JDc3l7Zt29KiRYv9bsZrmiaGYRAMqs1BREQamF2RKgqvkaqt8eex8WDEghnEg59Sn17zRESiVbWC1FdffUV6ejoAX3/9dZ2ekIiIyGHzW0HKa9byhryGYQ2c8BeTYPgo0xopEZGoVa0g1bdvX+f7zp07k52dvU9VyjRNNm3aVLtnJyIicijs1j4vtbwhL1jrpPzFJOLDG1Brn4hItKrxK0vnzp3Zvn37Ppfv2rWLzp0718pJiYiIHBa7ta8cF3ExBnGxtRikwntJoYqUiEg0q/ErS3gt1N5KSkrweDy1clIiIiKHxa5IlZme2t/nKbyXlOGnTGukRESiVrXHn995550AGIbBP/7xDxITE53rgsEgP/74IyeddFKtn6CIiEiNhIIQ9AHgxVV7o8/DnL2kfJRpap+ISNSqdpD65ZdfAKsitWjRIlwul3Ody+XixBNP5O677679MxQREakJu60PrDVSrWtrM94wuyKViI+ygCpSIiLRqtpBKjyt749//CNPPvmk9osSEZHGyW7rMzHwEY+71itSau0TEZEaBKmwCRMm1MV5iIiI1A5/KQChuATAwFPrFanKrX0KUiIi0arGQQpg7ty5vP3222zcuBG/3x9x3XvvvVcrJyYiInJI7IpURaw1AKn210iFp/b5KdL4cxGRqFXjV5cpU6Zw5plnsnTpUt5//30CgQBLly7lq6++Ii0trS7OUUREpPrsIBWMsYKUu44qUonakFdEJKrVOEiNGjWKsWPH8vHHH+NyuXjyySdZtmwZw4cPp0OHDnVxjiIiItVnD5sIxFqBp9YrUvY+Uh58lGqNlIhI1Krxq8uaNWu48MILAXC73ZSWlmIYBn/5y1948cUXa/0ERUREaiQcpGLCrX11M7UvAT9etfaJiEStGgep9PR0iouLATjiiCNYvHgxALt376asrOxANxUREal7TpByA+COq8t9pFSREhGJVjUeNnH22Wczbdo0evTowfDhw7njjjv46quvmDZtGuedd15dnKOIiEj12Wuk/EYdV6QMH14FKRGRqFXjIPX0009TXl4OwL333kt8fDzfffcdl156Kf/4xz9q/QRFRERqxK5I+eo6SOGn1K/WPhGRaFXjIJWenu58HxMTw8iRIxk5cmStnpSIiMgh81tBqtxwAXXb2qeKlIhI9Krxq0tsbCz5+fn7XL5z505iY2v5Uz8REZGaslv7yrHXSNVZa59fa6RERKJYjYOUaZr7vdzn8+FyuQ77hERERA6L3doXDlK1vyFv5LCJUGj/r4siItK8Vbu176mnngLAMAz+85//kJyc7FwXDAb55ptvOPbYY2v/DEVERGrCrkiVhYNUbW/I60oCrCAFUF4RJNFV4055ERFp4qr9m3/s2LGAVZF6/vnnI9r4XC4XnTp14vnnn6/9MxQREamJQCkAZSF7jVRdVaQMv/U4fgUpEZFoVO3f/OvWrQOgf//+vPfee7Rs2bLOTkpEROSQhStSphWkar0i5UztsypSGjghIhKdavwR2tdffx3xc0VFBeXl5RGtfiIiIg3GDlIl4SBV68MmIitSGoEuIhKdqt3v8OmnnzJp0qSIyx599FGSk5Np0aIFgwYNoqCgoNZPUEREpEbsYROlwboaf25VpOIIEk+FJveJiESpar+6/Pvf/6aoqMj5edasWdx///384x//4K233mLTpk08/PDDdXKSIiIi1WbvI1USigfqbkNe0F5SIiLRrNpBavHixfTp08f5+Z133mHgwIHcd999XHrppTzxxBN89NFHdXKSIiIi1Wa39hUHw0GqlitSsfFgWOHMg59Sn1r7RESiUbVfXYqLi2nVqpXz83fffce5557r/Hz88cezdevW2j07ERGRmrJb+4qc1r5arkgZRqVNeX14A6pIiYhEo2oHqaysLJYtWwZASUkJCxYs4Mwzz3Su37lzJ4mJiVXdXEREpH7YQaqwripSAC7r9S7R3pRXRESiT7VfXX7zm98wYsQIJk2axJ/+9CcyMzM5/fTTnet/+uknjjnmmDo5SRERkWoLV6Qq6miNFOyZ3KcgJSIStao9/vyBBx5g69at3H777WRmZvLaa69FbMo7efJkLrroojo5SRERkWqz10gVVlgvcXUTpKyKlMfwU6Y1UiIiUanaFanExEQmTZpEQUEBy5Yt4+yzz464/uuvv+aee+6p0YM/99xznHDCCaSmppKamsoZZ5zBZ5995lxvmiY5OTlkZWWRkJBAv379WLJkScR9+Hw+brvtNlq3bk1SUhIXX3wxmzdvrtF5iIhIMxGsgKC9v5PpBiDBVccVKa2REhGJSnXQOF597du355///Cc//fQTP/30E+eeey6XXHKJE5Yef/xxxowZw9NPP83cuXPJzMxk4MCBFBcXO/cxYsQI3n//faZMmcJ3331HSUkJQ4cOJRjUC5uISNSx2/oAyrGGTSTUYUUqUePPRUSiVoMGqYsuuogLLriArl270rVrV2eD3x9++AHTNBk3bpwzXr179+68+uqrlJWV8cYbbwBQWFjIyy+/zBNPPMGAAQPo2bMnr732GosWLWL69OkN+dRERKQh2G19JgY+4nHHxRAbY9T+41Rq7dP4cxGR6NSgQaqyYDDIlClTKC0t5YwzzmDdunXk5eUxaNAg5xi3203fvn2ZNWsWAPPmzSMQCEQck5WVRffu3Z1jREQkitgVKTM+ETBIrIu2PlBrn4iIVH/YRF1ZtGgRZ5xxBuXl5SQnJ/P+++/TrVs3JwhlZGREHJ+RkcGGDRsAyMvLw+Vy0bJly32OycvLq/IxfT4fPp/P+bmoqKi2no6IiDQkuyIVjLWCTqKrjl7mwvtI4Vdrn4hIlGrwitQxxxzD/Pnz+eGHH/jzn//M1VdfzdKlS53rDSOyJcM0zX0u29vBjhk9ejRpaWnOV3Z29uE9CRERaRzsilQw1gPU0aAJ2LOPlOGjzK/WPhGRaFTtINWhQwd27tzp/Pz000/XSiXH5XJx9NFHc8oppzB69GhOPPFEnnzySTIzMwH2qSzl5+c7VarMzEz8fj8FBQVVHrM/9957L4WFhc7Xpk2bDvt5iIhII2AHqQo7SNV1a59HwyZERKJWtYPU5s2bIybh/f3vf2fHjh21fkKmaeLz+ejcuTOZmZlMmzbNuc7v9zNz5kz69OkDQK9evYiPj484Jjc3l8WLFzvH7I/b7XZGroe/RESkGbBb+wJ2a1+dTOyDiNa+8kCobh5DREQatUNuHjdN87Af/O9//zvnn38+2dnZFBcXM2XKFGbMmMHnn3+OYRiMGDGCUaNG0aVLF7p06cKoUaNITEzkiiuuACAtLY3rrruOu+66i1atWpGens7dd99Njx49GDBgwGGfn4iINDF2RSpgWHtI1cewifIKVaRERKJRgw6b2LZtG3/4wx/Izc0lLS2NE044gc8//5yBAwcCMHLkSLxeLzfffDMFBQX07t2bqVOnkpKS4tzH2LFjiYuLY/jw4Xi9Xs477zwmTpxIbGwdvXiKiEjj5beClN8JUnU1bCIJgATDR7mm9omIRKUavcL85z//ITk5GYCKigomTpxI69atI465/fbbq31/L7/88gGvNwyDnJwccnJyqjzG4/Ewfvx4xo8fX+3HFRGRZsquSJXH1PGwCacipdY+EZFoVe0g1aFDB1566SXn58zMTCZNmhRxjGEYNQpSIiIitcpeI+Wj/lr7vKpIiYhEpWoHqfXr19fhaYiIiNQCO0h57SBVdxUpe9iE4ccfCBEKmcTEHHhrDhERaV4afB8pERGRWhMoBcBrugBIjK+jNVKu8NQ+a3N3X4Xa+0REok21g9QFF1xAYWGh8/Ojjz7K7t27nZ937txJt27davXkREREasSuSJWZdd3aFxmkNHBCRCT6VDtIffHFF/h8Pufnxx57jF27djk/V1RUsGLFito9OxERkZqwh02U2hWpOh82YfgBNAJdRCQKVTtI7b1vVG3sIyUiIlKr7PHnpaF4oD4rUmrtExGJNlojJSIizYfd2lcStCtS8XVdkfIBJl6/KlIiItGm2kHKMAwMw9jnMhERkUbDbu0rCtV1a59VkYojRDxBtfaJiEShao8zMk2Ta665BrfbWsBbXl7OTTfdRFKStbt75fVTIiIiDcKuSBUHw619dTS1zw5SYLX3adiEiEj0qfYrzNVXXx3x8+9///t9jrnqqqsO/4xEREQOlV2RKqywXt7qbI1UbDwYsWAG8eDHpzVSIiJRp9pBasKECXV5HiIiIofPDlIFFVZFqs5a+wzDqkr5i0k0ylWREhGJQho2ISIizYfd2lcYqOOKFFTalNePV0FKRCTqKEiJiEjzYVekSuxhE4nxdbRGCvZM7sOn8eciIlFIQUpERJoPex8pb11vyAvOwAmP4Vdrn4hIFFKQEhGR5iEYgFAAgDLcxMUYuOLq8GXOrkgl4tP4cxGRKKQgJSIizYO9PgqgHHfdVqPAqUiptU9EJDopSImISPNgBynTiMFPXN0OmoCI1j6fWvtERKKOgpSIiDQPgVIAQrEJgFF3m/GGVRo2oal9IiLRR0FKRESaB7siFYyzA058/VSkEvFp2ISISBRSkBIRkebBDlIVMR6gjveQgj37SBl+rZESEYlCClIiItI82HtIBWKtIFX3wyasypdHFSkRkaikICUiIs2DvYdUoL4qUs7UPj/lFapIiYhEGwUpERFpHuyKlN8IB6n6GTaRaKgiJSISjRSkRESkebDXSPkMNwCeOh82kWQ9jlr7RESikoKUiIg0D3ZFqtwOUnXf2hcef+5XkBIRiUIKUiIi0jyEgxT1HaR8mtonIhKFFKRERKR5sIdNeE0rSNX51D6X1dqXaJSrIiUiEoUUpEREpHkIlAJQGq5IaUNeERGpQwpSIiLSPPjtIBUKt/bV8dQ+V7L1OIZP489FRKKQgpSIiDQPdmtfUThIueu6tS9ckSrHXxEiGDLr9vFERKRRUZASEZHmwV8CQGEwHoAUT3zdPl54jRQ+AHwVau8TEYkmClIiItI82FP7CgLhIFU/rX0eI0AsQU3uExGJMgpSIiLSPNhrpMJBKrWug5Q9bAI0cEJEJBopSImISPNgr5HaaQepZHcdt/bFucGw1mElKEiJiEQdBSkREWke7DVSJfawiTpv7TMMZ51UklGu1j4RkSijICUiIs2D3dpXhocYAxLrekNeiBg44VVFSkQkqihIiYhI82APmyjFTbI7DsMw6v4x4/eMQPcpSImIRBUFKRERafpM06lIeU1P3Y8+D6vc2qfx5yIiUUVBSkREmr6AF7A2xC3FXffro8LsEejWsAmtkRIRiSYKUiIi0vTZ1SgTg3JcpNZbRcpq7bOGTagiJSISTRSkRESk6bMn9lXEejCJIbneKlJWa58qUiIi0UdBSkREmj570EQg1qoQ1VtrX7y9RopyTe0TEYkyClIiItL02a19/hgPUI9BKlyRMrQhr4hItFGQEhGRps8OUuVGAkD9T+3T+HMRkaijICUiIk1fOEjhBiDZXb8VqUTKKfMrSImIRBMFKRERafrsIFWG1dqXWs+tfYmGjxJfRf08poiINAoKUiIi0vQFrCBVaobXSNVTa1+8Pf4cH8UKUiIiUaVBg9To0aM59dRTSUlJoW3btgwbNowVK1ZEHGOaJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr86mIiEhDsitSJaYLqM/WvvCGvOWUlCtIiYhEkwYNUjNnzuSWW27hhx9+YNq0aVRUVDBo0CBKS0udYx5//HHGjBnD008/zdy5c8nMzGTgwIEUFxc7x4wYMYL333+fKVOm8N1331FSUsLQoUMJBtWvLiISFfzW+PPioLVGqv6m9oU35PVRXB6on8cUEZFGoZ5eafbv888/j/h5woQJtG3blnnz5nHOOedgmibjxo3jvvvu49JLLwXg1VdfJSMjgzfeeIMbb7yRwsJCXn75ZSZNmsSAAQMAeO2118jOzmb69OkMHjy43p+XiIjUM3tD3qKQVZGq76l9iZRrjZSISJRpVGukCgsLAUhPTwdg3bp15OXlMWjQIOcYt9tN3759mTVrFgDz5s0jEAhEHJOVlUX37t2dY/bm8/koKiqK+BIRkSbMbu3bXWEFqPqrSFmtfYn41NonIhJlGk2QMk2TO++8k7POOovu3bsDkJeXB0BGRkbEsRkZGc51eXl5uFwuWrZsWeUxexs9ejRpaWnOV3Z2dm0/HRERqU8Bq7WvsL5b++xhE4lGOcUKUiIiUaXRBKlbb72VhQsXMnny5H2uMwwj4mfTNPe5bG8HOubee++lsLDQ+dq0adOhn7iIiDQ8u7XP22D7SPko8VcQCpn187giItLgGkWQuu222/jwww/5+uuvad++vXN5ZmYmwD6Vpfz8fKdKlZmZid/vp6CgoMpj9uZ2u0lNTY34EhGRJsweNlFqekh0xRIXW08vb3aQSjD8GGaIsoCGHImIRIsGDVKmaXLrrbfy3nvv8dVXX9G5c+eI6zt37kxmZibTpk1zLvP7/cycOZM+ffoA0KtXL+Lj4yOOyc3NZfHixc4xIiLSzDkb8rrrr60PnCAFkIAm94mIRJMGndp3yy238MYbb/C///2PlJQUp/KUlpZGQkIChmEwYsQIRo0aRZcuXejSpQujRo0iMTGRK664wjn2uuuu46677qJVq1akp6dz991306NHD2eKn4iINHNOkPLUX1sfQJwHMADTmtxXXgFp9ffwIiLScBo0SD333HMA9OvXL+LyCRMmcM011wAwcuRIvF4vN998MwUFBfTu3ZupU6eSkpLiHD927Fji4uIYPnw4Xq+X8847j4kTJxIbG1tfT0VERBpSwApSpaan/kafAxiGNbnPX0ySUU6RBk6IiESNBg1SpnnwRbmGYZCTk0NOTk6Vx3g8HsaPH8/48eNr8exERKTJsCtSXty0rs/WPrDa+/zF1sAJ7SUlIhI1GsWwCRERkcMSHjaBh9T6rEgBuOwR6OHWPhERiQoKUiIi0rSZ5p7x56a7ftdIwZ4R6IaGTYiIRBMFKRERadoqygGrVbwUD4nuel4fG19pLym19omIRA0FKRERadrs9VEAXlwkxNdzkLIrUkmUU6zWPhGRqKEgJSIiTZvd1uc3PJjEkOhqmCCVYPgUpEREooiClIiING32oAlfTAIAngasSJX4tEZKRCRaKEiJiEjTZrf2lRseABIaqCKVaGiNlIhINFGQEhGRpi08sS8cpBqsIuVVa5+ISBRRkBIRkabNDlJlWK199b9GKgXQsAkRkWijICUiIk2brxiAEhpojZTbClIphletfSIiUURBSkREmjY7SBWbDdTa504Gwq19GjYhIhItFKRERKRpCwepUAMNm7ArUsmGlxK19omIRA0FKRERadrsIFVkB6l6XyMVDlKUU+oPEgyZ9fv4IiLSIBSkRESkabOHTRTaQar+95EKBykvgNZJiYhECQUpERFp2uyKVEGwodZIhVv7ygEFKRGRaKEgJSIiTZvPqkiV0lBrpKxhE8mGVZHSwAkRkeigICUiIk2brwiAEtMefx7XMBWpeCpwEdDACRGRKKEgJSIiTZu9RqqYBDzxMcTEGPX7+K5k59tkvNqUV0QkSihIiYhI02avkSo1E+p/fRRATCzEJwGQZHgp8wfr/xxERKTeKUiJiEjTZgepEhooSIGzTioFL6V+VaRERKKBgpSIiDRt9rCJEjx46nvQRJi9TiqJcryqSImIRAUFKRERabpCQQiUAtawiXrfjDfMtWdyn1r7RESig4KUiIg0XfagCYDSBm3t27Mpb5la+0REooKClIiINF32+qhgTDx+4vE0dJBSRUpEJGooSImISNNlr48KxFpT8xq6IpVEuYKUiEiUUJASEZGmy65I+e0g1WBrpOwglWKotU9EJFooSImISNPlt4KUL1yRauBhE0motU9EJFooSImISNNlV6R8MQkADb9GSsMmRESihoKUiIg0XXaQKjMSgYZfI6VhEyIi0UNBSkREmi572ITXsCpSDb1GKlkb8oqIRA0FKRERabrsilQpVkWqwVr7Km3IW6rWPhGRqKAgJSIiTZc/HKQ8QAMOm3DGn3tVkRIRiRIKUiIi0nTZFali02rta+g1UilaIyUiEjUUpEREpOmy10gVm3ZFqpFsyBsKmQ1zHiIiUm8UpEREpOmyK1KFoQZu7QuvkcILmJRXqColItLcKUiJiEjTFQ5SQTfQ8BWpeCOIm4Da+0REooCClIiINF32sImCisZRkQJ7U16fgpSISHOnICUiIk2XXZHa1dAVqZgYJ0wlGeWUBTQCXUSkuVOQEhGRpsseNrGrwgU0YEUK9kzuw0upKlIiIs2egpSIiDRd4YpURQNP7YM9FSntJSUiEhUUpEREpGkKVkCFF4ASs4HXSEGlvaTKKPOrtU9EpLlTkBIRkaapvND5tphEADxxDRikPGkApFKmqX0iIlFAQUpERJqm8t0AhFzJBInFEx9DTIzRcOeT0AKANKNUQUpEJAooSImISNPk3Q1A0GVVghp0fRSApwUAaZSqtU9EJAooSImISNNUXgBARWMJUqpIiYhEFQUpERFpmuyKVCA+FQBPQw6agD0VKQUpEZGooCAlIiJNk71GyhtnTctL9cQ34MngVKRSKcWr1j4RkWavQYPUN998w0UXXURWVhaGYfDBBx9EXG+aJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr8VmIiEiDsCtSpYa1f1N6kqsBT4aIilSpKlIiIs1egwap0tJSTjzxRJ5++un9Xv/4448zZswYnn76aebOnUtmZiYDBw6kuLjYOWbEiBG8//77TJkyhe+++46SkhKGDh1KMKgXMRGRZs2uSBXZQapFYgNXpOzx52mUakNeEZEoENeQD37++edz/vnn7/c60zQZN24c9913H5deeikAr776KhkZGbzxxhvceOONFBYW8vLLLzNp0iQGDBgAwGuvvUZ2djbTp09n8ODB9fZcRESkntkVqULT2kMqPbGBK1KVhk2UqrVPRKTZa7RrpNatW0deXh6DBg1yLnO73fTt25dZs2YBMG/ePAKBQMQxWVlZdO/e3Tlmf3w+H0VFRRFfIiLSxNgVqV1BK0i1bCStfdqQV0QkOjTaIJWXlwdARkZGxOUZGRnOdXl5ebhcLlq2bFnlMfszevRo0tLSnK/s7OxaPnsREalzdkVqe4UdpBpJRSrR8BHwlTfsuYiISJ1rtEEqzDAid6k3TXOfy/Z2sGPuvfdeCgsLna9NmzbVyrmKiEg9sitS+QE3AOlJDbxGyp2GifXaE+MrbNhzERGROtdog1RmZibAPpWl/Px8p0qVmZmJ3++noKCgymP2x+12k5qaGvElIiJNjNcKK7l+D9AIKlIxMYRc1ij2eL+ClIhIc9dog1Tnzp3JzMxk2rRpzmV+v5+ZM2fSp08fAHr16kV8fHzEMbm5uSxevNg5RkREmim7IrXFawWoBl8jBYTsdVLxAa29FRFp7hp0al9JSQmrV692fl63bh3z588nPT2dDh06MGLECEaNGkWXLl3o0qULo0aNIjExkSuuuAKAtLQ0rrvuOu666y5atWpFeno6d999Nz169HCm+ImISDMUCoLPCiuby63WvgavSIE1cKJoI+4KBSkRkeauQYPUTz/9RP/+/Z2f77zzTgCuvvpqJk6cyMiRI/F6vdx8880UFBTQu3dvpk6dSkpKinObsWPHEhcXx/Dhw/F6vZx33nlMnDiR2NjYen8+IiJST8r3tM7tNpOARrCPFGDYAyeSQiUEgiHiYxtt44eIiBymBg1S/fr1wzTNKq83DIOcnBxycnKqPMbj8TB+/HjGjx9fB2coIiKNkt3WF4pLpII4UjxxjSK0xCRaU2TTjFKKyytIbwTthiIiUjca/lVHRESkpuzR5xWuNIBGE1hiEqzzSaOUXaW+Bj4bERGpSwpSIiLS9NgVKV+81erdKNZHgbMpb5pRyo4Sf8Oei4iI1CkFKRERaXrsipQ31tq+omUjWB8FOJvyWhUpBSkRkeZMQUpERJoeuyJVGpMMNI7R50BERWpniVr7RESaMwUpERFpeuyKVDHWxL70xtLaF65IqbVPRKTZU5ASEZGmx65IhUefN7aKVCql7NSwCRGRZk1BSkREmh67IrUrmAA0omETdkUq1ShjpypSIiLNmoKUiIg0PXZFaocdpNKTGsmwifAaKUoVpEREmjkFKRERaXrsilR+wApSLRpNRcrakDfZKKegpLSBT0ZEROqSgpSIiDQ93l0A5Po8QOPZkBdPGiYGAMGSnQ18MiIiUpcUpEREpOkp2Q7Aep81bKJFY9lHKiYWM7EVAG7fTvwVoQY+IRERqSsKUiIi0rSEQlBqBantoTRiYwxaJbkb+KT2MJLbAtDaKKSgTOukRESaKwUpERFpWrwFYAYB2EkabZLdxMYYDXxSexhJbQBoTSE7tCmviEizpSAlIiJNS2k+AIH4NALEkZHaeKpRAFSqSGlyn4hI86UgJSIiTUuJFaTKXOkAZKR6GvJs9pVkBalWRpE25RURacYUpEREpMF9tiiXWat3VO9ge31UYaw1ajwzrZEFqWSrta+NKlIiIs2agpSIiDSo71fv4M+v/8yNk+ZhmubBb2BXpHaRBjTeipS1RkpBSkSkuVKQEhGRBhMMmTz88VIAin0VFHoDB7+RvUYqP5QKNMIgFbFGSq19IiLNlYKUiIg0mLd/2sTyvGLn52pVcOw9pLYEUgDIbGxBKjy1zyhkZ6kqUiIizZWClIiINIivlm8j56MlEZdVa1y4XZEKb8abmdY4p/a1ooidxd4GPhkREakrClIiIlLvvly2jT/9dx7lgRD9jmlDzw4tgOoGKasitdmfDDTC1r7E1gDEGSFKdldzgIaIiDQ5ClIiIlLvXpi5lmDI5OITs3jpqlNoZ0/eq9aUO7u1b4eZRpIrlhRPfF2eas3FuQh5WgAQU7Ydrz/YsOcjIiJ1QkFKRETqVWFZgHkbCwD46+BjiI+NoVWS1Z530IqUaTqtfTvMtMZXjbIZlQZObNld1sBnIyIidUFBSkRE6tXMVdsJhky6tE0mOz0RgNbJ1QxS5YUQtKpWO2jEQcoegd6GQjbt0jopEZHmSEFKRETq1dfLrYrSuce2dS5rneICqjG1z14f5YtNxoer8W3GG5a8Z3Lf5gJVpEREmiMFKRERqTfBkMmMFVaQ6l8pSFW7tc/ejLckriXQCAdNhCXtae3bVKCKlIhIc6QgJSIi9eaXjQUUlAVI8cTRq2NL5/I2TkXqIEHKXh9VYLQAICO1kY0+DwtXpChk0y5VpEREmiMFKRERqRe+iqCzb9SA4zKIj93zEhReI3XQqX32xL7tZirQCDfjDbMrUq2MIjarIiUi0iwpSImISL349xcrWLyliJaJ8fzt/GMjrmtlB6kyf5Ayf0XVd2JXpPKCVpBqk9JYK1L2sAljN5u0RkpEpFlSkBIRkTr39k+beOnbdQD86zcn7rO2KckViyfeeknaUXyAqtTujQCs87cA9lSyGp209gC0N7azuyxAcXmggU9IRERqm4KUiIjUqc8X53HPuwsBuPGczgw4Jn2fYwzD2DMCvfQA66R2WWFsdYW9BqmxVqRadgIg3SghhbJDa+8LBfnvrLWcMfpL5m/aXaunJyIih09BSkRE6oyvIsjf3ltIZ7Ywq8X9/G1OH3ikLXx4GwQjqzTh9r4dxQcIUgVWkNpgZuCJjyHJFVtn535Y3CmQZIW9Dsa2mg+c+OU1gqM7ctXUnnxYfg3fffBCHZykiIgcDgUpERGpM18v386R3iW8536QrPLVGJhghuDn/8Lk34F/T8Bok3yQvaR8xc4+UhvNDFonuzEMo86fwyFr2RmAjsa2mlWkvhsL/7uF2EAxAG2MIm7dOYr8qWPr4ixFROQQKUhFucVbChkzbSXlgWBDn4qI1JPdZX5KfAcY6FCLvvppES+7/k0aJXBEL7j9F7h8MsQlwOpp8PWjzrHhvaR2VjUCvWA9AH5XC4pJbLzro8LSw0Eqn1X5xdW7zZqvYXoOAM9VXMTg+Ff4InkYAG1n5bDz5//x9FerGDr+W96Zt7kOTlpERKpLQSrKPfTRUp76chWfL85r6FMRkXpQWBZgwJhvGPbM95imWaePVVQeoN/af9PSKMHbqhtc/RGkHwnHXgC/nWgd9OMLsHMNAK0PtpeUvT6qKMEa5NDog5RdkepgbOPTRXkH/8AqFMT78d8A+G/FQP7X+gb+dfV5tP7NGF6pGAKA/38jeGHqfBZvKWLstJV1/v9QRESqpiAVxSqCIRZu2Q3Ahp0azyuHr7AswMLNuxv6NOQApi3bxo4SH6vzS8gtLN/n+o8WbOWzRbm18lgLp73BBTE/ECQGz6+fBVfSniuPGQJHD4BQAKY/AFBp2EQVrX32+qidriOAPZv4Nlp2RaqrazuF3gBTl2478PG/vEZCwXJ2m0nM7fxnPr39bE5o34KTO6bzQ+dbWBfKoJ2xi8fT3iUhPpYtu70s3lJUD09ERET2R0Eqiq3KL6E8EAJgy24FKTk8pmly3atzufjp7/l6eX5Dn45U4fPFe0LSym2R7War80u4bfIv3Dr5FwrLDnNcdzDAUfP/CcD87D9gZPXc95hBj4ARA8s+gi3zaJeWYB2/cTfB0H4qLXZFKjcmE2g6Faku8TsAawR8lYIBmDEagKcqLqVPjy7ExFjrvwzD4IVrzybjDy8BcL7vc67oZP2/+2KJuglERBqKglQUq1w5OKTRvBJVNuws5dFPlrJuR+l+r/9u9Q5+2lAAwIvfrK3PU2tWvP4gG3bu/8/4cJX4Kvhm1Q7n59X5JRHXv2W/0Q+GTJbmFjF3/S76/etrvl+9g5ra9u0E2gW3stNMpf3FD+z/oLbHQY/fWt//+AL9jmlDy8R4tuz2MnV/AcGuSG00rc1uG3+Q6gRAim8bLgJ8t3oHm6vanHf5J1Ccy3YzjUnBgZzTtU3E1YZhkNilL3QbBphcH3gNgKlL81iWW8T/5m/B6z/4WtdgyCS0v5C6l5/W7+Le9xbW21o6EWm63vppE898vbpav1uaGwWpKLZgc6Hz/Zbdhx+kdpT4uOutBXy7avth35c0Pk9/tZqXvl3HsGe+Z9aafd9YP/P1auf72Wt3sjxPLUeHYuS7C+n37xnOn/HGnWUU1dJmrl8tz8dfEXJ+XrVtT5DyV4R4t9LwgqW5RUyavYH1O8uYMvcAlZT9qfDhnvUEANNbXUlGm1ZVH9v7Ruu/i9/DU76D35/eEYCXv1u377F77yHV2INUcluIT8LAZPARfkwTfli7a//HzpsAwJRgfzq0SeOIFgn7P+7c/wMjlnZ5MzgtdiUrt5Vw4VPfcseU+Zzxzy+ZPGdjlaezcWcZJz04lbvfXnDQU//XFyuYPGcT7xyoitYI+CtC/G/+lqrX1YlIndq628s97y7kX1+s4LmZaxr6dOqdglQUq1yRyt1dftifJDz6yTLe/XkzT0xdeZhnFh2+XLaNwWO/YfGWwoMf3AgstIN3oTfAVS/Pcd7o7y7zM+H7dfywdhfxsQandbY2W534/fqGOtUmq8RXwReL8zBNeO2HDSzYtJvzxszgz6/Nq5X7D7f1dW5trVWqPElu+rJt7Ky0NmlZbhHz7Arj0q01+zsamPsqLfx55JktyTz35gMffEQvaH+qtVZq3kT+cHpH4mMNftpQELkJbTAAhVbQW1beGoDWyY18jZRhOFWpnsm7AetNxz52roG1MwhhMKWi/z7VqAitu0DP3wPwUPI7gEnItP4sdpcF+Pv7i9hVxRqzjxZupdhXwXu/bGHOuioCnW2VXa1cmtu4PxAZ9eky7pgyn8c/X97QpyKHaOHm3Tz6ydJqVVQbk1DI3H8LciUVwVCtD4R56stV3PvewoM+dm060GO99/Nmwk/x31NXMGNFdLX2K0hFqfJAkOW5e95E+YMhth/GJ3q/bCzg/V+2ALAirzgqy7s1NeH79azYVsx/vm38bXBl/grnTfdZR7emImRy6xu/MGbqCnqP+pIHP1oKwG96ZfPXwccA8P4vW9hdVsXQANmvb1duxx+0KkbTl+Yz+rNlBIImc9btoiIYOsitDywYMvnWbuv7c9+jAOvNcvhFPtzWd2xminUuq7Y7leq1O0op81ezxSvgJTjzcQBei/8tZ3XLPvhtTrOrUj+9QtvEGIaekAXA/+Zv2XPM7o1gBiHOw4rSRABapzTyihQ4Ayc6x1pvLvYbpOxq1OyYnmyhzYGDFEDfeyDOw7G+xdxz1GZevfY0fvz7AI5um4xpwo9rd+73Zt+s3NMt8Pjny6t8g7ezxOeEsWW5VY9tX7mtmJkrG64DYcnWQv47ez1AZOhuAkzTpKCqoSpR5t9TV/LSt+t4/ccNDX0q1bZ1t5dhz37PCTlf8Ne3F+y3A2N3mZ9B477hgqe+q5WuH7Deu42dvpLJczY5H3TVtYc+WsrJD0/jq+X7DssxTZO37U6GI9skYZpw7cS55Hy4ZJ9tLOZt2MX6KpYGNGUKUlFqeV4xFSGTVkkup4XkUNZJLdlayBNTV0S0ingDQTbu0vCKAwmGTOeF/8vl+Xj9Qe59bxE5Hy7Z74jkCd+v49VZ6+v3JCtZlltEyIQ2KW5euuoUjs9KZVepn6e+Wo2vIkTXjGTuHtSVBy7qxikdW3JsZgq+ihD/m7+1wc65KZq2bM8LlT8YctrAAkGTDYf5b2rltmKKyytIcsVy0YlZxMYYFJdXsK3IRyAY4kf7se4eZAXhbUV7XgRN0/qApFrmvoynfDubzdb4elxJbEw1NsztdgkkZ0BJHiz7kPOOs9ZARbTB2SPSQy06UuSzQmWjb+0DJ0i1D1mhcJ83VBU++OV1ACaU9yfZHccZRx6gFRIg7Qg47QYA/lzxGn2PbkVsjMGZR1m3m72fIFXiq3DeeIUrfl9VMRRmVaW1cyu2Fe83xJcHgvzuxR+4+pU5LGuAqlUoZPKPDxYT/sxuzfZSfBVNp6Lx5Jer6PnwtKj79H5/NtprQg9WJW0sluUWcckz37NwcyGl/iBvz9vM1a/M2eeDiedmrmHt9lKW5RYx/PnZtRIiNu0qc6o/M1fW/d8d0zR575fNFHoD3PDfeXy8MPI1fc66XWzYWUaSK5Z3b+rDRSdmETJh4qz1nD76S0ZMsQYX/bR+F79+bja/eX529T+UayIUpKJUuK2vR/s9vfg1/cQkFDK5/tWfGP/VatZsLyXRFUuHdOuTYq2PObDV+SXOIu7i8gpGvruQyXM2MnHWeq56ZU7Empi120t48KOlPPDhEjY1UEBdZLf1nXBEGgmuWF74Qy8yUt2kJcTz79+eyBcjzuHWc7vgiY/FMAwuO9WqQkyZu4ktu72M+nRZs/wkqjYFQ6Yz7XBQt4x9rl+1rZpBpgpz11tvUk7u2JIEVywdW1n/VlflF7MstwhvIEiqJ47+x7YlxRO3z+2r1eLlK4bvxgDwZMWlHJfdunonF+eCU661vv/xBU63g8Sy3KI9n9pvnAWAt3UPAFyxMaTu5zwbHXtaYbvCXwD2HTm/9EPw7mJ3fFu+Dp3E+d0z8cTHHvx+z/oLuNNg2yJY8h4AZxxl/XnPWrNvkJq9ZicVIZOOrRL545lWuHvjR2s9VaE3wPgvV3HWY1/x0EdLI4KUvyLE2h2lFHoDER/yfLY412kF/boBwsDS3CJ+3ribhPhYkt1xBEOmMzzFNE2e+Xo1Hy6IfNP388YC3pxb9RoysCoNefvZFqA2lQeCTLBbn6cvO8hI/GYuFDLZav95z12/q0l0szzwvyVsL/ZxTEYKL111CjGG9cFT5a6ebUXlTnt762QXW3Z7eejjpYf92JWHPX2z0uowWLWtOGLt66FYlltkt+hF/vmv3VHKbnuCa0XI5M63FrCr1E9+UTn3vLOQ2yZbv9eGnpBFyyQX43/Xk9eu682J2S0IBE0+mL+Vv7+/iH99sQKw1tJPntO4113WlIJUI+OrCLJka2Gdb7K4YJP9xrh9C45oGa5I1exN+qItheQWlpPoimXkkGN468Yz6G2vj1lexafXG3aW8n8fLGqwQNBY/LwxsiT/kf2CbxjWJzxXvTzH+dRmWqW9Z6r6BBms29VW+wBYL/b3vreQMVNXsMjeq6b7EWkAtG+ZyIy7+zP3vgH8pld7DCOy6jDspCNwxcawLLeIYc98z4vfrOXfU1cc0nn4K0KHHSIaO9M0mb5sGwVlAdIS4nl4WHfiY60/03CrXeXBEAfj9QcZPPYbrn/1J+eyueutv3OndrL+jfZP28YjcS/T7X8XctyE45jh+guvJowldvVUumUmO7cLf9CydGs1gtR346BsJ+vNdrwXPJtuWanVPmd6/RFi4mHzHFoXLqFLW+scflxnh4J13wKwo+0ZgPXmZO+/d41Sp7MBSC5YRguK2brbG/n7/adXAHg90I8gsfzq5COqd7+J6XDmbdb3Xz0MFX5OPzIdw7A+qMkvigwD4U+vz+nSht/0sjY0/nbVDgrWzeebMVcyYOav+LTsCq756RJ6fH8bg2PmYmC9OZu6JI+zHvuKq16e49zf6z/sCSTfrqz5VMfDtd6uYhyflUr3I6y/Z+F29Z83FvCvL1bw17cXOG8wd5f5ufqVOdzz7qIqW6LKA0EufOpbhjz5TZ0Or5i+bBuFXuvN6ZLq/LtqArYVHVr43FHqc/4fFZQFIkJ8Y7RxZxlz1u/CMGDCH09lYLcMOrWy1pyuzNtz7k99uQpfRYheHVvyn6tPBay/l4f73q7ynp+LthTyz8+WM3DsN4e1RjAYMrl24lzufGvBPh/C/Gz/Wzm5QwuOa5eKvyLE1CV5jJ2+kjd/2kR+sQ9PfAxX9eno3OasLq353y1nMvlPpxMbY/DJolx+rFRtfPGbNU2qenwwClKNiL8ixAk5U7nwqe8i2mrqQrgidWL7NNrbQWpLDVv7vrQ/SevbtQ039zua7kekcWy7yBe0vU34fj2v/bBx/xO5okj4l9OJ7dOcy1onu3nnpjNokRjP/E27ue2NX6gIhiI+sawqSH22KJfhL8zm1jd+rpXzC4VM7nxrPpPnbOKpr1bzmT2koMcRe843wRWLK27/v0JaJrkY3N3a62d7sfV3+dtVOw5pcezY6SsZOPYbZ73MrlJ/rU2xawx2lvg4/8lvuXGSNVDi3GPbkpHq4T9Xn8pzV57MJSdZb6xr8gbjl00FrNhWzPRl21i1rRjTNJlrv5Cd2aYc3ricf2y+gd/HfUmrkhXEB8voFLONnt7Z8MZwniy8nW7GegCu6N0BqEZFavcmmP00AKMDlxMbG89RbZIPfJvKUjLg+F9Z3895kTPsNrUf1u6C8iLYan3yuTGlF9BE1keBNbmvzXEAnB6zjDJ/0HkTTf5y2DiLkBHLf8vPoV2ah9M7H6Str7Lef4aktlCwHn75Ly0SXXSzfwfv3d4X/vT6nK5t6JqRQs82Jv+KeYqWr/blosAXHBeziVTDSwcjn5OKZ/KCayxfeu6ht7GM8V+tpri8gjnrd7Fmewkr8or5aUMB4Rz704Zdh9SuEwiGDnnB/KZd1utV+5YJHJtpv+7YnRDfr7aeu68ixBJ7UMpL366luNw6xwVVrKdau72UgrIAu8sCEVNIa9vbP+2Zjrkst+igfwazVu9wKsqNjWma/P39RfQe9SWjPl1W5XEVwRD5xfuGra27Iy+bs27/6/uqcx5jpq3klTp+bxFeC37W0a3Jsj9k6pphfdi1wv7Ab8POUt60J52OHHwMx7VLIS7GYHdZgK2F5cxcuZ1/fbGcwCGse12/19YYz9tT8t75efMh3R/AN6u2O5Xy7/ba6uIX+9/KKZ3SGXpCO+ux5m3mQ7ttf/SlPZh73wCOz0pjb2cc1Ypb+h3l/PyH0zuSmephW5GPd+dt2ef4pkpBqhFxxcU47TZLcw99kltxeYCbJs3jtR/2v3CzxFfB6u3Wm7IT2rc45Na+acusN/UDjtvThnSc/el5Va194bJ0Q/TUNybhitSf+x3ltCfd0v8oenVM5+WrT8EdF8OXy/P3+fR09tqd+7xhKfNX8LDdMrB4S+FhDyUo9Aa4+50FfLpozz4+ZfY0pR7t9/1lWZUr7TfgrZPdpLjjKPQGWFBpUmR1hdvd3pm3me3FPvr/ewYXj/9uv2vJGsonC3OZvZ92qur4cMFWlucV44qLYcjxmfxlQFfA+oDi/B7tnMrM3pvnHkjlAQGfLc5jc4GXvCIvv4n7jpM/uQBWfoZJDB8FT+dvcSP5bew4LvP9g63d/gTuNDK9q/nA9Q/uSPyCwd2s9UrLc4sP/IZv+gNQUc7O1qfyRegUumYmEx9bw5eY3jdZ/138LudY8yasP9eNs61BEy07s8W0gkaTWB8V1vkcAPq7rU+NnTePPzwDwPyE09lGOpecdISzCW+1uJOh70jr+5mPg6+YPnYAnbV6z9/H9TtK2birjPhYwwqoG2YxyTeCS2JnETQNPg2extQTn+T549/gd/77eLbiYgrNRI5kC5Ndj/BXXsWN1cb3xZI8Jv2wHrBaULPTEwgETWeNXXWt2V5C/3/P4PwnvzmkMBXuoMhOT+S4duHXHevvfeXtGeZtKGBHic9ppQOqnJRa+U3q6z9sjOjSqAiG+O3zs7jk6e8O+Q0rQF5hubNFiCs2hvJAiLXbq/6QZGeJj6snzOGql+dQWgd7epX5Kw74579uRynnPP41Y6ftfxrvS9+udVpEX/xm7X43nTZNkxsnzeP0UV9GTAuGfT/A/bGKdVKPfrKU3734A8VVfIi2NLeIp75cxUMfLz38zcSrEF4vBHBppcpxV/t9zwr7fc+YaSupCJn07dqG3ke2wh0Xy9H27/HFWwoZ+c4Cnvl6jRPKaiL8d7Rdmifi8t1lgUPa7w8iNwrfe51a5YrUBT2sIPXThgJK/UE6tUrk8lOzSfHEV3nft57bhVM6tiQz1cMdA7pw3VlWW/GHCxSkGp1nn32Wzp074/F46NWrF99++21Dn9IhCX+aWLmNJhgyWZFXXO2S8P/mb+XzJXn83weLeaHSTP+35m5i8pyNLN5SiGlCVpqHNilup7XvYBWpMn8Fu0r9mKbJlt1eluUWEWNA/2PbOsccY/9C2bCrbL+/9MNDKFZsq/7zaeyKyq2FlNWxaHMhXy7bxprt1i/DUzul86/fnsif+x3Flb2t0nivjuk8eflJALz782ZCptW+kp2egL8i5HzaGvbs12ucHvNA0DyszZV/WLuT856YwXs/W7/k/nlpDzJTrV/YbVPcZKR6DnTzCKcf2Yo3bzidT24/i7O7Wms3Zq44+ISvimCI0Z8u4625myjzVzgBYvaanUz4fh2F3gDrd5Y5n/jVtVDIPGA4nbehgFve+Jk/TpxzSJWyqUusiuM9A4/k+bO9dFj6PLx3I7w+HF4fzumLc7g29jPcOxZTUc12iMq/Pz5dlMuCFat5Ln4c/457FsNXBEf0wnfD94xOHMmUkpOYW9qWn2O6kf6rx+D2n/EffQEuI8hfQq9y5Hd3kRZfgTcQ3OfTUMeid2Dxu4DBp1m3AQbHt6t+6Ha072WNQw/66bP7I8D6XVGy/Evr+s7nOC1XjX70eWWdrfa+M2KWAPbkvsLNMH8yAI8WDABg+Cnta37fJ19tjVgv2QafjuTMo61/a1+vyHfWm3xjv3Hv1bElyQtfhVcvItm/nTWhdvzK/xD3xf+Vsy78PSf07M3s0PE8XnE5Z/meIu/oy4gxTK6P+4yPXffRw1jLOz9t5q251pvJa/p05qyj20Q8RpXCz/eTuyn57+Vse/ZCRpY8zrCd/2Hr7LfAW7MJZJvs33PZLRM5xq5ILcstxusP8vOG3c5xP28s4KVv1lLmD5LostaeLa5inH/l9Sf+YIinvlzl/PzNqu3MXV/Ags2F+/1QwzSrt9HxRwu2EjLh1E4tOcH+YOpA7X3zN+0mEDTxBoKH9EHUgXy2KJdTH5nOZS/MrvL1+KMFW9m4q4wnv1y1z4TZJVsLGf2Z9eHAaXbL8H3vL+aXvVrX3/15C18uzydkWkG8si27rfcE4WAwZ92ufc5lw85SXvp2HbPX7oyo5lVW+YODRZWC8gsz1/Cb52bVSrj6eWMBG3aWkeiKZfDxmc7lxzgVqRKW5RY5a/PCE2wBp2Lzv/lbnI6j93/eN0xsL/bxw9qdVf7/WL/D+vO66oxOACS6YhlgD+f5eGFujZ/TrlJ/xPKBhZt3O2PoS3x7Xn97dmhJ59ZJHNduT7v28FOzD9pe7YqL4a0bz2DW386ldbKbfsdYvy+sv9eH96FvY9EsgtSbb77JiBEjuO+++/jll184++yzOf/889m48cCLShuj8D+2yr9Y7357AYPHfbPfTTG/XpHPhU99G/FpeOVPJUZ/tpynvlzFm3M3MvLdhdz73iLn06NwdaFyRaqqf7wFpX7OGP0VJz88jRMfnMrlL84GrBfm9KQ9b2haJbtpk+LGNPf9BD0YMp1P+HaXBZyWr0Px+OfLueWNnw+7+lIb7nt/Mb95frazR09VFm7ezSXPfMd19rqVTq0SaZXsZvDxmdwz5NiINrkh3dtxU989JfGB3TI49xjrl2XlEaTF5QFesl/cPPHW7dfuKGHehgL+/v4ivl+9o9qBtcRXwV/enM+OEj9HtUnijet7c/lpHXjgom4YhlUhqaneR7YiI9Xj3Pagb7aAD+Zv5YVv1nLfB4v4Ye1OZypXRcjkhW/2vJA/O2P1AatSm3aVcf//Fh/WerxAMMTvn53OtaNfYvuPbxGY+yo/v/tvcr+ZACunws41TPzOagEqD4T4bFHNXsh2l3gxNnzHqLj/cM3swTDxQvjyQVg4BVZ9Aau+IHnpG9wfP4n/xd2LOf5k+ObfUHTgaYiVK77Z+V/TZ+pQzo+dS9CItTZ0vXYqnqxu3HvBcc5x3Y9Is4YcJLXGdeUbcP6/wIglZtFbvON+mAx27b+SvGstfDTC+v6cu5lRZJWSarQ+qjK7KpW48FV6HmGtPdj6yzTrus7nOO2tney9sJqEjmcCBh2Cm2jDbrYWeuH7pyAUYF1yT+aZx3DesW05siatkGFxLrjkWTBiYMEbnFk6jRR3HPnFPqfy/c3K7cRTwf/xEnxyJ4QqMI+/lDvSnmSheRTXntmZRFccp3RKJ9ltVchTW7QidfizXBv4K/lmC7rEbOF91/1cvPtVQkE/p3VO5/Qj0zmni/0hyf7GoPvLYMEUmHABjD0ePrgJ5r5E8trP6GPO5+LY2dwc9yHZ026Af3WByb+zQrn/4INpwq8l7Vsm0DUjGcOwFrJ/sSSPuGAZvWOWc3HMLLLXTME/ZwIXx8xi3Ble2rCb1fkl+92zKDwQp7/9Zu+9n7c44+orL5BfsiXy34Fpmvz2+dn0+/eMKismYVOXWkFi6AlZHG//GznQXoKV2xB/2bg74jrTNPnLm/O55fWfa1zVe2HmGv78+s+U+oPOnm0lvgqmL90WsX6l8lj5Rz5Zxn++Xeu8plivL1a76JQbTmdQtwz8wRA3TprnrJnaXuxzOiZg34pHuDp7fvd2uOJiyC/2OUNDwip/aDbphw37DayVW9LCgbM8EOTJL1fx04YCZtTChLtwe+yA4zJIdO0ZdHOMvaZ01bZinv5qNaYJF57QzllTDDj/rz9bvCdI/rBu5z7bIYx48xcuf/GH/U7p9VUErd8dwG9Pac+/f3sik67rzfVnHwlYITU8/Xd/fx++XbU94v8fWHtABYIm3Y9IpV2ah0DQdH5vLNi0m5BpvUcMf4h6YQ8rQMbGGPzm5Op98BMTYziV9qPaJJOWEE95IOS8zy0uDzBwzEyumzi3WvfX2DSBkUcHN2bMGK677jquv/56AMaNG8cXX3zBc889x+jRoxv47Gom/OYjvB7h44VbnfLvszNW89te7Ymz22VKfRXc885C8ot93PLGz3x6+9m0SXE7iwUv7NGOTxblMmavknz405IT2rcAcPp8y/zW2PKWSS7e/mkz53fPdK77Ye1Op6+/qLyCIrvXvPKnMmHHZqawvdjHstxienZo6VyeW+glENzzD3h5XjFtUz0EQyZPfrmK0zqlc1aX1qyy9ya5pk8n57lWtnZ7Cc/OsCptf+zTiVPsT8L29p9v15LgiuWyU7L3ez+1oTwQZJr9wvjZ4jyGdLdK34s2F3L1hDncNagrV/buiGmaPPzxUkKm9QlSmT/IxSdmHfC+7x7UleV5Rfy4dheXnHQEG3eV8ersDUxbms8jw0xiYwxmrtyOryJkf1KUwqeL8li7vZRPFq3ml427eePHjRyflcplpxzBuZ2TyPL4rV9oRgwYsRDvAXcqGAbjpq0kt7CcDumJfHzb2STYn96e36Md3/y1P20OtCYlFALvLijOhdIdUFFuf/kg1sVAl5s3jZUUbU6iYNcxtGzZCvbzSVYwZPLsDCuYBIIm47/as04hjgqOMHdwTHw+x7i206JsK5tfmcjRLQzrjZcZhISWkNgKMyGdTxb4WZGfwuPbujH+T+fv9/H2EfDCtiWw5WfY+jPFq37gtdL1xBgmfGYdcvJeN/mXGc9Vrs4sCB3F1u9PgqN/By06VP14wQprAt3SD3Ev/IA34u03oOVAYmvodBa0O8Fa+2KGoDiPud9PpZt/EUmF663BAl8/CkcPhJP/AF0GW2+mbf6KEKvzSzjW2EhO4jucHvwJTFhFB5Iue4msY093jh16Qjsmzd7AnPW7nI2UAevce98AbY+Ft66mi3cVH7vv44clJdDjpj3PLXchTLkC/MXQoQ/0/RtLHpsJHEaQ6jYMvrgPinN58YyfGFtcQVe/FaA/Lz2anzduwRUb4wxMaBIS0yGzB+Qt5I64d/FvSYLlrwLwcOEFAE7LyyHpdCb0/RvMGEX8JyO4t91f+Pv6E/lscR4ntG9B/ppfmOJ6ke5bVwEGnPcPjLPu5JHNhXy9PJ8/nWO9EXPFxXBO19Z8uiiPo9smk+iK48gzLuWRbaczNnkSccs+YETce1wUM5tA139gmKfR5+jWuGJjWLu9lKVbi+jWLsVaz/bLJCsU+cKhw4AjerEh+QT+szhEKC6RPkfEUbhxEeclrSXDtwFWfGp9xSVAl4HWWPyug8GdEvF0Q6E9lffsFi4Sdy3jltTvOaJ0KSd+vI5F7g3EGvZrTfizNhfwIwzyQJ7ZEt9rp5BwdG/IOtmarJiY7lRcf3Vye7yBID+s3cXL363jxnOOdAK8Gz/5a36GxJ+sDxFKd1C0M49bt64hjgoKJ7QlJaMtuJIhNQtadISWHaFFB3bQgp/sVqmB3TL4bpX1O/ZAFakFm3bRht20NXYTWLYOMjpAqALMEOt2eslfsIXdZjLfzjXpd3I3iE846F+XxVsK+ac9nCAz1UNeUTlT5mxi3Y5S5qzfxemdW/Li77qRYpaQt2ElbTA55cgMZqwt4pFPljJ3/S6evbKX00J8aseWxMQYjLnsJC599ntWbivhptfm8e5NfXhh5hoKvQGOaJHAlt1eFmwqpDwQdCZThv8/dm6TxFlHt+ar5fl8tjiPLnaVpyIYcvYpAqtq+O3qHREf7PkrQhEBLRw+v1+9w2lLr/b2DQcQ/iDpxOwWEZd3bJWEKzaGMn+QT+wP027pd3TEMeEgFc4whmF9/8H8LdxsH1voDThbPoz6bDlnHNXa6fKBPaPPk91xtEpyOb8DgyGTtilu8ot9TJ5jfVA+qFsGfY5uzdrtJbRvaS0ZueX1nykqr6Bnhxb06pjO7jK/sxbwyt4d+XHtTj6Yv5Uf1+7kzKNbO3+mPTvseb6/6ZXN2/M2c96xGbStQYdKWEyMwSkdW/Ll8nx+Wr+Lk7Jb8N7PW1iVX8Kq/BK27PY6H+43FYbZxPur/H4/iYmJvP322/zqV79yLr/jjjuYP38+M2fOPOh9FBUVkZaWRmFhIamph/jiX0u8Ux/h1W+WESSGK844isk/baXYbxD4//buOz6KOn/8+Gu2Z1M2vfcCgdATSuhdEAuHHhwioqB3qNzh8T3bT0899fRsp2e9syGnHNjQO/FAkA4WepMeCBBISCM92WyZ3x+bLFmSCAmBAPd+Ph77CLs72ZlZJjPz/nzen/cHLQ403JweQ1q4GRw21h/IY8uRfPQ40OIg2k9H71g/vt19ApNOZXzXUI4WlLHnRDEKKt5mLwqqVGpVLTZ0jOwSQ1SQH2j1fLotjyPFVuJDLVidGg4V1tA1woebe4aBw8ba/XlsP1pA13Az3SO9Ka+sxGmrJc5fj8ZpA0ctOFw/s4pqOFBUS1iAH70Sw0FrAJ2RE+UOFu0swF63/sGdIumXHMae3DK+2JyNxaBy98BYPv7xMBVVVQxP9iU5QAe2uptyWzXYa8gpKuNkWS0OVUt8iC9Bfmb2F1QTHmghxN8COiPFVg2f7SzEih5/X196JIYTGehHkJdSd4NfCw6r66e92tVyaqt71FaBrdK1PhTQ6FwPbf1Po+tipfcir1rDikPlVGNA1XkxY3gXNAYzS3bnsu1IPhE+Wu7oG8GRk/l8v+84vhoro1J80Tuq0drr1lVbUbfeulZYncn10HuhGn1xGnzRellwGHxZsKOEIoeJCf06EhPoyxfbTrD7ZCmDE3wwOyrIOn6CzgFOKkqL8KUSf6UKXyrxperMjcXZNDrsRn+OVBk5rfqQGBNDcEgYmPzBy9+1LfWcdlcKTnUxVJ2Gynwoz3M9nC1IndB5gW84+Ea4igz4RoA5iL2nqvj39hMogEWpIEw5TTinSTaVEFCbh05pXQ+kQ+eFNjARghIhMBG8Al375bBCdQmUHseZvxfy96JRG7dUF6gWctQQilVfHIoOL2oIppR4JQ8vpYlJNb1DXClqYV1c36HqhKpiKNgHOZug6kwPcqlq5ljoCLqOmeGq8KZt3L71+4+3s3RbFq92O8rwqm/Q5vxw5k2DL7WxgzioRpFrNZLmW0XRTyvposkGwKZqWaC9ngF3vkhSZONexfyyGj7edJypmXH4m5tIlzudTfF7NxNYUZfmFJXhCvbKTsK+xa5jNzAJpn1FsS6EXk+5eo92PTH6Z3Pnf9b6V1xjrgBVo0dx2vjQPpI/2l0l0m9Od7XGtpWq02V0fs6VDr7HuAWz4oT77wfvNuz12vdf1IW3oKBiR4cOO6cC0umbO4fUcD+WzB50YVUInQ74bDrs+RKAdY4uZBlSuT6iBMvxlegUJ6rBF+Wmd6HjmGY/5vusIu7652aeuCGtUbC68rO36LbrGYKVuht/n3DoMJovsg0cPlXCyIhqutt2QmmD7An/WOg5FXrcApZoJv79ezZmF/ObIYn0TQhk+gebSQzxZuXUMAq+/xfqrs8ItTfocdUaITrDFYj6hILOi4qy03y1bhMpmhOkG3NQbI17natM4WQ5QsitMaCgkhakEEkhzpLjaGjiPOIfx6rSMA7bghiX2Y1yh46Pf8wmQGelt38FztNHiVYKiKTI1bDSCnaNkaP2QEqMEaR378Epgpj7/XGMeg33jUhBsZZDZT7OinzspafQVxfgKM9D19T2NsfkT6kumIPVvlQZQ/ALCqNbfAQVTj0/5lSTHGRg44EcikrK6BqsoVOAk12HjmJRKrFQiV/dT4PSdG+/XdVQgRdGnwBO1BgotBlJio4kJDgETBZKVC/e3VhIpV1hcq9QVu7OwWGr5oZOFnYcOo7WXklmtBF/rRWs5eQXFmF0VuKjteNUtFTbFZwaHf6+fmDwptRh4KdCBzatGX9/f/YUOggKDGB0jyQweIPOi2MFJXzywyGMig0jNgIMDn7ZLZgdR06SX1yCGSvhZidJ/lrX+UrRuO5LNDrXz7p7FAzeoDe7ftb9e2e+jTKbwoDEAN5afZCyqlom944iLsDkvifBXsPyHdlYa6owUkuol0r3cJPrell3/2BXdKw5VIIdLbXoiAkN5KdTVsxmM+MzElH0Jg4U2fh42yn3+SHKV8vt/aLROO3gqOVYfglr9uYQZlYY3TGg7r7L9cgpsXKosBo0WipskBRmweJtZnVWKfGhAcSG+vOf3YXUomNQaiTpieH896dCNmcXEeGrYXq/aPbkFLN23wliLHrGdQ7miy1Hsdba6J/oT0KA0bU/9Q9FcTXGKhrQaM80zipK3fOz39O4n285Vsr6w6dJCvFlXFown248TGVVNQbsDEjwI75TBvSf1aq/sbZ0vrHBFR9InTx5kqioKDZs2ED//v3drz/zzDPMmzeP/fsbl1y2Wq1YrWfSysrKyoiJibksAimeT4KqS19KVvxvsKlanCjoFCcaVBTa+M/fO8TVq1IXaKI1uE70NWWUlhSh1JTgp7Q+1a5G1aMGJmIMTWHJSRO7inXovHz5zahu+JqMUH0ataqQbzbuxlyZQ4I2n0g1v/kgsgnF+BGQ3JdlJZF8fDIEXXQ6E4emc+c/N+Nj1DFvem9CfU386as9rNibS4KSx2uDHJz8aT2h5T/RRXsUbRPBmAevAOwdrmXWthhW1nbi03uHNmrlbOj99Ud4cvEejDoNiSE+WPP2MVG7hqle3+Fta7rIhR0t2s7Xsyry16R1S2/R+LazrdtznK3/eoy7dV9hwDNgVpOGU3bd21gCQliyK5e752913Rj/39BWrw9VhVXPwNrnAaiOH8mA7DsprnHdUC6ZPcgjV/9CXZJACvhp0V9I21mXJZEwhAd19/PxrjLmjOrA70akXPgKnE5Y8xys+Uujt3b6DqLbjDddgU0r2RxO/vPjPsaWfYJ5+/tQ03RKmqo1stE0gAX2ITz225kE+riOva3HTjPhze/QaxXWPzgcvVbjDrz/eF3nuhQwlTTlKDcYNjHNsg1TWfa5N8zoR21Yd360JvBpXhj7tCksmDOe11cdYu6GbAw6DT88PIJAbwOvLtnGurUrmRZXxHXBeXByOxRnnXMVDZWq3vhFd0YJTgafMD7aVcH2Ii02VYu3YuWBYdH4a6rIO55FWW4WcdoCjFV5rgaVVnCqCoVYyFf9SYwIocap4Gc2suNoEWZnOQFKBQFUYFTatsiCAw02VYtBsaNp62uFEM1JGgFTF7X3Vpx3IHVVpPYBjVryVFVttnXv2Wef5U9/+tOl2KyW6/sbvtlygBPF5ehwoMPOsJRAArwUVuw+gaqq9EkK5VipnQMF1QT7+TCqaxRHimtZsrcQOzrsqobhnSPpGR9ypjdFUcBh46ecQpZsP0a4t4Zbe0e4e5Fw2tl9vJD9uSXocGBQnNhUhf4dwgnw8ebTbXnUODWMT4/H39e7rhVHf6Y1R6t3zQGj1WOz1fLMf3agcdZy96BoCkvKMWCnsLScn44XYTGo2GprCTErDE8JYM2BfAprwKbqsFH/0GIwmenbIYrPdhRhRc+YHvGYzN68uyEHBRUtTpKCjJh1kJVfihEbYWa4s18E3+w4Sl5xKRlRZrTOGsrKK6ioqsKq6qhVddSix6k1UO3UEhEUyLBu8Vh8/ahWTCzeW4pda2JCnxSMei07jxby7tqDlFdVc9eAWMorKli+MxsfTS3+OjtqbRX+ejuKvZreUSY6BmpZsjsPK3pqVS2xIf7sKrBj13rx65HdMHr5uNI+DHUtX/q61i+Dq/vd1QNX7Wrtspa7Sj9bS6GmjKycPDb8dJhQYy09Yyx8l1WEUadlTPdYCu1ezNtWShlmSlVvOsRGMWtcbzBZwGTBrvdl1aEy/t+XP1FYYUWnUZg5MAp/tYLP1u8kUl/JS9fHEkA51JS4empqSlzHSD1F4+qpMge4enW8Q1zpK77hrlQ0XRM9GnVKi6oY/MIqvBQr798Uw9tff0e/EBu/6WmGijy27s3iUH45Rr2Ga9LC+XR3GcdtfpwikGemjabUFEOu05/0eFdVsoFVNl56cwOHCyuxFyfx0NhUAN5bd5inS/ZiNmj55K5Mxry1lhDHKd4Y40+QNYdl678nydfJgHhvcithV6GTw7X+bKsIZKczkVwC+c/Qgdz/7o+UOe18em0/escHsmT2IAK9De6A5J3b0vl2bz6nK2vpnBHN/vDruOuTHSRYtHx7SwDak1tcN2g1Za7vzcvf1XMT0Q2i0ll38DRLf9xEmJ/Ro6x8Uyb3iWX9oUJW7stnb24ZOk0Uf7FP5s3aKXTVZpNm3UGauRS1poRTagCH1CiC03/BgxP6M7x1ZyIPyVHBTLXfzGfO4XxzfS2bNnyL3i+UroPGc+8GE+uf38i/7urH8rpS/fXj+VpNUWD4IxDeBU5uw2vw/Tx3yJUuNKxjaJsGUZeSNeM3PLwlnzhTNTOn/I0fXt4AQI+fCaJbRKOBYQ9Dl5v47JO5kLebg84ovnOmMePGCXTzP885qpqh12q4qX9n4AkY+TBkrYQTW3CU5PDvnac4bvcnscdQ5p6IZGuuq6c2c28+k3q7grd/1o37uLFHlPvvKD7ITHZRFU9/7RpHc01aOGXVwTx7OJ43yn7Fj7+OwSt/B+TvdfWE26o5Uq7hP1kOCO7A7CkTICgFg0bDIKCP3YHT6ZqeYUxaOHM3ZHNLn1j3WN4OMRH8VU2luNKbvlMyXSnL1SUc2fUdH/x7KcmGYqZ2t4CtivwqJz/kVFNrjsA/KoUhvdMZ9v5Rcmw+fHvjEJJDfSmvsfHEquXYnSpJId5kFVQSRgcmpccwau0aymvsKAoMTLBw4uhBwtQC/jo6gAjnKSjP5fusQo4XV6PTgF3nzVGrD0X4UahaOKUGcEoNIDo6FkWrY8vR0/id0lFWYyfMz8ipGisBZj39k4P5eudJJnezMKO7F4/P/5YYXSk3JWvYeSgbvdOKWbHir7dTbtNSrerpFBtGz+RoMPmz+lgt/9pZRmBwKE//aiCL9lbyxPKTVGEEFO4YEM/j41LBVs03Ww/y/H82EWaworeVE2aw8tx18Sg1pa40zpoyKsuKWLknt+4aqKNDVDAZHWLZmmdj0Z4yokJDuPuaHlQrXkz6YDcVePGf+0biY1C4/+MtbD9ayF2ZEYQYbHy4dg+Bulr+ODoOi7aWD1bvprqyjGtSfInwcrA/J59jZQ4q7FoykiLYkVfDyUqVrnHhrM2uxKE1UWrXU42ROdd2509LD+Nr1PHrATH0ivJGq9bdA9lqXJko9dkptZUcyS1gy6ET6LAT4mcmt6wWk17Hdd2jXD0tOi9XerzOxHdHK/nmQCk6oxcPXd8DvdHsuvdy2l3XUKedf244xL4TxfSONvOLrsF8ufkwOYUlZMZ6kx5l5uttR7BZq+kXb+FgQQ15FQ56JYbhazax8uBpapw6Sm0aeiaEMbhTlKu3Vld3D6aq4LRTXFHFK8v2YlSc6BUHGqcNg2LDgAMDNvTYCfNWiPHTkZV3miBfLzJTwkGjQ9UaWHGgmMPFtdjRYkNLv6RQ+iaFnrmXrO9tAlfDgOpw/XQ6GjxXz3re8H0ndoedhT9k41RVfMxe5Fe5MqbyK514m83M7DXigs5Tl9oVH0gFBwej1WrJy/OsBJOfn09YWFiTv/Pwww8zZ84c9/P6HqnLwpAH2G3d7x4bkhzqw6+mDkajUdjs9RNzN2STVOTN8eJqah1OPvllJkpCIIlA4Vc/uUu8TrhmKDQxGLuzqrI7/rirqMVZN2/JNgefLdlHargvK7KK+M+Ok8wKTWZ0WhgP/bgBi5eeaeNHnXOsiR44sOMHNhwq4lRxBIt35qJRoFdsAJvtp7k1I5aPfjiGsUrDd2OHM23Lt01/UAV0z7eww+Fq9Zy/pf6NCEZ2CmXp3ny8SrQoClQ5HPib9ZSU2yisiOOT0zlU2x0sGX+m5bqowsqnW3JYsiuXnSdKUeuLCuaBuVjLgORg9uWVcbzYH4APCyDIR8u6g1rAdZP+449aHM4QrI44cAA20GsVHhyRytNf76Wn6s8DGan8dluD1Ku6+gOTe8VgHNTtZ7+7c4msdfDMnmXUVDpJLfFln62cyT1juHZ8N7xqbLyxeZl72f/XORVizhSs0AGju3iTkRDEH7/czde7cnl9bX3ueSwTR3cmoPcFjNM4h9ggM30SAtl4pJipiwqwO5NZm6Mw9c7RrD9YyK9XuP6D507tjaljKFvs2/hy+0mSQ33w7jAEb6DhqDKLWc/skSnMXridVfvyeWhsKkt25fLnurlM5ozqQJcoCzf1TuCf32t48XAIPqYkvqpNgSKY/4u+/HbBNoorXTd8Bp2G6EAvKKzktZWHKKux42/W06tunN/ZN++KojCq85lzzLVdI3hq8R6OlNpYWRnPqMy+ALyx6hBmg5Y7Bnh+t8vqKiWN6hx2zpLXXgYt79yWwcvLD7BiXz5/uiGNx/69m3155WwgltMRXfi/e/vz8Oe7WFQ3pvK5mLYbQxTuZ8LXqOO4NZBXTifydmE4FILxWA1We5V7P+sHzY/s3PS5t8U63+h6AKM6e/P9Q8OxmFuZLngZiPL3YoFjBNpqhZuqVffkmt3rxqu2mZAO9Jz4CK+tOIjNodLXYnKXLm4zOiN0HAsdx6IFtii7mP/jMdgMcCbddf2hIib1jqWsxuYeaH9rvzOTd/aKDSC7yDX2IzXclzdu6YXdqTLwuVUUVljZY4ugQ2oH5hZlM2lYDGF+Jr5eeZCX9x/g5qhoCOnosVlGndb9776JQWx+dCQBDVJW6yvlZRVU0u/ZFTw8NpU7ByWy29iDeQ6VjNAApo53ZbeEAjectduhEU5yjpWw+0QZyaG+bDhUiN2pkhDszb3DkpnzyQ7+sTaLb37Ko7zGTpC3gaLKWtYdLgVCMUYkEz5koPs62qPWwT/mb2H1/gKohdhAM78flcL767Pd1efGxgRi0GnYcvS0e3xyfeW3sV0jmNw7lq935vLp7nJ05gA2OLsyMimU3rf1RnO0mPs+3k7HMD/+Oqk7JZU29uaV0b1TGNSddwb2dVKQfIKhHUPR+RoZF2TnqXUroG5dPWMDXDfQRh96pnUi698nyapL6smMDELJ6EdD3sDiDzfzTV1F0hU3D4EQH7zzyvlo11q8CrVMSxxJzulqdqrV+Jl0+IS5zo+9emn4NHsXT23RAUbKnb14ZGQnLANd4/jySvbx9zVZ7DdGcqrEyvf5rh75YB8DS24ezOZv9vPx5uMoh1338xO6RfH9oUIKyq0U7fRnq10Pdli+DDSKjbggb+bdMYzYuqlnGnp5wTb+Y6tLM63r+B+eFMp1N/ZutGxMcRWbP9rCnYMS0Pds+tzbyVLMv5fsY+r4LhDhh8Mrhxc/3UFKhQ/v9svg3nWr0WkUtt86mvUrDvKPtYeZEhBLWY2dryrPpLu+1KM7NDNGNBBY9eNK9zxrWo2Co25sulaj4HCqGCo0dLH4sdVWwp+HdCGzrmKwAvSpsfHMGxs4XFDpmmh34gjwbr6BtDV0wBfHvnNN7VLmmgZgwZR+PPGP73GUq1wfNZwLa/K5tK74qn0Gg4H09HSWL1/u8fry5cs9Uv0aMhqN+Pn5eTwuJ50b3LDNGJjgvsn67fAUfI06sgoqqXU46RMf6DFA/OGxnZjQK4rbMuOIb+KkAK6bv0m9Yz2qydQz6bU8cUMav+oT6x7IueZAgXsegZ6x/uedw19fgre+HKdTxT3IdmByCCa9Bqv9zCDSpBBvetUNaEwI9nZPVLsjx3UhGV5XYl2nURjZKZTnbuqGSa+h2uagqtaBn0nHyxN7ADDv+6NU2xwEeRvcZUnBVVFw5pAk/j1rIFsfHcXqPwxl8W8HkhEXQFWtg+V7TnG82DXQMcjbwJ7cMtYdLERRYFpmHH0TAqmqdWC1O+mTEEhMoGtAZJ+EQMbVTVS3/XgJX+10nfDq36/3y4wLD9a9DFqGdqib16du8Oy4rq7wwtek9ygIkR4X0PgDgEBvA6/f0pO3pvRiWMcQjDoNfRICuS0zrsnl21L9mAt7XUUhh1NlZ04pb9dV47tzYALD6nozJvaOQaPAtV0aFzSpN6RDCBrFVSJ7+/ESfv/JdlQVbu0X6x68P31AAooCq/YX8PXOMxej33y4heLKWhKCvXn/9gzW3j+MqXXfQX052EEpIWjPc14fk157puX9+2zANVfOC9/s509f7SGv9MzEk06n6p5oeVTn5vevIa1G4Q/XdGTJ7EH0SQjk96Nc800ZdRr+9qseGHVa7h/T0V29sVsb3pwrikJymKsy1fwG89NZ7U78zXoUxTXh8ukqGxYvPRnNHHsXKtTP5HGjfKUJ8TFi1GlwOFU+3uQaFJ4Y7H1RgsOkEB9e+VVP3pjSi0ev69zs5NltZcbABJJCvEmL9OPm9GheqhvDtuFQIU6nytc7c7HanaSE+nhMRN5wIPuTN3ZBp9Vg0ms9SoO/s/Ywf11+gEe/3A2cmYw3JqDp61xDwT5Gj7/hSH8v/jqxO12jLDicqntwfn3FvnNVg6y/dtZP9FtfhGJoxxCu7RpBZmIQVbUO9uSWYdBqWPjrfnw2M5Onxnfhoxl9+fzuTI/rqJdBy9tTM/jd8GQeGNORZb8fzC96RvPH6zq7l+ke40+/RFdPvJ9Jxz+mppMc6oNGgYkZMXSNttA7PgC7U+XDur/P4amuxoz0uEDW3j+Md6dl4GfSExtk5pq0cI/GG51Wwy8zYtzXD2+jzj0RN0DPBj2moX4mEkPOfEfN9Q7/ZkgSOo3CkA4h7om5U0J9iA7wotrm4Nn/7nNPuRLV4P9xbJdwovy9KLfaKbfa6RDmw+0D4t3vj6gr9b1kdx7fHy5Cp1H44I7ebHhoOCG+RneKtFpXbe7e4cnu+4CtdVUPh3YMwaDT4FRdxSv+svTMRMKHCyq4c95m1h0sYPX+xpX+6ucsO1tMoJmvfzeIXzQTRIFrupPP7+7v/s5Gdg5Dr1U4mF/BK9+6xqD2ig3Ax6hz78e2YyWsr6t2e1tmHDOHJHFd959vFOmfGOz+94yBCe65Kkd2CsXXqKPW4XR/FwOSgj1+18+k593bMugZ68/916QS0MZBVL27BiXSKcKPW/vF8vnd/UmPC3BnZvx4uOl09cvVFd8jBTBnzhymTp1KRkYGmZmZvP322xw7doyZM2e296a1Ss/YAAw6DYFmA7/oeSYuD/Q2cPewJJ5f6hr3de9wz6owBp2Gv9YFExeqft6fXSdK3XNv9Io9/5ujgcnBPE/j8WngCpQ6R/ix9ViJe56OvolBjEgN5e75W5k1LJkDp8rdQVRckJn3pmXw08kyYoPM+NUNYO8Y5uteJiM+kKEdQ+gWbWFn3WuZSUHNtvQHeBvcJ4hPfpPJtuOn2XasBIdTZXLfWMpr7Dy/dB+R/l7c0ieWmEAzJ0uqGffqOmpsTp67qRvVtQ6e/2Yfdw9JIsLiRd+EQH48UuwuLz8tM56/fXuQcqudpBBvj4vRhZg1PJmiSiup4X6M6xbhvsCC66asoNyKQatpcqbxeoqiMLZrBGO7RuBwqmiUxumxF8O1XSN48qs9VFjtxAaaOVZcxbqDBe7Z06f1j3cv2z8pmO2Pj8bH0Pxpyt9sID0ugE3Zp7l3/lZqbE66x/jzxPVp7v2JD/ZmVKcwlu05hVN1XcwP5ldQUTfP2e9HdXDfdAxK8byoDG1hyfcpfWP5x9os1h0s5FB+hUfp4FX78xnbJZxPN+cQ6mekoNyKj1FHv8Smq06ey+jOYbz4y+7EBHi5K1xFWLz4cEZfjhdXtXn6W0qoD9uOlVBZVwXr7anpHDhVzrhukTy1eI/7hnJ4auhFq5J5pdNoFEZ2DuPrnbm8sco1LufnxsZdSRJDfFjRYFyczeHksX/vpriylr15Ze5JP29Oj/Y414xOC+fd9Ue4Ji3co2Gwc4QfK/fls+dkmXt+p1X78imssHK8Qenz1pjQK5ohHUJIf/pbDhdWUl5j40hdxb6EcwVSdefV+ol+66vgju4cjkmv5aM7+/L++iN88F029w5Ldv9tNlddFlzX7jmjPXvW+iQEctegBNYfKmJYx1D8zXpemdSDHjH+xAd7M7RjCAXlVndFthkDE9iUfWb+pmGpZ85drTm3394/noUbjxNhMTX6nvslBnG4bi7E5qpz9ooNYPX9Qz2mR9FoFP4yoRu3vvcjH/5wlJ11PW5R/mfGb/qbDay5fygbs4vZnH2aG3tEekzs3TPG35V9Ujcv1PieUQxtkEo8rlsEPx4pokukhamZcZj0WjqE+brLo5v0Gt6ako5Bp2FnTgk3vfUd/92Vx9Zjp+kVG8BTi/ewan8BK/e5rhcBZj3eRp27umBbnlctXnoGJgezan+BuzpzfaNs/XmhvoKzj1HHH6/rfF6TnGcmBfFx3d/bhF5RWLz0vLhsP1P6xnG60sbGunkvo/y9iGui0T0xxIcv7hlwwfv3c8Z0CWfMWY2k/RKD2H68hB8OFzHhPEurXw6uikBq0qRJFBUV8eSTT5Kbm0uXLl3473//S1zcxW9hvxjCLSYW/3Ygviadu0RovekDEvg+q4gQH6N7/o6LIdTXRFqkHz+dLHPPNN6w5fBc0iItWLz0lFbbmNwnhs+25LhLn8cGmnlobCemvPuDuzRpv8QgRnQK48DTYwHXXEn1cwaN7RKBoiiNetE6Rfg1CKQCUBSFWcOS+fWHrhSxgcnn9/1oNArpcYGkx5250PmZ9PztVz09lov09+Kb3w/G5lDd5Tk/uKOP+/2nxndh3Kvr3PvZJyGQoamhfLXjJJP7xLZZoNIlysKnM5vubU0M8eHHI8WkRfk1Onaac749Lm3Bx6hj4a/7UVZtY09uGU9/vZcPvz+Kw6kSF2QmJtDzpO53HlXfhqWGsin7NCfq5uOYNSy50Y38nYMS3al0f7yuM3M3HGHV/gJSw325rkHKU1KIj7scMMCQji0LpGICzYxIDePbvadYtDXHPWUAuFqu1x4o8JhHZGjHkFb3sCiK0mQJ8N7xgfT+mZu21urQoHc33M/EqM5hjK6b/uD2/vHuQGpkpzZK67tKTcqI4euduVTXzYHWsHfmaqLXauibGMTKffm8uTqLrcdK0GoUftHLM2knzM/EmvuHNfr9+nLR24+XuMuS250qX2474Z7Y/ezzRUsE+RjdJbl3nzgTrMUH/XwglZkUhE6jsPVYCTPmbXY13kRb3A0iWo3CXYMT3SXlL8Qj4zp7PB/foGHVqNO6gyhw9WxHB3iRc7qaThF+RFgurIR0hMWLlf83BKNe2+ja1S8xyN1g2FwPDeCxffUGpgQzLTOOed8fdZcpP/t8pdNq6J8UTP+kxtdwnVbD0A4hfLndFcDOHOL5PVu8Gl+76+d5AlcWQ/3UHj1jA7g5PZpPNufw56/38ui4TqyqmzS+fhqmYR1DMeq17p7Ltm6gGts1wr3OP4zu4M4MibSYCPYxuicg758UdF5BFLjm9QryNpAc6kPHMF86hvkyfUACXgYtK/fluwOp/klBl6QB9Xz1Swzk72uyGs0jdrm7KgIpgHvuuYd77rmnvTejzTS8aWnIpNfy4Yy+l2Qb7hvZgZeW7ed0VS1xgd4tujnTahQeubYTG7IKefjaThSU1/Lt3lOE+BrxMmjpkxDIn8d35YHPd7qmrEnw/OyM+EB3Pu+4ZnL7G57Q6mdVH9kpjD7xgezNK3OnA7alUN/mK591CPPlN4OTeH3VIbz0WjpF+PGnG9IYk9a45eViGdoxhAUbjzX7nV0O6gNiY10KWn3O//kGvmcbnhrq7qXtEObDiCb+33vHB3D30CRsdieDUoKJDvDCpN/PvcOSPXotFUVhUEown27JoVu0hWCfn5k7qxnXd4/g272nWLE33yNIXXuggNqzJpAe3cQ8bJerlAbnpOGdQj0uwINSghmQHMSpMqt75nrRtAHJwe4beLh6eqSaUj8v0Nd1Kd7XpIX97Dm0ofqejn1nzf/zwjf7sdqd6DSKR4pZa3SLtnCipJr1hwrcmQznKvwSE2jmnmHJvLrioDsQ+O3wlHa/IdVqFH43IoUHPtvJxIy2ac0Paub81y/RNWbLpNOQHNrySaQfGtsJFVda8pgu4S3KdgFXsZIvt5/k+u6RJIc2H8jVa3g/NfqsVOrfj+rAf3acZMvR00x+xzW2+Zq0MHeAfX33SKptDhZsPIaXXnvOQLulxveIIqe4ivT4QI+5sRRFoUeMhW/3uhqoBrUgOyLQ28CGh4ajURT3cVkfPDYMfAdexMb41uiXGMTK/xtyzl7hy81VE0iJtjeqc5jHYPqWmtg7hom9XeOCJmZE8+3eU3RpkAYwsXeM+2b67NLMfiY9L/2yO6eraukS1XQLUP2F1qDT0LWuVVejUfjwzj44nKrHzOOXyqzhyZRU19Il0oJeqyHQ2+Duqr8UrkkLZ/OjIwm6SHnNbSkt0oJeq7h78FobSHUM8yUm0IvjxdXMHJLUZDqnoig8OCbV/TwxxIe3bk1v8vOmZsbx/eEi7hrUuhbloR1C0WoU9p8qd9dl8TXqKK9LJRzWMYRb+8VxrLjKozfscpfS4IZpZCfPYFVRFObf2e/sXxFN0GoUbkqP5tUVB9FrldZPXHwFaHijVj+29XzFBJg9/m4y4gLYeaIUq93VGPHEDWmtauhoqGu0hSW78/jnd65e8ZRQnyaLDpxt1rBklv2Ux768cjpF+LnH7bS3iRkxjOwURsBFLsgS6mti4a/7YdBqWtWj7mXQ8uSNXVq9/mGpoSz//eDz+r8CVyDlbdDiVGn0fxVh8eLvt6Zzz/yt7gyZP4zuSEygmayCCtIiLdTYHIxJC6dHrH+bZ3A0ldZZr3u0vzuQGpLSsgaq5jJSOkecaSjITApqcpn2YtJrSQxpeWDe3iSQEpfE6LRw5t/Zt1Hr1Y09mq/N0jCNoSnpsQHcMSCeDmG+Hifz9hyMbtJreXp813ZbP3DBNxeXikmvpXNdeqai0GQax/lQFIW3pqSz+0Spx5jC1uoW7c/6B1tfNNxidhVb+PFIMarqSoMb2jGEhZtcOeszhyTRN/HyuoCdjwiLiYy4AMpqbK3+vxIut/SJZeHGYwxMDr6ii2ecS4cwXx4ck4peqzB9QMI5q1M2pNEodIrwc6chDUsNJSXMh4WbjvP4dZ09Kv+1VrcofwB3sHa+1SYNOg2v39KTl5YdYOaQpHbvjWoo8BI1orW0F6mtpTSTtdMUb6OOj3+TCdDkpONDO4ay8Nf9eOSL3QzuEOz+7Ppxxia9lr9Pbbrh7WKqHzOYFOJ93kHjuXSO9GNCzyhC/Izn3Tssfp4EUuKSGdDKHofmaDQKj1+f1qafKS6tnrEB7MgppVuU5YIql3WJsjRZibK9jOgU6jG2cFy3CBZuOk7v+ACPAfVXEkVR+Ozu/j87R584P+EWEz/+vxH/E9/j3UOTzr1QMzpHngmkMuICmDkkif8b3bHNGovOTuNryfi+5FDfZnu1xeXnXNeHbtH+fPXbgZdoa85P38QgXpvck9Tw8w8az0WrUfjrpB5t9nniKih/LoS4ck3MiCE+yMydrUyju1yNaHBD1jPWn0EpIXx+d3/eva33FX/zfKVv/+VCvsdzq0971GsVuse40qrassfdYta7pwoJ9jG03cTIQrSR67tHtqj3TVx60iMlhGg3nSP9WN1Exa4rXWKwN6nhvuzLKyezbk6P5ub1EkI0bWByMD5GHUM6hpx3FdKW6hrtT3ZRFcNTQy9pBVMhxNVBAikhhGhjiqLw3u29ySmuchdCEUK0TKS/F5sfHYnuIgY49w5LQlVVfjs85aKtQwhx9ZJASgghLoIofy/3fGNCiNa5WD1R9VLD/Xj9ll4XdR1CiKuXjJESQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkjX3htwOVBVFYCysrJ23hIhhBCXWlVZGU5rFQBl1GBXVCgrA4ejnbdMCCFEe6iPCepjhOYo6rmW+B+Qk5NDTExMe2+GEEIIIYQQ4jJx/PhxoqOjm31fAinA6XRy8uRJfH19URSlvTdH/A8oKysjJiaG48eP4+fn196bI/5HyHEn2osce6I9yHEnWktVVcrLy4mMjESjaX4klKT2ARqN5mejTSEuFj8/Pzm5i0tOjjvRXuTYE+1BjjvRGhaL5ZzLSLEJIYQQQgghhGghCaSEEEIIIYQQooUkkBKiHRiNRh5//HGMRmN7b4r4HyLHnWgvcuyJ9iDHnbjYpNiEEEIIIYQQQrSQ9EgJIYQQQgghRAtJICWEEEIIIYQQLSSBlBBCCCGEEEK0kARSQgghhBBCCNFCEkgJ0QpvvvkmCQkJmEwm0tPTWbdu3c8uP3/+fLp3747ZbCYiIoI77riDoqIi9/vvvPMOgwYNIiAggICAAEaOHMnGjRs9PsNut/Poo4+SkJCAl5cXiYmJPPnkkzidzouyj+Ly09bH3aJFi8jIyMDf3x9vb2969OjBhx9+eMHrFVef9jj2nn32WXr37o2vry+hoaGMHz+e/fv3X5T9E5en9jrn1Xv22WdRFIX77ruvrXZJXG1UIUSLLFy4UNXr9eo777yj7tmzR509e7bq7e2tHj16tMnl161bp2o0GvVvf/ubevjwYXXdunVqWlqaOn78ePcyt9xyi/rGG2+o27ZtU/fu3avecccdqsViUXNyctzLPP3002pQUJC6ePFi9ciRI+qnn36q+vj4qK+88spF32fR/i7Gcbdq1Sp10aJF6p49e9RDhw6pr7zyiqrVatWlS5e2er3i6tNex94111yjzp07V929e7e6fft2ddy4cWpsbKxaUVFx0fdZtL/2Ou7qbdy4UY2Pj1e7deumzp49+2LtprjCSSAlRAv16dNHnTlzpsdrqamp6kMPPdTk8i+88IKamJjo8dqrr76qRkdHN7sOu92u+vr6qvPmzXO/Nm7cOHX69Okey02YMEG99dZbW7oL4gp0KY47VVXVnj17qo8++mir1yuuPu117J0tPz9fBdQ1a9ac55aLK1l7Hnfl5eVqSkqKunz5cnXIkCESSIlmSWqfEC1QW1vLli1bGD16tMfro0eP5rvvvmvyd/r3709OTg7//e9/UVWVU6dO8dlnnzFu3Lhm11NVVYXNZiMwMND92sCBA1mxYgUHDhwAYMeOHaxfv55rr722DfZMXM4uxXGnqiorVqxg//79DB48uNXrFVeX9jr2mlJaWgrgcV4UV6f2Pu7uvfdexo0bx8iRI9tmh8RVS9feGyDElaSwsBCHw0FYWJjH62FhYeTl5TX5O/3792f+/PlMmjSJmpoa7HY7N9xwA6+99lqz63nooYeIioryOIk/+OCDlJaWkpqailarxeFw8Oc//5nJkye3zc6Jy9bFPO5KS0uJiorCarWi1Wp58803GTVqVKvXK64u7XXsnU1VVebMmcPAgQPp0qVL2+ycuGy153G3cOFCtm7dyqZNm9p+x8RVR3qkhGgFRVE8nquq2ui1env27OF3v/sdjz32GFu2bGHp0qUcOXKEmTNnNrn8888/z4IFC1i0aBEmk8n9+scff8xHH33Ev/71L7Zu3cq8efN48cUXmTdvXtvtmLisXYzjztfXl+3bt7Np0yb+/Oc/M2fOHFavXt3q9YqrU3sde/VmzZrFzp07WbBgQZvsj7gyXOrj7vjx48yePZuPPvrI4/orRLPaJaFQiCuU1WpVtVqtumjRIo/Xf/e736mDBw9u8nduvfVW9eabb/Z4bd26dSqgnjx50uP1F154QbVYLOqmTZsafU50dLT6+uuve7z21FNPqR07dmzNrogryMU+7hqaMWOGOnr06FavV1xd2uvYa2jWrFlqdHS0evjw4VbsgbgStddx98UXX6iAqtVq3Q9AVRRF1Wq1qt1uv8A9E1cb6ZESogUMBgPp6eksX77c4/Xly5fTv3//Jn+nqqoKjcbzT02r1QKu1rV6L7zwAk899RRLly4lIyPjvD9Hyp9f/S7mcXc2VVWxWq2tXq+4urTXsVf/fNasWSxatIiVK1eSkJDQ2t0QV5j2Ou5GjBjBrl272L59u/uRkZHBlClT2L59u/vzhHBrvxhOiCtTfUnW9957T92zZ4963333qd7e3mp2draqqqr60EMPqVOnTnUvP3fuXFWn06lvvvmmmpWVpa5fv17NyMhQ+/Tp417mueeeUw0Gg/rZZ5+pubm57kd5ebl7mWnTpqlRUVHu8ueLFi1Sg4OD1QceeODS7bxoNxfjuHvmmWfUZcuWqVlZWerevXvVl156SdXpdOo777xz3usVV7/2Ovbuvvtu1WKxqKtXr/Y4L1ZVVV26nRftpr2Ou7NJ1T7xcySQEqIV3njjDTUuLk41GAxqr169PMrxTps2TR0yZIjH8q+++qrauXNn1cvLS42IiFCnTJniMUdUXFycCjR6PP744+5lysrK1NmzZ6uxsbGqyWRSExMT1UceeUS1Wq0Xe3fFZaKtj7tHHnlETU5OVk0mkxoQEKBmZmaqCxcubNF6xf+G9jj2mjonAurcuXMv5q6Ky0h7nfMakkBK/BxFVX+mv1MIIYQQQgghRCMyRkoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghLrHa2lqSk5PZsGFDm37u4sWL6dmzJ06ns00/VwghRGMSSAkhhLggt99+O4qiNHocOnSovTftsvX2228TFxfHgAED3K8pisKXX37ZaNnbb7+d8ePHn9fnXnfddSiKwr/+9a822lIhhBDNkUBKCCHEBRszZgy5ubkej4SEhEbL1dbWtsPWXX5ee+017rzzzovy2XfccQevvfbaRflsIYQQZ0ggJYQQ4oIZjUbCw8M9HlqtlqFDhzJr1izmzJlDcHAwo0aNAmDPnj1ce+21+Pj4EBYWxtSpUyksLHR/XmVlJbfddhs+Pj5ERETw0ksvMXToUO677z73Mk314Pj7+/PBBx+4n584cYJJkyYREBBAUFAQN954I9nZ2e7363t7XnzxRSIiIggKCuLee+/FZrO5l7FarTzwwAPExMRgNBpJSUnhvffeQ1VVkpOTefHFFz22Yffu3Wg0GrKyspr8rrZu3cqhQ4cYN25cC79lyM7ObrL3b+jQoe5lbrjhBjZu3Mjhw4db/PlCCCHOnwRSQgghLqp58+ah0+nYsGED//jHP8jNzWXIkCH06NGDzZs3s3TpUk6dOsXEiRPdv3P//fezatUqvvjiC5YtW8bq1avZsmVLi9ZbVVXFsGHD8PHxYe3ataxfvx4fHx/GjBnj0TO2atUqsrKyWLVqFfPmzeODDz7wCMZuu+02Fi5cyKuvvsrevXv5+9//jo+PD4qiMH36dObOneux3vfff59BgwaRlJTU5HatXbuWDh064Ofn16L9AYiJifHo9du2bRtBQUEMHjzYvUxcXByhoaGsW7euxZ8vhBDi/OnaewOEEEJc+RYvXoyPj4/7+dixY/n0008BSE5O5vnnn3e/99hjj9GrVy+eeeYZ92vvv/8+MTExHDhwgMjISN577z3++c9/unuw5s2bR3R0dIu2aeHChWg0Gt59910URQFg7ty5+Pv7s3r1akaPHg1AQEAAr7/+OlqtltTUVMaNG8eKFSu46667OHDgAJ988gnLly9n5MiRACQmJrrXcccdd/DYY4+xceNG+vTpg81m46OPPuKFF15odruys7OJjIxs8r3Jkyej1Wo9XrNare7eK61WS3h4OAA1NTWMHz+ezMxMnnjiCY/fiYqK8uh5E0II0fYkkBJCCHHBhg0bxltvveV+7u3t7f53RkaGx7Jbtmxh1apVHoFXvaysLKqrq6mtrSUzM9P9emBgIB07dmzRNm3ZsoVDhw7h6+vr8XpNTY1H2l1aWppH8BIREcGuXbsA2L59O1qtliFDhjS5joiICMaNG8f7779Pnz59WLx4MTU1Nfzyl79sdruqq6sxmUxNvvfyyy+7A7Z6Dz74IA6Ho9GyM2bMoLy8nOXLl6PReCaYeHl5UVVV1ew2CCGEuHASSAkhhLhg3t7eJCcnN/teQ06nk+uvv57nnnuu0bIREREcPHjwvNapKAqqqnq81nBsk9PpJD09nfnz5zf63ZCQEPe/9Xp9o8+tLx/u5eV1zu248847mTp1Ki+//DJz585l0qRJmM3mZpcPDg52B2pnCw8Pb/Q9+vr6UlJS4vHa008/zdKlS9m4cWOjQBGguLjYYx+FEEK0PQmkhBBCXFK9evXi888/Jz4+Hp2u8WUoOTkZvV7PDz/8QGxsLACnT5/mwIEDHj1DISEh5Obmup8fPHjQoxemV69efPzxx4SGhrZqPBJA165dcTqdrFmzplFPUb1rr70Wb29v3nrrLZYsWcLatWt/9jN79uzJW2+9haqq7pTDlvj888958sknWbJkSZPjsOp73Hr27NnizxZCCHH+pNiEEEKIS+ree++luLiYyZMnu6vLLVu2jOnTp+NwOPDx8WHGjBncf//9rFixgt27d3P77bc3Sl8bPnw4r7/+Olu3bmXz5s3MnDnTo3dpypQpBAcHc+ONN7Ju3TqOHDnCmjVrmD17Njk5Oee1rfHx8UybNo3p06fz5ZdfcuTIEVavXs0nn3ziXkar1XL77bfz8MMPk5yc7JGS2JRhw4ZRWVnJTz/91IJvzWX37t3cdtttPPjgg6SlpZGXl0deXh7FxcXuZX744QeMRuM5t0MIIcSFkUBKCCHEJRUZGcmGDRtwOBxcc801dOnShdmzZ2OxWNzB0gsvvMDgwYO54YYbGDlyJAMHDiQ9Pd3jc1566SViYmIYPHgwt9xyC3/4wx88UurMZjNr164lNjaWCRMm0KlTJ6ZPn051dXWLeqjeeustbr75Zu655x5SU1O56667qKys9FhmxowZ1NbWMn369HN+XlBQEBMmTGgy5fBcNm/eTFVVFU8//TQRERHux4QJE9zLLFiwgClTpvxseqEQQogLp6hnJ5gLIYQQl6GhQ4fSo0cPXnnllfbelEY2bNjA0KFDycnJISws7JzL79q1i5EjRzZZDONCFBQUkJqayubNm5ucEFkIIUTbkR4pIYQQopWsViuHDh3ij3/8IxMnTjyvIApcY6+ef/75Ni9RfuTIEd58800JooQQ4hKQYhNCCCFEKy1YsIAZM2bQo0cPPvzwwxb97rRp09p8e/r06UOfPn3a/HOFEEI0Jql9QgghhBBCCNFCktonhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC30/wHG+7bFMIkjUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyDUlEQVR4nOydeZxcVZn+n1t7V/W+dyedpLMHsrElbLLI4gajMrihM4I66oiOgKMj48xvcGaEcWcUcVxRQRRFUFT2PUAgIZB9TzpJJ+l976qu/f7+uPc999StW1t3VVd15/1+PvnQdFdX3a66955znvO8z6uoqqqCYRiGYRiGYRiGYRiGYZhJYyv2ATAMwzAMwzAMwzAMwzDMTIdFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKOIp9AKVGPB7HyZMnUVFRAUVRin04DMMwDMMwDMMwDMMwTJFQVRVjY2NobW2FzZbeq8Yim4mTJ0+ira2t2IfBMAzDMAzDMAzDMAzDlAidnZ2YO3du2sewyGaioqICgPbmVVZWFvloGIZhGIZhGIZhGIZhmGIxOjqKtrY2oRelg0U2E1QiWllZySIbwzAMwzAMwzAMwzAMk1WkGDc+YBiGYRiGYRiGYRiGYZgpwiIbwzAMwzAMwzAMwzAMw0wRFtkYhmEYhmEYhmEYhmEYZoqwyMYwDMMwDMMwDMMwDMMwU4RFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKsMjGMAzDMAzDMAzDMAzDMFOERTaGYRiGYRiGYRiGYRiGmSIssjEMwzAMwzA5EY7G8Y/3bcEvXzlS7ENhGIZhGIYpGVhkYxiGYRiGYXJi2/FhPLazG9975kCxD4VhGIZhGKZkYJGNYRiGYRiGyYkhfxgAMOAPYyIcK/LRMAzDMAzDlAYssjEMwzAMwzA5MTwREV+fGJ4o4pEwDMMwDMOUDiyyMQzDMAzDMDkxEjBEtuNDgSIeCcMwDMMwTOnAIhvDMAzDMAyTE8MTYfE1O9kYhmEYhmE0WGRjGIZhGIZhcmI4wcnGIhvDMAzDMAzAIhvDMAzDMAyTIwmZbCyyMQzDMAzDAGCRjWEYhmEYhskROZONy0UZhmEYhmE0WGRjGIZhGIZhckLOZDM3PojH1ek+HIZhGIZhmJKARTaGYRiGYRgmJ+RMtt6xEELRGADgk796HZd++3lMhGPFOjSGYRiGYZiiwSIbwzAMwzAMkxNyuaiqAl3DQQz5w3hydw+ODgRwqG+8iEfHMAzDMAxTHFhkYxiGYRiGYbImEotjLBQFANT6XAC0XLY3O4fEYwb9YcvfZRiGYRiGmc2wyMYwDMMwDMNkzajUWfS0lkoAWi7blqOGyDYUYJGNYRiGYZhTDxbZGIZhGIZhmKwZ1kW2So8D8+q8AIATQxN44+iweAw72RiGYRiGORWZUSLbiRMn8JGPfAR1dXXwer1Yu3YttmzZIn6uqipuu+02tLa2oqysDJdccgl27dpVxCNmGIZhGIaZXVDTg2qvC3OqywAARwcD2No5LB4zxCIbwzAMwzCnIDNGZBsaGsIFF1wAp9OJxx57DLt378a3v/1tVFdXi8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGyseAfOMAzDMAwzixjWS0GrvU7MrdFEthf292EiYnQUHeRyUYZhGIZhTkEcxT6AbPn617+OtrY23HPPPeJ7CxYsEF+rqoo777wTX/nKV3DNNdcAAH75y1+iqakJ999/Pz71qU9N9yEzDMMwDMPMOsjJVlVmiGzDUrdRABjyR5J+j2EYhmEYZrYzY5xsjzzyCM4++2y8733vQ2NjI8444wz85Cc/ET/v6OhAd3c3rrzySvE9t9uNiy++GK+88koxDplhGIZhGGbWQZls1V4X5tZ4E362sMEHgDPZGIZhGIY5NZkxItvhw4fxwx/+EEuWLMETTzyBT3/60/inf/on/OpXvwIAdHd3AwCampoSfq+pqUn8zIpQKITR0dGEfwzDMAzDMIw1I1QuWuZEQ7kbLrsxnbxihTYP4+6iDMMwDMOciswYkS0ej+PMM8/E7bffjjPOOAOf+tSn8A//8A/44Q9/mPA4RVES/l9V1aTvydxxxx2oqqoS/9ra2gpy/AzDMAzDMLMBw8nmhM2moKXaAwBQFODS5Y0AWGRjGIZhGObUZMaIbC0tLTjttNMSvrdixQocO3YMANDc3AwASa613t7eJHebzK233oqRkRHxr7OzM89HzjAMwzAMM3uQM9kAiFy2ZU0VaKvVykeH/BGoqlqcA2QYhmEYhikSM0Zku+CCC7Bv376E7+3fvx/z588HALS3t6O5uRlPPfWU+Hk4HMYLL7yA888/P+Xzut1uVFZWJvxjGIZhGIZhrJEz2QBgbrUmrJ0xrwa1+vfCsTj84Zj1EzAMwzAMw8xSZkx30Ztvvhnnn38+br/9drz//e/Hpk2b8OMf/xg//vGPAWhlojfddBNuv/12LFmyBEuWLMHtt98Or9eL6667rshHzzAMwzAMMzuQM9kA4IYLF2B4IoxPX7wQZS47PE4bgpE4hvxhlLtnzFSTYRiGYRhmysyYmc8555yDhx9+GLfeeiv+8z//E+3t7bjzzjvx4Q9/WDzmS1/6EiYmJvCZz3wGQ0NDWL9+PZ588klUVFQU8cgZhmEYhmFmD3ImGwAsb67Ej/7ubPHzWq8LJ0eCGPSHRfkowzAMwzDMqcCMEdkA4KqrrsJVV12V8ueKouC2227DbbfdNn0HxTAMwzAMcwpBmWwkspmp8ekiGzc/YBiGYRjmFGPGZLIxDMMwDMMwxSUWVzEapMYHLsvH1Pq07w/5WWRjGIZhGObUgkU2hmEYhmEYJivGghFQ01DqLmqmRm9+MMgiG8MwDMMwpxgssjEMwzAMwzBZQaWiPpcdLof1NFI42bhclGEYhmGYUwwW2RiGYRiGYZisMJoeWJeKaj/THG6D/si0HBPDMAzDMEypwCIbwzAMwzAMkxXDujstVakoYDjZhtnJxjAMwzDMKQaLbAzDMAzDMExWjEyk7ywKcCYbwzAMwzCnLiyyMQzDMAzDMFlBmWzpRDZzJtvLB/tx/T2b0DkYKPwBMgzDMAzDFBEW2RiGYRiGYZisIJGtqix1JpvhZNMe+8PnD+H5fX14bGdX4Q+QYRiGYRimiLDIxjAMwzAMw2TF8ITmTsvWyRaNxfHmsSHtdwPcCIFhGIZhmNkNi2wMwzAMwzBMVoxQuWiaxgckwMXiKl4/OgR/OKb97gSLbAzDMAzDzG5YZGMYhmEYhmGyYjiLxgcepx0+lx0A8PTuHvH90WC0sAfHMAzDMAxTZFhkYxiGYRiGYbJiWG9mkC6TDQBq9JLRZ/b2iu+xk41hGIZhmNkOi2wMwzAMwzBMVmTTXRQwmh909PvF91hkYxiGYRhmtsMiG8MwDMMwDJMVvWMhAEBDhTvt48jJJjPKIhvDMAzDMLMcFtkYhmEYhmGYjIyHohgPablqTZWetI+tlZxuboc23WSRjWEYhmGY2Q6LbAzDMAzDMExGekaDAIBytwPlbkfax8pOtvMW1QHQykVVVS3cATIMwzAMwxQZFtkYhmEYhmGYjPSMaCJbU2X6UlEAqPUaIttblzcCAKJxFYFwrDAHxzAMwzAMUwKwyMYwDMMwDMNkpGeMRLb0paJAopPtgsX1cNgUAMBokEtGGYZhGIaZvbDIxjAMwzAMw2Ske0RretCchchWq4tsNV4nFtb7UFWmZbRxh1GGYRiGYWYzLLIxDMMwDMMwGaFMtsYsRLaz5tdgTnUZPrx+PhRFMUS2AItsDMMwDMPMXtKn1jIMwzAMwzAMDJGtOYtMtqZKD17+8lvF/1foIttoMFqYg2MYhmEYhikB2MnGMAzDMAzDZIREtmwy2cxwuSjDMAzDMKcCLLIxDMMwDMMwGekZ1TLZmqpYZGMYhmEYhrGCRTaGYRiGYRgmLfG4it4cuouaqfRoCSUssjEMwzAMM5thkY1hGIZhGIZJy2AgjEhMBQA0VmTOZDNDTrZRFtkYhmEYhpnFsMjGMAzDMAzDpIXy2OrLXXDac58+ssjGMAzDMMypAItsDMMwDMMwTFqm0vQAACo5k41hGIZhmFMAFtkYhmEYhmGYtIimB5MU2YSTLcgiG8MwDMMwsxcW2RiGYRiGYZi0dI9MzcnG3UUZhmEYhjkVYJGNYRiGYRiGSYvRWTT3pgcAi2wMwzAMw5wasMjGMAzDMAzDpIWcbM2TzWTzUOODaN6OiWEYhmEYptRgkY1hGIZhGIZJS74y2SYiMYSj8bwdF8MwDMMwTCnBIhvDMAzDMEyeUFUVm48MzrqyyKl2F63wOKAo2tez7b1hGIZhGIYhWGRjGIZhGIbJE68eHsT7/m8jvvLwjmIfSt4IR+MY8IcBTD6TzWZTUO52AGCRjWEYhmGY2QuLbAzDMAzDMHniQO8YAOD40ESRjyR/UNMDl92GWp9r0s9DJaOjQRbZGIZhGIaZncxYke2OO+6Aoii46aabxPdUVcVtt92G1tZWlJWV4ZJLLsGuXbuKd5AMwzAMw5xS9I9p2WUT4ViRjyR/UB5bY6UbCtV8TgLuMMowDMMwzGxnRopsmzdvxo9//GOsXr064fvf+MY38J3vfAd33XUXNm/ejObmZlxxxRUYGxsr0pEyDMMwDHMq0TeuCVL+8OzpojnVPDbC6DDKIhvDMAzDMLOTGSeyjY+P48Mf/jB+8pOfoKamRnxfVVXceeed+MpXvoJrrrkGK1euxC9/+UsEAgHcf//9RTxihmEYhmFOFfrGtOyy2eVk00S25imKbKJclEU2hmEYhmFmKTNOZLvxxhvxrne9C5dffnnC9zs6OtDd3Y0rr7xSfM/tduPiiy/GK6+8kvL5QqEQRkdHE/4xDMMwDMNMhn7dyRaYRSJbr14C21AxuaYHBJeLMgzDMAwz25lRIttvf/tbvPHGG7jjjjuSftbd3Q0AaGpqSvh+U1OT+JkVd9xxB6qqqsS/tra2/B40wzAMwzCnDH2UyRaJIR5Xi3w0+WFwXHPn1ZdPvukBAFR5DZFtJBDBlx7chlcO9U/5+BiGYRiGYUqFGSOydXZ24vOf/zzuu+8+eDypyxXMgbyqqqYN6b311lsxMjIi/nV2dubtmBmGYRiGOXVQVVU42QAgGJ0dbrYBv/Y31fqm5mSr9DgAAKMTUfzs5Q787vXj+OHzh6Z8fAzDMAzDMKWCo9gHkC1btmxBb28vzjrrLPG9WCyGF198EXfddRf27dsHQHO0tbS0iMf09vYmudtk3G433O6pTRoZhmEYhmHGQ1GEonHx/4FwDF7XjJlqpWTArznZ6qbqZJPKRV/tGADA+WwMwzAMw8wuZoyT7bLLLsOOHTuwdetW8e/ss8/Ghz/8YWzduhULFy5Ec3MznnrqKfE74XAYL7zwAs4///wiHjnDMAzDMKcCVCpKzJbmBwN6uWidb2oiW6Uusr3WMYCjAwEAmjDJMAzDMAwzW5gx26sVFRVYuXJlwvd8Ph/q6urE92+66SbcfvvtWLJkCZYsWYLbb78dXq8X1113XTEOmWEYhmGYU4h+XYwiZkvzg0HhZJtiuagusg0FDPeaPzQ73iOGYRiGYRhgBols2fClL30JExMT+MxnPoOhoSGsX78eTz75JCoqKop9aAzDMAzDzHLkPDYACIRnvksrGIkJt1ntFJ1sVC4q42cnG8MwDMMws4gZLbI9//zzCf+vKApuu+023HbbbUU5HoZhGIZhTl1mY7koudicdkU0LpgsssjmdtgQisYxHo5mbFLFMAzDMAwzU5gxmWwMwzAMwzCljNnJ5p8FIhvlsdX6XFMWwio9hsh21epWAICqzp6yWoZhGIZhGBbZGIZhGIZh8sBsLBcd8Gt/U61v6p3Yq8qcIJ3uQ+vaxNdcMsowDMMwzGxhRpeLMgzDMAzDlAqzuVy0vnxqeWwA4HLYcOs7lmNkIoKz5teg3OXAWCiK8VAUjVN+doZhGIZhmOLDIhvDMAzDMEwe6NNLKz1OG4KR+Kwog5TLRfPBJy9aJL72uTWRjTuMMgzDMAwzW+ByUYZhGIZhmDzQrzvZ5tV6AQATkZkvHg3oTra6PJSLmvG57QAgupcyDMMwDMPMdFhkYxiGYRiGmSKqqqJvPFFkmxWZbPrfVJeHclEz5W6toIJFNoZhGIZhZgsssjEMwzAMw0yRsVAU4WgcANAmRLaZ72QbFE62AohsHk1k48YHDMMwDMPMFlhkYxiGYRiGmSLU9KDc7RCC1GxofNDvz28mm4zPxU42hmEYhmFmFyyyMQzDMAzDTBHKY2uocKNMF49mh5ONykXzn8lG5aLsZGMYhmEYZrbAIhvDMAzDMMwU6de7cNaXu+B1aYH+s0Fko+6ihSgX9XEmG8MwDMMwswwW2RiGYRiGYaZI31gQAFBf7pZEtpktHk2EY0IoLETjAxbZGIZhGIaZbbDIxjAMwzAMM0XIydZQ4UaZc3Y42Qb0UlGX3SZKO/NJBTc+YBiGYRhmlsEiG8MwDMMwzBTpH9cEKc3JpolHM73xgegsWu6Coih5f36f7vjzh2b2+8QwDMMwDEOwyMYwDMMwDDNF+hIaH+hOtsjMdmhRHlshOosCXC7KMAzDMMzsg0U2hmEYhmGYKZLoZNNEtpnuZBvwF1ZkK2eRjWEYhmGYWQaLbAzDMAzDMFNkNnYXHZCEw0JATjbOZGMYhmEYZraQ/xRbhmEYhmGYU4h4XBXlovXlbrid2h7mRCQGVVULkmc2HQwW2snmYScbwzAMwzCzC3ayMQzDMAzDTIGesSDCsTgcNgUtVR749MYHqgoEI/EiH93kGZAaHxSCcnayMQzDMAwzy2CRjWEYhmEYZgp09PsBAG21XjjsNpQ57eJngfDMFZCoXLSuwI0PuLsowzAMwzCzBRbZmJLhpQP96BkNFvswGIZhGCYnjg4EAADz67wAAJtNgUcvGZ3JuWxULlrnK0wmW7nu+AvH4ghFZ+77xDAMwzAMQ7DIxpQE248P4yM/ew1f+N22Yh8KwzAMw+TEkQHNybagzie+59UFpInIzBWPqJlDbYHKRX1uw/HHbjaGYRiGYWYDLLIxJQGV2pwcnijykTAMwzBMbhzRxzBysgEQJaMzOW+MnGz1BXKyOew24fibye8TwzAMwzAMwSIbUxIM6RN5/wzOrmEYhmFOTahcdEG97GTTRLaJGVouGghHhQuvUE42wGh+wB1GGYZhGIaZDbDIxpQEg4EIACDA5SIMwzDMDEJV1RTloprINlMz2Qb0UlGXwwafy57h0ZPHxx1GGYZhGIaZRbDIxpQEspNNVdUiHw3DMAzDZEfPaAjBSBx2m4I51WXi+2Ukss3QTDZy582tKYOiKAV7HZ+eXTfGIhvDMAzDMLMAFtmYkmAwoIlscRUIReNFPhqGYRiGyQ5ysc2pLoPLYUyrROODGRqD0KH/Xe2SO68QlLOTjWEYhmGYWQSLbExJQE42gCfaDMMwzMzhKJWK1ieKUWUzvFyUmjmY/658U+5hkY1hGIZhmNkDi2xMSTAoiWwzdUHCMAzDnHocoaYHUmdRAPA6WWTLBp9ofDAz3yeGYRiGYRgZFtmYkmAowCIbwzAMM/MgMWq+qaySxKOZ2l10+spFNTFyPMhONoZhGIZhZj4ssjFFR1VVDPkj4v/9MzS/hmEYhjn1SOVkm8nlotFYHJ2D+t9V783w6KlBjQ947GcYhmEYZjbAIhtTdALhGMIxo9lBgEtGGIZhmBmAqqopM9moXHQiMvPEo5PDQURiKlwOG1qryjL/whQwykVn3vvEMAzDMAxjhkU2pujIeWwA72YzzHShqiqe2dOD3tFgsQ+FYWYkfWMhBMIx2BRgbk2iGEVONv8M3DiiUtH5tV7YbEpBX6uCGx8wDMMwDDOLYJGNKTpyHhsABFhkY5hp4dm9vfj4L1/Hv/1xZ7EPhWFmJFQq2lpdBrfDnvAzr14GORPLRaer6QFgONlYZGMYhmEYZjbAIhtTdJKcbDNw159hZiKbjgwCALZ2Dhf3QBhmhnKESkUtmgN4XTO3XLRDF9nap1FkG+PGBwzDMAzDzAJmjMh2xx134JxzzkFFRQUaGxvxnve8B/v27Ut4jKqquO2229Da2oqysjJccskl2LVrV5GOmMkWdrIxTHHYfXIUANA7FsJoMJLh0QzDmDEcX8nNAWZy44N04mG+oe6iHBXBMAzDMMxsYMaIbC+88AJuvPFGvPrqq3jqqacQjUZx5ZVXwu/3i8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGysiEfOZGLQn7i4Zycbw+TO60cGcdX3N2DL0cGsHq+qqhDZAOBg73ihDo1hZi3HhyYAAG01ySKbcLLNRJEtjXiYb0R3UR77GYZhGKag/OLlDjy5q7vYhzHrmTEi2+OPP47rr78ep59+OtasWYN77rkHx44dw5YtWwBoC8Y777wTX/nKV3DNNddg5cqV+OUvf4lAIID777+/yEfPpGPIz042hpkqf9x6AjtPjOL2R/dm9fie0RAGpGuPRTaGyZ0BfwgA0FDhTvqZd4Y62SKxODp18XA6ykXLPdxdlGEYhmEKzYGeMdz259343G/e5PV2gZkxIpuZkZERAEBtbS0AoKOjA93d3bjyyivFY9xuNy6++GK88sorRTlGJjsG9XJRh97BzD/DFiQMUwoM6Y7QLUeHsPPESMbH7zqZ+JhDLLIxTM70j2njV315sshW5pyZjQ+OD00gFlfhcdrQVOEp+OuVc+MDhmEYhik4h/q0uX4oGseGA/1FPprZzYwU2VRVxS233IILL7wQK1euBAB0d2u2x6ampoTHNjU1iZ9ZEQqFMDo6mvCPmV7IydZSrU3mZ2JpDcMUG7mByL0bj2Z8PJWKkrjNTjaGyR1ystWVu5J+ZpSLzizxSJSK1vlg0+8PhYQaHwTCMcTiasFfj2EYhmFORTr6A+LrZ/b0FPFIZj8zUmT77Gc/i+3bt+M3v/lN0s8UJXFCqKpq0vdk7rjjDlRVVYl/bW1teT9eJj0kDsypLgMwvbvZW44OoWtkYtpej2EKhdxA5E/bTmDY1FDEzC5dZLt4aQMA4GAfi2wMkwuxuCrGrwYLJ5tXD/QPRGJQ1ZkjHnX0T1/TA8BwsgHc/IBhGIZhCsXRASPL/tm9vYjzxlbBmHEi2+c+9zk88sgjeO655zB37lzx/ebmZgBIcq319vYmudtkbr31VoyMjIh/nZ2dhTlwJiUkDszVg6Onq7TmQM8Yrv2/V/Dpe7dMy+sxTCGh66jc7UAwEsfvXz+e9vG7urRy0XefMQcA0DkYQDDCLlKGyZahQBg0P63xWTnZNPFIVbXSjJmC6Cw6DXlsAOB22Iy4CC4ZZRiGYZiCQJtoANA/HsbW48PFO5hZzowR2VRVxWc/+1k89NBDePbZZ9He3p7w8/b2djQ3N+Opp54S3wuHw3jhhRdw/vnnp3xet9uNysrKhH/M9ELdRefW6E62adrJ3nh4AKoKHB0MZH4ww5QwqqpiKKBdR9efvwAAcN9rR1PuUI1MRNA5qDk4L17SgEqPA3E1cfBlGCY9A+OasF3jdcJpT55OlTnt4uuZJB7RfaB9GjqLAloFgo9z2RiGYRimoBwd0Na882q18Z1LRgvHjBHZbrzxRtx33324//77UVFRge7ubnR3d2NiQlsoKoqCm266Cbfffjsefvhh7Ny5E9dffz28Xi+uu+66Ih89kwpVVUVZm3CyhabHTbP12DAATXBguywzkwmEYwjrTpmPnr8AFR4Hjg4E8MaxIcvH7+nSSkXnVJehyuvE4sZyAJzLxkwfP3nxMK794SsYDUaKfSiTpn+c8tiSS0UBwG5T4HZo06yZ1Pygd1T7u1r1CIfpgEpGx1OM/9s6h/HjFw8hGps5jkAm/+w4PsJCLMMwBWcmRTxky0Q4hu7RIADghgsWAACe3t1bxCOa3cwYke2HP/whRkZGcMkll6ClpUX8e+CBB8RjvvSlL+Gmm27CZz7zGZx99tk4ceIEnnzySVRUVBTxyJl0jIWiiOoCl8hkmyYn25udwwC0Up4xnrTNWPyhKJ7b1ytEplMRKhV1OWyoL3eJnLUX9vdZPp7y2E5v1Zy7LLIx083PXurA60eHsOWotRA8EyCRrd6i6QEhmh/MoFJsup/UeFP/XfnGp+fXjQetx+JbfrcVtz+6F691DE7bMTGlxcsH+3H1XS/hX/6wvdiHwjDMLOaBzcew+qtPYvOR2TXeHB3UXOpVZU6894w5sNsU7OsZQydXdBWEGSOyqapq+e/6668Xj1EUBbfddhu6uroQDAbxwgsviO6jTGlCnUW9Ljtq9Uyb6djxH/KHE0rjRgIz101xqvP9Zw/ihns244HXT908xSG95LrG64SiKLhkWSOAdCKblsd2emsVAElk4+YHzDQwHoqK3dSxFKLKTKBfLxdN5WQDjFy2meJkU1UVwxPa/aSqzDltr+sTTrbk8+FIvx+H+rTxesCfvqELM3t5cpeWucyxBkwpMx6KcnXMDOfF/f0YC0axIcUceqZidA73otrrwlnzawAAT+zqTvdrzCSZMSIbMzuhzmw1XpfY8Z+OUgBz0OPIBItsM5XDujC0r3u0yEdSPMzOk4uW1AMAth8fEW4bIh5XseO4JrKdZnay9bDIxhSew5KYOzbJctFbHtiK9//fxqKWDw7o15ZVZ1GiTB/XAjOka+ZExCg9t2rmUCjqfNp7+JftJ5PKdJ7bZ5SzcKngqctLB/sBYEaXmDOzm+6RIM7+76fwud+8WexDKRlC0Rhe2N83o6pNqLqJNgNnC0f0PDZqanTV6hYAwF3PHUTv2Oz6W0sBFtmYokLiQK3PJXayQ9E4YgXeBXpTz2Mjhid4d3ymQs6GE0MTRT6S4mEW2RorPTitRRPQNhwwduK2dQ7jvXe/jAO947ApwKo5mpNtSaNWUt/R7+fMI6bgHEoQ2XIXTWJxFQ9vPYFNRwaL2riGGh/UpRGjRLnoDHGyDeuubqddgc9lz/Do/PHpixfCYVPwl+1d+NXGowk/e26fcQ8rJZFtU8cg/vfpAwWfrzBA18iEcDNy5QFTqhzoHUMwEp91ZYZT4euP7cNHf74Jn7z3dUSynF9GY3H85MXD2N8zVuCjs2ZcF/K7R0MZHllcekaDeOf/bsBvNx3L6vHkZJtfp4lsH1o3D6e1VGI4EMF//GlXwY7zVIVFNqaoUGfRGp/hZAMKv+v/pikQnp1sMxdyQ54cPnV3YajsulZa7F+8TM9l0xeov3zlCN5z98vYdnwE5W4H7rhmFZqrPAC0PESP04ZwLI7OU1isZKaHQ71GuddknGyjExGQ2WmwiOWDmRofAEaHUasyyFKEBPuqMhcURZm21z17QS1ufecKAMB//3W3aNoSCEfx6uEB8bhSeR9D0Rg+8+st+O7T+/HigdlVUlSKvHSgX3w9xuV4TIni1xu3DPjDLL5DGyN//Zq2afL8vj78y4Pbs7p2/7qjC197dA/+8b4tRWlAQONMz0hpryue2dOL3V2j+J/H9yKYRe7rkYHEzuFOuw3ffN9qOGwKHtvZjb9u70r5u/5QVDQqZLKDRTamqAhxwOuE22GD3aZN6guZXxOPq9imNz2gZgvDvDM6Y6GF7onhiVnZDSgbBgMkVhsZSpfozQ9ePNCP7ceH8d9/3Q1VBd69thXPfuFifOCceeKxNpuChfXc/ICZHmQnW6qg+3QMSRO9gfHi7TT36+NXusYHlXqu2b89vBNff3xvUvl2qUFjYY13+vLYiI9dsADvWtWCSEzFjb9+A8OBMF45OJBQZlQqTrbHd3aLTL6jOWSE9YwG8dMNh6d1Y6+j349//v22hOtupvHyQUNkU9WZneWYT1RV5TKvEoIMArG4mjBOnarc83IHQtE45lSXwW5T8NCbJ/D1x/dm/D2qNjrU5y9Ksxual5R6uSjNf4YDkaxy1Y70a85/crIBWjbzZy5ZBAD4f3/aieND1tUB1/3kVVz6redZaMsBFtmYojJIZW4+bdd8OnLZDvf7MRqMwuO0YX17LQB2ss1UQtGYmGyPh6IYPUUn3sMW3QDPnF+DcrcDg/4wbrhnMyIxFW8/vRl3fmAtGis9Sc+xSM9lOzyDF2KMNT947iDefueLRXV9yeRSLhoIR/H3P9+EX208Ir43LN2vixmE3z+W2cn2j5cswtKmcoyFovjh84dw9fdfKmmHA4ls1UUQ2RRFwdevXY2F9T50jQTxL3/Yjmf1PDZ9/w3jodIou73vVaOk9cRw9u7fHzx3EP/91z0Jv19ofrXxCB7cchz3bpy+18wnqqripYMDCd/jXDaN/33mANZ97Rk8s6en2IfCINEgUOobKoVmLBgRpf//ftVp+PrfrgYA/OjFwxm7We44MSK+/vVr2ZVC5hPKZBuZiGTlECsW8vznNxlKRifCMSEatksiGwDc+NbFWN5cgQF/GB/88atJY1rvaBDbjo9gKBDBVt2kwmSGRTamqBhONk0c8E1DJzYqFV09pxp1ugOBRbaZiVk0OFVz2eQGIoTTbsMFi+sAaANxU6Ubd1yzKmUJWLsehEp2cmb28NvNx7C3eyzBDVIsorG42E0FkFEYf/ngAF7c34efvdQhvifvpA6OF0dkU1UVA/7MjQ/OnFeDxz9/EX7y92fDYVPQNRIs6d1xcl9Ue6ev6YFMuduB733oDDjtCp7Y1YPf612jz1+kNXMpBSfb3u5RbD5iRE4cz2HcIafwdDqGj+ph1ydzEANLiX09Y+gfD6HMaXSh5zmbxmuHNZePLEowxUOOuukbO7VFtl+/dgxjwSgWN5bjytOacO1Zc8U8sytNGWY0Fseuk8b5/PjOrmkVLFVVTRhnuku4ZFQW2V49PJh2k/zooDa3r/Q4kjbR3A47fnHDOiyo8+L40AQ++OONCeOFfH/Z212cnLyZCItsTFER4oA+cfK6C+9kIxX+jHnVqNJLeThId2YyYFpg5+IoIDYeGsB//GnnjOn+Z4VofOBLHDgvWdYovv72+9am7RZIGQ2H+1hkm01EY3F06XmFx4rYJIA4PjSBsBR+nCmTjXa8ZTFNLu8vlpPNH44hGNH+jro05aKAVo59xWlNaNXjCUp5M4DEi2KUixIr51ThX96+HAAQialwO2y4fIV2LysFkY1caPQe5TLudOqlONO5mXFUf62eEhZ300F5bOvaa0WTERbZNOiz5ciT0sAvOW1PZZEtGImJjbFPX7wINt2KTPEJo2mu30N9fgQjcfhcdqyZW4VITMXvXz9e+IPWmYjEIJvNS3lTjMpF3Q5Nznlgc2fKx9LmZnu9z3KzvbnKg9988lzMr/Oic3ACn/+t0SF354lR8fWertGk32WsYZGNKSpyd1GgcE620WAE33piH67+/ku4X7fUrm2rRpW+W8/dRWcm5gU27byMBCK4/p5NeOiNzAPzt57ch19uPIqn9/QW5BingyFqIGJyn1y1ugVvXd6I/7j6NFy4pD7tc7TrmWzsZJtd9IyFENVnjEelz1ZVVRwfCkx7jqE5FypTuSi5hMZCUYSi2rgwVAIiG01uy5x20Rk7E5QBmirzpBQgd3mxnGzExy5ox0V6ruT5i+pESW6xGx+MBSN4+I0TAIAbL10MIHsnWzQWFw16yF1WaOJxVTSzSeceKWXIgfuWJfViYzTdIv1UIRiJoUsXADgnqTSYiHC5KKA5n/rGQqgvd+Hda1vF9ys92liZTiTffnwYAHD6nCp85Nz5AID7Nx2dtmYn5pzYUt6cIKPKB89pAwA8uOV4QoapDM3/5ptKRWVaqsrwq4+tAwBsPjIk5gMJTrYudrJlC4tsTFExl7mVUSZbnl1F9248irueO4gdJ0agqprAdqE0YeNd0ZmJOfScHAV/3dGF5/f14T8e2ZXR+UAL3lJe+GZiyCKTDQAqPE78/PpzcMMF7RmfgzIaekZDJeEWYfKD7Jo6Ii3sf7OpExd+/TncO43ZUIAhsrXqnW3HQhmcbNJ1SW6NkRJofECh95lcbDJza0rfyTZUxEw2GZtNwfc+uBY3Xb4E/+/q01GuC5n5nhvkymM7uuEPx7CwwYf3na0tbAb94ayc0F0jQZHHN+gPT8u8o2csKBZdfeMhRGLWC7BShkpzz1tUx3M2CW2TRPt6iJ1sJYE8dzqVnWxH9GYwy5sr4bQbUkM21+9OXdBZNacKV61uRaXHgc7BCbxyaCDl7+STMdP8t5TLRWkecu1ZbWiscGPAH8aL+627XdMG+oL61CIboIlwS/SM5tc6tPdcLt891DcuNjyZ9LDIxhSVIVNXRJ8usgXyHG5MN/xrz5qL1/71MvzxxgtQ4XGiWr/hs9V+ZpKqXHSnPiCMBaN4+M0TKX8/EoujV58IUUndTMTsCJ0MVV6n+H12s80eZPH4mCSyvXxIc4dMt/X/UK92bq2dVw0geycbYFzvcuODYjVzIJdCfZo8NjNzSGQr4WysEd3VXV1WXCcboLnpbrp8KdrrfcIt6C9y4wNabFyxoglVZU7hzMhGODWXax+bBjeb/BqqOvMW/uFoXLgX51Z7RbkZi2xIyLZkJ1tpMBHmclHAcOou0GNICFEumiYmglxTq+dWocxlF1UYB3qnx0FldrKVarloXOpg21TpxvmLtAzmgxa5bIf6xrFBL7tfUOdN+rmZ8/Tn2nhoAP3jIXSNBKEoWmZqNK5Oa6boTIZFNqZoxOOqmBhQ4wNvgXarqUzi/EV1aJI6K3LpwcyGSsXmmLKOdknW5l9tPJKyJK5nNCh2grtGSnfhm44JKRsqXeZaNtDg29HPIttsQRapukeDolPWgR5twjrdi1Vysq1tqwagiWyprk9VVXFcEiZIUJNdG/1FanxAgl99Tk427frKJSh/uhEbX0V2spnx6XmtxS4XpQUMdWOek8NnahbZKIg6F1RVTVjIZ+Ko6TVLdcGYCtkh6HXb2ckmIW+GsZOtNJDXLsUam0oB4ZoylSZmun6jsTh26xt/K+dUATAqNKbrHDePMcUoF/3DluP45hN708Z5jExEhDO6xueS5hfyxoqK+187hqu+9xKOD02g1ufCW5Y0ZHz98xZqItsrhwaEs7C93oeVcyoBAHu4ZDQrWGRjisZoMCLCJatFd1HdyZbnTDbK6qLgaYJKYoZ5wjYjoVKxVfpgfHJ4ApFYHHv07jcOm4L9PePYeNjaZi5n1JycoU422sly2hVx/UwWkcvGItusweyw6RwMIByNiwYXxRPZagAAsbgqRGIzoxPRhNIN6uYpuzaGAuFpy2qRmZSTrbr0nWzDRe4umgpRLlpkkY2cmIsatHsllQBnEzfQaRbZJuFku+OxvVjz1Sextzs7B6r5NXtKuPTJClrwuhw2OO22rJww+SQUjeG2R3bhmT090/J6uSCfP0PsZCsJAuxkA2Ccm+b8L8PYYH0fP9g3jmAkjnK3Q0SYkMg2XW5Ns7t+ustF43EV//6nnfjBc4eSMmxlaD5UVeaE025DW602FnUOGvOLZ/b04l8f3oGJSAwXLK7DX//pQjRUZJ6znKuLbAd6x/H8Pq38dNWcKixv1kS2vdz8ICtYZGOKBrkSKtwOuPTOKF7R+CB/E2lVVcWiprUqUWSjG34gHEsZFsmULuRkW92miWy9YyHsPjmKcDSOCrcD79fDQH/5yhHL35dbVJ+coU42OdfQqmNQLixs0CY1h1lkmzUcH05cZB8ZCKCj3y+aIUynyDboD4vd6JVzKqE3HEvZYbTTJFzQuS6X98fi6rQtuGVI4J9sJlsxhMFsGC6RTDYzVC4aCMeK9t6NBSPCCbbYLLJlIZySk43mHZPZzNh8ZBDhWBxbjw1n9XizkDfTmh+QaEEiq+GEmR6xdVPHIH7xyhHc9udd0/J6uSC7FMeCUURnYN7ebCNBZDtFGx+oqio52Uzlop70TrbtxzXX1OmtlaIjqTBDTJOTjTZyKvQogJ5R7XMMR+P4/jMHEvLJCkH3aFCcR/TaVphzYa2cbJSpdvWaVtz7sfVoMa2BU1Hjc2FFiyao/e51rWPpytYqrGipAADsyXKT51SHRTamaIiwdqnEjUpC8pm7MugPIxSNQ1GApqpEBb/C4wTpEtkuNntGg0m7w0xxoIXu4oZyeJza7eyp3dqO82mtlbj+/AXie1ZOA9m9NhyI5FSGU0we3HIc//z7bQhFY2LiYW56MBnI2k+Lv76xEG767ZvYcnRwys/NFAcqY6Pdy6MDfuzrMaz+qXaUC8FhfVd2TnUZvC6HWDiPpshlM1+z1OnK3A26GGU5/aJcNHsnW3OVBzYFCMfiJdl5TlVV4erOx/0kn5RLHVyL1fyA3J/15W5U6Qs/o2NsZpGNunxeuFjLGJqMk41cFoNZujpI2KPjLOVOeVaQk43mhtl0J8wn9DqdgxNFy39MxVFTdipXZBQf2Wk76A/PyEYjU2XQH8ZYMApFAdpqE0W2TBE9O6U8NqJalItOz/VH95zFeiRAz2gQ8biKB7ccx7ef2o/bH91T0NeXN1/SuSHpflTnI5HNGIuozJSiX9a11wrRMluoZJQEv5VzqoTwtqdrbNo7089EWGRjisagn5oeGJP5QjjZaOe2odwNtyOxnM5uU1Dhzn7Spqoq3n3Xy3jn9zaIbCOmeIiFboVbLCKe3N0NQBsQljZV4PxFdYirwO9fP570++YctpngZgtGYviPP+3Eg1uO45k9vWKxRc1DpkK73nWIBub/e+EQ/rj1JH74/OEpPzcz/cTjqnBrUijuscEA9ncbItt0Otmo9IEckxX6rnZKJ9tg4vVIztVhfexw6JPGYix++4WTLXuRzWm3oVnPBO0swVy2sVBUZLyUmpPN7bDBrn/exWp+QOfv4kajBCqXnD3anHuLHuQ9mQYzdK0MZiksk8i2rr0WwAx0sumftc+V6GSbrhxdOQR9x4nCOlhyIRKLi3OONoq5gVfxMUfdlJowOx1QF/OWSg88zsQ1V2UZbayld7JRHhtg5INO1/lNIlt7vQ+KAkTjKgb8YbyiN4vq6CtspcfhLEU24ab3aXOQlqoyKAoQisbF2oieq91UtpsN1PyAOH1OJZY2VcCmaOf1qVwOnS0ssjFFg1wJtdJknjKl/Hl0FFGpaEu1tU2WdklGJjIPhoFwDN2jQYwFo+hNY+Nlpgd5J4fy9vb3aAshCui89qy5AIBHtp1M2nkx57Bl22H0ub29WH/703ghRavsQvLywX5xfbx+ZEjkVOTFyaZ3ghoKRDDkD+Ov27sAzNymEKc6vWMhRGIq7DZFLLKPDgQSnWzBSN7K73rHgvj0vVuw4YD1dUGiGTkmqRwjVYdRcrLRRgg5AyinbZ5eijJQBFcYCX65ND4ADFGmFHPZSLz0OG1Ji6NioyhG5mSxmh9QRzXKYwMSS4DTMR6KivGKuuX1joVy3lDMxck2FoyI1zxngXb9z7TGB4aTrUgim3Sube8cnpbXzIYTQxOIxVV4nDa06fcU7jCaHf3jIfQW6Dowi2ynohBBDktzHhuQvvFBJBYX3c5Xz60W36c1mtnBXijoHlvjdQmnes9oEK91aBUdXaPBgsYLJTjZ0sxtzOWiLocNLWITL4BoLC42dtobchfZ1rXXikiPBXVeVHqc8DjtYjN+Tzc3P8gEi2yznHs3HsH7f7QRv9l0rNiHksSgRbkodRcN5HESTU6OOdUey5/n0q1KtoJzd6viEghHMaG7CevK3WKxQ6xs1XbCrjy9GR6nDR39/qSdaBKPnHZtJDmZ5cL3gc2d6BkN4bm9vVP6GybD4zu7xddbjg4amWxT7CwKaE5Sctr84Y3jYkFWqODXUDSGHcdHSjafaqZDIlVLlQcL9aYWRwf8orMoAKgqEpoLTIUnd/Xg8V3d+MmGDsufk4umuUo7xyqFk8369cntRbvaA/6wuO8qirE7O1BEJ1su5aIAMCdLUaYY0CKm1EpFielufvDnbSfxkZ++JhbkhpMtWWTrHw+ldbfTYqfG68TcGq+Yd5g7jqYjGouLRfxQFuc8PXetzyWOebpDvKcKfdZeXWCtzDBfy7T47RsL5VTmJN+btpeQk43y2ObX+sTYzx1GMxOMxPCu723AO/53Q0GyPEk0pw2kU1FkIycbbdrKpBPJD/SMI6TnKc+XykyFk80/XcK69jo+tzEf3nhoQHyWqpr9WmEydEgiW386J5ufnGzGeC07q08MTyASU+GWxLdcqCpz4nR9HSU7C5eLklHOZcsEi2yznONDE9jUMYhDvak7lBQLw8kml4vm38lGCztz0wMil1DNcRbZSoYBfRfH7bDB57InfL4epw0LdbdBuduBy1c0AQD++ObJhOeggZIGkmzKRVVVxetHhwCkFgcKRTQWx1NSl7NdJ0fF31Cbp4UxTYx+/KJRIjrgDyMUzX+J1nee3I+r73oJf9nRlffnZgy31NyaMsyvMyZftECjMqN8uUJI8O1OcR11j+quYl1kKxdONuvXJ5FwTVu1eH66T1d6nGis1ASugWnOZIvE4uI4chXZculGOd3QIp0WQqWGb5pFth+/eBgvHezHfa8eBWDtZKsqcwrxL13JKAlelFFEgeBH+rM/D8ZNeU+ZOKYvdufVesU11z0anFFZOiRaJDc+iCT9HVuODmHlbU/gh88fsnyuv2w/iXO+9jR+siH7+IMEJ9vx4VwOvaCQW2henRfV+nvCHUYzs/HQAHpGQxjwh/HsnvxuksbjqhDBabwtZPODrZ3D+NlLHSW3SZnOyUYba/5wLCmvjvLYVs6pSsgPIyfbWCg6LRl3VCJe4XagSRen/rTtRMJjzE2Z8klHlk42UckjzUHk+QU9z4I6X855bMTfrGkFALGGAoDTWrjDaLawyDbLoXDeUgxEtXLg+AqQyZapXDTTzqiMnAXDIltxkZ0kiqIIhwigDQJ2aVB5z9o5AIA/bz8pMocmwjGxqDxrfg2A7MpFjw4ExGunEgcKxWsdgxgORFDrc6Gxwo1oXBUlq/nKUGrXHU+9ph20QpRHU9liobs1narQon9OtRfNlR64HDZE4ypUVXO3NOiTs3zdy2iRl8otY3aypSsXVVVVlJeu0UOQh/xhUdZf7XWiVh87Bv3T6xagscumQCxws4WyI0uyXDSPpeeFgES26SgXjcdV4Vx7YlcPIrG4aFQgO9kURTFKRtN8pp0mkY0WoObw+nTI10k25aIk7M2r9QpBOhyNz6jsrnHKZDOJbNG4KpzsxKuHBxCOxkV2kpkX9mljJeU+ZYMs6PaMhkqmcQSJswvqvFJmFYtsmZA3KR/N8+ZeUNqIpOu7kE62rzy8A//1l91i07dUEE62umQnG435QPLm3vYTwwCAVVLTA0C75s0N6k4OT+Bjv9iMFwsQ2ULjS7nHgWa9Wd7OE4mCkjkvNl9EY/EEd3O684fKRWsTnGxG8wMS2ai8czJ8/MJ2bPjSpXj32lbxvSX6+HeowNl0swEW2WY5NFkuxcGXFmS1vmQnWyCPwcaZykVpkcROtpkFLXTp/GmVRFTZ2gwAFy1tQLXXib6xEDYe0lpaU6moz2XH8matLXU2TjZ5QjPd2UBUKnrlaU0iY4dafNfmoVwUANoli3+lx4FWXRApRGA2fYbmbDwmP5Bbam5NGWw2BfOkEoylTeV5zzcid/JoMJrUqVdVVSG+UQmGENksrqNBf1gsoul6HgqEhWut2utCrR74O93loiSy1/rcOe8Q5xKUP93QGFhqTQ8IUS46Dd1FT45MCFfKvp4xvLCvD9G4Cq/LLlxhhNFhNLW7oVMSvADJyZZDh1FZZBvKonRKlBTWeeF22MUYMZOaH9CGK+XxeV120fDEPAejst5UztY93dpCORfHl/nelItAV0hkt5DRfZHnpOlQVRXPSCLb8/v78jqHo014RYHIySukyEb3lFLLWaRzc4GFuOOw21J2Fd+hC1mrTPN3u00RDjhayz66owvP7u3Fz16yjqaYCkJkk8pFCRKYCuVkOz40gajkTMyq8YGUCzu31phfCCfbFEQ2m01BW60XimLMc8jdV4od0ksNFtlmObkISNONcLJJu+a+AkyiyZ3UkqJclDPZZiYDptDPObLI1po4SLscNrxzVQsA4E9bNds3LTRaqsuEQJfN4mPL0UHx9XSWi8bjKp7YpYlsb1vZLNx3RL7cJ+RkA4C3nd4snBeFaH5An2FXCbp6ZgMk5NDuppxzsqypIqd7XzbIizzzxH8sFBWiheFkS91dlPLYmird4vFxFcJNVF3mFE0HprtclFwkTZW5lYoCiZlspVa2R+JDdck62ajxQeG7ix40RWzc/fxBAFqpqLzgABLdA6kQ5aI1U3GyGdfJeCiasYTf7J6jBWOpuLGywdz4QFGUlNUHdM8ZsHC2RmNx0RQpG4FSvL4+xrsd2nJpR4mUjJKAuqDOV9Kb6aXEzhOj6BkNweuyY16tF+FoPOtc3V9tPIIP//TVtNULJAiXOe1orNDGhkIJEcFITIhU2eQzThfDASPSQd7Uk7Gad8hND8wiG2Bs/NAcg+5hudw/s0V2sjVJIpvLbhPlk505ZGnmQof+91AMxWAgjGiKEtlB0XzJolx00CgXXTgFkc2K+gojpqPU5jClBotss5zpLBcNR+M55TbRzdLSyZanTLZILI6eMT2TLWV30RxEtjCLbKVCvwj91G74zVUeUSJ6Wmtl0uPfrQ+Oj+/sRigaEw7HliqPcCacHM688N18xHCyTWe56JudQ+gdC6HC7cD5i+pw9gKTyFYAJ9u7VrcYWT4FdLLNJGfFTILC9UnYkTNSljYbIlu+AqDlRZ75fKH/rypzwqvHAqQrFyVXUFuNF067DZX6Yw/3awvlmoRy0eldZFCJyrkL6zI8Mhm6niYisZJzntDiqKZEnWzTmclGIhs1xXnj2DAAYJFFlzbRMTaNyEai8TxRLqr99+gknWxAZrGInpvE9eYCupILhd8ksgFyeHri+0Gu7kF/8uLvcL9fNEXIxclGC24ab7dlcLLFpiEfKxZXRd7e/DovanyT30y/d+MRXHP3yyUl1BSKp3UX21uW1OOq1dqm62M7M5eMxuMqvvvUfrx8cEBUQlhB6xavy4EGXYjIxsmmqipufWg7vvj7bVmLFnJ8x3SPf+kgZ25TpVuM82asRPL9PWMIR+Oo8DjEvVFGuDX1v5Wu9eNDE3nPaZMz2Zol1/LatmosadKdbIUS2fQSzDPnVcOmaE0WrD7faCxuuYamTZzjwxM4rD/XZDqLpoMaLYRj8SQ3IpMIi2yznOna4QqEo7jw68/i/T96NesQTqPcz5jQ00QqEI7lRSHvHglCVTUnU10KESIXNweXi5YO5F4hN4vTbsNNly3Bh9a1iWBOmXMW1KKp0o2xUBQbDw2IEsXWKsPJFgjHkibuMsOBcILDYTqdbPe8fAQA8NYVjXA77FjRUokyp138PF8L4/l1Pixs8GF5cwUuWFyP5qrsXX65MBGOiXLA7tFgwuKEd8emTjyu4rguJBvuGblctCKnPMpskEUjs1vGXCoKZHCyDSa68Cjc91CvNnGs9rqEwG7lXCkUqmrkIF68tCHn3/dILodSa34wLJxspSmyTWd3Ucpj+9sz50I2rsl5bMScDM0stHxBcpUlCt4nRyay3pwcCyVeJ+kW19FYXGTEzatLFNlKrbwsHdQEi8pFgdQ5ulQuGompSYs/uROelQiXClpwn7+oHgCw48RIyt/9wXMHsearTxY8Y7R7NIhwLA6nXUFLlUcqF819nv/r147hjWPDeCWNeDRbIJHt8hVNorLhub19GTOg9/eOibGtP41rWpQ2u+3CXZRN44P+8TB+s6kTv99yPOusTjIPAKXV8CJd0wOCNszkmApqerBqTlWSUxiQOozqv0P3sGhczXunz4RMNmm+sn5hrdhQ6SxQ3MMR/f1b1Fgu5jzmfGTAyORUlMQqluYqD2yKZnqhc2lBms9iMnicdlToYzGXjKaHRbZZjtw5s5AL10O9fvSOhbCtcxivdmQerKOxuJggVVt0F43FVYQytGLPBlESWOVJmZ1TVaa9fq7lovnKMWImh9FZxzh/PnfZEtxxzWrLz9pmU3CZ3iHnqd09ovyxpdoDj9PIq0mXy7ZFz2OjAcYqS6oQvHFsCH/Z3gVFAT510SIAmqi4Vu+6COTPyea02/D0zRfjkc9eCKfdVjAnmyyMxOIqevVJ48HeMZz5X0/hB88dzOvrnWr0+0MIR+OwKcbiep4ssjUWoFxUWvSbF/LdpqYHgDHZTutk0104dH2Sk62qzCmu/UF/eNo6rO3vGUf3aBAepw3r2msn9RxyyWgpMWwxJpcS09n4gDZTzltUhzOk+6zcWZTIVC7aNxZCSL8WaUOnvtwFr8sOVc3+PDBfJ4YTeAK3/G4rdkguq5PD2saFy2FDU4V2zYly0VniZJPvW/G4mrAYHTAt/nZLIlsoGk9qmpAKOtfOWVALp13BoD+c8nN+fGc3xkNRvH6ksEH0JGTMrfHCYbdJjQ9yv49TnuV0N4/JB/5QFO++6yX8z2N7Mz62a2QCu06OQlGAty5vxOmtlWirLcNEJCYaYqRCdq+lExUok63MaRdOtv4snGxyN0lzmXoq5E2s6c4kTYfckCMVVtcvZR1alYoCyYaRXunvzyXXMhvoPlvudqBJmq+sb68T85FBf7ggmz2iWUGdTzSmshJqhUnF60po8qbN2Y2qrQq3QxgR8kldkaI6Zhosss1yqnUBKRpXxY5gIZBv+H/YciLNIzXk8lW5O5tsL85HySjtcLSmyGMDjBt+Nm4/OQtmeIJvLsVEDh/PlitO00S2p/f0iF0eWvS0iFKa1AseKhW9cIm2q51rifRkUFUV//2X3QCAa8+cm1AKSyUsDpsihL98YLMpcOkZNKLEKM/uB7MLg5yFz+/rw1AgIrLzmMlBC8HmSg+cdu2zPL2lEk67ojU98Drz6mSLxOIJorNZlJU3PIh05aKdpjw5mmSTk6DG6xTfi6vT10H7+X1ahs95C+vgkZykuVCqzQ/IrZFrx9TpYrqcbKqq4oC+2F3cWI63nd4sfmblZCOnaO9YCEEL8Yby2Fqry8S1qCiKlJGWncCRJLLpc5YHXz+Oh944gf978ZD4GWX7zK/1ik0ner1838sLiZXIRuK8fN8a8IcTAsPNwsOerrGE/8+2xI5EtlqfC8v0Bkk7TiQ71eRutIXOQD6R4t6Yq6NJVVWxMVJsoSaud0rPJbpgy9EhbDs+gp9sOJwkqpp5eo923z5zXg3q9I7071ypudke1RtKpeLVw9mJbLRm8bmNctHRYNTyniBzZFIim3EcpVTqm5WTzSKmQjjZ5lqLbLROG9INI/LffyyPuWzanF4zeJS7HahwO7BuQS0WNfhw9oIaVJU5xf2nEM0PhMjW4Esr1A5YdBYl6L5Az2PlDJwq5NRkJ1t6WGSb5ZS57CKwtZA3Ytm6/NjOroyTYBK0qsqccNiN09BuU+Bxav+fj4m0WUixwshky/x640EuFy0VzI0PsuG8hXXwuuzoGQ1hU4fWwIAEWNr9OZGm0yU1PbhkmVEmVuiS0Ud3dOONY8Moc9rxz29blvAzan5Q43MVZCAF8ud+eGTbSXz3qf3CUWue1JO4SZPMw33+gguYs5FXDvXjB88dxE83HAZgCDoA0FjpwWOfvwj3/8O5AFJnG00G88IyqVx0VBf9EkS21OWiciYbgKRy/2qvCy6HkdU2XU6MqZSKEtSkJdvSoOmCxuV8uWLzDZUM+gvc+GDAr4V3K4rmXHv7ymYoiua0n2eZF+QUgvExi6wec9MDgkK1e8eyu7eaBQia09HzH5IW6B264LNQyuOha29mOdkM4YKw6opsvt+YHRZyuSiQnRCmqqoQ2So8DqyaUw3AEARkukeDQmQp9AYsbVjQ3EUOhc+lYmV0IiqEyWLnet39/EF89Oeb8J0n92f9O3TMsbiKR3ekz1Z7TRfKLpXmbm9bqYnnz+/rFXl9ZuJxFa91GM2u0ots2rniddlR6XHApa9tMgkRHZJIdKAnO5FNvmek+uxGJiIFyw5LBZU7pitRNDvZwtG4EMEzO9kiGAtFE5yo+XSyyetOn9sBRVHwu0+fh6duvlhsqpGbjSIt8kUwEkso8RS5fhbnT79FZ1FCnvPlu1SUMJxsLLKlg0W2U4Bcgv0ni7yrEAjH8LjFztATu7qx+6Q20Rn0Jwc2EuRmy4eTjRburdWelI8xbviZczq4u+jUSdUpJ1eo3LA+Byebx2kXi2ParWrRz405+n9TdboMRWMi9PicBbViwTdeQJEtEovj649rpRCfunhhQqcjALhgcT2uPWsuPn/ZkoIdAzmPeseCk/7sYnEVX/7DdvzvMweEQ2Rw3Oxk0953cgNE46rI35pNBMLRvGeIEEP+MP7+Z5vwzSf24dEd2j14oSn0dnFjudiFtHKETBazEzhluah0DpMzyUqopmBnKteoLTeLbNp9m3JLpqNswR+KYvMRbcF18bLGST8P5XLJZUKlwExpfFDoclES+ufWlMHjtGN+nQ8/v/4c/Pz6c+B2JLsXFUUReYfHLBZ8tBgzd9uj7rTZdvs0jzW0uCZH5JEBvyibFo4IqVt0cxZu7VKDmk2Vu4333arczCxUynEE/eMh9I2FoChGLmU2olIwEhdZoeVuB5brTrb9FkKI7EAaKbCTTY66AIzy7nAOZbBA4ntUzLKvkUAEP3pR2xTankP3Vnmj7pFtJ9M+lj7vNukaXDu3GvXlLowFo2LT1cze7rEEQbZ/LF0mGzU+sENRFMOJlOG9lZ1sB3rH0jzSQG58kMrB+Pc/34RLv/V8QmlloaGSbXkzzYxZJN/fM4ZwLI5KjyNlR1KjuUc46e/J1GH0SL9fbI5lgsYWj9MmXMcAEiJoaLMk3wJm52AAqmqUeIpcP6tMNhGXk7z+SXCy5bmzKGFkDpaOi7IUYZHtFCCdlfzxnd1467eeF+LXZKGdUVr4/OGN4wk/33J0EJ+6dws+8+stAIwbhNVknnLZ/BnCSM0cHwokdZkR4fZZONkiMTXjBGVc7i5aYp3hZgLfemIf1nz1SRzoyW4iYWY4EEZHvx+qqlpmsmUDlYwSwslWnT7g/0DPOMLROGq8TrTX+yQXTuEWfNuPj+DYYABVZU588qKFST932m341vvW4CPnzi/YMdSVu+GwKYir2YX4WnFkwC8moORQSlUueqjPmDDt65nafakUuf6ezbjoG88VxMV0uH8c0biKCo8DN1ywALdcsRQ3X7E05ePzmclm7pRpdst0WWSyiXJRk2gSjMTEZJcmc1ZONvn701HutPHQACIxFfPrvFOavFJjll0nU4eoTzexuCqcUpRTWmpMV7koCSZLGivE9y5d1pi2mywtDo+mc7LVJs5DaNOkeyS3clHa4KF7KJUtBSNxkSl6WF+4L6xPdrKNBqOYKGB8SD4hJ5scJVJp4WQzv4fyJg652NrrfMJFmk1pJTWaIBfj0ibtfLAal2hzKNvnngonhhOdbD6XXXTBzaVjsTwGT2fzGDM/2XBYnNu5uJJk9/LmI0Npx1Qa46qkUnibTcFly40IESs26g442pBKNwcSjQ/0c7U+yw6jHQki23hWY4IszA/5kx2MsbiKXSdGEI2rec8sS8dIFhs1RuMD7f3aIZWKpqrIMMpFw0nl9Zn+vs8/sBUf/fkmUYmSDtH0wJ36+Ok+nu9yUbpnL6j3JYi0VuePqOTJVC5aIJHN2NxkJ1s6WGQ7BTAyx5IH359uOIzD/X48/ObxpJ+ZmQjHUk7MqFz0789bAEAbmOROW+RsOzIQwGgwIiYhVk42GqACOZSEPLu3Bxd+/Tlc/I3ncM/LHeI4T2ZRLlrmNCYomUoI5Mn9WCg6bWHbs4Vn9/bCH44l2O9z4SM/ew2Xfut5fPXPuxGJae+91TmUjkuXNYqg0GqvE2X6goUcW6lcRuQWmF+nDYBGnlThxNY3j2kZcOcsqEnZDr3Q2G2KWAxOtsOoLOKTmEaiCGW/dY1MYNAfTpj47+2anBhbqkRjcbx5bAjRuIptncN5f35azJ/eWon/uPp0/NNlS5LcjzJWZVeThT43w/kYSrg/krMtIZRXF6rN2YZ0bjjtipiQm69zmsTXTqPI9vx+LddnKqWiALCipRJ2m4L+8bBl57BiMDoRAa3TSrW76HQ72azy11Ixr1ZbzFjlA3WamngQjVSKn2W5KI018/QSoMFAGNFYPOG+TJsUcrYPUeF2iE3MmeJm84tFb/rGB0nlotL9gMafFS2VYtM5GycbOQfLXVrZGGWydQ5OJAm9spOt0PmQ5LYnJ5uiKGLTIZtsYUJ+D4pVLjroD+OelzsS/j/bTR/zMf85jZuN5vZVprxJ2nR9anePpbhFTQ/erpeWpmtkIARh3XXZoG8ApxPZ4nFVlFgCmpCezZggn+/hWDwpc7tnNChKgaerSZucy5queU6VqbqKyq9XpigVBRLLRckVv0ByD8fSrMUO6pv6z+i5fOmQy8NTUahyUcN9rN2zDSekhcimC8x1FpU88jhTKJGNzm2rY4vE4vj1a0envVS5FMmLyBaLxbB161YMDRW2ow4zOapNrY+JQDiKrfpCb1+GHIBQNIa33fki3vW9DZbZBbSzcOa8apy3sA6qCjz0hhZcrqoqntpt7BId7B2XnGwW5aLu3J1su05ok6iTI0F89c+7ccHXn8X3nzkgAmJb01iXFUXJusOoPLFS1cLncaUbOGYiNDHItjxGpn88hJ365/yLV44A0CbeuYaP1/hcOFvPMpMbYrRmcLLRLinthNMgPFrAc+DNY8MAgDPm1RTsNbKheYodRuU8HHoO2oVeobt6ukaCONyXeB/a2z27RLbOoQkhDpv/1rw8f4qytFRYBRBPFlrcLWmqgKJo5b600A1GYmKRY1UuCiTeS2l3tM7nFjvb5pwwauozHTuq+3vG8MXfb8MDmzsBTF1k8zjtWKx3qbTKdyoGtPFV7nYklMmUEiSy5epyzxVyJS226CSaClEuarGwoMVGqnLRbMu56BqZrz/PkD+MrpFgwjzhcN94QraPvMhSFEWMc6WWB2hFLG5UF5A4CEibA9J9i8pF6Wfy4o/GnxUtFaLsLBvHF4km5ZLQTwvfA6aAetnJVvhy0eQKjcl0GE1wshWp7OtHLx6CPxzDyjmVwrWcqfyPoGMmZ/AjW1OLbCMpOidfsLgeHqcNJ4YnkppjxOIqNnVoItvVa1oBaJvrqRoZGOeqdr40VFBjk9TXd89YEMFIHHabIu4P2eSymYU4c+a2fH1PV7SNLOZVphGpKj2J1y/9vSuaK1P+jiyy0abE2rZqOO0KwrF4UjwFMR6KCgHypYP9Gf+G8WCyqG+GRCwykqiqmpX7MBKLY+OhgZTnz359vksRHw1pykVF4wPLTDbjvrCg4E625PvGozu68JWHd+Jrf91TkNeeSUxqJnXTTTfhZz/7GQBNYLv44otx5plnoq2tDc8//3w+j4/JA+LmZLoJbz4yJHY69mdYzO48MYpjgwEc7vcLd40MDSJNlR68/5y5AIDfbDqGSCyOQ33jCXbegz3jYkBI52TLpZyBFnNnz69BW20ZBv1hfPup/WJXpSWNkw0Aqsq018w0QRk3uesKOXg9/OZxrLrtCTy3L/Puy0wgGImJz2kyjigSnOp8LjEATrY1Ne1KynlVhsg2YelQJIfbHH0AK9cnCrKrYvvx4Zx2kjPxhn6tnVkiIttknWyyyEblTDTBX6l3Sz05PCEWKrRQ2jfLRLaOfmPyLJfF5otjKRbzqZAdIVMtW6RFq5wlQuMCCatlTjsqy4zJq92mWOayWTU1kcsibIohctP3C+XEeHxnF6787ov4/ZbjiMRUXLa8EW9ZMjWRDQBOn6Od97RxUGxEZ9ESdbEBcrloYUsdadG3KCcnm3W5aCgaEwtAs5OtaZLdReVcMXOH2sN9fhyjbB+PI6mciI7TSgwsNQKSmGrV+GAkoVxUe49JcJHvBySerGipRC3Fp2Rxv6ByUXnBvYxKRrsTr9uDUn5oIctFR4MRMeeQNwmrJ9FhVHb7DQXC016Z4Q9F8atXjgIAbrliKdrrtXMz26xK+ow/cu58OGwKdneN4qBFplkkFhfvmblzcpnLjgsXa/dzc8nonq5RjAajqHA7cN7CuoyNDGgTngRhEjvSCdr0t7bVlGFFi3ZuZcplC4Sj4l5AYpbZyX1iaPpFNjJyVHgcCQ3tzJiv34N9mZ3DRnOPsMija6kuE/loR1OcM7LAuePESMbrfszCOWtGzmTrGpnA2+/cgA/++NWMc6jfbjqGD/3kVfzfC4csf07z/TVt1QCAhorUTkj6vOst1tBzqsvwoXVt+ORFC5Ocm/kiXXdRcg4XovvqTGNSItuDDz6INWvWAAD+/Oc/o6OjA3v37sVNN92Er3zlK3k9QGbqVKVwspENGtBKedLtvsnC2oYDibsBoWhMDHZNlR68c1UL6std6BoJ4sldPXhyd+LAdaB3TLSet+piNplMNrrhvGNVC577wiX43w+uFZOh1ipP2hsmYExQcnGyZfP4qfDkrh4EwjG8Kn1OMxk5qDWdIypVuD4NQJetaMRfPnch3rmqGZ+5dPGkjuXvzp2Pr713Jb78juXie00VbthtCiIx1TJ3w+yKNJeL7u8Zw9/c9TLe/YOX81LO1DUyga6RIOw2BWvaUtvop4MWkR00OffDbklk6zKVi1I3qf7xsFgMXamXcHSPBvMqWhabw5KwVggnm5H9lJvIlk0eZSboc6r1uoRbja5zEmdbqjxJmStWZdd0bsihvvKGTFWZUwQRG12uCnOe/PzlIwCACxfX46HPnI+fXX+OKHGeCitbtfN+58nScLKNTKR2l5cKPt3lXshy0bFgRIhiuZWL6u6GwYkEZ9mJoQmoqjavMQteonPzaDArkZuukflULuoPJ8RyAFouI91bFurZPlbHORNENhJTHTYFbumaIydMYrmoNmafpm/a0P0gFI2JzZsVLZVizjmYxbgiXC2SK0fksnUnOtfkxebIRKRgghWNn3LUBWA42SabyRZXM5e57jwxkjFfLBfePDaMiUgMc6rLcOmyRtEJ8Uh/ducmHf+iBh8u0t3F9248mvS4BIeVhehA8w2zyEbNEM5eUAOH3SY2dVM1MpAbHwCGyGa+RmXob22v94kMSLNL0gzNpcucdjHWp3Oy5cOpng3DWW7UyCKbHBFibtIkQ88ZisZFeW1zpUdsOKTKZZOzYVUVeCXDeoqueV+aNSN9rv5wDB/68avY1zOG1zoGM64Hd+vzWysReWA8JP6GM9u0TfWGciND0+x+E25/i8YHiqLgjmtW41/fuSLt8UyFdPMuKp3P571ipjKpmWJ/fz+amzUnyKOPPor3ve99WLp0KT7+8Y9jx44deT1AZupQWY3ZpbXxUKJYtj/N7skbCSJbYpcWupBcdhtqvE64HXZct14LYv/FKx14WhfZTtcnP/tlJ5vFhJ5yetJ18TFjlBe54LDb8O61c/DY59+C3/zDubj3E+sz/r7cYTQdJLJRplchRTa6Eedi/y9l5AyYVNbuf//jTpz5X09ZinBvHDVcXQvqfbj7w2fh/We3TepYHHYbPrx+fkKra4fdJvKkrCZF5MCao/9OpSfRgbNfz304OhDA1/66e1LHJfPG0WEAwPLmiqLlsRGiXDRLx4XMwHgowanRZXKyLWwoh8epDUVk51/dVi3CZXMtGQ1FY3jojeMFz22aDIcSRDZ/3kPvU5WlpcLrssORp3uZiADwuUQZHF3n3aPaZ26VD1fhsXKyGfdzQs4ekUt+jEy2/E/ohgNhbNHvO3dcsyqvjlLKn9lVKuWi/pnjZAtH40lNjvIFXaMNFe6cXACt1WVw2LTSJdk9IYTvGm+S4EWlh6FoXISAp8PsZBsKhNGpb/7QpuLhPr8I0LbK42mTxMB8sbVzGN96Yl/ePxPaaKVujYSRJWm8Z1QuSk42uh909PsRjauo9DjQUuUxGoFlk8lm4WoxOowa49Ih3aFM96u4mtzMxUw4Gp+UEEfzEDnbEkhdsZIOs/s3Xcl9R78fV33/JXziV69n/fyZoHvr2QtqoCiKKG2Ty0VfPtiPvd3Wbl9jM8aFj1/YDgD49WvHkjawZIeV3ZYcrH/p8kYoitZoqjsh31B7ntP1DZFMjQwC4nzVzhcSY9Jld5G7fUG9D0uaNFH/YIZyUaNyyC3GP/NnKc9hp8vJRuun6gyNc+TGJSTIzKkuSzvPLXc7xFyFKq+aKt1iw+HoYAonmynv8qWD6buMjoeMcyUVHqcdjfq5IIt7mbL0qBrGak1HlTqLGnzCGFNZ5hDuSbNTkf4/10zqfEFONqvyabpu+sdDsy7yKFcmJbI1NTVh9+7diMViePzxx3H55ZcDAAKBAOz23PKRmMJjZDUYF+loMCI6utCkIV1pFi34AWC7yXJLC+jGSiM/5yPr58FhU7D5yBDe0G8en754EQA9k4060FjcIFbpZTRbTGWpA+OhlJM4q06TNpuC8xbVYVEWuSrVWXbZo0kX7UBbPf6+V49m1UgiHfG4aohsGYQ/GVVVsfPESEKIeKkgC2upnGzP7+/FaDCaIOoCmrtt+3HtfD1zfuFKJylvzVyCA0hONj1s2Chz084BeUfnN5s68exe625V2VIqpaKAMaGfjJON3GllTgrc1lwb1P2t1ucSZS804VrU4MOyJu0+sLcrt3K6n73UgVt+tw3ffWp/zsdaaORy0bFQdNLdWq0IRoyytGxFNkVRxIR3qhNxudywSXLoAEbnvxaLbEyjS6+Fk00aH8pcdiHGykKQnNWSb57f14dYXMWypoqs3YHZQo6bkyPBkujQRW4HK6dHqSC7CwrVYZQWcLnksQHaxhstqo9KCy8SwazOH4/TLs7lTM0P4nFVdDen6zsSU0Up/sXLNCdP10gQu/Rynfb65L8h3042VVXx+d++ibueOyg2VPOFVdMDwBDZJiIxIbiSu4iuq0G/Vv54SC/jXNxYDkVRxJwzG8eXlci2VJ8vy5s/NG6taKkULqZ0DuxAOIqLvvEcrvvpqxmPwYxo5mW6lxrlotnfB1Mt3K3YpTtudxwfTpkplSuv690eKSOXnGwdush2qG8cH/nZa/jgj19Nes1ILC7GrFqfGxcsrsdblzciGlfxP4/tTXhsJodVQ4Uba+ZWA9BEPaJD6vYIpC+RAwwnGzluaRO3ezSYskKjQ3KykXN2f+9Y2g04EnMaKz1CZDGXCctz2GwE/HyQq5MtrmoRK0Dm0ny5ucdJff3QWOkRzQ+OpnA/0tyDPrsNB/rTvrcUCZSp+onu55Ueh3ju3gyb0EJks5hrWc33U3UYHQtGxIYL/Xy6qfRYC4DBSEyMLXG1eA1VSoVJiWw33HAD3v/+92PlypVQFAVXXHEFAOC1117D8uXLM/w2M91YNT7Y3DGIuKp1Z7lkWSOAxJ05mZPDE+ge1crWFtR5oarAy5ILTs5jIxr1slFi9dwqvGVJPQDNxnxC32Wp9SXfjNe11wEAthwZFAPTlqODWH/7MymDFPvHp6bq08073SQjEosjpDd9IDHGvDAd9Ifxb3/ciS/+fntCptyvNh7BtT98JevSt+7RoHitXBaPrxwawFXffwkf/8XreXfJTBVZWBsPRS27cpJ70RwUu7d7DBORGCo8jpwXP7lAkyKzyCbnyc2t1h5TYcpko4UyCQFfenDHlAYYMejOr570c+SL5iptIJ9MJhstAs9fpF3XoWgcPaMhsdNf53Mldf9d3FhuiP8p7kupIMfjq4cLX2a94UAfNh/JvlMulYuSKeNwHnPZTgxrZWk+lz2n+6CVK2Qy0L2txqJclMTZZkuRLdnJ1p+iFILcbHKuTrU3PyKhFVQ+dNmKxrw/d7nbgYX64m3nyeLnslG5cFmOjWSmE6fdJkp18+FU3do5jFt+tzVB5KTree286pyfj7p+HpNcFZncpU0V1k1lgpEY/vXhHbjtkV0ANFcXDekNFW7xOe04bnTmow3VF/drbg2r8qt8i2xvHBsWouJkMztTQZ+x17TgrfA4xD10ZCIiRAenXRGbqlT+SK6Khfr3c8lksxTZdLdR/3hInDf0GosafOLelG7edrB3HN2jQbx6eDAhdy4bqFzUPGZabaZnYtDk/k03XyE3VlzNLpg/E7G4iq36BjxtnC7QM9mO6OLWSwf6oarae/nojq6E3ydRyaYY48Gt71gOu03Bk7t7Esb/bBxWFFshl2qauz2KctEUjiUShcuceuODcjdcDhticTXltUGljwvqfFjUUA5F0f7edGsRec2VqltuMRof0OtkcgC7HTYh0JCbMZt5vVm8a6r0CCfbkRTNMui9eteqZjjtCo4PTSRsgpixKhG34gPntGF5cwXuueEcMVdN1+BCVVUhso1YXKM03z/LZCKwck/u16+/psrc3Nb5RFEUYWqRr4ejAwHI5rVTvWR0UiLbbbfdhp/+9Kf45Cc/iZdffhlut3YS2O12fPnLX87rAU6Gu+++G+3t7fB4PDjrrLOwYcOGYh9SUbFq7U116ectqseyZu3mlsrJRhf/ipYKXL5Cyy7YsN9KZEtcEF1/wQLx9eUrmlDtdUktiVPnvyxrrkCFxwF/OCaynB7cchzRuCoyEmTicVUMuPUW9enZ0Kgfe1+anQh555xap5sHL5ooR+NqwiT25y914PWjQxnzAAi5Zj+XAZI61b10sF90dy0VzJMM86IiEI6KhZ65nJTOwbVt1SKLqRDMqbF2stGExecygtvN3UX79UnODRe0Y0ljOfrHQ/jH+7ZYduPNRCgaEx1zz2grvpOtWXea9YwGcy5xIZFtTVu1uD53d2nnqd2moKrMmeBwqvA40FDuxnI9BNjc8Svz62mP39s9llPzlFzpGpnA9fdsxt/97LWsFvxjQWMxSLuV+RTZ5Dw2c1laOvLnZNMXMl4nmkR5cXImm5lsGx8AxiaKPG6kikOYKuFoHC/oYsXlemZPvjldX9iVQofRUES7T9EmQamSz+YHX39sLx564wR++lKH+B6JbOsW1Ob8fPP0End57D82QNeldfMlmnvIC7SxYAR///NNuP+1Y/jFK0fQOxoU14fTruWT0bVA19jcmjIhJNFjrctFjQ3CfHTB/OObxjwj3yXbgRA5gxIXvDapYcrIRES8d40VHrgcNrHwHBgPSQKY9t5Qd9HBQDjjRqTVgtvrcgihkha7h3qN4PYqmm+nuZ/Kc6F0C34rRLlotdnJZp29nA5yk9OmSDpHrRxividF+WYu7O8Zw1goCp/LLkqdyck2FNDOTVko+63e2ZkYkNYQNCdc0lSBD56jRYh87a97xOdrdBZNLUiIUk09NmciHBOfE22GGOuX7JxsNpuCuWmqI2JxVdwf2ut98DjtWXUYFU62Crelk00WdIDpz2TLJPzIDnqa22eTf1lj+vwayt2idP7oQMDyeqYy8vZ6n5h3mSOPZMYtmp1Y8f6z2/D4TRfhrPm1onRULhc9NhDAn7edFMc0OmF0OTW7TaOxOLZ1WlfqNJQnNz8gQwzlQxYLkcsm3fcPmvIE81mtMROZ9Gzq2muvxc0334y5c+eK7330ox/Fu9/97rwc2GR54IEHRAOGN998E295y1vwjne8A8eOHSvqcRWTaovW3huFyFYnLtT9PdYWZSoVPXNejQgX3XCgTzxWlItWJA76Z7RV40K9PfZVqzVX2xLTjdTKcWG3KThHn+Bu6hhEPK7i6T29+msl7xSMTERE3fdkQ5tJIExXU08LaZfDJhwV5oWpfEMhoSwcjYuSkVSDs5nDksiWy+JRPv6vPbonq93a6cIsqpmFNLnc0my7lvPYCkmqblByZ1ESMIwyN11k09/71uoy3HXdmahwO/BaxyC+/ND2nF2Fu06OIhyLo9bnEpOIYtJY4YaiaOVJ6XZYrSCh/LSWSlFqSx0Va7xagL3c/VfbzVUSsm+yFfZGAhHx2cXiqihxKQQbDvQjFlcRjMSzcrPR/aC+3ChNyWfzg1zz2AirTn2Tge5TtT5XQqC7/F/rTLbE6wgwJm3m7sE0XlRJk236eiISy1sZE6CJLWPBKOrLXVirf175hqIRCnmeZktQjxhwO0rXyQbkr/lBMBITkRTk/OodC+LIQACKMrlYgvm1lCkll4umvy7pWqGxe9AfxnU/eS1hQ/HE8IS4Pio8TiiKkjR3mltTJsQAwkpk87qM8qapdn8LR+P48/aT4v/z3XyEMtnK3cnnpHDgBiPoNW30Gou/sNjIWKS7+miOGI7GhSiSCjrHKkwLbnnODBg5fosayiUnW+r3ojtBZMtto0U42UyZbLl2F1VVYywngSnd2N4pCcf56PpNDqYz5tWITpQ+t0MIWR0D/gSRbVPHYMJ4OZgik+rmK5bC5bBhx4kRkZdFY1O6UngSecjJRs6oaq9TlBgb5aKZGh8Y58ucNM0PTg5PIByLw2W3CWcirZGsuqQSsrGhxiKTbcAfRjBibO6OTrOTLZtczyp9s5rWj9mIbHIWa53PBZfDhrk1XtgUbfy3ck3RtdZU6RHVVObmfTLims/gZJNpEOtH47r+8kPb8bnfvImXD2rnsLkRhZxVlq5Sx0rYpetvWZFFNnE9SPnpSSLbKe5ky/os+t73vpf1k/7TP/3TpA4mH3znO9/Bxz/+cXziE58AANx555144okn8MMf/hB33HFH0Y6rmIid/okIVFXFcCAiFr7nLaxDhccBm6Kp631jITSaFkJyrfi69lq4HDacHAniUJ8fixvLxQ3fXAqkKAp++tGzMRGOiYFgSWO5cHPZFKNLlJl17bV4dm8vNnUM4qz5NeJCHfCHEYrGEhYCNDGo9Dgm3fWNSjbS2X39Uq1+qoVpX4JtVhukjw0GxA01lc3cTIfkcMklk00W2Qb9Ydzx2B5849o1Wf9+ISFRzaZoJQdmZ5s8iJgFuTdMZQWFwth1TJwQGXlsxsSWdrrGKZNNaqm9rLkCP/jwmbjhF5vx0BsnMKe6DDdfvjRrF54hKlbn5EoqFE67DQ3lbvSOhdA9Esw6ByIUjRl5Na2VaK70YDtGhHOHJshyvgw5DhbU+eBy2BAIx3B8aALzshAbzTvsWzuHcfYkHCnZ8JI0UXvlYD8uXZa+pJBEtoX1PlHGdThF2/nJQDviuYps1MAjV5Ftx/ER/Hn7SXzurYvhcznE4q7G64JNP2eTu4smu3kqLbqLksNCbnYAGJM6uWFOhdsh7imjExF48lTuSKWily5rLJh7VnQYPVH8ctGZ4mTzucjJNjWRbcvRIeEy3nVyFH1jIbx+RLvvLmuqmFQZDt2jEpxsGTr+mvML/+exPdhxYgR1Phe8bjs6BydwcjgoBCRa/Ml5tm6Hdn9eKC3QmirdKTvkzastQ/94CMcGA6IBx2R4YX9fwiZgtpuI2UJzLqtA9KoyJ44PTWBkIpKwkAa0BfjhPj/6ZSebvoj3uuxwOWwIR+MY9IfTdhFMVTq2vLkCT+/pwd7uMYSiMTHXW9xYLpxy6TZH5blPqq6IqX+XGh8kzrdzzaYMhGMikmRJYwU2HOhPWy4qO7GsGhGoqoqndvcgHItjYX052ut9Cd1Pw9E4fvnKEVy6vBGLG8uFyGae07XX+dA3FsKTu7oxFIigzGnH2QtqsOFAPx54vRO3vkPrmJgq+L2+3I25NWU43OdH90gQ7fU+IysszTVNnT2PDQYQjMSMPLY6Q6im8Sdz4wPj76YIkk4LJxu9xrw6r2jIsLixAk/v6U3bYVTetHLYtPu1/NmdML1WIcpF43EVt/xuK+bUlOGLb9NiokhYztT4AEgWPLMS2aTfoWvd5bBhTk0ZOgcn0NHvT1q/GpnhHjFvpXxnK2gzI5OTTYbWj70WJZ27To7gwiX1CY3fVFWb75Bo+GaaSp0Gi3NOONmai+xk0+dn/ZKT7VAfi2wyWZ9F3/3ud7N6nKIoRRPZwuEwtmzZklSyeuWVV+KVV16x/J1QKIRQyDgJRkeLP9nNN7SrEIurGAtF8WandkEvavCJm86Ceh8O9/mxr2cs4SYVjMTELvsZ86rhcdqxvr0WGw70Y8OBvgSRzVwuCmjBvvKiZ7GkvFdLNm8z5GTbfGQQi3Yn3nx7R0MJE9Z0rYyzpbEys8hGOxw+t13swph3iOQbCu2EyaWf2Vpn5YD0YCSOYCQGj9OO/vEQPvCjjXjP2jn43GVLkn6PdnQ/et58/HLjUfzu9ePwuhz4zKWLkpyG0w1NhJc1V2JP12iSkCbvDsoh0LQYALRBqJDQhOjE0ARUVRUCl3CySSKbubsonYeUoXDR0gb817tX4l8f3oHvP3sQT+3uwRfftgxvXd6YUTijTkNnlEDTA6KlyoPesRBODE9g1dzsFmYHe8dFZ7fWKo8QKSmYW4hsspOtUZvUOuw2LGksx66To9jdNZKdyGZqkvBm53BWx5kr8biaEJAsl4Hf9ewBPLqjG9963xoRwg0YboeFDYbIZp6QTIVMi/lUVEmdvrLlYO84PvzTVzEajKKxwo33ndUmcjiqvU5xzx8NRjEajIj7XjaZbKqqitJrc7no3503H4FwFO85Y474nk0vOR4KRDA8EUmaZE8GVVXxjO6eLlSpKGB0rTs2GMBIIJLg0JtuyAXoKXEnm1EuOjWR7RVTd/UNB/rE4mtd++SEeXPe2UjACKhuq0klsiWWi5J4/633r8HDb5xA5+AETgwHxMKdrpda6VyZqzus5Qw2KxebfJxvHBueci4bNXhqr/eho9+f0uEzWVI1PgAkB24ggh593mWIbNp7uuvkKALhGBw2RXw2iqKg1utC92gQw4EI2tJ81GNizmdyskku6wM944irmtivdaTNLHbJC+5cnGyqqorQ91SZbNk62UiUcTtswsGfyokYi6sJG497usYS5kcA8PrRIXzy3i3i/10OG+65/hxcsFhzD/385Q78z2N7cc/LHXj85ouMzqImkW1+nRebjgzi91u0c+vsBTX4u3PnY8OBfvxhy3F84YplcDlsGBTz/mRBp7HCjcN9fuEsysZhVV/uQrXXieGAluMnb4oZj8myXFQSheemcbLJeWwEXcMdaTbgjHJRY6xLENn0+Wqtz4VBf7ggTrbD/X78cetJ2BTg5suXwmG3iVLlbMYxeROj1ufKKkdW3liQ15vza33oHJxA59AE1kuPV1VVnAPNVR5RUTLoDyedv4RVDmMmzHFDwUhMnCO0yXzSVB0zHDBENmEisJjvWzU+IJFteZFFtvoKymRLdrItbizHwd7xBHffqUjWW5YdHR1Z/Tt8+HAhjzct/f39iMViaGpKnBQ3NTWhu7vb8nfuuOMOVFVViX9tbW3TcajTiiZ0aR/1SCCCfd3aRXBaq7FQJtup2Qa+6+QIIjEVdT6XmKSQ5ZbyaoTIloWIs1TarTDX18usmlMFj9OGoUAE97+WWOprLjMUnUWn0MqYbpKjwWjKHCea8PlcDjGIpHOy0SApC2bZqvrm3U16nVcODeBQnx//98Ihy9IoGnzfsaoFn9Bbmv/ilSO46BvP4a5nDxStGUI0Fhc3WxLKzE42OQ+kR/oZubqWNJYXPOSzucoDm6KF88sLhuPDyU62pHLR8eTz8Lr183Db1aehwu3A3u4xfPyXr+Orf96d8ThKqbMoIVql57Ao2K2Laae1VkJRFLH7TpNAWgy1SvkycjfgM/Tw8ZcOprb3y5DIRhN3ClaeLLG4annN7O0ew4A/DLfunN3dNYohfxjDgTC+9+xB7O4axYd/+qr4+wGjNHRhg0+UBHQOBvLWCZh2ygtdLjowHsINv9gksgi3HR8RCzuvyw63w45Kj0MEs3/wR69C1RehVvdocR3pWSjjoahwGJmdbGvbqvHDj5yVJCRW57nD6KuHB3FsMACXwybGu0JQ5XWKjKxdXcUtGRUiWwk3PgAMwWOq5aIkjNMi+IX9RhOTcybpfqVrbzgQwchERIhYDRXuBFePjLHBF8LJ4QmcHNGaTK1bUCvGm5PDQZGrVOHWrpda6dqg62FRgsiW2hmSj+YHIxMREePxMX2ukW8nm7yxaYY6Pv5m0zExXyCRrVYXXjbrJbfz6rxw2o3ljiixyyBIpRL5aL68tXMY7/nBywA0p5zWATGz2JXgZEvRFdGKAX8Y4WgcipJcek/3QDk+JR3yvNkqW0mmZzSISEyFw6ZAUbTfNW8YU4ZYhduBSo8D4Wgc39E7fEdjcdy78SgArTPkLQ9sw7FBrSzb3GCEPleaK5+7sA6XLm9EQ4Ub/eNhPKM7jFOViwKG+ETPIUS2NA4rRVGwVHezHewdF2XGsljdoIsKVpvl8bhqlIu6ZSdb6kw2o7GCMZ7NFdd86k7uvcKdJWeyGWMfOdlOa9E2+fzhGCIpuptOFjq+uGrMfbNxDBJyFdMiiwYtVsgiqXz+pxIyB/1hRGLatdBQ7hbziXAsnnL8GJ+Ek43ONzIHyKWhtJF6YjhxvSPfH4wmZ6lFti593ds/HkL/eBiKkp37r5DU6+8n3TficRWH9fXuuQu1MfRUd7KVdl3AJDGr06kUawC49dZbMTIyIv51dnZaPm6mI1vJD5DVVLpAzRkTBOWxnTGvRryH1I1046EBBCMxccNvsnApmFkiOdnS7Vy4HDYhMIxMRGC3KWJik+SASjPYZkuF21gUplLe/VKtfspyUWnwpVyWRCdb5l3GSCwuJr9kIafXoXJTfzgmcvVkekUAsBtfedcK/PoT67G2rRrBSBzfenI/vv/swYyvXwj6xkOIq4DDpmClnkNkdg3KeSD+cEwMgtv0Ft/TITi5HDYxeMsDNk0oaDAHZAdOBMGIcbxmR+X1F7Rjw79cik9dvBAA8MuNR9JmmnSNTKBLX2itaZt8KU++oclmuh1WM1QWukKf7JmdTHTNymWE8sThrcu1e81ze/uyEoipDP7957RBUbTJzmQH+XA0jmvufhnv+N8NossxQS628xfVYWlTOVRV62b6hzdOCIFoKBDBdZLQZkyoy9FQ4Ua524G4apR5TgVVVUVmTiGdbKFoDP/wq9fROTghnDU7jg8nlIoC2hhMn/XurlF4XXZ8/drVls5ls5ON3BRelz2lMJHqb8ils14qqKsjAFx71lzLUrV8Qjle5nFtugnOkHLRfDjZxoIR4Vr7wpVLAQDP7+sTIv1kRTaf28g7OzYQMNyl0rhhhsab3tEgXj9qNJnyuR0iz+nE8IThsCAnmy/RyQYA82p9Ys5gzmeToXtE5xREtmf39iAcjWNpUzku0oXofGeyUfmdz+Ia/Mwli+Bx2vBaxyCe2KVtopO7pV4fV+gzXmTKORKurwz5oqnymRY2+FDudiAWVxGNq1jU4MM/XbY44bnTbVpMNpON8tioa6UMCRCqmuiUI1RVxeM7u4VTkkSqGp9LiA+pPj86T+bUlKFd32wzz2Fo8/tv1rbi6Vsuhstuw5ajQ9h8ZBBP7+nFieEJlLu1rrBUir+sqSIpMsbswDxvUR2cdhuu0d3Lz+3ThF2jXDS5gsUcRE/jQqZN2sV6Nt2BnnHhMmuXBKCGcu1aHQtGkza5g9JmmVwuSteauYQTMNZbcpk35dN2jQQt5zzjoag4L5sqPVJ5cliIqyTyyE4nOfM0H8jnMM3lDcdg5rWY/FlkKxbJmduNliJb4ntMpaL15Vp+W5nLMJwM+a2vT7/pPpsN4nwbDUFV1YTjONg7ntSIAjAalPSPh8Ra0apS57QWbQ2w68QIRiYi4pyZV+st+NwkE8LJpq97TwxPIBiJw2lXRJdUFtkmyfHjx3H33Xfjy1/+Mm655ZaEf8Wivr4edrs9ybXW29ub5G4j3G43KisrE/7NRuiGNhQIY78eqCkLXsv0m/E+U0ebrXq51Znzq8X3ljSWY051GULROJ7Z0yss9Vah1mZqfS7hZsjUpEAu2Vi3oFZY9M2LEZHfM4VyUUVRpLIN65vCuFQ6IBZ1pry0Pkmg6xoJYiIcS+ggaM5ks9px7NQz3MqcdjE5px0ieaf4yd2J57k/ZHSvaaz0QFEUXLC4Hg9/5nz827u0HIvvPLUfv37tqOXfV0jkzJRWaRIhY94Fp9+h92/ZNFmjrZofnLAoF6VB2B82AldddpsoI5Wp9rpw6ztW4J2rmqGqwLee3Jfy9UnYXt5cUfRBVIYmv7nkiG3Qxaj1+rVsLnEhkc3nduBD69rwttObxCQeAM5bWA+3w4YTwxPY15M+bDkai4scjHULaoVbbNskS0Yf2XYS246PYG/3GE6adiHp77pgcT3OX6QtMF8+1I/79WvrS29fhjVt1RgOaF0Ce0eDRvlJgy+htOtQHjqMDgUi4v40N82C3opU3UUP9Y3jXx/ekTBJemp3D944NoxKjwP3fnwdAM11S5PEGmnhT+fLqjlV+MvnLsQ7V7VYvj452cgZR7uiVmVAqZhMZ71U3Pn0AXT0+9FU6caX37F8ys+XCcP5Mj3h1KkQjQ9K3smmHZ8/x87Bw4GwWOhs6hhELK5iQZ0XV61uRbnbgZGJCOKq1n3Tqqw5W+QOo5maHgCJjQ9e1510Z8/X7pdzdIfviSG58UFyJhvFHLgcNtEoh8rurY9x6k42ErAuXNwghMWJSEwIY/lgPEV3UUD7m2+8RBO26FwQ5aLlhmMFsBDZLMLiLV9fuFoSxRmn3YafX38OvvbelXjhi5fgmS9cgrcu19YYRrdj6+dWVTVhDntyJJh1wxajs2jyPd5pt+GcBdrCVu74CmgbB196cDs+fd8WfPyXmxEIRxMyzehem+r9IJd0W41XdP3ea+r63S1lxTVWevC3Z2mi2P89fwi/eEXr3vv3583Hxy5oF79zloVzR2705HXZsUrPDFytN5+hMT5dBUuDED209znbMsYlovnBmLQpZlxHlWUOuHRHpLlJBOUHKkpiyT2Nx10jEwluslhcFU57WVwht38gHMPoRPK1RH+Tz2VHudsh1lGUSQoYYtP8Om9CF958clIScklgHZY6jGdCFtnM12cqEjPZkp285k0DueswQYJyKhfr2BTKRSf0zXZ5g340GEX/eDhJZKPOzuQAXVDntRSB59V5saSxHNG4ihf292F/d2l0FgWQJM6Ta29BnU9snHN30UnwzDPPYNmyZbj77rvx7W9/G8899xzuuece/PznP8fWrVvzfIjZ43K5cNZZZ+Gpp55K+P5TTz2F888/v0hHVRrIFnaqmV7alOxkO2Dq5Ed5bKvnVIvvKYqCS5ZpXUZ/u1kr5aQbfjbQrkUm59k6aTf5itOaxOCT1JWSFmVTcLIBmXPZ/BYi24hpYWRW7Y8NBhKdbGMhsTv17N4eLPnKo3hQz54g5MHdKIPSbmKyEPXU7p4EkY527cyfhaIo+MRbFuJzb9UmpP/+x50iS6WQPLLtJB56Q3sdQ2RzG5+jabfVnOdCkwnxfmRpKZ8qc0wt12NxY1KcWC5qvMckMtSVu9Lmrd1yxTLYFO2zo0wSM6VYKgoYk80jWYpsx4cCONznh92m4Hw9l8Uc1iwLKXdcsxo/+ruzE9xOZS67yHR5dm9v2tc73O9HOBqHz2XHvFqvmLhunYTIFo+r+NELh8T/y+7WUDSGTR2ai/QtSxpw/qI6AMAftpzAoT4/ypx2/N2583Hvx9dhWVMF+sdDuP6ezUnZQAuFaDn1XDZaLDdXenIu95O79Ml88/F9uP+1YwnvAwXDX3PmXJw1v1aUOlK3Lnnj5L/esxL/+8G1+MM/np+wU2+GriNqINKfoulBOqpT3I9zZcfxEfxkgxZ58bX3rErZmCef0Hs2kgcX3lSYzeWiqqri2v/biIu/+Rye3t0jSkXPW1QPp90mrmFg8i42gsrqNx7uFy6ldO7S+nIXFAWIxrXgeMAQH+ZUa793cmRCNAahc1Ke78h5b//vqtPwiQvb8ZYlDSlfk/ItTwxNJLl0s4VEluUtFfBKDhE5n4fY2jmMezceyaqMUYbmXN4UjtZ/uGhhgoApykVNc8GFprlDrTe9EEakW3Cva6/Fh9fPF583UZVB8B/whxGOaSWfPv3vytZR2EWxFSlE4A+eMw8A8MDrnWIe3zMaxAd+/KrIOAtF49jTNYpBad5cJ0oOw5afkZH3WYZlTZoRwdxkqMtUsvvJixZBUYBn9vbi1cODsNsUfOTc+fji25aJz4M2qGTkfLKzF9SKMl/qgErOoIEUuZ2AIXr0JpWLZhLZtHXQlqPDQsSTj0dRFPF65rm+aHrgtCfMYRrK3XA7bFqzL2mzbn/PGPzhGHwue4Jg4nHaxfl70sKR2GvKH3TabWIMJeFIbArXlIlN33znssl/S+9oEPG4mvX7DGiCJZGtk012yDVn5WRLzgunjcBBi9JoVVWTHMPZ4HU5RAfi3rFQ0nEc6htPynWme4+cGZeKt67QKjqe3dMjjDDF7iwKJGcUkrawqKHcMkvuVGRSItutt96KL3zhC9i5cyc8Hg/+8Ic/oLOzExdffDHe97735fsYc+KWW27BT3/6U/z85z/Hnj17cPPNN+PYsWP49Kc/XdTjKjY0kd9xfATBSFzf8TQGjwV1XtHJjwZUfyiKo/rXK1oSL2jqpEdZSdm42AgqHcsUUH3GvBqUOe2wKZrIRq+RLLKlHmxzwdzlywztlpa7HML9MRaKJoiSdEOhG+7OEyMJHWfCsbjYnXpmTy/iKvDTDYk5hrKoZHZoyEJU/3gYWzsNoUbs2qR4X2+5Yik+tG4e4ipw8wPb8O0n9yUcez4ZGA/hpt++iVt+tw2dg4GE7oItldogMxSIJOzgDpidbPrAbRVAW0jk5geA9plGYirsNiXhPHc77KJko0NfTGU6Bxc3luN9Z2m5j994fK9lOQB1GjrDlFVSbCgrpXcslNUCl4SXM9qqxcKwqdIDWYPMpsT7UlEyml5ko1Kv5S2VsNkUkfViFtlODE/gu0/tT5sf9OzexO5e8jW85egQgpE4GircWNpUjvUL60QLeQD4mzWtqPA4Uelx4gcfPhNel12Usc6rNbKBSHg6nAcnG92zc81jA6wz2WJxFRsPa0LEJt1dAyRnh9Dmy4YDWj6nPAmeU12Gd6+dk7HjM50b5OSiXdH6nJxs1EF7akLVHY/tQSyu4uo1rQVteCBTMk42KhedZIfu6WIy5aJdI0Ec7B1HJKbiM79+A3/aehIAhLh28TJDkFo3RZHtbN1NdN+rx/DbzVr8SDqRzWG3icUKjZMkslFW5XAggu4RfW5BTjbpWpPdq5csa8S/XXVaQgaZmaYKD1x2G6JxNclRng2qqgqR5bQWLW/TqtMcYJSY//ufduGelztyeh0SLlJt4HqcdvzH1acB0LqW02LaPA6ndLJlENkmk89ULUrXra9n2rCrL3eLjcOjWUYGpGp6QLxzVQsqPA50Dk7g5UP9CEVjuOGezdjWOYyqMqdwam0/PpJQbknvR1y1Fh6P6+PL3LROtsQO0u31PrxjZbP4+ZWnNaG1ugwepx2//eS5uOu6MxJ+TvjcDlF+R7lOgCZ2OWwKxkNRdI0Es8pkEyIbZYVlqJ4hIY/mBlYdeoWwkCSyaeN/man6QFEUUfYtO5youdWatmpR4k3QZqRV2S/N8+UO7yKXTX9PTuivM6fam9KpPlXMTraxUFQ0PzJ3DrViUuWiklM+MZPNK45D3jSgqiRZwKLy4kGLctFAOAaakle4c9tgayBhdzRZZNvXPSbWrdQMi8Z7ka+XJtP88hXaXOS5fX1iLjldlT3pqJccsLG4KqoyFjcaIptVafWpxKRmU3v27MFHP/pRAIDD4cDExATKy8vxn//5n/j617+e1wPMlQ984AO488478Z//+Z9Yu3YtXnzxRTz66KOYP39+UY+r2NBEnoJ9FzWUJ9zYHXabCMmkDKy93WNQVa3e3FyKef7iOrjsNnFDykVk+8dLFuELVyzF352b/jMpc9nxq4+vwy9uWIe2Wq/YuehJEZg/lUw2AGgy5TiYoXIN2cmmtWLWvh+MxETJ01n6RJvyI+rLXWJHieyzZMHf2z0mdgAAoxxvYb0vyaFh/luf2NUjfo+OWx58ZRRFwX+/ZyU+dZGWDfb9Zw/iup++in/+/Tbc/MBW/GnrCcvfy0QoGsMPnjuYUJa35eiQGHCf3dsrBpjmKg8qyxxi11sWNGlxLZftdo0GEYpqNf5zUkws8415QkS7gs2VnqTJEImpHfrgUp9FyfLnL18Cl0PLknl+X1/Cz0LRGHae0AbRUnOyVZU5xaBKbjbKArMSC1/UG6PIjgqn3SZakgPZXbOUy7bl6FDaDB2afNCGADnZth0fThCTf/j8QfzvMwfSLvj+T3JvAYarEjDy2C5cXA9F0TpbUkkLoDW7IBY3luP2964S/y+XnuSzw+hk89gAa5Ft98lR8f87T4xgPKQ1hKF8uTN1AXOl/nfTvSddM5tUtNf7YNPDtHtGg5LDInsnW5XFwnbjoQHL3Mp07NVLMegeOR3Qwi/broCFIhSlTLbZ52STx6ZwLC4W0efpIttF0j3q7CmKbB88Zx6+8s4VqPA4xPwoVWdRQnZayF2YNbFe+3v39Yzq36NMNmuRLRtsNkX8zmRy2XpGQxgOaFm5tECmrtpm8eGv27vE5uN3ntqfNtDdjBzRkYrLVjThq39zOu64ZpUoPTffO8zB6kYmW2rhIRqLi42TXFwtJFilcskZG44esdF9xCKX7a/bu0SmKUHvndkRTpS57Hivnl32202d+M6T+7G7axS1Phce+ewFuHpNKwBts92IWXHBabeJe6hVyahc9ryiWVsnHOwdTxA0SGSTBY1PX7xIfP3R8xeIrxsrPLhqdatlRiegjfk+lx3vWGlEDLgcNjF+7u8Zk8pF02SyjWq5ZqJcNIP401jhTqhQsOrQS3Mg8yadyA+0aNJBIpAsvqSrWCCh0hyWf6hvXDit5feZBPcBfxhjwYhYh8ypKROCFznVx4IRPLu3J2dXqZnETLaQcMqVOe1ZjSG0uVbmtKO1Krv7l9y4olG6Z1JGYcy0adBtUS5KXZllJ9sTu7px17MHxDlltyk5Z5MaOYBBSeTU/q5XDvUjrgJOu3G/pPkVOdnkMcDMGW3VqPY6MTIREWNZKYhstZI4PxQI4xA52Rp9qHA7RGOwU9nNNimRzefzIRTS3rTW1lYcOmQsSPr7s+sCV0g+85nP4MiRIwiFQtiyZQsuuuiiYh9S0aG24jv1RZJcKkqsmastmChrY49YtCbn1HldDqyXdpnS3SDMNFV68LnLlqQUg2TOWVCLi5ZqE+DmqsTdXsJwPkw+k42OC0hcUMsYnaa0DnqiY6sUYAlok4HV+uKTOrC21/vEJJRuOPKu1qM7usTXR6zKRSeoXFT777VnzQWgDQ4kcPQKa3RqwdNuU3DrO1fgW+9bA5fdhlcPD+LBLcfx8Jsn8IXfbcsp1J74v+cP45tP7MMXH9wmvieXQj6zt1fa5fToXSaTc9mo7JfE3p7RoBCv5tV64UizM59PzJlssvXeDE3IqCwoG2GgtboMN+gTzq/+eVdCd8ldJ0cRjsVR63MlZJOUCuZctge3HMdbvvEcfvRiohszGosLl+tFSxNLQuQ8mWzerznVZVjeXIG4Crx4oC/l4/boO+t0v1rWVAGP04axYDQhR4524HdJnT8D4Sg+/9s38el7t+DWh3bg9aNDcNltYqddFt4pM++8hUaJ2Xl62cvprZVYPTexWcV7zpiDD63ThDe5exRNtqj8ZSpQ84TJONlosiuLbK8cMsbxuKpdz9uPDyMaV9FU6RaTR/Pfmk3gsZkyl128FzuOjxjlolPIZAuEo7jhF5vwkZ+9lvWifiIcE5PsTKJIPqEFf746o06W0AwrF83FybZNn9Nce9ZcXK6X3qxoqRRzhrZaL774tmX43FsXZ93pLhV2m4J/uGghnv/nS3D9+QvwrlUtltlTMnJn9rNMIh8JbpTdQ/lgc2rKUOFxoK22bFIbjG0WuWyqquIHzx3E1/66O+09ieaGC+t94nyhZgNyVpWqqvi5vpnh1islvvrnXVkfI7mDrIQLmY+evwAfOMfY3JDvHfXlrqT7Um0WmWxy5l+m15epljYtrCoFKCajudKDBfoYb3aybT8+jBvvfwMf+NFG0ZUaMOZLqZxsgFEy+sSubvxYF2T+55pVmF/nwyqa458YSXKC1Vl8fkTnoJ7JVuvF3Joy+Fx2hGNxMV8cD0VFaa0s/qyeW42vvHMFbrliqchlzYbb37sKW/79iiSRi5xm+7rHxKZEOifbaFDLniNBKVNWmKIowu0HWHfoNZfIEZTJVmZx/2yzcLIZrvDqpMeTg7VLGrt+93on3vW9Ddh5YhSVHgdukLLtZCcbzVerypwodyc3afv+swfxsV+8jv95bE/yG5ADXabGB6KzaJYbbSQwr55blVJsNVNfrs2LFzb4RGdLQN800K+JTuk9tloTWTnZbn1oB7715H78w69eBwC9QUd2x0QI96TkZKNYJYonaKkqSypVp7llOiebw24T1WOAJtYtqJvaOJUPHHabmL8cGwyIvPfFDRVQFMXIRmSRLTfOPfdcvPyy1rb6Xe96F77whS/ga1/7Gj72sY/h3HPPzesBMvmBLgQabKxCEylYdLvuZEsnsgFGl1EgNyfbZGnWhZnesWDC5CWdbTwXGk2ND0aDEXz055vwu9e1kg+/aVfVPHiReNZQ7haldeRyW1hfLhw8feMhxOOJHWj+ut0Q2WjisqDel+DQUFVVuOD+9sy5cDlsODoQEGVtfeJmnVm4uPasufjTZy/AF9+2DP/y9uU4a34NonEV33xib9Jjo7E4frrhsKUrpH88hB+/qIns+3uM3AFZZHv10IBw69B5Qq5EEt9icVV8jqe3ahPBntEgOvS8KqsdxUIhZ7LJXYGsnHS0c07lotmWuH3usiVoqnTjyEAAP5EEqjeO0u5mdc6D/HRAAzsJwdTVTRasAM09NhaMotrrFPcVQs6TyVZIoZLRZ/akLhk1369kdy653FRVFdeL3B3tiV3d+NPWk3h8Vzd+s0nLmbzmzDlJTi3AEF0XSOfkxy9sx3vWtuJr711l+bl97T0r8ccbL8A/vMVwSC2sL4fDpmAsGBVlQJNFlIvW5e72pHtMMBIXgu/L+rVOO5GbOwbxhl7ecqbUaXpla6LIVjsJJxtgOOJ2nBhJCOTOFprYk+O3aySIYCSOWFzFw6YQ8FRQaY7XZU/Iiyk0NSXiZDMy2Uq9XFRvfBDKvgSF5jRnz6/BXdedif+4+jR8+31rEh5z46WL8YUrl+XtvltX7sZtf3M6fvDhMzOWTMsRD2ebBDkad8hpSBs7XpcDz3zhYvzls2+Z1DFbNT/4zaZOfPOJffjJho60JYxUKirPDUl8kGMfXj86hJ0nRuF22PCLG9bBblPwxK4ePL27B9kgnGw5NgCq8bpELMFCC6Ekm2uOXtvlsMHtyF5ko0y2uGrd0VEu+UzlZKO5lj8cw433v4lgJIaDveM4oDf/SeVkA7RytNVzqxCNq1BV4EPr2nDl6dpmETmuD/WNi8+d7rP034HxMF452I/1tz+Nx3Z0IRiJCUdQW00ZbDZFNCHbo4+hNI+rcDuSSmv/4aKF+KfLluR0jtpsiqXYT5lpm48MCpeolXu6sswhrjmqEnE7bFltINBrAEB7ffJmS6qsKUMQtm7SARhOtuFAWMREnNGWLMCbm4P1jAZx60M7EIzEccHiOjxx80UJzRJqpfJnijmh+4Z5E43mSfe8fCShgiYXRoORBCdxz2hQGAEyuQWJ01or8ftPn4fvX3dG1q/rsNvwxE0X4bHPvyVJmJtjkcvWI/LO5OqJRCdbIBwVaw9ysudSHk7QuqtzKCDmixfrBhG6D7RWe8T9gcpFjZif9Os2qugAtHtapjFluqD7/sd/sRnDgQiqypxi05Rz2SYpsn3nO9/B+vXrAQC33XYbrrjiCjzwwAOYP38+fvazn+X1AJn8YN5dWGJRA7+mzVjoRGNxadFqbUu9VMoxyZSvlg8aK9xQFCASU0WWRixufJ23TDb9xvzUrh68sL8P//e8JiKZSxfIujxiykurr3AnLMABLV+tQSqn6B8PIRyNw6ZouxL7esZwoGcMgXBUDKwL6xMz2cZCUYT1ifb8Oi8u0EtdXtBLDo1OOtk5+la0VOLGSxfjHy9ZhNvfuwo2BXh0R7fYYSPuffUo/vuve/Cpe19PKtH5/jMHEnZ8X9zfh1A0hu16mUOFx4FwLC5EGJocNovMCe2YhwJhxFWtMxNlfnSPBoUDaTpFNprgBMIxDAUiSZMWGVrwUMlNtudguduBf32n1vH1rucOit+nnI4zSqxUlKAMmY5+P2JxFZs6tPJzc57eC/uN7pvJeSPa+6gomTsME5fpE4wX9vdZugN6x4LoGwtp549ko1+uLwL36veyvvGQuF67RoJClCH37rkLa3H9+Qvw/rPn4gtXLkvaiYvHVSHG0G4zoE0m7vzgGZYt2AFt0bC2rTphYuRy2ERWEB3fZJlKJluFxyEWpKMT2j1ms/65Uunrpo5By/KWKq9TuDGAxI6HuUCLv10nR8S5lIszWXT00yf6cinLH7Ycz8op2GVy204X1SXiZAvqY0sugkIxIMEl23LReFzFDv36Xj23Gh6nHTdc0C6ycUoBOcTb7HozO6jlcrbGCk/GjompMItsO0+M4DbJZZbOfbBHanpA1IkyOkO4opL8954xB+ctqsMnLtTcN+m6a8uYNzazxW5TxNhi1WW11peFyEbdXHN8bbfDLho1WGVEymWVtGllFjQ3HzHmYHu6RvHJe7fgvT94GaPBKBbUeVNufBMf1u/b7fU+/PtVp4nv15drLmRVhdhsIgeb0WE0hDufOYCe0RDueGyvcF95XUYg//LmxHHVqlS0EJA54DV9fKr2Oi0rHBRFEfNgEiazdVgtacrWyZb42YrGBxZNOkRp9lDiPK+93mc5ZtI8mTZ4d50cQSyuYlGDD/d+bL2YQxFWTja6b4jGRnoWNP08Glfx33/dnfTa2dBlKmOl8nH59bLhnAW1aR1cVnicdssxyqokl3IsE8pFTU42OnddDpu4FipyKA8naP1IGcBelz0peqC1ukzcl4ZFuWhmJxsAXLS0AQ59Lr20BEpFCbpvDAUiqC934efXn4My/Rqga/BU7jA6KZFt4cKFWL16NQDA6/Xi7rvvxvbt2/HQQw+d8tlnpYrZLm/lZFtYX45ytwPBSBz7esaEqn9aigG9vd4nStrmVBdeZHPabaK8jG6Mw4GwtKM1RSebyHHQbgg7dKGocyiAWFyF3xTCm9bJZrLyttf7xODcNx4Sg21LVZnIrPrz9i785MUO/W9xotrrSnBoUNZJudsBj9MuFrvk0jF3HcqFZc0VIpD/jkf3iEXpkD+MO58+AECz3v9Wd/kAWonkr1/T/v+CxZrg9+KBPuw8MYJwNI46nwt/e+bchNdpNolsJAxSyW+N1yXErN7RkNRpNbtg1HzgcdqFuHJiaEJMdKxKNOhciMS09ysXYeBv1rTi3IW1CEbi+Mofd8IfipZsZ1FioVQuuqdrVGR/DJgmnBSEf9GS5O5hNIGsLnMmCXCpWD23GoqiXWtWYdUv6qLeiuZKeCXXAy1GaMPgYE/izu1e3ZFBi/D3n92G2/7mdHzj2jVoqHAbkwT92ur3a00wtJDtqd/zRIi05KqTGRgPZcxOicTiQvibTCabzaaI83jQH8bWzmFMRGKoL3fhI3pu5tbOYbyu53may1tWSU7FyZSLAobItuPEiDiXctk0qTIJVbLIdrjfL1x46Uh3nRcSdrLlRq6NDw73+zEWisLjtFnGZJQCFLfhddkTNgmA5POxIk8db+le8cyeXtzyu6248f43xCYekFwOJ2NV5WAuozs+FMDjOzWnM5W2Udn8sSxz4AKh1O6gTNCC2dz0AJCajfgjKQX48VBk0q+drvkB3atbqoxy0eNDAfHeq6qKLUe1e+3Nly+Fomibl2OhKNYtqMWD/3h+RkfW+85qw/c/dAZ++8lzE8ZDAAn5oYCxMULiw5ajQ2Lz7NhgAPe8fASAVkJPmw/L9Otovz6e0t9UaJGNBDByBqVzO9PYTceYrfizOKFc1CKTLYVwQJvN6UQ2EoAyNbcyO9lofnB6q3VpJY0h/eNhPLZDu+ZIRCdX9shEJKEyAwCe39eXsaGUFfR501x9ZCIi5vLZipn5hjqdU5OOSCwuImgSGx8kOtnIpTm3pgy///R5uGhpA66X8gOzhZxolFs7t0Yr45fP0daqMmlNp5eLUuODDE62qjKn6HxtHiOKyfxa7Ro5raUSf/rshQmbROxkm6TIxsw85JbKbofNcjFmsyliAP7r9i4EwrGEsFEziqLgG3+7Gp+8aCEuWzE9ndjI9kuLKCotqvY603bTygZy442HohgPRUXobCSmuVfGTRM+c9eePqnxQI3XCCwGNHFCvuHQYNtWW4Z3rdLCXe969gC++/R+AMZkVHZomLOKTp+jl8KdTBTZsnWymbn5iqXwOG3YfGQIv9p4FKqq4s6n92NkIiIWXj97qQORWByqquJ/HtuLaFzFxUsb8M9XLgOgdZR89bA2QTtrfg0uW2FYnBXF2K0xd08i90qdz5XQ5ZXKTKfTyQYYk6LfbD4muixauYTMCx5zg5B0KIqC/3r3SjhsCl7c34dLvvU8ukaCsNsU4SotNUjs7Ogbx6uHjfLhASlEdiRghLNSnqJMiy7I51IO6HJIHfhMu6gARPmRuSPkiuZEEeuAqTxiX88YYnFVOC3NGWN0vvbp7taTw0aQ7lTvN4ARXrvPQmQ70DOGc772dELWoRUnhycQVzVxpGGSuZS0sPjvv+4WAul5i+qxUN8cCMfiGApE4LLbRDk3sVpatE2m8QGgLdYVRdsR78gh35AwN4gxd6B+cMvxjM8hO9mmE5p0B8KxhHzG6URVVUlkK3EnW44iG5WKrmytmrZcz1yha+ripQ1Jx2h2UFdOwmVhxTkLajCnugwTkRgeeuMEjg4EMKe6TGRNphLZgpGYyAmjEHxAdrJpv/fItpOIq1oHV7rPkaATCMcSOs5FY/Gkz1NVjY3NXDLRCHrNMy3y8GjsCcfiCU58mbFJdBYlqtII58L1VelBQ4UbZU474qrhMDrU58dQIAK3wyaahNkUzZ123yfWZ7WRZ7MpuHpNq+VG0CrTGFdnymT7sx5dQq4Zik+Q1wzkpNnfk1guWuh7J3UYJerSzCFovn1Az4mSQ/PTQeeNy26znPOlanwwQeeqRWmz3P1yIhxLiF6wgt7H7hEtGofmB6nC7kk4+uv2Lmw8PIAyp12sIaqkxgcD/jCCkTgUBbjhggUAgC8+uB23PrQD9248kjajUIbGyqVN5SKDjo4x2/c535idbH1jIaiqdh7XSpt/JCabyzWbKjxY2FCOX31sHT64bh5yhc63qL4pSsezWBL5W6vLDAF+IgK/vtYEstu0/X9Xn4br1s/DR9aXjpnpC29bim+/bw0e/MfzksaqhvLE+fOpyKRmHDabDXa7PeU/pvSQHQaLG8tTOkhW64v73+uLkmVNFWknpusX1uFf37kiLwvObGiu1C7ibpMDaqp5bIA2maIJVffIRELO1LGBgNT4IIWTbdxora0oiigZVRRgXp3XKBcdD4nywLk1Xlx+WhNcdptYKP/PNavwxbdpopXs0DCXUZ3Won1WB/vGEYzERMhnph2RVDRXefDJi7RuUP/xyC7c8IvNuE93qv3ww2ehvtyNrpEg/rztJL779AE8trMbNgX4l7cvx+q5WvebsWAU9716FIAmsq1rr4VP39mr87lFuVyTKZONdgXryl36+6cNVhS4u3CKYdS5QgPk/a8dQyAcwwWL6xLayRNmW3m6SZ8VS5oqcM8N52BerVeItMubK5J2n0uF+XVeKIrmaiSXAmC08Aa0vJ64qgnI5rIGQGsYsKSxHNeYXI6ZaE3R1j4YiYmGCFeYxH5aDHSNBDEcCIsJN03U93aP4VDfOCYiMXhd9iTHJF2zA/4worG45HbKz2JieRqRbceJEcRVI6cvFXKp6GTLHO+4ZhXKnHZsONAvOquev6gOiqIkBFafPqcySYRZmSCyTe4+7HM7hOOEHB3Z5hsCxvg2FooiEouL+wrtqv5l20kEIzEEwtE0Xf/IYTK9TrZKjxM0HI8UqWQ0ElNFN2hPiZeL0j131CLvygoS/M3ZkKXEqrlVeO6fL8F33r826WeFcrLVlbvxwhcvwW8/eS4+dkE7Llhchx/93VmivDKV++BAzzjiqiaoN5k6/AHGnGyX3iX7EilWpNLjEHNP2eV1wy8249w7nklY5AcjcXFO5prJBgDfvHYNnrr5Iksho8xpF3mTqTpWU+ZfLp1FCdpskJvJAJpwKDcvUBRFVINQLhu52Nbo8QKffesS7Prq2/G1967KSw6TvJFktykis4tEUhrH//2q0+CwKeIzIKcQoK0LAK3KIxCOGt3jCxwbY970T+9k046FGoZkW1bdUlWGr//tKvzvB9davt+i8+fQRMKmCJ0vXgtBuL5cczSpKvDeu18WTrZUIltTpQeKondC9ofE/CCVg4nG3bDe7fVr710pNs6MctGImL80VrhxyxVLMae6DP3jIfxm0zH8+5924Z9/n35Dj6CGDC3VZeIesC/Hstx8M9fUXEKOz5HdfyRI0nqKSkqn6sI0l3vS8cjl6nIm28hERFw3Xpc9KzF/RUslbn/vqklHBBSCxgoP/vasuZZrFnayTVJke/jhh/HQQw+Jfw888AC+/OUvo6WlBT/+8Y/zfYxMHpAdBsssSkWJNfpElC6KVHlsxYKcbKLMUHfQ1OfgekgHCVQbDw2I9u0AcCQbkU1ysgFGSPzcmjK4HXaj8YHkZJtbU4aqMic+f/kSXLi4Ho989kJ8cN08sViWHRr9QmTTBtSmSjdqfS7E4iq2Hx8Ri46p5ON9/rIl+OLblsFhU/D8vj7E4iquPK0Jly5vFDtftz2yC997Rish/erfnI7TWithtym4cLFWGkiTyLMX1MDtsItyWHmXU+zUmcTS+nJ3QlkwoA1Ak3XnTRZ5R+bas+binuvXWYrNZpEtm465Zt6ypAFP3nwRbrp8CarKnKJzbCnikdqtvy6JP3HV6JZE12aqtux15W48dcvFuPHSxTm9drPpnCE2Hh5AIBxDU6UbK+cklrZXepxisrO3e0yUjrxFL2Pd2zUqSkVXtlYlbT7U+Vyw2xSoqlaKke+SwmW6E+RQ33hCqRZgNHTpGgmmzRSbSh4bsby5Et98nxYBQaXPF+gdU89ZYCwErBYFK+dUwuWwaZkmU8jFTFXGlA2yu2d0IiLuQe9Z24o51WUYC0Xxnh+8jLVffQpn/tdTlqImuRStshcLic2miLFkqEgiW1BaLLpLvFzU7DjPBHUWLVV3MNFe7xNZNjLm83Eyok8qHHYbzl1Yh/939Wn49SfOxco5VcJ9kMrJRk0PljdXJoj65OKm6oJdJ7X3nTYDAc29TXNRWVDbfGQQY8GocB0CRuaeoliX4GWizGXHkhRzXUVRhEDz3af2Y1PHYFLWJ5WL5prJBqTOWRwKREQDC5prilw2PRrjdT2PTW6AYXVeTJZVpk0REiBkwaq+3IXr1s/DO/UqCyCx43JduRv15ZpodLB3XMpkK/y9U85Mq00z72+sSDwfq3PICvvAOfPwDulvl1lQ50Wdz4VQNC6yXAE5ky35fFEUBd/9wFrU+lzY2z0Gf1jb1EvlTHPabUaQ/mBANChI7WQzPrsPnN2WsIFJIurohJEv3FpdhgqPE4/+01vw/Q+dIcojra4DK4RQXOURG+a5ipn5huZ5XaNBhKNx0cCuySSe0TkzGtQ25HosOpBOBrO5ge7bcrn6nOoy4fSjaycfr12qsMg2SZHt3e9+d8K/a6+9Fl/72tfwjW98A4888ki+j5HJA5XSAJNq4gEkl0tlClidbminjG7y+eosSjTpuxFPm7oYHh30S40PtAlPukw2ACJvg7pbyTccymSjicuNly7GfZ9Yn5SVJzs0SFwgJ5uiKCIv7/l92vF6nLZJTQoJu03BjZcuxh9vvADLmytQX+7GV96lBfR/5Nz58LnsQsy75Yql+LvzFojflUsDXQ6bcLhctUabrMjZfiJ3bSyk29gTXXpyN6D2et+0d9p82+lNmF/nxRfftgzfvHZ1yh1ks8g2WSePx2nHTZcvxdb/d0VCa/ZSRN5J9rns4j2gyazocpvniQPtIJ80lYuKUtEVTZbniZzLRpOaq1a3AtDyWmhhZy6jATQBhETt3rFg3oWY1ioPKjwOROOqKI0m6P0MReNpQ/GPSa7YqXDV6lZ8+mLNyTqv1iucC+va68RjzKHsgOas+cX15+BnHz17Sg5M2RGXa/m/w24T5+GwlA/TUlWGvz1zDgBNZA3HNHeMubkLIDnZpiFf1Eyxc9modE9RjI6ypUq52yE+azl7z4pwNC4yS9eUsJMtHY0Vbjjt2n3NpkA4wwtFfYV2LqZaGKXqOm8EYIcxEojgiB7mb24wIYK/9XM9EI4iGNGEJ8pgBaSmBy5HQcZ/upc99OYJvP9HG/G537yZ8HNRLjoJUbOqzPp6pntMfblLhLfP1ztYbtIzL2nz6uwF1i6nqVLtdYkNGdl5L29s/u2Zc+G02/DxC425iDlihrpw7usem9ZSe7n7Z7rKAbPokUsgfzoURcF6varh1UNGZEYgTSYboJWCP3HTRbhcd9ufv6gubSYtzXdeOjCAaFxFhduRct6xpKkCtT4XzphXja+++/SEn8nOKdEUQX+eKq8TV69pxb+9awXKnHaMh6I43J+542iXJKqSQESmhGKVizaUu+F22KCq2nUml4HKVJU5RaOn4UBEKt+e2kZ+hdshSmcBYz62SMr4a6kug8thE/dwasoxmc35mQCLbHnOZFu/fj2efvrpfD4lkyc8Tru4AaQL/51TXZYwcJWayCbndQFIyimb+vMbTjYA4j070u+3cLLpZSuiXDTRyfaOVS1Y3FgunEly6ZmxME6/WJcdGod6tQmonMlBE9jn9Q6jjRX56Yy3ck4VHr/pImy89a2izXxVmRMf0yddH7ugHZ97a6IT6WJJZFs9p0pMIq9a3Yrffeo8/Ksu1gHaTuj8Oi9UVQvaFWHn+rknD4zTnccGaN09X/jipbjx0sVp30+5dKeqzDnlco7pFhMng/x5nL2gVuy4kvNBNODI88TByCkxykVVVcXTe6zz2AjKZXv54AAG/WEoCnDF6U1w2hWMh6J4UhfpzE4qgsoAekdDeXeyKYqSsmR0UGom0ZVGTOjMg5ON+OLbluF/rlmFH1x3pjgXlzdXYG5NGbwuuwjeNXP+4nrhWJ0s8vs/mU0T2T0iypeqPPjkxYvw6YsX4barT8PbTtfOEStxhgTU6S4XBeRjL47IFopQZ1HbjLgHyZlF6djXPYZwNI6qMqcoy5tp2GyKcPGWuwsjOMkYDZqsz8W9emdRc5VDjdcFm6I5NF4+pDWiaanyJF3LJLJRAxu5ac4RWWRL060xH9z5gbX41cfW4eo12obLSwf7E35u7iafC6mcbFZdON+1qgWK3tn9kW0nhdB41jzre20+oA0l+bOR59DvP0drgrWmrRrvXNWMOp8LZ5pC+slVdaB3POF+W2jkjehsykWJfJYxnqvnFlKXU8AQ2dKVNjdUuPGTvz8Lf7zxAnznA2vTvgYJYc/pG+jLmitSXvtVZU5svPWtePDTyU0xhJMtGBUVNOaOxQ67TYy/b1o0CRr0h/GZX2/BK/p1fZI6rFd5kj7zYpWLKoqS0GCC5oXm7sJ2myJcjYP+cN7OXUVREoRdOpbTWyrhsGnHRmtHMk/s65ndTja5u2g2Hd5nI3kT2SYmJvD9738fc+eWbqnTqc7atmqUux1Y21ad8jGKoiS42eRg21Kg2TS5pg4xuQTOp4NudpRtQMH9+/UcEsCYdFGXoUN941BV1XDw6N9f0VKJp2+5WEziaEIQk7LGMnUDlB0aB3Wni5xVdLoustFufdMUd2PMmN0kN1++FC9+8VL8v6tPSxrwmyo9QjA4y7QLu669NmknkRbsmzoGhUBDn6Ns8V5YBJEtW2QnWy4ZUjMZWWQ7d2Gd+MzIVdozxWzAVDSLTDZjYb3zxCh6RkPwuuwisNvMcn2j4IX92mR1bk0ZKj1OYeOn57NysgFS1+GxUEJnuHyxzNScgRiQyqm6RxNz6GTyUS5K2G0KPrhuXsJ7YbMp+P2nz8NfPndhQXdcT2utFDvMkyn/px30/vGQuJ80V3lQ7nbgy+9YjusvaBela72mIN7RYEQsqvOVt5cLhpOtOOWilC1U6k0PCCpLM+czmtmmu1RXz62aEeJhKmjBna88tnSI7FgL94GqqqJc1LwBa7cZJZgv7tc2/aw609f4Ekuj5fvc4QQnm56JNgVnfjocdhsuWtqAr/6N5vwZmYggEjNK9sd1J9tkKgNSZbKdHEkW8lfPrcbf6V2cKRNraVN5QcvuztDXALKwsLSpAu9c1YxPXrQwocTtrg+didf/7fKkOTaJXduPD4uxv9CZbNrrGseWbnPdPFZVTbLKwAoS2V4/OihiHmgTPlNpr6IoWNtWLcSvVNAcg+5hqUpFCbfDbumMkytuyMk212KTkMrpt0kl28TvXu/Eozu68R9/2qXlCtKGVHVZUpRLLmW5+YbcY0/t7sGGA/3afOac5CYGdJ8a9IfzVi4KJDadI5GtsdKDB//xfNz38fXiZ/SZ7NfnfNMdhzNd0PUZialpqzFmM5MavWpqahImLKqqYmxsDF6vF/fdd1/eDo7JL7/6+DpMRGIZb+5r2qrx3L4+zKkuK6mARSB5B9vsgJoq5hK3q1a34C/bu8TuopwPcv6iethtCvZ2j2F316goeUjV/clpt6HW5xITEqddyerGTg0Fjg5YONlMk1jz7l2+sdkUzEvjCLjx0sX44fOH8IGz2zI+17r2Wjy45Tg2dQyKsF2RNyc72aa56UEuyAuAfAm9pY78eZy7sFaUW9K1KFqS5/lcNLe1B4Cn9N3Ki5Y0pBQISPilrDEqN1neXCGErXK3A+111ucZiYW9Y0GcGDZCq/MF5bLt6x5N+P6g1LE1nZPtmF6Wle66nCrT4e4qdzvQXu/D4T7/pJzJtIN+oGcMqqrdX2tNCyvahKC8FoIWDVVlzqI0HakWJXRFymTTx65Sb3pAtJga5wDAPS934OWD/fjyO5ZjcWMFDvaO43/17NAzUgSMzxRahchW+HNTZMfq7gN5rt83FsJwIAKbYnQklqkvd6N/PCxEttNbLUQ2EpT1eZB8n6Pwf8AQLayC5PMJlY+pqlbeSeMWOekmI/KJrvAmZ2p3ik2af37bMjyxq1vcl86aXzgXGwB8cN08TIRjYgMY0ETSuz98VtJjbSlKGpc1a5//Fr281e2wTYuLab7eYTQaV9N2oDZv8uVT/FnSWC7m8tuPD+PsBbWiXHIynXCtaNGveTIApWp6kIlKveImFldFeaLV/GVtWw2ADmzrHEn62V59E/9A7zhePTwo/tYWKZONKOaakSIu7tWbr71jZbOlkaHW58KhPj/6x0Oi8iIfLky6d5Q57QkuS7OxhTYaqDQ33+aIUsHtsKPa68RwIIK+8VBOObuzhUmN2N/97ncTBl6bzYaGhgasX78eNTUzezIzm3HabVnl3Fy+ogl3PXsQV6QovyomdEMfC0XhD0XFLmi+y0UB7UZ58dJGMQEDEvNBan0urG+vxSuHBnDfq1oXzgq3I+1OVkO5W4hsrdVlaTMZiOoyFzoxIUSCemnXo73eB7fDJsJ0i13bf/Wa1oSJWzqoa+H248NikVlnmcmWury52MjOglPFybasqQJ2m4IKjwMr51SJa4+6NfWMFcjJJi2safFHi7lUpaKANikvc9rFxHCJvjhc3lIJbD0JQFsMplpMNOgTp+NDE8Ihlc9w/OUpnGxyMHiqsriRQERkJLZNMZOtFFg1p2rSIhvtDu/R38emSk/SZ9qUoszwZAEcirlQ7HJRymTzlHjTA4IWRCelz/H7zx7EoD+MDQf68ZlLFuPeV4+ifzyE5c0V+JjetGemQvebTBuk+YA28cLROMZC0YTXJDf9vFqv5aYGXbf0uZjz2ACjoQnllfVL5aLUsdHtsAuRazKdRXPBblNQ49UEk0G/IbJNKZPNa93IpMuiXBTQPtfbrj4d//jrNwAkNpspBOVuBz532ZIpPQdlO9O8tKUqP1ElmXA5tGYdm48Mpo2+qfO5YVMgKlDylckGQHTdfmxnN149PICzF9QaonCeztdW0zmyfJLRPWVOO5x2BZGYiqO6691cLgoYTrY9XaMIRmIJ17c8N6Hu4zVeJzxOu0W5aPHmweRko037T1600PJxJIAd6BlDLK7CphibC1OB1l9zasrSXgskwtO1U2hzRDFpKHdrIttYKClz/FRgUneD66+/Ps+HwZQSK+dUYcu/X1HwgN3JUOFxwueywx+OoXs0KBb2+Wp8IN/sTmutRJlL66ZINmvzLtXbTm/GK4cG8Mc3TwDILHLVV7iwTzPfZMxjI8y7g7KTzWG3YXlzheigNpNq++fVetFY4UbvWEiU2pJQJTsKUzmMSoHKhHLR2bkbZaa1ugz3XH+OCKen3eR+anxQICeb3NZ+wB9GrdclcszOMOXFyNhtCpY2V2Bb5zAAw4Ehl1+YG77IkJWfHHtlTnted+xp4tE1EsRIICIWaHIZVSonG5WKNlS489qBrlhcc+ZcbO4YxBWnNef8u/SZ0DlhVbpEDllzuWhXARyKuVAjFuXFEtkok21mnEPmfMaRQESI0qFoHN99ej8Azel93yfWF3Xhlw8W6u7h6dhEK3PZUe52YDwURf9YKEFkO9SnOc3kckIZ8xh4emvyfVWc68LJZpzzcVXLmFzcWJGUgVtIyJUk52COT+H1ya1nLhcVZXYWYv7bVzbjuvXzsLljEJcua8z5NaebSo8TLVWelMJhIfn59efAH4qmdcbYbQrqyt1ibplvl925C+t0kW0Qn31r5sYHudJiGosmK1Aoita9un88LMwCVpuEc6rLUF/uQv94GLu7RkUn8XA0LhpGAcAL+sYmudutGgsUC3lNta69FqtTNLuh9eJuPV+yvtwNRw6NllJB669Mm7Bmt99sLRcFtDHrQO/4Kdv8IOvRY/v27Vk/6erVqyd1MEzpUMwbZSaaqjw43OfH7pOjYiGaL4FDdrJREOi8Wq8ksiVeMlee3oT/eGSXcMnUZ7hZyrsl2TpPzJ+F2TF1WmuVENlm0s1aURSsa6/FX7Z3ie/R5zhft3g3V3pKrmRZRnaypStdmG3InWTrJSdbIBzFmL44ybcF3uWwoV6fNHePBOEPRTERicHlsGFBBiF2hSSy0Q68XH6xKk3nQbqmDugTzZbq/O7YV5U5MadaE/L39YxhXXut5iLRnRRAaidbPvPYSoGLlzbglVsvm9Tv0u4wlfY3WSz66JzsHw8jEosLZzdlexUjjw0wdv+Llck2U51stMCnMsOGCjduvGQR/ufxvVjWVIFf3LBuVpSovHNVC0YCEVy6fHrEl/pyF8ZDUfSNhbBQEtQO6ffARRalokDiGFjhdlhuJJrzB2WRDQAO9/l1kU0XLaZJZAOMZgyAkck2qXJRC2eqqqrYr5frWY1XiqLg9veuyvm1isnSpgpDZJvGDV6XwwaXI/N13VghiWx57npJuWxbjg7hUJ/R/KEQTrbWKs+U1mSVHqdwjFZ6HJbZjoqiYM3cajyztxfbOoeFyHaob1x0NwUg5nc0VsoVCw6bUlRzhrym+uRbrF1sgHG9U6fkfAnEV57ehMd2duFD69LH5ZhLl80xRbOJq9e04sx5NZbxAqcCWd8N1q5dC0VRRIeIdIuMWCw29SNjmBTMqS7D4T5/Qsv1QjjZVuoi2/w6LzYe1rqNmidcLVVlWNtWja36Aj7TTnODRTBmJuTB1e2wJR2DXJKR7xK9QrNeEtk8TpvYBVzYUI47P7A2Y2OIYiOXkuSrZHmmQSW+A+NhkcdW5rQXxIHQUuVB31gIXSNBnBimjLXyjGXXckg3DfbNlR7MqS5D71gwqXOaDE2A0u0CT5VlzRWayNY9inXttUmOJjng/QfPHUQgHMU/X7kMnUOzS2SbCrSwpVKRFouJa63PJUpnesdC4rMsZmdRwBAeilYuqjc+cM+Qxgf0OdHClkS29jofrr+gHR84Zx7cDlvKEvCZhtthx/UXtE/b6zVUuHFkIJBQygloC24AWJzKyVYhdaZvrbRcJxgiG5WLJjoc6LM0nGyFPyfrpCB0QjjZJlEuWi2FzcfiKuw2Rau88IdhtylJTSNmKsuaK4SzqblI9850NFa4sUv/Ot+btXIu2zvu3IBwLI76cnfGBgXZUl/uFmPVVJ+zUlpDzEmzub+2zRDZCHKGL2+pwII6H36/5TgAQ5jyOI3crWqvs6gNZpY1V2BBnRfNVR68Nc2GBN2DyDyRrwqgRQ3leOSzF2Z8XI3JWT3T1m258KF1yY0nTiWy3rbs6OjA4cOH0dHRgYceegjt7e24++678eabb+LNN9/E3XffjUWLFuEPf/hDIY+XYXDjpYtx9vwauBza6dtc6Um6aU2WMpddCGEUVjlf2nW0Eg7evtIobcpU1y877rIVkGSbe325O2kQk5sfzLTa/nPajYDfOl/i3/aeM+bgrPmlnfHoc9lB67hTpVzUDC1QBhI6NSWfp/mAdsu7RibE5C+bCSh1y5xf5xXXsKIouPfj6/D7T58vsjysMLtDWwuwmFikl4N19Gui2cC4WWTTcuj6x0P45hP78IPnDuHVw4PCyVbqYvR08P/bu/f4qOo7/+PvmUlmcr+QQEggEDAqICoYikVQwCKIeGHtesMiiLIPqqy4rnhZrfrogmwFfnXFaq2rlEqrttVt+8BKod4AV6WgWBSVgiAgiQjkRi6T2/n9MTknM7kRMmduyev5eMzjkUzOnPkO4UzOfM7n0vpKf3tXpx0Oh/Ueaf5flaTDZZHNZMvsoIdTuFiDD2IkyGb+bsuq61VT12hlLxZk+46DRLerxwTYIsH8W/Ztq7Lqlky29jOH/acCtzf0QGrbk631ZErzd3kiTD3Z/Nfk/75bGUQmW1aKRymeODUZLUGKT7/2Zc2c3i8lZo6zk/EvYYxUP8vOmO/1Dkf3psR2xul0WH2F6xqbdN6gDP3h9gtsu7jodDqs97nu9mMzBQTZOvkbd27zZ54dfkE2c5rwsP5pmjl6gHW//wUp89iNdAVUQrxLb909Sb+59budvv+3viAezixMKTDgmxjvsv3/JqJHl3+zgwcPtr6+5ppr9MQTT+iyyy6z7jvnnHOUn5+vH/3oR5o5c6atiwT8fXdoln7/wwvkbWjUFyWV6p+W0KUBAl315A2jVVJRa2W8DPab2te6XFTy9WX7r9c/lxSaTDb/NPf2musPz02V2+VUo2EoN0IfErvrjH6pSk+MV3lNfUwODnA4HErxxKmitiEm128HM5PNf1JTqIK9/hNGzamaXZm6dd6gTK245tw2KetDO8jI8Nc6eBqKvl0tGVW+YI/5wXNgZqIOldaouq5Rld4GfXq4ZQLpmv/bbzUHJ5OtbcPljq5O56R59HVZjY74BdmKrcEHkcnGyIh0JptZLhoXG+WiaQlxSnK7VN3cm3W/FWSL3v6dsSQ7paWs2lTlbbAGGnTUk83/w2vryeemlp5svoCyGdgqKsjUa36T3KvDWC7aXiab2U8trRuBA5fTodGDMrT5H0e1/UCpRuSl6ZPDvpYe7Q2DiFVn+gXZwtmTravMDKH0xPiQBN2vHZOvv+0/ruu+k687p5zRpcFyp6IgK1kHj9doZDu9DU9FekCQreO/cWZv2v3HqlVWXaeMJLc+L27JZPvu0Cz1bS7B9d9Pv7QEfV5SGRW9Lx0Oh052fbd1Uka4/+/6l4v2C9EFaUSHbr0j7Ny5U0OGtE1dHzJkiHbt2hX0ooCu8MS5dM7ADNvr2c8fmqWrRrVcsfH/ANveVaoh2cnWycbJroj4B9m63JOtVSZba0nuOD1zU5F+Nuu8sEwfs5PT6dB3CnxXA2M1E2zimf2Ul55gW5lArDGDi5W1DTpU6gtWhCr9vb/fdMgvmvvbdLUh8D8XDWwzSr0r3HFO64OhpJAEss0SDrN8wewNNCAj0TpBLimv1afNH9QkacOuEu382vc9Qba2ja07yqww/w9901zabBiG1VcoFFmKXdHSw6neaskRTuZ06ljJsHE4HH592Wq0rzngHs1DcmKJeZ7iX8r5ZfPQg+wUd4cfpv3/hrc39EBqae1xwtuguoYmK7A1pjlr3Qyymdk0dvf27GxN5loqa+utctHulpKZPa227z8uSfqkOZMt2IBJNCnsl2IFNMKdDdQVZhZ66x5Ydpk8rJ+2PXiJFk8bZnuATZIeunyEHrp8hKad1fH09K7wH9DV3mRRU0aSW0OaL1SYx9/nfplsLqdDS2eO1JXn5ukSv4nuOSH+d7Zb6/7J4R4Y5//+2XpwBHqWbr0rDB8+XEuWLFFtbcuVYK/XqyVLlmj48OG2LQ6IBoGZbO1/CFn2/bM194ICXXZ2bqf7MjN8PM1N3LvC/w9XR4+ZfGa/gLLVWDLxjGxJsZuF8MT1o7T53ovbbSbbG6QlxCuu+SqxeUIWqkw2M3Cy/1iV9WFsWP/QZwb4v55Q9GRrk8nW/OE2K8Vtvebi8lork83h8E3iK2suLyTI1vYEv6MTZ/N3afbzOl5VZwWZctIjE+g3r6w3NBnWh/twirXBB5L/hFEy2ezWUi7aEmTb863vokZn2b+5Vp8mZ4eNrtMS4q0WC2XVdTpW5XsOszXENxVe/W3/ce38ulxul1PTR3Z+TmWHPlbLA2/zGnzvDakJcd0u/xtT0BxkO1AqSdYFErPXb0+Q6HbpqnPzdGZOalReZDSzzmP1Au7pOamaN2FI0JMvAzPZOj9XMEtgX/3wax2vqrMuRpm/36ln9dcTN4wOqOoxL3hE85Ayf5nJrVpLhDnI5n/Rtm8P7seGUygX9ffzn/9cV1xxhfLz83XuuedKkj7++GM5HA6tW7fO1gUCkZaaEK+sZLeOVdW1Wy4q+a5amlcuO3N6vxTdMDZfp/VN6XL6uv9VD//Gwj3F9WMHaWBmUkB/tljicDjk6sXZ3k6nQ32S3TpS6bWmNYUq+8As5/v7oXI1NhlKT4wPS6ZDvzSPlTkXynLRY1V1qqlrtDIq+iS7VV3XqM9LKlVSXqNdzUG2H5w/WC+8/5UkX6ZdLE0VDpXWJ/gdl4sG9mQzs9iyUzzyxEUmkyvR7ZInzilvQ5PKquvDHrD3WkG22Mhkk6T+ab5j5rPiCqu0z/+CGLqvvUy2vUd8gczOpsT1S0vQY98/R32S3VbP3NacTocyknwN4w+V1Vj9AIf2TVFmUrxKq+ut9htTz8qxbahVZ8zMFrOE1XxPCKbP2Kj8DDkd0sHjNfqsuMLaZ08qF5Wkx68fLcMworLk7aIz+mrR907XxDP7nnzjHsy/5PlkfUdnjxusl/52UK/tLNaFp/sugA/qk9RpsPmqUXna/lWprhvT+VTNaNE6k61/mC+u+Z+rcO7Ws3UryDZ27Fjt27dPa9eu1eeffy7DMHTddddp1qxZSk7mSiJ6nkFZSTpWVaeUIJvwOp0OLbv6nFN6jH8ZVOs/Dj1BvMupyZ1MAkL0y0rx6EilV3ubS4pCVS5qfugxJ0iemZMalpN7/zLvUDR4Tkv0ZUyc8Dbo67IaHbOCbB7rtf7jmxNW9t6/fq9Qb35+RF+X1Sg/M5Em7wq8Wp+d0vGHfDMoa07CNbMHO2sIHQ6ZSW6VVNSqtLou7IMsamOsXFRqOQ7f/9JXjpeT5lFSGJrk9wZmCwD/nmzmZNGO+rGZrv3OyT9oZyTF63hVnfY0D1LwxDmV7HZpSHaySg+UaftXvuyvcE2mMzNbzPddMyAWzMTM1IR4ndk/TZ8VV+hX7/kuiAzNTg7J1O1Ii8YAm+Q7t/y3S86I9DIiLiCT7SS9oM/KS9f4wiy9u+eYFew+Wd/bwn6p+s387wa/0DBJdLuUEO+0AvzhLhf1/32E+7kRXt1+t09KStK//Mu/2LkWIGqdlZemjw6UnfQPVCgElIty1QNRyGwcbQaEQtVnovUJSbhKVMwSw6xkd0gCEQ6HQ3kZCdr9zQkdLquxMtmykt1yNX+AefOLI5J8wYV+qQm6adxgLXv9c53eL/rKdCLBE+eymuF3duJqloaUtMpki9TQA1NGUnxzkC38E0ZjbfCB1FKiZJbhFdCPzTb+5aJmlpIZEOssk62r+iS59aWqrGmlWcluORwOFWQn68MDZZJ82TPjhmYF/VxdYWWyVdepqclQifmeEOQH4KLBGfqsuEJ/+OhrSdJZPahUFLHDDOq445wBE4A7Mv/CoXp3zzEr6BzsdNNolJXsG4CU7HaFPXPc/1yFTLaerctBtj/96U+aPn264uPj9ac//anTba+88sqgFwZEk8XThmnymf100RnhTztPa5WhAUSb1iPRQ5XJ5m7uZWiWMZ0RtiCb7/WEolTUNCAjUbu/OdEqk82txOagntl4/KzmcqNbJgxRWmK8JhRmh2xNsSYjMV7VdY2dZhv2a1Uu+vdDviDN0L6RDdJkRnDCqBlk88RgJltzXN9q2I3gmZm7dY1NqqhtULLbpf3HfO8/p9lwnJgtMMzsuD7Nfz+G+v0Or/tOftgydM1MtsYmQxW19X6ZbMEF2cYM7qO17x9QTfPxdVYPKxVFbDBLrrua9T7xjL46MyfVapExPAr77QUrMzleX5fVKCdCU3Ezk9yqrqshk62H63KQbebMmSopKVG/fv00c+bMDrdzOBxqbGy0Y21A1EhPjNf3hgc34ae7EuJdVilZqBrKA8FoXcZs98Rff3kZCVaQ7WRlDHYZPShDDoesSbihYGbJfl0amMnWkBg4bXJE83S6OJczbOVUsSI9ya3D5bWdnria5aKVtQ2qrmvQ+18ekyR9N0xZMx0xP+iXRSSTzVc244mhTLbWmYcMPbBPQrxLqZ44VXob9G2lV8edDtU3GkqMd9kygbdP8//1PVYmm++YNH+HLqdD1xQNDPp5usoT1/J6j1XVqaTcV0IebGsAc5iDqSdNFkXsGDM4Uz+cdFqXM0MdDoduvXCIFv/+75J6ZiabeVErUlNxb71wiDb/42ib9wj0LF0OsjU1NbX7NYDQe3DGcO0/Vm3LVWTAbv6ZbAnxTqWGsO9M/7QE/V2+7KMzcsIVZMvUhw9eEtAf0W55fhNGrcEHKS3loqaRZEN0yCyt7+zEOTUhXslul6rqGrX9q1J9XVajOKcj4ie76Ym+Y6g0gplssdiTzVTA0ANb9U31qNLboKMnvKqs9U28Hdo32ZbsMvMD7oHj1ZJa2g1MKMzWsP6punhYv5BeqGlPnxS3Kr0NKq2qsy2TbWBmovql+vqVSmSyITLiXE7de+mwU3rMlaPytPaDA3K7HD1yern5nhOpINvN44fo5vFDIvLcCB/bPgmVlZUpIyPDrt0B8HM9GSuIYv5lzDlpCSFthGx+uM5NTwhoIBtqmSGecmdOGD1YWm0FWvzLRU309enYmf1T9d6XxzRyYOf/RjlpCfryaJX+8NFhSdI5A9M7nBwdLplJEcxki8HBBxlJ8dZEVolMNrtlp3j05dEqHT3h1aFSX2bXyYYedJX5XmqW+poXaTKS3Fp/50W2PMcprynJra+OVetYVZ1VSh5sn0aHwxe8f/2TEg3ISAz53xDALp44l/54+/hILyNkzMqBwfTyRAh1qzbgJz/5iV5++WXr+2uuuUZ9+vTRgAED9PHHH9u2OABA9PMvFw11I1cz4ytcQw/CZWDzSd9nxZUymj98Zia5lZoQb02ky0iKV16EeojEggdmDNdf77pIk07SO9PsGfiXT0skSeNOi2ypqNSS3RPZTLbYKRd1OBwB2WyD+/BhyU7Zqb7/j99WerVtv2/apx1DD6SWgLKpTxRMTTczWw6X1VjDR4LNZJNa3lvOoywMiBq3Thiqpf80UnPHF0R6KejBunVG9cwzzyg/3zeme+PGjfrrX/+q9evXa/r06Vq8eLGtCwQARDf/ctFQl/lcOSpP00f21w8nnhbS5wk3M3h4wusrzUpPjFe8y/cn2vywd1ZeWkizBGNdvMupwn6pJ/03MktEzH/rSPdjk2SVIkdiuqiZDZYQFzuZbFLLcZGbnqBEd2ytPdr1bZ4w+qv3vtJfP/tGDodsG/xkBpRNWVGQ4WU2h991uEKSlOR2KS0h+OzWG8YO0qP/dLYenDE86H0BsEdmsls3nj84rNUQ6H269RekuLjYCrKtW7dO1157raZOnaqCggKdf/75ti4QABDdslPCl8mWm56op39QFNLniIR+qQmKczrU0FxD5f/BMzc9QXuOnKBxtk38ByPEuyLfj02K7HRRbwz2ZJNayvkKKPmxnfmevu+ob6rofZcO06j8DFv23bpssvV06kgwJ5x+2hxk659uT9uDeJdTs86n3QcA9DbdymTLzMzUwYMHJUnr16/XlClTJEmGYTBZFAB6maxWPdlw6lxOR0B5Uh+/D6KTzuynhHinLhkRmQnHPY1/tuW5AzOU5I5sPzapZboo5aJdZ5ZYn9aPIJvd+vpdLPmn0QP0LxcNtW3frTPZ+kRBJpt5UeMfRyolBT9ZFADQu3XrzPLqq6/WrFmzdPrpp+vYsWOaPn26JGnHjh0qLCy0dYEAgOiW5I5TYrxLNfWNIc9k68kGZCRaTcb9P3jeMmGI5owbrDhXbAVBopX/RLFoKBWVfE3fpQgNPqiPvcEHkjT7u4NV32joRjKFbDeyecDKqPwMLbv6bFvL1Fv3ZPPPhI4UM/BX3+jLJO6fFtzQAwBA79atINtPf/pTFRQU6ODBg3rssceUkuJrhlpcXKzbbrvN1gUCAKJfdqpbB4/XRGwkek8wIDNR2uf7unUJFQE2++SktXyoj4ahB5KU0dwbprK2QQ2NTWH9fdc2xGYmW7+0BN03fVikl9EjjRyQrs33TFb/9ASrN6Rd0hPj5XDIGvASFZlsrd5vyWQDAASjW0G2+Ph43X333W3uv/POO4NdDwAgBt35vTP07t6jGlPQJ9JLiVkDMlqyJ6Lhg2dPNTAzSQ6H5HY5dd6gyPdjkxTQgLmspj6s2T1muagnxgYfILTy+ySFZL9xLqfSEuJVXlMvT5xTSVEwtKL1hFM7JosCAHqvbl+eeuGFFzRhwgTl5eXpq6++kiQ9/vjj+uMf/2jb4gAAseH7RQP1/64dJXdcbGXDRJPAIFvkS6h6qv7pCXr8ulF69qYxUTOV0hd48F33DOfwA8MwrHJRT4xlsiF2mRcRslM8UTExufWEUzLZAADB6NYZ1dNPP6277rpL06dPV1lZmTXsICMjQ48//rid6wMAoFfI8wuytf7QB3tdNWqALjqjb6SXEcCculgaxr5s3oYm6+tY68mG2JXR3JctWjJ2W088JZMNABCMbgXZVq1apWeffVYPPPCAXK6Wk7IxY8Zo586dti0OAIDeYkAm5aK9mTn8oLQqfJls3nq/IBvlogiTPs3/11v3QouUZLcrIAub3qIAgGB0K8i2b98+jR49us39Ho9HVVVVQS+qtf379+uWW27RkCFDlJiYqNNOO00PP/yw6uoCT0QPHDigK664QsnJycrOztYdd9zRZhsAAKIRPdl6N3PqYjgnjHqbhx44HVK8K/Jle+gdzIBytLzPORwOK3vY7XJGzboAALGpW4MPhgwZoh07dmjw4MEB97/++usaPny4LQvz9/nnn6upqUnPPPOMCgsL9cknn2j+/PmqqqrSihUrJEmNjY2aMWOG+vbtqy1btujYsWOaM2eODMPQqlWrbF8TAAB2Soh36ewB6frqWJUKspMjvRyEmTlhtKwmfBcHzX5sCfGuqOiNhd4hL8OXKeZ/YSHS+iS7VVxeq/7pCRwLAICgdCvItnjxYt1+++2qra2VYRjaunWrXnzxRT366KN67rnn7F6jLr30Ul166aXW90OHDtUXX3yhp59+2gqybdiwQbt27dLBgweVl5cnSVq5cqXmzp2rpUuXKi0tzfZ1AQBgp9//cJxq65uU4unWn2fEMKtcNIyZbLXNmWz0Y0M4zb2gQOmJ8fqn0QMivRSLmb1GPzYAQLC6dRZ/8803q6GhQffcc4+qq6s1a9YsDRgwQKtWrdKFF15o9xrbVV5erj59+ljfv/feexo5cqQVYJOkadOmyev1avv27Zo8eXK7+/F6vfJ6vdb3FRUVoVs0AACd8MS55KE3Vq+U2RxkC+d00dr65iAbU4ERRlkpHt164dBILyOAGWRjsigAIFjdPquaP3++vvrqKx05ckQlJSXaunWrPvroIxUWFtq5vnbt3btXq1at0oIFC6z7SkpKlJOTE7BdZmam3G63SkpKOtzXsmXLlJ6ebt3y8/NDtm4AAID2ZCb7ykVLq8KYyeZXLgr0ZuZ058F9kiK8EgBArDulIFtZWZluvPFG9e3bV3l5eXriiSfUp08f/exnP1NhYaHef/99Pf/8813e3yOPPCKHw9Hpbdu2bQGPOXz4sC699FJdc801uvXWWwN+1l4PBcMwOu2tcP/996u8vNy6HTx4sMvrBwAAsENLuWj4M9k8BNnQy80bP0T/cdkwzR0/JNJLAQDEuFMqF/2P//gPbdq0SXPmzNH69ev1b//2b1q/fr1qa2v15z//WRMnTjylJ1+4cKGuv/76TrcpKCiwvj58+LAmT56scePG6Re/+EXAdv3799cHH3wQcF9paanq6+vbZLj583g88ng8p7RuAAAAO0ViuqhVLhpPuSh6t76pHv3LRadFehkAgB7glIJsr732mlavXq0pU6botttuU2Fhoc444ww9/vjj3Xry7OxsZWdnd2nbr7/+WpMnT1ZRUZFWr14tpzPwhHDcuHFaunSpiouLlZubK8k3DMHj8aioqKhb6wMAAAgHqydbOKeLNjSXi9IHEAAAwBanFGQ7fPiwRowYIck34TMhIaFNyWYoHD58WJMmTdKgQYO0YsUKffvtt9bP+vfvL0maOnWqRowYodmzZ2v58uU6fvy47r77bs2fP5/JogAAIKqlJzb3ZKuuP2mrC7u0lIuSyQYAAGCHUwqyNTU1KT4+3vre5XIpOTnZ9kW1tmHDBu3Zs0d79uzRwIEDA35mGIa1ltdee0233Xabxo8fr8TERM2aNUsrVqwI+foAAACCkdk83bCuoUk19Y1KcndrAPwp8ZLJBgAAYKtTOoMzDENz5861epjV1tZqwYIFbQJtr776qn0rlDR37lzNnTv3pNsNGjRI69ats/W5AQAAQi3Z7VK8y6H6RkOl1fXhCbLRkw0AAMBWp3QGN2fOnIDvf/CDH9i6GAAAgN7I4XAoI8mtbyu9Kq2q04CMxJA/Z8vgAzLZAAAA7HBKQbbVq1eHah0AAAC9WmZSvL6t9IZtwmhtfXO5KEE2AAAAW1AfAAAAEAUymieMllaHZ8Iogw8AAADsxVkVAABAFMhonjBaVhOmTLaG5nJRBh8AAADYgiAbAABAFMhszmQrqwpXJhvlogAAAHYiyAYAABAFMpJ9mWylYevJxnRRAAAAO3FWBQAAEAWsTLaw9WQjkw0AAMBOBNkAAACiQGaSmckWniCbt7knmyeO00EAAAA7cFYFAAAQBVqmi4anXNRLJhsAAICtCLIBAABEAbNctDzc00XpyQYAAGALzqoAAACiQEaYy0WtwQdxZLIBAADYgSAbAABAFDCDbOU19WpsMkL+fObgAw/logAAALYgyAYAABAFMhJ95aKGIVWEoWTUymSjXBQAAMAWnFUBAABEAXecUymeOEnhKRltCbKRyQYAAGAHgmwAAABRoqUvWxgy2RqYLgoAAGAngmwAAABRwpwwWhbiTLamJkN1ZpAtjtNBAAAAO3BWBQAAECXMTLayEGey1TU2WV+TyQYAAGAPgmwAAABRIqM5ky3UPdmq6xqtrwmyAQAA2IMgGwAAQJTIbM5k2/5VqTbu+kZffnsiJM9T3jy9NNUTJ5fTEZLnAAAA6G3iIr0AAAAA+GSneCRJr39Sotc/KZHDIb199yQNzkq29XnMIFtaYryt+wUAAOjNCLIBAABEiWvGDNT+o1U6UunVRwdKVVXXqL3fnrA9yGYOVkgnyAYAAGAbykUBAACiRG56ov7fdaO09tbzNXpQpqSWrDM7mfs0By0AAAAgeATZAAAAopCZZRaKSaNmkI1MNgAAAPsQZAMAAIhC6c1ZZiHJZKsmkw0AAMBuBNkAAACikJllFoogWxmDDwAAAGxHkA0AACAKZZhBthCWi2Ykum3fNwAAQG9FkA0AACAKhTSTrZqebAAAAHYjyAYAABCFzH5pZSEIslUwXRQAAMB2BNkAAACiUFpIe7LVSSKTDQAAwE4E2QAAAKKQ2S+tLIQ92QiyAQAA2IcgGwAAQBRKby7lrKipl2EYtu6bnmwAAAD2I8gGAAAQhczponWNTaqpb7Rtv7X1jfI2NElqCeQBAAAgeATZAAAAolCS26U4p0OSvX3ZzH25nA6leuJs2y8AAEBvR5ANAAAgCjkcDqucMxRBtrSEODkcDtv2CwAA0NvFXJDN6/Vq1KhRcjgc2rFjR8DPDhw4oCuuuELJycnKzs7WHXfcobq6usgsFAAAIEhmOaedww/MIFtGktu2fQIAAECKuRqBe+65R3l5efr4448D7m9sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVodUCAAB0Xygy2cyAXRpDDwAAAGwVU5lsr7/+ujZs2KAVK1a0+dmGDRu0a9curV27VqNHj9aUKVO0cuVKPfvss6qoqIjAagEAAIJjDj8oD0UmG0E2AAAAW8VMkO2bb77R/Pnz9cILLygpKanNz9977z2NHDlSeXl51n3Tpk2T1+vV9u3bO9yv1+tVRUVFwA0AACAahCaTrS5g3wAAALBHTATZDMPQ3LlztWDBAo0ZM6bdbUpKSpSTkxNwX2Zmptxut0pKSjrc97Jly5Senm7d8vPzbV07AABAd5l908pq7OsxW2H1ZCPIBgAAYKeIBtkeeeQRORyOTm/btm3TqlWrVFFRofvvv7/T/bU3IcswjE4nZ91///0qLy+3bgcPHgz6dQEAANghLRSZbM37IpMNAADAXhEdfLBw4UJdf/31nW5TUFCgJUuW6P3335fH4wn42ZgxY3TjjTdqzZo16t+/vz744IOAn5eWlqq+vr5Nhps/j8fTZr8AAADRwOybForpogTZAAAA7BXRIFt2drays7NPut0TTzyhJUuWWN8fPnxY06ZN08svv6zzzz9fkjRu3DgtXbpUxcXFys3NleQbhuDxeFRUVBSaFwAAABBCoZwuSpANAADAXhENsnXVoEGDAr5PSUmRJJ122mkaOHCgJGnq1KkaMWKEZs+ereXLl+v48eO6++67NX/+fKWlpYV9zQAAAMEy+6bZGWQjkw0AACA0YmLwQVe4XC699tprSkhI0Pjx43Xttddq5syZWrFiRaSXBgAA0C2hyGQrtwYfuG3bJwAAAGIkk621goICGYbR5v5BgwZp3bp1EVgRAACA/UIZZCOTDQAAwF49JpMNAACgp0n3Kxdtamp7gfFUGYbhl8lGkA0AAMBOBNkAAACilJltZhhSpbch6P2d8DaosTlYRyYbAACAvQiyAQAARClPnEuJ8S5JUnl18CWj5mRRT5xTCc37BQAAgD0IsgEAAEQxO/uy0Y8NAAAgdAiyAQAARDGzd1pZTV3Q+6IfGwAAQOgQZAMAAIhiaWSyAQAAxASCbAAAAFEsozkgVmZDTzaCbAAAAKFDkA0AACCK2dmTzQzUpSe6g94XAAAAAhFkAwAAiGJm/zTKRQEAAKIbQTYAAIAoZmWy2VIu6huewOADAAAA+xFkAwAAiGJ2louSyQYAABA6BNkAAACiWHqSr39aWXMWWjBKq3xBNjLZAAAA7EeQDQAAIIq1ZLI1BL2v0mqzXJTBBwAAAHYjyAYAABDFMqyebMFnspnTRTPJZAMAALAdQTYAAIAoltYcZKuotS+TLZNMNgAAANsRZAMAAIhiZrnoCW+DGhqbur2f2vpGeRt8j6cnGwAAgP0IsgEAAESx1IQ46+vKILLZzCy2OKdDKZ64k2wNAACAU0WQDQAAIIrFu5xKdrskSeU19d3eT8tkUbccDoctawMAAEALgmwAAABRrqUvW/eDbGVWPzZKRQEAAEKBIBsAAECUM/uyBZXJVm1mshFkAwAACAWCbAAAAFEuLaE5k60m+J5sGUwWBQAACAmCbAAAAFEuzYZMNspFAQAAQosgGwAAQJRLS/RNAw2mJ5tZLppJJhsAAEBIEGQDAACIcvb0ZKNcFAAAIJQIsgEAAES5lp5swZSLmplslIsCAACEAkE2AACAKEcmGwAAQPQjyAYAABDlzMEHFbXdny5KJhsAAEBoEWQDAACIcnZmsmUmk8kGAAAQCgTZAAAAolxagm+6aGU3g2yNTYYVoMsgkw0AACAkCLIBAABEufSk4DLZKmrqZRi+rzMSyWQDAAAIBYJsAAAAUc6aLlpbL8OMlp0Cs1Q0xRMndxynfwAAAKHAWRYAAECUM3uy1TcaqqlvPOXHl1ZTKgoAABBqBNkAAACiXJLbJZfTIUmqqDn1CaPlNc1DD5IoFQUAAAgVgmwAAABRzuFwtJkwuvwvn2vO81vV0Nh00seXVpHJBgAAEGoE2QAAAGKAOWG0orZeTU2Gnt28T+/s/la7vzlx0seaPdnIZAMAAAidmAqyvfbaazr//POVmJio7OxsXX311QE/P3DggK644golJycrOztbd9xxh+rq6iK0WgAAAPtYmWzV9TpS6VVdgy+D7YT35OWjZfRkAwAACLm4SC+gq1555RXNnz9fjz76qC6++GIZhqGdO3daP29sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVwZUDAAAELy2xZcLowdJq6/4T3vqTPtbMZMsgkw0AACBkYiLI1tDQoEWLFmn58uW65ZZbrPvPPPNM6+sNGzZo165dOnjwoPLy8iRJK1eu1Ny5c7V06VKlpaWFfd0AAAB2SfPvyXa8JchWWdv1TLZMMtkAAABCJibKRT/88EN9/fXXcjqdGj16tHJzczV9+nR9+umn1jbvvfeeRo4caQXYJGnatGnyer3avn17h/v2er2qqKgIuAEAAESbtISWINuB4/6ZbCcPstGTDQAAIPRiIsj25ZdfSpIeeeQRPfjgg1q3bp0yMzM1ceJEHT9+XJJUUlKinJycgMdlZmbK7XarpKSkw30vW7ZM6enp1i0/Pz90LwQAAKCbzJ5sFTUNOni8xrr/RBcy2UrpyQYAABByEQ2yPfLII3I4HJ3etm3bpqYmX2PfBx54QN///vdVVFSk1atXy+Fw6He/+521P4fD0eY5DMNo937T/fffr/Lycut28OBB+18oAABAkNISfV0+ymta92TrSrkomWwAAAChFtGebAsXLtT111/f6TYFBQWqrKyUJI0YMcK63+PxaOjQoTpw4IAkqX///vrggw8CHltaWqr6+vo2GW7+PB6PPB5Pd18CAABAWKT7DT44RLkoAABA1IlokC07O1vZ2dkn3a6oqEgej0dffPGFJkyYIEmqr6/X/v37NXjwYEnSuHHjtHTpUhUXFys3N1eSbxiCx+NRUVFR6F4EAABAGJg92Y6e8Kq4ota6/2TlorX1jaqt91UFZCRTLgoAABAqMTFdNC0tTQsWLNDDDz+s/Px8DR48WMuXL5ckXXPNNZKkqVOnasSIEZo9e7aWL1+u48eP6+6779b8+fOZLAoAAGKemcn2RUmlDKPl/pNlsplZbHFOh1I9MXHqBwAAEJNi5kxr+fLliouL0+zZs1VTU6Pzzz9fb775pjIzMyVJLpdLr732mm677TaNHz9eiYmJmjVrllasWBHhlQMAAAQvrTnIVl3XGHD/SYNsVS1DDzrrUwsAAIDgxEyQLT4+XitWrOg0aDZo0CCtW7cujKsCAAAIDzOTzRTndKihyVDlScpFzaEHGfRjAwAACKmIThcFAABA16QlBF4bLeyXIqkr5aK+TLbMJPqxAQAAhBJBNgAAgBiQ1iqTbXiur+fsyQYfFJfXSJJy0hJCszAAAABIIsgGAAAQE+JdTiW5Xdb3w3NTJZ08k+3A8WpJUn6fpNAtDgAAAATZAAAAYoV/XzYrk83boKYmo6OH6KAZZMskyAYAABBKBNkAAABiRFpC2yCbJFXVdZzNdrDUVy6a3ycxdAsDAAAAQTYAAIBYYWayZSbFKyvZrTinQ5JU5W1sd3vDMHSolEw2AACAcCDIBgAAECPSEn0TRvP7JMnhcCileeLoCW99u9t/e8Kr2vomORxSXgaZbAAAAKFEkA0AACBGmBNGzay0FI8vyFbZwYTRg8d9paK5aQlyx3HaBwAAEEqcbQEAAMSInLQESdJpfZMltQTZOpowapWKMlkUAAAg5OIivQAAAAB0zbzxQ5SV7Nb3zxsoSUo1y0U7zGQjyAYAABAuBNkAAABiRN9Uj269cKj1vVUu2kEmm1kuytADAACA0KNcFAAAIEalJPh6tHWUyXbAymRj6AEAAECoEWQDAACIUSfryXaQnmwAAABhQ5ANAAAgRqV4XJLaD7I1NDapuLxWEuWiAAAA4UCQDQAAIEaleHzlopXtlIsWl9eqscmQO86pfqmecC8NAACg1yHIBgAAEKNSmqeLVrWTyWZOFh2YkSin0xHWdQEAAPRGBNkAAABiVGonPdnoxwYAABBeBNkAAABilJnJ1t500YPHayQxWRQAACBcCLIBAADEKHO6aGVnmWwMPQAAAAgLgmwAAAAxyspk89a3+ZnZk41yUQAAgPAgyAYAABCjrJ5s7ZWLljaXi5LJBgAAEBYE2QAAAGJUSyZbgwzDsO6va2jSt5VeSdKATHqyAQAAhANBNgAAgBiV3JzJVt9oyNvQZN1/vKpOkhTndCgjMT4iawMAAOhtCLIBAADEqGR3nPX1Cb/hB0dP+LLY+iS75XQ6wr4uAACA3oggGwAAQIxyOR1KdrskBfZlM4Ns2SmeiKwLAACgNyLIBgAAEMP8+7KZjp7wlYtmpbgjsiYAAIDeiCAbAABADEvxtBdk82Wy9SWTDQAAIGwIsgEAAMSwlATfYAP/ctFjZrloKkE2AACAcCHIBgAAEMNS281kay4XTaZcFAAAIFwIsgEAAMQws1y0sp1yUQYfAAAAhA9BNgAAgBhmDT6oZfABAABAJBFkAwAAiGEtgw/qrfuOkckGAAAQdgTZAAAAYpgVZGvOZGtqMnSsypfJRpANAAAgfAiyAQAAxDCzXNTsyVZeU6/GJkMS5aIAAADhFDNBtt27d+uqq65Sdna20tLSNH78eL311lsB2xw4cEBXXHGFkpOTlZ2drTvuuEN1dXURWjEAAEDotc5kM4ceZCTFK94VM6d6AAAAMS9mzrxmzJihhoYGvfnmm9q+fbtGjRqlyy+/XCUlJZKkxsZGzZgxQ1VVVdqyZYteeuklvfLKK/r3f//3CK8cAAAgdFKbM9mq6nxBtm+bg2xZyWSxAQAAhFNMBNmOHj2qPXv26L777tM555yj008/Xf/1X/+l6upqffrpp5KkDRs2aNeuXVq7dq1Gjx6tKVOmaOXKlXr22WdVUVER4VcAAAAQGmYmW0WNL8h27AT92AAAACIhJoJsWVlZGj58uH71q1+pqqpKDQ0NeuaZZ5STk6OioiJJ0nvvvaeRI0cqLy/Pety0adPk9Xq1ffv2SC0dAAAgpAZkJkqS9h+tkmEYVrkoQTYAAIDwiov0ArrC4XBo48aNuuqqq5Samiqn06mcnBytX79eGRkZkqSSkhLl5OQEPC4zM1Nut9sqKW2P1+uV1+u1vifrDQAAxJLT+qbI7XKq0tugQ6U1fplslIsCAACEU0Qz2R555BE5HI5Ob9u2bZNhGLrtttvUr18/bd68WVu3btVVV12lyy+/XMXFxdb+HA5Hm+cwDKPd+03Lli1Tenq6dcvPzw/JawUAAAiFeJdThf1SJEm7iiusTLYsMtkAAADCKqKZbAsXLtT111/f6TYFBQV68803tW7dOpWWliotLU2S9NRTT2njxo1as2aN7rvvPvXv318ffPBBwGNLS0tVX1/fJsPN3/3336+77rrL+r6iooJAGwAAiCnDc9O0q7hCuw5X6Cg92QAAACIiokG27OxsZWdnn3S76upqSZLTGZh453Q61dTUJEkaN26cli5dquLiYuXm5kryDUPweDxW37b2eDweeTychAIAgNg1PDdVkvSZXyYb5aIAAADhFRODD8aNG6fMzEzNmTNHH3/8sXbv3q3Fixdr3759mjFjhiRp6tSpGjFihGbPnq2PPvpIb7zxhu6++27Nnz/fyn4DAADoiUbk+s51PiuhXBQAACBSYiLIlp2drfXr1+vEiRO6+OKLNWbMGG3ZskV//OMfde6550qSXC6XXnvtNSUkJGj8+PG69tprNXPmTK1YsSLCqwcAAAit4c1BtoPHa/RNRa0kqS9BNgAAgLCKiemikjRmzBj95S9/6XSbQYMGad26dWFaEQAAQHTITHarf1qCSipqVd9oSJKyKBcFAAAIq5jIZAMAAEDnzL5skpQY71KyJ2aupQIAAPQIBNkAAAB6ALNkVJKyU8liAwAACDeCbAAAAD2Af5AtK5l+bAAAAOFGkA0AAKAHCMhkY+gBAABA2BFkAwAA6AGGZCcrId53apfN0AMAAICwI8gGAADQA7icDp2Z4xt+QCYbAABA+BFkAwAA6CHGnZYtSRrmN2kUAAAA4cFsdwAAgB7i36eeoe+fN0CF/VIivRQAAIBehyAbAABADxHvcur0HLLYAAAAIoFyUQAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA0AAAAAAAAIEkE2AAAAAAAAIEgE2QAAAAAAAIAgEWQDAAAAAAAAgkSQDQAAAAAAAAgSQTYAAAAAAAAgSATZAAAAAAAAgCARZAMAAAAAAACCRJANAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIMVFegHRxjAMSVJFRUWEVwIAAAAAAIBIMuNDZryoMwTZWqmsrJQk5efnR3glAAAAAAAAiAaVlZVKT0/vdBuH0ZVQXC/S1NSkw4cPKzU1VQ6HI9LLAdCBiooK5efn6+DBg0pLS4v0cgB0AcctEHs4boHYwjEL2M8wDFVWViovL09OZ+dd18hka8XpdGrgwIGRXgaALkpLS+MEAogxHLdA7OG4BWILxyxgr5NlsJkYfAAAAAAAAAAEiSAbAAAAAAAAECSCbABiksfj0cMPPyyPxxPppQDoIo5bIPZw3AKxhWMWiCwGHwAAAAAAAABBIpMNAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA1ARDz11FMaMmSIEhISVFRUpM2bN3e6/a9//Wude+65SkpKUm5urm6++WYdO3bM+vmzzz6rCy+8UJmZmcrMzNSUKVO0devWgH00NDTowQcf1JAhQ5SYmKihQ4fqxz/+sZqamkLyGoGexu7j9tVXX9WYMWOUkZGh5ORkjRo1Si+88ELQzwugRSSO22XLluk73/mOUlNT1a9fP82cOVNffPFFSF4f0NNE6m+tadmyZXI4HLrzzjvteklA72IAQJi99NJLRnx8vPHss88au3btMhYtWmQkJycbX331Vbvbb9682XA6ncZ///d/G19++aWxefNm46yzzjJmzpxpbTNr1izjZz/7mfHRRx8Zn332mXHzzTcb6enpxqFDh6xtlixZYmRlZRnr1q0z9u3bZ/zud78zUlJSjMcffzzkrxmIdaE4bt966y3j1VdfNXbt2mXs2bPHePzxxw2Xy2WsX7++288LoEWkjttp06YZq1evNj755BNjx44dxowZM4xBgwYZJ06cCPlrBmJZpI5Z09atW42CggLjnHPOMRYtWhSqlwn0aATZAITd2LFjjQULFgTcN2zYMOO+++5rd/vly5cbQ4cODbjviSeeMAYOHNjhczQ0NBipqanGmjVrrPtmzJhhzJs3L2C7q6++2vjBD35wqi8B6HXCcdwahmGMHj3aePDBB7v9vABaROq4be3IkSOGJOOdd97p4sqB3imSx2xlZaVx+umnGxs3bjQmTpxIkA3oJspFAYRVXV2dtm/frqlTpwbcP3XqVP3f//1fu4+54IILdOjQIf35z3+WYRj65ptv9Pvf/14zZszo8Hmqq6tVX1+vPn36WPdNmDBBb7zxhnbv3i1J+vjjj7VlyxZddtllNrwyoOcKx3FrGIbeeOMNffHFF7rooou6/bwAfCJ13LanvLxckgL+JgMIFOlj9vbbb9eMGTM0ZcoUe14Q0EvFRXoBAHqXo0ePqrGxUTk5OQH35+TkqKSkpN3HXHDBBfr1r3+t6667TrW1tWpoaNCVV16pVatWdfg89913nwYMGBBwonDvvfeqvLxcw4YNk8vlUmNjo5YuXaobbrjBnhcH9FChPG7Ly8s1YMAAeb1euVwuPfXUU7rkkku6/bwAfCJ13LZmGIbuuusuTZgwQSNHjrTnxQE9UCSP2Zdeekkffvih/va3v9n/woBehkw2ABHhcDgCvjcMo819pl27dumOO+7QQw89pO3bt2v9+vXat2+fFixY0O72jz32mF588UW9+uqrSkhIsO5/+eWXtXbtWv3mN7/Rhx9+qDVr1mjFihVas2aNfS8M6MFCcdympqZqx44d+tvf/qalS5fqrrvu0ttvv93t5wUQKFLHrWnhwoX6+9//rhdffNGW1wP0dOE+Zg8ePKhFixZp7dq1AefNALqHTDYAYZWdnS2Xy9XmityRI0faXLkzLVu2TOPHj9fixYslSeecc46Sk5N14YUXasmSJcrNzbW2XbFihR599FH99a9/1TnnnBOwn8WLF+u+++7T9ddfL0k6++yz9dVXX2nZsmWaM2eOnS8T6FFCedw6nU4VFhZKkkaNGqXPPvtMy5Yt06RJk7r1vAB8InXc+vvXf/1X/elPf9KmTZs0cOBAm18h0LNE6pjdvn27jhw5oqKiImu/jY2N2rRpk5588kkr+w1A15DJBiCs3G63ioqKtHHjxoD7N27cqAsuuKDdx1RXV8vpDHy7Mv/YG4Zh3bd8+XL953/+p9avX68xY8Z0eT9NTU3dei1AbxHK47Y1wzDk9Xq7/bwAfCJ13JrfL1y4UK+++qrefPNNDRkypLsvA+g1InXMfu9739POnTu1Y8cO6zZmzBjdeOON2rFjBwE24FSFdcwCABgt48mfe+45Y9euXcadd95pJCcnG/v37zcMwzDuu+8+Y/bs2db2q1evNuLi4oynnnrK2Lt3r7FlyxZjzJgxxtixY61tfvKTnxhut9v4/e9/bxQXF1u3yspKa5s5c+YYAwYMMNatW2fs27fPePXVV43s7GzjnnvuCd+LB2JUKI7bRx991NiwYYOxd+9e47PPPjNWrlxpxMXFGc8++2yXnxdAxyJ13P7whz800tPTjbfffjvgb3J1dXX4XjwQgyJ1zLbGdFGg+wiyAYiIn/3sZ8bgwYMNt9ttnHfeecY777xj/WzOnDnGxIkTA7Z/4oknjBEjRhiJiYlGbm6uceONNxqHDh2yfj548GBDUpvbww8/bG1TUVFhLFq0yBg0aJCRkJBgDB061HjggQcMr9cb6pcL9Ah2H7cPPPCAUVhYaCQkJBiZmZnGuHHjjJdeeumUnhdA5yJx3Lb391iSsXr16lC+VKBHiNTfWn8E2YDucxhGJ3mkAAAAAAAAAE6KnmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAECSCbAAAAAAAAECQCLIBAAAAAAAAQSLIBgAAAAAAAASJIBsAAAAiqq6uToWFhXr33Xdt3e+6des0evRoNTU12bpfAACA9hBkAwAAsNHcuXPlcDja3Pbs2RPppUWtX/ziFxo8eLDGjx9v3edwOPSHP/yhzbZz587VzJkzu7Tfyy+/XA6HQ7/5zW9sWikAAEDHCLIBAADY7NJLL1VxcXHAbciQIW22q6uri8Dqos+qVat06623hmTfN998s1atWhWSfQMAAPgjyAYAAGAzj8ej/v37B9xcLpcmTZqkhQsX6q677lJ2drYuueQSSdKuXbt02WWXKSUlRTk5OZo9e7aOHj1q7a+qqko33XSTUlJSlJubq5UrV2rSpEm68847rW3ay/zKyMjQL3/5S+v7r7/+Wtddd50yMzOVlZWlq666Svv377d+bmaJrVixQrm5ucrKytLtt9+u+vp6axuv16t77rlH+fn58ng8Ov300/Xcc8/JMAwVFhZqxYoVAWv45JNP5HQ6tXfv3nb/rT788EPt2bNHM2bMOMV/ZWn//v3tZg1OmjTJ2ubKK6/U1q1b9eWXX57y/gEAAE4FQTYAAIAwWrNmjeLi4vTuu+/qmWeeUXFxsSZOnKhRo0Zp27ZtWr9+vb755htde+211mMWL16st956S//7v/+rDRs26O2339b27dtP6Xmrq6s1efJkpaSkaNOmTdqyZYtSUlJ06aWXBmTUvfXWW9q7d6/eeustrVmzRr/85S8DAnU33XSTXnrpJT3xxBP67LPP9POf/1wpKSlyOByaN2+eVq9eHfC8zz//vC688EKddtpp7a5r06ZNOuOMM5SWlnZKr0eS8vPzA7IFP/roI2VlZemiiy6ythk8eLD69eunzZs3n/L+AQAATkVcpBcAAADQ06xbt04pKSnW99OnT9fvfvc7SVJhYaEee+wx62cPPfSQzjvvPD366KPWfc8//7zy8/O1e/du5eXl6bnnntOvfvUrK/NtzZo1Gjhw4Cmt6aWXXpLT6dT//M//yOFwSJJWr16tjIwMvf3225o6daokKTMzU08++aRcLpeGDRumGTNm6I033tD8+fO1e/du/fa3v9XGjRs1ZcoUSdLQoUOt57j55pv10EMPaevWrRo7dqzq6+u1du1aLV++vMN17d+/X3l5ee3+7IYbbpDL5Qq4z+v1WllvLpdL/fv3lyTV1tZq5syZGjdunB555JGAxwwYMCAgYw8AACAUCLIBAADYbPLkyXr66aet75OTk62vx4wZE7Dt9u3b9dZbbwUE5Ux79+5VTU2N6urqNG7cOOv+Pn366MwzzzylNW3fvl179uxRampqwP21tbUBpZxnnXVWQGArNzdXO3fulCTt2LFDLpdLEydObPc5cnNzNWPGDD3//PMaO3as1q1bp9raWl1zzTUdrqumpkYJCQnt/uynP/2pFcwz3XvvvWpsbGyz7S233KLKykpt3LhRTmdgsUZiYqKqq6s7XAMAAIAdCLIBAADYLDk5WYWFhR3+zF9TU5OuuOIK/eQnP2mzbW5urv7xj3906TkdDocMwwi4z7+XWlNTk4qKivTrX/+6zWP79u1rfR0fH99mv01NTZJ8waqTufXWWzV79mz99Kc/1erVq3XdddcpKSmpw+2zs7OtIF5r/fv3b/PvmJqaqrKysoD7lixZovXr12vr1q1tgoiSdPz48YDXCAAAEAoE2QAAACLovPPO0yuvvKKCggLFxbU9NSssLFR8fLzef/99DRo0SJJUWlqq3bt3B2SU9e3bV8XFxdb3//jHPwKyt8477zy9/PLL6tevX7f6n0nS2WefraamJr3zzjttMsxMl112mZKTk/X000/r9ddf16ZNmzrd5+jRo/X000/LMAyrjPVUvPLKK/rxj3+s119/vd2+b2am3ujRo0953wAAAKeCwQcAAAARdPvtt+v48eO64YYbrCmYGzZs0Lx589TY2KiUlBTdcsstWrx4sd544w198sknmjt3bpuSyIsvvlhPPvmkPvzwQ23btk0LFiwIyEq78cYblZ2drauuukqbN2/Wvn379M4772jRokU6dOhQl9ZaUFCgOXPmaN68efrDH/6gffv26e2339Zvf/tbaxuXy6W5c+fq/vvvV2FhYUCZa3smT56sqqoqffrpp6fwr+bzySef6KabbtK9996rs846SyUlJSopKdHx48etbd5//315PJ6TrgMAACBYBNkAAAAiKC8vT++++64aGxs1bdo0jRw5UosWLVJ6eroVSFu+fLkuuugiXXnllZoyZYomTJigoqKigP2sXLlS+fn5uuiiizRr1izdfffdAWWaSUlJ2rRpkwYNGqSrr75aw4cP17x581RTU3NKmW1PP/20/vmf/1m33Xabhg0bpvnz56uqqipgm1tuuUV1dXWaN2/eSfeXlZWlq6++ut0y1pPZtm2bqqurtWTJEuXm5lq3q6++2trmxRdf1I033thpySoAAIAdHEbr5h0AAACIepMmTdKoUaP0+OOPR3opbbz77ruaNGmSDh06pJycnJNuv3PnTk2ZMqXdwQzB+PbbbzVs2DBt27ZNQ4YMsW2/AAAA7SGTDQAAALbwer3as2ePfvSjH+naa6/tUoBN8vV6e+yxx7R//35b17Nv3z499dRTBNgAAEBYMPgAAAAAtnjxxRd1yy23aNSoUXrhhRdO6bFz5syxfT1jx47V2LFjbd8vAABAeygXBQAAAAAAAIJEuSgAAAAAAAAQJIJsAAAAAAAAQJAIsgEAAAAAAABBIsgGAAAAAAAABIkgGwAAAAAAABAkgmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAEKT/D6cEChxA6XkvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fs(freq), label='Best fit')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fs.mean[0], label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fs(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On the other hand, if we want to fit with a Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_gaussian\n", + "\n", + "fg=fit_gaussian(freq, efstat-(nbin-1),amplitude=max(efstat-(nbin-1)), \n", + " mean=cand_freqs_ef[0], stddev=1/(np.pi*obs_length))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3sElEQVR4nOzdeXhU5d3/8feZmcxMNhLCFiJhUcGFRRFXbAUVFBWVYotLW7Vq1bqVqg/Wx1ZjW7Hyq4qCS7UKilV8qmLdBVxQRGWTfRXCnhCWkHX2Ob8/zsyQEAJJSDJJ5vO6rlwwMyfn3MOSmc987/t7G6ZpmoiIiIiIiEid2eI9ABERERERkdZGQUpERERERKSeFKRERERERETqSUFKRERERESknhSkRERERERE6klBSkREREREpJ4UpEREREREROpJQUpERERERKSeHPEeQEsQDofZsWMH6enpGIYR7+GIiIiIiEicmKZJWVkZOTk52Gy1150UpIAdO3aQm5sb72GIiIiIiEgLsXXrVrp161br4wpSQHp6OmD9YbVr1y7OoxERkebmr/Ty4j/eAOC3916NM8Ud5xGJiEi8lJaWkpubG8sItVGQgth0vnbt2ilIiYgkIL/DiduVDFivBQpSIiJyuCU/ajYhIiIiIiJSTwpSIiIiIiIi9aQgJSIiIiIiUk9aIyUiIiIiR8Q0TYLBIKFQKN5DETksu92Ow+E44m2PFKREREREpMH8fj8FBQVUVlbGeygidZaSkkLXrl1xOp0NPoeClIiIiIg0SDgcJj8/H7vdTk5ODk6n84g/5RdpSqZp4vf72bVrF/n5+fTu3fuQm+4eioKUiIiIiDSI3+8nHA6Tm5tLSkpKvIcjUifJyckkJSWxefNm/H4/bnfDtrxQswkREREROSIN/URfJF4a49+s/tWLiIiIiIjUk4KUiIiIiIhIPSlIiYiIiIi0Ij179mTixIkN/v6pU6eSmZnZaONJVApSIiIiIpJQrr/+egzDqPE1YsSI2DE9e/as8Xi3bt0adL28vDxOPvnken9fbYFnwYIF3HzzzXU6x8FC15VXXsm6devqPR6pTl37RERERCThjBgxgilTplS7z+VyVbv9l7/8hd/+9rex23a7vVnGdjidOnU6ou9PTk4mOTm5kUaTuFSREhEREZFGY5omlf5gs3+ZplmvcbpcLrKzs6t9tW/fvtox6enp1R4/VID58ssvOf3000lNTSUzM5Ozzz6bzZs3M3XqVB5++GGWLl0aq2xNnToVgCeeeIL+/fuTmppKbm4ut912G+Xl5bHz/eY3v6GkpCT2fXl5eUDNKlNeXh7du3fH5XKRk5PDXXfdBcDQoUPZvHkzf/jDH2LngINXut577z1OPfVU3G43HTt2ZPTo0bHHnn32WXr37o3b7aZLly78/Oc/r9efdVulipSIiIiINBpPIMSJD37a7Ndd9ZcLSXHG561tMBhk1KhR/Pa3v+WNN97A7/czf/58DMPgyiuvZMWKFXzyySfMnj0bgIyMDMBqwf3000/Ts2dP8vPzue222xg3bhzPPvssgwcPZuLEiTz44IOsXbsWgLS0tBrXfuutt3jyySeZPn06ffv2pbCwkKVLlwLwzjvvcNJJJ3HzzTdXq6wd6MMPP2T06NE88MADTJs2Db/fz4cffgjAwoULueuuu5g2bRqDBw9m7969fP31143659daKUiJiIiISML54IMPagST++67jz//+c/Vbv/pT3+K3R4/fnys2lNVaWkpJSUljBw5kmOOOQaAE044IfZ4WloaDoeD7Ozsat83duzY2O979erFX//6V373u9/x7LPP4nQ6ycjIwDCMGt9X1ZYtW8jOzmbYsGEkJSXRvXt3Tj/9dACysrKw2+2xylptHnnkEa666ioefvjh2H0nnXRS7PypqamMHDmS9PR0evTowcCBA2s9VyJRkBIREQEwTQiUW7+KSIMlJ9lZ9ZcL43Ld+jj33HN57rnnqt2XlZVV7fb//M//cP3118dud+zY8aDnysrK4vrrr+fCCy9k+PDhDBs2jDFjxtC1a9dDjuGLL75g/PjxrFq1itLSUoLBIF6vl4qKClJTU+v0PH7xi18wceJEjj76aEaMGMHFF1/MpZdeisNR97f5S5YsqbViNXz4cHr06BE7/4gRI/jZz35GSkpKnc/fVmmNlIiICEDxRihYCqvejfdIRFo1wzBIcTqa/Su6/qeuUlNTOfbYY6t9HRikOnbsWO3xQ7UMnzJlCt9++y2DBw/mzTffpE+fPnz33Xe1Hr9582Yuvvhi+vXrx9tvv82iRYt45plnAAgEAnV+Hrm5uaxdu5ZnnnmG5ORkbrvtNs4555x6neNQjSfS09NZvHgxb7zxBl27duXBBx/kpJNOYt++fXU+f1ulICUiIhL0QHmR9ftN38R3LCLSag0cOJD777+fefPm0a9fP15//XUAnE4noVCo2rELFy4kGAzy+OOPc+aZZ9KnTx927NhR7ZiDfd/BJCcnc9lll/H000/z5Zdf8u2337J8+fI6n2PAgAF89tlntT7ucDgYNmwYEyZMYNmyZWzatInPP//8sONq6zS1T0REZP1nYEbeaOxeE9+xiEiz8Pl8FBYWVrvP4XDUOn3vUPLz83nhhRe47LLLyMnJYe3ataxbt45rr70WINZMYsmSJXTr1o309HSOOeYYgsEgkyZN4tJLL+Wbb77h+eefr3benj17Ul5ezmeffcZJJ51ESkpKjSl1U6dOJRQKccYZZ5CSksK0adNITk6mR48esXN89dVXXHXVVbhcroM+v4ceeojzzz+fY445hquuuopgMMjHH3/MuHHj+OCDD9i4cSPnnHMO7du356OPPiIcDnPcccfV+8+prVFFSkREZNWM/b/fuQbC4fiNRUSaxSeffELXrl2rff3kJz9p0LlSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954g5NPPpknnniCxx57jH79+vHvf/+bRx99tNp5Bw8ezK233sqVV15Jp06dmDBhQo1rZ2Zm8uKLL3L22WfHKkvvv/8+HTp0AKy9sDZt2sQxxxxTa/v2oUOH8p///If33nuPk08+mfPOO4/vv/8+dv533nmH8847jxNOOIHnn3+eN954g759+zboz6otMcz6Nt1vg0pLS8nIyKCkpIR27drFezgiItKcvCX4xx/HMxsvAOD2nu/jvHsxZPWK88BEWj6v10t+fj69evXC7XbHezgidXaof7t1zQaqSImISGJbPwvCPkhKBmekS9bOlfEdk4iItHgKUiIiktj2bbZ+dbWDJAUpERGpGzWbEBGRhGZGuvWZtiQMe5J1Z5GClIiIHJoqUiIiktB27tgCwI6yIOWmM3KngpSIiByagpSIiCS0QMlOADwhO2v3Rrr17d0I/so4jkpERFq6uAapnj17YhhGja/bb78dANM0ycvLIycnh+TkZIYOHcrKldU/JfT5fNx555107NiR1NRULrvsMrZt2xaPpyMiIq2Q07cbgKDhIICDClsmmGHYsz6+AxMRkRYtrkFqwYIFFBQUxL5mzZoFwC9+8QsAJkyYwBNPPMHkyZNZsGAB2dnZDB8+nLKystg5xo4dy4wZM5g+fTpz586lvLyckSNH1mkXaBERkRT/XgBcLqv97W4yrAcqdsdrSCIi0grENUh16tSJ7Ozs2NcHH3zAMcccw5AhQzBNk4kTJ/LAAw8wevRo+vXrxyuvvEJlZSWvv/46ACUlJbz00ks8/vjjDBs2jIEDB/Laa6+xfPlyZs+eHc+nJiIirUHQT7ppfTiXnpoCQFEw2XrMUxyvUYmISCvQYtZI+f1+XnvtNW644QYMwyA/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIiknjCkY59AdNOeoobu81gr5lmPVi5N44jE5FEkpeXR5cuXTAMg3fffZfrr7+eUaNGxXtYchgtJki9++677Nu3j+uvvx6AwsJCALp06VLtuC5dusQeKywsxOl00r59+1qPOZhHH32UjIyM2Fdubm4jPhMREWkt9u3aDsBe2uG020lzOiiJBimPgpRIW3X99ddXW5/foUMHRowYwbJlyxrtGnl5eZx88smHPW716tU8/PDD/POf/6SgoICLLrqIp556iqlTp8aOGTp0KGPHjm20sUnjaDFB6qWXXuKiiy4iJyen2v2GYVS7bZpmjfsOdLhj7r//fkpKSmJfW7dubfjARUSk1dpbZAWpEiMDw4BUl4N9RDblVUVKpE0bMWJEbJ3+Z599hsPhYOTIkc0+jg0bNgBw+eWXk52djcvlIiMjg8zMzGYfi9RPiwhSmzdvZvbs2dx0002x+7KzswFqVJaKiopiVars7Gz8fj/FxcW1HnMwLpeLdu3aVfsSEZHEU7HHClKepCzAClLFqCIlkghcLldsnf7JJ5/Mfffdx9atW9m1a1fsmO3bt3PllVfSvn17OnTowOWXX86mTZtij3/55ZecfvrppKamkpmZydlnn83mzZuZOnUqDz/8MEuXLo1VvapWmKLy8vK49NJLAbDZbLFCQNWpfddffz1z5szhqaeeip2r6hgkflpEkJoyZQqdO3fmkksuid3Xq1cvsrOzY538wFpHNWfOHAYPHgzAoEGDSEpKqnZMQUEBK1asiB0jIiJSG+8+68O6QHIHAFJddkoiQSqsipRIw5gm+Cua/8s0Gzzk8vJy/v3vf3PsscfSoYP186CyspJzzz2XtLQ0vvrqK+bOnUtaWhojRozA7/cTDAYZNWoUQ4YMYdmyZXz77bfcfPPNGIbBlVdeyT333EPfvn1jVa8rr7yyxnXvvfdepkyZAhA77kBPPfUUZ511Fr/97W9jx2hZSsvgiPcAwuEwU6ZM4brrrsPh2D8cwzAYO3Ys48ePp3fv3vTu3Zvx48eTkpLCNddcA0BGRgY33ngj99xzDx06dCArK4t7772X/v37M2zYsHg9JRERaSXCZdZmvGZqJygBt8OO17Dan/tKd5Ecz8GJtFaBShifc/jjGtv/7gBnap0P/+CDD0hLsz44qaiooGvXrnzwwQfYbFadYfr06dhsNv71r3/FKkVTpkwhMzOTL7/8klNPPZWSkhJGjhzJMcccA8AJJ5wQO39aWhoOhyM2y+pg0tLSYlP4ajsuIyMDp9NJSkrKIc8lzS/uQWr27Nls2bKFG264ocZj48aNw+PxcNttt1FcXMwZZ5zBzJkzSU9Pjx3z5JNP4nA4GDNmDB6Ph/PPP5+pU6dit9ub82mIiEgrZKu09oqyp3eO3edM6wBetEZKpI0799xzee655wDYu3cvzz77LBdddBHz58+nR48eLFq0iB9//LHa+04Ar9fLhg0buOCCC7j++uu58MILGT58OMOGDWPMmDF07do1Hk9H4iDuQeqCCy7ArKUUaxgGeXl55OXl1fr9brebSZMmMWnSpCYaoYiItFUu3x4AkjP3r6u1p2aBFxy+fXEalUgrl5RiVYficd16SE1N5dhjj43dHjRoEBkZGbz44ov87W9/IxwOM2jQIP7973/X+N5OnToBVoXqrrvu4pNPPuHNN9/kT3/6E7NmzeLMM888sucirULcg5SIiEi8pAetIJXe8SjAWpvgTO8AeyApWA6hANiT4jhCkVbIMOo1xa6lMAwDm82Gx+MB4JRTTuHNN9+kc+fOh2xMNnDgQAYOHMj999/PWWedxeuvv86ZZ56J0+kkFAo1ytga81zSeFpEswkREZHmVuYNkGWWAJDV6ajY/clpWYTNyBYanuKDfauItAE+n4/CwkIKCwtZvXo1d955J+Xl5bEuer/85S/p2LEjl19+OV9//TX5+fnMmTOH3//+92zbto38/Hzuv/9+vv32WzZv3szMmTNZt25dbJ1Uz549yc/PZ8mSJezevRufz9fgsfbs2ZPvv/+eTZs2sXv3bsLhcKP8GciRUZASEZGEtLO4jPZGOQAp7fdP7evQLpkS7SUl0uZ98skndO3ala5du3LGGWewYMEC/vOf/zB06FAAUlJS+Oqrr+jevTujR4/mhBNO4IYbbsDj8dCuXTtSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954o8Fjvffee7Hb7Zx44ol06tSJLVu2NMYfgRwhw6xtgVICKS0tJSMjg5KSEu0pJSKSIJavXk3/N88kiI3wvdt55tHXAOh68Xmc/uklHG0rhN98DD20nYZIbbxeL/n5+fTq1Qu32x3v4YjU2aH+7dY1G6giJSIiCSlYZnXsKzXagW3/y2HHVCf7opvyqiIlIiK1UJASEZGE5K+w1kd5bNUXxXdIdVFsRtodexSkRETk4BSkREQkIYW8VpDyHRCkstL2V6RMVaRERKQWClIiIpKQQpVWkPI7agapYtMKUr7S3c0+LhERaR0UpEREJCGFvWUABBxp1e532e1UOjIA8JUpSImIyMEpSImISEIy/KUABJPSajwWcmVav5bvac4hiYhIK6IgJSIiiclnVaRCzvQaD4WTswCtkRIRkdopSImISEKy+63NeM2DVKRskSBl9ypIiYjIwSlIiYhIQrIHrYoU7poVqaR2Haxf/fuacUQiItKaKEiJiEhCSgpUAGBz19y13pXe0fo1WNqsYxIRaQwvvPACubm52Gw2Jk6cGO/htFkKUiIikpCcoWiQyqjxWHpGewAcZhCC/mYdl4g0j8LCQu68806OPvpoXC4Xubm5XHrppXz22WfxHtpBTZ06lczMzMMeV1payh133MF9993H9u3bufnmm5t+cAnKEe8BiIiIxIMrEqTsyTUrUpntMvff8JeDI6uZRiUizWHTpk2cffbZZGZmMmHCBAYMGEAgEODTTz/l9ttvZ82aNQ06byAQICkpqc73N4UtW7YQCAS45JJL6Nq160GPac7xtGWqSImISEJyh60glZRasyKV1S4Vj+m0bkS6+4lI23HbbbdhGAbz58/n5z//OX369KFv377cfffdfPfdd7HjtmzZwuWXX05aWhrt2rVjzJgx7Ny5M/Z4Xl4eJ598Mi+//HKssmWaJoZh8Pzzz3P55ZeTmprK3/72NwDef/99Bg0ahNvt5uijj+bhhx8mGAzGzrdv3z5uvvlmunTpgtvtpl+/fnzwwQd8+eWX/OY3v6GkpATDMDAMg7y8vBrPa+rUqfTv3x+Ao48+GsMw2LRpU63jLCkp4eabb6Zz5860a9eO8847j6VLl1Y759///ne6dOlCeno6N954I3/84x85+eSTY48PHTqUsWPHVvueUaNGcf3118du+/1+xo0bx1FHHUVqaipnnHEGX375ZbVxZ2Zm8umnn3LCCSeQlpbGiBEjKCgoqHbel19+mb59++JyuejatSt33HEHADfccAMjR46sdmwwGCQ7O5uXX365xp9TY1GQEhGRhJRiVgLgTMms8VjHNCcVuK0bke5+IlJHpgl+f/N/mWadhrd3714++eQTbr/9dlJTU2s8Hp0+Z5omo0aNYu/evcyZM4dZs2axYcMGrrzyymrH//jjj/zf//0fb7/9NkuWLInd/9BDD3H55ZezfPlybrjhBj799FN+9atfcdddd7Fq1Sr++c9/MnXqVB555BEAwuEwF110EfPmzeO1115j1apV/P3vf8dutzN48GAmTpxIu3btKCgooKCggHvvvbfG2K+88kpmz54NwPz58ykoKCA3N7fWcV5yySUUFhby0UcfsWjRIk455RTOP/989u61Opb+3//9Hw899BCPPPIICxcupGvXrjz77LN1+nOu6je/+Q3ffPMN06dPZ9myZfziF79gxIgRrF+/PnZMZWUl//jHP5g2bRpfffUVW7ZsqfYcn3vuOW6//XZuvvlmli9fznvvvcexxx4LwE033cQnn3xSLXh99NFHlJeXM2bMmHqPt640tU9ERBJSqlkJBrhTM2s8lpXqpMR009EoJVBZiibAiNRDIADjxzf/df/3f8HpPOxhP/74I6Zpcvzxxx/yuNmzZ7Ns2TLy8/NjYWTatGn07duXBQsWcNpppwFWtWXatGl06tSp2vdfc8013HDDDbHbv/71r/njH//IddddB1gVo7/+9a+MGzeOhx56iNmzZzN//nxWr15Nnz59YsdEZWRkYBgG2dnZtY45OTmZDh2srqOdOnWqduyB4/z8889Zvnw5RUVFuFwuAP7xj3/w7rvv8tZbb3HzzTczceJEbrjhBm666SYA/va3vzF79my8Xu8h/+yq2rBhA2+88Qbbtm0jJycHgHvvvZdPPvmEKVOmMD7ybyUQCPD8889zzDHHAHDHHXfwl7/8JXaev/3tb9xzzz38/ve/j90X/TsYPHgwxx13HNOmTWPcuHEATJkyhV/84hekpdXc4qKxKEiJiEjCCQf8JBtWEwl3+kGaTbiT2EEyABXl+8hszsGJSJMyI5UrwzAOedzq1avJzc2NhSiAE088kczMTFavXh17E9+jR48aIQrg1FNPrXZ70aJFLFiwIFaBAgiFQni9XiorK1myZAndunWLhajGduA4Fy1aRHl5eSx4RXk8HjZs2ABYfwa33nprtcfPOussvvjiizpfd/HixZimWeN5+Xy+atdOSUmJhSiArl27UlRUBEBRURE7duzg/PPPr/U6N910Ey+88ALjxo2jqKiIDz/8sMkbhyhIiYhIwqko30d096jU9PYQrv643WbgtVlBylNeoiAlUh9JSVZ1KB7XrYPevXtjGAarV69m1KhRtR4XXet0uPsPNj3wYPeHw2EefvhhRo8eXeNYt9tNcnJyncbfUAcbT9euXautVYqqS3fAKJvNFgunUYFAoNp17HY7ixYtwm63VzuuarXowOYXhmHEzluXP5trr72WP/7xj3z77bd8++239OzZk5/+9Kd1fh4NoSAlIiIJxxsJUh7TidvlIuDx1TjGb0+BEPgqtJeUSL0YRp2m2MVLVlYWF154Ic888wx33XVXjYCxb98+MjMzOfHEE9myZQtbt26NVaVWrVpFSUkJJ5xwQr2ve8opp7B27drYup4DDRgwgG3btrFu3bqDVqWcTiehUKje1z3UeAoLC3E4HPTs2fOgx5xwwgl89913XHvttbH7qjbjAGsKYdW1SaFQiBUrVnDuuecCMHDgQEKhEEVFRQ0ONunp6fTs2ZPPPvssdt4DdejQgVGjRjFlyhS+/fZbfvOb3zToWvWhZhMiIpJwvOX7AKgwkmud3hOwW2+ufBUlzTUsEWkmzz77LKFQiNNPP523336b9evXs3r1ap5++mnOOussAIYNG8aAAQP45S9/yeLFi5k/fz7XXnstQ4YMqTFtry4efPBBXn31VfLy8li5ciWrV6/mzTff5E9/+hMAQ4YM4ZxzzuGKK65g1qxZ5Ofn8/HHH/PJJ58A0LNnT8rLy/nss8/YvXs3lZWVR/RnMGzYMM466yxGjRrFp59+yqZNm5g3bx5/+tOfWLhwIQC///3vefnll3n55ZdZt24dDz30ECtXrqx2nvPOO48PP/yQDz/8kDVr1nDbbbexb9++2ON9+vThl7/8Jddeey3vvPMO+fn5LFiwgMcee4yPPvqozuPNy8vj8ccf5+mnn2b9+vUsXryYSZMmVTvmpptu4pVXXmH16tWxtWhNSUFKREQSjr9iHwCVRkqtx4STrMcCHrU/F2lrevXqxeLFizn33HO555576NevH8OHD+ezzz7jueeeA6ypZe+++y7t27fnnHPOYdiwYRx99NG8+eabDbrmhRdeyAcffMCsWbM47bTTOPPMM3niiSfo0aNH7Ji3336b0047jauvvpoTTzyRcePGxapQgwcP5tZbb+XKK6+kU6dOTJgw4Yj+DAzD4KOPPuKcc87hhhtuoE+fPlx11VVs2rSJLl26AFYXwAcffJD77ruPQYMGsXnzZn73u99VO88NN9zAddddFwuZvXr1qlE1mjJlCtdeey333HMPxx13HJdddhnff/99tfVnh3PdddcxceJEnn32Wfr27cvIkSOrdf0DKxx27dqVCy+8MNbYoikZ5oGTGhNQaWkpGRkZlJSU0K5dzY0ZRUSkbVk95z+c8MVNrLUdw3EPLsZf6eWZR14F4PYHrsWZ4uaLp27g3OK3WdrzBk66/sk4j1ikZfJ6veTn59OrVy/cbne8hyPNIC8vj3fffbdaq/eWorKykpycHF5++eWDrkWr6lD/duuaDbRGSkREEk7QY6178tprb4trOK3HTK8qUiIiLVk4HKawsJDHH3+cjIwMLrvssma5roKUiIgknJDHWvfktx+82xaAzW319TO1Ia+ISIu2ZcsWevXqRbdu3Zg6dSoOR/NEHAUpERFJONEqU8BRe5CyR4KU4a9oljGJiLQGeXl55OXlxXsY1fTs2bNGC/bmoGYTIiKSeHzW1L6go/apfUnJ1rx4e1AVKRERqUlBSkREEo/PqkiFnLUHKVeqFaSSgkfWYlhERNomBSkREUk49oAVpExneq3HuFMzAHCGFKRERKQmBSkREUk49oA1Xc901d7WNiXdClJuU0FKRERqUpASEZGE44gEKZu79iCVmt4egBTTQzic8FsuiojIARSkREQk4TiDVic+4xBBKq1dJgApeCnzBptjWCIi0oooSImISMJxhawg5UiuPUg5k631U04jxL5ybcorkiiGDh3K2LFj6/19hYWFDB8+nNTUVDIzMxt9XNLyKEiJiEjCcYetIJWUUnuQokpHv7KSfU08IhFpTtdffz2GYdT4+vHHH3nnnXf461//Gju2Z8+eTJw48bDnfPLJJykoKGDJkiWsW7euCUcvLYU25BURkYTjNj0AJKVk1H6Q3YEXF258VJTta56BiUizGTFiBFOmTKl2X6dOnbDb7Q0634YNGxg0aBC9e/eu9ZhAIEBSUlKDzi8tjypSIiKSWEwTF34AklNq30cKwGdLBqBSQUqkzXG5XGRnZ1f7stvt1ab2DR06lM2bN/OHP/whVrU6mJ49e/L222/z6quvYhgG119/PQCGYfD8889z+eWXk5qayt/+9jcA3n//fQYNGoTb7eboo4/m4YcfJhjcvxZz/fr1nHPOObjdbk488URmzZqFYRi8++67AHz55ZcYhsG+ffti37NkyRIMw2DTpk2x++bNm8c555xDcnIyubm53HXXXVRUVFQb9/jx47nhhhtIT0+ne/fuvPDCC9We27Zt27jqqqvIysoiNTWVU089le+//55NmzZhs9lYuHBhteMnTZpEjx49MM2236RHQUpERBJLyI+dMADuwwUpewoA3oqSJh+WSFthmib+YLjZv5rijfs777xDt27d+Mtf/kJBQQEFBQUHPW7BggWMGDGCMWPGUFBQwFNPPRV77KGHHuLyyy9n+fLl3HDDDXz66af86le/4q677mLVqlX885//ZOrUqTzyyCMAhMNhRo8ejd1u57vvvuP555/nvvvuq/fYly9fzoUXXsjo0aNZtmwZb775JnPnzuWOO+6odtzjjz/Oqaeeyg8//MBtt93G7373O9asWQNAeXk5Q4YMYceOHbz33nssXbqUcePGEQ6H6dmzJ8OGDatR1ZsyZUps6mRbp6l9IiKSUEx/JdGX95TU2jfkBQjaUyAAvko1mxCpq0DI5Jkvfmz2695+7rE4HXV/8/7BBx+Qlrb/w5SLLrqI//znP9WOycrKwm63k56eTnZ2dq3n6tSpEy6Xi+Tk5BrHXXPNNdxwww2x27/+9a/54x//yHXXXQfA0UcfzV//+lfGjRvHQw89xOzZs1m9ejWbNm2iW7duAIwfP56LLrqozs8N4P/9v//HNddcE6uu9e7dm6effpohQ4bw3HPP4Xa7Abj44ou57bbbALjvvvt48skn+fLLLzn++ON5/fXX2bVrFwsWLCArKwuAY489NnaNm266iVtvvZUnnngCl8vF0qVLWbJkCe+88069xtpaKUiJiEhC8XnKcQMB005qSvIhjw0lpYIXApWlzTM4EWk25557Ls8991zsdmpqapNc59RTT612e9GiRSxYsCBWgQIIhUJ4vV4qKytZvXo13bt3j4UogLPOOqve1120aBE//vgj//73v2P3maZJOBwmPz+fE044AYABAwbEHjcMg+zsbIqKigBruuDAgQNjIepAo0aN4o477mDGjBlcddVVvPzyy5x77rn07Nmz3uNtjRSkREQkoVRWWkHKg5O0pEMvKjeTrE+rg14FKZG6SrIb3H7usYc/sAmuWx+pqanVqitN5cCAFg6Hefjhhxk9enSNY91u90GnKB44Tc5ms1bnVD02EAjUuM4tt9zCXXfdVeN83bt3j/3+wOYXhmEQDlvTn5OTD/1hk9Pp5Ne//jVTpkxh9OjRvP7663XqcNhWKEiJiEhC8VZY0/R8uGhnO8wbL5cVpExveVMPS6TNMAyjXlPsWjqn00koFGq0851yyimsXbu21hB34oknsmXLFnbs2EFOTg4A3377bbVjOnXqBEBBQQHt27cHrOrRgddZuXLlEYXFAQMG8K9//Yu9e/fWWpW66aab6NevH88++yyBQOCgAbGtUrMJERFJKD6P1bHKZ7gOf3BkLymbX0FKJFH17NmTr776iu3bt7N79+4jPt+DDz7Iq6++Sl5eHitXrmT16tW8+eab/OlPfwJg2LBhHHfccVx77bUsXbqUr7/+mgceeKDaOY499lhyc3PJy8tj3bp1fPjhhzz++OPVjrnvvvv49ttvuf3221myZAnr16/nvffe484776zzWK+++mqys7MZNWoU33zzDRs3buTtt9+uFuxOOOEEzjzzTO677z6uvvrqw1ax2hIFKRERSSg+jxWK/HUJUi6rGUVSqLIphyQiLdhf/vIXNm3axDHHHBOrBB2JCy+8kA8++IBZs2Zx2mmnceaZZ/LEE0/Qo0cPwJq2N2PGDHw+H6effjo33XRTtfVUYE3He+ONN1izZg0nnXQSjz32WKy1etSAAQOYM2cO69ev56c//SkDBw7kz3/+M127dq3zWJ1OJzNnzqRz585cfPHF9O/fn7///e819tq68cYb8fv91ZpqJIK4T+3bvn079913Hx9//DEej4c+ffrw0ksvMWjQIMCa+/nwww/zwgsvUFxczBlnnMEzzzxD3759Y+fw+Xzce++9vPHGG3g8Hs4//3yeffbZaov0REREAAKRaXoBm/uwxxpOa22DgpRI2zJ16tRaH/vyyy+r3T7zzDNZunTpYc8Z3eOpqtpasl944YVceOGFtZ6rT58+fP3114e83tlnn82yZcsOeb3TTjuNmTNn1nqOqntORR04RbBHjx689dZbhxxLQUEB/fr147TTTjvkcW1NXCtSxcXFnH322SQlJfHxxx+zatUqHn/8cTIzM2PHTJgwgSeeeILJkyezYMECsrOzGT58OGVl+1vRjh07lhkzZjB9+nTmzp1LeXk5I0eObNT5rCIi0jYEvFYoCtgPH6Rsbqsi5VSQEhGpoby8nAULFjBp0qSDNrVo6+JakXrsscfIzc2ttpFX1XaJpmkyceJEHnjggdjCtVdeeYUuXbrw+uuvc8stt1BSUsJLL73EtGnTGDZsGACvvfYaubm5zJ49+5BpX0REEk/QZ62RCtUjSLnCClIiIge64447eOONNxg1alTCTeuDOFek3nvvPU499VR+8Ytf0LlzZwYOHMiLL74Yezw/P5/CwkIuuOCC2H0ul4shQ4Ywb948wOqRHwgEqh2Tk5NDv379YseIiIhEhWJB6vALoh3J7QBwK0iJSJyZpsmoUaPiPYxqpk6dis/n480336yxbioRxDVIbdy4keeee47evXvz6aefcuutt3LXXXfx6quvAlBYWAhAly5dqn1fly5dYo8VFhbidDpjrR8PdsyBfD4fpaWl1b5ERCQxhH1WKDIdhw9SSW6ra5/T9DXpmEREpPWJ69S+cDjMqaeeyvjx4wEYOHAgK1eu5LnnnuPaa6+NHXfgJmSmada470CHOubRRx/l4YcfPsLRi4hIa2QGPNavdQpSVrMJNz4CoTBJdjW7FRERS1xfEbp27cqJJ55Y7b4TTjiBLVu2AJCdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZgD3X///ZSUlMS+tm7d2ijPR0REWj7TH5mml1SHIJVsVaSS8eEJqIGRSG1q604n0lI1xr/ZuAaps88+m7Vr11a7b926dbE++r169SI7O5tZs2bFHvf7/cyZM4fBgwcDMGjQIJKSkqodU1BQwIoVK2LHHMjlctGuXbtqXyIikhiMSEXKcKYc9tgkt3VMsuHH61eQEjlQUlISAJWVWkcorUv032z033BDxHVq3x/+8AcGDx7M+PHjGTNmDPPnz+eFF17ghRdeAKwpfWPHjmX8+PH07t2b3r17M378eFJSUrjmmmsAyMjI4MYbb+See+6hQ4cOZGVlce+999K/f/9YFz8REZEoI2gFKVsdgpThtCpSKXjZp4qUSA12u53MzEyKiooASElJOezyC5F4Mk2TyspKioqKyMzMPKImGXENUqeddhozZszg/vvv5y9/+Qu9evVi4sSJ/PKXv4wdM27cODweD7fddltsQ96ZM2eSnp4eO+bJJ5/E4XAwZsyY2Ia8U6dOTcjuISIicmi2UCRIuQ4fpKLT/9z48QbCTTkskVYruhQjGqZEWoPMzMzYv92GimuQAhg5ciQjR46s9XHDMMjLyyMvL6/WY9xuN5MmTWLSpElNMEIREWlL7EGv9asz9fAHJ1lhy2UE8fh8QPqhjxdJQIZh0LVrVzp37kwgEIj3cEQOKykpqVEKLnEPUiIiIs3JEbaCVLQj3yEl7a9a+SvLgY5NNCqR1s9ut2s2kCQU9XEVEZGEsj9I1WFqn8NFGGu9R8Bb3pTDEhGRVkZBSkREEoozEqSckdbmh2QY+Aw3AAFvRVMOS0REWhkFKRERSShO0weAK6UOQQrwGy5AFSkREalOQUpERBKGPxjGjRWk3HWpSAF+m9W5L+RTRUpERPZTkBIRkYRR6Q+SjB8Adx0rUkGbVZEKK0iJiEgVClIiIpIwKvwhkiMVqTp17QOC9mhFqrLJxiUiIq2PgpSIiCSMCq8ftxHZ5yapDl372B+kTL8qUiIisp+ClIiIJIzKiioNI5KS6/Q9YUfkuICnCUYkIiKtlYKUiIgkDG9llSDlqG+Q0tQ+ERHZT0FKREQSRjRI+XCCrW4vgWZkCqChipSIiFShICUiIgkjuheUP9KJry7MyBRAW1AVKRER2U9BSkREEobfYzWMCBjuun9TpCJlC6oiJSIi+ylIiYhIwghE9oIK2usepIxIkLKHFKRERGQ/BSkREUkYQa8VpEL1CFI2l7XflCPkbZIxiYhI66QgJSIiCSO6qW7IXreOfQA2l1WRcqgiJSIiVShIiYhIwgj7rSAVdtS9ImWPVKSSwqpIiYjIfgpSIiKSMKJBKtrSvC4ckSDlVJASEZEqFKRERCRh2KKb6ibVfWpfkjsNAJfpa4ohiYhIK6UgJSIiCcOItjCvR0UqyW1VpFx4MU2zKYYlIiKtkIKUiIgkDFukYYRRnyCVnA5AMj4CIQUpERGxKEiJiEjCsAetdU7RTnx14Uq2KlLJ+PAEQk0yLhERaX0UpEREJGE4Ig0jbM56NJtwR4OUH6+ClIiIRChIiYhIwohuqmuvR5AynFaQSjF8eHyBJhmXiIi0PgpSIiKSMKJ7QdkjVaa6fdP+0OX1VDb2kEREpJVSkBIRkYThjLQwT3LVJ0jtb5Xu95Q19pBERKSVUpASEZGE4A+GcRMJUvWpSNns+HACEPBUNMXQRESkFVKQEhGRhOAJhPYHqeR6BCnAZ7gACPjKG31cIiLSOilIiYhIQvAGQiTjB8BRj/bnAH7DDUDQq4qUiIhYFKRERCQhePwhkiMVKSOpfhUpv01BSkREqlOQEhGRhOAJhEg2rIpU1QYSdRGIBKmQX0FKREQsClIiIpIQrDVSDQtSIbsVpEyfgpSIiFgUpEREJCF4fMHY1L6qe0PVRdBuBa+QT/tIiYiIRUFKREQSgtfrxWGErRv1rEiFHdbxZkAVKRERsShIiYhIQvBXbRRRz4pUOHq839OIIxIRkdZMQUpERBJCILK+KYQN7En1+l4zUpEyApraJyIiFgUpERFJCKFIRcpvc4Nh1O+bo1MBg95GHpWIiLRWClIiIpIQgpGKVCCyuW59GJGpfbagKlIiImJRkBIRkYQQjHTcC9pd9f5emysapFSREhERi4KUiIgkBNMfDVL169gHYHda32MPK0iJiIhFQUpERBJCOBKkwvb6T+2zu1KtX0MKUiIiYlGQEhGRhBCtSIUaUJFyRIJUkoKUiIhEKEiJiEhiCFh7QJmO+lekktzWGqkk09eoQxIRkdZLQUpERBKCEem4Z9ZzM16AJLdVkXIqSImISISClIiIJAQjUpGK7QlVD87kNABcpo9Q2GzMYYmISCulICUiIgnBFl3f1IAg5Uq2KlLJ+Kn0BxtzWCIi0krFNUjl5eVhGEa1r+zs7NjjpmmSl5dHTk4OycnJDB06lJUrV1Y7h8/n484776Rjx46kpqZy2WWXsW3btuZ+KiIi0sLZglZFynDWf2qfMzK1z2348PhDjTouERFpneJekerbty8FBQWxr+XLl8cemzBhAk888QSTJ09mwYIFZGdnM3z4cMrKymLHjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSC52IiOzniFSkbA0IUtHwZVWk9PoiIiLgiPsAHI5qVago0zSZOHEiDzzwAKNHjwbglVdeoUuXLrz++uvccsstlJSU8NJLLzFt2jSGDRsGwGuvvUZubi6zZ8/mwgsvbNbnIiIiLZcjspmu3ZnagG+2pgO68VPhCzTmsEREpJWKe0Vq/fr15OTk0KtXL6666io2btwIQH5+PoWFhVxwwQWxY10uF0OGDGHevHkALFq0iEAgUO2YnJwc+vXrFzvmYHw+H6WlpdW+RESkbUuKBil3/StS0XVVDiOM16u9pEREJM5B6owzzuDVV1/l008/5cUXX6SwsJDBgwezZ88eCgsLAejSpUu17+nSpUvsscLCQpxOJ+3bt6/1mIN59NFHycjIiH3l5uY28jMTEZGWJilstS6Pbq5bv2/eH768norGGpKIiLRicQ1SF110EVdccQX9+/dn2LBhfPjhh4A1hS/KMIxq32OaZo37DnS4Y+6//35KSkpiX1u3bj2CZyEiIi1dIBTGFdkDKronVL3YkwhFXjL9nvLGHJqIiLRScZ/aV1Vqair9+/dn/fr1sXVTB1aWioqKYlWq7Oxs/H4/xcXFtR5zMC6Xi3bt2lX7EhGRtssbCJFsHEGQMgz8hguAgE8VKRERaWFByufzsXr1arp27UqvXr3Izs5m1qxZscf9fj9z5sxh8ODBAAwaNIikpKRqxxQUFLBixYrYMSIiIp5AiGT8QAODFBCwRYKUV0FKRETi3LXv3nvv5dJLL6V79+4UFRXxt7/9jdLSUq677joMw2Ds2LGMHz+e3r1707t3b8aPH09KSgrXXHMNABkZGdx4443cc889dOjQgaysLO69997YVEEREREArz9MMlZFykhqQLMJIGBzQwiC3srGHJqIiLRScQ1S27Zt4+qrr2b37t106tSJM888k++++44ePXoAMG7cODweD7fddhvFxcWcccYZzJw5k/T09Ng5nnzySRwOB2PGjMHj8XD++eczdepU7HZ7vJ6WiIi0MJWBIOmGVZGKduCrr6DNbf2qICUiIsQ5SE2fPv2QjxuGQV5eHnl5ebUe43a7mTRpEpMmTWrk0YmISFvh8YfoHKlI0cCKVMhuBbCQX1P7RESkha2REhERaQpV10jhbFiQCjusNVJhv6exhiUiIq2YgpSIiLR5Xn+A5NjUvgYGqUhFygxoap+IiChIiYhIAvB7qoSfBq6RMqPfp4qUiIigICUiIgnAX7VluaNhQSoWwIKqSImIiIKUiIgkgKC3HAC/4QRbw176jEiQMgLeRhuXiIi0XgpSIiLS5gV9VkUqEGlh3hBGpEmFLaSpfSIioiAlIiIJIOSzws+RBClbpEmFLaggJSIiClIiIpIAQpGKVOhIgpTLClKOkKb2iYiIgpSIiCSAaMvyoL3hQcrhSrV+DStIiYiIgpSIiCQAM9KyPNzQjn2AI1qRCvsaZUwiItK6KUiJiEibF61IhR0Nr0g5k62KlMv0EQqbjTIuERFpvRSkRESk7YtUpMwjqEglua0glWz4qfQHG2VYIiLSeilIiYhImxfrtBfpvNcQ0SDlxkelP9QYwxIRkVZMQUpERNo8I7r3U1LDK1LRDXndBBSkREREQUpERNo+e6QiFd1Ut0Ei1axkfJraJyIiClIiItL22SN7P9mOKEhZFalkw49HFSkRkYSnICUiIm2eo1GClPW9bnx4AgpSIiKJTkFKRETavOgmuvbIproNO4nVOj0ZP75AuDGGJSIirZiClIiItHlJkSDlcB/51L4kI4TP722MYYmISCumICUiIm1aKGziMn0AOI6kIlWldXrQ6znSYYmISCunICUiIm2aNxAiGT8ATveRTO1zEcYAIOivaIyhiYhIK6YgJSIibVqlP0SyYVWkko4kSBkGAcMFQMhb2RhDExGRVkxBSkRE2jRvIIQ7UpE6on2kgIAtEqQCClIiIolOQUpERNo0TyBEMlZFquo6p4YI2qzOfWGfgpSISKJTkBIRkTbN4w+RbFgVqWjnvYYK2q0gZaoiJSKS8BSkRESkTfMEQrgbqyJljwQxv7r2iYgkOgUpERFp0zxVuvYdaUUqbLfWSKGKlIhIwlOQEhGRNs3r9ZJkhKwbRxykIt8f1Ia8IiKJTkFKRETaNL+nyp5PRzi1z4wEMSOgqX0iIolOQUpERNq0oNcKUmFsYHce0bnCDitI2YIKUiIiiU5BSkRE2rSgzwpSfpsLDOPIThapSNlCClIiIolOQUpERNq0UGTPp0BkD6gjEqtIaY2UiEiiU5ASEZE2LRSpSAUbIUgZTitI2cMKUiIiiU5BSkRE2rSQ36pIheyNEaSsZhWOkIKUiEiiU5ASEZE2zYwFqSNrfQ5giwSpJFWkREQSnoKUiIi0bZFW5WHHkVek7NGKVNh3xOcSEZHWrd5B6pVXXuHDDz+M3R43bhyZmZkMHjyYzZs3N+rgREREjljAqkiZjiOvSEWDlFNBSkQk4dU7SI0fP57kZOvF6Ntvv2Xy5MlMmDCBjh078oc//KHRBygiInIkjMieT9HNdI+E3Z0KgNNUkBIRSXSO+n7D1q1bOfbYYwF49913+fnPf87NN9/M2WefzdChQxt7fCIiIkfEiEztIynliM+VFAlSbnyEwiZ22xHuSyUiIq1WvStSaWlp7NmzB4CZM2cybNgwANxuNx6PNigUEZGWJbp5rtEIFSmHywpjbnz4g+EjPp+IiLRe9a5IDR8+nJtuuomBAweybt06LrnkEgBWrlxJz549G3t8IiIiR8QeaVVuOFOP+FxJ7miQ8uMNhEh22o/4nCIi0jrVuyL1zDPPcNZZZ7Fr1y7efvttOnToAMCiRYu4+uqrG32AIiIiRyK655PNdeRT+xwuK4wlG368wdARn09ERFqvelekMjMzmTx5co37H3744UYZkIiISGOKBil7I1SkouuskvFRHNDUPhGRRFbvitSUKVP4z3/+U+P+//znP7zyyiuNMigREZHG4gxba6TsjVCRIrLOyo0qUiIiia7eQervf/87HTt2rHF/586dGT9+fKMMSkREpDGEw2asVXm0494RiexF5TKCeH2BIz+fiIi0WvUOUps3b6ZXr1417u/Rowdbtmxp8EAeffRRDMNg7NixsftM0yQvL4+cnBySk5MZOnQoK1eurPZ9Pp+PO++8k44dO5Kamspll13Gtm3bGjwOERFpO7zBEG78ACQlN8bUvv2d/wLeiiM/n4iItFr1DlKdO3dm2bJlNe5funRprPFEfS1YsIAXXniBAQMGVLt/woQJPPHEE0yePJkFCxaQnZ3N8OHDKSsrix0zduxYZsyYwfTp05k7dy7l5eWMHDmSUEhTLkREEp3HHyLZiFSkXI1RkXLHfhvwVR75+UREpNWqd5C66qqruOuuu/jiiy8IhUKEQiE+//xzfv/733PVVVfVewDl5eX88pe/5MUXX6R9+/ax+03TZOLEiTzwwAOMHj2afv368corr1BZWcnrr78OQElJCS+99BKPP/44w4YNY+DAgbz22mssX76c2bNn13ssIiLStngCIZIjFSlbYzSbsNnw4QIg6C0/8vOJiEirVe8g9be//Y0zzjiD888/n+TkZJKTk7ngggs477zzGrRG6vbbb+eSSy6JbewblZ+fT2FhIRdccEHsPpfLxZAhQ5g3bx5gtVwPBALVjsnJyaFfv36xY0REJHF5AyGSsSpSNMKGvAB+wwlAUBUpEZGEVu/2506nkzfffJO//vWvLF26lOTkZPr370+PHj3qffHp06ezePFiFixYUOOxwsJCALp06VLt/i5durB58+bYMU6ns1olK3pM9PsPxufz4fP5YrdLS0vrPXYREWn5PP4wWYZVkWq0IGVzQ6iMkIKUiEhCq3eQiurTpw99+vRp8IW3bt3K73//e2bOnInb7a71OMMwqt02TbPGfQc63DGPPvqo9r0SEUkAnmoVqUZofw4EbC4IQdivICUiksjqFKTuvvtu/vrXv5Kamsrdd999yGOfeOKJOl140aJFFBUVMWjQoNh9oVCIr776ismTJ7N27VrAqjp17do1dkxRUVGsSpWdnY3f76e4uLhaVaqoqIjBgwfXeu3777+/2vMoLS0lNze3TuMWEZHWw1tljVRjVaSCNuvDPwUpEZHEVqcg9cMPPxAIBGK/bwznn38+y5cvr3bfb37zG44//njuu+8+jj76aLKzs5k1axYDBw4EwO/3M2fOHB577DEABg0aRFJSErNmzWLMmDEAFBQUsGLFCiZMmFDrtV0uFy6Xq1Geh4iItFxef4Dk2NS+xqlIBe1WkDIDClIiIomsTkHqiy++OOjvj0R6ejr9+vWrdl9qaiodOnSI3T927FjGjx9P79696d27N+PHjyclJYVrrrkGgIyMDG688UbuueceOnToQFZWFvfeey/9+/ev0bxCREQST8Dn2X+jkSpSoUhFyvR7DnOkiIi0ZfXu2nfDDTdU28cpqqKightuuKFRBhU1btw4xo4dy2233capp57K9u3bmTlzJunp6bFjnnzySUaNGsWYMWM4++yzSUlJ4f3338dutzfqWEREpPUJ+qpsmttYQSq6l1RAQUpEJJHVO0i98soreDw1Xzw8Hg+vvvrqEQ3myy+/ZOLEibHbhmGQl5dHQUEBXq+XOXPm1Khiud1uJk2axJ49e6isrOT999/XeicREQH2tygPGElga5wP2ML2SCBTkBIRSWh17tpXWlqKaZqYpklZWVm1TnuhUIiPPvqIzp07N8kgRUREGiIcqUj5DTdJjXROM1LZMoJaIyUiksjqHKQyMzMxDAPDMA7a9twwDLUUFxGRFiUcqUhFO+01BjPSbMIW9DbaOUVEpPWpc5D64osvME2T8847j7fffpusrKzYY06nkx49epCTk9MkgxQREWmIaIvygL3xglR0rZWClIhIYqtzkBoyZAgA+fn5dO/e/bCb4oqIiMSbGQlSoUYMUtGpfbaQ1kiJiCSyejebWL16Nd98803s9jPPPMPJJ5/MNddcQ3FxcaMOTkRE5EhE93pqzCBlOK39qBwhVaRERBJZvYPU//zP/1BaWgrA8uXLufvuu7n44ovZuHEjd999d6MPUEREpMEinfVC9sZpfQ5gRDb2dYQVpEREElmdp/ZF5efnc+KJJwLw9ttvc+mllzJ+/HgWL17MxRdf3OgDFBERaSgjaAUp09F4QcrutM7lCPsa7ZwiItL61Lsi5XQ6qay0pkrMnj2bCy64AICsrKxYpUpERKQliAWpRtqMF8DuSgUgSRUpEZGEVu+K1E9+8hPuvvtuzj77bObPn8+bb74JwLp16+jWrVujD1BERKShbE1QkbJF1kg5VZESEUlo9a5ITZ48GYfDwVtvvcVzzz3HUUcdBcDHH3/MiBEjGn2AIiIiDWWPtihvxIqUw21VpJymgpSISCKrd0Wqe/fufPDBBzXuf/LJJxtlQCIiIo3FHrYqUtFOe43B4bLO5VKQEhFJaHUKUqWlpbRr1y72+0OJHiciIhJv0Rbl0U57jSEpUpFyoSAlIpLI6hSk2rdvT0FBAZ07dyYzM/Ogm/GapolhGIRCoUYfpIiISENEg5TN1XhT+5zJVpBy4ycQCpNkr/cseRERaQPqFKQ+//xzsrKyAPjiiy+adEAiIiKNJcmMBClnaqOd05WcBkAyPir9ITKSFaRERBJRnYLUkCFDYr/v1asXubm5NapSpmmydevWxh2diIjIEYh21ou2LG+Uc0am9rmNAPt8ATKSkxrt3CIi0nrU+2O0Xr16sWvXrhr37927l169ejXKoERERBpDNEhFG0Q0BqNKB8DKyopGO6+IiLQu9Q5S0bVQByovL8ftdjfKoERERI6UaZqxhhDRBhGNokqQ8nnKG++8IiLSqtS5/fndd98NgGEY/PnPfyYlZf+ne6FQiO+//56TTz650QcoIiLSEL5gGHckSDkaM0jZ7PhJwkkAb0VZ451XRERalToHqR9++AGwPuFbvnw5Tqcz9pjT6eSkk07i3nvvbfwRioiINIA3ECIZP7B/XVNj8RkunGYAv09T+0REElWdg1S0W99vfvMbnnrqKe0XJSIiLZo3ECbZiK6RatwgFTBcYJbj91Q26nlFRKT1qHOQipoyZUpTjENERKRReQMhsiIVKRpxQ14Av80FYQh4tUZKRCRR1TtIASxYsID//Oc/bNmyBb/fX+2xd955p1EGJiIiciSqrpGq2iCiMQRtVnOloE8VKRGRRFXvrn3Tp0/n7LPPZtWqVcyYMYNAIMCqVav4/PPPycjIaIoxioiI1JvX58VphKwbjR2k7Nb5QgpSIiIJq95Bavz48Tz55JN88MEHOJ1OnnrqKVavXs2YMWPo3r17U4xRRESk3gKeKo0gGnlqX9jusn5VswkRkYRV7yC1YcMGLrnkEgBcLhcVFRUYhsEf/vAHXnjhhUYfoIiISEP4I9WiEDZwuBr13GFHpCIV8DTqeUVEpPWod5DKysqirMzaN+Ooo45ixYoVAOzbt4/KSk1xEBGRliHotapFfsMFB9lI/kiYkSCFX697IiKJqt7NJn76058ya9Ys+vfvz5gxY/j973/P559/zqxZszj//PObYowiIiL1FvTtD1KNu0IKzMiaK1MVKRGRhFXvIDV58mS8Xi8A999/P0lJScydO5fRo0fz5z//udEHKCIi0hDhyNQ+v+Fu/JNH1lwZClIiIgmr3kEqKysr9nubzca4ceMYN25cow5KRETkSIV81h5PAXvjro8CsCVZ4cwIKkiJiCSqeq+RstvtFBUV1bh/z5492O32RhmUiIjIkTL9VsiJ7vnUmAynVZGyBb2Nfm4REWkd6h2kTNM86P0+nw+n03nEAxIREWkMZqQRRNDe+EHK7kq1fg0pSImIJKo6T+17+umnATAMg3/961+kpaXFHguFQnz11Vccf/zxjT9CERGRBjADkfbn9sZuNQF2l1WRcoQ1tU9EJFHVOUg9+eSTgFWRev7556tN43M6nfTs2ZPnn3++8UcoIiLSEJFGEKEmqEglRYOUKlIiIgmrzkEqPz8fgHPPPZd33nmH9u3bN9mgREREjlikIhXb86kRJbmtqX1Jpq/Rzy0iIq1Dvbv2ffHFF9VuB4NBvF5vtal+IiIi8WZEGkGEmyBIOSNBymn6CIVN7LbG3fBXRERavjo3m/joo4+YNm1atfseeeQR0tLSyMzM5IILLqC4uLjRBygiItIQtmhr8qQmCFLJ1oeHyfjxBEKNfn4REWn56hyk/vGPf1BaWhq7PW/ePB588EH+/Oc/83//939s3bqVv/71r00ySBERkfqyh6JBKqXRz+1MtipSyfio9Acb/fwiItLy1TlIrVixgsGDB8duv/XWWwwfPpwHHniA0aNH8/jjj/P+++83ySBFRETqK9aavAkqUkbknC4jQKVPFSkRkURU5yBVVlZGhw4dYrfnzp3LeeedF7vdt29fduzY0bijExERaSBHpCJlczZ+RSpa5bIqUgpSIiKJqM5BKicnh9WrVwNQXl7O0qVLOfvss2OP79mzh5SUJnixEhERaQBHyOqo1zRByqpIJePX1D4RkQRV5yD185//nLFjxzJt2jR++9vfkp2dzZlnnhl7fOHChRx33HFNMkgREZH6SgpbU/uasiKVYvio9ClIiYgkojq3P3/ooYfYsWMHd911F9nZ2bz22mvVNuV94403uPTSS5tkkCIiIvWVZEaClCu18U/u2L/Jr9db0fjnFxGRFq/OQSolJaVG+/OqDtxfSkREJJ6cYWtqn8PVdFP7AHweBSkRkURU56l9IiIirYmLSJByN0FFyp5EMPJZpF8VKRGRhKQgJSIibZLLtIJUUlMEKSBgs6b3BRWkREQSkoKUiIi0OcFQGHekIuVKTmuSawRsLutXTe0TEUlIcQ1Szz33HAMGDKBdu3a0a9eOs846i48//jj2uGma5OXlkZOTQ3JyMkOHDmXlypXVzuHz+bjzzjvp2LEjqampXHbZZWzbtq25n4qIiLQglYEQyfgBcCc3TUUqZLcqUiG/p0nOLyIiLVtcg1S3bt34+9//zsKFC1m4cCHnnXcel19+eSwsTZgwgSeeeILJkyezYMECsrOzGT58OGVlZbFzjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSBokiIonK4wuQYlgVKWcTVaSiQSroU0VKRCQR1TlIde/enT179sRuT548mdLS0iO6+KWXXsrFF19Mnz596NOnD4888ghpaWl89913mKbJxIkTeeCBBxg9ejT9+vXjlVdeobKyktdffx2AkpISXnrpJR5//HGGDRvGwIEDee2111i+fDmzZ88+orGJiEjr5ancH24MZ9NUpMIOq3Of6a9skvOLiEjLVucgtW3btmpVnv/93/9l9+7djTaQUCjE9OnTqaio4KyzziI/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIi0nZ4K6v8XE9qgvbnVAlSAQUpEZFE1OCpfaZpNsoAli9fTlpaGi6Xi1tvvZUZM2Zw4oknUlhYCECXLl2qHd+lS5fYY4WFhTidTtq3b1/rMQfz6KOPkpGREfvKzc1tlOciIiItg7+yHAAvTrA10Sz2yKa8ptZIiYgkpLh37TvuuONYsmQJ3333Hb/73e+47rrrWLVqVexxwzCqHW+aZo37DnS4Y+6//35KSkpiX1u3bj2yJyEiIi2K32MFKZ/hbrqLRDflDXqb7hoiItJiOepz8L/+9S/S0qxFu8FgkKlTp9KxY8dqx9x11131GoDT6eTYY48F4NRTT2XBggU89dRT3HfffYBVderatWvs+KKioliVKjs7G7/fT3FxcbWqVFFREYMHD671mi6XC5fLVa9xiohI6xFoliBlTRm0B1WREhFJRHUOUt27d+fFF1+M3c7OzmbatGnVjjEMo95B6kCmaeLz+ejVqxfZ2dnMmjWLgQMHAuD3+5kzZw6PPfYYAIMGDSIpKYlZs2YxZswYAAoKClixYgUTJkw4onGIiEjrFfRa3V39tuQmu4bhtM5tCylIiYgkojoHqU2bNjX6xf/3f/+Xiy66iNzcXMrKypg+fTpffvkln3zyCYZhMHbsWMaPH0/v3r3p3bs348ePJyUlhWuuuQaAjIwMbrzxRu655x46dOhAVlYW9957L/3792fYsGGNPl4REWkdoi3JA/amq0jZIhUpR0hT+0REElG9pvY1tp07d/LrX/+agoICMjIyGDBgAJ988gnDhw8HYNy4cXg8Hm677TaKi4s544wzmDlzJunp6bFzPPnkkzgcDsaMGYPH4+H8889n6tSp2O32eD0tERGJs3AkSAXtTVeRsjkjQSrsa7JriIhIy1XnZhMXX3wxJSUlsduPPPII+/bti93es2cPJ554Yr0u/tJLL7Fp0yZ8Ph9FRUXMnj07FqLAmiqYl5dHQUEBXq+XOXPm0K9fv2rncLvdTJo0iT179lBZWcn777+vLnwiIgnOjASpkL1pWp8D2FzRIKWKlIhIIqpzkPr000/x+fZ/6vbYY4+xd+/e2O1gMMjatWsbd3QiIiINYAYiQcrRdBUpRyRIOcPeRtsSREREWo86B6kDXyT0oiEiIi2W39ok12yizXgBHO5UANz48YfCTXYdERFpmeK+j5SIiEhjMwLNEKQiFSk3frwBBSkRkURT5yBlGEaNTW4PtzGuiIhIPBhBK0jRpEHKqkglGz58gVCTXUdERFqmOnftM02T66+/PraRrdfr5dZbbyU11Xohqbp+SkREJJ6im+QaztQmu0b03Mn48ChIiYgknDoHqeuuu67a7V/96lc1jrn22muPfEQiIiJHKBakXE0XpKLVrhR8mtonIpKA6hykpkyZ0pTjEBERaTRJIStIOZoySEUqUimGjyJVpEREEo6aTYiISJuTFLaClN2d1nQXiQSpVLya2icikoAUpEREpM1xRjbJjbYob5qL7F8j5fUHm+46IiLSIilIiYhIm+M0rSCV1JQVqcgaqSQjpIZLIiIJSEFKRETaHHckSDlT0pvuIlU6Aga9ZU13HRERaZEUpEREpE0JhsIkY1WIXE1ZkbInESAJgJC3vOmuIyIiLZKClIiItCmVgdD+IJXahBUpwGdLBiCkipSISMJRkBIRkTbF4wuSQmRqX3ITVqQAvz0SpHyVTXodERFpeRSkRESkTfF4KrEbJgCGswm79gHBSEXK9Glqn4hIolGQEhGRNsVbWWWaXVLTBqlApCJFoKJJryMiIi2PgpSIiLQp/kiQ8uMAu6NJrxVypEQuqiAlIpJoFKRERKRN8XmsaXY+w93k14oGKcOvNVIiIolGQUpERNqUgMeqSDVHkAo7rKl9tqAqUiIiiUZBSkRE2pSg1wo1flvTBykz0szCCKgiJSKSaBSkRESkTQn6rCAViHTUa1KRZhb2kIKUiEiiUZASEZE2JRwJUkF7MwSpSEXKEfQ0/bVERKRFUZASEZE2JRakHM0RpKxmE0mqSImIJBwFKRERaVPMSCvycLQ1eROyudIASAp7m/xaIiLSsihIiYhImxJt/BBuhopUNEg5VZESEUk4ClIiItK2RPZ0MiONIJqS3W1dw2mqIiUikmgUpEREpE2J7ulkOJt+al+S26pIuRWkREQSjoKUiIi0KbZoB72kpg9SDnc6AMmmuvaJiCQaBSkREWlT7JEgZY+sX2pKSclWkHLjIxQ2m/x6IiLScihIiYhImxLdHNeR3PRBypViBalUvHgDoSa/noiItBwKUiIi0qY4QtZ6JWczBKnoNZLx4VGQEhFJKApSIiLSprjCVkUqWi1qStH25y4jiNerhhMiIolEQUpERNqMcNjEHbbWSLlSM5r+gs79VS+/p7zpryciIi2GgpSIiLQZFf4gqVhBKjmtGYKUw0kQOwD+yrKmv56IiLQYClIiItJmlHmDpBrWFDtXSjMEKcCDG4CAV0FKRCSRKEiJiEibUeYNkkZkrVIztD8H8BpWkApqap+ISEJRkBIRkTajvLISlxGwbjibJ0j5bMkABH0VzXI9ERFpGRSkRESkzagsK9l/w9X0XfsA/DarIhXW1D4RkYSiICUiIm2Gp2IfAH6SwJ7ULNf0RypSIVWkREQSioKUiIi0Gb6KUutXW0qzXTNot4IUfq2REhFJJApSIiLSZgQqrSDltzdnkLKuZform+2aIiISfwpSIiLSZgQ81jqlgCO12a4ZdEQrUpraJyKSSBSkRESkzYg2fAg5mq8iFYqENiOgICUikkgUpEREpM0I+6wgFU5qntbnACRFgpTWSImIJBQFKRERaTt8kTDjbL6pfbitNus2BSkRkYSiICUiIm1GrCrUTHtIAdjc7QBwBBWkREQSSVyD1KOPPsppp51Geno6nTt3ZtSoUaxdu7baMaZpkpeXR05ODsnJyQwdOpSVK1dWO8bn83HnnXfSsWNHUlNTueyyy9i2bVtzPhUREWkBbJF1SjZ38wUpe3I0SGmNlIhIIolrkJozZw6333473333HbNmzSIYDHLBBRdQUbH/xWjChAk88cQTTJ48mQULFpCdnc3w4cMpK9u/g/zYsWOZMWMG06dPZ+7cuZSXlzNy5EhCoVA8npaIiMRJNMzYmzFIJUWClCukICUikkgc8bz4J598Uu32lClT6Ny5M4sWLeKcc87BNE0mTpzIAw88wOjRowF45ZVX6NKlC6+//jq33HILJSUlvPTSS0ybNo1hw4YB8Nprr5Gbm8vs2bO58MILm/15iYhIfCRFwkxSSrtmu6YzNQMAV0j7SImIJJIWtUaqpKQEgKysLADy8/MpLCzkggsuiB3jcrkYMmQI8+bNA2DRokUEAoFqx+Tk5NCvX7/YMQfy+XyUlpZW+xIRkdbNNM1YmHE2Y5BypWYCkGwqSImIJJIWE6RM0+Tuu+/mJz/5Cf369QOgsLAQgC5dulQ7tkuXLrHHCgsLcTqdtG/fvtZjDvToo4+SkZER+8rNzW3spyMiIs2swh8iBS8ArkiVqDkkp2cCkGJ6mu2aIiISfy0mSN1xxx0sW7aMN954o8ZjhmFUu22aZo37DnSoY+6//35KSkpiX1u3bm34wEVEpEUo9QRINawglZTcfGukUtKt0JaGB68/2GzXFRGR+GoRQerOO+/kvffe44svvqBbt26x+7OzswFqVJaKiopiVars7Gz8fj/FxcW1HnMgl8tFu3btqn2JiEjrVuYNkhqpSBnN2P48Nc2aEWEzTMrKSprtuiIiEl9xDVKmaXLHHXfwzjvv8Pnnn9OrV69qj/fq1Yvs7GxmzZoVu8/v9zNnzhwGDx4MwKBBg0hKSqp2TEFBAStWrIgdIyIibV+ZN0CaEZle50xrtuvaXKmETGsGhKdcQUpEJFHEtWvf7bffzuuvv85///tf0tPTY5WnjIwMkpOTMQyDsWPHMn78eHr37k3v3r0ZP348KSkpXHPNNbFjb7zxRu655x46dOhAVlYW9957L/3794918RMRkbavzBvkmEhFqjmDFIZBhZFCOyrwlBUf/ngREWkT4hqknnvuOQCGDh1a7f4pU6Zw/fXXAzBu3Dg8Hg+33XYbxcXFnHHGGcycOZP09P3TNp588kkcDgdjxozB4/Fw/vnnM3XqVOx2e3M9FRERibNSb4BUIhUpVzMGKcBjpNDOrMCripSISMKIa5AyTfOwxxiGQV5eHnl5ebUe43a7mTRpEpMmTWrE0YmISGtSUVmJ04hsxN6cFSnAZ0uBEPgqFKRERBJFi2g2ISIicqR8VatBzR2k7KkABDwKUiIiiUJBSkRE2oSg19pc3W+4wN68Ey4CDitIhTza4F1EJFEoSImISJtgessBCNhTmv3awSSrAhb2KkiJiCQKBSkREWkTwv5IkIpUh5r12pEgZSpIiYgkDAUpERFpEwyfFaSCcQhSZmRNlhEJcyIi0vYpSImISJsQDTGhpOYPUrjTq41BRETaPgUpERFpE2wBK8REp9k167XdGQA4AgpSIiKJQkFKRETaBHugAtg/za5Zrx2pSCUFK5r92iIiEh8KUiIi0iY4oiHG2fxT+5JS2lm/hhSkREQShYKUiIi0Cc5gZFpdZJpds1471bqmO1zZ7NcWEZH4UJASEZE2wR22gpQRhyDlSs0EIFlBSkQkYShIiYhIm5AcCVL2lMzmv3aaFd5SqSQUNpv9+iIi0vwUpEREpE1IjWOQSklvb40BL+W+YLNfX0REmp+ClIiItHrhsEmqaTV6SEpt3+zXj07tSzF8lHu8zX59ERFpfgpSIiLS6nmDIdphrU9ypjV/kKJKy/WKsuLmv76IiDQ7BSkREWn1PP4Q6UYkSMVhah8OJz6SAPCW7Wv+64uISLNTkBIRkVav0heMVaRs8QhSgMdIAcBbXhqX64uISPNSkBIRkVbP563AZUSaPMSh/TmA12YFqYCnJC7XFxGR5qUgJSIirZ6/wlqXFMJWbb1Sc/LZU60xVCpIiYgkAgUpERFp9fzl+wCoIBUMIy5j8NrTATA9++JyfRERaV4KUiIi0uqFIuGlwpYatzH4HVaQwrsvbmMQEZHmoyAlIiKtXrhyHwAeW3ym9QEEnNbaLJtPU/tERBKBgpSIiLR64UhFymOPZ5BqB4DdryAlIpIIFKRERKT181rhxRedXhcHYVcmAE4FKRGRhKAgJSIirZ4RCVL+eAYpdyYASQHtIyUikggUpEREpNWz+azwEnDGL0gRCVIuBSkRkYSgICUiIq2ePRJeQknt4jYGW2p7AFJCZXEbg4iINB8FKRERafWS/FZ4CbviGKSSI0EqrCAlIpIIFKRERKTVSwpGKlKujLiNwZFmBanUcHncxiAiIs1HQUpERFo9V9AKL4Y7fkHKldYBgGS8EPTHbRwiItI8FKRERKTVc0fWJcU1SKVmEjYN64Z3X9zGISIizUNBSkREWr3kUKQilZwZtzGkJLsoI9m6EdkgWERE2i4FKRERad1Mk5TIuiR7SmbchpGSZKfETAUgWLk3buMQEZHmoSAlIiKtW9BLEkEAklIz4zaMFJedEqwg5S/bE7dxiIhI81CQEhGR1s1bAkDINHClxK/9udNuo4Q0APzlxXEbh4iINA8FKRERad0iQaqMFNxOR9yGYRgGFTYrSAUrNLVPRKStU5ASEZHWLRKkSs0UUuIYpAAqbekAhBSkRETaPAUpERFp3TzWNLoSUklOssd1KF67FaTCHk3tExFp6xSkRESkVQuW7wJgr9mOZGecg1RSZI2WpySu4xARkaanICUiIq1aoLQIgD20i3tFyp9kbQhs04a8IiJtnoKUiIi0auHy3QAU044kuxHXsQQiFSm7b19cxyEiIk1PQUpERFq1cIUVpMpt7TCM+AapkCsTAIdfU/tERNo6BSkREWndKqzNb8sdmfEdBxByWVP7kgKlcR6JiIg0NQUpERFp1QyPVZGqbAFBynBbY3ApSImItHkKUiIi0qrZPdaeTT5n+ziPBEixxuAw/RDwxHkwIiLSlOIapL766isuvfRScnJyMAyDd999t9rjpmmSl5dHTk4OycnJDB06lJUrV1Y7xufzceedd9KxY0dSU1O57LLL2LZtWzM+CxERiSeHN7L5bUqH+A4EcLjb4TcjnQMja7dERKRtimuQqqio4KSTTmLy5MkHfXzChAk88cQTTJ48mQULFpCdnc3w4cMpKyuLHTN27FhmzJjB9OnTmTt3LuXl5YwcOZJQKNRcT0NEROIl6CMpWA6ALa1TnAcDKe4k9mCtk6KiKL6DERGRJuWI58UvuugiLrroooM+ZpomEydO5IEHHmD06NEAvPLKK3Tp0oXXX3+dW265hZKSEl566SWmTZvGsGHDAHjttdfIzc1l9uzZXHjhhc32XEREJA4qrWpU0LSRnJ4V58FAitPObrMdXY29ENkoWERE2qYWu0YqPz+fwsJCLrjggth9LpeLIUOGMG/ePAAWLVpEIBCodkxOTg79+vWLHXMwPp+P0tLSal8iItIKVUb3kEojM9Ud58FEg1S0IqUgJSLSlrXYIFVYWAhAly5dqt3fpUuX2GOFhYU4nU7at29f6zEH8+ijj5KRkRH7ys3NbeTRi4hIs4isQ9prtiMr1RnnwUCq01ElSGlqn4hIW9Zig1TUgZsrmqZ52A0XD3fM/fffT0lJSexr69atjTJWERFpZpXWHlLFpNO+BQSpFKed3dE1UpraJyLSprXYIJWdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZiDcblctGvXrtqXiIi0QpEgtcdMJyulBQQpl4PdZuQ1RRUpEZE2rcUGqV69epGdnc2sWbNi9/n9fubMmcPgwYMBGDRoEElJSdWOKSgoYMWKFbFjRESkDasyta99alKcB6M1UiIiiSSuXfvKy8v58ccfY7fz8/NZsmQJWVlZdO/enbFjxzJ+/Hh69+5N7969GT9+PCkpKVxzzTUAZGRkcOONN3LPPffQoUMHsrKyuPfee+nfv3+si5+IiLRdZuUeDGAv6S1ijZSm9omIJI64BqmFCxdy7rnnxm7ffffdAFx33XVMnTqVcePG4fF4uO222yguLuaMM85g5syZpKenx77nySefxOFwMGbMGDweD+effz5Tp07Fbrc3+/MREZHmFSzbRRKRilQLmNpXtdmEWVHEoVf0iohIaxbXIDV06FBM06z1ccMwyMvLIy8vr9Zj3G43kyZNYtKkSU0wQhERaclC5VaQqrBn4E6K/wdoKS47e6JT+yr3QigI9ri+1IqISBNpsWukREREDsessJpNBN3x34wXwOWw43NmEjINDMxYMwwREWl7FKRERKTVsnusoBJO6RDnkeyXlZ7MXiJT0NW5T0SkzVKQEhGR1ikcxuHfB4AtpWN8x1JFh1Tn/s595QpSIiJtlYKUiIi0ThW7sJkhQqaBvV3neI8mpmOaiz2xvaR2x3cwIiLSZBSkRESkdSrdDsAuMslITYnzYPbrkOba3wJdU/tERNosBSkREWmdSncAUGhmkdUCNuON6pimqX0iIolAQUpERFqnSJAqMLNo3wI2443qmObaH6QqtCmviEhbpSAlIiKtU2RqX6GZRVYL2Iw3qkOas8rUPgUpEZG2SkFKRERap9ZQkSrfGd/BiIhIk1GQEhGR1im2RqoDWS0qSDkpMCMbBJdsi+9gRESkyShIiYhIq2RGpvbtMLPITGk5zSY6pLrYbkb2tfIUg68svgMSEZEmoSAlIiKtj2nGKlJFRkc6pLriPKD9MpKT8NpS2WemWnfs2xrfAYmISJNQkBIRkdanci9GyAeAmdYFu82I84D2s9kMslKd+6tSJQpSIiJtkYKUiIi0PqXW2qNdZgYdMtLjPJiaOqa52GZ2sm7s2xLfwYiISJNQkBIRkdanSse+rhnuOA+mpg5pVSpSClIiIm2SgpSIiMSVaZr8c84G3llcjw53VfaQ6tKu5QWpjmkuTe0TEWnjHPEegIiIJLb3lxXw6MdrcDpsjDr5KGx1We9UpSKV3QIrUh3TnGzR1D4RkTZNFSkREYkbjz/E3z9aDYA/GKa40l+3b6yyh1TLnNrnYltsap8qUiIibZGClIiIxM1zX/7IjhJv7Pbu8joGqchGtwWtYWpfRREEPPEdkIiINDoFKRERaXamaTLps/U8/fmPADgi0/l2lfnq9v178wHYanYiuwUGqQ5pTvaRRiXJ1h0l9Vj/JSIirYKClIiINLuX5ubz+Kx1ANw65BhO65kFwO7yOgQpXzlGpP35BjOnRa6ROiozGTDYgTr3iYi0VQpSIiLS7P5vobVu6J7hffjjRcfTKd0F1DFI7bGqWLvNdpCShTvJ3mTjbKhu7a1K1JZQB+sOde4TEWlzFKRERKRZbd1bybqd5dhtBtee1ROw1hQB7KpLkNq9HohUo1rgtD6AFKdDm/KKiLRxClIiItKsPlu9E4BTe7QnIyUJgI7pTgB2l9Wh2cRua0rghnDXFtloIio3K5nNZmfrRiT8iYhI26EgJSIizeqzNUUAnH9C59h90YpUnab2RYOUmdMiW59H5bZPYa3Z3bqxc2V8ByMiIo1OQUpERJpNuS/I9xv3AnDe8V1i93eqT5CKrJHaYOa0+IrU2nCudWPvRvBXxndAIiLSqBSkRESk2XywdAf+UJgeHVI4plNq7P46V6TCoViQ2thCO/ZFdc9KYRcZlNoyABN2rYn3kEREpBEpSImISLPYtLuCv36wCoArT8vFMIzYY9E1UnvK/YTDZu0nKdkKQS8BHGwzO9GlnatJx3wkctunAAYbjMj0vqJVcR2PiIg0LgUpERFpcpX+IHe8sZgKf4jTe2Vx80+PrvZ4h1QrEAXDJvs8gdpPFGnasJkcwtjolNZyK1K5WSkALAscZd2xU0FKRKQtUZASEZEm5QuGuGXaIlZsLyUzJYmnrjoZh736y4/TYSMj2ergd8jpfZFGE+vCXQFi+0+1RF0z3NhtBitDkXVSO1fU+xzlviCfrd556CqdiIjEhYKUiIg0qfveWsbX63eT4rTz0nWn0jUj+aDHxTblLTtEkCpYCsC6sFXl6ZDmbNzBNiKH3UZOpnt/w4l6Tu0LhsJc//J8bnxlIS/NzW+CEYqIyJFQkBIRkSazrbiSd5fswDDgxWtPZVCPrFqP7RgJRYfclHfLdwAsCvehfUoSSfaW/TKW2z6FdWY3TAyo2AXlu+r8vc98sYGFm4sB+NfcjfiD4aYapoiINEDLfgWSZqEXZxFpKv9dsgOAM3t14OxjOx7y2P2d+2rZlLesEPZtxjRs/BA+NnZ8S5bbPgUPbkrc0XVSh5/eV+EL8swXP/L059Z6MHeSjZ2lPt5bav1Zevwh5qzbRUnlIdaSiYhIk3PEewASXxM+WcPL3+Qz47azOaFru3gPR0SamGmavPDVRjJTkrjytO5Nfq13Fm8D4GenHHXY4w/bAj1SjSpN7025J6VFr4+K6t0lDYBVHM1gtsHW7+GYc2s9vtQb4NJJc9m8x9pz6opTunFM51QmfLKWpz9bz6LNe/lkRSHFlQEuOLELL1x7arM8DxERqUkVqQT3/rIdeANhvt+4J95DEZFmsHx7CY9+vIb731lOpT9Y4/FAKIxpNk5jg+XbS9iwqwKXw8ZF/bIPe/xh10ht/R6A7eknAbSKitSlJ+VgM+C9sj7WHRu/POTxX6wpYvOeSjqmOXnyypOY8PMB/PKMHqQ67WzZW8kb87dSHKlEfbG2iJJDdTgUEZEmpSCVwPaU+9i61wPAtmJPnEcjbcEb87dw7cvzD7+pqsTNh8sLAAibsKGootpj3kCIi576moue+ppQI3SJe2fxdgAu6JtNujvpsMdH10jtKKnl51GkIrXe1Rdo2R37orq0c3Pe8Z35JmyNmW0LwFdW6/Fz1lprqH4+KJefDeyG3WaQkZzEc78axG/O7smd5x3L878aRO/OaQRCJp+v2dkcT0NERA5CQSqBLdtWEvu9gpQcjmmaFJV6a318d7mPh99fyVfrdvHiVxubcWRSV6Zp8lEkSAGs21n9Df3HKwr4saicNYVl5O8up9If5N/fb6bUW/+qh8cfik3r+/mgbnX6nlO6twfg2w172BKZ2hbjr4h17FtmOx5oHRUpgCtP685Wswvb6AzhIGyed9DjwmGTOeusIDX0uE7VHjunTyceurQv91xwHCP6ZccqfJ+sKGySMXv8IX4sKm+Sc4tI21LiCbAnQT9AVZBKYEu27ov9ftu+ytoPrIcV20soa8CbLmn5Xpqbz+njP+PuN5fgDYRqPP7i1xvxBqzGJa/P30KFr+a0MTm895fu4LevLmRvRS0NF47Aiu2lsSo0wLqi6kHq9e+3xH6/ckcpkz//kQdmrOCZz3+s97XeX7aDUm+Q7lkp/PQwTSaiendJ55w+nQib8PI3B7T73jofzBC0O4p13kygdVSkAM49rhOd0118FYxUpTbOOehxK3eUsqfCT5rLwaAe7Q95zgsjQWrOul38+qXvOe2R2Tz2yZpDftgRDIX5x6drmbt+92HH/MhHqxj2xBy++fHwx8ZbY01FFZH68wfDjJz0NedM+ILVBaXxHk6zU5BKYEu37Yv9vjEqUv+3cCsjJ83lwf+uPOJzJYLd5T6mfbf5oKGkJfp8TREA7/ywnatf/K5alWJvhZ9p324GINVpp8wb5K1F2+IyztbMNE0e+XA1s1btZOo3+ZR6A9z86kKmHhgqGig6rc8ZaRm+fuf+isP6nWUs2FQcu71yRynfRtZOLt5STH39+zvr38M1Z3THZjPq/H03//RowPp5sq+ySphc+Y716zHnsbvC+rfXsQXvIVWVw27jtF5ZfBPub91RyzqpL9da/8fOPrbDYdu6n9i1Hd2zUvAGwny9fje7ynw89+UGxvzzW4Khg3di/XB5AZO/+JHfvbaI4sME9Xk/Wn/3X9chdMXT1+t3cfJfZvHv7zfHeyjSQN5AiPzdFYc/UABrJsEPDfiZ3FQ+X7OTrXs9VPitjder/dxOAApSCco0TZZWqUjtqwxQfgQVhBJPgL9/vAaA79S4ok4mfLKGP7+7gue+3BDvoRxWOGyyfLs1FdTlsPHDln2Mnb6ELXsqufv/lnDOhC+o9Ifom9OOcSOsaVdTvskn3AjrbBLJ8u0lFEYqCm8v3s6/vtrIzFU7eeqz9Y3yqfvMVdY0sKtOtzaIrTq17435WwGr1TbA4s3FrIj8na/aUVqvv8vl20pYuq0Ep93GL+o4rS/q7GM7cHx2OpX+0P4wHvDCyv9avx8whl2RZhStpSIFcFRmMvPCJ1r7SRWthOKab/yj0/qG9Ol82PMZhsGvz+wBWBWviVeeTLrLwaY9lSzbXnLQ74muvyrzBZn8Re1VRm8gxKY91hvbVYf4hDnelaAKX5D73lpGiSfAf3/YEdexSMM9+tFqzv3Hl3WqlLYUpmny7+838/D7K1m0ee9B/y+Ypsnzczbw6rebGu3/Sjhs8st/fc+V//yObcWNM5PocOZt2M34j1bXut3Cmwu2xn6/ZW8l1748P/bakQgUpBLU1r0eiisDOO020l1WF/ztDahKhcMm+bsrePSj1bGpSAUl3oT7RKIhvtu4F9hfJViwaW+1cFvV1r2VbN3bPD80D2bTngrKvEFcDhvTbz4Tl8PG52uKGPqPL3hn8XbKfUFyMtz8bVQ/fnFqN9Ld1hu6bza0nhfGlmDWqv2NA7bv8/BsJGQXVwZq31upjorKvGzcVYFhwI0/6QVYlejoFMxPVlj/Dm8dcgwACzcXEwhZL/4V/hCb6/Hv77NIA4ThJ3ahQz3XMRmGwS9OtYJerBqyfib4SqDdUYS6n83eikiQaiVrpAByMtwU0441yadYdyyaWu3xghIPiyKfMg85YH1UbW76aS+WPDicl68/jVEDj4rt0zXvINPxqq6/Apj27eZaf6Zs3FVBNDev2lF7kPrtqws569HPDlvdaipPfbaeHSXWBw+rC0vjHuzqY37+Xm56ZSEFtTVWSSDRSvgnKwsOc2TL4A2EuOc/S3lgxgqmfLOJK577lt++uqjGcR+vKOTvH6/hwf+u5I9vL2+UBj47y7zsKvPhD4X5Ym3dN/c+En9+dwUvfLWRK1/4lqKy6lOHC0u8sZ8rz/7yFNJcDpZtK+GyyXO5ZdpCvl5vPban3MfwJ+Zw+78Xt6r/p3WhIJWgotP6TshpR4+OKQAN+nTjt68u5Nx/fMn0BdU/zT7Up5hivandEnkT82NROf9dsp0x//yWUc9+U2MaV6k3wMhJc7ls8twjqhoeiWg16sScdgzs3p4JPx8AWJ3fTu+Vxdu/O4u5953HwO7tSXE6+NlAa8+gN+ZvwTRNVmwvIVDLdCPZLxqkuma4AQhWeeFdv7P2Tm91sSDferNyfHY7enRIjTVq+LGonO37POwo8eKwGVx3Vk/sB5mKt3JH3T9hXBl58324dT61GXxMB2vMm/ZaG4Yve9N6oN8V7K0MEjbBMCArtXVM7QM4qr31c3aGY4R1x+JXIbh/cfaMH7ZjRv4/HZWZXKdzGoZBZooTw7D+vs4+1vpz++bHmrMCVuwoYU+Fn1SnnTN6ZeEPhfnX1/ubwuTvruDxmdb6qfVV1s7tLvfVePMEsHTrPmavLqKgxMtnkWm/zamgxMNLc62flYYBZd5gtSnqPxaVUVhSfdzeQKhFLIg3TZMH/7uC2at38u/vthz+G9q47fusv7foh4st3SMfruadxdux2wyGnWBVjz9bs7PadhKBUJj/9+na2O03F26tdruhqk6BnLO28f7f+YKhgzYV2lvhZ8Mu65prCsu45sXvCYTChMMm8zbs5q8frIq9D7i4f1dm3X0Ol56UQ9iET1fu5NcvzWfad5t55osNrC8q58PlBczb0LZmLSlIJaho5eOkbhmxF+36rpMqrPICekynVO4bcTzn9LY+SV1dcPA3fb5giHkbduMLto51QU1l8eZ91W7/z1vLME0wTch7fxUTZ6+LPfbFGmuvmOLKAHPX1/4JVFNMo1u4aS9rC8tiHR4HHJUBwOUnH8ULvx7Es788hem/PZNBPbKqrYO5KrLR68yVO7nt34sZOWkukz5b3+jja0u27KlkTWEZdpvBY1cMiN2f6rQDNTvsHYppmkz6bH21dWoLNllvUs7olQVAn8hGset2lrEw8ljfozJon+qkd+e02Pc5HdbLxMpDVCYOtDISvPvmNGyT7+O6pJOV6qTSH2LNmpVWRQpgwJWx1vpZKU4ch1lH1JLkZFrh+N2KAdDuKKjcDaus6YqmafJ25O/q56fUbypkVYMjFalFW4prrL2MTus7+9iO3DrUqjp+uLyQUNjkL++v4vzHv2TS5z9y1/Qfavz8Xry5mDteX1xtGvK07/ZPTfxqXfN8Ml7V6oJSQmGT47qkc1yXdMB6owfWh4KXPD2Xq1/8LvbpdzhscvWL33H2Y5/H3rgfKBw2+e2rC7nplYW1rjNrDMu3l8TGuqIeH1C0ReW+YGwvtB+LymPTdluqCl+QtyPdSJ+5ZiD/uu40OqY5Mc3qa07fXLCV/N0VdEh18ueRJwL7q/5HomqQmrdhD99t3MOIiV/x4bIjO/dtry3m9Edms3lP9bVq0bVYXTPcZKYk8WNROfM27OHlb/K55sXvYzNqrjotN3JcMpOuHsinY8+JTet+5MNVvFbl58XTbey9QOt5FUoA/mCYm19dyE8nfN7kne+iFamTumXSrX3DKlKzVlufnp/SPZPP7hnK74Yew/FdrTdOtXVu+dfX1n++l+duatjA24jo4v32KdbeOv5gGLvN4PrBPQGYOHt9rDI1s8p0r9mrD/4J1IZd5Zzx6Gfc/86yRhvj9Plb+Pnz33LZ5LmxRhMDumXGHr+gbzYX9+960EYCJ+a046TcTIJhk48j7Zk/WN6wH/QfLivg/Me/POQUo9YsGAozcfY6fvWStdns6T2z+Gnvjlx9ei4X9cvmV5F1MGt31r0V9aqCUh6ftY773l4Wm3b1fb4Vlk7rGQ1S1pvP9UXlzI8+Fqkgndh1fwC67KQcoO5BqrjCH5tudWIDg5TNZnDW0VZ1xTXnLxDyQ4+zIbtfLEi1ltbnUdEPrIoqQwQGXmfdOW8ShIIs21Zl4+L+h9+4uDZHd0wlu50bfzDMwiqNQwC+jLVV78zZx3QkIzmJ3eU+Jn2+npe/ySdsgt1msLfCz7s/WPt/Rf9rP/rxGj5YVsDjM9dSUhmguMLP+0v3r0n6ev2uRpm2VB/R7pM9OqTE/r1GX3fmrNuFLxgmf3cFmyJt9N9ftoMftuzDGwjzbS2fiG8r9jBr1U5mr94Ze7PcFKquKVmxveSwU50qfMGDbp7dUsxcWcjPnv2m2tTRujpwSUH0Z1FDLN5S3OSvEx+vKKTSH6JnhxQu7Gv9X43+LF0bCceV/iBPRcLCXef3ZnRkhsamPZWUegPsKvNV65pcH5uqBKlKf4gbpi5gTWEZE2eva/CUufU7y/hsTRHeQLja9HLY/17lJ8d2ZOSAroDVWTb6Qcp5x3fmH784iVEnH1Xt+47LTuexKwZw9rEd8AbC+ENh+h+VgdNu4/v8vW1qLb2CVAvidNhYtq2ErXs9tVZ06sI0Tf5v4dZapwIFQ+HYVK2TcjPp1r5hFanof7jhJ+5/4T+xq/UDpbYgFV2AuGhz6yjhN5VFm60fTrefe2xsGtWYU3PJu6wvdw/vA8DDH6ziv0u282WVaTNfrCmq8YbFNE3+/O4KdpX5+HBZQaPMP/5g2Q7+d8ZygNgbEoAB3TLqfI6rI59QGYb1hmzjrooGrfN65dtNbNhVwUtz8/EFQ9w4dQH3vbWsRc2zLipt+LrAmat2MnH2erbsrcSdZOM3Z/fEMAweHT2A5341KBZG6jO1Lxp6QmGTmasKKakMsKbQuu+0XlZY6h2pSC3YtDdWrTo1ErKi13Q5bIyJrFeq6xuU6LV7dEip0ya8tTnzmA4MMtZy3K6ZgAEjHgVolY0mADKSk0iJVBd3HD0GXO2gcBnMezpWObywjhsX18YwDAZHp/dVWZ+4r9If+2R5yHGdcDpsjIi8CZw423rDd80Z3bmkv/VGKdrwJLrmanMkjATDJrNX7+StRdvwBcMcn51OustBcWWg3ovLvYEQD8xYzqMfrW7Qc43+LMnNSuGEA4JU1ZbtCzftJRAK88Ss/VX+2sa6cff+DyuenLUej796Ve+5LzcccWXd4w/x3pL9IXR3uZ+dpbVXYbyBEBc8+RWXTprbpFWy2lT4guS9t5Lva3nju2DTXu54/Qd+2LKP3722qNbX/qnf5DPqmW9qtOfffsDWK7W9wf5iTREvzc2v9ed+YYmXq/75HVe/+J01HbiJvLXICsE/H9QtNqX2uOzqFdGX5+azq8xH96wUrj69O+1TnbEPUlbtKOXW1xYx6plvGhQm8ndbf16uyEyBysi/0fVF5axt4PTvqsH+wOmV0fcqg3q055L+1odqM37YzuY9laS7HEy+ZiA/H9TtoB+o2mwGE35+EukuB4YBf7m8L7841apSRbv8tgUKUi1MdCpMfdYjHGjWqp2Me2sZo575JvYGCWDjrnLW7yxj3c5yvIEw6S4HR3dMrVKRqnuQKvMG+DbyQj38xC6x+6MvaOt3lh/0h37008HoD5xEEwiFqfAFY0H2/BO68KszunNs5zR+f35vAO4871iuPasHpglj31xChT9E53QX6W4Heyr8NT7Jem/pjtic41Jv8IiaEhSVefntqwu54/UfCJvW3220VXaK087RndIOc4b9Rp/SjZt+0ovJV58Se4P+ZR3ndM9dv5s1haVW6I9MK5y9eicfLivgszVFvLlwa4M+/WwK2/d5OO/xOfzs2XkNeqMT3VD1ilO6sehPw7mgb/WKRO/O1ov0up1ldQ6PVUPPh8sLWbh5L6ZpVSw6p1tTzIYe1xlnpAPjuki167SeVsj6ae9OOGwGw07oQv+jMrAZkbUyh9ijKCr6s6uh0/qifto1zISkFwAInvwr6HoSQJWKVOtZHwVWyIm+mdriT4OLHgPA/GI8KxfPBYi9yTgSP4mEny+rLESf++Nuwib07pwWG8MlkU+XwapE/W7IMZx/QvVugQd+ygzw7pLtvBhZW3X94J6x4Faf6X2V/iA3TF3Av7/fwj+/2tig9blbI9+T2z65WpAKhc1qazAWbS7mPwu3xcIg7F/zeaCq06YKS71Mmbd/veqqHaU89skaHp+1ruZm0fUwc1UhZb4guVnJsSm0hwqhy7aVsH2fhw27Khr8Rrk2W/dWcsPUBdVC5oHeWbyNqfM2ce3L82NTgKOKyrzc/OpC/KEwKU47lf4QN72yMPZ/dP9z2MdfPljFkq37+O+S6t0VoxWp5CTrQ4bv82uGi1JvgNv+vZi/frCq2gyNqr5evwt/KEyJJ1AtzH2/cQ9Pf7a+Uaa+b91byXcb92IY8LMqU3CPjwSptTtL2Vvh5/k51v+Pey7oE5sa3e8o69/oF2uLYuGkaoCp6lBLH6LdNKPrkAF6drDew723pP6dK33BEO9EKtAA8/P3xD6sDYTCLN1q/dsc1KM9p/fKolO6K/b45QNzSHE6Dnn+ozKTmXH72bx161kM7N6eUZFxf5+/p0V9GHok2kyQevbZZ+nVqxdut5tBgwbx9ddfx3tIDbI/SO3/QTDt202c+rfZBy15b95TwfiPVlfr/BPt5FLhD3Hdy/OZ9+Nulm7dx0VPfc2lk+fGWiAPyM3AZjOqVKRqf3HwBUP8Zsp8Lnrqa3732iL++PZyAiGTozumcmyV9RS57VNIddrxh8JsPGBfCNM02RL5IbCt2HNE0xc/X7Ozxewb8tTs9Rz3p48P+4lsUamXwX//nJMenok/GCYr1UnPDik8fHk/Zt89hOxIgwHDMHhw5ImcdXQHoj9nLujbhSF9rPVnn63e/0ISDIV59KM11a6zYVc5RWVePli2o9Z2pQcTDpvc9tpiZq3aicNm8Nuf9uK5X57CLUOsfX0Gds88aBOC2jgdNv408kQuGdCVc4+z3qDVpcvQ/Py9/Oql7/nVv+azuqAMT2StR4knwN8+3P/p9ZOzD90S3BsI8fHygiNej/ePT9dy5xs/xKbWbCuurPaJ59Rv8in3BcnfXVHvPXf8wTBfRCqO15yRS6qr5ovS0Z1SsRlWSC6q4/qBqkFq3o+7YxvtRqf1gfUCd+s5R1e7TrTD3nHZ6cy97zz+8YuTSK4SoOsyvS96TN+culcvaygvoseH13CMrYAdZhb3F4+KNVpZGgnW2Rl1a8jQkuREQsyOfR446WrocxFGOMC/jL8yusOWWAg6EkOP64zdZrC6oDQ2DSgaqoZW6QY4+JgOsanFPxt4FLlZKQzt0zn2fzwzJYlz+uw/Prqo/uv1uykq83FUZjI/O+Wo2DH1+WDjD28uqRZ2Fm/ZV+/nuSUyta97hxROiMyE2Ly3kgWb9rKvys+9BZv2xppq/PIMa+3mqh2lB52KGP3zir4xffGrjbH/92/M398U4mDrmp6YuZb73lp22A9TPl5uvf5eftJR9I9U+GsLdgBLtu6forl4c829g/5vwdYGvRZ+t3FPbNr2pM/Xx17/o+uVohZGrukLhrnxlYXV9i+avaqI4soAvTun8dk9Q+jZIYXt+zz87rVFsZ+7/mCYcW8ti3WBPDAoRT/AvbCv9YHsup3lNZqb/PeH7bHXgVfmbTro85lbpQoZXboQDpv8fvoSnpi1ji8aoTHDpyutv7vBx3So1hDmuGzrfdvawjL+OWcD5b4gfXPacemAnNgx/SI/D6s2F/lkRWGNBlJ/enc5p/xl1kGrVaGwGQvxN/20F5f078r/XHgc91xwHGBNX31v6Y7Yh3MHKijxsKzK/qFgffC+t8JPl3Yu0l0OSr3BWBBdE3n9bed2cEynNOw2g4v77f+gL7oW+nCO7ZzGoB7Wa8+Abhk4HTZ2l/tjH1wEQ2Hy3lvJi19tPNRpWqw2EaTefPNNxo4dywMPPMAPP/zAT3/6Uy666CK2bGl93XD6RhbzR9+MrNhewsPvr2J3uY8Jn1R/wxwOm9z5xg+88NVGbnplId5ACNM0Y58M5mYlU+kPcd2U+fxm6gJ8wTDeQDjWUjm63uWoSJAqrgxQ4gnE9piqulh5fv5evli7i9UFpXy8ojC2wLBqNQqsUm5t66T2VPipqDJVouri+a/X74otAC71Bg45f7i4ws+try3mgRkrDrkAf9WOUn4satrKVzhsMu27TfiCYf6zcP+nS0VlXm6dtqjadIgJn65lV5kv1ontJ8d2jE0NOJDDbmPSNQNj3dtGDshh2AnWn3XVOczzN+2lsNRL+5SkWKezDbvKeWDGCu54/QcG//0z8t5bWacK5/QFW1m4uZhUp50P7voJD1xyIg67jbvO782jo/vzt1H96/mns1/0Ddy8DbsPuwFxdCHq7nJf7JPvqL0VfmyG1R1y6dZ9h3xxfOi/K/ndvxfzl/dXNXjcM1cWMvmLH3l/6Q7+9O4K/t+na/jJY1/wk8c+Z9Jn6ykq9TJ9/v6/97fqua7i2417KPMF6ZTuYmDuwTvcuZPs9OyYCtSt4UQ4bMa6ZmYkJxEMm3y2pgjDgMtPzql27O+GHht7Q3Baj6xqj2VnuEmOTEXb/4nr4a+/4kgqUp598N3zMPlUjKJVeN2duDb4J/6z1scvnv+WdTvLYm8Somu3WpNokNq+zwuGgX/kJFYax5JllPP/PH/G+PQBKD2y/ZCyUp2xnwUfLi+o1va86v5UDruNey44jkE92vOHyHTijJQkTo2sk+vTOZ1O6S5Oys2kQ6qTR37WPxYwwKqcuxz22Ac8i7cUs7OOFctPV+7EZhBbB3ewgHAopmmyLTq1r30KHdJcdE53YZrEQtMp3TMB2LCrgo27K0h3OfjjRceT6rTjCYTYsKvmmsPoh3+3DDmGnh1SKK4M8Mb8rVT6g7F1Y1Az+BSWeHn68x95c+FWvjpEQyCPPxT7uxjRLzv25vpQP5+jFQHYH2qiNu+pYNzby3hgxopat844mKJSLze9spDiygCGYTU5+r+F23j4/ZWc/JeZ/P3jNbEKTnSNTOd0FyWeAL94/tvYn/Gqgv0zK7pmJPOv604j3e1gwaZiHnx3JWA1JVlTWBarzHyfv7daiN0Wed3vd1RGbOr4zJX7X+Os/Zr2v5ebt2FPbC1S1WOqTudcEgnmS7fti01TrW3KYX1E35ed2atDtfv7dEnDMKxpmtG1Q38Y1qfadLe+kYpU1eDkCYT4qMraYX8wzDuLt1PhDzF2+pIa2wrs2OfBHwrjtNvo1TGNZ355Crefeyznn9CZ5CQ7W/d6uOuNH7j1tUWxqdxRpmnyq399z8+enRf7tx8IhXkqMrV3zKm5nBZpRBQNcQsjSzBO6dE+9lyuGNQNu83g9F5Z9Duq/h+WuRx2To6894zOmJq9eidT523i0Y9X1wjyrcGha3KtxBNPPMGNN97ITTfdBMDEiRP59NNPee6553j00UfjPLr6OTlpCwOMDdiLDMrznTz31nJONCvBAP8WWLXQF1tY+9mqnbD9RwYYQAG8+MYORg/qRoeSFWQ7bEwZfSrPzymwfsBUwonJDsq8QQgBBpyTkgTbKmgHXNx+O9v3eXjrv5WYWIsJRw7I4bc/tT6x3r5iCycbW+h3VAZn9MqioMSDNxDm18cWw7aF1Z7DhRlbCRmFFK2ugI77P/HeVVjKycb+TSB3rQ6BrSsrC0p5YsZycrOSeeqqgTz14SoWb97Hg5eeeNA3l18t3U7f0CYwYPty6OHpwKcrCji9Z4dYVWdXmY+81xcTDIe5sG82lw7IIbud+6DzeA+qjiXnH4vK6F6xgu4G7Fq1BXNgOQYGn83fQtGqbby39wfO+Fl/1heVkr94OYMM+J8Lj8NuMzghuwK2fFfruTsCH41KYtu+AP0d6ylPC3KGYx2hXWG2LQ3SLTOF1d9t5FSjkHO7dybNtQe/sQPfhhK8G3ZxqhGEAKz4diUrvoXMFCe57ZO5sG82Zx5d9YXApLjSz8yPl3CaEeL603pyvG8FRD7kTAKu7gJUbIO6bD5/kD+74zEZkbaBvRV+Vn8XqjU0rN1Zhn/DCk6P/DUVLV/NGQYc3TmVjUXWxQd2z6Bb+xTeX1rA2+9s4JSf9Sczufq6km3FlWxevIwzDNi4cDUFR++0Qulh/l5XF5bRMc1JpzSX9eZpxjLOtFkvZjuWrGIHcKYNqIB5ny1m4Zc2+oXCpKckUeYNULpqNeWr95HmrtuP1vXf53OWbSfnd++CbdNXtR53adp65u8ppmx1OWFbF95evI19niC/GdwTh83AxGTzHg87S73kZiXTP7AMZxJc1jeHtxdvx24Y/G7oMQy2rYAq2TQZeOmcCt5etI1f9TCglvbDw5zbKLZtw9xQAN1q/4DKEwiRs2chXW1wciAJNtSy3scMg7/cCk7efVZ42LnS+v8QjryQZvfHfcXLPFbZiVumLWR1QSk/f24eobDJT3t3bHAji3iKVv93RN48fpof4H88D/Bc8vOcG/4evnvG+sruDzmnQPuekJIFrnRwpkNSsrXoEAMMW83fR27/Kncv+37cyLofdpKftYPs8tX0dNo43dUFtu//+/tVLvwq1w0Vq2P/t2/otY/KTRu5vHMAti/mP5e6CISSSC1bxXU9i3ln73ay27n5edds2L6bbsCVObtYVVDG3Dlhrjil5nTAqj6cuZb+xm7O6dOR03s6KM/fSNmGItjui7yxLLQ29TyrBx1qaW9f7g3S078ODMj1doHtNi7uUMCi8n3sXLOR/gZc37MXncsKrNAKXHp8V9L3LOfSTjtZuaOUrSvs9AlWn8roLFpKf8PHAFsq95/kZfIXG/n6y21kFufQ078JIj+XKvL3wvb9MziWrtxJf8P6jzX/mxLOSz/+oONesnEPxwbX07mdi75swHCX0t/YSHDrNthuP+j3eDcvpL9hVaLL87fD9v0/w75dsJX+hvX3+emsUk660KpMrCwo5bPVO+mY6qJftwwGHJWBP2Q1IDm+azqvfbOJXv5d9OmSxkX9s3nqsx/5fu5mKv0h+gHffLWRiUVLuH5wTzKLV9LeBv/6+alMmbuLuT/u5r8fbeAnqf+/vTuPi6rc/wD+OefMPgPDMizDvgoqKAJq4IriSql5UzNztzK1NNtvZbd9sW67duuW2aZtVvdnZZK5ZZkr7ksiKgqKys7ArM/vj5k5MgLKIDho3/frxesFZ86cjWfOme+zfJ8uqDt+FMlcNTKUUuCUAXEAPhoswdMrD2P/9qM4EleOrb8fQjJXh7t6xeCTzcdhMFpRsFuJOEcrt6JkF5K5anRiUvhGGvHRqWM4sO08EJ4EwP5MkJ7ZjTQJh86hWuw8UY7cX2qQkBUnXodj52ugrzkIveP/YzheBJyyIe/PY0jm7AGw4VglcMr9itXDZ6pRbbQgNcIH5hM7kcwZ0FMhd9mWCsAgbRGKK+oAs70SaoD3KeDUheA7hTeJZQSwB/o7TpQjb/M5jNXbKykPnCpHrPkvezmrAhZ9fhqPDe8ovudcYTmSuaMI0yogFO902f+cRHslkzMwPrDNBkmYFk9+vw9j0sOQFKqF6twedAJwNI9DbKcg/JB3Coqzx9BLKcGdsQHINZ3BWe4Yig+UgcWUI29zHpK5GtykswGndgAAunDAhgk+8FEJ4jJ33RhwGrXHT6L4QDUQcg4b1+1FMmcPyg9uX4+eiVGALu7SG2lHOHaNd1I0mUxQqVT46quvcPPNN4vL586di7y8PKxfv77Be4xGI4zGC11kKisrER4ejoqKCnh7e/bhzBbGgatpH2M/CCHkqtMlAD3vBNKmArz9y+WWglKMf3+zWJP98bQeLt3OWoPJUId3nvsYADD7sUmQqRStun0A+HbnSdz3xS5kxPhj2Z034NEVu7FsSyHu7BONfyYUARteBU783ur7JYSQa0bsQGDiCk8fBSorK6HVai8bG1zzLVLnzp2D1WpFUJBrF7OgoCCcPt14P9EXXngBTz311NU4PLdx3iE4W8e7jOvwVckgk/Bit4lALwVqzVZU1Zkh4XkEectRVWdxmUzNWyGFt0Iq1qA5VdVZUG4wQ+A5cV4Tp/M1JhiMrt2ugrQKSAUOp8prwWz2v2WXmbvFxoCT5QaA2buy2BgDwKHWZJ8vguc52GwMcqmAIG8FTlfUwegYc+KsTQEAqYSHr0qKkkojOM6epYvjOJypN8miQiqA5+yZaxg4KKQ8grwVOFdtRI3RCpVcgM3GYLTYXBojBJ6DRODAGKCUCdAqpeABMNizFAGAWiEFB8BsZThXbYTJYkOQtxwWG8PZKiMEngPPcTBbbeA4Dowx+Kll8FZKcfy8QRy/46OS2TO6cRzCfVWQuDHO6GJVRgvOVhkhkwjQeclxqqwWPAdE+qthtFhRVH7h2qhkgtg10MYYTFYGg9GC8lozGAMkPAd/jQwcgNOOrFFhvioxG9AVaaTLYp3ZipNlteA4e3eckiojlFIB/o6kAeUGM85V2//XYb4qnCwz2OfWAodonRomqw1Giw0+Svv/xWS1obDMAJvNnnjAV2XfTo3JIl6HYK0cpyvs5xbhpwLP27tVqWUSBHjJYbTYUFlnhtlic+lyEaVT42RZLSxWG/Q+SmjkElTWmiEROKgdg2ttjKG0xgSLDQj0lqPcYE9rK5fyiPRTX/zRa6DWbMWJUgN4nkNsgBo8uEavG2DvQ36i1ACT1bXeSypw4DgOJovN5bMD2Lv16VtpHJHJakP+2WpwHIcOQV44V22EXCLAWylBSaURVXX2wfNljtTYWpUUIZfbt9wLUGgBhQ+gCQACOgJh6UBAQoNVe0T74cEhCXjxp4PoqPdGn/grH0vkCc5rUuQY07rT0QUpNdIPiOsExGUD1SXAsY3A2UNA2TGgrgIwVgOmKsBcB8Ax4RyYvWWvwe9256qNqKs3ls9HKYWmkTF4rcHGGIor6sAA+KtlqDVZYXB04fVTycRsheW1JlQbrVBIeOg0cjAwnK6og5XZxxnYYL8vgQEWxiDhOQR5y8Fd9GmqNVtxvsYEucAhwOvCc4yBwez4jMgEHgaTBaUGs7g/AOIymcDZnymObZutNpypMoIHoPdRgAOHGpMFZQYzBM4+5tNHKcPpSvt5BnvLIeF5MMe52wAIHGBl9mutkgkocXTl5jlAJZPAYLTABiBAI4NcYr8mZ6vqYLQySDhAEHjxWQjYH98MgJTnAM7+LJLyHMw2BrnEvi7nOFej1QaNXAKNXMDpSiM42BM4GOp1pXZuD7DPT+e8Z1bUmlFltEDggCBvBarqLKiqdz+sv26N0YKyWrN4rvWvl5PJYkNJvYQTzvdX1ZlRUWeBUsrDXy0HYwynHM9zvVYBgeNQUlUHk5XBRymFhOdwrsYEDvbnv1TgxPKiU8sgl/CoNllQY7TCYmPQKiUuv1fUWsRz5mDvnniu2giJwMNHKYX0Mt9l6sxWnHN0r3Mm0xA4e4vTxWWystaMSqMFPOyv843cy52fSef5n60ywmi1iZ9N57n7qaSoNlrE32USHuUGM6w2BrONwUsugVbZeGu/yWpDiaMcg4M4Nq3+/14u8FDIeFTUWlw+BwwMJVVG8TMEABqZAB9V6yb2qX+/UEh41Fls4B3HKhU4BKlbt5KsrV3zgZTTxWNNGGNNjj959NFHMX/+fPFvZ4tUu3DXBrz3w368v9GeLSjAS47f7s+CVCLghc924Ic9xegR4ocDxZWoMlqwaEIqhifrobExzPt4mzjfz8o7ezfaf1VisuK9Hw8gM9YfIcl61xerjbjvk+3oqPfGqfJa/HqwBA+lJSC7YxAGv7YBSqmAPfMGA5e5+fAA7nlnE3YVluOujjH4YGMB5BIeN8T4Y83BEoxMCcH3eUXw4iTYPHMgej+1Whw35MIEDIwIxJpz9nOSW3lIeA41Jiu6hGmx+2QFtIIUPAeUmcyQ8BwsJoYHeyfg/Y1HUW4y45vpGUiL9IPZasOWglIs23ICvx4sgaGuXsBoACJ4FXK66JF3ohx/FNv7Bw9LCkaQtwJfbC0UB7oGGeUwWxlKTRf6LnMccFffWLy7Ph99InW4f3ACRr2z6cI1t3Cw2BiGJQVj8e1pl7x2l2OpMWHQc7/AamLoGxaADWfOIqeLHu/clgpDtREDn/1FXHde33jMy+4g/k8Ujp9TJytw/1d59kxt9YY0TO8dLU4c2BbkjGH26xtx6EwVfCqlKDeYIZPw2PvAEOwrqsCYd/+Axcbw1IjOmJwZhec/2oo1B0sQ6qPEpnsHQAJ7FwYnGYDf/ziGJ77fh1SND1bM6oW8wnKMf28zas1WTMqIxNMjk/CI43MzWh8KL4UES4uOg6sFVk/tixkfb8PxeklWfFT245oQHoHPik5AIeWRd89gcFIBF3+aeNi7XzpxNSaMeGENjDU2fD0xQ8xU+NOeYiikArISXbsRvfbjAby34ShGpoTgjVu7XfLaSQD4G8yY+8VO/H7kPJ64qRMWrT1i70oCIMhbjh/u7YN7Pt+JPxz9258aar+OrUGwMYxasApGiw2PdE7Eiz/Zx2tG+atwzHH9RgWEYEtBKYpMdfjvrekIuWj85JW6q28MEoO9kBDs1eS9vb1zjkctLq9DVZ1ZHPPWzTGeBwCgCQSS/nHF+zqcfw5Pfr8PZqsNwVoF3r09DWjlL0ROPIAXPt+BlbuLgYvyodzaJRwv/qML6sxW9Ht+DSqMZnx0W3f0TwgEB+CpT7ZjlWMQf7C3Ar/c3w9VdWYM+/cGVNVasHJGbyQEeyF3/xn0TwiASibBx+vz8cJPBxt8djjY7wtOSsZw5PBZpEb6Ao608kUl1cj+t72nSqAgx1MjOmNYsh6/7juNuz7Zji5hWvxvTm8AgBoAM1qglglimbvzzY3YV1SJd4ekYmiSHr/9dRYTP9iCQC857uoXi2dW7kewXIEkf2/8UlJyoYLDca8N9lZg0/0DxEm6TOW1mPTBnzh61t63UiHlMaFnJFbtPS2OGx6bHgaZhMen9RIVOK9zThc9bkkLw9QlW6GBBHf1jMGruYfRM9oPX9yVgdytJ/DYt3sR6qvEB5O7I/9sNfaeqsCdfWPEawKDGe/nHsI/0sKgD/OBsaoOA15cC5MjccZLNyZjnCOxQMm5GmS9sk48jG4RPvh2Vi+X/7kMwH3v/o6tjrnMvpmWibRIXxw5UYabF/0OLS/F9nuzUVhWi6xX1kElE7DvviEAx+G7Dfl4/seDCFUqARtwyliLqb2i8ORNnQEA73y3B59uPoEJKRGoqrPgf475zCQ8h9x7+uG13MP4364iqJmAGpMV2R2D8GfBeVTVWZAdE4RfztnHX0nrOET6qxGjU+PFf3SBXyPdSJ9asUdMMiIx25/jveL88dmMGxqse/xkBW5etAmz+sdi/uCGlUEAsCnvFB7+ZjfeHZOG/gmB+GFTAf71f/uRGuSD/0xMR4/n7M/vbQ9m461f/sInm49jevdoGEwWLKs3FvfZYUni/IIXk9gYRj73C87XNJ29Vy0TkB7mh/WHz+Kx4R1xhyPpEAfAVGrAiLd/Q5nBDJ4D1s/Ngo+fqslttQQP4I43NtrH8jrK8Vvju+GeZfbuijuGDIJf029vd675ZBM6nQ6CIDRofSopKWnQSuUkl8vh7e3t8tOe1M92NSUzSqy5emhoAqQChy0FpaiqsyA+UCPOBcLzHP49tis6h3ijZ7Sfy4Sa9SllAp4ZlYRhFwdRAPw1cnx9dyaeGZWELEdygHWHzooDgbuEaSG5TBDl1MeRfeo/64/CYmOoMVmxxhHkDUgMhFTgUGW03wQtNoYQrULM/qfTyBEbYB9c73xPfKAGRosNNSYrIvxUeHVMV0h4DhW1ZpQZzFBKBTw7yt6n+o01f6HcYIZGLhETakgFHr3idHj7tlTsXDAIy+64AYsnpOLlW7og2FuBE6UGLF6Xjz+OnodSKkAqcPhp72l89Psx1JqtyIjxR0yAGmcqjSitMSEmQA1vxziYrmE+uMUxg/efR0vFrHrOjFjOIHFs9ysP1n3VMnGAtjOpyPAk+//STy2Dj+pCLVV6ZOO3ouQwLf7vnt64d2A8QhwtVhF+KnH+qrbCcZyY3tmZVctksWFfUQVe++UvWGwMOcl6TMqwPyCcaVIv1YUr2/FlfWdhOY6fr8GMpVtRa7aib4cAMSh0Zh38364ifOFICMIYMGXJVhw/b4C/WoYHhyTg8xk9xTGBzodnr1gdFNLGxy5czFctE1PSLnFklioqr8Wsz3fgjo+3ucwzxRgTM0ANrjcP26VoVVJ8NLUHdv9rMCbeEIl7BtjT5XMc8O+xKdBp5HhyRCdxElVnut3WIPCc+Pn878YLKaGPnTeILazf7ypCUUUdlFIBvdugxYjjOPRPCGy1VjZPCPJWQOA5mKw2/G9XEWwMCNEqEOTd+t0IM2N1yJ3fD+sezMLyOzNavVb5YlN7RUPCc5BJeCSHajE7KxaAPcsfYwy5+8+gotYMvVaBPvEXPtNpkRfGSz5+Y0do5BLotUoxo92+ogos/f0YZn22A09+b09gcKJeoolLcZYZ73pzc8UGqDGzXyy8FRKUVBnx5q/2cbvODGLRjsQuThq5xCVwdyaI2HvKPpjfWXnZPyEAt6SGIcJPhdOVdeLk6Z9M64lnRiXhtp4ReGx4R3x+R0+X7KehPkp8PTMTgzsFYWRKCHLv64cnbuyER4dfGGeVEu4rZtyU8BzmD+og3utvSQtD/w4BiA/UoNpowZu/2pMHOJMTjesegS2PZSP3vn6IC9RgSOdg3D84wWW+Mq1KiqdGJonPy0AvBUbXG+uWGnHhfxTlrxJ7OgBNJ5W5s6/9/58Y7CUm/kgK1cJHJUVFrRnvrs8XU5+H+ijFa3xT1xAopDxOldfiVHktgrzlLs+mgY7zWrm7GP+32x5EPTIsEWvu74donRop4fZ91ZiskEt43OmogAHsSQ0A+//YbGU4UlKN1fvP4N+5h8Ttn60y4rkf9uPwmSr8erBehlzHc7yp71bJYVocfGaomLilMSNTQnHwmWHo78hiOyxZD46zZ61csqnAcY28odPIxfPYeaIM6x1ZN3vH6TAgMVCcGLcxPM8hI/bCGOjR3ULFXiYZMf6QS3jUmKzY6EiK0uuiTKHhfiosvj0NXnIJbusZgfBWDqKcxqSHQcJz6B7lizduTcFNXUPQwTG3YVNzlrVX13yLlEwmQ1paGnJzc13GSOXm5mLkyJEePLKWSwn3AccBapkEt/e8UOsQ6a/G5Iwo/Pc3+wduzoA4l+QJPioZVt7Tu1Vqa+0f9H3YfrxMHMhf/4F3Ob3jdXh77ZFGX4sN0CA+0Av7iyvx6mr7/BU3xPqjR5QfHlmxB9N6R+FMRR3yHTV0gV5y/G9Ob6zaV4zYAA2SQuxp2+MCNeJ8VN0i7MHMu+vzxbmqbojxb7TpXi4RXG40w5KC8cPuYuw6WQ6LlWF2VhxKDSYs+H4vQrRK3NYzAv06BOBAcRVGLdoEs9WGV8d0RWWdBY9/twcz+kQjNkCNxGAvHDxdhXcc5z05Mwrvrs9HndkGvVaBvvGt01x9R98YHCiuRIcgLwzvosdQRzpSjuMQG6DB9uNl4DkgpX4tdyPXYP6gDrgvOx7Hzxvgq5Y1mnq7td3cLRQvrToIs5WJrT9/HD0v3jjnZce7PFDD/VTiXCuN0WuV6BzijX1Flbj70x04V21CtE6NxRNSxf99lzAf9Iz2w58FpbDYGAK95CipMoq1vfcOjBdbbrwUUiz8+ZDYHaL/Ra1IlzM5MwrLtxZi1d7TKCqvxbbjZWCObkrrDp3F0KRg/HqwBP5qGY6fN0Am4V1SUjeHM7Abmx6GwjIDYnRq8WGYGOyNV8Z0Rf7ZapcvP62hQ5AX9hVVinPE/HN4IvYVVWJc93D8e/VhMaNY3w7NDz7/bqQCj95xOqw/fBav/Gz/8napz+m1JC3SF3ufGgKpwEPgOdSarHh/QwFOldfi6LkafLntwkSm9QOJgR0DsXD1IfTvECBOCAzYv3T/nn8ee09V4rgjcPq/3UV44qZOKHR8AQ/3cz+o5jgOjwxLxMSMSPR68VccPlOFWpMVBWcbD6QulhSmxRfbCpFXWI6qOjNW7LAnFMjuGAStSoof7u2N5388gGVbCjGzXyx6x+suW7Hgp5bhvUnpLstykvX4vlMR/sg/j/4JAdBp5PgrqxqZcf7IjNVhbHo4Dp2pErMmzugTjYcd05IAcJkTrLHWlsuZ0Sca3+w46ajYvHAP5jgOGTH+4txDnfSNZ24b1CkIn07vidhAtXhPlwo8nsjphPu/2oXXf/lLPHZnSy1gv6eveyALq/efxvbjZZh4Q6RL0JcR4w+VTBCzu2V3DMTMfrHi6yNSQvDzvtOI1qkxNzseeq0SCcFeYuuYhOfw3exeKK0xYduxUjz4tX2c4pTMKMQFeuG5H/bju7wifP7nCdSYrFDLBChlEvG+d6kkN82taHYK8lage5QfthSUitmUnRVrzlbqnYXlYMw+Ae9/J6c3697aK05nbx0GMOGGCHtPjD+OY1z3cBhMFuw6WQEbs3eJdwaZ9d0Q44+8Jwe7Nd2Ju6b2isaUzCiX76sZMf44fKYafxw932hlf3t1zQdSADB//nxMnDgR6enpyMjIwHvvvYcTJ05g5syZnj60FonSqfHh5O7QaeTQqlz7wd4zIB5rHF/EbuzSMP1va3V5CfdTITZAjfyzNeIEeO58MUuN8BX7FGd3DMKag2fE7vuR/ircMyAOd3+2Q7w5ZcT4Y0x6OPp0CECIVoFVe09jqWPm6+HJeihlAm7u5jpZZacQbzGQ6hHtB4nAY86AeDzw1S4AQO841xSlTfFSSHFrjwjc2uPCnAhRUGPlPX0a7G/F3ZkwWqzo5rgWGx8aIL7+zKgkjHn3D/FLeO84HfacrMCagyUYkx7eajelfh0CsP2JQY2+FhugxvbjZeio927WeAiO48TU2leDv0aORRPScLbKiDKDCQt/PoSPNtnTxwd7K1zmJAMg1spdysDEQOwrqhRTfs/JimsQFN7ZNwZ/OuZhe/KmzvhwUwG2Hy9DmK8S4+v93zuHeMNfLRO7RQxwM5DqqPfGDTF+2Hy0FF9vP4nSet0r1hwswR/55/HFtkJxKFSfOF2LA1iJwOPhoQ2zg41ODWtk7SvXIejCA9dXJcW0XtHiF4fy3mYxkGpuC9vf1fge4Vh/+CzKHK2yTWWwvBbV/5KnlAlIj/LF7/nnsWRTgTjPz5g015b5mAAN8hYMglwiuDy/nC0du09VIL/Enq65zmzDyl3FLqnPWypEq4BOYx8zs7+4oskWqYv1dKSI/u3IOcxbnoeKWjNiA9RiS4mXQooXRnfBghs7i9MHtATHcXj39jTYGBMrhR4YcqHLWLBWIWapBeytHQt/PoRz1SbE6NRuTZ7emLhAL/xvTm9o5JIG2W5viK0XSF0isGgsgBydGoo1B8/gxz2nxR4nF7fyBGsVmJQRhUkZUQ3er5AK6BOvw8+OFOmzslyzu+k0cnxxV4bLMuc8TwCQGaeDVimFVilFtE6N1fvPIHf/GTz3wwE8ltNJ7CronKqlX0IAFFJBDJibChxbKidZL84RektamNiDIlqnhlYpFQPGnjH+za6gsneBFRDmq0S3cF90DfPB+J4RSAz2xp8FpeJcfJmxuiYzGbdlEOV08ffVjFh/LP3jeKNzprZn13zXPgAYN24cXn/9dTz99NNISUnBhg0b8OOPPyIysvE+pNeCrMRAsWtDfVqVFGsf6I+v785s84J+V99YcUBjhJ8KPWOa32tVJuExOysO3aN88cLoZHGiST+1DF4KKYYl6/HA4AtN4M503M4m/p710nMPb6Jmov7Nt4fj4TYqxd48LJfw4oOtNSWFasWJ5S7WPcoPt99g/1IuE3gkhWrxrxGd8c/hiZjVP7bR97S2no75Ldri3FvLoE5BuK1nhFjj5pxktk980/NqXUr9cw3zVWJESsMKhqyEQIxMCUFOsr0Fb8GNndA1TIsXR3cR5zcB7N0inA//hCAvl0kXm2u0I+DP3X/GZfLKXw+cwTeOeaaclQpDOl87QYez2wUADEgMcql9HdwpCB319i4p2e247LUHAxKDoNNcaCG4XlqkGuPswvfp5hNgzP4Zj/BvGPyoZJIGzzNnF/ddheUuiWBe/vkgjp6rAcfhioIFjuOQEm7fx+9HziPPMVHp5eY/6xDkJXY/dgYC9wyIb3D8VxJEOQk8d9mECE4KqYC7HN3pRqZcOgV9c3XUezfatatXnE6cz6+xFo1L4TgOz41KxsDEQAxPDsYbt6ZcsjtcY5yVyH3idc2q4E2oVwk09KJ77qPDEiHhOaw9dBZj3v0dNgbcEOOHCMd5D0vSi71JZBIeMQGtW/F4S1oY/pEahpf+kYyFt3QRh3JwHIeu9SoS+7mRpVSvVSJ3fj98eVcGeJ6DROCR6Agm65fv1pgAvDVlxunw0dTu+ObuTE8filuuixYpAJg1axZmzZrl6cO4roztHo6x3cNhsdrAc1zz52BymJ0Vh9mO2qJb0sKw8a9zLjfd2VlxkEl4CDzf4Gbtp5bh8ZyOOF9jEieIvJizJkwqcGKtrkTg8dXMTFTVmRF2BbWVLfXw0EScrTKiS5gPFFIB4X4qsa/41TA6NRQJjgH57V3XMB8IPCemtG7puJrkUK3YXW9mv9hGv3jwPOcyKL1ruA++dwwov9j4HhH4ed/pFidqyEoMBMfZJ+10frlSSHmxhrNntB9GpoSisMwgjgO7FtRvkRrUybWlTiLw+HZWJmyMQSW7bh4rbUIm4fGPtDD8Z/1RCDwnjrm5HvWJ1+GlVfbfUyN88OrYrs1+b7RODaVUEBP9JIV642BxlTi+8r7sDi4tMi3RJcwHvxwowYebCmCy2BDlr3LpxtaUh4cmYt2hszhRau9ae1M7mRx6Rp9o9IrTuVR6tIVQHyXem5gOpUxoUTdeX7UMH0zp3uL939hFDx+V1CXQuJSEYC/IJPYMi4MuSoITE6DBwjFd8OBXu8VW4n8O74gwXxXyCsuQlRCIaqMFaZG+SI3waXZg21xquaTJz0VKuI84FrpfB/eej01VAtYPpHq1s+yn3gqpOH7sWkJPPHJZ7vb7bcyIriHgOA5d6mUS5DjukkHGjD4xTb4G2FuAbu4Wig5BXi61f85me0/wUkjxn4npl1+xjXAc16LZxj1BLZcgMdhLnC2+pbVjziBpZ2EZbm2FhB43xPjj4DPDWvz+AC85uoXbJ1u02hh0Gjn6dtCJXUNmZ8W1+hxIV0OojxKJwV6oMVlckgU40bio5ru9ZySWbylEz2i/Vmm5aK86h3jjzr4xEHgO87Ljxdr25hB4Dh31XtjhSBE/uFMw4gI0+C6vCHMHxuPegfFXfHzOL+LOL9CDOgU1q1VcLZfg7du64bkfDmBudsPWKE/hOO6qTVSd3cpZOd3BcVyj96CmaJVSfDSlO+CYRuViN3cLQ6CXAg99vRtZiQFi0o0BiRe6a3qilaR7lL2COMxX2awAvzmSQrXISghAoJeiRT0uSEPX/IS8raG5k24RQlrXgu/34uM/jiMp1LvBmLRr2eJ1+XhplT1F+OBOQRjXPRzTl25DlzAtvp/d65pN32222mC1sesyaLoaE/LWV2uyOlrkr82ycDU47w8A8PkdPZEa4YviirrLjmNqrrIaE7o9kyv+/eVdGWI3cfL34/w63F7uz4wxfL7lBJJDtWJwR66e5sYG18UYKULItWlMWjiCvRWY1iva04fSqup3fUuN9MXAjkH4ZHoPfDile7t5SLeEVOCvyyDKE5QygYKoy3B2Q5LwHFLC7d2lWyuIAuxdzCIdY7b81DK3MtOS6w/Hce3q/sxxHCb0jKQgqp2jrn2EEI9JDtNi8z8HevowWl1sgAYJQV44dKYKmY5U++50RSGEAL3jA6CWCejbIaDNxt51DfPB8fMGDEwMpMCWEOI2CqQIIaSVcRyHD6ako7C0lmoTCWmhUB8ltjyW3eoD/OublRULG2OtMuaKEPL3Q4EUIYS0gTBflUcyRxJyPWnricITg73x9m2pbboPQsj1i8ZIEUIIIYQQQoibKJAihBBCCCGEEDdRIEUIIYQQQgghbqJAihBCCCGEEELcRIEUIYQQQgghhLiJAilCCCGEEEIIcRMFUoQQQgghhBDiJgqkCCGEEEIIIcRNFEgRQgghhBBCiJsokCKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3STx9AO0BYwwAUFlZ6eEjIYQQ4gkmQx3qjLUA7M8CmcXk4SMihBDiKc6YwBkjNIVjl1vjb+DkyZMIDw/39GEQQgghhBBC2onCwkKEhYU1+ToFUgBsNhuKiorg5eUFjuM8fTjkb6CyshLh4eEoLCyEt7e3pw+H/E1QuSOeQmWPeAKVO9JSjDFUVVUhJCQEPN/0SCjq2geA5/lLRpuEtBVvb2+6uZOrjsod8RQqe8QTqNyRltBqtZddh5JNEEIIIYQQQoibKJAihBBCCCGEEDdRIEWIB8jlcjz55JOQy+WePhTyN0LljngKlT3iCVTuSFujZBOEEEIIIYQQ4iZqkSKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUJaYNGiRYiOjoZCoUBaWho2btx4yfU/++wzdO3aFSqVCnq9HlOnTsX58+fF199//3306dMHvr6+8PX1RXZ2NrZs2eKyDYvFgscffxzR0dFQKpWIiYnB008/DZvN1ibnSNqf1i53K1asQHp6Onx8fKBWq5GSkoJPPvnkivdLrj+eKHsvvPACunfvDi8vLwQGBmLUqFE4dOhQm5wfaZ88dc9zeuGFF8BxHObNm9dap0SuN4wQ4pbly5czqVTK3n//fbZ//342d+5cplar2fHjxxtdf+PGjYznefbGG2+wo0ePso0bN7LOnTuzUaNGievcdttt7J133mE7d+5kBw4cYFOnTmVarZadPHlSXOfZZ59l/v7+bOXKlaygoIB99dVXTKPRsNdff73Nz5l4XluUu7Vr17IVK1aw/fv3syNHjrDXX3+dCYLAVq1a1eL9kuuPp8rekCFD2JIlS9jevXtZXl4ey8nJYREREay6urrNz5l4nqfKndOWLVtYVFQU69KlC5s7d25bnSa5xlEgRYibevTowWbOnOmyLDExkT3yyCONrr9w4UIWExPjsuzNN99kYWFhTe7DYrEwLy8vtnTpUnFZTk4OmzZtmst6o0ePZrfffru7p0CuQVej3DHGWLdu3djjjz/e4v2S64+nyt7FSkpKGAC2fv36Zh45uZZ5stxVVVWx+Ph4lpuby/r160eBFGkSde0jxA0mkwnbt2/H4MGDXZYPHjwYv//+e6PvyczMxMmTJ/Hjjz+CMYYzZ87g66+/Rk5OTpP7MRgMMJvN8PPzE5f17t0ba9asweHDhwEAu3btwm+//Ybhw4e3wpmR9uxqlDvGGNasWYNDhw6hb9++Ld4vub54quw1pqKiAgBc7ovk+uTpcjd79mzk5OQgOzu7dU6IXLcknj4AQq4l586dg9VqRVBQkMvyoKAgnD59utH3ZGZm4rPPPsO4ceNQV1cHi8WCESNG4K233mpyP4888ghCQ0NdbuIPP/wwKioqkJiYCEEQYLVa8dxzz2H8+PGtc3Kk3WrLcldRUYHQ0FAYjUYIgoBFixZh0KBBLd4vub54quxdjDGG+fPno3fv3khKSmqdkyPtlifL3fLly7Fjxw5s3bq19U+MXHeoRYqQFuA4zuVvxliDZU779+/HvffeiwULFmD79u1YtWoVCgoKMHPmzEbXf/nll7Fs2TKsWLECCoVCXP7FF1/g008/xeeff44dO3Zg6dKleOWVV7B06dLWOzHSrrVFufPy8kJeXh62bt2K5557DvPnz8e6detavF9yffJU2XOaM2cOdu/ejWXLlrXK+ZBrw9Uud4WFhZg7dy4+/fRTl+cvIU3ySIdCQq5RRqORCYLAVqxY4bL83nvvZX379m30Pbfffju75ZZbXJZt3LiRAWBFRUUuyxcuXMi0Wi3bunVrg+2EhYWxt99+22XZM888wxISElpyKuQa0tblrr7p06ezwYMHt3i/5PriqbJX35w5c1hYWBg7evRoC86AXIs8Ve6+/fZbBoAJgiD+AGAcxzFBEJjFYrnCMyPXG2qRIsQNMpkMaWlpyM3NdVmem5uLzMzMRt9jMBjA864fNUEQANhr15wWLlyIZ555BqtWrUJ6enqzt0Ppz69/bVnuLsYYg9FobPF+yfXFU2XP+fecOXOwYsUK/Prrr4iOjm7paZBrjKfK3cCBA7Fnzx7k5eWJP+np6ZgwYQLy8vLE7REi8lwMR8i1yZmS9YMPPmD79+9n8+bNY2q1mh07dowxxtgjjzzCJk6cKK6/ZMkSJpFI2KJFi1h+fj777bffWHp6OuvRo4e4zksvvcRkMhn7+uuvWXFxsfhTVVUlrjN58mQWGhoqpj9fsWIF0+l07KGHHrp6J088pi3K3fPPP89Wr17N8vPz2YEDB9irr77KJBIJe//995u9X3L981TZu/vuu5lWq2Xr1q1zuS8aDIard/LEYzxV7i5GWfvIpVAgRUgLvPPOOywyMpLJZDKWmprqko538uTJrF+/fi7rv/nmm6xTp05MqVQyvV7PJkyY4DJHVGRkJAPQ4OfJJ58U16msrGRz585lERERTKFQsJiYGPbYY48xo9HY1qdL2onWLnePPfYYi4uLYwqFgvn6+rKMjAy2fPlyt/ZL/h48UfYauycCYEuWLGnLUyXtiKfuefVRIEUuhWPsEu2dhBBCCCGEEEIaoDFShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3ESBFCGEEEIIIYS4iQIpQggh5CozmUyIi4vDpk2bWnW7K1euRLdu3WCz2Vp1u4QQQhqiQIoQQsgVmTJlCjiOa/Bz5MgRTx9au/Xee+8hMjISvXr1EpdxHIfvvvuuwbpTpkzBqFGjmrXdG2+8ERzH4fPPP2+lIyWEENIUCqQIIYRcsaFDh6K4uNjlJzo6usF6JpPJA0fX/rz11luYMWNGm2x76tSpeOutt9pk24QQQi6gQIoQQsgVk8vlCA4OdvkRBAH9+/fHnDlzMH/+fOh0OgwaNAgAsH//fgwfPhwajQZBQUGYOHEizp07J26vpqYGkyZNgkajgV6vx6uvvor+/ftj3rx54jqNteD4+Pjgo48+Ev8+deoUxo0bB19fX/j7+2PkyJE4duyY+LqzteeVV16BXq+Hv78/Zs+eDbPZLK5jNBrx0EMPITw8HHK5HPHx8fjggw/AGENcXBxeeeUVl2PYu3cveJ5Hfn5+o9dqx44dOHLkCHJycty8ysCxY8cabf3r37+/uM6IESOwZcsWHD161O3tE0IIaT4KpAghhLSppUuXQiKRYNOmTfjPf/6D4uJi9OvXDykpKdi2bRtWrVqFM2fOYOzYseJ7HnzwQaxduxbffvstVq9ejXXr1mH79u1u7ddgMCArKwsajQYbNmzAb7/9Bo1Gg6FDh7q0jK1duxb5+flYu3Ytli5dio8++sglGJs0aRKWL1+ON998EwcOHMC7774LjUYDjuMwbdo0LFmyxGW/H374Ifr06YPY2NhGj2vDhg3o0KEDvL293TofAAgPD3dp9du5cyf8/f3Rt29fcZ3IyEgEBgZi48aNbm+fEEJI80k8fQCEEEKufStXroRGoxH/HjZsGL766isAQFxcHF5++WXxtQULFiA1NRXPP/+8uOzDDz9EeHg4Dh8+jJCQEHzwwQf4+OOPxRaspUuXIiwszK1jWr58OXiex3//+19wHAcAWLJkCXx8fLBu3ToMHjwYAODr64u3334bgiAgMTEROTk5WLNmDe644w4cPnwYX375JXJzc5GdnQ0AiImJEfcxdepULFiwAFu2bEGPHj1gNpvx6aefYuHChU0e17FjxxASEtLoa+PHj4cgCC7LjEaj2HolCAKCg4MBAHV1dRg1ahQyMjLwr3/9y+U9oaGhLi1vhBBCWh8FUoQQQq5YVlYWFi9eLP6tVqvF39PT013W3b59O9auXesSeDnl5+ejtrYWJpMJGRkZ4nI/Pz8kJCS4dUzbt2/HkSNH4OXl5bK8rq7Opdtd586dXYIXvV6PPXv2AADy8vIgCAL69evX6D70ej1ycnLw4YcfokePHli5ciXq6uowZsyYJo+rtrYWCoWi0ddee+01MWBzevjhh2G1WhusO336dFRVVSE3Nxc879rBRKlUwmAwNHkMhBBCrhwFUoQQQq6YWq1GXFxck6/VZ7PZcNNNN+Gll15qsK5er8dff/3VrH1yHAfGmMuy+mObbDYb0tLS8NlnnzV4b0BAgPi7VCptsF1n+nClUnnZ45gxYwYmTpyI1157DUuWLMG4ceOgUqmaXF+n04mB2sWCg4MbXEcvLy+Ul5e7LHv22WexatUqbNmypUGgCAClpaUu50gIIaT1USBFCCHkqkpNTcU333yDqKgoSCQNH0NxcXGQSqXYvHkzIiIiAABlZWU4fPiwS8tQQEAAiouLxb//+usvl1aY1NRUfPHFFwgMDGzReCQASE5Ohs1mw/r16xu0FDkNHz4carUaixcvxk8//YQNGzZccpvdunXD4sWLwRgTuxy645tvvsHTTz+Nn376qdFxWM4Wt27durm9bUIIIc1HySYIIYRcVbNnz0ZpaSnGjx8vZpdbvXo1pk2bBqvVCo1Gg+nTp+PBBx/EmjVrsHfvXkyZMqVB97UBAwbg7bffxo4dO7Bt2zbMnDnTpXVpwoQJ0Ol0GDlyJDZu3IiCggKsX78ec+fOxcmTJ5t1rFFRUZg8eTKmTZuG7777DgUFBVi3bh2+/PJLcR1BEDBlyhQ8+uijiIuLc+mS2JisrCzU1NRg3759blw1u71792LSpEl4+OGH0blzZ5w+fRqnT59GaWmpuM7mzZshl8svexyEEEKuDAVShBBCrqqQkBBs2rQJVqsVQ4YMQVJSEubOnQutVisGSwsXLkTfvn0xYsQIZGdno3fv3khLS3PZzquvvorw8HD07dsXt912Gx544AGXLnUqlQobNmxAREQERo8ejY4dO2LatGmora11q4Vq8eLFuOWWWzBr1iwkJibijjvuQE1Njcs606dPh8lkwrRp0y67PX9/f4wePbrRLoeXs23bNhgMBjz77LPQ6/Xiz+jRo8V1li1bhgkTJlyyeyEhhJArx7GLO5gTQggh7VD//v2RkpKC119/3dOH0sCmTZvQv39/nDx5EkFBQZddf8+ePcjOzm40GcaVOHv2LBITE7Ft27ZGJ0QmhBDSeqhFihBCCGkho9GII0eO4IknnsDYsWObFUQB9rFXL7/8cqunKC8oKMCiRYsoiCKEkKuAkk0QQgghLbRs2TJMnz4dKSkp+OSTT9x67+TJk1v9eHr06IEePXq0+nYJIYQ0RF37CCGEEEIIIcRN1LWPEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3PT/dolDrKOWAtoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV33u/3YOk2c2zCatVtIqS6AAAgkQYCSQARtzAf8MXGMbMFzAtowvsmXse2UuCAO2kIk2JhiDMcJEYUAggoRyXmmVdlfaHGZnJ/d0DvX7o+qcOlVd1V3dXR1m+v08jx5JM9091d1Vp855z/t+vwFN0zQQQgghhBBCCCGEEEKaJtjtAyCEEEIIIYQQQgghZKVDkY0QQgghhBBCCCGEkBahyEYIIYQQQgghhBBCSItQZCOEEEIIIYQQQgghpEUoshFCCCGEEEIIIYQQ0iIU2QghhBBCCCGEEEIIaRGKbIQQQgghhBBCCCGEtAhFNkIIIYQQQgghhBBCWiTc7QPoNSqVCo4ePYqhoSEEAoFuHw4hhBBCCCGEEEII6RKapiGVSmHjxo0IBmt71Siy2Th69Ci2bNnS7cMghBBCCCGEEEIIIT3CoUOHsHnz5pqPochmY2hoCID+4Q0PD3f5aAghhBBCCCGEEEJIt1haWsKWLVukXlQLimw2RER0eHiYIhshhBBCCCGEEEII8VRSjI0PCCGEEEIIIYQQQghpEYpshBBCCCGEEEIIIYS0CEU2QgghhBBCCCGEEEJaZEWJbEeOHMFb3/pWTExMIJlM4rnPfS4eeugh+XtN03Dddddh48aNSCQSeOlLX4onnniii0dMCCGEEEIIIYQQQvqBFSOyzc/P47LLLkMkEsFPfvITPPnkk/jHf/xHjI6Oysd8/OMfxw033IDPfOYzeOCBBzA5OYkrrrgCqVSqewdOCCGEEEIIIYQQQlY9AU3TtG4fhBf+6q/+CnfddRfuuOMOx99rmoaNGzfi6quvxl/+5V8CAPL5PNavX4+PfexjeNe73uXp7ywtLWFkZASLi4vsLkoIIYQQQgghhBDSxzSiE60YJ9vNN9+Miy++GG984xuxbt06XHDBBfjXf/1X+ft9+/ZhamoKV155pfxZLBbD5Zdfjrvvvtv1dfP5PJaWliz/EEIIIYQQQgghhBDSCCtGZNu7dy8+//nPY/v27fjpT3+Kd7/73fjTP/1T/Pu//zsAYGpqCgCwfv16y/PWr18vf+fERz/6UYyMjMh/tmzZ0r43QQghhBBCCCGEEEJWJStGZKtUKrjwwgtx/fXX44ILLsC73vUuvPOd78TnP/95y+MCgYDl/zVNq/qZyrXXXovFxUX5z6FDh9py/IQQQgghhBBCCCFk9bJiRLYNGzbg7LPPtvzsrLPOwsGDBwEAk5OTAFDlWpuenq5yt6nEYjEMDw9b/iGEEEIIIYQQQgghpBFWjMh22WWXYdeuXZaf7d69G1u3bgUAbNu2DZOTk7j11lvl7wuFAm6//XZceumlHT1WQgghhBBCCCGEENJfhLt9AF758z//c1x66aW4/vrr8aY3vQn3338/vvCFL+ALX/gCAD0mevXVV+P666/H9u3bsX37dlx//fVIJpN485vf3OWjJ4QQQgghhBBCCCGrmRUjsj3vec/D9773PVx77bX40Ic+hG3btuHGG2/EW97yFvmYa665BtlsFu95z3swPz+PSy65BD/72c8wNDTUxSMnhBBCCCGEEEIIIaudgKZpWrcPopdYWlrCyMgIFhcXWZ+NEEIIIQ0xny7gz7+1A2+6eAt+87wN3T4cQgghhBDSIo3oRCvGyUYIIYQQ0uv87Mkp3LbrBPLFCkU2QgghhJA+Y8U0PiCEEEII6XUOzmUAAIVypctHQgghhBBCOg1FNkIIIYQQnzgwq4tsJYpshBBCCCF9B0U2QgghhBCfOGQ42UoVlrwlhBBCCOk3KLIRQgghhPiEiIuWyhTZCCGEEEL6DYpshBBCCCE+sJQrYj5TBAAUK4yLEkIIIYT0GxTZCCGEEEJ84KBRjw2gk40QQgghpB+hyEYIIYQQ4gMiKgoAZdZkI4QQQgjpOyiyEUIIIYT4gCqyFdldlBBCCCGk76DIRgghhBDiA6rIxu6ihBBCCCH9B0U2QgghhBAfUGuy0clGCCGEENJ/UGQjhBBCCPEB1mQjhBBCCOlvKLIRQgghhLRIqVzBkYWs8v8U2QghhBBC+g2KbIQQQgghLXJ0IWdxrxUrjIsSQgghhPQbFNkIIYQQQlpEREUnBqIAAE0DKoyMEkIIIYT0FRTZCCGEEEJaRIhsp6wdkD+jm40QQgghpL+gyEYIIYQQ0iIH5tIAgFPWDMqfsS4bIYQQQkh/QZGNEEIIIaRFDjk42SiyEUIIIYT0FxTZCCGEEEJaxIyLKk42xkUJIYQQQvoKimyEEEIIIS2gaRoOzOoi28kTSQQD+s9LbHxACCGEENJXUGQjhBBCCGmBXcdTSOVKSERCOGkiiXBIn14Vy3SyEUIIIYT0ExTZCCGEEEJa4K5nZgEAz9s2jlg4hIhhZWNNNkIIIYSQ/oIiGyGEEEJIC9z1zAwA4EWnTQCAdLIxLkoIIYQQ0l9QZCOEEEIIaZJiuYL79upOtstOWwMACAsnGxsfEEIIIYT0FRTZCCGEEEKa5NFDC0gXyhgfiOKsyWEAQDjEuCghhBBCSD9CkY0QQgghpEnuNKKiLzx1AkHDwRYOMi5KCCGEENKPUGQjhBBCCGmSu42mB5edukb+LCKdbIyLEkIIIYT0ExTZCCGEEEKaIJ0v4eGD8wCAF51mimwhw9FWZFyUEEIIIaSvoMhGCCGEENIE9++fQ6miYct4AidNJOXPI7K7KJ1shBBCCCH9BEU2QgghhJAmuOfZ6qgooDQ+YE02QgghhJC+giIbIYQQQkgTHJnPAgDOnByy/Fw2PmBclBBCCCGkr6DIRgghhBDSBIvZIgBgJBmx/DwcZOMDQgghhJB+hCIbIYQQQkgTLOV0kW04bhPZjLhokXFRQgghhJC+giIbIYQQQkgTLBlOtuGEVWQTjQ/KbHxACCGEENJXUGQjhBBCCGmCpVwJQLWTLWTERYusyUYIIYQQ0ldQZCOEEEIIaRBN08yabAl7TTY2PiCEEEII6UcoshFCCCGENEimUEbZqLk2nAhbfhcxarIxLkoIIYQQ0l9QZCOEEEIIaRDR9CAcDCARCVl+FzZqsjEuSgghhBDSX1BkI4QQQghpkKWsUY8tEUEgELD8LmzUZCvRyUYIIYQQ0ldQZCOEEEIIaRC3emyAKbLRyUYIIYQQ0l9QZCOEEEIIaZAlQ2QbjoerfifioqJmGyGEEEII6Q8oshFCCCGENIioyTbs4GQTjQ9KZcZFCSGEEEL6CYpshBBCCCENIp1sDiJbSMRF6WQjhBBCCOkrKLIRQgghhDTIomh8EHdysjEuSgghhBDSj1BkI4QQQghpEDMu6lCTTTY+YFyUEEIIIaSfoMhGCCGEENIgZuMD9+6iJXYXJYQQQgjpKyiyEUIIIYQ0iHCyjTjUZBPdRUsVOtkIIYQQQvoJimyEEEIIIQ2yWKPxQThEJxshhBBCSD9CkY0QQgghpEGWZOOD6ppskaBwslFkI4QQQgjpJyiyEUIIIYQ0SK24aIiNDwghhBBC+hKKbIQQQgghDbJUIy4aYVyUEEIIIaQvochGCCGEENIAlYqGVF7ERWs1PqDIRgghhBDST1BkI4QQQghpgFS+BM3Qz4YT1TXZwkZclN1FCSGEEEL6C4pshBBCCCENIKKi8UgQsXCo6vfsLkoIIYQQ0p9QZCOEEEIIaYBFUY/NISoKAGHZXZRONkIIIYSQfoIiGyGEEEJIA4jOok5NDwA2PiCEEEII6VcoshFCCCGENMBSVm96MOIisoUMJ1uRjQ8IIYQQQvoKimyEEEIIIQ0gnWzx6qYHgFqTjXFRQgghhJB+giIbIYQQQkgDiMYHrnFRw8lWppONEEIIIaSvoMhGCCGEENIAS/UaHxhOtiKdbIQQQgghfQVFNkIIIYSQBljK1a7JFg4acVE62QghhBBC+gqKbIQQQgghDWDGRd1qsunTK3YXJYQQQgjpLyiyEUIIIYQ0wGK9uKh0sjEuSgghhBDST1BkI4QQQghpANld1K3xAZ1shBBCCCF9CUU2QgghhJAGWMrWrskWCrLxASGEEEJIP0KRjRBCCCGkAaSTzSUuGjG6i5bZ+IAQQgghpK+gyEYIIYQQ0gCLHhsfFCmyEUIIIYT0FRTZCCGEEEI8UixXkCmUAbjHRWXjA8ZFCSGEEEL6CopshBBCCCEeSeVK8r8HYy5ONkNkq2hAhW42QgghhJC+YcWKbB/96EcRCARw9dVXy59pmobrrrsOGzduRCKRwEtf+lI88cQT3TtIQgghhKwqloyo6GAsLGOhdtSflyiyEUIIIYT0DStSZHvggQfwhS98Aeeff77l5x//+Mdxww034DOf+QweeOABTE5O4oorrkAqlerSkRJCCCFkNSHrscWdXWyA2fgAAEoVRkYJIYQQQvqFFSeyLS8v4y1veQv+9V//FWNjY/LnmqbhxhtvxAc/+EG8/vWvx7nnnouvfvWryGQy+MY3vtHFIyaEEELIamEuXQAAjCSjro8JBU2RrVimk40QQgghpF9YcSLbe9/7Xrz61a/GK17xCsvP9+3bh6mpKVx55ZXyZ7FYDJdffjnuvvtu19fL5/NYWlqy/EMIIYQQ4sSzJ5YBACdPJF0fEwkqcVE2PyCEEEII6Rvcsw49yDe/+U08/PDDeOCBB6p+NzU1BQBYv3695efr16/HgQMHXF/zox/9KP7u7/7O3wMlhBBCyKrk2RNpAMCpawddHxMMBhAM6I0PyqzJRgghhBDSN6wYJ9uhQ4fwZ3/2Z/j617+OeDzu+rhAIGD5f03Tqn6mcu2112JxcVH+c+jQId+OmRBCCCGrC+FkO22du8gGmM0PihTZCCGEEEL6hhXjZHvooYcwPT2Niy66SP6sXC7j17/+NT7zmc9g165dAHRH24YNG+Rjpqenq9xtKrFYDLFYrH0HTgghhJBVw15DZKvlZAOAcDCAAhgXJYQQQgjpJ1aMk+03fuM3sHPnTuzYsUP+c/HFF+Mtb3kLduzYgVNOOQWTk5O49dZb5XMKhQJuv/12XHrppV08ckIIIYSsBhYyBcws640PTlk7UPOxYaP5QYlONkIIIYSQvmHFONmGhoZw7rnnWn42MDCAiYkJ+fOrr74a119/PbZv347t27fj+uuvRzKZxJvf/OZuHDIhhBBCVhEiKrpxJI6BWO0pVMSIi5bYXZQQQgghpG9YMSKbF6655hpks1m85z3vwfz8PC655BL87Gc/w9DQULcPjRBCCCErnGenjaYHdeqxAUA4pDvZioyLEkIIIYT0DStaZLvtttss/x8IBHDdddfhuuuu68rxEEIIIWT18ozHemwAEA4aTjbGRQkhhBBC+oYVU5ONEEIIIaSbPDttiGwNONnKFTrZCCGEEEL6BYpshBBCCCEeeFY62Wo3PQDMxgdF1mQjhBBCCOkbKLIRQgghhNQhVyzj4FwGAHBaI3FRimyEEEIIIX0DRTZCCCGEkDocmM2gogFD8TDWDsXqPl42PmBclBBCCCGkb6DIRgghhBBSh2eVpgeBQKDu48MhfYpVppONEEIIIaRvoMhGCCGEEFIH2fTAQ1QUACJGTbYSnWyEEEIIIX0DRTZCCCGEkDo8YzjZTvPQWRQAQmx8QAghhBDSd1BkI4QQQgipQyOdRQEgIuKiFYpshBBCCCH9AkU2QgghhJAalMoV7DnemJNNNj4oMy5KCCGEENIvUGQjhBBCCKnBnull5EsVDMXCOHnCm5MtHNSnWCU62QghhBBC+gaKbIQQQgghNdh5eBEAcM6mYQSD9TuLAkBYND6gk40QQgghpG+gyEYIIYQQUoOdR3SR7fzNo56fI+KidLIRQgghhPQPFNkIIYQQQmrwmCGynbdpxPNzROODEruLEkIIIYT0DRTZCCGEEEJcKJQqeOrYEgDg/M3eRbaQERctVhgXJYQQQgjpFyiyEUIIIYS4sPt4CoVSBcPxME4aT3p+XkTERelkI4QQQgjpGyiyEUIIIYS4IOqxnbd5BIGAt6YHALuLEkIIIYT0IxTZCCGEEEJceOywqMc22tDzZOMDdhclhBBCCOkbKLIRQgghhLjwuOws6r0eGwCEg+wu2sscX8rhWw8cQq5Y7vahEEIIIWQVEe72ARBCCCGE9CL5UhlPT+lNDxrpLAoAYXYX7Wk+fssufOfhwwCANz1vS5ePhhBCCCGrBTrZCCGEEEIc2DWVQrGsYSwZweaxREPPjUgnG+OivYgQT/fPprt8JIQQQghZTVBkI4QQQghxQNRjO3dTY00PANPJVqSTrefQNA0HZjMAgBOpfJePhhBCCCGrCYpshBBCCCEOPDO9DAA4e8Nww88NBdn4oFeZWS5gOV8CAExTZCOEEEKIj1BkI4QQQghxYD5TAACsHYo1/NyI0V20zMYHPYcaEaXIRgghhBA/ochGCCGEEOLAXFoX2UaT0YafGw4acVGKbD3H/hlTZDuRynXxSAghhBCy2qDIRgghhBDigHCyjQ9EGn5uOMS4aK+iOtlm0wV+R4QQQgjxDYpshBBCCCEOzKeLAICxVpxsbHzQc+yfycj/1jS9RhshhBBCiB9QZCOEEEIIcUA42ZoS2WRNNrqkeg3VyQawwyghhBBC/IMiGyGEEEKIjVyxjEyhDAAYG2hcZBOND0qsydZTaJoma7INxsIAgGnWZSOEEEKIT1BkI4QQQgixsZDRo6KhYADD8XDDzw/JuCidbL3EzHIB6UIZwQBwwUmjANhhlBBCCCH+QZGNEEIIIcSG6Cw6lowgEAg0/PxIUMRF6WTrJURUdONoApvHEgCA6SWKbIQQQgjxB4pshBBCCCE2WqnHBgDhEBsf9CL7jKjoyRMDWDsYA8C4KCGEEEL8gyIbIYQQQoiN1kU2UZONcdFe4oDhZDt5TRJrh+MA2PiAEEIIIf5BkY0QQgghxMa8iIsORJp6ftiIi5boZOsp9s9kAOhOtnVDwslGkY0QQggh/tB4JV9CCCGEkFXOvNH4YLyJzqIAEDYaH7C7aG8h4qLb1gzI75ZONkIIIYT4BUU2QgghhBAbovHBaJNx0YiIi7K7aM+gaZqMi26dGEAiGgKgi2yapjXV4IIQQgghRIUiGyGEEEKIDVGTbbxJkS1kxEXZ+KB3OLGcR7pQRjAAnDSehAb9uymUK1jIFDHWpGuREEIIIUTAmmyEEEIIITZEXLRZ4SVidBctMy7aM+w7obvYNo0lEA0HEQuHMJrUa+6dWGZklBBCCCGtQ5GNEEIIIcSGbHyQbLLxAbuL9hx3PjMDADhnw4j8mWx+sESRjRBCCCGtQ5GNEEIIIcTGnOwu2lrjA8ZFe4cf7zwGAHjVuZPyZ+uG4gCA6VTO8tjbd5/A1d98BMv5UucOkBBCCCErHopshBBCCCE2FlqsyRYOsvFBL7HneArPnkgjGgri5Wetkz+XTjalw2iuWMb7b9qB7+84ip89MdXxYyWEEELIyoUiG+kJcsUy/vd/PYqfGLvMhBBCSLfIFctIF8oAgLFmRTYZF6WTrRf48U5dLHvx9jUYjpsR4LUOcdH/evAQZg0no6jNRwghhBDiBYpspCe4f98cvv3QYXz2tme6fSiEEEL6nAVDWAkFAxiKN9eIXTQ+oMjWG/zk8eqoKKCIbEZctFSu4At37JW/XzQcjYQQQgghXqDIRnqCVE6veZI1nAOEEEJWN5rWu+LTvCGsjCYiCBqxz0YRcdFyRevp99oP7JtJ4+mpFMLBAK44e73ld+uG9ZpsJ4y46I92HsOhuaz8/WKWTjZCCCGEeIciG+kJMgVdZCuwdg0hhKx6rv/xU7j073+J2eXe7Og432LTA8BsfACw+UG3ES62S09bg1Fb/FfUZDuRykPTNPzz7XstP6fIRgghhJBGoMhGeoKM4WArlCiyEULIaudnT0zh2GIOO48sdvtQHBF1uJptegCYNdkA3c1Gusctj+v12K6yRUUBU0w7vJDF73zubjx1bAnJaAjvfPEpAIAFimyEEEIIaQCKbKQnECIbd/sJIWT1I4SLXLE3N1bmRFw0GanzSHdUka1Y6c332S/smkoBAC49daLqd6ImW6FUwY5DCwgEgA+88gycNJEEQCcbIYQQQhqjuWq+hPhMVsRF6WQjhJBVTaWiSeEiX+rNOpwiLjreQlw0osRFS9xA6hqFUgV5Y24xmqj+PofiEbzjRdvw5LElXHn2evzmeRuwbjiOe/fOAqDIRgghhJDGoMhGeoI046KEENIXpHIliD4AuWKPimyZ1muyBYMBBAKApgElOtm6Rjpfkv896NIp9m9ec3bVz4SLcTFDkY0QQggh3mFclPQEsiZbucIubIQQsopZyBbkf/dqXFQ2PmghLgqYbjY62bqH6F6ejIYQaqBT7EjCENmyRc5LCCGEEOIZimykJxBxUYB12QghZDWzoDiDetXJNmcc41gLjQ8Asy4bRbbukcrr3+VgrLHwhhDZShVNbgQSQgghhNSDIhvpCdLKBLZQ7k1nAyGEkNZRuzX2qpNtIdN6TTYA0jnFxgfdY9lwsrlFRd1IREKIhvRpMjuMEkIIIcQrFNlIT5BVRTbWZSOEkFWLWkg+16OND+bSortoayJbxBBpyhU62brFslGTbahBJ1sgEMBwgnXZCCGEENIYFNlIT5CxxEUpshFCyGplMaPWZOtNkc2P7qIAEBZONt7XuoYU2eKN19cTzQ/UOoKEEEIIIbWgyEZ6ggydbIQQ0hdYa7L13nifL5VlCYNxn5xsrMnWPZZEXLRBJxtg1mVbYlyUEEIIIR6hyEZ6AlVky1NkI4SQVYta3ypfx8lWKldw3c1P4NYnj7f7sCRCBAwGgKEG63jZETXZSqzJ1jWarckGWDuMEkIIIYR4gSIb6QlUkY2xGkIIWb1YnGx1arLdt28O/3b3fvzjz3a1+7Akaj22oCGSNQu7i3af5Sa7iwLAqCGyLbAmGyGEEEI8QpGN9ARqTTbGRQnpDHPpAv7o3x7AT3Ye6/ahkD5iMavWZKs93k+ncgCAVK5U83F+IkS2iRbrsQFAJGjERdn4oGsIJ1szrsRhOtkIIYQQ0iCt5SAI8QFN05BVIkMFOtkI6Qg/f+o4fvn0NJayRVx13oZuHw7pE6w12Wo72WaXC54e5yczy3kAwMRg6yKbcLLRod09Uj7UZKPIRgghhBCv0MlGuk6uWIGmbPIX6WQjpCMcX9RdQicMUYGQTqAKFtl6IpvhKlNLCrQbIexNDMZafi3RXbRMJ1vXSPnSXZQiGyGEEEK8QZGNdJ10wRoDynPHn5COcNyI4p1IUWQjnUMVLOrFRecMwStbLEPTOiNUzab162GND3HRsNFdtMiabF3Dj8YH7C5KCCGEEK9QZCNdJ2tzKLAmGyGdYWpRFxMyhTLS+c7VvCL9i6ZpWMx47y4qBC+gc52n2+FkY3fR7rEsnGyMixJCCCGkA1BkI13HHgOiyEZIZxBF5QG62UhnyBbLlrqbdWuypc0mCfYNmXYxY4hsa/wQ2dhdtOsIka0ZJ5uMi7K7KCGEEEI8QpGNdB17XJQFognpDMeXTJFthnXZSAewixW5OpsqwlUGAJkONT8Q7jlfGh+wu2jXSeX0c46NDwghhBDSCSiyka7DuCghnadUrljca3SykU5QJbLV7S5qnpedc7IZNdl8ENliYX2aVa/BA2kforvoUBNOtmFRky1XRIVCKSGEEEI8QJGNdB17LagCnWyEtJ3ZdAHqmpEdRkknWMjqzrRhQ/DI1WhokCuWkVaEtXqCnF/ImmwDrcdFRdxwMVOo80jSDgqliqzlNxRrvLuocLJpminWEUIIIYTUwheRrVwuY8eOHZifn/fj5UifYd/hp5ONkPajRkUBOtlIZxBdGidH4gCAiubeeVOtxwZY7xVz6QKOLGR9P75MoSTrhPoRFx0zOpTOs6ZXV1A38QZioYafHwuHkIjoz2NklBBCCCFeaEpku/rqq/GlL30JgC6wXX755bjwwguxZcsW3HbbbX4eH+kDqhof0MlGSNuZWqTIRjqPiIuuH47Ln+VKzg61uWWryKbeK17/ubtwxQ23y6L2fiFcbNFwsKkaXnbGkkJko5OtG4jzIxEJIRxqbl+ZddkIIYQQ0ghNzTi+/e1v4znPeQ4A4Ic//CH27duHp59+GldffTU++MEP+nqAZPVTFRelk42QtnPcJqqx8QHpBAuGULF2MIaA3njTNQY6k7aek6ImW7miYf9sBplC2XdxWLjn1gxEERAH2AJjRlx0Pk2RrRssiaYHTdRjE8gOo9nuf4f37p3F337/8ap5EyGEEOKFE6k87yEdoCmRbWZmBpOTkwCAH//4x3jjG9+I008/HW9/+9uxc+dOXw+QrH7Y+ICQ1rlt1zQu/egv8OvdJzw9ftqIi24wYnt0spFOIJxso8ko4mE9hpcvOo/5diebEOPUjtR+N0MQjRYmBluvxwbo7xNgXLRbLIumBy24Eod7yMn26V/uwdfuPYDbdnkb5wkhhBDBYqaIl3z8V3jjP9/T7UNZ9TQlsq1fvx5PPvkkyuUybrnlFrziFa8AAGQyGYRCjde8IP1NxuZiKDIuSkjD/OrpaRxdzOE/7z/o6fEiLnrOxhEAFNlIZ1g03ECjyQjiEX0K4uZkm7U72YzHZfLlqp/5hWx64EM9NsCMiy4wLtoVRFy0mc6iglFDZFvIFJHOl/DpX+zBobmML8fXKEI0XM53X/AjhBCystg7s4xssYwnjy31xMbRaqYpke0P//AP8aY3vQnnnnsuAoEArrjiCgDAfffdhzPPPNPXAxR89KMfxfOe9zwMDQ1h3bp1eN3rXoddu3ZZHqNpGq677jps3LgRiUQCL33pS/HEE0+05XiIf2QYFyWkZUS9qnv3zqJScS4kryLiouduGgYAzCwXXLs8kpXN7HIeDx2Y6/ZhAFCdbBHEjYLyORcnm73xgTjH2+lkExFVPzqLAsD4gBEXpZOtKwiRrZW4qFqT7fO3PYt/vHU3/vSbj3RlvBTXit/nPSGEkNXPnDKvemY61cUjWf00JbJdd911+OIXv4g//uM/xl133YVYTJ+MhkIh/NVf/ZWvByi4/fbb8d73vhf33nsvbr31VpRKJVx55ZVIp9PyMR//+Mdxww034DOf+QweeOABTE5O4oorrkAqxZOolxELJ9HBi40PCGkc4QidzxSx63j9MU/ERYWTrVCuYCnLGg2rkatv2oH/8fl78MTRxW4fihTZRhKKyObS+GDWLS6qbMy0y8m2xicnm4iLLuWKKPHe1nFShvOrlSYWqsh286NHAQCPHFzAXc/MNvV6sy3UvxTXStZFmCaEEELcUDcvdx9f7uKRrH6annW84Q1vqPrZ2972tpYOpha33HKL5f+/8pWvYN26dXjooYfwkpe8BJqm4cYbb8QHP/hBvP71rwcAfPWrX8X69evxjW98A+9617vadmykNYQ4MJqMILtYRqFENw0hjaI6G+55dhZnbRiu+fgpQ2Q7aTyJ4XgYS7kSTiznMGIU+Sarh30z+mbU3hNpKap2CxFPGE1GEQvXiYsaYkQiEkK2WJbneLqtcVFRk80nkc0QaDRNf+9+1Xoj3jBFtubHNdH44M49MzioxET/6Re7cdlpEw01yPjynfvwof9+Ep/+vQvw2udsbPhYxLXi93lPCCFk9aM2YdpDka2teBbZPvWpT3l+0T/90z9t6mAaYXFR35EfHx8HAOzbtw9TU1O48sor5WNisRguv/xy3H333a4iWz6fRz5v7iouLS218aiJEyIuOpqM4thijk42Qpogo0To7tk7iz960TbXx+aKZekoWj8cw9qhGJZyJUyn8jht3VDbj5V0liVD2JrrgQ6XUmRL1I+LiuPdPJbAnullKSyoTrac340PjL/pV1w0HApiKB5GKlfCfIYiW6cRtctaqckmnGxPHtPnh5dsG8cjBxfwwP553Lt3Di88dcLza+08os9dHzow36TIVjH+TZGNEEJIY6jzwD2Mi7YVz7OOT37yk54eFwgE2i6yaZqG97///XjRi16Ec889FwAwNTUFQG/KoLJ+/XocOHDA9bU++tGP4u/+7u/ad7CkLiIuOpLQT8eCS3TIb4rlCt7/rUdxybZxvPUFWzvyNwlpF6qT7b69syhXNISCzg4L0eQgFg5iJBHB2qEYnj2RZvODVUiloiFliFK9ILKJBgBq4wM3V87MslVkc6rJporLfjDjc+MDQG9+kMqV2PygC8juoi2IbKK7qOAPLzsZp6+fxdfuPYBP/3JPQyJbKqeLfkcXsk0di3SysSYbIYSQBrHGRSmytRPPs459+/a18zga4n3vex8ee+wx3HnnnVW/s9v2NU2raeW/9tpr8f73v1/+/9LSErZs2eLfwZK6iAXWaEJf1BTLnYmLPrB/Dj989CgePjBPkY2seDLKomspV8JTx5Zw7ibnaKCIiq4fjiMQCGDtUBwAO4yuRlK5EkR99m6LbIVSBWm5qaI62ZwFA9PJlrQ8Tj3X/a5NJeKia3x0nI0NRHFwLsPmB11ACMyt1GQTdfUAYCAawkvPWIfzNo/imw8cxN3PzuLJo0s4e2PteL5gyRD9jhndnRtB0zTkjcZQjIsSQghpFHUeeHwpj8VsUbq1ib801figm/zJn/wJbr75ZvzqV7/C5s2b5c8nJycBmI42wfT0dJW7TSUWi2F4eNjyD+ksIvozZnRh61R30cPz+k4yJ6tkNSCEByEO3POse1Hu41JkixnP0ReRM8t02qw21Bbtc112UoljCQSAoXgE8bAusuUdxuBMoSTH5k1jCQBQarK1p/FBpaLJCai/TjbRYZTXV6eRNdl8iIsCwBVnr0c8EsKm0QTOMzYx1DptXo/n2GLjTra8MjfqRyfbYqaId33tQfz0ian6DyaEEFKFvWs7O4y2j6ZnHYcPH8bNN9+MgwcPolCwfmE33HBDywdmR9M0/Mmf/Am+973v4bbbbsO2bdZ6Q9u2bcPk5CRuvfVWXHDBBQCAQqGA22+/HR/72Md8Px7iH2KyKCIZnRLZjgiRrQ8nq2T1IcSGl5+5Ft968DDu2TuLd77kFMfHHl/S3Trrh3UH29ohXWyjk231sZRTRDZFRF3MFvHjncdw1bmTFqdOO1nM6n9/OB5BKBiQcVGnmmyiy2csHJTCsVmTTXGy+RgXXcoVUarotj+/arIBelwUsBYcJp1h2cfuogDwmvPNOmpDcf3ny3nv56CojzizXECuWJZuTi+ojs9+3Bz82ZNT+OkTxzGfKeKV50x2+3AIIWTFMZfW5/miVuzu48u4aOt4l49qddLUrOMXv/gFfuu3fgvbtm3Drl27cO6552L//v3QNA0XXnih38cIAHjve9+Lb3zjG/jBD36AoaEh6VgbGRlBIpFAIBDA1Vdfjeuvvx7bt2/H9u3bcf311yOZTOLNb35zW46J+EPGFhfNd6jxwZEF08lWL1ZMSK8jalO9/Mz1+NaDh3H/vjmUyhWEQ9WG5eNKXBQA1hoixollimyrDdXJpjqpvnr3ftxw624cW8ji/Vee0ZFjEc02RLfGWnFRsdu6ZjCGZFR/nNgQUeuw+Sk2CCfncDyMaNg/o/+odLIxLtpphADWSk22yeE4JgaiiEdCePHpa+TPhTtuOef9e00pj51azOHkNQOen6uK0f24OXjIcAz243snhBA/EJutzz95HL94epp12dpIU7PIa6+9Fn/xF3+Bxx9/HPF4HN/5zndw6NAhXH755XjjG9/o9zECAD7/+c9jcXERL33pS7Fhwwb5z0033SQfc8011+Dqq6/Ge97zHlx88cU4cuQIfvazn2FoiN3yepmM4UoQkZpix+KiZsQj36G/SdpDp9yPvUqloskF2EVbxzAUD2M5X8Iul5unPS5KJ9vqRRXZ1JjA/tk0AGCmg+4qtbMooIhsDs1uRG208YEoEsbjhKCmOoeyBf+u/Zk21GMDgHHDycbGB53HFNmarzmTiIZwy9Uvwc3vuwyxsOk8GzLccV6dbJWKZnns0QYjo/3uZDvEEh+EENI0uWJZ1sV9wSl6w549x5e7eUirmqZEtqeeegpve9vbAADhcBjZbBaDg4P40Ic+1LZopqZpjv/8wR/8gXxMIBDAddddh2PHjiGXy+H222+X3UdJb1IqV1AwnGsiklHosJMN4M7oSuab9x/Euf/3p7h994luH0rXUBcdg7Ewztqg15Z026GyO9mEqECRbfWxpDrZ0gVoRheEaSMy7NZ0oB0IJ9uIITrFasVFldpocZvIZm184F9cdLYNnUUBYHTAiItSZOs4KR/iooC+ETFhE1/Fa6Y8imzpQgkVpa/TsYXGmh+oYnQnr9te4SCdbISQDjC7nMf3Hzmy6sZZMQcJBwO4cOsYAGAPa7K1jaZEtoGBAeTz+gR948aNePbZZ+XvZmZm/Dky0hdklAFsJNm5mmzlimaZ4HJndOVy3745FMoV3L/PvdD/akeIDoEAEI8EccZ63b27a8p5h8pek22d4WSbS+dRrnSmuy/pDKqTrVTRZHdDIbTmfe7OWYsF41jEhkqiVlzUELzGB6JI2OKilsYHPi64Z41aJX7WYwPUxgeMi3YaEc9sVWRzQtZky3kT2VK2xzXa/MASF+3DOYuIi662hS9ZXTx8cB7Tqca7B5Pe4dO/fAZX37QD33/kSLcPxVfEvGpsIIrT1w8CMDuMEv9pSmR7wQtegLvuugsA8OpXvxp/8Rd/gY985CP4oz/6I7zgBS/w9QDJ6kZERUPBAIZiRly0A06240s5WeAa6M8J62pBLLj7+SYhalQlIiEEAgGcPqmLbE5OtlSuKBd3QmQbH4giEAAqmrW9N1n52K8LUXx/OtV5J5sQPIaNWlZmTbbqMV8U57XUZBOND9pck81vJ9sY46JdoVCqyFIQrdRkc0PWZPPoZLOLbEcXG3SyqXHRPnNz5YplOWZxvkZ6lWeml/H6z92N933jkW4fCmkBkeo4utB4F+heRnZPH4hiKB7BhhF9DbCHddnaQlMi2w033IBLLrkEAHDdddfhiiuuwE033YStW7fiS1/6kq8HSFY3QhxIRkKy0HQnnGyH560DJ3dGVy7CxbWY9S82ttIQn4EQI05fp+9Q7ZqqvnF+4qe7kCtWsHUiiZPGkwCAcCiICSPSxsjo6sIuss2m9a6G4udO9dDahRDEhasoboz5zjXZFCdbxO5kU+Oi/t0vRB04eyywVUTjg7l0/24EdAPV8TjQDiebiIt6dLIt2RokNLqA6+eabGoNXdGsipBeY8oQzg/PZeo8kvQyeWNOsuRxbF8pCJFt3JjvbzdSL3umWZetHTQ16zjllFPkfyeTSXzuc5/z7YBIfyHFgVhnRbYjC9YbIEW2lYtwtfSzS0RcRyJWd7px4zyykMVyviRFjQf3z+Fr9x4AAFz/O+chFDQ76q4ZjGFmucAOo6sM+yRxPl2Q9dgAZxdZu1g2xDEheAgnW75Gd1HR1REwF9eW7qIF/2uyrfHZySYmtAuZAjtZdxDhMItHgog4dFluFbO7qFcnm1Vka7gmWx93Fz00ZwqSmqY3qxLjAiG9QqGsX5de6zSS3kQ4oO0bIysdMa8aM+Ykp68bxK93n8Bjhxfxe8/v5pGtTvyfdRDSAKYDJ4xISF945DsQFz08Z91B9rNDHekswq2w1MdxUbHgSkb0Rd/YQFTWWRM28FyxjL/8zmPQNOBNF2/GZaetsbwGO4yuTuxOtrl0AceVejGd3GAQ16pdZHNufCBcZWZNNvFYq5NtJdRk0ye0JVt3ydVMLziNhMOslc6itWi08YE4HjE2N9pdNK84PksVrSOlNXqFQ/PWjdFO1pIkxCuFkj7upfOlnhgDVzJTizmUujTGCZHNq0t5pTAn5zj6nOTFp68FANzy+LG+up90iqZEtmAwiFAo5PoPIV6RcdGo6WQrlittvzkdscU0+i16sZoQC+6FPhbZZE02RYw4w1aX7Ut37sOzJ9JYOxTDB3/z7KrXEDddcRMmqwMhsomaVHOZgmx6AHR27DPjovp5GpfdRauPYU7GRWMyLgrox2upyebjBsmc3OX1V5SJR0LyvS70QfOD99+0A6+68Y6uO8SFc2yoDVFRQK3J5u07Fa5S4TRO5UoNia72z7Of5i0HZ60iWz+9d7JyKBhCRUXjOSr4xVPHcfGHf45bHp/y/Jwdhxbwgo/+Atd+d2cbj8wdU2Tr7fv1/pk0XvLxX+HLd+7z9HhRskK46y87dQJrBqOYzxTx690n2nac/UpTItv3vvc9fPe735X/3HTTTfirv/orbNiwAV/4whf8PkayiskqtaRihkCrabA0JWgHFNlWD0Jg6ufGB+L8TSoi2+lKh1FN0/BfDx4CAPzlq86UnXxVxg33jojMkdWBcHhuWzMAwHCyKXHRTjpClm1OtphwsjnUZBPuoOF4GKFgQG7CZItlW3dR/3aaxf1oIOq/KCPcbPN9EGv/yeNT2HU8hWdPmHVe9hxP4aM/fko23ugE4nwbbEPTA8AU77zGRcW1uGEkLpt/HGugLpvd8Znro8io3cnGORvpRdRyN/3iWq7HN+47iJnlPP7m+497/kx2HJwHAPzi6emuOAJFCYulHq/1fP++ORycy+Dr9x3w9Hi7ky0cCuK1z9kIAPj+jqPtOcg+pqmZx2//9m9X/ewNb3gDzjnnHNx00014+9vf3vKBkf4gLWtJhREJm3VqCqVKW2qoCETjg2Q0hEyh3FeT1dVGWjY+KKJS0RAM9l+9I3vjAwA4Y73pZHvi6BL2z2YQCwdx1bmTjq8hOirOsrvoqkIV2R47vIjZ5QLUK6SjcdGCLS4ado6LappW1SQhEQmhUKpgKVtEsWztDO1XnTOxcFcdoX4xmozi2GJu1XfvLZYr8nNcVFx7n7/tWXz3kSPYNJbA77/w5I4cy7LtHPIbtbuol3NQja9uHE1gaSqFo4s5WXy6Hv3sZDtUVeKjf947WTmokbt0vgx4u7RXLaVyBfftmwMAzCzn8dlfPYO/fNWZdZ93zGggMZcuYP9sRm4SdgohlqY8upS7hbjH7T2Rxly6IB1qbpiND8ySGK977iZ85a79uPXJKUsNZ9I6vqoYl1xyCX7+85/7+ZJklSNcCAPREKKKqNbObHilokkn22lGF8Z+mqyuJorlirwZalr/FpvNKGK14HQjLrrreAo/3nkMAPCyM9a5dtkz46KrWwToJzRNkw7Pkyf0Sep8poDplNr4oJNxUf1vye6iLnHRXLECYWZOKiIboE/UVSqaGdFpFSmytaGg+rgRQV3tcVHV1TWvvFdxzi128P0LUattIpvxusWyJuNFtY/HjG5vGIkDaKzDqF2M7pd5i6ZpOGR0axQ6Zr+8d7KysDjZVlk9r2Z4/OgSlvMl2WTrS3fsk9dyLY4umiUtHj4w37bjc2Ol1GRTm0A9crD+5zRr6y4KAOdvHsEpawaQK1bwsye8R3pJfXwT2bLZLD796U9j8+bNfr0k6QPUrojhUBDChNTODqMzy3kUShUEA+bCkxO2lUnGtpvdyQVcLyHE6qQiDmw3BOQTqTy+/dBhAMCrz9/g+hripjvL7qKrhkyhLKP3Yid4Nm2tyZbrQDdngYyLRu2ND6zXsVpzTZzTwqUpRLaw4lj1w9VSqWhSxGiXkw1Y/XFRNQ60kDXfq3jfnbzXtrvxwUA0LEUfLzEoUZNtOBHBhtEEgAbjorZYtdfz/omji/ifX7oPOw8vev5bvcRitig30LaMJQGwIzzpTVSDAOOiwD3PzgIAXn7mOrzotDUolCv46E+eqvs8dVx8yIN45DeqyNbLDSzSyj3gIQ9i5JyDyBYIBPDbz90EAPjeI0dcn3toLoPHj6zMe0i3aEpkGxsbw/j4uPxnbGwMQ0ND+PKXv4xPfOITfh8jWcWkbTE3ERH1sivcLIeNwXtyOC6LgXPCtjLJ2Oox9WtdNlWsFgzEwtg8pi/kplN5xMJBvPzMda6vMTFo1GSjk23VIK6HcDCATca5MG8T2cod7FJoj4C6dReVXUijIRn/Fo8VNQOHExHZkdoP4UYVMNrhZBsz6iDOr/KNgCWlULTq2hP/3UmRTTQkGGpTTbZgMIDBqPe6bKqTbaNwsimOjXo0Gxf9zkNHcMeeGXzn4cOe/1YvIaKia4diGDMWh4yLkl5EXbukKbLhnr26yPbCUybwN685C8EA8OOdU3XdbMe67mTTx5dyRavazO8lMso5Vk9kK5Ur8j5sj5W+7gK9Lttdz8xgyuWe9JYv3off+dxdVWkC4k5TM49PfvKTltoTwWAQa9euxSWXXIKxsTHfDo6sfsy4qH4qRsNB5EuVti76RD22zWNJuZiik21lYp/EqM6JfsKpJhug12UT53utqCjAuOhqRAgeI4mInFTNpa012QB98d7OGpiA7hQT5+lAne6iwgGQVM7XhHSy6ednMhpCsVxBsVzyZcGtvkZ7RDb9819Y5U42NV6jbnpIJ1sHFyxC+BLnWzsYjIeRypc8xYrEY4bjYYSDhpNtsYW4qMfPUiyKlnq8U54bB40F+ZaxhKUBCgHufmYG//Lrvfh/v30uTppIdvtw+h462UyK5Qoe3K/XY3vhqRM4c3IYG0YSOLKQxVy6gC3jzudruaJhStkI3HU8hVSu2DZHshOqWJrKlWrOnbuJ6mR79PACimX3eubqBt+YrfnZ1okBPH/bOO7fN4dP/3IPPvI751l+nymU5Di8fyaNNYMxkPo0ddb8wR/8gc+HQfoVuwMnFg4iBf9q7DhxxBAdNo0l5N9l44OViajxJOhXJ1vWRWQ7fXIIv3h6GkDtqCgAjBuNDzKFMrKFclsic6SziPj0SCIiRVSniX+uWMFQvL3HokZA7Y0PShUNpXIFYWNyaK/dBlTXZBuMhVEoVZDKlXzZaRavEQsH29I8RcRFV7uIrTq6hKCYL5Xl59tJcUTcD0YS7VuciXPUS4Fs0YRkOB7BSEI/H44teHey5Zt0ss0aHeV6vb6QG6Kz6EnjSfmdMn2g8x/3HcTtu0/glieO4Y9fcmq3D6fvYXdRk8cOLyBTKGN8ICobcYmNtVpj14lUHuWKhlAwgMnhOI4sZLHj0AJevH1tR45b0zTL97iUK2JypM0TpCZRjQa5YgVPHl3Cc7aMOj5WbHSNJiNyrqXyF1ecjt/9wr345gOH8PYXbcMpawfl71RnoSqAktp4Ftkee+wxzy96/vnnN3UwpP+wO3BE84N21mQ7bEzYNo0mZASJu6Irk7QtLqrGk3719DTO3jiM9cO9eXP0k4zsimgd0sXEpl5UFACGYmFEQ0EUyhXMpvPYHOWu+EpHLEiHEhEMxyMIBQMoGzXaBqIhlCp6wfZOLFiFcBYKBhAz3ChxxTGWK1UwKES2QrUDKWGryZaMhpArOtd0a4ZcGzuLAv3T+EAVm8R7VWtldjJ60xGRLd5IXNSsETec0J93dDHruTtuszXZZlIF4++vzHNPRMu2jCeRn14GQJFNIMZD+4Yj6Q50spnc/YweFX3BKeNVZR9qXb9HDXfv+qEYLj55DEd2ZPHwgc6JbPZyRb08bqZt94CHDsy7imyi1IZbB9JLTpnAb5y5Dr94ehr/+LPd+OxbLpS/UyOkx5cYF/WKZ5Htuc99LgKBgCwAWGtCUC5zsCfeEDW1koY4EAm3X2QTnUU3jyXkAJUtdq74N/GPjIuT7e5nZvCH//YAXrx9Db729ktqvsaB2TTu3zeH11+4WXZAWmnIxgc2geClZ6zFc7aM4oqzakdFAX1MHx+IYmoph7l0AZvHKLKtdESh9ZFEBMFgAGPJiIxbrh+OYzZdQL5UkfVH2smyUmdNzB+E2Abok27hCkrbGiQAppNNTBQHYmFf3VHiNZJtiIoC/dP4QHVLLRjjsRpT6aQ40kknm5cFtVqTTTgjcsUK5jNF14WPij0u6vWzXPlONn3OtmUsKZMI3BjVEc5Yio69QYE12SRqPTZBwqUOq4pw924YTeCirWP4wY6jHW1+YE9SLfXwuClqsp27aRiPH1nCQwfn8UfY5vhYMVZM1LjXfOBVZ+CXu6bxo53H8M5DC3iuIdipXbCP08nmGc9FWPbt24e9e/di3759+O53v4tt27bhc5/7HB555BE88sgj+NznPodTTz0V3/nOd9p5vGSV4epka0NcNJUr4h9+ugt3G91uNo0lzJpsjIuuSOxONrGo2nU8BQC4b+9c3cnndTc/gQ98+zHcsedEew6yA7jVZBtNRvGD916G9718u6fXMTuMrm4hoF+wiwzqQn7dcEypidb+TQZ70wNALxwvaiyp16kU2WrERQeiYek682P8FtdQvE1ONrMmW+/uivtByiEuqgqL3XCyDbdRZBNNFeqJbKVyRW7qDSciiIVDsi6O147O4hpppOFHuaLJxdWKFdkUJ1tcXvPcGAXMhXMvF2fvJwp0sgHQSwSIQvwvPNUU2bw42USdyg0jcVx4kl7n/ZGD86hUOtPlM2+bDy31cBkacU95ieHyq9UkYs7YbBFzESfOnBzG6y/YDAD45K275c+PWZxsFNm84tnJtnXrVvnfb3zjG/GpT30Kv/mbvyl/dv7552PLli3427/9W7zuda/z9SDJ6qVKZGuTk23n4UX8wVful50Tn79tHBdtHZMLNu4CrkzsE0sRSxLW5kK5gp1HFvG8k8ddX0PcPNw66qwEZG3DFl04E0ZdNnYYXR2YIpt+q1cnV+uH4/Lc74QrxEk4A4B4OIhCqWIR+pbz5arHCkFNCMDJWAiJnH9xf/Ea7Wh6AKjdRVf3tWUV2YrGv8333MkNrcWs6eRsF7ImWx0BS11wC2FuNBnFfKboueOsOEdHk1GcSOU9CU0LmQLE2rSXY0+1OKqkD9isyqRS0eR4QpGtNyiUTCHIS4R8tbLn+DLypQrGB6I4Vant5SkuajjZNo4mcObkEBKREFK5Ep45sYzTjRIo7cTu7O/lzQmRBnvhqRP4l1/vxbHFHI4uZLFxNFH1WDGvF/N8N97x4m34zsOH8dCBeVnKwFKTbQWvlTpNU+3Edu7ciW3bqu2I27Ztw5NPPtnyQZH+wRTZjLhom2qy3fLEMcymC9g8lsC//M+LcNMfvwDJaFixLnOCshJx6y6q3hAeMLobuSGEiJXaeQ1QGx+01gHJ7DDKmgurAbXQOmCdXK0fjsvGA50Y/5bdRDaHMTgjXW/VNdmEU2AwFpabM34INzkXN6hfiLhoplD2NZ5748934x1ffRAlF/d3paJ1zAEAWIWchWwRmqZ1JS6qaZo8/9srsumvXc+1IhZq8UhQznPEcXntOCuEaCHYehGaZhRXcipXkiVfVgoVo24koF+bnLOZLGSLUkDl59EbqE42e9KinxAGhsnhuKW8lJfGB6qTLRwK4vzNIwB0s0QnsNdk6+W1gVgDrRmM4awNugC549CC42OF67VeaYJtawYQCOj3NCHMqV2wp1NcH3ilKZHtrLPOwoc//GHkcuZCNp/P48Mf/jDOOuss3w6OrH7staSEk61Y9nciKHbUX3/hZrzynEk56LPxwcpGFPsdMhbuQjBTd1oe3F+7loN4zkruTJop6tdRq0Xbxwf0ttyMi64O7CKD6mRbN9ThuGihOi4KmGOwKjwt22p1AtUOs2Q07Ov4LeOibXKyDSjXpp9urn+7ez9+/tRxPD2Vcvz97/3rvXjljb/uSN09wCo2CYdiN+Ki2WJZLnhHa8RjWmXIY+ODJVmPzRT8Rg2xbMHjvSevONkAb8KKGkUtVbSOXOt+oooW0XDQ14j4SkftVJzpY0GnlyiWqh3Z/YgY8+2CjpeabEeN+fuGEd2NtWZQn5d2yolrj4v2spNNrIEGomGcNK7XUT7hIoKZIlus5mvGIyFsND77/TNpANY11dRibsVt1nSLpmwP//zP/4zXvva12LJlC57znOcAAB599FEEAgH893//t68HSFY3Ik8uJk6iEHbB5+YZagFwFUYPVjZiYrlxNIFdx1NSTD2q7Lo8uH8OlYomuxupFMsVuehbyvbujbQeWZ9cOIyLri7sNdkmLDXZ4p6iG35hRkCt56iT0FerJptgQHG1+CHctDsuGg4FZffeTKGMUZ/6igjXt1MMNVcs4759upN3z/FlnLtpxJ8/WgP7gmQhW7DUoevUvVac+6FgwCJw+o0Q2eotAMX9ZThuntNC9F50iYv+9IkpaJqGV527AYB5nQonmxdhZcY2lqdyxbZ10G0HdpGNG6MmqsjGz6M3sNRk62EHVLsRG7VjNpHNy/V7zIiHbxzVm8NIYb1DGwT2muC9GrMvVzSzYVMshJFE7bqvQnyr1fhAcPKaJI4sZLFvJo2LTx63ND7IFstI5UsyIUHcacrJ9vznPx/79u3DRz7yEZx//vk477zzcP3112Pfvn14/vOf7/cxklWMEAdEF7lom+Kibl3GxOCd467oikS4YzYYN+OlbBGViiYLcwYCusC6Z3rZ8fmqe62XLeH1cGt80ChmXJQi22rAXvhdnfCuH4p1VGRzrcnmcAxid1aNi9obEgwocVE/jl+8RrviooB5v/HTzSXulU7XrDq+7T7u7HTzG/uCZCFT7EpNNvWer8aV/MZrd9GUg5NNxkWz1d/dsyeW8a6vPYQ/+c9H5LWTK4m4qH4de1l0zthcDb3cKc8JdS4YDQUZF1VQyzrQ2dcbFNW4KJ1sGE86r7nyLtdvoVTBCcN9K5xsZoO6zoxd9mPr1Q14VagcjIWlM9ppw+07Dx2WG25qjTw3Tp4YAAAcmM0gnS/J+4ZIm02z+YEnmi7gk0wm8cd//Md+HgvpMzRNkzuxYmHTrppscrEZt57ydLKtbDLGJEYU+VzMFjGbLqBY1hAIAM87eRz375vDA/vncMZkdcFUtWtQL3cQqoWmmbtZrcdFq51sovApWXnU6i66fjhuush8Hm+dcOouCqgiW20nW9LuZIuFlE6D/sVF2+nySUZDWMwWfVsQVyoaSkZRJqfda/Vnu487bzT4TZWTzVbYv1CuoFSuIBxqao/XM8Id1s56bAAwGPfW+ED8fkiZg5iLourv7st37gOgl86YSxcwEAtLYUnERb2cR7O2+pq96spwQ8wFo6EgAoEAElH3mk75Uhk37ziKF29fi8mReEePsxvMpjsfwya1yVvior0pznSCubQ+ztijifFw7Zpsx5dy0DT9ehebvrL2aofWafaabL06ZoratcGAngIbNe519tI3dz0zg7/8zmMAgHdffirO21zf0b5tjS6y7ZtNyxrXQ7EwJkfi2DO9jKnFPE5b1/4mFCsdzyLbzTffjKuuugqRSAQ333xzzcf+1m/9VssHRlY/+VJFFm1N2LuL+lyTLeXiZGP0YGUjnGybDJEtXSjj0HwGALB2MIYXnjKB+/fN4cH9c3jrC7ZWPd/qZFuZE6JcsQJRHqHlxgeDoiabvjB79NAC3vql+3DNq87E/3T4/EhvI9yZTiLbumHTyea2q+wnjTQ+ENf1QLS6u6hgIGY2rsn42F20XTXZANXJ5s9YU6yYiwGn3WvVQbanY042Y8fbiMYuZgtVhf1zpQoG2y2y2Vyc7cKrk01ci+rxyEWRTWSbSxfwnYcPW56raVpVXNRbTTZ7XHRl3eekyGbMDWs1a/nJzil84NuP4X9cuBn/+KbnVP1+KVfEdx46jFeftwHrhle+CDe3zLhor1GgyAYAmJf1v6zjb6yOE1UIOpMjcVniJe5jWQgvVItsnf8eT6TyWMoVa7rO5JwqGkYgEJAOZ/V+e3A2g3d/7SGUKhpe+5yNuOaVZ3j6+8LJtn8mLZseTI7Epch2nE42T3hekb3uda/D1NQU1q1bh9e97nWujwsEAij7XE+LrE7UAVOIA1Jka5eTzUVkyxUrrnW7SO8i7Pjrh+MIBABNA3YZBcA3jMTxvJPHAQAPuDQ/UEW2ldr4QF2wt1pPyh4X/fHOY0jlSrh91zRFthWI3ckmCggPx8N644AOdhd1dbKFhZtOaXwg67fVqsmmxEX9qMnW5u6i6mv7IQoC1vvkfL246HRn46KbxhLYN5PGvM3JBuhjlv088Bu3EhF+IxsfeOwuOmxxshmLIltc9D/uPWBxdi5lSyiWNbkpKWLfjXYXVY9jpSDqI0mRrYarRSzQp1POC8Bv3n8Q1//4aRyay+L/vPbsdhxuR1GdbIyL9gbWuGipb5MAYg5pr8lmpoec13hqZ1FB551strhoF5xsb/nivdg/k8G9f/0brt1AZZkYo6zGiEMjnVueOIZUvoTzNo3gH954vuc17slrFJFtwWhEMZrAWmMOOUWRzROetxIrlQrWrVsn/9vtHwpsxCtCHIiFgwgZF3474qKaplU5OgSqO8K+e0F6H+F4GYqHZYfRp48tAdB3XZ570ihCwQCOLGQthTsFi6sgLiputOp11Cyi8UGmUEa2UMbjR/WW6b1ak4K4ky+V5UJdFKg9c3IIf3TZNvzNq/UFZke7i8ouWPbGB9WRz4x0vYWqHidIKo0P/Jh8i7/frsYHAJCMhC1/q1XULtxOkUN1sn1oLtv2DoSapkmxafOY7i6212QDgFyh/edbp0S2wZj++vW6izrWZBOLIuW7y5fK+Oo9BwBAjudLuaJFhB5rIC46Y7iSxa2hV6NPbqhxUUCtz1T93pfz+ntzc7zsm9Fd7vYIbS3ypTKu/e5O/PSJKe8H3SG60bWX1EZdu5QqWt+uK+ZkTTbnxgduG3tHDUFHlIAB0PGOwgVZ+1Ifn8XGRKWi4eZHj0ohsF2UKxr2TC+jUK44rlsE6bzV8e/kjBabLJdsG0cs7H1us2U8gWBATwftPKKvAzYMxzE5ootsrMnmDd/8+gsLC369FOkTnIq1i+6ixbJ/N6ZssSwXI1Vx0bB5CbCQ7sojo7SvFq6Ap6WTLYHBWBhnbxgGADx4oNrNtrQKGh9kfSzYPhgLy8XMzHIejx/RBcuV+tn0M0IYDQRMt00gEMD/ee3ZeNPztgCoP+H1E/e4qH6+qYsR++QRcI6L+hn372xc1C+RrXZc1B5D3NPmumyZQlm6rTaP6e1TFzKFqnpxmWL7RfslKbK11zEna7I14WQz4z3m53PzjqOYWc5jcjiOS0+dAKALhuIaDQTMeYz42dNTS3jNp+/AL58+XvV3haC0yRA9V5qTLW+LiyYcajgKhNCZdvkupozFcSPX34P75/Gf9x/EJ366y/tBdwh7d1FN87fMCmkc+9qlXyOjMi46aHOyRcXGnltctNrJ1una2WLMEc5/MWb+/Knj+NP/fATX3fxEW//+QqYgS8DUOn/EOCbmVGINpM4FRLkAUQrGK7FwSAqd9+ydBaA3mFtvxOzpZPNGUyLbxz72Mdx0003y/9/4xjdifHwcmzZtwqOPPurbwZHVjSmymZNOsyabfyKb2NEOBQNVQkQ4FJSiAmtarDyEk01vX60vPITIJgofP3fLKADgcWM3RkV1suWKlSqb+ErA6TpqlkAgIK3pjx1elJ/PSluYEfPcHoqFXSMCsj6KT+f93hPLePk/3IZvPXCo6nf1Gx+ocVGHxgeO3UX13/shWplidftEGRl78clRZomLOtVks8UQ291hVHxvoWBALpIOz2dlcwaxaOmEI0Gc/6MJ56iNXwgBu1Cqff9YcnCyCeeB6vT7+VO6UPaWS06SY/FStoi8ISrFwsGq+NRPdk7h8SNL+O7DR6r+rlhkbVuj1/ZZsU42IbLViI6J+1Ta5foScdJGNhXEuHVkPttzIpa93l4nHMmkNvYUTj2H62qkUtGU7qI2J1udEhVHlWiiwM/7vBdEjVpxv1rOl1CuaHJtcaSGu8wPVPG81vmTtjUOFI10FrNFVIx7rthkmXCJnNZCND94ZlrfnNswYopsx5e8u4H7maZEtn/5l3/Bli36Tvitt96Kn//857jllltw1VVX4QMf+ICvB0hWL/bOogAQCemLQT/josLRMZKIONZGEE4KimwrD7mTEw1bbjCAuRN2zkbdyfbE0doiG7ByYpGapskFnbiO/OqKKCKjt++elj+jk23lIeNySfe4nBz7fIrv3f3sLPbOpPHDx45W/c5r4wNN05A2ruvBmjXZQnV3xRtBxkWj7SvI77eTTd2Mmk/X7i4KAHum2+tkMyORYRm12T+bBqCfa+JnnRDZFjoUF1XdliIS7USt7qLpQlnOeaYMIejMDcMy5r2UK8lzPB4JVRUCP2FEQu33s0yhJB+zbSIpX2slIWuyeYiLCjeh2/cgRLZGrj/haskWyz1Xt3XOVoeRc9juY2/a1o9OtsVsUTqaR+0iW9TdiQqYTraNqpPNx/u8F6STbch0fy3nSvJe5nSv9RO11qLbhgGgJHmMeZK411U0cywUY8TEYOMim2h+INgwklBENjrZvNDUbPLYsWNSZPvv//5vvOlNb8KVV16Ja665Bg888ICvB0hWL2KAUEW2aEj/73Y42dwm243m/ffPpNvuCCDeSCu1m+xNLTaM6Dth52zU21U/fmSpaifaLqqtFDHp/d96FBd/+Oc4vpTzvWC7cE/cvvuE/NlyviR3xsjKQMTlhuM1RLawv042MQl2WozKjqFujQ+MSXe+VEHZONdq1WSzxEV9dLIlIu1zsiV87pJWNy5qfA+nrdNdTO2+bwkBZzAWxoixuNo/oy9MxpLRjhaw7lRNtlAwIOsM1nKJLUmRzTyeoXgEYt9PHK9wCKwfjmHYiLouZYvy+oiHQ1VurhOpvHycinA6xcJBTI6szLhoVXdRxX1rv5/XiotmCiX5GTcjsgGmy6YX0DStSmRrd81FUp+CcS8V5nG36PJqRtRjG4qF5XUrEHMOt3uAEMLF/B0w78md7i46GAvJjcilXBEHZ/WajvYao36jXte1xmsh4Ir7ajxi1qkVpSLEPcCteUItthobM4INI3FMGiLbdCrPNYEHmhLZxsbGcOiQHge55ZZb8IpXvAKAPuiz8QHxSsYhntOO7qKys2jcefGUaKAukaZpeMM/343XffYudnPqMqVyRd4MB6LhqsWUcLKdPjmIcDCAxWyxyuZd7WTrfZGtXNFwy+NTSOVKePjAvJx4+FWwXdjKVTu4pgHLnMCvKNyavaiIxXreJ9FDnIt2BxVgukvscdGYbfxVFyXJGjXZEsqE0pe4qHSytb+7qF8ik3qfzBTKVfcwMb6JLsvtrsm2rAhJIgopXIkjiYivNfTq4dZRvB3Iumw1FkQph3lIKBiQIvhitoByRZOutPXDccXJZjY+iEeC8rwvGIK0ENns9zPR9GDNYEw66FZLXFTTqptVpYzGB/lSBSXbRq1wCAKNxbXVCHC7C543wnK+JDejRS1jzkm7j6j/LBxc/ehkc6vHBpjXr9N6K1csS4Fp42i86jmdbnwQC4fkpshSroj9hsimOo/bgepkq12Trbp27ajsMFowXkvERRuryQaYcVHBhtEE1gxGEQzo65CZBhrI9CtNiWyvf/3r8eY3vxlXXHEFZmdncdVVVwEAduzYgdNOO83XAySrl6xDXLQdIttSncl2IxP/fKmCmeUCMoVyVb0b0lnSyg03GQvJRZ1g3bB+U4mFQ9i+fggA8MTRJctjqkQ2j7v8mUIJP31iqiuT2n0zaXmuHprP+O5kcyuQutIcEP2OmKzWEtn87i4qzkunnd5lh46h+jEIZ4p+DEKMS0RClm65qoicjIYQDAakCOdLXLTor1jtRELWlvHnWrIX2baLm+L/n3fyGAC9lkw7F31qJHLMFhNSnWydcCR0yskGmMJxrc/WyckGmB3sFjJFzKbzKFc0BAP6Zoc49iWl8YHqVgD0c99NZBMuhjWDUUVkW1njeKFsds8GajerUusXpW3n2DFFZGvIyaaMjUcXe8fJJiJr8UhQbowxLtp9hPAprut+FNnE3MN+DwDUOUf1uSqu0UQkZBm3O+mABkxhPRYOyk2R40s5uWkBVNc79ZM5pdZiLSekGOPUdID43OYzRWQKJTm3ayouqohsQ7EwBmNhhENBWatumnXZ6tKUyPbJT34S73vf+3D22Wfj1ltvxeCgHkU4duwY3vOe9/h6gGT1IhdTlrio/zXZ6k22G4kcqTun3DXsLmKhGg4GEA0FLd/vmsGopV21WZettsjmtebKl+7Yh3d97SH82937mzn0llBryx2ayyq1Df2Juam28nAwIBdn7XD5HZrL4J9vf3bFuSt6nVyxLM/N7UZU0Il6RYgbRYyJS7mSjHwCuhhUkBEM5+6i4hjcareFggG5CSN+52fXMb/Faif8FpkKJWtcwx4ZFQuBrRMDWGfUl9nTxsiorMkWM2tkCsYGIjVdDH6z1EmRzRDOahWpVuvVqYwoHUaPL5rOs3AoKDcGl7LmYikWCUnBCdDPJbUmmxrhEYvCicGYdMUJt9dKQTrZjJps4VBQ1u61X/eqoGEXslWRrZHxQp3zHWtzwfNGUB0q8Q6K16uBYrlStUHhB+WKJu97Yh5Vq07jakU2PXCIKNbqDiyurw2jcUv97Fp1GNtBvmQ6RMWmyONHrGsHJ7e+X8wpDrFamyIZh41L6WTLFCzlApqZ12wZS8rY8wbFWSg7jPbQpkOv0tSqLBKJ4H//7/9d9fOrr7661eMhPvP4kUXsmU5h+7ohnLtppNuHY0FMdAYc4qJ+3gBFbMrNyZawOSlqoYp/7OTUXdJKTb9AIGBZ1E0qRVMBXWT79kPAk7bmB0JUWz8cw/GlvGchSXQZ6kbxzycVofDQfEbe/HxrfKBMjLavH0K+WEYqV2qLA+Kzv3oG33zgEAaiIfzPF57s++v3K5/+5R4cmM1g/XAM73zJKa6PU+sb+YEqnixlixiTCw3z3KmuyWYVXsTieDBWfT4nIiEUShVZAyseNZvWaJrm2NjGK1nFKdQukj7HXuy1S+dtNZrEQmA0GcHp64cwncpjz/FlXHDSmC9/344QOYbi4aqGG6PJqHQFtVsM0DTNU+MPvxiq42TLl8py4Wafh4xK54H53Yn7lyUuKs7PcBDBYACJSAjZYhnTqZycl1SMWL94nogdTQysYCebLS4K6NdosVyquo7U92Z3gEwpUc9Grj9rXLR3FpXCLTQ+EIUGXdihk60+5YqG1376ThTKFdzyZy+pqhnWCuq6xYyLrixR2w9mazrZ3DfGhFN0o1KPDbB2FK5UNNdu6X6RVzY0xHj92GHr2qGdIttMujEnm7rBLj7zxWxRfg9rBmNNzY2i4SA2jSVwaC4ra3oCusi288gijqd6ZzzsVZoeXb72ta/hRS96ETZu3IgDBw4AAG688Ub84Ac/8O3gSOt89+Ej+PObHsWPdh7r9qFU4dQVUcZFu9D4IOdh4qUeFyc03SVjK6Sufr8bbDdp0fzA7mQTotqWMdF5zduN89C8Xpsh75M40Qjqezg019646Hmbhttay0dMAtgO3D92TaXwL7fvBQD83W+dWxVPU4m1KS4KmN0dAVN8iIaDiIRshZAjoi5cxfJYJ2em2BAR17x4jFN9poaPvQM12fx03gFA0fae55WJf7miSdFhNBHB9vX+Nz9Yzpdw5Sdvx4d++CQApfFBPIyhWNgS9x1LRmSXuHY7ErLFsqyN1Mm4aMplQaSKP3Ynp9oVWyxa1g0ZIpul8YFVBBbn6aG5jOX1FpVzQHWyiXFgpYlseQeRzek6KpQqljHA7iBSo56liuY5LWFtfNBLTjZTZEsaheGZrqjPgdk0np5KYe+JNPZM++vqVc+VcSmy9d93ImuyDVSPvWL8Kle0KjOFdLLZNskt8fgOzLnFvD4aCsr57+NHrCKbU6Mhv1DjorXixumaTraidMQ10/RAIDqMqt1e1xuleI730KZDr9KUyPb5z38e73//+3HVVVdhYWFBNjsYHR3FjTfe6OfxkRbp1KS2GdIO3UXFAqzVBZOK2figtpPNU0025TF+FQsnzZGual9t3kjsN+mzNug12Y4t5uQOcLmiyUXR5jFdlLN3G3VDLGzyHXYzappmiYsens8q15H/cdFzN41YCr/6jRBKvcZ0SW00TcMHv7cTpYqGK85ej1edO1nz8dLJ5nPjA8Bal82t6YF+DIbQVyrXfay4Vwj3s1qfqZV7XKlckRsoybY62fztkmZfpMwpn7nqyh1O6E42ANg97V/zg6ePLWH38WV868FD0DRNiURGEAgELALXWDLaUJOhVhDjSVjp/NlOROMDt7hoSum6GrK5MISTTY+L6osWsYgxmyIUpdNeXC/iszwwaxPZlO/duSZbsaorZy8jrsuoIs47xY7ti9FqJ5t1Qeh1vFDv8b3qZGNc1DtPHTOFtV1T/opsFifbQP0I+WplzqgXOO5QbF+MX0D1mksI4RtGbU425Z7cibWsjItGzJpsU7bUSjs7jM55bHzg5GQT66CFTBEzLXQWFQiDwmlK2RHRYZSb4/VpSmT79Kc/jX/913/FBz/4QYRC5sl/8cUXY+fOnb4dHGmdTmfZGyHrULRRTKR8jYsawkndmmweJv50svUOchfHmGCq3689LjoUj+Bkox21EKnUReiWce9OtuV8STpGOrGrpjK1lMN8pohQMIBgQJ8MHDQEP9+cbDaRTbgp2uGAEIsCimz+MJ3K48ED8wgFA/i73zqn7uPNqKY/422ujpPN3vQAqBb6nHZn7Y9NGr8Lh4LyntHKeKw+tyPdRdsUF11QJufi8x+MhREJBWWnsIOzaV/+NmB+bsv5EmaWC0p3UX3MUJvRjCQiSuOHzohsI4lISxFir4j36xYNE+KjU4dzEStbyBbkokXUvBlWOrSK60JcA2KxesDuZMtWO9nU7qLFsubrJma7cYqLmvNa833YxYxajQ8A7+OF6lafWsxZat51kzmLk62zheFXMk9PLSn/7a/IptYPFAJ5rbhfq3z2V8/gqn+6w+Je7QXMmmzVa65oKAgxJNs3W0T33o22+XswGJB1KMW9o1Su4Fe7ptsydywoNdns5gwx32hnXNRzd9F8dWkNtSabGCOaaXogeO/LTsVn33wh3nLJVvkzWZOtC+VyVhpNiWz79u3DBRdcUPXzWCyGdNq/CRxpHTGp7cWbb8ahm1s7u4u6x0W9u/3UXc1e/Ez7ibSt4L9ak83uZAOqI6NCUEtGQ3Knx8sN+/C8uajptJPtCaP46mlrB2UkVsS//BLZ1g3HEI8EMRAN4azJYQzFzA53fpMxXEsLFNl8QUxux5IRbLTtBjshFup+uXLVMVSd+JuCeA0nm3EtyevawckmBDB1Yybhg4tDjOWBACxF5f3GPFZ/Fl72+6TqZBM77eK+d5KxkXB4PmtpStEKqji7fzZtdheNVY/JqpOt3fdOce51IioKmO/XbSNCbPQ5RbfVeI+Ii5pONvM8Fx1EE/Xiog5OtonBKAaiYbm4bYcruV241WQDbDUgbe+puvFBtubv3VAFyUK5YlkAdxOLyCbF+8bHlUpF66tNrqeOLTn+tx8Ic0AkZDpol30a6534zkOH8dSxJTxyaL5tf6MZatVkCwQCpqO5YI+LOjvZAHN+K675W56Ywh9+5QH8/U+e9u/ADczGB6GqRjVnGU3U5tskslUqmiWK2mhNNumMzhYxK8oFtOBkG4pH8OrzN1g2H9cM6a831yNjYS/T1Gxy27Zt2LFjR9XPf/KTn+Css85q9ZiIj3RqUtsMGVl7R+0u6r/IJuOiCec4XSMRFtU5wMYH3SUjnZAOTrbh6pv02bYOo6rbYSThXUg6NGdO1jvtCBDHfs7GYRlxFU42vxw4yWgY//GOF+Ab73wBEtFQe51sRcZF/USIC25NXuz43fjAUpPNYaLoHBe1Ck/ysbVqsinnuh8RRDHZT0RCbXU++e1kE3XHBOruuhCuhYizfjiOaCiIUkXzrbaU+n3vO5GWnSuFmDSqLLLGBiK+v383FrKNXQetUj8u6txZFLCJbDYnWzgUlOf6tCGyyZpsxr8P2kQ29RwQHSjXDMYQDAbM2nErKMJW08lWIy6q/n+2UJafS6Mdfu33eLtY1y3mlKYWcXldNT4f+avvPoaLP3wr9p7wL0bey6hx0bY52cJBuRHUzrioqIHZa0ml+XTtmKLbvOOoi5MNMK95cd2Kce+Aj85sgXCvqt1FBRdsGQXQvrjoUq5o2QSrdf6YdalVJ5uIixbMxjeD1bHdVhCbpe10aa4WmhLZPvCBD+C9730vbrrpJmiahvvvvx8f+chHcO211+Kaa67x+xhJC/RyTTYxWKqOhXY0PhA7nH7ERelk6x3StgLpyWhIumKEAKVyjhTZ9LioKrKZXdzq3zRUJ1u7awvZEcd+9sZhGXEV+OVkA4CLto7hOcZkYqiBz6ZRhJPNLm4uZAorqm5Qr7BQx7VrR0xci2UNJR/G3HqND+ydRQFTUJhNF5AvlWWhaKfHCiFZ3blVO481ixB7E22sxwYoC3yfxo2CbZGi7oDb3VyhYACbx/Vx0e5+ahZ1/Ns3m64ZFx3tpJOtweugVQYNt2+9xgeOIltCjYsKJ5u5yBRC4bTxO9GsRMxbjsxbRR/x3ssVrSouNLwCmx+IuWDMoSabRWSzvaeMUnBexJoGoiGsG4pVPbcWdpfv0YXeiEjNOsRFxTjWCI8dXkSxrPkuOPUiS7kijigbDCdSeen28UK9qLAQZCNKwfx2ChEinm6PRnebeiKbUxmj5bzZwd7JyWa/5sVj2+GmUputqOaMwVgYp6zVyy60Ky5qd8p6aXxgcbIlTSfbXJ3voVkG6nTTJiZNVcr+wz/8Q5RKJVxzzTXIZDJ485vfjE2bNuHTn/40XvziF/t9jKQFEpHej4smHeKi9q5prVBvwh1voG5doczGB72C3ckWCATw4dedh+NLuSoBCjDjovtm0sgUSorDMSIXMqkV42QbqeqeJq51vxGTxXZEjEQ0UN0VfOzwAl732bvw+y88Gdd5qCtGTBoVF+LK2JsrVTAYai0qmbU0PqiOizo52SYGoohHgsgVKzi2kJO7s4MONdnE5Fx9nXikMWdKreOOt1lk87smmXCyDcXDSOVKcnEDmOeCGtk8aTyJvSfSODCXwaU+/H1VZNs/k7YU+AeAEXtc1Oe4rBv1SkT4TT0nmxg7nZx14jOaXsrLRZFFZItHcGwxJ+Oioo6iuBZKFbOL6mK2KL/3+UwBQhMQnQ7b1Sl6IVPAnullXLx1zHcnaC0nW63GB+r/C/fZ5Egc0XBj44V9w7eeC1TTtI7UARSdAycGzeuqmc108Tn0gyvlacPFtnEkjkg4iAOzGeyaSuHS0+o7ff7ffz+JH+w4gh//6YuxbrjaaQWYcVGLk61Nn2uxXJFpmmZiwu2iUKrIzQY3ccfsam6er6Kz6FA87DhPsJ/jYqxtR5dPYaaIhUMYUk6Nk8aT0inWru6i4h6QiISQLZaxnC+5jimy+ZuDyLaYKWI2arpd/UR8P/0wZrRK0zPqd77znThw4ACmp6cxNTWF+++/H4888ghOO+00P4+PtEgrN9924xgX9dnJVixX5CSiXnfRnAfBRI2x9uJn2k8IgUa9wbzhos1478ucx6C1QzFMDEShacCz02mrk83YrfISWzzUJSfbQqYgd2F1J5t1t89PJ5tKu9wP5YomJ4lLuZJ0rj16aAEVDXjwwJyvf68faFRcUOuP+XEuq5s56rWUtgniKoFAAJvHzHphYlHiVJNN1FrcMGoucvyIIIrjbtc1JBAbSoVSxZe6aOI+KUQZtU7MgnSymRPsrcbmgz1i2CwWJ9tMWrpdZVzU+NuBgNH4QDrZ2rs50Wkn21CdBfVSTSebIbIZIlokFMCYIk6Ke5NwucnmH7ZzdbvR/W0xqy+sRNODsWQEYUM8N0U2f8fyD3z7Mbzxn+/B/fv8H7OdRDaxSFevebtwqAq5stbTSAIJh+fWQiy4hQOuVlz0K3ftw/M+8gtZJ7WdzMnOgTFfRLaV2pn07mdmPDtzRdODMzcM48xJvdvyUx4dfD967Bhmlgt47PCi62PUxgeNimylcqUhN7kq6PeSk02IT8FA/TWXOl8QnUU3jjjXkk3aDCPiep9P+98tWbpnI0HLmH3ymqQcm9vmZDOu661Go7aK5lyaqFzR5GdhiYtKZ7RSk83vuKgQ2QrlnmkE06s0JLItLCzgLW95C9auXYuNGzfiU5/6FMbHx/HZz34Wp512Gu699158+ctfbtexkiboZE22xUyxoYWaU1w0YkwG/XIIqTE0t/osjUxQ1OPqRXdgP5GusRh3Y/t6fSGy+3jKuSZbrv4N+/B8d5xsTxouti3jCYwkIm2Ni6pIJ5vPddPU66dc0eRkVNjlpxbZHrxRGhUXgsGAXLz6IrIVXES2GnFRwIx3H57P1Hzse152Gv75rRfif1y4Wf7Mj5ps4rjb2VnU/vp+uLnEok4IAPOW7qL6f6tONjFmHJz1R2RTa0DpjQ+stcfE3x6ORxAKBuT7z3Wwu2gnkE4217iotVadir04+LqhuMW1IN5DWrot9evVfq6Ke5t471OL1dHTIblh4t9YXq5ouOfZWQDWe6Nf5MumcCFwmtfao7rLDnHRyZG4jFZlPUYrRX2mk43uvEcX3eOitzw+hZnlPB7Y394NolyxLM+H8aQaF21GZNM/h5UY/XpmOoU3f/E+vPvrD3l6vGh0cNaGIZw5qZcPedpD84NcsSzPoXSNcVs4i6PhoBTevbh9KhUNr/3MXbjqn+7wvPmiCuW9JJDOKU0PgkFnR6fZuMS8fwgnm7qBZnmOrZaieP+FcsV3kVGklGLhoGXduHViQI7X4v7qN+Lz2zSakI1qUg5dq9WxT50riXtuuaLhmHHOtsvJBvhX+mK10pDI9td//df49a9/jbe97W0YHx/Hn//5n+M1r3kN7rjjDvz4xz/GAw88gN/7vd9r17GSJuhUoeF0voSXfOJXeN1n7/K8q5ApODjZjIlU0Scnm5hwDsXCCLkM+I0s0lRRhY0PuktGWqW9L4y3r9N3L/dML5tx0bhZk61Y1mp+r5qm4bCya5r3qWC8Fx41dlDP3qBPDreMWUW2dgkE7ViYAdUig9gZFDt5s+m8rw1Q+oFmxIW4FNla+6wrFc0yPnptfACoIltWRiCc4qIjiQhede4GS6zTl7hosTNx0Vg4CHEb8uOeXLQ52VL5kvyZqMk2alskAP452dSJfq5Ykd+/XWQT/5Zx0SZqRzWCU1S2nZgNBZzHSNFd1MnZYd/8m7QV/bY/R5yj9nP11LVWke24IiwJ2uFke2Z6WQo07YgBm0626mYnTjXZxMLU4mRTCqo32o1YnNPbjGvnWI24qFggt3u+LdxC4WAAw4lw0062SkVTnGwrT2QT9fGePLbkScwSTQ/OnDSdbF5q0anjZa1rR5STaTQuOpcp4KljS9gzvSxj4fVQhZdMDwmkYqNnrIawI65fdf4sxOsNrk4255ps6t/0C7fuolvHk/KeMp/x30EHWGPgg7LBQPV1Lb7zoK0jejxi1qYWh+d3TbZ4xJzH9NK514s0JLL96Ec/wle+8hX8wz/8A26++WZomobTTz8dv/zlL3H55Ze36xhJCzRS1L8VjixksZgt4umpVM2dPhVxc1eLTYvBwq/FtYhp1Ooy1lDjAzrZegaxo9iMk+2Z6ZRc+Iwk9K53QoStVXtsMVu07Jh3Umj90c6jAIAXnbYGgO5eUXf3kw7dGP2gXd1FM7aJg1gcioWKpgHTqd4oMu0nz0wv4xdPHW/LazclsvngBAOqO4VZGx+4NzMAoMRFM+Z17fF8TvrQ+EAsTtsdFw0EAvJ9+eE+EILamsGoFBfEAtypCcZJhpPNr45sbueMEJ22Ge4f8W+z4HVn4qKd6i4qPuPFrPPCq1Z30VAwgGHl5+uHrdEe+3uQTjZl3hQKBuRnLN77MblorRbZ/Gxi8/DBefnf7YitOdZkc3BEivvTGiMapS5MRVx0ciTR8MazmPMJJ9uxGvNb4cJut7NIbESNDUQRCARkrcdGRTZ1zHZayPc6QhjUNDMK6kalomGXIaidtWEYZxqblbuPp+q6xw4ozt9aYl6hpL9OJBSU7tZiWau7GasW75/x2IhBjYv2kptoLlO/2H7cIbItxGunzqKAmjjS37c6T/e7+YEpslU72URNtkKp0pY1oNnQJFaz1qdsJhUNV9VrG1VKRMQjQd/nNYFAQJbpWYkO2E7SkMh29OhRnH322QCAU045BfF4HO94xzvacmDEHzpVk03dwX300ELdx5cV18OAQ1y0osGXbndeJtuNfEYFi5Otd25s/YhsfNCEk2338WWlfpV+kxILnVp12UQcRtzTOuVke2Y6hcePLCEcDODV528EoEf9NildVNtdk83vxgf22IX4PtRJpnBjrCbe942H8favPohnppd9f+1mxIW4w65yM9gXlosOjQ/qx0WzdV1vdnyJixarN3zaRaNOmlqI+1E8EpJCj3CEujU+AHSRZdGHmjJOn3kiEpI1wM7fPIrv/K8X4oY3PReA6qzvjJOtU3FR8RkXy5rjwqtWd1H9+eaiaN2Q3clmfY698QGgx4GEc0R8/06dStvhSn5EEdna4WpwEtmc4mZisSdESlUMUQXHxkU2/XHb1ujXzvGlnOPctFzRpMDd7g1Y2TXW+M4TTcZFVWFtJTrZ1OMXTaHcODCXQbZYRiwcxMkTSZw0nkQiEkK+VMH+OpsO6qZETZFNiTartYLrCZjqnMezk00V2XpI6JAdLZO1RLbqe7a8Rh06iwLqOk3/jNX3P+dzEwJxzUfDQQxGw3LsOWXtAAaiIURC+gKgHXXZhIA+MRCV8yWnuKjZ+M2hzqdyz58YiLWlEYusy7YCxflO0pDIVqlUEImYX14oFMLAwIDvB0X8QxZabrCoZqOoO6M7PIhs6g3dqfEB4E/zg0VFSHEj3kBNInUhSpGtu9RbuDshnGyH5jNyESK6uwlholbtMVFgV4gCuWKlLZZxO99/RHexXX76WssO4WZFZGtXXFSIbLlixdf4pn2Rs2BzsgGrry6bpmnYN6NP2A/P+xPZU2nOyeZPXNTp+xTXRrpGx1AAlsYH6TquNzt+bCRlHVzV7cJ03vlQk61sOifEokZcPyKuqzY+SERDWGvUbzsw17qbTdwDw0opBruQdNHWcTlmqTG/do6bnRbZEpGQdBU7LbzEIslN/FYXRettnQurnWyGyKaM92uHYhY3HVDbyeanK/mRgwvyv9viZPNak814T5PG56fOMdWabPEGBSnR+GDzWBKRUAAVzWxSoTKfKch4Vrs3te0u1WSTtQ7V41yJi2X1O36yjsgmaq+dMTmEcCiIUDCA0435oOg66oYlLlpD0Coa86NIWH99cZ66dR0WqHOeE16dbMpx9GRNtppOtuoGOEcX6zjZ5HWrv291o8DPuGilosnaerFwEMFgAJ94w/n4yO+ci/XDer3MdnYYlSLlQFTp4ln9/Zo1qZ3LaggmBv2NigpEswU62WrTUL5I0zT8wR/8AWIxfZKWy+Xw7ne/u0po++53v+vfEZKWUCdiuVIFg6GGdFXPpBoU2cTNPWDLk6siW7GkAS2OD0tK3S03Eg3EjQqMi/YMppPN+zC2ZjCG8YEo5tIF7Dyi1zgTNyS1+YEborPoaWsHcWhOnxQUyhXEwu1bnGuahu/vOAIAeN0Fmyy/U5sfJNskEAwqi+ZUruhbpyL7gsweFwVqd3JbiaTyJeng9TviAHQ5Lqq4wbLFsmxmMRSPWKINTgix+HgqJ89jN0HOjh/OMOlka3NcFFAWCz7GRaPhoBRqhLjmVpfspPEkTqTyODiXwfmbR1v6++JzO3XtIHYZHRUHXdxagPn5VrT2jpuLmc6KbIFAACPJCE6k8ljIFLHR5sYwa7LVd7JVxUVtcxfRWVOtyaaKbKlcCeWK1pHGB4vZIvYojtx21mSLOcRFLTXZDCFTvF8x5uSKZTnWbmwhLhqPhLB+OI7D81kcW8xWfcfCgQK03xVmH+ebrXWouslrFfTvBLliGV+/9wCuOm8DNrm4meyoc4h6TjbRRVTUYtP/exiPHl7E01NLePX5G1yf6zkuahOEB+NhZIvlukKEeu54jYuq13AviWzzUiSqseayzTk0TTM7ALt896qQrGma5TP1cy6lmjtixnH+9nOt8+7RhDnW+42Miw6aIttyLSebw5xKvef7XY9NMNhAY49+piHF5W1vexvWrVuHkZERjIyM4K1vfSs2btwo/1/8Q3qHWDjoWAjWb9Sdmp2HF+u65tQBQrWyhoMBM4pXbv3G4WXR2Xzjg965sfUjyzV2cmpx2jp991J8l+LckLHIrPt1IuKi4jWA9tdle+jAPA7PZzEQDeEVZ623/E40P4iGgjKi5TehYEBGcv10QNgjY4vZIsoVzWL9X21xUTUK0g6RbakZkS1cHb1qBrHgHUtGpDtOTELrRUAnBqKIR4LQNHPh5LUmmx8dtDvpZGtHXDQSCsrJtCjIvOAiNG2Vddlad1KKc+bMDebC1amDpkAVhtrl9tE0reNONsBsMOHUda5Wd1H1uYDpxBK4OtlUkW0wZnmvS9midG+phcSHfXayPXZ4wfL/7XBDOdZkc5izVTvZ9N+Je0g8EsRwIqzURGysu2gsHMRG47MUBfdVZtPm2J5t85xgySagm7UOG/v81THIXiO103zpzn348I+ewj/9fLfn56gxyV1TqZoN0/ae0MXg09crIpsxbj3VgJOt1jlunqv6IkYKEXXOtVlFWJtJeZsXpCxONufX1xtbdFYEmTPuO+MD7puxpnte/ywXs0V5/97g4mRTGxylC2WoZfT8dJTllWtXFfZVZIfRNohssvHBgCqyOTjZHBoH2o8PaJ/IJsbRbovzvU5DTravfOUr7ToO0iYCAd2ynCmUkWtjsWF1VyVbLGPP9DLOMgqLOiEuTLtzIBAIIBIKolDyJ5q25KFGUSOND6xONnY+7CbNONkAYPu6Qdy/b07+vxTZEqIodP246LY1gwgGdEeGPglv32Lue4/oLrZXnbuh6nrZMq5P+tvtwBlORJAulH0V2eyT1YVMEQtK5AYAppZWV1xUFdn8jho0Ky7Eo943GWohFnjxaAijWhRTxRwWs0VsAepGQAOBADaPJS116jzHRf2sydYBJ5ufHb+lky1kRljm0gWkC2WUjFWI3ckm3K+HfOgwKj63szcM4wc79Ei7m1sL0MXASCgga5eNtnwE1WSU995Rkc34nO217jRNk+Omm6Ne/Y7WVYlszjXZkra4aCQUxEA0hHShjOOpnFwATg63Ly4qoqKhYADlNi3oC+VqkS3uICqZNdmsTjbhDFozGJPzYcCbyK1pZu3gWCSIDaP6azs5rFU3UqdrDjY7pmR6yMl2x54TAPQmal5RnWyFcgXP1Fh3iI0edS1whiG47Zl2F9lK5YqltEPNuKjNySYjdXWut9kmGh9YarK5fO9v/+oDeOjAPO645uWyLEq7ESJRLSeb3T0vROvxgahrh2+1wZHdiTuX9k/sEqJ6MGAtg6Bidhj1fw6nxkVlh1qH86dWuRz1u17jU/LEDmuyeaM91gfSU/ix018P+6TNKTKq1mDJSoGkekCNGTcokYtvBSGY1HSyRU0nR6VOlyFL44Mesmj3I7ImQYMLY3UnEzAnXWIBVKsg+CHDybZlPCGjTvk2iq2FUgU/2nkMAPC6CzZW/V446ibatFslMLvSNT+Z+erd+/HX39sprzF7TZzFbNEy2QSA4x47Fa8UrE42f3dBs8WyHDMbc7IZu8otNj5QmweY0UX9PS57qJ+o1hcEvDc0MZ1hzS8SpZOtI3FR/7qLqi6fcVn4viAjo9FQsMqdt3XCPydb3vjOT1k7aEak6oijfsZlnRACRCQUaHu3WBVR+27BVtMzWzRFP9fGB8r1Wi8uKlwgcZvIph+D/ljRRTERCVlEOr/joqLpwQVbRgG0pz6PPMdDqshmdCdU46LGHHT9iOlk0zQNJwxnkFhsJhvYVCiWNbnpEwuHpIA37bD5ozqT2x3fs8eh1cYHjdQ6VI+zm7GvbKGMhw8sALCKlfWwj/m16rI5Nbc53YiOHpzLuN4/ji3mLGuRWp9TXnEWA1CcSN7jol4bHyx7ENkePDCPpVwJ+3zqJu0FMa8Z9dD4QHwnQrR2c7EBVremfb3pZ022vHJPdWsYYC/N4BepfEmeaxMDMXm/cDrnam1cqt1F2xcXDbkeGzGhyNYHmDbb9l0MYtIWMpR/e4fRxWwRL/nEr/CX337MOBaxqKkeIMSOpR9OtkbiooA1DuqEpfFBhzpLkmpK5Ypjd1ovbFeinoC5iKlXk03TNLmjuWUsKWvjtLPD6N6ZZSxkihiKh3HpqWuqfn/m5DA+8Ybz8Yk3PqdtxwCYn1GzizNN0/DxW57GN+47iGeM2Ia9I9ZStlg1wT62tLpqslmcbD7HRcVYFw42Ji44uUKaQY1cDivROU3TPHUMVUW2eMR7/NncRGr+fpFxWIC1i6QPoqBAuHwiIbMm21y6aN73kpGqhYLoMHrQRyfbQDSEkwzxzk1IErS747l6z29HVzU37MKyQCwIQzWuyxFjQZqMhqquEfvcxSkuKjqSitcRItuGkbjlM/DTyaZpGh4x5nmXnabfm9ohLuVrxEVrNT4QHexVJxvQWFxbvbfHwkGsM8TM4w5CiBr5a3e9XreabJpWfw6rYnWydW8+++CBOTmWNVJGQQgNQoCtVZdN3B/U62bNYAwTA1FoGly7fds3I2qJCkWb69KryDbXhJNtuU5ctFwxHbSdLG0jHYM17gP27sBHF6uj7XYStZxsfsZFZQ1I97nAWNIszeAnc8b8NxkNIREN1WwuIL5zp81Ia3fRdjU+8HZu9zsU2foA1WbbLoSFWuxo2p1s9++bw6G5LG55YgqAOUA4TTrFLpA/cVFhEa8/4AP1PyNLXJROtobRNK2mU6we2UIZ06mcxQU10GhNtvWmyBYLB+X3b3YXdb5pzCwXkCtWEAgAG0cTvtWyqsXBWRFPHZACtp03XrwFF20da9sxAIqTrUa9ulqk8iU5iZd1uoz/F6+9kC0oBar1hdLxpXxHurd2CrVzmN9t55sVF+JSLPanJlsiGjLrU2WKyJcq0slT61oVHUaBxiLgpmjT/GQvV+i8yOZnXDQSCip1YgpyjB112FwSYtixxWzL91gx9sUiIZw8oTfAqlWTDTBrubRrPrLooUREO3CrySYWhIOxsLszwniu6F6nUu1kc6jJJp1s+mcrRDZ7p1LTydb6wmj/bAYLmSKi4SAuPlm//7TD1VAwhK6oQ+MDcd3mS2Up0gghTByP2LhZO2TtcOtNZLPWZ1onnWxONdnUuGi7u4vqf2vY5mRr9G+rUS/7plcnueuZWfnfc+mC53u+WEect1mvBf7E0UXXx+Zc3Moi2bD7uIvIZnRhFo6gWteOvX6g1+LwM0o9P78aHywpjtpONmkTf8st9glUi+THjIjwxtH6TrZMoYylBp1sqVzRVUS1o9ZgdGO0TTXZZpWoKAAMxvTr20nIqlW7Vr3vt6u7KBsfeIMiWx9Qa+d4ZjmP/3rwUMuTAnHjedF2fUdz9/GU5eLbNaXvMC1mi8iXyvKm4CSySSdbneYJXvDiZAsFA/Jv1rsZ5S012SiyNcrf/fBJXPjhW2tOhmrx+1++D5f9/S/xfaNOWTgYsMRIvLB2MCZ3etTzYrhOJFJ0a1s7GEM0HOyIk024TbYoAkQ3EIuzZuOi6qJEXJNCFBHFpPW4qD7BFHVVCqWK77uF3aSdjQ+a7ajoV3dRp7joYrZouQ/UEs9UJ1sj7lSziHLz94uOdhf1cdNLXdQJke3IQlZeM07nwtrBGOKRICpaY/WPnFC/cyH0n7J2oNZTfHNOutGNpgeAe022RQ8bfaIA+3mbqhuHDcXDUHU3cb4nasRFn1acbPbXAvS5VavXu0grnLtxWMaT2uFks3dsBJQ6jMb5r0bnhhMRy4Lc7mSTIm8DIpuIjq03PudpRydbB+Oixjklvu9wKCg/H3sZhlqon0G6UK5bLqVd3P3sjPzvUkXzvJknRMLnnTwOAHjy2JKrQOc2xp9ubLruPu5cl01sdJ5tzElq1a6z12QblJuTtecw6lxgPlOs2cBBYK/JZv/uFpW/me/gWiVXQ/wR2BsfiCYtkzXiouL1ckUzLirO/3q10d799Ydw5Sdvl80vaqHWYHRjrE1xUXEeTEiRzb2mX0aW4HBysqlx0fbUZDMbH3AdXAuKbH1ArcL+N/58Nz7w7cfwXw8daulviF2VU9YOYsNIHBUN2HnEFFLEpA/QHUGeRLYGdtmPLWbxv77+EL71wCHLTdbrhFvUJao38VKPqZ21uFYrOw4toFzR6rZbd6JS0bDj0AKKZQ3/5wdPANDPn0YjQYFAQEZGLSJbwhQGnBC7x2IxG+9ATbbDsgZcd0U2sylEc7tWU4vmokR8vuLmLCZWi0pcdP1IHGuMHbipHq7LNrWY81xDBehMXLRRB49vIpviFBhVXFViB3lyOI6gixsTsDnZGhHZwq0ff6YLTjY/FuKifks0FMT5m0cQDQfx9FQKX71nP4DqpgeAPv75FRnNSddCEO988Tb85M9ejN973kk1n5NwqKflJ90S2UYU96aK7Cwacz+eczaO4M6/fBn+wSH2HwwGLBFScb47OdmE2CXE0/W2Retg1BTsWnWzib9xytpB2eG7PU42Ed9yb3wgaz5GQ3o3bCVm5RYX9XL+CXFC/O1aTjZVKPHy2o8dXsCBJmtlmd1FzcV0MzFsu2DUjY3jxUxRrhUiIf3kVJ1dtRBOtudsHkE0FEQqV5JzpurHOo/xoi7brilnkU3ERc/ZaIhs+ZKrkGd3sonr0W1OCejCnH3M8FKXzn792svXLHbZyVbrXmpvViTmRWtrFOlPRA0RuWDGRUV90flMsaZA/Ox0GhXNuVa4HTGfrxUXbVfjA7NphCGyiZpsDsJuTSdbR+Kitcf81ZRAaQWKbH1ArXiKaF29f6a1ybYY8IfiYTzXiIyqddnUG9hMKq/ERasHCBkXbcDJdsvjU/jJ41O45juP4Q//7QHZtl04b9y6egnM5gfenWyFcgXlLu38rVTE91FvZ8+J6VS+qhlGo/XYBNuNiIDVyVbbraXWOQKgONnaGBc1FsEndVlka7Vg9nFHJ5t+rYmIwELGdLKtGYjKqNNUj9ZlyxRKuOKTt+O3PnOn53HA3l3UT+dAs+KCbHzQolicUybXquDwkFEc/cKtozWfb3GyNeAoi0lXS/MLiVwHnWyNOGnqocZFN44mcPUrtgOA7J48knCeYAtB82iLTjb1cwuHgjhrw3BNIRXw9/07sdQtkU0Iy1VxUXNuVIvNY0lLJFJF3JuioaD8fNcO6Y7sU9YMyOvF3kHQ7mQLBgMYjIq6bK05hIXQtG4oJkVA0WzAL0rlCsQQ6RQXzRqF/sVnLBalA/J4TJFNxKaaiYuKBbeIoqYL5aoIlyoM1Tu359IF/I/P3423fPG+usfghNNYn2jCIWp/bL0OoyUf0iV27tk7C00DTl07gI2j+j3Aq8tbCA0jyQi2G440t5REzkX8OUPGRV1ENmMOdrYhshXLmuucr2DMT8UaRtZprDHfFZttgYApBHuJjNrPv6pu7crfbGdJE5Vi2SwNUUtks9dkE6LimqEaIlvELDMgrncxL1brzzkhxrq9J+qL2iKZUishIzcRm1jH1MKMi+qfw4Acq927iw46Otm6Gxd9ZjqF533kF/jSnfva8rdXEhTZ+oBa3UX3zeiDzok6g7qmabj2u4/h//zgccffmy3qTZHtwQP64ipfKsu/A+gLTb+dbKqd9rZdJ3DFDbfjuw8f9jzhtu+suGE/pnYWFH3k4Dze9uX7scfl5r8SETGAZnbRjyzok53J4Theec56AKarrFHExErtvFOvJpt9YhsLWy3v7aBXRLbhFmv5TCkim7gmxc1ZFLtN5UqYSZk1KUQBa9UF10vsPZFGKlfCscUcjrjsnttRx9mK1lq3VjvNimwxn5xsYkyPq91Fs0XZNe7Ck2rXDZwYiMoYSSPiecI2YW8GcW/sRDdKtRNgq9idE3/84lMskUMnJxtgjnutRJZL5Yrc9IjX2PW3U8tZ7wcLTcamW2XU1ckm4qLNH494rhphikdC+NVfvBQ//JMXSTe3/T3ba7Kpr1XLXeOF40aHzXVDMXndlCqaL2U+BOprOTU+AHQhTIpsxrgho0z5srmAt3UX9VLDMW9z0Q3EwvJv2N1s1u6i7m4nQBe3i2UNh+eznqKBKqVyRQos6vfdTO1lu6iWybs/dz5dwAs++gu8/1s7Gjja+oio6GWnrZGum1mPdcmESDgQDePcjfq498jBharHaZrmGhcVG67HFnNV92NN03DQcBuKuCjg7t6xj8du7lYVKawko1LErbceA6pFcrtgumgR2TrjZFPPvXjUXV6wu+eFqFjbyaZ2F9Xf25rBmNxgcKtxW65oUox91kNctOApLmqtyZYr+hO1FmOVEMYGa3UXreFkmxyO4xVnrcPrL9xUM7bbCrUaH9z1zCxmlvP4xVPH2/K3VxIU2foAtx2uxWxRTgyc7O8q06k8/vP+Q/j3ew44xqPEhTYUj+D52/T6CA/sn0OlomHvibTc3QD0G0i2hsgWM3YQGpl8iAHnFWetw3M2j2ApV8L7v/Wo3AWtN8H1OvG3199qpw37pgcO4fbdJ/DDR4+27W90Gulka0JcEDGAk8aT+NTvXYAP/uZZ+H+vO6ep43jdBZvwB5eejPe9/DT5sxEZiazjZDPOJXHOiIm4pmn44h178bDh3GmVSkXDoR4R2YY81hZxw6kmmxBlVLfFfmNCOz4Yk1GnqTpjk51SuYJHDs770jilFoeUqN0zJ+oL4eWKVrV48LMuW7MOnritvlGzqEKVjMlkivJ6uLBOc45AICAdVrW6kNqx13dpBlUgbDeNLPLrYXYX1UWWcCiIj7/hfISDzqKLQIhsrUSW1fOlEQegn3FZJ7pek802Ror7ST0nWy1EvVD7+Tk2ELUI0vb3bHeyAeZ332rR7umU4WQbjlsWcrWEmkZRx3DVWWJpVqW4yoTjWiy80/mSFCzsIlumWN91Z4+LAsC6YaPD6JI5ltsjfxWtdhJD3axqNHKmlmxQOziaXVO9jyv2a7BWp8Anji5hZrmAXz097fn1vXDXM7rIdumpa6SDZ9azk82sS3XpaRMAgNt3n6h6XLGsSbe5/RoaSUTkdWLf0J5NF5AulBEI6A1jkvK8cj7H1W7PgDfHkyqsCCfXTJ0SFJqmVTvZbN97N+Kioh5bMFDbCRZXSgZUKpr8vmu5rlQRWXUHj9XZMFINGN6cbNXxdDujSk22hUwBr7zx13j1p+/05OKtNU85tqivccQGc63utLVqsgUCAXzxbc/DDW96bt3jaRbpZHMYb8Q8l51HKbL1BW41KPbb3GW1ODxvLijtuwG6Xd/soHXuphEkIiEsZIrYM71cVetgJpWXF2bCQWVvxskmJhZnbxjGd/7XpfjfV54uFx5RpYOkG17rWdht4u3sIiV2d9pdRLdT5Ipl+Z0252TTb0CbxhKIhUN450tOwUVbx5s6lpFEBNf91jk4f/Oo/JmMi2ad6zvUc7I9dGAeH/7RU3j7vz3gy3lxYjmPfKmCUDCADTW6LnUCsUD008kmrtnhREQuivYaY9KagSg2GBON4w3WZPvPBw7hdz53N/7l9mebOlavqPWsvHSumksXUNH0WMgmIxbjZ02PpuOiPohU6vPVxgdPHlvCXLqAaCgoa9rUQkRGG+kYLMXuFpxsXoo1+0XC15psVucEoDcN+eCrz8JYMoIXG42I7Iid+FY63KpjXK0FiR3VNZ4rlnHDrbubboTjRNdEtoSzeJXyWLKiFsNyY6f252x/z5MOTjZxbbYq8Ivi/+uHYwgFA/LY6kUOG0HMF4IBXUAW2JtVLeetQqYQHucyBXnPWmuryaZp9Us95EvV19c62fzAvC+pkT9BrTmAupE3n25M7BTF1gdjYctn0kxc1C6I1hqTxL1qPlP0bQNrPl3As4bw8cJTJmQd1jkPNckA8/iT0TBesn0tAgG9/rMQKwTq2sdpY1+42XZNWe/joh7bxhF9zinOq1Te+Tsr2muyyWYo7u9nVqnDJc7Rek62fMl0EQvR3P7dqX+zU3FRtR5brVrJZnmeChayRSmATtQo0i+eU1ZEuaF4uO6GkXqt7ZtN1y3tYY+IOyG+14oGfOKnu3BgNoOnji3VbQLw8yeP49z/+1N860HnGujCSCDmQbVEtlpOtk5QS3A+YVy/FNkosvUFbjdfNcLp1C1JRS0mal9QqgP+UDyMSCgoO43dv2/W0vQA0G8gGWnzrh7IhDjWyI1cXOgDxsTjfS/fjh+890W47LQJ/P4LttZ9fq1IrYp9d7KdnSXFjWS1dDFVb3bNOKKO2G5AfiMWMhUNSDncHOzdG2M2J5v4vuYzRXy7xUYigCnibBiJy53RbiGjtE3XZDPHF/EaGSXqIT5Tcc2PD0alk+1Yg062J42mGk8ea7y5RiMccBHZvnHfQfz+l++vqqsiNjImBswd67kGF1i1aFZc8BqVr4fa+EAcg5hknbtpuOakVSCu7UYmjkJka6VGppdizX4h3psfIpuMJ9nGhz+8bBse/tsrcIFLRHd8wCjc3IqTTWl60EjzGdVxc/OOo/jUL/bgk7fubvo47HSt8YGx8MoWy5Z5gVpKo+nXFiJbnWtIfc/hYAATDvEruShtQWDVNE3OGdcN6eP0gI/ntcBJ5BLEFZHNHhcVIr24h0ZCAdm8J2FzwdXCjI6Zz1kvmx+Y4/us0hVQzF9rfQ7q/GfWY5F/gdv53UzXYntkvZZAqnZS9FIzzAvi+5kcjmMkGZHnpupk+9YDh3Dnnpmq5xZKFTkfH4jqjiZRqua2XVY3m/iew8GA41zqDJcOo6IxhUgSmHWoajvZRBpHRsg9OdliWDOkv39RNsMNcb4HAqZ4bHcwdiMumlHmALVQmxWJc2kkEXGtSQlYr1uRjBiKR+puGKkbw4VSpW5pDzF219o4ioVDUmT6xv0H5c+duoCq3L9/DqWKhof2O6ddTJHNer4tOzTbyBTcnWydYKBGTTbxndb7PPoBimx9gNvNVxXZlvOlmjZzVWSzO9nEojkQMCdalxiR0Xv3zWHXlL7YPc3o6HgiVTsuKp1sDcRFZSMFJTpx9sZh/Mc7XoC/ec3ZdZ/vdaFpd0tkC+3bIRI331Ujsim1zlqJiwoXkN/EIyF5HjiJgPWcbOrN5ot37mu5KUavREUBc4HYrJOtVlw0EQ1VxbknBmLShdGok03sYh9rc1fSQw4im6ZpuPHnu/Hr3Sfw+dusTjo1tjQu3ST+1Ztr3snmT5fcrBRdQlXHcFGdqKjg9RduxgUnjeK1z9no+e+q7p5mFhOFkrdizX5RqxFRoxRthbZVaglf5sKkeZE3p3zfjWC6xit47MgCgOa7FjvRLZFtKBaG6PmgLnDFvWSoFSdb3FqiwA21Bt+6Id1hZkd+9y0IrEvZkhSgRGfTdnQYFXNAp+iZtUaTTWQz5qEHjIZeEwMxeT2EQ0H5evXqIjpFx4STTW3mI+Zq4wNRT6VH1PO9USebq8jWQEMHQcb2XdWsyaaMFfU25b1id+7YRbZnppdxzXcew//6+kNV5WPU8VOcCy87Yx0A4LZd1khrvU2U012aH4g5hN1Z5HaOy0Y0YSOur0TI3Wp2zSkC7VqPjQ/E5tVgNCxFlionWxdrsnlNDqki25o6BfojoaAUsMX558XJZq9d9+xM7dSBmAfVEvwAU0BVta9lF4ejQGzUO40N6XxJngubxPlmzLs1rfr7Tcu4aHecbLWuBcZFTSiy9QFuUUhVZAOsO3N2ajnZlpUJjuh8Jeqy3b9vTsZFX3SaHl2ZWc5Lq6tzXNRwJjTiZKvhjPNC3OPCxy78tdLRrh5iwO3UDbLdqMJaq3HRdlGrUK2YtIiFjHDmiIm4ahU/MJvBT5+YaulYeqXpAaA2Pmh8UV6paJZJ+aItLjoQqxZlxpIRTDZZk+3Ygv54e2TEb+xxUU3TcHQxJ9/rf9x3wFKDTbapH4opdUT8d7I1WmBdxkVbHMukaKrERQX1mh6oj/veey7zLMoBVndPM2OlOuHtRHdR6eQq+leTrd6CwI7TwuT4Ug5/8p+P4MH9c55eQ0SQGhUmVdf4E4br1M/6id3qLhoMBuTfXMxU3+taqsmWEDXZvMdFJx3qsQH+ONlEVHI4HpYL6oFobZdPM5iF5KvPsYR0kjvUZDMWgMJtLBxC8rke6yI6uVqkky2lOtmESznmSURX76ONRrbdRLZmxHsxZxHiRS2BVD1f6tVw9oooQyNELFE3T9w3xYZ+Kl/CUzZnunDdRUNBOf699Iy1AIA798xYxhTxmcRdxvczJp1FNrMzrdHt0RC0nJIOgOK8DOmPExFyTXOf86rnjtfuoimlzqPpjK5Rk61DJWdyhdpipkDcs0sVTYrVa2o0PZDPM173eJNONqB+XTbpRqzjGh5Vmq6J86/eukZ8J04im1hjD8fNZEciEpIbN/ZrU6a3uhQXlU62QnXThxlj0yFTKLdsNljpUGTrA9y6mYki44Jau1NqTTb7ICUnkYqi/pwto4iGgziRyuOosRt0mSGy6U42Y4HtcNMTk9FGJoFiAGo2ny4G/WwdN4e9EG67bl65ojlx7NQNst2o7jA3J9u//novfvuzdzl2eTrSZicboLZcrz737CKGWPCIibg4B8VN8V9+vddTIVQ3hIizpQdENrF4WcrV7prmxGy6YGl8IhyNssNwJGwRZUaTEYRDQblIXMwWG7oGhLg2nco33LnNK6WyNXawlNMLbD+iNL3IFSuWFuaqyDbhw0LXTtNOtnDjizMnZE22aAiDsbDFRVOv6UErBJX6TM00bxDHHQoG5GKznfjlZNM0TS4kG42TjzmIbD989Ch++OhRyzlbi2YjtmYtlxKePqYvauvVxmoEeR24dFZtJ06Fzk2Rrf1ONi8iW71C4V4Q8X+1e6n8XttQk80puiUdY4WKWRM4LrqLGnFRY45rX8B7bb7hVJ9pbS0n22DUUxxcdfU3Gtl2E5HFhnUjyQcxDxe1sGrHRdvpZNPnOPauxwdnzXXH/fus4r+ZXjG/m3M3jmDNYBTpQhkPHjAfX2+sEimbmeWCZWNMdZkBDTjZlHrQYo3jNKcUfxPQzx2vIps0NsTDruey+n212tTIK167dKudRw/N6eeAF5EtKR1w+vvRnWy1Sx/Y6+ftrdNhVDjZanUXBcxz9cqz1+OUNQMA6ju3pMjmMDaINbY63w8EAkodQPO1S+VKRzuiO6E2p7JrC+r56+f9YCVCka0PkFFI5cLWNA37DLFMLHBrNT9QF5RHFrKWm4zTJDIeCcn6CIBec0GNi9bK7m8xbrhqHKse6RqdVryQiJr1PWohdjnEBKddUU51Arxq4qK56nPGzk0PHsKjhxaq3BTzmaL8HDa2UWSTTgRPcVHrDV9EL646dwNi4SAePbSA+/Z5c4U40UtxUSF8lytaw+ejWIwElChVpaKZIpvNySYmtEMxcwLp1c2WzpfkeaZp9Ru6NMuxxRxKFQ3RUBBbxvXz8ZnpZTxycAEA5KTr3+85IF0tzk42P0U2/X03KrKJekOtOtmyisgWCARknGLTaMKyGG8HcVt0uxFUB14jtcWaJRnxp3aVKlzX6uTmxLghBqXyJbkwnDI2w2Y9Fh0Xn3WsQZFNiCNPHluS50zBJ0e4pmldi4uqf1Nd4IoNI+FGa4YzN+hOm1PXDtZ83FA8IsfZyWHn+6T47huNKaqYnUXNhbFYDDbS3bIetZyaahmUZdtGr+qyAKoX8J4bXclzvNrJpt5bxDi+xnNcVHGyNXgP8DMuKj4fIRzWeq56nP6JbFYnm+guKeKiqlv8QVsdKycnTzAYwOWni8ioWZctV0eQSEbDcp61+7gpwoj3PO5RZCs41BCUwrtLNF89d8T3UG/esqSkh6TIZnOQ9nJcNBoKynFKnAP14qJAtUg6bOku6vz5irWG2POzlzuy46UmGwC89QVb8eLta/C3rznbc2MwL042e81pp3NOXB+hYEA6+TpNPBJ0dNllCiXLONLvddkosvUBTjXZZtMFpPIlBALARUaUR+2WpKJpmozqCXeCGjVNubSoF3XZAN2OLW4g6UJZTuSdnGdbJ/Sb3YEGRDa5YG/SyVariKNA0zS5sykmOE43rwOzaRxdaC2qZhHZGlyMaZrWkoOqXSzZdvedjlF8/vablRB51wzGGq4B1Ahe4qIjbk4243vaMp7EGy/eDAD4+5887VqLox69FBdNRkPy2ld34b0gRDYhnmeLZcsiQ218AJi76oFAQNZlm/JYX80eEW1XZFQIoJvHEzh9nb4AfnZ6WTrZ3vuy03Dm5BCW8yX82937AZg12dYOxpSFrj8im6ZppsOhQQeP2V20xZpstqiIOI52utgEYkxoKi7qsVizX6j341bGadWl2WhcdDgRkRNk4aYUC2ev8TXTHdLY3xaLQrXshF9OtkyhLMXHbohs0gmtfIZ+ONkuPXUN7rjmZfjbOvVlQ8GAFJomR5ydIWOG86OVzrL2pgdA7W5zzeLW2AOwxo7NuKioyWa9lqtENpd0hx3PNdlkh0g1Lup+n1TnQs2KbPZIvunyacTJZhXZas1/1XPar80ru5NN3Pvn0gVUKpplDfDA/jnLeCkcMnbhTERG1bpsYn1Qa+54ylp9Y+zgnLm2UR2KgLlOcHMsOZ2vck7p0vxgVomkCqFpPlOs6cJX49HJmPOmzVI3RDaP99JAICAd9I042ezlhYbiEXMuVScuKuru1YuLeukuCgCvOncSX3v7JdgynpRjez1ByYuTTVwLAtn8QHltUdppzWBUlmjqNIFAQCkRoAiAtk26fq/LRpGtD3Da4RIi2caRhLSnuu1OnVjOI1+qIBgAnrN5BIB1guxWc+T5ish25uQQBqIhuaATzhSnnSUhKqhOtkpFww92HHEVr1rttOKl5lSposkil24iW65Yxqs/dSd++7N3WcSVXzx1HNd+9zHPN7vZJp1sz0yncM7//Sk+88tnPD+nU6jCSllxMqmIwdpeCPvIgn4utLMeG6C0XLdNiMoVTZ7nbk426aaMhvCnL9+OgWgIOw4t4AePHmn4OHLFsozk9EJcNBAIKLt1jTkgxPs41ZjEAub1HwjoIo9a32JC2dEUkSevorW92UG7mh+oAqhw6D55LIXHjRpTF20dw/tefhoA4Kv37EepXMEJYxPD4mTzKS6aK1aqXLZeaUWgsh8DYN5vxA7rhSeNtvS6XjDfQ+NiTSc7iwLmPU/TWhM21ZpDjcZcQ8GAvOaEo0lssnkVfptufODweL9qsomFbCQU6Nj3qTLq4IRectmEbJQt40nHRgZ2hLg9OeLiZKtTKNwLYpEnBCdA7S7qf1zUSUSWLufFrNn4IG51sgnsLhmvkW2nBfc6Y+MnXTDFPbNDZNRTFFXdRGy0ZIDYALTX3lS79npB0zQpVImC+7Vrspnn9AmXDflG0DTNtfFBuaJhKVe0rAFm0wXL5r5wbiVt3/VLtq9FMKA70sSY5mWMF+fyjCISuMVF3cSUooPz0kl4V5lV3HJjyai8xmuJr2o8Ohlx/t674WTLNXAvFefr4QVRN9GDyGbb0BmMhR1LH6iI8fd8Y+06ncrXnMOKTfNGNq4GHSKdjsfSjJMtXi3sTitzyW5imlPM93PCFnVutlnaaoEiWx+QcNjhEjerbWsG5IXq1vhAXPyTw3GcMTkMwGq5FQPLoG2n9sKTxuQN44zJIQQCgapBwVFkM5xsM8sFObD87Mnj+LNv7sCHfvik4zG2WgRysM4OFWDdbZdxUdtEamY5j+V8CSdSectN7oZbd+M/7z+Ee56d9XQ8al2IRkS2e/fOIVMo44t37vO1mLQf2B1QTnXXhBvMfhOUN6A2RkUB97iouitY7WSzNj4YiIWxbjiO97xMF1k+9pNdDS88xPsdjIUx1oXaQk4MK3XZGkEIahtGE3KhKcSvpBHRUxcMYqINmLvLe2zNVtwQTQ/c/t8vDjiIbLc8fgyFUgVjyQi2TiTxqnMmMT4QxVy6gPv2zVniovbaM60iztdQMNBw8xe/uouKc1zcb37/hVvxotPW4Lca6BTaLKYbrwUnW4dEGVWUakWQEKJqIABP4oudMdnh1upkm88UPLlvG1lQqTi5HPxysolo9kgi2pHorx17NKxS0eScYrgFJ1sjnLNhBMEAcN6mEcffq86PZl3WTos8s7uofwv6fA2R7cXbdcfSl+/cL4WKwZibyGaPi3qLbDtFxwZjYTnGigYAs4oYk1ghcdF8qSI3jdWUiRuWxgc+ONnm0gVki2UEAsCGUV24jIaDco4wncpXxUkfUMqIpF3qOo8kIxgfEA0UjOZhHhxW4hwR92lN09zjoi7jtnNc1L0ESb5kdsYVriTxt2q5BYXINxwPOzrZiuWK5bvsVMmZRjasRIkHMUfzVpPNvK5DwQCS0ZA5l6rjZNs4mpB/o5abrVYdSDekEFZjblyuaHKt7Oxks7o65Ws7rE1PODiJu4EwtajHNmM7b/3sNr0SocjWByQd4qKqyCZ2cNziokeUi18sKK1ONued2oFYGK88Zz0GY2G88NQJAOaOmXls1aLYcDwib0xiJ+vRwwsAnONfap2oZotAesnUq6KVEAXsBUXVCabqRhODolvBfzvWuKj3BYg4/sVsEXc9O+P5eZ3A/t7tn3W+VJGdaKrioh3oLAqoiyTrDVtMkAaiIVlkXHYXLVobH4gbz9tftA2bxxKYWsrhn2/f29BxHFKaHnRjseiEuEa8nsMCsRCZHI7LhYGYWInFjlNNNgA40xD1n56ydhZz42hVXLRzTjax03/BSWMIBAIIh4K48uz1AICfPH5MmRjFzI5YPotsI4lIw+eLmOwWypWWOkHZJ9i//dxN+Po7LpGd2dpJS3HRYv0FmJ+EggE5gW+lLluxrH9Xen2bxscIe5fJE8YmW0Xzdo0LF14vOdnM66A7HdfMaJj+mS4XSlLIaNXJ5pVPv/kC3Hvtb2DbmgHH34t7nNfv2Ylph8YHba3J5hAX/d3nbcGGkTimlnJyPjrk6mSzzTtl04Q63UVdiqCL9y1c2tLxNBjzVO9N/dwbdRTW6y7qdQxUF7/CPe723RXLFcuczG1DvhGEqLB+KG5xCorv6omjiyiW9bqnrzlf36h5QKnLVqtEzJDN/eNF/LHXQ1vOl+T5J2KsZlzU+TMuGGNyxBIXda/JNqfU1hIivBT7ajQ/EO9LrcmmCn92Qa/VUhBeEWsVty6uKuIxIt4/4aEmm3qvGYyFEQiYNckWs0XH+UtKqV8nNm33zrhv2jpFxOsxJM8L83N/9sQyvvXgIbmRoW7UO4meh2yCssCpJtt0qtpJ3A1q1YsTMC5KVj1xhx2u/YbIdvKaAWl/d9s5ETfDTWMJGfmyONlqtKj/p//vAjzwwVdgw4i1Rbcg6RLv3GpE5A4Y3YV2T6Usf0tFHbDskyuvSLuvB5EtHAxIIcU+kVIHWXED1TRNLmS8WmdVy3ojC0f17//osWOen9cJlmq4wwDYmmlYf9eJzqKAu5PNaWIbs3U0tHe4jUdC+OvfPAsA8M+3PYuv33vAcw0mU8Rp7/tthHqxBzeEk239cExOJKcMMUxcR6OqyKaMEWdO6nU0dhnXfz2EeCcEhKml9tZkO2k8iVPXWYuRX6A0fHnVuZMAgJ/snJIOwLWDcXl8qVzJlw6orRR7Vyeu+SYL0FcqmhkX7UK3q7gtut0InY6LAs4bX41Sq16VF1ShN1soW6Iu9omyE16LXNtxOj8KPnUB7mbTA0AdI/XjEPf7aCjY1lqiKpFQUM7pnIiGg3JR2KzILxsfOMRFa7mhGqVWXDQeCeFPXr7d8jNRG6mqJtuQS1zUc0026+uttW1Mz8i6Wt7ioqqrfzZdaKg2o6uTzWPHVIFZpyxo1pRyEY/sAtHMcr5pF6TALR4n7o2iidDmsQQuOUUvPWNxssn5VvV1JR02OZvIVuPeZBfZxLWRiITk88y4qLM4XXCIGtrHBBVZ823ArK0ljsPuCFJZUuo8DjiIuvb5a6udrL3SmJPNdk010F0UMNeb4vPVNGe3oFhLDMcjsnFMLSebKax7H6+d3GZ/+/3Hcc23H8M9e/X00mINkS2VK8rzw349OHUX7bm4qCLw2s9bNj4gqx6n7qLCyXaKxcnmJrKZCrtwbeybSaNkTIzVQcxOJBS03Niq4qIuA9kWW122p41FttPOq+jqqDoEGmXIQ002NasvP9OSXWQz/1/cpJdyJek68Krqz6WtcVGvkzBVxPvpE1NNL5rbgV1gtP+/6gJ0c7LZb0B+49b4QNwg1VijGbPTj1tMWtXW1ledO4lXn78BhXIFf/P9x/HebzzsOBGw00tNDwTjsihxczXZ1qtONhEXdXCyqXHR0w2R7dhiTkbBanHMEPREHbCjbYqLyu9nIonheATrlS57F5xkFvq/9NQ1GIqHpWgRDQUxnNAbPdgLz7eC0/npFXXxr4pUT08t4ZpvPyqvvVqocb9u1MKKN+jiUMnaYq6dIOkxrlYLIc5GmrznqbW57C52L+4asyZbc40PAFOkKVc0OZ9ohaUui2z2TZqUD51F28GYzcXYKNJJoYh5ZpfD6jnO7HIejx9ZbPjv1BLZAOCNF2+W3Z0B895rdzfZN3fjHgUpt06Dwsk2vZS3RP70uKj+t90EPE3TLPPMfKnSkNjudo57iamqiPc+EDXjr07fHWBurOnuId191Go9UXsUVDBhE9lOmkjiwpPGEAjom+7CGS+P32Gj3l4jK+OhJMBam4Ns1hYVBcxYoFskWnUXC0Zt7laVWVvNN8CsHzhTo8uz6mRLOIjb9vlrp9YB8l7aQE02gafGBxFVZNM/10goiOG4+6aBagJxMonY8dpdVGVQpjzM60fMccV5rs77CyVrakDMsUaTkaoGOU5usRM94mQT46wlLmpzYNLJtgr53Oc+h23btiEej+Oiiy7CHXfc0e1D6iriQhA330pFw/5Zxck2ZHb0cXJVqALHxpEEEpEQimUNh4ydKHXAr4cqskVDQYRdduHNDqNppHJFeQxO9aDS0jYeajpa10hcNBY2d6Vzdieb8nwx4Kv11bzm09WbRbmiyZt3PdS/n8qVcOee3omM2gVS+/+ruyHdi4v64WQzJwKBQACf/v8uwN+8+ixEQgH8eOcUrv3uY3WPoydFNlnDqbGoyHHpZHMS2YxOlBYnmznhHI5HpHvRS2T0mHGeCKHLa1fSRljMmruOomOq2HwIBIDzt5i1kKLhIK44a738/7VDMQQCAcfC860eE9CcuBAKBuSiQBWpPvurZ/GtBw/jvx48VPc11IVdpxw7KnF5LfZ+d1H1b7VUk61FJ5s4/+YyhaoNNi8Op2YdgOr5cYHSFMMPN1uvOdmEY6mVzqLtQDZeaWLsWc6XpGhhcbLFnJ1smqbh9798P177mTsbFtqcnEEqkVAQf/Ybp8v/F4tddS4aDJiuTYEZF228uygAS4kVMX6HjchfIhqs+drpQhlifS02WhpxFLp3Fw3X/Lt2xNiTjIVkXS83F6IohbBmMCpr+tmTL3PpAl732bvwt99/3NPC2q0Glbj/P3VMv9+fNJ7ESCIiS0eIyKjZXbR63TEY0z8bMSfLNeNkU5pZCOp2F63R+MBpk1DMpdS/IcQ+u1ihopboMZ1s5jEJIVY4VjvuZPMSF1U2ZwaiIU/PSTg42YDq0gcq5mcVMeOitZxszdRkc2iIIYRpIZZWuQuVOdPhOXcTgWN3UaW+bzcZjAlx3nwvM4yLWlh1IttNN92Eq6++Gh/84AfxyCOP4MUvfjGuuuoqHDx4sNuH1jXEJLhU0VAoVXA8lUOuWEEoGMDmsQTGklGEjbu908Au46KjSQSDATlQiToYteKidtTdCreoKGCKCwfnsth93Nx1KJQqVW4Fs6tj87vF9hoOTqhFeOMuu4bWuKjVdg40FxdV/87xpRxe/PFf4p9+vsfxeUKEFDs7vRQZFTd+UXDbLpiqAqQaJU3nS3LR0u646GjCrO+gsuCweLM72WQhXpvYHAwG8I4Xn4Kv/tHzAQA/f3K6rtgqHJybe0lka8LJli+V5fm/fjguHR2itqIQ2dQFg6h/Ijhrg+5me9pDZFSIdxcaItt0KueLQ0ZFfDdrBqPyuz7NiCFsXzdY5egVkVHA2kHLXni+FVoVF2IOjQMePbQAwL2zq+rIEAu2aDjYVBH+Vmmlu2hGOLLCnRPZvHY3rEVBOtma+7zHB/RzZT5dqKqx5MXhlG+yJpu6KFZdn6023gC6L7LJ+ktZUR7Cn86ifiM2TJrpMCqcRIOxsOVel3QRju9+dhZPHF2CpgF3PdPYpp84x2M1hOTXPXcjXnP+BvzuxVvk2KvOLccHolVjkpdIJ+AeHVNrsok585gR+UvW6bIq5jaRUEAWLve60aIWtK+OizZW51HWNIuEzcWyyzGL8WA0GVWistYx4/59s9hxaAFfu/cArvqnX+P+fXNVr6Pi7mTTX1/U6hJrgYu36mPFIwd1kS0jm51Vjz9DtkL0WRmNrS+y6SJyqarpAWCKCk7rhHJFk+4kp5psTmOq7EqrzHnsDRicWFbWXEJ4Ut11Yhxcb3Rnt9eO9osv37kPP3z0qPz/bAP3BHVzxktnUcAqsg0rY6rYNJh1cP+p69PJYf1cq+USbKbxgRm31v9WpaLJ70CMDws1IrzyWhitnu+b3UWVDp5SZOt24wMHJ5txbBuMc48i2yrjhhtuwNvf/na84x3vwFlnnYUbb7wRW7Zswec///luH1rXiEfNrzlbLGP/jFFUfSyBSCiIYDAgB3b7ZFtvs229GYpcu7DcqvUB6mHpRlVjID5pXBfyDs6msfu4dXFtF6rkZKGGaFcPceyZQtl1Ua7W50i4LOqWHRofqPVtmnGy6X9Hf92HD8zj0FwW33JxlwiR73cu2AQAuPXJ4x1r310PcZ4IN1pVTTblpqN+x8LFNhwPt90R4BYXdYpoxGzdReWkz8XR+cJTJrB1IolCuYI7ajgMNU2z1PzqFcSivBEnm5gMRENBjCUj8vObsjnZhuIRJCIhhIIBS/QS0DsTA/VFtlSuKG/o520eQTgYQEVrrRPa//3B43j/t3ZY4tpqUwrBpaetAQD8huJaE7zk9LXyfap1R/zsMNpqwXd73c6FTEG6Kd2aR1x38xM477qf4f59c013mvSLVrqLNrJJ5BeNRrucKBrjTqTVmmyZYlVc1IuQ3qwDUD1Hzt80IgWQ1eRkW7TVZOtUZ1GvjNXpyFcLEf+3R5UGotWLQQD4yl375X8/fHAejVAvLgoA4VAQn3nzhfjYG86XP1OdbE4xtIQt3eGGW3Rs3bDpZJuzRf7qdflcUpw14h4w6/Geqm7+2edC9WKqdqTzPhaSwqDb/FS4csYHojIiLMRWgVpn7tBcFr/7hXtwn1GPCgD2nljGZX//S3zxDr0JlJuTTRW1AHMOJNItU7a4aNJhvmWPi3px3Q7GwvI+MpMqOMdFbQ45FTUF5FiTzaFMiNPfqOXKEqTUmmyx6u9dnCeTxnelp2H8FdqmFnP40H8/ib/8jpnMyCqponqowvWE7Tt3I+kQFwXMe5l9TQFY7+8DdcRkwL0OYy3som4qV5JuVVcnm0Vkc3eymUKW/nxN03q68YEQFcX16tVYslpZVSJboVDAQw89hCuvvNLy8yuvvBJ3332343Py+TyWlpYs/6w2oiHTXZArlmV8SzQjANRJQ7UFPFesWNps2zuMNrJbq4pstSbnJxkX6OH5LJ48av1OqmKGPjjZ1EmZW70FtSabq5PNIS6qLqK912Sz3mDFhEI8/8hC1rF+nPj95WesxeRwHKl8CZ/55TMNFdZtF+IGKNxobt8jYK2NJ0TeTWPtF5xGjAlRtli21LFwimiIiXfeqJnn1lJeEAgE8Btn6iLMz5867noMc+kC0gW9tX27nXuNIJxsjcQbxVizbliPSYrFrxBUxTUbCgbw+bdeiE//3gUyxiY4w2OHUSEGjSQiGIyFpdug2Q6jx5dy+Oo9B/Ddh49YOn0dMMSnrYrI9spzJvGLv7gc77/i9KrXiUdCeNmZ6wBYx7+xZPMLXTut1qLaYkzunjQiOo8dNmNdTpHbO/fM4Kv3HAAA3PPsrOwq1mx351ZppbtoN4QZr06aWjjV/2kEa002+32//qJf3PsarYMaj+iCezwSxDmbRuTx++lka6Y2oR+I+ktLuRLKFU0RVHrNyWZ+943iVnQ7KaNDqtiSwS+eNu91Dx9caGgu4kVkcyIWDsoopqPIFqkd6RS4x0X1e8vB2Qw+8dNdAMxNFzGvdRuLUkrawIugoiLO76F4uMqd56WrqYq4fpPRkNm0wmXuK0T30WREbhTZxwxxrr/irHW4/PS10DTgB4rL6XuPHMGRhSz+6Rd7kCmUXIUFe5fJrRP6hrsU94y/m6kx3xqwRezU9+pGIBAwI6PLOTPKqQhAAzWcbGpdUktNthpxUVFKZo1aIkMZQ9yw1GSLCCebGlU0nGxKzcRWNnScEGJKplCW53ojm20WJ5vHDuRucVG3unfliiY/q6F4xLxGimXXxh1N1WSzObrU4xDfsV0AVL8Pt86igBn5FdfmUrYkx8Vux0WdGh8I4fhk47r1aixZrawqkW1mZgblchnr11vdBOvXr8fU1JTjcz760Y9iZGRE/rNly5ZOHGpHCQQClt01WTRRcYyss3VLEogb4bqhmFT2hci2xxDZxI3MU002ZTCt1Ql0cjiOaCiIUkXDbbunLb+rKpgvazM0v8CLhoNyUHVra6/aiIU1vyq6WqgW2dSabF5EtlyxLB8Xt00G1QFLfP4q6s75e19+GgDgM796Bn9/y9NdFdpyxbKchIidy+rGB8412TrVWRTQb2hi7qruPIkJkmNctFRBrliRO1e1zutXnK2LLb96etqx3Thg1mObHI53pb6VG2OGk83rrjtguh7Ejqp98atOml56xjr85nkbql7jLMPJtnsqVbOjmYg1Cpu6+LeIpjaKKLwMWHfp3erlnbp20NVV9P4rTscrzlqP//mCrfJnqsjRKq0KRZeeqjvx7nlWdx7sPOIusmULZfz193bK/z+ykOlKh06VlSeytV4rp1CuXa+qHmOKk1KI4WYB6fpCupc6R04EAgF8610vxHf+16UYSUSkI1i8n1ZYkJsh3pwRfqOeQ0vZYldckl5opfHBCYemB4C5YaIKx1+79wA0DXj+yeMIBwM4kcrjaAObHnlR46pBITkQCMjjWTNYfS7Ui3TKv+/iahFz56OLOew8soiJgSiueeUZxmvXcbIpQnCjtfFqjVVqx1S3uV6uWJbzDrFoT0ZNh09W+b2KcLKNJaPyvdvjjOJ9bRxN4C2XnAQAFifbvcZ/p3IlfP3eA8gWy5bNe4G9XIRobCFrlRl/16zFXH1tDcWtDhvpuq1zf1qrRDVNl5l5PGKNky9Vqpxh6v9HQqYAOioj5MWq70XMj1SRSXy3Tq4sgdiEHoybkW2n7qJ6DVj9Z34nWtR1UsomZnqZt6o12ZqJi6pj6ohLB1d1vaXXr9Ofo2nu9VvlNd9AQ59BWdO7WHUcQoysWZPNWONscUiuiHNOPP/Esnmv7vb6QIw5wr1cLFfkez95zYDxO4psqw578XtN01wL4l977bVYXFyU/xw6VL/I80pEOq8KZXMnUhnYRbbbHhd1snSfvt5wsh1PGXV5vEci1JtJrRueqBcH6NZzwLxx2W8+9WJ6XqlXl81Sky3svKhTxSFRH2C2QSebEOciIXNnTQzIaqRyt0N8Tgqe8TD+5wu24m9fczYA4F9u34sP/+ipun+7XYjPJRAwxY+quKjy2SwXSlJQEZPyTbbJWDsIBgNSCFJ3Hms2PlBEUaD2ef28k8dlt8kdh5yjMwcd4oi9wISsyeZ9YSYEGrGjal8ceLlmT14zgGgoiHShXLPTpXCsSZHNEGWbbX6ww6hJBliv2yMuMZdanLp2EF9828U4e+Ow/NlYW+KizYpsEwCAu5+dgaZpsh4boEduVGfpjb/YLc9RQHfVNjK5bget1GTrRkfKhA9OtkKpuv5PI0g3U6YgF8yiuLgX8aUVYXX7+iGcs1FvECKdbD7UDep2XDQcCkrnwUK2aIkG9hLjLTQ+cIsqCaFGbDRmCiV88369FvIfv+QUnLVBP7cePuA9Mtqsk00/HiGyOcVFG+wualtwqw6h8YEo/uOdl2D7en0zyGtcdDgekS4prxstbk0PAPM9lSuaY/R6MVPEK264Ha/+1B2oVDSz8UE0ZLkPOzme5qXIFnHdkF9S1gHP3zaOQAB49kQaJ1J55IplPHrI3Lj5/G3PAgDWD8WrBEw1Orl2KCZFNHvaRjgma3UXXbaJbPE6GwJq8wN7DFj/W2rixTqXVxvRqOtN8V2priqBcDCpcz1Rt9ZNZNM01Z0VlkJHulCSIp56nsi1SsHfuKh6fGJ+0EgJgaacbC5xUVXIVBGfUzSkp4/U57smlorie2wgLqqcb5qmWY5DrAPtTkbnuGj1nFKcG/tn0npUdMl5k6MbiOtMXIvivarr92XGRVcPa9asQSgUqnKtTU9PV7nbBLFYDMPDw5Z/ViPmLlepppPthK3xwZGFahvr1okBREIBpAtlHJwzXQxedmsT0ZAckOo5z0RkFNDFmbONSVo7nGyAOWi7ZcjVm2hc2TW0HItyE3WKi3qxzoqBanwgiqRRZ0OIeeqxqQ0hBGqtBgB4+4u24SO/cy4CAeBLd+6TRWM7jZhYDsbC0mVQ/T2an6Wm6UIbYDoBO2WNFtZzi5PNIYakOtnUCWuwRuH3SCiIl52hu9l+/tS042Nkza8OxGMbQUx+F7JFVxeeHTUuClQ72bxcs5FQULpnRccxJ6TIZohrppOtWZHNvFZUkUlMoOy1YxplogU3iZ1WxYULt44hGg7i+FIee2fSlrgoYAqVz55Yxhfv2AdAXzgDuugoOpt1skOnSis12bohspmND5qfgBabdPkIhMibKZTlmHOm0WTEi/DbbOMDO/balq3Qje/SjumqKPRuTTbR+MBh7Pm3u/bhoz9+ytUNNS27RdviosIdZixef7xzCku5EraMJ/CyM9fhQqOTrOoQrkcrIpuIr044LOCTdSKdAtn4wPb3B2NhPGfzCNYNxfD1t18ixWmgflzU7DgbbrhkQK3zWxUQMg4CwhfueBaH57N4eiqFmXTerGkWDVvitU5zVNFddDQZlVFZ+4a8OUfS53hnGKLj/fvm8PDBeRTKFYwmIwgFA/L1nOJxqvNQdYvbGxPUcrI1U5NN/RuqyKbe5yMhM/FiF8zEeKy62AB9fBTPUR1OlYpmOpiUuZ4YK5Zy1c43QB+vxfRrKBaR53JFM8dQdT4g741NdN6uheruF+NcI3FR9b6x1sFt6kTSLS6qjLkq9lJGwaCZ6nJzkctmK0042Sqa/v2oxzGXKaBUrjg42fTPbClXlL/b5HA9bFszgHAwgFS+hKOLObOzqEdhsp3YGx8I1974QNRcT9PJtnqIRqO46KKLcOutt1p+fuutt+LSSy/t0lH1BubAUnFs/yt3iVycbGpULxIK4pQ1+qJXLWQ76DESIazBTgVLVdQb7MkTA/J47bXIMrb6Ts0yaCswaUfGRSO1Gh9YRTZN0ywdb7yo+rOyFkTMFPMc4qL2hhD5UlneINTo7lsu2Yr/ceFmAMDHb9nVldiojEjEI/KGV6smG2DeuOccbPvtxKn5gVN3UTFxKlU0OeHw4sx6xdlGXbYnneuyucURu42YyGha9WTGjX0zeqt08V7si02vwviZRmR0V43mB8cMl9tGQ1ybHG4+LlquaNipCE2qIJzKWiduzSIXWD462ZqtRRWPhHCR0enxBzuOYmoph2DAXAQJofLevbMoVzRcsm0cv/9CPfp6dCEnd4W7FhcVu/VNCDXdqOPlj5NNdBdtbho3rNR1EnUGRZORdjvZVIRIWFgFTjbAWuh8yaexwm/GXGqyLeWK+NB/P4l/+fVeV9ew2fjAOS5aKFdQKFVkLd1Xnj2JUDAgO8k+4uLgdqIVkW1QOtmqF/Berz+54Hb4+999z2W44y9fZnEnA/XjoinFySabCTl0O9Q0rao8woJD2QpBJBSUwqd9bngilceX79wv///IfFYR2UKWeK2TyOYYF112jouKY7tk2zgA4L59s7hvr95p9CXb1+I3jPqkgLPINqaIWmrd0yGlMcGJVN6syebgZDNrsunH5FX8kZ09l/PmZrft/HFLvNQ6V2VdNkVomU7lUShVEAoGLJFZ8fkVy5qjM1vMRcLBAOKRoEVkFN/polETbCQRqSsqNUutuGijIpuTEF7vORYnm0tc1Cmub3fc2sk3UWtUNO0C9PNCPQ5N00Xq6sYH+ncrkhGjyYhjyaVoOIhT1urRy91TKUeTTLcYtNVkm1k2489OTRH6kVUlsgHA+9//fnzxi1/El7/8ZTz11FP48z//cxw8eBDvfve7u31oXUV1XsmLVJkkif8+YbOAy3pYtpvhaUZk9CHD+h+PBD3HVoQCX6u7KGAVGc5YP2TZ4VFRuyS1wpDM1deJi4aClvitinrjLZQrWM6XXOOidz8zg+d95Oe45fFjlteQNvXBqFmgt1gtsu2q0XXVPlhf/YrtiIaCuGfvLO58xr2zpZ+UymbdChklSETk91irJhtgTtpmlqt3FNvJSLLaeu7YXVSJOQhh1K3pgcrlp69FOBjAnullHJhNV/1exKNPmuidpgeAPokX79+r++oZowOxcKLZFwdOu9BOCIdNrQ6jQgiaNBq6bBxt3sm2Zzpl63arnAs5f0SZRote18IPcUFERv/9nv0A9O9MdJIWTra9J/Tz9ZyNI5gcjiMUDKBQrkhhuHtOthVWk81wKGda6S4qnWzuztlaBAIBKbaIfRchZjst+u2Iz7qRHX8nxDjaqpNN07TeENmM6NJipndrssm4qG3seejAvHTJ2BeFAhETtMdF1flXtlCWUTiRSLjAcLI9cWTJ0lSoFq24NZ9/8jjikSAu3DpW9bt6kU6B6WSrHtdCwYDjz0WXT/e4qJgLhV27vM6nC3jeR36O937jYcvP653fFxnv9UFbJPezv3rGkro4spCtahwghCmn4xZz0rEBJS66lLds2KoxWAC45BT9fnLf3jnct0+vx/aCUybwe88/ST7HKR6nzjPUGKWlMUEqb6kpZ8esyaY/Roo/nuOiBce4KKAUe7eLbNLJ5iCyiTijIr6I62PDSNzynGTUFGycrkFhAhiMhxEIBIzzUH+++E6tTrbm7421UI9NxkXl51z/eo03ERdVv2tLTTaHjXH1uFRBrp7A3kx30UAgYLonc6Wq45hZzsvPSzhGxWcl5n+1PgPR/GvX8ZTr+NsNzGtBfy9irbZmMFq3/FK/sOpEtt/93d/FjTfeiA996EN47nOfi1//+tf48Y9/jK1bt9Z/8iomKScVJceaGmadBevu1NSStc6R4PR1+mT84QMLABqrOSJuZHXjosoN9vTJIVcRzG8nm3tc1FxUJFxuXHan2ny6aOnUJjL7AHDb7hM4kcrje48csTxHjYvKXaiitbsoYLW0q397QLlJCzaPJfFmoxjtJ37afjdbpaLh1Z+6E6/85K9RLFcUJ1vYdLLZa7LZbnp2J5u961S7qBUXVQtqqztd4kbpRTQaSeg1SwDgVgc3W6862QBzcTbrYRFeKFVwYFZ/L+4im7eJjJcOo8KxJp1shth2bKFxkW2HLdKkjgmqYNwKYw18lvXwQ1x4oSGyiQnieZtGqyK3ew3R9JS1AwiHgtItKMTU7jU+aC4uqmma/D67Exf1QWRr0skGQDppAD3mJBzqqXyprrPMNydb2B8nW7pgFm3vnbhod7uduiHGnsVsESWlftf9++bkf7vNg6ZdnBSRUFB+l2mH7pEnjScxPhBFoVzBE0fdx3GVWk6yevzNa87Gjv9zpdwoUJGNR+rFRZvoNFgviqq6+t26vD50YB4zywX85PEp2V0dqO+6vWirPq9Q694dWcjiG/fptfHEnOKw4mRLGJ+FEEmdnWz63x1LRi11gtX5qHDzi2MTc5xdx1NynXDJKeN4yelr5T1aNDWwI4StrRPWOZCMqqpOthpxUXF88r16bHxwSCmDY9/cFX9v2RbJreVkk2OC0nXSrSxIIBCQDWicmrAtObqzrAKpo8jmg1PYchwWkc36OTfc+MDj3F79/oYtcVFzPFNxdLLVaHpSKldQMu4hjY456jln73I6u1ywNKMAzLHHy0bMGYapZddUyjGJ1i3MxgfVTjZ7h99+ZdWJbADwnve8B/v370c+n8dDDz2El7zkJd0+pK4j1PvFbLHqYlf/+0Qqb7Goi2jAeluRRdH8QCx6G9mpFQu3kTodwETrbkDfYZetrV0K5rfe+KB2TTa5wxEKui7q7BbkmbRVCKtoZsRUWPAfP2KdcM7KHbRYVX0P++ursQC1VbUT73v5aUhGQ3js8CJ+8rhzt12/mFrKYdfxFPbOpHFgNm1x/4gFUD0nm1igONXGaCfi+BaN76dkOBLV3wF6fQexwy6EEi8ddgHgledMAkDV91AoVaRY1GuND4DG3FcHZtMoVzQMxsJKd1Hr5+PVySbqu+ybSVsWhQJN06pqsomJ/HQq5/icWtjrBi0pNUfEZHq4RXeKmFjOLhdaEr3VY2pFXDh/86hF9HzOlhFMGp/h1JJ+Tor4r4gvCIfzs9PdFtma263vljAzUGdDxwviftRs4wPAjA0C+gJ2JBGRO+31IuE5n2qyiUWpV3eTG2JeE1Xuz91AbNJ884FD2GPUTe01J5s4Rk2zLkzriWy5Yln+fK0tLgqYrqh0voTDNhEhEAg0XJetlbgo4H5umpHO5rqL1iKhvLbTuK4uqkUU0X4/3a843G9R5ghenWwPHZyX8/jP/uoZFMoVXHrqBF77HL17tx4XtcYtZVy0UEK2UMbX7j2AxUzRUsh9LBlFMhqW8xx1U97uZFszGJOba4VyBWsGYzhlzQBCwQA+9obz8foLNuHV5290fB8vO3MdRv//9t48TJKqzvo/kXtlZu1bV+8rNNA0TTc0O3QLsjXb4IKC7DI/FBXHVwRHBV8H5VXQcUTAZRQZF3BjHIcRBkR2RaTZZe2mG2h632rPPX5/RNwbNyIjs7IyIyszq87neXykq7IyIzMjbtx77vl+TzQo3XACIYJtG0hY5a5uwQeOtMdEiQ35xTpovblpFPL78uZ04rmd4oHas9lJm4vTqthmaqG1jvq68bDiznI4M9WyYjEWel0uqo4bAwmjT6/4DEqZB9iCD8pKF1WDD9x7srkJkjIowqVvoRoYMt4xp1k5L5whBzuHkvK7FHNh0Y/V+j4L3yP26bXapbhVotWK/OADIbKF5O9S2VzF9/ZGZlKKbCQfMaCJ3ZNQwGe7UYubSyanyxt+OpuTZXBOkU0kKckGnONwsl189Dx8fNUCGfNdCHWXa5/eEpxsnpWLjtWTzWdzmKkTKTFgil2Qt3eNIJ21T7QGk/aY53f3jtp2MoXzrTMekpNE8R7F7pm4kasi24AS6+1GVzyMjx49DwDwpd+9JJvSV0omm8P3Hllv62Glpg+u2z5k7XIqPdlG01lb7LnTVjyYyCCZsXZLnbb9aqH21AGsGzWQL6yIUikhBJZasixEtrVv7bGlX27eO4qcbuzy1UNjUydiUb6rhD5i60zhZUF3TKZthQN+2wK4VCebcDHmdPfF38BoRl4jYhLTGQ8j4NOQ0/P7x4yFSBYViwQxJohrTNMqd86K8oBUNmdrIjxexGTX79NKFnndCAV8OHRuh/z30pltmN5q9WRLZXJ4x3SnCHfITFPQFGWktSoXLdQjcyxqJcxY6Y7jOy9VxH2l3OAD9TgAYw7g82klN2MfT5PrYoQ9crKJhU1LU7BgmvxEMN28Jl7dOiibPtdbiE3ApfQ/kc7ihU175WPcetPuUpLP3TYZxKbJlv6EfO9qqxHZl63EAKZkhSJbIazNy1xe3zO31x9PSbR4brURvYq64Wgl/KZtxyEc4IC7yCbKD50cML0FkaAPe0fSeHPnEBLpLP77uc0AjE1WUZ65ac9IXrmlKj58/9H1+NLvXsKN97+KgURGbkSIuZFaMuo8NnUjTfRlA4DD53fI6/KYRd341jnLCt6vvnTa/lj7xffaekEDlntS/Xzc7sPOtMfxBh8IN1NHLJQ3lhTqNSXH4xJ7som2IG5uvlaXagpBsT5jI8kMEumsPO9ao0F5PgqhY89wCr979l3b3Lsc1HnxkPm6glLmAWJtE1ISmcfCLrLlBx8Mp7K2+4hbuajlYs2fc6l/W66TbTCRlmOqOHW2D1rjodi4FD3ZxPqmWDiOCFZZt2NIrhfqwckmy0VTWeRyulIuGrZd24WSXKcCFNmmCGJwEjen7njYdvMI+n3yohWOkB2DSei6MaHqcLjO5nZGbZP7UgdJwAhR+NzJi/OEOyfRUACfes9CfOTw2VjQHZMDZV5PNpnsWKmTrXgNua0nmzKRUkU08bfChfTGdkMEiympqmLAUXe11PIJW7pogeAD0WxXbQQ/VILt+OOrF2LxtGbsGk7hU3c+O26Hjxt3P/Mu/t+9r+La378kf/a2Mgl6Y9uQMrEM2AZfVTARIokodR1MpKV45fdpE5bQ5pzgiP+PhwMIOBa0YodbHGepbspprRG56/y/f7cm0W8ru/+1XCgWQiZimu93z3AKtzy0zjVcQIpsPfZyHVXcL1UYD/p98lpwK6EQO/9d8ZAc6/w+TY4xm5WS0Ydf247jv/kw1r61O+95AOMaft28bo9e2AXAOk9lMlw4UDRFthQiQb+8VncMlS949yul2JWeM6IvW8CnYfG0ZsvJ1p/A27sNZ2Is5JeLLLGAFjvAlbqayiVcYrnoQ69ux2d//bwcpy1hpvLPbjwI0bgUsboQMs2uAgFCbTIuvlPZJ2qMYxOfdcXpotLJVqHIJkv6a1ua+ZHD5uALp+6Hfz51Mb7+vgPxX1ccVdeu5N3Dxuf27Nt7bXMZt82MPYqr3O16EeO5mJd0xUO2edmyWW0AkJdeXAjLHeTtuKJu7hRKXcxkc1JcGm8TdPncLuORWi4qytyyOd12X1OdbGvf3iM3RMdysgX9Phw0s834u7f24OHXtmMwmcH01ggOn9cpRat3947KOaX4LKQrJZXB3zYa98Yn1u2S7qCmoF9e692yvYxxXOlsTs7f1GNTnWhOV9pYOFueAJaTTfSy1TS4bo6IeVhON8QgIZqNJf44+2K5VU84ExUFqay5Ae4qsomebEq5qFkG7DY2FOo/bbyuKRwpc80mWQKZleeXTwPioYAMBRLf960Pr8Onf/kcvvfw+rznHg/OclG19DpSgvNTXCddcfexxA21j7cqnDVHglLQ6ncpYy3VySbuQX6fljfXHwvpnkxm5Aa9uN5EBQCgONlkuai1vijEzPYmREN+pDI5vGk+Vz30ZFOPeSSdleWinfEw/D7NKiedwiWjFNmmCGJAE4t4NxV8unIDBiBv7D3NkbwFZcBvJZ4A1SuH+MyJ++L6sw40+xSIG4/DyZYUPdmqG3xgRTv7bTcRMVimszk5SItUJFEu0hEP5dnM1br9F9+1Jp27lIarzt5vQmRbbu4Iq062wRJsx5GgH7ectxyxkB9/3bAb1/7+7/jWA6/jgh8/he8/Ut5NV4hEr28dlK4+m5Ntx5BtYhnw++R3pd6oxXvrNc/NgURGCo7t0VDFokapOJuoiomR28RWTPDEdzaec/CUJaJk1Aq+qOd+bIDSR8x8vz998i3c+L+v4YePbsh7rCi5cPbEaXHZVSwFef27uL5e3mKI1Pv12ZPe1DJ4wT0vbMH6HcO490X3kukXNu2FrhvlpgscTjaveyyJRcOOwfLFFi+bvZ+wfy/CAR+OWdSFSNBv68m2focoFY3LSbHTaVDzctExyhK+9odX8Ju1m/DQq9sBeBdiMV6kwFFBP75i5Uml0q4IUsIlIkvCh90d3YBxr5ML14pFNuPvK3ayjRYepyeS1mgQlx07H/947AKcc+hsHGQKS/WG+O6FmKqWigLu86BdYyR9i/FcBNQ4G9uLTY9CoQpOrGby3t771fnbWA3QgfGViwb9Pnm8bs+t9vQMBSwXjypqC5EtFvJD1605llsAkxMZfrBxD/7LdLGdvmw6fD5Nboq8u2dU2Zw23ltUKWF/4R1jPrph57AUTFXBqadFBKUl5d8I1Pnn4aqTTfnvcnE62WIh980RIzEVtmMExh6rIkG/zaHp1ge4kJMtlTHGQ7fyfbfG/LInm2u5qOhbnH8Nivcet/UZsxIz1fmAz6dJQ4BYQ4g55n+/sDnvuceDM/hgVPZj85U0V1/YE0fAp2GZWUJeCm3RINYs7cPZB8+wnWfqJny/sq5yc7IJkVQtn/3rm7vw66ffscJ8KkgzVstFxdx3/XbrehbHIspFhcOtUAUSYLSmEdVjgnooF40EfbK9xHAyYws+AJS2GC6u6KkCRbYpgtjBEQOsmwo+o024PhwiW4Go4IWKQ2Uieo4UapgvdpSiFZRKAVaPg4I92dJWqWbQr8mdNqcABqhONlNki4XzdsDUG+5Lmy2RzZ4u6h58sHxOGwBjx1gIW6XYjgFj4P/a2QcCAH7x17fxnQffwKOv78DX73tV1tSXynAyg8fMtNLhVFb28HvLWS7qaBYv/l/9rMWkT7hnBhOZgglP1cTZRLVYs2FxM5blouMQjUTJ6FMbdsvPvdjEqx7odLhcxATcrezNmSwqUBcIpZaLAsrE02V392XTCbq/Q2QT45xaLir6yDhDXgDjGhLi27LZbXLCLZ1sidKusVIRO+c7x3ndqfSPeCeyLeiO49HPrcYt5y0HYF2L/aNp6bad12VtrjgX0eP5Pr1ELJrVctFHXt+BR1/fIf+9dyQlx2Px3dcqjbLLFCkGk5my+5V4EXzg7MkGQLrWi5Wyqg6dStNFvQo+qIdk0UbC2V/zqY1GAqQQfdzGWXFOqIEZKtLJts0YK2Y6UunHG/hRaU+2Qvh82pi9qlSRbbyvXyy91Fr4G59zu+N7SGVyeNcsyz/vcCOw7d4Xt2JL/6isMil2jh8y1xDZnli3Ew+amwlnHjQDgLUpMpzKynm+mLMIoebFd/vlwh8A7jMFPtUh2uPYvBoo4PbvaYngcyfvi0+sXpg3DygHsWkmXGCF7jdq2qM4Rr9PK0msVQ0Ibk62eNje7F2QKpKE62xBksxkZaicWyl5a4GebGvf2o0fPPomAOAo02UP2K+rvY5xUDrZzHujGCdf3zYkqw3KQR0fBhOZcbcPmNURxVNfOAHf+dDBJb+mpmm45dzl+NY5y/J+Jz/jEftxAfY2L02KICn4zK+ex1W/eQG3P7ERQHkim1oJJb4Dcc6/udP4nFubrPLd8QQfAFb4AWCMR87+xrVA0zQlCCRjCz4AlLJtOtnIZMd503cTzkT/HUtkMy6YaQXKOvdRlPXx9GQrFzdhBgCcUeTlMmZPNiXpStO0PJeZOK5wwKfsuJllbLGQLX1GbSYLAH9XnWzCchsLy12o0ZTR+00IeUtntMHv0zCQyMjvqRTbseDMZTNwxeoFmN8Vw1nLpmNuZxQ5Hfjfv+enXfaPpPHB7/0F//bHN/J+98jrO2yLI5E+qDrZ1u8Ykjd28RlLwVT5rIV9u888D9Vy0YkKPQDy+2dYfVDcRDbj+xFlNOPpiTWrI4oDZ7QipwP3mymjYvJY70428b0It5ozGTaX0+XuXXGRrRwnm4vIZjrZRBm1QDrZlP6D283/FqUugCEWf+xna7H8Kw/gp0++BcBwizrdrQOO87hSupqNz7MikW2MxLnx0tsSkd9LcyQoz+m/rDfEdNXBPMOxiI7USmQT5aLmeZhIZ/GP//E0LvnJ3+Qia62SuLejxiJbS1MAAXOTZqyyzEJ44fLpKFouWnj3WSwQNK28BYlK2OPgA4pspSF77w2nkMrk5PVx7D7dANwXRlYri+JONuHgd24WiTlTKpsrqVVFtUQ2YOyEUXE+qhuq431uZ7morut5KZzOst139owgpxvz2fNNke2vG3bh1H97DP2jaSNAQBmDnYgqh81mH81FPXHs12fM1SNBv1wA7zHFCCHQiE3gP6/fZXu+P5pzE1WQF88hNq/UlgVOPr5qIT570r6elOOLjQBR1lysPYdY4ItjbAr6SzqGsUS2QuWi6Uzh8n3x2YkNsc17E9B145jckjUtV5Y1Bu8YTOLjP38GmZyO05b24QMrZsrfRWVoRTZv080Z0qaKUPcpVRTjxVmWWU7adEcsNO6yzEK4hUu4p4va18K6rktDyU/+vBFAeeNNszI/FdUvYu4rHF4tStqrED1LCT4A7OttZ7unWiKuh3f3jMq5jBgfhDvPGdg3laDINkVw9iLojucLZ6JcVPQvEjsthXqn7aMo65U03C4VN2EGsBb4lfZkizt6sg0lM/joHU/j7mc2Achvwit3Qh3Jn82RgHT8iF62HYrINpzMIJHO2cSpjbtGMJBII5HOyvfT4XCyJdI5+XztsSDmmvHmr5klo6XYjlWuOmkx/vTZVfj2hw7GOYcaIRT/82K+hfy/X9iMpzbuxm2PrMubNN7/d3vJ3XqzX8A7isiWSOfwqimCiMlDi0xydSkXNc+3gUTGKk8pMeLbCyxrv/HaxUo0nOWipQYfCE450HCz/eFFY7JT7+WiqpMtl9NlWYszpW1z/yhG01kE/ZosnRa0lOlkk7u7jus/m9Pxinl+HTDd6WQzy1oUEWuHi5PtsTd24t6XtiKVzWFuZxSXH7cAH1o5W06cxJjgdXmhJ062KosLws0mEgHnK+W/opxUUC/loruHU0hmjJJG4WZ7WhHZxOddSvlVNdA0zSq9LrNkVNw/KkoXVRaRYtwVLqViCcJJkSwaKG3hWgw62WpDh9Jf86XN/Uikc2iPBnGwWb7l2pNtpLizXCxgxVzJ6WRT56GFxC0VdWPTa4q5zQDrHB9Pqah87pD7cyczOfmehCDlDEERG7NzOmOY1RHF0pnGRtyekTQOnNGK337siKLiUls0ZNvYOnPZdNs1WshdKL47cX+cbzqWhXtbdbI52zBMVNm9s81NsfmDmAeLYyy1d6Samut2nhcsFy3mZBNzSrOUUfbe7WhyHT9bHHMdXddx5V3PYttAEgt74vj6+5ba/s5ysmXyNt2cZgB1k9KZbl8qyUzW5hq3lYvWaKOtVfS9c5SxAnYTiNW/TiTGW60PBOVc8+K82DKQkOs0Z6uU1qZgnpu31AokEX4AFK4uqwXCvfyVe15GNqdj395m9JrHFw/bN6mnIhTZpgjOxY/bRSpcCZtKLBddZHOyTZzINpTM2JKYRHxwpemiztKwR1/fgT++sk3as/NFNsdgqexItDuCIjqUSGOjMaZxsw34NGnhf3nzgC29qzkcsN0g1Z2zWCiART3G57/etHyXajt2Y82BRrT7X9bvyisZ/eMr28xjyOEZZaGayuRkOcJyc2K+fvuQzYEm3psQNITF2Sr9NY45o/Sz65PlomkraXUinWxK8EEupxddvImbsRqOMB5OWWJ87n9evwtr39ojAyNmd9anyKYuzDb3j8qJlrOJrChDmNsZy9upVD/H8YgyLU35u7uAsSgZSWURCfowr8s+qel2pKAZicnGublDSUYT7t0T9+/FQ59dhWtOWYx4OGBLjDL+v0rlonXSk80NcT2Kieh8pVw0EvTbFj61EtnE66azel4T8YdeM8aotRsLO9kmKlRFxVl6PV68KBdVA43E96g6nAohXQseLKi8Dj6Y6P56jYp0LI6k8L/mYvvQuR2uG2ACcU445zcCZ8sOZymcUQVg/HdJIluVgg8A63x3bhQKZLJoGdeXJeDZF5dqU3pRZmVdb8bvNuw05gBzu4zP7vzD5yDo13DRkXPxm48dgTmdhV1sgkPMvmwAcIZZKipwuo+FYOf87i4xk+gFdiebcGCLjUi7O69adMZCUDWpYiKbeF9iQ6XUDT3VWebm2IwXcrLJ8ThfNGt1lDK+owRcuSFFNvNz3bRnFH9evwtBv4bvfWRFnshqc7LJABjjfUQcIps6f/r75gFbSFmpOEWTcp1sXtLm2BwXxwUUcLKZc1Y1MV48rpKebJvM77Yp6Mf0NvsmZGtTUDFOmD3ZRAXSGOu2faZZc9vueP2IbOJ9izn/185eIgXgQtfKVIIi2xQh38nm1pPNXi66fYxy0TkdVsLoRCxSxGvoOjBkTl5yOR0jaY+cbGG7a0V8DmqvDMASVqyblz2KORYO5DVM7VJ7siUysql0WzSEJTOMHYqX3u3HG9usJrOaptnq98XOWTTkh8+nSeehcByWajt2Y3anVbp4nzLpHE5m8Od1VvmA6L8GGCUMg4kMuuJhvH/FLADAmzuH5S5dZywk08QE0snm2KlTRZpel55sE1kuKo4tZ55nUsRwSa1zJluN9xyc1xXDGQdNRzan4+M/Xyt3jZ27zfWC+B52Dafw5g4rMcm5mBA3XLc+LOLzFedxqbQ4hFmBKBXdd1pLXlmPsyeb6hgbTGbkcYt01Fkd9lRXyz1rLxf1qh+GWOjVtZPNMf6rPdkA+7naFKrNlEJ1KSTSVskMYLgUR1NZPLdpr/xZrZ1sgJowWt5370Xwgb2Zedh2XMWcbGJjyYsFVcgzkc24RulkKw0hsP7hxS34vrmRePx+PUVT1mW5aAFnubNlh7Nc1NZmI1XbctGPrVoAAPjhY2/KNhcqoly0nAW3EHSczv8BZY4m7n3COermZAOADxwyCy9/5WR8+YwDSnbYHG4mea6Y0563YTfTGVbjcLIJVu3bjcXTrI101fVa0MlW5XVAwO+zbbgWm2+JebBYx5Q6VpVbLlpsPG5TXFa6rhdNFgWsuY64twvDw/S2Jtc5la0nmwzqMp6jKWStU9LZnKyUEf1r7y2jZNS50TlQRk82r3G2eQFUkU2pnpApuvZ0z+ZwANeftQRAeZUkQiTbZPZTbIsG89JqW9VyUfn6pa3buuNhGVZTX04267jPO2w2VsyxAk7UMIipCkW2KUIpTjYh2uwYTNoacxYqFw34fTJ9byJ2jyNBv7yBiYEpkcnC7PtfsZNN7cmm67osm90zbPzb6WRz2rDFTTceDuTtgHXEQvL5hxUnW1s0iCXTWwEAT765G1/6r5cAAKv37bG9xmgqaxPxAGBaq/Ea4gZcqu24EGuWGq6q/3nBuuk+9sYOaYMHgMffsEQ2kXj13v175Y1//fYhuTM2qyMqzw+BWAA5k2JFqW3Qr8lJ1GAiLSf1E+lkiwT9UjzrH0mX5GQTlNMX8Kv/sARzO6Oyt15XPFyxYFwtxKQzmcnJRvhAvpNtfYHQA8CaQI63Sb5TmBWI43CWigL5TrbtA3ZBQ/xbNJR2lj+KyVkqk0Myk5Wv7VUPykYoF1U/k2ktkbxddDVhtClYm/NWXQgn0llbAnX/aBo/e/ItWzlirXuyAUbPTaD8clHRl6iSctHu5jBam4LoaQ7L4xGOlWLHJVPYKgw9ACyXkldONrfemSQfIZok0jn4NOD/vHcffGDFLLlYdCvxGSuISL1vaRrynBzGY0wnSXrshVc1RbYT9+/Fqn27kc7quO73f5cBUgLpZCtDNChULupWVjnbFNOeNxM9N5rzp3mKY2281/gZB03H1993IL7t0iA+r1w0aO/JBhhurhltTThMSQRtdykX3T2cNJzDHm8+FUMt5yw25xfzbbHBVmoZo2pAcE0XlfP4/FJgwP1cFWNSKpNDIp0bM+DKOdcRc0O3wDrAalOiBpHNNc8fcW8cTWdtAtQ5hxob4394cUveuT8W4vsWm5qDibQ8171wN5eDW0+2AUfICGCd72LNoYaynblsBu698hh864PLxv36ogegqJRoi4YQCfpt4pmtXNRhzhirAknTNOxrit71kCwqEGN+d3MYnzt5se13cWXNO1WhyDZFyBPZXC7S9mhQigtb+xNSvOktopp/7qR9cc4hs3DMoq6Cj/EScRMfdDigNK3yHRQxyKWzhqAm3C0pc/cn5djZdIpswzaRLb9cNKakEgmnRVtTEEtmGCLbH1/Zhnd2j2JmexP+ec1+xmsokzX1+QFL/NxqCgSl2o4LIUpGn3xzl1z0P/CyUWp1minAvbS5H3uGU0ikszIk4cQDerHAbMS7uX8Ur5tNj2d3RPNEFiGuOZNihxUB0SpXUZ1sE7tz09ZkJYzuLZLe6FxkFuuVUojmSBDfPXe5FJBnd9Sniw0wFkhiErn2rd3y54WcbM6eFID1OY5XSCwUfFAoWRSwNhN2DiWRy+l5iaLi30Jkm+7Y5VcnSIOJjFUW41XwgTmJ3+GSdFoq1e/JZn0mbg23Z9icbLWZYPt8mjwvE5lc3k77rQ+vAwAcNNMYa3eZPQVrKbJ1VFgumvKgXDQS9OO+Tx+Dez55tFwwOVMn3fCyNEiMoezJNrEs6olD04yF+y8uOxyfPH4RfD5NbiC4imwjxZ3lqujR2xxxdV45nRzFSHpwjhdC0zR8+fQDEPL78NgbO+WmoXzttBflog6RzaU8/fjFxobq397ajZ1DSWzcKZxs5beM8Pk0nHPobFcRRx2vQwGfbOeg3o8PmtkGTdNwmOmIA+zloh1Ro2wzpxvj10SW3atOs1KcbOLe2lTihsDY6aLFy0XdBNFoyDIIvLylH+/sNp3zBSoWrE1ou5Otp4DhQQhHL2zqx7Nv74Xfp+GMZdMBqE42S2RrjgRwypJp0DTg+U39OOnbj+LOp97Oc14WQjyPcLknMzl5bpfa+85r2hw92XI53VXAEmPUiMNJJsa9/fpaXKtWxsK57hKinyrU2tJFU6JctPQ2P6ctnY7mSABHLewc87ETxdELOxEN+XHDPxyYd+9VWyRNVSiyTRFU14imue/QaJpVgrhu+5C8+As52QBg9eIefP39S8sSF8rBSnAxjs1KFg1U3IDZeA7jvwcTGWzut9IH95iNtAFrwhd2BB9I228kgJZIwJb61hkL2cpR98q+CUEcMMMSB/w+Df/2oWXyJqsKeWLnRdwkxPcibsCV9GQDYGuy+6un30E2p+NPrxpC2nmHzcE+vXHoOvDE+p2486m3sWMwib7WCI5a0IWOWAitTUHoOvDoG0aj8TmdUSx0iCziRuRMihUW9lgoYEt0rEW5KKCGHxR3skWcTrYy3ZRLZrTi2tP3BwAcquwe1xuaZjkN1UbyznTRYuWirUq56HgQAvuAY/FXKFkUsNxCmZyR5qsmigJWwugWszR8msPJ5vdptuat1Qs+SI17N1nQr4wl1UB1srmJbDNtTrbaTLABICJENmUxIcZqkaR34gFG0Eg2p2PPSKqmfbzEdVTL4APASHNWF29qT7ZC56RokeDFgkosPlMlpE0WY6CG32UjMrcrhkevWo2HPrtKlhcCxVPWx7ofq/PAQi0PmkoU2XRd96Qkuhhzu2L4/46bDwD4twfX2X5XzXJR1fE1va0JB85oha4bjeg37RE92cbuvVYOM9os4U113qtzl4PMNh8rlbmIen9RyzZ3DCYnLPgAsLu5ilUOiPm2JbKNv1y0WPCB8/oo5rrUNE2GXF392xdlSXCh3rsy5Mlc52wz5ym9BRxMogRShKC9Z3GPNFKIOarqZGttCqKnJYJrT9sfsZAfr28bwufvfhH/fPeLrs/vRJzHqotdbFiOd17nFW2y750xRg2nMrLKSRV/ozL4wFEuWuHGqbPcUxyPWjLaGlV7smWh66oQOPa185HD5+CF6060lWTWmouOmocXrjsRJ+zfm/c7GSbIclEy2VGt0h3RUMGJuRg0RZJcNOQvq8dXtWhxTACFk82Lgd3n0xAPWc8verIBxq5+ytEIVx0s1WOJhQ3BT93564yHERdOtkRGcUeF0NMckQvZT75noW0AjSivMZS0hCjA2kXaNpCErusl1/YXQ8SC3/i/r+HLv/879oyk0doUxKFz23H0wm4AwP1/34ZbHlpnHu8ihAI+aJomF+DPvm2IL7M6opjfHZPCZXM4IN0SzqTYYSW8Qu0JI6z+bqJwNRE7WVv6R2WCppuI4XSyVVLm+ZHD5+DJzx+Pz520eOwH1xBxXqu2/FQmJ3dydw+npKjhJsqsnNeBJTNa8H4lgr4U3Jxs2wcT2DGYhE8D9puWL7KFAj65INw+mHAtF83mdGwzJ4jTW/MXhuqi0+vgAzGhT2VzeeLh7uEUzrrlCfz0LxuLPke1hSJVeJzflS+azlSaN9dUZFMW7+IceY9Zdi84fH6nPB92DqVcF70TRac5+d5VYfCBupnjBWpJeKHm9F723xFjaLJEF0UhxIZbrRZ5jcisjmjeBmmz4tRRRdZMNifH/IIim3L/K1QKZ5VLFf++RTk0UB0nm+D0gwzHz9b+UdvPk44evOOhybGQF7ilHQJG6SoA3P7EBuR047oqVBpYKaqTTZ2vqOeBENm64mEsm9UGTcsf+9VWB147vIthc7IVmeuK+bbodVfq3GxGWxMCPg3NkYDrfV7M1XcOpWwO/nSRdFEAuO70A9DdHMa67UPyvlM4+MCaH+dyugxpKlRV5Bzzzjlklvxv4ZxKpnN5G3IXHzUPf/nn43H5cUZ/wueVvqXFEPfX9phV/jheMdNrnD3ZxFwt6NdsQrksV3c4ySo9d53XtDgeVah19mQbTWeRNQOlSl23VWomqQbOcDOBTOJNUWQjkxx14HPGYKsIke0ZUyiZ1hKpq4u62WGjlk42j4RAobzvGUnZ+iTtdnGy5QcfWA00AftEtDMWsurTU/aebADwrQ8uwxfX7IdPrF5oO54mpaGps1xULH5HzR5E49kRKcR5h83BRw6fDV0HfvrkWwCMXbGA3ydLgn///GbsHEphdkcUHzjEEkpEaaAIfp3TEUUk6JdNRFURwJlgppaLqscvboAT7WQTVu+b7n8N2waSmNYSwfLZ7XmPczo5KhWkp7VG8pr31xuFBE+xoBC7tH2tEdeJbVs0hHs+eQw+esz8cb1uq6NPCWCVis7rihUsVRQ9VnYMJl3LRXcMGkKb36e5jo2qs9Iq9/FmvFF7djj7sj21YReee2cv7vrbO0WfYyJ7so1VLhqpUfABYF2LyYy1Yz+/O4alZoloKODDkhktthLd+igXLa9UWCzqynHaFEMtCS9UyipENmfwSzl45WTz0l03lRH335xudyiLjRNNK5IuqozBhUrhIi6llLc+vA7/+B9Py3MasJ8PXp/jKtEC/dOkk62Mc7xwuaj7Js1JSwyXkwgTmtMZrdq8Ox4OyHmn+n3FbOWirfK/b7/oUNz/6WPzXFdq+IG4J0/EOFqyk828R4v5aKnjQls0hDsuWYn/uGSlazBTWzQk+9Nt3Gklc47VP7AjFsLX33eg7d+F1i3OkDfhZCvU8F797rqbw1i1b7f8d0SpuOl3aX3SEgniQ2Z/ts17EyU56tXyYDE/EnOrWo2/rU32zV+1DFS9lpxOtoFRd+F7vDidcOJ4upTztUXpyZZI56TDy6dNzs0htQpkqkKRbYqgXsDFRDZRLvr8O3sB1FeKCWBf8ALWJNCrAUo8/7rtQ1DvNXYnm/FahYIPxI1TiBHRkB+RoF/eCAcTGewV6aLmze6IBZ346DHz83YEmhQhb9jx/JGgX94st/YnSm6gWQyfT8O/nLkE5x8+R/7shP2MXdbD5nfYXBOfPmGRzRHpXICLSZkoGVWPy+rJZg8+iIUCCAV8tkl1sUl9tRCfq2g4e+MH3EuinZP/yXijdKJ+F23RoFwki/NT7NK2efydOWPtAbVUtNX1bwB7+MEOc7IqhN/tAwlsNh0Mvc1hV4GzWRGEq1EWI0SfnQ4BcNgRMV+IagtFrU1BtEeD0DTIxrsqYuc/4NPQHK5dqZ46Vqrf0yrTzXbQzFaEA37pwNgxlKht8IFMF61tuagTtSS8kMg2KkU2L5xsltOiErwU/qYykaAPAaWhuUD06GtrChbcCLKXi5buZPvRYxtw/8vbbGE6ao++apWLGsdjHHMyk5OuEqCynmyFy0XdAwIW9cQxVxGxnAnOXiNKeVUn2JzOKBZ0x3DKkmm2e3d7LIRFvfnjfrfiZJvIsvvSe7LZj2U8yddHLezCwS6bqgJRyiuqHAAgVUIQzXsW9+LDKw1Bq9h3HAn65Xk3MJqW89BC5aLqBuP7ls+0rSNEuWjCUS6qom7YqxUKhVBFVTE/EiJbzYIPHOWihcpApaieHH9PtGI4N9iFENvlcLKJeUoqm5Ntg+Lhytsd1SOF+hdOJeqnDpBUFdXJViyZRIhsQrwq1o+tFjhLxqTw5FEaoxgUXts6ZPv5nuF0frloyCmyZW3PIZr1i8WUmrQinWxjOLTUAVm8Z3Ui29sSRv9oGht2DssJYqU3C03T8JUzD0BnPIQ3tg/h+P2MRWo0FMDy2e3464bdWNQTx5nLZtj+Ti0nCAV8ckKwsCeOB1/dbneyiZ5spvtPlsKaFv/mSBBJ09lTbFJfLdTS0PMPn4NjFnW7Ps45AZ+o3oS1RHUVzu+K4c2dw0iN5KSrVOzONXv8WTibAQOWk80tWVQgdr53DFlOtiUzWvD27hFsH0zK4JC+NnfnhVXanCnoRKiE7uYwNu4awU5Hby7xeaqiopNEOivHpWoJRZqm4QcXHIJdQyn0uZTTxsIBfOfDByOdzdVsgg1Y4koibZWLtjYFcc4hs7Bpzwg+vHI2AGuRtmn3aNU/u2JIIavcnmwepIsWoj0awpb+RBEnW331ZFPTv+lkqwxN0xCPBLB3JG2M5eb+hegd2F5kzqJuMs0sEODjnDcBVmNs1dUprs2AT3N1FHmFeswjqYyVKJ2tpFzUXpImcAs+AIzP/MQDpuEHj74JAJjTWV2RbUZbE156d0A2zAeM6+aPnzmu5MV+l+pkm8Dgg54S00Wdjei9LGOc1xXDs2/vxYadishWYhLul07bH70tERy3j/ucUtDSFJRu67GCD9T1zweV6hLAahWUyKgim/0ajgSNzaedQ0m8u3e06DUO2PtfyhRXcwOzZuWistIhg2xOLyieiSTWEbMnmlc92aIhPzQN0pwhe7IporAafABY6fZepdXXG+zJRpFtyhAp2clmH8Sn1ZnIludkMydn0TIbzuc/vzHYvW42EBXsGUnJ8oG84ANTkBxKWLsSgLWIEmJbsxp8MGJ3shVCHZB3mJPcuJrg1RLB69uGsH6HIQr6fZonNzlN0/DpE/bJ+/nFR83Du3tH8X/PPCBP+FrYY00MZ7U3yYnx0pltAOwN0lscTrYRh1jaEgnI8rmJLhUFrGtkbmcUnz+1cI80dUHn92lVLWupF2wiW3cc2waS2DuSls4rryYtTsTu/0gqi3Q2h6DfJwMW9nXZaReoTjYxqTlgeiv+8OJWbB9MyN6LztADgRgT9o6kpPvCyx5eam8blWGlMW8up7suNMWkWQ1oqAaHzi3eaPdUM5m4loQVJ5taztIeC+FbH1wmHyc+bzFm+jTvNmnGgwjlGExmkMxkx72YT1cxeVGIjs6UVoGn6aLm8Yv7azkkFdcTRbbKaTZFNrVPpBBc3ZrBC9RNpkL9ppzloulsTgoUu4ftfT6B6vZjA4zzTyyOR1NZOd5XI120mGvmpAN6pcg2t4Jk0VIQ4QdOkWo8bhrZhmEoOaG9LUt3stnfm5fiz3zThSbKe4Gxe7IJoqGA69zaSUskYLS4GEgqIXTua7d9psWxcm4HFvc1Y74jbEwGH6RySi/o/HXHjLYIdg4lsXnvKJbMKFwZAMDWg09cL8KRXSuRTX1PA6NW1YHTXS/u9bpuzBW86rOracYcTDyfEDLFfV4cozre7BgyhEmv58r1guzJRicbmezYnWxj92STj60zkU2WjMmebPYwgEoRyvtrDpFt93DpwQfiOYQYISalYkIzlMyUnAioDshiEa5OZIUIut4UG6ptOz55yTScbPYPcTK7Iwa/T0M2p8tyPPE3P7zgEKyYY9nvxQ1oMJFGOptfCqvedNSb1ETx/hWzsHckjfevmFl0IudsqDoZLd9O7CJbTJaWD5cRST4eVBFpYDSNznhYOtP62gqPU2JSvm0wIa8hMYlUnWzTC4psxuu+u8dqjO2loNWl9IxTEcKz0Rsp47rb2a/0iJsK514xIkr5vlgEuC0mxPmw3lwgtTQFq+qUKURLUwABn4ZMTsfuYXeXYDGqVS4K5G9mOUl6WJopxlC1PHC8qKWmU2Gjo9oYC9NRW7mocJkV2/QSC9WgX7P1clSJKn1mAWAkaQlRNidb1r6pWS00TUMsFMBQMmMTxZybquNh7HLR/HHp4Fnt6Gk27mlu5ZleIlK/i224j0VXswiQmWgnm9KTrZiTLa9c1Lt7tmu5qBiPPTpfxTkiNhKbgoVD6MIBP351+RGuv7OCDwqXiwJGFdPzm/ptgW+FkOWiUcvJJhxckRq52QN+H5rDAQwmM9g7mi44D1XXwsOpjBSIvXCTNSsim5Uuai8X1TTDCDGSyspN33oKF/QS2ZONIhuZ7AT9PgT9GtJZvWifNaebo16dbAOyJ5u3iWIt0vqclP8eMNNAncEHag8gwBpIhFC0fHY7NA1SXFLLRa3+JsVdWuqALAQCdUAW39cbishWK0IBH2Z3RLFh57Ct3MHv0/BeR7xzVzyEcMCHZCaHzXtHrd565qRJnYTWwsnWEQvhcyePnfIZVm7Yk/VG6aTTVi4al31dRhxONme5RqUE/D7Ew8ZiaCBhiE7CXVGsBF4sJF7fOohMToemAfv3GeWle0fS2LjLaF5cSOSQItteQ4yLhfwF05TKoZCTbUhZfIr366SWPcXqjUhAafAsy1nyz0Gnk61Wn52maeiIhbB9MFmwFLcYpTonysHqQ+g+OfbSyRaSTrbyRbaEKYj4fVpVRMephizzSapOtuLJooAxH/k/790HPS3hgmOkc3NySCmpVPsTyvnWBHyfTSG/i8hWgZOtQJhCfxExyufT8L3zV+CVLQNYPrtt3K85Hs5ePgM+DVi9uGfsBxegO27cc9/dMyo/q9YxNo29IBYOIBoy5sTFnWxOccW780j0U7OVi4ryYo/OV3FfElU1vS3hsjbSbMEHRTb3Raugzeamo5OhZAYxcyNZPY+dIVC1TBhvjQYNkW0kZTnZHNeaz6z2GU1nMZrKelp5EY8EgH7jv0XvYnFfb20KynuTFNkGRbno5Fw7qPcRXden5EYwZyNTCLHTL2zeboQD9ujwQvbkWtHs6Mk2Int5eduTTXCA2VB9x1ASGbPnmSjrUZ0TAPLSP49e1IXnrzsRV5iJoeLnOd0S8cZysgHWTUv8jfpehdNQLBhrPViLHdKxyh00TZNut7d2jVifXSjfydZRIM2yHnCLBp/sqP06FnTHZMKXdLJ5kHJbCKvMOI0dpigV9GuyyawbQoAT10hHNISueEgu7l8wY+sLOS/Egkjs8Hrd3Fl1BKio/XwGCpTtuaWFTVXU8biY+ChEV7EAruVnJwSLcsIPqlkuKsTJQqEb4p4X9qRc1Ow7WonIJpx1dLF5QouLk7EUJxsAfPL4RTjn0NkFfy8cRcLJppYS7VGug4kqFwXUhFHrWKTIVsY5XqhcVDhXCjnIls9ux3mHzan6YjQS9ONDK2dX1HNZvIe3dxubVJpmzd+qzX59LfBpwKyOwvPMPAeTh/OzueYm8u7hlLwHi/E4GPDmuxPzDrGBXm5VkTgXMzkdu8xruJCTDQDedXGyPbVhNw76v/fjWw+8DsDZk83hGKyhyCbDD0bTeHGToXa5rUWEA3I4lfG08kL9LMSxzO6M4trT9sfX37dU/i7iWNPFJ2lPNlGqq+v5Y+FUgTOSKcSBM1rRHA64JsSpTFdKRusv+MCZLircY972ZBOIhurbB6zdHaeTbdSRLqoKdeqOZVPQD1GVJEKsStn5EwNysXJRMYDVWmT7zHv3wWXHzMM/HDxzzMfOMW9+b+8eyUtmVfsoFOsBU2vU/j9TIfQAsL4Pn2ZMIJyR6NUqFwXs5eKyGXBzpOiiRCwGxDXX3WzsCIvNBqvk1N1JJK5nMfn0uiTGSru0Cy3DyqSkoMg2galu9Y4Yj4eSGTkmuy0muhyifS1FNhGKo5bJlUpSlot6vyBXE3XdGDXd21462SoT2Rh64CVu378QgjsqbN+Q32Yjv+8bMLEim5soJkqiy0sXNe4ZarloLqdju9kcvlD/z0ZCjKPivtocDkxY2f2PLzwUD3zmuLz2NirODXMvx4ZYOCANCBvMklHLeelRVY250SHKRYu1+SmG+r6FyFuoJxsAbHER2Z5+azeyOR0PvLwNgFVJ1NoUzHcMjiPF1WtEZdDuoRT+vH4XAOCoRV15jxOC63AyW9DxVg7qZ6F+xpccPc/WZkeI+mI8mKxVMJGgT655p2pftsn5zRJX7rhkJRLp7JiDyYy2Jjxn9lkqVlpaC6STLWF3shWzjY/v+R1OthmGyLZVEdnEpEsskITDRYpsBcQFTdMQU2r2/T6tpARGK43LuIk3u4hsgloP1vv1teALa/Yv6bFiF/Lt3SNWbz2ZLqo42epYZFMn4LVonl4L5nfHceL+vZjXHUM44Ld2BWUkumg4W0WRbTQjX28st61zDBM7wj0tYduu7Vg92YqVIFaCLBct0JNNfW0nLBe1EGUx25XP0e1e53SRTEQfoUKIfpO7ykgYraqTzRFM40SIB164Q8JelIvKHnEU2bxAzCPUVDjR4qLSTa8mR2DUsFIWrzo6U1Ush3YiNsiqWS66eySFtJkIXKyapFFoj4ZkD15gYjd6WqPBMTeonZueXjus5nXFsG0giQ07h7BsVpvlZPNo00Pc04fkPKc8YVY9f4WoU8zJtnlvfrnoNrOEdN32IZtTvCUSdOl5Vrt5sDgn/rx+F/pH02gOB7DUJcQhprhpreADj8pFYcxFit2LmqTIZrUlmoyIMIiBRAaDyQzKL05vXCbnN0tcMfqyjT1hEAmj7dFgWfHl1UQscPOcbB5ZwZ0i1f59xgAtBC5NMyLlAWCx2ddp3fYhDCczcue1mGXe1hjTbII5Fs7JgTp56G21T9YaKQp6jhDZdrk42ZT3Ud8im+pkq69rpVr4fRp+cMEh8t9OJ9tQVctFLZFdXG9jTT6bwwHZ/w+wdoTVneGAT0NngYWP8314/b7EcewcStr6Vgyr5aIFemNRZLMQk1rhOm4OB/ISkAGjXFiEyQC1dQFWVi5qvIFqiBAtYzjZEh4GH3jhZLNK+1ic4QXO3reAJQS3V3g/FvcL6WRLFXeyTUSQhQxjSLuUi5YxB3ZzxgnntdqqoJHx+TR0mj0lgdpuVrgRCvgQCvjkeeTVRrxgXlcMT765GxvMAB2vnZfOz7Pc1j2apiES9CGRzsl7RjGRbdtgQqa3C4TJIJPT8dw7exVhNZBfLlrDtilt5vu6/+WtAIDD5ne49oYUxziUzHg6XxUby2P12s4rF52kTjbA+FwHEhnbhs1UovFHeuI5YrCtt1JRIH/yPyIb5nvlZAsq/x2wpWQCIu3TWLhNb42gORJAJqfjebOvE1BcbFEFslKbxDpvWurzd8bCtoWk183mq4kIR3hr94jshRJz6clWi3TRUlEXmVOlXNRJXOlvAVS7XNTqySYWLWONU5qm2dxLQtRS/663JeIqyAD578PrXUfhZEtmcrZG4yPjKBelyGb1TpKLvgKfScDvs7lxalouGrPKW8ZDNqfLhU4t0kUTVQg+SGVzyInas3Eie8TV2aZgo+IWfCEEsEqdbBFH/7N6KhdVXXUiXbQc4dYtXbTU+1Ujod5X6/EepLrpvS5jlOEHZnCS185i5/2rkvPG6apyW3t0xgzxV9chE9cF2wYsd/hfzDLMoN8IECiW3jnRiD5oYtw6ckF+qShgrTN2DSflfdST4AMhso2xthOfUTXnyvWCdEVP0XJRimwkj4NnG2mYS2fm22xrjRiMEukcUpmcnKB5VaqnDnbTW5vQFPLbhBTVNaBpGvabZrjZnt64B4AhuhRLHlRFsLYSJyXOm5a66+H3aTZHTiMN1qJc9J3dI3JyaznZGqVc1PpuvN4pbRSkky1p78lWjd051cm2bYwm0io9LiKb+rNCoQeAi8jm8WKiKeSXTtyditiiLj4LNaAfoMgmEeO0WCAU+5664vWxOBTuyfE62cSCDqhW8IG9LYOTUU+DD6zjT2XLc7N56awj1jxFbGbqui7LRSu9H0dlTzbju1bHucGEVRGQqmI5dN4xCSebrSdb+U46NUhBNy2zW/uN+5WzxUcjo957vW6j4AXqfNvrUvJ5XUbI14adRs+0lMdpuM77UinznEKoawhfgYAKTdNkj7vNjr5s25R2OUJka4kYlTh1JbI5HGRHu/RjA6zrU5TB+n2aJ8Fl4nwbS2RzvtZkDT4ALFMIRTZCTJbNasMT17wHX/uHA2t9KHmoC/fBRFpxsnkVfGA9f58sm7UGbueiYnGfESLx9Ft7zOMrPliqx98WLW2yWqxcFLDvcFWjD1a1mNneBE0zBl/RG0vcfFRHYWcdp4vanGxTJF3USX5PtiqWi5oTz/7RtOwvUsoOr83JJnqyNVt/Vyj0AMgv26hGWUyXeXw7lH5idicby0XHIhKwB8S0Fln01YsDwyoXHV/wgSpG1cLJJsQIL51sQPl92RLm30XoZPME4dYVC6PBZEaWmlUqsskes6InmyN1Toh5SY9Fi2JEi/ZkG/85JRbbOd0quZVBPZNIZFM3K+qtXBSwz7e978lmbBJv2DGM/pG0LKf2SszLLxf1xsnW2hQsGFAhWgVt7rdENiOww7o/PfuOsdYRczHncUZqGHygOvS6m8NY1BN3fZxYZ4gy2OZIwJNEXzGXaB9jbVfMODHZEAIiy0UJUZjR1lTUkVUrAn6fFDMGEhnPnWzqYCfKZtUB0znhW2w62Z6VIlvxG6xNZCvVyebc9cgT2VQnW/1NdAoRCfrlrq7sZ2e+N3VXdKwbVi1RRdepWi4qnGxWuahIa6qGk81qyC6SskrpVaIKasLB1q38XaHQAyD/fVTjfcnwgyFrMluKk40im4UYJ0XFYbFFn21xWEMHhpUuOj4nm9q/rBrpotIxOlaqrQf3G/WeWqwvWyKdxcadwwV/B9DJ5hVOkVWUM0dD/opFBPH3I+n8clHAuhYmslw06jgmQCkXLTNdVIwxb5vlhEJkm7xOtvq7B8Vs5aLeimyzOqLwaYZI/E+/eg6DyQzmdcWwT2+zJ8/vvC95KbIVYnprfvjBTqWkErB6gYrvu76cbNZ7O3JBZ0HhTIjqW805pFdzulOW9GHN0j5cfNS8oo+LOM7FyRp8AABXnbgvfvmPh+O4fbtrfSg1gTMS0nCIwX0wkZYLey+svoBdpBILb3Xn1jnhEk62wTGSRQWxMpxs6g3S79PyjkGdtDXajoiz5534fMTirSUSqOsmwbZ00SkSfOBEvO+RVBapTE46AKqxs92qlLFtK9fJ1iycbNbPphUR2ZzXVDUWE12m2CJENl3XC/Zku++lrfj985sBUGRTcQosxT6TenGylduTLa0kL3qxA+9ELDqGU1nbAku8tihrLrcZt4qmaXKMF8KGG//0y+ew6qaH8drWwbzfJZku6inCkS82TEQ5sxetG6zSTOMcdpYR5Yts1f9OZXln0sXJVqZwO7fTmNts3GUIw8I1M6218mumXqh3J5ta2RH1OPUyHPBjRrshSv3p1e3QNOAb719aleCDWMhf0dxevTcWFdlMY4Gaui42M7viIZuAJoQh58Z+LcdgdU11VIF+bIBVdWKFJHlz7k5rjeCWc5dj5byOoo/Lc7JNYpHtwJmtOGx+p22smErU7+qVkAI0K26WEUcvL6+eGwD6zF0dNU3LeQN17lqN5aizl4uOvydbLOTPW1T1KgJBI/VkA9xENuO9Lp7WjDVL+/Dx1QtrcVglE6GTzXKyJTO2NMJqiI5C4NoxmMTeEeO1epvHFtlUQa3bJfhAXOtuBPw+m4hflXJR6WQzF5jZHDKKuCHEtEQ6i0/d+Sw+deezWLd9yHIUUWTLKxUs3pOtXoIPjO99MJkpKjA5SWdE6IH3AhtgXzg5yzxESXPQr3nmMg6XkDAqxLU3dwzl/U4IIhTZvKHZUS7qVegBYM1nRs0NUlXYAixBL5WduHLRJkdCNqD2ZCvvnBLBTsJ9uU06ryenk61YeX6tsPVkq0IZo+jLBgAXHjEXh84tLq6MB/W+VGmJsU0cK3K/c+vJJnqc9rU2Yb8+a73T6uJkC/q1qrQvKBV1TXVUgX5sgHW9q+WiE4nTFNJIFUhkfFBkIw2HWOT+5c2d0snmVT+scMAnFy5WuWjQ9nuVeNieQDrWYF2WyKZMDtx2s2xOtgYT2eZ0Wp+dplmTgYDfh1vOXY7Lj1tQq0MrCZuTbYoGH8SUBYpYlEVD/qqUm4trf7250A4HfCWV+4nFQHM4IMtGOqIhBHziWi8+iVWv62qUF0qHnimaOReeoq/P9oGkXHz+13Pv0smmkJeg1gBOtpamgDwHx1Mymsoa50ewSi7fUMAn3Q/OUmXZW6o5UrC3z3gJKwmjhRDn+kgqX4y00kU5pfUCuZFpjjt7zHOz3QuRTTjZ0lnouo6hlF3E3VOLclF5TN6UiwJWz66NjnLRSSWyxeu7XFTMl31adcTa+WbC6OyOKD538r6ePrc65+ipIPQAsN8bi1XQTHcT2ZTz9oDpVhie+L6DfuteUetNjjmdUSzqieOE/XqkYOiGWC+KjdqJFrmcn1OjVSCR0uE3SxoO4dy65aH18mdRjwYpTdMwtzOGjbuGsdBsmmkLPnDZ1Vw8rRlv7zYmUmO5mVQRrNTFnZpa6fb86qStHi37xZht7vYChlhTjdKnahL0++D3acjmdM9KlhsNEToynMpUPZJcCFwJ02XQ0xIu6ZzZd1oz/D4N+01vkT/z+TSctrQPr24dHLOPSnMkKJ0I1Qx0ECLbsGPhKX4uSmQB4DdrN0kHT2uJgv1kxlnWVazPSb2ki2qaho5YCNsHk9g1lCrqqFRJmU62arp8miNBJNJJF5Gt9F6IpSLuq8I95ETXdUVky2+gLMaDWi/yJguifMoo/896Wi6q9k5MZXMYMTdmwgEfkpmc5WTLlJ/uOV6sNFBvgg8Axcm2axjJTFaK6JOrJ5t1PtTj3FOIF03B/AoQL7jgiDnYNZzC5cfN9zxdXvSfHk5lKxZm7eWihY9TbDa+u2cUuq5D0zRZUtnbEsYByvxJ/b7FvaLWc+BwwI/7/+nYMb9r53FOdE80Z7loo1UgkdLhN0sajutO2x+z2qN48JVteGP7EOZ2RmXjWi/42UcPQ/9oWrodOoqUiwLA4r4W3P/yNgBj70hU2pNtLJGt0XZEVBdgo/Y0Cwd8GEllG+6z9wrpZEtm5YK8Wp9FXuJWCaWiADCzPYqH/s8qdDiSar/9oYPlZLIYNidbFSZEaq85IN+tI34u+qMAwBazjMOnAfEp6qJUyXOyFREeVSdbrUs1pMg2Dieb6MlWzdKclkgAOwaTecm21XDkhMZwso2ksrJ8uqiTjcEHnqBuBg4lMthtpt96WS4KGCm1w6Zrd1ZHFOu2D8nXkuWiEyKyWfcweWwVnlPzTJfTW7uG5bgdCvhKrmBoBLrjygZvHTvZvA49EMzvjuPmDx9clecGjHnBcCrrqZOt2KaS2OQZTmUxkMigtSlo9RJsiWDJDMvJpj5Ps3mv4NVFNAAAMW9JREFUqGXogaAUMdUpiE70uauej0F/fp9tMnngzJw0HD0tEVxzymJcc8pibN47iuZIwLOyFcBYPKgLiPYiwQcAsN80ywUzlrigNmItOV1UuXG5los2cE+2OarI1qBCgRDZvHJTNhpiV3A4lZH9m6olXDgnQ+NZ6M/ujLr+vJRJmfp+qjEhE+KhcOuIxL1I0IdEOoehZAa5nI7tipNNPR4vx79GxTnBL7aYmNsZQ19rBDPbm+Cv8WcnFt2FkjzdmAgBQpzzgwXKRT0V2UyxsJCTba/y2Qy7iWxmaZ+zLx8pD79Pky6awURGCsBelIsG/UZLjnRWx2jaajEw2xTZ9gwb37UsF52AHk/SyWaWi+q6Ll3Z5Tq0xP1m51AK68z2BtNaIg3n1i9GS1MAIb8PqWyupinNhRBicbVEtmrT0hTE5v6EB042pVy0qfA13BTyoyMWwu7hFDbvHUVrk+Xg722NYFFvHAGfhkxOt33fYl3TKE5i54Z+LXuyxcONV8FDSofyKWloprc1Vd2JoPZkK+RkE4zHyVZq02i1J5ub2yseDuBjqxbgoiPnorPBElzaokF5g27U4IAjF3ShtyWMBd2xsR88CRHnfCKdk4vhak1amsMBqPORHg9L1oq+rvJ+qvHerJ5sZjNwU0gQO8u6bjTHFxPeRT3xvL+d6jgn+MUWx5GgHw9ftQp3/eMR1T6sMRHXjzNlsRjpCRAgxHk+mHA62Yxz0MtrT7iFRK85J/0jlsg2ynLRCSGufP/rtxsiUbE+R+NBfE8jqaws/51lJjXuMp1syQnsydbkKBcdSmZkqm6542tLJCidf399czcAb0us6wFN03DBEXNwzKIuLOyOj/0HE4xaLtqIiLYGIsW0XJpKdLIBVsmo6MumbqqEA37ZWkNdv4g1WKOImU2ODf2JFtnU+1StnfSkujTmqpaQCcTeky1/wje7I4qmoB+j6ezYPdmU35faR6mphATLq09eXNJz1RuapmF2ZxR/3zzQsOWi3z33YGRzelUa/TcCUeV7217ltCafT0NzOCAbck9UE2khBIcDvrJ79BRD7Ao7nWxt0aB0sw2MpqWT7ayDZ+Anf96IHYNJimwmEUdZ11ifSzW+x3IQY/rwOEQ24WQLBqq3A97iKGEWiHOw1FLtUhjLydY/hpPNShedmmNwNRB9KN/dO4IX3+0HABw2r9OT524K+jGYyGA0lcWQUi4KWAEgO4cMsW0i2jAIF/2oeW6J+0tIaepeDnO7Ytg1nMJTG3YBmFyhB4IvnrZ/rQ+hIJb405hL3atPXowVr2zD8fv1VPQ86jk8lhN/VnsUL707gPU7hnD8fr1SZBO9BK85ZTHufWkLjt2nW/6NmO81ipjpDMqbaKFrrOokMnngjISQMRirJ5vfp2Efs2S01HRRn2YvHS1GZJIPyCJhtFHLRTVNm7ICG2AsRERCooxED1dv0qJOEifKGSCu62r17ijUky0WCthKSXcMGgvPaS0RnHnQdNvfTnWcpYL12CPIjVgZTjZRSlftnmyAm5PN+3JRy8lWSGSz+tWNFk0XbYxFXiMgxrw/vrIdOR2Y3x2ztaaohKiSMCrEZafI9sKmvQBg6wNVLZxONuGcbGkKVlTKJeY2L2wyRMrJFHrQCBy5sBOr9u3GxUfOrfWhlMWBM1vxT+/dp+JxbTxOtmWz2gAAf9u4B4l0FnvMa0HMtY7dpxs3nL3UthZpNJHN2ZOtluWijdbih4wPfruEjMFY6aIA8PFVC/DLv72DVfsW33Ga1hqB36dhdke05D5KpTjZGhkxuZ6M720qoGkaoiE/BhIZbO0XCZzV+y4N0ckoZejx0E1TDLHTWa0UKiGkjaSySGdzMl00GvKjpSmI7YNGyqMQOHpawjh60Xxs3DWM8w6bU5VjajTygg8aRGSLl+FkS2erny7aUrAnm/fpotLJlinByebyOQmRjU427xDn5R9fMUKdjlzgjYsNsK7VoWRGBgzMajfmAXtG0tjSP4ptA0n4NGDJjJaCz+MVVrqocW6J863SPmNzzYRREdoxGZ1s9UxLJIifXLyy1odRc2w92caooFk5rwMA8LeNu+V8IxzwFb2fivlRpEHKRZ3pohPtZLOXi3LdM5nht0vIGDSF/LJkq1B/kJMOmIaTDpg25nN1N4fx248diY4S+7EB9l2XyehkO3H/Xvzm6U1YtW/32A8mdUnMLOEUk7J4NUU2ZeEzWZxs6kRrYDQtU+5i4YAU9gZGM9g+KAQOI5zl3y88tCrH04iopfyhgK9h+nMJB+9Q0r0fmRvpCQk+sM47QSKdlQJEj5dONnPzqhSRTYgyKkn2ZPMcIbLuNZ0sRy3o8uy5xSJ395DlUJzZYfSdyuZ0PPb6TgDAPr3Nea6TaiCOJ53Vkc7mpKO4UqF+bpe9T2uvR05AQsZDqemigOEcbQr6sXckjcfeMK7Daa3FAzvEc0YbZPyN1jj4oCk0uauTiAW/XUJKoCMawub+hCeLGmHHLhVb8EGD7BSNhxVzOvD0F09gwk4DIxYpsly0ijuDakN7Lxf6xRCOuZ7m6oh6Ab8P8XAAQ8kMBhKZPCcbYPQoEgveah1HI+PzaQgHfEhmcmUnAtYC0YtyXD3ZJqBcVKaLJi2Ba7vpYosEfZ66OsV9NVVAZNs7MoaTLUMnm9eoC09NAw6f752TTSwyRd81v9lrszkcwGAygz+9uh3A+OdK5aIKeSMpS0iuWGRzJFqzXJTUgvGIbEG/DyvmtOPxdTvx++c3Axi7/+aapX1Y+9YefPDQWZUf7ATgbE1TrQqFQjQx+GDKwBkJISUgouvdgg+qTWSSl4sCoMDW4IjzUiyaqlouak4Sm4L+kvsaVsoJ+/fgy6fvX9WAETH57R9NWz3ZwlZPtnVmwl9ojNKNqYwYK1srLPOaSMopFxW9y6paLtqU72TbNmj1Y/NyzBYiWzJTIF1UcbKNFOnJ5uzLR8pHHcP372uRcyAvEItMcb+IhfzQNA0dceM1Hl9nOGiWzmzz7DWLEQpYfUVHU1kMiHLRChfAczrtTjaKbKQWiM2HoF/LK5V0Qy0ZBcZ2YC7ojuOOS1bi0LkdFR7pxODsHTfRm3Lqd1DNqg9SeyiyEVICoi/bRMTJO2ESDal3xKRBN1rPVHVnUAhMvS3hCRNnwwE/LjpqHuZ3x6v2GlZ5XloKLoaTzfj5+h2GyNbTPHHvu9EQi4lGCT0Aygs+SMt00So62cL5Pdlk6IHHvRDDYzjZxhbZjL8LN0i5UiMQV8JrjlroXakoYKU97jTLRcU1IEKmxLVw0Kzqhx5Yx2Q6SlMZKbJVupnR2hS0BWf1TFB7A0JUmuTmU2lBHkJkE/O53knmnPf5tJq6ydiTbepAkY2QEhCpWrVwkKj1+5PVyUYaG6f9Pl7NdFFzQjRRpaIThauTLZTvZGOpaGEiymKiUZBOtlQ55aLVE1uFUKmmi4rQA6/FAsvJVp7IlmS5qOeoi78jPAw9AIAm83uSTjYhsim9aiNBH/bpbfb0dYshE089LBcFrITRtmiQPQNJTYg7ROyxWDarzeaS9ipVuJ4Q13vAp034fSMc8EFonRNVjUFqA79dQkrgU+9ZhHldMZx+0PQJf221BIYiG6lHoo7zspq7c9NajQX+7I7oGI9sLISoMZBQnGxhP3K68fMt/VapHnFHjJWN1JNNlIsMlxF8UM32BdJZmVB7slXnHBTBB6U52dzSRcXnQRHDK8T3H/BpWOlxGZjogbZj0CoXBewiwJLprVXtOejE2ChK2nqyVZouCgDzOmN49u29LBUlNWPFnHZcctS8khOCI0E/DprVir9t3ANgcs45omE/dg0b49xEVwZomuGkG0ll2ZNtksMVOyElMLsziitWL6zJa6sNvVkuSuqR+ASmNZ1x0AykMjkcv19v1V6jFhRysvkcE0A62QojdqQbyclmpYvWW/CBENlUJ5sQ2arlZCutJ1sup8Pns64L2ZONTjbPmNFmpH2unNfh+eZeRPZkc5SLxi2R7aAJCj0QiIqBkVRGnvPeONmMvmyTUaggjUHA78O1p+8/rr9ZOa9jUots4r5bK5ErGjJENq7pJjeckRDSABw2vxN9rZFJ594hk4Oos1y0iiJbU8iP84+Yi+nmInCyINxXA6OOdFHHJHCylcl6SbiRy0XHFXxgNMupbvCB8RmmMjkpYolyUe+dbKWniwJWmigA6Louy0xZjucdh8/vxI8vOgT/es4yz59b9EPaPVy4XHTpzInrxwZY5WNeposCwHv378WMtiasWdpX8XMRMlGsnGe53iajC1OI6rXqiVbr1ycTA79dQhqAn1x0KLK6PqHlE4SUSixU27SmyYAoTeofTWMkaaWL5kT3YRM62QojFu9elHlNFLGwtbjP5nT4fWOXrmzpHwUAhKvo3IqHAtA0o/n1YCKDSNAvnWw9Exh8kMvptpJVwCitFcK+2seNIpt3+Hwa3rO4Om5hIWjlzKHNrVx02YQ72YzzyV4uWvl9bP/pLXjimvdU/DyETCQr5rSjORKA36dNysAOy8lWm7nCPx4zH4+v24lls9tq8vpkYmicmSghUxifT4MPTBQk9Ynaky3o16raK2qy0qr2ZFOcbHnlopNwV9krhNN3QRVTYL1GLcUbTmXGFKhf3zaI/35+MwBg9b49VTsun09DPBzAYCKDwUQa3c3hCSgXzRfZBpMZmXIX8vuQyuYwqoQfCJcdAEQ47jQEEcemjLgGOs1y0bZocMJd+zEZfJCxRDZuFpEpSjwcwN0fOxKaNjk3L4TQX6tr/Pwj5uL8I+bW5LXJxEGRjRBCSEWoTrZ4eOIbyU4GrHJRpSdbOJDnXqWTrTD/fOp+eN+KmThogkvNKiEc8CHg05DJ6RhOji2y3fCHV5DTgZMPmIZDPG5I76QlEsRgwuhRNZTMYNg8L70Weos52frNUtGmoB+xsB87h1K2JFYhzAV8GgJ0ejcEUceiXZRMHzK3A8tmteHEA3on/B7SpJSLDnhYLkpIo7JoAtN9J5qoLNfkNU6qB0U2QgghFaH2ZOOkpTykk21USRcN+WUJpGAyNiH2iqaQf8LLzCpF0zTEwgH0K997IR5/Yyceem0HAj4NV5+yuOrHJkppBhNp6WKLhwOeN2su5mRT+2MZj0tJERqwnGx0zzYOTQ4nm7h/tESC+N0VR9XikOSie/dISp6HrVHeywiZjIjqC/ZEI9WEZxchhJCKiCnpopy0lIfo/6Mu8mKhgK2cMOjX0M6F36QjbopsQ0n3dE0AyOZ0fO0PrwAAPnL4HMzrilX9uNQwDr/P7MdWhf484YAxfrg62UyRrU0570cUJ1sizdCDRsO5cRAL1/67E0Lftn7jPNc0oy8hIWTysU+P0VJi8bTJ69YjtYd3EEIIIRWhOtkYSV4ewsm2rT8pfxYN+xEK+NAU9GM0nUV3PMxS3EmIEBmKOdm+9cBreHnLAJojAXzq+EUTclyqky2dNcSsXo9DDwArJTWZyRcZ946mABgidMY8BjcnG0W2xsHpZKuHe4Zwsm0xRbaWSBC+EkJICCGNx4VHzsXx+/ViZvvkSqkn9UXt72yEEEIaGruTjU6rchCJmKms1WNKiA+tTUGMprMMPZikCLfiUAGR7d4Xt+CWh9YDAK4/a4kthbGaCHflYCKDPWZvNK9DDwArJXWsclEReGB3smVtz0HqH6eTLVpHIpsoi2Y/NkImL5qmYdYEh6uQqQdnJYQQQipCdbK1sFy0LJyLumjIL11rQoBj6MHkRDh53Jxsr20dxP/59fMAgMuOmYczl82YsOMSTraBRBqPvbEDALDvtBbPX0eIyUJgVlFFtqjSnF6QMIW5SIBOtkYhmudkq/1312Tew4STjSIbIYSQSuBqiBBCSEXEbMEHvK2UQ1PQL1MmAdh6sYneWNXoh0Vqj7h+3ES2637/EkZSWRy5oBNXn1z9sAMVcS2/uXMYT765CwBw2tI+z18nbDqbkunC6aJtarmo0rsuKctFuWfcKDhLe2N10PtMJJ4KN6XY2CCEEELKgbMSQgghFaGWi8YpspWFpmk294Tq9hBle9Xoh0Vqj7hm3IIP3t41AgD47En7IuCf2CmbEHcf+Ps25HTgoFltVSmxKdnJZgrPbk62MJ1sDYOzJ1usDspFneELdLIRQgipBIpshBBCKkJdJLEnW/m0KAs79TNdMacdfp+GQ+Z21OKwSJUpVi46bApKtSjDFteyEL9Or4KLDQBCAbMnWzpfZJQiWzQo3UZuPdnoZGscnOWi9SCyNTncdBTZCCGEVELt72yEEEIamnDAB58G5HSWi1ZCSwEn2xWrF+Lio+baet+RyYNw0bgFHwhBqRbfvbNk7tQDqyOyhQOFnWx7R4o72ZJMF204nP3znC6yWuAU/lq4WUQIIaQCuPVHCCGkIjRNk3114nXgSmhUVLeSs08RBbbJS6F00VQmh3TW7NFXg+9fdaUeOrcd09uaqvI6QmRLZnLQdd32O7fgg2Gbk80MPqDI1jD4fJrNeVgPPdmciactdLIRQgipAIpshBBCKiZquhHoACgfm5ONYuWUoVC5qFoW6exjNRGortTTlk6v2uuIfmq6Dhn8IVBFtphIF1V617FctDERopam5bvIaoGzZJXlooQQQiqBsxJCCCEVM63VcLlUy+0yFVAXdrE6WHiSiUE4eZxONtGPLeT3yb5lE0l7NAQA8GnAKQdOq9rrqO9NpDsK7E42s1w0rQYfGP/N4IPGQohssVAAmqbV+GhcykUpshFCCKkAbpUTQgipmG+fswzrtw9h32nNtT6UhkV1AbI8dOoQK+RkM/8drVHPqrmdUVx+3AL0tUbQU8VkW1VkS2VyQNj470w2J4XHtmhICiEjyueUNMtFw3SyNRTCmVkPLjYg3ylKJxshhJBK4CyeEEJIxczrimFeV6zWh9HQ2JxsddAMnEwMVrmoPV1TONlq1bNK0zRcc8riqr+O36ch4NOQyemGyGYykLDEtJZIwDX4QDjZnM30SX0jRK166eEZDVJkI4QQ4h3c+iOEEELqADXNkU62qUOhdFErWXTyC0ghGX5gCWh7R1IADCEm4PdZTjYGHzQ80aAxvjl7odWKgKMkmyIbIYSQSqDIRgghhNQBdLJNTaSTLeUsFzUEp6kQgiESRlUnm9qPDYAisjH4oNGJ1Fm5KGA/FjXpmRBCCBkvnJUQQgghdQB7sk1NCvVkE6LbVAjBsJxsxUQ2l3JROtkakiZTFK2XclHAXjLK4ANCCCGVQJGNEEIIqQOYLjo1ESJbOqvbyiWFmDQVBFeRDlpMZIsp5aK6rpuPp5OtERHndD25NEWfuFjIj6Cf5xMhhJDy4V2EEEIIqQNU90Q9LT5JdVEFVTX8QDjbpkLpsFtPtq39CQCWyCZEkJxuiXEiXZTBB42FcB7G6+jcFmI3XWyEEEIqhSIbIYQQUgfQyTY1Cfh9aDJFB7VkdGo52ew92XI5Hb98+h0AwMp5HQDsn4P4bES6aJhOtoai2ex51hypH0FLXIMMPSCEEFIpk3/mRgghhDQAzRGmi05VYuEARtNZDCYskW0q9mQTItufXt2ON3cMozkSwAcPnQUA8Ps0hAM+JDM5DCcz6IiFrOADOtkaivevmIl3947iAytm1vpQJCL4gE42QgghlcKtP0IIIaQOCPp96IqHoWlAVzxU68MhE4gom1MTRqdSumjI7IE1aopmP3jsTQDAeYfNsTXHFyV94nEi+CDM4IOGYp/eZtxy7nIs6m2u9aFIxMZGSx256wghhDQmk3/mRgghhDQI3/vIcmwfTKKnJVLrQyETiBCPhpJT08nW12qc7//v3leRSGfx1IbdCPo1XHTkXNvjnGW10snGclFSIcLJxnJRQgghldIQs5KNGzfi0ksvxbx589DU1IQFCxbguuuuQyqVsj3u7bffxumnn45YLIauri586lOfynsMIYQQUq8cMrcDpx7YV+vDIBOMENlsPdmmkJPtsyftiwXdMWzpT+Dq374IADjjoBmY1moXm0UIxKjoySZFtskvRJLqQpGNEEKIVzTEzO3VV19FLpfD97//fSxcuBAvvfQSLrvsMgwPD+Omm24CAGSzWaxZswbd3d14/PHHsWvXLlx44YXQdR0333xzjd8BIYQQQog7cReRbSo52Wa2R3H3x47C5T9bi7+8uQsAcNmx8/Ie12SW9A2bIptIGaXIRirl+P168eCr23HCfj21PhRCCCENTkOIbCeffDJOPvlk+e/58+fjtddew2233SZFtvvvvx8vv/wy3nnnHUyfPh0A8M1vfhMXXXQRvvrVr6KlpaUmx04IIYQQUgyrXDQrfzaV0kUBoDUaxB2XrMSPHt+A9mgQi6flz9uE4DiSykDXdSmyiXRSQsrl2H268fjV76n1YRBCCJkENOzMrb+/Hx0dHfLff/nLX7BkyRIpsAHASSedhGQyibVr12L16tWuz5NMJpFMJuW/BwYGqnfQhBBCCCEOZPCB6mQz/1uUSE4FQgEfPrZqQcHfR6XIlpUCG0AnGyGEEELqh4bc+lu/fj1uvvlmXH755fJnW7duRW9vr+1x7e3tCIVC2Lp1a8HnuuGGG9Da2ir/N2vWrKodNyGEEEKIk1jIpSfbFHOylUJU+ZxEPzYAiNDJRgghhJA6oaazki9/+cvQNK3o/55++mnb32zevBknn3wyPvCBD+CjH/2o7XeapuW9hq7rrj8XfP7zn0d/f7/83zvvvOPNmyOEEEIIKQG3dNGR1NRzso2FGnyQSBtOtoBPQ8BPkY0QQggh9UFNt0c/8YlP4EMf+lDRx8ydO1f+9+bNm7F69WocccQR+MEPfmB73LRp0/DXv/7V9rM9e/YgnU7nOdxUwuEwwuHw+A+eEEIIIcQDXIMPzP5sMTrZJE1BK/iAyaKEEEIIqUdqOnPr6upCV1dXSY999913sXr1aqxYsQK33347fD77ruURRxyBr371q9iyZQv6+voAGGEI4XAYK1as8PzYCSGEEEK8wBl8kM3pGE2LclGKSALLyZZBIiNENrrYCCGEEFI/NMT26ObNm7Fq1SrMnj0bN910E3bs2CF/N23aNADAiSeeiP333x/nn38+brzxRuzevRuf/exncdlllzFZlBBCCCF1Szxid7KNKv3GhABHgCZTcBxOZZFMi2RRipCEEEIIqR8aYuZ2//33Y926dVi3bh1mzpxp+52u6wAAv9+P//mf/8HHP/5xHHXUUWhqasK5556Lm266qRaHTAghhBBSEiJdVPRkGzH/36cBYTb1l4jS2VGlXDRMJxshhBBC6oiGENkuuugiXHTRRWM+bvbs2bjnnnuqf0CEEEIIIR7hTBcdTln92IqFN001LCdbBomM4WSL0MlGCCGEkDqC23+EEEIIITXEmS4qxLYok0VtCDFyxBZ8wKksIYQQQuoHzkwIIYQQQmpIc8Quso2kmCzqhgiBGEllmC5KCCGEkLqEIhshhBBCSA3pjIcBGOLacDKD4RSdbG5YIpsVfECRjRBCCCH1BEU2QgghhJAaEg8HpIC0fTCJkaTh0orSyWZDfB5DiQwSGTP4gMEQhBBCCKkjODMhhBBCCKkxPc2Gm237QEI62WIhurRU2qJBAIYQ+Z0H3wBAJxshhBBC6guKbIQQQgghNaanJQIA2DaYxIgMPqCTTWVmexOuOWUxgn4NO4dSABh8QAghhJD6gjMTQgghhJAaY3eyieADurRUNE3D5cctwH9/8mgsmdECAJjZHq3xURFCCCGEWHCLlBBCCCGkxvSaTrbtg0kE/RoA9mQrxOJpLfjPjx+FV7YM4IDprbU+HEIIIYQQCZ1shBBCCCE1RnWyjQgnG9NFCxL0+7B0Zhv8Pq3Wh0IIIYQQIuEWKSGEEEJIjRFOtm0DSYQDhrhGJxshhBBCSGNBJxshhBBCSI2RTrZBposSQgghhDQqFNkIIYQQQmqMSBfdPpCU5aJMFyWEEEIIaSwoshFCCCGE1JieFsPJNpjMYOdQEgAQY7koIYQQQkhDQZGNEEIIIaTGNIcDaAoa5aEbdg4DAKIMPiCEEEIIaSgoshFCCCGE1BhN0yw3W0L0ZKOTjRBCCCGkkaDIRgghhBBSB/Q2R2z/jjL4gBBCCCGkoaDIRgghhBBSB3SbTjZBjMEHhBBCCCENBUU2QgghhJA6gE42QgghhJDGhiIbIYQQQkgd0ONwslFkI4QQQghpLCiyEUIIIYTUAT3NTpGN5aKEEEIIIY0ERTZCCCGEkDqgt8UqF40EffD7tBoeDSGEEEIIGS8U2QghhBBC6gDVyRaji40QQgghpOGgyEYIIYQQUgf0KE62aJj92AghhBBCGg2KbIQQQgghdUBLJIBwwJia0clGCCGEENJ4UGQjhBBCCKkDNE2TfdmYLEoIIYQQ0nhQZCOEEEIIqRNEX7ZYmE42QgghhJBGgyIbIYQQQkidQCcbIYQQQkjjQpGNEEIIIaRO6BZONvZkI4QQQghpOCiyEUIIIYTUCUtmtAIA5nfHanwkhBBCCCFkvHCblBBCCCGkTnjf8hk4aGYr5nfHa30ohBBCCCFknFBkI4QQQgipEzRNw6Le5lofBiGEEEIIKQOWixJCCCGEEEIIIYQQUiEU2QghhBBCCCGEEEIIqRCKbIQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKCdT6AOoNXdcBAAMDAzU+EkIIIYQQQgghhBBSS4Q+JPSiYlBkczA4OAgAmDVrVo2PhBBCCCGEEEIIIYTUA4ODg2htbS36GE0vRYqbQuRyOWzevBnNzc3QNK3Wh0MIKcDAwABmzZqFd955By0tLbU+HEJICfC6JaTx4HVLSGPBa5YQ79F1HYODg5g+fTp8vuJd1+hkc+Dz+TBz5sxaHwYhpERaWlo4gSCkweB1S0jjweuWkMaC1ywh3jKWg03A4ANCCCGEEEIIIYQQQiqEIhshhBBCCCGEEEIIIRVCkY0Q0pCEw2Fcd911CIfDtT4UQkiJ8LolpPHgdUtIY8FrlpDawuADQgghhBBCCCGEEEIqhE42QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKochGCCGEEEIIIYQQQkiFUGQjhNSEW2+9FfPmzUMkEsGKFSvw2GOPFX38z3/+cxx00EGIRqPo6+vDxRdfjF27dsnf//CHP8QxxxyD9vZ2tLe344QTTsBTTz1le45MJoMvfvGLmDdvHpqamjB//nx85StfQS6Xq8p7JGSy4fV1e/fdd+OQQw5BW1sbYrEYli1bhp/+9KcVvy4hxKIW1+0NN9yAQw89FM3Nzejp6cFZZ52F1157rSrvj5DJRq3utYIbbrgBmqbh05/+tFdviZCphU4IIRPMXXfdpQeDQf2HP/yh/vLLL+tXXnmlHovF9Lfeesv18Y899pju8/n0f/u3f9PffPNN/bHHHtMPOOAA/ayzzpKPOffcc/VbbrlFf/bZZ/VXXnlFv/jii/XW1lZ906ZN8jHXX3+93tnZqd9zzz36hg0b9F//+td6PB7Xv/3tb1f9PRPS6FTjun3ooYf0u+++W3/55Zf1devW6d/+9rd1v9+v33fffWW/LiHEolbX7UknnaTffvvt+ksvvaQ/99xz+po1a/TZs2frQ0NDVX/PhDQytbpmBU899ZQ+d+5cfenSpfqVV15ZrbdJyKSGIhshZMJZuXKlfvnll9t+tnjxYv2aa65xffyNN96oz58/3/az73znO/rMmTMLvkYmk9Gbm5v1O+64Q/5szZo1+iWXXGJ73Nlnn61/5CMfGe9bIGTKMRHXra7r+sEHH6x/8YtfLPt1CSEWtbpunWzfvl0HoD/yyCMlHjkhU5NaXrODg4P6okWL9AceeEA/7rjjKLIRUiYsFyWETCipVApr167FiSeeaPv5iSeeiD//+c+uf3PkkUdi06ZN+MMf/gBd17Ft2zb85je/wZo1awq+zsjICNLpNDo6OuTPjj76aDz44IN4/fXXAQDPP/88Hn/8cZx66qkevDNCJi8Tcd3quo4HH3wQr732Go499tiyX5cQYlCr69aN/v5+ALDdkwkhdmp9zV5xxRVYs2YNTjjhBG/eECFTlECtD4AQMrXYuXMnstksent7bT/v7e3F1q1bXf/myCOPxM9//nOcc845SCQSyGQyOOOMM3DzzTcXfJ1rrrkGM2bMsE0Urr76avT392Px4sXw+/3IZrP46le/ig9/+MPevDlCJinVvG77+/sxY8YMJJNJ+P1+3HrrrXjve99b9usSQgxqdd060XUdn/nMZ3D00UdjyZIl3rw5QiYhtbxm77rrLjzzzDP429/+5v0bI2SKQScbIaQmaJpm+7eu63k/E7z88sv41Kc+hWuvvRZr167Ffffdhw0bNuDyyy93ffw3vvEN3Hnnnbj77rsRiUTkz3/5y1/iZz/7GX7xi1/gmWeewR133IGbbroJd9xxh3dvjJBJTDWu2+bmZjz33HP429/+hq9+9av4zGc+g4cffrjs1yWE2KnVdSv4xCc+gRdeeAF33nmnJ++HkMnORF+z77zzDq688kr87Gc/s82bCSHlQScbIWRC6erqgt/vz9uR2759e97OneCGG27AUUcdhauuugoAsHTpUsRiMRxzzDG4/vrr0dfXJx9700034Wtf+xr++Mc/YunSpbbnueqqq3DNNdfgQx/6EADgwAMPxFtvvYUbbrgBF154oZdvk5BJRTWvW5/Ph4ULFwIAli1bhldeeQU33HADVq1aVdbrEkIManXdqnzyk5/E73//ezz66KOYOXOmx++QkMlFra7ZtWvXYvv27VixYoV83mw2i0cffRTf/e53pfuNEFIadLIRQiaUUCiEFStW4IEHHrD9/IEHHsCRRx7p+jcjIyPw+ezDlbjZ67ouf3bjjTfiX/7lX3DffffhkEMOKfl5crlcWe+FkKlCNa9bJ7quI5lMlv26hBCDWl234t+f+MQncPfdd+NPf/oT5s2bV+7bIGTKUKtr9vjjj8eLL76I5557Tv7vkEMOwXnnnYfnnnuOAhsh42VCYxYIIUS34sl/9KMf6S+//LL+6U9/Wo/FYvrGjRt1Xdf1a665Rj///PPl42+//XY9EAjot956q75+/Xr98ccf1w855BB95cqV8jFf//rX9VAopP/mN7/Rt2zZIv83ODgoH3PhhRfqM2bM0O+55x59w4YN+t133613dXXpn/vc5ybuzRPSoFTjuv3a176m33///fr69ev1V155Rf/mN7+pBwIB/Yc//GHJr0sIKUytrtuPfexjemtrq/7www/b7skjIyMT9+YJaUBqdc06YbooIeVDkY0QUhNuueUWfc6cOXooFNKXL1+uP/LII/J3F154oX7cccfZHv+d73xH33///fWmpia9r69PP++88/RNmzbJ38+ZM0cHkPe/6667Tj5mYGBAv/LKK/XZs2frkUhEnz9/vv6FL3xBTyaT1X67hEwKvL5uv/CFL+gLFy7UI5GI3t7erh9xxBH6XXfdNa7XJYQUpxbXrdv9GIB+++23V/OtEjIpqNW9VoUiGyHlo+l6ER8pIYQQQgghhBBCCCFkTNiTjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgipKalUCgsXLsQTTzzh6fPec889OPjgg5HL5Tx9XkIIIYQQNyiyEUIIIYR4yEUXXQRN0/L+t27dulofWt3ygx/8AHPmzMFRRx0lf6ZpGn73u9/lPfaiiy7CWWedVdLznnbaadA0Db/4xS88OlJCCCGEkMJQZCOEEEII8ZiTTz4ZW7Zssf1v3rx5eY9LpVI1OLr64+abb8ZHP/rRqjz3xRdfjJtvvrkqz00IIYQQokKRjRBCCCHEY8LhMKZNm2b7n9/vx6pVq/CJT3wCn/nMZ9DV1YX3vve9AICXX34Zp556KuLxOHp7e3H++edj586d8vmGh4dxwQUXIB6Po6+vD9/85jexatUqfPrTn5aPcXN+tbW14Sc/+Yn897vvvotzzjkH7e3t6OzsxJlnnomNGzfK3wuX2E033YS+vj50dnbiiiuuQDqdlo9JJpP43Oc+h1mzZiEcDmPRokX40Y9+BF3XsXDhQtx00022Y3jppZfg8/mwfv1618/qmWeewbp167BmzZpxfsrAxo0bXV2Dq1atko8544wz8NRTT+HNN98c9/MTQgghhIwHimyEEEIIIRPIHXfcgUAggCeeeALf//73sWXLFhx33HFYtmwZnn76adx3333Ytm0bPvjBD8q/ueqqq/DQQw/hP//zP3H//ffj4Ycfxtq1a8f1uiMjI1i9ejXi8TgeffRRPP7444jH4zj55JNtjrqHHnoI69evx0MPPYQ77rgDP/nJT2xC3QUXXIC77roL3/nOd/DKK6/ge9/7HuLxODRNwyWXXILbb7/d9ro//vGPccwxx2DBggWux/Xoo49in332QUtLy7jeDwDMmjXL5hZ89tln0dnZiWOPPVY+Zs6cOejp6cFjjz027ucnhBBCCBkPgVofACGEEELIZOOee+5BPB6X/z7llFPw61//GgCwcOFCfOMb35C/u/baa7F8+XJ87Wtfkz/78Y9/jFmzZuH111/H9OnT8aMf/Qj/8R//IZ1vd9xxB2bOnDmuY7rrrrvg8/nw7//+79A0DQBw++23o62tDQ8//DBOPPFEAEB7ezu++93vwu/3Y/HixVizZg0efPBBXHbZZXj99dfxq1/9Cg888ABOOOEEAMD8+fPla1x88cW49tpr8dRTT2HlypVIp9P42c9+hhtvvLHgcW3cuBHTp093/d2HP/xh+P1+28+SyaR0vfn9fkybNg0AkEgkcNZZZ+GII47Al7/8ZdvfzJgxw+bYI4QQQgipBhTZCCGEEEI8ZvXq1bjtttvkv2OxmPzvQw45xPbYtWvX4qGHHrKJcoL169djdHQUqVQKRxxxhPx5R0cH9t1333Ed09q1a7Fu3To0Nzfbfp5IJGylnAcccIBN2Orr68OLL74IAHjuuefg9/tx3HHHub5GX18f1qxZgx//+MdYuXIl7rnnHiQSCXzgAx8oeFyjo6OIRCKuv/vXf/1XKeYJrr76amSz2bzHXnrppRgcHMQDDzwAn89erNHU1ISRkZGCx0AIIYQQ4gUU2QghhBBCPCYWi2HhwoUFf6eSy+Vw+umn4+tf/3reY/v6+vDGG2+U9JqapkHXddvP1F5quVwOK1aswM9//vO8v+3u7pb/HQwG8543l8sBMMSqsfjoRz+K888/H//6r/+K22+/Heeccw6i0WjBx3d1dUkRz8m0adPyPsfm5mbs3bvX9rPrr78e9913H5566qk8EREAdu/ebXuPhBBCCCHVgCIbIYQQQkgNWb58OX77299i7ty5CATyp2YLFy5EMBjEk08+idmzZwMA9uzZg9dff93mKOvu7saWLVvkv9944w2be2v58uX45S9/iZ6enrL6nwHAgQceiFwuh0ceeSTPYSY49dRTEYvFcNttt+Hee+/Fo48+WvQ5Dz74YNx2223QdV2WsY6H3/72t/jKV76Ce++917Xvm3DqHXzwweN+bkIIIYSQ8cDgA0IIIYSQGnLFFVdg9+7d+PCHPyxTMO+//35ccsklyGaziMfjuPTSS3HVVVfhwQcfxEsvvYSLLrooryTyPe95D7773e/imWeewdNPP43LL7/c5ko777zz0NXVhTPPPBOPPfYYNmzYgEceeQRXXnklNm3aVNKxzp07FxdeeCEuueQS/O53v8OGDRvw8MMP41e/+pV8jN/vx0UXXYTPf/7zWLhwoa3M1Y3Vq1djeHgYf//738fxqRm89NJLuOCCC3D11VfjgAMOwNatW7F161bs3r1bPubJJ59EOBwe8zgIIYQQQiqFIhshhBBCSA2ZPn06nnjiCWSzWZx00klYsmQJrrzySrS2tkoh7cYbb8Sxxx6LM844AyeccAKOPvporFixwvY83/zmNzFr1iwce+yxOPfcc/HZz37WVqYZjUbx6KOPYvbs2Tj77LOx33774ZJLLsHo6Oi4nG233XYb3v/+9+PjH/84Fi9ejMsuuwzDw8O2x1x66aVIpVK45JJLxny+zs5OnH322a5lrGPx9NNPY2RkBNdffz36+vrk/84++2z5mDvvvBPnnXde0ZJVQgghhBAv0HRn8w5CCCGEEFL3rFq1CsuWLcO3v/3tWh9KHk888QRWrVqFTZs2obe3d8zHv/jiizjhhBNcgxkqYceOHVi8eDGefvppzJs3z7PnJYQQQghxg042QgghhBDiCclkEuvWrcOXvvQlfPCDHyxJYAOMXm/f+MY3sHHjRk+PZ8OGDbj11lspsBFCCCFkQmDwASGEEEII8YQ777wTl156KZYtW4af/vSn4/rbCy+80PPjWblyJVauXOn58xJCCCGEuMFyUUIIIYQQQgghhBBCKoTlooQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUyP8PYZbTWVhfgxMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fg(freq), label='Best fit')\n", + "plt.axvline(1/period, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fg.mean[0], alpha=0.5, label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fg(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Phaseogram\n", + "\n", + "Let us now calculate the phaseogram and plot it with the pulse profile. \n", + "We do that with the functions `phaseogram`, `plot_profile` and `plot_phaseogram` from `stingray.pulse.search`" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABO4AAATCCAYAAAAKFqn+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWOElEQVR4nOzde7xVdZ0//tfmnMM1OALGLRG1jFSwDJRLlhkIZkTWmPW14atlXma8ljZlV238RTWTNmGlOY6WaDSWNloNCnlp/AJeUEqTMctLkCBWeBBBrvv3R+OejiBwzlmcs+A8n4/Hfuhe67Pf57M46+z9frz2ulSq1Wo1AAAAAECpdOnoCQAAAAAAWxLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2FVs3rw5Tz/9dHr37p1KpdLR0wEAAACgg1Sr1Tz//PMZMmRIunTZecfFCe520NNPP52hQ4d29DQAAAAAKIklS5Zkr7322mn1BXc7qHfv3kn+8gvp06dPB88GAAAAgI6yatWqDB06tJYX7SyCux300umxffr0EdwBAAAAsNMvp+bmFAAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJdWhwd+GFF6ZSqTR7DBo0KEmyYcOGfPKTn8zIkSPTq1evDBkyJP/3//7fPP30081qrFu3LmeddVb23HPP9OrVK1OnTs3SpUubjVm5cmWmTZuWxsbGNDY2Ztq0aXnuuefaazMBAFqtWq1mzfqNhTyq1WpHbw4AQKt01p6ovqMncNBBB2Xu3Lm153V1dUmSNWvW5IEHHsjnPve5vPGNb8zKlStz7rnnZurUqbn//vtr488999zccsstmTVrVvr375/zzjsvU6ZMycKFC2u1TjjhhCxdujSzZ89Okpx66qmZNm1abrnllnbcUgCAlqlWqznu8vlZ+NTKQuqNHtY3N5w+LpVKpZB6AADtoTP3RB0e3NXX19eOsvtrjY2NmTNnTrNlM2bMyGGHHZbf//732XvvvdPU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fv/I0EAGiFtRs2FdagJsn9T63M2g2b0rNrh7eAAAA7rDP3RB0+w8ceeyxDhgxJt27dMmbMmHzpS1/Kfvvtt9WxTU1NqVQq2WOPPZIkCxcuzIYNGzJp0qTamCFDhmTEiBGZN29eJk+enPnz56exsbEW2iXJ2LFj09jYmHnz5r1icLdu3bqsW7eu9nzVqlUFbC0AQOvc/9mJ6dm1rlWvXbN+U0ZfPHf7AwEASq6z9UQdGtyNGTMm3/ve9/L6178+zzzzTC6++OKMHz8+v/71r9O/f/9mY1988cV86lOfygknnJA+ffokSZYvX56uXbumb9++zcYOHDgwy5cvr40ZMGDAFj97wIABtTFbM3369Fx00UVt3UQAoB1Uq9Ws3bCpkFo9GupKedpEz651u8S3wgBAxymyJ0rK2Rd1tp6oQ7f0ne98Z+3/R44cmXHjxuW1r31tvvvd7+bjH/94bd2GDRvywQ9+MJs3b863vvWt7datVqvNdqyt7WQvH/NyF1xwQbM5rFq1KkOHDt3uzwYA2ldnvuYJAMBLiu6JEn1RGXToXWVfrlevXhk5cmQee+yx2rINGzbk+OOPzxNPPJE5c+bUjrZLkkGDBmX9+vVZubL5TrlixYoMHDiwNuaZZ57Z4mc9++yztTFb061bt/Tp06fZAwAon511zRMAgF1J0T1Roi8qg1IdW7hu3bosXrw4b33rW5P8b2j32GOP5Y477tji9NlRo0aloaEhc+bMyfHHH58kWbZsWR5++OF89atfTZKMGzcuTU1Nuffee3PYYYclSe655540NTVl/Pjx7bh1AMDO1tmueQIAsDVt6YkSfVGZdGhwd/755+fd73539t5776xYsSIXX3xxVq1alRNPPDEbN27McccdlwceeCA/+clPsmnTpto16fr165euXbumsbExJ598cs4777z0798//fr1y/nnn5+RI0fW7jJ7wAEH5Oijj84pp5ySK664Ikly6qmnZsqUKe4oCwC7mc52zRMAgK3RE+0+OvS3uHTp0vyf//N/8sc//jGvfvWrM3bs2CxYsCDDhg3Lk08+mZtvvjlJ8qY3vanZ6+644468/e1vT5Jceumlqa+vz/HHH5+1a9dmwoQJueaaa1JX97/J8nXXXZezzz67dvfZqVOn5rLLLmuXbQQAAACA1ujQ4G7WrFmvuG6fffZJtVrdbo3u3btnxowZmTFjxiuO6devX2bOnNmqOQIAAABARyjVzSkAAAAAgL8Q3AEAAABACQnuAAAAAKCEBHcAAAAAUELuDQwAsBNUq9Ws3bCpTTXWrG/b6wEAOpqeqG0EdwAABatWqznu8vlZ+NTKjp4KAECH0RO1nVNlAQAKtnbDpkIb1NHD+qZHQ11h9QAA2oOeqO0ccQcAsBPd/9mJ6dm1bQ1mj4a6VCqVgmYEAND+9EStI7gDANiJenatS8+uWi4AoHPTE7WOU2UBAAAAoIQEdwAAAABQQo5RBAA6TLVazdoNm9pUY836tr0eAKCj6Yl4JYI7AKBDVKvVHHf5/ELvNAYAsKvRE7EtTpUFADrE2g2bCm1QRw/rmx4NbbtTGQBAe9MTsS2OuAMAOtz9n52Ynl3b1mD2aKhLpVIpaEYAAO1PT8TLCe4AgA7Xs2tdenbVlgAAnZueiJdzqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoITcY7gg1Wo1azds2qGxPRrqUqlUdvKMAACK15KeZ3v0RAAA2ya4K8jaDZty4Odv3aGxo4f1zQ2nj9OoArDLKiK8WbO+mPCH9lOtVnPc5fOz8KmVhdTTEwGwq9MTsbMJ7jrA/U+tzNoNm9Kzq39+AHY9RYc37DrWbthU6O9dTwTArkxPRHvQJRWkR0NdHvni5G2OWbN+U0ZfPLedZgQAO0fR4c3oYX3To6GusHq0j/s/OzE9u7bu96YnAmB3oCeiPQjuClKpVHxbDECn05bw5iWuc9a+2nI6zl+/tmfXOr0PAPwPPdGuZ0d6ojL8TnRbALALKOsNAYQ3ux5HugGwK9MTUZQd6Yke+eLkDv+92qsAoOTcEIC26tFQl9HD+ub+Avchp/IA0N70RLRV0T1RexDcAUDJuSEAbVWpVHLD6eNKeYQCAOwoPRFt1dKeqAxfVNo7AWAX4oYAtJbr8QKwO9ET0Vq7Wk+068wUAHD9FACA6InoPLp09AQAAAAAgC0J7gAAAACghAR3AAAAAFBCHRrcXXjhhalUKs0egwYNqq2vVqu58MILM2TIkPTo0SNvf/vb8+tf/7pZjXXr1uWss87KnnvumV69emXq1KlZunRpszErV67MtGnT0tjYmMbGxkybNi3PPfdce2wiAAAAALRKhx9xd9BBB2XZsmW1x0MPPVRb99WvfjWXXHJJLrvsstx3330ZNGhQjjrqqDz//PO1Meeee25uuummzJo1K3fffXdWr16dKVOmZNOm/7217wknnJBFixZl9uzZmT17dhYtWpRp06a163YCAAAAQEt0+C1Y6uvrmx1l95JqtZqvf/3r+cxnPpP3ve99SZLvfve7GThwYK6//vqcdtppaWpqylVXXZVrr702EydOTJLMnDkzQ4cOzdy5czN58uQsXrw4s2fPzoIFCzJmzJgkyZVXXplx48bl0UcfzfDhw9tvYwEAAABgB3X4EXePPfZYhgwZkn333Tcf/OAH8/jjjydJnnjiiSxfvjyTJk2qje3WrVuOOOKIzJs3L0mycOHCbNiwodmYIUOGZMSIEbUx8+fPT2NjYy20S5KxY8emsbGxNmZr1q1bl1WrVjV7AAAAAEB76dDgbsyYMfne976XW2+9NVdeeWWWL1+e8ePH509/+lOWL1+eJBk4cGCz1wwcOLC2bvny5enatWv69u27zTEDBgzY4mcPGDCgNmZrpk+fXrsmXmNjY4YOHdqmbQUAAACAlujQ4O6d73xn/uZv/iYjR47MxIkT89Of/jTJX06JfUmlUmn2mmq1usWyl3v5mK2N316dCy64IE1NTbXHkiVLdmibAAAAAKAIHX6q7F/r1atXRo4cmccee6x23buXHxW3YsWK2lF4gwYNyvr167Ny5cptjnnmmWe2+FnPPvvsFkfz/bVu3bqlT58+zR4AAAAA0F5KFdytW7cuixcvzuDBg7Pvvvtm0KBBmTNnTm39+vXrc9ddd2X8+PFJklGjRqWhoaHZmGXLluXhhx+ujRk3blyamppy77331sbcc889aWpqqo0BAAAAgLLp0LvKnn/++Xn3u9+dvffeOytWrMjFF1+cVatW5cQTT0ylUsm5556bL33pS9l///2z//7750tf+lJ69uyZE044IUnS2NiYk08+Oeedd1769++ffv365fzzz6+depskBxxwQI4++uiccsopueKKK5Ikp556aqZMmeKOsgAAAACUVocGd0uXLs3/+T//J3/84x/z6le/OmPHjs2CBQsybNiwJMk//MM/ZO3atfn7v//7rFy5MmPGjMltt92W3r1712pceumlqa+vz/HHH5+1a9dmwoQJueaaa1JXV1cbc9111+Xss8+u3X126tSpueyyy9p3YwEAAACgBTo0uJs1a9Y211cqlVx44YW58MILX3FM9+7dM2PGjMyYMeMVx/Tr1y8zZ85s7TQBAAAAoN2V6hp3AAAAAMBfCO4AAAAAoIQEdwAAAABQQh16jbvObM36TW2u0aOhLpVKpYDZAAB0DD0RAMArE9x1kNEXz217jWF9c8Pp4zSqALRYW8KSIoIWeImeCICOpCei7AR37ahHQ11GD+ub+59aWUi9+59ambUbNqVnV79GAFqmiLAEWktPBEBZ6IkoO91NO6pUKrnh9HFZu6Ftqfya9Zu8uQDQYkWHJaOH9U2PhrpCatG56IkA6Eh6InYlgrt2VqlUfBsMQIcoKix5ieuK0RZ6IgA6ip6IXYluCQA6EWEJAICeiF1Hl46eAAAAAACwJcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBJyCxUAgJdZs35Th74eAKAs2tLX6InaTnAHAPAyoy+e29FTAAAoBX1Rx3KqLABAkh4NdRk9rG+hNUcP65seDXWF1gQA2NmK7ov0RK3niDsAgCSVSiU3nD4uazcUd0pHj4a6VCqVwuoBALSHovsiPVHrCe4AAP5HpVJJz67aIwAAfVE5OFUWAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp4AAJRNtVrN2g2bCqnVo6EulUqlkFoAAO2pyJ4o0RdBawjuAOCvVKvVHHf5/Cx8amUh9UYP65sbTh+nSQUAdilF90SJvghaw6myAPBX1m7YVGiDev9TKwv9phoAoD0U3RMl+iJoDUfcAcAruP+zE9Oza12rXrtm/aaMvnhuwTMCAGh/bemJEn0RtIXgDgBeQc+udenZ1UclANC56Ymg4zhVFgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJlSa4mz59eiqVSs4999zastWrV+fMM8/MXnvtlR49euSAAw7It7/97WavW7duXc4666zsueee6dWrV6ZOnZqlS5c2G7Ny5cpMmzYtjY2NaWxszLRp0/Lcc8+1w1YBAAAAQOuU4rYw9913X77zne/k4IMPbrb8Yx/7WO64447MnDkz++yzT2677bb8/d//fYYMGZL3vOc9SZJzzz03t9xyS2bNmpX+/fvnvPPOy5QpU7Jw4cLU1f3ldtUnnHBCli5dmtmzZydJTj311EybNi233HJL+24oAJ3SmvWbOvT1AABl0Za+Rk9EZ9Thwd3q1avzoQ99KFdeeWUuvvjiZuvmz5+fE088MW9/+9uT/CVwu+KKK3L//ffnPe95T5qamnLVVVfl2muvzcSJE5MkM2fOzNChQzN37txMnjw5ixcvzuzZs7NgwYKMGTMmSXLllVdm3LhxefTRRzN8+PB23V4AOp/RF8/t6CkAAJSCvghapsNPlT3jjDPyrne9qxa8/bXDDz88N998c/7whz+kWq3mjjvuyG9+85tMnjw5SbJw4cJs2LAhkyZNqr1myJAhGTFiRObNm5fkL+FfY2NjLbRLkrFjx6axsbE2ZmvWrVuXVatWNXsAwI7q0VCX0cP6Flpz9LC+6dFQV2hNAICdrei+SE9EZ9KhR9zNmjUrDzzwQO67776trv/GN76RU045JXvttVfq6+vTpUuX/Ou//msOP/zwJMny5cvTtWvX9O3b/A1g4MCBWb58eW3MgAEDtqg9YMCA2pitmT59ei666KLWbhoAnVylUskNp4/L2g3FndLRo6EulUqlsHoAAO2h6L5IT0Rn0mHB3ZIlS3LOOefktttuS/fu3bc65hvf+EYWLFiQm2++OcOGDcsvfvGL/P3f/30GDx681SP0XlKtVpv9EW/tD/rlY17uggsuyMc//vHa81WrVmXo0KE7smkAkOQvnz89u3b4VSkAADqcvghap8P+ahYuXJgVK1Zk1KhRtWWbNm3KL37xi1x22WVpamrKpz/96dx0001517velSQ5+OCDs2jRovzzP/9zJk6cmEGDBmX9+vVZuXJls6PuVqxYkfHjxydJBg0alGeeeWaLn//ss89m4MCBrzi/bt26pVu3bkVtLgAAAAC0SKuucffAAw/koYceqj3/j//4jxx77LH59Kc/nfXr1+9QjQkTJuShhx7KokWLao/Ro0fnQx/6UBYtWpRNmzZlw4YN6dKl+RTr6uqyefPmJMmoUaPS0NCQOXPm1NYvW7YsDz/8cC24GzduXJqamnLvvffWxtxzzz1pamqqjQEAAACAsmnVEXennXZaPvWpT2XkyJF5/PHH88EPfjDvfe97c8MNN2TNmjX5+te/vt0avXv3zogRI5ot69WrV/r3719bfsQRR+QTn/hEevTokWHDhuWuu+7K9773vVxyySVJksbGxpx88sk577zz0r9///Tr1y/nn39+Ro4cWTuV9oADDsjRRx+dU045JVdccUWSv9yddsqUKe4oCwAAAEBpteqIu9/85jd505velCS54YYb8ra3vS3XX399rrnmmvzoRz8qbHKzZs3KoYcemg996EM58MAD8+Uvfzn/3//3/+X000+vjbn00ktz7LHH5vjjj89b3vKW9OzZM7fcckvq6v73DjPXXXddRo4cmUmTJmXSpEk5+OCDc+211xY2TwAAAAAoWquOuKtWq7XTVefOnZspU6YkSYYOHZo//vGPrZ7MnXfe2ez5oEGDcvXVV2/zNd27d8+MGTMyY8aMVxzTr1+/zJw5s9XzAgAAAID21qoj7kaPHp2LL7441157be66667azSOeeOKJbd7wAQAAAADYMa0K7i699NI88MADOfPMM/OZz3wmr3vd65IkP/zhD93wAQAAAAAK0KpTZd/4xjc2u6vsS/7pn/4p9fWtKkkHqVarWbthUyG1ejTUpVKpFFILAKC96YsAgLJpVcq233775b777kv//v2bLX/xxRfz5je/OY8//nghkyujb97+23Tv9aoOncOGTZtr/3/Z7b9NQ12rDpxMtVrNDQuXZlnTi4XMa3Bj97x/1F6aVGCXVtR7LLDzFfn3qi8CaE5PBNv24gur2+XntCq4e/LJJ7Np05bfRq5bty5Lly5t86RoHxs3VwtrTpNkWdOLWbthUyFv6PVdKhpdAKDdlLUv0hMBQOfWouDu5ptvrv3/rbfemsbGxtrzTZs25ec//3n23Xff4mZHuznlrfu2urHcsGlzrvyvJ5Kk9t+28i01ANBRytQX6YkAoHNrUXB37LHHJkkqlUpOPPHEZusaGhqyzz775Gtf+1phk6P9NNR1aXWDWt+lksGN3Qv/lnrj5moa6jSpAED7KlNfpCcCgM6tRcHd5s1/Ocd93333zX333Zc999xzp0yKXUulUsn7R+2VjZurba71199SAwDsaorqi/REAEDSymvcPfGEJoLmKpWKb4IBAKIvAgCK06rgLkl+/vOf5+c//3lWrFhROxLvJf/2b//W5okBAAAAQGfWquDuoosuyhe/+MWMHj06gwcPdrFcAAAAAChYq4K7yy+/PNdcc02mTZtW9HwAoNWq1Woh15UCANiV6Ylg99Gq4G79+vUZP3580XMBgFarVqu5YeHSQu9wDQCwq9ETwe6lVfe5/+hHP5rrr7++6LkAQKtt3FwttEEd3Ng99V1cCgIA2LXoiWD30qoj7l588cV85zvfydy5c3PwwQenoaGh2fpLLrmkkMkBQGuc8tZ901DXqu+mauq7VFzDFQDYpemJYNfXquDuV7/6Vd70pjclSR5++OFm6/xBA9DRGuq6tLlJBQDY1emJYNfXquDujjvuKHoetFJbLhjqYqMAwO6irX2NvggAKKNWBXeUx5X/9URHTwEAoMPpiQCA3VGrgrsjjzxym6fE3n777a2eENtX36WSwY3dC7vgqIuNAgC7oqJ7okRfBACUS6uCu5eub/eSDRs2ZNGiRXn44Ydz4oknFjEvtqFSqeT9o/bKxs3VQuq52CgAsCsquidK9EUAQLm0Kri79NJLt7r8wgsvzOrVq9s0IXZMpVJJQ52mEgDo3PREAMDurNDby/zt3/5t/u3f/q3IkgAAAADQKRUa3M2fPz/du3cvsiQAAAAAdEqtOlX2fe97X7Pn1Wo1y5Yty/3335/Pfe5zhUwMAAAAADqzVgV3jY2NzZ536dIlw4cPzxe/+MVMmjSpkIkBAAAAQGfWquDu6quvLnoesIUNmza3uYY7wwEAuzo9EQB0Xq0K7l6ycOHCLF68OJVKJQceeGAOOeSQouYFufK/nmhzjcGN3fP+UXtpVAGAXZaeCAA6r1YFdytWrMgHP/jB3Hnnndljjz1SrVbT1NSUI488MrNmzcqrX/3qoudJJ1HfpZLBjd2zrOnFQuota3oxGzdX01CnSQUAdh16IgAgaWVwd9ZZZ2XVqlX59a9/nQMOOCBJ8sgjj+TEE0/M2Wefne9///uFTpLOo1Kp5P2j9srGzdU21dmwaXMh304DAHQEPREAkLQyuJs9e3bmzp1bC+2S5MADD8w3v/lNN6egzSqVim+DAYBOT08EAHRpzYs2b96choaGLZY3NDRk8+a2XzwXAAAAADq7VgV373jHO3LOOefk6aefri37wx/+kI997GOZMGFCYZMDAAAAgM6qVcHdZZddlueffz777LNPXvva1+Z1r3td9t133zz//POZMWNG0XMEAAAAgE6nVde4Gzp0aB544IHMmTMn//3f/51qtZoDDzwwEydOLHp+AJRYtVpt84XTX1LfpZJKxbWcAIBdj54I2FlaFNzdfvvtOfPMM7NgwYL06dMnRx11VI466qgkSVNTUw466KBcfvnleetb37pTJgtAeVSr1dywcGmWNb1YSL3Bjd3z/lF7aVQBgF2KngjYmVoU3H3961/PKaeckj59+myxrrGxMaeddlouueSSVgV306dPz6c//emcc845+frXv15bvnjx4nzyk5/MXXfdlc2bN+eggw7Kv//7v2fvvfdOkqxbty7nn39+vv/972ft2rWZMGFCvvWtb2Wvvfaq1Vi5cmXOPvvs3HzzzUmSqVOnZsaMGdljjz1aPM8z3vG6rW4/5bJm/cZ8687fJUnOfMfr0rNrqw4uBbZhzfqN+cbtvy2s3rKmF3P621/b6r9Xf/cAW/LeCDufngg6p1WrVuXT7fBzWvQX/Mtf/jJf+cpXXnH9pEmT8s///M8tnsR9992X73znOzn44IObLf/d736Xww8/PCeffHIuuuiiNDY2ZvHixenevXttzLnnnptbbrkls2bNSv/+/XPeeedlypQpWbhwYerq6pIkJ5xwQpYuXZrZs2cnSU499dRMmzYtt9xyS4vnyq5nzfpNba7Ro6HON16wDfd/dmJ6dq1r1WvXrN+U0RfPLXhGALycngh2Pj0RULQWBXfPPPNMGhoaXrlYfX2effbZFk1g9erV+dCHPpQrr7wyF198cbN1n/nMZ3LMMcfkq1/9am3ZfvvtV/v/pqamXHXVVbn22mtr19ebOXNmhg4dmrlz52by5MlZvHhxZs+enQULFmTMmDFJkiuvvDLjxo3Lo48+muHDh7dovux6ivjwGz2sb244fZxGFV5Bz651vs0FKDk9Eex8eiKgaC26q+xrXvOaPPTQQ6+4/le/+lUGDx7cogmcccYZede73rXFjS02b96cn/70p3n961+fyZMnZ8CAARkzZkx+/OMf18YsXLgwGzZsyKRJk2rLhgwZkhEjRmTevHlJkvnz56exsbEW2iXJ2LFj09jYWBvD7qdHQ11GD+tbWL37n1qZtRva/i01AEB70hMBwK6tRV8FHHPMMfn85z+fd77znc1OV02StWvX5gtf+EKmTJmyw/VmzZqVBx54IPfdd98W61asWJHVq1fny1/+ci6++OJ85StfyezZs/O+970vd9xxR4444ogsX748Xbt2Td++zZuRgQMHZvny5UmS5cuXZ8CAAVvUHzBgQG3M1qxbty7r1q2rPV+1atUObxcdr1Kp5IbTx7W5sXS4OgCwK9MTAcCurUXB3Wc/+9nceOONef3rX58zzzwzw4cPT6VSyeLFi/PNb34zmzZtymc+85kdqrVkyZKcc845ue2227YIAZO/HHGXJO95z3vysY99LEnypje9KfPmzcvll1+eI4444hVrV6vVZofvb+1Q/pePebnp06fnoosu2qFtoZwqlYrD1AGATk9PBAC7rhZ9gg8cODDz5s3L3/3d3+WCCy5ItVpN8pdmYPLkyfnWt76VgQMH7lCthQsXZsWKFRk1alRt2aZNm/KLX/wil112WV544YXU19fnwAMPbPa6Aw44IHfffXeSZNCgQVm/fn1WrlzZ7Ki7FStWZPz48bUxzzzzzBY//9lnn93mXC+44IJ8/OMfrz1ftWpVhg4dukPbBgAAAABt1eKv3oYNG5af/exnWblyZX7729+mWq1m//333+J01e2ZMGHCFtfL+/CHP5w3vOEN+eQnP5lu3brl0EMPzaOPPtpszG9+85sMGzYsSTJq1Kg0NDRkzpw5Of7445Mky5Yty8MPP1y7ocW4cePS1NSUe++9N4cddliS5J577klTU1Mt3Nuabt26pVu3bi3aJgAAAAAoSquPme/bt28OPfTQVv/g3r17Z8SIEc2W9erVK/37968t/8QnPpEPfOADedvb3pYjjzwys2fPzi233JI777wzSdLY2JiTTz455513Xvr3759+/frl/PPPz8iRI2s3uzjggANy9NFH55RTTskVV1yRJDn11FMzZcoUd5QFAAAAoLRKfbGL9773vbn88sszffr0nH322Rk+fHh+9KMf5fDDD6+NufTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1+/YAAAAAwI4qVXD30pF0f+0jH/lIPvKRj7zia7p3754ZM2ZkxowZrzimX79+mTlzZhFTBAAAAIB20aWjJwAAAAAAbElwBwAAAAAlJLgDAAAAgBIS3AEAAABACZXq5hQAdG5r1m/qkNcCAJSJngh4ieAOgNIYffHcjp4CAECH0xMBL3GqLAAdqkdDXUYP61tYvdHD+qZHQ11h9QAA2oOeCNgaR9wB0KEqlUpuOH1c1m4o5rSOHg11qVQqhdQCAGgveiJgawR3AJ1QtVptc1NY5PVTKpVKenb1kQQAtC89EVB23hEAOplqtZrjLp+fhU+t7OipAAB0GD0RsCtwjTuATmbthk2FNqiunwIA7Ir0RMCuwBF3AJ3Y/Z+dmJ5d29Zgun4KALCr0xMBZSW4A+jEenatcx0VAKDT0xMBZeVUWQAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASqi+oycAwI6pVqtZu2FTm+usWd/2GgAAHamIvkhPBOwKBHcAu4BqtZrjLp+fhU+t7OipAAB0KH0R0Jk4VRZgF7B2w6bCm9PRw/qmR0NdoTUBAHa2ovsiPRFQZo64A9jF3P/ZienZte3NZY+GulQqlQJmBADQMYroi/REQJmV5oi76dOnp1Kp5Nxzz93q+tNOOy2VSiVf//rXmy1ft25dzjrrrOy5557p1atXpk6dmqVLlzYbs3LlykybNi2NjY1pbGzMtGnT8txzz+2cDQHYyXp2rUvPrvVtfmhQAYBdXRF9kZ4IKLNSBHf33XdfvvOd7+Tggw/e6vof//jHueeeezJkyJAt1p177rm56aabMmvWrNx9991ZvXp1pkyZkk2b/vdCoyeccEIWLVqU2bNnZ/bs2Vm0aFGmTZu207YHAAAAANqqw4O71atX50Mf+lCuvPLK9O3bd4v1f/jDH3LmmWfmuuuuS0NDQ7N1TU1Nueqqq/K1r30tEydOzCGHHJKZM2fmoYceyty5c5MkixcvzuzZs/Ov//qvGTduXMaNG5crr7wyP/nJT/Loo4+2yzYCAAAAQEt1eHB3xhln5F3velcmTpy4xbrNmzdn2rRp+cQnPpGDDjpoi/ULFy7Mhg0bMmnSpNqyIUOGZMSIEZk3b16SZP78+WlsbMyYMWNqY8aOHZvGxsbamK1Zt25dVq1a1ewBAAAAAO2lQ29OMWvWrDzwwAO57777trr+K1/5Surr63P22Wdvdf3y5cvTtWvXLY7UGzhwYJYvX14bM2DAgC1eO2DAgNqYrZk+fXouuuiiHd0UAAAAAChUhx1xt2TJkpxzzjmZOXNmunfvvsX6hQsX5l/+5V9yzTXXtPhiodVqtdlrtvb6l495uQsuuCBNTU21x5IlS1o0BwAAAABoiw4L7hYuXJgVK1Zk1KhRqa+vT319fe6666584xvfSH19fe68886sWLEie++9d239U089lfPOOy/77LNPkmTQoEFZv359Vq5c2az2ihUrMnDgwNqYZ555Zouf/+yzz9bGbE23bt3Sp0+fZg8AAAAAaC8ddqrshAkT8tBDDzVb9uEPfzhveMMb8slPfjKDBw/O5MmTm62fPHlypk2blg9/+MNJklGjRqWhoSFz5szJ8ccfnyRZtmxZHn744Xz1q19NkowbNy5NTU259957c9hhhyVJ7rnnnjQ1NWX8+PE7ezMBAAAAoFU6LLjr3bt3RowY0WxZr1690r9//9ry/v37N1vf0NCQQYMGZfjw4UmSxsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTptTqAAAAAEDZdOjNKYpw6aWXpr6+Pscff3zWrl2bCRMm5JprrkldXV1tzHXXXZezzz67dvfZqVOn5rLLLuuoKQMAAADAdpUquLvzzju3uf7JJ5/cYln37t0zY8aMzJgx4xVf169fv8ycObONswMAAACA9lOq4A52Z9VqNWs3bCqkVo+GuhbfbZmOU8Tvfs36YvYdAOhoRfZEib5oV1LU715fBHQmgjtoB9VqNcddPj8Ln1q5/cE7YPSwvrnh9HGa1F1A0b97ANiV7YzPRX3RrkFPBNA6XTp6AtAZrN2wqdAm5f6nVhb6TTU7T9G/+9HD+qZHQ932BwJACRX9uZjoi3YVO+N3ry8COgNH3EE7u/+zE9Oza+sajDXrN2X0xXMLnhHtpS2/+5c4HQiA3UVbPxf1RbuuInqiRF8EdA6CO2hnPbvWpWdXf3qdkd89APwvn4udl989wI5zqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJ1Xf0BADKqlqtZu2GTW2qsWZ9214PANDR9EQAHUdwB7AV1Wo1x10+PwufWtnRUwEA6DB6IoCO5VRZgK1Yu2FToQ3q6GF906OhrrB6AADtQU8E0LEccQc7qC2H9zs1YNd2/2cnpmfXtjWYPRrqUqlUCpoRAHQcPVHnpScCaH+CO9hBoy+e29FToIP07FqXnl29XQJAoifqzPREAO3PqbKwDT0a6jJ6WN/C6jk1AADYFemJAKBj+LoEtqFSqeSG08e1+S5aL3FqAACwK9ITAUDHENzBdlQqFacEAACdnp4IANqfU2UBAAAAoIR8ZQadVLVaLex0l8QpLwDArqvIvkhPBECRBHfQCVWr1Rx3+fwsfGplYTVHD+ubG04fp1EFAHYpRfdFeiIAiuRUWeiE1m7YVGholyT3P7Wy0CP4AADaQ9F9kZ4IgCI54g52UWvWt74h/OvX3v/ZienZta5NtUZfPLfVr98ZijjdpS3/vgBA+ypDX6QnAmBnENzBLqqoxrBn17rS3CGuiOayWk3ef/n8PLJsVUGzAgDKbnfri/REALyk4z+VgB3Wo6Euo4f1zf0FXoOlR0Prj7Yr0s647l4RyvRvBAD8r921L9ITAfDXBHewC6lUKrnh9HG75V3Pir6+zIGD+/zPhaHbVqdM/0YAwP/aXfsiPREAf01wB7uYSqVSilM4dqa2Xncv0VwCQGewu/dFeiIASnNX2enTp6dSqeTcc89NkmzYsCGf/OQnM3LkyPTq1StDhgzJ//2//zdPP/10s9etW7cuZ511Vvbcc8/06tUrU6dOzdKlS5uNWblyZaZNm5bGxsY0NjZm2rRpee6559ppy4CWeun6Mm15aFABgF2dngiAUgR39913X77zne/k4IMPri1bs2ZNHnjggXzuc5/LAw88kBtvvDG/+c1vMnXq1GavPffcc3PTTTdl1qxZufvuu7N69epMmTIlmzb97yHzJ5xwQhYtWpTZs2dn9uzZWbRoUaZNm9Zu2wcAAAAALdXhx5WvXr06H/rQh3LllVfm4osvri1vbGzMnDlzmo2dMWNGDjvssPz+97/P3nvvnaamplx11VW59tprM3HixCTJzJkzM3To0MydOzeTJ0/O4sWLM3v27CxYsCBjxoxJklx55ZUZN25cHn300QwfPrz9NhYAAAAAdlCHH3F3xhln5F3velcteNuWpqamVCqV7LHHHkmShQsXZsOGDZk0aVJtzJAhQzJixIjMmzcvSTJ//vw0NjbWQrskGTt2bBobG2tjtmbdunVZtWpVswcAAAAAtJcOPeJu1qxZeeCBB3Lfffdtd+yLL76YT33qUznhhBPSp0+fJMny5cvTtWvX9O3bt9nYgQMHZvny5bUxAwYM2KLegAEDamO2Zvr06bnoootasjkAAAAAUJgOO+JuyZIlOeecczJz5sx07959m2M3bNiQD37wg9m8eXO+9a1vbbd2tVptdhHWrV2Q9eVjXu6CCy5IU1NT7bFkyZLt/lwAAAAAKEqHHXG3cOHCrFixIqNGjaot27RpU37xi1/ksssuy7p161JXV5cNGzbk+OOPzxNPPJHbb7+9drRdkgwaNCjr16/PypUrmx11t2LFiowfP7425plnntni5z/77LMZOHDgK86vW7du6datWxGbCgAAAAAt1mHB3YQJE/LQQw81W/bhD384b3jDG/LJT36yWWj32GOP5Y477kj//v2bjR81alQaGhoyZ86cHH/88UmSZcuW5eGHH85Xv/rVJMm4cePS1NSUe++9N4cddliS5J577klTU1Mt3AOKsWb9pu0P2gmvBQAoEz0RAEXpsOCud+/eGTFiRLNlvXr1Sv/+/TNixIhs3Lgxxx13XB544IH85Cc/yaZNm2rXpOvXr1+6du2axsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTprijLBRs9MVzO3oKAAAdTk8EQFE6/K6yr2Tp0qW5+eabs3Tp0rzpTW/K4MGDa4+/vhvspZdemmOPPTbHH3983vKWt6Rnz5655ZZbUldXVxtz3XXXZeTIkZk0aVImTZqUgw8+ONdee21HbBbsdno01GX0sL7bH7iDRg/rmx4NddsfCABQInoiAHaGSrVarXb0JHYFq1atSmNjY5qamppdZw/4y81e1m4o5rSOHg1127xxDABAWemJADqP9sqJOuxUWWD3UalU0rOrtxMAoHPTEwFQtNKeKgsAAAAAnZngDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACih+o6ewK6iWq0mSVatWtXBMwEAAACgI72UD72UF+0sgrsd9Kc//SlJMnTo0A6eCQAAAABl8Kc//SmNjY07rb7gbgf169cvSfL73/9+p/5C2H2tWrUqQ4cOzZIlS9KnT5+Ong67IPsQRbAf0Vb2IdrKPkQR7Ee0lX2Itmpqasree+9dy4t2FsHdDurS5S+XA2xsbPRHTZv06dPHPkSb2Icogv2ItrIP0Vb2IYpgP6Kt7EO01Ut50U6rv1OrAwAAAACtIrgDAAAAgBIS3O2gbt265Qtf+EK6devW0VNhF2Ufoq3sQxTBfkRb2YdoK/sQRbAf0Vb2IdqqvfahSnVn37cWAAAAAGgxR9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFOG9x961vfyr777pvu3btn1KhR+a//+q9tjr/rrrsyatSodO/ePfvtt18uv/zyLcb86Ec/yoEHHphu3brlwAMPzE033bSzpk8JtGQfuvHGG3PUUUfl1a9+dfr06ZNx48bl1ltvbTbmmmuuSaVS2eLx4osv7uxNoQO1ZD+68847t7qP/Pd//3ezcd6LOpeW7EMnnXTSVvehgw46qDbGe1Hn8otf/CLvfve7M2TIkFQqlfz4xz/e7mv0RPy1lu5DeiK2pqX7kZ6Il2vpPqQn4uWmT5+eQw89NL17986AAQNy7LHH5tFHH93u69qjL+qUwd0PfvCDnHvuufnMZz6TBx98MG9961vzzne+M7///e+3Ov6JJ57IMccck7e+9a158MEH8+lPfzpnn312fvSjH9XGzJ8/Px/4wAcybdq0/PKXv8y0adNy/PHH55577mmvzaIdtXQf+sUvfpGjjjoqP/vZz7Jw4cIceeSRefe7350HH3yw2bg+ffpk2bJlzR7du3dvj02iA7R0P3rJo48+2mwf2X///WvrvBd1Li3dh/7lX/6l2b6zZMmS9OvXL+9///ubjfNe1Hm88MILeeMb35jLLrtsh8briXi5lu5DeiK2pqX70Uv0RLykpfuQnoiXu+uuu3LGGWdkwYIFmTNnTjZu3JhJkyblhRdeeMXXtFtfVO2EDjvssOrpp5/ebNkb3vCG6qc+9amtjv+Hf/iH6hve8IZmy0477bTq2LFja8+PP/746tFHH91szOTJk6sf/OAHC5o1ZdLSfWhrDjzwwOpFF11Ue3711VdXGxsbi5oiu4CW7kd33HFHNUl15cqVr1jTe1Hn0tb3optuuqlaqVSqTz75ZG2Z96LOK0n1pptu2uYYPRHbsiP70NboifhrO7If6YnYlta8F+mJeLkVK1ZUk1TvuuuuVxzTXn1Rpzvibv369Vm4cGEmTZrUbPmkSZMyb968rb5m/vz5W4yfPHly7r///mzYsGGbY16pJruu1uxDL7d58+Y8//zz6devX7Plq1evzrBhw7LXXntlypQpW3z7zO6jLfvRIYccksGDB2fChAm54447mq3zXtR5FPFedNVVV2XixIkZNmxYs+Xei3gleiKKpieiLfREFEVPxMs1NTUlyRafT3+tvfqiThfc/fGPf8ymTZsycODAZssHDhyY5cuXb/U1y5cv3+r4jRs35o9//OM2x7xSTXZdrdmHXu5rX/taXnjhhRx//PG1ZW94wxtyzTXX5Oabb873v//9dO/ePW95y1vy2GOPFTp/yqE1+9HgwYPzne98Jz/60Y9y4403Zvjw4ZkwYUJ+8Ytf1MZ4L+o82vpetGzZsvznf/5nPvrRjzZb7r2IbdETUTQ9Ea2hJ6JIeiJerlqt5uMf/3gOP/zwjBgx4hXHtVdfVN+Cue9WKpVKs+fVanWLZdsb//LlLa3Jrq21v+/vf//7ufDCC/Mf//EfGTBgQG352LFjM3bs2Nrzt7zlLXnzm9+cGTNm5Bvf+EZxE6dUWrIfDR8+PMOHD689HzduXJYsWZJ//ud/ztve9rZW1WTX19rf9zXXXJM99tgjxx57bLPl3ovYHj0RRdET0Vp6IoqkJ+LlzjzzzPzqV7/K3Xffvd2x7dEXdboj7vbcc8/U1dVtkW6uWLFiixT0JYMGDdrq+Pr6+vTv33+bY16pJruu1uxDL/nBD36Qk08+Of/+7/+eiRMnbnNsly5dcuihh/pGZzfVlv3or40dO7bZPuK9qPNoyz5UrVbzb//2b5k2bVq6du26zbHei/hreiKKoieiaHoiWkNPxMudddZZufnmm3PHHXdkr7322ubY9uqLOl1w17Vr14waNSpz5sxptnzOnDkZP378Vl8zbty4LcbfdtttGT16dBoaGrY55pVqsutqzT6U/OVb5ZNOOinXX3993vWud23351Sr1SxatCiDBw9u85wpn9buRy/34IMPNttHvBd1Hm3Zh+6666789re/zcknn7zdn+O9iL+mJ6IIeiJ2Bj0RraEn4iXVajVnnnlmbrzxxtx+++3Zd999t/uaduuLdvg2FruRWbNmVRsaGqpXXXVV9ZFHHqmee+651V69etXuIPOpT32qOm3atNr4xx9/vNqzZ8/qxz72seojjzxSveqqq6oNDQ3VH/7wh7Ux/+///b9qXV1d9ctf/nJ18eLF1S9/+cvV+vr66oIFC9p9+9j5WroPXX/99dX6+vrqN7/5zeqyZctqj+eee6425sILL6zOnj27+rvf/a764IMPVj/84Q9X6+vrq/fcc0+7bx/to6X70aWXXlq96aabqr/5zW+qDz/8cPVTn/pUNUn1Rz/6UW2M96LOpaX70Ev+9m//tjpmzJit1vRe1Lk8//zz1QcffLD64IMPVpNUL7nkkuqDDz5Yfeqpp6rVqp6I7WvpPqQnYmtauh/piXi5lu5DL9ET8ZK/+7u/qzY2NlbvvPPOZp9Pa9asqY3pqL6oUwZ31Wq1+s1vfrM6bNiwateuXatvfvObm93i98QTT6weccQRzcbfeeed1UMOOaTatWvX6j777FP99re/vUXNG264oTp8+PBqQ0ND9Q1veEOzDw52Py3Zh4444ohqki0eJ554Ym3MueeeW917772rXbt2rb761a+uTpo0qTpv3rx23CI6Qkv2o6985SvV1772tdXu3btX+/btWz388MOrP/3pT7eo6b2oc2np59lzzz1X7dGjR/U73/nOVut5L+pc7rjjjm1+PumJ2J6W7kN6IrampfuRnoiXa83nmZ6Iv7a1/SdJ9eqrr66N6ai+qPI/EwQAAAAASqTTXeMOAAAAAHYFgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AACd3J133plKpZLnnnuuo6cCAMBfEdwBAHQCJ510UiqVSiqVShoaGrLffvvl/PPPzwsvvNDRUwMA4BXUd/QEAABoH0cffXSuvvrqbNiwIf/1X/+Vj370o3nhhRfygQ98oKOnBgDAVjjiDgCgk+jWrVsGDRqUoUOH5oQTTsiHPvSh/PjHP66tX7hwYUaPHp2ePXtm/PjxefTRR2vrfve73+U973lPBg4cmFe96lU59NBDM3fu3Gb1v/Wtb2X//fdP9+7dM3DgwBx33HG1ddVqNV/96lez3377pUePHnnjG9+YH/7whzt9mwEAdmWCOwCATqpHjx7ZsGFD7flnPvOZfO1rX8v999+f+vr6fOQjH6mtW716dY455pjMnTs3Dz74YCZPnpx3v/vd+f3vf58kuf/++3P22Wfni1/8Yh599NHMnj07b3vb22qv/+xnP5urr7463/72t/PrX/86H/vYx/K3f/u3ueuuu9pvgwEAdjGVarVa7ehJAACwc5100kl57rnnakfY3XvvvTnmmGMyYcKE/N3f/V2OPPLIzJ07NxMmTEiS/OxnP8u73vWurF27Nt27d99qzYMOOih/93d/lzPPPDM33nhjPvzhD2fp0qXp3bt3s3EvvPBC9txzz9x+++0ZN25cbflHP/rRrFmzJtdff/3O2WgAgF2ca9wBAHQSP/nJT/KqV70qGzduzIYNG/Ke97wnM2bMyCOPPJIkOfjgg2tjBw8enCRZsWJF9t5777zwwgu56KKL8pOf/CRPP/10Nm7cmLVr19aOuDvqqKMybNiw7Lfffjn66KNz9NFH573vfW969uyZRx55JC+++GKOOuqoZvNZv359DjnkkHbaegCAXY/gDgCgkzjyyCPz7W9/Ow0NDRkyZEgaGhqSpBbcvfQ8SSqVSpJk8+bNSZJPfOITufXWW/PP//zPed3rXpcePXrkuOOOy/r165MkvXv3zgMPPJA777wzt912Wz7/+c/nwgsvzH333Ver8dOf/jSvec1rms2pW7duO3ejAQB2YYI7AIBOolevXnnd617Xqtf+13/9V0466aS8973vTfKXa949+eSTzcbU19dn4sSJmThxYr7whS9kjz32yO23356jjjoq3bp1y+9///scccQRbd0MAIBOQ3AHAMB2ve51r8uNN96Yd7/73alUKvnc5z5XO5Iu+ctpuI8//nje9ra3pW/fvvnZz36WzZs3Z/jw4endu3fOP//8fOxjH8vmzZtz+OGHZ9WqVZk3b15e9apX5cQTT+zALQMAKC/BHQAA23XppZfmIx/5SMaPH58999wzn/zkJ7Nq1ara+j322CM33nhjLrzwwrz44ovZf//98/3vfz8HHXRQkuQf//EfM2DAgEyfPj2PP/549thjj7z5zW/Opz/96Y7aJACA0nNXWQAAAAAooS4dPQEAAAAAYEuCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBKq7+gJ7Co2b96cp59+Or17906lUuno6QAAAADQQarVap5//vkMGTIkXbrsvOPiBHc76Omnn87QoUM7ehoAAAAAlMSSJUuy11577bT6grsd1Lt37yTJ4Tkm9WloU60Xjj20iCml14/vK6TOqYt+V0id77zptYXUKdKzp40ppM6rr7inkDp0Xl16dC+kzua1LxZSJ0nq9927kDobn/h9IXWKsvnwNxZSp8vdvyykTpE+8auHCqnz+YtPLqTOytcXcwT6ftctK6TOskmDC6nT8EK1kDpJsmZAMf9GB73zsULqPPHd1xVSZ4+Z9xZSp2w9UbL79kV6IsqiqJ4oKa4v0hNtm55o+3bXnigpri/aHXuiTetfzEP//o+1vGhnEdztoJdOj61PQ+orbQvu6huK+bBq6zxe0rN3XSF1ippPkeq6levfms6rS6VrIXU2VzYVUidJ6rt0K6ZQyf4+NtcX83ffpWTblSS9Cnq/rutazL9RXfdiGrCi9sWi3vPrNhQX3NV1K+bfqKFXMe8hRf3ui/pcLFtPlOy+fZGeiLIoqidKiuuL9ETbpifagTq7aU+UFNcX7a49UZKdfjk1N6cAAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQfUdPYFfz3N8elrqu3dtUo/+ipkLm8pZfrSukzmWv27+QOmXUa9nmjp5Cp1F3wOsLqbNp8W8KqVOU3XW7kmTj408WUmfJ58cXUqdhdSFlMuiSeYXU+f0PRxZSZ+/jHiqkTpLs0WVtIXX6XDe/kDr9hgwupM7Gp5cVUmftgCGF1HnDB4v7e/3zW/5USJ0Frz20kDpvmLWokDp/+vC4QuqUrSdKdt++SE/UfnbX3mF33a5ET7Q9RfVESXF9kZ5o24rqiZLi+qLdsSfaWF3f9onsAEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2NXs8eia1NdvblONzd0aCpnLfx3crZA6u7M+v/5zIXU2FVJl97Zp8W86ego7xe66XUUa+sV5hdTZfMSbC6lTlH3+v2L+8jePfWMhdZLk/H2KqVPXr28hdRZ/Zu9C6gw//7lC6nQ/eGUhdVZN611InST502nDC6kzYv8nCqmzaZ+hhdTpu3hNIXX0RO1HT9R+dtfeYXfdriLpibavqL5IT7RtRfVESXF90e7YE1U2rUseLWAy2+GIOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEL1HT2BXU39H1elvsu6NtV4/Ku9C5nL3scVUqaUVn1oXCF1+lw3v5A6wCtb9+7DCqnT7ZZ7C6lTlM0PPlJInS6HHFhInSTZeMSbC6kz5ds/L6TOpgNXFlJn5IPFfI+47pO9Cqnz53F7FFInSfpfMa+QOr/vNb6QOoMWFzOf+v32KaSOnmj79ESw69ATbV9RfZGeaNuK6omS4vqi3bEn2lTdUMBMts8RdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQq1Wq12tGT2BWsWrUqjY2NOfgjX0pd1+5tqnXpJ79dyJwu3u+NhdShExtb4D604JfF1SqRLoccWEidzQ8+UkidItX161tInTVv2b+QOiv3ry+kzqBL5hVSp36/fQqp8+dxgwupkyT95i8rpE7TmwcVUqfX0rWF1Pns9d8rpM5zm3sWUueyvz2ukDpJUtdUzL/Ri0P7FFKn4bb7C6nzp9PGF1JHT0SpFNUX6Ym2SU+0fbtrT5QU1xfpibatqJ4oKa4v2h17oo3VDbkz/5Gmpqb06VPMvLbGEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACVWq1Wq1oyexK1i1alUaGxtz5t3vTbdXNbSp1i8P2VzQrMqlS48ehdXavHZtIXXq+vUtpM6mP68spE7ZrPzwuMJq9b16fmG1ilB3wOsLqbNp8W8KqVNGXQ45sJg6TWsKqbN52TOF1HnufW8qpM6zhxbz8bjH4uK+I+t/xbxC6rzxwWLm9MN5hxZSp/G/6wqp88JexfzO9r2pmH06SZ56V69C6lz5oW8XUueCfzitkDrjP3NvIXV2154oKa4v0hO1n6L6Ij3RrkdPtG1F9URJcX2RnmjbiuqJkuL6ot2xJ9q44cXc9+PPpqmpKX369ClgVlvniDsAAAAAKCHBHQAAAACUkOAOAAAAAEqoQ4O76dOn59BDD03v3r0zYMCAHHvssXn00UebjTnppJNSqVSaPcaOHdtszLp163LWWWdlzz33TK9evTJ16tQsXbq02ZiVK1dm2rRpaWxsTGNjY6ZNm5bnnntuZ28iAAAAALRKhwZ3d911V84444wsWLAgc+bMycaNGzNp0qS88MILzcYdffTRWbZsWe3xs5/9rNn6c889NzfddFNmzZqVu+++O6tXr86UKVOyadOm2pgTTjghixYtyuzZszN79uwsWrQo06ZNa5ftBAAAAICWqu/IHz579uxmz6+++uoMGDAgCxcuzNve9rba8m7dumXQoEFbrdHU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fvpC0EAAAAgNYp1TXumpqakiT9+vVrtvzOO+/MgAED8vrXvz6nnHJKVqxYUVu3cOHCbNiwIZMmTaotGzJkSEaMGJF58/5yi+j58+ensbGxFtolydixY9PY2Fgb83Lr1q3LqlWrmj0AAAAAoL2UJrirVqv5+Mc/nsMPPzwjRoyoLX/nO9+Z6667Lrfffnu+9rWv5b777ss73vGOrFu3LkmyfPnydO3aNX379m1Wb+DAgVm+fHltzIABA7b4mQMGDKiNebnp06fXrofX2NiYoUOHFrWpAAAAALBdHXqq7F8788wz86tf/Sp33313s+Uf+MAHav8/YsSIjB49OsOGDctPf/rTvO9973vFetVqNZVKpfb8r///lcb8tQsuuCAf//jHa89XrVolvAMAAACg3ZTiiLuzzjorN998c+64447stdde2xw7ePDgDBs2LI899liSZNCgQVm/fn1WrlzZbNyKFSsycODA2phnnnlmi1rPPvtsbczLdevWLX369Gn2AAAAAID20qHBXbVazZlnnpkbb7wxt99+e/bdd9/tvuZPf/pTlixZksGDBydJRo0alYaGhsyZM6c2ZtmyZXn44Yczfvz4JMm4cePS1NSUe++9tzbmnnvuSVNTU20MAAAAAJRJh54qe8YZZ+T666/Pf/zHf6R379616801NjamR48eWb16dS688ML8zd/8TQYPHpwnn3wyn/70p7Pnnnvmve99b23sySefnPPOOy/9+/dPv379cv7552fkyJG1u8wecMABOfroo3PKKafkiiuuSJKceuqpmTJlijvKAgAAAFBKHRrcffvb306SvP3tb2+2/Oqrr85JJ52Uurq6PPTQQ/ne976X5557LoMHD86RRx6ZH/zgB+ndu3dt/KWXXpr6+vocf/zxWbt2bSZMmJBrrrkmdXV1tTHXXXddzj777NrdZ6dOnZrLLrts528kAAAAALRChwZ31Wp1m+t79OiRW2+9dbt1unfvnhkzZmTGjBmvOKZfv36ZOXNmi+cIAAAAAB2hFDenAAAAAACaE9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAlVqtVqtaMnsStYtWpVGhsbM+wrF6dL9+5tqrXH4mLy0heOer6QOt3v6l1InT1/9WIhdZKky10PFFJn8xFvLqROUfOpHzK4kDobn15WSJ0i1fXrW0idTX9eWUidsulyyIHF1GlaU0idJHn2iGL2x75Xzy+kTlEK2xdfv3chdep/v6KQOknywqihhdTpsm5zIXW6PVvM/vjbT3QrpM7Qa+oKqdPjt38spE6SnH7bnELqfOv97ymkzn/+9PuF1Hndv59WSJ2y9URJ+foiPdH2la0v0hNtW1E9UVJcX6Qn2raieqKkuL5IT7RtRfVESXF90e7YE616flP6vv7xNDU1pU+fPgXMausccQcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUUKVarVY7ehK7glWrVqWxsTH7fvH/S5fu3dtUa6+fbyhkTg233V9Infr99imkTpE2Pv5kR08BaGddevQopM7mtWsLqdPlkAMLqfPsYXsUUidJ1gwsps6gBesLqVPU59CVv7+7kDqnDT+qkDqVfYYWUidJ/vvMvoXUee2/F9M7FOWpY7oVUqdsPVFSvr5ITwSdz+7aEyXF9UV6om0rqidKiuuLdseeaOPGF/OLu7+Ypqam9OnTZ6f9HEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEqpUq9VqR09iV7Bq1ao0Njbm7XlP6isNHT2dvxj7xkLKbO5WV0id+nsXF1InSTavXVtYLdid/Om08YXV2njMykLqvOZjxfy9bnz8yULqFGXVh8YVUmePR5oKqZMkmx98pJA6v7ny0ELqTH7jrwup85umVxdSZ82GroXUaTzmsULqJEn9kMGF1Km++GIhdSrduxdSZ+PTywqpU5iCeqKkfH2RngheWVF9kZ5o24rqiZLi+iI90bYV1RMlxfVFu2NPtHHz+sxddkWamprSp0+fAma1dY64AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJVTf0RPY1az64WtT16tbm2o0HvNYMZNZ8MtCyhSV3i4/a3xBlZIBM+YVVgt2J/2vKO5vY/N/v7mQOhsfX1xInbLpN39ZIXV+9+EhhdRJkmEPFlOn2/KGQur8YsmbCqkz9IvF7NfP/WMxn0OrP/XqQuokyWu+XMy2PfGVcYXU2f9fniykTtPP9i+kTtl6oqR8fZGeCF5ZUX2RnmjbiuqJkuL6Ij3RthXVEyXF9UW7a0/UHhxxBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQpVqtVjt6EruCVatWpbGxMQec+aXUdeve0dNJkgy6ZF5HT6HTWPL58YXUGfpFv7POqn7I4ELqPP03+xZSJ0kGzChmf6zfb59C6mx8/MlC6myYNLqQOg233V9InS49ehRSp0ib164tpM5j3xxTSJ29ZxfTijx9eF0hdfb95PxC6iTJb648tJA6DX+uL6TOxldtLqRO798V829dFD1R+9ET0VZF9URJcX2RnmjbiuqJkvL1RXqi7SuqL9ode6LNa1/MkvM+l6ampvTp06eAWW2dI+4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlFCHBnfTp0/PoYcemt69e2fAgAE59thj8+ijjzYbU61Wc+GFF2bIkCHp0aNH3v72t+fXv/51szHr1q3LWWedlT333DO9evXK1KlTs3Tp0mZjVq5cmWnTpqWxsTGNjY2ZNm1annvuuZ29iQAAAADQKh0a3N11110544wzsmDBgsyZMycbN27MpEmT8sILL9TGfPWrX80ll1ySyy67LPfdd18GDRqUo446Ks8//3xtzLnnnpubbrops2bNyt13353Vq1dnypQp2bRpU23MCSeckEWLFmX27NmZPXt2Fi1alGnTprXr9gIAAADAjqrvyB8+e/bsZs+vvvrqDBgwIAsXLszb3va2VKvVfP3rX89nPvOZvO9970uSfPe7383AgQNz/fXX57TTTktTU1OuuuqqXHvttZk4cWKSZObMmRk6dGjmzp2byZMnZ/HixZk9e3YWLFiQMWPGJEmuvPLKjBs3Lo8++miGDx/evhsOAAAAANtRqmvcNTU1JUn69euXJHniiSeyfPnyTJo0qTamW7duOeKIIzJv3rwkycKFC7Nhw4ZmY4YMGZIRI0bUxsyfPz+NjY210C5Jxo4dm8bGxtqYl1u3bl1WrVrV7AEAAAAA7aU0wV21Ws3HP/7xHH744RkxYkSSZPny5UmSgQMHNhs7cODA2rrly5ena9eu6du37zbHDBgwYIufOWDAgNqYl5s+fXrteniNjY0ZOnRo2zYQAAAAAFqgNMHdmWeemV/96lf5/ve/v8W6SqXS7Hm1Wt1i2cu9fMzWxm+rzgUXXJCmpqbaY8mSJTuyGQAAAABQiFIEd2eddVZuvvnm3HHHHdlrr71qywcNGpQkWxwVt2LFitpReIMGDcr69euzcuXKbY555plntvi5zz777BZH872kW7du6dOnT7MHAAAAALSXDg3uqtVqzjzzzNx44425/fbbs++++zZbv++++2bQoEGZM2dObdn69etz1113Zfz48UmSUaNGpaGhodmYZcuW5eGHH66NGTduXJqamnLvvffWxtxzzz1pamqqjQEAAACAMunQu8qeccYZuf766/Mf//Ef6d27d+3IusbGxvTo0SOVSiXnnntuvvSlL2X//ffP/vvvny996Uvp2bNnTjjhhNrYk08+Oeedd1769++ffv365fzzz8/IkSNrd5k94IADcvTRR+eUU07JFVdckSQ59dRTM2XKFHeUBQAAAKCUOjS4+/a3v50kefvb395s+dVXX52TTjopSfIP//APWbt2bf7+7/8+K1euzJgxY3Lbbbeld+/etfGXXnpp6uvrc/zxx2ft2rWZMGFCrrnmmtTV1dXGXHfddTn77LNrd5+dOnVqLrvssp27gQAAAADQSh0a3FWr1e2OqVQqufDCC3PhhRe+4pju3btnxowZmTFjxiuO6devX2bOnNmaaQIAAABAuyvFzSkAAAAAgOYq1R057I2sWrUqjY2Ned2nvpS6bt3bVGvYPz1YyJyWnHNIIXUGz3+xkDpd7nqgkDpJsvLD4wqp0/fq+YXU2V1tmDS6sFoNt91fWC0og1UfKuZ9qM915XsfWv7xYm7M1PBCIWWyqWsxdVaPW1tInbrf9SikTpJs7L25kDp7/2xjIXXq1hUznz8c0bZe6CVl64mS8vVFeqL2U1RfpCdid1NUT5SUry/SE21fUX3R7tgTbdz4Yn5x9xfT1NSUPn36FDCrrXPEHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFKtVqtdvQkdgWrVq1KY2NjJvQ9MfVdurap1hPf2auQOe193EOF1ClKlx49Cqu1ee3awmpBGax792GF1Ol2y72F1Cmj+iGDC6nz7OR9Cqmzrm+lkDrPv3ZTIXWSpNp1cyF1Xn/KfYXUqTvg9YXU+ePY/oXUWbVfMb+zTa8t32dQ413FfMZuPGZlIXWGfHh5IXV2154oKa4v0hOxuymqJ0p2375od+2JkuL6Ij3RthXVEyXl64vK1BNtWrMuj3zwq2lqakqfPn0KmNXWOeIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp7ArqbPv3dJQ6+25Z11t/QuZC51/foWUqe69sVC6mw87IBC6iRJl7seKKbQ2DcWUmZzt7pC6hS2Xbuzgn5n9SuaCqmz8fEnC6nT7ZZ7C6lTpJUfHldInb5Xzy+kzsanlxVSZ88FxbzHblr8m2LqfGp8IXWS5JgP3FdInVs/XsycBl0yr5A6fRcXUibFfCoWa3lB/9avenpjIXXW/HiPQuo03rKikDpl64mS8vVFeqJOTE/UbvRE21ZUT5QU1xfpibZTp5gyhdode6JN64vpGbbHEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCE6jt6Arua+3+3d7r06N6mGr3XFzOXTX9eWUyhgjQ89ERhtTYVVKeuaW0xhRb/ppg6JbP5iDcXVqvLXQ8UU2jBLwsps7GQKsWp32+fQupsfPzJQuokSd+r5xdWq0w2Nfbo6Ck085o7Xyis1i+/vLmQOv0nFfNB9Ng1owqp029+t0LqrBlYSJnsc9niYgolGXTJvELqPPbNMYXU2ef1TxdS557H9imkzu7aEyXF9UV6ovZTVF+kJ9q2onqipLi+SE/Uforqi/RE21ZUT5QU1xftjj3RxhfWJTMLmMx2OOIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBC9a150ZIlS/Lkk09mzZo1efWrX52DDjoo3bp1K3puAAAAANBp7XBw99RTT+Xyyy/P97///SxZsiTVarW2rmvXrnnrW9+aU089NX/zN3+TLl123wP5XnvVxtTXb2xTjfoVfypkLm2bxf9a8vnxhdQZ+sV5hdRJklUfGldInT7XzS+kzgvHjS2kTq8fLiikTlG63PVAYbU2H/HmQuoUOacy2fj4kx09hc5jwS8LKVPXr28hdSormgqpkyTPfriY98a+i9cUUqf7470KqfPngzcVUqcom/68srBahb03bqgUUufpBa8ppM7+P32hkDpl64mS8vVFeqL2U1QPoifaNj1ROypZT5QU1xfpidpPUX3R7tgTbXrxxQJmsn07lLCdc845GTlyZB577LF88YtfzK9//es0NTVl/fr1Wb58eX72s5/l8MMPz+c+97kcfPDBue+++3b2vAEAAABgt7ZDR9x17do1v/vd7/LqV796i3UDBgzIO97xjrzjHe/IF77whfzsZz/LU089lUMPPbTwyQIAAABAZ7FDwd0//dM/7XDBY445ptWTAQAAAAD+osUXo1u7dm3WrPnf88CfeuqpfP3rX8+tt95a6MQAAAAAoDNrcXD3nve8J9/73veSJM8991zGjBmTr33tazn22GPz7W9/u/AJAgAAAEBn1OLg7oEHHshb3/rWJMkPf/jDDBw4ME899VS+973v5Rvf+EbhEwQAAACAzqjFwd2aNWvSu3fvJMltt92W973vfenSpUvGjh2bp556qvAJAgAAAEBn1OLg7nWve11+/OMfZ8mSJbn11lszadKkJMmKFSvSp0+fwicIAAAAAJ1Ri4O7z3/+8zn//POzzz77ZMyYMRk3blySvxx9d8ghhxQ+QQAAAADojOpb+oLjjjsuhx9+eJYtW5Y3vvGNteUTJkzIe9/73kInBwAAAACdVYuDuyQZNGhQBg0a1GzZYYcdVsiEAAAAAIAdPFX29NNPz5IlS3ao4A9+8INcd911bZoUAAAAAHR2O3TE3atf/eqMGDEi48ePz9SpUzN69OgMGTIk3bt3z8qVK/PII4/k7rvvzqxZs/Ka17wm3/nOd3b2vAEAAABgt7ZDwd0//uM/5qyzzspVV12Vyy+/PA8//HCz9b17987EiRPzr//6r7W7zAIAAAAArbfD17gbMGBALrjgglxwwQV57rnn8tRTT2Xt2rXZc88989rXvjaVSmVnzhMAAAAAOpVW3Zxijz32yB577FHwVAAAAACAl+zQzSkAAAAAgPYluAMAAACAEhLcAQAAAEAJCe4AAAAAoIRaFdxt3Lgxc+fOzRVXXJHnn38+SfL0009n9erVLarzi1/8Iu9+97szZMiQVCqV/PjHP262/qSTTkqlUmn2GDt2bLMx69aty1lnnZU999wzvXr1ytSpU7N06dJmY1auXJlp06alsbExjY2NmTZtWp577rkWbzcAAAAAtJcWB3dPPfVURo4cmfe85z0544wz8uyzzyZJvvrVr+b8889vUa0XXnghb3zjG3PZZZe94pijjz46y5Ytqz1+9rOfNVt/7rnn5qabbsqsWbNy9913Z/Xq1ZkyZUo2bdpUG3PCCSdk0aJFmT17dmbPnp1FixZl2rRpLZorAAAAALSn+pa+4Jxzzsno0aPzy1/+Mv37968tf+9735uPfvSjLar1zne+M+985zu3OaZbt24ZNGjQVtc1NTXlqquuyrXXXpuJEycmSWbOnJmhQ4dm7ty5mTx5chYvXpzZs2dnwYIFGTNmTJLkyiuvzLhx4/Loo49m+PDhLZozAAAAALSHFh9xd/fdd+ezn/1sunbt2mz5sGHD8oc//KGwib3kzjvvzIABA/L6178+p5xySlasWFFbt3DhwmzYsCGTJk2qLRsyZEhGjBiRefPmJUnmz5+fxsbGWmiXJGPHjk1jY2NtzNasW7cuq1atavYAAAAAgPbS4iPuNm/e3Ow01JcsXbo0vXv3LmRSL3nnO9+Z97///Rk2bFieeOKJfO5zn8s73vGOLFy4MN26dcvy5cvTtWvX9O3bt9nrBg4cmOXLlydJli9fngEDBmxRe8CAAbUxWzN9+vRcdNFFWyx/4TU9Ut/QvU3b1ec3v2/T62tzOW7s9gftgM0NhZQp1B6PNBVSZ3MhVZJeP1xQUKXdV5e7HujoKUCSpH7I4ELqbHx6WSF18ueVxdRJUjeumG1beUDPQuoM/eIrfwHWEn86bXwhdTb0KqRMobpfVMx+VHl662cftFSfX7ath3nJC3v1KKRO2XqipHx9kZ5o16MnoixK1xMlhfVFeqJt0xNtXxE90ab11QJmsn0tPuLuqKOOyte//vXa80qlktWrV+cLX/hCjjnmmCLnlg984AN517velREjRuTd7353/vM//zO/+c1v8tOf/nSbr6tWq6lUKs3muL0xL3fBBRekqamp9liyZEnrNwQAAAAAWqjFR9xdeumlOfLII3PggQfmxRdfzAknnJDHHnsse+65Z77//e/vjDnWDB48OMOGDctjjz2WJBk0aFDWr1+flStXNjvqbsWKFRk/fnxtzDPPPLNFrWeffTYDBw58xZ/VrVu3dOvWreAtAAAAAIAd0+Ij7oYMGZJFixbl/PPPz2mnnZZDDjkkX/7yl/Pggw9u9ZTUIv3pT3/KkiVLMnjwXw6LHTVqVBoaGjJnzpzamGXLluXhhx+uBXfjxo1LU1NT7r333tqYe+65J01NTbUxAAAAAFA2LT7iLkl69OiRj3zkI/nIRz7Sph++evXq/Pa3v609f+KJJ7Jo0aL069cv/fr1y4UXXpi/+Zu/yeDBg/Pkk0/m05/+dPbcc8+8973vTZI0Njbm5JNPznnnnZf+/funX79+Of/88zNy5MjaXWYPOOCAHH300TnllFNyxRVXJElOPfXUTJkyxR1lAQAAACitVgV3f/jDH/L//t//y4oVK7J5c/NL3Z599tk7XOf+++/PkUceWXv+8Y9/PEly4okn5tvf/nYeeuihfO9738tzzz2XwYMH58gjj8wPfvCDZjfBuPTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1ZtMBAAAAoF20OLi7+uqrc/rpp6dr167p37//FjeBaElw9/a3vz3V6ivfhePWW2/dbo3u3btnxowZmTFjxiuO6devX2bOnLnD8wIAAACAjtbi4O7zn/98Pv/5z+eCCy5Ily4tvkQeAAAAALADWpy8rVmzJh/84AeFdgAAAACwE7U4fTv55JNzww037Iy5AAAAAAD/o8Wnyk6fPj1TpkzJ7NmzM3LkyDQ0NDRbf8kllxQ2OQAAAADorFoc3H3pS1/KrbfemuHDhyfJFjenAAAAAADarsXB3SWXXJJ/+7d/y0knnbQTpgMAAAAAJK24xl23bt3ylre8ZWfMBQAAAAD4Hy0O7s4555zMmDFjZ8wFAAAAAPgfLT5V9t57783tt9+en/zkJznooIO2uDnFjTfeWNjkAAAAAKCzanFwt8cee+R973vfzpgLAAAAAPA/WhzcXX311TtjHgAAAADAX2nxNe4AAAAAgJ1vh464e/Ob35yf//zn6du3bw455JBUKpVXHPvAAw8UNjkAAAAA6Kx2KLh7z3vek27duiVJjj322J05HwAAAAAgOxjcfeELX8hHPvKR/Mu//Eu+8IUv7Ow5AQAAAECnt8PXuPvud7+btWvX7sy5AAAAAAD/Y4eDu2q1ujPnAQAAAAD8lRbdVXZbN6UAAAAAAIqzQ9e4e8nrX//67YZ3f/7zn9s0obJrvGdJ6rt0bVONp049oJC5vObL8wqp0/unPQqpkx4F1Umy+cFHCqnT5ZADC6lT1HygTLoU9De7uWSXUdj49LKOnsJOU/3QHwups/K5VxVSp+/VhZRJ/yuK+Tz7/Q9HFlJnyavGF1InSf5uwE8LqbPs+/sWUudVf1hfSJ0eD/+hkDpl64mS8vVFeiLY+fREux490bYV1RMlxfVFu2NPtHHjhgJmsn0tCu4uuuiiNDY27qy5AAAAAAD/o0XB3Qc/+MEMGDBgZ80FAAAAAPgfO3yNO9e3AwAAAID2466yAAAAAFBCO3yq7ObNm3fmPAAAAACAv7LDR9wBAAAAAO1HcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcA/397dx/ddXnfDfwTSEgCkggiBCwgKMXHOkXLQ63o4UF8QNvO2c6WI61uzk690Tpr67bSbtPO06obtK71dtLVqm0VbE+1iB4VdYgVxHYqVSs4tEKpLSQSw2O+9x+9/R3DQyLkMrkgr9c5+SO/35U315dcfPPxnZ8JAABAhso7ewN7m6YjBkZ5eVW7MhoP2ZJkL83jj0uSEwufSRKzZfLxSXIiIv5wVI8kOQfNWZ4kh66re98+SXK2/XFdkpxU+4lIt6fy4QcnyVn5mUFJcgZ/bVGSnO6HfzBJzuqJ/ZLkRES89VJzkpwPfu3FJDkbHxyaJKfqssokOWW/6p0k5+DZ6b523BxnJMmp6JUkJioWLEmS05Toa352M1FEdnORmYhc5DYTReS3JzNR21LNRWai1qWaiSLSzUX74kxUVqSZY9riFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGyjt7A3ubk/55cVTtV9GujLvuOCXRbrYlSel++AfT5LzWkCQnIuKAqEmWlZNUf9fblr+UJIe2bfvjus7eQgsp99N4zpgkOW8NSfM9oMFfW5QkZ8UdxybJGTyne5Kc/rPSXFdERP9EOcWxRyTJqb7o7SQ5v5vUL0lOqjNUNmhgkpyIiK29iiQ5g7/2ZJKcVP/up/zjwiQ5uc1EEfnNRWaitpmLOkZuM1FEuj2ZiVqXaiaKSDcXmYlal+oMRaSbi/bFmWjrlo0R9/4kwW5a5xV3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABkqK4qi6OxN7A0aGhqitrY2To6zo7ysorO3ExERL91yQpKcYT9OcwQqFixJkgPsXRrPGZMkp9fdi5PkpPK7nxyeJGfA2cuT5ERErLliXJKc3quak+RsmFafJOegy5uS5Pxhdpqvz7Wnv5wkJyLillVPJMmZ8n+vSpJT+0qar/k1P3gySU4qqWaiCHMRsOfMRG1LNReZiVqXaiaKSDcX7Ysz0bbNG2Ppj66J+vr6qKmpSbCrnfOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIENlRVEUnb2JvUFDQ0PU1tbGn33mX6J7j6p2ZfW57clEu0qjW3V1kpyygwcnyYmI2FabZk+x+JdpcjLT8OmxSXJqfpDXWUypfPjBSXKKyh5JcrYtfylJDu/BmGOSxJSvWpskZ+sbq5PkZCnR3/Wacb2S5Aw5a2WSnObPVSbJiYh4/WODkuQ0DUgzrh0y89kkOX/41J8lycltJorIby4yE7XNXNQ6M1EXltlMFLEPz0X76EwUkW4u2hdnoq3F5ni46YdRX18fNTU17d/ULnjFHQAAAABkSHEHAAAAABlS3AEAAABAhjq1uHvsscdi6tSpMWjQoCgrK4t77723xfNFUcTMmTNj0KBBUV1dHSeffHI8//zzLdZs2rQpLr300ujXr1/06tUrzjrrrHj99ddbrFm3bl1MmzYtamtro7a2NqZNmxbr169/n68OAAAAAPZcpxZ3jY2Nccwxx8Ts2bN3+vz1118fN9xwQ8yePTuefvrpqKuri0mTJsVbb71VWjNjxoyYN29e3HXXXfHEE0/Ehg0b4swzz4xt27aV1px33nnx7LPPxvz582P+/Pnx7LPPxrRp09736wMAAACAPVXemX/4aaedFqeddtpOnyuKIm666aa45ppr4hOf+ERERHzve9+LAQMGxB133BEXXXRR1NfXx6233hrf//73Y+LEiRERcfvtt8fgwYPjoYceilNPPTWWL18e8+fPj8WLF8fo0aMjIuKWW26JsWPHxosvvhgjR47smIsFAAAAgN2Q7c+4W7lyZaxZsyYmT55ceqyysjLGjx8fixYtioiIpUuXxpYtW1qsGTRoUBx11FGlNU8++WTU1taWSruIiDFjxkRtbW1pzc5s2rQpGhoaWrwBAAAAQEfJtrhbs2ZNREQMGDCgxeMDBgwoPbdmzZro0aNH9OnTp9U1/fv33yG/f//+pTU7c91115V+Jl5tbW0MHjy4XdcDAAAAALsj2+LuHWVlZS3eL4pih8e2t/2ana1vK+dLX/pS1NfXl95ee+213dw5AAAAAOy5bIu7urq6iIgdXhW3du3a0qvw6urqYvPmzbFu3bpW1/zud7/bIf/3v//9Dq/me7fKysqoqalp8QYAAAAAHSXb4m7YsGFRV1cXDz74YOmxzZs3x8KFC2PcuHERETFq1KioqKhosWb16tXx3HPPldaMHTs26uvr4xe/+EVpzVNPPRX19fWlNQAAAACQm079rbIbNmyI3/zmN6X3V65cGc8++2z07ds3hgwZEjNmzIhrr702RowYESNGjIhrr702evbsGeedd15ERNTW1sYFF1wQX/jCF+KAAw6Ivn37xpVXXhlHH3106bfMHn744TFlypT4q7/6q/jOd74TERF//dd/HWeeeabfKAsAAABAtjq1uFuyZEmccsoppfevuOKKiIg4//zzY86cOXHVVVdFU1NTfP7zn49169bF6NGjY8GCBdG7d+/Sx9x4441RXl4e5557bjQ1NcWECRNizpw50b1799KaH/zgB3HZZZeVfvvsWWedFbNnz+6gqwQAAACA3depxd3JJ58cRVHs8vmysrKYOXNmzJw5c5drqqqqYtasWTFr1qxdrunbt2/cfvvt7dkqAAAAAHSobH/GHQAAAAB0ZYo7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyFBZURRFZ29ib9DQ0BC1tbVxcpwd5WUVnb2diIjoVl2dJGfrhw9PktNt4TNJciIiXv7W6CQ5I/72qSQ5+6ryQQOTZW19Y3WyLHZty+Tjk2VVLFiSJKd5/HFJclLdQ3579bgkOYMfWJ8kZ/0RtUlyIiLeHlCWJOegn7+ZJKes/q0kOb+9ef8kORt/1SdJTtnhaa4rImL4ZWn+rn9/6sFJcrbsl+YM9Z+1KElOKqlmooj85iIzUcdJNReZiTpOqrnITNS6VDNRRLq5yEzUulQzUUS6uWhfnIm2bdoYz3/ny1FfXx81NTUJdrVzXnEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkKHyzt5AV9T98A8myVk9sV+SnP6zFiXJaR5/XJKciIi+v+qeLItd2/rG6s7eQpexZfLxSXIqFixJkhMR0b1vnzRBC59Jk5PIQY82JslpXvZCkpyaZUliIiJi/2OPSBeWQFHbO03OwjRnccRZK5PkbD453b1xa6KcX/zL/CQ5w+67MElO/yQp+c1EEfnNRWaijmMu6hipZqKIdHORmah1qWaiiHRzkZmodalmooh0c9G+OBM1N21JsJO2ecUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQofLO3sDe5vcXjY7ulVXtyui1ujnJXvrPWpQkp/GcMUly1h+argce+qM3kuQ0TT4+SU7VkleS5Gz747okOeWDBibJ2frG6iQ5OepWXZ0kp7mpKUlOxYIlSXJSSnUeU91Det29OElO95dWJcn59ZxRSXJGTF+aJCci4pVP1SbJ+cBxae6xm7+T5l70F9MfSZJzzy2nJMkZNLwySU5ExNUP/SRJzhnHT0mSc8DUiiQ5ay8dlyQnt5koIr+5yEzUNnNR68xEbTMTtS7VTBSRbi4yE7Uu1UwUkW4u2hdnom2bt8XrCfbSFq+4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMhQWVEURWdvYm/Q0NAQtbW1Mfg/vhLdqqvalTVi+tIke3p5zqgkOVUrKpPkbBywLUlORMQhP9qSJKfbwmeS5AB7jzVXjEuSc9Cc5UlyXr3k8CQ5ERHNFWlyhl27LEnO0IVlSXJWfvjtJDmppDpDERHVE3+fJOfAnhuS5Kz66bAkOW99aFOSnNxmooj85iIzEbCncpuJItLNRWaijpPqHO2LM9G2TRtj+ewvR319fdTU1CTY1c55xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJCh8s7ewN6mbn5FlFdUdPY2IiJixPSlSXIaPj02SU7P33VPkhMR0W3hU8myoD269+2TJGfbH9clyelWXZ0kJyKiuakpWVZO6hY1Jsn5zRcPS5LT/+nmJDkppfrcr7zsmCQ5r9yU5lwf+HRZkpy6GxYlyYmIiBvSxCy/aUySnEMSXVvvc9LsJ5VUM1FEfnORmYhc5DYTRaSbi8xErUs1E0XkNxeZidqWbC7aB2eircWWWJ5gL23xijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADGVd3M2cOTPKyspavNXV1ZWeL4oiZs6cGYMGDYrq6uo4+eST4/nnn2+RsWnTprj00kujX79+0atXrzjrrLPi9ddf7+hLAQAAAIDdknVxFxFx5JFHxurVq0tv//M//1N67vrrr48bbrghZs+eHU8//XTU1dXFpEmT4q233iqtmTFjRsybNy/uuuuueOKJJ2LDhg1x5plnxrZt2zrjcgAAAADgPSnv7A20pby8vMWr7N5RFEXcdNNNcc0118QnPvGJiIj43ve+FwMGDIg77rgjLrrooqivr49bb701vv/978fEiRMjIuL222+PwYMHx0MPPRSnnnpqh14LAAAAALxX2b/i7uWXX45BgwbFsGHD4lOf+lSsWLEiIiJWrlwZa9asicmTJ5fWVlZWxvjx42PRokUREbF06dLYsmVLizWDBg2Ko446qrRmVzZt2hQNDQ0t3gAAAACgo2Rd3I0ePTr+67/+Kx544IG45ZZbYs2aNTFu3Lj4wx/+EGvWrImIiAEDBrT4mAEDBpSeW7NmTfTo0SP69OmzyzW7ct1110VtbW3pbfDgwQmvDAAAAABal3Vxd9ppp8Wf//mfx9FHHx0TJ06M++67LyL+9L/EvqOsrKzFxxRFscNj23sva770pS9FfX196e21117bw6sAAAAAgN2XdXG3vV69esXRRx8dL7/8cunn3m3/yrm1a9eWXoVXV1cXmzdvjnXr1u1yza5UVlZGTU1NizcAAAAA6Ch7VXG3adOmWL58eQwcODCGDRsWdXV18eCDD5ae37x5cyxcuDDGjRsXERGjRo2KioqKFmtWr14dzz33XGkNAAAAAOQo698qe+WVV8bUqVNjyJAhsXbt2vjnf/7naGhoiPPPPz/KyspixowZce2118aIESNixIgRce2110bPnj3jvPPOi4iI2trauOCCC+ILX/hCHHDAAdG3b9+48sorS//rLQAAAADkKuvi7vXXX4+//Mu/jDfffDMOPPDAGDNmTCxevDiGDh0aERFXXXVVNDU1xec///lYt25djB49OhYsWBC9e/cuZdx4441RXl4e5557bjQ1NcWECRNizpw50b179866LAAAAABoU9bF3V133dXq82VlZTFz5syYOXPmLtdUVVXFrFmzYtasWYl3BwAAAADvn73qZ9wBAAAAQFehuAMAAACADGX9v8rm6O0B3aJ7Zfv6zm2fHptkLzU/eDJJTp+f/zpJzquXHJ4kJyLigGRJefnt1Wl+m/FBX1+UJIe2bfvjus7eQgvNTU2dvYXsrRnXK0nOsC+m+XfWvW+fJDkR6c5j8/jjkuR0W/hMkpzyM9LcG2t+kOZz1q26OklORMT6T/xZkpxDZqT5mp/qc984MM33fnObiSLym4vMRG0zF3WM3GaiCHNRW3KbiSLSzUVmotalmoki0s1F++JM1Lx1Y8QTP0mwm9Z5xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhsqKoig6exN7g4aGhqitrY0Pfe7a6N6jql1Z/+eKHyfZ0+0jD0qS03jOmCQ5bw1J1wNXrktzLPvc9mSSHNrWrbo6SU5zU1OSHLquVGfxjYuPTZJTd8OiJDkREfX3j0iSU3v6y0lyXrkpzdePQ2YsTpLz8rdGJ8k5+CfbkuRERFQsWJIkZ9XdRyfJ2fJ6ryQ5+y9P8zU/t5koIr+5yEy09zETkYvcZqKIdHORmah1qWaiiHRz0b44EzVv3Bj/+8W/j/r6+qipqUmwq53zijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBD5Z29gb3N/i9tjPJ2/q3ddcrxaTYTq5Ok1D6zJklOr7tfTZITEdE8/rgkOd0P/2CSnG3LX0qS89ItJyTJ+eBfPZ0kJ6XmpqbO3gKd5A8XjUuSc8AvG5PkNC/+ZZKcukVp9rPmijR/PxERg65ZnySnOUlKRNWaNN//a/j02CQ5Q+ZvS5JT0bAlSU5ERLdjj0iSs2lDjyQ5PRN9zvr8emOSnNxmooj85iIzUdtym4vMRF2XmahtqeYiM1HrUs1EEenmon1xJtq2qWNeC+cVdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIbKO3sDe5s3TqyK7pVV7croNnZYkr0MfqBPkpyty15IkpNSt4XPJMlZe9G4JDkHLH8pSc7hN9QnydmWJAXSOOCXjUlyGj9QnSSnevxxSXJ6vPbHJDkRvRLlRBz9n79OkvPceR9MkrPfSb9PkvO7lX2T5HTvsyVJTq9em5PkRER84bCHkuR8bemZSXK2JjqOvx3fvlnoHbnNRBH5zUVmoraZi8iFmei9SPOFyEzUulQzUUS6uWhfnIm2dW9/xnvhFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGSrv7A3sbfZ7vYjuPYp2ZVx69d1J9nLXjz6SJKc5SUrEKzeNSZQUcciMxUlyNvZJEpPMtuUvJclZc8W4JDl1NyxKkkPbNk39cJKcXs+vTZITEbF1xatJcn57cq8kOQd9Pa/z2FxdnSSncUhdkpyIiCVvDk6SU5HoXrR25egkOYf9Q5r9rP704Uly6v7vr5PkRETc3nRQkpzhsSxJzstzRiXJ6bewR5Kc3GaiiPzmIjNR28xFe5dUM1FEurnITNS6VDNRRLq5yEzUulQzUUS6uWhfnImamzYl2EnbvOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEPlnb2BvUVRFBERsW3zxnZnNW3Y2u6MiIitzZvS5BRbkuQ0b2z/3807Uu1p26Y0e0q1n1T21eval23dkuhzlujffYR/Z23pVnRPkpP03tiY5vNfluq+35TqXG9OkpPuLKbZT0REc2bnOtXnbNvm5iQ5uc1EEfnNRe7VbduXr21flGomisjvv4f21bOYaiaKSHhvNBO1KtVZjEg3F+2LM1Fz05/O4Tt90fulrHi//4R9xIoVK+KQQw7p7G0AAAAAkIlXXnklhg8f/r7le8Xde9S3b9+IiFi1alXU1tZ28m7YGzU0NMTgwYPjtddei5qams7eDnshZ4gUnCPayxmivZwhUnCOaC9niPaqr6+PIUOGlPqi94vi7j3q1u1PPw6wtrbWP2rapaamxhmiXZwhUnCOaC9niPZyhkjBOaK9nCHa652+6H3Lf1/TAQAAAIA9orgDAAAAgAwp7t6jysrK+MpXvhKVlZWdvRX2Us4Q7eUMkYJzRHs5Q7SXM0QKzhHt5QzRXh11hvxWWQAAAADIkFfcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABnqssXdt7/97Rg2bFhUVVXFqFGj4vHHH291/cKFC2PUqFFRVVUVw4cPj//4j//YYc0999wTRxxxRFRWVsYRRxwR8+bNe7+2TwZ25wzNnTs3Jk2aFAceeGDU1NTE2LFj44EHHmixZs6cOVFWVrbD28aNG9/vS6ET7c45evTRR3d6Rn7961+3WOde1LXszhmaPn36Ts/QkUceWVrjXtS1PPbYYzF16tQYNGhQlJWVxb333tvmx5iJeLfdPUNmInZmd8+RmYjt7e4ZMhOxveuuuy5OOOGE6N27d/Tv3z8+9rGPxYsvvtjmx3XEXNQli7sf/vCHMWPGjLjmmmti2bJl8dGPfjROO+20WLVq1U7Xr1y5Mk4//fT46Ec/GsuWLYsvf/nLcdlll8U999xTWvPkk0/GJz/5yZg2bVr88pe/jGnTpsW5554bTz31VEddFh1od8/QY489FpMmTYr7778/li5dGqecckpMnTo1li1b1mJdTU1NrF69usVbVVVVR1wSnWB3z9E7XnzxxRZnZMSIEaXn3Iu6lt09Q//2b//W4uy89tpr0bdv3/iLv/iLFuvci7qOxsbGOOaYY2L27Nnvab2ZiO3t7hkyE7Ezu3uO3mEm4h27e4bMRGxv4cKF8bd/+7exePHiePDBB2Pr1q0xefLkaGxs3OXHdNhcVHRBH/7wh4u/+Zu/afHYYYcdVlx99dU7XX/VVVcVhx12WIvHLrroomLMmDGl988999xiypQpLdaceuqpxac+9alEuyYnu3uGduaII44ovvrVr5bev+2224ra2tpUW2QvsLvn6JFHHikioli3bt0uM92Lupb23ovmzZtXlJWVFa+++mrpMfeirisiinnz5rW6xkxEa97LGdoZMxHv9l7OkZmI1uzJvchMxPbWrl1bRESxcOHCXa7pqLmoy73ibvPmzbF06dKYPHlyi8cnT54cixYt2unHPPnkkzusP/XUU2PJkiWxZcuWVtfsKpO9156coe01NzfHW2+9FX379m3x+IYNG2Lo0KHxgQ98IM4888wdvvvMvqM95+jYY4+NgQMHxoQJE+KRRx5p8Zx7UdeR4l506623xsSJE2Po0KEtHncvYlfMRKRmJqI9zESkYiZie/X19RERO3x9ereOmou6XHH35ptvxrZt22LAgAEtHh8wYECsWbNmpx+zZs2ana7funVrvPnmm62u2VUme689OUPb++Y3vxmNjY1x7rnnlh477LDDYs6cOfHTn/407rzzzqiqqoqPfOQj8fLLLyfdP3nYk3M0cODA+O53vxv33HNPzJ07N0aOHBkTJkyIxx57rLTGvajraO+9aPXq1fHzn/88LrzwwhaPuxfRGjMRqZmJ2BNmIlIyE7G9oijiiiuuiBNPPDGOOuqoXa7rqLmofDf2vk8pKytr8X5RFDs81tb67R/f3Uz2bnv6+b7zzjtj5syZ8ZOf/CT69+9fenzMmDExZsyY0vsf+chH4rjjjotZs2bFv//7v6fbOFnZnXM0cuTIGDlyZOn9sWPHxmuvvRbf+MY34qSTTtqjTPZ+e/r5njNnTuy///7xsY99rMXj7kW0xUxEKmYi9pSZiJTMRGzvkksuiV/96lfxxBNPtLm2I+aiLveKu379+kX37t13aDfXrl27Qwv6jrq6up2uLy8vjwMOOKDVNbvKZO+1J2foHT/84Q/jggsuiB/96EcxceLEVtd269YtTjjhBN/R2Ue15xy925gxY1qcEfeirqM9Z6goivjP//zPmDZtWvTo0aPVte5FvJuZiFTMRKRmJmJPmInY3qWXXho//elP45FHHokPfOADra7tqLmoyxV3PXr0iFGjRsWDDz7Y4vEHH3wwxo0bt9OPGTt27A7rFyxYEMcff3xUVFS0umZXmey99uQMRfzpu8rTp0+PO+64I84444w2/5yiKOLZZ5+NgQMHtnvP5GdPz9H2li1b1uKMuBd1He05QwsXLozf/OY3ccEFF7T557gX8W5mIlIwE/F+MBOxJ8xEvKMoirjkkkti7ty58fDDD8ewYcPa/JgOm4ve86+x2IfcddddRUVFRXHrrbcWL7zwQjFjxoyiV69epd8gc/XVVxfTpk0rrV+xYkXRs2fP4vLLLy9eeOGF4tZbby0qKiqKu+++u7Tmv//7v4vu3bsXX//614vly5cXX//614vy8vJi8eLFHX59vP929wzdcccdRXl5efGtb32rWL16delt/fr1pTUzZ84s5s+fX7zyyivFsmXLis9+9rNFeXl58dRTT3X49dExdvcc3XjjjcW8efOKl156qXjuueeKq6++uoiI4p577imtcS/qWnb3DL3jM5/5TDF69OidZroXdS1vvfVWsWzZsmLZsmVFRBQ33HBDsWzZsuJ///d/i6IwE9G23T1DZiJ2ZnfPkZmI7e3uGXqHmYh3XHzxxUVtbW3x6KOPtvj69Pbbb5fWdNZc1CWLu6Ioim9961vF0KFDix49ehTHHXdci1/xe/755xfjx49vsf7RRx8tjj322KJHjx7FwQcfXNx88807ZP74xz8uRo4cWVRUVBSHHXZYiy8c7Ht25wyNHz++iIgd3s4///zSmhkzZhRDhgwpevToURx44IHF5MmTi0WLFnXgFdEZducc/eu//mtxyCGHFFVVVUWfPn2KE088sbjvvvt2yHQv6lp29+vZ+vXri+rq6uK73/3uTvPci7qWRx55pNWvT2Yi2rK7Z8hMxM7s7jkyE7G9Pfl6Zibi3XZ2fiKiuO2220prOmsuKvv/GwQAAAAAMtLlfsYdAAAAAOwNFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwDQxT366KNRVlYW69ev7+ytAADwLoo7AIAuYPr06VFWVhZlZWVRUVERw4cPjyuvvDIaGxs7e2sAAOxCeWdvAACAjjFlypS47bbbYsuWLfH444/HhRdeGI2NjfHJT36ys7cGAMBOeMUdAEAXUVlZGXV1dTF48OA477zz4tOf/nTce++9peeXLl0axx9/fPTs2TPGjRsXL774Yum5V155Jc4+++wYMGBA7LfffnHCCSfEQw891CL/29/+dowYMSKqqqpiwIABcc4555SeK4oirr/++hg+fHhUV1fHMcccE3fffff7fs0AAHszxR0AQBdVXV0dW7ZsKb1/zTXXxDe/+c1YsmRJlJeXx+c+97nScxs2bIjTTz89HnrooVi2bFmceuqpMXXq1Fi1alVERCxZsiQuu+yy+NrXvhYvvvhizJ8/P0466aTSx//93/993HbbbXHzzTfH888/H5dffnl85jOfiYULF3bcBQMA7GXKiqIoOnsTAAC8v6ZPnx7r168vvcLuF7/4RZx++ukxYcKEuPjii+OUU06Jhx56KCZMmBAREffff3+cccYZ0dTUFFVVVTvNPPLII+Piiy+OSy65JObOnRuf/exn4/XXX4/evXu3WNfY2Bj9+vWLhx9+OMaOHVt6/MILL4y333477rjjjvfnogEA9nJ+xh0AQBfxs5/9LPbbb7/YunVrbNmyJc4+++yYNWtWvPDCCxER8aEPfai0duDAgRERsXbt2hgyZEg0NjbGV7/61fjZz34Wb7zxRmzdujWamppKr7ibNGlSDB06NIYPHx5TpkyJKVOmxMc//vHo2bNnvPDCC7Fx48aYNGlSi/1s3rw5jj322A66egCAvY/iDgCgizjllFPi5ptvjoqKihg0aFBUVFRERJSKu3fej4goKyuLiIjm5uaIiPi7v/u7eOCBB+Ib3/hGHHrooVFdXR3nnHNObN68OSIievfuHc8880w8+uijsWDBgvjHf/zHmDlzZjz99NOljPvuuy8OOuigFnuqrKx8fy8aAGAvprgDAOgievXqFYceeugefezjjz8e06dPj49//OMR8aefeffqq6+2WFNeXh4TJ06MiRMnxle+8pXYf//94+GHH45JkyZFZWVlrFq1KsaPH9/eywAA6DIUdwAAtOnQQw+NuXPnxtSpU6OsrCz+4R/+ofRKuog//W+4K1asiJNOOin69OkT999/fzQ3N8fIkSOjd+/eceWVV8bll18ezc3NceKJJ0ZDQ0MsWrQo9ttvvzj//PM78coAAPKluAMAoE033nhjfO5zn4tx48ZFv3794otf/GI0NDSUnt9///1j7ty5MXPmzNi4cWOMGDEi7rzzzjjyyCMjIuKf/umfon///nHdddfFihUrYv/994/jjjsuvvzlL3fWJQEAZM9vlQUAAACADHXr7A0AAAAAADtS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABk6P8B9lixg7hZNuMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import phaseogram, plot_phaseogram, plot_profile\n", + "from matplotlib.gridspec import GridSpec\n", + "\n", + "# Calculate the phaseogram\n", + "phaseogr, phases, times, additional_info = \\\n", + " phaseogram(events.time, cand_freqs_ef[0], return_plot=True, nph=nbin, nt=32)\n", + " \n", + "# ---- PLOTTING --------\n", + "\n", + "# Plot on a grid\n", + "plt.figure(figsize=(15, 15))\n", + "gs = GridSpec(2, 1, height_ratios=(1, 3))\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "mean_phases = (phases[:-1] + phases[1:]) / 2\n", + "plot_profile(mean_phases, np.sum(phaseogr, axis=1), ax=ax0)\n", + "# Note that we can pass arguments to plt.pcolormesh, in this case vmin\n", + "_ = plot_phaseogram(phaseogr, phases, times, ax=ax1, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Examples of interactive phaseograms\n", + "\n", + "### First: shift the rows of the phaseogram interactively" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def shift_phaseogram(phaseogr, tseg, delay_fun):\n", + " \"\"\"Shift the phaseogram rows according to an input delay function.\n", + "\n", + " Parameters\n", + " ----------\n", + " phaseogr : 2-d array\n", + " The phaseogram, as returned by ``phaseogram``\n", + " freq : float\n", + " The pulse frequency\n", + " tseg : float\n", + " The integration time for each row of the phaseogram\n", + " delay_fun : function\n", + " Function that gives the delay (in seconds) for each row of the\n", + " phaseogram\n", + "\n", + " Returns\n", + " -------\n", + " phaseogram_new : 2-d array\n", + " The shifted phaseogram\n", + "\n", + " \"\"\"\n", + " # Assume that the phaseogram is repeated twice in phase\n", + " nbin = phaseogr.shape[0] / 2\n", + " ntimes = phaseogr.shape[1]\n", + "\n", + " times = np.arange(0, tseg * ntimes, tseg)\n", + " phase_delays = delay_fun(times) # This gives the delay in units of time!\n", + "\n", + " delayed_bins = np.array(np.rint(phase_delays * nbin), dtype=int)\n", + " phaseogram_new = np.copy(phaseogr)\n", + " for i in range(ntimes):\n", + " phaseogram_new[:, i] = np.roll(phaseogram_new[:, i], \n", + " delayed_bins[i])\n", + "\n", + " return phaseogram_new\n", + "\n", + "\n", + "def interactive_phaseogram(phas, binx, biny, df=0, dfdot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(biny))\n", + " tobs = tseg * phas.shape[0]\n", + " delta_df_start = 2 / tobs\n", + " df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** df_order_of_mag\n", + "\n", + " delta_dfdot_start = 8 / tobs ** 2\n", + " dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** dfdot_order_of_mag\n", + "\n", + " pcolor = plt.pcolormesh(binx, biny, phas.T, cmap='magma')\n", + " l, = plt.plot(np.ones_like(biny), biny, zorder=10, lw=2, color='w')\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Times')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " sfreq = Slider(axfreq, 'Delta freq x$10^{}$'.format(df_order_of_mag), \n", + " -delta_df, delta_df, valinit=df)\n", + " sfdot = Slider(axfdot, 'Delta fdot x$10^{}$'.format(dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=dfdot)\n", + " spepoch = Slider(axpepoch, 'Delta pepoch', \n", + " 0, biny[-1] - biny[0], valinit=0)\n", + "\n", + " def update(val):\n", + " fdot = sfdot.val * 10 ** dfdot_order_of_mag\n", + " freq = sfreq.val * 10 ** df_order_of_mag\n", + " pepoch = spepoch.val\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " new_phaseogram = shift_phaseogram(phas, tseg, delay_fun)\n", + " pcolor.set_array(new_phaseogram.T.ravel())\n", + " l.set_xdata(1 + delay_fun(biny - biny[0]))\n", + " fig.canvas.draw_idle()\n", + "\n", + " resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " def reset(event):\n", + " sfreq.reset()\n", + " sfdot.reset()\n", + " spepoch.reset()\n", + " pcolor.set_array(phas.T.ravel())\n", + " l.set_xdata(1)\n", + "\n", + " button.on_clicked(reset)\n", + "\n", + " sfreq.on_changed(update)\n", + " sfdot.on_changed(update)\n", + " spepoch.on_changed(update)\n", + " \n", + " spepoch._dummy_reset_button_ref = button\n", + "\n", + " plt.show()\n", + " return " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# f0 = 0.0001\n", + "# fdot = 0\n", + "# delay_fun = lambda times: times * f0 + 0.5 * times ** 2 * fdot\n", + "\n", + "# new_phaseogr = shift_phaseogram(phaseogr, times[1] - times[0], delay_fun)\n", + "# _ = plot_phaseogram(new_phaseogr, phases, times, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIcCAYAAADhfaE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB900lEQVR4nO3dd3hUVf7H8c+kTRJSSCENQhOkBRBBqQpKdylW3EURVuyCAqJrXVl3F1ZWBYUFyyJgxf0pKBYiIEURqYLSRKRISyBACCSkz/39gYxGkpMyySQzvF8+8zxmvufcOfdm5pDvnHPusVmWZQkAAAAA3MSnuhsAAAAA4MJCEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3A+B5HA6HDh8+rNDQUNlstupuDgAAqAEsy9Lp06eVkJAgH5/q+Z47JydHeXl5Lh8nICBAgYGBldAilIQkBOV2+PBhJSYmVnczANQABw4cUL169XTw4EH6BQCSfu0X3C0nJ0eNGtVVauoJl48VFxenvXv3kohUIZIQlFtoaKgkaUGHu1XLL6DYMs0apBmP8d2eOGP8irmtjPFPb9lpjEvSj6f9jfH7++42xr/bGGuM/9+BEGO8wGEZ413rOIzx7ELzt0hpuaWPQi06au6Ixzc1n0Mde04pbTB3zheFnTbGT2TbjfFCy3yOF8WkG+OS9PmeusZ4g2DzOV7x7iXGeNaERcZ40EXmbnbvl7WM8cSWJ43xwjPGsCTJP8p8Hf37mj9vZ97ZWmIsJjhIkhQdEKLFnUYXW4b+gP5Aoj+QvL8/OJ2Xr2ZvL3D+neBueXl5Sk09oX175yksLLjCxzl16owaNvqj8vLySEKqEEkIyu3cFKxafgGq5Vf8PxphAcUnJ+eUVM9ZP9TceQT7mutLUqCvuQ1hdtfaGOBj7ph8ZP6jI9i30BgvbclWoG/pQ91+NvM5lHYdQ/zM55BVUFr9XGM8t5RrXNofHaH+5t+hJAWVco61SjnH0t6LvqW814MCzd1sSAmJvPP1S3mfFhYYw5Ikf3spf3TUMr+X/QzneK4/sKnkzwz9Af3B2fr0B97eH5xT3VO1w8KCFRZmTuhQ/UhCAAAA4D0cjrMPV+qjypGEAAAAwHuQhHgEbtELAAAAwK0YCQEAAID3sKyzD1fqo8qRhAAAAMB7OCwXp2ORhLgDSQgAAAC8B2tCPAJrQgAAAAC4FSMhAAAA8B6MhHgEkhBUWFKLIyVuQpZWyu7BV/23oTH+6Q3bjHH/MozhRQaY53TmpJkPsvSIecfXpqVsCHtRSJ4xnu8wb+Z0WcxxY/y5rTHmBkjqERVtjDePSDXG39lj3iW6YS3zBmtv7TG38a+3mXepdmSZj//1V+bdjyXp9iezjPHFz5t30rZK2QDtnfUXGeNdfzbvUr3vtPmzclEdc/vtN7YwxiXpm0eOGuOdGv5sjG/fUfLvsW2+jwIk+fs71LZV8e8n+gP6A4n+QPL+/iCzwLwhpduQhHgEkhAAAAB4D8vFJMQiCXEH1oQAAAAAcCtGQgAAAOA1bJZDNhdGM1ypi7IjCQEAAID3YE2IRyAJAQAAgPdwWK5tOMhmhW7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEdgOhYAAAAAt2IkBAAAAN7DslzbcNBiYbo7kISgwk6mBqnQP6DYmJ9fobHuHb2OGOMtatuN8fwy9C0xdnOhY0dDjPHDZ8ydUGRt8+u/u8/88Qr1Nw9Ezthlbl+WTpgbIKlnYLQx/uqPscb4opN7jPG7AxoZ41fFZBnjM95rbIzf3Hy/Mb43K9AYl6TGc8zvtVax5vfqon7rjPGOUWeM8ZY35Bnj2fNyjHHfFubf0Y9Pm6+RJLW75KQxbru4hTEeEXSoxJiP7eznxFFoU3pKULFl6A/oDyT6A8n7+wO/AvP5uQ3TsTwCSQgAAAC8B7fo9QisCQEAAADgVoyEAAAAwHswHcsjkIQAAADAe1guJiGuLGpHmTEdCwAAAF7D5nC4/CiPL7/8UgMHDlRCQoJsNps+/PDDIvHMzEyNGjVK9erVU1BQkFq0aKGZM2cWKZObm6vRo0crOjpatWrV0qBBg3Tw4EFXL0WNRhICAAAAVFBWVpbatm2r6dOnFxsfO3askpOT9dZbb2nHjh0aO3asRo8erY8++shZZsyYMVqwYIHmzZunVatWKTMzUwMGDFBhofmObZ6M6VgAAADwHpbl2l4f5azbv39/9e/fv8T4N998o+HDh6tHjx6SpLvuukuvvPKKNmzYoMGDBysjI0OzZs3Sm2++qV69ekmS3nrrLSUmJmrp0qXq27dvhU+lJmMkBAAAAN7j3MJ0Vx6STp06VeSRm5tboeZ069ZNCxcu1KFDh2RZlpYvX64ff/zRmVxs3LhR+fn56tOnj7NOQkKCkpKStHr1atevRw1FEgIAAADvUUlJSGJiosLDw52PSZMmVag5L730klq2bKl69eopICBA/fr104wZM9StWzdJUmpqqgICAhQREVGkXmxsrFJTU127FjUY07EAAACA3zlw4IDCwsKcP9vt9god56WXXtKaNWu0cOFCNWjQQF9++aXuu+8+xcfHO6dfFceyLNlstgq9picgCUGFncmxy6cgoNjYxXcGGuu2+cm1D9Wm9NIXar08YK8xfs8njYxxfx/znNBCyzyQGOpvjn+U+YUx/kS9nsZ4kG+QMS5JsYE5xvi+rOJ/f+c8HN7AGK8XlG2M78o0t/HWNubf0fYDdYzxyIACY1yS3t8bb4zf2CjFGO9Q74gxHvOvzsb4W0P2G+PDZkcb48cmbTLGExJLvwZfrKtvjPcO3mGM/9++piXG7i/0VZjOTqHOyi7+H2j6A/oDif5A8v7+IKfQ/B5zm0raMT0sLKxIElIR2dnZevzxx7VgwQL94Q9/kCS1adNGmzdv1nPPPadevXopLi5OeXl5Sk9PLzIacvToUXXp0sWl16/JmI4FAAAA71FJ07EqQ35+vvLz8+XjU/RPbl9fXzl+eZ327dvL399fS5YsccZTUlK0detWr05CGAkBAACA93BYLu6YXr5RlMzMTP3000/On/fu3avNmzcrMjJS9evXV/fu3fXwww8rKChIDRo00MqVK/XGG2/ohRdekCSFh4dr5MiReuihhxQVFaXIyEiNHz9erVu3Nk7X8nQkIQAAAEAFbdiwQVdddZXz53HjxkmShg8frjlz5mjevHl67LHHdMstt+jEiRNq0KCB/vnPf+qee+5x1pkyZYr8/Pw0ZMgQZWdnq2fPnpozZ458fX3dfj7uQhICAAAA7+HmfUJ69Oghy1AnLi5Os2fPNh4jMDBQ06ZN07Rp08r12p6MJAQAAADew9V1HZW4JgQlY2E6AAAAALdiJAQAAADew3LxFr2uTOVCmZGEAAAAwHswHcsjkIQAAADAe5CEeATWhAAAAABwK0ZCUGH1mp5UWEBAsTGr+yBj3eahm1x67csi80sts3pbPWP8tkbmYzz24zFj/OqAeGP8h8xMY3x99+bG+F/WmL+JaRdV+r3DswuL//2cM6BBqjG+6WiUMX48z3z8jlEnjfHSXN41xRifs6hJqccYWC/NGI+KyzLGDx8IN8YD//6lMX51fbsxbiUkGeNRz5s3qjp8/wpjXJKaR5w0xk/t8zfGu9c5XWLM7nP2fernZ6l+s+Jfh/6A/kCiP5C8vz/IKsiVfiox7D4OF9eEuFIXZUYSAgAAAO9hOc4+XKmPKkcSAgAAAO/BSIhHYE0IAAAAALdiJAQAAADeg7tjeQSSEAAAAHgPpmN5BJIQAAAAeA+H5eJICEmIO7AmBAAAAIBbMRICAAAA78F0LI9AEgIAAAAv4uI+IWJhujswHQsAAACAWzESUkNMmjRJ8+fP1w8//KCgoCB16dJFzz77rJo1a+YsM2LECM2dO7dIvY4dO2rNmjXOn3NzczV+/Hi9++67ys7OVs+ePTVjxgzVq1fPWSY9PV0PPPCAFi5cKEkaNGiQpk2bptq1a5erzYHD2iswJKjY2EtX7TDWvTSiwBjffqpWKfVzzY2T5O9j/iYj0m4+xk0x9YzxJiGnjfG+ceHGeET8UWO8caj547kyNccYl6Qpl580xr84GGuM78vyNcabhpp/j7WDzW08djzEGN9zOMAYH3rZbmNckoLbBBrjeT+Zh923p5t/jxdPvtgYD/tmu/n1n11ojPsn2I3xsnyX1LBHtvkIt/c3t2H8JyXH/H75nNUKUODIy4stQ39AfyDRH0je3x+cysuT1pQYdh+mY3kERkJqiJUrV+r+++/XmjVrtGTJEhUUFKhPnz7KysoqUq5fv35KSUlxPj777LMi8TFjxmjBggWaN2+eVq1apczMTA0YMECFhYXOMkOHDtXmzZuVnJys5ORkbd68WcOGDXPLeQIAAFSpc0mIKw9UOUZCaojk5OQiP8+ePVsxMTHauHGjrrzySufzdrtdcXFxxR4jIyNDs2bN0ptvvqlevXpJkt566y0lJiZq6dKl6tu3r3bs2KHk5GStWbNGHTt2lCS99tpr6ty5s3bu3Flk5OWc3Nxc5eb++i3hqVOnXD5fAACAKsFmhR6BkZAaKiMjQ5IUGRlZ5PkVK1YoJiZGF198se68804dPfrrEP7GjRuVn5+vPn36OJ9LSEhQUlKSVq9eLUn65ptvFB4e7kxAJKlTp04KDw93lvm9SZMmKTw83PlITEystPMEAADAhYckpAayLEvjxo1Tt27dlJSU5Hy+f//+evvtt7Vs2TI9//zzWr9+va6++mrnKEVqaqoCAgIUERFR5HixsbFKTU11lomJiTnvNWNiYpxlfu+xxx5TRkaG83HgwIHKOlUAAIDKxXQsj8B0rBpo1KhR+v7777Vq1aoiz998883O/09KSlKHDh3UoEEDffrpp7r++utLPJ5lWbLZbM6ff/v/JZX5LbvdLru9tMVwAAAANQAL0z0CIyE1zOjRo7Vw4UItX768yB2tihMfH68GDRpo165dkqS4uDjl5eUpPT29SLmjR48qNjbWWebIkSPnHSstLc1ZBgAAwGOdWxPiygNVjiSkhrAsS6NGjdL8+fO1bNkyNWrUqNQ6x48f14EDBxQfHy9Jat++vfz9/bVkyRJnmZSUFG3dulVdunSRJHXu3FkZGRlat26ds8zatWuVkZHhLAMAAABUJaZj1RD333+/3nnnHX300UcKDQ11rs8IDw9XUFCQMjMzNWHCBN1www2Kj4/Xvn379Pjjjys6OlrXXXeds+zIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOydsQAAADyKZZ19uFIfVY4kpIaYOXOmJKlHjx5Fnp89e7ZGjBghX19fbdmyRW+88YZOnjyp+Ph4XXXVVXrvvfcUGhrqLD9lyhT5+flpyJAhzs0K58yZI1/fXzeZevvtt/XAAw8476I1aNAgTZ8+vepPEgAAoKqxJsQjkITUEFYpWXdQUJA+//zzUo8TGBioadOmadq0aSWWiYyM1FtvvVXuNv6e4+vtcgQWv4PtXVebd2QNvLL4vU7OuWzNT8b4yX2lL5TfnhJtjMdFmnc4Dk2rbYyH2fOM8Y9Tjxvj+cuaGuM3JJ4wxvecDjPGJWnTsShjfN7P5t/Ta13Ne8Lk5pu7kDqJmcb44o0NjPFv082/59J2wZak6GNZxvjJrEhj/Momh4zxY5MOG+NZmeZzaDDs/LvVFTn+gnRjPCs7yBiXJJ9bexjj+/+8zBhP/PjPJcZstl92M8/Nl2PllmLL0B/QH0j0B5L39wfWqSzpvXmltqHKkYR4BNaEAAAAAHArRkIAAADgPSwX73BlcXcsdyAJAQAAgPdgOpZHIAkBAACA93DIxSSk0loCA9aEAAAAAHArRkIAAADgPZiO5RFIQgAAAOA1LIcly4VEwpW6KDumYwEAAABwK0ZCAAAA4D0s6+zDlfqociQhAAAA8B6sCfEIJCGouALH2UcxMo/6G6u+OiHUGO9XN6fCzTrnYLbdGF+1pb4x/uGxg6W8Ql1j9OGm+cb4lgzz0f+9PcwYH3lRrvkAkrafCjLGb6wfbIwfPmW+T+GiFHMb07ZHG+OXRZk7+kF1T5by+hHGuCT9Kdj8XrqoxQlj3K+OrzF+cpvNGH/1hwRj/O8DOxjj+2YuNcYjgsrwWfn4K2M4MND8Xk276a0SY3VebSPfKLski/7AgP6A/kDy/v7gdH5e6a/vDiQhHoE1IQAAAADcipEQAAAAeA9GQjwCSQgAAAC8B0mIRyAJAQAAgNewLBf3CeHuWG7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEcgCQEAAID3IAnxCKwJAQAAAOBWjIQAAADAe1jW2Ycr9VHlSEJQYcsX1FEtP3uxsYPZAca6NzQ5aIz7+TmM8QPHws2Nk7Qs1WaMd65j7mRebFnbGJ9/0Hz8qADzQGO+w1w/0Ndcf+2JYGNckpqH5hnjJ/LMXcDSI6HG+OP9fzTGA3vVM8Z//E+mMf7tsQhj/GiOMSxJiorLMsaP7Akxxg9vNsc7Dc82xv85vpYxrm/WG8MdHjX/nj+dEGg+vqScD8zXuaDQfAw/35I/j1EOH/lKys321cr/iym2DP0B/YFEfyB5f3+QWVAz/qy0HGcfrtRH1asZ7xYAAACgMrAmxCOwJgQAAACAWzESAgAAAO/BSIhHIAkBAACA12BNiGdgOhYAAAAAt2IkBAAAAN7DcnE6FrfodQuSEAAAAHgPxy8PV+qjypGEAAAAwGtYDkuWCyMhrtRF2bEmBAAAAIBbMRICAAAA78F0LI9AEoIK6/mYr8KCfYuN3TrCPJS5NaOeMX5T4mlj/NLLU82Nk3RjTmCpZUze3lfLGI+024zxLRn+xvj645nG+HGfdGO8V1ycMS5JR3PNbTiRZz6H2EDz77Hnm5HG+PzDacb49nTzOYT6FxrjXaKNYUnS4QPhxvhFV2eZ638aYow7jp0xxq1F3xvj739Y3xi/acghY7xP7wJjXJLWrjBf5y7XnTDGdywyfxYkyR4m9Xma/qAk9Af0B9KF0x9UO+uXhyv1UeVIQgAAAOA1WBPiGVgTAgAAAMCtGAkBAACA92BNiEcgCQEAAIDXsBxnH67UR9UjCQEAAID3YCTEI7AmBAAAAKigL7/8UgMHDlRCQoJsNps+/PDD88rs2LFDgwYNUnh4uEJDQ9WpUyft37/fGc/NzdXo0aMVHR2tWrVqadCgQTp48KAbz8L9SEIAAADgNc5Nx3LlUR5ZWVlq27atpk+fXmx89+7d6tatm5o3b64VK1bou+++01NPPaXAwF9vHT5mzBgtWLBA8+bN06pVq5SZmakBAwaosNB8a2pPxnQsAAAAeA9Lrk2p+uUOvadOnSrytN1ul91uP694//791b9//xIP98QTT+iaa67R5MmTnc81btzY+f8ZGRmaNWuW3nzzTfXq1UuS9NZbbykxMVFLly5V3759XTiZmouREAAAAOB3EhMTFR4e7nxMmjSp3MdwOBz69NNPdfHFF6tv376KiYlRx44di0zZ2rhxo/Lz89WnTx/ncwkJCUpKStLq1asr41RqJJIQAAAAeA3Lcv0hSQcOHFBGRobz8dhjj5W7LUePHlVmZqb+9a9/qV+/flq8eLGuu+46XX/99Vq5cqUkKTU1VQEBAYqIiChSNzY2VqmpqS5fj5qK6ViosLyvflaePaDY2OsjzHXXfR1vjBdaNmP8/nebmF9AUoMQ8zH8S0nBp921xxhf9lmCMf7D6UBjfFgjc3xTej1j/PU9Wca4JN3V5Pxh4986eMbfGB9Y77gxPrz3CWN8zHvm39PYlseM8e9PRBjjPS4qfdHe/B0NjPFTi4p/D5/j72Me0/+//5l/TzffmWaM92l2wBi3+fsa44uXJBrjknTNnRnGuGUOq+UNeSXGbEG//GudW6i8FfuKLUN/QH8g0R9I3t8fnMrOl1aW2oQqV1m36A0LC1NYWJhLbXE4zh5s8ODBGjt2rCTpkksu0erVq/Xyyy+re/fuJbfDsmSzmfsuT8ZICAAAALyHoxIelSQ6Olp+fn5q2bJlkedbtGjhvDtWXFyc8vLylJ6eXqTM0aNHFRsbW3mNqWFIQgAAAIAqEBAQoMsuu0w7d+4s8vyPP/6oBg3Ojsy1b99e/v7+WrJkiTOekpKirVu3qkuXLm5trzsxHQsAAABew907pmdmZuqnn35y/rx3715t3rxZkZGRql+/vh5++GHdfPPNuvLKK3XVVVcpOTlZH3/8sVasWCFJCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3YiSkhpg0aZIuu+wyhYaGKiYmRtdee+15WbNlWZowYYISEhIUFBSkHj16aNu2bUXKlGWzm/T0dA0bNsx5t4dhw4bp5MmTVX2KAAAAVa6yFqaX1YYNG9SuXTu1a9dOkjRu3Di1a9dOf/3rXyVJ1113nV5++WVNnjxZrVu31n//+1998MEH6tatm/MYU6ZM0bXXXqshQ4aoa9euCg4O1scffyxfX/M6IE9GElJDrFy5Uvfff7/WrFmjJUuWqKCgQH369FFW1q+LDSdPnqwXXnhB06dP1/r16xUXF6fevXvr9OnTzjJl2exm6NCh2rx5s5KTk5WcnKzNmzdr2LBhbj1fAACAKuGwuf4ohx49esiyrPMec+bMcZa5/fbbtWvXLmVnZ2vz5s0aPHhwkWMEBgZq2rRpOn78uM6cOaOPP/5YiYml32jAkzEdq4ZITk4u8vPs2bMVExOjjRs36sorr5RlWZo6daqeeOIJXX/99ZKkuXPnKjY2Vu+8847uvvvuMm12s2PHDiUnJ2vNmjXq2LGjJOm1115T586dtXPnTjVr1uy8tuXm5io3N9f58+837wEAAADKg5GQGioj4+w98iIjIyWdnV+YmppaZCMbu92u7t27OzeyKctmN998843Cw8OdCYgkderUSeHh4SVuiDNp0qQim/V4e2YOAAA817k1Ia48UPVIQmogy7I0btw4devWTUlJSZLk3Kzm97dq++1GNmXZ7CY1NVUxMTHnvWZMTEyJG+I89thjRTbrOXDAfB9zAACA6mJZNpcfqHpMx6qBRo0ape+//16rVq06L/b7TWvKspHN78sUV950HLvdLrvdvMkVAABATeDuu2OhYhgJqWFGjx6thQsXavny5apX79edV+Pi4iTpvNGK325kU5bNbuLi4nTkyJHzXjctLc2rN8QBAABAzcFISA1hWZZGjx6tBQsWaMWKFWrUqFGReKNGjRQXF6clS5Y4bwGXl5enlStX6tlnn5VUdLObIUOGSPp1s5vJkydLkjp37qyMjAytW7dOl19+uSRp7dq1ysjIKPeGOD7BvvIJLP7WcZu/iDLW7dij+Klf55zYEWCMX5fvb26cpKva7TfG135f1xif8V5jY/xMoTGsr45kG+Nz+5yfDP7Wum8aGuPtImuZGyDpi1TzfQb7xuca49N/iDTGb8kxj5C1CDeP0u07FWqM1w0yX8NFP5a+PmnoZbuN8fU7EozxVceCjfG/XLfLGM/dbgyrlvnl5VPX/Dvod12K+QCSrCxzV39inflrv8KC/BJjdYZY8g2RZJN8atEflIT+gP5A8v7+4HR+yTF3siwXR0LKeYteVAxJSA1x//3365133tFHH32k0NBQ54hHeHi4goKCZLPZNGbMGE2cOFFNmzZV06ZNNXHiRAUHB2vo0KHOsqVtdtOiRQv169dPd955p1555RVJ0l133aUBAwYUe2csAAAAT+Lqug7WhLgHSUgNMXPmTEln7zX9W7Nnz9aIESMkSY888oiys7N13333KT09XR07dtTixYsVGvrrt0dTpkyRn5+fhgwZouzsbPXs2VNz5swpstnN22+/rQceeMB5F61BgwZp+vTpVXuCAAAA7uCwySrnXh+/r4+qRxJSQ1hlGPuz2WyaMGGCJkyYUGKZc5vdTJs2rcQykZGReuuttyrSTAAAAMBlJCEAAADwGpbl2roO1oS4B0kIAAAAvAZrQjwDt+gFAAAA4FaMhAAAAMBrWC4uTHdpUTvKjCQEAAAAXoM1IZ6BJAQAAABegzUhnoE1IQAAAADcipEQVNiOr2orxM9ebKzDKHN++/6zDY3x70/6G+OD6p40xiXpsw2NjPEdp8xv//xS5oReGpFrjB86E2SM374k3hgf2rDAGN93pvSPb90g8zl8czzAGP/nFXuN8U9/qG+MNw/NMcYXHCz+/XPOqOZZxvgNrVKNcUnyCzfHewzLMMf9M43xJf9NNMYvqm0+fnzDU8Z44b50Y9y3YYQxXhYhMUeN8cBe9UoOBp/dCDU/10fblxffFvoD+gOJ/kDy/v4g6Eyu9LHLTXCZw2GTw4V1Ha7URdmRhAAAAMBrsCbEM5CEAAAAwGuwJsQzsCYEAAAAgFsxEgIAAACvwUiIZyAJAQAAgNdwWDY5XEgkXKmLsiMJAQAAgNdgx3TPwJoQAAAAAG7FSAgAAAC8Brfo9QwkIQAAAPAaDrm4JkRMx3IHpmMBAAAAcCtGQlBhrZ+OV1itwGJj+Z9uMdZtGhpljDesZc6PE6MzzI2TtOBgbWP8vqQDxrifn8MY/+5QjDHeLz7XGN+SYTfGN500hvVA64PmApKyss2vcTy7+N/fOct2JRrj/jbzmHW3S8zXeO2Jpsb4qdwAYzxlX5gxLkkpmbWM8Y7+qca4/42XGeM9dq0zxlesNF/Do9uCjfGc732N8bUnzPUladzgXcb4mWPmfwoci0p+rwVdWShbkOQf5qu2ExOKLUN/QH8g0R9I3t8fnMnLK/X13YFb9HoGkhAAAAB4DcvFW/SShLgHSQgAAAC8BiMhnoE1IQAAAADcipEQAAAAeA3HLw9X6qPqkYQAAADAazAdyzOQhAAAAMBrOCy5tk8ImxW6BWtCAAAAALgVIyEAAADwGkzH8gwkIQAAAPAaZ6djuVYfVY8kBBW3+5AUVPwOvFa++RP88q7axvgtDbOM8dQToca4JDWoZb6/RU6uvzH+zo5YYzw20HyOB8+YZzve3/ZnY/y+FfHG+Lxd9YxxScov5RYfzUPNu9u2iUw3xufvr2OMv7W6iTHeOtz8+jtOmXc3rh9Z+k7Zx46bd1k+usW8S/S2pSnG+KUNzO+jPveZ38s5608Y4351zDskRy6PMMYlaf6SRsb4zXemGeO2pob3YtAv/4wUFEq7it9Jmf6A/kCiP5C8vz8oyMqRZpfahCrHSIhnYE0IAAAAALdiJAQAAABewyGbHHLh7lgu1EXZkYQAAADAa1jW2Ycr9VH1mI7lggMHDujgwV/nQK9bt05jxozRq6++Wo2tAgAAuHA5LJvLD1Q9khAXDB06VMuXL5ckpaamqnfv3lq3bp0ef/xxPfPMM9XcOgAAAKBmIglxwdatW3X55ZdLkv73v/8pKSlJq1ev1jvvvKM5c+ZUb+MAAAAuQNYva0Iq+rBYE+IWrAlxQX5+vuz2s7eoXbp0qQYNGiRJat68uVJSzLfxAwAAQOVjTYhnYCTEBa1atdLLL7+sr776SkuWLFG/fv0kSYcPH1ZUVFQ1tw4AAAComUhCXPDss8/qlVdeUY8ePfSnP/1Jbdu2lSQtXLjQOU0LAAAA7sPCdM/AdCwX9OjRQ8eOHdOpU6cUEfHrLqV33XWXgoODq7FlAAAAFybLxXUdrAlxD5IQF1mWpY0bN2r37t0aOnSoQkNDFRAQcEEkIYc/ytFpf0exsazs2sa6h87kGeOd+hw1xpd9lmCMS9LQy3Yb45NWNDXGH+n6kzG+aGuDUlpgHmh8dHU9Y3xGj4PG+Hs/1C/l9aVN6YXG+Ol8uzGeUxhhjHevc9oYP5JjPv7RXH9jPMzP3P7P95X+PmgfmWGMZ2Wb29jtkgPGeHpKkDFesM/8+vaWIcZ4ac4UlN6NX9XosDFu5Znfq44N+0qM+V5eIAVKhdmWUj/ILrYM/YFEf0B/IHl/f1CYY/4su4vDOvtwpT6qHkmIC37++Wf169dP+/fvV25urnr37q3Q0FBNnjxZOTk5evnll6u7iQAAAECNw5oQFzz44IPq0KGD0tPTFRT067cf1113nb744otqbBkAAMCFiTUhnoGREBesWrVKX3/9tQICAoo836BBAx06dKiaWgUAAHDhYk2IZyAJcYHD4VBh4flzVA8ePKjQ0NBqaBEAAMCFjTUhnoHpWC7o3bu3pk6d6vzZZrMpMzNTTz/9tK655prqaxgAAABQgzES4oIpU6boqquuUsuWLZWTk6OhQ4dq165dio6O1rvvvlvdzQMAALjgMB3LM5CEuCAhIUGbN2/Wu+++q2+//VYOh0MjR47ULbfcUmShOgAAANyD6ViegelYLgoKCtLtt9+u6dOna8aMGbrjjjsqlIB8+eWXGjhwoBISEmSz2fThhx8WiY8YMUI2m63Io1OnTkXK5ObmavTo0YqOjlatWrU0aNAgHTxY9N7y6enpGjZsmMLDwxUeHq5hw4bp5MmT5W4vAABATcTdsTwDIyEuOnTokL7++msdPXpUDkfRjfseeOCBMh8nKytLbdu21Z///GfdcMMNxZbp16+fZs+e7fz593flGjNmjD7++GPNmzdPUVFReuihhzRgwABt3LhRvr6+kqShQ4fq4MGDSk5OlnR2d/dhw4bp448/LnNbAQAAAFeQhLhg9uzZuueeexQQEKCoqCjZbL9mzjabrVxJSP/+/dW/f39jGbvdrri4uGJjGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fbVjxw4lJydrzZo16tixoyTptddeU+fOnbVz5041a9as2GPn5uYqNzfX+fOpU6fKfF4AAADuZP3ycKU+qh5JiAv++te/6q9//asee+wx+fhU/cy2FStWKCYmRrVr11b37t31z3/+UzExMZKkjRs3Kj8/X3369HGWT0hIUFJSklavXq2+ffvqm2++UXh4uDMBkaROnTopPDxcq1evLjEJmTRpkv72t7+d93ytsFyFBBT/UT12qpbxXN4ccNAYtwX4GuNlcTzV3IZIu7mb2bIn1nz8PHMbN5/IMcZ7xduN8bd21DfGO0ZmGuOS1DzU/BF/ZZfDGD+V72+MRwaY49H2PGN8d1aAMX66wNz+fgnHjXFJ+vZ4bWN812nzazySmGGMR8RnG+MfLmxkjA/ovNcY9wk2hnUiL9JcQFLnBxubCxw2X8czK46WGAsqlGySfHwshYTnFluG/oD+QKI/kLy/P8jNyy/19d3BkmtTqliY7h6sCXHBmTNn9Mc//tEtCUj//v319ttva9myZXr++ee1fv16XX311c4RitTUVAUEBCgiIqJIvdjYWKWmpjrLnEtafismJsZZpjiPPfaYMjIynI8DBw5U4pkBAABUHkclPFD1GAlxwciRI/V///d/evTRR6v8tW6++Wbn/yclJalDhw5q0KCBPv30U11//fUl1rMs67xpYqWV+T273S673fwtHQAAAFBWJCEumDRpkgYMGKDk5GS1bt1a/v5Fh6JfeOGFKnvt+Ph4NWjQQLt27ZIkxcXFKS8vT+np6UVGQ44ePaouXbo4yxw5cuS8Y6WlpSk21jzVAAAAwBNYlk2WK9OxuDuWW5CEuGDixIn6/PPPnWspShtxqEzHjx/XgQMHFB8fL0lq3769/P39tWTJEg0ZMkSSlJKSoq1bt2ry5MmSpM6dOysjI0Pr1q3T5ZdfLklau3atMjIynIkKAACAJ3N1ShXTsdyDJMQFL7zwgl5//XWNGDHC5WNlZmbqp59+cv68d+9ebd68WZGRkYqMjNSECRN0ww03KD4+Xvv27dPjjz+u6OhoXXfddZKk8PBwjRw5Ug899JCioqIUGRmp8ePHq3Xr1s67ZbVo0UL9+vXTnXfeqVdeeUXS2Vv0DhgwoMRF6QAAAEBlY2G6C+x2u7p27Vopx9qwYYPatWundu3aSZLGjRundu3a6a9//at8fX21ZcsWDR48WBdffLGGDx+uiy++WN98841CQ0Odx5gyZYquvfZaDRkyRF27dlVwcLA+/vhj5x4hkvT222+rdevW6tOnj/r06aM2bdrozTffrJRzAAAAqG7ndkx35VEepW04/Vt33323bDabpk6dWuT5smw47W0YCXHBgw8+qGnTpumll15y+Vg9evSQZZX8rv/8889LPUZgYKCmTZumadOmlVgmMjJSb731VoXaCAAAUNNZsrl0m93y1i3LhtOS9OGHH2rt2rVKSEg4L1aWDae9DUmIC9atW6dly5bpk08+UatWrc5bmD5//vxqahkAAMCFqSKjGb+vXx5l2XD60KFDGjVqlD7//HP94Q9/KBIry4bT3ogkxAW1a9c23h4XAAAAnunUqVNFfq7olgUOh0PDhg3Tww8/rFatWp0XL8uG096IJMQFs2fPru4mAAAA4DcqazpWYmJikeeffvppTZgwodzHe/bZZ+Xn56cHHnig2HhZNpz2RiQhqLDDqeE65Vf8NwItux431l217Pz5kL8V+nO+MR5pzzU3TtInP8cZ4zc2SjHG39gVb4wHl/LpCS5lDmdCUIEx/sye/cZ4l6g65gZIWnUsyBhvEm4ec37x4ExjvMBxjzE+8iLz7ynQx/z6sYGFxviWE+HGuCTF2s3vpfQ88+8p5MYG5hfIOGMMx23NMcY3bTa/TzsX/2+WU99ah8wFJFnxVxjjuf+3wxg/k+5fYizwl3tZFhb66ODh2sWWoT+gP5DoDyTv7w+y812YA1WJKms61oEDBxQWFuZ8viKjIBs3btSLL76ob7/9ttzbN5S2mbSnIwkpp0svvVRffPGFIiIi1K5dO+Ob49tvv3VjywAAAFBZSUhYWFiRJKQivvrqKx09elT169d3PldYWKiHHnpIU6dO1b59+8q04bQ3Igkpp8GDBzsz4WuvvbZ6GwMAAIAaa9iwYc7F5uf07dtXw4YN05///GdJZdtw2huRhJTT008/rdtvv10vvviinn766epuDgAAAH7D3bfoNW04Xb9+fUVFRRUp7+/vr7i4OOdG0WXZcNobsVlhBcydO1fZ2dnV3QwAAAD8juXiRoWGbduKZdpwuqzKsuG0t2EkpAJMmwoCAACg+jh+ebhSvzxK23D69/bt23fec2XZcNrbMBJSQd58twIAAACgKjESUkEXX3xxqYnIiRMn3NQaAAAASJJl2WRZLqwJcaEuyo4kpIL+9re/KTy89HuSAwAAwH3cPR0LFUMSUkF//OMfFRMTU93NAAAAADwOSUgFsB4EAACgZqqszQpRtUhCKoC7Y50VE5mpUP+8YmN+Dc07jLaMP2aMf7M/zhjv1viwuXGS2nQ6aozvWBdtjLcIKzDG6waZb9O8Pi3IGN+U7m+MXx7YyBj/KbP0AeNu0eY2xpZyDhEB9xrj/ePTjfGFhyKM8ZsbphnjjbudNsbXL6ljjEtSTK0zxnj3rgeMcceP5t/jlg9rGePdJpinbe5+7ogxXrAjyxjfttx8jSWplb4yxn2CzfWX7qpXYmxwga+CJfn4OBQbVfzvi/6A/kCiP5C8vz84U5hb6uu7g/XLw5X6qHokIRXgcDBbEAAAoCY6OxJS8VkrjIS4B7foBQAAAOBWjIQAAADAazAdyzOQhAAAAMBrsDDdM5CEAAAAwGuwT4hnYE0IAAAAALdiJAQAAABew7LOPlypj6pHEgIAAACvYckmhyp+i17LhbooO5IQAAAAeA1GQjwDa0IAAAAAuBUjIaiwqEfbKywkqNhY/jurS6kdYIy2jko3xjMyin/dIvaVXsSkblC2MR5T64wxfmMDcxvf2JNjjN/UwPzx3HW69I/vD6fMZfrHFxjj/qV8TbH2eG1j/IFOu43xoHjzPUiWfZZojPcZk2uMS9KxBebf438/b2KMH842X4S7mh82xn+cnGaM1292yhj/cGEjY7xF7QxjXJJ8apnfBy/Oa2yM39Gh5N9joH/h2dcIC1D005cXW4b+gP5Aoj+QvL8/OJWXJ31fahOqHHfH8gwkIQAAAPAa7BPiGUhCAAAA4DXYMd0zsCYEAAAAgFsxEgIAAACvwXQsz0ASAgAAAK/BLXo9A9OxAAAAALgVIyEAAADwGtyi1zOQhAAAAMBrsCbEM5CEAAAAwGtwi17PwJoQAAAAAG7FSAgq7Nk/pSnQN7DYWMfIesa6ve84ZYz7LjljjP/3u4bGuCRdWjvHGA/2KzDGt5+qZYwfTAkzxj88sdsYf6VVHWN8UUrx1/aclmH5xrgkbTpp/ogfPGN+jfVp5muUUMt8/DFLGhnjU3vvNcYPZgcY4/+aYG6/JD36rPkYUX8rNMbv/MNPxnh2ivm7nPAbEozxH/9jDOvGv5u/k1v1T7v5AJJ0Tz9j+MGs94zxnJ9L/17w9HGHpl57tNgY/QH9gUR/IHl/f+BbQ24rxXQsz0ASAgAAAK9hySZLNpfqo+qRhAAAAMBrWHJtNIOBEPdgTQgAAAAAt2IkBAAAAF6DNSGegSQEAAAAXoNb9HoGkhAAAAB4DUZCPANrQgAAAAC4FSMhAAAA8BrWL/+5Uh9VjyQEAAAAXoPpWJ6B6VgAAAAA3IqRkBriyy+/1L///W9t3LhRKSkpWrBgga699lpn3LIs/e1vf9Orr76q9PR0dezYUf/5z3/UqlUrZ5nc3FyNHz9e7777rrKzs9WzZ0/NmDFD9erVc5ZJT0/XAw88oIULF0qSBg0apGnTpql27drlbvPo7rsVFhBQbOyzDY2Mdb+eE2yMB/rajfGbGh4xN05SoD3fGP98X4Ixnu8wH79NbfPxH+luPsDwDwON8ea1za//9bHSP76jm6cZ474+5jYuTY0xxq+sk2eMh/sXGOPvbW5sjDcNyTbG+zY8YYxL0rZpQcb4ppNRxvjxT5sY4w1rma/BJa+bfwcN25nPUbXijeGY4JPm+pIKnnnHGPeLMX/efvgpvMRY2wIfBUgKsRfooat3FVuG/oD+QKI/kLy/P8gsyC319d2Bu2N5BkZCaoisrCy1bdtW06dPLzY+efJkvfDCC5o+fbrWr1+vuLg49e7dW6dPn3aWGTNmjBYsWKB58+Zp1apVyszM1IABA1RYWOgsM3ToUG3evFnJyclKTk7W5s2bNWzYsCo/PwAAAHc4Nx3LlQeqHiMhNUT//v3Vv3//YmOWZWnq1Kl64okndP3110uS5s6dq9jYWL3zzju6++67lZGRoVmzZunNN99Ur169JElvvfWWEhMTtXTpUvXt21c7duxQcnKy1qxZo44dO0qSXnvtNXXu3Fk7d+5Us2bNin393Nxc5eb++u3GqVOnKvPUAQAAKo1lnX24Uh9Vj5EQD7B3716lpqaqT58+zufsdru6d++u1atXS5I2btyo/Pz8ImUSEhKUlJTkLPPNN98oPDzcmYBIUqdOnRQeHu4sU5xJkyYpPDzc+UhMTKzsUwQAAMAFhCTEA6SmpkqSYmNjizwfGxvrjKWmpiogIEARERHGMjEx58/pjYmJcZYpzmOPPaaMjAzn48CBAy6dDwAAQFVxVMIDVY/pWB7EZrMV+dmyrPOe+73flymufGnHsdvtstvNC9UAAABqAm7R6xkYCfEAcXFxknTeaMXRo0edoyNxcXHKy8tTenq6scyRI+ffRSYtLe28URYAAACPZP26LqQiD26P5R4kIR6gUaNGiouL05IlS5zP5eXlaeXKlerSpYskqX379vL39y9SJiUlRVu3bnWW6dy5szIyMrRu3TpnmbVr1yojI8NZBgAAAKhqTMeqITIzM/XTTz85f967d682b96syMhI1a9fX2PGjNHEiRPVtGlTNW3aVBMnTlRwcLCGDh0qSQoPD9fIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOKdsQAAADyJq+s6WBPiHiQhNcSGDRt01VVXOX8eN26cJGn48OGaM2eOHnnkEWVnZ+u+++5zbla4ePFihYaGOutMmTJFfn5+GjJkiHOzwjlz5sjX19dZ5u2339YDDzzgvIvWoEGDStybBAAAwNNwi17PYLMsLjXK59SpUwoPD9fLrf+ioBJ2Mn5zb47xGBPbmnfOTYzOMMb3HI0wxiWp09BMY3zYBPPuv0kRvsZ49zqnjfFv00OM8R5x5t19H9lo3kW6fi3zDsuSlBBsvnFB8tHjxvjYJiXvjCtJPS46aIwv/KG+Mf6HJub6n/5UzxgfNnCPMS5JhzfVMsaj4rKM8YBocxd54LswYzynwPxdT6vR5t9z4Q7zbuC+F5l3eJakba+Yd3Fu1MT8XvQ1XEL7Uy/KVjtSWUcy9EG/F4otQ39AfyDRH0je3x+cys1T7H/+p4yMDIWFma9FVTj398ntCY8pwKf0z0RJ8hw5ev3wpGo7jwsFa0IAAAAAuBXTsQAAAOA1LMuSKxN9mCTkHiQhAAAA8BrsE+IZSEIAAADgNVzd6oMcxD1YEwIAAADArRgJAQAAgNdgOpZnIAkBAACA1yAJ8QxMxwIAAADgVoyEAAAAwGucXZjuwi16K68pMCAJAQAAgNdgOpZnIAlBheU7bPKz2YqNzeyUaaxbr9UpY/zbdXHGeOOYdHPjJOVuzzXG72kaaowvSjHHX/whyBjvElP8tTln3+kQYzzUz9cYbxdpDEuSNp0w96Qtgs0H6XHRz8b4D4eijfH2kRnG+Fc/JxjjO0+bZ4we3RJojEvSR/vizQX2mcODG6aU+homgX4Fxnje6oPGeMAfWhjjr4/OK7UNjWqZ30stZow0xm2vv19y0P/c+9ymfAf9QUnoD+gPJO/vDwKyS399d7Cssw9X6qPqsSYEAAAAgFsxEgIAAACvYcmSw6U1IQyFuANJCAAAALwG07E8A0kIAAAAvIbjl4cr9VH1WBMCAAAAwK0YCQEAAIDXsCxLlgtzqlypi7JjJAQAAABe49w+Ia48yuPLL7/UwIEDlZCQIJvNpg8//NAZy8/P11/+8he1bt1atWrVUkJCgm677TYdPny4yDFyc3M1evRoRUdHq1atWho0aJAOHjTfstnTkYQAAADAazh+uTuWK4/yyMrKUtu2bTV9+vTzYmfOnNG3336rp556St9++63mz5+vH3/8UYMGDSpSbsyYMVqwYIHmzZunVatWKTMzUwMGDFBhYaFL16ImYzoWAAAA8DunThXdSNVut8tut59Xrn///urfv3+xxwgPD9eSJUuKPDdt2jRdfvnl2r9/v+rXr6+MjAzNmjVLb775pnr16iVJeuutt5SYmKilS5eqb9++lXRGNQsjIQAAAPAaln69TW+FHr8cJzExUeHh4c7HpEmTKqV9GRkZstlsql27tiRp48aNys/PV58+fZxlEhISlJSUpNWrV1fKa9ZEjISgwob02KMwe0CxsZw0c367dFV9Y7xbM/M8yOD6pQ+V7l1X2xhvXveYMR7qn2+Mf3Ag0hjvGW8+/tdHzfVHNcsyxs8UlP7xvTQi1xg/khNojP97fUNjvFmo+UaGF4eeMcZ7t/zZGM/eYn79Y6dqGeOS9MBfjhvjf/5LhDE+6nbz+8Cnrfm9nPHGbmM8YHhXYzx31tfGeLfY2sa4JDV960pjfHufBcb4RS0ySowF3mBJtaRge4Fu6VX8udIf0B9I9AeS9/cHuXl5pb6+O1RkStXv60vSgQMHFBYW5ny+uFGQ8srJydGjjz6qoUOHOo+dmpqqgIAARUQUff/FxsYqNTXV5desqUhCAAAA4DV+O5pR0fqSFBYWViQJcVV+fr7++Mc/yuFwaMaMGWVohyWbzVZpr1/TMB0LAAAAqEL5+fkaMmSI9u7dqyVLlhRJbuLi4pSXl6f09PQidY4eParY2Fh3N9VtSEIAAADgNdx9d6zSnEtAdu3apaVLlyoqKqpIvH379vL39y+ygD0lJUVbt25Vly5dKrUtNQnTsQAAAOA1HJaLa0LKuVlhZmamfvrpJ+fPe/fu1ebNmxUZGamEhATdeOON+vbbb/XJJ5+osLDQuc4jMjJSAQEBCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3IgkBAAAAKmjDhg266qqrnD+PGzdOkjR8+HBNmDBBCxculCRdcsklReotX75cPXr0kCRNmTJFfn5+GjJkiLKzs9WzZ0/NmTNHvr6+bjmH6kASAgAAAK9h/fKfK/XLo0ePHrIMoyem2DmBgYGaNm2apk2bVq7X9mQkIQAAAPAaliTzDaNLr4+qRxICAAAAr1FZ+4SganF3LAAAAABuxUgIAAAAvIZlubgmpJx3x0LFkISgwuytI2QPshcb+/a1AGPdP9yfaYwX7DPvEOpbJ9jcOEnhodnG+K7DUcb4P7aaPx4HbLuN8VxHY2N83YkMY3xia/NA5RdHA41xSeoXZ54V++4+8zlGFP/rdZr1c7oxnuNj/h0MT7/IGM8v5d+BFpcfMxeQ9N3saGP8tXv3GeNWvvn3sOHv5t9jh+faGuNv3pJijB/KbmqMjxu8yxiXJNvG743xVn81b4aV9+mJkoPnLo+/j+xtI4stQn9AfyDRH0je3x/41JAbOTEdyzOQhAAAAMBrkIR4BtaEAAAAAHArRkIAAADgNaxfxkJcqY+qRxICAAAAr8F0LM9AEgIAAACvQRLiGVgTAgAAAMCtGAkBAACA13D88p8r9VH1SEIAAADgNSybJcvmysJ0pmO5A9OxAAAAALgVIyEAAADwGpaLC9MZCXEPkhBUWMbyDFkBAcXGdpxqZKy7cmKoMT6qa7ox7peWaW6cpG/2Nyi1jImvzdwJBVrBxnj9YHN9P1ttY/zpLeZzvCLGGJYkvbKr+N/POY8lnTLGVx6NMMaHNzJ3Id+fTDDGH933qTE+v3V3YzzthyBjXJJaDzhtjJ/+rrR/bAqN0XyHeUD50D9+MMZvGWF+9TPf5xjj676ONx9Aku9q8zE63njEGH/5k6Ylxm4f66fQcMnKdejU0pPFlqE/oD+Q6A8k7+8PcgrNx3YXhxyysSakxiMJAQAAgNdgs0LPwJoQAAAAAG7FSAgAAAC8hsPmkM2Fu2MxHcs9GAnxIBMmTJDNZivyiIuLc8Yty9KECROUkJCgoKAg9ejRQ9u2bStyjNzcXI0ePVrR0dGqVauWBg0apIMHD7r7VAAAAKqEoxL+Q9UjCfEwrVq1UkpKivOxZcsWZ2zy5Ml64YUXNH36dK1fv15xcXHq3bu3Tp/+dSHemDFjtGDBAs2bN0+rVq1SZmamBgwYoMJC82I7AAAAT0AS4hmYjuVh/Pz8iox+nGNZlqZOnaonnnhC119/vSRp7ty5io2N1TvvvKO7775bGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fYt9zdzcXOXm5jp/PnXKfAcVAAAAwISREA+za9cuJSQkqFGjRvrjH/+oPXv2SJL27t2r1NRU9enTx1nWbrere/fuWr16tSRp48aNys/PL1ImISFBSUlJzjLFmTRpksLDw52PxMTEKjo7AAAA15y7O5YrD1Q9khAP0rFjR73xxhv6/PPP9dprryk1NVVdunTR8ePHlZqaKkmKjY0tUic2NtYZS01NVUBAgCIiIkosU5zHHntMGRkZzseBAwcq+cwAAAAqh0OFLj9Q9ZiO5UH69+/v/P/WrVurc+fOuuiiizR37lx16tRJkmSz2YrUsSzrvOd+r7QydrtddrvdhZYDAAC4h/XLnumu1EfVYyTEg9WqVUutW7fWrl27nOtEfj+icfToUefoSFxcnPLy8pSenl5iGQAAAKCqMRLiwXJzc7Vjxw5dccUVatSokeLi4rRkyRK1a9dOkpSXl6eVK1fq2WeflSS1b99e/v7+WrJkiYYMGSJJSklJ0datWzV58uRyv35gtEOB9uK/aRjSYY+x7iebGhrju/dEGeOtrko3xiXph9MBxrh/KSl4VAnnds4HIzON8Y+So43xrSfNr98uspYxHhtY+jc1X+XnGuPTdtY2xnvFFRjjCw6a63evk22MP514jTE+fad5SPyN283Hl6SVH9Q1xiPt5mu063SoMX5Fg8Pm+kcijfG47GPG+PSvmxjjvWIzjHFJat4kzRhf9I55ndfNzfeXGAv2P/sesflIgXXoD0pCf0B/IHl/f3A6P0+P7iy1CVWOfUI8A0mIBxk/frwGDhyo+vXr6+jRo/rHP/6hU6dOafjw4bLZbBozZowmTpyopk2bqmnTppo4caKCg4M1dOhQSVJ4eLhGjhyphx56SFFRUYqMjNT48ePVunVr592yAAAAPJlDhbK5MNmHNSHuQRLiQQ4ePKg//elPOnbsmOrUqaNOnTppzZo1atCggSTpkUceUXZ2tu677z6lp6erY8eOWrx4sUJDf/3mZsqUKfLz89OQIUOUnZ2tnj17as6cOfL19a2u0wIAAKhErt7hipEQdyAJ8SDz5s0zxm02myZMmKAJEyaUWCYwMFDTpk3TtGnTKrl1AAAAQNmQhAAAAMBrOKxCuXLvpbP1UdVIQgAAAOA1XN1wkM0K3YNb9AIAAABwK0ZCAAAA4DUsFcpy4Xt2i7tjuQVJCAAAALzG2X0+2CekpiMJAQAAgNewZLm4JqT0zT/hOtaEAAAAAHArRkJQYVa+ZNmKj9X6q3kH9sibfzDGGyaeMMYdWaV/w/FAj13G+OKNDYzxQ2cCjPEe0yOM8X+0zDPG6wTWMsYH1T1pjJ/O9zfGJSnU13wO6bkFxnhsYL4x/smhEt4AvzgSZm7jpRGZxvhnh8xd1PdrYoxxSep6xSHzaywzvw9u/Lv5G7HnH6pvjI+9+6AxvuideGP8Lw+mGOPHV+Qa45K0cmuiMf6H8eb3quNwyd9X+QT88h6wJKuEw9Af0B9I9AeS9/cH9hwf6eNSm1DlLKtQlszvx9Lqo+qRhAAAAMBrsCbEM5CEAAAAwGucvTuWCyMh3B3LLVgTAgAAAMCtGAkBAACA17AsF3dMt5iO5Q4kIQAAAPAarAnxDCQhAAAA8BrcHcszsCYEAAAAgFsxEgIAAACvwY7pnoEkBAAAAF7j7MJ0V6ZjsSbEHZiOBQAAAMCtGAlBhZ1KscvyDyg2dmzkRmPdI7m1zfHUMGN834+hxrgkta171BhvHZVujM/bF2WMr3rOvHDtzr8GGeP+PuZvWlYfCzfGj+SU/i1PauGxUsuY5DtqGePNwn1LqW8+x3aXpBrjr0aar+He47WNcUlK+8F8jGuu/tkY/3l6iDHeJcocL0zLMca7Jx0wxtO/NF/j3Bx/Y1ySkqJPmAtkF/85Psd0Dj6Os9MWHA4p47C92DL0B/QHZ+vTH3h7f1CYm1fq67tHoYsTqliY7g4kIQAAAPAaZ6dTMR2rpiMJAQAAgNcgCfEMrAkBAAAA4FaMhAAAAMBrOOSQzZWREHZMdwuSEAAAAHgNpmN5BpIQAAAAeA3Lcu3uVq7WR9mwJgQAAACAWzESAgAAAK9hyZJcWNdhubjLCMqGJAQAAABew9U1HawJcQ+SEFRYZFKBwgKLn9EXmWfefThkk3lX1Sc2xBjjA+qW/i3Fd4fMx7jyMvPOtJftjzXG97xvbsOAuvnG+DfHzbvSbjph7gS/zz1sjEvSpozZxviAiEeM8X1nzG3cc9rcxksjzNfg+H7z7sUh4bnGeFO/Unb+lZRx2vwadZRtjDf4Z0tjvODRH4xx/64NjHG/feZdrEMigo1xBZl/R5JkXdLCXOCb74xhnxDDPxW/rP308Zei2hYUW4T+gP5Aoj+QvL8/8PGrGX+8k4R4BtaEAAAAAHArRkIAAADgNVzd54N9QtyDJAQAAABeg+lYnoEkBAAAAF6DJMQzsCYEAAAAgFsxEgIAAAAv4upIBiMh7sBICAAAALyGZTlcfpTHl19+qYEDByohIUE2m00ffvjh79pjacKECUpISFBQUJB69Oihbdu2FSmTm5ur0aNHKzo6WrVq1dKgQYN08OBBVy9FjUYSAgAAAFRQVlaW2rZtq+nTpxcbnzx5sl544QVNnz5d69evV1xcnHr37q3Tp087y4wZM0YLFizQvHnztGrVKmVmZmrAgAEqLCx012m4HdOxAAAA4DXcfYve/v37q3///sUfy7I0depUPfHEE7r++uslSXPnzlVsbKzeeecd3X333crIyNCsWbP05ptvqlevXpKkt956S4mJiVq6dKn69u3r0vnUVIyEAAAAwGtYluXidCxLknTq1Kkij9zc3HK3Ze/evUpNTVWfPn2cz9ntdnXv3l2rV6+WJG3cuFH5+flFyiQkJCgpKclZxhsxEoIKy0stVF5A8cOEQY/1NtbNvXO9MR4T5GuMDxle+jzJRe/UMcZ9w23G+JkC8/EfWBtmjC+462dj/P05jY3xaxMtcwMOJZjjkm5q9pQx3iTEfJJXN91njPc4HmKMLzkcbYz3aZ1jjN/7+kXGeFSg+XcoSTclZhjjfglB5gMcSzeGf0ivbYw33nfMGP/+f4HGePNLjxrjWzbEGOOSdCRnpzEe7OtvjF91T2jJQd+z32VZhVLeYfqDktAf0B9I3t8f+GaX/4/0qlEoqfT3Q8nOft4SExOLPPv0009rwoQJ5TpSamqqJCk2NrbI87Gxsfr555+dZQICAhQREXFemXP1vRFJCAAAAPA7Bw4cUFjYr18w2O32Ch/LZiuaFFmWdd5zv1eWMp6M6VgAAADwGpV1d6ywsLAij4okIXFxcZJ03ojG0aNHnaMjcXFxysvLU3p6eollvBFJCAAAALyIoxIelaNRo0aKi4vTkiVLnM/l5eVp5cqV6tKliySpffv28vf3L1ImJSVFW7dudZbxRkzHAgAAgPewHHJpTYhVyhqs38nMzNRPP/3k/Hnv3r3avHmzIiMjVb9+fY0ZM0YTJ05U06ZN1bRpU02cOFHBwcEaOnSoJCk8PFwjR47UQw89pKioKEVGRmr8+PFq3bq1825Z3ogkBAAAAKigDRs26KqrrnL+PG7cOEnS8OHDNWfOHD3yyCPKzs7Wfffdp/T0dHXs2FGLFy9WaOivi/ynTJkiPz8/DRkyRNnZ2erZs6fmzJkjX1/zjTk8GUkIAAAAvIal8o1kuFq/R48eztv6Fsdms2nChAnGO2sFBgZq2rRpmjZtWrle25ORhAAAAMCLuDgdy8UkBmVDEgIAAAAvYrmYR5CEuAN3xwIAAADgVoyEoNzOzXs8nZdfYpn809nGY2QW5BnjuQ7zzrmncsz1JelMoXnn1lO55mPkFJrbkG+5dvx8h7n+mULzNzF5jtK/Q8gpLGUX6MLid7g+53S++RxK+z1ml3INS7tGeaW8D3IdpQ+3ZxaU8nsq5b3kk2Vuw5lCc/1T2aVdQ/M5lHaNSjs/STpTyvvAsszvg1OGXZBDLUs2ne0XTuUV31b6A/oDif5A8v7+4Nz5mdZHuIfl8roQVD2bVf3vFHiYPXv26KKLLqruZgAAgBpo9+7daty4sdtfNycnR40aNTpvY8CKiIuL0969exUYGFgJLUNxSEJQbidPnlRERIT279+v8PDw6m5OtTh16pQSExN14MABhYWFVXdzqgXXgGsgcQ0kroHENZC4BpKUkZGh+vXrKz09XbVr166WNuTk5CivhFHZ8ggICCABqWJMx0K5+ficHfYPDw+/YDvac8LCwrgGXAOugbgGEtdA4hpIXAPp178TqkNgYCDJg4dgYToAAAAAtyIJAQAAAOBWJCEoN7vdrqefflp2u726m1JtuAZcA4lrIHENJK6BxDWQuAYS1wDlw8J0AAAAAG7FSAgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEGjGjBlq1KiRAgMD1b59e3311VfG8itXrlT79u0VGBioxo0b6+WXXz6vzAcffKCWLVvKbrerZcuWWrBgQVU1v1KU5xrMnz9fvXv3Vp06dRQWFqbOnTvr888/L1Jmzpw5stls5z1ycnKq+lQqrDzXYMWKFcWe3w8//FCknDe/D0aMGFHsNWjVqpWzjKe9D7788ksNHDhQCQkJstls+vDDD0ut4239QXmvgTf2B+W9Bt7YH5T3GnhbfzBp0iRddtllCg0NVUxMjK699lrt3Lmz1Hre1h+gapGEXODee+89jRkzRk888YQ2bdqkK664Qv3799f+/fuLLb93715dc801uuKKK7Rp0yY9/vjjeuCBB/TBBx84y3zzzTe6+eabNWzYMH333XcaNmyYhgwZorVr17rrtMqlvNfgyy+/VO/evfXZZ59p48aNuuqqqzRw4EBt2rSpSLmwsDClpKQUeQQGBrrjlMqtvNfgnJ07dxY5v6ZNmzpj3v4+ePHFF4uc+4EDBxQZGambbrqpSDlPeh9kZWWpbdu2mj59epnKe2N/UN5r4I39QXmvwTne1B+U9xp4W3+wcuVK3X///VqzZo2WLFmigoIC9enTR1lZWSXW8cb+AFXMwgXt8ssvt+65554izzVv3tx69NFHiy3/yCOPWM2bNy/y3N1332116tTJ+fOQIUOsfv36FSnTt29f649//GMltbpylfcaFKdly5bW3/72N+fPs2fPtsLDwyuriVWuvNdg+fLlliQrPT29xGNeaO+DBQsWWDabzdq3b5/zOU97H/yWJGvBggXGMt7YH/xWWa5BcTy9P/itslwDb+wPfqsi7wNv6w+OHj1qSbJWrlxZYhlv7w9Q+RgJuYDl5eVp48aN6tOnT5Hn+/Tpo9WrVxdb55tvvjmvfN++fbVhwwbl5+cby5R0zOpUkWvwew6HQ6dPn1ZkZGSR5zMzM9WgQQPVq1dPAwYMOO+b0ZrClWvQrl07xcfHq2fPnlq+fHmR2IX2Ppg1a5Z69eqlBg0aFHneU94HFeFt/UFl8PT+wBXe0h9UBm/rDzIyMiTpvPf1b9EfoLxIQi5gx44dU2FhoWJjY4s8Hxsbq9TU1GLrpKamFlu+oKBAx44dM5Yp6ZjVqSLX4Peef/55ZWVlaciQIc7nmjdvrjlz5mjhwoV69913FRgYqK5du2rXrl2V2v7KUJFrEB8fr1dffVUffPCB5s+fr2bNmqlnz5768ssvnWUupPdBSkqKFi1apDvuuKPI8570PqgIb+sPKoOn9wcV4W39gau8rT+wLEvjxo1Tt27dlJSUVGI5+gOUl191NwDVz2azFfnZsqzzniut/O+fL+8xq1tF2/vuu+9qwoQJ+uijjxQTE+N8vlOnTurUqZPz565du+rSSy/VtGnT9NJLL1VewytRea5Bs2bN1KxZM+fPnTt31oEDB/Tcc8/pyiuvrNAxa4KKtnfOnDmqXbu2rr322iLPe+L7oLy8sT+oKG/qD8rDW/uDivK2/mDUqFH6/vvvtWrVqlLL0h+gPBgJuYBFR0fL19f3vG8gjh49et43FefExcUVW97Pz09RUVHGMiUdszpV5Bqc895772nkyJH63//+p169ehnL+vj46LLLLquR33i5cg1+q1OnTkXO70J5H1iWpddff13Dhg1TQECAsWxNfh9UhLf1B67wlv6gsnhyf+AKb+sPRo8erYULF2r58uWqV6+esSz9AcqLJOQCFhAQoPbt22vJkiVFnl+yZIm6dOlSbJ3OnTufV37x4sXq0KGD/P39jWVKOmZ1qsg1kM5+4zlixAi98847+sMf/lDq61iWpc2bNys+Pt7lNle2il6D39u0aVOR87sQ3gfS2bvI/PTTTxo5cmSpr1OT3wcV4W39QUV5U39QWTy5P3CFt/QHlmVp1KhRmj9/vpYtW6ZGjRqVWof+AOXm3nXwqGnmzZtn+fv7W7NmzbK2b99ujRkzxqpVq5bzjh6PPvqoNWzYMGf5PXv2WMHBwdbYsWOt7du3W7NmzbL8/f2t999/31nm66+/tnx9fa1//etf1o4dO6x//etflp+fn7VmzRq3n19ZlPcavPPOO5afn5/1n//8x0pJSXE+Tp486SwzYcIEKzk52dq9e7e1adMm689//rPl5+dnrV271u3nVxblvQZTpkyxFixYYP3444/W1q1brUcffdSSZH3wwQfOMt7+Pjjn1ltvtTp27FjsMT3tfXD69Glr06ZN1qZNmyxJ1gsvvGBt2rTJ+vnnny3LujD6g/JeA2/sD8p7DbyxPyjvNTjHW/qDe++91woPD7dWrFhR5H195swZZ5kLoT9A1SIJgfWf//zHatCggRUQEGBdeumlRW7BN3z4cKt79+5Fyq9YscJq166dFRAQYDVs2NCaOXPmecf8v//7P6tZs2aWv7+/1bx58yL/GNVE5bkG3bt3tySd9xg+fLizzJgxY6z69etbAQEBVp06daw+ffpYq1evduMZlV95rsGzzz5rXXTRRVZgYKAVERFhdevWzfr000/PO6Y3vw8sy7JOnjxpBQUFWa+++mqxx/O098G5W62W9N6+EPqD8l4Db+wPynsNvLE/qMhnwZv6g+LOXZI1e/ZsZ5kLoT9A1bJZ1i+rhgAAAADADVgTAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAEARK1askM1m08mTJ6u7KQAAL0USAgAXoBEjRshms8lms8nf31+NGzfW+PHjlZWVVd1NAwBcAPyquwEAgOrRr18/zZ49W/n5+frqq690xx13KCsrSzfffHN1Nw0A4OUYCQGAC5TdbldcXJwSExM1dOhQ3XLLLfrwww+d8Y0bN6pDhw4KDg5Wly5dtHPnTmds9+7dGjx4sGJjYxUSEqLLLrtMS5cuLXL8GTNmqGnTpgoMDFRsbKxuvPFGZ8yyLE2ePFmNGzdWUFCQ2rZtq/fff7/KzxkAUDOQhAAAJElBQUHKz893/vzEE0/o+eef14YNG+Tn56fbb7/dGcvMzNQ111yjpUuXatOmTerbt68GDhyo/fv3S5I2bNigBx54QM8884x27typ5ORkXXnllc76Tz75pGbPnq2ZM2dq27ZtGjt2rG699VatXLnSfScMAKg2NsuyrOpuBADAvUaMGKGTJ086Rz7WrVuna665Rj179tS9996rq666SkuXLlXPnj0lSZ999pn+8Ic/KDs7W4GBgcUes1WrVrr33ns1atQozZ8/X3/+85918OBBhYaGFimXlZWl6OhoLVu2TJ07d3Y+f8cdd+jMmTN65513quakAQA1BmtCAOAC9cknnygkJEQFBQXKz8/X4MGDNW3aNG3fvl2S1KZNG2fZ+Ph4SdLRo0dVv359ZWVl6W9/+5s++eQTHT58WAUFBcrOznaOhPTu3VsNGjRQ48aN1a9fP/Xr10/XXXedgoODtX37duXk5Kh3795F2pOXl6d27dq56ewBANWJJAQALlBXXXWVZs6cKX9/fyUkJMjf31+SnEnIuZ8lyWazSZIcDock6eGHH9bnn3+u5557Tk2aNFFQUJBuvPFG5eXlSZJCQ0P17bffasWKFVq8eLH++te/asKECVq/fr3zGJ9++qnq1q1bpE12u71qTxoAUCOQhADABapWrVpq0qRJhep+9dVXGjFihK677jpJZ9eI7Nu3r0gZPz8/9erVS7169dLTTz+t2rVra9myZerdu7fsdrv279+v7t27u3oaAAAPRBICACi3Jk2aaP78+Ro4cKBsNpueeuop5wiHdHaq1549e3TllVcqIiJCn332mRwOh5o1a6bQ0FCNHz9eY8eOlcPhULdu3XTq1CmtXr1aISEhGj58eDWeGQDAHUhCAADlNmXKFN1+++3q0qWLoqOj9Ze//EWnTp1yxmvXrq358+drwoQJysnJUdOmTfXuu++qVatWkqS///3viomJ0aRJk7Rnzx7Vrl1bl156qR5//PHqOiUAgBtxdywAAAAAbsU+IQAAAADciulYKBfLspSfn6/CwkL5+vrK39/fedccAAAAoCxIQlAm+fn5OnLkiA4dOqTs7Gzn80FBQapbt65iY2OL3M4TAAAAKMkFtSZkwoQJ+vDDD7V58+bqbkq16dGjhy655BJNnTq1zHVOnDihbdu2yeFwKDo6WnXq1JGfn58KCgqUlpamY8eOycfHR61atVJkZGTVNR4AAABeocavCRkxYoRsNptsNpv8/f0VGxur3r176/XXXy9yO8iKHvvaa6+tnIZ6qRMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDAIAqNGPGDDVq1EiBgYFq3769vvrqq+puEjyQR0zH6tevn2bPnq3CwkIdOXJEycnJevDBB/X+++9r4cKF8vPziNPwOPn5+dq2bZsiIiKUlJQkH5/ic1a73a6kpCRt3bpVW7ZsUURERIllAQBAzZGUlFSu8u+9957GjBmjGTNmqGvXrnrllVfUv39/bd++XfXr16+iVsIbecRfina7XXFxcapbt67zPvIfffSRFi1apDlz5jjLZWRk6K677lJMTIzCwsJ09dVX67vvviv2mBMmTNDcuXP10UcfOUdaVqxYIUn6y1/+oosvvljBwcFq3LixnnrqKeXn55fYvn379slms2nevHnq0qWLAgMD1apVK+fxztm+fbuuueYahYSEKDY2VsOGDdOxY8ec8R49emjUqFEaNWqUateuraioKD355JP67Yy59PR03XbbbYqIiFBwcLD69++vXbt2FXmdr7/+Wt27d1dwcLAiIiLUt29fpaenO+MOh0OPPPKIIiMjFRcXpwkTJhR7XkeOHHFuLlZaUuHj46NmzZrJsizl5uYaywIAAM/0wgsvaOTIkbrjjjvUokULTZ06VYmJiZo5c2Z1Nw0exiOSkOJcffXVatu2rebPny/p7F2b/vCHPyg1NVWfffaZNm7cqEsvvVQ9e/YsdorQ+PHjNWTIEPXr108pKSlKSUlRly5dJEmhoaGaM2eOtm/frhdffFGvvfaapkyZUmqbHn74YT300EPatGmTunTpokGDBun48eOSpJSUFHXv3l2XXHKJNmzYoOTkZB05ckRDhgwpcoy5c+fKz89Pa9eu1UsvvaQpU6bov//9rzM+YsQIbdiwQQsXLtQ333wjy7J0zTXXOJOkzZs3q2fPnmrVqpW++eYbrVq1SgMHDlRhYWGR16hVq5bWrl2ryZMn65lnntGSJUuKtMOyLB06dEjR0dGy2+1l+ZXIbrerTp06ysnJ0QW01AgAgAtCXl6eNm7cqD59+hR5vk+fPlq9enU1tQqeyqPnMTVv3lzff/+9JGn58uXasmWLjh496vyj+bnnntOHH36o999/X3fddVeRuiEhIQoKClJubq7i4uKKxJ588knn/zds2FAPPfSQ3nvvPT3yyCPG9owaNUo33HCDJGnmzJlKTk7WrFmz9Mgjj2jmzJm69NJLNXHiRGf5119/XYmJifrxxx918cUXS5ISExM1ZcoU2Ww2NWvWTFu2bNGUKVN05513ateuXVq4cKG+/vprZ8L09ttvKzExUR9++KFuuukmTZ48WR06dNCMGTOcr3Nuh+Jz2rRpo6efflqS1LRpU02fPl1ffPGFevfu7SyTn5+v7OxsNWrUyHjOv1enTh2lpaXJsixu3QsAgBc5duyYCgsLFRsbW+T52NhYpaamVlOr4Kk8Ogn57R+6GzduVGZmpqKiooqUyc7O1u7du8t13Pfff19Tp07VTz/9pMzMTBUUFCgsLKzUep07d3b+v5+fnzp06KAdO3Y427d8+XKFhIScV2/37t3OJKRTp05F/njv3Lmznn/+eRUWFmrHjh3y8/NTx44dnfGoqCg1a9bM+TqbN2/WTTfdZGxnmzZtivwcHx+vo0ePFnnu3MhJedfbnCvPSAgAAN7p918y8sUjKsKjk5AdO3Y4v6l3OByKj48/bx2GJNWuXbvMx1yzZo3++Mc/6m9/+5v69u2r8PBwzZs3T88//3yF2njuQ+lwODRw4EA9++yz55WJj48v07FK+sP+tx/+oKCgUo/z+/08bDbbeXca8/X1lSQVFBSUqW3nnCtPZwQAgHeJjo6Wr6/veaMeR48ePW90BCiNx64JWbZsmbZs2eKc/nTppZcqNTVVfn5+atKkSZFHdHR0sccICAgoslZCOruou0GDBnriiSfUoUMHNW3aVD///HOZ2rRmzRrn/xcUFGjjxo1q3ry5s33btm1Tw4YNz2tfrVq1ij3GuZ+bNm0qX19ftWzZUgUFBVq7dq0zfvz4cf34449q0aKFpLOjHF988UWZ2mvi7++voKAgpaWllateWlqafH19SUIAAPAyAQEBat++/XnrSJcsWeKcJg6UlUckIbm5uUpNTdWhQ4f07bffauLEiRo8eLAGDBig2267TZLUq1cvde7cWddee60+//xz7du3T6tXr9aTTz6pDRs2FHvchg0b6vvvv9fOnTt17Ngx5efnq0mTJtq/f7/mzZun3bt366WXXtKCBQvK1M7//Oc/WrBggX744Qfdf//9Sk9P1+233y5Juv/++3XixAn96U9/0rp167Rnzx4tXrxYt99+e5FE6MCBAxo3bpx27typd999V9OmTdODDz4o6ez6jcGDB+vOO+/UqlWr9N133+nWW29V3bp1NXjwYEnSY489pvXr1+u+++7T999/rx9++EEzZ84scheusrDZbKpbt66OHTtW5rtd5ebmKi0tTYGBgSQhAAB4oXHjxum///2vXn/9de3YsUNjx47V/v37dc8991R30+BhPCIJSU5OVnx8vBo2bKh+/fpp+fLleumll/TRRx85pw3ZbDZ99tlnuvLKK3X77bfr4osv1h//+Eft27evxCHCO++8U82aNVOHDh1Up04dff311xo8eLDGjh2rUaNG6ZJLLtHq1av11FNPlamd//rXv/Tss8+qbdu2+uqrr/TRRx85R2ESEhL09ddfq7CwUH379lVSUpIefPBBhYeHF7n97W233abs7Gxdfvnluv/++zV69Ogii+pnz56t9u3ba8CAAercubMsy9Jnn33mnGJ18cUXa/Hixfruu+90+eWXq3Pnzvroo48qtJdKbGysfHx8tHPnzlI3hnQ4HNq5c6dsNluZ76YFAAA8y80336ypU6fqmWee0SWXXKIvv/xSn332mRo0aFDdTYOHsVmsIHbZvn371KhRI23atEmXXHJJhY/To0cPXXLJJZo6dWqltc1V53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgAAwFN49MJ0VL3IyEi1bt1a27Zt05o1axQdHa06derIz89PBQUFSktL07Fjx+Tj40MCAgAAgDIhCUGpIiMj1alTJx05ckSHDh0qslg9KChIF110keLi4io05QsAAAAXHqZjoVwsy1JBQYEKCgrk5+cnPz8/FqEDAACgXEhCAAAAALiVR9wdCwAAAID3IAkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3AwAANYtlWcrPz1dhYaF8fX3l7+8vm81W3c0CAHgRkhAAgCQpPz9fR44c0aFDh5Sdne18PigoSHXr1lVsbKz8/f2rsYUAAG9hsyzLqu5GAACq14kTJ7Rt2zY5HA5FR0erTp068vPzU0FBgdLS0nTs2DH5+PioVatWioyMrO7mAgA8XLWuCenRo4fGjBlT6ce1LEt33XWXIiMjZbPZtHnzZre+PgB4khMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDqEYzZsxQo0aNFBgYqPbt2+urr76qlDqllamMY6DmKPd0rBEjRmju3LlnK/v5KTIyUm3atNGf/vQnjRgxQj4+Fc9revTooUsuuURTp06t8DEkKTk5WXPmzNGKFSvUuHFjRUdHu3S8ym7fl19+qX//+9/auHGjUlJStGDBAl177bXnlZsxY4b+/e9/KyUlRa1atdLUqVN1xRVXnFeuffv2ys3NPe/5xYsXKyEhochzhw4d0l/+8hctWrRI2dnZuvjiizVr1iy1b9++XOfQ8NFPy1UeQM0U7CdNuaqWYqMjlZSUVGIfbrfblZSUpK1bt2rLli2KiIhwqb8HUDMkJSWVq/x7772nMWPGaMaMGeratateeeUV9e/fX9u3b1f9+vUrXKe0MpVxDNQsFfoXpF+/fkpJSdG+ffu0aNEiXXXVVXrwwQc1YMAAFRQUVHYby2337t2Kj49Xly5dFBcXJz+/mrX0JSsrS23bttX06dNLLHPug/TEE09o06ZNuuKKK9S/f3/t37//vLIbN27U1q1bz3v8PgFJT09X165d5e/vr0WLFmn79u16/vnnVbt27co+RQAeomtdPwX4Si2aNys1qfDx8VGzZs1kWVaxX3wA8H4vvPCCRo4cqTvuuEMtWrTQ1KlTlZiYqJkzZ7pUp7QylXEM1CwVSkLsdrvi4uJUt25dXXrppXr88cf10UcfadGiRZozZ46ks1OiJk+erMaNGysoKEht27bV+++/X+IxR4wYoZUrV+rFF1+UzWaTzWbTvn37lJycrG7duql27dqKiorSgAEDtHv3buNxRo8erf3798tms6lhw4aSzv7hf9tttykkJETx8fF6/vnnz6ubm5urBx54QDExMQoMDFS3bt20fv16Y/t+Ly0tTXFxcZo4caLzubVr1yogIECLFy+WJPXv31//+Mc/dP3115d4HlXxQXr22WeVmJio2bNn6/LLL1fDhg3Vs2dPXXTRRRU+JgDP1rtBgOpE15Hdbi9Tebvdrjp16ignJ0csKQQuLHl5edq4caP69OlT5Pk+ffpo9erVFa5TWpnKOAZqnkobS7/66qvVtm1bzZ8/X5L05JNPavbs2Zo5c6a2bdumsWPH6tZbb9XKlSuLrf/iiy+qc+fOuvPOO5WSkqKUlBQlJiYqKytL48aN0/r16/XFF1/Ix8dH1113nRwOR4nHeeaZZ1SvXj2lpKQ4k4iHH35Yy5cv14IFC7R48WKtWLFCGzduLFL3kUce0QcffKC5c+fq22+/VZMmTdS3b1+dOHGixPb9Xp06dfT6669rwoQJ2rBhgzIzM3XrrbfqvvvuO++DUZKq+iAtXLhQHTp00E033aSYmBi1a9dOr732WoWPB8CzhfhLMcE2xcTUKVe9OnXqqLCwkCQEuMAcO3ZMhYWFio2NLfJ8bGysUlNTK1yntDKVcQzUPJU6T6l58+b6/vvvlZWVpRdeeEHLli1T586dJUmNGzfWqlWr9Morr6h79+7n1Q0PD1dAQICCg4MVFxfnfP6GG24oUm7WrFmKiYnR9u3bi53HGB4ertDQUPn6+jqPk5mZqVmzZumNN95Q7969JUlz585VvXr1nPWysrI0c+ZMzZkzR/3795ckvfbaa1qyZIlmzZqlhx9+uNj2Feeaa67RnXfeqVtuuUWXXXaZAgMD9a9//assl1BS1X2Q9uzZo5kzZ2rcuHF6/PHHtW7dOj3wwAOy2+267bbbKnxcAJ4p0O/s3h/lnbJ6rjxJCHBh+v2+QZZllbqXUFnqlFamMo6BmqNSk5Bzv+jt27crJyfH+Qf/OXl5eWrXrl25jrl792499dRTWrNmjY4dO+YcAdm/f3+ZF1Pt3r1beXl5zoRIkiIjI9WsWbMiZfLz89W1a1fnc/7+/rr88su1Y8eOcrVZkp577jklJSXpf//7nzZs2KDAwMByH6OyP0gOh0MdOnRwThVr166dtm3bppkzZ5KEABegnIKzSUR51/KdK88/7MCFJTo6Wr6+vud9IXr06NHzvjgtT53SylTGMVDzVOqtTXbs2KFGjRo5E4VPP/1Umzdvdj62b99uXBdSnIEDB+r48eN67bXXtHbtWq1du1bS2YSmrMrybd25MpX1h/+ePXt0+PBhORwO/fzzz+WqW1UfpPj4eLVs2bLIcy1atCh2sTsA75eZLx09Y+no0bRy1UtLS5Ovry9JCHCBCQgIUPv27bVkyZIizy9ZskRdunSpcJ3SylTGMVDzVFoSsmzZMm3ZskU33HCDWrZsKbvdrv3796tJkyZFHsWtozgnICBAhYWFzp+PHz+uHTt26Mknn1TPnj3VokULpaenl7ttTZo0kb+/v9asWeN8Lj09XT/++GORMgEBAVq1apXzufz8fG3YsEEtWrQotn0lycvL0y233KKbb75Z//jHPzRy5EgdOXKkzO2tqg9S165dtXPnziLP/fjjj2rQoEGFjwnAsy35OU9px9LKfLer3NxcpaWlKTAwkCQEuACNGzdO//3vf/X6669rx44dGjt2rPbv36977rlHkjR9+nT17NmzXHXKUqYyjoGapULTsXJzc5WamqrCwkIdOXJEycnJmjRpkgYMGKDbbrtNvr6+Gj9+vMaOHSuHw6Fu3brp1KlTWr16tUJCQjR8+PBij9uwYUOtXbtW+/btU0hIiCIjIxUVFaVXX31V8fHx2r9/vx599NFytzckJEQjR47Uww8/rKioKMXGxuqJJ54ocjvKWrVq6d5779XDDz+syMhI1a9fX5MnT9aZM2c0cuTIEttX3C0tn3jiCWVkZOill15SSEiIFi1apJEjR+qTTz6RdHaNyk8//eQsv3fvXm3evNn5utLZD9KwYcPUoUMHde7cWa+++qrLH6SxY8eqS5cumjhxooYMGaJ169bp1Vdf1auvvlrhYwLwbF8fKtCNF9u144edatO65H1CpLNTOnfu3CmbzVbmu2kB8C4333yzjh8/rmeeeUYpKSlKSkrSZ5995vxC89ixY+fdxbS0OmUpUxnHQA1jldPw4cMtSZYky8/Pz6pTp47Vq1cv6/XXX7cKCwud5RwOh/Xiiy9azZo1s/z9/a06depYffv2tVauXOks0717d+vBBx90/rxz506rU6dOVlBQkCXJ2rt3r7VkyRKrRYsWlt1ut9q0aWOtWLHCkmQtWLCgxDZOmTLFatCgQZHnTp8+bd16661WcHCwFRsba02ePPm818/OzrZGjx5tRUdHW3a73eratau1bt06Y/t+b/ny5Zafn5/11VdfOZ/7+eefrfDwcGvGjBnOMueu4W8fw4cPL3Ks//znP1aDBg2sgIAA69JLLy1y7Srq448/tpKSkiy73W41b97cevXVV10+JgDPdvz4cWvFihXWd999Z+Xk5BRbJicnx/ruu++sFStWWMePH3dzCwEA3sZmWdzeBAAudCdOnNC2bdvkcDgUHR2tOnXqyM/PTwUFBUpLS9OxY8fk4+OjVq1aKTIysrqbCwDwcCQhAABJZ9fBHTlyRIcOHVJ2drbz+aCgINWtW1dxcXHlvp0vAADFIQkBABRhWZYKCgpUUFAgPz8/+fn5sQgdAFCpSEIAAAAAuFWl7hMCAAAAAKUhCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFv5VXcDAAA1i2VZys/PV2FhoXx9feXv7y+bzVbdzQIAeBGSEACAJCk/P19HjhzRoUOHlJ2d7Xw+KChIdevWVWxsrPz9/auxhQAAb1Gt07F69OihMWPGVPpxLcvSXXfdpcjISNlsNm3evLnSXwMAvMmJEye0Zs0a7d69WyEhIWrZsqXatGmjli1bKiQkRLt379aaNWt04sSJ6m4qAMALlDsJGTFihGw2m2w2m/z9/RUbG6vevXvr9ddfl8PhcKkxlZWUJCcna86cOfrkk0+UkpKipKQkl49Z2b788ksNHDhQCQkJstls+vDDD88rM2PGDDVq1EiBgYFq3769vvrqq2KP1b59eyUlJZ33OHz48HllZ86cqTZt2igsLExhYWHq3LmzFi1aVNmnB8CDnDhxQlu2bFF4eLg6deqkVq1aKSYmRpGRkYqJiVGrVq3UqVMnhYeHa8uWLSQiwAWurH+flLdOaWUq4xioOSo0Hatfv36aPXu2CgsLdeTIESUnJ+vBBx/U+++/r4ULF8rPr3pnee3evVvx8fHq0qVLiWXy8vIUEBDgxlYVlZWVpbZt2+rPf/6zbrjhhvPi7733nsaMGaMZM2aoa9eueuWVV9S/f39t375d9evXL1J248aNZX7devXq6V//+peaNGkiSZo7d64GDx6sTZs2qVWrVmU+TsNHPy1zWQA1V7CfNOWqWoqNjlRSUpJ8fIr/bsputyspKUlbt27Vli1bFBERUWJZAJ6jvF/Ulufvk/LUKa1MZRwDNUuF/gWx2+2Ki4tT3bp1demll+rxxx/XRx99pEWLFmnOnDmSzk6Jmjx5sho3bqygoCC1bdtW77//fonHHDFihFauXKkXX3zROdKyb98+JScnq1u3bqpdu7aioqI0YMAA7d6923ic0aNHa//+/bLZbGrYsKGks6Mso0aN0rhx4xQdHa3evXuXqZ1ZWVm67bbbFBISovj4eD3//PPGEZu0tDTFxcVp4sSJzufWrl2rgIAALV682Plc//799Y9//EPXX399scd54YUXNHLkSN1xxx1q0aKFpk6dqsTERM2cObPEcy+LgQMH6pprrtHFF1+siy++WP/85z8VEhKiNWvWuHRcAJ6pa10/BfhKLZo3KzWp8PHxUbNmzWRZlnJzc93UQgA1SUX+PilLndLKVMYxULNU2tdYV199tdq2bav58+dLkp588knNnj1bM2fO1LZt2zR27FjdeuutWrlyZbH1X3zxRXXu3Fl33nmnUlJSlJKSosTERGVlZWncuHFav369vvjiC/n4+Oi6664rcerXiy++qGeeeUb16tVTSkqK1q9f74zNnTtXfn5++vrrr/XKK6+UqZ0PP/ywli9frgULFmjx4sVasWKFceShTp06ev311zVhwgRt2LBBmZmZuvXWW3XfffepT58+ZbqWeXl52rhx43nl+/Tpo9WrV5fpGGVRWFioefPmKSsrS507d6604wLwHL0bBKhOdB3Z7fYylbfb7apTp45ycnJkWVYVtw5ATVKRv0/KUqe0MpVxDNQ8lTpvqnnz5vr++++VlZWlF154QcuWLXP+cdu4cWOtWrVKr7zyirp3735e3fDwcAUEBCg4OFhxcXHO538/VWnWrFmKiYnR9u3bix1CDA8PV2hoqHx9fYscR5KaNGmiyZMnO38urZ3t27fXrFmz9MYbbzhHTubOnat69eoZr8M111yjO++8U7fccosuu+wyBQYG6l//+pexzm8dO3ZMhYWFio2NLfJ8bGysUlNTy3yckmzZskWdO3dWTk6OQkJCtGDBArVs2dLl4wLwLCH+UkywTTExdcpVr06dOkpLS5NlWdy6F7iAVOTvk7LUKa1MZRwDNU+lJiHn/kHavn27cnJynH+4n5OXl6d27dqV65i7d+/WU089pTVr1ujYsWPOEZD9+/eXex5jhw4divxcWjt3796tvLy8IqMEkZGRatasWamv9dxzzykpKUn/+9//tGHDBgUGBparrZLO+8e9sv7Bb9asmTZv3qyTJ0/qgw8+0PDhw7Vy5UoSEeACE+h3tj8p7zq+c+UZCQEuTBX5+6QsdUorUxnHQM1RqUnIjh071KhRI2ei8Omnn6pu3bpFypR1yP+cgQMHKjExUa+99poSEhLkcDiUlJSkvLy8crevVq1aRX4urZ3Hjx8v92ucs2fPHh0+fFgOh0M///yz2rRpU+a60dHR8vX1PS9zP3r06HkZfkUEBAQ4F6Z36NBB69ev14svvuicogbgwpBTcDaJKCgoKFe9c+X5hx24sFTk75Oy1CmtTGUcAzVPpa0JWbZsmbZs2aIbbrhBLVu2lN1u1/79+9WkSZMij8TExBKPERAQoMLCQufPx48f144dO/Tkk0+qZ8+eatGihdLT0yuryaW2s0mTJvL39y+yaDs9PV0//vij8bh5eXm65ZZbdPPNN+sf//iHRo4cqSNHjpS5XQEBAWrfvr2WLFlS5PklS5YY7/hVUSwyBS5MmfnS0TOWjh5NK1e9tLQ0+fr6koQAF5iK/H1SljqllamMY6DmqdBISG5urlJTU4vconfSpEkaMGCAbrvtNvn6+mr8+PEaO3asHA6HunXrplOnTmn16tUKCQnR8OHDiz1uw4YNtXbtWu3bt08hISGKjIxUVFSUXn31VcXHx2v//v169NFHXTrh3woNDS21nSNHjtTDDz+sqKgoxcbG6oknnij1DjJPPPGEMjIy9NJLLykkJESLFi3SyJEj9cknnzjLZGZm6qeffnL+vHfvXm3evFmRkZGqX7++xo0bp2HDhqlDhw7q3LmzXn31Ve3fv1/33HOPS+f8+OOPq3///kpMTNTp06c1b948rVixQsnJyS4dF4BnWvJznuoEpyk3N7dMI9W5ublKS0tTrVq1SEKAC1Bpf59Mnz5dCxYs0BdffFHmOmUpUxnHQM1SoSQkOTlZ8fHx8vPzU0REhNq2bauXXnpJw4cPd/6B/ve//10xMTGaNGmS9uzZo9q1aztv51uS8ePHa/jw4WrZsqWys7O1d+9ezZs3Tw888ICSkpLUrFkzvfTSS+rRo0eFTrY4pbXz3//+tzIzMzVo0CCFhobqoYceUkZGRonHW7FihaZOnarly5crLCxMkvTmm2+qTZs2mjlzpu69915J0oYNG3TVVVc5640bN06SNHz4cM2ZM0c333yzjh8/rmeeeca54eJnn32mBg0auHS+R44c0bBhw5SSkqLw8HC1adNGycnJ562LAXBh+PpQgW682K4dP+xUm9Yl7xMinZ3CunPnTtlstnJPrQXgHUr7++TYsWPnbaVQlr9pSitTGcdAzWKzWFlYbj169NAll1yiqVOnVndTAMBl53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgC8RfVubQ4AqHaRkZFq3bq1tm3bpjVr1ig6Olp16tSRn5+fCgoKlJaWpmPHjsnHx4cEBABQKUhCAACKjIxUp06ddOTIER06dEhpab8uVg8KCtJFF12kuLi4ct/OFwCA4jAdCwBQhGVZKigoUEFBgfz8/OTn58cidABApSIJAQAAAOBWlbZPCAAAAACUBUkIAAAAALciCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCu/6m4AAAAAUFEOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JQ83kESAgAAAI91+PBhJSYmVncz8DsHDhxQvXr1SoyThAAAAMBjhYaGSpL27l2i0NBa1dwanD6dpUaNejt/LyUhCQEAAIDHOjcFKzS0lsLCQqq5NTintKlxLEwHAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAwAUjRz6pgIA2Cghoo6Cgdrrooj4aNervSk8/5ZbXf+aZGerQ4Sa3vFZl4e5YAAAAgIv69u2q1177uwoKCrRjxx7ddddfdfLkab311uTqblqNxEgIAAAA4KKAgADFxUWrXr049e7dRTfd1E9Ll37jjM+d+6Fatx6s0NAOSkoapJdfnueM5eXl68EHJ6p+/asVGtpBTZv207PP/tcZz8g4rXvv/Zvq1u2uqKjO6tNnpL77bqck6Y03PtI//vGyvv9+p3M05o03PnLfiVcQIyEAAABAJdqz56A+//xr+fuf/VN71qz39cwzMzV16mO65JLm2rz5B917798UHByk224brOnT39Ynn6zQO+/8W4mJ8Tp4MFUHDqRKkizL0uDBoxQREaaFC2coLCxE//3v/6lfvzu1bdvHuummvtq2bZc+//xrJSe/JkkKD6/5+6WQhAAAAAAu+uyzLxUR0VGFhQ7l5ORKkv7974clSRMnvqpnn31I113XS5LUqFE97dixR//97/u67bbBOnAgVU2a1FfXrpfKZrOpQYME53FXrFinrVt36dChFbLbAyRJzz47XgsXLtf8+Ut0xx03qlatYPn5+SkuLtrNZ11xJCEAAACAi3r0uEzTpj2pM2dyNHv2fO3atU/33/8npaWd0IEDqbr77gm6996/OcsXFBQ6Ryxuu22Q+ve/W61aDVLfvl11zTVXqnfvLpKkb7/drszMM4qLu6LI62Vn52r37gPuO8FKRhICAAAAuCg4OEhNmtSXJE2Z8qh69x6pv//9Zd13358kSTNnPq3LL29dpI6v79nl2e3atdSPPy5ScvIqLVu2RkOHPqyrr+6o9957QQ6Hpfj4aC1Z8vp5r1m7dmgVn1XVIQkBAAAAKtmTT96jgQPv0913D1HdujHau/eghg79Q4nlw8JCNGRIPw0Z0k/XX99bAwbcqxMnMtSuXQulph6Xn5+vGjasW2zdgAB/FRYWVtWpVAmSEAAAAKCSde9+mVq2vEjPPvtfPfXUvRo79lmFhdVS377dlJubp2+/3a709FMaM+Y2vfjim4qLi1bbts3l42PTBx8sVlxctGrXDlXPnp3UqVMb3XjjGE2cOEYXX9xQKSlpWrToKw0efLXat2+lBg0StG/fIW3e/IPq1YtVaGgt5/qRmopb9AIAAABV4MEHh2nWrA/Uu3dXvfzy03rjjYW69NIb1KvX7XrjjY+cIxshIUF67rnZ6tz5j+rSZah+/vmwPvroP/Lx8ZHNZtPChTN0xRXtddddT6tVq4G69dZH9PPPhxUTEyVJuv763urTp6v69BmphITueu+9RdV52mVisyzLqu5GAAAAABVx6tQphYeH69ix1QoLq/m3pvV2p05lKjq6izIyMhQWFlZiOUZCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbsU8IAAAAPNa5G72ePp1VzS2B9OvvobQb8JKEAAAAwGOdPn1aktSoUe9qbgl+6/Tp0woPDy8xzj4hAAAA8FgOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JS88oMkBAAAAIBbsTAdAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEAAAAABuRRICAAAAwK3+H9wGuSBGjivaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interactive_phaseogram(phaseogr, phases, times, df=0, dfdot=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Second: overplot a line with a pulse frequency solution, then update the full phaseogram\n", + "\n", + "This interactive phaseogram is implemented in `HENDRICS`, in the script `HENphaseogram`" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "class InteractivePhaseogram(object):\n", + " def __init__(self, ev_times, freq, nph=128, nt=128, fdot=0, fddot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " self.df=0\n", + " self.dfdot=0\n", + " \n", + " self.freq = freq\n", + " self.fdot = fdot\n", + " self.nt = nt\n", + " self.nph = nph\n", + " self.ev_times = ev_times\n", + "\n", + " self.phaseogr, phases, times, additional_info = \\\n", + " phaseogram(ev_times, freq, return_plot=True, nph=nph, nt=nt, \n", + " fdot=fdot, fddot=fddot, plot=False)\n", + " self.phases, self.times = phases, times\n", + " self.fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(times))\n", + " tobs = tseg * nt\n", + " delta_df_start = 2 / tobs\n", + " self.df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** self.df_order_of_mag\n", + "\n", + " delta_dfdot_start = 2 / tobs ** 2\n", + " self.dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** self.dfdot_order_of_mag\n", + "\n", + " self.pcolor = plt.pcolormesh(phases, times, self.phaseogr.T, cmap='magma')\n", + " self.l1, = plt.plot(np.zeros_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + " self.l2, = plt.plot(np.ones_like(times), times, zorder=10, lw=2, color='w')\n", + " self.l3, = plt.plot(np.ones_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + "\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Time')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " self.axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " self.axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " self.axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " self.sfreq = Slider(self.axfreq, 'Delta freq x$10^{}$'.format(self.df_order_of_mag), \n", + " -delta_df, delta_df, valinit=self.df)\n", + " self.sfdot = Slider(self.axfdot, 'Delta fdot x$10^{}$'.format(self.dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=self.dfdot)\n", + " self.spepoch = Slider(self.axpepoch, 'Delta pepoch', \n", + " 0, times[-1] - times[0], valinit=0)\n", + "\n", + " self.sfreq.on_changed(self.update)\n", + " self.sfdot.on_changed(self.update)\n", + " self.spepoch.on_changed(self.update)\n", + "\n", + " self.resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " self.button = Button(self.resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.recalcax = plt.axes([0.6, 0.020, 0.1, 0.04])\n", + " self.button_recalc = Button(self.recalcax, 'Recalculate', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.button.on_clicked(self.reset)\n", + " self.button_recalc.on_clicked(self.recalculate)\n", + "\n", + " plt.show()\n", + "\n", + " def update(self, val):\n", + " fdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " freq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " self.l1.set_xdata(0.5 + delay_fun(self.times - self.times[0]))\n", + " self.l2.set_xdata(1 + delay_fun(self.times - self.times[0]))\n", + " self.l3.set_xdata(1.5 + delay_fun(self.times - self.times[0]))\n", + "\n", + " self.fig.canvas.draw_idle()\n", + "\n", + " def recalculate(self, event):\n", + " dfdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " dfreq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + "\n", + " self.fdot = self.fdot - dfdot\n", + " self.freq = self.freq - dfreq\n", + "\n", + " self.phaseogr, _, _, _ = \\\n", + " phaseogram(self.ev_times, self.freq, fdot=self.fdot, plot=False, \n", + " nph=self.nph, nt=self.nt, pepoch=pepoch)\n", + " \n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + "\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " \n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + "\n", + " self.fig.canvas.draw()\n", + "\n", + " def reset(self, event):\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + " \n", + " def get_values(self):\n", + " return self.freq, self.fdot" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIiCAYAAADfDcfpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvoElEQVR4nOzdeXyU1d3//9eQbZKQTBbIJiEEiQEEEVEhaAVUNuuCeheplkrr7VK3UvV2vaux3xbU+1Zppbfbz4rWhdqqWKuCWCFqWaWAiBhRwiZZWLKQkMl6/f74XDM4ggsEApm8nz7mMcx1neuczznXmcucuZbjcRzHQUREREREpJ10OdIBiIiIiIhI56JBiIiIiIiItCsNQkREREREpF1pECIiIiIiIu1KgxAREREREWlXGoSIiIiIiEi70iBERERERETalQYhIiIiIiLSrjQIERERERGRdqVBiIiIiIiItCsNQo4Sjz76KCeccAKJiYkkJiZSUFDAW2+9FVzvOA6FhYVkZWURGxvLyJEjWbt2bUgeDQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqvaoooiIiIgIoEHIUaNHjx7cd999fPjhh3z44YeceeaZXHDBBcGBxgMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cH85g6dSqvvvoqs2fP5oMPPqC2tpZzzz2XlpaWYJpLL72UVatWMXfuXObOncuqVauYPHlyu9dXRERERDovj+M4zpEOQvYvJSWF//mf/+HnP/85WVlZTJ06ldtuuw2wsx7p6encf//9XH311VRXV9O9e3f+/Oc/c8kllwCwbds2srOzefPNNxk7dizr1q2jf//+LFmyhKFDhwKwZMkSCgoK+PTTT8nPzz9idRURERGRziPySAcg+2ppaeGvf/0rdXV1FBQUUFJSQllZGWPGjAmmiYmJYcSIESxatIirr76aFStW0NTUFJImKyuLAQMGsGjRIsaOHcvixYvx+XzBAQjAsGHD8Pl8LFq06BsHIQ0NDTQ0NAQ/t7a2smvXLlJTU/F4PIehBURERKSjcRyH3bt3k5WVRZcuR+ZiG7/fT2NjY5vziY6Oxuv1HoKI5JtoEHIUWbNmDQUFBfj9frp27cqrr75K//79WbRoEQDp6ekh6dPT09m0aRMAZWVlREdHk5ycvE+asrKyYJq0tLR9yk1LSwum2Z/p06dz7733tqluEn62bNlCjx492Lp1K9nZ2Uc6HDlC1A8E1A8kVKA/tDe/309u7jGUle1qc14ZGRmUlJRoIHIYaRByFMnPz2fVqlVUVVXx8ssvc/nll1NUVBRc//WzDo7jfOeZiK+n2V/678rnjjvu4Kabbgp+rq6upmfPnhRPvpCdm2xglHdqJQAvz+sFwA8HbgTg4UXHAjA6vRaAU8fsAOB/n8+x5Rk1IWW9sDERgMRoi+euyZbP66/bwayqcf+/rGR4mwHYtCcquOzq5zIAqJy+NCTtS2ut7A93tAJwcU+7ZybNWw/A+9sthuomT0jsD31qX5fjEmMA+OWJoTf9f1GR7G4X7eZjsVycbXXsnrAHgMc+sbhiIiz/mka7InJTnZ1tuuN4e29oiQDg5S3xlm+jxdsn0dqgpsnKPTvdb+ubrbzimohgTDnxrW7etk2ShUa538quqLf1Z2fau7eLm95tx0C6gBcqPwDg3PjTiI9IACCuSwJrxv7M1q+3ug1KsuCO774TgH9usX4S2E+BthmYZOWtqbL4Am366nrb3zFdrG3y3bbzxdivW8t2JFm8EYG26xJSbkyXvfdBLdtl/wNJ91raU7tVAfBRpS+k7MtyrQ8fO9D+5/Wbv1vfzUtw3LYLtGWEG5OVVbw7KuRzoB89+llXAH5+rH0eNGD/A/2dW23/bq1KcPOLA+CEJLvfK/CdmH7pBgAqi20n/vtLa1NfVGNI/r972+IO9C+Auwstry0vWl/+1zb7MeLDnVb3uwrsx4zaWuvbK8q7WyxuXzqje11IbBf02wzA0pIsUqKsnplxsSw64xprMx0PdDxAxwPofMeDPS0N/Hz1IyQkJOy3fodbY2MjZWW72Fgym8TEuIPOp6ZmD71yJ9HY2KhByGGkQchRJDo6mj59+gBw8skns3z5cn7/+98H7wMpKysjMzMzmL6ioiJ4diQjI4PGxkYqKytDzoZUVFQwfPjwYJry8vJ9yt2+ffs+Z1m+KiYmhpiYmH2WJ0RH0RBpyxNj7EAYG+F+jrbPMV3syxsfaQfkRK8t90bY8q6Rey/zAoh208d08YSkj3PzbYiIYH/iIprcfKODyxK7xgLQHBUdkjZQdpT7P6a4iBY3ltaQ9f4WT0jsUZ7IkDolfC3feLctmloDdY8OqWNCVHPI9oE6Rrv/Y41y/x/R1f1WRnoiQtokEK/XbYOGlkC5tn2TE+Wu3/u1jo0I3cbrNt/esltD2iDwR0egHQPpArq4bWAxBdZ5gm0RaLu4iC4hbRQbXB74oyCwvMX9HBGSPpCP122b+MjAPvKE5OeNCMQbEVKuN2LvHx2BvGLdP1C6uvsp0FcDZXf9Wl8O7KfAdsE2ctt3b1nRIZ8D/SiqS4wbu30OfCe+rtGtc3wwrsB3w/6YCOz/QFyB/hz4TsS7bfL179xX911inOWV4P6BEqh79Nfa3fO1vAN1jY9sDokt4SvpPG4/8Hg8+7Shjgc6Hlh+Oh50luNBwJG+VDsxMY7ExPgjGoN8Nz0d6yjmOA4NDQ3k5uaSkZHB/Pnzg+saGxspKioKDjCGDBlCVFRUSJrS0lI+/vjjYJqCggKqq6tZtmxZMM3SpUuprq4OphERERHp0Fpb2/6Sw05nQo4Sd955J+PHjyc7O5vdu3cze/ZsFi5cyNy5c/F4PEydOpVp06aRl5dHXl4e06ZNIy4ujksvvRQAn8/HFVdcwc0330xqaiopKSnccsstDBw4kLPPPhuAfv36MW7cOK688koef/xxAK666irOPfdcPRlLREREwkNbBxIahLQLDUKOEuXl5UyePJnS0lJ8Ph8nnHACc+fOZfTo0QDceuut1NfXc+2111JZWcnQoUN5++23Q667fPjhh4mMjGTixInU19dz1llnMWvWLCK+csnC888/z4033hh8itb555/PzJkz27eyIiIiItKpaRBylHjqqae+db3H46GwsJDCwsJvTOP1ennkkUd45JFHvjFNSkoKzz333MGGKSIiInJ0cxx7tWV7Oew0CBERERGR8NHqtPFyLA1C2oMGISIiIiISPnRPSIegp2OJiIiIiEi70pkQEREREQkfOhPSIWgQIgettiKGqgabpOi1ub0AGNP7SwDmrbHPgRls/e5sv9Nm5QJwYbbNQlu2xyYQO66bzU47tJvNKjuih02quOB1m3F3Ybl11ZkvWfqGv30EwAOv5wEwNsdmXi4pyQrG95MzbLbdCdnZAAxKtTIHJ9kssf0SLKbZm2zCpXyf1aW42nFjsfd1NTbh0TV5NrFWfnIFAC8V9wRgVLrlW9Vo26+ssvfFVTY78IQeNoHTZztsEskcqyK5cQ1u+RbHBdkxbls1h7RZID21oROz5SdafIGJuJaUWtuMy6wPpin1WyyX528DYFlpmrsm0t3WJpSavsFm1x2XbG3VNzE0hoBfZowAYHzWrq9M5ubwnNvug5Ns8qu5pVbuwgpbPijZYly8M8aN0WY8Toq29M+UWDnvbwrkU+umt8qvrLL34uqQcJiUY3Udlmb5JXa12aK37PAF01w3xOoWmP133iab8HN1pdV9Qg/LIyvNMv/NnOMAuDrf+uDqnSkAXHyl9bHfPmh9sldCrVv/2JCYHltvMxoP7W75D3/vHADqrvgTAEs/PQaAdbttO787j9oot/ylVgwF3W3FrSfavvvVMzaR6aBk2+/J0ba+zG/998Y5tn5clu27ysa9++7jx6zv9s63mY4ndCsBoN+G7iFtc0yB9cnK2RFuTLVunWJD6uRNtjJOSN9BlDtBnNOKjgfoeKDjQec+HuxuauSooEFIh6BBiIiIiIiED6eNgxBHg5D2oHtCRERERESkXelMiIiIiIiEDY/TiqcNZzPasq18fxqEiIiIiEj40D0hHYIGISIiIiISPlqdtk04qMkK24XuCRERERERkXalMyEiIiIiEj50OVaHoEGIiIiIiIQPDUI6BF2OJSIiIiIi7UpnQkREREQkfDhO2yYcdHRjenvQIETaZFBeGQBJm1MAuK4oE4BnJ5YAUPlBHwAW74wFYFRaLQAbd3cFID+5CoCPyrsBMDilGoBlpWm2fWMEAOm2OY9cWQ/Apto8AMrqWwC4aXF3AIZ23xvbpBxb542w99U7LcbZG+3gMqW3vSdFewCY0LMCgMeLreyqJstn9S7b/tFzNgMwb00vAPy2mLe2Wb658c0AVDfacn8Xi7WqMQGAhRXRVudEK7eyyeqW74sIKa+kzir7l422oJc1FZ/urnXTd+WryvzekHwfW//Vr7UdhF/bEmgYSzMiwz6V14dkxdzKLVZm/DEA/LS/1fmJNT0BKK4OtGkKuS1diAJaHQ9l9daGZfUx7nujm66L2wb2Pi6rya1rFAArq6yuveLcfRHld9NbW22yKjOhhwXq7WJ1zY23dJPWrgBgzgknApCaUgfAupq9bVRWb2UE2nvG1s8AeLy/1XFBRVc3VmujuyfY+j+8aX1scJKV/dsHM9y2sTaY9YXt93tGfQ7A7BXHAnDbwO0ANDTbfrgx5z0A0mPtu5BkVSPTa/2lr6/G4twT66YLPUG9uTIRgN//wr5Tf5rdC4D/uM3i+sn1cQAM7W77oNRv5U7M3xzMY8sOHwCLVvYAYPjgrQD4W6xNGhptm18+mgXAuEzbfz2TLbapfVtC0re4+/uzHcmkt3YJ/o9ExwMdD3Q86NzHg7rmBo4KuhyrQ9DlWCIiIiISPgKP6G3L6wB9+eWX/OQnPyE1NZW4uDhOPPFEVqxYEVzvOA6FhYVkZWURGxvLyJEjWbt27aGsdYejQYiIiIiIyEGqrKzktNNOIyoqirfeeotPPvmEBx98kKSkpGCaBx54gIceeoiZM2eyfPlyMjIyGD16NLt37z5ygR9huhxLRERERMJHO1+Odf/995Odnc3TTz8dXNarV6/gvx3HYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx98rB2YzoSIiIiISPhwWvcORA7m5d7UXlNTE/JqaNj/PS9///vfOfnkk/nRj35EWloagwcP5sknnwyuLykpoaysjDFjxgSXxcTEMGLECBYtWnR42+IopkGIiIiIiIQNT2trm18A2dnZ+Hy+4Gv69On7LW/Dhg08+uij5OXlMW/ePK655hpuvPFGnn32WQDKyuyhHenp6SHbpaenB9d1RrocS0RERETka7Zs2UJiYmLwc0xMzH7Ttba2cvLJJzNt2jQABg8ezNq1a3n00Uf56U9/Gkzn8XhCtnMcZ59lnYnOhIiIiIhI+HCctr+AxMTEkNc3DUIyMzPp379/yLJ+/fqxebM9Gjkjwx7p/PWzHhUVFfucHelMNAgRERERkfDRlvtBDuKm9tNOO43i4uKQZZ999hk5OTkA5ObmkpGRwfz584PrGxsbKSoqYvjw4W2vbwely7FEREREJHy089OxfvWrXzF8+HCmTZvGxIkTWbZsGU888QRPPPEEYJdhTZ06lWnTppGXl0deXh7Tpk0jLi6OSy+99ODj7OA0CBEREREROUinnHIKr776KnfccQe/+c1vyM3NZcaMGVx22WXBNLfeeiv19fVce+21VFZWMnToUN5++20SEhKOYORHlsdxnAOfFlI6tZqaGnw+HyvOvJKWZvvyzPi0KwBTejcCsHhnLAAZXute3ojQXxVy4+sBOGVoKQDLl2aGrPe3RIS8l+yJBiApqsVdblcS/teGvwLwt4HnhaQHqGyyfxeVW9r02NCrD6sbLbZxmY1ujC0h73npuwC4a3G2m7fVYUS65VNcYzeTldVb+nyflVduVcMXbeuTokO/Yhne0DoUlVu+VY1NAFyTZ8sXVlidh3VrBmBlZZSVW23xvtf0NgC/zv4hAKt3Oe72NcGyHluf6MZsZWR6bdu5pbZ/RqbZ5xmf2fs1fbwAnHNqCQAPvpPntpXlNyjZYp+3DR5ZeRMpWT4aK6oo/nEhALO+SAmJudRvv3MUlVndxmbZ5/PztgDwPyt6hrTNuMx6t22sLQP7MGBEj3IANldavd4qtf7XK97q52/1uPVsDm7TK74OgNtXW173DWoJyXPxTh8A/RLqQ9omJsLyyoh1+3AXey/oXglAVYPtnzlbre/n2BsFqdXA3rZ//PqNAET0sM8fPGHXFCfFWKPm9LR+NmdVbkhcgf4R+O4EvjPp8XsAOOZYK6el3uLcU2PxBNp0Qo/ar+Tlfo/qvCF12Li7a0iZGbFWxn1r44C9+2tk5nYAVu+0/Xumu/+eWpXLLxZMJSEjkabtlaz6j98COh6Ajgeg4wF0vuOBv8XPPeunU11dHXJDd3sJ/H1S9a//IbFr7MHnU1tP0mn/dcTq0VnoTIiIiIiIhI92vhxLDo4GISIiIiISPlqdNg5CdJFQe9DTsUREREREpF3pTIiIiIiIhI+vzPVx0NvLYadBiIiIiIiED90T0iHociwREREREWlXOhMiIiIiIuHDcdp2c7kux2oXGoSIiIiISPjQ5VgdggYhIiIiIhI+NAjpEHRPiIiIiIiItCuP4+jCNzkwNTU1+Hw+7s27g6RoLwCj0ncBULYnFgBvRAsA/pYIAEr90QBM+mEJAMWLUwBIjPMD0C27DoB/f5QJQEmd5VPVZNuX1XsAmNKnHIDHi9Ps87FW7spdPre8veNqf6ttU5BaDcCCCkszOKk+JKZ+ibUAzN5k6322mF7xLSHrV1YmujFZvklR9tWZt63ZLdvSD+1ubbKp1tYP7RYaj7eLLS8qt19aMmIDdQxsb59z4xrd7bq4bRIZEv/indZGo9IC8Xd149j7lU6PtW3vnvAZABf/Kdtij44CIKdrpPvZtsnwtrh1tBgyvVa3dTWWrrja1j99ZQlR/zUDjy+FxooqXjvnIQB+kLMNgJs/OAaAsVm4de0SEs+FParcOlsd1u2ODin/h303AxDlfi7bZm2/sLS7xVHjcfPDbQPbx2mJ1o8qauKDbfDq1iQA+iZaXWIjrK5LdlidRqZZOwf6bOA90AczvY1um0S5MfpD1idHtbht2MhXBfK5b20cANfkWfk5ibsBOOZYi3nRyh7A3u9KYH/39dUAsKDcvisT861Nup9udfev94eUF/juBMod9IPtwXX+L+090I6zPk93Y7a2+HqfmpRbAUBDs7XRp9W2nbdLoM/WB/Me9NdfE52WxO6yGp4+ewag44GVreOBjgd7dZbjQW1zA2cu+iPV1dUkJibS3gJ/n1S9dQ+J8d6Dz6fOT9L4e49YPToLXY4lIiIiIuHDabVXW7aXw06DEBEREREJH61tfDpWW7aV7033hIiIiIiISLvSmRARERERCR96OlaHoEGIiIiIiIQPXY7VIWgQIiIiIiLho9Vp45kQDULag+4JERERERGRdqUzISIiIiISPnQ5VoegQYiIiIiIhJE2zhOCbkxvD7oc6ygxffp0TjnlFBISEkhLS2PChAkUFxeHpJkyZQoejyfkNWzYsJA0DQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqsNdRRERERERQGdCjhpFRUVcd911nHLKKTQ3N3PXXXcxZswYPvnkE+Lj44Ppxo0bx9NPPx38HB0dHZLP1KlTef3115k9ezapqancfPPNnHvuuaxYsYKIiAgALr30UrZu3crcuXMBuOqqq5g8eTKvv/76AcU8OrOSHfWpACwoTwFgyimfA5BwTjoA7zxkaUf0KAdgxst9AHisfAUAy8fadj99qRcAz1++EQD/oh4AVDXFAlBc3QhAtT/G1rdYvo99ZtsPSrZTp5nepmB8i3da2uxu1QBk1HQFoNRvbVbmj3C3sc/5iZaHNyL0F5CyeothcHKN1bXCB8DSHbZ+Ui8PAPUtUQAkR1msVw0sA+CuxdkAjMtqBiApymL0Zlm587a1uOWG/iaQn1wFQHldnLudxXvfOkufFGn59Iq3+B44bz0Ad7+Zx9ed+ZS106QeXmBv++XGu7F0sTonRTe6beMN2T7J7WYZsRbDa3N78cMbIojzwZ6WLizZYYeSheU9rZwcy6fUb22SHmt165tobeDzNgB7902vKts3hasTAKhqygUg09scEl/AyDTLf85Wy398VkvIen9LRPDfF/aosjq5+9EbYWlvHFgBwObKRABK6mx9oK/2z94OwDZ3f5+UZvvzjysstuJqy2faqdYRfrMiE4ApveusnEhb/8Ro+xHgjU+tbc6caHV/9yXr48d1qwSgW7Zt9/Li3gAs3p4MwMT8zQC8VGzbXxZdAsAnW6y8U4aWhsTfL7EWgMIX9/aDXvHWflf8zGLJeMr6+mUDLa+X1/YC4Fa3D71eZHUcO3CjtcUJFtsXc+07tXqn9acz87YQ4X5fvBGt5MbZftHxQMcD0PEAOt/xYHdTI0cFXY7VIWgQcpQIDAgCnn76adLS0lixYgVnnHFGcHlMTAwZGRn7zaO6upqnnnqKP//5z5x99tkAPPfcc2RnZ/POO+8wduxY1q1bx9y5c1myZAlDhw4F4Mknn6SgoIDi4mLy8/MPUw1FRERE2oEGIR2CLsc6SlVX2y9CKSkpIcsXLlxIWloaxx13HFdeeSUVFRXBdStWrKCpqYkxY8YEl2VlZTFgwAAWLVoEwOLFi/H5fMEBCMCwYcPw+XzBNF/X0NBATU1NyEtERETkqBSYrLAtLznsNAg5CjmOw0033cTpp5/OgAEDgsvHjx/P888/z7vvvsuDDz7I8uXLOfPMM2losNO5ZWVlREdHk5ycHJJfeno6ZWVlwTRpaWn7lJmWlhZM83XTp08P3j/i8/nIzs4+VFUVERERkU5Il2Mdha6//no++ugjPvjgg5Dll1xySfDfAwYM4OSTTyYnJ4c33niDiy666BvzcxwHj8cT/PzVf39Tmq+64447uOmmm4Kfa2pqNBARERGRo5Mux+oQNAg5ytxwww38/e9/57333qNHjx7fmjYzM5OcnBzWr7ebxzIyMmhsbKSysjLkbEhFRQXDhw8PpikvL98nr+3bt5Oenr7fcmJiYoiJiTnYKomIiIi0Hw1COgRdjnWUcByH66+/nldeeYV3332X3Nzc79xm586dbNmyhcxMeyrGkCFDiIqKYv78+cE0paWlfPzxx8FBSEFBAdXV1SxbtiyYZunSpVRXVwfTiIiIiHRYuiekQ9CZkKPEddddxwsvvMBrr71GQkJC8P4Mn89HbGwstbW1FBYWcvHFF5OZmcnGjRu588476datGxdeeGEw7RVXXMHNN99MamoqKSkp3HLLLQwcODD4tKx+/foxbtw4rrzySh5//HHAHtF77rnn6slYIiIiItIuNAg5Sjz66KMAjBw5MmT5008/zZQpU4iIiGDNmjU8++yzVFVVkZmZyahRo/jLX/5CQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YF5wgBeP7557nxxhuDT9E6//zzmTlz5uGvpIiIiMjh5jj2asv2cthpEHKUcL6jw8fGxjJv3rzvzMfr9fLII4/wyCOPfGOalJQUnnvuuQOOUUREROSop3tCOgSP811//Yp8TU1NDT6fj8/Om8yxP7SZbVe8YLOzBmamDcza+tK7NttrbMT+u1lgBtaybTZLbWJXv23nzgZ73RVbAGjZaY8hvuM5m2F5Uk51SD6Ld9ostlVfmax16mk2W3Pxhu7A3ll5711ls7yPSA+9JWpsjsVcUWMz1AdmQs6Nt1l6KxutbmV+e4pYQWo9ACV1Nptwv8Q6d719XlcTGZJuzlZrI1+0bV/dGNomK3fvBGBKT5sbJjDbc2Cm58Ast/7W0KeYjUrfZfG6s1TP3rozuG5kajcAkqKtrMFJFsvKKoul3D4G2zPQjkVlVra/xWb5HZHhdetS6y6P4Aev3Y43zUd1aQ0f/ei3ITG9VZrgprc2D8xKPLTvlwBEp1g889/PAWBuqU3BPLSbpVu6IyLkc6bXduy63RZ3Wb0npE0C+yQwk3NgVmGA9zdl2bbu/vC6JwV/2n9zyPqAwGzMJ6TbzMfXfmDtevvxzSHpAn090Jaj0qwNA7M+r9nWPaTugX4RyN/fav3vvBE2S/Ef3Jmt+yU0hqwflGr7t+cAy/eB1y1dhnffWcGtDWz7pJi9X4aNu7uGpBk/wfbDn2b3AmBkps0GnZpifXjnLvsObKpJCNkuUJfAe37v7XR9cAZdUlJo2bkLz9/+G9DxAHQ8+CodDzrP8aCmsZHsF/5CdXU1iYmJtLfA3ydVT15LYtzBP1CnZk8DSVf+3xGrR2ehG9NFRERERKRd6XIsEREREQkfThufcOXo6VjtQYMQEREREQkfuiekQ9AgRERERETCRyttHIQcskjkW+ieEBERERERaVc6EyIiIiIi4UOXY3UIGoSIiIiISNhwWh2cNgwk2rKtfH+6HEtERERERNqVzoSIiIiISPhwHHu1ZXs57DQIEREREZHwoXtCOgQNQuSg/fvLdNKXlAPQO6segD+uyLWVSzMBSI5qAaBXQi0AG3d3Dclj0+YUAKoaogG4f013AEak23YTf5cBQOGg3QBMyqkGYPFOHwCDkyzforImAG4/fk8w7yZ/BABvlVra1bsszQXZtr7M7wGgINXNY2t6SGxFZX4Ayn1eABbUbAVgao7VraTOlv9lcx0AfROsbuMyGwHI8NpBLCnaPuf7Yq3OtbbcF23l94q3ZwGmx6ZanZKtjvetjQNgUIqln7et2c0n2s3Xlr+6JcX9bHHPGtoSrMOSiuaQOlU1RQEwKs3KKPwoxupWYW00u9zqeG+fNKvjHqtjoJ0DSv3RtLjH6C4eWFnV1W2zQBtbuZVNtg9WV1hwMz7tAcDtxze7+dvysnrbbmNdlFtHyzvQfxbvtLbrl2jbFaTWhcQT2McFqVav5Vsygutmb7RAh1rXIinKPv+/ZT0BeHDiegDeX2SxBfZrpdsfnjrzSwC27LAyfN4GADbVJABwSZ9tAHy2I9liLbZ8LxtYAuz9TgRi97faVbATV0wHoPbUSQAMTrLv0FlTrA6tO+3z4jct8OL3kwC4+WyL98F38mx5jbXhuExLv64m3tou2htsA28X62OBvnj3U70BuGvsZwBEpVhfLF4c+n0MtIU3wrbfWGf7M9C3+8dWgG1KY3METUusn+h4oOOBtZmOB53teBARcZT88a5BSIege0JERERERKRd6UyIiIiIiIQPnQnpEDQIEREREZHwoUFIh6BBiIiIiIiEDcdp4zwhejpWu9A9ISIiIiIi0q50JkREREREwocux+oQNAgRERERkfChQUiHoEGIiIiIiIQPDUI6BN0TIiIiIiIi7UpnQkREREQkfDiOvdqyvRx2GoTIQUvz1jPjX30A8Ld4AOib2BySZt3uaPdfXUOWz94UAcDQ7ikAXDV2vbs8D4BhaTvdfLsDkJVWDcDLa3u5yy0fb4T9IyM2CoCqxkB5EOW1dcXVLSFlb6yzsqee9jkAd7zTx93W0k3KsfcRGV4Arhlm6QatygXgmZJ6AO4bZOmSo+MBmLvNDlpztlos6bF2orHM77N8cyusvBXJbv6WLjfe70Zm5V2+pgyA23P6uG1R4dY53fKv/BSA8Yn5btxWbnW07YPVO1OCdV26w+r6m9NLAFj0xTFuG1jMGbG2vtyqxKT0HgBUNlndvF0s78U7bf9luG3qb+mCg5XX1ApXnGH7r99K235lVSwABam1tjzRtjv5Cusf/5iZ4K63/bqp1uems/WDUnfZ8hpLV1RR65ab4MZhcafH77G2yLR8HlufCECS2xYAVc22rTfC2ntwcg0AVz6eAcAjV+a5MVj6cZnWGKV+60txiY0A9I62mN74tCcAn9bY4bOqKcqNyfZjWb2VnXJlb6vjRotxYNZ2AKKirS1e4g77nLIxpM3O3LMDgLfm2L468+RNALS4+caNsriT3iOkzQLbB/bllGNrgm2weLv1uZI9VqeMWNuvn6xNszq435vFOy2PQHsG+mZGnGUaG2HtW9lo7f/uhzmc3RhBLBDhcfgfHQ90PNDxwI2pcx4P9rQ0cDRwWu3Vlu3l8NMgRERERETCh+4J6RB0T4iIiIiIiLQrnQkRERERkfChMyEdggYhIiIiIhI2dE9Ix6DLsUREREREDlJhYSEejyfklZGREVzvOA6FhYVkZWURGxvLyJEjWbt27RGM+OigQYiIiIiIhA/H2XtJ1sG8DuIRvccffzylpaXB15o1a4LrHnjgAR566CFmzpzJ8uXLycjIYPTo0ezevftQ1rrD0eVYIiIiIhI+Wt1XW7Y/QJGRkSFnPwIcx2HGjBncddddXHTRRQA888wzpKen88ILL3D11Ve3IdCOTWdCRERERCRsOK1Om18ANTU1Ia+Ghm+eB2X9+vVkZWWRm5vLpEmT2LBhAwAlJSWUlZUxZsyYYNqYmBhGjBjBokWLDm9DHOU0CBERERER+Zrs7Gx8Pl/wNX369P2mGzp0KM8++yzz5s3jySefpKysjOHDh7Nz507KymzC0fT09JBt0tPTg+s6K12OJSIiIiLh4xBdjrVlyxYSExODi2NiYvabfPz48cF/Dxw4kIKCAo499lieeeYZhg0bBoDH4wnZxnGcfZZ1NhqEyEHLzaxkR0MKAGMHbgSgbJt9We9dlQpATlf7gnkjWgC4rXgnAFOyegBQ1Wh5zX8/B4CNtX4AFpZ2B6BfYh0Atxb1AuDuIaUALCtNA2BlpZX3y/4VABxzbHUwvjeX5QLwhzM3A3DVfCuz2i1zzipbnx5rn/N9EQBkxNYC4G+1E4UjX/MC8Mxgy3veNp9btq0vKrej1ZTeFvuCijgAVu+qB+D245utvM1pbv5WXlFZk5vO8i+rt9O89+dZXLM3Wboyv233zK6FVteMERZHqcV5Sc94izPT2mB2SVqwDfItVLZV2D8W77QDaEOLnWpOirb1E3rUumV2tRgtJJbusPe7h2yzGIqzANhU6/AfLYFSHG59PQ+AqkZbGNjvAVWNVtA/Zsa6bWBt81apxTUyzXbKnK1RAHi7JAGwssq2u72fpZ9banEH+tOmmgQASv3Rbj2aQuoJMCLN6jTuGGufJRXWN6tu2gXA4CTL67KB2wF4eW0vAMbmWF9r8lu/CPSfC7It38HJVtYF4zYCsHF5ohublffOXRbzwCzLd8sOX0ibeLtYv5n9Rm7I8k/+Ee/W1eq0boG17dSLPwfg48es3Eyv9av6Fmvrn/bfvN9yLK1tU+q39q1qCt0/Z060HV36rO3fdTVWh+Qod3/2tLaaMS8ZgKRo2/7i478kOtLSRES00i/RYtLxQMcD0PHAYutcx4PdTY3w732KbH+O+2rL9kBiYmLIIOT7io+PZ+DAgaxfv54JEyYAUFZWRmZmZjBNRUXFPmdHOhtdjiUiIiIiYeNQ3RNysBoaGli3bh2ZmZnk5uaSkZHB/Pnzg+sbGxspKipi+PDhba1qh6YzISIiIiIiB+mWW27hvPPOo2fPnlRUVPDb3/6WmpoaLr/8cjweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLz3SoR9RGoSIiIiISPho50f0bt26lR//+Mfs2LGD7t27M2zYMJYsWUJOjl1aeuutt1JfX8+1115LZWUlQ4cO5e233yYhIaENQXZ8GoSIiIiISNhwWu3Vlu0PxOzZs791vcfjobCwkMLCwoMPKgxpECIiIiIi4eMITFYoB043pouIiIiISLvSmRARERERCRvtfTmWHBwNQkREREQkfDi07ZKqtj2hV74nXY4lIiIiIiLtSmdCRERERCRsOI692rK9HH4ahMhBW1qSxYhe2wAo25YIQEZWDQAPdvUD8PaGY0K2eXygPRN7xqctANw+oBqABeUpAFyQbd/8SUO+sHT/6gPAIFvNA6uybH1OLQCPfW7LN9alA7B6WWKwrMIT6iyWZb0BGJFhea/eZe9Ld0QAMC6zEYB1u6MB8HkbLIO6eACm5mQCkJW22fJJT7Z8Kj0hdfi02soen7kbAG9EV7euTQBMH1IBwL2rUt06RQEwOMnKL/XHuO9WvL+lGYDZ5aUAbPqvngC88NcWvsobYeecpyx165P2lXVdrK6PfWYNOCnHYpu9qWtIHj2Tbb+lV9jyTG+jW1drk4oaa4tNtY4bu4do9zxqXCT8+lRrm7hE2+7Hc3q4OYc+A31U2h63TaycsVktbp2tLW4buB2A8ro4tw2sTeaWxgJwdb61YbXbVut22/LBSbUh5dx4Ylnw389+Yu22qcZiuW+TdZr3x1rdrppvsU5ptL5a0L0SgNdKrK/1S6gHICk60m0bvxuzbT/7jdyQNgvIiLPtEtKtPy34xAfA+KxdACyssO1/d/F6ANZ8aDsu0I9+2d/qmppi/Xje21aP/OQqAJbssHhGplm5T6yx9b3irU2Hpe0MxnJC+g57J1TXrhbbmy9a3X/Y1/bjy2t7AfDYRuu7Z55s+/0PE6ztdmyx/vDgst7c1hiJD2hsjuAHOToe6Hig48FX2yygsxwPGlr9HA10T0jHoEGIiIiIiIQPPaK3Q9A9ISIiIiIi0q40CDlKTJ8+nVNOOYWEhATS0tKYMGECxcXFIWkcx6GwsJCsrCxiY2MZOXIka9euDUnT0NDADTfcQLdu3YiPj+f8889n69atIWkqKyuZPHkyPp8Pn8/H5MmTqaqqOtxVFBERETnsApdjteUlh58GIUeJoqIirrvuOpYsWcL8+fNpbm5mzJgx1NXVBdM88MADPPTQQ8ycOZPly5eTkZHB6NGj2b17dzDN1KlTefXVV5k9ezYffPABtbW1nHvuubS07L1u+NJLL2XVqlXMnTuXuXPnsmrVKiZPntyu9RURERE5HAI3prflJYef7gk5SsydOzfk89NPP01aWhorVqzgjDPOwHEcZsyYwV133cVFF10EwDPPPEN6ejovvPACV199NdXV1Tz11FP8+c9/5uyzzwbgueeeIzs7m3feeYexY8eybt065s6dy5IlSxg6dCgATz75JAUFBRQXF5Ofn9++FRcRERE5lFo99mrL9nLY6UzIUaq62p6wkpJiTzEpKSmhrKyMMWPGBNPExMQwYsQIFi1aBMCKFStoamoKSZOVlcWAAQOCaRYvXozP5wsOQACGDRuGz+cLpvm6hoYGampqQl4iIiIiIgdLg5CjkOM43HTTTZx++ukMGDAAgLIye8Rgenp6SNr09PTgurKyMqKjo0lOTv7WNGlpaXxdWlpaMM3XTZ8+PXj/iM/nIzs7u20VFBERETlMdE9Ix6BByFHo+uuv56OPPuLFF1/cZ53HE3qK0HGcfZZ93dfT7C/9t+Vzxx13UF1dHXxt2bLl+1RDREREpN05jqfNLzn8NAg5ytxwww38/e9/Z8GCBfTo0SO4PCMjA2CfsxUVFRXBsyMZGRk0NjZSWVn5rWnKy8v3KXf79u37nGUJiImJITExMeQlIiIicjTSmZCOQYOQo4TjOFx//fW88sorvPvuu+Tm5oasz83NJSMjg/nz5weXNTY2UlRUxPDhwwEYMmQIUVFRIWlKS0v5+OOPg2kKCgqorq5m2bJlwTRLly6luro6mEZERERE5HDS07GOEtdddx0vvPACr732GgkJCcEzHj6fj9jYWDweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLw2mveKKK7j55ptJTU0lJSWFW265hYEDBwafltWvXz/GjRvHlVdeyeOPPw7AVVddxbnnnnvAT8ZaXRXFxUPs0b8vvWD3mWTutBvpM7x+AKqaIqzcxEYA/C32eWh3e89KsxvwrzpxJwDLl2YCMG9NLwC8lozcONs+09slNJ/UOADGZ9pjigtSo4PxBdLceOIma+Miy3tslnX7onKLPT+5CoBeCbZ8YWl3t+xWNx8rc+Jbtvz2fn43Fst/xjq7ByffZ6dve8Vbvptq7Rl/K1s/AuD+NScBMO3UUgCWlVqbrdttMU/oWQHAarcNS1rtjNW9fSzd1TOjAMjpGnqaOBDfhMxUa6v45uC6xz63WK/p4wVg8c6u1m7dWtw6WLv+YU0WAAtqtrp1yAxZ/9h6O/s1Ir3VLaOeqC727+ZWD+9vsu1nfWFlT+1rdS/12+cyv7VVRly921axAFQ1WZxJURZPtT8GgNmburp1tXwC/WBTTYKbr7XZvC+tfgWptn1Voy1/e8MxwTa44sQSAF5e2wuA+/vYAH/RF7Y+0B8qm6w+izdaOwb61LqaeL7qpF723Xzj054AxEZYjAOztgOwssqWr9zlszZ50/bn/VdZHIvftH50db7t72fn9wFg0hAL6OT/sLb5839bHMPccjNire2WVKSGxBPov2eebN+lqBTrH8WLU/i6QPslRdt+/ai8W8j6nbtC61p4QgMAt76eB8CEHvUh24/P3B38njQ5HrrpeKDjgY4HQOc9HtQ1N/DQxn2KaneO07azGXpEb/vQIOQo8eijjwIwcuTIkOVPP/00U6ZMAeDWW2+lvr6ea6+9lsrKSoYOHcrbb79NQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YRERERTPP8889z4403Bp+idf755zNz5szDW0ERERGRdtDW+zp0T0j70CDkKOF8j2G3x+OhsLCQwsLCb0zj9Xp55JFHeOSRR74xTUpKCs8999zBhCkiIiJydGv14GiekKOe7gkREREREZF2pTMhIiIiIhI2HKdt93XonpD2oUGIiIiIiIQN3RPSMehyLBERERERaVc6EyIiIiIiYcNp443pbbqpXb43DUJEREREJGzonpCOQYMQEREREQkbuiekY9A9ISIiIiIi0q50JkQOWn5iC4vf7A7AdVdsAaDuowYAyrYlArB0fSwAuXH2XrIn2tbX268Mn2yx7Us+tfV/2dgEwJRjrQx/i70PP/ZLAG4t6gXA3UMqAJi1wfJbVxMPwODkmmB8b5X6LO86y3tEhs0av3SHnWcdlGKf52xOs/fSnQCMTLWxed/EVgAmDfkCgOKaPgAkRVcDsHin5Z/T1cqravS4dbPy5ta/B8A92We45Vq6P6zJ4qvGZdZbnZdaPJN62Nfy/vxUtxyrY74Vx6g0K7+oIiIkn6Xbm9x/RQWX/ekH1h6vlViQq3dZg3q727ZVTRarz4rgmh7HAJAbX2d18XtteV5NSJ1L6mI5yfEQA0R4HCobLb++vsiQNiqps+0zvFbu1BVW0AhrcnLjGi2d2y8C+2z62Z8DcMc71ua3nrgNgJo9lp83wvK7pFesG5ctvyDX0iW5/QFg0RdWp/PzrI8++0lPq9MwK6N4g/VBn9f67g/7Wt3/uCIXgDunlABQ8E+LLdBnl+6wOl9z3C4A/meF5Xt1vvXN+9dYuruHWEwv/NXWJ0dZ7ENHlgFQ9pI1xqbNKQD4H7D+0M++QiypsH4w8cwNAKycbyvuv8riWufG9eYyi3fswI0A5J24M9gGy5dmsj8ZsVZWYL+OON7289joZgA2V1pZE3pYupN6WcxPrbKycuObaXF/MYz0ODoeoOOBjged+3iwp+XoOIPQ2uqhtQ33dbRlW/n+NAgRERERkbChe0I6Bg1CRERERCRs6J6QjkH3hIiIiIiISLvSmRARERERCRs6E9IxaBAiIiIiImGj1fHQ2oaBRFu2le9PgxARERERCRuaMb1j0D0hIiIiIiLSrnQmRERERETChh7R2zFoECIiIiIiYaOVNt4Tgi7Hag+6HEtERERERNqVzoRIm1Q1RgPwyvOZAJxzagkAC0u7A3D7gEoAXt2SAsCotFoASqJiASjzewHYWBcBwAXZNi7u66t0S0gEIMrbAsCgFPt14qPybgA89ZMNAFzxXG8A/K2+YGxLt/vdMpsBWFnVFYChtimDk6tD6jChp5WxqWYPAHO2Woz+FccC4LNkeCMtXVJUi7u9xd430crxRtjy6b1Otzh2WMxJ7vaTcqzcX6629CPTEgAYl5bKV62sig35PPXizwGY/UYuAJf0tLbK9DYB8PR5mwEoWtszuM2P348B4Fd9rKx8n33lC1JD6z4wazsALxXbtrM3dXXTWz694t26d3HcOkVwXquHeKDZ8ZAbb21d1WQxpyXWAdCvxdpmxqcWR98Ey7ef21YnpO8AoKQkC4DqRitn6afHuG1l/SWwv7/O32JtMDjJ0v1mhfXDKb3r9km73d3/BamWdtbyPgBckLsNgJ4/tf3wyL1pANw5xfpyw1aLdUG59eGJ+dbOU9z9/NY2W351fgUAq3fa5xHprQA8/onVJSPW2i7Z7TeB/ZjhdULyL6u3/jI42fZrv0SL94HX89y6WiP9aXYvAKqaLP34rF0ANPmtzYvePyZY98U7rf0v7FHlfrYdW+W291UDrU7RKRZLTI3V+bH1tj+nnVrOV9181RYAvpgbQ1SX1uByHQ90PNDxoHMfD2qbGzka6BG9HYMGISIiIiISNpw2PqJXg5D2oUGIiIiIiIQNnQnpGHRPiIiIiIiItCudCRERERGRsNHqvtqyvRx+GoSIiIiISNjQ5VgdgwYhIiIiIhI2Wh3aNk+IJitsF7onRERERERE2pXOhIiIiIhI2NDlWB2DBiEiIiIiEjbscqy2bS+HnwYhctB6xtXRO8VmUn2m2Ga4TVrZAwB/q/2K8NhnNutrYKbdOVu7huQRmC14YbklmJRrM/VuqrHZanvF20y3s91Zivsl1ANwzzqbxTgj1mazndrXZpFdULF3huQRGV53mX0en2ll5fe2Msa9mmx5xiW6sVi6jDgrI6erzQ4bmIE2MOPy+EybgbbMnYk2MKvvX7bbjLYXZHvd9bbdL/uHzpy7sc6mG5411Ga0vX9NlKWv97vb22y2/hbb3mvFULzYtn9tS2vIcohw26K7u7wl2Ab94mybpCi/m6eVFZghNzDj8cpPerrp7PNvTt8IwBuf2vJ1NbbfArMxF0dEE/idyAOs2+3OJu0W/cAq6w/XHLfLjc22H5dpjVXqtziWlaa5dbfcfNFOSB0Cs1oHZkAOzOi8bne0u7w+ZHlgVuLAzNsAZ+bZbL63FvUC4O4hpcDevviXzy1W771um7l97OqZlv4PEz5328Zien9TVki+Pm8DAHO/tLrkxlkdzxuxyWLbaPtz+ZaMkLoNTrA6Ld5u/TCwL+6esB6A8s+sn1TU2HugP1Q22f4+3y3/on/Gu/HZvi5w6x1oY4Af99oJ7J3NOdB3fv3ftvzjZ6wtEuob+Ko/nGkzJ9/9gc3mPPOh3QD8eVocABPP3ECk22ciPU5wxmsdD3Q8sPxtmY4Hned4UNPQCO9yxOlMSMege0JERERERKRd6UyIiIiIiISNVjy0cvBnM9qyrXx/GoSIiIiISNhwHHu1ZXs5/DQIEREREZGw0ep42jhPiM6EtAfdEyIiIiIiIu1KZ0JEREREJGw4bbwnxNE9Ie1CZ0LaqLm5mXfeeYfHH3+c3bvtcXXbtm2jtrb2CEcmIiIi0vkE7glpy0sOPw1C2mDTpk0MHDiQCy64gOuuu47t2+158w888AC33HLLEY5ORERERNrT9OnT8Xg8TJ06NbjMcRwKCwvJysoiNjaWkSNHsnbt2iMX5FFCg5A2+OUvf8nJJ59MZWUlsbGxweUXXngh//znP49gZCIiIiKdU+DG9La8Dsby5ct54oknOOGEE0KWP/DAAzz00EPMnDmT5cuXk5GRwejRo4NX0HRWGoS0wQcffMB///d/Ex0dHbI8JyeHL7/88ghFJSIiItJ5OXja/DpQtbW1XHbZZTz55JMkJyfvjcVxmDFjBnfddRcXXXQRAwYM4JlnnmHPnj288MILh7LaHY5uTG+D1tZWWlpa9lm+detWEhISjkBE7cvnbWRzZRIAm2rtAsoMrxeAsnr7Ao/LbADgsfWtAPT1ed3l9QB4I639hnaz916n1ACw8O/dLZ+ddoZpfGY1ABvr4gH4/SDruutqugKQG1+/T3y58c0ALNlhaRfv9AFw39o4AF45qxSAqGgr848rcq0OdV63LhZTVVMEABdkxwCwoMLWj0qrdutqMX5qHymusbqPTGu0z24bXbt+HgDnx5/j5m9x5HS19LcNtDgamt14t9tBbHWlrb/935b+vpN2h6wvKre2nbXBt08bTOlt9yb5WyJCls/eutNiTO0GQEGq7adSfxQAT62ytrikzzYrY2t6yHpfNHRxj9FdPA7eLrb/N7m3Qk3tVwlA4Wr7HozIsOXeCGvT5Gj7/WNdTaS73LbvFW/ry/xeNy5r1NmbQus2KDmwbyyelZX2fnV/G/wvK00Lpq2tjXHbwNrpsx3WbpNyqkPapqTO9uNJvcoASIpOsbZ4Lw+ATK/1p8pGS79zl/XF8jrbL5cNLAHgjU97ArB+VSoAiXF+a4PjNwOw9NNjrI57rLzLTv88pJwn5tn7lFM+36cuAMPSbN/V1FobvT7e+s2/N1oc3ZNsJxR9vLfN+iXaDyU/7b85ZNt/zEwCYN1uWz/YjWlg1vaQtpvS29qqabUt31jXB4C7Xs7j17dEkpQEHo/D5spEQMcD0PEAdDyAznc8aGj1czRodezVlu0BampqQpbHxMQQExOz322uu+46fvjDH3L22Wfz29/+Nri8pKSEsrIyxowZE5LPiBEjWLRoEVdfffXBB9rB6UxIG4wePZoZM2YEP3s8Hmpra7nnnns455xzjlxgIiIiItIm2dnZ+Hy+4Gv69On7TTd79mz+/e9/73d9WZkNZNPT00OWp6enB9d1VjoT0gYPP/wwo0aNon///vj9fi699FLWr19Pt27dePHFF490eCIiIiKdzqGarHDLli0kJiYGl+/vLMiWLVv45S9/ydtvv43XPfu7Px5PaDyO4+yzrLPRIKQNsrKyWLVqFS+++CL//ve/aW1t5YorruCyyy4LuVFdRERERNrHwd7X8dXtARITE0MGIfuzYsUKKioqGDJkSHBZS0sL7733HjNnzqS4uBiwMyKZmZnBNBUVFfucHelsNAhpo9jYWH7+85/z85///EiHIiIiItLpHap7Qr6Ps846izVr1oQs+9nPfkbfvn257bbb6N27NxkZGcyfP5/BgwcD0NjYSFFREffff//BBxkGNAhpoy+//JJ//etfVFRU0NraGrLuxhtvPEJRiYiIiMjhlpCQwIABA0KWxcfHk5qaGlw+depUpk2bRl5eHnl5eUybNo24uDguvfTSIxHyUUODkDZ4+umnueaaa4iOjiY1NTXk2j6Px6NBiIiIiEg7O1SXYx0qt956K/X19Vx77bVUVlYydOhQ3n777U7xJNVvo6djtcHdd9/N3XffTXV1NRs3bqSkpCT42rBhwwHl9d5773HeeeeRlZWFx+Nhzpw5IeunTJmCx+MJeQ0bNiwkTUNDAzfccAPdunUjPj6e888/n61bt4akqaysZPLkycEnPUyePJmqqqqDqb6IiIjIUSdwOVZbXm2xcOHCfZ6eWlhYSGlpKX6/n6Kion3OnnRGGoS0wZ49e5g0aRJdurS9Gevq6hg0aBAzZ878xjTjxo2jtLQ0+HrzzTdD1k+dOpVXX32V2bNn88EHH1BbW8u5554bMpfJpZdeyqpVq5g7dy5z585l1apVTJ48uc3xi4iIiBwNjtSM6XJgdDlWG1xxxRX89a9/5fbbb29zXuPHj2f8+PHfmiYmJoaMjIz9rquuruapp57iz3/+M2effTYAzz33HNnZ2bzzzjuMHTuWdevWMXfuXJYsWcLQoUMBePLJJykoKKC4uJj8/Pw210NERERE5LtoENIG06dP59xzz2Xu3LkMHDiQqKiokPUPPfTQIS1v4cKFpKWlkZSUxIgRI/jd735HWprNnrpixQqamppCZuTMyspiwIABLFq0iLFjx7J48WJ8Pl9wAAIwbNgwfD4fixYt+sZBSENDAw0NDcHPX59BVERERORo4bivtmwvh58GIW0wbdo05s2bF/zj/es3ph9K48eP50c/+hE5OTmUlJTw61//mjPPPJMVK1YQExNDWVkZ0dHRJCcnh2z31Rk5y8rKgoOWr0pLS/vWWTunT5/Ovffeu8/ylOQ6vthoZ2byfVbf5Ohm990uAcuIrQfg4VNtELN6p3W5Un80AP6WCAAmnFgCQNE/jwGgoHslACt3+QBYUGHvm2qt7Ak9bPt+ibUhMfn3XnnGuhorK6crIdu+eM0mAGa/kQvAjE2lANyfb7Eu3mlzvEzK3QnAnM3WZqt3EZLfW6UW09LtfgBGZNgkRbPLt7rpegAwOMkK/l3OOSGxLqjo6tbB2mzW5/a88IJUaytvhD1tbWg3Sz8y3eozY53t46n9rI38rSkhdR+VVh0s4761cW5eXULyvCY3CYAyvx1qS/ZEu3W0z+OyLKZ5mzJDtqtq8rjpmmhyL5qNiWxhdaUtf3js5wAMe82Cube3PV99nTtu9UbY8tLdsW7Mtl1StOX1qbvP+rptsq7G2mjKsdb4i7cnu9t1ceP3uPmG/i9jzpa937+kKNsm32d9bWVVYA4fe++X0Ajs7YOzlvcBIDfOll9xxnoAfjfvOADGZ+4GoLgyyWLcbW1XUmf5JUdZHV/dYvvlwmyLffN6a4uTetl37eW1vQAYWm+xTszfDMCzn/S0/Dd0B+Cxz61/XWNhsanGbmQ8rpvt/4RjrTzvFnvfssP65Yj0vZeJJsVYXboNsTQNi619T0jfAUCpP7Cfbf3f12cDcPHxGy19o+2XeW/3dNNZvv26NRPdxdq+SxeHMr99B3Q80PEAdDyAznc82NPSAls44hzadknVob4xXfZPg5A2eOihh/jTn/7ElClTDntZl1xySfDfAwYM4OSTTyYnJ4c33niDiy666Bu3+/qMnPsbHH3XrJ133HEHN910U/BzTU0N2dnZB1oFERERkcOu1X21ZXs5/HRjehvExMRw2mmnHZGyMzMzycnJYf16+1UmIyODxsZGKisrQ9J9dUbOjIwMysvL98lr+/bt3zprZ0xMTHDW0O8ze6iIiIiIyLfRIKQNfvnLX/LII48ckbJ37tzJli1byMy006ZDhgwhKiqK+fPnB9OUlpby8ccfM3z4cAAKCgqorq5m2bJlwTRLly6luro6mEZERESkI3McT5tfcvjpcqw2WLZsGe+++y7/+Mc/OP744/e5Mf2VV1753nnV1tby+eefBz+XlJSwatUqUlJSSElJobCwkIsvvpjMzEw2btzInXfeSbdu3bjwwgsB8Pl8XHHFFdx8882kpqaSkpLCLbfcwsCBA4NPy+rXrx/jxo3jyiuv5PHHHwfgqquu4txzz9WTsURERCQs6HKsjkGDkDZISkr61vsxDsSHH37IqFGjgp8D92BcfvnlPProo6xZs4Znn32WqqoqMjMzGTVqFH/5y19CZtt8+OGHiYyMZOLEidTX13PWWWcxa9YsIiIigmmef/55brzxxuBTtM4///xvnZtERERERORQ0yCkDZ5++ulDltfIkSNxnG9+KNy8efO+Mw+v18sjjzzyrZeIpaSk8Nxzzx1UjCIiIiJHu7bOet7WGdPl+9EgRERERETChoOnTY/Z1SN624cGIQfopJNO4p///CfJyckMHjz4Wx9t++9//7sdIxMRERERnQnpGDQIOUAXXHABMTExAEyYMOHIBiMiIiIi0gFpEHKA7rnnHn7+85/z+9//nnvuuedIhyMiIiIiX6HLsToGDUIOwjPPPMN9990X8mSqzih5dAJz7rYv6oTsZgBK/dalkqJaAHhsvU1sePeQUgDOObUEgAffyQMgM7URgHsX9AHgv4ZsBiAhvQGA21+MA2BQiuU7Mr0pJIaVlZb/xjqb8ubGEzcF1y3fkgHAPZ9XADAlqwcA971kZSVFE7K8pM4JWR4TbXWaV1oLwNBU29/VjaHnaS/ItjNjr23xAzAuxWaTL6u39WVeLwC58bb+vnXWNo8O3WPlL7Wnl+XGJLnlWwCj0qoBWFDhA6BfQqNboqVfucsXEkdVo+2LdTVdg8sm9bJY52xxY6m3dv20JhaAhTt3ABCL1cHrCRwS7H11peXpdZ+w5nPbJt8XTaR7KWJDcwRDu1mdKnfY/qp2bBLNUn++Wyfbrn/2djfGeADGZ1rbFn5s6+8bZPkE9mtxjZWRHNXVjcMenJgbb41b5re2XVhu8W52txuUsveJcCV1lsbf4nHfbfnNp24AoKnR0u6psSBz4xr5qk/WpgEwpY9N9HnMsbZf3lyWC0CG1zKMjbC29reGTr8U2E/D0nYC8OCy3gD8dqFt/9z5oXUK7Pe0xDq3TeLduP3uu8Xbtavty9LV1uaBtq2ttX15frfqYAwNjdY+f5rdKyS2SUO+ACC51OqwoMLaeXCStcE2t++V7bH+UtlkZXvd5h2UuouoLhZ/F28X5mzR8UDHAx0PoPMeD2qbQ9vrSNHlWB2DBiEH4dueYiUiIiIiR44GIR2DZkw/SN92Q7qIiIiIiHwznQk5SMcdd9x3DkR27drVTtGIiIiICOiekI5Cg5CDdO+99+Lz+b47oYiIiIi0G6eNl2Ppqvv2oUHIQZo0aRJpaWlHOgwRERER+YpW99WW7eXw0z0hB0H3g4iIiIiIHDydCTkIejqWiIiIyNHJcTw4ThvuCWnDtvL9aRByEFpbdaJORERE5Giky7E6Bl2OJSIiIiIi7UpnQkREREQkbGiywo7B4+gGBzlANTU1+Hw+PjtvMv66FABW7rLHFW+siwBg6mmfAzBreR8A+iXU7zev2Zu8AOT7Qq+/vKTPNitrj61PjPMD0C27DoAvv7Dy5n5pTyjL9DYDUFK3d1zdL6ERgIxYK/v21Rbbo0P3ALB6p8Xu7WInXtftjrblu1qsDn1rASirjwWgssm2f6ykCoBxaakAJNlmeLvYV2l1pdUl3Taj2sIgp6u9V7mfV+9qAqBX1yhrg0TbfmxOKQB3Lkt387dyByXb+jK/5d8r3uLMjbf6rauJB+Di4zcG2+CpVbkAFKRaXd4qTXBjsrym9K62Oq1PBGBCD4vJG9HCVy3eaZXJ8Np287Y188RHt5Ca5aOuvJqXxz3k1t1iHdbN9sfcbfb57iFWp8D+fGubtf1P+2+2OvZqAGDNh7Y/F1T4QtY/saZnSJ0Hp1jci7cnA9Avsc6Ns6vbJs3B2C8YZ+2x+v3uAFQ1RofUbWDWdit7m60/qVcZANMWW9v53OQXZtu8P2V7YkO2P3PiDgC+mBsDQEx0c0hdAzEW19h+m5RjsftbrG0CbZ3dzZa/veEYK8dv64urrc1vG2hxJna178L2KqvrrC+sLW8caN+Z7HPtBPcbT6UEY8xPrgKgvC4OgPvW2vdkRIbFOD7L6lbVYJUtqYsNiSGw3t9snzfWWV87M28LSTMfJCI1hZadu/hk4m8AHQ8sHx0PdDzofMeD3U2N5L78AtXV1SQmJtLeAn+f/OH424mNiDnofOpbGrhx7X1HrB6dhc6EiIiIiEjYsDMhB39zuc6EtA/dEyIiIiIiIu1KZ0JEREREJGw47qst28vhp0GIiIiIiIQN3ZjeMWgQIiIiIiJhQ/OEdAy6J0RERERERNqVzoSIiIiISNhwHHu1ZXs5/DQIEREREZGw4eChlYN/RK/Thm3l+9MgRERERETChs6EdAy6J0RERERERNqVzoTIQdtd5+WD8hQAqhptWYbXfj4o3tAdgFHpuwCIiWy292h7X1aaFpJXQWotAIt3dgWga9cGAJ4pzgJgfGY1AB992A2AU7LLAMj0Wn4lddaV+yU0BvMs2RNtMcXWAzBjiK37/SdW9qBkx83DnoOxyULg9gHVIbF5I1oA2Fhl+U3qkeqWZfkuqIgDYPUuv+WbEgtAeb3lPy7Tys1PrgJgYam1jd9n+TW0OG45FsdrJVbnnK6hp4Nnbd4JwK/6+ABYWRnlrrHyVlda+sHbUoLblFuIJMU0hpRVVt9kMbREADCld53Fnmft+uM5PULq0iveYhuZud3aoi6dSI+V19Tq4eKCDQBc2sP2w8p5Ke72FutnO5IBWLc7NqRO72+yulautziu+NlWABY/Zdttr7L+MCm3AoDUFIvz3fXZAPRLtM8ldZZvVaPFtK7lK4e2ub3cNLbMa0Wxepe1xYKKHGu3ZGuTT7bY/hmUbPt9WJq1+9wvrd94u4T+RPbmi+kAJEVbGyc12/vi7Vbn5GjL57+GbAPg5g+OAWDaqeUA3LTYyiscZOkmnFgCwOwVxwJ7+0FxZRIAZx67CYC/u22Q7jZpt2xrix/dZfW9IHvvb0z3rrI++4czNwPwcHw8ADHR9v38qNy+VyvdPn55/raQ5b3zd4bUeeOyXKvrqZF0ibb4Wls9LNDxQMcDHQ+ATnw88LfCyxxxejpWx6BBiIiIiIiEDc0T0jFoECIiIiIiYUMzpncMuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNvSI3o5Bl2OJiIiIiEi70pkQEREREQkbekRvx6BBiIiIiIiEDd0T0jFoECIiIiIiYUOP6O0YdE+IiIiIiIi0K50JkYP28NpURme2AHDV2A0APDEvD4DeWbsA+GRLdwBOm9gIwP/OyAJgvLv+4c/t94aSuiQANtVa3n9ckQvAhdmWrnuSrXhscaKl39MTgCrLFn+Lx95b946rB7vbeCMtxsXbkwEYlGxlFpXbVZ+DUqIByOlq2836IsXN29Jdk1cDwOwdmwEYFZ8PQHF1LABDuzUDUN3oBeDq/l+GtNNNi7u75aQBUF5vy9NjLf/Bybb9kh2Rbnwt7pYRAOTGWSUbWlKtPl0a3bZqdpdbOl+0tUF2t+pg2b5SHwCvbkkJyXtYN0t731orMyM2xmIqzXO3rHfrZDH6Yy39Mcda3kmb0+hii/A7zTz7nm1XVNZkbdI9CoBrhn0OQOWOuJA2SYq2Ojy2PtH9bJn98anskHRTV9i++dMP/AA0NVpdS/0W9wXjyiyGfx4DwOAUi69wdUIwj8FJob9p9UuwuhWkWgxl9bYfhx9r++35Ndb3rhq7HoD3F/UI2T433mI5rlslAB+VdwPg9N9YmU9OtX6VHG1tneG19Mu3ZAAwIdvi6ZZdB8A1O6xfxkTa/py1vI8bn9Vl8U7bh5VNVvdP1lo/uux0a9uYHtYWO1bYPnxi9FZL5373AB49x9pp9opjrc5+a+9JuRUhdRufaWX+5XP7nlY1WrrSDywmf6t9vmxgCQAPPpHLL34cQUIC7G6KIClKxwMdD3Q8gM57PPC3+Dka6HKsjkGDEBEREREJGw4eHDxt2l4OPw1CRERERCRsOLTtbIZOhLQP3RMiIiIiIiLtSmdCRERERCRs6J6QjkGDEBEREREJG3pEb8egQYiIiIiIhA2dCekYdE+IiIiIiIi0K50JEREREZGw4bj/tWV7Ofw0CBERERGRsKHLsToGXY51lHjvvfc477zzyMrKwuPxMGfOnJD1juNQWFhIVlYWsbGxjBw5krVr14akaWho4IYbbqBbt27Ex8dz/vnns3Xr1pA0lZWVTJ48GZ/Ph8/nY/LkyVRVVR3m2omIiIiEp0cffZQTTjiBxMREEhMTKSgo4K233gqu/z5/w3VGOhNylKirq2PQoEH87Gc/4+KLL95n/QMPPMBDDz3ErFmzOO644/jtb3/L6NGjKS4uJiEhAYCpU6fy+uuvM3v2bFJTU7n55ps599xzWbFiBREREQBceumlbN26lblz5wJw1VVXMXnyZF5//fUDjtkX7aFfYi0AVzzXG4ApvesBiPK2APBWqcXGn+0tw13ub7Z4xqX5ALi4YD0AG9/JA6BXvKVbvD0ZAO8un5t/HQBJMY2WfndXAFZWRQOwrmZvl15ZaWWPz9wNQFWTzYCaG99sebpt4reiWL2rCYCnz9tkn9dnAPDY+kQA3h1VbXWLLgHg3xtt/X3rLIMRaRbLtR+kADC1r/2UMiIjys3fcctrBWBSjrXV7E22XVWj5TOsm6VbXYmb3up2dX4FANX+GAAGpfjceli6C3K/BGDLDl+wDQLr+iVYe80ttbx80R53fWhM4zOtffsmxro5WEyxbro3l+UCkBTl4HEnlPVFRFCQam2zqdYXUt69C/oAsLHW2vb5yzcC8MQ828/jsmxfzN1mgU5IqnPbwuK8vZ8t/6i8GwDrdtvywD7cuNz2TVK0lffYZ9b2pc07g20we1MSAJNyGt06W50WVFis5bYbWLc7120L+/zSu9anx/S2dk36SrsCbK60sgNtuu46x20Da5iZD1nGu17ZAez9TkSnWLrXi6y8DK/ftqux/jruGNvPC0u7h5T3qdu3f9h3FwBffmHxNBTb8vs+ts9/OHMzAAXnbA9uu6HIYi3zW2z9Eq395mxOs7Sp9j3O7713GwCftwGAJRWpABSVuyvWWOz9EhqJ9Fh9unjQ8QAdD3Q86NzHgz0tTRwN2vvpWD169OC+++6jTx/r48888wwXXHABK1eu5Pjjj/9ef8N1RhqEHCXGjx/P+PHj97vOcRxmzJjBXXfdxUUXXQRYB09PT+eFF17g6quvprq6mqeeeoo///nPnH322QA899xzZGdn88477zB27FjWrVvH3LlzWbJkCUOHDgXgySefpKCggOLiYvLz89unsiIiIiKHSXtfjnXeeeeFfP7d737Ho48+ypIlS+jfv/93/g3XWelyrA6gpKSEsrIyxowZE1wWExPDiBEjWLRoEQArVqygqakpJE1WVhYDBgwIplm8eDE+ny84AAEYNmwYPp8vmGZ/GhoaqKmpCXmJiIiIHI0cp+0vYJ+/fRoaGr6z7JaWFmbPnk1dXR0FBQXf62+4zkqDkA6grKwMgPT09JDl6enpwXVlZWVER0eTnJz8rWnS0tL2yT8tLS2YZn+mT58evIfE5/ORnZ3dpvqIiIiIHO2ys7ND/v6ZPn36N6Zds2YNXbt2JSYmhmuuuYZXX32V/v37f6+/4TorXY7VgXgCF926HMfZZ9nXfT3N/tJ/Vz533HEHN910U/BzTU2NBiIiIiJyVGp1X23ZHmDLli0kJiYGl8fExHzjNvn5+axatYqqqipefvllLr/8coqKioLrD+ZvuHCnQUgHkJFhNzyWlZWRmZkZXF5RUREcWWdkZNDY2EhlZWXI2ZCKigqGDx8eTFNeXs7Xbd++fZ8R+lfFxMR86xdPRERE5GhxqO4JCTzt6vuIjo4O3ph+8skns3z5cn7/+99z2223Ad/+N1xnpcuxOoDc3FwyMjKYP39+cFljYyNFRUXBAcaQIUOIiooKSVNaWsrHH38cTFNQUEB1dTXLli0Lplm6dCnV1dXBNCIiIiIdWlvvBzkE84Q4jkNDQ8P3+huus9KZkKNEbW0tn3/+efBzSUkJq1atIiUlhZ49ezJ16lSmTZtGXl4eeXl5TJs2jbi4OC699FIAfD4fV1xxBTfffDOpqamkpKRwyy23MHDgwODTsvr168e4ceO48sorefzxxwF7RO+5556rJ2OJiIiIHIQ777yT8ePHk52dze7du5k9ezYLFy5k7ty5eDye7/wbrrPSIOQo8eGHHzJq1Kjg58A9GJdffjmzZs3i1ltvpb6+nmuvvZbKykqGDh3K22+/HfJ86YcffpjIyEgmTpxIfX09Z511FrNmzQrOEQLw/PPPc+ONNwaf0nD++eczc+bMdqqliIiIyOF1qO4J+b7Ky8uZPHkypaWl+Hw+TjjhBObOncvo0aMBvtffcJ2RBiFHiZEjR+I433z+z+PxUFhYSGFh4Tem8Xq9PPLIIzzyyCPfmCYlJYXnnnuuLaGKiIiIHLW++pjdg93+QDz11FPfuv77/A3XGXmcb/vLV2Q/ampq8Pl8/CT9dvLcmXQDM64GnJm3BYBbi3oBMKGHzaJ6zo/txvjfPWpP17ow22Z7XVBuM9tusolamZRjM+4u3mmzvt7wst3M9Y/JNnvxwgqblTY9MJGvq7h63+6c5M4GPCjZZqitarIzQ5lei7lXvM3K++rWJAAKUhvcsu1m/FFpe9zPVli1TbTLyLTQGXfX7Q4NJjfO1t/2uc2o/Pv8ngCsrLJ0q3e1uNvbrVk5Xb/9KRmB2Y7HZ1mbXb7S4pqU3gOA2eVbAbijd0ZwmzlbLM8J2dYu3i72+86sDbZ8Sm9bXrLH2nNUuuXdO99mGH7+A7vJLjfeZvGds9ViT4+Fqe9NJTEjkdryGtZNvBfYO7Nxqd/e/S1d3Nit3I11VonADNgBgZm20xJtXzQ02u8jX5/B198S4ebntnlNPAA/HW2XMq750NKvrNx7I2FgZuxAe4/NsuUTTrT9En+C7edbf2998jfn2GzdT71nszgnRdl2r22xOgRmvA60VVaa9dXaWsunx5mW/t9zEkPaZMRZNtNy6eo4y6/EAvl6Pzz5Ptt/j1xpMyx7u4T26cC+mFtq++LGgdsAOKbA+u2GoviQtoO936txmaF99qReZSGx/+VziynwPRraLbTMQN8N9MXXttYye+2ddD8miV3bapg5cgag4wHoeAA6HkDnOx40Ow28V/MHqqurv/cN3YdS4O+Tn2fdQXQX70Hn09jq50/bph+xenQWujFdRERERETalS7HEhEREZGw4TjOt17i/n22l8NPgxARERERCRuHap4QObw0CBERERGRsNHWqT40BmkfuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNjQI6Rh0OZaIiIiIiLQrnQkRERERkbBhN6a34RG9hy4U+RYahIiIiIhI2NDlWB2DBiHSJr3iWwDo66sBICayGYAN21IAGJTisXQJtQA8+EQ2AOMzqwFIjPMDUFTWBMDtx+8BwN8SAcDE/M0AvDOl3pa3RgEw5dhdAHxanQhAUlST++4NxjZrs6W5v3cMACV1sSFlTeplsa2r6QrAplqLvbja4+bQ6NbR8szw2lGpvN7WVzZZjJ/utPwLUhssXWx9SL79uvR262TbzyndCcDghFRro2RbPjjZ2uStUp8bh7XttFPLAfjDmiwApq6IBmBUUoobj0XbLyrT6v1FU7ANnh1XCsDLa3sBcH7eNjf2Y9wUVkaZW6eNuy3mspXWVsU1Hjc2a4sJPWyrdbtjg9dyenBYUOFz62jLBidZ+lN6fwnAkHdLAHgsrwCAuaVWhxwrjtiI+JA2m3jmBsuvJA2ABRW2PCmaEBfkWn1++JTVvXCALV+6Y2+a2wZWAOCNsLw21rlpPrU2GFizHYCRaRbz8x/0AaBfgjXsnK3WFk+fZ3W4d4Gt3xhnMQ34reXzxrXWxzc+GuGWZ+XcNNm2W/xmBgBVjVaJKad8DkDljjgAPirvBsC551QCe/fdG5/2dOO2DKuaLJ78ROs3NXusfyavt+9O3mWWbtRT1cE2yO5v/25otEN+0dZ0AJJOtc9PPWF9q6jMvo+DUqyMTK/16R8M3wpAyfw+7nLrY8+ftYsUb2uwHB0PdDzQ8aBzHw92NzVy3OsccY5jr7ZsL4ef7gkREREREZF2pTMhIiIiIhI2HBxa23RPiE6FtAcNQkREREQkbOhyrI5BgxARERERCRut7qst28vhp3tCRERERESkXelMiIiIiIiEDcdxcNpwTVVbtpXvT4MQEREREQkbmiekY9AgRERERETCRmsbn47Vlm3l+9M9ISIiIiIi0q50JkREREREwoZDGx/Re8gikW+jQYgctLMzWxmcUg3AY5+lADAusxGAXgm1APRLqAfgxY2pAFzYowqAt0p9tr4uHoCpff0ApCXWAXBMQQMA6/5p6R5bb131jyO2AbBmW3cATs2sAOC1kiwAkqJagvFN6Wkxlflt2Yge5e5nSzvrCyuz8IQGd7nP3TICgHILnStv2QnAIw9YHby2mjK//SMpOvRw9erWJAAKUi3fXl2jAchPtlgnZKaF5NPPrfOCCit/cJK14fhMC+APayze/ETHfbc2S45utny62MMEV1ZZOaPS6oOxTFuca2X2sP3x9/XZABSV2zZVjfY+9hjLe/ixXwLw4LLeIesD++u6ISUAlKztBR4rw8GD28SMSrNyBuWVAdDkttHlKSMBqGyymAclW3llfk9IHQInZ//wZh4AVw3cDEBcorXJnFVWn4sLNgDw05d6AXBBjygA7ltr+3REhifYBg3NkW5dCKnDzl3Wjt2GuP0j0cqq3BEHwDPF1u63nmh9bvaKYwEY5+4Xf4vVbfcTa9zPtv7XD1tBu/9m+X252PLrmVxjdS61/b9ps/XPjbu7WhtEWByDUiz9oi+OASDTa/mN6b0dgPRJyQCs//8sjmPHWT/73aN9AFj9ehMAhYN2B9tgyw5fSMxVTfa+6GXLa0JP65uDkxLcdJZnUrSVXf5ZvBtLU8jyl4p78vOmSLoC3ghHxwN0PNDxoHMfD/wtfo4GuhyrY9AgRERERETChuO07WyGHo7VPnRPiIiIiIiItCudCRERERGRsKHLsToGDUJEREREJGy0Om0chOh6rHahy7FERERERKRd6UyIiIiIiIQNx/2vLdvL4adBiIiIiIiEDQdo/c5U3769HH4ahIiIiIhI2NCN6R2D7gkREREREZF2pTMhIiIiIhI2HKeN94To6VjtQoMQOWjjT9vI/f84HoDfnF4Ssm7nrngA5myNBeD3v9gAwMp5KQBUN1q6pKgmAE6/qgGAzX+15a++kg2At4td1Vk4aDcA72/KClmeflwdAI/9qxiAe3sfG4wh0+u3deutmy/ZYdturLUye3X1Wt4fWfqh3e196XbbblCKxf63P/jc5S1uuggAVu+yg1S+zwNAqT8KgGd2LQSgb+Lplk+ybbd6p9Xda5sz70srp1+CLfBbMhbvjAHg6v47AMjpauWX+a2cfonNAJTUWb2qGm15UrTFM2tDfLANFvutXWJK+wIwOLnJrZttmxvvuG1j6a+a38Pq0mwLJmSmAlBcbel+OjfTbTsPP3IvuG1qhV7xFvycrV3dmHq6dbXl1Y22/dIdVtd0a1om5VYAkHeZLf/zw0khbRHY30t2WLzjMusB2FBscY3NctvAqsVLP94CQEu9J9gGZdsSrW4DN9u222w/rKy05eVvxtnnKos9N846Z6BOAefnWd5R0bY80MdnLe8Tku4f99p7qd/64oytnwHw+3xrk3U1FnNSlDVCUrSVt3inlT8qbQ8AJ/UqC8k3EHfCAlve0Gxt8O851l9+/ZjV+YO77btU1RAd3DaQ93Wj1luZbvuV7bEYeo+w79HsWWnA3v2SmmLLn1+TC4C3i+3HyibbX4OTaolyv4uxMS3M+sJi1PFAxwPQ8QA63/GgrrmBo4Eux+oYNAgRERERkbChQUjHoHtCRERERESkXelMiIiIiIiEDcc9F9KW7eXw0yBERERERMKGLsfqGDQIEREREZGwoUFIx6B7QkREREREpF3pTIiIiIiIhI1W97+2bC+HnwYhIiIiIhI2HI+D42nLjem6HKs96HIsERERERFpVzoTIiIiIiJhw2njjek6E9I+NAiRg/bY28eyoGYrAIM+7QnA4JRqAD6tTgTgl/0rAHjhr7Y+N74egHtGfQ7AL97MBeC4v1YC0LVrAwArK6Msv+QmAF7dkgJAv8RmAHol1AKw+WMfAJO6pQHw8Oc7g/ENTkgFYErvRgDmbLWDir+lxcrYXWMxxSQBsKnW1o89xgvA6l12Kndho31Npp26DYCireluvlaXGZ/GhLTLPdlnALB0hwcAX7S994q3/GZtszabckwPAErqrNyl2/0AXNLL6v74J8eEbFfdaPks2WHxDEq2elS58Y3P2gVAhtcXjGVClLXvjM92A3BhjxY3TQQA/bO3AzB9g5V5b580d8sE973RLcPqOCjF2mbel35aWvcepKuaLL9VVbZfPq22mMYeEwtAvhtSbpzlV+mmL65MAmDh/wb2t7tP4m19XrrVqdRv/WdglsXb4Nb5stOtH728uDcAX35hBf3+k0A9IKervRekWmxJMRbDyEzLq7wuDoCyemvfccdUAfB4seXxaY3th6v7fwnA+5uyAOjrq+GrRrmxHj/R8v/nLDeWfIs9I876y1VuHf7fsp4h8fVLsO1WVlmbJW2zPu9viXCXW0LfF/YdeXFjqlsv+7zryQ1um1n6Ndu6B2ObXW59ruCjzJA8S+psfx632PZv4PsVaJNZn1tfD3wP19VYu0/Kte/ZHSuSeaLZQwxQ64/U8QAdD0DHA+i8x4Omo+RWilZa8eiekKOeBiEiIiIiEjY0WWHHoHtCRERERESkXWkQ0oEUFhbi8XhCXhkZGcH1juNQWFhIVlYWsbGxjBw5krVr14bk0dDQwA033EC3bt2Ij4/n/PPPZ+vWre1dFREREZHDotXT2uaXHH4ahHQwxx9/PKWlpcHXmjVrguseeOABHnroIWbOnMny5cvJyMhg9OjR7N69O5hm6tSpvPrqq8yePZsPPviA2tpazj33XFrc66JFREREOrLWQ/CfHH66J6SDiYyMDDn7EeA4DjNmzOCuu+7ioosuAuCZZ54hPT2dF154gauvvprq6mqeeuop/vznP3P22WcD8Nxzz5Gdnc0777zD2LFj27UuIiIiIoeabkzvGHQmpINZv349WVlZ5ObmMmnSJDZssCdglJSUUFZWxpgxY4JpY2JiGDFiBIsWLQJgxYoVNDU1haTJyspiwIABwTT709DQQE1NTchLRERERORgaRDSgQwdOpRnn32WefPm8eSTT1JWVsbw4cPZuXMnZWVlAKSnp4dsk56eHlxXVlZGdHQ0ycnJ35hmf6ZPn47P5wu+srOzD3HNRERERA6NwNOx2vKSw0+XY3Ug48ePD/574MCBFBQUcOyxx/LMM88wbNgwADweT8g2juPss+zrvivNHXfcwU033RT8XFNTo4GIiIiIHJVaacHDwd/r2tqGbeX705mQDiw+Pp6BAweyfv364H0iXz+jUVFRETw7kpGRQWNjI5WVld+YZn9iYmJITEwMeYmIiIgcjZzgnOkH+9KM6e1Bg5AOrKGhgXXr1pGZmUlubi4ZGRnMnz8/uL6xsZGioiKGDx8OwJAhQ4iKigpJU1payscffxxMIyIiIiJyuOlyrA7klltu4bzzzqNnz55UVFTw29/+lpqaGi6//HI8Hg9Tp05l2rRp5OXlkZeXx7Rp04iLi+PSSy8FwOfzccUVV3DzzTeTmppKSkoKt9xyCwMHDgw+LetA+KIcpuZkAlDVFAHAp9V2lmRQ6i4AllSkAlDmt/WDUxoB2LQ5BYB7TtwJwAOrsgC49cRtAIxK2wPA4p2xAHhtc+ZsscvGhvpt+6Xb7ZTp0O62/t5+ccH45rjTn/zyc3uMcWHOiQDERkS6Mdq2qSmbAXh3vV1i5u3S6r5HAZDptZgrauIBWF1pwczbZrENSrHPm2odN30TAH5fNADF1e7yVFvubbXtqhoDkVqdrsmz3wQWVlh+vmjbbtZma8uCJGvLYd2aAahstHTl9RbvY59Zm/hb9v6CM6V3PQCX9LTYF+/0uLHa+nVunUYl2vLKJmuTwP4cnGQJqxutLn0Tbf2UYyOJi9wbfW6cVeaCHl3dOhNSTo4tZmFFtFt3i/G2gbb/qUwCYGOdxXPeiBIALv6T7ZMLsi39+nKrY1KMlVe02M7gJUdZXMVuPr85vSTYBs+vyQWg8GP7PPU4C6bUH8X+ZGTZgxfyS61TJUdbe79WkhVSp4suqwOg7CV3fzZY3f71Z3vPiLO2D+yXfJ+lw61DwKg0ayxvpNXBG2HpFlT43M+WbtwxFQBU+2Pc7ew7sm63pV+8rLdl7/aH2wZuD5bx6mnWt5K72ZnS2SuOBWBjnS3vcaaV/ZcnAv9L8AJw19jPAGipt/7x8Kt2P9ngpCQApvZtoGuk7RuPBx0P0PFAx4POfTyoa27g9aUcca2eVjxtmOtDT8dqHxqEdCBbt27lxz/+MTt27KB79+4MGzaMJUuWkJOTA8Ctt95KfX091157LZWVlQwdOpS3336bhISEYB4PP/wwkZGRTJw4kfr6es466yxmzZpFRETEkaqWiIiIyCFj94Qc/MU+uiekfehyrA5k9uzZbNu2jcbGRr788ktefvll+vfvH1zv8XgoLCyktLQUv99PUVERAwYMCMnD6/XyyCOPsHPnTvbs2cPrr7+um8xFREQkjLT1yVgHdiZk+vTpnHLKKSQkJJCWlsaECRMoLi4OSeM4DoWFhWRlZREbG8vIkSNZu3btIaxzx6NBiIiIiIjIQSoqKuK6665jyZIlzJ8/n+bmZsaMGUNdXV0wzQMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cfwciPLF2OJSIiIiJho9VpoS2/s9v239/cuXNDPj/99NOkpaWxYsUKzjjjDBzHYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx90rB2ZzoSIiIiISNg4VJMV1tTUhLwaGhq+V/nV1faAgZQUe/BASUkJZWVljBkzJpgmJiaGESNGsGjRokNc+45DgxARERERka/Jzs7G5/MFX9OnT//ObRzH4aabbuL0008P3pcbmMPt63Oypaen7zO/W2eiy7FEREREJGw4tOC04Xd2x3061pYtW0ImaI6JifnOba+//no++ugjPvjgg33WeTye0HIcZ59lnYkGISIiIiISNloP4glX+24PiYmJIYOQ73LDDTfw97//nffee48ePXoEl2dkZAB2RiQzMzO4vKKiYp+zI52JLscSERERkbDh4LTxnhDnuwv5anmOw/XXX88rr7zCu+++S25ubsj63NxcMjIymD9/fnBZY2MjRUVFDB8+/JDUuSPSmRARERERkYN03XXX8cILL/Daa6+RkJAQvM/D5/MRGxuLx+Nh6tSpTJs2jby8PPLy8pg2bRpxcXFceumlRzj6I8fjOM6BDfek06upqcHn83F/3zuY0LMGgNU77QkQlY028/rqSrvG0Rdt74U/Xg9A0T+PAeC4bpUAVNTEA+CNtOsvy/bEApAU3RiyPCvNnjRxa1EvAIZ2s1i8EXbKNDbCuvG6mr3j6tW7mgCY0tvWVTZZbEXldgLQ32LbDkqx5Uu3W/oRGVHuekLex2daDCsr7dRsVZPVrarR3gtS7akZc0ujLdYTtwHwhzVZAEzoUQvAW6U2g/2Pe+0E4MWNqSHbr6yy7cvrrdxByRb/0h2BeELjDpTf0GLp8hP3fqUDMY7P2gXAq1tS3Haz9Rleq9xjJVUAjEtLDWm7fJ/FcnX/L63tttpp4zJ/BL9YMJWEjERqy2r409kzALggN7TO7uZBgToF+kXfxGZg3/3Xz11+3ogSAJ6d38faqHtlSD0CcT4xeisAL6/t5W6/99nsSTHWl/ILrA2WLswIWb54e7JbJ4up2hYH9/uU3tXuZ2u0U4aWArD5Yx8AczanAXvbeOPuriF1XlhhjTAu0yqfk2jPhM/Isu/OnFWhv5iN6W1t/VJxTwC8XaxtimssvhsHWhvX7PFafj2t3OgUJ6St9tcG/uZAn4kOiaWh2do9JtLafUmF9YPceIt5UJ79D7V4Q3cATr7evkP/c3dCSD/YdvmdgI4HoOMB6HgAne944G/xc8/66VRXVx/QZUyHSuDvkyzfSLp4Dv539lanmW3VC793Pb7pvo6nn36aKVOmAHa25N577+Xxxx+nsrKSoUOH8sc//nGfSaU7E50JEREREZGwcajuCfm+vs/v+R6Ph8LCQgoLCw8yqvCjQYiIiIiIhA17OtbBP3Uq8HQsObx0Y7qIiIiIiLQrnQkRERERkbDhOHtnPT/Y7eXw0yBERERERMJGe98TIgdHgxARERERCRuO08Z7QhzdE9IedE+IiIiIiIi0K50JEREREZGwEZgxvS3by+GnQYiIiIiIhA27Mb0tl2PpnpD2oMuxRERERESkXelMiBy0mC4OczanAZAb3wzA2JxSAKqastxUdkpz4/JEAErqvO57JgD9EusAeKvUB0BStG111ditALz0bm9bvy0FgD/+eD0AVzxnywelRAAw9eLPLd+X+wTj69U1CoBZG5rcz5Y2p6utn3paCQBl2yy2S/pYHV4rsdirGu1XlAt7VAFw9ZrdFnOUZZDvs/xGpe0BYManHrcOdkPbH9ZYPlfnVwAw90trq4U7dwBQXG3lTu27222TWAC8li1VjZbPrM1W/jW5SQCsrowISVdeb7/YbNxjbVlWHxtsg0D7fOqWNSnXYimviwNg9iary6QeqZb3Lttftx9vdVpQYW34wCqry7jMRsuvJpJW92y1N7IFbxf7UFETD8A9o2x/zFvTy62bHWpuPXFbSH5lfotvcFI9AP0sTE7NtDjfX9TD2qLJ2jYxzg/Ahdm73PS2QXyW7bvixZZubE5NsA02V1qa2W/kApAbb2U99pn1qQk97HNytNU1Kcr6yy+LNwPw627Wnt2G2P5Y8HoPvuqKE60fTVuc67aR5Td8sPXhpI8y3TawfPwtSQAsqbA2j41wQsrdssO+C4E2zY33u21g2wfaeGOdveel7ASgxYplZOb2kPwBynbafg6085kTrQ/+8alsAPoluG2y3vbTX39necx8JAOAlcvte1WQWg3A/9yd4G7XSKTH7QgedDxAxwMdDzr38WBPSxNHh5Y2XlClG9PbgwYhIiIiIhI27HIqXY51tNMgRERERETChgYhHYPuCRERERERkXalMyEiIiIiEjZaacXTljMhmjG9XWgQIiIiIiJhQ5djdQwahIiIiIhI2HCctj3dqq3by/eje0JERERERKRd6UyIiIiIiIQNBwfacF+H08ZZRuT70SBERERERMJGW+/p0D0h7UODEDloSdGt9I6vBWDOVpuBtbLRZoMtrrZfEXK62o1hgdmBy+rtc0FqAwD3rbUueEkvu/5yWJrN9vp6kc02u3SHzaCbb5PGEtXDZliekG35l9rkscx7u6ebb20wPn+LbRuY9bWs3sqYcqzN8nrHO33cGC39NcNsVt/c8kZ3++iQfO7obbPFzt1mVzEGZihet9tmrh2UEnoTXFK0xRiYRdr/tUtM832W/8oqm5l33pd+dztbX9VoM8+ubf4nAK9tuRCAjNiIkPz8LXawTIqMcePae5VlvwSrS68Ea5dZn6eHxDa0m2USmKk4MMvySndW4XJ31t10d9LlhRUW3P/+sQGSLA9/cwSDk21G4lkbbEf9upu1cWBm5FFp9jkw+/Qj/10GwA2/tTYtSHUr02Rtcecyi3PaqeUAlPqt3GWl1pZ9fVbeuhrLv3RensX1ohvo+phgG2R+ZmWlu7N0B/ZHoO4BpX7LKzA78zPRFttLxVanCxptduecRJvROu/GJAA2P2ZlBWZG/rrAzMiTZ9vMyn+7bAsA8yw7rsmz/d7TbcPMQTY79cD6ipB8Bm60choaA/3Z8g3MIj0wa3tI+kxvY/Dfk374JQCt9bbPfveotVe/RJtZesRZtj4pujsA/5xldS623cYfPj0FgFuPXw7AoGRru1Oyy4iOtH93wQl+/3Q80PEAdDzYn3A/HuxuaoR/77fq7UqDkI5B94SIiIiIiEi70pkQEREREQkbbZ3nQ/OEtA8NQkREREQkbOhyrI5BgxARERERCRsahHQMuidERERERETalc6EiIiIiEgYaeuZDJ0JaQ8ahIiIiIhI2NDlWB2DLscSEREREZF2pTMhIiIiIhI29IjejkGDEBEREREJG47j0Jb7Omx7Odw8jlpaDlBNTQ0+n49ZJ97KSSkNACTG+QF4rSQLgKXbWwCYkG3da2VlVEgehT9eD8Dq97sD0P/4CgAmvpgNQEZsDAAPjNgIwCdbLF3P5BoAumXXAXDr63kATMqpBWD2pq7BMgLL7ltrY+1LelkMf9nYFBLLNXl2VeLinVbmqLQ9AJzUqwyAd9dbTElRTW66WACqG237HLfI1btCv0pDu9l7QfdK2257MgBF5a1ufNZGMz6zjG7vFwHAY+st3l5dQ9tsyrG7AHhxYyoADS1WXlWjvT9+/UYANhTFB7dZvTMFgCU7It0yqwHwt1hZQ0daHe97qQ8AGV7La2OdtcngZKuzt0urG1urG0skP3zjZuLSfdSW1/DKuAcB+GHfzQA8vybXLQc33xY3Xyu3vN6We+0j+YmhbZccbennbrMEg1I8AIw7xvpJTHSz1fmTYyyePuUAJHa1ftj9dE8wry/m2n5dUmHtdnHBBovxgz4hdS1IbQiJwd9qy88bUQLAE/Osr1011vpui1uHp97LC9nO28XdL00Ww0/7W5u8v8m+G3191odX7vIBEBth6QP9q9Qf7W4f4S63tkh23+eW2vprjtsVUm4gv3nb7PPQ7hHBdTfcb33sb/dYnc7M2wLs/V6dMrQUgDUfpgHwVqnlNT4ztL/0z95udUy29v/dvOO47YNf4stMZE95NV9ceg+g4wHoeAA6Hlhbda7jQUOrn4c2TqO6uprExETaW+Dvky5dEvF4PN+9wTdwHIfW1pojVo/OQveEiIiIiIhIu9LlWCIiIiISNuzpVm07EyKHnwYhIiIiIhJG2jYIAQ1C2oMGISIiIiISPtp4JgSdCWkXuidERERERETalc6EiIiIiEjYcNp4OVVbt5fvR4MQEREREQkjuiekI9AgRERERETCiNPGcYQGIe1B94SIiIiIiEi70pkQOWCB52fXtzRQ22yzynqabAZWf4vNUNvUajPp7nFn8W1obQnJo6bB0ge2r2m0z02OfW5ste12u/nWuekCn6Pd9I2t/pD1ja17u3RgWZPT4sbb6n4OnSF5T0sXN0Znv2XtabHPUZ4mt44eNz3uZ0JiDqh3lwfqWB9sG8fN1xI0O4E6RrjrW9z8Q9sskE+DW+dAvIFya/yBNt07s3Ig9obW5tA83BlvA/shsN/qg/uri7u9bdfqBNousF9bgr8TOY5DfUtomwXyC7RNoO39bls3um0XmNA2UG5AjJu+0Y0j0Oa1ze5+9zSHtEVgeaAfxvj3noavbfa4ZYT2tcD+2FvXxpAYAjMkf72NAp8DyQPLAwLfj0DMX+9He/uDvQeuPQ70r0BbBNqq3p2dOqZLi9smrSH5BATyawr2y72/MdXsaXJj6BISU6Cvf/37GKjT1/tLYLvGxr3tH4jf+Up6HQ90PAAdDwLt8dWYw/140NDaEFLvI8fRfR0dgMc58j1FOpgNGzZw7LHHHukwRERE5Cj0xRdf0Lt373Yv1+/3k5ubS1lZWZvzysjIoKSkBK/Xewgik/3RIEQOWFVVFcnJyWzevBmfz3ekwzkiampqyM7OZsuWLSQmJh7pcI4ItYHaANQGoDYAtQGoDQCqq6vp2bMnlZWVJCUlHZEY/H4/jY2N353wO0RHR2sAcpjpciw5YF262Clcn8/XaQ+0AYmJiWoDtYHaALUBqA1AbQBqA9j7d8KR4PV6NXjoIHRjuoiIiIiItCsNQkREREREpF1pECIHLCYmhnvuuYeYmJgjHcoRozZQG4DaANQGoDYAtQGoDUBtIAdGN6aLiIiIiEi70pkQERERERFpVxqEiIiIiIhIu9IgRERERERE2pUGISIiIiIi0q40CBH+7//+j9zcXLxeL0OGDOH999//1vRFRUUMGTIEr9dL7969eeyxx/ZJ8/LLL9O/f39iYmLo378/r7766uEK/5A4kDZ45ZVXGD16NN27dycxMZGCggLmzZsXkmbWrFl4PJ59Xn6//3BX5aAdSBssXLhwv/X79NNPQ9KFcz+YMmXKftvg+OOPD6bpaP3gvffe47zzziMrKwuPx8OcOXO+c5twOx4caBuE4/HgQNsgHI8HB9oG4XY8mD59OqeccgoJCQmkpaUxYcIEiouLv3O7cDseyOGlQUgn95e//IWpU6dy1113sXLlSn7wgx8wfvx4Nm/evN/0JSUlnHPOOfzgBz9g5cqV3Hnnndx44428/PLLwTSLFy/mkksuYfLkyaxevZrJkyczceJEli5d2l7VOiAH2gbvvfceo0eP5s0332TFihWMGjWK8847j5UrV4akS0xMpLS0NOR1tM7ieqBtEFBcXBxSv7y8vOC6cO8Hv//970PqvmXLFlJSUvjRj34Ukq4j9YO6ujoGDRrEzJkzv1f6cDweHGgbhOPx4EDbICCcjgcH2gbhdjwoKiriuuuuY8mSJcyfP5/m5mbGjBlDXV3dN24TjscDOcwc6dROPfVU55prrglZ1rdvX+f222/fb/pbb73V6du3b8iyq6++2hk2bFjw88SJE51x48aFpBk7dqwzadKkQxT1oXWgbbA//fv3d+69997g56efftrx+XyHKsTD7kDbYMGCBQ7gVFZWfmOena0fvPrqq47H43E2btwYXNbR+sFXAc6rr776rWnC8XjwVd+nDfanox8Pvur7tEE4Hg++6mD6QbgdDyoqKhzAKSoq+sY04X48kENPZ0I6scbGRlasWMGYMWNClo8ZM4ZFixbtd5vFixfvk37s2LF8+OGHNDU1fWuab8rzSDqYNvi61tZWdu/eTUpKSsjy2tpacnJy6NGjB+eee+4+v4weLdrSBoMHDyYzM5OzzjqLBQsWhKzrbP3gqaee4uyzzyYnJydkeUfpBwcj3I4Hh0JHPx60RbgcDw6FcDseVFdXA+zTr79KxwM5UBqEdGI7duygpaWF9PT0kOXp6emUlZXtd5uysrL9pm9ubmbHjh3fmuab8jySDqYNvu7BBx+krq6OiRMnBpf17duXWbNm8fe//50XX3wRr9fLaaedxvr16w9p/IfCwbRBZmYmTzzxBC+//DKvvPIK+fn5nHXWWbz33nvBNJ2pH5SWlvLWW2/xn//5nyHLO1I/OBjhdjw4FDr68eBghNvxoK3C7XjgOA433XQTp59+OgMGDPjGdDoeyIGKPNIByJHn8XhCPjuOs8+y70r/9eUHmueRdrDxvvjiixQWFvLaa6+RlpYWXD5s2DCGDRsW/Hzaaadx0kkn8cgjj/CHP/zh0AV+CB1IG+Tn55Ofnx/8XFBQwJYtW/jf//1fzjjjjIPK82hwsPHOmjWLpKQkJkyYELK8I/aDAxWOx4ODFU7HgwMRrseDgxVux4Prr7+ejz76iA8++OA70+p4IAdCZ0I6sW7duhEREbHPLxAVFRX7/FIRkJGRsd/0kZGRpKamfmuab8rzSDqYNgj4y1/+whVXXMFLL73E2Wef/a1pu3TpwimnnHJU/uLVljb4qmHDhoXUr7P0A8dx+NOf/sTkyZOJjo7+1rRHcz84GOF2PGiLcDkeHCod+XjQFuF2PLjhhhv4+9//zoIFC+jRo8e3ptXxQA6UBiGdWHR0NEOGDGH+/Pkhy+fPn8/w4cP3u01BQcE+6d9++21OPvlkoqKivjXNN+V5JB1MG4D94jllyhReeOEFfvjDH35nOY7jsGrVKjIzM9sc86F2sG3wdStXrgypX2foB2BPkfn888+54oorvrOco7kfHIxwOx4crHA6HhwqHfl40BbhcjxwHIfrr7+eV155hXfffZfc3Nzv3EbHAzlg7XsfvBxtZs+e7URFRTlPPfWU88knnzhTp0514uPjg0/0uP32253JkycH02/YsMGJi4tzfvWrXzmffPKJ89RTTzlRUVHO3/72t2Caf/3rX05ERIRz3333OevWrXPuu+8+JzIy0lmyZEm71+/7ONA2eOGFF5zIyEjnj3/8o1NaWhp8VVVVBdMUFhY6c+fOdb744gtn5cqVzs9+9jMnMjLSWbp0abvX7/s40DZ4+OGHnVdffdX57LPPnI8//ti5/fbbHcB5+eWXg2nCvR8E/OQnP3GGDh263zw7Wj/YvXu3s3LlSmflypUO4Dz00EPOypUrnU2bNjmO0zmOBwfaBuF4PDjQNgjH48GBtkFAuBwPfvGLXzg+n89ZuHBhSL/es2dPME1nOB7I4aVBiDh//OMfnZycHCc6Oto56aSTQh7Bd/nllzsjRowISb9w4UJn8ODBTnR0tNOrVy/n0Ucf3SfPv/71r05+fr4TFRXl9O3bN+R/RkejA2mDESNGOMA+r8svvzyYZurUqU7Pnj2d6Ohop3v37s6YMWOcRYsWtWONDtyBtMH999/vHHvssY7X63WSk5Od008/3XnjjTf2yTOc+4HjOE5VVZUTGxvrPPHEE/vNr6P1g8CjVr+pb3eG48GBtkE4Hg8OtA3C8XhwMN+FcDoe7K/ugPP0008H03SG44EcXh7Hce8aEhERERERaQe6J0RERERERNqVBiEiIiIiItKuNAgREREREZF2pUGIiIiIiIi0Kw1CRERERESkXWkQIiIiIiIi7UqDEBERERERaVcahIiIiIiISLvSIEREREIsXLgQj8dDVVXVkQ5FRETClAYhIiKd0JQpU/B4PHg8HqKioujduze33HILdXV1Rzo0ERHpBCKPdAAiInJkjBs3jqeffpqmpibef/99/vM//5O6ujouueSSIx2aiIiEOZ0JERHppGJiYsjIyCA7O5tLL72Uyy67jDlz5gTXr1ixgpNPPpm4uDiGDx9OcXFxcN0XX3zBBRdcQHp6Ol27duWUU07hnXfeCcn///7v/8jLy8Pr9ZKens5//Md/BNc5jsMDDzxA7969iY2NZdCgQfztb3877HUWEZGjgwYhIiICQGxsLE1NTcHPd911Fw8++CAffvghkZGR/PznPw+uq62t5ZxzzuGdd95h5cqVjB07lvPOO4/NmzcD8OGHH3LjjTfym9/8huLiYubOncsZZ5wR3P6///u/efrpp3n00UdZu3Ytv/rVr/jJT35CUVFR+1VYRESOGI/jOM6RDkJERNrXlClTqKqqCp75WLZsGeeccw5nnXUWv/jFLxg1ahTvvPMOZ511FgBvvvkmP/zhD6mvr8fr9e43z+OPP55f/OIXXH/99bzyyiv87Gc/Y+vWrSQkJISkq6uro1u3brz77rsUFBQEl//nf/4ne/bs4YUXXjg8lRYRkaOG7gkREemk/vGPf9C1a1eam5tpamriggsu4JFHHuGTTz4B4IQTTgimzczMBKCiooKePXtSV1fHvffeyz/+8Q+2bdtGc3Mz9fX1wTMho0ePJicnh969ezNu3DjGjRvHhRdeSFxcHJ988gl+v5/Ro0eHxNPY2MjgwYPbqfYiInIkaRAiItJJjRo1ikcffZSoqCiysrKIiooCCA5CAp8BPB4PAK2trQD813/9F/PmzeN///d/6dOnD7GxsfzHf/wHjY2NACQkJPDvf/+bhQsX8vbbb3P33XdTWFjI8uXLg3m88cYbHHPMMSExxcTEHN5Ki4jIUUGDEBGRTio+Pp4+ffoc1Lbvv/8+U6ZM4cILLwTsHpGNGzeGpImMjOTss8/m7LPP5p577iEpKYl3332X0aNHExMTw+bNmxkxYkRbqyEiIh2QBiEiInLA+vTpwyuvvMJ5552Hx+Ph17/+dfAMB9ilXhs2bOCMM84gOTmZN998k9bWVvLz80lISOCWW27hV7/6Fa2trZx++unU1NSwaNEiunbtyuWXX34EayYiIu1BgxARETlgDz/8MD//+c8ZPnw43bp147bbbqOmpia4PikpiVdeeYXCwkL8fj95eXm8+OKLHH/88QD8v//3/0hLS2P69Ols2LCBpKQkTjrpJO68884jVSUREWlHejqWiIiIiIi0K80TIiIiIiIi7UqXY8kBcRyHpqYmWlpaiIiIICoqKvjUHBERERGR76NTDUIKCwuZM2cOq1atOtKhHDEjR47kxBNPZMaMGQe0XVNTE+Xl5Xz55ZfU19cHl8fGxnLMMceQnp4e8jhPEREREZFvctRfjjVlyhQ8Hg8ej4eoqCjS09MZPXo0f/rTn0KexHKweU+YMOHQBBrGdu3axZIl/397dx5XVbX/f/x14DApiCCjSGIOKCCgkIlDYoZDV9OyspvjI7KbTQ6pt9LuNevhWKlUUs7avd/0fsvpmpL+HCr1YuKQqKSFIqaIIGRCyHh+f/jgfC+BMkgH0Pfz8eDx8Oyz1tqffXBx9mevtfaOJzk5GUdHRwICAggODiYgIABHR0eSk5OJj48nKyurrkMVERGRP9jixYtp1aoV9vb2hIWF8e2339Z1SNIA1fskBKB///6kpaWRkpLCtm3b6N27N+PHj2fgwIEUFRXVdXh3tKysLBITE3F2dqZr164EBgbi4eGBq6srHh4eBAYG0rVrV5ydnUlMTFQiIiIicgdbt24dEyZMYNq0aRw5coSePXsyYMAAUlNT6zo0aWAaxHQsOzs7vLy8APDx8aFz58507dqVPn36sGrVKp599lkArl69ypQpU9i4cSPXr18nPDycBQsWEBISUq7NGTNmsHr1auD/ngS8e/duIiMj+etf/8qGDRv4+eef8fLyYvjw4fztb3+76XSjlJQUWrVqxWeffUZMTAyHDx+mdevWfPTRR0RGRprLnTx5ksmTJ/PNN9/QuHFj+vbty4IFC3BzcwNuTJUKCgoC4B//+AfW1taMGzeOt99+2xxjdnY248eP59///jf5+fn06tWLmJgY2rZta97Pvn37eOONNzh48CB2dnZ06dKFtWvX4uLiAtx44vHUqVNZtmwZtra2PP/888yYMaPccRUWFnLixAlcXFwICgrCyqrinNXOzo6goCCOHz9OYmIiLi4uNy0rIiIi9UfpeUdVvf/++0RHR5vPvRYuXMhXX31FbGwss2fP/iNClDtUgz1TfPDBBwkJCWH9+vXAjQXTf/rTn7h06RJbt27l0KFDdO7cmT59+lR4dX7y5Mk8+eST5lGWtLQ0unXrBoCTkxOrVq3i5MmTLFq0iKVLl7JgwYJKY5oyZQqvvvoqR44coVu3bjzyyCNcuXIFgLS0NHr16kVoaCgJCQnExcWRnp7Ok08+WaaN1atXYzQaOXDgADExMSxYsIBly5aZ3x8zZgwJCQls3ryZ//znP5hMJh5++GEKCwsBOHr0KH369CEwMJD//Oc/7N27l0GDBlFcXFxmH40bN+bAgQPMmzePmTNnsmPHjnLHk56ebn64WGVJhZWVFf7+/phMJvLz8yv9rERERKRhKSgo4NChQ/Tt27fM9r59+7J///46ikoaqgYxEnIz7du359ixY8CNUYzExEQuX76MnZ0dAO+++y4bN27k888/57nnnitT19HREQcHB/Lz882jLKWmT59u/refnx+vvvoq69atY+rUqbeM56WXXmLo0KEAxMbGEhcXx/Lly5k6dSqxsbF07tyZWbNmmcuvWLECX19fTp8+Tbt27QDw9fVlwYIFGAwG/P39SUxMZMGCBYwdO5Yff/yRzZs3s2/fPnPC9M9//hNfX182btzIE088wbx58wgPD2fx4sXm/ZQ+HKxUcHAwf//73wFo27YtH374ITt37iQqKspcxmQyceHCBdzc3MyfZ2Xs7Oxwd3cnKysLe3t73TVLRETkDpKZmUlxcTGenp5ltnt6enLp0qU6ikoaqgadhJhMJvOJ7qFDh8jJyaFZs2ZlyuTl5ZGcnFytdj///HMWLlzITz/9RE5ODkVFRTRp0qTSehEREeZ/G41GwsPDSUpKMse3e/duHB0dy9VLTk42JyFdu3Ytc/IeERHBe++9R3FxMUlJSRiNRu6//37z+82aNcPf39+8n6NHj/LEE0/cMs7g4OAyr729vbl8+XKZbYWFheTl5dGqVatKj/u/ubu7k5GRUeZ3IyIiIneO33+/6ztfaqJBJyFJSUnmk+SSkhK8vb3Zs2dPuXJNmzatcpvx8fE89dRTvPXWW/Tr1w9nZ2fWrl3Le++9V6MYSztlSUkJgwYNYu7cueXKeHt7V6mtmz3c/r87v4ODQ6Xt/H5ti8FgKHensdLpW0Zj9f6LlJa/WawiIiLSMLm5uWFtbV1u1OPy5cvlRkdEKtNg14Ts2rWLxMRE8/Snzp07c+nSJYxGI23atCnzU7rw+/dsbW3LrJWAG4u6W7ZsybRp0wgPD6dt27acO3euSjHFx8eb/11UVMShQ4do3769Ob4TJ07g5+dXLr7GjRtX2Ebp67Zt22JtbU1AQABFRUUcOHDA/P6VK1c4ffo0HTp0AG6McuzcubNK8d6KtbW1+Tiqo7S8roiIiIjcWWxtbQkLCyu3jnTHjh3maeIiVdUgkpD8/HwuXbrEhQsXOHz4MLNmzWLw4MEMHDiQUaNGAfDQQw8RERHBkCFD+Oqrr0hJSWH//v1Mnz6dhISECtv18/Pj2LFjnDp1iszMTAoLC2nTpg2pqamsXbuW5ORkYmJi2LBhQ5Xi/Oijj9iwYQM//PADL774ItnZ2TzzzDMAvPjii2RlZfHnP/+Z7777jjNnzrB9+3aeeeaZMonQ+fPnmTRpEqdOneKzzz7jgw8+YPz48cCN9RuDBw9m7Nix7N27l++//54RI0bg4+PD4MGDAXj99dc5ePAgL7zwAseOHeOHH34gNjaWzMzMan3mNjY2ODg4kJGRUa16GRkZWFtbKwkRERG5A02aNIlly5axYsUKkpKSmDhxIqmpqTz//PN1HZo0MA0iCYmLi8Pb2xs/Pz/69+/P7t27iYmJYdOmTeYr9gaDga1bt/LAAw/wzDPP0K5dO5566ilSUlJuOkQ4duxY/P39CQ8Px93dnX379jF48GAmTpzISy+9RGhoKPv37+fNN9+sUpxz5sxh7ty5hISE8O2337Jp0ybzKEzz5s3Zt28fxcXF9OvXj6CgIMaPH4+zs3OZO0+NGjWKvLw8unTpwosvvsjLL79cZlH9ypUrCQsLY+DAgURERGAymdi6dat5ilW7du3Yvn0733//PV26dCEiIoJNmzZVe1qVwWDAx8eHzMzMKt/tKj8/n4yMDC1KFxERuUMNGzaMhQsXMnPmTEJDQ/nmm2/YunUrLVu2rOvQpIExmDR5/7aVPifkyJEjhIaG1ridyMhIQkNDWbhwYa3FdjsKCwuJj4/H2dn5ls8JgRtrXo4fP052draeEyIiItJAVPc5ISK1pUEvTJc/lo2NDYGBgSQmJnL8+HH8/f0rvF1vfn4+p06dIjs7m44dO+Lq6loH0YqIiIhIQ6EkRG7J1dWVjh07cuLECeLj43Fzc8Pd3R2j0UhRUREZGRlkZmZiZWWlBEREREREqkTTsaRKCgsLSU9P58KFC+Tl5Zm3Ozg44OPjg5eXV7XXnYiIiIjI3UlJiFSLyWSiqKiIoqIijEYjRqNRi9BFREREpFqUhIiIiIiIiEXpFkYiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERizLWdQAiIlK/mEwmCgsLKS4uxtraGhsbGwwGQ12HJSIidxAlISIiAkBhYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RZ1Ox4qMjGTChAm13q7JZOK5557D1dUVg8HA0aNHLbp/EZGGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljixcvplWrVtjb2xMWFsa3335bK3UqK1MbbUj9Ue0kZMyYMRgMBgwGAzY2Nnh6ehIVFcWKFSsoKSm5rWBqKymIi4tj1apVbNmyhbS0NIKCgm67Tai9+L755hsGDRpE8+bNMRgMbNy4scJyVe1IYWFhBAUFlfu5ePFiubIXLlxgxIgRNGvWjEaNGhEaGsqhQ4du+5hEpOHKysoiMTERZ2dnunbtSmBgIB4eHri6uuLh4UFgYCBdu3bF2dmZxMREJSIid7F169YxYcIEpk2bxpEjR+jZsycDBgwgNTX1tupUVqY22pD6xWAymUzVqTBmzBjS09NZuXIlxcXFpKenExcXx+zZs+nZsyebN2/GaKzaLK/IyEhCQ0NZuHBhha9r6sMPP2T+/PmcO3euWvuvbrw1tW3bNvbt20fnzp0ZOnQoGzZsYMiQIWXKrFu3jpEjR7J48WK6d+/OJ598wrJlyzh58iT33HNPjfabnZ1Np06d6N27N+PGjcPDw4Pk5GT8/Pxo3bp1tdrye+3LGsUgIvVLIyMs6N0YTzdXgjsGYWV182tTJSUlHD9+nOzsbFxcXG5ZVkQahupeqL3//vvp3LkzsbGx5m0dOnRgyJAhzJ49u8Z1KitTG21I/VKjbxA7Ozu8vLzw8fGhc+fOvPHGG2zatIlt27axatUq4MaUqHnz5nHvvffi4OBASEgIn3/++U3bHDNmDF9//TWLFi0yj7SkpKQQFxdHjx49aNq0Kc2aNWPgwIEkJyffsp2XX36Z1NRUDAYDfn5+AOTm5jJq1CgcHR3x9vbmvffeK1c3Pz+fV155BQ8PD+zt7enRowcHDx68ZXy/l5GRgZeXF7NmzTJvO3DgALa2tmzfvh2AAQMG8M477/DYY4/d9Djef/99oqOjefbZZ+nQoQMLFy7E19e3TMeqrrlz5+Lr68vKlSvp0qULfn5+9OnTp9oJiIjcObr7GLG1hg7t/StNKqysrPD398dkMpGfn2+hCEWkvigoKODQoUP07du3zPa+ffuyf//+GteprExttCH1T61dxnrwwQcJCQlh/fr1AEyfPp2VK1cSGxvLiRMnmDhxIiNGjODrr7+usP6iRYuIiIhg7NixpKWlkZaWhq+vL7m5uUyaNImDBw+yc+dOrKysePTRR2869WvRokXMnDmTFi1akJaWZk4ipkyZwu7du9mwYQPbt29nz5495aYhTZ06lS+++ILVq1dz+PBh2rRpQ79+/cjKyrppfL/n7u7OihUrmDFjBgkJCeTk5DBixAheeOGFch3jZv6ojrR582bCw8N54okn8PDwoFOnTixdurTG7YlIwxfV0hZ3N3fs7OyqVN7Ozg53d3euX79ONQfSRaSBy8zMpLi4GE9PzzLbPT09uXTpUo3rVFamNtqQ+qdW747Vvn17jh07Rm5uLu+//z67du0iIiICgHvvvZe9e/fyySef0KtXr3J1nZ2dsbW1pVGjRnh5eZm3Dx06tEy55cuX4+HhwcmTJyscQnR2dsbJyQlra2tzOzk5OSxfvpw1a9YQFRUFwOrVq2nRooW5Xm5uLrGxsaxatYoBAwYAsHTpUnbs2MHy5cuZMmVKhfFV5OGHH2bs2LEMHz6c++67D3t7e+bMmVOVjxD44zrSmTNniI2NZdKkSbzxxht89913vPLKK9jZ2TFq1KgatysiDZOjDXg0MuDh4V6teu7u7mRkZGAymXTrXpG70O/7fVX+FlSlTmVlaqMNqT9qNQkp/UWfPHmS69evm0/4SxUUFNCpU6dqtZmcnMybb75JfHw8mZmZ5hGQ1NTUKs9jTE5OpqCgwJwQAbi6uuLv71+mTGFhId27dzdvs7GxoUuXLiQlJVUrZoB3332XoKAg/vWvf5GQkIC9vX2126jtjlRSUkJ4eLh5qlinTp04ceIEsbGxSkJE7kL2xht/T6q6jq9UaXmNhIjcXdzc3LC2ti53QfTy5cvlLpxWp05lZWqjDal/anVVYVJSEq1atTInCl9++SVHjx41/5w8efKW60IqMmjQIK5cucLSpUs5cOAABw4cAG4kNFVVlS/K0jK1deJ/5swZLl68SElJSaUL5H/vj+pI3t7eBAQElNnWoUMH3TVC5C51vejG372ioqJq1Sstr6uLIncXW1tbwsLC2LFjR5ntO3bsoFu3bjWuU1mZ2mhD6p9aS0J27dpFYmIiQ4cOJSAgADs7O1JTU2nTpk2Zn4rWUZSytbWluLjY/PrKlSskJSUxffp0+vTpQ4cOHcjOzq52bG3atMHGxob4+HjztuzsbE6fPl2mjK2tLXv37jVvKywsJCEhgQ4dOlQY380UFBQwfPhwhg0bxjvvvEN0dDTp6elVjveP6kjdu3fn1KlTZbadPn2ali1b1rhNEWm4cgrh8m8mLl/OqFa9jIwMrK2tlYSI3IUmTZrEsmXLWLFiBUlJSUycOJHU1FSef/554MYdSvv06VOtOlUpUxttSP1So+lY+fn5XLp0qdwtegcOHMioUaOwtrZm8uTJTJw4kZKSEnr06MGvv/7K/v37cXR0ZPTo0RW26+fnx4EDB0hJScHR0RFXV1eaNWvGkiVL8Pb2JjU1lddee63a8To6OhIdHc2UKVNo1qwZnp6eTJs2rcydYBo3bsy4ceOYMmUKrq6u3HPPPcybN4/ffvuN6Ojom8ZX0d1kpk2bxtWrV4mJicHR0ZFt27YRHR3Nli1bgBtrVH766Sdz+bNnz3L06FHzfuFGRxo5ciTh4eFERESwZMmS2+5IEydOpFu3bsyaNYsnn3yS7777jiVLlrBkyZIatykiDduOcwW4N8ogPz+/SovT8/PzycjIoHHjxkpCRO5Cw4YN48qVK8ycOdP8LLatW7eaL2hmZmaWu4tpZXWqUqY22pD6pUbPCVm9ejVwY16wi4sLISEhPP3004wePdp8Um4ymfjggw9YvHgxZ86coWnTpubb+T7wwANA+edunD59mtGjR/P999+Tl5fH2bNn+emnn3jllVc4c+YM/v7+xMTEEBkZWeGzNUotXLiQhQsXlrmFbk5ODuPGjWP9+vU4OTnx6quv8uWXX5bZ//Xr15k6dSqfffYZ165dIzw8nAULFnDffffdNL7SWwCX2rNnD1FRUezevZsePXoAN9avBAcHM3v2bMaNG8eePXvo3bt3ubhHjx5tvsUx3HhY4bx588wdacGCBebPrqa2bNnC66+/zo8//kirVq2YNGkSY8eOrXY7ek6IyJ1BzwkRubvV1gOdRaqr2kmIiIjcWUqfmO7i4oK/v3+FIyL5+fmcOnWK7OxsOnbsiKurax1EKiIidwolISIiQlZWFidOnKCkpAQ3Nzfc3d0xGo0UFRWRkZFBZmYmVlZWBAYGKgEREZHbpiRERESAGzfjSE9P58KFC+Tl5Zm3Ozg44OPjg5eXV7Vv5ysiIlIRJSEiIlKGyWSiqKiIoqIijEYjRqNRi9BFRKRWKQkRERERERGL0q1NRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUpCREREREREYtSEiIiIiIiIhZlrOsARESkfjGZTBQWFlJcXIy1tTU2NjYYDIa6DktERO4gdZqEREZGEhoaysKFC2u1XZPJxF/+8hc+//xzsrOzOXLkCKGhobW6DxGRO01hYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RbWnY40ZMwaDwYDBYMDGxgZPT0+ioqJYsWIFJSUltxVMZGQkEyZMuK02AOLi4li1ahVbtmwhLS2NoKCg226ztn3zzTcMGjSI5s2bYzAY2LhxY7kyixcvplWrVtjb2xMWFsa3335bYVthYWEEBQWV+7l48WK5srGxsQQHB9OkSROaNGlCREQE27Ztq+3DE5EGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljVT0/qW6dysrUZL9Sf9VoTUj//v1JS0sjJSWFbdu20bt3b8aPH8/AgQMpKiqq7RirLTk5GW9vb7p164aXlxdGY/kBn4KCgjqI7P/k5uYSEhLChx9+WOH769atY8KECUybNo0jR47Qs2dPBgwYQGpqarmyhw4d4vjx4+V+mjdvXq5sixYtmDNnDgkJCSQkJPDggw8yePBgTpw4UevHKCINQ1ZWFomJiTg7O9O1a1cCAwPx8PDA1dUVDw8PAgMD6dq1K87OziQmJioREbmLVef8pDp1KitTk/1K/WYwmUym6lQYM2YMv/zyS7kr97t27aJPnz4sXbqUZ599FpPJxPz58/n4449JS0ujXbt2vPnmmzz++OPmOv89HWvMmDGsXr26TJtnz57lhx9+4J133uH48eNYW1sTERHBokWLaN269U3j++92WrZsSUpKCpGRkQQFBWFra8uaNWsIDAzk66+/rjTO3Nxcxo0bx/r163FycmLy5Mn8+9//vuk0soyMDDp27Mgrr7zCG2+8AcCBAwfo2bMnW7ZsoW/fvuXqGAwGNmzYwJAhQ8zb7r//fjp37kxsbKx5W4cOHRgyZAizZ8+u+JdTQ66ursyfP5/o6Ogq1/F77ctajUFE6kYjIyzo3RhPN1eCOwZhZXXza1MlJSUcP36c7OxsXFxcbllWRBqG6s4Wqcn5SVXqVFbGkudFYhm19g3y4IMPEhISwvr16wGYPn06K1euJDY2lhMnTjBx4kRGjBjB119/XWH9RYsWERERwdixY0lLSyMtLQ1fX19yc3OZNGkSBw8eZOfOnVhZWfHoo4/edOrXokWLmDlzJi1atCAtLY2DBw+a31u9ejVGo5F9+/bxySefVCnOKVOmsHv3bjZs2MD27dvZs2cPhw4duunn4O7uzooVK5gxYwYJCQnk5OQwYsQIXnjhhQoTkIoUFBRw6NChcuX79u3L/v37q9RGVRQXF7N27Vpyc3OJiIiotXZFpOHo7mPE1ho6tPevNKmwsrLC398fk8lEfn6+hSIUkfqiJucnValTWRlLnReJZdXqwvT27dtz7NgxcnNzef/999m1a5f55Pbee+9l7969fPLJJ/Tq1atcXWdnZ2xtbWnUqBFeXl7m7UOHDi1Tbvny5Xh4eHDy5MkKs3dnZ2ecnJywtrYu0w5AmzZtmDdvnvl1ZXGGhYWxfPly1qxZQ1RUFHAjkWnRosUtP4eHH36YsWPHMnz4cO677z7s7e2ZM2fOLev8t8zMTIqLi/H09Cyz3dPTk0uXLlW5nZtJTEwkIiKC69ev4+joyIYNGwgICLjtdkWk4YlqaYu7mzt2dnZVKm9nZ4e7uztZWVnY29vrrlkid5GanJ9UpU5lZf7o8yKpG7WahJhMJgwGAydPnuT69evmE/dSBQUFdOrUqVptJicn8+abbxIfH09mZqZ5BCQ1NbXaQ4jh4eFlXlcWZ3JyMgUFBWVGCVxdXfH39690X++++y5BQUH861//IiEhAXt7+2rFCpT7ci/9fG+Xv78/R48e5ZdffuGLL75g9OjRfP3110pERO4yjjbg0ciAh4d7teq5u7uTkZFRa3+TRKRhqcn5SVXqVFbmjzovkrpRq0lIUlISrVq1MicKX375JT4+PmXKVPVqW6lBgwbh6+vL0qVLad68OSUlJQQFBdVoYXnjxo3LvK4szitXrlR7H6XOnDnDxYsXKSkp4dy5cwQHB1e5rpubG9bW1uWy+8uXL5e7ClATtra2tGnTBriRmB08eJBFixaZp6iJyN3B3njjy7uim3fcSmn5ai4pFJEGribnJ1WpU1mZP/q8SOpGra0J2bVrF4mJiQwdOpSAgADs7OxITU2lTZs2ZX58fX1v2oatrS3FxcXm11euXCEpKYnp06fTp08fOnToQHZ2dm2FXGmcbdq0wcbGhvj4eHOd7OxsTp8+fct2CwoKGD58OMOGDeOdd94hOjqa9PT0Ksdla2tLWFgYO3bsKLN9x44ddOvWrXoHWQWa3y1yd7pedCOJqO5dDUvL6wqkyN2lJucnValTWRlLnxeJZdRoJCQ/P59Lly5RXFxMeno6cXFxzJ49m4EDBzJq1Cisra2ZPHkyEydOpKSkhB49evDrr7+yf/9+HB0dGT16dIXt+vn5ceDAAVJSUnB0dMTV1ZVmzZqxZMkSvL29SU1N5bXXXrutA/5vpXe7ulWc0dHRTJkyhWbNmuHp6cm0adMqXbw5bdo0rl69SkxMDI6Ojmzbto3o6Gi2bNliLpOTk8NPP/1kfn327FmOHj2Kq6sr99xzD5MmTWLkyJGEh4cTERHBkiVLSE1N5fnnn7+tY37jjTcYMGAAvr6+XLt2jbVr17Jnzx7i4uJuq10RaXhyCuHybybcLmfg4eFR5XoZGRlYW1srCRG5C1V2fvLhhx+yYcMGdu7cWeU6VSnzR50XSd2pURISFxeHt7c3RqMRFxcXQkJCiImJYfTo0eYT9LfffhsPDw9mz57NmTNnaNq0KZ07dzbftrYikydPZvTo0QQEBJCXl8fZs2dZu3Ytr7zyCkFBQfj7+xMTE0NkZGSNDrYilcU5f/58cnJyeOSRR3BycuLVV1/l6tWrN21vz549LFy4kN27d9OkSRMAPv30U4KDg4mNjWXcuHEAJCQk0Lt3b3O9SZMmATB69GhWrVrFsGHDuHLlCjNnzjQ/cHHr1q20bNnyto43PT2dkSNHkpaWhrOzM8HBwcTFxZVbFyMid4cd5wpwb5RBfn5+labL5ufnk5GRQePGjZWEiNyFKjs/yczMJDk5uVp1qlLmjzovkrpT7eeESNnnm9yt9JwQkTuDnhMicner7k1+RGpLrS5Ml7tHypw/1XUIIlJLSp+Yfvz4cfz9/SscEcnPz+fUqVNkZ2fTsWNHXF1d6yBSERG5UygJERG5y7m6utKxY0dOnDhBfHw8bm5uuLu7YzQaKSoqIiMjg8zMTKysrJSAiIhIrdB0LBERAaCwsJD09HQuXLhAXl6eebuDgwM+Pj54eXlV+3a+IiIiFVESIiIiZZhMJoqKiigqKsJoNGI0GrUIXUREapWSEBERERERsSjd2kRERERERCxKSYiIiIiIiFiUkhAREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUZ6zoAERERubWSkhIuXryIk5MTBoOhrsO565lMJq5du0bz5s2xstL13Lqm/lG/VLV/KAkRERGp5y5evIivr29dhyG/c/78eVq0aFHXYdz11D/qp8r6h5IQERGRes7JyQmAs2d34OTUuI6jkWvXcmnVKsr8e5G6pf5Rv1S1fygJERERqedKp5g4OTWmSRPHOo5GSmnqT/2g/lE/VdY/NJFRREREREQsSkmIiIiIiIhYlJIQERERqXVt2/YnJubTWmsvOno6Q4eOr7X2RKRuKQkRERG5w0RHT8fWNhhb22AcHDrRunVfXnrpbbKzf63r0CwmJeUCtrbBHD36Q12HIneBuu5zM2cuJjz8CYvsq7ZoYbqIiMgdqF+/7ixd+jZFRUUkJZ3huef+xi+/XOMf/5hX16GJ3JHU56pHIyEiIiJ3IFtbW7y83GjRwouoqG488UR//t//+4/5/dWrN9Kx42CcnMIJCnqEjz9eW6b+zz9fYvjwqXh69qBp0y507foU3313DIDk5PM89tgrtGgRiYvL/URE/JmdO+NvGc8vv/zKuHFv0aJFJE5O4YSGPsqXX34NVHwVNybmU9q27X/T9r76ai+RkaNxd++Ol1dPhgx5ieTk8+b327UbAECXLk9iaxvMQw89U+VjF6mJ2+lzBQWFjB8/i3vueRAnp3Datu3P3LnLzO9fvXqNcePewsenF82aRdC3bzTff38KgDVrNvHOOx9z7Ngp82jMmjWbLHfgNaSREBERkTvcmTM/89VX+7CxufG1v3z558ycGcvCha8TGtqeo0d/YNy4t2jUyIFRowaTk/MbDz30DM2be7B+fQyenm4cOZJESYkJgJyc3xgwoCdvvfUS9vZ2fPrpZh599GWOH9/MPfd4l9t/SUkJgwa9wLVruaxaNZt77/UlKSkZa+uaXwvNzc1j/PiRBAW1JTc3j7fe+ognnphAQsL/YmVlxf79/0O3bk8TF7eEgIA22NraVOnYRWpDdfvchx/+ky1b9vA//zMfX19vfv75EufPXwJuPIF88OCXcHFpwubNi2nSxJFly/6X/v3HcuLEv3niiX6cOPEjX321j7i4pQA4O9f/WxUrCREREbkDbd36DS4u91NcXML16/kAzJ8/BYBZs5Ywd+6rPProQwC0atWCpKQzLFv2OaNGDWbt2q1kZGSzf/9nuLo6A9CmzT3mtkNC/AkJ8Te/njnzZTZt2sWWLXt44YU/l4tl5854Dh48zrFjG2nXzg+Ae++9vSeNP/ZYVJnXS5a8hY9PJCdPJhMU1BY3NxcAXF2b4uXlZi5X2bGL1NTt9Lnz5y/Rps09dO/eGYPBQMuWzc3t7tnzHceP/8iFC3uws7MFYO7cyWzevJv163fw7LOP07hxI4xGY5n/6/WdkhAREZE7UGTkfXzwwXR+++06K1eu58cfU3jxxT+TkZHF+fOX+MtfZjBu3Fvm8kVFxearp99//wOhoe3NCcjv5eb+xttvf8zWrd+QlpZBUVEReXn5pKamVVj+++9/oEULT3MCUhuSk88zY8aHfPfdMTIzf6GkpASA8+cvERTUtsI6VTl2kZq6nT43atQjDBjwFwIDH6Ffv+48/PADREV1A+Dw4ZPk5PyGl1fPMvvLy8svMwWxoVESIiIicgdq1MjBPHqxYMFrREVF8/bbH5tHKmJj/06XLh3L1CmdHuXgYH/Ltl977X127NjPnDmv0rq1Lw4O9jz11KsUFhZWWL6y9qysrDCZTGW2FRYW3bLOo4++jK+vF7Gxf8fb24OSkhI6dXqMgoKKYwDM08ludewiNXU7fa5TpwBOn95GXNxedu2K5+mnp/Dgg/ezbt37lJSY8PZ2Y8eOFeX22bSp0x98VH8cJSEiIiJ3genTn2fQoBf4y1+exMfHg7Nnf+bpp/9UYdmgoLasWLGerKyrFY6G7N17mJEjBzNkSB/gxhqRc+cu3nTfHTu24+ef0zl9OqXC0RB3dxfS0zMxmUwYDAYA86Lbily58gs//HCGxYvfpEePMAD27TtcpkzpGpDSERIAT89mlR67SG2pTp8DaNLEkSef7M+TT/bnsceiGDhwHFlZV+nUqQOXLl3BaLTGz8+nwrq2tjYUFxf/UYfyh1ASIiIichfo1es+AgJaM3fuMt58cxwTJ86lSZPG9OvXg/z8Ag4fPkl29q9MmDCKp556mLlzl/H44+N5553xeHm5c/RoEs2be9C1awitW9/Dxo07+dOfemEwGJgx48MyJ/u/98AD4fTsGcawYZOYP38KrVv7curUWQwGA/369eCBB+4jI2MW7767kscei2L79n189dVemjSpeIqUi0sTmjVryrJlX+Dl5c7582lMm7aoTBkPD1ccHOz56qu9+Ph4Ym9vi7OzU6XHLlJbqtPnFi36FC8vN0JC2mNlZeCLL7bj5eVG06ZO9OnTla5dg3n88QnMmjWBdu38SEvLYNu2bxk8+EHCwgJp2bI5KSkXOHr0xtRHJ6fG5vUj9ZXGHkVERO4S48ePZPnyL4iK6s7HH/+dNWs207nzUB566BnWrNlkvspqa2vD1q2f4O7uyiOPvEjnzo8xf/4K89SRd9+dgouLE716jeKxx16mb9/udOrU4Zb7XrfufcLDgxg58q+EhDzK668voLj4RuLSocO9fPDBND7+eC3h4Y9z8GAiEyeOvmlbVlZW/OMf8zh8+CSdOj3G5MnzmTNnUpkyRqORBQv+yrJln9OyZR/z09afeWboLY9dpDZVtc85Ojrw7rsriYh4im7dnubcuYts2vQRVlZWGAwGNm9eTM+eYTz33N8JDBzEiBFTOXfuIh4ezYAbN2ro27c7fftG07x5L9at21aXh10lBtPvJ2GKiIhIvfLrr7/i7OxMZub+m44OiOX8+msObm7duHr1Kk2aNKnrcO566h/1S1X7h0ZCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJQeVigiIlLPld5N/9q13DqOROD/fg96ykH9oP5Rv1S1fygJERERqeeuXbsGQKtWUXUcify3a9eu4ezsXNdh3PXUP+qnyvqHHlYoIiJSz5WUlHDx4kWcnJwwGAx1Hc5dz2Qyce3aNZo3b46VlWa21zX1j/qlqv1DSYiIiIiIiFiU0ncREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRf1/6O69usheWdAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "times_delayed = events.time + 0.5 * (events.time - events.time[0]) ** 2 * 3e-8 / cand_freqs_ef[0]\n", + "ip = InteractivePhaseogram(times_delayed, cand_freqs_ef[0], nt=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "An evolved implementation of this interactive phaseogram is implemented in [HENDRICS](https://github.com/stingraysoftware/hendrics) (command line tool `HENphaseogram`)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb.txt b/_sources/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb.txt new file mode 100644 index 000000000..1f1b783fe --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb.txt @@ -0,0 +1,223 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Inverse Transform Sampling\n", + "\n", + "This notebook will conceptualize how inverse transform sampling works" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import numpy.random as ra\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below is a spectrum which follows an `almost` bell-curve type distribution (anyway, the specific type of distribution is not important here). " + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1, 2, 3, 4, 5, 6], [2000, 4040, 6500, 6000, 4020, 2070]]" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[2000, 4040, 6500, 6000, 4020, 2070]]\n", + "energies = np.array(spectrum[0])\n", + "fluxes = np.array(spectrum[1])\n", + "spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, first we compute probabilities of flux. Afterwards, we compute the cumulative probability." + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.08120179, 0.2452294 , 0.5091352 , 0.75274056, 0.91595615, 1. ])" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prob = fluxes/float(sum(fluxes))\n", + "cum_prob = np.cumsum(prob)\n", + "cum_prob" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We draw ten thousand numbers from uniform random distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.49834338, 0.31993222, 0.35882619, 0.15837646, 0.22595417,\n", + " 0.85575223, 0.85203039, 0.78380252, 0.04170078])" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "N = 10000\n", + "R = ra.uniform(0, 1, N)\n", + "R[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We assign energies to events corresponding to the random number drawn.\n", + "\n", + "_Note: The command below finds bin interval using a single command. I am not sure though that it's very readble. Would\n", + "we want to split that in multiple lines and maybe use explicit loops to make it more readable? Or is it fine as it is?\n", + "Comments?_" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[3, 3, 3, 2, 2, 5, 5, 5, 1]" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = [int(energies[np.argwhere(cum_prob == min(cum_prob[(cum_prob - r) > 0]))]) for r in R]\n", + "gen_energies[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Histogram energies to get shape approximation." + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 825, 1652, 2626, 2466, 1589, 842], dtype=int64)" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = ((np.array(gen_energies) - 1) / 1).astype(int)\n", + "times = np.arange(1, 6, 1)\n", + "lc = np.bincount(gen_energies, minlength=len(times))\n", + "lc" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0VNXXxvHvDoROQgnSiRQpiihgAREMJaEX6UGqoqiI\nYgcLYEHUH/gqRSnSBWkiIDWAhN5BRKmCgDSlhg4h2e8fGWLADEwgk5uyP2vNyszcMs8MYXbOPfee\nI6qKMcYYEx8fpwMYY4xJvqxIGGOMccuKhDHGGLesSBhjjHHLioQxxhi3rEgYY4xxy+tFQkTqiMgO\nEdklIm/Hs7yRiGwRkc0isk5Eqni6rTHGGO8Sb14nISI+wC6gJnAYWA+0VtUdcdbJoqoXXPfvB6ao\nahlPtjXGGONd3m5JPALsVtX9qhoJTAIax13hWoFwyQZEe7qtMcYY7/J2kSgI/BXn8UHXc9cRkSYi\nsh34CXg6IdsaY4zxnmTRca2qM1S1DNAE+NjpPMYYY2Kk9/L+DwFF4jwu5HouXqq6QkSKiUiuhGwr\nIjYAlTHGJJCqyq3W8XZLYj1QQkQCRSQD0BqYFXcFESke534FIIOqnvRk27hU1W6q9O7d2/EMyeFm\nn4N9FvZZ3PzmKa+2JFQ1SkReAsKIKUgjVXW7iHSJWazDgWYi0h64AlwEWt5sW2/mNcYYcz1vH25C\nVecDpW54blic+58Dn3u6rTHGmKSTLDquTeIJCgpyOkKyYJ/Dv+yz+Jd9Fgnn1YvpkoqIaGp4H8YY\nk1REBPWg49rrh5uMMe7dfffd7N+/3+kYJhULDAxk3759t729tSSMcZDrrzmnY5hUzN3vmKctCeuT\nMMYY45YVCWOMMW5ZkTDGGOOWFQljTJIpW7Ysy5YtS/LX7dSpE7169Ury102oiRMnUqdOHadjXMeK\nhDHmpoKCgsiVKxeRkZF3vK/ffvuNatWqJUKq1KlNmzbMnz/f6RjXsSJhjHFr//79rFixAh8fH2bN\ncjt0mvFAVFSU0xFuixUJY4xb48aNo3LlynTs2JExY8Zct2zu3Lncd999+Pn5UbhwYb744gsATpw4\nQcOGDcmZMye5c+fmiSeeiN2maNGi/PzzzwBcunSJDh06kCtXLu677z7+97//Ubhw4evWHTBgAA88\n8AA5c+YkNDSUK1euxC6fPXs25cuXJ2fOnDz++ONs3bo1dtnmzZupWLEi/v7+tG7dmkuXLt30fY4a\nNYp7772X3LlzU7duXQ4cOBC7zMfHh2HDhlGyZEly5crFSy+9lKBtv/76a0qWLEnJkiUBCAsLo3Tp\n0uTMmZOuXbsSFBTEqFGjABg7dixVq1aN3X7Hjh2EhISQO3duypQpw9SpU2/5+Sc6p0ciTKTRDNWY\nlCi5/+6WKFFChw4dqhs3blRfX1/9559/Ypflz59fV65cqaqqp0+f1s2bN6uqas+ePfWFF17QqKgo\nvXr1qq5YsSJ2m7vvvlsXL16sqqpvv/22BgUFaUREhB46dEjLlSunhQsXvm7dRx99VI8ePaqnTp3S\nMmXK6LBhw1RVddOmTXrXXXfp+vXrNTo6WseNG6d33323XrlyRa9cuaKBgYH61Vdf6dWrV3XatGnq\n6+ur77//frzvccaMGXrPPffozp07NSoqSvv27auPPfZY7HIR0YYNG+qZM2f0wIEDmidPHl2wYIHH\n24aEhOjp06f10qVLevz4cfXz89MZM2ZoVFSUfvXVV5ohQwYdOXKkqqqOGTNGq1atqqqq58+f18KF\nC+vYsWM1Ojpaf/nlFw0ICNDt27ff9PO/kbvfMdfzt/5+9WSl5H5L7v/RjHHnlr+7vXvH/De98da7\nt+fru1v3FpYvX64ZMmTQkydPqqpqmTJl9Msvv4xdHhgYqMOHD9czZ85ct12vXr20SZMm+scff/xn\nn3GLRLFixXThwoWxy7799tv/FImJEyfGPn7rrbf0hRdeUFXVF154QXv16nXdvkuVKqXLli3TZcuW\nacGCBa9b9thjj7ktEnXr1tVRo0bFPo6KitIsWbLogQMHVDXmi37VqlWxy1u2bKmfffaZx9uGh4fH\nLh83btx1RURVtXDhwvEWicmTJ2u1atWuW7dLly764Ycfqqr7z/9Gd1ok7HCTMclZnz7xlYiY5z1d\n3926tzBu3DhCQkLImTMnAKGhoYwdOzZ2+Q8//MCcOXMIDAykevXqrFmzBoC33nqL4sWLExISQokS\nJfjss8/i3f/hw4cpVKhQ7OO4h5quyZs3b+z9LFmycO7cOSCmr2TAgAHkypWLXLlykTNnTg4ePMjh\nw4c5fPgwBQteP9NxYGCg2/e5f/9+Xnnlldh95c6dGxHh0KF/5zi7WY5bbRv3PR4+fPg/7zPu8htz\nrVmz5rr3OHHiRP7++2/A/eef2GzsJmPMf1y6dIkpU6YQHR1N/vz5Abhy5QqnT59m69at3H///VSs\nWJEZM2YQFRXFoEGDaNmyJQcOHCBr1qz079+f/v37s23bNqpXr84jjzxC9erVr3uN/Pnzc/DgQUqX\nLg1w3bH8WylcuDDvvvsuPXv2/M+yZcuWXfclfW3fJUqUiHdfRYoU4b333iM0NNTj14+b41bbivw7\n8kX+/Pn/cwLAwYMH3e47KCiIBQsWxLvc3eef2KwlYYz5jx9//JH06dOzfft2tmzZwpYtW9i+fTtV\nq1Zl3LhxXL16lYkTJ3LmzBnSpUtH9uzZSZcuHQBz5sxhz549AGTPnp306dPHLourZcuW9OvXj9On\nT3Po0CGGDBnicb5nn32WoUOHsm7dOgDOnz/P3LlzOX/+PJUrVyZ9+vQMGjSIq1evMn369Nj14tOl\nSxc++eQTtm3bBkBERATTpk3zKMfzzz+foG3r16/Pb7/9xqxZs4iKimLw4MGxLYMbNWjQgF27dvHd\nd99x9epVIiMj2bBhAzt27CAyMtLt55/YrEgYY/5j3LhxPP300xQsWJC77ror9ta1a1cmTJgAwPjx\n4ylatCg5cuRg+PDhTJw4EYDdu3dTq1YtsmfPTpUqVejatWvstRFx/6ru1asXBQsWpGjRooSEhNCi\nRQsyZswYuzzuujeqWLEiI0aM4KWXXiJXrlyULFky9lCYr68v06dPZ/To0eTOnZupU6fSrFkzt/tq\n0qQJPXr0oHXr1uTIkYNy5cpdd63CjTniPk7ottfyvPnmmwQEBLBjxw4eeuih6973NdmyZSMsLIxJ\nkyZRoEABChQoQI8ePWLP8HL3+Sc2GwXWGAfZKLD/Gjp0KJMnT2bJkiVOR0kyqkqhQoWYOHHidacK\nJyYbBdYYkyIdPXqUVatWoars3LmTAQMG0LRpU6djeV1YWBgRERFcvnyZvn37AlCpUiWHU7lnHdfG\nGEdcuXKFLl26sG/fPnLkyEFoaCgvvPCC07G8bvXq1bRp04bIyEjuvfdeZs6cGe/hpuTCDjcZ4yA7\n3GS8zQ43GWOM8RorEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxphE1a9fP5577rlEX/dWfHx8\n2Lt3b6Lsy/zLioRJdc5ePsvL815m8LrB7Dy+004xvQNjxoyhXLlyZM2alQIFCvDiiy8SERFx0216\n9uzJ8OHDPdp/Qta9lZsN47Ft2zZq165N7ty5yZUrFw8//LDXpwmtXr167GRCKZkVCZOqqCrP//Qc\nB35ZyuYD6wgeH8zdX91N51mdmfzbZI5fOO50xBRjwIAB9OzZkwEDBnDmzBnWrFnD/v37CQ4O5urV\nq/Fu4+QUnTf7Y6Bhw4bUrl2bv//+m3/++YeBAwfi5+eXhOn+K8VMZ+rJpBPJ/YZNOmRchm8YrmV7\nBej5+0urRkZqdHS0bj+2XQeuGagNJzZUv35+WvGb8tpjYQ9dvHexXoq85Gje5Pq7e+bMGc2WLZtO\nmzbtuufPnTunefLk0dGjR6uqap8+fbR58+batm1b9ff315EjR2qfPn20bdu2sduMHTtWAwMDNSAg\nQD/66KPrJh6Ku+6+fftURHTs2LFapEgRzZMnj/bt2zd2P+vWrdPKlStrjhw5tECBAvrSSy9pZGRk\n7HIR0T179vznvRw/flx9fHw0IiIi3vcaHh6uhQoV0k8++UQDAgK0aNGiOmHChNjlly9f1tdff12L\nFCmi+fLl0xdeeEEvXfr392bGjBn64IMPqp+fn5YoUUIXLFig7777rqZLl04zZ86s2bNn127dusVm\nHDJkiN5zzz1arFix2PccFRUVu7+goKDrJiGqUqWKvvrqq5ojRw4tXry4rlq1SseMGaOFCxfWvHnz\n6tixY2/yL3nnkw45/gWfGLfk+h/NJK1fjvyiAR/76fay+VSPHYt3nStHDumykhn1/dZ5tdI7d2n2\nDzJpnW+q6IAV/9Nfj/6q0dHRSZo5uf7uzp8/X319fa/78rqmQ4cO2qZNG1WN+ZLPkCGDzpo1S1VV\nL168qH369NF27dqpqurvv/+u2bJl01WrVmlkZKS+8cYbmiFDhuuKxLV1r31hPvfcc3r58mXdsmWL\nZsyYUXfs2KGqqhs3btS1a9dqdHS07t+/X++991796quvYnO5KxKqqiVLltQGDRrojBkz9O+//75u\nWXh4uKZPn17feOMNvXLlii5dulSzZs2qu3btUlXV7t27a+PGjfX06dN67tw5bdSokb7zzjuqqrp2\n7Vr19/ePfT+HDx/WnTt3qur1X/ZxM8adznTfvn3q4+Nz0yLh6+sbO4Xpe++9p0WKFNGXXnpJr1y5\nomFhYZo9e3Y9f/6823/LOy0SNnaTSRXOXj5Ly4lP8n/zlNIjfoSAgHjX881XgKq/RlD111/5cO1a\nTq1fxpKlK1i4vj9DHviGi5EXqVWsFsHFgqlVrBb5s+dP4ndyPfnglqMmeER7J6xf5vjx4wQEBODj\n898j0vnz52fTpk2xjytXrkzDhg0ByJQp03Xr/vDDDzRq1IjKlSsD8OGHHzJw4EC3rysi9OnThwwZ\nMlCuXDkeeOABtmzZQqlSpahQoULsekWKFOG5555j6dKlvPzyy7d8P0uWLOHTTz/ljTfe4M8//+Tx\nxx/n22+/jZ2ISET46KOP8PX1pVq1atSvX58pU6bw7rvvMmLECLZu3Yq/vz8APXr04KmnnqJv376M\nGjWKZ555hho1asR+NtcmaXLnnXfeid2XJ4oWLUr79u0BaNWqFZ988gm9e/fG19eX4OBgMmTIwB9/\n/EG5cuU83mdCWJEwKZ6q0mVmZ6ptjaBt60/gViNqZswIDz8MDz9MTl6iKdD08mXImJG9p/aycM9C\nZuycwSvzX6FQhgCCz+cluHR9qlXvSJbc+ZLkPV2T0C/3xBIQEMDx48eJjo7+T6E4cuQIAXGKcHzT\njl5z43SdmTNnJnfu3Dd9bXdThe7evZvXXnuNDRs2cPHiRa5evUrFihU9ej8FChSILU6HDh3i2Wef\npUOHDqxcuRKAnDlzXlfgAgMDOXz4MMeOHePChQvXvU50dHRs/8dff/1F/fr1PcpwjbvpSt2J+3lk\nzpwZ4LrPP3PmzLGfkTdYx7VJ8UZsGsFvJ7YxsOYA6Nr19nbiGoWzWM5idHmoCz+0/IFjbx5jRMUP\nyHk+mk9W9CPvF/mp+WI2Pu3+EBtnfE20Rifiu0heKleuTMaMGZk+ffp1z587d4558+ZRq1at2Odu\ndlbRtSlKr7l48SInTpy4rUwvvPACZcqUYc+ePZw+fZq+ffve1plrBQsWpGvXrvz222+xz506dYqL\nFy/GPj5w4AAFChQgICCALFmy8Pvvv3Py5ElOnjzJ6dOnY8/wKly4cOwsfDdy97nEfT5r1qwAXLhw\nIfa5o0ePJvg9eZMVCZOibTm6hXd/fpcpLaaSuW1HuMkXVkKl80nHo9VCea/fSpZ9GcHhnid4teHH\nHC6QnbY7PyVv/7y0ntaakZtGciDCNbfwhQtwG19cyY2fnx+9evWiW7duLFiwgKtXr7Jv3z5atWpF\nkSJFaNu2rUf7ad68OT/99BNr1qwhMjKSPn363HT9m33pnz17Fj8/P7JkycKOHTv45ptvPMpw+vRp\n+vTpw549e1BVjh8/zqhRo2IPgV173d69exMZGcny5cuZM2cOLVu2RER49tln6d69O8eOHQNiWiJh\nYWEAPPPMM4wePZolS5agqhw+fJidO3cCMS2AW123ERAQQMGCBfnuu++Ijo5m1KhRbouOJ5+RN1iR\nMCnW2ctnaTG1BV/W/pLSAaW9/nrZs+WiQd3uDHxrCdvfPsCm5zYRUjyERX8uouLwipQeXJpuHzzK\nrEo5OdOkLnz8MSxcCKdPez2bN7z55pt88sknvPHGG/j7+1O5cmUCAwNZtGgRvr6+Hu3j3nvvZdCg\nQbRq1YoCBQrg5+fHXXfd5Xb+hJtNFdq/f38mTJiAn58fXbp0oXXr1jfd9poMGTKwb98+goOD8ff3\np1y5cmTKlInRo0fHrpM/f35y5sxJgQIFaNeuHcOGDeOee+4B4LPPPqNEiRJUqlSJHDlyEBISwq5d\nuwB4+OGHGT16NN27d8ff35+goCAOHIj5g+GVV15h6tSp5M6dm+7du7vNOGLECD7//HMCAgLYvn07\nVapUuelnerPPyBu8Pp+EiNQBviSmII1U1c9uWN4GeNv18Czwoqr+6lq2D4gAooFIVX3EzWtoUldX\n4yxV5anpT5EtQzaGN0yci7HuRLRGs+XoFsL2LGDhttms/XsjD0bmJnh/eoJX/8PDQ2eRvkat/2yX\n1uaTOH/+PDly5OCPP/4gMDDQ6TgALF26lHbt2sV+uac2dzqfhFc7rkXEBxgM1AQOA+tFZKaq7oiz\n2l6gmqpGuArKcOBaz2M0EKSqp7yZ06Q8IzYO57cjW1jbZYPTUQDwER/K5y9P+fzlefvxHlyIvMCK\nAysI2xPG85XCOLC+BdWPVSe4WDAhxUMonqu405GTzOzZs6lZsybR0dG8/vrrlCtXLtkUCHNr3j67\n6RFgt6ruBxCRSUBjILZIqOqaOOuvAQrGeSzYITFzg1+O/sK7c15nxY7KZH4ps9Nx4pXFNwshxUMI\nKR4CwNFzR1m0dxEL9y7ko2UfkSl9JoKLBTucMmnMnDmTdu3aAfDQQw8xadIkhxOZhPDq4SYRaQbU\nVtXnXI/bAo+oarwnNovIG0DJOOvvBU4DUcBwVR3hZjs73JRGnLl8hoe+uo/eP53hqQlboUgRpyMl\nmKry+7HfWbhnIa899lqaOtxkkl6yPtyUECJSHegEPB7n6SqqekRE8gALRWS7qq6Ib/u4Z00EBQUR\nFBTkxbTGCarKc1PaEbTpBE+9PyNFFgiI+c9Z9q6ylL2rLK/xmtNxTBoRHh5OeHh4grfzdkuiEtBH\nVeu4Hvcg5lLwGzuvywE/AHVUNd7zv0SkN3BWVb+IZ5m1JNKAYWu/5uupb7Em+6tk7v2R03ESRVrr\nuDZJ705bEt4+3r8eKCEigSKSAWgNzIq7gogUIaZAtItbIEQki4hkc93PCoQAv2HSpM1HNvPeop5M\n2VuBzO9/4HQcY9IMrx5uUtUoEXkJCOPfU2C3i0iXmMU6HHgfyAV8LTEn/F471TUv8KOIqCvnBFUN\n82ZekzyduXyGltNaMrDRUEr1aAnxjCeUUgUGBnr9PHeTtt3pmWRev04iKdjhptRLVQn9IRT/jP4M\nazjM6TjJTsSlCJbsW0LYnjAW7l3ImctnYgcoDC4WTEG/grBhA9StC/PmwUMPOR3ZJBOeHm6yImGS\ntaEbhjJ0w1BWP7OazL7J83TX5GTf6X0s3LOQsL1h/Pznz+TLlo/GpRrzQUR5fLt1h9WrU2yHv0lc\nViRMirf5yGZCvgth5dMrKZm7pNNxUpyo6Cg2HdlEr/Be5Mqci/GnquNT7QlwDTdh0rbk0nFtzG05\nc/kMLUbXYWCJblYgblM6n3Q8XPBhpreczqEzh+iWbzPqmj/BGE9ZkTDJjqry7Ljm1Np8htAyLZ2O\nk+Jl9s3MrNBZrD20lveXvO90HJPCJJuL6Yy5ZuiyL9j521LWNBsJpb0/umta4JfRj/lt51N1dFVy\nZsrJ64+97nQkk0JYS8IkK5sPbaTXwneYmq41mVp7NmeB8UxAlgAWtlvIoHWDGLlpZMy8F7eYu8AY\na0mYZCPiUgQtvg1h0LZA7pkU7zBd5g4V8ivEwnYLeWLME/ifuUTzlh/AggVQvrzT0UwyZWc3mWRB\nVWk1rRW5j5/nm4bDIIHzAJuE2XJ0CyHfhTAu4Dlqvz8m5tRY+8zTFDsF1qQoX6//mhGbRrD6mdVk\nSp/p1huYO7bywEqenPwkM64257Epq2H5csiWzelYJolYkTApxqYjm6j9XW1WPb2Ke3LbOfxJacEf\nC2g/oz1he6vwwIErMHMmpEvndCyTBOw6CZMiRFyKoOXUlgyuO9gKhANql6jN4LqDqVd8LbuL54CT\nJ52OZJIZ67g2jlFVOv/QgZDiIbQq28rpOGlWi/taEHE5gpDlfVme8TLWM2HisiJhHPP1nD7sWT2H\n8e/udTpKmte5QmdOXTxFyPgQlnVaRkCWAKcjmWTCDjcZR2zcs4I+q/oypfT7ZMpf2Ok4Bnizyps0\nKd2EOt/V4czlM07HMcmEdVybJBdx8TQV+ham34nytPx6Kdh8CsmGqtJ1ble2HdvGvDZzyXzhCuTI\n4XQs4wV2dpNJllSVFp9VJO/v+xky9ABkzep0JHODaI2m7fS2nN2/m+kTo/Bdutz+nVIhO7vJJEtD\nVv0fe49uY8A74fbFk0z5iA9jm4xF8+WlU/UIotuEQlSU07GMQ6wlYZLMhsMbqDehHqs7Lqd4nlJO\nxzG3cDHyInXG1+b+NXsZlL0lMuALpyOZRGQtCZOsnL50mlbTWjGk3hArEClEZt/MzGrzE6sfDKDX\ngXEwdKjTkYwDrCVhvE5VaT61Ofmz5WdwvcFOxzEJdOz8MaoOr8Rz2zLz2tAtdkV2KmEtCZNsDF43\nmH2n9zEgZIDTUcxtyJM1DwufDmfgfecY9etYp+OYJGYX0xmv2rB5Dh8teIfVL/1CxvQZnY5jblNh\n/8KEtQsjaEwQfhn9aH5vc6cjmSRiRcJ4zekz/9ByUjO+zt6U4rmKOx3H3KGSuUsy96m51P6uNv4Z\n/QkuHux0JJMErE/CeIWq0uy9eyh4KopBg/eAjx3ZTC2uDTE+s+V0Khd+zP5tUyjrkzCOGjTsafaf\n/Yv+H6y2L5FUpkqRKox7chxNRtfh155POx3HeJn97zWJbv3KqXz851imNJ9Cxjz5nI5jvKBOiToM\nrPMldfmOP77p63Qc40XWJ2ES1elLp2m19g2+ue8tildr7HQc40WtKnXmzKmjBC/qxYrZxSjYINTp\nSMYLrE/CJBpVpdmUZhTyK8TAugOdjmOSyOfjn2fMhm9Z1iGcgAqPOx3HeMjTPglrSZhEM3DtQA5E\nHOD7Zt87HcUkobfaDeXUyUPUndqExfftxS+jn9ORTCKyloRJFOsOraPBxAas6byGYjmLOR3HJDFV\n5cU5L7DjxE7mPTWPTOkzOR3J3IKd3WSSzKljB2g1rRVDGwy1ApFGiQiD6w0hX7Z8tJrWisioSKcj\nmURiRcLcEY2KotPHD9MoshhNyzR1Oo5xUDqfdIxtMpbIqEienvU00RrtdCSTCKxImDvy1ccNOJT+\nAp+/NMvpKCYZyJAuA9NaTmP/6f28Mu9l7DBwymdFwty2dT8M5JOLYUx5bhEZM9kEQiZGFt8s/BT6\nEyuXT6T36PZOxzF3yIqEuS2ndm+l1apXGfZQH4qWetTpOCaZ8c/kz/ygb5n86/f838weTscxd8Dr\nRUJE6ojIDhHZJSJvx7O8jYhscd1WiEg5T7c1zlBVOo1pTOOclXmy+ftOxzHJ1F21m7Kw7Gd8uWIA\no5fZdTMplVeLhIj4AIOB2sB9QKiIlL5htb1ANVV9APgYGJ6AbY0DvlzzJYcDc/N5j8VORzHJXJHO\nrxOWsTPvzH+D6VsmOR3H3AZvtyQeAXar6n5VjQQmAdeN1aCqa1Q1wvVwDVDQ021N0lt7cC39VvRj\ncospZLD5IYwHSn04hLmHqvP8jM4s2rvI6TgmgTwqEiIyXUTqu/66T4iCwF9xHh/k3yIQn87AvNvc\n1njZyYsnaTWtFcMaDKNozqJOxzEphY8P5YfP4od2swn9IZQ1B9c4ncgkgKdf+l8DbYDdIvKpiCT6\nTPYiUh3oBFjfQzKkqnSa2YknSz/Jk2WedDqOSWkyZqRqsSDGNhlL40mN2fr3VqcTGQ95NHaTqi4C\nFomIPxDquv8XMAL4znU4KD6HgCJxHhdyPXcdV2f1cKCOqp5KyLbX9OnTJ/Z+UFAQQUFBN39TxnOq\n/N8nDTmS6zBTW0x1Oo1JwerdU4+BdQZSZ0IdlnZcSolcJZyOlGaEh4cTHh6e4O08HrtJRHIDbYF2\nwGFgAvA4cL+qBrnZJh2wE6gJHAHWAaGquj3OOkWAxUA7VV2TkG3jrGtjN3nRmv97jUbHBrG2268U\nzV/G6TgmFRi+cTifrviU5Z2WU9DPjiI7IVHHbhKRH4HlQBagoao2UtXJqtoNyOZuO1WNAl4CwoDf\ngUmqul1EuojIc67V3gdyAV+LyGYRWXezbT3JaxLPyWULaH3wK4aHDLICYRLNc2U70GW3PyFjanLi\nwgmn45ib8KglISL1VHXuDc9lVNXLXkuWANaS8A795x8a9wikxEMhfPHiTKfjmNSmRw/e/vs7llTO\nz+IOP5M9Y3anE6UpnrYkPC0Sm1S1wq2ec4oVCS+IimLAM2WYUuQcy3vvI0O6DE4nMqlNdDTaqiXP\nF9rC7gcLM/epuTbEeBJKlMNNIpJPRCoCmUWkvIhUcN2CiDn0ZFKp1QdX81nxo0x+eZkVCOMdPj7I\nuPF8vSond/35D62nteZq9FWnU5kb3LQlISIdgI7AQ8CGOIvOAmNUdbpX03nIWhKJ6+TFk5QfVp6B\ndQbSuLRdv2i87OhRrjz2KE1ezU9AoZKMaTIGnwRfkmUSKrEPNzVT1R8SJZkXWJFIPKpKo0mNKJmr\nJANqD3A6jkkrDh/mQm4/ak+sS/l85fmqzleI3PL7y9yBRCkSItJWVb8TkdeB/6yoql/cWczEYUUi\n8QxYNYCKby9MAAAb50lEQVSp26ayrJMdZjJJ7/Sl01QfW53GpRrTJ6iP03FSNU+LxK0uprs2SYDb\n01xN6rF65yI+X/U56zqvswJhHJEjUw7mPzWfqqOrkjNTTl6p9IrTkdI8jy+mS86sJXHnTowbSoXt\n3RnUcQqNSjVyOo5J4w5EHKDq6Kp8EPQBHR/s6HScVClRWhIictNB4FX15YQGM8lP9G9b6bDkZVrU\nCrUCYZKFIhczsCCiEdUX98Q/o7+NF+agWx1u2pgkKYxzzp7li/dqcuLRIvRr/a3TaYyJ4edH6dlr\nmNPoSerM7kL2jNmpVayW06nSJDvclJapsqpjTZ4MXM2613YQmCPQ6UTG/OvIEahUiWW9OtD85FBm\nhc6iUqFKTqdKNRLr7KYvVbW7iPxE/Gc3JYtjE1Ykbs+JpfMpP68RQ9p+T8OyzZyOY8x//for1KrF\nnBFv8vTu/ixqt4j7897vdKpUIbGKREVV3SgiT8S3XFWX3kHGRGNFIuGiNZpG3zeidM576F/3/5yO\nY4x78+ZBp058P603b67ry7JOyyiWs5jTqVK8ROm4VtWNrp9LRSQDUJqYFsVOVb2SKEmNIwasGsCJ\niyfo1+pHp6MYc3N168LcuYSWL09EJiF4fDDLOy2nQPYCTidLEzy94ro+MBTYAwhQFOiiqvNuumES\nsZZEwqw8sJKmU5qy/tn1FPEvcusNjElG+i3vx4StE1jacSm5s+R2Ok6KldjDcuwAGqjqH67HxYE5\nqlr6jpMmAisSnjt+4TgVhlVgSL0hNCzV0Ok4xiSYqvL2ordZun8pi9otsiHGb1OiTjoEnL1WIFz2\nEjPIn0lBoufPo8OohrS6r5UVCJNiiQif1fqMB/I+QJPJTbh09ZLTkVK1W3VcN3XdDQYCgSnE9Em0\nAA6o6oteT+gBa0l4YN8+Pu9Slhl1i7K02yZ80/k6nciY27dnD1Hbf6fNpQlcibrC1BZTSe9zq8u+\nTFyJ1ZJo6LplAv4GngCCgGNA5jvMaJLKpUusfLYOA6oIkzrNsQJhUr6zZ0n3dGfGF3iJS1cv8cys\nZ4jWaKdTpUp2MV0acPyFDlTINZWv20+mgR1mMqnFnDnw7LOcX7qI2sufo2L+inxZ50sbYtxDid1x\nnQl4BriPmFYFAKr69J2ETCxWJNyLHjeWBitepGyjznze4Cun4xiTuAYNgqFDOf3zXIJ+bMyTpZ+k\nd1Bvp1OlCIndcT0eyAfUBpYChbCO6xThf1HLiLi/JH3r9nc6ijGJr1s3qFmTHG07syB0LhO2TuCr\nNfbHUGLytCWxWVXLi8ivqlpORHyB5aqaLAZSsZZE/FYcWEHzKc1Z/+x6CvsXdjqOMd4RFRVz6KlR\nI/af3k/V0VX5qPpHdHiwg9PJkrXEmnTomkjXz9MiUhY4Ctx1u+GM9x07f4zQH0IZ2WikFQiTuqVL\nB41ihpELzBFIWLswqo+tjn8mf5qUbuJwuJTP0yIxXERyAu8Ds4iZqe59r6UydyRao2k/oz1tyrah\nfsn6TscxJkmVDijN7NDZ1J1Ql+wZslOzWE2nI6VodnZTanP+PJ9uHsRPu34ivEO4ne5q0qyl+5bS\nfGpzZofO5tFCjzodJ9lJ1I5rEcktIoNEZJOIbBSRL0XEBk1Jbv7+m+U1ivPlygFMajbJCoRJu37/\nnSfkbkY3Hk3jSY357Z/fnE6UYnl6dtMk4B+gGdAcOA5M9lYocxsiIznWvhlt6l5gVNOx1g9h0raf\nf4YGDWiQtypf1P6COt/VYe+pvU6nSpE8PbvpN1Ute8NzW1U1Wcz+keYPN0VHc7VDOxrkWciDdTvy\nafDnTicyxlmq0LUr7N0Ls2fzzeYR9F/dnxWdVpA/e36n0yULiX2dRJiItBYRH9etJbDgziKaxKJv\nvcmLmRYTVa4sH9Xo63QcY5wnAgMHxvzs1o0XHnqeZ8o/Q/D4YE5cOOF0uhTlVgP8nSVmQD8BsgLX\nBkfxAc6pqp/XE3ogTbckjh6ld89KzHkkB0ueXm7DJhsT15kz8Pjj0LEj+uqrvL3obZbsW8Li9ovx\ny5gsvr4ckygtCVXNrqp+rp8+qpredfNJLgUirfv6r+lMrODL3PZhViCMuZGfH8yeDXnzxg4x/lD+\nh2j4fUMuRF5wOl2K4PEpsCLSCKjmehiuqrO9liqB0mpLYtq2abwy/xWWd1puc/4a46FojabDjA4c\nv3CcGa1mkDF9RqcjOSKxB/j7FHgYmOB6KhTYoKo97yhlIkmLRWLJn0toNa0VYe3CeDDfg07HMSZF\nuRp9lZZTW+IjPkxqPilNzkWR2EXiV+BB1ZgB20UkHbBZVcvdcdJEkKaKxNmz/HJ+DyHjQ5jcfDLV\ni1Z3OpExKdLlq5dpNKkR+bLlY3Tj0fiIp+fxpA6JfXYTQI449/0THsncsYMH2Vu5NPXH1mZIvSFW\nIIy5XWvXkvGPP5necjp7T+3l5Xkvk2b+0EwgT4tEP2CziIwRkbHARsDOtUxKJ0/yT6Oa1G55mXdr\n9KbFfS2cTmRMyrV7N9SsSda9fzE7dDZrDq7hncXvOJ0qWbplkZCYaZ5WAJWA6cAPQGVV9eiKaxGp\nIyI7RGSXiLwdz/JSIrJKRC6JyGs3LNsnIltEZLOIrPPoHaVGFy5wtkk96jWIILTqi7z4cLKYWtyY\nlKttW+jXD2rWxP/Pw8xvO59Zu2bRb3k/p5MlO7fsrVFVFZG5rqurZyVk5yLiAwwGagKHgfUiMlNV\nd8RZ7QTQDYhvTN9oIEhVTyXkdVOVq1e50roFTSvvp8JDDfkg6AOnExmTOrRvH3OxXc2aBCxaxMJ2\nC6k2uhrZMmSj26PdnE6XbHjapb9JRB5W1fUJ3P8jwG5V3Q8gIpOAxkBskVDV48BxEWkQz/ZCwvpN\nUp3ovw7QsdR2sj74MF83+Mbm7zUmMbVrF1Mo6tShwPbtLGq/iGqjq5E9Y3Y6PtjR6XTJgqdF4lGg\nrYjsA84T8+WtHpzdVBD4K87jg8QUDk8psFBEooDhqjoiAdumeKrKazsH8te9BQlrPjlNnqZnjNe1\nbQvVqkHWrNxNVsLahVFjbA2y+ma1vj88LxK1vZrCvSqqekRE8hBTLLar6gqHsiS5z1d+zuI/F7Os\n4zIy+2Z2Oo4xqVeRIrF3SweUZt5T8wj5LoSsGbJS7556DgZz3k2LhIhkAp4HSgBbgZGqejUB+z8E\nFInzuJDrOY+o6hHXz2Mi8iMxrZB4i0SfPn1i7wcFBREUFJSAmMnP6M2j+WbDN6x8eiU5M+d0Oo4x\nacoD+R5gZuuZNPq+EVNaTCHo7iCnI92x8PBwwsPDE7zdrQb4m0zM/NbLgbrAflV9xeOdx1x0t5OY\njusjwDogVFW3x7Nub2IGDRzgepwF8FHVcyKSFQgDPlDVsHi2TT0X0/31F7MvbqHzrM6EdwyndEBp\npxMZkzZFRvLzweW0mtaKOW3m8EjBhBwpT/4S5YrruHNGiEh6YJ2qVkhgkDrAV8R0QI9U1U9FpAsx\nfRrDRSQvsAHITszZTOeAe4E8wI/E9EukByao6qduXiN1FIn161n9dAiNnvJhdtu5NuWiMU45dQoe\nfRSmTWN2pgM8M+sZFrZbSLm8yWKQiUSRWEViU9yicOPj5CJVFIldu9jWpArVn4pkTMvvqXtPXacT\nGZO2TZ4M3bvDggVM9tnOqwteJbxjOCVzl3Q6WaLwtEjcquP6ARE5c22fQGbX42tnN9lw4YnhyBH+\nalqLum2i+V+DgVYgjEkOWrWKOT22dm1aLVjAueofETw+mGUdlxGYI9DpdEnmpkVCVdMlVZA0KyKC\nkw1rUafFZbrV6En7B9o7ncgYc03LlrGF4pn58zlb6VVqja/F8k7LyZctn9PpkoSdeO+wC8cO07Dh\nOepWassbj73hdBxjzI1auK6V+PNPujfpztnLZwkeH0x4h3ByZ8ntbLYk4PGkQ8lZSu2TuBp9lScn\nP0mOTDkY22Rsmhuq2JiUSFV5e9HbhO8LZ1H7RSl2GtREnU8iuUuJRUJV6TyrM4fOHuKn0J/wTefr\ndCRjjIdUlRfnvMi249uY99Q8svhmcTpSgnljPgmTiN77+T22/rOVaS2nWYEwJoUREYbUH0IR/yI0\nm9KMK1FXnI7kNdaSSGobNzIwcgVDNnzNik4ryJM1j9OJjDG34+efueqXjRZ7+pFO0qW4aVCtJZEc\nTZvGpFeD+XzFZyxou8AKhDEp2ZkzpK/fkElF3+LM5TN0ntWZ6JgZnlMVKxJJJTycRZ905uW6MLfd\nfO7OcbfTiYwxd6JJExg2jIwNm/DjPe+z59SeVDkNqhWJpPDLL2x68UnaNBemtZmRqi7tNyZNa9IE\nhg8na6NmzC71IasPrubdn991OlWiSjkH0FKqvXv5I7Q2DdoKw54cSbXAak4nMsYkpsaNQQT/Vu1Z\nsGkFT0ytR/YM2elZtafTyRKFtSS87GjkKWq3g961+/FkmSedjmOM8YZGjWDzZgLyBLKw3UK+3fwt\ng9cNdjpVorCWhBeduXyGuuGd6VClK10e6uJ0HGOMNwUEAFAgewEWt18cO192Sp8G1U6B9ZLLVy9T\nb2I9SuUuxZB6Q2xuamPSmB3Hd1B9bHUG1R1E83ubOx3nP+yKawdFRUcR+kMo0RrN5OaTSedj4yQa\nkxb98udqav/QhNGNRye7aVDtOgknqKIzZ/LK/Jf55/w/fNf0OysQxqRVp07x4BOtmHHfR3SY0YGl\n+5Y6nei2WJFITP368cmELqzYt5yZrWeSKX0mpxMZY5ySMycMHUrlDu8xuUwvWkxtwbpD65xOlWBW\nJBLLt9/ybfgXjKyUkXntFuCfyd/pRMYYp9WrB2PHUqPTh4ws+QYNv2/I1r+3Op0qQaxIJIaZM5k5\n8k3er+nDgg6LyJ89v9OJjDHJRd26MH48DZ/tz1fFulJnQh12ndjldCqPWcf1nVq1ihXP16NpqA9z\nO4TxUIGHnMlhjEneFiwAYGSeg3y47EOWd1pOEf8ijsVJrDmuzS38ljOSZq19+K7lJCsQxhj3atcG\n4Bng7JWz1BpXi2WdliX7aVDtcNMd2H96P3Xnt+X/Gg4mpHiI03GMMSlE90rdaVeuHcHjgzl58aTT\ncW7KDjfdpuMXjlN1dFW6VOxC90rdk/S1jTEpn6ry1sK3WLp/qSPToNp1El50/sp5GkxsQONSja1A\nGGNui4jw+eVqVCQ/Db9vyIXIC05HipcViYSIjCRy8EBaTm1B6YDS9KvZz+lExpgUTLJkYcg7Kyl8\nMUOynQbVioSnoqPRpzvReef/EIQRDUfYeEzGmDtTsyY+kyYzpvdmMp06R5sf2nA1+qrTqa5jRcJT\nb79Nj3RL2HV/Aaa0nIpvOl+nExljUoOaNUk/aQqTPtrOmaP7k900qFYkPNG/P1/8MZ5ZFbIyu+1c\nsvhmcTqRMSY1qVGDjN9P4ceBf/PHsZ3JahpUO7vpVn78kQkDn6Vn/YyseHa1oxe/GGNSuXPniEgf\nRY1xNahdvDaf1PzEay9lZzclkrBiymt1YF77MCsQxhjvypYN/0z+LGi7gJk7Z9JvufMnx1iRuIn1\nh9bTNux5pofO5L677nM6jjEmjQjIEpBspkG1YTnc2HViF40mNeLbRt9SpUgVp+MYY9KYAtkLsKjd\nIqqNetzRaVCtSMTj8NnD1P6uNh9X/5hGpRo5HccYk0YVlZwsHBlJ9cuvky1DNkemQbUiEdepU0T0\n/5i6hRbxbIVneabCM04nMsakZTlyUHr4dOY914gQ7UwW3yxJPg2q9Ulcc/EilxrXp7HPFJ64uxo9\nH+/pdCJjjIHHH+fBET8xc5LQYUqbJJ8G1U6BBbh6lahmTWlZ8hfSP1KJ75tPwkesfhpjkpGVK1nc\nrT6hzWB2xzAeKfjIHe0u2ZwCKyJ1RGSHiOwSkbfjWV5KRFaJyCUReS0h2yYKVbTLc3QtsJmIsiUY\n9+R4KxDGmOSnShVqDp7LyHt7Juk0qF5tSYiID7ALqAkcBtYDrVV1R5x1AoBAoAlwSlW/8HTbOPu4\n/ZbEN9/wwYq+zHw8gPCnlyX5cL3GGJNQk36bxOthr7OkwxJK5i55W/tILjPTPQLsVtX9rlCTgMZA\n7Be9qh4HjotIg4RumxiGlrvC+MsZWNlugRUIY0yK0Lpsa85dOUfw+GCvT4Pq7eMqBYG/4jw+6HrO\n29t6ZPr26Xy45jMWtF9I3mx5E3PXxhjjVZ0rdObVSq9Sa1wtjp476rXXSTWnwPbp0yf2flBQEEFB\nQTddf+m+pTw/+3kWtF1A8VzFvRvOGGO8oHul7pzZuIrgryuxtNsmcmXO5Xbd8PBwwsPDE/wa3u6T\nqAT0UdU6rsc9AFXVz+JZtzdwNk6fREK2TVCfxJajWwgeH8yk5pOoUbTG7bw1Y4xJFnTNGt76tAZL\nqxRi0csbPD5snlzObloPlBCRQBHJALQGZt1k/biBE7rtre3ezZ/Pt6b+xPoMrjfYCoQxJsWTSpX4\nvOcSKqz7i4aDH0v0aVC9fp2EiNQBviKmII1U1U9FpAsxrYLhIpIX2ABkB6KBc8C9qnouvm3dvMat\nWxJHjnCsRiWqPHWJbsHv0e3Rbon1Fo0xxnHRa9fQ/qsgTj5clhkvryJDugw3Xd/TlkTauJguIoJz\n1atQo/FpQqp25OMaHyddOGOMSSKRa1fTYkQw6WvUYlLraaT3cd/tbEXimkuXuFI3hIaP7aPwo8GM\naPitzU1tjEm1Ll84S8MfmlEgewFGNR7l9uLg5NIn4bjozz/j6Qf3k6nsgwxtMMwKhDEmVcuYJTs/\ntvqRP07+wSvzXrnjaVBTdZFQVd6oeIJ9ZQsyqfnkmza9jDEmtciaIStz2sxh1cFVvPvzu3e0r1Rd\nJPqv6k/Y/p+Z1WY2mX0zOx3HGGOSjH8mf+Y/NZ8ZO2bQb06P295Pqv3TetyWcQxeP5iVT6+86QUm\nxhiTWuXJmodFTaZTdUBZsh86zkvPfZvgfaTKlsTc3XN5a+FbzH9qPoX8CjkdxxhjHFOgYGkWNZ3B\nZ7tHM/bbhJ/6n7paEuHhrBn3CR3L/MKs0FmUyVPG6UTGGOO4oo83YKFOo/pPzck6KiPNn+7v8bap\np0j88gvbuzSlSQcY0+Q7KhWq5HQiY4xJNkpXfZK5UROoPb8NWcdm8ni7VFMkDrWoQ91O6fms3v+S\nfA5YY4xJCcoHtWamXqHRmlc83ibVXExX9qMCtKv+Cm9VecvpOMYYk6wt3ruYWsVrpa0rrl+d/yoD\nQgbYxXLGGOOBNDcsR1R0lM1NbYwxHkpzw3JYgTDGmMRn36zGGGPcsiJhjDHGLSsSxhhj3LIiYYwx\nxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLG\nGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIi\nYYwxxi2vFwkRqSMiO0Rkl4i87WadgSKyW0R+EZHycZ7fJyJbRGSziKzzdlZjjDHX82qREBEfYDBQ\nG7gPCBWR0jesUxcorqr3AF2Ab+IsjgaCVLW8qj7izaypRXh4uNMRkgX7HP5ln8W/7LNIOG+3JB4B\ndqvqflWNBCYBjW9YpzEwDkBV1wL+IpLXtUySIGOqYv8JYtjn8C/7LP5ln0XCefsLuCDwV5zHB13P\n3WydQ3HWUWChiKwXkWe9ltIYY0y80jsd4BaqqOoREclDTLHYrqornA5ljDFphaiq93YuUgnoo6p1\nXI97AKqqn8VZZyiwRFUnux7vAJ5Q1b9v2Fdv4KyqfhHP63jvTRhjTCqlqnKrdbzdklgPlBCRQOAI\n0BoIvWGdWUBXYLKrqJxW1b9FJAvgo6rnRCQrEAJ8EN+LePJGjTHGJJxXi4SqRonIS0AYMf0fI1V1\nu4h0iVmsw1V1rojUE5E/gPNAJ9fmeYEfXa2E9MAEVQ3zZl5jjDHX8+rhJmOMMSlbij691JML9dIC\nERkpIn+LyK9OZ3GaiBQSkZ9F5HcR2SoiLzudySkiklFE1rouRt3q6tdL00TER0Q2icgsp7M4KSEX\nKqfYloTrQr1dQE3gMDH9H61VdYejwRwgIo8D54BxqlrO6TxOEpF8QD5V/UVEsgEbgcZp8fcCQESy\nqOoFEUkHrAReVtU0O3qBiLwKVAT8VLWR03mcIiJ7gYqqeupW66bkloQnF+qlCa7Tgm/5j50WqOpR\nVf3Fdf8csJ3/XpuTZqjqBdfdjMT07aXMvwoTgYgUAuoB3zqdJRnw+ELllFwkPLlQz6RhInI38CCw\n1tkkznEdXtkMHAUWqup6pzM56P+AN0nDhTIOjy9UTslFwhi3XIeapgGvuFoUaZKqRqtqeaAQ8KiI\n3Ot0JieISH3gb1crU1y3tKyKqlYgpmXV1XXIOl4puUgcAorEeVzI9ZxJ40QkPTEFYryqznQ6T3Kg\nqmeAJUAdp7M4pArQyHUs/nuguoiMcziTY1T1iOvnMeBHYg7fxyslF4nYC/VEJAMxF+ql5TMW7K+j\nf40CtqnqV04HcZKIBIiIv+t+ZiAYSJMd+Kr6jqoWUdVixHxX/Kyq7Z3O5QQRyeJqaRPnQuXf3K2f\nYouEqkYB1y7U+x2YpKrbnU3lDBGZCKwCSorIARHpdKttUisRqQI8BdRwnd63SUTS6l/P+YElIvIL\nMf0yC1R1rsOZjPPyAitcfVVrgJ9udqFyij0F1hhjjPel2JaEMcYY77MiYYwxxi0rEsYYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxriISJTruopr11e8lQSvOVxESnv7dYy5XXadhDEuInJGVf0SeZ/p\nXBd+GpMiWUvCmH/FO6yJiPwpIn1EZKNropaSruezuCZ8WuNa1tD1fAcRmSkii4FFEuNrEdkmIgtE\nZI6INHWtu0REKrjuB4vIKhHZICKTXfO8IyKfishvIvKLiHyeJJ+EMS5WJIz5V+YbDje1iLPsH1Wt\nCAwF3nA99y6wWFUrATWA/q4xkgDKA01VtTrQFCiiqvcC7YHKN76wiOQG3gNqqupDxEyW9JqI5AKa\nqGpZVX0Q+DjR37UxN5He6QDGJCMXXMMnx+dH18+NwJOu+yFAQxF50/U4A/+OTLxQVSNc9x8HpgKo\n6t8isiSe/VcC7gVWiogAvsSMxxUBXBSRb4E5wOzbemfG3CYrEsZ45rLrZxT//r8RoJmq7o67oohU\nAs4ncP8ChKnqU/9ZIPIIMdP0tiBmUMuaCdy3MbfNDjcZ86+EDrW+AHg5dmORB92stxJo5uqbyAsE\nxbPOGqCKiBR37SuLiNzjGso5h6rOB14D0vQc5ibpWUvCmH9lEpFNxBQLBear6ju4n+7yI+BLEfmV\nmD+49gKN4lnvB2L6LH4nZsrdjcQcRuLavlX1uIh0BL4XkYyu598DzgIzRSSTa/1X7+gdGpNAdgqs\nMUlARLKq6nlXR/RaYqaP/MfpXMbcirUkjEkas0UkBzEd0h9agTAphbUkjDHGuGUd18YYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxq3/BwqGCBVMuSBSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot1, = plt.plot(lc/float(sum(lc)), 'r--', label='Assigned energies')\n", + "plot2, = plt.plot(prob,'g',label='Original Spectrum')\n", + "plt.xlabel('Energies')\n", + "plt.ylabel('Probability')\n", + "plt.legend(handles=[plot1,plot2])\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb.txt b/_sources/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb.txt new file mode 100644 index 000000000..396e24edf --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb.txt @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Light Curves from Power Law Power Spectra\n", + "\n", + "In this notebook, we will show how to simulate a light curve from a power spectrum that \n", + "follows a power law shape." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The power distribution is of the form `S(w) = (1/w)^B`. Define a function to recover time series from power law spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate(B):\n", + " \n", + " N = 1024\n", + " \n", + " # Define frequencies from 0 to 2*pi\n", + " w = np.linspace(0.001,2*np.pi,N)\n", + " \n", + " # Draw two set of 'N' guassian distributed numbers\n", + " a1 = np.random.normal(size=N)\n", + " a2 = np.random.normal(size=N)\n", + " \n", + " # Multiply by (1/w)^B to get real and imaginary parts\n", + " real = a1 * np.power((1/w),B/2)\n", + " imaginary = a2 * np.power((1/w),B/2)\n", + " \n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r,i in zip(real,imaginary)]\n", + " \n", + " # Obtain real valued time series\n", + " f_conj = np.conjugate(np.array(f))\n", + " \n", + " # Obtain time series\n", + " f_inv = np.fft.ifft(f_conj)\n", + "\n", + " return f_inv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start with `B=1` to get a _flicker noise_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4FMW5/7/v4QAKCoILKggYUVyCa8QtMSeJUbxXRRPN\nRXMVl5vw05jrjUtQs4DeJGquGmPcl+ASo0ajBo1RNOa4xAXcNxSMirK7Iohs57y/P6rLqamp6q7u\n6Z6Zc+b9PM88M9PTtXRPd337feutKmJmCIIgCEKRtNS7AoIgCEL3R8RGEARBKBwRG0EQBKFwRGwE\nQRCEwhGxEQRBEApHxEYQBEEoHBEboekgovFE9GiGdGcQ0VWB+04iohvT165rQ0QvE9HeMb//g4iO\nrWWdhMZAxEYAEb1NRMuJ6BMimk9EU4ioT73rVTDOAWZENIyIOomo4t5g5nOY+fvVlhGV8xYRfd3a\n1pOIJhPRLCJaSkRvEtE1RDQ0RZl1hZm/yMyPAJ8L7g1Z8yKirxJRR3RdfkJE7xLR5Ix5nU1ELxLR\naiL6edY6CdkRsREA1Sj+OzP3A7AjgJ0AnFHfKoVBRD0KyLZeI53/DOAAAOMA9AewA4CnAXwjbUYF\nnZd6MI+Z+0XX5pcBHEdEB2XIZzaA0wDck2vthGBEbAQNAQAzLwZwP5ToqB+IehHR+UQ0h4gWENFl\nRNTb+H0sET1HREuIaDYR7Rtt34SI/kJEH0RP6/9lbF9OROsZeexERO/pRpKIjiWiV6O0fzOf7iPL\n4wQimgVgVrRtayKaFu0/k4gOM/YfSERTo/o9CWCLTCfIco0R0VGRVfgeEf3UYa30JqLro6fyl4ho\n5yjdDQCGArg7+u1UIvoGlKgcxMzPMnMnMy9l5iuYeUqUrix/sz6GRXYsEc0B8HciupeITrCO4Xki\nOjjpnFlp2ojoReP7A0Q03fj+iBYAXUci2g/AmQD+I7LSnjOyHE5Ej0XHfh8RDQw5/8w8B8DjALYN\n2d9KeyMz3w9gWdq0Qj6I2AhlENEQAPtDPQlqzgMwAsD20ftgAD+P9h8N4HoApzBzfwB7A3g7Sncr\ngHcAbAzgMAC/IqI2Zl4A1Wh82yjjcAC3MXMHEY0FcDqAgwFsCOBRADdbVR0LYDSAbSOX3zQAfwCw\nAZRlcBkRbR3texmA5QAGATgOQDV9Bhwd97YALo3qvQmUJbKpte+BAP4Y/XZ3tD+Y+Sio83JA9NR+\nPoB9AExn5vlZ6mOwN4CRAPaDOmdH6B+iOg8FcI/nnF1qnDOTJwGMiES7FcAoAJsQUV8iWgvAlwA8\nUlYp1bD/CsCtzLwuM+9k/Hw4gPFQ/21vAKeGHCgRbQlgLwBPGNteIKIPo9dH1vslIfkKtUHERtDc\nRUSfQDWCiwBMNn77HoAfMfMSZv4UwLlQDQagGu5rmfkhAGDmBcw8KxKtPQBMZObVzPwCgGsAHBWl\nK2sIoRq7m6LPEwCcw8yzmLkzKm9HItrM2P9XzPwxM6+Ecj29xcw3sOIFKJfUYaT6Xr4F4GfMvIKZ\nX4ESx2r5NoCpzPwEM69BJL4WjzHz/awmILwRSqxNyPi8PoAFVdaJAUyKjnMlgDsB7GCctyMA3BHV\n13XO7oB6KCjPlHkFgBlQQrYLgBcA/BOq4d8dwCxm/jhFPacw87+iOv4JhhXtYHAkHEsAvAYlfP80\n6rYDMw+MXgOs9xNT1EkoGBEbQTM28ot/FcDWUE+7IKINAfQB8Ix+ggTwN6jGEQA2A/AvR36bAviQ\nmZcb2+ZAWUWAEoPdiWgQEX0VQAcz60ZkGIDfGuV9ANWQDjbymmt8Hhbl9fkTLlTDOgjq6bnV2n9O\n2CmJZVMA7+ovzPxZVE+Thcbn5QDWIkfgQcQHUBZStXx+nMy8DMC9UEIOqAeEP0SffedsY0++jwD4\nGpTgtEevNqjr5eGUdbTPyzox+86LhKM/gPUArACQOehAqB8iNoJG99k8CvXkf0G0/X2oBmE74wly\nvejmB1SD6+oDmQ9gIBH1NbYNBTAvKudjKDfOOKhG8BZjv3cATLCeWNdh5ieNfUz30bsA2q39+0VP\ntu8BWA0limY9qmUBgCH6CxGtjZIAh2C7vx4EMJqIbFecyadQwq9xCYOd780AjiCi3QH0Zub2aLvv\nnP3AU/bDUOLylejzI1BCszf8YpNroAUzL4VySx6gt5EKtf7Eei2N3i/Ls3yhOkRsBBcXAfgmEY2K\nXEBXA7gosnJARIMpCgIAcC2AY4joa6TYlIhGMvNcqH6Zc4ioNxFtD9VfYo49uRnKrfZtqEZEcyWA\nM6M+BhBRfyI6NKa+9wDYioj+k4haSYUQfymqRyeUe2gyEa0d5Tk+4fgJygrpbbzI2ud2AAcS0e5E\n1BPlbse4fDULAXxBf2HmvwN4AMCdRLQzEfUgonWIaAIRHR3t9jyAcdExfgmAfU7sOgLKshkG4Gyo\nPjSN75y5+mwA9V+OhOonm87Mr0b57garv8ZgEVQwgKteoXyelojWgXoweVlvi0Kt+1mvdaP3E4y0\nrVH/UguAntF/Ku1fDZGTLQDWEygzvw9l3eh+iNMBvAHgSSLSFslW0b4zABwDJVBLoNwr2nI4AsDm\nUFbOn6H6Tf5hFDUVwJYAFjDzS0b5d0H109wSlfcigDEx9V0GYF8oK2l+9DoXqvMZAH4IYF0oa+T3\n0SvpfCyFsug+i96/ZpX5apTvrVF5nwBYDGBlQr6acwH8LHJhnRxtOxRKHG4F8DGAl6D6SB6Mfv8Z\nVIDGhwAmodTH5cpf13MVlNh+A4agx5yzXs6KK3foMwBejvp8ANVR/3Z0vbjqcBuUWHxARE/76pjA\nJtpiAfAWlCvtP1PmAagHpuVQx3tm9DlLPkJGiOu8eBoRjYFqqFqgOprPs34fCWAKgJ0BnMnMFxq/\nvQ3VwHUCWM3Mo2tVb0EwidyFHwMYEYXoCoJg0FrPwiMz9hKop675AGYQ0V+Y+TVjtw+gniAPdmTR\nCaCNmT8qvLKCYEFEBwD4O9SD0gUAXhShEQQ39XajjQYwm5nnMPNqqE7iseYOzPw+Mz8DYI0jPaH+\nxyA0L2OhHpLmQgVJjIvfXRCal3o31INhhI9C3bSDPfu6YAAPENEMIvperjUThASY+XtRFNcAZv4m\nM89OTiUIzUld3Wg5sBczL4iipB4gopnM/Fi9KyUIgiCUU2+xmYfyMQ9Dom1BsJr2BMz8HhHdCeWW\nqxAbIqpvFIQgCEIXhZmrCV3/nHq70WZAzbk0jIh6Qfm8p8bsb8bc94ni7nUk0L4w4u9tmLnbviZN\nmlT3OsjxybHJ8XW/V57U1bJhNeniiVDjNnTo80wimqB+5quIaBDUNOvrAugkopOgZn3dEGoAHEMd\nx03MPK0+RyIIgiDEUW83Gpj5PqiRyea2K43Pi1A+1YhmGeIn8BMEQRAahHq70YQcaGtrq3cVCqU7\nH193PjZAjk8oUfcZBGoBEXEzHKcgCEKeEBG4mwQICIIgCE2AiI0gCIJQOCI2giAIQuGI2AiCIAiF\nI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAI\nhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIg\nCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOHUXGyIaQ0SvEdEs\nIpro+H0kET1ORCuI6OQ0aQVBEITGgJi5foUTtQCYBeAbAOYDmAFgHDO/ZuyzAYBhAA4G8BEzXxia\n1siD63mcgiAIXREiAjNTHnnV27IZDWA2M89h5tUAbgEw1tyBmd9n5mcArEmbVhAEQWgM6i02gwG8\na3yfG20rOq0gCHXk9dfrXQOh1tRbbARBaEK23hqYO7fetRBqSWudy58HYKjxfUi0Lfe0kydP/vxz\nW1sb2traQusoCEIBrF5d7xoINu3t7Whvby8k73oHCPQA8DpUJ/8CANMBHM7MMx37TgKwjJkvyJDW\nGyDw2mvAAQcAb7yRzzEJgpAMEfDmm8Dmm9e7JkIceQYI1NWyYeYOIjoRwDQol961zDyTiCaon/kq\nIhoE4GkA6wLoJKKTAGzLzMtcadPWYfp04F//yu2QBEEQBAf1dqOBme8DMNLadqXxeRGAzULTpqWz\ns5rUgiAIQggSIODg2WeVmS/Ulscfr3cNBEEoiqYXG1dXzpw5ta+HAOy1F7B0ab1rIQhCETS92Igb\nLZxzzgGef77etRAEoSvS9GLjsmxkZhs3Z54J/Pa39a6FIAhdEREbEZZUFN2XJf+HIHRPRGykcRME\nQSgcERsRm4ZCogAFoXsiYiNikwoRAyEv5N5rLppebCQaLR8WLlTTjwhCGjo6gEcfrXcthFrQ9GIj\nT1fp8Fk2++4LbLFF9fnL/9FcPPggsPfe9a6FUAtEbKRxy4VqB2N25f/h00+BE06ody26Jh0d9a6B\nUCtEbLpwI1cPiuqz0f9DV/w/Xn0VuPzyetdCEBobEZsu2Lh1RxpVbB5/HDjppPh9Gq3OjcoVVwA/\n/Wn5Ngk4aR6aXmwkQCAf8mpwG63hvvpq4OKL612L7sHZZwO//GX5g4WITfPQNGLT2Qn83/9Vbm+0\nxq3RKdqNVjQrV6Y7hpB6yTWUjjix+eCD2tdHqA1NIzbvvw/8+MeV27v63GhEwB131La8IqiVG+2j\nj4rNX/Cj/9tPPin/rpk7F9hgg9rWSagdTSM2PndZVxIWHy+9VO8aVE+txGbZsmLzF/zo/3bAgNJ3\n8+FF/pvujYhNisbtzjuBXXbJpz4+VqxI3+DWUjB9lk1X6bORBq1xkD6b5qJpxMbXiKVp3O69V63i\nWSRrrw0cfzxw/vnFltNoNKJlc+CBatChkA/2f9sdvApCOK31rkCt8Fk2aaLRanVzXHmlej/11NqU\n1wjU6txqsUl6qp49G7jnnrA8G6HRXLwYWLUKGDKk3jXx4xKbWlk2118PLF+uHuSE+tA0lk0eotII\njUq9abQAgTvuAHbYIXz/xYuTy3n1VWCrrdLVo97svTew2Wb55DVvXm2GBNhiU+T9dfzxMstDvWl6\nsREBSUejLZ52//3Aiy+G7z9njnqPa0xXrEhXh0a4hj78ML+8hgwBfv/7/PLT1NOyEepP04tNI7rR\n6sFnn6nQ06xUe26yWjZpG6uFC5PLKaIBXLSoJHRFkHed338/3/wA6bNpdppGbNK4xprhaWvNmvLv\nP/pRfm6YLGQVm5aUV7A+7lqLTVsbMHx4/vlq8q5zEUIglk1z0zRik+RGu+KK2tVFs3QpcPvt1efj\nahhWrgT228+fpmdPYNq00vf33gsrq9FmEEgrNvo6iLNo0+YZgs/NtWwZMHNm9fl3BbFxlVGrPhux\nouqPiE10EYZEqeR9wV53HXDYYfnmqVm8uFxMXLz9dklk6v2EWSvLRl8HeVo21Uxpc9ppwLbbpivP\nRa3F5sYbqz9PtRQbof6I2NRxuppGuLk22gh47LHqG6siBnWGWFtpxUavnxJn2dRSePPq2K/1w8L0\n6enTSJ9Nc9M0YpNHOHOj3hxnn10ZPRTS+OjjMSc/fOed+DS1Cn2eP18JYRJp6xNi2aSlGstm9er8\n6pEnScdk9/kVUYbQvWgasenu0Wg331z+Xdc15PhMd8Z228XvWyux+eyzsHRZLRvXf3n99arxL6LP\npmixybvORYiNBAg0N3UXGyIaQ0SvEdEsIpro2ediIppNRM8T0U7G9reJ6AUieo6IYg37Rly3pkjx\n0o1q3LK7LkGq19xhjRAgcPTRwIwZ+TWAN97on+FYk1ZsbrsN2HPPyu1F9dlcfLE6LzZZlnOuZ59N\nIz8oNgt1FRsiagFwCYD9AGwH4HAi2traZ38AWzDzlgAmADAX4O0E0MbMOzHz6LiyTPfJypXAK6+U\nvsfx978XOz6iKPSTZ8gTaJobsdEGdebtRkvztH3eefEDQI86Crj11vg8Vq0KK0szdSrwxBPq8+uv\np0ubhcsuUxafTZzYDBwYds90NcuGSIm9kI16WzajAcxm5jnMvBrALQDGWvuMBXADADDzUwD6E9Gg\n6DdC4DGYT7IXXQR88YuV213ssw/wgx+oz2YDtXSpP82MGfk38lddpTryQwkRmzSutlA+/jhbuizR\naO+9514Qr73df9whAQKhnH468MILYfvmZdnoxvmNN4CtjceyotxovvMYd1199BHw2mv+PF3fG0l0\nPvtM/S/MwFNPlf8WNxHvppuqlUgFN/UWm8EA3jW+z422xe0zz9iHATxARDOI6HtxBZm+eu3a0N9t\nkqJmFi4E+vXzlzV6dD5PQOYNO2GCCpP1YddRH2+I2GR5wuzsdD/Vf+c77v07OoBLLil9f/xxf11C\n8TX0X/uafxLNEMsmTR1aWuoTIGD/r0W50bKIjZk+blujWjaDBgHHHAPMmgXsvnt4ugUL1IOO4Kar\nz/q8FzMvIKINoURnJjM7n/+vumoyAGDyZOCtt9oAtAEI70A33z/9NDlNiHskqZHaZhsVKTZwYPq8\n0rrR9E2fdPPr3085Bbj88krB8YXyzp8P/PCHwIknqvL22kvVrUcPd/1DGiGd1oX+X5cvBx5+GNh/\nf/U9LkBAb8/TrZgkolnFJi9LpqPDfR51fX3usryi0Rqxz2bpUuD557MdY6NGF4bS3t6O9oIUs95i\nMw/AUOP7kGibvc9mrn2YeUH0/h4R3QnllnOKzbHHTsa11wKTJgFnnOGv0JgxlSPvs9wEed04nZ1A\na/QvpXkKTCM2aVxKug633676vny/f/KJetIbOVJ9X2st9c5c2eD/6lelgY1pzltrwNV73XXKDWq7\nDOOiE7NaNnFP6nm70WyxyWIhLF6snuLjjjfJHekji2UTV4/77lMPX8OGxZebF77/Jek85yHC9aSt\nrQ1tbW2ffz/rrLNyy7vebrQZAEYQ0TAi6gVgHICp1j5TARwFAES0O4CPmXkREfUhonWi7X0B7Avg\nZV9BZgNn3ij2BX7//aUOWJt6RbRkifwxxebmm4G//c2/r33TP/lkeZkLFlTeZHbfjH1uxo9XfQrP\nP6++6/QrVlTOT/aTnwC//rU7nzjiLBvfPiHjbNJaNnF56uP25Zk2QEDnZx9XFrEx3ck2M2cCf/lL\nZeM5Z446XvP6GD4c+Oc/k8tziY25Le46339/4OSTk8vIiyTR8NW1q1s2RVJXsWHmDgAnApgG4BUA\ntzDzTCKaQETfj/a5F8BbRPQGgCsB6FUpBgF4jIieA/AkgLuZ2TtBi9kgmE+1ridc+8a9777y+at8\nN/a0aX531Pz5auZfk2p8/UmYfTZHHOEOX/W5ePbYQy2Brfnoo8q0vnOgt+vZlS+6qLyMzz4r3cjm\nufe50+IIsWzsfZICBLK40UICLXx5Zn0SzkNs4o7zttuAgw+urN/w4cAtt5RvnzOnMnglS19okosz\n5P82eeWVSoHabLPKvr6ODuDNN8u3+f4XfZ5bW933hYiNn3pbNmDm+5h5JDNvycznRtuuZOarjH1O\nZOYRzLwDMz8bbXuLmXeMwp5H6bQ+zCcRn2UTd/P5rB2TuAkVBw9WnY5pMRuwpAbltNNKHe9xbrQF\nC9S72UjaImneNKbLJrRPx+5g1t+XLy/lbZ5vXUaahv6OO5L3sRuokACBNG7FlpZ01tKcOeVhwdVa\ny7psfd7TRAOGlO26fpYudW+//fZ0omcLe5Lw9uwZnjcA/OEPwG9+UyoLUMto2FPtXHcdsMUW5dtC\nHgJcA49FbPzUXWxqhdkgmGJjNixJjUXSzekyrc3pX+yn0ZCbPY0L7fzz1bgIIF5sNt20sh5xjUQ1\nEUMusXFN85/2qRVQ41x86DrbDVRSn001lk3c07x+33775Fkaksoz89PncskS9f6f/xmeV9brr0cP\ndzTcM8/E553kRkta/iHtNeJzs9rXsz53JllFQ8TGT9OIjWmi+9xocU+oIRaQ3YCtWqU6NEPWUPFh\n3tQhjf6aNWq/NKHPSa5E8/OUKcA66yS70TS2a8QUmxA32tlnZ5v0UeNzozED776rlkA2yRL6nGa+\ntWXLwqIZfdhi09GhrjM9aWmaiT2zWjatrZXb33sPODfWt1C92DzxhIpiDCWkT89HkhvN/qwRsfHT\nNGKTJDBA6SJPG1GksZ8C9fdqVj1MGxygjyfP0GfTjbZkSWVjOXVqKQTaTm8Li9lnE+JGmzSp1O+T\nhTg32pZbArvsUv573pbNlClqvIbv2kr7AOKybMz/OM31klVsevSoLGf+/PR52/vomQp8aWfNqhyf\nFUdoeLjrms/alyZi46dpxMYXjZbGjaYnu/Q1LuYFalpQdmBASHl2vUPReeqLXtcpzipKqocrrblt\n7NjymaPNPG1hWb06fYCAq/zQRtp2o5kBAitXKvFcvjxb3oDbslm9uhRl9uSTalR5XmJjp1uzJr7f\no0+fSiFIU7bLxdqjR2XakIY9ybK57jr3fhOtGRNDLV3Tsok7Vp/YZHEfp40ubCaaRmxC+mxsd9Ks\nWaXP5sW6xx6V24BKYdD5addGUjSOCzPPkItfl6nFRr/rtDvvXFl+kZOUxomNefxFiU1SgMCKFUDf\nvuX5phnoO3t2pXjut1/leU6q74MPJpfpKn/NmvL62mLz2WfAv/7lziO078h2R7n6Tnwuq87OUmRi\nktiY2++/v3Tt6rB4zW67qYi4tPXW2NdTVnfY3XdXLoMhlo2fphMbINyy8U29ot1idqNkfl+4ENh1\nV/d+aQi1bGzhcEV8AcBzz1WmdZ2bpMF2oX02trCsWhVv2bjyySI29ngU+/xUO6hTn6eDDgKuvrq8\njOnTSxO92nX1WTah7iGXGy1ObOwy77knvTVl/zdpLJspU4BNNnH/Fic2Y8aoIQc+zjnH/1tSnUL7\nPl0eDNNt+sgjlQv8xU3M2uw0jdiEBAjYF1fSmip2g2UKw3PPlWblzeoqsfOMw25MQ4ISzON13YCr\nVgEbbJCPWCZZNnfd5a+vq25p66TLTBrLkfSbq3wdzcQMPP10ZZ+W2aiaDeBPflIKgw69Rlxi4wrr\n9y0VceCB6ZeR6NWr/Htra7LY6N8XL67c5vtub682QlKLpGtS0BBcgR9z55b+b/sa7Nu30iUrlGga\nsUnjRtMXsik2rhvDvth8nYpplqS2SdtRqcsKaVTNerhu3k8/VX0xaSybJ55QA+neeEN9ty0sn9iY\ndQkpK+m4jj8e+MpXKvuwQsbZzJ0bnzfgvoaYS9asr77msZhT9//hD35LOi6/jo7y62vBAjWaf911\n/WnTRmnZebksG58ryhz3k8aNllTPNGKzzTbhfTZPPln67LKCr7sO+O53y+upGTIkuU7NTL3nRqsZ\naSwbjWkih4iNzwqpZinirH02aQYa+hp4/bSa1orQA+mAcDeaXSeTlhY1tYq2tELqtHChepkTcvbp\nEzaDwKGHxudtp09zrs3/0Jxb7o03SgIdR5Jl88knwJe/HJ8m7jpyLZ1hi42rz8YlJCefXJrp257i\nBlCh53/9qz+vlhbg5z931zPkXrCDVnyYeZnBPD6Xqw64sI85biZ4oQktGyC8z8b0v7oaksWLy10m\neSw9bZM19DmNu8icQcBEb7v8cv9vSbjcaL7+JN82ItXpPnx4aZt9TnU6exkGvV1PURJi2YTgs2zW\nW8+dZ5LYpMV0l4ZeXyHXhKvB1GLj6s/TuPI0AxNc1/Fll6lZB3x5tbQA//u/7nqGXH++tWVCr12f\n2NhWctp8m5WmEZs0gzpduG6mMWNUZIxdhr1/NQ1bVsvGblji0iaJ5O9+l1yuD9uKSbJsXBABL79c\nLuz2udN5/eMf5dv1fnqKnpAZBEJwXTednZX9G3a+Zt9GFrFJsmxMtMDqND6xSTrmddZR72Yj6zv/\nvjxddUz6D7K40ebPT+6T0mkXLFBTSPny+ta33PXU4c0iNuloGrHx9dmEiIKPZcvKo46S+mwWL04f\nh2/fpEnRLnagQDV9NnFikPbpMLTP5t573WXZDYjPhelrBHXDHrKeTQguS5nZHQHls2yqGZNhnk+f\n2BxySPn3pHPko0+fUll6/5A8zH1c90bSfxA3dsd1/b3/vpqD8Kij4stavlyt8Prgg6oPxhd5qaea\nChUbIZ6mERvfRJwu4Ql17+g1Wlx5mRewviifeQb48Y/V58ceU9FIaeoNAGuvXR7hY5PFjeYSG3Pq\n/Gqwz6lvUKdGD+Az663rpp+w7d+B5Kd2s4FwRVPF/fc2zOVRR6agphGbtLz3XuVxdnb6/ye7Llkt\nG52P+ZCQh2WTVG5ay+brX1fvcfcHoO69H/+4MiDIh8+NFhIkIZRoGrHRkwSGRKO5CImS8vX/mJ9f\nfVW9n39+5Q348MOVZbjmRotzE/gCBLLMIBAawROH3YibbrQQITTLMjuq0wZnaLHp6FBi42scQwT2\nxhvVVPV2GXFio0nbID3+eMkq22gj4Npry/O0r2dXuWbkml0f13cbXWfz2kprHdXCsrHHvPjQ3oEs\nVizg77MR4mkasdGzIdt9Ni5RSNNxbRIiYjpG3zWGR0/X4cvT5tZbK+uXNUDARR5uNLusJDeaRoeX\nAqVGZ+21K/PThFo2Wmx8+4U0IPYTd5IbzSTkvDEDF1ygPu+1F3DNNe59gHjLxm4Us7rR7DLffrvy\nN5d4m+WksWyq6bMBVP9e3Eh+LTZZLRvps8lG04iNiS8yLW2fjd2wmE9v5sVulqdXRzT7Xu6+219+\nnNiMG1e5Les4G9dCUHk8ub30EvDii27LJi7/p54qfdY3ce/e/rqF9tmsXq3yqcayMd15ZpoQsQlZ\nb2bVKuDUU0vfXQ1niGWj0+nf9bsdMaej/JIsJM1JJ1VaEVksG1+akAjMuOjJJUtKszpo7D4bs/y8\n3GhCPE0nNiFuNNdFFDebgO2mAMo7f80lmXVjZOann2JdN19aX3fcOBs7L/3b1VerJYBNzGk5XNiu\nlTjefddv2bjKsCda1GWZkV5ZLZvVq1U+PlEKOR5f2hA3WhpCrdJHH3Xvo+cks8XGt5/PGnBZ/PZ4\nnDz7bHTvSiO5AAAgAElEQVQ9Zs92/w6oa+Koo0ozT9j84Af+tDqqMfRhSiybfEgtNkQ0gIi2L6Iy\ntcB2o5mf9RxOrpvAnnkWKDWaLS3qacq8ocyw1t//vvRZD4gzxUYPPrvxxsoy8gp9BiobE/2bnlbH\n/i3kZgwdB6TzsgMEXOnNcHIgnWVjR3i5xMZl2djnLQ5f2s7O8Gnt4wgJVjDFZsKE+PySxAZQc7y5\n3GO++iTNlG3366Tps9HXqSuqzOTGG0uDQjs6SuHtSVRr2fgscxGbeIJuDSJqJ6J+RDQQwLMAriai\nC4utWnH4LBtN6JOoeQNtsIHfsjGJExsXLrFhroxk03XWy1e7LJu0M9LmKTa+AIGQ6XhcYuN7crbn\nwbIDBHyWjT13WhxxLrw8LBv7v3Ol17NKh+R96KGqHyPu2O6+G2hvd//mqod9LfkEWJNmnE3Idaqv\nic039+fvI61lc/zx7n0lQCAdoc9h/Zn5EwDfAnADM+8GYJ/iqlUccW40c58QzJvCHlznExvd6WmK\nTdzKjb7G+Lbb4uvmGtSZZlxHaOhzWrGxLZuQhuXpp9V7nGWTNEDQ7LPp1atyjaE0YhPnRqtmOQQ7\nv5DzH7LP0qVq2piHHorfzzfINMTSsge0+qwBV742aR5AdJlJ59j8Xd9vIZGagHLV7b9/fJ4h+TQ7\noWLTSkSbAPgOgHsKrE/hmGKzZo2act21Twh2Q+lzo5loy8ZM+8kn/sGaLmF0NTCPPOJOV41lE9Jn\nEzpRqGnZHHdcaVtIeh0sENeYhYY+azeave58mpVNfUKXxrKxZzpw7Z+l/8jHlVcCxx4bn873MBLX\nl2m6H+PW8MnSZxOHvYREGivDjtILEYlp0yq3iRstHaETcZ4F4H4AjzHzDCL6AoCY7rvGJunJMYsb\nDUhn2djccYd7u0tsOjrS+5lddUrqEyjKsjG3pRHAkAABX7mrVpXChF0TSZoPID7efFP9f3FiEzqj\nsh6AaPPyy6U1h/KybELTZbFszPNmrooaYtnk4UbLMllsFrFxIWKTjlDLZgEzb8/MJwAAM78JoEv2\n2ZiNaMgFqlfldGHfFHpFTiDZsrFvXHv5Yo3ZSWo+8SZd2CGWzcsv+9PHjd8AKufbisOMbDPrsPXW\npSlBkhg6tNxqsOs2YkT8+I+ODlV2a6vb+kiybGbMALbYAthll/g+m2rdaKecUvrP4yyKLHmbuI4z\nSWxcEV5m4Icp4iGWZ6NYNlnx1f+dd6qbZLW7Eio2rqkYq5iesX6YT9NJrhcAOPdcf172DfvYY6XP\nvkWUdL+DfaH6JnB01SuNZWP6pe2b2BX9pvGFJduEuJ3MvGzrSk8WmcR22wFvvVWep81vf+suu2dP\nVc/Vq9VnV3+UjmTyHY9eNXLFivjopGqj0bbaqvQ5RGyyNpiua99njevyXWHGpmVjWnV2NFoasdFj\n0eKwz00WsdGu56RVaZPqYKcdNgz42c/C82kWYt1oRLQHgD0BbEhEJxs/9QOQcgmmxuDss0tjBEIW\nO4trPNasAUaNUgMXbfTS0TY6v1DLxlWvNO4ts5w0AQKhlk2oG8xl2QClMR5JrLWWci8984zbugDc\nVhKzEnJTbFpaKv97veiZ75rQDanLjaaDDXx9NmkwZ0ko0o3mevJOGmfjQl9nui/MV6/RoyvT+uqu\n14uJwxT4X/6ycpxYCLZ4Xn11ab2kEOLGFoVOndNMJN0avQCsAyVK6xqvTwAELDHVeFx6acnd4rNs\n9PbeveMtiDVr/Asm+fJeswaYPLnc5QaE+frTWDbVBggkiY1m2LDkfUxLwq7DT38aVh/dkOkR+KED\nbzs7S5aN7ldwWXka3/+mXUQtLfF9fdWGPse5onxlZsElNnEPX766mP+rbdkkYVqqJiHjZUyxueEG\n5ebMiq7rgw+mS6fP/fjx5d/NPIUSsZYNMz8M4GEiuo6Z59SoTjXD1+DoC+XWW5Mb9bRL7HZ0lKan\nMQl5Iq7GjQaks2ySAgSyzo2WdVp97WZctUot26zHE5m4xEZbNnrRNm3Z+P5733b9/2QRm1D23LNc\nbELOVdZGzRX9GGfZ+GbQMAfT2n1qWYUwxI1mhqr7XNbbbVe+BEhSXi6rNQ697w03qCW+RWziCY1G\n601EVwEYbqZhZk9MTddg9Wo1k7Bv6g2ifMXm6qtVP8mzz1b+tu++yelNN1qo2Bx8cGlbGstm8eKw\n0OcQOjqqFxt9nleuVMekZ/E2cTU6xx2n1jix3Wi+evie7vUKoEVaNnak3MYbJ6fJ2qCnFRuftaHF\nZsWK+ACONIRcp6Zl4xPCUOHXde3RI2xJcDudxvwvsv4v3ZnQ57DbADwH4KcATjNeVUNEY4joNSKa\nRUSOSWEAIrqYiGYT0fNEtGOatD5691YNl+uCNMUm6YJN8yS71VaV4zvSoG/sPfZIH/q8ZAlwwgnh\nZZ16KvDf/53P9Ctr1pRuPnsA66BBYXlosVm1yj+tiu8J1+6zaW31d+AmRdfFPf36xMY3f5eN7yHi\n44+BfaIh1HHLWgBq5clttkkua+XK8j4WwC+0zMDXvuavM6DOfV5iE/JAoiMp8xSbtNe6PYefKTA3\n3ZQur2Yg9PSuYebLmXk6Mz+jX9UWTkQtAC4BsB+A7QAcTkRbW/vsD2ALZt4SwAQAV4SmjaNvX3VR\nuywTc631NJaNXkY2bt+4qWmSCB1ACVQ2mkuXhrkUTNrb/ZZbVsvGFptQS0fXY/Xqyv4ujU9sdJ/N\nRRepIILWVv+sDUnnOM6yqTYarbPTLXYffqhmzgb8sxdoevQIC0dfsQLYcMPybXGWja/DW5f12Wf5\nudHSWOAdHX6xCfU6pF2m3MXq1eUzlQuVhN4adxPRCUS0CREN1K8cyh8NYDYzz2Hm1QBuATDW2mcs\ngBsAgJmfAtCfiAYFpvXSq1eln1kTGo0GlF/QIfvGiU1SerMhTLox9MDAaknbJ+VCi02vXpWNfOh4\nBH1uVq70C52v0dFic+mllSG6Nklik8WyCcWeSkmzalV8WPLuu5fXz8xj5Eh3uhUrKs+DPQuFprMT\n2N4z9a4uy2XZZBWbNK7W55/3lxP6X6SZqsjHJZeI6yyJ0FtjPJTb7HEAz0Svp3MofzCAd43vc6Nt\nIfuEpPXSs6daNdPVcGXtswnZN26pAtutYWM2hEkXdl5PWXlYNtqN1ru3WmV00KDSsYY2LOZaJb6y\n49xojz9e+u6aQcCsaxxFBgj4LJvVq+OnkjHT2GLjO9bXXqv8b+fOde/L7B/crM9FvSybOBfl04Et\nVB6WjWvmdKGcoAABZt686IqkIOOkEJONz21obW3DEUe49zTdaGksm2qDCXr1ihcj34JsWdlhh+RB\nlXlZNp2dJbFZf/2w6WFMdMM1Z042y8akGsumKLEZOTJebOJG95t1DhWbZ5+NF127DF/5vhmvi+6z\n0aRxLfvQy6y76jx4MDBvXnIevnF1XY329na0+6b/rpKgy42IjnJtZ+Ybqix/HoChxvch0TZ7n80c\n+/QKSGswuexb3CBK86Lr08e9T1tbZZ9GtWIzcGB8AEHeYhMykDQPy+ahh5TA9O6tbsrQfgUTfbzz\n5vnL9jU89uwM1Vg2cbNhVyM2V10FnHii343mK/PRR8sHxtpuPt+x+vorXTD7J4r1uZz/+Mdwy8Im\n1LLZaad83MVvvKHeXec+5B7pTrS1taGtre3z72eddVZueYfeGrsar69AtdwH5VD+DAAjiGgYEfUC\nMA7AVGufqQCOAgAi2h3Ax8y8KDCtl7gGR190LS3qifOQQyr30RdhnmLTv3/84DR7EstqCXmy9dU5\nTfnXX68i4XSD1dKSfdr9NWv859nXIKexbFyNqrmY21tv+ceBhD4AmC49s06+Ppu4fq2LLioPS25p\nCbNsXH02PuLExizLFBuX0JhLNR9+uL+8UMvG1x+VFj3zhOvch1p/QjJBYsPMPzRe3wOwM9TMAlXB\nzB0ATgQwDcArAG5h5plENIGIvh/tcy+At4joDQBXAjghLm1o2SGWjW7URoyo3MccUa6pVmzWXjt5\nehyNr7EOGa8TWh/Af7O9+657u4933ikFR2R5+j/gAPUeMsbIJo1lY66qqvnCF8q/+yLZVq4ME1FX\n/0drq9+N5mvoTf78Z/Ue6kb761/j11Ey6exMLzY2W2wBbLRRcr2AcMsmZD7BEFwBAv37pytDggOS\nyarbnwLIpR+Hme8DMNLadqX1/cTQtKGEWDYh6fO0bPr0iQ8SCBGbNA15yFNbXB9SVrKIjTlbdlqx\nsY8zbT+U/aTtuz6WLMnu3qxWbLQgtraGic3SpZWDmX1kcaPZ2FM/+eo1cGC4ZZOX2OjzZR5Lv37q\n/2w2N1qRhC4LfTcRTY1efwXwOoA7i61asaSxbFwUJTbrref/PaTPJk1DbtfHXmoaqG4QKgAceWTl\ntizrfqSZPcHGflJO6xqx0/v6dcaP9y+tnITua3GJje7AjkM3vKGWTRqeeaZyuW1NR0f5VD4+bLHx\n3Qs9eoRbNnkJgT5f5gBjPeehuNHyI7RpOh/ABdHrVwD2ZubTC6tVDQixbPTN4WrcihCbTz4pFxvT\n7QCEzb2UVIe99gL+67/UZ/sc+Bb0Atz9Vj4uv1y977+/ezndLJZNNWJjhkSfemr6BsR+0vaJTchs\nxT7ixCbEAjH7EEMCBNIyxzMzYkeHGiANxP+vthUSF3hSazeaOXO1Zt118y1DCO+zeRjAa1AzPg8A\nkHGGq8YhNBrNRzVi41qECgAefrg8+k3fvP37qylIdtqp9FsWN9r666sVQc2n4NC0WWYu/t3vSr5v\nk1pbNpsZsYznnFO9Gy2PcFub1lZ/gEAasQkNEMiLTz8tXU9x14+ebTupXnGTpNrk3WdjPpToa0Tc\naPkR6kb7DoDpAA4D8B0ATxFRl1xiQOO6iHSjpKexj2vUzJtbQwTsvbc/jb6A7Q5nE7NMnfcuuwAn\nn6wakQ03LH96Pf748vRxN/xWWylrSQuHfbPGHW8WsWlpcTfsWfo1dJqHHw7rwzDp06fkImxpSd8A\n2/1WLrFZp8pwGf2fuvIOmQXZtGxMsYlbaTYP9t47LPCjV68wN1o9xEYPyHQtzS5utPwIdWj8BMCu\nzDyemY+Cmiqmy65FN2SI+yLSEVaLF6v3kD4bM59Qy8a8Sd58s/RZRxRp9M2rZzJYs0ZZJ6bY/PKX\n7jQuzEW+gPKFuszt1ZIkNlksg29+E/j3f1dCk3aMjrkkg1mne+8NS2+LzcsvA5Mmlbs5tSsplNMt\nJ3RcgEBIkIavz0avtVILkiwbkzjLJnTsTJFWh75ezKmAhOoIFZsWZl5sfP8gRdqGYv31VYdnyIUa\nJx66wbItm5A0Ztnm/gOt2ebMjlftHtHjMczlnl1pXGhh00Jli01cR3S9LZt111XWXRZscXOFrcdh\nN/bTp1eu9pmXZZN1fi5fn00es3aHkpcbLZQixebLX1bvv/hFcWU0G6F/7X1EdD8RHU1ERwP4K4DA\n58LGYtQo9UQaYh7HBQi4ttk3ysSJ5dP6J4mNrpNe78YsX1s22rfvmxY9pD/DZ9mEhsImkSQ2Wfps\ndH5ZsBtwXafQergsC1ts0lo2rvx8fTYh1FJsfHnGPZDY95vv/ktz/P/6V/i+aTjkkJKlGHqN+Ja9\nEErEXopENIKI9mLm06AGVG4fvZ4AcFUN6pc7ugO+2jm/XDecfWH27w+stVbpe6jYjBoFXHhhueuH\nSHVU9+xZPsmhXWYasbGn4gnpGwjBtPrymFtNk5fYVGvZ6LTVWDZ2w9zSoibCzLp2vW9GiyL6HC68\n0L09zj2qr2Hzu4vQWcCBbMLsW8fIJMt15loQUSgn6bReBOATAGDmO5j5ZGY+GWqMzUVFV64IdOMf\nckHFNdwhYmN/DxWb1lbgRz8q/aZdEAsXqtUbmYEvfcldjzTr1tuWzTe+kZwmhCTLJitZxcZuBF0u\nUED1C7k45ZTyFU912rwtG0AFQGTBJaA9egAbbFBdvVz4/tO4wZghM6gD6cQmdPCnvleAsOuxR4/s\n1rfGt9hcM5N0+w5i5pfsjdG24YXUqGD0TRlyMcXt43KxJfWfJIVL2zeC/q1HD5XXp58qc51ZNSLX\nX19Zph6MFoevz2bECGCsZ0WgNONskiwb5myNc1qxGTVKvdtl+a4BM0TaZOJE4IILKuuSp9hU27iZ\n6/1o9Lm3r4lqBSjLfHmhFngasQmdbsec2y50PsBq/w891kwokXT7xoxnx9oxvzUsvtHOOqpr/fVL\n2+L6bEItG5eY+MTGdyO0tpb20wMv9chtux4hDbJuFFxT4/gajB12APbbr/Rdd6C6MM+xr2G67jpg\nwoTEqjrzDWXMGPU+YED5cfncaHFWoWtMkrl/tWKTl7tLTyoJlI7PPq4NNoifqSKJLNaqfS/4GvM0\nywskrYzrIuQ82y6/LFSbvjuSdPs+TUTfszcS0X9BLaDW5TD7QUy02atHDgNq8sCkfOK2EZXfmL4I\nNo19I5iWjf783e+qz1psslzUvv4e8zeNHqdBVP5bXMOfZNkQAYce6h/c6sNV5le+ktyADBjgr59J\nGlehnbba8SymtWEKV9r/98ADS5/1caaN/tMDce+7D5gypbRdn2ff+BZ9/lz9V1n6FpPIEtZdKzda\nLaMAuwpJp+R/ABxDRO1EdEH0ehjAcQBOKr56+RNnrQwdqsZyAGoVz8Ex636GiI1peVxzjbts28fu\nwrRstMCsWeMWmzQBAq4bwm5w9aBRex2XuJspxLIJrWvS/n36+ENgmYFzz1XT87hEPY3Y2J3RdtoN\nN/SnTcIcxNi3b7l4pg3vNcf+6HN/2mnl+yT1n+gQ/C9+Ud0Tdl3ixGb+fDUGyUWIZWPjmu6oGkLE\nJu4hzh6eEJeHUE7sKWHmRcy8J4CzALwdvc5i5j2YeWFc2kbF50YjUvM/nRRJaNxN/utflw+4NPOw\n89QX93HHufNK60bTN4LPjRZyE/vCpl2YYcJmYxwSPJEkNmlvSJ/rMq4uEyeqQbxm3X2hz3EWgC02\ndiSf7zj/9jc1c0Mcvr46oLqxJDrfyZPTpdPWPXN5f4+ui3a/Dh9eno4Z2GQTt3s21I0GlN8rafoK\nbVxLo4fcH77rcurU8HBrcaNVEjo32j+Y+XfR66GiK1UkcZYNULqh4m7y3XcvXZBxDTBRcoMa4kZr\nbS0XNz3As1rfcohlY3amV+NG22absPLjMPe/6qpseQDZLJsRI9TqrBrbVeSqx847q34jHajgI846\nrUZsfOfGzP+cc8qjtfTvm26q+nW+9CW19g1Qsmh0nfR5tPveqn2qN62zLbeM3/eUU9T7V79a+Zvr\n3PnqZvbV+txo666rzskTTyhPRRxi2VTSdKfEZZGYuMTG3rdnz7AAgZDQ37R9NqZlY4tZ6AWexo1m\nCkc1bjTXjZ9WKM0ydaBElpva12cTZ9kQlfeHaLFxBX1obr89Wx2rERuXBRfH6acrYbHLnzevdIy6\n79Iey6PLuuKK8u9ZLFCTvn1LYejrrqtWI/Wh57xzWVOuevj+i002KX22z5ueJV3Xf/fdS9PY2NNF\nJZXTzDTdKfGJjTmmBYjvdDan3khyo6WxbOL6bMwGnEjN67VqVVh6G7tRMMfX+MSmWjeaaw65aiwb\nnzs0BF/oc5oAAd0QuyZktcdyVdM3VY1l4xs3lfa47bVdkkKfQ8RGuyVd4eZ9+wK/+pU/LxP9+5ln\nusvUTJtWuc3EDCKxPQa/+U1lXXwPGVokxY1WSdOJTVJDF2LZ2DPY+vazo9E0vkY7xI1m1tsebR4X\n0GBiLw5n3vBFudFc4p232OyzT1g+WaPRzN/t9U7M//nss8vzD4n6MzH3Tzuzsc53gw2Am24qbbfD\n7c0ykqLVdHRa0r0TJza29aSnd7HPzbhxyoIMFWq937Bh/t/M6Z18511HAB55pJqDz/UQ5wrssa9r\nHRwhlk0lTXdK9AXjm8Y8pM8m1I1WbZ+NpkeP8gZSPxUutEI0pk/335xmY2M3CmaaOMvGbJTizk+S\nZRMXeh2H68nSbDjN9X7Mcmx8fTbaXRKCbpxca7nEnd8QzHpntWzsWRNefrn0OSkwwv69Tx+1Yqvp\n1nXhE5tXX1WWipnvPvu4BxDffLNy2yX1rWriLFzXf5L0QDF+fHn5gFtsfJZN2qmQmommOyX6grGt\nAtuNlofYpO2zCXWj6YbkUGtFobjwW5fY6G3m2KJQyybu/Lgsm5DO2gce8Odp7+9qZEJvcNuNduCB\nwNNPuy0jsyPYdfyuOclCxCauETVn33ZZNnvu6U+ry46bp4xIWT66DiFzjPXrV3nOQxfwGzSo8jiO\nPBK46y7/eTDFZuut/fVKKzY+tPXmmpXAZQn7LJu0k7w2E00nNvoiWbLE/Xton42rIXGFIfsawEsv\nrUzv60fS09WYZbS0qGinUFw3ns7fXMzNNUGk3jdUbOzIOcB9Pu3jTXKD+cQmbR+Q2XjcdZdaUXSX\nXSr3W3/98jBcV+e7y41mh5anfcpduTJepH/wg1J/zAEHuPOwxcb+Xx99tDTbQOigz6yWTRbRNf/T\n/fYrjwR05V2t2EyZovraRoyorJcrb7Fs0tN069Dpi+imm4CDDgJeeKF8e0uLWrwpbrnnavtsgFJj\noZ8y33+/MqImrs8m7fQmcY3hkUf6fdo+sYkrv6WllE6Xe9hhavbkxx+vzDsUlxstzrLxNWRmg+By\n5Ywfr1agHDTIXxedhytAoBo3mt53nXXUA1FSI+oTijixISoPL7YtmyQBsMcY2WX4HprSiI197pKs\nqDhPw8YbJ/fZrL12+ezerodAV5+lb+kEEZtKmu6U6Atn6FC/ZbDjjvF52AtB2XlrzEbXty8RMHu2\nmt4/tM8GSC82cY3hwIFqlmnzN1c9zd/iOq5NS8wc1PrPf5bnmUeAQNITqCZkUKdm002BY48tzSYR\nl4fLstH76ai0NAECert2bbrStrSokN9f/MIvNmmm308rNrvsArzySuXvWRb082ELVFaxWbQIOOOM\n8D4bu3wTl9jYD5O+4BOhCcUmi4/fJk2AgC8azbyZ1luvvN/Exh7Uqbe5SBMgUFTHtcuyyWMRNZ/Y\n+MQrbYBAGnQe2ho189Lb4sRGc8MNldtuvrlyuzlDd0uLmsvvJz+pFBt9bdnHHhe2HipM5jW77bbJ\ngulK58szriyg5N6ySXJV6oUS084P56qXmYfvus4aFNIMNJ3Y+PpI0lwcphstqc8lxLJJqqurzyZP\ny8Yk7skvi9jE3XzVWDYuwcjSZ+PC95/Yls2MGaWBmzrPMWNKU9q7XGw2Rx5ZWfa4caWJYYlUv5I5\nKWySG811bcT9r2n7bJKwXXhZGl77AeLyy4GPPvLvl1RGUZaNfa6z9tM1A013SsyLIM4nH0eoZQNU\nPvlccQWw777hNwlQXJ9N0hgg+7vZKOnyzdHeZlkhN53vt512Uucobn9TMNK65ZIsm5D/pEcPNZWL\nnqhS12fbbSvXZKn2KXfsWODb33bnZ/4nI0YAm2+efG3Yx22vb2NO3WIS2qDby4tXEyCg33v1Kg0u\nPfHE+Hq48s7DsnG5UX2WjYhNJU13SsyL4Oc/V0vxJqHDIjVmY2piX6DMlftNmKAa6LSWTWifTVKH\nq66Xb98414jLspk4sTKSy7Rs1lpL9UmlqavpZrTz1VRj2aRZQM+uly8PXTYzsGJFeTq9j23FhKDT\nTp5cCtf3WTazZ6v+N5fVaV7D9nm68UYVmfbmmyqPW2+Nr4sPn9jkESAQUn5c3mktGxeu6ZqyrO3T\nrDSd2JgXYK9epVH3cRfySSepiSR79gT+9Ce1zV7l0pWHXlEzrh5ZLZu0g/3ixoGYxN2Uett55wH/\n7/9V5qsnZLTFOMnf7ivHxjxXrk7+0BkUsrrRXHmYDwQan2WT1NDtuqtan8eHvuayuNE226y0MJl9\n3P37q98331z9V76F1UL7xHxik4Y4N3VaKwVILzKhlo3rngey1bG7UzexIaIBRDSNiF4novuJqL9n\nvzFE9BoRzSKiicb2SUQ0l4iejV5jwspNtx1QovTssyo8+bDD1Lbjj1cDAceNKw2utPNYs0a5QN59\n119eyNO46bZLeqJKY9mk6bMxp/z48Y9LfQhmHuedp0LJ46LwXHX13bA2LivGdKMddZR6+n/22fh8\nsrrR4hqbOMsm1OJ64gngnnv8dXFdM65j9Fm9IX1IcdTDjeaqq6shd0VHutxo1fTZuCwbV/023tj9\nMNrs1NOyOR3Ag8w8EsBDAM6wdyCiFgCXANgPwHYADiciczzxhcy8c/S6L6TQrDfaWmuVr+3Ru7dy\nH+2+O/DHP+r6lqdZs0ZtGzKkMr9aBwi4+mzSuNF8v5nns39/YPvtw8XG1wj53GgmRModaa6QSaQs\nSXvaGpuk0OdQa9Pc10xjT4UU+mTvc89qXA2cK5Is6drI6voJFZtJk4C//MWf7uKLS59PPTW+rKRG\nH1AWW1w0p5mmGjeaK0DAZe0tWFDdBKrdlXqKzVgA10efrwdwsGOf0QBmM/McZl4N4JYonSa1gV5N\nA5OUpxmGCyRPGZJUrv6ttbXS9WMPAP3iF8PqCGSPRnPt36OHez61asUmhGXL0s1npnG5o0xCrgU7\nrZnmP/6jtAaM+VuWhs7M19XAhbrRTIq2bAYNKl+Owb7WzT6+738/vo4hUYy+hr2aPpvQ0Oes124z\nUk+x2YiZFwFAtOrnRo59BgMwnVBzo22aE4noeSK6xueGs/HdMK71MELxCUe1YqNxWTam2+CQQ4An\nn4zPw+V6SfOEy6xCcLWLypWvZsAANaVKEr5zkNbffdFFwIUXxu9jirFe2jdtoxs3VsV0o629NvBv\n/+bfF1B9XhdckK58VwPcSGLj29eud8h1F+dizfJgmEefTZwbTY+LEveZn0KnqyGiBwCYAcYEgAH8\n1LF72meCywCczcxMRL8AcCGA4/y7TwagRrG3t7ehra3t819eew0YOTJl6QZFi41rUKcpjnfcEV5H\nQL4mmTwAABDQSURBVI0DeeKJ9G60oUPL16S/7z7gy18uTamv6d07bCniOL93mrodfbR7u5nH4Yer\nF1BauyRPKzcujWu1yc03V1PZp8m32j4bTV5iExcmH5fOFpt+/dQMGq40oX02LsxpdfKwOFx9drp+\nAweq/kJfQFBXob29He3t7YXkXahlw8zfZObtjdeo6H0qgEVENAgAiGhjAIsdWcwDYDRvGBJtAzO/\nx/z53381gF3jazMZwGTsvffkMqEBqhMaoFw4zAvSt4yBnSZpH5dl47PEfPmZroazzvLPu5Xmptxv\nv9JU+2nQddQj7EPrkNb6TMpn+XL37yEBAr40rn3+53+Uy6/aBi+vPpui3Wia7bd3p7fFZsEC4Lrr\n3PuG9Nlo3noLODhyxn/6afn8b3afzTHHqPfBg93TU9nlnn46sNde/t91f2FXp62tDZMnT/78lSf1\ndKNNBXB09Hk8gL849pkBYAQRDSOiXgDGRem0QGm+BeBlR/oKqumbScK+ieMsmziftE1In00S998P\nvPiiuw4m116rVgEtEntafh2SC6ibeuLEyjSACsnN6/ofN65yQS+N7z8ZP77UmIWmAdR57tu3+j4b\nVwPcKG60009XQwRM7rrLnd4Wmz59/CPx04jN8OGlFVTtyULtPpvf/169H3OMmnjXxi73nHMqx9uZ\n+QnJ1HPW5/MA/ImIjgUwB8B3AICINgFwNTMfwMwdRHQigGlQwngtM8+M0v+aiHYE0AngbQATQgot\nQmyKDhDYbbfSOhtZxcZ0f9n5m2y9dfn6IXqNnLRRanHEReqcc4561+OZbHR/S7XcfLP/N99/MmQI\ncNpplY0oUNyI8aTrNYvYZL0H4o5R/28hhMxcEXd/uFbl1Fx8sTvCzXeN+oQr7TmSGQOSqZvYMPOH\nACpWMGHmBQAOML7fB6DC0cXMR2Upt5YXRZzYpGGzzYBZs9TnrGLjIulcrFhRKkc/MeZBSNh2tU+M\nRGo6maxpfST1S+Qpyr66mNtcUy7Vq8/GxicgaQIEXHU988xKK0ozYECpT87EF/oc2s/kI+ukts1I\n061nU7TYjB6tzPIlS+L7bNJSbZ+Ni113BX74Q//vuoxly+L7ZvK0bJIIPb6iRnBX2zilJSlQ4vbb\nK1eXvO22yiXDTWoRjRZHNdFoOr055i0E3/UgYlM7ms74K/qiOPdc4MMP1edqLRuzrnafja9zPQ39\n+pUPsPORJQggjkYf8BZ3jSS5XfL04R9wQCmCzke/fsAmm5RvGzpUPfT4yGtQZ9Zw4mrFJgu+cTbV\n/l8iNuE0jdgccYR6L9Ky0X02uow8xca2bJJGTNcS31xaPkyxmTtXRbXZ1PPmjSvbd959q1eapG3Y\n7r4bOOGEdGlCqJVlk8aNZu+bJoAmBNe8ef/4h1pYzYX02eRP05yim25S77VqxPr3L61rkgf2k56v\nD6UejfRppwFvvBG+vyk2oZNnNgo77QTMm1e+7f33sy9XkYVq/+Na9dn4CFlvJ67PJgv7718Zft7W\n5o4wA9Sg3ONiRu1pxLIJp+n6bGp1UXz8cfV5uMJeNb4n7B/9CNhuO/XU9pWvAKNGqZuqSHr1Kl/c\nKwnbjdZo4aNJ14gdMu1b/6VRqVefjU4f4kbN240GpAs/HzoUuOaa5P0a7dptZJpObLqquRsqNl/4\ngpoKRS8B8NRTxdYrCyHRaI3qRksi72i0IqiXG01TL7Epkq5Sz3rSRZvebJxyipoksauz0Ublo5nj\naMSbwDfgzsXw4YVWxUlRYtMoZBUbO13afkN9XkPcaHn32RSFrvfmm9e3Hl2BprJszj+/2PzT3Bgh\njdL3vgc89ljl9kWLwstpNJ5+ulJA4s7FoEHA22+Xvh9yCDBnThE1U2y0EbDnnsXl3wjkZdn8/e/A\nZ5/59/f1w6SxbPL2ROT9MGCvYCv4aSqx6Wocf7x6VUOjPRnaS0gD7nBiX70HDwb+7//yrZNJtULe\nFRqerNeEnc4OubbxRei5xCbNDALVUITYCGGI2NSJtIufZWXnnYE776xNWVn54Q+Bbbetdy2Kp1Ea\nplr12QweDHzwQel73DpKvrIaXWyEcERs6sSGG1ZOjBnHwIFhYzlsevTwTx7ZKBx8cOPXsZFolNDn\nEMy57PS4s5B8ukqAgIhXOCI2OZL2xhg1KnzfPn0qpyXpzjR6I9OVKWpZ6CTiBjn7AgTy7rP5/veT\n3X9pELEJR8QmR6SBzI+0y/g2CrUIfa4mn0suAb7+9WxpixQbX1l531ODBmVbSlyoHhEbQciJvfZS\n85n5aAThDFmu20d3EJu8MZdnF+IRsREakkZvZFy4wtSLoF7nplqXVho3WlcQm2eeca/yKbhpqkGd\nQtdjjz2AjTdO3q8rkIdls+uu9Yvcq7bhT7PkRlF9Nnmy886NXb9GQ06V0ND85jfA/Pn1rkXjMH16\nafXUWlPLAIGuYNkI6RA3Wo7IjZE/3emcHn10Pius1gvpsxGqQcRGaEi+9S3go4/qXYt8OfBA9eqq\nVNvw77OPWlzQxejR5ctNiNh0P8SNJjQkRx8NPPpovWshmFTb8PfvD0yc6P5t1Ci1kJ5dlohN90HE\nRhCEIDbYoHZltbQAf/pT7coTikfEJkfkKUzozlx6KfDWW7Upiwg47LDalCXUBumzyZGQqdMFoauy\nzjr+5cgFIQmxbHJExEYQBMGNiE2O1GrZAEEQhK6GiE2OiGUjCILgRsQmR8SyEQRBcCNikyNi2QiC\nILipm9gQ0QAimkZErxPR/UTU37PftUS0iIhezJK+lojYCIIguKmnZXM6gAeZeSSAhwCc4dlvCoD9\nqkhfM8SNJgiC4KaeYjMWwPXR5+sBOFehZ+bHALhmyQpKX0vEshEEQXBTT7HZiJkXAQAzLwSwUY3T\n545YNoIgCG4KbR6J6AEAg8xNABjATx27V7u0VN0X3RXLRhAEwU2hYsPM3/T9FnX6D2LmRUS0MYDF\nKbNPlX7y5Mmff25ra0NbW1vK4pIRsREEoSvT3t6O9vb2QvImzmOt2iwFE50H4ENmPo+IJgIYwMyn\ne/YdDuBuZh6VMT0XfZxEwMyZwNZbF1qMIAhCzSAiMHMuUwzXU2wGAvgTgM0AzAHwHWb+mIg2AXA1\nMx8Q7fdHAG0A1gewCMAkZp7iS+8pq3CxWb1aLBtBELoX3UJsakktxEYQBKG7kafYyAwCgiAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELh\niNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC\n4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAI\nQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4dRMbIhpARNOI6HUiup+I+nv2u5aIFhHRi9b2SUQ0l4ie\njV5jalNzQRAEIS31tGxOB/AgM48E8BCAMzz7TQGwn+e3C5l55+h1XxGV7Aq0t7fXuwqF0p2Przsf\nGyDHJ5Sop9iMBXB99Pl6AAe7dmLmxwB85MmDCqhXl6O7X/Dd+fi687EBcnxCiXqKzUbMvAgAmHkh\ngI0y5HEiET1PRNf43HCCIAhC/SlUbIjoASJ60Xi9FL0f5NidU2Z/GYAvMPOOABYCuLDqCguCIAiF\nQMxp2/icCiaaCaCNmRcR0cYA/sHM23j2HQbgbmbePuPv9TlIQRCELg4z59Jd0ZpHJhmZCuBoAOcB\nGA/gLzH7Eqz+GSLaOHK/AcC3ALzsS5zXyRIEQRCyUU/LZiCAPwHYDMAcAN9h5o+JaBMAVzPzAdF+\nfwTQBmB9AIsATGLmKUR0A4AdAXQCeBvABN0HJAiCIDQWdRMbQRAEoXno1jMIENEYInqNiGYR0cR6\n1ycLRDSEiB4ioleiAIv/jrZ7B8US0RlENJuIZhLRvvWrfRhE1BINzJ0afe82xwYARNSfiG6L6vwK\nEe3WXY6RiH5ERC9HgT83EVGvrnxsrkHkWY6HiHaOzsksIrqo1sfhw3N8v47q/zwR/ZmI+hm/5Xd8\nzNwtX1BC+gaAYQB6AngewNb1rleG49gYwI7R53UAvA5ga6i+rh9H2ycCODf6vC2A56D644ZH54Dq\nfRwJx/gjAH8AMDX63m2OLar3dQCOiT63AujfHY4RwKYA3gTQK/p+K1T/a5c9NgBfhnLPv2hsS308\nAJ4CsGv0+V4A+9X72GKObx8ALdHncwGcU8TxdWfLZjSA2cw8h5lXA7gFaiBpl4KZFzLz89HnZQBm\nAhgC/6DYgwDcwsxrmPltALOhzkVDQkRDAPwbgGuMzd3i2AAgekr8CjNPAYCo7kvQfY6xB4C+RNQK\nYG0A89CFj43dg8hTHU8UXbsuM8+I9rsBnkHrtcZ1fMz8IDN3Rl+fhGpfgJyPrzuLzWAA7xrf50bb\nuixENBzqqeRJAIPYPSjWPu55aOzj/g2A01A+zqq7HBsAbA7gfSKaErkKryKiPugGx8jM8wFcAOAd\nqHouYeYH0Q2OzcI3AN13PIOh2htNV2p7joWyVICcj687i023gojWAXA7gJMiC8eO7OhykR5E9O8A\nFkWWW1x4epc7NoNWADsDuJSZdwbwKdS8gN3h/1sP6ql/GJRLrS8RfRfd4NgS6G7HAwAgop8AWM3M\nNxeRf3cWm3kAhhrfh0TbuhyRi+J2ADcysx6PtIiIBkW/bwxgcbR9HlQ4uaaRj3svAAcR0ZsAbgbw\ndSK6EcDCbnBsmrkA3mXmp6Pvf4YSn+7w/+0D4E1m/pCZOwDcCWBPdI9jM0l7PF3uOInoaCh39hHG\n5lyPrzuLzQwAI4hoGBH1AjAOaiBpV+T3AF5l5t8a2/SgWKB8UOxUAOOiqKDNAYwAML1WFU0DM5/J\nzEOZ+QtQ/89DzHwkgLvRxY9NE7lf3iWiraJN3wDwCrrB/wflPtudiNYiIoI6tlfR9Y/NHkSe6ngi\nV9sSIhodnZejED9ovdaUHR+p5VlOA3AQM6809sv3+OodHVFw5MUYqOit2QBOr3d9Mh7DXgA6oKLp\nngPwbHRcAwE8GB3fNADrGWnOgIocmQlg33ofQ+BxfhWlaLTudmw7QD38PA/gDqhotG5xjAAmRfV8\nEarzvGdXPjYAfwQwH8BKKDE9BsCAtMcDYBcAL0Vtz2/rfVwJxzcbamD9s9HrsiKOTwZ1CoIgCIXT\nnd1ogiAIQoMgYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBROPVfqFIRuB6lFAf8O\nNaXJJlBjpBZDDaL7lJm/XMfqCULdkHE2glAQRPRzAMuY+cJ610UQ6o240QShOMomFyWipdH7V4mo\nnYjuIqI3iOgcIjqCiJ4ioheiqUFARBsQ0e3R9qeIaM96HIQg5IGIjSDUDtONsD2A70MtUHUkgC2Z\neTcA1wL4YbTPbwFcGG0/FOVr/ghCl0L6bAShPsxg5sUAQET/gppzC1DzTbVFn/cBsE002SEArENE\nfZh5eU1rKgg5IGIjCPXBnF230/jeidJ9SQB2Y7XSrCB0acSNJgi1I26BOBfTAJz0eWKiHfKtjiDU\nDhEbQagdvtBP3/aTAHwpChp4GcCEYqolCMUjoc+CIAhC4YhlIwiCIBSOiI0gCIJQOCI2giAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIXz/wFRfJZMiFR6wwAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(1)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=1')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Try out with `B=2` to get _random walk_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYHGW5t+8nJDPZJwkJgSRkgwAhQgBlRwybRhDCAUEE\nDEEFVEQUQRaPEPQooOIHshwR2ZFFQSAoCgYI4GGHAAESwpYJZF8nyUwyE2be74+nXqq6p5fqnu7p\nZZ77uuaq6urq6rd6uutXz/qKcw7DMAzDKATdSj0AwzAMo3owUTEMwzAKhomKYRiGUTBMVAzDMIyC\nYaJiGIZhFAwTFcMwDKNgmKgYVYuInCIiz+TxugtF5I8x971ERO7IfXSVjYi8KSIHZnj+SRH5ZmeO\nySgPTFS6ECKyQESaRGSdiCwWkVtEpHepx1VkUhZiicgoEWkTkXa/AefcZc650zv6HsH7fCgiBydt\n6yEi00VkvoisF5EPRORPIjIyh/csKc65zzjnnoZPhfX2fI8lIl8Qkdbge7lORD4Skel5HGeIiNwl\nIotEZI2IPCMie+U7LiM/TFS6Fg44wjnXH9gN2B24sLRDioeIbFGEw5aq8vd+4CvACUAdMBF4GTgk\n1wMV6XMpBYucc/2D7+YBwLdE5Kgcj9EXeBH9Xg8Cbgf+0QVunMoKE5WuhwA455YDj6Liok+I1IjI\nb0WkXkSWiMj1IlIbeX6KiMwWkQYReVdEvhhs30ZEHhKRVcHd97cj25tEZEDkGLuLyAp/MRSRb4rI\n28Fr/xm9Ww8sie+JyHxgfrBtJxF5LNh/rogcF9l/kIjMCMb3PLBdXh9QkktLRKYGVt4KEfnvFNZH\nrYjcFtxlzxGRPYLX3Q6MBB4OnjtXRA5BxeMo59yrzrk259x659wfnHO3BK9LOH50PBEL65siUg88\nLiKPiMj3ks7hNRE5OttnlvSaSSLyRuTxv0Xkxcjjp/2F3o9RRL4EXAR8LbC6ZkcOOVpE/hOc+79E\nZFCcz985Vw88C+wcZ//I6z50zl3lnFvulBuBGmDHXI5jdAwTlS6KiIwAvgy8G9l8BbA9sGuwHA5c\nHOy/F3Ab8GPnXB1wILAgeN29wEJga+A44FciMsk5twS9OBwbeY+vA391zrWKyBTgAuBoYAjwDHB3\n0lCnAHsBOwd3nI8BdwKD0Tv960Vkp2Df64EmYCjwLaAjPn0XnPfOwHXBuLdBLYthSfseCdwVPPdw\nsD/Ouano5/KV4C78t8ChwIvOucX5jCfCgejF8kvoZ3aifyIY80jg72k+s+sin1mU54HtA3HuDuwC\nbCMifUSkJ/A54OmEQTn3KPAr4F7nXD/n3O6Rp78OnIL+b2uBc+OcqIiMA/YHnotse11EVgd/a5KW\n16Y5zm5AD+C9OO9rFAYTla7HgyKyDr3YLQOmR547DfiRc67BOdcIXI5eGEAv0Dc5554AcM4tcc7N\nD8RpX+B859xm59zrwJ+AqcHrEi546EXtz8H6GcBlzrn5zrm24P12E5FtI/v/yjm31jnXjLqMPnTO\n3R7cib6OupKOE42NHAP8zDm3yTn3FiqCHeVYYIZz7jnn3CcEIpvEf5xzjzptpHcHKspRJLK+JbCk\ng2NywCXBeTYDDwATI5/bicDfgvGm+sz+hop/4kGd2wS8hArWZ4HXgf9DL/D7APOdc2tzGOctzrn3\ngzH+hYhVnILhgUA0APNQgfu/yNgmOucGBX8Dk5bfTz6YiPRH3V/TnXPrcxiz0UFMVLoeUwK/9ReA\nndC7V0RkCNAbeMXfEQL/RC+CANsC76c43jBgtXOuKbKtHrVyQC/6+4jIUBH5AtDqnPMXi1HA1ZH3\nW4VeMIdHjvVxZH1UcKxP71jRC+hQ9G64e9L+9fE+kowMAz7yD5xzG4NxRlkaWW8CekqKBICAVajF\n01E+PU/n3AbgEVSwQW8E7gzW031mW6c57tPAQaiwzAr+JqHfl6dyHGPy59I3w76LAoGoAwYAm1BR\nyJnAqpoBPOuc+3U+xzDyx0Sl6+FjKs+gd/JXBttXoj/8CZE7wgHBjxz0wpoqRrEYGCQifSLbRgKL\ngvdZi7pfTkAvdvdE9lsInJF0B9rXOfd8ZJ+o2+cjYFbS/v2DO9UVwGZU/KLj6ChLgBH+gYj0IhTa\nOCS7rWYCe4lIsgstSiMq8J5UApB83LuBE0VkH6DWOTcr2J7uMzszzXs/hYrI54P1p1FBOZD0olLQ\nhIfAsrgLtbKAT1OY1yX9rQ+W10f2qwEeBBY6575TyHEZ8TBR6dpcBRwmIrsErpsbgasCqwURGS5B\nMB64CThVRA4SZZiI7Oic+xiNm1wmIrUisisaz4jWbtyNusOORS8WnhuAi4IYACJSJyJfzTDevwM7\niMjJItJdNDX3c8E42lC3znQR6RUc85Qs5y+oVVEb+ZOkfe4DjhSRfUSkB4nuwkzH9SwFxvoHzrnH\ngX8DD4jIHiKyhYj0FZEzRGRasNtrwAnBOX4OSP5MkscIaqmMAn6Oxrg86T6zVDEV0P/ljmgc60Xn\n3NvBcfcmKZ4SYRkalE81rrh8+loR6YvegLzptwUpzP2T/voFy+8Fr+uOWsZNwLQOjMXoACYqXYuE\nO0rn3ErUWvFxggvQoObzIuItjB2CfV8CTkWFqAF1i3hL4ERgDGq13I/GNZ6MvNUMYBywxDk3J/L+\nD6JxlHuC93sDmJxhvBuAL6JWz+Lg73I0CAxwFtAPtS5uDv6yfR7r0YvQxmB5UNJ7vh0c997g/dYB\ny4HmLMf1XA78LHA9nRNs+yoqAvcCa4E5aAxjZvD8z9BEidXAJYQxqFTH9+NsQUX1ECLCneEzq0k5\ncHVjvgK8GcRkQAPmC4LvS6ox/BUVhVUi8nK6MWZhG2+BAB+iLrCTczzGfsDh6Pk2RCyZ/XM8jtEB\nxNkkXYYRm8DNtxbY3mnqq2EYEcxSMYwsiMhXApdaHzQG9YYJimGkxkTFMLIzBXUbfYwmK5yQeXfD\n6LqY+8swDMMoGGapGIZhGAWje6kHUEhExMwuwzCMHHHOdSQdPIGqs1Scc1X5d8kll5R8DHZ+dn52\nftX3V2iqTlQMwzCM0mGiYhiGYRQME5UKYdKkSaUeQlGx86ts7PwMT1WlFIuIq6bzMQzDKDYigrNA\nvWEYhlGOmKgYhmEYBcNExTAMwygYJiqGYRhGwTBRMcoW52Dlyuz7GYZRPpioGGXLo4/CkCGlHoVh\nGLlQVb2/jOpg6VJYtw7Wry/1SAzDyBWzVIyyY/Jk2HFH6NVLH7e1lXY8hmHEx0TFKDuWL9dlS4su\n164t3VgMw8gNExUjKxdeCPff33nv19ioy6YmXZobzDAqBxMVIyuXXw7XXFPc92hthblzdT1ZVPzS\nMIzyx0TFiMWWWxb3+HfdBTvvrOutrdC9e3txMQyj/DFRMWLRv39xj79xY+Lj3r1DMfHiYhhG+WOi\nYuTMX/4C555b2GP26KFLH5SPiopZKoZROZRcVERksojME5H5InJ+iudPFJHXg7//iMgupRhnV2L4\ncHjjDaivh2uv1W2treHzl18OV16Z+rUrV+aXAtw9qJgaOFCXvXub+8swKpGSioqIdAOuBb4ETAC+\nLiI7Je32AXCgc24i8D/AjZ07yq7FunWweDEcdRSMHg1nnaXbFy6Eq66CTz6B+fNTv7a1VSvgH320\n4+Po08fcX4ZRiZS6on4v4F3nXD2AiNwDTAHm+R2cc89H9n8eGN6pI+xirFihy/r6xO1PPaV/Bxyg\n9SNbbKG9uUTavzafFOB0MZWoG8wwjPKn1O6v4cBHkccfk1k0vg38s6gj6uKsXp35+Q8/hHHj1F21\naVPic4sX63LDhtzfNyoq3/++ilVjIwwerJbPs8/mfkzDMDqfUlsqsRGRg4BTgQMy7Td9+vRP1ydN\nmmRzS+dINlE5/ng4/HD4+GNYsyZspQKhpZKru+rmmzUWM3Uq/OIXsGwZPPecWihDhsADD8CoUbDf\nfrkd1zCM9syaNYtZs2YV7filFpVFwMjI4xHBtgREZFfgj8Bk59yaTAeMioqRO+laohx6KMycqeuj\nR8Mjj8Cf/wznnRfu462NXC2Vb31LLZOLL4aRI1XYNm/W+M7QobrPRx9lPoZhGPFIvtm+9NJLC3r8\nUru/XgK2F5FRIlIDnADMiO4gIiOB+4FvOOfeL8EYuxTNzam3R2MnI0bAz37WPtbhRSWfwLpzodXT\no4eKyqpVKjKgllEhaGqCiy6CRe1uXQzDKAQlFRXnXCvwfeAx4C3gHufcXBE5Q0ROD3b7GTAIuF5E\nZovIiyUabpdg8+bU27tFvil1dZr6uybJZvQxllwsFefC9aioNDerS2zUKN1WKEvlF7+Ayy5TK8sw\njMJTavcXzrl/ATsmbbshsn4acFpnj6ur4jsDJ7PFFuF6v34qAK+9lrjPpk26Xy6WSjRA70Vl5Ej4\n4ANdHzFCl0uWqOD5Isl88R2Qt9qqY8cxDCM1pXZ/GWVGOksl6v7q3l0tleT4y8aNmq2Vi6XS2Bi2\ngOnZM3G5zTah+8s5FZaOsmwZbLttfhlqhmFkx0TFSCBqqdxzT3jBj7q/WlvTu78GD9bX3XJLvPdr\nbIQBA3T9k08Sn+vfH8aODR9ni6t861uamZaO1laYMwe2397a6RtGsSi5+8soL6KWyl576QX41Vfb\ni8qAAalFxXcz/uY34dRTs7+fL3CERFfYuefChAkwbJg+7tkzrINJx4wZGodJZtkyePddtVDWrIFJ\nk0xUDKNYmKgYCbS0wDe+AXfcATU1YYbXSSfphf3kk+GQQ7QmJZX7q7Y2fNzWlihG6d7Pu7uiovKb\n3yTu16NH9hkgo+8d5Yc/VOtp7lx1qdXVpRYfwzA6jomKkcDmzbDddrreo4fe1ffpA8cdp3+eVO6v\npqawrgQ0gytaHJmK5mYVrwcegIMOSr3P7Nlw663t3y8ZLyr19Zow4IP8vsFlY6NaRf36maViGMXC\nYipGAlHLobUV/vd/4eWX2+/Xt6+6u6LusvXrtUjynXf0cXI/r3TvV1MDRx+tFkQqdttNYzXZLJWa\nGl2OG6euO49PMrjrrlBU/BhfeCExrdkwjI5homIksHmzXpz/+U/Yeuv0+4mEcZWGBnjwQc2o6tsX\ndthB3UzJvcFS0dyc3m0VZcAADdRnOqYXlc2bE9OavagsWqSWU9++2gZm9mzYZx+YN6/9sQzDyA8T\nFSOBlhZ1e02enJhGnAqfVvzII/Bf/6Vxir599bmePeOJirdUsjFgANx+u8Z00hEVp+7d269v3KiW\nSp8++ti7xdKlURuGkTsmKkYC3lKJg7dU+vXTx888E64XQ1RAM7nSERWVaJHk5s0a61m0SEXFp017\n91y6gk/DMHLHRMVIwFsqcfDB+mghobdUevUqvPsLwuB7KtJZKg0NMGaMTjTWpw9MnKjbTzhBl378\n69bFiwMZhpEeExUjgVwslbo6vWBH4xdR91ecybXiWio+iyxTe5XocaLC6EVlxQqN9QwZosF/31TS\nZ4Jtt50mDBiGkT+WUmwkkIul4kUlapF499egQdnnZvHvF0dUfGPJTPGPqHUSPYd168LX+7FGq/fX\nrdPlypXwyivZx2IYRnrMUjESyNdS8ZaEt1SGDNECyiuuyHyMuO6vwYPhppsyu6eiQrF+fZgq3NAQ\nntOZZ+oyepxXXtEsMNBzeecdSzM2jHwxUTESyMVSGTBAL9gbNsDwYBJoX+MyZAjcdx9ccEH294sr\nYr16pReV1lZNg/asWRPWtTQ0wJQpmjk2ZoxuGz063PeOO7ReBdSS2Wknjb8YhpE7JipGArlc5Lfa\nSrOxGhvDALpPQx48ON4xfEV9HDKJio/r7LuvLnv21LYsra363MSJKh6ee+/V5Q47pK7U9y4xwzBy\nw0TFSCCXOUtGjtQ7+sZG2GOPxOeGDIl3jJaWeO4vyJxR5jskT56sjxsaYP/91Q3Wp0/ifDAQNr7s\n0SP1+zc0xBuTYRiJmKgYCeRiqQwfrvGIxx5TUfHFhJBoqWS66y+U+2vTJrVOLroosVlkQ0P69i+g\nYpMqS80sFcPIDxMVI4FcLJUBA3QeeV//Ea3Aj1oqqeZBefZZTfHNxf3Vs2d6UWlu1ue7dw+tENC4\nSjZR2XZbbbEfTSowUTGM/DBRMRLIxXKIXqx91pfHi0r//qkbQe6/P5x9du7ur2yWiufnP9cOyytW\nZK5t6dYNnn9e54w56qhwu3UxNoz8sDoVI4FcUop9TQq0b3Hv3V9Dh6a/69+8ufDuL89nP6vW0LJl\nie34o/zv/4ZWCoRusG7d1PIxDCN3TFSMBHJJKfYTcE2dCvvtl/icF5y6uvR3/a2thcv+ShaV2lo9\n9vLl6S2V73wn8bEfx6BBJiqGkS/m/jISyMVS8fTo0b6jsYjOtjhhQmipJBcUtrXll/3V0ABvvpn4\n3KZNicfxorJmjYpEHPzrBw2K17fMMIz2mKgYCeRiOXiWL0+9/Wtf02C+t1R22gl++9vw+ba2/CyV\nc86BXXZJfC6dpbJ2rTa+jENUVMxSMYz8MFExPmXtWhWI5KB7Jq6/Hn760/TP9+sXWirz58O114bP\nPfxwbjGVnj11/1TFig0NmhTgiVoqvsNxNryofPazJiqGkS8WUzFobdVsLR8j6d07/mu/+93Mz/fv\nn2jJrFiR+HwuloqIilSqwsRkN1fUUokrKjU1WnPz1luwYEH75737LtvkZYbRlTFLxeD739eL8qpV\n+rhbAb8V3lLx1kpy/GTJksx1JMn4fmPJrFmT6ObKx/0FcNhh+tpUMZUpU+Dzn49/LMPoipilYrB0\nafGO3b+/xlRuuEEfJ7dLef31+H3CQAXIt9R//XVNErjzTm0V49vbg1od3lUW11Lx9OyZ2v31+OPx\n5ogxjK6MWSpG7OyrfPCWSkuLNnv0FkDv3nDggboet08YqED4KYV3203jH5ddBvX1ibGgfNxfya9N\nphLcXm1t1rbfKC0mKkbKNiqFwlsqixZpNlhTk170+vULuwbnctHv1y/RWvAi9dBDqVOKc3V/+feY\nNw9+8Ytw28aNiTNclitTpoRt/A2jFJioGHz0Ubje2lrYY/frB08/rdXrAwdqby7vlurTRwUm2SWW\niT590j+XLCpNTSosmV6TisGDYfZsuPjicFul1K2sWgWLF5d6FO154gntam1UPyYqXZylS8PeXGPH\nFjZID4lpvn37qtvrrrtUWKJ1JXFJJRC+mj8qKn5q4ba23N1WqWI8lZJi3Nxcnm37//nPxJsXo3ox\nUenivPJKOLFVoQUFEvuD9emjAvbNb6rA5GpBQJiSHH2t70ocFRUvJNF2/HGJtnXxFkoliUo5dlhO\n1VTUqE5MVLo4y5fD1lvDLbeoi6rQRC2V7pFcw1xcXlGWLNHldtuF23x9Sj6WTyrq6uDII3Xd3/VX\nivurpaU8LZVUBatGdWKi0sXxDRenTYNDDy388aMX+rY22GYbXc83duPvwqPH9YH4XNvLZGLGDHUH\nbtigjyvJUmlogPfeK/VIEjFLpetgdSpdnOXLwwt9MRAJ+3KNHq1+9e7d8xeVb38b3n0XPvkEXnxR\nt/kOAKlSaa+6Kr/3AXXRJYtKvhZWZ9HcDHPmwLhx5ZVanK4/nFF9mKXSxcnUGr5Q1NbqBW7cuPCi\nnE+sA+AnP4Ebb4Qddwy3+YvnJ5+0378jGUeLF+v7gQrjNtuUfwZTc3NxU8TzYeVKFTqja2CWShdn\n6dLii0oyt9wSf86WdET7k3mrJznR4PHHwwLLfFi5UnuBgV6sBwyAuXPVesml6WZn0tISphTnMjV0\nMXnnHS1SnT1bbwAqoYjUyB+zVLowq1fDzJkwZkznvu+0aXDSSR07RlRUhg3TKYGT+3IdfHBickC+\nPP54KCoA3/tex49ZLKIpxeXSUqa+XhMrRMrPijIKj4lKF2bpUp3jJOpKqhT89MV33qlxlr33LnxK\ndH29Lo84Qt1fXlTuuANOPLGw71UIWlsTY1XlIipNTWrZtbaWv/vQ6DgmKl2Uk06CiRPDGo9Kw7tQ\nTjopv3qXOPgLYHOz/kW7KT/6aHHesyMkZ6ilm3q5s2luLm5/OaO8MFHpojz9tAa24061W250dt1I\n8syShUxfLhQtLYnZaeViqZiodC1KLioiMllE5onIfBE5P80+vxeRd0XkNRHZrbPHWI14MalUS6Wz\nROWss2D33dtfGMtRVJqbE5tnlouoJAuyUd2UVFREpBtwLfAlYALwdRHZKWmfLwPbOefGAWcAf+j0\ngVYh0fnYK5ETTgjnaCkmJ5+sd//NzXph9EH6chUVf/Hu1auwojJxIvztb/mPq7ZWE0PKIRvNKC6l\ntlT2At51ztU75zYD9wBTkvaZAtwO4Jx7AagTkaGdO8zqw/+4K9VSGTQITj+9+O9TWwsffAA/+pGu\nH3GEbs9lyuXOoqVFx3jXXbD//oWLqVx4IbzxRphenSteVOrqNM1548b8Bcoof0otKsOBaO/Sj4Nt\nmfZZlGIfI0d8hXMxmkhWE/4OG9Q6+fKX4eyzYcKE0o4rFf7i/fWva8+1Y44JheCTTzSO1tICCxfm\nVnx6+eW6zLebgHd/deumKd733QfHHgvXX5/f8YzypuqKH6dPn/7p+qRJk5g0aVLJxlKubN6s7VKu\nvVbnZDfSE3VzrV2rWWcHHAB33126MaUjGvfp1Usv5g89BF/8Ilx3Hfzwh3DaadqR4MUXYc89czt+\nvq11ouOqqQnjYQ8/XN41P9XKrFmzmDVrVtGOX2pRWQREM9dHBNuS99k2yz6fEhUVIzX+QnnmmaUd\nRyUQDc4vWhRua26GK6/U1jNHHVWasSUTvXh799zWW+vST0Fw443hvnG45ZZwff36jo+rpibsWLx4\nsQpVufdTqzaSb7YvvfTSgh6/1M6Pl4DtRWSUiNQAJwAzkvaZAUwFEJF9gLXOuWWdO8zqo1zbjJQb\nUVFpaQm3bdoE554LV1xRmnGloqUlvGHw1oC/XojAbpG8yThB/NZWnfsGNH6Vr6isWhVmpa1dC+cH\nOZ5vvAG33prfMY3ypaSi4pxrBb4PPAa8BdzjnJsrImeIyOnBPo8AH4rIe8ANgBnMHcBfGIdaqkMs\nvKg88kh4AYx2Lx49uhSjSk3UIvAxE++yamkJe7xtuWW8IL6fEA3U8lm/Pmze+ZvfJD6fifffh+23\nT9w2ZIguV62Kdwyjcii1+wvn3L+AHZO23ZD0+PudOqgqxv+IC9ETqyvgL9K77x5OMzxiBLzwQrhe\nLkRF5YortOp/5Up9vGlTKCpDh8azVKLT//bvr219unWDP/5Ruzf36wff+U7mY7S1afbc2LGJ20eN\nUlHKt1u1Ub6U2v1ldDJ+siTzY8fDp15HZ7AcNixczzd4XQwaG0O35vDhsOuu4XM//GGYxTZ4sPYu\na2zMfLyXX9bl0KFwyikwb54+/tWvdBnnO7RkiX52ye5WH+uplMnPjPiYqHQxvNvDRCUeIvDqq4l1\nKd27qwVwzTXlNc1wckv+u+7SpZ9nxv/vvUA+8UTm43lLZfz4REtjwQJdxklHr69PdBHedJMufbA+\n3ziNUb6YqHQx/EXwrLNKO45KYvfd22/bckutvShnURk6VJtt+imY/WRpvureu8bS4S/46W5A4loq\nUcvOj+/gg8MxG9WFiUoXY9MmmDRJ6xWMjlHuogJar7Jkia57V922QYK+txbS4UXFWySXXBK6vqLb\nM7FkSeJ01X58xx0Ht99uolKNmKh0MTZtCuciMTpGOYpK8jQAUVHZvFmXP/+5Fr1mEpU//hFuu03X\nvUUyfXpisWI2UVmzBh58MLWo9OypgX5zf1UfJipdgNbWMMvGOsYWjnIUlWRLpU8fbcsCYWylb1+Y\nMiWz+8sH6SHRzeWLKCEUqXTcdZfOmumD8v69QT+7aGq2UT2YqHQBDjxQLyKgwVoTlcJQCaKy++7w\n73/relQERo4MZ7ZMhZ+QbNw4nf7ZE7VOfM1TOrzV5MUMEkVl0KCwB51RPVi1QpWzeTM8+6zOEQ5m\nqRSSShCV0aPhsst0/Sc/CbePHQtz52rg3s+iGcVXwM+Z036CrXXrdEqAbOnAGzbA5z4HU6eG26Ki\nMmGCFkY2NZVn12cjP8xSqQJaWvSOMhXen77vvrq0mErhqARRiT4+5phwfeed9Ybj/fdTH6tnT23R\nkmrGxn799PuWzVLZsEGzvKKCERWV2lqtrDdrpbowUakC1q+H994LW2h4zjkH9tlH130FvVkqhaOS\nROWggxK3i6iLK934oxX4qfD9zzLR2Ng+ccA/9t/HwYOzpzYblYWJShXgfdbJd45//3toqfhaBYup\nFI5KEhXvAotSW5ve2sg2r3xdHTQ05D6eLbZIdLkNHmz9v6oNE5UqwPu2k5sEer94nz46095Xv2qW\nSiHp2bNwsysWgkyikmr645qa9HGRbKIyaFDY9iUdr7wSxvLSseWWMHly2ALGqHxMVKoAf2FIbhLo\nxcP3r7r/fvjlL01UCkUlWSqpBCKdpTJnjjakzFQxP3Bg5jqX9eu1vc3kyZnH7L+zVq9SPZioVAE7\n7KDL5LtmX5uy//6J2y1QXxh69tS79XKJCaQqfswkKuksFT8b6MyZ6d9r0KDMre8//FAzzzJZOxCK\nSragv1E5mKhUMA89BK+/Hj7euFF/6D5g70XliCMSW4xn+6Eb8fDi/OMfl3YcoP/fVKm5+Vgq/kJ/\nySXp32/XXXWSrXRdmlevVtdWNvx4TVSqBxOVCubooxNn87vuOs3YeeABfezFZfBgDYx+97v62NqN\nF4YttkicbreUbNyoIpfsssonpuJdUckWbpQtt1QhS9c+f/VqtWaycfPNMGaMfSerCROVKuLmm3Xp\nM768v99XR/tJprIFWI34DBgQzlFTSlLFUyCzpTJ7tiZvJBM35ta9e2K1fJTVq8NEkUwMGgSf+YxZ\nKtVEzqIiIgNFZNfsexqdje887Ntx+DtO76Y5/XRdRiecMjpGuYjKww+nzkTLJCp+XpRkdt4ZXnop\n+3v26JG+/9eaNfEsFcichWZUHrHatIjILOCoYP9XgOUi8n/OuXOKODYjR7xl4n/ovlmfr7YfMUJr\nArzlYnQ8lhtBAAAgAElEQVScAQOyt5DvDNJNZeAD96ncX562tsSeXo2N8dqmZBKVuO4vyFwvY1Qe\ncS2VOufcOuAY4Hbn3N7AocUblpELzsEdd4Si8pOfwFNPqaXS0JDYJXbQIJv1sZAMHFgelko6tthC\nkzdStan/wx90GXVhrV4N77zTPossFYVwf4FZKtVGXFHpLiLbAMcDfy/ieIwc2GKLMPsruWbimms0\niyfOxcHIn3Jxf2XCx9KSOeMMdY1GheG3v9VlnO9NJkvl3XfNUumqxBWVS4FHgfeccy+JyFjg3eIN\ny4jL+PG67NkzMRNn4UK94JlVUlz69dPPPd0de7nTvXuiMHi3Vz6iMm+efg5tbfDkkzrlQhzMUqku\n4orKEufcrs657wE45z4Afle8YRnZ8BNv+cZ8PXsm3jEvXJi5IaBRGLp108QH31stFVOnwnnndd6Y\nciHZheVFJU4GWPJrx4/XGSO9hRyd8TET5daZwOgYcUXlmpjbjE7iyisTG/P17JkYMF671kSls8jW\nsuSOO+Cee4o/ju23z/01PXokCsP69fCzn6WeYyXVa5PdXytXpk9vTkffvnDBBYkFukblkjH7S0T2\nBfYDhohINNOrP2COlRJy552Jj3v3Vj+2p7lZ3V9G8YkTV8nlf3HvvXqhPeKI7PuuW6f/+/7946UB\nJxO1NpqbNbFj2LB4r40Kkk9nbm7OXVS8td3YmDhdsVGZZLNUaoC+qPj0i/ytA1KUTRmdRfId4vjx\n7e/0bDa9zqHQwfoTToCvfEXneM92915XBz/8Yf6zJ0ZjKj17wrJl8XvD+dc+9VT43k1NuYuKF6Z0\n1flGZZHRUnHOPQU8JSK3OucyzGhtdDbJBYz+QrDDDjBpkvq2rXFk5xBHVNJlSWXipJO02nzXLKXG\nzzyjF/hMtSjp8NaGH9+aNfF7w3n313vvhdsWLzZR6erEnaO+VkT+CIyOvsY5d3AxBmVkp6kJXn45\ncduLL8K22+qP3ESl8xg8OHPHXsg/ZTZOB+T6+vy7JHTvri4rP/61a+OLk3edRQV13jxYujR9GnMq\nfFKAL9Y1Kpu4gfq/ArOB/wbOi/wZJeDZZ+HNN2HChMTte+6phY7+R2qi0jmMGwfz52fep7k5fiA6\nekHOJlagcZB8uyR0765B8uHD9fHq1blbKgsX6uNJkzSu9/rr4XQMcfjRj9SyMVGpDuKKyifOuf91\nzr3onHvF/xV1ZEZajj1Wl+nSPr2YWEylc9huO/jgg9TPeSFZvBh23DHe8erqwv/t4sXxXvPxx/H2\nS8XfI+XM+YjKhx/qYxEYMgSuvhoOOij++/fqpR2RswmzURnEFZWHReR7IrKNiAzyf0UdmZGWb3xD\ng7Pp8GJilkrnMGRI6KZ66SWtSwF1ea1cGRagRmMPmWhpCV1QyS7OQvPWW4mPV6+O7/7q21dTkD/8\nEI4/XtsDjR+v28aOzW0cX/oS/OtfVllfDcQVlVNQd9ezaEPJV4Aif92NZF59Ve8GW1pg1Kj0+/n0\nVROVzmHwYI1nicDvf691KaANPI89NvfU7pYWzQADjU/E4XcFKkVubY1vqYwcqZ2OFyyAG2/UqYO3\n3Vaf81NYx2X77eEvf4FjjsntdUb5EUtUnHNjUvzleC9idJS339Zl9E42Fd6/Hrehn9Exhg4Ns6ei\n9UMrVsBrr+U+02ZzM1x+OTz/PDzxhE7Glo1C9Hjzwf644x01Sgslo6/18aBcRcUX6v7jH7m9ziOi\nqc1G6YklKiIyNdVfsQdnJOKnbm1pyfzD9x1pLabSOaRqnOhjKRs26AX24ov18ciR2Y/nbxp8Wu5D\nD2V/Tb7/6699TZeHHhpaR3HdX/5cohaxF5Vc05sL0f1h5syOH8PoOHHdX3tG/j4PTEfnVzGKxGmn\nhdP/eryoNDfH+9GOGFH4cRmpSf5/RDOZamrgsMN0/aOPsh+ruVlvGnKp9cjXUrnnHth3X5gyJTxG\nXEvFi2l0nH5bvpZKPrU2ftrsOJ+tUXxi1ak4586KPhaRAUAndDPquvzpT+2DnbmIytq1NhlXZ5Kc\nLuxn3QS9wCbHt557DvbYo/0F3DcK3WKLsGVJnIt8R9xfzz6rS+/KihuL22ef9tv8a3MVFT/+fLo9\nNzToMl0GntG55DtHfSMwppADMdrTowd87nPhY19x3NCQXVRMUDqXqKgkdy2uqUm8UN92G+y3H1x/\nffvjvPhi2CjUi4q/mUgm2i4+F6smHf4YQ4fG2z9V00l/nvlYHKCZdLniBTxTp2ij84g7nfDDQGBk\nsgUwHvhLsQZVLFasgEsuSf1jLkfeeUeX69frBWbVKn382GPwgx+UblxGe6Ki4hy8Eqni6tEjseJ9\n2jRdLlvW/jg//Wni677whfSi0tAAW26pbp9CZvrlUp1/xRVhxheE9TW5Wiqgn9m3v5376zZu1Dii\niUp5ELdNy28j658A9c65DpRbdT5tbaHfthxExbnQzZHquSjz58NnP5tYXZ1qelijdNxwA8yerVP0\nrl+vtUSemprUc4usXt1+W3Ic7Oyz4fbbU79nQ4OmKxdKUCZP1my1OG3vPT/5SeJjb6Hk8/2sqcmv\nTmXjRrWuTFTKg7gpxU8B89AOxQOBiitRKrcWEDfcELb8TiZ5rL7SOCoqcXpCGZ3H6afDt76l69/9\nrrq3ohfnVDcPq1fDrbcmptFusw2cf374OHqhff99ePrp8LlCx80mToS77+7YMToy02i+otLUpDeM\n0TiWUTriphQfD7wIHIfOU/+CiHSo9b2IDBSRx0TkHRF5VETa/TxEZISIPCEib4nIHBHJ2+kTvVAn\nWwKlYPbs9M95N5fHByBXrAhTR8eNK864jPzx6bTHH6/Bb/89Szer4eLFcOqpcOaZ4ba1a2H06PBx\n9EJ70knqDvN4S6WcSHejFIeOWCoDB+rnbdMSl564RupPgT2dc6c456YCewE/6+B7XwDMdM7tCDwB\nXJhin0+Ac5xzE4B9gTNFZKd83ix6F1OKqUsvvxx+/OPwcaYsl1WrEt0HflbBFSvCIGqqzBujtIwe\nrRe25LoVn53k8Vl9zz2ny/r60PJcty4xphG90CbHVsoxw68UlsrGjeoCzDats9E5xBWVbs655ZHH\nq3J4bTqmALcF67cB7eqGnXNLnXOvBesbgLnA8HzeLCoqpfji/f73ia00Ms2vsWoV7BRI58CBYWvx\nlSttiuBKYNddE4UhOXaSSgimT9elv0B6amrCu+/kWEc5Wiod+X7mIyqrVmlWpBcVc4GVnrjC8K/A\nRTVNRKYB/wAe6eB7b+WcWwYqHkDGr6OIjAZ2A17I9Y1WrNC28J5SxCP8Reb113WZ6cezZAnssouu\nDx6sF4+2NrVYcpmnwigd0Qp3LypvvKHLVNlV110Hs2bBjBmJolJbG35Xkl1L5WipjBmTX60J5Ccq\ngwfDr3+tn3e/fmaplAMZRUVEtheR/Z1z5wE3ALsGf88Bf8x2cBH5t4i8EfmbEyxTVeOnjXSISF/g\nPuDswGLJCZ+a64nbTryQ+JqD44/XZaYf3oIFYcyke3e9eLS06Ho+qZpG5+OtigsuCF2V/kbBF/od\neGDiaw46SN1n0SkNevUK65OiorJokX6Py3FO93xdYLW17V3Tn3ySPqXa88ornef+8paRkZ5sYbWr\nCGIdzrm/AX8DEJFdgueOzPRi59xh6Z4TkWUiMtQ5t0xEtgaWp9mvOyoodzjnsnZBmu79CMCkSZOY\nNGlSO7dBKUTF37n69964UZezZmnBV3TCrQUL4IADdL1nz1BUamq0xiHdPCpG+eBjYpdd1v65MUHZ\n8MyZcMstcMYZic9HLZUBA8KYjK+FaWkJU49/+cvCjbnU1NaqGG/aFH7Hd99dLfdk78L99yd2NO4s\n99fw4frbrOQ+Y7NmzWLWrFlFO342URnqnJuTvNE5NydwR3WEGcA04Aq0tX46wbgZeNs5d3Wcg0ZF\nxZOcEVIKUfGtNnwev/+f+smMohlpCxbAySfreq9eOgHTpk362ilT9M8ob9LVeixfrv/r665Tq3Pr\nrdvvkywqy5bBI4+E3+Noj6tqu8Goq1MR9ef15pu6XLcODjlE56tpa4OvflVnmfT06tU57q/mZpjT\n7opYWfibbc+ll15a0ONni6lkCgN2tOTqCuAwEXkHOAS4HCCYCOzvwfr+wEnAwSIyW0ReFZHJub5R\nNJ145MjSiIoXE79sakq/74IFYVppr146XeuBB7ZPNTbKl3SiMmSIBrP9TcR222m8L1ocGRUKv/6H\nP4Suoe23D5/Pta1+ueNFxbPddrr84AOdsKy5OUxyiXYt6N278wL1lgyQmWyi8rKInJa8UUS+jU7U\nlTfOudXOuUOdczs6577onFsbbF/inPtKsP5/zrktnHO7Oed2d87t4Zz7V67v5b8Ee+yhbSWWLOnI\nyPPDi0mPHpkF5RvfUFHxrS/8RSM5LmSUN8Nj5ihOmKD9vqLZgFFR8eI0erSKSnKlejnUXBWSujqd\nOdMLqHfz+cnK6uvDYP68eeHrUsVUmpoy/9byQSR0XRupyeb++iHwgIicRCginwNqgP8q5sAKic++\n6dNHv3ilCLT5YGNrq7ozBgwIU4Wj+EmevAjFbe5nlBe33Za5wDWZaNZTctuVH/xALexNm8LZFj3J\n3ZErncGD4dFHdYri8ePVaqmtDb0LO+4Yxleyub9OPFFrgVL1WMuX3r0tUJ+NjKISpPzuJyIHAZ8J\nNv/DOfdE0UdWQD78UJfNzfqlKMWdhveH19Vp8dvYsYmi0traPmtm0SIVn0GD4MorO2+sRsfZYQf9\ni4u/M29tbW+N9O6t359Nm9SyiYpKtsyoSsNbJj47csMGFdJFi8J9vABHxaJ3b7X2Fi4Mt61dqzGs\nQtKR4s6uQtzeX086564J/ipKUCAMbLa06B1NKURl0yb4n/8JaxSS579IFWAcNkx/LIVoa26UNy0t\nGm9J1YixtjYUlWOP1c7EnnxrQsoVf24rVsB99+lvtbY2nDkTQlGJurEHDNBYVTReWoymq9bINTtd\n4iPyftWWFr1IF9rPGofmZhUHbzr36qX+8Msv14uJF76amvZdaQsx/7hR3vzjH5rhlQpfVd/UBN/7\nngbtPdXm/vKicsghcNxxKhw+A8wTFZXx43V9zBjtQvHOOzB3rt6Q5dJtOS5mqWSnS4iKdy2U0lJp\nblafr89s8f2hzj9f77AmTlSXWEtLWKPiMUul+jn88MQJ2aLU1mo3hZ499aLmL5YHHqhzy1cTRyWV\nRacSTf/7Xb1aBeTXv1a34LBh6hJ79VUVnGJYFSYq2alqUdljD03D9aIyaJCKSqkslaionHRS+Jy3\nRHzsJzlQa6LStamt1eB08vfgqad0np1qYqed4JprErsHPPNM4j7LliVmyJ13nlpz/ftrlthbb+l2\ns1RKQ1WLyuzZWnn77LPw8MPwz3+WNlDft6/GTsaODYsbof0dVXJBmxedX/yiuGM0ypOaGr058i1Z\ninGxLCeOPDIxAWG//XR55pnq7qqvD5MgRo4M9/NdK3wXA/85zZ1buLGZqGSnqkUFwhYYY8aElkop\nRQXaWyL+y+9npExnqUTn3TC6DrW1iaJS7WyzTWL9jb/pmjhRn6uvV6tk4kSt8fGkE9srrijc2ExU\nslO1opJcFObv/n3X185OxfTuL0g//asfU3KVtL8Dy2XucKN66NNHYwT+5mKXXRK7IFcbvkYryj33\nwCmnaN3WRx/pb+S11zLXcT32mC4L+bvxN6Q2GVh6qlZUklto+wu5iK539kRdmzaFX+7kC4KP8aTr\nW+QF0u6SuibDhydaKuPGdb0CvK99TcWmXz+tpB82LPV+yc05oXDTRbz+elj3UsR+jBVP1YpKcn+e\naOCvFC6w5ubwh5BcSb/ffnD00emL5bqK28NIjW/ZY98D/QzeeisxlhLlt79NfLzvvoX73HyrpL32\nsj58mejAjNLlTfKdzMCB4Xpn16o4F7auh/ZtI3wsxe+bzG67lWZiMaM8GDJEl10xCzDZqu/fX6vs\n/WeSTN++mmF57bXw05/qfoVyVS1eDGedpW5qE5X0VKWlsnFjYoO+q65KnNyqsy2VlhZ9fx9wzCee\nE62iNroWPsbW1aq5u3Vr7+bzVkemguD+/bVHGKjrq1Cu7g0bVLT+8x/tx1btWXj5UpVf0+Q7k+S7\nnc62VDZuTBxDtfVrMjqHamvJko1UIuqLhrN1mfA3YYMHF85SaWxUUTnnnMIcr1qpSlFJvjNJ/gJ6\nS+XttztnPE1NJipGx0nn8qlWUonK5z+vy7iisuWWhbVU+vQJpwSHRI+IoVS1qJx4oi6TLZVevXT2\ntgkTOqd3komK0VGuvhp+9KNSj6JzSeVe8kkL2Wa89PGnPn0Ka6n06ZNYElCK7hzlTlWLig+Mp3J/\nffyxrv/ud8Wf6KipKfGLWG1NAI3i84MfJM4OWe185jM6I2YyPjaazfoYPRr+/e/CtmXy7i/Qxp4A\nF11UmGNXE1UtKv4LmMpS8XNSnHde4vSlxSBqqTz+uE5CZBhGel56CWbOTP+8n247HSLabLOurnDz\n1nv3F8B11+nSCpLbU5UpxV5Upk6F+fPVzRWld+/EWePWr9f5GIpFVFQOPrh472MY1UIm91YunoXk\nOe+jHHigdob+3e/iHStqqXhMVNpTlZbKf/6j7eMPOEArX6M1KqCWSnTO91TT+haS5JiKYRidQypR\nWb9eM+meeQZmzIh/LB9T8ey6K3zpS4UZZzVRdZaKc+rSykSvXonFS53p/jIMo/Ooq9OpiF9+OZyv\npn//MC04l6SZqPsLtG2L0Z6qs1TipPglX+CLbakk16kYhtE5DBigc6wkB/19O/wNG8Jt6dxqv/kN\n7L13aveX0Z6qExVfKX/BBen32X13XfoviFkqhlGd1NWl3t7SonU/69ZpUP/UU7Uu5vnn2+/75z9r\ni/1kS8VITdWJyqZN2jxy+vT0+xxzDPz+9zpZFoTzwxcLExXDKA3J00h4Wlpg663Dbua33qrL5L58\nEGaR+jYtRmaqTlQ2bFA/aao5GTwi2hjOdy6+8EL1uRaL5DoVwzBKS0tL+wQegPPPb7/Nu9R79Mhe\ndGlUoag8+aRaBXGavUV9qMXsOmqWimGUF01NqcsIolmh0X2h67XJyZeqE5XTTovfeC9qGhez46iJ\nimGUnttuC28k58zR9eTCyFQT4flOydYpPB5VJyoQv8nbPfeEk/oUs1XL+vXmizWMUjFvni6nTUvs\nA/aPf2gr/ejMkN27t58Ww0/4Z66veFSlqAwfHm+/UaNgzBhdnzateMKydm1q/61hGMXHz60CcPjh\n4bpvTnnqqeqpWLhQg/dLliS+3nfo6Grz2eRLVX5Mu+wSf18frF+6NLF1SyFZu7a4bWAMw8jMDTfo\n8sknw20vvKDLX/9am7xuu6027YyKSmtr6E43UYlHVX5M48bF3zeax/7BB4UfC8CaNSYqhlFKRo1q\nv23o0Pbbhg1LLDHYuDHM3DRRiUfVfUwffACXXx5//wMPhPHjdT1aXVtIzP1lGKUlbtHi7rvDK6+E\nj6OiYtMHx6PqRGXMmNwCaiKw8866XkxRMUvFMEpHXFHZZZcwsA+JomKT68Wj6kQlH3waYTFEpa1N\n0xbTtYswDKP4jBgRb78xYxLd4FFRWb688OOqRkxUCH2lxRCVdes0nThV/rthGJ3DkCFw7726fsMN\n8OGHqffbdlvtauzxonLQQbD//sUfZzVgokJ4wff56IVk7VqzUgyjHPCdirfaKv3MkQMGaINZP31G\nY6MWLj/xBPzpT50yzIrHRIVQVLLNe50P1i7bMMoD30EjUx8+H4y/7z5dmus6d0xUCEXFdywtJM3N\n6TulGobRefgEnjgi8eUv63LdOpsyOFdMVIBDDtFloUXl44/V+rH2DoZRenwGmJ9PKR2//GUoPOvX\nm6jkiokKcNJJcPPNhRWV+noN+j33nFkqhlEO1NZqK6Zsv8fa2vBasG6d9gcz4lN1c9TnS01NYUXF\nN6U791zrUGwYlURNTdh40txfuVMyS0VEBorIYyLyjog8KiJpPZ0i0k1EXhWRGcUaT/SLVAh8u2wI\n52MwDKP8SbZUTFRyo5TurwuAmc65HYEngAsz7Hs28HYxB5PKUnn3Xa2izad+JSoqhmFUDrW1Zql0\nhFKKyhTgtmD9NuDoVDuJyAjgcKCoWeLRuxOABQtghx3gwQfh29/O/XjFavliGEZx8V6Lpia46SaL\nqeRKKUVlK+fcMgDn3FJgqzT7/T/gPKCI02i1t1T8PCsLF8LKlbkfzywVw6hM/A1mfb0+thvE3Chq\noF5E/g1EG0wLKg7/nWL3dqIhIkcAy5xzr4nIpOD1GZk+ffqn65MmTWLSpEmxxhoVlba2cPvSpflV\n2jc2wtSpOj9DtOupYRjljXd/LVyojz/zmdKOp9DMmjWLWbNmFe34RRUV59xh6Z4TkWUiMtQ5t0xE\ntgZStWvbHzhKRA4HegH9ROR259zUdMeNikoueJO3rS2xT9fSpe3nsY6Dr6TPpQ2/YRilx18L1q6F\n446DffYp9YgKS/LN9qWXXlrQ45fS/TUDmBasnwI8lLyDc+4i59xI59xY4ATgiUyC0hFqa+Hll+Hi\nixO33357aKk88gg8/ni8423YEL/dtmEY5YN3f1k3jPwoZZ3KFcBfROSbQD1wPICIbAPc6Jz7SmcO\npqZGl7/8ZfvnvKgccYQu48xl39hoomIYlYh3f5mo5EfJRMU5txo4NMX2JUA7QXHOPQU8VazxeFFJ\nxfr1KiRDhsCKFfGO19io8RTDMCoLH181UckPa9MSkEpUvvY1XToXP5urXz9YssS6ExtGpWKWSscw\nUQlIJSrnnhuuz5oVr43Lhg3w/vvm/jKMSsVEpWOYqASk+vJsFamcOfLI+G1cXnwR7rzT3F+GUYmY\n+6tjmKgERC2VUaN0OXBg4j7ZLJXWVl3++Me6HD++MGMzDKPzqK3VaSsWLTJRyQcTlQAvKocfDvvu\nq+s+JjJhgi7b2sL57FMRbRy5554wfHjhx2kYRnHxQnLTTSYq+WCiEuALHk8+ObRIRNRq8fNVQ+Ys\nsWgwv9qqcA2jqxD9jZuo5I7NpxLg56bu2zcxdrJggWZ//e1vMGNG5hqVqKhkmgfbMIzyJSok3kth\nxMcslST69m0fOxHRGhXQ59IJS2Nj+CXMZNEYhlG+dOsGW2+t6xYXzR0TlSQGDEid5dXQoMs+fdJ3\nLd1zT3jrLV03UTGMyuXoYCKOnj1LO45KxEQlwvPPw267pc7yGjtWzeIBA2DNmtSvj77ORMUwKhcv\nJiYquWOiEmHvvdXVdc45iYWPAJddpt2KBw5MLypRTFQMo3Lp0UOX9jvOHROVFBx3HPzmN4nbunXT\nL1hjY7z5USyd2DAqF5+4I1lncDKSMVHJkS23hL/+NXMW2KJFMG1apw3JMIwCE6cTuZEaE5UcOeMM\nzQTr1g1eeCH1PsOGZS6SNAyjvLHfb/7YR5cjtbWwPJij8qOP2j//7LOdOx7DMAqP9e3LHxOVHKmt\nDedUiQbsP/lE726qbepRw+iKHHYYDBpU6lFUJiYqORIVldWrw+1r12q6sQX2DKPy2XlnWLWq1KOo\nTExUcqS2NnR7RS2V1avtzsYwDMNEJUeieetr1sDf/65pxiYqhmEYJio5E202t3q1Tt51990qMAMG\nlG5chmEY5YCJSo74FvkQur9699a5VGz6YMMwujomKjmycaMuH300UVQ2brR294ZhGCYqOeLjJttv\nH2aB1daqpdK7d+nGZRiGUQ7YJF05suuusHkzrF8fZoG1tpqlYhiGAWap5EX37lBXFz7evNlExTAM\nA0xU8ibaG2jzZnN/GYZhgIlKh/BTjpqlYhiGoZiodIBRo3RplophGIZiotIBpk/XpVkqhmEYiolK\nB5g8Gb7zHZ2b3iwVwzAME5UOU1NjlophGIbHRKWD9OhhMRXDMAyPiUoH8aJilophGIaJSofxzSRN\nVAzDMExUOkz//rBunQqLiYphGF0dE5UO4kWlsRH69Sv1aAzDMEqLiUoHqatTUdmwAfr2LfVoDMMw\nSouJSgfxloqJimEYholKh+nfH+rrNQMsOn+9YRhGV8REpYP07w/vvVfqURiGYZQHJRMVERkoIo+J\nyDsi8qiI1KXZr05E/ioic0XkLRHZu7PHmon+/Us9AsMwjPKhlJbKBcBM59yOwBPAhWn2uxp4xDk3\nHpgIzO2k8cXCi8q//lXc95k1a1Zx36DE2PlVNnZ+hqeUojIFuC1Yvw04OnkHEekPfN45dwuAc+4T\n59y6zhtidvr00eXYscV9n2r/Utv5VTZ2foanlKKylXNuGYBzbimwVYp9xgArReQWEXlVRP4oImVV\nYigCN98M221X6pEYhmGUnqKKioj8W0TeiPzNCZZHpdjdpdjWHdgDuM45twfQhLrNyopTT02cXtgw\nDKOrIs6lupZ3whuLzAUmOeeWicjWwJNB3CS6z1DgOefc2ODxAcD5zrkj0xyzNCdjGIZRwTjnpFDH\n6l6oA+XBDGAacAVwCvBQ8g6B4HwkIjs45+YDhwBvpztgIT8YwzAMI3dKaakMAv4CbAvUA8c759aK\nyDbAjc65rwT7TQT+BPQAPgBOdc41lGTQhmEYRkZKJiqGYRhG9VEV4WURmSwi80RkvoicX+rx5IOI\njBCRJ4ICzzki8oNge9oiURG5UETeDQpDv1i60cdDRLoFWXwzgsfVdG7tinSr7Px+JCJvBok2fxaR\nmko+PxG5SUSWicgbkW05n4+I7BF8JvNF5KrOPo90pDm/Xwfjf01E7g9KNvxzhTs/51xF/6HC+B4w\nCnWRvQbsVOpx5XEeWwO7Bet9gXeAndCY00+C7ecDlwfrOwOz0bjY6OAzkFKfR5Zz/BFwJzAjeFxN\n53Yr6polGHddtZwfMAx1PdcEj+9F46AVe37AAcBuwBuRbTmfD/ACsGew/gjwpVKfW4bzOxToFqxf\nDknFLRMAAAQfSURBVFxWjPOrBktlL+Bd51y9c24zcA9aWFlROOeWOudeC9Y3oJ0DRpC+SPQo4B6n\nBaELgHfRz6IsEZERwOFofMxTLeeWqki3gSo5v4AtgD4i0h3oBSyigs/POfcfYE3S5pzOJ8ha7eec\neynY73ZSFHGXglTn55yb6ZxrCx4+j15foMDnVw2iMhz4KPL442BbxSIio9G7jOeBoS51kWjyeS+i\nvM/7/wHnkViPVC3nlqpItzdVcn7OucXAlcBCdKwNzrmZVMn5RUhXkJ3ufIaj1xtPJV17volaHlDg\n86sGUakqRKQvcB9wdmCxJGdSVFxmhYgcASwLLLFMad8Vd24ByUW6jWiRbsX/7wBEZAB6Fz8KdYX1\nEZGTqJLzy0C1nQ8AIvJTYLNz7u5iHL8aRGURMDLyeESwreIIXAv3AXc453zdzrKgCJTAHF0ebF+E\npmN7yvm89weOEpEPgLuBg0XkDmBpFZwb6B3cR865l4PH96MiUw3/O1Bf/AfOudXOuVbgAWA/quf8\nPLmeT8Wdp4hMQ93QJ0Y2F/T8qkFUXgK2F5FRIlIDnIAWVlYiNwNvO+eujmzzRaKQWCQ6AzghyMIZ\nA2wPvNhZA80F59xFzrmRTjsjnAA84Zz7BvAwFX5uoEW6wEciskOw6RDgLargfxewENhHRHqKiBAW\nIVf6+QmJlnNO5xO4yBpEZK/gc5lKiiLuEpJwfiIyGXVBH+Wca47sV9jzK3WWQoEyHSaj2VLvAheU\nejx5nsP+QCuavTYbeDU4r0HAzOD8HgMGRF5zIZqpMRf4YqnPIeZ5foEw+6tqzg2dluGl4P/3NzT7\nq5rO75JgrG+gQewelXx+wF3AYqAZFc1TgYG5ng/wWWBOcO25utTnleX83kULzV8N/q4vxvlZ8aNh\nGIZRMKrB/WUYhmGUCSYqhmEYRsEwUTEMwzAKhomKYRiGUTBMVAzDMIyCYaJiGIZhFIxSzvxoGBWL\n6CRzj6OtPLZBa4yWo8Vmjc65A0o4PMMoGVanYhgdREQuBjY4535X6rEYRqkx95dhdJyEJpkisj5Y\nfkFEZonIgyLynohcJiInisgLIvJ60BIDERksIvcF218Qkf1KcRKGUQhMVAyj8ETN/12B09GJkL4B\njHPO7Q3cBJwV7HM18Ltg+1dJnHPGMCoKi6kYRnF5yTm3HEBE3kd7SoH2U5oUrB8KjA+a9gH0FZHe\nzrmmTh2pYRQAExXDKC7RbrBtkcdthL8/AfZ2OnOpYVQ05v4yjMKTaSKyVDwGnP3pi0UmFnY4htF5\nmKgYRuFJl1KZbvvZwOeC4P2bwBnFGZZhFB9LKTYMwzAKhlkqhmEYRsEwUTEMwzAKhomKYRiGUTBM\nVAzDMIyCYaJiGIZhFAwTFcMwDKNgmKgYhmEYBcNExTAMwygY/x/mMNGYLMmcywAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(2)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=2')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb.txt b/_sources/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb.txt new file mode 100644 index 000000000..cbceef802 --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb.txt @@ -0,0 +1,289 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1a67952", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "params = {\n", + " 'font.size': 7,\n", + " 'xtick.major.size': 0,\n", + " 'xtick.minor.size': 0,\n", + " 'xtick.major.width': 0,\n", + " 'xtick.minor.width': 0,\n", + " 'ytick.major.size': 0,\n", + " 'ytick.minor.size': 0,\n", + " 'ytick.major.width': 0,\n", + " 'ytick.minor.width': 0,\n", + " 'figure.figsize': (6, 4),\n", + " \"axes.grid\" : True,\n", + " \"grid.color\": \"grey\",\n", + " \"grid.linewidth\": 0.3,\n", + " \"grid.linestyle\": \":\",\n", + " \"axes.grid.axis\": \"y\",\n", + " \"axes.grid.which\": \"both\",\n", + " \"axes.axisbelow\": False,\n", + " 'axes.labelsize': 8,\n", + " 'xtick.labelsize': 8,\n", + " 'ytick.labelsize': 8,\n", + " 'legend.fontsize': 8,\n", + " 'legend.title_fontsize': 8,\n", + " 'figure.dpi': 300, # the left side of the subplots of the figure\n", + " 'figure.subplot.left': 0.195, # the left side of the subplots of the figure\n", + " 'figure.subplot.right': 0.97, # the right side of the subplots of the figure\n", + " 'figure.subplot.bottom': 0.145, # the bottom of the subplots of the figure\n", + " 'figure.subplot.top': 0.97, # the top of the subplots of the figure\n", + " 'figure.subplot.wspace': 0.2, # the amount of width reserved for space between subplots,\n", + " # expressed as a fraction of the average axis width\n", + " 'figure.subplot.hspace': 0.2, # the amount of height reserved for space between subplots,\n", + " # expressed as a fraction of the average axis height\n", + "}\n", + "mpl.rcParams.update(params)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d515146e", + "metadata": {}, + "outputs": [], + "source": [ + "def find_inverse(real, imaginary, N):\n", + "\n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r, i in zip(real, imaginary)]\n", + "\n", + " f = np.hstack([0, f])\n", + " # Obtain time series\n", + " return np.fft.irfft(f, n=N)\n", + "\n", + " \n", + "def scale_lc(lc, mean, rms):\n", + " \n", + " lc_mean = np.mean(lc)\n", + " lc_std = np.std(lc)\n", + "\n", + " return ((lc - lc_mean) / lc_std * rms + 1) * mean\n", + "\n", + " \n", + "def timmerkoenig(pds_shape, mean, rms):\n", + " pds_size = pds_shape.size\n", + "\n", + " real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary[-1] = 0\n", + "\n", + " flux = find_inverse(real, imaginary, N=2 * pds_size)\n", + "\n", + " rescaled_flux = scale_lc(flux, mean, rms)\n", + "\n", + " return rescaled_flux\n" + ] + }, + { + "cell_type": "markdown", + "id": "3730fb8c", + "metadata": {}, + "source": [ + "Let us start with a standard light curve simulation with the [Timmer & Koenig](https://ui.adsabs.harvard.edu/abs/1995A&A...300..707T/abstract) method:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "44483c14", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABggAAARJCAYAAAAc8YkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd7xkdX3/8fe5ZffusguINEUFIyACtljAXqIxURNNYk+MKaaaXozGJJYYyy8xcWMUBVyxYEUFVtoCwtJ2WWCXrcAWtvd2e5s78/39MfdeZu+d+c4p33PO98y8nnn4yDJ35pzv99Tv+X7O9/MNjDECAAAAAAAAAADtpSPvAgAAAAAAAAAAgOwRIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA115V0AuBcEwUmSXlPz0S5J4zkVBwAAAAAAAABQ3xxJT6/572XGmL6sVk6AoDW9RtJ1eRcCAAAAAAAAABDJ2yRdn9XKSDEEAAAAAAAAAEAbIkAAAAAAAAAAAEAbIsVQa9pV+x/XXnutzj333LzKAgAAAAAAAACoY8uWLXr7299e+9GuBl9NhTcBgiAIzpH0RlXz5z9X0jMkLZA0IGm3pOWSvmuMWRZj2S+R9PuSXivpaZMf75Z0p6RvGGMeSFZ679Z/3ITE5557ri666CLHqwAAAAAAAAAAODbe/Cvu5B4gCILghZK+KumlDb7ypMn/PVfSHwdBcKekDxhjdoZY9hxJ/ynpLyUFM/78nMn//WkQBIskfdgYU4pVCU/XDwAAAAAAAABAI7kHCCQ9W7ODA5skrZd0WNLJkl6uJ968f62k5UEQvMoY83iTZV8h6Xdr/vtxSSsm/32ppF9QteP+bySdKOkP41TA4/UDAAAAAAAAAFCXDwGCKVskXSnpO8aYPbV/CIKgQ9LvSfqSpPmSnirp6iAIXm6MMfUWFgTBH+iJzvmKpL+X9L/GmErNMv9K0hdUnaz5D4IgWGaM+ZaLyuS9fgAAAAAAAAAAbDryLoCkfarm57/AGPP5mcEBSTLGVIwxiyX9Ts3Hl0r65XoLDIJgrqRP1Hz0/4wxX5zqnK9Z5hdVTQE05VOTaYESyXv9AAAAAAAAAAA0k3uAwBizzBhzlTGmHOK7P5W0suajtzT46q9Levrkv/sk/btlsZ+S1D/577Mty4wi7/UDAAAAAAAAAGCVe4Aghntr/n1Og++8vebfPzDGDDda2OTffljz0W/ELpk/6wcAAAAAAAAAwKqIAYLaOQc6G3zndTX/vjPEMu+o+ffroxbIw/UDAAAAAAAAAGBVxADBc2v+vWvmH4MgOEnSU2o+WhVimbXfOSsIghNjli339QMAAAAAAAAAEEahAgRBEDxDx79hf1udrz17xn/vDLHomd+ZuYwo8l4/AAAAAAAAAABNFSpAIOm/9URaoZ2SltT5zpNr/t1vjBlpttDJeQAGaj46JXYJ81//tJ6eHi1YsECSVC6X1dvbK2OqGZr6+/s1Pj4uSRoZGdHQ0JAkaWJiQr29vdPL6OvrU6lUkiQNDw9reLg6nUKpVFJfX9/093p7ezUxMSFJGhoa0shItdrj4+Pq7++fqqd6e3tVLlfnox4cHNTo6KgkaWxsTAMD1U1QqVTU29urSqUiSRoYGNDY2JgkaXR0VIODg9SJOlEn6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfq1DJ1ykthAgRBEHxA0m/VfPRRY8xYna8uqPl30875Bt9d0PBbzeW9/mmXXnqp3vGOd0iSDh06pEWLFk0ftIsXL9bGjRslScuWLdOSJdVYy+7du7Vo0aLpZVx22WXaunWrJGnp0qVaunSpJGnr1q267LLLpr+3aNEi7d69W5K0ZMkSLVu2TJK0ceNGLV68WFL1hFq0aJEOHTokSbrmmmu0YsUKSdLq1at19dVXS6qeNIsWLZo+Sa+++mqtXr1akrRixQpdc8011Ik6USfqRJ2oE3WiTtSJOlEn6kSdqBN1ok7UiTpRJ+rUMnXKjTHG+/9JerGqHehm8n/ftXz3/TXf2xlhHTtrfvc7Ccqa6/onl3WRJNPT02MWLFhg1q9fbyYmJsyxY8dMpVIxxhjT19dnxsbGjDHGDA8Pm8HBQWOMMaVSyRw7dsxM6e3tNePj48YYY4aGhszQ0JAxxpjx8XHT29s7/b1jx46ZUqlkjDFmcHDQDA8PG2OMGRsbM319fcYYYyqVijl27JiZmJgwxhgzMDBgRkZGjDHGjI6Omv7+fmOMMeVy2Rw7dsyUy2VjjDH9/f1mdHTUGGPMyMiIGRgYMMYY6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfqRJ2oE3UqdJ3Wr19vavqFjaSLTIZ974GZHOrgqyAIninpPklnTn60VtKrjDH9Db7/Tkk/nPzPA8aYM+t9r87vDkg6ffI/32GM+XHM8ua6/sllXSRp/dR/r1+/XhdddFHcxQEAAAAAAAAAUrBhwwZdfPHFtR9dbIzZkNX6vU4xFATBUyTdqieCA49L+pVGwYFJgzX/nhdhdbXfHWz4rebyXj8AAAAAAAAAAE15GyAIguDJqgYHnjX50T5JbzDG7Gvy0yM1/z4xCIKeEOuaL2lhzUdHo5TVs/UDAAAAAAAAANCUlwGCIAhOlHSLqrn0JemwqsGBbSF+/tiM/z47xG+e0WQZUeS9fgAAAAAAAAAAmvIuQBAEwQmSbpT0osmP+lRNK7QxzO+NMX2qjjaY8sIQP/vFmn/vaZLCyOv1AwAAAAAAAAAQhlcBgsl0PNdLesXkR8OS3mKMeSjiou6o+fdrQ3z/NTX//nnEdfm4fgAAAAAAAAAArLwJEARB0C3px5JeP/nRmKS3GWPujbG4a2v+/e4gCBpOFjz5t3c1+G1cea8fAAAAAAAAAAArLwIEQRB0SvqupDdPfjQh6V3GmNtiLvJ6Sbsn/32ypI9Zvvuvk9+RpB2SfhZznT6tHwAAAAAAAAAAq9wDBEEQBJK+Lukdkx9VJL3fGHN93GUaY8Ykfbzmo48GQfBXQRBM1zcIgo4gCP5K0j/VfO/fjDHjlrLeGQSBmfzfnVmvHwAAAAAAAAAAV7ryLoCkP5P0gZr/3irplUEQvDLMj40xf9Hg88VBELxW0vtVDYQskvRXQRCsmPzKpZKeVfOTbxhjvhWt6NZy5bp+AAAAAAAAAABsfAgQnD7jv8+b/F9YdQMEkz4oqU/ShyQFqnbIP2vGd4ykL0n6hwjrDCvv9QMAAAAAAAAAUJcPAYLUTKbr+csgCL4t6Q8kvVbSWZN/3iPpTklfN8Y80IrrBwAAAAAAAACgkdwDBMaYT0j6RMrrWClppYPlvDbP9QMAAAAAAAAA4ErukxQDAAAAAAAAAIDsESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANdeVdAAAAAAAAUAxrdvXqZ2v3anBsQm94zhn6peeckXeRAABAAgQIAAAAAABAU8s2HdIfffNBjZcrkqTvrdylj735OfqjV/9CziUDAABxkWIIAAAAAAA09T+3bpoODkz571s3aWyinFOJAABAUgQIAAAAAACA1WiprId39c76fKRU1m0bD2ZfIAAA4AQBAgAAAAAAYFWaMXKg1t7ekQxLAgAAXCJAAAAAAAAAAABAGyJAAAAAAAAArIzlb0GQWTEAAIBjBAgAAAAAAAAAAGhDBAgAAAAAAICVsQ0hAAAAhUWAAAAAAAAAWBkiBAAAtCQCBAAAAAAAwIr4AAAArYkAAQAAAAAAsKpYIgQBsxQDAFBYBAgAAAAAAIBVxTKCgPAAAADF1ZV3AQAAAIpmZLysL962SfdsOaynnDRP73/Z2XrN+aflXSwAAFLDHAQAALQmAgQAAAARGGP0wW89oHu3HJEkbdjbrzsfO6iv/95LCBIAAFqWbQQBAAAoLlIMAQAARLDpwOB0cGDKRMXoOyt25FQiAADSZ5uDAAAAFBcBAgAAgAi+tmxr3c9v3Xgg45IAAJAdW3iAOYoBACguAgQAAAARHBwYy7sIAABkrmLJMUR8AACA4iJAAAAAEIGxvkMJAEBrIsMQAACtiQABAABABHSQAADakW0OgoAcQwAAFBYBAgAAgAgIEAAA2hGTFAMA0JoIEAAAAAAAACvCAwAAtCYCBAAAABEwBwEAoB0Za4qhDAsCAACcIkAAAAAAAACsKsTHAQBoSQQIAAAAAACAlXWS4gzLAQAA3CJAAAAAEAFzNAIA2lGlkncJAABAGggQAAAAREB8AADQjpiDBwCA1kSAAAAAIAr6RwAAbcg6go5ZigEAKCwCBAAAAAAAwMo2BwEAACguAgQAAAARkGIBANCOKpbbH+MHAAAoLgIEAAAAAADAihEEAAC0JgIEAAAAAADAyhAgAACgJREgAAAAiID+EQBAO7Ld/5ijGACA4iJAAAAAAAAArGxzEAAAgOIiQAAAABAB/SMAgHZkm4MgYJpiAAAKiwABAABABORgBgC0IyYpBgCgNREgAAAAiIDuEQBAO7LFBwgeAABQXAQIAAAAAACAlS0GQHgAAIDiIkAAAAAAAACsbKMESL8HAEBxESAAAACIgD4QAEA7sgcIMiwIAABwigABAAAAAACwsqYYIkIAAEBhESAAAACIgC4QAEA7so0gqHBzBACgsAgQAAAAAAAAKyYpBgCgNREgAAAAiII0CgCANsQkxQAAtCYCBAAAABHQBQIAaEe2NELEBwAAKC4CBAAAAAAAwMo2SsAQPgcAoLAIEAAAAETAW5IAgHZkG0HAJMUAABQXAQIAAAAAAGBln4Mgw4IAAACnCBAAAABEQBoFAEA7st39bMEDAADgNwIEAAAAAADAyjYHAQAAKC4CBAAAAAAAwMqeYojgAQAARUWAAAAAIAL6QAAA7ahSsfyNeyMAAIVFgAAAAAAAAFgxSTEAAK2pK+8CAK1qZLysHz64S2t29+rCp5yod7zoaTp5/py8iwUASIhOEABAO2KSYgAAWhMBAiAFI+NlfWDxSq3cflSS9BPt0Y9X7dH3/ugSggQAUHB0gQAA2pFtngHujQAAFBcphoAU/PzRg9PBgSmP7OvXdQ/vzalEAABXmIgRANCOrPMMeHBv3HV0WJfduVWfXLJBdz52MO/iAABQGIwgAFLwqZ9tqPv5Z296RB94+TnZFgYAAAAAErKlEcp7kuLH9g/ovVes0NGhcUnSN+7drr95w3n6mzecn2/BAAAoAEYQACk40D9W9/PRUiXjkgAAAABAcrYggMk5ydD/3r55OjgwZdHtm3VsxmcAAGA2AgQAAAAAAMDKOgdBRvEBY4y2HBzQvVsOa2S8PP35Dev21S3T9x7YmU3BAAAoMFIMAQAAAAAAK1sQIIsUQyPjZX3wWw/o3i1HJEnz53Tqyg+8WC9/1qkNf/PIvoH0CwYAQMExggAAACACD+ZhBAAgc7Y5CLJIMfSFpY9NBwckaXi8rA9+80GNlsqWXwEAgGYIEAAAAAAAACvrHAQZBM+vvGfbrM+Gx8u6deOBhr+xpUUCAABVBAgAAAAiyHsiRgAA8mCfgyC/e+P1a/bmtm4AAFoBAQIAAIAIeBkRANCOrCmGuDcCAFBYBAgAAAAAAIBV3pMUAwCAdBAgAAAAiIA+EABAO7LOQZDj3ZHRCwAAJEOAAAAAAAAAWPmbYogIAQAASRAgAAAAiCDPiRgBAMiLr5MUAwCAZAgQAAAAOEIHCQCgVdlTDAEAgKIiQAA4Zusc6u4MMiwJACANdIIAANqRfZJi5iAAAKCoCBAAjpXKjVuoczo55QCgldFJAQBoVb7OQWBbNbdlAACao7cScGxsotzwb3O6OOUAoPBIsQAAaEO2kdK29EMAAMBv9FYCjo1NVBr+jQABABQffSAAgHZkDwJwdwQAoKjorQQcI0AAAO2LSYoBAK3K1xRDAAAgGXorAcfGSpYUQ8xBAACFRxAAANCObCMI8p2kmPsyAABJdOVdAKDV2EcQdGZYEgBA1uiiAAAUyWP7B3TvlsN6ykk9euV5p2phT3fD7xrLXc7XSYoBAEBzBAgAx0gxBADti5cYAQBF8Z0VO/Qv166f/u9zT1+g7/7RJTp9YU/d79vucUxSDABAcdFbCThmG17bEWRYEABAKugDAQAU3bGhcf3rdeuP+2zLwUF98bbNDX9TsUQBbKMLAACA37wKEARB0BkEwfOCIPjDIAguC4LgwSAIxoMgMJP/uzPCskyC/13loC7nxFjvlqTrRf54exQA2hcdJACAIrjmod11n1u+e//Ohr+xjhLIM8UQt14AABLxJsVQEARvl3S1pPk5F0WS9uddABQZLVQAaGV0RAAAiu6uzYci/8Y2UjrXSYpzWzMAAK3BmwCBpJPlNjjw5QjfvUjSa2v++zsOyyFJA5K+FeJ70Vtp8A4dRwDQ2nydpBEAgLx4e/vztmAAAPjDpwDBlAOSHqj535sk/XXUhRhj/iLsd4Mg+FHNf64yxqxv+OV4jkYpD1oXHUcAUHxcywEARRfnXmYbJcC9EQCA4vIpQHCzpLONMcclPQyC4JI0VxoEwZMk/VrNR99Mc31ofbSNAQAAALQab1MMpbDu8YmK5nR5NWUjAACp8SZAYIzJK+//eyTNnfx3SdJ3cyoHWgRvzwBA++IeAAAoAlu6vEZskxS3yu3vxw/t1pd+vlm7jo3o+U87SZ/7refp/DMW5l0sAABSRUhc+kDNv28wxhzOrSRoCbY3WFql4QwA7YwgAACg6OLcy6zPOTneHF2NXrjjsYP6h2vWaPuRYZUrRqt29uq9l69Q7/C4k+UDAOCrtg4QBEFwvqTaFEakFwIAALHFeSMTAICsxQsQuF1eFqLcl5c8vHdWPY4MjeveLUcclwoAAL94k2IoJ7WjBw5LuiGl9XQFQfBGSS+WdKqk0cn1PShppTFmLKX1Igeeto0BtJG+kZLW7u7Vs89YqNNP7Mm7OAAAwDPxUgz5OUmxq3X/ZPWeup9/7Np1esvznuJmJXBqT++IJsoVnf3kE/IuCgAUWtsGCIIg6JD0/pqPvmuMKaW0urMkLW3wt2NBEHxF0ueMMYMprR8Z8vXtGQDt4Tsrdujfrls/nSf4919xjv7trRcqCIJ8C9YmuAcAAFqVbQ6CPCcpTnvdpYlKqstHdL3D4/rgNx/UgzuOSZIufMqJuur3X8KLMQAQUzunGHqdpKfX/Hde6YWeJOljkh6cTHkEAEAsG/f261+uXX/cA/w37t2uJWv35VeoFpRnnmUAAFyIcyuzjiBIUJakbIGLQLwg0Yr+8Zq108EBSdq4r19/fvWqHEsEAMXWzgGC36359zpjTBp3kwFJV0l6j6RnS1ogaa6qgYl3Srqt5rvPlnRzEASnuVp5T0+PFixYIEkql8vq7e2d7tTo7+/X+Hh1sqWRkRENDQ1JkiYmJtTb2zu9jL6+PpVK1YEVw8PDGh4eliSVSiX19fVNf6+3t1cTExOSpKGhIY2MjEiSxsfH1d/fL6naodLb26tyuSxJGhwc1OjoqCRpbGxMAwMDkqRKpaLe3l5VKtU3NQYGBjQ2Vs3CNDo6qsHBQa/rND5erVO3ypqnankCGS0IxqRKuZB1asX9RJ2oUyvW6YfLN0uSOlWpXnMmfeeuRwpbJx/301SvyjyNq1vV38zRhOapJFPQOrXifqJO1Ik6USfqZK/TfI2rq+Y+1qOStU7GSHNV0tzJ73WqrBMm2xtTZU2zTjPvuZLUoYq6J0Y0FaKYWadgYizSfqqtkyQtCMbUGZhc91MrHntJ6jQyXtbPN+6dtZ9W7ziiQwNjhaxTK+4n6kSdqFO8OuWlLQMEQRAskPRbNR+lMXpgn6SnGmN+3xjzA2PMJmPMkDFm3Biz2xhzjTHmjZL+RE+8cPFMSZ91VYBLL71U73jHOyRJhw4d0qJFi6YP2sWLF2vjxo2SpGXLlmnJkiWSpN27d2vRokXTy7jsssu0detWSdLSpUu1dGk1U9LWrVt12WWXTX9v0aJF2r17tyRpyZIlWrZsmSRp48aNWrx4saTqCbVo0SIdOnRIknTNNddoxYoVkqTVq1fr6quvllQ9aRYtWjR9kl599dVavXq1JGnFihW65pprvK7TzkfWSJLO6zysN86tdtadEIzrnT3r1F0ZK2SdWnE/USfq1Ip12rnmHknSaR2DemfPuumynntkeWHr5ON+6lG1rG+cu1nndR6WJF3YdUCvmbNVxphC1qkV9xN1ok7UiTpRp8Z1MpLePPdRndNZfQv7Bd179fI5O6x1qhijl3Tv1ku6q+U+q6Nfb5tb3SbGpF+nmfdcSTo5GNX5h+/WnMmgwMw6LTy0JtJ+qq2TJL2zZ51OMQO57Sep9Y69pHXafmSo7n46rWNQD+04Wsg6teJ+ok7UiTrFq1NeAt+HyQdB8AlJH5/8z2XGmNc6WOYHVH2zX5ImJD3dGLM/6XITlOc/JP3z5H+WJZ1ljDmQYHkXSVrf09Ojrq4urVixQhdccIEGBgZ00kknKQgC9ff3q6enR3PmzNHIyIgqlYpOOOEETUxMaHBwUCeffLKkajRu/vz56u7uno7EzZ8/X6VSScPDwzrppJMkVaNxCxYsUFdXl4aGhtTR0aF58+ZpfHxco6OjOvHEE2WMUV9fnxYuXKjOzk4NDg6qq6tLPT09Ghsb0/j4uBYuXKhKpaL+/n6deOKJ6ujo0MDAgObMmaO5c+dqdHRUExMTWrBggcrlspd1enBnn37vWw+rW2V1qawRzVEgoxOCcT3zKadqyV+9unB1asX9RJ2oUyvW6YWfvEWj6lanKpoXlDRo5kqSTgjG9PCnfq2QdfJxP/3qlx/UvoExzdO4JtSpkjo1RxPqlNHKT7xF87s7ClenVtxP1Ik6USfq1I51Ojw0rmtXbtWOY2N66bln6A3nnyJTKc+q07svX6H12/ZrXJ2amLyPdchoVN3a8uk31a3T31+zXresqQYRxtStTpXVE0xoyMzV6y84Xf/99vNS3U+/+B93HHfPHVG3OlTRpU+fr/t2jUgKNF/jx9Xpjc85TV/+wMtD7acLP3XHcXWSqm+mB909WvepN3PseVKnx4+V9LYvLZu1n0ZMt77y/pfolecsLFydWnE/USfqRJ2i1WnPnj26+OKLVeNiY8wGZaRdAwS3S3r95H/eYIx5a9JlJizPAkkHJc2b/Oj9xpjvJFjeRZLWT/33+vXrddFFFyUrJEK7d8th/faV99f928Vnnaif/eWrMi4RgHZxzkduaPi37Z97S4YlaW2XfuZ27e8frfu3tZ/4ZZ3Y051xiWarVIy+/8Au3bPlkM48cZ7e+eKn6TlPOTHvYgEAUrSvb0TvuXyFdhwZnv7sN194lv7rnc9XR8fxufjf9dXlWrn9aN3lNGoz/MV3V+lnDeY1eu2zT9NVv//SmCUPp1E750VnP0kP1eSjr/Xm556pr/z2ixItf8HcLq3/5JvCFRKpW7e7T7/2f/fU/dsVv/tivfHCMzIuEQAkt2HDhlwDBG2XYigIgmeoOkHxlLwmJ55mjBmUVNuj/Jy8yoLkbDE3z+NxAIAQTK5TMYbzTz9eq3/+6TrduG6/Ft+7Te/86nI9vKs372IBAFJ01X3bjwsOSNJPVu/R+r19DX4RTZ7PObYXG22TJ6P1lC37u7PtergAwI12vHy+X9LU6xPHJF2fY1lq1b6KcWpupUBito4j2q4A0Np8uM7vOjqsHz20+7jPBscmdMXdj+dUIgBAFr62rP51/it3bJ31WZxgt60jPu1Oel7CwpRypfEOD4Kg4d8AAI21Y4Dgd2v+/X1jzFhuJTneCTX/HsqtFEjM2njNrhgAgJTE7Yh4cPtRve+KFXr+J5fq/V+/X4/tH3BbsElX3be97uc3NEgLAQBobfVSCcW5l9k6ZvNkKxXBg9ZjG03SSYAAAGJpqwBBEASXSjq/5qPc0wvVeGHNv/fmVgqkyvc5PwAACTW4zG8+MKAPLF6p+7YeUd9ISXdvPqx3fW259vWNOC/CpgPpBB4AAO3NFh9IPcWQ9Y88Y7UT23HY2UGAAADiaKsAgaQP1Pz7UWNM/ZlkMxYEwRskPb3moztzKgocoHkKAK3N+qZig7/+bO0+DY2Xj/usb6Skm9fvd1gyAADCifPMkuc8APZ1p7pqeMaeYijDggBAC2mbAEEQBHMlvbvmo9RGDwRBMCcIgjkhv3uapK/WfPSIpFWpFAyZsDVeebkFAIovzrV80e2b637+ySUbE5ZmNu41AIBa9fpM44xstk0Om+cIgjjzKaC4SDEEAO61TYBA0q9LetLkvyuSvhNnIUEQbA+CwEz+76oGX3uqpK1BEHw4CIKzGywnCILgLZIekPSsyY+NpH8wxlTilA1+oPEKAO3Lh8557jUAgGbi3Clsb+qnPYLA5tF9jVPruegvpsvZL7bjsIMUQwAQS1feBagVBMGNqnau1zqz5t8vDoLg4To/fbMxplne/trJiW83xuyOUcQonibp85I+HwTBdknrJB2WVJJ0mqRLNLuuHzbG3JhyuZAjHzqOAABJ+X0xr/CaAQAgBdaR0qmvu/HfJiw9xi6ev/y+67cf20gW4gMAEI9XAQJJF0qq+8b9pBMkPb/O59Z0PkEQnC7pV2o+uipyyZI5Z/J/jeyR9OfGmOszKQ3SZZu8K7tSAEBdmw4M6Ker9+hg/5heff6p+vXnP1UBw7Gd8eE6zwgCAEAzcTrOraMEUk8xxL0NVbbjsIM2LQDE4luAIC2/rSfq2i/ppymvb4ek50p6maSXS7pI0qmSnixp/mQZ9qmaXugmST81xpRSLhMyYmu8xsn1CQCurNnVq9+58n4NjE1Ikn68arfW7u7Tv771wpxLVizW/hEPrvMeFAEA4BFXfaa2yWHTn6Q41cVb0eXsF1tbi5deACAerwIExphzUlru/0j6H0fLOifEd4yk9ZP/u8LFetEa6LMBkKev3LllOjgw5ev3bNOfvuZZOm3h3JxKBQAAsuZ6DgKec5CVsiWVog8vagBAEbXTJMVAJqxtEtorAHJ0y4YDdT+/+v4dGZekdcW5zN/+SP39kkYZeHAGgPZT99If435gu4fkOUkx2ovtWOMoBIB4vBpBALSCHFNzAkAsWw4O5l2EQnF9Lf+nH6/Tq8/bp5FSWa867zS95yVPV0eSWfYsBSxXjLo6GX4PAIjOlmIo7fhA3OUPj5fdFgS5s06WzQM3AMRCgABwjDc3ARQNV6Zo4jyYzu3q0NhE/THxhwfH9JPVeyRJN63fr3V7+vTZ33xu/PJZ9mjZmMwaf8YY3brxgO7efFinL5yrX3v+U3XOqSdktHYAgE3RUgzFnaR42aZDGhkva96cTsclQl5sKYZo1QJAPKQYAjJEcwWAl7g4RRJnc82P0DHx/Qd2avOBgRhrqbLFoivWh2q3/vOWx/TH335I316xQ1+4dZPe/pV79ci+/uwKAACQ5G6SYnuA3N/GxG2OU/khX9YUQ/4ehgDgNQIEgGM+N44BoJ64b+Vhtkbbcv6c8O/tGyP9z22bEpShsXJG96hDA2P6yp1bj/usd7ik/7tjSybrBwDYxbkdWEcQeJpiSJI+c+MjyVZOZj6vMAcBALhHgABwzJ5iKLNiAADy0OA6H2UEgSTduG5//CJYbja2/NEuNZr4+oa1+zJZPwAgvkb3EescBCl3zSZZ+r6+0fxWDucYQQAA7hEgAByzT1JMiwWAf3iYiibO9ooaIEjCVrxKRgGCDXtJJQQAPrM9lzS6z9k6ZtNOYccobUyxHWscJwAQDwECIEO0VwD4iGuTO4025Qlzs5oa2L4/s0oxlFUgAgDgXqMruP1FqBZGiiGvkGIIANwjQAA4x5BHAGhlcd5O6+zIrnfBVr6sOu6zCkQAAMKYfQ+Kc5m2XdvTfnObuwqmkGIIANwjQAA4RqMEQNGQ/swdH+4BPkxSnNVcBwCAeOwTDtf/Y54dsz7cX+GHsi3FEG1aAIiFAAHgmH2SYhosAPxDX240cTZXlpd/a4qhjHa2rRMJAOC3OCmGHjswoPsfP5JKeaorT2/RKBbryw4cJwAQCwECIEO0VwCgBcSYjD7LN9ps60p7Esms1wMAiMf24lKjPzULMn/gGyu1ZldvglL5iZi3X2zpEtlVABAPAQLAMesLDbRYAHiIa5M7jbalNyMIskoxxEEFAIXVKNDcbHTYaKmiH6/anUaRck0dMzg2oZItrw0yNWELEND8AIBYCBAAjtkar+REBOAnrk1RkGKouawmQwYANBfMnqPYKkmw+1vLd0RbWUh5d/x+f+XOfAuAafYRBLQ/ACAOAgRAhvJu2AIA0tUwb3OmKYYay2puAEYQAEDryXN+mbzvKv93x5acS4ApjCAAAPcIEACOMWcSAB/FyTWM+uJMOJ/tCILGK8tukuJMVgMAiClOWtSs7iE+OtA/lncRMMkWqGrfIxQAkiFAADhma5TQCQcgLwQvs9Goc96XbUyKIQBAM43nIMi4IDXiBOfRmmxtGY4TAIiHAAHgmL1RQoMFQD7swUuuTVHE2lqezEGQWYohAgQA4I1Kxejo0Phxn1nnTWs4B0H7phiCP6wphjIsBwC0EgIEQIbogwOQlzzzBreThp0qmc5B4EOKIY43APDFkaFx/eK/36p3f2259vSOSIo3sjDP+WW4rWCKdZQixwkAxEKAAMgQ7RUAeSHFkDtxOimynYOg8d+y6rgnQAAA/rl/21H96bcfUqlcsX6v0UgB0sfBB3kGqgCgVREgAByzT/hFYwZAPuKkEkB9cUYDZLmJbetq0ifkDCmGAMBP6/b06cZ1++ypB+t8tmrnMfWPTqRVrKayHIkHv1nnIOA4AYBYCBAAjlk74TIsBwDUYgRBNnwIttje3s8uxVAmqwEAxPCP16y1/n3mbWT3sWG9/8r7UyxRCNxXMMk+SXGGBQGAFkKAAMgQDRYAeQk7uskYo+2Hh3TTun3aO5mnGMeLl2IouxuALQUEkxQDAMYnKpHuS7dtPKCh8XKKJWqOuwqmECAAAPe68i4A0GpIMQTAR2GGXFcqRp9cskHfXL5j+rO/ecN5+ps3nJ9m0VpKo+2c5dV/wvLgnFXHPQECAPCb9So944+fWLIxzaIAkdhTDAEA4mAEAeAYMQAAPgpzbbplw/7jggOS9MXbNmvF40dSKlUxxbnMZ3lvsD04ZzWxHwFxAPCcNfWgf9dwbiuYYmvL0P4AgHgIEAAZorkCIC+21DJTf7rynm11//6TVbvTKFJLarSZfRlBYEs/5FJWgQgAgHs+XsJ9DFogH7a2DEcJAMRDgABwLMpwXQDIiu3yM/XQ/dCOY3X//sMHCRCE1XA7Z9jbYhtBYAseuC1DJqsBAMRkbxf4x8egBfJha8twnABAPAQIAMdswxpprwDICw9MDsWZpNh9KRqasPTOZzWCIKvJkAEA8VifWbiGw2P2tgzHLgDEQYAAcMzaXKGxDSAn9o6ADAvSAmxpDhpt5zjbOO49w4c5COwprTjgAMBnPl6lfSwT8mGfgyDDggBACyFAAGSI9gqAvNgemHiYiiZWZ3+MO0Dc/WIbem8LHrhkWw/HGwDkz/5SU2bFCI3gMqZYUwxlWA4AaCUECADX6IQD4CEuP9lotJ3jBRXisXXOZ5X6hwkEAaC4fJwQmOcoTLG2MThOACAWAgSAY9bUEx42tgG0B2vKF65NzjTazFk+sNpHEGRTBvvwf443AMib9VLMZRoes45S5OAFgFgIEACOkcYDgI9s159mWWe6OwO3hSm4OJfyWL+JcdNo9pvsJilu/DduhQDgN67T8BlpDAHAPQIEQIZorwDIi/WNqiYXpzmdNBfCazRJcYzO/hhrb9b/n9kkxTy8A4DXrKOePbxOJy3Tt5ZvP+5eXK4YPbyrV2t29WY2Pw/csI5SzLAcANBKuvIuANBqrI0SWiwA8pLg+jO3u9NdOVpAVily4qym2RwDmU1STEorACgsH6/TScv0b9dt0JHBcf3tG8/X7mPDet8V92vn0WFJ0tlPnq+rP3iJi2IiA/YRBP4duwBQBLwSCDhmTTHkYWMbQHuwp3wx1gcqRhCEl/ccBM0CBFlNUky6PQDwWztep6+6b7vKFaO/+f7D08EBSdpxZFh/+4OH8ysYIsmqLQMA7YQnfsCxog3XBdAeml2bxiYaz147p4vmQq14cxDESTEU/TeVJpMQk0YBACAV77nERXn7Rkq649GDenDHsVl/e2D77M/gJ+YgAAD3eOIHMkR7BUBemj0wjZbKDf9GgOB49pFi0X8TZz2N+JJiyIaHdwDwm4+XaVdlWr+3z9GSkBfbyxCM2AeAeHjiBxyzD9elwQIgH7aOY6MmIwhIMRRawxRDGa3flxRDNjy8A0D+rO0CD+4VM7kq09wu5lUqOvuxm2FBAKCF8MQPOGZrk9BeAZCXZsFL2wiCud00F5KK07ERbwSB/e/lJimIssDDOwDkr107WRkVWXzlNj12ASBN3B2BDNFgAeCr0RIjCFxo9HZ8Vpf/ZoEIP0YQAADy5kHGuUhcFXduggDBl+/YogkfIu1trmKbgyDDcgBAK+nKuwBAy/Gg8wUAZmqeYog5CFIVZw6COJMUNx1BkP89ysfUFYALfcMlLVm7V5sPDOgXz36S3vzcp6ibACs8ZbsW+3iZdlWmJG2a/7zlMW05OKj/efcL3BQGsdhHEHh48AJAARAgABxr1iQxxigIgkzKAgBT7CmG7CMIyNcbnss5CFp2kuK8CwCk4OjQuN53xQo9un9AkvTN5Tt08/r9+tJ7X6guggTwkO124OdcMW7K1JHwOeynq/fon9/8HJ22cK6T8iA6+yTFAIA4aK0CjjXr0OGlBgB5aDY/im0EAX1bycWagyDGegoxSXH+RQCc++GDu6aDA1NuWr9f9287mlOJALt2nYPAxWtaP3xwl4OlIC5rW6aFj10ASBOP/AAAtAH7w5TRmGUEgQcvnReGyxEELtc/xYcRBDy8oxV97qZH635++V2PZ1wSIJw087inkebF1SI7HPSAHB4cS74QxGZry/g5+gUA/EeAAHCsWYOYJguAPDR72apd3yR0reEkxXHmIIjxo2YBAB/iAz6MYgCysmzTobyLANRlTTFUc52OE1hO4zLvapGBgzEELpaB+OxzEGRYEABoIQQIAMfCzEEAANmzP0yF7ShAPHHeaEsjxZAPb9blXwIAgPXFgJp/l8qWhO8xlh2XT00RppPLFxmGAMA9AgSAY03nIMimGABwnObzo6SXaqCdNEwxFGsEQQq/8WBnEnBCO5nTxeMWshH12hp25OBEjBEEPoxWa8RF5z7xgXxZUwx5fOwBgM9osQIZo9ECIA/WEQIyjCBIWaxNGOM3hZikOO8CABmawyzvyEjUy7u9E/+JP074MoLAo7sHIwjy5cV8SgDQYrryLgDQapq/vEmDBkD2bNceY+x/5zmsOJrtKw/iA16UAcgKIwgQ1tZDg7rzsUOa192p119wus48qSfS76NeWq0jB2v+VCp7MgeBR/eOgAhBruzpsTw6UACgQAgQAI41naSYNguAHDS79thHGCCpOKMw4jzkNp+DIH88vKOdMIIAYSzdsF8f+u6q6c74k+d36+oPXqKLnnpS6GVETzEU7nsTFU9GEDhapIuyER7IV9j0WACA8GixAgDQBpo9TNnfJORpK6yGcxA4XJb9NwUIUvtQBiAj3V10JcKuUjH66E/WHfemfu9wSZ9csjHScqJeWq153Gv+PRFjBIEP6ewacVI0Tutc2bJe+XvkAYDfGEEAZMzj9jKAGA70j+pHD+7S5oODetHZT9K7Xvx09XR35lKWIIg3Sa4Rb2O50ujt+Fid/THW3+yNUB86bfIvAZCdbkYQoIkV247oyND4rM9XbjuqkfGy5s0J16ZweXk/PsVQnBEE7soyxdXoMxdl6yDFUK6sbRkP2jkAUEQECADHmrVJSK0AtI79faN619eWa+fRYUnSdQ/v1a0bD+jrH3hJofJOG2OaBBC4bhWFDwGAZgpQRMAZUgyhmcf2DzT822gpQoDA4b26dlkTMXrU0xh5SIohTAk7+gUAEB4tVsCxZo1zOkaA1vG9lTungwNT7t58WPdvO5JTiRpr9kBse/6PkX64bTVOMZRNB4vtoTnuMl0j4IRWYzvv5hYoWIx82C7bUd5Ub/URBM74XDaEUsRRr6Olsu7adEg/enCXdh8bbv4DAMgYIwiAjHnaZgEQw6LbN9f9/D9veUyvOu+0jEtj12w0tvVhiytXYlmlGEoyGXVWfH14B+Ian2jcgUqKITTjQ+B2ptoiNQs81+PzaDYXZSPFUL4qthEEHh57R4fG9b4rVujRydFCHYH0xfe8UL/+/KfmXDIAeAItVsCxpimGPGy0AHBr7e6+XNZre1xteuWxjSDgshVao02V1STFzTo+fAj25F8CwK2xiXLDvxEgQDOuAvRORxDUrDeNe1Ec7lIMJV8G8YF8la3njH++sPSx6eCAVD0G/+4HD2tgtJRjqQDgeLRYAceaNUp8bLQAaH3NOiDsE76lUKAW1SgIHG8EQZy3NpssM4N92SwQTqAcrcY2gqBI89EgH9YUfzldLmsv03E6+9O4zLsKcPsQKEcyttSXPjYxrr5/56zPJipGP1u7L4fSAEB9pBgCHGs+giCbcgBoP0EQNLzINE8xZPl7mz9Mj09U9L2VO7Xi8SM6+8knxFxKNtuw+QiC9HEfRLsZI8UQErBdt6N0zqd1r46z1NYfQcAQgjzZX3opjjsePaj3vvQZeRcDACQRIACyV6RWC4AWYn+YsndQpFCcgihXjD703VW6deOBUN9vmGIoVo6hxn/acnBQdz52UCfO69brnn26Tls4d3I9vL0PZG3cMokrkxSjGdtlOVKAIKVJiuPcN3xuN/SPJE/rQnggX9YUQwVq5xBnAuATAgSAY83e3mn3N3EBpMf2nNE09YztbwV62HJt7e7e0MEBG5fxgRvW7tNffX/19MSRpy6Yq+/90SU674yFfqQYavb39j2c0KLskxTTAwQ7+4Sr4Zfj8tKadA6CNNoNrpb4n7c8lngZ3MbyY4xpmXYEk10D8AmvtACOkVoBgI/sKYaM9WG+nS9bX75jS6TvN9qMcTpL6v2kVK7oIz9eOx0ckKTDg2P69A2PSLJ3NNnK51LTUQxtfUShFTEHAZKwz0EQZQSBu2vrcSMIEv7eFZ9eVijbkuAjVWUP2jmuEB8A4BNGEAAZK1CbBTH0jZR052MHtevosF72rCfrRWefkneRAEn2B2sje8eyz6kC0rZ+T7+T5bjahHc+dkgDYxOzPl+26ZCMMSFGiqS/MxlBgHbDHARIwlWKP7cjCGrKEKMRkMocBM6XGJ8lqxhS5kM7xxXmsgDgEwIEQMZ8evsFbh0aGNN7r1ihLQcHpz/7uzeer7/6pfNyLBVQ1ezKY33g4roVQfRJohsvafaPNuzta/x907xTJotgT9ORdOkXAciUbQRBVwcdQLCzPRtE6Zx3OwdBTYqhGL9P417jU1MkjQAIwmm27Yu0a7g7APAJr7QAjhEAaF+X3bn1uOCAJP33rZu0+9hwTiVCu7G9iGR9oDL2DoB2HkEQ9eWutFMMWb8vPx6cm87Fw30SLWa8XG74N452NGOfcDXCglI62OJcslu9A71Zmhukp2mKoYzK4QIjCAD4hAAB4BhvTravxfduq/v5t5bvyLgkQB2Wi0+56RwE7XvlcvXo5nKS4obf9yXFEPfBQjg0MKZv3rddn1qyUbduPEDgJgHbCAI2K5pxNgeBw6tr7ZLiBbjTOPD9OZkIEOTHFlCTinXNJTwAwCekGAIcI/cyZrpr0yH985ufk3cx0AYCBWqY4sbyu4ox1k4IrlvhNdxUcVIMRdzwvowgaMaHMrS7vb0jes/lK7TzaHWE2+J7t+l3X3a2PvnrF/FGYwy2OQjaOcCKcOxzEOSVYqjm3zF+bzsn4vLp3kGAID+myaFVpGsut1sAPmEEAZCxIjVa4IZPDzRoX9YOiIr9OG3n52BXnaVZbEJjmgcV/HhL3IcytLcr7942HRyY8q3lO7T10OCs746WGqfPQRWdhUjC1f3X7VH4xNLipAv6959tdFkYSX7dOZq9xY70MIIAANJBgABwrGmjpECNFt/t6xvRjx/arWWbDtGBATRhnYKgSWoaPzqViyHtOQiaLabS9M269DVNMcThlLtGKfGuvPuJzx/YflS/8sW7dMG/3qzXf+FO3bJhf1bFKxz79TO7cqCYbAGmKPcOl/fq40YQxFjsisePtnTboVxu3br5rmgBWdt50MEQAgAeIcUQ4FjTyRkzKkeru2XDfn3o6lWamGwknnf6An33jy7VaQvn5lyy2Rg1Ah80m4SYFEPpyqRjXvZUUZInkxSnXwTEtHLbUUnSrqPD+sDilRoerwbfHz80pA9dvUo/+tOX6YXPeFKeRfSS9fqZYTlQTLbj5x+vWatr/vRl6ups/l6fy2PNNPh3FP2jEzppXreL4lTL4dHJxAiC/DRv55jp/79qZ69WbjuqXzjtBL36vNM0b05nFkWcUR7LH4kPAPAIIwiAjNGeTG60VNZff3/1dHBAkjYfHNTnbno0x1I1xj6HD5rlOGaS4vqivtzVaDvGuQ5E/Y0xzdNRxEkVERUjCIpratfc9siB6eDAlImK0U3rGUVQj/X6yfGOJmzHyMO7erXo9s2JlxNV7bLi3je6Otz2fvo0IqFSsLfYW0mYFyGMMfrPWx7Tb112nz5/86P6k28/pPdduUL9o6WMSvkEW3kDIgQAPEKAAHCsacdIG3e0uXLz+v0aLc3Oo/HjVbtzKA3gEdtzRpMcx/YURLFLVHiRAwQNP89mIzadgyCLMjT9exsfUAXxySX184dfftfjGZekGOgrRBLNOjx/tnZfqOW4vLYedy+JudiP/mSd03QwPp1mjCDIT7Njykh6dP+AvnLn1uM+X72zV1fduz29gjVgKy4ZhgD4hAAB4FjTjhHak4ndvflw3kWIhF0OH9hTCNnnIMjirXNfuXq7K9YIgohXD2NCdFpkkWLIgzRHQJbs10gOeNg1u8duOzwUbkEuRxAc9+94C75+zV4tum2TmwJ5ZoKoYG6azrVkpG8t3173b/99a/bHo30EAQD4gwAB4JoHb2/CLz4NiUZrsz1oNAsAkEO7vugphhp8HmPdkVMMyR7okTJKMdTs7+18QKElMUkxknDV1+x0DoLaFENNOmRtbnY4ublP5xIphvLT7EUII6MbQo66yYKtuIwgAOATAgRAxugsBpAH+xwE5NBOXawRBBG/32Q/Tn0nb6QYQsvx4cRCYbl6NnA6B0HNdTpJCs9NBwZdFEeSX/cOl6mTEE2YOQg6HM9/kQRzEAAoCgIEgGO8OZk+nx4QwihWaVFktjeRbB0QFWM/q9o5sBn10a3Rloxz3Yq63Y1CPDhncEVikuLiaudzPQlGECAJV53NTq/vk4vadXTYn8nJPTqX2jn1Yt6ajd4wkjo8ejXfNuKhg944AB7hkgQ4RnsRs3BMwAPWFEMVUgylLYt7gzEmVG7e9AuSwTqAkMoVo93HhlMNftivn5wQsPPxZfSpIl3zUPzRA62MOQjy03yuJSOPBhDIWNplgUeBDADoyrsAQKtp9iBIAAFAHpqlGGKS4voiP7y5nIMgxveb7ass+jS4D8IXP3xwlz5z4yPqHS7p1AVz9ZnfuFi/fNGZztfDCAKEdd/Ww1q64YB6ujv1luc+Rc992knO7rFOUwxNLuvr92xzt9CEfDqVSDGUn2bb3sivjncmKQZQFAQIgIzxJpkDBduEBSsuWlSzAICtY6GdO7iipxhq8HmMjRh5kmIT5jcepBjiquitsJ0qj+0f0M8fPaj5czr1hgvP0Fknz0u5ZNHd//gR/dOP104fj4cHx/TnV6/SjX/9Kp1/xkKn6yI1E8L43sqd+uhP1k3/9+J7tulrv/siZ/fYNI5Cn45tj4rS1i9O5C3MpvdpBIE1QOBROQGAAAHgGLmXMZNPD1dobbbJzmw5W5tNbsshnFy8TRg1QhBu8r60MRdPcYW5X92wdp/+6vurp9/i/MLSx3T1By/Vc592UtrFi+SGdftmHWsTFaMb1u7T+W90GyAgRRuaKVeMPnvjI8d9Nl6u6L9ueUznnr7AyTpctjenArk+vSjvU3CZEQT5aTqCwPg1+a+tuD6VEwCYgwBwrGnHSCalAIDj2VMMNZmDoJ17dKNmGGqUYiij1D7N+iwymYKg6UTJKLKPXbvuuA6a/tEJ/fsNG3MsUX3fWr6j7ueLbt/sfF2kGEIzy7ceUf/oxKzPN+zt15HBcSfrSCPFkE+d8j4hQJCfZnMQGHk2BwEjCAAUBAECIGNt3dHmSNG2YNrlrVSMNu7t176+kZTXBN/ZHjSapRiydnDFL1Lh5fnsVu920WxfNHtw9iEtAvfBYusdLs36bOW2oxotlXMojR84pNHMXksbrX909jmVt6lD2qdj26eyECDIj21ErDQ5gsCjnnf7CAIA8AcphgDHmudeRrtJ84Fm84EB/d43HtCe3uqD56vOO1Vfe/+LNH8Ol3ccz/ZAVWmSu96HTuW8RH3IrPe2ZdwO8ciTFDdJFTX1nbQxkq49jZUq6unuzLsYubCnGOKIh6wBtPGJipN1uB1BUF2YT0evT2Up+1SYNhNmpGSnR0MI7HMQ+FNOAGAEAeBYswfBNu5ng2PGmOOCA5J09+bD+vQNj1h+hVZme8xo1slvTzEUs0AtIPIkxfXe+o+5/SJPUqwQb9bFK0q0cjAXT1sK2vipwhqY43hva7uODus3v3Kv/u26DQ2/M152FCBweLCZWf/In0+jz8oVN/sM0YWZg8Cj+ACjTQAURhs35YGU0AZInU8PCGGk9fbghr39xwUHpnz3/p2prA/F1uz5ZMLysFusM84/cbdf1GuHaZIqauo7aWtebo4oXyXZMx71x2SOFG2op1Su6D2Xr9Cqnb3W7/k4gmDqwGUETH2OYjqIodkLL9U5CPy5I9mK61M5AYAAAZA5GtrtJq3+uJvW72v4t2ZvEaP9NHugsr3hVLSgnEtRn91S31LWVCbN9/PmA4Pp709GEKDNtHMaNjS2emdv3Rc5ZiqF6G0Oc912Gx+oLs2n5qRHRaGdnaNmb+Tf8ehBDY/7MyeOPcVQhgUBgCYIEACONX1vkvYkHOnqaHwJdzVcHa2jWeeCPUDgujTFETh4Lzr2HARRUww1mUtCkvb3j+rX/u8eHR0aj1WmUOVI+HcUUzvnUraOIGjnC2ib++Jtm0J9rxQioX2Yw8jlsTa1KK+OX4+KUvZpu7SZZgHZTQcGtb9/NKPSNGcNEGRYDgBohgAB4FjTCSIzKkcrYxtWzekiQIDj2TromqYYsnRQ8HZsePXuAbFTDEWeg8CE2lfr9/Trw9esjVmqEOVgBEFb8qojMWO2urfvVkHYe2eYFENhluR0BMF0iiF/+JTuiLzy+Slam9R2qLRxXB2Ah7ryLgDQaugYwUxp7fMuywxcY6WK1JPOeuGX0VJZX7lji1ZsO6rBsYmG32v2QDVhG0EQu3TF5+LhLfYkxVG3vAmfDuK2Rw5otFRWT3dn9IIl1M4dyb5Lsmvaea9ySKOesMdFqACBMWr2vrHL43BqURzb9REgyE/R3oGytXmYgwCATwgQABnz6e0XFFtXJyMIIP3Zdx7SHY8davq9Zg+ztuHydBCEV29TZXXdDzMHQa39faM659QTUigHI+nQXmznHdfP9hV214dps4VblssUQ/4duD4ViQBBfoq27a3FJT4AwCOkGAIcYw6C9LENq+Z0Nm5VhnkbDcX34PajoYIDUvPzpkyKITfqbKrYIwhizEEQZeLEtPYqI+naUzvvV+scBNkVA75x+UZ/qDkIHK7P3aJ035bDOuAgJ7xP1xjaRflJGrzKOvhln4OACAEAfxAgAByjYwQzpdUQ7baNICBA0BY+c+Mjob/b7GH25g37G/+xja9bRZp4tToHQYTvp3Rtaj5JcRsfUK2sjXerdQ4CGn5ty+W1LkyHdBpzELjwvivv1yWfuV3/eu36SEHsWWVyV6TE9vWN6q+/v1oHPZoMt10knSA66wEIthEPBWpiAmgDXgUIgiDoDILgeUEQ/GEQBJcFQfBgEATjQRCYyf/dGWFZ59T8Luz/tqRYt18KguBbQRBsCoJgKAiCo0EQrA2C4D+DILggrfUie81TK/jUvEWRESDAqp29ob+b5IGond+Ui/rsVu8an+kIggg/Wr2zV6UU0pE17RBt38OppbVz+6adr5FoLOvDwvfD8Nsrduiah3bnXQxnrnt4r95zxQqNjJfzLkpbSZpiKOsURbbz0jKdHABkzpsAQRAEb5fUL2mNpCsl/amkF0nqzrFYiQVBcGIQBN+XdJuk90s6T9J8SU+S9FxJ/yBpbRAEH82vlMiS7433IijaJkyrvF22FENlHlZwvCQdWEU751xyMklxzC0Y9XdG0d5W/vsfrdHLP/dzPbq/P2LJmpSD+EBbauf2DSmGUE/Wb/S7DdKlc+R+/Z5tsX/r42icxw8N6f5tR/IuRltJGpDNOqBLiiEAReHTJMUnq9pxnoYBSd8K8b1wiZxDCoKgW9JPJb2+5uP1klZJ6pH0KklPUTUI8pkgCLqNMZ9yWQZkz8O2K3KW1jHR1dE4xjvGCALMkOTBup2va1EDBPW2VVZ5oY2JlmJIkg4NjOmD33xQd3/4dZmlU2rn4wmtydrhxPHetlx2aIfp/Hd6r0npuH3swEDs3/p6Kv37zzbqtc8+Pe9itI1KwkecrEcQWAMExAcAeMSnAMGUA5IeqPnfmyT9dcJlHjXG/EXSgsXwr3oiODAq6feNMd+f+mMQBHMkfVrSP05+9IkgCJYZY5ZlW0xkiY6RdBljCpUzPC2kGGp9UTsekmSSIX1GMnG3XpzNHmdf7T42orW7+/T8p58cfYV1NB9BwPHUitp5r3KJRD2+zgkQan3Zri4UX8+zI0PjeRehrSRtkyadwyAqWzyCJ1YAPvEpQHCzpLONMTtrPwyC4JKcypNIEASnS/q7mo/+pjY4IEnGmHFJHw6C4BmS3q3qPeKzkl6eWUGROTpGkvNxiLFNWvvc1kAmQND6op4GpBiKJ+rw7/ojCOKmGIr4fRN/rok7HjvoLEDQTMEu4QipaPdml6yTFLf1FbS9ZTV6LJX1cdiGxrbKVtLtnWSi7Dis90ZeagPgEW/mIDDG7J8ZHCi4D0g6YfLfmyRdbvnuhyVN9ea9LAiCF6ZZMKSr2QMyjch0+bh90yqTNUCQwsSj8Ev0zuMEB6KH51VWIqcYCvlZqGXF2Gdx9/NEOdlOHh6fmH7obtYh2saHk/eSdGa38361zkHQzhumzbkdQRAixZDDNfoZ2PKxTO0dHM1D4hEEmacYavw3wgMAfOLTCIJW8/aaf19lLC0HY8zOIAh+LukNkx/9hqTVKZYNKWrW5KAJmS62b9VYiQBBq4v6gJRkSDUphpLJavNVRxDEDBDEfGDe3zeqv/nBaj2w/ZhO7OnSb19ytt7xoqdZf0NnSmtq591qO+/aebu0PadzEGS6Oi+PWx/LJPHskbWk/fvZpxhiDgIAxeDNCIJWEgRBj6RLaz66M8TP7qj59+sbfgvea5p72dfWbYEUbQumVV5GELS3qB3BSR6oinbOuRT12e0nq3br0MDY8R/G3ICRR4nIxJ5rohxj1r9Kxei3r1yhFY8fVblidGy4pP+7Y4suv/vxJuUEWkvGL6SiIFweF8xB4GeZJHlcsNZUuBEE3CAAFES7jCDoCoLgjZJeLOlUVScMPizpQUkrjTFjth/H8Gw9EXwxCjcaYFXNv5/juDzwCE2EdFUDMH69jpHWQ51tucxB0PqiHldJjsO2HkEQ8fWum9bv1/3bjurqD16i5zzlREnxUzXE2cdZjiDYuK9fWw8Nzfp8yZq99h+28eHUyvxMSZIN5iBA6kIcRm5HEHDcwk9Jj80tBwf1lJPmOSpNc6SgA1AU7TKC4CxJSyV9RtWJg/9Z0n9LukvSviAIPh0EwQKH63t2zb8PGmNGQ/ymdv6FU4IgOM1heZChprmXaQikqp02r63BSYCg9UXvPE6QW7ydTiwHjg6N69+uWz/93/G3X7QfGmU7B8EVDUYKDIxOWH9Hh2mLauPdSooh1JP1nABFubbGvU/5ei55WqyWlfSF/I/8eJ2bgoRkvT9kWA4AaKZdAgQ2T5L0MUkPBkFwvqNlPrnm3wdC/mb/jP8+xVFZkLHmjVeaAokVbhOmU2DbAxYphlpf5DkIEj5RtevbhHHHIz2w/Zj6R0uSkkxSHPX7JvaD80SMFENxj6k2PZQKgbnM4+GYRj1ZzwlQlDkI4rZRfQ2AtGv7KC9JR7Xu6R3RyHjZUWmaa+tRuAAKpdUDBAOSrpL0HlXf6l8gaa6kp0t6p6Tbar77bEk3O3pzv3Y0wkjI38z8XuIRDT09PVqwoLqYcrms3t7e6QZMf3+/xsfHqyseGdHQUDVFwMTEhHp7e6eX0dfXp1Kp2sExPDys4eFhSVKpVFJfX9/093p7ezUxUX1jcGhoSCMj1eqMj4+rv79fUrXx1Nvbq3K5ekMeHBzU6Gh1cMXY2JgGBgYkSZVKRb29vapMdlYMDAxobKyaBWp0dFSDg4Ne18mUq2XoVlnzVP13IKMFwZgCGRlTvDr5tp86SsPT31sQjKlT1TL0qKTh4XzrNEcT6lG13J2qaEEwNv2Q5Xo/jQ0NqGOy7vNU0hxVf9OtskaGB3PfT6147M2sU+2xN7X9u1TW/MlzP806GUnzNa4uVZdd79ibckIwpnK5Wr65Kmnu9PfKOqHmezPPp9o69fUVdz8lOfY6zUTda7kkzdO4umu2/7zJ7doxuf17h6q/G+jvC72fOie/N1cljY+O1K1To/00XhpXZWwq5U+1rI2uETPrNDFRjryfNHlMRanTXJVkTPtcI3ytk20/DQ8Px7pGDHi2n+ode1N1cr2fzHj1N/WuEaqUnNWpFY69dqpTxcS/5061I6au5RMh6jQ00B/6/jQV0mvUjiiXS6HPp6h1Gi2VY+2nseGhRHUKc3+KU6ep0Xs+HXtS651PU3UqjY3G2k9V1fOpb3gsszoZYzn2jGnZ/USdqBN1il+nvLRygGCfpKcaY37fGPMDY8wmY8yQMWbcGLPbGHONMeaNkv5ET7z09ExJn3Ww7p6af483/NbxZs6DkDgx3qWXXqp3vOMdkqRDhw5p0aJF0wft4sWLtXHjRknSsmXLtGTJEknS7t27tWjRoullXHbZZdq6daskaenSpVq6dKkkaevWrbrsssumv7do0SLt3r1bkrRkyRItW7ZMkrRx40YtXry4WsGxMS1atEiHDh2SJF1zzTVasWKFJGn16tW6+uqrJVVPmkWLFk2fpFdffbVWr65O47BixQpdc801Xtep89AWSdJ5nYf1xrmbJUknBON6Z886nRCMF7JOvu2nU3Ytm/7eO3vW6bSO6gX45XN26J6778q1Ti/o3quXz9khSTqtY1Dv7HliGKvr/bT1zh/p5KB6w3rNnK26sKs6YOm8zsMa3rgs9/3UisfezDrVHnsv6K7mXT+n85jePPfRahAnxTpVjNGb5z6qczqPSbIfe2+bu1GmrzpQ7SXdu/WS7uq+OKujX2+bu3H6ezPPp9o6XXXVNwq7n5Ice08e3dvwWv7GuZt1XudhSdKFXQf0mjnV8pwcjOqdPes0Pl6t04+//53Q++msjv7p/bTxwXvq1qnRftqxZZO6t1avgXNU1jt71jW8RsysU2VsJPJ+mjOwN3KdXtK9WyaF/dSKx16adbLtp6VLl8a6Rlz3w6u92k/1jr2pOrneT/N3LZdU/xoxv3+3szq1wrHXTnUyxsS+57557qOSnriWHzncvE63/ugboe9PcyY7xhu1I4aOHgp9PkWt08DgSKz9tHX5zYnqFOb+FKdOxvh37Emtdz5N1alv84Ox9pP0xPnUf+xIZnWqGNPw2DMtvJ+oE3WiTvHrlJfA9yFxQRB8QtLHJ/9zmTHmtSms4z9UnZdAksqSzjLGhE0NVG95/yjp/03+5/3GmEtD/GaepOGaj15sjHko5vovkrS+p6dHXV1dWrFihS644AINDAzopJNOUhAE6u/vV09Pj+bMmaORkRFVKhWdcMIJmpiY0ODgoE4++WRJ1Wjc/Pnz1d3dPR2Jmz9/vkqlkoaHh3XSSSdJqkbjFixYoK6uLg0NDamjo0Pz5s3T+Pi4RkdHdeKJJ8oYo76+Pi1cuFCdnZ0aHBxUV1eXenp6NDY2pvHxcS1cuFCVSkX9/f068cQT1dHRoYGBAc2ZM0dz587V6OioJiYmtGDBApXLZS/r9B83PabvPbRf3SqrS2WNaI4CGZ0QjGvIzNEP//TluuDJ3YWqk2/76W+vvl8/e7QaDV4QjGnEdKusDvWopBUfe4NOXrgg8zrNnTtXz/74bZqjCXXIaFTd6lRF84KS5sxfqFX/+kbn++nbyzbqEzc/roo6NE8llRVoXF3qVlm/85Kz9PHfelHhzyffjr2ZdXrR5+6ePvYqk9u/S2XNUVlr/+Nt6uwIUqtT/8iEXvapn2lcnZpQZ91jb9DMlVR9U+m3XvoL+tb9e6bfkBtTtzpVVk8woaHJ7808n2rrdP8/vVpPftLJhdxPYY+9sWCOyibQiV3l6Tq988t3af2uI7Ou5UaB5mlcE+pUaXL7d8poRN3qUEXzg5Ju/Ic36RlPPkHb9h7SG/93eaj9NGq6VFan5qqkr3/gJXrlc846rk5fWPqYvnHHhrr76aa/vFTfvHuLvv/wYVXfkhvXsOmue42YeX963XPP1pfe96JI++mffvqIbnrkcKQ6SdKX3n+pXnf+k9viGuFrnZ71kSV199NTnrRAS//yUr3wU0sjXyNu+otLdd7TTvdmP1300Z/MOvam6rTqo69xup8+8qNV+un6o3WvEa989hm64vdfzrHXhnX6tS8v17b9R2Pdc+eorGHNmb6W3/6RX9EZJ8231um+R3bp/d9eF+r+NGjmSAo0X+N12xH/+ZsX6Y3nn6wXfO7ehtfyuHW6+8Ov1cKOUuT99OMVm/WRax+JXacw96c4dap09+iRT/2KV8deK55PU3X61n3b9Lnbtic6n+746K/qtBPnZVKn+3YM6k+/tbLusfdnr3u2/vxVT2/J/USdqBN1il6nPXv26OKLL1aNi40xG5QRAgTVdSyQdFBPvLX/fmPMdxIs788kfWXyP9caY54f4jenSDpS89EFxpjHYq7/IknTsyOuX79eF110UZxFIYaP/mStvrdyV8O///BPXqaXPpMpJpL486sf0o3rZk7bUfXov/+Kero7My6RVKkY/cI/31j3b0+a363V//bLztd59f079LGfrq/7t9+59Bn69Nuf63ydON45H7mh4d82ffpXNacrvYF6vcPjesGnbg39/d+59Bn6zoqdsdeXdn3yNDg2oT/7zkO6e3P1zcTnPe0kXfm7L9bpJ/boty67Tw/tOBZruXd/+HV6+inzdXBgVC/9j9sj//4Hf3ypLvmFJx/32ReWPqYv/XxL3e/f+rev1hV3P64fPrg78rre/Nwz9ZXfflGk3/zxtx7U0o3R36f42vtfpDdddGbk38GdRteupz1pnu75p9dbr22N3PeR1+upJyceAOuMrQ6/ctGZOmFul37jhWfpleedmnhdf/W91bp+zd66f3vDc07XlR94SeJ1oHh+5Yt36dH9A06W9cDH3qDTFs61fuehHcf0W5fd52R9X3jn8/VbL3parGtBM7f93Wt07unRs+le9/Ae/fX3H3ZenqTmdnXosU//at7FaBtfXbZVn7vp0UTLCHM+uXLLhv36k2/Xf+/zQ697lv7xTRdkUg4A/tuwYUOuAYLWfNKPyBgzKOn+mo+ek3CRtR39Z4T8zcwn5aMJy4CcNIu5+R6UQzx57FXboTRWYpLivKU9KVnU+WGTFsfXyQFd+OhP1k0HByRp7e4+/dnVqyTFn6RYqtnmGW06o+jHxZSJcvQfxl0Xt0F/tcskxTdv2K8fr9qt3118v25cty/x8mzXe4739uWyHRDuHuxyfekZm8hugtgscIpny8V5leXzeMXSWOL+AMAnBAieUPt0kPRVoto3/08PgqCn4Tef8Iyafx81xhxKWAZ4inZAcj42pmwNzbSKa1tn3I47uJN+gCDa8pOWx8fzzoXxiYqW1Hnz96Edx3Swf9TJOuJuunq/a7Yf4u7niVgXDZc1gw/29I7odf91Z6zfFvEFiIqRvnJn/RE5UdiqXrytktx9Ww7rczc9qivvflx7ekfyLk5unJ4SIZblcn1pns9jEy32Eks7nuQ5cnFoZvmcZFsXhw4An3TlXQCPnFDz76GEy3pMUkXVAEwg6QWSVjT5zS/W/PuRhOtHjpqPIMimHO0qr+1rW21aZbItNu3OaTRXTvnpI3KAIOHzeKseUnstnVf3bj2sIMEQgqk3PuNuu6i/Myb+ukrl6AcIIwha07bDSZvBxbJ+T79GxsuaNyd+esJWHmEV1Vfu3KL/d/MT70pddudWfe+PL9X5ZyzMsVT5yDg+kPn64oo7ypV7ByT7G/lhlbMcQcAIMwAFwQiCJ7yw5t/1k4iGZIwZ1fEBgdeG+Nlrav798yTrR76aPSTyEJmuvLZvHg08WwOZAEH+knbINxVxFyceQdCi1y7bdgkm/y+uqUXH3XZRf2dkYr/1GSegFfeYas0jCUW+7SS9Ptqu90UcWRFX33BJX1i66bjPjgyNa9Ftm3MqUb5c7vswi8p6xEJccVMM+doO8bVcrcrF+zcuggyh12UdZc6xA8AfBAgkBUHwBklPr/noTgeLvbbm37/XZP1Pl/RLDX6LVkM7IDEfn7VtDby+kZL+59ZN6h0ed7zOxkgxlD/f5iBI+rZUqx5TtmolGT0gVY+B8YmKlm890vzL9cQZQRBvTbFSDDGCoJjaqcM6rPGEKU/sHUDt44cP7qobbLzBwTwPReRy34dpUzgNSKR45MZNMeTrpcvXcrUqN3MQOCiIi3Vx7ADwSEsGCIIgmBMEwZyQ3z1N0ldrPnpE0ioHxfimnkhV9OwgCD5o+e7nJU2Na15ujHGxfuSkaYqhbIrRtnJLMdRkvYtu36z3XXG/+kdLztZp65xjBEH+0h6+HHUfJ56kuEWPqabVShAkGBid0HuvWKG/++Ga+AuJwJj4nfZxRhDEPSZ4Yy5fqaW9K/Bu/Y2v3KujQ/GD+NYc0wXeLlE9vKs37yL4xeWcANmuLtXjttXmIGijU9wLLtqj3qQYyqwUANBcSwYIJD1V0tYgCD4cBMHZ9b4QVL1F0gOSnjX5sZH0D8aYhq2WIAi2B0FgJv93VaPvGWMOSvrvmo/+NwiCd81YVncQBJ+T9N6ajz9qqxj81+xG304PinnwefNu3Nevnz9y0NnyrBMjc6DlLu0gTdSlJ06h0aKHlO1c6QiSJBiSvvTzLXpox7HYv4+6yZOkGJqINQdBzABBix5LRZHW5i9y4Gf7kWF9/qZHY/+ee25VnLlMWpnbDvswIwgcrs/domYZLcVMMeTpacb5ny0nKYYyDRA0/hvHDgCfeDVJcRAEN6rauV/rzJp/vzgIgofr/PTNxpiZ8wY8TdU38z8fBMF2SeskHZZUknSapEvqrOvDxpgb45W+rn+X9ApJr5c0T9IPgiD4F1VHKPRIerWkp9R8/+PGmGUO148cNB9BQEMgKR+3Ydj23b9cu15vf+FZqa8z9fz3aCrtfRA1f2riByr/TjsnbNulIwgSpRm67ZED8X+sbCcpjpNiKPbky/F+BkfS6pAoej/HDx7cpc+/43mxfssbolVxriOtLOs5CFxKc31xRqxJ7XUuoTEXb/+7vg/uODKk+7cd1dmnzNcvnv0kdXc+8R4ukxQDKAqvAgSSLpRU943/SSdIen6dz5ulEzpn8n+N7JH058aY65ssJxJjTCkIgt+UdLmkqdEDz538X62SpE8YYz7jcv3wEw2BdOX1JkbYoMXg2ISzddoanFkOnUV9qY8giLh4Jimuz1avIFCiSYqTirPN4+6niXKcOQjijiBozWOpKNj67vGGaBUjCI6X9Z53eZ9O854fZ8Sa5O+55GepWpeL9rXLWOa3l2/Xv163Yfq/X/rMU3TV779E8+dUu9qynBAZAJLwLUDgyg5VO+FfJunlki6SdKqkJ0uaL6lf0j5V0wvdJOmnxhh3icFrGGP6JL07CIIrJH1gskxPUTUosEvSLZK+box5JI31I3vNGtQ0EdKV1/bN45nFOueVpw9R7STuG3JhRX14T3pMtOrzjW2zBEo+UXGWko0giJNiKN66kK/U5iBIZ7GF0M51rxUn0NjKnKb8yXgSgjSbka020qSVmtwPbD+q76/cpQP9o3rVeafqD1/5THV1+pWV2sX2dtVG39M7clxwQJJWbjuqry57XH/3xvMlNQkgOykFALjhVYDAGHOOo+UYSesn/3eFi2XWLPucmL+7TdJtLssCTzVLMdRKrcic+LgJ8yiS7Q2aFnv2KqS0RxBE3cdJUx616rXLtp+CnKMDkVMMycQ+7mJ12MRNMdSah1JhpPVmcKteI8Jo57rX8nUEwYPbj+rm9ftVMdKvPvdMveScUzJZb9Zv9Dud88DhsmYixZCf7tt6WL/3jQc0PjmJ9D1bDmvdnj793/t+MeeSHc/FG/mu2ujfu39n3c//9/bNNQECUgwBKAa/wsFAC2h2n6cdkK68Glp5dA5Y5yCgxZm7tEcQRN3HSdNOtWrQybZZOoJ8RxBE3eSJRhBkmWKIO2GuGEHgHh1AVSUPbxRL1uzVu762XFfes02L792md39tua5fM3PqunRkPYLA6bGW4oEbewSBf4dXS1l8z/bp4MCUn63dp11Hh3MqUX0uLjOuDu/r1uwJsS7L/YGDGoBHCBAAWaMdkK68AgR5rJMRBF4rpZxqIfoEtsxBUI81xVDuIwgippFS/GtRnOMj/hwEsX4Gz7XzfrWN0GrVa2c9cXPLp8UYo8/f/OhxbaKKkT5/06OZvNjhNEAQ6jsuRyykJ/4IgvY5l/Jw2yMH6n7+9Xu2ZVwSOxcvQbl6icd27Z8oV/TQjqP6zor6owyk9r5vAvCPVymGgFbQ7IGDxm1yPm7BXOYgsOW0pMWZibldHRqbqP90MFoqp7ruqPs48bNQix5S1kmKlfckxRG/b0ym5378YITTYiAitr97jNqrso1EMsZkHnTdfHBQu4+NzPp8T++INh8c1PlnLMy0PEmEubYX5TBkropi2ds7+xzKk4t2jqtrtm05f371Ki3dWD/oAgA+YgQB4FjTFEO0iVOVWwAmh9XaOnzTTm+DqrldjW+jaQcIIs9BQIqhuqwphjr8m6S42TUu7m6O8zOyRBRTevfJ9t2z9oB9duXIW8nyOm0e2+HwwFjDvx0bGk99/S4DtuFGELiT5v4qx5wUqZ3OJTTmoj3qqk1rOybDBAd4oQuATxhBAGSMdkC6cpuDIIeOEfskxRxoWejsaNx7vL9/VPduOayLn3qSTprf7XzdUY+5pA9DrTr6yedJiqNu8mQphuL8Jm6KodY8looirWBfO+9W5iCosk1SXDFGHRmPyLLluu/qTL8sWXfYOw1IpDwHweqdx3TLhgPq7JB+5aKn6LlPO6l5mVIrEWx82+4unnGyGEEQhm/bFkB7I0AAONasnUBDIDkfH7ZzSTFk+Vurvu1dJH/9/YclVSe6/ec3P0cffNUvOF1+1Bfwkj7st+oxZatX3oMHogZljMk2OBh/kmLkKa2Ov1bYr3HT4LRC3V2wpY7J4x5iG03ZkUEA2O31OESKoUzXFt91D+/VV5dtnT4mLr/rcV322y/SGy48w14mTjTI0QgCV3MQJH35hmO6LY2Ml7Xj6JDOPW2BujpJ6gJ/cDQCjjW7z/Nmd7ry2rp57FdbJw9v6GYjzFauGOnTNzyih3YcdbruqMdc0rRTrXtM2UcQ5DmKIPomNwlSDEX/YcwsEfSm5iy1BEMtsF/r5asPwzqCoI0O+JI1QJD9drDd97o6ivUYHGrzOdzExrjrRJ1pT+/IcR2rpbLRZ296JJV1ofW4mYPAQUGUvCztdH9A1Zfv2KLnf2qpfuWLd+uFn7pVt2zYn3eRgGnFahkBBdCsoZBWYxtVeXVi5rFWW1U5zLIR5XD73spddT+vVIzW7+nTzev362iKOZGTBwgcFcQz1jkIAv8CI81ynWeZYij+CAK/tmm78eyQ9srbvnyvth4ajPw72+W1nbb3hGdzEJQtK80iPuCyzuHiA27nPLBtP9e2HhrSrqPD1u9w74DUYimGOKTbys3r9+s/b3lM4xPVe+XA2IT+/OpV2n54KOeSAVUECICMZdnYbl3+bcM8dqutUbq/bzTDkiCMax7aPeuz4fEJ/c7X79dbv3SP/vQ7D+ml/3Gbblq3L9Tysh9BkOjn3rKnGMo3yVDUbW6UYF6AWL+KJ04RxybKWru7V0NjE+4L1G7SmoPAw3tzVEeHxvXN+7ZH/p11RF+C8hSNPcVQ+40gyH4OApfrM4nbDVEdafKSRKu2Q3yXxnYfLZV13cN7dOXdj2vzgYFIv3UzSbEnKYaclAJFcUOdZ7xyxWjJmr05lAaYjQAB4FizG33Wje12k9fWzaNjxLbGPb0j+q3L7tORwbHMytOOkr5d/n8/36L7th6Z/u+JitFffm+1eoebjySIeilJGpxshc6/emz7sDqCIMPCzBB11cZkW96s5iD46erdev4nl+rX/+9ePf+TS/Wl2zfHWi+q0jqXW6XzbuW26OngSB9Z1WyS4qzZJinOIu2z00mDw8xB4HgTZ73Pmq2Ps6w1HOwf1Vu/dI/++vsP69M3PKI3/s9d+vo920L/3s0IgsSLmFwOL98gvEaBgC/cuinjkgD1ESAAXGtyo+chMl25bV7PRhBI0kM7jukvvrs6o9K0p6S7/St3bp312UTIN0miXkuSpjdr1UuXdbME+QZGonYuGWNilzdeiqFYq4q0rsf2D+jvf7hGo6Vqx+NExegLt27SrRsPxFs5UjuXW+Ua8ej+aG+zSk3m42iR7RKGPUCQYUGm1mlZaRbzy7h9oz/Ed9ytbnLSe4cLDLXONjpZ2tii2zdry8HjU7l9+oaN2tcXbg4YF4eJq5S/HLLxjE2UQ+9vANkhQAA41qxzxvLshJB8bIz5NgfBlOWPH0k1rz3Sce3DzQMEUc+DpCMIWjW4abtmdwRBsUYQKMHEwTGuYnE7c/75p+u0+J5toUbKXPvwnrqdVD94oP6cHmgurUO6VUcZhcEkxVX2uRj8SjFUtFtauBRDbkcsZD3qudkz0taD0ecHgV/KFaOr798563NjpAe3Hwu1jFaag6CtIsiqXqM+e+Mjev4nl+pln/25Xv9fd+qRff3W39yyYb/e/uV79YJPLdUff+tB7e0lsACkhQABkDEmKU5XXg/ieTxohn0QjJMuASHl2XkceQ6ChOtL9nNvNduMRQqMVCcpzm4EQZJN86mfbdQ7v7pchwbsadAuqzPKRpJue4QRBHHxli7ykEfzN++0nk7f6A+TYsjl+kz2zyzN7rdXxZgfBC64Ow427O1r+LfHQo7ecjMHQfJlSMmf/9rtdvzN+7bra3c9Pj0q9PHDQ3rfFSs0WirX/f69Ww7rz69epYd39ap3uKSlGw/oPZev0PA481EBaSBAADjW7EbPJMUpy2nz5hGYONDP/AJ5y/NsjjwHQfxXyyW1bqeirVpZ5/Svt/5Zn9m+L5OovDuPDOtfrl2n3/jKvfrE9RuaTnaeNHiy+eBg3cm7ka7URhC05iUiFOsIgjbeLrV8m4Mgizu4yzpnPkmxsn9msW2vHUeGMiwJ0vLQjsajBE5bODfUMlppBEG73R9+unrPrM+ODZd075bDdb//41W7ZwV6dx4d1v2P8/IbkAYCBIBjTQMEjCBIzMctmHUDr3+0pOtD5KlHutLqNA+TGTn6CAIeYupplhrEt/dPrfshQUDjyNC43n35cn1nxU6t3tmrq+7brvdcvlzHLCnKXGybz9/8qIOlIIpWPZfzZE2tk10xctXsnpRHgMDWwZ1FcbKeg8Dl0ZbHCAJbHVfv7M2sHEiPrU3RHXLmcBdtb1/mIMi7lZm1NbvrjyD5vzu21P38J6tmBxSk6ihUAO4RIAAcaz4HQXs1BLKW19bNer3LHjsU+rsZzMOHHES9lCS99LTqlatpp5V3IwhsAY1kD5v7ZowY2H5k2DoZcJHSL+EJaXVItPPhYB9B0B4b5vZHDtq/kMNmsHUCZlEc13MCZGnD3r7M00JxT2l99mBquP2fcEBs03JEWw4v37gQdTsMjJbSKQjQ5ggQABkjQJCuvBpaWXcAfPz6DZmuD/WltdfDBHWiHnMTCZ+oWvXBvekb+b6FRjJOifRPP1nb8G8uHtKRg5QOae/OlQy16OUxkpXb7SkfBseyzxltTzGUPtdzArj4Tlg/W7tP6/c0zhefBtvu4mWX/Lg8rlykY2upFENOSlF8bAfADwQIAMdaacJLX/n4Nl7WRTpqGaKL7OSanz7i95N25np42jlhTzHk3z5uVhzX9xj7HA0telC0OPaae82uI+1gqEkA4C++uzqjkjzBNvdOJpcvx3MCZLg6SdLV9+9wvES7rFMaIXtN3skIxc0kxa4CBMl+TzMKgE8IEACONbvPM4IgXe38BmMjvHTVmqI+3CS99rRqcNO2XYzJt3Ovboohj+ZMcDZEn/tiptI6lVvpEhH1eskkxc2vlRv39atvONu0EGVLYDyLq6XbEQTNl+b6WLsjQjpLF1q1nSFJB/pHtad3JO9i5M5FOjYncxB4cqzx3ArAJ115FwBoN7YJ05BcfimG8lkv8pVnwz5qn2rSa0+rHuPNtmOeb8nXO77sb/Rnu59cPWAPjU9oYU+3k2WhubQ6RlrpElEqV9TZ0Rn6+616fXTt5g379O6XPCOz9eU9gsDtHARhvlPsA9GeYqiYr7v0jZT0J99+UCser6bgev7TTtKVH3iJTls4N+eS5aRJGyYMJymGfEmRWOxT1p2I+5R7LpAORhAAjjVNMcSbkon5uAWL/lCGeNJqoAYhxn1E7Xjg2lOfT2/kz1p/vREEtu8r24CGqzX1j2afm7ydpXWEtFLKqai5662Bu4RlKYowuz/r2xBzEBSLbeROMcMD0oevWTMdHJCkNbv79KHvrsqxRNG5PKxcjCBwcVr78sKeH6UoHrYbkA4CBIBz9luWbbgzksurweBJOxNtJOoxl/RhyJfh2K7ZHjSzfiM/jGZzAmRZXFcdwlmnHWl3aXXke3aqJDIRsbFmvT76dhHJUUfGvby2wHg2IwicLs3BN/zWSkFGSRoZL+uWDQdmfb5y21EdHhzLoUT5s7a5Qi8j+XHiy7HmSzkAQCJAADjX7D7vyxsLrSqvhhZ7tT3lud8jz0FQJsVQPc0nKc4zxVC9z5qVN7XizOLq5dz+UQIEWWIOguZKEa+XTFIshalp1mlibG3ubOYgcJhiKNQIgmIfbbbSFzHD0LbDQw3/9uD2YxmWxB+2QzRsm8JJiiFPTpWpYgyMlnTf1sM60qaBI092B9D2mIMAyBhpPpLz8fnH54eyouZtLYQcdzsjCNxoVq98UwxFm4NAJtv95GwEwQgBAvhlImKCapp24aTZGtm4t1+3bNivijH65QvP1HOfdlL+KYYcrr4dDjF7iiHasq3ASYohB6Pxo05EnxZjpKvv36F/u27DdJn+7LXP0off9Gye3wBkjgAB4Fiz5kbeDyutLrdJivNZLVpViGeCyCMIEl57WvXS1exhtUhxEaNsy+vqmBgeZw6CLKV3jBToZGliIuIIAutcJq2zWazC1PPY8Hgq677j0YP6k28/pPHJ1FCX3blVX3rvC60j5zJJMeRyWW0wB0GrvohQdL69BNVKKYY27O3T9Wv2HvfZZXdu1fPOOkm/+tyn5FQqAO2KFEOAY80aHDR+WxO7tT3lOYVt1M7Z5Nee1jzIbW+iGfk3AXmzjsgsS+vqfsb1M1tpHdO+7cckL1+WIs9B0Phvvl1D0hJm/3/mxkf1K1+8S1sODjhd96dv2DgdHJCqL+N8+oZHck/r6bITMsyyin6s+XYNSVdbVXaard0Qtk3h4jjx5aWXrYfqp6H69oodGZckX1H3qS8BHqDVECAAHGt2u/JlSGOR+bkF/SyVlO6Q/naXVvs0zD6L2jhOeu2J+kZtUdgnF823w6Leuq0Zhky2D008nxVTanMQpLPY2JLc+6KO9mQEQXiP7h/Qey6/X6OlspPl7To6XLeTbU/viDbs6W/4u6LtlzDFLVqdZrK1U4r4ghUZYmazj9pMvoywfH8ev2/rkbyLAKANESAAMuZ7g6TocksxlPF6eegovqQduVF/nfTS8+7LV+gDi1dqf99osgV5xh4fyDfFUL23QZvEMzIrb6ViNDjmJjVQAft9Ci2tze3bfuxIcKN0OYKgXUR5e/3w4Jge2H7UyXoPWyb13NM74mQdcTmdg6DNUwwVMUCA2Zq1YcJwM0kxxxP8wqgI+IAAAeBYs2s7DZJ05TW8OspaXTQAknR8wJ0kezJph1Ie15Jlmw7pXV9bHrnzzGfNUlDkecWuP4KgyZwJGZX4rs2HnC2Lu2K22uUhNMltMurLHC7eim03X/r5FifLsU3kaZtsOotrpdM5CEIsreiHmu1cabUXrIp0XXBZVGs6ttAjCJKXo0jbvx0UPT2aC+Mt9GyF4iJAADhGiqH0+di5EaVILo6BDuIDXkhyLCbt4M/rUrLz6LCzNz990KxjL8/rTd0AQZO377I6Lr613F1+XB+v6a0svREEfu3HIEGSoVLkSYotf4tdimKJuvuzaMbY+luyOFydBvJDjSAo9tFm215FfH7iXZ56XMxB4CDFUMHPFbSeqO0OIA0ECADHmKQ4X7mlGIrQBRA1t3E9tjfmUAxJrwV5dgQsum1zbut2zcXbbFlqVqSsjoufP3owk/XAvbaZgyDBbXIicooh32rfPmy7uWwdQZC+jOMD3p2DUdnux5xjrcFySoZfhoNDgeMJvhmfYAQB8keAAMhYEd+AKZK8tm6UdqaLRmmUEQTEEtKTKMWQpR0YZp/l+WzTO1zKb+WOWScXVc6TFNf7rElAo4h3mCKWudjS2eK+9bckChA4TTHk2YZJSdRa3r/tqD5x/QYdGmg8h0BSEy30Rmaow6jg1bW91e3i5Rrkr1maxDBcPEe1yWW5MKLuj1bcfa2UvhXF1ZV3AYB2w7U/uvGJihbfu033bjmspz1pntbt6cu7SLNkn2KIXn8fJHnAsD3ghEmNkefbT63UiK00OR/zzIta/2HZVp58J1WOrW4qJUOHUErSG0Hg1/5ikmL/XXXfdt2z5bB+8ucv14k93c6Xb7uGFC1wE24OgmLVaSbbPml2ry6aItXG5aliHyWSfBmhy9FixxOKobszaJhKiBEE8AEBAsCxZo0o23BnzGaM0Ye+u0q3bjwQ+vt5iPJQRoAAkosUQ44KEkMrTaRle8HUGJNrx1+sEQQF6/SaqVIx+sKtj+mHD+7W0NhE3sVpScU+QsJLcpeM/OZ5wVKVpSFuPbccHNQdjx7U215wVqzf25pDtjfSi7Zbwmzfoh9rtk7bIo7ATjIPStayaju4mNCdOQhQVF0dHSqVy3X/NkaAAB4gxRCQsRYa7ZyJTQcGQwcHpGKkGEr6kPPY/gENRug4I5bgp6TPuowgcKN5iiG/LtrNJkP1q7Th1AZY//fnm/XlO7bq0MCYhsfrP0QhmdSuHZ4dfEnm6pmI+DJHKwVN8/CJ6zfE/q2tE9Y2l4Rnl/am2iFnuu0ZieendGV2eFnbMNmlGCpgvKmltcHlTZLUZckRXMQgKFoPAQLAsWaNG4Y0RnPZnVvyLoJzSRoA92w+rF//v3sclgZxJe04Tv77RD9PpJXyOjd7my3XmtZLvWPN31vMTqTaIl+7ek9+BWkTbRIfSBQcb5QCoJ5H9/db/170tC9hJannsQTz2tj2cys1udtgCoL2SjHkWXWyKo6LEQQuDgXfXv5Ae+iwBAiivpjQyKGBsZa7XiI7pBgCHGueYogLdhTbDg9F+n5e7b1IIwgSFPIzNz7CEERPJD3Wkl4K8ux0aqU8mU33Q64phmav3HbcffqGjdrXN5piidIxVSVjjLYfGc61LO0gtQCBZ82bRCmGIjyoX/fwXuvffdsumFKwHdMOKYYsFSAlTH5cbnnrLEoZTlLM8zjy0JniCIIHtx/V3/9ojXYcGdaT5nfrr3/pPP3eK56ZaJloP4wgABxrGiCggZuy1p2D4NDAmDbus7+piOKwTlIcomcrz2ebVkqnYX/QzPfd33pFs5WniMGBWjyvZyOto9q3N+Vtb+o1E2UEwb7ekdjraSl+7f6mitYcb4dJim1NiyJ26BYpxWd2cxBYyhByGS6KWsDDqaVF3R1Fu35Psc0h+PmbH9XX79mm3ceivyhzsH9UH1i8UjsmX7I5NlzSJ5Zs1NIN+2OXFe2JAAGQMYZ8taYs5iDoG4k/BB/uJT2Tk74BxRwEbtiuyXlP+ltvzUV9KLKZqhND/rPRLps5q0mKJ5rc09tkcxeunoUrb7uPIOD5KVXFSjGUvLS0N5AH23sL9245on//2Ub92pfu0fo9fZGWe8djBzVUZ96uG9bti1pEtDkCBIBjzd7eYQRBunJLMRThu1k/5Ngm8EN8SR8ukqaazPNS0krP6c3eZvOtqkV/Q7SeqTq1Xs3ai2/NG9ubes1ESTHUrLOKjqh0Fekt7SRCBQjSL0ZuWi1A4Nu9vN0mKW614wnFEKZdcmy4pP+5dVOk5f7Tj9fV/bxZCkRgJgIEgGPMQZCvvLZulA6AIk4iCveSHgd0OrnRvHMvo4KEXXcL73aujdlgkuLmoqQYajbawLftkpai3ZMKVtxwx1HRKjWD7RmJ+0N+XJ7btv0Y9hHZxVyuPI77pWj3j7jCBsFuf/RgyiUB6iNAADjW7LJPAzeaomytKOVslo7AzVpqtMnbdVlLM8WQ73MQtBLrCAKT71t+dScpzqEcaXsixVC+5WgXqc1B4N0OTDCCIEIaNdp1+Yo7StK/49UuTHmLVaPZWi3FUJEOsazaOrZtEnZ7uTh3uW4jD1EOu7GJ2SmDgLQRIAAyVsQGbpHklmIogzkIaMv6Jen+sP0+TIdH0To3fGXbjkbGuxEErbjfY4dMW3BbZKFdRhAkmKM4UiC/6Xd92zApyW0EZ8w1F223hClv0S+JtlMpbNv5vS99ui44c6F+84Vnqac7364O39II2WR17FjnIAidYijdcgBpiXLUDY8RIED2uvIuANBySDGUq/wa4xFSDLXO/K5IIPkkxY4K0uZs1+TqJMUZFiYEz4rjVNRzomKkTkZIRdbKx1CtJCmGorTVmn23XbZ3Xny7Rqcl3CTF2W+Mc548X9uPDDtZVsVyLoU9Jz/7m8+b/vfWw0Nas6s3abFic/G2fKtpNmoz3DIYQdDuivqCSJRyD45N6EknzEmxNMBsjCAAHGvWQT02Qe9wK4rSWRtl8kP4K2kwKmkHf94PN7YH+SJp+vJvjtu57hQEHmx259tkcnlRF0vAPZ7UjmnPdkdXR/zHnCgjCDgOq4owgtPF7/LjZ4qh73zwEmfLsqYYKt4OK+AxlgXbSxlZjiBIvgwgqijXhOFxRhAgewQIgIyt3d2n/176WGEj374rwgNq3I5djhi/JD3Wkk9SnGz9SY1HyNHtM3uKoZzPuzpl8+E64LpD1Mz4/2HlHSQrqrS2mm/pNBLEB1SOEMhvOoKA4zRV8VMMFWu/hBtBkH45al1w5kI97UnznS3PdirFeSkh7wFmRTrG0j52KhWjkfGykxEETuYgIELglXa5TUap5uDYRGrlABohxRDgWJgb3P/+fIvOPGme3nfJM9IvUMFFbTDkFyCIkGKoTRpBsEv6gFOkB0+fWfPhmpznIKj3mQdPUa6DQ1NVip5iKP9tUUSpDSBood3hcgRBC20Wq9wSPLbJBg5TzaJfE233tzgjCJKkGXPBmmIou2KEkubk9f95y2P67sqdGhqbUKlsfykjDBejSYp+rqCYohx3w+MECJA9AgSAY2Ev+9c9vMdJgGBgtKSv37NNa3b16vwzF+r9l57t9G2evBWlEzRKKeO+tRK3LZv3G1SoL2kfa96BplZ5tmo+v2iOKYbqrDqP0hhjFNT0tIynlCqPFENZSasjKJXF5qJs6cSa9d0mFW+l7ZKWJB25sTv6CrZf2uE4sl3TW2TQorfSOr4uW7ZVX7lza6jvhj2XXbz9T/MBeYhyng0xggA5IEAAOBb27c77tx1NvK6R8bJ+58r7tWZ3nyTpjscO6Wdr9ulHf/oyPfXkeYmXX0R5deZFueEXMY8qZkszxVCYzpK8334qSvCumebpQTIqSEh5jCAoV4y6OtMLEEzXKWLVeMCPp02mIEhUT+YgiC7JtakjQYQg7lqLttfC3HPzbhckZWsfR0n7NSXvF2SKvj+mJKnG9Q/vdb4eF5uVFEN+aZVnimaiXBOGxpiDANljDgIghL7hkq57eI+uuOtxPbq/P+/iTFu26eB0cGDKnt4R/WTV7pxKlL/cUgxFaNhkXcYg7zHWqKvocxC0yrOVdQ4Ck28nUr2y5bHfZ3bajLkOEEz+/8gphlrlIMwYm625KJ3+zVMMscGb6UwSIIg7gKBgu8XHOQhcr892TQ8zguCpJ/Uc999Ztn+j3q99a5mndeg8un/A+TJdBF5aJXjTrgq79yIUnBRDyAMjCIAm9vaO6D2Xr9DOo8PVD26UPvubz9V7X1o/PVCWN6xPLtlY9/P/WrpJf/H68zIsCaLs+HqdCSu3HdV3VuzQnt4RveLcU/Xnr32Wujs7VK4YzenqmFxFYZtDLSnp/kj6bJJ3Lvq81++KdcI8+TgHQebF0MwXN0sp5XqIWjUe8ONJ69z17ZrgywgCzzaLSuWKvr9yp1ZuP6Zznjxf73rx0/X0U5KnpkxSzST9uL4dd2kJNwdB6sVIlW0EQZjr/Ufe/ByXxYnEmNnHsa3Evu0qH86jsGVwcZwX/VwpIh+OsbxF2QKDjCBADggQoG2Mlsqa29UR+W2SLyzd9ERwYNK/XLteb3neU3RiT/es72d579vXN5rdynJSlLZEpDkIZlTq/seP6P2LV06n7XhoxzH97+2bdWJPlyYqRq+74HT9v996XmG2RbuIsz8qFaOOjuo1KGnnZt4PN61yONonKZbyrGn9OQiyL89EpSKpc/q/05qkOOrDI+na4klrq7XS3oiSzqRIKYYqFaMPXb1KSzcemP7sBw/s0g//5GU659QTki08wWbIJ8VQcfabFO76WLQ6zWS7tTQ7z1513qn65QvPOO6zLN/SrxijjhlrLFKHqA8lDXspzXIEwU9X79Y379uhh3f1SpK+/oEX63XPPn26LY/wrJN2+3AAZoBJiuE7Ugyh5T1+aFC/ddl9uvDfbtYrPvdzfXv59ki//3GddD3litG1q/fU/X6b3N+8lVuKoQjrndk4+NbyHXVzevePTmh4vKwb1u7TX39/ddIiwgO1+z5pn1Lejem81+9Ks8a6b/X0YQSB8zkIptYTsW4xUlJDKc5B4Nm5kkSrjiBYu6fvuOCAJB0cGNM3I7aNXUvS19YuKYZsyhWjNbt69fihoUzX6zogYU0x1GSHXfG7L1ZPd+dxn2WZYbNe0VvlEMsq8BR2PU7mIAixkJ+s2q2//cGa6eCAJP3hNx/Uh3+8tlCBYV+wxaIdu4NMUowcECBASxsen9C7L1+hh3YcU8VIe/tG9a/XbdDP1oafMKmRlQ4mGUbriNJ4ntmpdcO6fU1/8/NHD6pvpBS1WEhRnIZu+bgAQeMlhBnplHt6lRZp6ds6mXOfgyDkZ2mb2THjOsXQ1FuWUTshcj8HCiq9zh6/9keSt3cjzUFQoONw0W2b6n7+jXu3J152kuMq0QiCmNu/OHutqlE1Nx8Y0Cs+93O97cv36pqHij0HmXWS4rJ9j80MDmSt3v3I/sa0X0egD8UJWwYnIwhCNGO+s2JH3c+veWi37tt6OHEZ2o1vx3xSA6Ml/fCBXfrkkg267uE9oV6eiXLsjoyTYgjZI8UQWtqKx4/o0MDYrM+vf3iv3vq8pyZadsMOvBa7+RVNXsOro+z2OJ0JFSPdsmF/5N8hPXEaurU/SdpQzruhXfRUBlOsKYaa/D1tvkxSPDHjSTq1F+ciLpc3+GJiszUVZQTBRJOOy7yv1bVq34T1SZI3vdvlMlC/A9roD7/5oPb3t0bKUdv9Nk7bOch9KuACHZweFDXLFENhjqdVO3sb/u1LP9+iV557auJytBPbFo+8R3M+XvtHS3r/11dqTc099WcX7tOX3/eL03MH1hOl2B41HdBGGEGAlvbpnz1S9/OZw6vjaNTk5Fqer9xSDEX5bsxCxn1rN+/Ho1YVawRBzdNP4hRDyX6eWKs0XK2TFJt8JymuL/sCzXzTzpYGItF6Ii7Wv31TDKnFdzzbH0mK0+xt5VpFGskSJfARVZLN0Jkgx1DcYLVPgZsw6hX30f0Ds+ZJy9JbnpvsZauZbPeWWPedTFMM+RHQj8uPlz7ClcHFZSzpvlm57Wih9q8PijSippmfPLT7uOCAJN268YDu2XLI/sMI1fTjnES7YQQBWprriRTDKNj9zXuutufDu3r1vft3am/fiF5x7qn6w1c+U92d7mKkURo2cQ/LHA5nOFb7AJn07ee8O6Va5VLX7Nz17aElj+LMfNPOdRGmJymOuOQipXbxSWpzEKSz2FxEGkHQbA6CpIVxyNdRN0lSDMXdwH5uicbqlffOx5p0RqXs3S95utPl2eJytuv9Jc88xWk54ij6HAQ+TCAbZj3u2mTZjEJAa/rEko11P190+xa9/oIz6v5NivbsxuGFPBAgQEtL6y1HKdmEakjP1+7aqq/89ouO++yhHUf1O1eu1Eipmsvv7s2H9fDOXl32O78YKtd7GFGOtLgdu+WYM3JmOUlbO4mzG2svSdbUNiEWnnc/j28d53HZHvCMcp6DwJMOh5lvU6cVnIq6WF87O32X1ltpvl0SkpQnyv22WVvTp+3SLB1SEknqmaQtFnu1Hu2XMOrdcx2+5xLZf/zGxTrzpB6ny7ROUmz52/sueUbdz7Ns/hZ9BEEaorYTw3zd1W3fxb6hDRKNre3RKlty5qiCmVqlnmhdpBhCS0szst/oYYbhYPm6cd3+WZMELb53+3RwYMrNG/br8cND7lYcYbfH7VyLmxqg3R9QUhMnQFCzD5Pul7z3a6scVtbTKucIQb37SR6BmVn3UsdFmKpn1GtjqwSpspbeCAK/9keS8rgcQeCTmfOJ+CLJSzd5j6ZrxPX1qd7SOjvyeZQ/48S5+u1Lzna+XFuHq+1vv/78+qmOsnxBxtQ5tYp0j0qjpFEvjWHOZVfnu4vlFGj3eoHtFe2awOZCHggQoKXl8czGzS9/P3/0+Dkmbli7r+73Ll/2uLN1RumIiD+CgIOr6Gr3vX0EQfNl5f3g2SrXOvskxfl2eXozgmDGtcf1pWg6xVDUEQStchBmjK3WXJQ37ZuOIPBoi6fZjEhSzyQphuJeBtLeLyXXozXqLK4rp+HM5zz5hFSWa7umN2oD/9Xrz3U2GjiJuiMIcihHXGm0KSMH/VNYZpJ1NUMbBFFFuQdzeCEPBAjQ0tJMMeRBW7QtxNmD+/tGQ31v+xF3Iwii3MTjziUQewRBvNWhiTidC+XjAgSNv5flW1Rx+dTplYTPcxDUW3MucxDMOFhd7/u4S/P0ZWjvpXVM+/YwmyzFkLsRBL5tFx8lm6Q45u9S3i8lxxNH1bvuJtluSSSaM8LCOklxgx1mG0URZJhkqOgphtIoatT6h3s5Jl5Z0lgOL25FY93mUY+VRCXJR94vdgFhECBAS0s1xVCDRmea1/5KxWh0RqocxOdyX0VZVuwRBCnmDkZ0cXZj7W9sx0GYYyT3dmbe63fE1slsjH/VbMURBE8sN9qC8w6SFVVaW62V9kaUVDzN2pqttF1skpyOSTLlxL0OpH35mJnuMql65c0tQJBSD0KcEQS2eRiyfJmr/iTFyUaK+iJuWdNIG+jTCIIJx0HAVtcqLxbFFTlg1ubbC/lgkmK0tDxGEKTzBobR//18i765fLt6h0v6xWc8Sf/znheksCb/xIm2h/2Fy86lKEuKe1zGDXjxxoI/ysfNQWALEDRfVt4vLrXKUdV0kuIcK1o3xVAOBZp5rXSeWztmiiECBDGltNl8u9ckKU2UN0Ndv0U6Wirr+of36uHdvXrOmQv19heepYU93U7XkYYkWyHRG+l+HXbTxp2PIJit1UYQWOcgaPCnjpy2wUx1r38JR4pmyYfihEsx5GhdDio8PM5Le1H4cIzlqc2rj4IgQICWlmYHWqPmaBoPyN9ZsUNfuHXT9H+v3H5U77l8ufP15KF3eFxrdvfp2Wcs1Jkn9ThZZtj97jRAEGFZcY/LuJ0QNEjSEWe7HjcHgfXN9QKkGGqRA8u2rasjCPJMMeTHRp6ZQsX1vp+qZ9TFMrw/Hl+Oq7QlOU7DpvQzxjQ9DqOUY7RU1ge/+aDu2XJ4+rMfPbRb3/7DS3TSPP+DBHElmoMg5vGc9lmQyQiCnPKdphUgsJ0rjV6usW2DLDdPvZcNrBlVPLsMp3FfcD2CYF/fiD55/cYkRapZV/JlDI1PJF9IG3GYYaiQIvcRtcNGgXcIEKClJe08sF3Is2x0Xr9m76zPdh0dya4AKfnmfdv1iSUbphtpf/CKZ+pf3/qcxJONhb0Bu+xbirKouCMB4s5BgHTEGt1S8xPbcRBmV+f9tm7eAQpXmm1r/0YQZF+O2SmG0ikEKYaywdwNzYVtP4b7Wvjj9OePHjwuOCBJa3f3acmavfqdS88OvZw8JDkdEw0giLnetO+h7kcQzC5vV2deAYJ0lmu7pjdqA9tGUWQ5B0G9a4btEPPu7pVCgaI+tti+3jdS0nsvX6HtR4YTlemJdSWv8NAYIwiiyPu5JW8uzwcgLcxBgJaWtPPA9vMsG50PbD+W2bqysn5Pnz5+/YbjtvHie7dpydp9mZXBZUMlyqLirrcct1eHFoY3wqYYCnOM5L1b816/K9b9INMWb/k1MzvFkNvlx08x5LYc7SKtzebbuZKkpmED8q5HsVx59+N1P//49Rucrsc3Sd5Ij7sL0j5cnU9SXKfAab3J30weIwjGJ+p3xnbbJiHIUL0muu1+XaQAd+xROpGD/o3/tmzTIWfBAcnRCIIxRhBEUZwjPh3tMnoTxebHHRVISdLGl+33Decg4Nofyvcf2Fn3828v35542WH3gdvn+vALi9uhMBFzkmIaJOlInGLINpQ+xMLzfrhslTeBmqUA8O38yWOzz0ztkN6xF225pBiKJ61z17dzJYmwx1aY70XZ3Kt29iYqT77ilzHJG+m+3oucpxiq81lXbpMUZ7/e0VL97TlvTmfD3+SeYqhAOVXSKE7kN6YtG+xffrouYWmO56IdM0yKoUisI2pSmNDaN5EzDBWwjig+AgRoaYlTDFn+1niS4vwv5nM8eZvG5jsr6gcIZo6WGBiN3vgKuw9cPnBHuYdnPQcB0hGn3XZ8gCDZCIK8D4dWabc2SwGQb4qhiB0OKZl5rPnyBnreQbKi8mX/pS3ZHAThOnfDpAz0bLN4KdkcBDF/l/KOcT2CoF6B85qgN63V2trvI6X6IwjmdTcOEGSpboohy/d9eF6slcr54DClSn+M50HrupyMICDFUCR+HfKpsF0bmYIAReB/LyKQQNIONHvnQz6N8jC6c8pJ6tJEuaIPX7NGe3qjz7UQfgSBwwBBhO82mmitmbhzEPjWadPOandh0hEE7Nds5LmZD/SPzep0yKNTYWagwvVbTVPLi3qJI5d+PGldO3y7JiUpTjnkiL0w32uXtwDzqmb89aZb4LFWHkGQQ2qjkXG/AwT1ninsqSTTLE10PkxSnGXzxsWqmKQ4Gt+CYmmwzYnSDvVH8REgACyscxB4nGKou6v4p/b/3r5ZP3xwd6zfht0FLvdVtBEE8VbM27J+idPQCzsHQZh9nXenU6scjtZqGJPrdv72ih160adv1VX3bqstUuZmjSBwXIbpOQginlNcE+NKK8VQ6wg9BwHHYO7iXqPT3nXOUwzVKW9ucxCkFJhotE+MMY1HEFhTDOU8SbHl+3mPAo0i7rkS9R6d6T2dEQSZG7TM2VCg08HKdk2OnnIrYWGAGLryLgDgM/skxQ1+k0pJounM6YHBpZs37I/927ANTLcjCMIvK26HQuw5CHw4KFtRqimGoi0rD63yJox9kuL8r+m9wyV9YslGnfWk+XrjhWfkUp6Zx5rrjo2pxUU9pOmcjaddNluS4F7YlH5hUhFFKUV3Z6BSzHt93pKUOsn9zNet5Xo/1k05l1Pt0wpMbNjbr/+85VGNT1T0yxedqZecc4ok+2iMHssIgiyfhupeMyy7x7c2VBr3haiLzDY+YF9ZmPsHcxCEM1oq6+9/tEY3rN2Xd1FSZx1B0C6NLxRa8V8zBlIUb5Li/C/++ZcguU0HBmP/NuwucNm5FGVRcVcbdw6CVjgeWkXtvrf1K4UbQeCgQAnkvf4sGONPPW9aP/lglUN5Zl4r0+rYiPy2YZFewfRIWlvNh/aPK2FHEIRJcxVls/R0Ne7sbKXtO1OSUznuZkl7a2YxSXFeh0RamY0Gxyb05Tu26oq7t+ldX1uuHz24S1Lj9EKSPymG6u0L273St9M5jeJEvadnGTRpds0JU3TbG/F4wieXbGyL4IBkf0kzcsAsWVGAWAgQABa2hk1ew3rDaOWHSJecphiK8N24Hf1hJ01ENuLsxdp9n3wEQYwCONQqV5miXC5/smqPJD/mIHA+gsAc///DyvscKKrU5iBIZ7GxJSmPyxEEUfRY0qWMlvxuAyRpeyYZQRD3t0WbpLhuB3RuAYL0n4GMkT5706OqVBqnF5KapRhKo2T11XvpyLZ/vLtepnAw+XxPd1HfYVIMNVWpGP1kVfOUwR5PVxGJLf2aiXhLoD8HeSBAAFjYGio+pxhq906TL962KdT3nKYYirCsuOuNPYKABkYq4mzWsCmGwhwjuacYaoPjysc65jIHwYyHGueTFMe8c8a9Jra71IJMnu2OJIdp2I7/cCMIwhfE9jb0wFgp9HKKJsm+8uywm5bJCAKnawgvq5ekjg6Na8W2I9YAwXxbgCCNQjVQdw4CW4DAwX20UslmnqS4a4jc6ZtpiqFkf5ekQVIMNdU3UnI+YbvPmKQYRcccBIBNnOs41/7clcpGj+7v1wVnnmj9Xl4drHHTYoRNeTATh2Q64jT0jg8QhPteI3l3jrbKcWXbjz6mAs+jSDOPx7QunZHTEXgYwCmC9EYQtM7+CPu2vus5CHq6G7+7NTRWlhZGWFjGkuz9RHMQxB1BkPLxOu58BEG9Duh8zrm0UgzVs693VCf2dDf8u20OgizVO4ZteyfJriuVK/r3n23Ujev2KQgCveW5T9HH3vIcdXfGf/czjUMp+nmd3fHcrGhhzq1RS+ortCenkxQnLAsQByMIAAv7HASkGEqLi/J/a/mOpt9xmRkgSpHj9uuSb7v4jpuDIGGKobwnaC34ZWZa2m/4uZZHmWZeelx3rJFi6AlDYxOp7+MW3Gx1Jd2Oa3b1Nv1OqA6wCMWwdXYOjvr9tmqSzZ3HCxtpr9L5CIJ6KYacriG8LNOsGlUnOW3ENuomy2e1+iMIbO28+HvvYz9dp28t36HDg+M6NDCmq+7brn+7bkPs5aUlcnigYCmG8m6Ht5JWecHAFqPz8ZkCmIkAAWARa5LiCMtfv6cvlU7fot9/XGySMPkOnaYYirDn4zYoY48gKPjx4Ks427X2J7bdGWbR+QeM8l6/G7b9mHcap3ryKNGsOQgcjxY3M/5/+N/5t3/i2nZ4SL/xlXt18Sdu0Uv+43ZdftfW1NaV1kOqh6dLItc81LwdEfe+3IhtkuJWnhAzyTUl9hwE8VcZivMRBHVKnNscBBkOIaiYxnMQdHYE6u5sXJYsX+Wq1yaz7Z64l46xibKWrJk94euSNXsTBaVSGUEQsZJZtrlcpBjKeyQv/ONykuIWauKiQAgQABaxMgxFaNy89Uv36K1fukdHh8ZjrMlSBqdLy56LSf+CEI8FbucgCP/d2vVGOV5oiPol3vWh9t+Nl1CMOQhyXb0ztk5mH+uYR5lmBjVdF+F/b9+sj/10nQ70j0b6nY/7J47RUlnvuXy5Vu/slTHS4cExfebGR/WjB3flXbRIfNsdScvz7RXNRyKGuS+72i5DngcIktQzSdDK1+tAKYMRBHmddVmmGJKRRhqkcpnX3enNiO6sJiles6uvbsBkcGxCa3b3xlxqEzEL6/PEs81TDCVfBpIp4hv3tuBp5DSa3rWq0A4IEAAWtgt5o+G1US/lG/f161+vXR/xV3Z5dxwm5frt1IbrcbiZIgUIalYc5Xfx31Qs9vHQSowx2ri3X1++Y4u+e//Oht8LNweBy5JFt+nAYEu80WofQZBdOcLKo0gzt0Ma95ir79+pP/n2Q5F+4+HuieWB7Ud1oH9s1ufXr9mbyvpSm4OgVXZIBKECBFFeBLB81/VoBZ8kCy7E/V2629P9CII6n+U1giDTFEONRxA0m38gy9jBF5ZumvVZGimGbL8bCzl3St3lpnBHjbrMbCcpTr6yoj9vZyHsOejzhNYz2UbG2CYpbplGK1oakxQDFrabT6PLf5wb1g3r9ul/K6bhTWVed2fDxnErcjKCIESDxOXDYZQl1bYrovwu7ggC2q/piHP8fHflTl33cPNOvzCnQN4PJh/67ip1dQT6nUvP1r+99cJMUw5kJe9tXFcuubqPX6ctH3SWivh2WT3/fevsjiVJunvz4VTWl9Zx7d3bbhkUx/XIPlsQwMvrUY0k52OiSYpj/zJd7icprvOZ0zWEl+Xt3pjG95x5c5q965hdQR/e1auD/aM6/cSe6c/S2D9dliTnpQTPT+lMUhyxDO6L0FCzTRXmfsbI7nTZR+Dkt+1tgXynkxRzeCEHjCAALOLNQRDvam7LGxm1IV70G0pWDS63IwjipQqK8lDsInACd+KcZ2GCA9VlF+PBZKJidNV92/XN5dvzLkpstq3oYwd0PiMIqms1xmjRbZu9nAyxyLI+lz08rFORRTVdpxgqW+7zrTyCIEnVYs9BkPLmdD5JcYIj+ikn9ejk+d3OypLlCwFG0rAlxZBPvrvy+JGhacxxNMcSIJgo+xVoi9qGyrLN1WxNYYrSytdkH/i6dW33fdsIAp9H1ABTCBAAFtYRBI1SDMW8mNsailEX6ftbZs246CwJ8+iS1xwEtQ3gaKmJIhSodn3xfoYaj+7v19//cI1+7Uv36OPXrdfhwdnpQFwKs898Os9/8ECxcqUfp2gphnIo09S15/o1e/U/t9V/2z0PHp0CiWSdQzutzdYq+yOKcCmGwi/P1sGXdGJ6HwOeUxKVzdNqlbIYQRCy7q8+7zSnaYEyTTFkpL29I3X/trDHHvTIenqCh3YcO+6/05jjqMsyKbPrY25K3OCUz29Mu7geprW921H965ufF3drgCAINDZR1n1bD+vGdft0rGaeSU+rAxyHFEOAhXUEQYPPY+dCjfez1JeVh8xGEDhcT5TGc+3QxCi/YwRBPrYeGtR7Ll+h3uGSJGndnj4tf/yIFr3nhamtswiTFNd6dP9A3kWIrXCTFOdwhZ861n7o2aS53qW0iSnr7FxpPXT7tjey6FwIN4IgfDls1/WkbSOf33ZNUrS414G0rx+uRxDUE7YOQeA22U6mKYZktO3wUN2/nf3k+dbfZp34cGbgJI1JirtTChCkcb2MPILAslWCwL82WRbneDvzbHdPs6UYOjo8rrf+7z3afHBQktTT3aHFH3iJXn7uqUxSjEJgBAFgYb2OO251WkcQRL0/5Hg/GS2VdffmQ1qyZm/st6yzeoh12dCMNBKg5rtxfxeFbw3qovnxQ7ungwNTNh0Y1N2bD6W2zjD72ocUQ60gjRQAacqjSFPrvHfLkexXbuHh7okly7dxpRSbCK2yQyade/oCSdV2zX1bD2vltqOzOuBsHQVx2No/iQMECdKPhJFkUyS51vraNio53t71OlvD1sH1KKVMUwwZ6fFD9QMEzzptQWblCGPmZrHtnjTaF96lGIr4fdt7UK6PuGabP8zuIUCQLl+bFGXLeXZoYGw6OCBJo6WK/vQ7D2miXPG2PkAtRhAAFvYRBI1SDMV8k8nSxoicsy6nCMHB/lG954oV0w35nu4OXfm7L9Erzzs10nKcpBgK8TDkNMVQhO/WjlzIorHAGwjJfOXOrXU//8yNj6a2zjDXEQaUuGHb0j4Ob86jSK47QV3xtFiRZT69d0rbzbfdkbQ8xhhtOTio912xQgcHqi88PP2UefreH12qpz1p/uR3wiwn/Dpt7Z+k52GSCUzTlmREZ+yRuykfsK6D+EkmKXYdg8wyqDlRrmjn0eG6f/uFU0+w/jbrFEOzRxC4H6Fo+12yEQSxf9qQyzemO4LA6XNbs2WFeXYaI0CQmzzbf1FfZOwfndDdmw9Pv3QQVqu0cVEsjCAALOxzEDT4Tcx1uRxBkNcN5ZM/23jcWz6jpYo+9N1VmojYYC3mJMVR1hsvxRDaR5hj08e321uNj4M08igSx1q6sh9B4M/+3H1sWI8fGkwpvUWy35crRn/5vdXTwQFJ2nV0RP/wozXT/x3m3IhSDGuAwPcRBAmOq2RTEPhzPNdyHVitt7Sw543rF/6zTDHUO1Jq2CH39FOapRjK9tqaxcgK2x4vpdRoySoIF+e5Oy4XW4o5CJpLcg76em2P0yZe/viRGAGzcDYdKG6aV/iHEQSARZZzENgeJCIP0cypM+eGtftmfdY3UtJdmw/p9RecEXo5Wb2t6nI9keYgqGlPZtEBSd9e8YQ5h319q7tobB0sPnaM5zGqwcdAieTfG+txZf2Wa1qHUJTl9g2X9MFvPaAHth+TJJ1/xgJ98w9eqqecNC+dwsWw/Uj9t5ZXPH5UfSMlnTSvO/ExuOPIkO7ZclhPPmGOXn7uqakGCHy8nk1JUjYf5v6qu3zXAYIEiwsUOL3OzAxqnr5w7nGBNJdsx/3cLr/edZyVYsiyz2KPOLf8LOoLWTOWnOC39bnsEK12NDt8bms2giBMiiECBKny9ZYVNxVyWvX5/kq/5gdDsREgACxs1//GIwjiXf2tjaiob2DEKkF6lm89Ei1AkNkcBC4bmvHWm0Vnn2/HA5oLc1i4nGS7ndm2Ipu4ysdUS5K/5Yoq8wBBWsuNsD/+6cdrp4MDUnVelz/9zipd96FXuCtPine/PcdGdNK87nAbs8F3bli7T3/1/dXTbZ5nnDJf+/pGGy7G1jZavvWIrrpvm44Nl3TJM0/RX7z+XM3t6jy+GCmfLsnmIEiy3ridNeluEOcphuocSGGr0OF4gteZAYJ/feuF+svvrXa3ghrWl7WaXDxzTzFkuUDEnjvDssxEcxCkcDpEH0Fg29cJCzNzXQn/LjEHQRhh78NFas/Fff6KHDAL+fXF926LURqgPgIEgJVtBEGjOQjircllaljf7rFRX7BIexj8FKcphiJ8t/bNb892FTzBCILspPGGX5ryeAvY12CUn6WKzpZiqFIxztNWpHUI7T42om+v2KFA0usuOF1nnVx/NMBoqaybN+yf9fmaXb3a2zuipzb4nU+mdlmYzo963xktlfX3P3r4uE7kRnnWpzQ695dvPaLfXXz/9KS4K7cd1T1bDuu7H7xU8+Y8ESRIO11DXpMUx50MOO3rh+vLZv05CMKtxPkkxTOW90vPOV0vOvtJemjHsQa/iC/Oy1pTsr5dzrxW29sX8dZh+12SN9rT2FRR61gbNJ7JeYDAQYVJMZQuD5vgkuKNIIg3/sXTDYCW5te4PMAz8UYQxF1X41/mnYNvaGxCN6zdpy/dvlkrHj8SudMs6oOfiw6wMO1Ipx1tEZZVe1zZJqd2xcdOTtiFG0GQfjnagX0EgX/nTh5F8jQ+0DLPTraOjzQCgWm1Ka68Z5v+9dr1+pdr1+uX/3uZHtpxtO73bG/J37/tiLPypHmuTO2zMNfheuW4ef1+jZaiXcQbdUosvnfbrE7y1Tt79d+3PjajIJFWl6n4naVGn/rZRreFccR1YLXe0sJutyBw28E6M2Y5f06XvvkHL3W3ghq27disSlk/P82epLjxd+OWzZ5iKJ36pvFs28g9mw/HXFs0zVMMNS973OBkO2nJ+WViPoB5+EgBzEKAALDIdA4CSwM4zxtK33BJ771ihT703VX6wq2b9J7LV+g/bngkUqfzRMQbadzcflE5jQ9E+G7tw46vjR/kK8xDlY+d163Gx02cR5F8PdZa5fppG0GQRsq9LHbn0HhZ//yT9XX/ZuvUy+u+HNXUKNK464gTCGl0LGzc21/38yvuzjbtQJLzMe41ZtvhodjrTPvy4fy6WWd5oQMEjifrrTeqacHcdBIT2LZjswnes751zSyNbfXx585o/MOoz1vHLTeFbRXnHLjmofr51Jvt66ialaw1Whf5C7sdo27vPPdP3IEjUV/Y87TpjRZHgACwsLWzlm06pJHxcp2/uH8jJM/7w1X3bdfa3X3HfXblPdv0yL6B4z6z3fSi3kjjRuaP4/Gkj7UNZm7+qCdUiiFvX+suGNu1y8MTNI8RQZ++4RFtPTSY+Xqb8XD3xGLr+EgjYJ7VZnvswID29I7M+tyaUqkg+3Q6xVCIg7DeN+I0cxq9SV1vG9f7jc+bNm5nepIgSNoBRtcvF9cdQRDyt67Ts7jurLVJlGLIbVGamj1Jse3lL/fPi8lSDPlxr7n24b11P3d9xLVK+6GV+bqPYgXiAr/vwcAUrwIEQRB0BkHwvCAI/jAIgsuCIHgwCILxIAjM5P/ujLi8JwVB8M4gCL4SBMF9QRAcnFxefxAEW4Mg+H4QBL8dBEF3SvUxEf83kUY5EJ+tsbRmd5/e8dX7dGxo/PjfxB1B4LgR6aoT6X9u21T38yvveXzG+hovI+ow6yKmdIyyvWs7drN4M9fXBhYaC7PPfOy8LiLbVvQxCJNXid711eU5rbkx//ZOPNYUQ2mkMMjw2nGgf3Y6IVt9nQbA0kwxFGEVruoUJ1hU+4tWnKQ4SeAy/e3hOMVQncWFXYfjaUycL8/GPprbrxEEs+YgsHw3jaL5N0mxu4W6nkej2fMXTWw3wh4D9edY8VPcZ4PIk3bHWguQjDcBgiAI3i6pX9IaSVdK+lNJL5IUufM+CIIFQRAskbRf0g8l/Zmkl0k6bXJ5CyX9gqR3S/qOpE1BELw6eS3QappdyDfs7dei2zc7WZc1xVCM5aXdsLll/fETDFo72SIWJskQ2bxESjFU82Vu/skYY7Tl4IBuXr9fhwbG8i6OM+HmIODoccGaz9fHbZxTkY7MCIb7oFUe4O0jCNzfD7PcbFG7dIqyS5OOIIjztm6cFwpqy+d7Sq44nYkZDxaNxHWAud7+Cz+CIN1JitNknYOgaTGyPeZnbRfb6PC4KYZsbZaU3rBKY7RDVJlPUuz35bIt+DqHXtxre9R7uK/1R2tLJ1lgPCdLmu9oWQskvXXGZwckPahq0KBb0gskPW/yb+dIuj0Igt8wxvzMURlm+nKI79TLV4MchbmQX3Xfdn3i1y+a/u+4l3Lnbxo5XdpsM++N9hRD0UpTwPiA1ymGfO8UiGuiXNHf/OBh/WztvunP/uM3LtZvX3J2jqVyI9wcBBkUpA3Yzo9U3t5OyL8S5adVrm22t3HTGMWSZXAxcsek0wEEadZzcg6CFDr5GolzLGR5hiRdV8VInRn2+Mct75I1e3Xdw3s0NlHRr1x8pt730mfUPc5djxCtu7iQq6gWz93GrTcHQVoSpRjKegTBrPhA4wLEPT5syxz3bASBy1uNz8FANJbkEPC1hRfnXhwoaJmXWtDafAoQTDkg6YGa/71J0l/HXNYxSd+S9A1jzJqZfwyC4JWTf3+mqtvi6iAIzjfGHIi5voaMMX/heplw49jQuG7esF/bjwzpkmeeotc9+/Tphn6cC3ncjn57iqHoy6sYo84Um1MzG6gu03S0/giC2gBB+q2FVm2QXH3/zuOCA5L0sZ+u1yXPfLLOPX1BTqVygzkIsmPb1CUPr0W8UdSKGt+rSwWeg0CK36nTN1LS8q2HVSobveLcU3XKCXOcliup6REEIb7rKnVCrACBqf9vH1WvbdGOmCRvFcfZHt9ZsUP/cu0Tk2/fvfmw9vWO6h/e9OxZ33V9+6i3+8MGwZxPUpxhb63t+ahZADLrQ75zZooh2wiCmOtIawRBGgFVl0Ey16NgmrWlWuUFhKKoO0LK012Q2QiCWGsBkvEpQHCzpLONMTtrPwyC4JIYyxqX9ClJXzDG9Df6kjHmniAIXq9qWqMTJ//3N5I+GmOdKKCD/aN6zxUr9PihIUnS15Y9rt97+Tn6+K9dqCAI4g3njlkW9w8S6d5WZo8gaPzdqCmGXHR8Zv2mSdw5CLj5x/e1ZVvrfv6DB3bqY2+5MOPSuBXmFMhi/op2lySfb1r8K1F+WuUUsI4gSOEYzHK7RR9AYLT5wIDee8X9OjxYTRu3sKdL3/7DS/SCp58cbVkp1nN6DgLvRxBk2N5IuII4Tb8kHd9xOgAvv+vxWZ99495t+qtfOk9zuo7P3Ot8BEGCDjT3cxBk18q2ta+blSLrgPrMTmzb2mNfOyx/S5IWMZ05CNwty/Ux3KxordK+yFvY7Rh5e+e4f2KNIGAIDArCmzkIjDH7ZwYHEizrqDHm47bgQM13t0v6as1Hb3FRBhTD1+/ZNh0cmHLVfdu1+WB10rM47ay4DYpGDxI+5H2sv4KZ/2kZRht5kuLWbpXV7hsmKY5vb9/syS+l6jncCpqd+61+nmTFGtz0cBu36vkcR6tsitaegyBa6hVjpI/8ZN10cECSBkYn9Hc/eDjyutOs51RHYBppQhqJMzH98SMI/D5jfA967+8b1c6jw7M+Hxova9mmQ7M+j7O/rBKMRHHdOZVpiiHLJbBZoCLrI2pWiiHrCAL3pRtPaw6CuL/zeASB79cbyNtGXpxAXKDo7XcOUeTBmwBBzu6t+fc5eRUC2ftanTeBpCfeEIrTsInbGGocIIi1uNRvKjPL67KT7fBg8skwn0gTlc3dNcpqjhtBwM3fuVbZps3q4WHfdSHZ38bzMMWQr09MeWiRk93W75FGkCrLjuJ6dbOt/sjQuB7acWzW548fHtKWgwMOS5bM9AiCkN+ftc1j7IKlG5xnQHUq6bUpzmGZZYqhkqXztW+kNOsz16duvcWFH0FQ3BRDto5c3+Yg6Jw1gsAeDI3Ddv0uTfjVZvH5Dt1s+/tc9iIJe1+oe33zdC/EDf6SYghFQICgqvb868ytFHAqySR89245LCnehTnuWht1AsRdXvophsIvP2oHxz//dF3U4jTUrJi//42V+v7KnYk7TKI0Yo6bgyDRWsNptwZGq9S32TnG209u2M59L1MM+Vek3LTKprCPIGiVWj7Bdu060F9/ZJgkbT4wGGk9aQZCppYcdh0O4gPa0zuiK++u/2JLmPX6fu3I+p4WdW22zuh6x4HrycDrrSP8HARuRxFkmWLIOgdBk99mfcjPSjFkG0EQ43i/cd0+/cZX7mv4d99SDLk8p7NPMeT5BbMoEmxGX3dB3NSPnlYHOI5PcxDk6bk1/96VxgqCIHi1pJdKOkNSWdJhVec+uM8YM2T7LeJJMrR3qkETq3Efc7Wu+wDSftCauXSXcxBk6Y7HDumOxw5pb9+o/u6N58deTpQq1u4b1w+Q9dDILaaJilGXJWTtY/qbVuNj5yyn8xNaZVuEGUFQqRh9+Y4tumHdPnV2BPq15z9Vf/LqX4iVdiHL7VavI9F2WhVln0a9r85uM8Wr6P/cukm/+7JzZuW7b7ze7DZo0n0Xp92aZV5nW6d4vaI7n4MgweJcp2fJcgSBtd5NRxBke0GZuZlta49atFU7j+kvv7fa+h3bKJdm0pmk2OXSXE9S3OTvTteGOHzdB5mNIChKgwgtpe0DBEEQdEh6f81Ht6W0qmUNPh8OgmCxpH83xhxMad1tKUnn2dRPwy7CGPNESpvY62wwgiD2TShmQUKa/TZc4xXm0cc21UgPu+rF92zTh173LM219chaRKniA9uPaeW2o3rpM0+JtS7YtUqDqukIAg87r4uoaHMQ4Amtcq6HGUHw6Rse0eJ7t01/vmFvvwZGS/rHN10QeX1ZdhrXTzFkay9Y3haOPOFxeqaWHbcTOO6lZWi8rHu2HNLrLzgj1PezHEGQdPFZT1IcdYPYztN6x4Hr+0e9pYWtgvM5CDKMzNjOsSzLEcas8tjmW4m47JvX7296TCUJENikkQ4pKte7ulXaD74Lu5Xr7Q5f91HcSYo9rQ5wHFIMSX8uaerpqiLpsozXP1/SX0h6OAiCSzNed0tL8ubO1A0p7EN05bgHsJgPi45TDGV9U7XdK/PsyAy7HQbHJrTssdmTzIVfT7Tvv+try7Xots2ZNBbarT3SKvUtNRnCSoqh9KX1sJ2Erw9MeWiVLWF7G7dcqahUrugHD+yc9bfvrdwV6/6a9yFkHUHgcD1p1nNq2WHX4fK8PdA/1vxLU+t1ttb0ZX1ti7o2WwdlvWPa+RzF9dYR8rfu5yDIrmP+uof3Nvxb0xRDGZ8AM8tjW33UNtzlDebNq5UkLWIa28rlMrNPMeR2fXArz/kJ4j9/cVDBf20dIAiC4CJJn6356OvGmA0OVzEm6YeSfk/SxZJOlDRH0pmS3irpGj1xpXiKpBuCIIif42SGnp4eLViwQJJULpfV29s73fju7+/X+Hh1ItiRkRENDVWzHE1MTKi3t3d6GX19fSqVqhNvDQ8Pa3h4WJJUKpXU19c3/b3e3l5NTExIkoaGhjQyMiJJGh8fV39/v6Rqw7+3t1flclmSNDg4qNHRaq7ZsbExDQxUJ5+rVCrq7e1VZXJyyIGBAY2NVR+GRkdHNTg4GKpO/QPV73WqogXBEw9TJwRj6lS1DHNV0lyVJr9X1gmT3ytXzHF16lFJc1T9d5fKmq+pSXSNFgRjGh0vTdepa/J73Spr3uT3gsnvBZO7e57G1T1Zhjma0DyVVDambp3Gxsanv9czXdbmdTLGzX6aV1P3mXU6bj/198+qkyR1qKKO8eG6+ylqnWbuJ0laEIypU5XZ+8mU1d/fr6lQz4JgTB2T32tUp0P9o7GPvUo5ep2+ctsG7T42HL5OdY69ZnUKZDQ+PJD4fPLxGmE7n1zWKfKxF3M/zbxGjIyMWvdT2RjN17i6auqe2vkUsk5pXMvTPvaqDxn161SumEjX8kueNl9X/O6L9Xe/9KzJ7V/9nsv9ZBzsp6j3J6l6LU+rTopZp4nRkVTbEVld9zpLIw330+DAgB7YdlTD4xOz9tPA0Ig27uuPXCeT4X4KgtnX8qHB6n6qd+yZiep66x17UfdTmsfeyHC1TsaEO5+Mjj/2jIl/PnVNlqH22GtUJ2PM9LFnZKx1StouV6Wc6BpRMdHPpyBI0jYajHSNCCx1mpgozbpGmEp1va6OPVOZ3TaqlMZCXcvNxLjmmur3XFzLK6XRhvspy/vT8PDQrP0kPXGNMDKZ3p8qY0PHtWEnJq9T9epkIt6fwuynijGx709jY6MN91Ng4l0jprZ/1HZEvXtu52QZXJ1PqnM+1dapPHk9y7tt5GMfS5S2kTHh99PMOvX19Ta9Rvhep9pjr1yJdt0Le42Icz4VtX/Px/6ItOqUl7YNEARBcLKkayUtmPxos6S/c7yas4wx7zbGfNMYs8EYM2CMKRljDhhjbjDGvFPSr0uampHtFElfcbXySy+9VO94xzskSYcOHdKiRYumD9rFixdr48aNkqRly5ZpyZIlkqTdu3dr0aJF08u47LLLtHXrVknS0qVLtXTpUknS1q1bddllTwy2WLRokXbv3i1JWrJkiZYtq2ZU2rhxoxYvXiypekItWrRIhw5V39K+5pprtGLFCknS6tWrdfXVV0uqnjSLFi2aPkmvvvpqrV69WpK0YsUKXXPNNaHqdOvNN0qSTusY1Dt7npj09m1zN+qsjuqyX9K9Wy/prpb7rI5+vW1u9fcVU61T76H9kqSXz9mhF3RX32A5p/OY3jz3UUnSHJX1zp51Onjw4HSdzg+qvzmv87DeOHezJOmEYFzv7FmnE4LqxeCNczfrvM7qRMgXdh3Qa+ZslTH16/TII9UyvaB7r14+Z0foOlWMcbKfXjNnqy7sOlC3TrX76afX/GBWnSTp5GBUzzp0V939FLVOM/eTJL2zZ51O6xictZ+eqiNavHixjHliP50cjFrrNDw0EPvYGz24M1adrn14T+g61Tv2mtXphGBcW+/4UeLzycdrRKPz6dXdW53WKeqxF3c/zbxGrFv3sHU/VSrSm+c+qnM6j0lK93wKW6c0ruVpH3u2a0SpYkJfy1950jH96oIdeuOFZ6gy0q939qzTnMmGusv9ZEz6x16ja3ladZLi1enw+rtSbUdkdd078fFbG+6nB3++RGPlSsP9NF6uRK5TuWIy20+BglnX8rtu+qmk+sde57Htkuofe+XSeKT9lOaxd8/SG7RixQoZhT+f7r73vun91DEW/xoxcqRavtpjr1GdjJ449oyx1ylpu3xueSjRNaJiTKzzKe51b889P458jWhUp9HeQ7OuESdNHJXk7tgzI/2z9lP/ni2hjr2xvY/pF8uPSXJzLd+3cWXD/ZTl/emWn11Xdz9NXSOMyfb+ZNbfeFwbtn/HhoZ10ni1YyrpsVdbJ6P496fHVt/fcD/1lIem6xTlGvHd+3fGakfUu+eepl5n++mdPeu0UCPWOg0ODHjRNvKxjyVq2yjcfjKz6vTtK7/a8Brxuq5NudXJhK7TE8deoECl8fFI172u8mioOsU5n4rav+djf0RadcpL4PtQ9SAIPiHp45P/ucwY81oHy+yRdIukV09+1C/pVcaYtUmXHbM8fyTp8pqPXmyMeSjB8i6StL6np0ddXV1asWKFLrjgAg0MDOikk05SEATq7+9XT0+P5syZo5GREVUqFZ1wwgmamJjQ4OCgTj75ZEnVaNz8+fPV3d09HYmbP3++SqWShoeHddJJJ0mqRuMWLFigrq4uDQ0NqaOjQ/PmzdP4+LhGR0d14oknTkaC+7Rw4UJ1dnZW37bv6lJPT4/GxsY0Pj6uhQsXqlKpqL+/XyeeeKI6Ojo0MDCgOXPmaO7cuRodHdXExIQWLFigcrlsrdOBvmG99osr1KmK5gUlDZq5kqoR+1HTpa2f+3U9+yPXSpLG1K1OldUTTGjIzNWJPV26628u0ap9I/qDb65Sj0qqKNC4utSlsuaorGHNUfUthHHd9c9v1ikLezQ4OKiXff4ODZQ61K2yulTWiOYokNEJwbiGzBwZBZqncU2oUyV1ao4m1Cmjr/3BK/SKZ50yq05BV7ee+6mfa44m1CGjUXU3rFNZndNvINzzsV/VyT0diffTcz5yrcqTdZ9Zp9UfeeX0ftpz8Khe+9/3HFenEXWrQxW99Gnz9b0Pvf64/XT+v90auU4z95NUjdiPmG6V1XHcfnryvA7d8bevUM/8BTr/X27UgmBcw6ZbFXVUR2zUqdM/vel8vfeFp8U69r61co/+67bHI9fp5BMX6HD/cKg61Tv2mtUpkNGnfvWZ+u1XPSfR+eTjNeKFn7un4fn0yOfe7qxOL/zU0kjHXtz9NPMacdPfvk7nnHFyw/107sdu0tzKmMbVqYnJuqd1PoWp06bPvS2Va3nax95vXrlaWw4O1K3T+Wedosf2HAt1Lb/gtLm65k8u1YIFC/R/tz+mr962QYNmjqRA8zXuZD9t+Oxv6qX/cZuGB/tTPfZmnk9T1/L5Qcl5nZIcex99wzn6wCuflVo7Iqvr3t995z5dt+Fo3f305fc8T3Pmzdfvf2Nl3f30/T97lS46Y16kOi1esVdfvPXRTPbTjX/zGj1tQcdx1/K1Ow7rnYsfrnvs/foLn6EfrN5f99j7z/ddql997lND76eLPvqT1I69a//4RbrgqSfr+vWH9LFrVjc9n848ZYEOHB3QuafO0z+/7Rf1vZXbtWz9zljn0+ff9RK99YVPnz72LvzUHQ3rtOrjv6Kuyrg6Ojq0f6iiN/7X7Q3rtP5fXpOoXf6bX75bm3Yfin2NWP6xX9aCzkqk8+mPv7tWyzcfiHXd+9gbztYfvP6i0NeIgwNjet1nbqpbp0+89QK9/eInH3eN+I2vPaDHj445O/beccl5+sTbn3tc2+gbd23S/7txQ9Nr+d//0jP1g/u3a/egcXIt/5/ffI7edPGZs/bTOR+5IfW2Ue396c6/e7WeevqTGl73PnDVKj30+IHM7k8ve9o8/f1bnq8XPOMUjY4M6wcP7tG/37ylbp1+85Jz9am3Py/0/enCj/y06X564TNO1lW/fXGs+9P6vf1699dX1d1P5551mq79i1dFenYPOrt08eTza9R2xJZPv2nWPfetX1mpXX3jzs6nzrnztOYTv9qwTvt7h/WGz9+ca9to++fe4mUfS5S2UV8p0Cs/e2vT/XTigvm678OvOa5OW/cc1C//38q614h5nRWt/Y+351KnWzcd0999/6FIx94fvO5CvfLcJ+uDV94V+rr3/F84U1f/0cub1ukFn7sn8vlU1P49H/sjXNdpz549uvjii1XjYsdZbqzabpLiIAi6JP1ATwQHRiX9el7BgUlfl/Qvkp4x+d+/Kun/s3fe8ZJUZd7/VffNc+9kJgNDGBjikKMCEgwYEBQVw5pzWF13XXV1zWH1NYwJRUVYFxRFRVFEchAY0gwwMMAEGCbnuTN3bu7uev/o232ru6tOnXPqhOdU1/fzgenbXXVyfs7zPNICggoVVRgAyOfz1Q4EABMnTqx+7uzsrH5uaWmpea7SmYByJ6vQ2tpa81vwnQkTJlQ/t7W1oa2tDQDgeV7NcxXzRwDQ3t6O9vbyAJvL5Wqe6+npqX7u6OjgzlPLUFn4VUSuOhkDqA7kQHkirlBEHv1+2UGt75fzlNtavjUwFHiuMDbwlvGwz2+H73m489lt+NPSjegbLSvmjI4tIgDAH3uuwiDaqp9HxrphyfdD8zQ0Wqx5jjdPvu8rqafBQN7r81Rbnz3V34JpLSGHIa+j6sQ5WE+ieSo/N15PAGreCdZTyctj4sSJGC4UgYbyD8/TSBHybS+3VSpPna157jyFtb24PPnw0NbVg1wuJ56nMaiOEf6Ytdew/qQyT5W60l1P9WNEvrWcr6h6Kvn+2GanMe+q+xNvnnSM5RV0tb3yRYnwPBWKPvdYXvRaq23Wy+VrnlNZTyVff9sLS2upLq0U2l6+vbPallxse0B53BvNd6I0ptRbX08tHZ3wPI9RT75wnoq+b6yefL9xLO/o6h5LeWOeSrlyWwpre56Xi8wTUFtPvu9rbXsdXV3lcvf5+tP6XYMAWrBixyjeffXDOGj6BOn+1NFefjbY9iLz5AfaXn8/M09J1+W+l2yM8H25/iQ77uU7u4XWRr4fnSd4uYYxopImVW3PH1tHB+vJy7dW2xhrLG9pbcew1wZgWMlY3tbRWa2r+noyOT9N6CmXRdS458M3Oj89sGEIr//Zg5gzqQPXvPc0eC1tkXnyIbYu56kn35efn1rbR0LzVG575bSKjBG3rWjcF/G2vbA5t+Sp7U89YOfJy+WYbU80T7Jtj+IZSwWetdGePYPc9VSfp4kTJ0WujSrHmDby5Pu7pdpe43jGHvf4x4jy3CDSn+rzBLhxvtcMedq4cSNs0lQmhrzyzuIqlM36AEABwKW+799tLVEAfN8vAbgj8NURttKSJuIcfLIoVpwUcwbxp2Ub8a6rHsZfHo92pBWHaoejpnWDWM6CbDpTFYm6LEwwS2ebfjktcUUx0tjUsmM5yPV9P6tXAxQEHMAGfTbq9N9IXfMzQxxWlRaKPtM5o0xzkHFsLEtY+kysCXRHUXVSLLHaGi6U8MyWPum4W1vK2zeeegymT/fYkTR402tF0ejY69zG74qK+1lYaLwxeF68Q18RVDuMlSVurrU1XW7aM4QPXbOUWT82nayGobqs1u7sVxugamgVf2rhbVdJnLCbRqbveh69Pp+REUZTCQgA/BTAW8Y+lwD8i+/7f7WYniCbA5+nW0tFihgpRB+uxVHZpPBuVn505+rkG6OI5MqGS2mjpXqTxENFY2H1tn3c7wwnaDOyxd3Zqn8YzpYj8thouzxx20xX2mCVZIEhpGHhKT2KGefRF3ZjZ/9I/INNQlpkJaz5uljyme3p0p89gIfX7hKKr2iw4MLyxsqvK1VaFRBYSPCewVF86JpHsehLt+Al/+8u5rPB9FEvW5lpzdMpja2DVddhbVq1QCbs0gBvFKoP9HNEJAS5mPq32eaf3rwXLzAOyXWMHcmCpD1C5BRvl+JyS2F98efHNjp/KURX6m0Wi2zcwkJpt6s+w1GaRkDged73ALw38NX7fd//ja30hDAh8Jm4yN0NWLdv46gMyLybld6BUem4KkRt2GWlzSbPD33fx7dveTbyd5uHmR+/7jHuZ+1oEOTjH8qwhsmDtHpYt9dtpit1sG5vi2gQBA5xdZ1Zve7y+/UE7ChpuY3FmiMLpXgNgrdf+RBWb+O/kS7SrnXAip49tPGnW3cOK23PRlF+7DfLcNPyLegbLuD5HewtQzB52rUqEr4vo9mSZKgVjY15GzxMg0BxgYftNbg1CBQLreMO5k0RmwrLU8Sydb2Rv/E0d9/3sXJrH57l1DjSdphMYM2pug3HlRWF9cW//vYxfP+2VbaTYQ0CzS4UYwICAm0wo/loCgGB53lfA/DxwFef8H3/F5aSE8Xxgc/ydmoyqowkEBBUbgKZlNpHxSWtQWBw13rV/Wtx7YPrIn+3okEAYP2uATENgtEEQiXJ9zpbMxNDlInS7DFBgWEmTVWdtrfULgMOmNqFhbN6Ip5OJ6yiFBm7akwMyScnQ4C0jG2sZlYs+bENamCkiJuWb+GPz7KJIdbaypUNcRITQyZx6fap6aSKlo1ou1XdzcK0x3jzoPo8n4gCQbyJIcv9k63NzU7btr1DePn378VLv3cPXvb9e7jiS9KHqA8VqtuwK4q4l9+9puqP0EV4x6iwp2z33yhkUuWBbn4yMoKkXkDged5/Afhs4Kv/9n3/+5aSE4rneQsBnBH46i5LSUkVLBNDLTEr28qiweTiIYE8IxSTC70bY3wv2Lrt/NSmPULPJxEqyZJpENDGrgZBdHtUJXT79btPxdmH7Ye5kztx0XFz8Nv3nYauJmuTrM2LrC8bIpcrU09atlqsNljWIIhvUN+9dSV3fCanOuGDU2al8ncsUwfj1A/VfMZf6iNLFr6MaUyTYy3bxFDId4o3EbsTmJdTbYrJGRNDlvunvLZUWQP62a1ivkqSmJclPpQpv3gRd1g7WqBRIiOFEv7xFP8FgDRhu/9GIdvPRKcEqvnPSDf6r65axPO8fwXw1cBX3/J9/yuG4u72fT/26rLneV0oO06unMjsAHCzxqQ1DSwTQ3ELShsaBNEmhuQwKaVeylChBczeVgwi6lMgkQaBZBbjhCsqyG4syGPTPJYJE0OnHDQVpxx0Ss13zdZa2BoEtHwQZNSSls0Tqz/LtkEWJn0UiWoQPPLCbo2pUce4BgFtgnVN3cSQ7K1MCoj62pBh90CYBgHfux7UClOomBiKw3b/ZI11rPbROzCC+9fslIhP+BUl75pAdZtj5bdvaBRvvOIBpfElYeveIdtJkCZRm1SXDLVImxgim6OMjCqp1SDwPO9dAL4X+OrHvu//p4Jw7/I8zx/77y7Go2s9z/vymHZAVFhnAngAwKmBrz/PI1jIiIclIIg7MLWx8Ys2MWRGSq0TW/aORW//2vBBYIJsPSKPLeEWwDYxpDNdWXsZR8gHQWDz6sjZifOkRfjJamb/+YfleNMVS5TGZ1LwGRYTK/p1uwa0xauSStsjv+H3Qz+SxKTgClDrMDLUB4FqDYKB0Ya5n3cMVO6kmMgcF2tiyHL/FG0zFVZulTsKSKRBQN15vOI2x8rTj+5Yjc176BzKuyKQS0JY+7Pdf6OQXXuKZufB53dx+x/JyFAFKQ0Cz/NuAjCn7utZgc8neZ73WMirF/q+X72G63neMQB+jvGppL/8tfcjzqQs9n0/qUeYaQA+D+DznudtAvAEgK0AhgBMBXAigIPr3vmx7/s/TRhvxhgjClQDTW5WojYSsikwvdFiYeuQVdRRtajGQZC0HFRl1GLTxBDrcEHnAV+ztWRWFdvUIFHBG06ah989ssF2MrRBaJpLhOk50uS4ZmvTr/22vF/7L1XMXnRJ+r6MiSH5gzPRdRvr+bA+rLptFEs++oYKmNTVKhyHchNDRA4s47T1bHdP1l6MlTaqB6M2UW5iiFHGP7vnOcWxJSNPRSJHCJs9RKp7ep7UWcFlP1+CWz5xFqZ3t0tEmpEhDikBAYAjARzI+H0CgEUh37fV/T0NtdoREwB8SCAd1wNQ6TJ+DhoFH0F2A/gUQcfJTsOyJ887sJvcs0fFJbtGpLS4tHHI6nlmBQSUodMS3MOmBsEow7SI1mQRGjtMwFqws7Q46glu31Qfxshw3sIZ+K8Lj0y1gCAtmBbomxzXQm2zp2CIqWSB0lorjGDy4pLq+77Vsct0u1CpQRCWdh1r310DI7UCAs731GsQ2J/jgPh82e6eTAGBhrSl2geBQRND1GhWAQHVOpJNlkx+dvWP4J6V23HJCfMkY83IECO1JoYIcBiAtwP4KcpmhFYD6AVQGPt3JYDfAHg3gHmZcEA9o4zDXt7x2eTGL3LDLi0gkE+Laiz4/gXAdlQdRhITQ5TKO0MdVjUIWCaGNKbr0Bk92sKmCKsoWUKaeoJ7VwpbOc/zaCREI9QPZ3kxLSAwqxnTGJeJ/OrW6qu0PeotMFgOvOY1VcQlg5ST4kQxisG88W2onffW+SHgjkK5BoHS4KSJOzS23T9NawkkGdpVJqdQLCm/dKXeSbE7ULh0Igtvu3KpPkw5Ka7wqeufkHsxI0MCUhoEvu/PVxTOXdC0ZvR9/xzO51ahrIXwvzrSkRGP6O3xMEzu2VVvJCjd0LNl7oilRRL6fEo1CDLphTx2nRRHt0ed6Xr/2QfjD0ub59a5rI1gFhT2cjmPRjoy4tHgh5iJWRNDjd/JrgkotedKDiittcIQ0iDQm5RYZPpBkjYhml+2w9mQ7zT06/p4rPkgICIhiE0FZR8ErPek40uiQZBc26FQLOGLNz6FG5Ztwr7hgnRawlA9/rt0wSBPafIThHeMMmGmTRUy6fIg3+Zs+XLMaE5ICQgyMlTCdFLMOUAb9UEQ5aRYcplIyQdBwYIKge8Do4J+KJL5IKAL5bRRx/TBXRDWglCngGDBjG5ceMws3LR8i7Y40gg1DYKc55ExA6ELQtNcItJsYigsJhOxm/NBQLsRiqSunJcENv0TFgV5J8XMsCxpynBGEWerXxQqc0usk2IzyYiEbWJIfep0NTnWXvTmJ7fgl/98Dut3DWLLXn2OfVW3OZfOXFuICOR0Er5WoFlJ0gI8panIyNBDJiDISC2sw17eAdplHwSUBAQ2FmEl38dIUcxk0PBoSjUIMqRh3eLXDUsIoLN7e56HxW86HifPfwH3rd6J257eqi+yFBE8gKGgDp7L0RBU6ITOLJcM4yaGDEYXqkHg0slMJG7kIXgISWhZGIpc+pI5KX5my15cff9arNnWjxPnT8GHzjkEPR2t4c8z0hfWh/Vo6siFmfPUCgmonFfGmhiy3OZlnRTLkihMCW3KO5/dhg9d86iWfd4dz2zF7U9vQ09HK16ziOXKMf1Q0diRgbsPhjxnu/9GIpkw6hcKMjKATECQkWJGFeyAKfggkFczlU/LeBhq8m/DTEux5Au3gUSHNIQnfcJJI49NQRur/ao4eDj/iBmRv7Xmc3jnmQfhnWcehPmf/lviuCijY5wnIB+A53kk0qGTtIxtJg/sAcMaBCGV9D83P2Msfl2MaxDYTUccNSaG4nwQKIxLBikfBAnGuFVb9+Fndz+HPYOjAICH1u7CA2t24rr3n4b2lnzIG/wmhnzf19I26sPknb9UzwUUNAh4kqDqBnJLzpMy88G6Y8IKzsblMLaGTPj3v39kvRbhwE/vXoNv/n18nrjq/ucxpOESl23H7Lzkm8BrqGjbtXnYLhOz59FfL2RkAJmT4owUwzYxxBcGBR8EshOgGgFB8jAAO45efV/cp0Ba5+3sxoI8thxsl+PW64PgTScfkDiMIK62M1WppmZiKO95ys1KUIOq+rkopvrOpt5BfPEvT+FvyzcbiQ9oPATb1jeElVv3aY9Xu4mhsX8paWvGEeuDgPBtax38adnGqnCgwmPre/HQ87uEw6pPuy4ZnGywqg9BSQgIOJ5R1aR03OCmZmJIxl+CLlOU37t1Zc3fOoQDgP0xjxcK/U2WBAoEZFd4spcsUqE8mZF6MgFBRmpR4XDWqA8CxRoEKtKuKv82zAkUfV/YUXUy514ZacSmk2KWBoGKvnn8AZMThxHElY1WPVrSTWAz1wxOil1tc/Wo6M9tLewl/fa+Ybzxigdw1f1rE8clQr0Q57cPrZcOi1JzrmoQ2E1GLOd99258+x/PcPmCSipwS1oWMtOtjjYRpeEi4tBe1/6hUYOA7z3V5ZQjcILAc2iqqhpkncSaNjGkr92ZHemS+IQTgfr4XSHvsIkhXsKaGNWLR9LWHZxpcRnNTGZiKCO1iB4Oh2HybFD1HKhGQKAgIbCjQVA2MSQqINCUGMukNFtGsHk7lCWcUJEu1TcKXW1nqhbsXsRnW7h844wXV9tcPSo0ldpjBAQ3Ld+M9bsGk0ckSl0lrdi011C0eltH5eCC+rphpFDCj+9cg139I3jLqQcyn7WdFyqHQc9s7gv9npW6+oswpi4X8Maiej6gML/wmRhSg6yTWLZQiZgGQWpmVH5Kvo88iRUbG1kBFQV423nYvoZqi5TpZx4863NsRgYPBOT/GRl6GInZcfNMWCYXS1GH6PJ2KBMkphqGmvzbmBB9X9wPRZJkUp70v3TjCrzmR//EtQ+us50U57CpQcCyd6siXaq3Gy6Z2tBCYANHYS/XDD4ISA+8Aqg4KAq3mT7OF/7yVOI4ZKjPmambx6ZMDLlyqPaHpRsxMFLUGkfSdkzF/ELU3Mt2Usz/bBLqy5hbg8ADZkxsV5YOEgICjlWMqkP4fF6DBoGGNpJIE1pAQyYtuJIvl50U8xJqYoho/di07pCRoZtMQJCRWuJuj/OM0SY3K5E+CCSnIRWLYpfnsaLvxwqJ6qFye00HT2zYg8/+aXkmJBDEhvZLBZZJCJbjO15Ub/Bd7T460k3B9n/Oo3GIo5O4qts3XMDqbfvIj+0qBH5xGgS2qC96FxxC8uCKk+IKI4USbn96q+1kMDHtpFgU1nq8Pu261g71ofLuEXKeh0+9bKGydFBwmmqy7uVNDEX/xrb5L7n3k3or/l1XBKGiuJIvpzUIEj1Is36orykzMpKQmRjKSC0qfBCYnAAi7fRLJkFFynk2a1QnyZLvC7eBJGc0riwyf/PQOrz5VLXOadOMDf8ZFZgaBCr6neL9hit9oB5Vqa4xMURgL5fzKIgp9BLVDUolH1+88Slc++A6FEo+Zk5sx0/feiKOP2CK2QRyYsIHgS3qxwVTQivdo1ElX1TXQGH0DReYv9vOCvXblSLJI+eDwANOPmgKFszoxqptyZ2EUxD0cZkYUlQNsje4WeODjjWTqXaXFlzJl8s+CHjLWLTt2qw6eesOjjS4jKaG5m4iI0MBceZleIZok+O4YvmAkoNNnomMikp4Pb4vLiRyaaMvy/KNe5T452gWrJoY0uykWPV+w9XuoyrdwcMKClu5XM4jcYhjgyvvex7/+8ALVSHb1r3D+JdfPoT+mANSW6hog65oECQZdyi1Z9c0CABgNGZNlNhJccKykLXrbAq2iaHaH01dLuCNxfM8tLfk8Zv3naYkXgraaVwmhhQdI8qOW6y1mo4mksgHgWGHyhRwZfx29QKOCG6ZGJLTdqNmViwjIwyau4mMDAWo8EFgUtIbdRBp1wcBzzN0J6ahUTF7u4lUc+kWQwP//vvHbSfBGWyaGCoy7AipOHygdNhmF/V1TKFocx4NQYVOojZp1z+6oeG7vuEC7np2u+4kSaFinKGqQVC/RjCmQaB57K4KCLTGopbhOAFBpkHARMTEkC75QEMaOMus0uumd7dj/rSuxOmgcKHZpAZBi6TzFKbZHrZNHymSaUIzfiPeN2Vx5eDd7eLnS3xYG6Oabdn60FGPVC9qZrgLzd1ERoYC4m5K8WBy0FW9+FLjg0CPEMXUQjNuM9xAk0yyf3l8E3oHRmwnwwlU2PqXRbeT4kyDoIwyDYKaz/ZPT3JN4KQ4qu6e2dIX+v1P716jMTXyKDExRMEoeAj1OUtLm6wcLFE/1A4Sp1WZNCc2NBBMlj+r/OqnZG3ah/XyAc7XgoI5FSmjoEHAkwZVtSDrXJ19mUNHG9EjIXBnlBPDoeE79YR1Far1I23dQUOGXFqDZLhB5oMgI7XELc75TAwZ1CBQ7aSY87m7nt2Gu1dux/TudrzymNmYP31C9be4/Y3v+1KTt6lildUg2DM4igfW7MBo0ceZh07H1Alt3O+6gO8Df35sE95+xnzbSSGPVSfFmn0QqD7EduUmli48YjaGcl76tUREWxzVjZQKQWR7K00BQX0lpcYHgYMmhlRo1upEpn+avMjzkWuXRf5WX3a6yrI+VBEfBKLvsJC1ya8SnhSoqgfZcUtGg2C4UMS/XveYVHza+oND45wIrmTLpXmmnkRmr4jWkJw5PPn2xhp+XG4bGTTJBAQZqSVuo8EzoJocdKP2bTod4fz4ztX49j+erf59xT3P4Zr3nIqj507iCqNY8iU3dDQ1CHzfx6qtfbjs5w9ix75hAEBPewt+/Z5Tcdz+kzWk0B77iNripoZVJ8UMHwRKfBQ7pEEwNFrEA8/txPpdAzj94GlYMLNHWdg6km3/6CT9wgEgPRsjFXOirAkM3TQ6KTYUr+a24df96wK6/Q/Z8EFgSqixdkc/NvYORv5eL+QzdbmA9wAt2O1UHLoRkA9wTbSqaiEvOZ+y1pBR4/5X/roC2/uGpeJL0h9Y7cKlcU4EqpcG6nEjlcnxfb9m7Uq1eqTbjeRrrNHHlTac4Q40dxMZGQpQMVyaHHSjFnXyamzs3/cOjeK7t66s+W7P4CgW374qEEaMgMD3pW6rmDpzFdUgKPnAp/+4vCocAMp2qz/BcZPHtfmZgnq4C1h1UszyQaBCg0C1gEBtcFX2DI7ijVcswTt/9TD++89P4YLv3YMr//m8svBVHTDVmBgi0L+aoY+LHnRRHacpOh1XRaOTYvmEUspiddyg2qhCiPVBYCgdUVC+cPLLmDmnfizSZmGo3sQQtwaB2kM32QNzlXCNJYrqQVZjgtUOwn7yfR83P7lVKq64+OJgtQvb2kW6cCVbLpe/SMpF2q9rReJ52WF+hhtkAoKM1BJrHodjyjJ5NhjtpFguEXGT0B8e3RAa560rxhemcVFT1yAQvS03OFrEoy/sbvj++R39WLk13Ka1qxA1V00OqiaGVIxNyk0MaSqrn969Bo+v76357st/XcG8zSmCqlQTszDUHH1csPKobs7S7GSuvsiNCc8MaRC4VHe6nRQnLQrKF04272HPN/Xp0KV9WL934Y1FtYkhCkJwg/IBeQ0CRmGH/TQ0Wqq5pCRKIg0CQWFGKnAkY44kMzGNptosJSQGmX7meV4CE0PR4w/VdW2GuzTD9jGjSYkbvLlMDBmckqP2EtJabDEvPrM5/sCbx8SQL6GxbmouU7k/W7V1H/N3qnYSo2iG28UqsGliqMgwMUTxxrGukrr8rnDHsr97eL2S8HWMRxS6VzP0cbdG3WhUjDNUy6J+rKKq6SBMRYGAbMk3MhpndtFyVljz2ra9Q/jNQ+vws7vX4Jkte7neUUlcNPXp0JUuWQ0C1fMBhX5s0geBbPGxtFB1tBFd3SGtZ5CujN8ul79I2uu7C9X60Wn+OQzW8ONy28igSeaDICO1qBgwTQ66qheKccGp0KAoliSdFBua8FWah6G6SJGFwu0vF7CpQTDKMDGkYtOrug2YLqqbn9yCT1xwWOJw1JkYGi9PCt2rGfq4aN1RvWmlIl1Es9Ywc5pzUqy3QCrhUy33MOK0KpOWWdKxNOr9lVv78OafL8GOfSMAgP+5+Rl8743H4aLj5hq8cCJ26ciUeUIpHwRKLhjYn1940qCqFlrycvkVXUMmnQuSvM1614U9UM4TvxgWVtw0zfmU03T1/Wvxx6UbsH73II6aMxHvftFBOOfwGZbTxkak7RRKJbQF7i+TrArI9zMd+aG6rs1wl0yDICO1qFjMmLw9rHqAV5H0uPzLmhh6ZosZcz17BkeNxAPA+s07USjc/nIBmz4IWHGrGC6UtwHDRSVrE1gbNSaG7KeNWvHoQLQfUN1HqRhniGYtxAeBnXh1hU+13MPQbWIoKVHd4Os3PV0VDlSe++wfl2O0WDJ2OBLXRRs1CPSkoyFYXg2CwI5fRdIozL9cJoYU1YOsiSG2Xf/G75K25yTvsw7GbY8NPFx2ygHC74SVF8W8+j7w83uewxf+8hQe37AHu/pHcO+qHXjP1Y/gvtU7bCdPGcOjEmYJLCDbz2SbFmv4IdhcMxwnExBkpJbYG/QcIyoNHwRy4YnedpJ5piwgEEjUGL+6b634SxlK0XH7a8WmvfjG35/Gf17/BG5+covy8G1gc7Gq3QeBag0Cw8tUVecTOlJN4HIliRueuhGtO6obKYoHEuqozVxaNFsqdebS7b2ROBNDCUlaElFledez2xu+6x8p4vantxoUEIitqXXdQm6w0c35XlBoTdFEoRw8GgSKNAQ1jFthadPVh3hgahA4MMzJ3KQPyxbFMd0H8JuH1zV8Xyj5+PUDL5hPkAAixTlSp+VGsCoA6DP/LBWmGzKVDIfIBAQZqUWJyr7B44RtfeFOqWTToGISiivDvUMFqXhufHyTbJLIQnQNE4nqzd1Dz+/C6y6/Hz+7+zlc98h6fOD/HsX3b1upNhILbNg9YC9yRqNKOr7pOKMzrWyh7ABcUbpJnJcEoHGAo5df/vN57OofiX9wDJqmA1SZGKKZt0YNAvmGKfKq7tLwGz7Qp/7wpZ7EWUkYQNgcwmrXKzb3GZt3RH0Q6DJPWB8qb79X7aSYggDaqAaBhgk1zIpk0sM+otOAdo7bf7LUGizUxFDi1KhnuFDEc9v7Q3+7+al0XMgC3NEgMG1iiKWV7IL5rwy3yAQEGanFhA1+ldy6YiuuuKfRGae8lDrmd44w4g4ttu4dMn4omKEG1behfnD7KgyOFmu++9Edq7FvuKA0HtOs22VPQMAao5IeBurY2ps+oFRl4kCPBoH9wxMKJiBM8J6rH+Z+lup0ZdPXiW7qc5aWZlkZ71yquTgnxbaFTGHxM9eYvm8szXF7hvpkMFwIKYU3+8E5SUWJ6TgwF4UnCbzl89O3noC3nBptokbWxBCLsDaV2AdBgtfZ5pBoj3SeJ3fxRUcd6KBQpJcmXkSKc7hQu48ke/gt0Ub8JPMVo21n5zAZqskEBBmpRYWJIdMLoq/f9AweW99bmwbJsJJMGJV8x4Wxec8QyYWUDagvnutZum630vD+GWIDs1Dy8adlG5XGYxqrAgKmBkGysHXc/jPdAyR9Bjago+/aPzqhccPTBEvX9WJT7yDfw0SH6TRv8OrXCKYEV7rn5EroLs39w5o1CHSYR4krX119p94HV9yBf6MPAk0JqzdlxPlarZPi5MmgML2o9PVz+sHTcelJ+0f+ntNwYrJ3sIDP/mk5zvn2nXjzz5fglqe24Lkd+xKFmexAlXEpJUGoJsh5npyAIFRrKXl6VNMse+16PzlUsy2TLN/XM1+5tAbJcIMW2wnIyNCFEifFFgbd6x5eh+P2n5w4nLgbiXGOszwvftIpaxA0x8SUtmz+celGnLVgP7z2+Lla41m3M1wl1hXW7eI8eNQAW0BAz8SQ6T5C7QA8WCcUkkbggqcx/rRsIz78kkNjn6M6X6nY4BHNWkO6kvQNkTxqNzE0FoFLwp04HwS221DYITyrfH3o69MjxRI6cvlAOuIEFWYEBNJmRxl/yUBh/uUzMaSmHrT47dq8Fys27wUArN05gPvX7EwcZrLLYXK/UcCDnMDIHQGB7RTIIzJmNQgIVCdGETLjuw/5/LBatsttI4MmmQZBRmpRYWLHxiLhNw+tr0uDXCLqbz8JvcutQTBIciGlg7hsulgO3/z7M9nNAwa+72Nnf7hvECPxM1pd0gWhypt3FYw7KSZmYihYJzrKVxQKZo5MwTuOUR3tigp2eD58FEt+orlfB/WpSXLQtvj2VXjP1Q9j8W2rsFvA94QeyjlL0xSadAxPup4IO3RhHcT4frK1Lot6W9jxPghq/07Sp886bD+0RqjINTpD5gszWI4q2qwOkzui8Iwl3Fn12IdwFEwq8aDNOTbZ2bNMzoupwAhcMTGkYo3gAg0mhgjWBSA3hvq+nvxQ75sZ7pFpEGSklrgJ/g+PbuAIQ1Vq5JFNQiEm8TyHj3FluGXPMMmFVAYfW/YO4cmNe3HMvEmJwmEteFw+pCz5dg9/mDcnCWoQmF6jqjqgUFXH9DQICCSCGFTnKxVrjftW78QJX7kVLTkPr140B5975RFoyYvdAzp0RjdWb0tm4qKe+rEqyTnb8o17sHwjcNvT23DzU1vw2/edhkmdrRHxysfDQyX8bHOuDpk607VOHy4WAYy3rbixo8EHgUC6Dpo+ARcfPxcrt/bhpAOn4E2nHIATvnIrRovF2Hd521+wH6ooMlemF34fDew8uTKfJtIgYP1GfJiTlA+E5oviOoFimngRSXq9lpupXC9dtxvfu3Ulntq0F4vmTcKnX3EEDp/VE/m8TLp8+PJOihmN2+GmkUGUTECQkVrixssv/OWp+DAIjLqySSgm8JA2rkEQIyDYO9g0txricLUUdii4IU+gm2jBdtt2zsSQ+iCZqLIJrOqAL3iTlcJRgiMXHo1CcaxSuc7YMzgKALjq/rUolnx85bVHC73/qZcdjl/dtxYPPJfc1EUUqg7ant68F7c8tYVpN1wnlVqj2KakSZiXpEUhrEEAH/3DhYSxhjNa5xQ0XkAg9nyQmRPb8bHzFnA9K61BENgSqBhzKFz+4DIxJNAqWZp/rmgQAOX6lakfpomhBOkxQVnAI57n8DFHRYrUQk0zUBf1JoZMsHrbPvzLLx/CvrG55M5nt+PxDXvwt4+9CLMndYa+I61BINmTWGNTqtYgGSTITAxlpJLRYgnL1vUmDofGmCuXihhfdMxgqzfjYqIuaxDwpYeCsCVDDy7fbGFhW0Bw29NbI39LIP8DoMlJsYbiYo0bqvKgToNg/DOBsxOnDjSSwluHFIcqXePMXx7fJBx2Pucpd8bZ6INAXbv8/J+fjI5X8wpufJ1EsFFJYjsnYc2VVbwDI0U8t0OPn6MGJ8UxhVPv90vkQC/s0aheIltHNSaGJMOgBp8PAs6wYn53RYMAkJ/nWGMm9WEu58kZdgzNF8G8FgmmiUWhWMKjL+zGoy/sxmjsgcQ4DRoEBvL9tyc2V4UDFXb1j+C2FdF7MJn1hQ89wqe07sEz7JFpEGSkjpFCCR++dqmSsFyW2JvQINixb7jBXmAUFcfHaaWZ52dWN3G5ygtJT+EVcMOyjQ2OpIcLRXz6j08kClePhSH1nYB1wKnqAFxVqmvHS/stn8INT1O4PPzqWmbsGRzF6m37mGry9eRynnL/GfXjgkq51dAoY4zWbWKo4oNAbzRGSbqOSfq+qAbBjY9vThahAHGCoPq5ql5gwA688auo8bs+HbwCqmDyku5tqEwtKn0QeJ4XY2KIMyAC6BmTaI90cSaiRKB44OrSecT6XQN48y+WYP2uQeF3GzUI9Of7e7etDP3+839+Cm87fX7ob1JNxNdkYkguyIyMSDINgozUcfvTW3ErQ+rLyw3LNmpVs+dFdjKJ90EQDa+TYgDYuneIKz0UF1wipOmWoGpcr9soCMgH8JuH1jV896nrn2gwfyCKKxoErHGMgpPEIMEDIgpJc+lAIyn8GgT0xiqd46do2PmYQzKpNNSNo9T6rSy8mpYuYdufguhl3h37kptIjKK+78SVjKzpn3LYjQ/zahDwRqPaBwEFeEYSVRoELmnkyc4pTBNDxBtNWYNAjVklinsaIYGjZT5x3WNSwgEgzEmxihSpR2YtWdYgkDUxFA2P8Iji2jeDLpkGQUbq+H+3PKsknI9f95iScJIiO6QnMVvA66QYADb28gkI0j412d5Y24TZTNzZU9Wwelsffs/hyFw3Dz6/q+bv/uEC/r58S/KAHfFBwBrHlN2QV5TwYD+g0OxdMolgCoqjtA2bu1Hkc57ydlNf5jlDB22669qv/kuxVcmRWIMgYVmEHWL4lrpHo9NhQQ0CQzd+uX0QBJ9LSZPlWwOoyaxLAgJ5E0Nyv1FBZuoKG7Mo5tW2yVNedveP4JEXdku/b8tJsSiyPghskXYrDhlqyQQEGaljzXY99khtIe+kOEaDgOX4bew3Honz5l6+WwKZ8Dq9uHSzhYfbn96KD/zfo4lv6evgn6t3YETAnmcUWkwMaWgHrLalar+uzElxIK0UzPs4dJ6RGN46pHgzcHCEz0yfCXIaNAjqxwUCXUMJlXw5cm7Dhe2shN2EtNVn6+ON0yisn6tEDvRCsxjRTxo0FSTGPtv1rAqlPghiTNS4JHCX1yCI3xdSxZP0QRDWTSmuE1wxMfTcjn2J3q+/MEGwKgDIjaE+fOl+xNpTUGyvGW6TmRjKyCCO7OFVnIkhFuMaBPHP1jv2iSJNt+zCaOb5mbU4UW3PWje+7+O//vQkSeEAoO62sY5bvDr6QJFRD8p8EChKd/CAiEKrpyCkMIWok2Lf97FlzxCJW3kDI3xzqAyibduIBoGhdql7Tk6jiaGkJPdBEBJmsiClqY837hCm/gBPRJAfFnZ0L6kzfcStQRAQEKSk0arUH/DANlHTTAL3MMLKkVI7ynmQWniFai3RyVYVVy5i5XPJjhbrNQioIqtBILvkZDVtnrS40XoyqJAJCDIyiKNNg4DxW9UHAcdMxiuIcGRtkyEBywSAa2eUT2zYgy2cfjVsoOoWkSvVwhpfVAk5VA1NNSaGCBSwSyYRTOEDePC5nXjxt+7Ead+4Hcd/+Rb86r7nraZpgJAGQT6n4SCsroOlpVWOX3pIz+Im6YGfaSfFOml0Bsx+vv4AryBwySBUgSDSSXH8uzLxqeJ9Zx2sMfRaeITgqg6xTZlGU4GOPhMWJKV9nbQPgrDvCOWrgisaBC0J+0mjDwJ5awg6keljPhK0LUaxZhoEGarJBAQZGSklmQ8CftV51g3fINn8RRMVWx62BoFbrNs1YDsJTFTdeNZxi1fHIpWVX1V5ULXByJwU2yNYg6z63N43jHf86mFs2F02jbd3qIAv3bgCt67YqjmF0QyO0hEQlPuUag2CuoNWpaHzx6s8/BRqENjOC6VDSFFTPvUHeIU4m0SMuETgfTc4P+ks05cfPcuYcFqpBkGMiSGXnKtL+yBgvBd6014uGi188JxD5HwQuGJiiF6SQmnJJxQQjIr5ICBYVZH4vvy6pG+ogLf98kH84t7nGvZFPCFS0vbJoE8mIMjIII4+HwTxv/FMKNwaBKSWkhkqobiYTiuq1Ix17HV1NAPWIUvCfYhyanwQEBCNNZOJoWDji5uSwg7k//rEJtUp4qaf00yfCcomhtSGWV8fpqYLUyaGsvlPHWFlae+GKPvvuOdFTGWEaxDwPstXPsH06VyPn3DAFPzgTcdrCz8IzyUBkebDFBA4JHGX9kHAaBfUTQwdv/9kqVWX7/solnz0DoxUv6M4prtiYiipBkG9aba4bNsqFZm278NPJOi5d9UOfPVvT+M/fv+4cFrcaD0ZVMgEBBkZxNHlg4DLxBCPBgHnLSlXbj9EEbtIcWTxpgNW3bp2RkndEZ0yE0Ma8qmjBzA1CAibGCIgHyDfllUSLHqZzf2fH7MnINDppFh0/ZDzNPggELyJ7QqVXKRp6redl3CHoebTATS207hxpX6uEvIDJuCDoKE/cUazcFaP8DuyvPLY2fjuGxbpjQS8TooVaV06JCDQUr2E+mY9rzthHlryckdaP7xjNU74yq047su34hWL78WqrX3Wx8EwKAotwki6fmjUIIi77GinXKRi9aFk8P3jso3YvGdwPFg3mkaGQ2QCgowM4shrELAP7lmT6riTYoUaBNkMllrSVLfUz1SVaRAoCaUWHe2A6YNAmYkhJcHUmhhSE2QiHDrPUIprwxEtHwSe8jGwwcSQKQ0C3eGPZcSx5sYkqfAm6RwQqkFgqYTrl9BxWatPe0HISXHjd5E+CCT609zJnThqzkShd5JCZS3Fm1XPY2v+uTSfsvyCMd9jaZaHfkdj9DtoehcAuYsvf3l8E/YMjgIAnt68F5f9/EFSc3KFuMtBVPZhSS8f1fsgiGti9jQIJN6BOqHaVfevrX7mCZNI88hwhExAkJGRUgT2Jg1UFho8AgJem+jBpyZ3tcokizTNPPcyNQhIHJWmB8qOykxrEFCzCRwU3lAw7+OSSYSkBKcqV27aVRgg5IOgbGJIrwZBWkijBoFtwg65qGgQxB3A1c9VI0JOiuUzGfduV1se33vjcTVzkomDXRNrP66xijOrHtjC0SR7KtPI1q+wDwJiY5+KqWvHvmE8+PzO5AEpJq79UamLpIKKUcEB30S++4cLVSFSBSknxb6vbOzd1Ds0Hm5Tn0Bk6KDFdgIyMjLYaNMg4IiTJ25+DYLxz5QPOTPEce1AjgX1I1VVTop11JiOZqDbxJDKW1fBsCi0IwpCClO4vEEaHNHng0C0ebdo0SCo+9vQfKE9nuo6yd22V0/SrCQtibDh3poJibpo46beeu0+EQ2CsCwmNTHU0ZrD1y8+Bi9aMB0zejq43lGJielHoXwglvYWd+5Uyi4TmfvCsO+IDH2VtY6qJvetm59VFJI64vZZJd9HjsDKM3GTqB/fYh/X2wj/60/Lcf2jGzBcKOHYeZPww8uOx4HTJkjF6vvq+kxwXuSx9OzyGjnDPO7MdhkZGUII2T+tY9wHAYeJIc5NUHAyc3GaireDaCghBEmTgIA6ApcSmeipMvWBMgUE9vdCNdSYGCKQNmrlYwrXxqP+YToaBN3tLep9V9TVR2qcFCONJobsEu6k2EJCQuKNG1fqfxZZg4cKCDidFEfFcuHRs3HJCfMahAOsd3hpk7T3rhqVPgjKJoaimdzVWuPHgTI65sCwIKkdOqqauiguneIuB6Xl3p2oCbUPX7Os0SyRQq55cB2GxxzOP7FhD9511cMolXzrJob8ms8pqfwMMtCY4TMyMiKRHfhjbxozfh73QRAfj4wGgWPnNxkxsOqTwkGpCNTTS1n7Rke/1u2DQGWag0mlYFqrqZwUBzXU6HaRUAYJmRjqam/Rr0GgNnhrjGtapiVHyfOStCjCNQiShSlLg5PimIGlfs19dcBGdHxcYUT4IOAVuDH6cdJ67mzLJ3pfFSrnWQ/x679PXHCYE6b7ZKuX1S7C9qL05lr6dSNLnP8xKhcjEmuhNWgQsAO87emt+MZNzySLVIA12/vx4PO7ILOS8X2Fh/mCZypEmkeGI2QCgowM4sibGDKjQfDUpr1cYdZIu1M4UzWzBJ/KwlQN9DYYwf6iykmxjmM6Ha2AZSpNxUZdZZqD/YDC2bwD5xhacG1+GdBoYuiD1zyKIQEBRFdrXrlgqXKwumXPEH738Hr8YekGpeHbwq/7Nw3Yzku4DwI7qapfQseaGAo8sGLTXmzrG+aOK8mYFbX2ZB2eJy3RjpZ4AYEJE3c8c5yq1uPBw8uOmoXfvu80vP30A/Gmk/fHu190kKLQ1SLbnlhvhWoQEJlrK02NwrpLF3ECSjr7MLVCZp5s3fDYxkRxivLDO1ZJahDIaR5EhVX9TKXqM1JD5oMgI4M4suN+nICAdaBdWfTxLP529Y9wpafGXl42maUKVltL8XrdGCUfyI8VpCofBDrQokHAsKmkRoNAXaKDGzgK7T5NPghm9LQzD9yCtShtf9n38ct/Po+blm9GPufhNcfNxVtPPUB7OQ6M6NMgWL9rEF+/6Wl8+aKjuZ7PafJB8PDaXXjHlQ+hX2NeTVMZOggPycIk90GQLICwQy5bB18NN/Vj8hZM59+Wb0ocP3c/jEgW6/2kRdrRGn+/0Mjsw1FI7zvrYHz/tlUcQXlgpboS1cnzp+Lk+VMBAPev2YFf/vN5rqSaRLp6BV+kMvRVhGHpWfE04oqJIdVzCE9wvQOj8Q8pZOXWPsyb0in8XtkHgZqKqtWaJVL5Gakh0yDIyCCO7GSSzAdB7b8qCIaVxtv2zTw/M9uJY4eUFJNbGQPuW70D3/6HGudpOtqrjn6tWyCiVoMg8AeBdpSn2Jgl2X9qF/ezsnPm/9z8LL76t6exdF0vHl67G5+/4Un85K41UmGJIHLDX4brHxW7sa/aPJbvA5+6/gnjwgFjPgiaefKvQ4uJoWRBSpNEg+DHd4qNG0mcFNugo5VHg0B/OniiuOT4eVyaBjwmhuqhOsdq8UEQ9h2/H24jqBLm9w3r0+qTxRkTQ0nfT3DBwxQ79o0kSKeaNATrmydIXcXj+z4GU3TxI6NMJiDIyCCOtAaBoEO1ICImhngJHh5SuemQoQbWwozm9ikaiukt+cCTG8vOsShj2geBCoGEWh8EQQ0C+y0pl6IVXtxtLRU+bv5vyQsN3111/1rtG0+GFS0liGooqDZNtWrbPjy/o19toBzovohQ9UGgNRbT2M1NuJNiW2mqu8mq8YAurK1GOynmu2GrcwbiERCYgGesOmBaF77zhkWJTRKGvZ0jasdP+vCS1f9DhXc0Rr+qiSG7ydBKXJ1SEdYk1yCoD48vQNPThEx0vu+rc1IsqEHwp2Ub8anrH8eP7liFDbsHlKTh6vvX4vRv3IGjvnAzLv7JfVizfZ+ScDPsk6LtY0ZGOlB1IaXIMM0RR+XAQulBvh/x2RFiF2dmkkGSTOCjl5Lv48bHN2G4oG4HoKPKdCzQWRoERC5MVaHmgyAtJoaOmD0RnTEHUrUCaLmGsS/k1uD2vmGs3qZ302PikEXkkFW1D4Lnd6Rz0+g3fHAf1Yc7KgKwNc6LahAkWQeFaxDw9cOovq1z+OczMaR//uGd4y4+fh6W/fcFmNTZyghL/IBZ9VipCtk58KHnd0f+RtlJcaUWiFaHEuLqlI4Ggdp08IZmOvdyPgjUlU/NkQpHkJ/903L87pEN+H+3rMQlP7k/8aWNGx/fhC/85Sls2TuEkg8sW9eLy65Ygn6C2jcZ4mQCgowMYtSvb2Tn/DgTQzwaBErtcwtKu6nhYJKNwapP1xbsVA9Vf3bPc7aTEIuOg84kptJ4UJnmYFIptCKqhxeivO+sg+LHET/0oxJUCubCMDG3iMSh3AeBpblTe7waNC1tYzsn4T4ILCQEje0nbj2cxByeSBtqSFfEczoP6OMEtgAdE0MVJna04qzD9osOy/OY67+wn4gqEMgdXvo+04F82FqMmnk1Cpqbuoj3QUCjLhILmRtUCHjfM5t/mb1D2QeBovhrtGbFAt3WN4wrE/pO+cvjjX52tvUN46G1uxKFm0GDTECQkUGMxkMdudmkmMBuwbjzPT0mhmgsY9RCZG1mBSoL07SixZ6sljCVB8ncFKkoF20mhggczlM9vBDhkuPn4uLj50HkKEh1f9FdlSZGT5E4VLfdtM4OlXylafpTfrgjSNhwb2t9UYl3pFDCht0D8Qd0gd9Fx95LTpjX8F2kiaEGwUX4c3o1CDgEBPqiH49DMJK4x0XTnNRskS5kuszTm/tiw6zvA1SGvqqJIZrVoYS4cTDOrLA71Lcxvny5oUHgK9x7JTtT+XWISU0Rbl2xNfT7b9z0dKJwM2jQYjsBGRkZtdQvcGTnkjgLQ6xJt+qDQOHFSVF7eRlmUHEYxKpO1270UEytHofCGsI0LCCgNowE00Nho5oGDYJXHDMbQHx5iqpbU8KMBgF/JETPvIQxpEBAxg63CmznJdwHgYWEjMX7oztW4fK71nA52A4e0LXmc0KaR68LExBEpSvm7+r7GvsxGQ0Cg3NcWFxU51iZfrxqG1tAAACjxRLyufG6p7KXc22fIUOcgJJIVSgXMvOGZ9wHgUSEvg/4ipqq7wN7Bkexec8gCglMSquGitmxjGRkAoKMDGLUL0Jlx9okGgR6nBQHPqdyAkllprigsklQAcX9nivlq8fEUPQ4Rs1JcRAKzYjq4YUIlcPquJwEN8+q61Tn4cPeoVGug5mkiGkQaEtGqqgcEDgyPBsiWWGElaWt+e+GZRtx3SPruZ8PjkEiAoIXL5iOWZM6Gr7nPfyOPqjS15HbuZwUG/BBIPp8zAuiYx/VOVbmkI5HG2K0WKrVHiE29hGtDiUUY4YTKvuEpOty2bdNC7dlY1NVT7c/sw3Hf/kWcgfyKe6CTUUmIMjIIIYyHwQxEmW2D4JkcYeGWapsponNZhmJYS1Q0rxgNwW1BWAU5k0MJQ9f16aCQrtPw03w3Fgm4soz2E6obJRZlEo+/vsvT+I3D61PZLucF5EiUX7oZe0GuN6IK6G7Mj7zYLvrUOq7Nz25Wej5YNJb8/x96PUnNmoPsOPhM/Ni20mxCdSbGBILkK6JIfF+xDPujxb52p5pqiaGUnw8Ge+k2FBCYkiuQVDXxohqEMiUt1/9n7006Iaq0DRDjExAkJFBDFWDa5JDB1+DBsF42MqDNEJcsm3mK5/zjBwyRUFpU58UkmsbR4pXRzJZToppNzv7DalyuD5vSic27B60nBo5KvNh3MY/OAa54IPgyvuex/8tWac+4Ah4yuSblxwDID0bPFMmhpwZoDmw74OgMQBb64u+oYLQ80ETQy15/gN00f7WUBoRxaOzF1MxMWRyrHLJSbHMdoAnL6N119iprf1TMnWFIuIDxWV4TajZRsZKg++DwtZAK9G+c3zcs2oHHlizE3OndOLlR83Cfj3tZhOXwQ2NKwAZGRlVGn0QyE2PcQ6LWL9W1hkq1xs6HB9nAN3tLfjJW06wmoY0aYVQvIHkiqBORztgb4oImxgi1IzeccZ820mQhvcARquJIQ11+bflYreTTXD+kTMBqM+vbbv2uqjkKkXTn/W6ChvuXSnf4BjUJiAgiOpvkf3Qr/8zvIB0zkHzp02IfYakk+KYF4RNDFGVEEj0Yz4NgtpDUWp9k9K6SzVx+wAqdaHeBwFfgKbzL2f3X6WTYppEjSPf+sezePuVD+Gnd6/B5294Ehf/5D5s2D1gOHUZvGQCgowMYtQPrrJTSZIb5Tp8EFTCSuvUaGvOv/6Dp+NlR82yE/kYLNuYzq3XCSbYlT5Tn85HX9iNf//943jLL5bgJ3etxoiA08YKujUIdJUthWZU2cy/88yDcNFxcyynRo6qBkFMgQbnKhd8ECxb16s8TBZxZbJwVg+md5dvc6nOr00ns3rDT9+aJvHhTuL46WgQyFC5xStiYiiqv/EedkYVj67LDu0tObxq0ezY50w4EBbNY5IUhcVFVdtKnw+C2oCp9E2TzqptEbenj7sUaArVPgh4QzMt3JZp+75PR5Cji1zIyfKG3QO4/K41dd8N4qd3r2l8OIMEmYAgI1XU325wEVU+CEYKJTy3fR/2DYerSbOk2NXDfA1OitM+OZqGwo13KpsEJRDMih4NAr1aCQ89vwtv/vkSXP/oBty3eie+dfOz+Mi1S4XjLTLGdBXlkubbPJUbTvmch/936SLLqZFj3LYwG9d8EJgmbvN8xOyJ1c+qL8WmtTYyrUj1hFltcMlyRuWQrlXIxJBYHPV9OVJAoGlp+IGzD0FXW7yFYooaBKrjyhM9mJYZklzWIPCq/9KsDxXE+yBQVxmrt/XhI9cuxTnfvhMfuXYpVm/bx/2uLR8EpucJ1uWlKHw/up5sDCU69j9h48iv7lsb+qxJM5sZYmQ+CDJSxY/uWG07CYlpMDEkub1+Zksfzv3O3WhvyeFdLzoIn3rZ4TW3LFhzW2XOUDl16PRrQAFbqvkU9idpqlOKedEiIFAeYm2ov7rveQzXaQzcsmIrntvRj0P26+YOkaXFS1qDgEDHLARO2+ynRo5xDQJ2DoLnFqrrlEBVJiaurwTzSNdshih6x/LKnE9wyrBG0gOH8LnOnQIulny05sV8EESaGIoYtRtMcESZGOJOAR+vPW4Ozj1iJl6ziE8bzUStqZ5nxU0WKY1eGTJrRp5xX0YL1ATViwRE60MFcefRqg57N/YO4k1XPIgd+4YBAGt3DmDJc7vwl4+ciTmTO5XEoYMPXbMUX73oaBwwrctIfDJWGnz4keuFnOcZ1wIplHwhbTcewkJ7YM1OpXFk6CfTIMhIFX9/kp5dX1EaFrwJ54vhQgmX37UGv390Q833rMltXIMgWdxB3NniNR9Do0XcumIrfnLXajy8dpfwQpP1uGv1TvKwh2KaQgiW3d+f3BL6zC/ufQ6lko+7nt2G7926En9fvhmDI8XIMFmOwCgXC4V96khhvIQoCCxk4DXhoNNJcRqIK5HgYaSbLaUR/SaGxv7VG41RmHO572P1tj7sHRqNfiZh/GHLUpc0CCrlJ3boImZiqMEER6QGgbqefOC0Lnz/TcdzCwdMIZzDmBdEy4zHLI8NZMY+Hm2I+lvT1OZamrWhhjgnxKrGyb8v31wVDlTYsW84ck1fj63rTPes3I43XfEAdvePKE9BGDIWK3w/Ojc2hhIdVjfCxtA0WPdoNjINgoxUsXIrvxocVXSd49y2YivecNL+1b9ZCzsdqvOuaxDEHZrbylbS5tI/XMDbfvkgHl67u/rde150EP7rlUdwb5Z42pIrUGyfWg5INITJE+TzO/rxn394okZgecr8qfjVO0/Gyq19+MU/n8f6XQM4/eBp+Mi5h+r3QaCpuimcxwcX5UTPMWLJcd4M1OmkOA3EzV/B8nVVmGSacbOJ6WlwUbfRH1vfi/f/+hFs3TuMfM7DG0/eH1+96Gjl2iZhZelS8ao0MRTpo7hBg4AmFE0MJTFBE/YmXR8EEhoEHFkhb2KIZnUoIe52uaq9y1f/9nTo91/56wq8+0UHxb6fdD5sdFLM/+6mPUO4a+U2XHz8vERp4EFOg4BlYsiD6dF8tOADbWrDDBtHMgGBe2QCgowMYjT4IFAU7i0rttb8zVpMaNEg8Gv/dQ2qyU66IP6/JS/UCAcA4Bf/fB6vXjQHi/afzBUGa51E8cCdBcXU2jJfJUqlqncxbvA8vHY3ljy3q+a7h9buwmf+uBz/eGpL1SzRExv24JEXduNFh05nxEfXxhAFW7gnzZ9S/ezqoW8l3XHlGdw8qz6wdW0MCyNuLxvc1Cn3QWCp/HTH6vqaJoywvAyMlC8R9A2V/VkVSz6ufXAdDpjahQ+cfUjs+yKE9TWX+l/l0EhIfyDh2GzCBwHV2UP1Ab1oaGEOOSkg5YOAx0lxnYkhKn1zvA9RbanJidUgIHIGm7RFNPhYEXz/8zc8ZURAIOuDICpDNvyZjGg4uA8bk6maJsuIhujUlpHRvNQPrrrWXyzptxYfBGP/UllQqsbVXN0fYRvwyvue5w6DqUEgnCK7UGyeOjQItCgl+D7+/NhGnPTVWyOfiRp3/vL4pgafBY++sBtL1+0OfR5QkwddwhcK5/GzJ9G1F8sLrwZB8BBadX+hOCYIE5OHGhNDmZNiLqo+CFKUw7Cc3LNye1U4EOS6h9crjz/cxJA75Vs5xBM5PIrqblGCg8b2FnEjVeFhab0giAqqp1nW2OeUk2KJMYnHXNJoXbum1jOJVocSTGkQJCW5k+Jk4e0bbpyrdCDtgyDiNxttt6BBqhQqIGA5k8sgSSYgyEgNhZSoMKlyUhwHz61vlTf/qmEqCzGjjJ5VxY2Pb+J+ltVOXDO/QDG9FNMUxra+YXziuseUHtDeu2pH5G8qysWRohXmq6892nYSlFB1UhzzXI2JIcWzDJWNdxLiyiR4E1b1rVxbxWfMB4H7zaNK2Jj683vDLws8v6Of630RQvuaQ+VbOcQTGTOinRSHw3uAxurGh83sjk1XhY7WHF521Czu501i0qlwmMCFrokh8Xe4TAwViJoYqlwksJsMrcQdcdBZpyg2MUR0AijIHHr70fVkYywZLagv27BsZCaG3CMTEGSkhqGUqDDV3xrSNeez1BV13FjuH5Pq++mopgas+SDQtKYQUXtnXUIgs2blpM/Q7RMRdJShDqHDn5ZtNOpQUjSuJzfuwft//QjO/vad+Phvl2HdzgFtWw/b5wYHTuuymwBFVAUEsT4Ixj+rvhTl2hgWRnweghoE6ThmMXWwkIb2QYW/PrG54TuXnBRXDn9EDo8iD4Z4nRRHhMvqxf/58oUxqSozqbMVV779ZEyZoNhQtSJEx6q4p0W1LlT74FCFzPqOpywbfRDQ6JzjPgho1ocKTDkpTkpiDQKiAoF6ZH0QmDAJx4sOE0NJBQS7+0ewZ3BUYYoyZMh8EGSkhsGRou0kKEGXD4L2llp5oGkfBB/7zWO479PnOjP5NzsiaxWetkSdDbsH8PHfPoZHXog2aWMLkTI8d+EM3PHMNo2picZ0vCIta832fbjs50uqpjJe2DmAh9fuxtXvOllL2mz7IKBq+kAU3mwE+4jqMceRIYxJXBaC51yqW04Kii8UX+K2OHWS5kRFSWzsHcTcyePm0VxaM1aEk0KHRwk7XNQhLWvsPJPh2wcArn3PqZjY2YqFs3rQIuBw2TS2TQwRlQ9oOywmb2LIdgI0ImNiyPd940KTxHNIQhNDppAxz+P7Pi0NAkM+CHji2TM4io9cuxT/XF3WGj/7sP3ww8uOR09Hq/I0ZsRDd9bPyBBkaDQlAgJNc0RQQFAs+Vi6rjfy2cqGY9W2PmXxb+wdxN6hUTK3HET5zUPrcPFP7sN537kLX7/p6QanO7Y2sRQWxKw6daG6iyUfb/zZEpLCAUBsgTxzYgfedeZB8WEmSA8VRG6v/fmxTQ12tDf2DuL2p/UINWyfz6flJt24BkGMk2KNE4tLB5RRxPWVYPFSNZshijETQ3qjMUp9mS3fsAePGp4Xb35yS83fLq0ZK4d4cYd5QSJ9EES9wBk2a8zsaM3jtcfNifx9Ulcrjp47KZFwwMQwYtLEUBg8dvvtIHG7meMVqiaGwKlp6DJxgujgHL92Rz/e+auHcOwXb8ElP7kPdz5r59KQDLwaUraR1iCI+M3GUGJOQBBfVp+47jHcu2oHfL88rtz17Hb8x++fUJ6+DD4yAUFGakiLgKDRSbGa6TGoCvu5G5Yzny35wPWPbsDvHtmgJO4Kdz27nYxKqijL1vVi2bperNnejyvueQ6f+N1jtpMEQN9BoEiwrDqlfruyb2gUZ3/7TmzsHbSdlEhEypB3kUm8WrgQycIPbl8V+v03/v6MmsTUYXujSvfgQoyKbfy43OjUIHDpgDKKeA0CL/BZb1pU88SGXivx+g0f0sB4Zh5euwtv+NkDsq9Lc8U9a2qDdGiyqpgBETk8ihLIRTspZv/NS2dbtBEB2xpwvIimM+550VxTFabKzVnxL9UfKFJZ31dNDDnSbmXgNTHUOzCCN12xBHc+ux19wwUsXdeL9/3vI3j0hV0GUqlgb9GgQUCjjdUj4oi+gs+QENjRIDDjgyCO/uEC7lm5veH7m5/aYszpdEYtmYAgIzUMjabDuL0uE0OVyad/uIDrH2Uf/O8bKuAzf1QvuS2r1ykP1go3Ld+M3f0j41/Y8kGgLVz+kFm35Yiu7ap84P8exYbddoUDR86eyPxdpAhznmf9cNoUVDcOgP2NKmGrEEJUTSXF+iAYbwuqmwXldsZL3EFOsHiV29XWXH5v+cWD2LZ3yHS0AQ0C99tHhWCZ/ezuNRi0cPGmvSVf87dL3a8oISDQ5qSYOwUh7zqyhsipnucE801VQKCrzzSYGCLWN4lWhxJiTQyN1c29q3ZgS918OFr0ccOyTdrSFiTpesmV+VRWgyBqLWZD69eUBkEcj2/ojRS4PLlxT9IkZUiQki1kRgasbGR00DBJKJorK3v+m5/cEis1vuGxjVoky4A7k38cvg/8YalaDQtSCMzxTBND1HYQAbbsGcJ9q3faTgY6WtlTsUgZcmsQpKAfEm5a1jeqVA8uRKnMh3ECl+BmLdMgCCEmD8F1h+qmo7v4+oYKuDvk9pluKmNoKtrHGMGs3CZhfk1FUYj4y6JG1cSQiIAgoTA5MqaYYEXt7VNEtOxefBjb9wIzrpBCoaqpJ9NnZEwMUembrrTXJMSZvK+MPZ/9U7iFgF8veUF1kkJR3SKINLEGZM5IfN+PzI+NSz2yAgLWnlRmSKyf84MMF9Jx+dc1MgFBRmpIi4mhRvmAIhNDFQ2CkXh1rSXP6Ts0pTrZyzAQcIxtK1u6FsYiwbJNDCVPiy5ueGyj7SQAiD/MFfJ32Aw7pTEojyW2a4HqwYUolWzENetaE0OqU0G4oXESl4Ng+bro4Po/rm/UeNQtBK1qEFAeiAShkJX2OoE5hTTxUmkLIg4sIzUIIr6vb2+RTooTzEK2NeC4EUzmBUfORFdbvuH7S06YOxZcdIBhv1CdZmX6DM8rOm4cq6BSbw5OXdzE+yAo/1vva8s0ScdrV8b7ooyTYkSvS2yMubL9mbXGltmD1msNBknL2Z5rZAKCjNSQFg0CXTc/q84eOZ7VeajryuTvChQ2cqyFK+X6LhDZ7MSZ9BApQ97hg3K98ELl9loYtjeqadEg4J23am/sZhoE9cR1lWB7US1cstVNtZsYqvs3Q42wpP6wgPI4X09lSSGytIg2McTng0A0XN3vmkR0nmtvyeOHlx2PtsB13QUzuvHZC48AIOP0mKZJR11Cy3ozINS6ZpovyMRpJVEZJ5MK5h95YTded/n9+Obfn0Hf0ChZbWcZHwTwo9eTNoSNIwW5smW1tUyDIB1EeyjKyHCMtEgZGzQIFJsYsg2VRYxq0nSLEBDbKLEuUlCu7xYihtrjbuyKOSkm0tENQLdlAbZ1CNKjQcB3MzCo7a36QJ/wEMZN3Ca7xgdBE40hiRhrGGloHxWS249OTlvdvOxS8Y77IBDQIIiYK6I1CGr/jtr7JPJBkODdahgGhhGZKM47Yib++emX4IE1OzFtQjtOy57/1wABAABJREFUmj8FHa156fBynhdrH940MqnhycIIcRNDaZ654sq6su7xPMtzkoK4H31hNx59YTcefH4n3nTy/skD1ECc0+gwfESbGHLJBwFLWCWzfmTlfTglZ3uukQkIMlJDagQEdX+rmugp3Kzwfbc2ey6gz8QQf8BUNgmitBA5RI1ztCdSvDmP74DUzRqrhXKzsz3cpkVAML7xjxGiBX0QKJYQuDq+BYnVIAi0F+UaBKkYbRqpahCkoH1UoJCTRhNDFFLFR2WsUOGkOA7f9/H921bh4bW7pcJNwwwhW3Yzejpw0XFzlcRFsRzlfBDEv1N/oEilZ1bqwPa6Sye8GgQe7NaLyriXrevFwdO7hd4x1QZkNAh8P7qfKXe4zoGIKbwgrKFCrvyjA8w0COxA4/pkRoYChkbTMYjUH+Srmmyrk4/lFZTqwxsqpC1XIs2EtVigfLjWSkSDIN4HQaZBEA7dtsVTC8cfMFlb/GlpB5WD61gNgsC8orpVEB7CuIn1QRD4HGfyTDjuFJRfGFUfBHaToRQK9qM7GkwMJQ/TFOMaBPrm7ErINzy2EYtvXxX5XJxQNR1OihWHx8h41C8Uy0rXmNtoYsihzuk4cWNKpS4oXAZUyR+WbhB63lTupQUEEb/ZWLOPajExJJ4P1jCSCQjsQON0JCNDAWnxQdBoYkjNAiwtB0YZZhBpLa76IGjJ0+gTcX1TzAcBrxMC/jCpQvngiKce3vfig9HZGu2cKwlp0SCoOimOea7WSbHahhE3BxeKJTy5cQ/2DI4CKN+ypHZwEiuY1+ik2FY/1e+DIIUmhjRNDIfO4L8F2tbirpPiqgaBQKKjnRRH+CAYC/vPj22SCpczVUleNgaFfQ0FP2D1SGkQcDwzUihhaLSIr/1tBc7/7t14w88eEE+cBng1DV0mbh6tKHfYXvrZHq9NCUhEhMAVyiaGIjQILIxlI7ImhlQLCBi/pcU6iGtkJoYyUkNaBpEGE0OKwq1s+m0vn2wvHlQSLEtb+SKwP2IuXElrENjQ6QwhbkEvcmjDuzlIg9kPFYewLTlP+CbQp15+OL5187MN33/5oqOqn+Oq4R1nzMfLjpqFr19SxCeue1wofh5UH/Im5cULpuMdZ8zHB/9vqdCmhHezUaNBoNoHAeO3e1Zux0euXYq9Q4Xqdx2tOfR0tOKyk/fHJy44zIkbfbVOitWGbUtYonuMG9cgcH8srZIwK1EXdQ7ZbwJWb9vHFUa9w0LKa4h6pEwMCX5f4a5nt0uFy4MDQ1YZg+mMHMcJlpUuHwSjxRI++ptluHXFVokY9FERDDjTbiWI90FQMTFk18iQ7fnQtoCEhe9H75dttF1ZHwQ+4zWZfGQaBPSgcTqSkaGAtGgQ6JIiU1g4+fCd2uzFQSEnug6fRMJlahCoSIwEP717DZ7evJf5DBUNgrjb3iLn1xRu1JmCt1hYt6frb6vy8Opj52BGT3vNd7MndeDlR82q/h1XDV949ZHI5Tycd8RMLJzVI5yGOIjIvqr8/F9OwnlHzMRnL1wo9F61HGMKNHijSfUUEzW+be8bxnv+95Ea4QBQNne4vW8YP7hjNX5y1xq1iZEkrkyCpZtX3HjSNOcHqeRK0oxvqugdGMGbrlBzm7jBB4GSUM1QOW8RETpHaxAkTEyCAFxZRai+MS4jzKRYVjL54DnY3bB7kJxwIAjFulAFv4khfWm4f80O/PjO1bhtxVYMF8LPXGxP95S1SHxEz2c2LvXICgiUmxhi+iBIx9meaxDbQmZkyDOcGh8EtX+rmmwrg7bt80OXNnsipC1fIs2EtRmxdXv0m39/Bhf+4F787uH1kc+0OOKDQKQMuTUIUtBgec9gWDfWZfxQzJrUgevefzped8I8HD6zB68/cR5+897TMGNiR/WZePvP5d8ndrTit+87DUfNmSicDhaUBEWXnXIAOsZMKYkKNHOcmm81ToqVmxgK//7mp7ZgJOZ2058f26g0LbLEHf4Eq0X1sJhaE0Np9EEg+d4nrnsMS57bFR2uQMDtdT4IqJnrYlEs+SiVfD1mAcfgDTsuVNYcpeLiiYmDOtW3hVlFq02QowFdXebulWytFWt4df+mkHgNgvK/Otd+b/75g/j2P57Fe/73Ebz7qkcwONJ4eGt7tKbYHyuwnBTb0SCQqy22iSHZ1ISTlrM916BxOpKRoQiZ26DUaJzcbU+3aknrbUJbaFtTCATMOgCyWd2+D3zuhicxMFII/b2ViC5qvJNi/rA8j/L9GbXwHhyxFpgyc0bO83DQ9An4zhsW4R+fOAv/79JFmD99Qs0zIov9yV1t+ORLDxNOB4swrZTLTtlfaRy8JOlmnAoEtRoE8tGFEjVn/YDhILTCyq2NZlVsmEOM1yAYL2DVBwxpnfMr449LB9hxVIUeAnnaN1zAvat2KEtDvYkhl4q35PtC/gcAcee3vCY8knRjV9YQJg/Vok1B0SstKaGsQ/2snnH5AL26UEWcBkHVxJChIvjn6h24PsSBsO35kNLlmHr2Do1GzmeU010Pa01XL1zmaQ9sE0OZBoEN3D9NzcgY44uvOQorv/oKfO3io20nRSmq5loKa7+y9Nx2KtRR64PATsZ0rSlEgmUtXG0fDo0US5Eq0bocub78qFm47JQDuJ+PT4eIBgFfnlLUDWNhLTDbJK5L62g1qje2Ye3gky89HIfPVG/OKI5gUkTHq3ENAvaLwZv8yjUIFIWzbe8Qjv7CP7Dw8zcrCpEfkTyoHhdtTQG6o03jGCrjeHntjn5hPy4s6rW6bK8hRCiWfGHnlVG39aPGPH4NggQmhhw5q6JwIEyxrORMDLkPxbpQRdywUvndZBF886anG76z3Y4ot4GHnt+Ff64OF6bb8FUle27Beq0+GzxaCkwBQaZBYIVMQJCROlqI3AqWpf5gx/Zkqxrbtwsy1MPawNsyLxFk2bre0O91JS2XE1uk5pT6IFCfrzefyi/sMAnvUMJyciXjh4KnboXX+oqnrbBD3und7bjhw2fiqneerDayGIKHOKLZ5DWN1z88LgRSPceoCO+eldtxytdvx77hcG0m3YjkQbUtXBMHvGFJ1r3WqITv0gF2HJWsiOSp/sZ/GCJNqj5mCmsIXkq+uIAgavpP2g2TaRC4sY9SfabGbPaRghx6uNRnVOBVLxI0LxUziyZvoveHmBiyfWihUlhtEhtHV7JFxZrj6tsfz1qCpRU3lGkQWCETEGSkDlcWtlHo8kFA5WCeRirU4Ed8Nkmlvf/Hyw5XG67AIpPVtCg0u3qnhxV09QlRMz9xC0OWk92GsDhXmSJ5f8NJdkzTxMF7iKVcg4Cjb4jeBlI9a0Ud8na25XHO4TNwxGy1Pg9YJNqvejX/RNI/UgiYfEkQXwhJwxsplPCha5aqSYwkIge+vGOIjrhdYtwcj910qKSSFZGDAx6TOkJlVPcwlbUrDyXfFz6gEt2z8IYe64OA8QDlW7hBVN+6ZR1URZuColdYlT4zMFLA7U9vxa8fWIvV2xrN3dW+YyJlehg3RUivLkxRnWctFwGvCTRdjBRKkWZlKaNLo52FbJ9nOynmf5YnHZkGgR0yAUFG+nB8faBrfVMZf20LUHQeFrx60RxtYVOl0l4uPWmelnB5YNUphc19Z2s+9HtdSct7npgGQZyTYoG4dYwfx+0/GV+56Cj1ASeEt/6GFPog4C1f0bW+6o1tLiZbJmeBmrhEBSde7b9R+D4wMHabTfUFsqjweHNy17PbrGkOVBApE+UaBAb2d2EpNmViyP4Mpx6RdVpB0tFhFPWhEVhCcFMsiQn0AYbz24jnuU0M2d4LGYjfeh5Bc8vpA9jVP4JLfnI/3n31I/j8n5/C+d+9G9c+uI7xjkMdLQKKdWEKE06KXeHn9zxvOwnC2Kg12T7PmoMaNQikoqjC0gDP0EcmIMhIHa5PjfUDbxoWbUF0bfauftcpOGK2WfvaNW3NcjXN6OnAsfMmKQtPpB8xnRQnTklyOiIEBLo0UXOemCAu3kmxmA8CHWPg206fryHUZPCOjXev3B75W7296zh4N1+it4GUaxDExG/UuWMgMnkTQ/Fv9o8dwiv3QZAwPJUOXGURKRP1PghMmBiyd/uOghBcFTJaOKNFvRt4l9bAxZKEBkH01fTQr/mdFDeDDwLFyDQ1gmVV8n0svm0lntnSV/P9f92wHLv6RyylSh+8FwnSjGknxVFQmA4vv3u17SQIY3MNIwrLxFB9PhJrEGQmhqyQCQgyUofrKoYNAgJVk21F+9By8ag+vGnL5/DZCxfi7MP2s64dYYNgjqdNaFMXrkBDYfsgsL9ajLKRrOvgISesQRDzgKAPAh5kct7T0SLxlj54m9bi21dF/tYq6IOA9+mWuCv89eEqHroo3SJL4qRY5PHKLX3VQ46jJm1rWLujn/tZ9SaGlAYXSqgGgeZ4ZRz6UmfcxJCABoHiCq6P2qX+V/J94TVP1Lo1qQZBElzZR6me5yZ3Ra+hTzt4Wuj3FEvK94GrH3gh9PvfPbI+8h1XqQoISNaGGSrCXdtrPwrtiKU1TBUbPghkq4o1xzWYyeaoCtZePNMgsEMmIMhIHa4vDxrUqzWFa4OSr37x8PgXXor3nXWI2kAlsHbLLdDgbdUx6wYlhcWiaRNDoj4I4m7sijkp1jcC2t541MNbfyOMBaZoG+AtAlHnx6o3tqQ0CBLkTeRmYMVRsfob3eHh8ZYhhW7zgf/j94GQFifFuqlqEJiPWh9jmeGts7df+RDW7xqIfU7MSXFt3BQuGfAi44NA19oxrsxZPxMYsrhQ3e/bWnJ4+VGzGr4/dEY3Dp3RHZEGeqXF6jN3PrMt9Ht3ehkDelVhjMqwY7oIHlizs+bvVLQjC9jYX+3cN4zL71qDj/92Ga6673kMhjmdDoE1xan2QeDQ9J8qaF0HzMhQAMG1mhD1hxuqDztsFk+p5Csf7Dvbxg9/Xa/7pKgsW1UmhuIWB5v3DOK+1TsxubMVpx8yDRPa1U9LUU6KdR085HNim8a4G7si6eSNVybrNm64sFBxsCIaAm/5toiaGFJctnGHvCZv2tVoEAjGK7Jp6h9zTKe6Vye9wezCBidYzKpNDBkREFjxQjAWiwsVzEllTOVt83ev3M404VYNV6CItGnRGqBY8lEU9MkQ5cPB5nrWlbW0jmR+45JjsLF3EMs37gEAzJnUgSvedmJ0GhwpqwpRrdPlcawy/rtWFyqxZWLonVc9hL997MU4ZL+yAM3ldmQTGwKCawI+SW54bBP+8dRW/OqdJ0ea5a3AdlIsYWIo9okM02QCgozUQe2Wqyi65lYKk3bJ97XetLdZ87aKV9dBnzInxYz3bn96Kz74f0sxMmbD+MBpXfjNe0/DnMmd/JFzYHpMEI0v7jxOpGnpzCm1sVVFnxM3B8GHbR8EcUInsxoEyePlGef0+SBQGhx5VAsIduyzY/Nau4mhir1+vdEYhYJfhQYtWoc6YMn3URRMb5QPh2gTQ5w+CJJobjlyFVvH7f0pE9rwl4+ciTXb92FgpIij5kxijokUS4o5B7rTnbgZNzHUvFSco5vWaBkaLeGWp7big+eMCQiMxp4eKGyvHnhuJ+5dtQMXHDmT+ZyYgEBJ0jIMk5kYykgdFAbZJOg2VWOzfIq+n00WignWpy1dE6aT4oiFxGixhH/97WNV4QAAvLBzAF/92wrueHmJWsxoNTEk5INAnQaBzlv+qm2TJ4W3XFibe20mhgR9EKR5Z5tkzhExMbSvKiCQjy+MqHbmyiGaKIJ+u2lg0X6vSyZweKG0TiOUlFiKJaBYErOZPBqpQRDeqHmbm4pxNwkmuqSu/YzneTh0Rg+OnTeZw1wfvXmALR+IWA9rSotJKNaFKSpjto1l+v/c/Ez1cwqnQyNQuYD1vVtXxj7DdlJc+zePQNulSwDNgovbgIyMVKNLvZrC8Fv2QaBRg8Di/EphflNZtkI2gyV8ENz17PbqgV6Qm5Zv4Y+Yk6j9uk4TQyLEHiaL+CDQuDsgJh/gLhZWukX7DO8iXrSsTB82m4wtWGai8VZNB3A8W/FBsHPfsGAsbJKOEtb80wgQ7AZUNqoi2DAwNH7bXnNEBqnkxabQo8FJMSVpRQylko8IhYBIojQIkpKkF7syAlAQ0tpPQSNss58RP7jTzSKhWBemqJoYsl4KKWhIFlCtuSnLis17Y59hLQ9kNAiyFkOPzMRQRupw/QZBg3q1oqGzMqDbXDyUSpkGgWp01uaNj2/CH5ZuwEihhPOPmIl3njk/tH+xDhOifnt47a5EaRM52I22uZooCZHkPE+on7XGOLTV4YNABmoHh7zFolLbnrcEROvBeNFasjEkGm1lz8TnpLiAvz6xCV+6Ua0WUlLBq2sHyFQ2qiJYcVI8Nnq4Vr8sKGhF1K95XSrespNisQP/qPxFmhjiDDfWSTHrAUeGAApLEgppqIclVEvjbd1KW6ZYF6awqUGQkRyX2i7bxFDt3zwm91iPuFQuaSITEGSkDtfHkkYnxZYSooGyWpq+W+42hR+2bonqOhDe3jeMj/5mWfXv+9fsxPrdA/jCq49qeJZ1AS6q/Zo8dIs0MZQoBdHkBE0MtcQICETyqtXEELGVGm+xsJ4T9kGgqQxolaxaEtnCrmz8OcLY2DuIbwZU3VWRpjk4imCzptbPeQhrH/p9EOgN3wZVvwo281avQeBQORd9P1JjMYy2lhxOPWhq6G9R3ZDbxFCqZ5UyNA5DSSSiBtYt4GgFAoc6Wh30asA8lbHb9iXJNM6LJrBdbyKwTAw1aBBwTeBZo6FGZmIoI3U4NMaG0uigTVW49gfgku8rXTz896uOrPnb9bpPiu6F2TUPrkPf0GhIvCwNgvDvTS4io9Kn65ak54ltWPIxJobEfBBo1CAgtmLgFTLJmMCKQqfNY5OYjC2YNdFDq8rTPMXzx6UbmBsXWSJ9EKR0vnFRgyAM3TdlKdy2V42uPImE1rgGdqd8SyUxDYILj56FjtZ86G9RYyXvWj6RDwJHjlwpHKoRSEIDDz0fraEbfWlHU2IM4kq71QGVeYhGKtzDpWUXc5nd4IMgPjwiTTcjAKntvud5ec/zjvU8792e513ued4jnueNeJ7nj/13V4Kwz/M87389z1vpeV6/53m7PM97wvO8b3uet1BhNkjG30w4v0Co90GgKlgCA3BJ0knx+UfMaPiurSWHlx89S0Gq1GCrfE229pFCCX8P8RHAWphGbe6T2/UWeNawzdW8qAZBzMpQpM80lQYBr4khBWFU0FUCpovWkoUh4QIUSefeoUafJipIOra7dAMaSI+AQDdp9kFAKU+U0hJHseQzhZSXnXIApk1ow6TOVrzp5P3xP68/1mDq+CE21UdCIZkU0lDPM1vENQhcptJeXWm3OqhoctsuA5fGa0pQ21+xYAntG30QcJgYSpyiDNWQMTHked5rAVwDoEtxuBMBXAHgjXU/dQGYAuAYAP/qed4XfN//hsq4KcTfjLi+t03zQCnrpPhVx87BcftPxo/uXI2h0RKmd7fh+288HrMndWpIJT8U5vNgGkxoiazfPdDwHesAjEJ7Dqbv3lXbcc/K7ZjR0xGqDaECUUfBcSaGREqxqXwQcJYLa8hpVhNDzjgprtoWtug7p8l2vNT6OQ9hSdZfa2PmeEjMcmqx66S4Nm6X+l/RZ5tf+Oprj8bXLz4aJZ9DEJfUxFBMP9btgsDImE1gqKI4XMoIpR3qZg04fzFQAZVx0vb8ncb50AQunV2xTQzV/s0lIGD5IOBNVIZSyAgIAEyGeuFAK4A/ATg38PWTAJYC6ADwYgCzAbQC+Lrnea2+7385LfE3KxQXayI0+iBQM9lWg7FYPkVJJ8WeB3zk3AV471kHY1PvEA6c2iV8CKuDYNVQWBKZWOD3DjQeqss4KU6KSL+opOGHt6/Cd25dqSU9QTwPQg2iNdbEEH9YOjcH1MZWQV+QoYg2T13DDrWyVYls3mpNE9kjqomktcpc1CCwkWKKt+2To8cHgUj91MftUvGWYjQIcl754Dz2TgAUOCnmfC70XUcmpPaWcPNMJnHucNqwTy6TONJsteBXBQS202E3fldxZcwF2HvS+vGQZ//qkhnBZoGSgKDCVgAPB/57GYB/lQzr8xg/nB8C8E7f939b+dHzvDYAXwXwH2NffdHzvLt9379bMj5q8Tcp7gyyYTTYX7WSCj34vp/odkF7Sx4HTZ8Q+btLE6wqgpOxiTl2z2CYD4Lo52Xsnfq+r7QufQC7+kfw3dv0CweAsomhokA7jzuQo+KkOE+sf/EUS9zCk4oGgcp56zWL5sTHZrAugzGJxGv7JlyF5JsXt2bxOJNnFAlrV6acFLtmQorFeJ7o+CBwSYOg5PsoRqS3JecJjX+Rj3KWRzIfBG4wscP+MQaRaYobd3oTP1UTQ860XPWMmxhKVgael2zuTGP7MoFLyy7Wmri++cWtnz/5u8dx0/LNKpKVoRD7M+s4NwM40Pf9dcEvPc87VSYwz/NmAPi3wFcfDx7OA4Dv+yMAPuV53gEomwDyAHwDwBkycVKKv5lxbbFWT8NYavEml2qKJbmFB++Cx7iZjqB5H1urIsOZDhMQqNYg8P34fizmg8DH7x5Zb6yOcp4ndGgUZ2JIpAwntOub1qkc2FbgObiNe0S0SVDXIJg2oQ0ffsmh8fGpiY4PSRNDtYIFZakRxqHzSSVQ0M4TJSzFuk0djIefngZSyYlNoUd9f9sTorVIFR9AIaLwRPtV0sPOZBoEiaI2xsSOVttJcO5IOvrSjrvjWKUOXGm3OiiOqdQmLQNBBegGXG5HNnFJczNKCA40ji9xa4k/LN2gIEUZqiHjpNj3/S31woGEvB1A5arxSpT9AETxKQAVYwWne553fArib1rcGWLDqT8MVLXJpTBpF31fTkCgPimpxITtx15BAYEMqnNRKvlYvnGP4lCjKZsR4H8+bmHIW76drXmceOAU/ogFcXHzFVdy4m2Xpg+CI2dPxKdefjhu+PCZOHxWT3x8ButSNioqJoaSHpYSmHqFoKYpRJU0mhjSpUEgZGKobtT+2T3PKU2LTnwfKBajNQiUxMH5XKwPAkatuHITe2Kn/XuOrmkuR/XtNAxjtmti9qQOXHjMLCtxj44tVFhlwHMOQO0iULPgypgLiK2JXdIAzBiHjIBAA68NfL7KZ4yKY4KJOwJfXZyC+JsW1xZr9TTYX1U0tlZdEFgsH9/3pSYL3iSbzlptVuxMgqa1GPaGCgiin4/ejLBuICS/GV4bl1k8T2ypF+eDgJf/euURmN7drq0fUNs48Iwlsc8INg5dRZB0XP7qxUfjQ+cciv2nKnXlpISag36BbAbLxOq8lXAEcW1/pGg4Mku4CoFW0qc/MN7WKVwoAYD1uwZsJ0EIlokhUcFb1OP8ToqFoqt7OcG7BukhoEGgmgltev0qyJj9pE7VxJDlNer+U7rwmVccYSXuQrGiQRBdBjx1TG2d3yy4VOysfVX9ejmpgMDhYclpXNwGxOJ5XgeA0wJf3cXx2p2Bz+dGPuVA/M2OQ2Ns01EsyR21uCRZN43pkukdGGn4jnWYILM24LItL9CSTJtLEFUVVWFi6P9dughvPe1AoXhFoaYCy9O24p4RXbxqMzGU8H3R26kmx9RczUE//3tUTAylycY8Dy5qENhI8bgGQXoaCAW/CsHi/OPSjfYSIkmUk+I8j2fiAJECAs61j20TQyb6JAkTQ4oz+qpj56CzVZ+QID2jVRAv8H+7tLfaOVobHdNcYi0FWaZhKiRtzymaDo3ikmCmJLBASNoentiwB+t2unVRIA2kUkAA4HCM580HsIzjnaWBz0nFv7bjb2qcvP0WoH6zqWqurQRr21SDVg0C4ZCTQcIHQQATSRgcLTZ8VyqFPFj5LUqDwGB5mT7AUW1iiCf5rzthLn+EkhCTDygRJIkbGNJkYihhsMLCG0smhkTKj4qJoagOyHtb0YTpt6QEc0JNEMiD53kYGi1ixaa9GCmUJyTdpV6ZV+jXrjhUzAaOFhmLC4KUSn6kgMC4EDfBpOLKCNCTQifFh83qwdXvOgWnzJ+qNuAxotfD7o9k1s9YPaC9Ra8GSBSFsY0Y66CZZ1xPLCBIQTuygUvLLpZ8oNEHQfL28MYrHsDmPYOJw8ngx/Gj1EgOD3ze5vv+EMc7Qf8HUz3P28/h+Jsa12+bB4fSPzy6AZ/543JF4dqftEu+L7UGdbtG9VJzSGWpipnqhjIaBApuhgcxbQOxbGKIv9W2xEg14y5reF5tO9CVXdvq2/Xw1KtqDQJtJoYSjnJxbcgmsmVWs9G12PaaTYPARSfFewZHsehLt+DCH9yLRV+6Bb834JS+amIoRe2jkhWW0F97GgIF6pqwyke0BoGqG6LcJobifmc8QG2uj2JiJwENAsU7FA/AKQdNxe8+cDredeZBSsNm4fI4RsXEkAegw5IGQSHC90kQEyaGXG5HNnFKg0CgklWsnzfvGcLfnticPKAMbujuKJMxLfB5K+c7W+r+TiK6tx1/c+POGBtKZdz91X3P45O/f9xuYhRTKun2QWDTTrUdTOc4rPpYeZczMaT49qIPoxWUz3lC55lJTQyZMglC7qxGQZ2KHoTpWsSb1iAwWZW1vgQE3ov4bJo0mZDhwUUTQwAwPKY5MDhaxKf+8ASe2NirNb6qBkGK2kclLzYdCwZjVuXY1xS+DxRUaRBEmhhK9j7Xu/KvGiWNGgS65eIpGq6qUGqvbXm7JoZY+2CecT0TENjBtnCrAs80xTIxVP+LqrXEV//2tJJwMvhIq4CgO/CZVyel/rnu0KfciB8A0NHRge7ucjDFYhG9vb3Vxf/evXsxMlK2JT44OIj+/n4AQKFQQG9vbzWMPXv2YHS07JR0YGAAAwNlO2Cjo6PYs2dP9bne3l4UCgUAQH9/PwYHy9kZGRnB3r17AZQ3Hr29vSgWyyZK9u3bh6GhsnLF8PAw+vr6AAClUgm9vb0ojZ3c9PX1YXh4GAAwNDSEffv2MfPkAWhDAR0opzuPErq94WpaJ3jDyKOchnaMor36XBETAs91e8PIo5yGDoyiDeX8taCILlTssPvo9oaRG3uuM/BcK4roHHvOG3vOGxs6OzGC1rE0tKGAzrE05FBChz+IUqmEX9z7PLowgpbAc0ny5PvlevJLBeN5Kqe17LxtqH+fcJ5Gh4e42l5pZNBonoJtzxsrV9Ntr1Qa709eaURJPQGIbHs5lBrGCL9YiMxT5bC/fozwR4cj81QoxI8Re3p7ufNUudGnsj+x6gnFUfjDFZuJ8W2vJecx66k4Msysp7bc2MHY2Fjuefx5EhnL2/1KePrGCJF6aisNxc5Pvs/uT8J5GpvHeOYnVp6i5lzZtlccGarWE8+cm/cLxuqpONRfrafC8BB/f/KK1TwVh/vF6klhnkp++Noo5/PVkz9W/jbmXN568jG+3svnPJJrI5E8+T5ww7KNWtd7KAxhaGgIvsF6AvSuYUeHBsp58u3lCYXh6lju+W61vcJgX/XwpKGevHIaeOdcr1QIzZPvl8fyuDx58Jjzkz/cH5mngYHke8JiUe9eo6M1h+LoSOyeENC7z23x1bY9vzBazRNK6seI1tL4cUMwTyNDZvdPKvM0PNBXfa4nZ2+M8ODD8zwrY/loodz+84w8lfz4M5YObyRRPQ0P7iNxxiJybmSynqLylPNo9KdWrxQ77pV8dp6Ce42R4WGleUrbmWVcnmyRVgFBR+Bzo0fNcIbr/u50OH4AwGmnnYbXv/71AIDt27dj8eLF1UZ75ZVXYsWKFQCAu+++GzfeeCMAYMOGDVi8eHE1jMsvvxxr1qwBANxyyy245ZZbAABr1qzB5ZdfXn1u8eLF2LBhAwDgxhtvxN133w0AWLFiBa688spyBoeHsXjxYmzfvh0AcP3112PJkiUAgGXLluGaa64BUO40ixcvrnbSa665BsuWLQMALFmyBNdffz0zT57n4bjWTTij7QUAwH65fbi0Y9xMz0XtKzA3Vw775NYNOLm1nO65ub24qH1F9blLO5Zjv1y5Y5/R9gKOa90EAJif340L258BALShiEs7lmOyVx40zm5bgyNbykojC/I7cEH7KgDABG8El3Ysx4SxifeC9lVYkN8BADiyZSvObiuX8WRvCC8pPIq12/dgY+8gLmx/BvPzuwEgcZ78sXoa2L3deJ4u7ViONhRRKvlYfucNwnlat3wJV9vbseIBo3nyi+WJ6Morr0RX/2Yl9QSItb0dO8b707T+dUrqCUBk25vm7WsYI/L92yLzVLloUD9GeFue5spT1Bjx05/8iDtPxcIIM0+q62l4x3oMPHV7TZ5Yba8ln2PW087nn2LXU66cp+BYHpenU9vLzh9FxvKDdz3MnSdAfdurz9NJg4/Ezk8+fGZ/OmXkcaE8dWCYe35i5al+zq1cHpJte088sqRaTzxz7uTBjcbqqXfp36r1tPGpB7nzdJS3oZqnDUv+LlRPKvPkI3xtNK20m6uecoO7qnkyPeeK1FNlvZfzPJJrI9E8rdy6T+t6r3vTo+X+5JutJ515WvvIHViyZAlKvm8tT97G5dWxvNi7xam2t2/pjVUNgvp6OrzwPAD+ObdnaGtknq6//vrYPHkee37yn7wpMk+3/P0mAMn2hHt3bNVaT93trVx7QkDvPndGcYfStte3bkU1T8WBPcrHiOP3PRyap7XL7iHXn3jz9Pit11efe327vTEi79sby4uFESxevBidpf7IPJV8P/aM5TRvdaJ6WnP3n0icsYicG5msp6g85XMekf7UFzvulXw/Mk++X7vXWLdqhdI8pe3MMi5PtvCoq8Z6nvdFAF8Y+/Nu3/fP4XjnPwB8a+zPB33fP43jnU4AQTfZJ/m+/6hYasnEfxSAJzs6OtDS0oIlS5Zg4cKF6Ovrw6RJk+B5Hvbu3YuOjg60tbWVpYGlEiZMmIBCoYB9+/Zh8uTJAMrSuK6uLrS2tlYlcV1dXRgdHcXAwAAmTZoEoCyN6+7uRktLC/r7+5HL5dDZ2YmRkREMDQ1h4sSJ8H0fe/bsQU9PD/L5PPbt24eWlhZ0dHRgeHgYIyMj6OnpQalUwt69ezFx4kTkcjn09fWhra0N7e3tGBoaQqFQQHd3N4rFYmielqzdg/dceT9y8DGEVuRRQqc3in1+O4Cy1HTIb0ER+arEdBityKOIDq+A/rHnur1hDPqtKCJXvkUIDyNoQQuKaEMRA2hDWWo6ggG/FSXk0IlRFMeea0URLShiEG3w4GOCN4J+vw0+PHRiBAXkMYo82lBAHj4G0YocSpjX7eGq95+Dc79zN7owghHkURh7Lkme9utpx60fPgm3r+7FJ69/ymieurxR7PPb8LbT5uPkuR34tz+sEMrTj99wJF6ycGZs27vqrqfx9ZtXGsvT+88/Gh897zDs3bsXH//9k7hj1e7E9STa9pb896vQ3dmGffv24V1XP4qH1u9LXE+AF9n2OlqAJf9+Zs0Y8aWbVuGPj28NzdNh+8/Enz50ZsMY8T83P4v/fXhzbJ6ixohtO3bj9O8+wJWnD1xwDJ7e0oc7n3hBWX9i1dNnX3Yo+voH8cN/buRqe794z4vx1l8siaynr776MHztxqci66m1rQ2Pf/mV1bH8+3e9gCvvXcPM01dfezQuPe1QobH8Xb+8D/98YUDrGMFqe/X1tGByDjd98nzm/NQ/XMCpX/xLZH+a19OCtX0+d54OnNKJP7//BK75adHn/hyZp2WfP79mzt00kMOFP7hXuu39/RNn4aCZU7nn3Lf89J9Yuna7kXr6wsvm460vOgytra3440PP4TN/fIIrTxM6WvHoF1+JkZER/PaBNfjvvz9npe39+yuPxTtOP6BhbfTqyx/Cut6R2Hp62aL5+MNjm63Mubz19NFzD8V7Tp2Frq4u5PMtOOKzfya3NpJpezrXe685aiq+denxOOkbd2N4eDgVefrWRQvwmuMPwNPbBvGGn9yrLE/nHDEH9zy9kStPbz1pJj574ZHo6urCFXetxOJ/POlM2/vAGXMwa8Z0fP6GJxvqaf70CfjHv1/APee+/Rf34+HVWxvy9N6zD8VHX7w/Tvjq7cw8feOSY/HKI6ZEzk9fu2Eprnx4a2ieHvj0SzBt8sREe8LHtgziHVct1VZP0yZOwF3/dmbsnlD3Pvf8b9+OTTv3Kmt7X3zlArz++Dno7u7Gp363DDcte17pGLFwejv+9u8va8jTDQ8/h0/9YTmp/sSbpx+8/ki88qRDAQDHfvZP6C+1WBkjjj1oNq593+k48tN/iszTo59+MV59xVKs3zWodCy/4IgZ+PZFC/Av//sEntjUF5qnB/77lZjY0cI8Yznnf27DlkFPuJ6e/MYlAIBr730an//bKutnLI996ULuc6PD/vtWa3NuJU+vO+UgXP/QWuv9qavFxwP/8WLmuHfLs7vwyd8+Gpqn9529AB958bzqXuO+ZzbjPVctUZKn1d98TerOLKPmp40bN+Loo49GgKN9338KhrBvvE8P+wKfeW/i1z+3L/QpN+IHgKoqDADk8/lqBwKAiRMnjkfcOR51S0tLzXOVzgSUO1mF1tbWmt+C70yYMKH6ua2tDW1tbQDK9tWCz1XMHwFAe3s72tvLg1Yul6t5rqenp/q5o2NcOSMqT54HjASadhG56oAIoDqQA+XBcPy5PPr9fPXv4DtDgecKYwNvGa/mucHAc6Njgx4A+A3PtVU/B9NaQg4DaK/aohuIeE4mT75frqdcfp/xPFWeK/o+2jonVOPizVNbR1e1/bHaXr69sxqmiTxV6mnixIko5VqE8qSq7bW0lP/u7u5GMdeaOE8VotpeCbmGMcIfy3tYnioy6IYxoqUtMk+5MRuerDFi0uTJ8OFx5amSBpX9CYiup1xLK/IdFUOO8W2vJecx68lraau+F1ZPPWPlHxzLWXnq6e7GuUfvD0BsLC+1VOTY+saISp7CnqvP01CuHa2t5bij5icf7P5UjmuYO0/IedzzEytPlbKtzLmbB8u3T2Tb3oTOcv5551w/31KtD931NHHipGo9tbZ3VPMVl6d2r7Wap9bOSls03/Z8P3xtVPLKccXWUy5fzVMFU3NuVJ7Kaa19LjgO8La9iT3d2NY3TDZPOtd7pXw7Ojo64Pt+avLU2tGFjo4OlPxBa3ny8+3V8byttbXmN1vrct48ee3dKBZLDXkaRiv8fPk93jkXuZZAXIG0+uWxvBI3K0+s+SnXPgEV6+1x81MFkT1hfnv50ElXPeVzHteeENC7zy3l8uH1JJEnAGhpba/O1YNFKB8jhrzx34J5amnvMLp/Upmn9q7xdj6AdhTHTJMYHyM49u6TJ09GxbG1yrG8UPLLYedykXkq+fFnLCO5dgAj0vXU0tmNIjjXRjF5SlJPlf0i7xhh+9zI8zwS/cn3WmLHvZLvR+bJh1+z18i1tinda6TtzDIqTxs3boRN0mpiaGfg80zOd2bV/b3L4fibmsrE6y60tXqS4Pu+lAMj7ho17OSHilOhCrY0wlhOiGTSxPOKiCNjhj8lLfi+2DgU56Q4rjxEHNSeMn8qfvu+0zCtuz3+4Tp0OeiVhaudxDwk2jZ0lUDSohUdi0SdGiehs218AyXkpDjorFFhekRJ6mRNtdN1HciWr2tOZFXi1/2bBipNXfVaQqTfB2POW3L4KYsPH8WIosvnxPJi1Umxgm594oFTtC7JqSxHVCcjuM4aGi0qDj26/RA3KMGETFvgTIeO9FZMmyV3UpwwIQ63I5tQWUrxtM0xGTgX1C3VZITj1sqLn2cDn2d4ntcR+eQ4BwQ+7/J9f7vD8Tc1VAZZWfSNpfYH6WJJ7qiEe9ElEXYSghNf08yBIflk5V1mM8JTlCLl7cM33vxFNgAtMQcHcQusvEBk//vuU3DojO74B0OgsgmrwCdISv5EEF1CkqSCbdF5z6Rws7M1H/9QCMGyttn2mmVolyEfI9xMNdXDdLvJUEklL6aF6mFpAMTmNgqUfKBYCj89EZV1ROWc98AlyZyi4qJVV1sLXnok7x05cahcWFA9lwaD0yEgiJrQXB7Gai4TWGwWvP1GRxJHx05tWfkv+T56B0bwpRufwsU/uQ+fuv5xPLulr+aZpO3ZhQsRFKEynvEIkZjP1P2kci3x0d8sUxdYBpM0CwgqKzQPwHEc75wQ+Py04/E3NzTGWGl0Ta2V8dymhkXJl7uNSWTeJEmwbEwsy8IWf6x4o+qbtYhUfePA5mEHD3EaBHHpz7kuFZWEp53EPSLc1DQVddIxTnRzYfJct0aDQKAAvZrPNuct4gOIRVw7wFVJZQ5L04FIJSdU2rxrZev74zd56xHVIEhMTNc00XW/84bjcIEmIQGVZY96DYLxz4Mj5jQI0oILVgR0XNAojKkusdaCA8NFvPFnS/Cr+9Zi2bpe/O6RDXjTFQ/gue3jVq2T9isKU4fspRSbUBEQFKJU4AKI7NFVriXueHqrsrAy2KRSQOD7/hCAJYGvzuF47ezA5ztcjr/ZcWFxwILKxkwHpZKsiSHOWxlNfsvURNMphmx+WYuFqJ+SplXkddMqjn7VOwIfJjUIkvQRKgvYCly1GvOQ6HirT4Mg4fuCARg1MdSa3MSQzWk9qolw54XC5KAJk+2IGuPmeOymQyWVuUb1OlQsuPGHS9Sl+3X4vh+ZZlGhbNQhIm9Zxs1VrENKVdNcd3sLfv4vJ+Ge/3iJmgADUFmPqE5GcL8zVNAgIIi6tOPwQFazR7SpQWBR2320YmKI8cydz27Ds1trNQZ2D4zi949uCKQtqQaBfVw8RyEynKFQ8mPHApaJofo3VdZFM683TZNKAcEYNwQ+v4P1oOd5+wM4L+JdV+NvWqgMsrLomtcqwdosn6Lvy00WROuUgg+C4GLOxJKo5DduJNgaBOJxqM6H6cWi74v1szjTA3FlKLJoSmR2wH5zryGqWvcMjuLhtbswMFKIvYFKxwdBspBF3zdqYqhN7jZXMI02m17SgxP3tqr8tDpmI14lVQGB3WQoxW/4YCENgbijbuNTxUd0muMuAtQTaWKI8/0kZymqx9sJ7epv9FJZj6i+lBbMV6ZBwAkN+QA/OnwQcJgY+tKNK0K/v/yuNdXPadAgIJAEYagIPIH4eVdkT62yPbQ08XrTNGku6asB9I99PtzzvPcwnv0foOqK+wHf95emIP6mhc4QK4euWxwUbofI7vV469S09kitDwI75VuzpjCUhnotArYGgXiaVDifFQ1PNbwHsOXDffazcckXOXdIkwZB2CL1B7evwvFfvgWX/vQBLPrSLbjmwXXMMETbp64iSG5iSOx5k6ZhajQIBN6rUSCw2PbCmsiTG/dg/a5BrvdHRTy6OQa1McEkVeGj/aWVclSfyws5KQ7EHaaxSBmmBoHgIB3ppFiRBgE7btWH3urHCSpjj3INghonxernDgJbQa1Y9UHAGbleHwRmL5vUQ8EsHIXzDlEoXY6PMzMksudXeUGPypjfDKRWQOD7/jYA3w189QPP894QfMbzvFbP874J4LLA159hhet53lrP8/yx/64yHX9GPBRudSfBvWmNn1JJToPA9TpNG8V6DQJGlUaaGGJFoLgTlHyQlRzmPS92YajUxBD3k41M6mxN8LZ66kvljme24ru3rqwebo0WfXz7H8+ywxBsa3RNDImFYNIcdo0PAkkTQza7b/153/1rduD1P72f+/2/PrFZcYro0Mwq3+MaBClatY1lRbXWXXd7i0ASAiaGHDvoKTF9EJjtK0mmKtUp1ZHztB4W1fgg0OCkOGq8cqyr1VBrjdB+u3j5UbNCv7/khLkA2Os12WFi3AeB3PvV+FNwMuhiW6Y0no2W2IJJEcG9SiF/SxOvN03Dv2IzgOd5NwGYU/d1cJQ9yfO8x0JevdD3/U0h338FwJkAzgXQCeA6z/M+B2ApgA4AZwGYHXj+C77v3y2Z/DBsx9+UEBpj5dBsYsgmJV/WBwHnc4brnoLgokaBwFCcjRoE0c/KHJ7wvEPbBwF/W8zl4ttR3CFJvZNiXe1y9qQOLeHKUl8s1z64XjgMKgdQSetMdN1scjMi6zAumEa7/mVq28gPb1+t5WanizTzfq3SKogMIUqotHXV4+JFx83BDY9tFC4r15RvfD/6QERcQBDhg4Bz9RM3p7B+VT3e6phvCCy/AejQthj/rEOoFH1ph+5A1pr3MMq41ewRWStUon7b6Qfi5qe2NPz+2uPmxoaR8zyp8bdyqJtUQJK0r1KYDwkkQRgK5wkV4jQIWGf+9fWvUgmwmS+kmIaUgADAkQAOZPw+AcCikO/bwh72fX/U87xLAFwBoHJ7/5ix/4KMAvii7/tfF0suG9vxNyuujx8+9BxaUZi0iyVfarKw6fiJOsFFhak6fuj5XfjlP5/HM1v6sGjeZLywsz/yWSkfBIrz4Vf/Zw7eRXrei38yrjxEFvRJFqGzJ3dKv6uH2oK57emtCUOIR9ciPmmoops6kwKCjhoBgZy2i829U3AM830fDzy3015iiEFpU2uaVPog8Gv/VcWUrja86tg5uPHxsLtc4WkAgGLMTUZqlHw/Uqhh2sRQkp6pvF9rGCao3LhVnYpgvj574UJ84rrHlYZPYS8oyrwpXXh+R/Q+I4jNVlGpujMOmYZ/u+AwfPfWldXfPnbeApx12H7l5xhhlOtfvJIqh7rJzVUmNTFkHyoXf0SgdHZViJHMi/kgUKhBkCdUSCmHmoBAOb7v7wHwRs/zfg7g7QBOR/nW/iiA9QD+AeCXvu8/ncb4mxO3BxDfj/cgnwSbG/qSZN4oqIzGQWE9YuoG0Dt+9XD1c9yhbFR9s7UO4hEp7yibwDrh7Wb5nBf7bKyT4roAWH0sSU+aQ0yDQEW1ipsYSh5nGKaHZZM3cYJxiZkYCrxncw4INBLXbKLrhtKm1jzltuCiveMoKjlRfcDiecB3Ll2EOZM6cOvTW9HT0YrH1/cy0wC4p0EAqDMxZFporBMdSaFiCkVnMb94wX7o6WhB31BBWZgya3KbtOVz2K+7nSkgqL1MYL/de56Hj523AJedcgCe2rQHR82ZhP162gO/s96Vi3O0amIooQ+CRG+DREMikARhKI3XowmcFNf/kmkQuAkpAYHv+/M1hn0bgNsUhDPfZvwZ8RAaY6UoaxBoCJfAjFny5SZubg0Cx+teBupZlqlvrrYqIiAw3PR9n//gLJ/zYg8/RU0MsUjSR2YRExCoGNNED8K0OSk2rBZuazMiEiuV8Tw4frDMHDiNZGFTOIyxRZo1CHTMmW0tOXzmwiPwmQuPAAD82+8ewx+XboxMAwA8tNYtbR3fj76mIWo/OWnXotQ1dcw3VA7UdJpjmt7djv991ym4+Cf8Pm/iiGqfBLaIocye3BErDKLir6g+7v162nHO4TNCnotOpWy7LlRMDFkeN6g0I9/3nVqfiOzjdBOnQbBy6z7usFReNhDxt5eRDCLy94wMdbg+fPi+JhNDY//aLJ9iyZe65e5Cndqy3xmcLyku8KPbMv8NhKSYrhsfvloNgpjTGpF1ZZIF8yH7dUu/qwMVtSraZ0QO8kUOhJKrhet93gY1Y5vFbWcw7jjnbc2GC+1IF7c/sw1fv+lpkvNuUpRrEISMm1FjaaW//eHRDbhvtVsCApaTYlUHQLyC8djoDPZdHVFROfxTrd1Wn63jD5iCmRPbwx+WINoHAU06W/OxZVzzu8VmwdsmWY8ldVKclDT4IADopIMXGqNZGdZFGN/3cffK7dxhKRUQNPOC0zCZgCAjdVBZNMriw0dazyBKvpwPAt6Z0wVTRDqhuCDSdVtJ5MDQRrnwtsWcp8DEkCEnxR2tebz2uDlawpZBhemoEUEbFiLrU5M3gkTr3NZCWySdwT5k09RIjQZBIaWTsySur7eScsU9z9lOglIq86oJjVNW0ymVfHz9Jvcsr/rwUYw4XBHWIIgUoHC+H9M3D54+QSg9SdBiYojI0GPCoTMVbQkbeBxr5Jrn9SXFSNyydT06tkhK2laSCwhobETX7RqwnQQhKPXxAuMQqndgFNv7hiN/r69+lc0h80FgjkxAkJE6XB8+dGkQVHYVdp09+nImhvglBNawtSaifkAj05ZVlyVlh1UtOS+2Dosx6TfZBr7w6qOMxRWHlVoVKOsZPfy3/kxrEJhqM5ecMLfmb5G+GMyTDT8iFYJJTq2Jobp6efvpB3K9Rnv2EafZb6jpMjEkNNz4wCMv7MbO/hG1iTBAyY+er0XNI+h2UvzqRXPQlm88BnjRodP5IhBAx+EXFXMTqlMRFp7K8ou6XEPlYLceD/H5rzExRKRdsGClUTb5Fc0lmSksOA6kxcTQp65/wnYShKC09BgtRNei6KUqtRoE2bG1KbKSzkgdDqwNmOiaXCvh2lwDlkpyk4XrdWoKKguzIJHqzEwnxfE5EWlGptu87/O32VwuXvwVt3EzubCcMqENpx401VyELKxohvDzxQhhymWn7N8YblLHcsIaBImi4+Ztp9UeNIs4+Q3mKU5IppNg/xt10WuqBO8962DMm9IZ+xylW28qCOubzYQuJ8VhRLUcH8DmPYPa49eB70ePccJOihMLjdkBdLW14N9eeljdd3l8/PwFySI2BJmxR3E6wuZyledirpkYyuXiizj4s81mwe0vj/GbrOZpseSjVJKzu9/dMe6S1AUBCw8Prd2FfcPxzr2pCMYo+SAYLhQjf4tbG9Tv31VeNhDVwsuQh5ST4owMFZBZNMqiS4OAAEWGAzcWvDVqs+YpVBmVhU4QqSQ1kQYBjw+CuENV02MelTHWRq2KrE/POHQa5k/rwtqd46rObfkcXnfCvIZnTZeoqduXxx8wpeZvkb4YTKHNPhyMOa0CgmPnTa75e96ULvzxQ2fgpic244s3roh8L20Xur78mqNx4NQJ+JqD5m2UMNbPTCjsRN+Qpztfx+NHzteqzCPwrqJ5hvgPnH0IFs7qwR3PbMPkzla8atEcHDazJ2EK5dJCIUwZlGsQhASoVoPALURNx9ptFip8EMjnYLRUkrow1NEyPpEnPYOlNHxv2zuE7hjfaVTSS2U8A4Ch0eh1rmh5ZT4I3CQTEGRkEEPaTn8MlU2XVRNDJV9q85eWGw2qcaFYouqbtcnlaSEirciGdRLeNpv3vNgNQdzt6fo1k+4DFirtzsahschY1NXWguvefzq++ren8cjaXThkv268/+yDcdL8Rg0M02Vqa0wV0yAY/2zTxFAw7jSaGGpryeGcw/dr+H5GTwfeceZBTAFB2vz+5HIe3nvWwRgtlfCtm5+1nRzj+AC29w3j+kc3KA03bLhJamOfIqVS9BgnevAXWT6cBcQb3zmHz8A5h8/gTZYUOi4VULmo4JoPgsj2Q7Tj5TyO9YpzJoaif0tyBlp2VCweQHtrvvo5uX84t6CSXirjGZBQg6DBB4FCAQGhMko7mYAgI3W4Pn740HPwRWESlPZBwKu2abHy5XQjkuFCU5c511Pd/G3cSOStmzyHiaG4w9Gm1SCwMKiJbt5mTuzADy87PvY50wettm7iCGkQBE0M2fRBEPicRg2C77/xOLRI2pwiMhQoJ22CD16e3LgH37llJfYMjmqPK6mNfYr4LA0CYUcxUXFwvk6oCetIChXtJRM+CNTWpfilHat48aNx8AmbzZ7fxBDrQfkcFIq+VFtpVej81W0NMHtQuhyfRIPgwed34bu3PIs5kztxwZEz1ZoYypwUGyMTEGSkDtc3dr4vd8veBYqS5pOomhgaGi3irme3YVvfMDbvGTIceyMUm43MpoPPBwF/uOZ9EPAv0vM5L7bhxp1J1h/Yv+yoWfj5vc/zJUACKgcPdoRyejJvukxtbUYKAjfwg0m0eXE/OGelUUBwwZEzpd+lIixUTUqzFcvvHlGrOVBBdNykuJbhoeSPOwutR9TGdNImSOkmtY60UBl7VOctLDiVN2ctytqlyHm0Dk9ZcO9VNWkQyJoYCvYlx5oHEy5tdCKTDZXxDGBrEMQV19Ob9+LpzXsBAD++azVes2iOsnRlJobMkQkIMlIHoTFWirIGgYZwCcyBvmYNAtP88I7VVuOntAGMIqotM50Uc7QRMRNDdDUIcp4Xe3gSl/76m3QnHDAFsyZ2YMveWqFV2hxwWtnoaupypnuyLYdoYhoEgfdsahAEok6jiaEkLcGBKUiKlGaLFJEaBGaToZSyk+JwIaIqB4v8JoaURKcEHWmhsv5VnQr9JoYiNAiIdjwP8XUd/NkFJ8UsktR1oehLvR+s+6QH5lTbURRUkktlPANiNAgESmz9rkH8+M41KpIEIHNSbBIiCnoZGeogNMZK4ft6JtjKoG5z8i6WZO/88lWq63UvSn12KaoIy7Q31bkwfbZ40vyp/D4IOJwUxwoI6gLI5Tz86p0nY7+e9up3px88DZ975ZFcaYqDzE0XB0wMcWNcg8CWDwL+Z4NpjLqVa4LghrmQQg2CJG2BzFigmJRmyxrh5RllY5/eOoYXH36ktpOwBkFkI+R0UkxIzKVHg0B5kFIoz1pIeCrjcMwFwdglGjYe4y+KsFKYSINAcn2i8hIVxX0oCyrTDZXxDChbR4jCpgZSpkFgjkyDICN1UFoUy2LjxrMJitJOijUkJoVQbDZRbTlpUkXyanLBOr27DafMn4qVW/u4ns/n4p0UiwoIAOCI2ROx5DPnYfnGPZjS1YoDp03gSg8PVPpjqkwMmfZBYE1AYH8DK0ow5pEUCgiSNAUiQ4Fy0rCOpE6mQcAmUjzgoAaBDqgIJ1WPFcUQCZMRJ8VE8TyxOcqqBgFvW2AkMokwTdbPn8omQal98Wmj00gwlfEMAIYLLB8E9sorExCYIxMQZKQOQmNsla62PAZGoiWy9egwp1AZ021OhSPFkpyJId7nCNa9TurzS2OZU0uUwz62iSG1OTG1nulqy+MnbzkRuZzH7VSVx0lxvA+C6LCP238yVzpEoLKQtbFO1ZV14z4ILC20RZwNBzfKNk0M1fogoDjKJiPJgQQltfgMuoQ1k8iW43AX8/1oJ8V5Qa+6cV3L89hzYNr7JpmzIsXpCBNCq3TI7JyJIc/jMDE0/rvNZsHvpDiaJHUtsr4KElzjUG0HuqCSXzLjGShrEGSGb0yRCQgyUgelQbaCaJKKVGYsxRSKvpyT4pRvdGRx4ZajzIJV9a0PU7eP7//0uZjc1QYA6B8ucL2T9zhMDMWUoekDeyqtzsatcl1lbdwHgaVKFDlfD6bR5pwYjDqNJoaSQHG9pYJsyaEfVhlTudUpSsmPXvOo0tqqjEce2LKUtLdhKvsC1akIcxCqUuMv2sQQzT7nIb6Mqfgg4IXtpDiJBoFkPQZ9ECRsB5RakUvm6mxd2gmDpUFgs4bzdIoo9WSimIwUQm8EEV3I6rC3XAnR5oQ5WixJTS3cGgQE694kFBdDhQh1e5ObEVPFUhEOAEA/p8ZQLhffbuMOwk1vlKlswKz4KNamQZCZGKqHipPiYNRpNDGUhNZ8to3IiEdkbUb1oJIHH9Hr9xbB041oDwTl8OPmDCqafrqgcp6muphHQg7nlK4PIroXwe0DgDEfBCImhizuA5VoEFgwMaTUBwGhdsSzbKSSXkrnF1Q1CNI+p1EiW9lnpA6K44dokn79wAvqE0FgEhwtyi1euBddBOteKw6bGGLB1UYEgrVx05xXg6ClLCFgEnd72vQZHZWbe1QW9iowrkFg6XRFZDgIbpjsatWNx71i816L6aDH/OldtpOgBSpjXJqJOhBxeVz3fT9SmCl6uBHVBnnLJ+1NmMphkeqDvbDbu6qn6219Q85ow3lefBkHf3XBBwFrfkmSflkTQ8G3ko6/lAS8POVBJb1UBJ5AnA8CgwnJsEZmYigjdRAaY8cRTNQdz2zTkw7LlDUIJEwM0axV67hQKpHaMCwfBIoXbL6s2m0C9nEKCHI5L35hGJP0ZjUxBJQPZEwe5mkzMWTaB4E1DQL+fhjsFzZvLVWUHnzfx8/ufs5eQghy4oFTbCdBC5TGuDQQ6oMgopBdPoDwfYYGgSonxWP/5jyApadI6cBJB2QEBAY0CFTmtW+4gFO+djt62lvwvrMOxkfOPRSe5xE5Jm0k53mxdvlrTAzpTQ4byxoExZLcTqfGB4F07GPvE2pIPJfDqKSXyngGAMNMDQKLBUaniFJPpkGQkToo3vyikKLKssHm2F6QdVJMoQBdgMhCJ4jvi5sH4fNBwI+NBc3AMJ+JobwXP2bFpd/0wpLSQnbP4KjR+LSZGDI8S9iyDCM0FhBxUlyZO5/d2mctDbqYPakj0fvH759SAQGdIS4VhBVnnAkdF/HBclKstlHF3qpOeSOmYrNbdTF3tTXe3dSx5uobLuA7t67E9Y9uKH9B5aS0Dh4NgtrnabQLFmwfBPLh+r5cNQbfoWiqVhYuAYGBdPBAqdkOhfhBqZCi5pHBIBMQZKQOQmMsKSgM6qMiHiozYqlfUFAtXVGfGqrzYaPt949wOinO5WLHrLhuY3phSWkhW93cGkJb1hkBt7WoX6rZEvKIjAXBFMqqzqugEvVtK7ZaS4MuvvDqoxK9P7mrVVFKaEFoiEstLhzkiVIqMZwUi578JdSwSF/p1kJEPqBcuH/hMbMavou7QZ+EGx7bqC9wBXhlCUHcUyaSEosKf3lJ2pOsKUaVeyRKAgYuE0NE0kvp4tXwaLSJIZsaBJk1CXNkAoKM1EFojK1CaSNk83bWaKkkNRnz+yCgU84mcGWyDFuksVoBTxsRaUYl3zdeVkfMnsj1XD4X377veJp9MGncxBChZnfV/WuNxmfDxNDHzj0Uv3nvaUrjs7UZEbmxHjwAarHoDLcy1oTd7HSdpAf8aZ1z05ovW4gUp+wtWAqo1CCI9NFQWT3FBEfpwAkALjlhrtLwqORPdTImd7U1fKczr/et3gmA7gUjD/EH7zUmhmz6IFDgpThJ+l/74/twW8x+IYzgnitdJobin6GSXJ1CQFFYGgQ2ITLkNwWEmmNGhhqoLBqDUEgShUnQ9wEZv1jcjp/Eg3aaBg0CSiuzAIVSY6UnTauIoMvG5eM3nDSP67mc58W27/4R9mJNtemCOCgdnm3YPWg0Pn0mhqJpzedw+iHTlMZn6/blqxbN4X422M4uO2V/HcnhojJW9XSkT0BApyfTgtAQ13TQXMXw4fvRt3iFBQRxTghk37fE5155JBbO6lEWHrX8qeAjLzk09HsT+1qi2wfkOMxwBnGhXejyQSBLzR6JaDuQweZt97MP20/oeUpnV3Q1CDJMkQkIMjIMQGFQqxxy2F4EjhTFJdOE5k3SUF3XiZoHUZ8P8yVzyH7deA3HYWgu5yVu38ZNDJmNjhS6zKSx+oiO2/OmhUoVuttbuDdOwRQeOG0Cjj9gspY0xVGpmYmd6TOnQ0nYR4msVFTTWKJpdFJc8oFCxByhasytmmmLKSdKB04AMHVCG2786Ivw+w+criQ8KvlTOYa2Rsz1RLJqBc/zYi80eDWf7RWWipht3CRXeehLafjmMzGkJ+5ZE8X8O1EZz4DMB0FGJiDISCGExtiMEGQO2PhNDAkH7TSuZDfM7jjbxFB8mGImhvifVYXnefjuGxbFPpf3kgsImtlJsWkGOH1LiMISAsyb0qk8PpsHw5+5cCHXc/Xt7FfvOBkvO2qmjiQxqWyeW/Ppa/dN3JXZZAWjneiDPN/hQwg/8rCtRdjEUDh/eXwT1u8acNKZc2s+h5PnT8WnXn544rDo+CBQGFZEYGY0CGi2pxyHC4LgesauiaHkz9lYX6tUIKDUjLgEH5rSO72nTehSC6UlR5SQG7CsQUCojNJOJiDISB0Ub8TpcDIpSmVItz15jxTEbQy5YmvfNPVt3XbdRiHuYFRtRkq+b2UzzXPzu7z5Sda+TW+UCQ6xxugf1mObs7u9BUfPbfRb0dPegnMXzlAeny0NAqAsFOOi7rHJXW342dtOwvvOOlh9ohhUxtUQS2nO08RdmUlWLmoJ6/IsDQKbhxBJKPnRjtiVmRgC8InrHotd71EW5L/rzIOwaP/JicKgkj+VyYgKysR8TbfHeWImhjSmRFXcTCfFNgQEQR8E0o6Ox6wUEGpJPGs2Xen14OHzrzoSkzg1T6mMZwD7LIFO7WboxP6pZUaGYugMseMsmKHO7qYsVPZbIxJOCPjPkyjWvjkoLcyCjIbUOXMBovjSB5W2H4YKE0PGfRAYjY0WujQIAOCTFxzecEv9ky89LNLsQBK4D+k1kONsr1FPid7ETUrlsNLVQ0sWhPakpMjKRT+sIna1r/m+j5JmJ8UA8MgLuyMFERUoOb2sp6M1j6vecXKiMKhcBlOZiqi50cSUR7XLcWkQBD8TaRcs2BoE5tJRQUXdVy2fEWpHUf5gguhM7wkHTMHf//XF+M+Xx2vNUtGIAthnCTY1jZr9jMck6fO4ltH0UFwbnH7INPxz9Q7byQBgX/o7KqFBwAvFuteJK9m17YOg5NM1WZDzvMQ3R0xviCjddDGdlDiH0Ul4ycIZ+P0HzsBfH9+EwdEiLjhyJs45XL32AGB3rORtP1GPmU67X/dvuqDTlymRbUTVIlKaPuyYBVSBD4YGgeDAldg3EfE23JLQZBuVAzUT6y8XDr114Xnx+Q/+bFWDIOHaBrDlpDigQZAgjDw8UuskHkGzrvRWqnHO5E588JxDcPisbrzrqkcYz7vRx23upR0polSQCQgyUoeNRfHMie3Yunc48vdLT5qH79zyLIlNj207k2G3yXW80xTUNXWqh+BxN93q4fNBwB+m79Mtm7yXfMQyvlEmtEjjVd9VRf+wPg0CADhu/8k4LqHpBR5sCnl4D8qi0mh6jq+qzlMdRBKgohnkPHcPdKPINqL6iTYx5EuYJaRByY++EGFa04/KAXoUSQ/EqFxUMOODQGEkEVDtcTlBP11WbaRzPxf9pBUNguBnyeKrljuhdVKUNlcQXeu6+mo8YOoE5vNUxjOAXYU2p2ZCRZR6CCsgZmTIYXoA+fm/nIS3nHog85kZPR24+Ph5hlIUDYUDDhkTQ7x+C5p97iBQvaGEbZiZTooVb1V82PFBwEMul3zMMr2wpHQzUYcDXxYDGjUITGLT/ARv3GQ0CCo+CGgOIYlQUZSdrXkFodCCzgiXDsIOg6MOiH3QWKvKwBJuiN6YT6xBQLwRO3cxIgKV5Ry1lmtmJ8Uel4mh8SdcmKdZ1WnjJnnwIF12r1SVD6hIkCJ42oKp9MZVK5XxDIjZnxMdJzLUkgkIMlKH6bn13IUzuBa6X7roKFx2yv7obm9BV1veyC3RMGwP7SMF8RSMFm2nmiaE1hNMCoL1x6dBwB9eqUR30+B5Yg7YwjAtIKC0kKUkrHAJE23m/WeHOxPmNjEUUbemN9ClqgaB0Wjx4gXTtcehoiw729KnjEzpcPX8I/SYGbNNVBH7jFv41GGlXXzMdcv0oGno5E9dOqJC4vXbk0Y8Dg2C4O9W/Zco0sgzjYoSo+g3hmceMZXsuPGfkgYBC0en5gxBMgFBRuowfWDkIe42QPnf7vYWfOOSY7H8iy/FE194Kb5xyTFG0hfkb8s341PXP2E83iAyGgS8JoYcmV+VUb9BoirZD9UgMJjWsg8CmmWjwlmscQ0CQv3M1YOktJPzgIuPnxv6G6+pjUgNAtlESTKuQWC2rfE4tkuKirLsakujBgGdQe7Npx5gOwmJCS1NRhG7Oqz78CMdY7YIqm25plkoSlrypzIZ0SaGaOTVBh7ExmO78gHetU30czbmnmCZyZsYSva+Dvh8EGhKcF0dx9UqJSEga79sVxufThmlnUxAkJE6TK+j4hwo1f/ieR5a8jkrh2wfuXaZ+UjrkHFSPKWrTXk63n9W+O3WDPUUSo11zlZhVBu/7wN7BkfVBqoIFWtC0+tKSptVireWXEBnHXa15fG9Nx6HhbMmhv7OG3XUvGq6+ZUsCQjaW3La+7aKsjx5/tTkgVCDzhBHaryVRSQLZSfFbo7rpRJDg8Dwjtv9VsOGynmaymREmxhSGEkEVLtczvOE+o5VHwS8axvGbzbMPwYPhJP6IKBkzpWrLeiSD9T/HacFoycZUpjcn4uQgqWQM6RPLzij6TE9fsSpuUb9noZNnwyiDodnTmzHEbN7OJ/mK9OJHS143Ynz8LN7nhNKCzXqmxCdZVktore8eRaYIouUR17YRfZGoopbI6ZvnlAaukQdYGeU0VGHV77jJMyc2IEFM3rQ1hK9y+XVmol6yvwNOzttzEQ/U1GWHzznYPxh6QYFqaEDoSEutUS1PZedFLPSLaxBkDAt1PcYScce006fozBRzNTrUiflrMfts8c/uyBcZFWnjbpWMdz6Y1t7SsXPZWJIU9z11eiUiSFGoThuwSuDk0yDICN10LFLWSb6kKM5EREQ5DzgsxcewV2nvFV/7XtPw2EzeYUOdKnPLqWFWZDQQ1yDCxDKZw0qFoXmhzw6o1eJcuUSRsdmpKM1j6PmTGIKB0Tijjr/aRYNAiC5f5LYGBQEf+iMHrz+xHnJAyIEtXWk64QdBrOKmOqwfvjMHpy3MNonxGiItmSFvOCOO/VOihPnj0YG4wQdkzpb8apjZ/OFZVFrjtLN7yA5Hh8ERJwU81YT6zkb7VpF3VfCoNSKqO6JwyAi74zFBQ2djORkAoKM1GFy/KgMVjw+CHi/TzvDAiaGrnv/6bjouHA71rK05j0cPXeS0jB5mTu5U+utJ6oLfB23AanmVRQV7cH0jWpKC9koe89JeeNJ+4d+/7HzFmiJzzQ2q5BX4yXysERlYjioqN+b3he5tEb41uuOxXffsMh2MpThUNE7S1QZ+z7dW8BtLTn89G0n4rSDw81qFYrR6c4LaxAka4UujR8yUFqHRPHb952Gx/77AvzozSdwPR+VJRW+quIg2uXGfBDwY9PfmIpqstGug1s02fKj6IPAppPi+vE73tE2nQGNaWLIWCoybJIJCDJSh8kx1qv+y/JBkOkQBBHRIBC1bcxTojadDx4xuwc/eNPxmNLVqiQ8SgsKFss37mn4jnXAT2mBqRsVVWjD7woVdJmieNWi2Q3Cm5ach5ceOVNLfKaxOXZwOymO+t6aBoHZeEUPRqTiUBRBLufhkhPm4dWL5qgJ0DKUxrg0EFaeUWXswyerGZbzgNZ8DqcfPD30d9b6tsXwyR8pkxUacCF/HsTm2qgm4kJeteHF57/WxJDm9CiA1Sas1LWCMqPog4DnApGu9IqaGKJiMg1gC4moCu8z1JIJCDJSh8mDj0pczCgzDYIaRgR9ECjHarl7eOWxs/Ho5y7A3f9xjoLQaqE6b3/z788IPa/aBwFlVNwMM92kKW1WdR0kHTl7In721hMxe1IHgLL2z4/efII17SPV2NyL8MYdbW7BbOIrLcz0xsjjMK2QOA7FowedkSEZhIa4pkSXZlhixhpG1BjG8okjOm+m3cRQUqicp7HWq6L+oSJ91hk4rSHa4/hMDNUICNg5OWxmt4JURaRDwQxoR4Mg4KQ4aRiEGhKPNoSpqUakDZPGqgkvVwrJfTInxRmpw44GQfwzvN+nndGCvtmF5+CIQrnnch4OnDZBebiE1mUNPL+jHwdN58sz1bMBHbjog4BCH6qg6yDJ8zycf+RMnH/kTOzuH8HkrlZnNHZ40JEX3sU7b5unYp7Pt7TxNZFN1WWZli5CaSOapnEnSLSTYrq3gKtr/igBAUuDIC94WCz0dCOUBPlhpMUHAQvRFEbPeZmJIV7iLo2876xD8O+/fzxRmqJQoxFsvl3XCAgk2wHF9sNzH1Gbk+KGv9n1SkXgCbDLxKYGQXdHdmxtikyDICN1mBxjk/kgIDQbGETExJAo1Eu0mQ9j6s0MsdYYPMsPgmtRKSqLwhMPnCIdhunDLEpjl67hJLhYnzKhjVSeVaBjM8JbRNwCgsjvzdZFZUNkXoNAf15T1qyVkZWLfiJNDPn6nc/PndyJy045QPi98TV/eOJHGT4IxDUIkjVC6k046dhGXQACiI8jkRoEBrJKyTRMkLIGQYyJoUBbipumX3/iPBXJCk+HgnqycVDs13yW9UFAz0kxl4khbZeMav+Oq1dK4xlzf26xgt8sMWdnyJEJCDJSh42DHBkfBHSmArPYNjFkcw7WcWc3CMUbHBXaW2qnm6RptemITCUVFfR/Of1A6TCa2QeBrkPbtAkE6rGZPV5bq1EbJtNpHymU5yzzPgj0ZzQzMUSfNMx1oT4IIp714WsXxuVywNcvPhq3f/JsnH8Ev1+ZWA2CEh0fBGmfwyjduI1GjdaI7sPDlVv7tIafBJ6si5gYoo6Ng2IVRTbupJhO+VMyMRQ3FLgyXtvsX/tP7bIWd7ORCQgyUodRDYKx2OQ0CDQkyAEqhy064FpIpvoIg87CrJ62Fv7phtICUzeVzcBFx83FhLa8VBimWzSlPsQy6ZCEtI/PNjcj/D4IIr5XlxQu+oeLAMzfsPREbStIoPqQzZVNbhxpyQdpIsrY9/X7IPBQvpV8yH7deM1x/I61q37HIjpmgaFBYNoJJfUD9KRdTNS+vw3ENQgivk+eFCb/+YcnyF4w8jxP6NCcJcifP033AWPymrJ1k7yy75JtBxWtL0rtqGjRVl39GsItE0PR5WarRL//xuMsxdycZAKCjNRhdG7lOpCO+p7QbGAQnSaGeLCqQaDZxNCZh05XG4FCGjQIEi5ACK1BExE8NHjVsfwHFTUYbtSUFrK61v+U1H11YDN/vIevVITrAyMFAHTtoidB+ZykNjhrpCUfVAjr86wy1m1iKIjIfFZ5Nuod1vpWVEDQDDb6k+BC9kSTGK01pzezy9b1Ynf/iNY4ZPG8+LoO/sy64fyKY2arSVRUOlRUk6V2XdUAkHyfoI9irjWbKYFGekwM2anhLskLdBlyZAKCjNRh8uCdJ6aohR2hucAoOvd9fBoE9tBtzuG9Lz5YafgqEVn8ULqBoptgsciOCaYP7CmNXbpuCFESgujAdvYO3i/eYXnk3Gk49fsqGgRWfBBoj4V0cLagNMal4aBXJAc+9AvjgkUqsjaJ0xreO1SIfFfUxFByG/2JXtdO0uRROlCLQrTv2szRtr5hi7FHk+OYB4PFzJqm338W3T1SBdsaBLKUEmog6OArf12BE79yK977v4/ghZ39oc+Y0gyN9aNBaDij6IPAhfE+TWQCgozUYXIMiXNYBqRmv5wa0ngLtMJRcyY2ON7rbKUhda8/yGUvMgjZjdRMPjB2yI5dTe2kWJcPgpSP3DoW2yIhXnzcXOnwbGkQmB5zPM/Tnlee8OdN6Qz9/vgDJjeGl5J+k5Z8UCay7fn6TUMExz+hg/TKml+ifZg2iUO9DSddR1AXgAC1c9g7zpgf/7xFrTlCy7oayubA+J9naRDoNvOlInRb7Xrch4Dc+371X1qbs539I7h1xVa86YoloVoyutZ19W02rlpNm6CTxdYZCtXxKa1kAoKM1GFUQFC5TcR+KBQX7Ge6Bs+GSLdtWxa6TQx5noevvfZoXPG2E/GeFx2Er118NP704TPURiqJyIY/LYf/PKg4qG1qJ8WaVquU8qgD2/n7yLmH4rSDpzKfoSKIGhgpolTS7zi1HhO554nj4+cfFvr9R15yaGN4NKosgxjhTorDG4sPX7u2jsf4i+c9mXYurEGQ1MRQynf4LtwoDSbx3S86CHMnhwtbq89HtEUzDutpkvN46nr8d9YeT3ebURG8NQ2CwBG/DBQ1CIJs3jOEe1Ztb/jeVHLj6pW6QLeCLQGQC+N9mkj58iGjGTFqYsir/Tf0GcHvMxLAUagmbdvWo97ec2OAuZyHlx41C5971ZF4y6kHYnp3u9pIJRESECh8ijq1gkI3RgVKC9lidVOitj2kfS1qO3+e5+GTLz2c/UzE9zY2CoOjReM3p3Kep72v8QhhXr1oNs4/YkbNd5ccPxfnHD6j4dm0dBvb/SNImKZGGogq45Gij6sfeMFY3CLn9jxaw1EI+yAQjkHt+7pJnD9KnTSC4Pi9/9Qu/OGD7As7djUIaJanx2Frj9fEkH4NAvcu/FRIuoS2ZZtehM/d8GT189BoEau29mnTVmtoCzH1SunOKKsurR2hECqfZqDFdgIyMlRjVoOg9t/QZzIfBKSwqUFgA9Fba7poMDHEeLaZqihYPa74ICDSpACU24rv+8rbTNpvq1AS8kQR1c5sVE3/SMGKDwLtcXA8096Sx0/eciLuX7MDT23ai+P2n4zTDp4WetiSlm5DKRsTO1oxvbsdO/bRtBHOQ9h4E1XGj6/v1ZoWoN7EkIgGgTf2jnicpp0Up30OyzuQvfoqmDWpA52teQyOFiOej9Ig0A/V4izLB9SkjkqfYK0l7PkgqP1XFBfM9/aN+Yj54e2r8KM7V2O4EO1UPin11Rg3/FMV0NVjSxBEpe82C5kGQUbqMDmEVAZ0pg+CqEMOsssxd+EpUZuHz8qdFHMER8WuoYhghmcBkhYhQnDRI1tTpheW1NZpRQ3mX9K+GKUwLMQaDbB4WFJP/3DRvA8C6O9rvOG3teRwzuEz8OGXHIozD51OZl7RBbXuv/hNx9lOQqqo0SAQ2AlXNQgk4hQXECRrhNTnsMQCEEfHIFayI7XmTOSVaHHy+CDgTbp2DQIlJoaShyFD1URQ0veJb87+9sRmfOfWlVqFA2HEjeeUhjOKF/golU8zkAkIMlKHycOyqgaBjImhbLBrPpSbGIqHykGOmJPieKgtQd9/9sFS7wU3fq6MCdSEm4WSr/z2Eq0cqofC4Yrspt/GTav+4YJxHwQmGqFyoXVqeg6tfEzqbLWdhESE+iCwWMQ1gnmBhOQ4LgVFkW9yQX49ScdxF27chrf76HRHCavo51QfZR8E7Gd424LuZY+K4O35IBj7V3KdUyrVhkOV3z+63kg89bUYV6uUBLqsJmB8HTxGetaWbpAJCDJSh9EhhOM2EaVbkGnHhQ2DaagKCFjLSOoLzHqzTR2tObxm0RypsGpMDEmOCqabPZEmVaXk+8odZ6V9KNGRvQUze5SGR8k838BI0fi4pN8DgfqyTEu/SUs+KENlvSZkYsirvCMej3EfBDSKVxvU1iFhiJjWino+9qWUo9LEEJUxh4WtNCY9+KXupBgoj8F3PdvoqFgHjSaG4jQI6LRN1n4q0yBoDjIBQUbqsOGDgBVp5C/ZYKcc0SI95aCpWtIRheoq51lImr61FoWQk2KOR20uQq97/2l4yeH7YXJXK04/eBqueucpOGrOJKmwVNSP8ZsVRNpUhWJJvQ8CFzaSSVCdv1MOmoqpE9pEU8H+ldBZSf+IeQ0Cz3OvHTqW3EhSkg0yUCvPWh8EEgEINvScTF9OWGhpv3FJ6UAtClHNGZsmaake7OY8dSaGdKNivrZ1EOon1ACo+jAgfMXL5oW52DZMpRHHYEuDgEwnbxIyJ8UZqcOoiaGKujHzmYjvs9HOOh8/bwHe/IsHjcVn47CHqgYBa41BeYEJAIfO6MGv3nmKkrBqTR3IhqEkKdzQaFHjlEpAKUe7zVAj6VB04LQuvLBzAAAwf1oXvvfG45SnIVq4br4FDljyQaA9DuWRUBsd5KAmmCGWHCXYzFMwbpG1eKVdiM65LSKODipxJexLRJZ+2nAhf6ImhkTCUY3IJR6jePGzSprGR3smhpJpADihQWDUBLVYXFT26kDc/twOLgiE00QmIMjISEDVYRlz3KJjJiHtiJap6xoEXHESaWj1mw/mLQQeDQKLQgSVRVrjg0AyDPMmhmi0qQpF30fep5Um6iSpw2kT2nDHJ8/BU5v2wIOHI+dM1LK5iUqjjZoeHC0ad77neSZMDKmNgdjQIE1KskEHYgUqq0HgVf+lf/hDbZ5WDZW1LYuwdsJqCjbnPGs3g2PIlVXpbCeDC7edFCd9P5mTYxOYHIdFTQxRauJsJ8V2ajjt8xk1MhNDGRkJ4BmuKJlJyKilJZ/DNy85xlh8zWzvuVi3qGAuQPQmJTEqFyo1PggcqVBqySyWfLKbW6ocst8E6Xc9r7zROnbeZBwzb5L0pkv2VqCNjUKxVFLuCDsOIxoExMOzBbUxLo0apzbzJDvv8l0KakRmjEzaBqm14WYkrA5Y81fkftFAXVJdQnngcFKcovHR1j7Ar2oASDopJtp+gti8pB9Xra4cgFuzMORG8aSGTECQkZGAcRNDjAVfzLsZ6pBZJLbk3R0GXWpCjRoE0c9S90GgsthVLApNb44IacICGHNS7MDmhBI9Ha0467D9Gr4/ef4UC6kJx+ZhST0FDX4u4vA8aD9xb2ahNYu05IMKoc5abZaxpAZBZb4WnQOlBATCb9S9n/JGXHLgRDKsBlj1ErWWM7HGo3rJIud5sfmn0tRV1JOtvFS6k3wrcMDEkE0fBHG/E2nDALsObQ271Padacfdk7GMDAJUxivWwEVp0E87MmVtsnqauSk0+iCIXmVQ90GgVIMgaGJIMljTYwy1g4eyk2LabYYi333DIhw9d2L178NmduOHl51gLP64dhT1u43WZ0NLxcShkOo4ZMI7d+EMpWlQAbUbqcSGXGFCbbGbT0aV4Jo9J3DyYNLEkOt1rpt6rVRbsJIRrkEQ/XzUbybaAlUBgUMWhhSZGLKkQYBkEoLxLR7NdgQAeQlfMLLUr1/j6pWWBgHF/Tml8kk/mQ+CjIwE8KgbR20kyDqEIsKnX7HQSDwG1wvq7T07NGGKtHfyGgQKi13FrQhqB/amKR/e2k6Fe0zvbseNH3kR1u4cQLFUwiH7dXO2JTXtLfZGVdT3NjQIihaEUJ7+cY7C0EHJOV8VgklKG1adFAc+C/kgMGhiKIONC3N+2HwqZ2LIhAaBvrDb8jkcf8BkPPj8LuF3TfjioYStsSLpWqOi0UNUzgQAsGkwwCUTQ5kGQUYmIMhIJZ6BjfVYTGPxiS/4shuv0XS05nDBkTOF35OZP1xeehJaT8Qi5KSYg7Q4Kc4HApNti6abAaWFLJD5IEiC53k4aLq8PwKdRPvvMd/+iiXzI47nAQMjBb1xqA6PuBYfL9TSRGzIFSbU1IpVHwRBzT2RdMSv+cNokTIx5Hila8ZVE0PsA2B7WnO6yvMvHzkTC2b0oLMtjxO+cit29Y8Ive8hXsuHyvioIhnWNAgSmhiqvEd5Kd5iUoOg/u9YDQJ9aVFK5qS4KchMDGWkkreeeqCReKq3iVjPGElJOvA84MjZE/Grd5yCQ/brNhanKZQfxigOTycNTopZPgg0pyUpKjfuXs1BhWwYihJDNL44ipkPAqOoqn/pG1UW2l/Rt2FiyL1IZIKjuPGjppWVHRarJVi9Iu2PZ80fhkwbJ9YEyeGCFnbYOMKq1zSaGOpqa0FnWx4AMKWrVfh9ivNDFLxJZZW0jDBRBZX6l728OC5goNsvTVoMEIXSHM+qQVvDrkPDQCrINAgyUslnLzwC63YN4O6V27XGUxmv2Cqj4b/t19OOSZ2t2DM4qiFl7vGaRXPw7UuPRXtLXj4QmduLLksIHKLRB0H0szwLVJsHwirX78HbZLLBmtcgMBxhDKXMB4FRTFV/pIkhQ/EHsWHGyvM87Vtt5T4IUnIQSjBJTiN6UKqbGsG8yHtj/4oeNLXkZTQIMli4oDUYVocy+0UTh4e6SjNpP+fRpKMi0FWRDmsmhlSFQ7hb5g22E+GoaDRhADE+AjMNgqaAsCwtI0OezrY8rn7XKbj/0+dq3YTI2iMtv+PhjSfvrzZBjpNIOCCJySmHwmGMLURMDBFeXwJQW+7BvYC8BoHZdkDppgtQud1tOxUZosS1o8jDEgvjXtkHgdk4PTSHDwIKaaiHWpqopcd1apwUS2kQiFWIyYOpZoHyQWSFsGpnHQBHCsUNNB9dGhlJk57zgL2DMQKChHFQwpoGQcWHgOT7Fc0Byt1SxCF9UoTlA4404myv1RxkAoKMVDNncieOnD1RW/iVTYKM0ykA+PeXHq46Sc6iYnKUObh0WSrtUsobNAhYDxNfgKhcYwYXrLIHn01vYijzQeAksu3Ixv65WCoZvzllop8pN3snc1mC4EymIk1nH7afgpSkg7DStHnBIVi/IsmorBeNOCmmNtESo95sJUXCxhFWtdq0qqerOJPusTzPc0bTXkU95SW0jVQi3Q7od0drwhfXYFWlrWp2+azGRTIBQUZGAng0CFi/ZZPVOCpKQk6TQ0HEnLzuxLnmIiNGo4khlgZB/BLkmS19idMki1oNguRhmR5FqGmulEpumBtwhbedxvbhY6r6o/qGjeZXsCCEMnFwrrovy6SZ2HACQE2afnDZ8XjtcXPQ3d4iZXu7Jj3Jk0MOm3kKmgiS0iAQbCAyAoI01rlK3PBB0Pgdq73ZnPN0zW8qTAztHWILCMjMIQrSYdsHgSwuOCk2ecgsOkdQacJAchPAOqDsPyKNZD4IMlKPzvmgMk6yJgLWhpnMooYAtg4dTa3F9utpx6kHTVMbqEPtR8hJMcf640s3PpUwRTSoMTEkG4hxE0O0yJwUq+XiE+biuofXY6RYspqO6NuU5ltgsWTBxFCzaBAQXAipSFFXWx7ff9PxKBRLyHkevnbT0/jlP59XELJ7UKvi4BgicvBQeU80O1ICAmJlRo2SAwKCMJhNIWrOM9AYtAkIarR1ZARlHvbGaBBQ1EKTxdZNaVVOhik7KZbxBSNLWsdvW3utNPVxF8jkMRmpR+egUpkIWQs+tnaBR87hpy2UaBBYi5nNnEkd+PW7T1HufMqlpiNiYihuATI0WkTfENsmqSvU2CZ2xOQKtTHLxuFtmjnhgCn4xdtPivxd1Zwat4GK+tmeBoH5eHWjuixlgiM2nJRRYvKwTEs+h1wuWa9J42GDXSfF45+FDuQ8iXeQaQvrwIXxWFSDwGYrKWm6D5C0n+c8YG/Mep/K+KhibWRbg0B2LV19j3C/pOwLhtJFCZaWgC1t7WwKNUsmIMhIPUY0CFhaAjFhZHbVxrBUDLqL/11nHoT7Pn0uFs7S5wvDBVQ6KR4etXuzWSXBRaHs5sL0zQpKC1kg80Ggg7MY9tONmRgitCMolnzjN+PMaBDYL2NC1VxFRbnUj5OU2rNpQm2xW0hHNe5A3YhUS+VR0b4pU/cU+iZlnPBBENJQZEwMmdgnUjYx9PbT2WYPqaCimvJ5O0dzpaoGgRyZk+JaRGOiNNpT9EFAbNuZejIBQUbq0XmYVRko2RoE7PgzAYE6ZOpad/kvmNmtrQ1SO6hl0eiDwFJCEvLSI2cqDS9f46RYLozMSXEmIHCRuAOwaA0C8w2wUCqZNzFkYsuoWoNA0sTQe198kNqEJERFE6sPIlmYxAZdBdhcv9Su2fnTUUmz6DmTzK1gavMsNVwwMRRWhSyTVpFm9Qy0BX0CgmSJz3kezjl8BjuORDGoQ0U67GkbJTQtVBEwEF6LGy1blwdwRhXa2mu5dN6RBjIBQUbq0WlybtwHQfQzsRoEWS8EoOrGnky8etEZvkvTpZCT4rgFiKWMz53cic+/6kilYbp4qZTaQq3kp9P8Cy/EqkMdUYclZlMBoKy1ZNxJsQn5gHIBgcxNaeATFxyG0w9W7KMnASqKpb4okqxxnO/jIem3mafgxRCROXj8WbHEy1xEcb3KdXPeEexDYwqImxgK/81EW9C1hlKR9v2ndmEyy9F7ijqLalO0vFTrP2E7oLwUp3whk3DSarDngyDDJJmT4ozUo3OyrRxkMjfFMdFTnrBMYqsYKApoPM/dG/ZRNDgpZjxLMetvOfUAfOrlCzGpk7FJkSCo8irbBUx3HWojVln4RLHVmMHV+o8b822aW6jn949uwGWnHGA0ThO5VB2HVHge0NXWgmvfeyqe3dqHzXuGcNKBU/DAmp14368fVZxCziQpaGMNJoaoDZwGCStOqyaGAp9FxhNZE0MmnWM2A7MmdmDRvMm2kxFL2IE/28RQRDgGmo+um9/JfRCUA3jnGQfhe7etVJAifaioJ1saBEmdFFflC4SX4iaFLy6P+GwfgbZ8ELhcou5B8GgsI0MtOgeVcRNDrBshbLJBr4ySG3tS7+gtf5nq5W0TLjWdYpHfxBDFBeYrj52tXDgA1Na1bH2aHkOotbti02sQmK5/NfG55KQYAG5avtlofCbqVfnYkWC+8zwPC2dNxEsOn4Gejla89KhZatMmgI6iT1LWxIZc56n1QSBjYkisRvISN1GozbM2OXn+lOrn6d1tuPIdJzvh0yNcg4D1QtTX+vOqaw2VdI6pvN7eGt2HqPjrUJEOexoESU0M0V+EGxUQCEZFpQ0DcRr+BhMSIDsrM0umQZCReoxoECQIw4E1rhGsjf0Eyz/nAUWO53gXFEfOnogVm/cmS1RC6jUI2IvRmBWIhQWKrsVbsP9Lx2G4DVNbqJWa3AcBrdpQR6Q9ZrPJqLJncNRofCbWBurlA2pNqeQ8fQdXLJIWS+iN+bR2VA5Cs26xQIJRiyTDq/uXFxkFAmqm/Gzx9YuPwWWn7I/nd/Sjd3AUx86dhBZLjlxFCatBKRNDBppCvRlQVXgRn3mplFdna15JeijAWq7aEhCM+xBIGE7ypGjDVtny4Mpwb+sylivlkxbcmGEzMhKgVUAw9i/b6RQ7fhduwZjAlg8C3YedUgcmitP0jjPnKw1PBhEnxXELVBuHwbq6qQoNAtMjCLURq1jyUSrZToU9XF04x42NUWOzq/kVxcQBoWrBp5yTYtZvdio7abRhryfJSxoPi23mKDifC63Bvco7YvHJaBBkAJM6W/GShfvB8zwcvF83TjhgijPCAQDCvjdsdnNt6+qkY+nY+x0MDYKRIo0FoMsmhir1L9sKxk0M0RUR5A12MEoaAaKwr+/ZclJsJdqmxaFZNiNDDq0mhipOihkTQVzsJies9KP29qIteNeHvE3n9SfMk0+MIuoFBKzNSNzyw8byRNcBTY2AQDIM04dH1DQIik2vQUCrPniRNTFEc9R2EwIWhhKtn/SR1CxG4/vNfBckrDxsTiPBNicmH/Aa3udB5kyb2DRrnBMOmIxr3nMqZk/qtJ0UacLaCavtRAvF9TcGffIBNWMpy8RniYiNSRW15Kww0a/5hySUNQgowRoL7GkQZHVnEkdHoYwMfsw4KY5+JvYQJBv0ANjbDGk/7CSg1ZDLefjouYcqDVOUehNDLChqEOhqJirGp1bTDhCJDVmjRDaHGYppYg0CV/Mok27WjTRb5aBFgyDBwOloc2BiU7AZPIMTWW9Vp2vBpLe4euhnkT9+6EwcPXeS7WQkQtgOecTzJnqKrnV10iVu5fVzDp8RqkUwo6cd86YQESIpmLCsaxBItgPfAQkBaR8EhCZ5ppaANSfFVqJtWrIVS0bqMeGkmHXIH29GQWGCHEZFNak2b2CLBTN7lIdpO5tCTopjVpg21if6TAwF/pBojC05D+cunKEuQRzYbkv1jBRKza1BYFo+pCi+uGCi+hy19qcDU3mkMP+xum6atGOaea1HLevBNbtI2iqviTspltFupVZq5jB+6UET4abGxJ4HzIwdIpd4REh6Ca7S1zpa87j0xP0bfn/raQfSuWinoAyt+yBIGg5hCYFJk85EWqRybN3Hoqa5nnYyAUFG6tFprrIyobLmnLgxLVN5q2CmHF5x9KzaWC0qELwzwjfAf77scL6whbzr2W1nYk6K2dixcanJxFBO7qCiwsuOmoWejmjVax1QW6iNFkvWFq0UcFVAEBtPpMNGWu1PB6byqNwHgUR4zK5rS4Mg8fshJoYSrPXS2OTtmhgKfBZIyLiJITFk1vnNLfR2p8GzailsrSTjc8VtE0OBzwkvcX3xNUfh4+cvwMJZPThqzkR87pVHWNeODqKiCG2dCYxrEMi9r8rJsU4om3SmJBBOcoFPF3RKpzlosZ2AjAzd6PVB4CeOg9phmy2UaBBwPHNJnT1+m+X/5lMOwJ+WbUTvwGj1u5MOnIKT5k/FJcfPxR+XbWS+L3TzTTKNqmhwUsx4Nm6BaWN5QtVJ8XfesEhhavigNmQ1uwaBq8Sb3wv/vhlk6q5qEFDwaaAkXg02hpIESenwQIawvNvMUXDeFfJBYFCDoFBs3jmN8kGeCMpMDBkoDl0Xb4Jpl4ki2HXyOQ8fP/8wfPz8w5InTAMqitCaBkHC95/YsAcHTO0iLSAwab7J5SGMVYWZD4LmIBMQZKQenSplVRNDjGfiBrVszDPHf114BC44cmbNd7oFBKz6XzCzB9e973T8eslarN62D6fMn4r3n30I2lpyuOSEebjhsY3KJmPb7axBQJDASbEdHwR6CjC4ERY9BJrU2YqO1rzqJMVCTag5WiyR3pToxvThobr42OFEmhii1fy0YE5Lw354TBNDzmoQhH3XBA1XAJG6/dU7TsYTG/bge7etVB63yHxWeVS0XcoceBdLJeF30kJahMCiToqjfjFRHFRNDLk0bqrYm9jyQZBUQLT49lVYfPsqRanRhMGiPWh6t9Dzrqxrbe21XCmftJAJCDJSj86bKJWBku2DgE1mYqiMilKIW4hefMLchu90mqDi4fBZPfjqa49p+P5FC6bjJ285AR/4v6WR7wpZGLK8yG4UEEQ/G7dQtbFA0VV6wTp0xakVtYXacKFkyewUDajVhyoizS04dGAgi6k8Khd8SoTHUlm3JYxMrEAQ8n6SpZ7rfVz0oLThWU9tGdRqEIjrYgqbGJKwqa/rwNYFqF1CkEZQkygy3wbKQ5c8KskaV/YdW7hsYsj3bZlvNYih7E3vbsfJ86cIvUOqmSfYn+siNXOCI2Q+CDJSj87JtrKxTTJuZYNeGRMmhsLtgWrWIEjw7suPno23nnZAdNgSqvG2EDExFIcNDQJd/TSZ2YkMoGJiyHYq7GG6HShzUiwbTjM0/CbSIGBNBtZMDCWMOdQHgUSDtz1vUyGfUysyC4blCeyExzUIxFIjcyu40MSTmklnojoJNa3FyFqkfEBNcphoMzGU9H2HBkE1GgR2juaaYbgxkcXWvIevX3y0U+22HtalDVvNJCVTgjNkGgQZqUevD4L4OOIGU4fnEKWYuDEZNsFQF9CoKhfbuRRxUhzrg8CGBoGmAgwuIkWjsLUApdZnyk6Km2B3E4HpdmAqNpuHJbaxXcZ0wkuPBgGxYdMooXkXKI+c5yk9NA62K5H5rJIE0bqUmTOLTeyDIC2HQeHNnqVxHqE1Z6A8dB0QJx3DnWoLDvsgKPm+M6Y621tyGC6Iq7zovv3+zjPn482nHIAFM3uE33VFoFCyJElqBs1hSmQCgozUo9OETNUHQYJxKy3OuJKiRIMgJozwW33J42XGqeGgofqboIq+TYRMDMWsstMkIAi2P2ETQ2qTwh8vsSGr2Z0UE6sObmQ0vgB3NlJJMOaDQHFEMps4Vs81WdPvP+tgZWGFHgxKlHWbbRuIGhEy7KO4IdTMuyLpGHta9MA/0yAQIy2mV8P6vJwGgf7y0GXSKmlVujTdq1iHWjUxZCVmcf79pYfjouPmYPnGPThqziTct3oHPvn7x2Pf052/D5x9CGZO7NAci37Y+3M7iGj6ZSQnK+6M1KPVxNDYKMqKIk5iTe02ri1MlELYBEO9/FmpEzMxZDefjSaGEmgQWFii6NqgBcMVraNMg6DMaLHkzs4mo0pc+436lVbr04Ort6VkhgbmGklDMRx/wOSGg/ecB7z86Fnj0SY+1FJzGeFbrz9WSXooIjJ/5T1PaRkYd1IsUfn1a6ZmwvZ6VRXiWqFi36tEn4mhpBoEYu+//fQDQ79/94sOSpQOHlQUoT0Bge+MDwLPA2ZM7MB5R8zErEkd3GWmO3tJak5nrU/vbhN63gcwXCji4bW7sH7XQM1vti5jpWNGcIdMgyAj9ZgwMZRkMZsWW5sUiFuIhvsg0JUaNeGnZaNUv9llOURrJhNDLjqupNYiR4pN7oPAcIWYGpNsHpbYxkQeXShHHUk8ZL9ufOy8BfjvPz+J9bsGMXtSBz574RE4/oApgXiTxZzQog4AYEpXK168YL9E6aBCqMklgfdzOU/pWj4YltBFi7p/eZESEDhyWKeDtGyLwk2NiZsYMlEe+kwM6Qk3ilctmoOrH3ihIQ2vPW6u9rh5i5D1nIy2kQpcGm3q5wIq5yhJz4JOO3gqljy3K3E6jpg9ESceOBkbdw/i9EOmYdG8yXjjFUu43y+WfJz01dvQN1QAAJy3cAZ+/JYT0NGat2aGitrFtLSTCQgyUo9eJ8VlksRAZF5TyikHTcX6XQPYvGeI+x0Vh05xQTjpg4CljqwoHBOoVJdPk5PiYCU2k4mhVxw9C39/ckvygAAMN7uJIdudW5K4VEf1OepjtgqMaNQRCZNpYkhTXb/k8Bm491PnYlf/CKZ0tTbEkzjasLWG4GLv2veehqkT2sbS43abDzv4FMlSzlPbXuU1CLyaf3mREhA0sQ+CtJheDW33rOejhOIGZoS0rKFOnj8V37zkGHztb0+jb7iAno4WfPmio3DMvEna43bZxFDJt6GbLUd9EfEKVXTnL2nV/cfLDse//PIh9I8UE4Vz9JyJ+Oprj6n+vXTdbuEwKsIBALj9mW34/m2r8OlXLLSmZdIM635KZAKCjNSjV4OgYmIoOo64sTSNg97v3n86vnvLs/jBHattJ6WGsLLWXf7JbyKyJAQCG1vL977rFxVMJ8VxYSlIjyj65APyAVvTIEgY8SkHTcXcyZ2KUgOMFv3UbG5dQFWzk21G6ZsxGzFxIKwjDjkTQ2rDi+OoOROrnysH8KrjDddWFAv0iNnj6XS5zS+aNwltLcks2nqeWg2CWifFMu+LPS9z6NfMPghcF4hVEHVWHtnGTWgQaGpvNdo6hkayN51yAF5/4jy8sGsAB07tQoshXy4qlqEteUsaBL4d7WwZ6oXtvHODbge7ScetEw+cij9/5EX4+/LN2Ds0ip/f+7xkOmr/VjF3Xn3/2rKAIHFIcqRkSnCGzAdBRurRKiAY+zdJFFRU45QjbE9dUzpi4qBe/KrKhdrkynSCFLNKtXGDQVc7qXWWKNhnLB0bicZ68PQJmDu5Ez3tLXj1ojn4xdtPUtoeRwpFZzY2OjDetw3FF7nZIjaW6cDIfKgjTImEm3RSnM95uOSEebHPJRbshx0MJgrRTVrzHj5+wWGhv4k0FeU+CAKfRfYIlWdNOCkusuwwppy0OCkOQ06DQD+61lDBPL30qJl6IgmhJZ/DIft1GxMOqMKW9oxLl2zqx1/e8UJ3HlUMW4fO6MZHz1uA/3rlkckDG0NFixocLWs1WPNBkN4pgSSZBkFG6tG5NqiMk0wNghh5a1rXwaL5MnHYqeJWnyjJbyIywhZJR7JkJKZ+TcF0UiwYlhnkStDz2OkN3qwUNjFkqVJFD0f+7aWH4ZXHzEbJH1/Iq+x3o0XfiuNqKtju27LE+4yRey8NmMihCxsu1fPzv7/0cEzqbOWIN1k8Ya8nuaziQl3Vc8pBU/GZVyys8e0QRKQfq77oI+2DYOxZ0dTIXARqYgtDqdkXifsgiApHf4Ho8nkRTPllpxyAH4Zolp88fwoeXituBoUaKi4vWXNSjPjzCirUzwe8Aljdjt+paD69/sT9a/5WmSxbcqRmWPdTwi2xakaGBNRv6KfRxBAgni8VxRDvg6DxAeLNg72ZkNjY2qJ+4clcp8UsQGxo3usyddHTMX5YJRqFrSoVLYvzFs6E53naNj53PLMNX/jLU1rCpsT5R4TfvvvvV6u7aUSJ6MMSo8mwghETQxpGEDkTQ9EDusoh49r3nIoPnnMI17NJow2rP+prDdV86TVHRQoHAPH1i1onxcGw+bUTKo+JJiXTIBCD+r6NF3EfBOG/migNXTeDg3maM7kTn3vlETW/Hz13Ij78kkMj39eRrDedvH/8QxKo2Ju05Owczfm+74wmbv3wwDte6L79TmFtOqOnHSceWDvvqlzr2bJ8l5IpwRkyDYKM1GNCXS+JD4K0OOOqh2KuwtJEXZVZVepsS98bNAhYJoZiJAQ2brnIHk54iJZ3fOy8BbXPCmsQ2KlTkWgXzupBZ1u+MQyF6QGA9bsGFYdIj1cvmo3bnt5a811PewvOPmyG0XQoG5NiArJ5WGIbI9OShjhk5hn2aK4mkZ4HnHHodKHnE8UX8l0iDQIHW73K6Smn2sRQXWCsebr2vcrzYomRqftCE6sQpGVfJOqDINLEkIHi0HXwVz+XvefFB+NFC6ZjyZqdOGBaF04/eDpWbu3TE3kErzluDn73yHrleVaxN8lb9EHgCrIaBLoPt21f+Jw3pRNXvuPkhnMNtcmyZWIoHXOCK2QCgozUY+IAmCXwjxtK0zrmid4AUlEMcZu2cB8ExCuAtZkQCYZYNlm3RuMWqjYu1skWn8ewMfSyo2bJJ8giIgu1r19yTEQgihLTRFx03Fxs6h3CT+5ajb6hAg6c1oXvv/G4SEerrhNpYojaYKYBMxoEGsJUHKiq8MTn+WQRh0YnEOQlx89NFD8FVAo18jm1IpIwJ448t0sr/XKkKLYIkdMgcOjETjHk1+WciIq4bWrN6fLtFTaXLZw1EQtnBZywM/Kn40LQGYdMxw8vOwEfvnap0nBVFKE9HwRWopVC1gmvdhNDWkNnc/snz8bB0ydoXzvaUmwjfpczdWQCgozUY2KhmWTrQv0Guyw27KnL3EjV3TySTtas9isStu1DtfplWQILQ05pEIgg7KTYUpWKRNtqSV06rXzwnEPw3hcfhF39I5gxscNKGoyNJVEaBOmcMmswokCgRYOAZnjC4oHEETcGIDKHvPnUAxSnxzyyGkJh5Dy1Zmfq59py3XAICMb+HRUUEOQlnKEVXDqxU4xLJoZYKRXdc0RrzekvD5vNzYZA6JXHzsaOfUcpNU+pogxtjfVumRiqLSQ6TortjVuH7Ncd+ZtSHwSZBkFTkAkIMlKPEQ0C1u2HmAkpLTdl6hH3QWCnHKiXv60DEtXU94MkGgQ2FrGyzUSnloc1AYGQYCrie+st0l1a8jlrwgHAoImhiO8dOjuSxlUfBFIwxnNbGgRJow3XVuR77zOvWIiT5k9NmAL7xGVXbG5U21rr64K7eYw9N1IQFBBINOTm1iCwnQI1iCoSRWvNqUgNG92HpyyIb8MESF6Gtsqi5DvkpLhO3kpFQEC1Has852jiaampyAQEGanHhIAgydhLdUJJilmF/rEwJALRLSDQcdAgE7btdla/pmAtMmJ9EDi0QNFZ7rYO+ESGVJs2dTNoE3cIHj02q2s8OY/mhsdE/9CiQSARJmu8VzXGmfbvEnowGBPkj998As44ZBqmhJgMS+NwKVLE+ZyntMHKmqioPCcqIJAxMVRoZifFKVkgCPsgiDJKZKA8bK6rXahvhrXQKirK0Na6XpeJKR3IahBoNzFEtBkr1SBwp5lkJCC1uv+e553jeZ6f4L93JIz/HRJx/kJR9jMCGDENwogjbixNq4khFxZ8AP2bSqzFokgRW89mg5Pi6J7xjZuewW8fWofegZHQ323cdDKh8i66CbRnYkjENESUynxGBhsTwqUWCdMfJjAxL+mIQvXhhqq6FhYQaIgvbk101mHTQ4UDShJkgXgNIZF5RG2fqK8L3rArj01oF7tfJ7N+aGL5gFMmhlir0VATQxJrendKQw7W2EjhQHLhrB5c977TY59TIiCwVNk+aJQ1D/X9ildDS/eYSkYrsw6V6XJJkJQhD82dEQ222E5Ahhp415mHzujGdy5dhP162oXjSDL0unKQXuEDZx/C9Zxhn4BjQYgHovtmTtLgWe1XJL/U7Pexlhj7hgv49B+X49KfPoDtfcNC7+pCtvSE6kgwbFtjh8je3bXxLSMeZYe2kr+rbFEyN3tNYGKjqWNOkNIgYJkYkk9KDeImD5PFF1Z/ceVNbY5OjkpNH09pn6gva972UXns5PlThOIzrUHwymNnS79LAaLDshLYPgjE30kD1POX8zyuNPJeXmIdstoqipLvioGhxvGBW4NA8+E22fWkSg0CdUFlECbNJoY2AvixwPMvBbBg7PNWALcpTMszAG7neO5+hXFmjMEzcZx92H64+l2nAACue3h96KEkC+bmImY0JTqfhPLzfzkJFxw5E4vmTcIHr1nKfFbc5m/ygpAzMZQ4Wr0omtltL8AbnBRzrDJWbduHq+9fi39/2eE139vQIJAtv2+9/lh8/LrHGr6/+Pi5yRIEi7fKRDRXmnTDm2ZM3ZKK1D5R2HioavAZMTGkPwoumAICRQVhej2ytW8oJMy4OPWlxwbxTorFwlLZJxrC4tYgKD/Yks9h5sR2bN3Lt1eQGWfaW/LC71S4aNEc6XcpIOOzIQ3YdFJsE6LTcJVcjm+IULEzsSUoduliOFknxUQbsspU2fRVkmGO1AoIfN9fBeAjPM96npcHsCHw1TW+7xcUJudB3/e50pKhHp6NYVDq++IF0/HQ2l3K4ogbSl26YdvVVt6wvOKY2ThwWhde2DkQ+awrDlf1+yBIFj7zbZENdqJUJEfESXGQH925ukZAsHdoFLeu2Ko0bTzItpMXL5iOno4W9A3VTikXHtN4w8+G1o0MoqYhkoZR4cULpuPeVTuE38ugSWx7N2BuoZWoiSETXVuPDwLbM004ptcjYdNb3BxCtOikSSIQqSef8xSbGKr/W0yDAAA+eu4CfO6GJ7nekxEQfOy8BXjguZ3C733i/MPw0qNmCb9HCZf2RaKw8hapNZfe4gBAd96owKtBoMYHgR1Kvu+M+ZhGDQK+90oUHU4ZIPNBkCEKzZ2ReV4GILiautpWQjLUI7owf8PJ+wvHkWTwdWkhLJJS8Rt7yZEJg3r5q3NSbDefIk6Ko3h8fS/O/OYduPyuNUrSJIJs6U3rbsc17zkVh83sBgBM727HV157NC44cmbiOGzVqJiTYjWpnN7djlcc7bbZhLSgzsRQzIGp5vgByhoE+tOlxcSQxDsswwY5RbsU07Uc1qzimpoqf0NUiDepxB+WchNDdWGJ+iAAxNMvygkHTsa8KZ3C773rRfOF36GGi+2dG9aa3oBQnCLUfRDwzpUqDthttn0CRc1Fgw8CzoVCk8oHlK71Mg2C5iC1GgSCvD3weZnv+09YS0mGcnhUvoJjZ2ebuFov08JQzGCqagNshEA+Tz1oKlODQPTcxZrDVc3ln9wHgZqCsb3hqu8GotYufd/Hh65Z2nAT3xRJFljHzpuMWz5xNvYMjGJiZ0u0GrmwnWw7lSoSb9JD3gOmduGYeZPwifMPw/pd0eNNRvowYW6hWU1ZALo0CMTfYfsgUJNIUdX/pGUTdhCh0uSOC3CsvPnD8oQej0Veg2D8OZG1mUzdtrfk8dv3nYYX/c+dQu/ZvgyigvOOmGE7CVaINqtnOCGGISqnr1JOX3wiXTYx5NLBb4OJIc4yKzaphEBli2rOEmw+XDqa1ILneZMBvCbwVaY9kDL4Jg65RX/17QQTOvUb7EGCm/X3vPjg0Gfeeeb88rMW8iUTJfUDIlbqhGz4EruDJLoWXb5xDzb2DupJDAcqmsmkrlZmvxA2g5EwPbKocFLME8T33rgI93zqJfjxm0/AoTO603+NrsmIa++R5qkIahB85aKjMHtSh5KwTKGjO8lpEDDCU5RIcSfFGrQrEoSZxqFPpDjynqd2rVwXFm/dBB8zUSfzpnTh/WeFr7WjcKmtvP30Axu+y3nApSeKa3K7goyJIbdqVRxq+5N6+E0MuXt86vs0tDV4aBDw8poYciWDilG5nnG5jWfw0/QCAgBvAFDZ1Y0CuNZiWjI0wGObLumin3XGkCYfBMF8LpjRjTefekDN7/OmdOLdLzoIgMxhp4pyEA9Dvw+ChO+z1JFFb+BZpF5jQHSNsWxdr7rESGCi+ETjsKZ1o9m0QjUe4pvGjGTE1W6kuQWVN4kVrII/84qFeNvp85W2VhN924WbxqpSKDy2Koo3iEtrPRUo7aee2tmgUYNAJgz+l5KcqYhrFsrHZZp/Pf8wHDF7YvVvzwO+ecmxmDKhzWKq9MKsnogfqd+wTzs5j29OcPmCesmHM9fD68feFs6FXKZBkJxMPtAcZCaGas0L3eT7/nYNcUz2PO9SAEcBmARgL4BNAB4AsNzPxHFaEd2USWkQJBh+qdpADiO4UfE8D1977dE4a8F0PLBmJw6cNgGvWjQbM3rK8jbxG3tKk0o+Xl5UHeLYzmZSE0O2oXi4Y+8AXYFgSmqczaCAqYPlqPatst2r6NcUxwYetGgQSJQF08SQMhN79tcjsgKx8m/utTFZHyNh5DxPqTnO+j4r1YeFXpFf7zi0RRBm6oQ2/PGDZ2DJczuxsXcQZxwyDQfv1207WVphNbVoE0MpbgQxUNgpeJ7HVQcu31D3fd+ZfVl9VWQaBGxUDh/NWobNRlMLCDzPWwDgjMBXV2uK6qKx/8JY5Xne/wC4MhMU6IHnAD74hMxAytQgiKlVl9Z99Wn1PA8vP3o2Xh7iPFTYB0GCdI2nR/wd7RoECYNnHxqYS0dS6vuB6EUO28OjkfIjcIjFg5iT4ojvJd5t5k1yKompTiMaBAoCqwThWvuk4oOAdQSkKomi6xEd003cIQbTSbHitJgg3ueCgKA5p1YwWB8Sb1KCaTAlGBS+bONYa+lsy+MlC5vT50A9kfcpjKbCPNSnTl4NAuqHOAtn9eCZLX2hv7l0AiXrg6BJFQiUzgnNWobNRrObGPqXwOedAP5mIQ0LAPwCwF88z5ugMuCOjg50d5dvYhSLRfT29lYP2fbu3YuRkREAwODgIPr7+wEAhUIBvb291TD27NmD0dFRAMDAwAAGBspOIkdHR7Fnz57qc729vSgUys5D+/v7MThYthU+MjKCvXv3Aigf8PX29qJYLAIA9u3bh6GhIQDA8PAw+vrKk1apVEJvby9KpRIAoK+vD8PDwwCAoaEh7Nu3TyhPnl9EtzdcTesEbxh5lNPQjlG0YxSeN56nysTT7Q0jj3IaOjCKNpTz14IiujAyFppfk9bOwHOtKKITI/DhM/OUK42iE+UyzqE0ltZynrowgpaxtLahgI6x5/LV56LzVH6uiAmB53jz1O0NI4fGPBVGRrjrqTg8KJQn3y8lbntDAwPMPIW1vdGRYXSOPeeNPeeNpbUTI2gNpFWmnob7xxdjMnnyR4Yj89RaHOTuT5VZXUWeZNpehz9UM0a0+qOR9RTW9kqFEa31FD9GeNrHvcJgn3CebIzlACLrqTLuVeqpv29v6BiB4ghXPQXzVCoWjI17puYn6nNuWNt76ZEzlOWJVU/F0eHQPA3s28PV9njGiLyCMaI0OlzNk6o5tzVBnnjHvdxY++CpJ962Vxzqj8xTVD3lRgci+1OrPyKUp6h68jzBPA0NctUTq+3V58nzPGY99fVF96e9e8brydR6T0XbY40Rw/3j80lcnvJjNsBV5SmX82rGvZznCefJA/8YMTI0JD2Wl4Vb/PW0d0/zzE8U8uSVCkLriLK5rPD+5HleaJ6o7gl5x4i4ehodq6ewPFWe09H2/FKRK085+PA8jnGvJNb2TNbTZy+Yj5s/fhYOnNIZWk8+fAwNDhk9jzjjoMk4aPoE4TzlPK9mjMiNhRc3P5WKRa154ts/RddT/bj3+ZceyD3nssY9z1MzRvT398MrjHDXE6BuDdus85MtmlZA4JWvrrw18NW1vu+PRD0vyToA3wFwIYD9UfZ1MAHA4QA+BOCZwLOvAnCt53nK6uS0007D61//egDA9u3bsXjx4mqjvfLKK7FixQoAwN13340bb7wRALBhwwYsXry4Gsbll1+ONWvWAABuueUW3HLLLQCANWvW4PLLL68+t3jxYmzYsAEAcOONN+Luu+8GAKxYsQJXXnklgHKHWrx4MbZvL1txuv7667FkyRIAwLJly3DNNdcAKHeaxYsXVzvpNddcg2XLlgEAlixZguuvv14oTwO7t+PSjuXVtF7UvgJzc+WwT27dgJNbN8CDV81T5abZpR3LsV+u3LHPaHsBx7VuAgDMz+/Ghe3lqmtDEYsXL8buXTsAAGe3rcGRLVsBAAvyO3BB+6rYPHXseg5nt5XLeLI3hEs7lqNtbMC8sP0ZzM/vBgAc17oJZ7S9AADYL7cvNk8AMDe3Fxe1r6g+x5unSzuWY7I31JCnDatXcNfTxmV3CeWp1LcjcdtbcvctzDyFtb0nHn+sWk8TvBFc2rEcE7zyUHBB+yosyJfr9siWrVL19NjNv0mUp76VSyLzdPDWe7j7U2G4X1meZNreWSMP477Hn8Uv7n0OP7/m9zi2Razt7du0Rms9xY4Rnv5xb909fxDKk+d5Vsby4uhIZD0Fx70J3gh++6ufhY4Rw5ueja0nz/Nq8tS3c6uRce+j5x5qbH6iPOe+76yDQ9ve6xbNVJKnDS+sZdbTlmeWhebpr9deydX2eMaIHgwkHiP2rn4Ut9xyCzxP3Zx7QGGjdJ54x72p6FPe9jY99PfIPEXV09yNd0X2pyOHVgjlKaqecp4nlKdlD97PVU+stlefp5znMevp11dfFdmfrvr5eFpNrfeStj3PY48Rj9407vItLk+5MRMfKvMUHPc8j78/VfLkefxjxPrlS6TH8rJgib+efvqTHzXF/EQlT539myPbXliePET3p5wXnqfS2KEctT0h7xgRV09r16yMzZOOtjfSv4crT22lYXjwYscIvzhazRNP2zNZT3uW3wkA6MBwaD2VfGDZow8bPY+Y2zqIv370RfjwIXvwkSNGMKWrlStPOa92jOjv38s1P/X17tKaJ562x6qn+nFvw71/wIz2IjNP/5+9+47XpCrsx/85T7/97t7tvbN9ge27LAtLURApCioWRMTeYoxGTTRojDHGb5L9Jl9JYoLlJ2oSYiOxIJpgXSsoRQTBBigssnf77fP747n37nOfcuacmXNmzsx83nkR7z7PPDPnTDnnzKkT10mW7glhJo249dZb0dVffTaiKkdMXKes5k9xEXFP2xAXIcQ5AP6n5qMtnuf90OD+ewEc8TxvTLJNCcA/AnhJzccv8jzv4yGPvQ7APZVKBYVCAQcOHMDq1atx9OhR9PT0QAiBI0eOoFKpoFQq4eTJkxgbG0NHRwdGRkZw7Ngx9Pb2Aqi2xrW3t6NYLE62xLW3t2N4eBgnTpxAT08PgGprXGdnJwqFAo4fP45cLoe2tjYMDQ1hYGAA3d3d8DwPhw8fRldXF/L5PI4dO4ZCoYBKpYLBwUEMDQ2hq6sLY2NjOHLkCLq7u5HL5XD06FGUSiWUy2UMDFR7IXd2dmJ0dFQpTrfe+Ru87d+/j2NeGUC11XTAK2AU+ckW033rF+L/PncjTpw4gc6ubix/+xfQKQZx0itiFDlUMIwxCAyhgAJGUcIoTqAEwMNdbz0Lw7kytr73a2jDMEbHtytiFAWMom9aD77+5nNaxult//EDfPaHj+AkishhDO1iGMe8EgBRbTVFHiPIV1vN4WEAReQxhmu2zMaHf3CwZZwGUUQeo6iIERwfj7tqnDrFEE54RYwhNyVOn3rpZqyb06F0nT77w1/jrbc+qByn15+7DNdtnxvq3rv3V0/gihu/0zROXbkh3PXnlzXcewMDAzjjhi/iJEoQ8NAhhnDcK8FDtUfZCPIYHg9rHp72dfqbK1bjsu0rA8fpg1+5F3/31Z83jdM5Szrwry87W+l5+sqDR/Dm/7zbSJzaxLD0eTJ97z3wvstw0x0/w19/8T5r18kvTj+44Rmo5GE13fv/7vgpbvjyL5TjtHZuDz71kk2Rp+U/+U0/nv/BrzVNIybSvYnrdNtrtmL5/JkNacTffule/PP/Pii9Tn9z9RZcsGraZJzuuP93eM1Hv2393vv8687Gkp58JPmTy3nuwGgO1/7LN3H/Y4cnr9OfXLgU1527zkicfnvoGM5//20tr9NfXbkJl21Z2hCnO3/+KK781zt97z2VNGLN7A785omnQqUR73jaMly9fTEu/PsD+O2hY0bSvbnTOvC1P74AK9/6ee04qaZ7czqL+NJrtxm99z7x7Z/jhi/9QlqOqL9O56/owj9dt6fp83TFP3wdP31yOHRaPqe3E195/Q7lOP3u6CDO+7vvKJeNmt17P/mLy6fE6bu/OoLrb/p2y+t051vPQkd7W9Pn6bGDT+Hs/d+PtLwX5HmqjdO33noeunLDLdOIL9/1C7zmlgeU4vTDd1+Gr9z3ON72qQNG4vT6p2/EK85eOpnunfOBO3DwqX7fOP3hBafh2q2zUalU8IV7D+It//YDpTRi/5VrccHa2YHS8g9/73H87e0/U75OB960EzP7pqU+f3IlTi//yAF88/7fNr337vnTvQ1x+rMvPITP3PlI0+fpB++8COXcaEOcfvTbQVz30R84VS5XTSMefN+lvtfpyRNj2Pd332oapz979lZctWWhlXvvs/f8Hjf81/2+cTpj+Vz88UVrcdXff02aRpy1ZhH+8Zotvvfe6/7zZ/jGg082vU4/e9/lWP7Wzxu/Th941lpctm0F9v31/+CJpw41XKd3XXE6zl3Ri31//bXI3gkv3LgYf3P15snrdNW//AD3P3rIN04ffdlZOHNB52QacWxgCDve9V+RvhM2i9Ndb90tvfc2vvcbLeP0wPsua5ru/eLwGK648Tu+cbr7vVe0TPf6h3M4+323h04j7n3HOXjDp+7C7Q/2R1aOmLhOd737GZnKnx599FGsX78eNdZ7nncvIpLlNQhqFye+x2TjAAB4ntevsM2QEOJ6ACsA7Bn/+I8BhGogmDAxFAYA8vn85AMEAN3d3ZN/t7W1Tf5dKBSmbDfxMAHVh2xCsVic8l3tbzo6Ts2UVCqVUCqVAFTnG63dbmL6IwAol8sol6uJUS6Xm7JdV1fX5N+VSkU7TsViYTJBBDCZ6AHVxLA+ThONZrW/GajZbmQ8M6mqxunQ8fFhQjXbDY8nen5xEoXy5O/GkJty3GrCWzVU87iOIodn7zwNM2dMxz/+70M4cupST4nTKPI47uUn/60ap9rtauNULpcnw+53ncrj94tqnHJ11zPIvdfe0TG5z/o4nUAF+Xz137X3XqVSwYAoAR7gNcS9eVh1rlOl89R5CRKnYrmtZZxGi+1N49TsecqN9wAwESeV58n0vZcrlCbDbuM6+cUpJwSKxYLVdK/U0QVvfK5IlTjlcvGk5blc6+tUm+55EOjp7UFufPLt2jQiXyz5pnuiLk75vFpaHvbeWz//1PkA7OZPLue5ZQCffNXZ+O4vnsKvnzqBncv6sGLWqX2YiFPtNay/TsVypWmcurp7MDY+AFZ276mkESKXD51GFCttaG9vhxDm0r3RXCFwnFTTPa/uupu494ptE/9WTyNG8m1N04hKpYKRXBnAsJG0XCdO5aFqOqyaPzW7TvVxygkhvU493d3IjQ9hrX+eenqmNY2TzTw37L0nIE8j2jpPfecXp9z4FEOm4iTE1HQvnxPacRJC/d4rlCqT959uWl4sPKEUJ6B6nXqn9bZ8niakIX9yJU5erlCTHk29Tk3jJCTPk2geJ/H4EwDcK5erphF+1+nwyAnfONm490SuXylOuVy+IU7N0ghPnIrTBNm9F+V1KrePnwvR/DqNeR5K5WD1EYHvvfHzOnGdBIRSnHJiahpRLOS18ycbcVK59/zqWOrTvTN6gX9/xU4855++I43TxJo+ze69w/0njaQRHR0dGMlVt42qHAFUr9PE+ctK/vToo48iTplsIBBCtAN4ds1HH40rLJ7njQkh3gXg9vGP1gshFnie90hcYUoblQW+ajcJstCg7Bh+g3RUF9dpdsxXn7MCrzh7Ob5w92/xuk/eGWg/OrQWlUP0C6vJ9iBbpDAnBEYdHU1lavEu1xcB8xP31XHx/MW1GKHW4tghwti4SHHgXSn7z1fttH+QBKkU89i7aqaVfftdzpYLNhq8EfwWjlUxER6bi6jaYCP9ML1PUwvBmrjOocPgExUX8xibdO6VfE4YXRS4/lroLmIN6KVD+SAHGFfK6928SVukOGuki5G3+CrLVzTusj+gnj44+ho5bryc0iIunudFf64DlvFzdRckaD1KUoSNnsnT4/Y9TqY4UGSOxbMATDTxjAK4OcawAMDXgfHxPVVr4gpIGqkUzEMXqEP8POh7w0SCn88JzOgsyzc2RCeouhmS7fxddo1DvLspHNcNKS8/WWeycqIV3SPEdU110stWz5bKHuqPE0V0Ny3ojeAoBPhXsLX63uR9b+LF0sZ9abIRpPUx3Nin7H3TVBh1028rL8G+DQSSDRKYf/ueco045YTZU1B/PwTJ31V/UcwL7Fk5Q3v/p36v2UCQwHslS2TXp9V9GEV+ECfXozcxgsnPWAIqT1vdSx6ir/wNWsavf68I0wCbBGFjZ6rR2PM8jLGFIBOy2kBQO73QbZ7n/Ta2kADwPG8YwJM1HwUvSVKD+pbmpkKmnWHyJqXwNT3mqd9FVbjSOY7uC5eJKEgPGaBQ7gLZi4HNER2uyUKZRLtRzU4wfOn0xm39whvgwJYj/OeXrUNBszKGggvao9poRaGBF8uJe9zhbKQpV4IbRdruQlxdLmfY4Ffm0OtwolZBF1SQCibV8Fy4bg46ysEH7Os2EJDbgrympLz+E13lYsvvFk5rb/ldVIQQiu9Q7r6oTKRXre6lj3zrl4h9XVLFRLX+3VcIkepnJGzeZ+rcxH17UHQyV+oQQiwAsK/mo4/EFJR6HTV/H48tFCmk0kMwbNopn2JInqIGfWmsTfCjyhf1eg67lVvLQmMzrGF7/pjK2B27HIkTxfnTbsSJ6aLqhDNMEBumGLKc0s3urvhvRMYErUA02ZvSxAiCiTTa5N0ZxZNto1dqkD3KRxCYCaML5ZEwYXAg+NpMhXmi8t7o1GIBRxDUbub3m562Ip6zZQH+z1WbtMNXq5iPvrMN2SO7b1o3iqf7qva0F7FpQU/D530dJWxfOj2GEE2VE2rpmcsVqBPBb3X/Pfzkcbzjc/dEFyA0K+OraVZuS/cogpBxM9VAAHAEQUZkcQ2CF+JUw0g/gM/HF5QqIcQyAN01Hz0WV1jSKIpMI8x7S9gphqp/R5Mxas09HkNdZ5C5PQG3e+cEHBTRuG0SaxgcEkkFU0JGEOilA61GEOg33FqfhozPSKSETxeVlqNPDIbBxHM9sQuj909Cb0XTj5Cp3bnwaLsQhij5RVf1ebHSAFe3s0AjCCTf7VzWh49fv93I+0epoDvFUMZutIQJNsWQpcA45O0Xr8G1H/4+Tg6PAqg+93926Tojo/zCUp9iyN3KU5V04cv3Ph5BSFpTXoOgyYbVz9w9/2GEXoPA4BRDDt/iZFAWGwhqpxf6N8/zBmILySnX1fx9GMBdMYUjldQWKQ7by1sygsDvtwELP7VhdnOKId19m6uoaUZ2jayOIAj7+wC9jWyEI25xl0ki6dGru31MF1Xn2Q7zbhd1/JL+jCSNX7rbsjelyXp4Ew3TCa29sbIGQYCnSDbKMq41CGwIlRaaC0Z0fAKtGqfJRcCtjiDQC4tfePI5YaxzkvYaBEaOSi7JwjXdvqwP//X6s3DbvY9jYHgU56+ZjQ1NRhXEIZdTy9vifk9R4UJeOKGhE5Dq75psWMgJDIYNkKPC1yMYCUYs61RQPDLVQCCE2AZgdc1HH7F0nE7P844pbrsLwJtqPvqU53kjNsKVVREsQRBK8CmGal5UTAXGh97UIu4UQgCfnvhuBXUKU2FzOY5J4FKhekJ8IQqfDgQ5nbbjq7O2AoXn38O41e/M3QkmRxi6l0LIWUnSTI8giCn/m9ZRMnPgKWEIHhnXylMqfKcQU+4tOvV/Tag/dpCOOrLwm7xcBQd6UFNruhVmge6bjNwCy2d24lXndMYdjAaqa6CYqjy9dtcSfOTbvzSzs3ETwXc5K1EfVdZkBEGK08mw+b+pM+N5gJeIZjAKK2uvw7WjBx7wPO+Azo+FEEuEEF7Nf9e22PRKIcT3hBDXCCGaNn8LISpCiNcDuB3AxMTH/QDepRMm8qdSARB+ARjJCAKftDTwFEO1fzs5gkAvULbjIB1BYLFgEXpooGwEgc5+svKGYUkkMwxpPzPxXNORsTHlbcM9WlN/bDu+fEai5TuCoMX1MHkbmGggeOLI+EBUkxWY5nYlOYb5o5jeo6kw6pZHOssF43NfM3WZSvXaTsw3bXbk0NSdBVmLJKrrWdSeYshSQMgQybtIy2n1eFHjpJp/mKo6ffaZC1Apmq2im4iCS52dgq5B0KwzT7rXIAjH1LuTBw9jbB/IhMw0EAghSgCeV/PRRy0fcuv4MZ4UQtwthPgPIcQ/CyH+VQjxJQCPA9gPoG18+5MALvM877eWw5U5UbQqh0l7gy6SODWTjyZjtDmljfUCsGT3LhWY6slHPuj05A4fliyLojJe/5mJh9ZIolaVvAr7aHh5sB1hPiOR8rue0UwxFH5njx8xP7A9kvTGwiGChFvWicLcCAL9Hf3lszZgdnfZTAAQcpFiY6GITtDnu97EeTNZRqx/LQhybaKatrKkO8UQC3uRai/ltbaXjiAI8BuyLyfU0mDZdHk6NizowUdfsg3nnDbTyP5quXwvhVmDwPZIq9fvW4F/eP4ZVo/RStiYmTo1nodkzKNFoWVpiqFLAEx0BxoD8LGIjlsAsH78v1a+B+Baz/N+Gk2QskWlAj5sni5fg0C+86CF+dqfRTaCQCObimO6jiAFb8DuIsXhRxAYCoeZ3cTGVMHbZbrXOq6C/opZneiuFHBkwH82vDCVvPWbsH0gXfwrEFuNIDB3pfIGdrV3VfUlPmn3j43wBtmnrIxkKoxB9rNsZidu/8O9OPDwUxgYHsXvjw3ihlvvCxwGlzsi2GDs2omp/2tkn3WhC1JejWqKId01CChar9i7DJ//8WMNn+9Y1nwEUpBOP9lKOdyjukixydeU7cv6sH1ZHz74vz/H+7/0s9D7O5WOunM31afDqnUMzd7Z509rx5PHhkwEq/kxcwKXbJyH137izqbf2zytoesRDKUg/SeG8b1fPmVkX+S2LJU6aqcX+prneY9YPNYnAewG8GYA/4nqosOPoDpKYBDAEwC+i+oIgj2e521n44A9KsPOfnv4ZKhjyA7hP8VQwBEENQeNKrvXqUjXny5FMzCa5Iv9ulNgqifL2HVC7XIcqUq7gSCm18Z8TuBle5YpbWuyUizOacjIPP8phvQ+txEGP4WcwNbxqWhMprFR3Ik28oQgu5SPIDATxqAdFroqRVywdjaeuWkepneGG00QJipJTJr8rp1qlCbK8DbLMKrTU9QGQZZ2mAxp0UQrJlmzZk431s3rbvj8ys0Lm24fbAQB74E4VU+/QmdDC92rTZXzJ/bj0p3UcFsrBq7Z87B7eV/4AEn4lRVtvj+EvgcMBe35H9KamZ0SLDMjCDzPu8zAPn4JhcfM87xBAN8e/49ippJoL5zWHuoYYQpvQTsH1R4xqsKj3SmGwpM3ArT+ndURBCFjJgub1vVwqVRIZsR4TV+7bwX+z1ce8N2u5QgChWNE/VLMZyRafqe7Vd5tcih52CkI/+a5p6OnrQjA7OMYyZon9g+hZFp76wWBTZ0HEy/vYfeQtfTFN7qK52Pi2pksp9VX5AW6P6RlM3OB5QgCt+VyAh9/6Xb86efuwTcffBJzuiu4ZtdiXLl5QdPtpZ1+WnzF6dXjpTqCQGN5Lo1ju70/k1SD1iy9PmPRNLOBaTim/Pug00WrcGUmgoefPG5mR+S8zDQQUHap9AxaM7ex94cpfv0JTLxIRJffqx8pjkWKZbuIar5Y0zjFUHboNibFWdAXQmD9/G7c8+gR6XYtF91TCHvjJnYjzIUAo+U7gqDF1yYXowvzUrd6Thcu3TTPWFhqRXIvWjhEkNP56nOXt95fiLCY3k/YvDjcGgTJS5t8pxBTjNNEGdnmOVC9NrVhkJc3QwaoRklzkWKK3rSOEv7f88+E53n+I2cCNCw5/IqSaKpTl6quQbB6bpficZU2A2Dw2ouJ/blzM9UHRX0NgsbPOjTXAtHl15nEodPawOGgkaNY6qDU8+t809NWxNPWzYkmME0ErewYrVlKPrI1CDSOo91AYL3yrzWrDQShRwbKdqC+c5cKhdRcUqYYmqBSuRqmoiToy4Op45Fd/hWIzRUMLnATZlezuytT/p20+8dGcHXTpDMW9WLNnNYdNEzlW2Y6YoQdDZiwGyQkv/OlejpsrEFQX0EXpBwuv54cQZBFKulMsDsjW2mHa6ojCPyvwXW7l1o5tgkTe3F7BIFa4JqdE9vvuH7XwWTHlXrhRxA4fNHJSRxBQKmX96kB+LdX7MCivnBTDMn4r0EQbL8jtQ0EERUedY6iGy8jIwgCDvmOY0FlZdI4GdlNImRgjWJtcZf5lF6GWy66p/Lb+t/YlfRnJGn8e1o2/75gcE7uMC/f9S+EcTfY6YpzDYKF09tw1ooZeNvFa6Q980yF0MS7e5zD/ONO6+M0ce1sngPlEQSi+d+y7cLiGgTpEiTdzfLzb5PqtRDCP3e/etsiLJxury4hrChGYumrK0NpNhrXst3wEesUQxanKk4Cpn/RYwMBpZ7ffMWrJb3XohC0gqI2M4puBEFya6TlaxDYzNjDMdZ7xLHroUN1GHDSubawt58wPWYCTflsOcLsZeOWSKYYCrEvq2vXRHArxnW3//srdmLb+MLOfoxNsefAs530l3RtAUcINW5nv2IrSCf9qBYpLnEEQeZlLemIis4UQ37+4vL1IUPT6thmr74DWWFL6lMMuTeCwOpEBGE7JziUgnRVCjg6MKL1G3dCnx0sdVDq2Rz2pUZeAAmS+c/tqWDh9LagAQpM51TGMZxeuviX9HfuMhVulwuFfjyvcVHBNNK9RHEX+mz2mAEa42d9BEGCn5GkkvbCbfG5yUWKw9zD9Xlc0u4fG+FVeUnXuXym0jgTewm7DxcaKaLkO4WY4vmwMYKgvjQRpLwq+4XJ8i+nGEoXFztHkJzKIsV+c9QHP7aZ/UzsxqVbqXGUsGqe0Lid/REE8gO4PcWQmXCE9ZwtC3DnOy7Q/h3Tv+ix1EGpF3cDgY0phl561tIpCWZkIwisLlIcPhJBh3yPWax7DhsvU8PYk5zBjmVkBIGuuC+p9am5Io5fcp+QdGr1wm0yTw+TLsY9p/yiJtMZbF0yTfn3NhoYVfYYx0hEE9cqfC+++I4dB78gq08nUd3Q5vOmWrknWv6jbjuDQS1ykeJUCbLmXQIf/0TQaaSMq0OOuXV4qv8bd7lFRn0EQbPf2h5BIP/eagNBSlKAnBAosME7EXiVKPXibiDwo9vr4P3P3ojr9yyb8llkaxBojSDQ3Lfe5tpk52jUZgtBSMamWFDYZrHFtTjCcPjyGOVwub2pcFMM+f+2fgvb5yfJjWhp1OpqmLxOYYoH9Q2XJsOlsq9PvGw7zlzUCyGqw7Zfdc5yvKyubCA/RpgQBt+n3ggCQ4zsKNxOXK6YscF3jRHt/QUPS4O6Z1d1JFHtZlFdT65BkC7blkzHzK5yw+dXb1vY8jcZSzoiozrFkFAYQWCL6SoMl/KhoCFplrdYH0HgcwCb7w9pGUEQNByOBD9TuAYBpZ7J6QiC8Ct+6GTWH7pmCy5YO7vhc1cS/1q6YTIRB/mQ79bf2WwgCBst+Ty36ntXKbz8/dVn4LqP/ABPHhtU3m8UsjKCQLehL+4K7TAvGkF+absh1PG25MyJ4vYO08gVd8Plgmnt+PSrd+PowDDainkU8jncft/jyr+3skixwjOqk25E2UDuu4+QOwmXXiYvcTI1gmBipJrNMxAkHYjqihStD9WjKOVyAh++ditefNP38PvjQwCA7Uun40+esbblb5L4/KdJrJXqpkYQTKzl4tCt1DDFkOa0c0F+G5TvFEMOr2XoTvoRLBwu3bNZwQYCSj3nRxBopHytohLZFEM6Pf8cS9Fl4RmJu6YnINMzNWyY34Ovv+Uc/Pg3h1EqCAyOjOH5H/pu4PCZkpkGAsdG3fixnbbWP7P2RxDY3T81EmjdiB5FHhLmGA0jCMIGJuC+uirFyb916hLjut110g1TFTO2OyBEFYYkMde4M1GxZe4E1qc5QXZta87xZsfJ54TTI11Jz/r5PTjw9vPwk0cOY3pHCUv62qX3d9bSjqhoTTFk8Bos6msHfq62rbE1CMTE/7p7M6mGLKlrELzr0nX4s8/f2/D5n1+2Tvo7jiBwJAIZwm4JlHqFmHvf+A1h1JmOrVXiGt0UQ/Ze7OOcAWB0bMzE0ZsKn7GbeWlQ2VYIgfZSATuX92Hz4unODEUd8/zX8kiDWKdcCCBMjxml+zHAftuK+QC/CnNEsiWKqxFmOtTGKYZCBsbAvvRGlQU7Rth9ms63lPZj4G6yuZ6Qzd+6Sy1Spyq2zB25vjyhPMVQTZijvCRxj4Qm84r5HDYvnoalMzr8p+Pi5bdCdYqhXE4YrVi//qylTT9/xoa5DZ+Zfr936Vaqj5v6GgTNGgjiHWGsUtV00YY5WDCtbcpnC6e34enrG6/7VOHi5sq7fGAJD34SsYGAUs/1EQQ6hY5WBYWo0n6dU6m9BoGJRQQluYgs83Z5BIGx3iMBclhXKuU5gqDF9naCoSxMD0qVXzYOP5Zvf+aiXlx31pKgQeJLuGOi6OkWppGrvkevC/dPHJXvU/apsI3WFEOGUjkXRhAk/iVdk9+1060Msnn2Ak0xFOHlZANBtrEHbbyEMJv+LJ3RgYs3TF2sulLM4SW7lzRsa+4d0Oz+bFANmmjyPm87PfZ731EpS87qquDfXrET1+5agjMX9eLaXUvwqZfvbLomSa3QHQ3D/dwY1Qa5eq6EP0s4xRClXtwFa5NrELRKJaOKoVbvRO351HVDo0cWnjGraxCE7HUo+X3cvUWj4o35P0dZFPdQ4TBJq5X5z4XAmy44DV+853d4+OBx/d8bDxH5EUK0bImMIusOcx/abLcMPIJA44dPHh0KdhDp8f23iWMNAhcq56NesyVuftFVrgwa/1+T17C+oiJIOiD7jem0wfWOTmSXA8lXKqlPMWR2kWIhBPY/7wycvvAX+ObPf4/5vRU8Z8tCnLFoWpNtTR301LFdEXwNgsbt7K9RJt+/aoep+b1tuOFS+ZRC9cLGzJVLHjRfdCX8WcIGAkq9qOYJbcUvQdSaYqjV5xGlnjZ7J5qIgeyYsu9GHe6hLj2PBq9Hs+89R6rlszKCQPcpiLvOwPoaBPXDj/16pKKa3r/tojV42cd+oH08FyoR6ZQoek2GuYcbRhAYDG/Qfen86vjgSKBjhA1BHOmWkREEIfcR5l5zqVLHFOU4TVZs2QuLajm8NgxRXpFimLnQKPFS+Pg7QXmKIQvnv5jP4eVnL8fLz14u3c5U2j9Rpoj7vaFWfZlbNWjN4mB7NmnfKYYcfkhdKT9wHZ3kYImDKGZ6ixQ33zaqtF/nMNphshwJ2d5tZlquDA1UqVx1VVYaCPTvlbhHEISp8NLfxu83E+Ep5ANWrrr8EGRQFNcjzMuyzTUIgjIxIjEM1bVu1PfnwEkdFzYocY9mjZrp0R9GRxDU/TvIVGNRVghxBEG2cYqheOWEiO0aWBhra3yPQVXq1gxzew0C+f7DTFfpx6VyUBhBq1qY/kWPDQRElvn1UNB7WW7xuU6AwtA40PBo9JW6suDJMneX1yCQLlKstZ8AB3fktHCR4hbbJ3gEgcov67fxje/498WAXYlYCI1e3Gc8zAhDmw2XwacYUt/WxtR6KofXOeXGGsgtr3GkImjDZfXYyWOqU0IUcQ+SDnANAopK3GW9rBOGpxjSYarie2I3LiUlbXUNBKqpfbNTYjtefnmEzfvDxK5dSEOCzkrgQtizhg0ERCH8xRXrQ+9Dp9W59SLF0aSeOgWVpTM6tPZtPQaSA1idSzrs7yU70Fvg2u84jVu4UicfdGGjpNF9juMuM/mlXZdsnGv0eKoVThxBkA5R9NAN0+urvn7dZGiD7ksnOkOjYwGPEk4caxAY2U3oEQTZeuUKMq2hbDuTyUF9kSJIWiPLj0xPz5gP0bhEycerb4f6nPfxXQPTeaBL5dy20tQ8McwIAttXyK8BwuYoLxPXzIUpkAKvQWA2GKQgW6VVIoMWTGvD09bN8d3Of5Fi9WPGPYJA5zg9bUW9fRuIhKne9i6Jqgely3MDjnqeM+sh2JS0EQR+PWpef97K1l8qzUWi95OJ74tsIEiFaKYYMjiCwIEbSKeXu41RfirZiFYDQYiwTNmPifJFyN+HW4Mg5MEdpHqv2phiqJ7qtaktR0U7goCv61mWxuffBeprEMTXQmA63XOhonhC/QgC1ZA169hhfQSB3xRDNhsIDNx8Llz1oKNu0zLFUpKwxEGkacP8Hrxg+yJ86uU7MKOzHHp/JnqBR7YGgeaBXnWOfPGlKfu2nAHGVigKedg4pxhypeO+w20XsYp7ShxZ7+uOUh6rZne1/F4l5Lrxm9g+aGVK3Oczi4IuLB/F8f3YHEEQNGBxTx+gUuGitUyCoZvARP4fNixZmybGf9Si5v4snr5AIwhkaZfhvCRr9w5NxQqyeFVHEMRzDYyNIBjfkUu3UtA1CJpPMWR7BIHPCGaraxC4sY+wOIIgOQpxB4AoaW593Vl6P/BJEHVanVtlQFEVXHSPMq1dfRSB7czLhcwxCNntEfN6lJGxMVe2i1yqMFEhG0GwcHp76P3Xx88vuhPtApxiKB1sv/AJEe6lzsV0Ke6KJKURBBplHlP1oi482mHWu4j7ugZhKsyTFVvKIw7878OGRYoDtCnL0ifjUwyxgSDTePXtUE2j4lyDwFw6anZ/JrSV6kcQ6I/kmmC/gUD+veuzwFXPbbxl1sDrdjl+btOIIwiILItkiqHIRhDobR/1VAJR9uhSFfa4pnuP6HBlWh9XRjLYlrQGAlmlit/9FiTsvlMMjT9rxSC1PQr7p2jZvhw5ES51rn/ZMXn/BN1V3PWIKi+AemE0WzkSah/hd5Epps7XxP2iet8EqUxXLavWbhXpFEOu1z6RVS5V6qaJzhRDcV0B03m6y1MMhWE7Wn7nbceyPmvHNhI3By57Vt7l04ANBEQx0+lVFnf6rltEcqnXk0NlIi2yc64TpaTGHwjR6yBhgk6pExfZFEO+00sohL1xC7VGh6DTMcR9Pmkq66PKQh6jft0Wk8ENGq6403m1BgKdUZNhQjNlT+H3wORBS1yLFKtUptZXDCo3ENRsFmV+kecaBJnGpCdecb7KmkpnRN3/uqB+iqEw73rWGwjGk+Dnb1/U9Ptrdi6xdmwTDYQuXPeg19elRq2sYImDyDK/Hgp6L8vNt41sBIFmiqE3fZJmYJrtw4kscKrQ8ZKNirA8QmNuT1uAX5k35nnZ6Hmge5Fivt1l959ffYbSGsV1G6ne7kFHEDjUnpkZ0gbQCOaUDZNnuJgmxd3TVOWcJHeRYvWd/NGFq8IfsP74CUuffEeRqU4noVm1FSQdDzbqQP84QRWZOWVa0p79pFDNL3NCxJa3GptmT3MkVhQaGwiC7yuqNQhee+4KLKqbQvUPzl+JOT0Va8c2ETMXKtmDL1JsOCDki2sQEMXMzBRD0aSeukfRqwiwOweAC5ljELJwm1i/QmbFrE4sndGBXzx5XPu3Jjk41bcVCWsfkN5/RhYd19zFxLPCNQjSwfrlECFHEDRMMWQuxEH3FPctbHqKIWNT7JnYh+JOyoUcnr15gYEjppvuCALV+yZIWS9IA0GU+UWY9Sso+Vzs/JQGqlMMCRFf3mo6nYm7E0Gt+imGVK9HM1E1EMzrbcNnXr0Lt//0cTxy6CR2LZ+BncvtTS8EGOrg4MBlz8q7fBqwgYDIMr/0UDZNR71W7whRpfu6BQutqT5sTycRU+ZocQAB5nSr91gIGo53X7YO13/0BxgcGQu4h/DCFBrTLO6CvqxSxe/RDxJyv9+cmmIo6OBIB0rQNMn2/S0QrjddwxoE4YIzdV8B4x53Q7j5EQRm4mPivKju4T9ftcvK6DuBuJcYNEt3yiCd3r62wjL1N9E9a0GnzaN0cKFyL8tyKVikeCIHc+leql+k2OkphmoO0NdZxnO3Np9qyAYjHa4MhCMsrlGcHJxiiChmepl/820jm2JIc/uo11eQnYe4K06CkgV7Xq96JUTQ6O9ZORNffMMe5e1ftmdpsANJZKXXge6LQNx3tPSZMrBIcf0m/lNWVBU5giAVbNeJhZ02YKx+DQIH7p+4w+DqGgRRLvK3YJobU/PFycaC3aq7DHJs1Y46osXftrm0nhdRWqjm/9URBPE8g8aaB8TE/txJS+pHEIR514tqDYI4mBlBEP91D9rZz4WwZw0bCIgs80sPjUwxFFGGr5tG64yOsC2pvT9GJCWmeb06IwiCh2PZzE6l7RZNb8eu5TMCH6eV6hoE6W8l0G6Ai/nxkk31byJs9Y+O/wiC6haFwGsQuJNekd/6BAb2H3IfNhsugwYt7ntYpYFAZy0jlxoIlOfMZzqidKbUz2f1f1XvbZXt6jtXBFuDoPVvTBdXOIIg25ik2KH6XpGLcY4hU3n6xF5cSkoaGwjcn2IoDhH2b7Aq8BoEhsNB/thAQGSZ5zMoXGse+VafRzaCQO9AtufIb9hHwO9c9sSRgZbfzY9gBIGKGZ0lXLR+Dv7tFTvQXjdk1ITRjAwh0L1GcVdEyRoAfSvzFauQpvzL5ycTXwetTElqGpFoAQehmHphCrUGQf0IAoN3UFIrhFSS6jimGIqy16St3t5JygZV8ibV22DiflHfXv59eymP89bManoMP7XxivIZDdroTekQd8Nv1uVEnJ3M3N5fGJXS1HQtTMNqmhsI0tJCELQM49I9mxVcg4AoZjqVfK0yqKjSTu1FQyOfYihgbZNFYQ/bXSm2/G6uIw0EP/jTCyb//s1TJ43vPwODBwDoV2LFXWaSPd++6VqAwPudn8kRBEEbCOI+oTRFFHPKhqk4buh96MD9E3dFkulFis3Nr2BgF4r7cGnkZFz0m3/DbzfBr4HmDy9YhXJhakeGIFlGlI1OHEGQbUxS4iVEfBPzGBtBML6fuMsItUp1DZ9hOoPZjlWcbbQm7j4XrnuYESIULXZJILLMLz3U62Xf6gv18IRhc4oh23lX/FljMDuX9zU9N6fN7kJnWb2N16V5J3VVpxiKOxQOivmSyp5vG1MMqW4ftAdvkp+RNJI1Mhl52RHh7tOlMzvCh6GFoPdi3O+AphcpNvVSG+UixXHOVewKpTVmFE/o5BRDig+rLN1oK+Zx/Z5lDZ+r5hm1u47yWeMaBNnGskm8Et97vGY3cZcRatWn1S5PMRTniG0XptQ0IfjldSDwGcNiLJFlfumh1hoErRYpjmoNAqtTDOmGpsk+JN/F9X4V9rC97SU8b+vChs9fsbfxJVcaDkcbkVRkpdeBdoV4zIUm6QgCv97+Cvuv30Z1UELQgrwLBeiskZ1y6XcGrlV1keLgv3/9vpVT/u23q/NWz/LZIry4e4mpzOmsE0SHBhAopyscQaCWN+lO66PcQCPZ8NzVM5v/JkABMdIphthAkGlMUuJVnWIonotgOk+Pe2rSCbtX9DV8pvKqt69FOUpnbaMg4i5bheVC6P2m3G4l4ac+kTjFEJFtvosUh69Ed7XyV299hfS2/of1nss3YElfB26773FMay/iqi0L8bR1c7T2Ed06FeYlae7lMHTPXdy3tCzt8q3MV5qjWi+CYc9H3OeTprI+qkyEy3fOXDytYX8ysgXnGwQMVtz3sPE1CEz1noywB17SKxKiUlScs2HibJpcpNj2b0wXWbgGQbYxRYlXLsYphow1kguz+wvrpWctbfhMpTPYtbuWNP3c/hoEVncvFWUHB5vGxoL9Lv6QZw8bCIhiFuXQ96iPE/U7jexUxjaCwMBx8zmBV+xdjlfsXR48HFGNMrFwGJVeqTY964z50RxIewRBvGTPt4klCOqvu98+w6alLhSg6RR5A5RA2Go4geDp1Y5l0xsqOP3S2KER9bejoHdi3B2N1dYg0Ok4YIaRF2zF7YL0Rk8dhVNQKig2EIip/+snSD6gOuqjdiuOIKDI8PLHSoj4Gt+NrUEwfhO50IB98/XbsXvFjIbPR33KDy/bsxRnr2o+Csx2rOI8bybeTeK/6sFnA3Dgls0cdkkgssxvSJXOfLUtFymOKPXUzSDj6CnYcv+S7HG5xbmkXRFdBmv+QGOe+R55qgo5gSu3LIjkWNqLFDs8gsBEYbq+N7JfOhd6BEG4n1MAsmsmux4mrlWYe1Rn/ZcJQ6MBu09pifcuVhtBoL4/U2UbIy/YTCCUqZwq1UrviedU9fQHuU7KjTo1O5fl16ZvFa5BkG1xTyeZddURBPFcA9OPftz52PVnLW3aOAD4lx92tfgdEMUIghgbCEzsw4EkJGhfP6Z/0WMDAVHMjEwxZCgsQY/fStQvNdJMRPLV689b2frL0NzI2KK6FGlYg+BZZ8zHvJ4Kdi3vw4eu2YJdy1sXSk1K2hoEsufbf4ohlSPUjSDw2Trs+XChAE01bDcaizAvfY2/89uV1giCgMHS+d3V2xrXtglLbQ2CZI4gcCUvTwKVS1zUHkGg16DQdF8trmGQ0a6yMpXxKYbYQJBpLJvEK5eL8RoYOu5E+OOq6O5pK+LFOxfjrRetbrmNX/khzLSmYel05jTNzBSJ8SciHEGQHJxiiMgyv/QwWWsQ6B1Ib5Fiuz38ZHt/2ro52LtqJu544GDoMLgruTls1A0Ef/Pc0yM9XlBxF5pkz7dfuqYSdu0O1yHPhwtDr7NG1qhje4SKEMEXKW72O6MNBAFvZp3zcqHmOjYqjKfVxipHsvNsz+wq4+DRwVjDoHL/lpTXIJiYGkPt2EHq0gOlJxHeUvk4a6codtlJvdwUZ9nQ/CLFRnen5CMv2Yo9K2f61gn4lR9kP7d9jVSnobPBRGcwF9KQqN/lKTiWOIgs80sOtYbbt0ji4+5J3IpOhmo7BrKgVIp5/NOLNuODLzgTr9y7HPufd3okx41Skhcp9rzgQxOTRPfcxX1v2S6Q1xcmTaxrIMMGArfIroaRHlU+x/D7ra4ophhSCVdXpYAbnrkW5542y/jxTS8ob6psE+UixXFa3NeOd1+6Lu5gqI0gUG0gGN+XaocTm4sU124VZX5RzCfg5iNrWDaJV5jOBKGPbWo/EyOxYqgv2LigVyn99isixTmCINZOBikpvwQtHjoQ9MxhAwFRzIzM0+9o6qk3gsBiQOB/nivFPC7eMBdvvWg1Ltk4z25gYhDVLWKjEDVqutbJUfrnLt4HXz7FkM8IAoWw1zcK+f0m7Es0Z3Fwi+weet7WRQb2Hzy9ajqCwOAixUHJnoFrdy3BN95yLu58xwW4dvdSK8c/SzJHcBCyy3PNzsXq+zERFgP7sKm3vYj/9/wz8fT1c/C6fStiTc9UDp3PCaUwTjyjqs9qkEc6yHSYUZ5eLnydbS5U7gWxben0uINgRE7E1xHP9LMfR1KiumaT3xRDsufA/hoEVncvZaZDTPyJSNBX+SyNAHUFGwiILPPL8HReTFpt6mra6dJLjc45MhlqV85AVBmsjaOMeZ7vYt8TTpvdZSEE0dC9RHE/XrIRQn5hU4lrfdppZl2D1thLzy2ye+j528M3EOSEWgWlKr/bZzDmNQiEABZOb0chyITritbN68aCaW3G9ic7DTM6y+r7MdIDz9304c8vW4dvv3Uf1s/vgRACb7rwNNz5zgulv/n/XroN0ztKEYWwOZVRBBNn3cgIghZfBUn7o7wfuAZBtrlQuRfEtbuWxB0EI5K+QG11PxMNrYZ2qKiQEygprjfjP8VQ8HeOsOJcKN5IBwcHkhCVNarIDWwgIIqZXqLdfGMH0v2m9KYYCh8L+XuhO6MZ4hDdCALz+1QtUyyb2YF187rNByAi2uMHYr5PZQ2AJoJW39vEb59hj+lSgybJ0+wVszrx9otbL3antn8EfoiC5FdDI6Pq+7fRQBBBLiCEwIeu2WJsf/IFZ4HnblFbaDktc/i2sm/NbLSXpvbS7GkrSn+zZ+VMa5UqqpXnKusQTIRRfQ0C/Uip7rt219JFig3Xg8RZOUUOSODlv/6spbhovfl1buKQE/GVt003REbd2DGi0W3cb7S4fIohu/GKs5HOyBqNBsIRVtB8Me533SxiAwGRIa2G1r/94jXS35lZpNjN1DPqKYZkGbjWCAKD59OVa+NIMAIZ8zylgsWqWV2JruTVvUZx9yqT1e2YeAlp6E3kO4Ig3DETfOsklvSS+VyPl5+9HF97094Qxw7+BAW51XTWIAgaMhfymzVzu3HxBjMVQ34jIt7y9NOURo2lfQ2CoAsoqi4UrEs1NEWFnqUT97TyOgEBToVqWbX2uYwy/1Vdr4HSyeW0p9b5a2bhpmu34Dtv24c/vWStE/mRCWHKCuGPbXqHhvdnkN97nomRyUHFuU68mREE8V/4oNMFOxD0zGGJg8iQq7YsaPislM/hog1zpb/TaiDQ/DxuWg0EFsMB6GeOacuQouo1YqMYrVqmyOWCV5QkUdxRDbNgmMrz6DfcWPeYfthL0y0ql2PZzE48fV3ryuj5va2nuxEhegU2XYPAZ2fRrEFg/RBKCobepv2uT19nGZ977W6F/ZjogefIyW0i6HVXnfpBm2J4VBbfndhCtQwTaARBkDUIInyDZt6UbUm5+jO7yti3ejbm9pibZs4FOSFiq2A1/e7m8lSafmV+v2tgM26xTjOVkg4Ouu90E1wue6UVGwiImgiSkF66aR7ecN7KyR5Zve1F/NM1m6UVFIDei12rDMqFhL+ZyEcQSKdX0GOqMODopbHGxr2oWqgQEIkeQaB7t8Qd0zDDfVXCXn/V/QqJYQuRLr84ZZHqC7msLrqjnJfsP0RP/Sa/89uTTuepwA0XsacKVeZmWPFPYyrFPDbM75HvxY3TYk3QfM/WehTKIwhU1iAYv3jKaxBIdtlqD0E6FkR5S21ePC3Co5FrXOj9qyYp4dRTXaQ4Hn7HXTW7U2k/E+u4uXyF/MpIflmAzde/eNehMNDBweULT85hAwGRIUIIvPGCVfjxn12I2954Nn74pxfg3NNm+f5O58Wu5RRDjmb5LlW46U/fki4OXQptqgsbCSGf9sZ12vdozBdVVmFjImRRL1Kc5GckqWSnXPVyyPI/WU/2UIsUB/jdn1+2LuDB1MniE+X9/bytzdcG6K4Umn7eimqYfdMGraMGO0acgo6cszV1jWrepNZAUP1f1Wc1yLkIMn1RlPnvlsXTMLtbfVFuSheHk54pEt0/R6I6giC+Y7dy0fo5uO2Ne/GJ67f77meiOO3Se3m9MGsQAHbT5DhPm+0pmKPygh2LA/0uremKyxJclUKkbtMCee+yemHSorZSHqtmd6n3djKwkK+r+b3esGgTUwC0plsoMjaCwJFrE9XLrJ0RBKrHFomeYihpIZc9I/4Fef/9j9XNyOL3k7DnL8n3ThqZSIMLkilMBMymV377Okehw0D4QNg/hIptS6djRmep4fMXar4gShuQaitr/fbjyHmxJeizUlKY4icI1eDoTDEkFCvpgpR1gsyIFWWlhRACf3/1mSiwpiSTkpJ+uVz5HEZ1OsJ44qZyWJW1XHT2Fxe/zmB+95fN5NHl86Yi7vAX8wLP8Jlyu5W4O8NlERsIKBPedOFpTT9/89Oafx5lYqSToSUtjdSpcLMdN+3dJ+xc+0lydMY8T2nKCoHgUy24IGnrZEhHEPj26PUPfP3UUr7TFoU8H2l9uU0qE5dDVqFWXXgw2EGa/cpvTwunt6vvP2DkpdN+BdpjMMV8Dh+7bjvm9VSqxxbVaRjfeMEqrf0onwbfKc3SPUQ/6JIPcS9+q3L82ntaJY0OUgQINsVQtDfEtqXT8c0/3hfpMckNSSmbJLj4LeX6/PM66XjUla2v3LtceVu/zmAm3iuCivMeCDh1/xRxPpqlQg4ffMFmTO9o7DRCbtIb60uUUDuW9WHf6ln42v1PTH62fGYHnrOl+TD4KBNSI4vnOVooy2v0TjMzBUDwCst6pgq6LgzrA6K7R2JdpFgkuxe4bsjjvrdk7yQmCtP1191vj2GPmeTGpaQy8rIq2YVsiiEh5L+VHrJJuGVxOX+N3uiBoGfFpTt47bxufOut+/DzJ45hRmcZ0wK8HMrSuNrv/NMG7UNrhSVuQRextTbFkMHj1z5WeSEw6tNdIMjaOKrnr3YredJlbhWOWqxgIZclradvZ6WotJ2r889PBEtnZFHUMblg7Wzlbf3Wm4tzBEGsDQQ++clbL1rtu4+ow3/triW4bvdS/PqpEzhjUS86ysGrnJOVqqQDGwgoE0qFHG584Zn4zI8exY9+fQirZnfh8jPmY0Zn8zk9o0xHtRYpbrGxqy+ueiMIDDSUGNy/q+c0qKgKB1amGBrzlLpQCCECV5QkUdzvYtJ7yq+nj0LYdS9l3OeDzIpkiqGA+9VuzIvo5nStp6kQAitnd4X4vdp3/uuTuNERI58TvvMsBxH0uutMTaFD9XyXNBsI1PKNAKMBFH+iGxYiE5JyryUlnBMuWj8Hb/v0TzA86lcxHVGAmh1bIYnWaeiNqoyQE8DbL16jtcC6bwOBTzRtxi3Oe6CtmEdXpYCjAyNNv1eauifi8OdzAov62rGoT33kbEsJS1fSgFMMUWaUC3k8b9sivP/KTbh+z7KWjQNAtJXDOhWarbZ0tVCmM+zddhR0929sBIEj1yaqYNhZg0B9keIk9wLXPXdxxzTMIsUqYT9r5Yypv/H9UdxnhEwyVSHbSnWR4mAHafYz2Z6CJkuv2Lus6ed/fvn6pp+7kt+YohqdKKJt5H60dIECNxBYyi+VRxAU/LesbWxQKS8HabdWbdCY29NWs6/oH7a0Pd+kJikdllxroPbTUS7gys3NZxKoFefICJVzKusIUS+qqNz5zgtx/Z7m5ZdW/NrO/fJPm3GL8x4QQuDy0+c3/e5D12xRmr4y6tCb7KyXrFQlHdhAQBQzrUWKW2zqauIZ9XQvqr0N1fbl6lkNKKLoxDnFkEDSFynWHOUSc1Rl57q3XW3odiud5QLaS1MHOfqdn7jPB+mTjvoysH9Zz7rqwoPB9tvsZ7J96VacTGx+yYZ5Db2suysFnLe6+ZRFJqfZc4E0PorbVb83EBYDd2TQtQL8ODfFkGJwlKYYqvlbbQ0C/XOh8puetiJ2rzjVaB1HX4QEPsJkQFLS7iT2z3nP5esxo1M+dVec8VI5dFEhY5noZxVFXFbN7kRPm/47gF9nMP98Pp0jCADgTy9Zg8tOn4fieGNQRymPA287T3kKp6jrNEw2FqauPiYB2EBA1EyEaZFOutfqBdXVxFNrdITlKCSt8tW0pPRAakZ1keJc1kYQxHyTDo2OtfzuzEXyYcV+Qf/AVRub/Ej+mwRfempC9f6WbSUf5SIiS+cnXpYqRbVi90SwNizowYdevAUb5veglM9hy+JpuPn6HZjX29b8dyl7BpSnGPLbT0T537POaN7Lb8K+Fg07YQVuILA0xZBqIVptDYJT+7KVxqvs9+0Xr55ynuPOfyk7knKnJW0EAVBNO1977grpNnG+V8gbyavf6Y0gcPcajfn0Bou1oSbm81Yu5LH/eWfgrndeiB+94wLc++6nY05PRfn30Y8giPiAZBTXICBqIsqE1MQIAlcrxnQKVUZ6+BnsPenoKQ0sqrKNjeN4GlMMJXkEga64oyqbpu2sFTNaflclD3y5mG/8hU98k9wIRo1M5GtF2RoEIvg90zyv8c9//ujC0/Ce//6p1rH2rpqJvatmYnTM860IDrJAq8uUFyn2SxuMlC/k3xdyAlduWSDd5lV7V+ALd/+u4fPX75NXUNkiez7CUD3fSmsQ1PytUqYMcq390oFtS6fjuVsXTflMFhTFIou2JD7DFF5SrntSwlnPL9y2nmcVKqfUpc54YfiNFverL1GdjjYIV+pZOsoFdLR+9Wop6utudASBsT2RKrbvEDURZUJqZIohIZSHmUWpoLW+gt2TrptZmeox4kphLKpg2DiO4hrFyAmR6F4L+o1Y8d5cq+d0obvS2M9gz8oZmNUt79niX9mv9pnOPilZlEcQSLbLS4beCxF8BEHT+1Oyr4n854U7Fis0njWPk9L8675bJIvq9fFLC01k5367+OdrNmPXcvm1XTevG8/bOnXO65WzOnHNriXhAheQytQUtf7wglVmj6/QQFF77cJ2AGhdhpb/bvvS6U1+E/3T5nfE63YvjSQcFC3ZdXel4hJwKyw6/B7lp44PRROQJlTeXVVO+8Q4bJdHefguUhxjQ47L501F1O+LZqcYMrYrUsQRBERNRJmQ6hSoZOG64dJ1uP93R/Cbp04aCJUZWhmE7VOe+REE0cTIxmGyskixrrgLTYV8DvufdwZe9rEfYGS868+8ngreccna0PsOcr9m58qniOWLJluENSdCpItNfqZSiVMp5nHTtVvxg18+hXseO4z3fuF+1d0rSfpLbD1ZbKZE1XcEQfjzItvF6/etwL7V/p00cjmB916xAeetmY3v//IpLJ/Zgaetm4Pedvkc2LaoLBJcSzV7Vd2r7hRDKtcxyKX2e250d2nrMfTb7yvP0VsUlJJBdt3zOYGx0Ri7uNdIavbjF+xVszsjCUczKqe02YjbehOvUS5fIv81CML9Poyk3tsTog6/2UWKE37yE4gNBEQxm+jFqJKvyRL4+b1t+NIbzsZ3f/F7XPeRH5gLYAhawx4thgMIskikoREEjmRs0dWbmz+Q8iLFQm2R4rVzu3Hfb4+EDJV5rtwrOs5dPQvffus+3P7TJ9BRzuPc1bPQXfFfnMx3NECzz2JcoIySSTY3b3WKoWB0n9Xa/KdUyGHXihk4c/G01g0EQdstUvYIqDb4BklP9LXei061RC5XHfHpwqjP6ZpzFaiP6lHbX0FziiGVEYJB8lHf8Go+WHFNSTKrS31OakoO+fSpAnopkD2JbaD2CffSGR0RBaSR9JyOf9XTVlR+r3H5Go21XtYMgH95wO4UQ+6eNxVRvx8ZbSBI9qlPpARPxkBkj6tztflt1VEuYN/q2ZjfYgHDqLk0H7xuSNLWET2qyudY1yCAWqHk2pimc/Dj0OOiZVZ3Bc/fvgiXnT5fqXEAUKnsb/KZ7z5P/f3+ZzdZ5JhSSXZfSKcYCrFIcdP7U9rdXXN7C5KYvEgXmZ7Ss9xnRwYin9T0Wea5ddMd+TE15dOEksIUQ1MXKbZzEUyPILCFjeBUz6n3LIfCokMW6medMT/WeKke+g/OXyn9fuItyuVL5D/FkN/vDQam4dgOnzgFUYc+6ecr69hAQNRE9Amp2nZJK3zpLVJsN276uzfU59CVS+ZKOAIYUyz15YTwLZQ8f/siXLlZvpBkXJy5VxzQrILJf92CUxucc9pMtJf8h11TvGzf8rI5znPCbMOpbF/N0iUbjbZpeylTXcfI71yaONfpOrNVup1JVM+j6m2oNsXQqb+V5uP273DbwO82S9ljRSniUmcml8KiQ/Z8n76oN7JwNKOa9ly4bg5ec+5yhf25e5HCr0GQ/kWKg4q+46u5fbl8z6YVGwiImog6MVI9XhIzKPUXfLsyP4IgZHzedtHqpp+/9twVU48T7jBNeTi1wJaMEP4jCN57xQZn1ylI4hRDQQWZ0cG3ErDm61ndFXzsum1YNL0dADCtvYgbnhl+bQRyj9/8zLIfmlykWKZZMOTHDhYw3VEMritIR4DU/B1BBW9aX1Lfc/l65W2Nr0FQ0JtiSHNNZWW+I9qS+PBQJtgsz7YpzG1fK6kN1LLnW5YHRUEn39myuHEx9Yb9hQmMZX59wfxOxajFIQRJz/+TvAYBRY9rEBA1EXWypjpE1HTvrSjkckJp3J/tMOtm7qbC48q1CBuM89fOxt/e/gAGhk9NElnMCzx9/Zypx4kxwjkhpC9LXeV0ZXlxzXNsgv9ogPC/2bJkOr7+lnNx8Ogg+jpKyOUEbrj1Pp1gUsLJeijnRPCGYN0phvTXwNEMkMJxkljJ6beGRLO/m+G7amsdZfVKQOUphhQ3VOlAUntP25pOxfRuE5w1U8LYrJRfMasTj/WfxO+PDymGxVpQrJKdQtkoRJXfhyXt42B4f67zu9dttQ+48h4fRtTlP5PpUgpOf+JwBAFRM64OxVJ+OQscFONMN34EpXtOktoTppWwFffLZ3biphdvxWmzuwAAy2Z24MYXbMb6+T1TjxPqKM15nnpluOx+c/2Suh4+k2zMGd6qcWhmV9nZUSNZZ7tBUTqHfc3/16U7BVazeNqIedruclkF8pQRBJxiKDCdso7pcpHulEGxrUGQ1otPiWezp24+J3D1tkXK2ye1l7XsFKpMg2aTqXfjiel3knqNgPjey9NQHxD1KxAXKU62dHWnJEoo5UWKE5hIujLMTLeQZSrUrvTaNBGKXStm4MtvPBsnh0bR1mJ+dyuLFCtuV51iSPa9G9eiFbdDF60gzw3PH9Ur+ixya3SRYukaBM2P33L/QQKFZJYRZAqKlTPRTDEUfh8u0skXTeehKiMIpjQQhCxPdlaav/b6rkGgeZyU3irkIJuvWPmcwJsuXIXOSgGfu+sxeJ6HSjGPu37T33T7pKaRsrw77gYCreursK0jr+RNvXLvcvzjHQ+1/D6usLt8zpRF/HDK8uobnrlWazR3UtOVJOMIAqImok6LVBM/5YYEh15P1BdgdiMcE1yvTNZlsgdEq8YBm1QaCfwWKXa9kJeyW05KZz0B2Wd1O6UMkl32vGT+4OoixQGPaXlEWvCGi3Q9BNIRBDoV2wbCIkuzkjzdm06+aLo8p1LhX3udVY4vhMC2Jc3n4r5u99Lm4TA8giDBtwMljM3ezXkhIITAK/cuxxffsAdf+oOz8cYLVsUSFqskwZZNcxcJQ4efTJMiuEZB88Nnnzlf+n1c5Zs0lKuijoEsrz5/7Wx0tWisb8alOq2sYAMBURNRZwaqvaJUQ+VSXqY6gsB2kHXPSerWIIgoHDYyck+xtCkgv9/cf3lxPXwGBeixGcU0IpQu0jnsIczm9ZJdNR1BYO7ISqa1FyM+YnjqaxDYH0LgfPYRkE6+aLoMqjSCoOZvpSmJADx368KGz7ctmY6lMzrUAla/z7RefEo8m+XaZu3rskfW9U44rciCXYp9BIGZ9HniNcrla7RydhfmdFdafs8RBMFFvkix5IALprXj5uu3K++L2W/02EBA1IRLCWmtJCaSsh6cU1iOm27lofuVyW6K87TlckI+57jj19Tx4MWOC5Gmj+17XloBKcLcM40/lO2q6RoE0qAFPzGbFvQ0fCYEcNWWxkpT1xUl5QfR4m+/bWkqrREEyh0+1LZT6UASZA2CZ29egPc/eyM2LujBnO4KnrNlAW56ydaWZQCuUUNJZXuKocbjJbkTTnOydwOVEQQ2Yy07p/XhVnnHiaIjTZjb4HnbWpdTuAZBcJGPIPBJmDYu6HWmAyk14hoERE2oVtibolpxqZqxu5SYKg9Jd2yRYlO3wJgjcw+koHzjS8Dv5SW6sJCcb4VegEVds3CPkx7Z/ME5EWYqH73tm6VL0jUIQtzLL961BH/47z+e8tllm+Zhekcp+E5jovwC6dt4yBEErdiYqkl1lyrXt/ba6TQoPGfrQjynyUiC5sdQ2ozIOTY7vjTPt6wdzkkqaxDYvAY6e+6WTNvSWa5+l+S0jg0EwUXdQS7qejQyiw0ERE38+eXr8eqbf9Tw+TM2zrVyPFfm6bfBlQWYbc8Z3crYmJHdhBbV9CtWFilWbGMRQj6CwPVCntuhM8uvsBrkUnGKoWyS3UvFgqwHugh8zzT7lSwc+mvg6G1f61lnLkAxn8O//+A3OHxyGOeeNguv27ci+A5jJO29WXOS2HgYnNYUFsqdWdQoVfjX/G2rcsv0GgREUVFtRDW1b50e7UkxKnlRK8a8BoFO+rxpQS9mdJbw5LGhKZ/P7alg1exO7f3FQVYmU52QwDS3z5iaqBuGVNKl0THF6YMdv2fTiA0ERE3sXjEDve1F9J8YnvL5JRtsNRCYrUR3KTF1pbeC7jkxFWzPkeXqHLolAlFpJBDC7+XFYIAscOm5jZtuBWz1ezthIXtsX7KS5OU+lwsegKaLaEu2j3oKk2dumodnbpoX6TFtkPXerD2jvmmDgbCkNX3WuTVNnwK1EQGntlFa1DhAOHwbmDT3qrpuElFYS2Z04NdPnbCy72a9gF2vYA5ieLT186oygsAqjdOdywm85twVeNet9035/LX7VpxKRyO4fGGSP9ntFde9l4ZbPuoOVEaX90rB+U8aNhAQNdHTVsQnrt+BN/3Hj/HT3x7BzK4yXnvuClxkrYFAbbskTjFkusdZ4HBY/0FzrrwnRnVP2KhEUW1kyYlkL1LsdujMCtLj178Sh7JIdt1LkhEEnmf2npGuKcCbMxD5mjI1f/vsx8T5T+sl1MkX1TuzqG2nMg2B7hoEQcogbHwm151z2kz8788OTvlMCOAF2xfh6w8cbPGrcJo1yLnS6cskWU/mQlzd1sf5LKPU4CW7l2JOdwX/ffdvkRMCl2yciwvXzanZn9sXsK2YjzsIDVKxRo2DIwjIXWwgIGph7bxufPENe3BkYBhd5YLdeR4NzbPrIldGPbSX9AodpgpRrjQQRFUotHEUz1NrJBAQkHX2cf35cT18JvnHtXEDv9+ktYcvBSfr/Tc65gVOF5s11ptcvJHTZVWZmt7BRNrgavISNlw6v1d951feTmlEwKltbM1r7BcMRy89Zcirz1mBAw//HgPDp6bDuXbXEszotLe2TLPnLY3lrOHR1lMMlQrxxjfI+b5ow9yWHRqjiE2YW+SKM+fjL77w04bPl87oiG00h+uNKiqijsHs7oqxfSX/7CcPGwiIfHRXitaPodwrS3WHDqWmUa9BsHFBD37yyOGGz6/ZuURrP6ZOYdYWKY6zHJUTZivpoqY9jYEj01cF4RfXpiMI2MszdWxXNpR8GghMLlIsH72kewDN7VMqL+m9WZuG+KWEZkYQtN5JnGlxIWRPPa1FihW3Vc1rVcI+ZaSIwm6DnI00VnpSumxbOh23vHIXPv2jR/HksUHsXTUTzzpzPu78Tb+1Y+abNNCmsWNw2BEENk+J6fMdxYCIMK+9MzrL2Ld6Fr52/xNTPr9y84KQoQouDfd8lFlcqZDDhvk9xvbH/Dl6bCAgcoD6IsVuTNejQ336JDOu2rKwoYFg57I+LJzerrUfY4sUO9NAENUIAhtTDKke3G+RYiPBoQgEquRxKuWjyEguu2yKoVHPM7pIsayy0/XGSVcVFacY8mMibXD1EoadAkNrDQLlfSpOMaRw8NpNbE1b4DuCwNFrT9myfn4P1tdVvNm8NXXXIEjq2hsjkgaCoqQMEQXT5doklJP/3/PPxA2fvxdfvf9xdFWKuHLzArz6nOWxhScNFdRRXvdNC3pQMThVVPLPfvKwgYDIAaovU0ms4Ix6BMGLdizG6OgYPvm93+D3x4dwzmkzccOl67T3Yyo8knIn6VA4jzkhn4KgtpD3nsvX408/e0/DNnH2UklBGVSZjemCsnT+SI20gSDUCILGHxYk0+Ho3s+8lasKPiNAVKV5DYKwIwjsrEGgtj/tRYo11yxQ5b/IdfPvF0xrwyOHTjZ8/uJdS/QDQRSAzcbnZs9nGhu7R2SLFMf84m16baMkXL62Uh5/deVGeJ7nROV8Eute6kW5lEZvu9lpz+obRck+NhAQOcD0PP0uZKiTYgjKtbuX4trdS0Ptw9w5zFYLgY1bT7VTkoCQzmlc+825q2ehrZjHyeHRKdtcstHOQuQ0ld9t0up7IVrfD2koxGeN7Utma4qhZmQ9uXlvBiOrQNZqIDARGEevoaxhSoXWSAzFbZVHEKhU+NfuV+lB0j8fQUcQPG/rQnzgtgemfDa9o4Sdy/u0w0AUhM3XvWbPsUuvl6aMjrVeg0Bl3nub58T0vp2qH/DhSliTMOrCT5RxMF3efelZ4epzSF+846aICID5HhkuZWXqcXMp1CbXIDC0o4SwcRU9xRmehZBXKNXeivN72/Dhl2zFovGpp/o6SviLK9bjnNNmhQxtcI6UhZ3Q6lzITpErLxPkDt8RBAZTLPn0ZpojCHgvA5AvUlzbQOA3tUWaT6dsnQYVOvem6hQ/qkHSH0Ggtl9dQZ+3V52zAldvWzgZj/m9bfj4S7ejXDA3vQKRjN0RBM0+S19iOixbgyBkA2xYsusbJGQpvHzWpeGcRVkGMpkmvWjHYu0poik8jiAgcoDpApdLL8Pq6yvYDYcuU8PxxthCEBm/RYpLdS/tO5b14etvORcHjw6ir6Ok2DvRHu1KiiTfWn49NltsIGRDCCiTZJX8st5/I4YXKZZVJOgmLY5lh7GRjcrQG0EQ/oy62otQ1oiiwsYUQybXIKjdlUrSH+SZ9h9B0HyDfE7gL5+1EW+/eA2ePDaEJX3tbNyj1MjKFEOyvERpBIHFvMH0nl3Nx1zGNF2PiTTi6m0LsWv5DI7qjwkbCIgcYDrzcakAoDxnreVw6DJ1DrPXPmD+Snqe2uJnwmeR4la9iWd2lQOHzSTXngGb/O6TYCMIgoeH0kk2gmBszAv8zDW7f2VzwfMFMxhZo4tsYcl6RtYgcPQShu1govNz1fUOVO93pQaCmr/HLDUOh63Q6KoU0VUpGgoNkTqbFfbN9i17ZJPad0O6BoFCA4FNpq9vGnrDRy3K+fttibIMauJQf/msjeF3QoGl4JYnSj7TGbarL7IyrlWgmLomapPjpEecl1EI+ZzG5ZgL+mSXSw2jpMZ2eiFbg6A6giBYAJr9TDbVi/4UQ7ohSidZhbRs3uh6JsoXrl6SsBVYOudGdZSdavlJt3FDaQSB1h7Hf+M7oo3ITTbzimbPp2vvaibI8pK4p1QyvwaB2f1lQRpGzUQZgzScr6xjbQkRWZXYwqShcCe1R41r1CoGhLSnR7Hg9r2ofcu5HR0p3wqZViMIJL9jzyiq57cGQdB7ptnPitI1CMLvP4tkUwxpjSAwEBZZWSbOfD7KEQQqiwpX92luBEEtlREEQYpuQUe0EcXNpREESSVbgyBuxmcYYGKmLQ0V3lE+t2lMI7KGDQREDjD9culSZqYaEndCXGUqPFlrILBxHT1PbRxGTsgrHGS9iV2QpR7wfjFtuQaB5JcOJXsUIdl1l/WuHjW8BkFeMh0O781gZFMMTVmk2Gc/RqYYCr8LK1Sn/WlFa5FixfUOlEcQaF4Ye1MMyb939doTRT2CwKX3S1NmdJTiDkJk0nf17EvDLR9lw1Aa04iscbu2hCgjTL/yJDFtdi3MOu/cq2Z3oq2Yb/i8VMhhy5JpBkPlPluFENXFCWUVDrLexC5w7RmwKfB9IvlZlhpY6BTZVZct4FrtgW7unpFV1OpPMcR7GTC4BoGBsLh6SWTnSIVWA4HqmlLWRhAoHDvA1fY7B3weyVU2e+tmpYHgedsWNf18x7LpajtI0ClJ4/WzLQ3nLMoYML9MPrdrS4gyQmUBVh0upc2qYXGtck8ngysX8njautkNn1+wZjYqTRoO0szOCAK1tRxyQkjnSC4V3L4W2ucuxaNTuEgxmSCbombMCzOCoPGHsmPpvjDxVq6SndNRrUWKw59R18ooE2RrX6jQOTWqFfr21iCwk+kx76DkinaKoTQ+K/N62/D0dXOmfCYE8OKdS5R+H9cpCZKvpWHB3ail4ZaP8rnlFEPJx2SCyAGmh0271NqtGhaHggxAL4MTAnjfszfi8tPnoa2YR7mQwzM2zsUHrtpkL4COsnEdPahP1SQdQeD4FENZYmMNAvZaSSK710x2S4yMjgU+erPfyXpy84UpGNUphvyk+fyftaKv5Xcv2b2k6ecbF/RM/q1TXlTd1t4aBP7bBFqDwHcEgf4+iaJgdwRBk+NJDqg2Gaib/u/VZ+B1+1Zgw/we7Fs9C//0ws24aMPcuINlXBQN3S/Y3nxERlK5VKcSnHtTDK2Z29308z0rZ5gMDgVQiDsARKT3oqvCpawsqfmqTiFKAKgU8/i7552BwZFReB4yN3LABTkh5GsQOD7FkFMPrmV+UQ3yEpOh00eKZPlPdZFic1NdydIe7ePwZgYAFBVHEPg2IKdgEYIX7liEjx/4dcPn10h6uT5ny0J8+Fu/bPj82l2nfqPTo1R9BIGdBgKVsnLQS50TrRsg+DiSq2x2jGjW4Ub2yCZ5zbVSIYc3XXga3nThaXEHRVmQK2/7nbyQE3jmpnl2DxKxpNZj1IoyDqrHum73Erz5lp80fP6Ks5cbDhHpcry2hCgbjBeqHMrN3AmJHq1TWLNxuZDPdOOAjd4pnqc2tYAQ8t5NZccbCFydwiIOracYan2OHEr2KEKy6y6rqBwNM8VQk/tQVpmd5h7sNskqkEfGxpT3k4Y1CF577kos6Wuf8tkfXbgKs7srLX+zZm43/uKK9VPuv2t2LsYVZ8yf/LfWGgSKN7LqLm1MMXTVloVa+5wgPQ9xX3yiFmzmLc3K0+noTZ1dtkfafvAFZ6Kvs2z1GFFLwz0fZRlU9R677PT5uHDt1OmZr962CLuWtx4VSdHgCAIiB5huH0hiZYRr+a9OeBwLerwsnQyVZyQnBBcpTgjfKYYC/C5Dpy81bN/zst2PjnmBG+WahVtW2am/BgHvZkC+8LPeGgThwyLbRRQdZ+f0VPDZ1+zG7T99Ao8eOoldK/qwdYn/Ipov2L4Yl2yYh7se6ceq2Z2Y29M25Xud8qLpEQSy69uMyiXfvTzY9ATMWyiJbOYVzUcQ8Gmol6RTYrN+4HX7VuDCurUc0iAN6zZEWaZUvcdKhRw++IIz8f1fHsJ9vz2CTQt6sHnxNE4X6wA2EBA5wPQaBE4lraprELgVaq1CMPOyU+ysQeApjbKpjiBo/X3a1iBI8Ghu+KVSQRYplo0eofSS5R2ydHxkLPgIgmbkaxDoHWjV7M6wwUkF2TM9MqrRQGCgfOHCS2tvewlXbl6g/bue9iL2rprZ9DudeKkmserb+W9Ye5X9ysqv27cicEeA6nlovn8HLj1RUzbvzeYjCOwdj+yz+a7dWU5ntWIaGsWiXaRY/WCFfA47l/dhJ0cNOCVdtSVECWW8gcChzEw1JKbPQVg6pzANhQdTbJwJz1Nb/EwkfASBY49AzJpfR1naxqeQ6smS5jDPW7PdFgJMMXT+mtkNnwkBPHdrsGlSsmTKGgQ+26ZgCQJrdOJlepFi2TPTjN8IgvXze+QbSLDik5LI5utHsxFDfN9xSIBLYXVKqpTeGy7VqQQVbQNBdMciO9yuLSHKCI2pdJW4lDirZkrDo4ZPQkhaIwgshoPUCcinQHC+gSDhYwJ0+E4xFGAEAbt5Jo/tK+b3Yhf0hVZ3iqFWx3n9eSvQVZna6+51565Ab3spULiyZERjiiETZaK0Ji86z4DqtqoVKirtA7V7UlmDIChZ3Fwb4Uo0wWalrO4UQ9kpwbrhjEXT9H9kMSlLax6ZhmhFmYeloUEl69I5FogoYUy/9Lj0MqMaEp2XfdcwLzzFRsHAg1pvX79Dp22KoSTzu0uC3EV8DEmX0UWKJVMMtTrOxgW9+OxrduPWHz+Gg0cHsXfVTFywtnFUATXSWoOAqUNLNhYpVm2QURlBoDPFUJirLPsty3jkqqhHEAgWoxvYzl+euWkebv3xY1M+K+QELj99nva+dEdt6UjrCAKXOl0G5ugUQ+QmNhAQOcB41bhDabNqhXGyRxA4dMJjZuVMeGp963NCoFzIt/x+9Zwuc2GyQTMhSPJd55cutPxe8jOWSZPHyNQvIfYRuIHA0AgCAFg+sxN/cP6qYAHJsI0LNKaTMTLFUDoTGL3pFFW3MzeCoJZfm1CYDgryEQREbrI6goBTDCmxfUredMEq/OCXT+G3hwcmP/uzS9ehq1LU3lelaLOBwNquY5WGez7KGKT1PsgSNhAQOcD0/PsuJc7KIwg0FhyMglZ5wKHzHTdb5SilEQQA2kp5bF0yDd//5aEp383oLGHHMi6ClBStbiPZ7RWmEJ+C8n8inbloGr54z+9iO37QSl/tNQjY6zKwy06fh8/d9VjD5zqL9Zp4vNOaRugs7m5y6iAgwBoEFkeayqKW1mtPyWfz1uQixW5YMqMDt77uLHzt/idw8Oggzl45Ext0GshryDpRhaWTlyRJGhoIooxDWu+DLOErC5EDTL/zuNTTTTVPGjG9EENIbB8Ixsa959X8f5mJAtA7L1mH7pp5vYt5gfdcvj51hRa3mtT0+E4x1GoAgaVenum6M5Lj1eesaPr5S89aGsnxTb4zFSRTDFFwr9u3ErO6ylM++6MLV6Gv89RnftM0ck7c1nSyRdVtVc93sznOZWxOMZS28gFlg820rdnz6dL7ZZbM6CzjOVsW4jXnrgjcOADYHUGQ1nw2DdGKMg5pOF9ZxxEERA5QWYPg6evmKO/PpcRZtTBpc17EILSmGHLofKeV0iCb8euwYUEPvvzGs3H7T5/A4PAozjltJlbMcnx6ISS7wl+X7yLFLdINW7080/pi47p187px6aZ5+HzN/Lpzeyq4dtcS5X2EuXSB6wSbHLQg2Zlj7d+JsmJWJz732t340j2/w++ODGDvypnYtWKG1j5sL1Jsce1c6+ysQRDPFENhSNcgYKUoOcpmu5busl1JTgezwuoIgpiTyT0rZ+AbDz5pfL9pGEEQ7RRDyT9fWZfqBgIhxLUAPqz5s3/1PO96w+EoAXgugKsBrAMwG8AhAL8A8GkAH/E8z3yKRomh8tLzsrOXKe/PqcRZMSjbl023Gw5NOqeQL4+n2Lj1PE/txaP2vp/b04YX7VhsPjAW8eXqlABLEIR6DuN+scmqXE7gb56zCXtWzsB3f/EUls7owBVnzMe83raIQmBuiiFZ5anpaQSzZm5PG16yO/ioEiNrXaQ0n9dbg0C1gUBtf9pTDPmOFNHa3RTSuKXz0lMK2Ozc0OyZkOVzi/varYWFzLC7BkG8CeU1O5fYaSBwq/9iIFF2guL7VPKluoHABUKI1QA+CeD0uq/mjP+3E8CbhRAv8TzvCxEHjxzhN4Lgxhecic2LpynvL4HtA1Z7NQShk5m6dL7TyBv/Pz9Jvwy97foLjiWVjcq2UCMIEn/3JFchn8NVWxbiqi0LA+4h+rUnmv2uKOluyQaCeJl4vtOaz9sYLWlrBIHfY2RrFFlKLz2lgN0RBI07LxVyTdf5ai/lcd6aWfYC47AkpQ8237V1p4wz7fw1s3DtriX4yLd/aXS/aXg/4AgC0pGlBoL7AXxVYbtvmzqgEGLB+DHnjX/kAfg6gIcAzARwPoA2ALMAfFYI8XTP875m6viUHH4jCNbNCz7fYBLc8My1cQehgdYaBMwLJ8W5SHHSe3lUinlrQ2RdE7xiVlKJE66FgBJq44IefPJ7wX4beIahJr+UjyAIeCAywswIgnTSeZlX3VZ1l6ZHEIQhn74urVefks5m5WWrPO1NF56Gl3z4+zg5PDr52R8/fbVzHb2oUblgcw0Ca7tWPL7Anz1zLXYsm45XfvxHBvdrbFfxiXQNgjScsGzLUgPBdz3Pe23Ex/wETjUO/ArAZZ7n/XjiSyHEDACfAnAegCKA/xBCLPc8rz/icFLMxnxqD3TTWpcSZ5Wg5HUnuoyAVq+61FYd6LOySLGnNj9/Gq7DXz5rA67+0AH85qmTAKovaKMt0geVtUuSKtgUQyGOF+K3FK9LN83DOz93D4ZHpz4PF62vrtszt6eC3x4eaPjd3lUzjeaVRckixRxBQK6y0QPZ9FREE/wXKbYzzRzzB3KVsPj61Oo53rGsD595zS584e7f4ejAMC5YM1t7XRiKh83F2F3oOS6EwLKZnUb36UK8wooyDpxiKPmy1EAQKSHExQD2jP9zCMAzPc+7u3Ybz/OeFEJcBuAnAJYBmA7gLQDeHmVYKX6mKw9cSpxVXtgcCu4krTUIXIxAinhQG0GQhuuwYFo7vvLGvfjhrw7h5NAoNizowfb3qgx+S5dWFbf2FikO/luKV0e5gHdeshbv+Ny9k5/N6CzjTReuAgC88YJVeMstP2n43XVnLQ2cVza7X/KS3tB+nQDILhMNQS51vDDJRrxUnyvdY/s+RrbWICBylM27VjYqbvWcbqye023x6MmR1rxBlyujuE1fDZfqVILiFEOkgw0E9rym5u+P1jcOTPA877gQ4p0APj7+0SuEEO/0PG/EegjJGX4vPdojCIIHxTiVAoOLeQkzuGDiPG1pKaRXinnsHu+NdWIonVmB36UKMhs01yDIrhftXIINC3pxx88Ooq+zhAvWzsbs7goA4LLT5+G2ex/H7T99fHL7521diD0rZuCRQycDHa/Z3VLgFEPOMvGCn9YUIs4RBLpsjpqThTklRQtKIZvvKnwPIh2u3C+mg+FKvMKIMgppaFDJOjYQWCCE6ER12qAJH/b5yX8C+EcAnaiOIjgbANciyBC/BVh1Kz5dqihVG0HgTngnaY0gcDD8MbFxJqpTDPlXDKSxUOLks2GAX7xaTjEk+VmYQjwf4eQ7fWEvTl/Y2/B5uZDHjS88E9/7xVO477EjOGNRL85cNA25nDC6SHGBUww5i4sUt2aj8sNWmehPn7EWf/Bvd7U+rpWjpvfaU/LZvDdlIwjoFJ6lqrS+C6chXlG+S6bhfGUdGwjs2AWgPP73cQDfl23sed6AEOI7AC4Y/2gf2ECQKb4jCDT3l7QynYt5id4aBDTBWsFAZYqhFF4JF5+NKER9LdPQQ4haK+Zz2L1ixuTInLCapXOyypRW64iQGX7tL0YWKZbsRKUB21U6aV93W1Fxn0FD06j22p69aqa5HdeRjXZNY9mC0sFm2cXB5eHIYa7UPZjuj+FKvMKIdgRBCk5YxmWpgaBXCHEVgHUAegAcAfAYgO8AuNszO251Tc3fdytOF/QjnGogWCPbkNLH7/bTT2vdSZxVwu5OaE/RCRPzwlOsjCBQrH7hdUgO3ymGWo0gkP4mxAiCwL8kqirI1iDgCIJY8fluTTXZ3LZ0OjrLaq+NtioIpneUsLivHb/6/Ymm34fJAzjFENFUrOgjHa7cL6ZLW67EKwxOMUQ6stRAcNn4f808KIT4KwA3GWooOK3m718p/ubXNX+vNhAGShD/EQS6UwyFCAwB0MvgeLpPsXLveWpzD6exUJKGgmkzQdcgkC5SHDg0YX9MJJ9iaHQswoBQg5Qmo0ao5DEzOkt4z+XrNfYZJkRT1Qdv8+JprRsIQhwnrXktpZvdEQR8JkhdWm+XNGQNUU77w7w0+Th4rGolgH8B8HkhRIeB/fXV/P14y62m+l3N39MNhAGVSgWdnZ0AgNHRUfT3909Wsh05cgRDQ0MAgJMnT+L48eMAgJGREfT390/u4/DhwxgeHgYAnDhxAidOVAvlw8PDOHz48OR2/f39GBmpDpQ4fvw4Tp6sLvw3NDSEI0eOAKhW8PX392N0dBQAcOzYMQwMDAAABgcHcfToUQDA2NgY+vv7MTZWfaM+evQoBgcHAQADAwM4duxY6uJU9qrhzmEMnWIQE+3f7RhCAaMQQi9OhbHq/vIYRYcYnNyuUwwij2oYKhhGCdX4FTCKdgyNb+WhUwwiN75dW812Qa6TGN9ffZwAoIQRVDAMIdy7TkIItGEIxZqwtmG46XUqjA4k5t6Txcnk82T63vNGh9E2vt3EPSXGz/+pOInUpRFCyO+9JMYJAIYGB1rGqR1DGB5uHqd279Q91SEGkR+/l8sYxujQoG+cnrFmWtN7792XrmP+lNE4+eVPAJCfvEerxgaPN8SpkBMt070xz+N1shin/Ohg0+t0Ko0QRuIky5+Sep0OH+5vGqciRtGGIeRzAl96wx7MKo8qlSOqeTO04lSflpcnn7tRjA0cnxInMSYvRwS998pjgy3jNHjiaOzXqTZOza5Tszi5fu8x3QsfJyFk6V7j86RTLs8Lweuk8P4kDL8/2Y5T8/cn+buGStlICOHEdTpx/JixOAFAYeRk7HEK+zyJsVEraUTV1LLR2NDJzKYRpuMUlyw0EPwawP8BcDGAhQAqADpQ7eX/agD312x7CYBPCCHCnpfOmr9PKv6mdrvOlltp2LFjB6688koAwMGDB7F///7Jm/amm27CfffdBwC44447cOuttwIAHnnkEezfv39yHzfeeCMeeughAMBtt92G2267DQDw0EMP4cYbb5zcbv/+/XjkkUcAALfeeivuuOMOAMB9992Hm266CUD1gdq/fz8OHjwIALjllltw4MABAMCdd96Jm2++GUD1odm/f//kQ3rzzTfjzjvvBAAcOHAAt9xyS+ridHaxGp5eMYCrKnejNJ5oX1y+H0vyhyCEXpy6f/9TAMD83BFcVr5vcrurKndjZq6aWO0q/QqnFx8DACzJH8LF5eqjUMIorqrcjV5RTQj3lh7C2sLjga9TefhY0zgBwOnFx7Cr9CsICOeukwBwQflBrMw/CQBYW3gce0vNr9Oc3x1IzL0ni5OJ5+krX/kKALP3ngegfPjXuKD8IACgQwzhqsrd6BBDU+KUE+lLI0ST61R77yUxTgDwwN13tozTxeX78fCDP2sap3NGfjAZ1svK92F+rrrvrcVH8Mg9B3zjtHLwgYZ7r6tcwI7F3cyfMhin/qee9M2fAGBmrpqPTTj0g/9uiFM+J1qme57n8TpZjNOs/nubXqeJNCInzMSpVdlo7OAvEnudPvgPf980TivzT+KC8oO4dNM8FEYHlMsRV1Xuhhgb0YpTfVq+tVgN9/zcEQzd8+UpcSoOPAWgeTlCiOD33obBu1vG6adf+bfYr1NtnJpdp2Zxcv3eY7oXPk45IVqme0Dj86RTLs/lBK+TQrrXLU4mKk7N3p/q4zSRlj/ttD7sWTkDz6jcj53TT2LBtLaWZaOcEE5cpzu+8Bmld3fV8t7039wRe5zCPk+5k09ZSSOAxnf3p+79RmbTCNNxioswO/W+W4QQvQCOeJ7XcnC3EKIE4B8BvKTm4xd5nvfxEMf9KqoLDQPAn3ue906F3+wD8NXxf456nhd4+ichxDoA91QqFRQKBRw4cACrV6/G0aNH0dPTAyEEjhw5gkqlglKphJMnT2JsbAwdHR0YGRnBsWPH0NvbC6DaGtfe3o5isTjZEtfe3o7h4WGcOHECPT09AKqtcZ2dnSgUCjh+/DhyuRza2towNDSEgYEBdHd3j/dUOoyuri7k83kcO3YMhUIBlUoFg4ODGBoaQldXF8bGxnDkyBF0d3cjl8vh6NGjKJVKKJfLGBgYwMjICDo7OzE6OpqaOJ1xw5dwEkXkMIZ2MYxjXgmAQDuGMIQ8vvMnT0NnYUw5Tn/0Hz/GF376FPIYRUWM4LhXXTO7UwzipFfEKHKoYBhjEBhCAQWMooRRnEAJ1ZbgIZzwihhDDm0Yxuj4dj971/na1+namw7gBw8+1hCnEeRRwghy8PDuKzfjWafPdeo6vfmWu/GFHz2MEeQxPB7WPLym1+lpK7vw9y/a4fy9t+ztX0QbhlrG6Udv3WPkeVr77v8xeu+9eM9KPH7oGL5yz6M4iRIEPHSIIRz3SvAgJuP0wWu2Y8+ynlSlEYViCWve/vmm997L9izD6/YsSFycyuUy7vn1QVz1wW+1TPduf8v5mDe9qyFOF77/y3i4Wg5DhxjEgFfAKPIoYxh/feUmXLplqW+cPn7g1/jgN3+D4ycHsGJ6Ge+7ejs2Lehh/pTBOP3y4FFc8jdfkeZPAygijzG0iWEcG0/P3nzuQrx835opcapU2rDy7bc2Tff+5nln4vyVvbxOluL0io99D1//xbGG6zSRRvzjNduxe0lX6DhtePtnmpaN/uWFm7B9cU8ir9OhQ/3Y8v5vNsSpiFEUMIqLzrtPxf8AAGBPSURBVFiKD1y1Ubkc0S6G8dxdp+Edz1ynFKc//Le78OW7Hp6SlgPAIIrIYxTX75iPt12+eTJO773tYfz7j37btBzxTy89C2etmBHo3nvGB27DA08ONI3T+y9dhWfvXOXE87T8T77U9DqdRAkPv/eiRN17TPfCx6mtrR0r3/5fTdO9Zs+TTrn8o6/ciy2Lp/E6jcdpzVs/0zTd66nkcMcf7ExMnDb+yWcb3p9apeXP230a/vSSdejvP4z29jb83dcexr/878+alo3+9cVbsGVeJfbrdNdDv8VVH/p+0zi9Zd9ivP9/fo0xT728d/naXvz11dsSm0Z0dHTgHZ/+MT7z/YeMpxHN3t3/9MKleOGuZZlMI0zF6dFHH8X69VOmdVzved69iEiq1yDwPK9fYZshIcT1AFYA2DP+8R8DCNxAAGCg5u+S4m/KNX+rjjqQB2LgVDDy+fzkAwQA3d3dk3+3tbVN/l0oFKZsN/EwAdWHbEKxWJzyXe1vOjpOzdJUKpVQKlVPgRBiynYT0x8BQLlcRrlcPQW5XG7Kdl1dXZN/VyqVVMbpJIoAgDHkJhNvAOMJb3X+O504iUJ1H6PI47iXn/yudt8D48cEgJHxDLJKTNnuZM12Qa4TRPM4AcDQeBIkFOI0IarrJARwsklYgcbrNFponzyW6/eeLE6mnichgFHP7L03litMht1r2K76eU6kL40YG/Ok914S4wQApbI83Su3eJ4GRAUTWezxmt8MoojS+LX3i9MrzluD689djaeOD2FmV7npdsyfshMnv/wJAEbr7tFCpQPFYrEhTpuXzMT3fvnU5L+PeWWUCzk8bd0cVIqn0kNeJ7NxGs2XARxruE4TaYQwFKdzNy7FrT+u9qCbSL9624s4d+38yfm6k3adpk3rxdj4gPLaPHd4vNIIQq8cccwrI5/PKcfpVecsx6fvfHTyu8GaMIwiD1E+Ffbe3l6IXPV4zcoRAiLwvTeSr2B4vKKkPk6Vzq7JOZxdeJ6aXqcmcXL93mO6Fz5Onue1TPeAxudJp1yeE8GfpzRep1bpnmfw/SmKODV7f6qP00RaPpHu9fb2NN2u9t7LCeHEdWrr6JxME+vjtGjuTAjxCOB5yuU9lNqblveSkkYAgKgr65pKI8b3PmW7YqV9MoxZSyNMxenRR0+VieKQhSmGfI2PMHhXzUfrhRALQuzyWM3fbS23mqp2u2Mtt6JM0l7uxaH1YVQWq4ly8RxVWosUuxf8WJk+HZ43MWOkz3FTeB1kcUryAEC/S9UqTZCnFeo3QD4npjQOUDYFTTNa/e4Pzl+JcmFq0foPL1g1pXGAomcqb3jnJWuxctapF8W2Yh43vmBzohfztFH+0tnlytld+Nxrditvn5O8uYaJiuy3wqVCNVENm+9PSU7XbCjlmyc+V25eGHFIwrn89HnK29bfX9J00pHbxfN5Y9QNZhoW3Y0yBkw2ki/VIwg0fR3AMDDZPLYGwCMB9/X7mr9nK/5mTs3fT7XcijJJtwDoUtqsEhaXwjtB54XQxfA387p9K/D3X/t53MEI5K5f9/tu42JDU1hpjBPg/yIRJNYslFLcdq2Ygf981S7c+pPHcHRgBOevmYV9q1WLgRSUX2OpqWR0ZlcZ//36Pbjz14dw6MQwdi7rQ0970f+HCRakcly3QmVxX7v/RpPsJPRpzWsp/XICGLPQYaTAQtUUb7xgFf7qS/c3fP787YtiCE1wz9++GJ+96zGlbevvAFl+4EpFuqw8IKBfHkhD3hBlHNJwvrKODQTjPM8bFkI8CWDu+EczQuzuZzV/L1b8TW3u0pj7UKrN6CzjyWODLb93obX77RevDvQ7laC4mJfIeqnVczH8zbzqnOWRNBAIIYx2b//iPb/Do/3+M68l5DIQAL+r1eqZkvde4h1AeoLeM7KX5PXze7B+fk/L7yl6JnuAlwo5bF/WZ2x/rgvyiOjWK2p1yJD29A9OFmZmLeQy02XuCa5U+LriJbuX4NsPPYlvPPjk5Gd/+ow1WFEzqiwJti2djo5SHseHRrV/K7slknC/BAliAqLlK8o4JOE+IDk2EEzVUfP38RD7+WnN3xuEEAXP80Z8fnNmi99TBtxw6Vq89hN3tvxev7U7ZIDqzOmu4Jmb1IckTqUyxVDAXVulM4LAyQg0aC9Fk+SbPhsqjQMACyVp0uqZslU5RKSDSU2y8HrJma5f1M6LZVPp1U0XYetSMm+hpMoJQL+q1x+nGJqqUszjw9duxY8f6cdDTxzH1qXTsXRGh/8PHfSys5fh725/0H9DjVtAp2NdnKrvF+oZXhoegyjrKdJwvrKODQTjhBDLAHTXfKQ29qq5bwMYRHXh4Q4AWwAckBy7DGBHzUdfC3FsSqA9K2dKv9dN2E2mzfmcwL+9Ygfm9qgup6HPxQp2rkEQXFzng9chOQLP/S5JK3j9iagZji6Sk1WXBDlzuudbp7wlbXwIcZll++XtQy7TrfBUxQaCRoV8DpsXT8fmxdPjDkooNt67E9NJSzOYiYmXBEcQkI6EtPVF4rqavw8DuCvojjzPOwbgqzUfXevzk2cBmFj2+ilU10OgDOlpK2Lf6lmtN4gxM3vP5euxuC94D4mkTjGkEyYXwx+nuBp8WChJDt8rFWhaC15/0hP0jmGFc7LwasmZvp+1pxiSVc7XXT1biwnLzwHvIHKXreyIDQTppXrP1KepspFmrpTBTc+2lYbyXpQxSMHpyrzUNhAIIZQnhBNC7ALwppqPPqUwJZCfD9b8fa0QYl2LY7cDeHfNR/9s4NiUQPN7W/fQ105sHUqcHQqKFp2CjosjILIorVdhZle56edXbVkYcUiiE2QNgtTeAOQc3mpuiWqR4iwKtgaBuREEUU0xxLpQSipbFbNcpDi9VK9s/a1Vnx7XcuV2kYUxyBu7K/EKgyMISEdqGwgAXCmE+J4Q4hohRNPV4oQQFSHE6wHcDqAy/nE/gHe12H6JEMKr+e/aVgf3PO+/AXxj/J9lAP8lhNhYt78+AJ8FsGL8o6cA/JVK5Ch9pAukae7LZIV12D0lNZ/QCXZS42hNbFMMpfNCPOvM+Q2fLZ/ZgVWzk7UwWi2/a9XqW7YPkEmdFc60mQVsxJeTp6v6587mIsXS/YTYjfQc8PYhh9nq6c8RBOkVNE0bk9S9J+EdTAj9uKehwjvKOCRlLQpqLe1vRlsBfBTAiBDifgD3AzgEIA9gPoCdmLruwEkAl3me91tDx38+gO8BmAtgCYC7hBB3AHgIwEwA5wNoH992BMBzPM/rN3RsShjpEGuL87n6CZunqGRKLhYqdMLkYvjjFNfZSOtlePOFp+HQ8SF89s7HMDQ6ho0LenDjCzcn+r7zC3mruJlMJ4m6K0WcsagXd/66f8rnhZzAiORNmLdasvB6yZk+P7ppsc60QfLpiIKTrkEQYr9Ettmqx+cIgvRSTaPrt5JPMRQ8PCb5jijUTNFdiVcoHEFAGtLeQDChAGD9+H+tfA/AtZ7n/dTUQT3Pe0QIsQ/AJwGcjurjec74f7UOAniJ53lfBWWWyZcTk2lz2J5dSmsQhDqCHVprENgLRiLFtkhxPIe1rpDP4f1XbsK7Ll2PY4MjLaccShK/e4QjCCgqf/bMdXjRv34XRweqszsW8wLvvWID3nzLT1r+hvdasvB6BRfFFEOyzeXTRZgjX6SYdxC5iyMIyBa9KYbcv18E9PO0NKT/UY6iTMP5yro0NxB8EsADAHYB2AFgOYAZAPpQnVrpMIBfADgA4BbP875pIxCe590vhNgO4HkArgawDsBsVKcyehjApwF82PO8J20cn5JDlp5qv2yZzAgiSOddzEt0zqGL4Y9TbIsUp/xlpq2UR1spH3cwIhFFpRQRAJy+sBdffMMefO3+J3ByaBT7Vs/C7J6KvIGA95pToqpETqtqnt38HAZLi4McP7wwz6V8FAORu/KW5vQocK6Q1AqcVCZgkeKetmLL72Z0lXHd7qX4h//5ufL+HIlWKNGuQRDdsciO1DYQeJ43CODb4/+Z2ucvEaCc6HneEICPjf9H1JTJ+U9dysxUXvxcnB9YJ4NzL/TZxOuQHH7PfMvvZZU4vAEooAXT2nHNziWT/z4+OCLdnvdasrD5wIfh+9nkIsX1bD170gYCPu/ksLylevx8njd+Wqm+d9dvNyaZv8eVdHLh9HYsm9mBhw8en/L5zK4yzljYi76OklYDgSsNH2FEGYM0nK+sY9MwkSNM9n422bsx9J5UphhyMC/RmmLIxQjEKLYphngdEsN3iiH99gE2EJExfi84vNcoTUzf7TancJBVbIUpArBSg5Iqb+ne5RoE6aV6yzRMMZSAEQQA8MdPXz3l/hUCeNtFqyGEwOK+Dizpa5f8eqo0PAYcQUA62EBA5AiTvZeMrkEQcmcqv3YxL9F7YU2Ov7ii+VIsrz5nubFjxHU+HCqbkiXS55LXnwxhWkIUnP60mGaE2Y8szC5VfBHVszW9JtcgSC8LMwzBpRmpnrZuDv7jlTvx8rOX4brdS/FvL9+JZ525YPL7525dpLyvNKT/UcaBnfWSL7VTDBEljXyR4nhetkzsSyWjcDEv0QqSg+Fv5bzVs/GB9p/h0Inhyc8qxRwu2TjP2DHiKhykoRBHVVyDgOLkey/xXqMUMT29jvYaBA5MMSRTLjhU80VUx1ZPf1sjEyh+yiMI6v4tm2LItTL4GYum4YxF00LvJw0V3pxiiHSwxEPkCFn5TjetTV7i7GB4tdYgcDD8LczpqeATL9uBs1bMQGe5gK1LpuGma7di7bxuY8eIbQRBTMclfb71ry2upieb/zRMgIhq+NW38F5zi2zaA/InnbYnwP50ezSbGrEZpug7MjbW8rtyka/L5C5bIwhs7Zfip/zeWpeoyqcYChEgh6UiXlGOIIjsSGQLRxAQOUI+gkCP2SmGQv4+gmPYoFPp72L4ZdbM7cbHr98Oz/Ps9IyI6Xwkr2GMWglyKdPQy4fc4LsGAW81ShHT97PNtNjWrodHW9d8lQt5OwclMoA9/UmXlVe/BN2HOkFNw7tlpCMI2J6eeLyERI6QZay6ma7RKYZC7kyl5d3FrFenx4CL4VeRpMKcipRFJ9X87r0gl5LXn0wJOsKFKG2imGJIZk53RWPr4AceGpGMIOAUQ+QwrhVAulRH3SV5iiFT0hCtKOPA8nHyscRD5AjpsGndfRnMCcIm9GprELiXmbg+J67LuEgx+fG7VK3SBNk7DS8/mSKEMD4vO8WHUxDJycuf+jd7kIqirUsa54rO58SUhSUBv8402oedJGsgqBQ5goDcxQYC0jUaMFOUNxAEDU30dILqYh2Frkgr7ZN/ujKPDQREjti6ZHrL73TzpqRNMeQirSmGEhtLO+IqTPE6JId/D+0WZPOfJunthJyX1t5wacT6/3BM59lBkuJXnbO8YbHVa3ctQU9bccpntp7K4VGOIKBk8msgYNGI6skq+mvVZw3yNQjSeaOl4fmJMg4pOF2ZxzUIiByxc3kfpneU8NTxoSmfn79mdoAphpKVPLsYWo4gCC6u88F5D9NP9lLDeXjJpLwQGG1R9cw7jdLE9MK/QRoc9q2ejY9fvx2f+dGjOHRiCPtWz8Jzty7UO672UU8ZkjYQcAQBucuvYvbKzQvw7z94JKLQUBKMjSk2ENSlqrJfJamTTubWIIgwCmk4X1nHBgIiR+RzAn9/9Rl46Ue/j4Hh6ovKwulteNdl67T35VQerbIGgUvhHac3/NBaMBIptimGWG2XGH7XqtUzJRsWzWH2ZBKnGEoPXq9oBa0g2LGsDzuW9ck3kj6XwS+0dARBkb0PyF2yss95q2fh6evnsIGAppAkd1LyEQTB9um6NLxbRDmyn+Wt5GMDAZFDdq+YgW+8ZR++/dCT6K4UsX3ZdLSX9B9Ts1MMhVyDQKHS1snMRCtQLkYge5y8j6gp3ymGWmwwJnmpSUMhntwhq+RkY2SycA0CH7JK9wC7s5kU23r2ZGsQlPJsICB3yco+V25ekIo51Mks1TUIGqcYSscixTr5SP3UdySXpPuAmmMDAZFjZnaVcdnp80Ptw+wixSF/rzKCwMHKFo4gCC6ulxGW4dJPOsUQbwAySHo78VajFJFPMRTNIsUmhDnq8Kik4ot5CzlMNr1iLufiGxbFTX2Koalk7QppfRdOw7tFkLUsg3asSP7ZInaJIEohlzJppaA4FN4JWmsQ2AtGIgU5H8tmdsR0ZIpD0Cs1KnmpYa8VMon3U4JwhIBTbD46tvYtG0FA5DJZBWZeCOZl1EB1BEE9T5LZpvU+S0UDgeZbV5hryRFLyccGAqIU0skIXrJ7Cd5xydrW+wqZzquNIHCPzjlkXjhVkPNxyYa5WDCtLdRxU1CGy46A10rW6YnDgMkk6RoE0QWDyDrTL/Q2K4pML6g8QbZIMZHLZCNc8jk2EFAj2WjcWo1TDLXeNkn3mU5Q0/BuoT2CIMJjkXvYQECUQqqJ8/+5ahP+7Jnr0FVuPdtY2MGpamsQuJeb6I0gcC/88dI/H0IIbFk8LdxRHbyPyCzZ/Kdp6OVD7pBVujCtoTQxvSB3fFMM8bmk7JFVYOZyghV21EB5iqG6m0f2s7QWwdMwxZxuFMLk4UlqKKLm2EBAlELaeZnhl0Pd37uYlXANgmjlhAhd6ZaCMlxmBK3IkQ2LTkMhntwhX6SYKD1M389WFynmw0c0hSyvygs2m1GjoAOmZFMMpbXjRCpGEGimAk9bPyf4sZJ/ujKPDQREKaSaEUwk4jbXYlRqIHAwM9GpbHQw+LEKcj3zOQP3Gq9EYgR95mVrEKShEE/ukN1OLuZZWSartKBwguSrNiuKZOHhc0lZlJfU5uRy4EsKNVCdYqhBBkcQ5HPJry7VzRuv270k8LHSeh9kSet5RYgosVQzgskGAqtvVQpTDCW89JrWXhNBBTkbJs4hL0NyBL1UaZn/lNwnS5N4qyULGxDkzK9BYHR3U/DZI5pK9g6VF4KpHzWQdbap1bAGgWTbtJbBZQ1wafS6fSuwanZXiD2k8z7IEjYQEKWQ6sveRKHS1qJvJn4fl6SG2wWB5yzO6L1G6mS9nrgGAZmUZ4JCGWG6DJjWiiKipMnnhHJlMGWHbLpOGVkZPK3pfjpGEMivzTsuWYuhkTFsWzodZy7qxcnh0cDH4qtY8rGBgCiFtJcgkP7AfkrvYplCZ1SDi+GPU5ARISYKFGktnKZR0B6rshddNhCQSdIphthDilJEukhxgP3ZrE+x2aGFKIlk930uJ6QLy1I2KS9SXJfiytoVkpT+6ryDpGH6Ur8YPH39HMzvbTNyLL6LJ1/ym8SIqIH+FEPh99Xy94a2iZpOvFlZFF5OiNDnkWWS5LAxxRAbCMgkTjGUHEGnUyY7rE67yIePSFleCD4y1CDoqJIsTjGUhnj5vR7Vfx/mfTwFpyvz2EBAlEK6CbvNCm6ljMLBzEQnSMwMpwpyPoQIfx7TUIgjOdmwaE4JQyalYFQ5kSKzjWFx5cVhyrJnLupt+nlfRynwPonils+xCxM1Up1iqGENAukUQ2FCFC2doKZiBIFPnlyfSoTJwvkunnx8/SFKIdW8bCLDMD28fGpYkrlIsd4IAqoVaEoCE4sUh94DRSXo5eYUQxQVWZrEhekpTXRu57981gbfbawuUiz7LsRxX372sqafv+3iNcF3ShSzHEcQUBOqo+7qbx3Z79JaMZzPJz9efpeGr09Uiw0ERClkMo8OWxGiNIDAwYyJaxAEF+SeKeTDNxOx0i45bDQKsoGATJI2EEQYDgpvSV9H3EFIrPp89fw1szG3pyL9jc2KIlu7Pm/NbDxt3ewpn+1ZOQPP2DDXzgGJDJE9E/mcYNmYGsgWGw76u7TeZmkYnewbg/ophjiCINO4SDFRCqkWBqOY/UclLC5mJTr5GzPD8IyMIOBlyDS2D5BJTE/S4bTZXVg4vT3uYDhN2iu/7t8zu8r41Mt34Mp//A4OHh1s+pu41oQI88wW8zn8/dVn4n9/9gR+/Eg/1s3rwb7Vs1Ap5s0FkChi+Zyb71gUL9U1CBqnGJJtm5w7TSeoaZhiyC/CJusxEnQbUAtsICBKIf1FiuNNzeM+fmgJD75pQS5ntZdTyOOG+zlFycLFSnw6Qk6RTzEUYUDIl6yq4/88Z1Nk4Ugq3ft5cV8HPnTNFlz+/77V9PvBkVEDoWrO5pSUpUIOF66bgwvXzbF2DKIoVacYYoZFU6mOIKhPb4OOPEiyNIxO9otB/fdh8ll2mkw+TjFElEKqCfvEdrbmdFXlYl6iU6B2cQ2FpKkupBbuPLJQkhy8VOQ62Tsh0/zkWD+/J+4gOE96P7f4qk3Ss/7EkL0GAhk+l0RTcZFiakZ1BEG9tDQP6DwTaWgg8Hs/rv8+zDsa3++Sjw0ERCmkmzhLFykO26tb4fcu5iU6YWJmOFWgEQScYihTeKnIdRxBQNS60l3WQHBy2OIIAovlVaIkkjUBcJFiambBNLVp93SmGEqrNDQQ+KUB9d+HiXHyzxaxgYAohVTzsskphiTJedi+Jyq/d7HwqlMecDD4sQpyzxiZYsjFG4mIEomLFCfH0zklTChBss5KqfUrZNDeqSr47BGpMzE6l9LnxTuXBPxl9loIUtFA4Pc91yCgGmwgIEoh9SmGxv9XZ4U63bAo/d693ERriiH3gh+r2NYg4HVIDDbmkOtykhIyb1+3PHvzgqaN+teftTT6wCRQkGkmZ3SU0ddRavrdeatnhQ+UZngAF0uSRPEyUbam9FnU145nbJyr/TuLbb/OSkUDgU8U6qMY5h2N73fJxwYCohTSXqTYXlAS+8Kmk7+xd85UQc6GiQIY1yBIDl4pch3Tk+SY3lHC+6/cNCXfPn1hL15//sr4ApUgQV7oczmBS5pUMG1bMh2zuismgtUUKx+I6kgeCeZj1MrfPfd0vPlpp0m3qU9vvZTMMaSTjxRkvUUSwq+eov58cIqhbCvEHQAiMk/3BcpmjyylNQgczE24BkG0qi8xYaezIiIyQ56PMrVxzZWbF2DHsuk48PBTmN/bhjMX96JcaD1PPqmR3el/8oy1ODk8is//+DEMj3rYtbwP//d5Z0QWtnosixFNlRNsJKDmivkcXnPuCvzLNx7GoRPDTbepv3PS0TygJ5/89gHfImvjCILgh2J6k3xsICBKIY3JcXx/Eba3lsrvncxKdKYYshiMJApyzxQ4giBTeKnIdbIkifevmxZMa8eVm9UWXyQ1snu9VMjh/Vduwnsu34DBkVF0VYrRBawpPphEtTjFEPnRGcGdkgEEWs9EPgUjCPzej+tHGISbYijwT8kRbCAgSiHtKYZsjiBQCod7uYlWiBwMf5yCTjHENQiyg9Nykeu4SDFlRdi8s1TIoVSIphKF+TyRulzAsvXOZX3mA0NOkr2D1381lpYWAg0mOrDFzX+RYnPHYme95Et+kxgRNVBNnP3HD4S3fn6PcjhcorcGAU0R4ITkcuGrjFkmISJT5CMImNhQNiSpMZePJWWR7LbPCxHoGX7deSuCB4gSJc/OEFK5NDQQ+ETBZN5ZLrJ6Oel4BYlSSDeh1+k9oOvCdbPRVpTPA+ziS51OgdrF8Mcp0AgCAycxSRUZWcdnhlwnzRcjDAeRbdJRpAm62RMUVKJIBBmd+6wz5mP7Uo4gyIpMTjGksW0qRhD4rkFgJo7LZnZgVlfFyL4oPmwgIEoh1WRebX2AcJlGuZDHX1yx3uoxbNAbQeBe+JPGxBRDKSjDEZEjTDRaEiWBrAzj2lPA8haRupzQf2L++qpNWpXGlGyyKfbr6wm8DC5TnIZnwS8VMNVA8Kq9y43sh+LFNQiIUkh1+gOVKYZM5BnPOnMBPvLtX+Injxy2dgzTdILkYvjjFGT6jXwu2DDosMelePBSkevkL83RhYPItiTdz/LRDgmKCFEEgnS+SUOFKKnT6QwxNmYxIFHSiHMaOov4TjEUcL+vOHsZHjp4HJViDpedPh8XrJ0dcE/kEjYQEKWQS4sUTzhtdlfLBgIXcQ2C4IItUhzPcYmImpEuUszEhrLCsZvdrdAQxU/WMFat6+dTQ63plHU2LuzBdx7+veUQ2bd35UzlbfP55D8/fo3nQbP5KzcvwMrZXcF+TM7iFENEKaTbEzuK9z/ZoETH3j8B6PVEczH8cQpyPvK5XOjzyOuQHJwmglwnX4OA9y+lh3QUaWShCC9JYSWKghCC02+SlGwR3vpvrtm5pOl2V21eYC5AEVjU1461c7uVtk3FGgR+3/MFmmqwgYAohbRHEMiyjgjyDBcrW/SmGHIv/HEKcj2NLFLM65AYvFTkOuk7Ie9fShFpY5hj93paFlQmMoWVfxSGzvvX/N42vGzP0imfzewq45XnJG/u+X++ZjNWzOr03c7U/PxxkkUhTPtHCk4NNcEphohSSDWxn6zIlbYP2E/9XcxgWKCOVi4Xrs4tBR08iMghaeg1RqRC3hbm1nPgWniIXMcnhmRkIwiavaC//eI12LpkOr718ycxr7cNl2yah/m9bRZDaMeCae34yhvPxi+ePI4//Pcf467f9DfdLg1lQVm+Ga6+I/nnhhqxgYAohZRfoBQ2y2o9ORcpDi7YFEMiVCGFDTrJIrta5QIHN1L8CpJVipnaUFYkKWtl4wFlkd8zOi+BlbcUHWn7QLPPhMCF6+bgwnVzrIUpKkIILJvZidnd5ZbbpGHRbo4gIB18CydKI80EO+703cUMRm+RYgcjkDBhe2ikoPyWKbIGne62YoQhIWquIFmYjg2SlCrxzjKphY8ekZ5SIYfLTp8XdzDIUWmYQies0bHW36WhvJekUYIUPzYQEKWQamavspWpbMOTrFLsYuak1UDgXvBjFaQwFbaA6uI9RMF0Vzi4keJXzHMEAWWDtPIgQTd7ksJKZMr2pX2+27z3ig3Yt3oWnxFqwHVdAE9WSZECttYZysjtkTlsICBKIdUEW6UiN4qWcxcLIDoVzg4GP1ZBzkd1iqEQx+RFSBTZ5eIIAnKBbFQT0xtKE3nlAW92Ipddevq8pvnVs86YP/l3R7mAm67dijvfcQFueeXOKINHjmPvcmA09Q0Erb8L00GP5YN0YgMBUQqpptcTm8myxSjSfhezF44gCC7oGgRRH5PiI7te3RU2EFD8CtIRBExwiOLACgmiqTrLBbz3ig1TylWLprfjTU87rWHb3vYSZndXIgwdOY9pKkbHUt5AIPuOIwioDsfxE6WQyfkEjU0xJGmGSHrZhJVF4eVzItR55ByaycI1CMh1RckaBERpkqQphpIUVqKoPGfrQpy+qBdff+AgZnVXsHflTPS0Ny9L5bhoF9WQLlKckVsl5QMIpO9cfH+memwgIEoh5REE49vFnzXEH4J6Or3UmLdOFaSwkQ+9BgGlBdcgIBfIRjUxzac0kc5BzdzVKctmduDhg8cbPj9/zawYQkMuWTW7C6tmd/lux/YBqiWfYigbMj2CIMx+s3KDZAynGCLKMJUXP2OJv2yRYgczGAeDlBhBrmcu5BoEYacoIncsndERdxCIuEgxEdwrn8kX1HQssBa89twVTT+/7qylEYeEkoo9hqlWFtJNP1legyDcFEO8d9KIDQREKaRa+FPbLIJFiq0fQZ/eGgQuxiA+Qc5HIReumCGbL5zcdPrC3obPCjmBKzcviD4wRHVkixQ7mWkRBSTLfV271bPe2/XSTfNw2enzpnz28rOXYeeyvphCREnDVxaqxWnbAC/lDQSyeqEwdRhZuT+yhuP4iVIoaQm2ixXsOj1s3At9vIJ05g87JypHECTPK/cuw6tv/hFqR/a+YPsi9LaX4gsU0TguUkxZ4WARrCUXy4tRKuRz+NvnnI6XnrUU9z12BGcsmoZVszszf15IXdgpPSldOKIk/VMMyYqsfH2memwgIEoh1cqLia2ieLGQZb0u5k06YWLmOlXQNQjC3IbS3r7kpKevn4sPv2QbbvnhIzg2MIxzV8/Ci3YsjjtYRADkaQrfpykrknSvJymsYeRyAhsX9GLjgt64g0IJxAphmoJr0GBOTyXuIFglu4pMD6geGwiIUki5rtSRPMHFvIlTDAUX5GzkcyLUeeQIgmTau2om9q6aGXcwiBoU8kxTiFyrIOKCykThsEKQaknvhozcKq/auwJfuPt3DZ8/Y8PcGEJjnuz9OtQaBBm5P7KGkzYTpZBqgs2XKRmNKYZ4GqcINIIgZAU/RxAQkUnSEQQRhoPINluVBzY4FhyixBGs/aEarqXxcVg3rxtbl0yb8lkxL/D87YtiCpFZ8nUmwqxBwJsnjTiCgCiVkpVgu9hQoTWCwF4wEilIeSEvwt0FHEFARCblc5I1CPhSRCmSlruZjyWRP44goFrSBWwjDEeccjmBD79kG/72Kw/gWz9/Egunt+PFO5dg94oZcQfNCPnIO6Kp2EBAlEKqdaVqZUQzC/d4Xuv9uFhW1QqSixGIke7LhxDhFykuSCrzKD3eeP4q/O3tDzR8fsMz18YQGkozrkFAWSGtPHDtZnctPEQJw/40VCtR6b9FneUC3nFJOt8lZF3wwjQYZufuyBbWqBClkGqGzoS9NZ1CEc/jVLpljfzED0KcSI4gyIZnbJyLzvLUvg297UVcsG5OTCGitJKlKUxtKCtcu9elUyVEFgqi5OIIAqrl4ih+Mkv2isw1CKgeGwiIUkh5jWJHUnZHgjGFTpBcDH+cdF8+JkYPhCmksoEgG1bM6sRHr9uGs1bMwLT2IvaumolPvmwH5ve2xR00ShmOIKCskPcgjS4cRGQfn2mqxelnMkByIdlgSPU4xRBRCpmdbcVMxiGbqMiVhopaemsQuBf+OAUeQRACGwiyY/Piafj49dvjDgalXCHPPjSUDbIyjGs5q6y4YGZCTKJ0Y4Ug1UrSIvUUjK16CtZ/pBPffohSSDXBjnINAhkXsxetBgIXIxAj3ZePiZ66Yc6jrLcvEZEueZrC9IaywbUOHLLyrWSpKyIaxwYCqsW7If1sPfJMStKJDQREaaS6SLHe5qHIXtxczGB0WsUdDH6sdOvqwy5QDHAEARGZJV2DgMkNpUiSphhyLTxEScPiMtVKUvpPwUi7u4RZgyD4T8lhbCAgSiHVBLtUcCMJcHGIGkcQBKfb4zA/uQZBcIU8LwIRmSNdgyDCcBDZxrEyRNnh2qggipc8/ee9kgacRop0uFE7SERGqQ4frRTzlkOixsXMSacAzQLUVLq9k/IGphjKm114g4gyTj6CgGk+pUiCupDKQuNxFQIiIi2ccir9rI0a4q2TSqxRIUoh1by+UoiugUC6SHFkoVCnFSYXIxAj7REEBgqnXIOAiEziqCQi94o30kWK2T5ARKQlQe3DFJC1NQicKyGQCWwgIEoh1QS7UvRPAiJ54XIwf9GaYsheMBIp8AiCEGeSaxAQkUkFyaik0bGxCENCZBdzTyKirGIOkH52rjEbkNKJDQREKaRaV1oen2KICXwjrUWKeQKn0K3on6iHC3MaOYKAiEySNTqOjLKrMqVHknqQysoXfCqJiPS4lsaTedI8ng1EVIcNBERppDrFkMIIgii4mDlxBEFwussByHrqquIIAiIySZamjI6xKpLSI1GLVEqnGOJzSUSkQ/b6xA5w6cAlCEiHG7WDRGSU6gtdKe9GEuBi+UMnSC6GP066BcqJwmmY08gRBERkkixNGWEDAWVEkso3bB8gItLjXCMwGSd7Lw+Tx7MBKZ3cqB0kIqNU60qjTNhlPbuczF50RhA4GYH45HQXKTZQuZ83MAqBiGgCRxBQVkgrDyIMhwrXwkNElGTy6WcoDWz1oeP9kU6sUSFKoaS16LoYXq01CJhFTqF7NvIGFiHgCAIiMkk29dnwKBcppvSQTjHkWNbaUS60/I5TDRIR6UnSGjQUDOspSAcbCIhSyMUMXdbf0sHg6q1B4GIEYqT7jm5iiqF8nheBiMwpSNIUjiCgrHCtYmHf6lkoFRpfX+f3tmFuTyWGEBERJZeLnfTILFujRHjrpBMbCIhSKGmdqFzMYBwMUmLEMcUQRxAQkUlcg4CyQpplO5a1Vop5PGfLgobPX7hjMSu6iIg0JWqRenIK7490aj1Ok4gSzFyCHUU1iIsZjM6LJl9Kp9I9HxNbhzmNuo0SREQyXZViy+/6OkoRhoTILlkZzMWc9V2Xrsesrgq+dM/vUC7mcPnp83HNzsVxB4uIKHFsLWBL7pBPIxVmleLgPyV3sYGAKIV00/pIKugTNseQTod0B4MfK93O/BOFkzD3IUcQEJFJc3oqWDGrEz9/4tiUz3vaiti+rC+mUBFZYKvywJJ8TuD1563E689bGXdQiIgSzb0UnkxzsSMmuYtTDBGlUNJ6U7sYXK5BEJzu+TBRt881CIjItD84f2VD+vTG81dyMVTKDN7pRETpJSvOMP1Ph5ylGl/Wf6QTRxAQpZCL6bUnGULgYnh1QsWW+al0G6gmtg9T0OAIAiIy7ZKN89DXUcZ/3/0YBofH8LR1c3D+2tlxB4vIKOkc1MxaiYhSi1MMpZ+tegreHunEBgKiFEpahu7iEHaOIAhOew0CEyMIbHWPIKJM27m8DzuXc0ohSi/5/MTRhYOIiKLFJD79pHl8qP3y7kkj1qgQpZDJKYY8Q6sUJ62XvU5okxUz+4KvQRAcRxAQERHpky9SzLyViCi1pEk80/804CUmHWwgIEqhYl7v0Y6iAThpUwzptIqzAX2qoGsQhDmPnBOciIiIiIhITdLWLSR9ti4x75x0YgMBUQpViv6P9pufdtrk36ZGCQTlYtlEc5IcS6FIpqBrEITBEQRERET6OMUQEVE2cQ2aLJCNEgyxV94fqcQGAqIUaivmpd+X8jk8bd0cpX2ZSvxljRAuDmHXiTfrpqfSrfAXkyMIgp9IjiAgIiLSx5d8IqJssjU/PbmDr8ikgw0ERClUKckbCP712i1YMatTaV9RjC5w8eVUp9GCi/RMpT/FEEcQEBERxUG6BgHLN0REqeViJz0yy1Y+znsnndhAQJRCfiMI9qycOeXffP9rpHNOePqm0h9BEP4M5jXX3SAiIiI5lm+IiNIrJ3l9YgNxOti6irw90ok1KkQppLtI8eK+9pbfLZzeFjY4AHymGEp4BpP08JumezpMLFLMEQRERET6uAYBEVFW2Zmfntwhz+N5lWkqNhAQERZMa8eaud0Nn6+d2425PWYaCGRcHKKm0wueeetUOc3KehOnj2sQEBERmeVi+YyIiMzgO2z6SacRjDAclAxsICAiAMAHrtqI3vbi5L+ntRfxgas2Gdu/h9ZDCFwsnOhNMeRgBGIUdA2CMOeRIwiIiIjMcrF8RkREZsiSeKb/6WDrOvL+SKdC3AEgIjesm9eD//2jc/Dth34PANi9fAZ6ahoMbHIxf9HK9FyMQIyCrkEQpqDBEQRERET6ZFMMMGclIkov2TsbK4DTwVoDAUsIqcQGAiKa1NtewsUb5lrZt3wNAvcyGJ1Mz73QxyvoGgRhsIGAiIhIH3uQEhFlE9P49LNVz8J7J504xRARxc7F/EVriiHmkFPojyAY/98Qx+QUQ0RERPrkWTbzViKitJI2EDP9TwV2AiAdbCAgokgkLQPiDEPB6dbV5wxMMaTbKEFERERyzFqJiNJL2smN6X8q2JtiiNKIDQREFAn5FEPRhUOV3ggCe+FIIt0RFSYq9znFEBERkT55D1IiIkorvsOmn2wkSJhRIpxBIZ1S30AghFgihHiZEOLjQogfCyEOCSGGhRBPCSF+IoT4JyHEXgvHPUcI4Wn+d7vpcBAlgZsZjM4aBC6GPz66l/PUFEPBz2OODQRERETa3CyDERGRbfLKY0oDjiAgHaldpFgIcQaAfwSwrcUm08b/2wDg5UKI/wXwYs/zfh1NCImyRTKAwEkcQRCc/hoEBkYQ8CIQERFpk89PzLyViCitpDMMMf1PBa5BQDpS20AA4DQ0Ng48AOAeAE8C6AWwC8CC8e/OAfAdIcQez/MeNhyWxwB8RmG7+w0fl4gC4hoEwemvQVD93zCFFE4xREREZBZzViKi9GIan362GnrYuJBOaW4gmPBzAP8C4OOe5z1a+4UQIgfgWgB/D6AdwDwANwshdnmebMZ0bQ96nvdag/sj8rVzWR++8/DvGz5fOqMjhtAkj1ZmygxyijjWIGAhhYiISJ+8B2l04SAiomjJpmhl8p8OQfLxq7ctwie/J59YhSNM0inNaxD8FsBLAKz2PO+v6hsHAMDzvDHP824C8MKaj3cAuDCiMBJZ89p9K5p+fv2epRGHpMpok1sE9EYQMIOspT/FUPhjcoohIiKiICQVRMxaiYhSi0l8+gW5xi/Yvsh4OCgZUttA4HneHZ7nfcTzvFGFbT8D4Hs1Hz3DXsiIorFjWR+eu2XhlM/OXjUTzz5zQYtfUC2dSm6+QE+lvUjxeNElTE8ETjFERERkFjtAEBGlGEeQpV6Q9+v183vwwRecaSE05LosTDGk6ls4tWbBkhjDQWREPifwvmdvwGVnzMOPf3MYa+Z2YdfyGSgV4moXTNYQAp28NGmjI2wLugZBqGOygYCIiEibtLzDrJWIKLVkjcBsIE4H+SLFrb/dML/HfGDIeWwgOKW2ii8fWyiIDBJCYNfyGdi1fEbcQUk1L2GNH7bpTjE0sX2YYiinGCIiItLH9gEiomxi/6r0C/qKzNH52cQGglM21Pz9G8P7bhNCPBPAJgDTARwH8DiA7wK40/O8EcPHI6KQWN8cnPYixbmJ3wU/pomFjomIiLJGvkgx81YiorTiIvXpFzQf57t1NrGBAIAQYhGAfTUf3W74ENsAfL7Fd48JIf4WwH7P84YNH5eIAtLKTDmAYAr94kT4AkgutSvqEBERxYPVA0RE6SWfYojSQNoIJPkd362ziZe96m9walqhXwO4NcJjzwPw1wC+LoSYbXLHlUoFnZ2dAIDR0VH09/fDG58s/ciRIxgaGgIAnDx5EsePHwcAjIyMoL+/f3Ifhw8fxvBwtd3ixIkTOHHiBABgeHgYhw8fntyuv78fIyPVgRDHjx/HyZMnAQBDQ0M4cuQIAMDzPPT392N0tLpu9LFjxzAwMAAAGBwcxNGjRwEAY2Nj6O/vx9jYGADg6NGjGBwcBAAMDAzg2LFjjFMC4zQxUX87hlBAdd8ljKCCYSfjJAC0YQjFmrC2jYc1hzF0ikFMtAycPHEsNdfJxL2XE0Aeo+gQg5PbdYpB5FENQwXDKKEavwJGkRuungd4HjrFIHLj27XVbFfEKNpQDY9AdTsxfv7bMISxkSGrcUrjdWKcGCfGiXFinBgn4U3kpY15rhDJjFMarxPjxDiZjFOrcnmS45TG62Q7ThithqHZe25S45TG6xQmTqMjI+P1FlUdYhD58fqNwthQyzgdP3K45bt7+/g7Oa+TvTjFJfMNBEKIFwN4ds1Hb/M8b7DV9poOAvgggCsALAPQDqAy/veLAXy/ZtsdAG4VQrQZOjZ27NiBK6+8shqQgwexf//+yZv2pptuwn333QcAuOOOO3DrrdU2kUceeQT79++f3MeNN96Ihx56CABw22234bbbbgMAPPTQQ7jxxhsnt9u/fz8eeeQRAMCtt96KO+64AwBw33334aabbgJQfaD279+PgwcPAgBuueUWHDhwAABw55134uabbwZQfWj2798/+ZDefPPNuPPOOwEABw4cwC233MI4JTBOGKsmxheX78eS/CEAwOnFx7Cr9Csn4yQEcEH5QazMPwkAWFt4HHtL1fD0igFcVbkbpfHM9Qe3fTo118nEvZfLCczPHcFl5fsmt7uqcjdm5qoZ5a7Sr3B68TEAwJL8IRQf+joAwBsdwVWVu9Erqpnw3tJDWFt4HACwMv8kLig/CADoEEO4qnI3OkQ1c72g/CB++bP7rMYpjdeJcWKcGCfGiXFinIrD1ZfdZnmugEhknNJ4nRgnxslknFqVy5McpzReJ9txGjn4MIDm77kj452vkhanNF6nMHH63WOP4arK3ZNhvax8H+bnqvteNPDzlnH62L/8Y8t394vL9/M6WY5TXMRES0YWCSG2APgGqpX2APBJz/Oeb2jfnQCGPM8bkmwjALwLwDtqPn6H53nvCXnsdQDuqVQqKBQKOHDgAFavXo2jR4+ip6cHQlQL+5VKBaVSCSdPnsTY2Bg6OjowMjKCY8eOobe3F0C1Na69vR3FYnGyJa69vR3Dw8M4ceIEenqqq5v39/ejs7MThUIBx48fRy6XQ1tbG4aGhjAwMIDu7m54nofDhw+jq6sL+Xwex44dQ6FQQKVSweDgIIaGhtDV1YWxsTEcOXIE3d3dyOVyOHr0KEqlEsrlMgYGBjAyMoLOzk6Mjo4yTgmK05s+8wC++rODaMcQhpDHCPIoYQQ5eLj/fZc7F6cnjg7h3L/8IkaQx/B4WPPwcBJF5DCGdjGMY14JgMC/XL0OZ6+Zl4rrZOLe+8+fHMQNn/0xKmIEx70ygGpPpZNeEaPIoYJhjEFgCAUUMIoXbJ6Dd121DR/51i/wgf+6Eye8IsaQQxuGMTq+XRGjKGAUJ1GCgIcOMYTjXgkeBNowhE+/7mysmd+XmeeJcWKcGCfGiXFinEzE6e3/9SC+cM8TTfPcf7l+D3Yum564OKXxOjFOjJOpOC1563+3LJc/8O4LEhmnNF6nKOL0oW/+Gv/3jl82fc/955eejV0rZiQuTmm8TmHidPj4AHa/5ws4Nv5O3iEGMeAVMIo8Ns2p4JMv39k0Tr95/CDO+dsDTd/dSxjFfe+7gtfJQpweffRRrF+/HjXWe553LyKS2QYCIcRSAN8GMGf8o58A2ON53pEYwnIzgImGiUMAZoVZuHiigWDi3/fccw/WrVsXLpBEIb30I9/HV+9/oul3v3zfMyIOjb/Hjwxg+3u/qrTt//fSbdizcqblECXHzd/9Ff7kM/f4bzju2l1LcMOl6/Cx7/wS7/xcsPzvf/7oHCyd0RHot0RERFn16pt/iC/c/bum333i+u3YtWJGxCEiIpuWvPW/W37n4jsZ2fN3tz+Av7v9wabfffJlO7BzeV/EISLTTgyNYO07v9z0u/Xzu/Ffr9vT9LvjgyNY92fNfwcwrbDl3nvvjbWBIJNTDAkh5gL4Ck41DjwM4OlxNA6Me2fN39NQnW6IKFWS1hTJhZmCky141XR7Ayc7b2InREREGaObZxMRUfrx1SodcgEvZNDfUbJlroFACNGHauPA8vGPfgvgfM/zfhtXmDzPewjAL2s+WhNTUIhogkaemNGBWC3lNMsTEwWQMMWQXOZyMyIiIgNkmS/rB4iIMonJf7bx3TqbMnXZhRDdAL4MYGK+nSdRbRz4RXyhmlTbQMGxvJQ6SZvOTKfVPFkxs0+3x8Fkg0KIngp53VYJIiIikuLoAiKi9GIan35BX69lo/MLfO9Orcw0EAghOgB8AcDm8Y8Oozqt0H3xhWqK2smzj8cWCiICwF4TYegWRISBIYycYoiIiMgsZq1E6fO0dbO1Pqf0kqXxJt7PKH6yRiDZd7LOd+VCZqqRMycTV1YIUQHweQC7xz86AeAZnuf9ML5QnSKEaAdwWs1Hj8UVFiKqYqEoON1zN7F5mDPO60VERGQWc1ai9HnRjiVNP3/B9sXRBoRixzQ+/eSNQLLvWn9ZYgNBaqX+ygohigD+E8C+8Y8GAVzmed634gtVg+cDKI//7QH4eoxhIbIiadPwsMAUXOA1CEKcdE4xREREFICkgMbGd6L0OWvlDLzx/FVTPnvDeStx9qqZMYWIXMTkPx1sXEY2EKRXIe4A2CSEyAP4BICLxz8aAfAcz/Nut3zcdgADnueNKWy7EsD7aj66zfO8J6wFjoiU6BSKkra+gm2B1yAIgVMMERERmcWslSid3nD+Sjx/+yLc89hhrJ/Xg5ldZf8fUepIe5BHFwyySPe9XAUbCNIrtVdWVLu8/CuAK8c/GgPwIs/zPh9yv17Nfze02GwbgHuFEK8SQsxqsZ+8EOKFAL4DoG/84yEAfxwmfERkhs6iTWwemEp7DYLxcx1moaxcanMzIiKieLCCiCi9ZnaVce5ps9g4kGEcJZZ+Ni5xuZA3v1NyQppHELwKwItr/v0QgLOEEGep/NjzvNeGPP5qAB8E8A9CiJ8DuBfAU6g2VMwBsBPAjJrtRwFc43nej0Mel4hMYHkpMN3CppERBJxiiIiIyCjWHRERZRPT/3SQvZcHvcRcpDi90txAUN9zf+X4f6rCNhBMyAFYNf5fKz8DcJ3ned82dEwi5yRtFh6tQlHC4mabbl29MLAGgY3hk0RERGnnSQsxzFuJiLKJ6T81xymG0ivNDQRx+gaALaiOEtgF4DRUpxHqQ3Ux4sMAfgPguwA+D+BLHicxJ3KKXvsAH99a+msQTEwxFN0xiYiISI5ZKxERUUoFzOQ5giC9UttA4HneDQBusLBf36fI87xRAD8c/+8fTIeBiOzjnIzB6Y8gCH9MTjFERERkFnNWIqL0ki5SzAwg9YJe4hLXIEgtNv0QUSSS1sdeawRB0iJnWdA1CMJNMRT8t0RERNSInSWIiLKJqT+1ctH6OXEHgSxhAwERURM678RsIJhKt0A5uQZBiKIoKzGIiIj0ycowzFmJiNIrzLsXpd8Ldyxq+KyUz+GZm+bFEBqKAhsIiCgSSVtmQ2dO+2kdJYshSZ6gaxAQERERERFRvNj5iv7owtOwfn735L+LeYG/fe7p6Cyndqb6zOOVJSIKYUZnCWcs7I07GE7JaTY9T5Y/WQ4lIiKKFOegJiLKJmn6H10wKCZ+eXxvewmfftVu/PBXh/DE0QFsX9qHOT2VaAJHsWADARFFYlZXsjIT1ZfiN16wCjlOgD9F0DUIiIiIKFryKYaYQRMRpRVTePJTKuSwc3lf3MGgiHCKISKKxCv2Lmv6+flrZkUcEjV+L8XP3bIQH37JVrxg++KIQpQcuoXN3OQaBEREROQKjiAgIsompv/px0tM9TiCgIgisXJWJ85aMQPf/PmTk58VcgIv3OFmBbtfoeivrtwYTUASSHdNgclFilkSJSIiIiIiso6vXkRUiw0ERBQJIQQ+dM0W/N1XH8C3fv4k5va04YU7FmPvqplxB60plpeC024gsBQOIiIiCo6VR0RE6SUbMc8p5oiyhw0ERBSZtlIeb7toTdzBUMLe7MHprikwsT3POBERUbS4BgEREdXjq3D6sb6D6nENAiKiJphdhqDbQJCbmGLIQliIiIgoEObLRETpxTSeiGqxgYCIqAkWmIILugYBERERuYPZMxERUToxi6d6bCAgImqCldbBBV2DgKeciIjIHZxiiIgom/heRpQ9bCAgIiKj9NcgYAmUiIgoDh5aL0LA7JmIKL3YIY6IarGBgIiIjNItbJ5apJiFVCIiIlcwVyYiyia+lxFlDxsIiIjIKN3OKBMjCNiJhYiIyB3Ml4mI0kuWxDP9Tz9eY6rHBgIiIjJKf5FiSwEhIiIiKa/1DEPgGAIiovTiOxgR1WIDARERGaVb1uT8l0RERERERG7g61n6cRopqscGAiIiMmpU3h2xge6ixkRERGSGrBKIFURERNnEyuMM4CWmOmwgICIio4ZHxrS2P7UGAUspRERErmCuTESUXkzjiagWGwiIiDQV2OVdanhUbwTBRLsAzyoREVG0ZIP+2HBPRJResjSeyT9R9rCBgIhIUzHPpFNmeExvBAErIIiIiNzD3JmIiIgoG1jLRUSkqZjnK7OM/hRD1f9lOwEREZE7mC8TEaWXdA2a6IJBMeE1pnpsICAi0lQqMOmUWTKjQ2v7yTUIWEwhIiJyBvNlIqL0kqXwbCAmyh7WchERaeIUQ3IrZ3ViwbQ25e25pAMREVE8ZKsGsYKIiCjFmMhn2sUb5sYdBHIMa7mIiDQVOMWQlBAC73/2RlSKqlnM+AgCnlYiIiIiIqKY8cUsLa4/a2nDZ/mcwOWnz48hNOSyQtwBICJKGo4g8LdrxQzc/od78T8/O4hSXmDMA9726bubbssRBERERO5hwz0RUTYx/U+PN5y/Ej/89SHc+et+ANV377997unoaS/GGzByDhsIiIg0ldhAoGTBtHa8aMdiAMD//uyJltudWoOAiIiIouRJ5hgSrCEiIkotpvDZ0FUp4t9fsRM//k0/Hu0/iR3L+jC7uxJ3sMhBbCAgItLEEQT68pJhArnx08l6CCIiIncwWyYiSi/ZuxfT/3Qp5nPYsmQ6tsQdEHIaa7mIiDQVuQaBtpykBCpYBCUiInIOG+6JiLKJI8iIsocNBEREmjiCQJ+sgeBU+wALokRERK5gAz4RUXoxjSeiWqzlIiLSVCow6dSlshBx0I4qr9u3ItgPiYiIiIiIaAo2HRBlD2u5iIg0cQSBPtkaBJAskOinvZTHJRvnBd8BERERNcUZJoiI0ks6wJvpP1HmcJFiIiJN566eFXcQEicnaSDwxlsIdMuhO5f14Q8vXIXT5nSFCBkRERE1w/ohIqL0YhpPRLXYDZaIqIWrty1q+KyYF7jijPkxhCbZZGsQeAFGEFyzczE++fId2LpkeohQERERUUusPSIiyiSuT0CUPWwgICJq4Y8uXIXVNb3T8zmBD1y1CZ1lDr7SpbYGgXpBlEVWIiIiE1q30rOCiIgovTjFEBHVYi0XEVELfZ1lfPY1u/HdXzyFxw8PYOfyPiyc3h53sFJnYgSBTjlUpzGBiIiI9DGrJSJKLzYCE1EtNhAQEUlUinnsXTUz7mAknqwAGmKNYiIiIrKEVUdERERE2cAphoiIyDpZL0RvfAiBTk9F9mokIiKyi6P1iIhSjEk8EdVgAwERETlBq4GAJVoiIqLQPMkwPua0RERERNnABgIiIopVkCmG2KmRiIjILua1RETpxSSeiGqxgYCIiKyTTzE0vo1GMZUFWiIiIrs4Wo+IKL04jRwR1WIDARERWSevZOAyxURERHGQ5sCsOyIiIiLKBDYQEBGRdSojCHQqItjhhYiIyC7mtURE6SXtvsX+W0SZwwYCIiJygk49BIfEEhER2cWclogovaQduDjCmyhz2EBARETWyQugAfYXOCREREQ0gfkpEREREbGBgIiIrJOtQTC5SLHOqADWaBAREYUma6TnaD0iomziFENE2cMGAiIism7BtLaW352xqBeA5hRDbCEgIiKyijktEVF6mR7hTUTJxgYCIiKyrqNcwDmnzWz4fMP8Hszrbd140Ao7NRIREdnFvJaIKL3Y4YqIarGBgIiIIvHXV27C6jldk/9eOL0NH3zBmZP/5gxDRERE7mDlERFRNnmcY4gocwpxB4CIiLJhZlcZX3zDHjzw+DEMj45h7dxu5HLBKh/Yq5GIiCg8WSUQ81oiovRiGk9EtdhAQEREkRFC4LSaUQRTvtPoqchejUREREREROZx/ABR9nCKISIicoLWFENsHyAiIrKKeS0RUXoJSSLPGYaIsocNBERERERERBkkqwPiaD0iIiKibGADAREROUGnGoJVFkRERHZxBAERUVZxCAFR1rCBgIiIEifo4sZERESkhjktEVF6bVsyveV383vbIwwJEbmADQREROQGjZqIciFvLxxEREQknZ+aiIiSbU5PBWcs6m34/Pw1s9BW4rsWUdawgYCIiNygMZK1UmT2RUREFJZsIUo2DxARpdsHX3AmVs7qnPz36Qt78ddXbooxREQUl0LcASAiIgKAMY0GAo4gICIisosDCIiI0m1uTxtue+PZeOjgMRTzOSzu64g7SEQUEzYQEBGREzyNIQTlAkcQEBERhcVGACKibBNCYMWsrriDQUQxYw0LERE5QTbNQb0ypxgiIiKyimsQEBEREWUDa1iIiMgJYxotBBVOMURERBSaTuM8EREREaUTGwiIiMgJHEFARERERERERBQt1rAQEZETdEYQcJFiIiIiIiIiIqLw2EBARERO0BpBwEWKiYiIQuMMQ0RERETEGhYiInKCTiUFpxgiIiIiIiIiIgqPNSxEROQELlJMRERERERERBQtNhAQEZETuEgxEREREREREVG0WMNCRESO4CLFREREUfJ0WueJiIiIKJXYQEBERE4Y4yLFRERERERERESRYg0LERE5QWuKITYQEBERERERERGFxhoWIiJygs4ixYU8sy8iIiIiIiIiorBYw0JERE7gLMhERERERERERNFiAwERETmBCyUSEREREREREUWLDQREROQEtg8QEREREREREUWLDQREROQET3GSoa1LplkOCRERERERERFRNrCBgIiInKA6guCZm+bZDQgRERERERERUUYU4g4AERERAIz5NBB0lgu4bvcSvGjH4mgCRERERERERESUcmwgICIiJ8gWKf7ca3Zj3bxuFPIc+EZEREREREREZAprWoiIyAmyKYb6OktsHCAiIjJMdXo/IiIiIkov1rYQEZETOiutB7WV2DhARERERERERGQca1yIiMgJ+1bPQqnQmC0tmt6OWd2VGEJERERERERERJRubCAgIiInVIp5PH/boobPr921JPrAEBERERERERFlABcpJiIiZ7zzkrWY01PBl+/9HdqKeVx++nw8Z+vCuINFRESUSh64CAERERFR1rGBgIiInJHLCbxy73K8cu/yuINCRERERERERJR6nGKIiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsogNhAQEREREREREREREWUQGwiIiIiIiIiIiIiIiDKIDQREREREREQZ5Hlxh4CIiIiI4sYGAiIiIiIiIiIiIiKiDGIDARERERERUQbtXjEj7iAQERERUcwy00AghCgJIV4khPiCEOJXQogBIcRvhRDfFkL8kRDCWuk4zmMTERERERE189ytC5t+/vztiyIOCRERERHFJRMNBEKI1QC+C+BjAC4CsAhAGcAcADsB/DWAe4UQF6fp2ERERERERK3M6CzjnZesnfLZshkd+IPzVsYUIiIiIiKKWiHuANgmhFgA4KsA5o1/5AH4OoCHAMwEcD6ANgCzAHxWCPF0z/O+lvRjExERERER+bnurKXYtnQ6vvnzJzGvtw17V81ET1sx7mARERERUURS30AA4BM4VUH/KwCXeZ7344kvx6f3+RSA8wAUAfyHEGK553n9CT82ERERERGRr/Xze7B+fk/cwSAiIiKiGKR6iqHxaXv2jP9zCMAzayvoAcDzvCcBXAbg4fGPpgN4S5KPTURERERERERERETkJ9UNBABeU/P3Rz3Pu7vZRp7nHQfwzpqPXiGECDu6Is5jExERERERERERERFJpbaBQAjRierUPRM+7POT/wRwbPzv6QDOTuKxiYiIiIiIiIiIiIhUpLaBAMAuAOXxv48D+L5sY8/zBgB8p+ajfQk9NhERERERERERERGRrzQ3EKyp+ftuz/NGFH7zoxa/T9KxiYiIiIiIiIiIiIh8pbmB4LSav3+l+Jtf1/y9OqHHJiIiIiIiIiIiIiLyleYGgr6avx9X/M3vav6entBjT6pUKujs7AQAjI6Oor+/H57nAQCOHDmCoaEhAMDJkydx/PhxAMDIyAj6+/sn93H48GEMDw8DAE6cOIETJ04AAIaHh3H48OHJ7fr7+zEyUh0ocfz4cZw8eRIAMDQ0hCNHjgAAPM9Df38/RkdHAQDHjh3DwMAAAGBwcBBHjx4FAIyNjaG/vx9jY2MAgKNHj2JwcBAAMDAwgGPHjjFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDgxTowT48Q4pSZOcUlzA0Fnzd8nFX9Tu11ny63cPvakHTt24MorrwQAHDx4EPv375+8aW+66Sbcd999AIA77rgDt956KwDgkUcewf79+yf3ceONN+Khhx4CANx222247bbbAAAPPfQQbrzxxsnt9u/fj0ceeQQAcOutt+KOO+4AANx333246aabAFQfqP379+PgwYMAgFtuuQUHDhwAANx55524+eabAVQfmv37908+pDfffDPuvPNOAMCBAwdwyy23ME6ME+PEODFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDilJk6x8Twvlf8B+CoAb/y/dyv+Zl/Nb0aSeOzxfa0D4FUqFa+zs9O75557vJGREe/QoUPe2NiY53med/jwYW9wcNDzPM87ceKEd+zYMc/zPG94eNg7dOiQN6G/v98bGhryPM/zjh8/7h0/ftzzPM8bGhry+vv7J7c7dOiQNzw87Hme5x07dsw7ceKE53meNzg46B0+fNjzPM8bGxvzDh065I2MjHie53lHjx71Tp486Xme5w0MDHhHjhzxPM/zRkdHvUOHDnmjo6Oe53nekSNHvIGBAc/zPO/kyZPe0aNHPc/zGCfGiXFinBgnxolxYpwYJ8aJcWKcGCfGiXFinBgnxolxYpwSHad77rnHq6kX9gCs8yKsRxdetUI5dYQQ/w3g4vF//pXneW9V+M1FAL4w/s9jnud1Je3Y4/taB+CeiX/fc889WLduXdDdEREREREREREREZEF9957L9avX1/70XrP8+6N6vhpnmLoWM3fbYq/qd3uWMut3D42EREREREREREREZGvNDcQ/L7m79mKv5lT8/dTCT02EREREREREREREZGvNDcQ/Kzm78WKv1lU8/f9CT02EREREREREREREZGvNDcQ/LTm7w1CiILCb85s8fskHZuIiIiIiIiIiIiIyFeaGwi+DWBw/O8OAFtkGwshygB21Hz0tYQem4iIiIiIiIiIiIjIV2obCDzPOwbgqzUfXevzk2cB6Br/+ykAX0/isYmIiIiIiIiIiIiIVKS2gWDcB2v+vlYIsa7ZRkKIdgDvrvnonz3PG0nwsYmIiIiIiIiIiIiIpFLdQOB53n8D+Mb4P8sA/ksIsbF2GyFEH4DPAlgx/tFTAP6q2f6EEEuEEF7Nf9dGdWwiIiIiIiIiIiIiIpNUFs9NuucD+B6AuQCWALhLCHEHgIcAzARwPoD28W1HADzH87z+FBybiIiIiIiIiIiIiKil1DcQeJ73iBBiH4BPAjgdgABwzvh/tQ4CeInneV+FIXEem4iIiIiIiIiIiIhIJvUNBADged79QojtAJ4H4GoA6wDMBtAP4GEAnwbwYc/znkzTsYmIiIiIiIiIiIiIWslEAwEAeJ43BOBj4/8F3ccvUR0FEPmxiYiIiIiIiIiIiIhMSvUixURERERERERERERE1BwbCIiIiIiIiIiIiIiIMogNBEREREREREREREREGcQGAiIiIiIiIiIiIiKiDGIDARERERERERERERFRBrGBgIiIiIiIiIiIiIgog9hAQERERERERERERESUQWwgICIiIiIiIiIiIiLKIDYQEBERERERERERERFlEBsIiIiIiIiIiIiIiIgyiA0EREREREREREREREQZxAYCIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsqgQtwBICtKtf/4+c9/Hlc4iIiIiIiIiIiIiKiFJnW3pWbb2SI8z4vyeBQBIcSlAD4XdziIiIiIiIiIiIiISMtlnud9PqqDcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGcYqhFBJC9ADYW/PRbwAMxRQcIiIiIiIiIiIiImquBGBhzb/v8DzvcFQHZwMBEREREREREREREVEGcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiL6/9u78yDNqvKO49+fbCOLUCAIyBqMYNApg4iKcQmShNKUe0AxCFPRiAmpWInG0sRAmahYqSIVLZRFBaICalTKKAYBAY2OS8QIlsAoKBJFthEIqDDokz/uHftOZ7r7nel36bfv91PVVeeee86dZ/7o9719nrNIkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQItC0m2TnJckouT3JzkF0luTfLlJK9P8shJxyhpOJLsl+TVST6U5FtJfppkXZK1Sa5JcmaSZ006Tknjk+S0JNX5+cGkY5I0XEkOSXJqkv9q3/MfSPLjJFcn+UD7t8Duk45T0uIleVqS97S/32vbd/17k3w3yUeTHJtkm0nHKWluSbZIsjLJnyR5b/v9/WDnff3KRTz7OUn+NcmaJPd3xgL+KclBQ/xv9EaqatIxSIvS/vJfADxxnma3A6uq6uKxBCVp6JL8NnAGcNiAXa4Ejq+qH44sKEkTl+QwYDUbTny5uar2m0xEkoYpyW7AacArBmh+elWdNOKQJI1Ikl2A9wMvGKD5jTTv+l8abVSSNlWSFwIfBradp9lVVfXsTXzuI4CzgGPmabYOOLmq3rEpz+67LScdgLQYSfYCLgf2bKsK+ALNy8KuwJHAw4HdgIuSHFVVn59ErJIW7UD+f3JgDfBt4E5gJ+BwYK/23rOB1UmeUVU3jSlGSWOUZCvgfbgqVlqWkuxDk/Dfv1N9A3AtcBfNwMMBNBOF5huEkLTEJXk4cBkbTvy7A/gm8D80f98fDPxGe+8A4HNJjqiqr44xVEkL24khfy+37/2fBI7oVH8buBpYATwD2APYCnh7kq2q6q3DjGE5M0GgaXc+M8mBm4EXVNW31t9stxa6EHgOzYfEx5IcUFV3jztQSUPzPZoBwQ9V1Y+6N5I8DDgBeDfNC8mewIeTHF4umZOWozcCT2jL5wPHTjAWSUOUZEfgCmaSA1cAr6uqazbSdmuaAYMdxhehpCF7IzPJgQLeApxWVT9f3yBJaGYOnwHsSPO+fzawcqyRShrUbcDXOz9/APzlZj7rLcwkB35Bs0vIhetvtu8C/wi8oa06JclVVXXVZv57veIWQ5paSZ4LfKa9fBA4tKqu3Ui77YBrmJlp8I6qevN4opQ0LO25AvsDH6yqXy7Q9kXAJzpVR1XVJaOMT9J4tVsM/jewDc0S5suAc9rbbjEkTbkkZwOvai8/Arxioe9/SdOrPT9o3/byX6rqdfO0fSnwsU7Vyo2NBUiajPZMoK1nb/eb5BTg5PZy4C2G2u0GbwK2a6tOrKoz52h7ITNbEK2uqsM3Lfp+cjm2ptmfd8rnzfVCUFX3A3/fqXpNElfPSFOmqq6qqnMHGRyoqk8CX+tUPW90kUkat3YG4ftokgM/Bf5qshFJGqYkT2QmOXAL8GqTA9Ly1e4rvm+n6oIFulwE/Kxz/dhhxyRp81XVT4Z8FuDxzCQH1tCcQzCXvwF+1Zaf1p5lqAWYINBUSrI9zbZB650zV9vWx4H72vLOwDNHEZekJaV7YNl+kwpC0ki8Fnh6W35DVd0+yWAkDd2JnfLpVfW/E4tE0jhsP+v6p/M1rqqHgHs7VY5tScvbCzvlc+fbPrhNTHTPHn3RqIJaTvwQ1bQ6nGbWIMD9NHuZzamqfgGs7lQdMVdbSctG96Vhi4lFIWmokuwNnNpefhH4wATDkTRkSbYAXt6p+vikYpE0NnfQ7Cm+3sHzNU6yK7Bbp+pbc7WVNN2SrACe2qm6coBuV3TKjv8NwASBptXjOuVr2xkEC7l6jv6SlqcndMq3TCwKScP2HpqDSB8EXuMB5NKy83jgEW35HuDGJFsmWZXk8iQ/SfJAkh8l+WyS1ybZZp7nSVriqmod8NlO1d8l2XaeLu9kZjzr8qpaM7LgJE3agcz8vhfwzQH6OP63iUwQaFod2CnfPGCf7v5nBw0xFklLTJJ92HCmwGWTikXS8CR5GfCH7eU7q+q6ScYjaSSe3CnfAuxFs23gB2i+2x8FbA3sCRxFkzRck+TJSJpmb2ZmW+BDgGuSHJ/kMUlWJNk7yfOSfBFY1bb7TqcsaXnqjv/d3u4QspDu+N/O7aojzcODWjWtdumUbxuwz0865Z2HGIukpec0ZrYV+iHw7xOMRdIQJNkFeFd7uQZ42wTDkTQ6e8+6/iwz241cT7O16C+BlTSDiAD7AFcmeWZVfWMsUUoaqqq6PsnTad7b9wEOAM6do/ndwAeBv/WMEmnZW+z4HzRjgHcMJ5zlyRUEmlbdQ4x+PmCfbrvZhyBJWiaSHA+8pFP1pqp6YFLxSBqafwbWz/450d9radnaqVN+PE1y4GfA0VX1uKp6ZVWtqqon0awouLNtuy3wkSRbjzVaSUNTVdcAjwVOojlrcC6XABeYHJB6YbHjf7OfoY0wQaBptaJTfnDAPt2BhIcPMRZJS0SSQ4EzOlUXVNX5k4pH0nAk+X3guPbyvKq6Yr72kqbadhup++Oq+tjsyvaz4PnAr9qqA4BXjDA2SSOU5JHAe2kmBWxHMwv4E8BZwEeZ2V74GODLSc5sDzaXtHwtdvwPHANckAkCTavunmODzhLqHl42aNZR0pRIsj/NkuT1LxDXACdOLiJJw5BkO+DM9vIu4PUTDEfS6M3eW3h1VX1yrsZVtZpmAHG9Y0YSlaSRSvKbNIePrqJJ+p0E7F1VL6mq11TVMcD+wLHAvW23PwXePYl4JY3NYsf/wDHABZkg0LS6r1MeNBPYbXffnK0kTZ0kewCXAru3VTcBR1XVvXP3kjQl3gbs15b/uqrunKetpOk3+z19zuTAHG0OH2IsksYgyZY0ib692qoTq+r0qnqo264aFwAv7VS/NslhYwpV0vgtdvxv9jO0ESYINK3u6pQfNWCf3TvltUOMRdIEtQeXXkqzrQDArcCRVXXr5KKSNAxJDgH+or28oqrOm2Q8ksbirlnX3xmgz3Wd8g5JdhhiPJJG7yU0Z44A3ADM+31fVZcCl3WqVo0oLkmTt9jxP3AMcEFbTjoAaTPd0CnvO2CffTrl64cYi6QJSfIImkPKDm6r7qRJDnx/clFJGqKVzExo2SfJV+Zpu2unvMestv9QVZ8ZenSSRmH2e/ogs/5mH1S6w0bqJC1dR3XKV1RVDdDn88CRbfnQ4YckaYnojv/tlmRFVc3ejnC27vjf2qq6YwRxLSsmCDSturOEnpBky9nLDzfikDn6S5pC7b7kFwNPaqvuodlWaJCZhpKmzwHMrBRayNbAUzrXu87VUNKS8+1Z19sP0Gf2ioF7hhSLpPF4dKc8exXRXLpbDu44xFgkLS030JxL8jAgwBOB+SYNgeN/m8wthjStvszMqeTbscCMgSTbAE/tVH1+RHFJGoMkK4BPAU9vq34GPK+qvjG5qCRJ0mK1qwC7KwF/a4Buj+uU11bV/cONStKIdQ8Q3XnAPrt0yncPLxRJS0m7WqCbEHj2AN2e1Sk7/jcAEwSaSlV1H3B5p+qEBbq8mJmZRWuBL4wgLEljkGQr4OPAEW3VA8ALqupLk4tK0ihU1blVlUF+2HD/4Ztn3T93Qv8FSZvnE53yCwdo323je740fX7YKf/ugH2O6JS/N8RYJC09F3XKJ8zXMMnewHPm6Ks5mCDQNHtPp3xCkoM31ijJtsBbO1VnDbAdkaQlKMkWwPnAc9uqh4Cjq+qyuXtJkqQp815gXVs+PMnz52qY5DCayUDrnTvCuCSNRvdd/qAkx83XOMkRwO91qi4ZSVSSlorzgPWrAw9M8qp52r4T2KItr66qq0ca2TJhgkBTqz1s8Ivt5TbAp5Os7LZJsgtNtvAxbdVamg8LSVMmSYD3Ay9tq34FHFdVn5pcVJIkadiq6kY2nAx0fpIXz26X5FnAp5kZCPgKzRaEkqbLZ4A1neuzkpzYTg76tTSOZsNVRrcAF44hRkkTUlW3A6d1qt7Vfhb8WpKtkpwKvLxT/aZxxLccZLDD4aWlKclewNeAPdqqAq4CbqQ5kPBIYNv23kM0B5hePvs5kpa+JH8GnN6p+i7wuUH7V9VJQw9K0pKR5ATgnPby5qrab3LRSFqs9gyxS4FndKqvA74O/BJYCTypc+9W4ClVdcvYgpQ0NEmeQrNX+Lad6ltpzh+8k+Yg4qcC+3XuPwAcWVX/OaYwJQ0oycXAnrOqdwce1ZbvZ+Pbgz23qn68kedtBfwHG24vdi1wNbACeCYzY4MAJ1dVdzcRzcMEgaZekoOAC2hOMp/LHcCqdtWBpCmU5BTg5M3t3+5RLmmZMkEgLT9JdqTZbujlCzT9KvBHJgek6dZuGfZB4LEDNP8+zWpizyGTlqAkPwD23Yyu+1fVD+Z45o7AWcDRG7vfWgecUlVv34x/u7e2nHQA0mJV1fXtbIOX0fzxcDBNRvJu4Caa5YfnVNWdEwtSkiRJ0iapqnuAY5OcAbwS+B3g0TRbCt1Gs6XQR4GLyplv0tSrqq+1Zws+n+bw8UNpZiBvTzPb+DbgGzRbif1bVa2b41GSlqH2veCYJGcDxwNPo1k1sI5mu7FLgPdX1XWTi3I6uYJAkiRJkiRJkqQe8pBiSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB4yQSBJkiRJkiRJUg+ZIJAkSZIkSZIkqYdMEEiSJEmSJEmS1EMmCCRJkiRJkiRJ6iETBJIkSZIkSZIk9ZAJAkmSJEmSJEmSesgEgSRJkiRJkiRJPWSCQJIkSZIkSZKkHjJBIEmSJEmSJElSD5kgkCRJkiRJkiSph0wQSJIkSZIkSZLUQyYIJEmSJEmSJEnqIRMEkiRJkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB76P73oL1SqEQt4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from astropy.modeling import models\n", + "\n", + "pds_model = \\\n", + " models.PowerLaw1D(x_0=1, alpha=1, amplitude=1)\n", + "\n", + "nyq = 100.\n", + "freq = np.linspace(0, nyq, 1000)[1:]\n", + "\n", + "pds_shape = pds_model(freq)\n", + "mean = 10\n", + "rms = 0.3\n", + "\n", + "dt = 0.5 / nyq\n", + "\n", + "flux = timmerkoenig(pds_shape, mean, rms)\n", + "times = dt * np.arange(flux.size)\n", + "\n", + "plt.plot(times, flux)" + ] + }, + { + "cell_type": "markdown", + "id": "de32c52b", + "metadata": {}, + "source": [ + "## Simulating event times with the inverse CDF method\n", + "\n", + "Given a positive-definite light curve (generated, e.g., with the method by Timmer & Koenig), we treat it as a probability distribution: we calculate the cumulative distribution function by calculating its cumulative sum and normalizing to 1. Then, we generate random numbers uniformly distributed between 0 and 1 (horizontal lines) and take the event times at the corresponding values of the CDF (vertical lines)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "27458926", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABwUAAAStCAYAAAClVIT2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXwU9f3H8fckIQkJEMJ9BAiKKIeKotVaFdSqrYonWqv1vq1HtO3Po7ba1trTClLBG8X7wgOEgoqgIDcil6BiEkgIJEDIQc7Nzu8PkpjAzt6zO7v7ej4eeTw2M/P9zmd2ru/OZ74zhmmaAgAAAAAAAAAAABC/kqIdAAAAAAAAAAAAAAB7kRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJwTAzDCPZMIwjDMO4zjCMKYZhrDAMo8EwDLP5b34EYkg1DOMKwzBmGYZRaBhGnWEYJYZhfGEYxm8Nw+hhdwwAAAAAAAAAAABwDsM0zWjHEDcMwzhf0iuSMrxMtsA0zbE2xnCYpNckjfIyWamka0zTnGVXHAAAAAAAAAAAAHAOegqGV1d5TwjayjCMHEmf6IeEoClpgaTnJc2QVNs8vJek9wzDODXSMQIAAAAAAAAAACDyUqIdQJzaIWl5m78zJd0Zgfm+Kqlf8+dCSeeZpvlVy8jmx4a+Luk0SR0kvWUYxsGmae6JQGwAAAAAAAAAAACIEpKC4fU/SYNM09zSdqBhGMfZPWPDMM6SdFLzvw2SxpmmubbtNKZp7jQM4zxJayQdJKmbpP+TdL/d8QEAAAAAAAAAACB6eHxoGJmmuX3/hGAE/brN5xf3Twi2ME1zr6Q/thl0k2EYJIcBAAAAAAAAAADiGEnBOGAYRifteyRoi6k+irwjqbr5czdJJ9sRFwAAAAAAAAAAAJyBpGB8OEFSWvPnvdr3HkNLpmnWSVrcZtCpNsUFAAAAAAAAAAAAByApGB+Gtfm81jRNlx9lVlmUBwAAAAAAAAAAQJwhKRgfDm3zudDPMm3ffXhYGGMBAAAAAAAAAACAw6REOwCERfc2n3f4WWZ7m8/dQg3AMIwsSWPaDNoqqSHUegEAAAAAAAAAAKIgVdKANv8vME2zIlrBhANJwfjQqc3nWj/LtJ2uk+VU/hsj6f0w1AMAAAAAAAAAAOA050n6INpBhILHh8aH9Daf/e2dV9/mc8dwBTJ27FhdffXVkqQ+ffrooYceUnr6vvDy8vI0atQoSdLPfvYzXXrppZKk3NxcPfTQQ6113HvvvTrssH1PND3//PN1/vnnS5IOO+ww3Xvvva3TPfTQQ8rNzZUkXXrppfrZz34mSRo1apTy8vIkSenp6XrooYfUp08fSdLVV1+tsWPHSpKOP/543XzzzZKkrl276qGHHlLXrl0lSTfffLOOP/54lollYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimRJ4meKKaZr82fwn6SFJZvPffBvq/7BN/X/3s8zP25SpCkMM50oy09PTzU6dOpmSzOTkZLNr166mYRimJLNLly5mamqqKcns2LGjmZmZaUoyU1JSzK5du7bEYmZlZZkdOnQwJZkZGRlmRkaGKcns0KGDmZWV1Tpd165dzZSUFFOSmZmZaXbs2NGUZKampppdunQxJZmGYZhdu3Y1k5OTTUlmp06dzPT0dFOSmZaWZnbu3NmUZCYlJZldu3Y1k5KSTElm586dzbS0NJNlYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimVimxF2mlngknRvtfFOofzw+ND5Ut/nsb6+/ttNVW07lv62SVFdXJ0l67733NGTIkDBUCwAAAAAAEDmTJ0/2ODwlJUU33nhjhKMBAADhUF1drTfeeENPPfWUampqVFVV1TquJa8hSU1NTdqzZ4/6Spoi6fzKyrbVbI1UvHYhKRgfdrX53NvPMn3afN4dhhjaPbZ0yJAhGjFiRBiqBQAAAAAAiJxevXp5HJ6amsq1DgAAYkxjY6OefPJJPfjggyovL/e7XPdOnTSk+oD+VP6+vs2xkqIdAMJiU5vPg/wsM7DN541hjAUAAAAAAAAAACBqXC6XXnjhBQ0bNkx33HGH3wnB9PR03XjjjZo3b57NEUYHPQXjw9dtPh9uGEaKaZouH2WOtigPAAAAAAAAAAAQk5YsWaKrr75amzZt8j1xGz/96U/13HPPaeDAgVJBgUptii+a6CkYH76QVN/8OVPSMd4mNgwjTdLxbQbFZ8obAAAAAAAAAAAkhLKyMt1www064YQT/E4IJiUl6fzzz9fcuXM1d+7cfQnBOEZPwThgmma1YRifSDqredDVkpZ4KXKhpM7Nn3dL+sy+6AAAAAAAAGKfYRjRDgEAAHjgcrk0efJk/fGPf1RFRYVfZTp37qzbb79dN910U9wnAtsiKRg/JqtNUtAwjEmmaa7ffyLDMDIk/bnNoKf9eNQoAAAAAAAAAACAYzQ1NWn69On6y1/+orVr1/pVJiMjQ7fffrvuvPNO9e3b1+YInYekoIMZhpErKb/NoGtM03zB07SmaX5oGMbnkk6SlCZppmEY55mmuaZNfd0lvSZpSPOg3ZL+YUPoUnGxlJlpS9UAAAAAAAB2ySov9zg8LS1NKiiIbDAAAOAALpdL77//vp544gl9n78vhTJIUrKkvpKWS2rYr0xycrKuvPJK/fnPf1ZOTk5kA3YQwzTNaMcQVwzDmCWp336D+0jq3fx5r6TvPBQ9yzTNbfvVlSs/k4LN0+dIWqZ9270kmZIWSNosqaekn0rKaB7nkvQz0zQ/8b5E/jEMY4SkdS3/r5M0IhwVAwAAAAAAAAAA+OlESYva/H/ppZfqr3/9qw466CD/Kyko0PrBgzWy/dCRnp7QGEvoKRh+w7UvKW0lU9KRHoanhjpj0zSLDMM4Vft6A46SZEga2/zXVpn2JRjDkhD0aM4caehQ26oHAADOVV5erk2bNqm6ulqDBg3SkCFDeAcPAACIGRMmTPA4PC0tTbfccktkgwEAACosLNQHH3yg1157TdtKSiyny5G0UFLLFAcffLAmTJigc845JxJhxgSSgnHGNM2NhmEcJ+lSSb/Uvg57vSXtkfS9pOmSppqmudPWQPr3l3JzbZ0FAABwnu3bt+vFuXNVV1cnSVpUXKwfm6bOOOOMKEcGAADgn4rsbI/D09PTudYBAEAEffrpp7rnnnu0fPnygMqlpqfrr3/4g+6+++5952+0IikYZqZp5oaxrgLt6+0XaLkGSdOa/wAAACJm4cKFrQnBFosXL9YJJ5ygTp06RSkqAAAAAAAQK3bu3Kk//OEPevLJJ4Mq/8knn6jfCSeEOar4kBTtAAAAABA/1q/3/Gj9QO/qAwAAAAAAiWPLli16+eWXdcUVV+iggw4KKCGYnJysK664Qh/OnClJ6tevn11hxjx6CgIAAMB2ZWVl0Q4BAAAAAAA4RG1trT777DO9//77mj17tgoKCgKuIyUlRVdddZXuu+8+HXzwwVIQdSQakoIAAAAAAACAD4YR8BteAADAfrZs2aInnnhCzzzzjMrLy4OqIy0trTUZmMv7fgNCUhAAAAC24yIaAAAAAACJa+HChZowYYLeffddud3uoOo4+uijddlll+nqq69W9+7dwxxhYiApCAAAAAAAAAAAgLAyTVMffvih/v73v2vRokVB1zNw4EA988wzOuOMM8IYXWIiKQgAAAAAAAAAAICwKCkp0VNPPaXXXntN33zzTdD1ZGdn65577tEdd9yhjh07hjHCxEVSEPYoLpYyM6MdBQAAiLAsi/cBZJSW8sJvAAAQE6zaM+m1tbRnAADwoqmpSS+++KL+/e9/q6a2VpI0qM34ZEl9JS2X1GBRx/DhwzV27FidddZZOvXUU0kGhplhmma0Y0AcMAxjhKR1Lf+vkzQieuEAAAAAAAAAAAAHOlFSy8NEu3TpolNOOUUXX3yxzjjjDPXs2TP4igsKpMGDpfx8KTc3tCALCrR+8GCNbD90pGma60OrOLroKQh7zJkjDR0a7SgAAECETZgwwePwoUOH6qyzzopsMAAAAEGwas907NhRN910U2SDAQDAoerr6zV//nwtXbpUy5Yt07r1vnNlOZIWSiqRdNhhh+mOO+7QFVdcoU6dOtkdLpqRFIQ9+vcPPRMPAABiTkV2tsfhNb160TYAAAAxwao905iRQXsGAJDwTNPUc889pz/+8Y8qKSkJqo6pL76ok664QoZhhDk6+JIU7QAAAAAQ/2joAwAAAAAQ24qLi3XOOefohhtuCCghmJSUpAsvvFDvv/eeJOnkk0/mOkGUkBQEAAAAAAAAfODiJQAgUdXX1+vvf/+7Dj30UM2aNcvvcpmZmfr73/+u4uJivfPOOzryyCNtjBL+4PGhAAAAAAAAAAAAaMc0TX344Ye6++679e233wZU9txzz9V///tfDRgwwKboEAx6CgIAAAAAAAAAAKDVmjVrdPrpp2vcuHEBJQR/8pOfaMaMGXrvvfdICDoQPQUBAABgOx63BQAAAABAbJgyZYruuOMOuVwun9OmpaVp/PjxOvbYY3XeeecpNzfX/gARNJKCAAAAAAAAgPY9Jg0AgETV0NCgO++8U08++aRf0x999NF6+eWXNWzYMJsjQ7iQFIQ9ioulzMxoRwEAACIsq7zc4/CM0lKpoCCywQAAAATIdLst2zOZDQ20ZwAAcWvFihV64IEHtHHTJg2SlCypr6Tlkhr2mzYrK0t//vOfdeuttyolhTRTLGFtwR5nnhntCAAAQBTkRTsAAACAECTJR3vmkUciEwgAABF2jKT/eRh+oqRFbf6/9tpr9be//U29evWKTGAIK5KCsMecOdLQodGOAgAARNiECRM8Dh82bJjO5KYhAADgcC6XS//97389jsvMzNQNN9wQ4YgAALBHdXW1nnzyST3zzDOqb9i/L6CUI2mhpJLm/8eMGaNHH31Uo0ePjmSYCDOSgrBH//4SLxQFACChmKapiuxsj+NqevWibQAAABzPbGy0bM80depEewYAEPNM09TMmTN10003qaSkxOf0SSkpeuqJJ3TDDTfIMIwIRAg7kRQEAABAWJimaTmOHw4AACAW0J4BAMQr0zS1YMEC/elPf9L8+fP9LvfKK6/oR5dcYl9giKikaAcAAAAAAAAAOIG3pCAAALHINE299957OvbYY3XKKaf4nRAcd845kqQf/ehHNkaHSKOnIAAAAMKCi2gAACDW0Z4BAMST0tJS3XLLLZo+fbrfZQ499FBNmjRJpx9yiDRzpo3RIRroKQgAAAAAAACIpCAAID64XC49+uijGjZsmN8JwZ49e2ry5Mlau3atTj/9dJsjRLTQUxAAAABhwTt4AABArCMpCACIdevWrdPVV1+tlStX+l3mjjvu0F/+8hd16dLFxsjgBPQUBAAAQFhwEQ0AAMQ6bnICAMQql8ulRx55RKNHj/Y7IXjKKado+fLlmjhxIgnBBEFPQdijuFjKzIx2FAAAIJIaG5VVXu5xVMcdO6SCgsjGAwAAEKi9ey3bM51dLtozAABH2rBhg+69916tWbtWfSUlS+orabmkBg/Tn3nmmbrvvvt08sknc9NLgiEpCHuceWa0IwAAABHWQVJetIMAAAAIQaZ8tGcefjgygQAAEIDhkj7wMPxESYva/H/44Ydr6tSpGj16dGQCg+OQFIQ95syRhg6NdhQAACCC6uvrNWXKFI/jRowYwYvKAQCA41VVVem5557zOK5Lly669tprIxwRAACeVVVV6fbbb9f8BQsOGJcjaaGkkub/MzMz9dvf/lb33Xef0tLSIhkmHIakIOzRv7+UmxvtKAAAQCTV16siO9vjqNrevWkbAAAAx3NXVFi2Z5SVRXsGAOAImzdv1rmXXqoNGzZ4na5J0llnnaWnn35a/fv3j0xwcLSkaAcAAACA+GCaZrRDAAAACAntGQCA082dO1fHHHOMz4SgJP37X//SzJkzSQiiFUlBAAAAAAAAQN6TgoZhRDASAADaM01TEyZM0M9//nPt2bPH67SnjB0rSRo/fjznL7TD40MBAAAQFlxEAwAAsY6eggAAJ2pqatJdd92lSZMmeZ2ua9eueuaZZ3TR6NHSQQdFKDrEEpKCAAAACAsuogEAgFhHewYA4DR79+7VZZddpg8++MDrdIcccohmzJihQw89VCooiExwiDk8PhQAAAAAAAAQSUEAgHOYpqnXX39do0eP9pkQPP3007VkyZJ9CUHAC5KCAAAACAsuogEAgFhHewYA4ATr16/XmDFj9Mtf/lKbNm3yOu1vf/tbzZo1S926dYtQdIhlPD4UAAAAYcE7BQEAQKyjPQMAiKba2lo9/PDD+uc//ymXy+V12pSUFD377LO66qqrIhQd4gFJQdijuFjKzIx2FAAAIIKMvXuVVV7ucVzHHTt4pwEAAHA8o6zMsj3T2e2mPQMAsM3ChQv1wAMPqKCwUP2bhyVL6itpuaSGNtNmZWVp+vTpOvXUUyMeJ2IbSUHY48wzox0BAACIsExJedEOAgAAIAQ95aM98+c/RyYQAEDCOVHSfC/jFjV/HjRokGbNmqXhw4dHJC7EF5KCsMecOdLQodGOAgAARFB1dbWeffZZj+OOOOII7mAEAACOV1paqldffdXjuKysLF1zzTURjggAEM8WLFige+65R9t37PA4PkfSQkklzf9feeWVevTRR9WjR49IhYg4Q1IQ9ujfX8rNjXYUAAAggtyVlarIzvY4rrZ3b9oGAADA8VypqZbtmeRu3WjPAADCoqqqSr/73e/01FNP+TX98SecoBnPPEPvQISMpCAAAADCwjTNaIcAAAAQEtozAAC7rVq1Spdccok2b97sc9ru3bpJu3fr5ZdfljF4cASiQ7xLinYAQDTs3r1ba9euVWlpKQ1+AAAiwDCMaIcAAADgE9cIAAB2MU1TkydP1o9//GO/EoLXXXedPvnkE0n8pkb40FMQCcU0TS1YsEALFixoHXbEEUfovPPOU1ISOXIAAELBRTQAABDraM8AAOxQVVWlG264QW+88YbPaQ855BA9++yzOvnkk6WCAvuDQ0IhC4KEUlxc3C4hKElr1qzRmjVrohQRAAAAAABwinhKCpqmqfr6+miHAQAJ7/3339ewYcP8SgjecccdWr169b6EIGADegoioSxZssTj8FWrVmnUqFGRDQYAgDjj7SIajzoBAACxIF7aM4sXL9YXX3yh6upq9evXTxdccIF69OgR7bAAIKG43W799a9/1R//+Eef0w4aNEhTp07VKaecEoHIkMjoKYiEsn79eo/Dt27dGuFIAACIP/F0Zz0AAEhM8dCeWbNmjebOnavq6mpJ0rZt2/TCCy+ooaEhypEBQOJYtmyZTjrpJL8SgpdeeqnWrFlDQhARQU9B2KO4WMrMjHYUB8gqL7ceyfOZAQAISdKePZbn2o47dnCuBQAAjpe8datle6aTacZEe6Zg/vwDl6G8XMWLFmnw4MHRCQoAEkRBQYEeffRRzZg5U5I0SFKypL6Slktqe3tGWlqaJk6cqBtvvDGmeqMjtpEUhD3OPDPaEXiU523kxIkRigIAgPjUVT7OtQAAAA43QD7aM3/6U2QCCcG5ViO47gEAtsuVNKn5b38nSlrU/Pnggw/WW2+9paOOOipSoQGSSArCLnPmSEOHRjuKA0yYMMFyXF5eXsTiAAAgHu3evVvTpk3zOO6oo47SmDFjIhwRAABAYAoLC/Xuu+96HJeVlaVrrrkmwhG1Z5qmFi5cqJUrV7YOO+qoo3TyySe39jKxuvaRnZ2tq666KhJhAkDCqKmp0eTJk/Xcc8+ptq7O4zQ5khZKKmn+/7bbbtPDDz+srKysSIUJtCIpCHv07y/l5kY7igNUZGdbj3RgvAAAxBJ3p06W59ra3r051wIAAMdrdLks2zNG165Rb89s/u47zfv+e6lNjPMLCtT3xz/W0Oabs63iT+nePerxA0A8WbRoka666ipt3rzZr+lT09P1ziuv6MILL7Q5MsBaUrQDAAAAQHwwTTPaIQAAAITEW3vGCW2dpUuXehy+ZMmSCEcCAIkrPz9fv/zlL3XiiSf6nRCUpNmzZ5MQRNSRFAQAAAAAAADk/KTgd99953F4fn5+hCMBgMRTVFSku+++W4cddphef/11v8qMGDFCL0ydKknKpbc2HIDHhwIAACAsvF0oa3nHDQAAgJM5PSkIAIis3bt365lnntH777+vZcuWqampya9ygwYN0p///GddfvnlSt661eYoAf+RFAQAAEBYcKEMAADEOtozAABJampq0ssvv6y8vDzt2bPH73I9evTQAw88oJtvvllpaWn2BQgEiaQgAAAAAAAAIHoKAkCiy8/P1zvvvKMpU6bo+++/D6jsVVddpQkTJqhr1672BAeEAUlBAAAAhAWPDwUAALGOpCAAJB63263//e9/euKJJzR79uyAj/cjR47Uv//9b5155pk2RQiED0lBAAAAhAUXygAAQKwjKQgAiWP37t2aOnWqJk+eHHCvQEnq27ev/vKXv+jqq69WcnKyDREC4UdSEPYoLpYyM6MdRTumaSqrvNx6goKCiMUCAEA8Si4ttTzXpm/fzrkWAAA4XkpRkWV7pmNdXdTbM/5c17CapnObaQAgkW3cuFHTpk3T9OnTVVdfL0ka1GZ8sqS+kpZLavBQfsiQIcrLy9M111yjjIwM+wMGwoikIOzhwK7ShqQ8bxNMnBiZQAAAiFO95ONcCwAA4HCHNv9Z+vvfIxSJZ3neRjZf1/A6zUMPhSsUAIhZh0l6pPnPmxMlLWr+nJycrP/7v//T5ZdfruHDh/OKDMQskoKwx5w50tCh0Y6indraWj311FMex6WlpemWW26JcEQAAMSXHTt26LXXXvM4bvTo0TrppJMiHBEAAEBgvv76a82ZM8fjOCdcO5gwYYLluLy8PK/TZGdn66qrrgp/UADgYDU1NXrzzTf17LPPqqi42K8yOZIWSiqRlJKSossuu0z33nuvhg0bZmeoQESQFIQ9+veXcnOjHUU7jZWVqsjO9jguMzPTcfECABBrXB06WJ5r6/r04VwLAAAcr6GiwrI9k5aWFvX2jFVsklpjs5ompXv3qMcPAJGydu1avfjii5o6dap2794dVB133nWXzs/L08CBA8McHRA9JAWRMBobGy3HpaSwKwAAECrTNC3H8WgVAAAQC7y1Z7yNAwA4w6JFi/SXv/zFste3NykpKRo/frzuvvBC6ZJLdMcdd0gkBBFnyIQgYbhcLstxJAUBAAAAAACJPwCITd9//71uu+02zZ49O+Cyffv21c0336wbb7xRffr0kQoKwh8g4BBkQpAw6CkIAIC9uIgGAABiHT0FASC2uFwuPfbYY3rwwQdVW1sbUNmf/OQn+vWvf62LLrpIqampNkUIOAuZECQMbz0Fk5OTIxgJAAAAAABwIrfbbTmOpCAAOMvKlSt1/fXXa/Xq1X6X6dChg6644grdddddGjlypH3BAQ5FUhAJw1tPQd5zBABA6HinIAAAiHXx3FMw1uMHgBY7duzQX/7yF02ZMsXrzRxtdenSRTfffLPuvPNO9evXz+YIAeciKYiE4a2nIA1jAABCx/kUAAA4gWma2rVrl4qKitSrVy/17dvX7xuUaM8AgHO53W5NnjxZ9913n6qrq/0qc9xxx+mmm27S+PHj1blzZ5sjBJyPpCDsUVwsZWZGO4p2jMJCZZWXexzXKTWVF8gCABCi5KIiy3Nt+vbtnGsBAIDtTNPU4sWLtWzZstZhhx56qM4880wlJSX5LN+huNiyPZOUlBT19oxVbJJaY7OaprNpRj1+AAjW1q1b9bvf/U5Lli5Vd0ndJSVL6itpuaSG/aY/7rjj9PDDD+u0007jyTVAGyQFYY8zz4x2BAc4rPnP0v33RygSAADiU46kvGgHAQAAEpoh6YTmv2Ac1fxn6bHHgqw5PPK8jZw40fc0f/pT2GIBgEgaIOl1i3EnSlrU/LlLly76+9//rptuusmvm0GARENSEPaYM0caOjTaUbTz9ddfa86cOR7H9erVS5dddlmEIwIAIL5s3bpV77zzjsdxP/rRj3TCCcFengMAAPDPrFmz9M033xwwPDs7W1dddZXP8qtWrdJnn31mOT4vLy+U8EI2YcIEy3EtsVlN07VrV1199dVhjwkA7FJfX6///Oc/eurppz2Oz5G0UFJJ8/8XXnihHn/8cfXv3z9SIQIxh6Qg7NG/v5SbG+0o2mmoqFBFdrbHcR27d3dcvAAAxBqXaVqea2t79+ZcCwAAbLe8rEzy0B6pkPxqi9Rt22bZnpGfddjJn9ispknu1i3q8QOAPxoaGjRt2jT99a9/VYEfjz3u3bevHp08Weeff77tsQGxjqQgAAAAwsI0zWiHAAAAEBJf7RnTNHk3FQDYpKKiQi+//LL+9a9/qbCw0Of0HdPTpbo6ffrpp0o79NAIRAjEPh6qi4ThrWHPRUwAAAAAAOBPUhAAEF6FhYW64YYb1K9fP912221+JQRPPPFEzZ49W5KUlpZmd4hA3CApCAAAgLDgBhwAABDraLMAQOTU1dXp4Ycf1rBhw/Tss8+qpqbGr3J/+9vftGDBAuXySGQgYDw+FAmDC5UAANiL8ykAAIh19BT0ze12yzAMHqMKICSzZ8/W7bffrs2bN/tdpnfv3nr66ad17rnn2hgZEN9ICgKiUQ8AAAAAAEgKelNXV6cZM2bou+++U2pqqo466iidcsopJAcBBOSrr77SPffcozlz5vhdJiUlRdddd50eeeQRdevWzcbogPhHUhAAAABhQa98AAAQ60gKWnvjjTdUUFAgSWpoaNDnn3+u5ORkjRkzJrqBAYgJTU1NeuSRR/TQQw/J7Xb7VaZDhw669tprdd9992nQoEE2RwgkBpKCsEdxsZSZGe0o2ulQXKys8nKP4zoZhtTcsAUAAMFJKSqyPNemb9/OuRYAANjOqi0iya+2SFpJidc6zPx8KTU1iMjCw5/ls5qms2kG3R6rqqpS+ZdfKmu/4fmffqoxXKgH4MOuXbt05513auGiRRogKVlSX0nLJTV4mL5Pnz669tprdfPNN2vAgAERjRWIdyQFYY8zz4x2BAcY2fxn6cEHIxQJAADxabCkvGgHAQAAElqet5ETJ/os/+Pmv1DqsFOet5HNsXmd5k9/Cmq+nb3VG2SdABJHd0kvexh+oqRFbf7Pzs7Www8/rBtuuEEdOnSITHBAgiEpCHvMmSMNHRrtKNpZu3atPvnkE4/jsrOzddVVV0U4IgDA/lwul5YvX66tW7eqc+fOOvzww5WTkxPtsOCnzZs3a8aMGR7HHX300Tr55JMjHBEAAEg0EyZMsByXl5fns/yiRYu0fPlyy/G33HKL0tLSgogsPPxZPqtpunbtqquvvjqo+S5evFhLly71OO7OO+/kvYIJrqioSBs3blRDQ4MGDx6sww47jG0Camho0NSpU/Wvf/1LrqamduNyJC2UVNJm2PXXX69HHnlEPXv2jGSYQMIhKQh79O8v5eZGO4p2GnbtUkV2tsdxKd27Oy5eAEg0pmnqjVdf1XfffbdvQG2tVs6fr1/96lfK5RgdE1z19Zbn2ro+fTjXAgAA21m1RST51Rap/e47r3WYgwZJ6elBRBYe/iyf1TTJ3boF3R6ry8+3nndurkQCKGFt2rRJb376aes74paXlemktDSdeuqpUY4M0bRq1Spdd911Wr16tdfpmiT95Cc/0aOPPqrjjjsuIrEBiS4p2gEATpDILwoHAKcoKyv7ISHYrKmpyeud2nAWzqcAACDW+WrP0N4B2vv8889bE4ItvvjiCzU2NkYpIkTTsmXLdO6552r06NE+E4KSNOnxx/X555+TEAQiiKQgEgYNdwBwtkWLFnkcvmHDhghHgmB5O9dyHgYAALGANkvg+M4Sl9vtVnFx8QHDm5qa+B2XYNavX68zzzxTxx13nOUrJdoaPmyYJGncuHE8ahaIMJKCgGjAAoATVFRURDsEAAAAJLh47ikYy7HDmZr2e09cW1VVVRGMBNHidrv12GOPafTo0Zo7d65fZa6//npNnz7d5sgAWOGdgkgYNH4BALAX51oAABBOVVVV+uabb1RdXa2DDz5YOTk5ts8znpOCduE7SVze1j29v+JbQ0OD3nnnHT322GN+v/IjMzNTkyZN0jXXXCMVFNgbIABLJAUB0YAFAMBusXiudbvd+v7771VUVKQ+ffpoyJAhSkmh+QwAQCTs2rVLL774Ymtvo/nz5+tnP/uZ7e+dIinoWaIuN7wjKZh4duzYoaefflpTpkxRSUmJ3+XGjh2rl19+Wf3797cxOgD+4KoGAAAAwiKeLha53W699957Wrt2beuwgw46SJdeeqk6dOgQxcgAAEgMn3766QGPH5wzZ45GjRqltLQ02+ZLUhDwn9vtthyXlMRbq+LJ2rVr9a9//UtvvPGGGhoa/C531FFH6Z577tHFF1/MNgE4BHsiEoa3hjuNegCIPu4kjX3xdD79/vvv2yUEW4atWbMmShEBAJBY1q9ff8Aw0zT11Vdf2TrfeGrPhJO3tjrfWeLylhTk913sM01TX3zxhc4991wdccQReumll/xOCJ5wwgmaNWuWVq5cqV/84hckBAEHoacg7FFcLGVmRjuKdlK3bVNWebnHcV2amniWNQBEWWZZmeVxmmN0bOhQXGy5DtO3b/d7PbpcLhUVFammpkY5OTnq0qVLGKP0z+r33vO4LCvfeUeju3ePeDwAACQaqzbFntWrpV69Ai4nya+2SFpJie86Onf2WY9d/Fk+q2k6u91Bt6vTt2/33lbnEesJyayuttwu0kpK+B0Xo8rLy/XMM8/o/fffV/G2bZKkQW3GJ0vqK2m5pP1ThJmZmXrsscd0/fXXkxgGHMrgbh6Eg2EYIySta/l/naQR0QsHAAAAAAAAAGCTEyUtavP/mWeeqf/+978aMmSI78IFBdLgwVJ+vpSbG3wQ4arH7npDqS/YsuFYBju+X7vWmR31FxRo/eDBGtl+6EjTNA98nEEM4TYe2GPOHGno0GhH0c6XX36pBQsWeBzXuXNnXXfddRGOCADQ1ttvv62ioiKP4/Ly8iIbDILy9ddfa86cOR7HjRo1SmPHjvVZx9y5c7Vhw4Z2wzp06KAbb7wxou/ymzBhguU4tkcAAOxndS4ePny4zjjjjIDLSf6dwz21Rdq69tpro/IUgxb+LJ/VNFlZWbrmmmuCmu8XX3yhZcuWeRz361//mncuJ6iKigpNnTrV47jTTjtNhx9+eIQjQrDy8/N13333acnSpT6nzZG0UFKJpI4dO+qKK67Q7bffrpEjR/ooCcAJSArCHv3725PpD0HDjh2qyM72OM7dubPj4gWARLO3Z09V7N3reSTH6JjQWFlpea6t7d3br/W4uKRE8lDHuupqHXXUUaGG6Der5ZDE9ggAQARYnYtrevXyei4O9Rxe06uXKkpKLMe7Bw6Uunb1WY9d/Fk+q2mSsrODbsfUff+99bxzcyWSggnJtWuX5XbR6MBrg2jP7Xbrk08+0VNPPaX3339fLpcroPL33Hefxv/2t+rWrZtNEQKwA2/4RMLgUbkA4Gy8byD2eTvXhnoe3rRpU0jlAQAA/OGrzcK1hQPxnSQut9ttOY7fd87V0NCgiRMnaujQoTrjjDP0zjvv+J0QPProozX5iSckSTfeeCMJQSAG0VMQEA1YAACcrqFh/1fYAwAAhF8sJwXr6uqUnp4e7TCQQLztD0lJ9EVxoqVLl+r666/XunXr/C6TnJys0047Tb/5zW90+umnyygstDFCAHYjKYiEYWfvBQAAYO/5tL6+3ra6AQAAWnjr+SQ5+/rBP//5Tx1zzDHRDgMJhJ6CsaGkpESLFi3S66+/runTp/t9HEtNTdXvf/973X777cr29uhiADGFpCAAAIg5pmlq586d2rVrlwYMGKDMzMxohwTZewMOPQUBAEAkxHJPQdM0tXz58qjMF4mJpKAzmaaplStX6u2339b06dP17bffBlzHmDFj9NRTT+nQQw+1IUIA0URSEBANWACIJU1NTZo+fbo2bNjQOuy8887TqFGjohcUbEdSEAAARALXBwD/eUsK8vjQyDJNU0uXLtXbb7+tt99+W4VBPuJzyJAhuv/++3X11VeT2AXiFElBJAwa9gDgbP7+4Fi2bFm7hKAkvf/++xo0aBCPNIkyO8+1dXV1ttUNAADQIpYfHwpEGj0Fo880Tb333nu6//77tXHjxqDqSElJ0fnnn6+bb75Zp5xyCgldIM6RFIQ9ioslhz3KLa2kRFnl5R7HpdfWSgUFkQ0IANBOZlmZ5XG67TF6/YcfKqu6+oBJNv7vf/rxj39sU3TwR+q2bdbn2u3b/TrXWm4Dkuo3bVJaWlqw4QXEWxy0GQAAsJ/VuTijtNTruTjUc3hGaanXOozCQmnvXp/12MXr8vnQ2e0Ouh2Tvn2797Z6hNpocJakoiLL7SKtpETKyIhwRIll3bp1evjhh7Vk6VJJ0qDm4cmS+kpaLsnX81Z+8Ytf6D//+Y/69etnX6AAHMXgDieEg2EYIySta/l/naQR0QsHAAAAAAAAABLWiZIWWYw75JBD9O9//1vnnntu4BUXFEiDB0v5+VJubnDBhaOOcNZjd72h1BdsWSetJ7vrtKv+ggKtHzxYI9sPHWma5vrQKo4uegrCHnPmSEOHRjuKdlasWKGFCxd6HJeWlqZbbrklwhEBANqaPn26tmzZ4nFcXl5e6+cJEyZ4nIZjefStWbNG8+bN8zju8MMP12mnneazDqv1K0lZWVk6/fTTtWTJElVVValnz5466aSTlJWVFWzIQcXRdnsEAAD2sDoXDx8+XGeccUbA5ST/zuHvvfeeCrz0prv88svVs2dPn/XYxdvy+SPYdswXX3yhZcuWeRx38803Kz09PYSoEKsKCwv17rvvehx3zjnnaMiQIRGOKL5VVlbqqaee0vPPP69aL69XyJG0UFLJfsO7du2qn/3sZ7r++ut5TCiQwEgKwh79+9uT6Q9BXVGRKizeNZWenu64eAEg0dT06qWKqirPI9sco62O5WlpaRzLo6xh507L9VPTq5df68eqvCRVSHpxwQK5XC4pKUlbdu3Sd59+qltvvVWpqalBRh14HE7bzrZt26Z169apvr5ehx56qIY67MYsAACCYXUuru3d2+u5ONRzeFX37qqoqLAc3zRggNSnj8967OJ1+fywprJSRxxxRMDlajdvtpy3OWiQ1LFjSHEhNjU0NlpuFw39+jmu3RyrXC6XnnzyST344IPavXu33+WM5GT97PTTNX78eJ199tnq3bs373oEQFIQkHhROAAA4RCJ86nL5Wr3f0VFhVasWKETTjjB9nk70ebNm/Xaa6+pqalJkrRq1SqdfvrpCft9AAAQKl/tmVi/frB48eKgkoKAJ263O9ohxL2lS5fqhhtu0Nq1a/2a3jAMnTJmjDR/vlasWKGuo0bZGyCAmEMfYQAAAIRFtC6SffTRR1GZrxPMnz+/NSHY4tNPPz0geQoAQCyJZuIt3pOC27dvV2NjY1jrjPXvBMHzlhRkuwjNihUrdNlll+nHP/6x3wnB0047TatXr9bUqVMl7XtcKADsj6QgEoa3xggNFQCIfRzLnc3u9ePtMV/xqqmpSUVFRQcMd7lc2rRpUxQiAgAg9vnq+RQPbc5gloFHDsITegqGl9vt1nvvvaeTTz5Zxx57rF577TW/9tehQ4dqxowZ+uijj+gJDMAnHh8KAACAsIjmRbLS0lJlZWVFbf7R4K03YCImSQEA8cPJPQUTFd8LPKGnYPjMnTtX//d//6evvvrK7zI9e/bUH/7wB918883q0KGDjdEBiCckBZEw6CkIAPGNY3liS8THZXrb5rmbHwCA4MT740PtwHeSuOgpGBrTNDVv3jz99a9/1aeffup3uYyMDP32t7/Vb3/7W3Xu3NnGCAHEI5KCAAAACAtuwIksbxdhkpJ4SwAAIHY5uacgbRrgB7T/g/fVV1/prrvuCigZKEkXX3yx/vOf/ygnJ8emyADEO5KCsEdxsZSZGe0o2kkrKVFWebnHcSkpKVJBQWQDAgC0k1lWZnmcbnuMtpqmQ4cOHMujLHXbNsv103HHDr/Wj+U24ENKUZHUsWNQZQOOwynbWU2NZZxpJSXOiRMAgEA1NQXdpgj1HJ5RWuq1jqQtW6SmJp/12CXYtlI7BQVSampARdK3b/feVnfYNSBERkpRkfXvs+JiiV5sB3C5XJo0aZImTZokt2lqkKRkSX0lLZfUYFHukEMO0aOPPqpx48ZFLFYA8cngrg2Eg2EYIySta/l/naQR0QsHAAAAAAAAAGLGiZIW7Tds7Nixuuuuu3TOOef4/zSQggJp8GApP1/KzQ1vkOGqP1wx2rWs4a43lPqCLeuk9WR3nXbVX1Cg9YMHa2T7oSNN01wfWsXRRU9B2GPOHGno0GhH0c6SJUu0ZMkSj+OSk5N1++23RzgiAEBb7733ngos7t7Oy8tr/TxhwgSP03Asj76VK1fq888/9zhu+PDhOuOMM7yWN01TEydODGreZ599tg455JCgynpitZ1J7bfHaKqsrNTzzz/vcdxpp52mww8/PMIRAQAQHi6XS//97389jvPVpgj1HP7KK6+orKzMcnxycrIuuugi9evXz2dddvC2fP665ZZblJaWFlCZRYsWafny5R7H3XDDDcqkp2BCWr16tebPn+9x3Jlnnqlhw4ZFNiCH2rhxo5544gnNnDlTnrrn5EhaKKmkzbCLLrpI999/v44++ujIBAkgYZAUhD3697cn0x+CuoICVWRnexyXlJTkuHgBINHs7dlTFRUVnke2OUZbHcuTk5M5lkdZXXGx5fqp7d3b5/ox3W7L8r409OsX1vXvNQ6HbGeu3bst43Tl5DgmTgAAAmU2Ngbdpgj1HF6Rna0Kl8vrNC8uWKDrrrtOvXr18llfuAXbVmrLHDRISk8PqEzd5s2W83YPHMhjIhNU3fbtlttFuNvnsai0tFR33XWXXn31Vb+mb5I0ZswY/eMf/9Bxxx1nb3AAEpaffY4BAACA4PnzyHqnPNbeVxxOidPtdluO8/vRQgAAoB1/zvMNDQ1avz52nxwW7rbMihUrwlofYoe39qhT2szR4Ha79cILL2jYsGF+JwQl6c033tD8+fNJCAKwFVcLACV2QwUAnMIwjJDKcyyPvmiug3DOOx6SgqHuTwAARFMstCk+++wzmyOJHZ999pmKioqiHQaiwFt7NFF99tlnOvbYY3XNNddo9+7dPqfPzs7WfydNkiT96Ec/sjs8ACApiMThlAt4AADAM6ecq31d3HDKxQ96CgIA4lUsJAVjmR3LuHr16rDXCeejp+AP6urqdPfdd2vMmDFatWqVX2VOPvlkffXVVzrnnHNsjg4AfsDVAkCJ11ABgHjEsTz6vK0Du9dPOOtvamqK2LxCQU9BAEAisvsc55Sbf+xkR1tm5cqVYa8TzueUdnG0rV69WqNHj9Zjjz3m1/TDhg3Tyy+/rE8//VQDBgywOToAaI+kIBIGDRUAiF0cw2NDqOvJKeuZnoIAAEQXPQWB2JDoPQVN09SECRN03HHHacOGDT6nHz58uN555x2tW7dOl19+OW12AFGREu0AAAAAACeJh6QgPQUBAAhOoiQyIlEG8c8p7eJo2Lt3r6677jq98cYbPqft0KGDHnjgAd17771KTU2NQHQAYI2kINDMNE0uoAFAFHk7BvtzjOZCRfSF+vjQUNZhONe/r4sbTtnW6CkIAIhXvs61VVVVcrvdysrKivi840EiLCMiI1F7Cn7zzTe6+OKLtWbNGp/TXnDBBXrkkUd02GGHRSAyAPCNpCDsUVwsZWZGO4p20kpKlFVebj1BQYFEUhAAoiazrMz6OF1QIDUnOXweyxE13s61GaWlvtdPQ4P39etFh+JiqUuXoMruz6ys9BqHmZ/viHaOUVhoGWfy1q0SdyEDAGKUUVdneY77ft48fT9vniQpJydH55xzjtLT01vHh9pW7LRzp5JqavwLNAptz2DbSm0ZhYVSp04BlUnfvt33vGmLJ5zUbdsst4vUbduk7t0jHJG9TNPUq6++qocffli1dXUa1Dw8WVJfScslNTQP69Onj55//nn9/Oc/j0qsAGDFiOe7NhA5hmGMkLSu5f91kkZELxwAAAAAAAAAiJgTJS2SdNFFF+mpp55Sd3+TogUF0uDBUn6+lJsbeiDhrs+O+sMVo13L6qR1EmxZJ60nu+u0q/6CAq0fPFgj2w8daZrm+tAqji56CsIec+ZIQ4dGO4p2Fi5cqBUrVliOv+OOO3jUFgBE0QcffKDvv//e47jbb79dycnJkqQJEyZY1pGXl2dDZPDX4sWLtXTpUo/jDj30UJ93ydbX12vKlClBzfuMM87Q8OHDgyq7v927d2vatGmW46+99lp1CVOvxFBs3rxZM2bM8Dhu3LhxOvjggyMcEQAA4VFbW6unnnrK7+kvuOACDRq0r89OKG3Fb7/9Vh9++KHf841G29Pb8vnruuuuU+fOnQMq4+uaikRbPBHNmzfP8hGap556qo444ogIRxR+pmnqlVde0Z/+9Cc1ulwep8mRtFBSeWqqnp08Wddeey2vKALgWCQFYY/+/e3J9Ieg7rvvVJGdbTneHDRIar7gDACIvL09e6rC4tEz5qBBUsq+Zou3Y7nTzj2Jpi4/33L91PTq5XP9mHV13tevFw39+oVt/Td27Og1jqYBA6Qg4wynhtpayzgbHdgWAwDAX+69ewNqE3yyebOuHTNGUvBtxbVr12r6F18Edo6Pwrk22LZSW+6BA6UA38fo65qKJNoeCaimVy/L7aK+b9+Y3yYaGxt122236emnn/Zr+jenT9eIs8+2OSoACA3dogAAgCNwJ2XsC/Wx9E55rL3b7Q5pfKR4i8Mp3yUAAJFQXFwcch3Lli0LQySxgXYCwsUp7WI77Nq1S2eccYZfCcExJ58sSRoxgpcpAXA+egoiYfhq9NIoBgDnCvYY3djYqAULFqigoEBdu3bVscce2/poKYSft/UUS+dZkoIAAERXoOexcJybi4qKQq4DSDTx2h79+uuvNW7cOG3evNnrdOnp6frXv/6lX599tnTQQRGKDgBCQ1IQAADEJdM09eqrr6qgoEDSvjvIN23apF/96lckBh0qlAsH4bzo4OvColMucDglOQkAQKxzyrk9UhJteWGfeEwKzpkzR5dccokqKyu9Tvfzn/9cjz76qIYNGyY1/+YEgFjA40ORMOgpCACxK5hjdElJSWtCsIXL5dKKFSvCFBX2Fy/n0qamJq/jnZKMi8eLMAAASJE/jznl3A7Emnhrcz777LM666yzvCYEU1NT9eSTT+rDDz/clxAEgBhDUhAAAMSlBQsWeBy+bt26CEcCyb8LBrHSU9ApFw6dEgcAALEu0c6p8ZbIQfTEy01q9fX1+r//+z/dcMMNXpepZ8+emjdvnm666SYZhhHBCAEgfHh8KNAslhorABCPvP2oCuYYvWvXrlDCQRDi5VwaK48P9daj0SkxAgAQjEifx3w9JSDe0E5AuMRDQn3NmjW64oortGbNGq/TjRw5UjNmzFBubm5kAgMAm5AUhD2Ki6XMzGhH0U5aSYmyysstx5v5+VJaWgQjAgC0lVFaan2cLihoPUZ7O5a3fZdDRmmpXFaPfeGdD7bwdq7NKC31/b3v3et9/XrRobhY6tYtqLL7MwoLvcZhFBZKjY1hmVcoOhQXW8bZobhY6tQpwhEBABAeRlVV4G2CggKZpul3W7Etd01NcG2QKLQpg20rtZW0ZYtUVRVQmfTt233PmzZ2wum4Y4fldpG6bZujt4mmpiY9++yzevTRR9XQ2KhBkpIl9ZW0XFJDm2nPOeccvfrqq+rcuXNUYgWAcDK4OwjhYBjGCEmtz2NbJ2lE9MIBAAAAAAAAgICdKGlR8+ff/OY3+sc//qHk5GTrAgUF0uDBUn6+FExPwlDL212fHfWHK0a7ltVJ6yTYsk5aT3bXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7SxYsEBffvml5fhbbrlFafQUBIComTFjhjZv3uxxXNtj9IQJEyzryMvLa/08ZcoU1dfX+5wO4ePtXDtkyBCdc845XstXV1fr2WefDWrep556qo444oigyu7vm2++0axZsyzHjx8/Xjk5OWGZVyiWL1+uRYsWeRz3s5/9TIcddliEIwIAIDwqKyv1/PPPB1QmLy9Pbrdbjz/+uNdpPKmoqNDUqVMDmp+3+uzkrS3sryuuuELdu3cPqMzChQu1YsUKr9PQxk4806dP15YtWzyOO+mkkzR69OgIR+TbzJkzdf/996vSQ2/ZHEkLJZVo3+stJk6cqNtvvz3SIQKArUgKwh79+9uT6Q9B7caNqsjOthxvDhokpadHMCIAQFs1vXqpYvduj+PcAwdKHTtKktdjedtzz67OndWUkeFzOoSPt3NtTa9ePr93s6rK+/r1oqFfv7Ct13ofcYRzXqGo3bLFMk6nxAgAQDDce/YE3ibIzZXZ1OR3W7Gtxp07g2uDROFcG2xbqS33wIFSz54Blan77jvf86btkXCqundXhcWjaOv79nXUNmGapv7xj3/ovvvu8zlt127dNGPaNJ199tkRiAwAIoukIBKGr0fl8ihdAIguwzDCWl9TU1NY60No/DnPOuVc7Ha7QxofKd7icMp3CQBAMII9jwVbzinn9kgJ5nuibQFPvG0XTtpmqqurdd111+nNN9/0a/o5c+aoxzHH2BwVAERHUrQDAAAA8MVJPyhhLdT1FEr5cG4j8ZAUBAAgEQXbHuBmMiA4sdAe3bRpk4477jifCcHOnTvr3//6lySpR48ekQgNAKKCpCDQjAvOAABAip2nC9BTEAAQryLdUzDRkoKxkMhBbHB6e/Tdd9/Vscceqw0bNnid7ic/+Ym++uorjR8/PkKRAUD0kBREwnBCYwQAEBqO5c4W6uODnNJT0FddTrmQlmgXMAEA8IWkoH+eeuopffDBB2psbDxgXF1dnb7++mvl5+fL5XJFITrEEqe0i/f39ddf6xe/+IUuvPBCVVm887DFn/70J82fP1+DBw+OUHQAEF28UxBoxoVmAHCulmM0x2pni5f1EytJQaffmQ0AQLCCfecdSUH/ffnll6qpqdGll17aOmzLli165ZVX1NDQIEnq3r27rrzySnXp0iVaYcLhnNYe/eyzz/SXv/xFn3zyic/5p6en69lnn9Xll18eoegAwBnoKYiEwcUxAACcLVZ6CjqlTeGU5CQAAE4QSlIwUc+pmzZtUm1traR939+bb77ZmhCUpF27dul///tftMJDDHBKUrCpqUl33323xowZo48//tjnvAcPHqzFixeTEASQkEgKAs2ccoEPAHAgegrGhlAfH+oUvi4MOuXCoVMuwgAAEG70FIycjRs3StrXS3Dv3r0HjP/6669pV8CSE7aN0tJSjRs3To899phf05911llauXKlRo0aZW9gAOBQPD4U9iguljIzox1FOx137FBWebnleKOw0HExA0AiySwrszxOtxyjTZfL67FcBQWtH/2dDuHj7VybWVbm83s39uzxvt68SN22LWzrNXXbNq9xpBQVSQ54jFZaSYllnB2Ki6Vu3SIcEQAA4ZG0e3fgbYKCAqm+Pqg2YNKWLcG1QaLQpgy2rWQlpahIys7W9qVLLet2f/+90rdv9z1v2tgJJ7OsTI179ngcF872uSemaeqDDz7QQw89pPI9ezSoeXiypL6SlktqaDO9YRh68MEH9Yc//EFJSfSTAZC4DCfc0YHYZxjGCEnrWv5fJ2lE9MIBAAAAAAAAkKBOlLSo+fPIkSP12GOP6ac//an3QgUF0uDBUn6+lJvr/8yCLReu8nbXZ0f94YrRrmV10jqJ1nYZrjoiUadd9RcUaP3gwRrZfuhI0zTXh1ZxdNFTEPaYM0caOjTaUbTzySefaO3atZbjr7/+enXq1CmCEQEA2vrwww/17bffehzXcoxubGzUE088YVlHXl5e6+cJEyb4NR3C56OPPtL69Z7bxgcddJDOPfdcr+XLy8v14osvBjXvMWPG6Kijjgqq7P5Wrlypzz//3HL8aaedpsMPPzws8wrF7NmztWnTJo/jTj31VB1xxBERjggAgPDYtWuXXnrppYDK/PrXv1Z9fb2effZZy2ms2oAbNmzQ3LlzA5qft/rs5K2NG4yf//znOvTQQ7V8+XItWrTI4zS33nqrli5dqpUrV3qtizZ24nn++edVWVnpcdzxxx+v448/Pqzzc7lceuONN/SPf/xDlVVVHqfJkbRQUomkESNG6IEHHtAll1xC70AAaEZSEPbo39+eTH8Ianr1UkV2tuV498CBjngUGAAkqppevVSxc6fHcS3HaLOhweuxvOXc09TU5Nd0CK/a3r1VsW2bx3HVPXr4/N7dnTt7X29e1PXpE7b1Wldc7DWOcM4rFNU9eqiitNTjuIZ+/RwRIwAAwWjKyAi4TWAOGiR3XV1QbcDaXbuCa4NE4VwbbFvJinvgQCk3Vw1e2j/moEGqKyz0OW9z0CAZhhHW+OBsFdnZqkxO9jgunG1ml8ulmTNn6oEHHrC8CXF/z02dqjFXXcU2CQD74RYJAAAQM/x97LnL5bI5EngS6mPpnfJYe7fb7XV8LMTplBgBAIgU0zR9nv+sxvs698ezlJR9/QW8JU78/X7+85//aNmyZWGJC7HB7vbozp07df/992vgwIG64IIL/EoIHtr85LKxY8eSEAQAD+gpCDTj4hkARJe3H2wtx2h/j9WNjY1hiQmRFcq5OJzncV91OeXCoVPiABCYqqoqrVixQqWlpcrJydExxxyjtLS0aIcFOEow5/VQ2gJNTU1Bl411yc29vHy1xf35fqurqzV79mx17txZw4YNC1uMcC67rqU1NDTo5Zdf1j333KOdFk+T2V9KSop+//vf6/7LLpMOPdSWuAAgHpAURMIg6QcAiYOkYHR4O9fG0nk4HpKCsfR9A4mkqqpKU6dOVXl5uSRp48aN2rhxo6688kp16NAhytEBsc3fnoKekl8kBcPTU7DFunXrSAomCDvao0uWLNGVV15p+b55T44++mhNnTp13zu1CwqCmi8AJAoeHwo04+IZADgXPQUTAz0FA+OUOAD4b82aNa0JwRZFRUX67rvvohQR4EzB9hQMtj2QyEnBFv48tcNfGzZsCDUcxIhwtsF37typG2+8USeccILfCcG0tDT97W9/09KlS/clBAEAPpEURMII9t0CAADn4J2CzhYv59JYaTPQUxCIPR9//LHH4Z9++mmEIwHiU7Dn8EROCrZ8J756CvJuNngSjvZoU1OTnn76aR166KF65pln/C532WWXadOmTbr33ntb340JAPCNIyYAAHC8QBMcJESiI9THhzplvcVKUtDbBUynxAjAP2VlZdEOAXCUSPcUpPe976QgbQt4Eup2sXbtWt1www1aunSpX9N37NhRF110ke68804dc8wxIc0bABIVSUHYo7hYysyMdhTtdNyxQ1n7PaqnLaOwUKqoiGBEAIC2MsvKLI/TSVu27DtG19R4PZa3vD8iqaTEr+kQXhmlpZbfe2ZZmc/vPcnLNuBL6rZtYVuvqdu2eY0jnPMKhbfvO62kxBExAmiPcxPgnyQfv989KiiQUV/vtZyZny956FHUobg4uDZIFPbbYNtKVlKKiiTtaztY1W0UFip9+/bA5s0xLSF03rXL8kY1X+3R559/Xo888ohcTU0a1DwsWVJfScslNbSZtkOHDrr33nv1m9/8RllZWeEJHgASlMGdPggHwzBGSFrX8v86SSOiFw4AAAAAAACAGHSipEXNny+99FI99NBDOvTQQ/0rXFAgDR4s5edLubmBzTjYsqHMMxzl7a7PjvrDFaNdy+qkdRKt7TJcdUSiTrvqLyjQ+sGDNbL90JGmaa4PreLooqcg7DFnjjR0aLSjaGfu3LleX3Z91VVXKTs7O4IRAQDamj17tjZt2uRx3NVXX62uXbuqurpazz77rGUdeXl5kqTi4mK99dZbltPdeeedvBfFBt7W4cCBA3XhhRd6LV9WVqZXXnklqHmfcMIJ+tGPfhRU2f199tlnWrVqleX4448/Xscff3xY5hWKV155xfKRgyeffLKOPvroCEcEwJcJEyZYjms5hwGQtm/frtdffz2gMtddd53q6+v18ssvW07z61//Wh06dDhg+CeffKK1a9cGHGc02pTejiPBuOiiizRgwACtW7fO8r2nV1xxhdavX++1fbQ/jmmJwdv2OHr0aJ100knthtXV1emuu+7S7P/9z2OZHEkLJZVIOuigg/T444/r7LPPDlu8AACSgrBL//72ZPpDUNOrlypKSizHuwcOlLp3j2BEAIC2anr1UkVpqcdxTQMGSN27y6yqUoW3Gziazz0uw/A9HUnBsNvbs6flOtzbs6fPtoErLc37evOivm/fsLU9ajdt8hpHbe/ejmjnVHbrpgqXy+O4uj59HBEjgPasji0pKSnss0AbTR06BNwmcA8cqKa6Ot9tQA9JweoePYJqg5iDBslISgq4XCiCbStZaWy+ftNYXm5ZtysnR3W7dgU2b45pcc80zYDazLt27dJ5v/qVFi1aZFmmxR15ebrpb39Tenp6OEIFALRBUhAJw9ejcnmULgBElz93Wft7rPbnmE9PwfCL5rk0nPOOlTaDU+IAELrk5ORohwAEbfv27dq4caNM09Rhhx2mvn37hlxnMOc40zSDPoe73e6A5+etvljkrW0cT8uJ8Alku8jPz9fPf/5zy6eKtBg7Zoy0YIHuvPNOiYQgANiCpCAAAHC8lh+c4UwKIrL8+c6dsl6CvTDoJE75LgH4JyWFn+aITd98843efPNNNTU1SZIWLlyo8ePHa9iwYRGPxZ+koJWW+APldrvjJqnvLSkYD20jhJ+v7cI0TblcLj3zzDP6wx/+oF27dllOm5KSoieffFLXnnqqdNBB4Q4VANBGZJ9xADgYF88AwPlICjpbqN+rU9ZLrGw/TokDQOhICiJWzZ07t11Cze12a86cOVFpE4TSUzDYpGA8nItbloGkIALla7v49ttvdeSRR+rWW2/1mhDs3LmzZs2apeuuu46nuQBABPDLAwkjHhrrABAIl8ulrVu3qqqqSrm5uerSpUu0QwpaoMfwWEnqIHwS8fGh3sRCjAB+EC89jZBYysvLPV7or6ioUGlpqXr37h3xmII9//H4UB4fisB52y42bdqk6dOnq76+3msd/fr106xZs3TkkUeGOzwAgAWSgkAzGrkA4klNTY2mTZumHTt2SJKSkpKi9iincPL3XYEc06PD2/ceS48PJSkIwA7ekg70FEQsqq6uthxXVVUVUlKQnoKRR09BBMpqu1i+fLlmzZrlc/8YMWKEZs+erQEDBtgRHgDAAo8PRcKIp8Y6APjy8ccftyYEpX0/2KZPn67GxsYoRuWdP3cn+3uhJx6SOrEomt9rJHsKOkWsxAlgH5fLZTmOnoKIRd7OQ9F4BGA03ikYD+fiWLpxC86y/3ZhmqY+/vhjffjhhz63mbFjx2rhwoUkBAEgCrgdEfYoLpYyM6MdRTsZpaXKKi+3HG8UFko1NRGMCADs8/28ecryMPzbjz7S8OHDIx6PP7wdp5O2bJFqamSUl3s9lpv5+VJyspK3bvU9XVpayDGjvcyyMsvvPTMzUyoo8Fo+ads2r+vNm/Tt233WH0hd3uJIKykJ27xC0XnXLrks4kzdts0RMQL4QVNtreWxpWvHjuyziDlJRUWW23Tqtm1SCMlub3VbMQoLlVRX571cQYGUnn7A4I47dgTXBikokDp2DLxcCIJtK1lJKSqSUlLUobjYa1vcV/voABzT4p65d2/rNtHU1KSPP/5YWzdu1CBJyZL6SlouqaFNmfT0dP32t7/VH/7wB6WmpkY+6ADt2LFDCxcu1Pbt29W/f3+NHTtWXbt2jXZYABASg7t9EA6GYYyQtK7l/3WSRkQvHAAAAAAAAABRdKKkRc2fL7jgAk2YMEEDBw60LlBQIA0eLOXnS7m5wc00lDralN3dpYueffZZ1dbWto7OysrSDTfcsO+Gx3DGHY7ltrM+O+oPV4x2LauT1kmwZZ20nuyu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2pk1a5a++eYby/GXX365evbsGcGIAMA+EyZM8Dj8kEMO0dlnnx3ZYPw0Z84cff311x7HtRyjd+/erWnTplnWceuttyo1NVWbN2/WjBkzLKe75ZZblEZPwbB7//33lZ+f73FcTk6Oxo8f77V8cXGx3nrrraDmfdxxx+nHP/5xUGX3521blKSjjjpKY8aMCcu8QvHCCy9oz549Hscdf/zxOv744yMbEACv9uzZoxdeeMHjuMGDB+u8886LbEBAiLZs2aLp06d7HDd+/Hjl5OQEXXdRUZHefvvtgMpcfvnlqq+v91rupptuUkcPPftef/11bd++PeA4PSYHbGbVzg/Weeedp8GDB2vjxo363//+ZznNli1b9OWXX/pd7x133KGkJN5aFM8qKyv13HPP6eOPP9b6DRvajcuRtFBSSfP/9913nx5++OGY2ibWrVvXLiEoSRUVFdq0aZOOPvroKEUFAKEjKQh79O9vT6Y/BDW9eqmirMxyfNOAAVKfPhGMCADsU5Gd7XH43p49HXd8blHTq5cqLC7GtByjmzIzLZdNksxBg6S0NDXU1nqdzj1wYMQf9ZQI9vbsqQqLJFXXHj18bntNSUle15s3tb17h23b3tuzp+W2GO55haKyWzdVWLyzqb5vX0fECOAHDaWllse4uj592GcRcxqbmiy3affAgZK33kA+uGTdnrXSNGCAGn20Ac1Bg6SMjAOGV/fooYr6+kDD3LecnTsHXC4UwbaVrLhycqTcXDVWVVnW3di/v+oaGgKat3vgQCWlcNkxntWXlemlzz/Xl/slBNsyDUNTJk/WzTffHMHIwuPTTz/1OHzGjBkkBQHENM7OSBi+HpXLo3QBJAInH+sMi+RGIFqWj2O+/UzT1Pr16/Xdd98pMzNThx9+uNfv1Z/v3Cnrxe12ex3vlDi9iYUYgUTjcrksx6Vw4RwxyNu5JtR2XTDnMdM0g24DBnvejIfzrT/tZ19tI2/1Ij7t3LlTF154oc/eo08//bR+ev31EYoKAOAPfnkAzWiwAkgEsXqsCzTZR1LQfp988okWLVrU+v/y5ctj5nFA5eXlKisrU05OjjI89BaIle0n1CQsgMjylhRMTk6OYCRAeHhLFIXjZq9gRDq5F0/nW2/HqGCSgsGUQWxYtWqVLrjgAm3ZssVymrTUVKmhQT/96U8jGBkAwB8kBQEASCCx/uOcpKAz1NTUtEsISlJjY2PI9YayXvwp63a79cEHH+irr75qHTZu3LgDHv/D9gHADt4uuMfKTRVAW3aeL+kpGDm7du3S1KlTvSZ4/Plu9xfrvztwoPr6ek2ePFn333+/6urqLKdLSUnRuHHjpHfeiWB0AAB/kRREwuACMQDE/rHOV/wtFx9ifTmdbvXq1QGXccI6WbVqVbuEoLTvnSADBw5Ujx49WofFSpuBnoJAbPGWFGSfRSyy8zxkV1Iw3CKd+LJj+ebOnetzGnoKJjbTNPXmm2/q3nvvVUFBgddpk5OT9ctf/lI53bpFJjgAQMC4HREAIogLPoi2WN0G/Y073NPBs127dtlSr909BRcvXuxx+P7vQomVpCCA2OItKQjEIm9Jn2icK0N5f3Ei9xT0Bz0FE9eePXv0y1/+UpdeeqnPhGBGRoauuOIKHXzwwZEJDgAQFHoKImFwgQ/RVFtbq9mzZ2vz5s3q3Lmzjj32WI0ePTraYQExh8eHxje718vu3bs9Dl+8eLFOP/301v9j5SIWPQWB2EJSEPHG27km1HMpjw91FnoKJqbPP/9cv/rVr7w+WrZF7969demllyo7OzsCkQEAQkFSEABsZpqmXn75ZW3btk3SvndxzZw5UykpKTryyCOjHB0STaz+OA802UdS0Hns/s7DWT/bDwA78PhQxBun3ZwSyuNDYyUpGK1jRTDfLce12NXY2Kg///nPeuSRR/z6/Thy5Eide+65Sk1NjUB0AIBQkRSEPYqLpczMaEfRTkZpqbLKyy3HJ23ZInH3Lmyws6xMe9evV9Z+w7/96CMdmbX/UCA8rI53GZmZko/HvkSLt+N08tatUmOjkrZv93osNwoLpS5d1KG42K/pEBxf51RPOqWn+9z2krduDbjeFunbt/us36puwzDalfW1fP7MKxI679olo7ra47i0khJHxAjgB0lbtlifn0tL2WcRc7xt08lbt0qGEXTdwbQJkrZsUUp9vfdyBQUe24Cddu5UQxBtEKOwUNq7N+ByQXO7g24rhSKlqEgdd+4MbN4FBVLXrnaFBJsUFhYqLy9PX65erQHNw5Il9ZW0XFJDm2k7duyok08+Wccff/y+9jQAICaQFIQ9zjwz2hEcYJyvCSZOjEQYSEA9JeVZjfzd7yIXCBJKnreRDt3uzmj+86j5GN1HPpatebrhzX++pkNwTmv+C9i993odPUg+1m+IvNY9YULrxwtsjCGcro92AAACMqr5D4gXXttbIba1BiuINkHzPL2Ws4jrykDn5aM+uyTJ3raSpeblPCWIMogtgyS9azHuREmLJCUnJ+vGG2/UNddco1mzZkUuOABAWJAUhD3mzJGGDo12FO3MmDFDmzdvthx/8cUXq3///hGMCIli5syZ+u677zyOy8vLi2wwSBgT2iQ42urfv78uvvjiyAbjp7lz52rDhg0ex/3iF79Q3759VVJSojfeeMOyjquuukrZ2dlat26dPv74Y8vprrnmGmXRUzdo8+bN05o1awIq06dPH1166aVepykoKNB7770XVExHH320Tj75ZK/TWO0XhmHozjvvbP3/nXfe0datWy3rGT58uM44wzKFHTHPPPOM9lr0Thg9erROOumkCEeEaKmsrNTbb7+tysrK1mEHH3ywzj77bCUlJUUxMrS1dOlSLV682OO4YcOG6UwH3lgJeLN27Vp98sknHsedf/75ys3NDbru77//Xh988EFAZcaPH6/a2lp9+OGHltNce+216uKhp+CLL76o8iB64J133nkaPHhwwOWC1dTUpEmTJkVsfi3Gjh2r3bt3B9T++9WvfqUePXrYGBXCZf369Xr44Ye1eMkSj+NzJC2UVCJp6NChevXVVzV69GgV0MMdAGISSUHYo39/KYQfAHao7tFDFbt3W45vGjBAGjgwghEhUdT06qWKXbs8j3TYfoL4UWHxgvcu3bs7drur7d1bFSUlHse5cnKkAQPkSk62XDap+Vjeo4fqd+3yPV23biHHnKhqe/f2+v160qlHD5/bnsvlCrjeFnV9+vis36puwzDala3u0UMVFo/llPYd152wH1V266Zqi3e31Pbu7YgYERnLPv5YW5OTpTbb+Krdu3VkSooG0r51jNqCAsvjkFOOK0Ag6srKLLfpxhCvCbgaGgJuEzT276+Gmhqv5dwDB3p8pGVlt26qCDRISdM++0x/HDs2Yo9ONENoK4Wirk8f1XboENC8XTk5Up8+NkaFUFVVVemee+7Rk08+6dc7IC+59FI98Oyzymx+XRDvjQSA2MRto0AzGjOxo7a2NqbWF8/Wh5PE0r7jia/4W8b7Ox2cJZT1Es516na7w1aXndiO0WLRokUehy9YsOCAYY2NjZo3b56ee+45vfPOOyosLLQ7PDTzts+yPyMWNTU1WY4LdZsOprxpmkG3AUOJd7eXm4/jhT/fracycK7Fixfr8MMP15QpU3yuq67NT1j529/+1poQlGKnzQwAaI+kIBIGDdLYV1xcrMmTJ+uf//yn/vOf/2j58uXRDgmIObF6LPQ3bn+TgghNMDc7xNI6iYekcizECPtt2bKl3f+maeqNN97Q559/rqKiIq1bt04vvfQSj/+KEPZLxBtvCYG5c+eqpqYmgtEEl7gKh9WrV0d8npEWTPKHhJEzmaapCRMm6OSTT/brxqBTTz1V//vf/yzrCkZjYyPnRACIIpKCQDMaJM62d+9evfTSSyorK5MkVVdXa9asWdq4cWOUI/ONnoJwklg/1tFTML45padgrGw/TokDsaO0tPSAd2w3NTVpxYoVUYoosbDPIt54S/rs2rVLL774ourr64OqO5Z6Ckby9160jiPBJFxJCjpPQ0ODrr/+et11111yuVxep+3YsaMef/xxffTRR+pj8RjYQNfxrl279Pzzz+tvf/ubJkyYoGXLlgVUHgAQHiQFbWIYRqphGFcYhjHLMIxCwzDqDMMoMQzjC8MwfmsYhm1vWzYM48eGYUw2DGOVYRi7DcNoNAyj0jCMbw3DeNMwjMsMw0iza/6AHTZv3uzxB+WGDRuiEA0Qu5x8QdLbBZVAk32xktSBM8XD9hEPy4DQ7X9cXbhwocfp1q9fH4lwEh6PD0W88fb4UMnzjQh2CqWnYCj74KZNm9TY2Bh0+VhAT8HYt3v3bp155pl6/vnnfU578skna/Xq1br99tuVlGR96TiQ/aahoUEvvviitm7dKtM0VVlZqdmzZ2vdunV+1wEACA+SgjYwDOMwSUslTZP0c0kDJaVJ6iPpx5L+JWm9YRhnhXm+3Q3DeE/SF5JukXSUpGxJKZI6Sxoi6WJJrzTP/yfhnL/TcYE4tn3wwQceh69duzbCkQCxLdaPdb7ib7n4wDHfXnbdEU9PwcA4JQ441/7bSEVFRZQigcQ+i/jjT9Jn7ty5QdUdSz0FS0tL9eqrr0YkMUhPQQRj1qxZOuaYYzR//nyv0w0cOFDvvfee5s+fr6FDh/qsN5B1XFhYqKqqqgOGkxQEgMgjKRhmhmHkSPpE0qjmQaakBZKelzRDUm3z8F6S3jMM49QwzbejpI8lnddmcJmkuW3m/X2bcQdLmmsYxnHhmD8AIDbE6gVJ3ikY+/xZJ05Zb74ucDglTm9iIUYg0Xg7trDPIhb5kxCI5M0I0dyPCgoKtGbNmqjN3270FIxN3377rc455xydffbZys/P9zrtNddco3Xr1um8887z+wbAQPa5Tz75xOPwTZs2+V0HACA8UqIdQBx6VVK/5s+Fks4zTfOrlpHNjw19XdJpkjpIesswjINN09wT4nzvUftE5B8k/cc0zZYkpIx9Z/VfSHpSUpakDEnPSDoixHkfqLhYyswMe7WhyCgtVVZ5ueX45K1bJd795lhZ5eXWj6cpKIhoLIHKLCuz3vYcHjtil9U21yk52bHbXccdOyzjTikqkrTvWO3tWJ60ZYvU2KjUbdu8TmcUFko1NaEFnMB8nVM96dShg89tr0NxccD1tui4Y4fP+q3qNgyjXdlOO3d6jcOfeUVCl927lVpX53Fc+vbtjogRkWF57ExJ8X/bZnuxXfr27Zbff0ZpKesAMcfv83YQ23ZKUVHAbYKUoiJ1qKvz3Qb00FsppahIWT4eh+rLN3PnanT37iHV4VNDQ9BtpVCkbtumjjU1Ac07eetWKTnZxqjgzVtvvaUHHnhA9Q0NGtQ8LFlSX0nLJTU0D0tLS9OTTz6pq6++OuB5BJL49fW4YQBA5JAUDKPmx4Ge1Pxvg6Rxpmm2e7ahaZo7DcM4T9IaSQdJ6ibp/yTdH+Lsr27z+XHTNP+6/wTmvlt4XjcMwyXprebBhxuGcfj+cYbszDPDWl04XOBrgokTIxEGgnS7t5EOX3c/b/7zyOGxI3bleRv5hz9EKIrAnN7851HzvjJQPpatebrRzX++pkNwxjT/Bez3v/c6+mD5WL8h8lr3hAmtHy/3p7LbbgsplnC4OdoBwDHyvI189NHWj5d4m47jou2CPnYCDnVy859PQRxfDlEQbYLm+YwIIhavvzcDcX+ol3a8S5W9bSVfLNvqnnBeiaqLm/88OVHSIkk9e/bUe++9pxNOOCGoeQTSU9Cu1w8AAAJHUjC8ft3m84tWiTbTNPcahvFHSS83D7rJMIw/mqbpCmamhmF0kVpv/JGk13wUeU9Sjfb1FJSkoZLCmxScM0fy4/njkfTuu++qsLDQcvwFF1ygQYMGWY5HdE2aNMnyzrK8vLzIBhOg//3vf9q4caPHcU6PHbFrQpsER1vdunXTlVdeGdlg/PTRRx9p/fr1HsdddNFFGjBggAoLC/Xuu+9a1nHxxRerf//+Wr58uRYtWmQ53WWXXaZevXqFHHOiWrBggb788suAyvTs2VOXX+493fbdd99p5syZQcV05JFH6pRTTvE6jdV+kZSUpDvuuKP1/5deekm7du2yrGfIkCE655xzgooznKZMmaL6+nqP44444gidempYnlKPGGC1baekpOi2NgnsN998U9u2bfM4LW0S+3366af66quvPI475JBDdPbZZ0c4IiA03rbptoI5vnzzzTeaNWtWQGXOOecc1dbWWj6mUJKuuOIKdW/Tm6++vl5PP/102Hox2X0sra+v15QpU2ydhydHH3206urqtGHDBr/LjBs3TgcffLCNUWF/O3fu1O23367FS5Z4HJ8jaaGkEkkjRozQzJkzlZubG/T8AukpmJTEG6wAwClICoaJYRidtO+RoC2m+ijyjvY9xrOT9vUWPFnSvCBn32m//70+z8E0TZdhGJX6ISkY/jNz//5SCA0LO1T36KGKykrL8Y0OjBk/qMjOtv6h5vD1VtOrlyp27PA4zhw0iDvmYIuK7GyPw1O6dXPsPlPTq5cqLC5WtxyjG10uy2WTJFdOjjRokOq2bvU9Xb9+luPhXd2mTV6/X0869ujhc9trqKkJuN4WNb16+azfqu6kpKR2ZSu7dVOFl4sce3v2dMR+VJGdbZkUrO3d2xExIjIsj/kpKe22g+oePVRRW+txWrYX+9X06mW5rvw5hgFOs7dnT//O20Fs2w3V1QG3CRr69VO9j7aEe+BAqWfP1v/Xr1ql3V26BByfJZv3Y7OuLui2Uihqe/dWXV2dKkpK/C5T37cvx7UImjFjhq6//nqVlpb6nHb8JZfo9888oy4hbvv0FASA2MRtGuFzgqS05s97te8R3ZZM06yTtLjNoFBu5S6T1PaFMl6flmEYRk9JbbtH+L61D4AtAmlEA+EQ69ucr/hb7laN9eVEdMXD9hMPywCEU3Fxsd5//31NmzZNn332mVyuoB7SEhJv+yX7LJystrZWZWVlB2ynTntHmD/70f7TrFu3zq5w4orb7Q74OBVILzIEr7y8XFdddZXOPfdcnwnBo0aNkiT94x//CDkhKAW2jkkKAoBz0FMwfIa1+bzWz0eBrtIPj2Qf5m1Cb0zTbDQMY7Z+eG3eA4ZhzDFNs8aiyD/0Q0L4E9M0vwl23rHEVwOWH+LOFsvrh8YvIi0eLzq2xO3vsZxjvr2COa4Fc6Eu3PX7y9cFDqdsP06JA/HJNM24acMUFRVp2rRpamxslCTl5+dr69atuuyyyyK6jOyziDVut1sffPCB1qxZI9M01blzZ/3yl79U3759W8f7Euw+Fsz+YppmwOVibb+MVryJ8N3Govfee0+33nqrSnz04ExOTta///1v3XHuuVIYH+lKT0EAiE0kBcPn0DafrV9c196WNp8PC3H+92tfgrGTpKMlrTEM4y/a9+7gIkk9JR0h6V7te6ewJG2QdE2I8wUQAn4oIdLi/Y5dkoIIh3jYfmIhRtgvmO1g7969mjVrlvLz89W1a1cdf/zxOuKII2yILnKWLVvWmhBs8d1336m0tFS9e/eOWBzsl4g1n3/+ebt3BlZVVemll17S3XffrZSUFL/alZF8j5g/iSs798OOHTvaVne0rV69+oDjqC/x/rsjmrZt26bbbrvN67vWW3Tv3l1vvvnmvndNFxSENQ56CgJAbOLxoeHTvc1nzy8PO9D2Np+7hTJz0zQ3SvqJfkg0HizpBUnfSqptHj5T+xKCeyRNknS8aZpbQ5lvPOFHOqKB7Q6RFqvbHD0FE4NT1kusbD9OiQPxw+1268UXX9SGDRtUW1urkpISvfvuu/r666+jHVpI1q5d63H4559/HtE44rEnP+Lb6tWrDxhWW1ur77//XhI9BfcXz0nBQBOCEklBO7jdbj355JMaNmyYXwnBUaNGafny5fsSgjagpyAAxCaSguHTqc3nWj/LtJ2uk+VUfjJNc42koZJu0773GlqZI+k10zSrQp3n/tLT09Wp075FaWpq0p49e1obCZWVlWpoaJC074fE3r37QnS5XNqzZ09rHRUVFa0NzpqaGtXU7HsKamNjoyoqKlqn27NnT+u7QPbu3ava2n1fZ0NDgyorKyXta6Ds2bNHTU1NPhsr1dXVrY3Wqqoq1dfXS5Lq6upUXV3tyGVqibuubt8rJevr61VVtW+1ut1u7dmzJ66WyRsnL5O3xm9LrPG0nuJx24u1ZSovL5eVlmV14jJ5u9hQXV3t17G8qqrKr3eeVFVVRX09xfK2F8y7uFrKeFumlpiD0bLs3pbJW9m268mfdyQ5YT15284bGhricttjmTwvky/7L5OVwsJClZWVHTD8q6++iun1ZGXnzp0RXSZf338sbnvxuD+xTD8sk9XxZfny5a3z8iUpKSmoZWpZnkDU19f7LNdyzm9ZT+FMXGVkZERkPcUKrrGEd5k2btyoMWPG6L777msdl5mZ2ZqMTk1NbX1PoGEYuueee7Ro0SINHjy4/TKlpamquXxAy9S16wHL5Gv/qcjKUmOb3wBW2q2n2lrVNi9T0Oupulru5l7KQa2njh21t9b3pd1268nlUkVWludl8nfb69RJdc0xhGXb69JFDc3bVNj3Jyesp7bLlJKiPc1lgl6m/ddTc91hO0Y01x30MaLN/hSz62n/Zaqutu9YHub9KRzvYXUSkoLhk97ms79XtNq2oEO+pcwwjB6Spkh6TFKm9vVEnC7paUlv6ofHmv5C0heGYTxlGEZyqPNt6/jjj9f48eMlSWVlZZo4cWLrjvX8889rw4YNkqQFCxZoxowZkva942PixImtdUyZMkWbN2+WJM2dO1dz586VJG3evFlTpkxpnW7ixIkqKiqSJM2YMUMLFiyQJG3YsEHPP/+8pH07/cSJEz1e3NjfjBkzWg8kr7zyir788ktJ0pIlS/T22287dpnefvttLVmyRJL05Zdf6pVXXpG07wA8ceLEuFkmXxdRnL5MVioqKqK6noqKilRVVcW2F2fLNGnSJFlpaTw5cZm2brXuvP7++++rrKzM57Hggw8+UGVlpc/p3nrrraivp1je9lo+B6KlUe9tmb799tuA692ft2WyYppmu/XU8qPF2/ROWE/eLq5s2bIlLrc9lsnzMllp+VHcsky+jo0tMe9v06ZNMb2erFRUVER0mbzd+GCaZkxue/G4P7FM7ZfJk5ZjSX5+vuU0LZKSkoJapmXLlvmse3+bN29u97hTK23Xkz+JTX+lp6fbvp6efvrpsMVrt3nz5rE/hWGZNmzYoMcee0xHHnmkFi5cqLy8POXk5EiSxo0bpzFjxkiShg8frmuvvVaHHHKI5s2bp44dO7bG2m6ZjjpKr3z8cWDLVFGhiXl5qm++eN+yTL6SglNuuUWbt22TpHYX+PfXbj0tXqwFzcsU9Hp65x1VNl/AD2o9jRmjGYsXe102ab9tb9s2TbnlFs/L5O+2N368ljTHEJZt79prtaFw36XgsO9PTlhPbZcpJ0cT33kntGXafz3Nnr1vmRobw3OMaK67rPk6YMDHiDb7U8yup/2X6YMP7DuWh2t/aj7uXXvttYonBo8pCQ/DMD6UdFbzv/8wTfNeP8r8XNKs5n+rTdPsHML8D5E0T1KO9iUbfyPpKdM0XW2mMSRdKulJSS3p7Smmad4a7Hzb1D1C0rr09HSlpKRoyTvv6LCDD1ZVba2yMjNlGIYq9+5VemqqUjt0UG19vdxutzI7dpSrqUnVtbXq2tzDsKK6Whnp6eqQkqKa5rsUMtLT1ehyqaauTlnN0+2prlanjh2VkpysvbW1SkpKUse0NDU0NqquoUFdMjNlmqYq9u5V544d9e6772pLcbEMSYZpypRkGoaSmj+fevrpOnzYMCUlJamqpkapKSlKS01VXUODXE1N6tSxo5qamhy1TMnJyaqurVVKcrLSU1NV39CgBpdLnTMy5Ha7VVlToy4ZGXGxTM8/84zcpikzKUmG2y1DktswZJim7srLc/QyffLJJ1r39dcet72bbrpJ9U1NEV9PBYWFmjl7tlzNw3KHDNHPzzhDaampbHtxsEy7Kys1berUH/aTNttex8xM3XzDDY5cpg9nz9amb75pPS63PUb/9MwzNXzoUOXn5+uDDz/0eSz/4osvtGzlShmmKaN5GlNqne5nZ5+tw4YMYdsLcpmWLl2qNatXH/D9H3CMbrOesrt319VXXOF1mb5au1afzJtnXV/z+nQ398BuO93hw4bp9NNP97pMk554QknNbV93m7qVnKybbryxdT09N3Wq6mtqLJcpd+BAnXX22VFfT5P++181NjV5XKZDDj1Up556atxte/G4P4VjmaY+++wB+4lpGEpKTtadt93WukxzPvxQJSUlHvenu++8U6+8+qp27NyppOaLfG2nu/Hmm2N2PT3+xBMel6lbjx4aP358xJZpycKF2rhx4wHryZR0yEEH6ayzzoq5bS8e9yeW6YdlmvzEEx7Pubk5Obrwwgv1xjvvaNvWrZ7Pzc3tg44dO+oXl18e8DKt+uorLZg/32N7z6p9MPbUU1VTW6tlixdbTnf5ZZepc1ZW63p6/Y03tG3HDo/HCKtl2v+c2zLdwbm5+vlZZ9m6nkp379brr7ziV9soHMvkqV3urb3Xdrof/fjH+vGxx7I/BblMO3ft0vS33tIbb72lyr17tbeiQsmSBnftqi+qq1XrcikzM1Nut1u1tbVKS0vTbbfdpj//+c/q2LGjKioq1Llz533LVF2tlJQUpW/frvrDDlPDqlXqPHz4vmWqrFSXLl32LVNVlVJTU5WWlqa6ujq5XC516tRJTZs3q+qYY5S1apWMwYNVWVmp9PR0LV++XB83Jxj3l1VermteeEEZK1aow5Aheu655yxv1LnzzjvVqVMnpaSkaO/XXytp9Gh13LBBDf36qa6uTl26dNm3njwtU3q66uvr1dDQoM6dO+9bpg0b1OXII5W0ebOqunf3vExNTaqqqlJWVta+9dS8TKnbtql2+HC5V67Uv99802O8kvTggw+29mrKyMhQ43ffqeaYY5S1erWUm6s9e/b8sEx79+7b9jp2VENDg+dl2rpV1YcfrpSVK5U+dOiBy+TPemq7TIWFqjzySKWvWKHUQw5RbW3tvm0vM1Mul0vV1dXq2rXrvm2vokIZGRnq0KFD+2VqbFRNTY2ymntAtlumaK+n1NQflqmsTK5DDlH1l1+q68iRwS/T/uvp22/VZeRImd9/r4rsbP+Wydt6ys9Xp+HD1fTdd6rq3t37Mu2/ngoKVDFqVOv+FJPrqe0y7dkjDR6sirVrlXHooaGtJ7v3p/JybTjoIJ3QpUtrIlHSSNM011seIGIAScEwMQzjDUmXNP/7uGmad/pR5kJJLbcxbDdNs2+Q806R9KWkkc2DrjFN8wUv058uqe1twMeZphn4bXjt6xwhaV3L/+skjQilQgAAAAAAAADtnChpUZv/R40apWeeeUbHHHOM94IFBdLgwVJ+vpSb6/8MLcp9/vnnmjdvnsciWeXlyps4sbXMtGnTLHsX//GPf/zhtSvBxuhHvIGW/dOLL1pO9uCDD4ZvnuEob3d9dtQfrhjtWlYnrZMw77sRmXek67Sr/oICrR88uDXp0izmk4Ip0Q4gjuxq87m3n2X6tPm8O4R5X6QfEoKbJFmftSSZpvmRYRgfS/pp86BrJIWUFDzAnDnS0KFhrTJUb7/9ttfHB40bN04HH3xwBCNCILw98iovLy+ywQRo7ty5lo/fufnmm5Wenu5xnF2+++47zZw584DhGRkZuvHGGyMaC+zR1NRk+QjR9PR03dzc28Np5syZo6+//trjuHPPPVcHHXSQvvnmG82aNcvjNJJ09tln65BDDtFnn32mVatWWU530UUXacCAASHHnKgWLlyoFStWBFSme/fuuuKKK7xOs2HDBsvHF/oyfPhwnXHGGV6nmTBhgsfhSUlJuuOOO1r/f/LJJ72+k2jgwIG68MILg4oznCZNmmT5/kN/vg/ED6ttOzk5Wbfffnvr/2+++aa2NT92aH95eXl69dVXVVpaajk+Vll9Pz169NCvfvWriMUxe/Zsbdq0yeO4gw46SOeee27EYgE82bRpk2Y3Py7Nm5ycHI0fP15vvfWWiouLvU6bmZmpG264IeBYgmkT/PSnP1VdXZ0WLlxoOc0vf/lL9e79wyWbN954QyUlJQHH50lubq7OP//8sNRlpaamJmYeIXrSSSdp9OjR0Q4jZtTV1enFF1/U5MmTVfFDb5R2ciQtlNSyxaanp+tPf/qT7rrrLnXo0CFSobYKpKNJa9LPoh5v4wEA4UVSMHza/rob5GeZgW0+bwxh3j9r8/lT07+z8jz9kBT0cStREPr3tyfTH4Kq7t1V4eUdQQ39+jkuZvygIjvbusHp8PVW27u3Kix+aLoHDpQyMiIaz8L581WRnX3A8ArJ8d8l/GO6XB7XsSTVp6c7dj3X9Oqliu3bPY5rbD6vNFRXWy6b9MOxvHbTJq/TuXJyHPs9xIL6zZu9fr+epHbv7vM7b6yoCLjeFrW9e/us36rupKSkdmUrsrO9JgWre/RwxPazp2tXy3e51PTq5YgYERlW23ZycnK77aC6Rw9VNL9b9gC5ufvay83vzfA0PlZZfT+p3bpFdLmqe/RQhUXSdW/PnjH9HSM+LF+40K/zcFbzOb2yWzdVND/uy4rZpUtQ23Z9eXnAbYL6vn1VV1vrtVzTgAFSv36t/1d1764KL+f8QESifeD20RZ2En/aZpAKCws1efJkPfvss9q927/+Ak2STjvtND311FNRvbnd1zsF2/KVFIwlJDABxDqSguHTtmvD4YZhpLR9n5+Foy3KB6p/m8+7LKdqb2ebz1khzBtACKLR+E1OTo74POEcsfaDK1Aty+drOeP9e3Aif75zp6wXX3Hk5+dr9uzZOv7445Xt0AtzTvkuAfzA237JPgsn2Lx5s1/TtWyv/iQEkpKSQoopEMG0Ndj37BNIwigRlZWV6e6779arr74a8Hf173/9Sxf95jdRT075s/+89tpr6v+Tn3id1u12c50CACIocq2z+PeFpPrmz5ny0fvOMIw0Sce3GeT5Idz+aXu7bzc/y3Rv83lPCPOOGVwgjm2xvH6cdkdcSgr3gyQyJ+9L4UgakRREOPizfSxbtkwvvPBC25eNRxzbMRCaSO9D7LOIFy0JDKtHWLcVbFIwmP3FNM2otgEjsY/H0nGEpKC12bNn6/DDD9fLL7/s9/eUlpama66+WpI0fvz4qCcEJf/W8Y4dO/Tpp5/q+++/D6keJ3HCdw8AoSApGCamaVZL+qTNoKt9FLlQUufmz7slfRbC7Le0+XyKn2VObfP5uxDmDSAE9BSEHWKxJ0K4kn3+/qB06vcQK+z6IRzKegnnOvV3O6qsrNTatWvDNt9wYhtHMBJtuyEpCAQnkJ6Ckbx47k9S0FMZ2IPv9kA1NTX69a9/rbPOOks7duzwq0zPnj3173//W9u2bdODDz5oc4SBCdc6jrVthaQggFhHd5HwmizprObPVxuGMck0zfX7T2QYRoakP7cZ9LQfjxr15mNJtzV/PswwjCtM03zJamLDME6VdHqbQXNCmHfciLVGCGKH03oKeksKut3uiD7iB5HnpGNdXV2d5s6dqw0bNkiS6uvrfZQIX/IQkRdL6ySQWD/++GP95Cc/sTEaa7F4AwAii+3AOyclBVlXiCWRSAoGu08E2lMwnPsePQXbi7XeX3ZbuXKlLr/8cm3atMmv6Tt16qTf/e53uuuuu9S5c3Ofgig+ocKTcK1jJ24rsbSvAUCguPIbRqZpfijp8+Z/0yTNNAzjiLbTGIbRXdJ7koY0D9ot6R+e6jMMI9cwDLPN39UWs/5Q0jdt/n/aMIybDcNod+Xf2OcSSdPbDN4q6XWfCxcHOKHDiZyWFHS5Qrk/AU4RKxcdP/zwQ3355Zeqr6/3mRD0N24eHxoZ8d5TkO0DiSrRtn0nJQWBWNJyAd+J7xRkP3MOJyZ6Is3lcmnRokW6+eabdfzxx/uVEMzKytJvfvMbff/99/rjH//4Q0LQgcK1vzlxW/G2bPQUBBDr6CkYfpdJWiapr6RcSasNw1ggabOknpJ+KimjeVqXpEtM09wTygxN03QZhnGl9r2XMENSuqQpkv5oGMYXknZKytK+dxjmtilaL+ky0zR9d81IAPx4QDQ4MSmYmpoawWgQaU451u3evVvr1q0LuBzvFEQkxMP2EQ/LgNAFetEq0bYbJyUFE+27R2xr2V6d+E7BQKcJ901FLpdLlZWVys7OTvjEgRMTPZFQU1OjRYsWaebMmXr55Ze1e/duv8odcsghuuuuu3TFFVeoU6dONkcZHonaUzDR920AsY+kYJiZplnU/HjO1ySNkmRIGtv811aZpGtM0/xEYWCa5lLDME6R9JKkoc2D+0q6yKJIvqQrTNNcFI75xwIuEAP70FMwsTnlWLdoUWCnn0CSfTt37tTKlSv9qg/BCeaHcDAX6sJdfzTqskssxIjoYztxFtYH4kVLe6vSj0cZRjopGM13ChYUFOgf//iHXC6XOnXqpPHjx2vQoEFhq1+KrePIkiVL5Ha7dcwxx6hnz57RDsdWpmnq008/1RNPPKGZM2eqoaEhoPK/+c1v9PDDDys9Pd2mCO0Rz+8UJCkIIJ6RFLSBaZobDcM4TtKlkn4paYSk3pL2SPpe+x7fOdU0zZ1hnu8ywzBGSDpX0vmSjpHUT1InSXsl7ZC0UtIHkt42TbMxnPNvp7hYysy0rfpgdNq5U1nl5ZbjOxQXSw5+LEOi87buVFAQsTiCkVFaahm/UVgo7dkT0Xgyy8os43F//73UtWtE40H4mfX1jt9ntn3xhbJqa/2evkNxsZSRodRt27wuW8M332j6O+8oq6bGa30pRUVSWprf80d76du3e9/GPOhsmj63vQ7FxQHX2yKjtNRn/VZ1Jycnt5Y1TTPwGKKxT/mIs+OOHY7Y1xEZVttCUlJSu+3Aa3u4oECdd+1Sg5fxscpqmTs3NUV0uby1CTPLymL6O0Z88Pf8l1Jfr7f//W9l1dX5nLZzWlpQ27avNp9VGV/t4KQtW6Q2vZI679ql+iDbHl6Vl2vGpEm69tprlZGR4Xt6PxmVlUG3laJh05w5KlywQBdffLG6d+8e7XBssWrVKv31r3/VylWrJO27O7+t5OZhyyXtnyrs37+/XnzxRZ122mn2B2qDRO0pCACxzuAgh3BoTka2PgdunfZlQgEAAAAAAIBEdqKkts9KueSSS/Tkk08qOzvb/0oKCqTBg6X8fCk3N/Aggi1vUW7GjBla1ZwM3V9WebnyJk7UhDvvVIWPZbztttt+SBqHuoyh1tFctmHTJv3ttdc8TpKWlqZ77703fPMMR3m767Oj/nDFaNeyOmmdhHnfjci8I12nXfUXFGj94MEa2X7oSNM014dWcXTRUxD2mDNHGjrU93QR9Nprr2nHjh2W488880wNGzYsghEhEBMmTLAcl5eXF7E4gjFv3jytWbPG47irrroqsB8BYbB48WItXbrU47hf/vKX6t27d0TjQfjV19drypQpluOdsM9426c9OeusszR06FCtXbtWn3wS+pO3zznnHA0ZMiTkehLVkiVLtGTJkoDKZGVl6ZprrvE6zVdffaVPP/00qJgOPfRQ/fznP/c6jdV2l5ycrNtvv13SvvcjTZo0KagY0tLS9Itf/ELdunULqnwg3G63Hn/8ccvxQ4YM0TnnnGN7HHAGq207KSlJd9xxR+v/b775prZt2+Zx2ry8PE2bNs3y3UdOOHcEy+r76dSpk66//vqIxfH222+rqKjI47iBAwfqwgsvjFgsgCeBts/80b9/f1188cUBl1u9erXmz58fUJmf/OQnqq+v14oVKyynGT9+vHJyclr/93bcC4fU1FTdeuutYauvsrJSzz//fNjqi6RYPo+0qKys1JQpUzR16lTV1df7VSZH0kJJJc3/9+7dW//+9791+eWXx/xjKBO1p2CsrzcAICkIe/Tvb0+mPwTVPXqowstz3Rv69XNczPiB1zvLHL7eanv3toy/acAAqUePiMbTuGWLZTz1fftKAwdGNB6En1lX5/h9xtfdovtrOUbX79wZcFlv9SE49YWFAa+HpOxsn995Q1lZ0Ou3plcvn/Vb1Z2cnNxa1t3YGNI2tqayUmOPPjro8n5zu73GubdnT7bxBGK1LSQlJbXbDqp79FCF1aObc3NV2a2bKqwugsXw9mTZDuvUKaLLVd2jhyr27rUcF8vfMeJDONpY+8v24/zsSf2OHQHHU9enj+rr672Wc+XktIvH63EvDPY/DofKvWePLespImL4GOd2u/XSSy/pd7/7ncrKyoKqY+ypp+qRG2/U+eefrzReY9COE59i58SYACBcSAoiYXBChxNFY7v0dleby+WKYCRA9HBOcKZQ1ku41mmo9SxYsEBjx44NSyzesA0DsYf9FokoKSkpovPztZ9Fej8Mdw8ojiORVVpaqmnTpumpp57Sd999F1DZbt26aezYsfrFccdJ99yj5557LqYTo56Ea3ukpyAARBZJQaAZjWtEg9O2O5KC8cFp29X+gomvpYzTly1RhLIOnS5W4vQlXpYDsFOk9xP2SySiYC+eB9vWCLQc+yX2l5+fr/fee0+zZ8/WvHnz1NTUFFD5M888U7/73e90yimn7EuKFxRI99xjT7BRlqiPDwWAWEdSEAmDEzqixdsP4Whsl97mSVIQTueU3mCwRzz0FLSLy+VSSsoPTXenxonYlmjblZOSgon23SNxRLKnoD9JwVjf12I9fif76KOP9Le//S3o91sfffTR+vvf/67TTz89zJE5Fz0FASA2kRQEmtG4RjSQFEQickJPQY75oYnn789py7Zy5UotXLhQFRUVysnJ0bnnnqsefryL1mnLgehgO/DOSUlBINrs2j7pKQin27Nnj+68805NmzYt4LK9evXSTTfdpIsvvlgjR45MuGRRPP8285aoTLT1DCD+kBQEAJvRUxCR5sQfVW05IT4nxBDLgvn+qqqqVFJSot69e1v2GqCnYHtff/21Zs6c2fr/1q1b9eKLL+q2226L+DuakBictP3HI3oKwsns2gYj3VMw0Glibd+LtXidbsOGDTr33HO1efPmgMqlpqbqd7/7ne655x517tzZpuicL1F7CgJArONqAhJGvD9GBLHJaUnBQN+XAATDCT0FEXlNTU16+umn9Z///EfFxcXRDseSky5KrFu37oBh1dXVKigo8FmWfQVS4HeyJ9p2Q09B4Ad2bZ/B1hupnoJITKZpavLkyTruuOMCSgimpKTo4osv1po1a/Twww8ndEJQCt9xw5+2rZPQUxBArKOnIOxRXCxlZkY7inY679qluvJyy/Gp27ZJ3bpFMCIEIsvLupPDG5AZpaWW8Sdt2SI1NEQ0nvTt2y3jSd66VerZM6LxwAY1NY7eZ8zGRu/xedChuFjKylLqtm0Bl/UkpahI6tIl5HoSVVpJSfDrobxcHzz+uG688UYlJye3GxXK+s0oLfW5bVse+5KTfyhbXR36Nhamfax40SJleRi++LXXNPiyy7zGmVlWFvV9HZFjtS0YhtFuO+i0c6f1dlNQoM67dsmsrLQcH6usljktLS2iy5VZVmYZS6fMzJj+jhH7TJcrLG2s/QV7PgqmrZFWUiKjocFrueStW6U27Q+vx71wCeO+nVRebst6igiHHOOqqqp0zz33aNbs2eouqbukZEl9JS2X5OnX+ZAhQ3TllVfq+uuvV9++fSMZrqOFKyk4f/58/ehHP1LHjh3DUl848E5BAPHM4C4qhINhGCMktd7Ovk7SiOiFAwAAAAAAAPjtREmLmj+PGjVK559/vs4++2yNHj06+ERQQYE0eLCUny/l5oYWYKh1BVveotzrr7+uTZs2eSySVV6uvIkTNeHOO1WRne1zFuPHj9eIESPC832FUkdz2T1ffqmJ77/vcZLOnTvr7rvvDt88w1He7vrsqD9cMdq1rE5aJ2HedyMy70jXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7bz88svauXOn5fjTTjtNhx9+eAQjQiAmTJhgOS4vLy9icQRjwYIF+vLLLz2Ou+SSS9SvX7+IxrNo0SItX77c47jjjjtOP/7xjyMaD8KvpqZGTz/9tOX4aO8z9fX1mjJlSkBlzjjjDA0fPlwrV67U559/HnIMp59++r4fnQjKwoULtWLFipDqGDJkiM4555x2w0JZvwcffLDGjRvndRqrc0lycrJuv/12SVJlZaWef/75oGJoEa59zCreLl266PLLL/e6Hw0aNEgXXHBBWOKA81ltK4Zh6M4772z9/80339S2bds8TpuXl6fnn39elRY9ZqJ97giF1ffToUMH/frXv45YHN5+j/Tv318XX3xxxGIB9tfQ0KDJkyeHvd6DDjpI5557bsDlVqxYoYULFwZU5phjjlF9fb3Wrl1rOc15552nwYMHt/7/3HPPqaqqKuD4AhHO4+fu3bs1bdq0sNUXSdE8j3z++ef6/e9/ry1bt3ocnyNpoaQSSYcccoieffZZnXzyyZEMMSaF87H78+fPd9TvM2/LRk9BALGOpCDs0b+/PZn+EFR1764KL+9Lq+/b13Ex4wde7yxz+Hqr3bjRMn5XTo40cGBk4/nuO8t4qnv0cPz3Cd/c1dWO3mfMujq/7hZtq+UYXVdcHHBZb/UhOLXffhvyeqjp1euAdRDK+t3bs6fPdWpVd3JycmtZ9549oW9jYdq2rOJIys6WcnO9xunP94H4YbUtGIbRbjuo7tFDFbW1Hqc1Bw1SZbduqtjvsb6tYnh7svp+OnToENHlquzWzfL3SJfu3WP6O0bsM+vrw9LG2l+wvy/qiooCjqe2d2/V19eroqjIchpXTk67eCqys1WVYvOlsTDu202Zmbasp4iIwjFu9+7dysvL00svveTX9Kecdpr+M326uvCaAb+E8+lz+79WINp4fCiAeEZSEAmDR+UiWpzWYPS2L7hcrghGgkQVyvGYYzns0PY4HY47nk3TtPXYbxiGz32BfQXBSLTtJtLLm2jfL2KLXdtnJLd70zQDPj+yX8avjz76SFdffbVlD/m20tPSpPp6Pf3000oiIei3cO4/SUlJYasrHDg2AIhnzjriAlHECR/REI3tjqRg/HP68SyY+MK9TE7/jpygsbFRe/bs8TjOiRcOwxVTOOpp8vJkgnBw2s0miA+JeFwkKQj8wGnbZ7DtRactByKvrq5Od911l8444wy/EoKHHHKI3n33XUnOS0w5HT0FASA20VMQCYM76hEt3hqMJAWRiOIl8ROvTNPU7NmztWrVKjU1Nalbt276xS9+oV69erWbJhzzcaJwxOVyuZRi46PI6CkIuyTadmOapjZu3Khvv/1W6enpGjlypPr27Wvr/IIZB0SC0274sSspGOs9BWMt3khbu3atLrvsMq1bt86v6a+44gpNmjRJWeXlNkcWn+I5KegNSUEAsY5bYADAZk67AERSELGoZbslKWi/RYsWafny5a293Xbv3q1p06ZF5PgQrfXSdr7hSgraiQsRsEMiHhfdbrfeeOMNrVq1Sl988YWef/55FRQU2Da/RPyOETviYft06jLY/QQB7Fv3kyZN0rHHHutXQvDaa6/Vpk2bNG3aNGVlZUUgwvgUz0lBpx5PACAc6CkINOOEj2hw2nbntHgQHKevRyf0FIS11atXHzBs7969Kiws1MEHHyzJmT0FnZQwjkRSkJ6C8IdpmnK73Vq6dKkKCwu1devWaIfkaC6XSwsWLFBubq4t9TvtRrF44Ha7tWPHDmVlZSkjIyPa4cQ0egrax+VyhS3hwbHiQGVlZbr22ms1c+ZMn9Medthhevrpp3XSSSdFILL4F8/vFPT2nnFu0AMQ60gKImHQeEa0OO0CkNPiQeSZphnVHzK8U9DZdu3a5XH4kiVLWpOCdnHCeomVpKAvTvgu4QzvvPOONmzY4HM63sW1j509Bb1dYETgCgsL9cYbb6i2tlaSNGrUKI0bN85xF5ZjhdOSgsHOK9D5RSK+xsZGpaWl2T6fRPTxxx/ryiuvVElJic9p77jjDv39739Xx44dIxBZYgjneS2WegqSFAQQ62gtA824CAK7OC0J522eXKxKDNFez07oKcgxP3Btf/w68ftz0rbhhJ6CQAt/EoIt2K7sxfcbPg0NDXrllVdaE4LSvp7uX3zxRRSjim1O2z7tuoksWj0Fw8Vp6yla6uvrdc899+iMM87wmRDs06eP/ve//2nixIkkBMOMx4cCQGyipyDsUVwsZWZGO4p2Ou3cKdeePZbj00pKJBvvDEZovL742+HrreOOHZbxG4WFMpOTI3qnWfr27ZbxZJSWOv77hB8qK73uM2Z+vpQSxSaAj/g86VBcLPXoobSSkoDLepK6bRvbugWr77fTzp2t35m344i/MsvKDlgHqdu2BV2vp/raMk3Tsu6UlJTWssllZSEvm5mfL9XVhVSHZL0uOnfoIKOw0GucmRkZbOMJJBzHRTM/X11271ZKTY3nCWJ4ewr4+7FpWTvv2qWkvXs9jstMTY3p7zjSNn/99b52634KFyzQiTk5UYgoDgTRPvNHRmZmUNt2MG2Njjt2KKWx0Wu5lKIiqU1iqMvu3Uqrrw84vkA0bd4sde8elrrC0U6JmjAd4zZu3Ki77rpLX2/cqIHNw5Il9ZW0XFJDm2nPP/98PfPMM+rRo0dY5o32EjUpSE9BALHO4M4HhINhGCMktb7NeZ2kEdELBwAAAAAAAAnkREmLJHXs2FETJkzQDTfc4F8Cp6BAGjxYys+Xwv1e2XDWHWpdwZa3KPfMM89o27ZtHotklZcrb+JETbjzTlVkZ/ucxahRo3TeeeeF5/sKpY7mskWff67nPvnE4yQ9e/bUrbfeGr55hqO83fXZUX+4YrRrWZ20TsK870Zk3pGu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2nnhhRe0x0tPwZNPPllHH3105AJCQCZMmGA5Li8vL2JxBOPTTz/VV1995XO6U089VUcccYTt8Xz88cdat26dx3GDBg3SBRdcYHsMsFdlZaWef/55y/G33HJLVN9rUlFRoalTpwZUZuzYsRo1apS++OILLVu2LOQYOOZbszreHnzwwRo3bpwkad68eVqzZk1I8znooIN07rnnaseOHZo+fbrqQ7xL39fxy+126/HHH/c4LiUlRbfddpskaceOHXrttddCiuX8889Xbhh+3Fitiz59+mjcuHF65plnLMv269dPl1xyScgxwPlM09TEiRNDrufWW2/V1KlT2z2OsS2nt7e88daOtHLEEUfo1FNPDWscTz31lOX326tXL1122WVhnV88e+mllyzfgRvL22o0BdM+80dOTo7Gjx8fcLnFixdr6dKlAZUZMWKEGhsb9c0331hOc9ZZZ2lom2sVkydPVkNDg+X04XDxxRerf//+YamrtLRUr776aljqirRg902Xy6WXX35ZEyZM0J6KCo/T5EhaKKlE0pFHHqnXXntNw4YNCzZU+CmcHU2c9j5YOtEAiGckBWGP/v3tyfSHoLJbN1V4uUOsrk8fx8WMH3i9s8zh662mVy+/7oxbuWuXjojAsniLp6p7d8d/n/DNvWeP123OHDRISk+PYETtNe3e7dc+0VZDv35Sbq5qN28OuKwnHPOtWX2/Nb16tX5n/h7XvNnbs6eUm6v5S5eqNCNDysgIqb7qHj28r1O32zLmlJSU1rKuDh1CXrZwbV9WcXTu2VPugQO9xtnF1/eB+GGaYTkuKjdXld26qcbq8aExvD0F8/18vnWrjsrKUnY4vts2cdRanH8z2GcDsqdrV1VYvSOZ7zEowbTP/JEV5O+L2u+/Dzieml691NDQoIqyMstpGve7VlGRnW17UrC+b9+wbZdNaWm2rKeICOI72Lx5sy7/1a/8ThBfefXVumfKFKVH8bdOIiEpCACxyVlHXABIYFu2bInIfLw1bmn4Jga31UW0CAllOwvXNsq2Hji73p2xceNGW+rdXyTXucvlsrV+f9YF23jiCOdxke2mvcWLF4e1Pr7f8Glqaop2CHEnUbbP/ZczEssdzu01UdZTU1OT/vnPf+qII47wKyHYvVs3SdKDDz5IQjCCYjUpWFNTo/z8fNV5eQc4100AxDN6CiJh+Dppc1KHXWJp24qlWGHN6ce7YObfUoakYPS0TUSF4/tz6joIR1yRSAo69ftD5LEt2KekpCSs9XGBMXxICoafXdtgsPUG21504r4U7RvyYs2WLVt0zTXXaN68eX5Nf9555+nZBx6Qjj3W5siwv3Bu25HYd03T1IIFC7RgwQJJ+9rUZ5xxho4//vioxAMA0UJPQQCwmdMak1yQQrQvTLCdxSa7egqGS7iS4bGSFPSF/QyBcurF9GgK9/fB9xs+0W7LxKN42D79OY5Fo6dgrCVOosU0Tb300ks6/PDD/UoI9u3bV9OmTdO7776rHj16RCDC0O3du1dr167VunXrrB/XHUPCuT1GYtv+9ttvWxOCLfOcM2eOtm7dGlA88bwfAkgM9BQEmnFSR6KgcRv/6CloTwz4QSz2FCQpiHgVqXVtmqbjbw5wOtpg4RPrPQVdLpeqqqrUtWtXx+xXidpTMNaSgrHM23mkrKxMN998s6ZPn+6znoyMDP3ud7/Tb3/7W3Xq1CncYdpm+/bteuH111VfXy9J6tixo6688kr16dMnypEFL9aSgitWrPA4fPXq1RowYEC7Yey3AOIZSUEkDH5oI1qctu15i4eGb2KI9jbJOwVjU7gfHxpuToopHElBb8vD40NhB3oKHoiegs4Vq0lB0zT18ccfa+nSpWpqalLXrl118cUXq1+/ftEOLS62T6f2FIzV7TXcrJKCM2fO1PXXX68dO3b4rOPUU0/VCy+8cEACJxbMnTtX9W22t9raWn3wwQe68cYboxhVaMK5/0TiWsS3337rcfiqVas0btw4v+uJh+MlgMTG40OBZpzUkSi4Sx1292LyhZ6CzuUrERXLItlTMBx1eLswQk9BtMW6jh2sq/CJ1STL8uXL9cUXX7TGv2fPHr300kutPYeiKV56CjoRjw/dZ//Yq6qqdMMNN2jcuHE+E4JdunTRpEmT9NFHH8VkQlCSdu/efcCwkpISVVdXRyGa8Ii1noKBcFo8ABBO9BSEPYqLpczMaEfRTuddu6SqKsvxaSUlUkFB5AJCQLLKy61HOny9pW/f7j3+Nsz8fNsvvGeUllrGk9mhg+O/T/hmlJd73ebc33/v9XhotyQv26CVlmN0xx07Ai7rrT60Z7rd1seHsrLW7ywc66GlvnCsT0nKzMz0vk4bGiznlZKS0lo2uago5JjCsX2ZLpdlHJ127pRRWOg1zk4czxOG6WXbDoRRWKguu3eroaHh/9l77zirijT//3M75xzpprsFDAQF0SEojqgDKiNGxADiKCYMY+/+Nn5nvt+d2Z3ZMDuzSxvGcQxkQSQoOapIlKyNZOic4+0c7r3n90cHb3effKrOqXNvvV+v+4I+lZ5T+dRTT5V4OgUFcATYc0+p3vwhPS+Kqa+XVA5EBQbyNquBGJHF9X4YzsfLe/aI1sfSAwcwcuRICyT6ET3zMzVEhoToKhMt31B9hFdVIVhm/ASAoNJSICam/++Y+nrqi/9BpaVAXByRuAIrKqiUkxkIBQVAUM8y5NGjR/G3f/u3KC0rQ3aveyCAdADHAHiPRFOnTsWKFSssbyO0cDqdtjoG1RtfUwq63W6czc/HjQC+/fZbSX8syMrhcDhG4EpBDh3uvddqCYawUMlDXp4ZYnB0kivnyHjZzez9qcKEd7m/9yfJr35FXQYOXeLBdptJgYJ8YvTKfGfvzzCM9xtWEQB1ZaOpX5Pjb/5Ge12Q4+//XtIpBArv9qc/AQAylfypgUD9ClIhh5I778/9A8W6rZa8PLyq4G5Xco0EJtiOfqnk4f/+X2Jp+Tq5co4M19WnpRwYkFnX/Ewt/+f/aA5yR++POIPy+k0aaSikaYR0UCwn2njlwyQAByS8TQNwEEBwcDB++9vf4h/+4R8QGBhogoAcrfiSUtDj8WDdunWoOHwYN6LnnkvEx1sqE4fD4dCCKwU5dNi5E7juOqulGMBHH32EZhnLmKlTp2Ly5MkmSsTRwuLFiyXdcnNzTZNDD7t27cLZs2dV+X399dd7LFYosnXrVsmz9JOSkjB//nyq6XPo09DQgGXLlkm6P/bYY5Yeu1NZWYk1a9ZoCnPHHXfglltuwVdffYXvvvvOsAyTJ0/G1KlTDcfja3R3d+Pdd98VdRszZgxmzuxRBe7cuRPnzp0zlFZ2djYeeeQR2f5dC5mZmZgzZ46ke2dnJ9577z1Rt6CgILz++usAgJKSEqxfv96QLCTmFHLyXnPNNZg+fTqWLFkiGT45ORnz5s0zJAPHHsjVFS28/PLL+Pjjj9Hd3S3q/sYbb9h2UVZvP0O6HcnJkZiYiGeeeYZYWr6OXb8NpOROS0vDk08+aa4wg9AzP1NDSkoKnn5aUh0qyb59+3Dq1ClNYUaNGoXu7m4UFRVJ+pk5cybGjBkDoEcJkWeCQvbOO+/EzTffTCSu8vJyrF27lkhcZjNq1Cj8z//8D64WFIi6Z6JHUVgBYNy4cVixYgUmTJhgooQcrfjS0bhlZWU4f/48YlX4tVpWDofDMQpXCnLokJEB5ORYLcUAnPHxaJZRtnSkpTEnM+dHnHI7tBgvt7aUFDgrKlT59WRlASEhVOVpTU6Gs7ZW1C0kIYH5/OQo446Kkm0z7ampELKz0dLSgqioKNPvinMHB8u3aRH6+uj21FTNYcVoT03ldV0EoatLMn+986wtJQXOykpDabUmJwM5OUTKEwBiExNly1To6JBMKygoqD9st8djWCYScwo5edtSUuDJypKVM0whPzg+RGcnkXbUV6eklILIyQFsqhTUmz8k25EgCLJyhPA2qwm7fhtIyR2TkmK53K6gIGJjsjcRSUm63q3jwgXN8rQmJ6OrqwvOpiZJP13DhvXLIxAY89XQNy/o6urClStXUFdXh+zsbGRmZmqeh7sDA02RmSTd3d3YsmULvlOpgH3hpZfwt2+9hdDQUMqScYxCUjlGUsGoh/3791uaPofD4ZgJVwpyOL3wnT4cWmipW2ZMhOXk4e3AP7h48SK2bdsGp9OJ8PBw3H333bj11ltNS99IPSNVR3ldF0cuX7wXreyYf3Z7NyV5leRk5T049DHr6C5ep4zB848jRwAD93XSqqN649UTTk0Ybz9mKSE8Hg/a29uxcuVKlJeX9z+fNm0a7r77bk2KQbv1JY2Njfj0009RoWKT7PDMTKC0FP/8z/8McIWgLfCl40NLSkpU+7VaVg6HwzEKVwpy/Aa+eMaxA1wpyCGBUjmeOHGi///t7e3YunUr4uLiMGrUKNqiATC2yMPrKF3MzF/SafmawlitEpPD8bW6zxJOpxOCIBBpc/xbhCMHC/06a0pBvWlpSc8s2TweD44cOTJAIQgABw4cwE033YTk5GRT5DCboqIirF27Fq2trYp+X3jhBfzvm28CN95ogmRsYef+35eUgiz0wxyOEpcvX8aBr7+G0+nENddcg5kzZyIsLMxqsTg2xPrtaBwOI1g9AeH4Lqx9mHKlIEeMH374wbS0uKUgu8htTGDRmk4LdlN4KpUFVzBwzMYf61RHRwc2bdpEZNOWP+YfRz2+bCmoF72byLSMj2ZZCrrdbnzzzTeibkeOHNEUF2vlJMWxY8ewbNkyRYVgamoqNm/ejA8++ABRUVEmScchhb8qBa2WleO/bN26FUVFRWhsbMSpU6ewYsUKXh85urB+5snhmIRSJ2n1+eUcDmC9pSBvB/7L6dOnFf1cvHgRa9aswUcffYR9+/bB7XbrSsuIpSCpOsonzuLY7YhNb3xNYcwtBTlqIVn3Wan/LHH69GkcP37ccDxckW8edsxLX1YKmlkeHo+HuasblNI5f/68KTKYhcvlwubNm7F161bZ9w4ICMCCBQuQn5+PBx54wEQJOSTxpTsF+fyaYwcGt7ny8vIhVugcjhr48aEcTi9WT0A4vguLH6ZSNDY24syZMxg1ahQ/gsDG0Fh8OX/+PNauXdsfd2lpKWpqajBnzhzNcXFLQXbxZUWU2jInUTdox2GWpWB3dzcuXLiAiooKDBs2DNdffz2Cgvjng7/iz/3mpUuXMGnSJENx+HP+cZQJDAy0WgTm6qgZloJmHh+qx00M1srJm5aWFnz66aeKd7NlZmZi/fr1hvtVjna6uroQAuDTTz+Fe/hwTJkyBSNGjNAdH7cU5HCs55tvvsFTTz1ltRgcm8G/6jmcXqxWxnB8F9aUgkryrF+/HklJSXj22Wf5ES6cfr799tshdeeHH37AzJkzERMToykuFu4U5B9y4phpKcjvFJRH7VGutOju7saaNWtw9erV/mfXXnst5s6dyxWDjMEtBemj5j4sJXjemgepeyBJw/rGG1+xFKTpXy9y6fhK31BXV4dly5ahqalJ1t+0adOwbt06pKammiQZpw9BELBp0ybMAVBRUQFnRweuXLmC+fPn45prrtEVJ8k2ZHVbYKEf5nD00NLSYrUIHBvCv+g5dCgrAyIjrZZiANF1dQhqb5d0D6usBAoLzROIo4nYhgZpR8bLLaK6Wl5+bwoLAafTcnm6Gxpw7LPPcNddd1GVhUOHgNpa9XXOG5m21HDqFGJFnp/ZsgW33XabpmQCS0o0yxdaUQEUFiK8qkrfuw2C9/kSNDdL5m94VVV/nmnq1ySIjIoCCguJlCcARIWGypdpa6tkWsHBwf1hg0pLDctEon45nE5JOSJrauAoKpKVMwowJMOls2dRd+LEgHZfffQoriYl4brrrtMdL4cCMnVbC46iIsTU10svyhUWAiEhhtOxAqP509bQYHzM6OyUb7OCwMcllXg8Htm89Fy9igAGNy+4XS5JuaNqay0vfz3zMzVEORy63i2sslKzPBERERAEQTZccFkZkJjY80dLC5V3HkxIeblkOiEhIZryh8Q8hTSNjY34ct06xLe2Ih5AIIB0AMcAdHn5e/755/Hee+/1vDPHdK5evYrS0tIBzzweD44ePapbKehLx4dqwWoFpp1xu92orq5GUlISgnWEZ3Xjj5XovdaF49+wN1Pm+Ab33mu1BEN42WoBOIbIlXPMyzNJCn3M6v2pwoR3eYR6ChyrSYJCm5FCpv7pik+CLD3x9cp2X++PQ4doqCubn5NK8O/+jmjdwj//s6RTJBTe7Y9/BACMVPJnErFQlkPJHb/5je70x/T+hsD4mOuPKNZtteTl4U0Fd7uSSyISg+8fqkaO3/7WUBr+QgDs+W0QBAW5X3/dHEEkyAbF8e9f/kVzkLt7f8Txqh9RMG/Mny7n+N//rTqeTLAxTxnMb0SeTQNwED33B86aNQv/8z//wxWCFrJt2zbR51VVVbrj5MeHcrTw/fffY8uWLeju7kZgYCDuHz0at6gM29TUhC1btqCwsBCxsbGYMmUKbrlFbWjfhisFOXrgSkEOHXbuBBjbRf6Xv/wFHR0dku7jxo3Dz372MxMl4mhh8eLFkm65ubmmyaGHrVu34tKlS6r8zps3D8nJyVTlWb9+veI9D32wnrcccWpqarBq1SrN4eTKW6oNjh07FjNmzNCUTmFhIT7//HNNYaZMmYIpU6Zoak9yTJgwAdOnTzccj6/hdDqxZMkSUbebb74Zd955JwBg8+bNuHLliqG0hg8fjscee0y2f9dCamqq7F0KLS0t+PDDD0XdgoOD8dprrwEALl++jC1bthiSZdKkSZotaAdTX1+P5cuXi7qNGTMGEydOxMqVK1XFFRwcjNmzZyMrK0t1+nYed/0Nubqtheeffx5LliyRXOhatGgRQkNDDadjBUb7mZiYGDz//POG4mhvb8f7778v6R4bG4vnnnvOUBr+glJevvrqq0wqHjo7O/Hee++Juo0ePRr3WryxtqCgAF988QXxeOPj4/Hss89qDrd3717k5+drCpOWlgYAqKyslPRz1113Yfz48QDk5z0kGTduHM6cOSPqFhgYiDfeeENVPIIgII8hpXdFRQU+//xzdHZ1DXieCeAAgAoAkZGRmDt3LrKzs7kixUIEQUB9fb3oyS8NBixP/VUpyNFOZWUlNm7c2P+32+3G/v37VSkF3W43li1bhvr6egBAbW0ttmzZgtDQUIwbN46SxPaBKwU5euBKQQ4dMjKAnByrpRhAU0IC2mWOD21NTmZOZs6POOPjpR0ZL7fW5GQ4a2tV+XVlZgLp6VTlKQTQIpef3jCetxxx3GFh8m1GCpnyloqvPTVVcz3p7u7WLF9HWhqQk6OpPcnRlpLC67cI7vp6ybLpKwOgJ/+cvR9leolPSgJycvTVVREie+OTwtPUJJlWcHBwf9iutjbDMvW1C7fbjfPnz6OsrAxpaWkYPXp0T1oqcEdGyrY7T1aWJjn3XL6M53/6U9X+7Tzu+htCczORduTJykJjXJx0OtnZQFiY4XTMRhAEw/kjxMQYrvee1lZZOQLi43nbUkm3TH8O9NZVBhXYLpk64D3GWkV3VxexMdmboMREXe/WnpoK56CjDpWISEhAQEAAnJ2dkn66hg3rl0du3kOS1uRkyXQCAgJU509Zaakp8qqhuLgYKzZuRHd3t6SfxORkPDR/PmJje1RRdjoe0tdobm6mEq8vHR/KLQXponWThzdlZWX9CkFvvv/+e64UBFcKcvTBlYIcTi98UOewAO2JcGlpKb+EmEMUPTsqjfS3vK+mi1z+epc1i+XAmkxutxtr167FxYsX+5+dPHkSTz/9tCoLFqX30fq+JSUl6OzstK2lF0ca1uq+L0JisYWXEznkTn8B2M1ruXl+QECAiZKIQyvf9MarJ5wgCJrGT7OUEHLpaHnPwffBWcWlS5fw2WefySoEAWDOnDloj/3RNo3VtukPtLW1SboZsZDjloIctRw6dEh32K+//lr0OYkThHwBrhTk6MH6mSeHYxJKEwyrdyVxfBctk1vaE2GpyRSHYyZ6F3kAcn211R+drCKXv6SVgmaXgdr0SMl18eLFAQpBACgqKpI8PmwwastCC3ILQhz7QqrOklZE+xJmKAX9OX+1snv3bll3VvNSrh5xpSAZPB6Ppu9+s2QjpRRkQWlx9epVrFmzBl2Djgz1JmPYMAAYsgmK1bZpNWbki1waak+x0BInC/FphVsKsovSBgR/hysFOXqwfubJ4TACH9Q5tNBSt2grp43eAcaxB6x/oLFgKcj7fHHsnC8s1Q1BELBv3z5RN6XFbDVyOBwOXXIqWddwOL4IiTZNYn5m5/6VNeTuiwPYzWt/tRTUix551CgFd+7ciaampn7/ZuALC7aCIGD//v1YuXKl7Ptce+21ePjhhyXj4FgDjbwnHafVG/VZULpzOHqwuu1w7In1M08OxyS4pSDHDvB6yGERFpSCfWFYUvz4ImYeH1pUVGTqIpnZloJVVVWiz9Uq5tSWhRbk7lbm2BduKUgfbinIFkpH4e/fv98kSbThr0pBM+u2muNDAWDjxo39/s2A1DeeVUoLj8eD7du3Y+/evbLvMm7cODz55JOSlme8n7MOOygFra4f3FKQY1d8YeMJx3ysn3lyOIzAlTEcWrBkKcjxD1j/QDMSHz8+lC40FFFyfPrpp8TjlMLsRUmjKB0fyi0FORzzcLvdhts1H3fM48iRI6itrbVajCH46/GhetFrKaiGwsJCdHR0aEpj7ty5uPnmmzXLpEUuFunu7sa6detw9OhRWX+jR4/GI488gsDAQEk/rNUxf4IrBZXhloIcu8KVghw9WD/z5HAYweoJCIcD2PuDkeO7sPDBR9pSkCOOmXcKAmQvh/c1K1JuKchRC7cUlIeVvsGu+WdXTpw4YbUIQ+CWgvRRc3xoH42NjZpkCw0NRVBQkG657EhTUxOWLFmCs2fPyvqbOHEiHn/8cVmFIKCtLnR3d6O4uBitra2qw3DMhYVvRJJwS0EOh+NP6JvRcDg2hB8fyrEKbinIsTssffSwsrjrq5h5fKjZmH18qFG4UpDDYQu3221IceOrSldWOXPmDO69916rxRiAvyoF9aJ3Exmtby8jVkR2tOIoKSnBp59+qnhc76233opZs2apqsNqy+bSpUtYu2oVXC4XAOAnP/kJ7r//fm7JZQAa7Zv02oWVayEOh4PXLw6H41dwpSCHDmVlQGSk1VIMILahAV1dXZLu4VVVQGGheQJxNBHb0CDtyHi5RdbUyMvvRWBJCRASQkUOQRBUy9EP43nLESegslJ7WQOS5S10dUnGp6fvDCot1SxfaEUFUFioqT3Jwft8cQIqKiTzN6yysj/PSJUDSaICA2XLNKCxUVLm4ODg/rDBZWWG3y1UJh8BqKp7ATLtJKK6GgHFxZrl9Fy9CmRmqvJr53HX33DI1G0tKNUpR1EREBFhOB3TcbuJ5I/n6lUgNFR3eEdDg6wc0S4Xb1sqUDufjeruZi8/ZcYXFuYleuZnatBbtyOqqzXLE9nVhdDQUHSpCBdYUgJPd7fqNILLynTJBAARERFExlXF+QUhioqK8PXmzUh0u5EIIBBAOoBjAPpWVAICAvDQQw9h/PjxquNVq5jatm0bXHFx/X8fO3YMaWlpmDhxouq07IQZCnl+fKg8WpWCrG2i4HA4HK1wpSCHDoztygSAV9V4+tu/pS0GRye5co55eSZJoY+HtHim+C4OKOSjGIznLUecNOgoa0CyvEP0xifB9b0/PcwhKAdnKOlQV9aPUJZDN//3/0o6xUHh3f74RwDAmN6fUX4q56iib82EclkouRtBNm4+NjBFHAjVhbw8nyz3QJDLHyPEq5Hjd78zlIY/oGk++/vf0xNEBxmQkZ2B9jW690cFHXV7Zu+PGr15nqvBfyaA6RRlUWJ8788M/lfk2TQABwGEhIRg7ty5GDVqlKY4jZzacOzYMZ9VCpoBVwrKwy0FORyOv8GVghw67NwJXHed1VIM4N1330V3d7eke2ZmJubM4cvNrLJ48WJJt9zcXNPk0MPGjRtRVFSkyu+sWbNwHaW24/F48NZbb2kKw3recsSprKzEmjVrNIeTKu/Ozk689957om433ngj7rnnHk3pnDt3Djt37tQU5pZbbsEdd9yBTz/9FBUVFZrCijF69GjmjhVjgdLSUqxbt07UbcqUKZgyZQoAYMOGDSguLjZTNEUSExPxzDPPSLo3NDRg2bJlom7BwcF47bXXAAA//PADdu/ebUiWm2++GadOnZJ0V9O3FhcXY8OGDZLxX3/99Zrb+ciRIzF79mxVfu087vobcnVbCwsWLMDy5csl3V988UVEMnYSiBpcLhfeeecdw/G88MILiIqK0h2+rq4OK1askHSPiorCCy+8oDt+f0EQBOSpUKBER0dj4cKFJkiknqKiImzcuFHU7bbbbsOkSZNMlmggZ8+exa5du4jHq7du79y5E+fOndMUJiwsDOHh4WhQYU33zDPPoL29XXLeM5g5c+bgypUrsuO7FKmpqaiqqpJ0Vzuufv/99/jyyy81p6+Wb7/9FoePHBnyPBPAAQAV6GlbTz/9NNLT0zXHb0TpU1lZqTssxx5KQTsdH8otBc2FK2w5HPJwpSCHDhkZQE6O1VIMwBkfL6sUjE1MZE5mzo844+OlHRkvt9bkZDibmlT57UxPp/Y+gtstn49iMJ63HHFcQUHayxqQLG9Pe7tkfO2pqZrrSZfTqVm+jrQ0ICcHzYmJcHZ0aAorRmtyMq/fIrgg3d92DRvWn2ctSUlwNjebJ5gKQhTGcXdUlOS7BQcH94ftrK/X13686EhLMzxudcv02e2pqXAPH65ZztqoKNX13s7jrr8hV7c1xaNQpzxZWUB0tOF0TMflIpI/rsxMwOs4O624IyLk8zc6mrctNQiCuvKMjbU0Pzs6OhAWFjbgWVd3t6TsffMcK+lsaCDSVgbj1jD2eNOanAynRkVQR2gouiMj4VTh15OVhe6WFtXv7MnKQkdrq648CouPh1PmKhO1+dNVW0unjNxubN26FSdPnpT1l5qejkeefhrROscCrkjxLbilYA/V1dU4ePAgWn/4AfMBNDU1IYaseBwOh0McrhTk+A1KEwwrdyVxfBtal91zOGbB0gcfqTbCFyXEMXKsk9UoySTnTnr3KYn8UarretLoIKBQ53DsBqn+yu12U5WDxX6VRdTmk1VWBRcuXMDOnTvR0NCAhIQE3Hfffbj22msBsD/P94U66PF4VL/Hxx9/rGlcNKI0YLnsOzs78dlnn+Hy5cuKfh977DG0GNgc4gt1zK7YwVLQ6vqhx1Kwvr4ey5YtQ1tbW/99n+vXr8cTo0Yhwo73MHM4HL8hwGoBOBxWYHmizpHH6skjSWjWQ1/KJ448rB/loke+vjC8HtOF5y87eSAnh14ZWXk3DllIlStXWsljdCz09/wzm8bGRpw4cQK1tbWmpVlZWYm1a9f2H11ZX1+PTz/9FNXV1QDkFcss1A9aMpg5ZmlRCmrdKGNE0czqWkNTUxOWLl2qqBC8ecIEAEBgYKCh9Fio5/6KHeaVVh8fqof8/Hy0tbUNeOZ0OnHx4kUSYnE4HA41uFKQ4zfwhQ6OVbBiKcjrOEcvLO0CNWvx219Ru2Bgx/yzmxUkjXkLK+/GIQsvV3PgloL2Y8uWLXj33XdxROSONBqcO3duyFze7Xbj/PnzANhVDPXBmlJQb1q00mPBUpDkuxUXF+P9999XvKv73nvvxZ133kkkTd7PWQeNvGdh4yip+AMCAnRZCn799dei7ps2bdIkG4fD4ZgNVwpyOL2w/pHG8Q94PeSwCAtKwb4wJBdVjC7w+iJq85fFRR2WFMZmHB/K4ZDGV5VWrBwfyts0GfSU586dO1FfX09BmoF88803os+/+uorAPJ1gIX2xYIM3ui1FKSFEaUgqTknqTnK0aNHsXTpUrS2tkr6CwwMxOOPP46pU6caTtM7bc5QrM4XViwFrVQKGmnfWtPicDgcFuB3CnI4vfAPdfsiCIJl94aogVsKcsyG9Q80FiwFz549i3PnziE5ORkzZ87EyJEjicRrd2gcLcQKdpN/3759su52ex8OPXhdMAfaloIcuhw/fhwzZ860VAbWNyP5gqUgQO97ioXjQ0kcY7x7924cOnRI1l9YWBieeuopZGdnG0pPLH2ONdjh+FDa9UOu/WhVCvK6zOFw7A63FOT4DUqDNlcKcmjBilKQw9ELCx98NO4UFAQB1dXVWL16NaqqqojFa2fsdsSmN75kKdjY2ChbJ1lZvOH4Fr5qKUgK2ncK+nv+0iY/P99qEZif57NWB/XKQ9taUA+sKAW/+uorRYVgbGwsFi5cSFwhCLBXx/wJGnlvtzsFzbQU5JCFlw1f0+aQh1sKcuhQVgZERlotxQBiGxpkO8koQQAKC80TiKOJ2IYGSTehoAAweOk5TaJqa2Xl9yakvJxaPRQ6O1XL0Q9vE7YkoLRUe1kDkuXtcDol4wuvqtJcT4LLyjTL15dOZE0NXE6nprBquLJ3L1Jvu414vHYjSKbuhFZU9Je1ln7NLKIVxvGAmhpJmUNCQvrD6qmfgwmvqpKPQ6HNnD10SDZ8eFUVAmJiNMsZrSLtPozIzzEXubqthcCSEtl4AoqLgcZGw+mYja75jwiOoiJD4QMU+pbwjg7etlQguFy6yjOyq4t6/ir1m3JtzHuMtYqQ8nIqY3toW5uud4uortYlT2hbG4I6OzWHUyKotFR5fJeRKVhOJpX5Y2SOcuzYMRQdOoRsAIEA0gEcA9Dl5SczMxNPPPEEoqOjdaWhBF+0tg5uKcgtBTn2RhAEyNVQl8vV803L4aiEKwU5dLj3XqslGMIv1Xj67W9pi8HRSa6cY16eSVLoY44WzxTfJRQK+SgG43nLEScTOsoakCzvWL3xSTCh96eH58iJwRFhJNSV9VzKcuhGZhxPhsK7/fd/AwBu7v0Z5S45R4W+9bbenxK56sX5kd/8RpU32bj52MAUinVbLXl5PlnuuuY/Yhh8/ww1cvznfxpKwx8IgoHy/Pd/JyeICLlyjnl5huY/ZkBq/BPlD3/QHOTnFMQwRF4ekqFufNYTtxp+0vsjxTQAB3v/P3HiRMyaNQtBQfSWCbkiRRwz8oUrBbmlIMe34UpBjla4UpBDh507geuus1qKAeTl5clOAqKjo7Fw4UITJeJoYfHixZJub7zxBgIZthT87LPPUFZWpsrv1KlTMXnyZCpydHZ24r333tMUJjc3l4osHLqUlpZi3bp1msO9+eaboh9DDQ0NWLZsmWiYG2+8Effcc4+mdE6dOqV4X9pgJkyYgOnTp+Pjjz9GU1OTprBq4fUduHjxIrZt2ybqNnnyZEydOhUAsGbNGlRWVpopmiKxsbF47jlptXF1dTU++eQTUbeQkBC8+uqrAPTVz8HcdNNN+P777yXdleraqlWrUFNTIxv/ddddp7mdx8XF4Re/+IUqv3LjLm8rbCFXt7Xw9NNPy8bz3HPPITY21nA6ZqNn/iPGAw88gFGjRukOrzQ2h4WF4ZVXXtEdv7/gcrnwzjvv6Ar78MMPIz09HaGhoYSl6kGp3zxx4gT2798v6j5p0iTcZvGJBXLyGSE0NBSLFi3SHG7Lli24fPmy5nCBgYFU7m+cN28eLl++jG+//Za4TGrH1SNHjuDIkSOa0j58+DC+PXp0wLNMAAcAVAAICAjAz3/+c9xyyy2a4tUDVwqyCStKQdqWpNxSkGNnlOoc6/cWc9iDKwU5dMjIAHJyrJZiAI1xcbLu7qgo5mT2Z9xuN9rb2xEVFQUAcMbHS/oVsrMBijsajdKcmAhnW5sqv+2pqdTqoae9XTYfReFtwpa4IN9mpBCys+EIGHrdsDsqSjI+PXW2o6JCs3xtKSlATg6c8fFoorUJgNd3dLW0qCrrlqQkOCkczWWEgPh42TJ0hYRIvltISEh/WD31czDtqanycSjUtebERDhdLtn4XZmZmuUMTEhQXc+NyM8xF7m6rSkehTrlycoCCKRjNkJHB5H86UxPN1T3uwVBVo6u8HDettTgcukuz2X79iEgIACPPPIIxo0bR1gw5X6zraRE0k9HWprl5d9RVkakrQzGe4zVQmtyMpx1dcTl0Yt7+HB0trbqyiOHwyG/oKsyf9oLCjSlv3//fuwdpBD0xgPgsccew9ixY1XHaQSuSBHHaktBvZBW4nFLQQ5HGqX24ZL5duRwxGB3FZ3DMRk+QWUDQRCwd+9eHDt2DF1dXUhJScGcOZoO4LQ1NHfH8TrOUUKqjrB0NAy/i4QuasuGxf6ElEwk4jEah5pFCT1pyIVxu90oKSlBWFgYUlNTNcfN8X1YbPdmYnQHtlL++Xv+qsVoPnk8HmzYsAFZWVmIiYkhJJX6tFmG10F6kMpbLXXo5MmT2Lt3r6yfmTNnYphJCkGA1zEpWFAKCoKgWSnG0jeiGkhaCnI4ZsOVghzScKUgh9ML6x9p/sLRo0dx8ODB/r+rq6uxfPlyCyUyjpbJLa+HHCvxeDyiR/GysAu0LwxfTKCLXFnbPe/trPAcDGkZKysrsWLFCrT1WrWnp6cTjZ9DF5YU4r4MbaUgxzwEQcCZM2dMP65Trg6xUD9oycDK0YRGYUFpoHZO/t1332HTpk2K/kaPHg2nUaE0wFqZ+hM08t5ux4eSthTk9ZnDEvz4UI5Whp4RxuH4KVwZwwb5+flDnrW0tMiGYX0yxoJS8OLFi6o+DDm+AenFF5baGEuy+CJ2VpyxKBNNSCqC1qxZ068QBICKigoicXPMway6b9c2Rkpuo4stzc3Nsu52zV+7oudeOKOw/r3JWh1kTR5AnSU/TdTkSX5+Pj7//HNJd4fDgXtnziQolXpYLFMWYMVSkHSceqCZF9xSkGNnlNoG63MMDntwS0GOX6BmYsEnqGxQVlZmtQiWQmMgP3r0KLZv3048Xo7voUcpqOfjychHJ5/s0kWubLzd7DhmmqnwNOP4UD2IyVVeXg6n00w7AQ6r2LFdm4nR8Wfz5s2EJPFvSNVTKxZ/WbfGZ81SkDMUpX7o7Nmz2LBhg2yeP/LIIxg9fDiwaxdp8RThdYFdWFIK0uqduaUgx84o1TealoI02yXHOrilIIfTC19oti+sT8a0yEfjCI6vv/6aaJwc9tFbj6T6QZbui6DZ3lnvS8zAznlgZAe0w+FAd3c3du/erXj/DgmM5rMgCMTK6urVq0Ti4VgHtxQ0ByOLLS6Xi39rMIYVSkHWj/ZiTSnIWp/DgiWRXD9y/vx5rFu3TjbfZs6ciZtuuomGaKpgrUxZgQVLQV+Osw9uKcjxZWjNMw8dOoQlS5YAAD7//HPFky849oErBTmcXviHOocFSNfDoqIitLe3E42T47uYdXwoq3cKdnd3U4vbLtj5+FAj9B2heejQIWLxGXGnha+VG4csvlo/WDg+VM1czFfzn1VYsxRkAV4HlbFaaSBVhy5cuIC1a9fK1rG7777b9Hs0B8PrmHXw40O5pSDH3ijVN5fLheLiYtTW1hKrmydOnMDu3bvR1NQEACgsLMTy5cuZn89w1MGPD+XQoawMiIy0Wop+BI8HsQ0Nyh4LC6nLwpFHVTkNprAQCAkhLgspImtqVL9XaEUF0XrYeeGCvjztg7cJWxJUWqq/LUVEDHkcUFEhGV94VZXmehJSXq5Zvr50ouvq4HK5NIVVS/elSwhhaOyyArm6490/RdXWosNI30KBaJdLti4GlJXJ1ru6qirEEpIlvKpKNi3P1asICJKehkfV1sqGD6+qQmB0tOZ2FON2D8mjUJn2LQkfG5hCqW6rJbCkRDYeR1ERoHDPM4s42tuJ5E9Qaanuui80NSnKEBISwtuWCoTOTiLlGSMIxPNbVq7CQtn+lvQ3gB50jQcqCAgI0PVuEdXVVOTRS0BxMbU8Ups/YZWVQ9I/e/YsDu/ejeEAAgGkAzgGoMvLz5133omf/vSnZGQ1AFeiiMOCpaAeGWgoBmgqG+TeMSAgwHKlP4djhJUrV/b/Pzs7G08++STCwsIMxZmfnz/kWW1tLSorKzFs2DBDcXOshysFOXS4916rJRhAAIBcNR7z8ugKwlEkV08gxsvtaQvTvqH3pxvG85YjThbItqV0vfFJMKX3p4fXCcoxBF7fMb73p8R82oLo5Xe/k3TKANl6rMQMOUeFuqZ23MhV6W8A//ZvA/6c1PvTBG8rTEGsbuflycdj03IPB7n80UuMWhn++791p+EvhIJgX/7b35KKCYCCXHl5+BmAnxFNkSy39f6o8L//qznIw+SlMEZeHpIA/IRS3GpQW4emATjY9/9p0zB9+nR9chGGKwV9C7tZCiodH6oVXp/NgytstdW3oqIi7N69G7NnzzaUZlFRkejzAwcOYO7cuYbi5lgPVwpy6LBzJ3DddVZL0Y/b7cbbb7+t6O+NN95AYGCgCRJxpFi8eLHmMIsWLUJoaCh5YQixatUq1NTUqPI7ZswYzJw5k1ja586dw86dO3WHz83NJSYLxzyKioqwceNGzeEWLlyI6OjoIc/Lysrw2WefiYa56aabcPfdd2tK5/Dhw/j22281hRk7dixmzJiBt956i9oO0nnz5iE5OZlK3Hbh1KlT2Ldvn6jbxIkT+3eZr1ixAnV1dWaKpkhUVBReeOEFSffS0lKsW7fOFFnGjBmDs2fPSrorjVurV69GVVWVpPvYsWMxatQofPHFF5rkio6OxsKFCwc8O3r0qOZjU/nYwBZm1e1nnnkGiYmJ1NMhTVtbG/76178ajufWW2/FtGnTdIVtaGjAsmXLZP0EBwfjtdde0xW/P9HZ2Yn33nvPcDyJiYl45plnCEj0I3LfMbm5udixYwfOnz8v6u49xlrFgQMHcPz4ceLxOhwOvPnmm5rDbdy4UXJB0gqeeeYZFBYWYv/+/cTjVjuu7tq1q39+ceHCBWzfsWOAeyaAAwAqev+eOnUq7rnnHmYW1LkSRRy7WgraTSlI+vhQDsdMtLaNkydPGlYKSsH6HckcdXClIIcOGRlATo7VUvyI2w1nfLyiNyE7G5A5zotDHzXlNIScHIBhpWBzYiKcKo87bElKItp2upua9OVpHyy1Y45qul0uXeXuycoCYoceoOhyOCTja09N1VxP2q9e1SxfaVAQkJODxrg4ah+L7ampQFYWlbjtQmdlpWTZdKSl9Zd1c2IinIzdJeCOipKti26Zekya9tRUOCsqJN09WVlAeLike3NiIpxdXZLu7ampcGVman4fISZmSB51lpRozxc+NjCFCzrnTxpxDx8OpKRQT4c0QmsrkfxpTU7WXfddkZGKMgQHB/O2pYbOTiLlGUp4zg0otMOcHLQmJ8MpseHDe4y1ivZLl+j1JTrerTU5Gc7ee4xYwJOVhU5C9W8IKvOnJSkJzvh4HDlyBDsGKQS9caNHIThz5sx+RUdQUBCSk5NRITM/oQ1XCorDlYJ04+xDaWMpv1OQwzJ66pvb7QYNsxeuQPcNAqwWgMNhCX5Zqj3xpckYr4McK5Gqf6TbmJ74iouLcfbsWartvUtGCeMvqO2D7NjvsiSzUj4r7b7U+y4s5QGHYzeM7IpW07fy9qkOUvnE2oIWC+XPggzesCZPeHi45fWmu7sb27dvl1UIAsB9996LFStWID09HQ6HA2lpaXj66aeRYvHGDtbK1J+wi1LQqjsFrW7bHP3wfkWazs5Oq0XgMAw3ieL4BWoHCa6Q4dBAyySF10GOlUjVVbl6aeYHpJ4jUbXAlYLyZePtxuLHF43FDr0opaXU17tUWJdbWQaCIPDFE4Ywqy6w2O7VQEpuI3M0Pr9jDyv6MNbbEOvyWUlqaiqioqIsHftaW1vxxz/+UdURr08++SRGjhyJkSNH9liK9F6R8t1339EWUxZex8RhwVLQl+Psg98pyLEzeupbZ2cnIijIwr8DfQNuKcjheME/2DlWQ7oO8omqf6K33PVYCpqpFFSjKDECVwryPsMsSCgFrYTXE44/QlspyNuVufAFraFYdZcXyTA0CAoKInrnux527NiBCRMmKCoEb5s6FcDA+t2nEBz83ApYKVPOUFhpo1beKag1bV6f2cBfykGvUpDDkYIrBTl+gdrO018GE1+D9XLjloIcuyBVV1lRCtKGKwW5paBZGD0+FLC27bGUlxxuKWgW3FKQDfjxob4tA4u8+OKLGDFiBADz601JSQkee+wx3H///bh8+bKs3zvvvBOTJk0CAAQEsLnUx+uYOCxYCuqRgcbYRnO8lIub1TbD4fTBklKQtTkURx+81+NwvFi1ahXKysqsFoPjx/APJY6V+LtSkHXrLDPgC9dkMLrwwnpdZLUN+yu8POThx4dyxLBiAZj1tsotBcXxvofPzIXQTZs24aabbsKGDRtk/QUEBOChhx7CXXfdNeAZi/C+0DrsYtVnZT/ELQXtCS8HafimZ44c/E5Bjl+gdpCoqKjA8uXL8cILLyA5OZmyVBxSsD4J4JaCHLMx8/hQPbDeZv0ZO1sKKsGSzEaPDxUEgdgCq54FTj5W+ScstSErUGPBKwU/PpQ9WNvlzkL5c6WgdXjf1etyufDrX/8a//Vf/6UYLjQ0FE888US/JWMfrNXvPvypTLVAI18aGhpw8uRJ1NXVYfjw4VRksJtSUG4s5nWT44t0dnYCwcHE42V1jOFogysFOZxBdHV1IT8/H3fffTf1dBoaGpCcnMzsTj4OGbRMMLnyhWMl/m4pyKpcZmLn47ZZkklJFqVFCSPKBzNgKa85vDzMglsKsoGdjw9lva2yJh9r8gD06o3H40FgYCBKSkrwzDPPYN++fYphYmNjMW/evAGWjH1IrS9YvZDLYpn6IvX19ViyZAlaWloAAOfOnVMMw8o3Hc3xklsK+ib+Ug66jw+NiqIgDccX4EpBDh3KyoDISKul+JGuLsQ2NKj2/v2mTbh70G47UgiCgAMHDuDkyZMQBAFhYWGYNWsWsrKyqKRnN7SUUx+OoiIgPJyCNGSIrquDS+V7RURGAoWFxNIOKS/Xlaf9EJSFYx6BJSW6yj2guBgQOXc+qLRUMr7wqirN9SSsstJYvaREaEWF39f50IoKVWUdXVcHoanJRMmUCWtvly0/ve1ClywKddxRVAS0tYm6uV0uRTkjqqsRFBWl+X0iOjuH5JFcmUshFBQAYWGawnDoIddHk0RqjGCe5mYi+aNnvOsjoLhYUQaHw+H3Y5AaHO3tRMozmvCcG1D4jiksRER1NdH5FGlozs+EggIgSNvyU2RNDRvzRa9y0TNmqkEoKMDm7dvxq1/9Ck3NzcjufR4IIB3AMQDeh8DdfPPNmDFjBiIiIkTjs1r5J4W/LN5rhXS+HD9+vF8hSFMGbinIMQu5Ps1fyo7fKcghDVcKcuhw771WSzCAEAC5WgPl5ZEXBIADwB29v35UHA3iL+TqCUSprEjxrNYAf//3xNIe0/vTDeN5yxFnJMi2Jd3xSXBX7485eH3Hbb0/JZ6nLYheZMbTHJCtx0rMknOUqWtBUC+nWn8D+I//GPDnT3p/muBthSlyYFLdtmm5R4Ng/rz5pq5g16iVYfFiXfH7E+EgWJ4E59yAglx5eXiAaGrk+Vnvjwo6+o+5FMTQhZfsN/X+aKQxG8BsCedpAA4CyMrKwowZMxSPgwymcFwcCfxl8V4rpPPl8OHDROOTwm5KQW4pyLEzLCkFOb4BVwpy6LBzJ3DddcSjFQQB586dQ0lJCSIiInDDDTeouvuvs7MT7733nqa0cnNzdUopz6effoqKioohz2fOnIkxYwypb3yCxToWQ1566SXJXZIssHTpUjQ2NqryO2zYMMydS+4T+OzZs9i1a5fu8LTaAYcuV65cwebNmzWHmzt3LoYNGzbk+aVLl7B161bRMNdffz3uv/9+Tel8+eWX+P777zXLR5vbb78dP/mJZvWIT7F//36cOHFC1G38+PG4664ede5HH32E5uZmM0VTJDQ0FIsWLZJ0LygowBdffGGKLCNHjsSVK1ck3Z944gmkp6eLurW2tuKDDz6QjX/06NEYMWKEZLuUIjw8HC+//PKAZ8eOHcPBgwc1xfPiiy8ikqUTIfycq1evYtOmTdTTeeqpp5Camko9HdI0Nzfjo48+MhzP8OHD8dhjj+kKe/nyZWzZskXWj8PhwJs6lY7+RHt7O95//33D8RgpTynkvmNyc3OxefNmybHBe4y1il27duHs2bNU4n7ttdc0K6qkvpvNxvt7KD8/H3v37iUWd1lZGXbu3IkmiTlVJoADACoA/OpXv8Lw4cNRWVmpGO/1118v+txq6w6uRGEXf7cU5NgX3q9Iwy0FOXJwpSCHDhkZQE4O8Wh3bN+Oo8eO9f99oLQUCxYsQEZGhmw4oaMDzvh4bYlRkB8Aznd0ACKybD93DmNmydoV+AWaywmAkJ3N1nG1g2hKSIBT5aAZlZAgW/cKCwtx4MAB1NbWYvjw4ZgxYwZiYmL676AKGnQsT2dDg6487YdSO+DQpVtPnwfAlZkJiBxl3NnSIhlfa3Ky5nrSlpJirF5SoiMtze/rfPvFi5Jl05aS0p8/TQkJaNJ4DBhtQkNDZcuvu6vLtHrXnJgIZ329tCwZGaJtDQBcTqeinG0pKejOyND8Pl3h4UPyqLO0VHM8nqwsIDpaUxgOPVwm1W1XZmbPHN9meFS0KTXEJSbqHiM6W1vVyWDTMaimpgbffvstamtrkZWVhdtvv72nT6aAR21eKpCUmko8v2Xlysnpmf9IjA3eY6xVtKWkwElJCSdkZwMhIZrCNCcmwtnRQUUeTXiVS3d9PZH619zcjH379uHEiROqFrQ/WrIE03/xC/z1r39VFT+rG3f44r04LOSLHhloKNmsulNQEARuKchhGm4pyCENW6s5HI4Mzc3NOHr06IBnXV1dOHjwIFHLKqsIDAy0WgTbwvpkTIt8cn7LysqwatUquFwuAIDT6URZWRlGjRqFH374AZ2dnbjmmmvw8MMPM/shyGEbqY8wpQ8orbDaZlmVy0zU5gHPK3mUFjTk8q+vj1cKb2UZ8J3WbMHbozkYqfe+3GZqa2uxZMkStLe3AwCKiopQUFCAZ599dshmNZawYpc7622VNflYkwcgU2/Onz+PjRs3qlqsvWXiRODkSUyfPh2Acp7ccMMNhuWjCYtlytEPK5aC1dXV2LdvHwoKCtDZ2Ynbb78dk1JSEDXIny+Pxf6Mv/QrLCkFuaWgb8DuLJ1jewRBwL59+/DDDz/A4/FgzJgxuOuuuxAQEKArvmNeFoLenDt3zoiYzMDyRzPHPOQmqqdPnx6yWNzQ0DCgbVy+fBmrVq3Ciy++yAdqP0bvxFgqnL8oBTnky5olzJRfadFBzl2NUtBq7F4XOPrw93LnSkFxTp482a8Q7KO0tBSFhYUYNWqURVIpw+fJQ7HyLi9vXC4XgoKCfK7P8Xg8OHr0KHbu3Kn4boGBgfiXf/kX/PNTTwHXXjsgDjnuu+8+WXer672vlSkpWMgXVr7ptMbZ2NiIZcuWoa2trf/Z/v378X1Dw5B7XrmlIMfOmK0U5PXb9+FaCA41du/ePeCC4wMHDqCzsxOzdB6RWVtbq1sWO3RmXCmoH9bLl5Sl4PHjx1XFUVFRgbq6OiQlJalOl8MBuKUgq3KZidqFaxbziiWZlGSRy2e3200kDVJhaMbDIQMvD3lI5Y/atimGLysFvb/3vPnqq6+oKAVJlafVypHBsNCOrZahrKwMW7duRUVFBRISElAvcwy3VeitN+3t7Vi3bp3sfcN9jBw5EqtWrcLkyZOBwsIBbnbvS6yuYxxpWPmm01rHf/jhhwEKwcEIggCH1/85voedyrWrqwshAJqamhBjUno0YG0OxdGHPpMtDkcBj8eDU6dODXn+3Xff6f6gtlNHrwd+fCgHIFfP1SoQORxvuKUgx5ePD7WLpaAaOa3Of7svSvoaZtUHq+ud1ZhhKehLeVxdXW21CLLw40OHYqWlYFNTE1asWIGK3jsNWVQIAvrqTXV1NT788ENVCsGFCxfi9OnTPQpBEew+/rLeBqyChXxh5ZtOa5x79uyRda/wuidVaf7NLQXZRa7vtUs5nDt3Du+//z4A4OOPP8bGjRs19elmt1G75CtHP1wpyKFCTU0NOkQuBe/q6kJJSYnp8rDSmcnJwS0FfRct9Y/Uh16f8p2Vus8xF358qD5YlctM7Hx8qJJ8vqQU1OKPBqzXBQ6HBvz4UG3ovTLCLFjb5c5Cv2qlUvDy5cvU7j4ygpGNu4Ig4NSpU/jggw9QV1cn6zczMxMbNmzAhx9+iKiowTeh/YjRvsTqes9CPeeQgwWloBLeG1R4/eNYRXNzMz777LMBRjLff/89jh49aqFU8si1F6vHEg4ZuBaCQwU5a0C9E1lfGMDl7gniSkHyiozBdHd3QxAEhISE6ErHDPjRbhwr4ceHsimXmdhBIWUHzFAK6oFU3P6o4GAZbikoDwv1XouloK8stNBSCvrq8aEsYGUb37x5s2Vpy3HvvfcO+FttvWltbcWmTZtw4cIFRb+333471q5di2HDhin6tWs/3Ifd5acFC/niS9903njLqDQWc0tBe2KHcsjPzxeV8/jx45gyZYqqOMx+TzvkK8cYXAvBoUJAZSViGxpE3YLLygAdH4mRNTWScQ4+a38wjvZ26bBSKMSpB5eMHDH19VTStBWCoL2cALSdPYuYtDRJ9+7ubuzevRtXrlyBIAi45pprMHPmTISGhhqRVjXRdXVwtLSo8hvp8UjWAy15E1ZZCRQWIqS8XFee9iEUFPBFExsSXFamq9yDSksBkXYhF19EdbXmviuiutpQvaRFX7vxZ0IrKiTLxjt/YurrEdzebqJkygQFBcmWX1BpqWn1LiIoSDatwJISIDxc1C1ARfsNr6pCUESE5vcJDQ0dkkdyZS6Fo6gIkLm/hWMuevt8rQSWlAA2VAgHOJ1E8ifS7dY9Rqguo8JCXd9JViI5P4iIoDKmOlpaiJRneFUVcflk5SoslJ3/sDAHCa+qoteXFBZKjnuAtu8csxg2bBhuiokZUC5qvq2ampqwe+NGdDQ2IhtAIIB0AMcAeN/uFBgYiPvvvx+33nqr6k2rckqNSZMmKYa3+ruOLzKzi56yobFJjHQd8ZbRzieicOzNoUOHRJ8rWZF7w9LxoVaPJRwycKUghwppCxbgHinHvDxdcc6Wc1SIMxxArtYEdcppSI5cWVefxwEd5QQollUwgFl64iXEC1oD/Ou/ij7O1ZH2uN6fbii0Aw59rgXZtnRj70+Sv/kbTcnc1/vjsMfM3p8SL9MWRC9/+pOkk+52QQOZvjUD6uUcrSftP/xhwJ8/6f1pgo8NTGFa3bZpuceCYP7827/pCjax96eIDfM4V87xP/6DeHpRSmlq4Ze/JBUTAAW58vLwENHUyCP7vW0UhbqdSzNtI/zjPw7484benxL/T+TZNAAHe/+flJSEJ598EklJSQDUK1fk/N1+++0Ao3cx9sEVL+LYNV/scHyod5vhloK+iR3KgZ+ywmERrhTkUKF8yRLsPn1a1G3u3LmqjsYYzBdffIGCggJRt1wFZVpbWxv++te/akpPKU49NDQ0YNmyZaJuN9xwA+67z7+Xyd1uN95++21dYaXqldvtxl/+8hd0d3cPeO5wOPDKK6+YYi34wQcfoLW1VZXfmJgYPP/886JuixcvVp3mmDFjMHPmTOTn52Pv3r2qww3mzTff5LuAbMjFixexbds2zeFmzZqF6667bsjz7777Dl999ZVomKysLDz66KOa0tm2bRsuXryoWT7aTJo0CbfddpvVYljKzp07ce7cOVG3sWPHYsaMGQCA9957j7m7fwIDA/HGG29IuuttF3pISEhAvczC3L333ovRo8VVeqWlpVi3bp1s/Ndddx1ycnKwa9cuTXKFhITg1VdfHfDs2LFjOHjwoEQIcZ566imkpqZqCsOhx4ULF7B9+3bq6cyZMweZmZnU0yFNY2Mjli5dajieiIgIvPTSS7rCqm1nb7zxhqE7zKxAan4qN6c1QktLCz788EPD8YwYMQIPPvggAYl+RG6unpubi88//xyFEtaA3mOsVWzatAlXr16lEvdLL73UYz0qgZbvHDMYN24cfvaznw15LtfflpSUYNu2bWjv6BjwPBPAAQAVvX9ff/31eOSRRxAWFtbvR+2ittTC8qxZsxATE+PzSkFfOmLZGxaUGr56fCi3FOSwAIn6xY8P5ZCGKwU5VHClpsIZHy/q5snKAnQsKLQmJ8PZ2CjumJMjG9bT0iIpjyQKceqhMyxMUo7O9HQqadoKt1t7OfXyVUEB5oks5ldXVKBW4rL2AkHADSbkuTM+Hq1qj4SJjpasB1rypi0lBcjJQVddne48BQAhOxsOmx1jxQG69PR5ALqGDROtfx1VVZLxtSQlae67WpOT4ayp0SwfbdpTU/2+H25NToazslLUra9fAYCmhAR0DFr0sprAwEDZ8utubTXUH2qSJT4eTpkPKbkxv1sQFOVsTU5Gd0aG5vcJCQkZkm5naanmeFyZmUBGhqYwHHp06+zzteIePhzIzqaeDmk89fVE8qczLEz3GNFeXKxOhpwcwGZKQan3CoiPpzKmepqaiJRnc2Iicflk5crJ6RljnU5RZ+8x1iqaEhLgpHSMp5CdDURGSrqbNT6rpSMtTbQ8xPpbj8eDgwcP4ssvv5RfRA0IwL0zZmDKlClDFFta7h0VI0rie3cwVivU+CIzu7CiFBQEASBYT/mdgr6PHcqBhKUgPz6UQxquFORQQa7D09t52KGjV8Llckm62W1XMA2MlLHb7RZ9LlffWKxTpGTixxNw9CBV/0jvqmSx7QHsymUmavPAjnllpsxKfbCcO80y4GOMb2JW3bZjuyeJkXpvdMHfjrD+beNLeU0KuW9Voyjld0BAAFNjS4DKTZGdnZ34/PPPJU9Z8Oapp55C8LXXiroZPT5UrbxWwy0FxWGhP2Llm460UpBbCvo+dig7q5SCdkqPYz5cKcihglznYZcJKw0GH2HpDesfzmZAYxcLC0pBLemQ+hjmAzhHD1L1z1+Ughx7KwWVZLKLUtAOsFj+HI4ULCjD7d7m9cD6N58V/RjrfSdXCv6IGsVTS0sLVqxYgaqqKll/aampQFUVkpKSIG4navz4UNbbWx9Gy5j1NuRv2O1OQamN5HrT5vWRoxY71hVuKej72GPmwLEdrFkKmt0BNzY24quvvsL69etx9OjR/smHnFKQQwcWlIJaICVTXzwkdmNy7IfecuOWgmzKZSZ8By0ZaFsKkm7jWmFp4ZbD5iYnX8QuSsHm5ma0tLSYlp4UtDY8kp4rswIL8igtmNOEtQ2ySmsWTqcTy5YtU1QIXnPNNaru3jbLUtDqhVwW6jmLsJAvvvRN5413m2HtPnQOGexWD/XC0vGhHN+AWwpyTEfvLja7dEgNDQ1YsmQJmpubAQBnzpzB5cuX8dRTT8nuvrTL+9GExoAlV99YXETz1YUOjj3gloIcOx9xx5KloFJaVh0fSgoWy9+f4eVhDh6PR/fRdWb0re3t7fj0009RVFQEAMjKysITTzyBiIgI3XEqYefTYbil4FCsthRkCTl5amtrsXz5cjQ1NcnGMWXKFMyYMQMhCv4A42O/1co+tXBLQXbRmrdNTU2qjs2lLYeW+OSUgoIgcEtBCxEEAfboxfRBoq6wVN/sMuZw5OFKQQ4VWNtBbmbneezYsX6FYB+XLl1CaWmprKUgSx08SVpbW3H8+HFUVlYiIyMDt956K8LCwkT98uNDybUd1togx1y4paA+WJXLTLilIBmU+mC75zMfY/wTO9RNMUjKTVspaISNGzf2KwQBoLi4GBs3bsS8efOopSn3XqwpeQZj1/pME5pKQSVYqy9S7by4uBhLly6VtcYNDg7GQw89hHHjxqlOT00fIae08BdLQV9tt3Z7r6+//hr79u2jEjfN40O7urqIxs0hh5JSkIV1PX+D56vvw5WCHCrY4WxxWhw+fFj0+d69e2U/DOzyflpoa2vD0qVLUVtbCwA4f/48zp07hwULFiA0NNQUGeQmDywuavLjQzlWwpWCbMplJnawUpOCJUtBM44PtbLtsVj+/gwvD/Nwu926lBe0LQW7urpw5cqVIc8vX76M9vZ2hIeH64pXCbnjJlk/PpS17wAW2jHN40PtZiko9g1ZUFCAhQsXyioE4+Li8NRTTyE1NZW4THLlw1r+ScFCPeeIo7ZsSkpKqCkEaeDdbkhbClZXV+uWi8MxA1rHh1q9wYRDBnvMHDi2g8SxWL5GUVGR3x0fmp+f368Q7KO8vBwXL14U9c8tBfmCLcda+PGhHLXwMpSHWwpyfBE71E3a6K37tNtMdXW1ZBqlpaXU0rWzkoIfHzoUux0fSnNRcnDcly9fxl133YXKykrJMElJSVi4cCEVhSAA2VOHQkJCqKRJGn58qDgsvJdaGb7//nsm5FALzTsFP/vsM6Lx+TP87jtlzH5Pf8lXf4ZbCnKoEFxdjdiGBlG3gOJioL1dc5wRMnGisFA+cFOTdFgplOKUQC6dgOJiSfewykrdabLK4dWrESvy/OCqVbjxlVeGOnR0aC+nXiLDwkTzL8DplIwzuKwMiIvTlZ4WYhsaVE9AAwICJOuBlryJqK4GCgsRUl6uO08B9MgSxIcKuxFUWqqr3IPLykTrn1w9iggK0tx3yfbnFuKL/bBW5MomvKqqP39iGxqoWhToRqb8gsvKTKt3gYGBsvkj1dYAde03oroawRERmt9HbIwJq6zUHE9gSQlgkwVIf8Csuh1UWgpQsv6iiaOujlj+CAUFgMQx+HKEVlSok6GwUFfbCq2pkYxfKCgAgoM1x6kGT2urZLrRdXVUxtQAPd91IkSGhhKXT1auwkJEypST9xhrFZE1NQiRUTwZIaC4GGhslHSPbWgAnE5NcSqNtUbo+5YCgCtXruDpp54CamqQDSAQQDqAYwD6DiPMyMjA008/jcjISF3pqVl8lTv6MFhlG7fauoMrBcVh4b3UynDp0iUgPt5yOfRA2lKQb5IjB1cKKsOSUtDqsYRDBr7Sy6HCyFdfxYNSjnl5uuKcI+eoEGcMgFytCeqUUzadvDxM0hWrPcmVc/yv/xryKEwpjBL/9E9DHsXKxamzjLWySGuA//1f0ce5WuPJzcV4AOO1hvPGpDzikGVM708zEuU9pfcnya9/rSmZRzX55pjJQyr9vUFVCgPI9Fm62wUNZOQcCfX9/Y160h40xtza+9MEHxuYYmzvjzo2LfdEGJxfeqMzD2b0/mjFnwxr5ruRcukCwN/8DfE0dX3XSfHP/0wqJgDK34GPEU2NPK/RjFyhHj5HM22DjARwVOT5NAAHAWRlZWHevHnUr8fwBUtBfrUFx2xoWgpyyMHbtjJmn9DEy8T34UpBDhUuvvMOdl+6JOo2b948JCcna45z3bp1ksff5ObmyoZtamrCxx9/rCk9pTilWLx4saTbxIkTcfLkSVG3MWPGYObMmbrSZBW5vPDOX7fbjX379hk6iiItLQ1PPvnkkOeNjY1YunSpaJi7774bN910k+401fLnP/9Z06XWb775pujOG7n8HExWVhYeffRRnDp1ytCZ/6+99prqnaccdjh79ix27dqlOdwdd9yBW265ZcjzQ4cO4ehRseWQnqOS5s+frykduf7cSiZMmIDp06dbLYalfPHFFygoKBB1u/7663H//fcDAN566y0md8dK9Z8A8MMPP2D37t0mSyTOlClTMGWKuKr98uXL2LJli2z4kSNHIjs7G19++aWmdAMCAvDLX/5ywLPjx4/jwIEDmuL5+c9/jmuvvVZTGA49zpw5gz179lBP5+GHH0ZOTg71dEhTV1eHFStWEIlr4cKFiI6O1hxux44dOH/+vKK/RYsW6VIs1NTUYNWqVaJu06dPx4QJEzTHqQan04klS5aIuo0aNQoPPPCAqWlqISUlBU8//TQBiX5E6dtHbv5zww034L777iMqjxY8Hg/eeustavE/99xziI0VO0OmhxUrVqCurk5TnKGhodQW+adMmYKbbroJTz/9NE5/990At0wABwBUAMjMzDRFIQjIWwraRSnI4tyRBVhYfGdBBsDa40NZyQOONvyl3Fh6T24p6BtwpSCHCp2JiXAOukuuD/fw4UBamuY4W5KS4GxtFXdUWKDwNDbCqfWIA52LHnLpNCcmSrq3paToTpNVZPPc6113btuGYyUlho6hiEpKEs0/T329pByd6emm5HljXJzszs7BCNnZcIjcq6GlDrf05kdnZaX2uu9NTg61I6c49OjS0+cB6EhLE20T7VeuSMYXkpCguR3J9ucW4ov9sFZakpLglDjeyzt/GuPimPow6ePDPXvgcDgwbtw4TJ48ecAHS6fMeGA27ampknWtq61NUc7W5GR0DRum+X0cDseQdDvLyjTH0zVsmN+3FZborKszpW67MjNtWe7uiAhi+eMePlzX0fMtSUmqZBCys3UdT9odEiIZf2tyMrVy666tlUxXak5hFE9DA5HyDE9MJC6f0rdPa3Ky5PyHZjmpwd3dTbUfcQ8fDiQkSLq3JifDqVFhFB4ejnYd15KooTU5GY/+7d9i5yCFoDfJqam4a/58IgpBfzk+lFsKsgsreUtaDu8jhpWOD+VYB89/9uBl4vtwpSDHdPR2LL7QIcm9gy+8nx48Hg/OnDljOB6p/GMhz7WmQ0Kuvjj4hxdHC2a1I16v7A+rZVheXg4AKCsrQ0dHB7OWnyTaFKky0BMP3+nvn7Da7s1Eb92n3Wbk4teyMU0rcve5BYhscGMJK/oxltuQy+WiGr/Su+tRVtGqY263G//2b/+meNrKI488gg4dSnwpBEFAQ0MDoqOjRZV8Um05MDCQ+fbWB79TUBxffS8W6Mtbt9ut2M/xciBPW1sbDh8+jLKyMll//JhLZVg6PtTqDSYcMnClIIcKNDplXxgkWFBQsUZzczO1HZ5KsJrnLCkFOfZEb7lLfaj7i1KQVbnMxJfGqWPHjuHOO+/s/2hhSX65RTE1clq9wYqlvOTw8jATrhQciJxSMDAwkEqavtqPWS0PbaWgEnqUWjQUYS6XC5999hkuXLgg6SclORmoqUFoaCg6CKVbVlaGTZs2oampCYGBgfjJT36CmTNnwnvZVcpSUMvRoVYv5PJNRexidR/UB63jQ5Wuc2Hl/X2Jzs5OLF++HFVVVVaL4hOYXUd5m/B97LGdiGM7+GRPHLmPLX/tcEl9zPmSpSCJ9tMXB7cU5GiBWwpyfIm2tjZUV1dbLYYo3FKQY0fs2neTlFtOCUZCBtKbegDlhVAjyKVrtfJBCbvWZ1rordtqUcpvPd+EpBXPXV1dWLNmjaxCMC0tDQ8++CDRdAHgq6++QlNTE4Cesjhy5MiQ+7xJKAWthn+bisPCe7EgA0BPKajm/lFW8sBXuHjxoikKQX8pN5aUgqzP8Tjq4EpBDhWM7oAnGc5oWK3IfdDIWcT5y0A2GFILixUVFZrDsJrn3FKQYxXcUpBNucxETVnbKZ+8FzlZkpuFDStG0mMpLzm8PMzEjpaCNJWCVlgKksKKvpbltmq1paCe+kLSUrCzsxOffPIJLl++LOknKSkJ77//PqKiooilK8epU6cG/C1l9av2PkEW4MeHsouv5q1apaCvvr+VbN26VbVfu6z32g2eNxw5uFKQYxvs0pmFydwrwJWCQyG5SCL2ESeXr2ZZOlhhKWjHxXsOOUhvviCtwGDVyoi3F3XYKZ+8dzGyJLdRWSorK7F3715C0miHpbzksHvygS9CWylIw1Kwo4PUAYdDoW1dJgY/PpQOVt8paOXxoW1tbVixYgUKCwsl/cTExGDHjh245ppriKSphsEWNvz4UHp0d3dTPWpZCavbP2nGjh2LiRMn6gpLOi/64uOWguajJs/7oHHvLMcY3FLQ9+F3CnKowNIOeLPTDAsLQ1tbm6gbVwoOheSHwaFDhzBq1CjV/lnNc5YsBVnNIw4d+PGhHNbGb6Ow+sFi9ESFviPG9CAIgmFlKauLehwObbQscHljpaWgXpnVYIVSkBTcUnAgdjw+lIRSsKSkBJ999pnsuBoXF4ddu3bhlltuQX5+vuE09SKltOLHh+qnu7sbn3/+OS5cuIDYhga8gR7lq9k5ykLfQFIGh8Oh21qc1vGhVltDc+ThloLKmL3u4i/56s9wpSCHCkFVVYhtaBB1CywpAXTswoqsqZGMEzK7+gAgoKFBOqwUCnFKEdfYCLdEWsEdHYiVUAyGV1XpTpNVZPO8713r6rSXjQT1DQ3AT3864FmATPwh5eWm5HlMfb22AbWwEIiIGPJYSz5FBgcDhYUIKS83lL+OoiIgNFR3eI41BJeV6Sr3sMpK0TYRVlkpGV+0y6W5Hcn25xYi9f7+hFzZRFRXA4WFENxuJstPjMCSEqDXSkZvu6CBXF2jLmdhIeClFAytqNCcXnBZGZCURFgwjl7MqttBpaW2nBMEEBxzdn/wAV5++WXN4SKqq1XJ4CgqAsLDNccfWFIiGX9wUBC1sS2guFgyXVrfNrq+60SIcruJyycnl1BQgKjaWtPzSy1CaSnVfiSguBiQ2DgLANE6vgljgoLQaUDm06dP45tvvkG8ICAeQCCAdADHAPTZ5CUmJmLXrl26rZ5IImUpyI8P1c+mTZtw9uxZAD8qxnft2oUHrruOaDp2gGTeGlHY01IKKtU91jducDgsXTHB6sZbjja4UpBDhfH/8A8YK+WYl6crzqfkHBXijAeQqzVBnXI+oytUL7/8pZHQzJEr59ibv4lK/rQyqNxk49dZxlp5U2sACblytcbzq19hCoApWsOpkIXDNjf2/khxV+9Pkt/9TlN8840Iw6HKY0oe3ngDgSDcb9PEqw+b0PtjnTG9P2oM6td1jRN8bGCKm3t/1LFpuSeDcJ/1n/+pOcjjaj3qzOORUHjHX/9aV7yG06WAru86Kf7t30jFBED522euUgRvvEFMFq1kgnJZKtTth2imrZFpAA4CSEtLw549ezB2rOTKhqn4wvGhLFkKulwunD9/fsjzgoKCHmtBEy0wfU0Z5XA4LK9rffQpA9Xksa+Vg53gFm3KsKQU5PgGXCnIocKp//ov7C4vF3V74oknkJ6erjnOTz75BNXV1aJuubm5smHr6+uxfPlyzWnGxsZi2rRpuPbaa1WHWb58Oerr6zWnNWLECDz44IOaw7HM4sWLJd36yqy6uhqffPIJsTQH14Xa2lqsXLlS1O+UKVMwZYohlZkq5PJBjIULFyI6OtpQPElJSZg/fz4OHz6Mb7/9VlP63rzyyiuy92Ry2CQ/P1/XfWO33norpk2bNuT5nj17cObMGdEwkZGRePHFFzWls2zZMjQwYrHlzZgxYzBz5kyrxbCUdevWobS0VNRt5MiRmD17NlwuF9555x2TJdPHM888g8TERADAqVOnsG/fPosl6uHGG2/EPffcI+p25swZ7Nmzh1rakyZNQlxcHEaMGIGwsDBd48T06dMxYcIEOgLahKqqKnz22WcDjqOKjo7GvHnzTB83zarbs2fPxsiRI6mnQ5qamhqsWrWKWHxz5sxBZmampjCrV68ecj+YGC+99BIiRE6LUOLChQvYvn27qFtYWBheeeUVzXGq4fz589ixY4eom1w/ZwS933WDiYqKwgsvvEBAoh+Rm6u/9tpr2LBhAyoqKkTd+8ZYq7h69So2bdpELf558+YhOTlZ0n3Lli2i98PLcc0116CgoEBTmLa2Nmzbtg2lZWVD3DIBHABQASA1NRXffPONpnUA2kgdH+pPloIkqaqqEj1S0u12o6ioiKmy1wLpu+X1YEQhSOtOQaV4uQLEWnj+04GWspUVpT/HGFwpyKFCZ2IinBLHZLqHDwc0fkgDQHNiIpwSE2EhO1u2U/JERcEZH685TSeA1YcP47kbbsDw4cPVy6mj421JSgJycjSHYxnZPO991+7gYF1lI8XguuAOD5eMvz011ZQ81/p+nqwsIDbWUDwhCQlATg7ar141lL9CdrauY6w41tJZW6ur3Ae3CZfLhaCgILSlpEjG54qM1NyOmhIS4NQsHX3M6hNYpiUpCc7WVlG3tpQUICcHQnc30X6bJp6sLKB3EbKrqooZufvyUozOujqqcu6+dAkAkFRQgGeffRbtqama0+saNszv28qp8+dRN2gDjxPApe5u3HjDDabK0lFRYUrdtmu5u0JDieaPJysLyMrSFKYpIQFOCSufIXFHRWmWqbOpSfIdO0JDqZVbR2OjZLpy/ZwR9H7XDcYdFUVcPjm5hOzsnjG290jrwdDKL7V0tLVR7Ufcw4cDaWnS6aelwVlXpzq+uLg4RIwZA2djo+owpaWlWLt2reK9vPGJiXjro4+YUwr5gqVgZWUlGhsbERcXpyu8WUdcmq28JPleLCgFAf11jdbxodxSkG24paAy/vKeHPPgSkEOFVjaAQYYH2DOnj2rWinIyiTMLpCuK4IgqJ6AmpHnetIgkSdqd8RxOGIUFxdjx44dqKioQExMjOQiBGBdHVfLzJkzsWvXLlV+S0tLsX37dnR2duL666/H6NGjKUtnL+zYn3jLzJL8cm3ALDlra2tx6NAhBAYGag7LUl5ahZR15ZYtW3DjjSQPcOawhp67kmiPe3Lx00y77w4uO8KP4RqImMWUmWhVIEyfPh21tbWq/Z86dQqbN29W1R6eeOIJzdbAZuALloIAsHbtWrz00ku6wpJsR3LzH3/s21i5U5A0Wu4U5HBYhqV5i9UbTDhkYKen5vgUcp0HC5MUrRw5coR6Gv46CaGhFJT7W62blZCQi1S+sppHHDoIggCn04lPPvmk/3irpqYmdEjsau8LoxUzlYJadnnX1tbi6NGj+O6777B27Vp88803FCWzL3bqF1hVCkpRUFCAr776yrT0Dh8+bIt8sRNymyhoYVYZ8rrSg54xzB+VgrTqC6l4rVhcY/m7hLYSROn9tCww3nHHHRg/fryqMIIg4KuvvsIXX3wh2xYCAgLws97jboODgyXjtrKcSFgKskBFRQWcTuvPDGFJKWh1+yeNkTsFuaWgf2JkjPCXctPzntwCkyMHVwpyqMDSDgY17iSxo9LTSkgvVGiJj1sKcnwBsfpipNwvXryIzs5O1f7NnpxqJShI/6EI+/fvl9yV7auoWbC0U7/Cqqxi7fbLL7/E8uXL0dbWZoFE2mA1XzkcMWgtMNIIo1dWuQVsmkpB1k6H0YKdjwekAW1LQZLf6yNGjACgbI3k8XiwadMmxTtXw8LCMH/+fIwbN67/GYtWEK0Sx7vb6fjQPoqKinSFM+veO24paAw73inIsS+8bOnALQV9H358KIcKNDplX9/hYAcZacAtBYdCQi4++fV9Lly4gK+++go1NTXIyMjA/fffj/T0dENxCoKAixcvag6jFTMX4owcX+NyuXDu3DncdNNNBCXimAmrloKDZWlsbMT+/fuZkIVjP7iloLnYzVKwz0KNxgKOFZaCpOCWggOx+vhQLfTVZSXLkZ07d+LUqVOycaWlpWHu3LlISEgAGhqGpMEK3d3daPCSz5tYkbvoWYcVKzIp7GwpyIpSkJU2pOX4UKv7YX+G5z1QVVWFy5cvIywsDNdddx2iB91dzprxDcf+cKUghwpm35XDUmfFwiTMTtBWCpqZthhWWVGRUgr6a71kndLSUqxdu7a/DpeUlGDFihVYtGgRoqOjDfVDdXV1msPoSccMAgICDH+QsnC8kZn42tE6rMo6WC6p++nMgOU2zFEHLw9zYdFSUM1ip9lKQVrY+fhQlrH6+FA9+SNVpz0eD7Zt24bjx4/Lhh8/fjweeOAB0Tv5WLoTDYCkQhAAUlJSTJSEDCwoBeXi8kelIElYshTsK0sW8oVDB18o2/z8fGzcuLH/XSIiIvDss88a7t9pGdewovTnGIOtmQ7HZ2BN8WeHQYJ1GQVBQHV1NcrKyogq0/jxoUMhkSdazs7n2I8zZ84MqSft7e24dOmS4bjT0tI0+WfZUjAwMJBPWAlix/7ELpaCBQUFFknCVr5w2MaudYX28aFNTU2or6/XFIY0SvHTSt8fj9izS3pasaOloJjirqGhAUuXLlVUCN533314+OGHRRWC3mmofU6b2tpa0edBQUGIj49XHQ8r82JW5JDCH/s2ViwFrTo+lFsKWos/573b7caWLVsG5EFbWxt27949wJ8/5xGHDtxSkEOFkNpaxErsZgsoLgZ0fJhG1daiS2qHXGEhIHNRdGBNjaQ8qiksVOUtuq4OHh2WJZEREarTMJv29nZs3LgR1dXVAIDo6Gg88sgjPcesyCCb573vGlhSYrxsBscbHt7/Z0BVlWT8YZWV9PPc5dL8fgHFxUBHx5DnWuKJ7OoCCgsRVllpKH8dRUVARITu8Bw6nN+xA2IHBX2zfDkmJiQgpLxcV7mHVVYi3OFAuYawQUFBmttRTH09QjXcW6iX0NBQBBQXG2oDoRUVzPbNNIiUGS8ja2p68qKjg2y/TZGA4mKg917I0IoKZuQOr6oaUK/k8p02esaJkPJyv2oXYqiZ45iF3j5fK8FlZUBUFPV0SBNocC40JL6SEiAkBJ2dndi8eTNKS0sBAMnJyXjooYcQJZJHMfX1CJS4D8wbR1ERMOi4KDUEl5XJvqPn6lVAw71jJNId3M+RIkDmO1MLeuYvcgiCoNgvyPX1EdXVlvartMdI7/FYjHCZb7bBBJWWAh7PkPHr0qVL2LNnDxxdXcgGEAggHcAxAF19YYOC8Oijj2LMmDGyaUgpNKxalJXaeJCUlMScVaMa9MpslkWd2UpyFiwFWblTkDRqjw/lWIuvG4HIceHCBXR1dQ15fvnyZQuk+RG5zREstXGOfrhSkEOF237zG4yVcszL0xXnAjlHhTiTAeTqSlV9Gn08ZySNf/gHI6GpEQ7g6cEPf/c7xXC5co69+TlKyZ9WBpVTKun4NRKkJ32JuqY5nn//d9wJ4E6t4VTIwrGWXDnHvDxMADDBQPya68yf/qTJ+yKt8RvhD38w1gf4WRt4QslDbi7CYG2/qgmv8ru198cMr7/e/99nLBQD0NHm/axdiJEr52hy/kzq/VHHpuWeBjpzzVAAcwa7/frXokFe1Bi3VhTrAKWym9b7M5MkECxPjfMXORxQ7heGfE8NJlc2BqpM7f1RQ6EO/lxHXGrH9WkADqJHEfXkk09i1KhRimFYW/Bsa2sTfZ6YmKgpHlbeixUrMim4paAxjCiqaVn3c0tBtvHnvK+srFTlz8wrHzweDzZs2KArLMc+cKUghwoH/+VfsLuxUdRtzpw5yMzM1BznsmXLJM/Sf/3113t2e0pQXV2NTz75RHOa3uSq/Ej7+OOP0dTUpDn+9PR0PPGE4nKs6bjdbrz99tuibvPnz0dSUpJk2MWLF0u69eXn+fPnsWPHDiMiDuCFF14YsEO7srISa9asEfV744034p577iGWthjd3d149913NYV54oknkJ6ePuS5XH4OJjw8HC+//DK++uorfPfdd5rS9+bFF19EZGSk7vAcOii1rVOnTmHfvn2a4x0/fjwAaKozAQEB+OUvf6kpnXfeeceUHbgRERFYsGAB/vKXv+iO47bbbsOkSaYstzPBmjVrJD9McnJy8PDDD6O9vR3vv/++yZLp4/HHH0dGRgYA4OjRozh06JDFEvUwcuRIzJ49u/9vvXMHEkyYMAGnT5/WFGbatGm49VamVKymo2aOYxbffvstDh8+TD2d++67DzfccIPu8GVlZTh9+jScTicyMjIwZcoUhIaGEpRQnIqKCnz66afE4ps1axauueYayfnd4LkoALz//vtob29XjPv5559HTEyMor/BdwQePnxY9m7Sl19+GeFeJ2mQYt++fTh16pSo2+jRo3HvvfcST7OmpgarVq0yHI+e+YscHo8Hb731lqT7woULsXnz5v6TVwbTN8ZaxYEDBxSP3DTC3LlzMWzYMEn3LVu2qLaKePLJJ5GWloZTp07hyy+/xJ49e3Du/Pkh/jIBHABQgZ4j5efMmaNKIQhIKzVotCMjyK2BsAwLykl+pyA9WLpTkF+r4vvYvWzlvgG953tmvmdJSQmam5sl3VnowznGsecMgsM8bXFxcEp0Eq7MTCAnR3OczYmJkDqUU8jOBiTuAwAAV0gInBrO2hdFpcxNCQlwyhxlKkVUYqKufKFNR2urZN5d9XiQJCOzbJ73hut0Oo2XjRfu4cOB2B8PVnQHB0vG35aSQj3Pha4uze/nyswEhg8f8lxLPF3h4UBODtpSUgzlr5CdbcujwnwdpbbVWVmpq9zbU1OV4x+Ew+HQ3I4aYmNNOcJFiIkBcnIMtYHO9HQm+2ZatCQlwSlxtGtrcjKQkwOPzLjAGq7MTCA7GwDQWVLCjNwtSUkD6pUzPh5NOuYOJNAzTvhbuxBDzRzHLDqLi02p290ZGbrfrbS0FMu+/rp/Q8ilwkJc6u7Gc889h0DKdd8dFEQ0fzrT09EYFycZZyGAcYPyqSkhQdLSxxtPVhYQFyfp3tHRgW3btuHy5cuIiorCrbfeikmTJqHtyhXZd/RkZQEqNnn13SEeGBiIhIQERWuP9vPnTZ9ne8LDyZUnQfkEt1uxDJoTE+GUOEKzb4y1ivZLl6j2I67MTCArS9K9NTkZzro6VXF5srKAYcPQWlqKv+7ahYsXL8r6DwoJwbwnn8SIESNUyyu14DlixAiEUDiK19/gloL0YMFS0OFwMKOoUXunoFo/HDr48/Ghajdkm/meBw4cMC0tjnVwpSDHNti9o1eC1feTWwwgsahPWjEwOB/l8tWMPNeTBsl8NfqOrNZLDh3MOpLCrHoVEBDAd7FpxOo+kzTeMrMk/2BZ7HbPCUt5yTGvPIykc+LEiSEW4mVlZSgrK0OWjKKARTwej2xeiI07JMpIEAR88sknKCkpAdBz5/f27dsRGBio2Ieo6WOampqwatWqfku2jIwMPProo7J3iNu9LxhscUk7LZax2zjU2dmJf/qnf1JUCALAvHnzejY6akCqXgQGBmLixIma4iKBVP3RWn9ZmRezoBTkloIDIdkHsGQp2IfS+7HeR/s6vpz/RhWeRiwF9aZt9X2GHHOw343EHFtA46PCLjtHWNiZRRK5CR2LSkEt8bGa56QWjkjFxfEvaE82zbyvgSsF6WCnfoVVWVlSCrKaRxz1mFmGV65cwYYNG/DJJ5/g+PHjqtOWOqL2q6++IiidOLSOIjNbhrq6un6FoDenT58mohRcv379gKMty8rKsGzZMrS0tGgXFvTqJat9VkdHh6y70vzH6veinb6a+7zU0tnZiUcffRQHDx6U9Tdl8mQAUHUk72DkNsZO7o3XTKyuH6RhQSkoh50tBfXyxRdfEMtfFpWC3FKQbZTyXq5OsV5udtt0Ayi3YdbznKMObinIoYLZHzy+0CGZ9Q4dHR04ffo0KioqkJ6ejptvvln3fS4sKgV91VJQazxcKejfGNmcYPWiEEm4UlA7avpMO/UrrFoKDu7n7aYUZCkvOeZx7tw5XLhwob/8L126hLq6OkP3xjVK3EHOMnosBdUiF++RI0dEn5eWlsre1QYo9zHt7e0oLi4e8rypqQl79uyRvOvO7n2Bx+Mhdnyt0r2VrOeVXeZ/3d3dWLhwoeyGgqCgIDz44IOYMnw4IHPXphxy7ZiluSVLstgNbik4EI/Hg4qKCsXxRA0Oh4M5xS/JjQkcjhaMfOex+i3L8Q24pSCHCtxS0LxwWujs7MSKFSuwc+dOfP/999i5cydWrFiBTon7o5TkIiEzbaUgKb9mIiaXVUpBVvOIwxZa6omZyo/AwEC+WOLnsPohxS0FOSQxqwzPnz8/JK2jR4/KziOVsGP9s+r40G6Ju+j6ZJJDyV3uvsMzZ87ICyaBHcqWlIwtLS2iVpxa0rI6v6y2ZFDz/t3d3VizZo2sQjAsLAy/+MUvcNNNNxmSh5X5o9I3nV2PD2VhzUQuLrPbAwtKQQA4dOgQERlYqWfeqClTq/thjj5YLzcrlYJ684bFNswhD1cKcqhgtnVWSUmJ7Y94MGMgO3v2LMrLywc8Kysrw7lz5yTD0J4s+/rxoVZZYFj9Yc+xJ3otBVlVxnNLQbLY3VKQJQoKCnDo0KH+hXi7zWFYzVeO+Xg8Ht1KI4DduZgcNI8P1fsNReL4UClY659YWTz3Jj8/X1VaLPedrFsKdnR04JNPPsGVK1ck/YSHh+PZZ59FZmamobQA9hZEWa47etDbJ/HjQ5UxkkdXr14lIoORbzBaJ4uxvjHD3/Hl/PfFtTlfLi9/gisFOVQw21Jw5cqVeOedd9DQ0KA5LGlY2PUmxa5du0Sfb9++XVd8LCoFtRwfyurgzI8P5RjFbMtqVi0FuVJQO2rKktW+UwxWLQUBYPfu3Vi+fDna29u5pSDHEFaXod475+wKi32gUaUgje8Xq+ulGkjJqEaBwHp+WC2fXPotLS1YunQpCgoKJP2Eh4djwYIFSE9PJyKP3J2CZsItBa2RwR+PDwXI1Xt+pyBHK0aUtqyXGylLQTNhZazg0IWNmQ7H57DiY7mxsRGff/65qBvrgwRgjowdHR2iz7u6uiTDcEtBY5BSsPDjQ9nE1/LHjE0NZuYZPz6UDiwuiEvBehutqqpCfn6+pXJaZdHOIYedy8OOslt1fKiRObkd89kMSOWLmrmGkqWK1WVEe2zX+36tra1YuXIlKisrJf30WQiSUggC7CyIKuUbK3JqheWN1ID/WgqSqk9G7hSkAeuW2hxjsF62pMZXfnwohzRBVgvA8U3C6+sR4XKJugWWlAA6diBF19UBzc2yfpwNDWg7exYRERED0ywrQ6yEFaFqCgtVeYuuq0OgzL0cUkRpSEMvsnkgkbajrU0yXEh5uazMatILJlE2XgQUFwNed9sElJZKxh9eVUU9zyGTf1IElpQAoaEDngnd3drzqbAQ4VVVhvLXUVQExMToDu+rNDU14euvv0ZZWRni4+Pxk5/8BCNHjjQtfaW2FVJerqvcw6uqIAiC5rBCQQEQEqLOb3s70TYvR3RkJBxFRYbSC62ooN9PMERUba1kfkVERvbkRX29aWVolMCSkv66GVpRwaTch1evRqyFH7N6xgl/axdi6JlT0SKsstLSuh1WWan4zlLyRXV3U88vubmgHoLLyhAYHCwZZ3BZGRAWNuBZTH09XBLfRt44ioqApiZRN7m2qlQHHEVFgMTmQABw1NXpqtNy6dKaZwcYnNsOoLBwyJxbD2rGF0dREaLr6tAl4S8yKopYfgmCgJqaGjQ3NyMjIwNhg+qjGEa/GZQIKi2VXQOIqK4ekn5VVRV2bN2K0OZmZAMIBJAO4BiAvi2tERERWLBgAdLS0ojKy8qCKGlLQVZgQSnILQWHQlIpqBdaCh41m2dYVy75Mr58vKuVdwrSgiVZOPrhSkEOFWb+6U8YK+WYl6crzoVqPYrEnwEgV1eq8vGK8ZKRNH7zGyOhFcmVc5R4vwilcAbTm9L7I8ag98hUkuONN0imPgRd+SdSFsE647kPwH1awynIwgFiADxoYfq5co55ebgVwK0G4p+pNYCGehIOAv2xFv7+742l52dtYJ6Sh7//eyTA5DI0glf53db74wyFZpv3VXLlHE3On9t7f5ah4n1z5Rx//3tSkoiiOBfUSu/7SsYpkh+va4xbjFm9Pynu1xkvACRCX52+p/cnyeuq31w1qSBYnoTaqqp5V14enlHy83d/R0QeB4CU3p9aZkLHWKAFhbx+WOL5f4g8mwbgIICEhAQ88cQTSE1NNSabCHY5PlQrrCgRWVAKyuGvloKkMGIpaNWdghxrMfv6EzOx0lJQL6yMFRy6cKUghwrb/+ZvsFui43vkkUeQnZ3d/3dDQwO++eYblJeXIzExEZMnTx7g3seHH36o6s6SOXPmDLlcvLS0FOvWrdP4FgPJzc1V5e/9999He3u75vhjY2Px3HPPaQ6nhcWLF0u6Sb1fa2srPvjgA1G3m2++GXfeeaeh9A4ePIhjx45JcNgfwwABAABJREFU+tPK3LlzMWzYsP6/5cp+5MiRmD17NrG0xZDLPylmzZqF6667bsCzrq4u/PnPf9YUT25uLrZt24aLFy9qCufN888/jxhuKTiAK1euYPPmzUOejx07FjNmzDBFBrm2FRAQoHviOWbMGAiCgHPnzmkKt2jRIoSq3Gnf0tKCDz/8UI94msnJycHDDz8sm19K3HbbbZg0aRI5oRhn5cqVqK2tFXXLzMzEnDlzUFNTg1WrVpksmT4eeOABjBo1CgD58cZXGD16tOY2P2XKFEyZQnRLj+3QM6eixYEDB3D8+HFT0/RGTT8plV+RkZF48cUX+/++cuUKzp49i+7ubowYMQLjx483vDBB4jvAm8mTJ2PEiBFYvXq1qPuDDz6IESNGDHj29ttvq1pkXrBgARISEkTdtm7dikuXLom6jRw5EleuXJGM9/HHH0dGRoake11dHVasWCHpLlWn9+zZgzNnzoi6jRo1Cg888IBknHqpqqqSzHutvPTSS0NOmNHDiRMnsH//flk/Tz/9NHbs2IH6+npR974x1ij79+/HiRMnBjwLCAjAyy+/LDtX2759Oy5cuGA4fSkefvhh5OTkSLpv3LgRRUVF8Hg82L9/P06dPj3ETyaAAwAqAIwYMQJ//vOfceTIESrysrIgyo8PtUYGbiloDBbrpRpLNBbqpb/CLQXF4dcBcWjClYIcKrTGxkq6dWdkAL0fBG1tbfh4/foeZV9EBKrb23Fx/378YuTIIYo9Z3w8WoKDFdPuGjasP/4+XL3hDSHzEeNNU0IC2nQcH+qIi1Odhl5k80AibU9zs2S41uRkWZnVpNd26ZLxsvHClZkJZGX9+LeMHC1JSdTzXGhp0fx+nenpQ+QSOju151NODlqTk+GsqdEWzgtPVhYQF6c7vC+yaeNGNImUxaHycsygXJ/6INlmvGlPTYXb7YZT5t4WMTxZWUB4uDq/TU3U5B9MR1oakJNjKD2x9ujLNCcmwimxEBLX22d2h4SYVoZG8Z4TtF++bBu5zaQtJUVzm29PTfWrdiGGnjkVLdoJz6W0Ijb3HoyUfK7IyP6w3333HT4/cKDfLf+771AVHo57773XkHxEvgO8aEtJgSszU/qdMjOH5EdjXJyqRSFPVhaQlCSZrlNi00ZLUhKcEsomYOD3lxjuiAhddbo9NRXOsjJRt7aUFCptwU1wDPJkZQFRUYbj6SwvV5TJlZnZM8ZKLNDFEfou+XLZMkBElvzmZtx6/fWS4VqTk+GsrjacvhRi7WJw+hWVlVi/fr2sghsA0jMy8NmBA2hubuZKQUbk1IreRXJuKUgXFu4UpGUpaKc70TnaYF3x5YuWgqznOUcdbJyJwPE51HZ6ly9fHmL953a7kZ+frzttu3ZOrMotJxcJmUlPzgbHJyejGRNDUpcBs37Eij/RIXMnj93Ru0NSSxjS7S4oSHp/EytHP9kJNX2+nT6qeR+oDM8j+2N1GZJaRDx8+PCQZ8eOHUN3dzeR+Emhpw8kUUZG5rRW9Nu06iUrFjXeqGkDVrdTpe9r2vIpWWXt2rULb7/9tqJCEOg5QSg9PZ2qQow1ZRs/PtRYOK1xcUtBYxj5BrNq7OCWgtbCLQXFMXqnoN58Y2Ws4NCFr5ZxqCDX6Xl3Slu2bBH1c/ToUdlwWtM2cwBhYYJrFkYXGFwuF65evUpImh605COreU6yDvPjBsjDJ0hDsbLdyR2FxcuKDnbaPc3q5ewsYeYHJoczmL661NXVhaqqqiHubrcbZ8+eNVssWTwej2wbMDL26G1bSnPykydPUtnoZ/e+wOxvRCvzSyltqxTH+/fvxx133IEVK1YoXsFxQ6+lY99VETTneaxsLFO6U9Cuc10W+g65+ayd5rqDYUEpaMRSkAZW978cZfidgsqw/p4c+8GPD+VQQW1npWXnrxGloB1gtYOnZWlXVlaGlStXEre60iLTlStXsH79ekRGRmL8+PFIT08nKgtg7WIrq3WKwy52tBQMCwtDa2urKWn5A2rK0k75yvtBjj9gdT0noQST61f0HMsvlgYplMZKsfygbSmotID9ww8/IDw8HD//+c8Ny6EWq+ulGliS0UpLPbPTFwQB27Ztw+9//3tRC+HBOBwO3Hvvvbj3+usBr3sPaSruWFFo+OrxoVZuRGhtbcUXX3wheUcrwC0FjWLF5hgS8bI0JnAGQvsEM5pYaSmoF358qH/AlYIcKli5YEjy6EVS6dMMZyVGynn16tVUjmEcnI9K+XrmzBkAPTuo582bh+zsbKry6A2jNx5uKcjRip4y19IXkB4f5CwF7bzLl0Xsfnwo78/E4ZaC9BEEAadOncLVq1cRFRWFCRMmIC0tzWqxODqh2QfSshQEgOPHj+OnP/0poqOjdaUhhhV9Ack0zRzPrLZUsdpSUBB67vT6/PPP8bvf/Q6nTp1SFS4sLAxz587FiBEjgIYGAD8uVvrD8aGkLQVZey+zwnmHX7lyJSoV7lLmSkFj2PFOQT635dCCtfVxDqcPrhTkUEHt8aFa4JaC1kBrR46UZY9R9JZ/d3c3Dh48SFwpqIe6ujq43W4EBgb2P7NKKcgZCisf0zTQW2e0fDibeXwoVwrSwU7jLO8DleF5RJ+tW7fixIkT/X+fOnUKzzzzDDIzM4nEb3UZsmgRQBOlPnBwfphxAoTafvn06dO44447NMXty7C0cdSXLQXdbjc2b96MJUuWaDoOOCkpCU899RQSExMHPO9rY/5kKehrbVTvXNJoPtTU1CgqBAF7f0OwohTUC7cU9E/48aHiWPVurIyBHLpwpSCHClZ2yvxOQbLQOj6UFlotBb2RO0JEL3rK9dChQzh+/DjuvvtuTJ48WXc8SnfecDiksNJSMCwsTNLNzh/0VqFmI4iRMgwNDcWsWbNw+fJl5Ofn645HLdxSUBluKagdNYvrfR/TTU1NAxSCQM/9eYcOHcLcuXNNkYdl1MhudGGCdP5onV+xpBSsr68nIosa7FAvScmopo5anR9WKAVdLhe+//57HDhwQFPdCw4Oxu23347bbrsNISEhQ9zNsBRk5U5BpetW/M1S0CjHjx9X5Y9bChrDjncKWt1H+zu+XD6kFJ4s5QFLsnD0w5WCHCpENDYitrNT1C2otBTondzH9h4BIkph4YA/o+vqECIR55D4o6IGPAssKZFPSw2D5JEitqEBnSrkHExYe7vqNPSiJb/7CHA6JcOFVVbKymw4z3UQWFICeFkOBZWWapJDKCggOoENaGrSnQ+HV69Gans7cnJy4Ght1RyP5+pVRFRXGyoHR1ER0NSkO7wvEtvQgFCpo28pt2GgZwJGq22FV1XB5XJpjl8oKACam1X5DTBYJwcT19goGV94WBhQWGgovdCKClPKlRWi6+rgksivqN781DOmJiQkICkpCbfccgtSY2Jw08SJKP7mGxIiyxJcVgbExQHoGbOsGJdYR884oTT++zqCxyObZ0JBARy9C8r5Bw+K+i0/dAiYNImIPOFVVZbWbTX1QUq+0NBQoLAQjs5OaT8G+2Gtc0ElwiorEVBcLBlncFkZ4HXaAxTqizeOoiJA4g7FyJoayXgig4JUpRFZUyOal4pjs0T+y9U9qbSMElBeTqw8HUVFqucvcoRWVCjKFFhSgqjaWridTlH3qPBwIvklV0fk4ifdj5SVlWHXrl1wNjUhGkDfobWBANIBHAPQJRJuxIgRmD17NuLj4xXT8AdLwaVLlyIXQFFRESCSJ6zIqRWrNlKrVfaxuPlZLbSVgqT8SEFL2aCmTLmiwzp82VLQjM1hpNO269jC0QZXCnKoMOevf8VYKce8vP7/5spF4uUPABapTXxQOADIUUpLZ7xiqJZTjP/6LyOhFcmVc5R4v1ilcG+8oS89Wgx6j2ytcqgsZ7XEaE1/ML3yROqJJy8PDxtJ2yt9zo+8IudoQn45YFHbkkPDe6eAvPwz5Rz/6Z+ItEF/4VklD//0TxgFMmVIIg5FvMrvzt4fh2OUAKifU93e+1PyZ4TpvT/LUPEeuXKOf/gDQuX8GMynLKX0dSIZ5yB5FeuLTFhvHlQbhw4Ux2YJuWZCYQx+8029IkkyDATLk1AbvLn3p5TWc0p+/vEfDcuSK+f4619LOj1mOOWh/LeM2zQAB73+Hjt2LCZMmIBRo0YpLkb6052CvopVSkHv6zlYgqRSo9nARgeSSkHW7hT0ZUs0f8DO5WNHhScfA/0DrhTkUGHN888jUeIS+9mzZ2PkyJEAgLfeektyx05ubu6Av9977z1VFngzZszA2LEDVZIFBQX44osvVEguzZtvvqmqY/zzn/+Mri6xfY/yhIaGYtEiQypFRRYvXizpNji/+2hsbMTSpUtF3UaMGIEHHxRfohAEAXkWLKbPmjUL1113Xf/fhYWF+Pzzz1WHf/nllxEeHk5MHqfTiSVLlhiKIzc3F83Nzfjoo480hXvppZewY8cOFBcX60772WefVbVT1594//330d7eLuom1Y5I4nK58M4771CJ+7rrroPL5cLVq1c1hXvyySeRlpamym9FRQU+/fRTPeKJcssttww5mq+PpKQkzJ8/X7bvU+K2227DJELWPHZg6dKlaGxsFHVLS0vDk08+ifPnz2PHjh2a4n3jjTeGLMTk5eVR/9C55557cOONNwIAvv76a5w+fZpqenZk5MiRuHLliqYwt9xyi+i9ZP6CUj+8aNGi/vtOt2zZgsuXL4v6IzVm7N2715TjeKW48847cfPN8ioRqX44ODgYr732Gjo6OvCXv/xFd/xyFBUVYePGjbrDD+a6667DjTfeiPXr14u6P/roo8jKyur/W8u4PW/ePCQmJqKmpgbh4eGIiYnpd/viiy9QUFAgGi4+Ph4NKqy8Jk6ciJ/+9KdDnldVVWH16tWS4aTq6q5duyTviLvmmmvw0EMPKcqklfLycqxdu5ZIXPPnz0dSUpLheE6dOoV9+/bJ+nn00UexZ88eNEmcwJGeno4nnnjCsCxSba1vTiTFZ599hrKyMsPpHzlyBEe+/VbSPRPAAQAVvX8/9NBD+NWvfoUzZ86o/mYx405BVo4PVYIfH6oNu5SrXjwej6HvLFL1g8V85ncKso0dFWdmw9J7siQLRz9cKcihgjMyEkESioTujAwgJwcA0JSQIH2EQ6+f/jjj41UpBTvS0oaEdXV3w2lQsSFkZ/cfBSVHY1yc4tn/YoSEhAyRmzSyeSCRtruuTjJcc2KiZDjB4zGc53roTE8fIJPL5dIkR9ewYQiPjSUmj7u+3ng+5OTA43RqjkfIzkZLUhKcBnYLuocPBwgslvgSTQkJaJM42ot2GwYAgUB/JkVbSgq6u7vh1Hh8VHdGBjB8uDq/AQFE5e8aNgxOCSVmUFwckJNjKL3BfYqv05SQAKfEgkBUUhKQk4NOHf2R45prgEFjaFNCAvXjmbzLrzU52ZJxiXVakpLg1HjPWHtqql+1i8F4urpk65InKwvo3WDUnpoKZ12duEdCeWh13fae20shJV9wcDCQkwOhvV3Sj9F+2OV2E82flqQkdGdkSMY5JD80zEVLg4KwbMMGtLa2AgBGjRqFuXPnIjg4uKetSmzaCIiPh/ihlAqy9eIOCdH1nSBX91p6xwzSuAMDiZWnKzMTULmpSY6uqipFmbozMtCcmAinhKVSlMx3lRak5AhJSJCNvzkxEU6p+a0KBEHAl19+if0yCkFvZj3wAF78/e9x0003AYCmjQ3cUvBH7CLnYFpaWnDmzBlERERg+PDhPWOBCsyyFDR7wZtUekYV+/5sKcixFiOWnKyXrZV3CvLjQzlycKUghwpqz2rX0tGo7cz6/AmCgNOnT+Ps2bOSO7S1QHugYX0gE0NuMdeq9xmcrlY59Ch0WYVPfulg9QSJphJFb51R2+f3pUESuZ2oWuTiKNNXdna6Z4XVy9k59kapLnm3ETPGDKvrNot3B9HE4/FokluL302bNg34+/Lly9izZw/uv/9+RZnUEBRk/89/knWGVFxq2oDVdZ3m0XmCIGDXrl04fPiwrL/AwEDMefhhYP16vP3227qVoFwp+CN2kXMwBw/+eHhsUlISFixYgGiJk6a8MdqOWLRgI8mBAwcMhfflOwXV9IFW99P+jC/nvZV3CnI4cvj2iMhhHi2TMrUdYN9H8YEDB7Bp0yYiCkHveJWw6nx8WsjJxaJS0OhiNWmloNUTAFbrFUc/tBUyeuqMFplIyy+345crBbWjpvz1lKHY4oDZyhLeH4pj5q5TX0Hp/b37HjPquZ0U9VLQrFOk4xYEQdMc2Gj6J0+eVIxHbR2QGjNpzDPt0E+YKaPVC85aNjNowePxYMuWLYoKwdmzZ+PSpUv44x//qEs+MWgqeOyqbFOC1nvl5OQMucJFLbW1tdi5c6cqv9xSUJ6Ojg5D4UnVDyOWgjRQGrc57GP3+YZeWL1T0Jfz3J/gSkGO6Xh3HjQmCh6PBx6PB4cOHSIar79aCuodfFmxFDxy5Iim8KxaCupdtDVaDqzWS3+GxYVTVi0FU1JSiKbl75C2FDRTKdjU1ITy8nLq6dkR3s9rh5Sl4Jo1a3DmzBnD8li90GVk4cCO9U/JUpC0UtDlcqmSSQ19C+LV1dXYtGkTPvroI+zatUvyrmRfx2yloBF3FtN3uVxYt26d5N3OQE//MHv2bPzrv/4rrrnmGs1pyEFzHmEXizJWFC/z58/vuQ5FJz/88ANBaaRRW652HJvMwlctBWmkfeHCBWbXl1jDl9uclYYC/PhQjhz2Pz+EY2toHB/q8XhQUlJieJeU3vRZjV8PXV1d+PLLLyXdWbcUvHTpEq5K3DUmRVdXF2mRiMAtBdnB6gkStxQcSEBAAG655RbRBanbb7+daFr+AC1LQavo7u7G1q1bceLECd4fSsAtBbWj1AbUtpELFy7gwoULaG1txeTJk3XL4wvlYad30Hp8KClIWQrW1dVh6dKl/YrA0tJSRSsvQRA0z3+sXNi1Ii6W0tKTvlb5Ojs7sWbNGhQUFEj6cTgceOSRR3DTTTf135NJIv2+usgtBbXLSeu9AgMDbXFcNqtKQav7hz5IWgrqhUZeWGWpvWbNGgwfPhzz5s1DaGio6en7EnbeYGb0eG4S8XA4YnClIMdSaCkFSSsE++JVg68ob9xuN1atWoXi4mJJPywqBb3TPX36tObwvrSTy+pjijh0YPFOQRaUgvn5+QOU+hkZGcjKyiKaFqcHOx0funfvXuppcPwPUpaCfRw8eBCTJk3S3SasVtSzbilIOg2zLQXVxKOlDpw+fZqYZaDd55lm7t5XmmNZvQFVSx1qaWnBJ598ImuBHxAQgMcee6z/SEklpaAW+J2CbGJUSSsIApRyXWs7uXTpEo4fP47m5maMGDFCtWLGrn2b0XqrpgzVWgqy1oassBQEgJKSEhw9ehR33HEH8bh9Cbu2OV+FHx/qH3ClIMd0zDg+lNbuIpqw1qmWlZXJKgQB9pWCZ8+e1Rye3ylINrwvYvUHDouWglYfH5qeno5nn30W3377Lerq6pCdnY077rhD9b0hnB9Rs2BptQKCQxZuKagdpffXeqdgc3Mz6uvrkZiYqEse1tukVQtxtND6rcGS4lMQBBw4cEBX/KxYCpKEVNuxQx0nZSlYW1uLlStXorGxUdJPYGAgHn/8cdxwww39z9ra2oikD5hjKciPD9WOUVnUKAW1cPHiRaxZs6a/blVUVBCMnSxW9w99kDoa1Ej7obWWp6a/p1UOX375JVcKGsTqDWZGsNJSkPW84VgLVwpyqBDV1ITY4GBRt+CyMiAiAgAQ29CAYKkPhMLCAX/G1NerGsiDy8oQ3N2N2IYGTTIrIRQUAJGRiv7UyimVBs2JvWyeDMrvo+vWKeZhZFDQkHD9dHQQLwM1BJWWAsnJABTeVwJHUREQE0NMnoD6euP5UFgIh554CgsRWVNjKP2A4mJA4SPe34ipr0dAS4u4o1R7IIjD6aTWtiKqqxHU1aU5/sCSEiAqSrVfkvKHVVYChYUYBuCRm2/+0aGysv+/RtILragwpVxZIaa+Ho7mZlG3qN4+P7isTFd/NJi4xkZmj2z2JyKqqzWXZ3hVlV+1i8EITU2yeeYoKgJ6LbHU5q9QUABItD0l9JQhSZT6ScHlkpTP4XD0zHNaWyX9GO2Hg0pLieZPRFiYbJyBJSWA191aDhJz4sJC2XIODg5WtbFNV/+N3vopstEmvKpKMr7IqCgq/UQgwfIMLCkBCCyYhZSXK8oUVFqK6Lo6OCTmkLLfVRqQkiPa5ZKNP7KmBl0K71BWVoZdmzYhtqsLsQACAaQDOAagbzQPDw/H3Llzh9wf2CI1d9aBGZaCdoGV40NJxE1auX78+HHDi/H+VsdIHh+qNy4tZXb58mWi8XIFinWQUpyxiB3fzd/6Pn+FKwU5VFiwciXGSjnm5fX/9yW5SLz8AcAvNcqQq9G/IoPkkUKrnHrS0EuuhrTnqI30178WfRymlB4tvN5DV/qEyyBBrxze5OXpiycvD08RSJszkBfkHE3Ir1hY1Lbk0PDeo0BYfhVpG0rPz9rAQiUPv/41JgGYpDVikXx8VWscHA4jxED9nGpm708RA33Ng7pDEkJB9iAo5NfixYiU82OwH75GKX2dSMY5SF4ic+K8PPVzc4V4JuoMJ8as3p8kf/d3elKTJRMEy5PQGD+x96eU1rVKfiS+q7SQK+f4u99JOj2rMv7/Fnk2DcBBAJGRkfjDH/6AmpqaIX7sdKcgi0cfSsGSnEZl8Xg8UDrjQ0s9uXTpkiF5zFQKsqLUYOFOQbXk5+djw4YNqvyqvSKDlXLwR3jeK6Mnj2hdj8TLyzfgSkEOFZbPn490iSOQZs2aheuuuw4A8OGHH0ruGszNzR3wd15enqqOZ+LEiUhPT8fWrVu1Ca3A888/jxgVFmRq5RTjl7/8JdWjShYvXizp9uabbw6YvH3wwQeKH28JCQlYsGCBqFtbWxv++te/6pLTCHfccQduueUWAPLvK8XUqVMxefJkYvLU1dVhxYoVhuNJTU1FVVWVpjDPP/88tmzZgurqat3pzps3D8m9lpecHj766CM0S1hzDO63aECqTokxYsQIdHV1obS0VFO4e+65BzfeeKMqvxcuXMD27dv1iCfKzJkzMWbMGFk/evqCPm677TZMmqRZBWZb5Mbl5ORkzJs3D4cPH8a3336rOk6Hw4E333xzyPP33nsPnZ2dumWlTXBwMMLDw5GTk4PCwkI0NTVZLRIVMjMzNbf58ePH46677qIkEfs4nU4sWbJE0n3GjBk4ceIE6uvrVcepdp4pxoYNGxSPfKfJjBkz+u8NE6Orqwt//vOfJd0dDgdmzJiBXbt2ibrfeeeduNnbElwjV69exaZNm3SHH0xycjJuvfVWybFs9uzZGDlyZP/fJObEubm5WLdunWRbDQgIUHVSybRp03QdH/r6668jKGjo0sG2bdtw8eJF0TCZmZmYM4eIKnMApaWlWLduHZG4Hn30USL3Dx8/flwxX++//37s379fcYw1itScJzIyEi+++KJkuCVLlsDpdIq6HTt2DAcPHRryPBPAAQAVAOLi4vDMM89gwoQJ2L179xC/JJWCfdBSPLCkaLMTJO4UJOGHFHZc9DZDZtp3Cqp9B61jmZXHh3KUMXLENevlZuXxoQCwevVqzcYCfBz0D7hSkEOFlpgYOOPjRd26MzKAnBwAQHNiIpokjhnt89NHY1ycqrTbUlLQNWyYZPp68WRlASpkcMbH67//LTtb9GgeUsjliZCdDYfXRN4ZH49Wr6OPxAiMjx9STn14WlqIl4EaOtLS+mXSk35LUpLkO+nBExlJJB+cXV2Axng8WVloTkyE08DuIE9WFpCaqju8L9KcmAinyMIYAKJ1Rwp3RAS1ttWanIyOjg44FRZuBtOemqr63buam4nK78rMVEzbSHqd6emmlCsrNCUkoFliXA5NSAByctB25YqmPHU4HKJ56IyPZ1op+NprryEpKQkA8O6778Lpo3dUOltbNY8vbSkpftUuBuOqq5NtA+uOH+/5j4Z8FbKzgdhYXfI0JybCqfPoURJ0DRsmWx+Ezk7FPuNIZaWkH6X4lXB1dREdd0ITEmS/NQbLK7S2Gk8/JwctSUmS47PD4VD1/dGRlqZPlpwcQGTu05qcDKeIVRgAxCcnU+knXDA2rnvj/V1qhI7SUkWZujMy4IyPR4vEGBuWmEhEFik5XJGRsvE74+PhHKTUcbvd2Lp1K06ePCmbZkJSEh5esAAxMTGIlLhuo7W1ldidcbSPD7XTYqgvHR/K2v24/qiAJHWnoJG6oCYv2tvbNW185paCHCshVa/0xqPVuACw1zjI0Q9XCnJMx7sjo2EV53a7iccJqO+A7XheNNAzCddaHnITd6vexejHBC3zeqvgE1vfg+YHs976okUm0vLTtK72R9TUAVJlyPrHBuvycayDxthq1/mjmvTVyFdSUkJKHF3pa8Hj8WiK04zFILVp6L73XMc70KqXJOMlFZcdLFC0ttOGhgasX79elSX5448/jvZeS+coiTumPR4POjo6EK5TPm/MOD7ULrAkK2t3CtoJVt7LLncKulwuKvGyUg7+iC9bChqB5Lu1trZCfNuOdnw5z/0JvpLGsRQak1itH+pa4qWN1UpBb4wuDFv1LkbT9SWloNodcUpxcNiCdl+kp8y1bMYgXad4HTUfrXVQaqxnaSFLDNblsxJ/b3esvT9r1hWDYS2/jOLxeDTNgVl6f92nmUiEY+nd9GDm7n2leTntvFSK37tOl5SU4IMPPlBUCN44bhwAIMTrdBkpS0Ggx7qHJLTGaV/ecMaypSBrShs79m9Gy4AFS0EakFgX4dDFl8vHakvBPrRswGOtDXPowC0FOZZiJ6WgGYOULykFrVqgYs1S0OrJjdXp+yJWT5BoWwrqqTNWWgp2dXUp+pk6dSoOHz5MNF1fRc2CJesKCFJ4t3Wr2z2HLWi0ASPjtdVtkoSloJ1Q+tagoRQktaDJF9QHYrZS0ErUttPvv/8eX3zxheKGr5/97Ge4Z+xY4MyZAc8DdR61rSd/uKUgW7IaLQ+rx7LB2KW/zM/Px7lz5xAYGIiioiJDcpCqTwEBAdTvFNQKa/WLMxBfthS0+k7BPlgaLzhswJWCHNPx7sjkOiVBEHR1WrSODzXjWBi7KQVZHJi5peCP8B1xvonVO8nFsNJSUM2ddJMnT8a5c+fQ2NhING1/xV+OD/VlSwGj+PvYwtr7Wy0P60pBq48PJYHVSkGWLAVZPD7UF5SCXV1d2LJlC4733YkqQWBgIB555BGMGzcOaGgY4q70fU8S1ucRZsBSHnBLQfp0dHSg5NIlXAugsbERZw4cwN69e4nFz4KlII16wNdFfBt/KVsz31OpDftLnvs6XCnIsRQaSkFuKagPPYu8LB8fqnfRWo3VkZ2ws6KaVaz++OZ3CmqPLzY2Fs8//zzOnDmDuro6VFdXU72/ys7QsBS0us3oxa5yc+jD2tjI+u531vLLKFZYCpLC3xfUB8Py8aFdXV1oaWlBfHw8kfFILu2LFy/inXfeQUVFhWwc4eHhePLJJ5GdnW1YnsGwZClop01BWusGy8eHsnY3J2tpNTY2YtmyZRAKCpALYOnSpXDGx1OXze12D7AAVqsUZG0ebYcxiSONncuPlKWgmbDWfjl04EpBjul4d2pyE269nZ/b7bZMKWhnBYyv3CnYJ5Nei1FalqZWwHfE+SZ2v1OQtPzXX3+9Kn/R0dGYOnUqAODYsWNcKWgAf7EUZF0+K/H3sYUfHzoQJdl9zUpb6wZElo4P1VtXfLXNs2gpKAgCduzYgePHj8Pj8SAmJgZPPPEEhg0bRlzGhoYG/P73v8fbb7+tuDEyOzsbjzzyCOLi4mT9+YKlIB//9WFUmcotBeXZs2cPGhsbEUsxDe93Pn36NPbv34/GxkYMHz4cD40fj3iwcaegHktBq+dKHHnsqDhTCyvy8bGNMxj7bIHi+CRynZLeQZuWpaAZkwiuFDROX7oul8tQeFJYPQGwOn1fxOrJFM0y1bvoqKV/JC1/UlIS0fj8HaN9vy9hdVvnsAtrY6vV8sil73K5sGTJEhOlGYrZx4eyfGKJmceH0qqXvnp8aJ/7t99+i6NHj/aPtU1NTVi+fLnh00y80+/s7MT//M//YOTIkfjTn/6kGPfNN9+MZ555RlEhCOhXDOkpC64UZEtWMywFzYQ1BeQPP/xgmhwXL17EF198gfr6eng8HhQVFWHdunWq4zFiKUhLOWz1XIkjD+tH0VuF93vz40M5pOGWghwqRDU1ITY4WNQtuKwMiIkBAETX1aFD5C4CABAKCoCQkP6/YyX8DSasshIhsbGq/asloLgYUPoY83iMpVtYCERE6A+vgKxshYWA14debEOD4gdiUFBQTzgRHHV1xMtADSHl5UBhIdwtLbrSjwgLk3wnPQTU1FiSD0BPnY2qrYWnqclQHFBxZ5s/EV1XB7eU1QPBuiNFQHExtToVWVODwI4OzfH3tTs1BJeVEZN/ypQpcBQVaQ4XWlGhWobQigpTypUVYurrEdLRIeoWBQCFhQirrNRUhlJjRWxDA4JaW/UJagIBxcX9Y3JMfT26LOrLWSSsstKv2sVgAsrL6cwzNYzX9fX1OHjwICorK9HV2krVckAJuTGgvLgY0XV11OJXA8lxBwBCQkJk4wwuKwOio/v/djidxtMvLEQkgTmllvHPG0dRERAWNuS5nExRhOfUfQSVlhIrz6DSUiLfXiEq+oTgsjJE19UhWGKMjXY4gMJClB44IBpX8TffYNSoUYqySMkREBAAoaAAW7ZswR/+8AeUlJYiBkBMr3sggHQAxwD0fQE6HA7cc889uP3221Uv8LOkpNKLnd7Bl44PZc1S0B/py9/8/Pwhbq29c3YW7hTUEyevO74L62XLihWkncY2jjlwpSCHCgtWrsRYKce8vP7/zpOLxMsfAORqlGGMRv+KDJJHjABol1NrGkbI1ZD2q2oj/dOfRB8nKqVHmSgj6f/TPxGTI9mIHEbJy8PzBOLgDOQXco4m5FcOrG1bRrml90cEnfl9U++PZhp25RUlD7/5De4HcL/WiEXGihe1xmE2XmU/30IxOOwxDBT6YY19TQKA2aRl0IuM7FkgkFcG++FRJGQQYYKUwyB5Y0mkn5eHp4zG0ctPdaYvhmIdJDin7iMbBMuT0Bj/U6jI17w85bnHv/wL5siEV0OunOP//i9mQ77cpgE4iJ5j1x977DHk5OSoSrcPvceHsrSoa6c7BVnC15SCvpqWHH1ynDlzxlA83FKQoxVfthS0+rQHPXAFon/AlYIcKiyfPx/piYmibjNnzsSYMT0qu9WrV6OqqkrU3yuvvIIwrx2pixcvVpV2RkYGRo8ejT179mgTWoHHH38cGRkZsn7cbjfefvtt3Wm88MILiIqK0h1eCbk8nD9//oBj+N599110d3crxpmbmyv6vKamBqtWrdIqomHGjx+Pu+66C3V1dVixYoXm8CkpKXj66aeJyWNVPgDAggULsHHjRjQ3N+uO46mnnkJqaipBqezPsmXL0CCxC1uqPZDkypUr2Lx5M5W4hw8fjo6ODtTU1GgKN2bMGMycOVOV36NHj+LQoUN6xBuC93iihfz8fOzdu1eV39tuuw2TJk3SnIZdee+999ApYR0cFxeHX/ziF9i8eTOuXLmiOs7g4GC89tprQ55/+OGHaGlp0S0rbRYtWoTQ0FAAwMqVK1FbW2uxROygpc37IqWlpZqO0VLDs88+i/j4eFV+z5w5Q3yea4Q777wTN998s6gbibYzffp0TJgwQXf4S5cuYevWrYZk8CYgIAB33HEH9u3bJ+o+eGxqbGzE0qVLDaX56quvYt26daiurjYUz4QJE3D69GlDcdx333244YYbAACbNm3C1atXRf2lpaXhySefNJSWGEVFRdi4cSORuLzfxQj79u3DqVOnZP1Mnz4dhw8flhxj4+Pj8eyzz0p+ryUlJWH+fOUtKoPDX716FQcPHkRdfb1suEwABwBUABg5ciQeffRRREZGKqY3GL6QaC4sWQoaVab2Hc3MSg2ysxJCL6TemTXFOr9TkH1YsaZjDauOD1WCJVk4+uFKQQ4VWmJi4JRY2OjOyAB6dxy2JifDKXFEpXv4cMDrQ0QqvsFEJySga9gw1f7V4srMBLKzZf0ILpehdD1ZWf1Hq9JATjZXZiaQltb/d2NcnKp7+YTsbNGPC3dYGPEyUENbSgqQk4Ou0FBd6YcnJvbXTxJYlQ9ATxtyxsejOUh/V7+vqAhCYSHS0tJw66236loc8DWaExPhlHIkWHek6Gpvp1an4pOS0NbWBqfGOzlbk5NVv3tHcTEx+b3HE03h6utVy9CZnm5KubJCU0ICOiSONgtMSAByctCSlASnwuKiN8HBwaJ52JyYiCaJo8aZICcH6FUKNicmwul2WysPQ/SNtf5KtyAQ74fdw4cDKu9IXb9sGWDR3EIMuX6yJSnJcNvpGjbMUH3rbmsjWl4OhwMdaWmqvnUAwF1XZzz9vr5XxYY9OdpSUgzLcrS6Gjfcdx+A3vKV2CgVSXhO3Ue3we8tb4zWrT7azp1TlKkzPV12jHVFRqI6IkIynuD4eEVZBa++yel0YvPmzbh8+bLyC3hx989+hmG33UZlUd8uloJ2UmyyJCu3FLRHWnKokUPt8aEsWQq6XC7Dm2o4dOGWgubFowaWxhYOPdjavsHxC7w7MrmORu9OHrfbTaWzNGNnkZUD3eD3UyuLlD+r3qUvXTUKTTF8bQeZ0XI4d+4czp8/j6+//hpLly5FW1sbIcnsi9UTJBbrqBaZSMpvdVn4ImoW7FisgzTg9YsjhZ0XJmgglx++2o7k+sHB+UGivpC6D4lEHAUFBYbjYAUzF+qU/LS2tuK9996TdNcy9l6+fBnvv/++aoVgZGQkpk6ZAgAYO3asIYWg2W0+W2HTrh7s1G+xJKtRWfosBeUwukahBa4UFMeOdwr+5S9/IR4nhx1YaT9SsGIFydJ4wWEDrhTkWIreOwfkUDOZ1IMZO9dYUgoaxap36XsPNUefisH6hEILpN+ltrbW8P0CHOPQVMjoXXTUIhMLE1s+ITaG1joold+slwPr8lmJ2nbc1NSE3bt3Y8WKFdi7dy9aW1spS2YO/qIYJwELR4jpHXek+gBBENDe3k49/cFx8EVu8pitFDSSnpp+p6WlBZ9//jlWrlypaiNfYGAgXn75ZVy8eBGTJ0/WLZs3NK2DxKBxxDsL/RYtaM5tSFgK+qtSkBVYsBRUgz+Wja/DiuKMZViaw/lLnvs6vjvb4TCLd+chN+HmloLmwi0Fe/AV5Sit9Ldv3040PjtitaKAdp3SE79bw9Fw3FKQbeTKv6Wlxa/u5PCeo/C6pp2WlhYsXboUhw4dwtWrV3HgwAEsX75c8ug8O2HV5jNW8VVLQTnZDx48KOnGcln6wjyXZJosWQoqoTTX+vrrrzXdGTl79mzk5+fjL3/5C1JSUgzJ5g2NTb9yjBkzhvjdlXbqt1iSlcSdgqRguR8Wg5UFeFLpsGYpyGEfVtoADUgpPI3mgZZ2aef85qiHKwU5lkLLUpAGvmApqCW//VUp6EuDH6ld5YOprKwkHidHPdxS8EfMsBT0pT7BKN3d3XjrrbdQWFhIJD6WFrLEYF0+K1HTLvLz89Ew6K6x6upqXLhwgZZYpsH7hYH4o1JQDl8/PpRkPFZD6j3UzIOMnmYjlUZTUxMWLVqEu+66C1evXlWM5/HHH8f+/fuxadMmjB49GgAbczMjMlx//fVITk7WHX4wduq3WJKVWwrSgyWloB3vFOT4NqzXBzvOvVjPUw4ZuFKQYyn8TsGB2NFSUAqrjw9lxVLQamiUw+rVq/16kmD1xzeLddQqS0G9WF2GLKPUthsbGzXHadf8tqvcZqBmDNi1a5fo8y1btpAWx3Ro9GO+Oq6y0I705i2pIwRZWpwmFU/fuC8Xnx3qtN0tBbdv345x48apui8rIyMDx44dw9q1azFt2rQBbmad4mCX+sJCv0ULlo8PVVMPfXVRnJX6T1IpSBNW8otjHv5a5lYbW+h159gDrhTkmI5358HvFCQbXiluufj1fgxyS0Fz42Mh/aamJpSVlRGPl6MOK/sJKbT0H3Y7PtTqNuzLsL7oxrp8dkXv+MwSvF8YCLcUHAit+sGSctHKdszi8aFmpOU9fyoqKsKcOXMwa9YslJSUKIadMmUKnn/+edx6661UZPPGzm2+Dzu9Awuy9slghqWgWkh8b7A01rNkKaiGgIAAbinI0QSpIzZZhHX5OP5LkNUCcHyTqKYmxAYHi7qFlJcDCQk9/mprETvoaKl+CguBlpb+PyX9DSK8owMh5eWq/aslqLQUCAuT99TZaShdR1HRgHdWQ3d3Ny5duoTq6mqkpKRg1KhRCAkJGepREGRlCyguBgID+/9W+x5CQQEgkl5AaSnxMlBDWGUlUFiIgOJiXelHdXf31L1empqaUF5ejsTERCQlJWme3AZWVVmSD0BPmcbU1yO0s5N43CX79yNz6lTi8dqB6Lo6dEqUqVBQQP3jPIhi24oKD4ejtRVup1NTuPDw8AHtRo6wykpi8oeUlwMREbrCqZUhtKJC9bv5AjH19cQXe0NDQ0XzMLquDh6Ndc0sHA7HAJmj6+rQYVFfziLhVVWK7UK2jdm8TdHohwOKi4G2NlV+rZpXSBFSXi5ZptF1dYbllYtfDcFlZbpkCA0NRaeOOVRIeTmQmNj/d0BNjfEyKyxEVG0tugzGE05oXuq+cgWIjESkzLtFBQVRaesk219wWRmQlGQ4HjVzm5DycsTU16O7u1tXGkFBQei8cAF//etf8e6776KjsxPZvW6BANIBHAPQ5RUmNjYWjzzyCHJycmTjZkHhwNLmWhYUbWrRKivNdzNqXU1KGVRfX4+lGzYYkkVtWqRgxSpHTTp1dXVAfLysH9p3CnIli+/BShugASt3CupNl+O7cKUghwoLVq7EWCnHvLz+/z4iF4mXPwDI1SjDzRr9KzJIHjFCoV1OrWkMJhjAmN6fHA4oyKY3vyVkztQSB2lefx0TAEzQG/73v+//b0zvTy+psDAf8vKwyKq0fZj5co462rBWxvf+mOMf/1GVt+m9PyLozO/RvT+aadiV12lF/Ic/DHn0HK20SLF4cf9/51knhW3JlXO0ebu6FhTGdg15Qjxto8jIPody/Gq4vvdnGoPkTQaBMsvLwwKjcfRyH4lIet9R9lsOAH79axKpDWAECLYBQn3Rvb0/pbSmGE3oT3/CGwDekHCeBuBg7/8nTpyImTNnIkxpUyvYONqdJXxZKUgTEseHklAMfP7552j22uysF5YWxVlSCqrByJ2CamCpbDhk8GVLQVJwpSCHNFwpyKHC8vnzke61Q9abe+65BzfeeCMA4IsvvkBBQYGov6effhopKSkAeiaIb731lqq0w8LCMGnSJHzzzTc6JJfm/vvvx/XXyy8pdHZ24r333tOdxrx58zRdkn7+/Hns2LFjyPOZM2dizJiBakK32423335bMq4HHngAo0aN6v97sddiqByLFi3qsQIZRElJCdavX68qDpKMHDkSs2fPxrfffovDhw9rDh8eHo6XX34ZNTU1WLVq1RD3u+++GzfddJPq+KqqqrB69WrNcpDg6aefxmeffaZ7R7IcU6ZMwZQphpc2bMmqVatQU1Mj6vbLX/6S2B1EUpw6dQr79u2jEnd6ejpaW1vR1NSkKVxycjLmzVOnNvnyyy/x/fff6xFvCLNnz8bIkSM1h5PqO8WYPHkyplpgFdvW1oaNGzf217Xo6Gg8+uijiFfYmWuUt99+W9MdkWoIDQ3FokVDtygsW7YMDYxZPPURGBiIN974cdlVrt37I9deey1+/vOfy/qRm0fk5uaSFchktPQhatEyB1Q7RzOLqVOnYvLkyaJu69evV3W8oRzTp0/HhAkTdIfXW17h4eFob2/XHG7wXLG6uhqffPKJ5ni8efHFF7F+/XrU19cbiufaa6/FpUuXDMUBAAsWLEBCQgI2bNiA4uJiUT9JSUmYP192K5Uurly5gs2bNxOJ684778TNNxvfSrp9+3ZcuHBB1s/kyZNx8uRJTfPyyspKfPXVV6iqrpb1lwngAIAKAHFxcZrnRyxY2bFkKUh7Lu9rmHl8qJpybmpqUrRkUyuPWbBiJUVSKUhTBq6w8D/scietGNxSkMMqXCnIoUJLTAycEhOxrmHDgN4jTNpTU+FsbBT158rMBIYNAwAIbrdkfIPpDAtDR1qaav9q6UxP75dbCqGjw1C67uHDgbQ01f63b9yIJpH0tv7wA8bMmjXgmae7W1a2we+n9j2E7GzRY1W7PR7iZaCGlqQkICcHbQUFutLvCg8HcnJwJD9fNPyXV6/ipgcfVB2fKzjYknwAeupTY1wclXtfvNuxv9GSlASnRJ4K2dkDjuGlQXt5ObU6FZWYiJbQUDg1vkNoQoLq+tCWkkJMfldmpq566GppUS1DR1qaJXV986ef4rLL1b+o4QSw+vBhvPrqq1TTdcbHE1cKhvf2q4NpTkwEm4eHAsHBwQNklmv3/khbSopiu5BtYzYfP7qamoj3w1rmgFbNK6SQ6yfbU1Ph1Hg0/mC6MzIM1Znu5mZdeeaOikKLDtkHz6ldISGGy8yTlYWmhAQ4DS7StCYnw1lbaygOoLdMUlN7+sbmZlE/oYmJVNq6q7OTWBtQ832nhtbkZDgVFHftqamq5+VutxvffPMNvvnmG00LczeOH48xs2aJbtiUwyxLQbssMrJkfacES7KSsBT0V1hpG6TudeRKQY5WfLlM7WgFycpGBQ5duFKQYylykwXvSaGWDodW52TG5ERreClrnjaRO2mU4tY7CZeKl9XBS4m+fDh58qSou5PR+6/EKC4upqIQBPgOWiuh/cGspw1pUSKxsBtdC1b0ZS6XC+fPnx/yvKamBvX19UjovZeXBma+L0sLWYNhWTYW8PcPQX9euNQKC21Jb30lZfFEor2QWqgl1XbVzC/t0E9olVEQBNF6QfI7sba2Fhs2bEB5eblqucaOGQOcPYvp06fDqVEhqEU2NfiCpSAL/ZZatMpKs12ycqcgKVjqw8y0FCQ11vDjQzlaMKKE8pf6YOY46S956u9wpSDHdLw7F7mJghEzaRodmBmdIs00aCkF9aZHi7730Ju+Lw1+pI8288ZOH8tmYkb9obkYrVd+LTKxsGijJZwVfYKcZUpRURFVpSCnB97HceTwpbkCCeTyw85tiZTsLNUX0kpBlt5ND2rlz8/Px6FDh1BfX4+cnBz8/Oc/R0zMj7eOq1VmKC1qnjhxAjt37lR9xGh8fDz+/d//HS/OmAF4XQOhFbsdTUgbO/dbStAsAyKWggqKRV9VCrJilSMIApETQwINnJzDmnKYFk6nE1VVVQgNDcXw4cP9ftO1L2+4Y+X4UK4U5AyGKwUp4XA4QgA8AeApAGMBpAJoAFAAYAOApYIgGD+7RV6GiQDmAvgZgAwACQDqAFQCOA3gKwC7BUGopCmHgoySbkYsBWl0YGoGKZZ2OGqNm7SloJ7jlkhQVlZmKLwvT0ZI4ssfy0qo3cxAC9ppcEtB6/G1BXYpmVl+l8GysSyrFfj7h6JdN5/Rwtf6rD70LtDRqh/cUpB8vGriunjxIjZs2DDg75qaGrz66qsICgpSHY/cN0ZLSws2bdqEixcvqpC651ju5557Dr/97W+RlJQEFBaqCqdHNq1wS0FzYUFWM+8UNBN/lcVof5CRkYGQkBCqfQFLZaMVQRCwe/duHD58uP9ZZGQk5s6diywL5bIapXmFnS0FScnHklKQ9TznqIMrBSngcDhuALAawIRBTmm9v6kA/t7hcDwnCMI2CumnAPgfAPNEnNN7fzcDeA7AuwBeJy2DHGotBVlTCtp9sd9speAXX3yhKz6jdHR0oKmpiRlLQV8dLFn4AGURX7AU1PMO3FKQLHJp0t5F6qt9llb8fbcuRx7eTtTDwnxBb3mxZClIqs6RmkOQvnvWKtTk63fffTfkWUNDA4qKijBy5EgAxjaPXrp0CZ9//jlaW1sV47j//vuxaNEi3HPPPYiIiFD0rxZfsBRkYX5pBb52fChLC9G+mpYcgiAYHid+9rOfGZaBhB9WOXv27ACFIAC0trbik08+wf/32GMItkguq/GVeQVpzN4IRSNdDrtwpSBhHA5HJoC9AIb1PhIAfAPgCoBk9FjthQNIAfC5w+G4TxCELwmmnwXgawDXeD2+ACAfPVaCEQBGokdhSe5LggJ6zaQFQcD+/fuJy+PrloIk755raGggFpcexO7iUgu3FFSHmR/LgiDg5MmTuHDhAkJDQ3HTTTfh2muvNS39wVi9UEDbCldPP8QnmGSR64esrn8kYfldWJaNBfx9rPT39x+Mr1oKsnSnIKl4Ll++TEASdceH2mG8VyPj2bNnRZ/v2bOnXymo5/jQrq4u7Nq1C8ePH1cMGxYWhtmzZ2Pt2rWKfvXAQp/GUn2xU7/Fkqz8+FB6mKm4N9of5OTkAKBbN1kqG61IjcOdnZ2oqKjwW2tBbilIPx6+ZsMZDFcKkucT/KgQLALwkCAI/dsLHQ5HEoA1AO4BEAzgM4fDMVIQhEajCTscjlj0HAnapxD8CkCuIAjfi/gNAXA3gGij6RpBrqPRaylIUrnljdPppBKvN1YqBfUqGsTi/eGHH3TFRYq6ujoEB+vbY8UHP3WY+QG6Z88eHDp0qP/vH374AY8++ijGjRtnmgxqMaP+1NXVUYvbbhbR3FLQ3LT1wtKClVrsKLOZXLx4Efv378cdd9xhtSiWYNcTKWjhq0pBXzw+lBS0vrfUYNWu+cF0dnZqisfbT21tLVavXq1qTjdixAg8/PDDiImJgSAIVNoUC3Mzo5B8B18+LUBLPj311FO4fPkyKioqMDw9XdKfmceH+qpSkJX3NqoUJNH+fd1SUM4qXI3FuK9ixFKQ9fpgRD6r3o2VPolDF64UJIjD4ZgFoG91pAvAbEEQ8r39CIJQ63A4HgLwPYAR6Lnn7x8A/B8CIvyxN04A+BTAPEEQRHtWQRC6AOwgkKYoUU1NiJVQygSXlQHJyQCAiOpqxEpYlQWWlAC99zSgvV3Sn1mc2bIFHefP4/7775e+OLm11ZCcAcXFgIZJmGxag+6WEFpaZP13X7oE9O52VYx7cDpRUQMehVZUWFpeoRUVCAkJ0S2DUFCgKW/lCCgvt7zu0iCsstLw/SVq6OrqwvkdOxA7aJL4/aZNGDeo3plFdF2ddJkWFgKhoVTT7750CbGUPhiigoKAlhYEtbdrChfe0aG6PoRXVRFrE8FlZYo7isUI0dAuQysqTKnrA6ipkZQvpLwciIykljSN/iqis1M0D2Pq69HJaP8Y1d09QOao2lqf7MuNcGL9eiS1tGD06NGi7qTGURYJLisjXh8CS0qAri5Vflmri3JzgkiZ/kwtIeXlhuqM3vKKCQhAt45wg8eNgNJSw3ngKCpCTH090NRkKB5SBBQXAzExsuUbJQhU2jrJ9qembkmlFe3x9IeV+6btI6yyEjH19SgpKcGerVsR1dGBKACB6Lnb4xh6FhD6CAwMxIwZMzBp0qR+JZXb7e6/x5AkLBwfytICo502M9CUNT4+HrNmzQIAdF64QF0WFixWWcWOSkF+p6A4dukHzcbKzUa04ZaCHFbhSkGyvOb1/2WDFYJ9CILQ6nA4/h+Alb2PXnY4HP9PEATdvaDD4ZgA4IXeP0sAvCilEDSDBStXYqyUY15e/39/LheJl79wALnGxaJOJAzK6fXOapBNa1BcUUr+tcQtkw4A/KT3ZzXT9AbMy9OUt3IMgz3qrmY01lW9hAB4Q8rxV78yRYbBPCnnaEK+vEg9BZ3853+q8nZ/748IOvN7JNhul8mQkY9yHZNM1yj/8R9DHoldfMwUv/99/3+ftlAMppGpj7k6w9mBm3t/RNGQJ7mk06aI7FxfLQbry5jen2kMkjcTBMosLw/PG42DJL3v+LiSv9/+lnjSo0CwDaioW7Jp/eu/AgAeUZncXb3//lHEbRqAg73/T01NxWOPPYaUlJQBflwuFxWlIElljC9YCtoJf7xTUBAEXLhwAZcuXUJkZCTGjRs3pK2QgCVLQbNgwVJQDazklx7sLDtNlCwF/VWZqvdaLaW4OByAKwWJ4XA4otBzJGgfSxSCrAfwF/ToahIA/BSAkbsFX/H6/7uCIDQbiMswy+fPR3pioqjb9OnTMWHCBADAli1bJM/Unj17dv89DW1tbfjrX/9KRVathIaGYtGiRaJuLS0t+PDDD3XH/eijjyIrS/0p4osXL5Z0y83NHfB3U1MTPv74Y0n/0dHRWLhwoaq4vVm4cCGioweeQpufn4+9e/eqCk+LESNG4OrVq7rCvv7663jnnXck3QfnrRzl5eXU7v+wmvHjx2P69OlUJ//Hjh3DwYMHRd1ee+013cfEGmHNmjWorKwUdXvllVcQFhZGLe3q6mp88skn1OJPTk5GU1PTgCOx1CDXLw5Grt/Xypw5c5CZmak53JUrV7B582ZVfm+++WbceeedmtMwQlVVFVavXi3q5j02kkYQBORRUNZERkbixReHqrNXrVqFmpoa4umRICYmBs8//+MS/OrVq1FVVWWhROwiNSZqmaPYjRMnThC/v/rJJ59EWlqaKr9q52hmceutt2LaNPGtWDt27DB01zMA3HXXXRg/frzu8GfPnsWuXbs0h0tOTtbVR91xxx245ZZb+v8uLS3FunXrNMfjTd/coqOjw1A8pPjpT3+KiRMnYu3atSgvLxf1ExcXh1/84hfE07506RK2bt1KJK7Jkydj6tSpsn6k2pv3OLF+/XqUlJSI+istLcWxY8dQVFws6p4J4ACAit6/p06dinvuuUdU+UfLkkLPQqHY/P+GG27QnQ5Li512shSkidp8IHV8qBpllCAI2LdvH/bt29f/7Ntvv8Xdd9+Ny3v2EN1wxpJSkFsKavfDKmqvUPI3uru7rRaBGnasr6z0SRy6cKUgOW4D0HdmXCt6TgCRRBCEDofDcRjAjN5Hd0OnUtDhcAQCeMrr0Xo98ZCkJSYGzvh4UbfO9HSg9/LhtpQUOCXuUvD252lpkYzPEnrlGozQ3GxIzq5hwyTjFkM2rUHxeBobZf03ORxwDx/efzSq2vfwZGUBsbEDnzmdlpfXqYYGQKcMnqwsTXkrhzsw0PK8oMU3xcVI6+iQPDqOBB0lJdL5l5MDWKAUbE1OhlNCaebJygIiIqil3dDZSbU+hSYkoCkoSPOiY1hYmOp20ZqcLNnva8U9fDiQna05nEtDPnakpWlq8yRwBQdLyufJyqInjyBQqV/uqChRmVuTk+Fk9KiYgPj4ATK3JCXBqfJoR79Doj6SGkdZpKOsjHhbcQ8fDmRkqPKrNe2wsDCqyqT21FTJMm1PTYXToEK9a9gwCNnZqK2tRWxsLEJCQrSFV5gDSxGhs48aPG50E+hb+282Dw83FA8pWpOTgZycnr5R4sjxwf0oKbrb2oi1P7m624dUWo64uP6wLUlJcA66n93pdGLbtm24oOLYRQCIiIrCgkcfxYgRIyT9GFUKSt1JqHUhOjAwENOnT8dxL2V3eHg47rzzTqqKALOw052CLFkKmnGnYEdHB06cODHgWVdXF3bs2EH8aG2W6qSZSsHq6mpT0pKTgYQfVvFXizclfNlSkNSdgvz4UA5puFKQHN6r4vkqjwI9iR+VgkZW1ccBiOn9vxPAFYfDEQTgGQDzAYwFEA+gFj13GW4C8LEgCNpMQSigtmO3S4dkVE6aO4PU7PRobm5GXFyc4XitsN4iCcn6Zpe6q5cjR45QVQraDdrlbeQCbrXoeQerJph6Fx+0hLOiDcuNBTR3r9N6VzvueuVWAhw5aNRpQRBQU1OD0tJSpKamIj093XA9nDZtGjIyMpCUlIR3332XkKRDkes7SLSlkpIS7Nu3D62trQgICMCkSZMwc+ZM1XHr7dtIKTd8cS7oK3f/kCqbwX3CxYsXsX79ek0nL8yfP79HoSwDLaWg1nwQBAHTpk1DlscD5OVh2rRpGHnPPYiPj5ftH2m2BRbml1bgS0rB0tJSXPjhB1lrv++//56JOzDNTsssWbq7uw2dcvT/s/fmcVJU5/7/p7p79g1mZWAYhn1HEEVWwQUEFBRFjYK4b3FhvInfX5LvvTc3N7k3N8n3JowxIcbEBAVjFBdEQZF9l31fxGGG2fd9n56u3x/T3fb01HKq6lTVqZ56v179gqmqc85z1jp1nvM8h4alIAlWfq9aWbmlJ6zPKzweD0qLi9HR0YHBgwfr4spbCFspaKMntlKQHqMD/n+NMEygDxFpXxvSBB7fVohuLyQbAUwLem6g97cQwI84jlvO87ykRaMeNDc3Y+vWrSgsLERpaanoc4EfFH1lQDJTKQgAdXV1ipWCQvisDa2KFRewzaJAxBWSEZg1Lpi5UKB32yTZoSsWTo9n5eiLSkEr7V73IVaGLC+6sSybjfnoMS7s3LkTeXl5/r/Hjx+Pe++9V1OfnzFjBqKjo9EUZMFkJDT60tmz3x3T7vF4cPjwYSQlJeGGG27QHLcUVhxvjcK3eGf1xU1aMvri4Xkehw4dwldffUUc97ixY4GLFxEREQE5e16t7tXEZFKjFATgP/bihhtuUO2hRa0MtMMHYqU5gJ6ykip4fPe0jpmnT5+WtfbrMNBrA0tjmFGyaPUqQKM9slTuemD196ZesG4p+O677yLXK2NUVBRWrVpF7Paf9lxDiP79+6NWZvykuWbTl9tqKGF/6dAj8AA9Uh85gYdSJWpIe3DQ31vxnULwEoB3APwd3ZaJPjIB7OY4bioMZt++fThy5IikQhCwLQVpQyJbfX297DMk8VqlvsSwuvx9BRbrSW+ZjFBY652HvrpoowSzNiboVfcs9lU5QrVt2dBBjzYdqBAEgPPnz+P06dOa4jSqHettKSjEqVOndIk3ENtSUBwjPBeIwaJHj8LCQrS2tuK9997Dtm3biOLNyMjAI488ggULFhCno9e3Js15Ryi8P0N5QwDLloKswZKloFWwzxSUx2zlFqto2fRiRLlVVVX5/9/a2op//vOfxOnSch8qxu23347ly5dTlaMvt8W+ROjOdownNuD/wgcr9CbwuVjRp+TpF/D/Ceh2F9oC4AGe58fyPL+K5/nHeZ6fiu6zC32jWTSAf3Icp+xgDgkiIyMRG6slK9/h8XjQ0tKClpYW5gYknzwNDQ3+3Wqtra1oaWnRFG9jY6N/521zczNavWd0dHR0oKGhwZ92XV2d7Me4x+NBXV2d/yOPZJd4fX19jzyRwPO8v56A7pe5mTvSaSD3YVxXV0dcT6y7QaBFe3s7GhsbAfRue42NjX73SW1tbf720dXVhbq6OtH+1NzcLDtpDm57gYptJfXk609NTU3+HZJieZL6wHG73bJ5CnzOR319vX8iLJUnvfuW2kW+jo4OFBUVEeVJLA01H44cx6lqe0oWvwJ3zJLWk9a2J7VLt6WlRXV/AuTbnh54PB7BemKZQKsP1mU1G6m2J4VR/UmP95Oe5/MFsnv3bsE8kdLR0YGmpibdF2qD5zyB9aTXJofi4mJF454a1Mrua9e+tsfadwwN3G43PB6P5CKer+3Sej/5xgiac2ue52XHCKn88TyPwsJC5Ofn46233sLly5cRFRWFmJgYAIDL5erhhSUhIQGZmZlYsWIFnnzySQwfPhwA0BkWBg9BP5Uc92JjwcvEwXuPiwge93ieBw+grl8/kLTWwDZdn5CATm+dBNaTEP4xIiYGrV4ZfHki6Se+MhKqJ6H+qiRPgbR3dRG9nzyEykOPw4EuDZ502iIjRdtHS0tLz/7kHXvd3n7nI7A/Ad+VpVTZtLa2+sfyTrcbDfHxgs/xPI+2trZe7xqPw0FcRoE0xMcrrjOALE+S4YPqyVeuVOYRzc3oIDgPV2zcC55XqWnXgbRHRBCNOYGQ9CeO43qP5QkJimVtbm1Fq/cMXbVrLGrbn4/WqChVZVSfkCB4zzc3klvfaIqNRRvNthcfjw5vm6KxHtFjvhdQT21tbbh48SIuXbqElpYW4u8nXz11dXVJ5klqncLXP9wuF+oC1ktofGvUecs/uNbq6uqQn58PQL6eAtur0nGqK2As53lesD9xHCdZPh6OQ2tUFHieJ/5+Cn6nBvcnXxgq6xFNTfp9E1LuT/Ei70GrYisF6REZ8H9SjUrgIQNaTo2PEbi2kuf5D4Iv8jy/C8BSAL4ePhyQdNuuiOnTpxPtUCCB53ls27aNeLelkfgGi7feegsXLlwAAOzZswfbt2/XFO8XX3yBoqIiAMDmzZuxZ88eAMCFCxfw1ltv+dPOyclBZWWlZFwNDQ3IycnxD46bN2+WTb+urq5HnkgIrCcAyM3N9f/fqsgtAuXk5BDXU19ZTD558iQ2bNgAoHfb27BhA06ePAmg+wzCjRs3AgAqKyuRk5Mj2p/k2qxQ21u7dq3/vpJ68vWnjRs34vDhw7J5EqOqqoooT0VFRcjJyfGHW7t2LXJzcwFAMk9fffWVZPpaaW9vVz3evvPOO7J52rt3L65evSoYXu2itZq2p8Qq+syZM/7/k9aT1rb37bffisqzc+dOTf1Jqu1pfYeJwfO8YD2ZaWkih8/9iq+etLpsC2Wk2p4URvUnPd5PV65cUV5QKmhoaBDMEynHjh3Dxo0bDbHeEKsnPedBpOOenDslMYqLi1WFKywsBPBd22PtO4YGXV1daGhoQHm5uIMc36IOjfdT4BghlaZSxN5PgWOEGI2NjcjJycGsWbPQr18/DBo0CAAwd+5cLFmyBEC3NWB2djYAYNiwYVi9ejUef/xxjBw5ske/zB0+HI0EC015eXni497y5WiPiJAM7/F4BMc9j8cDj9OJnOxsQOF4sfb555FbUgKgu56k5qo+WTcvWYI9XkvowLFcjmbv5uOGlpZe9SSkJFCbp9OVlUTvp0aRxf9gGhMSUJmSokiGQA5Pn46WGKEln+71gx796dAhAECRt9/58PUn33jU5l3Id4eFiaa7c+dO/1h+qbAQbz3xhOBzbrcbhw8f7vWuaYiPJy6jQN564gl0EijQgiHJkxTB9eQrVyrziK1bcWHcONG0ffUiNu5du9bzhKKc7Gx0aTjT7OSUKf7+RApJf+I4zj+W+9rD2uefV1QnPM9j86FD2DN3LgDh+R7Jt1xjQoKoIpuEPXPnojU6WlEYd1gY1j7/vOA939xITim4cflyHKbZ9p54Ahe87YfGekSP+Z63nlpbW7F27Vq8//77+Oc//4nf/e53PeKWwldPbrdbMk9SGw59385FGRnI+fBDbXkK+tb42xdfdD8k0O73798PQL6eysq+cxLoG8s9hBtFKgPGcp7nBfuTr9+J0RodjT1z54LneeLvp+B2GtyffHNrKusRn36q3zchrf7kXQt4QuQ9aFW4UPxIMQOO4z4HsNj75694nv8RQZhFALZ4/2zieT5OZdqvA3gh4NIhnudnyoT5AIBPe/clz/ML1aQdEN94AOciIyPhcrmwatUqpKamaokSd911F4YMGYKWlhbExMTg9ddf1xQfTf793/8dHMehoaEBkZGRCA8PR2trK2pra/Hmm2+qjnf+/PmYNm0aXC4Xmpub4XA4EBUVhY6ODrS1tSE+Pr57d0h9PeLi4vCLX/xCNK5/+7d/Q0NDA+Lj4+FwOHD16lW88847kukPGzYMd999NyIjI/HLX/6SSOYXX3wRUd4JeHR0NDo7O3H69Gl8/vnn5BlnjOzsbKxZs0b0/urVqxEbG0tUTzU1NbLlbnV++tOfor29HR0dHYiLi4PH4+nR9hobGxEeHt59VkpbG9xuN2JjY/27wRISEgT7k8fjwfHjx7Fr1y7BdF999VX//31tr6WlBQnej8+6ujrieoqLi4PT6URTUxNcLhciIyNF8/T222/3+jDz8fLLL4PjOMk8xcTEwO12o6mpyb97vL6+HtHR0QgLC/Mvognlae/evaLlQYP+/fujoaFBtbJmwYIFmDFjBoDeeTpy5Ih/4iaEy+VSvPv/6aefRlJSkuK298033+Af//gHURoTJ07EvffeK5gnQJ+2d+7cOXwY8EETyLJlyzB69GhV/Umu7TU0NOB3v/udojogweVy4Yc//GGvetq4caPqRXe9SUlJwfe//31/PX3wwQco8S562vTkX//1XwXbntQ84qc//alh/UmP99Pu3btx5MgRw8o3OE8/+9nPiML+4Ac/ANB91vOvf/1r3WScNm0aZsyYIVhPn376qf8jmzZibS943Dt69Ci2bNkiH2EQGRkZkossYsyePRu33Xabv+2VlZXh3XffVRwPy0yYMAHLli3Dn//8Z1ElXWxsLH7wgx9QeT8FjhGnTp3Cpk2bqOTjpptuwi233CI5Rvz2t7/1P8/zPL755hucPHkS5eXl/t3j8fHxaGtrQ0dHB6KiouBwONDc3AyXy4XY2FhMmDABL774Ii5dutRLhoTaWrzwxz/i9y+8gEaZs91XrVqFpKSk3uNeYSGaJk7Em089hQaJOF599VV0dXX1GvfKysqw+fXX8fi6dfjbo4+igeB8wJ/+9KdAfj7qJ09G9LFjCBsxwl9Pv/nNbwTDrFixAiNcLjRPmADH8eOIGj3aP5b//ve/l50HxtXV4V/WrIEnNxcNiYk96umPf/xjL2vq+NpaRXlKqK1Fdk4OPl+7FguefFL8/VRbCwwdit++8gqR0iuuvh6rX3sNv3/xRdQrPHsxobYWz73xBv743HOC7WP58uUYOXLkd/0pPx8x48bB/e23aEpK6tWffN/pvrL83erVomXz5JNPIikpCVFRUWi+cAFdM2bgrccf75WH8PBwvPLKK2hoaPAv4CbU1uLl3/8ea1avVqQYTKitxRN/+xv++vjjRHUWCEmeJMMH1dMDDzyAsWPH0plHnD+PyOuvxx+ff16wDaSlpeG5554THffKysrwxhtv+MvoMQXtOpiE2lo8/6c/4Q/PPy875gRC0p+io6PxyiuvoKmpCdXV1dj8+9/j8b//HW899hixrAMHDsTDs2fDMXUqoi5cQMfAgb3me0VFRaLfSj7i6uuRnZOD1156SVW/e/bPf8baZ59VXEZP/P3v+Ntjj/VIk+M4/OAHP4DD4cCGDRtEv3/umjABox97DK7jxxE5apT2tnftGhquuw6Rx44hfORIKusRPeblFy/CMXUq9q1Zg0NBx0OFh4cTeQ7x1dPaf/kXrPr3fxfN069//WvR+G688UYsHjcO7pEj0XTyJPpNmKA+T0HfGvXnzyPl+usFx5V58+Zh7ty5svV08OBBv7JN6Tj1wAMPID09Hf369cOG//ov3PWb3/TqTwsWLEBGRoboBpu4ujo8/8YbuPzuuxi3eDHR91Pwt0Zwfxo9ejS+973vaVuPqKsDhg5F/dmziB49mv43oXduRKU/1dbiwrBhmBkfH2goMIHn+fOylcgw6reW2AQT6NON1Oov8DktPuGCw35MEOZjfKcUlFQgKoGmO6XPPvuMWly08e16CjQdjoqK8u+IUItPqQrA73YG6H6hhnt3y3Ec18MNjRgOh6PHc9EEu5zq6+sVm0PzPN8j7rCwML+S0KrIWQoGlqtcPak5p9GKREREIMK7Ozm47cXFfbffITLyO6Nqp9PZ47ng/gTI+zIPbnsJAR+dSurJR6D7Y6k8ieFwOHrIIJQnQNidlFSeeJ5HeXm57tZKWs9Q2bFjh18pGJynixcvSoZV6z5UTdtzKdhZGx6wU1munnxobXtOiZ2D0dHR/vwq7U8AedujCc/zgvXE8pk9vjbiq6dQOyeHJlJtTwqj+pMe7ycj24NvPFDjnj86OhoOh0N3d6c8z4vWk5LxVimk457asSZCxupKDF+efW1P7hx1K+J2u+FwOCTfV75yp/1+otmmxN5PPgLHiMrKSnz22WeCG8MCPUn43Fn5uOWWW3DddddJjhthnZ1wEGzWdrlc/vLrNe41NYGTiYPnecFxj+d5cAD61dVB6eiWUF8PeOtEbh7hay8xzc2At8wDx3I5fGUkVU+BqM1TZFgYwryWGILvJ6+FhIPQxbDD44FTg3eEyLY20fYRGxvrL7+oqCjA26dcQf3O159831a++KTKJiYmxt9HI8LD4RLxmMJxHCIjI3u523V4PMRlFEh8Q4PiOgPI8iQZPqiefG2AyjwiJgaQUJD46kVqbhSImnYdSER7O9GYEwhpf/KN5TU1NQC6xwilssZERQHesVRovkeyUU9t+/MR1dqqqowSBNZ/HA6Hf24kZykY29QEePNLpe01NADe9qNlPcJHj/met54uXLgABCm4SI8k8tVTZ2cnYmNj/e/K4DxJvkO9+XO53egXMF+m8a0R7w0nlHo4YT0FzluUjlPB8Qn1J47jeo0RPeLgeUR5XdeSfj/1iiOoP/ne55rWI7zeRBJiY/1tlPo3Ia3+5JVVznOY1bCVgvSoDvh/GmGYAQH/r6GUNgCQ+H4MXJ2N4zgujud58UMTFBLb0IAElW4bLIHXd3QwXH19985BlbiKioDEROLnJdMKktFRUSEvW2Mj+Ly8bksnwnxw164BQeecuYqKNJWD2XDXrikqWymcFi8LIhSUh1IiSkvFyy8/H9BJiSFFbFWVqEzctWsAZT/jlZWV2LRpk9+vuXInPOTE8jw8DQ3azoASaQ/tly9Lyk66mzAQV1ERoGIzhpIxKqq8XNc2LoSjoEBUPmdhoX/xjTZ8Z6cu4xXHcYJlKNWXzCY+IqKHzCzLajoi/YPWe5RFnIWFxrUHgbJSNEfjOHDt7brKKzVORpPMP9VC2I7CS0pUyaC230eUlvaQzdD2YhC+PEqVUWxnpy59Pay4mFp5RpaVycoYX1ODEydO4ODBg4DHgyEB95wA0gEcRe/zQ5KTk3H//fcjLa17aYDG+ZpavTyJyWCUO2+e50VdD7LkwcpKG4GUyqpnOVup3Egwsk3KpcVS/5CCRhsgyatVysNHYLlIvQusli/aeDwe0c1GVi4bWrKLxUN77A3FPmgjjK0UpMflgP8PEX2qJ5kB/+/tS4Sc4LAkVofBCsA4gWuqWbV+PcbTioxFRPxjJwDI1iFeMSTTCoorVe55H//7v/JxS6QDAKO9P8uSk6OobKXIgMY2YQUUtlslTPf+jE5XCslTU3WQKQXAU9Rj1RGRMsg2MC05MsF2v5QcQ3Vs92HQsVwEXDI/oFdatPjxj/3//Z6JYjCPmj5v0vhNi/nenyEIlFW2wrARSsJQZp73pwuE7Wii92cYQXINB9vvHNW88goeknvmv/6LerJGf2e8QvDMbAAHAv6eNGkS7rzzzh7WpjQW0LTGIRaetlKQ4zjDFwxppseyJ4NgWFDE+WSwUrmRwNKiN0uySBHYHtW2zVBUSAT2DSnZaWwesTKdnZ2SHgjEYL09aJEvMKyUUpCkv7FeTjbGYysF6RFoeTeR4zgXz/NyhyNdLxJeKeeC/ibxLxTsY4Oqj8O3V65EelISzSiZwndgfDB1dXX4+9//rjreuXPnYsqUKcTPS517FyxjWVkZ3nvvPdk4X3zxRbhcLsm4A1m5ciWSk5N7XLt06RK+8B3Ia0EeeeQRyXMAxepfiKKiIv8htaGKkvJQyuHDh/3+14N56qmnVLlT08rGjRtFzxh6/PHHe7g40IrR7SchIUGzy1uh9uB2u2XPhY2MjFTs4m7FihVISUlRFAYACgsLZc+h8DFhwgTcfvvtitPQwoULF/wHbAezZMkSDB8+XJd0Ozo68Mc//lGXuIXaxQcffMDsmYIDBw7EAw98p7b85z//GZIuAGkg9g4gmaO43W7k5+ejsrISaWlpyMrKssSi4qZNm5CXl2dIWkLlSzJHczqdeOmllwB0L7L84Q9/oCzZd0ycOBG33Xab4L09e/bodqYg6fzjzJkz2Llzp+L4hw8fjtzcXMXhbrrpJr8rbQDIzc3F5s2bFcfDMr4x8t1330VFRYXgMzExMXj66aepp03zO0Os7RYWFuKXv/wltmzdKhk+A8B+AL63w+jRozF9+nQMHTq017O2paA0eik81UCqzIiPj6e7iGIASspJqYKHBQWlVbEtBb8jFJWCgeUi5z60LyN3rqwYfaXctFoKkpZTXylPG1spSJODANrRvRk3BsANAIRXsgFwHBeBngYwyr9UvfA8n8dxXB4A39fHOACfywQbG/D/Gp7nm9WmL0RTfLziw3wtRVaW4GVPTY2mfLempYnGLYRkWkHxuF0uItk8mZlAeDhxProGDwbSenrM7WhosHT9uzMyFJWtZFyQqadQQEF5KKUtP1+0/DyZmdRddZLQkpqK+mbhIbNr8GBFLoDlOH76tKHtx9G/P+q1LsgLtIeu9nbZfLhjYtAsUq5i8EOGAKmpisIAQBfI+2VLaqqubVyINol3iTsjQz95Ojr0a28CMjenpKDee5g4aySkpPSQuSk5GfU6n8tmWUTao9x7tLOzE++99x6uXr3afe2bbzC+pgb33nsv84rB2oQE48ZmgfIlSdvlcn0XtrNTV3ml5q+tly4ZOq4I0VFVpUqGltRU1NcoP+GhbcCAHrJ1tLaG3Fwwul8/ICsLjUlJqBc577grNlaX91VnYyO18gx+xzc2NuKXv/wlfvvb3yo6K37S5MlYMH06BgwYIPoMC4tsZlsKslAGNJkyZQoKz5wxVQaWFHEsyUKDUGuvRjB27HfLjHq2B6vVDYm1l420UtDK5aa3paCSuHiel+2boaiYtxGG7S9uC8HzfBOAHQGXHpMJci++s9arAbBXowgfBfz/HoLnA5/RmraNF60Do567NPXaFRKKH3w05bd6WbAMi2VLWyajP671KlOSsU1NXtWWj5JwZrQzs86aYLFPmUWoLWyxyNmzZ79TCHo5f/48vv32W5MkIkeJssAsAhWrerfnUN31rlY5beU8k0Kym98K5eCTsba2Fq+99hpGjhyJX/7yl0R9fMSIEdj4wQcAur29SCkEA9OiIa9abEtBMkj7/nXXXYeJEw11TtwLPc8UJLUU9N0LtbmTfaagcm688UbNcYSiQoJUsWO1fNEmVC0FaSkFxSB1H7p//3786le/wmuvvYYDBw6Ixs16edrQw1YK0iXQ59ZjHMcJHqvHcVw0gP8MuPRnAlejcqwF4NumOZPjuKViD3IcNw3dSkkff9eYtg0l9PQhTho3Cx+sZtPXfbmzBIuTZqkJl9Xbfl9RCrKOVHlZvY0FwnL9sW6pFgrs2LFD8PrevezvVevo6DBbBFlYUQqygJh8SUlJ6C9hcUbrPCTWy0cNahfuaECrPHmex7lz57Bq1SoMHDgQq1evRnl5uWy48PBwLF26FM899xxuuOEG4vT6kvtQsb5jlb5A2vcdDgfuvfdevPzyyzpLZA1Cbe7EUntlSRYxkpKSehwrQ+Md6vF4BD3JWKE8xGBxfYMVOkU8DwB22QDa3YcC3Rsba2trsX37dtFjeuyy7jvY7kMpwvP85xzH7QMwB91uRD/jOO5unuf9PiU4jksC8A8AI7yXagD8Sig+juOyAAQeWPI4z/N/F0k7l+O4PwJY7b30Lsdxq3ieD7QgBMdxcwF8AMB3euthAJ8SZ9JGEr0+1GhAKptSGWxLQRsb/ehLloJqFhKMsBQ0A7M2Jthj33cEtxHW24yZkLihEaJFxHUsq+dMBmIFpaDSs6D0guVxRa5caJUby2WgFt973Yp5a2trw5EjR3Dy5EnU1tYqCjt27FgsWLAA/fv3V9w+WFAKGuU+VA0sWQoqrVupzQV6o6eloFJCba5kWwoqY+7cudTi4nkeHIA33ngDFdHRSElJwX333Yc077E1ViiPQEgtBfv65nQWLQXNNpogaTtqx97Tp0/3OANbLh2lz9iwj60UpM/DAI4ASAeQBeAUx3F7AOQCSAFwO4Bo77NuAA/wPF9HKe3/D8D16FZKxgD4kOO4iwCOovsIpUkApgY8X+pN3+7NjMCCUtB2H0q3HqxeFixjWwrSR68xyMqWgn3JfajRsLx4xLJsrKFWKWhlbPehPQnVXe+03IdauQzEsKr70KtXr+KTTz5BQ0ODonBpaWlYuHAhhg4dqjptsxcWAfH5RSgsRJupFDQT232ofrA0hrEkCylaLAUvXLiA8fDOt6KjUVlZiXXr1mH16tWIiIiwZHn4CNU5Ew3sMwXVx6Omv4l5R7ByWdsow1YKUobn+SKO425FtzXgZAAcgHneXyCV6Lb8E/adpC7tdo7jlqDblehD3stjvb9gvgZwP8/zhbTStwkNS0H7BWCXgVVgsZ5YlEkJVrMUVAvrixZ95UxBluuBZdmMZNCgQbKWex6PJ+RchknB87ykeyNW6Et1IofaRRR7HBDHt3BnxrxHTZo8z2Pv3r3YtWuXonCpqam46aabMGXKFM19igWloFGWgkrdh5LkKy4uDgtuvBHIydEkGwlWGj9ZGqes/h0UDEuWgn0Jnudx6dIlBJ/F1NraimvXrmHUqFGWKy9SS0Gr5Ys2at9FofR9rCZ9lt4DNtbCVgrqAM/zlziOuwnA99CtnBsPIA1AHYCrAD4C8Dee56t0SLsewMMcx/0JwCoAswEMQre70HJ0uwt9H8AntoUge1hRKWhbCtroidUmzbRl6kvuQ420FFQSzrYUJIPjOGZlU4P9cQU88cQTyMvLI1IK9iWs4DoUsC0FSdDLfahtKdgNK/nu7OzEp59+irNnzxKHCQ8PR3Z2Nv7v//2/+N3vfif4jNL8sTBWGnWmIE0effRRpKWlITIyEty1a6LPsdLeWEdtOZGMh1ZSprJGKLgPpTnXKCwUtl3Yvn27JZWCgVh1zmQ2LJdbaWkpjh49isbGRgwePBizZs2C0+n039dbPtrzfNt9aN/BVgrqBM/zHQDe9v7UxpGPbktDNWH3AtirNm2txDY0ICEszKzk9Sc/X/Cyo7oaCQrPpggkorRUNG4hJNMKisdZWEgkG5+XB8THE+fDUVAABO2YDysu1lQOZiNbVgrqyFVUZOmyIEJBeSglsqxMtPy4a9eAxkbd0hYjtqpKVCZHQQHQ2kotrajyckPbT2RrK8La2rRFItQeSktl8xHPcXArzKuzsBCor1cUBgCcBPL4iCov17WNCxFeUiIqX1hxMRAbq0u6XFub6vbmdDqlFxUFylCqL5lNXHV1D5lZllUvXEVFkmOwDz4vD4iI6HVdKhyfl0ftPWs0nU1NxrYFgbIgST/Z6ewRtl9dnW4f8NEVFaJ1put7jLCdiI2pcQ4Hurq60FVXJxguprJSleyRZWU9ZAvVuSCfl4fYqiq0i+QtsrVVl76s5DujoaEB2z77DA2VlRiC7l2y6eg+W0NIvT9o0CA88cQTePrppzF48GB6QqNvnSlI01KQ4zhERUXJpklzfAuz0DqGnps+SOP2PRcdHY3k5GRUVVHf+24KLC16syQLKbQ21gTiUzxbrTxILQX7OmrL5tixY7guIQEZlOUB5GUqLS3F3//+d/+mwW+//Rb5+fl45JFH/H3AiDMFab4L7Dbad7CVgja6sGr9+l7m/iGFiNuSJADZBoohmVaQjFlyzweFI3pWIB2g+/DKSaThWSQnR1HZSpEJY9uEKejoxmem92d0ulLcI3WTsky3eX+WQqAM0qFTP1BZ3rrJQ4kZ3p8gOrb7SOhYLgJyL9MrLVq8/LL/vw+YKIZp5OQgHcA0gueEyJYJI3efVWJh8PghUBbE6f/bv/n/u5qKMMrR9T1G2E4me39quF1luEDEznKwPDk5eETumV/9inqy47w/Uv5d4NpsAAe8/3e5XLjrrrvwxBNPYNGiRXC59FkiYcF9qJhisqysTFO8oUYoKwX1XuydM2cOPv74Y13TMAqW3If2pUV6EpffVi4PKdlZsChnFbk6//DDD02Z63799de9vIjk5eXh2rVryMrKopqWHu1e6Gx4K/cvG2XYSkEbXXh75UqkJyWZLYZuZGdnC16vqqrC+vXrVcc7YcIE3H47+fLDmjVrRO8Fy3j16lV8+umnsnE+/vjjSEhIkIw7kAceeAADBw7sce3UqVPYvXs3UXgWueeee/DJJ5+I3herfyGuXbsWMh9GYigpD6UcOHAAR48eFby3cuVKJCcn65a2GJs2bUJeXp7gvYcffhipqanU0tq5cyfOnDlDLT4jEGoPBQUF+OijjyTDpaSkoLKyUlFaTz75JOLi4hSFAboXv9577z2iZ0ePHo1FixYpTkMLe/fuxYkTJwTv3XHHHRg7Vp/l5dbWVrzxxhuqwrpcLkl3ckLt4pNPPkE+oxZhI0aMwF133eX/+/3330dJSYmJEhnPSy+9hBMnTuDAgQOSzz3zzDOIjo7udV1qHvHiiy/i9ddfF72v53tFK+Xl5fjHP/5hWHrPPvtsLysZkjna0KFDcffdd/v//v3vf6+bi8AxY8Zg4cKFgve2b9+Oc+fO6ZIuaTs5efIk9uzZ0+t6cnIyurq6UCtidTZp0iRV7+ApU6Zg7ty5/r8vXLiAbdu2KY6HdZ577jl88MEHqK6uFrwfERGB559/nnq6cuXJ8zwOHjyIo8eO9bqXAWA/gFLv3/Pnz8f69etF5240F8ZYVQqWlJTg6tWrSNAUMxlqLQW1xK2G8PBwanFZGTWWJ5MmTUJUVBRyd+wAACxcuBDDb7sN//3f/01bPN2xF8aVEdxe9LBitapS0D5TkAxaFnU0kYv3ypUrgtd37NiBJ598kigO0vSlLAW1xK9GKdjX22qoYCsFbXShKT4e9f37my2Gfojs+OiKitKU7+aUFNG4hZBMKyiejrY2Itm6Bg/Glepq4ny4MzKAzMyeaVVUWLr+OwYOVFS2Uri7uixdFkRQ3gEVSFturmj5eTIzAYoKOFKaU1JQL+JqzJ2RAQQpybXQmpZmvfYj0B7aOztl8xGdkoJ6gjOKAuGHDAHi4xWFAQBPeDhxubakpuraxgXTvHRJVL7OQYN0k8fT3Ky6vcm6DxWQuTklBfUq3L8aQWtaWg+Zm1NSUE/RNbAVcA4fjvbSUtk24cnMFHRpKxWOHzKE2nvWaFohM/+izO83b8aqVaswYMAA/zWS9N0ZGT3KsSExkegcODUEj5NXr17FpUuXEB4ejqsej37lRdhOOsrLBWWISEpCV1cXxEahtgEDUC9yrpEUbQMG9JCto67Oeu9yAtwZGWhITES9iGVDRESELn1Zqjzr6urw0ccfo6CgQDIOzunEA/fdh3vvvVf1Zi4zzhTUw33owYMHNcUphNXP5Q1lS0ESV6xaGTlyJEZ6y3DMmDHosuhZg7aloDb0cB9q9bEFsJWCaiEtm9bWVug/ynXDcRxaWloE7xUVFfn/b8SZgjT7m90O+w62UtDGhiH0dBdAOrB7PB7s2rVLU7xWf4mwtivYRhizytbIj5FQ+PAByM6qUZNXteWjJJwZ7UzqXcDqmKJGLpbbN8uyGYEv/yTloGbuQhrm2rVr2L17N8rKyjBo0CAsWLCAqjW2GoJdBOlNa2srNm/ejKefflpRuIigcx71bNOB/f/o0aPYsmWLbmmpQe246VC5kM3qOE0bvZTMajl37hw2b96M9vZ22Wfvv/9+RI4ZY+hCPAtKQSEZzp8/rylOGrCmBAgeP1lGaflMmDABn3/+uaEyqB1LzYalsZwlWcSg1VdD0X2obSlIBo380/aKYXadGGEpSHLNJjSx5tvZxoZR9DrngQaksrW3t6O0tFT+QQppsYrty90asNjOWJTJTLq6urBt2zb885//lH1WzYKBEQtFfUkpyKLLFrOw6gIWLZQsiOqlFCwvL8eGDRuQn5+PtrY25ObmYt26dWhoaFCcHk3MUISUlJSgublZURgzFrW7urqww+syzgrI7aw2YoHTyrjdblMWN4Pj5Xkeu3fvxsaNG2UVghmDBgEA0tLSiGQMtY2CRskg1ndYKAMSQtlSMCIiAtdff70ucesdj9HYloLa0KPeKyoqAFizPHzYSkFxaOSfpW8439ydVr2ypBTs6201VGCnt9jYWAi9BkAWlIJKd9aE4s4Sq8uvhEHexRFWsdqkmUWZzOTzzz/HoUOHiJ5l1VLQDKTGYVbbmG0pGFqMHz8eAFk5qKl7kjDnz59HZ2dnj2stLS345ptvFKdHE7P6YGNjo6LnzbAUzM3NJbLSsgq0XDGxOm5rhQVLQY/Hg88//1z2LHOO43Drrbfivvvu63HdakpBljegaoE1S8FQP1PwzjvvxOzZsw1Ns6/Pq2zIkRoPOjs7kZeXZ+n3qtXWN6wG7bFGrk6k3hd13iNn9D5TEKDrrpdUXp7nUVxcjMOHDyM3N1fXeWF7ezs2bdqE3/72t3jzzTdx6tQp3dLqSzDtPpTjuAk8z+tzMr2NjQ6w/KGmZGDXGq/VJzOsfjDrwdChQ1FcXGy2GKpg0X2o1ds+TdxuN86ePUv8vJFKQSWYUadmtSOj07XSApGVZKXB1KlTiZ/Vy1Jw3759gtc///xz3HDDDYrTpAWL7x4hzFAK1omct2s2WuqM4zjNc+NQnRvIbSTUO98dHR345JNPcOHCBcnnIiIisGzZMowZMwZcbW2Pe1qUgqFypqAe2JaCxqF2/ux7j06dOhU7r17VXQaHw0HdrZ/e0N4UIFVKoWApGNwOtCgppELu3r0bo0aNUhW3mfA8r2pO0ZcQKxuWyywqKkr0aAGj3vta5vhCMpJaCm7fvr3HucTDhg3Dgw8+SH1jDc/z2LBhAwq953w3NjZi06ZNcDqdmDhxItW0+hqsWwqe4TjuEMdxT3IcF2O2MDY2PliwFKShvNMqg9a0WIW1XcE2wvSFsrWyIuLq1auKdosZ6eqD9XK14pmCoUZf2hwSzLhx45Ceng5AvzMF7XasHJaVgkamQRM5eeXci/Z15NyH6gXP88jLy8PatWtlFYKZmZl4/vnnMWbMGNG45NKihW0pKI5tKagePcuHZtxWHEtp9v9Lly5J3pfrm1acN9G0XAqkoKCACUt1tUjVNatjtJWg3Vfk4pNq5776DEX3oSUlJT0UgkD3+s/x48dVyyJGZWWlXyEYyMmTJ6mn1ddgXSkIANMA/BlAKcdxb3IcN91sgWxsxDDyQ03phEEvpaAVJ6hy9KXJGOsfaCy617AtBclQ+rHGqvtQM+rULPehtqXgd1htNzstRowY0cu9nhxq2o2V37NmjfNKN04EL2obYSloRUgUg0rpK5aCZizKNjY24pe//CXWrVuH2iCrv2BuueUWPPbYY+jXr5/oM0bWDQsbL2mNvZmZmarCWaUvhLqloBmwdM4XKTTbq9wGBrMtr62GFeeRvjpkcX2DFaxoKUiiFNQCqaWgXkp4MVpbWwWv79mzR1V8UgQrH33k5eVRT6uvwbT7UAAtAKK9/48F8ASAJziOuwDgLwDe4Xm+xizhbPouVrQUJI2bhlKQ5Zc2CVaXXwlW+ZAUgsV6oi2TletHKWoWC0LVfagVP3RDDSvvQNbCDTfc0KMv6mUpaLdx5Sgd74IXtfuyUlCtfLTKjPXyUYucpSDNfDc3N+OTTz7BT37yExQUFEg+63Q6ce+99/rPRpXCypaCdXV1uHz5Mrq6ujA6IgJJBskAADfffLPkfaV9hzVLwb40/5aCtBxInrNimdLs/0JWLoGEglKQpvtQOaw8j7SVgvpidBmS1KfeloK049SSjh5ni7e1tVGP06Yb1pWCAwB8D93KwOmA37X0OAC/BfA/HMd9AuCvPM9vN0VCG0FiGxqQYKEddorJzweczl6XHWVlSJDZtSpFVHl5d9wE8J2d0mkFxRNWXEwkm6OgQFEenIWFvcoivKREUzmYjauoSFHZaorLZCI1tlkAispDKVLyOQsLAROseWIqK6VlojhZiyovZ7r9COJtD6Rjjo/YqirFeeWuXQOCXOSR4KyuJk4rprJS1zYuhFS9hxUXA0kkS3/K4Rob9WtvAmUo1ZfMJrKsrIfMatqnFQkrLu7RpyJKS2Xz7SgoAAQ+1qTCcdeuyb5nab2HaWPWe91ZWAg0NgKQLlsfUeXlQMBcPKG2FmEtLbrIFl1RAeTnE7UXqhC2AzG54sLC0NXVhQ4RmSPLytCvrk7xJoHg8cPq82IxuGvXEFddDU99veB9l8ulqa+63W4cOHAAn3zyCb788ku0tLaCAzDEe98JIB3AUQC+03zCw8Pxve99D8OGDSNKw0ilIM1F7KKiIqxfv96/+Ha0rg6rDZIhMTERQ4cO1RyPDR20KtuMUtb1daWgHH3VQ4UQpOeZWQ3bUlAeGpaCRroPlRvXaLgP1ftMQZ7n0d7ejqtXr6KhoQFDhw6FU2Ct20z6er/QE6aVgjzPN6HbIvAvHMeNBfAUgJUAUryPRAB4AMADHMddA/AWgL/xPF9shrw237Fq/XrI7820MDk5gpcHAMjWGverrxI9FiaXVpCM470/WXJylOVBoCymeX+WJScHE2TukzIUFNqEzszQGoGC8lDKHO/P6HSluEvqJmWZ5np/lsJbBiNhQNtXWd5JUCjbyy+rSkctS6Vu6tju46BjnQnILdmXWOAHP/D/d7mJYhhKUD1N8f6UhPGRLRNG632zGOv9GU5AnrMVPg8Az1AVRoCXX8YkAJP0TicQwnYw1ftTw2yV4QK5zvsLOXJyMErumf/9X9XRu0A2D5oN4ACAuLg4PPTQQxg4cCBxGlqUgnqd704SxxdffNFjNz5p3DRc2y5btkzWu4PYAqWaBV8rKpOMxCrl09fdh5Kk5fF4RMvJCovitCwFSbBCeYhhKwVDCyPrU+pMQbX9rbGxER999BGqqqr812666SZVcemF3S/0g2mlYCA8z18E8AOO4/4/AHej23rwDnx3LuIQAD8D8FOO47YBeBPAZp7n7S03JvD2ypVI18mSgQVeeOEFwbMGysrK8N5776mOd8CAAfje975H9Gx7ezvWrl0rej87O7vH32fPnsWOHTtk4120aBG2bt1KJAMA3H333b12ix4+fBiHDx8mjoM1brnlFuzevVv05RNctlJcvXoVn376KSXJ6DJ58mRERkZqrisl5aGUvXv34sSJE4L3li9fjoyMDN3SFuOzzz7Dt99+K3jvvvvuw+DBg6mltWfPHssdoOxrD99++y0+++wz4nDDhw9Hbm6uorS+//3v9zo3i4Samhq8/fbbRM8OGzYMS5dKqumo89FHH4m6R5s3bx4mT56sS7oNDQ146623dIlbaJz4/PPPceXKFV3S00p6ejoefPBB/9+bN29W3D6tyD333IOsrCz/3ydPnpQ9G+KBBx4QXIRfs2aNaJhHHnkE77zzjuj97OxsyfB6vneEKCgowKeffmqqW9nAs9GkysbHE088gfj4eP/ff/nLX9DU1KSLbL5x8syZM9i5c6cuaQhB2g6OHTuG/fv397qempoKj8fTYyEkkGnTpuHUqVPo6OgQvC/GhAkTcPvtt/v/JulHVuT222/HkSNH0NDQIHjf6XTipZdeIo6voaEB77zzDv785z+jXiTOQDIA7AdQCmDKlClYsGABoqKiiNMDrGcpyPM82traUFysbg90sAxq8seaBYGNfvR196FG09XVZWmlIC1Ixkorug+1LQXlsZqloBy0LQWllIJq2bVrV6958Ndff606Pj3o6/1CTyyjFPTB87wbwIcAPuQ4bhCAxwE8BsDnI8QJYKH3V8Fx3Dp0uxdlc9UpRGmKj0d9//5mi6EfWVk9XDL5cLtcmvIdnZjYHTcBXS0t0mkFxdNeVUUkW3t6uqI8dA4a1Duta9csXf++MhB9+RDWEQC4OzqYLIsBAwbgpgcfxJEjR7TLp6A8lNL2zTei8rkzMnRNW4zmlBTUV1cL3hPqD1pou3yZyfYjiTf/na2timRvSU1FfY2yY4K5oUMFx2I5+Lg4YtmakpMNb2eNSUmo97oJDKZj4EDd5PHU1enX3gRkbklNRb3IYrzZRPfv30PmG5Yvx4k//9k8gQyia/DgHvnurKiQbRPujAwgM7PXdalw7owM2TmMkjmOnrjdbmz4xz/QERdnWJpCeDIzgcREANJlCwApKSmIn9TTZq8hMRGNOrn2b05JAbKy0Fldbew7i7AdtBcXC8oVk5ICt9uNehG3bW0DBqAhMVHx+Sgtqak9ZOsoL7feu5yAltTU7veViJLI4XAQ1ZHH40FOTg5+9rOfoV7EFakUdy9bhoTr1NliWvFMQaVKaikZ9Fposy0FjcMq7kNtS0F5urq6BDeemyELDdS2LRKFnxXLAzD2nWNjDFJ1RkMpSJKWFktBVjfoBqK1/FpbW3HlzBk0Nzdj+PDhSE1NpSSZ9bGcUjAQr5vQXwD4BcdxtwJ4EsAyAJHeR9IAvArgVY7j9gP4M4APeJ5XP5O2sYF+L2slO55IJhSBLwZSmWntYrUyNHeesVYWYWFhePDBB5GZmSn60cESVttJR1umvrQQomaxwIjyMaOdSZ0rwmK7VwvL7Tu4DgYMGICBAweipKTEJImMQU2dCL0z5dqplXZ45+bmalqEp4WSvn/LLbf0uma78VIOrTIL1fJxu92a87Z7926sXr0aZ86cURz2ukmTgDNnkJmZCeWqxG6saCmoxVIvWAY1MukxlthKQfVYpXysImcgZigFrQwt96Ek5WCleaSPUD0rkSahZilI0204rfisiNZ8v/vuuyhyfaf+uueee3Cdys1koYb1tuuIwPP8Tp7nV6D7GCOfrauv5XDoPm7gbQDFHMf9J8dx/YyX0ibU0TpY0VYKKnneh9LJqFC8Vn9ZWV1+Ka6//noMHz7crxBk/QPNakpBG/WoaYtq2y+tdt/c3IzTp0/j6NGjqK2tpRInIP0u0LPdG92nSOvB5TJ+D1uwm0iO4/DII49g2LBhIiFCAzULOmqUglYavy9evGi2CACUldnYsb1PPTRCKcjqnEKLwkFNnoyyxjIbuW8GqXyXl5djxYoVuOWWWxQpBFNSUvDAAw/gueeeE1R+K8WqZwqqxWylYKj2BTPRc9ylGbdtKSiPlIvyvtR3QtV9KCAvd1+q51DBSEtBMVidf9NCa/k1Bnlg2rx5Mzo7OzXFGSpY780sAsdxN3Ec92cAFwBMQ0+FoO9fDkASgP8L4DLHcXcaLqhNSMCCpaDSCYVeloKhqBS06iSTBKtNGKymFGRRJqtgNUvByspKrF27Fp988gm2bNmCP/zhD/jmm2+opBnKY5AaWLHWjIyMxN133224LEaiph+qmQdYqY2HyvlZVnv/GwGJQpBGuYXq3ECNpWB5eTleeeUVjBkzBu+++y5RmOjoaKxYsQJbtmxBcXExXn31VQwYMECNyL2wovtQmlYLeo3FSvsNK5aCZpxVbjY0yjdUzxRkyVLQiu8RtXVOklcrzSN9kIzfRtVzV1cXcnNzcfjwYRQVFTHTvmhYCtKGxjvXiDMFrTjGkkK7/ru6unD58mWqcVoVS7sP5TguCcAqdLsN9W2JDewJ5wG8CeAjALcBeALAHO8zKQA+5jjuZp7nDxsmtE1IoNfLqqurC8ePH0dBQQFiY2MxZcoUJCcnq0rLVgqqx+d61er5IIH1yQOLE34jFZWs1w9NjMwrjbS++OILNDc3+//u6urCpk2b8MMf/lBz/LalYE/McKdkdRdOarEtBXvDilJQa5nZ7kONwy6PbnzlUFZWhq+//hpbtmzBunXriM9ojI2Nxf/5P/8Hr7zyCmJjY3vFS1NGK6FlbhwcVk3+Q21u+tBDD6GoqAipqakYHREBvPqq2SIpwiqWglZsN7ZSUBlG1rEVykMIFjbNdXZ24r333sPVq1f912bOnInbb7/dkv00mG+//RZjR45EVFSUIemRWArSil9KKRjK6NHfCwsLMWHCBOrxWg3LKQW57tZ+B7oVgUsA+A7F8vWCVgDvA3iT5/mDAUHXAVjHcdwUAL8HMBPd+f8xgNDe9m1jGerq6vDZZ5/5/z5x4gQef/xxwYNQWbEUJEnbaoTymYJWw7YU7Duw6j5UqE67urp6fEj5aGlpQX5+PoYOHapKLh9mKQVZJSkpCdXV1YamKbYwE+ofXfaZgr0xw32tEFZQCrLaP9RaIdlnCkojZfXg24V955134osvvlDU52NjY/GDH/wAL7/8MhITE2mJK4jVNjCwYCmoxSpMzcZavceVUaNGYdSoUd1/5OfrmpYesDruBmO7D5Un1Dak6dk2rTSP9EHSnoxoc8ePH+/1HXvw4EGMHTvWdGtpGsYXe/fuxReXLmHFihUYMmSIbjKRYJT7UNbwGVnQjE8NHo9H1D0mK993ZmOZUuA4Lgvdln6PARjkuxzwyBl0WwWu53le9KxxnudPchx3G4ArADIAzNJDXpvQxiiz9ra2Nhw8eBD33HOP4rTUykLjTEGrE4p58kHrAHAhGhsbcfDgQZSUlCA9PR0zZsxAQkKCpjitphSkjVU+9GlgpFJQCULtTOrMj9LSUr9S8Pz58zhz5gza29sxZswY3HTTTb1k9ng8vRZKbEvBnsTGxiIsLAxlZWU6S/QdtlJQ+G8hbPeh1iDU264a9DhPEOg7ZwqKbZo5ceIEDhw4gLq6OsVxLl68GK+99hqGDx9OQUJ5+ppS0OwzBW3Yw3Yfyg62pSA5VppHBsJCPe7atUvw+uHDh7F8+XKDpdGHzs5OvP/++/jBD36g+4YEkvUqvV2QsuY+1OPxUP1+Ult+brcb4SL3QuX7TitMKwU5jgsHcB+6rQLnoef5gADQDOCf6LYK/Jo0Xp7n2zmO2wHgUQD9qQls4ye2oQEJYWHyD1oU7to1IDKy13VnURESamupplVy8CAweXJvGWprJdPi8/KAiAj/3+ElJUSyhRUXK8qDq6gIiI7ucS2itJR6ORiJr6xEJ5sKdpEqLU+9iSwr6yE/lbrKz0drays+/Oc//QtA9adPo+TgQTz44IOIiYnRJK+YfM7CQsCEcSa6okJapnCxqYdypPLPLN72pbTtx1RWKs+ryh3djoYG4rRiYmN7p9PeLho+vKQEyM/HuXPnsH37dv/1w6dOof3yZcydOxcAcPbsWRw9ehRNTU3IyMjAbbfd5leix1RWwl0vvL8porRUt53sDpn3iiYEZJbqS4HExsTgrnnzsH79eh0EEyY9PV1QZkdLi/X6pAJcRUVAgNKbZO7gLCzsPSfq6JAM5ywslI43P1/2vlGoGpt0gLt2DWhpAQBJeTiOEyyf+JoauHXKR3RFBZCfTzzXpAZhOxCb68RGRsLtdovKHFFaiviaGoS3tSkSy1ceculbHV/5OJqaAAA1NTX48ssvUV5RgQQAvm1hTgDpAI4C6BCJKyUlBYsXL8bQoUNx4sQJZGVliS7YGOk+lLXNaZ2dnThw4IDq8EYprK1kKWh1rOI+1LYUlEdq0yELyiSl2G7Le8KKpWBHh/Cb+Pz586YrBWnmv6WlBQUFBcjKytIUD82NOHrJwdp7squriwmloNRGC1sp2A3TSkEApQD6ef8f2MpPAfgzgA08zzeqjLtOtVQ2sqxavx7jzRZCT3JyBC9nAMjWI73f/KbXpf5yaQXJONX7kyUnBzcRC9Y7HaD74M45SuJgkBlSN0XqX4jh0KlNUOJG708TOTmIQrcZdy9+/nNNUc/3/sTSNYOlUjcpyzTb+7MU3jIYAeVt/3aVaSklHgpl++EPe/wZIRXeK9ME70+Mid6fEI9LyaJju5d9r2hBQO47vD9SsmnJQsqPftTrUrQZchhJUD1JtVOxMAAQDvk5itb7RjHd+zOdgDxnyz27Zk2vS6toyiLED3+I8YCx83/CdjDN+1MTv6I5sQhU5lqMEjxH+U+ZZ4PVWTExMZg2bRpmzZrld+V04cIFjBw5EpMFNkXSxmqWgjt27NAU3rYUDD2sUh9WkTMQltyHsjYWkWC7D+2N1d45rKC2XPLz8zUrBeUwylJQCtbGV9qukLVYCophuw/thvVS6A+AR7dCsAnAP9BtFXiMQtzfAthDIR4bAd5euRLpSUlmiyHLsGHDBM+FkuOZZ55BdJB1HAAUFRVh48aNNETrQXZ2dq9rVVVVklYTzz33HCIDdu4fO3YM+/fvl01r2rRpOHLkCLFsixYtwujRo3tc27NnD06ePEkcB2vccMMNOHHihOhkU6g+xPj22297nBNpNlOnTsWcOd+pbEnbhRTZ2dlYI7AAGXhfLdu2bcOFCxcE7y1ZssQw91KBfPrpp6Ljxl133YURI0ZQS+vAgQM4evQotfiMwFffStv+lClTFI8battWY2Mj/vrXvxI9m5GR4d81WVZWho8//hjt7e2iz8+ePRsTJ07E2rVrBe8vXLgQFy5cQEFBQa979957LzIzM/HXv/4VjY3Ce55mzpyJadNULW/LUlNTg7fffluXuIXqSqp/BzJ48GDcd999kuMMbV544QWECVgit7a24o033jBMDqNZsWIFUlJS/H8HW7wKsXDhQowZM6bHtfb2dtE+AAB33303Nm3aJHpfz/eKUk6ePIk9e8z/ZAisG6my4TgOq1ev7nX9nXfe0e1sTt84eeHCBWzbtk2XNIQgbQdff/01Dh061Ov6wIED4Xa7UVFRIRhu5syZOHHiBNoUWgqOGTMGCxculE1fbyIiIiTfV1qZOnUqDh48iE2bNqGktFT0uQwA+9G929fHwIED8S//8i9ISEhAcXFxrzD79u2zlYI6YLZSkDVLwZEjR+oWt1FoLR8a56qSPGdbCspjdaWg7T5UGhL3z1bMF01ot3MabZKVMwXl4mBJMSiljFOD2n5hWwrKw7pSEABOoNsq8F2e55tpRcrz/B8A/IFWfDY9aYqPR31/9j2ztqeno16FOx9+yBBAwCViJ8/rk2+B3S3uyEjJtLoGD+4hY1tREZFsLampivLQMXBgL/laL12yRP2L0ZqWhvr+/cVfPgp2G3W2tjJVFm0DBvSQv6OkRLt8WVnScWjYndWckiIat1DbM4Km5GTRcaNz0CCqMrXl5jLVfojw5l9p28+8+WbsLShQNulTW9aNjcSy9UtOBrKywPM8/vHxx2iIju7lMjmQtgED0DlokGj8DYmJONvYCAjcP1pZicybb0Z9//5oFNm91p6erlu798TG6tfeBGRuTUtDvcRCso+k1FT5cYYiixYtQpjYQiFjYzptPJmZQFqa/+/O2lrZ/Aq1SY9MOXUMHCj73tDrvaIUd2UlE3XuzsgA0tMBQFIejuMEy6cpORn1Oi02+cbJjro6Y8uKsB20FxQIyhWfnAy32436zk7BcB0DB6LB6yJdCc0pKT1kE0tfb6Kjo9HidTlLm/Lycnzy179i3759xO/t8MhIzJs+Hffccw+eeuopxMTE4Gc/+5ngszU1NTTFFaWvKQWD86PXArQZi5NDhw5FXl4e8fMcx2HqVCI/OjYUYGnBmhSWlIJWxLYU7E1fe+fQguVykZKNRjslPVOQJWxLQevAeilcz/P8KbOFsLEJhoWXkl4TCqUDeENDg6p0WMaqk0wSWJswyMFCX1OC1eRlifDwcIwfPx5nz541W5Qe+Oq0uLiYeLxT2w58Fh1SY5DWNsbzPC5evIiCggIkJydj3Lhxfst3LXFnZWUh38Bz3vQkKirKbBFMQ807Qqi9htJO6FD5aDTi/c/qHMPod7NR57bJoYdlTklJCY4cOYLTp08T5SssLAz33303sHEjLly4AG7oUM0y0CxPOetZ1s4U1Erw2KsmD3r0cxqLnbNmzZJUCk6ZMgVhYWG4evUq4uPjceONN/bydmNFWBh3SWRgQU6lsKQUtMJ4Y2QdW6E8giGxFLRivmjCoqWglvhpuA8NjkuNHEbDilLQthSUh+mvXFshaKM3tAdPPV7i4eHhqtJSuyChdKFu+/btmDx5MmICrBKtPpnheZ5a22C9LFibQARjtcUYWhO+c+fOITc3F6dPn6YglTVwOBxYunQpnE4nTp06pWtaatp9YWEh0XM8z0uOo1IWJ75xVK92z/M8Nm3a1KNdff3113j00UcRGxurOl6g222qUqUgaT0YPWmXWkhnfczUSnD+SPIr1CZDadGDlTrXWmZ65sNK9RkIx3FUXOfJYVb50Kzz1tZWbN26FWfOnCEOM2LECGzbtg1DOQ7YuJGZvhTM6dOncd111wnes2rbFoOGpaAWBZCe5Tl06FBERUWJzrPCw8N7uPUNFfTsVzTjtqL7UKORsmqx4lhkWwr2JpTmx0aitlyMmHeQWArSOFNQTinI0hyLFaWg1JgqtL7Q0tKCw4cPo6ioCGlpaZg+fToSEhJUpW0VmH4zcxx31fv7qcrwP/aGz6Utm01ooHbgNPJlLXSmESA/0KqVUc0E69KlS1TSZgUS+Ts7O3H16lXk5uaiU8TtlI129LSYUoveisrt27fjo48+srxCUOn4ynEcXC4XFi9erJNE6vDVqZL8SI3Pzc3intBJLPa0tLGSkpJe7aqqqsp/bqWWuIdSsP4Qw2jLPSOUBKxiWwr2hpU5ja0UNB5a3wlWtxTMy8vDn/70J2KFYHh4OJYsWYIVK1YgMzNT9DlWXOWdO3fObBEMw+wzBcWgYQHhcDhwzz33UJLIhjZWnD/ZloLasJWCPSGxFBTD4/GgsLAQx44dQ1lZmSXbAwksWgrSUOjpDWvjK+0zBdWixFKwvb0db7/9Nvbt24e8vDwcPnwYb731Vkh6xguEaUtBAFkAeABJKsMnBsRhY9MLKygFhT7om5ub8dZbb0mGC5QxNzcXO3fuJEpPzQTrs88+63Emg9UnKXLyV1dXY926dWhsbAQAxMbG4rHHHkNSktqhyjjUWIGYidUsBbXA8zyKiopw8OBBs0URJS0tDeXl5brEbWRbVJMWaRie5yUnoFLnO0VGRgLQ70N37969otdvueUW1fHOmjVL1eIzaZlGS5zhqAe2paD430KEuqVgqBCK7kNbWlqIxoe+2t601kdTUxO2bdumyDowKysLd999N/p7z1AUK/v9+/dj3759quSiXZ/ffvutYWmZjdkKa73T64vvb6vky4qWgiwpBa2AkW3RikpBQN2mua6uLmzcuLHHRvxZs2bhtttus0z/1wrLloJSGGUpyBq0xzK1/V2J9fU333zTa52roaEBZ86cwezZs1WlbwWs92a2saGIFdyHCsm4ZcsWYlny8/Pxj3/8gzg9mofhWhU5+T/++GO/QhDoXjT56KOP9BarT2I1paBamXiex+bNm2WV/Wby8ssv49FHH9Utft9YZ/bkPRgjLQWD01R6T45vvvlGdbpS6L3Qw5JSMNQxylLQSgtfrLxrbEvB3qxZswYFBQWqw8uVSV+1FPR4PDh+/Dhef/11YoVgYmIili5dilWrVvkVgmKcO3cOO3bsQEdHhyr5jISV/k8LoywFlfYdK52VxBpay4eGdwT7TEE62JaC5FhRKaj2TMGTJ0/28sx14MABFBUVUZWPBVhs51o2OtruQ+lghBe8Xbt2CV7fsWOHqrStAuuWglrx2YOyYbtqwxxWsBQMlpHneVy4cEE2nE/GkydPKhqUbaWgfBkUFxf3ulZSUoLGxkbExcX1uM56WbA0eRCCRaWgHjKdOXMGJ0+eVCuSIcTGxurqCoJVS0EjlYK+sYdFt7lSqK07Vi0F+7L70GAlAkl+Q10pyAq2UrA3nZ2d2LhxI1555RXdxyElWFkp2Nraig8//FDSei6Q/v374/bbb8fYsWMF0xPKe/DiJsuwOA/VAqvuQ2ml1xff31rz5XKJLwnSbONW3HBlKwXZxarloUbBJGZVf/jwYQwePJiKXKxjVUtBmu3USptnWFEKKrEUrK2tVZWG1Ql1paDvEINGyadsqBPb0IAEkbPwWCK6ogIJKjo/d+0aEB/f67qzsFBVfFLEd3UB+fn+vz1dXURpcNeuAfX1uLZnD5QcjRpZVqYuDwEyRpWXUy8HI/GVgdKXWd2pU4gLmpiFFRczVRZR5eU96iq8pES7fPn50nEEpKcUqT7qKioS7Id6E1NZSV2my19+yVQ7ESQ/Hw6PR15Ob30rbfvOwkKguRkc4RgXmJZSHG1txGnERkQA+fnEfSW8pARwOkWfdba1IaG1VfBeRGkpkJ+P+Joa0fEnsqxMdb7l+qlDom1L4RtXlI4DpO+KhNpa+fgpEl5SAojMYTi3m/2+qgFHQQFQV+f/m6Qfh5eU9KpfrqFBMpzsfEnH94pSWHmPOwsLAe+4ICUPx3GC5RNXXa1bPpSOk1SprUXpoUMYOHCg6CMRpaWCcsXGxMAt0acjy8oQX1OD8LY2RSJFV1T0qAPVc2uNxDsc6CRMl+d5fPPNNzh06BA66+sxBN27a9MBHAUQbNOXlJSEW265BWPHju11Losc58+fV/S8kKxGYdWFZzGC82O0paBYedIqZ9YWRq3A2LFj8ZnAuZpJSUmK+7YUVqwbo/u/kgVsFjHymJK+ZCkodqYZiaGA1bDimYJGWQpKwdr4SnsjudryszehyhOySkGO46YCWIju8wSl/WXZUGfV+vUYb7YQhCxQEygnR/ByFoBs9aKI8/Of+//rJE3DKyPRs0EsUhEmsExu9/6szHw1gQTaxSjvj1WmeH+ayMmRbmci/YWEpTrFq4VlUjdVyvSAqlAGQzqmeJ8bTvKsQDjiMS4gjFIilaQBAD/+Ma4DcB3JsxrGXl/Yl9SEJSBbJu0UuWckwpLEH8xt3h+V+Gki0a5cRsphBkF5H+v9KQkDAPGQbw+TZe7LhTeKid6f6QTkOVvu2TVrel3S/T3z4x9jDIAxeqcjhEx7mOH9qYlX9Rzp5Zf9/53l/VmV2QAOBPx9/fXXY+HChQgPD5cNa4WFbClIFgPZWoqTJnghnZX6McICgrVFU1pozVd0dDRGjRrVy8X85MmTNcUbjBXL37YUZBerlod95rY6rG4pSKNe5eIwO6+BWNFSsK/CjFKQ47idEreXcRw3gTCqMACDAAwBwKFbKbhNo3g2Cnl75UqkJyWZLYYsEyZMwDmBnXFyPP7440hI6G1/l5eXh02bNtEQzU9cXByefPJJ/98ejwevvfaabLhVq1YhMTERawQWhqQYPnw4cnNzlYqJ7Oxs//+3bdtm6Z1L48aNwzfffKN4h8t9993Xy4XD5cuXsXXrVpriaeKmm27CjBnfLY2dOnUKu3fv1hRndna2ZDsLbBtK+fjjj3Ht2jXBewsWLMC4ceNUx60WPWRS2k/N4KWXXoLb7cbatWsln/PVd25uLjZv3kwc/2OPPYZ+/fqhq6sLv//974nCqG1b7e3tsvnwkZaWhoceeghnz54l8ik/ffp0DBgwAJ988ongfYfDIbq79YYbbsDs2bMl24PvGTXI9dOKigq8++67iuOdPn06pk+frngc2LlzJ9F5VY888giSkpIM6yfLly9HRkaG4D0l7dOKPPXUU4iNjfX/fenSJXzxxReSYWbMmIGbbrqpx7X6+nr87W9/Ew1z8803Y+/evaL39XyvKOXMmTPYuVPqM8UY7r//fgwaNAiAdF/mOA6rV6/udf3DDz9EYWGhLrKlpqbi4YcfJmovejBv3jzJBexDhw7h66+/7nU9IyMDXV1dKC0tFQw3d+5cHD58GO3t7YrkGT58OJYsWeL/e9++fTh+/LiiOGiQkpKCyspK0fvV1dXYtWsXigTc4gNABoD9AHylk5ycjDvvvBNDhw6lLiurhNqiEauWgrToi+5DabB8+XJs3boV33zzDSIjIzF58mTMmkW+lYGkbK3oPtRorG7VYlsKSqPWUrAvUVhYiPr6ejidTowbNw5paWma4mPFUpBG+rb7UH3l4DiuT/Y/ZpSCAOahW4EXDAdgoPenBF+vKAPwunqxbNTQFB+PeplD5lmgbcAA1It8CEvhycwEBPLn7uyknm8+Ph7Iyvru764uojS6Bg8GUlIUy9OYlIT6mhqlYvaQsTUtDfUiCyxWoDklBfWVlYqVgu6MjB7lAACdTU1M9YW2AQN6yNhZWaldvqws6TiCykQJTcnJqBdxmdGenq4pbrXoIRNLbUQMbuhQcG63vKze/He2tSnKFz9kCNC/PziPhzycyvrnFcgWnZQEZGWhs6aGKEzbgAHoGDhQVZ22pqWBHzJEMmxrWprqfMv1066ICFVydwwcqGocaBswAPUESorIMWOAmBjD+oknMxPIzBS8p6h9WpGsLCBAKegmeIcFv1cAoEumv7Smpcm2F73eK0ppp/GepIA7IwMYMgSAdF/mOE6wfFpSU1Hf1KSLbNHJyUBWFlF70QPfGCRG69WrgnL1T0mB2+1GvYh70M5Bg9CYlIRWEZfPYjR5y8NH25UrppRLTGoq6gXmsm63GwcPHsSePXuIFkw4pxO3zp2LmTNnSp4/JoTVF1jkzhS0mqWgUUpBpdBa7GRtYVRvaOU3LCwMS5cu7W7POpWhFevGthTUhq0U7I2c3FasZ5qcPXvW//8DBw7goYcewvDhw1XHZ3Z50nAf6sNWCipHiaWgy+VCZ2enqnSsDEtKQQCic2o1LbwFwCcAfsLzfJVqiWxCGrWDp97nIdCIU+1EieZuFqtSXV1ttgg2XuQWY1iDRZlooueE08jJrJK0fHVKGobnedUTYY/HY2obMto1C2m4qKgoVfGrpS9bGqjJn9C8Qa4tWXUxx0y0jg16WmmY/e7TcwxSk7fgMGaVT3D+6uvrcejQIZw9exbNzc3E8axYsQKOYcNoi6casfKMiYlRlC8taVkVs92HCqVXVVWFzz//3FA5QgXac5JQmefTwlYKsosV55G2paAyurq6sH37dgwfPtzwNdFAtNQZDfehpGcKsjTGWvFMwbCwMFspaDK3BP3NAdiJbuvBTwDI+0vsfrYNQDWAPJ7nrfemsDEUlgZO2rD84mSdYhXWo1bBSLceNLCaUjCU0but+OI3ok2qSUNJGLVKQat+LOpdZ0a7nOrLLq6C805St2qUgiy2YzGsJKsURrRr1ucUSqGVH7PakK/OPR4PTpw4gS+//FLRgse4sWOBixfRv39/1KuUwci8x8fHY/r06USuvmlhtfEheLw22n1oMDU1Nfj73/8uqcy1LQXZJ1TL3ej+bfXzr2z3ofKE0vzYCMrKyjRt9jG7ndBM30ptw4qWgmFhYarSsDrMKAV5nt8TfC3gJVIsdN/GRitWtBQkTcNWCrKBXRbaYFEpyKJMRqD3DjRWFTFKLQU9Ho8mS8G+5FaGpEwnTZpkgCQ9kWqLLC98hYWFITk5WfR8NBLU5E+oTdqWgvTR2vf1bLtmj0tyeTPa5ZLZ5eHD4XCgubkZGzduRF5eHnG4sWPH4tZbb8UIlwu4eFFHCekze/ZsxMXFiZ7rqxRW6pIWrLkPPXXqFFXrTpbf0XpgpfxaSVYfRvf/4P7Y1dWFqqoqJCYmGiqHFbDi2Eyy+dOeH/emvb0dTqdTVdhQshS03YfqK4eUe3yPxwM2V6q0w4xSUISfef89YqoUNiELbaUgSxgxcNJO2+qw9jIWwrYU1BcWZaKJnru1Q8VSsC+7D73llluwa9euXvfVngWRkJCAm2++2f/3woUL8cUXX6iKSwmsj4tiTJ06FXPnzsXJkydRUlKCc+fOKY5DzTuCZfehXV1dKCwsRHl5OTIyMjBw4EB0dHSgsrISAwYMIDofjZVx3XYfSh+59m11S8G8vDy88cYbaBA5BzmYzMxMzJs3D8N8rkJrazXLYMbRCgMHDjQkLSu2exruQ7VYCgant2/fPirp9VVYKRua1qMsYab70HPnzmHz5s3o6OiAy+Uy3JU+DWxLwd7YloLK0dKOzG4nRp4pyNIYy4pSkJalYGdnJyJUScA+TCsFeZ7/mfxTNjbqoT1wsvQSN9NS0MaGFlZrjyyNATRhVVFnBEZaCvI8b0lLQV/ZTJw4EXv27OmVh+uuu04ynBhPP/00YmJi/H+PGTMG27dvp35OQTCsWq1KceONN2L+/PlwOByYMWMGAKC0tFTxGblGnSloxKJIV1cX3n//fXzzzTc9rnMcB57n4XK5sGTJEllrVBb7nBqs2K5JYe39wcKZgidOnMCWLVuIxsvIyEjccccdmDx5MnNlGQzP86Ju/vXYXCSnFLTa+EDDUpBlpOreanVlYz5muQ+tqKjARx995E/f7XajsbHRUFnUYLsPlcaqx0SwAKte0HzfFGrCKk3fSpaCrJwpqKT+baWgjY0NMUa+rG33odaG9bJgbQIRDIs7tKXSvXjxIpqbmzFo0CAMHz485BZhlbQXpfVjZFtUkw+j3Iea+bGo1VKwf//+WL58OT755BN0dHTA4XBg5syZmDBhguI4x44d20MhCHRbDq5cuRKbNm1CLQULFjGs1m/T0tKwePHiXtdpWMSSxKGH+1Aa7fzUqVO9FIKBcbvdbnzyyScYMGAAUlNTNaenN1pdEBlhKcjqnEfr2GZW+mpwu93YunUrjh8/LvtsWFgYpkyZgjlz5iAuLs4A6bRRXV2Nd955B/X1ak84VA6L81AtmH2moF6WiWqeDQWslF8ryWoWvv547tw5S44vRmJFpSBgjfdGSUkJcnNzER8fj5EjRyI6OtpskVRjdjuhaSkohW0pKIwSS0Ep7zFKzuO2GrZS0KZPw9LASRvbfajxWCHfVmvzVluMycvL85/bM2HCBCxbtsxyCgYhjHDtyapSUGkYrZaCVt9BOnbsWIwaNQoVFRVITExERIT4vjo19TBkyBC8/PLLeOedd3D16lUtoooiJ1dcXBxTO7ZpjjFGWQrKfaTT+Ijfs0f+OHKe53Hu3Dnceuutks+wgFbFWyifKagWuUUUqx0zUF9fj/fff1/Uks6H0+nEnDlzMGPGDMkxmgY0y+L9998nUgjaloLisHamIG1Ylk0P+lp+jcbo/u1Lj8StLosYaSlotbEXsMZ33tdff93jqIZ+/frh0UcfRb9+/cwTCmx7QWPhTEHWoF3uRqxty1kKhiqmKwU5jvv3wL95nv9PsXtaCIzXRn9iGxqQINGpWCGqvBwJKqwNuGvXAIFD0V1FRarikyK6vR3Iz//uQmcnURqOggKgq0uxPDEAOtTkIUBGteVqdVxFRUDQ5DesuJipsogoLe1RVxGlpdrly8+XjiOw/SokprJSNO7wkhJNcatFSqZACvftw7XERAwdOlT2WaPayMKFC+FwOJCfn48LFy4Qh3M6nd1lzfPysnrrROl46CgoALyLk8Th1Na/grExluOA/HyEl5QQhQkvKYGrsVFVnUaWlYHPy5MMG1Verjrfcv3UQZjHYCLLynrI5ASQDgClpbLhxNKLqayUzGdyUxOqdeo3rqIiQELpd2NKCo4XFOiSthriwsMFyyq+pgadCsuIu3YNcDr9f5O0++D3CgA4ZOYBUnUPQLYfkPQBR0EBEmSfAs58+ilu9Z2hJgCV9yQFXEVFgMsFeDyS8nDeMSsY0neXGuK8aeoxDyZBqA0GItbeYior4Xa7JecZ8TU1iGhvVyRPdEVFD3nk2jsNLly4gL1798LV3o4h3mu+sfgogA7vtbS0NDzwwANISkrSVR7aNDQ0oKKiQvIZPRagWV/AVQqNMwW1oLelYF+DlbKxzxS0ZnpWxmwLMLWwcua2GMFnt9fV1WHPnj24++67TZKou8zM3KSlJQ6aXtis5D6U9lhmWwrqh+lKQQD/ASCwNv5T4p4WbKWggaxavx7jzRaCkDlqAuXkCF4eASBbgyyi/PKX/v+GkabhlZHoWRoElMldRqXJGgLtYqz3xwxBMo73/rTGma0gTSU8rFO8Wliu5GFCGbPVCKIGrzyjACxQGva3vwUHAlm9aSgeDwPKijicyjbgVJIGAPz0pxipMMxNSuIPQkk61OLNycFAtWmrrIebvT9RXnxR9NYi708XZPIzByrnDnryk5/0uvSImniC8j4c6tpEGkG4uTJySIYnaHNy6ZPGd733ZzpeGR0gyNuaNb0uLYCKcV8JP/0pxgAYo2caYsi0h9nen5p4lTs/9vLDH/r/e6v3ZxazARwAMGnSJNx1110IDw83LG1aC0NlZWXEzxplKUhynzXMdh+qN6wtjNrYKMFq44kc9pmCPbGCpaAQp06dMl0pqBa924lcndJwH3rgwAHU1NRg8ODBos+w5j6UNkZYCtpKQXPxtV6hmqbRstkbWUOct1euRLoFdqDecMMNOHbsmOJwK1asQEpKSq/rV65cweeff05DND9RUVF49tln/X93dHTgj3/8o2y45cuXIyMjA2sEFoakiI+PR0NDg1IxkZ2d7f//5s2bkZubqzgOtVx//fU4ceKEYemJ4SvzQC5cuIBt27aZJFFvZs6ciWnTpvn/zs3NxebNmzXFmZ2dLdnOAtuGUjZs2IDKykrBe3PmzMHUqVNVx62WjRs3oqioiPh5kvwr7adqWbZsGYYMGYLKykps2LCBOJzL5cKLXgWNnKy+/CodD7///e/7FypJy0Nt2+J5HjmEiqz+/fvj0UcfxbfffovPPvtM9vlx48YhOjpa1btl5MiRuPnmm/HXv/5V9JmJEyfitttuUxx3Z2cn/vCHP4jez87ORnFxMT744APFcc+bNw+TJ09WHG7//v2i5TRy5EjceeedomG/+OILXLp0SXGaJDz55JNE52t1dnaivr4e69ev10UOUgYMGIDvfe97va6/8847qK6uVhTX6tWre3xUkrwjhg8fjiVLlvS4VlZWhvfee080zMSJE3H27FnR+88++yzeeOMN0fu0x9XA+E6ePEnketRo7r77bgwdOhRutxuvv/666HMOhwMvv/xyr+s7duyQLHMt9OvXD4899hguXryIL7/8Upc0pJg/fz7Gjxff4rRv3z7BM/aysrLgdrtF3+nz58/H3r170a7QUjAjIwPLl3+3hUiPsu/q6sKxY8dw5MgRdIksemUA2A+gHMCiRYswbdo0yy4a6e3mVAwrLuBKYUX3obTOFLRaXZFgpf5sJVl9GN1mrKjoCsTIOrZqWYXaO8UIPB5Pt9cilWG1woLrz4sXL+LixYuiHlBYG19ZsRRUchSRVBl2dnYCFvCEqAYWlII/U3nPhmGa4uNR37+/2WLI0p6ejobERMWDTNfgwcCAAb2ud7a0UM93Z3Q0kJX13YWODqI0OgYOBLKyFMvjiYtDo5qXboCMzSkpqK+pUR6HCiIjI5F5883Y5T3HzUzcGRk96wpAZ309U32hPT29h4xZgwej9cgRdHR0iAeSQ66dBZWJEur790e9iNl/24ABmuJWS1NyMuoF3AeLQiCjUW3Ek5kJZGWhKzJSUZphYWH+fMiG8z6ndDzkhg71T7aIw6msfw5AxuzZOH/+vOyzzsREICsLHYT5aUpOBh8To6pOm5KT0TV4sGTY1rQ0Vfl2t7bK9tMuh0OV3L73jVLavv1WND25fLampaG+vFxxmiRwQ4cCsbGyz4UBiNbhva+UuJQUwbJqSk5GvdKP4aysHm6w3e3tsvmriY/vlb7b5ZIM15ySInnfnZGh+b2iqF688R0/fhyfnTkDMPTe9tE5aFC3nG63ZN4cDodg+bSnp6NewYYWJfjGyc6GBlP6g9wY1HbliqBczSkp3cp9kXd656BBaEhMRFtbmyJ5+gf1yZbUVKrlUlBQgM2bN4tumgpm2f33I0ZCaaonRi5wmrEoZrUFXBruQ7VYClqtvFiHlYVgVuSgje0+VBv2mYI9saqloNloOb/3woULkptM9YaGpaAVYUUpqEQpLJVGR0eHrRTUC57nRRV/UvdsbFhEj8Fej10RUpi9m0YJ4eHhWLVqFSIjIw1JLxQInpw7nU7MnDkTu3fvNkcgGVicQLEoEym++lf6kabmo05pORm9oLB48WJUV1cTuyQjzY/H41HkqiKQS5cuYc4caceUevjUdzgcmuJWW3esLiKxKpcRBOedpCyErKi0LnqYtQP8zJkzpqRLgtbdxkYszpn1fpTLm9kLu7TSb21txfbt2wWtHoUYPmwYcPUqBg4ciHoqEpiHkveqke5DrWatQsNS0GhoWQramIsV6ya4v5SVleHQoUOoqKhARkYG5s6di1iCTWRq07M6tlKwN7ZSUDlaLAVbWlpw5coVjBw5UnX6SqzNlN6nBWvuQ1lRCmqpu0BC2X2ow2wBbGzMRO3gaebLmjRtI/wu005bCXFxcfjRj36E9PR03dPSghUmdjffLHmql6nQepGbBUuTM4Bt5Y3RZRUdHY1nnnlG9jnFluRdXZrGUTmXq2rbvZQ1sNoPLR9q686njDQyTRKUyMVCHxeTwQjlPwBBKyqtH8k05iJqKCgoMCVdJagdA7T0Nzms8D4WQq7Nq+0TtMvD4/Hg3Llz+MMf/kCkEHQ6nZg3bx5eeeUVqnKogVZZmDUmhJpS0KgzBcXQyzJRzbOhQF/Lr9EEtteqqiqsW7cOZ86cQVlZGY4dO4Z169Ypdi9Nmp4VsdujNFos3voyWsvt5MmTFKXpCekcQe96D/W+p3aupaTcpZ4NZaWg6ZaCNjZWRGzAsC0FtaVNitPpxF133RXyLz+j4DgO0dHRaGlpMVuUXlhdKRjGmJsBtZaCalBaP3ouWIvBcRwiIiKIPuiVWApqGUdLSkqoyBHM1q1bRe9JHaxNgh5KQTPHdzPaohb0LCu9LAXl+ojVFtqNQKs1nhHt2grv5WCk2jitvqVlTn7u3Dns2bOH+HzQIUOGYMmSJUhOTvaf0xsKKBkTjLQUtFqbN8pS0P5GMwZWyjk+Pl72GVZkVUJgfzl9+nSvTVBVVVXIzc3FuHHjqKcXClixzvUm1OrYCLS+py5evKgpvJb1qI6ODuTm5hK7e1cLa32NlXZuWwrKYysFbfo0rA2eNAlFpWBiYiKmTp2KUaNGITk52X89lOuRNlYrK1spSBe1i8JWs6hWAm23c1rch+oFz/PIzc0Vve9rp0bXGauWglYbJ2mhNt+2UtAYGhsb0dTUpPq9EsqWgqy7D1VDdXU1PvzwQ9mNIj4iIyOxYMECTJkyxdANQHIYaSmoNr9SfSrUlIJGnSkohpmWglarKxJY6OMA215ntBDYZvbv3y/4zJYtW2yloBc17ZHjOMvnmxQrWwryPG/aeMNymcnJVlRUhPXr1xsiCyvvA4CdOqNlKSh1DIvVsZWCNn0emovdRgx+VnAfqhfTp0/HjTfeaLYYNgbColJQSbqsKQWNPFNQKWZNZEkXk404U1Av5KyAzXIfKpWuVSwFWfgA09N9KEkcXV1dcLvdPSxOtSoFWetDLLBlyxZs2bIFAwcOVBW+L58pqDacWZaCZ86cwWeffSbp9jmQiRMn4o477uh1thUL45MW3nzzTdx0002YNGmSrmcKSlnLh7pSMNQsBa3e5q1A8NwtMzMTAwYMkA0XqnXT3NxMLS6rjSdykNS5w+HoU3M+q9bxBx98gKVLlyIyMtLwtM1WprK4HhUMq+PrtWvXkJubi5iYGIwdO5bIqtwoWKk7szFdKchxnCHbinie32tEOjbWgtXBMxCj3YfSGBz1GmCtUF/BWOVlw6qcUosVSmVuaGhAeHi4oZNZUqWg0+k05IPIyDMFldSPmX2bNG0lSsGKigotIlGRQ0kYnxJM7TgQamcKWu1dw0JZtLe3K1IKhto5XUZCajkWjNXc4hqFHv0nuH2Tjq0dHR3YsmULTp06RfR8v379cNddd2HEiBGC91kYy7TML0tKSvDxxx/D5XKZNiaE2lhllPtQmtBqxyz0B9qYkad77rkHh0pLUVtbi6FDh2LevHkh+34x+vvYCv2RNn1JKcjzvGXr+OLFi2hsbMQTTzxh+LjDcpmxsobG2vuN53kcPHgQX331lf/avn378OijjyIlJcVQOWg8y0o964HpSkEAuwHoXcI82MhrnyG2oQEJjFnICBFZVoZ+dXWKzYEdBQWAgF9hV1EREmpraYkHAIiIiADy8/1/c+3tRGm4ioqAyEjq8ogSIGN0RYUu6UaUlvZIx4ejocG4fErgKirqdS28pIQJ2XxElpUJlmF8TQ3Cg85JICY/XzqPAumRElddDa6pSfCeWHsIpqGhAZs3b0ZlZSU4jsOIESNwxx13qD5HLbaqirhO+4eHE8nYv77eEF/lYcXFQEcHnDU1itplVFubPx+y4bzPhRUXE6fhcDh6lBOxbBralo9+dXUIk9jlG+d2A/n5xPnxeDzorK9HgmbJhIkqL1ecb665WVL2WJ4H8vNVv8MiSkuB/v0Vh4ssKxNNL7qiQjKfUeXluo2tjoICgPDjivSdrCcxMTGCZRVXXY1WBbK5XK5e8ZC2ic4rV4B+/fx/OwsLJcPJ1h+F94qieiEd3yxA8HjqQ88+g9paReMkbcKKiwGJ3cdiY01MZSU6OztFZQ4vKUF8TQ0iCM6dDSQ2MlLxvLiwsBA7duxAXX09hgBwAkgHcBRAsL0gx3GYOXMm5s6dG1LnBopx6tQpjBkzRvY5td4QtCwEsbxYKQQN96EkiNWB3gtrtvtQ/Rk8eDAGz5mjOBxri9YkWNH1tJmo8ThhxXahBSvXcVFREWpqapCUlGRouraloDwcxzHVl9ra2rBjx44e15qbm7Fnzx4sX76calpSrm1pGhiEKqwoythpvTZUWLV+PcabLQQJOTmYrjKcEGO9P+r8+tf+/0YAyCYJ45WR6FkaBJTJfQakEUg8DMynFALyjff+mEGkDJ/TGGe2ijRJeEp1yO+IB7CCQjw+HlAa4Cc/kX3kBVWSqMBbF4lQ0Wf+538AknDeNBSPh7/7nf+/smkEpaWFp0ke+sUv9BvfDSAGBGX6s59hMMlzQqish8nenxrme3+6oCA/xO9kvXn11V6XHlYTz//+b48/h0DZnENxOIn4JMMT1JGi9I2eM+lNwHjq4ybvTzdycjABwAQ905BIW4q53p+aeEerCQcAP/qR/793eH9qmA3ggPf/HMdhzJgxmDt3bp9y13flyhWMHDnSlLRDzX1oqFsKhkqbJ6Wv5ddobKWg/oSqlakQZiu3aHDkyBEsWrTI0DQ9Hg/a1G5e1xlW6pO1d8GFCxcEr58/f566UlAKWpaCoQwLSsG90N9S0MZg3l65EukG7yBRw4wZM3Ds2DHFFjoPPPCA4JkuFy9exJdffklLPABAeHg4vv/97/v/bmtrw5/+9CfZcIsXL8aoUaOwZs0aqvKIkZ2d7f//xo0bUSRgNaeV+fPnY/z43iq2hoYGvPXWW9TTU8ry5cuRkZHR49r58+d7mM2LERERgeHDh4u+QGlx88034/rrr+91fe3atWhXuBPeR3Z2tmQ7C2wbSvnzn/8seh7atGnTMHPmTMnw1dXVeOedd3pdd7lcePHFF1XJ9M9//hOlpaVEz2ZlZeGee+6RfU4qnzRZuXIlkpOTUVtbi3Xr1hGHi42NxVNPdato5cYUX31fuHAB27ZtI4o/LCwML7zwnWqUdNzS0rZ8/PWvf0VjY6PofV/eleRHT8aMGYOFCxcqCtPU1IS//OUvovf79euHxx57DAUFBfjoo48Uy7RgwQKMGzdOcTip8XHs2LG44w7xZfTt27fj3LlzitMkQUm7am9vx9q1a3WRg5TMzEzce++9va6/++67ilzZBs83ABC3ieD3X15eHjZt2iQpc0FBgej9e++9VzJdkjoiHUccDgdefvllRWFYJjA/gRw7dgz79+/XLd3hw4cjKyur185gI1i4cKGkJdmePXtw8uTJXteHDx+Ojo4OFBYWCoZbvHgxduzYoXh+lJaWhoceesj/99atW3H58uVez129ehXbt29HS2trr3sZAPYD8M02hg0bhsWLFyM5OZlYDhYWiWgtsuipvNIio9UWkYw6U1AMMy0FbczFinVDs72S5N9q4wkJcvnuS0pBwPp1rNTDGg14nsfWrVsNTzcwfRtrQsvKM5TbgOlKQZ7n55ktgw19muLjUa/ClZjRtKeno75/f8VKQXdGBpCZ2et6R3099XyHh4cDWVn+v/nWVqI0OgYOBLKyjKuHABmbkpNRr/LQ7alTp+L48eOC9zoHDeqRjg9eh3JXgzsjo5d87TU1RLJFRUWhbcAA1BMqm9TSnp4uWIb1/furVgrKtrOA9FpbWxEZGUn8YVjfvz9aIiIE77WmpQnmJZAzeXmisvFDhqj6QG1KTkY94W41Xz8kiVNKMUULfsgQICUFnrg4ZX0mIcGfD9lw3uc66uqI0wge54hlIyhbOZqSk1Ev4Uq2KzYWyMpSlB89aU5JUZxvT0ODpOyO/v2BrCx0dnWpyqPQ2EcUTmLsbklNlYyzbcAA1BcXK06TCAV54To6TG8XYm2iOSUF9QrmN8H9EAC6eJ4of03Jyf6wFRUV+Pz8eclwTcnJqJcY83zzM1EI6oi0XpxOJ/n4ZgEcDodg+XSWluqavxM1NRg4c6YpZSg3BrVeuiQoV3NKCjo7O1Ev4qa8c9AgNCQmKt6hHhPQH3zp1Acp6I8fP47NmzfLxuUBcPvtt2PmzJmKF0+tuAgvBsmZU2rdh0oRau5D1Z53qRSadRBK7Zg2ViobK8nqw1YKKkNNHVuxXaglFCwFzcDj8aCsrMxsMQRhpT5Zcx/KCrbiTx7TlYI2NmZixYGTdLAy8yNVy4A6bdo0UaWg2GKIFetRiFDJhxAVFRX4+OOPUVZWhoiICMyePRuzZs2SzTOLPtyVpEtap06nU604ivD1IaVtLZR3cZKWBSsTRVbkCETt2CXVrkJ5PKQNrbLSEo9vU0lpaSnWrVsnu8lEbo5i5Bymr7Q1I8ZxFscnQL1catuGXHonTpwgUggC3d5JolVYYgNstG1abYJEKagWLXNNVtu8GLalYGjR1/JrNE0iG0bUQPIOttp4QoJtKfgdR44cUWTtb9MNy/2CFdms9C6QOgOQdny2paA8fWcEtrERQc2AJDYo6DFYqI2T1cN4pbj11lsRGRkpej86OlqtSJbAiEmxGROGjo4OvP322/4dXu3t7dixYwdOnz4tG1bPw4GN6COkaRhVL3oob8TQQ3mqB6SKaStPBkkXNY3OoxZlOCsfPyzIISaDUtmEnieNw+dx4euvvyayOpdbiNZTARAMC3VoBKGcT72UfrTKLHCM3bNnDz799FPZMOPGdp9im56eTkUGq6NEeWVbCopDqhQcM2YMwsLCel2fMIHs1FCzLAWlnrXyPC4UsOI7qLy8HM0qvR8FQ5J/q40nwaiZR/YlpeCpU6ewfft2s8XQhBn9mOV+wcp7xUrjK6v1yUpdGk3fGYFtbATQawcwC1hRKehwOBAfH4/ExMRe9yIjIzFs2DCtohmOEqWQmS9zPdtLfn6+4AfVmTNnZMNq3d1jdl81O/1g1LrWorl5QuuztLHSJBpQV1as7sy3LQXZQkuZ+9oYyWaPwOfFMMNSkLXxmjZ92VJQCj3GGiEXjW1tbdi0aRN27dolGTYpKQmPPfYYFixYoFkOFsZRWu4qbUtBOgTLKzbWhoWFYdmyZT3GjcTERMyfP19X+WyUwUIfD3W+/fZbKvH0VUtBOew2bCOH2UokFj1XCWGVvmTkxk+r1J2Z2O5Dbfo8Ru4mNTJOKyoFfXUxZ84cbNq0qce92bNn2+5DLYqYO9i8vDzZsHq+yI3oW6TPGtVf1S4Kh/IuTrm8sWYpqOd7xmgXe1raFSvjJQty6CmDXnHbloLGE8rjuF6KGxqbB/Pz87Fu3Tps374dHR0dkuFmzJiBW2+9tdtCq7ZWVdqBsNi21dYFyaKgGWcKsjI3ICW4HMXkdzgcGDt2LF566SXk5eUhOjoaQ4cO7T57lgA1rryUxqX12VDASvm1kqyBVASdB6snVhtPSLAtBUMLM/qxkd8ESmGlz1ppfKWt5JWqAyVp9VUFoq0UtOnTWNFSkDUlA820ffUxefJkxMTE4Ny5c+jq6sKYMWOI3dVYFaMsBWl+pJPidrtF78n5FLf6C1hIfrfbjaKiIng8HgwePBhhYWGG5VPtgpne7kPNpC+cKciqpWAouA9lAT3dh5KitI2xeKYgK31cL0LZUtBopR8JFy9exH/8x39g48aNRO35tttuw5w5c3STxyysYCkoBUtWzTQgtRT09Y1+/fphypQpustFC3tu0LcZp/L8VSlovddI2qbV5yFq+p+tFLSRw+z3rBWURVZ699mWgmxhulKQ47jAFsHzPO8SuaeFHvHa2ATCuqWgWliSRQ0jR47EyJEjzRbDUEJ1Uix1FmRra6vkfRYtBbWkUVtbi3Xr1qG+vh4AEBMTg0cffVR3OXwYYdGl5vBolt2HWn0sZZlQHfOsipYzBZViKwWNx0oLBqygpsyqqqqwa9cuvPTSS5KbogKZP38+Zs2apTgtOVgcY41QCtKcg/RlS0E9sFp5sY7QuY+sovc7aN68eRjJcHn0VfehRp3da2MM9pmCPQnFPqs3rCgFlTwbyvXMgqKMA8B7/1Vyz4ZhYhsakMDwpMxHZFkZ4mtqENHeriics7AQEHghhpeUIIGCu58eaTmdQH6+/2+upYUoDUdBAZCURF0eUQJkjKmsVJVuZFlZj3hIcTQ3G5dPCVxFRb2uhRUXE8kW3d6OqPJy3fMRUVoqWMYJtbXo7OxUF2l+vqTciQ0NovdbL15EdFKSaNj4mhrRiSBJe4koLRWXLT8fcCl/DcZWVRHXU0xlZQ8Zd2zcCBQVIcF3obYWX77xBuLa24HGRsWyKMVRUADExMAhUSdCxEdG+vMhF47PywPncBC3fcC7qBFQTsSyqRgvgomrrkabRHoRLS1Afr6i/OhJdEWF4nxzdXWSsse53UB+PpyFharyGF5SAkgo98WQKtOo8nLJfEZXVOhSH+PGjVNUvlxXl+ntIraqSlDmuOpqRbLFdHT0isdJ2O7Diotl3wWBxDocaJd4VrYtEtQRqSxRbW1Afj54t9v0uqSBw+EQLB/J92EQHMep+gA2a5wMKy4GEhJE70eWlQnKFV1RgXCJencVFRF/J7S1teHQoUM4c+YMeACDADgBpAM4CkDIcajT6cSyZct084bBglKQlqWgEvehNOnrloJqoVUXNC3eQ3FRLyoqymwRiNFbmRAeHq7LoqGR7cbqbdS2FLTRA7Pdh1pBWWQl5TorSkGe5/0evBIkviFCHRaUgoC00s86rdvGz6r16zHebCFIyMnBVJXhhJjg/VHnt7/1/zcaQDZJGK+MRM/SIKBMHqYQhxJiYGA+pRCQf5L3R4rujqNEyvgFjXFmyzxyi0RYKV5WIU4gs7w/NWmL8ZDSANnZ/v8uV5UiRbx5joeKPvOjHwEk4bxpKG37+H//z/9f2TSC0tLCCpKHfv1rXAfgOs2pUeJlZT2jHwjK9Be/wDCS54RQWQ8ZatMDMNf7MxsnGHn/CLSJB9TE89//3ePPQTBpzpGTg8kE6UmRrSS9//kfuJSGYZnf/a7XpTHen67k5MAUR4My7eFW709NvM+rCRfEbAAHgq7Fx8dj+fLlyMzMpJCCMCwuErHoPlTLoh4rC4KkkCoFWVmoN9INthWxklLQRh6rjScksHqm4Lhx43D16lW0tbWZkr4NOSxvvqHZZxMTE1FTU6M4nNXee0aeKSh1Lz8/H/v375c971suHqtjulKQ53nRt4DUPRu2eXvlSqRLWP+wws0334wjR44ongwsW7YMQ4YM6XX97Nmz2LFjBy3xAHTvIn7ppZf8fzc3N+PNN98kCvv8889j7dq1VOUR4+WXX/ZP6jZs2IDKykrFccydO1fVuRVKysTH2LFjMXToUGzZskVxemIsX74cGRkZPa6dOXMGO3fulA0bExODcePG4ejRo9TkEWLevHmYPHlyr+uvv/46sZurYLKzs7FmzRrR+9OnT8fhw4cF7y1atAijR48WvMfzPHIkFvomTZqEW2+VXuY7cOCAaJm+8MILqtzuvPvuu8SHzg8ZMgTLli0DAFRWVmLDhg2K06PJc889h8jISDQ2NuKvf/0rcbiMjAwsX96t0pSqawB46aWX4HQ6cfr0aezatYso/hEjRuCuu+7y/y2Xho/sAIWrWt577z2UlZWJ3o+IiMDzzz+PU6dOYffu3ZrT08qwYcOwdOlSRWF8bmvFiI2NxVNPPYXc3Fxs3rxZsUxLlizB8OHDFYcrLy/HP/7xD8F7o0ePxqJFi0TD7tmzBydPnlScZjCTJk2Cw+FAbGwsRo0ahfj4eEXhPR4PXnvtNc1yaGH48OFYsmRJr+vvv/8+SkpKiOPxtYNASkpK8P7778uG9b2/SftuQkKC342yELNnz8b+/fsF73Ech9WrV8umQSqLL98dHR344x//SBSGZRwOB14WUBJfuXIFn3/+OVEcTqdTlRJm7ty52LNnj+JwWpk/fz7Gjxffjrhz506cOXOm1/WRI0eis7MT+SKWp3fffTe++OILtItYCra1tWHbtm24mpcneD8DwH4ApQHXoqOjceONN2LGjBmIjIwUlZkGLCwUkSqh5FASjma+Dx48KHnfagtFpJabWhfqzTjDvC+i9xhCE73HI47jmLYUJImHZeWHXpilFExNTcW8efNw+vRpHDgQvG3HRgwz5hV9xVJQbV9gYa6nBLPr08fVq1fNFoEJTFcK2oQmTfHxqO/f32wxZGlPT0dDYiJaW1sVhescNAjIyuodX1UV9Xw7HI4eafFNTcRplEdFGVYP/JAhgNMJAGhITES9CgVTx8CBguUqS3Oz4nw2p6TAnZFBtXzcGRm95G+vrCRKoys2Fh0DB+peX2Jtt65fP/Uv6KwsSbnbBgwQvV/Xr594nfO8ZLwtqamy7aX1229F4+CHDAHCwyXDC9GUnIx6QlerTcnJfhm7IiPNHxezsoDISPANDYpkSQwoa7lw/JAhgMuF9ooKojQiIiIwa8UKIOBZYtnUjBdBNKekoF7CNVxERASQlYX28nLz6w892xQpXbGxkrJ74uKArCy429tV5bFr8GBVdcFL9Am5fLZdvkylPrLmzcOwYcPUR+DxmN4uWtPSBMuqOSUF9QrmN3x8fK94PC4XUf7aBgyQfRcEwvXrh3qJj9/WtDTRuDiOI2pvpLL48s2rbP+sETxv9NHV1kacv7CwMFUuxdvT000pw/b0dMk20ZKaKihXS2oqOjs7RRXUvnlisFLQ4/Hg1KlT2LFjB5qbm2Xl6wKQnJyMGTNmYNKkSYadA8aKtVcgeloKql0YE5Oprq5OcvOCVFirYFsKWhvbUvA7OI5DfFwc9Xht96HkqOl/ZvVZjuOQkpKC22+/HRzHiW5EszEflpXlNPtsX3l/seI+1KYbWylo06fhOM5yg6+Sgc3IF6jH4+k+/1ADRtcFS3VvxbZIilQ7bGpqUhUOMO8lT+vAYjPwtTGlbU3J4pCSPCckJGD58uXob+JCvFxZsFaHespjdF6l2pVc/6c1Xmp9b5GQmppKbF2sBhbeHUrbjlz9Gjl/8ZUfa32dNkrGcdrKFVaRy6fQ/ZqaGnz00UcoEjhHWoyVK1bAOXy44YoWFhQ7Rp4p6IPWmHj69GnZZ1herBSD53l/GemlFDTLUpCF96GR2JaCPeOPVnG+NUtY7R1KAqvuQwNxuexlcVLMGGPNfs8aZSmotmyt9t4zUilIq+2E4tjsw/wR2MbGRGgverA2WJi1s421chCDhUloIEa80FmbyEntsNe7HRnRTlnrC2rbvBqlIEnen3/++V4ud41GLm9K8mMEauSQC6M1b2rHFSmFnFFKQb0WPn0MHjwYgwcP1pSGUQjlRa93hlz9Sn0w0pbJVgr2xmoLDEa9z0+ePIk//elPRArBIUOG4H9++UsAwA033GDKnJO1eS5grTMFz58/LxvW7MVKrYSapWBfw7YU/I7AthITE0MtXiPdh4b6PEQIs8aawPZC03o/Tgdr1b4OK+4m9cZWCqrDCKXtwYMHUVBQQCUu1mBjtmdjowOjRo0iek7NIGoVNxJGyhn4Uak2XaNfhCy9QM22FNSznUktmEidY6i3IsMIWJNRraWgkudJ8xwdHd3tmtNkSPPGWl3qgdFjtxZLQVrovRgxceJEQ3bHK7muNB4SlLYdLe8N2vQVpaCS+rWapWBgukKLDVrHttbWVmzcuBGbNm1CR0eHZBiXy4XFixfj4sWL+N73vqcp/VDECKWgkZtGrFi3gTIbrRS0LQXpYiWloJFzoVWrVuGhhx7CzTffrGuatLHieBKIms1lLGxAoKUUnDNnDh5//HEqcbEKaxvMjcC2FKSLkfVJs34++eQTanGxhKXspDmOiwXwEIBbAEwBkAIgDkAjgCoAJwDsAvAPnufFfdLZ9AlIJhi0BtDm5macP38eX3zxBZX4pGDVdSENS8FQdB+qpCxYmBSrQYvyTsukQOuOS7XtlNU+SIIeyptgSC3rWGnvfcF9KKuWgiy4D9XbUtBKFuBWsRSkTagpBcXqTElbZ2V8VkJubi6++uorVFRUIC0tDXfccQeyZM6eJNmQVVxcjHfeeUf2bDmg+9zABx54AGPGjGFisZ6FejTSfShtZTaJe2mzFyvVYIRSUM/3khHpWgUruQ81koiICIzKykJcXBz27t2rKS7bUlAbLMyT5aClFAwLC2MiP6EGy5aCNPssC3M2I7DqmYJWnO+RYAmlIMdxDgCvAvi/AAJ9AfhG3EQA/QGMBPAggP/lOO6/Afya5/nQrDkbWfQcVAMHl8bGRqxbtw7V1dW6p2VkWKXQsBQ0GtqTNi35NspSUI8zPrScDSV1z7YUpI9vXGThTEFWPpqsZilonylIFyPOFDSrrRuZrn2mIPuE8pmCZWVl+OKLL/wLDWVlZXj33XfxzDPPIDk5WXW8X331Fd544w10dnZKPsdxHGbOnIl58+YhLCyMmiJMKywuMIWapaAVF4nMtBTUG6m6D8UxnoXNB6SY4TWBRppW8RDFAmrKO5Tch7LybRtqmP2etS0F6WJVpWCowrxSkOO4aACfots6UKq1B96LBfBfABZwHHcXz/MtOopowygkgyMNRczRo0d1Uwhqpa9YChph/WQEVnuh+9DiBk6LUlArffFMQbWEsqWg1c4UVAOrloKhcKagHH3FUpC2UlDqg5F2X7Tqu1cpSpWCEydOxNmzZ3WUiB4XL17s1WY6Oztx+fJlJCcnq2ozBw8exFdffSUbNisrC0uXLkViYqL/mq0U/A5aZWGGpQBJ+bFswSCGmZaCwfXPcZxkm+gr47NabKWgcfEbgdnKDz3oS+5DgdBoh1JY1X0oz/O6yG4rBZVj1JmCVl67MRLmlYIA/gHgVgC+Gi0F8B6AQwAKADSj23pwMIAZ6LYUHIRuJeFcb/i7jRXZhgX0HBwDB5h9+/bplo5W7J1t0rBkKQhY74XuQy9LQTnMcsMSCu5D9bQUVCqL2djuQ7XFDdhnCkphhBW4WB6U1qeRfVLLe0MvpSBrfZ02SurX4XBg0qRJipWCZpVhS4vw/s/t27dj1qxZouGEysTj8WD79u04ePCgZJoOhwO33XYbZsyYwcSiphCsvGcDYdF9qBiheqZgIGZbCjocDqoLhCy2eT2x3Yd+h20paE1Y8KYhpRQcNmwYIseMgdvtxsCBA7Fp0yaiOG3owfLmG1spqByjvvH74niqBqaVghzHLQWwBN0KQQ7ALwD8gud5oRPejwD4kOO4H6Pbzei/ecPcxXHcEp7nNxsktg2A2IYGJFDccaOGmMpKJNTWSj4TUVqKhNpaOJuUHUHpKioCvJNwuTSokJ//3f8bGojTdBYWGiMfAD4vD4iPBwDEVlXB09CgOI6I0tKeeSWEa2tTnM+o8nKEFRdTLR9XUREQ9BFNmkZ8Vxciy8p0ry+xMo6vqVEfaX6+pNxS+YoqLxev8/Z2yXglwxKkjfx8QMUO27jqarQT1lNMeLhfRifBmKQ7Xlm41lZFssRUVvrDyobLzweioxFeUiL5bALPi9YfiWzDhg1TNV4EE1tVJZmew+EA8vNl82MUMTExivMt1/ai2tqA/HzVY2JYcTGgxmVQR4doetEBfUeIqPJyKvXhKioCVLyvAulXVyf64RFeUoIomTamlfiaGsGyIpkH9YiH43rF4yKMI7ykRPZdEIjD4ZD8KJR7H/J5ebIfwaSyJLhc3flubGSij2vF6XQKtocwBX0mvqsLI1wujI+JQVFREXHavnk1U+Tni44X0RUVCOvs9N/zKQSLL17EEO8zTgDpAI4C8H2AJiUlYfny5UhPTxdMkhVLQRYWisywFFSTbyErAtt9qL5pA/TPG2OhzRuJy8X0cl4PrOo+1GisvJCtpg5Y2FQjpRRMSUnBjAULAAANGr8XQoG+aCloVJ/sK0pBpUpeteVv5bHUSFifRTwe8P9/5Xn+v+UC8DzfCeA/OI5rR7cLUQB4AoCtFDSQVevXY7zZQgBYKPdATg4mqYk4J8f/32w14TWkF68kzZwcY+TzpuXjCQpxKCES6utBbThBBOSf4v2RouRZVYiUcbbGOOXCz5e6+S//Ing5Atrr52bvTxCV7W2l0gA/+QkAIAUGjRdSePMcBR37jDeNqd6fJD/7mbo0fKxeTfqkKEtJHvrd73AjgBs1p0aJV19V9DhR2/uf/8EoAKPUyKOyL4VDRi5v3xFipvenGZWyByLZCr3xz9OcinLuVxPopz/t8SfxuOXNJ9GzhCwgSE+KbCWJ/eu/Ik5pGJb57W97XUqDwvz9/OdYrjTdnBx2xkkfOTmYD5l5SADCMxJgNoADACZMmIClS5ciPDycinh6wsJiazC2+1DzMdN9KO10+jpWWwzWk1CwFDQjPRLmzZsHl8uFox98QD1uFsYAKaWgGefZ2vSEllJQD2jGy0JfMALbfShbsK4UvMH7bzmAXyoM+ysAL6J7cydz36ehztsrVyI9KclUGcaOHYuLFy9KPnPbbbfhyJEjaGxsVBT3nXfeiZEjRwIA1qxZo1ZEYlavXu2fZDQ0NOCtt94iCnfnnXfi888/11M0P4899hj69esHAPjrX/+quEwBYP78+Rg/Xrk6ub29HWvXrlUUZvTo0Zg0aRI+oDi5XbZsGYYMGdLj2smTJ7Fnzx7ZsAkJCbj++uuxa9cuavIIIVbGWtrx008/jTfffFP0vlRfzMjIwPLlwsuObW1t+NOf/iQa76hRo7B48WJJ2fbu3YsTJ04I3nvmmWcQHR0tGV6Id955h/gc0ZSUFKxYsQIAUFlZiQ0bNihOjybZ2dkA5Ms2mIkTJ+K2224DIN9WnnrqKcTGxuLYsWPYv3+/6HNJSUl45JFHBO/JpXHTTTdh+vTpVD6+PvvsM3z77bei9zmOw+rVq3HkyBFZd3JGMGjQINx/vzJ1T0VFBd59913R+5GRkXjuuedw+fJlbN26VbFMy5cvR0ZGhuJwPM8jR0S5k5ycjJUrxVXwhw4dwtdff604zWCefvrpbutLDbz22muiH6zz589HVVUVTp48qSkNKaZPn47p06f3uv6Pf/wD5eXlxPEI9UnSccsnA6050ciRI3HlyhXR+y+//LLsxzOpLKmpqXj44YcVza9Yxul04qWXXup1Xck7KCEhAY8//jjOnj2LHTt2EKc9c+ZMJsbJQLKzs7Ft2zZcuHCh172xY8eivb0dW7duxc6dO9He0dsZTQaA/eg+v2Lu3LmYN2+eZdxOs7DAFFwWahf3lLgPNdJSkJW6VgJLloJy6dC0FNS7rqKjo0VdGeuFlZQQVpI1EFrtRm9X/nqi5cw92tbAtCB1HxqowLBqG6aJVS0FtSDVJ233ocpRqhRUW/8sjqUswrpSMAXdrkP38AprlOd5D8dxe9F9xqC52qk+SFN8POr79zdVhpbUVNSXlUk+0zFwIBoSE9Gg0PVG56BBQFYWABiTz6wsv2s2T10dcZodAwcaVg9dgwcDXkVwff/+aFThzqRj4EB/uSqBb2tTnM+W1FTwQ4ZQLR93RkYv+dvLyojScPTvj85Bg3SvL7Ey1pKuJzNTMnxTcrLo/fjERNE697S0SMbbnJIi215aL18WjYMfMgRQoQxoTEpCPeHkJDIpyS+jOyLC9HHRX14K+0zbgAHEY54nMxOIj0dbUZHks5ES9ScV7tVXX1WlzBWjNS0N9XJK3qwstBUUmF9/AOID2hQp7vBwSdnbIyOBrCx0NjWpyqMnMxPIzFQcjoN4XYdLjA0A0J6fT6c+srJUjQOBNCQmin7gdA4ahDaXS9e248nMFCyrxqQk1AsoOcSISE7uFY8nKopIdt8YQSufTcnJqK+qEr3PDxkCOJ2ScZDKEuMdi7pqa5no41pxOp3CfScmhjh/Lu8401lTo/hdwVwZZmV1j/Olpb1uNSUnY/369fjkiy9ko7lt/nwMkjifMBBWFiJYUAoGY1sKqktHL8y2FKS9mGnm4ujChQvx0UcfGZqm1RaD9SRU3Id+9dVXZovQC5fLRTTWhaL7ULfbTRyPFdubFaDxng1lS0GrtTvbfShbsK4UrAQwEIByk6NufOHEVxVsQhaSwZF1v9KB6and9WoUNHbwGL07hvYLVGt5szApVoNc3Uvdl7onV55ay9uI/hGYhpUnJkraJmk+1bT3iIgIqgpBwHoTaT3bkdq49ShDo3aF0pDd4XBIfuDo3cbE3BgqLUOWFtTkPhj12Jlr5TGaBCVjrhaLK6vQ0dGB3/72t7KWjWEuF+B2Y9y4cahXmZZ9pqD436QYcaZgME6ZjQeA+RYMajDTUlBpOiy0YVJGjx6NjIwMReewasVK5dPXzxQkHftoeMGgDalSUA0sWApKnc2pxFLQ7PZWXl6OU6dOoampCSNGjMCkSZPATg9Qj9nuQ21LQboorU+1ZWzF+ZkZsK4UvAhgEIDhKsMPR7el4SVqEtmEFBzHMa9s04KRctJQfhj9QmPpBaq2LapJhzZyL1yp9hDqL2tWlYJK24EapaBcflnpfyRy8DzPVP0pxYqyy40NtNoPjXik4jCindNSCmqBdhuT25mtx85cK/YTJRihFGS1DIPlqq6uxj//+U9UVFRIhktISMADd94JSLhfJkmvLysFg7HS4g5JnzFzU6RazDxTUKn7UFrpGkF4eDhWrlyJ48ePo7i4WNBlMU1Y7N9mEipnCrKIy+VCB4HnCTXlzcKmaFpnCppJYWEh1q9f76+nc+fOoaSkBIvGjqWajhnjTl+xFOwrYzpt96H2mYLaMH8ElsZ38MUcjuOGKQnofX5OUDw2fYhQHVSVDG5GfkAHpmWVAZi1NsKaPKScPn1a8n6oWQoqCceqUlAprFgK6gGpHKzUnxo5SPsSSxs6rGYpqHcaUrBgKXjmzBlUSbj7VEpnZye1uOToK5aCStphKFsK5ubm4s9//rOsQjA5ORkffvihqvNSWYGF96yRloJazxQMxiiloNFYyVJQqRxmj1kRERGYOXOm4rOf1WB2XpViVUtBe27QrRTUq/5YaMdSVuGBm9RYtBT0tc8DBw70UtweOXIETU1NhstEG9tSUJ9wZmG7D2UL878UpNkA4BC6LRrf4ziO6JAKjuMSALznDXcYwHrdJLSxNFaxFLTCQGimpSArL1ChfCspC6u90H3s2bNH8r6ZSkGzJwOsKgVtS8HvILUUZAWWZPFhhlLQSpaCerd1sR3ONJSCpNTV1eEPf/iD6vDByCkFbfehylEyjvueDRVLQR/nzp3Dhg0b0N7eLvnc3Llz8eyzz2L06NGq0mHFUpAFpWAwVjpTkKT920pB9WkDbC6yWwWrlY3V5KUNq+9Hkr4u5V5TDlb7eGC6UjJYZYy/fPmy4PUrV65QTceMdmy2UtCoeO0zBYWxwlq4lWHafSjP826O4+4D8DGAmwCc5jju3wB8wPN8S/DzHMdFAbgfwH8CGAzgawD38TxPfjqsjU0IYTWloNGwtFhiZfehcqhVCsphhTMFA7HKR4UQeigFWel/VnMfKrdb8fz58/jmm28QFRWFSZMmYdCgQbaloAR6Wwpa3X2oWR+aWt2HqtmQw0of14u+fKZgYWEhNmzYILs4FhYWhvvuuw9jxowxSDJ9YaH+aClI9X4nCMlFkqaVx1nAePehescj9XyojfEs9G+WsC0F1UHTUlBNHfjWQFgtZytYCkqVXU1NDfX0jMZsF662pSBdlM6b1M6zWB1TWMN0pSDHcW8RPJYLYAqADABvAVjLcdxZAAUAWgBEA8gEMAFAJAAOQDuAbwH8N8dxPM/zT+ogvg3DkE5crGApqBYj5aThPtTIFxrP84ZYCiqBFSUJbdSeKai3+1C1hIL7UJqLLGphpb2LKVSCYan+xNi1axf27dvn//v48eN4+OGHJc/KYJVQsRSklYYUYm1YaZtl6aNSi6XgoUOH8PXXXxOn5ct3bW0tcRgrYoT7UNbGycbGRnz/+9/HG2+8ITum9OvXDw8++CDS09P919T2CdtSUBw9d3zTVmaTLESx1uZJYMlS0Irlxwos9m8pzHAfyhKstnWSdhQfH4/q6mpdZTBa8UPaXlJSUnSWRBsej0dyziz0jeBwOCylaGHZUpAmrI9htKBtKWifKagN05WCAB4DQFpbPLoVfpEAbvD+AuECngsH8HDAPVspaCCxDQ1IMHkRMqq8HAkyCzxhxcWIq66Gp75eUdyuoiIgPh4AZNOgAZ+XB3jdNnB1dcRphhUXGyIfADgKCgDvTqr4mhpEyLhmEiKsuBiIi1McjuvsVJzP6IoKOAsLqZaPq6gICJp4hZeUEKURz3HEz2ohvKQESEjodV3PdKX6YmxXF5CfLxywoUFSruiKCvGwXiLLysTjyM/392MlxFVXw01YXrEej19G2u1NFb7yUthnosrL/WHlwnHXrgGNjYgoLZV8NjYuTrT+xMJFRETI1rlS0lpbZfPE5+VJtyUDiXG5BMugvb0d5z77DAlBH04nPvoIM2bMkJQ9PDwcyM9X/c5wFRUBQedYkCJa1y0tknVNrT7y8wGN85V+dXVwNjYK3gsvKUFkVZWubSeyrAxobe11PbaqClxzM3E8cQL9y1lba0q7j2xtBdfWJv5Afj4QGdnr8tmzZ/H1jh0AgN5vOmFi4+LQfvkytq5dSxyGZZxOp2Dfcba1EddlfGQkkJ+veF7CwjjZ2dmJvLw8XLx4EdeuXYOH5zHYe88JIB3AUQCBI9aIESNw7733Ijo6mooMrCxEsLjAxErZkEAiK42FbKPryQilIEsbd0IVu2x6IlQeNM4nttKYpQaSvt6vXz/V8au1MDSayZMn49SpU72uT5o0yf9/szcBCsHzPFoFvgF8REREUE3PDM9HZisFbUtButjuQ9mCBaUg8J0yj1aY4Ht2azCYVevXY7zZQgCYL/dATg7GqYk4J8f/32w14TWk109Jmjk5mEhfGtG0fDxPIQ4lhEF9PagNJ4iA/FO9P1JGURNGBJEyztY7XSl+/nPBy/EgkOuVVyRvz/P+BFHZ3h5VGuA//xNAt0/rbFUpUsSbZ8V9RsmY5312uvcnyQ9+IHhZMo1f/1ouVkVc7/1JkpODmQBmUk1ZA//6r70uRQB4WSJItlycv/kNxgGa34lKyZa6KVHXN3p/mtEguw/JXWc5ORgNYJbmVKTTEOJpNXH9+Mc9/uwPBsYtIUTyPNH7U8wPfsBmPtXy29/2uhQJhXX5ox9hFJTPS2YofN4MZgM44P3//PnzMWPGDMGFUVoLLX3ZUtAMyzCO4zB+/HicP3+eOIyZ7kONJtBluFh9GNV2rHL+NItYrWzMsBSk4Skj1BeW5fp6fHy8JvehJGFYaMvTp0/H5cuXeynYEgQ2U7OEGqWglvK2qvtQK5wpaCsFhVE7z7Li/MwMWFAKPm62ADb0eXvlSqQnJZkqw4QJE3Du3DnJZ+644w58/fXXqKurUxT3ggULMG5c99LpmjVrVEpIzosvvug/4Lmurg5///vficLdcsst2LVrl46Sfcfy5cuRkZEBAPjjH/+IDhVWI4sWLcLo0aMVh+vs7MQf/vAHRWFGjRqFWbNm4W9/+5vi9MRYsmQJhg8f3uPa8ePHe7jzEyMpKQkzZszAZ599Rk0eIe644w6MHTu213U92/HAgQNRUlIieC86OhrPPPMMmpqasGfPHhQVFSEhIQFTp05FWloa3npL3MP0kCFDsGzZMsm0d+/eLbjrDwCeeOIJxKuwFPz73/9OPGbEx8fjiSeeAABcu3YNH3/8seL0aJKdnQ2g+3yE119/nTjcnDlzMHVqt3pbrq2sXLkSycnJsi78hg0bhqVLlwreE0sjIiICzz+vetuBIJWVldiwYYPkMy+88AK+/vprHDt2jGraakhJScGKFSt6Xd+7dy9OnDghGGb58uXYuHGjaJxhYWF44YUXcP78eXz11VeKZVqxYoVq9zpide10OvHSSy+Jhjt27Bj279+vKs1AXnrppW7LKg289dZbaGhoELy3ePFiVFVV4ciRI5rSkOL73/++oHugtWvXol2B1X56ejoefPDBHteUzDmM5Nlnn0VUVFSv62reZVlZWSgpKVE1b2ERsb6jZK40aNAg3H///bhy5Qo+//xz4nSnTp2qa1sXwu124+zZszh69ChaJBbGgO5zKPYDKPX+/b3vfQ+LFy/G1atXBZ+n5T7ULFhQCgajZ9kE1teiRYtQWVmJiooKAN3zh1tvvRUH332XOL5QVQr6kJJdL0tBK7u1Zg27bHoiVB79+vVDv379FK/16AEr74Vg5Pp6//79AeirsDDjXRUsV1paGp588kmcOXMG9fX1GBUeDuTk9HiOVUvBNgnPGkKKcaspBfuKpaDafmC1d4HS+rQtBfXFdKUgz/PrzJbBhj5N8fGo904gzKJtwADUFxdLPuPOyEDjt9+iXuFA2jFwIJCVBQCG5JMfMsTv3qyrupo4zfb0dMPqIbBM6vr1U+Wuw52R4Y9DCZzbrTifLamp4IcMoVo+QvK3l5QQpRGelISuwYN1ry+xMtYz3djERNSLLNTVA/jjli2orKzsvhAZibL2dnxz6BAWLVokKVdTcrJse2lNSxONw5OZCahwh9KYlEQ8ZvDx8X4ZO1W0U+p4ZeG6uhTJ0jloEPGY1zV4MJCWhra8PMlnW1JTRetPLFxERISqMUKK+PR01G/ZIvkMP2QI2q5dM7/+AEQkJgqWQevly6LyuTMyJGV3uVxAVhY6amtV5dGTmQmkpSkOB4jXNcdxknXdXlxMpT64oUMBjYsRzSkpqBdRLHYOGoT2sDBd207YyJGAwJhU16+fIkVXfEpKrzL31NQw0e6D8WRmAjExva6rkbUlNRWV9fWC8VkRp9Mp2HeUzJX6eduCu7WVOIzT6eyeexvUXtxut3/jVVNTk6KwqQMG4JY778TSpUtFFfo0MWthgoWFIrPOkIuJicGzzz6LkpIStLW1ITMzE1VVVaLPm2kpaJb7UD2VgrRgoQ2zitXKxix5b731Vnz00Ueqw4f6wjJNpaDVLZ2SkpJwyy23dP+h4rgKFt2HCmE1paDR500qwbYUVI7S+pT7lrXPFNSG6UpBGxuzUTOIWmWAMVLOwLTUpmv0C412ekL5VlIWVnuhkyK3YOJXCAbA87yohV/gM3IYtbOLJA2rjBtCKGmbgW6ppGBlwYn0rAVW6o8VOQLRY+wyyqUYjXik4jDCLZKeFhmsvpdY+Ai3GkrGXN+zSsd+I8Ynj8eDkydPYs+ePYoVevFxcUBjIx588EG/8lJKZlqWgn3ZfWgwRlrWORwOvxcTpfA8j9LSUtnnrGgpaKZSUGnf6CvjsxqsVjZmzYUmTpyIrq4ubNq0SVW8tMZvFufvgHxf13KeIEBmXWdGW1br6pQ1PB6PpKWgEFZTCpptKWhUvCy2Lz1QqhQsljH0EYPVMZc1bKWgTcii524mowcYtekZ+aFqtY9inueZevEaNSE2I89q24aYy1EfZr3olaTLqlJQaTtQsjhEmk+W+l9KSoqgctoHS3WnRha5MKSKXDFYqkul0JBdqn+YWTZKx14r1aP9Ea4cJfn0Pcta2ZSXl2Pz5s0oKipSFC4pKQk33ngjbh8xAghwna1X/txuN/Lz8xFbVYVkXVIggwWlICsKUkC6vgPlcrvdeP/994ksUFm2YBDDCKUgSxt3fLA0l6MBC/2bJaTayrBhwwyUxFrI9TGf+8lQcx+qByxaCtIe96xqKRjKSkHW5upyKP0+vXz5sqp0Qu2drxe2UtCmT8PKwcZKUKuQ0BszLQVD5QXKmjy0YHUSZlsKkqNGKWil3d833XST5HmeRlnAaIGGVaxaBb5VdvjqEQdJPGa1dSu6tSNFras/Iay2qUkOsTrTWyno8XionPMpRGdnJ/bu3YsDBw4Q11dYWBgmTpyINWvWoKysDBcuXICztlZRuhzHCZ7HI0dXVxfWrVuHhNpaZAPdZ3tqPLtUDSz2X6POFNTCwYMHceXKFaJnaeSnL7kPNdNSMC4ujlpcLMBi/5bCLEtBQFt7Zn3+rxW5slEyH1BrfWeVtsyinHJnCoaCUpDGPL2xsRHx8fGqwhrleSpU1jTlUKrklTMUECPUx25ahMaWDBsbAfQcHK0ywFhNKWg0tD94teSb47iQ2SUXjF4LrlZoZ6z2CyMsBa2kFJwyZQqGDh0qep8lpaAeloI+Pv/8c8VxmwVL7cdMS8FRo0aJ3qPhPpRVaCoFSRf/rYJUvWdmZhLFocZ9qB60t7dj7969eO2117Bv3z6iOna5XJg5cyays7OxdOlSzJkzR1M+5s2bpzqsDyPOLRTC7PoDrGkpeODAAeI4rbypIFQtBcXmczfccINWcZiChf7NEnKu3M2Gle+IYEiVgmrR03uXFvRI0yqWglraolWVgn/729/Q2dlJQZqe0CwPte9dFsY3JShVCra3t0vet88U1IalLAU5jksAMBvAZADJAOJAptjkeZ5/UkfRbGx0Re2AZuRAGPiytooLOiPSY+1MQSu5D5XDPlPQOPRQWLOkBHc4HLjjjjvwpz/9yWxRZFHTjuT6IM/zRG7SxNAyrgwdOhR5eXm9rtNYiJcjFCwFp0yZQi0uK50pKITb7TZbBOaZNWsWioqKZMcEs92Hut1unDhxAnv27EFzczNRGKfTiRtvvBGzZs0itgjiOE72TMHBgwcTxcUiLL1nfVhhLtTR0UH8rO0+lD2mT5+Oa9eu9cjfuHHjEBsba6JU9LHS+xkw11LQameoGQlNS0G9ZGAFFvucbSlIRldXF65du4YRI0YoDsu6paDVUKqctcJRWlbGEkpBjuP6A/gVgBUAIlVGYysF+xgkg2pnZ6eqwdfMyWEouw9VCyum9lrzHaoTgVB7IffFMwWVPG9FS0E5WLIUVAOJ7GfOnFEdv5a6nDp1ai+lIMdxGD9+vG5p0owDkLcU1Kuth4WFYcyYMdTis1qfDMaKi/N6EBkp/qk0atQoPPLIIzh9+jROnz4tOjaYqRQsKCjAJ598gpqaGqLnnU4nrr/+esyZM0fUNZRcPsXgOA4REREAuq0sL7a2Wkr5zMJCK8/zQEA5m+k+lNRSUAlWnBuYeaagEe5DR40ahYcffhinTp0C751f3H777YrjYR0rvbPNxlYKikPa10PNfWioWAp6PB5ZSyqaWPVMQQDYvn27KqWgFCwoBa32LtDDYlOIUB+7acG8UpDjuCwAewBkACBp7bzAc3ZrsBFE7YBklQHGLEtBtRj5QuN5nqkXqJX86StFr4Va+0xB41DjPlQO1tq73GIhK/WnxkWGnOw8z6OxsVG1TFrqcty4cZgzZw72798Pnufhcrlw9913Izk5WXWcpJjp3owGEydO1D0N1vqpDxaVgomJicSKLD1ZvHix5P2srCxkZWVh3LhxePfddwWfMUMp2NXVhX379mHPnj3E4+2IESNw5513on///pLPqVUKBnLvvfeCHzIEP//5z5l5H8jBglIwGKuUHSlW3PhmJUtBtWPQ8OHDMXz4cCA/H3j1VWbyQxNW389iWPVMwVBHb/ehJFilLbMo5+nTpyXXNG33od9B6nkiGNYtBVlsl1Io3VxHso6hJpxNN0wrBbnu1v0xAJ/fljMANgBYAOA2dCv7nkC3G9EhAG4GcKP32SYAPwNQZaDINl5iGxqQEBZmqgzRFRVIqK2VfMZRUID4mhp0yDwXTHhJSfdHBiCbBhXy8wHvTmVHdTVxmuElJcbIB8BVVATExoLnedVpuoqK/PlUhMejOM3oigpw165RLZ+w4mIgOrrHNdI6iHW5EFZcrHt9hZeUADExva7rmW50ezscLS3U442JiPD3QzEiy8pE8+YoKABUuEyMq64GT3g+UHh4uF9GV1GRYf1RlIDyUiJLRGkp4HW7RDKuoqsLEaWlks9GV1SI1p9YuAiCOleLU2pszc9HVHm5+fUHILarS7AMpOSTa3scxyG2qkp1/hwFBUB9vaqwHIBbhw3DrEGDUFtbi+TkZLhcLtl6lmtfJISFhVFpT/E1NaKyhBUXI1LBe1sJUn0IUD6ux1ZV9YqPa2xkot0Hw1271qvN8fX1psp6/YgRiBk8GLt37zZNhtjYWAx3OonatdScw9cWjJiXAN1n7m3/4guUlJYi8NRDJ4B0AEcBBDp0jImJwcKFCzFhwgSixRCxBSUS96FSf7MOC/IGlm9JSQlOXLtmojT0sdqmSMBcpaARloJ9BbtsesJxHEBhA0gwNBaWWV6cpuk+VI0beo7jQkZpa0af3L17NwYMGCB633Yfqi/2mYLKMcp9KMvjLkswrRQEsBzAdehW/n0JYCnP826O4zLRrRQEz/PrAgNwHDcVwJ8BTAGwGsACnucvGSq1DVatXw9px1/GMFfugZwcTFUTcU6O/7/ZasJrSC9JSZo5OZiugzhiaQHdC7zZGuNQikNDmmrDCSIg/zTvj5RsWrKIIVLGuqerFz/+seTt27w/QVS2tyeUBvjNbwAAo70/U1E7dikJ5332Zu9PDZJp/PrXKmOVRnJszcnBPADzdElZBT//ea9L8yAhX04OUX3PUiuPyr4USAQA8U/a3kz2/jTz//6f5ijul7qZk4Nh+G7HmpFkqwn0L//S4884tfHojUCbSwAbsk42W4D/+i+ix7IgU14vvojBcs9Q5N8l7s0GcADdrkInT56M2267DdFBm7CkoGEpGBjGKgsNrCwUud1uuAC8//77qJex6tSCGe5DzbZQ1oIZ7kPNiicUsZoixRBLQR2UgqGO3mcK6uV2VCtq3/+046RBWVmZ6L1QUAqaDeuWglaDtlKQ53mUlpaisrISgwcP9nsP6YttVQ2sKwWXef/lATzP87ysnSnP88c5jpsN4CsAMwG8z3HcNJ7nxU9ftaHO2ytXIj0pyVQZpkyZgpMnT0o+c8MNN+DatWuorKxUFPe8efMwefJkAMCaNWtUSkjO888/7z/TpKqqCuvXrycKN23aNBw5ckRP0fwsWLAA48aNQ1dXF37/+9+riuPuu+/G0KFDFYfjeR45ChelR4wYgYULF+L1119XnJ4YixcvxqhRo8DzPFpaWhATE4MjR47g4MGDsmFTU1Nx66234r333qMmjxB33XWXoC91PdtxeHg4Ojo65B9USGpqKh5++GHJZ3bs2IGzZ88K3nvkkUeQpGKceuutt9BAaCnocrnw4osvAgAuXryIL7/8UnF6JGmQumHIzs72/19JnS9duhTDhg0jCrd8+XJkZGRgz549kmPwxIkTcdttwirbzZs3Izc3t9d13zijB7W1tVi3bp3gvaeeegpHjhzRdO4eLeLj4/HEE71V07t27cLp06cFwyxevBhbtmyRjHfmzJlEY5UQTzzxhOhZXnpx+vRp7Nq1S1McEREReP755zXLsnHjRhQVFQneu/vuu1FdXY39+/drTieYSZMm4dZbbxW9r3Rcz8rKwj333NPjWlNTE/7yl7+okE5fVq1ahcTExB7XKisrsWHDBpMk6p5zxcbGYufOnabJEDjGy1FQUICPPvpI8N7o0aOxaNEiFBUVYePGjZSk60ljYyO2bt2KktJS0WcyAOwHUOlwYNaMGZg1a5YiZaAPsYUBFtym6QkLSgOe53H69Gl1mzAtAI1Fp75kKSgmixhW74N6YrWyMdN9qG0pKA4Lii6rtWWrYzX3oSzDglLQav2HtlLwgw8+QGFhof/v+fPnY+bMmXZbJYR1peA0dCsET/A8T+xrhOf5Vo7jHgNwEcB4AA8DeEsXCW0EaYqP13UnKAltAwbIytCYlITGpibUK/Rr3J6eDmRlAYAh+fRkZgJRUd3/j44mTrM1Lc2wevCXSVeX6jTdGRn+clUEzytOsyU1FdzQoVTLp2PgQByvrsaOHTvQ2tqK/v37IzExkSiN6ORkeDIzda+vzkGDBMtYz3SVKK2UEJWUJNteWtPSUC+yWN81eDCQmqo43YbERNQ7nUTPOp1Ov4wd9fW6lLMipWtAeSmRpWvwYOIxz9fGWi9dknw2cBwNZugtt+BE0Nlc4eHhGDJ3rqD7Wxp44uJE5fVkZqL12jXT32sAwMfHC5ab1HjfMXCgrOzujAz1+cvKAgxWCnZUVmquj4iICHXvnCBa09JQL3JORdfgwWgPD9el7bQNGCApv5r3Yq/4mpqYaPfBeDIzgaBzJzt1KmdS2tPTEWH2/FdBe+6SmDv52lYXx+mSn9zcXHz44YdoIXQtvvKxx7rrXCW0LQWtAgtKQQD4+uuvmVAK6mEpyLJbMzGMUAqKlbXScrZSfzMau2x6wrJSkGX6qvvQULIUlMK2FPwO1t1Q9hWloNvtBs/zxHLLlX+gQhAAvvrqKwwfPtzSbdVI2PhSECfF++/FoOv+GSzHcZFCAXme/xbAQXR7M/yeLtLZMA3JIDNq1ChVcVtlgDFSTt+HpZY0jX4R0n6B5ubm4rPPPkNrayuAbssjIWsnMVlYWbyhjV6ulUjamh59QEmcgc/q1R9J242W9q6kbZLmU0qeCRMm4Pbbb/dbSPfv3x8rV65EjE4KQTl5eJ5nZtxXIwfJoqWTUNEthFXc/ugRB0k8VvlYs4qcgHA/YMGNn5XKkGQBlXZ+urq6sH37drzzzjuyCsHIyEjcuXgxACAuLk5TulJKQSVnCloNVuTXw1sEK7Aw7iiFJUtBOVhpwyxitbIxU15W2jOLGPEdaWbcfR2hOY5tKUgP+0xBdehhMBDIsWPHLLlpywxYtxT0Kfyagq4H/p0IoEQk/BUAc8DAMU42bJKVlWWJQVStYsFqSkGjoV33Ym4qSVEjT3Z2Nnbv3o1Tp07ploZW9GoTWuM1oq0aoRQkVebMnz9fdRpqlIJaXULNmjULM2bMQFNTkyGuKa2iFBRD63kHWpSCZiBVX9HR0cQWSDSQ6h8cx+k27tKOV80Ob7MQatN6f2DKwWpZiWH0OT91dXX48MMPe+3oFWLIkCFYtmwZhlAad9VaClqpTwjBgqxGvjvNOFPQiu5DfbCgFLTdh6rHLpue6FUeoe4+lKYbbbXvTKu0ZbM2AbJ0ljErchgJ62cKWqX/BNLZ2YmwsDDZ59SW77Fjx3Q7cibUYF0p2IBupV/w4RHVAf8fAXGlYIL3X+X+4Wwsj9zgOG7cONWLoKSL3mZjpHy+nbJmWAqqQYnJOiladgurWTh2uVxISEiQfzBEsdruHzMtBQcPHozrr79e1zSUQtLeHQ6HYWfVWWVCraYdkYTRUsesbTaIiYkhUgoaZSloQx8WLQX1VADrgVELdTzP4/jx49i2bZusxZjL5cK8efMwc+bM7jGptlZz+j4ZhAh196E2+mP2uKMGEktBre2clvtQG3GsNhaZfaYgS4oVlqDpPlQqvNR9q7gPNQstbdd2H6ovLCgFrQjpuYK2Vav+sK4UzEW3UnBA0PXzAf+/FcDe4IAcxzkA+FZAjdsubmMZsrznroSyj3kjlSY0lIJmwNIHgtK22JcmDkJobd9GTK5ZcB96//33Y+TIkUS7sdSmEQgtS0GWYMlSUC+loNXch0r1/5iYGFRWVhomi20paDwsKgUBdstLCCPch1ZVVeHzzz9HXl6e7LODBw/Gvffei/46nGHYV92HsgAr707APlPQh5xS0MgNDqE0VzQau2x6QqJ80msObUQceqG3UpAEq7RlKx4XYLsP1Y5RloK2+1C69MW2qgbWlYKnAEwDEGz3eRhAO4BwAM9xHPdHnucrgp7JBjAUAA/gnL5i2rCIni9toy0FreA+lMZinBkvNIfDwcRCIqBeKajVrYdVIVmIYWEy4LNKNUMpmJGRQcV1gh5nCrJ2vocei4V6oNeZglax8vYhNW6Tnj1pdUtBI5SCrMKiUtC2FPyOlpYW7NixAydOnCAaW6ZPn4758+fr5sZYSvmhFCvVMQsYqTRjbYMKKUbLLacUpDE/o2UpaPc3cVibR8thdl2qTZ+lbwA9MNt9qFlzJ7PboxJYMmII9f6gFJrlofY7xkpt2YdtKcgOrCsFdwN4BkAGx3HDeJ6/CgA8z9dzHPchgIcBpAA4xnHcGgBn0e1qdCmARwPiec9IoW2shZpB9MqVK5g5cybzA43V3IdqQa3ShZWXqBrXGazIbhZmWQqqSUdPpaDUIiqtNJW0NdLzRVlrv3JKQSuP9ySys56/YKR2GEZHB3ud1xezLAVpYyVLQSHMVgoC1iovEiIiIhQ97/F4cOLECezYsQOtra2yz0dFReGee+7B6NH6Hv8uNr7RXAy1EYald4tVNv/ojRFKQaWyiGH3QXHssumJ3HehXV7CkG6k17P8rKTglvqmp1lGPM/DFxttpWBfVbToITvNOBsaGlSFs+LYZisF2YF1peAWAB0AwgAsB/DrgHv/H4BFAPoBGATgNyJxnADwF/1EtBEitqEBCRpc1dEgqrwcCRJnkUSUlgL5+YitqpJ8Toja2lo0Xn89IiMjFYdVA3ftGuBd5HRWVhKnGVlWZoh8ABBWXAzk5wNtbarTDCsuBlROChNqaxUN/NEVFUB+PvrV1RG/lPQkNjISzsJCRWUXEREB5OcjuqKCOFxYcTEgsMhnVDuhSXR7e3ebk0BqHHAWFgLt7YrTjauuhqO5mfh5Pi8PcDoRVlysSzknOJ3oFIk3JjxctIyUyBJWXAx4z4KSC+cqKgIiImTH4Kjyctn6MxJHU5OovNy1a7L5MYrI1lbBcpOSj6TtuYqKVOfPUVAAREaqCqsWqTwlNjQQ5YVkDCEhRuK9HFZcjAgV8wwS5PqQ0jR978VAOA3vdD1xFBT0Gr9LDh40VdbIsjKEt7SYW14K2rNLYo7oawv9PR6ktrSgneBdmZ+fj0OHDqG8osJ/mLsTQDqAo+j+oAskMzMT9913nyFnI9tnCpqHFd1rGo1ZbYoFpaAcdn8Tx2plo7e8ct/zcu06PDxc8Hpfdx/qQ68zBbXEzRo08+HxeODb9suSpWBffKcb5T5UrVLQithKQXZgWinI83wDx3EPAUgFUBx0r5jjuNsBfAggSySKvQAe4Hne/BX/Psaq9esx3mwhAMySupmTAwB4SG3k3vDZasOrSAvoNo1VkuattGWRIRIayiQgn0pZrSbQyy/jBdUp6sCPfqS87H79a9wO4HbS50XKWHG6rPDLX0renu/9CaKyvT2tNIA3ncnen+H85CeCl7OVxBFQVrLhvM/eCuPHHy3EQiJvOTlYAGCBYdLI8Ktf9bp0m/cnSE4OrpOLMycHE9XKo2HsVst070+QnBzxe8HIjCEkLPL+xGTJgDl9P1tNoBdf7PGnpne6ngi0uTu8P9PwyjSGARlIGAD5unUAeF6DOD5mAzjg/b/L5cKtt96K6dOnG6Z8sM8UNA8jF2Xs+iKD5ExBrdjuQ/XHamWjt7xutxtwiS9vyqUv9j4iabP79u3D+fPnwXEcxo8fj1mzZlmmfmieKah2o42V3Ifq6f0nkMA0WGpLtqKlJywoBVlqH6QYoRTsiwpsNTCtFAQAnuc/lrh3kuO4MQDuQ/da2EAAHgBXAWzmef4rY6S0CebtlSuRnpRkqgzTpk3DkSNHRO/ffvvtmDBhAt577z2UlZUpjt/lcuHpp5/G2rVrtYhJxNNPP+0/I6miogLvvvsuUbgJEybg3DljjtS87rrrcMstt6CtrQ1/+tOfVMWxfPlyZGRkqAr72muvKRr4hw8fjiVLlmDt2rVEO+D1ZuDAgVi4cCHeeust4jDR0dF45plnsGPHDpw9e5YozNKlSzFs2LBe19esWUOcLitERETg+eellyu3bduGCxcuCN576KGHkJaWpjjdN998E80KLAVfeOEFhIWF4eTJk9izZ4/i9OQYMGCA6BiWkpKCFStWCN5TUuerVq1CYmIiUbglS5Zg+PDh2L59u+T4M336dEyfTqy60Z3m5ma8+eabgvceeeQRHDt2DBcvXjRYKmFeeumlXm5jpcp77ty5sm1v5syZOHjwoCp5nn/+ecVuBrWyd+9enDhxQvDes88+i/fffx+1MhZbMTExePppxWr+Xnz55ZeibWP58uWorq7Grl27NKcTzNSpUzFnzhzR+0rH9dGjR2PRop7qzfb2dkPmOUp58MEHkZ6e7v/73Llz2L59u4kSAbNmzUJ8fDy2bt1qSvozZszATTfdRPy81Hxy/PjxmD+/e0vNiRMnsHfv3l7PXLt2DXv37kV1TY1oGhkA9gMo9f6dmZmJpUuXIjk5mVhOGqi1FLS6S10WYGlRxnYf2o3tPjQ0sMumJ2rGc1rs3LnT//+ysjL8/+y9d5wVRbr//+kzZ3LOOcCQ4xAkZ5SgBANGBAVdFOPsvbvu3t+6691w73f37t27jKuru64orqwJVxQDILpiAgXFgIAKOsAEhgGGyXn698ecczhz5nR3dXd1d3Wfer9e5zVzTldXPRW7up56nmpra8PFF1/Yssvy+MKCG22ntGXaloIswnJbNgqz8jxp0iS89tprqu+zY//hloLswLxSUAlRFDsAPOP5cBihKSEB9cnJlsrQlpUlK0NHTg5QVISmtDTUa1AKhYeHQywsNCWfYmEhEBcHAOiOjCROszk93bR6aEpLA4qK0NPSojnN7vx8oLBQ0731ycmqJk8tGRlAUREaU1OJzr0xmoS0NAgDBqgqu+64OKCoCK2ZmaivqCC7Jz8fKCrq97vV/VUL4eHhQfPiT2tmJuqrq4Ne68rLA3JzVafbkJKCJgkXM8EQCwuBiAi0VlUZUs4JGRmSY1hUaqpkGamSpagI8CgFle7rzM290C4rKyXDecdgZmhulsxbd34+Wk6cQL2GDSRG8FFNDaZNm9bnN7nyVnoeAsAbhw8DWttnUVFQt8RG0nz4sGSewoqLMWv1ajz77LPo6Ah0WngB7xiql9bMTMm20Z2fjw4Vz201tGVlycqvNk3vc9GfntZWJp8PXXl5QH6+7/ubL72EBovl7MjJQVdSkmXlddHVV6tywd4TFSUpa2tmpq8tRDY3o95v41FbWxtef/11fPHFF8RpxSUk4Ir58zF69GhLXBOacf4PJzisLmxKYcUiktnt0EqlYChZCubk5KCqqsqw+O1WNkbLW1BQAMi8d2hVGmoZEz755BPMmzePKVe8UtA8U1DrRhoryslId6g0oPUsCoxHb7x2VrSwfqZgkcZ3Urs9CwCPZTcBXCloPOw/pTgcjRh9aLJZrgMAewxo3d3dVougCm+ZsvIQ1eI6w4yDv1nGqjantj96wxvVj83Y+a6mjZHml7V2q1SOLI3Dx44dUxXeaNmtqEu5/h8WFoYBAwZg/fr1GD9+vGQ4WnLLxWOkWyTa8QaLj9UFfdqLHLSwalxzu92qF9WU2q0XfyvgEydO4LHHHiNWCLo9Fs2rVq3C2LFjLVsgpek+lGYdu2Vc3TkFVvomQDZfYnXMMwIjlYKk/cRuc0U1zJo1y9D47aBwMouUlJTezaIymGlJ2NbWZqhCmCY03YdqwSr3oUZAMx+HDh1CY0TPNvsAAQAASURBVGMjALYUIyw9083CrDMF09LSMGfOHNX32bH/kFoKasXMtXq7w2cSnJBF7+Bp1UCjJk0z5fMu0OpJU0+daL2XpRcqrUrBUEXvwo3ZSn2j0pNrw3Jp5qqwklTTT9577z3s2LFDUXHFWvtlTR45vvvuu36/mfXCEgzWlILe9pqUlCSrFLQ7SuWu9sUyWHxmu4XVSnR0tNUi2G5hi1TWiIgItLa2Ytu2bdi4cSPOnj1LdN/QoUOxevVqANYqv0RRlHSxbXV9zZtnp5N3tWGmko1GfXJLQev7hVMYPHgwRo4caVj8dqsnI+VdunSpYhitbjK1jgn+ljAsL04b7T7UqLMIrcIsWXfv3o2HH34YJ0+e1BUPVwoaC+3yMHozCStw96HsYMvtiYIgRAMYAyAdQDyARgBnAHwuiqL1fgA5TED6wHaypaAVSkG7EXgul5WobYtaFJp2mnST0NPTw5RiVw7WLAVHjx6NShk3O/6oKePq6mpUS7hs1Rqn1bBmKagWoxdlWVMK+stDag2lB6ssBZUYPnw43nnnHeLwweR0u90oLi5WbZ1qNIH9MSoqyiJJ2EBLGyPtG++99x4efvhhNDU1EcU7bNgwTJ8+Hfn5+UhQONfTDF599VXJa1afKcjSHNQoWHp2ckvBXsxwH0qqYHGypaDL5cKVV16JkpISnNm/Hygroxq/ncuGNiRjqZnuQ/XcZzak/d0o5Z4gCLZyH2pmnO3t7XjllVd0xcHdh+rHzI23tOfzrMKVguxgG6WgIAhhAFYB+AGAiwAEe/J3C4KwD8BjAJ4WRZHMUS0nJLHrblI1hJKloFZYWZDRMiH2hrfjRIAWSkpBIyZxrLkP1Zr/SZMmoba2Fp988oliGnZ4cdKLndyHqsXOskvB0kYUVt2HZmRkYOrUqdizZ4+udJYsWYJNmzbh/PnzuuKhSWCbDnVLQSMWEVpaWvCjH/0IjzzyCFF8w4cPx/Tp05GXl6daFiM5cOCA5DWrN6dYnb4Z2E3J5sTnZSBWninodYdHCmtzRbW4XC4MGjQIgwywlrZb2RgpLw2FFW357DKWGO0+lFsK6uPMmTO67ueWgsZiRHkMGDAA33//PXF4O/UfL2YoBe02/7QKW7yJCIIwBsAnAB4HMAW9ykwhyMftuf44gE8EQSixQl4OGzjJUtAf1t2HWoXWemRFKQiY4z7UjpMGOezwsGf1TEFBEDBz5kzdaWiFtbaotRztgBMtBUeMGKE7DjMsBa1m0KBBxGGl8pGUlIQ777wTq1atQkJCAi3RdMGVgvqRk7WhoQEzZ84kUggmJydj7dq1uPbaa5lTCALKz0ErzxTkSkG66Fn055aCFzCyXZ44cYJoM5oXO42pJNC0ardb2dhVKUhjEynL7xGh6j40FN5tAW4pSAOzj+gYO3asqvAstjslSMtNz/i7detWTfeGGsy/iQiCMAXAbgCjcUH5BwBNAI6gV1l4BL0uROF3fTSA3Z77OZx+eAfPiIgIzfdz96EX4JaC+tCymMgtBfUt3oT6mYK00tAKa+3W7paCoXam4ODBg4OeUzZp0qQ+382QzQwXpVrjptV33W43Bg4ciKFDh1KJTy+BbZqVsw+dYCl45swZ/OQnP8Gnn36qGMeoUaOwbt06FBQUqE6fBbj7UONh/dkZiN3k1YORZwrKxfHee+/5/ney+9BgXHXVVdTiclrZGI3Ryi+7QtNS0E7uQ7Vi1ZyfFez8jDRCdqOUgosWLUJiYiL1uO2GndubXWDafaggCPEAXgDg7Q3tAB4GsEkUxS+DhB8F4CYAdwKIRO95g88LgjBSFEV1vio4uohraEBieLilMkSdOoVEmbNMwisrgYQEDHS5UKvhzJOY9nagvFw2DVoIx48Dnt35YQr58kepDGgSHR0NlJdDaGrSnKa7ogLo0ub1N7Gurs+B3krE1tb66q+VgTNvYmNjIRw/rqrsEt1uoLwc0TU1xPe5KyqAIItQZrUT2vR89x0QEyN5Peb0acm8hZ08CWhQKsafPYvwtjbyG8rLgdhYRFZXG1LOcWfOSMYb193dm74ErsZGIplcJ04AnkV3WnmIOnVKVjazETo7ZduKmn5mCgFlJyefUW3Pi3D8OGDyi3AEgJXTp2Pbtm2+TSm5ubmYN3Bgn7IJkxkDEhT6BylK40yETB/VQ3RNjaL87ooK4rRjTp9WjE8ur2YSdvIk4LeIxEL/jKyuRnhrqyVyREZGqm7LYfX1/WQ9efIkdr76KsI6OlCI3rMasgHsA9DhFy4pKQmXXXYZBg8erE9wi7F6Ac9OC6FaYcnyjsRSMBQWoKy0FFSL1X2UNunp6Vi8eDHeeOMN3XHZrWys3iRFsgkkWO/nloLcfaid4e5D9WPFxtvJkydj8uTJaG5uxubNm1FdXS0Z1o79JxTbEaswrRREr3IvF4AIoBLAIlEUD0kFFkXxIIAfC4KwEcB2APme++8A8DvjxeV4Wf300xhptRBlZZiscB0Apno+mvh//w+lWu9Vg9/B5FmAOWlq4Sc/QRx0yKfjAPa7tNx0zz24TnOKBvDjH6svu/vvxxwAc0jDS5Sx6nRZQaHNLPB8tNwrxe1qb6Ax1ujh17+WvBQPwrr3Kyui8CrjZIFwyOStrAxLzBOFjIDyk23rAKaZKItZFAG4O/DH++7r8zUDCm1Wpn+QMtfzCUpZGbIAjNKdSvC4lcgD3fF9DlQ8b4wkIO+zPR9L8chUalX6//M/qoInIrisfwjy2wwAH3j+nzp1KubOnavZ0wZLcPehxmO3hR8rlJhmL+iZoRQkzVOoWQoC9PIUCuMHKawrBVmG5lmLRioOaWOErHYYr7j7ULoYXR6xsbFYvXo1fvc7aXWGHdqdVnh7Mx7WlYJX+P1/rZxC0B9RFA8LgnAdLry/XgWuFDSVp268EdmpqZaknZqaiquuugoHDx7Ehx9+KBlu0aJFGDZsGHp6evDoo4+io6OjX5ioqCi0SVgExcXF4eqrr8YTTzxBTXYp1q5d6zvHp7q6Gs899xzRfcXFxTh27JiRovlIS0vDjTfeiMbGRjz++OOa4lixYoXm82gefvhh4gNrAWDgwIFYtmwZXnzxRZw8eVJTmjTJz8/HFVdcgQcffJD4nszMTFx//fXYvXs3Dhw4QHTPlVdeGdTN14YNG4jTZQn/vhGMHTt24PDhw0GvaW1vjz76qOS4EIxbbrkF8fHx+OCDD7Bv3z7V6SkxaNAgHD16NOi1+Ph43HLLLZL3Njc347HHHlNM484770S4x/qbVluZP38+Ro8eTSUuGnR1deGhhx4Keu2aa67BJ598Ytp4qkRYWBjuvruvOmznzp04dCj4NCktLU33QfVylJaWGha3Xmpra7F58+ag1xITE7FmzRrdabzzzjv47LPPgl67/vrrUVtbi127dulOJ5ApU6ZgyhR5L/lq5gyjR4/G/PnzZcOoed4YyeWXX46ioiLfdxbkmjNnDpKSkiw5wyIyMhLr169XdU9DQwM2btyIlpYWvPfeezh85Ei/MHkA3gdQjd7nyRVXXIGBAwdSkZkFrF5IsTp9M2DJUpCEUFiA4paCzsBuZWMHS0Ga2GUsIe3vRin8BEFgxgW8E+GWgvqx8ogOoHdNWm5d2m7PAsD4MwU55LCuFByEXivB/aIo7lFzoyiKewRB2AfgIk88HBNpSkhAfXKy6enOnTsXEyZMQExsLNrPnpWVoSsvDygqggvA8MWL8e677/a5npKSgpjERNR8/33Q+8WEBHTn55uSz56CAiApCQDQ7XYTp9mUlob6c+cMlOwC7qQkoKgIPfX1msukIycH8FvkU0N9crIqpWBzejpQVIS2rCzUNzVpSpMmKenpEAYMUFV28RkZQFERWo8cIb6vOz8/aBlb0V9p0J2fD8jI3pKRgfpTp4Je844BaqlPTlalFOwpKAASE9F69Kgh5dySkYH6s2eDpx0fL5/H5mYimYQBAwDP+W208tCZm6u5vxuB0N0tmbeuvDw0nzhh2niqRExMTL+ya83MRL2Ea5H67m7ZfkJCRERE0M0zAJiqx0B6oqMl69WVnExF9rasLMk0egoK0BkRYUjfJ3lmiirSbs3MVIyv7euvmXheBI4fLYcPWy5XR04O4ouLUb97t+lpR0dHq2/LDQ34qKYGL7/8MlpbW2WDJiYnY/nNNzvufBOrzxS040KOWsxUCupZ9FdSlBmJVZaCXtfbgXBLQXvAy0YdWs8U5O5D9bkPJSFG5igQowgVS8HAthfKloJ2OVMwGCy2LTOwc3uzC+xsAwuOd8tIv/MDCTno+Wvt4XYc05g6dSpiY2MBqHsxnDFjBiZMmOD7np2djRtuuEHxoc/6IGWmfFIvlmpQcyZgIFoflGFBztezAkEQVOfBjEk66yi1Oxb6qJXn1NBabDFi1zhLO9EBe/WjYPVqZPuaPXs238Urg1VtJ5XAI4MZbp+sgPYiBw0EQUBqairS0tIsSVsNoijiF7/4BZ599llFhSAAXHvttY5TCALWt3kj01ey+jULFvqmGuwmrx7sYCnoRGj1e6vHL7VwS0E20aosJYWk3K1QCoYK3FLQGdhNGU0L3t6Mh3VLwUr0WvlpPbTCqwysoiMOh3W0Dojh4eFYsmQJFi5ciNbWVll3hP5pmTVI+afT0tKi6T6joaEUpBGHWlhRCmqBv7Tr29Ftdv+1s1LQiMmmnSawoigyNSk125LhoosuwldffYXGxkZT06WBGS9RVmwgCg8Px9ChQxXD0VYKstJvWVUKAsDSpUtNcS2vlbq6Otxxxx149tlnFcOuXbMGeOIJREZGgtw+3j64XC5LzxQ0kvHjxwOnT1stBlPuQ1m1FDQbJUtBlt6N7NLfrICXzQWMVApyS0GyTch62qOdlIJ2U87Qbnuh8IxUAwt9m8V2pwR3H8oOrCsF3wUwGMBkjfdPRq/70feoScRhGv8BUcvEJTw83HduFqA8CJk5SDU3N2PLli0oLy8nvsfMh7b3xVJPmeixFFTLoEG9XoVZefHV8jD3TuKdaglCglIbZ8FNBFcKmhenHpQWC1malJo5tqelpSE2NhYREVr3Z7GLWUpBGgS6b12wYAHcbuVpvJrNI1wpSIdg5/YaDWm9HDhwAMuWLUNFRYVsOJfLhT/96U+449JLAYYVnHox23LErPiHDh3KzCKrmX2TRnlaMZZY5T5Uai5BQ55QtYYzE7uVjdXy6lEKahkXWJqXyMHdh4YWoew+VCtWnykI2E8ZTYtQbG9mw7qZyV8A9AAYJAjCdWpu9IQfjF6l4F8NkI0TAsgtvAqCYNrCrCiKeO6551QpBL33mQUNK7/c3FzN96pVjI0ePRoAO0pBLTh5AkCKHvehZlsKtre3m5JesLSlsLINsdZ+SSwIWMFM96Fel9zcfag0ZrTldevWYd68eZg+fTpuvvlmTJw4keg+1vqZUbDQR/3LmhWFjD+vvfYaZs6cqagQTEtLw29/+1vccccdvt+Ki4uNFs8StPQPO/Sp6Ohoq0XwwZJVAclznoWxRA8lJSWKYZSUgma9G5GUtR36m1pCVWGqVt4iFefkcveh2uHuQ9VhN+UMdx96ARY2i2vFbu1OCTu3I6fBtFJQFMX9AH4DQADwuCAIK0juEwThSgCPe77+lyiKHxskIocx9FoKBqKkFCQdzPQO1E1NTTh58qTq+6xQCmpNMy0tDSkpKTRFkuTyyy9HVFQUAHsrBbVYCjoNlhabpBBFEV9++SUOHDhgWPxargHWth07ub8NZUtBbxuxq1KQBfehNEhNTcXMmTNx8cUXo7CwkPg+bikYGijVy5///GcsW7YMzc3NsuFmzpyJ22+/3bdxysu4ceN0y8giSnN5u1oKstJPAfv1TSvmlTTra/DgwcRhjTxTkKU26FScXsbTpk0jDktSFlqVXzQsBVkeB0n7u9Pch4aCFxyA/nyZ5bZsFCxsMmexbZlBKLY3s2F+RU4Uxf8EcC+AMADPCYLwjiAIawVBGC4IQqzQS6zn+xpBEN4C8AJ683avKIoPWCg+x+YoLRSQDlIkLr7k+O677zTdZxdLwdjYWFx99dUUpZFm1apVGDNmjO87K0pB74M+MzOT+B4tL+1Om1DocR9qVv84d+4cXnrpJVPSCoRlpSCLbZFFmYLBlYJsYbULQlpp26X9A2wqBVms5+7ubvz7v/877rzzTtlxIywsDNdffz3mz58fdM6am5uL2bNnU5OXFZxqKciSjFY8r7Rcd4qlYG5uLi6//HKflX8wlM4UNKv9hKqloBrk3lPtVjZy8mZmZuLmm2/GjBkzMHPmTABARkYGlbhJw8gpBZ2M0e5Dle7r7u62laWg3eCWgsbCQnnY7VmgBhbK1+lYfqagIAhqNAkCgJmej1K4CAAbBEHYAEAURdHyvHKMh1VLwfDwcHR2dhKFDYbWHZtmDqKiKKKnp0d1mosWLcKECRN0K05JSUpK6vOdFaWgl9GjR6OmpoYorBk+/lnHDmcKHjx40NC+qMftJYuL2FYiNa6LooijR49aIJE0oij2KUOj2pg3jcmTJ+Pzzz/vdz09Pd2QdGnhFEtBrdC2yLU6P15Yf0lkoZzq6upw/fXXY8eOHbLhUlNTceWVV8q6cBcEAXPmzEFJSQkOHTqEN998k7a4lmC1Qt+o+FmyxLeDRwd/7CZvMMaOHYsxY8bgV7/6VdDrZrgPDVUXmSSoyZOTlIJyCIKAwsLCXk8IKo9LUZOG1uuhbClotFKwo6PDtHUgoxEEAWC4rmnAcls2ChY2mbP8rqkF0nILxfZmNiyMvgJ6z/2Ta8liwF/vfVrDcQwmrqEBieHh5idcXg54rRqqq5FYVycZNLyyEvC4kJQi5vRpyTgSXC64TpyQTcNLfFcXwhsbFcNJ3n/2LFE6gcRGR2u6Tyvdx47B1dysKs1BbjfcCufbkJBYV0d0ZlvYyZNAQ4Pve2xtrallJEVsbS1QXo5pOTkIGzoUX3zxBdrb22UtMOPOnAHKyxF16hRxHtwVFUEnqyyUgRY6vvnG1+eDEV1TI5m3sJMnAQ0LH4l1dejo6CAOf+Ldd5GoOhVy5PIYHh4u/3Ld1UVW935x0GorEVVVAEPnHgFA0vnzQfvc0V27mOsjPd9912exSO55pQfv2JQlihggCDh37lyf6+OHDjVsAYcGrnPnJMsl3uWiIrtcH3SdOIEIFWO0JBrldDU0EKcdXVOjmI5cXs3EXVEB+FnCsCBXZHW1r/wSzp2Du6XFtLTju7r61N23336LW2+9FcdPnIDX2WwYgGwA+wB4n2AjR47E8uXLERER0Sc+qQWGpKQkDB8+PGSUgrTuMSMuM+LVAksLOqxaChrlxi4hIQENfu88XpQsBc1SKnNLQWXklIIsKf9JMLIuWbQUZGnsk4PWmYJa65dk/cYItMprl3qVgrsPpQsLSkEnw9ub8bCgFASUFXekPSA0ewqDrH76aYy0IuGyMt+/4z0fkrBSrFQK8ItfoFRZKv2UlcEWp7mUlSEJUFcmBPVAwnqN6U33fJjghz+EAGCK50PE3XdjBoAZpOElyruU9H7WUGg/S3XcK8Udmu6ykP/9X8lLbhDWvV9ZEYVXGScr3C1zbaFpUhASUH6LPB9D+Pd/hwBgNYEcrJEChTb7i1/oTkN2zC4rQyqgf06ksZwTQHd8n+b5WE5AeSzwfCzFT6Z1VqT/m9/4/h0MYLdEsBkAPgBw3333ISoqynYLyzSx+kxBo2BJbrtZ3tlNXi0oWQqyNCaw1JatIJQsBY2+X4/yS6+lIMuQKkuNtBQEes9D/fbbbzWlwQos9knuPlQ/LOSZWwpyjMJypaAoiuzMOjnUeOrGG5Gdmmp6uqWlpb7/Dxw4gN27pZZEgGXLlmHgwIGy8f3973/H2bNng15LT0/H3Llz8fzzzyvKlZaWhjNnziiGk2L27NmyeZEiMzOT2BUlDdatW4f29nZs2rSJ+J6bbroJycnJutN+5JFHiHaarV27FgkJCb7vH3/8MT788EPd6etlwIABWL58eb/fjxw5gu3btwe9Z+jQoVi8eDE++OAD7Nu3jyidq6++OqiLsA0bNqiSlyWk8gQA27Ztw7Fjx4JeW758OQYMGKA6vYcffliXO2DaDBo0SNK1ZVhYGO6+W1rV1dPTgwcffFA2fpfLhXvuucf3nVZb0Vr+RvLQQw+hq6vLajGIuOOOO/pY97zxxhv4+uuvqadTVFSEyy+/vM9v7e3tcLvdzLlfDkZdXZ3kMyktLQ033nij7jT27t2LvXv3Br120003obKyErt27dKVhv/8Rg1NTU3429/+RhR24sSJmDFDfovJnj178NFHH2mShSaLFi3CsGHDfN+3b9+OI0eOWCgRsGDBAowYMQIA8Nhjj6G5udm0tBMSErB27Vp8+OGH+MEPfoDmIFaKeQDeB3BaEPDYX/+Km266Cf/93/8dND6nLT5IoWWRmFsKqsPMBR0a+bZyAYr2M5XkLK9g0FAKcveh0oSq+9BQthRkeWGblvtQvZaCJSUlpioF7dZ/tMKVghews+xyhEpb5hiD5UpBjjNpSkhAPQVFjxoEQQCKinzfO2pqZGXoysvrEz4YDSkpqJfYRRmdloauvDyifMZmZqJexg2kEm1ZWZrKMyY1FfUq3BzqpSsvD90dHapkFQsLgZQU3Wk3pqaitbVVMVxPQQHgd65gV1WV6W01GC0ZGUHbY1dTk6R8bVlZQFER2o4dI85DT0EBkJ/f73cWykAr71dU4Nrpwe09m9LSUB/g7tALyRgQjPrkZKaUgs3p6aiX2Lzgcrlk8yiIomLdh4WF9Ylj4Lx5OHDggBZR+9Cdn6+p/I2kISWFqbqVo6egoI8L7JaMDNSfPk09nWBjUyT1VIyjJz5eso1HpaVRaYMdJ05IptFTUIAOgn6miFY5ZZ4hgXifKXK0l5cz8bzoyMnpI2tzejrqTdwEFYzO3FyfTA0pKWgKcMlpJGJCAv53yxb8x3/8h+LGhr89+SRmrV5tmw0QRmK1+1CjYElGlhbhSCyBrLAU9Mo1depUvPbVV9TjDYQVS0HuPlSZsLAwSK0gOKlszMiLHqWgky0Fje7vSuXuVQqOGDEC8fHxaNRx5I7VsNgnA9shdx+qHhbyzGLbMgMWyt7pcKUgJ2QhGVjlXgyVXA75o/fwZK0vqGYPonLn30lh9gMuMD2WXOSoxSt7qE4SvNTX10teY+FgaCtRyqOWtjNhwgQqSkEW2y2LMklh1sKlncokGFYvNAmCYGkZqknbTnUd2P5DYTyXoqWlBS+88AK+UlAmDB40CDh6FLNmzQJgnCswO2G1+9BQsBS0mztOK8eSiRMnImHMGHzzzTcQRRGffvqprvi0KgVpWCxyS0E6OEkpaKQFupGWglrxXxdheY5Cy1JQK/6ensaNG4d3333XkHTMgMU+yS0FnYHTPHhw96HsYN/VcA4ngMDBkMbgSEspqPflyk5KQbVpWv0QY0UpKFUOTpsAGEF4eLjkNSP6gJ0mJzRkDWxnubm5uPjii3XHy0rfsytcKaifUFi0pK0UZCWvHQFeEFgYl/3LxqxyOnr0KB599FFFheDixYvx0ksv9fmNzy+4paAZmKkU1LPo7x1DrBhL/OUaMmQIlixZgksuucSw9Lx5lNrMaVb7CVVLQe4+1Jq4zbYUfO2112xhkW+0+1Cl++Li4ojD0sRu/Ucr3FJQPyzkOVTn7CyUvdOx9YqcIAhxgiBkC4IQpxyaw+kLyeCpNAiRDlJ6F7/tpBRUi9mLsqFuKejESYNWS1w+ySAjWJuZPn26rDJWa7xWw6JMUtB+yZPCTmUSDBYsBa3Eqc+HwDOEWRjPzSy/1tZWvPzyy3j66afR0NAgG/baa6/F1q1b+yy8AdxSELA+L6FgKchC31QDLSWm3g2hNOpQKQ4jLQU5dHCSUpB1jChPGp5VjEbL2bpqULp/6tSp1NKyGrvLT4LdnumhgJPbHW9vxmOr1XBBEAoFQfgvQRA+FAShFUA9gAoA9YIgtHp+/40gCAUWi8qxAJYtBfUqnrQo2wBuKUgC60pBsxabs7Ozg/4eExNDLQ2jkFMK8omEfqTaWXx8vCHxWgmLMknBLQXZgeUyoi0bK3ll0VLQDOrr67Fr1y48+OCDRIuNd955JzZv3owIE883tBPcUtB4WHIfaqaloN73CyOVgkqWgjTejWhsviWNx8nIKQVZf4cNJNQsBQFg9+7dvjhYxWr3ofn5+YbEq0SojC3cfegFtMrOQp5Z3oCqBe4+lB1sMZMQBCFCEIQNAI4C+CmAyQAiAQh+n0jP7/8B4JggCH8UBIG/AXMk0fuyYqZSUOsLtdkv4loGbbMfYqxaCmpxuUHTUnD27NlBf6fhJtJotLoPtfPE0Ey0uoPRGq+VsCiTFFwpSIYZL1Esv6hFRkYiISGBKKyd3IeybilIu5xaWlrw+uuvo6ysDO+//z5aW1tlw8fExGDTpk146KGHJBeVtbZbVtoADdTM5Y1K307xasHM8jV6Q6gaWLYUVDpTkKX2w5IstAhV96FGYrRSUCvNzc2a7zULo92HyjFr1qw+m3vt3qZZlJ+2ZxmWNvpo4fTp0/jggw/w8ccf4/z581aLQwyLbYvjDLT5XDMRQRCiAbwJYCp6lX+ywT1/wwDcA+AiQRAuFkWxzUAROYxgtqWgml1joXKmoJVKQa3xsKIU1AJN2QcPHowRI0bg0KFDvt+Ki4sxatQovPLKK9TSMQJuKWgsRk1CWex7dppwBz4XuPtQ9VjtWtQMBEHAmDFj8P777xOFtQssKgWNoLW1FZ9++imRItDLiBEj8MILL2DEiBGa001OTtZ8r52w2lIwFJSCLC0gmmkpqObdL5hcRioFX3/9dVRVVaG2tjbodRruQ61+v3MKTlIKatlsMmrUKBw8eFBX3KSQjA9OxMp2RLppjcMOdu4LXV1d+Mtf/uKbl7z99ttYvXo1cnJyLJZMGadt1uOWguzAvFIQwGMApgHwtoavAGwE8AGAcgDNAGIBFHnCrQEwGr0Kwqme+1eZKTAHiGtoQKLO86bU4na7gfJy3/eIqiok1tVJhg+vrAQUXnrizpxBeMDCk5fYiAiEnTwpm4Z/PCThpIisrtZ0f1xPD7rr6zWnqxbXiRMQwsNVyeo6cQKg4KIy4dw5uFtayNKLjfV911q2tImtre3Tfr3ItePomhqgvBxRp04R5yHs5Emgs7Pf7y4AV02YgAmpqaipqUFGRgYKCwvhrqxkonzkiDtzJmjZAb3lKiW/u6ICiIpSnV5iXZ1ml75GEHP6tHwdSZSNF6X6jYqKChpHwrlz6NLRNtwVFUBXl+b7jSDh3DmEEy68W41w/DjQ2Oj7Hl1TY0hflRqb7IKroUGyXOIiIqjkTW4MFo4fV5yPEKFDznkDByKiqgqffPKJbLjI6mrFdNQ8b4zEXVHRR1a5sd4sIqqqAM+5fQnnzkHw659q6enpwYEDB/DRRx+ho7MTGZ7fwwBkA9gHoCPIfevXr8fvf/97xPrNc+QoKipCeUCdu1wujB49WvIeOy4+SOFyuRy54MDSphuWlIIkWGEpaJRSUI7PPvtM8ppZ7Ye7D1XGSUpBLUydOhXffvttv41AWrDCUpBmHEZBWi5GWAoasalfa9qsxqkX2paCLLdlEvyf8e3t7dixYwfWrFljoUT6YbHd0cLu7c0OMK0UFARhEoAb0KsQ7AHwYwBlYv+W0QzgNICPBUEoA3A3gD+g9935BkEQHhRFcZ95knNWP/00RlqR8B/+4Pt3jOcjSVmZYnTrCZIsJQgDAIsJw0kR3LkjY3jKtFTDPXpZpzG9oZ4PE9x9d7+fiqFcnlM8HyJkytsFYKDn449S+ixzldxFjW2vfy0xjkI+S0ni+N3v+v20WpMwflDq+zS5zWoB1BBQfkssEoN1EqDQxv+//093GuM8n6CUlWEkoH9OpKO/CABmej5607jI82GCe+7x/bvMQjF8+JXfLQYnNQO9uyO9pKWlYcuWLZKuwKWYNWsWKioq0OW3QWPGjBkhcwah1QspoWApyNKCDoklkJOUglZ6UeGWgtKEqvtQLfLm5ORgzZo1ePTRR3XHrUepxdI4RhtaSkEt8QeONXZr03bAiLYriqJj6urEiRPo7OzUfByNWTjNUpAUFsre6TCtFERfC78fi6K4QekGj8LwQaG3Z/zR8/Nq9G6q5ZjEUzfeiOzUVFPTjIiIwB133OH7/uWXX+Ktt96SDH/VVVcpHmz88MMPozOIVRUApKenY8qUKdi2bZuibIFuGdUyevRofPnll6rvS0hIQENDg+Z01bJixQpERkZi8+bNxPfcfvvtvZZIOnnssceI/PavW7cOMX6WiceOHSOqQ6MZNGgQlizpv6wvJ9+kSZMwbdo07N27F3v37iVK5/rrr0dmZqYq2TZs2KAqvNmMGzdOciF0y5YtqKioCHrtsssuw+DBg1Wn9+CDDzK18724uBjHjh2TvF5aWip7v1L9RkdH47bb+qvL/v73v+Ps2bMkIgblhhtuQEZGhnJAEyEdR1hg5cqVSE9P933ftm2bbDvQyrBhw7Bo0SLq8ZpFQ0MDNm7cGPRaVlYWrrvuOt1pfPbZZ3jnnXeCXrvllltw4sQJvPnmm7rSUOrHJDz99NM4c+aM5PVp06Zh0qRJsnHs37+fyBWp0WRmZuL666/3fd+6dWs/izez8X+mbNy4UfX8q7u7Gx9//DE+/vhjSL0C5wF4H0C153tERAQmTZqEq666SrVCEAAGDBiANWvW4Msvv0Rra6vPlbgcTlp8cFJe/GEpX2bOl/Tm+8yZM3jxxRepyaLnzEq7KwVpwVJbtgK5IxLsVjZalW6ZmZmYOnUq9uzZoyluUriloLbreuK3cqwJVUtBTn+6urr6KAXb29tx8uRJJCcnIyUlxULJLsBi29IDdx/KDqwrBed4/laRKAQDeBDAjwDkAJhLUSYOAU0JCag3+TySiIgIoKjI973z3DlZGbrz8/uED8b5pKQ+u6f9iUxJQWduLlE+O3JyUF9drRhOiub0dE3lKSYkoIHCuRCkdOXlwR0VpU7WoiJNLhwDaUhJQRPBznaxsLCP+9Cezk7T22owWjMzg7bHrvZ2Sfnas7OBoiK0lZcT56E7Px9Q6TedhfKRoyUjQ7IvN6amol5CydOZm6s4BgSjPjmZKaVgS0YG6s+dkw6gkEel+u2KjQ0aR2NqKup1lENPQQGQlaX5fiNoTE1Fo00sZDpzc/v05aa0NPl2oBGpsck2NDRItvH49HQqeeusrZXuR0VF6Ojq0j+OUpCzMTUV9TKujztychTT6aiqYuKZ4I6P7yNrU1oa6k10lx6Mrrw8n0wNKSmoJ5x/iaKIr7/+Gjt37sQ5wj4cExeHxTNnoqSkBJGRkbos+3JycmxxnooRaFlkoblAYZaloJULr3ZZ0Ons7FS1qZEEl8tF5G6eNYtRGmcK0sJpC6Fqkeu7LClvjYaG4kqP+1C7jGNaCFX3oUZgB/lpKbntkFdS/PNy5MgRbNmyxffsHjZsGOIZODaGWwpyjIJ1pWAuel2Hvqf2RlEURUEQ3gNwHXoVgxyHY8RgKLfw39PTI2kZEIjeSbtWBYTZg6iWSbPZDzGWFkpIINldp6bMnThpkOsfcmUTCpMMf0syrUi1Gb1tifW+xzq0z4iQwoljBm3sUkZWWp7QJvB8IbuO5+fOncOOHTvw9ddfE4V3h4UB3d1YvXp174YYD3Y/h8cqnJQXfwLzdckll+D5jz+2RBaWNlHJ1fcnn3yC8+fPU00rLCxMs1LQyrZplvvQUD1TkLsPNfdeltJgEe4+1NkY5T7USXjbXXNzM1544YU+85YjR44gsa4Ol1olHAFO7jdOa2sswrpSMNrzt0nj/d77omVDcRwJjd1Mci+yci64AgklpaBarD5zgnXFBG2loBMxe8GJxfKeO3cu/vWvf/X7/eKLL9YdN2s72I2ERZmkCGz3XCkYHL6QRI6d8sGiUtC//JTKsrGxETt37sTBgweJZI+MjMTUqVNxyeDBwGOPyZ59wiFHj3tHWumbEa+Vc127uA89fPgwRUl6IS13uc1XetqnEYv4HHNxklJQDr3rNqxbCrIwR5GCtB0ZYSnI3YcajxGbSHt6epiyKNeLt0y+/PJLpjYy+eM0S0GWx8RQg3Wl4Bn0WvkN0nh/sV88HIfD8mAYSkpB1gd4lhZK/NHjcoNbCnJLwZKSEhw4cKDPLvfCwkIMGDDAOqEUYLEtsiiTFFwpqB8zNqWoqZecnBxUVVX1+33s2LGa5FILjUU1s+js7ERPT48tN8eUl5fjxRdfRGNjI1H44cOHY/HixUhISEBMXV3QMNxSUBtW5yUUNt2w1DfN7ieki6asKQVpLPZavenTKThJKWikpaDRSkEnY+WZgk5zH8oi3FKQnP3791stgiSh2jec2tZYgnWl4FfodSE6QxCEAaIofk96oyAIAwDMRK/70a8Mko/DMEZPcNSg9+WKxPVMMOxgQWX1Ay7W73xBFuGWgspoVQo6iYSEBKxZswaffvopTp8+jby8PEycOJGKNYlR7kOt7vvBYFEmKbj7UP2YkTc19XLppZfib3/7W7/faSkFWZoX0aCjowNRnjOJWRjrlcqvp6cHu3fvxrvvvkskb3R0NJYsWYKRI0fSEpETgNWWgkbBUl9mdde9GejdeGjVPMusDZPcfagyTlIK6sFqrw+hbClopvtQMwlVS0FW47QSO+THaZaCpNihbuwO60rB1wEsABAGYLMgCAtFUVTcVisIQiyAp9GbPxHAq4ZKyWEClncacUtBaczeSRoYLjU1FcnJyaiT2H1vFnpcboT6w1KrNaDWcmO1vBMSEjBnzhzq8Ro1lrJipesPS88NJcyyFLQ7dlpIys3NxdKlS/HGG2+gq6sLbrcbF198MVMWvyz1kfb2dmaVgoHlVFdXh1deeQXff0+2v3H8+PGYN28e4uLiVKdtNCy1Ab1oeQ7RbGtmWQpaWWdm9k2WNj4IgkDFfaheGbRg1pmCZsZjV5ykFDRSXm4pqB1aSkEa7kPt1qbtCI327PQ+wSJOUwqStiHe1oyHdaXg4wB+CiATwGQA+wVB+DGAV0VR7KclEXp7w2UAfg9gCHoVgjUANpomMcc22MlS0E5KQbWY/RALtlAyb948vPjii6bKQQrJBIC7Dw3dXehW4kRLQTvB3YfqhzX3oUCvMmjMmDGora1Feno63G7zpup2ch8K9FoKemH1pbGpqQl79uzB3r17ibw+5OTkYMmSJcjJyVGVDkv1YiecWm4s5SuU52h63YdatXmKWwqyg5OUgnqw0n0owO4cgwbcfSg9WJSfWwoq482PXfPFYrujhV3rxE4wrRQURbFZEIR1AF4C4AIw2PP/GUEQPgZwHEAzgFgABQAmAUj33C4A6AJwqyiKLWbLHurENTQgkYLbOjVEt7UB5eW+7xFVVUiUsf5yV1QACgs0cverkq2mRldcWu+PiIjos2hmNGEnT8IVE6NKVuH4cYDCy2fCuXMQSM7nKS8HIiP7/DQqLg57OjrQ3NysWw6txNbW9mm/XtwVFZLlGXXqFFBejsjqauIyd504AbS2qpKNVj8wCm85BCO2tlZSfndFBRAfrzo91soj5vRpyfyToJSfhO7uoPHHnTmjqyxcJ04AfmcgskDCuXPoYUwmKVwnTgB+CiO5tq4Hve3LalwtLZLlEhcbSyVvKQ0NkmlEVFUpzkd8eGRxA8gGgIoK3bL5E3/2LFpl5IisrlYsD+K8qEQQBAwfPhyHDh0iv6m8HPA8t41q/2oIr6wEIiJ88uzZtQv79u1DV3c38tDr9iQbwD4AgTOz1NRUzJw5E2PGjGHSitofGosPBQUFOHHiBAVp9GH1QopZloJWEqoLOmosBeXisOJ+GmcK0oKltkwLWu5DWX9WBKKnLs2wAjbSUpDlcdBo96FyOM19aKjAcnt2Kk6zFCSFtzXjYVopCACiKL4qCMKNAB4DEIdeZV86gEuDBPfvDU3oVQi+bryUnEBWP/00LDkB5be/9f073PORpKxMMbpSvfL4pXURrbhYxlOmpRru0cstOtP7ARUp6FMImfL05GW250OEhvKWTJ8l7r476M83yN2jse2VarrLYO65R/OtpSSBfv3rfj+t1JyiB0p9nyY3Wy2AGgLKb4VFYrBODBTa+I9/rDuNArk0ysowEiCbExncJ2THQ8L0Szwfo1igJrCfvNdSl0QDfvLcAul5yQwAH/h9nzhxIhYuXKjrDFi7LQhccsklePzxx60Ww3blRgpLLtlYsxRk0VMMa+5DjVSw+EOycdWpfZQUJ1kKGqkUpBGHnFLQyQvTWo9g0RqPPyw9q2jAovxGnEHv5P7AKiy2LT3wNsQOzCsFAUAUxecEQdgH4AEA1wCIRF8FoD/tAJ4D8CtRFL8zSUROAE/deCOyU1NNTTMmJgbr1q3zfT9y5Ai2b98uGf66665DVlaWbJwbNmygItvs2bOxe/duzffn5OSgqqpK9X1utxtdXV2a01XLkiVLEBsbi+eee474ntLSUippb9y4EQ0NDYrh7rjjDkR4dvL788Ybb+Drr7+mIosWhg0bhkWLFvX7/eTJk5KuTS+++GKMGjUKu3fvxoEDB4jSufHGG5GWlqZKtrKyMqYf3AMGDMDy5cuDXtu8eTNqa2uDXluwYAFGjBihOj1a4wItiouLsXTpUs33K+UnKSkJN998c7/f//GPf+D06dOa0/3BD36A2NhYzfcbwVNPPYVz585ZLQYRS5YswaBBg3zfn3/+eU3PCSVKSkoMOavSLFpbW/GXv/wl6LW8vDysWEFHnfrFF1/g7bff9n13uVy47LLLUFxcjK+++gpvvvmmYhy0nodSKPXZOXPmoKSkRDaOwHzSwu12Y/ny5apceV977bXIzs4GADzzzDOoqamhLpcali5dirfffhv/+7//i/Ygi915AN4HUO35HhkZieXLl2t6DlmJ3oWJ2267TXH+bRaCIKie39jxTEErMVMpyFK+Q/1MQRKefPJJIDlZNgxLdWoFci7EQ6lslNok62XB8nu00VaYcnm30n2oEWmx2A65+1Bl7OA+lFsKcozCFkpBAPAo+G4SBOEeANMAjEOvxWAceq0CawEcAPChKIr1lgnKAQA0JSSgXmGST5vuuDigqMj3vbOxUVaG7vx8IDdXNk5aeejIydEVV1xKCupVunwEencXkpxhQ4uOnBxExsery6tfnemhISUF9QQ7coUBA4Agu/FbMzNRr0PBoZfWzMygZdElipLl2ZWXBxQVoeXwYeIy7ykoADIyVMnWkJLC3E5vfxpTUyXbUUNKCuolFOOdubmq258oUx9W0ZKRoasfKeXHLVG+zenpqO/s1JwuiooAxpSCjampqLfJ5LM9O7tPvTSmpmp6TijRlpVFbZy2ArGlRbKNp+jsO/6MKSpC7MiROHLkCNxuN0aOHIm8vDwAQEddHdm4YXA5K/VZkjGx48wZQ8bAiIgIdOfnq4q7MzcXKCgAADSlpaHeRHfpgdTV1eHan/wEn3zyiWLYbvRu9lqxYgVSUlKopG+nBQFaeaaBncpNDSzli7UFHW4pqAwN96FmnNlrV9TkSU4ZZreysdp9aChaCo4cORJnzpyR3TRFy32o1FqBXNnZzQWuHeGWgs7Hbs8CgLwN8bZmPEwrBQVBGOP39StRFLs9Cr83PB8ORxIzfM+TojctrQoZsxU5agftXAWlrBqsenE2Gjm5vBNpNeWu1bUHy0pBrbLxSQYZoWDJ4IVFmaQIbPdGtWc7lYnVFBcXo7i42GoxNENjUU1P2mrj9t/0ZOV4fuTIEWzduhVtbW1E4S+ePx+506dTXQyz05yWpTFFi6Ug7fTtFK8Wenp6EIrLvixYCmqFL9Szg5Pch+rBjLw6oTwnTpyIlJQUnDlzBgUFBRg9ejTq6+vx4IMPSt5DSynYKrExUY1S0O51wKL83FJQGTvkh1sKcoyCaaUggM8AiACOi6I40GJZOIxjpfsBJaxSCpo9iKrdSTdlyhQDpQkOS+3CHy1yee8xup5ZLTMvcv2DTySMw0kLw15YlEkKI3Z+BsNOZRKMUH2Jshsul0t1ffiP/VaM9d3d3Xj77bfxwQcfKIaNiorC9PHjgQ8/xKhRo1AfwovuLPU7LbLY0X2olWVuZt9kqW0B5Mo11iwFaSgFuaUgHeTch9rtHYd1S0Gpdk/DUtCsuoqLi8PUqVP7/Jas00Wvme5DzSRUxha7jRNWwnJZhUp7DYTlOnEKrCsFO9Er416rBeHYD24pyB7z5s3DsWPHEB0djZKSEgwdOtRqkXyw+qAlWdA2+mHJ+o5hrUpBLeUWihMTo/oGi+2K1XEgGNxSkKMWMxbVtKLFUtAqpaAoiqiqqsLOnTtx/PhxxfDFxcVYvnw58ru7gQ8/NEQmO81pWYLF5xANWKqjnp4e6HdGSQ8W3YdKYWelIC1Yasu0UJMnuTYUSu8kVrpRtVM569lkrHRdazk7zVKQVSWnFNx9qDJ2yI/TNrly96HswLpS8BSAPPSeGcjhyGLErtgFCxZg586duuMJFaWg0k666dOnY+bMmYakTVrGrLno0YMWpaARLwtWwy0FjYW1HexGwqJMUnClIBlOe4kyEiuVgnaxFDx37hy2bduG77//XjFsREQEFixYgAkTJvTmra7OBAnZh6V+Z7UsoeI+NBRhwX2o1vtpnClIC5bashXI1YXd+paRloI04pC7bhdLQSPf852mFAz1sYXTH7uuGzm5Ldu1TuwEO9vAgnMEgACg0GpBOOpYtWoVli9fbqkMNHbEDxkyxBRZlLDLpJ8P2trRsiDALQV7sYt7XbsSCouWdoQrBTm0sdqNE8tKwZ6eHuzbtw+PPPIIkUJw0KBBWL9+PSZOnOi4s5CctCGEBVmmT59OPU7uPlRfGFqQKtdY27BohgLG7HjsCrcU7IXGBi+ta0NOL2crvWs5rX/bIT/cUrA/dsiP0za52qHMQwXWLQWfB3AJgBmCIKSKonjWaoE4ZMTHx5s+OKl9ASaRLzU1FVOnTsWePXt0yaaX7u5uS9MnRclSkIUHFmsv3krQVgo60VKQtotQrWk5lVBSCrIokxT8TEEy7C4/TVha6A1Ei6Wg/9zIqPbf2dmJAwcOYO/evTh37pxieEEQ8LOf/QwZGRlE4TnWIgiCpc91QRBQUlJCdC6l2nhZwS4bG2mjxlJQLg4r7mdpMyBLbZkWtNyH2q1vGWUpaIYC2i7vf9x9KCcQu7Rdjjyh2jd4+zUedmZ8wdkM4BCAKAAPWywLh3GM2hU7ePBg3XFwS0HjsfvO9YSEBNX3mCUzS4sDwTDzTMFQxChFOovtyupxQA1mWQo6GbPqOyMjw5R09GKllQ2LloLffPMN/vznP+P1118nUvAlJSXh9ddfx69//WvT3e9xS0FtsCBLWloali1b1keWkpISFBcXa46ThXx5Ye3ZZGbZhLL7UG4pSAcnWQrqqUsa7wxWWgra2X2oU5WCRqTF4nhlt3HCCrxlxHJZOc1SkBSW68QpMG0pKIpimyAIKwBsB3C1IAgJAEpFUfzGYtE4SlRWIsLlQqKJ56fEd3cD5eW+7+6KCtn0w06eBFpbFeMNr6zUnY/I6mpdcUS3tSGMQFarCa+sRFhjo2RehePHDUs7/uxZdJ8/rxhOOH4cCPLgjDl92tT2GshF6el92q8Xt0zbCa+sBKKiEF1TQyy768QJoLFRlWyJdXVwqbzHTGIFIWjZAUDcmTPoaWgIei2iqgpITVWVVvmxY5a2k2DEnD4tmX8SlPITFx4eNP64M2d0lYVUX7SS+LNnmatfKcIrK/vUS9yZM+gwQPbomhpd7ctqhI4OyTqNO3PGlLzliCLyurrQqDSOGiyLUp+NqKoCkpJk46AxJwpGoigqztsCcVdUAJ4NNXFnzqCLYA5AQkNDA3bv3o1j332HBADeLTthALIB7APQEXBPfn4+nnnmGUNcQZJgpwUBlmTVYilIc4HCWxbjxo3DsGHDUFlZibS0NCQlJeHVhx7SHS8L2GVjI20EQbDcfajW+1lqPyzJYgVOshTUg5XuQwFnL0wb7T6UdS9SNGExP0Z4lnFyf7AjLLY7JUjbEG9rxsO0UlAQhF94/n0FwO0AFgI4LAjCFwA+AVALgEhTIorirwwRkhOchQsxCECp2en++te+fwcqpV9WRhRlnlI8JJSVYYTeOOyAp0xLFa4bwc2kASVkmO/5WIaEXNlQLs8Fno+edOS4RfUdFvDAA0F/Xit3j4ayKIYF4xoJ99yj+dZSkkA/+1m/n67RnKIHA8cDrVxntQBqCCi/1RaJwToRUGjjpbJXqSCAcBw1uE9cSyH9EZ6PIfzyl+rGVz95b6YsihwzAHidPebl5WHatGkYNmwY8vPzTZTCOuy4+CCF1XnxTz86OhqDBg0Kek1PvFZjpuKCtTMF7WopyBJOyEMgtNyH2m2x1M7uQ+2CkceEcEtBe2K3cUINLpeLyhzDDmXELQU5RsG0UhDAfwIIbAUCgDGejxq4UtBMduzAsbAwbNu2zbQkExMTsWbNGt/38vJybN26VTL8qlWrkEpgJVRVVYXnn39el2wLFy7Ejh07NN8fERGBjo7AfensMX/+fCQmJuKf//xn0OulBi6+btq0CXUEFgZSMrz99tv44osvKEslT2FhIYqKijB27FjJhYPq6mo899xzQa9dfvnlKCoqwvbt23HkyBGiNG+++WYkKViCBPLEE0+gvr5e1T1mkpCQgLVrg6v/Nm7ciAYJS8F58+ZhzBjyR0lzczMee+wxTTIaSXFxMZYuXar5/g0bNshez8rKwnXX9VeXvfDCC6isrNScrpHjgVaee+45VFdXWy1GHyIjI9He3t7v9+nTp+Oiiy7yfX/yySdxnpKllD9TpkzBlClTqMdrFh0dHfjzn/8c9NrAgQOxbNky02RpbGzE448/Lnnd6D7x/PPPo6qqSvL6woULMXz4cNk4Dh8+rGs+I0VqaioWL16Mp59+mvge/zFcbqxXoqenB1999RX279+Pepk48gC8D6AagNvtxvz58zF58uSgz289L+hLlizBq6++quoeJy8IGAnL5caybBxl1JwpaLfzzkmws+wsIdeGuKWg8jU14eSu6y1r7j40OCweJaEHFsc9J1sK0lIKemElX8FwmlKQWwqyA+tKQaBXCUjymxy8JZlNbi46w8JQn5xsWpJhKSlAUZHve3d3t2z6PQUFQHq6Yrw9brfufHTl5emKw+12o6urS5cMZtCenY2ulJSgeRUEoU/90KYxNRVEaisJGdqyslB/8iRNkWQZPXo0rrjySsVwnS6XZNvpzs8HiorQnJ6O+poaonR7CgqAlBRVsjalpaGe4Um7mJAgWa/1yclokNhl256drapNtp87Z+qYRkrOtGm6+pZSnuLT04PG35yejvqWFs3pGjkeaKU5PR31bW1Wi9GH2NhYNDc39/u9NTOzTxk2pKSg3oCXgo6cHCbrihShs1OyjTdLtG2jiIdCfzNYlqa0NNTLuCLvystTlKGrsdGQcTAyLQ1iYaGquNuysnzyNqSkoF7lOVgdHR04fPgwPvzwQ9QQPkMBYMiwYViyYAFSAp6lpC/lERERktdcLhfzL/e05EtMTLR8w5HVZW1W+lbnkyXMLAu7ug9lCSfkQQ9yShO7LZZafaagEqHqPlQN4eHhqu9R4z401Ps7Rx202osd+jfvGxyjYF0p+EurBeBox+qdP7T8o5txsLUSdtkJaIcHqhRmP2hJ0yOZSKspdyPdiliFXP+wc5skweVyYdSoUVaL4RhYbOtSL+CB7d6ots5imXC0QWNeZFR70KIM6+7u9v2vpv2fOXMGe/bswcGDB4Na4UoxetQo4OBBLFy4UJdi1IgytGM/nTRpEt58802rxVANyxYfoQ5LZabGUlAuDivvZyFtluqUFmryxC0Fe7HaUlDvuO+E54YgCBgwYIDq+0LJfSiL45WT10JYLG8rcHI5OLn9sgLTSkFRFLlS0MZYrWRh6WUklJSCVg3cTn0Y0lYKasFqBb8SWpWCdp9kCIKAK664ApGRkYano+Z3O8Nintzu4FM1rhQkw2nuVozE6gVktemrnRu1tbVh9+7d+Oijj1Tdm5OTg8suuwwjYmKAgwclw9GaL4ZKu5wyZQpqamp8rtvDw8OxYsUKvPbaa5pdwWrByrmAUeNTqLQh1gllpSAtnJAHPchZm+bk5JgoiX6sPlPQSqWgWRjdX+bOnav6nlByH8oiTnYfSttSkJV8BcNp77PcfSg7MK0U5Ngbqx/ytCwFWVAK2gU17iFYg1X5uKWgMnZRmtNk+fLlGDBgABITEw1Pi/X6Z5mlS5eisrISn376qeY4pCwFjXjJCwavf44/LFkKnvRz+S3X/nt6evDFF19g165daGpqIo4/KioK8+fPx4QJE3rntArnFvvLr+fl3Q7PaUEQdI85LpcLV1xxBS6++GKcO3cOubm5cLvdiIuLY/L8XrPhY6+9EQQhpN2HsrQ51+4UBXHrHRUVpclqy0qsVgrqSYMvTPcSHR1NNT4r3YeGiqWgkwmlfuk0pSApoVTHVsGcUlAQhBwAdwC4GMBAAAkA6gF8D+AtAH8WRbHSOgk5pJitFFQ7qbCT+1C7YKWloF5YrSMWLAVZLRsvoWYpGBsbi5KSEtPS45aC2hk/fjyqqqp0xcEtBfURqi9RwWDZfagWC7mvv/4a1dXVyM7Olmz/VVVVeP3111FRUaFKlnHjxmH+/PmIjY1VJRNp/FquaY2TdeLj4xEfH+/7npOTg0WLFmH79u2mpK927KQ51pplKWjn9qEG1vJJ+g4ZSvMstTixDNTkSRRFzJo1q89v3g0VVm/ANhMz1mO4+1BjkHtPt9J9aKjgZEtB/2ME9MBKfuRwWt/gloLswJRSUBCEWwE8CMDrC83b8tMBpAG4CMAPBUH4oSiKf7FARI4KrHYfylK8ThvEpbDSUtBuu2lJ02NBKZiYmIiamhpD09BDqJ0pyGpbdQIs5pWfKWgcTs6bFqwsDy2WggDw2WefBVUKNjc34+2338Ynn3yiKr6RI0fikksuQVJSkmpZaG02s0O7pGEpKIfUuMfh6MWs/hXqloK0cEIe9BAREYH4lBQAwOLFi9GYmori4mIk6zjX1iq4paDxsNhfQsl9qN3K3+7Q9hZl17Jisd3Rwq51YieYUQoKgrAKwF89X0VcUAj6gnh+jwLwZ0EQWkVRfMpEETkqsfohz92Hmg+3FKQPC+5DZ82ahW+++Ub1fWYRapaCrLRVVuSgCYuuZLilIIcWLM9ntFgKAsDHH3+MxYsX+9p/d3c3PvnkE7z99ttoa2sjiiM6OhpjxozBuHHjkJWVpVqGYGhdwAxFS8FQhlsyOxurLQW5+1B7k5eX1+fc8KFDhwJBXImGAjTGSm4paA1qNo1z96H0MaLtsbKGQksOVvIjB58vcoyCCaWgIAgJAP7k+epVCH4O4EMAdQCSAUwHMMbv+oOCIGwVRdG8k+g55FRWIjw+HokK56/QJCEsDCgv9313V1XJpu86cQKor1eM133+vO58hFdWmloWVhFRVQV3e3vQvLrd7j71Q5v4s2fRQVLGEjJEnTplah3FnD5NVB5hJ09KyhVeWQl0dyO2tpZYduH4cSAhQY2oyBFFDIuKQnV1tar7zEIQBMmyTDh3DhESC8OR1dWq2qSLwlhAg/iuLqp9SSlPcXFxQdNT0+6CYuB4oBXdeQqkvBzRNTWa4xQEAfFnzwa9P+rUqT5lGH/2LNytrVollURtP2ENoadHsvxJx2GayLYFg2VRat8RVVWAwnkxRs1n4uPi4DpxQlvc5eWIra3FNwcO4OOPP0Z9QwMyPZfCAGQD2AegIzDN+HjMnz8fo0aNklS+q8GMhUlWYN37g10wa5EnVMqTBDMtBUNZKUgLJ+QhEJI8RUREYMGCBSZIYx5GWQrSisMJloIswsuOLXh92BOnKQW5+1B2YEIpCGA1es8OFNF7fuCNoii+HhhIEITLAPwdQBKAeM99D5knJoeYhQuRDaDU7HR//nPfvzlK6ZeVEUWZpBQPCWVl5peFFXjKtFTq+h/+YFjSq0gDStT7TM+HNQZApjw9eVmmJkLCdu+PAOBa1XeZzIYNQX++Xe4elWWRBAvGNCl+8xtqUZWSBPrRj/r9dKXehDW0RaPRnadAysowD8A82vEG4TajImawntTggkIbv/tucwTxUCp30eCyXqEUgCD9QTB2HNQUd1kZ7lAIMgPAB57/XS4Xpk6dilmzZvWxwjALpRd7LS/3dlwQkMPM/DhxwcFp7YEU1vIdyko9O8tuJZGRkZg9ezaGDRtmSxehRiGnYDfDKpW2m0KjYLHfGe3RSCvcUpATCMtl5TSlICks14lTYEUpeLHf/2uCKQQBQBTF1wRBWAvgn373caUgi+zYgdNJSfjHP/6h6farr74aL7zwgqp70tPTsXLlSt/3U6dO4dlnn5UMv3btWiQQWEw1NDRg48aNqmQJ5PLLL8fWrVt1xWEHpk2bhrS0NLzyyiv9roWHh+POO+80LO2nn34aZ86cUQxXWloa9PcPPvgA+/btoyyVNCNGjCDaAXrs2DFs27Yt6LUbbrgBGRkZ2Lp1K8oJLUxuueUWxMfHqxHVx6ZNm1DHgKVcMO6+++6gZ7c88sgjaG9vD3rPrFmzMH78eOI0zp8/jyeffFKriNRISEjA2rVrqcW3QUKh6qWwsBBXXHFFv99feuklHD9+XHO6Un3RStT0JRJKS0vxr3/9C59//rmm+yMiIlBcXIzDhw/3uxY4hsi1dT3MmTMHJSUl1OM1C1EUUSah7Bo8eDAuu+wyU+WR6m+CIODee+81NO0XX3wRJ0+elLy+bNkyDBw4UDYOuWeSHoqKinDJJZfgscceUwzb0dGBb7/9Ft9++y2qq6vR3hFoA3iBPADvA/DauQ8aNAiLFi1CWloaFbn98X8p1/PybgeloJMXIMwkVBd5rMRMS0G91sOhrFT04oQ8qGH27NmYOnWq1WIYgtVnCnL3ocYyevRo3XHYob/bTUnhZPehtHBafuwAtxRkB1aUgmM9f78VRfFluYCiKG4VBOFbAIPR606UwyK5uehJTUW9xh1uPQUFqu+NSk3t42e/JyJCNg6xsBBITFSMV6yv15wPL935+brjsANtWVnozMwMmtfw8HBDz0FoTE1FfXe3ckAJGdq/+87UOmrNzCQqD7GrS1quoiIgIwNNaWmoJ3CFC3javUr3oV4aU1NBlor59BQUICw8vN/v55OS0CGxYNyWlaWqTXafPctEPxaSkqj2JaU8tWRkBE2vOT0d9Q3aPHgXFRUxeS5KS0YGcV8ioqgIrRJjIglRUVFoz85G/alT/a41Bjzz6pOTDVEKdubmMllXxIiiZPmTjsM0kZJFEATDZWlOT0d9U5Pk9a68PEUZutrbDRkHveOMXNytra348MMP8dFHH0mO61LEJSTg+ssuw5AhQww9F1FvOK2Wgk6D5TKw4+Iuy+XpZEJZKcjPFJRGLk+kLmedhhlutbn7UHrk5+f3mU+63W5cdNFFQcOGUtmxOF4Flj8r9ZGfny+7UZHTl1DdRMZKe3UyrCgFU9HrOpTUTOdj9CoFUw2TiKMbsye1Rh1UHKqTcy2oOUjaCuQsA1iQLxhFRUUIDw9HZ2dnn99jY2ORnp4OwDy3HKyWESDt1sWJEwlWLEL0yEFjN6kRsOZKJiwsTPKss66urj7fjWrrLPd7Euwuv5mQlJVR5elyuSTj7u7uxt69e/Hee++hTeKMWCnC3W6gqwurVq1Cs+eZaTWsjTN2SM9IrJwnGLXI46T6UYOVY1iwdOys1GOFUCsDJ6876FG6mdEOuKUgOcuXL0fKyZMoLy9HUlISJk6ciPz8/KBh1eTdzOdxqIwtrFoKTp48mRmloDc/dl03cnJbtmud2AlWlIJx6FUKnicM7w0XZ4QwHDromdTScJ1Ea8eZGTvTnIIoipYN3CRlPHz4cF33W4Hb7UZJSUk/16bjx4/3yTx+/Hh89913VojHDFrOelDbVvmkhA4ZGRmq3LaGMmFhYUHd4gK9ihJ/uFJQPU7OWzBozIuMtLILFndlZSW2bduGU0GsZeVwuVwYM2YMrhw/Hti4UVK5ThNV7kMl+iu3FOyFlwEvA1YYNWoU2tvbMWTIEOzatUuVRX4oWwrSwgl5CCRULT705I2GsjQULAXNaj9utxtz584lCsuqUtAI7NB/WSljO5QVSzjtucHdh7IDK0pBL7zGHQTrgxNXCtKHZUvB8ePHY86cOZLXrZZPjkWLFiEmJgaHDh1CWFgYRo0ahWnTpvmuDx48GBEREardqamF5TKSans0JxKsTEpYsQjRKod/22UN1tq4y+XiloIGwlLeWJDFShkCLQWPHz+Ojz76CIcOHVIdz7hx4zBjxgwkJycjnsFzcI1QCrLyXLBL/HqgOdaatcjDcnmyTFRUFK666irf97feeov4XjVlLhVWryKEuw+1H062FNSDGQo7JygFWUTNxl1uKUgfI8q0pqYGx44dQ0JCAgaHhyOSegrmYgdLwVBprxzzYU0pyHEQrFsKkmLGzjSnwOqDNDs7G0uXLpUNw/KCmsvlwpw5cySVmhEREVi5ciWeeeYZRddqTm2LWtyH2tVSkOW2andYc+snCAJXCnKYwmhLwbq6OuzcuROHDx9WdX94eDhKSkowY8YMJBKcF20EpGXjcrkAmUUy3udCByP7UyhC29o58B1QbblyS0H9OCEPanCyUtBql8hWWgo6zX2oGtTkXYvnH5ZgsfyN4KWXXvL9XyiKuFlDHKFSVqRccsklstedZilICivrb07GubMOjuVYPThx96Hmw6r70IiICF3324GCggL86Ec/QlZWlmFpsFxGZpwpyMqkhBWloFY5WG5HrMkmpxTk7kM5amHZfWh7ezseeOABPPTQQ8QKwejoaEydOhXvvPMO7rvvPlx22WWWKQQD0TM+cktBc/PDyrM9ED72Wo9eJYbVSkEr4ZaC0oTq4q4cSvmWU5aSjuHcfSj72KWcpWCx/APLlHYZnz9/XtN9NMpq4sSJuuMArG93ERERGDp0qOb7WWx3SnD3oezAmqXgJEEQfkESzvsPYXiIovgrzVJxNOEUS0GuFCSHVfehJGk7YWdmWFgYcnNzZc9ecmpbDKUzBZ1ah5zgSJ0pyC0F9ePkvGnBqvI4evQo/vSnP+Hs2bNE4SMiIjBt2jRMnToVkZGRmD17Nnbv3m35GE1rs5kdlIIcOnDlAF0CN8sEQ49bT6MsBVm9nwWckAc1OOF9VAqrLQX1pMEtBbXD6pmCLJaVEVg9N5aCRvnn5eWhsrIS1dXVfX5PTExEvYb4zC4rl8uF3NxcLFiwAKmpqbJhQ3W+yGr7dRKsKQUv8nxI8LaOBwjDc6WgyVg9qaW16MLdh5JjpaWgHFZaP5idnpH5YLkdm2EpGKpwS0Fr4+TuQ0MDFsrZ7GdlS0sLdu3ahU8//ZT4nmHDhuHSSy9FQkJCn99ZGOtpKAVZaAckOMlSUGrjhRR2WNw1aqMk67S2tlKNT085smApyPqGTE5/rF4/YRUaCjs9a0N2d2tpJdx9qLUYbSmoFRplFRYWhlWrVuHNN9/E999/j9zYWADAzTffjN88/TRxe7KqTO666y64Bg4kCsti2wKA3NxcVFZWqr6PWwqyA2tKQaNaOm9JZlNZCZcgILGuTtPt7ooK1ffGR0UB5eW+72F1dbJxCMePAzExivEKXV2a8+FFS37sSGR1NcKBoHmNCqgf2sSfPYtWiTKOi49XTDvq1ClT6yi6psaQ8og5fZpKuw9G/NmzaGO1HZeXAw0N/X5OOHdO8paIqipVdeBSKFuzSAgLo9p2lPIUW1sbNL3Y2lpN5RFRVQXEx6u+zwy05kmS8nJdY0sCpPt0bHe3r15EUTSsbUZUVQEBChi7IVU2Um3bClnCKPfrYMSdOSPbTtwVFYpx0JjPdHR04PDhw9i7dy9a29pQ6Pk9DEA2gH0AOgLuSU1NxcKFCzFkyJB+8e3YsUOXPEYg9/KutOjLLQXNzc+ll16K559/vt/vo0ePNjxtJyiIWaKlpUUxjJpy5WcKcoxAz/PBzlhtKWiV+9BQt37jloLW4mSliiAIiI6OxrJly3p/KC8HfvxjCIKA7OxsTcoqM1Ez3ls9X0xNTUVXwPtffHw8brnlFvz2t79FR0fgmxsdnNx+WYEVpeC74Io7Z7FwIWIAlGq9v6xM270//anv32Sl9MvKiKJ0K8VDgtb82JRSqQu/+51had6gFODf/1328njPx+7M9XwkIWz3wVip+U4TkMhXqYZ7pMhQis9Mfv5zalGVkgS6665+Py3VmqCONmg0l3o+1Cgrw2wAs3VGM0Lqwq9/DaB3R1WpzjQkYbi+SCm1WgA/SuUu/t//GZr25UoBCOq6AMaX5wwAH3j+z8rKwty5czFo0CBJi669e/caLBEZtCwF7bBQZQcZSRkwYABiY2PR3Nzc5/dRo0ZZJFEvWss4LCwM+fn5lKWxByRKQTWYpZRz4pmCHG2Eap0rLfzSOFNQCSOVgnawMDeK8eODr7AkJSX1+41bCtKHVaWK0Yp+NQo3bxmxWlZKmNHu5s+fj53HjvVJ8+KLL7bNewtHGiaUgqIozrFaBg5lduxAe2EhHnnkEU23r1y5Eps3b1Z1T05ODq655hrf9/r6ejzxxBOS4W+77TZER0crxiuKIsp0Lopef/31eO6552w/0QGA6OhoxMXFoba2tt+19PR0NDU1BXXfEx0djdtuu80wuf7xj3/g9OnTQa8VFRXh8ssvl73/wIED2L17twGSBWfUqFG4+OKLqcf7zjvv4LPPPpO8Ttrug7F58+ag9e5PRESEYTuF5Fi5ciXS09P7/KbUd6dMmYIpU6YQp3Hq1Ck8++yzmmWkRXp6OlaupKei3bBhg+z1oUOHYvHixf1+37ZtG475TQ5JufTSS4Na+7DA9u3bceTIEWrxlZaW4t1331XlHtGf5ORkTJ8+Ha+++mq/a5GRkVi/fj2A3pfoBx98UJesUixevFjX4ecsINXGR4wYgQULFjAhS1hYGO6++25D0966dSvKZawRr776auTm5srGUVFRgS1btqhKt6mpCW+//Ta++/572XB5AN4HUA0gNjYW8+bNw7hx4xxnOcHPFFTGzPxERUXh5ptvxiuvvIKKigokJydj5syZpjynjNj5PWTIEISHh1OJy24YrRTUcx4hjfTVYtcFzlDGyX01VC0FQ53i4uKgv190Uf9To3g508fJ7kNDyeqadL54ySWX4M0336Se/vDhw5F0zTXAhg0YN24ciubMQWFhoaJsUng3S3zx+ecYC2DXrl0YtmgR8vLy+oXjGAsTSkEnIghCBIBrAVwPYCSATAB1AL4H8E8AT4qieMZEef4PwA/9fjouimKRYQnm5kIYMAD1ycmabu/Oz1d9b2J6OlBU5PveU1cnH0dREUCgHBEAzfnwyVJQgIaUFHR3d+uKx0oSEhKQk5ODuXPn4l//+hfqA86zAtD7W1RU7yeAzpiYPvVDm+b0dNR3dga91pKRoZh25+nTuutZDW1ZWYaUR1tWlmw+xMJCze5Dm9PTg9a7P8F225tBZ24ukJPT5zexp0e2LNqzs1XVQZfbbWobkSI6LY1q21HKk1T/acnIQL2Me1YpOnNzDR0L9NCSkYH6mhoqcY0cORIoKkLbN99objfhaWkQCwuD3u92u33lKHZ3G9Y2u/LymK0vUqTKpjUz0/S8ScniX59G0ZKRgfr6esnr3fn5QEGBbBxdIJ8T9fT04KuvvsIbb7yharF+1JgxuObSS3vdjtsI/5dircoeu+y4ddKZggCQlpaGtWvXoru7W/UZg0ahpQyGDx+uuAnOyQQqQ/Vid/ehgWcPm4kTNsIaRSgtZPujZxOEGQo77j7UGLxzucjISN9vJSUlQTfmhnpZhRJGKwXVxG8HxRNpXseMGYP9+/ejzoBjRbKzswEAs2fPBgoLfb9rrctt27bhu3/9C2MBHDx4EB/V1GDlypUo8nsftkPd2B2uFDQAQRCGAXgGQEnApSzPZyqAHwuCsEYUxddNkGcSgHuNTicQPZNaFnZXBsalZ0CyyyKPHD/84QWdst12sZOk7eSXMH+M3qVpVTkGW3xQ6rN2nWSY3ZdoL1axPBZqkW3w4MH49ttv+/3udZejN79SC9RdXV0QRVH380kJluuLQxeSuiZtD9999x127dqFqqoq4vQL8vOBkycxd+5c1NtMIUgTu82xnITZCkHa9ebvMSUUUeP9gQS9loJWKwWt3IzKlYLa4GN5cOxsKRjq7kO9rFu3DtWRkUhOTkZsbGzQMHzcMB5W1j9YtBRkpWyCQVpecXFxuPnmm7Fv3z7U1NQgNzcXsbGxeP/ppw2WUB0NDQ0oLy9Hot9vXV1d2LNnD1cKmgxXClJGEIQ8AG8B8JqsiOg9M/EYgHQAFwOIRu/xVFsFQVgkiuLbBsoTDuBvAExfqbd6UkLTPRNXCvbFbnmhudDJOlbnw+r0jYSVSQkrSkEnoiWvAwYMQE5OTh/3w3PmzMHAgQOpyOR2S0/Venp6EBYWxpWCGnFy3rSg91kpiiJOnDiBd955B98ruAr1JywsDNdddx3+dv/9wPDhxPexBml7kluosMtmCydYCo4YIXlaqyw0x1sj3IeGKjExMRgwYIBiODNdgFqtFLTSUtDO3nGsxMn9Xk/eaJwpaKVSkNM71wt0DRgItxQMHVhSCtq9jwaWQ0JCAubPn+/7fujQIVPTJ+GchLepb775ps93u9eNHeBKQfr8AxcUgscBLBdF8XPvRUEQ0gA8C2A+gHAALwiCUCyK4nmD5PkJgNF+st1gUDr9YN1SUE0aLpdL184lrhS0dgGJRaWgUenRbPda7rXKUjDYhIG2pSArkxJW2qpdFq/VoEU2URQxZ84cTJw4EadOnUJ2dnafHbB6+5ycUrCrq4srBR2CGeVs1POhu7sbBw8exPvvv6947qw/MTExGDduHC666CJcakN3oYH4l59RbtI49NCqFDQL3g7IycrKwtzVqzWfmS2F3S0FuftQNpGbs4WK5xq1WD1HsruloNQ5YxMmTDBaJFWw8q7NsQdy46XTxlKW3yuMjJ+PCcbDlYIUEQThUgAzPV87ACwVRfFL/zCiKJ4RBGE5gC8ADASQAuA+AP+fAfIMA3C/5+tmALtgolLQ7JfZwAGDtvtQvfc76eXebnlhUSloFFbnw+r0/aE9iWBlUmJ2GRf6+YynAUtthAYJCQkAet11DBo0iHr8cu7surq6EBkZyZWCGomIiLBaBNvh3x66u7vxxRdf4N1331V1dkVmZiamTZuGESNG+M4AM6OdlZSU4LPPPjMsfr0KAO81FjdemZ2e0fHPnj2799xXi+GWgvrwPn+vu+46IDOT6B61m0K13qslPO37uVKQTeTmbE7u90ZtTGXdUtBMpPIwdOhQ/Otf/+o3Jhjx3qIH2hs7OP2xS1smgbalIMtlY6VS8KKLLjI0fjlYrhOn4Cz1ufXc6ff/pkCFoBdRFJsB/MLvp9sEQaCqoBV6e+bfAEQCqAPwbzTjJ0XrDg2t1hpq4jDTfQytOFjBDgtWatN2Uv0YBcvlGEqWgmYSFhYmuXDqxD6jNk9hYWEYNmyYQdL0Imcp2NTUhJqaGjQ0NBiWvhPqOTc3N+jvkydPNlkStiGta1EU8cUXX+Chhx7Cyy+/TKwQFAQB06dPx7p16zB27FifQhAwZ0ev0efF0VAKqonHyRhVBt6NAOPGjdMchx3nArxNaUOvpaDesFwpaM/+pkSoKgX1YLUXKT3tmYU2nJqaihtuuAFpaWkAgMTE3pO8srOzrRSrHyNGjDDNwov3NftDSyloB4z29iWF2+3G2LFjNd/PYR9uKUgJQRDi0OsS1MsTCre8COBRAHHotRacBYDm2YLrAUz3/P9jURRPW/HgY10RZFZcgiA46sHE4iTKbu5DjSJU3YeaAQsvdYC5bXXZsmXUralY7mtqZZs1a5as0k5LnIH3ysX/6KOPao5bjQx2p6SkBJWVlX1+KyoqQnJyskUS9cdq11ikMpw9exbPPvssvv76a1VpDx06FBdffDHS09M1p60XVtqyEZaCZmMHGYMRGRlptQh94JaC5mPmplCr3Ydaea4ftxSURq5snPwepac90zhTUAknuw8Fes9Av/POO9He3o7I6mrgV78yRSY1REZGYvz48di/f7/VojgWVtYzaMgRSkpBOYxY/0tMTERaWhpmzJghublWT/yksNJenQxXCtJjGnqt8gCgGcA+ucCiKLYJgrAHwCWen+aBklJQEIR8AL/1fH0PwEYa8aqishKIjUVyfT06OztV3x528iQSVbiiAoDYyEigvNz33dXaKhuHcPw44LdLXY6k8+fR1tamSh5/wk6eRMK5cwhvbdUch+X4lW1sba3q+onr7OwTB23izpyRlCm2tlYx7cjqatV50kPM6dOGlEd0TY18PsrLAY2LYnJl7CXB5UKnieXoJezkSSDgJVtsb5eVN7K6WlUduCsqTG0jUsTHxFBtO3J5GpOQIJmWlnEA6C1HrW3QaBT7TwCzCgoU6yLq1CnN7SY+LAzhlZWWtrvwykriZyWrTExLQ3hJCQ4ePIiWlhYUFhZi9pQphj6TpJCqy4iICMPlUeqz7ooKoL096DVRFPH666/j/vvvR9v58/A6FQ4DkI3eSW9HkPsKCwsxf/58FBQUyMrmhJd3/5dircoerS/WTlMgGZUfO5WTWlnj4uIMkiR00WspaLVS0AmWgk6EWwqqx2pLQb1KQbMgKSfWNscEcumllyI5ORkfP/+8oenwvmZ/aM2n7eA+VA7aSsEpU6Zg4cKF1NLXg13rxE5wpSA9hvv9/6UoiiSz8E9xQSk4XC6gSv4MIB696zO3iVb0JM8gcqdCMEnKylCq5b7/+A/fv9GAfBxlZcTR3q5FloC0btMbh9X4ldcCz0c1//VftKTpx7U67x/m+did6bhgIhwUFe0+kGs032kCQfIVCYUxQCX5lOPTxX33UYuqVO6iTHtZ7PmoRkcbNJqLPR9iCPKi2CeV+PnPrW13DNeXGsZ6PlZTKnfx9783NO2lSgFk6loAcJnnE4wZAD7whhUEFBcXY+rUqRg4cCAz1vqsnINnxI5esxe3+GIaHWgqiGfNmqVXHNthdF/hZwpqhysFpZFbmnHCBhkpjPJWwy0FL+CEZ7MgCJg2bRpyOjoc8w7C6Q+3FKQH7fcKlsYRrhQ0Hq4UpMdQv/+PE95zwu9/KvoIQRCuA7DE8/V3oigephGvanbsAIYMwSOPPIJ2iV3nctx0003YtGmTqnsyMzNx/fXX+763tbXJula76667FN2+efnrX/+KlpYWVfL4s2bNGrzwwgtoamrSHIfVlJaW+v7fuXMnDh06pOr++Ph43HLLLZSlusDzzz+PqqqqoNeGDx+uuNvlm2++weuvv26EaEEZO3Ys5s6dSz3eDz/8EB9//LHk9TvuuEOzO8gtW7agoqJCNkx6ejpqa2s1xa+HFStWIC8vr89vSmPAxIkTMWPGDOI0jh8/jpdeekmzjLTIy8vDihUrqMW3YcMGyWv+/T6Q7du348iRI6rTW7ZsGQYOHKj6PjN4++238cUXXxCHlysfL0p9Uo709HRce+21eOihhzTdT4MrrrgChYWFygE5REj1t4iICNxxxx2Gpr1t2zYcO3ZM8vrKlSv7uff89ttv8YMf/ADlx4NPbfMAvA+gGr0vkWPHjsXMmTORmpqqSjYzXt7toBS0i/tQo2HZUpDFxd3hw4dj/PjxVOLiXIBbCmqHlutSJ7ZdOYWpE/NLAxoKu1CwFORwlGClPbKkFGSlTIzCaKVgqFgKOvX5zJWC9PBf/aghvOeU3/8pegUQBCEVwIOer98AMM4sS4ncXKCoCE1paZqUaT0FBahXedZPTGoqUFR04Ye2Nvk4iooAQqVgU1oaGhsbVcnjj1hYiMbUVDTY2QWbX9m2ZWWhvrpa3f2JiX3rhzJNaWmol3DP2pqZqZh2V0uL6janBxKZtND+/ffK7V6jUrApLQ31zc2yYWLS01FvwSJEV15ev/LsUajTtqwsVXXQ2dVlahuRIjk9nWrbUWwvErRkZKC+hvRxd4Hu/HxDxwI9tGVlof7kSfIbCPLR9t13mttNVGoqwoqLLW13wfoWRztSdRkZGWl4ObdkZKD+3DnJ62JhIZCR4fv+z3/+EzfddBPRhqZhI0ZgycUXIyVF23TWCZaCpGlxS0Hr4mfthV6PPAsXLkR0dDTS09ORlZUVUrvi9cDPFDQHWpaCLC0I0oK7D1UPjfHNKqWgmTip/ajNS3h4OCIiIpCamooTJ04ohndSWdkRo5WCWurXLv08EKstBblS0N7wtwd6+B/kQHpwnH84GgdB/BGAd4v37aIoqjfR00lUVJTvTIvu7m5NnXj48OGadjZ6Xz46OjrQ0NCg2Gk7Ojp8ir6enh6cP3/eF0djY6PPwrGtrU33YKRHoWgkGRkZyMnJIQrb1dWF8+fPA9A+IDY3N6PVo7jz1hPQO9ifP3/e9/La1NTkO8Oxvb2dqJ7kXj47OzvR0dF72lFrayuaPYotGnnSivesTaW2512M7e7uxvnz531tsaGhIWielF7CveXf2dmJ+vp63+/nz5/39TupeiLBykWpwDz5/x8MrzsX0rbHSj/2tgFa/UkJubanhe7ubtVtj8YYQdqf1ODd9CLXn7Scq+uPKIpMLPayVk9SYznQ2/e95d7S0kJUT2blSQ6j86TUFgVBQHt7O86fP4/7778fV199Ndxut6/9xcfH+86i8c730tPS0B0WhvkLF2pWCHrz2+IpV9qvf+2RkeihYIHnlatHZgHfW0/B5o3e+5T6c7PM5hvRE0dg7O3t7WT9KSlJfX9KTESnp035tz1SOiIi+pQZaX/yz6dUmavF2wbqm5rI+5NH1ubWVl9/IkUE0BgfL3ldbtzzIpX3xMREFBYWIicnBy6XS3qMCA9Hk8YzzWmVvwj0tj1dsfTHW5/nm5qIx3Jv+yfJk8vl6tOfgvVrqTJSo5ATBAGd4eGo93tO+MtKSlNcHNo8fbq9vV31/MNXTxTGCKX3kebYWKI6aG1t7TtGeNq1qnmEljyRjhGkba+pCd1hYb50pWhqagqep6goXz9WnBt5wnUFjCX9xghPuXZ2dZHNIzo70ZCQcCFPJGO5y4XzfnmSIrB/NiQkoMMja2trq+xzxxu3Up5I+mSPy+WrJ3/0zOV7enogiiJ6BAEdGjfmBiPYmCoIAvkcNjLS15/kMHIeITeHbe3oQGt0NFFZuFwu/OQnP8Fdd92FadOm+X7vcbnQIzHn8soq25+ioy/0p4A8SdHZ1YX6xEQiuaVoiovzzfdo4N+ftHhxk6NHEIjryR//ua5cPcnhbdd92p7bjfNNTaotBeWeuT0Sc2+teONT857r7bdAb3/yl8Vbp1L9SRAEVfXkLdd+77lNTb56UpobqcV/PuA/RtDYYEStP3niSPA8B52C9atMziHK73/SlUX/EVn9SOqHIAgLAKzyfN0kiuK/9MSnlSlTpvjc2tXW1qp+eU5NTcV3331HtLsnEO+AdejQIWzcuFFx8efzzz/H5s2bAfQOwGVlZb4J1ObNm3HgwAEAwN69e1XnI5DNmzdb6sJFiilTpiAzM5MobEVFBco8ft217mLftm0bdu/eDeBCPQG9D5yysjKf28ktW7Zg7969AIADBw4Q1ZOcwubo0aM+d6e7d+/Gtm3bqORJD9988w0A5ba3ZcsWAL39qayszPfw3bhxY9A8KSmu3nrrLQDAsWPH8Mgjj/h+Lysr87kGlaonkge+VTtoRFHsl6e//vWvsvccPXoUO3bsQFlZGU56rMPk2t4rr7xikPTq8E4WafUnJaTanta6rq6uVt32aIwRJP1JbZ527twJQL4/ffvtt6ri9EcQBDQ0NFh6No+337NUT4D0WA4AjzzyiM9N5s6dO4nqyaw8yWF0nkjmVh9++CH++7//G//1X/+FhIQElJaW+l5+Vq5ciXHjxgHonT/ccsstuO6661Cbno5GnQsg33zzDXbu3w8A6KLsVeHAuHFojovT/Xzq9CzmtUdFBb0uCEKfegqk0VOOcnK0t7fLPmvaPUrZDs9fLwcPHlTuT/X1KCstRbtnYYi4P61fj2Me9+zetqemLA+NGIEmP8UYSX/yzrtFz+JDcxyNvZMXyv6RV14h708eWbft2ePrT6R0REZi88qVktflxr0uz7jfJKFUPHv2LNkYUVyMFz1lrJYez+J4S2yspvv94ykrLfUtqNCm7MUXicdy70s6SZ4EQejTn4K+D3ryFFhPlZWVqvrJseJiPOLX98vKymQ3CARjy4oV2Ovp0wcOHEBYEOWGHN56ojFGKM1bti1dKjmW+vPuu+/2HSN27QIANLS0kM0jtI57pGMEadt78UXUetxz79mzRzK/mzdvDp6nKVOwxRO34tzIE3+FJ5wvT4FjhOeZe6yqimwecfw4Nq5deyFPJHOjhASUvfii4gbTzs7OvnlauxaHPG7Ld+/ejTfeeEP2fpI8KW0W7erqQmNioq+e/FE6PkMO72J+U3w8Do0YoTmeQMpKS9EdxOsV8Rx23Dhff5LDqHkEID+H/fDrr7F79myishBFEWFhYfjss898cQNAY2KiT5EdyKuvvtqbJ7n+NHv2hf4UkCcpjlVV4ZH164nklmLLihW++R4N/PvT559/Ti1eAGiNiSGuJ3/851Ny9SRHeXm5Ly5f28vLQ9mLL6reUFtWVia51uV7vlOaw3jnH7X19cTvufs9YxvQ25/835W8x5RI9SdBEFTVk/dIpn7vuS++6Ksn/+cTDUVzo1/9+48RSuM2CbT6k7d1rPU8B52CwJI5pp0RBOE1AJd6vv5OFMWfEtyzGID3ELMmURSlt5LKxxML4CCAIgBnAQwTRfFMkHA3A3jC8/W4KIpFWtKTkGEkgINRUVFwu93Yu3cvhg0bhrKyMiLrmlmzZiE7OxsDBw5Ea2sr2tvb+wxoJKSnp+OOO+5AR0cH2traEB0djf/+7/+WDH/fffehq6sL8fHx6OnpQUNDAxISEny7QiMiIhAZGek7l0zPgHTrrbdiy5YtRLuLzGLJkiWYMGECWltb8fTTT0uex+flZz/7GZqampCUlITXXnutz4OJhKSkJNx6661wuVyIjo721VNCQgJEUUR9fT3i4+MRFhaGpqYmuN1uREVFob29HR0dHYr19Pjjj0tO2EeNGoWlS5ciIiICra2t6OnpQWxsLLq6unx5+uabb/DMM8+oypMeSkpKsHz5csW219XVhbi4OHR3d6OxsRGJiYk+RUFUVFS/PL399tt47733JNMtLS1FYmIiOjs70dLSgkTPQu758+cRFxcHt9uN5ubmoPW0adMm3+RLivz8fJ+CzUxWr16NvLy8PnmqrKzE3/72N6L709LScNNNNwGAZNv77LPPfJMzKxkwYABWr14tWU9q+9ODDz4oOQl+4IEHJNvea6+9pur8PS/XXXcdsrKyVLU9GmMESX96++238dFHHxHn5cc//jFiYmJk+9OOHTt8L+BqycrKwg9+8AP8/ve/77ND0ExuuOEGDB48mKl6khvLgd4XiJiYGISHh/t2GirVk1l5+uUvfxm0nKOionDPPfcYmqcXXngBR48elazr+fPnY926daioqEBjYyNcLhcSEhJ8iun4+Hh0dHQgISEBV111VW8/rqvD3Q89hLJ77tGlGJw/fz7Gp6UhZvhw/PHee9FAyWVuYl0d1j/6KB5evx6jL70UH374oea4Eurq8MOyMvxfaSkaPfXiz09/+lO0tbUhJiYGTz/9dD8lbPz58/i3DRuw8y9/wR4JF+ypqalYtGiR7yW8nwznz+OHGzb0K6PRo0fj8ssvl+9Px46hceJEJH76KYQBA8j6U3k56ktKELN/P8IHDfK1vccee4xoTptYV4c7HnkED91xh6/M7r33XsX+dOzYMTz99NOKZa6WgS4XVv3iF6j/8kvEDB1K1p/OnoV70CA0HzoEV1ER/vSnPxFvFkyoq8OtGzfi8bVrg7oO/ulPfyo57h3fvRtjL79cMu/XXnstsrKy5MeI06fROWQIyrdvxz9k5oZy8tMo/4S6OqzZtAlP3HQTtb4N9L743vSf/4nzX36JuGHDiMbybX/6E1b94hdEeSouLsby5ct9/emRRx7B6dOn++UtWBkNHz4cEydOxN///nfFfFw5fjyGXXUVWj79FImjRgHobXt79uwhPpM4sa4Otz7+ONyffIKoIUPQ3t6OqqoqPPXUU0T3e/OyZtMmKmPErl27fAuGwWT9wd/+hr/84AeydRAdHY3169cjPDz8whhx7BjiR45Ez7FjaEhJUZ5HqB33zp8HBgxQHiPq6oABA8jb3ldfIb6kBGFHj2Jfba3kOfarV69GYWFh3zxVV6Nt+HB0ffop4oYPV54blZcjdsQIdB09iqbUVOkx4sQJxAwfjs5vv0VLerryPOLbb9E2cSISPv8cYmGh8tzo7Fn0FBej4fPPkTBiBFwul+QcKC8vD1dddVVvno4fR8PYsYjavx8RgwejtbUVnZ2d+OMf/yjZVh544AHFPH399dfYvn27ZByrVq3C1ocewr0PPog/3XVXnzF7zpw5eOeddyTvlaO0tBTV1dV4/S9/wV1//jP+vH697mMBEuvqcHOQMXX16tXIzc1VnsOeOoX2YcPQ8emniB8xQrJeAOAnP/mJIfMIpTns17t2oWDZMvxl3TrF8nK73fjZz36G9vZ2lJeX49lnnwUAxNfXo7SsDA/efXe/ONavX4+MjAzp/lRVhdYRI9DzySeI9Xgya2pqwiOPPCLpXeaBBx5A59GjaJk4EU/cfLOmevaO5Y/deisaKMx7EuvqsPaJJ3z96fDhw3j++ed1x+sl/vx5rP/LX4jqyZ/ly5fj5Zdf7o1Dpp7kWLNmDQoKCi60vdpadA0ejKYDB/BRZSXx+/fq1auRnJwsqfT1zt9pvZ944+s+ehSNqalE77k7duzA/v37kVhXhzVPPomNN9/sk2XVqlUYOHCgZH+qrKzEixs2ENfT1KlTsWDBgv7vuYcOIWHsWLiOHUNjaqrvmVtWVqZ5nTuxrg6lAXOoH//4xwB6x4h//vOf+PLLLzXF7Y2fVn9KaWzEvD/8AdM878YeRomi+JWuiC2GnylID3+/UKRWf/7hlP1KSfNf6H0vAoB/D6YQNAv/RcuwsDDiHYozZ86E27PTKSIiQtPip3c3SEREBCIiIhQt86Kionw7OF0ul2/CDPS6yPIPp3anZSCJiYlMuH/zMnHiREyYMAFA7wvXrbfeioqKCt+usmC43W5fGWm1FIz125XrrSfvNf/yj/PbER4ZGelzVyZXT3LlGxkZ6Usr2s9sXm+e9ECSpyi/HbRhYWF9wvmbrQfmSQ5vHYSHh/smDAD6xC1VTyRt2Kp2LopivzypMe0/c+YMPvroI8yfP9/3W2Dbi9W5U54W3jKm1Z+WL1+OrVu39kvH635Fqu1p7TNa2h6NMYKkP6nNU0xMjGKeInXsTEtOTobL5dL8XKQJS/UESI/lAPrUhbeOADbanhxm5SkYhw4dwu9///u+7nwCXAw3NjZi4cKFGDduXN966u6GS6c1a2RkJGI8cdJ+Gke2t8MlivrPB/P8dclsqEyUUYzK3edLQxD6tJ1+1z1xBOYkKiqqj5tX/9+9hIWF9S54B3F/I9v26ut9Z3B7256asozo6OiTd5L+5J13k5S5GrxyJ8bFAZ5d1or9ydMHYqOjAZUusgQA8RKbI10uVx93vF68495JT31K5Z14jOjsRJwG115e+eVkUBNP0vnz1Pu2l6S4OF8bVRrLfe9+GvpjsDmuVBm53W5VZwqGd3b2tktvnpKSVL9/xjU1+c4Nj4yMxIABA1Td760nGmNEuILFd2xzs2IdTJo0qU/5R0ZGItITv6p5hJo8efq74hhRVwdARduLiwM8LtnknsX+awZ98tTW5ht/FOdGnnDugHD9xghPOYW73WTziPBwRHgWQonmRmfPwtXT05t3hffDwPgSGhp85R8dHS07j/L2M6U8Kb0ju1wuuHp6EBbEzSiN91uXKCJCx/ELgQQbUwVBIJ/Dtrf7+pMcRs0jAPk5bHREBKIJN+B46ycyMrJPm3X19EjOT73hZPtTa+uF/hSQJynC3e7e/OogrqnJN9+jgX9/kht/tOASReJ68iIIQp92JVdPcvRb36uthburC0lxcar7rHd+EGyjtEti7q0Vb3xq3nP9yyuxvr6PLN5rUv1JEARV9eR9fvd7z42LAzz15P980rtWDvSdQ/mPETTGXlr9yeUZ99QcrWQH2NFS2J+zfv+T+WMEsvz+P6clUUEQxgO42/P1X6IobtISj1GQduLAlybSBTR/AgdwmkoeGgfNs3wwqSAIyM/PVxWeNfQeNMxinuyIncvx/fffl73OimU97TIePHhwPwVqeHg4Ro8eTTUdO8Ba+50xYwYAOpNtDicYPT09eOutt/D8888ruqr75S9/iSeffFLTHE0JMzaUGN2//eOXe14ozVe0brxyEkblx07lxNJ7DKsY3VcCxyU196rpy1LhaNSbdx5hNhdddJGu+xcvXozZGlzS2QGtz4dQRq5cSN/PlMqWRhoca/CvO73jLsd4pJRvWuKRQu2Zgv5/7YaesY1GeCNhqU5YKheacEtBenzt938h4T0Ffv8f0ZjuGFxQ7hYIgiBnI+3vID07IOyvRVF8TaMMkuhZ5Fm0aJGsi4dA1A4Yel4K1cKaUpCGktPsNPUQSkpB2pMCtfdaeaYgyW9a4n333Xfx5Zdf4uzZs8o3mADtMo6JicHNN9+MN998EydPnkRmZiZmzpyJrKws2fu0yuGUvkaK1vwWFRUhOztbVxw0YGky7mSsqOOGhgZs27ZN8dzLhIQEPP3001i6dGk/13m0MDr/LpcLAwYMUNz8oQdaC1F2GCPtICPr6G0HvA6MJ7CMjVpYM1IpaFU7SU1NRV5enuaz2CZNmkRZInaQO2+RJc9CoYZRSkFRFE2bSzvpuaB2EwbHXrCkFLQ7VisFjex/LK1DOHWc4UpBehz2+3+0IAhuURTl/VcC4yXu10qx50NCBIDJft/7n6ish8pKIDYWCefOodPjXkMO4fjxfm4lMrz++gmJd7kAv/POhJ4e+fsVzkbzJ+HcOXSokCUQ14kTxGVhBjGnTwfNP2l5RdfUqKobAIgXRVVlrpa4M2ckZZLKrz/hlZWq86SH6JoaQ8oj6tQp5XrUaHUkV8Ze4hMSTC1HL+6Kiv75amhQL0tAnez58EMc8Jznov20LLrEnTlDve0kA7hm0iTAuwhD0F+1jANAb18Do5Mq1XkiqIfI6mqiOJctW4avv/4aDQ0NyMvLw6RJk3qfjQDiz55Ft0Vn0rorKnzuyDj6kWoLUa2thj4jASC2thaJdXVoamrCJ598gi+++ALdPT0oBBAGIBvAPgD+zq2GDRuGrVu3YujQoQDsa8E1cOBA6i6TAuGWgvSwaztTg9JCB0uysoqZ1r9q02NFoWdVOxIEAStXrsTrr7+u6zwgJyLnIlrJ7SpHO1ZZCpq5qB2qzw1uKUgOS0oWvej1FObF7mXClYIcPXClID0+BNAOIBJALICJACSt9gRBiAQwxe+ntw2VzmwWLgQArCINH+RQ1wEAStWm+4tf+P51Kd0vcZBsMG5UK0eQtIjLwkJK5S76lddsz0c1ModY62WFzvsLoKG9MchFno8kKtp9IJdrvtMEguQrARrqNCCeaZ4Pc9x7r9USYIHnoxodbdBoZno+xBDkZQr6Puzl4hoocelmconow3B92ZFSuYu/+52haV/q+cgxA8AHnv+XL1+Op556qo97YbsqaxYuXIgaQ1MgxwkWYGYrY1iKl9YChd54uBWF8ZjlWcVIS0EriYqKwpVXXomvvvpK1jou1PBuUukIOF8uMzOzz1lKHLpYqRTkC9vqMdOrF8dcaLkPlat33iYuYDeloOh3DjwfO42HKwUpIYpikyAIb+HCesvNkFEKArgSgHeb2DkA72pM90kAT5KEFQThZgBPeL4eF0WxSEuaROzYAQwZgs2bN6O2tlYx+L333ttvMDl+/Dheeukl4iRTUlKwevXqPr9t2LBBMnxpaSlx3P/4xz90ucxav349tmzZQlQWZjBu3Lig5zQ0NDTgmWeeQavfIbSxsbG47rrr+uxqfO+99/DJJ5+oSjM5ORk33XSTdqEV2LJli6SLGqn8+lNRUYEtW7YYIVpQSGTSwv79+2Xdo91zzz2aJ0kvv/wyvv/+e9kwAwcOxHfffacpfj1cfvnlKCoq6vNbQ0MDNm7cqCoe/3FBy/1mUFxcjKVLl1otBt5880189dVXqu9bsWIF8vLyDJBIPx988AH27dtHHJ7kOfLRRx9hz549iuHWr1/vO8w7kE2bNqHOIkvzpUuXoriY1AkBRwmpeUl0dDRuu+02w9I9f/481qxZgwOffRb0eh6A9wFUe77/8pe/xP3332/aS7VRi99r164FysoQHh7OzJmCcmXK3TIbC0vlxC0F9cPPFNQet5mwIANLhIWFYc6cOdi5c6fvN0EQHHuGol3gloL2RYulYKjCipKFJfehrJSJVqy2FDQSluqGpXKhCVcK0uXP8FMKCoLwJ1EU+62YCoIQA+BXfj/9lcDVqL3IzQWKitCSkYH6LoKsFRX1cyfX3dOD+uRk4iTdKSm98fghe39AWDma09NR39lJHD5YWk1paWRlYQJtWVlB858A4MrsbLz77ruoqqpCTk4OZs+ejfi0tD7h2o8eVVU3AOBOTVVV5mppTk9HfXNz0Gvt2dmKafe4XKrzpAepOtBLR1WVcrvXuMjbkpGBegUXhi0ZGai3QHnRlZfXrzy76+rU16lfHF3nzpnaJkhpycgwtC+R0pqZifqqKtX39RQUAAUFygEtoO3YMXV1TlAP7SdOkMVZVARIKAWb0tJQTy4VVTo9z3MOHaTaQmdMjCHl3NPTg02bNuG+++7DmTNnFMPHxMVh2zPPYMmSJUGvs2zBFQy327xXHSvPFDT7RTWULQXNwgkWpXaHnylIBxZkYI2pU6ciJSUFhw8fRnh4OEaNGoXCwkKrxXI03H2oc7HDvMloxo8fj08//dRqMYgx+vkWSpaCVisFQ8VS0GljhheuFKSIKIqvCYLwHnq9j0UCeFUQhOWiKH7hDSMIQiqAZwAM8vx0DkBQf1GCIBQB8DfLWeOxDLQNegZjtZ3OyAGDhvsYuwwi6enpuOqqq2TDsDjx0utT3GkLalZh1QQsWP9naRJBE1baDity0MSIPNn9bAun9qNQoLm5Gddddx1effVV4nu2bt2K4vnzJa+z2k6lMHP3OKmloFIcditjO2GnsrWTrFZh9PuIHqUgjb7MlYLOZujQob7zejnWY5RSkMb9pIRqXwt1S8G0tDRMmDDBNkpBQRBQXFys240otxTsxWlKQVZxaj65UpA+NwD4GEA2gCIAnwmCsBvAMQDpAC4G4HUW3wXgGlEUz5svpjnoWQxlqdPpVXSwtsjDwkuqmbCoFDQKI3eW260c7T7Bk4KlMtYCy/KzKhurcnHYpba2FsuWLcPevXKe7HuJj4/HnPHjgd27LXMVG0qWYUqbmFjceGV2eizWmxdWFnf1KLc4ZOjd3MqCpSALhJLFBoddQsFSMFSxw7zJCEpKSpCZmYnRo0eju7ub6B5W2mNUVBQGDx6Mb775RnMcoWQpKFdvSm1ZrdcUq/uGf15Zaa+A9eViFM7qKQwgimIFgHkAPvP8JACYA+AWAMtwQSFYC+ByURTfMllEU+GWghfuZ2kQsUIpaGX+7abM0oOR+WC5HI2wFGRpEsIxB6eMAzThZUKXuLi4oL9PmjSJWhrvvfcexo0bp6gQDA8Px6JFi3DPPfegpKSEKG67Ke/MbL+kloJKc2Pe55zRHjj2R6+loN6w3FKQw6GHHqVgT0+P5nS5+1DjCVVLwaVLl2LKlCmIjY21Zb6vuuoqjBgxwqe0GjlypKr1Y24pSEZKSork+ycNjHAfGux/jjFwpaABiKJ4BMBkADcB2A7gJIAOAKcB7AVwH4ARoii+ZpmQJmG0VZI/rCsF582bR0ka62Fx0qHXfahTdhMZaSlII30z6OjosFoEQ2GhjAHtcrAifzC4+9C+uFwuDBw40GoxHMW0adOC/j527FjdcXd3d+M3v/kN5syZg8rKStmwKSkpuOWWWzBlyhSEh4frTlsvZrR/qzfNkITlloLGYie5rZ7PORUW3YdypSCHYz1GWgqyYmFuJ7g1vDJalKEsKFm8skZERODqq6/G7bffDgC45JJLEBYWpjoetdcCee+99/Duu+8Sh2cNkvki6eZPkvj0hlcDC+3Vi1PHGe4+1CBEUewA8JTnozWOcvRaGtKS6UkAT9KKjwQSRYsdXKbQcB9aUFCA+Ph4NDY2UpJKnzxm329lfepph0bBUvsmhWXlqiiK+Oabb7Bjxw6cO3fO51vfidix7fhjd/mtwKoyGzZsGCIiIixJ26lMmjQJFRUVOHToEIDeur388suRlJSkK97Ozk5cf/31ePHFF2XDhYWFYcaMGZgxY4YmZaDdLLhYsl73wsdAZXgZcfehJJi90Y0rBe0rA4fD3Yc6Fy3KMaeNS3bOj797SzX5kFt3UrMmVVFRgYqKCuLwrEFSZhMnTgQAxMTEoJ5CfHrCK8GqpaCd+5gcXCnIMRTuPvTC/W63GzfddBNeeuklVFZWIiYmBi0tLZQkVC+PlfebDctuL2ljtSWEVeV46tQpvPvuuz73LmfOnMGOHTsskcVoWGmrrMhBE24p2JfLL7/cahEcR1hYGFasWIFz587h7NmzyM/PR3R0tK44Ozs7cd111+Gf//ynbLjU1FRce+21yMjI0JwWi+1UDrNcSnFLQXtAQ25u8WFvzFKmau3L/tDYaMdCO1Jj+cHhGIVVSkEa95PCQn+nBd/4og6nlAGteneKFzAS1JTZVVddhYdefZVafEbDlYLGw5WCHEPRo0RgqdPRUqKlpqbi1ltvRXt7OyIiIvCHP/wBzc3NNEQ0FRYXrPS6D2CpvenB6nxYlf6hQ4d0nfcQDJYmIU7C6jYqB6uyWSHXmDFjmHAr6UQEQUBqaipSU1N1x9Xc3IzVq1crKgTHjh2LO++8E1VVVbrTNAK7WwoGpqPHUpDFOZbZ2L09mIGT8qIVli0F1YS3w7uwHrhSkGMH5JQIdrEUdMqYoRb/urPzZky1aMmDk9Y3uFJQPUasixppKcgxHq4U5BhDZSUQG4v4s2eRWFcnG9TlcgHl5f1+d9fUKN7rT3xXV794ZO8PkqZk3AT5kCUgrUjP34Rz5+C2wFowuqZGVf4DiayuVl0e8W63rjSViK2tlZQp6tQpxbTD9NaxSkhk0kJEVZVkPgRB0JWmXBl7iTl92tRy9NJeV4dEGhH5lY/r3DlVeRk3bhwOHDhAQwpZYmtrDe1LpGita3dFBcDouY9Rp06pyxNBPZCOl8Lx44DEwln82bNoM7lfTc7MZKKdcaQ5evQo1q9fj2+PHkWh57cwANkA9qH3MGsAuO222/DHP/4R27dv160UtJuyxiqloNawNKyLnIDd2wMN7CSrndDjmsxs96FOsRT0dw3H4ViFUl9wglIwVGFhnLMaO5WB3s38JGGdphQ0o8y0xKclvBKsug91KnyGxjGGhQsBAEtJw//xj/1+ygRQqjbd3/ymz1fZ+8vKiKNdrlYOwrTW6Y3XIiZ5Pqq5/37KklzgCrmLBHWdCg3tjUHGej6SbNigOe5LPR8lLtGcAgP4tZUUqG8Ts2nKwjhzPR/VqBh7zeYiz4cYgrxM9Hz0xLWSWCCKMFxPnF4GAXhT4toMAF/Ex+Nvf/sbrrnmGgBsn09lRrxmLpg43VLQTotP/thJbiPaidNg2VKQlfFWTRwJCQm60wsGtxTkKMHCeGaU+1BRFLn7UA1oHW+dVAZqIM23k5QsoaQUlIN2m7daKegPS+3VqWMLVwpyjGHHDmDIELz22mv49ttvFYOXlpb2+622thabN28mTjIuLg633nprn982yChAgqUpxbZt23Ds2DHi8KRpPfbYY5a4D508eTKmTp2q+f79+/fj/fffV3VPeno6Vq40bml769atKJewapkxY4bvcF0pzp8/jyeffJK+YBJMnDgRM2bMoB7vl19+ibfeeivoNUEQcO+992qO+4033sDXX38tG2bMmDH44osvNKdhNf599dy5c3jqqaeI7x0/fjw+/fRTA6Tqy4gRI7BgwQLD01HinXfewWeffab6vpUrVyI9PZ2+QBRQO7aRPEc++eQTvPfee4rh7r77bsmFs82bN6O2tpZYLr1cc801yMnJMS09Djmtra343//9Xzy+cWPQ63kA3gfQGBuLXbt2YdKkC1t4nPoyIweLloJybnlDsY6CYTflsxHYSVY7weKZgixYCoaHh2PB/PnAr3+tO81AuFKQwwJWnSloB/ehkyZNwscff9zv99GjR+sVyRTM3EzFkpLCH6X8tLe3+7yVsQy3FFSP1ZaCtGHVUtDqcjEKrhTkGENuLlBUhLasLNSfOaMcvqio30890dGoT04mTrI7Lq5fPLL3B0lTitbMTNSfO0ccnjStxtRUNEZEaI9XI+3Z2aryH0hHVZWqugGAmPR0XWkq0Zyejvr6+qDXOnJyFNMW6+pU50kPbVlZhpRHx9mzkvlwuVy60mzNzET96dOyYdqzs1F/8qTmNCzHr3x64uJUtYn27GxT2lBrZqahfUmNHFry21NQAGRmGiCRflSPbQT10E4YpzBgACDxAtOcno76ri5yuXTSnZ8P5Oeblh6HjF27dmHdunX4/vvvFcNuevpplEzqa9PPiuWKmfGalYaaMwUjI+WXZbilINvtjBWLD7Ot1liEdUtBFs4UlIsjIiICixcvRnd3NwYNGmSY+3/uPpSjhBnjqpXuQ1l5bkgxduzYoErBsWNl/Q8xA7cUVM73P//5T6z40Y9MkkYeWnVEy6Umpy/cUjA4Tm1ToaM+51iC3h2WajBywGB5ccKKdO02ILK4I8ZpbYqV9Gmidkwxa0caK2XMihw0MSJPdiwnO8rsZNra2rBu3TpccskligrBvNxcAEBJSUm/ayzXq92fiWrSiZDZDNbZ2cl0PdkdO5WtnWS1E6F2pqAc8fHxKCkpwYQJE5CYSOVk7qBwS0GOHZDrs0atM7Eyzufk5GDp0qU+Bb7L5cIll1yC4uJiy2QyeuMLK2VPC6X81NTU4LvvvmNKyRIMPc9o0mtOw+pNYkaeKcgSThszvPBtWxxD0TMYs9TpWJKFBViceOndKeSUOjbTEsLs9FmHxcVnFrG7/EbB0m5HXkfs0NDQgOXLl+Odd95RDLtkyRL8/de/BsaNM0weuyvvzELuhVZOKdjR0cHkHCsQo1/YndYetEDTUpCjDadbCpoFVwpyWIBkTDVCKSh3r8vlQnd3t+a4A9HT38ePH48xY8bg9OnTSEtLk52rsAa3FCTL986dOzF//nwTpNEOdx8aHD1nlavF6j7EqvtQp+KsnsJhDqdYChr1UOGWguYQSsosIxULJPc7bQKmBqe0IVK05pflcmppaaEeJ8v55bBNTU0N5syZo6gQFAQBv/71r/Hyyy8jKSlJNpxe7KwUtHrTjBc596FcKWgsNMppyJAhFCRRhj87lLFywyHJvSxYCrKw4YgrBTlKsDAHkLtulPtQ2u/NesvR7XYjJyeHCYWg1dZPesln8BiGc3qOQ6KIGe5DrVyTMvuZR7uvcPehwWFxnKFB6K7eckyBWwqyCVcKagvDUSaUy5FbCtqf8+fPW5Y2Cwt3VqXH6c/HH3+MiRMn4sCBA7LhsrKy8Prrr+P+++9XnHPxejUPrZaC7e3ttqgnu1oK0oh32rRpFCTRj90XTO2AXvehtNPXAgtzC36mIMcOWGEpyMdmOmixFDS67EeMGGFo/IGQ5oclJUswaNWLVUrBkSNHYt26dUhPTzctTastBY10H8p6e3UCXCnIMRSnWAoaNWmw6yBnh13satM2e+JgxYKXGcrgUH65CbUzBbXCsvxdXV1Wi8AELNeR0+nu7saf/vQnzJw5ExUVFbJh161bh8OHD2PRokVEcXNLQTYsBZXOFDQ6fRqEslIwOzsbEydO7PNbZmYmxo4dqztuf/g4rIzZloJ2dB/KAtxSkMMCeiwFe3p6NKd7+PBhvPvuu0GvsWYpaFdYzPfw4cOxdOlSZGRkICoqyvD0WCwDo2HNUjAuLg4rVqxARkYGMxvItGC1UpBjLnzbFsdQzLQUtKNS0CqcaCmoVxnGYp60YHU+uPtQ56SjhBPdh44aNQpHjhyhGifL+eWwRU1NDa6++mq89957suEyMzPxzDPPYO7cuariD3WloJkonSEkhx3KIpQ2tQWL49JLL8WQIUNw/PhxpKWlYdiwYZKLvnrS0XOdExw91n5GLZRx96GcUMcst8xyGGUp+PHHHwMAEoNc40pBadTkxb8cjbYUVHPf+PHjMX78eIiiiCeeeAInT57UlCZNuViYv5nxXJJz1W8U/rKXlJTgrbfeQlNTk6npshifWli1FLS6XIyCKwU5xlBZCcTGIra2Fol1dcrhy8v7/RTW0EB2r4fIyMh+8cjeHyRNKWJOn1YlC2la8WfPQjDhQRFIZHW1qvwHu19tecRHRelKUwm5tkaSX1dbm746VknUqVOGlEd4ZaVkPtxut640SfpB3JkzppYjbcTvv/c98AWVeYk6dcqUvMecPm1oXyJFa35dJ04AjY0GSKSfgS4XUhsbyS0GCeohoqpK83PQS/zZs6b2K3dFBdDeblp6HOCjjz5CaWkpqk+dQqHntzAA2QD2Aejw/DZw4EDs3LkTxcXFqtNg+WXGCNlycnKox0kDI5Q93FLQ3HgFQcDgwYMxePBg6nEbER/LfV8PZlsKqr2XhU2YXCnIYYnJkyfjo48+6vd7SUmJ4WkrtXeXy2WIUlAOp47NZmNmOWppC7yezSctLQ3R0dFobW01Lc3Aeh48eLDiMRBGpKs3rNWWgt4+9vnnnyt6zeHohysFOcawcCEAYLbno0hZWb+fEgCUqk33f/6nz1fZ+4OkKcUlno9mJNK6VU+celCR92CM9nxU89Of6kpXjmVyFwnyGwUN7Y1Bhns+kvzhD5rjJuoHZWW4SHMKDODXVtKgsk3YPe8qmeX5qEbn+GMk0QDuUnMDQV7GeT564rqWWCBKMFxHTmUygD0S12YA+ADAuHHj8NprryE7O1tTGixbChrBhAkT+nw3032onjOE7FDGLO3cVYMdytaLE9oJi2i1PlF7Lw33oUZbCpoFVwpyvMyePRvHjx/HqVOnfL8tXboUsbGxhqetZ0w16pnHLQXp4J9vVsuA5U0sLEFz89bQoUPx2WefUYmPhMD+bNZc2epNaUa0vQ8++AC7du2iHq8enNLHAuFKQY4x7NgBDBmC9957D5988ols0KioKNx+++39fm9sbMTjjz9OnGRERATuuOOOPr9t2LBBMnxpaSlx3G+//Ta++OIL4vCkaT322GNobm7WHK9WZs6c2W+xTA1fffUV3nzzTVX35OTk4JprrtGcphLbtm3DsWPHgl675JJLMHLkSNn729vb8cgjjxghWlAmT56MqVOnUo/366+/xhtvvBH0Wnh4OO68807Nce/atQsHDx6UDbNs2TK88sormtOwmrvvvtu3eHHmzBk8/fTTxPfOmjWLuvuwYIwbNw6zZxNttzAUkvE9GGvWrEFiYjAnOuzw/PPPo6qqSjEcyXPks88+wzvvvKMrLlJ5aLFy5UpTD0gPVQ4ePIgf/vCH+Pbo0aDX8wC8D6AawOrVq/Hoo48iOjpac3o0XmaMchEtCAJA8eV56dKlGD9+PBNW1WrhloL2fPE2e1HGjmVkN5xwpiALloJuN19y4vQSHR2NtWvX4vjx4zh//jwGDBiA1NRUq8UCYJz7UDm4UlAa2tZPNO7RgxnpCYKg2FZZ39RFs5xycnJMVQqq2SBoFXY4VkkURXz44YeWyhBK8Bkaxxhyc4GiIrQfPYr65GTZoOmDBgFFRf0vNDYq3utPREREv3hk7w+WpgRtWVmo1+MDXCKt+uRkNEdEaI9XI+3Z2aryH0jn+fOq6gYAEtLSdKWpRHN6OurPnQt6rdPTHuUQOjpU50kPbVlZhpRHZ1OTZD6C9RE1tGVlob6yUjZMT0GBqeVIG7GwEPAsXvTExKjKS0dOjil5N6rtqIVkfA9GT0EBwHgbac/ORj2JuxGCeug4fZqsnGTiakpLI5OHEmJhIZCRYVp6oUZDQwP+53/+B7/73e+IXNX+569+hRvvv58JV3RGWXzQVArGxsb2KgSDpWEQVi8E2EUpeOmllxKFY919qN0I1XwHw6wzBVmxFNSSLm24pSDHn/DwcAwaNMj0dEk2WthdKRiqcEvBC2mwqIgKxKnPnsB89fT0WJKu2fHRTr+iogItLS1U4+RIw5WCHENRmuiEhYVhypQpQa+pHVyMfAA6bcJmxcKilRM0krSdUsesToTtgp7Jm1llb/c6toP8NMcDO7pstEMd2ZV9+/ZhxYoVOHHihGLYUSNHAl99hVWrVgGMWIzYQVnDwvOcuw/tT2pqKkaMGGGANGzALQXNh2V3bDSsXJxiKciVghw7YIX7UNqE6nNBbb4HDBhgkCTSmKUUVIL1tkyznKx+f2bRfagRZUI7zvb2dqrxAaE7NpJg/Vszx9EoLcysXr0axcXFQa+xpBQ0ahCx6qHMgrUBbfS+9Fo9aWA9XtK4WWwbavDvk2r7p93zrhYn59fJeeNYQ0dHB/7zP/8TM2fOJFII3nrrrdiyZQtVGWgtMBuhdLPzIoBa7PBCrgTJ83HSpEmYNGkSAOCiiy7CTTfdRHxulB3nSLSxk6x2ItQsBVloR9x9KIcF9KwVGLVmo2acII0vFFFrKThv3jwjxQkKK0rBUMLs8gh8ZnNLQW0YoRQsLCykHqdT4DM0jqHIvcwkJSWhoKBA8jpLDzWnKQX14kRLQZbamx6M3BHslDKSQ0+fZME6xQ7YoR1xS0H268hOVFdX4/LLL8fHH3+sGDYzMxOPP/44LrvsMlPPw1NT52FhYaa96GpBqv+y0q5ZkUMPJM/KuLg4TBs+HAAwffp0ID6eOH47lhHL47Qdy5MEsy0FjVIKkqZPOw5uKcgJJVhUCgK9c5bu7m4qcTl1rFdCTb6vvPJK5OXlGShNcEK1boJh1nPJ6nkZi2u9dlgX3bFjB/U4Fy9ejOb9+3Hs2DHN9WJ1uRgFX8HkGIrcSwBttzisug+VU3xaBQsvqWZih4efk4iMjLRaBM3oGUdCrQ1pza8dyskOMhpJqOefJkeOHMHUqVOJFIIrVqzAwYMHexWCBkDrJZxbCiqnqeQ+dPDgwUGvZWVlUUnfaEielSyOIyzKJIWdZA0VnGYpyJWCHE5fpPqEURuhaFsKOgmtG1+U7ktNTdUsE+s4wX0oTUJFKeg0S0EjiIyMxMqVK3Hfffdh3LhxVovDFFwpyDEUuZcZ2kpBI9Ejy7BhwySvhZL7ULN386pN2+pJA+vxksYtCAKys7MNSX/OnDnErse0YgelYChN5q2CNatPlp6HHHJefvllTJ48GcePH5cNl5KSgs2bN+P5559HWlqaYfKEulKQpX40Y8aMoL9PmDBBU3xm541kgVSPTHacI9HGTu9JVmH0+4jeNhxqmzCl4O5DOUYSFRVFFI5kDiQVxi7H1DhlzFCLmnmpVWXE3YeSYef+YAf3oUasi9qp3UVFRSEiIsJqMZiCrVUvjuMwUynI2mQtLCwMkydPxpQpUyTD2HVx304DP0Aur93yFQwWdgTPnTs36O+5ubma45wyZQpmz55t+MKCHc4UZGXccLKlIGvuQ83GjjKzRE9PDx544AFcfvnlaGhokA27atUqHDt2DDfccIOlm2fUYITVh50XAYKlqWQpmJ+fj8mTJ/f5fciQIbbZvUryHGJtcwVg/cYpK+PjqEeP+1A14bmlIIejjNT75aWXXkp0P6vuQ+0+/2EBNZaCoa4UZGEdwaznktWb/kNFKWg3nLyGpQW+bYtjDJWVQGwsok6dQmJdXdAgCYIge16O0NEheW/Q8EHik71fxVk9MadPq5JlypQpmDBhAsLDwwEZC4HEujpDDlJVIrK6WtdZRRFVVarKA0CvhZeB5yPJ1VFEVRUQE6MYR9L586Y9vPXWgRTuigrJcoiMjNSVJkk/CK+sRF5eHoZGRuLUqVO+38PCwjDtoouw8+BBzWmjvBwJ584BCovsehC//x6IiwMAhNXWqmrnkdXVqvuFFqJrakw9a0wKufFdDteJE4DBFp96iSWte4J6IB4vZeKKO3PGlLblJezkSUP7mZM5deoUfvrTn+Kd3btRCCAMQDaAfQA6/MKlpqbit7/9LW655RbTXjJYthSkCQsLHkpKQUEQsHDhQowaNQqVlZXIzMxEQUGB5rJ1mvtQp754q4HmwqZTy5N1S0G9YblSkMO5wJgxY7Bv3z40NTX5fktPT5d0x60Fsy0FBUFgfk5lFU57xrGiFAwlrFYKsvA+ogUnWwoC9pPXaLhSkGMMCxcCAMZ6PpI88IDkpQgApWrT3bChz1fZ+8vKiKOd4vkQQxj3ejVx0kRF3oMxCBrqBgB+/GNd6cqxRO4iYX7voSIJITrrQIpiKNTN//yP5rhnez6yePJ1XbBr//d/GKE59V7W6rxfEb96SYfKdl5Wpjt/dmKq56Mag9o+TRZ5PooQ5GW056MnrqtI7qeJDeqIVbIAPBnk9xkAPvD8P2HCBGzbts0wV8tS0FocZt1SUOolnJWXQH83ZXl5ecjLy7NYIvXYVSnILQU5elC7SK3XUpBGG2ChHXGlIIcGSUlJWLNmDfbu3YtTp04hLy8P06dPN8V9qJGbhu1sGcUK3FLQvDSMxs79wUhLQVrHS4S6+1CAWwoGwpWCHGPYsQMYMgRfffUV3nzzzaBB0tLScOONN0pG0dXVhYceekhVsqWlpX2+bwhQEsqFleOjjz7Cnj17iMMvWLAAI0YoqwcefvhhdHZ2EsdLi3nz5mHMmDGa7z927Bi2bdum6p78/HxcdZVxS9uvvfYavv3226DXli1bhoEDByrGIddeaDN16tR+rsNo8P333+Pll18Oei0qKgq333675rh3796NAwcOyIa56qqrkJ+fH/RaY2MjHn/8cU1pT548GVOnTsXGjRsV3fHpYe3atUhISAAAnD59Gv/4xz+I7120aBG2b99ulGg+SkpKMGfOHMPTUWLv3r3Yu3ev6vvWrVuHGALLXSvZuXMnDh06pBiO5Dly8OBB7Nq1S1dcL774Ik6ePCl7f0JCArW+4d8POMrU19fj7rvvxrvvvdfvWh6A9wFUe75feumleO655xDnsUg2E5YtBWm+aJll8e+P1S+KTrMUNAoWZZKC1YVNljDbUtBspaDRFkRmtSF+piCHFikpKcTuQrVghaWgnZUgRmKUpaDeMsrJyVE8K9yIdGmlwYL1GgseUowg8JlNs6xHjhyJV199td/vJGucauFKwdCCz9A4xpCbCxQVoau+HvXJyUGDRKWlAUVFklEI3d2S90oSEJ/s/TJpB9JZUaFKlq68PKL465OTLVEKdnrqRyvdHR2q6yY1I0NXmkq0ZGSg/syZoNe68/OJ68Ms2rOzDSmPrs5OyXx0REfrSrP9m29Qr+AuUa6sxYYGzWXckZMDFBWhKS0N9QbuOO4pKACSkgAAXRERqvu9GW2oxeC+REpbebm2/BYVEbnztZL27GzUV1crBySoh45z58jKSSaulowM1Pu5Swpk6NChuPbaa3HkyBE8//zzymkpIBYWAomJuuMJBU6dOoWFy5fjiy++kA3XDeDnP/85HnjgAcusJmi9BLGuFGTBUpCFRRcjMfpMQTu+sLNsKag2rpKSEuTn5+Pdp56iJoMdsVopaLSlIHcfygkl9FgKGvlM5+5D9aPGUlAvc+bMwaZNm/r9Pm3aNNn77DivsQI7K8mNtBQMDw/HvHnz8LHfe35ERAQTG8XtBu+LfeFKQY6hyL0E2GkHrFG7JaxaNNJbtizVjRcWXnpZwMhysPJ+s16Y9PRJs9oZK4vNTu5Xdnsh8S4+DhgwgIrFoJPrlibHjh3DggUL8N133ymG/etf/oIF69aZIJU0tOrVru5DzcRsGULNUlAQBE1l7KSxzci8lJSU4Pz584bFTwuj69NqpSA/U5DDoYcet3ncfSjbmGkpmJ+fj+LiYhw7dsz3W1xcHCZMmKArXhqEav1LYbVSkPa7wLRp05Db2QmUlWHKlCkonj8f6enpVNMAnG8pqBWn5pNvS+EYitzLjJOVgk7HaHc9tAml+rM6r0YtPijt4KSF/+RN7USO7/Qkw+o2SgJrdUn6vIyKisJNN91khkghz+7duzF9+nRFheDoUaMA9LoVtxqW3YfShLsPNR6rzxScPn265riNgmVLQY75GG3lZ2YceuHuQzmso9RPuPtQ89Gq6DN6jTEsLAzXXXcdFixYgGHDhmHGjBlYu3YtUlJSDE2XBLu4D5XDzv0h8P3IiPeRwsJCAMCUKVM0KQT1bI6gFd5q7Cav0bD9Vs+xPaGqFOSWgmzBorxGyWT0znwr7zcDPZM3bilo7H1mYgcZ/fGXNyUlBddffz21+Dj9efDBBzFv3jzU1NRIhomMjMRvf/tbvPTSSyZKZg52tRTk7kPpYbVSMBTGKCXlO8vzPbMwepMitxSkA7cU5LCAnvbO3YeyjdnPLLfbjalTp+Laa6/F/PnzkUxwTAQrSkEWMOu55DRLQbOwSzvSipPXsLTAt21xDEWPUpAl1E7WuFKQfpp64rdTWzMSM+rd6Hpg2VIw1JSCTobmC7oV7V6v/HzMDE53dzf+/d//HWVlZbLhBg0ahG3btmHYsGGAwjmsZsKypSDNNmeFpaDVsGgpaORCJ4sv9LTjtnKhmLb1il3RqxSknT5tuFKQE0qQzIHMdh/KLQXpYKaloFZYUQqysI5glvW41UpBFt9HuKWg/eQ1Gq4U5BiKU5SCRsnKwkNZC+3t7VaLoAo7tTW9hFJejUBPnwy1nZ4sLsrSwm51GVimfAGOPs3NzVi5ciVefvll2XAlJSXYvn07MjMzTZKMHFpKQW4pqBy3Xed3pFhtKah1jLbD88eLlZaCnF7MUgpaZSloFtx9KMcuSPUXI5/pXCkYHLPHW6NhRSnIAhEREZLX7NwfnPIuYJd2pBWn508tfIbGMRQzF1aHDBliWNxO2y2hV77IyEjT01RC7qHLYn1w96Ha7uWWgvadYHphsT8GQiLjiBEjqMWlNw7aSkE71JGZnD17FosWLcL+/ftlw82ZMwdbt25FYmKiSZKpg2VLQZrYfYzUAot91kilIIuYbSlo5CKoHcufFBbzJiWT0fMHbinICSX0WAraxX0oi+ObGaixFLQKrhS8QHh4uCnpmF0eZpwpqBduKejsje1aYPutnmN7zHwJmD59umFxc/ehfcnKyqIkiTk4dQBnERYWH/Sgp0/aIX80cXJ+Scb8CRMmmCAJGVwpaByNjY1YvHixokLwtttuwxtvvMGsQhCgV6+suw+1Ym7F+0x/WNykZKd6slr5bqeyMgqnWwpypSCH0xe7uw91EtxS0BhY2DjHLQXZxulKQU5fuKUgxxgqK4HYWIRXVSGxri5okNjISMWzdqTuDWTkyJHI7+7uF5/s/SrO+YmsriaWBQDCKyuB6GjFcGripEl4ZSWQkKD5/hiolz3uzBlDz1aKrqmRlMldUQEQTObNrI/I6mpDysNdUSGZj5j2dl1pypWxl7CTJ4Hu7qDXhPZ2zWXsLa/4s2fRaWA9uU6cANraev+vrFQlb4TMeEeTqFOnmDinTO246EU4fhwwaYegVmJOn5bNW35+Pga6XET1EE7ajmTiijtzRjaOmNOn+9wfUVurqy0Kx48TPcOcTnNzM9bdeitO79uHQgBhALIB7APQ4Qnjdrvxl7/8BWvXrrVMTlJCxX2o1OKdmS+tZi8EsPhCrkehEYreFAKx0n0oi+0pGFrk1LN4bPYitRmeBsyAKwU5LMCqpaCdlSCsYAeloBnYJW9OtRS0g1KQWwqGxsZCNXClIMcYFi4EAOQAKJUL9x//IRuN7L0EyN5fVkYczyjPhxjCuEvVxEkTFXmXolTLTffeqztdKS6Tu8hifVCog2DkQSEf/+//aY57qucji0y+IqGjjD3xrtZ6v8p0ACAXKuUtK7OuT1vARZ6Pagxq+zSZ4vnI8qMfEcU1wvNRRKZclhGldIF06BzPbFBHZhAL4Jkgv88A8AGAhIQEvPjii7j44ovNFUwjLLsPtbuloNWw+KLKokx2wsry49YrwbGjpaCWdGnDzxTksICe9m6kG0CrrcKdgH8ZsvrsYsV9KAtzZKdaCtrBfSgJrPYhWjg9f2rhMzSOMezYAQwZgtOnT+Mf//hH0CAZGRm44YYbZKPZsGGD5LXS0lJFMfTe7+XQoUPYuXMncfilS5eiuLhYMZycfEayePFiDB06VFccR44cwfbt24nDDxw4EMuWqV3aJmfbtm04duxY0GvXXXcdkctTM+tjxowZmDhxIvV4Kysr8cILLwS9Fh0djdtuu01z3Hv37sXevXtlw1x77bXIzs4Oeq2zsxMPP/ywprS95fX3v/8dZ8+e1RQHCf7yV1RUYMuWLcT3rlixQlV4rYwYMQILFiwwPB0l9u/fj/fff1/1fXfddRfzC0Qff/wxPvzwQ8nrK1asQF5eHlFchw8fxo4dOxTDyT2T5MY3oH+bqKurw6ZNm4jkC8b69es1nR3rFKqrq7Fq1SocDSjzPADvA6gGUFBQgNdeew2jRqnaMmQpLFsK0iQULQVZxMgzBVnc5Wv1jnRaYe2E2ZaCZqdjtKWgWeMUV3pwWMcqS0HaY7OTxnruPpTNNGggZyloZ6WgUywFWYjTSOwmr9GwvSrHsS+5uUBREcToaNQnJwcNEpWSAhQVyUYjdS8AxXtp3O+lq6FBPq7A8Hl5+uUzkE5P/eihu7lZlfwtGRm605SjOT0d9efOBb3WU1AA5OQoxmFmfbRnZxtSHj1hYZL56IyJ0ZVm+/HjimXUnZ8PSClLOjs1l7G3vJrS0lBv4K6rrrw8ID8fANAtCKrk7SkoMKUNNaenG9qXSGmvrNSUX2HAAIBxpUJHRYVs3rrz84HCQqK4uhobycpJpk7lxjeg//gqJCXpaotiYSEQFaX5fjuzf/9+XHnttTh58qRkmOzcXDz7wQfEimFWCJUzBa3A6oUAFsvPLIUKC/E6DV5OvZjlPlQKo88U5HBCCT3uQ1taWgyRSS5NDjn+ZWjUpiK9cKXgBULFfWhCQgLOnz9vqgw0cLr7UE5f+LYtjqHIvcywuHNCCqcNjKy8qJoF6/VBE6t3wdOyRLEK/3FJ7Rhlh/zRxMn5tfIsJy0EyqPXkou1/JnFE088gRkzZsgqBAHgqaeesp1CEOBKQY65GDlPZLG9WL34ZLf4aeCUMwVZj4PDCXWMtBTkfVQ/vAx74e5DjYtLS3pz584NGm7ECKKDRQzBiDMF7YbT86cW+6zqc2yJ3MIkCw8kUtQubLA+0FihFDS6TOTaE4v1YcUueKv7nJ70lXZw0kKPUtAsRbnV9agXFvtjIKwpBdWmp7ct2qGOaNLR0YE77rgDa9euRXt7u2S4XI/F+cCBA80SjSqhcqagFWlY3WesTj8Y3FJQHr1u/NXgtM2NVmG2OzuuMOBw6MHqYridNlqzCrcUNC8NGjjVUjCwL+fn5/c7VsftdjN/9ASfMwbHqfnk7kM5hiI3ybHTwatOHQD0wFqZ2E0paEf0vky53W7Ex8ejsbGRplhUoaG4DBW05tcO5WS3XYq0LQVDiaqqKqxYsQJ79uyRDTdixAhs+dvfgGnTTJLMXKw+j8UO44IauPtQNmUyErX51bso5GQlNylmWwpakY4gCHxuyuFQQI/7UCPhfVQ/Vs9hWU43EBY2F7vd0moIu72Dy6UXFhaGVatW4e2338bx48eRkpKCKVOmQPlQI+MwYnMEK22bFLvJazRcKcgxFO4+lE2caCnIatpmI5dXvbuy9JajIAgYOXIk9u7da5kMSvhvVmDVfaidxk67YndLQe4+lIz3338fV199NU6dOiUbbtKkSXj99deRyvCGBhJCpV6lMDP/fJw2VqFi97Y8Z84cx+0UdyJmuQ+VC+tyuXRtpOX1yOEoY5VSkFsDS6N1DGW1PLml4AWcaikYLL3o6GhcdtllfX8sLzdHII04be2bFk7NJ7dV5xiKU5SCdlKAkWCFUtBouKVgL3J5TUpKsjR9ALjkkkswfvx41ZPBmJgYPWIRo2dcYq1PGI2TLQVpKgXtaClohzrSy8MPP4y5c+cqKgRvvPFG/Otf/0JqaqpJkhkHLfeh3FKQPVgsPxafiSxY1w0YMACzZ882LT21YbWEtwqj5WRBKUhjQx6Hw2G3L7D4rLQbVs9hWUnXLhuq5CwFacKCUtCOOCUfUjg9f2rhTyCOoThFKcgHjv6wpii1m1LQCpn0KgVpKZOXLl2Kn/zkJ8T3hIWF+Q5kNrMdcUvB0IW1lyq18rA45rGCKIr4+c9/jrvuugtdXV2S4dxuNx588EE89dRTpm1KMBojF571YnX6egmUn4/Txioz7NxezNohzwmOWS5BacXrlDOCueKDYzUsug/lloJ0UGMpGMpKQYCN+amcUpCmfKy9r9sFp24k4wSHuw/lGENlJRAbi7D2diTW1QUNEt/drWg6LXUvACKza733ewmvrJSPK0h4EFhqqImTJuGVlUBUlO441Mgfc/q0oabysbW1kvKEnTwJNDUpxmFmfURWVxtSHm6ZcshsbdWVZtSpU4plFHbyJNDerhhXGMjLu6SkBBFVVQCAuDNnDK2nsJMnAc9E1V1RoSqtsJMnTWlD0TU1TLidiKyuVp1fQRCYkF0JpbburqgAOjqI4iIeK2XKJeb0adk4AsdXAUBKQwO6u7uJZAxEOH6c6BlmN06fPo2f/exneHPXLhSidxzKBrAPgH9tZmRk4IUXXsCsWbMskdMoaL202dVSkL+0mosgCAADi0/+sGApSEs5YraVHIuwXAYsj7dWoNcNKodjBlb0N6f0cdqoKRc7bDrg89wLyG2OsrNS0A7tkASuFAyOU/PJlYIcY1i4EAAQCaBULtyvfy0bjey9ZWWKYui938sApbg0xq0qTpqoyLsUudAg/1136U5XiivkLrJYHxTqIBjpMC4fEzwfWVTkq1SDDDdouEcVfvIXQn2/VxVeDwb2JVLGeT6q2bCBriAGMMLzkURFOx/i+SgiE+dlklekuVvDPT4MGp+sJgPAY0F+nwHgA8//U6ZMwZYtW5Cbm2ueYCbhVMsrFrDaUlDO6tUqWLQUZKGd22HRmQVLAhYww31obm6u7EIitxTkcOjAoqUgwPsGDexgKWgGTrAUpLl5hFsKmoPd8m03eY2GKwU5xrBjBzBkCLq7u/GnP/0paJDY2Fj84Ac/kI1mg8zicWlpqaIYeu/3cuLECfzzn/8kDn/VVVchPz9fMZycfEaybNkyDBw4UFccp06dwrPPPkscfsiQIbj00kt1pSnHiy++iJMnTwa9tmbNGiQmJirGYWZ9zJo1C+PHj6ceb0VFBbZs2RL02pVXXomCggLNcX/66ad49913ZcOsXLkS6enpRPFJlXdCQgLWrl0b9NozzzyDmpoaovi1sHTpUhQXFwMAysvLsXXrVuJ7b7rpJmzatMkgyS4waNAgLFmyxPB0lPjss8/wzjvvqLrH5XLhnnvuMUYgihw5cgTbt2+XvK6mnX/77bd47bXXFMPJPZNef/11fPPNN5LXx44di7lz5/b57ZFHHkE7gdVuMO69917HTJhra2tx33334V9B2moegPcBVHu+33bbbSgrK0NkZKSJEppHqJ8pqCaNzMxMQ581tGFRKehyuQCN1sqA/V7anWQpyMKiIQl2P1NQEATMmDFDdzxG3k8LvWcdczhmwN2H2hOr57CspGuXtsTdh7KNU/JBG6eWC1cKcowhNxcoKoJLFFGfnBw0SFdsLFBUJBuN1L0AFO+lcb+Xbpl8BA2fn69fPgMhlU8OMTJSlfytmZm605SjOT0d9RIuQsXCQoDgPD0z66MjJ8eQ8kjJyED9W28FvZY5eTKgY7G7vbpasYx6CgqAzEyi+KTiciUnS5ZNU1oa6gndNmrBv146OztVtQmxsNCUNtScnm5oXyKl4/Rp1fkNCwtjQnYlupubZfOmpp13trSQlZNMubRmZqK+tlbyeltWVr/7m9PT0dzcTCRjUFkcMPHdsmULbr/9dpw9e1Y2nCgI+Mujj2LdunUmSWYNoa4UJCUmJgZXXnklHnnkEc1xmK1U0eoq2EhYqlMvLMhkF6sQFsqKNWiPk6tWrcKAAQNk3YdzS0EOhw6sektgpY+yhtXzUtqwICMLMgDOdR/KSvnqhbsPDS347IxjKHIDhF12oQLqX2RYHxhpyMfay51ce2K9PmgSExODwsLCfr+PGjVKt/ULC+VotAx6xiUWyodDB5quZ6xqF3p25du9LdfV1eHGG2/E1VdfragQBIAHH3zQ8QpBgO16pSnblClTdN1/zz33ICMjQ9U9VpetE5WCdnMfShq3Hc6as9M7mlrMen6T3DtgwABDZVC638x6Zu29kRN6WP2cDoYgCLxvUMAO72WsWAqy8HxPSUmRvEbqPnTo0KGKYfiZgtpwulLQbvIajTNaLceWsPBAIsXpA6MWWMsjVwpeYMWKFX3c1w4aNIiK69ZQKEf/dqR2jDKrfFgZO53cHpQm9aztPAx23SkvJmr59NNPMW7cOGzevFkx7NAhvac9suCO1wxYVkbQjHPMmDG60rCj+1gW3Yc6+RmhByvch/IzBS+gZsOMGWcKKuGUZzl3H8phGSvPFOTPyuAYNd6GulLQagYPHiw7zyadf5Acw8Pa+7pdcEo+aOPUcuHuQzmWQfMQWaNx2gBghaWglRZeLL5QG1kecXFxWLt2Lerr6xEREYHo6GjD0grE7PNdaGMHS0G1Fiwc9djNUjBYGloX4Oz8vNu0aRNuv/12tLW1yYaLjY3Fr371K9y1ZAlAsNM0FLBzvQeSnZ1teppWlx+LSkEj3R5yS0FjEUXRFnJqIdSUgqzUI4vvYpzQguSZwpWC9sQOZciVgkBWVhaWLVsmG4ZkLWb27NkY4tnYKQdXCmqDG8SEFlwpyLEMO+1CZU0BxgJ2erkLhfoIRmJiItX4QqEcWbIUTEpKwvnz5/v9ftFFF1FNRytObg92Gt+kCKVd+R0dHfi3f/s3PPzww4phS0pKsHnzZowYMUL2HCcnQkvJwrKlYElJieFpsAiLSkEj3R6yFKdVMnD3odrKQM/z3YpxksV+pAUnzKs49oakL1ihROB9Qz9Wz2FZSZdkU6tVz/fRo0fjiiuuUJRRSb4hQ4Zgzpw5RGly96HacLpSkMWNhVbijFbLsSV2eeEEnDcwhpqlIGnaZlrU2REWXqZCyVJwxowZiIqK6vPb5MmTER8fTzUdTn9C2X0o68+vQPbv34+pU6cqKgRdLhfuv/9+fPTRR70KwRCE5bplWTY74MQzBa2KWyukMlmxaMRieVmF202+J1pPuXFLwb44ZbGU42y4pSA7OM19qBmwmrfY2FjMnTuXSD4lb3IxMTHE6bL2vm4XnLb2zZGHWwpyLIO7D7UOK5SCRkNDKTh79mxs376dlkgcG+I/LlltKZidnY1bbrkFX3zxBRobGzFw4ECMGjWKahp6cNq46I8T3Ic6fRecKIr4r//6LzzwwAOK84nBgwfjqaeewpQpU0ySjk1CwVLQLu2XNnIWklbhFGUGbezQ1u3iPtRoS0E97kNpYYd6ICGUvBdw2IRF96GCIDimj1uJHcqQBUtBwFzDjJycHGRmZmLatGlITk4mukdJPqvfV1hKzyickg8pnJ4/tXClIMcy7GQpyJpVHAvYaQcJadrjxo37/9m77zgrqrt/4J977/a+y8JWtlCWXpcOSlFZRbESuwImFozoxvLLk5gniab4GI2wamJJomhEo2JPVLC3iKJiAWwgC+yy9C1sb/P7Y+8ud3dvmZk75czM5/167Uu8d8r3zDlT7nznnME333yDcp8h5SZNmoSvv/465Duq9IpJJCLE7KSegi6XC+np6ViwYIGmy6XQrNZT0B879xSUJAmlpaW4++67Q057wQUX4G9/+xvi4+MNiExsIicFjWDXnmspKSnIyMgwbf2B6D3sYXR0NFpaWjRdZjhE7imoVEJCgm2PmeG8UzCchKJadkmuW6Hdk3OZlRQ0a512Y8axWSlR6rmurs6Q9dx8882KeuZ3Y1LQfFa6z2sku5aTSUHSR2Ul4P0xmVxd7XcSl8sV8n0+geYFIOtdQOHO381z6FDwZfURUVEBtLWFnE7JMrUUWVkJhHlQ8zQ2Koo/7sABXd/fFH/wYOC2tmsXEB0dchlRAC6cNQu7c3Nx6NAhZGVlYfDgwdj73/8iWkVSMDs7G3v37vW/rr17Lfc+q+iqqpB17tmzB2hokLW8QMtK7OwMuG0SFO6LSkVWVgLeJ9kiKioUrcuzZ4+msUVUVAAKb3gaSU576Mvj8Vii3UdWVgYtm2fPHqC2VpNl9QiyXeIOHAi6jNj9+/vNn3j4sKr2GBkZKXQdSZKEsrIyvHD33cj3fuYBkAVgE4DW7s88Htx555247rrrbHsRr5RWSUE9WKH3lEi6y5meno7zzz9fyHLrnYCbNWsW3nrrLd3WITq9tm96enrPE/0DBgxQPH9RURG+++47rcPyS802CKfHmhk3I/VOrhuFSUEymyj7Ql+ixmU2uw0fKkJPwY6ODmzatEn3OAoKClQlBIHQo8mJXNdOPc/xGGZtTAqSPkpKev5ZGmy61auDLibovGVlIcMId/5u6aGWpXLZipapJQVlDyQOJsbvx/nBvlRQ3kgAQ71/3a5SF1JwGtSB0cZ5/4JSUK7SYF/eeqvfj38ke+kq+cQ/DMr3e0XTK4hFRGO9f4rddZfGkWgvB9qdP4aEWpaMZS70/ilxnsLpe7nzznDm1pULXduz1M93cwB8AGDQoEF46qmnMHfuXAMjE59WP9qUvM9DDqN+TIrQS0wrV111FRoHDZI9HJPWIiMj0Rbi4Te9kxmzZ89WnBQU4caFyCOlRERE4JRTTun5/4ULFwK//rXs+UePHq358UFr4fQUNONmpF16CnL4UDKbqMOHOjWRoCVRjnPBiJAUNEo41wGhrpFE7hUqyvYPl13KEYjdy6cUk4Kkj/XrgaIiAMDqIIm/0tLSoIsJZ14t5u925MgRPProo7Knv/DCCzFo0KCQ0wWLT09LlixBbm5uWMtoaWnBfffdJ3v60aNHd91c0Mnjjz+OAwcO+P3upz/9aVfvF5UefPBBNDY2Kppn7NixyMzMxOuvv+73+/nz52PChAmqYzLDli1bApan29KlS2XfpAzU/pOTk7F8+XK/361btw4VFRWylq/GggULMH78eADA999/j//85z+y5psxYwYmT56Mv/71r5rFctFFF2HgwIGaLU9rW7duxWuvvaZoHo/Hg5UrV+oUkXb27duHf/3rXwG/v+yyy5CUlCRrWT/88ANefPHFkNMFOydt2LAB27ZtC/j91KlTMXv27F6fqd1XoqOjsWLFCsXz6e3jjz/G1VdfjUOHD/f7LhfA+wCqAJxxxhn4y1/+gpycHKNDFJ5WPQXHjx+PDRs2CJnccMoPvejoaESblBAEgEWLFuGFF14wbf0ulwsejwcnnnhiyOuSvvPpGZMcWr1TXcuyDBs2DIWFhRgxYkSv3oHdw9IuWrQIG/ftw86dOwMuY+7cuTjuuOOwfv16zeLSg9WGD2VPQSJ702ofHTNmjCbLsSKRe48ZuV5RjvcxMTGq5+Xwoebj8KHOwqQg6SMnBygoAADUBrtp4Z0mkHDm1WL+HklJwZfVR2deHpCZGXI6JcvUUmdeHpCXF9Yy3G1tiuJvyshQts0Vqk9PR22Ap9ZdhYWAyiEMAODogAGolzH8qK/mzEy05eQE3Eat2dm6bg89tB45ErLOO/PyAJnDTQValjs1NeC2qU9PR63M4UnVaMnK6ll3W2Oj7DY+/bzz0NHRoek+LeXnAzIeLjBLa3W14vJ6PB5LtPvOqKjQ5w+ZScEOucfKINulKSMDtVVVAb/3bbfdGgYOVLWvxMbGCldHDz/8MK688sqQPZNW3303Flsg6WwWLXsKjh8/Hl988YUmy+OPSesZOXIkPvzww4APYwHGJDMmTJigKCkoAjOS6aG25axZs1BYWBjw+6KiItSmpgZMCp5//vkYMWKErHVpycj37Spdnyg9BUVhl3KQdYnYU1CrdUZGRmL69OkaRGNNVriOZFJQHisnBe1ynmNS0D+7ltMerZZIZ3Y7AGhRHtFOFsEuIMx6ytYuFwbd5GwHvetZ7+X7PsEv98bd3Llz4XK5NI9N9OOO6PGFI9S+K9qTh/6+VxujSPUqSRJ+9atf4bLLLguaEOyOePHixcYEZlHB6lZpouL000/HvHnzenoSBVNcXKw6LqVEfm+incTExGDp0qVITEzUbR1y6ishIQHDhg3TdJlqyV22iD1s5Vyvyt23RL/2VfKeI/YU1A6HDyWzifA71t/61BwzM70PnxcWFmLKlClYtmwZBg8erHV4liFyoshIopTNqUlBUbZ/uES7z6s1q8WrN7Gv2onCdNppp/n9fObMmYqWY/cDoxqi/egXLSmoR5LIbHYrjz/h3KxTsk+UlJTg+OOPDzqNE7a3qLRMCppVj2qP0SId2++44w784Q9/CDpNdHQ07hT4HYgi0bItut1uzJ07FxdccEHIaU8++eSg38uNS+Rjosix6SUuLi7oezuNSsD96Ec/kj0cuwj1pNXwoVrS8mZ5OMP1K6V3T0G+U1A7Il1bEPVltZ6C3Un2M844A6eeeiqys7O1DstSRDnOBeOknoLRCkfY8hXqGkmUMvojcmxK2KUcJA+vzsjWioqKuoZC8+HxeBSPuW63pKAdewqKtu5QSUHR24iojOxxKjdBqOaHZHR0NObPn49p06aFXC4ZT03PPD05safgmjVr8POf/zzoNBMmTMCnn36Kc845x6CoSKlFixYhIiJCVo/CULTszUTa0LPXm9z6ioqKwplnnhn0fGoEkXsKhopNy8RTVFRUWMvSWzjvFDQjKajng41GtkUmBclsIl4DqH2IWMSymMkK2yNYjKNGjZL9rnorYE9BZ3FKue1aTl6dka0lJiZi6dKlKCgoQEREBHJycnD++ecjJydH0XLs9kNGq6SgSAdGEW5MaTWfqEQcdkVratqRmmGzrL6dAHuUIRCrHfPtlBSUJAkPP/wwfvKTnwSd7oorrsBHH32k+CEfJzOjbrt7DQXbp+TGJfLwc2bvNyIyeqhOq1yjiDh8qJbbzsikoJr6VDJ8aF9mDB9ql56Cwd5ZSWQ2M3sKWu03h4hEOc4FEyzGlJQULFu2DDNmzAhrGFhRtgOTgtZmpc4falgtXr2pvyomsoiMjAwsXboUkiQZdpPUKQcat9uNjo4Os8MAIObwoXa7yBehXYvcUxDo2ie0GhpMhO3tVBw+1Bw1NTW46qqr8OSTTwacxu12Y/Xq1bjmmmu4jyhk5vbSIikYbk9BObKyssKa32mCDVkWzvBRgD7t1ehEpT8iDh+qZS9c0XsKGjV8qFbscp4bN24cXnnlFWF+N5LziPrgCHsKhs8K91xCnUNTU1NRUlICjBgB3Hij5uswUjhJwVDXSGY8nCPq+shYdq1f8Y+eRBoJZye2W1LQjKdXjUzmaE3txbro7UAPVi9zuD0F5ZZf1B+mSogeXzg4fKjxdu3ahVmzZgVNCALAI488gpUrV9q6/enFzJtdRiUFwzV58mTd12EnWVlZSE5O7vf50KFDw363nNKhYK1yTLBqT0G5RO8pGM7woewpqF5UVBQWL14sTDzkPHLOKWZc3zMpGD4rbA+l1zRar8NI4TwUxp6C1iNKue00BK+R2FOQ9FFZCcTHAwDmFRRg8+bN/SY56aSTgPLyoItJrq4O/GWIebXkbmoKHkvf6XfvBurrQ06nZJlaiqioAFpbw15Oam0tWlpaZE0bu3+/rnWWePgw2gJtzzDXm3TkCDprahTNE7t/P6IiIwPWcXRVlaFtWAtRe/eGbLPu3bsBmdsq0LISOzsDbpuEQ4d03W8iKyt71h1RUSFrXTH79vXMI3efiKysBJKTEbNvX8B1ePbsAWprZcdutMjKSsV14fF4LNHuPUePBi2be/duQOYPHtnbKch2id2/P+gyfNtgt/iDB1XtK0mSZHgdvfzyy/jVr36Fxupq5APwAMgCsAmA75nqz3/+My6++GJDY7OTYD/a9EpUyLnRZmRS0OVyBS0rk4LKuFwuLFmyBI899ljPuS8lJQWnnXaayZEZT247tuo7BdlT0JybkXZJCgJd7wHOycnB43/8o9mhEPnFnoLWZIXtwaSgPEwKWo8o5S4sLERERAQ+/fTTns/y8/P7TSdKvKJgUpD0UVLS88+53r9+yspCLqY02Jcy5tdKLELE0pfM2BQtU0sabbsVmixFG5cG+zLM8i4LY97SQF8Y2H61MtL7F5SCcpUG+/LWW/1+fJbspavkE/8o75+SeWTvE9555nv/Qi1XRLK3T1933aVxJNpLhHbnn7xQy5KxzBO8f0rmDeuW/C23hDO3You8f33NAfCB99//8z//g+uvv964oGxI1J6Ccuk9fOjQoUNVx+nkH5i5ubkoLS1FeXk5IiMjkZeXF3YvQUCfUTpEqCcRhw/VctuJnhQM552CZtyMNOMVCHpKT0/HhAkTzA6DHMiIpIxSal83Itp+bTarbw9RzhdaSElJ8TuChFaYFBSPKOV2u9049dRTMXbsWFRUVCAzMxMFAKDR/QNRyqk1JgVJH+vXA0VFPf+7c+dOfPjhhzhy5AgyMzMxd+5cDBw4MORiVq9eHfC70tJSDQKVp6WlBffdd5/s6ZctW4aUlJSQ0wUrn54uuugiWds/lAceeABNTU2yph0/fjwWLFgQ9joDWbNmDWoC9FALt6088sgjqFbY42by5MkYPHgwXnjhBb/fn3DCCRg3blxYcRnt22+/xSuvvBJ0mssuu0x21/1A7T85ORnLly/3+91zzz2HXbt2yVq+GjNmzMCMGTMAANu2bcOGDRtCznPcccehuLgYgPx9oqSkBKNGjcJbb72FL774wu80SralGb755hu8+uqriubxeDxYuXKlThFpp7GxEQ8++GDA71esWCH7Kcjdu3fj2WefDTldsOPUm2++iS+//DLg97Nnz8bUqVN7ffbKK6/g22+/lRWjrwEDBuCSSy5RPJ9S1dXVuOaaa/DBf//b77tcAO8DqELXDdw//elPhp7z7UrUpKAoPQXt+mPPCDExMRg5MuRjQ4q4XC4Eel5cxOFDRe4pGIqWvdFETwo6bfhQIgrNrPOHx+NhT8EAlDzAYYXt4ZSegnPnztU1DiYF9VVQUGB2CKp1D8dcUFBwrBx+Rj+yQz1piUlB0kdODuBzQCksKEDh/PmQJEnRTlibmhr4SwMPWK7W1uCx9NGZlwekpYWcTskytdSZlwdkZIS9nPr0dNTLGCYVAJozM3Wts6MDBqA2UNsKc7316elQOohjS1YWOgYPDljHbX32EStob2gI2Wal/HxA5tNhgZblTk0NuG0aBw1CbV2drOWr0ZSR0bPuttpaWftoa3Z2zzxy94n23FygoABNGRmB11FQAAicFGyvr1d8DPN4PJZo966mpqBlcxUWAjJvfHZIkrztFGS7NGdmonbPnoDf+7bBbk0ZGag9cEBWjL6i09N1r6MdO3Zg0fnn47vvvgs6XX5hIZ56+umepDuFxwlJwXDKqOW8iYmJOHr0qOrlkT5EuBEg4vChVu0pqKY+rTZ8aLhEicOXiDGR/YnYmzwmJoZJwQCYFLSW0aNHY+gJJ2Do0KG6rkfNKBJGXXdZpR5HjhyJb775xu93M2fOVLw8Ucqt90NUopRTa3z0jAxl1R1JjyGM7ECkp1f1PNmrrU+7tQMRf0xpzbcdyW1TvmXWcp+w+ra0Mi1uoCoR7nvM/MWjti3qfVzfuHEjZsyYETIhCADPPvssE4IaMvOYosXNECU9fNTQcvucfPLJmi3LqZS2GbOvUeQuW8ThQ530TsFwbjSb0VNQ7nJycnJ0jYPI6uQcw8xICnL40OBiY2NDTmOF7WH3noILFy7UPSEIiH1f1grtEACmTZvm9zfVpZdeiiKf0f7kEqXccuMQJV5RiHNHn0hgIp981DDjwkPvbSJaUrC7+zppS8R25BuTk+rczmUN9QM9nHcS+RMq8WXkU8R61uvTTz+N+fPn49ChQwGncbvd+OnVVwOArGG4ST5RewrKpUVPwWDfa5kQHzZsGDIzM3t9FhcXp9nyybrk3OA0mgjDh6pJ+uvdUzCc9Rn9WyvQdYSdr9WItGb0/hIbG8t9NISLLroo5DRW2IZ2TwqKiknB/goLC3HJJZdg3LhxyMvLw9y5c3HzzTejsLDQ7NDCIlKHFSvh8KFEMtjtAMP3XOjP5VL34nCRGXWhY+YFle8T/GoShHLr3OweDRRcsHqMj4/X9MZgXFwcsrOzZS9P7jpESgpKkoQ//elP+J//+Z+g06WmpuJf//oXFhYVAX/9q+ZxOF2wutXrwRqjhw8Nh5bDh0ZFReGSSy7BBx98gIqKCmRkZGBmVhZw223hhukYejyQJ0JPQTVDM4UrVGxa9sKNjIxUNd+4cePw+eefaxZHIOG8U1DUpODEiRMDvgfIjON+KLy+JTOIOHxjTEwMOjo6FM/npH0oISEB2dnZ2Lt3b8BprLA9mBQ0B5OC/uXn5yM/P1+TZYlSbpF/J4qMSUEiGfTqKZiSkoKamhoVEYnBjGF0ArFaT0GzfojrTe96FrEdOXX4UNHjC4fb7Q74DgKth7MMNOSXLzW9n4LNM23aNHz88cd+v9P6grqtrQ1XX301/v73vwedbsyYMXjxxRcxZMgQvy8FJ2uSMySXlknBcHoK9v1u4cKF2LBhg6zY/ImLi8NJJ5107AO2a0VEvIEbruzs7H49SNVQM7xTMHISZXLrQ23dzJ8/Hx6PB59++qnsefTuKWiF4UOHDRuG008/Ha5duzRZH5GTmTF8aFNTk+L5rHoOVCucaztR2PGaxgxK79UYuW3t1iFALlHaL4cPVceZrZZIIb2SgieccIKacMJmx56CoiUFQ81nxaSgE06g4b5TUMuLESdsb1G53W5kZWX1+zwiIgJTp05VtCyz6jHY8XngwIEBv9My3traWixatChkQnDBggV4//33uxKCpBtRhw8Vtafg5MmTMXjwYFXzkvHMPq+GWvaECRNw8cUXK46h74MoUVFRmDNnjuL4ghHhet7tduO0007DyJEjdV1POL39zDyGBpKfn2+5m82hYjr++OMNioSoi5wHmPQQExOj+uFjJwlV3ra2NoMi0Qd7CuqHPQX1J0q52VNQHfYUJJIpUK+RcIwYMQIFBQUoN/jpcTOSgiL28JKLPQW7mH3DzYjli9RTkMx1wgknYO3atb2GlJ07dy4SEhI0XY8W+5XSnoJaJGhCqaysxMKFC7Ft27ag0y1btgwPPPCA6vdQkXxm/pgR5Z2CSuaNjo7GxRdfjO+//x779+/H4I4OoKxM9fJJGT0SHWbtAyUlJRh1yimq5p0zZw5SJ03Cjh07EBcXh/HjxyMjI0PRMvQePlSL7dq9DCXv7DW6PkXsKWiHHjR9TZw40ewQyKGM3l9iY2ODvmc7ECvu13pSO2y1kTh8qDZE7inohO0vMm5/dZgUJH1UVgLx8WEvJrm6OvCXBifSUmpqet0cDsa9ezcg48ZxJIALZ83CtwMGYN++fdiyZUuYUcrj3r0bOHo07OUkHj6M5mB15CNm3z5d6yzx8GG4Gxr8fxnmehMPH0ajzHJ2i92/H5GxsQHbcGRlJRCkt46IIioqgu+TQNfwRTL3/UDLSpSkgHUWf/BgyBjC4dtOIysrZa0ruqqqZ56kI0fQImOeuAMHgPh4xOzbF3Ad7t27gZgY2bEbLWrvXsV14fF4LDOE3hC3G1eWlGDbtm3o7OxEYWEhCnNzFcfvCbHfxB88GHKZwdoJ0LsNdos7cCDgPNFVVYH3v/j4sOuosbERly9Zgoavv0Y+AA+ALACbALT6TPeHP/wBv/jFL3gRbxD2FFR+UyYqKgpjxozBmDFj0Pb992Gvn/Rj9nFEr/W7XC6MHTsWY8eO1WX5AB9oCiScnoK8yavO8OHDkZqaanYY5DBm9hRsbW0NPWEfTjsuhCqvv9FdRKP0+jM1NRW1Gq7DqZgU1J8o5ea1rDpMCpI+Sko0WUxpsC8Nflr7WiUTK4gtEsBY79+JykJST6Ntd5EmS9HG5cG+DLO8F6iZybvO0hDfW8lQhNgnAUXlCrqsW27x+/Fi2UsP3zjvX0g+ZZa9T3jnWeD9C7VcEQ2DjPbgz113aRuIjgZ5/8KRCxnb6brrgn491/sXkJ+2Ms/7F2j6McGWd9NNQeMJJQ7Ay34+nwPgA3T1wFqzZg3OP//8sNZDypjRe120dwrqNS9pT48ezWbVsehtK9z4tOwpaEbiTe7yrZgUFLHtBYuJCUEyg1n7CZOC4cvKyrJlT8ERI0ag/NtvNVuHUzEpqD9Ryq3la3ychElB0sf69UBRUdiLWb16dcDvSktLw16+Evfeey/a29tlTXv55ZcjXkVPyZdffhnfffed4vmArovK5uZmWdMuX74cycnJqtbj68knn0RVVZWsaSdPnqzrOyIefPBBNDY2+v0u3Lbyr3/9C/v27VM0z4wZMzBkyBA8/vjjfr+fO3cuJk2aFFZcRtu5cydeeOGFoNNcccUViIuLk7W8QPt3cnIyli9f7ve7l156CTt27JC1fDXGjRvX867PL7/8Em+++WbIeU488cSeJ/jltJVJkyZh7tyuFM+bb76JL7/80u90K1asQHR0tJLwDbVjxw689NJLiubxeDxYuXKlThGJqbKyEk8//XTA74cOHYrFi4Onu99991189tlnAb+fP38+JkyY0OuzpqYmPPDAA/2mzc7OxtixY7Fhwwa/y8rLy8PZZ58dNJ5APvjgA1xzzTWorqnp9XkugPcBVAEYMGAAXnjhBcyePVvVOkg99hQMLzlptfd2WZ3S+ja7Dsxev96UlG/u3Ll45513dIzGGH3LbMXhQ63GbuUha2FPQTEFG62rRKPOCHpTeg05bdo0HIiLw+bNmzVZh11w+FDxiFJu9hRUh0lB0kdODlBQEPZiaoM9LajB8pU4OmCA/Iu2ggJVw6c2DhqE2oMHFc8HAG1xcQGTYn115uUBGjyJ2ThoEGplJiKbMzN1rbPa1FQ0BkqghLnehoEDUdvSomie1uxsdOblBWzDem8PPbS3tQXfJwFI+fmy236gZcVkZATcNo2DBqH2yBFZy1ejyWfdrYcOhSwvALT5HO8aBw0K2lZOOOGErmSI9+KpKSMj8DoKCgCBk4Jtzc2yto8vt9ttuXYfrk6PJ+h2ahw0KOQ2af7uu6DLaPNzzo0FMGTBgl4/Jl0uF0oWL0Zra2vA5TUF2f+CWbNmDS6//PKgD8/kFRTgb6+9hmHDhilePoXPzKQgewqSUkrfcydy/Zkdm9E96qZMmaI4Kaj2/d1GsmJPQRHZsUxkbWa0SY/Hg4iICFVJQacJlhRU8h5aMym9Dna73Tj99NOZFOyDSUEKhElBdbjViGQSaTibcNepVXxmPDFrBrU3Kux2YpKzHZRsqzFj/A9geNJJJ2myfDV8LzTlXnT6xhQsvoSEBMyZM8c2QxuIHp+dqN3WixcvxsKFC1FYWIjRo0fjggsuwKhRozTt8SRJEn77299i+fLlIXvTP/3000wImkjUnoJy6X1OZUJRLFYbPpRt4JiEhASMGDFC1bwibUf2FCRyFiP3p+joaLhcLsQI/P54UQRLCip9gMgsHG3CHEwK6k+Ucut9j02UcmrNGo9VEAnAiIOAUTek7Pj0ql7vQwL0OXHoGa9etK7v8ePHY+vWrb0+S01NRV5enqbrUUtNUlDLm5gi7V9asWOZwqXlu5j8fT5z5kzMnDlTl3gkScL1118fdKhvABiYng4cOoT09HTZyybtmbn/2X34UNKeHj0FWYf68LddY2Njw16GHvOEs3yn/9YygtPKS2KQM6qB1rrPcZMnT8amTZsUzeu0/aSjoyPgd1ZJCgbD84V+mBTUnyjllvs7UZR4RWGvbixEOhK9p6AZROopKFpS0OVy2S4pKIeSbVVUVISzzz4bmZmZiIqKQlFREZYuXRr0ZeEi7ltOTQqqic+u7T4YPZN+atcRbHq5x/XGxkYsW7YsZEJw2rRpePbZZ5WERzoRtacghw8lf4Ld6BOxrtgLoDe1SXyRt5WIvwVF3l6BWDFmcgYj22b3MTIjIwM5OTn9vu9+X70/TtuH2FMw/HXYBYcPpUC4/dVhT0EimYxIgFmtp6DdhsfUkh2TgnqcaMeNG4dx48ZBkiQhTuRqhg/1pfSCP9g6RNgepD/RhpuWE8+XX36JCy+8sF9P375WrlyJP//5z4isrFQcI9mDnKfv7dBTkMdr7Smtb/YUNI+/7WqHbR3O8KF6xWB3TisvicGMnoK+67z44ouxfv167NixA0lJSZg2bRqio6OxZcuWoPM6hR16CjIpKE9aWhqOHDlidhiq2GH7qyFKueVeo/l7CEMOUcqpNSYFiWQS8elQtes0IynotJ6CQPDtY8WkoJ70HgNcT3r1FBSdiEN9iUjEnoJql9Xc3Izf//73uP3224O+P9DlcmHVqlW47rrrNIuLwidqT0G52FPQWfS40adnHTs5aaxFUlDEbaTF8KFDhgzBDz/80O97ue9c1PP8b9ZvERHrmggwp6cgAMTExOCMM87o9f13330XcF6n7UN27ylopXXobcGCBVi3bl3A70W+h2aH7a+GKOWWG0dycjKys7Oxd+9enSOyBnbzIZJJlIOdSETaJqIlBZ3aU1CkNhEuvlNQe1Zs93ozImmoZPpAbfjTTz/FxIkT8Yc//CFoQjAiIgJPPfUUE4ICMuOcZPTwoeGw4zHXypS2Gdafvoy6hhGpHrXoKTht2jS/n0+dOlVVDHbntPKSGMxod6GOJ05+0KQvuycF2VPwmKKiImRkZGi2PCPvPdhh+6shSrmVXKMtWbJE8fJFKafWmBQkksmInnh2Hj7UygdRJgW7iFCHIvY49Y1Jywt+EbY36c+MZLuSdtre3o7/+7//w8yZM/Htt98GXW50dDSef/55VRfapD8zjymivFNQTUJczrxab9vCwkK/n0dHR2u6HpGxp6B1mNVT0OjtqmZ9RUVFmDlzZq/PjjvuOAwZMkSTddq9bREZyYzhQ9V877T9nsOHhr8Oq4iMjMRFF12k2fKCJZS1Zoftb2VK7k2npqbyAWYvDh9K+qisBOLjw15McnV14C/Ly8NevhLJ1dVw1dXJmta1axcQGal4HXEHDgQvcxBJHR2Akvg0qJ+EQ4dkxxuzb5+udZZ05Aja2tr8fxnmepWUs1vMvn1wJyQEnC+6qsrwNhyuiIqKkNvBtWsXoONNy3D2ETli9+/vqZeovXtlrStq796e/SlYW0kC+tV57P79gddRXg4IfHEZWVmpuC48Ho/l2n24IoLVMbradKhtErNvX9BlRO3dC6SkyI4pWN0lHDrUE8/u3buxcuVKfPHll8j2fu8BkAVgE4BWn/lyc3PxzDPPBOwVQeYzc/hQLW6GOKmn4Jw5c7Bz585+n8+ePduEaMwR7Eaf2iSUSHVsd3bY1uEMH+o7z8KFCzFt2jRUVVUhOzsbycnJqmOwO6eVl8QgYk9BJ72SIhQmBZ0l2ANwSh/gZk9B/YlSbqVxWOXYoTcmBUkfJSWaLKY02JdlZZqsQ67LlEysMrYS75/uNNp2p3j/RPDTYF+GWd6z1MzkXWdpiO+tJBch9klA93IZ2eYme/9C8inzqaGm/e1ve/3vCd6/UMsVUQFktAd/7rpL0zhElwGV28nHLO9fQArbynDIiykPwAsBvpsD4APvv88880z84x//QFpamqI4yFhmDh+qNMHjj949BUXqkVNYWIiJEyfi888/7/lsyJAhGDVqlGExmE1pEtjsmxJmr99MWvYUNGPkE7nLD+fBhJSUFKQoeHgnUAxKvyci+cx6p6A/3LePCdbbS+8HxowQrK7z8vKwe/fusJdjJVrWKZOC+hOl3ErbjdV+Z+iFSUHSx/r1QFFR2IvZunUrXnvttX6fT5w4EfPmzQt7+UqsWbMGNTU1sqa95pprEBGhfPfasGEDtm3bpng+AEhKSkKdzJ6CV155JWJjY1Wtx9f69evx9ddfy5p2+vTp/YbP0dI999wT8Cmy0tLSsJb9/PPPo1xh76a5c+dixIgRePDBB/1+P23aNMyaFfQ2v3AqKyvx9NNPB53m6quvRlRUlG4xvPrqq/jmm290W/7o0aOxcOFCAF3vUHvvvfdCznPaaadh2LBhAILvEwMGDMAll1zS67M33ngDX331ld/pw223etu1axeee+45RfO43W5ce+21OkUkpv379+OJJ54I+P3IkSNx8sknB13Ghx9+iI8++ijg9yUlJYqSBTt27MBLL73k97sRI0Zg9+7duOOOO9Du55iaC+B9AFUA0tPTUVZWhgsuuMC2F8p2YmZPQS2extT7iU6jhnCXu7zTTz8d48aNQ2VlJTIyMjBkyBBEVFRouh6R6dFLwqzjlMjHR71iE7nMcmnRU1DrGOzAjmUia1PzUEK4RBqyXHTBegpaZVuorc958+bh0Ucf9fu5kuVYiZYPMTIp6BxKt78dHijQApOCpI+cHKCgIOzF5Keno3XrVjQ1NfV85na7MWTBAiAvL+zlK1Gfno5amQcaV2EhoOLmVeOgQaitqlI8HwAgORm1Mtcp5ecDcXHq1uOjKSMDtfv2yZq2OTNTkzYRSE1KSuCnyMJcb+OgQaitrVU0T5t3H6hNTfX7fVNGhq7bQw8dbnfA8vQoKAB0TAo2DhqE2v37dV1+d7207N0burwA2nNze+YJtk9Ep6f3q/OmjAzUBrrJK3j7aO/okLV9fLndbuHLpbXO6Oig20nOsaB5586gy/Btg3K0NTf3W54kSfj666/xp6eeQpWM89Ci007Dbx5+GOnp6bLXS+Yy84a2KO8U1GtePbhcLgwZMkT2u8fsRmkSWLT6swq5N0X0fkegFd4paMYNJKe1a6eVl8SQkJAAwDrvFCTrUZsUzMvLw8iRI3s9FJ2eno7i4mJFy7ESLc+1fKeg/kQpN3sKqsOkIAktISEBl156KV5++WVUVlZi4MCBmDdvHvIMTggC9joImPEyYytvPz2eSDfyqSWtiFCHRsYgt458Y3LSU512K4/ItL5x0Hf6Xbt24bXXXkOFjF5IiQkJQH097r77briYELQUM/dZo4YPDcVJx2irs9oTvFZtP3r1wLVab05/rNBTUKTtRSS6YcOGYfv27f0+7x7NyCo9Bcl61F5/ejweLFmyBF999RV2796NQYMGYdy4cYiPj1e0HCthT0FrEaXcfKegOkwKkvAyMzNx2WWXobOz09QbBErWLfoPYTOSgnrT84Sv9unlYG3GrklBkdqEUXzLzJfCU19G3NBTkxRsbW3Fli1b8Mknn2Dv3r2y5luwYAEe+/3vgVmz2J4tSNThQ63yTsFw1kvKKW0zvEZRR4vfVv6uaY3oKaj370IrJAWtiA9nkFmmTZuGHTt29DpmDR8+3JR3YjMp6Czh1KfH48HEiRMxceJE3dZhFSNHjlQ0PZOC+hOl3DExMYqmt9rDh3rhViDLMHundUqvOCVE2ibTpk3z+3mcBsOkqk0K2q2noAj0bke+9aKmp6DSpKCV24FTjnMi0HJbd3Z24pFHHsFdd92FF198UXZCcOXKlVi/fj2ysrI0i4XsT05SUC4trgP54IZ16PEEr551bNX2Y+WegkZvcxGTglZtd0RmGD58OC688EKMGDEC2dnZmDNnDs4991xV7xSMjIwMK5ZQ6zL73hdpy4hjtZ3OB/4SoImJicjNzVW0HCYFncHtdiM7O1vRPEY8vGYF7ClIJJOdDgJ27Ck4efJkfPTRR/0+P/74402Ixp5JQT6FHxqffialjOwpuGPHDlx22WV49913ZS87ISEBq1evxo9//GO14ZEgnNBTMJxlsKegWJTWFetAHb1uPBvxrha969xfT0GXy8WbjGHitTKZadiwYRg2bJjf75QmBdva2lTHwZ6CzsL6VObkk09GdXU1du3aBQCIj4/HhRdeqHg78nytPxHKPXjwYERHRyuaR4S4RcCkIJFMIj+5qpQZSUG9t8mgQYNQUlKC9evX93w2cuRITJkyJexl6/G0s12TgnaKwYiegomJicoDE4QI7cEKjEj6hfr+k08+wapVq/DUU0+hvb1d1jrdbjeWL1+OW2+9VfGTd0TdutumFsk4LYYPZU9B62BPQWOI1lNQdKIlBcPZzlqMpkJkJ0r2p3CPneEkBa14H4H0Z6fzbnR0NJYuXYrq6mo0NjYiOztb1UNMIp2v7UqEcivtQaqGCOXUA5OCRDIZMYSD1Q40osU7Y8YMjBw5Env27EF6ejoyMzNNeV9X9zx2e6egE6ipl3CSgsXFxXjnnXf6fV5QUKA4DiJfHR0deOmll7Bq1SpFPQMBYNGiRbj99tsxduxYnaIjpxCtp2CwODhUl1j06Gkm2nWrCPRq92qHZRLpgUMR1qnF+oqKivDdd9/1+3zOnDlhL1tr3EfJKsJNCnJoYGcxooe03dqMy+VCWlpaWO/8ZFLQGSIi9E9t5ebmoln3tRiPSUHSR2UlEB9vdhSaSjx8GMnV1fImLi9XtY7Y/fvlr6OPpI4OoK5O1rSuXbuAMMfBB4C4Awdkxxuzb5/q7aJECoCUxESgpQXwDjcQrviDBxXXS3RVFVypqQHnM2p7aClCRn27du0CdHrqHAhvH5Ej7sCBnnqJ2rtX1roiKyt7yhwsvsTY2H51nghgekYGvvnmm57PXC4X5uTmCt8+IioqFNeF2+0Wvlxa8xw6FHQ7+ba5QGL27Qu6jKi9e4HYWABdP37Wr1+Pu+66C999/z0AIL87FgBZADYBaPWznMLCQqxYsQI33XRT0HiIlNKiN5KcZZjVU5A3ArSnNJFsdh2YvX61ROspKHpS0OiH+rRIHBQXF+P777/vFfvgwYORkZERdnxqWHVfIftT0jbDfaCCw4c6C98paH9O3f4ilFvvGKKjo1FQUIBvQk9qOUwKkj5KSsyOQHPnKZm4rEzVOk7y/ulOZXx9zfP+GblOMyzy/iniLW+pxrGYaRBklEfnel7o/TPCdO9fSD5lPs77F9DPf97vo5O9f72sXi1nzabKhcr2vWqVtoEILh3hHwemef8C8mmDLgRoUz7mAPjA++/IyEgUFxdjypQpSE9PR3FxcZjREh0jp6eg3JvsevcUFOFHLR1jteFDrUrufqW255/S6ZkU7E2rnoLnnnsuNm3ahJqaGgwZMgQnnngi9weiMJg5fChZD5OC9ufUEUdEaHd6xuDxeLBkyRLdHqIzG5OCpI/164GiIrOj0NTTTz+NyspKWdOWlpaqWsfrr7+OLVu2qJo3KSkJdTJ7Cl5zzTWadLF+5513sHnzZlnTzp49G1OnTg17nWZ49dVXe/XkkmPhwoUYPXo0VgdI7owbNw4nnHCCBtEZ5+DBg1i7dm3Qaa699lpdL4hee+01bN26VbfljxgxAqeccgoAYOPGjdi4cWPIeZYsWdIzjvmHH36Ijz76yO90hYWFOOOMM7QL1mR79uzBM888o2get9uNa6+9VqeIxHTo0CE89thjAb8fO3YsTjzxxKDL2LRpEz744IOA3+fm5mLdunXYGKDt9UwH4H0AVd7/z8/PxxlnnNFrWBYRLuzJPuQkBTs7O2Uti+8UdBaldWX28KFWbT9a3OTwlyhjT0FtaDXE4MiRIzFy5EgtQgqbEcPoEakh0jsFnZpgsCsmBe3PqdtfhHLrEcPFF1+MxsZGFBYWIiEhwbajXTEpSPrIyQFs9k6sxkGDUNvYKG9ilWVvzsxErczEY1+ulBTUyrw4dRUWajLEY8t336FW5sGxJSvLsm2icdAg1O7fr2ieNu8+UJuaGnCZVtsenbGxAcvTo6AA0PFHTFNGBmr37tVt+b710rJrV+jyAmjPzT02T3l5wHlas7MtV+fBtEuSrO3jy+1222obyCHFxwfdTk0ZGSG3SUtFRb9lSJKE7777Du+++67sB1a6ZeXkYMzkyZg0aVK/mw4iXNiTfXS3p2A3t+QmBbVomxw+1Drs+kSuaER5p6Ca+Zxw05zHFiLjGJkU5DsFnYVJQfvj9jePHteDQ4cO1XyZImJSkEgmOx3kzXiZsZW3n5rYQ81j9JPGdqF3O/KtF7l15BtTsAuSqKgo9YEJiG1YG0p7txw9ehQ7duzAhx9+iP0KH1aYMX068NFHWLt2Lda8/bbqeMh+9Nqftewp2L28YLGGar8cPtQ62FPQGKK9U1DJjR2rbnMlnFBGX04rL4mF7xQkvbA+7c+pdSxCuUWIwaqYFCSSiU/39Ge1eNXSo5xWTKiYfcNNVHKTgpGRkUaEQ4LRap+oqKjA22+/je3btyte/7nnnoubbroJxQMGAIWFTIyQ4bRICrpcLrjdbnR0dKiOg8OHWgd7ChrDyj0FncCOvYmsGDM5A3sKkpWxzZjLqdtfhHKLEINVMSlIJJOdkoJm9BS0Mj16ClqRCGUyMgb2FCQjhGrThw8fxu9+9zusX79e8bLnzp2Lu+++G+PHj+/6QMZwzyLs52QfWvcUDJUUNKunIPcb7SlNVpldB8HWL/KDYHJvbCvdvnZ9p6DRnFBGX04rL4mFPQXJDLw3Zw9O3f4ilFuEGKzK/gPxE2mEScHwluO0A3Wo8iYmJhoUibGsXs9qbtz5ljlY+dlTkJR6/vnnMWbMGMUJwXnz5uH111/HW2+9dSwh6MPq+ylZh5ZJQZfLFXbbZU9B69Ajgcs67k+0noIcPrQ3O/YmsmLM5AzsKSimQYMG+f08PT3d4EjExgfZzcVtaR5ue/WYFCSSyQkvs1dKycFXSU8A0YRzkgn0gtqpU6eqXqZZRDjZithT0JeTegqK3PNBJGp+9O/atQs/+tGPcNZZZyl6b+App5yC999/H2+99RZOOOGEgOsOFpMI+znZR3d7CnZsVNpTUM76AuHQudah9Iar2UOcW7X9aPH7xt/1gNrl8oHD3pxQRl9OKy9ZV7hJwVDHSN57Omb27Nl+P58/f77BkahnxO9mHj/N5dTtL0K5RYjBqnimIZLJTj0FtaIk3nDeAWS2cJ66mjFjRr+L+gkTJliyp6DV2qdR+E5BCodv+2lsbMRvfvMbjBw5EuvWrZO9jIULF+KTTz7Byy+/HPCHs5p4iMJlpZ6C4dyA436jvWD14e/mGutAHb3e3cjhQ7XB3kREYtI7KWjVIan1MGbMGBQVFfX6bNSoURgxYoRJEYmJ5wNzOXX7i1BuEWKwKr5TkPRRWQnEx5sdhabiDx5EcnW1vIllvLfJn9j9++Wvo4/Ejg5IdXXyJlYZX18x+/bJjjdq717N1mu0uAMHFNdL1N69QHw8hkVEYPn8+di6dSsaGhqQn5+PSePHW3JbuKurQ28Hnculpi6UiN2/v6cM0VVVstYVUVEBtLWFnCf+4EFL1nsgERUViuvC7XbbahvIEWq/id2/Hx07duC5557DnXfeiX379yPD+50HQBaATQBa+8yXlpaGoUOHYsqUKbjppptQWFgoOyZeOFNfet1g0uOdgnLWp2Z+7hdi0ap3qS/2FOwvNzdX1nTZ2dkBv0tLS+v3GYcP1YYTykgkCr5TUEwejwfnnnsuduzYgaqqKmRnZ2Po0KHsTdmH2gfZnZZk1gv3WfOo3fZxcXFobGzs9/mkSZPCDckymBQkfZSUmB2B5hYrmbisTNU65nr/dKcyvr5meP/s7gTvnyI+2zjX+2d1qQBKQ02kUdsKZL73T1crVwIAZnv/QvIp83jvX6jp7CAfMtqDP6tWaRuI4GTtNwCWeP/8mQPgA++/BwwYgJNPPhnDhg3TpScGf9CQHqzQU5BtXyzB2oy/0SdYf8GNGTMGW7du7fWZ2+3GxIkTZc2fmJiInJwcVFZW9vq8sLAQMTEx/aY3oqegE24IO62noN3KQ9bCdwqKy+PxoKioqF+PQTLX4MGDzQ5BGE7dZ0Uot9oYZs6ciTfeeKPf59OnTw83JMtgUpD0sX49YLMT9ssvv4zvvvtO1rSlpaWq1vHuu+/is88+UzVvUlIS6mT2FFQbX18ff/wx/vvf/8qadtKkSZg715CUp+befPNNfPnll4rmOe200zBs2DCdIjJHTU0N1qxZE3QardpWIG+99Ra++OIL3ZY/bNgwnHbaaQCA999/H5988knIeS666CIMHDgQALB161a89tprfqc766yzkJ+fr12wJisvL8fzzz+vaB63241rr71Wn4AEFWi/aWtrw4cffojNmzcj0POZuQDeB1CFrovdWbNmYd68ef2GolV6ISzCxTs5Q3dbC9bmtOwpGIpe7xTkPqU9q/UUFN2CBQuwe/duHD16tOezhQsX+k3oBbJkyRI8+uijqPb2fk9PT8dZZ53ld1ojkoJkTaxjEpXctqn3Q0pKYiHqFs4rb9RIT09Hydy5wI03ql6GnTh1nxWh3GpjmDZtGrZv345du3b1fHbcccdh0KBBWoUmPCYFSR85OUBBgdlRaKopIwO1Bw/Km1hl2Vu+/x61qamq5nWnpqJW7hNrGtVNa0WF7HgbBg60bJtozsxE7Z49iuZpz821bHkDkaqrQ9e3zmVuzsxE7e7dui3ft502b98uq3135uUBGV0DPrYcORJwHldhIZCXp1msZmtvb1d8vHK73bbbL0Lpu990dHTgiy++wNtvvy37QY7B+flYcNJJAYd50/JiXIQLe7IPLZOCcm7CcfhQ+1CaFJRTf04ePjQtLQ1XXHEFvv32W9TX12Po0KGyhw7tlpKSgpUrV6KqqgputxsZGRkBy+3k4UOPO+44zZbltN5EdisPWYvc9ud2u5kUJM1oVddGtpmBAwdixYoVcPkkU5zOqfusCOVWG0NUVBQuvvhilJeX49ChQxg8eDBycnI0jk5sTAoSyWTEwU6EA6oSSuJV+1S3CKxWL3px2nZQM75+e3t7wO+ioqLCCUc4fP+AMrt378aHH36InTt3orm5WdY8qSkpQE0N/vznP+PfW7ZoFguHDyWjyGlPSq4Pwm2fevUUJO3p0VPQ6RISElBcXBzWMlwuV9D3C/pOp3b5ekxrpFmzZmm2LFHLSORkWvQUDOchJiJ/jDxfZGVl8fzUB7eHecI5XkZERGDYsGG2G+VNLiYFiWRiUrA/JfH6e/+LVRg9FAMFJuJ29Y3JSUlBkqempgYvvviioqGhIyMjcfXVV+OW5cuBiRNDvreEw4eSqLRMCorcU3Dq1Kmq5yX/rNZTkHpzalJw2rRpioZkDUXEMoaLDyaRqKzSU5APZlqPEXVm5D0rHqv7c+o2EaHcIsRgVXz8hEgmPq3Vn1N6ClIXJ5xsfS/Y5V68y00K9n0PHNmbJElYt24dZsyYoSgheO655+Kbb77B6tWrkZycLGseDh9K4TLzBpOR7xTUIymYmJiIwYMHqw2JAghWV2ofNOPxzThOHT40IkLbZ66dNnwokZmskhQk8sfINsP22ZuTt4cIZRchBqtiloNIIFY7mLGnoLbziE6EMokQQ19O7SnIp1QD27VrF84880z86Ec/woEDB2TNk52djZdeeglPPvkkhgwZ0us7/sgjq9K6PYV7g1yL4UPHjh3bczNvwIABuPTSS/ngmA6C1ZXanoJkHKf2FDT6mGdF7ClIojIyKciEv7Ok+rxfvq+srCxN1sHfi+Hr+xtcLrtuD6vg9lePw4cSycThQ/tjUpDsjD0FSan6+nr8/ve/x+rVq9HS0iJrnoiICFx11VW49dZbg/5gDEbL4UN5vCMtiXaDXIuegieeeCKOz85GY2MjUlJSwoqHAtNj+FCzOPEhGqcmBbXGxAGReLR4pyB7CjpLTEwMhgwZgh9++KHX59nZ2bJHhglFzQNqHD60N7UP+dl1e8ghQtlFiMGq+FgrkUx8Crw/JgW1nUd0IpRJ7xjCvXGXk5MT8DseQ+zthRdewOjRo3H77bfLSghGRERg4sSJePjhh3HPPfeoTggCYuybRP5o2TYlSRKipyDQ1fObCUF9BXuQxqgHKEg9pw4fqjUnlJFIFBw+lPR05plnIj09vef/U1JSsGTJEs2Wb+QDyHZtn0ySKidC2UWIwarYU5BIJvYU7I9JQW3nEZ0dyxSMmp6CRUVF8Hg8/dr7yJEjNY2NxLF7925ce+21eOGFF2RNn5qaigULFmDkyJGIjIxEZmZmyHm07inAnoLUV1JSki7LtVJPQT64IZaoqChkZ2f3+zw6OhpDhw7t9zmPXWIx4ml7EetctCGTRcRrEBIVk4Kkp8TERFx99dXYv38/Ojo6kJWVpem1J5OC4WNPQeVEKLsIMVgVk4Kkj8pKID7e7Cg0FXfgAJKrq+VNXF6uah0x+/bJX0cfiZ2d6KytlTexyvj6iq6qkh1v7P79mq3XaLH79yuul4iKCiDCXodYV0ND6O2gcx2rqQtfqampqA4yf9yBAz1lkLsuz549QF0dACASwJkTJ+L1118/tsy4OJwwdKhl238gnj17FNeF2+22zXZoa2vDww8/jFWrVqGpuRn53s89ALIAbALQ6jO9y+XCrFmzMHfu3F7vlzTjIpYXzs41YcIEfPHFF/0+nz59ui7r07qthXsTTauegmSMWbNm9fts4cKFvGljARw+VBtOKCOR1RjxTsFgnDgktV24XC5ZD4SqoSYpaESvfivh9aU1cfurZ6871iSOkhKzI9DcfO+fLGVlqtYxw/unO5Xx9TXe+yfbTTdpsl6jzfb+KaLRNhZJPIDSUBPpXO7jvH+6Ki0FAMz1/oXUp8xjvX+93HZb2GGJZihktAd/Vq3SNhCTRAK4wvvnzxwAH3j/nZWVhdNPP131i+SN7CnAi2p7mzJlCrZt24a2traez/Lz85GRkWFiVPKJ8E5BMk5ubi4AYObMmahNTcWIESOQn5/vd1o59cc6Ng6HD9UGewoSGUdu+zPinYJESkUY+EC6VY7VERERaG9vlz09hw9VToSyixCDVTEpSPpYvx4oKjI7Ck298cYb+Oqrr0JOV1JSglGjRqlax0cffYQPP/xQ1bzJycmoldlTsNSb9AjXli1bevWICmb+/PmYMGGCJus12n//+198/PHHiuY566yzAt64sqqmpiY88MADQafRqm0F8t577+HTTz9VPX96ejoOHToU8PvCwkKcccYZAIC3334bn3/+echlXnbZZboNvSeyHTt24KWXXlI0j9vtxrXXXqtTRPrbsWMH/vCHP+DNt94KOE0ugPcBVAHIyMjAL3/5Sxw6dChgDyUtLmI5fCjJlZubi0suuQSbNm1CdXU18vPzcfzxx8O9d68u6xNtKD0mBa1p+vTpQEGB2WGQAk7tKSjakMlEJB+TgmRlHD60v0WLFuHFF1+UPT17CionQtlFiMGqmBQkfeTk2O7He+OgQahNTQ06zamnnopRU6aoXkfrnj0h1xGIOzUVtXJPYhrVTVt1tex4h590EhAXp8l6jdayc6fieukYPNh2+4DU2Bh6O+hc5pbt21XvIwAQk56O2iDvt6xPT+8pg5x9HkDX9A5MCna0tiquC7fbbcn94siRI7j11lvxl7/8RfbThpcsXYqflZXB7XbjrrvuCmv9vMlIWho8eDAGDx5syLpEa7scPtS+zO4pyPbTm1OTglqzY0/BYOxWHrIWI5OCcuZPTEzE0aNH+30+dmy/MWmIDB0+1CrH6pEjR+K///1v0IfCfdl9e9gVt796fDyFSKZQY7ePGjUKU8JICALhHcxEfi9VVlYW4iyaEATUbVs7npjsUCYlZeD7GoIrLCz0e4M9JibGhGj0sXPnTvzsZz/DkCFDUFZWJishOHbMGADAb3/7WyQnJ4ec3oyegkYti0hLkiSxpyCFhXVsHA4fqg07ltGOZSJ7MPKhBDnHuvHj+7+oJTU1FQMHDgxr3WRP7CnYX2xsLJYuXYo5c+bImp49BZUToezsea0etxyRTKESBFokEEQ4oCohN94x3pvkVmW1erEzM1/qbuQyrSAyMtLvvj1u3DgTotHWV199hR/96EcYNmwYVq9eLWto5sTERJSVleGFF17o9bkRST8OH0qi0ro9hfujj23fvsyuPz5I1JtTewqKNmSy1ditPGQtog0f2v36le5pMzIycMkll3A/Ib/UvFPQCT3jEhIScMIJJ/S8pzoYJ2wPO+L2V4/DhxLJZERS0GqUXDg7jR3LbIcyhfoB5rsfy92n7bBd1Fq8eDEiIyPx9ddfw+12Y8yYMVi4cCE2bdpkdmiq1NXV4YYbbsA//vEPRcf0Cy64AHfccQdycnKA8nJF63Ry+yH7iI+PR9/Ued8HBHJyclBZWdlvXiXDYOl5E477orWZPXwo9ebUpKDW7FhGO5aJnMeIB1U9Hg/OPPNMLFq0CM3NzcfeYS/jYUVyHiN7S9n1OM6egsqJUHYRYrAqJgWJZGJPwf6ckhS0evxaEWE7sKegWCIiInDaaafh1FNPBWDtbbFx40Zcdtll+Prrr2XPM336dKxatQozZ84MOI2IPQWDna+sXIdknsWLF+ORd95Bc3MzACAzMxMnn3xyr2lmzpyJdevW9Zt38uTJstcT7r7AnoLOxjo2DocP1YYTykhkNUb1FOwWFRWFqKiosNZHpCW7DtfIpKByIpRdhBisiklBIpmYFOzPavGqxXcK2oce7xRkXVt7G7S3t+Pmm2/GHXfcIbvOc3Nzcfvtt+P888/XdThDI5ehx7LIOTIzM3H99ddjz549iI2NRWZmZr+2NHr0aBQXF+PTTz/t+ey4445DQUGB7PXo+WAI2761sf7E4tSeghw+NDx2Kw9Zi2jDhxLpzUnDZcr5ne+k7WEn3P7qMSlIJBOHD+2PPQWdRYTtoHdPQSfux05WXV2N888/Hxs2bJA1fWpqKkpLS3HjjTciLi5OkxjM2K/YzkkPkZGRGDJkSMDvXS4XTj31VMyYMQP79u1DTk4OUlNTFa2DPQVJVGw/vdk1KTh06FDs2LHDsPWxXREZx8ikIPdtsjK7tl/2FFROhLKLEINVMSlI+qisBOLjzY5CU7H79yO5ujrg93EHDih+l1RfMfv2BV1HMImShI6aGnkThxlnt6i9e2XFG11Vpdk6zaCmXiIqKgCb3Xh3tbWF3g4613M4+wgAJMbHB50//uDBnjLIXZd7924gJkZ1THYUaLu53W5hjgXbt2/H5Zdfjp3l5cgH4AGQBWATgNY+044aNQrXX389LrroIsTGxipajxEXqRw+lKzC5XIhPT0d6enpiueVJEnXJ/M7OzvDWjaZi+8UFItdhw+dOnWqUElBu7Vpu5WHrMXIhxLYU5CszK7HavYUtCZuf/WYFCR9lJSYHYHmFnn/grr++rDWMcn7p7uyMk0WMxxAqYHrM8sU758iFi+zP5GQUd86l3um909XN9wAADjJ+xeSDes6XKXBvly1yqAoghsG4C0/n88B8IH33wUFBbjzzjtx9tln63axyeFDieQLdRMtnBvo7EFLpB0lN7xHjBjR82/RewoWFRUF/d7o4UOtyI5lInvg8KHkNEyC9caegsqJUHYRYrAqJgVJH+vXAyF+NFnNv//9b2zfvj3g94MHD8Y555wT1jo+//xzvP3226rmTUlJQY3MnoKlpaWq1tHXjh078NJLL4Wcbu7cuZg0yZB0py4+/fRTvPfee4rmOffcc5Gdna1TROZob2/HvffeG3QardpWIBs3bsTGjRtVz5+Xl4fdu3cH/N53P96wYQO2bdsWcpkrVqxAdHS06pjsaPXq1X4/d7vduPbaa40NxockSbj//vvxpz/9CX1v/+cCeB9Alff/zz33XNx3331IS0szNkg/tL7QZfKDrIo9BSkQ9hQUi9xt7Xa7MWXKsUfvRE8Kulyufu9G1Xt94XxvNXYrD1kLewoSyWPXYzWTgtbE7a8ek4Kkj5wcoKDA7Cg01TBwIGoPHw74fWp6ethlbj1wALUK36/TzZOWhlq5B0ON6qa9pUVWvG0Wbw+tVVWK66UzLw/IzdUpInO4OjpCbwed67m5vFz1PgIAjYMGofbo0YDfpw0c2FOGpowM1FZVBZy2m6uwEIiKUh2THQWqI7fbbdqxoKOjA1dddRX+/ve/B50uPjERL65di8WLF2uyXiNu6CldhsfjCfgdE9wkMj3fKchkuf3xpoFx5GzroqIiTJ06FcOGDev5zAo3yo18N6kd26wdy0TOwncKkp0sWLAAb775Zr/Ps7OzsXfvXr/zWLH9yrnOHzNmDN5//33Fy7bi9tCKCGUXIQarYlKQSKZQJxEtbiZZ7WBmtXjVcko5rUDEH2BsH+JraWnBxRdfjHXr1oWc9oUXXkDh/PkGRCWf1onF5ORkJCYm4mifBHlUVBSGDBmiOD4io+h5DmBS0NpEPhc7sW2Fqo/09HRccMEFiudTO62WjFwvewoSGYfDh5LTdPd+37p1K/bv39/z+dixYxEfHx8wKWjH9jto0CBV7zwHeO4yG7e/evbbk4l0wqRgf0ounK1MTfxWL7M/dihTqDL47sdOvIlnR/X19Vi8eHHIhOAJCxYAAAoLCzVdv4g39FwuF6ZPn97v8+Li4qC9CInMpmdPQQ4fam0cPlQsRrynyKybkiIlBYlIO0wKkhPFxcVh6dKlOO200zB9+nQsWbIEZ511VtA2ardzU2ZmJi688EIOH6qCCGXn8VQ99hQkkolJwf6sFq9aTimnFYj4A4ztQ1xHjhzBokWL8NFHHwWd7he/+AV+9+MfAz5DmIlEj8Ti7NmzERMTg6+++godHR0YNWoUZs6cqTZEIt1JkhT2MTw2NlbVd2QPep6vExMTA36n9slzJ1Kyj4dTn4MHD0Ztfb3q+QMxevhQK16DWjFmor5EHL2GSK3Y2FgUFxf3+szIobLNduWVVwJQf0/XbtvDarj91WNSkEgmI5KC4TCrt4mW09mJHctshzIpKYPcfdoO28WO9u7di5KSEmzZsiXgNDExMXj44Ydx/vnnA+XlxgXnw4x3CnYrLi7u9wOQSGTh3iBPT09HcnIyamtre30eHx+P7OzssOMj85h9Lo6NjUVeXh52797d77u0tDQTIjKX2n3VqOFD58yZg+1vv43m5mbF85rd1uyM25bMxJ6C5DRG9Oq3ErXlcvL+LEJbECEGq3JuyyVSiD0F+7NavGpx+NAuIpRJ76cy1ezHImwX6m3Hjh2YM2dO0IRgUlL2axQJAACoNUlEQVQS1q9f35UQ1JGZST8iu9HiHDBv3rx+n8+bN4/7mQPoXcenn356rx6D0dHRuq7PjoxKCmZkZPT0DFCKw4eGx45lInsw8p2mTk4imMUJ52Qt3w1vt56CenbisOL20IoIZRchBqtiT0EimZgU7M8pPQWtHr+W8vPzsWvXLrPDUI09Be3vyy+/RElJCfbt2xdwmoEDB+LVV1/F5MmTDYzMPyYNieTToq1PnDgRCQkJ2Lp1KyRJwujRo1FUVKRBdGQmEY6DAwYMwDXXXINdu3aho6MDhS4X8Kc/mR2WKdT2FDRq+FAASElJUTWfkTdK7Th8aDB2Kw/ZkxY9BdnW9bNo0SK8/PLLfj+3u+OPPx4//PCD7OnZU1Ab3B7m4vZXj0lB0kdlJRAfb3YUmoo7cADJ1dUBv4+PjAx7+Lnoqqqg6wgmEUC7jHmTk5M1GyYvsrJSVrxRe/cCAwZosk4zqKmXiIoKoKVFp4jMs2DIEDz7+eeBJ9B5CMaYfftU7yMAEH/wYND5E+LjgfJyNDc3Y/e77yJZzkLLywFeiPQSaBu73W5d28ibb76JlStXIrqxEUMAZAHYBKDVZ5rBgwfjtddew4gRI3SLw5cRST9eCJNTaLUvDBs2DMMEfYco6ceIY2VUVBSGDx/e9T8mDUttZTyf9cbtQWQcDh9qD2PHjsUnn3yCFp/fo9nZ2Yb99jPT4MGDUVBQgHKdrz/Yfntz8rlahLKLEINVMSlI+igpMTsCzZ0jZ6Kbbw5rHaO9f7q79VZNFpMLoFTOhGVlmqzPLOO8f4pYvMyB5CFEnetc7qnev3CEfEbwppsQA5ltG7BtXYejNNiXq1bptt4FALb2+WwOgA+8/x45ciQ2bNiAwYMH6xaDUuwpSCQf2zoFwrYhFiN6H5hV5yINH2rFdm+3IenIPjh8qD3ExsZi6dKl2Pqf/wBlZTjuuOMw5tRTHTF8qNvtxumnn46777477GXxWC0ft4e5uP3VY1KQ9LF+PWCzoZgaGxvx4IMPBvx+4MCBuOiii8Jax7Zt27BhwwZV86ampqI6RA+q0aNH48QTT9TsIrSyshJPP/10yOlOPPFEjB07VpN1mmHLli14/fXXFc1z0UUXYeDAgTpFZK5HH30UR44c8ftdaWmpruvetGkTPvjgg9ATBjBq1Ch8/fXXAb/PycnBtGnT8Nxzz8lansvlwnXXXac6HrtavXq138/dbjeuvfZaTdfV0dGBX//611j7+OO9Ps8F8D6AKu//FxcX45VXXrHtfknkBHa8QU7kRCIMH6qWSMOHEpF2jOwpyH1bX3FxcZg6tetR4uLiYiAmxuSIjGPEedSK7ZfvFNSHCGUXIQarYlKQ9JGTAxQUmB2FpuIAzLzgArz66qt+v49OSwu7zO11dahNTVU1b8SAAagN8v0NN9yAhIQEdYEF0OnxyIq3zeLtoa26WnG9SPn5wKBBOkVkrqMDBqA20EWVzvXcWlmpeh8BgKaMDNQGeddc0oABeGPHDtnrcLlclm7begm0/dxut6bbq6WlBZdccknQhxM6AMydOxcvvvgikpKSNFu3XFokMZgIIerCtk6BsG3Yg5J6NKunDXsKhseKMZMzGJkU9Hg8Yc1PpDf2FJSP28Nc3P7qsc86kQLTp08P+J2eT55oQeuEIOCcg69TyimXlbeHnNhD9bhVujzSR0NDA04//fSQvZVPLinBK6+8YkpC0Chsh+QUoZIA3Beci3UvFjsPH2okJ5TRl9PKS2Ixsv1x+FDSixHtmMfq3py8PUQouwgxWBXPREQa0SIpaLWDmZKn6axMTfxWL7OojBiqRcmTm6xn/0aNGuX380WLQr7RUZampiacccYZsoZb/utf/4rY2FhN1quGET0FiZxAkiTuC0Q2weFDw1+XHusjotC06CnIpCCJwEnDh+qJ28Nc3P7q8UxEpBEmBe3LKeWUy8rbI1TskiQxKagBf+8QjYyMRJEG75o9ePAgTj31VLzxxhsBp4mKisKf77wTgDN+dLMdkhPEx8fzBjkFxLoXi51vNIo0fKgVcUg6EpWRw4c64fcJmUOr4yiP1fI5eXuIUHYeT9XjliPSCJOC4U8nKvYUFAd7ClrD6NGjcdJJJyE6OhoAkJycjIsuugiJiYlhLfejjz7C5MmT8dZbbwWcJjExEevXr8c555wT1rqMokUbYjskO0n1807S2NhY5Ofns60T2ZyRN+WtgA9CEBnHyJ7KvIlNejHivGDF9qvn6554LjYXt796EWYHQGQXor9TUA88+DqTletdTuxWGLrKCmbNmoUZM2bg6NGjSEpKCmtbSZKE++67D6WlpWhraws4XXp6Ol599VUUFxcD5eWq16clthEiZWbMmIFdH33U67pq7ty5cLvdvEFOAbHurSXc4UPNrG+Rhg+1G6eVl8Si5PgTbltV8hAqkV7Uns94rO7NydtDhLKLEINVMSlIpBH2FAx/OlGxp6A49H4qs6KiIqzlU29utxvJyclhLaOhoQFXXXUVHnvssaDTDRo0CG+99RZGjx4d1vqMpsU7BXm8ITsZMWIELikqwtatW9HR0YGRI0dixIgRANjWiaxC7+FDRU0KGr0uHhOJtGNkUpD7LunFiLbF9tubk7eHCGUXIQarYlKQSCNmJwXNOBA65eDLpGBvVi4bn+C2lsrKSixevBibN28OOl16ejreeOMNyyUEAQ4fSuRPYWEhCgsL+30e6oYd9wXnYt3bA5OC5q1LBE4rL4lFSftjWyUns2L7nz17Np599tl+n6enp/f6//Hjx+PLL79UtGwrbg874fZXj0lB0kdlJRAfb3YUukiurvb7eWJ7e9jD1UXt3Rtw+aEkulxoCzavDkPpeQ4flhVv1N69QFKS5us3ipp6ce/eDdTV6RSRuRIOHQq8PXQesjG6qkr1PgIAsfv3hzV/v3iio4UZptJuNmzYgJtvvhlHDh1CPgAPgCwAmwC0+kw3ceJEPPPMMxgyZIgpcYbCpB+RdrgvEFmD2h5uVhg+NBg+fBaaHctE9mBkT0EivWiV3Lbb8KHDhw9HVFQUWltbe31eXFzc6/8nT57MpKABsrOzkRwbq8myuP3VY1KQ9FFSYnYEuikN9uXvfx/WsoeGWn44yso0X+QAyIxXh3UbaThU1IvFyxzMRcG+1Lnck7x/4ZirRSC+/vQnrZdIABZ6//qaA+AD77+XL1+Ov/zlL4jV6ILSDEwaEsnHofQoENa9PbCnoLJ1sd0TaUfJ8Yf7HomKw4f6FxMTg4suughPPfUUGhoa4HK5MGXKFEyfPr3XdPn5+cjNzVX0Whkrbg8tuVwuxSPnRUZG4owzzgB+/nNN1k/qMClI+li/HigqMjsKXaxevdrv5/Hx8bj88svDWvaOHTvw0ksvqZo3NTUV1UF6QJWWlqqMKrDq6mo88sgjIac75ZRTet4HZEXbt2/Hv//9b0XzLF++POx3qYlq//79eOKJJ/p9PmLECJxyyim6rnvz5s145513VM9fXFyMTz/9VLN4YmNjceWVV2q2PKfr7OzEvffei7tWrer3XS6A9wFUAYiKisK9996Ln/zkJ8JfBBqR9BN9GxBphW2dAmHbsAcmBZWty4rt3m69T8g+5PYUBNhWyR6c1FMQAPLy8nDDDTfg4MGDSEpKQkxMjN/pCgsLmRQ0QHR0tCbL4fZXj0lB0kdODlBQYHYUuqhNTfX7eVtcXNhl7mhtDbj8UDxpaagNNoEO9SElJcmKt83i7aG9uVlxvUj5+UBKij4BmWxQfj5Svv4au3bt6vnM4/Fg9KJFQH6+rutuO3BA9T4CAK3Z2aj94Qft4tFgv6cuzc3NWLZsGZ588smg02VmZ+PJF17AlClTDIpMX7yIJZKP+wuRNXD4UGOWFxHB2zlEWmFPQbIDI9qmkgS6aFwuFwYNGqT5Mp1MTU9BLbeZ07d/OHgVSaQRpQdBf6x2MLPC07ykPZfLhQsvvBDvvPMOysvLkZKSgqlTpyJf54SgFviuFzFVVlbirLPOwqZNm0JO+/zzz2OgTRKCWmE7JKcIdROC+4Jzse7twQq/LUTqKRgZGWlQJMbgfkxWwKQgOZ3d27/S8tl9e+iBSUExMClIRKo55eCrppx23zZRUVE46aSTDF+vaNtVtHis6JtvvsFJJ50UcoiOy3/yE+Dvf8fAgQMNikwbWgz9Zcfhw4jUYFsnsga991UzeymIlBS0Yk9BHsfJDtiOSVRK2qbadsz235vTt4fZ90udvv3DYd0+v0SCMbunoBbrV8oKT/NqweyTHGlDjxtIrOfwfPbZZzjuuONCJgTvv/9+3HzzzQZFRUSiYoKcAmHdW0u49SVqT0Gj42JPQSLjsacgicyItsn23xu3h7m4/dVjUpBII2YnBc1gtXjJ+sJpc3q0V+4D6j355JOYN28eDh06FHCa+Ph4rF27FldeeaWBkRmLPQWJ5GNbJyJAu2PB1KlT/X4+adIkTZYfLjsOH8rjOFkdk4LkBMHub7L99+b07cFOFNbFpCARqcaegtrOQ/piUlAMDQ0N+MlPfoLzzz8fR48eDThddnY23nnnHVx44YUGRkdEImOCnAJh3YtF7/rQavnjx4/3+/mECRN0X7cWRIpFC3YrD9lTZmYm2yoJi8OHGs/p24P3S62LSUEihcaNG+f381NPPTXsZdt1+FAirYjWU5CU+fzzz1FcXIx//OMfQaebNm0aPvnkExQXFxsUmb7CHWos2DRmvleJyGg8jhPZgyjDh+bm5uL000/v6XEXGRmJU089Ffn5+arWzWMUkf1Nnjw5rH2d1+5kBcHuL9q9DSvdv3nuJ6uy3pupyRoqK4H4eLOj0MWE5GTsrq7u9Vl0dDSGejxAeXlYy46srERyn2XLldjRAamuLvAEYcbmj7uxUVa8UXv3ArGxmq/fKGrqxb17t233ATNF7d2reh+JiopCzL59quf3J6mjQ5d9y25aW1vx0EMP4a677kJrWxvyAXgAZAHYBKDVZ9qFCxfi2WefRTz3H1ns/qOMyFeo9s4f5c7FuheLVXoKAl1DhY4fPx6HDh3CgAEDEBHBWyR64r5KVnb88ccjLi6OD6qSsLRqXxw+VD6n/x5nT0Hr4hUv6aOkxOwIdDMUQKm/L/70p7CXPTjQsrVQVqb5IuMgM14d1m2kAqioF4uXWVTjvH/hmKVFIL5+9zutl2g7UQCu8v71NQfAB95/n3POOVi7di2io6MNi80ILpcr4A+rcHsK8oKanITtnQJh23AWrevb4/EgIyMj7HWzHYaH249EVlhYiPnz5wMIr606PYFA+tJq+FAmBeXjPq0c25AYmBQkfaxfDxQVmR2FriRJQmtrq6Y3rysqKrBu3TpV8w4cOBAHDx4M+H1paanKqAJrbm7G/fffH3K6xYsXY+jQoZqv3yi7du3Cc889p2ieK664AnFxcTpF5FxbtmzB66+/rmremJgYzJo1C2+++aZm8aSkpGDZsmWaLc8uJEnC+vXr8eCDD+KzzZv9TpML4H0AVei6Gffb3/4Wv/jFL+DxeIwM1fL4I4SchO8UJLIHUYYPtdq67YDbj6xqxIgRPf9mUpDsjklB+Zy+T7OnoHUxKUj6yMkBCgrMjkJXLgBa92XpcLlQm5qqat7F55+Pxx57LPAEetRHc7OseNtzcy3dHjo6O5XXS0EBwKSg5lqPHFG9j7TFxWFESQle+OILdHZ2ahJPxIABlm7beti4cSNuvPFGfPDBB6EnBpCVk4N/PvUUZs3SvA+nJVj5xiiR0djeKRC2DbHoXR9m3oBjW9MPty2JzLd9cvhQEpUR7YttuDenJwXJuthyiQSi9uSampqKvLw8jaMJTW68vGggrYT7Ayw6OhrTp0/XMCLqtmXLFpx11lmYOXOm7IQgALz88su2TwjqeQzk8ZWchD0FiezBrg/EiBoXEYXP98Y/ewqSHXD4UP+Uls/p+zR7ClqXs1sukWCUHhhjYmIwcuRILFu2DJGRkTpFFZhTDuQ8ydlDd52cdNJJyMzM1HSZTvbee+/hvPPOw/jx4/H888/LmicxMRH/d9ttAICkpCQdoxNfuO8UdPqPEHIWtncKhOdjsehdHxw+1Lr4TkayKq2SgmznpCet2peTk4JK8feJcmxDYuDwoUQWNXHiRJx++umW+FFs9QO+1eO3Ey2eynS5XJg0aRJeeeUVU+OxutraWqxYsQJPPPGEovmWLVuG//u//0NGUxPwi1/oFJ1Y2FOQSBvsKUhEAJOCRGQ8rYYPZQKBRKG2pyDbcG9O3x68LrIuZ7dcIsEoPZiaffB1SlJQDSeWWXR61IlT6/mLL77AlClTFCUEp06dildeeQUPP/wwMjIydIzOWsJtQ07/EULO4tRjLoXGtiEWvRP4oiYFjYyLbZ7IWBw+lKyA7xQ0Hvdp5diGxMCWSyQQqx0YrRavWhw+VByiDdXixHpes2YNZsyYge3bt8uavqSkBJs3b8bHH3+Mk08+Wefo7EmUG5BEZmN7JyKAxwIA8Hg8ZodA5CgcPpSchMOHyuf0pKCa9lBcXKxDJKSUs1suEYWFPQXJSrQa8iXQMu2uqakJl19+OZYvX47m5uaQ0xcXF2P9+vV49dVXMXHiRP0DFJieST2n/wghZ+HwoRQI695ZRO0paKSICL4JhshIHD6U7Ebt8KGinAf1orR8Tt+nlW6v+Ph4FBQU6BMMKcIrSSKBKDmYinAiFiEGI7CnoDj4VKY5duzYgSVLluDzzz8POe3IkSPx+9//HmeffTa3uQxythF7ChJ1YXunQNg2xMLhQ/Vn1Z6C3FfJqthTkKgL23BvTk8KBpOeno6cnBx8+eWXkCQJKSkpuOCCC7jNBMGkIOmjshKIjzc7CsuJOHAAydXVsqaN3b8fKC/v9VnQeftMqwVXqHV6RVZWAhb94QoAEXv3yq6XHuXlQFSULvE4WWRlpfK68Ep2uXr2gyg1depHYmSkLvuWSF577TXccMMNqDt6FPnezzwAsgBsAtDq/Wz48OFYtWoVTj75ZMveqNKLnj+ceEFNThKqvfMmBZEzdHR0mB2C6dhTkMhYfKcgOYmTewoq5fR9Olh78Hg8OPPMM3HyySejoaEBaWlpbD8C4ZUk6aOkxOwILGkQgNIw5g86b1lZGEtWuU6d122UbKioF4uXWVSjvH+q/eY3AIAJ3j9N3HyzVksS0kkAvgzw3RwAHwBYsmQJ/vGPfyApKcm4wGyCPQWJ5GN7p0DYNsSid320tbXpuvxgRGlrfACLyFgcPpTshsOH+sfhQ7XTvS1jYmIQExNjcjTUF5OCpI/164GiIrOjsJyDBw9i7dq1sqYdO3YsTjzxxF6frV69OuD0paWlYUQWWLB1djvnnHMwePBgXdZvhKqqKjz55JOK5vnpT3+KyMhInSJyrm+++QavvvqqqnnT09Nx8cUXAwC+/PJLvPnmm2HHk5mZifPPPz/s5Yjmhx9+wC9/+Uts/Ogjv9/nAngfwEG3G6vvugvXXnut7X8ciIrbnZyE7xQksodw99XW1tbQE+lElAd1rNpTMNiNZiKRcfhQcpJgx2omwXpz+vYQ5bqIlLPmlSSJLycH4ItDFeuMjUVtaqqsaZszM/tt46Dz6lQfcuJtz821dHvoiIiQXS/dXIWFgEV/rIus7ehRxXXRLSY9vacdth46pHo5vhIHDrR02+6rtbUVd9xxB373u9+hpaUl5PSPP/UUis85x4DIrC3cC+Vg0zj9Rwg5C39YEhEgblLQSLGxsWaHQOQoHD6UqIso50FRcJ8OjG1FbGy5RAKx6wHT6uVSE7/VyywqrZ7KZP309+GHH6K4uBi/+tWvQiYE58yeDQAoLi42IjQKgm2ZnIQ9BYmsIZx9MTo6OuQ0Zg4farRhw4b5/XzevHnGBkLkcFr9luS1ComCw4dqw+lJQfYUtC5nt1wiwfCAKSbWiz3ocbFmh7ZRV1eHa665BrNnz8aWLVtCTn/zzTfjkUceMSAy+9Czp6Ad2iCRXE7/0U1kF8HOXccff3zI+Ts7O7UMRxGjz8kTJvR/C3ZaWhry8vI0XxcRBcaeguQkTk4K8p2C2rF7W7E6jm1HZFFWOrhaKVatOLHMRhDtB5jV6/n999/HBRdcgIqKipDTJicn45///CcWL14MlJfrHxzJwh8h5CTsKUhqFfFd54YKZ1+cNm0aysvL8f3332sYkXaMPs6MHTsWLS0t2LhxI2pra1FQUIDFixfz/E9kMCYFyW7YU1AbTt+n2R6si0lBIoHwYCom1os9aPVDzpdV24YkSbj77rtx4403or29PeT0xx9/PB566CEMHTrUgOichT0FieRjeye1xowZY3YIJFNERATOP/987Nu3D3/729/MDkcIxcXFKC4uhiRJPA4SmYTDhxJ1YRvuzelJwWDYVsTGlkskECUHTCsdXK0Uq1acWGYjiPZUphXrub6+HhdeeCFKS0tDJgRTUlLw97//HW+99RYTgmHQs53wRwg5CXsKkhopKSkYP3682WGQj1D7qtvtRnZ2tkHRKGPmgzo8xhGZhz0FyUmC9RRkG+7N6duDDzBbF3sKEgmEB0wxsV7swekXawDw7bff4uyzz8a2bdtCTnveeedh9erVyMzMNCAy5wr3+MLjEzkJ2zupMXv2bLNDcBw776t2LhsRBaZVUpDHEBKF2rbINtyb0+8zMSloXUwKkj4qK4H4eLOjsBx3TQ2Sq6tlTRu7f3+/93oFnVend4DJiTeiogLo7NRl/UbwHDwou166uXbt0ikaZ4vau1dxXXRLOHSoZz+IrqpSvZxey0xIsMz79V599VXceOONaGhoQD4AD4AsAJsAtPpMl5eXh/vuuw+LFi0yJU5Sxuk/QshZQrV3/vB0rmBPtBNpiccZImfSavhQXruTFTj5nYJKy8d9OjC7txWrY1JQJy6XKwrAeQAuADAGQAaAagA7ATwLYI0kSYc0XmcBgJMAzAUwDkAegAQARwFUAPgQwOOSJL2j5Xr9KinRfRV2lAKgNIz5g85bVhbGklWuU+d1G2UgVNSLxcssqmEIbx/B9dcD6Dooa/Z2oRtv1GpJujrZ+9fXHAAfeP99+eWX46677upKdpJm9Hx6jhfa5CRs7xRIRETgn7XxfFDRcE4d6teu5SIi9hQk68jJyUFlZWVYy3ByUlAppycF2VPQupgU1IHL5RoJ4AkAE/t8len9mwngJpfLtVySpJc1WN8kAPcDmBZgklTv3zgAV7hcrrcBLJUkaXe46w5o/XqgqEi3xdtVXV0dHnroIVnTTpw4EfPmzev12erVqwNOX1paqj6wIIKts9t5552HrKwsXdZvhEOHDuGxxx6TPb3L5cJ1112nY0TOtX37dvz73/9WNe/QoUOxePFiAMDWrVvx2muvhR1Pfn4+zjrrrLCXoxdJknDrrbfi4TVr+n2XC+B9AFUAYmJi8Ne//hXLly83OEKSgxfaRF3Y3imQ2NhYDBo0CAcOHOj1eWRkJIYPH25SVBSu7Oxs7N27t9/nZg5tzuMQkTPxnYJkFePHj5eVFAzWjpkUlI/7dGBsK2JjUlBjLpcrF8AbALrfjC4BeBfADnR1ODoRQCyAQQCed7lcJ0uS9GaYqx2B/gnB7wBsAXAIXR3QZqHrHjAAzAPwocvlOk6SpB/CXLd/OTlAQYEui7azzpoa1Kamypq2OTOz3zYOOq9O9SEn3o7Bg4Hc3JDTiUqKj5ddL4D3xMf2r4v25mZFdeGrKSOjp17aFOxrwTQOGiRsXbe0tGDlypX4m5+EoK/s3Fyse/FFTJo0yZjAHEjPpB5/hJCTOLX3Eclz3HHH4dlnn+11I2v27NlBexGS2ObNm4fHH3+83+fTpgV6FlZ/PM7oh9uWRMbhQ8kqpk6ditbWVnyybp3ZoTiC0/dpPsBsXfyFpL3HcSwhuAvAGZIkfdH9pcvlSgfwLwAnAIgE8LTL5RoqSVKNBuveDuDvAB6TJKnXYyEul8sNYBmAewDEeWNc63K5Zkl8CYcw7HrAtGu5AnFaea1Cj4s1Uev6s88+w9KlS7Fly5aQ07700ktImThR/6BINV5oE3Vhe6dgxo4di9jYWHz11Vdoa2vDyJEjMW7cOLPDciStEvhDhgzB2LFje13PDBs2rKteKyrCilEPPEaFh7clSGQcPpSswuVyYc6cOZidk6P6tTY8Hsvn9KRgMDzeiY1JQQ25XK5FAI7z/m8rgMWSJH3lO40kSYdcLtcZAL4EMARAGoD/B+CXYay6CsByAP+UJKnD3wSSJHUCeMjlclWj652GADADwEIA68NYN2lIyQGTB1fjcFuLQ6unMu1ap52dnbjjjjtw8803o6PD7+kAQFf5f3bddcDq1UhJSTEuQOqH7xQkko89BSmUoUOHYujQoWaHQRrxeDw4++yzMX78eFRVVSEzMxNDhgwxtfcnjzNEzsThQ8lqwrludnJSUOn+7fR9mtdF1uXslqu9n/r8+5G+CcFukiQ1APi1z0dXulwu1b9sJEl6R5KkNYESgn2mfQ7Axz4fnap2vaQ9ux5M7VquQJxWXqvQo15Equvt27fjlFNOwf/8z/8ETQhGRkbi6aef5nsvLSRYO3P6jxByFrZ3ImvQ8vrI5XJh+PDhOP7441FUVGT6cLAiXfsRkXG0Gj6UxxAie+Hvk8B4vBMbW65GXC5XArqGBO32cIhZngFQ7/13GoDj9YgrgA98/l1g4HqJLEnpiYwnPv2I9lSmCHUtSRLWrFmDiRMnYsOGDUGnjY6OxvPPP49zzjnHoOgoFPYUJJKPPQWJ7MHK+yqH9CZyJq16Cg4ePFiLcIh05eSegko5PSnI6yLrcnbL1dYsANHefzcA2BRsYkmSmgF86PPRAp3i8rt6n397DFwvhWDX4UOtFKs/Vo+fuugxfKjZbaOurg4XXXQRli9fjoaGhqDTpqen45VXXsGiRYsMio66hfujij0FibqYfcwlIiL98BhPItPimtvtdmP8+PEaREMUPg4fqg3+Hg+M53WxseVqZ5TPv7+SJKldxjyfBZhfb+N8/r3HwPVSCFY8YBYXF5sdgnCsWI9WwZ6Cx3z88ceYNGkSnnjiiZDTLlmyBFu3bsX8+fMNiIyUYE9BIvnYU5CIzMYn4omcSYvhQ+fPn4+oqCitQiLSDZOC8jk9KWjEdVFcXJzfz2fPnq3J8p3K3AH57WWEz793yZxnt8+/R2oYS0AulysPvXslvq7Liiorgfh4XRZtZ+6mJiRXV8uaNnb/fqC8vNdnQeftM61W5uTmYt/Gjaivrw84TURFBdDSosv6jeCprZVdL0DXO9v02t5OF1FRoagufMUdONBTL5GVlaqXE2iZRmlra8MDDzyA1atXo6OjA/no6vKdha4u6q0+08bHx+OBBx7ARRddZGiMJJ+cC2XegCTqwvZOZB0ulyvgTUUr78tWjp2I1NPixv+4ceNCT0RkEJ7P/FO6XZgU1L8dDRs2DLt370ZNTU3PZ1FRUex5HSYmBbUzwOff+2XOs8/n32kaxhLMXTg2ZOhuAC/pspaSEl0Wa3exAErDmD/ovGVlYSw5sBQAPwk1kU7rNkoyVNTLnXdqHwihEOHtI91GQcPu2StXarUkWSIBXOP962sOjr00dvr06VizZg1GjjTkmRMyCX/MkZOE+tHN/YHIGqy8r3K4NSJncvqNf3IWns/k47EhMK2u92JjY7F06VK8+eab2LNnDzIyMjBnzhwMGjRIk+U7FZOC2knw+XeTzHl8p0sIOJVGXC7XUgDn+Hz0C0mSNO2+FRMTg4iICOCZZ9AxdCiONjUhOT4eLpcLdQ0NiImKQlRkJJpaWtDZ2Yn42Fi0d3SgvqkJKQldm6C2vh5xMTGIjIhAY3MzACAuJgZt7e1obG5Gsne6mvp6JMTGIsLjQUNTE9xuN2Kjo9Ha1obm1lYkxcdDkiTUNjQgMTYWHo8H9U1NiPB4EBMVhZbWVrS2tyMxLg6dnZ2oa2xEUlwc3G43jjY2IioiAtFRUWhubUV7RwcSYmPR0dGha5n2Hz6Mx//5T7gAdHoPnm5JggRAcrmO/dvtxpRJk3D8ccf1KtOq1av7Tefq7IQLwI+vuELXMj33/PM4uG9fr1gBoNPtxgXnnouszEzL1tPhI0fwyD//2atM3dvVXz3FREZixYoVQpfJqvtTeXk5nn3hBbgkKeh+4q+eJowfjxPmz0drWxu2bNuGd996q99+0ulywQXAFWC/6zWdJGFEUREWnHii7vUUGxWFe++9F4+sXYv6ujp0tLcjJj4enZ2daG1qQn5UFF6KiUFVXR0iIyPxxz/+Eddddx0iIyNRX1+PiIgIxMTEoKWlBa2trUhMTOyqp5QUJHV2wg3g6NGjiIqKQnR0NJqbm9He3o6EhISuMh09iuTk5K4y1dUhpq0NUUBXmRoaEB8fj/b2dtTX1yMlJaWrTLW1iIuLQ2RkJBobG7vKFBeHtrY2NDY2Itl73qipr0dCezsiIiLQ0NDQ1fZiY9Ha2orm5mYkJSV1tb36eiR6PPAAwctUV4ekpKSuMiUmIqq1FdGAMWVK7ipVTUoKEjo6EAGgoaEh6I+qzs5OIFCZvO24zrsufzo6Onr+269MMTGIiopCU1NTV9sD0B4R0VUm7/yyy1RTg4SEhK4yxcfD3dKCWKB/PdXWIjExsesY0V0mAC3R0WhtbOwqk289ud39215TExK6y1RTE7xM8fFd+1NKivIy1dcjISKip54Ctr3uMgGoT0hARGtrV5kCtT3fMgFojonpXaZQ9eTb9vQuU3c9dZeptRWtR48GL5PvMQJAh8eDo/X1SJYkeWUKtD81NyMO6Dru1db2b3sREWhqCn6J3b0/qG57eh4j6uuPHfd8ymRIPXWXKSWlq54A+fWUnIy49nZEAvKOEb5lAtAaFYXmhgYkAYGPEYGO5d3np8ZGRLW0yKsnOftTfT3i2trkHfe6j+VNTXA3Ncmrp+4ytbaiNTFRXdvrrqeGBsS0tirfn4Cu/SkyUn3b6+joOu41NSGiuTn4OddPmbpJ6Dov+p4Ju899issUznWEBmVqb+/9hpDuMnX63PQyvJ7Unp9MOkYAXdcRnX5uFEqShJqamsDHCN9jeU2N9mXyxhHyGKG07Sm9hg3nOqKpqet6r6MD9TU1YZ1ze5WprQ3NSUnyj+XwXsPW13cdy+WecwHUJSUdO+dqfB0hp54CcblcvepJiU6XC61RUcrL1LftBfitIfs6ItxrI6OuI5qa4I6Nlf9bw9/+VF+PJLdb+e/cmJiueoqNPbY/ya2n9nY0Jiebfyzvsz8F+iXa1tbW8+++Zep7vvPV3n3cM7uetP6d662niIhjqZLuc1WwFGl7ezuOyr0uV/o71wL7U/c1nT/d90GCnXP9XQ/01Z1cPP3003vtTwhWJmi4P3nLkZSUhLq6upDxWgXT2dqJ8fl3a8CpevNNyMVqGEs/LpdrCoD7fT56QpKkx7Vez4wZM7BkyRIgJwcH4+NR9swzaMnKAgoK8NBrr2FbQwNQUIB3du7ES198ARQUoMLjQdkzzwAFBUBBAe7797+xo70dKCjAhm++wYZvvgEKCrCjvR33/fvfPdOVPfMMKjweoKAAL33xBd7ZuRMoKMC2hgY89NprQEEBWrKyUPbMMzgYHw8UFGDdRx9h4969QEEBNh85grXvvgsUFKAuLQ1lzzyDurQ0oKAAa999F5uPHAEKCrBx716s++gjoKBA9zLd/+9/oy41FbWpqTiakoKjKSmoTU1Fnff/e/6dnIwjiYn9yuRvuu7l6V2mvR5Pv1hrvTFURUVZup7KJalfmYLVU11amvBlsur+1J6b27WNQ+wn/uppR1tbT5ne+O47v/vJ0ZQU1AXZ73pNl5qKpowM3evp3hdeQPE55+CGe+7B2ddei87cXOwCMGnxYgydOxe7AESOHo2HLrsMg/Pz8e6776KhoQGHDx8GAKxbtw4bN24EAGzevBlr164FANQ1NqKstLQn4bR27Vps3rwZALBx40asW7cOAHDw4EGUlZWhxTsE8EMPPYRtu7pGyX7niy/w0ktdHc4rKipQ5tMr+L777sOOHTsAABs2bMCGDRsAADt27MB9993XM13ZM8+goqICAPDSSy/hnXfeAQBs27YNDz30EICuC7iyZ57BwYEDg5eprg5lZWU9F2prL7oIm7dvN75MpaWoOHiwp0y+P7j66h4CI2CZkpLw8GuvBZx/586dgcu0bVtXmd5551iZcnO72p7SMpWVHaunxYvxzhdfAPBTT2VlOOgte68yTZqEta93jVjer576tj1vGzhYWyuvTAcPoqy0VHmZnnkGFbm5XWUK1vZ8y7RkCTZ6Ywja9nzLNGPGsTLJraeKCnX1pKZM69YdK9P27fLK5Ls/DRzYddyTU6Zg+9Mnn3SVae/egG3vjTfeQDBHjhw5ViY1bU/PY8SLL/otk2H1VFuLstJStHiPR7LracUK7Ni713+ZAh0jfMs0ejQeeuWVwGUKdizvPj+9/rr8epJTphdflH/c6z6Wf/ih/HrqLtP27VjrHb5bcdvrrqdXXlG3P3WXaehQ9W2vtrarTO+8I++c26dM3TeCOj2ermO0z02fo0ePqi+T2usIDcq0bt263k+9e/9dn5jY85Hh9RTO+cmsY8TixWiJ8b190qWtrS34MaL7WN7YqG+Z5B4j9LyGVXsd8eGHXWXyTtdTJhXn3F5l2rULD1122bEyyTmWJyV1/SZUes697LJj51yNryPk1pM/bre7Xz3JVZ+YiG2jRysvk8zfGorPT2qujYw8Rnz4Id6ZO1dZmfruT888gzpv8lbR9V53mebOPbY/ya2nvXtx34oV/stk1LHcz/7UFuA9lpWVlQHLFCzRI1Q9af0796WXcPDgQXi8Dwj0nN+DJK62bt0qv56U/s61wP7kO6RnX93bIViZjsp8yMLU/cl73LvMex60Cxe7BGvD5XL9B8Ai7//eLknS/8iY5xQAL3v/t16SpMRg04cRWyGA/wLI9H70JYDjJEnSLL3tcrnGANjS3VNw48aNGDlypLKnd5U+HaX2KWslT+aF+0SywjLt378f999/P+SYOXMmFi5c2KtMt9xyS8Dpr7/+el3L9Nhjj6Gqqsrvui+//HJkZ2dbtp4OHTqEv/zlL7LqBejqMfv//t//E7pMVt2fduzYgccee0x2XfiaMWMGSkpK0Nrais8//xyveG9ShmPcuHFYtGiRLvW0f/9+XHvttXjvvfdQ672JlZKSgvr6erS3tyPe21OwqakJQ6Oi8FlMDNwffID4MWPk1dMPP6CuuBhJn34K95Ahyupp/35EFRWh6Ztv0Jmbq67tVVcDhYWo+eorJIwcGbrtbd2KxIkT4dm+HfXp6aHb3u7dODp+PKI++QTRRUXGlCk5GSgvR82kSUj45BNEDB2KhoYG3Hvvvb16Tfhavnw58vLy/NfT4cPoHDoUFe+9FzAxOHHiRJxxxhny2t7Bg2gfPhz1mzcjZexY+WWCzzGiogINY8fC/emniB0xQt4xYt8+tIwcidbPPkPi6NGhjxE7dyJh9Gh0bN+OowMGhN6fduxA/ZQpSNm8GSgokF+mLVuQMGkSIr7/Hg0DB4Y+7u3Zg/px4xDx6aeIKSqSd9yrqkLzqFFo/+wzJIwapewY8c03SBk3Dti5E7WpqfqUqbue9u5FzIgRaPn2W7RmZck/lh86hI5hw3D088+RPGZMeMe93bsRN2oU2r7/Ho0DB/o9P4W6Trruuut6jpOq2p6ex4hvv0Wytz5rUlLUnXPV1lNCAjp27MDRKVOQ/NlncBUWyqun8nLUTpyIuE8+QeSwYcqvI/bvR+uIEWj+7DMkjRmj/DriyBG4hw7F0a1bETV0aPjXETU1QGEhar/6CnEjRsg77h0+jIhhw9CwbRvcBQXKro2++w6tU6Yg8csv0ZmXp6ztVVfDNWQI6rZsQczw4equ9w4cQFtRERo/+wzJ3mO+ouu9w4fhGTYM9du2IaKwUPH13p/+9CdIkoSk6mosf+QRPLx0KepSUwEAI0eOxHnnnRfeNazS6wgNytTe3o7q6uqem09J1dX4WVkZ7iotxdGUFJxzzjkYOnSosfWk9vxk0jFi38aNSD35ZDxw+eU46t0u3S655BKkpaUFPkbs2IHEMWPQuWMH6tLStC+T3GOE3tew4VxHlJcjfvRotG/fjvoBA8I65/Yq0/ffo3nKFCR98QWk/PzQx3LvNWzdF18gafRo+efcXbtQN2ECYj75BFHDh2t+HSGnnu655hrUeo9Vvn79619DkqSeevrd734X6HKkn8SaGlzz178i6ttv0ZSREd5vdz+/NRT9dld7bWTkdcTXX8NdXIzYbdvQmp2t7n7Etm1ImjAB7h07cHTAAGX3I/buRdPo0ej89FPEjxolv562b0fjlClI/vxzoKDAnGO5n/3pH8uX95x/feXm5uLHP/6x3zK1t7fjvvvu6/cbdtq0aTjppJPEqCetf+f61NN7772HDz/8EIk1Nbh+9Wqsuu46v9sQAH72s5/B5XLJqyelv3MtsD89/PDDOHDggN9tM2rUKJx77rlBz7nd11DBzJw5E9OmTTNvf6quxrYhQzCrd0/BsZIkbQ0auOA4fKh26n3+LbfXn+909QGnCoPL5coC8BqOJQR/AHCylglBX74nDI/H03PSBNBriIXY2GNFj4iI6DVd90EM6Dq4dYuMjOz1ne888fHxPf+OiopClPdJGJfL1Wu67iFLACA6OhrR0dEAup768p0u0edpzxifpxiNLFMo3U+u+JYpGL3L1B2PP93d761aT91xKiF6may8P6nVHV9UVFSvbREOl8uleT1FRUVh1apV+M1vftNvqDzfp7AaGhoAdNXdHb/+NZKuvx5ISACU1FNNDeAddkFRPXl748RGRwPe9qK47VVXd8WfkADIOUYkJADeoQFlt72jRwHvMgwpk1dKTQ3gPSbGx8f3PAHoT/dy/Jbp8GG4Ozt7hpn1p3sbyWp7Bw8ior291/JUHSMaGgCf/UnWMaKlBdHe5Yc8Rnjjlb0/eTxd21xpmRISAO/QOLKPe/X1PW1K9nGvuVl5mSIi1NWTmjIlJBwrU1QUor2xyzqWHzoET0dH13q9T9CqPj95lxkZESHr/OSPv2sjRW3PZzmaHyN8YlJ9zlVbT91lqqlRXk+1tT3HaFXXEa2tiPL+v+LrCO9+nRgX13PMCeuc611eckICEBkpr0zeeeJjY3v2Y9nHvagoRHt7xClue971JsXH99S7quu9tjb1bc8bQ0JsbM/+qeR6z+12o6OjAy50nRd9n7Hv3lfDuoZVeh2hQZkAoNq7XgA9ZXL7PGhteD15qTo/mXWMaGjotc26hTxGqDmWKymT3GOEEdewaq8jvNNF9Jku3HNuVGQkorw3QmUdy32vYZX+1qir69n+el5HBKsnf1wuV7+yy+WWJES1tiovk1eo3xoBy6TFdbmXoceI2FjA+ztY9f2IhATA29tN1f2IpqZj+5PceoqI6CqvvzIZeSzvsz8F6uMW6d3PApXpkksuwRNPPIH6+q7b1WPHjsXChQt7zuFC1JPWv3O99XTSSSchLS0NFe+/31UmBBYbG9uzLTX/nWuB/SnYveCg13vec66/6wF/TN2fvLHaaehQgElBLR32+XeGzHkyff59RMNYAAAul2sAuhKCQ70fVQE4UZIk/925yHRavYTVDMF6HVu5XGo4rbxGCmfbWqFeNm3ahCuuuAKff/65rOnPOOMM3HfffchqaQGuv17f4Ei1YMdH3wtkNazQrom0EuxHJ8D9gYj0F+w4w1GYiIjIKkJdN2dnZ+P666/H/v37kZiYGPLhPDtxuVyYMmUKpqSnAz/7GQoKCvCFT8LXV/e77ZwqWDvibzOxObvlautbn3/ny5wnz+ff32gYC1wuVxKA9QDGeD86hK6E4E4t10PaUnLA5MHVONzW9uB7saZVnWq1nB07dmDFihWYPn26rITggAED8Pjjj+O5555DVlaWJjGQOcJNCjr9Rwg5S6ikIBGJw643iawcOxFph9ck5AQulwuZmZmOSgj6E+yhH/4eD0y0+27UG1uudr72+fc4l8slpxfm5ADzh8XlcsWj612Fxd6PatE1ZOg2rdZBpITVD+BK47d6eUUWzrbV42It3Lo+fPgwrr32WowYMQL333+/rCfMf/SjH2Hr1q244IIL2NZsINx2yTZAThJqf+H+QER643GGiABg+vTpZodARAbp9A6d6Y/Trwvs+hCYEzApqJ3/Auh+aVA8gCnBJna5XNEAZvh89KYWQbhcrhgALwKY7f2oEcCpkiR9qsXySV88YNoD61FMIj3BtW/fPlx77bXIy8vDPffcg44g76/oNnXqVPznP//BU089hYwMuaNUkx3wQpuoC5/KJ7IHu567OHwokXPMnz8fo0aN6vl/3/dxEVmBXc/FeuD5XR32FBQb3ymoEUmS6l0u1xsAFnk/WgZgY5BZzgbQ/SbLIwDeDTcGl8sVCeAZAAu8H7UAOEOSpA/CXTYZw67Dh1opVn+sHr+daNVT0KyLk6amJqxatQq33XZbzwu7Q0lKSsJtt92Gq666SqjEJomBbYKcJNQxl+drInHYdX+0a7mIKLDCwsJ+n0VERODcc89FfX096uvrkZGRgd/97ndMHhCRo/C6yLqYFNTWX+GTFHS5XPdIkrS170QulysOwK0+Hz0oSVJ7OCt2uVweAI/7rL8dwLmSJL0eznJVq6wEHD7mtBquzk4kV1fLmjZm3z6gvLzXZ0Hn7TOt1hIOHQq4fvfu3cDRo7quX0+uxkbZ9QIA8a2tum9vp4qoqFBUF75895nIykrVy/EVd+CArLru6OjAf/7zH9x+++2o3LsXAwAM8H7nAZAFYBOA1j7znXPOObj77ruRnZ0ddqxkXewpSEREdmLlc5eVYyei0IYOHYrPjhzp+X+Xy4Vp06YFnD4hIaGnl6Db7ZY1AgwRWUuw4UOdzoh7Fbz20geTghqSJOk/LpfrPQDHAYgG8G+Xy3WGJElfdk/jcrkGAHgCwDDvR0cA3O5veS6XqwDATp+PlkuStMbPdC4A/wCwxPtRJ4BLJEl6MawChaOkxLRVW5kbQGkY8wedt6wsjCWHdr6J69ZbHFTUyx//qH0ghFyEsY/4tMPh4SxHBQ+A071/gcwB0N2tOz8/H/fccw8WL16se2xkbewpSHQMfzASicOJ+yN7CBFZ3ymnnIL43buxY8cOJCQkYPLkyRgxYoSseZ143CPrYnuVj+d3siMmBbV3IYCP0dXxowDA5y6X6x0AOwAMBHAiunIMwLHefDVhrnMFgKU+/78DwByXyzVHzsySJF0T5vr7W78eKCrSfLF2J0kSymQm0GbMmIEZM2b0+mz16tUBpy8tLQ0jstCeeOIJ7N+/3+93y5YtQ0pKiq7r11NzczPuv/9+2dMnJCTgJz/5iY4ROVdFRQXWrVunat4TTzwRY8eOBQBs374d//73v8OOZ/z48ViwYEG/z7dt24Y1a9bghRdeQEtr3/5/veUCeB9AFYC8vDz88pe/xKWXXorY2Niw4yOxyU3osacgERHZiZXPXVaOnYhCi4iIwIIFC/z+xguFxwcie2JPwcB4r8K6mBTUmCRJFS6XawG6egNOBOACMM/75+sgunr+vaHBagf1+f/h3j+5tE8K5uQABQWaL9buXABqU1NlTduSldVvGwedV+f6qE9PR22A5IeUnw/ILJeIpKYm2fUCAJ2JiWz/Oul0uxXVha/23NyeemlTWKeBNGVk9Krr7777DitXrsSGDRsUL+uGm27Cst/+FnFxcaEnJlvQIvHLnoJEx/CHJ5E47Lo/2rVcRhkwYEDA7zIyMgyMhEh7PD6QlbC9ysekoDocPlRsvJOkA0mSvgEwHV29914FsAddr4o6AGAjgP8HYLQkSf8xLUgikk3pCYgnLP2Es219kyda1ZHH4wEAtLS04JZbbsG4ceMUJQSTk5Nx8y9/CQC4+uqrmRB0mKysrLCXweMNERFZjZXPXcFi5/BioQV6ICo/P5/XwWR5Vj62ERGpwZ6C1sWkoE4kSWqVJOlRSZJOkSQpT5KkaEmSMiRJmilJ0h2SJB2SsYxySZJcPn9rAkz32z7TKfrTvPAUFqseNIP9CLZqmdRyWnmNpFVSUEv/+te/MG7cOPz2t79Fa4ihQrt5PB789Kc/xfbt23H55ZfrEheJY/z48X4/nzdvnqz5g7V79hQkOobnXyIia/DtMThw4ECcffbZJkZDpA1ehxDZE3sKqsOegmLj8KFEgnG5XLKeMrXSQdFKsfpj9fjtRKSk4JEjR/Czn/0M33zzjex5oqKicN555+EXv/gFRo0a1fVhfb2mcZF4pk6diq+//hptbW09nxUUFCA7OzvsZfP4REREIrLr+Yk9BbVx8cUX42B8PICupKBd2ws5C9sxWQnbq3w8vwfGdmRdTAoSEYXA4UPFIcLwoXV1ddi4cSM++eQT2T0Dc3JysGLFClx++eUYNKjva2DJ7nJzc3HppZfik08+QU1NDfLz83HcccfJbocckoNIHu4PRNZg5X3VyrGLxOVy8ZqYiIgsobOzE+D5XzFeM4mNSUEiwWhxk1g0VoqVxBZOW1I7b2trK8rLy7F9+3bs2rULBw4ckP2k2IwZM3DDDTfgjDPOQGRkpKr1kz3k5uYiNzdX1bzBhivh8KFERCQiXv8TERGRHRQXF2PXZ5/1+zw5OdmEaMRixAPMvKbUB5OCRIKx6sHOzt3p2VNQHHoPH9re3o6DBw+iqqoKBw4cwMGDB1FeXo6Ojg5F60pLS8Of//xnLF26lO2BwsZ3thId43a7+V4PIouz8rmLw4cSUSBWPraR87C9yjd06FB4vvii332hadOmmRSRNbCNiY1JQdJHZSXgfUcAKZNcXY329vaQ08Xs2weUl/ebN6A+02ot4dChgOt3794NJCToun49udrbg2/bPhI7O3Xf3k7lOXhQUV34itq7F/D21ousrERydTUOHjyIb775BkeOHEF9fT2OHDmCjj43m/v27fIAyAKwCUDfwUNdLheWLVuG22+/HQMHDlQVJ1FfTAoSHRMsKcj9gYj0xuMMEQXC4wORPcXFxeG8887D008/jba2NgDAhAkTMGPGDJMjMx97CloXk4Kkj5ISsyOwrGvkTlhW1u+jUoXTa+kiE9ettwiE2Lb+3Hqr9oEQBkJFXXTzaYdDwlmO1xwAH/j8/wknnIB77rkHo0aNCnPJRL15PJ6A38XzARxyGI/HI+vhKSIyl13fh8uegkRERM4zfPhw/L//9/+wd+9epKamIjEx0eyQhGDlazqnY1KQ9LF+PVBUZHYUlvTXv/4Vra19+x/1N3v2bEydOrXXZ6tXrw44fWlpaZiRBbd27VocPHjQ73eXX365pW9cd3R04J577pE9fUpKCpYtW6ZfQA52+PBh/POf/1Q17/z58/HGG2/gsccewxGVvQ2Brp6D7wOo8v5/SkoKfv3rX+O6667j+91IF3FxcUhPT8ehQ4d6fR4VFYXhw4ebFBWROYIdZ/mjlMgauK8SERGZi+di5SIiIpCXl2d2GJbBNiY2JgVJHzk5QEGB2VFYUl1aGlpaWkJO15qd3W8b16amBp5B5/qoT09HbYAn96X8fEsPH4qOjuDbtg9PWhrbv06khARFdQEAjY2N+Pjjj/E/998va9+SKyEpCTddeSV++9vfIi4uTrPlEvlz3HHH4bnnnuv12ezZs4P2IiSyIz58QWQNdr0RZNdyEVH4eHwgIqfh8KHWxaQgEenO6gdwpfFz6CD9yKmL+vp6VFZWYv/+/aiqqsJ3333X74XQasTGxmLYsGGYkZkJvPYali9fjuPPP58JQTLE+PHjERsbiy1btqCtrQ0jR47E+PHjzQ6LyHDBEuFWv94gcgor76scPpSIiIgoNCtf7zkBk4JEgpF70BTt4GrnH8GibWsnC1QXHR0dKC8vx8aNG/H999+HvR6Px4OMjAykp6djwIABGDp0KLKzs+F2u5FcXQ289hoA9lghYw0fPpzDhZLj8bhLRGbi7wIiCoTHB7IStlfSAnsKWheTgkSCsePBzo5lCsbOCVKzdbellpYW7Ny5E/v27UNVVRX27NmDxsZG1cvNycnB0KFDkZaWhszMTAwcOFDWsIy8OU1EZCy+U5DIGoy4SUREJBIe24iIyCqYFCQSDC8kxcM6EUdLSwveeecdfPDBB2htbQ1rWVFRUSguLsbkyZMxcOBAVctgUpCIyFg87hKRmTh8KBER2QHvc5EW2FPQupgUJLIoK90U4wGctPD222/j8ssvx/bt28NaTnJyMlasWAEAiImJCWtZVtoPiYjsgO8UJLIG9hQkIiIici5e74mNdzOJBCP3oBkZGalzJERiOHz4MC677DLMnz8/rIRgdnY2br31Vnz//ff4yU9+EnZCEAh+c5qIiLTHhzGIyEy8wUVEgfD4QEROw4fArIs9BUkflZVAfLzZUVhScnU1IhoaQk4Xd+AAUF7eb96A+kyrtcTDh9EcYP3u3buB6Ghd16+3lJoa2UMCJXZ06L69neDIkSP429/+hn/+85+ob2hAPgAPgCwAmwCEGjw0KSkJmZmZyMjIQH5+PlatWoX09HQAQF1dnSYx8uY0EZGx+E5BIuuz677K4UOJiMgq7HouJmNx+FDrYlKQ9FFSYnYElnW53AnLyvp9VKpwei1dZOK6jXCd0hl+9zs9wnCUNAA/9/71NQfAB34+j4yMRFFREaZOnYr8/PxeFw9RUVGax8ikIBGRsXjcJbIGu97AsWu5iCh8PD4QEZFVMClI+li/HigqMjsKS/r73/+O+vr6kNOdeeaZKCgo6PXZ6tWrA05fWloaXmAhPPbYYzh06JDf71asWIFoi/cUvPvuu9HZ2Slr2sTERPz4xz/WOSL7qa2txV//+lesWbMGLa3++wHmAngfQJX3/yMjIzFkyBBkZWUhJycH+fn5AZN/vj/StPrBxpvTRETG4rDNRNZn1xvn7ClIRERETsKegtbFpCDpIycH6JOwInmODhiAOhnvC3QVFgL5+b0+q01NDTyDzvVxdMAA1HZ0BF63xZOCdWlp6AhUvj6kpCS2fwWam5tx77334o9//COqgw2B66MDwIQJE7Bw4ULEyxyqWI8EHpOCRETG4nGXyBp4A4eInIbHPbIStlfSG9uY2JgUJBKM3INmpIzEoSh4IiB/Ojo6sHbtWvzv//4vdu/erWjeJeecg8Rx4xTN43sjWas2yR4rRETG4nGXyPqs/NsgWOzsKUhEREROYkRPQdIHH7UlsigrJQXtgCcz7XR2duK5557D5MmTsXTpUtkJwQEDBqD0uq63O+bm5ipeL3sKEhFZH4+7REREJCLeMyAiOobDh4qNv6qJBMOegmJSUgY+JRzYxx9/jGnTpuHss8/Gl19+KWuegQMH4rbbbkN5eTlWrFihet1MChIRWR+Pu0TWwCfHiYiIxMVzMWmB7ci6OHwokWCsmhRkIoyCOXz4MG6++WY8+OCDsttKRkYG/vd//xeXXXYZYmNjAQAtYcSgx/ChvDlNRGQsHneJyEwcPpSIAuHNcSKiY9hTUGxMChIJxqpJwWDscABnT0F1Ojo68Le//Q0333wzjhw5ImuehIQE3HTTTbj++uuRkJDQ67tw2pIe7ZA3p4mIjMV3ChJZg117CkZEBL6FMmDAAAMjISIiIjKXXa/3nIBJQSKLCvaDlLTHk5kykiTh2Wefxa9//Wts27ZN1jwRERG48sor8b//+7/IyMjwO41oSUHenCYiMhYfxiAiM0VERCAvL6/fO7Gjo6MxbNgwk6IiIhHwngFZCdsr6Y1tTGz8VU0kGLkHTSvdFOOJwFm++OILzJs3D0uWLJGdEPzRj36Ebdu24d577w2YEAS0Swpy+FAiImvicZfIGuz85PhJJ52E6OjoXp+dcsopPD4RERGRoxhxvWf160ZRsasR6aOyEoiPNzsKS0o6cgTt1dWhJywv7/dRcrD5/EyvpcTDh9EaaP3l5YDFe1QlV1ejpUXeG+3iW1t1394iqqmpwV133YXHHnsMnZKEfO/nHgBZADYBaO0zz+mnn47f/e53GD9+vKx1qL0Y0Osigjd/iIiMlZqaanYIRORwubm5uOKKK7DzrbeAsjJccMEFyJgwweywiMhkvHFNVsL2SlpgO7IuJgVJHyUlZkdgWZfKnbCsrN9HpQqn19IlJq7bCCuUzvDHP+oRhtBSANzq/fNnDoAPvP8uLCxEWVkZFi9erGgdTAoSETnb5MmT8cYbb/T7vLCw0IRoiEgNO9xASktLQ1pxMQAEHeWCiIiIyInYU1BsTAqSPtavB4qKzI7Ckv75z3/i8OHDIacrLS3t99nq1asVTa+lRx99FEeOHPH73bXXXmv55Mn999+P5uZmWdPGxcXhiiuu0DkiMXz66af4zW9+gy1btwacJhfA+wCqAMTExOCXv/wlbrzxRsTGxipen1ZJQQ4fSkRkTXFxcZg6dSo2bdrU85nH48Hs2bNNjIqI+uINHCJyGh73iMhp7DxcvN0xKUj6yMkBCgrMjsKS6tPTUdvZGXpCP9u3NtiQWjrXx9EBA1ArSX6/cxUWAhY/GRwdMACNjY2ypm2Li7N1+z98+DAeffRRrF27Fp9++qns+U5dvBg33HMP8vPzQ08cgGg9BT0WHxaXiMiKTjnlFGRkZGD79u2Ii4vDhAkTkJeXZ3ZYRCQTbxIRERGZi+di0ht7CoqNSUEiwfBgR6Lq7OzEXXfdhVtuuQX19fWy55s9axbw3//i7rvvBsJICIaDw4cSEdmHy+VCcXExir1D9xGRePjkOBE5DY9tROQ0vN6zLiYFiUh3djgR2KEM4di8eTOuuOIKfPLJJ7LnycvLw1133YWzJ08GhgzRMbrQOHwoEREREREREREROR3vZhIJxunJJxJLZ2cn/vznP2P69OmyE4LR0dH49a9/ja+//hrnnHOOEG1arxhEKBsRERGRlfD6iYjsiMc2IqJjOHyo2NhTkEgwkZGRZodAfig5CUkB3q1oNXv37sWyZcvw2muvyZ7nzDPPxF133YXCwkIdI1NOj4sIt9vNixMiIiIiP3iNREREJC6ep0kLHD7UuthTkEgwcpKC8+fPNyASZeySCAvEaSezF198EePHj5edEJw1axbWr1+P5557TriEIKDP8KEcOpSIiIhIOaddVxORM/DYRkR0DHsKio09BYkEExUVFfT76OhojB071qBoSA0rJ0gbGxtxww034P777w85bUJCAm688UZccsklGGLyOwND0aunIBERERH1xxs4RERERPbGnoLWxaQg6aOyEoiPNzsKS0qurkZydXXA7y+88EKk1dUBdXV+5w2ovFyD6AJLPHwY7YHWr/O6jZBcXQ330aOypo2OjrZkmTdu3Igbb7wRFZWVyAfgAZAFYBOA1j7TnnbaaVi9ejWGDh1qeJxq6HExwgscIiIiIuV4DUVEdsRjG1kJ2yuRszEpSPooKTE7Ass62fsXUFlZwK9KVc6nhaUmrtsIP1Y6w5/+pEcYupoB4H0/n88B8IH33/Hx8bjnnnuwbNkyS11E6jF8qMfjCXsZREREREREREREVmNET0Er3Xu0EiYFSR/r1wNFRWZHYUnvvPMONm/e7Pe7U045BSNGjAg47+rVqwN+V1paGmZkwT3yyCOoDtBTUO91G+Ghhx5CnZ/emf5ER0djxYoVOkekjba2Ntx888146umn+32Xi64kYZX3/6dOnYq1a9di+PDhRoaoCQ4fSkRERGQcDidFRE7DYxsROQ2v96yLSUHSR04OUFBgdhSW1PHDD6gNMPRke25u0O06+6KL8PLLL/f7/OSTT9a9Po4OGIDaQF/aoC0cHTAAtTJ7hkVHR1uizA0NDTj33HP9thlfnQB+8Ytf4JZbbkFkZKQxwWmMSUEiIiIiIiIiIiZsSH/sKSg2JgWJBBMVFRXwu1AHwlGjRuG///0vampqej5LTk7G6NGjtQovIEmSdF8HaefgwYM47bTT8PHHH4ec9oknnsCM8883ICr96DF8KC9MiIiIiPzjk+NE5DQ8thGR0/B6z7qYFCQSTLCeWKEOqAkJCVi6dCk++OAD7N27F1lZWZg9ezYSExO1DtNxlJzMRE+Q7ty5EyUlJfj++++DTrfknHOAZ57BjBkzDIpMP+wpSERERERERERERE7HpCCRYMLpKQgAKSkpOPXUU7UMiWzk/fffx5IlS7B///6A00RHR+POO+/ET089FXjmGQOj048ePQU9MoeTJSIiIqJj+OQ4EdkRj21kJWyvpAUjegqyreqD3RyIBBNOT0Ezid47Llwib3s5JEnCqlWrMG/evKAJwdTUVLz55pu45pprLF9mX3qUxU7bh4iIiEhLvE4iIiIici5eC4qNPQWJBBNuT0HSh5W3/dGjR/HjH/8YTz/9dNDp8vLy8Oqrr2LUqFEGRWYcDh9KREREJAYrX1cTEQXCYxsROQ17CloXk4JEggmWFLR7bzy7EKmetm3bhrPPPhvffvtt0OnGjRuHV155BTk5OQZFZiw9hg9lUpCIiIjIP97AISIiEhfP06Q3tjGx8Y4mkWCCDR/a3t5uYCTky2ons/379+OWW27BtGnTQiYE586di3fffde2CUGAw4cSERERiYLXUERERETWZ8Q1Ha8b9cGegqSPykogPt7sKCwp5vBhJFdX+/3OtWuXsNs18fBhdNbW+v+yvNzQWPSQePgw2gLUS18RERGmlbmjowOPPPII7rzzTjQ2NSEdQLr3Ow+ALACbALR6P7vyyitRVlaG6OhoM8I1DIcPJSIiIiIiIr3wxjVZCdsr6Y1tTGxMCpI+SkrMjsCyBgAoDfRlWZlxgSi0PNiXAsct16VKZ/jzn/UIIyQPgMu8f4HMAfBpTAzuv/9+LF261JjATKbH8KG8wCEiIiLyz4h3zBARiYTHNiJyGl7vWReTgqSP9euBoiKzo7CkpqYmPPDAA36/O/744zF58mSDI5LnoYceQl1dnd/vSktLjQ1GB4899hgOHToka9qIiAhcc801Okd0TEdHB26//XY8+Le/BZ0uF8D7AKIGD8bGl17ChAkTDIlPBBw+lIiIiIiIiIiISBtGJAV5700fTAqSPnJygIICs6OwpIi2NtSmpvr9rmHgQGG369EBA1Dr8fj/UtCYlTg6YABqOzpkTevxeAwrc1VVFX784x/jlVdekT3P8//+N5LGj9cxKvFw+FAiIiIi4/DJcSIiInHxXEx6YxsTG+9oEgkmIiJwrn748OEGRkK+RDuZSZKERx99FKNHj5aVEIyPj8fNv/wlACApKUnv8ITD4UOJiIiIiIhIL/x9SEROE+5xLy0tTfd1kH9MChIJxuVy+R3WMTk5GRkZGSZERIBYJ6Hq6mpccMEFWLp0KWpqaoJOGx8fj//7v/9DRUUFLr/8cmMCFBB7ChIREREZhz0FichpeGwjIjpGzjHxhBNO4LHTJLyjSSSgkpIS5Obm9vx/fHw8LrjgAh4oLUKSJN2W/eabb2LChAl48sknQ0579tlnY9u2bfj5z3+OlJQU3WKyAu47RERERERERES8R0LaCPchsJycHKxcuVLLkEgmvlOQSECxsbG47LLLcPjwYTQ1NSEnJ4e9kkxm9gVTU1MTfvnLX2L16tUhp01OTsbjjz+ORYsW6R+YRegxfCj3SSIiIiLlzL6uJiLSA49tROQ0wTpFyD0mJicnB/2ex1Z9MClIJCiXy4X09HSzw5BNz95xTrd582ZcfPHF2LZtW8hpJ0yYgH/9618YOXKkAZFZB4cPJSIiIjIOhw8lIiIici6513u8LjQH72gSEcmg5CSlVYK0vb0df/jDHzBt2rSQCcHIyEj84Q9/wKZNm5gQ9EOPiwxeuBARERERERGR1fB+BonC5XLxYTITsKcg6aOyEoiPNzsKMlDSkSNAXZ3/L8vLDY1FD4mHDyO5ulrWtC6XK+wyl5eX4/rrr8dnmzcjx/uZB0AWgE0AWn2mHTFiBB5//HFMnjw5rHXaGYcPJSIiIjIOb+4QkdPw2EZETqPF8KHd03IEOmMxKUj6KCkxOwIy2GXBviwrMyoM3ZyvdAYZ7/4LpgDAswG+mwPgA++/V6xYgTvvvBNxcXFhrc/u+AONiIiIiIiI9MLfnERExyg5JrrdbnR2duoYDfXFpCDpY/16oKjI7CjIQA899BDqAvQULC0tNTYYHTz55JOoqqqSPb2aMtfW1uLGG2/Ea6+/7vf7XADvA6gCkJWVhYceeggnn3yy4vU4EYcPJSIiIhIDr6GIiIjMxXMx6U1pUlDNd6Qek4Kkj5wcoKDA7CjIQHVpaaj1ePx/aYO2UJ+ejtrmZvkzKCzzZ599hiVLlmDnzp0hpz150SLc+uijGDBggKJ1OBmHDyUiIiIyDm82EhERETmX0uFDA4mKitIiHOqDdzSJSBN2H/tZrxsbkiThwQcfxKxZs0ImBJMSEwEA9957LxOCCrGnIBEREZEYeA1FRHbEYxtZCdsriaSjoyPgd5GRkQZG4hxMChIRyaDHBVNbWxt+8pOf4Morr0RLS0vQaRcsWIBXX31Vt1ichj0FiYiIiPTD61Uichoe94jIaYJ1EFFyTGxvbw/4HXsK6oN3NImITNDQ0IAzzzwTDz30UNDpoqOjsWrVKrz22mvIzs42KDr7YU9BIiIiIjHwGoqIiIjI3rS63mNSUB98pyARkQxa3rxYv349rr32Wnz33XdBpxs1ahSefvppjBkzRrN1OxWTgkREREREREThkyQJnZ2dwV8j09kJJCZ2/TdILyDN5tNqGWbFrUW5/SwvIirK7/CLbrc7aO8sucs3rZ70WI7ey7ViuwyxDJfLFXB4T0mSArexPssMNkSox+OR3VZdLhfcbjd4ty40JgWJiAwiSRJuv/12/OIXvwg57QUXXIAHH3wQCQkJBkRmf30TeBw+lIiIiEg/wa61+GAVEdmRnY9tkiShccwY1Dc1oeGHH0K+/gQA0NIC/OUvQF0d8P338lemdj6tlmFW3FqU28/yxmZkoMPj6fd1fHw8vg9nPWbXkx7L0Xu5VmyXIZaRmJiI6dOn+53t4MGDqKmpkbXMQMsAgIqKCsXH1+j2dsRfcAES2toQJ0m2Pj6rxaQgEZEM4Z5AJEnCz3/+c9xxxx1Bp4uMjMSqVatw9dVX86SlIfYUJCIiIiIiIr3Y9YHetrY2VNTXo/nnP++6kU9EZCA1995aOjrQcsopONLQgJjycuTm5gbtjehETAqSPiorgfh4s6MgAyUePgxXfb3/L8vLDY1FDwmHDiG5ulr+DD5l/vbbb3Hbbbfh7XfeQT4AD4AsAJsAtPrMkpaWhpdeegmzZs3SJGY6Ro8EHnsKEhEREfnHnoJE5DQzZszAJ5980u/z/Px8E6LRRnNzM/bs2YP2jg7A4wGU/AaOjARGjer6rxJq59NqGWbFrUW5/SwvLTIS8HPeDft+htn1pMdy9F6uFdtliGUkJCQgLi7O72wREUHSTn2WOXDgQPXx+V85kJICuFxobm5GeXk5Bg8ejJiYGG3XY2FMCpI+SkrMjoAM9pNgX5aVGRWGbs5ROoNPmUcAWONnkjkAPvD+Oy8vD6+88gpGjx6tJjwKQY/hQ3lDi4iIiIiIiICuh3yHDx/ea0hGl8uF8ePHmxiVepIkYffu3ejo6OhKKhUWdiUGiYhE53IBWVldyUEA7e3t2LNnD4YNG8Z7eV5MCpI+1q8HiorMjoIM9Pe//x31AXoKlpaWGhuMDp599lns3r1b1rR1dXU4evQonnnmGXT6efF2LoD3AVR5/3/p0qVYtWoVUlNTNYuXeuPwoURERERi4DUUEdmRy+XCueeei7fffhs//PADEhMTUVxcjKFRUWaHpkp9fX1XQhDourEeGYnIyEgkp6YiPj4ekZGRwY/nra3Atm1dyUQl20DtfFotw6y4tSi3n+UdTE5Gh58eW/Hx8UhMTAx7+abVkx7L0Xu5VmyXIZZRV1eHxsZGv7Olp6cH7i3YZ5n79u0LuPrMzEzZoUqShLa2NjTU1qK2shJtPt+1t7ejvr4+vHZvI0wKkj5ycoCCArOjIAPVpaXhaKDu6DZoCw0DB6L26NGg09TV1eG9997Dp59+is7OztALdbux9p//xIUXXqhRlBQIhw8lIiIiMg4Tf0TkRBERETjxxBN7f2jR16nU1NT0+v9oAHm5uYgIMFRgP90JRY+np7eOrvNptQyz4tai3H6W53a7Ifm5d+HxeIIP7yhz+abVkx7L0Xu5VmyXIZbh8XgC3huLiIgI3Mb6LDPY/TWl7TQyMhJxHg9SKyuxOyoKLe3tPd/V1NQwKejFpCARkQyBbmzU19fju+++w549e/DVV1+h3edkE8r999+Pk5gQNASHDyUiIiISA6+hiIjEJkkSGhoaen2WBiCCw4cSkUVEAEhLSUHVoUM9nzU0NECSJF6LgklBIiJZfE8YkiTh0KFDeP311/Hdd99B8jNEaDAF+fnArl046aSTtA6TAmBPQSIiIiLj8GYLEZF1dXZ29rvPIbN/IFkEz9PkBHExMb3+X5IkJgW9mBQkIk0oTYxZTXNzMzZv3owvv/wSFRUVaGtrCz1TH2PGjMGvfvUrnD15MjBihA5RUiB8pyARERGRGHgNRUQkNn/3d/hILBFZjb+H+Ts7O/mQP5gUJCIKqrOzE2vWrMH111+Puro6VcsYNmwYbrnlFpx33nnweDyWfaeAlXH4UCIiIiIiIiIiIofgfbuAmBQkIgrgo48+wsqVK7Fp0yZV8w8ePBi/+c1vcOmllyIyMlLj6EgJDh9KREREZJxg1158sIqIiIjI3ni9JzYmBYmI+vj000/x5z//GU888YSq+RMSEnDbbbfh8ssvR3R0tMbRkRocPpSIiIiIiIiIiIicjklBIiKvXbt24Wc/+xmee+45xfMmJydj+PDhKCgowIgRI3DNNdfoECGppcfwoewpSEREROQfewoSERERkRxxcXFobGzs93lycrIJ0TgDk4Kkj8pKID7e7CjIQElHjsDT0OD/S8HfoSdJEh599FHcdtttaG5pQb7Pdx4AWQA2AWj1M+/AgQMxY8YMTJo0iUkigbGnIBEREZEYeA1FRERERN1iYmL6JQVdLhdiYmJMisj+mBQkfZSUmB0BGezyYF+WlRkVhiouAEu9f4HMAfABAI/HgylTpmDMmDFIS0tDQkJCv2mzs7P1CZRUY1KQiIiIyDi8TiIiIiIiOWJiYpCSkoKjR4+io6MDERERSElJgcfjMTs022JSkPSxfj1QVGR2FGSgBx980G9XbwAoLS01NhiZ/vOf/+Dmm29GTW1twGlyAbwPoArAiBEjUFJSgrS0tKDLnT9/vqZxUvj0GD6UN7uIiIiIlOM1FBERkfjWrFmD5cuXAwCWLl2KNWvWGLZu32sFSZIMWy+ZJy4uDrGxsZAkiSOxGYBJQdJHTg5QUGB2FGSgurQ0NERH+/9SsLZQU1ODlStX4rHHHpM9z5UrVqApIyPkdEOHDkVhYWE44ZEO9Lj5xIsUIiIiIiIiIhLJvHnz8M477wAAbigtxfU33WRyRETyuFwuPjxmEN7RJCJNLFq0yO/no0ePNjiS4N5++22MHz9eVkJw0qRJePCBBwAAY8aMCTrt+PHjsWjRIpx//vns3u4QTAoSERER+Rfshg5v9hAREZHR5s2b15N0evvtt80OxxaC9eLk9Z7Y2FOQiDRRWFiI2NhYNDU19fo8VDLNKJ2dnfjNb36DP/zhDyGHHoiNjcXtt9+Oq6++Gp49e0Iue+bMmVi4cKFWoZIOOHwoEREREREREREROR27ORCRJmJjY3HppZciwzvEZnx8PE4++WQhegru378fZ599Nn7/+9+HTAhOnToVmzdvxsqVK3v1+OPTztamRx2x3omIiIj847UzERGRtS1btgySJEGSJEPfJ0hE+mNPQSLSTGZmJq666io0NzcjOjpaiB/8L7/8Mi699FIcPnw46HQejwe/+tWvcPPNNyMyMrLf9yKUhdRjT0EiIiIiIiIiIiJyOiYFiUhzMTExZoeAyspKlJaWYt26dSGn/f/t3Xl8FEX+//F35YZcnComQBANqFxyiuABi8KiIKKisKDgsnjyA8XV1ZVzPdCvoq6gIrogoKCCouCBiuKBIIiioCLIoQjIaSThCCGp3x8zDJOQY5LMTM8Mr+fjMQ+qq6uqPw0k6fSnq/qMM87QjBkz1K5duwodi+RQ6AvEvxHvFAQAACg/rp0BAAAA53BHE0BE2bFjh8aOHavGjRv7lBC86aab9M0335SZECzt5gXJodDH8qEAAADBw3USAAChq6xX60jStGnTZIyRMUYDBw4ss/0ff/yh+++/X61bt1b16tWVlJSkRo0aafDgwVqxYoWn3dExTTknFPz0008aPny4zjzzTCUlJSklJUXNmzfXPffdp91ZWSX2O3q8Tz75xFPXqVOnY3F4ffy1TOrGjRs1ZswYXXDBBUpLS1NCQoKqVq+u0y6/XL2uvlpPPfWUdu7cWWq8vl5LXXTRRZ72ixcvLr7NxRcf12b79u168MEH1bZtW51yyimKjo5WtWrVJEnNmjXztJ/1yis+n/ddd92ltLQ0paWl6bbbbiu17Y+bNunekSPVtm1bnXzyyYqLi1Pt2rXVrl07jRo1Stu2bfP5uCg/ZgoiMLZulRITnY4CJ5CCggJNmTJFEyZMUO7hw6opqaakaEl1JK2QdNirfVJSkmbOnKnLL7+80seOieFbaagLxPKhJIMBAADKj4QhAACR5eOPP1bfvn21Y8eOQvXr1q3TunXrNHXqVI0aNUqjR4+u0PjPPvushg8frtzc3EL13333nb777jtNmTJF773zjlqfd16Fz8EfcnNzNWLECE2ePFlHjhw5bv+mgwe1ads2vTl/vkaMGKE9e/YoOTk56HG++eabGjRokP74449i9/fv31933323JGnmrFnq+5//lDlmbm6u3n777UJjlNRu2G236fmpU5Wfn19o3+7du7V7924tX75cjz76qB555JEyk4uoGO5kIzC6dnU6ApxgoiTd6P4Up6OkJe5y48aN9dprr6lJkyY+j1/azQuSgqGPmYIAAADBw3USAAAnhmXLlumyyy7TgQMHJLmuAdq0aaOzzz5bhw8f1vLly7V+/XqNGTNGtWrVKvf406ZN08033yxJatSokVq3bq0qVapo7dq1WrJkiay12vPnn+p51VX68ccflZqaWqj/rbfeKkl64403PLPPevXqpbS0tOOOdeaZZ5Y7vqNycnJ0ySWXaOnSpZ66qlWrqkOHDqpbt67skSPaum6dVq5frz179igvL++4pFgwfPHFFxozZozy8vJUs2ZNXXDBBapVq5Z27typb775RpLUr18/3XPPPSooKND7H36oXXfcodpljPvRRx8pyz1jMyMjQ+3btz+uzf79+9W1a1ctWbLEU9ewYUO1atVK1atX1969e7VkyRJt27ZNBw8e1NChQ7Vv3z7de++9/jp9uHEnG4GxcKGUmel0FDgBLFmyRMOHD9eu3buL3Z8u6XNJ293bt99+u8aPH6+4uLhyHYekYHgjKQgAABAauIYCgMhSUFCgffv2Fa7MzZUOHJCysqT4eN8Hq2g/f40RwLhTUlIibsWhQ4cO6brrrvMkBBs0aKBXXnlFbdq0KdTu1Vdf1aBBgzRixIhyH+Omm25S7dq1NX36dHXr1q3Qvk8//VQ9evTQvn37tH37dj355JMaNWpUoTYTJ06UJK1Zs8aTFBw2bJguuuiicsdSmsGDB3sSgtHR0Ro1apRGjBihxKMr6eXmSqtXq+Dss/XJsmV68sknHbkmGj16tPLz8/Wf//xHd999t2JjYz37js7ETE9P14UXXqiPP/5YR44c0SsffKDbLrig1HFff/11T7l3797Ftrnllls8CcHMevU0ecoUXXTJJYXa5Ofn67nnntPtt9+u3NxcjRo1Sp06dSo2yYiK4042AiMtTcrIcDoKRLCCggLdf//9GjNmjE9roWc2bqwZL7yg8wKwlABJwdDH8qEAAAAAAPjfvn379OSTTxa/8+OPKzZoRfv5a4wAxD1s2DDPO9sixbQZM7R+/XpJrllxH3zwgRo2bHhcuz59+ig2NrbEZFFZPvzwQzVr1uy4+gsuuEAPjhun24YPlyTNmjXruKRgMHz44Yd6xevdezNnztS1115bbNuoqCh16tRJnTp1ClZ4hRw5ckT333+//v3vfx+3L94roT1gwAB97P7//NJ77+m2UpYQ3bdvnxYtWuTZLu7f+bPPPtP06dMlSQ1PO01LJk9WrfPPP65ddHS0br75ZlWpUkWDBg1Sfn6+xo0bp3fffdf3k0SZuKMJIOzs379fffr00ejRo8tMCCa5n8iZP39+QBKCEknBcMBMQQAAgNDANRQAAJHhhWnTPOXhw4cXmxA86oorrqhQImzIkCHFJgSPuu5vf1NMdLQk6aeffjp+1moQPPbYY57yNddcU2JCMBSceuqpnvcFlubKK69UlSpVJEnLVq/Whg0bSmy7YMECzyzDli1bqkGDBse1mTBhgqf82MMPq1YZCfKBAweqcePGkqSFCxdqz549ZcYM35EUBBBWvv/+e7Vv315z584ttV1SUpIeeeQRz7T0QCbuSAqGvkDcfGKmIAAAAAAAOBFl79+vr93voJOk/v37l9nHlzZFXX311aXuT05OVsP0dEmStVa//PJLuY9RGbm5uVq8eLFne+jQoUE9fnldddVVPt3HTElJUY8ePTzbL82eXWJb76VDr7zySkmF78MdOXJEH3zwgWfcy7p39ynWo0lka22h9xCi8riTDSBsLFmyRH/961+VnZ1daruWLVtq9uzZOuOMM6TNm/1y7NKSStHuJ5IQugKxfCgAAADKj+swAADC33c//6yCggJJrkTP0VldpWnXrl25j9O0adMy29RMTfWUgz1TcNWqVTp06JAk1xKqFTnHYGrVqpXPbfv3769XX31VkispOGrcuOPabNu2TcuWLZMkxcbGqmfPnse1+e6777R//35Pm2EjRkh79kg1a0ql3FNdsWKFp7xlyxaf40bZSAoCCHnWWj3zzDMaPny48vLySm07bNgwPfzww4XWwQ40ZgqGPmYKAgAABI8v7/wGAADha9cff3jK6enpPt13SXfP6CuPVK+EX0live7LlXXf0N927NjhKdetWzfk7xHWrl3b57bdunVTrVq1tHv3bq1bv14rVqxQmzZtCrWZN2+e57rvoosuUo0aNY4bZ9u2bZ7ynj17NOnZZ8sd9x9e/99QedzRBBDScnJy1L9/f916662l/mBPTEzU3Llz9cQTTwQkIVjajY1Q/4EPkoIAAAChgpmCAACEv5wDBzzlqlWr+tQnKSmp3McJ9esG79XMKnJ+wXb0PYG+iI2N1TVXXeXZnjlz5nFtils6tKg///yzHBEW78iRI5UeA8dwJxtAyPr+++919dVX68cffyy1Xf369fXWW2+V+uLhyjq6JEJxSAqGvkAsHxrqF6YAAAAAAARaSkqKhg0bVrgyN1f66SepUSOpPA9uV7Sfv8YIYNwpKSnliyXEJXklAg94JQhLc3QJyUiSnJzsKefk5AT9+KXdr/SH/n37emb2vfLKK5owYYLnNUrff/+9555tSkqKLr744mLHSExM9JSbNWumb5cvl1avlpo2rfjXOSqFO9kIjK1bJa8veKA8rLWaOnWqHn74YeUePqz6kqIl1ZG0QtJhr7bdu3fXtGnTyjX9vSJKeyKFpGDoY6YgAABAaODBKgCILFFRUapWrVrhytxcqWpVqVq18ifXKtLPX2M4GXeYqeX1b75161af+vz2228BisY5J598sqe8ZcsWHTlypFL3CWNiYjz3IH0Zyx+z8Epzbrt2Or1uXf28ZYt27NihDz74QN26dZMkz/sGJenSSy9VQkJCsWN4/x39/vvvAY0XvuFONgKja1enI0AYM5JucH+K6ihpibs8aNAgPffcc0FJyjFTMLxx8wkAAAAAAMA/mp1+uqKiolRQUKA///xTa9euVePGjUvts3z58iBFd7xA3Rdq0aKFEhISdOjQIR04cEBffvmlOnToUOHxUlJStHfvXkmu9+95J9SKOnz4sNatW1fhY/nqb926aeyUKZKkl156Sd26dZO1VnPnzvW06d27d4n9W7Roofj4eOXm5mrnzp36ecMGnR7wqFEa7mQjMBYulDIznY4CYea3337TkCFD9EMxy4WmS/pc0nZJ8fHxeuqppzR48OCgJXvy8/NL3EdSMPQFYvlQZgoCAACUHw9rAQAQ/lKSknROixZa+fXXklzJov/85z+l9inunXTB4j2LLS8vz2/jxsfHq1OnTnr33XclSRMnTqxUUjAjI8OTFFy1apW6ljLx5q233tKhQ4cqfCxf9f/rXz1JwXnz5unAgQNavny5Z4boqaeeqvbt25fYv0qVKurcubPn7+jpyZM1YcCAgMeNknEnG4GRliZlZDgdBcLI4sWLddVVV2nPnj2ltjs1PV2vzpunVq1aBSkyF5KC4S0QN5+4oQUAAFA8a22J+7iGAgDAWaX9nC6PG66/3pMUfOKJJ3TDDTeoQYMGxbZ96623tGjRIr8ctyJq1qzpKfu63Kmv7rjjDk/Ca/bs2br88st17bXXVmisdu3a6Wv33+m0adNKTAru27dP//rXvyoWcDmdXreuzm3XTsu+/FI5OTmaN2+ePv74Y8/+3r17l3l9d/fdd3v+jp56+ml1z8xUl6ZNfTr+77//rlNOOaXiJ4DjMM0BgKOstXrqqafUpUuXMhOCkrRgwYKgJwQlkoLhjncKAgAAAAAA+M+g667T6ae7FoLMyclRly5dtHLlyuPazZkzR/369VO8g+9bbNKkSaF4/JUYlaQuXbro6quv9mz3799f48aN04EDB45rW1BQoI8//lhXXHFFse8D7Nevn6c8e/ZsTZw48bg2a9euVefOnbVhw4ag/Z3279vXU37hhRc0Z84cz3ZpS4cedeGFF+r666+X5HpX4qW3366HHnlEOTk5xbY/dOiQ5s2bp8svv1w9e/asZPQoijvZAByzf/9+3XrrrXrxxRdLbVe1alU9dN990r33KjU1NUjRFUZSMLRUq1ZN3pdOxhi1aNFC33zzTbHtWT4UAAAgNDBTEACA4Jj+0kt69/33j6uPiopSdHT0cfXjxo0rVwKmSpUqmjZtmi6++GIdPHhQGzduVJs2bdSuXTudddZZOnz4sJYvX+55793EiRN12223SQr+9UDv3r117733ylqrt99+W82aNdN5552n5ORkT5trr71WrVu3rtD4zz//vH755RctX75c+fn5Gj16tB555BF16NBBdevWlT1yRFt/+klfrV/vmRRRXGKyY8eOuvTSS/X2229LkoYOHapJEyfq3DPOkKlRQz/9/LOWLVumgoICDRw4UJs2bdInn3xSoZjL45qrrtLt//yn8vLy9NFHH3nqmzRpokaNGhVqGxsbW+wYkydP1vbt2/X+++/rcF6e7h01SvePH6927dqpXr16io+PV1ZWljZs2KA1a9YoNzdXkhyZHBLpuJMNwBGffvqpbrzxRq1du7bUdvXr19ebb76p5qmp0r33Bim64xUUFJS4j+RQ8F155ZV654cftHnzZtWsWdOzXruvSUEAAAAAAIBItmvXLu3atcvn9kffZVceHTp00FtvvaV+/fpp165dstZq2bJlWrZsmadNVFSURo0apSFDhniSgikpKeU+VmVkZmbqX//6lx566CFJ0po1a7RmzZpCbZo0aVLhpGBKSooWL16sYcOG6X//+5/y8/O1f/9+vV9MUlZyveOwuMSsJE2fPl1du3bVV199JUla+9NPWvvTT4Xa/P3vf9ekSZNKfeegP9WqVUtdu3bVggULCtV7z5A8qmrVqsWOER8fr3feeUdjR47UY48/rgOHDunAgQOFliItKjY2Vueee27lgsdxSAoCCKo9e/bozjvv1LRp08pse+GFF+q1115T7dq1pc2bAx5baY4cOSKVkFgi4RR8ycnJuuaaawrV/VTkAskbMwUBAABCA9fOAABEli5dumjt2rWaOHGi5s2bp40bNyovL09paWm64IILdOONN6pNmzbasWOHp081B1YCe/DBB9WxY0dNnTpVK1eu1I4dO4pd4rOiqlSpoueee0533HGHpk+frkWLFmnz5s3au3ev4uLiVKdGDTVr1UoXd+2qa665ptAsRW81atTQF198oeeff16zZs3S999/r5zsbNWpU0dt2rbVkCFDdPHFF/stbl8NGDCgUFIwOjpaf//731WlShXl5uYqKipKVatWVWJiYoljREdHa9zo0RraqZOmf/21Ply8WD/88IN2796tvLw8paSkqH79+mratKk6deqk7t27u+4Lw69ICgIImtdee0233HKLdu/eXWbboUOH6rHHHitxynmwFRQUSCU8wYPQUNoNpkDcfOKGFgAAAAAACCWLFy+WcnOl1au146STlF/MK28SExPLfD3PwIEDNXDgQJ+PW6NGDY0aNUqjRo0qsc13333nKZ/ZuHGJ7cr7vr/FkydLTZtKPrxfr3v37urevXu5xi+vxo0b68EHHyxc6f438TXO2NhY3Xzzzbr55ptL7bt48eIyx1r8wQc+HbMsffr0UZ8+fYrdZ60t132y2tWra8Tw4Rpx992VjgvlR1IQQMBlZ2dr6NChZb47UJLi4uL0zDPP6IYbbghCZL7Lz88nKRjiSpu5F4gEHjMFAQAAyo8HqwAAODG98sornnIb3hMXUbi+Cy8kBQEE1NKlS9W/f39t3LixzLb169fX7NmzQ3Kt6Pz8fKdDQBnKM1PQHxcrXPAAAAAAAACU7csvv9T06dM92/2uvVY6fNjBiIATF0lBBMbWrVIp6wcj8h0+fFgTJ07UpEmTlF9QoPqSoiXVkbRCUtEf+3379tWkSZNUvXr1oMfqC5KCoS/YMwVJCgIAAJQf11AAAESOX3/9VSNGjNCwYcPUoUOH437O5+fna9asWbrtttuUl5cnSerZs6caN2rkWhITQNCRFERgdO3qdARwWJykO9yfojpKWuIun3HGGXr22WfVuXPnoMVWESQFQx83mAAAAAAAAIKnoKBAc+bM0Zw5c3TSSSepVatWqlOnjqKjo7Vjxw4tXbpUu3bt8rSvU6eOnn32WQcjBkBSEIGxcKGUmel0FAiSXbt2af78+Zo1a5bW//xzie3SJX0uabtcs7ruuece3XfffUpISAhWqBVWUFDgdAgoQ3mSgiQQAQAAAsdaW+I+rsMAAIhMO3fu1Lvvvlvi/tatW2vOnDmqU6eOlJsbxMgAeCMpiMBIS5MyMpyOAgH2888/a+TIkZozZ46OHDnic7+0unU185VX1L59+wBGhxNNacuHlnZjqrxq1arlt7EAAAAAAADCVUZGhr788kvNnz9fy5Yt02+//abdu3crKytLSUlJOvnkk9W+fXv17t1bPXr0cDpcACIpCKACsrOz9cADD+jxxx/X4Qq8FPidd95RUpMmAYgscDp16qR5q1YdV3/WWWcFPxgUK9BPnffo0UO1atVSWl6eNHJkQI8FAAAQqZgpCABAZGnbtq3atm3rdBgAfFTytAoAKMJaq5kzZ6pRo0Z6+OGHy5UQrFmzpp6eNEmSlJSUFKgQA6ZBgwaKiTn+OYpmzZo5EA2KU56ZghW5GdW4cWPVq1dP0dHR5e4LAAAAAAAAAE4jKQjAJ/v27VPv3r01YMAAbd++3ed+MTEx6t+/v9asWaPu3bsHMMLASklJ0bXXXutJaMbFxalr165q1KiRw5HhKJ46BwAACH1cswEAAADOYflQAGV67733NGzYMK1bt86n9sYYdenSRVdffbWuuOKKY+9g27w5cEEGQcOGDXXHHXcoKytLqamppc5MQ/AF+gYTN7AAAAAAAEC4K7qaEoATC0lBACX6448/dOONN+q1117zqf1pp52mAQMGqG/fvhE7g84Yo+rVqzsdBopRnuVDAQAA4AwetAIAAACcQ1IQQLG++OIL9evXT7/88kuZbU8++WSNHz9e1113HbPn4BhmCgIAAAAAAABAyUgKIjC2bpUSE52OAhXw22+/6dFHH9W8N9+UJNWXFC2pjqQVkg57tY2NjdXw4cN13333KSUlJfjBAl6YKQgAABD6eNAKAAAAcA5JQQRG165OR4AKSpf0hPtTVEdJS9zl008/XW+88YaaNGkSpMiA0jFTEAAAAAAAAABKRlIQgbFwoZSZ6XQU8EFubq6mTZumSZMmaV92drFt0iV9Lmm7e/u6667TE088wbv1EFKYKQgAABD6eNAKAAAAcA5JQQRGWpqUkeF0FCjDN998o/79++uHH37wqX3Gaafp5ZdfVrt27QIcGVB+zBQEAAAIDTyQBQAAAIQmkoLACchaq6eeekp33nmn8vLyfO43f/58VT3rrABGBlRcaUk7bkwBAACEBh60AgAAAJxT8lprACJSdna2+vbtq2HDhvmUEDzrrLP0vxdekCRVrVo10OEBIYsbWAAAAJXHNRUAAADgHJKCwAnCWquXX35ZZ555pl555ZUy29epU0dTpkzRt99+q86dOwchQqBymCkIAAAAAAAAACVj+VAgwllr9c4772js2LFasWJFme2Tk5N19913a/jw4UpMTAxChEB44Kl2AACAyuOaCgAAAHAOSUEgQllrNX/+fI0bN04rV670qc9VV12lSZMm6aSTTgpwdID/MVMQAAAgNHDtBQAAAIQmkoJAhNmwYYOmTZumN998U6tXr/apT0JCgiZNmqRBgwbx5C7CVkxMyT/S/DHrla8NAACAyuOaCgAAAHAOSUEgQvz6668aPny43njjjXL1a9CggV5//XW1aNEiMIEBQZKQkKCTTjpJO3fuLFQfExOjzMxMh6ICAAAAAAAAgNBAUhCBsXWrxPvogsJaq7lz52rs2LHKzslR/SL7oyXVkbRC0mGv+piYGA0dOlSjR49Wampq0OIFAqljx456/fXXC9V16NCh1FmEvuKpdgAAgMrjmgoAAABwDklBBEbXrk5HcMIwkq5yf0rTUdISd/myyy7T//3f/6lx48YBjQ0ItqZNm6pKlSpavXq18vLy1KhRIzVr1szpsAAAAAAAAByTnZ2tjz76SJ999plWr16tvXv3avfu3YqLi1P16tWVmZmpNm3aqGfPnmrfvn2xY4wZM0Zjx44tdl90dLRSU1OVmpqq6tWrq2nTpmrdurU6dOigc845p1yxXnTRRfrkk0/KfY4ff/yxLrroonL3A040JAURGAsXSizXFzDr16/XM888o3nz5qnA2lLbpkv6XNJ2ST179tTIkSPVunXrYIQJOOL000/X6aef7vdxeaodAACg8rimAgAgeA4ePKgpU6Zo8uTJysrKOm7/4cOHlZOToy1btmjRokUaP368MjMzNWbMGF177bU+/9zOz8/X3r17tXfvXm3atElff/21XnzxRUlSixYtdNNNN2nw4MGKjo725+kBqACSggiMtDQpI8PpKCLO5s2bNXr0aM2YMUO2jGRgUW8tWKCzL700QJEBAAAAAAAACBW/bd2qAX//u3788cdC9enp6WrRooVq166t/Px8/f777/r222+1Y8cOSdK6devUr18/bdmyRXfddVexY59au7auuPJKySvJl52draysLG3evFlr1qxRQUGBJGnVqlW66aabNG3aNM2YMaNcD3K3adNGbdu2LblBfr60Z49Us6bS0tJ8Hhc4kZEUBEJYfn6+Vq9erXnz5mnRokX6/PPPfe7bpEkT3XDDDerVooXUubPOPvvswAUKnAB4qh0AAKDyuKYCACDwNm/bpu6DB2vnrl2SXD9/e/XqpaFDh6pFixaqXr16ofbWWn311Vd66qmn9NJLL6mgoEAHDhwocfwz6tbVxCeekOLji92fnZ2tBQsWaMKECfrqq68kScuWLVPbtm21bNkyZdav79N5dO/eXWPGjCm5QW6utHq11LRpibEAKCzK6QAAHG/RokXq0aOHqlWrpnPOOUdjx471OSEYGxurhx56SKtWrdLtt9+uBg0aBDhaAAAAAAAAAKHg8OHDuvpf//IkBBMSEvT8889r4sSJatSoUbF9jDFq06aNpk+frm+//VZNmjSpVAzJycnq27evli9frgcffNCzbOgff/yhyy67TH/++WelxgdQccwUBELIr7/+qttvv12vv/56hfo3b95c06dPV7NmzfwcGQAAAABUHjMFAQAIrEcee0xfeS0Z+vjjj6tbt24+92/SpImWLVumVatWVToWY4zuuecexcTEeJYiXb9+vZ6cOFGjevas9PgAyo+ZgkAI+P3333XfffepcePGFUoI1q5dW1OnTtVXX31FQhAAAAAAAAA4AR08eFD/ffppz3b37t3Vs0jyLSam7HlCiYmJ6tChg9/iuvPOOwuN9+SkScopZXlSAIFDUhBwUG5urkaNGqWMjAw98MADOnjwYLn6Z2Zmavr06dq8ebMGDhzo0w91AOXHE+0AAAC+s9aWuI/rKgAAAmfOnDna5V42VJKGDBlyXJuqVasGMyRJrp//d9xxh2d77969+uDLL4MeBwCWDwUc88MPP6hPnz76/vvvy923bt26Gj16tK6//noSgUAQHF37HgAAAAAAIFR99NFHnnK9unXVtm3bQg/rVK1a1bF7HD169FBCQoIOHTokSfps1Spd4UgkwImNbAICY+tWKTHR6ShC1nvvvacRI0Zo/4EDqu+ui5ZUR9IKSYeLtI+Li1ObNm3Uu3dvnXfeeWrTpg1JCiCISL4DAAD4BzMFASCyHDlyRL/99lvhytxcads2KTlZio/3fbCK9vPXGAGMOz09PSj3Fj777DNPuV3btqpZs6YOHjyo/Px8xcfHOzJL8KjY2Fidc845Wrp0qSRp2erVjsUCnMi4y4nA6NrV6QhCWjf3pzgdJS1xl8855xyNHj1a3bp1U3xFL4YAVBpJQQAAAAAAjvfbb7+pQYMGTocR8jZt2qSMjIyAH+eXX37xlM8+80zFxcUpLi4u4Mf1VaNGjTxJwR1795bZ/p133tHu3btLbpCfL+3Zo3vGj1faaaf5K0wgonGXE4GxcKGUmel0FCGjoKBAL7/8sh5++GFl5+QU2yZd0ueStkuqXr26HnjgAQ0ZMoQZgUAI4OsQAADAP5gpCABAYOzbt09HjhzxbFerVs25YEqQmprqKf+RnV1m+xUrVmjFihVltht8550kBQEfkRREYKSlSUF4+iUcrF27VjfccIPnKZiy3PPvf6vPXXcpJSUlwJEB8BUzBQEAAAAAQCjLLpJkSwrBVzslJSV5ytn79zsYCXDiinI6ACCSzZ8/X23atPEpIXhxly6SpMGDB5MQBEIMSUEAAAD/YKYgAACBkZycXGg7JwSTbt6JyxSvBGFJRo8eLWttyZ9Dh2RXrFCL5s0DGTYQUUgKAgFgrdX48eN1+eWXK6eE5UKPMsZo1KhRmjx5cpCiA1BeLB8KAAAAAABCWUpKSqGHmrOyspwLpgR//vmnp1yDSRGAI0gKAn62evVq9ejRQ/fcc4+staW2bd68uZYtW6axY8cqKoovRyBUMVMQAADAd6X9HsRMQQAAAqd+/fqe8g9r1zoYSfHWesV0Ss2aDkYCnLi4ywn4ydq1azVmzBi9+uqrZSYDq1SporFjx2r48OGKjY0NUoQAKoqZggAAAP5BUhAAIkt6ero2bdpUuDI3V/rpJ6lRIyk+3vfBKtrPX2MEMO709PTyxVJBHTt21IYNGyRJXy5fHpRj+urw4cNatWqVZ/vcJk2cCwY4gZEUBCpp48aNGjt2rGbOnKmCgoIy219yySV69tln1aBBgyBEB8AfmCkIAAAAAMDxYmJilJGRUbgyN1fKzpYyMsqfXKtIP3+N4WTcftK5c2e9+OKLkqRffv1VX3zxhc477zxHYzrqrbfeUm5urmf7gnPOcTAa4MTFeoVABVhrtWrVKg0ZMkSNGjXS9OnTfUoI3nfffXr33XdJCAJhhqQgAACAfzBTEACAwLn66qtVq1Ytz/aECRMcjOYYa60ef/xxz3bt2rX1l7ZtHYwIOHFxlxOBsXWrlJjodBR+t2vXLr322muaO3euNmzcKElKc++LllRH0gpJh4v0S0hI0LRp03TNNdcEL1gAfkNSEAAAAAAAhLoqVaro/91yi0aNGydJmjt3rubOnasrr7yyXOPs379f3377rd9mGT766KP64osvPNu3Dx2qqgkJfhkbQPlwlxOB0bWr0xEERG1Jt7g/JekoaYnXdsuWLfX888/rHKbEA2GLdwoCAAD4BzMFAQAIrLtGjNC8V1/V12vXSpIGDBiguLg49ejRw6f+a9asUd++fXXllVdWOilordXDDz+s++67z1N35plnaugtt0hF30UJIChICiIwFi6UMjOdjsIvli9frn//+99a//PPpbZLl/S5pO3u7SZNmmjcuHHq1asXv/gCYY6kIAAAAAAACAfx8fF67aGH1P7GG7Vz504dPHhQvXr10t/+9jfdc889OvPMM4/rY63VV199pYkTJ2rmzJkqKCgo9+xCbzk5OVqwYIEmTJigFStWeOpr1aqlBQsWKCkpqcJjA6gckoIIjLQ018t1w9ju3bt11113aerUqeXql3HaaXrggQfUp08fRUXx2k4gErB8KAAAAAAACBenpafry08/VY+rrtKaNWtUUFCgGTNmaMaMGcrIyFCzZs1Uq1Yt5efn6/fff9eqVau0Y8eOQmMkJyeXOP76LVt02/DhktdD1Dk5OcrKytLmzZu1Zs0a5efnF+rToUMHzZgxQw0aNJByc/16vgB8x11OoBiLFy/WNddco507d/rcp256uvTbb1q4cKFiTj89gNEBCDZmCgIAAPjOWut0CAAAnPAyMjK0dOlSPf7445owYYKysrIkSZs3b9bmzZtL7Ne8eXONGTNGvXr1KrHNtl27NOnZZ32Ko2XLlrr55pt1ww03MIECCAEkBQEveXl5Gj9+vMaOHXvc0yzFiYqK0oUXXqj+/ftrwPnnS5mZzCgCIhBf1wAAAAAAINwkJSVp5MiR+n//7//pnXfe0QcffKCVK1dq586d2rt3r+Li4lSjRg01btxY7dq1U69evdSyZctyHyc6OlopKSlKSUlRzZo11bRpU7Vq1UoXXHCBmjdvHoAzA1BR3OUE3H7++WfdcMMN+uyzz8psm5qaqn/961+67rrrdOqpp7oqS3nCBkB4IykIAAAAAADCVWpqqvr27au+fftWeIwxY8ZozJgxrqU/V6+WmjaV4uP9F6Tb4sWL/T4mgGO4y4kTnrVW48eP15gxY3T48OEy2/fr10+PPfaYTjnllCBEByAUsHwoAAAAAAAAgHBHUhAntKysLP3jH//QnDlzymx7xhln6Omnn1aXLl2CEBmAUMJMQQAAAAAAAADhjrucOGH98MMP6tWrl9avX19m21tvvVWPPvqoEhISghAZgFDDTEEAAAAAAAAA4Y6kIE5IX3zxhbp166bs7OxS21WvXl3//e9/1b9//yBFBiAUNW7c2OkQAAAAAAAAAKBSSAoiMLZulRITnY6iWGvXrtVNffqoRna2akiKllRH0gpJ3m8UbN++vWbPnq169eo5EieA0HDaaacpMUS/nwEAAAAAAACAr0gKIjC6dnU6ghI1lvRdMfUdJS2RVKVKFU2cOFEDBw5UVFRUcIMDEBJiYmJUUFCghg0bqnfv3k6HAwAAAAAAAACVRlIQgbFwoZSZ6XQUHtZavf/++7rvvvu0a/fuQvvSJX0uabukzMxMzZ49W+ecc44TYQIIAaeccopuuOEGWWsVFxfndDgAAAAAAAAA4BckBREYaWlSRobTUUiSli5dqjvuuEPLli0rtV2nv/xFE15/XSkpKUGKDEAoMsYoNjbW6TAAAAAAAAAAwK9YGxERKy8vTyNHjlTHjh3LTAhK0jPPPENCEICMMU6HAAAAENastU6HAAAAAKAYzBRERFq/fr369++v5cuXl9m2Xdu20vLlzAwCIEmqX7++0yEAAAAAAAAAgN8xUxARxVqr559/Xuecc45PCcGOHTtqypQpQYgMQKhp3bp1sfVt27YNciQAAAAAAAAAEHgkBRExdu3apSuuuEL/+Mc/tH///lLbRkVF6fbbb9eHH37IkqHACapjx46qVq1aobrzzz//uDoAAAAAAAAAYYTl7EvE8qGICK+//rpuvvlm7dy5s8y2Xbp00cMPP6yWLVsGITIAoSo1NVWDBw/W2rVrlZWVpQYNGqhBgwZOhwUAAAAAgGOMMcfVcWsdQLgpKCYpWNz3txMRSUGEtYMHD+qWW27RtGnTymxbo0YNPffcc7ryyisDHxiAsJCYmKhWrVo5HQYAAEBEsTyZDQBhKyrq+IXlDkuKDX4oAFBheXl5x9UV9/3tRERSEIGxdauUmBjQQ6xcuVIjR47UDz/+qPruumhJdSStkOuC5aguXbpo2rRpSktLC2hMAAAAAAAAQLgyxighIUGHDh3y1O2TFNi7fADgX/tycgptJyQkMFPQjaQgAqNr14AfopWkd0rY11HSEknx8fF66KGHNGzYMJ4EAAAAAAAAAMqQnJx8XFIw9dAhVY2Pdy4oAPDRAR2fFExJSXEmmBBEUhCBsXChlJnp92GXLVumoUOHatfu3cXuT5f0uaTtkpo2baqXXnpJTZs29XscAAAAAAAAQCRKSUnRrl27XBvWqkDSlm3blHLggFJSUhQbG1v6w/f5+cf+PHLE9wNXtJ+/xnAqbn+cdyDHC8T4/ooxUOcaSv8m4fr1FMwxJRUUFCgvL0/79u7VPve2vL5PJScn++1Y4Y6kIAIjLU3KyPDbcLt379bo0aP19NNP+9R+yE03afgTTyieJ5gAAAAAAAAAn8XFxSk5OVnZ2dmuG/cHDqigShVlZWUpKyur7AEKClx/btpU6KZ8wPr5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8Ecs7jxvd5xnZycrLi4OP8fK0yxniJCWk5Oju655x6lp6f7lBCsc8opkqS7776bhCAAAAAAAABQAaeeeqqSkpJcN9Z//fXY7B4ACGUFBa7vWe5ZiElJSTr11FMdDiq0kBRESLLWaubMmWrUqJHGjx+v3NzcMvv06NFD8+fPD0J0AAAAAAAAQOSKiopSWlqakmNjXYnBo7NvfJGXJ/34o+vP8qhoP3+N4VTc/jjvQI4XiPH9FWOgzjWU/k3C9espmGN6y8+X9u+X5JohmJaWVvpyxycg/jYQclauXKmOHTtqwIAB2rZtW5ntmzdvrg8//FBvvfWWatWqFYQIAQAAAAAAgMgWFRWl9MRENbzzTtVOSFBCQoLTIQFAqRKio3XSK6+oYXKy0tPTSQgWg3cKImTs2rVL9957r1544QVZrzV/SzNkyBD997//ZalQAAAAAAAAIADidu5UrYQE1crIkLVWBQUFpd+7+/VX6dZbpVWrpHr1fD9QRfv5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8EcU5IxRlFRUTK//CK9/bY0caLfxo40JAUREj744AP169dPu3fv9ql9vXr1NGXKFF1yySUBjgwAAAAAUB61a9fWxo0bnQ4DABAAxhhFR0eX3igqSsrOdv0ZU47bzxXt568xnIrbH+cdyPECMb6/YgzUuYbSv0m4fj0Fc0yUC3Mn4aitW7fqpptuUteuXX1KCJ500kl64IEHtGbNGhKCAAAAABCCzj333GLrmzZtGuRIAAAAAHgjFRsgxpg4SddI6ivpbEknS/pD0iZJr0uaZq31bVpcGB3bY+tWKTGxxN3WWs2aNUv333+/Dhw8qHqSoiXVkbRC0uEi7WNiYjR8+HCNHDlSKSkpgYsbAAAAAFAp1apVU8uWLbVh0SJPXUJCgtq3b+9gVAAAAABICgaAMaaxpFmSWhTZdYr7017SP40xg6y170TKsQvp2rXU3UZSP/enqI6Slnhtd+vWTY8//rgaN27sv/gAAAAAAAFz2WWX6cfoaOnJJ9WmTRtlXnKJateu7XRYAAAAwAmNpKCfGWPSJS2SdKq7ykr6VNIGSbUldZFURdJJkuYZY7pZaz8K92MfZ+FCKTOzUNV3332nZ555Ru+9956KexVxuqTPJW13bzds2FBPPPGELr30UhljAhImAAAAAMD/jDE666yzJEkdOnSQSAgCAAAAjiMp6H8v61hS7hdJl1trvz260xhTS9JsSX+RFCvpNWNMQ2ttVpgfu7C0NCkjQ5K0fPlyjR49Wu+9955PXfMl3XHHHXrwwQcVHx/v99AAAAAAAAAAAABONFFOBxBJjDHdJZ3v3jwsqYd3Uk6S3O/yu1zSRndVDUl3hfOxS1JQUKDRo0fr3HPP9TkhKEnPTZ6sxx57jIQgAAAAAAAAAACAn5AU9K9bvcovWmtXF9fIWrtf0iivqhuNMZWdtenksY+zfft2XXzxxRo3bpysLW6x0MISEhJ037//LUm65JJL/B0OAAAAAAAAAADACY2koJ8YY5LkWpbzqKlldJkrKcddriHpgnA8dkmuuOIKffSRb68rbNmypVauXKnBgwf7OwwAAAAAAAAAAACIpKA/nSfp6HqX+yWtKK2xtfaQpKVeVZ3D9NjFysnJKbPN2WefrRdffFFffvml5wX0AAAAAAAAAAAA8D+Sgv5zpld5tbX2iA99vi6hfzgdu9zOPfdczZ8/X6tXr9Z1112nmBi/r14KAAAAAAAAAAAAL2Rj/KeRV/kXH/v86lVuHKbH9lliYqL+97//6eqrr5YxJhiHBAAAAAAAAAAAgEgK+lNNr/IOH/v87lWuEabHPiqutJ3NmzfXQw89pHr16umHH34ovtHWra4/162T9u+vWBQVGcMfx/XHOP6KIxDjhsLfUUX7huK/S7icSyj8uwdyrFCJIRy/9zkRc6i1D/Q4/h7LX+MF4/9asP7tgnGcYH+dBfvnSyj/f/f3mKFwPREu/59Cpb8/xnPqZ6XT/1/8FYM/x/HHuKHwfyqSxgj1r6lAtQ/mNWa4noMT1xWh8j0v0GM7dZ7hcF3qrzHC5X5NsMcLxPiReK0RqPHC9espmGMGavytW/Xz8bWl5kHCgrWWjx8+kt6WZN2f8T72+atXn+xwPLbXeD0l2YSEBJuUlGQl2ejoaFutWjVrjLGSbEpKio2Li7OSbJUqVWxiYqKVZGNiYmy1atWOxmJTU1NtbGyslWSrVq1qq1ataiXZ2NhYm5qa6mlXrVo1GxMTYyXZxMREW6VKFSvJxsXF2ZSUFCvJGmNstWrVbHR0tJVkk5KSbEJCgpVk4+PjbXJyspVko6KibLVq1WxUVJSVZJOTk218fLzlnDgnzolz4pw4J86Jc+KcOCfOiXPinDgnzolz4pw4J86Jc+KcOCfO6cQ9p6PxSOrpdC6qsh/jTuigkowxiyR1dm/+x1o7yoc+nSUtcm/mW2srNHPTyWN7jddT0puVGQMAAAAAAAAAACBEXW6tfcvpICojyukAIsghr7KvU0jjvcoHw/TYAAAAAAAAAAAACHG8U9B/crzKVXzs490up8RWoX3soz6RdLnX9hZJh/0wLgAAAAAAAAAAQLDFSarrtf2JU4H4C0lB/9njVT7Zxz6neJX3humxJUnW2j8lhfW0WQAAAAAAAAAAAC/fOB2AP7F8qP/85FWu72Ofel7ltWF6bAAAAAAAAAAAAIQ4koL+86NXuakxxpdZmC1L6B9OxwYAAAAAAAAAAECIIynoP19IynWXEyW1Lq2xMSZe0rleVR+F6bEBAAAAAAAAAAAQ4kgK+om1NkfSIq+qgWV06S0p2V3eK+nTcDw2AAAAAAAAAAAAQh9JQf962qs80BhzdnGNjDFVJY3zqnrOWnskjI8NAAAAAAAAAACAEEZS0I+stW9L+sy9GS9pgTGmmXcbY0xNSfMkne6u2ivp4eLGM8ZkGGOs12dgsI4NAAAAAAAAAACAyBHjdAARqJ+k5ZLqSMqQtMoY84mkDZJqS+oiqaq77RFJfay1WRFwbAAAAAAAAAAAAIQoY611OoaIY4xpLGmWpBalNNslaZB7hl9J42RI2uRVNchaOy0YxwYAAAAAAAAAAEDkYKZgAFhr1xpj2km6VlJfSWdLOllSlqSNkl6XNNVauzuSjg0AAAAAAAAAAIDQxExBAAAAAAAAAAAAIMJFOR0AAAAAAAAAAAAAgMAiKYgKM8bEGWMGGGPeMcb8Yow5ZIzZboz5whhzpzGmltMxAoA/GWMyjDH/MMbMNMZ8a4z5wxiTZ4zZa4z5zhgz2RhzodNxAkAwGWMmGGOs12ez0zEBQCAYY1oaY8YbY75y/+6ba4zZZoz52hjzP/fvx6c4HScA+Isxpr0x5mn397m97t9/9xlj1htjXjXG9DPGxDsdJwCUxhgTbYxpZoz5uzHmGfe13GGv32EXV2Lsvxhjphtj1hlj9nvdI/w/Y0xjP56G37B8KCrE/R96lqQWpTTbKWmQtfadoAQFAAFijDlH0rOS2vrYZbGk6621vwYsKAAIAcaYtpKWqvDDhr9YazOciQgA/M8Yc5KkCZL+5kPzSdba2wIcEgAElDGmpqQXJF3uQ/MNcv3+uySwUQFA+Rljekl6SVLVUpp9Yq29qJzjpkh6TtI1pTTLkzTaWvtQecYOtBinA0D4McakS1ok6VR3lZX0qVwXAbUldZFURdJJkuYZY7pZaz9yIlYA8JNGOj4huE7SGkm7JVWTdJ6kdPe+iyQtNcacb63dGKQYASCojDGxkp4Xq48AiGDGmHpyPfDVwKv6J0mrJe2R6wZTQ7kemC3tZhMAhAVjTBVJH6rwRIBdkr6R9Jtc9/7OlnSae19DSe8bYzpba78MYqgA4Itq8vM1mvt34TckdfaqXiPpa0kJks6XVEdSrKQHjTGx1tpx/oyhMkgKoiJe1rGE4C+SLrfWfnt0p3vZ0NmS/iLXf/zXjDENrbVZwQ4UAPzsZ7lugM+01m713mGMiZI0UNJTcl1snCrpJWPMeZZp+QAi092SmrrLL0vq52AsAOB3xphUSR/rWELwY0nDrbXfFdM2Tq4bQ8nBixAAAuJuHUsIWkkjJU2w1h482sAYY+SaHfOspFS5fgeeIqlZUCMFAN/tkLTC69NV0rAKjjVSxxKCh+RaLXH20Z3u68L7Jf3TXTXGGPOJtfaTCh7Pr1g+FOVijOku6W335mFJra21q4tplyjpOx17augha+29wYkSAPzL/Z7ABpJmWGvzy2h7haTXvaq6WWsXBjI+AAg291LyqyTFy7UUy4eSprp3s3wogIhgjJkiabB78xVJfyvrWhAAwp37/dD13ZtPWmuHl9L2KkmveVU1K+4+IQA4xf2+57iir/gxxoyRNNq96fPyoe5l5TdKSnRX3WStnVxC29k6trzoUmvteeWLPjBY6gfldatX+cWSftBba/dLGuVVdaMxhpmpAMKStfYTa+00X24CWWvfkLTcq+rSwEUGAMHnfjL8ebkSgn9IusPZiADA/4wxLXQsIbhF0j9ICAKIdO53ZNX3qppVRpd5kg54bWf6OyYAqAxr7e9FE4KVdL2OJQTXyfVewZLcJanAXW5vjDnHj3FUGElB+MwYkyTXkqBHTS2prdtcSTnucg1JFwQiLgAIQd4vWM9wKggACJCbJXVwl/9prd3pZDAAECA3eZUnWWuzHYsEAIInqcj2H6U1ttYekbTPq4p7zQAiXS+v8rTSXhnkTkZ+5FV1RaCCKg++UaM8zpPriXBJ2i/X2rslstYekrTUq6pzSW0BIMJ4XxBEOxYFAPiZMaaupPHuzc8k/c/BcAAgIIwx0ZL6elXNdSoWAAiyXXK9H+uos0trbIypLekkr6pvAxEUAIQCY0yCpHO9qhb70O1jr3JI5EdICqI8zvQqr3Y/DVSWr0voDwCRrKlXeYtjUQCA/z0tKVmud0vfWNpTkQAQxppISnGX/5S0wRgTY4wZZIxZZIz53RiTa4zZaox51xhzszEmvpTxACAsWGvzJL3rVXWfMaZqKV0e1rH7y4ustesCFhwAOK+Rjn3Ps5K+8aFPyOVHSAqiPBp5lX/xsY/3er2N/RgLAIQkY0w9FX7y50OnYgEAfzLGXCvpMvfmw9baH52MBwACqI1XeYukdLmWh/+fXNd5J0uKk3SqpG5yPTCxzhjTRgAQ/u7VsdcBtZT0nTHmemPM6caYBGNMXWPMpcaYzyQNcrf7wasMAJHKOz+y071SYlm88yM13DOsHRXjdAAIKzW9yjt87PO7V7mGH2MBgFA1QceWDP1V0nwHYwEAvzDG1JT0X/fmOkkPOBgOAARa3SLb7+rYEnpr5XqVRr6kZnLdMJekepIWG2MusNauDEqUABAA1tq1xpgOcv0uW09SQ0nTSmieJWmGpH/z7lUAJ4DK5kckV45kl3/CqRhmCqI8vF82fNDHPt7tir6sGAAiijHmeklXelXdY63NdSoeAPCjxyUdfaLxJr63AYhw1bzKTeRKCB6Q1Mdae6a19jpr7SBrbSu5Zg7udretKukVY0xcUKMFAD+z1n4nKVPSbZL2l9J0oaRZJAQBnCAqmx8pOoYjSAqiPBK8yod97ON9w6iKH2MBgJBijGkt6VmvqlnW2pedigcA/MUYc4mkAe7NF621H5fWHgAiQGIxdf2tta8VrXR/T+wpqcBd1VDS3wIYGwAEnDGmlqRn5HowLFGumS6vS3pO0qs69lqhayR9YYyZbIyJLm4sAIgglc2PSCGQIyEpiPLwXiPX1ycfvV+27mv2HADCijGmgVxLqxy9OPhO0k3ORQQA/mGMSZQ02b25R9KdDoYDAMFS9P0wS621b5TU2Fq7VK6b5UddE5CoACAIjDFnSPpGrncEFsg1W7CutfZKa+2N1tprJDWQ1E/SPne3IZKeciJeAAiiyuZHpBDIkZAURHnkeJV9zWh7t8spsRUAhCljTB1JH0g6xV21UVI3a+2+knsBQNh4QFKGuzzCWru7lLYAECmK/u5aYkKwhDbn+TEWAAgaY0yMXA85pLurbrLWTrLWHvFuZ11mSbrKq/pmY0zbIIUKAE6obH6k6BiOICmI8tjjVT7Zxz6neJX3+jEWAHCcMaamXAnBhu6q7ZK6WGu3OxcVAPiHMaalpKHuzY+ttS86GQ8ABNGeIts/+NDnR69ysjEm2Y/xAECwXCnXu1Ql6SdJpV7/WWs/kPShV9WgAMUFAKGgsvkRKQRyJDFOB4Cw8pNXub6Pfep5ldf6MRYAcJQxJkWul6qf7a7aLVdCcJNzUQGAXzXTsYcI6xljlpXStrZXuU6Rtv+x1r7t9+gAIHCK/u7qyxPd2UW2k4upA4BQ182r/LG11vrQ5yNJXdzl1v4PCQBChnd+5CRjTIK1tuiy80V550f2Wmt3BSCuciEpiPLwfvKxqTEmpujyAcVoWUJ/AAhb7ndsvSOplbvqT7mWDPXlKXIACEcNdWxWdFniJLXz2q5dUkMACFFrimwn+dCn6MzAP/0UCwAEU5pXueis6ZJ4Ly+f6sdYACDU/CTXu1ajJBlJLSSV9vCsFIL5EZYPRXl8ISnXXU5UGU//GGPiJZ3rVfVRgOICgKAxxiRIektSB3fVAUmXWmtXOhcVAAAA/MW98oP36g9n+dDtTK/yXmvtfv9GBQBBcdCrXMPHPjW9yln+CwUAQot7VqB3EvAiH7pd6FUOifwISUH4zFqbI2mRV9XAMrr01rGnJfdK+jQAYQFA0BhjYiXNldTZXZUr6XJr7RLnogKAwLDWTrPWGl8+Kvz+mF+K7J/m0CkAQGW87lXu5UN77zb87gsgXP3qVe7kY5/OXuWf/RgLAISieV7lgaU1NMbUlfSXEvo6hqQgyutpr/JAY8zZxTUyxlSVNM6r6jkflhoFgJBljImW9LKk7u6qI5L6WGs/LLkXAAAAwtQzkvLc5fOMMT1LamiMaSvXQ7FHTQtgXAAQSN6/3zY2xgworbExprOki72qFgYkKgAIHS9KOroiRCNjzOBS2j4sKdpdXmqt/TqgkfmIpCDKxVr7tqTP3JvxkhYYY5p5tzHG1JQr6326u2qvXF8AABCWjDFG0guSrnJXFUgaYK19y7moAAAAECjW2g0q/FDsy8aY3kXbGWMulLRAx274LJNrqXkACEdvS1rntf2cMeYm90OyHsaljwrPqt4iaXYQYgQAx1hrd0qa4FX1X/f3Qw9jTKwxZrykvl7V9wQjPl8Ya63TMSDMGGPSJS2XVMddZSV9ImmDpNqSukiq6t53RFI3a+2iouMAQLgwxtwiaZJX1XpJ7/va31p7m9+DAoAQYowZKGmqe/MXa22Gc9EAgH8YY+IlfSDpfK/qHyWtkJQvqZmkVl77tktqZ63dErQgAcDPjDHt5HrvVVWv6u2SvpC0W1KqpHMlZXjtz5XUxVr7eZDCBACfGWPekXRqkepTJJ3sLu9X8csfd7fWbitmvFhJ76nw8smrJX0tKUHSBTqWO5Gk0dZa71UVHUVSEBVijGksaZakFqU02yVpkHt2IQCELWPMGEmjK9rf/b4tAIhYJAUBRCpjTKpcS4n2LaPpl5KuJiEIIBK4l0WeISnTh+ab5FpJZ0lgowKAijHGbJZUvwJdG1hrN5cwZqqk5yT1KW6/W56kMdbaBytw7ICJcToAhCdr7Vr3k0PXyvXL0dlyZdazJG2Ua/mAqdba3Y4FCQAAAABAJVhr/5TUzxjzrKTrJHWUlCbXcqE75Fou9FVJ8yxPXQOIENba5caYsyX1lNRLUmu5ZtkkyTWjZoeklXItlzzHWptXwlAAEJHc14jXGGOmSLpeUnu5ZgfmybWc8kJJL1hrf3QuyuIxUxAAAAAAAAAAAACIcFFOBwAAAAAAAAAAAAAgsEgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAACCwhgzxhhj3Z8xTscDAAAAACeSGKcDAAAAAACEFmNMhqRNfh52rJ/HAwAAAACUAzMFAQAAAAAAAAAAgAjHTEEAAAAAQFH7JE0qo01bSW3c5W2S3iij/XJ3HwAAAACAA4y11ukYAAAAAABhxv1OwNHuzU+stRc5Fw0AAAAAoCwsHwoAAAAAAAAAAABEOJKCAAAAAAAAAAAAQIQjKQgAAAAACApjzBhjjHV/xpTQZqBXm2nuuihjTD9jzLvGmC3GmFxjzA5jzFxjTPtixogzxgwwxixytz9kjPnVGPOiMebMcsYc6x7rVWPMRmNMtjFmvzFmkzFmljHmCmOMqcjfBwAAAAAEU4zTAQAAAAAAUBJjTC1Jr0jqXGTXSZJ6S7rCGPN3a+1Ud/vTJb0lqWjyr66k6yRda4y5xlo7z4djXyTpeUkNi9md4f5cK2mZMeYqa+1Wn04KAAAAABxAUhAAAAAAEKpiJL0u6XxJhyR9IulXSTUk/UVSNUlG0vPGmPWS1kn6SK4E4D5Jn0raLulkSV0kVZUUJ+llY8zZ1tpNJR3YGHO1pJckxbqrDkpaJmmzpAJJmZLau2M8V9JSY0wba+0O/5w6AAAAAPgXSUEAAAAAQKi6SlK8pDclDbHW7jy6wxhT3V1/vlyvxhgn6U+5EoLPSrrLWpvt1T5d0vtyzSCsImmkpBuKO6gx5mxJL8qVELSSHpP0gLU2q0i709ztOrqPO1VS90qeMwAAAAAEBO8UBAAAAACEqnhJiyVd6Z0QlCRr7R+SBkjKd1d1ktRL0ovW2pu9E4Lu9r9J+odX1VXGmJIelP2vXIlDSRphrf1n0YSge8yNkrpJ+sFd9VdjTDvfTg0AAAAAgoukIAAAAAAglN1urc0vboe19hdJX3hV5Uq6q6SBrLVLJG1xbyZLaly0jTGmuY69v/AbSU+UFpy1dr+k/3hV/a209gAAAADgFJKCAAAAAIBQtcFau6qMNqu9yp8VnVFYjDVe5QbF7Pde/nOWtdaWMZ7keo/hUR19aA8AAAAAQcc7BQEAAAAAoWpN2U30h1f5ex/a7/UqpxSzv71XuZMxpr4PYxqvcl0f2gMAAABA0JEUBAAAAACEqj99aHOkEu1ji9l/qlf5rz6MV1T1CvQBAAAAgIBj+VAAAAAAQKjyZenOyrQvTmol+0f7IQYAAAAA8DuSggAAAAAAHLPfq9zbWmvK+3EscgAAAAAoBUlBAAAAAACO2eFVPsWxKAAAAADAz0gKAgAAAABwzJde5Q6ORQEAAAAAfkZSEAAAAACAYxZ4lXsbY052LBIAAAAA8COSggAAAAAAuFlrl0ta7N6sImmGMSbOl77GmDhjTPVAxQYAAAAAlUFSEAAAAACAwoZKynGXL5b0qTGmXUmNjTGZxpiRkjaLJUcBAAAAhKgYpwMAAAAAACCUWGvXGGP6SnpFUlVJ7SQtM8ZskPS1pL2SEiSdJKmZpDSnYgUAAAAAX5EUBAAAAACgCGvtAmPMeZJekNTKXd3Q/SnJZkm/BTg0AAAAAKgQkoIAAAAAABTDWvutpNbGmEsk9ZJradBTJVWTlCtpl6SfJH0paaGkpdZa60iwAAAAAFAGw+8rAAAAAAAAAAAAQGSLcjoAAAAAAAAAAAAAAIFFUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcP8f/QlVT34BTAwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "def cdf_from_lc(lc, dt):\n", + " cdf = np.cumsum(lc)\n", + " cdf = np.concatenate([[0], cdf])\n", + " cdf /= cdf.max()\n", + " return cdf \n", + "\n", + "\n", + "# cdf_times = np.concatenate([[0], dt / 2 + time])\n", + "cdf_values = cdf_from_lc(flux, dt)\n", + "cdf_times = np.arange(cdf_values.size) * dt\n", + "\n", + "cdf_inverse = interp1d(cdf_values, cdf_times)\n", + "\n", + "plt.plot(times, flux / flux.max(), color=\"grey\", label=\"Light curve\")\n", + "plt.plot(cdf_times, cdf_values, color=\"k\", label=\"CDF\")\n", + "\n", + "for prob_val in np.linspace(0, 1, 100):\n", + " time = cdf_inverse(prob_val)\n", + " plt.plot([0, time], [prob_val, prob_val], color=\"r\", lw=0.3)\n", + " plt.plot([time, time], [0, prob_val], color=\"r\", lw=0.3)\n", + " \n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Probability\")\n", + "\n", + "plt.ylim([0, 1])\n", + "plt.xlim([0, 10])\n", + "plt.legend(loc=\"lower right\");\n", + "plt.tight_layout()\n", + "plt.savefig(\"CDF_lc.jpg\")" + ] + }, + { + "cell_type": "markdown", + "id": "55e11634", + "metadata": {}, + "source": [ + "The same method can be used, in principle, to simulate variates from *any* probability distribution. The only requirement is that the input distribution is positive definite.\n", + "Stingray implements this method in `stingray.simulator.base`:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e77b524a", + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.base import simulate_with_inverse_cdf\n", + "event_times = simulate_with_inverse_cdf(flux, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6ed2573e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.3809308 , 0.10856514, 0.71888075, 0.54479831, 0.87783205,\n", + " 0.45405823, 0.66623686, 0.62832368, 0.72111516, 0.25882679])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "event_times" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eab73320", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Simulator/Concepts/Simulator.ipynb.txt b/_sources/notebooks/Simulator/Concepts/Simulator.ipynb.txt new file mode 100644 index 000000000..6c6137f83 --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/Simulator.ipynb.txt @@ -0,0 +1,793 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following features of impulse response simulator have been implemented in this notebook.\n", + "\n", + "1- Find lag-frequency spectrum of a simple delta impulse response.\n", + "\n", + "2- Find lag-frequency spectrum of a _more_ realistic impulse response based on real physical principles.\n", + "\n", + "3- Compute lag-frequency spectrum of delta impulse responses with same intensities and varying positions at different energy levels.\n", + "\n", + "4- Compute lag-frequency spectrum of delta impulse responses with same positions and varying intensities at different energy levels." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and obtain data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from stingray import Crossspectrum, Lightcurve, sampledata\n", + "import numpy as np\n", + "from scipy import signal\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = sampledata.sample_data()\n", + "s = lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lag-frequency Spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple Delta Impulse Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define a delta impulse response with a delay of 10." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "h_zeros = np.zeros(delay)\n", + "h = np.append(h_zeros, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find output signal by taking convolution of variability signal and impulse response." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "output = signal.fftconvolve(s, h)\n", + "# To make two counts of equal size, remove last 'delay' entries and avoid first zeros\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualize input and output signals." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEACAYAAABbMHZzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4VEX3xz8hgIDSS2ihSG+CIEVECChFELGACBZ81deC\nInbFnwXhlSqCgGJDmgJSlV4EA9JbIEDo0hJa6BBK2vn9Mbtkk+wmu5tNdjc5n+fZZ++dO3fu2U32\ne+eeOXMGFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFD/nCBAOhAGbLGXFgOXAfmAZUMSm\nfj/gALAXaGdT3gjYaTn2TaZarCiKomSYwxixt2UY8IFl+0NgiGW7NrAdyANUAg4CAZZjm4Amlu1F\nQIfMMVdRFEXxBIeB4inK9gJBlu3Sln0wvf4PbeotAZoBZYA9NuVPAd973FJFURQlXXI5WU+Av4At\nwH8tZUHAacv2aZJuBGWBSJtzI4FydsqjLOWKoihKFpPbyXr3ASeBkhg//94Ux8XyUhRFUfwAZ8X/\npOU9GpiL8dufxrh7TmFcOmcsdaKAYJtzy2N6/FGWbdvyqJQXqlKlihw6dMhJsxRFURTgEFDVlROc\ncfsUAApatm/HRO/sBOYBvSzlvYA/LNvzMP78vEBloBpmoPcUcBloihkAftbmnKRPcOgQIuLTr88/\n/9zrNqidaqfaqTZaX0AVV4QfnOv5B2F6+9b6v2FCO7cAM4AXMaGgT1rqRFjKI4B4oDdJLqHewEQg\nPybaZ4mrBiuKoigZxxnxPww0sFN+HnjQwTmDLK+UbAXqOWeaoiiKklk4G+2j2BASEuJtE5xC7fQs\naqdn8Qc7/cFGdwlIv0qWIxYflqIoiuIEAQEB4KKea89fURQlB6LiryiKkgNR8VcURcmBqPgriqLk\nQFT8FUVRciAq/oqiKDkQFX9FUZQciIq/oihKDkTFX1EUJQei4q8oipIDUfFXFEXJgaj4K4qi5EBU\n/BVFUXIgKv6Koig5EBV/RVGUHIiKv6IoSg5ExV9RFCUH4qz4BwJhwHzLfn8g0lIWBjxkU7cfcADY\nC7SzKW8E7LQc+8ZtixVFUZQM46z49wUiAOv6igJ8DdxteS22lNcGulveOwDfkbS02DjgRaCa5dUh\ng7YriuINfvwRtm/3thVKBnFG/MsDHYGfSRLyAOyvF9kFmAbEAUeAg0BToAxQENhkqTcZeNRdoxVF\n8RJHjkCfPjB/frpV06R9ezh71iMmKe7hjPiPBN4HEm3KBOgD7ADGA0Us5WUx7iArkUA5O+VRlnJF\nUXyN1atBxP6xTz+FKlVg71732z97FpYtg3373G9DyTDpif/DwBmMX9+2pz8OqAw0AE4CIzLFOkVR\nspZz56BVKxhh5ycdFgZ//QVjxmRM/MPCzPuRI+63oWSY3Okcbw48gnH75AMKYVw2z9nU+ZmkgeAo\nINjmWHlMjz/Ksm1bHuXoov3797+1HRISQkhISDpmKoriESIioFo1+OoruOcesP3tffABfPYZNGoE\n+/ebp4MAe97fdAgLM+ep+LtNaGgooaGhGWrDlb9cK+A9oDPGh3/SUv420BjoiRnonQo0wbh1/gKq\nYtxEG4E3MX7/hcBoYImd64g4euRUFCVz+f572LIFuneHXr1g82YoV864afr0gV27IE8eKF3a1Ctf\nPv02U9KjBxw7BrVrw08/ef4z5EACzE3YpTuxK3H+ASRF+wwDwjE+/1aYGwCYiKAZlvfFQG+bc3pj\nnhIOYAaC7Qm/oijeJCLCiHLbtvDGG9CtG9y4YXr9gwcb4QeoWdN9n31YGDz2GBw96jm7FZdx45kt\n09Gev6J4iwcfhPfegw4dIDHRiPTx45AvH6xdm+TmefVVqFcPXn/dtfavXoVSpWDjRnjiCeM+UjJM\nZvf8FUXJ7kREQJ06ZjtXLpg0CW67zYwB2Pr3a9Rwb9B3xw7TftWqxvWTmJj+OUqmoOKvKIrhwgXT\nM7f14xcpAuvXQ/Pmyeu66/YJC4O774b8+U3bp05lzGbFbVT8FUUxRERArVrORfCk1fPfvdu4juwR\nFgYNG5rtSpU04seLqPgrimKwDvY6Q8WKEB0NMTGpj82bB6NHw8WLqY9Ze/6g4u9lVPwVRTG4Iv6B\ngWY+gL0B29Wr4Y47zE3AlthY87RQr57ZV/H3Kir+iqIYdu9OGux1Bnuun/h4WLcOPv8cZs5Mfiwi\nAipXhgIFzL6Kv1dR8VcUxeBKzx/sD/pu3w7BwfD887BqFVy6lHRs27Yklw+o+HsZFX9FUYxIX7wI\nFSo4f469nv+qVSY3UOHCJjWEbfZP28FeUPH3Mir+iqLAnj2mJ5/LBUmw1/NfvRpatjTbXbvCrFlJ\nx2wHe8HcaDTW32uo+CuKYvz9rrh8AKpXNwO+VvFOTIR//kkS/0cegZUr4fJlcyw8HBo0SDq/QAHz\nhHD6tGc+g+ISKv6KoiSf2esshQqZiVrHj5v9nTuhRAkoU8bsFykC998PCxfCwYNQvDgULZq8DXX9\neA0Vf0VRXB/stWLr+lm92vj7bena1UT9pHT5WFHx9xoq/oqiuC/+toO+q1YluXysdOliFoBZvVrF\n38dQ8VeUnM6VK2a2bqVKrp9r7fmL2O/5Fytm8gL98kvySB8rKv5eQ8VfUXI61kifwEDXz7X2/Pfu\nhdtvtx8qal0TQHv+PoWKv6LkdNx1+YC5aezdmzzEMyWPPgoPP5w0EGyLir/XUPFXlJxORsQ/ONik\ngl6wILXLx0rx4mayl71soRUraqy/l1DxV5Scjjsx/lZy5TLx/osWOe75p0WBAiZkVGP9sxwVf0XJ\n6WSk5w/G9VO6NFSp4t756vrxCs6KfyAQBlgTdRQDlgP7gWVAEZu6/TCLtO8F2tmUNwJ2Wo59477J\nipINOH3aLI14+LB37YiJMatp3Xmn+23UrGl6/c4sAmOPihVV/L2As+LfF4gArCurf4QR/+rACss+\nQG2gu+W9A/AdSYsKjwNeBKpZXh0yaLui+B+bN8NzzxnBHDUKVqzwni03b8IHH0CjRpA7t/vtvPEG\nDB/u/vmVKsHRo+6fr7iFM+JfHugI/EySkD8CTLJsTwIetWx3AaYBccAR4CDQFCgDFAQ2WepNtjlH\nUbI/Z89CmzYm7LFePTh0yNwEvOXr/vdfuO8+iIpKnnnTHUqUSL7ur6uo28crOCP+I4H3Advh+CDA\n+l972rIPUBaItKkXCZSzUx5lKVeU7M+xY9CiBTRrZkT//ffN5KegIO+I/6xZxpZnn4W5c1Pn28lq\nVPy9QnrPeg8DZzD+/hAHdYQkd5BH6N+//63tkJAQQkIcXVpRfJw9e6B9e3jnHXjrreTHgoLMqldZ\nyYIF8O67Jtla48ZZe21HqPi7TGhoKKGhoRlqIz3xb45x8XQE8gGFgCmY3n5p4BTGpXPGUj8KCLY5\nvzymxx9l2bYtj3J0UVvxVxS/ZeNGk9tm+HDTy06JN3r+mzdDr16+I/xgBnyPHjUpItwdNM5hpOwU\nf/HFFy63kZ7b52OMmFcGngJWAs8C84Beljq9gD8s2/Ms9fJazqmG8fOfAi5j/P8Bljas5yhK9uPY\nMTOrdfx4+8IPUKpU1ov/oUPuh2RmFrffDgULaqx/FuNqnL/VvTMEaIsJ9Wxj2QcTETTD8r4Y6G1z\nTm/MoPEBzEDwEretVhRf59NP4ZVXoFMnx3W80fP3RfEHdf14AV98xhIRjw4hKErWsmOH8fPv329m\nrzoiMRFuu83E2ufNmzW2lSpl7LOXZ8ebPPkkPPYY9OjhbUv8kgDjLnNJz3WGr6J4mg8/hP/7v7SF\nH0xqhJIl4cyZtOt5iitXzI2mdOmsuZ4raKx/lqPiryie5K+/zJKFr7ziXP2sdP0cOmRm8vrioKq6\nfbIcFX9F8RSJiWbG7KBBzrtxslr8fdHfDyr+XkDFX1E8xfTpJk1Ct27On6Pib6hUyft5jnIYGUjo\noSjKLW7eNH7+iRNdc6tktfjXr58113KVSpWS8vrn0j5pVqDfsqJ4grlzTa/a0YImjvC0+H//vRFR\ne/hyz1/z+mc5Kv6K4gl+/x2eecb18zwp/gkJ8PHHJnWDPQ4ehKpVPXOtzED9/lmKir+iZJTLl2Hl\nSrNWrat4Uvy3bDFLKm7enPpYbCycPGl/gXVfQcU/S1HxV5SM8uefxt1TpEj6dVPiSfFfutTYsWVL\n6mNHjpi0y3nyeOZamYGKf5ai4q8oGeX336F7d/fO9aT4L1sG771n3DsxMcmP+bK/34pG/GQpKv6K\nkhEuXIB//oFHHnHv/BIl4OJFiI/PmB2XLkF4ODzwANSpA2FhyY/7g/hXrqw9/yxExV9RMsLcufDg\ngyYrpTsEBpqFXaKjM2bHypXQvDnkz2/SNaf0+/uD+KvbJ0tR8VeUjJARl48VT7h+li6Fdu3Mtr+K\nf8WKSbH+Sqaj4q8o7hIdbRZsSSttszNkVPxFjPi3b2/2/VX88+c3g+anTnnbkhyBir+iuMucOdCh\ng1mMJCNkVPwPHoS4OKhd2+zXqmUE9MIFs5+YaAZS77wzY3ZmBer6yTJU/BXFXTzh8oGMi7/V5WNN\nKxEYCHffDVu3mv2TJ83s2TvuyLitmU3lyhrxk0Wo+CuKO5w6ZSJqHnoo421lVPyXLUvy91u5554k\n148/uHysaM8/y1DxVxR3WLDACH++fBlvKyPiHxsLq1ZB27bJy239/ir+ih1U/BXvkphoctL4Gzt2\nQJMmnmkrI+K/fj3UqAHFiycvtxV/X8/pY4uKf5aRnvjnAzYC2zGLsg+2lPcHIoEwy8v22bcfZpH2\nvYDts2gjYKfl2DcZtFvJLowcaWal+hu7dkHdup5pKyPibxviaUuVKmaW76lT2vNX7JJePv8bQGvg\nmqXuGqAFIMDXlpcttYHulvdywF9ANUv9ccCLwCZgEdABWOKJD6H4McuWpU5F4OuIwM6dviH+y5aZ\nG2hKAgKS/P7+JP4VK8Lx4+ZpMDDQ29Zka5xx+1yzvOcFAgFL/JjdleK7ANOAOOAIcBBoCpQBCmKE\nH2Ay4EYKRCVbERdn3Bbh4f41sce64HpQkGfaK1kSzp1z3f116RLs2wdNm9o/3rixSfLmT+KfL5+Z\n8XzypLctyfY4I/65MG6f08DfwG5LeR9gBzAesKYzLItxB1mJxDwBpCyPspQrOZktW4wvulAhOHrU\n29Y4j9Xl46mF0PPkgcKFzQ3AFTZuhEaNHK8X3LixeTKIjzc5hPwFdf1kCc4s45gINAAKA0uBEIwL\nZ4Dl+EBgBMal4xH69+9/azskJISQkBBPNa34EqGhEBJieq87dpgYb3/Ak/5+K1bXT6lSzp+zdq3J\n5+OIxo1hwwZo0MBzN6qswCr+LVp42xKfJTQ0lNDQ0Ay14coavpeAhcA9gO1VfwbmW7ajgGCbY+Ux\nPf4oy7ZteZSjC9mKv5KNCQ2F3r3httuM68edxVC8wa5dpsftSaziX6+e8+esWwdvveX4eNmyULq0\n/7h8rGjPP11Sdoq/+OILl9tIz+1TgiSXTn6gLSa6p7RNnccwUTwA84CnMOMDlTGDvZuAU8BljP8/\nAHgW+MNla5Xsg9Xff//9ZlHxHTu8bZHzZGbP31ni443b5957HdcJCDC9fxV/xQ7p9fzLAJMwN4lc\nwBRgBWbAtgEmiucw8IqlfgQww/IeD/S21MGyPRFzE1mERvrkbLZuNaJUrBjcdRd8+ql37dm/H6pV\nS989IgK7d5uc+Z7EVfHfudOszFWsWNr1+vZ1b4Uxb1KpkkmdoWQq6Yn/TqChnfLn0jhnkOWVkq2A\nC8+0SrbG6u8HqF4doqLg6lXv5J9JSDA9+SlT0s/Vc+yYGaAuWtSzNrgq/uvWpe3vt/LAA+7b5C10\nUZcsQWf4Kt7BVvxz5zaZKHfuTOuMzCM6GnLlMv7z9CJudu3yfK8fXBf/tWvhvvs8b4cvUKECREb6\n58xvP0LFX8l64uJMz/X++5PK6tc3g77e4MQJc/Pp1g3efTftupnh74fM6/n7I7fdZkJTT5zwtiXZ\nGhV/JevZutXklrf1V991l/ODvp5a8NzKiRMmMubLL+Hvv2H5csd1fUH8rS6y6tU9b4evoIO+mY6K\nv5L1rFqV5PKx4mzPX8SI77//es4eq/gXLAjffw+vvOI45YQviL+11+9PsfuuouKf6aj4K5nLzJnG\nf2uLrb/fyl13OZfmISoKzp41KQs8hVX8waRpbt4cPvssdb34eDMhzbpilicpVcqMPTiT5iI7+/ut\n3HmnyUaqZBoq/krmsXs3vPSSiTW3ulLi4ox42fr7waQkdibNg/XpwJPpIGzFH0yitN9+g+3bk9c7\ndAjKlMn4so32uO0206516cW0SG9mb3agTh3zlKVkGir+SubxySemBz11KvTqBQMHmnw+lSunzj8P\nzvn9w8NNdJAnXQIpxb9kSfj449S9/8xy+VhxxvUTEwMRESZjZ3amXj3vRX/lEFT8lcxhwwYj9L17\nQ+vWZnv5cujSJbXLx4ozfv+dO6Fly8wVf4CXXzbLNFoXRAHzJJPZ4m/NGOqIzZuNMObPn3l2+ALV\nq5vUzteupV9XcQsVf8XziMBHH0H//kkiVbYsrFgBffrAs8/aP8/Znn/nzpnr9gGTWjhl798Xev7r\n1mV/fz+YTKfVq5unHCVTUPFXPM/SpUbEevVKXp4nj0nj4MhlkV7P/+ZNMwj40EOe6/nHxcH58/az\nab74IuzZYwQXfEP8c4K/34q6fjIVFX/FsyQmQr9+JmY+tytJY0me5sEee/ea8YIqVYx7JDbWuXaX\nLIHXXrN/7PRp4+O3t2pU3rxJ4xY3b8Lhw2a93MyibFmTPsIRiYkmGV5OEf+77lLxz0RU/BXPMmOG\n6eE/9pjr51rTPDiK8ggPN4KQO7eJukkZQuqINWuMaNrDnsvHll69jOj/+KMJP3S0cIonuPde07N3\nxO7dJqdQmTKZZ4MvoT3/TEXFX/Ec8fGmpzxkiPsTkNLy++/caY6DWevVWb9/eLhxF4mkPpae+OfJ\nY3r+H36YuS4fgGbNzGd09OSzYoV/JmpzFxX/TEXFX/Ec8+cbF0qbNu63kZbf39rzB9dmgO7YATdu\n2Penpyf+AE8/DcHBmZPQzZZ8+cx4iKPef04T/3LljLstvQgoxS1U/BXPMXasiebJCA0bOnbR2Ip/\nxYrOif/Fi2ZAt1Ej+zNGnRH/3Lnhzz8djxt4klatzAzolMTHw+rVGbux+hsBAdr7z0RU/BXPEBFh\nXl27Zqyd5s3NoG9KoT571sR8B1tWCa1UyTm3z86dxl1Tvbr9lBDOiD9AzZrmqSazCQmxL/6bN5vP\nnBU2+BIq/pmGir/iGb791kyMyuiAaO7c5gYyY0by8p07jRBYxxKcdfvs2GGeFqpUcb/nn5U48vvn\nNJePFRX/TEPFX8k4ly7BtGkmG6Yn6N4dpk9PXmbr8gHnB3yt51Wt6h/inz+/cVFZ5xZYUfFXPIyK\nv5JxJk+Gtm09J6ItWpgVtWxnd6YU/+BgI9zx8Wm3FR5uBpH9Rfwhtevn2jXj9mnZ0lsWeY+6dc3/\ngTPZThWXSE/88wEbge2YRdkHW8qLAcuB/cAywHaF6H7AAWAv0M6mvBFmTeADwDcZNVzxERITzUDv\nG294rs1cuUzv33YR7/Bw0wu0kjev8X+ntdpTQoKZM1Cvnn3xv3kTrlyxn2TOm6Qc9F271tzAChb0\nmkleo3Bhs6qXJ9dvUID0xf8G0BpoANxl2W4BfIQR/+rACss+QG2gu+W9A/AdYA34Hge8CFSzvDp4\n6kMoXmTFChOi2KKFZ9u1un5EjIhHRKSOs0/P7//vv0Y4Chc2Ai9iIn+snDwJpUubm40v0ayZudlZ\n/f451eVjRV0/mYIz//XWtHp5gUDgAvAIMMlSPgl41LLdBZgGxAFHgINAU6AMUBDYZKk32eYcxR0u\nXjR5abKalBOlxowx4Z2eXlWqSROTvmHHDhOlExRk8v3bkl64p9XlA8a+lL1/X3T5ABQoYEJerX5/\nFX8V/0zAGfHPhXH7nAb+BnYDQZZ9LO9Blu2ygO2c+0ignJ3yKEu54i5PPJHcLZLZxMXBf/9ronGK\nFTOpDqwC1bOn568XEABPPWV6/yn9/VbSC/e0RvpYSRnx46viD0l+/wsXTE6jZs28bZH3UPHPFJzJ\nvJWIcfsUBpZiXD+2iOXlMfr3739rOyQkhBBH+d9zKmfPGmHIqtS+MTHw5JPGv3/unHHDXLxohKlE\nCdNTzQy6dzc5gvLksS/+FSvCxo2Ozw8PN7NzrfhLzx+M+H/6qVkFrXlzs9JXTqVePfjiC29b4VOE\nhoYSam8+iAu4knbxErAQM3B7GigNnMK4dKzzr6OAYJtzymN6/FGWbdvyKEcXshV/xQ7z5xsx8OQ6\nto6IjoaHHzYJ1376yQgxZM0gaf365nNOngxffZX6eKVKqecD2BIeDsOGJe1XrQp//52078vi36yZ\neXKZNy9nu3zAZFI9ehSuX8/+i9g4ScpO8Rdu3BzTc/uUICmSJz/QFggD5gHWZO29gD8s2/OApzDj\nA5UxA7ubMDeJyxj/fwDwrM05iqvMnQv/+U/mi//hw+bp4sEHYcKEJOHPKqyun2PHHLt9HPn8L182\nuXyqVEkqq1o1+Xd24oTvZsgsUADuvht+/VXFP08eqFZNF3bxMOmJfxlgJcbnvxGYj4nuGYK5EewH\n2lj2wYSDzrC8LwZ6k+QS6g38jAn1PAgs8dSHyFFcvWpcPn372o9b9xQi8MIL5ibz5ZeeH9B1lqee\nMiGOVaumPlahgknrbC8GfOdOk4jNNk+/P7l9wLh+ChaEBg28bYn30dz+Hic9t89OoKGd8vPAgw7O\nGWR5pWQrUM9OueIKS5aYvO/Vqpk49UuXTCijp1m50uTYef99z7ftCjVrmicQe4ut5Mtn8tufPGky\nQNpiG+ljpXRpM35x+bKJHPJ18X/8cXPTtffZcxo66OtxfCzAWUmXOXPMIGhAgIm4yQzXj4jJy//F\nF66vxpUZpDW+4Cjc016EUMrvzNfF/+67YcAAb1vhGzRpYrKaKh5Dxd+fiI2FxYuhSxezX6VK5oj/\nokXGvdS9u+fb9jSOwj1Thnlasbp+YmJMjv+iRTPdRMUD3H+/uck7u4CPki4q/v7EypVQu3bSIGVa\n4r9zpxFvR0siOiIx0YQYDhjgezNf7WGv55+YmHzVL1usg74nT5pev7fGMhTXyJ0bHn0UZs/2tiXZ\nBj/4dSu3mDs3+dq4aYn/smWmh9umjZmcdfKk89cICDA/NH/AXs//yBHTo7fXq7f2/H3d5aOkpmtX\nmDXL21ZkG1T8/YWEBLOalLPiv327Sba2f78Rwbp1Yfjw9K/x2Wfwv//5T4/YXrinI5cPqPj7M23a\nwL59JsJLyTAq/v7Chg1QqlTyuPW0xD8szIQIFiliJjpt3Wqyb65Z4/ga06eb+h38KOdeyrz+cXHw\n229msNQeKv7+S5488MgjJuhByTAq/v5CSpcPmDj3U6dMyKct16+bjJa2C45XqmR69O+9lzo5G5jw\nx48/9m5MvztYxV/EpJzo2NHkv//gA/v1y5UzKSoOHVLx90eeeEJdPx5Cxd8fELEv/rlzm0VNUro9\ndu0ya9amXFLx6adNxNDMmamv8d570K6dmVjkT9x+O9xxh8nxc999Zl7AvHmOc98HBpob4Zo1Kv7+\nSNu2ZjD/1ClvW+L3qPj7Azt3mgiWlJOWwL7rZ/t2+7NCc+UyOXL69Uv+tLBsGSxdCiNGeNburKJS\nJZOC4tVXTYrp9OYmVK1qvlMVf//jttugUyfTGVIyhIq/P/DHHyb6xp47xt7C5Nu3O/Z5t2ljesfj\nxpn9S5fgpZfg559T58v3F1580SR469PHufpVq5qnKRV//0SjfjyCir8/YM/lYyVlsjJIGux1xLBh\nMGiQScn87rvGT962refszWpefdV8Bmex5glS8fdP2rc3AQzR0d62xK9R8fd1jhwxOXYc5e5P6fZJ\nSDAujbTEv04dM0v48cfNKlHphYBmN6pWNWMFOXFN3OxA/vwmIu0PTQycEVT8fZ0//oDOnR0n90op\n/gcPmoXN00v2NmCAiYf/+eecJ4L16kHr1v4V1aQkp2vXtNdyUNJFxd/X+eMPxy4fMInKjhxJSmvs\naLA3JWXKmIiJnJgrvmxZsyCO4r906gR79qS9kpuSJir+vkx0tBHzBx1lz8Ys+lG0qHENQdqDvSlJ\nGQqqKP5C/vzm6fX99+3PW/FnsujzqPj7MgsWmIHYfPnSrmfr+klvsFdRsgu9esH58+Z3kp146CEz\n294RsbEm624GUfH3ZebOdS7Bmq34O+v2URR/JzAQhg6FDz+E+HhvW+MZzpyBf/6Bd94xYdj26N/f\nI4ssqfh7grVrTW54T2JdrrFTp/TrWsX/5EnzIyhf3rO2KIqv0rGjyXk1caK3LfEMCxeaz9SpE3z+\neerja9aY9bT798/wpVT8M0p0tEmJUL06/PKL53ogS5dCs2Ym0Vp6WMXf2uvXKBYlpxAQYOatfP65\nWaDH35k/30T3DR4M06aZFemsXL4Mzz0HP/4IQUEZvpQz4h8M/A3sBnYBb1rK+wORQJjl9ZDNOf0w\nC7XvBdrZlDfCrAt8APgmA3b7DsuXm7v077/DpEkmlfDcuRkftEkvyscW6yzfsDDnB3sVJbvQpAm0\naAGjRnnbkoxx44aZd9OxI5QoYQa0X389SUv69jXBH507Z5lJpQGrE/kOYB9QC/gceMdO/drAdiAP\nUAk4CFi7opuAJpbtRYC93MHiVzz7rMh335ntxESRRYtEKlUSWbDA/TZjYkSKFhWJjHSufnS0SOHC\nIl27ivz6q/vXVRR/5eBBkeLFRc6c8bYl7rN4sch99yXtx8eL3HOPyOTJIrNmiVStKnLlit1TAZd7\nm870/E9ZxBzgKrAHKGfZt+df6AJMA+KAIxjxbwqUAQpibgAAkwE/WS7KAYmJJila+/ZmPyDAjNS/\n/z5Mnep+u8OGmSifcuXSrwtmgXMRWLVKB3uVnEmVKtCzp0lJ7qts3w5vvmnm1sTGpj5udflYCQyE\n774z6cl5+hzTAAAgAElEQVR794YpU0wGWw/hqs+/EnA3sMGy3wfYAYwHrM7pshh3kJVIzM0iZXkU\nSTeRrEEE7rknKSY+o4SHm2Rod96ZvLxrVzNwc+2a620eO2YyU7qSciEgwPzzX7kCNWq4fk1FyQ58\n8okRyMOHvW1JEnFxZhGlhg1NSpVixUz5Dz8kryeSWvwBGjeGZ54x0T/NmnnUtHRy3ybjDmAW0Bfz\nBDAOGGA5NhAYAbzoCaP624xkh4SEEOIox3xiovnSHKU+SMmOHSYh1MaNJq9NRlmyJKnXb0upUuaP\ntmiRuRG4wgcfmOyUFSq4dl7VqiaVcXrpjBUlu1KqlOlZf/op/Pqrt60xTJtmUqgMH24y6gYGGh1q\n397MU7Bm0g0PNyuV1aqVug07HcHQ0FBCQ0Mz13YLeYClwFsOjlfCDOQCfGR5WVmCcfuUxriMrPQA\nvrfTlvM+sqFDRR5/3Pn6AweK3HabyP/9n/PnpEVIiGPf/s8/izzxhGvtrV4tEhxsfP6u0q+fyH//\n6/p5ipKduHxZpHRpkW3bMtzUpRuX5M5v7pQbcTfcb+TVV0VGjUpd/uyzIp99lrQ/cKBI375uXwY3\nfP7OEIDxz49MUV7GZvttwOrktg745gUqA4dIGhvYiLkRBOCJAd9GjUTy5xdZv965+s2aibzxhkjH\nju59w7Zcvixyxx0iV6/aP37unEihQqaeM8THi9x9t8i0ae7Zc+qU8wPEipKdGTtWpH371OWJiebl\nJH8f/lvoj6w6ssp9Wxo0ENmwIXX54cMixYqJnDxp9ps2FVm+XBITE2XgqoFy6Pwhly5DJg343gc8\nA7QmeVjnUCAc4/NvZbkBAEQAMyzvi4HeNob1Bn7GhHoexDwVuEdkpPHtff21WXs2vdDK6GiIiDDh\nUtu2uX3ZW/z9NzRtalID26NYMbj/frOkoDNMmGDa6t7dPXuCgpwfIFaU7Mx//2tCn1esMPtXrhid\nCA52abW6bSe3ERgQyIp/VyQVLl5s5uCcOZN+AzExsH+//SCMSpVMzP7AgXD6NOzbBy1b0m9FP4as\nGcLQNUOdtjM74dyt7rvvRJ55RiQuTqRaNZFly9KuP2mScRElJpqQsBMnXLqzpuK110SGDUu7zpQp\nIg8/nH5bFy+aR9WtWzNmk6IohunTRRo2FPn0U5ESJUS6dzcaUKGC0Qwn6Dm7p/SY1UNa/NLCFNy8\naZ72Q0JEihQRKVdOpHNnE2Zqj9BQ421wRHS00aJ+/US6dZNR60dJjTE1ZPeZ3VJkSBE5G3PW6Y9L\nJvX8fZN58+CRR8wA58CB6ff+Fywwk7ECAsxEqLAw968tYgZ7O9jzWtnwyCOwerVZMSstvv3WTN5o\n2NB9mxRFSaJbNyhd2vSq1683idKee86kPnEynfe2k9t4s+mbbD+1nauxV02gSM2a5qn//HmTg6dk\nSfjpJ/sNbNiQdoROiRLw9tsweDDTW5dk+LrhLH1mKbVL1uaxmo/xw9YfHJ+bTUn/Nnf5skjBgkn+\n9IQE41ubNct+/dhYc6e2+tc++MAMsLjL/v0iZcs65z98/HGR8eMdH792TSQoSGTXLvftURTFOaZO\nFWnTJt1ql29clgJfFpDY+FhpNaGVLNq/SOTzz4122LJ+vUi9evYbefRR8wSSFlevyvIn75GSQ0vI\njlM7bhVvP7ldyo4oKzfjb6Zrq0h26vnXrAk9ehj/3PXrqY8vXQrNmyetQJUrl1mT9pNPzDKGKVmz\nxoRCli5t9jPa81+61IRqOZNDp3t3k/rBERMmmLGDOnXct0dRFOd44gkz9hcRkWa1Had3ULdUXfIE\n5uGByg+w8vBKWLnShGva0rixSah4/HjycpH0e/5AYoH89LjnCDOenMldQXfdKq9fuj41itdgVkTm\nLVTvm+I/Y4Zxqcyfb1w6KZk3z0yYsKVDB/MYNWVK6voLF8LDDyftN2yYsUFfR/H99ujUyTwu2lts\nOj7exPB+9FHqY4qieJ68eeHll42rNQ22ndxGw9LGDdumchtWHFpuNKNFi+QVAwONFixenLz82DHz\nns58nb1n91LotkKEVApJdeytZm8xcsNIJJMWd/FN8b/rLjMBYupUk8Fu376kY/HxZvJUyplw1ux+\nH31kFjC3xervt1K1Kpw7l74v3h7Xrxs/flqra9ly++3m2sOGpT42c6b557j3XtftUBTFPV55xUy+\ncpQvH9h6cisNyxjxb1KuCYfOHeBck3r2o/s6djSaZIu115+Od2BT1CaalGti91inap24cP0C6yPX\np/153MQ3xd9K2bLwf/9nZrxa735r10LFivZz1t97L4wcae7E+/ebsoMHzR/ZdjA1Vy6oX99118+Z\nMybnzuOPm3w6zjJypLkB2d4ARGDIEO31K0pWU7as+R1PnuywyraT22hUthEAeQLz0CK2NKEtg+1X\nbt/eDALfvJlUtn69U+kYNkZupGm5pnaPBeYKpG/TvozckHKKlWfwbfEHeOMN41ObPdvs//lnapeP\nLT16wP/+Z3rmR44kLY6QK8VHbdjQvvhfvmw/hjc83Pjm27QxeftdoVQp+Osvk89j7FhTtsQyxSG9\niCFFUTxPnz7mt5iYmOrQtbhrHDp/iDolk8bh2uyLZUX5OPttFS9uxuz++SepzAl/P8CmE5scij/A\n8w2eZ+XhlRy9eDTdtrIDqYeyV60SKV/epDOtUkUkLCz94e8xY0TuvFOkcWOROXNSH58wQaRnz9Tl\n3bqJ5M0rcv/9IiNHihw5IvLnnyZWeOpUp0beHXL4sEnfMH68SMuWGW9PURT3SEwUqV/fpGBPwfrj\n66XhDw2TCs6fl7DK+aX66GqO2xs4UOTtt832jRsm84Cj2f8WrsVek/z/yy/XYq+lWe+dJe/I+8ve\nT7MOmZTeIaux/+meecaETlWo4PwU7SFDTC4feykWduwQqVkzednevSIlS4qcPWty9rzwghH9smVF\nNm507prpsW+fSJkyIpUrOz3ZRFGUTGDmTDNpq2FDkXffFVm4UOTKFRm7cay89OdLSfXmzpWEdm2l\n+NDicvzScfttbd0qUqOG2V6/3oSep8PaY2ul0Q+N0q136PwhKT60uMTEOs75RbYJ9bTHsGFmuvYj\njzi/TOGHH5pRd2tIqC21asHRo8mXfhs2zKycU7y4GaQdP964nA4dMqsFeYLq1c3avFOnagZORfEm\nXbuawI9vvoHChU3kXb16bDu6/tZgLwArV5LrgQdpXbm1Cfm0R4MGZmzx0CGnXT4bIzc6HOy15c6i\nd3Jv8L38Fv6bs5/MKfxH/MuUgVmzzIw4VyhVyn55njzGT7djh9mPjDTLL/bpk7xe7tyQL5/r9qZF\n9eoez82tKIob5M1rwjc//dQM2nbuzNatC2iUQvxp0yYp3t8euXIlRf14yN9vS58mfRizaYxHwz79\nR/wB2rVLvXBKRrCd7DViBPznP0mLLSiKkuO4MWgA+/Ncpt4SyzygU6fgxAm4+24T7394hWMB7tiR\n/Stnsnvvaucjfco7J/4P3vkgsQmxrD662tmPki7+Jf6exjrZ6+xZs/j6O/aWJFYUJaew6/JBqhWv\nRv5+n8HeveZpoFUrCAykWrFqBBDAnrN77J/84IN8nH8dL9x7BqlaNc3rRMdEc/76eaoXr+6UXbkC\ncvFGkzcYs2mMqx/JcZsea8kfsYr/6NHG/6cpkRUl2zB913RmR8zm4o2LTp+z9cRWGlZubjIL9Oxp\nZu5aUjoEBATwRK0n+H2X/XQtV/MHsrwKnC6ahzWR69K8zqaoTTQu15hcAc5LcK/6vVh5eCXHLx1P\nv7IT5Gzxr1fPzB4eN84sn6goSrZgy4kt9F3Sl5+2/UTwyGDu++U+BqwawLlr59I8b9vJbTQq08jM\nAq5Y0aSLscnn06NeD6btmmbX9bNw/0LuLVibj0p3Y/i6tNfg3hS1iSZlXQsiKXhbQZ656xnGbRnn\n0nmOyNninz+/Wfj8gQdMygdFUVIxfO1wfgv/jRvxN7xtilMkJCbw6oJXGfbgMJY8s4Qz753h81af\nsyFyQ7qifCutQ0CAWXu3b1+oXfvW8cZlG5MoiWw7mTo32MyImXR7sC+9XvuBjVEb2RPtwD0EbIxy\n3t9vyxtN3uDnbT975G+Rs8Uf4PPP4csvvW2Fovgku8/s5qv1XzFpxyQqjKzA+8ve58C5A942K03G\nbRnH7Xlv57n6zwGQP09+2lVpxyctP2HxwcUOz4tNiCUiOoL6QfVNQfHiMGpUstDygIAAnqr7FNN3\nTU92bkxsDMv/Xc6jNR8lf5789L6nN1+v/9rudUQkzZw+aVG9eHUalW2U6vruoOLftavp/SuKkoqv\n1n/Fm03eZNmzy1j34jpyBeTivl/uo8bYGjz+++N89vdn/L7rd05dPZWpdqw7vo53l76bbr0TV07Q\nP7Q/4zqNIyDFfKCm5ZoSeTmSyMuRds8NPx1O5aKVuT2vg6VZLfSo24Ppu6eTKEmpIRYeWEiz8s0o\nXsDk/OrduDez9syy+70cPH+QgrcVpPQdpdP9PPZ4p9k76bqvnEHFX1FyEBeuX+Dg+YNO1Y26HMWf\ne//ktcavAVC1WFWGth1K1DtRzHlyDt3rmPWmp++eTp3v6vDO0nc4ffV0ptg9fdd0vt7wNWuOrUmz\n3jtL3+HlRi9Tu2TtVMcCcwXSvkp7lhy0v3T4nD1z6FStk91jttQpVYei+Yqy9tjaW2UzI2bSrXa3\nW/slby9Jj7o9GLtpbKrzN0U5H99vj7ZV2vJu8/RvhOnhjPgHA38Du4FdwJuW8mLAcmA/sAwoYnNO\nP8wi7XuBdjbljYCdlmPfZMRwRVFc49KNSzww+QEe+u0h4hPj063/zcZveK7+cxTLn3zuS57APNQp\nVYfudbszoPUA5nafy67XdhGfGE+tb2vx4fIPOXvtrEdtX3l4JW83e5u3lryVrMdty7JDy9gYtZFP\nWn7isJ2Hqj7EogOLUpWLCNN2TaNnvZ5O2dOjrhn4BePyWXZoGY/WfDRZnbebvc0PW38wS0DasDHK\nuZm9mY0z4h8HvA3UAZoBrwO1gI8w4l8dWGHZB6gNdLe8dwC+A6zPX+OAF4FqlpemtFT8ggvXL/jN\ngKc9bsTfoMv0Ltxb/l6CCwUzeYfjdMZgbhTjw8bzdjPnZtSXKViG0Q+NZserO7h88zJVRlehy/Qu\nTNs5LZX4ucrpq6eJuhLFsLbDyBOYx67t0THRvLbwNb7t+C0F8hRw2Fb7qu1ZeXglsQmxyco3RG4g\nX+58Sf7+dHiq7lPMiphFXEIciw4somm5ppQoUCJZnWrFq9GyYktGrBvBtbhrt8oz2vP3FM6I/ylg\nu2X7KrAHKAc8AkyylE8CrLe9LsA0zE3jCHAQaAqUAQoCmyz1Jtucoyg+iYgwZccUqoyuQp9FfdI/\nwQeJT4znqVlPUaZgGcZ0HMPA1gMZsGoAN+NvOjznx60/0qFqByoWqejStYILBzPu4XEce+sYT9R6\nginhUyj3dTmenfssl244XjwlLf4+8jetKrYid67cjGo/iv9b+X/JbijRMdG0mdyGnnV70rFaxzTb\nKnV7KaoXr57MZQMwdedUetbtmWqcwBGVi1bmzqJ3suLwCmZEzEjm8rGlf6v+LDywkJLDS3L3D3fz\n6oJX2XlmZ/LcQV7CVZ9/JeBuYCMQBFgdfKct+wBlAdsRlUjMzSJleZSlXFF8kqjLUXSe1pmv1n/F\n7Cdns+DAArac2OJts1xCRHh5/svciL/BpEcnmQHbCvdRq2QtxoeNt3vOzfibjNo4ivebv+/2dQvn\nK8xz9Z9j0dOL+PfNf7kjzx20nNiSE1dOuNzWysMraVPZxNo3Ld+UNpXbMPifwYAR/gcmP0CXGl0Y\n0HqAU+11rNYxmesnPjGeGREz6FGvh0t29ajbg/Fh41l2aBmP1XrMbp16QfXY9N9NnPvgHN93+p7a\nJWvTv1X/dAeVswJX0kreAcwG+gJXUhzzaD7p/v3739oOCQkhJCTEU00rilPM3D2T1xe9zuuNX2dO\n9znkDczLl22+5M3Fb7LmhTUuzcx0xIXrF9hyYgv7z+03r/P7KX1HaV5v/Dr3lL3HA58ChqwZwp6z\ne/jr2b/IG5j3VvnA1gPpMr0L/2nwH/LnyZ/snKk7p1K3VF0alG7gERuKFyjOd52+Y/Cawdz3y30s\nfnoxNUvUdPr8lYdX8mbTN2/tD35gMPW/r89jtR7jhT9foHP1zgxsPdDpXnvHah35z5//YXi74bfa\nr1i4IlWLuTbX58k6T/LOsndoU7lNKpdPSvLlzkfT8k3diu23R2hoKKGhoR5pKz3yAEuBt2zK9gLW\nWKUyln0wvn/btQmXYNw+pTEuIys9gO/tXCvd/NaKkpkkJiZK0PAgWX98fbLyhMQEuefHe2Ty9skZ\nvsbRi0elwsgK0mpCK3ll/isyYt0Imbd3ngxdM1QqjKwg9/58r0wNnyqnrpySvw79JcPXDpees3tK\n1xldJdHJ9SxOXz0txYYWk8MXDts9/uj0R2XEuhHJyqIuR0mNMTVk+aHlGf2IdpkQNkGChgfJumPr\nnKp/5MIRKTW8VKrP/EXoFxL4RaB8/NfHTn8fVhISE6TEsBJy5MIRERF5/o/n5et1X7vUhpWOv3WU\niWET3TrXk5BJi7kEYPzzKReSHAZ8aNn+CBhi2a6NGSPIC1QGDpE04LsRcyMIABZhf8DX29+jksPZ\ncWqHVB1d1e6x9cfXS9kRZeXyDTsLBDnJqSunpNroajJq/Si7x+MS4mROxBxpPbG1FBpcSFr80kL6\nLOojE8ImSM2xNWXVkVVOXafv4r7SZ1Efh8fDT4VLqeGl5MrNK3Ll5hX5/O/PpdjQYm4Jqiss2r9I\nig4pKjXH1pSWE1pK1xld5Y2Fb9hdKGVC2ATpPrN7qvJrsddkdsRst+18Zs4zMm7zOLked12KDCki\nUZej3GonNj7WrfM8DW6IvzPPSS2A1UC4zQX6YQZuZwAVMAO7TwLWDEofAy8A8Rg30VJLeSNgIpAf\nI/5Jz3JJWD5LqkJemvcSnap34vFajzthtmLL/nP7WX98PXkC83B7ntu5Pe/tFM1XlIZlGjr9uJxT\n+GrdVxy+cJhvO31r9/jzfzxP0O1BDG071OW2L1y/QOtJrXm81uN81uozl88fuX4kYafCmPxY2tE6\nRy8epeGPDYnoHUHQHUEO6/WY3YNrcdfYHLWZ1pVb82WbL6lUpJLLdrnK5ZuXibwcyZmYM5yJOcOi\nA4u4mXCTaU9MS1bvubnP0aJCC15u9LJHrz9t5zSm7ZrG8w2eZ+ymsazs5SBPv59g+Q279EP2xV+9\nXfGfvGMyry96nebBzVn6zFI7pym2iAirjq5i/r75zN8/n5i4GFpVbIUgXI29SkxsDMcuHaPk7SUZ\n0W4EzYObe9tkn6HdlHa83vh1utTsYvf4qaunqPtdXda9uM7plLxg4sHbTmlLs/LNGNFuhFs33bPX\nzlJ1dFWOvHWEIvmKOKz34p8vUqZgGf7X5n9ptnfg3AH6rejHh/d9SONyjV22x1Ncjb1KtTHVWPz0\n4ltjDSJC8MhgQp8Pddkfnx7nrp2j8jeVaVWpFV1qdOGlhi95tP2sxh3x90VSPdIcvXhUSg4rKWuP\nrZVCgwtJdEx0Vj5RZTrhp8Ll478+loTEBI+1OXL9SKk6uqp8EfqFbD2x1e7jcUJigkzaPknKf11e\nnvj9CTlw7oDHrm9l0OpBcurKKY+3m1lci70mdwy6Qy7duJRmvTEbx0jRIUXl2TnPytw9c9NcX1VE\nJDomWlpPbC0v/PFChl0qT858Ur7d9K3D43ui90iJYSXkwvULGbpOVjN6w2jp+FvHW/v7zu6T4K+D\nM80Fde/P90regXnl/LXzmdJ+VkJ2WcA9PiH+1odKSEyQ1hNby+B/BouI+cf/YcsP3vqOPc6RC0ek\n/NflpdroavLpyk890ua5a+ek5LCSsvvMbqfqx8TGyJerv5RiQ4vJlB1TPGKDiMjWE1uF/sjI9SM9\n1mZms/TgUrlv/H1O1Y28FCljN46VNpPaSKHBhaTn7J6y6/SuVPX+OfqPBH8dLO8ve1/iEuIybOOy\ng8vk7u/vdni864yuMuSfIRm+TlZzI+6GVBpVSf45+o+IiIzbPE56ze2VadcbtHqQPDb9sUxrPysh\nu4h/uynt5GzMWRERGbV+lDQf3/zWDWHW7lnywKQHvPk9e4zomGipMaaGfLPhGzl15ZRUGFlBft/1\ne4bbfWvxW/Lq/FddPm/3md0SNDxI/tjzR4ZtEDE36gcnPyj3/3K/220kJibK5qjNHrHHGd5b+p58\nEfqFy+dFx0TL0DVDpeSwktJzdk/Zd3afJCQmyKDVgyRoeJAs2LfAYzYmJCZIxZEVZeuJramObYna\nImVHlE33ScRXmRg2UVr80kISExOl24xuMmn7pEy7VnxCvFy9eTXT2s9KyC7i/97S96TSqEoybec0\nKTGshBw8d/DWh7wWe00KDy4sp6+e9uJXnXGu3rwqTX9qKh8u//BW2bYT26TEsBJ2f9TOcuDcASk+\ntLjb38/mqM1SclhJ+evQX27bYGtHdEy0FB5c2G3Xz4J9CySgf0CWuY7uGndXqhBPV7h045IMXDVQ\nig8tLnW+rSP3jb/PbhRLRhkQOkBeW/BasrIL1y9Ik5+ayHebvvP49bKK+IR4qTW2lizYt0BKDCsh\nxy4e87ZJfgHZRfxFRKbvnC4Fviwg32/+PtUH7TGrh1//g8fGx0rH3zpKr7m9UvkzZ+6eKcFfB8vJ\nKyfdavvx3x+XQasHZci+0MOhUnJYSdlwfIPbbbwy/xX5ZMUnIiLSfWZ3+XHLj261EzIxREp/VVrG\nbR7nti3OcuLyCSk6pKhHXDMXrl+QORFzPNKWPY5dPCZFhxS91cOPvBQpdb+rK28uetOjY0feYHbE\nbCnzVRmpNrqat03xG8hO4i8iDmOp5+6ZKyETQ7Lqe/U4Q/4ZIm0nt3UYI/z5359L8/HNHQpHYmKi\nPP774/L474/L/rP7b5WvPrJaKoysINdir2XYxgX7FkjQ8CDZeXqny+daRfTM1TMiIvL7rt/loV8f\ncrmdzVGbJfjrYJm+c3qarr6L1y96JN568vbJ8sTvT2S4nayi428dZdL2SbL7zG6pMLKCDF0zNFPj\n87OKxMREafxjY3l53sveNsVvILuJvyOsEzNOXD6RrHzdsXXS769+WfoDiImNkcqjKssj0x6RqeFT\n5crNK2nWvxF3Q8p8VUbCT4U7rJOQmCBtJrVJNfvSyqzds6TOt3Vk0OpBUnxocem7uK9Ex0RL4x8b\ne3TAdsqOKVJ5VOVb4y/O8uHyD+WNhW/c2r9847IUGlxILl6/6FI73Wd2lxHrRkhMbIwUGlzo1s3E\nlsTERKk/rr6UG1FOBq4amMrdtTd6r3y19iunfMfPzHnG7pOmrzInYo7UHFtTSg0v5ZFZx77EkQtH\n3J54lRMhp4i/iPmhjtk45tb+2mNrpeSwklJrbC2X3B6D/xksC/cvdPnLtjI1fKq0nthaJoZNlId+\nfUgKDS4k3WZ0c+i2Gb9tvLSf0j7ddq0+83/P/5us/OrNqxL8dbCEHg4VETOF//WFr0vBQQXlnh/v\n8fgj//vL3pc2k9o47b64eP2i3ZQCD099WH4L/83p6/57/l8pNrTYrae/bjO6yU9bf0pVb+W/K6XW\n2FoSdjJMXvrzJSkypIg8N/c5eXvJ21JtdDUpO6KsvPDHC1J0SNE0bz7WlA4pv29fJjY+VlpOaClL\nDy71timKlyEnif+8vfNuRZGsO7ZOSg4rKYsPLJbIS5FSdkRZp6Irtp7YKqWGl5Kg4UFuRxV0+LVD\nMlE7G3NWXpn/inSd0TVV3YTEBKk1tpbTg6mDVg+SDr92SPYk89Hyj6Tn7J6p6u4/u99hDpeMEJ8Q\nL+2ntJe3Fr/lVP3B/wyWZ+Y8k6r8l22/2P1OHPHmojflg2Uf3Nr/fdfvdm+anad2Thb6ezbmrAxf\nO1wGhA6QbSe23frueszqIcPXDnd4vbRSOiiKr0NOEv8bcTek6JCiMnP3zFvCb8X6FLA3eq/D8xMT\nE6XVhFby/ebvJeJMhAR/HezQzeKIE5dPSJEhRVKF1V2LvSZVvqki8/fNT1Y+f998ufv7u512S8XG\nx0q97+rJ1PCpImJcGMWHFs/yx+Hz185L1dFV7d4gr8ddl81Rm+XHLT/Kawtek2JDi9l1aUXHREuh\nwYWcGo84d+2cFB1SVCIvRd4qu3LzihQcVFDOXTt3q2z/2f1SYlgJp8Iat0RtkfJfl3c4NjB87XDp\nvaB3uu0oii9CThJ/EZFec3vJbQNvSyb8Vn7a+pPUGFPD4aP+nIg5UufbOrfcGUcvHpWaY2vKR8s/\nclqcR6wbIc//8bzdY8sOLpOKIysmiyNuNaGVS64PEZENxzdI6a9Ky9mYs9J2clu3sw9mlF2nd0mJ\nYSVk3OZx8kXoF9JtRjepNbaW5P9ffrlr3F3Sa24vGbV+VJox+a0ntnZqDsGXq7+0O7nnsemPyYSw\nCbf2+yzqI/3+6uf0ZwiZGCK/7vjV7rG2k9t6bH6DomQ15DTxP3juYJqpYV9b8Jo89OtDqXqGN+Nv\nSpVvqqTylVoHTZ0dM6g/rr6s/Helw+NPz35a3lv6noiIbIrcJBVGVnArKqXPoj5y17i7pO53db2a\nRXDxgcXy6PRHpd9f/eS38N9kx6kdciPuhtPnj9k4Jt0Zm9fjrkvpr0rbjTL6Lfw3eXjqwyJiQimL\nDinqUgz9gn0L7D55rTm6RooNLebygLSi+ArkNPFPj5vxN+Xp2U/LXePuShYSOWLdiGQ5RGyxDrSm\nlxdl+8ntEvx1cJoDrKevnpaSw0pK2MkweXLmk2732i/fuCz1vqvndCpfX+X4peNSbGixNG9gk7dP\nlnZT2tk9dunGJSk4qKBcvH5RRqwbIT1m9XDp+gmJCVJzbE1Z8e+KW2V7o/dK0PAgu0+PiuIvoOKf\nmnAhuzoAAAmGSURBVMTERPlu03dSclhJmR0xW6JjoqXEsBIScSbC4Tm95vaS/n/3T7Pdd5e+Kx//\n9XG61/9p609S+9vaUnxo8QzlgM8uNPmpiSw7uMzh8ZYTWsrsiNkOj3ee2lkmhk2UiiMrysbIjS5f\n/6etP9268Z+8clIqj6osv2z7xeV2FMWXQMXfMZsiN0nFkRWl9re15fWFr6dZ98C5A2lmRYxLiJMy\nX5WRPdF70r1uQmKCtJzQ0qkbRU7g203fSpdpXewe23d2nwQND5Kb8Tcdnj9p+yQpNbyUNB/f3K3r\nX4+7LkHDg2Rj5EZp+ENDt/L4KIqvgRvin/GFSP2ExuUas/XlrbSv0p7+If3TrFu1WFU6VevE6I2j\n7R5f8e8Kyhcq79Q6pLkCcrHsmWUMbDPQHbOzHc83eJ71kevZe3ZvqmPjt43nufrPJVtrNiWdq3fm\nwvULvNX0LYd10iJf7ny83vh1QiaG0LB0Qz5t+alb7SiKv+OLyf8tNzLvcuDcAZr/0pyDfQ5SOF/h\nZMeenvM095a/lzeavOEl6/ybAasGcOzSMX5+5OdbZXEJcQSPDGbV86uoUaJGmudvjtpMwzINCcwV\n6Nb1z18/zzcbvuHTVp+SO1dut9pQFF8iW6/k5Q16/dGLqkWr8mmrpN7htpPbaDOpDQffPEiJAiW8\naJ3/cvbaWaqPqc7u3rspU7AMAHP3zGXkhpGs/s9qL1unKP6HO+LvjNvnF+A0sNOmrD8QCYRZXg/Z\nHOsHHAD2Au1syhtZ2jgAfOOKkd7ik/s/YfSm0Vy6cYlNUZvoPK0znad1ZmT7kSr8GaBEgRI8Xe/p\nZG61n8N+9vul9BTFn3DmTnE/cBWYDNSzlH0OXAG+TlG3NjAVaAyUA/4CqmEGIzYBb1jeFwGjgSV2\nruczPX8wC0ivPb6WuIQ4PmrxES/c/QL5cufztll+z+ELh2n8U2MO9z3MxRsXqf99fSLfiaRAngLe\nNk1R/A53ev7OODz/ASrZu56dsi7ANCAOOAIcBJoCR4GCGOEHcyN5FPvi71MMfmAwKw6voHud7tyW\n+zZvm5NtqFy0Mm2rtOWnbT8RExvDU3WfUuFXlCwkI6NdfYDngC3Au8BFoCywwaZOJOYJIM6ybSXK\nUu7zlCtUjufqP+dtM7Il7zd/ny7TuxAYEMic7nO8bY6i5CjcDfUcB1QGGgAngREes0jJMTQs05Aa\nxWtQLH8xGpZp6G1zFCVH4W7P/4zN9s/AfMt2FBBsc6w8pscfZdm2LY9y1Hj//v1vbYeEhBASEuKm\nmYqvM7bjWC7euOhtMxTFrwgNDSU0NDRDbTg7QFAJI/DWAd8ymB4/wNuYAd6eJA34NiFpwLcqZsB3\nI/Amxu+/ED8Z8FUURfF1MmvAdxrQCigBHMdE+oRgXD4CHAZesdSNAGZY3uOB3iRNO+4NTATyY6J9\nfH6wV1EUJbuik7wURVH8nMya5KUoiqJkM1T8FUVRciAq/oqiKDkQFX9FUZQciIq/oihKDkTFX1EU\nJQei4q8oipIDUfFXFEXJgaj4K4qi5EBU/BVFUXIgKv6Koig5EBV/RVGUHIiKv6IoSg5ExV9RFCUH\nouKvKIqSA1HxVxRFyYGo+CuKouRAVPwVRVFyICr+iqIoORBnxP8X4DSw06asGLAc2A8sA4rYHOsH\nHAD2Au1syhtZ2jgAfOO+yYqiKEpGcUb8JwAdUpR9hBH/6sAKyz5AbaC75b0D8B1JiwqPA14Eqlle\nKdv0G0JDQ71tglOonZ5F7fQs/mCnP9joLs6I/z/AhRRljwCTLNuTgEct212AaUAccAQ4CDQFygAF\ngU2WepNtzvE7/OUfQu30LGqnZ/EHO/3BRndx1+cfhHEFYXkPsmyXBSJt6kUC5eyUR1nKFUVRFC/g\niQFfsbwURVGUbEYlkg/47gVKW7bLWPbB+P4/sqm3BOP2KQ3ssSnvAXzv4FoHSbqh6Etf+tKXvtJ/\nHSSTqERy8R8GfGjZ/ggYYtmuDWwH8gKVgUMkDfhuxNwIAoBF+PGAr6IoSk5gGnACiAWOA//BhHr+\nhf1Qz48xd6G9QHubcmuo50FgdKZbrSiKoiiKoiiKb9IB87RwgCSXki/g6iQ3bxEM/A3sBnYBb1rK\nfcnWfBj333YgAhhsKfclG20JBMKA+ZZ9X7TzCBCOsdMaSu2LdhYBZmHG/iIwLmBfs7MG5nu0vi5h\nfke+ZieYybS7Mbo0FbgN37QzXQIx7qBKQB6MONTypkE23A/cTeoxjw8s2x+SNObhTUoDDSzbdwD7\nMN+hr9lawPKeG9gAtMD3bLTyDvAbMM+y74t2Hsb86G3xRTsnAS9YtnMDhfFNO63kAk5iOlW+Zmcl\n4F+M4AP8DvTC9+x0insxkUFWUkYNeZtKpI52ss5tKE1StJMv8QfwIL5rawFgM1AH37SxPGZcqzVJ\nPX9ftPMwUDxFma/ZWRgjVinxNTttaYeZ4Aq+Z2cxTOeuKOZGOh9oi+/Z6RRdgZ9s9p8BxnjJFntU\nIrn42854DiD1DGhvUwk4iplV7Wu25sI82V3B9FTA92wEmIl54mtFkvj7op3/YlwUW4D/Wsp8zc4G\nGHffBGAb5rd+O75npy2/AL0t275o58uY39AZYIqlzCU7fSWrp3jbgAxgjbP1Fe4AZgN9Mf8ctviC\nrYkYMSgPtMT0rG3xBRsfxvyowkgKVU6JL9gJcB/mJvUQ8DrGTWmLL9iZG2iIyfXVEIgh9ZO9L9hp\nJS/QGdMBSIkv2FkFeAvTySuL+c0/k6JOunb6ivhHYXxrVoJJng7C1zhN8kluZ7xoiy15MMI/BeP2\nAd+19RKwEBMC7Gs2NsfkrzqMCXVug/lOfc1OMH5pgGhgLtAE37Mz0vLabNmfhbkJnMK37LTyELAV\n852C732f9wDrgHNAPDAH4zp36fv0FfHfgsn0WQlz1+1O0iCbLzIPM8CC5f2PNOpmFQHAeEwkxSib\ncl+ytQRJEQj5MX7KMHzLRjBzVYIxExWfAlYCz+J7dhbAuPbAuFHaYdyTvmbnKcwcoeqW/QcxkSrz\n8S07rfTA3PSt+Nr3uRdohvkNBWC+zwh89/tMl4cwgxgHMWFMvoKrk9y8RQuMS2U7SaFqHfAtW+th\nfL7bMeGJ71vKfcnGlLQiqSPia3ZWxnyX2zHhvdbfja/ZCVAf0/PfgempFsY37bwdOEvSTRV8084P\nSAr1nIR56vdFOxVFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURR7/D+dTFae\nkSkZsQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(s_mod[-80:],'r',output[-80:],'g')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make lightcurves using `Lightcurve` class." + ] + }, + { + "cell_type": "code", + "execution_count": 598, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 599, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc1, lc2)\n", + "# Rebin the cross spectrum for ease of visualization\n", + "cross = cross.rebin(0.0075)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 600, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lag = np.angle(cross.cs)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 601, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG2lJREFUeJzt3XmUFNXdxvHvAKLiAiLrIIohLhBRwQguGNoFBhRfglET\nNDEuUaOJ0SQaI74n06PGJWo8B5fXKO7HKJgjKAiyKD0gilFARASFUQjIpgQUhJGt3z9+3UwzzNLd\nVdXVVfV8zukzPd1dXZei55k7t+79FYiIiIiIiIiIiIiIiIiIiIiIiIiISMA9CawB5mc8FgdWAHNT\nt4GFb5aIiHjlNKAnuwd/OfAHf5ojIiINaeLCe8wA1tfxeIkL7y0iIi5zI/jrcx0wD3gCaOXhfkRE\nxAdd2H2opx3W4y8B7sDCX0REikAzj953bcb9kcC42i/o2rVrsqqqyqPdi4iEVhXwfSdv4NVQT8eM\n+0PZ/a8BAKqqqkgmk7q5dOv3y36+tyFMt/Lyct/bEKabjqd7N6Cr04B2o8f/AtAPaAMsx2b0xIDj\ngSTwOXC1C/uRBlQurfS7CSISEG4E/7A6HnvShfcVEREPeDmrRwqpi98NCJdYLOZ3E0JFx7O4+DnX\nPpkarxIXlFSUkCzX8RQJu5KSEnCY3erxi4hEjII/JMr7lfvdBBEJCA31iIgEiIZ6REQkZwp+EZGI\nUfCLiESMgl9EJGIU/CERT8T9boKIBIRm9YSEFnCJRINm9YiISM4U/CIiEaPgFxGJGAW/iEjEKPhD\nQrV6RCRbmtUjIhIgmtUjIiI5U/CLiESMgl9EJGIU/CIiEaPgDwnV6hGRbGlWT0ioVo9INGhWj4iI\n5EzBLyISMQp+EZGIUfCLiESMgj8kVKtHRLLlxqyeJ4FzgLVAj9RjrYFRwGHAUuBCYEOt7TSrR0Qk\nR8Uyq+cpYGCtx/4MTAGOBN5IfS8iIkXArXn8XYBx1PT4FwH9gDVAByABHF1rG/X4RURyVCw9/rq0\nx0Kf1Nf2Hu1HRERyVIiTu8nUTUREikAzj943PcSzGuiInfjdQzwe33U/FosRi8U8ak74xRNx4rG4\n380QEZclEgkSiYSr7+nVGP/fgHXAPdiJ3VbseYJXY/wuUq0ekWgoljH+F4C3gaOA5cBlwN1Af+BT\n4IzU9yIiUgTcGOoZVs/jZ7nw3pKvTZtgn32gmVejeSISVFq5GwbV1fb1wQfhl7+E7t3hwANhxAh/\n2yUiRUndwaDZvh0WLID33qu5LVoENwPz50PfvvD738PUqbB0qd+tFZEipOD30/bt8O23sHGjDc1k\n3mo/9uWXMHs2zJsHnTvDiSfa7bLL4LjjKH/3Hsic1bN4Mcya5ds/TUSKl67AVShbt8KMGfDaazBh\nAixbZo/tv/+etwMO2POx1q2hZ0844QQbxmnMzJlw003w9tve/9tEpGDcmNXjpyRxu5VPK0/WVj6t\nvN7HA7fdNd2SyZYtk8k+fZLJ225LJmfPTpZPHp4sf/Mv3rXzs8+SycMOK8y/T9tpO21XsO1wYUGs\nevxuSibhgw9g/Hi7ffIJ9O8PgwfDoEHQrl3h2lJdDS1b2teSwHYORKQWN3r8Cv5M1dXw3HOwdi3s\ntRc0b17zNfN+7cfWrYOJE20YZ7/9LOgHD7YTrc2b+/fvOfhg++XTpo1/bRARV7kR/Dq5C7BtGzz9\nNNx2Gxx/PBx7rI2/b9tmXzPv1/W1RQsoK4Mbb4Qjj/T7X1OjY0dYtUrBLyK7iXbw79gBL74I5eXQ\npQu89BKcdJLfrcpLnbV6Skth5Uro0aPObUQkmqK5gCuZhLFjrXf/8MPw+OM27z2goQ9QUVmx54Pp\n4BcRyRCtHn8yCVOmwP/+rw3T3HUXnHNOeE9+KvhFpA7RCf6ZM+HWW23M+/bb4fzzoUnI/+ApLYWF\nC/1uhYgUmZAnHzBnDpx9Nlx8sdWxWbAALrww/KEP6vGLSJ3C2ePftg1efRUee8zq1wwfDmPGwN57\n+92ywlLwi0gdwhX8VVUwciQ89RQcfTRcdRWcd56VJw658n7lez6o4BeROgR/AdfWrfDKK9a7/+AD\nuOQSuPJKC/6oS9cCqq6OxtCWSAREewHXkiXWu3/6aejWzXr3Q4dGoneftebNoVUrq+zZvr3frRGR\nIhGsbuDWrTB6NJx1FpxyipU1rqyEadNg2DCFfl3Sq3dFRFKC1eM/4wxo2hSuucZ691E7WZuP9Dj/\n8cf73RIRKRLBCv7ly62m/aGH+t2S4NAJXhGpJVhDPTt36iRlPeKJeN1PKPhFpJZgpejOneEtr+BQ\nnbV6QMEvInsIXvCrx58bBb+I1BKsFFXw507BLyK1BCtFFfy5U/CLSC3BSlEFf+7at4evvrI1DyIi\nKPhDo85aPQDNmtm1d9euLWyDRKRoBStFFfz12uOyi5k03CMiGYKVogr+/Khsg4hk8Hrl7lLgG2AH\nsA3o7ejdFPz5UY9fRDJ4HfxJIAb815V3U/DnR8EvIhkKkaLuLbVV8OdHwS8iGbxO0SQwFXgfuNL5\nuyUV/PWot1YPKPhFZDdeD/WcCqwC2gJTgEXAjPST8Xh81wtjsRixWKzhd1OPv14VlRX1z+xR8IsE\nViKRIJFIuPqehax4Vg5sAu5PfZ/7pRebNIEdO1SorQ4lFSUky+s5nqtXw3HHwZo1hW2UiLjOjUsv\netl9bgEckLq/HzAAmJ/3uyWTdlPo565tW1i/HrZt87slIlIEvBzqaQ+MydjP88DkvN9NoZ+/pk2h\nXTvr+Xfu7HdrRMRnXgb/54B71/vT+L4z6XF+Bb9I5AUnSRX8Daq3Vk+aVu+KSEpwklTB36AGa/WA\nZvaIyC7BSVIFvzMKfhFJCU6SKvidUfCLSEpwklTB74yCX0RSgpOkCn5nFPwikhKcJFXwN6jBWj2g\n4BeRXYKTpAr+BlVUVjT8goMPho0b4bvvCtMgESlawUlSBb8zTZpAhw6ayy+FsWEDjBsHN94IJ54I\nV1/td4skQ3CSVCWZndNwj3jlq6/g5ZfhhhugZ09bIT5iBLRqBX/5C4weDdu3+91KSfG6LLN71ON3\nTsEvblmzBiora27Ll8Mpp0C/fvDII3DCCdC8ec3rDzsM3n0XTj3VvzbLLsEKfhVpc0ZlGyQfO3bA\nggXwzjswa5Z9XbMG+va1oL/0UuvlN2sgTsrKYPJkBX+RCFbwq8dfr0Zr9YB6/JKdtWutd54O+fff\nt07DySfDSSfB9ddDjx5W9TVbAwbArbdCRSOTEKQgFPwh0WitHrDgnzbN87ZIgGzfDvPm7d6b/+or\n6NPHQv6mm6B3b5sV5kTfvvDxx/Df/0Lr1u60XfKm4I8S9fgFbJjm9ddhwgSYMqWmN3/66XDLLdCt\nm/s/a3vvDaedBlOnwoUXuvvekjMFf5Qo+KNp504brpkwwW6ffgpnnglnnw0PPGCfi0JIj/Mr+H2n\n4I8SBX90rF9vIfvaa9a7b9vWgv6ee+wEa+aMm0IpK4N779XV9IqAgj9KDjoItmyBzZuhRQu/WyNu\nq6qCf/0Lxo+3cfsf/cjCvqICDj/c79bBkUfaz/DChdC9u9+tibTgJKmCv0GN1uoB62WVlmpKZ5is\nXGnDNX362Dj9smU2e2bNGvsFcO21xRH6YJ+/sjKYNMnvlkRecJJUwd+gRmv1pGm4J/jWrYN//MNO\nxh5zDHz4Idx+u/2/PvIIDBwI++7rdyvrlh7nF19pqCdqFPzBtHEjjB0LL74Ib71l4X799fZ1n338\nbl32zjzTFnxVVwer3SGj4I8ard4Nji1bYOJEeOEF6yX/6Edw8cUwahTsv7/frctPq1a2+GvGDOjf\n3+/WRJaCP2rU4y9uq1fbTJxx42yx3Q9/CMOG2dBOWBY+pcf5Ffy+CU7wqzqnO0pLYf58v1shacmk\njdGPG2e3Tz+1YLzgAnjyyfCEfaayMrjqKr9bEWnBCX4VaWtQVrV6QD3+YlBdDYlETdg3bw7nngt3\n3WWrW/fay+8WeuvEE2HFCvscFmrxmOwmWMGvHn+9sqrVAwp+v2zYYCdnX30V3ngDjj3Wwn7SJDj6\n6Gh1apo2tZO8kyfbiV4pOAV/1Cj4C2fbNgu3Z5+1gD/zTBg6FB57DNq08bt1/kqP8yv4faHgj5oD\nD7T66hs3wgEH+N2a8EkmbdXsM8/YbJyuXeGSS+DRR23ltJiyMisIp59rX3h5xAcCi4DFwM2O300f\nEHdo9a43Vq2C++6D446DH//YfqnOmAEzZ9r1ZhX6u+vc2eoHzZnjd0siyaskbQo8hIV/d2AY0M3R\nOyr43aPhHnds3my9+kGDrPbMwoXw4IPw2Wdw221wxBF+t7C4DRig8g0+8SpJewNLgKXANuBFYIij\nd1TwNyirWj1pCn5nli2zGjidOtmQzi9+AV98AU88YZci1Oc0O6rb4xuvPqGdgOUZ369IPZY/BX+D\nsq7VAxrqydeyZTZs06sXtGwJH31kJY8vukjVTvPRrx/MnQvffON3SyLHq5O7yWxeFI/Hd92PxWLE\nYrH6X6zgd0/Hjurx52LpUrjzTit5/OtfwyefaFaOG1q0sMs7TpsGQ5wNCIRZIpEgkUi4+p5eBf8X\nQOeM7ztjvf7dZAZ/oxT87ikthdmz/W5F8fv8cwv8l1+2wF+82Pm1Z2V36XF+BX+9Yn36ENt3XzsR\nPmcOblyu3qvgfx84AugCrAR+ip3gzZ+C3z0a429YZuBfc42VUVDge6OszNY2iKmutstkzp69K+ip\nqrJFfr16Qc+eruzGq+DfDvwWmITN8HkCWOjoHRX87lHw1+2zzyzwx4xR4BdKjx5WhbSqytY8RM23\n38I770BlJUyfboHfrZuVtTjtNCu9/YMf2MXq0377W8e79XIB18TUzR0K/gZlXasHasb4de1Ts2SJ\n1ckZO9Zm6yxeHM7iaMWopKRmuOfaa/1ujfe+/trWdkyfbmE/fz4cf7yd6B4+HE45pSALK4OzclfV\nORuUda0esA9W06Y2m6JlS8/aVPTmzLGLj7/5pvXwFfj+KCuzC8yEMfjXr6/pzVdW2sSA3r0t6O+8\n005u+3C1tOAEv6pzuis93BO14E8mrTLm3XfDggXwhz/AyJEqX+Gns86yk+dbt1ql0iBLJm0h32uv\n2TWP5861ayH36wcjRtj1FTKHbXwSrOBXj9896eDv5mxBdWDs3AmvvGKBv2ED3HyzXc2qCH4II69t\nW1vlPGuWXWUsaKqrrTefDvvt22HwYPuMnX56UV7/WMEfVVE5wbt1Kzz/PPztb3a5wltusamDTZv6\n3TLJlF7FG5TgX7UKJkywoH/zTbvo/eDB1rk45piiH51Q8EdV2IN/0yZ4/HH4+9/tr5qHH7beV5H/\nQEZWWZkNu/31r363pG47dsB779lK7fHjbQbYgAHwk5/Y5yxgC/qCk6QK/gblVKsHwnvR9S1b4I47\n4PDD4e23babO5MlwxhkK/WJ20kl2cv3LL/1uSY2VK+Gpp+BnP4N27eDKK2365f33w5o1dkL65z8P\nXOiDgj80cqrVA+Hr8SeTFvLdu9s1bGfOhJdeghNO8Ltlko3mzSEWg6lT/WvDd9/ZsM3NN1t57WOO\ngYkTrWc/b55Nvbz3XjtRG/DLY2qoJ6rCFPyffGILXZYvtwqZZ5zhd4skH+lx/mHOFvnnpKrKhm8m\nTbITtEcfDQMH2oVzTjwRmgUnInMRnH+Vgt9dYQj+TZtsWGfkSFv8ct11ge+JRVpZmf1/ermwcMsW\nm847caLdNm2y/V50ETz5ZCCHbfKh4I+qIK/eTSZh1Ci46SY7YTt/vv17JNi6drWpj/Pn28Xo3bJ4\ncU3Qv/WW1bsZNAhGj7ZVs0H7/LtAwR9VLVrYD9n69cFarfrRR1arZMMGu/pV375+t0jcVFZmJ+Od\nBP/mzbv36jdvtuGbK66wz0yrVq41N6iCk6QK/gblVKsnLUjDPRs2wA032Pj9hRdaMSuFfvjke1Wu\nlSttZezAgdC+vS3UKy21ayh88YUN45x/vkI/JThJquBvUE61etKCEPw7d8LTT9tc/M2brczCtddq\nAVZYnX66reDdvLnx127bZpVUzz3XKljOmQO/+pWd5J8+3RbrRXQopzEa6omyYg/+r7+269muWgWv\nvmqzLCTcDjzQxuArK20cvi4ff2w9+Oeeg6OOgssvtzn1++1X2LYGWHCSVEXa3FfMwb9woVUxPPRQ\nm5Ov0I+O9Dh/pm++sRWyJ59sRd322gtmzLCe/aWXKvRzFJwev8oyu6+01C42UmzGjIGrrrLFMpde\n6ndrpNDKyuCSS+xn/q23bG3G2LF2fufWW20cP6Tz6wslOEdPQz3u69jRZj8Uix07oLzc/oSfONFK\n2Er09OplpRuOOMJW9F5xhV03oX17v1sWGgr+kIgn4rmf4C2moZ71661M8ubNVgyrXTu/WyR+adIE\nnnnGphn36aMhXg8EJ0kV/A3KuVYPFE/wf/SRjeEfdRRMmaLQFzj7bCvcptD3RHCSVMHvvo4dYfVq\nO7Z+eeklm8IXj8MDD6jkgkgBaKgnyvbe2y45uG6dXQWpkHbssBN1o0bZDI6ePQu7f5EIU/BHXXq4\np5DBv26dFcVKX9wiIoWxRIpFcJJUwe+NQo/zz5tn4/nHHWflcBX6IgWnHn9I5FWrBwob/K+/bvOz\nR4ywqxqJiC+CE/wtW9qYtNQpr1o9ULjgf/ZZ+NOf7GLUJ5/s/f5EpF7BCf7f/MbvFoRTaanVP/dK\nMgn33QcPPQTTplmxNRHxlcZOos7Li67v3Al//KMtxpk5U6EvUiSC0+MXb3g11LN1K1x2GfznP1ZM\n66CD3N+HiOTFqx5/HFgBzE3dBnq0H3HKi+DfuBEGD7byC5MnK/RFioxXwZ8E/g70TN1e92g/khJP\nxPPbsEMHWLvW5tS7Ye1aW4l7+OG2Knfffd15XxFxjZdj/CqyUUB51eoBK5Fw0EFWDdGpqio49VTr\n7T/6qErnihQpL4P/OmAe8ASgC10WMzeGe+bOhdNOs5O58biKa4kUMSddsilAhzoevxX4P+C21Pe3\nA/cDV9R+YTwe33U/FosRi8UcNEfylg7+Xr3y2/6NN2DYMOvln3eeu20TibhEIkHC5etmFKJb1gUY\nB/So9XgymUwWYPfRUFJRQrI8z+N55ZVWRuGqq3LfdtQo+N3vYPRo6Ncvv/2LSNZK7K9pR9nt1VBP\nx4z7QwEPVwiJY/kO9Tz1FNx4I0ydqtAXCRCvzr7dAxyPze75HLjao/1ISt61esCCf/bs3LaZOhX+\n/Gebo3/kkfnvW0QKzqvgv8Sj95V65F2rB3Jfvfvxx1ZW+aWXFPoiAaSSDZLbUM/atTZd8777NLwj\nElAKfsk++LdsgSFD7KLol+iPOpGg8nOytWb1FIvt26FFCyuxUN+iq507bXgH4J//1LURRHzixqwe\nLa0UC/s2bWDNGujUqe7XlJfDsmXw5psKfZGA009wSORdqyetoeGeZ5+F55+3i6io9o5I4Cn4QyLv\nWj1p9QX/9Ok2V3/8eGjXztk+RKQoKPjF1BX8ixfDBRdYb797d3/aJSKuU/CLqR3869bBOefA7bdD\n//7+tUtEXKfgF5MZ/N99Z8XWhgzJr36PiBQ1Bb+YdPAnkxb2rVvD3Xf73SoR8YCmc4aEo1o9UFO2\n4c47YcECqKyEpk3daZyIFBUt4BKzZg0ccoj9Apg1y/4CEJGiU8xlmSVo2raFnj1h3DiFvkjIqccv\nIhIg6vGLiEjOFPwiIhGj4A8Jx7V6RCQyNMYfEo4uti4igaExfhERyZmCX0QkYhT8IiIRo+AXEYkY\nBX9IOK7VIyKRoVk9IiIBolk9IiKSMwW/iEjEKPhFRCJGwS8iEjFOgv8CYAGwA+hV67lbgMXAImCA\ng31IllSrR0Sy5ST45wNDgem1Hu8O/DT1dSDwiMP9SBYqKiv8boKIBISTQF4EfFrH40OAF4BtwFJg\nCdDbwX5ERMRFXvTES4EVGd+vADp5sB8REclDs0aenwJ0qOPx4cC4HPajlVoiIkWiseDvn8d7fgF0\nzvj+kNRje4jH47vux2IxYrFYHrsTEQmvRCJBIpFw9T3dKNkwDbgRmJ36vjvwT2xcvxMwFfg+e/b6\nVbLBRfFEnHgs7nczRMRjbpRscLLxUGAE0Ab4GpgLDEo9Nxy4HNgOXA9MqmN7Bb+ISI78Dn6nFPwi\nIjlSkTYREcmZgl9EJGIU/CIiEaPgDwnV6hGRbOnkbkiUVJSQLNfxFAk7ndwVEZGcKfhFRCJGwS8i\nEjEKfhGRiFHwh0R5v3K/myAiAaFZPSIiAaJZPSIikjMFv4hIxCj4RUQiRsEvIhIxCv6QUK0eEcmW\nZvWEhGr1iESDZvWIiEjOFPwiIhGj4BcRiRgFv4hIxCj4Q0K1ekQkW5rVIyISIJrVIyIiOVPwi4hE\njIJfRCRiFPwiIhGj4A8J1eoRkWw5Cf4LgAXADqBXxuNdgC3A3NTtEQf7kCxVVFb43QQRCQgnwT8f\nGApMr+O5JUDP1O1aB/uQbH3udwPCJZFI+N2EUNHxLC5Ogn8R8KlbDRGHlvrdgHBRULlLx7O4eDXG\nfzg2zJMA+nq0DxERyUOzRp6fAnSo4/HhwLh6tlkJdAbWY2P/Y4EfABvzbKOIiLjIjZIN04A/AnNy\nfH4J0NWF/YuIREkV8H0nb9BYjz9bmb9A2mC9/R3A94AjgM/q2MZRw0VEpPCGAsuxqZurgYmpx38C\nfISN8c8GzvGldSIiIiIi4p2B2HTPxcDN9bxmROr5edh8/1y2jRonx3Mp8CH2F9i/vWtiYDR2LI8G\n3gGqsXNTuWwbRU6O51L02aytseN5MfYz/iEwEzg2h2091RQ7cdsF2Av4AOhW6zVnAxNS9/sAs3LY\nNmqcHE+wpV2tvW1iYGRzLNsCPwTuYPeg0mdzT06OJ+izWVs2x/NkoGXq/kDyzE4v5vH3TjVgKbAN\neBEYUus1/wM8k7r/LtAKmzaazbZRk+/xbJ/xvJ8X3Ckm2RzLL4H3U8/num3UODmeafps1sjmeL4D\nfJ26/y5wSA7b7uJF8HfCTvqmrUg9ls1rSrPYNmqcHE+AJDAV++G70qM2BkU2x9KLbcPK6THRZ3N3\nuR7PK6j5Sz+nbd2azpkp2+sp6jd9dpwez77Yorq22IK8RcAMF9oVRE6u9anrhO7J6TE5FViFPptp\nuRzP04HLsWOY67ae9Pi/wFbupnXGfvs09JpDUq/JZtuoyfd4fpG6vzL19UtgDPYnYVQ5+Xzps7kn\np8dkVeqrPpsm2+N5LPA4NsS7PsdtPdMMW1nWBWhO4ycjT6LmBEU220aNk+PZAjggdX8/bBbAAA/b\nWuxy+XzF2f1kpD6be3JyPPXZ3FM2x/NQbCz/pDy29dwg4BOsgbekHrs6dUt7KPX8PHav51/XtlGX\n7/H8HvYB+ABbVKfj2fix7ICNlX6N9ab+A+zfwLZRl+/x1Gezbo0dz5HAOmqud/LvRrYVERERERER\nEREREREREREREREREREREREREZFC+n+0KptY6+7dFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*10.0)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-15,15])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al, the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase warps and the lag becomes negative. This is given in page 43 of review." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More realistic impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The response of refelection from an accretion disk to an instantaneous flash follows the _top-hat function_ to first\n", + "order approximation. The response shows an initial steep rise some time after the initial flash (slope depending on\n", + "the light travel time to the disk) and then gradually decays, as parts of the accretion disk farther away from the \n", + "source receieve radiations at later times.\n", + "\n", + "The secondary peak is caused due to the bending of light in strong gravitational field around the black hole. This is the re-emergence of photons reflected from the far side of accretion disk that although would be classically blocked from our view, are lensed by strong gravitational field around black hole into our line of sight. \n", + "\n", + "Below, we obtain an impulse response similar to one in Utley et al.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 602, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXHWd7/F3rb3vWzagOxtJSEJCNARlKTYNOsAdhUHc\nkVFU9M59uI6Ic5UeZ0bFZ7zjVRQQB2QcBK7ICFwRFKQQCSQhQpLOnnQHsna6O72numu9f5zqpOh0\nUtXdp+ucqvN5PU89qeV05WNLf/qX71kKRERERERERERERERERERERERERERywgNAO7A5zXbvBqLA\nh6Y8kYiIjMmdwTYPAqvTbOMB7gKeBVyTDSUiIhOTSam/DHSn2ebLwONAx6QTiYjIhGVS6unMBK4F\n7kk+TpjwniIiMgFmlPoPgK9hlLkLjV9ERCzjNeE9VgCPJu/XAlcBEeCp1I3mzJmT2LNnjwl/nYiI\no+wB5ma6sRkr9dlAU/L2OPAFRhU6wJ49e0gkEra/3XnnnZZncErONWtm0dbWbOuMdroppzNzAnPG\nU8iZrNQfAS7BWIXvA+4EfMnX7hvPXyYyIhYbYnj4AJFIun3wIjIemZT6jeN4v5smGkScZXj4LSBB\nNKpSFzGTGeOXvBIIBKyOkJFczxkKtQIuotGerOYZS65/L+1GOa2VzSNVEsn5kAgHDvyYAwfuxuer\nY/nyP1kdR8S2XC4XjKOrtVIXS4RCrZSWrtD4RcRkKnWxxNBQG2Vl52lHqYjJVOpiiVColbIyrdRF\nzKZSl6xLJBIMDbVSUrKURCJMPB62OpJI3lCpS9ZFIl24XF58viq83kpbHAEjki9U6pJ1Q0OtFBY2\nAeD1VmkEI2IilbpkXSjUSlHRbAC83krtLBUxkUpdsm5oqI3CwpFS10pdxEwqdcm6oaHUlXqVZuoi\nJlKpS9aFQq3HV+o+n1bqImZSqUvWnbxSV6mLmEWlLlkVj0cYHj5IQcGZgHaUiphNpS5ZNTz8NgUF\nM3C7jUvya6UuYi6VumRVKNR2/Bh10I5SEbOp1CWrjBOPZh9/rB2lIuZSqUtWpZ54BBq/iJhNpS5Z\nNXqlrh2lIuZSqUtWaaUuMrVU6pJVJ6/UK4jFBkgkYhamEskfKnXJmkikh0Qiis9Xc/w5l8uN11tO\nNNprYTKR/KFSl6wxLuTVNPJBuscZ11TXCEbEDJmU+gNAO7D5FK9/DNgIbAJeAZaaE03yTerlAVJ5\nvVXaWSpikkxK/UFg9WlebwUuxijzfwJ+akIuyUOpF/JKpZ2lIubJpNRfBk73E/cqMDIQXQvMmmwo\nyU+nW6nrrFIRc5g9U78ZeMbk95Q8caqVus4qFTGP18T3uhT4DPDeU23Q3Nx8/H4gECAQCJj414ud\nJRIJBgc3U1y84KTXtKNU5IRgMEgwGJzw17vSbwJAI/A0sOQUry8FnsCYve8+xTaJRCIxrnCSPwYH\nt7F58wc4//zWk45+eeutbxON9jFnznctSidiX8mfl0y72pTxy5kYhf5xTl3o4nDd3c9TWXn5SYUO\n2lEqYqZMxi+PAJcAtcA+4E7Al3ztPuCbQBVwT/K5CLDS3JiS67q7X6C+/oYxX9OOUhHzZFLqN6Z5\n/W+TN5ExxeNRentf4uyz7xvzde0oFTGPziiVKTcw8BcKCmbh9zeM+bp2lIqYR6UuU667+3mqqq44\n5es6o1TEPCp1mXLd3S9QWXn5KV/XjlIR86jUZUrFYiH6+9dRWXnxKbcxxi+96JBXkclTqcuU6utb\nQ0nJErze8lNu43b78HiKiMX6s5hMJD+p1GVKGfP0U49eRmhnqYg5VOoypbq7XzjtTtIR2lkqYg6V\nukyZSKSHY8e2U16+Ku222lkqYg6VukyZnp4g5eUX4HYXpN1WZ5WKmEOlLlMm03k66KxSEbOo1GXK\n9PS8kHGpa0epiDlU6jIlentfIRYLUVq6LKPttaNUxBwqdTFdIpGgtfUfaGz8Ji6XJ6Ov0Y5SEXOo\n1MV03d3PEw4foqHhkxl/jXaUiphDpS6mSiQStLV9naamb+F2Z/5piZqpi5hDpS6m6ux8kng8Ql3d\n9eP6Oh39ImIOMz94WhwukYixd+83aGr6Di7X+NYL2lEqYg6t1MU0R448isdTRk3NB8f9tZqpi5hD\nK3UxRTweoa3tTs4++/4xP1w6nZGjXxKJxIS+XkQMWqnLpMXjYbZu/QilpedSVXXphN7D4ykEXMTj\nIXPDiTiMSl0mJRYboqXlQyQSMRYt+uWk3ks7S0UmT6UuExaLHaOl5Ro8nlLOOedXGV2463S0s1Rk\n8lTqMiGRSA+bNl2F3z+dRYsexu32Tfo9tbNUZPIyKfUHgHZg82m2+SGwC9gILDchl9hUJNJNW1sz\n69bNo6zsPBYseDDjSwGko0sFiExeJqX+ILD6NK9/AJgLzAM+B9xjQi6xmaGh/bS23sHatXMZHt7H\n8uWvMnfuv437ePTT0VmlIpOXySGNLwONp3n9GuCh5P21QCXQgLG6lxwUjw8zNLSXvr7X6Ol5iZ6e\nPxGN9lBffz0rVmygqKhxSv5e7SgVmTwzjlOfCexLebwfmIVK3dZCoTZCoV0MDe096RaJdFFQMIuy\nshVUVl7CrFm3UVKyyNRV+Vi0o1Rk8sw6+Wj02SKJsTZqbm4+fj8QCBAIBEz662U8hocPs27d2VRU\nXExhYSOFhY1UV19FYWEThYWNFBRMN21OPh5+/3T6+9dn/e8VsZNgMEgwGJzw12d66l4j8DSwZIzX\n7gWCwKPJx9uBSzh5pZ5IJMbsesmyY8d2sWnTVaxatdvqKO8wOLiNTZtWs2rVXp1VKpKU/FnI+AfC\njH9PPwWMXDh7FdCDRi+2lkiEcbv9Vsc4SXHxAhKJGKHQLqujiOSsTMYvj2CsvGsxZud3AiMHJd8H\nPINxBMxuYBC4yfyYYqZ4fHjSJwpNBZfLRXX1++ju/gPFxfOtjiOSkzIp9Rsz2OZLkw0i2ROPD+Ny\n2a/UAaqqruTIkceYOfNWq6OI5CSdUepAxvjFrqV+OT09QeLxiNVRRHKSSt2BjPGL/WbqAH5/PUVF\nTfT3r7M6ikhOUqk7kJ3HL2CMYI4e/YPVMURykkrdgey6o3REVdWVdHf/3uoYIjlJpe5Adp6pA1RU\nXMjg4Gai0V6ro4jkHJW6AxnjF3vO1AE8niLKyy+gu/tFq6OI5ByVugPZffwCIyMYzdVFxkul7kB2\nH7+A5uoiE6VSdyC7j18ASkuXEo32EgrttTqKSE5RqTtQLoxfXC43VVVXaAQjMk4qdQdKJOxf6qAR\njMhEqNQdKB63/0wdoLp6Nd3dz+uSASLjoFJ3oFyYqQMUFEynqGguvb0vWx1FJGeo1B0oV8YvADU1\nV9PV9bTVMURyhkrdgXJl/AJGqXd2Po0+NUskMyp1B7L7Bb1SlZYuIx4f4tixHVZHEckJKnUHMsYv\n9p+pg/FpSDU1f0VX1/+zOopITlCpO1AuHKeeqrZWc3WRTKnUHSgeD+fM+AWgsvIyBgbeIBI5anUU\nEdtTqTtQLo1fwLhqY2VlgKNHn7U6iojtqdQdKNfGL6BDG0UypVJ3oFw6+mVETc0HOXr0OZ1dKpKG\nSt2BcuHSu6MVFMygsHA2vb2vWB1FxNYyKfXVwHZgF3D7GK/XAs8CbwItwKfNCidTwxi/5M5MfYSO\nghFJL12pe4C7MYp9EXAjsHDUNl8C3gCWAQHg+4DX1JRiqlwcv8CJubrOLhU5tXSlvhLYDewFIsCj\nwLWjtjkElCfvlwNdQNS8iGK2XBy/AJSWLiceH2ZwsMXqKCK2la7UZwL7Uh7vTz6X6n7gHOAgsBH4\nO9PSyZTI1fGLy+Wiru46Ojp+ZXUUEdtKNybJ5N+5X8eYpweAOcAfgHOB/tEbNjc3H78fCAQIBAKZ\npRRT5er4BaCu7np27LiJxsZ/xOVyWR1HxHTBYJBgMDjhr0/3U7EKaMaYqQPcAcSBu1K2eQb4F2Dk\nsIQXMHaovj7qvRKahdpDMOjl4otDuN0+q6OMWyKR4LXXzmLJkmcoLV1sdRyRKZdcvGS8gkk3fnkd\nmAc0An7gBuCpUdtsB65I3m8AzgZaMw0g2ZVIxIA4Lldu7svWCEbk9NKVehTj6JbngK3AY8A24Jbk\nDeDbwLsw5unPA18FdJEOmzKu++LP6dFFXd31dHQ8bnUMEVvKZLn2u+Qt1X0p9zuBq01LJFMqFy8R\nMFp5+fnEYn0MDm6lpGSR1XFEbEVnlDpMrh7OmMrlclNb+2GNYETGoFJ3mHxYqQPU11/PkSMqdZHR\nVOoOYxzOmHvHqI9WXn4B0WgPg4PbrI4iYisqdYcxrqWe+yt1l8tNXZ1GMCKjqdQdJh7P/Zn6COMo\nGJW6SCqVusPky/gFoKLiPUQiRxkc3Gp1FBHbUKk7TL6MX8AYwTQ0fIz29l9YHUXENlTqDpNP4xeA\nhoZPcvjwL5JnyoqISt1hcvliXmMpLV2M319Pd/eLVkcRsQWVusMY45f8mKmPaGj4JO3t/2F1DBFb\nUKk7TL6cfJSqoeFGOjufIhodsDqKiOVU6g5jXNArv0rd72+gouJCOjufsDqKiOVU6g6Tj+MXgGnT\nPsnhwxrBiKjUHSYfxy8ANTXXMDDwBkND+9JvLJLHVOoOk4/jFwCPp5C6uutob3/Y6igillKpO0w+\nnXw02rRpxlEw+thEcTKVusMY45f8m6kDlJe/h3h8mP7+0R+PK+IcKnWHybeTj1K5XC6mT/8Mhw7d\nb3UUEcuo1B0mHz756HSmTbuZjo5fEY32Wh1FxBIqdYfJ16NfRhQUTKOq6kra2//T6igillCpO0w+\nXXr3VGbM+DwHD96rHabiSCp1h8n3lTpAZeWlxONh+vrWWB1FJOtU6g6T7zN1MHaYzphxCwcP3mt1\nFJGsy6TUVwPbgV3A7afYJgC8AbQAQTOCydRwwvgFYNq0T9HZ+TThcKfVUUSyKl2pe4C7MYp9EXAj\nsHDUNpXAj4GrgcXAdSZnFBM5YfwC4PPVUFt7LYcP/9zqKCJZla7UVwK7gb1ABHgUuHbUNh8Ffg3s\nTz7W0sjGnDB+GTFjxuc5dOg+Eom41VFEsiZdqc8EUq+QtD/5XKp5QDXwIvA68AnT0onpnLJSBygv\nX4XbXUx39wtWRxHJGm+a1zM5JswHnAdcDhQDrwKvYczg36G5ufn4/UAgQCAQyDCmmMUpM3UwdpjO\nnHkrBw78kOrqK62OI5KRYDBIMBic8Ne70ry+CmjGmKkD3AHEgbtStrkdKEpuB/Az4Fng8VHvldBx\nw9Zbv34JCxc+TGnpUqujZEUsFuK11xpZtuwlSkoWWB1HZNxcLhek7+rj0o1fXscYrzQCfuAG4KlR\n2zwJXIixU7UYOB/YmmkAya543DkzdQCPp4gZM77A/v3/ZnUUkaxIV+pR4EvAcxhF/RiwDbgleQPj\ncMdngU3AWuB+VOq25aTxy4iZM79IR8f/JRw+YnUUkSmX8ZLeBBq/2MCaNdNZsWIDBQUzrI6SVTt2\nfA6/fwZNTc1WRxEZF7PHL5JnnDZ+GTFr1m0cPHgPsVjI6igiU0ql7jD5fD310ykpWUB5+Ura2/Xh\n1JLfVOoOY3ycnbNm6iPOOOMr7Nv3v3UykuQ1lbqDJBJxEokYLpfP6iiWqKi4GI+njK6u31odRWTK\nqNQdJB4P43L5R3a8OI7L5eKMM77C229/V9dal7ylUncQY/TivHl6qvr664lEunTpAMlbKnUHMa77\n4sx5+giXy0Nj4zfYu7dZq3XJSyp1BzHGL85eqQPU13+ESKSDnp4/Wh1FxHQqdQfR+MVgrNa/qdW6\n5CWVuoNo/HJCff1HCIePaLUueUel7iBOPfFoLC6Xh7PO0mxd8o9K3UGc9KlHmTixWn/R6igiplGp\nO4iTPvUoE263l7PO+gZtbd/Ual3yhkrdQZx42d10GhpuJBbrpatr9McEiOQmlbqDaKV+MpfLw+zZ\n32PPntuJxyNWxxGZNJW6g2imPrbq6tUUFMzi0KH7rY4iMmkqdQfRSn1sLpeLOXP+lb17v0U02md1\nHJFJUak7iGbqp1ZWtozq6vfz9tt3pd9YxMZU6g6i8cvpNTX9MwcP3svQ0H6ro4hMmErdQTR+Ob3C\nwjOYMeMW2tr+l9VRRCZMpe4gGr+kd+aZX6O7+zn6+tZZHUVkQlTqDqILeqXn9ZYze/Zd7Nz5BRKJ\nmNVxRMZNpe4g8bhm6ploaPgEHk8ZBw7cY3UUkXHLpNRXA9uBXcDtp9nu3UAU+JAJuWQK6IJemXG5\nXMyf/xPeeusfGR4+ZHUckXFJV+oe4G6MYl8E3AgsPMV2dwHPAs78AMwcYIxfNFPPREnJIqZP/1v2\n7PmK1VFExiVdqa8EdgN7gQjwKHDtGNt9GXgc6DAznJhL45fxOeusb9Db+4o+z1RySrpSnwnsS3m8\nP/nc6G2uBUYGkLrcnU1p/DI+Hk8x8+b9kJ07v0g8Pmx1HJGMeNO8nklB/wD4WnJbF6cZvzQ3Nx+/\nHwgECAQCGby9mEXjl/Grrb2Gw4d/zt6932L27H+xOo44QDAYJBgMTvjr082/VwHNGDN1gDuAOMb8\nfERryvvUAseAzwKjr2Wa0DWrrbVly99QV/dh6utvsDpKTgmH21m//lyWLHmS8vLzrY4jDuNyuWAc\n+yrTjV9eB+YBjYAfuIGTy3o20JS8PQ58YYxtxAbi8bDGLxPg9zcwb94P2bbtU8RiIavjiJxWulKP\nAl8CngO2Ao8B24BbkjfJITr5aOLq6/+G0tJluoSA2F42Dz/U+MVib755GWed9Q9UVV1udZScFIl0\nsX79EhYtepTKyoutjiMOYfb4RfKIxi+T4/PVMH/+vWzffhPR6IDVcUTGpFJ3EI1fJq+29hoqKy9m\n9+4vWx1FZEwqdQfRpXfNMXfuj+jtfZXDhx+yOorISVTqDqJL75rD6y3lnHN+xZ49X2FwcKvVcUTe\nQaXuIPrkI/OUli5h9uy72LLlemKxQavjiBynUncQjV/MNW3aTZSVrWDXLs3XxT5U6g6i8Yu5XC4X\n8+b9hL6+Vzl06OdWxxEBVOqOopW6+Yz5+q9pbf0qvb2vWR1HRKXuJJqpT42SkkUsWPAgW7Z8mKGh\nt62OIw6nUneIRCJOIhHB5fJZHSUv1dR8kDPOuI2Wlmu141QspVJ3CONsUv/IKccyBWbNuo3S0uVs\n2/YJEom41XHEoVTqDqHRy9QzPtv0HiKRDl34SyyjUncI7STNDre7gHPOeYKOjsfZv/9HVscRB1Kp\nO4QOZ8wev7+OpUt/z75936O9/WGr44jDqNQdQhfzyq6iokaWLn2W3btvo6vrd1bHEQdRqTtEPK6Z\neraVlJzD4sW/Yfv2T9Hbu8bqOOIQKnWHMMYvKvVsq6i4gIULf0FLy1/T17fe6jjiACp1hzDGL5qp\nW6G6+v2cffbP2Lz5gzrrVKacSt0hNH6xVm3t1SxY8BAtLdfQ2/uK1XEkj6nUHULjF+vV1FzFwoX/\nSUvLX9PT85LVcSRPqdQdQke/2EN19ftYtOhRtmy5nq6uZ6yOI3lIpe4QxslHmqnbQVXVZSxe/BTb\nt3+GQ4f+3eo4kmdU6g5hXPtFK3W7qKhYxfLlf+Ktt75NW1sziUTC6kiSJzIt9dXAdmAXcPsYr38M\n2AhsAl4BlpqSTkyj8Yv9FBfP57zz1nD06G/ZseNm4vGI1ZEkD2RS6h7gboxiXwTcCCwctU0rcDFG\nmf8T8FMTM4oJNH6xJ7+/gXPPfZFw+AibNr2PcLjD6kiS4zIp9ZXAbmAvEAEeBa4dtc2rQG/y/lpg\nlkn5xCQav9iX11vKkiVPUl5+ARs2vIv+/g1WR5IclkmpzwT2pTzen3zuVG4GtFvfZjR+sTeXy8Ps\n2d9mzpzvs2nTag4f/g+rI0mO8mawzXj24FwKfAZ471gvNjc3H78fCAQIBALjeGuZDF16NzfU119H\nSclCWlr+G319rzFnzvfxeIqsjiVZFAwGCQaDE/76TD4GZxXQjDFTB7gDiAN3jdpuKfBEcrvdY7xP\nQnv4rdPWdifgoqmp2eookoFIpIedOz/PsWNbWLjwEUpLF1sdSSyS/LSyjD+yLJPxy+vAPKAR8AM3\nAE+N2uZMjEL/OGMXulhMn3yUW3y+ShYteoRZs/4nGzdeyoEDP9Fhj5KRTEo9CnwJeA7YCjwGbANu\nSd4AvglUAfcAbwDrTE8qk6LxS+5xuVxMn/5pli9/hUOHHqCl5RqGhw9YHUtsLpufQqzxi4V27ryV\nkpJFzJx5q9VRZALi8TBvvfVtDh78MU1N32H69Jv1IeIOMRXjF8kDiURYH2eXw9xuP01NzZx77gsc\nPHgvGzdeSSjUanUssSGVukNo/JIfSkuXct55r1Fd/X42bHg3e/d+i1gsZHUssRGVukOo1POH2+3l\nzDP/nhUrNjAwsJH168+ho+M32pEqgErdMYzrqWv8kk+KihpZvPjXzJ//U9ravs6mTe9nYGCj1bHE\nYip1h9AhjfmruvoK3vWujdTUXM3Gje9n69aPEQrtsTqWWESl7hAav+Q3t9vHrFlf5vzzd1FcvIAN\nG85n585bdQikA6nUHUIfZ+cMXm8ZjY3fYOXK7bjdRaxfv4QdO27RkTIOolJ3COOCXpqpO4XfX8vc\nuf/KypU78Pnq2LBhJdu2fYKBgc1WR5MpplJ3iHhcM3Un8vvrmD37n1m1ag/FxYvYtGk1b755GZ2d\nT5JIxKyOJ1NAZ5Q6xNq1C1i8+DeUlCywOopYKB4P09HxOPv3/x8ikU5mzPgC06Z9Cr+/zupocgo6\no1TGpPGLgHFmakPDR1mxYi0LFz7M4GALa9fOY8uW6zl69Dmt3vNAJtdTlzyg8YuMVlGxioqKVUSj\nvbS3P0Jr6z8QiXyW+vobaWj4GCUlS3R9mRyk8YtD/PnPtaxcuR2/v9bqKGJjAwObOXLkl7S3/xKP\np4yGho9SV3cdxcXzrY7mWOMdv6jUHeLll8u44IKDeL1lVkeRHJBIxOntXcORI4/Q2flfeL1V1NV9\niNraD1Faukwr+CxSqcuYXnrJz0UX9WsEI+OWSMTp61tHZ+cTdHQ8QTw+RE3NVVRXX0VV1RV4veVW\nR8xrKnU5SSKR4KWX3FxySVwrLJmURCJBKLSLo0d/R1fXM/T1raG0dDmVlZdRVXU55eXna4e8yVTq\ncpJ4fJiXXy7nkkuGrY4ieSYWG6S39890d/+R7u4XCIV2Ul6+ioqKC6mouIjy8pV4PCVWx8xpKnU5\nSTTax6uvzuKii/qsjiJ5LhI5Sm/vK/T2/pne3j8zMLCRkpKFlJWdT3n5SsrKVlJcPB+XS0dTZ0ql\nLicJhztZt24BF17YaXUUcZhYLER//wb6+9fT17eW/v51RCJdlJYuo7R0OWVlyyktXU5x8QKNbU5B\npS4nGR4+wIYNK3nPe3TFPrFeONzJwMAbDAy8mfzzDYaG9lJYOIeSksXJ2yKKixdQVDTX8WU/3lLX\nyUcOoMvuip34/bVUV19JdfWVx5+LxYY4dmw7g4MtDA5u5vDhhzh2bDtDQ29RWHgmRUXzKSqam3Kb\nQ2HhmfrvegwqdQfQpx6J3Xk8hZSVLaOsbNk7no/Hw4RCewiFdhEK7ebYsa10dT1FKLSH4eH9+Hx1\nFBU1UVjYSEHBGRQUnElh4RnJ+zPxeqsdd8RXJqW+GvgB4AF+Btw1xjY/BK4CjgGfBt4wKZ+YQJ96\nJLnK7fZTUrKQkpKFJ70Wj0cJhw8wNLQ3edvHwMBf6Op6kqGhtwmHDxKLhSgomIHfP4OCgun4/dOS\nt+n4fPX4/fX4fHX4/fV5c5ROulL3AHcDVwAHgPXAU8C2lG0+AMwF5gHnA/cAq0xPmiXBYJBAIGB1\njLTGk9PK8UsufD9zISMo52hut5fCwrMoLDwLuGTMbWKxYwwPHyQcPkA4fPj4rafnT6xZs41ly+KE\nw0eIRDoA8Plq8Plq8flq8Xpr8Pmq8Hqr8fmq8Xqr8HorU24VeDwVeL0VuN2+Kf/fm6l0pb4S2A3s\nTT5+FLiWd5b6NcBDyftrgUqgAWg3LWUW5eMPjkr99HIhIyjnRHg8xRQXz6W4eO5Jrz32WDM339wM\nGCdVxePHiES6iEQ6j/8ZjXYTiRxlePggg4MtRKM9o259RKO9uN0+PJ5yvN5yPJ6y4zevtwyPpxS3\nuwSPpxSPpwSPpwS3uzh5vxi3uxi3uyh5vyh5vwi3uxC3u2jc/5vTlfpMYF/K4/0Yq/F028wiR0s9\nHyUSYc3URU7D5XIdL9zCwjPH9bXGL4QQ0WgvsVg/sVg/0Wh/8v4Asdhg8s8BotFewuFDyecGiccH\nicVCxOMh4vFjxGLHiMeHkjfj+fFKV+qZHoM4ek/EmF+3efPVGb6dddrbd7B58warY6Q1npzh8BF8\nPl2dUWQqGL8QivF4ioHpU/E3mLr1KqAZY2cpwB1AnHfuLL0XCGKMZgC2Ywy4Rq/UdwNzxpVORET2\nYOy3NIU3+YaNgB94Exi9G/oDwDPJ+6uA18z6y0VExHxXATswVtp3JJ+7JXkbcXfy9Y3AeVlNJyIi\nIiIiE7MaY86+C7jd4iypHsCY+29Oea4a+AOwE/g9xuGZVjsDeBHYArQA/z35vN2yFmIc0vomsBX4\nTvJ5u+Uc4cE4Se7p5GM75twLbMLIuS75nN1yVgKPYxzmvBXj6Di7ZTwb43s4cuvF+DmyW04wpiFb\nMHrpl0ABNsvpwRjLNAI+xp7JW+UiYDnvLPXvAV9N3r8d+G62Q41hGjBy7nQpxihsIfbMWpz804ux\nb+VC7JkT4DbgYYyT6cCeOdswfqBT2S3nQ8Bnkve9QAX2y5jKDRzCWCzZLWcj0IpR5ACPAZ/CZjkv\nAJ5Nefy15M0uGnlnqW/HOHEKjDLdnu1AGfgNxhm+ds5ajHH28TnYM+cs4HngUk6s1O2Ysw2oGfWc\nnXJWYJTQaHbKONr7gJeT9+2Wsxpj0VaF8QvyaeBKbJbzOuD+lMcfB35kUZaxNPLOUu9Oue8a9dgO\nGoG3gDLsmdWN8a+xfozVBdgz568w/pV2CSdK3Y45WzHGBa8Dn00+Z6ecyzBGbg8Cf8H4WS/BXhlH\newD4YvKEBcTAAAAB+ElEQVS+HXN+DuPn5wjwi+Rz48o51R8/kssXUE9gr/ylwK+Bv8P4Pz2VXbLG\nMX7QZwEXY6yEU9kh519h/MC8wanP07BDToD3YvzyuQq4FWNkmMrqnF6Mo91+kvxzkJP/JW51xlR+\n4GqMX+qj2SHnHOB/YCzeZmD8zH981DZpc051qR/AmF2NOAPjMgJ21Y7xzxswTg07YmGWVD6MQv8F\nxvgF7JsVjB1RvwVWYL+c78G4XlEb8AhwGcb31W45wZj9AnQA/4VxLSY75dyfvK1PPn4co9wPY5+M\nqa4CNmB8P8Fe30uAdwFrgC4gCjyBMcIe1/dzqkv9dYyrNzZi/Ja8gRM7puzoKYwdEyT//M1pts0W\nF/DvGEcW/CDlebtlreXEXvkijFngG9gv59cxFhdNwEeAPwKfwH45izHGbGCMNN6HMSq0U87DGNd9\nmp98fAXGkRtPY5+MqW7E+EU+wk7fSzBm5aswfn5cGN/Prdjw+znWyUt28AhwEAhj/Id5E8aOiuex\nyaFDSRdijDXe5MQhWauxX9YlGHPVNzEOw/v75PN2y5nqEk4sMuyWswnje/kmxqGsIz87dst5LsZK\nfSPGyrIC+2UE4xdjJyd+UYI9c36VE4c0PoTxr3Q75hQRERERERERERERERERERERERERERERERGR\nXPP/AVSAH7dssJeAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Primary peak time, secondary peak time, end time\n", + "t1, t2, t3 = 3, 4, 10\n", + "# Peaks' values\n", + "p1, p2 = 1, 1.4\n", + "# Rise and decay slopes\n", + "rise, decay = 0.6, 0.1\n", + "\n", + "# Append zeros before start time\n", + "h_primary = np.append(np.zeros(int(t1/lc.dt)), p1)\n", + "\n", + "# Create a rising exponential of user-provided slope that ends at secondary peak time and secondary peak\n", + "# value\n", + "x = np.linspace(t1/lc.dt, t2/lc.dt, (t2-t1)/lc.dt)\n", + "h_rise = np.exp(rise*x)\n", + "# Find a factor for scaling\n", + "factor = np.max(h_rise)/(p2-p1)\n", + "h_secondary = (h_rise/factor) + p1\n", + "\n", + "# Create a decaying exponential until the end time\n", + "x = np.linspace(t2/lc.dt, t3/lc.dt, (t3-t2)/lc.dt)\n", + "h_decay = (np.exp((-decay)*(x-4/lc.dt))) \n", + "\n", + "# Add the three responses\n", + "h = np.append(h_primary, h_secondary)\n", + "h = np.append(h, h_decay)\n", + "\n", + "# Plot\n", + "plt.plot(h,'y')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obtain output through convolution." + ] + }, + { + "cell_type": "code", + "execution_count": 603, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delay = (int(t3/lc.dt))\n", + "output = signal.fftconvolve(s, h)\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Form light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 604, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find cross spectrum and compute lags." + ] + }, + { + "cell_type": "code", + "execution_count": 605, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc1, lc2)\n", + "cross = cross.rebin(0.0075)\n", + "lag = np.angle(cross.cs)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot results." + ] + }, + { + "cell_type": "code", + "execution_count": 606, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFG9JREFUeJzt3WuQFOW9x/HvcodFRERAFIPA4gVD8BKEYMJ6gpFYSYxa\nqVRC5Zgck8qlkqqkzgtNzovtzUmqkipNpRLr5EX0nMqpJGoqaoJJvEB0MRFEUUAMcICNKAhBCrkE\ndGFh57x4ZtgLu7Az07M9Pf39VHXNTM/09OPj8Jvep//9DEiSJEmSJEmSJEmSJEmSJCnl/hvYA2zo\nsm4csAzYAjwFjE2gXZKkXgyK4T3+B1jcY91dhOCfCfw5/1iSVEOm0v2IfzMwMX9/Uv6xJKkKxHHE\n35uJhOEf8rcTT/NaSdIAqlTwd5XLL5KkKjCkQu+7hzDE8w/gfOCtni+YPn16rrW1tUK7l6Sa1QrM\nKOcNKnXEvxS4PX//duB3PV/Q2tpKLpdziWlpampKvA21tKSlP5ueSUk7U9KfaViA6eUGdBzB/wCw\nErgE2AF8AfgBcAOhnPNf8o8lxax5RXPSTVAKxTHU85k+1i+K4b0lSTEbiJO7GgCNjY1JN6Gm2J/x\nsj+rS12C+87lx6sklaiuuY5ck/+OsqSurg7KzG6P+CUpYwx+KcWaFjYl3QSlkEM9kpQiDvVIkopm\n8EtSxhj8kpQxBr8kZYzBL6VY1BIl3QSlkFU9Uop5AVf2WNUjSSqawS9JGWPwS1LGGPySlDEGv5Ri\nztWjUljVI0kpYlWPJKloBr8kZYzBL0kZY/BLUsYY/FKKOVePSmFVj5RiztWTPVb1SJKKZvBLUsYY\n/JKUMQa/JGWMwS+lmHP1qBRW9UhSiljVI0kqmsEvSRlj8EtSxhj8kpQxBr+UYs7Vo1JY1SOlmHP1\nZI9VPZKkohn8kpQxBr8kZYzBL0kZY/BLKeZcPSqFVT2SlCJW9UiSimbwS1LGGPySlDEGvyRljMEv\npZhz9agUVvVIKeZcPdkTR1XPkHia0qftwCHgBNAOzK3w/iRJZ1Dp4M8BjcDbFd6PJKmfBmKMP8nh\nJElSD5UO/hywHFgDfKnC+5Ik9UOlh3oWALuB84BlwGbgL4Unoyg6+cLGxkYaGxsr3ByptjhXT+1r\naWmhpaUl1vccyGGYJuAwcE/+sVU9klSkap+rZxRwVv5+PfARYEMF9ydJ6odKDvVMBB7tsp9fAU9V\ncH+SpH7wAi5JSpFqH+qRJFUhg19KMefqUSkc6pFSzLl6ssehHklS0Sp9AZfSKJeDd96Bw4dPXY4c\n6f64vR2GDIGhQ8NtX0vh+cGDwz46Ovq/nDjRuRw/3vv9ro87OqC+HsaOhXPO6bzten/kSKiL8Q/e\njo7QHwcPwqFDYSncL9y2tcH48TBxIkyYEG4nTgxtjbMt0hkkOtRDFO40LWwiaoy6PVkYu+xtffOK\nZrcrrD9+HPbsIVrRTPPWn4ftch8i2nVJCJv2djh2jGjiJug4QbT1wrCusP6S3TS/d1/Y7sVRRCsG\nhdAfMQJGjyZacAyGDSPaMSME1OjRYf3ETTSPXhO2a/8A0TvXhrbkl6j+RejoINo7K+yrsH7SJpov\nbA3b7ZpJtOcyGDTo5BJN2Ah1dUT739d9/TnraB6zNmz37lyi9uvCl0h+iYb8NWw39IawzZEjcOAA\nUd0Kms8Nl480vTqe6LmhsH9/+II45xyiDx6HESOJ/nFp6M+ODsjliN7zGs0Xvx62a51C1Drl5HPk\nckQzdkJ7O9Gq4aGfDx+GUaOIrq+j+ep/hu12TCM6dDWMGROWESOIjj4JRw4TrR8He/aEJZcjunEY\nzXMOhu0OXUk04qPhS+GWW2DKlD4/L3XNnf+Eq/Lz6XaxbxfHUI9j/AOpowO2bIHVq0P4FI7y6ur6\nXgrP5wOeXbtg9+7O2337wlHk+efD5MnhtrCMHRuOtIcN6/22t3WjR8OoUSE8a1lbGxw4EJb9+0Nw\nd+33QYNO/7iuLnwRFkL9rLM6/5op1pEjnV8Cb73Vef+pp2DhQvje9/rc1DH+7EnDfPzZdvAgvPAC\nrFoVltWr4eyz4dprYdKkk0ePfS7QeX/w4LDN3LndQ37ChDCEouKMGBH6c9KkpFsSvkCmTQtLV9Om\nwdKlp93UuXpUCo/4e9q6NRz9FYY16uvDcqZw7eiAzZs7Q/7552H7drjqKpg/Pyzz5lVH0CgdXngB\nvvIVePnlpFuiKuJQT1x27oQHHoBf/Qr27oXzzus8iXnkSFiGDu3+ZdD1tq0NXnwRzj23M+Dnz4fZ\ns8N2Uin274eLLgrnEDz5qzyDvxwHDsDDD8MvfwmvvAK33gpLlsCHPnTq+HYuF8K9a1VL4Qvh8OEw\nDHPNNeFknBSn8ePh1Vf9S1EnOcZfrKNH4U9/CmG/fDksWgTf+AbcdFMY8+1LXV0o/xs5Mvw1IA2U\nhoYw/GjwK0a1H/wdHfDss2EY55FHwvDLkiVw332hnluqZoXg/+AHk26JakhtBv/+/dDSEo7qH3ss\nBPySJbBuHUyZknTrpP4rBH8fopbolNpv6UxqY4z/6FFYuTIE/fLlsHEjLFgQhnIWL4YrrohnP9JA\ne/BB+O1vw9IL6/izJ7tj/B0dsH59Z9CvXAmzZoWg/+EPQ0XN8OFJt1Iq3xmO+KVSpCv4H3kEHnoI\nnn46lE4uWgRf/WpYN3Zs0q2T4tfQANu2hcoySzoVk3QF/7e+FZa773asXtkwZky4VmTXLrjggqRb\noxqRrglZTpyA224z9JUtDvcoZukL/lInwpLS6jTB71w9KoXBL1W7mTP7DH5LOVUKg1+qdg71KGYG\nv1TtDH7FzOCXqt2MGdDaGq5fkWJg8EvVrr4exo2DHTuSbolqhMEvpUEfwz2F32SVimHwS2nQR/AX\nfqhbKobBL6WBJ3gVo/QEf+HEVs9fx5KywOBXjNKToh7tK8sMfsXI4JfSYPp02L4djh9PuiWqAQa/\nlAYjR8KECfDGG91WO1ePSmHwS2nRy3CPc/WoFAa/lBaO8ysmBr+UFga/YmLwS2lh8CsmBr+UFga/\nYmLwS2kxbVqo6mlvP7nKuXpUCoNfSovhw2Hy5FDPn+dcPSqFwS+licM9ioHBL6WJwa8YGPxSmhj8\nioHBL6WJwa8YGPxSmvQIfufqUSkMfilNLr4Y3nwTjh0DnKtHpTH4pTQZOhSmTIG//z3plijFDH4p\nbRznV5kqGfyLgc3AVuDOst/N4JcCg19lqlTwDwbuJYT/5cBngMvKekeDXwoMfpWpUsE/F9gGbAfa\ngQeBm8t6R4NfCroEv3P1qBSVCv4LgB1dHu/MryudwS8FXYLfuXpUiiEVet9cf14URdHJ+42NjTQ2\nNvb9YoNfCt7zHtizB9rakm6JBkBLSwstLS2xvmelgv9NYEqXx1MIR/3ddA3+MzL4pWDIkBD+ra1J\nt0QDoOdBcXNz+X/lVWqoZw3QAEwFhgGfBpaW9Y4Gv9SpoQG2bEm6FUqpSh3xHwe+DjxJqPC5H9hU\n1jsa/FInK3tUhkoFP8Dj+SUeBr/UqaEB1q6laYlz9ah4XrkrpdHMmbB1q3P1qCQGv5RGDvWoDAa/\nlEZTpsDbb8ORI0m3RClk8EtpNGgQTJsG27Yl3RKlkMEvpZXDPSqRwS+lVUMD0aafJd0KpZDBL6VV\nQwPNHU8n3QoNhOPHYft2iGnqhkrW8cfL4Je6a2iA3Uk3QrE5dgw2boR16+C110LQv/56uN29GyZO\nDFN1xMDgl9KqoQGeTboRKsm778KGDfDyy53Lxo3hN5XnzIEZM2DhQpg6NSwXXgjDhoVt6+rK3r3B\nL6XV5Mnh9tAhGDMm2baob4cPw/r1nQH/0kuhGuuSS+Cqq8LyhS/A7NlQXz8gTTL4pbQalD9Ft21b\nCA8l78ABWLu2+5H8G2/ArFlw9dXwgQ/A178OV1wBw4cn1kyDX0qxpj2XhpJOg3/g7d3bPeRfegne\negve977w/+OGG+DOO+Gyy2Do0KRb243BL6VYNOZma/krLZeDN98MId816A8d6hyq+eQn4bvfDedd\nUpBT6Qn+WbPg6NGkWyFVl4YGeNYzvLE5cSJ8kRZCfu3aUGUzaBBceWVYliyBe+4JV07HcKI1CUm2\nOpfL9esXGiX15dln4a67YOXKpFuSPm1t8Oqr3UN+w4ZQNlkI+Tlzwu3551dNyNeFdpTVGINfSrPd\nu0M1yN69Sbekuh07FkJ+zZrOZfPm8BdT14CfMwfOPjvp1p6WwS9lXS4XSjl37ICxY5NuTXVobw81\n8WvWhBOua9aE0J8+Ha65pnOZPRtGjky6tUWLI/jTM8Yv6RTRimaiGTPCuPT73590c5Kxbx888wys\nWBFC/pVX4KKLOgN+yZJwJD9ANfJp4BG/lGJ1zXXk/vapUFXy2c8m3ZyB0dYGzz0Hy5fDsmXhR+ev\nuw6uvx7mzg1DNjV8QZtH/JJqf3rmjo5QWbN8eVhWrQoXQC1aBD/6Ecyb1zmdgfrF4JfSrqEhBGKt\nyOXCJGV//nP473r6aTj33BD0X/sa/OY3ns8ok8EvpV1DA/wsxfPyHz4cxuZXrYLnnw/L4MFh6Gbx\nYrj77vBTk4qNwS+lXZqGenK50NauIb9lS6iwmT8/nIj96U9D0FdJ3XwtMvilFGta2ATnnReuON23\nLwyJVJNcDl54AZ56KoT96tVw1llhXH7ePPj850PFTYITlmWRVT1SLbjmGrj33hCmSTtxAv76V3jk\nkbDU18PHPx5mprz22s7ppFUSq3okBYXhnqSCv7091NI//DD87nch3G+9FZ58Ei6/PJk2qU8Gv1QL\nkhjnb2sLQzgPPwx/+ENow223hXmDpk8f2LaoKAa/VAsaGuCPf6z8fg4dgieeCEM4TzwRxudvuw2+\n//3w84BKBYNfqgWVPOLfsQMeewyWLg1H8wsWhGGcn/wEJkyozD5VUZ7clVIsaomIGqNQ0XPxxXDw\nYPllkLlc+I3Y3/8+hP3rr8NNN8EnPgE33hiqcpQYZ+eUMq6uuY5cU/7f0bhxsGlTmE++WMeOhUnO\nli4Ny9ChcPPNIewXLIAhDg5UC6t6JHUqDPf0N/jb28NJ2YceCtU3l14agv7xx8PvxHoBVc0y+KVa\nUQj+6647/eu2bIH774df/AJmzoTPfQ5+/GOYNGlg2qnEGfxSrTjdCd533glll/fdF3556vbbw9DO\nJZcMbBtVFQx+qVY0NMCjj3Zf9/LLIewfeihc3PXNb8LHPhbG8JVZBr+UYk0LmzofFI74DxyAX/86\nBP7bb8Mdd4T57J3hUnlW9Ui14sCBMGFbfX0ou/ziF+HDH4ZBg5JumWJkOaek7h5/PPz27vjxSbdE\nFWLwS1LGxBH8/g0oSRlj8EtSxhj8UopFLVHSTVAKOcYvpVi3uXqUCY7xS5KKZvBLUsYY/JKUMQa/\nJGVMpYI/AnYCa/PL4grtR8q0bnP1SP1UqaqeJuCfwI9O8xqreiSpSNVe1ePP90hSFapk8H8DWA/c\nD4yt4H4kSUUoZz7+ZUBvv9X2H8DPgO/mH/8ncA9wR88XRlF08n5jYyONjY1lNEeSak9LSwstLS2x\nvudADMdMBR4D3ttjvWP8klSkah7jP7/L/VuADRXaj5RpztWjUlTqiP9/gTlADngN+DKwp8drPOKX\nyuRcPdkTxxF/pX5z918r9L6SpDJ55a4kZYzBL0kZY/BLUsYY/FKKOVePSuEvcElSilRzHb8kqUoZ\n/JKUMQa/JGWMwS9JGWPwSynmXD0qhVU9Uoo5V0/2WNUjSSqawS9JGWPwS1LGGPySlDEGv5RiztWj\nUljVI0kpYlWPJKloBr8kZYzBL0kZY/BLUsYY/FKKOVePSmFVj5RiztWTPVb1SJKKZvBLUsYY/JKU\nMQa/JGWMwS+lmHP1qBRW9UhSiljVI0kqmsEvSRlj8EtSxhj8kpQxBr+UYs7Vo1JY1SOlmHP1ZI9V\nPZKkohn8kpQxBr8kZYzBL0kZY/BLKeZcPSqFVT2SlCJW9UiSimbwS1LGGPySlDEGvyRljMEvpZhz\n9agU5QT/p4C/ASeAq3o8921gK7AZ+EgZ+5B0Gs0rmpNuglKonODfANwCPNtj/eXAp/O3i4H/KnM/\n6oeWlpakm1BT7M942Z/VpZxA3gxs6WX9zcADQDuwHdgGzC1jP+oH/2HFy/6Ml/1ZXSpxJD4Z2Nnl\n8U7gggrsR5JUgiFneH4ZMKmX9d8BHitiP16iK0lVIo4pG54B/h14Of/4rvztD/K3TwBNwOoe220D\npsewf0nKklZgRtKNeAa4usvjy4F1wDDgYkIjk5wTSJIUk1uAHcC7wD+Ax7s89x3CEf1m4MaBb5ok\nSZKkilpMONrfCtzZx2t+kn9+PXBlkdtmTTn9uR14BVgLvFC5JqbGmfryUmAV0EY4d1XMtllUTn9u\nx89mT2fqzyWEf+OvAM8Bs4vYtqIGE4Z5pgJDCeP9l/V4zU3An/L3rwWeL2LbrCmnPwFeA8ZVtomp\n0Z++PA+4Bvge3YPKz+apyulP8LPZU3/6cz5wdv7+YkrMzkrU8c/NN2A74SKuBwkXdXX1CeAX+fur\ngbGEstH+bJs1pfbnxC7Pe3I96E9f7gXW5J8vdtusKac/C/xsdupPf64CDubvrwYuLGLbkyoR/BcQ\nTvoW9HYBV1+vmdyPbbOmnP6EcA3FcsI/vi9VqI1p0Z++rMS2tarcPvGz2V2x/XkHnX/pF7XtmS7g\nKkV/L9bym75/yu3P64BdhD+5lxHGAP8SQ7vSqJwLCb0I8VTl9skCYDd+NguK6c/rgX8j9GGx21bk\niP9NYEqXx1PoPoVDb6+5MP+a/mybNaX255v5+7vyt3uBR8n2vEnlfL78bJ6q3D7Znb/1sxn0tz9n\nAz8nDPHuL3LbihlCuGhrKuEirjOdjJxH5wmK/mybNeX05yjgrPz9ekIVQJanyS7m8xXR/WSkn81T\nldOffjZP1Z/+vIgwlj+vhG0r7qPA/xEa+O38ui/nl4J788+vp/t8/r1tm3Wl9uc0wgdgHfAq9iec\nuS8nEcZKDxKOpt4ARp9m26wrtT/9bPbuTP15H7CPUALbswzWz6ckSZIkSZIkSZIkSZIkSZIkSZIk\nJe3/ATpfKjoz68jQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Define the x-position of vertical line\n", + "v_cutoff = 1.0/(2*t2)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-10,10])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Energy Dependence" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same intensity and varying position" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create different lags for different energy channels, we create delta impulses of same intensity at different positions." + ] + }, + { + "cell_type": "code", + "execution_count": 607, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create impulse responses for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 608, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = [np.zeros(int(i/lc.dt)) for i in energies]\n", + "responses = [np.append(h, 1) for h in h_zeros]" + ] + }, + { + "cell_type": "code", + "execution_count": 609, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delays = [int(i/lc.dt) for i in energies]\n", + "outputs = [signal.fftconvolve(s, h)[d:-d] for h,d in zip(responses,delays)]\n", + "s_mods = [s[d:] for d in delays]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 610, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mods = [lc.time[d:] for d in delays]\n", + "lc_input = [Lightcurve(t_mod, s_mod) for t_mod, s_mod in zip(t_mods,s_mods)]\n", + "lc_output = [Lightcurve(t_mod, output) for t_mod, output in zip(t_mods,outputs)]" + ] + }, + { + "cell_type": "code", + "execution_count": 611, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc1, lc2).rebin(0.0075) for lc1,lc2 in zip(lc_input,lc_output)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute lags and cutoffs." + ] + }, + { + "cell_type": "code", + "execution_count": 612, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.cs)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cutoff points for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 613, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "v_cutoffs = [1.0/(2*energy) for energy in energies]\n", + "h_cutoffs = [lag[int((v_cutoff-0.0075)*1/0.0075)] for lag, v_cutoff in zip(lags, v_cutoffs)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We plot lag-frequency spectrum for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 614, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8E3X++PFX2kJb2gKlHD2hXG25DwVBQCqCoIjKzwtE\nBWVd8HZlXV39KmVR111ldRePBW9U8FxXQUUQCAJrQYVyl7MttNzQQimlRzK/Pz6TJmnTNm2SJmnf\nz8djHklmMjOfmUzmPZ9jPgNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghGpE04ENvJ6KJSUP2\nudAFeDsBjUw2cAEotBn+5c0EOckMnEel9xTwI3CrV1NUPc1Ny0lEbXdN/4E0oAz73/OPblq/P3HX\nPndkOrAbOAccA74Fwj24vkRq/91FDYK8nYBGRgOuA1Z7eD2BgMnNy+wLHATaANcCrwEpwF/cvB5f\nY6hhmgYsAe6qZRkBqBNRY1XTPnLFSOB5YCywFYhE/X8aQk3b5In/V6Mh0bbhTAPWAy8BZ1An6HE2\n01sB7wBHgFxgLtbfZxqwAfgHKicwG3VyXwqcBTYBzwHr9O+/Drxcaf3fAI86kc4zwEfAfcCf9fU4\nm775QAHqynFUHbatpv3SGViLuhJdAbStlN4hwP+AfCADdSKyMKKC3np9/h+AKH3aT/prASoHcZmD\nfWHA8cnlfeBN4DtUDi0ViAW+BE7o2/CQzfdD9XnOADuBx4HDNtPNQJdKy59r8/k6fdvyUfu5j820\nbGAW6qRbAHwCBNtMv0Gf9yywH3WCvgX4tdI2PQb818G2OvI5cFRf31qgp820KKo/LisbBPyspx3U\n9n2I2qeg9sO/Ub/7OdTv2dFm/hRgJXAayNS3yyIUmIfaPwWo3zsE+9/9HOr4mYb9/yuNqkVyidjn\nUIyo32gD6vj5BnVsfmyz7Z2q2W4hKmQBV1UzbRpQisqOG4CZQJ7N9K9QJ6JQoB2wEfi9zbxlwAOo\ngzYEdXJYrL/vARzC+ocYpC/bcsJrCxTpy3Wk8kkLoJm+zrF1SN8jqKu0W1F/ytZOzlvTfvkZFQCb\nASNQf/RF+rQ41J/cEmRG658tgcEI7AO6ofbTGuCv+rROOFc85ags/319+4bqn0OB34D/Q+XeOwMH\ngKv16S+iTq6tgXhgB+r3sqi8/9/DmsMbABxH/aYGVK4nC7U/0N+nA9GoK/VdwAx92mA9nZZjMhZI\nBpqjTrQpNuvcAkx0tBOouh+mAWF6Gl7R57Wo6bisbDiqODcNGIZ9sAO1n8/p32sOvIo1AIWhAu9U\n1G/YHziprxPUhdNqIEafPkRfhqPffRpV/1+zqT1o7EX91i1RFwP7UBdLgcAHwLvVbLcQFbJRVx35\nNsN0fdo01EFl0QJ1ELYHOgAXUQerxWSsxVzTgBybaYGoE213m3Fzsb+i24U6iQI8CCyrId2Oggao\nq8nJTqYvD3sbgTucnLe6/dIR9WcOtZn+Mdag8YTNe4vlWIuT1gBP2Uy7D/hef5+Ic0GjBOtveQZ1\nEnpfHywuw/73AZVLs5w0bAMIwL3UnNOwDRpvUrWIMBMVQEEFjdttpv1NnwdgAepq25E3UbkAgF6o\nbWtWzXfTqL4ivLWe/gicOy4rG4e6Ss9H/XfmYf1N3kcFIIswoBwVeG+jajBaADyrz38B+xyZRSKO\ng0bl3y+NmoPGGtRvbPEyqj7G4jrsg2mjIXUa7qWhigOqq9M4ZvP+gv4ajsoJNEOdpC0CsL8atT3J\ntEP9drbjciutaxHqpP2j/vpK7cm300xfzxnU1Vlt6ascNHJQV7YdnZi3uv3SHnUyKa603AT9fSdU\nkcQEm+lB2O9/22UXU/dK1k+pWqehYb+9nVDbmm8zLhDrSS0W+9/Kdttr00lfv21xVzN9mRaVtzFG\nfx+P/YnM1geoE/L/AXeitrMMmIIqEkJP//hK8wWi6iFuRh0fZtT+aKuvu7bjsrLl+gDqKv1zYA+w\nUF+u7fxFqOMxFrVfLsN+nwehjvso1EXKgVrWbetw7V+p4rjN+4uooknbz56s0PcaCRq+4TDqijaK\n6itUbVuwnERdcSVgvUpPqPT9j4DtQD9UMYSz5dUWN+jr2IT6A9aWvrhKnzsBX+PctlXnKKrIpQXW\nYNIJayXlIdTV4O+rzlorZ1oEaVRfYWo7/yHUFX9SNd89igqeu/XPHStNv4DaRosYrCexQ6iT9AtO\npLeyw6iiOUfSUbmCK1A5v8n6+I/1oTq3A9ejirxyUDmNM6j95MxxWZPV+tBL/2yoNH84qo4tD7Vf\n1mKfg7MIQJ20uwHbKk2r7nevPP489r9JdC1p92QLM58iFeHuV5+WJkdRlX3/QGXzA4CuqD+0Iybg\nP6gsdCgqKNyJ/YGbi6rsXAR8gTpxO5PuNqirzddQZfH5TqavPfAw6ir4Fj1N36GuguuybbZy9G2Y\noy93OPataz5C5TKuRl0Bh6AqpW0DWHW/x0lUEOtaw/qrm7fy+E2oopU/oX6PQKA3cKk+/TNUUYal\nTuMh7H+rDNQ+D0QV19jum7dQ9TyD9fWGoa7+a7qKtaTvHeBu1BV8AGq/JNt870PU71yKakzgjHDU\nsXRGT4ttMHPmuLR1PaqYKVJP82BUQ4Z0m+9ci6rvaI4q6voZFTS+RQXpO1DHRjNUvU8K6nd9F3XM\nxaD261B9Gc787qB+kytQQasV9kVRFoZq3jdqEjTcbyn27fq/1MdrVP3z2H6+C3VQ70L9IT/HenXj\naN4HUQfzMVRRwxLUn9/WB6hyXWduzNqqp3cfcA+qpVWak+kDVYfRHfWnnAvchLXooK7bZvv5dlQx\nxBlUefUHNtNyUTmip1BFA4dQLYls/8BapfeWzxdQV/Ab9HQOpipHaXM03owKZv1RLadOoopXWurT\n56ACYBaqKGZRpTQ+ggp++fr2fmUz7TdUHchrqH2wD7U/a7pitkz7BRU0XkFViK/BPpfzIeqq/qNq\nluVomYv0bclDVej/XCktzhyXFvn6tu1FtTj6EPi7Po9lvYtRldKnUY0C7tCnFaIuFibpaTmKauTQ\nXJ/+R1RO+xd93r+i9rnt734GdWw5+p1/RBXZbdOXsdTBd6o7thxNF26QgDqId6IOvof18W1Qzej2\noq5QWzucW1T2N1QFqq0RVK3g84Rp1FzZKeylUr8ydHcLRbVOqu2q2xWOjktnvYd902PhA7yZ0ygD\n/oC60hmCau7WA3gSFTSSgFX6Z1FVMuqGPEu2/h7sr1CboXILbzV80oSfuA9VtFaXCuPa1HZc1kWT\nKfIR9fNfVBPRTFQzTVBFGJleS5FvuxRVVFGEKhJ5wmZaD1RF3noapgXHVKpviy+qSqVuLag8IRtV\nXNbPzcut6bisK9umx0LYSUQVo0Rg34TOUOmzEEKIJi4cVdl3o/65cpA407DJEUIIUR1v36fRDNW6\n6EOs9xEcRxVLHUM1lztReaauXbtqBw64sxhWCCGahANUf++OU7xZEW5AtSPfhepTxuIbVBk5+muV\nm9IOHDiApmkyuGmYPXt2/eddU/95G+vgyv60G9y1HD8f3LY/ZQA3tJTzZtAYhmpzfSWqj5YtqBub\nXgTGoJrcjtI/Cx81Z+0cbyeh8Zoj+1b4Hm8WT62n+qA1uprxQgghvEjuCBekpqZ6OwmNiuxP95L9\n6Vv89eYZTS+fE15mmGNAmy2/hUcYDCDHuXAjg8EALp73vd16SgjhojZt2pCfL7czCavIyEjOnPHM\n3QoSNIRLZo+c7e0kNF6zndu3+fn5SM5b2NJzFJ5ZtseW7FlSPCWEzmAwSNAQdqo7JtxRPCUV4UII\nIZwmQUMIIYTTJGgIIRrMunXrSElJ8XYy7EyePJmvv/7a7ct9//33GTFihNuXe/z4cXr27ElpaXXP\ntvIsCRpCCI9ITExk1apVduNGjBhBZqbrTzsoLS1l+vTpJCYm0rJlSwYMGMDy5csrphuNRgICAoiI\niCAiIoKEhARuu+02fv31V7vlbNu2jW3btnHDDTdUWcc999xDQEAABw8erDYdiYmJtGjRomI948aN\nc2m70tPTCQ8Pp6ioqMq0AQMG8MYbb9ChQweuvPJKFi5c6NK66kuChnBJmjHN20lovNLSvJ0ClxgM\nBo+14ikvL6djx4789NNPnDt3jueee45bb72VnBzrgyrj4uIoLCyksLCQ9PR0UlJSGDFiBKtXr674\nzoIFC7jjjjuqLH/9+vUcPHiw1vQbDAaWLVtWsR7bwFUfQ4YMIT4+ni+++MJu/I4dO9i9ezeTJ08G\nYMqUKSxYsMClddWXBA3hEul7yoMaYd9TRqORhISEis+JiYnMmzePfv360bp1ayZNmkRJSUnF9GXL\nltG/f38iIyMZNmwY27dvB6BFixbMnj2bjh3VI8/Hjx9P586d2bx5s8P1xsXFMWfOHH73u9/xxBPW\n50ItX76ckSNH2n23vLychx9+mPnz5zvVKs3ZlmuPP/44I0aMoLCwkLNnzzJ9+nRiY2OJj4/nmWee\nwWw2AzB16lQWLVpkN++iRYsYP348kZGRAAwePJiDBw9y+HDDPzVYgoYQwmsMBgOff/45P/zwA1lZ\nWWzbto33338fgC1btjB9+nTeeustzpw5w4wZM7j++usdluUfP36cvXv30qtXrxrXN3HiRDZv3kxx\ncTFFRUVkZWWRnJxs951XXnmFkSNH0qdPH6e2YcqUKbRv356xY8eybdu2KtM1TePee+9lx44drFy5\nkoiICKZNm0bz5s05cOAAW7ZsYcWKFbz99tsA3HHHHfz000/k5uYCYDabWbJkCVOnTq1YZlBQEN26\ndSMjI8OpNLqTBA0hGjuDwT2Dhzz88MNER0cTGRnJhAkTKk6ECxcuZMaMGQwaNAiDwcBdd91FcHAw\n6enpdvOXlZUxZcoUpk2bRlJSUo3rio2NRdM0CgoKKCgoACAiIqJi+uHDh1m4cCF/+YtzT5ldvHgx\nOTk55OTkcOWVVzJ27FjOnj1rl7ZJkyZRUFDA0qVLCQkJ4fjx43z//fe88sorhIaG0q5dOx599FE+\n+eQTABISEkhNTeXDDz8EYNWqVZSUlDB+/Hi7dUdERNitq6FI0BCisdM09wweEh0dXfE+NDSU8+fP\nA5CTk8O8efOIjIysGHJzczl69GjF981mM3feeSchISG89tprta4rLy8Pg8FA69atad26NQCFhYUV\n0x999FGeffZZIiIiKoqdaip+Gjp0KMHBwYSGhvLkk0/SunVr1q1bVzF9//79LF26lGeffZagoKCK\n7SorKyMmJqZiu2bOnMnJkycr5ps6dWpF0Pjwww+ZPHkygYGBdusuLCys2IaGJEFDCOFTLJXPHTt2\n5OmnnyY/P79iOH/+PLfddhugTubTp0/n5MmTfPnll1VOqo589dVXXHLJJYSGhhIWFkbXrl3Zs2dP\nxfTVq1fz+OOPExMTQ2xsLKACgyUX4GzaLXr06MG7777LNddcw969ewGVkwgODub06dMV23X27NmK\n+hpQxWi5ubmsWbOGr776yq5oClS9y/79++nXr59T6XIn6XtKuET6nvIgJ/ue8mWlpaVcvHix4nN5\neXmt81iu7O+9914mTpzI6NGjGTRoEBcuXMBoNDJy5EjCw8O57777yMzM5McffyQ4OLjG5R05coS3\n336bd955h6VLl1ZMu/baa1m7di2XX345APv27auokNY0jZiYGJYtW0bfvn2rLPfw4cMcOnSIQYMG\nYTabmT9/PqdPn2bYsGF235s0aRKlpaWMHj0ao9FIly5duPrqq3nssceYO3cuYWFhZGVlkZeXxxVX\nXAFAWFgYN998M3fffTeJiYkMHDjQbpmbNm0iMTHRrlGBqJkmhFB89f+QmJioGQwGu2H48OFaQkKC\n3XdWrVpV8TktLU278847Kz4vX75cGzRokNa6dWstJiZGu/XWW7XCwkItOztbMxgMWmhoqBYeHl4x\nLF68WNM0TVuzZo0WEBCghYeHa2FhYVpsbKx2yy23aBs3brRL444dO7RevXpVuw0BAQHagQMHKj7P\nnDlTmzlzpqZpmrZz506tb9++WlhYmBYVFaWNHj1a++233yq++/7772sjRoyo+PzWW29pnTp10nJy\ncrSzZ89q9913nxYfH6+1atVKGzBggPbpp5/ardtoNGoGg0H7+9//XiVd999/vzZ//vxq013dMQG4\nXM4oHRYK4eekw0LXTJkyhVtvvdXhDX6+6MSJE6SmppKRkUHz5s0dfseTHRZK0BDCz0nQEJU15l5u\n3wWOA9ttxqUBucAWfXDtvnwhhBBu4+2g8R5Vg4IG/AMYoA+u3ZcvhBDCbbwdNNYBjp5T6a/FZk2O\n9D3lQX7e95RonLwdNKrzELAVeAdo+LtXhNOk7ykPaoR9Twn/54v3abwJWO7hnwvMA6ZX/lKazVVY\namoqqampDZA0IYTwH0ajEaPR6NZl+kIxUCKwFHDUO1h106T1lI8wzDGgzZbfwiMMBqe675DWU6Ky\nxtx6ypEYm/cTsW9ZJYQQwou8HTSWAP8DkoHDwD3A34BtqDqNkcAfvJY6IYRbyeNeXdfUH/c6GYgF\nmgMJqPs27gL6Av2AG1H3cQgfJX1PeZCf9z3lr497XbhwId26daNVq1YMGjSIDRs21LiNTe1xr/6q\n2j5XhGhqfPX/ULlfKXcqKirS0tLStJycHE3TNG3ZsmVaRESElp2drWma6nsqPj6+4vu5ubnas88+\nq4WEhNil6f7779deeOGFis9btmzRwsPDtc2bN2uapmlvvvmm1q5dO81sNjtMR03b+N5772nDhw+v\n87YlJydr77//vt247du3a8HBwdqZM2c0TdO0DRs2aL179652GdUdE7ih7ylv5zSEEE2Irz/uddeu\nXfTs2ZMBAwYAcOedd3Lq1ClOnDhR7TZp8rhXIYRoGL72uNcRI0aQlZXFpk2bMJlMvPvuuwwYMIAO\nHTpUu0x53KsQonFJS3P8+Nbq7jh39H0P3p3uS497TUhI4LnnnmPYsGGEhIQwd+5cFixYUO3y5HGv\nQojGJy3N8eNbawoazn7XDXzpca/ffPMN8+bNY/fu3ZSVlfHhhx9y3XXX2a3TljzuVYg6kr6nPKiJ\n9j3lzce9/vDDD4wfP55u3boBMHbsWGJiYvj555/rlHaLxvi4VwkawiXS95QHNYK+pyyPe7UMdX3c\n67///W82bdqEpmkUFRXx7bffVuRELI97/eabb2p93GteXh5z5szhnXfe4YUXXqiYZnncq0W/fv34\n9ttvycrKQtM0Vq5cyd69e+ndu3eV5R4+fJgNGzZUbONLL71U7eNeX3jhBUaPHs3BgweJiYmpeNxr\nYWEhZrOZAwcO8NNPP1XMI497db86N2MTnkGa/BYe4+Rx7qv/B3983KvJZNIef/xxLT4+XouIiNB6\n9uypffTRRxXT5XGvvtH3VH3o2y+8Tfqe8iDpe6pByONe60aChnCJBA0PkqAh6qmpdVgohBDCR0nQ\nEC6Rvqc8yM/7nhKNkxRPCeHnpHhKVCbFU0IIIXyCBA0hhBBO88VnhAsh6iAyMrLKnciiabP0husJ\n/nqkSZ2GEELUkdRpCK+Tvqc8qIn2PSV8m+Q0hEvk5j4PcvLmPiGc1RhyGu+ingG+3WZcG2AlsBdY\nATR8379CCCEc8nbQeA+o/CT2J1FBIwlYpX8WQgjhA7wdNNYB+ZXGXQ98oL//ALixQVMkhBCiWt4O\nGo50QBVZob9W/3BeIYQQDcrX79Ootv/3NJuWJampqaSmpjZMioQd6XvKg6TvKeEio9GI0Wh06zJ9\nofVUIrAU6KN/zgRSgWNADLAGSKk0j7SeEkKIOmoMracc+QawPBB3KvBfL6ZFCCGEDW/nNJYAI4G2\nqPqLZ4Gvgc+AjkA2cCtQUGk+yWkIIUQdyZP7hBBCOK2xFk8JIYTwURI0hEuk7ykPkr6nhA+S4inh\nEul7yoOk7ynhZlI8JYQQokFJ0BBCCOE0CRpCCCGc5uvdiAgP0jSNgosFZBdkk1WQpV7zs8g+m01x\nWTEtmrWoGEKDQq3vm1nfA3y1+ys6hHfg8oTLvbxFQghPk4rwRsasmblYfrFiKC4rprC0kJyCHLIL\nsu0DREEWmqbRObIzia0T6dxavSa2TiSsWRjF5cVcKLtQMRSXVfpcXszG3I10bdOV5fuXc+yPx2gd\nIo8/cZu0NGlBJdzKHRXh/kojTQ2z18zWKpu9Zna14/1tvmdXP6vtO71P+3zn59rTq57Wxn88Xoub\nF6d1eKmDljQ/Sev4Sket/UvttZZ/bakFzAmomC94brAW83KM1vnVzlrvN3pr4z8erw1aOEgbs2iM\n9sXOL7Tfjvymnb5wWjObzW5JZ/TL0Vr64XSf358yn8zXlOejmg5g68JfI46+/Y3LxfKL7Dixg4xj\nGRXDtuPbiAyNpH90f/p36E+/6H7EhMcQ2iyUkKAQuyE0KJTmgc0tVxMNasp/pjC261ju6ndXg69b\nCOEcd+Q0pE7DDTRNY/uJ7Xyd+TUFFwsICggiMCCQQENgta+W7xSVFrH1+FYyjmVwIP8ASVFJFQHi\nph430S+6H21C23h7E2uVHJVM5qlMbydDCOFhEjTqSdM0fjv6G1/u+pIvdn9BubmciSkTiY2IxWQ2\nYdJMmMwmys3llJhLMJVZx9m+BgcGc1Xnq5g1dBY92/UkOCjY25tWLyltU/h056feToYQwsMkaNSB\nWTOTnpvOl7u+5MvdX9I8sDk397yZT276hIExA71SLOQrJKchRNMgQaMWJrOJ9YfW88WuL/hP5n+I\nDInkph43sXTyUnq3792kAwWovqfSUtPoHtWdg/kHKTeXExQgh5VbSOsp4YP89Yzn0YrwgosF/JTz\nE9/t+47/Zv6XmIgYbu5xMzf1vImUtpUfIti02fY9lfhqIj/e9SPd2nTzcqoaCel7SriZVIS7SVFp\nEesPrWd11mrWZK9h96ndDIkfwtVdrmbDPRvo2qart5PoF5LbJrPn1B4JGkI0Yk0yaFwsv0h6bjpr\nstawOns1W45uYWDMQEZ1HsXLV7/MZXGX+W2FtDelRKWw5/QexjPe20kRQnhIkwka245vY9neZazO\nWs3GvI30bNeTUYmjeOaKZxiWMIyw5mHeTqLfS26bTMaxDG8nQwjhQU0maNz4yY2M6TKGRy57hCs6\nXUGrkFbeTlKjI81uhWj8fDloZAPnABNQBgx2ZWGlplKeGfkM8S3j3ZA0YTF75OyK99Ls1s1mz679\nO0I0MF8OGhqQCpxxx8JMmolAQ6A7FiVspKWmVbyPjYjlQtkF8ovziQyN9F6iGgtpbit8kK8/T8Nt\nTYJNZhOBARI0PMlgMJAclcye03u8nRQhhIf4ctDQgB+BX4F7XV2Y5DQahqXZrRCicfLl4qlhwFGg\nHbASyATWWSam2WTdU1NTSU1NrXFhktNoGJZmt0II7zMajRiNRrcu01/uCJ8NnAfm6Z/rfEd4+Avh\nHJ11lIjgCHenTdj4bOdnfLLjE/5z23+8nRQhRCXuuCPcV4unWgCWs3sYcDWw3ZUFmjTJaXhCmjHN\n7nNKW8lpuI1UhAsf5KvFUx2Ar/T3QcDHwApXFmgym6QjPQ+Ys3aOXQuq7m26c+DMgbp3XGg2Q3k5\nlJWpwfK+8rjycjCZqr6vbZwzg2UdBgMEBkJAgBocvbcdB1BSUnW4eLH68SaTmk/Tqh+2boWvvlLv\nO3eGr7923w8nRD35ak4jC+ivD72Bv1b5hsGgBkdXYw56BzVpJgLnPlfn+SrG+/N8mgYXLsCsWfDA\nA/C//8H338OSJfDmm3DVVdb5eveGceNgzBi49lq48Ubo1Qv69IG774YZM+Chh+Cxx2D4cLV8gwFG\nj4a0NEKfnk10aXOyZ05Sy0pOVssaNgwGDFCfW7Wyri8w0DqEh0O7dtChAyQkqO9ffrlK34QJkJoK\n/fvDJZfAxIlqe556CubMgRdfhAcfhD/8Ad59Fz7+GL74ApYuhXnzYPp0lfb33oP9+yE3F06dgvPn\nYdUqWLcOIiLU+qOioGVL+PlneO45tfxVq6C4GM6dg9On4dgx+PxztQ+zstS4sjIIDVUn+9deg7ff\nVt+fOBGmTlX77emnISVF7c9//Qvmz4fXX1e/wyWXwJYtkJEBl12m9u2iRfDRR7BpEzzyiG8fZzKf\nf8znIn+p06isTnUamqYR8JcAzM+a/aMr8+JidVKqPBw9ql6LiqxX37ZDaWn144OCoHVr+6FVK8ef\nW7WCZs2s81oGB58NJX9GK3vaesJs0YJx5e/zUMsxjI8aAi1aWAd9esUQHKzWExSkgoY//DYNybaX\n2zvvVEF6xgzvpkn4Nenl1klmzUyAIcAzAeP8edi9G3buhMxMdcIH6xWA5b2jcQaDOvkeP24NCMeO\nqWVER1uHmBj1OnCgugqPiFAnW2eH4GBo3tz92w4w58/qatxG8vd5ZLbqyPjLJ3tmnU3RmDHwzTcS\nNITXNYmg4ZZ7NM6dU8Fh1y4VICyvJ0+qIpeePaFHD3WCt5RJg/2ro/dBQTB4sH2QiIz066vulLYp\nbDm2xdvJaFyuugoefVTVhQRKgw7hPU0iaJSby51rOWUyqbLu/fvVsHevNUCcPq3Konv2VGX8M2eq\n9507N+k/sW3fUxbJbZNZsmOJF1LTyNj2PRUXpy5INm+GQYO8lybR5DWJoGEy2+Q0ysshJ8caGGyH\n7GxVCdqtmxq6d4crr1TBITHR2lJGVLBtOWUhXYm4SeVKzDFjYOVKCRrCq5pG0NBMBJaUqSBw+LC6\nYrMEhm7dVKucbt2gSxdVWStcIh0XesiYMfDyy6rFmBBe0jSChtlEUGmZaoo5eLCqGBYeY9tx4ZD4\nId5OTuMxciTcdptqPRcmDw0T3tE0goZmItCMqpOQgNEgUtqmsOeUBA23Cg9XLejWrVP30gifVFRa\nRO653Irh8LnD5J7LpVVwK14c/aJ/NPuvQdMIGmY9aHiq2amoQh7I5CGWeg0JGg1O0zROF5/maOFR\njp4/St65vCqBIfdcLsXlxcS3jK8YElom0LdDX15Nf5XxSeO5otMV3t4UlzSNoKGZCDRrEjQ8IM2Y\n5rAyPKUWfpV9AAAdUUlEQVRtirSgcpWjO3rHjIHf/94bqWm0zJqZY+ePcaTwSEVAsLweO3+s4vPx\nouOENQsjJiKGmPCYiqAwIGYAE5InVASINqFtHOYmAg2BzPt5nt8HDX/NJ9XpjvDs/CxG/qULOS+X\nN+nmsZ5gmGNAm131t9h2fBuTvpjErgd2eSFVjYTtHeEW5eWqq5Pdu9U9PcJpmqZxougE209sZ8eJ\nHRXDzpM7adGsBXERcRUBISY8xvpef+0Q3oGQoJB6r/9C2QUSX01k/T3rSYpKcuOWOU/uCHeSqayE\nQA0JGA2oe5vuHMw/WPeOC0XNgoJUa79Vq2DKFG+nxmcVXCxg54md1uBwUr2aNTN92vehd/veXBp7\nKdP6T6NXu14N0sqvRbMWzLhkBv9M/yevj3/d4+vzlCbxbzZdLCbQbzNV/im0WSgxETFk5WfRPaq7\nt5PTuFjqNZpg0CguK7YWGxVai49sX48UHqGwpJBe7XvRu11verfvzfXJ19O7fW+iw6O9WhH9wOAH\n6Pl6T+aOmkub0DZeS4crmkbQKL1IoCZBo6FZmt1K0HCzMWPg+edV0ZWft8Rx5HzpebYf307GsQwy\njmWw5/SeiqBQUl5CdHg0MREx6jVcvV4Wd5nd+NiIWAIMvnczbnR4NDem3Mi/f/03T43wz/ttnAka\ntwLLgXPAM8BAYC6w2YPpcitTaQlBEjQanKXZ7XVJ13k7KY1Lt26qI8rdu1VvBX7s2PljFcEh41gG\nW45t4fDZw/Rq34v+HfrTP7o/t/a6ldiIWGIiYmgV3Mrvm6z+YcgfGPvRWGYNnUVwkP/dAuBM0HgG\n+AwYDlwFvAy8CVzmwXS5lamkmECffXSIf3PU95RFclQym4/6zbWF75ldzb41GKxFVH4SNApLCtl3\nZh97Tu1h6/GtFUGi3FxO/2gVHCYkTeCZK54huW1yo64H69NB1al8uvNT7up3l7eTU2fO/DL6I8a4\nDngLWIbKafgNU2mJ1Gl4iKPmthbS7NZFNT1AZ/Ro9XCmRx5psOTUpsxUxsH8g+w9vbdi2HN6D3tP\n7+VsyVm6t+lOUlQSfTv05cHBD9I/uj9xEXF+n3Ooj8eGPsaTPz7JnX3v9LvtdyZo5AELgTHAi0AI\nvvvEP4fKSy8S6IPlm41dclu5wc9jrrpK3a9RVqaKqhqQWTOz7/Q+0nPT2Xp8a0WAOHT2EPEt40mK\nSiIpKqmiaCkpKom4lnE+WcfgLWO7jmXWilmszlrNVV2u8nZy6sTZOo1xwEtAARAD/MmTiXI3U8lF\nKZ7ygpjwGC6WX5SOCz2hbVtVt5GeDiNGeHRV+cX5bMrbRHpuOul56WzM3UirkFYMiR/CgOgBjOw0\nkqSoJLpEdvHLMnpvMBgMPDbkMf6R/o9GGTSCgTX6+zZACbDaYylSxgGvAoHA28DfXFmYqaxEgoYX\nGAwGkttKx4UeY6nXcGPQKDeXs+PEDjbmbiQ9L5303HRyz+VyaeylDIkbwsxLZvLeDe8RHS43Frpq\nSt8pPL36aXaf3E2Pdj28nRynORM0NgMdgXz9cyRwTB/uBX5zc5oCgdeA0aiisV+Ab4Dd9V2gSYqn\nvMbSB5UEDQ8YPRqefRb+8pd6L6KotIj03HTW5qxl3aF1/HrkV+JbxjMkfghD4obw6GWP0qt9r0Zd\nMe0tIUEh3HfpfbyS/goLJyz0dnKc5syRsBL4AvhB/3w1cDPwHqoV1WA3p2kwsB/I1j9/AtyAK0Gj\nrIQgVx/3Khyqru8pC0uzW1EPjvqesjV8OGzfDmfPQqtWTi3yXMk5NhzawNqctfyU8xPbjm+jX3Q/\nruh4BX+6/E8MiR8iRYkN6P5B95P0WhLPj3qedmHtvJ0cpzhz+T0Ua8AAWKGP+xnwRA+AccBhm8+5\n+rh6M5WWSk7DQ+asnVPj9OSoZDJPS2V4vcyped8SEgJDh8KaNdV+5fSF03yd+TWP/fAYly68lNh5\nsfz9f38nJCiE50Y9x4nHT7Dhng38dfRfuab7NRIwGli7sHbc0vMW3vz1TW8nxWnO5DSOAk+grvgN\nqIrx46hiJLMH0uRUT4RpNldgqamppKamVvtdU1mJ9XGvokElt02WnIYnWeo1brwRgENnD7H+0Ho2\nHNrAukPryC7IZmjCUEZ2Gsmr415lUOwgqaz2MY8OeZRRH4ziT8P+5FKHiI4YjUaMRqNbl+lM0Lgd\nmA38V/+8AZiMChq3ujU1Sh6QYPM5AZXbsJNWU7a9knIJGl4jHRd6Trm5nO2DEli/9iU2fHGaDYc3\nUGoqZVjCMIZ3HM7U/lMZGDNQ9ruP69muJwNjBvLxto+ZPnC6W5dd+YJ6Tm25Vyc4czSdBB6sZtp+\nl1NQ1a9AdyAROALchgpS9WYqKyUwQIKGN0jHhe5TWFLIxryNbDi0gfWH17MxdyPxLeMZ1qKQca0v\n5blRz9E1sqvf3SwmYNbQWTy8/GHuGXCPz/9+zgSN9qj7MnoCofo4DRjloTSVo4LUD6jczDu4UAkO\nUjzlbSltU6TjwnooD4D0Q+v5du+3rDi4gsxTmQyIHsDwjsN5ePDDXH7T5US1iIL1kyEnEkZ383aS\nRT2N6jyKoIAgVhxYwdhuY52bSdOgoADy8uDIEfV69CicPg35+Y4HN3AmaHwMfIrqRmQGMA2V+/Ck\n7/XBLUzlktPwlJr6nrKwNLuVjgtrd6LoBMv3L+e7fd+x4pkQOn3/EOO7j+fVsa8yOG6w4/qIMWNg\nxQqY7t6iDdFwbG/2G9ttLJSWqgCQl1d1sASIvDz1fJW4OIiNtb5GR0OPHhAZCW3aqFfL4GQru5o4\nEzSiUDfYPQys1YdfXV5zA5LiKc+pqbmtRUrbFH474u7beRoHs2bmtyO/8d2+7/hu/3fsObWHq7pc\nxbXdrmXe1fOIa+lEw8HRo+GJJ8BshgBpJejTzGY4cUKd+C0nf/110tHD/LnParanRNLnYBF06GAN\nBpahb1/7cRERDb4JzgSNUv31GCq3cQR1g5/fMJWXSmWgFyVHJfPx9o+9nQyfUXCxgBUHVvDdvu/4\nfv/3RIVGMb77eF686kWGdRxG88A6tmTv2FFdUW7dCgMGeCbRomaaBufOVQkEVV6PH4fWrdWJ3zZ3\nMGgQwXE38mBRd17pf5p3b/nIZ5806syZ9HmgNTALmA+0BP7gyUS5m6lTRwLzPV2iJqojzW7hYvlF\nlu1dxuLti1mVtYoRHUdwbfdrmT1yNp0jO7u+AkvTWwka7lderk72ublqyMuzvtoGBbDmACwBoVs3\nGDnSGiRiYiC4+ibPMy4Mpdv8brxQfNJnu2pxJmgs1V8LgFT9vV8FjfJePQg8dMrbyWiyLB0Xnik+\n47ePuKwPk9nEmuw1fLz9Y77O/JqBMQOZ0mcK793wHq1CXC9btjNmDLz2GvzJr/oS9T6zWZ30s7Kq\nBgXL+xMnICoK4uNVILC89u5tHyBatnQ5OVEtopjcezJv/PIGf7my/t3DOFJUWuSW5dS3zOYx4BW3\npKABmMwmaT3lRRUdF57aw9CEod5OjkdpmsavR35l8fbFfLLzE+Ii4pjSZwrPj3qe2IhYz604NRXu\nuAOKiyE0tNavNyllZZCdDQcOwP799q9ZWaqCuEsXFQzi4yExUXXRYgkOMTEN2v38o0MeZfi7w3ly\n+JO0aNaiTvNqmsbJCyfZfXI3macy2X3K+nqi6IRb0tckCvpNmgQNT6mt7ykLS7Pbxho09p3ex+Lt\ni1m8YzEms4kpfaZgnGokuW1y/RdaW99Ttlq1UpWk69erXEdTU1CgAkBWFhw8qAKCJTjk5amTf9eu\nqrioa1dVZNS1qwoWYWHeTr2dpKgkhiYM5cOtHzLj0hnVfq/MVEbmqUzr43KPZ7D12FZMmokebXuo\noV0PRncZTY+2PUhsnUjQ/7l+yq/vXSSHsb9ru6FpmuZUbyMAvL7pdXae3Mkb49/wYJKaJsMcA9rs\n2n+L5356jvOl53lx9IsNkKqGcaTwCJ/t/IzF2xdz6Owhbut1G1P6TmFQ7CD33KBlMKgKVmfNng0X\nL8LfXHqSgG+6eBFycuwDg+V9VpbKTXTubB0sAaJbN+jUCZp7ops8z1mbvZYZy2aw64FdBBgCOFdy\njq3HttoFiN0nd9OxVceKx+X2j+5Pvw79iA6Prvb408e7dHDWFHbOU30/UHXLM3mZ5DS8L6VtSqNo\nQXWm+Axf7vqSJTuWsOXYFm5IvoG5V87lqi5Xeb+F3pgx8PDD/hs0NE1VKO/eDZmZ6nX3bti7F06e\nVMVFXbpYA8Oll1rft22rgmwjcUWnKwhrHsaYD8eQU5DD0fNH6dO+D/2j+zMobhD3XnIvfdr3Iax5\nw+eSajrKwxssFR5mMpvkPg0vs9zg54+KSov4Zs83LNmxhLU5axnTZQwPDHqAa7tfS2gzH6o/uOwy\nVSRz8iS08+Futk0mlVOwBAXLkJmpWhb16GEdbrgBkpJUwAhqEqXpgMoRvHv9u+w6uYsBMQPo3qa7\nz5zDmsSvYNJM3r8KbOK6telGVn6W33RcWGoq5Yf9P7BkxxK+2/cdQ+KHcHuf2/no/31Ey2DXW8l4\nRLNmqqx+1SqYNMnbqVFOnlT3j2RkqNetW2HfPutdyykpMGwY/O536nNUlLdT7DP6RfejX3Q/byej\nCt//97pBublciqe8LLRZKLERsT7dcaGmaWw4vIFFWxfx5e4v6dG2B7f3uZ1Xx71K+7D23k6ec0aP\nhh9/bPigYTKpYGAbIDIy4MIF6NcP+veHK6+ERx9VwaGFX5VwCxtNImhI8ZTnONP3lEVyW1VE5WtB\nw6yZ+Trza17c8CL5xfn8buDv2Pz7zXRq3cm7CZvt/L6tMGYMzJun6gc8VcZ/7hxs22bNOWzdCjt2\nqNyDJUDMmKFeO3ZsVHUNwsVadC+qU+up3HO5mDUzHVt19GCSRG3+sPwPxLWM44+X/9HbSQGgpLyE\nj7Z9xEv/e4mWwS15YtgT3Jhyo39fYGgaJCTA6tWqLsDVZWVl2QeHrVvV3dG9eqkAYQkSffu65eY2\n4Vmebj3VaMS3jPd2EgQqp/HrEe/3dXmu5BwLfl3AqxtfpU/7Prw5/k1SE1N9/jkGTjEYrF2K1CVo\nlJWp4qQtW6zBYft2FQgswWHyZHjxRdWM1Uf7RRKe1ySChvAN3m52e+z8Mf6Z/k/e2vwWY7qOYdnk\nZQyIaYR9NY0ZA599Bg88UP13ysrg11/BaFTDzz+rpqsDB6oAcfPNKvcgFdOiEn+9tKpT8ZTwDUcL\nj9L33305+XjDdh65/8x+Xv7fy3y28zMm957MrMtn0SWyS4OmoUEdPw7JyXDqlLWZamkp/PILrF2r\ngkR6urUzvdRUGDFC9ZQrGjUpnhJ+JTo8mpLykgbruHDXyV2kGdNYk72GmZfMJPPBTP9pBeWKDh3U\nXdBvv60Cx9q1KkgkJakA8dBD8Omnqs8lIepIntgiXJJmTHP6uwaDQfVB5eFu0k9dOMWD3z3IyPdH\nMjhuMAcfPsjcUXP9L2A42++UI7ffroJGQQE88ggcPgy//aZaVk2YIAFD1JsUTwmXONv3lMWdX93J\nqMRR3D3gbrenpdRUyhu/vMHz655nUq9JpKWmqWdo+6u69j0lRC0aa/FUGvA7rM8h/zOw3GupEW6V\nEqV6u3UnTdP4dt+3zFqh6irWTltLz3Y93boOIYTii0FDA/6hD6KRSW6bzEfbPnLb8nac2MFjPzzG\n4XOHeXXsq1zT/Rq3LVsIUZWv1mn4a7GZqEVyVLJbchoni05y/7f3M+qDUVyffD3bZm6TgCFEA/DV\noPEQsBV4B/V8ctFIdI/qTlZ+FmWmsnrNX2oqZd7/5tHj9R40C2hG5oOZPDj4QZoFNtyT1YRoyrxV\nPLUScPTU9KeBNwHLw3HnAvOA6ZW/mGbTsiQ1NZXU1FR3p1E4oS59TwGEBIWojgsLskiKqls3F0v3\nLOWxFY+RFJXEurvX0aNdjzrN73fq0/eUEDaMRiNGo9Gty/T1YqBEYCnQp9J4aT3lx679+Fruu/Q+\nJiRPcOr7+cX5PPj9g2zK28T8a+Yzrts4D6dQiMbJHa2nfLF4Ksbm/URgu7cSIjyjLg9k+n7f9/R5\nsw9RoVFkzMiQgCGEl/li66m/Af1RraiygOqfrC78UkrbFH458kuN3yksKWTWilmsOLCCRRMXMarz\nqAZKnRCiJr6Y07gL6Av0A24Ejns3OcLdLM/VqM7a7LX0+3c/TGYTW2dulYAhhA/xxZyGaOSqa3Zb\nXFbM06uf5tOdn7LgugVcl3SdF1InhKiJL+Y0hB+pS99TFtHh0ZSaSjl94XTFuE15mxiwYABHCo+w\nbeY2CRjgWt9TQniIBA3hkjlr59R5HoPBUJHbKDWV8szqZ5iwZAJzUufwyc2f+Hd/Ue40p+77VghP\nk+Ip4RUpbVP4z+7/8MB3DxAXEUfGjAxiImJqn1EI4VWS0xBe0aNtDxb+tpCHBj/E0slLJWAI4Sd8\n/ea+6sjNfT6irl2jW5wvPc+Fsgv+94yLhiRdows3a6xdo4smILx5OOHNw72dDCFEHUnxlHBJXfue\nEnUgfU8JHyTFU0II0UQ01r6nhBBC+CgJGkIIIZwmQUMIIYTTJGgIIYRwmgQN4ZL69D0lnCR9Twkf\nJK2nhEvqe3OfcILc3CfcTFpPCSGEaFASNIQQQjhNgoYQQginSdAQQgjhNG8FjVuAnYAJGFhp2p+B\nfUAmcHUDp0vUkfQ95UHS95TwQd5qPZUCmIEFwCxgsz6+J7AYGATEAT8CSfp3bUnrKSGEqCN/bj2V\nCex1MP4GYAlQBmQD+4HBDZcsIYQQNfG1Oo1YINfmcy4qxyGEEMIHePIhTCuBaAfjnwKW1mE5Dsuh\n0mzulk1NTSU1NbUOixRCiMbPaDRiNBrdukxv3xG+Bvs6jSf11xf11+XAbGBjpfmkTkMIIerIn+s0\nbNluwDfAJKA50BnoDmzyRqKEc6TvKQ+SvqeED/JWTmMi8C+gLXAW2AJco097CrgHKAceAX5wML/k\nNHyE9D3lQdL3lHAzd+Q0vF08VV8SNHyEBA0PkqAh3KyxFE8JIYTwExI0hBBCOE2ChhBCCKdJ0BAu\nkb6nPEj6nhI+SCrChRCiiZCKcCGEEA1KgoYQQginSdAQQgjhNAkaQgghnCZBQ7hE+p7yIOl7Svgg\naT0lXCLdiHiQdCMi3ExaTwkhhGhQEjSEEEI4TYKGEEIIp0nQEEII4TQJGsIl0veUB0nfU8IHSesp\nIYRoIqT1lBBCiAblraBxC7ATMAEDbcYnAsWoZ4ZvAd5o8JQJIYSoVpCX1rsdmAgscDBtPzCgYZMj\nhBDCGd4KGpleWq8QQggX+GKdRmdU0ZQRGO7dpIjaSN9THiR9Twkf5MnWUyuBaAfjnwKW6u/XALOA\nzfrn5kAYkI+q6/gv0AsorLQMaT3lI6TvKQ+SvqeEm7mj9ZQni6fG1GOeUn0AFUgOAN2xBpUKaTZX\nYampqaSmptZjdUII0XgZjUaMRqNbl+nt+zTWAH8EftM/t0XlMkxAF+AnoDdQUGk+yWn4CMlpeJDk\nNISb+fN9GhOBw8AQ4Fvge338SGArqk7jc2AGVQOGEEIIL/F2TqO+JKfhIySn4UGS0xBu5s85DdFI\nSN9THiR9TwkfJDkNIYRoIiSnIYQQokFJ0BBCCOE0CRpCCCGcJkFDCCGE0yRoCJdI31MeJH1PCR8k\nraeES+Q+DQ+S+zSEm0nrKSGEEA1KgoYQQginSdAQQgjhNAkaQgghnCZBQ7hE+p7yIOl7SvggaT0l\nhBBNhLSeEkII0aAkaAghhHCaBA0hhBBOk6AhhBDCaRI0hEuk7ykPkr6nhA/yVuupl4DrgFLgAHA3\ncFaf9mfgHsAEPAyscDC/tJ7yEdL3lAdJ31PCzfy59dQKoBfQD9iLChQAPYHb9NdxwBtIbsjjjEaj\nt5PQqMj+dC/Zn77FWyfklYBZf78RiNff3wAsAcqAbGA/MLihE9fUyJ/SvWR/upfsT9/iC1fx9wDf\n6e9jgVybablAXIOnSAghhENBHlz2SiDawfingKX6+6dR9RqLa1iOFOoKIYSP8GY3ItOAe4GrgIv6\nuCf11xf11+XAbFQRlq39QFcPp08IIRqbA0A3byeiPsYBO4G2lcb3BDKA5kBn1Ab6a/9YQggh3GQf\nkANs0Yc3bKY9hcpJZAJjGz5pQgghhBBCiEZpHCqXsQ94oprv/EufvhUYUMd5mxpX9mc2sA2VG9zk\nuST6jdr2ZQrwM6qOblYd522KXNmf2cixWVlt+3MK6j++DdgA9K3DvD4rEFU0lQg0Q9Vv9Kj0nWux\nNtG9DEivw7xNjSv7EyALaOPZJPoNZ/ZlO+BS4DnsT3JybFblyv4EOTYrc2Z/DgVa6e/HUc9zpy/c\np2FrMCrx2agb/D5B3fBn63rgA/39RqA1qmmvM/M2NfXdnx1spktDBMWZfXkS+FWfXtd5mxpX9qeF\nHJtWzuzPn7F212R7U3Wdjk9fCxpxwGGbz45u7qvuO7FOzNvUuLI/Qd0j8yPqj3uvh9LoL5zZl56Y\nt7FydZ/IsWmvrvtzOtYShjrN68mb++rD2Rv55ArDOa7uz+HAEVQxwUpUmec6N6TLH7lyk6ncoFqV\nq/tkGHAUOTYt6rI/r0T1xDGsHvP6XE4jD0iw+ZyAfbcijr4Tr3/HmXmbmvruzzz9/RH99STwFU27\nHzBXji85NqtydZ8c1V/l2FSc3Z99gbdQxdL5dZzXJwWhbuhLRN3gV1vF7RCslTnOzNvUuLI/WwAR\n+vswVGuLqz2YVl9Xl+MrDfuKWzk2q3Jlf8qxWZUz+7Mjqu5iSD3m9WnXAHtQG2fpMn2GPli8pk/f\nCgysZd6mrr77swvq4MkAdiD7E2rfl9GosuGzqKu4Q0B4DfM2dfXdn3JsOlbb/nwbOI31pupNtcwr\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQomkwYW1rvgV105KvuwT4p5uW9SPWm9vOV5o2DZhf\nw7zXA8+4KR1CCOEXCmuYZqBx9002Cnjd5nPlfTGVmoOGAXVTXDM3p0s0Eb7W95QQ9ZGIupv1A2A7\nqu+cx1F3vG5FdUNh8bT+3XXAYqzdUxhRuQFQz67P0t8HAi/ZLOv3+vhUfZ7Pgd3ARzbrGITq2iID\n1QV1uP79pfr0MOBdfdpm1NU/QC993BZ9Xd0cbOvtwNeOdwNgHzAzsObGLgAjUJ3T/Yx0uyGEaELK\nsZ4MvwQ6oYqsLJ3WXQ0s0N8HoE7WI1BBYRsQgire2Qc8pn9vDdYuVGyDxu9RgQYgGPgFFaRSgQJU\nl/wG4H/A5ai+ew5gDUDhqMCTijVovIB6ihqo55fsQfWn9C9UUADVH1CIg23fjf3Dh2z3xRYgR1+O\nrQnAWj0dAHcDf3OwbCFq5WtdowvhjGLsH0ubiDpZWvrSuVoftuifw4DuqEDxH9TjQy8C3zixrquB\nPsDN+ueWqBxAmb4+S0/AGUBnVHHRUeA3fXzlOgfLMicAf9Q/B6PqZX5GBah4PZ37HcwbC5yx+Vx5\nX0xFPe3Oojvwd1TQMunjjqCe3CZEnUnQEI1FUaXPfwUWVhr3CPbFN7bvy7EW11a+wn8Q9cwGW6lA\nic1nE+r/5OyzCf4fKqdjKxPVy/B1qJ6HZ6ByQHVhu03hwKfA74DjNuMD6pBOIexInYZojH5APWQm\nTP8ch3pYz0/AjViLp66zmScb6xX6zTbjfwDux3qBlYQqSnJEQxU1xdgsKwJrsZDtMh+2+WzJKXRG\nFYvNR9Vb9HGwjiNAVDXrr+xd4D1U/YqtGFTOTIg6k6Ah/JGjq2TbcStRldw/o+owPkNddW9BXXlv\nRV3J/4L1yvxl4D5UxXSUzfLeBnbp47cDb2LNUThKRxlwG+rEn4EKECGVvj8X1XppG6pr7zn6+Fv1\nz1tQleKLHCx/PfbFT5XTYFlPR+AmVPC01HdY6mwGowKoEEKIOpiN/cN9/EEqKnDVVwAqmEnRtKgX\nyWmIps7fyvaNWCv16+M64AtUHY4QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII9/r/6JSAjRYx\n9pkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + " plt.axvline(v_cutoffs[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cutoffs[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend(plots)\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note:\n", + "\n", + "Currently, lag-energy spectrum isn't plotted and hence I am unable to verify results from Uttley et al. However, as soon as it is implemented in library project, I will test it here as well." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same position and varying intensity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we use delta impulse responses whose position remains same but intensity varies. \n", + "\n", + "Again, first we define energies and then create impulse responses, and subsequently using convolution, obtain the output light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 615, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "code", + "execution_count": 616, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = np.zeros(int(10/lc.dt))\n", + "responses = [np.append(h_zeros, i+1) for i in range(0,len(energies))]" + ] + }, + { + "cell_type": "code", + "execution_count": 617, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "outputs = [signal.fftconvolve(s, h)[delay:-delay] for h in responses]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "code", + "execution_count": 618, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mod = lc.time[delay:] \n", + "lc_input = Lightcurve(t_mod, s_mod)\n", + "lc_output = [Lightcurve(t_mod, output) for output in outputs]" + ] + }, + { + "cell_type": "code", + "execution_count": 619, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc_input, lc2).rebin(0.0075) for lc2 in lc_output]" + ] + }, + { + "cell_type": "code", + "execution_count": 620, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.cs)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "code", + "execution_count": 621, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "v_cutoff = 1.0/(2.0*10) \n", + "h_cutoff = lags[0][int((v_cutoff-0.0075)*1/0.0075)]" + ] + }, + { + "cell_type": "code", + "execution_count": 622, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8FHX+x/HXpoceUCCQQOhlKYKCcAgERUFB0d8polhQ\nLOid7RTPbrBwNs7z8O4Uyykq9lMBKSISQKS3kFASei9SQ0nd/f3xnU02IQmbZJPdZN/PxyOP7Mzs\nzHxmdnY+8/1+Z78DIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlKNJACf+DqIAJOA9rlYgnwdQDWzHTgN\npLv9/dOXAXnIAZzExPs78DMw3KcRFc/ppeXEYba7pO9AApBNwc/zMS+tvyrx1j4vymhgA3AC2A/8\nCNSqwPXFce7PXUoQ4usAqhknMBT4pYLXEwzkenmZXYCtQH3gKuBtoD3wgpfX429sJUxzAp8Dt51j\nGUGYE1F1VdI+Ko/+wMvAIGAtEIX5/lSGkrapIr5f1YaybeUZBfwKvA4cwZygB7tNrwt8AOwFdgMv\nkv/5jAIWAX/HlASex5zcpwHHgWXAS8BC6/3/At4otP6pwMMexHkE+BS4D3jSWo+n8U0EjmGuHC8t\nxbaVtF9aAPMxV6I/AecVircX8BtwFFiDORG5JGKS3q/W/LOBBta0Bdb/Y5gSxMVF7AsbRZ9cPgL+\nA8zAlNDigSbAt8BBaxsecHt/pDXPESAFGAvscpvuAFoWWv6LbsNDrW07itnPnd2mbQcexZx0jwFf\nAOFu04dZ8x4HNmNO0DcAKwpt01+A74vY1qJ8Deyz1jcf6Og2rQHFH5eF9QAWW7GD2b5PMPsUzH54\nB/O5n8B8ns3c5m8PzAEOAxut7XKJBCZg9s8xzOcdQcHP/QTm+BlFwe9XAmdXycVRsISSiPmMFmGO\nn6mYY/Mzt21vXsx2i+TZBlxWzLRRQBamOG4DxgB73KZ/hzkRRQLnA0uBe9zmzQb+hDloIzAnhynW\n6w7ATvK/ED2sZbtOeOcBp6zlFqXwSQsg1FrnoFLE9xDmKm045ktZz8N5S9ovizEJMBToi/miT7am\nNcV8yV1JZqA17EoMiUAa0Bqzn+YBf7OmNcez6qmi6vI/sravtzUcCawEnsGU3lsAW4ArrOmvYE6u\n9YAYIBnzebkU3v//Jb+E1w04gPlMbZhSzzbM/sB6vQRojLlSXw/ca03racXpOiabAO2AMMyJtr3b\nOlcD1xW1Ezh7P4wCaloxvGnN61LScVnYJZjq3ASgDwWTHZj9fMJ6XxjwD/ITUE1M4r0d8xleAByy\n1gnmwukXINqa3staRlGf+yjO/n49z7mTRirms66DuRhIw1wsBQMfAx8Ws90iebZjrjqOuv2NtqaN\nwhxULjUwB2FDoBGQgTlYXW4iv5prFLDDbVow5kTbxm3cixS8oluPOYkC/BmYXkLcRSUNMFeTN3kY\n3x4KWgrc4uG8xe2XZpgvc6Tb9M/ITxp/dXvtMov86qR5wFNu0+4DZlqv4/AsaWSS/1kewZyEPrL+\nXC6m4OcDppTmOmm4JxCAuym5pOGeNP7D2VWEGzEJFEzSuNlt2qvWPADvYq62i/IfTCkAwI7ZttBi\n3ptA8Q3h9az4a+PZcVnYYMxV+lHMd2cC+Z/JR5gE5FITyMEk3hs5Oxm9CzxnzX+agiUylziKThqF\nP78ESk4a8zCfscsbmPYYl6EUTKbVhto0vMuJqQ4ork1jv9vr09b/WpiSQCjmJO0SRMGrUfeTzPmY\nz8593O5C65qMOWn/bP1/89zhFxBqrecI5ursXPEVTho7MFe2zTyYt7j90hBzMjlTaLmx1uvmmCqJ\nq92mh1Bw/7sv+wylb2T9krPbNJwU3N7mmG096jYumPyTWhMKflbu234uza31u1d3hVrLdCm8jdHW\n6xgKnsjcfYw5IT8D3IrZzmxgJKZKCCv+IYXmC8a0Q1yPOT4cmP1xnrXucx2Xhc2y/sBcpX8NbAIm\nWct1n/8U5nhsgtkvF1Nwn4dgjvsGmIuULedYt7td537LWQ64vc7AVE26D1dkg77PKGn4h12YK9oG\nFN+g6n4HyyHMFVcs+VfpsYXe/ymwDuiKqYbwtL7aZZi1jmWYL+C54mtaaLg58AOebVtx9mGqXGqQ\nn0yak99IuRNzNXjP2bOekyd3BDkpvsHUff6dmCv+tsW8dx8meW6whpsVmn4as40u0eSfxHZiTtLj\nPYi3sF2YqrmiLMGUCvphSn43WeM/s/6KczNwDabKawempHEEs588OS5L8ov1Z7eGbYXmr4VpY9uD\n2S/zKViCcwnCnLRbA0mFphX3uRcef5KCn0njc8RekXeY+RU1hHtfWe402Ydp7Ps7ppgfBLTCfKGL\nkgv8D1OEjsQkhVspeODuxjR2Tga+wZy4PYm7PuZq821MXfxRD+NrCDyIuQq+wYppBuYquDTb5m6H\ntQ3jrOVeQsG7az7FlDKuwFwBR2Aapd0TWHGfxyFMEmtVwvqLm7fw+GWYqpXHMZ9HMNAJuMia/hWm\nKsPVpvEABT+rNZh9HoyprnHfN+9h2nl6Wuutibn6L+kq1hXfB8AdmCv4IMx+aef2vk8wn3MW5mYC\nT9TCHEtHrFjck5knx6W7azDVTFFWzD0xNzIscXvPVZj2jjBMVddiTNL4EZOkb8EcG6GYdp/2mM/1\nQ8wxF43Zr72tZXjyuYP5TPphklZdClZFudiKeV2tKWl43zQK3tf/rTXeydlfHvfh2zAH9XrMF/Jr\n8q9uipr3z5iDeT+mquFzzJff3ceYel1Pfpi11oo3DbgTc6dVgofxgWnDaIP5Ur4I/JH8qoPSbpv7\n8M2YaogjmPrqj92m7caUiJ7CVA3sxNxJ5P4FdhZ67Ro+jbmCX2TF2ZOzFRVbUeMdmGR2AebOqUOY\n6pU61vRxmAS4DVMVM7lQjA9hkt9Ra3u/c5u2EtMG8jZmH6Rh9mdJV8yuacsxSeNNTIP4PAqWcj7B\nXNV/WsyyilrmZGtb9mAa9BcXisWT49LlqLVtqZg7jj4BXrPmca13CqZR+jDmpoBbrGnpmIuFEVYs\n+zA3OYRZ0x/DlLSXW/P+DbPP3T/3I5hjq6jP+WdMlV2StYxpRbynuGOrqOkifudVTAOqu76c3cBX\nEUZRcmOnFBRP2erQvS0Sc3fSua66y6Oo49JT/6XgrcfiB1TSqLraYX6Q5yrW30nBK9RQTGnhvcoP\nTaqI+zBVa6VpMD6Xcx2XpREwVT5ViRrCq67amGJ8E8xdHG9gbl0Ec6/6cky97D8qIZbiqnGkeL7e\nX9utGK718nJLOi5LS8eViIiIiIhIQKiSdYZdu3Z1rl279txvFBERd2sxd/mVWZVMGoDT6VRVp7fE\nj4on8aNEX4dRbSQkJJCQkODrMKoN7U/vsdlsUM7zvu6eEuZvn+/rEESkilDSEBERjylpiOm/U7wm\nPj7e1yFUK9qf/kVtGoJtnA3n89qfItWdN9o09OM+kSqufv36HD169NxvlIARFRXFkSNHKmTZShrC\n8/2f93UIUg5Hjx5FJW9xZ5UoKmbZFbbkiqXqKRGLzWZT0pACijsmdMutiIhUKiUNERHxmJKGiFSa\nhQsX0r59e1+HUcBNN93EDz/84PXlfvTRR/Tt29fryz1w4AAdO3YkK6u4Z1tVLCUNEakQcXFxzJ07\nt8C4vn37snHjxnIvOysri9GjRxMXF0edOnXo1q0bs2bNypuemJhIUFAQtWvXpnbt2sTGxnLjjTey\nYsWKAstJSkoiKSmJYcOGnbWOO++8k6CgILZu3VpsHHFxcdSoUSNvPYMHDy7Xdi1ZsoRatWpx6tSp\ns6Z169aNf//73zRq1IgBAwYwadKkcq2rrJQ0hITEBF+HINWQzWarsLt4cnJyaNasGQsWLODEiRO8\n9NJLDB8+nB078h9U2bRpU9LT00lPT2fJkiW0b9+evn378ssvv+S959133+WWW245a/m//vorW7du\nPWf8NpuN6dOn563HPXGVRa9evYiJieGbb74pMD45OZkNGzZw0003ATBy5Ejefffdcq2rrJQ0hHHz\nx/k6BAkQiYmJxMbG5g3HxcUxYcIEunbtSr169RgxYgSZmZl506dPn84FF1xAVFQUffr0Yd26dQDU\nqFGD559/nmbNzCPPhwwZQosWLVi1alWR623atCnjxo3jrrvu4q9//Wve+FmzZtG/f/8C783JyeHB\nBx9k4sSJHt2V5umda2PHjqVv376kp6dz/PhxRo8eTZMmTYiJieHZZ5/F4XAAcPvttzN58uQC806e\nPJkhQ4YQFRUFQM+ePdm6dSu7dlX+U4OVNETEZ2w2G19//TWzZ89m27ZtJCUl8dFHHwGwevVqRo8e\nzXvvvceRI0e49957ueaaa4qsyz9w4ACpqanY7fYS13fdddexatUqzpw5w6lTp9i2bRvt2rUr8J43\n33yT/v3707lzZ4+2YeTIkTRs2JBBgwaRlJR01nSn08ndd99NcnIyc+bMoXbt2owaNYqwsDC2bNnC\n6tWr+emnn3j//fcBuOWWW1iwYAG7d+8GwOFw8Pnnn3P77bfnLTMkJITWrVuzZs0aj2L0JiUNkerO\nZvPOXwV58MEHady4MVFRUVx99dV5J8JJkyZx77330qNHD2w2G7fddhvh4eEsWbKkwPzZ2dmMHDmS\nUaNG0bZt2xLX1aRJE5xOJ8eOHePYsWMA1K5dO2/6rl27mDRpEi+88IJHsU+ZMoUdO3awY8cOBgwY\nwKBBgzh+/HiB2EaMGMGxY8eYNm0aERERHDhwgJkzZ/Lmm28SGRnJ+eefz8MPP8wXX3wBQGxsLPHx\n8XzyyScAzJ07l8zMTIYMGVJg3bVr1y6wrsqipCFS3Tmd3vmrII0bN857HRkZycmTJwHYsWMHEyZM\nICoqKu9v9+7d7Nu3L+/9DoeDW2+9lYiICN5+++1zrmvPnj3YbDbq1atHvXr1AEhPT8+b/vDDD/Pc\nc89Ru3btvGqnkqqfevfuTXh4OJGRkTzxxBPUq1ePhQsX5k3fvHkz06ZN47nnniMkJCRvu7Kzs4mO\njs7brjFjxnDo0KG8+W6//fa8pPHJJ59w0003ERwcXGDd6enpedtQmXyZNGKBeUAKkAw8aI2vD8wB\nUoGfgMrfKyLiM67G52bNmvH0009z9OjRvL+TJ09y4403AuZkPnr0aA4dOsS333571km1KN999x0X\nXnghkZGR1KxZk1atWrFp06a86b/88gtjx44lOjqaJk2aACYxuEoBnsbu0qFDBz788EOuvPJKUlNT\nAVOSCA8P5/Dhw3nbdfz48bz2GjDVaLt372bevHl89913BaqmwLS7bN68ma5du3oUlzf5MmlkA48A\ndqAX8CegA/AEJmm0BeZaw1KB1PeUVJSsrCwyMjLy/nJycs45j+vK/u677+add95h2bJlOJ1OTp06\nxY8//phXErnvvvvYuHEjU6dOJTw8vMTl7dmzh3HjxvHBBx8wfvz4vGlXXXUV8+fnP4QsLS2NpKQk\n1q5dm1dNNn36dK699tqzlrtr1y4WLVqUt42vv/46hw8fpk+fPgXeN2LECMaPH8/AgQPZunUr0dHR\nXHHFFfzlL38hPT0dh8PBli1bWLBgQd48NWvW5Prrr+eOO+4gLi6O7t27F1jmsmXLiIuLK3BTQSD6\nHhgIbAQaWeMaW8OFOUXE8NfvQ1xcnNNmsxX4u+SSS5yxsbEF3jN37ty84YSEBOett96aNzxr1ixn\njx49nPXq1XNGR0c7hw8f7kxPT3du377dabPZnJGRkc5atWrl/U2ZMsXpdDqd8+bNcwYFBTlr1arl\nrFmzprNJkybOG264wbl06dICMSYnJzvtdnux2xAUFOTcsmVL3vCYMWOcY8aMcTqdTmdKSoqzS5cu\nzpo1azobNGjgHDhwoHPlypV57/3oo4+cffv2zRt+7733nM2bN3fu2LHDefz4ced9993njImJcdat\nW9fZrVs355dffllg3YmJiU6bzeZ87bXXzorr/vvvd06cOLHYuIs7JoBy1zP6S4eFccB8oBOwE4iy\nxtuAI27DLtb2i4g6LCyfkSNHMnz48CJ/4OePDh48SHx8PGvWrCEsLKzI91Rkh4X+0DV6LeBb4CEg\nvdC0YjOj+4Pm4+Pj9XQvESmTzz77zNchlErDhg1Zv369R+9NTEwkMTHRq+v3dUkjFJgOzAT+YY3b\nCMQD+4FoTGN54c5qVNIQsaikIYVV167RbcAHwHryEwbAVMB1q8DtmLYOERHxA75MGn2AW4ABwGrr\nbzDwCnA55pbbS61hqUDqe0pEPOXr6qmyUvWUF9nG2XA+r/1ZVal6SgqrrtVTIiJSxShpiIiIx5Q0\nRETEY0oaIlJp9LjX8tPjXsXn1PeUVISq+rjXSZMm0bp1a+rWrUuPHj1YtGhRiduox71KwEmIT/B1\nCFINVcXHva5Zs4ZHH32Ur7/+Ou/petddd12xd6fpca8iIhXI3x/3un79ejp27Ei3bt0AuPXWW/n9\n9985ePBgsdvk6e3OetyriEg5+dvjXvv27cu2bdtYtmwZubm5fPjhh3Tr1o1GjRoVu8xAe9yrP3RY\nKCIVyDbOO1VEFfUDUNfjXoFiH/cKcNtttzF+/HiWLFlCv3798uYv6+NeXVf27o97jY2N5aWXXsp7\nJkZUVBQzZswodnlTpkyhe/fuOBwO3nrrLQYNGsTGjRupW7duXmwjRozA4XAwbdo0QkJC8h73euzY\nMSIiIoiMjOThhx/mvffe45577inwuNcnn3zS7x73qqQhUs35+6/9Cz/ude/evYB5LOrkyZOZOHFi\n3vTs7GyvPe7VlTTS09Np0KABAFOnTmXChAls2LCB1q1bM3v2bIYOHcrq1auJjo4+a3m9e/fOe/3E\nE0/w8ccfs3DhQoYOHQqYx70mJSWxdOnSIh/36r4drqo2MFVU48eP58knn9TjXsX/qO8p8Se+fNzr\n7NmzGTJkCK1btwZg0KBBREdHs3jx4lLF7qLHvUq1NG7+OF+HINVUVXvca9euXfnxxx/Ztm0bTqeT\nOXPmkJqaSqdOnc5arh73WrUU+5hDKT0StD+rMn/9PlTFx73m5uY6x44d64yJiXHWrl3b2bFjR+en\nn36aN12Pe1Uvt4J6ua3q1Mtt+ehxr6WjpCFKGlWckoYUpq7RRUTELyhpiPqeEhGPqXpKpIpT9ZQU\npuopERHxC0oaIiLiMXUjIlLFRUVFVVgX5FI1uXrDrQhV9UhTm4aISCmpTUO8Qn1PiYinVNIQ/bhP\nJECopCEiIpVKSUNERDympCEiIh5T0hAREY8paYj6nhIRj+nuKRGRAKG7p0REpFIpaYiIiMeUNERE\nxGNKGiIi4jElDVHfUyLiMV8njQ+BA8A6t3H1gTlAKvATUM8HcQWUcfPH+ToEEakifJ00/gsMLjTu\nCUzSaAvMtYZFRMQP+DppLASOFhp3DfCx9fpj4NpKjUhERIrl66RRlEaYKius/418GIuIiLjxx6Th\nzmn9iYiIH/DHZ4QfABoD+4Fo4GBRb0pISMh7HR8fT3x8fCWEVj2p7ymR6ikxMZHExESvLtMf+p6K\nA6YBna3h14DDwKuYRvB6nN0Yrr6nKkjmqRPs3LiUpq27UaPueb4OR0S8yBt9T/k6aXwO9AfOw5Qw\nngN+AL4CmgHbgeHAsULzKWmU0ZkTR9i5aSnbt65i+9717Diyje2n97I99zDbw05zONxBRC6MjbiM\nZ5772dfhiogXVYekUVYBmTROHNpNyooZ/P77LjKzTpOZfYaMrNNkZmeQmZ1BRs4ZMnMyyczNJCMn\nk0xHFpmOLNJzz7DTeZTtYWc4FuYg9nQocbm1aR56HnG1Y4k7vw1xsZ1p3upCmrTuxpcfPML3qVP5\n6u+7fL3JIuJFAd3LrW2cDds4W5G/Zk5ITCh2fFWY77m5z+TN1/f5WK55pDEtHgsl+h+xPPjTIzy6\n/u88u3kSP6bNYNGu31h3cB07ju/gx6wUxtnm80rIEtbXPIX9/I70junNde2uZcLA17m552j+OuBZ\n0iZkMecfh3n/9U0889zPbO7QiL4r/0Szr3rx4qLx2Dv2J4VDfrdfNJ/m03zln6+8VNLwEqfDQerK\n2Rw/up/g4FCCQ0IJCQmz/ocTHGKNCw0n2DU+NILT6YdJXj2bpC2/se7IRtbl7mNTzTM0PRNKF+f5\ndK7Ths7NetCl6xW07NKf4NCwCt+WjJPHiHoliuNPpxMWWavC1ycilcMbJQ1/vHuqysjNzmLx7Pf5\nfvGHfJ+xlswgJ41zwsnFSY7NSS5Ocm1OcnCQa4NcmzVsc1rDEO6wYc+sS+fI5sQ368cDHeLpeNGV\n1IxqWGnbkZCYQEJ8Qt5wRK16NDsTSuqqOXTqc12lxSEi/k8ljVLKOHmMn7//O9+v/ZJpQWk0zgrn\n2ro9uTZ+DBf0uxFbUNWr8bONs+F8vuD+/L9HmnBjxxu48e63fBSViHibShqV5Oi+bcz44XW+T53K\nTxF7uOB0Xa5tHM9TV75Ly67xvg6vQnSq05qU3at9HYaI+BkljSI4HQ7SVs1hTuIHfL97LktrHGHA\nmcZc2/JK/j1sLOc36+DrECucPaYbX234xtdhiIifUdLAtE0kLfqWhcu+YeH+pSwM3UeYw8YAZ3Pu\nv+Auvh/2aKW2MfgDe8d4Uja+4+swRMTPBGTSyDx1guXzPmXhmh9YeHg1v0UcIjozjH4hLRnW5mre\n6HcLze19fB2mT7XtfjnbZ2WRcfIYEbX0SBMRMQImaSyZ9T4/Lv6YBcfXsbLmcdqfrkG/yPbc3fUO\nPr50VEBUORWnqL6nwiJr0fJUGJtW/UTXfsN9EJWI+KOAuXuqxWOhDAvtxFXdhtP7stup3aBJBYVW\nfQz/SyzXtr2Gm8f8y9ehiIgX6O6pUsi2OXhs1CRi2vXwdShVhr1ua1L2rvF1GCLiR6rejwrKKNcG\nwSGhvg6jSrHHdCclfauvwxARPxJAScNJcLCSRmnYOw0gJeiwr8MQET8SMEkjJwhCwiJ8HUaV0rrr\npeyOzOb08d99HYqI+ImASRq5Nqeqp4pRXE+YoRE1aH06nI0rZ1duQCLitwIoaUBwSMX3EFsVjZs/\nrthpnWyNSNm4sBKjERF/pqQhJbLXbaM7qEQkT+AkjSAq5VkU1Y292YWknNrm6zBExE8ETNLICVJJ\noyzsnS4lOfiIr8MQET8REEnD6XDgtEFQcMD8ltFrWnUdwIGIHE4e2e/rUETEDwRE0sjNySLYQZV8\nQFJlKKrvKZfg0DDanopgg+6gEhECJWlkm6QhRXN/1GtROgU1JmWT7qASkQBJGjlZGQT75umw1YI9\nqi0p+9b6OgwR8QMBkTRyc7KUNMrB3vwiUk7v8HUYIuIHAiRpZBPiqKq9wPuevfNlJIfoDioRCZCu\n0VXSKJ8WnftxOCyXE4d2U+f8GF+HI9Wc0+Fg/7Yk0lIWkrptBe1bXcwlQ+/3dVhiCZCkka2kUYKE\nxIQSG8ODgkNofzqS9Stn0WvwXZUXmFRrxw7sIHXtL6RuWUbq/hTSTu4g1XGI1BpniMyx0SazFi2C\nG/DM3k/Z1m8EkXXq+zpkIUCSRk52BsFOVU8VZ9z8cee+gyo4mpTUX5U0xGNOh4MD25PZunExW3es\nYduhVLac2EFazkHSwk+SEeykzZlI2gadT9vacQxtM4Q2LXvQpnM8UdEt8pZzzSONmfzBA9z7yGc+\n3BpxCYikYUoaShrlYY9qR8r+db4OQ/zMqaMH2bZ+EVu3rmDbvg1sPbqVrRn72Go7zvbITGrm2GiZ\nVYMWQQ1oWTOGS2L7cGeLi2jbqT+N4jp59Nupxy97jjvmPcxd2f9VV0B+IGCSRoiSRrnY43ry8/KJ\nvg5DfCTj5DE2rJhJ8vr5rNuziuTT21kXcoTfw3OJOx1GS2ddWoQ3pmW9FgxofyUtW15Ii45/oHaD\nJuVed5+rxnDe3L/y/SdP88c7X/fC1kh5BEbSyFWbRnnZuw4kZe2Lvg5DKlhudhZb1s4jed1c1u1c\nTvLxNNbZDrEjMotWp8PpREM6R7Xj3nZ30bnrFcR1uqTCu+exBQXxeNf7+dvaf/F/jlfVs4OPefJp\nDwdmASeAZ4HuwIvAqgqMy6tyc7IIRiWN8mjWoRcnQh0cO7CDeo2a+zoc8YKcrAzWL53O8tXTWb57\nGSuyd7C+5mkaZYTQKbc+nWu14rq2w3iu06W0u3AQYZG1fBbrNSNf5Il1b7Jg2kT6D3vIZ3GIZ0nj\nWeAr4BLgMuAN4D/AxRUYl1flZGepTaMEJfU95RIUHELH0zVJWTGDPkPuq4SoxJucDgdb1s5j+bLv\nWb7jN5adTmNNzXSaZoTSg6b0bNSd2zo9RKceQ/zyturg0DAeix3Ba4kvK2n4mCdJI9f6PxR4D5iO\nKWlUGbm52SpplOBcd0652EOakJK2iD4oafgzp8PBnrSVrFz6Hcs3L2DZiQ2siDxKzZwgeuQ0pGeD\nLoy7cAQXXjK8SpUab73rnzz3QgPW/fotnS/5o6/DCVieJI09wCTgcuAVIIIq9kty06ahpFFe9vrt\nSDmQ7OswxM3p47+TsuxHkjbMY+3e1SRl7CAp8gQhDuieVZ8edTrwwIX306PPDTRu2cXX4ZZLRK16\nPFhnIG98/zgfK2n4jKdtGoOB14FjQDTweEUG5W25OdmEVK0855fsLS5mxpJFvg4jIDkdDnas/42k\n1TNZu20JScc2kWQ7yM7IbNqfiqRLcDRdGnTk6gtvostFQ2nUopOvQ64QY0a/Q6t/tmLXhqXEdqgy\nNeTViidJIxyYZ72uD2QCv1RYRMZg4B9AMPA+8Gp5FqbqKe+wd72clNXnbv+Q8ju8O42lC6aweNPP\nLDm+nuWRR6iVE0SXnAZ0qdmS69oO4/nOA2l34SBCI2r4OtxKExXdgjts3fnHJ39iwvgVvg4nIHmS\nNFYBzYCj1nAUsN/6uxtY6eWYgoG3gYGYqrHlwFRgQ1kXmJOjhnBviGnXgzPBDg7vTqNBTBtfh1Nt\n5GRlkLJkKotXfM/ivUtZ4tzF/vBsepyOoledjjzc4wF69r2R85t18HWofuHhW/9F18m9eWbftgK/\nHJfK4Uk+AyHGAAAUY0lEQVTSmAN8A7ge3XYFcD3wX8xdVD29HFNPYDOw3Rr+AhhGOZJGbm4Owaqe\nKta5+p5ysQUFYT9di5RVs+inpFFmR/ZuYdHcj1icOpcl6RtYUeMYTTPC6BXUjD4xvXnsotfoePHV\n+vVzMWI7XMzV2S1454MxPPmMnihZ2TxJGr0xJQqXn4AJwD1ARRzVTYFdbsO7KeftvaqeKpknfU+5\n2EObkpL2G/14oGKDqkacDgfrl0xj+rx3mHZoEetqpHPx6fr0rteJsRc/wsX9R1K/SStfh1mlPHbt\na1wxdTiPnDxGRK16vg4noHiSNPYBf8Vc8dswDeMHMNVIFfEQVY9+u52QkJD3Oj4+nvj4+GLfm5ub\no4ZwL7Gf14Hkg7qD6lyyzpxk/vS3mbbyc6bnrCfX5uTq4I480+tx4of+WSe6cup8yR/p/m0DPv3g\nIe566GNfh+O3EhMTmT1jGieO7OX4sQNeWaYnSeNm4Hnge2t4EXATJmkM90oUBe0BYt2GYzGljQLc\nk8a5mJKGkoY32FtezPf75p37jQHo4PYUZv74D6ZtmcnP4XvokFGLq+v35vv4Z+nc5//U/YWXPR7/\nNPcsGMuduR9UeFcm/uzMiSNsWTef1NTFbN6bzM703ezMPMhOjrMzIpPMUCfN6oQRW8s7v+j3ZE8f\nAv5czLTNXomioBVAGyAO2AvciElSZZaTk02wTV9Yb7BfcAUpK5/ydRh+welwsHbh18xY8AHTDy9m\nfeRJBmY2ZWjLwfx76CM0jLP7OsRqrd/VD1Av8Wmmfvos197+N1+HU6GyM06zPWURqRsXkbZ7LalH\n0kjL3Edq6HEOROTS4lQYbZxRtImMoV2DtlzeaCjNmnWmWeuLqN+kVd4Fi+2t8lfTe5I0GmJ+l9ER\niLTGOYFLy732ouVgktRsTGnmA8rRCA6Q61CbhrdEt7qAHJu5qg7Ek+Lh3WnMmTGRWakzmB20jdq5\nwQwO7UDCH56i/5A/EV6zjq9DDBi2oCAe73wfr655m2G3vlwtSnKu3oSTUn5h3d7VbDy9i9Sgo+yo\nkU3TMyG0yalL24gmtG/QjmuajaBth0to1qEXIWERlRajJ0njM+BLTDci9wKjMKWPijTT+vMK3T1V\nMk/6nnKxBQXR6UxtUlbPDoikkZudxYpfPmHWkk+ZdWwF6yNP0v9MIwbHxPPsZZNodUFFXTuJJ669\n9WWeeOItFs14p0o9Etb9x5rrti8j6egm1nGAbTWyaH06nM62xnSOasddbS+nXfs+tOzUz28uSDxJ\nGg0wP7B7EJhv/VWpX9Xk5uYQYgv2dRh+y9M7p1zsYU1J2byYARUTjs/t35rE7JkTmbX1J+aE7qJJ\nVjiDIzvzct8E+gy622++vGJ1ZBhzA6/NfcFvk8bvuzaRsmoWyWmLWHcwmXVZu1lXI5062UF0zqlP\nl5otubrNEJ7udBntul/h98eXJ0kjy/q/H1Pa2Iv5gV+VketQScOb7Od3JPlQiq/D8Kq9aav44ttx\nTDnwM1sizjAwswmD4wby+qA/EdOuh6/DkxLcNnoiz798PuuXTKVjr2t8FseRvVtIWTmTlLTfSDmY\nTErGLlLCj5MZ5MR+pjb2sKZ0Ob8TN7W9l849hlbZ26w9SRovA/WAR4GJQB3gkYoMyttyctUQ7k32\nVr35as8cX4dRbscP7uR/Xybw2ZbvWRV5jGtzWvPqJQn0v/qBSq0jlvKJrFOfB2pdyhvfPsaHlZA0\njh/cScqKmSSnLiTlQDIpZ3aSEnac0yEOOp6phT2kCfYGHbi65U3YL7icJq27V4v2FhdPksY06/8x\nIN56XaWShto0vMvebRApy8fidDiq3Jch68xJZn49ns/WfMLsiN0MONOYMZ3vYMgNTxNZp76vw5My\num/0O7Se2IYXU1fQtO1FXlnm6eO/s375DFI2LSR57xqST28nOeQoR8Ny6Xi6Jp1CmmCv344ru16P\nvevlxLTrUeW+D2VR1pub/wK86c1AKlKuI0clDS9q2LwjwU7Yvy2J6FYX+Dqcc3Lk5rBoxjt8tvDf\nfBO0EXtGHUbGDeWd4eOqbBWBFFS/SStuoytvfXw/r728rFTz5mRlsHH5TJJT5pG8exXJ6VtIDvqd\nPZE5tDsVQaegxnSKasf97QfTqevlNLf/IaB/FxIQW57ryFVDeAk87XvKxRYUhD2jDimrf/LrpLEt\naQHvff0En2Uso3ZuCLfUj2flde/R3N7H16FJBXjklrfp/klfnj64k7oNmxX7vhOHdrNk3icsWj+L\nRcfWsazGUaIzQ+nsbEinOq25pdPNdOp8Ga0vuFTVlEUIkKShkkZJStP3lIs9PJbkLYsZWDEhlcv6\nJVN55ZtH+DFkG6OCujP16il0ueT6gKg6CGTN7X24Mrs57743hsefnpE3fuf6xSxaOIVF2+azKHMz\naTXO0P1UHfrU7sjDF/2Z3vG3qtfmUigpaZyk+H6gqlQH/qYhXCUNb7I3tLN6/xpfh1HAip8nM/7H\nJ1gUtp+H6g7kn/f8UqUeZyrlN3bYq1w5/SYiX7+eRfuWsSh4L1lBDvpkNaZPwwu5pduDdO8/grBI\n73SpEYhKShrVZq/mOnJV0vAye+vefLrrR1+HgdPhYMG0iYyf9yLrQ4/xWPQ1fHL3O9SMaujr0MQH\nuvYbzo0zX2HdoRSubDWIl/4wglZdB6iU6UUBUj2Vq5KGl9m7DyZl6cM+u4PK6XAw84sXGb9sAgeC\nM3ii5c3cMvqffv/DKKl4b/5tla9DqNYCI2k4c5Q0vOy82HZE5gaxJ21lpf74LTc7i/9NfoLxye+Q\na3PyVMe7uX7Ua2qwFKkkgZE0HLmEBClpFKc0fU+5s2fWJWXNT5WSNHKyMvh00p/527bJRDnCeKH7\nowwdOU7VDiKVLCCSRo5DJY2SlPbOKRd7RCzJW5cwyLvhFOB0OJj22bM8uXoCDRzhvNP/FeKHPaxk\nIeIjAZE0Ro+cQG5O1rnfKKVib9SJpXuXV9jyF8+cxOOzx3I0KJNXuz/OkJsTlCxEfCwgkkbjll18\nHUK1ZG/Thw93/uD15W5aPpOnPr+LZcEHeKHVbdw25h2CQyvicfQiUlq6bJMys194JetrnMLp8M6j\n4vdtWcOYxztyybdD6NmgC6nPHuSOBz5UwhDxIwFR0pCKERXdgjrZQezcsLhcXXOcOLSb19++iX9n\nLuKO0O5s+lOa+oQS8VMqaQgJiQllnteeVY/kNWXrJj3rzEn++dofafNGM3ae2suqWxfyxssrlDBE\n/JiShjBu/rgyz2uPbE7K9tL1Kgrw42cJdHg2ipn7FvDTkC/4+I0t6khQpApQ9ZSUi71xZxbu+tXj\n9586epDHXhnAzNxNvN9rPAOvf7wCoxMRb1NJQ8rF3rYPKbn7PXrvip8n0/2lGE7lZrD28a1KGCJV\nkJKGlIv9oqvYWOM0jtycYt+Tm53Fyy9ezlVzRvFC+/uY/MaWEp93ICL+S9VTUi51zo+hflYw25N/\npWXX+LOmb0tawK0fDiWcEFbdt7RS+6kSEe9TSUPK3PeUiz0niuSkgndQOR0OPv7X3fScEs91jfoz\nZ8JBJQyRakAlDSlz31Mu9hrNSdmxgmus4cO70xjz9wFs4Hd+vvYLuvYbXu4YRcQ/qKQh5WZv3IWU\no6kAzPn6Fbq+1Z6Y8IaseGG/EoZINWPzdQBl5HQ6i3sSrVS2ZT/9lztn3cfl4R35Omct/+35Mpff\n8ISvwxKRQmw2G5TzvK/qKSm3jhddyYZFmbRPP8jav2ykQUwbX4ckIhVEJQ3xim1JC4jrdIm6Lhfx\nY94oaegbLuXqe8qlRZd+ShgiAUAlDcE2zobzee1PkepOJQ0REalUShoiIuIxJQ0REfGYkoaIiHjM\nV0njBiAFyAW6F5r2JJAGbASuqOS4AlJ5+54SkcDhq7un2gMO4F3gUWCVNb4jMAXoATQFfgbaWu91\np7unRERKqSrfPbURSC1i/DDgcyAb2A5sBnpWXlgiIlISf2vTaALsdhvejSlxiIiIH6jIvqfmAI2L\nGP8UMK0Uy1E9lIiIn6jIpHF5GebZA8S6DcdY486SkJCQ9zo+Pp74+PgyrE5EpPpKTEwkMTHRq8v0\ndTci84DHgJXWsKshvCf5DeGtObu0oYZwL0pITCj3g5hExP9V5Ybw64BdQC/gR2CmNX498JX1fyZw\nP6qeqnDj5o/zdQgiUkX4uqRRVippeJE6LBQJDFW5pCEiIlWQkoaIiHhMSUNERDympCHqe0pEPKaG\ncBGRAKGGcBERqVRKGiIi4jElDRER8ZiShoiIeExJQ0hITPB1CCJSRejuKVE3IiIBQndPiYhIpVLS\nEBERjylpiIiIx5Q0RETEY0oaor6nRMRjuntKRCRA6O4pERGpVEoaIiLiMSUNERHxmJKGiIh4TElD\n1PeUiHhMd0+J+p4SCRC6e0pERCqVkoaIiHhMSUNERDympCEiIh5T0hD1PSUiHtPdUyIiAUJ3T4mI\nSKVS0hAREY8paYiIiMeUNERExGNKGqK+p0TEY7p7StT3lEiA0N1TIiJSqXyVNF4HNgBrgf8Bdd2m\nPQmkARuBKyo/NBERKY6vksZPgB3oCqRiEgVAR+BG6/9g4N+oNCQi4jd8dUKeAzis10uBGOv1MOBz\nIBvYDmwGelZ2cCIiUjR/uIq/E5hhvW4C7HabthtoWukRBRj1PSUingqpwGXPARoXMf4pYJr1+mkg\nC5hSwnKKvK0nISEh73V8fDzx8fFliVGAhPgEX4cgIhUgMTGRxMREry7Tl7fcjgLuBi4DMqxxT1j/\nX7H+zwKex1RhudMttyIipVSVb7kdDIzFtGFkuI2fCowAwoAWQBtgWaVHJyIiRarI6qmSTMQkhjnW\n8GLgfmA98JX1P8capyKFiIif0C/CRUQCRFWunhI/or6nRMRTKmmI+p4SCRAqaYiISKVS0hAREY8p\naYiIiMeUNERExGNKGqK+p0TEY7p7SkQkQOjuKRERqVRKGiIi4jElDRER8ZiShoiIeExJQ9T3lIh4\nTHdPifqeEgkQuntKvGObrwOoXrz9eM1Ap/3pX5Q0BLb7OoDqRSc579L+9C9KGiIi4jElDRER8VhV\nbQhfA3T1dRAiIlXMWuACXwchIiIiIiIiIiJSjQwGNgJpwF+Lec8/relrgW6lnDfQlGd/bgeSgNXA\nsooLsco4175sDywGMoBHSzlvICrP/tyOjs3CzrU/R2K+40nAIqBLKeb1W8HAZiAOCMU0eHco9J6r\ngBnW64uBJaWYN9CUZ3+C+dlf/YoNscrwZF+eD1wEvETBk5yOzbOVZ3+Cjs3CPNmfvYG61uvBlPHc\n6W+33PbEBL8dyAa+AIYVes81wMfW66VAPaCxh/MGmrLuz0Zu06vqHXbe5sm+PASssKaXdt5AU579\n6aJjM58n+3MxcNx6vRSIKcW8efwtaTQFdrkN77bGefKeJh7MG2jKsz8BnMDPmC/u3RUUY1Xhyb6s\niHmrq/LuEx2bBZV2f44mv4ahVPOGlDHAiuJpr3m6wvBMeffnJcBeTDXBHEyd50IvxFUVladHR/UG\nebby7pM+wD50bLqUZn8OAO7E7MPSzut3JY09QKzbcCwm65X0nhjrPZ7MG2jKuj/3WK/3Wv8PAd9h\nirGBqjzHl47Ns5V3n+yz/uvYNDzdn12A9zDV0kdLOa9fCgG2YBpkwjh3w20v8htzPJk30JRnf9YA\naluva2LutriiAmP1d6U5vhIo2HCrY/Ns5dmfOjbP5sn+bIZpu+hVhnn92pXAJszGPWmNu9f6c3nb\nmr4W6H6OeQNdWfdnS8zBswZIRvsTzr0vG2Pqho9jruJ2ArVKmDfQlXV/6tgs2rn25/vAYcxtyoVv\nVdbxKSIiIiIiIiIiIiIiIiIiIiIiIiIiIhK4csm/13w15kdL/u5C4C0vLetn8n/cdrLQtFHAxBLm\nvQZ41ktxiIhUCeklTLNRvfsmuxT4l9tw4X1xOyUnDRvmR3GhXo5LAoS/9T0lUhZxmF+zfgysw/Sd\nMxbzi9e1mG4oXJ623rsQmEJ+9xSJmNIAwHmY5zWAedbA627LuscaH2/N8zWwAfjUbR09MF1brMF0\nQV3Lev80a3pN4ENr2irM1T+A3Rq32lpX6yK29Wbgh6J3A1AwYa4hvzR2GuiL6ZxuMep2Q0QCSA75\nJ8NvgeaYKitXp3VXAO9ar4MwJ+u+mKSQBERgqnfSgL9Y75tHfhcq7knjHkyiAQgHlmOSVDxwDNMl\nvw34DfgDpu+eLeQnoFqYxBNPftIYj3mKGpjnl2zC9Kf0T0xSANMfUEQR276Bgg8fct8Xq4Ed1nLc\nXQ3Mt+IAuAN4tYhli5yTv3WNLuKJMxR8LG0c5mTp6kvnCutvtTVcE2iDSRT/wzw+NAOY6sG6rgA6\nA9dbw3UwJYBsa32unoDXAC0w1UX7gJXW+MJtDq5lXg08Zg2HY9plFmMSVIwV5+Yi5m0CHHEbLrwv\nbsc87c6lDfAaJmnlWuP2Yp7cJlJqShpSXZwqNPw3YFKhcQ9RsPrG/XUO+dW1ha/w/4x5ZoO7eCDT\nbTgX833y9NkE/4cp6bjbiOlleCim5+F7MSWg0nDfplrAl8BdwAG38UGliFOkALVpSHU0G/OQmZrW\ncFPMw3oWANeSXz011G2e7eRfoV/vNn42cD/5F1htMVVJRXFiqpqi3ZZVm/xqIfdlPug27CoptMBU\ni03EtFt0LmIde4EGxay/sA+B/2LaV9xFY0pmIqWmpCFVUVFXye7j5mAauRdj2jC+wlx1r8Zcea/F\nXMkvJ//K/A3gPkzDdAO35b0PrLfGrwP+Q36Joqg4soEbMSf+NZgEEVHo/S9i7l5KwnTtPc4aP9wa\nXo1pFJ9cxPJ/pWD1U+EYXOtpBvwRkzxd7R2uNpuemAQqIiKl8DwFH+5TFcRjEldZBWGSmaqmpUxU\n0pBAV9Xq9hPJb9Qvi6HAN5g2HBERERERERERERERERERERERERERERHxrv8Hq8ciIJ6tlA8AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + "\n", + "# Draw horizontal and vertical line\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-25,25])\n", + "plt.legend(plots)\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected (and also demonstrated in Utley et al), the shape of lag-frequency spectrum for both energy channels is similar.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/notebooks/Simulator/Lag Analysis.ipynb.txt b/_sources/notebooks/Simulator/Lag Analysis.ipynb.txt new file mode 100644 index 000000000..42a45e543 --- /dev/null +++ b/_sources/notebooks/Simulator/Lag Analysis.ipynb.txt @@ -0,0 +1,481 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook analyses lag-frequency spectrums of the light curves simulated through impulse response approach. First, a simple case with delta impulse response is covered. Subsequently, an energy-dependent impulse response scenario is analysed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, AveragedCrossspectrum\n", + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instantiate a simulator object and define a variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "var = sampledata.sample_data()\n", + "\n", + "# Beware: set tstart here, or nothing will work!\n", + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.4, tstart=var.tstart)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For ease of analysis, define a simple delta impulse response with width 1. Here, `start` parameter refers to the lag delay, which we will soon see." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "delay = 10\n", + "s_ir = sim.simple_ir(start=delay, width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, simulate a `filtered` light curve. Here, filtered means that the initial lag delay portion is cut." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEFCAYAAAABjYvXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACIxUlEQVR4nO1dd7gdRdn/zbktvVcSQgqhhBYghF6kJnQQFRsIKKKgIqAG/BREUVARQZrSQaUpAhI6BAhSA4SQ3knvyb1pt5xz5vtjZnbfmZ2Z3XPuubltf89znnPO7OzM7O7svP0dxjlHihQpUqRo38g09wBSpEiRIkXzIyUGKVKkSJEiJQYpUqRIkSIlBilSpEiRAikxSJEiRYoUAMqbewDFok+fPnzo0KHNPYwUKVKkaDX46KOP1nHO+9qOtVpiMHToUEyZMqW5h5EiRYoUrQaMsc9dx1I1UYoUKVKkSIlBihQpUqRIiUGKFClSpEBKDFKkSJEiBVJikCJFihQpkBKDFClSpEiBlBikSJEiRQqkxKDNIpvL44kPlyKXT1OUp0iRIh4pMWijePCdxfjpv6fhsQ+XNPdQUqRI0QqQEoM2ivVb6wEAm7Y1NPNIUqRI0RqQEoM2inQDuxQpUhSClBi0cTDW3CNIkSJFa0BKDFKkSJEiRUoM2hK21WeD3xypnihFihTJkRKDNoJnpi7HqF++hFkra7RyhlRPlCJFinikxKCNYNLsNQAQIQYpUqRIkQQpMWhjSA3GKVKkKAYpMWgjUBaCVC3UfvHM1OXYUpeNr5gihQUpMWgjUHEFqWTQPvHZsmr86LGpuOapz5p7KClaKVJi0EbQ3nyHrnt2Bva59qXmHkaLwVbpSbaqpraZR5KitaK8uQeQIkUxePCdxc09hBQp2hRSyaCNgJv5J1K1UQoDm7bV4825a5t7GClaKFJi0MbA5OofGpRbD5Zu2IahEyZixorq5h5Km8R3Hp6C8+//ADW1afLCFFGkxKCNoC3YDF6ZuRoA8OSUZc08kpaHTdvqkc3lG9XG/DVbAADZXFuYLSlKjZQYtBUotVDzjiJFE6Aum8Po61/BL5+d4ayTZqlN0VikxKCNoTXbCHbUevbfT1dg+vLWo4qqywqJ4L9TV5SkvYh9KUUKpMSgzSBNTJccP3j0E5z6l7ebexgFgz7hT5ZsxNAJEzF39WYAyZgA056UIgVFSgxSpGjhsK3zz01bCQB4c05y7yDVTioYpLAhJQZtBOoFzyjur5Fv/N1vLsBbzeSG2JpVXS0ZpbqvDbk8TrrlLbwxZ01pGkzRIpASgzYCXmID8o0vzMZ5939QotbaPhas3YLXZ69u7mEkQmNViqtrajFn9Wb8/D/TSzSiFC0BaQRyG4F6wRX3x1L2eofiuJvfBAAsvvGUkrdtW7oblYuqkWqiNA9W20QqGbQR5IMXPH1D2xpKp+MXcyPfyPbyckCZlBq0KSQmBoyxMsbYJ4yx5+T/YYyx9xlj8xljjzPGKmV5lfw/Xx4fStq4WpbPYYydRMrHybL5jLEJJby+dgOTW9vR7oMNjQyIAuxjnrWyBkMnTMTSDdsa3X6rhbwt9P4Uo+oJ5kYjRYN8YJ9qVDMpWhgKkQx+BGAW+X8TgFs457sC2AjgIll+EYCNsvwWWQ+MsVEAzgWwF4BxAO6UBKYMwB0AxgMYBeCrsm6KgiDVRM3Q85TFGzDy5y/gnfnrSt724x8uBRBGJzcnlm3chrpsbof3G6oAo0+3EHUg5/p3sShGMthSl0X1tjQNRktGImLAGBsM4BQA98r/DMCxAP4lqzwE4Ez5+wz5H/L4cbL+GQAe45zXcc4XAZgPYKz8zOecL+Sc1wN4TNZNUQBCyYBp3zsC7y1cDwD434LSE4OWgtqGHI64aRJ+8uS0Hd43t0kGjVjQGyszqnEUMsUO/e1r2O/6lxvZc4qmRFLJ4M8AfgpA6QJ6A9jEOVfbKi0DMEj+HgRgKQDI49WyflBunOMqj4AxdjFjbApjbMratWn2RYrmTEwXBDOVSDPVEndrU1HAaq/pYjB/zRYs37S94PNKpfBTi3e+kUYDpREsRDLYnO7A1uIRSwwYY6cCWMM5/2gHjMcLzvnfOOdjOOdj+vbt29zDaVFQ3FqmGV0CmtJK0WLipBpBp47/05s4/MbXCz4vif1nR5qIlJqoLDUatCkkcS09HMDpjLGTAXQA0A3ArQB6MMbKJfc/GMByWX85gJ0BLGOMlQPoDmA9KVeg57jKUyREU+6BzDnHonVbMbxvl5K3rffTpM03Ds04Nm58UxTlWVoim0Hqvty2EMtHcs6v5pwP5pwPhTAAv845/zqASQDOkdXOB/CM/P2s/A95/HUuWJtnAZwrvY2GARgJ4AMAHwIYKb2TKmUfz5bk6toRuENPVIo17Ompy3HszW/GbozS2EXmttfmAQCWbNjauIbaGJLcV9e6vK0+i231uoqmsd5EYbR7o5pJ0cLQGKXCzwBcwRibD2ETuE+W3wegtyy/AsAEAOCczwDwBICZAF4EcCnnPCcli8sAvAThrfSErNvs4Jzjo883NvcwEsGkBaV8Tz9bVgMAmCeTopkoFYOo9Mqra+pK3nZjoRbQ5vCtty3eSY24o375Eva9TjfcNjbOIJdv+XEGE6etTDfxKRAFEQPO+Ruc81Pl74Wc87Gc810551/inNfJ8lr5f1d5fCE5/wbO+QjO+e6c8xdI+fOc893ksRtKdXGNxd/f+xxfvOsdvDar+d0a48ATiO5PTlmKo/8waUcNqWi0xAyszRp163EJTTKcrLH6NzYGJXAtbaGiwfw1W3DpPz/GT578tLmH0qqQpqPwQO0M1RoCntT7nc3lnf7+P/lX07pFtsRFvFRoTm8tazoK838Bt76xT6mlB51trxexIMV4brVnpMSgjUAtxDe+MBvz1mzBEbv2EeWWN59zXlLjX2C0LhEtoGNuKUblJJJXUyFfhF+/D429p4HnWgtWE6UoHGluogRoIeuRF+oFnyelmY3b6mPrJm475g60hzWhWSUDz+0PgwwLarFR4wltBo1qJkULQ0oM2gjMBSPjWSTiloKmymt03bMzMOY3r8bWo92XmtAUe23NaTMIXEtL9FgabUCWA/lwcetwrkiRDKmaKAFaAwNkcu8+rk0siO4KTaWaefCdxQWfU+qxFNseb0bZwEbAGpWOorFxBo3PSdikaMu2q6ZEKhkkQGuYWuYL7tNtx11PvsDVIthOsaCzCkOpluBix1ioZDB16Sbc9OLsInuz921DmKW2gPYKvAu1DTmM+uWLeOEzsdVmtsTU4I8vzcFTHy8raZtAy0xr0pKREoM2AtfrbTcgF9ZW3EvVXGmzi0GhhE6h0NPOvON/uOuNBUX15RwDeTKN4X4LvZaV1bXYVp8LiFs2V9rnfPuk+bjiidQNtLmREoO2AuP9nLp0k6eq/2UudsFsChSTIdPfXnyd2oZcZH+GMG1zacbhw5tz12LB2i3Bfx9BD4IMCxDPiiaI8tuMW2ipSNVFhSElBh60ptwrhUx8uhZUb2uIcPTNRQt6da4EAOy3c/dwLPI7yZOo3tYQGyCYZCHc4xcv4uw737GetyNUD+ff/0GwjSYQ82yVo0AB7Rf6fAM6I8/LtXBikKqHikNKDBKgBTHKTphj7Nu1KvacZRu3Yb/rX8Y9kxdq5bSt7z4yxbkYfbJkI7KEg27sfTp5nwEAgD0Hdou0mYQw/+CxT3DRQ1Owuqa2cQMB8Nnyau1/sd5EpVCd+Talacjmkc/zIBq4UK7/llfmYr9fJdtnQF17rjW8ECXEhq31jU773RrQbonB5+u3tgodNwA8N20Fzrjjf9465iLg9yYS30s3iAjNV2fpOfppWy/NCDltuiB/unQTzrrzHdz62rwdwoklWYQXrROqlboGt4GzsTaDQq+0FFPM1sTmWpHH6frnZuLHT0wNxpXk+miVW1+bh+rtheXwyZZgi9PWgnVb6nDAr1/BLa/Obe6hNDnaJTGYtbIGR//hDQy7+nlvvWAzkGYmGpf98xN86rEBANEFQzEy1iRnsizYTjFybrzaSHHfs1bWOMdQLP43fx2GTpiIdVvqClJ/KScXH+ForGtpoarDUtwTWwTys5+uCH4/M3VFMC4fA1sIwbAhSHnSBrjk9VvqsJDYZVxYt0UkTXx5RsvPT9ZYtEtisLI6Wc6SlqZ79Eky5iHf+x51Q9X/u951Wo0uiqU2rShp5KPPNxbNkbtQ7DJW7PpXSjWRD0oS9M4R4zsp6POdtmwT7nlrobtyM+HRD5bgt8+LLdqTMBDH/OENHEvsMoXikyUbC362P3nyUwydMLHoPpsa7ZIYVJaVJaoXvmBNOBgLXpy+EnMt6aK9C3ykrtvgySM/YhqzYLNMD/z5+jCJX+Nz3uj/c3nyWiegOEk8j4rniovzairN1JGSnNeOzBL3VyyBWl1Ti9Nv/1+Q8kRh9qoaDJ0w0evB1tS4+qnP8DeDSPmYuaTbcNpu1aQ5a3DWne/gkfc+L2iMT360TLbZMiWrdkkMkqK51ESX/P1jnHjLW5Fy7yiMMfrGrCZj6KmjvzSuc+lC+ML0VQAQWRgUVlXXFrw4+K4vyRocXI8v4K7IR6kkg8INyMX1V2wbiWwGRY5D7QNt4o05YtOj52VQWluHymI8b3W8mqk1oV0Sg4aEEZSFcFvF4sIHP8S/P0oWfZlEBaDgtxmo9sR3VE1k2gyibUw3vG1MHPPHSTgzxugdGZepvrKUJTk/PhWH/v9vby3A2s11jjOCmnJMhdoMSqAmSlJHXleSqV0oZxpXvVzecDM2o7lB7/32+hxmr6rx1N5xaKGCQfskBt06VCSqZ/pXNwVen70GV5ZgE46ozSC5fcEkBi7CQqvF3ZNaj0dPYRAdbUkg1ieJBTDHPXNlDX77/Gz86LFPYtoW380pGSRpyicZFDuf41xJFTFoyfEHP3j0E4z78+TIFqDFoNHq0EaPoGnQLolBUrVPKBm0jMfnG4U5Ru8leqQGIHp/bPeLnlu6+6Sfn8kwLFwr9kO+8YX4PD+hmshdx7wWtYApV01n2yU2ZBeCJPfVlPa8dQrs/5F3/brxsjKxjLQULyOVsZfeiw8WrQcA1DtUXXEopZPEyurtuPGF2S0udqFdEoP1W+JUAgLFJAFrShTiIeS1GRgGSZOTjrYl65E3gs7jppKgOlSUJZIIFJIs2MV7EykDcnNkLU1et9A4gySIVaHtwFQdhaCp1trGToHLH5uKu99cgKnLNpVkPKVCuyQGl/z940T1Wtjc9nKIrgU8Sd2kNgNab+zQXgCAYX06uzsqEFFvonyBqgfdMG4DvbZZK2uwuqZOnuPvJ6lkcNWTn2quyyU1ICd4psmIQYGDirnovIOpaC7YEicyi7SQBL68UMVCSaHlLYx6tkti4MKWuiyGTpgYeEUE3kQtTJyzIarn17l/6zFXWw4pg07dg4cLYnD4rr0LHGlyZHO8IGLgS9sQVgp/jr91Mr7z8JREbecTUoN/fbQMh/7uddJd8XNHea3Y2th/SA+jJJ4QhkFnhY0jbskqdTLBxqKxROnZT1c49xHX+imymznSbbyirGUtvy1rNM2MxeuEfvr21+cDCCdVSyEFfjWRwc372nGcoxC1GbjHUkpu0BxONs9xzO59AQDj9hoQf36CPlwLYVJur6nXu9qGXPD7SpnW2TY2ylXSRSnJdRRKoOJUY6q1pt4T+d7JCzHPEn9Tavzw0U/wtXvfj63XWAmhLEYymLmiBhu2urevLTVSYmDBzJU1OPbmNxIFneXyvEUEkRTjTRQaXP02A7uoHHKDTbWfQTbP0b2j8Pwa0S9eHRVKPPH2kkJRrM2g0FtC8wRtrsti7ea6sA3Hop9hLPi/SDI01rFEfiRDnDZjRwjOnHP8ZuIsnGCJv3GfE/4O5miJxkLbLBZxrrgn3zYZ59z1jrdOKdGuicHOvTo6jy1cuzV42nQBWbphG7bXC+5tdU0tRlzzPB77cKl27vw1m3HtM9N3qHrJXOR86hWzrjmnnYSFzH66PpUuVYTecTaXT5RzJzg/gZqoWHpVrDdRY2bArJU1OOiGV8P7Qhqj0luhuudCx5RUTdSUkkFB6kIj91ZTobFX69skSN3ThR7iXmq0a2IQu4OX/KYLyJG/n4TzH/gAAAK3x/98slw778IHp+Chdz/Hkg3bUEoU5k2kym1svfFtIGJA9vTXlN412RwvyKMriWTiMrDGnWpLFpcEpQjw8j1CQOie1f/+3dypyxubqM6FQjb+eeLDpUWlGC8kbbbyfqIqFu57HzywJSh0SdSFwrd9qCvauynRLolBny5iE5W4lyL0Vxb1lJvjB4s2iHJH1k+FlmBQs+r75bd6WbYa7puuOAMt6MzSV2OXGJvNIDwW33qS4KyiJYMC6laWl/a1svVNn2tZJlQTJQkCLrVW0yI4OvHTf0/Dtx74sOA+CpEM7v/fYgDAui2UGBR30UmJ8xf++Ab2vz7ZvhAKipm0IS62oynQLonBLr2F/jlufph6xjmOcPYdtej7deGOcs9kvn2SMJRP+Xyjdtx873zv4YeLN3j11I1BNp8vKPo2zjAujvnPdZ+XXBVCA5sKXYKs6UMsthB6jRVl4ZhyHm4zRiCMPS/ueFI10ZoiJAM6B+NSodhQ7LXbAy4F6OUuWrcVG7cVti/ET/41zXnsBpmBdUeifIf32IIQxy2YaiLnQmKUl1o95OqHwqn+sOYmkouLs0GHZKAZMEXZjBU1mLGiNDlfzNEo2wyQzL03kfRQtAFZfDe1AdnahnU81GaQCa7dFQV895sLyJgKG9RRI/vimakrnMfVWN6TEnMcilGv0Os99S9vAwAW/PbkWI+cAEU8hxHXPI8TR/WPNhVIyi1A9C8h2qVkoLCiuhYPvbPYedzMWhp5z+R/F0dU7vAjvnfyQsx3ZPukL+rJt07WuO6aWg/nkZBQAcBTHy9HPu9eFl3XGdeuz+soCcyqf31rYXB+Ep3xVkk8fKkl4miK090271cJuhsssHrC+0oFgHIiGbiIJk3nUSiB6lzlT/mu2ovbgCmsX/jKbDtlxDXPawyDgjcCvYCuc3keZOfd0bjw8GEAgAMi8SRNh3ZNDADg2mdnBNv4mRPFzFpqTmJX8rLecmN3G9OSywsXudNvf9s6Hvouz1xZg1teCbfbu8mTnycZjy/wh5fm4Ompy9GjU6X1HFM/m3QzeLuKw3uK9/wzRw8ihvDk7Yy/dbK7D6cBWUlL9vMUMco0wxtjCyCkwyzPsOC/Lz+Qeq6FSkfFElAX1m+tx4vTC0x37ehis49Bij+9KBRiIykGddkcunQQSpuhJYzwj0O7JAbOBcExZVR1+lLMWllDPA3MduL73mbhaEQf+tmriH51e4P9HNpu0vKN2xpwzgGDAABfGbOzdwxqEdHURAlfr8a8hF07lBPDaGle59iFzVUuD0xfXoNH3l3sbYOm6Ch04bXVbrB4lug2g/A19jlFNDiYHkBXI0X7ch6SffqP21DoNpJuNWgUx+/ZDwDQqTKUaGx2l0KgO08UKSUmxJE3TcJtr80DAJTtQC+UdkkMTKjpYU5qcwLRiTT+1snOKFzlpRPnEmhLp+t78fyxA45yp/oovJqKcmNzG2PtsaWwbpIQCvP+I7znLjVR4SoHf33XokPLf/HMDG8bPTuFKdILHZ5NzVNvcRHSbAZlmaAfn2TgIwa+rLBJ8zYVAtNpIQ6FdDGwu4gfGjWwW+z5xcQCNbVksIYkBmzqqG6KlBiAGoi5o1z/Do7Lb9fzsk0z+hKP+uVL3uNmI15i4Fr0Pa+RehFM7iO68Ba/8jc2Klldsuul/W2BXhdx776bGCTvgzt+JzrXcoIt7TIdT0UZC3z3fbe7EM+suDHpYyn8GRe6EU4h88iWeys43WhmYhG7s4XvfdMv1NNXVKO6QC+lYhFLDBhjHRhjHzDGPmWMzWCM/UqWD2OMvc8Ym88Ye5wxVinLq+T/+fL4UNLW1bJ8DmPsJFI+TpbNZ4xNaILr9MJlIFaLYrCLlMv/voBJUeh7Q3XU3kykMSouE9k8hwqANMcftRmoev524yShOETqch402uCI1rxn8qICevBJSv7jhSx4mm5f/kmaR9/Wj+3azQjkK56YGj8uTx+FjsnWbiEY3rcwXXghkq+truv9SBrcRc8O1KaJznTjuD36xdaZsaIG597zXiN7SoYkkkEdgGM55/sBGA1gHGPsEAA3AbiFc74rgI0ALpL1LwKwUZbfIuuBMTYKwLkA9gIwDsCdjLEyxlgZgDsAjAcwCsBXZd1mgLEIKoOb4k4dDLNrUhTDFZsvXleyK5t/X2NHuaP+mpq6YHyme16hm9v4+irkFtgin9U99/nPFyLqF6vyKFbCUalKkuqqbfe6PpeTbdDxhL/LM5mE6Tr0+VwqFHNvjhzZt8A+CqnreU+M/zRGw3curXXzy3MAAIvXNy6+pmdnuwOHiVkrd8x2nbHEgAsoP8gK+eEAjgXwL1n+EIAz5e8z5H/I48cxwXqeAeAxznkd53wRgPkAxsrPfM75Qs55PYDHZN0mg/m4XemeA8lA1cubi5WSDPTz1ARLyj3rY9H/n0D8nIshBq5zVmzaHnA4pteTeZ22fPVJX845q5JnmYxoyHh4j3268JdnRt3/ah3GdhdNUf041UQFaDVoC+r6k94v22U2ZHUJVdQrfAEOT7Gf61LdxHVlk4RKjca4KAPubVijjFB8+50rhadPhwq/y20cmuhWFY1ENgPJwU8FsAbAKwAWANjEOVcW0GUABsnfgwAsBQB5vBpAb1punOMq32Fwcf7q3Qh1rQYxkH+31JrpHDx9xXKm5opI2i0mXYmju7HDehF3Sb/NoDGeGKfd/nYk4nTohImxQy3LMHDw0DDqSeplE/U/chgoY++/o7ygxZfULfSO2RY9ZUCm8yqv9VGY1OGan04C6rj2XXp3ihxPuvVlqRL+mdc+dMLE4H7Z7qWpAjWdP5J4rZ07Vnjf7UkM1MWgpWynq5CIGHDOc5zz0QAGQ3DyezTloFxgjF3MGJvCGJuydu3akrWrHkk0jkBfBDtWlBvHxXc0nUPhHLzZZji2sMAXeEX7rCSuhq4zBvfs6DQgO7nnGA7QNbxlm7bbDxig18Bke+p+FLq/bt+u9oRtcTaDJN5EcdDVOX6JI9pPtMzGsdNnVKjU4arvcl121bdtluMj2o1BIbQ4MKZbjh124+vBviVA9J0yn5Mv8V9jNyrL5XkQ49QSUJA3Eed8E4BJAA4F0IMxplbHwQBU6s7lAHYGAHm8O4D1tNw4x1Vu6/9vnPMxnPMxffsWpnP0wWlANmwGSfWLPmNknBeFy6MJ8OvGVb3K8oyR995+Toax4HpNUdn1guiLnHUU1r66VCXMekJOZwy6a6lHLLKlJIhb9F1dc9JNXZakwyhyjVOn0fOnLHanbbARjZmWdB/0uRYsfbiMqQ5Viqv9MCiTSgbJFreCs786RmELhFQGd9ez/pTsPexiABVsr6t6lr99fjaue9bvZuzDM1NX4MQ/J9+foamRxJuoL2Osh/zdEcAJAGZBEIVzZLXzATwjfz8r/0Mef52LO/4sgHOlt9EwACMBfADgQwAjpXdSJYSR+dkSXFtiuNRAamIoomCKkMWsD+8uWJ9oLOEYouOxnkcCYZLGA4TBZDEGZENdJvqLwuVVldRXWpcMZCbOBJLB4J6dImWuxcOdwlo+Y3L8lZlhYFSx3kRqGHTROefud53n2vqx5bSnt6NQPb3rVq537KoVZ1Slh5NKBrZF/HceN2E3EY9XBZn4i9zJ0FY3+t8f4/GgJ51NEvgyl+5oJJEMBgKYxBibBrFwv8I5fw7AzwBcwRibD2ETuE/Wvw9Ab1l+BYAJAMA5nwHgCQAzAbwI4FKpfsoCuAzASxBE5glZt8kQmVgOTl5x4i7JIe4ltE3ULXXuvDm0L1sbSTa5pzuP0fLo2MLxR9VELsmAcKOWdl1ic9LFSqvGRH+q7yQbgTjbouUxY6CLwWX//CT4XVicQbRy0vNt41a6eb29RkgGjptjSr6+MQEIqAFtj+7U5h2DZdR/fWuhs34hxFgxDq4zqA0r4kZtrP02wlIKw29iaXkHInZEnPNpAPa3lC+EsB+Y5bUAvuRo6wYAN1jKnwfwfILxNgnCLJ56eS4gAuq4W4VjbddyvFCbQVIOUB0xOS4fh1wjDd+T563Fj44fGRyLSEC267C068pdlPTdMW0G4GHfxURfx/VhayNOcigU8Rliddj679e1g6UeHZtxLM8jTgFJkIT7vurE3fDHl0W+LJtk8P6i9Yny6RSqKneNzTYtcjZRlqBP16pg7rveebN9rpU1nhq4CG9zIo1Ahtt4qCZsoCYixzOsODVRXPbNyCJL6m/Y5t4cW1XLJJUMeCjixhnAw+A7z8DhlgySvjyaYBBkjBXfDb48/QUQXVpu2/a0JAZkUjVmXbL0k6xvk7jQ/FJxxvZCd3uj5VXloTulUv/R7kb07eLtO24MhcJGZOMkg28fMTz4bb6PcWojwD/2pDEvnSpbnmSQEgOEk+ZzI4gkVBNB+wZEoE+cbtJ2NPYckxaQ30s3+LxyRE3GdP486Z4FFCbXltSA7LIZcJ6MM45IXgiJ40aHPtvZlscZUWHfQT0ixa7nQ2lR1w7+F9l2qcm9iSyLj01VYfzeqUdI2AqdY76+RXn4mz5iM8U7ANwqE6zFQY3R5c5qohCHAKVSdF1Px8pw2Xtumr5PgytJo17HPc5/fbTMfZCgqsS74ZUCLW9EzQA1AcwEZCrCMCAKZBZkMvEvnU1/GrckRI23CblqWY3Bvl9rtB/g6wcPSTYG9ZfqqS0vmstOnOc8YYQsaQsMnIdxBovX+zYMsnHOrrGEv22qFJcAktOu3TMU62gaZzOIlRY418YX59FTqD0lzpOHzoVC024kzVFEx3DuQTt7asa/l/k8MKCbUL39b77u0GHOfdu99DE2P/23e/cyhcN37d10KU8bgXZJDMxH6Xq278udm0IDclixPJPRUgfbcOYd/4uUxc0Bn2TgPY90oHsTuVUCbkJhcOgWycCGjo6IzKSSgWYzYIVIFLFVrHWp2lYVJ7EZFLc5S1KiHq1n9WghCx43zitGYvWN0dWcuS0sAHx5THShtrUbbBaU2NMs/E1die0qQu48BgjC7urWmZdLaz9utH6wFrpHWrskBibiIgGVI4vGVbJQR97PEeBkw147+aMWowtx+LurxwNB26M3gc0gz7nz5XdtbqMxo7YxOMeWjDOmVZj8n2SHM+tYEqhCyiw71Zj9NVijf2PGQ9ro07XSOUb7+KJl9RZPKkMw0J5ZsTYD12n0emyLd+y8sBSazhlx4Npzo5KvhXjGEAPOudPd2Z2uhNRxMEtJITz+Wh45SIkBEPumKi6GvnBlGUYmtPvc9VvqtP9x08acV4VGrmYikoGjH5gLipuzDI2gflWJW/3AE12Hrptm2iLnc8UrVjIo1zhM+SyNa1dRuYWmf1BZOVUMRDE2g9P32wlAvK87h64mCoMlPQ+/gAN0PtC5xQIDcnjcpta0XXuQ6iWhVxFtgS7ktkt8c+5a2Yfretz9JGE+XMGpSWHa9VoKUmKA5Hp8kzsJ54C7hWnLqvW+YiZbsSJosEk3Y7rNwKP2yDsIgIsg0WJ71tLCOE7bmBSYbC+MJi3sxrhTeoflGY3DtI9VLVaFSAZASGjUfU16D+gzGTusFwB7jIXpWkpvj28TG6Dw5+RUE1mOWw3glvODgM7EkkH4u8zy3CiUo4UziI6cNbin7lGWZGF32tQSQtj1CjtnRyAlBnC/NHsPEiodm2tpWYYFC4tvAq0zJIM4e5kvfbRvzqlj5kRzi8r6JJ62PCRa0UR10bas7XrE8iScsVZF2gyChc17noUwJWCKbSafaJR5lBglIeiK98vHcemWc8PxiTbidjoz1URr5U5ZhauDXOWESFu8ifRsqrb+bJIBdx5zjCL4ZZPoCgG9X6baNpnNSD9WqJssYzt2B7OkaJ/EwFzsHEuN6aKmGbEYc6apoDBTJRS6UUih7wqLqIkckxtca5vmv3HaDDzj9PWV58m4J/oc1DXY3ARtLqjRtuwwnQDCNqPHxX/57ZGcon1zzFm9WTs/6XPUbBpMly60PihhNs5Tjg2uLpPYU1zlupoo2p6N07faDAokBrSaTaJznOUszQbvrn1cvv6TuJ/6YHr8tRS0T2JgQD1bJZYrmCK+qWJQx2tqs9ju2OA+buMYE7YNXpKAvq5JXEuFaiE8Sie0awxF2wy421hNQVXj6hpsKo9EEdJODi/8bePOXMbBnGcx8PXxl9fnJTonbDv8rYYXt9MZ51wjVq79OYL6ThWavb5LmlX3T09TYiEGnlmcnEiGv8tibAa2c8xOlR3GtMc47QwO6ef4Pftrz+LIkX3cA5LIMOacn8XsyVwqpMQA4WJ3xK76g1QT4/XZa7T/gLIZhP9rau05WUxVRCxX6VMTeU4OvYmSSQZ5rhOKXmTXJZdkoPVntRk4xobCJQNAXJNNTRTR6xcwFt2bKCzfJom5KxlhoVlCFQ+QNeZQHDTJRfq+2nzdXVHiADEgF2gbSJLcjzIaVptBwiCtJCpW19h0Bst9fqXD9TvPqerXHJejf40Y0ErcysT4oJwjbEhqQ2kKpMQA4YP2vWDiePhbNyAn5/wKjkAm/31nqmOJE9UZevyB3cP8N+YQrdxKAZJBPq9LBu7gNGh1qDgP370uREohv6lrqbLtuFx7TR29DxxAny66u/GnSzf5TwraDhtXnHcSA7JtLjrHmUBqco+JlFvOs+UTtDMT7mNxY4uLM9itv0iJMbK/PTUG5zyU+o25nciV2ZASdNVe7OlYWb09kUpuRyMlBiAvvDExzJeQHqc2AyC5G1u8msgcW1jgS4OgqjEjibVTXWL0pXHejsCbOMLkSwKnnesTISQyknsKJQMXZ1YgyKnllghk83mFjIK93NoFIbQHDe1pdusF5TIzhqrM2R90NZG5Q1+0vqPcxa3S7i0qmjjjus19lFvmlA9OYmCp2zkmIyhHuOj7chHZCB+gPyPOuZGzLJ4aKAO/DbY4h06VjdteMylSYkDg8h/u06VSHtdF1XcXhqHsLvHQF0SWtH5nORmGebJB0v2Y6VB8gUQubteVvCtON+xC3uir0pGXxTRU5jkPCLLXZmBtLZ7zsqajcNhLCnEn5GSMamGybcATNz5FrOKCyDi323ycah9He0m4VXoZtghku2upuyx5EkP7gms73RYXpLXFqZrIfK70/pN5qjFCXCuOm1Mmjtuzv5Mg2yST/t2iWWubAu2SGJi326YKAMIHo1IIm2qiidNWxvYVEUMLVRMBKJe6T+8CJI9ljIAWb4ZKjVt3Sznmjm+2cZpt6Af0e+7idGgdpSayeTJFuXTbWBxDoc/QZkB2GKej6jsPYeQkc6Y8dOKoAfYBmf1T6UgRA8Kau5LWmWoj25hpfdu43RKDfSG2BZ3Zdwazj1nUT0gMSLXymAjkbBwxIMd872e5Q+cTUdEVuAUpY8kIbzCOxu6vmRDtkhiYcAXAmO5vZpyB1oaT27L3FTcW+j/r2eBbwVxIbeVmfVcMg9mPMmBqdWLGQGHqVZ2pALR+maYL1/S0jliAZGOhzzB6PBJjAfui4QtC46S+OpT0fbYtvNSbyCYlRKQ8NeYY24B5OElcgiYZWI7HBZ1967Ch6NOlijBg5tj8YwbibQZxLt/ifsm65vtmOIkE5zjGaEq9SSRmZjbo6N82jqZESgxgN4QB0UllRiBfdMSwsA3Xwy1AvUD7ou02GC6uVshjIs4g3mYgchPp/YRj0OuaXK75m7ZpH5rel2tqa3XkG2PT2buC4uLKRIshbLmJosTb3mfeWBAUMkzXI7ucE1yg/SuOkNoMbC7MJmFXF+nKs+NU0TiGSK/dlkgh1mZAyob16Rw8W1t9Nzev3+Owbct4HSogBUpQI+88KaCJKH2BdVr0vrVHHUrqtcF2/S4JpdRIiQHIC+sQGW2cRhlj2kNyvezRhcs/XaKcabIAHXUsw1gBEchRbtI2hpzS28NeP66vPDcXevvkjqSj4HYCmCya2c0VKtjE76iaKJ4Qm1IPR3QhTuo+btM/03lXl7PEs3D7IuLbEMg2pmSupVq34tvDSJj97DO4e/BsbWNw27jC35kYNZFLBaRA1W5mDdN93AbT1kbHlmRuMjBnPduQberMpkBKDED0lzHqEVOfm2QSRDifODWRqY7IEzc4z6nqUPIIZONFoNdielUltRm4xmaI0nRzEdf5KoW1njNJveTJ+rWPRe/DhCugzR//EZareWFmzkyqG7cZa+mi7rrvNpVfXDStuZA6M3bS67NwGj5GAsbYyhgLPMVsY3TN1xWbwo2dtCgDblNrcu3bhBbE55EyKbNACZDuhad7EyURABlz7xVtu/5UTdSEiEjH3F4e4e7ILGAwPTjsfUVdS/1jMyewvhC4Tw4S1UHnvH3eRK5AKnNCxm2WEjc+Uwpx7pVMF2owmNlOQ27Szr1rZY4xuu7HKfsOtLYdnudeNCJqIvDEi5wJWq0sMCDTeWa5Vs6tRkzXYuiKQ3BKt3TeWyQDbXrEEYMM0wyoNhuZDVc88Wn4x6Di5r1WnL+LGNL57JMMqOSvezCR55H3R+/bwABs2mYnBrYxp8Rgh8I+MQPJwDJxOexcq4kkC5dW3yQG2WQTLZQM9InjVxPZ60UlJLV4xC1KrrEZ9omE6ghTBHdxvLbWfGMJ+wjvVWXgsWVfnHyOALqBlekLc4wx14TJRQM6J2tb3zj0Z6b6zDriEwq5j+aYbG6dcddmShaM9BUlSPY2XGm0OY8SvfqYbS8pcTWr0Puo566yn8PBY99pE74oZRsx2FFJ7VJiAPekDjxZjP+qMEmKgkJdS12bq4i23Oep06IRyO6F12UzSOJeWQgxyOfjVUxmuVowbJ4akfO5W9cf14eCeuGiQWfyGkyiTn6bi2XWotZJKFxpcyyQDPJ0Dtjvu+16XZJBnOTgqg+YkoF8HrRuzPlCMmCed84+JtpvRpN8o1JYQ6xk4L5ulzeRa4xUJaj+NwapZNDMCDklfz3TgyTJJEhqIFOIqIkoMUgogupBZ+4FwSkZJNjtydasT8USGrh990rn2k31UvCcIgsztxre4/rIaAuMq235bTRIo2rp7wwzJUZ7uy7Q8Slvloas32ZgLojBYm/LDUH6cBF9E3pUblwEsrs/IHTnVYRkwdot+hhikuIBUVWV651xvWu6Adlg1jTJwO5aas5JSugTvaOetd02T1JisANhm9S24+a+szmLOsCEzyXRBvMFpRuMJ5to+g6rrjM4otdTSD8udQUQvY+cHEsq8jJmUS+phdXSeZJMptE+ovfJZSh27XNA66g2NddFhwulC7btHWl7LolMs4nK7zhbT5RD9hMPwL6QxakATcmJET3RbybO0uq6iKa2j4LWt1sycF2/17XUYTPQHCy0OemO5HfBt89ZGmewgxHJjhmj11XH9TS23Om6pp1rLowxs8Wc2PWaZBDbnchamjAdRdZhnI4LVjLrm8cjLotUMsh40vcai44pGYSGz+jC71usfX2YY3cRlRrD+4NWM6WNnEUnHSd12tpVkkEcMRD98MhvX9CVra0k0q1VMohpw1R9UT97n5eWa2ymZBAlBvL6HPfcZzPQpRhiM9DGop/vijlxoVDJILUZ7EDEvbC2RS6iwnDMgWhqB/9Yop4RBU40g+/wevhoko17DGEd//W6FiHOw2M+Jkd74cFAI0UpbEFnSQLRon2QctjHru7Mkx8t00pdBuSyjCkZROuLccQTK8WZxnmtKe5YqTVUFds+CLQNUzJwza64rKWuSHZby5nAtdR+v5N4czGDILmTRNrLG7zeROFv145qumtpEUFnnmOFbpRTSqTEAPFqorCezn0VZzOIkQyM41QySKb6MF1L3Qt71kENknBnVnWF41ieh+eqoCwbIpIB7Pp3W5xBNEWFqw/yx+InaV5WEqLCjYXK9kIXE4FcYYmQdrnR5vI8kiQtLs6gGJuBbSnz7Z9tlpWXMZmEUPwf2F3fgzhJrIPhL+dUB7lUTj4vQI0YJ7AZ5E2GJeE76oLtUorZ2rMYpMQACdREgeSgcwCT562LtGHilZmrtBQChaqJlP6zoswdtWgiiVCZ5+b1hL99Cb5sv4Myl/oB4QtT5tnYw1xyqERBx2jjsqPSiOtZkoXb0rdvDwtXO7oaBVYim3Th1SKkLWkI7JKB+ASRqorzd7qWigpRycAvSQBmKghxQM/h42YSADFGRhiCc8fubPRlH8P5h+0S/E4qGah7Hpea3nYOoN9/nRGCVl64msjjWkrO//tFB4s+YlssDVJiALLYx9x1U09M85K7pIuXZqzGL5+ZHvy3TVw6N8xweEUMKssyiSZaxghBdo2Lc7EY9O1apdUT1+ZoPGbSq/Oion9YXxmGfc0r6YYj+uLZ+uYIX6Kd5CY9CS4h4qJoG7tzrOS3aSC13b+IHcUxPm0xsujU7IutkFJDNZF9sTfHktTo7spaSs/bb+ceztTk2j3PyDiDgHEwx2YfxE49QgnCVFU5XWjlt8vbSNmlKPRklK7r0ZlC9cwyLNlzZQCG9OpkrUefSd+uVdhvcPdEGoFSoF0SA86Bnp0qtP9AvHEuiY3ANi8/W17tPU5zj5jEQHkTVZZnEvmqZzLRoBzbeFWUbIVaQCgxSCIZ2DjU4HyjnIdeQWUZj2SgCAYQLBhJ0yyoPo8c2Tc6WG2M5KVMSDQBsdet1p+DMJqLpU+asYFemo2DNKUlVZbnoZrIJslGTiDHDxneS47VDm3zFsuKkec83G7VOi+M+8Pos9QnSxI1kamWijOUR+xw8n95hkWIq4sYOzdXIuri8oybYdPKGdChIn5Pj7IMAI9atdRol8QAMLwiErr/6ZuO2+vYJubsVZvJecklg4oMC4yAFWWZRLpDBma4TLoWI/FSVJRHI29dulaXntwssxlzVftlGZ/NAEEdtWCYbnyuawleSCnau1/K8LdVTeTgll1EwvxtLpY+acY+Pjuxou3ZpIxcnqOiTCcGrh3SQo5ZHFcENBGB0jLihmNWLqO2FmizZWq/jYBgmWOLZ0QaNG8g7lT7mNeJ4H+4eEckA/r+udREWlxBeCyTcTOJ9J3YWpe1VzL6D6K1d5Bo0G6JgY0rdHIl8ttcmBRHpbUR8+Bsh+kLZu6ZENoMMok4hIBDM2Bz97R5oADJvIlcumsg+vKZKSCcL0w+JBhqwbBFeUf7Dt18yy2Sjm2MYiy0nMuxG5wiIUB7DuyG3529j1Zu/na5Aboim33jS7bvgzinPpuPbADv1KWra5JjqohJkex0x1XqqJyYR8oDzIR2zzPKiUBx7XlnXb3czqwoQmg/R9aP2AxEn+UWxoTSlXIthXVYbkbu5yhxsQ9fW1t6dKxEj05i90TzEedNYrBjvEpFfzuuq5YFW8BRHEccCUO3GGAL9RYyYYbDK2+iyvIoF2ODKzeRXTLIB77srslua8tVJ4gqXbNVK8/nw/pisba3r7jq8w4dKm0G9oAek+NVUg4QvsCuW6XGWFmWsQbn+SSKyvKMldi4/PB97SaKg3CM3+b+2pDLB1KeOtoQs0gqoq1043EL8aiB3awEqiEn5pFNB6/GrFAmFzi1OCZ3bw1/a8GS3B1c5iLwSpIoL4sSL3Of8zhQqTSjvB4soO99h4oM7vjaAQCitgOTGfQ0WXK0X2JAfoc5b/wcsckR2CIZ4/yEfYsooE/cDAslA5t+0wbG7H7PZrd5LoKjwg08CKebJB2F7ThX39EXXA3JZWAFxMt3yj4DcfX4PYK0FVlDJQBE/ecpdxgu1u5FHQDenvAFq57IJxlkWLjYuwijafMNFiRzzI57oNsMosc5j57LubgnlQFht3PdQX1j3IF6yTG/cnmOQT064j+XHmaVqLNSReUi86a0ozLSqrYp4gI/zXNMhkE/J1pfjFcngq7+XTm+TAZFHSv3SO+6+imDvl2rcObonbz1MhmmSVFNjVhiwBjbmTE2iTE2kzE2gzH2I1neizH2CmNsnvzuKcsZY+w2xth8xtg0xtgBpK3zZf15jLHzSfmBjLHP5Dm3MZ/vVQnAOTC0d7i5vGvSmDCDf7SFSpXHGHmtnBMpM9MF12wX+kVhM/C3DYiXbeE6wplzNd4oZ5rN80DHro0hgWRgW2xVH0oEpuXUDdG3UFeWZ4KUGnnOUZ/Lo6pc51xpig6z7zKL2st2ESr4KShWBN9pM9DFdn1B0Am4DcXkJnK9Bjb7Q0MuH3jzqKNxuYnU8bh0B3kOdOtYgaryMuOeCdRn8ygvy3hVgAoqkSIlJNq1OM53SqXc4yrq6EM3IOvIOZ4lrWd6FSpBNZFzBAPOP2woKdfrmYwFlaKaGkkkgyyAKznnowAcAuBSxtgoABMAvMY5HwngNfkfAMYDGCk/FwO4CxDEA8C1AA4GMBbAtYqAyDrfIeeNa/yl+dGtYwUevOAgAISrj5mI5iRQHJGoIzmdODWRheDoE01fDNQmGOu31jk5atNtzVrHFIe5NDpmomqVZGk23GURsZ1TNY5bMshzHiy2asGotyxyNjVRVDJw9SHbh93ryqW2iEgGpA4djrl+h0xCskWPwiUZ2HbP04iB41rMQYVeMHF2Fh5IPLYxZfNcqt1c54e/TWLtivh2DBlvXHVMRPKNi4vJGS92A1ETmd3lDWbMBlMyoCpQl5SixnjdaXuhQ0WZbD/K9dO5VGZIUU2NWGLAOV/JOf9Y/t4MYBaAQQDOAPCQrPYQgDPl7zMAPMwF3gPQgzE2EMBJAF7hnG/gnG8E8AqAcfJYN875e1ysqA+TtpoUIeclF/IYsdrMSZLL57Wc56IN/4OLsylkHQv7tvocXC+KqVqiCFVcxkm8CMnA5V4XHI+OR9VVHhRdq8rd6jiujz+bFy6pVeVl8rg4L0IMiB49FP39XLHKkUP7BqKLNlUTMYdkQMdjzgc3kXGMz/Ms1XlmZk8OwZ1XGAbkOP97avikYzXx6qw1mLGiBoAuldHnUe5RNb09PwzOzKigM3VfEqrPVHn/bh0ikf/uVN2iPOJN5DMgU8Ju8ZyK/AbHXOkt6JMMArsCkcJs9gBdMyC96nYMLSjMZsAYGwpgfwDvA+jPOV8pD60CoByxBwFYSk5bJst85css5bb+L2aMTWGMTVm7dm0hQ7ciIAWKUyrAK0G5tJneOHGLvd0LhyyyDs6k3DPRTD2nb5G79rRRQXBMLs+tKgInPeP+Ok79OBQxA7p0KPdeR8iBhjEWVYZkUJeNSgYBd2YhbhTLN24P2l+2MdxK0RmVq+4fV2J7tH16Dr2fesLAZIuey/VVrxNti9oM1J1yRiAHNgXjnjn6o6htiO7BnFW2J8fC9czU5cFvIV2FvUW8iRz95oPF1DAgWw3qOpxxBhZ3bV1NRMdlZ4TyHLj5lbmyvsdtWqmSjPSrPjWRih/dQbQgOTFgjHUB8G8Al3POa+gxydE3+Zg553/jnI/hnI/p27dvo9szovdjdXM0WVme6376cQRFwZVbRsHF5Q/r09l5g+k5Px23h8G5qPHyoE3GmFRzEW8izYDs5yjFdViOB9yeEUjEObZIyaBLVbn3OtRiyhAuPOGOc6JeVDLQ3VLNsVLc+/Yi0T4D7n5zARmj+LapYNS38vum5eZ4KDGgnKeNQNrgclMN5ipPriZyu5bqx4N75qBQfbpUok8XEalOCbGqXZ/LBwbkuGtS0pUaQ1KbQeBibZG8Co1AVvPJJhm4mDGN+HuSR7ruoXpmVHiz3TEthbaSXluSZMAYq4AgBP/gnD8li1dLFQ/k9xpZvhwATTgyWJb5ygdbypsM6t6qh+HUdUfOCCEMR5xEKfKg3AerzYBy3A410e4DurknmjznF6eOwoG79LTWUS9EhdTtKj27TV8cF9EJABu31UePG32F54ULe+fKcuc9yuZCtRtjoTShjOiKYDVEJIPQo0RdT9xzMH3ygwXUsWjn8lwzOtNanyzZGPxWi6YYS9hH0kVDlU//1UkRyVD1S9sa0bdzsCBWGm61cTud0YBG85oodu7VCXsO7ArAmBuE+JdnlAHZ9q6I78N37Q0gzEgbaQ/u55bNSZuNISELRsAlAcHah+5aqp+TxICsMSPaWNxzLkxZoRN4X6K8TKaF2QykZ899AGZxzv9EDj0L4Hz5+3wAz5Dy86RX0SEAqqU66SUAJzLGekrD8YkAXpLHahhjh8i+ziNtNSlCbktOTMc9NyfM2GG95AsY9dOPky7ibLMrq2vJ+MKJU1HmFkEDDs9qcBTH1GJcVZ5BhjFs3NaAhhwP9Lm07RwXroQ3f2k/o63w90efb4QJl46Wc66l1XCt0xu3NWBzrTCYMxa2s4dciNQgbamZ1fsZZwxVqCjLGLl01BwwXk55bz9esglvz19ntRn06yryId149j7YuVeYQ6ecbOsWDcSzI88Fp96lqlwrD/X6YWqP3561D47ara8WiyLqiOPxier081yDyhOJzXZfle3JHYEsSmmglY9xsKEhn7fGkHDOPZKBuk5TMlCMQyay0CaRDGw5rQC/xx+VzIP2LfVskkFLshkcDuCbAI5ljE2Vn5MB3AjgBMbYPADHy/8A8DyAhQDmA7gHwPcBgHO+AcCvAXwoP9fLMsg698pzFgB4oQTX5gXVrat7HedFs+/g7jhqt77YpVenwGZQYehb47yJ4kLLqSrKUC+6jVOKGBjcLhWDaxvEi9+hogxgwMwV1QBC7ttMz71L707o0kFfkOLmpDpuiwNQL2BluT/h3tNTVwAQ3KNqJ9ysXtRRi9+9540JzgtE/xgud48BgrCUZRiuP2PvcIwOLtJsJ8P0+uqaAGD0kB666E8WvaQRyNRuQhcOqtfPBVymuE8mMVCIlwykTcaiKjTbUbpu5QmjxgLQCGT7dYXMSqgCdN9vt2Rgy6NF74eJsA+PAdk4Vc3N16482una26myDAO7d8Dxe/ZHngNn7S9MnLv16+ocv6mSo+O31bvg8KHoVFnuJLBNgSTeRG9zzhnnfF/O+Wj5eZ5zvp5zfhznfCTn/Hi1sEsvoks55yM45/twzqeQtu7nnO8qPw+Q8imc873lOZfxHZSMQ724gd91jO5RGelU4JTgiPRbqNJVq0UHAHbr3yX4TSfuvBvG4wfH7ir6sFyyRgwcIjht04yYpN4NddlQMnDpdml7GcZwyLDeWnncUzFf8McuPgSAILLqBax0BOaoa7vg8KEAxLVTaQIIFwpVPqxv56DffEQysA92n0HdMVBmNu1LVDouTlXNjT5dqnDcHv2CBcLmTaSicBU214Y5aHL5PAZ064BfnDpK79BAnocSoVVNxKkxVeccTfuPYgBMBF5A2ZBAq7ZtoHsljNt7ACaM3wPH79lfU/WUSTWRDx0VISGG1qSSQTYXSgYn7zOAnBDvWmraa6ibc0RNlBd2rRF9u0T2TVBYuG4rBnTvgG4dhcqzd+dKdKos83Lx9Jkp2Oqret8+crio40jx0RRotxHIAHnZ5L12Gk65WoRyQs2SidoM1PP6+dOfAQC+dvCQ4PyuHcIMqbSLirJMRPw+96DQrOJKbWDC9BdXoMY+KhlkGAvGdPFRw7X+RXti0pqcZpzuMiSa4eKoygP9dLk94Z66Lz0DVULI8ZqquAZpsAz195wY6PwLUo6HKg8tD788PzIH5N8OFRl071gR8UADvbZMlNCGBJLkXIL7XlKffl0yiObJoQZtAJHgPGogt1xSVL1krS3mejm5Z5ccPQKdq0IJQahL1aY10VYuOHwYAOCiI4fJcRPVbD6Pob074S9f3d/Ru0BDPpTCR/bvimcuPTwYW1w8hTMdhSMCWd1/X5biT5Zskju2hXPK500UBKZpaiJ3nEEZYQhajGTQFhFEA6r/8tuZ40R+hwFQQjLQ/Ktlm58s2QQAzg1tzJfF9ChwxRn4vAqU0dPc6YqOXdkMOlRkNK67fzeV/5+MMc9RxqJqBx+D0oOkBM9a1DvZfB7lGRakmTARpggIVQmBZGCofoJcOGRcecLt+cZK3WmpUEc51X5dq/DPbx8cjF1dUzklQKT9QO1QpscujB3aC2GcB9diG/xqovAeKFBHBU1NRCq5FvVT9hkY6QMIiXacZJDNR3dRU/3k8zywczDHYqiIlLKDUDVRNsfRoaIskBqSOBcAhndVwTaD8HlFXEvJ/LBlGKDIMIMpZO7xL1y7BYAIHqXX4DJgUzrVkmwGbRamz/iCtSKNg1oITKjMkMpPWqQNtr+AlJOjc/GDRRtgg6qiJvZ954/RxG7BRdjhkgyG9+kcXFxd4LNfJhZaz0KgXggfl20aOHt2qox4iFSUh4SyQS6mKs2EiWzg2RJyRIGEEYxRSWj5iEomXCBDacEG6r5q29w9n+eoLM9EVFPZvEq5IOtRNREhRPSZdayk3DM3JAM7RDxDVE1EJcjHp4hwnfcXbtD6M3MT7TmwGwDgl6eN0vowbQY292JtTMRmoKAWdDr3KMdPYc5PGnmbI8ZnOjYTihiH/Yc2FLXYv3/NcdbrVDaDpy89HN07VoQRyI50FOpe+7bHBFSeLa4/W8f47//fIgDAC5+tCq/BwvUrpiaUDNL9DJocDNSAHN7ufQd3R8/OYW6dPQZ0DSZVfVZIBhkm9rnN5kk6B+OJ6QErIWauFCEaKmthxKMpzzGsT2cct2f/4Ng+g7pb3dAU1GQ3ubfBvTpZJYMMCeiqtHDSM1fW4NVZa2CC+txvqw/14S9dfpQmGagNx6l6R3HzGcsLAIQvtIogppKBmae/PicW7NDmA9QGNpEyra6JPFHt2VwHs/J4uOjLa5IGTJtraTBOQ01EDZTV2xuwuTZLGBDHwstpSo6wNcp0fCw9uRat36oRDDMCeWjvTtitfxdniox1W+qDcfpAF0gFNTYa+c2Y3ZsuINRE6gskg8DeoI/NREOea9dH35ucQdQUgmdKFn8bgaXI50PJTM1JumjT58ak7TCX417JyA2bzULdTzVHoU3m+Ws24625jQ+4taHdEgMgGoHcr2sVRg3spk2YKqLj3ritQeoGdV9lIMpV2fTRgAgeA4BT9h2oj0F+UzFVHQtS2Tquw3SrDMZA/obEQHgTJdUX21CXzWvSzu4DukZEf4CqdziJUrVHUgfSRCAZsNADyXjJG3JCQqMLwg0TZwEA1myulWX2sWfJy77NosrLcS4Ns+GizTlH9fYGMR6LZPDr52YCkHOB3HM6j96auxbrttTFLnqcG+6H8ie1TdFEa1TNqCQx81pNVaS61r+9tRAAInYrE/m8feGkmXvLPRk2F0qJW9ODB1w7167DRSSFmsiuqsoaC6gajy3SWiPWFldQ+v6FczKsp75/fPxugSS0tT6LhhwveCMam73dNDQz6JqF4//0Fs67/4PEfRSC9k0MjBcz8JemL5j0ftmwVXBRD76zWDNumt5EYdsMI/sJLyI6P0b266J5GpkTQunWgXBRULpm9wKX1+pTqHPqSGoHynVXlul5fxT2HtQt2pb8vu21eUHZV+WG5lT0pwFugJjMj7z3OTZsrSeumXp/Su9uEkIgqsoKDMhkEeveUUgmoQ3EjrpsPrhPSzZsjRzPSTdJaht4d8F6AMA/3l9itRkoVBh7JNjqmQyICWrABPQ5IM7jmq5fsxlEYl6UnUPvIyrFRqUdimw+71YTkcynrvTkD76zWGufGk6z+Xyws51vDELN6LcZUGKRzYdkSSV7FHspGATDNOASm83Ez1YG51FmAVBpNcT1PjdtJTZsrfcaew/ftQ8AYDz1hLJcccQN10FgmwLtmhjA4EaUkYq+PIrzX7dFN/wEC15Gn8VHyId+1Mg+eOWKo3HcHv0ibohV5dHbrqq8NGN1sE0m9XrxTQrTrXK4lD7oOUHQWUUZMhmGJRu2ASB+87IttSjTFN/mGB9593MAwHmH7oLfnb2v6Iscny1VYYrLpxw4Ve1QBN5O5SqjY3jM1GkHNgN1/ZzjtP1EbvgRfbsEZTa8NXdtoKo7bESfoDxPXvayjN52DXERDRfzaPumHQPEztOjUwW6dSgPLsy3uY0tMImqQFbXCOnHzBRaZdg5Xpu9BtOX12gL4IBuHYLnpGwKQdtONaTFOUH+3SLVhdl8XqaZcC9c5cQeZEoGPiKr2q+w2Azg8SRTbU14Snj4banLGmq8qGTAeXTr0hwhLFTllTGu19DoaNitv2AADybu2rb65rWYdcbs0jNWrVcs2jUxsEoGhl5RiYj0BVU2AyCa5Ou9hYKL3KU3WZDJw5w0Zy0+XVZNxuBeHFTKhw8WbfBONNMT5z+XHo5XrzhKO8eUDBSC/ZllvZdnrgYguB0TaoybZZ4hda3iOsK+VOCc4uifm7YiqOeSDLZTNRZ0LyvVjiIgL0xfhXlrtmgc7fb6HBgjG40nYKZ6EdsQXZzKMuYmNmFjqpwSs28dNhRdq8o1AzGgE7Sde3bCmKG9wuNOyUC3FaifNOfS6hrBmFSYkoGFyQCAHh1Dew5dsPcb3B39u1XFqq6oaykF58B9kxcBAB5653On9LrXToLodJPuzCYx0AzrTjWRPgYqGcxeKeZw3CKpgrgUKsttWUujxnKa6nrFJpHc8NOlm4TNQItY9jBsRKKg12DWNtNWmPe0V+dK7NqvC5oC7ZYYsFAyDZ5IVoqipocG51zj5jPahNINlqYbWxy3FAzBUkW99KIh/8sKhAtG944V2LVfV23i/+GlOQDCdBQKw1XgFnGBTDrG8XuHLou2pFtqcVI6YyB8iaOSQWjglg2G7RheMgrUH/z2SfPBuZ+4mqDPVF+cdK8hOlYbMctzjjLC9VLoHlAsduH9YNEGTQpVni+L5IZF9BZ0qSyPqDTNOoAlbTLCa9WT79nHlM3lowZkeVZ9Tjy3bfVZ6XcfbWTfwT20nE1KTbStPouPl2zC5HnrYu/L2/PX4WPptg3ojNyznwpmg45R2eY45/jqWBHzs/uArjActq2cuSkFlRGvI2W8fXnm6iDOIGzNp/5T49alG/N+PSyl7vBadILlyjRcCrRbYgBEF476XB4yE28AZTNQz+zq8XtoD/R9yR27Fp+4x2YzItnbcVMD345VEZ010yWf/Qb3sNazwaxCd2wSx0WNo3YTGWVtNgzXYl0bkQxCmEbu4X0749R9B5JoYNK+GovleswXr7wsgy8dOFgbz5tz10quT11TuMgO69OZGJDDdmjwIV2c6TWsqN6OXJ64RDru9/w1W6zlSu9N79uVJ+2mPUt172jbnYl7K6A8YEKVmMpiK86zD6qmNht5luqv8t7q06XKaTPI5gwVj+R2N25rCMti7osJW336XnYn0pBSC9Jxh7/1Dqkb7b6DuwOARuRoMLNSE3XtUI5jZXS6a/zq/DjJQEmrqp64V2Gt12aHe0uUGu2bGMhvzoE/vypykt8xaYFuZCoLowwBoB8Rq4HwYbomgck9AHqUcdKXQEwchwjtyHtichW0XMFcaH3jMI91ogsNEWfLmHCHtRMDe1uvzlqtleuqOv0e5Qx1nsqzpLVvGb9tofrDl/YLEg9q4yT2JLXQ//6cfa1xDA25vPW+0WvYXJvFq7NWW92ZCwJHQMD6de2AtZtDKaKzjP1QLXeqLMO5Y4dopzMiGrw1d60wfIZNR7BYSiT/eP/z6FA4x+idewAAfnf2Pk4pWLkV0zFwwKH2SXZf4u4jNaZ/unRTUK4txojOQ7pJkFIFV29vsLqWZjIMW+tz2Fybxeuz18S4f+vqH9W/iX0Hd8eAbh2CNahpZAA72jUxoHrhP786j5SHdYTxiONJGeizqrpOe6BlweIgMHZoLwzqEWaupC+ImhADZG4cdVyc738JfCLodc/O0K6Htm0PlqG/9YXWPwpTTWNXP2yty6FzVZl1IrsMhfdI3fOm7fWRtsOFRJyUzQlVjqqzeN02Mg43cXVFqtKxA8BhI3oHRkTOQzfcjhVlVsnjiSnLsF56mynXVljqqb5c40sCDkHU1Bx77MNwvyhFnDnnyOc5ttXnAhVK0D95KOu21GN7Q84b8KUcDcwNhdQ9+/HjUwEAPTtXOudoQz4aMGZmG/URJEBwzN88ZJdofW6XiFXAn9meJrlZOPMtddkgoHJwT3GP+3erCq6rb1eh7jpj9E4Rqd6cRxTqUl1GboVPl1ZjVQ3NXFz8XCkU7ZIYmNxnnnOctFf/4DidMFXlGeQ58PQnYouFBWu3aByNOQ/Lyxh26tGBHA+5c2UkpRx1hryIvqypPre1eVK1MHf1Zv0cT1vmb9eG8BQRXbTZjjz+weINeG/hBqsKTBWZHOQ5kts9cdSAyBhtm7aoiFcA+kLjIa4uewgde9eqcuzWv6vm9RRGR2c0d1YbnpgijOfH79kvaIM+lzjdeBLQfaG/d8yIoJxy32/MFUGDVHJQ4DC2V1QE1NKXSz+triP0qss44wyyMi6Ensuhp9i27SBntmHbRc68FoWOFXaXaXXeATLDrHn8/UUbUCPTqH/tYEF8DiJpRbrKTL4XHj7MwXzZx79s4zatf/E72v+cyDscvadUBVZKtEtiAOgLPgcwqEcnACLNAn1g/bp1AHiYcoAmSAOAi45Uid7EceFLr8uiahHaJr1wOlWWk8Nq0eFB5K6JCeP3sE5cEx0ryrzHzT7l8OT4xbfSO//9IpGS46nvH4YDd+mJnp0qnP7pqk1z0ppZLC/7wq5On/buHSvQubIsWORshtE8F9lXV9XU4vEpS4P2yzLu66FwEgMy9jrp+kuN05f+82M5DuYkZgrKIE/TWZx4y1sAgEuOHqGpn4oB5yJholpcexOPKPWbIzREKk8e7Vo51zdo8ahofGoKXV8v/e4tU7jBTCUhbQvzVgsm5jtHDotVE+kbSYUjczEvnZySgUCvzlURBkv1rTzsjt6tLxbfeAoG9egYXGt9ljAGEcnA7U2kNA/mOxE3CyiBUZmHlf2o1Gi3xADQ9dcDugvx75Kjh2vEoEwGptA8LnRSDu0tiAgHsH5LHWav2oz3Sf6hDJlxyt+eSgaUw1GeI1eduJs2zq8dPMQrGSh88cDB2n81kQ664VUAwP5Desgx0Uph/0CoElH344AhPfHv7x2GqvIyy2If/b1Kbs7TVYratK+rTtpdk8YottXntNa1Z0D09NvqcpE6egIzN5frVBPJ+6Q24aG5clYTkb2CeJq5nsVFRwyLtKtw95sLyMJrP79v16ogkM8GMRd5EG1M3UmDe8ZDIqA8acK8QGLsr0gXYu08C1T7vzxVz2+kFr59BnUHINRWiW0GAMA5nvxIqLjenLs2Vk2UzYceW3TMtj2ZAaBDZWhMZww4cmQfeZ448Y05ayJqLRXrshNR45oII/ejkd1JVDobt4Y7BFKJVGHXfl20xIL0va+tF30fu0c/fydFon0TAzIF//7eEgDAlw/aWcsDn5EPuK4hzKBJXc/CgB3gv4Z+VvQRviDKC0BzGVUj4MBTHwsVw11v6KmHla7aNdEOHtbLGsimXlilKlAZVdUL0aWKuCbKxn/46CfyOk0vlGi/ES6HA0ulOKxiEcw6LnXAox8s0YLTJs9bF/xW0ko+j0CEB1zeSmosFjWRfKxfGaMvtkqVpyKN7528KBjnWuLmSblBl2Sg5sDzn62K3LNBPTrGGgTNhdME58DrMpgMcBFCjsE9BZNy3J5i4Xjn6mO12BNK5HxjUmqgYLe5oC/xPbhnR+zWv0uQwsNGbxtyeW3vYrXAHTS0FwDg7AMGx6qJTMlA/druIAbhm83Rs1NlJIgym+eRuansPSpamDamhvXz/4gANqtkkIBho5KaLfnk9vqctoGQtkWo/D56t8bv/25D+yYGZB1UhrLKsowWjKSybNKgKC0HCslNtH5rdF/gVdW1WLxetD1Der2s16KZQ9b8NzK/zla5KP71mwfi0OG9g5w+LlSWZ4IIR9v1mVALwZa6rCGZhETQFsDk43rUi2B26QhcLUhNou5xnnPc/LLw+tpjQNegbZp63KcmUs9wtwHRhS3POZ6SdqG6bD5opzNR6dGspGr8n5EAQgB4b6GelZYO44LDh8Yueg1ZOzF44FsHRdozQa+9LtjmVCws/bp2kLEnYgEy00q7xhSmerDPh9qGXNCHeB7RRpas3xYwB2qcnAPvSOIr3DJlmw6bQzbPsb0+amOgDARFoDLjur0hsrMauWjVlhnURd261YZFGcaCpIoA8I9vHwzA7Vpqjlv8jr4H2xty6FgZJZxAmAbbJQ01Fu2SGKgJp57Lo8Qjo9zYG1csFOG5Z+6/k8ah0ECfft2i4uUHi8Xi0JDLB37LZx8QqnMoB6PpcQGctNcAPCp3C/MtopPnrcNny6sj5S9MX4W5q0O/9XF7CeOs1YuDh1IBECUGG7fVY8PWeue+uoqDUZ4Qvzp9L2s9ajBPCioBKO+Y+lyYY0gZeB+6cKzXZ/7ZT8VirzzDKDgH/kW2HDUzVwI6N6ia/8PLc7R2dPuFbuc5dERv7Xmb2F6fw9b6HB5+d3HkWLeO5ZEyAHj8wyVhf4TwXvdfkTwvCOILxiTujfKKueUro52xH4DbbVktUpPmrA1iI1xxBiuqazFL8/UXEuvrs4WRW212D9jnhdoKVaWBVtcBAP98f0n0BIRqIkDESaj8SFtl+gy14xztbo2UoIf20aUIca36wMzNn3p3qbTGLfhg49W21+c02x+NXTjn7ncBAG/NS7OWlhSMhTpCmhK2U0UZulSV49dn7IVnLzs88sAUd6VACUPPTm4rP+fAljqVHyiq5/3nB0uCh/6bM/c2T/e6/yXFJcTzJGw3XDxfmB7mWjeJQW1DHq/NXoParIMYyMXhJ09OAxB6T5j7Idu2jbThzNE7Bb+tqhnyUxFRofaKHA6gpKfL5FajdEy0/n479wjuNyXQFSSJoVr0Nm3TpcGXLj8KgNya0Zg8u/fv6n2Oyq3WvGdylPI8cUzln7JtbUnPNjO+Kib3kr8Lo3hlecYrTb0u4z+iqR7C/0rictkMTCjVq4I4xz0vtpN06UHvsvvlMj3EIcOFyunCw4dhRN/OwXOaI43BSg+vOPuuylGEdHfBAyIbqGmgpSpaZXcb2K2DpppV+5zYLp9GlJug1Rev2yokA01NFGVsyixSWinQbokBACuXq+wB3zx0KPYd3COiVwTClMWAnv5XuXzZNsfJc46rnvwUgP6CqtZ//2LIYX6D+FMH43IYLgtRt2y0qLFciyeNGKWo8XgycB4uDK4JaybGU+jXtUoLxqN+7bZ8QNXbGyLcOw1Es90WVUTjQIDQoKlw+n47BW03kHGUZ/S02YAReAehYph/w3jc+fUDAYQbJgHQNsexPTXVp82ArM771gMfAhAqPgBB0Je4jqgKysyqazKvdTTOwDKmhyLpEULUGioam81AEdMhvTppo6DqGpo23jYGG3E0jbfH7ylcw3952ii8duUxQXtn3PE/ACFzovDB4g0Rnb3Lq5qqakb07YKduneISAYcoUrZBDXWR9ol1X8gJfNN5B2z2SEqLM+iFGjXxKDeweVS+DwtAPICQgRbAUCnqqhIf4/MHR9tP9mDVbXMyabsEUmw1cNhmXM4wlFKnH7729byyfPWYSqJ9DzH8GwyOzSvY3uDbjij0prNA6lbx4qAsKgFp4zmxbd0PdGSfA+QKSiWVeOLUn33dbJ/9b1vh6oJ26Y3W+ui+lu1ANuerM+1VM3HA4b0tJynQ6k0viwJKJVmfAGMjDG8SxIMHrVbXysRMWESg0mz12h2AEDf21hBMQfnHRoyOIyFXjmAYMCC1i1jsG1Ha14jddcGovdrUE+dAQhSTlsuOpquW6j7cnmOf320DCukxxwlBt06VDgNyOsdkoGZ2G7pxui7TKWSYHwpMSg96h36bwpbArade+kRxoBYkC75+0cA7Fz1za/MDX7360aSdiV8rq5Fe/H6aE5+F0yXtN+cuXdwfaZhzUWk1O5YcTC5b4VgHls4SPpybaVpr+VYKIclIkBF+TRpxCXaButLrmwCdDGk+Lf05uog03xHxp6hMSbSgCxtNWOlZwxFUkKvcPvr8wEALxJ1XVxbI/t3QceKMlx5wm6ause0FQTtINybY0ivTuhQUZaIiFDvIwBalKyCLfVKtcw/VGWoPpR3njLW+uwWNu87c76a75x5u1RqdIVhfTrD0BI5z1WL/BOGrYmqifp2rXJ6/NkcSwBga11WU/OpmAnaxtNTV2DJhm2a0Xi0VFWVGu2SGNBIVoquFo7e9g5++4jhkbJNJOmWzzUQCD08AL9bnz4O+8tygVQb7EfUBS6YQWlfGzskGMBfXp9nOcMN5V/uQrnxcj55yaEAQuJq28/A5ioKhASEutz+4NiREU8llVM/Djv37BRbx2z7oKGCW6eSAZ0/t351dKSNVdXbI2U+dYja21h52QDA4xcfgju+doBznnTrUIFZvx4nkgPKSiurt1ttCbR/IPSgU/BJBiry1geGqMR35RNCNXo3eXaMhRLDt2SyQ5/d4j4inSmY765p4zKZODOp4oVHDNPUNHSxNZkmtcib0r0pPdsiigGxV7UN/5DGb7WFrLqknKWNPX7xYvD7kqOitr9SoF0SA4Wxw3Ru7uUrjorUoYvCp9eeCEB4+QAQBmZ5/BrpfwzEEwMNBXKPrhf24iOjBIqCZls9cBexsGWI2oNu4JIEV5ywm/e4aXBUPuU2Y/D/PS3uHfUWUThhVH8rkVAb/lBwuHMfURwyvLf7oIS5mByzez85/rB9ldwQsKcI+HDxRmf7vvE9fNHY4PfBw3vjlH0HRqbJhPF7OM+/Y9IC5zHqXaYQ54IMAHvt5Cb+o+QmOTbJQBl4N9BgK7Dgv1INJnluXx4Tqh7NVPE2bycKk1nq2qFcU9NQD7MenSq1uqqxhet0KbyDJeLfNnyaNdUG5dKq7EBxdkCb1FoKtFtiwBjQtYP+AtsWcaqTVy/8gO4dsPjGU4SB2cKzuYyvNtCMmwDEbliO8fpgcuIm6IL6yEVj8b8Jx4p2LXXPPmCQvzPEq9hcag2bv7cK+KM2nHvPGwMA+MM5+8aORSGX507bCkWfLpXOYwrm+9axokwrz3OOl2aE6hxTZ23iO0cOA0Dvi3t8Y3aJ2gxMfMvgdAG7SjMJ1Hk0oA8ALn54SvDbt3FMj07hpjXmfVfE4NARIQGmNoAKYx8I33OjRNyUDA5NQOApOleWa2qdLRbbj8JctQGUAeUVqCKWTe8kBbWF7EMXjtXKlaNAfTaPj5eEjENjPAYbg3ZLDGyosHjAUN/zpgBVLwFRH2cFm5HvL2QvYturesnRoTj5TWLA61RZHuj0bYv2TV+MLsAq507YRrI8SCYU0TI5OxPHj+qPxTeegh6dKhO5KwLATjIlAhB9J7XEbMY1/2xcyGUHhNC4LV8/RBmVQwP4yuqo3twFxXi41CENlqRtFOZCb404L5JhVOf99U1dDUJ35PMZLW/+8n4A7JKBwk/H7R78fnXWGmdbvid9MknTsIcRONibbJ4DAH9/73NrG8fs3hcVZSzYd1n1N91gyihenKHbcB64QAYAypOVQdkWUQwAe0up6kgjsllpJuqyeZx95ztBuc2QrJA0/1gxSIkBQTHuu7YXsCcRM6+MUadEMx/aX7pJMkBH5ZXP57lmlN5kcfk8bb/w5bGJtICdiNgkJHMi0/2DTfzaEiehoFxOc/k8VlXXYuiEicGxHxj+/wqunEImRLoHu7phm8WTSoEurMputHFrg1FHlwxWbKoNfNaTYHe5eLmIVVxUadSoaSMYOlQ+njio5632kbb37yYG/bqGnLG537cCjeSmC3mw16/DQYLOD6qjLy/LBIFzNri87B68YCzm3XCy6FNSg1kra5yeZjZ8QaoMTUbO5Z2k0oyb6h01p1R8g8JfvznG2bfv3Wos2iUxKKUUZr4j3zhkSLDJCAAMMzhqZYgMG9D/Ul97igUyFP0RyfGYnDXdWlLB5R6qdZ+QmzT91X2cYqVHZaXUDdk8xzl3v6MdcxmlTcmAuimacHnG+AgKJZTq2e3W377PrFoUb3pxtrM9G5SdyUas1tTU4nsyCMyFJNKRuWCftb9f3TecSKFdqsrRt4t7cTXxe6K+U1OBpmsHdO6cLoQj+ob3tiJww41Xn5mLqbolFx/lt5dR7z8Kdbsu+6f/3rtw/ChBFI4OdvaLjv6jz+3GYyC0yZiEq4vFkUXBF8DWWMS7CLQjFGT4TdgG/X/X1w/AeCLqArpk8Jev7u/kzpR72ufrt+Hqp6ZFAtP2t7ibmQu4DUn1zFRnHCeq2vLYmO1c/9+ZWLZR97ZxeROZ5onrz4jnjsy18/g/veWs27kqej0uTthGA6/2GHNNqPwy67bUYXcIDvma/3yGt+eLxHxUnUJBib9rcTNxkMXdlYLq8SvKmMbJ0+03v2eJXKcLerArlyEZZEmwGE01PfGzkAtXNgO6mVBSqIVxcE///ahzeFblOUd9Lq8FBsaBqkeryssw+adfCCQUuqWowhfvetfZls1l1sQJo/prLtU+201j0S4lAyC6CP7i1FFWVYrNUEeRNaIjTfUJ5c6t3gdk8ozbe4C3L4VHP1iKU27Tg796mh4QSDZxzDXPxZ3/lbjVxRmYX58T6oTfuOoYvHbl0eGY5MtP3ScVXDQkiZoo2AfBcck+jkrbKS3mltmIpy1i3AXlNriRpLGoJ3OoqtxOaOk9oLYgfWwh/vbNA7FzL78L7TAiGVSUZTTDLiUM1KaisN2SIG51Ta0moT5G8ia5bESKAXC5HCeBLT8RDXp866dfsJ6nVK8UN31xH29ffzeyC+wsYzWA0AX1yic+1dRbLhxhZke1wJxbLoapFGi3xMDE6Q6O/IfHjfSeZyaXMx8wlQyqLIFAlJiYkY8Uwx2GZQXTTRZIplow8d8fHBFbh26ookDz3VP969A+nTUu0pdXxcWNU4J57WmjrHWU15G6h0ntDCa+61hoFWxD7OwQ6wdYEheq59S7c6iSmUwSj22ts9sh6Dw5c7SdGNOxucZ0+fFiPleWZTTf+4qyTLBxCxAf5aoeI+1z7uotqN7egPlrNiNrcNxxHlxJAt9cMN9BQGykpOCyl9ncbL9y0BBLzRBDfARWqolU8KLPTgXYvQ5Nw7ip6j14uF/aawxSYiDh4qLjXgqT4+loeNnQB25Tn1BuzOc/bEspHQfTw8KGYhiNiB829AVN5YmxwSetmFGiCjQIhxIWCsUxlZdlUJZhgZvqX99coHFpNhULNbR36+DfUrCQ+/Xi5UdGypSxuj6XB+cci9ZtNXIJ2Tug88Q1F6jUMsCxQYtS13zvmBEao0LVRPNWb9ZiKGzYqbu4jz8izJJihI7/01vY9ecvaPVNN24Fdemhy254TNnJ4mBL39E7gftwMfBtOUlTXQPAqF++5G3LFlx2+9f21/6bDKQv3qOxaJc2A+sm8Y5FKi5mII4DpXr7zbVRj584F8sk/Tz1/cPsfSdRE5EF5NZzRzvrnXPg4MDNdqTFuErzMf3Z046LuB4wpEeQedIEvfajHBt70GutKs+gLpvDR59vxO9e0A29NkJlI24UNB13IWK6zRCoNg36+PONuPnlOUEqDYVejrFQycD5XEnxLg4OVqmkTIJSUZZBQy6PP7w02xu0pjC0T2dM/ukXtLQjvSwSIwD83yl7av/F8xGER7ldKonxw0UbsGjtVpx36C5YTmxKNIutwln7D8J/Pllu5dY7x8R9FAvfOyXSViSXbGwqWZPZoTYKG3NRSrRLYmBDsZJBvDoiPL7FogKw+YsX2o+NMwKSGcTp2qYiSW04a/9BATGw9UdTefi8IVz3+V+XHOZREzmbC5AxiME9kxfhnsnRiGabzj9ug/HdieheCDGwzR21XeWtr9nTf5xuWfSAkGkY3qdzopxHLucBJTGZ6oeKsoyWwlyBbuNpwrRJuObbMEPF2bNTZZDbSBlf1bxQ3nK3GJLJn748OtLuLV8ZjV+eOgo9LUSo0Cjdrh3K8d7Vx1mPXXL0CLFlKfwutgyu9OP2QEJTWrrk6BGR9qmzxh4D3O9nKRC7WjDG7meMrWGMTSdlvRhjrzDG5snvnrKcMcZuY4zNZ4xNY4wdQM45X9afxxg7n5QfyBj7TJ5zGys0u1exkL2oF9a16NsC0SjUIr3/kB5BugoKmtVytCV/0A1n+Q1WCl8oYt/TJO8DreIjfIpoDe/b2aqPVsZvX5oEwK5m+fgXJ3hfXl9enBNGCU6/P9HPu4ywADDQoj4pyzAsvvEULL7xFOs5lADEpT3Qj4mDNH4izt3X9QxUqdogyd6ft2kAwHypelF7Jyi4JOBvFmAcd/V/kGHPOu8w0Sa108UxRa75YSMExeD9a45z2ll8e1JT+O7/pcSGYcP3jhlhTfFiqp2bEkkkgwcB3A7gYVI2AcBrnPMbGWMT5P+fARgPYKT8HAzgLgAHM8Z6AbgWwBgIVvkjxtiznPONss53ALwP4HkA4wDoCscmxNcPHoKH3/3cydXEcRjq5d2pe0crh6n2HwaAXXpHjcB9ulTh2D36oX83v37/6vF7WBN23Xe+O0AlCV2ldXxCjroPtmR+gMjdM+NXJzlfKAVqpASEF5dLvaDg2wD8zq8fgI8+36gRWltGTYULPZyuiQOG9MDHSzZpRLVQ241JYOLOdzEfX9ijH3543EhcdLh7/Emkli8eMAhvzV0bBE4F/brmfwG8mSta37TDfO/oEdhnUHccTjzvirGJxeG2r+4f63gR9O8h0i5u34QtnblCHDNn89gCmk7dZUNsT5zztxhjQ43iMwAcI38/BOANCGJwBoCHuVDKv8cY68EYGyjrvsI53wAAjLFXAIxjjL0BoBvn/D1Z/jCAM7EDicF1p+2Fq8fvWXSO8EOH98ZVJ+7mdC88Zd+BuFJuauPC/XJ/Wx/K5d7MG7bWY+ywXti1Xxecd+guiUTHCz0LCL1u3z1QOmtfCus4QgDEZ5u0wUfUKsoyiRLPAcDEHx5R0HNWQ6X9mxz0dwvMIOm63jG79MSZ+w9yMh9lGRabHNCnnlM4Y/QgHDq8d2SLVjODqULSmIZCwBjDkSN1249PmnvzJ8cU1Y/LQ9AGX0yOK1+YCbW1polfnGr3gEuCYtO+FINiyU5/zrnyH1wFQFnlBgGgSb+XyTJf+TJLuRWMsYsBXAwAQ4b4XcB8oMtRJsMaJYplMgyXHet2P+1QIQJTbG6lheLs/Qfh3rcX4aYv7hvRw7rgUn1QPHLRWFz/35nYqYfdAwUIvVwKScJng7nBjs+dluKDa45LFETnQ6GeGMqDhxIQqsO94oTdYl2PTVSV2efakN6dCopXcGHeDeNj7Vi2vbrXbNbjMO7+xgEYt/fASL1CcdtX94+vBD9TkITJKAZ9ulQliujt160Dnr70cIzsZ/dki4PP7hKHHaU1B0pgQOacc8bYDsmzxzn/G4C/AcCYMWOaKbdf4YgL/kmKCeP3wBcPHJyYECTFkSP74pUrjvbWOWBIT7xx1TF+P+sEMO0mSf2mbQtYUnzpwMFatG1SXHni7rj8sanaIkBfTpsNKA7KgExx4C49NRfNxqCiLINS5DJT6TMai6TcuU9is8W1lAJPfPcQHHvzm4nqFvOsAZHmvrGYef1Jib0OG4NiicFqxthAzvlKqQZSoXzLAVBry2BZthyhWkmVvyHLB1vqNzkKobcdKjL48phkRqSmRHlZBnt6PH6aGq6MqoWAGnrn/mZ8k+iKTfzhS/sVdd4Xdu9ndQpQKOZZ2HTT//6e3TW4OVEMR3ruQTsHSdkA925rO2IsSTC8bxfc8pX9EqsZ4zDvhvEYacRX7Du4h/ecdyYcG5t+Pi49eqlQbC/PAjgfwI3y+xlSfhlj7DEIA3K1JBgvAfit8joCcCKAqznnGxhjNYyxQyAMyOcB+EuRY2oyzP71+OYeQpvEjiAETQkRYZo8uRug66Z7dqrwBui1Nvzu7H3QtUM5fnzCbtiwtb7oKHCKpPr6YnHW/o69uosANcI/94MjnIF/FDs5todtDsTeacbYoxBcfR/G2DIIr6AbATzBGLsIwOcAviyrPw/gZADzAWwDcAEAyEX/1wA+lPWuV8ZkAN+H8FjqCGE43mHG4xRtE5d+YQTumLQAPzlpd2cW2MbguR8cgVtemdtoldnvzt6nJHr5UmBwz45B4kC1RWmhYIzh56cIY2mpuNn3rrH7/rdUTPyhSOfSlJHCTYUk3kRfdRyKPCXpRXSpo537AdxvKZ8CoOmSdKdocfjq2J2tic5KhZ+ctAeuOnH3JlMv7D2oO+5L4AEWh1KpJ0qBX5+5d7Cfdly20x2FJM4PLQ2tkQgotM8I5FZjem6b+N3ZybeyLBY70gujWMSlwdihaAHvxE/H7Y7fvzgHn113YmRzoRRNj/ZJDNA6FosUbRPD+nTGonXJc+jvCKicOjsl0HM3Fb5/zK74/jEiUteV2C5F06HdEoMUKZoLk646prmHEMH+O/dEl6ryxHEBKdoeUmKQIkUK9Oxciem/Oqm5h5GiGdG6fftSpEiRIkVJ0C6JQQuwlaVIkSJFi0K7JAZAYRHIKVKkSNHW0W6JQYoUKVKkCJESgxQpUqRIkRKDNon37gKu6w5s39TcI0mxoyDTbadIUSzaJTHgSTbVbU3IZYEta8L/Hz0ovjevtFZv9cjn29fit/ht8YxdWDQZuL4nsPRDd52alcDyj0o/thRtBu2SGLQ5vPxz4I8jgdoa8Z/Jx8pb+YI56znguh5AvRGt+5f9gZsavxFMq8Dn7wAPngK89Qd3nfmviu/Fk911/rwPcM+xpRnTtg3xdVK0OrRbYtCmslHMfFZ8120W340lBis/jS7ALtSsAN78AxAnbU15IJRYbFg2Bfj9cH2hee16AByoNvbW3bgYqKtJNj4Ts/4ruORSItcgPk2BmhXie92csGz2ROA3A5I/IwDIl2h8n78D/H6YGEOKNoV2SwxisXEx8P5fm3sUyaAW/Yzc4kpRunwRmUHrtwF/PQp48lvJ6j95ATDpN8DqGf56z10O/PdH7uOvXQ9sWy8WG4WsSKmMsgR5atbMBj77l79OrgF4/BvAw6fHt0fBOTD1n+Le2PDnfYHfkVTZT18K3GXscPXuHX41ThwYeVVf/ZW4N5uWqAEW326hWPGJ+F7kkUKaE7kGYMr9xc39do6UGLjw0OnACz8FaqubdxzbNwLVMZu/bVkV/uYcyMjFM0/0zLmGZAblrWvF97yXxfe7dwhjdK2DE2+QC2RjOc9FcvtBKrKpxS7u+gHgzoOBf1/kr5OV+91uXOyu85cxwIf36mWLJwNPfw946Rr7OZtXhIQLAKb+HVg9Xa/z0jXAfcf7x2dDIN1RUZbrZUoqM8XdvxwIPP8Td9t1W9zP1QUmGQ4uF9t8Hpj+lN+G88hZwH++Zz/WUFta+897dwLP/dgvha6dA6ydm6y9VZ+VZFjINYhrbcFol8QgER9Vu0l8NxWHUb8NuPMwYOkHevnW9eGiBQC3jgZuGZWszZf/D/hVj1BCoKqLX/fR9ezLPhKL/PoFehvryEuyYFK4AK6fF5bn8yFnqPqiL/SUBwQRKQY21db2Eumo1X3N1YdllDBwLq5z4pX6eXVbxPeOMMjXb7UvjnShV88oKDOIg8L6+cAHf3P39ceRwI0xm/8smyLmyTr5/IPnLRmNB8YD/7oAeO06dxsLXgc+/We0PJ8HbugvmK7GYNVn4fi2b9S/bbhjLHBHgv0opj0J3H1EqIYFgGw9MPOZeLWoib8eJa61BaP9EYMta/Dm1jNx2hpDBbRospj0K6aK/0osp8Tgs3+FCwMArJxW/DhWTwfWzIhym38YDtx5SPhfEaUk+OxJ8b1MqiPoomfi00fF9/zX9HK6GD9yZvi7nKQ2nvhj4KFTgTkvABmZ65CT+/Tc5W4uOg5PXgA8dJpetvh/xbVlYtWn+v8Z/wFu3S80wAZqFwMr5Xlr59iPlwoNtcBvd9IXVrXo2BafO8YKG4iC73mb7QGhVOfDvXIPq9sPEu/H81fJduQ8Wfqe+H7vrvi2TCiCMuU+fz3OgamPAg3b7cfvPgK4fUxYl34DwCf/AJ44v/DxrZwqvjcuCsve+j3wxHnA3JfCspd+LtSIPqyZWXj/NqyaDmxeXZq2DLQ/YvDHkQCA4zc8Crx7Z1g+S1L/6f8WE0lxFmohWP6xUENMvEL8/+xfwF+PFAsKxZpZwMeP2Ptev0C8ULOfD8vopFWG0g0Li7gwC2xGTdXfh/fIOnX68R6Gl043uUdshujtlQj+9PdCYlAqA2q+AVj0lq6+WNUIokvRiewsdu/xwIdyEVKqgBqHOkoRTroo2HBdd7suPakaRDkA/O9WQRgaakNO3OUM8Pg3gNVyoZl0Q3wf2br4OlYYxMiUmJMQIhOKGMQ5Oix4DXj6EuA/3wUmXiUW33mv2Ov+78/ieytxtX7m+8DMp5ON6bruoWS4drb4Xj8/PD7lAfFNF/d3bxfvQhJMvEr04ULNSrH2ZB338+7DgZt3S9ZXgWh/xIDipavD30qcfuc2oWpRqJELtNIBT3tcLNbKYEonCiC4+mcvs/e3cJL4fozuJEqJAVmMbtgpyRX4YdPjK25HYfMq/f8jZ+n/lYRke9m3bwSWvOs+3hhMezz8bd5jBZs3jal20+oTTnjZh6ErplrYpv/bcR6RBs37ZeKhU6NlSe0pswmXf0N/8VG2FB9nuWFBtIwSICr9mcQfABa+mWx8FC4u3Ydf99O9kPKe2AkKFUMz8xnBxLx7O/CPc/znrJvnP26Dmh8f3gvctn8oMU4nDN+2deLbfI+SQjFh056wS3t/2gO4aSjwm76CaOxAQ3j7JgZJ8NFD4vvZH4RlT38fyEpj0LICAnmWTQl/33eC+NYeNhXhtwpdq8KS95L3o2Dj1v92TMiBRvqHMIZSKL20bRGhsL3YisOi+lvatw+f/D38rYzagD7e31oIprqvNrjUImqx2bY+LKOEgwZ83by7u/1Iu3LcVFrwcea0f4WPHxbfiku1wWYQbyCE8u9nkz6k/YVeU6HeVUDyxZAueLk64LGvhcFvnydU/yV1of3gnvB3ZefocdNF2TToUoaGSuf1ljmr2ip2sX7qO8D94+LrvXlT+LuJMwq0P2Kw88GF1V/xcbRsybvCawEA5r5gP48u5ApK3UCRJRPSFJeXvB/+LsYg61r8qATyfoyud9Pn4tsltirYFrkP7xWLDrWz/G6wvx2FgfvZy80XwvaCuMbquh9K/TOHPMvfDgx/+zh732LwzPfF99t/Cst+089dPymhpOjjIE4uA6qScsxrKlR9ZJPWbOpNW7tK+qSeej7VCZXMfFD2DMDOnNyyl3BBVlhkSESue7DvV6Jlyz8S7sNbiP5+09Jk41RYajB4trk098Xwt88oXgK0P2Jw0cuYy4Ynrz/ksOL6eeSsZLpiyvGZnOEupO9Zz6JgON0GTf1vgnHGqYEUUTN98dfPK06lsMvh9nJTQqnfGl38XYuqaxw9h4nvrMP1z2do9S2iilB1S6jyK4YY9N/LXl6zwl6+Vao5qJQK6F5kxWLyn6Jl6y3qGkUETOcFF3z3xfVMlQRkPh9qV/nnl/VjVE1H4XrGq6fr/f95b/c4k8B2LSuJ08PCNxrXfgzaHzEAsBsnHIztAVBD4xIZBFXl4VxcqHZ4p7hgSgauxSkpXpA+5lvW6uXmwl5HOLSDL7G3Fcc5qrGqoCSFTDmwfEq0vgtdBsgxOvozVV/5hijH5CJcrgUyzjDsg8voDADLpP1CeXnFoVCff8Ctdzefg4LyqjHjIFiCpWD3U/zHbQR8poWJOeF68b0gITFwPbdsvdvDS9178/32MVWv/8Ze7jM+J4lDSupAMO0x//HnLk/WTpFol8RAw8bPo2W2F4wumBWd7G2ZBqFb9wP+/e3kY3njJv2/yb0VC9MOYHLS9IV5/257G3E2g4AYGGq1bB3wzKXh/zg1nQqgcxGfjx4wxpWNjs1FRF+9Nvy9D+EKVYBdEvQaof+nLoZJ0HcP97HuRIV23LX2OubCYs5VZQtwzZ1dDhXfNLEhAJRV2ut3I2PqM5LUr4rWtUWK23T3CjYbiQ1UvUoJ0poZ8YTcJ9EOP0b/X6gaZuiRSBS11JDQ5rGhEUxJCZASgw7domV0cVSukxS7j9f/qxd08h+jdZNyhYCY3BRv/T78Pexo+zlJuMmthmSQNbilJLl6YiUDeVzFOCjkG4CeQ8P/GcuCYQPVE1d2DX+/fUu0/cj1JdB/J/HwsXl7mIuLy7YByMXCbNPDJdJjgw6MHs/ndZdJwEIMYqKs1QKoPGWC81zSFDG60piXPU+LVLUSYVsEr60vFdkcB5qjae1c4J2/+Osvt9j8FDr2Stbn4LGO83voRNckLgr0Hf26J2VKxx7JxtNESImB7eWkk3XIodHjpneDWlhcYqaCjZvqu6f/nGBMjsXLJzqO/rr47tBDLzeDq2zeEibUAusymCoCOvMZvTyX1Q2LNqmLXpsiem/dTI57uLtcQzRiOIl6zYwPscHWjklobE4BCl0sEae+a3nntvA3DfKj55rE1jTaqvG5VHPq/puxG0niRGiKh3w2ykTYrm06Wfyu3eTui+eSeeZQw/VOo91pudV7Ve0x6vqexYB9w99KujEl6vptevS0+Z4p0Dq+9Ba2bLA243UTISUG+Zz/Rcg1RHWW1MKv6iSBTdXCE7qmuSYu9Y2nHDQQvlwqilSBqm2AcBKbqgOtfzn26x3clGsBpveq+87267idpAZQahRKoHL17vD/fENUP27rg7pSUpsQAIxx5DRq2A6sI4vPwNHRZzj1H/Zz1dgi40g4V2w6/FydCDKjML164gihy8ZgGxdlenrvGm1n6ft6Wdy1MSYkw1y9fX+GQgMXfSkhlERPPYxM+OIcKLFU8+mTh/U61LGgc1/3+Gc/F/6mi7vJHL5HgmC/Il2r0ziDpsUXOj4R/qlZIfL2uFC9FPhTDPeeb4iqL0xMdXCQ6uV9+lL7cQDYbZx9gTNfhvE3hr87dBcBPj6XPYV8VuQ1+uNId50kBmSbPzhVnW1da3fVpXrfE3+tH6voDICLl+Ll/wvL+8goTBpF/uWHw7GYoJzy5RbuzBY5vHkVcDtR1ww7UucOqZtihaEb7zFELHi/N2wMLqJOF5LdxgEVFskgSWR6tla/T5Hj9Xp21+OvE982wkX3P7j4zfD+AmLOPGmkePBx2qMlESurFHPp172jdWznUyn2wpeBg74T/ldBnDbkG/zpYnbaX7/nPrdQNfdNCVQFXAKS0Yl5R464Aug+CDh6gvjfi3g1mobwPU8Tc1wRrMakvkmIdkkMsqwCMzvL/D8PeAI/+u/t9xbpJInITUOBV68Ly01O87ruIpxe4VvPA9dVAwecLyb7dd1FpkuF776ln19WEeU6PrxXj5Q+/XZgf8I11lZH1T9XGu6DZ8vsnPceF9W9mmN4cYKfsLzzFz0I7PTbo3XUIr11nUjN8e9vA/8mL/eAfYFyg1s6Uqb/+HVvfYzH/kJ8UzVEt0GyH8tLef9J4W/TqDnlPj1y+AwZ03GXoSIsqxIvfD4nApzuJMbwnxvS46YlwJyJYcQqIDy1XAsmZUi+9jjQsWe0zt+OCX8f/TP92Kl/Ft/3Hq/fJ9Nu8cZv9eyuSh9ujmvOC7rbc1UXYNQZYt4CUekYiEpodL4c+3Px3bBV54AB4NDL7GPYul5syqMw5GDgxN+EHm8vTgiPnWAwEWtni3QxLpR3CPtbN093C/3eu3rd2k3RuW/adMqrovPujRv18/Y7V3x/4Wpha8o3iPd09kSRZ0phgiSA6+YKT6bruuvXcpFh7ykRLNbR9oFRWy0RvafeItLfKpjud995XeeW9v+6yCNj4qQb/Mm3hkoXvI8fsh+nRskjfhxKHb7FePTXwjE21AIPnhyt08lQ8XQdYG+rU2+/YRQIFwXXuIYeof8/egLwppRc/jAiWh8QYzfh8rAwVT1AqGdv2CYSp9HFwsTZ94goUBtsqQz+b61ICc3zblWZD6O/Lvzla6sFMfn0UWDS73QDLQU1tPcbFU1H8YVr9OhU9Syph85RPwWOuNweqa2giNXDZwD7nisWpg7d9XEpwuvChCXAjUOEytKV0sMVa9FrhJCiAKGm3LAQ2OkAu+QACInJZu859DLgFc84v/cOcBeJ21FcvW3u9h8lVIIqytpUxanrpSirFMzOH3aNOjQoKGkWCOMHzHYAcf992DlBxtUi0C4lAwB4YoBFlzjmQvHSH/J94DKLYWqnA/T/n1km/pl3ARUdgZ9Y8sUAoRHNhZ9L18ofThWeB0qM92GPU8OEZoMODIkNxS/W6a5/X7zPLdZ+X+qC/28t8Msi0kf/cGp0Qn/haiGa+2C6Jo65SJeYFL73TjQq9ZqVoRH7ifPchOCX0n1w3y8LCc3ETxbYXYfLK91xI+dJ3/W9vyi+x90UrXPmnaF94fpewm5jIwRnyRxZFR3DMnM/h859xbdSvXz7Nbu959ifCynosinAjy2bD427STcCT3tMSJPmuA73bEoExC9ePvzw43BLz7sOFelEbITgHOJSfIChnrp8OpDJACf9VnxMfOlBoDdRgV7lyHUFhO/fd9/UGR4K83p/ukhEMy99300IgGTbK8Y5lNgYphKhXRIDzoH3exic808lB1peCYz7HdBn1/DlBoD/WyMe5vkySvGKWUAnQ5QfuF/IoXfuI/SIFF138k+Ib00MF4Few4CRnjw7FF+xLJh08l9XHS6011WLzz7nRHO1AGLR6CIXm/LKkMhQHPaDaJnCXmeLsVMpRL1UrkAoQCc6339PvNSn/kl3SwWEvr//XsCQQ/Tyyk5AF0+qB4UMmfIm0fzWRPHc+hkv5ASPPvnQy4Dh0gPq7HuAi98ADjEC9woR6/eTBsYO3YQ0dfEbwIhj9DpXScnlzDvEvR08Jmpwpv74fUbqMQxqTIdcAoy92D+evc6OEmmqIrnGERBGoQiwCcUYJSEme5P8Skcaunt1bYdeKj70vQWAUWeKuXz+c0I1qua3ieHH6ETYhi9Kif9nMj7pwpeiErcN5j2wueYCgtFx4aJX7S7HJUK7JAYAwOki95OF9gd6rDTE7TY+1GUPO0q8gN12Ai6QuWzGXAR846monn0cMehe8jbwY0PtdLHMjdJ7JHD1sqhqReFCR2DTcb8ErpxjJzCXSIPoaRY1lgLlsE7+o5AezEUD0PX/11ULvS2F4oQ79gLOuV+vS7mrb1siTg84Xyxu9Hn021O81ID+clxXHaoU6AKiCElPI/22icunR8uuqxb69ss/C+8/fVG/+1YYi2LaXA78llAJKmTKQunnumox9quXhWL9mTF5oExOVElT5zwA7Hq8WIgu+8j+vPcjmXB/PEN/DgqnSdfV854Jx5TxLAFn3wN86YFo+bdfEwzIj2f4g8oAscDSPpQR+ov3hddxVsz2spcZbrIVHcJo52s3Re/HOfcLl/AvPyzuqTo+7Ehg3y+J39SWMnC0uCe2GAA1Z/Y8PWSiABETcF11lCmx4UfTovf5y0aa+599Ltqj9ah24fTbm0w9FIBz3io/Bx54IC8Wh9/4Gv/x459wns+Ljw8znuZ8e3XRffFP/sn55jXFn6/wzGWcX9ut8e2YWDqF88l/Kn27Ljz6Nc7fu7uwczYs5rx2c7K6D50u7tOiyZzPe5XzbRuSn0tRs4rzRW9Hy+e8xPmdh3OeyxXeZi4rxnZtN86n/4fz2pri2nFh3XzxKRT/+b4Y030ncZ5t4PydOziv21pYG7kc5/eP57x6BeeTbix8HA+eFt6ba7tx/u5dnK+eVVgbheLz98T1lgo3j+L88W9yft84Mf/iUL2C84Zaf50lH3C+fmFpxsc5BzCFO9ZUxgvdvq2JwBgbB+BWAGUA7uWc3+irP2bMGD5lSnHpGo646XWMHdYLf/ry6KLOT9GCkc8LQ16lI2VICjvWzIqqx1K0OTDGPuKcj7EdaxFqIsZYGYA7AIwHMArAVxljCTf+TZGCIJNJCUExSAlBu0eLIAYAxgKYzzlfyDmvB/AYgDOaoqPT/vI2VlU3MhtoihQpUrQxtJQ4g0EAqMvGMgCR9JaMsYsBXAwAQ4ZY/HMTYETfzti5V0d88YCEm6ykSJEiRTtASyEGicA5/xuAvwHCZlBMG38+N8bXPUWKFCnaIVqKmmg5AOqUP1iWpUiRIkWKHYCWQgw+BDCSMTaMMVYJ4FwARezzmCJFihQpikGLUBNxzrOMscsAvAThWno/59wSP58iRYoUKZoCLYIYAADn/HkAlmQxKVKkSJGiqdFS1EQpUqRIkaIZkRKDFClSpEiREoMUKVKkSJESgxQpUqRIAbScRHWFgjG2FsDnCar2AbAutlbrRHptrRPptbVOtIVr24Vzbt3QodUSg6RgjE1xZelr7UivrXUivbbWibZ8bUCqJkqRIkWKFEiJQYoUKVKkQPsgBn9r7gE0IdJra51Ir611oi1fW9u3GaRIkSJFini0B8kgRYoUKVLEICUGKVKkSJGidRIDxtj9jLE1jLHppKwXY+wVxtg8+d1TljPG2G2MsfmMsWmMsQPIOefL+vMYY+c3x7WYcFzbdYyx5YyxqfJzMjl2tby2OYyxk0j5OFk2nzE2YUdfhw2MsZ0ZY5MYYzMZYzMYYz+S5a362Xmuq608tw6MsQ8YY5/K6/uVLB/GGHtfjvVxmX4ejLEq+X++PD6UtGW97uaA57oeZIwtIs9ttCxvFfOxaHDOW90HwFEADgAwnZT9HsAE+XsCgJvk75MBvACAATgEwPuyvBeAhfK7p/zds4Ve23UArrLUHQXgUwBVAIYBWACRArxM/h4OoFLWGdUCrm0ggAPk764A5spraNXPznNdbeW5MQBd5O8KAO/L5/EEgHNl+d0Avid/fx/A3fL3uQAe9113C7yuBwGcY6nfKuZjsZ9WKRlwzt8CsMEoPgPAQ/L3QwDOJOUPc4H3APRgjA0EcBKAVzjnGzjnGwG8AmBckw8+Bo5rc+EMAI9xzus454sAzAcwVn7mc84Xcs7rATwm6zYrOOcrOecfy9+bAcyC2P+6VT87z3W50NqeG+ecb5F/K+SHAzgWwL9kufnc1PP8F4DjGGMM7utuFniuy4VWMR+LRaskBg7055yvlL9XAegvfw8CsJTUWybLXOUtFZdJ0fR+pUZBK742qTrYH4IbazPPzrguoI08N8ZYGWNsKoA1EIvdAgCbOOdZWYWONbgOebwaQG+0wOszr4tzrp7bDfK53cIYq5Jlre65FYK2RAwCcCG7tSWf2bsAjAAwGsBKADc362gaCcZYFwD/BnA557yGHmvNz85yXW3muXHOc5zz0RD7k48FsEfzjqg0MK+LMbY3gKshru8gCNXPz5pvhDsObYkYrJYiG+T3Glm+HMDOpN5gWeYqb3HgnK+WkzYP4B6EonWruzbGWAXEgvkPzvlTsrjVPzvbdbWl56bAOd8EYBKAQyHUJGq3RDrW4Drk8e4A1qMFXx+5rnFS7cc553UAHkAbeG5J0JaIwbMAlBX/fADPkPLzpCfAIQCqpUriJQAnMsZ6SvH9RFnW4qAWSomzAChPo2cBnCu9N4YBGAngAwAfAhgpvT0qIYx4z+7IMdsg9cb3AZjFOf8TOdSqn53rutrQc+vLGOshf3cEcAKEXWQSgHNkNfO5qed5DoDXpcTnuu5mgeO6ZhPGhEHYQehza/HzsWg0twW7mA+ARyHE7gYI/dxFEDrJ1wDMA/AqgF489Bi4A0LH+RmAMaSdCyGMWPMBXNDc1+W5tkfk2KdBTMiBpP7P5bXNATCelJ8M4dWyAMDPm/u65JiOgFABTQMwVX5Obu3PznNdbeW57QvgE3kd0wH8UpYPh1jM5wN4EkCVLO8g/8+Xx4fHXXcLu67X5XObDuDvCD2OWsV8LPaTpqNIkSJFihRtSk2UIkWKFCmKREoMUqRIkSJFSgxSpEiRIkVKDFKkSJEiBVJikCJFihYKxtiXZAK5PGPMufcwsyR3lOWuBIg9GWP/kRHGH8hAs2LbKjh5HWPsQMbYZ/Kc26QLa1F9eO7Jj+W9m84Ye5Qx1iHunJQYpEiRotnBGDuGMfagUTwdwNkA3oo5/UHYcwFNAPAa53wkhOuyygJ7DYCpnPN9AZwH4NZGtDUeIl5iJICLIaLOwRjrBeBaAAdDBK1dy8J0JHcB+A45b1wxfbjAGBsE4IcQrq97QyRAPNd3DpASgxQpUrRQcM5ncc7nJKjnSu7oSoA4CiKWAJzz2QCGMsb6F9lWQcnr5LFunPP3uPDrfxj2BH9J+gBj7CeMsQ+lxPArMt5yAB1lBHgnACss16QhJQYpUqRoq3AlQPwUQuIAY2wsgF0gUkgU01ahyesGyd9mecF9MMZOhJAWxkLkvzqQMXYU53w5gD8CWAIRwFrNOX855vpSYpAiRYrmAxOb30wFcC+A01m4oUxJN76RXLiKsL0RgrueCuAHEFHIuSLbahIk7ONE+fkEwMcQyfVGSnXUGRB7RuwEoDNj7BtxfZbHVUiRIkWKpgLn/GBA2AwAfItz/q0SNr+aMTaQc76SkQSIXGSUvUD2ywAsgtiQpuC24E9ed4xR/oYsH2ypX0wfDMDvOOd/pQNljH0JwCLO+Vr5/ykAh0Gk1nAilQxSpEjRVmFNgMgY6yETAQLAtwG8xY1U6knbQoHJ6+SxGsbYIZIQnQd7gr+kfVzIROp0MMYGMcb6QaiHDmGMdZJ9HAeRWNCP5k6OlH7ST/pJPxBc9ING2VkQ+vE6AKvlYgoI1cfzpF4kuaMsdyVAPBQiGeAcAE+BbFFZRFsFJ68DMAbCU2oBgNuBIEdcMX38SJZ9BuBdACNk+a8AzJb9PAKZRND3SRPVpUiRIkWKVE2UIkWKFClSYpAiRYoUKZASgxQpUqRIgZQYpEiRIkUKpMQgRYoUKVIgJQYpUqRIkQIpMUiRIkWKFAD+H0QCPOho5eFZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(var.counts, s_ir)\n", + "\n", + "plt.plot(lc.time, lc.counts)\n", + "plt.plot(var.time, var.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc, var)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rebin the crosss-spectrum for ease of visualization." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "cross = cross.rebin(0.0050)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "lag = cross.time_lag()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvRklEQVR4nO3dd5xU9b3/8deHIghSlF1EKYJKURRXXRsBgoEoGogNscWI8RfUVBJNYkmi3tjuvXg1ibGgiVgjBKIRYoWIKEUFXRHLIkUFRLqAgkj5/P74nnVnlu07s2dm9v18POYxM6fNZ87OzmfOt5q7IyIikgqN4g5ARERyh5KKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKKZAUz29fMZpjZZjO7Le54RKR8SipSJ2b2oZkNroeXGgWsBVq7+xX18HoZxcw6mdkkM1trZhvNbIGZjUzza44zsxvT+RqSe5rEHYBINR0AvOsV9NY1sybuvqOeY6pPDwNvEc7DNuBwoEOcATWAcy61oCsVSQsz29vMppjZGjPbED3ulLC+W0Jx1lQz+4uZPVLBscYBFwG/NrPPzWywmV1vZhPN7BEz2wSMNLM2ZvZXM1tpZivM7EYzaxwdo7GZjYl+6S8xsx+bmZtZk2h90hVXdPxHEp4fb2azzOwzM3vLzAYmrJtuZn8ws5nR+3nezPIS1vdL2HeZmY00s2PMbFVJfNF2Z5rZWxWc0mOAce7+hbvvcPc33f2ZaL+u0XsZZWafRO//yoTjNjKzq8xssZmtM7MJZrZPFfGNAi5IOOeTE87Tb8xsPvCFmTWJXvvgxL9XyRWOmQ00s+Vm9mszWx3FdrqZnWpmC81svZldU8F7liykpCLp0gh4gPDLuguwFbgzYf1jwGtAO+B64MKKDuTuI4FHgf9x973cfWq06jRgItA2Wj8O2AEcDBwJnAT8v2jbHwJDo+WFwPDqvhEz6wj8G7gR2Ae4EphkZvkJm50PXAy0B/aItsHMDgCeAf4M5AMFQJG7vw6si2IscSHwUAVhzAH+YmbnmlmXCrY5EegeHfM3CUnyp8DpwDeB/YENwF+qiG8syed8WMLrnAd8B2hbzSuVDkBzoCPwe+A+4HvA0UB/4Hdm1q0ax5EsoKQiaeHu69x9krtvcffNwE2ELzWiL8VjgN+7+1fu/grwVC1eZra7P+nuu4DWwKnA6OjX/GrgduDcaNsRwB3uvszd1wO31OB1vgc87e5Pu/sud38BmBu9XokH3H2hu28FJhC+nCEkm6nu/nd33x6dl6Jo3YPRsYmuHE4mJNvynA28DPwOWGpmRWZ2TJltboje+9uEhH5etPwy4Fp3X+7u2whJfHh0lVZZfBX5U3Qet1axXYntwE3uvh14HMgD/ujum939HeBd4IhqHksynJKKpIWZtTCze83so6h4agbQNiru2R9Y7+5bEnZZlrDvPVGRy+dVFI0sS3h8ANAUWBkV43wG3Eu4ciB6zcTtP6rB2zkAOLvkuNGx+wH7JWzzacLjLcBe0ePOwOIKjvsIMMzMWhKS3svuvrK8Dd19g7tf5e69gX2BIuBJM7OEzcq+v/0T4n8iIfb3gJ3RcSqLryLLqt4kyTp33xk9LklEqxLWb6X0fEmWU1KRdLkC6Akc5+6tgQHRcgNWAvuYWYuE7TuXPHD3y6Iil73c/eZKXiOx0n4ZoQI7z93bRrfW0Zcw0Wt2Tti+bBHSF0BiPImV4MuAhxOO29bdW7r7rZXElrjvQeUG774CmA2cSSj6ergax8Pd1wJjCEljn4RVZd/fJwkxnFIm/ubR61cYH8nnt7LlW6j43EkDo6QiqdDUzJon3JoArQi/QD+LinauK9nY3T8iFB9db2Z7mNkJwLByj1xN0S/854HbzKx1VDl9kJl9M9pkAvAzC01z9wauKnOIIuBcM2tqZmXrXEquKE6OKvybRxXQnajao8BgMxsRVWq3M7OChPUPAb8mtOb6Z0UHMbP/NrPDomO0Ai4HFrn7uoTNfhddIfYm1O+Mj5bfA9wU1Z9gZvlmdlo14lsFHFiN91gEnB+dmyFExZzSMCmpSCo8TUggJbfrgTuAPQl9S+YAz5bZ5wLgBEJl9Y2EL8BtdYzj+4RK8ncJldETKS2iug94jtAs9w12/wL/HeEX+wbgBhLqNtx9GaFRwDXAGsKv+19Rjf8fd/+YUPdyBbCe8AWcWH/wBFHxVJniwLJaRNt+BiyJ9vlumW1eAhYB04Ax7v58tPyPhDqr581sM+HvcVw14vsrcGhUbPZkJbH9nPCj4DPC37WybSXHmSbpkkxgZuOB9939uio3Ts3rdQWWAk3j7mthZouBSxNatdV0/65kyHsR0ZWKxCLqp3FQVEw1hHAl8GTMYdU7MzuLUEfxn7hjEUmF2HrUm1lnQnnyvoR/qrHu/seo/H080BX4EBjh7hviilPSpgOhCKodsBy43N3fjDek+mVm04FDgQujZtEiWS+24i8z2w/Yz93fiCoe5xE6aI0kNDe91cyuAvZ299/EEqSIiNRIbMVf7r7S3d+IHm8mtJ3vSCgGeTDa7EFCohERkSyQERX1UUXjDOAw4GN3bxstN2BDyfMy+4wijFxLy5Ytj+7Vq1d9hZvTitcVA9CzXc+YIxGRdJs3b95ad8+vesvqiz2pmNlehKaQN7n7P83ss8QkYmYb3H3vyo5RWFjoc+fOTXOkDcPAcQMBmD5yeqxxiEj6mdk8dy9M5TFjbf1lZk2BScCj7l7Sb2BVVN9SUu+yOq74RESkZuJs/WWEzlXvufv/Jax6ijDM+a3R/b9iCK/B+u2A38YdgohksTgn6foGYbyjt82sKFp2DSGZTDCzSwiD4o2IJ7yGafCB9TGJo4jkqtiSSjTcuVWwelB9xiKlij4tAqCgQ0GscYhIdtJ0wpJk9LOjAVXUi0jtaJgWERFJGSUVERFJGSUVERFJGSUVERFJGVXUS5KbB1U2e6+ISOWUVCRJ38594w5BRLKYir8kyaxls5i1bFbcYYhIltKViiS5Zto1gPqpiEjt6EpFRERSRklFRERSRklFRERSJjeTijt8+WXcUYiINDi5V1G/fTt07QoXXww33hh3NFnnjiF3xB2CiGSx3EsqTZtCx47w8stxR5KVNOS9iNRFbhZ/9e8Pr74K27bFHUnWmbpkKlOXTI07DBHJUrmbVLZtg7lz444k69w440ZunKFiQxGpndxMKv36hXsVgYmI1KtYk4qZ/c3MVpvZgoRl15vZCjMrim6n1vjAeXlwyCFKKiIi9SzuK5VxwJBylt/u7gXR7elaHbl/f5g5E3burEt8IiJSA7EmFXefAaxPy8H794eNG+Htt9NyeBER2V2mNin+iZl9H5gLXOHuG2p8hAEDwv3LL0NBQSpjy2n3Dr037hBEJIvFXfxVnruBg4ACYCVwW3kbmdkoM5trZnPXrFmz+wZduoSb6lVqpGdeT3rm9Yw7DBHJUhmXVNx9lbvvdPddwH3AsRVsN9bdC929MD8/v/yD9e8fkop7+gLOMZOLJzO5eHLcYYhIlsq4pGJm+yU8PQNYUNG2VerfHz79FBYvrnNcDcVts2/jttnlXhyKiFQp1joVM/s7MBDIM7PlwHXAQDMrABz4ELi01i/Qv3+4f/llOPjgOsUqIiJVizWpuPt55Sz+a8pe4JBDoF27kFQuvjhlhxURkfJlXPFXSpmF3vUzZsQdiYhIg5DbSQVCEdjixbByZdyRiIjkvEztp5I6ifUqI0bEG0sWePiMh+MOQUSyWO5fqRx5JLRsqf4q1dS5TWc6t+kcdxgikqVyP6k0bQonnKCkUk3jF4xn/ILxcYchIlkq95MKhCKw+fPhs8/ijiTj3T33bu6ee3fcYYhIlmo4ScUdZs2KOxIRkZzWMJLKcceFYjAVgYmIpFXDSCotWsDRR6u/iohImjWMpAKhCOz112Hr1rgjERHJWQ0rqWzfDq+9FnckGW3iiIlMHDEx7jBEJEs1nKTSr18YtkX1KpXKa5FHXou8uMMQkSzVcJLK3nvDYYcpqVRhXNE4xhWNizsMEclSDSepQCgCmzULduyIO5KMpaQiInXR8JLK55/DW2/FHYmISE5qeEkF6l4EtnkzvP02LFkCu3bVPS4RkRyR+6MUJ+rYEbp1C/1VRo+ufNslS6C4GJYuhQ8/DPclt/XrS7dr2RIOPzzc+vQpfbzPPrWPc8cO+M9/YPx42LQpNDIYMCAcv3Hj2h9XRCTNGlZSgXC18swzYdgWs93Xv/YaXHcdPPts6bI99oCuXUNCKiwM9127ll6xzJ8PkybBffeV7tOxIxQUhMEs+/aFY48NCagi7jBnDvz97yGZrF4NrVuHBgYToya+rVuHBNO/f0gyhYUhNoCdO8OcMR9/DMuWhfuPP4YVK0KsAwaE/dq1q9v5ExGphLl73DHUWWFhoc+dO7d6G99/P/zwh/Dee9CrV+nyN94IyWTKlPDFe8UV4Yu4Wzfo0AEaVVFS6B6+1OfPD4nm7bdh3jx4992wvnHjkGT69i29dekCCxbAY4/B44+Hq6DmzWHoUDj/fDjllPD8449Dkd3LL4errPfeC8fcc0849FBYsyYkj507k2Nq1Soktw8/hC+/DMsOPxy++c3w3gYMgH33Tdply/YtALRo2qJ651NEspaZzXP3wpQeM86kYmZ/A4YCq939sGjZPsB4oCvwITDC3TdUdpxW3Vr50dcdXelrDe0xlCv7XgkLFzLwlp6MLBjJyJ8/wNpXX2T4P86GdeugSRPo3Dl8EZcpZhpZMJKRBSNZu2UtwycM54oTrmBYz2EUry3m0imXVvzCO3bApk1c8dkhDJu5luKFs7l08FZungZ9P9+bWXtt4JpBhCuSffeFvLxyi7huHnQzfTv3ZdayWVzz7K+4d6/z6PnaYiZ/Mp3bun0CzZpDs2YhCTVrFm5NogvRXbu4t+Nl9Jy7lMnzJ3LbXvOZ+Pgu8rbAuFM6MO6EFuF9V2LiiInktcj7unXY9JHTARgzawxTFk6pdF8gafvZy2czacQkAK6eejWzl8+udN92Ldolbb9u6zrGDhsLwKjJo1i4bmGl+/do1yNp+3Z7tuOWwbcAcNaEs1i3ZV2l+5/Q6YSk7U/odEL4LAEDxw2sdF9I+OxF25f9LFWl1p+9SNntkz5L066pcv+y29879F565vVkcvFkbpt9W5X7l92+7GepKvrspe+z99LFL6U8qcRd/DUOuBN4KGHZVcA0d7/VzK6Knv8mZa/YvXsYXPK112D4cHhmEpzXOBQRdexY+kWcKk2ahPqV73wP/msYrHoH/nER9BkACzbC4W2h5ZwQU3U1bQrf/jac9xMongxV/WM3ahTGPjv5fCjuA7PGwMhrYPZbMP32cCUUJZVPNn8CwP6t9q/lGxaRhiz24i8z6wpMSbhSKQYGuvtKM9sPmO7uPSs7Ro2KvyAkk0mTQvHQL34Rbm3b1vo9ZLXrr4cbboCvvoKmTb/+9VPy605Eclc6ir/ivlIpz77uvjJ6/Cmwb3kbmdkoYBRAly5davYKv/89HH88/OAHdWullQvy88P9unWh7khEpA4yMal8zd3dzMq9lHL3scBYCFcqNTpwnz7hJqVJZc0aJRURqbNM7Py4Kir2IrpfHXM8ua19+3C/Zk28cYhITsjEpPIUcFH0+CLgXzHGkvtKrlRWK3eLSN3FWvxlZn8HBgJ5ZrYcuA64FZhgZpcAHwEj4ouwAUgs/kIV9CJSN7EmFXc/r4JVg+o1kIasXbswsoCKv0QkBTKx+EvqU+PGoQVclFTGzBrDmFljYg5KRLKVkoqEIrAoqUxZOKVavZRFRMqjpCKhBZiKv0QkBZRUJOlKRUSkLpRUJCQVNSkWkRTI6B71Uk/y88PEYzt3smfTPeOORkSymJKKhKTiDuvW8cwFz8QdjYhkMRV/yW4dIEVEaktJRZKSyh9e+gN/eOkP8cYjIllLSUWSBpWctnQa05ZOizceEclaSiqi4i8RSRklFQnjf4GaFYtInSmpSJjzfu+9daUiInWmJsUSRL3q27VoF3ckIpLFlFQkiJLKpBEvxh2JiGQxFX9JoPG/RCQFlFQkiEYqvnrq1Vw99eq4oxGRLKXiLwny82HtWmYvnx13JCKSxTI2qZjZh8BmYCeww90L440ox+Xnw65dsH17aA0mIlILGZtUIie6+9q4g2gQSjpAKqmISB2oTkWCxKQiIlJLmZxUHHjezOaZ2aiyK81slJnNNbO5a9Rqqe6ipNLJW9GpdaeYgxGRbJXJxV/93H2FmbUHXjCz9919RslKdx8LjAUoLCz0uILMGdGgko80Px/OvCzmYEQkW2XslYq7r4juVwNPAMfGG1GOy8sL97rqE5E6yMikYmYtzaxVyWPgJGBBvFHluD32gDZtGP3FJEY/OzruaEQkS2Vq8de+wBNmBiHGx9z92XhDagDy8yna9Ql8WhR3JCKSpTIyqbj7EuCIuONocPLzYbtacItI7WVk8ZfEJD9fTYpFpE4y8kpFYpKfD9u/ijsKaQjWr4f586FNGzjyyLijkRRSUpFS7dvT450d0K573JFIrti+HYqLQwJJvK1YEda3bg3r1kETfRXlCv0lpVR+PmOfchj3P3FHItnms89C8li4MPn+/ffhq+jqt2lTOOQQOPFEOOII2LABbr4ZioqgUEP75QolFSlVMlTLmjVhemGRstxh0SJ46SWYMyckjuLi5P5NjRvDgQdC9+4wZAj06RNuPXuGpuslli8PSeWVV5RUcoiSipTKz2fUMOClKxnb46m4o5FM4B6uNl56qfS2cmVY164d9O4Np50WEkaPHuG+W7fk5FGRTp2ga9eQVEaPTue7kHqkpCKl8vNZ2A7YuCTuSCQO7iFhvP12uL36KsyYAatXh/X77Qff/GbprVcvCH3Jaq9/f3j++fDadT2WZAQlFSmlkYobjs2bYcGC0gRSclu/vnSbLl3g5JNLk8hBB6X+i79fP3j44VCk1l0NRHKBkoqUKkkqX6lZcc7Yvj1UmpdNHh9+WLpNy5Zw2GFw1llw+OHhdthhpePBpVO/fuH+lVeUVHKEkoqUat48VLLqSiV7rV0LU6bAtGmh6W5i66vGjUO9x7HHwiWXlCaQrl2hUUz9oHv1gn32CUnl4ovjiUFSSklFkhRsbgl77RV3GFITixfDv/4Vbq+8EqaF3nff0Knw5JNLk8chh0CzZnFHm6xRo3C18sorcUciKaKkIknu+OgQ2NA67jCkMu4wbx48+WRIJAuiAbwPPxyuvTa0xjrqqOyp+O7XD556KjQIiOb1keylpCLJ8vNh2bK4o5BEO3eGepAZM+Dll0tbZDVqFFpP/d//hURy4IFxR1o7ifUqZ54ZbyxSZ0oqkuR7vd6FNit5JO5AGrKvvgpXIjNmhNvMmbBxY1h3wAFw0kkweDB85zv1U5mebkcfHerzlFRygpKKJFm+53bY40v1G6hvH38MTz8dbtOmwZYtYXmvXnDOOeGKpH//kFRyzR57wHHHqV4lR1QrqZjZPuUs3uzuaiaUa5o2DQll06Ywgqykx44dMGtWSCL//ndpvUi3bqEV1Le+FYqFGkodQ79+cOut8MUXoYmzZK3qXqm8AXQGNgAGtAU+NbNVwA/dfV56wpN6VzK8xpo1SiqptmlTSCBPPgnPPReKtJo0gQEDYMyYUJzVs2fDvELs1y/UHc2ZA4MGxR2N1EF1k8oLwER3fw7AzE4CzgIeAO4CjktPeFLvmjYN92vWwMEHxxtLLvjsM5g8GSZODIlk2zbo0CF0NDz1VPj2t8Pw7w3dCSeEZPrKK0oqWa66SeV4d/9hyRN3f97Mxrj7pWaWlobvZjYE+CPQGLjf3W9Nx+tIshPaHwXL3k4edVZqZv360ER24sQwrtX27WHwxMsvh+HDwxdoXJ0NM1WbNmE4fNWrpMeXX8KSJaEzbOK8NmlQ3aSy0sx+AzwePT8HWGVmjYFdqQ4qOu5fgG8Dy4HXzewpd3831a8lyW7pfwNc+CCcuzruULLLtm2hz8i4cfDCC6HO5IAD4Gc/C4nk2GOVSKrSrx888EA4d5q0q+a+/DJ0hP3ggzCWWsn9okWhm4B72K5RozAkzlFHhe1TrLp/ufOB64Ano+czo2WNgREpjwqOBRa5+xIAM3scOA1QUkm3xDlVpHLu8MYb4YvwscfCpFOdOsEvfwlnnx2ayjbE+pHa6tcP7rxTk3ZVh3sYv2327FAPNWdOOG+JQyy1axeSx4AB4f7gg8MwPYceCi1ahG3S8PmsVlJx97XATytYvSh14XytI5DYA285ZeptzGwUMAqgS5cuaQihYTpryoVwXmMmKalUbM0aePRR+NvfQqfEZs3gjDNCq61Bg8IYW1Jz3/hGuNekXbvbsCEkjVdfLU0kJVMStGgBxxwDV1wRJkPr3j2MKB3TRHvVbVKcD/wa6A00L1nu7t9KU1xVcvexwFiAwsJCjyuOXLNuyzpo00RXKmXt2hXqR8aODRXvO3aEf+S77oJzz9VMmamgSbvC5+qDD+Ctt5LrPhJHuejRI8yoefzxoX7usMMyqriwupE8CowHhgKXARcB6fzWWUFowlyiU7RM6kPTPZRUSqxaFYq3xo6FpUtD8eDPfw4jR4Z/ZkmthjRp15o1yYlj/nx4551QPwchUfTqFc5Jnz6hIcMxx4RirQxW3aTSzt3/amY/d/eXgJfM7PU0xvU60N3MuhGSybmEOhypD02bNuyk4h6mzb3nHvjnP0M59cCBcMstoZirOlPlSu3k4qRdX321e6ur+fNLp2WG0My8Tx/46U/DfZ8+IaFk2qjS1VDdpFJS+7PSzL4DfAKU18s+Jdx9h5n9BHiO0Bjgb+7+TrpeT8poqEll/Xp46KGQTIqLoW1b+PGP4dJLwz+4pF82T9rlDp9+Wpo0Soqw3nsvFGtB+EHSu3cYv60kefTpk1MjJ1Q3qdxoZm2AK4A/A62B0ekKCsDdnwaeTudryO4GdRsEC3fA6rkNowjCPVR+3nMPjB8fmmUef3xoGjxiBOy5Z9wRNizZNGmXO7z7bqhjmzo1JJG1a0vXd+oUEsZ3vlNafNW9e2kH4xxV3dZfU6KHG4ETAcxsdJpikhj97pu/g1ebwbaZ8Pnn0KpV3CGlx+bNoQXXPfeEL4O99gr1JJdeCgUFcUfXcGX6pF1ffRVGjp48OdyWLg3LCwrg9NNLrzwOPzwkxwaoLk0GfgnckaI4JJMk9lXJtaRSVBQSyaOPhqR5xBHh+fnn5957zVYlk3atWhVmsIzbypXhSmTy5DDUzqZNYaj+QYPgqqvClUjHjnFHmTHqklRyvFykYTrl0VPgszU8AyGpZOvET4m2b4dJk+CPfwzt+5s3D82AL7ss9HTP9SK+bFNSrzJzZv3Or+IerjzefDN0ai25X7UqrO/QIRSJDhsW5rMp6UAoSeqSVNQ3JAdt3b4VmkR/2myvrN+wITQFvvNOWL48lGfffjtcdJH6lWSy+pq0a+vWUJQ1dSrMnRuSSMlkaI0bhwr1IUPgyCOhb98Ql4baqVKlScXMNlN+8jBANZi5KnGk4mxUXAx/+lOobN+yJcxNcvfdYVRgfSlkvnRN2uUePhvPPhuKsaZPDw0zmjULdSLnnRcSyFFHhT5IzZtXdUQpR6VJxd1VyNwQZWNScQ8zJt5xR5izZI894IILQs/sPn3ijk5qqmTSrs8/D40oamvz5nAlUpJIPvooLO/ZMzTKGDIkjI2loqyUyZy+/ZI5GjcOv9KyJals2gSXXBKGmm/fHq6/PtSXZEIlr9ROyaRdr75a8/lVPvqotHXWiy+GOrVWrcJxrr4aTj45DAcjaaGkIkmG9hgaHuQvKR2wLpO9/XaY8GrJktDjffRoFVvkgppM2rVrF7z+emkiKZknpEePMKTO0KGhTiTH+4dkCiUVSXJl3yvDg/aPZ/6VyoMPhomv2rYNv0j79487IkmVyibt2rUr9FKfOTPcnnsutNBq3Dhc4YwZE1po9ehR/3GLkopUID8/c5PK1q1h8qv774cTTwxzmXToEHdUkmolk3Zt3Ajz5sGsWeE2e3aYphnC5/TEE+G734VTTmmwHQ4ziZKKJBk4biAA0/O7hF+DmWbx4jCTYlERXHMN3HBDRg37LSlUMmnX3nuXzlrYu3eYAO0b3whFWgcfrH5GGUb/jVK+TLxSefLJMJRKo0YwZUroySy565RT4MILoUuXkESOP179i7KAkoqULz8/9PHYsiX+5paffAI33hj6mhQWwj/+odY7DUHr1mHUaMkq6gkm5cuEuepXrAh1JwceGHrG/+xnoeJWCUUkYympSPlKkkoczYpLkslBB4Xpei+4ABYuDGN3ZeGkRSINiYq/JMmI3iPCg53RpEH1eaWyYkXoRX3ffaHj20UXhcr4XBjUUqSBUFKRJD865kfhweLF4b4+ksqWLaGn8z33hD4II0eGZNKtW/pfW0RSSklFkmzZvgWAFvVVp7JiRehj8OabYaiVa69VnYlIFsu4pGJm1wM/BEq+za6JphaWenDqo6cCMP2iF8OgjOlMKvPmhYSyaVOYlGno0PS9lojUi4xLKpHb3X1M3EE0aGbp7asycSJ8//vhNWbO1EjCIjlCrb+kYulIKu5w002hV3RBAbz2mhKKSA7J1KTyEzObb2Z/M7Nyu9Ca2Sgzm2tmc9dkWs/vXJGfn9omxV9+Ga5Ofvvb0Ez4P//R8PQiOSaWpGJmU81sQTm304C7gYOAAmAlcFt5x3D3se5e6O6F+SWVypJa7dun7kpl9eowhPkjj4Te8Q8/rCHqRXJQLHUq7j64OtuZ2X3AlDSHIwlGFowsfZKq4q933w1T+a5eHYZYGT687scUkYyUcRX1Zrafu6+Mnp4BLIgznoZmt6Ty+eeh2Kq2VxXvvx+GJm/UCGbMCGN3iUjOyrikAvyPmRUADnwIXBprNA3M2i1rAchrkZc8/lfnzjU/2AcfwLe+FVqSvfgi9OqVwkhFJBNlXFJx9wvjjqEhGz4hFE1NHzm9bkllyZKQULZvh+nTlVBEGoiMSyqSQWrbq/6jj0JC2bIltPDq3Tv1sYlIRlJSkYq1jwaVrEmz4uXLQ0LZuBGmTQvzjItIg6GkIhWr6ZXKypUhoaxZA1OnwlFHpS82EclISipSsTZtoGnT6iWVVatCQvnkE3j+eTj22PTHJyIZR0lFklxeeHnpEzPIy6s6qaxdC4MHh7qUZ5+Fvn3TG6SIZCwlFUlyzmHnJC+oqgPk4sVw+umwaBFMmQIDBqQ1PhHJbJk69pfEZNnGZSzbuKx0QWVJ5dlnQ2fGFStCQhk0qH6CFJGMpaQiSS584kIufCKhq1B5SWXXrjDS8KmnQpcuMHeuEoqIACr+kqq0b5/cpHjTpjB3/JNPwvnnw9ix0LJlbOGJSGZRUpHK5eeHRLJtGyxdCmecEYZfuf12+PnPQ2W+iEhExV9SuZK+KvffH5oJr1sX+qCMHq2EIiK7UVKRypUklZ/8BA45BN54AwYOjDUkEclcKv6SJFeccEXygp49wxXJJZfAn/+sibVEpFJKKpJkWM9hyQt694b166Ft21jiEZHsouIvSVK8tpjitcXJC5VQRKSadKUiSS6dEuZEmz5yeryBiEhW0pWKiIikjJKKiIikTCxJxczONrN3zGyXmRWWWXe1mS0ys2IzOzmO+EREpHbiqlNZAJwJ3Ju40MwOBc4FegP7A1PNrIe776z/EEVEpKZiSSru/h6A7d4j+zTgcXffBiw1s0XAscDs+o2w4frtgN/GHYKIZLFMa/3VEZiT8Hx5tGw3ZjYKGAXQpUuX9EfWQAw+cHDcIYhIFktbUjGzqUCHclZd6+7/quvx3X0sMBagsLDQ63o8CYo+LQKgoENBrHGISHZKW1Jx99r85F0BdE543ilaJvVk9LOjAfVTEZHaybQmxU8B55pZMzPrBnQHXos5JhERqaa4mhSfYWbLgROAf5vZcwDu/g4wAXgXeBb4sVp+iYhkj7hafz0BPFHBupuAm+o3IhERSYVMK/4SEZEslmlNiiVmNw+6Oe4QRCSLKalIkr6d+8YdgohkMRV/SZJZy2Yxa9msuMMQkSylKxVJcs20awD1UxGR2tGVioiIpIySioiIpIySioiIpIySioiIpIwq6iXJHUPuiDsEEcliSiqSREPei0hdqPhLkkxdMpWpS6bGHYaIZCldqUiSG2fcCGgGSBGpHV2piIhIyiipiIhIyiipiIhIyiipiIhIyqiiXpLcO/TeuEMQkSwW1xz1Z5vZO2a2y8wKE5Z3NbOtZlYU3e6JI76GrGdeT3rm9Yw7DBHJUnFdqSwAzgTK+1m82N0L6jccKTG5eDIAw3oOizkSEclGsSQVd38PwMzieHmpxG2zbwOUVESkdjKxor6bmb1pZi+ZWf+4gxERkepL25WKmU0FOpSz6lp3/1cFu60Eurj7OjM7GnjSzHq7+6Zyjj8KGAXQpUuXVIUtIiJ1kLak4u41HufD3bcB26LH88xsMdADmFvOtmOBsQCFhYVet2hFRCQVMqr4y8zyzaxx9PhAoDuwJN6oRESkumKpqDezM4A/A/nAv82syN1PBgYA/2Vm24FdwGXuvj6OGBuqh894OO4QRCSLxdX66wngiXKWTwIm1X9EUqJzm85xhyAiWSyjir8kfuMXjGf8gvFxhyEiWUrDtEiSu+feDcA5h50TcyQiko10pSIiIimjpCIiIimjpCIiIimjpCIiIimjinpJMnHExLhDEJEspqQiSfJa5MUdgohkMRV/SZJxReMYVzQu7jBEJEspqUgSJRURqQslFRERSRklFRERSRklFRERSRklFRERSRk1KZYkT1/wdNwhiEgWU1KRJC2atog7BBHJYir+kiR3vX4Xd71+V9xhiEiWUlKRJBPemcCEdybEHYaIZCklFRERSZlYkoqZ/a+ZvW9m883sCTNrm7DuajNbZGbFZnZyHPGJiEjtxHWl8gJwmLv3ARYCVwOY2aHAuUBvYAhwl5k1jilGERGpoViSirs/7+47oqdzgE7R49OAx919m7svBRYBx8YRo4iI1FwmNCn+ATA+etyRkGRKLI+W7cbMRgGjoqfbzGxB2iJMnTxgbdxBVEOeXWxZESdZcj5RnKmSDTFC9sTZM9UHTFtSMbOpQIdyVl3r7v+KtrkW2AE8WtPju/tYYGx0nLnuXliHcOuF4kwtxZla2RBnNsQI2RVnqo+ZtqTi7oMrW29mI4GhwCB392jxCqBzwmadomUiIpIF4mr9NQT4NfBdd9+SsOop4Fwza2Zm3YDuwGtxxCgiIjUXV53KnUAz4AUzA5jj7pe5+ztmNgF4l1As9mN331mN441NX6gppThTS3GmVjbEmQ0xQgOO00pLnkREROpGPepFRCRllFRERCRlMjKpmNmQaJiWRWZ2VTnrm5nZ+Gj9q2bWNWFducO8VHXM+ozTzL5tZvPM7O3o/lsJ+0yPjlkU3drHFGNXM9uaEMc9CfscHcW+yMz+ZFHFWExxXpAQY5GZ7TKzgmhdSs9lNeMcYGZvmNkOMxteZt1FZvZBdLsoYXkc57PcOM2swMxmm9k7FoZROidh3TgzW5pwPgviijNatzMhlqcSlneLPiOLos/MHnHFaWYnlvl8fmlmp0fr4jifvzSzd6O/7TQzOyBhXWo+n+6eUTegMbAYOBDYA3gLOLTMNj8C7okenwuMjx4fGm3fDOgWHadxdY5Zz3EeCewfPT4MWJGwz3SgMAPOZVdgQQXHfQ04HjDgGeCUuOIss83hwOJ0nMsaxNkV6AM8BAxPWL4PsCS63zt6vHeM57OiOHsA3aPH+wMrgbbR83GJ28Z5PqN1n1dw3AnAudHje4DL44yzzGdgPdAixvN5YsLrX07p/3vKPp+ZeKVyLLDI3Ze4+1fA44ThWxKdBjwYPZ4IDIqyZ0XDvFTnmPUWp7u/6e6fRMvfAfY0s2Z1jCelMVZ0QDPbD2jt7nM8fOIeAk7PkDjPi/ZNlyrjdPcP3X0+sKvMvicDL7j7enffQBj/bkhc57OiON19obt/ED3+BFgN5NcxnpTHWZHoM/EtwmcEwmfm9AyJczjwjCd3o0il6sT5YsLrJw6RlbLPZyYmlY7AsoTn5Q3V8vU2HsYQ2wi0q2Tf6hyzPuNMdBbwhrtvS1j2QHQ5/Ls6FoXUNcZuZvammb1kZv0Ttl9exTHrO84S5wB/L7MsVeeyunHWdN+4zmeVzOxYwi/exQmLb4qKTm5PwQ+husbZ3MzmmtmckiIlwmfiMy8dWzBjzifhCrvs5zPO83kJ4cqjsn1r/PnMxKTSYJhZb+C/gUsTFl/g7ocD/aPbhXHERij26OLuRwK/BB4zs9YxxVIlMzsO2OLuiWPAZcq5zDrRL9SHgYvdveTX99VAL+AYQjHJb2IKr8QBHoZCOR+4w8wOijmeCkXn83DguYTFsZ1PM/seUAj8b6qPnYlJpTpDtXy9jZk1AdoA6yrZNx3Dv9QlTsysE/AE8H13//qXoLuviO43A49Rt1Gaax1jVIS4LoplHuHXao9o+04J+8d+LiO7/QpM8bmsbpw13Teu81mh6MfDvwnj9H09wKu7r/RgG/AA8Z7PxL/vEkL92ZGEz0Tb6DNS42OmI87ICOAJd99esiCu82lmg4FrCSOabKti35p/PlNVSZSqG6GX/xJCRXtJZVPvMtv8mORK2wnR494kV9QvIVReVXnMeo6zbbT9meUcMy963JRQLnxZTDHmA42jxwdGH6R9vPyKu1PjOpfR80ZRfAem61xWN86Ebcexe0X9UkIl6N7R49jOZyVx7gFMA0aXs+1+0b0BdwC3xhjn3kCz6HEe8AFRpTTwD5Ir6n8UV5wJy+cAJ8Z9PgmJdzFRY4x0fD5r/QbSeQNOJUzetZjwawngvwiZFaB59MFZFL3hxC+Ta6P9iklopVDeMeOKE/gt8AVQlHBrD7QE5gHzCRX4fyT6Yo8hxrOiGIqAN4BhCccsBBZEx7yTaGSGGP/mAwlD/SQeL+XnsppxHkMod/6C8Kv5nYR9fxDFv4hQrBTn+Sw3TuB7wPYyn82CaN1/gLejWB8B9ooxzr5RLG9F95ckHPPA6DOyKPrMNIv5796V8KOnUZljxnE+pwKrEv62T6X686lhWkREJGUysU5FRESylJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKK5JQyI9cWWcII1tnOzI40s79Gj0ea2Z1l1k83s8JK9n/czLqnO05p2OKaTlgkXba6e0F5K6Kxv8xLhx3JNtcAN9Zh/7uBXwM/TE04IrvTlYrkNAvzwhSb2UOEDlydzexXZvZ6NJDfDQnbXmtmC83sFTP7u5ldGS3/+grAzPLM7MPocWMz+9+EY10aLR8Y7TPRzN43s0dLBrM0s2PMbJaZvWVmr5lZKzObkTiXRvT6R5R5H62APu7+VjXe83cTrtSKzWxptOplYHDCECYiKacPl+SaPc2sKHq8FPgF0B24yN3nmNlJ0fNjCcNOPGVmAwg9oc8FCgj/F28QeuRX5hJgo7sfE40wO9PMno/WHUkYNugTYCbwDTN7DRgPnOPur0djbG0F/gqMBEabWQ+geTnJo6RXc6JzzKxfwvODAdz9KeApADObALwULd9lZouAI6rx3kRqRUlFck1S8VdUp/KRlw6MeFJ0ezN6vhchybQiDPi3Jdrv65kEK3ES0MdKZ/prEx3rK+A1d18eHauIMFTHRmClu78O4O6bovX/AH5nZr8iDJUxrpzX2g9YU2bZeHf/ScJ7nZ640sx+TTgff0lYvJow+ZaSiqSFkoo0BF8kPDbgFne/N3EDMxtdyf47KC0qbl7mWD9198ThzDGzgUDi/Dg7qeR/zd23mNkLhAmVRgBHl7PZ1jKvXaloJNqzgQFlVjWPjiWSFqpTkYbmOeAHZrYXgJl1tDB3/QzgdDPbM6q/GJawz4eUftEPL3Osy82saXSsHmbWspLXLgb2M7Njou1bJdRv3A/8CXjdw8x7Zb1HVLxVFQvzjv8FONvdyyaQHuxejCaSMrpSkQbF3Z83s0OA2VHd+efA99z9DTMbTxj1djXwesJuY4AJZjaKMM9IifsJxVpvRBXxa6hkqlV3/8rMzgH+bGZ7Eq4YBhPmWp9nZpsI82qUt+/7ZtbGzFp5mB+mMiMJMyA+Gb3HT9z9VDPbl1Ac9mkV+4vUmkYpFimHmV1P+LIfU0+vtz9hoqleFTV5NrNfAJvd/f5avsYvgE3u/tdaBypSBRV/icTMzL4PvEqY/6KyPjR3k1xXU1OfAQ/WYX+RKulKRUREUkZXKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjL/H3DbH9bCFmNTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-0.0050)*1/0.0050)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al (2014), the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase wraps and the lag becomes negative. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "13it [00:00, 3156.72it/s]\n" + ] + } + ], + "source": [ + "cross = AveragedCrossspectrum(lc, var, segment_size=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvIUlEQVR4nO3debyUdfn/8dcFKJssyiFF2bSEfm5hHO2rolL6U/KruYYaWqSFWdaXzA2wb1ailpqUqUmalJBCmiZqZtgPrYAU7GhuEG4skiKioiDbuX5/fO7juWeYOWfOOfece5b38/GYx5m512tuhrnms97m7oiIiCShQ9oBiIhI5VBSERGRxCipiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKlAUz29nMHjOzdWZ2bdrxiEhuSirSJmb2ipkd2Q6nGge8CfR09++0w/lKipn1N7O7zexNM3vHzJ4xs7FFPuc0M7u8mOeQytMp7QBECjQIeM7zjNY1s07uvqWdY2pPtwNPEa7DRmBfYJc0A6qCay6toJKKFIWZ7Whm95vZajNbGz3vH1u/e6w6a46Z3WBm0/McaxrwJeAiM3vPzI40s8vM7C4zm25m7wJjzayXmd1qZqvMbKWZXW5mHaNjdDSza6Jf+i+Z2TfMzM2sU7Q+o8QVHX967PV/mdk8M3vbzJ4ys5GxdXPN7Idm9vfo/TxsZjWx9SNi+y43s7FmdoCZvd4QX7TdSWb2VJ5LegAwzd3fd/ct7v5Pd/9jtN/g6L2MM7PXovd/Qey4HczsEjN70czWmNksM9upmfjGAWNi13x27DpdbGZPA++bWafo3B+L/3s1lHDMbKSZrTCzi8zsjSi2E8zsGDNbYmZvmdnEPO9ZypCSihRLB+A2wi/rgcAG4Oex9b8FHgf6AJcBZ+Y7kLuPBWYAP3b3Hdx9TrTqeOAuoHe0fhqwBfgYsD9wFPCVaNuvAsdGy2uBUwp9I2a2G/AAcDmwE3ABcLeZ9Y1t9gXgy8BHgO2jbTCzQcAfgeuBvsAwoM7dnwDWRDE2OBP4TZ4wFgA3mNlpZjYwzzafBvaMjnlxLEl+EzgBOBzYFVgL3NBMfFPJvObHxc5zOvDfQO8CSyq7AF2A3YD/BX4JnAEMBw4FvmtmuxdwHCkDSipSFO6+xt3vdvf17r4OmEz4UiP6UjwA+F933+TufwPua8Vp5rv7ve5eD/QEjgHGR7/m3wCuA06Lth0NTHH35e7+FnBlC85zBvCguz/o7vXu/mdgYXS+Bre5+xJ33wDMInw5Q0g2c9z9DnffHF2Xumjdr6NjE5UcjiYk21w+D/wV+C7wspnVmdkBWdt8P3rv/yIk9NOj5V8DJrn7CnffSEjip0SltKbiy+dn0XXc0Mx2DTYDk919M3AnUAP81N3XufuzwHPAJwo8lpQ4JRUpCjPrZmY3m9mrUfXUY0DvqLpnV+Atd18f22V5bN9fRFUu7zVTNbI89nwQsB2wKqrGeRu4mVByIDpnfPtXW/B2BgGfbzhudOwRQL/YNv+JPV8P7BA9HwC8mOe404HjzKw7Ien91d1X5drQ3de6+yXuvjewM1AH3GtmFtss+/3tGov/nljszwNbo+M0FV8+y5vfJMMad98aPW9IRK/H1m+g8XpJmVNSkWL5DjAU+JS79wQOi5YbsArYycy6xbYf0PDE3b8WVbns4O5XNHGOeKP9ckIDdo27944ePaMvYaJzDohtn12F9D4QjyfeCL4cuD123N7u3t3dr2oitvi+H80ZvPtKYD5wEqHq6/YCjoe7vwlcQ0gaO8VWZb+/12IxfDYr/i7R+fPGR+b1bWr5evJfO6kySiqShO3MrEvs0QnoQfgF+nZUtfO9ho3d/VVC9dFlZra9mR0EHJfzyAWKfuE/DFxrZj2jxumPmtnh0SazgG9Z6Jq7I3BJ1iHqgNPMbDszy25zaShRHB01+HeJGqD707wZwJFmNjpq1O5jZsNi638DXETozfX7fAcxsx+Z2T7RMXoA5wJL3X1NbLPvRiXEvQntOzOj5b8AJkftJ5hZXzM7voD4Xgf2KOA91gFfiK7NKKJqTqlOSiqShAcJCaThcRkwBehKGFuyAHgoa58xwEGExurLCV+AG9sYxxcJjeTPERqj76KxiuqXwJ8I3XKfZNsv8O8SfrGvBb5PrG3D3ZcTOgVMBFYTft1fSAH/f9x9GaHt5TvAW4Qv4Hj7wT1E1VNZ1YHZukXbvg28FO3zuaxtHgWWAo8A17j7w9HynxLarB42s3WEf49PFRDfrcBeUbXZvU3E9j+EHwVvE/5dm9pWKpzpJl1SCsxsJvCCu3+v2Y2TOd9g4GVgu7THWpjZi8A5sV5tLd1/MCXyXkRUUpFUROM0PhpVU40ilATuTTmsdmdmJxPaKP6SdiwiSUhtRL2ZDSDUJ+9M+E811d1/GtW/zwQGA68Ao919bVpxStHsQqiC6gOsAM5193+mG1L7MrO5wF7AmVG3aJGyl1r1l5n1A/q5+5NRw+MiwgCtsYTupleZ2SXAju5+cSpBiohIi6RW/eXuq9z9yej5OkLf+d0I1SC/jjb7NSHRiIhIGSiJhvqoofExYB9gmbv3jpYbsLbhddY+4wgz19K9e/fhH//4x9sr3Iq2eM1iAIb2GZpyJCJSbIsWLXrT3fs2v2XhUk8qZrYDoSvkZHf/vZm9HU8iZrbW3Xds6hi1tbW+cOHCIkdaHUZOGwnA3LFzU41DRIrPzBa5e22Sx0y195eZbQfcDcxw94ZxA69H7S0N7S5vpBWfiIi0TJq9v4wwuOp5d/9JbNV9hGnOr4r+/iGF8KrWpYddmnYIIlLG0rxJ1yGE+Y7+ZWZ10bKJhGQyy8zOJkyKNzqd8KrTkXu0x00cRaRSpZZUounOLc/qI9ozFmlU9586AIbtMizVOESkPOl2wpJh/EPjATXUi0jraJoWERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZLjiiKbu3isi0jQlFclw8ICD0w5BRMqYqr8kw7zl85i3fF7aYYhImVJJRTJMfGQioHEqItI6KqmIiEhilFRERCQxSioiIpIYJRUREUmMGuolw5RRU9IOQUTKmJKKZNCU9yLSFqr+kgxzXprDnJfmpB2GiJQplVQkw+WPXQ7oDpAi0joqqYiISGJSTSpm9isze8PMnoktu8zMVppZXfQ4Js0YRUSkcGmXVKYBo3Isv87dh0WPB9s5JhERaaVUk4q7Pwa8lWYMIiKSnFJtqD/PzL4ILAS+4+5r0w6oWtx87M1phyAiZSzt6q9cbgI+CgwDVgHX5trIzMaZ2UIzW7h69ep2DK+yDa0ZytCaoWmHISJlquSSiru/7u5b3b0e+CVwYJ7tprp7rbvX9u3bt32DrGCzF89m9uLZaYchImWq5Kq/zKyfu6+KXp4IPNPU9pKsa+eHguFxQ49LORIRKUepJhUzuwMYCdSY2Qrge8BIMxsGOPAKcE5a8YmISMukmlTc/fQci29t90BERCQRJdemIiIi5UtJRUREElNyDfWSrttPvD3tEESkjCmpSIYBvQakHYKIlLHqqP4aOTI8pFkzn5nJzGdmph2GiJQplVQkw00LbwLg1H1OTTkSESlH1VFSERGRdlH5SWXGDFiwAB59FAYPDq9FRKQoKjupzJgB48bBxo3h9auvhtdKLCIiRVHZSWXSJFi/PnPZ+vVhuYiIJK6yG+qXLWvZcuGu0XelHYKIlLHKLqkMHNiy5UJNtxpqutWkHYaIlKnKTiqTJ0O3bpnLunULyyWnaXXTmFY3Le0wRKRMVXb115gx4e/ZZzc21p9+euNy2UZDQhk7bGyqcYhIearspAIhgfzyl+AOW7fC7Nmwbh306JF2ZCIiFaeyq7/izOAnP4E33oCrrip8vxkzwviWDh2KO86lvc4jIlJE1ZFU5s4NjwMPDCWXa68NY1aa0zDO5dVXQ0mnWONc2vM8SlwiUkTVkVTirrgilFomTGh+20LHuTT3Zd3c+gkT2j6eppAY2iNxiUhVM3dPO4Y267F7Dx/+veFNbnPskGO54OALAPjN5wbxxdnLYP583tzvY5wy65Sc+/zly4/mzLoOPH/hWPY6/Vu8tmAOO42/hC6b6j9c/8H2Hbh67BAeOWhnjpj/OhdOW5KxfnNHY33tJ+i1fQ82Lnmezq+/mfP8Dnz6V4eBGVPfHcmQn0zDly3j9Z22p/7yy9n1axcwe/Fs6n5y0Tbn2NjJuOuo3Xhh95503biVi+/6Dx3ffmebc7zXrw/HXrHPh6/rPRyjg2W+87tG30VNt5oPe4fNHTsXgGvmXcP9S+7PGX9cfPv5K+Zz9+i7AZgwZwLzV8xvct8+3fpkbL9mwxqmHjcVgHGzx7FkzZIm9x/SZ0jG9n269uHKI68E4ORZJ7Nm/Zom9z+o/0EZ2x/U/6APP0sjp41scl/I/OyNnDaSscPGMnbYWN5c/2bez15c9vbfOeg7HDf0OBa/uZhz7j+n2f2zt7/iiCs4eMDBzFs+j4mPTGx2/+ztbz72ZobWDGX24tlcO//aZvfP3j77s9QcffaK99l79MuPLnL32mYP1AKpNtSb2a+AY4E33H2faNlOwExgMPAKMNrd1yZ53juOGcgp89+h2/nnw5//kHe7d3foRO/3tmyzfEtHY6+rp8HV0+jXoQNWX5+xvsumei6ctoQTH3mNj7/8Lp0yV7PdVqfnE0/DIYfwzmEH0vX+P9Fjw9ZtzmPAzAv+wYqdu/CxF+fBps0YsMuajdSPnwT/eJa969dw1B1L6Lw58ySdtzhjHlzR7LXo/p/MD3V2MhERaRF3T+0BHAZ8EngmtuzHwCXR80uAHzV3nOHDh3uL3XKLO7jPnLntuq1b3S+9NKzv0CH8bXh06+Y+fbr7ypXuv/lN5rrsxxFH5F9n1ni+6dPDcePru3Z1/8pX3E88MWyb7zjZ+2Wfo67OfelS9/79c28zaFDGW7/h8Rv8hsdvaPn1FJGyAyz0pL/Xkz5giwMIJZJ4UlkM9Iue9wMWN3eMViWVLVvc99vPffBg9w0bGpe/+6778ceHS3P22e7TpoUvXrPwd/r0zOMMGtT0l3Vz6xtMn57/PPmSipl7fX1h58iVuBoSZMzhtx3uh992eMuvp4iUnWpJKm/Hnlv8ddZ+44CFwMKBAwe27orOmRMuQceO4e+uu7rvtlt4/bOfhS/s5jT3ZV3gl3mTmksahZ5j+nT3Tp0a980Rg5KKSPWouqQSvV7b3DFaVVJxD1+qDQkl/pgwoeXHaao009z6Qo7fXNIo9ByHHOL+mc/kPZWSikj1KEZSSb33l5kNBu73xob6xcBId19lZv2Aue4+tKlj1NbW+sKFC1t+8sGDc49XGTQIXnml5ccrphkzQhfjZcvChJiTJ7duupkTToCXX4annsq5uqFHSUOPGRGpXGaWeO+vUuzqcx/wpej5l4D83bPaqpymxh8zJiS6+vrwt7Xzl9XUwJu5uzCLiLRV2l2K7wBGAjVmtgL4HnAVMMvMzgZeBUYXLYCBA3OXVCp5avyGpOIeBoFmUQlFRNoi1aTi7qfnWXVEuwQweXIYVR4fzV7pU+PX1MCmTfDee5pUU0QSV4rVX+1nzBiYOjW0oZiFv1OnVvbU+DXRDbjyVIFdM+8arpl3TTsGJCKVpLqTCiTXVlEumkkq9y+5v6CpL0REclFSqTbNJBURkbZQUqk2SioiUkRKKtVGSUVEiqjybycsmXr1gk6dYPXqnKu7bte1nQMSkUqipFJtzJocAPnHMX9s54BEpJKo+qsaaVS9iBSJkko1aiKp/PDRH/LDR3/YzgGJSKVQUqlGTSSVR15+hEdefqSdAxKRSqGkUo1U/SUiRaKkUo1qamDNmjCLgIhIgpRUqlFNTUgob7+ddiQiUmHUpbgaxQdA7rRTxqo+3fqkEJCIVAollWoUTypDhmSsunv03SkEJCKVQtVf1UhTtYhIkSipVKMmksqEOROYMGdCOwckIpVC1V/VqImkMn/F/HYORkQqSckmFTN7BVgHbAW2uHttuhFVkG7doEsXVX+JSOJKNqlEPu3u+uZLWjOTSoqItJbaVKqVkoqIFEEpJxUHHjazRWY2LnulmY0zs4VmtnB1nnuDSBPyJJX+PfvTv2f/FAISkUpQytVfI9x9pZl9BPizmb3g7o81rHT3qcBUgNraWk8ryLJVUwOvvrrN4uknTU8hGBGpFCVbUnH3ldHfN4B7gAPTjajCqPpLRIqgJJOKmXU3sx4Nz4GjgGfSjarC1NTA2rWwZUvG4vEPjWf8Q+PTiUlEyl6pVn/tDNxjZhBi/K27P5RuSBWmYazKmjWw884fLq77T1068YhIRSjJpOLuLwGfSDuOihYfABlLKiIibVGS1V/SDjT/l7SnGTNg8GDo0CH8nTEj7YikSJRUqlXfvuGvkoq0VXMJY8YMGDcu9DZ0D3/HjVNiqVBKKtUqT0llSJ8hDOkzJMcOIjk0lzDc4ZJLYP36zP3Wr4dJk9o/Xik6JZVq1Se6GVdWUpl63FSmHjc1hYCkZDVVEpk0KXfC+OpXYf/9YccdYcWK3MddtqxYEUuKSrKhXtpB587Qo4eqv6RpDSWRhsTx6qtw1llwzz2w/fY5B9ACsGED7LorjBgRjrF27bbbDBxYvLglNSqpVLMcAyDHzR7HuNnbzIojlSxfSeS112D8+G1LIps2wd13w/z5YbbrXAYNggcegOuvD49u3TLXd+sGkycn/EakFCipVLMcSWXJmiUsWbMkpYCk3eVqE/nSl0I38912y1+SNYOXX4Zbbmk+YYwZA1OnNla59usXXo8ZU5z3JKlSUqlmmqql8jXVHvLWW7lLIlu3wrp1cO21sMsuuY/bUHXVkDAGDQqJZtCg3AljzBhYuDA8v/RSJZQKpqRSzZRUKluuUshXvgInnwwHHRS6lef79//gAzj/fLjmmsJKIq+8AvX14W++hDFoUCj9/O1vSbw7KVFKKtVMSaWy5eqZ9cEH8PvfhyTz3e/mn02hpSWRQpiFhnsllYqmpFLNamrgvffCF01k2C7DGLbLsPRikpbJVb21bFloHM/XM8sMFiyAyy4LVVxJlUQKMWIELF+u7sQVTEmlmsUnlYxMGTWFKaOmpBOPZGrNSPUzzwyliW99CzrlGTEQ78qbZEmkECNGhL8qrVQsJZVqpvm/0tVU0siVMM4+G849F666Cs47LwwwzK7ecofevWHxYpg2rbCuvEmWRJqz775hfJSSSsXS4MdqliOpnPH7MwDdAbLocg0q/OpX4dlnQ2P2hAnbJoyNG+EXvwjPe/cOAwxzeecdGDIkPCC0rSxbFkookyen2/OqY0c4+GAllQqmpFLNciSVFe/mmVJDkpWrEX3DBrjyyqb3Mwvdfbt3D6WbXO0m2dVbpdZ9d8QI+N//DaPsd9wx7WgkYQVVf5nZTjke2xU7OCkyVX+1v/p6eOihphvRV67MP4XJwIEhoUAodZTjSPURI0I13fz5aUdSvaKq1+EwPOlDF9qm8iSwGlgC/Dt6/oqZPWlmiQcl7WSnncJfJZXiiLeZDBgAZ5wBQ4fCZz8bluUycGCYM+uKKwofqd5ejexJOfDA0IlAVWDpiLfXFUGhSeXPwDHuXuPufYDPAvcDXwduLEpkUnydOoXqByWV5GU3tK9YEZaZhb+/+lXTSaMlI9Xbq5E9Kd26wfDhSirF1FQnkIkTt616TVChbSr/5e5fbXjh7g+b2TXufo6ZdS5GYGY2Cvgp0BG4xd2vKsZ5ql5NDaxe/eHLg/oflGIwFeLdd0OX3lz/cTdtgi98ITzv1KnpRvRSbA9JyogR8POfh84HnYvyFVK9cnUCOfts+N3vQieOIo8RKrSkssrMLjazQdHjIuB1M+sI1CcdVHTcGwglor2A081sr6TPI2wzqv7KI6/kyiObaSyW3L8E588P08L36xfm1col/h+6HEsZSRkxIiSUhvnApHBNlUI2b4YLL8zdc/APfwidPHr0KGp4hSaVLwD9gXujx8BoWUdgdBHiOhBY6u4vufsm4E7g+CKcRzRVS8vlG3R48MEwa1YoiTQ3EWO1O+SQ8FdVYNtq6fils86Co44K87n17AmrVuU+rllI4jfdtG3Va4IKSiru/qa7f9Pd948e57n7anff5O5LixDXbsDy2OsV0bIPmdk4M1toZgtXx6pvpIWyksrJs07m5FknpxhQGchVJ+0eOj6sWgW//GVhEzFWs759Q6cFJZVM+W7PfN11cP/9YdBrrvvbzJkTbpr29a839urMlms+tyIotEtxXzO72sweNLO/NDyKElGB3H2qu9e6e23fvn3TDKW8NSQVdwDWrF/DmvVrmtmpCuT6tbhuXRh8mK9Oeu3axqqFcu2Z1Z5GjIC//z1U/1WTpkoil1yS+/bM558Pxx0Hb7+d/7iPPhrmcpsypeD53BbBora9mW0VWv01A3gB2B34PvAK8ETSwcSsBAbEXvePlknSampCfev776cdSenI9Wtx7Njw6/rcc2G7PEO0squ2qrnNpBCHHhoS8fPPpx1JclozX9uXvwy1teGHx4omBh/Pmwf9++del+Z8blkKTSp93P1WYLO7P+ruZwGfKWJcTwB7mtnuZrY9cBpwXxHPV70aSnlqV2mUa7T7li2ht9aCBXDbbaraSkKlTS6Zr+rq17+Gp56C6dND9VT2Z2vz5rD+4IPD9Du5DBoU2kyuuqr05nPLUmhS2Rz9XWVm/21m+wM7FSkm3H0LcB7wJ+B5YJa7P1us81U1jarPtGxZ/kFh69fDpz6V+i/BirHHHqFDQzkllaZKIrl+jKxfH0q5w4aFzhzvvpv7uFu3wh13hG7WSYxfSlGh41QuN7NewHeA64GewPhiBQXg7g8CDxbzHMI2SeWI3Y9IMZh2NGNG4xiRAQPg1FPhhRfggQfy71Pqc2qVm3K7aVeu8R9f+Qo88khjySSfO+4IMzQfc0zuNrl4IzqU9/gld2/VAxjf2n2TfgwfPtyllZYscQf3229PO5L2M326e7du4X3HHz16uE+c6D5lyrbru3UL+0mypkwJ13f58rQjCaZPdx80yN0s/I3/m/fvv+1npuHRt69716651w0alHn8EvpsAQs94e/jtiSVZUkH09qHkkobvPVW+Bhcd13akSQn3xfDli3uCxa49+qV+z//wIHNH0OStXBhuPZ33pl2JLm/8Lff3v2II9z32Sd/QjFzr68vPGGU0Ger1JLK8qSDae1DSaUNtm5179jRfdIkd3cfNX2Uj5o+KuWg2iDfF0NtrXvv3vm/GBq+HKR9bd7s3r27+3nnpR1J/pKImfvRR+f/MZJdEimRhFGIYiSVttz50dta9SYloEMH6NPnwzaVDZs3sGFznps/lYNcjaWbNsE//wknnRTqtgvplinto1On0KupPdpVcjWyP/ss/OhHoXtzU915H3oIbrih4PEf1dyNvMmGejNbR+7kYUDXokQk7a+SpmrJNzCxvh5uvTU837o1s8EV1CU4TSNGwA9+ECY77NWrOOfI1ch+5pkfDvrlk58M537nnW33bUkjujRdUnH3Hu7eM8ejh7vrrpGVolKSyqxZoUdRLiU0OEyyjBgRkv6CBW07Tq6SyObNYdDgN76Rf2qdFStg0SKVRBLSluovqRTlnlTWrg3/uU89NXyZdOmSub7EBodJlk99Kty7vi1VYLkGHn7xi7DDDmHyylwlEAifnd2iaQX1YyMRSiqSkVSOHXIsxw45NuWAmhH/RbrzzmEQ3cyZ8P3vw+LFcMst+mIoJzvsAPvv33RSyTfo0B2eew6++c1tSyL19WGSxbvuKrwdTT822i7plv80Hur91UYTJ4YeYPX1aUfSvFy9u8zcf/CDtCOTthg/3r1LF/eNG7ddl69H30EHue+8c2E9+kpsfEipoMR6f0mlqKkJjdf5qghKSb5p5xsa4aU81dfDBx+Eqsvs6U8uvjh3j75//AOOPDL82++6a+7j5pruXSXYolJjuzRO1bJ6NSPvPQGAuWPnphZOXnV1+Xt3FfkWqVJEM2aEe9BA5o2nbrstNKKvzDNBuXuYpBHCLYmb69FX6tObVAiVVKT0J5VctSrcY/uTnwx16rlojEn5mjQJNmSNjdq0Cf7yF/jYx2DHHXPvpx59JUlJRUovqcQbZXv3Ds9vvz3cqCjXrVA1xqS8NVXKvP9+uP76kp/uXRqp+ksyk0qeYR7tJnuQ2jvvhO6mV18N3/52WNa9uwagVZKBA3PP8KtBh2VJJRUprZJKrob4rVvhpz9tfK1fpJVl8mQNOqwgKqlIGCew/fbw5puMHjk6vTjc1RBfjVQSqShKKhIaNqMBkF8/4EfpxOAeBrDlo4b4yqaeWRVD1V8SREll/eb1rN+8vvntk1RfH+ZmuuGGcGc8NcSLlK2SSypmdpmZrTSzuuhxTNoxVYUoqRwz4xiOmdGOl7y+Hs49N/Tquvji0NtHXUNFylapVn9d5+7XpB1EVampCYML6dd+56yvh3POCXN1TZwIl18eEomqQkTKVsmVVCQlffu2T++v+BiUnj1DQrn00saEIiJlrVSTynlm9rSZ/crMcg6nNbNxZrbQzBauXr26veOrPDU1sHYtHbcW8Yae2dOTv/8+bLcdfPzjSigiFSKVpGJmc8zsmRyP44GbgI8Cw4BVwLW5juHuU9291t1r+/bt237BV6qaGnBnh/c3F+8cuW71u3lzWC4iFSGVNhV3P7KQ7czsl8D9RQ5H4MMBkGP7H8s7e+SZ8bWtNAZFpOKVXEO9mfVz91XRyxOBZ9KMp2pESeXEvofCsEOTP358KvNsGoMiUjFKsU3lx2b2LzN7Gvg08O20A6oKUVJ5d+VLvLk+wQb7jRvDGJQzzoAhQ6Br18z1GoMiUlFKLqm4+5nuvq+77+fun4uVWqSYoqRy85+u4JRZp7T+OPHeXf37w157wY03wgUXwL/+Fe6boTEoIhWr5Kq/JCV9+gDQa10bGuqzZxhuuLnS//xPmGUYNAZFpMKVXElFUtK1K3TvTq/32pBUcvXuArj33tYfU0TKipKKNKqpaVtJRb27RKqekoo0qqmhd2uTysqVYSBjLurdJVI1lFSkUU0Ne/qOnFt7bsv2W7QIDjwwNL537py5Tr27RKqKkoo0qqmhz/v1nLrPqYXv87vfwaGHhlLKE0/Arbeqd5dIFVNSkUY1NdS/uZrl7yzPvT7eXXjQIDjlFBg9GvbfHx5/HPbdV7d9FalySirSqKaGDuve46xZORJB9mSQy5bB3XfDIYfAI4/ARz7S/vGKSMlRUpFG0QDInrm6FefrLrx8OXTpUuTARKRcKKlIoyip5Byrkq9b8PI8VWUiUpWUVKRRQ1LJ1a24X547Qqq7sIjEKKlIo3wllaefhnXrtt1e3YVFJIuSijSKkspJfQ9vXLZgARx+OPTqBT/+sboLi0iTNKGkNIomldyvY1TV9Ze/wOc+B7vsEnp4DRoEF16YYoAiUupUUpFGs2bhZvj3vhe6CB91FOy+O/z1ryGhiIg0Q0lFgmgcirljAKtXh/Eo3/xm/kZ6EZEsSioS5BqHUl8PV1yRTjwiUpaUVCTQtPUikoBUkoqZfd7MnjWzejOrzVo3wcyWmtliMzs6jfiqUr7xJhqHIiItkFZJ5RngJOCx+EIz2ws4DdgbGAXcaGYd2z+8KjR5chh3EqdxKCLSQqkkFXd/3t0X51h1PHCnu29095eBpcCB7RtdlRozBqZOZcOuH8E1DkVEWqnUxqnsBiyIvV4RLduGmY0DxgEMVBVNMsaMoauSiIi0QdGSipnNAXbJsWqSu/+hrcd396nAVIDa2lpv6/EkqPtPHQDDdhmWahwiUp6KllTc/chW7LYSGBB73T9aJu1k/EPjAZg7dm6qcYhIeSq1LsX3AaeZWWcz2x3YE3g85ZhERKRAaXUpPtHMVgAHAQ+Y2Z8A3P1ZYBbwHPAQ8A1335pGjCIi0nKpNNS7+z3APXnWTQbUj1VEpAyVWvWXiIiUsVLrUiwpu+IIzfUlIq2npCIZDh5wcNohiEgZU/WXZJi3fB7zls9LOwwRKVMqqUiGiY9MBDRORURaRyUVERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZJgyakraIYhIGVNSkQya8l5E2kLVX5JhzktzmPPSnLTDEJEypZKKZLj8scsBOHKP1twOR0SqnUoqIiKSGCUVERFJjJKKiIgkRklFREQSo4Z6yXDzsTenHYKIlLG07lH/eTN71szqzaw2tnywmW0ws7ro8Ys04qtmQ2uGMrRmaNphiEiZSquk8gxwEpDrZ/GL7j6sfcORBrMXzwbguKHHpRyJiJSjVJKKuz8PYGZpnF6acO38awElFRFpnVJsqN/dzP5pZo+a2aFpByMiIoUrWknFzOYAu+RYNcnd/5Bnt1XAQHdfY2bDgXvNbG93fzfH8ccB4wAGDhyYVNgiItIGRUsq7t7ieT7cfSOwMXq+yMxeBIYAC3NsOxWYClBbW+tti1ZERJJQUtVfZtbXzDpGz/cA9gReSjcqEREpVCoN9WZ2InA90Bd4wMzq3P1o4DDgB2a2GagHvubub6URY7W6/cTb0w5BRMpYWr2/7gHuybH8buDu9o9IGgzoNSDtEESkjJVU9Zekb+YzM5n5zMy0wxCRMqVpWiTDTQtvAuDUfU5NORIRKUcqqYiISGKUVEREJDFKKiIikhglFRERSYwa6iXDXaPvSjsEESljSiqSoaZbTdohiEgZU/WXZJhWN41pddPSDkNEypSSimRQUhGRtlBSERGRxCipiIhIYpRUREQkMUoqIiKSGHUplgwPjnkw7RBEpIwpqUiGbtt1SzsEESljqv6SDDc+cSM3PnFj2mGISJlSUpEMs56dxaxnZ6UdhoiUKSUVERFJTCpJxcyuNrMXzOxpM7vHzHrH1k0ws6VmttjMjk4jPhERaZ20Sip/BvZx9/2AJcAEADPbCzgN2BsYBdxoZh1TilFERFoolaTi7g+7+5bo5QKgf/T8eOBOd9/o7i8DS4ED04hRRERarhS6FJ8FzIye70ZIMg1WRMu2YWbjgHHRy41m9kzRIkxODfBm2kEUoMa+bGURJ2VyPVGcSSmHGKF84hya9AGLllTMbA6wS45Vk9z9D9E2k4AtwIyWHt/dpwJTo+MsdPfaNoTbLhRnshRnssohznKIEcorzqSPWbSk4u5HNrXezMYCxwJHuLtHi1cCA2Kb9Y+WiYhIGUir99co4CLgc+6+PrbqPuA0M+tsZrsDewKPpxGjiIi0XFptKj8HOgN/NjOABe7+NXd/1sxmAc8RqsW+4e5bCzje1OKFmijFmSzFmaxyiLMcYoQqjtMaa55ERETaRiPqRUQkMUoqIiKSmJJMKmY2KpqmZamZXZJjfWczmxmt/4eZDY6tyznNS3PHbM84zez/mtkiM/tX9PczsX3mRsesix4fSSnGwWa2IRbHL2L7DI9iX2pmP7OoYSylOMfEYqwzs3ozGxatS/RaFhjnYWb2pJltMbNTstZ9ycz+HT2+FFuexvXMGaeZDTOz+Wb2rIVplE6NrZtmZi/HruewtOKM1m2NxXJfbPnu0WdkafSZ2T6tOM3s01mfzw/M7IRoXRrX83wzey76t33EzAbF1iXz+XT3knoAHYEXgT2A7YGngL2ytvk68Ivo+WnAzOj5XtH2nYHdo+N0LOSY7Rzn/sCu0fN9gJWxfeYCtSVwLQcDz+Q57uPAfwEG/BH4bFpxZm2zL/BiMa5lC+IcDOwH/AY4JbZ8J+Cl6O+O0fMdU7ye+eIcAuwZPd8VWAX0jl5Pi2+b5vWM1r2X57izgNOi578Azk0zzqzPwFtAtxSv56dj5z+Xxv/viX0+S7GkciCw1N1fcvdNwJ2E6Vvijgd+HT2/Czgiyp75pnkp5JjtFqe7/9PdX4uWPwt0NbPObYwn0RjzHdDM+gE93X2Bh0/cb4ATSiTO06N9i6XZON39FXd/GqjP2vdo4M/u/pa7ryXMfzcqreuZL053X+Lu/46evwa8AfRtYzyJx5lP9Jn4DOEzAuEzc0KJxHkK8EfPHEaRpELi/H+x88enyErs81mKSWU3YHnsda6pWj7cxsMcYu8AfZrYt5BjtmeccScDT7r7xtiy26Li8HfbWBXS1hh3N7N/mtmjZnZobPsVzRyzveNscCpwR9aypK5loXG2dN+0rmezzOxAwi/eF2OLJ0dVJ9cl8EOorXF2MbOFZragoUqJ8Jl42xvnFiyZ60koYWd/PtO8nmcTSh5N7dviz2cpJpWqYWZ7Az8CzoktHuPu+wKHRo8z04iNUO0x0N33B84HfmtmPVOKpVlm9ilgvbvH54ArlWtZdqJfqLcDX3b3hl/fE4CPAwcQqkkuTim8BoM8TIXyBWCKmX005Xjyiq7nvsCfYotTu55mdgZQC1yd9LFLMakUMlXLh9uYWSegF7CmiX2LMf1LW+LEzPoD9wBfdPcPfwm6+8ro7zrgt7RtluZWxxhVIa6JYllE+LU6JNq+f2z/1K9lZJtfgQlfy0LjbOm+aV3PvKIfDw8Q5un7cIJXd1/lwUbgNtK9nvF/35cI7Wf7Ez4TvaPPSIuPWYw4I6OBe9x9c8OCtK6nmR0JTCLMaLKxmX1b/vlMqpEoqQdhlP9LhIb2hsamvbO2+QaZjbazoud7k9lQ/xKh8arZY7ZznL2j7U/Kccya6Pl2hHrhr6UUY1+gY/R8j+iDtJPnbrg7Jq1rGb3uEMW3R7GuZaFxxradxrYN9S8TGkF3jJ6ndj2biHN74BFgfI5t+0V/DZgCXJVinDsCnaPnNcC/iRqlgd+R2VD/9bTijC1fAHw67etJSLwvEnXGKMbns9VvoJgP4BjCzbteJPxaAvgBIbMCdIk+OEujNxz/MpkU7beYWC+FXMdMK07gUuB9oC72+AjQHVgEPE1owP8p0Rd7CjGeHMVQBzwJHBc7Zi3wTHTMnxPNzJDiv/lIwlQ/8eMlfi0LjPMAQr3z+4Rfzc/G9j0rin8poVopzeuZM07gDGBz1mdzWLTuL8C/olinAzukGOfBUSxPRX/Pjh1zj+gzsjT6zHRO+d99MOFHT4esY6ZxPecAr8f+be9L+vOpaVpERCQxpdimIiIiZUpJRUREEqOkIiIiiVFSERGRxCipiIhIYpRUpKJkzVxbZ7EZrMudme1vZrdGz8ea2c+z1s81s9om9r/TzPYsdpxS3dK6nbBIsWxw92G5VkRzf5k3TjtSbiYCl7dh/5uAi4CvJhOOyLZUUpGKZuG+MIvN7DeEAVwDzOxCM3simsjv+7FtJ5nZEjP7m5ndYWYXRMs/LAGYWY2ZvRI972hmV8eOdU60fGS0z11m9oKZzWiYzNLMDjCzeWb2lJk9bmY9zOyx+L00ovN/Iut99AD2c/enCnjPn4uV1Bab2cvRqr8CR8amMBFJnD5cUmm6mlld9Pxl4NvAnsCX3H2BmR0VvT6QMO3EfWZ2GGEk9GnAMML/iycJI/KbcjbwjrsfEM0w+3czezhatz9h2qDXgL8Dh5jZ48BM4FR3fyKaY2sDcCswFhhvZkOALjmSR8Oo5rhTzWxE7PXHANz9PuA+ADObBTwaLa83s6XAJwp4byKtoqQilSaj+itqU3nVGydGPCp6/DN6vQMhyfQgTPi3PtrvwzsJNuEoYD9rvNNfr+hYm4DH3X1FdKw6wlQd7wCr3P0JAHd/N1r/O+C7ZnYhYaqMaTnO1Q9YnbVsprufF3uvc+MrzewiwvW4Ibb4DcLNt5RUpCiUVKQavB97bsCV7n5zfAMzG9/E/ltorCruknWsb7p7fDpzzGwkEL8/zlaa+L/m7uvN7M+EGyqNBobn2GxD1rmbFM1E+3ngsKxVXaJjiRSF2lSk2vwJOMvMdgAws90s3Lv+MeAEM+satV8cF9vnFRq/6E/JOta5ZrZddKwhZta9iXMvBvqZ2QHR9j1i7Ru3AD8DnvBw571szxNVbzXHwn3HbwA+7+7ZCWQI21ajiSRGJRWpKu7+sJn9H2B+1Hb+HnCGuz9pZjMJs96+ATwR2+0aYJaZjSPcZ6TBLYRqrSejhvjVNHGrVXffZGanAtebWVdCieFIwr3WF5nZu4T7auTa9wUz62VmPTzcH6YpYwl3QLw3eo+vufsxZrYzoTrsP83sL9JqmqVYJAczu4zwZX9NO51vV8KNpj6er8uzmX0bWOfut7TyHN8G3nX3W1sdqEgzVP0lkjIz+yLwD8L9L5oaQ3MTmW01LfU28Os27C/SLJVUREQkMSqpiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKiIgk5v8D8ZVR1RH7rk8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cross = cross.rebin(0.0050)\n", + "lag, lag_e = cross.time_lag()\n", + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.errorbar(cross.freq, lag, yerr=lag_e, color='r', fmt=\"o-\")\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-cross.df*2)*1/cross.df)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Energy Dependent Impulse Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, stingray an option to simulate light curves and add them to corresponding energy channels.\n", + "\n", + "Below, we analyse the lag-frequency spectrum in such cases. \n", + "\n", + "We define two delta impulse responses with same intensity but varying positions, each applicable on different energy channels (say '3.5-4.5 keV' and '4.5-5.5 keV' energy ranges). " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "delays = [10,20]\n", + "h1 = sim.simple_ir(start=delays[0], width=1)\n", + "h2 = sim.simple_ir(start=delays[1], width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we create two energy channels to simulate light curves for these two impulse responses." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', var, h1)\n", + "sim.simulate_channel('4.5-5.5', var, h2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute cross-spectrum for each channel." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "cross = [Crossspectrum(lc, var).rebin(0.005) for lc in sim.get_channels(['3.5-4.5', '4.5-5.5'])]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate lags." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "lags = [c.time_lag() for c in cross]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cut-off points." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "v_cuts = [1.0/(2*d) for d in delays]\n", + "h_cuts = [lag[int((v_cutoff-0.005*6)*1/0.005)] for lag, v_cut in zip(lags, v_cuts)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag-frequency spectrums." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABZAUlEQVR4nO2dd3gU1frHP286kNBCCdJRQkeaVEVaAAVEpHv1gohYfurFfu0oYrkiKioKNlCQIohSlSYiTYoEpYcSJHRCCyUJIef3x5mFTUjZJLs7m+R8nmeenZ1z5px3zs7Od057jyilMBgMBoPBHfjZbYDBYDAYCg5GVAwGg8HgNoyoGAwGg8FtGFExGAwGg9swomIwGAwGt2FExWAwGAxuw4iKId8iIiNEZLLddhQmTJkbssOIiocQkVgRuSgi55y2j+22KztERInIecveeBFZKiL97bbLk4hINeu6A7KIM0JELqX7PZ/1pp0FHRG5X0R2iEiCiBwVkQUiEubB/LL93Q05xxSmZ+mhlFriyQxEJEApleLmZG9USu0WkTLAbcDHIlJbKfWam/PJb0xXSt2TVQQR8VdKXfaWQQUFEbkVeBPoqpTaJCKlgR42m+Wp/1eBxtRUbEBEBovIShEZLSKnRGSfiNzmFF5CRL4UkcMiclBE3hARf6dzV4nI+yISD4wQkXARmSsiZ0VkvRV/pRX/ExF5L13+c0TkiezsVEqdUEp9CzwMPC8i4Tmw72MROWO9eXbMwbVlVS7VReQ36012MVAm3XW1FJHVInJaRDaLSDunsOUiMtKyLUFEFlmiCbDC+jxt1UBaZVc2TulOFJFPrbfq80B7EblORGaJyHHrGh53il/EOueUiGwTkWdEJM4pXInIDenSf8Ppe3cRibaucbWINHQKixWRp0XkL6vsp4tIiFN4T+vcsyKyR0S6ikhfEdmY7pqeFJGfXLz+70XkiJXfChGp5xSW6X2ZATcBa5RSmwCUUieVUpOUUglO5fCZiCy2fr/fRKSqU161rbCTIrJTRPqlK/P3RGS/ZedKESlCBr+7ZPz/StPkJ+lqONa99Yb1e5yzrjlcRKY4XXs1V8qzQKCUMpsHNiAW6JRJ2GDgEvAA4I9+aB8CxAqfDYwHigHlgHXAg07npgCPoWuaRYBp1lYUqAscAFZa8ZtbaftZ38sAF4DymdimgBvSHQu08rwtB/Y9YZ3XHzgDlHbx3KzKZQ0wBggG2gIJwGQrrCIQD9yOflmKsr6XtcKXA3uASKvMlgNvW2HVrOsOyOL3HOHIK93xidb1tbHyLQpsBF4BgoAawF6gixX/beB3oDRQGdgCxGVW/lb6b1j7jYFjQAurfAah77Ngp3tuHXCdlf524CGn++CMVS5+VnnVtsryJFDHKc9NQG9XygEYAoRZ6XwARDuFZXpfZpDuLcBF4DWrLIMzKOcE63cPBj7k6j1ezEr7PvR/ojFwAqhrhX9i/d4VrXJrbaVxze9Oxv+v9Nec5jwr7d3A9UAJYBuwC+hkpfEN8LXdzySvPfvsNqCgbtYf/Bxw2ml7wAobDOx2ilvUukkjgPJAElDEKXwg8KvTuf84hfmjH8S1nI694fznRT9coqz9R4EFWdh9jahYx48A/3LRvitCYB1bB9zr4rmZlUsV689ezCn8O66KynPAt+ls/gUYZO0vB15yCnsE+Nnav+bhksH1jwCS0/2e16Efdt84xWvh/PtYx553PFTQAtPVKWwYrovKp8DIdGnvBG51uufucQr7H/CZtT8eeD+Ta/sUGGXt1wNOke6hnq4crhFXK6ykZX8JXLgvMzj/NmCuVbbn0C8Q/k7lMM0pbihwGS3M/YHf06U1HngVLaAX0U266fO75ncn3f8ro2tOf551b73oFP4esNDpew+cxLagb6ZPxbPcqTLvUzni2FFKXRAR0H+U0ug3/MPWMdB/jANO5zrvl0W/DWUWDjAJuAdYbH1+mJOLEJFAK5+TQFUX7DuorH+TxX70A9iVczMrlzLAKaXU+XTpVrb2qwJ9RcS5HT4Q+DWjtNG1tdBMLzpjZqh0fSqWfc72VwWuE5HTTsf80bUT0OXgHH9/DvKvCgwSkcecjgVZaTpIf42OsMrAgkzSnQRMFZGX0OI/QymVJCL/Qj+cQT+0b3M+SXSz5SigL/r+SLWCyqDf8LO7L9OglFoILBQRP6A98D1aNB02HHCKe05ETnL1vmqRrswDgG8tW0LQtVRXydLOTDjqtH8xg+85vdfyLUZUfI8D6Lf5MirzDkLnB/Zx9Bt8JXSVG64+aB1MBraIyI1AHeDHHNrU08pjHfohlp19FUVEnISlCjAH164tMw4DpUSkmJOwVOFqWRxA11QeyGG6kLY8c4Pz+QeAfUqpmpnEPYz+fbZa36ukC7+ArqE5iAAcfS4H0DWKUbmw8QC6eeYalFJrRSQZ3QR1t7WhlJoCTMkizbvR90YndC2pBLqWI7h2X2aIUioVWCoiy4D6TkFXzhcRxwvYIevaflNKRaVPyxKoRPS1b06fVWYmpPt+nmt/E0MmmI56H0MpdRhYBLwnIsVFxE9Erhc9Oiaj+JeBH9AdikVFpDbw73Rx4oD16De3WUqpi67YIiKlrbfVT4B3lFLxLtpXDnhcRAJFpC9ayBbk9NrSXcN+YAPwmogEicjNpB0dNBnoISJdRMRfREJEpJ2IVHLhUo+j37JruBA3O9YBCSLynNVB7C8i9UXkJit8BnrQQynLtsfSnR8N3G2d1xVwLpvPgYdEpIVoiolIN3Ft2O2XwH0i0tEq94rWveLgG+Bj4JJSKrPO9PSEoV8S4tEP3TcdAa7cl86IHkQwwCoXEZHm1rWvdYp2u4jcLCJBwEhgrVLqADAPiBSRe617LlBEbhKROpZAfQWMET2Awt/qkA/G9d89GmgrIlVEpAS6OdOQCUZUPMtcSTuvYbaL5/0bXSPYhn7zmwlUyCL+o+i3xCNo4ZiK/rM7MwloYIVnx2YROYfufBwKPKGUeiUH9v0B1ER3lo4C+iil4nN5bc7cje6zOIluL//GEWA9XHoCL6AfFgeAZ3DhHldKXbDsXCV6VFVLF+3JKK3LQHegEbAPXQZfoH8f0B3R+62wRVz7e/wHLZan0X1YPzqlvQE9iOFjdNntRvcBuGLXOnRH9vvoDvvf0M1GDr5F1wpyMrHxG+taDqJ/z7Xpwl25Lx2cQl9bDHDWsuNdq7bk4Dv0734SaIpuykXpEWKdgQHomssR4B10ZzzA08Df6Berk1aYn6u/u1JqMTAd+As9CGNeFmVS6HGMqjEUIETkHSBCKTXI6Vhb9B+1qvLgjy4ig4GhSqmbPZVHQUL0sOfJSilXalSetKMIemRZE6VUjIfyuOa+zMG5E9EDGl5yu2EGt2JqKgUA0WP0Gzo1G9yPHrrrCA9EvwF/4UlBMeRrHgbWu1NQsrsvDQUT2zrqRaQyuvpcHt0xNkEp9aGIjEBXg49bUV9QSmU2asWgCUM3LVyHHnXyHvATgIjUQfdFbEY3fxgMaRCRWHTn+p1uTjrT+9JQcLGt+UtEKgAVlFJ/Wh2NG9E3dT/gnFJqtC2GGQwGgyHX2FZTsUYCHbb2E0RkO3rGq8FgMBjyKT7RUS/aL84K9OiTJ9EjWs6im22eUkqdyuCcYejZyBQrVqxp7dq100e5wtmks8TEx1CrTC1Cg+yZg7QzficAtcJr2ZK/y+zUdlLLx+00GAx5ZuPGjSeUUmXdmabtomJNYvoNPanrBxEpjx6GqdBj0SsopYZklUazZs3Uhg0bMg3fc3IPN3x0A1/e8SVDGmeZlMdoN7EdAMsHL7clf5dp105/Ll9upxUGg8ELiMhGpVQzd6Zp6+gva1TSLGCKUuoHAKXUUaXUZWvS0udoR3h5omrJqgT6BRIT75GRkgaDwWCwsHP0l6Bn+W5XSo1xOl7B6m8B6IX24ponAvwCqFGqBjEn7ROVl9rmk+H1L+UTOw0Gg09ip++vNmjndX+LSLR17AVgoIg0Qjd/xQIPuiOzmuE12RW/K/uIHqJTjU625Z0jOuUTOw0Gg09i5+ivleix8enxyJyUyNKRLN27lFSVip94v9Uv+kg0AI0iGnk97xwRHa0/GzWy0wqDwZBPKTReimuG1+RiykUOJRyiUnHve8QY/vNwIB901A8frj9NR73BYMgFhcZNS83S2hO5nU1gBoPBUNApNKISGR4JYEaAGQwGgwcpNKJSsXhFQgJCbB0BZjAYDAWdQiMqfuLHDaVvMM1fBoPB4EEKTUc96Cawbce32ZL3mx3fzD6SL/BmPrHTYDD4JIVKVGqWrsncnXO5nHoZfz9/r+bdunJrr+aXa1rnEzsNBoNPUmiav0CLyqXUS+w/s9/rea8+sJrVB1Z7Pd8cs3q13gwGgyEXFKqaivMIsBqlang17xeWvgDkg3kqL2g7zTwVg8GQGwpXTSVcz1UxI8AMBoPBMxQqUSlfrDyhQaFmBJjBYDB4iELV/CUiRIZH5qmmcuHSBdYdXMfqA6spFliMqOujqFOmDtrpssFgMBRuCpWogO6s33Ao8wW90hN/IZ5VB1bx+/7fWXlgJRsPbeRS6qU0ca4Lu46oGlFE1YiiU41OlA8t726zDQaDIV9g+8qP7iCsephq+mrTLON0j+zO062f5uVlL/PG72/weY/PGdpkKCcunKDPjD5p4iZfTmb/6f2cTjzNhZQLAPiLPy0rtaRphaYsi13GCze/QOvKrfn2r28Z+8dYTiWeIiU1BYBigcUoVaQUZYuWpXhwcQB61e7FrdVupUhAER6c9yBvdnyT1pVbs/rA6iud+FmRPv747uOpVaYWc3fO5b0172V7fvr4M/vNpEzRMkyMnsjE6IlXI547pz9D0y67nD6+Y8DB6NWjmbdrXrb5O8dfE7eGWf1mAfD8kudZE7cmy3PDi4aniR9/MZ4JPSYAMGzusGybMyPDI9PEDy8Szlud3gKg94zexF+Iz/L8VpVapYnfqlIrnm79NHB1Rc+scNx7jviDGw1mcKPBGd57GZE+/lOtnqJHrR7sPLGTB+dlvzJE+vg+e+9lgrn3PHfv/Xbfb25f+bHQ1VQcI8COnz+eYfix88eIiY/hsrpMqZBSlA8tT4ngEjxy0yM80PQBTlw4weajmwkNCqVqyar0rduXJXuXAJCQnMCpi6c4lXiKg2cPEnc2jluq3IKf+FGjVA0aRTRi54mdXrvWXJFOTAwGgyEn2FZTEZHKwDdAefSCXBOUUh+KSGlgOlANvUhXP6XUqazSym6NemfWxq2l1ZetmDtwLt0ju185Hn8hnkcWPMKMrTNoWaklk+6cdEWAcsO49eP4vwX/x+GnDhMRGnFFeHx+sa4l2k6zWJfBUPDxxBr1dtZUUoCnlFJ/ikgYsFFEFgODgaVKqbdF5L/Af4Hn3JVpRi7w5++az9C5Q4m/EM+oDqN4ts2zBPjlrWjCgsIAOJesm5PeWPEGkA9E5Q1tpxEVg8GQG+xc+fEwcNjaTxCR7UBFoCfQzoo2CViOG0UlvGg4pYuUJiY+hrNJZ3nylyf5ctOXNCjXgJ//9TM3RtzolnxCg3QzkkNUDAaDoTDgE30qIlINaAz8AZS3BAfgCLp5zK3ULF2TZbHLuPGzG/nnzD/8t81/GdFuBMEBwW7LIyw4bU3FYDAYCgO2T34UkVBgFjBcKXXWOUzpDp8MO31EZJiIbBCRDcePZ9zpnhmR4ZHsit9FgF8Av9/3O291esutggKmpmIwGAonttZURCQQLShTlFI/WIePikgFpdRhEakAHMvoXKXUBGAC6I76nOQ7vOVw6pSpw+MtHqdYULE8XEHmGFExGAyFEdtERfQU9C+B7UqpMU5Bc4BBwNvW50/uzrtJhSY0qdDE3cmmIb2ojO8+3qP5uY3x+cROg8Hgk9hZU2kD3Av8LSLR1rEX0GIyQ0TuB/YD/ewxL284RCUhKQGAWmVq2WmO69TKJ3YaDAafxM7RXyuBzBxmdfSmLZ4gfU1l7s65APSo1cM2m1xirraTHj5up8Fg8El8YvRXQSTYPxh/8b8iKg53Fj4vKu9ZbjeMqBgMhlxg++ivgoqIEBoUajrqDQZDocKIigcJCw4zomIwGAoVRlQ8SGhQKOcuGVExGAyFByMqHsQ0fxkMhsKG6aj3IM6i8m2vb222xkW+zSd2GgwGn8SIigcJDQrl4NmDAFQuUdlma1ykcj6x02Aw+CSm+cuDONdUpm+ZzvQt0222yAWmT9ebwWAw5AJTU/EgoYFXReXTDZ8C0L9+fztNyp5PtZ3093E7DQaDT2JqKh7EdNQbDIbCRsEUFaUgMdFuK66Iil1LNhsMBoO3KXiikpwMVarAqFF2W0JYcBgKxcWUi3abYjAYDF6h4IlKUJAewbR4sd2WmDVVDAZDoaNgdtR36qRrKqdOQalStpnhLCoz+820zY4cMTOf2GkwGHySgldTAYiKgtRUWL7cVjOcRaVM0TKUKVrGVntcokwZvRkMBkMuKJii0rIlhIba3gTmvFDXxOiJTIyeaKs9LjFxot4MBoMhF9gqKiLylYgcE5EtTsdGiMhBEYm2tttznHBgILRr5zOici75nBEVg8FQKLC7pjIR6JrB8feVUo2sbUGuUu7UCXbvhtjYPJiXN0xHvcFgKGzYKipKqRXASY8kHhWlP22srRhRMRgMhQ27ayqZ8aiI/GU1j2U4fEtEhonIBhHZcPz48Wsj1KkD110HS5Z42tZMCQsKA4yoGAyGwoMvisqnwPVAI+Aw8F5GkZRSE5RSzZRSzcqWLXttBBFdW1m6VI8EswFTUzEYDIUNn5unopQ66tgXkc+BeblOrFMnmDQJNm2Cpk3dYV6OCAkIwU/8OJd8jgX/yl3XkNdZkE/sNBgMPonP1VREpILT117AlsziZkunTvrTpn4VEbni/6toYFGKBha1xY4cUbSo3gwGgyEX2D2keCqwBqglInEicj/wPxH5W0T+AtoDT+Q6g4gIaNDA1n6V0KBQEpITGLd+HOPWj7PNDpcZN05vBoPBkAtsbf5SSg3M4PCXbs0kKgo++QQuXoQiRdyatCs4aiozts4A4JGbHvG6DTlihraTR3zcToPB4JP4XPOX2+nUCZKS4PffbcnerKliMBgKEwVfVNq21Z6LbepXMaJiMBgKEwVfVIoVg9atbROVsKAwIyoGg6HQUPBFBXS/yubNcOyY17M2NRWDwVCYKByi4hhavHSp17N2iMrywctZPni51/PPMcuX275kgMFgyL8UDlFp2lQv1mVDE5ipqRgMhsJE4RAVf3/o0EGLilJezdoxT+XdVe8yevVor+adK0aP1pvBYDDkgsIhKqD7VeLiYNcur2YbGhRKqkpl7q65zNuVe48zXmPePL0ZDAZDLig8omKTyxaHU8nLqZe9mq/BYDDYQeERleuvh+rV7RMVZUTFYDAUfAqPqIBuAvv1V7h0yWtZOtZUMTUVg8FQGCh8opKQAOvWeS1LR00lwC+AIoHe9z2WY4oUscVHmsFgKBj43HoqHqV9e71415Il0KZNzs69eFF39B84oLe4OP3wrV1brzJZtSr4XavRDlF5vf3rRF0flbM8ExPh8mXtFcBbLFzovbwMBkOBo3CJSni4nrOyeDG8+mrm8f76CyZOhD17rorIiRNZpx0SArVqaZFxCE3duoSWDgFysPpjfDzMnw8//gi//KKFpW5daNHi6lavnh4mnRVK6VrZ4cNQoQIUL+5a/gaDwZAHRHl53oYnaBYWpjZkt7Jj9+7w9NPwwgvw1lt6zZCHH9Zi0aePjnPypK6BnDqlazRFi0JwsN5atYKePfXD+a234NlnoV07WLQIRoyACxeubomJV7LdEy7c8JjirpMRNKrRipevHwLvvqvTaN0aVq+GJ5/Udpw4AWfO6BODgqBMGQgMhLNnISVFiwToGlHTprrmlZwMc+dqT8zJyWk/nZdRrlkTbr1Vi9/atXrYcPnyWjwnTrwab/9+/Vm1atrymzlT2+OI75h1P3q0a0OQneOvWQOzZunvzz+vv2dFeHja+PHxMGGC/j5sWPbDxCMj08YPD9flD9C7t04vK1q1Shu/VSt9L4G+B7LDce854g8erDfney8r0sd/6ino0QN27oQHH8z+/PTx33zz6r33wgvZn58+/vjx+gVq7lx4L8PVvtOSPn76eyk7zL13Nb6b7z357beNSqlm2SfkOrbWVETkK6A7cEwpVd86VhqYDlQDYoF+SqlTbss0Kkr/SDt26O9JSXDkiBaT8+f1w7x6dbjuOghwKp4ePeDf/9Y/RpEiOl54ODRpomsCzqSm6uayc+cIvXwGOMzfHCE+ejYvD5+tReGhh6BlSz1wYPdufV7RolCliv4DhYWlTXPUKChXDiZPhi+/1ML1/vtXBx2IaPELCoLQUG1bUJDeLl7UC5bNmqUFE/RouJYt9bUkJFzNzxGeXlQMBoPBBWytqYhIW+Ac8I2TqPwPOKmUeltE/guUUko9l1U6zZo1Uxs2bHAt06Qk7bKlb1/dTDV2rBaVBg30G93AgfpB7CbOJ58n9K1QapSsTuXAMiwPeww2boQNG2DLFp3vnXfqWtANN+Qs8aQkiI2FsmX1NYlkHV8piInRNZU//tCfmzdrwYmL03Ecbz/G/5fBUOARkYJVU1FKrRCRaukO9wTaWfuTgOVAlqKSI4KD9Ror33yjv3fuDJMm6RpMdg/lXFA0sCiCcFml6prIvffqzR0EB+tmBVcR0dXxyEhd6wJ4+WXdvHH5cvb9NAaDwZANvthRX14pddjaPwKUzyiSiAwDhgFUqVIlZzk8/7x+sA4dCg0b5sHU7BERQoNCfXeeSkSEbq47cUL3sRgMBkMe8EVRuYJSSolIhu1zSqkJwATQzV85SvjWW/XmJUKDQgnwDyC8aLjX8nSZiAj9eeSIFpVwH7TRYDDkG3xRVI6KSAWl1GERqQB4f2UtNxMaFEqz65rxXe/v7DblWhy1kyNH4MYbr450MRgMhlzgizPq5wCDrP1BwE822uIWfHpNFeeaisFgMOQRW0VFRKYCa4BaIhInIvcDbwNRIhIDdLK+52tCg0LZfHQzzy953m5TriW9qDz/vN4MBoMhF9g9+mtgJkEdvWqIhwkNCuXkxZOsictmopUdhIZqNzBHj+rv2U0GMxgMhizwxeavAodPj/4CXVsxzV8Gg8ENGFHxAqFBob69nkr58kZUDAaDWzCi4gVMTcVgMBQWjKh4gbCgMFJVKpWKV7LblIyJiLjap1Kpkt4MBoMhF/jiPJUCR2hQKArFl3d8abcpGRMRoT00JyVph5UGg8GQS0xNxQs4Fury+bkqx/L9PFODwWAzRlS8gENUnln8jM2WZILzrPrhw/VmMBgMucA0f3kBh6j8fexvmy3JBOcJkNHRtppiMBjyN6am4gUcouKzI8AcouLorDcYDIZcYkTFC1wRFV+dq+Lc/OWDKKVYtm8ZW49ttdsUg8GQDUZUvIDP11SCg/XKkT4mKkop5u6cS/MvmtPxm44MmzfMbpMMBkM2mD4VLxAWrNd/L1usrM2WZIFjVn1kpN2WkKpS+WnHT4xcMZJNRzZRvWR1ml3XjB0ndthtmsFgyAZTU/ECjppK/3r9bbYkCxyz6idM0JsNpKpUZm6bSePxjblrxl0kJCfwdc+v2fnoTu6ufzcnL54k/kK8LbYZDAbXMDUVL+Dz81RAi8qGDbZkrZTi+23f8/pvr7P1+FYiwyP55s5vGNhgIAF++hatGV4TgJiTMb65gqbBYABMTcUrFA0sCsDULVNttiQLHDWVYcP05iWOnjtKz2k96T+zP6kqle/u+o5tj2zj3hvvvSIoAJHhulluV/wur9lmMBhyjs/WVEQkFkgALgMpSqlm9lqUe/zEDz/x49h5H56xXr48nDsH27eDv79Xsvxxx488MPcBEpISeL/L+zzW/DH8/TLOu3rJ6viLvxEVg8HH8VlRsWivlDphtxHuwF/8fXf0F1ydq5KcDEWKeDSrs0ln+c/P/2Fi9EQaRzRm8l2TqVu2bpbnBPoHUqNUDSMqBoOP4+uiUmDw9/P33XkqcFVULl3yqKis2L+Cf8/+NwfOHuDFW17klVtfIcg/yKVzI8MjjagYDD6OL/epKGCRiGwUkWsa+UVkmIhsEJENx48ft8G8nJGvaioeICkliWcWPUO7ie0I8Atg5X0reaPDGy4LCmhRiTkZg1LKIzYaDIa848s1lZuVUgdFpBywWER2KKVWOAKVUhOACQDNmjXz+adMiZAS+IkPa7hDVMqVg4YN3Zr09uPb6T+zP38f+5sHmz7I6M6jr4yIywk1S9fkwqULHEo4RMXiFd1qo8FgcA8+KypKqYPW5zERmQ00B1ZkfZbv0rB8Q05ePGm3GZlTpgyIwM03w+uvuy3ZdQfXcduU2wjwC2DewHl0i+yW67ScR4AZUTEYfBOffHUWkWIiEubYBzoDW+y1Km+EBoX69jyVgAAoW9atrlqW7l1Kh0kdKBlSkjX3r8mToIAZVmww5AdcEhUR6ev0kH9JRH4QkSYetKs8sFJENgPrgPlKqZ89mJ/H+fPwn8SejrXbjKyJiIAFC+Cee/Kc1Ozts7n9u9upXqo6K+9bSY1SNfKcZsXiFSkSUMSIisHgw7ja/PWyUup7EbkZ6AS8C3wKtPCEUUqpvcCNnkjbLhJTEkm+7JlOcLcREQH79kFcXJ6S+WrTVzww9wGaV2zO/LvnU7pIabeY5yd+1Ayvya6TRlQMBl/F1eYvx7ClbsAEpdR8wPVhOwbfH/0FWlTyOPprzJox3D/nfjpW78iSe5e4TVAc1Cxdk5j4GLemWZA4n3yekb+NpPeM3r79EqMUHDxolrAugLhaUzkoIuOBKOAdEQnGR/tjfBV/P38UiuTLyTkaRutVypfPtagopXj515cZ9fso+tTtw+RekwkOCHazgbpf5aedP5GSmpLGjUthJyU1ha82fcWry1/lyDndL7bh0AZaV25ts2Epuva7fXvabccOOHsWKlSAAwe85sXB4Hlc/Vf2A7oCo5VSp0WkAuCjC677Jv6i/zTnks+5/e3dbURE6DfIlJQcnXY59TKPLniUzzZ+xtDGQ/ms+2eZulvJK5HhkaSkphB7OpYbSt/gkTzyE0op5uycw3+X/pcdJ3bQpnIbPuv2GXdOv5NV/6zyjqhcvAixsbB3r9727Lm6HxOT9kWlQgWoUwfuvVef99VXegnrpk09b6fBK7gqKiHAcgARKQ0kAb96yKYCSa3wWuw5tcf3RQWgbtYuU5w5l3yOIT8N4ftt3/Ns62d5u9PbiIiHDEw7Aqywi8qaA2t4ZvEzrDqwilrhtfix/4/cUesORITrS13P6rjV7s1QKfjnH1i7Vm9//gm7d8OhQ2njFSsGNWrADTfA7bdrEalTB2rXhpIlr8Y7ckSLypIlRlQKEK6Kyp9AZeAUIEBJ4IiIHAUeUEpt9Ix5BYdBjQaxYPcC3x5W7BCVu+92KfrfR/+m7/d9iTkZw7tR7/J066c9aJzGWVRur3m7x/PzRbYf385Lv77ED9t/ICI0gvHdxzOk8ZA0zYFtqrRhYcxClFK5F/lz5/RyCGvXwh9/6E/HkPMiRaBxY+jcGa6/XouIYytbVs95yo6ICKhfH5Yuheeey52NBp/DVVFZDMxUSv0CICKdgT7AV8A4PDQKrCCRb9ZUgWznqiil+Dr6ax5d8CglQkqw5N4ltK/e3gsGQniRcEqFlCp0nfWXUy+zIGYBH6//mEV7FhEaFMpr7V7jyVZPZuidoE3lNnyz+Rt2n9x9ZS2aTDlzBnbu1P0cjm37dti1C1JTdZyaNSEqClq21FuDBhAYmPcL69QJPvsMEhMhJCTv6bmRlNQU1h1cx9K9S6lfrj696vSy26R8gaui0lIp9YDji1JqkYiMVkoNszrtDdnwzqp3AB8XlfLl9edbb8GAARlGOZ98nkcWPMI3m7+hY/WOTLlrCuVDy3vNRBEpVMOKT148yVebvmLc+nHsO72P68KuY2T7kQxrOoxyxcplel6bym0AWHVglRaV1FQ9VNxZOBzb4cNXTwwI0AJSpw707asFpEULCPfQwmgdO8IHH8Dq1dChg2fycBGlFLtP7mbx3sUs3ruYZfuWcTbpLKBfZnrU6mEGh7iAqyV0WESeA6ZZ3/sDR0XEH0j1iGUFjPPJ5wEfF5VSpXSzxalTGQZvPbaVvt/3ZceJHYy4dQQvtX3JYx3yWREZHsmK/fnWY49LbD6ymY/WfcSUv6eQmJJI26pteafTO9xZ+04C/bOpIRw8SJ2Vf1OSEFZPeoPBQ8bqmsiFC1fjlCyphaNrV93X4diqV3dPDcRVbr1Vj/xassQWUUlKSWJ+zHx+3v0zi/YsYv+Z/QBUK1mNAfUGEHV9FAlJCQyZM4Rf9/1K1PVRXrcxv+GqqNwNvAr8aH1fZR3zR48MM2SD8+gvn8XPTz9QMhhWPCl6Eo8seITQoFAW37uYjjU62mCgJrJ0JJP/mszFSxcpEujZtV+8zfLY5bzy6yv8/s/vFAkowr0N7+XR5o/SsHwWTj4vXoTff4dfftHb1q34Aa3+BavK/APlO+qHt7N4lCvnWr+HpwkL07WhpUu9mu3WY1v5ctOXfLP5G+IvxlM8uDgdqnfguTbPEXV9FNeXuv5KX1RiSiKP//w4M7bOMKLiAi6JirVQ1mOZBO92nzkFF8cbfUJSgs2WZENQUBpRSb6czMPzHuar6K9oV60d3931HRXCKtho4NXO+t0nd9OgfANbbXEXm49s5r9L/8vPu3+mUvFKvNf5Pe5rdB+lipS6NrJSsHWrFpBFi2DFCt0nERwMt9wCgwZBhw60OT2XhStf4+QPU3x3xCHofpWRI3UNuVQG1+smziefZ/rW6Xzx5xesiVtDoF8gd9a+k6FNhtKheodMm7ZCAkLoWasnP+z4gXHdxmVfUyzkuCQqIlIWeBaohx5eDIBSyt5G0HxEvqipgBaVpKQrXx9f+DhfRX/FS7e8xKvtXvWJNmXnEWD5XVT2ndrHy7++zHd/f0fJkJK8G/Uu/3fT/6WtgZ0+DevW6e2PP/TmWEOobl146CHo0gXatoWiRa+c1iY2AVa+xpoDeXfm6VE6doTXXoPly6GXezvDlVJsPLyRzzd+ztQtU0lITqB2mdq81/k97m14L2WLlXUpnX71+jHl7yks3beUrjd0dauNBQ1XnxBTgOlAd+AhYBDg+ytj+RCdanRi5YGVvi8q1arpUT/Al39+yfiN43muzXOM7DDSXruccMxPiTmZf0eAHT9/nDdWvMGnGz4lwC+A59o8x3M3P0fJwDA9GXDt2qsisnPn1RPr1IFu3fQSBZ07Q+XKmeZx03U34S/+rD6w2rdFpUULPbdlyRK3icruk7uZ+vdUvtvyHTtO7KBIQBH61+/P0MZDaV25dY6HWXe+vjPFg4szY+sMIyrZ4KqohCulvhSR/yilfgN+E5H1njSsoPFqu1f53+r/+b6o3HYbbN7Mun/W8MiCR4iqEcWoDqPstioNYcFhVAitkC+9FZ9LPseYNWN4d/W7XLx0kfsbD+HVCgO5bvXf8PFg/bZ+5oyOXL68fuDee6/+vOkmKFHC5byKBRWjcYXGrDqwyiPX4jaCgnSfTx77VQ6ePcj0rdOZumUqGw5tQBBuqXoLw1sMZ0D9AZQIcb3s0uNoApu9Yzafdf/Md10t+QCuisol6/OwiHQDDgE+3Ejrm/j8mioAEREcC7lM7xl9uC7sOqb2nmrLCK/syG/r1aeqVCZFT+LFZS9y+Nxheoc0YdSeCGp98hMc+1xHqlFDD+Pt0AFat4YqVfLcmd6mchsmbJzApcuXfLsvoFMnvezCgQNZ1r7Sc+LCCWZtm8XULVNZsX8FCkXTCk0ZHTWa/vX7U6l4JbeZ2K9eP77961uW7F1SaCfeuoKrovKGiJQAngI+AooDwz1lVEHktim3kZCUwLlLvi0ql776gn594cTFeFb/aw3hRT00PyGPRIZH8uOOH+02wyWW71rEk3P+j03nd9PyeDCzfoJWcX9qP1hRUbpPoX173fToZtpUbsOHf3zIpiObaF6xudvTdxsdrdGES5fC4MFZRk1ISuCnnT8xdctUFu1ZREpqCrXL1GZEuxEMrD8w+8meuSSqRhQlgkswY+sMIypZ4Oror3nW7hmgPYCIDPeQTVjpdwU+RA9b/kIp9bYn8/M0Fy9dxE/8fL6m8my9Q/xWDb6t8R8aV2hstzmZEhkeyfELxzmdeJqSISXtNuda4uLYPWciz8R8wo8lj1DlNEz9LZD+FTogz92u38xr1fL4sF6HQ8nVB1b7tqjUr6+HOS9ZkqGoJKYksjBmIVO3TGXurrkkpiRSpUQVnmz5JAMbDOTG8jd61OccQHBAML3q9GL29tkkpSR5xAu3xzlzBrZv5/CWNczb65l1D/MylOdJ4AM32ZEGa1LlJ2hX+3HAehGZo5Ta5on8vIW/n79Pi8p3f3/HBzcc5/G1cE/1enabkyWOEWAx8THcVPEmm61BD/PdsgVmzOD0zz8ysvQWPmoBwcWEUeda8ETH5ygyqkua0VneoGLxilQtUZVVB1YxvOVwr+adI/z8dG1l6VJdliKkqlSW7l3Kd1u+44ftP3A26SzlipXj/sb3M7D+QFpVboWfeHcFjn51+zExeiKL9y6me2R3r+btEhcuwP792mv0vn36MzaW1H172XR+DwvKnmZuLVhfEfCQJuZFVDz5WtAc2G2tAImITAN6AvlbVMTfZ+epRB+JZuicodxyqjijF52FDkftNilLapbWTRy74nfZKyrbtsH06TBjBqk7dzChmfBSZ39OBglDqvXijbs+JsLmeT1tqrTh132/5s25pDfo1AmmTuXM5j/4OnEtn6z/hN0nd1M8uDh31bmLgfUHZjmfxBt0rNGRUiGlmLF1hr2i4ljk7M8/024HD16JElccFkf6s6h+URZ3SSQ+8BKC0KJoJKNq3k6P5vfScIT7V4XPy6+j3GbFtVQEDjh9jyOd00oRGQYMA6hSpYoHTXEfvlpTOXnxJHdNv4tSRUoxY1tVAvkjW6eSdlOjVA38xM+ezvqdO2HGDC0mW7eCCP90acl9/67FsuSdtKt2M+93eZ9GEY28b1sGtKnchu/+/o7Y07FUL1XdbnMyZXvTqnx8O0z66VbOk0ybym0Y2X4kd9a+k5AA33A2GeQfRK/avZi5fSaJKYnesevSJb3EwNatsGnTVQFxrJrp5we1a3Oh/c38ViuYRWHHWHRpB9vOxwKXiQgtRrfre9G5Rmc61ejkcV99WYqKiCSQsXgIYKt/DKXUBGACQLNmzTwpcG6he2R3ziWf48SFE3abkobLqZcZOGsgcWfjWHHfCiJSV8LGnT4vKsEBwVQrWc17jiXj4uC77/S2ebPuC7nlFtRHH/FNg1QeX/MyqSqVCd0nMLTJUJ+qETj3q/iaqDi8L49dN5Yle5cQ3FQYeKIcj73wE00quP8t2h30q9ePr6K/4pfdv9Czdk/3JXz+/FUP0c7b7t1XF84LCIB69fRcpSZNSG3SmOWlTjNp5wxmbZvF+UvnCTkXQtuqbRlS41E6X9+Z+uXqe/V+zFJUlFJh3jIkHQfR67c4qGQdy7c83fppYk/HMm3LtOwje5ERy0ewaM8ixncfT8tKLeHplvDDDz4vKuCFYcVnz+qy+PZb+PVX3eTQsiV8+CH07s2xkoEMmzuMn5b/xC1VbmHinROpUaqG5+zJJQ3KNSAsKIxVB1bxr4b/stscAM4mneWrTV8x9o+x7Du9j4phFRnVYRQPTN1F2W9nwRjf9ZTQoXoHShcpzYxtM3InKidOXCsc27frBdAcBAToRc7q1IG77rq60Fm9ehASQkx8DJM2T+LbdXfzz5l/KB5cnIH1B9K3Xl9uqXKLrT7x7Pe5kTHrgZoiUh0tJgPQDizzNb42T2XJ3iWM+n0U9zW6j2FNh10NiIi4Mqvel4ksHcnKf1a6t6/g0iXtT+vbb+Gnn7RPrRtugFdfhXvu0QtSAT9s/4EHv3uQhKQERkeNZnjL4T45nwd0s2vLSi19YhLkP2f+YewfY/n8z885m3SWNpXbpPW+fGwWfDoJ1q/Xc3V8kED/QO6qfRfTtk7L3KmpUnrOTUbiccKptaJIEe3g8+abrwpH3br6PgtKO8HydOJpZmz9hkmbJ7H6wGr8xI+oGlG83fFt7qx9p884V/VJUVFKpYjIo8Av6CHFXymlttpsVp5oN7Ed+8/sJ+lykk9MRDt67ij3/HAPtcvU5qPbProa0K6dXlfcyf+Xr1IzvCbnks9x9PxRIkIjcp+QUvohNnkyTJum/WqFh8P992shadHiytDf04mneXzh43z717c0qdCEb+78hnrlfHukHOh+ldd+e40ziWfyNLM8t6w/uJ4xa8fw/dbvAehbry9PtHzi2mHO7dvrsl6yxGdFBXQT2BebvuDn3T/Tq8zNej2YbduuCseOHXrlTAelS2vBuPPOq+JRp46e4OqX+Qi22NOxzN81n3kx8/h1368kXU6ibtm6vNPpHe5peA/XhV3n+YvNIT4pKgBKqQXAArvtcCcOp5LnL52npH9J2+xIVancM/seziSdYcm/l1AsqFjaCEFBet3x5ORr3pZ8CWfHkrkSlX37tJBMnqxrZsHB0LOnFpIuXa659mX7ljHox0EcTjjMK21f4aW2L9n+cuAqrSu3RqH44+AfdL6+s1fyvJx6mbm75vLemvdY+c9KigcXZ3jL4TzW/DGqlqya8UmlS0OTJlpUXnnFK3bmmIsXab/nMmVUEWaMGUKvL05fDatUSYvFkCFpxcPFJZZTUlNYG7eWebvmMT9mPluObQH0vf7ITY9wd4O7aVqhqU/12aXHZ0WlIOJoHjmXfM7WCXtvr3ybJXuXMKH7BOqXq39tBMfD9Ngx/SfxUZxFpW3Vtq6ddPKkHrk1eTKsspqD2rXTa6T37p2hb62klCReWvYSo9eMplZ4Ldbcv8Y35sbkgJaVWuInfqz6Z5XHReVM4hkmRk/ko3UfsefUHqqWqMqYzmO4v8n9FA8unn0CnTrBe+/pN/3Qa5dK9jqXL2snn4sXa7FbuZKApCR63+HH5BuTuDDyFYp27KoncIblvBs6MSWR+bvmM3vHbBbuXsjJiycJ8AugbdW2jOk8hm6R3a7c6/kBIypexBfc36/6ZxWv/PoK/ev1Z2iToRlHcqz8d+SIT4tK5eKVCfYPzr6zPiVFrz3y5Zcwb57uN6lbVy+bfPfdugkiE7Yf387dP9xN9JFoHmr6EO91eY+igd6dwOgOwoLDaFi+oUf7VXbF7+KjPz5i4uaJnEs+R+vKrXmz45vcVeeunM0t6dQJ3nlHLzx2220es/caHHM/tmxJu23bphdCA2jYEP7v/yAqin5VLzN+RncW3tWQ3nVb5SirVJXKiv0rmPzXZGZum8mZpDOUKVqGHpE96B7ZXbuEsaGZ0h0YUfEidi/UFX8hnoGzBlKtZDUm9JiQeRXaUVM56tsTIP39/Lmh9A2Zi8q+ffDVV/D11/phUa4cPPaYbt5q1CjL5gilFJ9u+JSnFj1FaFAocwbMoUetHp65EC/RpnIbJkZPJCU1xW0TCFNVKov2LGLsH2NZuHshgX6BDKg/gMdbPE6z65rl0tA2uilyyRLPisqhQ/Dbb1q8/vpLC4jDQzRo32z16+v1apo10zP+y1+d49E2NYVyxcoxY9sMetft7VKWfx39i8l/TWbqlqnEnY0jNCiUu+rcxT0N7qF99fY+sV5RXsn/V5BP6FevH7vid7Hl2BZbaipKKYbMGcKRc0dYff/qzJsh+vXTTUSbNuWbYcU7453WG0lKgh9/hC++0A8lPz+9DvtHH0H37i6tv37s/DGG/DSE+THz6XpDV77u+XXeBgL4CG0qt+GT9Z/w99G/8+zXLTElkS///JKP1n3EzvidRIRG8Fq71xjWdFjey6pIES0sS5bkLZ30HDyolxb47Tf9GWOtx1O8uH7J+Ne/tIjUr6+H7pbO2hF7gF8Avev0ZtLmSZxPPn9t36TFnpN7+H7b90z5ewpbjm0hwC+Arjd05d2od7mj1h35suabJUqpfL81bdpU5Qc2HNygGIGas2OO1/P+YM0HihGo99e8n33kixeVAqXeeMPjduWVZxc9q4JGBqmUg3FKDR+uVHi4tr1qVaVef12pf/7JUXrzd81X5d4tp4JHBquxa8eq1NRUzxhuA7GnYhUjUB/98VGe0pm3c566/sPrFSNQN024SU3ePFklpSS5yUqLN9/Uv+PRo7lP4+hRpb77TqmhQ5W64QadHihVooRSPXoo9d57Sm3YoFRKSq6z+HXfr4oRqOlbpqc5HhMfo95c8aZq/FljxQgUI1CtvmilPln3iTp+/njur8nNABuUm5/HpqbiJS5cumBbn8qGQxt4ZvEz9IjswX9a/CfryBcu6M8SJfJNTSX5cjL/tKlH9YMX9JDNoUN1u3wWQzXTk3w5mWcXP8uHf3xIw/INWfrvpRkPYsjHVClRhYphFVl1YBWPNn80x+fvPbWX4T8PZ+6uudQuU5tF9ywi6vooD1iK/v1eeAGWLYMBA1w758IFWLlSd6gvXqw9HwCULKmXWn7kET0oo2FD8HfPnKJbqtxC+WLlmbF1Bo0iGvH91u/5ftv3bD6q825RsQWjo0bTp26fzEe8FTCMqHiJ26fcTtJlPffDm6JyNuksA2YOoHxoeb7u+XX2QxFvt9aJiIjw+T4V4uOJ/Pg7qAq76pan+sKf9ESyHBJ3No6+3/dlbdxaHm/+OO9EveMzvqbciYjQpkobVv2Ts876i5cu8s6qd3h75dsE+AXwv07/4z8t/+PZ1Q+bNNFisGRJ5qKSmKhHZS1frkVk1Srd/BkYqJvPRo3S69U0aeI2EUmPv58/fer24ZP1nzBr+ywAWlVqxZjOY+hdtzdVSuQPv4TuxIiKF7GjpvLQvIeIPR3L8sHLc7bgVkSEb9dU5s+HoUOJTDwBw2HXSw/TJReCsnjPYu7+4W4SUxKZ0WcGfev1db+tPkSbym2YsXUGB84coHKJrFdYVEoxd9dchv88nH2n9zGg/gBGR42mYvGKnjfU319PhFy8WDdaXboEf/8NGzZc3bZsueoTq0GDK6OyuOUWvea9l3is+WPEnY2jXbV29K7TO9tyLegYUfEizvNUvMGCmAVM3TKV19q9xs1Vbs7ZyRER2hOqr3H2LDzxhB7V1bAh5SYtpPjPt7Lr1J4cJZOqUhm1YhSvLn+VumXrMqvfLGqVqeUho30HZ+eS/Uv0zzTervhdPPHLEyyIWUDdsnVZ9u9ltK/e3ltmajp1gtmzdU1j2zY9GRd0B3qzZvDss/qzVSt9v9pErTK1+HHAj7bl72sYUfEighASEOIVUUlMSeTxhY9TK7wW/735vzlPwBdrKsuWwX33aY/BL7wAr7yCBAdTc11NYk7GuJxM/IV47p19Lwt3L+SehvfwWbfPMh25U9C4sfyNFA0syqoDq+hf/1pR2XR4E2+tfIuZ22YSGhTKmM5jeLT5o/Z4DrjjDj1qLzwchg/XAtKsmV522YdnlBd2jKh4mdCgUBKSPT9PZfTq0ew5tYdF9yzKXdt3+fKQkKA7P728WuE1bNsGo0fr+SaRkdrPUoury+tEhkeyNm6tS0mtP7iePt/34ci5I3za7VMebPqgT7u8cDeB/oG0qNgizSRIpRQr9q/grZVv8cueXygeXJzn2jzH8JbDPb72RpZUqqT9aBnyFUZUvMTgRoMBeO231zxeU9l/ej9v/v4mvev0zvnoHMf64MpaouboUahuwxocSulO2jFj4OefISQEnnwSRo68RuQiwyOZtmValuuGK6UYv3E8//n5P1QIrcCqIatyPzkvn9OmchveWvkWCUkJLI9dzlsr32JN3BrKFSvHWx3f4uFmD+fb2dwG+zGi4iUcojJmzRiPi8oTvzyBiDCmy5icn+wQlYUL9eeRI94VlcREmDIFPvhAd8SWL6+F5MEHtVO+DIgMj0Sh2HNqD3XL1r0m/OKlizw8/2EmbZ7EbTfcxre9vs3ZoIUCRuvKrbmsLlPnkzocTDhItZLV+OT2T7iv0X0+4z7dkH8xouIlHCs+enpNlV92/8LsHbMZ1WFU7oYzOtZ6cHR8eqtf5ehR+PRTGDdOu55v2BAmTtTDSYMzrn04cHYsmV5UYk/Hctf0u9h0ZBMjbh3By7e+jJ+4Pn+lINK6cmtKBJegZEhJ3u70NgPqDygQ7kEMvoG5k7xEnxl9AM+KSlJKEo8tfIyapWvyVKuncpdIH20nU6fqT0+LilJ6JNdjj2mnfd266WYux7oaLlCzdE0AYuLTdtYv2rOIgbMGahfsA+fSPbK7283Pj5QIKcGhpw4REhBS6AXW4H587o4SkREiclBEoq3tdrttcieeFJUxa8YQczKGsbeNzbRvwWUc6z94UlQSEuDee/UM+NatdafsvHnQoUOORveUCClBuWLlrjiWVErx1u9v0XVyV64Lu44NwzYYQUlH0cCiRlAMHsFXayrvK6VG222EJ/CUqPxz5h/e+P0N7qx9J11v6Jr3BAMCoEwZz82q37xZO6/cvRtef10PEc7DrOfI8Eh2ndzF2aSzDP5xMLN3zGZA/QF80eOLQjNc2GDwBXxVVAosnhKVpxY9RapK5f0u77svUU/MVVEKJkyA//xHT2JbtgxuvTXPyUaWjmT2jtk0/7w5u0/uZkznMQxvObxQDRc2GHwBX63/Pioif4nIVyJSKqMIIjJMRDaIyIbjx497275c4wlRWbJ3CTO3zeSFm1+gWslq7kvY3aJy9iwMHKjXp7j1Vu23yQ2CArqmcirxFKcST7Hk30t4otUTRlAMBhuwpaYiIkuAjPwqvAh8CowElPX5HjAkfUSl1ARgAkCzZs2Ux4x1Ew83exiAnfE7uZhy0W0LJSVfTubRBY9yfanreabNM3lOj4cfvrofEaHXbncHmzbp5q59++DNN/XyvTnwIpwdA+oPYP+Z/bxwywtUKu67q1UaDAUdW0RFKdXJlXgi8jkwz8PmeAWHS4z31+jmqfPJ590yweyDtR+wM34n8wbOc49n3f5OrjvKl9d9KkrlzS3GpEkwbJju/F++HG7OoR8yF6hasirjuo1ze7oGgyFn+Fzzl4hUcPraC9hily3u5MCZAxw4c4DQoFDAPU4lD549yOu/vU6PyB50i+yW5/QAOHBAb6BrKomJutkqNyil1xofPFh7jo2O9oigGAwG38EXO+r/JyKN0M1fscCDtlrjJu6dfS8ADzbVl+MOUflg7QckpiTyQdcP8pzWFe7VdrJ8edoJkCVyWKtKTYWnn4b339cTGCdNgiAPrr9hMBh8Ap8TFaXUvXbb4EncVVM5n3yeLzZ9Qe+6valRqoY7TLsWZ1GplQO38JcuwZAhMHmyntT4wQdu7T8xGAy+i8+JSkHHXaIy5e8pnE48zePNH3eHWRlT3vJQm5MRYOfP61n5P/+sV957/nnjptxgKEQYUfEy7hAVpRRj/xhLkwpNriy65BEcNRVXJ0DGx2s3K+vXw+ef65nyBoOhUGFExcu4Q1R+jf2Vrce3MrHnRM/OxShdWs+sd6Wm8s8/0KWLHjI8axbceafn7DIYDD6LERUv4XDw6BCVvCzUNfaPsZQtWjbDlfvyzFNOjij9/HQTWHaism2bFpSEBFi0CNq2db9dBoMhX2BExUv0qNUDgNOJp4Hc11T2ndrHnJ1zeOGWF9wzLyU9PXqk/Z7VrHql4Ntv4dFHoVgxWLFCu6w3GAyFFjMkx0vsPLGTnSd2UixQOzfMraiMWz8OP/G7MkPf7ezcqTcHmdVUTp7UEyUHDYLGjeGPP4ygGAwGU1PxFg/O0/NTlg9eTrB/cK5ExTGMuE/dPlQsXtHdJmoetKYFLV+uPyMi9KRFZ5Yu1WJy7Bi8/baej5IHD8MGg6HgYGoqNpBbp5KT/5qshxG38OAw4vREROjRX6mpkJSkBaRTJwgLg7VrtQ8vIygGg8HCiIoN5EZUlFKMXTeWphWa0qpSKw9ZlgEREXD5Mvz2G9x0E7z3HjzyCGzcCE2aeM8Og8GQLzDNXzaQG1FZtm8Z245vY9Kdk7zr0t0xV6VjR+0Qcv58uL1ALcZpMBjciKmp2EBuRGXsOmsYcT0PDCPOishI/dm9O/z9txEUg8GQJaam4iVeavvSlf2cisq+U/uYu3MuL97yYt7Xns+Ol15K+/3GGyEuDq67zrhbMRgM2WJExUt0qnF1CZmw4DCOX3B9tcpP1n+Cv58/DzV7yBOmpaVTBkvdVPTQSDODwVDgMM1fXiL6SDTRR6KBnNVUziWf44s/PTyM2Jno6GuHEBsMBoOLmJqKlxj+83BAz1MJDXRdVCb/NZkzSWc8643YmeHD9adjnorBYDDkAFtqKiLSV0S2ikiqiDRLF/a8iOwWkZ0i0sUO+zyNqzUVpRQfrfuIphWa0rJSSy9YZjAYDHnDruavLcBdwArngyJSFxgA1AO6AuNEpMDNrAsNCuXCpQtcTr2cZTzHMOLHWzzu3WHEBoPBkEtsERWl1Hal1M4MgnoC05RSSUqpfcBuoLl3rfM8Dk/FFy5dyDLeuA3j7BlGbDAYDLnE1zrqKwIHnL7HWceuQUSGicgGEdlw/LjrI6l8AVfWVElMSeTn3T/Tt25fzw8jNhgMBjfhsY56EVkCRGQQ9KJS6qe8pq+UmgBMAGjWrJnKa3qe5s2Ob17Zd0VUfov9jQuXLtAtspvHbUvDm29mH8dgMBgywWOiopTKYMJDthwEKjt9r2Qdy/c4L/vrykJd82PmUySgCO2rtfe4bWlo7cHliQ0GQ4HH15q/5gADRCRYRKoDNYF1NtvkFlYfWM3qA6sBPfkRMq+pKKWYt2seHWt0pEhgEa/ZCMDq1XozGAyGXGDLPBUR6QV8BJQF5otItFKqi1Jqq4jMALYBKcD/KaWyHiKVT3hh6QuANU8lm+avHSd2sO/0Pp5t86zX7LvCC9pOM0/FYDDkBltERSk1G5idSdgoYJR3LfIu2YnK/Jj5ANxe0zhvNBgM+Qtfa/4qFLgiKg3KNaBKiSreNMtgMBjyjBEVG8hKVE4nnmblPyvpHtnd22YZDAZDnjGiYgNZicqiPYtISU2hW00vDyU2GAwGN2AcSnqJD7p+cGU/yD+IQL/ADEVlfsx8ShcpbZ+vrw8+sCdfg8FQIDCi4iUaRTRK8z00KJSEpLTzVFJVKgtjFtL1hq74+9nk8qxRI3vyNRgMBQIjKl5iyd4lwNXFusKCwzh3KW1NZf3B9Ry/cNzepq8l2s4MF+syGNzEpUuXiIuLIzEx0W5TCgUhISFUqlSJwMBAj+dlRMVLvLHiDeCqqGTk/n7ernn4iR9db+jqdfuu8Ia204iKwZPExcURFhZGtWrVjAduD6OUIj4+nri4OKpXr+7x/ExHvU1kJCrzY+bTunJrShcpbZNVBoN3SExMJDw83AiKFxARwsPDvVYrNKJiE+lF5VDCITYd2WRGfRkKDUZQvIc3y9qIik2kF5UFMQsAjKgYDIZ8jREVm0gvKvN2zaNy8crUL1ffRqsMhsJBYmIizZs358Ybb6RevXq8+uqrGcabOHEiZcuWpVGjRjRq1Igvvvgiy3RnzZqFiLBhw4YMw6tVq0aDBg1o1KgRzZo1yzDO4MGDmTlzpkvX0b59e3755Zc0xz744AMefvhhl873BKaj3kuM7z4+zffQwKuikpSSxJK9S/j3jf+2v0lg/Pjs4xgM+Zzg4GCWLVtGaGgoly5d4uabb+a2226jZctr54f179+fjz/+ONs0ExIS+PDDD2nRokWW8X799VfKlCmTa9udGThwINOmTaNLly5Xjk2bNo3//e9/bkk/NxhR8RK1ytRK8925pvLb/t84f+m8bzR91aqVfRyDwZ0MHw7R0e5Ns1GjLCfyigihodqzxaVLl7h06VKeX+hefvllnnvuOd599908pZM+zQMHDvDll18yZswYZsyYQVJSEr169eK1116jT58+vPTSSyQnJxMUFERsbCyHDh3illtucZsNOcU0f3mJuTvnMnfn3Cvfw4LDOJd8jlSVyvxd8wkJCKF9dS8vyJURc+fqzWAo4Fy+fJlGjRpRrlw5oqKiMq1hzJo1i4YNG9KnTx8OHDiQYZw///yTAwcO0K1b1i+GIkLnzp1p2rQpEyZMyDLuM888w/Hjx/n6669ZunQpMTExrFu3jujoaDZu3MiKFSsoXbo0zZs3Z+HChYCupfTr18/WFg9TU/ES7615D4AetXoAV/1/nU8+z7yYeXSo3oGigUVts+8K72k76dHDXjsMhQebXAP5+/sTHR3N6dOn6dWrF1u2bKF+/bR9mj169GDgwIEEBwczfvx4Bg0axLJly9LESU1N5cknn2TixInZ5rly5UoqVqzIsWPHiIqKonbt2rRt2/aaeCNHjqRFixZXhGfRokUsWrSIxo0bA3Du3DliYmJo27btlSawnj17Mm3aNL788stcloh7sKWmIiJ9RWSriKSKSDOn49VE5KKIRFvbZ3bY5w0corLx8Eb2ntrrG01fBkMhpGTJkrRv356ff/75mrDw8HCCg4MBGDp0KBs3bgTgxRdfvNJ5n5CQwJYtW2jXrh3VqlVj7dq13HHHHRl21lesWBGAcuXK0atXL9aty3hh25tuuomNGzdy8uRJQE9gfP7554mOjiY6Oprdu3dz//33A9CzZ0+WLl3Kn3/+yYULF2jatGneCyUP2NX8tQW4C1iRQdgepVQja3vIy3Z5DYeoTN8yHTBDiQ0Gb3L8+HFOnz4NwMWLF1m8eDG1a9e+Jt7hw4ev7M+ZM4c6deoAMGrUqCsP+BIlSnDixAliY2OJjY2lZcuWzJkz55rRXefPnychIeHK/qJFi66pGTno2rUr//3vf+nWrRsJCQl06dKFr776inPndD/swYMHOXbsGAChoaG0b9+eIUOGMHDgwLwVjBuwa+XH7VC4Jz85RGXm9pnUL1efqiWr2myRwVB4OHz4MIMGDeLy5cukpqbSr18/unfXaxi98sorNGvWjDvuuIOxY8cyZ84cAgICKF26tEtNXM4cOnSIoUOHsmDBAo4ePUqvXr0ASElJ4e6776Zr18xdMvXt25eEhATuuOMOFixYwN13302rVq0ALSSTJ0+mXLlygB4F1qtXL6ZNm5aL0nAvopSyL3OR5cDTSqkN1vdqwFZgF3AWeEkp9Xt26TRr1kxlNi7cV2g3sR2g16gH7WAy6tsoAJ5r8xxvd3rbJsvS0a6d/jRr1Bs8yPbt26+89Ru8Q0ZlLiIblVIZT5jJJR6rqYjIEiAig6AXlVI/ZXLaYaCKUipeRJoCP4pIPaXU2QzSHwYMA6hSxfeX3f2217dpvjtqKuBjTV/ffpt9HIPBYMgEj4mKUirHbm6VUklAkrW/UUT2AJHANdUQpdQEYALomkrerPU8lUtUTvPdISqlQkrRqnIrO0zKmMqVs49jMBgMmeBT81REpKyI+Fv7NYCawF57rXIP07dMv9IpDxAWFAZA1xu6EuDnQyO7p0/Xm8FgMOQCW55mItIL+AgoC8wXkWilVBegLfC6iFwCUoGHlFIn7bDR3Xy64VMA+tfvD0D50PI0qdCE+xvfb6dZ1/KptpP+/e21w2Aw5EvsGv01G5idwfFZwCzvW+R9QgJC2Dhso91mGAwGg1vxqeYvg8FgMORvjKgYDIZCy+XLl2ncuPGVOSrpcdX1vavx2rVrR61ata7Ec0xgdGbEiBGMHj3aJfvvu+8+xqfzLP7jjz9y2223uXS+J/ChHmKDwWDwLh9++CF16tTh7NlrZi1cwVXX967GmzJlSqZrqeSUgQMH8tZbb/Hggw9eOTZt2jRbZ9YbUfESM/u5tuiO7bi4OJDB4C6G/zyc6CPRbk2zUUQjPuj6QZZx4uLimD9/Pi+++CJjxoxxa/7u4vPPP+eHH37ghx9+YNasWYwdO5bk5GRatGjBuHHj6NixI4MGDeLw4cNUqFCB8+fPs2TJkmw9IHsS0/zlJcoULUOZou5ZmMejlCmjN4OhgDN8+HD+97//4eeX9WPQFdf3OYl333330ahRI0aOHElWHk0+/vhj5s2bx48//khsbCzTp09n1apVREdH4+/vz5QpU/D396d3797MmDEDgLlz59KuXTuKFy+ezdV7EKVUvt+aNm2qfJ2vN32tvt70td1mZM/XX+vNYPAg27ZtszX/uXPnqocfflgppdSvv/6qunXrlmG8EydOqMTERKWUUp999plq3759nuLFxcUppZQ6e/asioqKUpMmTbomzquvvqoaNGigbr/9dpWcnKyUUuqjjz5SFSpUUDfeeKO68cYbVWRkpHr11VeVUkqtXLlStWzZUimlVM+ePdXMmTMzzDujMgc2KDc/j01NxUtMjJ7IxOiJdpuRPRMn6s1gKMCsWrWKOXPmUK1aNQYMGMCyZcu45557ronniuv7rOKlx+H6PiwsjLvvvjtT1/cNGjQgNjaWuLg4QL/8Dxo06Ipn5J07dzJixAgAWrduzeHDh9m8eTOrV6/OdqEwT2NExWAwFDreeust4uLiiI2NZdq0aXTo0IHJkydfE88V1/dZxXMmJSWFEydOAHoJ43nz5mXq+r5x48aMHz+eO+64g0OHDtGxY0dmzpx5ZbTYyZMn2b9/P6C9vffv359BgwZx2223ERISkosScR9GVAwGg8GJV155hTlz5gAwduxY6tWrx4033sjYsWMzdX2fVTxHbSYpKYkuXbrQsGFDGjVqRMWKFXnggQcytePmm29m9OjRdOvWjXLlyvHGG2/QuXNnGjZsSFRUVBohGzhwIJs3b/aJ9VRsdX3vLvKj63ufxbi+N3gB4/re+3jL9b2pqRgMBoPBbZh5Kl5iwb8W2G2CayzIJ3YaDAafxIiKlygaWNRuE1yjaD6x05DvUUoV6iXFvYk3uzlM85eXGLd+HOPWj7PbjOwZN05vBoMHCQkJIT4+3qsPu8KKUor4+HivjQozNRUvMWOrnvH6yE2P2GxJNlgzc3nEx+005GsqVapEXFwcx48ft9uUQkFISAiVKlXySl5GVAwGg9cJDAykevXqdpth8AC2NH+JyLsiskNE/hKR2SJS0inseRHZLSI7RaSLHfYZDAaDIXfY1aeyGKivlGoI7AKeBxCRusAAoB7QFRjnWLPeYDAYDL6PLaKilFqklEqxvq4FHI19PYFpSqkkpdQ+YDfQ3A4bDQaDwZBzfKFPZQgw3dqviBYZB3HWsWsQkWHAMOtrkohs8ZiF7qOM3Ccn7DbCBcog+cROMHa6j/xgZ36wEfKPnbXcnaDHREVElgARGQS9qJT6yYrzIpACTMlp+kqpCcAEK50N7nY14AmMne7F2Ole8oOd+cFGyF92ujtNj4mKUqpTVuEiMhjoDnRUVwerHwQqO0WrZB0zGAwGQz7ArtFfXYFngTuUUhecguYAA0QkWESqAzWBjBccMBgMBoPPYVefysdAMLDYctOwVin1kFJqq4jMALahm8X+Tyl12YX07FuQOWcYO92LsdO95Ac784ONUIjtLBCu7w0Gg8HgGxjfXwaDwWBwG0ZUDAaDweA2fFJURKSr5aZlt4j8N4PwYBGZboX/ISLVnMIydPOSXZretFNEokRko4j8bX12cDpnuZVmtLWVs8nGaiJy0cmOz5zOaWrZvltExoob/Jfnwc5/OdkYLSKpItLICnNrWbpoZ1sR+VNEUkSkT7qwQSISY22DnI7bUZ4Z2ikijURkjYhsFe1Gqb9T2EQR2edUno3sstMKu+xkyxyn49Wte2S3dc8E2WWniLRPd38misidVpgd5fmkiGyzftulIlLVKcw996dSyqc2wB/YA9QAgoDNQN10cR4BPrP2BwDTrf26VvxgoLqVjr8raXrZzsbAddZ+feCg0znLgWY+UJbVgC2ZpLsOaAkIsBC4zS4708VpAOzxRFnmwM5qQEPgG6CP0/HSwF7rs5S1X8rG8szMzkigprV/HXAYKGl9n+gc187ytMLOZZLuDGCAtf8Z8LCddqa7B04CRW0sz/ZO+T/M1f+72+5PX6ypNAd2K6X2KqWSgWlo9y3O9AQmWfszgY6Wembm5sWVNL1mp1Jqk1LqkHV8K1BERILzaI9bbcwsQRGpABRXSq1V+o77BrjTR+wcaJ3rKbK1UykVq5T6C0hNd24XYLFS6qRS6hTa/11Xu8ozMzuVUruUUjHW/iHgGFA2j/a43c7MsO6JDuh7BPQ9c6eP2NkHWKjSTqNwJ67Y+atT/s4ustx2f/qiqFQEDjh9z8hVy5U4SvsQOwOEZ3GuK2l6005negN/KqWSnI59bVWHX85jU0hebawuIptE5DcRucUpflw2aXrbTgf9ganpjrmrLF21M6fn2lWe2SIizdFvvHucDo+ymk7ed8OLUF7tDBGRDSKy1tGkhL4nTqurvgV9pjzRNez096ed5Xk/uuaR1bk5vj99UVQKDSJSD3gHeNDp8L+UUg2AW6ztXjtsQzd7VFFKNQaeBL4TkeI22ZItItICuKCUcvYB5ytlme+w3lC/Be5TSjnevp8HagM3oZtJnrPJPAdVlXaFcjfwgYhcb7M9mWKVZwPgF6fDtpWniNwDNAPedXfavigqrrhquRJHRAKAEkB8Fud6wv1LXuxERCoBs4F/K6WuvAkqpQ5anwnAd+TNS3OubbSaEOMtWzai31YjrfjOS8jZXpYW17wFurksXbUzp+faVZ6ZYr08zEf76bvi4FUpdVhpkoCvsbc8nX/fvej+s8boe6KkdY/kOE1P2GnRD5itlLrkOGBXeYpIJ+BFtEeTpGzOzfn96a5OIndt6Fn+e9Ed7Y7Opnrp4vwfaTttZ1j79UjbUb8X3XmVbZpetrOkFf+uDNIsY+0HotuFH7LJxrKAv7Vfw7qRSquMO+5ut6ssre9+ln01PFWWrtrpFHci13bU70N3gpay9m0rzyzsDAKWAsMziFvB+hTgA+BtG+0sBQRb+2WAGKxOaeB70nbUP2KXnU7H1wLt7S5PtPDuwRqM4Yn7M9cX4MkNuB29eNce9NsSwOtoZQUIsW6c3dYFOz9MXrTO24nTKIWM0rTLTuAl4DwQ7bSVA4oBG4G/0B34H2I92G2wsbdlQzTwJ9DDKc1mwBYrzY+xPDPY+Ju3Q7v6cU7P7WXpop03odudz6Pfmrc6nTvEsn83ulnJzvLM0E7gHuBSunuzkRW2DPjbsnUyEGqjna0tWzZbn/c7pVnDukd2W/dMsM2/ezX0S49fujTtKM8lwFGn33aOu+9P46bFYDAYDG7DF/tUDAaDwZBPMaJiMBgMBrdhRMVgMBgMbsOIisFgMBjchhEVg8FgMLgNIyqGfE06T7XR4uSx2lcRkWYiMtYN6YiILHN4OhCRc+nCB4vIx1mc311EXs+rHQaDM3YtJ2wwuIuLSqlGGQVYvr5EXXUz4hMopTYAG9yQ1O3AZqXU2VyePx8YKSJvK885OTQUMkxNxVCgEL0OzE4R+QY9YauyiDwjIustx32vOcV9UUR2ichKEZkqIk9bx5eLSDNrv4yIxFr7/iLyrlNaD1rH21nnzBSRHSIyxeG8UkRuEpHVIrJZRNaJSJgVf54VXkxEvrLCNolIT+t4PetYtJVXzQwu91/ATy6Wi3Nt7qKI3Kr0JLXlQPfclLXBkBGmpmLI7xQRkWhrfx/wBFATGKSUWisina3vzdFuJuaISFv0zOcBQCP0/+BP9Az8rLgfOKOUusnyKLtKRBZZYY3RboIOAauANiKyDpgO9FdKrbeaqS6mS/NFYJlSaoiIlATWicgS4CHgQ6XUFNGLTPlnYE8b0jojdS4L0K435gA4anMi0gN4FlhtxdmAdrY5I5trNxhcwoiKIb+TpvnL6lPZr646QuxsbZus76FokQlDO/i7YJ13ZeXALOgMNJSrK/uVsNJKBtYppeKstKLRrjnOAIeVUusBHM1U6TzwdwbucNSS0O5oqgBrgBctx6M/KGuNk3SUVtpZZmZlMRjtYsPxvSbaK217ddWx4TH0YlwGg1swomIoiJx32hfgLaXUeOcIIjI8i/NTuNo0HJIurceUUs7uyxGRdoDzejiXcf2/JUBvpdTOdMe3i8gfQDdggYg8qJRalt5OEfFzpc9IRELRtZEHlFKHnYJCuLb2ZDDkGtOnYijo/AIMsR6qiEhF0WvVrwDuFJEiIhIG9HA6JxZoau33SZfWwyISaKUVKSLFssh7J1BBRG6y4oc5uWR3TvMxpz6YxtZnDWCvUmosut+kYSbp18jy6q/yFfC1Uur3dMcj0X1PBoNbMKJiKNAopRah11JZIyJ/o13ghyml/kT3d2xGu/Ne73TaaLR4bEK7VXfwBbAN+FNEtgDjyaJGovSSrv2Bj0RkM3qJ1pB00UaiXfP/JSJbre+g19/YYjWl1Ucv45qe+WgPzVkiIlXR4jjEqbPe0SzW3krHYHALxkuxwQCIyAjgnFJqtN22uIro1QS/UUpF5fL88sB3SqmO7rXMUJgxNRWDIZ9i9Y18Lrlf5rkK8JQbTTIYTE3FYDAYDO7D1FQMBoPB4DaMqBgMBoPBbRhRMRgMBoPbMKJiMBgMBrdhRMVgMBgMbuP/AV0TwObWCJV1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "energies = ['3.5-4.5 keV', '4.5-5.5 keV']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross[i].freq, lags[i], colors[i], label=energies[i])\n", + " plt.axvline(v_cuts[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cuts[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.ylim(None, 25)\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Power Spectral Models.ipynb.txt b/_sources/notebooks/Simulator/Power Spectral Models.ipynb.txt new file mode 100644 index 000000000..747733347 --- /dev/null +++ b/_sources/notebooks/Simulator/Power Spectral Models.ipynb.txt @@ -0,0 +1,229 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the pre-defined spectral models available for light curve simulation. Specifically, the notebook describes the meaning of different parameters that describe these models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import pyplot from matplotlib for plotting light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power Spectral Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Currently, stingray has two spectral models namely generalized lorenzian function and smooth broken power law function. More models might be added in future, but, as explained in the rest of the section, Astropy models can be used to create most power spectral shapes one might be interested in." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generalized Lorenzian Function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies, the lorenzian function needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = peak centeral frequency\n", + " p[1] = FWHM of the peak (gamma)\n", + " p[2] = peak value at x=x0\n", + " p[3] = power coefficient [n]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Smooth Broken Power Law Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies which need to be passed as a numpy array, smooth broken power law needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = normalization frequency\n", + " p[1] = power law index for f --> zero\n", + " p[2] = power law index for f --> infinity\n", + " p[3] = break frequency" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These models can be imported while simulating lightcurve(s)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACCY0lEQVR4nO29edwsR10u/lR3z8y7nH3JQvaEhBgChBASEATZCcpykaug3gv+uOaq4NWb6xLkCgii6P2pqCBcRFBUBMQtEmQLIYACSQhJyL7v28nJOTnnvMvMdHfdP6q+Vd+qrp7pmXfmnZk3/Xw+53Pememlurv6W08936WElBI1atSoUWP2EU26ATVq1KhRYzSoDXqNGjVqbBDUBr1GjRo1Nghqg16jRo0aGwS1Qa9Ro0aNDYJkUifetWuXPP744yd1+ho1atSYSXz3u999REq5O/TbxAz68ccfjyuuuGJSp69Ro0aNmYQQ4q6y32rJpUaNGjU2CGqDXqNGjRobBLVBr1GjRo0Ngtqg16hRo8YGQW3Qa9SoUWODoDboNWrUqLFBUBv0GjVq1NggqA16Rdy25xC+ddveSTejRo0aPfDIoTZu33No0s2YGGqDXhF/dslteNs/XjPpZtSoUaMHnv/7l+CFf3DppJsxMdQGvSI6WY5uNp2LgVx0zQP4oy/fPOlm1KgxcSx1skk3YaKoDXpF5LlElk+nQX/LJ6/EH198y6SbUaPGhsZDB1Zx5yNLk25GT0yslsusIc1zZPVyfTVqPG5xzu9cDAC4830/MuGWlKNm6BWR5Yql16hRY/rxeF0ruTboFZHlOfLHaSepUWPW0MnysR07HeOx14raoFdEJjG1GnqNGjVctNPxGd19y92xHXutqA16ReS5RG3Pa9SYDXTGaND3LrXHduy1ojboFZHmec3Qa9SYEZQx9Lv2LuH4Cy7C9+99bOBjNmNlLvce6qypbeNEJYMuhHi5EOImIcStQogLAr//kRDiKv3vZiHE/pG3dMLIc9Qaeo0aU4b9yx18+fqHCt+3u+F49K/c8DAA4B+uvHfgc21fbABQ2ajTir4GXQgRA/gggHMBnAbgDUKI0/g2Usr/KaU8Q0p5BoA/BfCPY2jrRJFJWRv0GjWmDOd94rv42U9cgUeXXNZcxtApUi2OxMDn2rHYAjD7DP1sALdKKW+XUnYAfArAq3ts/wYAfzeKxk0T0ilOLKoxu/jM5ffg05ffPelmzCzu2KsSffzIkzINPdXvcDKEQd/cUmk706yhV0ksOgrAPezzvQDOCW0ohDgOwAkAvlry+3kAzgOAY489dqCGThrkFJVSQojBO0ONGiH82j+o+kA/8czZeh+mHaUMXc+yoyEMOuHASjr0vuPGqJ2irwfwWSllUMCSUn5ESnmWlPKs3bt3j/jU4wWx82km6Y/XZIoaNajnE9dqp2ENnd7jeAhSRpni0yy9VjHo9wE4hn0+Wn8XwuuxAeUWgBv06X2YU9y0GjXGAjLL1PcbkTJpZZILvcfDMPRcTj+pq2LQLwdwshDiBCFEE8poX+hvJIQ4FcB2AN8abROnAzQ6T7OOXteaqfF4AxFt6vtJrL7oJ7kMo6HTqz/NM+G+Bl1KmQJ4K4AvArgBwGeklNcJId4thHgV2/T1AD4lp/lq14B8Bhj6NA82NWqME7nn7CyTXNI1RLnIGZBcKlVblFJ+HsDnve/e4X1+1+iaNX2gjjDNRnOaO1qNGuMEvZeNuLfkQoY/GkJD3yiSSw1Mzin6qg98Ez//N9+ttO00DzZrxX37V8aazl1jtlFVcsnWELaY60NOM3GqDXpFGIO+zkbzmnsfw79d+2ClbfMNau+W2ime876v4u3/9P1JN6XGlMJKLsqktbslBn0NYYuGoU8xcaoNekUYp+gUj87T3La14OCqivv9+i17JtySGtMGoeNcSBJtJlpyKSlxa8MWBz8XvV5TbM9rg14V+YQY+iDYqJJLV7+cxL42CjZo/MBEYMIRKQ69pJZLtganaD4DTtGN9YaMEemENPRBMM0dbS0gg97QtCrNcnz40tuwWvLSzgqmddHxWYTvsOwXtjhMtjftO82vWW3QK4KY+TTLGhuVoa9qPTTREQyf/e69eN+/3YgPXnLrJJsFAHjP567Hh75221D7jnNVnUGwf7mD4y+4CP969f2TbsrQ8BP/ygx6qgfRYd4UK7lM73tWG/SKyGbAIbJRDTrFFFNI2opm5qStTxL/cdteXHbH3qH2nZaonesfOAAA+Otv3TXhlgyPzAsrLo1yMSx78HdlUMklzXLsObi+hbxqg14Rk45DrzKQTDNzWAuIoZPkQjHE03C9UkrTN+7dt4w/vfgW3L7nUKV9p8WgU7GpLfONCbdkcJhM0dyVQ8oSi9biC8ul+38/vOdz1+OZ7/0KDrXXj3jUBr0iJp0pulrSQTk2KEE3106xw+TPmgaDnuXSaPy/8U/X4g++fHPlxRO6UyK5HFhRa2Ruma+UZziV8EtzpCX+Cfp6GPeFHTSq7fyv1zwAAOvq69lQBv2Bx1ZwxZ2PjuXYk660ttTu3yk2rOSiXwjS0MmhNQ32MJe2Tv5qR7UzZc8hyyXu278S3HecCxkPgse0Qd86gwyd4Cf9lPm6Mr1hFaP80IFVfIWthiQ9x2s/dPXzXc9i2xvKoL/4Dy7F6z48+tpgeS7NVG5SRmS503/aNg2MdRwok1wG1UHHMfWV0karGJbI6N8fX3wLnvO+r+KeR5cL+06L5PKIXrChlcQTbsnw8AlXmaQySNXU1334P/DfPnFFwZBXfc/I6b2eRGtDGfSlznimNny0H/fDuX3PIXzn9qKTbbnCtW1Uhk5TVnKK6v8GGsCuvHsfTn/nF/Gl66pl3VZFJiVSzfqoPZyh/8etjwAAHnhstbDvtEgu5LiblvYMg8w8A/pcZtDhbNcL9zy64mw7aC0Xup/rGRm3oQz6uMA7x7hZ8Av/4FL8xEe+Xfi+CkPfqAadpAlKLBLGKVr9GFffsx8A8O/awI4KuZRGrw35WWgQChnLaQlbfESvkTktM4ZBQHIG3Uo/2sVH5g2+VeDXcao6M6Tty/T8caA26BWwnga9DFU09I0ruRBDV68vvcSDXK9ZCGGE7QKUdusnnXGG3uiRij4tBvQRzdCnpT3DwK+1VKqhG6Nc/dg2oWg4P1otuUwZ1lNyKcPjW3JxE4tM6dMBLlcY3X2kTVNhi55WyvXbRkTZrcUTj4qhp1mO9/3bjYWV76uCfAuzLLn4MeJl78IwYYupN/MatAheLblMGbiTaz1ZMJ/aPa6dojpske4HlXQZ5EWxY8Bo71EmpXGKhjT0npLLiBjxJTftwYcvvQ3vuvC6ofY32ZUzbNAzj5mXvQv+doMce1CnqL//emBDGnRuCLtZjg99bW11P/jDX08SzDtCFYdv1ffxW7ftNaxyFkDPzn+RBnkW/tqTo0IuUXCK5gHJpZ9BX0uhLkqiGZZhU3s3hOTSxymaes7TKvB9I4M+qlpDXyP4w7zm3sfwe1+4Ed8ORI5UBX9B13O05QPJyoiconftXcIb/vzbuOSm2SlFS05RejFspMJAmguA0WvoksWhBzV0LbmECnFxA8of3b37lvGez11fWRagzYap8c33n0WDbnMSPMd0yaXQcxhkAM08Q14z9HVGSPNeS2U7/oL2eskeDISmrQW8U1bpE1U6GtU/qSLhTAuIofsv7SAvJdm6UZesVZmi5Q65XpIL/46/9L/0qavwF9+8A1ffu79SG+i88RAVBAHbbwZh+PuWOlPVh3yppUxS8WdTlY7ta+iDGvRaQ18bXEM4eGf1wV+2sofzH7c9gmf97sX4/PcfGPo8PtKcM7j+naLKNsR2Z8mBSqvP+IuMDOKcooUQxiK5ZK6R4D6XRkIMvXfYIn92g8pha6nxrc6t2zMAQ3/6e76Ml7//G0OdbxxQyX8yOEvi6KbubKoKigZ9sLZl67iU2IY06I7mna/doOcBxu/j6nse0//vH/o8hfOyJlcxRFWMdGcGDbrP0AfJ9iOIMdV/yVlxrtCqVhQ7HzKW/Lu1PA+zrJrH0KWUeO9F1+PGBw845/RLEdCsZdCom7sD2a+TQsaMOVA+k+6uYxw6odbQ1wg3blz9PyrJpexZ2kUYRndLQwNTL1Rj6BQxMny71oIX/cHXcP5nrhpoH4pyGWTq+9o/+3f80qe+Zz5byWWgU/eFlCyszUtuAXovica/W8u0nAYGn6A/cqiDP//GHfjpj15mvnvnhdfiOe/7Kg6sds13dB/5AHNwtYvr77cDwbQjy2Ul4kXv6TBx6MOuiVBLLmuE48SkULK1MPQKTtGxGPTAwNR7+/7bGIY+AYu+0slw254l/OOV9w20H8Wh+yWMe92TK+/ej3+5qrhgw6ivOsuVU1RN9932AbZC5Gpg0WInymUNs3KawfiSS4hJXqqd4VRhEWCSC+tAP/XR7+AVf/KNoX0Ojy138bWbHh5q30HAy+dWSQC0jvXq1zVMHHpWwWaMAxvSoKeBB7smDV0WBwgf9DKQZupj31IHtzx0cLDzDpihWklymUDBIML37t431H7tdO2SCz3+0Wvo1L/CBp3+DNXn5lPxtQywKzqk1Y9ysVKM/c6GURb7Fh9grrlXSYjD9pO3/t2VeNPHL8feQ+uzwIMaVN3PIXSzwSWX3CMQg8yEgXI9fxzYkAad33DJXrhhwV+8Um1OO1uaJQz9lR/4Jl7yR1/veR6fDWWB6+i1T5WORi/tJBYovvxOZdCP37kw0H4+q+rnnAoZT1M2dcQcnW6jYoj2b/u7+rsdYOh+mV2zj/6/6rqXfuKVOX5W1NZDUTe0W0jnH/a9uXPvEoBqJStGgVzKSsTLhi1WP3YmpXNvq+y7wvJG1nOVsw1p0N3pjvo/XYOnOXeMZnibfpLLvfvCNbE5Us8Q5AGm56MKK+GYpFN0zyEV1pkMKEtxo6n+p+/D17B/uVv4ju7t2Bh6npv2hKbboUEmH3AwLsNKJ9fncPs49UnO0EkCcmPgNUMPhVYG3psqZICITdnKQaNGlnv3syyxaAiGrvR5+7nKvqvs/tYMfY0ISRWjcoqWj/zVNPReL4Mf9RCSjnxkAxoFI7msvz03s5hBs3Z9KaOfU3Tfsq1p4hvZkcehGx8Nk1wCTDHI0LnksoaXntZY9Rk29XkuxTQDmavmHdH7P8YGxG6AtVcxUE1dW33ci3hYDT13jDi18Zzf+Qpe+2f/br73yzRUge9wrbIvZ+jrSZ5md82pHghLLqNxipaN/J0AGwqhm0k0S3R2x6BL38lT0rYKnv3QOSax2DU9g5CDsBd8g96vRCovUrXcybDYSixDH6zJPSGl1W3TLLfLnwWiokKGbdBnV4bVUoNOfbIouYSyVKkP37PPhiOGiFCVd4kGjvVafi3LPSKn/37oQBsPHbA6/jCp/75BrzIW8OuuGfoaEZJcRpZYVDqVK7KzEHpNQdtObY/wwORjUMmFzjGJQl7dvD9Dl1IWfqfL8teNLFPR9i1ZhkmZsf4iwqMAP1bKnHKhqKjQNWcBwx/C9fcfwN9fcU/p78QGfcmEPvPoFypBvOr0NTuLzXOJR5gjM5jhmva/iS1t0FfGbNAl6xu8+4feQ554NAihyaXrcB1kJjzoudaKDWnQQ9OjtQT3V4k2Md7zPg+v1xTUl1xC55VS4qJrHiiUbO3VttD5JxG2SNP3Xgb94/9+J079zS84RqVMcinzizzKJBeKt6bnP8qr5vcwzaxTLiTRhZ57PymPrvMVf/IN/OpnryltR6nkQmta8igX0rbZM8ilNfodNtMAhl+Ygwx6lbLPawEvh+vOeIrbDruuQUGfr7ArJ2BTx9CFEC8XQtwkhLhVCHFByTY/LoS4XghxnRDik6Nt5mAIac/9OuGhdor3/duN4QiJCvoZdfx+D6+XMetkTHcrkVz+4cr78JZPXolPXnZ3oT2DxKFPUnJJc1k6Y/rb79wFAEGDTgY8JG1w7GOSC8Vbm5VqRnjd/N538zxYbZFe7NBz75ff4M/KytpeLrloDT0gubQ98tBi2jqXWYaWXPR5VsZs0Hl2Lt3/RiyC7+mwVVPTPB/YKcpv0VSl/gshYgAfBHAugNMAvEEIcZq3zckA3gbgOVLKJwP45dE3tTpCI3E/hn7ZHXvx4Utvw7X3FbPjQhKOj07FhIVeDJ1ry9LXBPV1UCw7Oa4G7Wg2yqXvpiMHH1TLBjZidI7Gm7v/9yu4xp2iJLmkZp/RXbgjuWTStI/PHGyUS2+GHnp2fldaKimGZQx65hv0ol+HJBdqDw0acw3lxOyk/Rl6lXvYahQZ+mo3w+s+9B+4aoTlMXioKLW7EUfB9zBU46kXTLkIj6FXIfdVbMY4UIWhnw3gVinl7VLKDoBPAXi1t83PAviglHIfAEgpx58i1gPOg6uooXfScoNcpThX1xjKPga9h0PQTwXPAp3oMc0455vqBcz7GIXiOcK1xceBGx88gPM+cYUxzvwZkEzwx1+5BdewqoJLevUcWkWHt7XA0EueKT8PSS79WP0wcApqMYYeepn7hS3263eAe084yiQX66gvMnRbY159P8dKFPABKRjKWEG+NAydDdw3PHAAV9y1D+/8l2v77l8V/J7T7WzEUXA2w6+rSvfn+rwccDCQzrOdIoYO4CgA3CNzr/6O4xQApwgh/l0I8W0hxMtDBxJCnCeEuEIIccWePeOrxx0KG+vXCY0cEOjAoUSRsv3X4hStoqHv1XICGfaho1zWwaD/yt9fjS9d/5ApDsVnSTSw/dFXbsarPmDDysgA8IQU+9KqzyGtmoN/fWCMDJ3fb66hhyS6UGRPmbPdOFe9Z7Q0oEGnaxU9JBc6RxlDD81sKzF0HbbI6/jTPWjpc40CPOKJM/RQ3xiUodv9Bg9bdPwr06ahV0AC4GQAPwzgDQD+XAixzd9ISvkRKeVZUsqzdu/ePaJTFxEywP0ZerkGPkjRn7U4Rdte5EHoJb9HV7jbH5BcJp1Y9OR3fAEf/cbt5jMZg9gs8uBKLqHBkQbeJYehQ7fZvcdl5V7zXGLzXOIcJxuDQee3MM1zy+gCafWh8/aLcvGJ3aGSrMt+iUU8NcJKLu5MrcUMOn8HhpVcaJlALrnQOUmvHwX4akJkRBuxCBKrYTX0LJcD7zvoezkqVLmz9wE4hn0+Wn/HcS+AC6WUXSnlHQBuhjLwE0HIUdgvU9Qw7OBUrb9BJw2932hcOcpF+pmi6u+79mqDHmDovZjDVffsh5SSJRaNtpNJKbHUyfDbF91QaI+NoJBGz13pZoUXgxt4R3JhLIy3veyZcieflVpoBja66+btbXvPjrdFnX9wKc9/nodWwwy9k5Zo6FpG5JJLYqJcSENX35Ohz6V7j8KSS3+DTtfmGnTN0JMRMnRHcrEMvZ/kUsU5Trctzf049P77TmqVsyoG/XIAJwshThBCNAG8HsCF3jb/DMXOIYTYBSXB3I4JISRVdPrEzvaKUqkS7mQYT18NvVccuptd5rMCKaWZXu/Xjr8qUS5fuf4hvOaD/45PX34Pq+XSs5kDI3TZdN9oJZ1ulmPLfAOAmn77Hf0xVgGQr4ZTTCxS35cZ50xKIy34y9Z11/ByXXLjwzjhbRcVdHmgvLa5dcr3CVsM9TtvQCzT0GnfMg2dSy4m6sZj6HSOXEpH8w3d437vEmCvbcVzigLAXGP0FUl5LZ0QQ1elNOzngSQXafX5JBJOX79v/0rYATutkouUMgXwVgBfBHADgM9IKa8TQrxbCPEqvdkXAewVQlwP4BIAvyqlHH4RzzUiJLn0Y+g2SqX31Ljs2bS75QMCx2pFhi5lsbYLb0dIcinrpLc/cggAcOvDh4Zasegd/3ItLr7hoZ7b9HLq8RLGJIUohu7u88ghG51yyNHQ1f+27nhv+STPJRLNOC2DK/eRcHz79r1OrXCOD1xyK6QEbn7woNMuoIdB7zH49JtdUd9N+hj0tMSgh6JcqD3UX6mpdA6/3w0rudAz4k5ROufcCDV0I3PlPGwxgpQuk/advbmUSLMcf3LxLU6Yawj82HFkQyLv27+C57zvq/iTi28J7hP6e9yoNFRKKT8vpTxFSnmSlPK9+rt3SCkv1H9LKeX5UsrTpJRPkVJ+apyNLmmj+Tt0M/t1wqoMvezhmFV1+jlFe8Whe0bBl1x42yg0LzS1e+jAqpP+TpceR2Jgg95OM3ziW3fhzX91BQDg2vseK6x4Q+3zQe0lY9bNJDa3iKEXDToPZVwKSC5+rZReTtFYCMSRsIbca0sIB1a7eP1Hvo1f+Jsrg78n3oLPZZJLKGEo1NZ+DJ3sD0WMlDlFDUMvDVu0Ft1PdAoz9LUbdLo2LrnQrGstGvqeg2286eOXmRkqd0Rzpyjg3tN2mhfW6P3Xa+7HH375Znzgklt7njOX0hn4qD9SCPHXbykGeIyqrMOg2DCZomV6JH3dN8rFW1meo0oVN2IiWWj/PPziF9rghy16MwP+2cahFzvOOb9zMc58z5cL7Y8iEYxyeee/XIvjL7go2CZywi7qMMkf/dNv4jnv+2phu14DITc4xNBXu1mho5cadM8o5n2McyYloogMutuWUPVA//x8yTYOv7BVGUMP1f4JzRD71QiifkyzjRBDl2yg9yOjbGIRO6cx6LrkLhvs1fHcZ9lJc+xf7uDSm63RqhK2SOdZ6do2L3XIKTo8Q7/u/sfwtZv2mNWUMtYnfH8Av452Ny+Uo77hAWWQdyw2nXMstVMcf8FFrE6PJVdxJMz3t+9RJYI3tYolsabZKToTSEtejl5RBhydHgy9SrXFXgydM6dho1w4Q98638DBdopuVi2DjWvZIYP+V9+6q7RNdzyiDPoxO3rXMK8iubgaelaI4uChfYcCUS5SqmdLx+tkedBBledSMXRRZOi9+gEdqqwOuV9LnD9resZJJEoWWJGFtpZJeVSznbann0IGnfZbaNooFdMmk/pvr4feDSu5kKGKzLm5LJXmEu+96Aa88WOX4WbNSId1ilL717KoFx33UDv1Viazz4OeE+/j7TRz5NRcWoa9e3PLOcc3PMadcQ09jsx5bnn4oD52b5l2qjT0WUGZLFI1U9Su5KP+v/Xhg6YUQF8mldspWciwuQa9XHLhzCfL4TEKe+yt2igut7PS6+YwDF3w6yxtBm556KDp7Hc+oljI0dvXYNDJmKacoeeFAYjfmxBDB4ozF5KmHnxs1fkujgQSztCz/v2AjltWMdOXXHhfIOPZiCOvvcXj88/E+oNhdp7eHZJciPmHDHoolJb+9MMWk4hFuZRILrR8Xcig3/PoMl73of/AwwdWnWu99aFDOP6Ci/CFax/ActvNCRgGJqy1k3rRRLY/lUkuvNm5lLh1j/It+e/0pTc/4nzmcehcQ7/lIbX//X0kyPUshLdhDHpZGrWVXPpo6Kk7rf/sd+/Dhy+9De+68Pq+TlFHKglswLNDe2WK+scpMnT1O03xVlM3lrvsPaEO60guQc1WffeSP/q6WV2JVp7ZMte70nKvKA2joecSm1tMcvHkImLoOxabwcQi2s6PIHj/xbfgWb97sXmxcikRCYE4DjH08pcrtMIPR8OTXPh7SgayEYvS2aJvyDIpjT4efB5SsXo6dihske47ZQ63WT2gkF+oqKGr7+mafQ29k+ZmMP/mrY84x+X4yNdvxxV37cNnr7zXaddBbcT/5ar7jaN7FIXyDgXIDN1DE4LJmuknTGW5xD2Pqv7iD6bfv2+/e04pnYGPDvPQQTV4PXRgtdD/nT66josPbBiDXjbFGdQpal4Q7Ym/8q59fSWX0GIBHFUlF/84nFlzDX0TRYp03FjuMibAX9pei0SHYo6plnQ/VhUshsTq20ipCnJRhIMfZ3+onRrZaudisyC5NFlcue+0u1QvRvyQZoe5VIktsRBMXybj1uP+564Tcf9yB2/82GW4VU+tm7GvoRcZejOJjDTkb+Pfw5Qz9BKDnrLZH92Tx1a6JsSTBqhN5GzucIbuzpCA4pJ4fiSNr6GnuSUSdH87WfF4qybDN8zC40iU/jYIqC1L7bQQsltwinpO67JELn8w9Q0wn4EnsbCLpjBn/yPe2qm8m01b6v9MIFQQCeBhi707kU39dwcACS/tN3AczvrCcbu2bb2rLfphVfpl09N4+ryZMfQqkguPZ/an2hyh2QN1xn7RO0GnqLn3uTbqNiNRSveYS+3UDHY7CgZdohFZR5czdc6tRszj1SnKxXeo9mJLNlVefb7pwYO49OY9eNn7vwGASy4BDZ1JLvw3h2h4A2aeS8MmyxKLOAGg/vG03/oSnvZbX3KOv03LcAfb3cL2IYJDceimb8Rk0JWGbgavNC8MDHwVIyOtaPmCZAi/fyWRMMXF1mLg6HxL7bQwg6WPQcnFmxH2ikLx286TlpIosvKqtBnJvCAc/UaoNfQhUJb8YxJK+iyF1fEYOp+u0jEiETaa/EUNMl927p4MPXU7mdEEI+E4SV2G3t+gW6bfW3Lh03WCYbh9po3hzDxrCMgotEqY9rsuvM4MdkdunTMvCK0KRHKHX1cjzXOjedPhchbl4i8w3Wum5ksuNFBkucRyJzVtIIbqhC1mnkEPMPRuJnHZHY/iQ1+7zWxD24eduy4BCLWdiMz2RWXQuSxjC8a5zkDAJvzQ51i4Gjovp+sP6pw8pVrquEnH5pPj1B844ygaDUPXx1VOUfu9G4fuDvBAkaGX+TnoWP5nc58YSchy25/9MWrQonmjwoYx6O76jPZ7E2XQl6HTdmpnbuCpQyuHV3Ffp0piyFAyZx//+959y6UvrJJY1N+NJEKe2xdhsWWTc5ypo9dxyEgYDZ07RUPX0WOZtGEYug3ZsyUHuEHnh/zS9Q9h75Kath61fR4HV1PlkPZYV5oXnaIUcseNt4lD9xl6j37gJ+L4IYDEWjue/gzY2Y1h3Mag222yXOLH/++38HtfuNF8bpoBoNiezGPooZWCDENfUKF3B7lBD5SzoGdC0Sf02Uou6v4msUAzjtDJ7GBsE7rc+//wwTaWOxm2zCW4W4e5Bhn6CDR0en5Lbd8p6iYW8W2BkEG3x/TJiN9FuPyZ6LBFdZ/yYEQNPwYnFeuBDWPQy2SR6sW53DjyrmPQ1TZNL4KB4Hfw4rHDDP25v3cJfvYTV7DjuJILDSRqmmcNGUkufmytf247VVafhQhHaITaSfAZbhmCMxfG0GkW00wiCFEMywRshcUjt84DUGuD0v1ushfH16WJSdOgQQxdRbm47efOMx/+ghD+wOEXtnKchz5DD0gufh/kJQrKlkzjiWihGHp6PiS5cKkqpKHb+HAdh84Mj/pd3dM4ipSDl2VYmnBRL4nq/seUc/GE3ZuQSx1a6t3jOBZY7rqF0oZBZjT0otxoNPSk6GhuM3kyEr1XFPLbx0kEj9fnM6yCTMNmC/x4h9op3nXhdbj8zkcHuu6q2DAGvcxx6UdalIE6v6+1coaeeA/HnLsPQ3cMetdlRt+4xYZI+UzfOnmEftHcKBc/fd7vVHZarV/iTl66LdB7IeN+L2GvaWXKJJdGHKn4cCkLRmy5k6KZRCYueO+hjnMP6FipN4ASozY1vnMlIUQsJtwJxSvRcM1zJIbuRCrkJlZ71YvhBlynKGCJQZlTlJ5vM2B8aJcsd59Jr4qN24mhM4Me1ND1nyR/+JmiUkpkmUQSCTSSSEsuRAKK7chyiQf2K2fpMdvnzfn8/pIwptqvDEcv0LUc8p2ikiUWBap7dlI3rNFh6AHNnIMnLSXMgPNB3t+HBowmi1sH1H3/y/+400hTo8aGMehlzkH6s98SdP701JFcpJrW8yk8R1/JhXesHlUZ/WxDevliT0NfZKF/fskDfn6TvUrTbJa112/g8bfzt3/Txy9zCmj1ju/Ozf1txBEiHR9ORuxZJ+4AoDIJ55IIuzYp4/TIobazaAGgDKU/KyFGzZO7oshN0+5XcAooLgjhhxzaCBGX3QLlTtHcGxT49r0MAu3bZgNFSHIxyWYL2inK6tCEJBdzDWmONMsLBj2XasBTcfyu5BLyQ2S5NOGilHxG7wxHHAlnxjYs6NkVnKIOASL9nzN0WxaYVjQSAWkNCBn4cLw+n2GVDQrNxK3Nbt6DaDymd8MYdJ+1EWyaeD/JxWUzXYehqw4ZCRF0XlWVXDa3EiPthFiKr6FT20nqobZtYgWu+GVluXsMMriWoRdjux0Wk+WF+1QmVXztpj34OkvA6MnQM8kkCWGmvHQ4eimW2ylajRi7NimG/sihjsOqABTCHVNm0EnHJiMfOWGL7JpK2mqdovbY/D6YCJFuMVLIGnTXQPPzuppu5kzZS6Nc9Lk2t5LCzCJl7HmxmSCJhOsU7RHlAgDLrISx0dDBNXSBLusTocViMi25LDZj7NCzhG6eFwZNxdDzwv6DgjN0h8SxGV8SW4cuod21CYIUekjZBiEnqPNZysDA582wJPCFax8w4Yt8cMkC9oHKOYwaG8aglzN0Ykq9mYFlM7rTMQOf5bmawosKkkvgxSQDsHku6bmQhvOiMAOexAKSXZeRXDpFyYUflxg6vVw8DZuOxavhddK8UA3SKX7kXVszsZ2yl7MxYzKJkVyYgTTFpzoZ5hoRdm4iyaVdiFzI8qLfgJgWLwkbRwJJHGbofsTOfftX8JZPXmn055CGnjLWGSpwVtDQjUwhjbHkRo7KB5NBKCthQOdabCUFyWW5mxlikMQCm+cS1ykaWFaR95fltp3hWSlBXStJLkpDt9cCuIYyzXM8sH8VR26btxUuM1kY4OMoquyP6QWjoXf8OHTJZI5ALRePoefSllSg43zumvvx2Eo3wLbz4sAnXQ39wEoXP/c3V+KNH7vM/E7n4v2V3nEaGEaN3ul/U4zVboYL/uEaPO2YbXjTDx5fKI1p/7b7dLMccRQuDGSiXDynaM4YOi/2xNFPcqHynIdtmbO6ZsnSXpRExMPzKPaV9iGD3k7zQqfm4ZnEyOla3Brj7jbqeFmhGqTrS/AMemzvZa+XVGnoruSSSxTY93InxVwSY7EZo5VE2LvUMbqtNZS+FJIXJJdcUpSLne76yTIcv/256/Fv1z5oDIIf167Om5vz+utxAkxDD4QtNpMIaSdzGHY7zVynaKBf5dIOHptaiVNBE1AG2eQqRAKb5hLHKeqH4gJueJ0yiupvh3lmEkkUAVAx6PxagICG/tgKjtw6Zweu3LJXu0JWbq5/FBp62Cmq/vZr7vA2AVrXzq0unuYStz58EG/95PfwiqccEWDsdsCl+5TpGaZfCOwOXSqDjHgzcRespmunNo4aM8vQ79y7hH++6n781r9ejz2H2qUMvVeUAUeZhk6rlViDHpJKyBCEDdujSx1EQhUBsiUGisfppLmpRMejWhpJ5Gjoc40YcSQUQ3ckF+kYDWLkbWPQi5IL/y7E0LlT1GcuoSp+BF/bdyUXUbg+QBmoViOCEAI7F5vYG5Bc0gBDt05ReoaqzEEswk7dTpbjPZ+73kyP6XB+dUJ/EKDzrnpZlgBP/XcNeiYtC089TTfLWdhiieRCg8emuaTQZ5Y7qWljHAlsbjVKwxa/dN2D+MK1DzrPic/wDGOUFOUi0Igjp4648cWwPpPmEvuWu9ix2DROYxr8eRVCPjCsjaGrfQtOUdY/TYkGr9idIUixcPbNc2kyb+/bH07j9xl66s3I/IRE3m+dfsQG4HFgZg26v+Cwr6cRnPAkto9f17uoodtOnBonkQjGb9PDnW/EYYO+3MG2hSbmGnFfhk6ruajz2ofPa7kkscBcEhVqiqeedklyCnXsoOTiLRFWYOjsJfSZLZ+Z+NfT8dhRlzHYWIcTGhZjJBfF0AGVUdphTrsGS+DIcruPMrTqPKssgigSamZjIitY+756w0P4i2/egXfo1eepuiHdk6BTNLMMMBi2SBp6YttFx2gldjAiUJ8NhdgRcinN89k63yg4rZc7lqU24gib5hLHKUq/pXmO8/76u/i5v/mucfADbvp8whh6mudKQ/clF91EvrJUpo3h1vmGkVxo0KWCYfSdPwseBrRvJ82d6pwyMONzM6/tM/GNbJZLHFhRA2HDW5GIfrcDn3tsvxyEHxbcjF0SyNswDsys5FLQN51pZdi4c4b+o3/6TQCKNX/pl59XqLZonKLSl1zKnZlzZQZ9qYPtCw2VqNFjgYluJnWtE6XjkWGKhdCGzL588824ELbItWrAGmu6Np7EZDV0NkVP80LoIl/P0zc6/MXMvUHUXazDvsxJHBmGbjRPrcUvtzNT64WcaNbo61A0LX00YoFOptm/NrCGoWujFUWuU5dK29JLteqtq9krsYhf/6q32g9gpZFQYlGYoWcuQ8/5/aNzWpls63yjUIJ3hWnocSSwZS7BA6zqZGh2kkvly9m/3MVyJzMRUxHLFM00Q4+ECDr8abUsumcHVrVBj+y1Z5nE5rmGvd5uXjjOMODvH60sFQk3P8HIIFn4+SVsoRdA9Ze9Ws6iCBj3nLIw8HGfEODalr/9zl2mbxQkl8w+r3Fgdhm6d5P45wOrKX7vCzdqBmv3CWWL7jnYxn37VwoRAW5iUW4yD7903UM4/oKLzMIPgA1FnEui4NT50aUOdi620Ewi05HKVoIhg5ZLa5iEcB2ecSTQSuJCCdrUk1wMQ/ckFxVlordhsentNC/UmilbPAEoJpjY63AzHHm7KMoll0XNc6mTGjabaBZF7UyoXrd2zvKiVtQOvq5rJFTYHc8U9VfKoTZTy+n6RB+nKDlf/SXOgKKGnuXSyGicoZNTNJSmTsilNItCbJtvmJo4BM7Qk0hgU8t1ilqG7pIdkkK4Y5FniqaZREMnFnVSG3JK179/pWOS2x5b7kJKNeCYjF19rxZalqGvlvSVQeG855pVU62jXho6lyybOr6e35O9Wn7z5RiAHK7qb6p5Y3xCpkSC3eft/3RtIUSSYIlN7RR10Iuh/8U370CWS2xfaDgvXdd78Qmr3awQa+vWlbZRE/Sgrr53v4m7TSsw9BN2LaIZC5uR6m13/qevwo0PHsSpR2w2v+eMKXGDmkQR5puxs0gEOXo4KyEDTtdCjH2uEZuXkztKfYYupWU1oSgX/6Xg3zsMPbOSS4NLLt70M5coMHSue9I2ee4ZdDMDsfolzah4tcVWI8ZSx5ZLKKuyZxi6r9H2Yuhde320PbWlGZcz9LI4ZmpfO1WOchXlIh3DsdJJTbGzWM/a+IBM7eOHznJizitOPf04LjL0ViPCvqWOjYBhDH3npiYOtlPDbLfMN8ygSw7KxaY1L+7scHinKH9viKFTOr5fxoATOLou+t1h74yhh3xFfvlcwBrmhmfgCe1uBiHUc1npcltVO0WDcAoEZa6+Szf9vn0rnuFX+3ANEFBMtutp6Px4nTTXBsLeLv4A6e9WqUFXTiPFDGgG4G73j9+7zxwDsIxcZTwWGfp8w5VcVJq2dNpFRpVmEGS8udbPmVMncw06181D6dxlCyN3vePwTNFmQpKLNWJNxpxbDWLoArx0rNF4c5ehK33eZc6ZZNUW2fNsxj5DdyUXmtGEwxat/NP2KhXSvePXwlP/m56uro6RezMNFJBLxaIXm4nZjg/AS+3MhGAmUYRWEheen4/lTmrY9TKPchGMoWsNnfqYGRSlKuFwcDU1oaUUeeMw9EzNahc5Q2cGfS21Tfh7c0C/x7SoiN+f/HBivqKRr6Hv1QuUH1xNC/ctz93iXKodYQ2doAZi4SS3AXDe4XFgZg26Y0Dy3Bn16WapxBS7D3WGx5Y9g97JmLOyKIm0U+sUNcdK+cusJZdGUX/Lc4l9yx1j0EOhZBxziWVsWa5qktioEO0UjQTmGq5TtKG1Omd6Ld3ZxjJj6PRb249D77oRDLRdKJ3bd3zy7/3QNjds0Q3L5GyF5ImGdmjatRwti3e159y0w5ZVULKJn53YTFw2bLuM+kzlXctqudBnf/k2unf8WuhZ5RJO5UICrakaYuj0FzlF55uxYYLOosvM2BKjDvlJOPYtd01impqtuAZGwka5GIOe2YGPyNBOvQ7nXmbQHQ09lw5DX/EiY4YFf89Jy29pqdNfgq5YG8kafCcvIZemMJyKQ/fP2V9D9zPRV7tZIXTW2a/OFHXh3yT+mTr9noNt50WhBxxi6IXyuR5zjYQ7qroRHlpySYoMnUb87QtNNOPYdPayeiJmAYjcSgdCM1rqDHEkMGcYutqvGUc6yqUYeUIyD7G3hSYz6N4alD6z5gbRb7JTqsC5z7Kgr9O9TyJha7nQC8b0RDJ+yhjnzgyEzqMkl9hcI51rlWWKxhE5k+2ARMc2iUH62NT0ZV0czI96of1pO9pfBgx60zhF7X2hWVcoAim0wAVfHGNJOy5JzuAGfaWTOpFPxNBNlc2AjPPYShdzjQhJJByG7kS56Dj0uWaMlY4bOUWMfKcuz/CoNoRb5xtWX9Za/yILW1zpM9BUBX/PH9UllucaMfLcSkzWyLJB0pdcnMEahqHv9+qaU3t9YuHPyPxZRzvN1SIrkdePMvu8xoGZNeg82y/NcocBEO7dt+xpu+rv/R5DP9ROnSQDwO0MnTRDEkUuQw9ILiGGTgsObJ6z02Z/OSwOClskiUNlqLpOHTMd7mQOy81yV2OlKfKyd2+U1q/+5gbcTyzKvNhhX0On1dH/7Gu3uk7R1GfoeU/JhTN0usdJrCIs/KluHnCKto1BZ5JLpJagS3VUTMocznSNvlOUGHrKDGroXnRSOxNQ7bcLh/B4eWpfKJKFBo9GVJwN5Mwgr3RSzDdiG6vPJBfuFFWOctfYlPWxSAgsNGMstYtx6DQDSjRDX2WRNAAz6ItFycVh6FKavgzYZ0MD9bCgtgHW+LZ0noa/BJ2/EId9f6LC/SaSdyC0zJ/kZSo8p2iJ5LLazdQyiJGbXd712jhqzKxBT72bFHoQDx5Y9SQXddP3ewydvOUAY+hZbjq5Gm2Fw9D5iNw1kktcMHq8Ch89xI5n8DjmmIaeSy65uPrbYitxXmgqAuQb0pe+/+tOKBugNPTcGCc7GPmJRTyqwl+cGVDTdwD40CW3FZyizipOBclFmAxcajuBWB4NUCHHqYpDtxEVJmyRRZ+Qfqmm00p6O3zLnN5OyyFk0I2D2K2EWZZYZGvK0wzDVu/j8fKqvWyxCGbIaPBIYltOmGD1d6WTL7Zic70rDkN3M0Wp74SqQXJEQm2r6s27zJM09DigoQPWgO9YbDqffQ09z9W10bVTm+Yb8drqoWfSLJK+b0lLLo0oSBD87PGcPS9fQw8VpuO/86xtaoc6llu6mdBOWbkQx7mutotrycWFq2/mJqGCL2ZMbIOQGobuTqu4BMMzvuaY9hlHLpO86p79uF0vu9UrDt2Gs8V2yp+5acvcGLaYUy3PVcSFDfOznWq+GWOZRWxQ3WV3KT7g9j1LhXs314wLDr5NrYZyinpTY4ehe9dGJVj9xQN6a+iiUMuF31fSFuNIFYbyNV56Mbke7ke5UJQGSTu0FuZR25RBL2Pofpifr6H7g6CNoy/OMOg58MQiHotNhpmkIW5g6JlKKbHczTDftJLLEjPopMMDrvHkiU8h5xtJdqvdnIWF2holVMtlvqn6M5/h7S1ILh0kkWL8PMIn1aG+FItODH2u4RrTQZHmuTXohqHHzvsRqrZI16XulSg4TLtZXpq9yXMmEo+hm0JgXiXMVR3l4jtFu2wAHgdm1qBzw9XNVKbXplbivFyAO3LSQzjgM/RAdl03y81K6irKJXJejou+/wBe+AeXmm1NJqlv0BlDbya2o/lhUwTD0DUjjAXT0DlDb8ZaA+0huZTp9IldqKOd5mjEysna9jT0bh+DTnVDOplr0LtetE2a89T/yMTV85rRBLrHDT/Kha15meUsttvR0K0hM9PdzBr0J2ybN9dM91gd070/JuTQYeg2yiWX0CGVMNdEaHmaKpeHuI68bAx6VCjLzO/5cjvFYjMsuXD2zBk6rzoZmtoLodrJneqRp6HH7Hi8giO9K2RUD6ykWGjGxgkN6OQvqZ7l//0vz8ATD9tkrr0V8DP5KFuAhK6JnMTcKcoZum90aT9u8PkpMt2HaNbhIw1If77k4stIK91MJ7e5g7XvTB01ZtegZ+5NOrDaxZa5xEQoEEJad1FyYQw9z/UK9dK+IGmOWJSPqt1MvTihBTBCBr2T5oUpH4Fn7OW5klwE7JJXADQjUpKLn8DgL8XnJ9MAKjSSs81WomYPfmIRrz3ur+UJuIsp+Bm5zsCSedUWdSkDE5XAqjaSAUqiKBhdQBmzZjk4ZlhtHQ1Ygy4lHjqgHHe+QQ/VLFf3LSC5ZO6AxmclrQY36G4SUS4RDjnUf1O/CpVYzaUy/PNNK7ksOwzdRndxDd0uBI5CqKY6J0kuPaoIRhHmdf/nAxHNLCg5iUuTdAzq83Ek8IzjtuPo7fOmX7UaUU8NfbWb4cTf+Dz+9OJbgr+nuUQSR1hsJYahU9QWXUso7p+c6UDRmGZ6lseduBxcrimLQ/clm3ZXhS1yx7xqf+0UDcKPET6w0sUWpuMRKIYcsA/hNi2VELj+zmOmyaB3TRx6mUFXawuGyuvyDEKqTthJ3WiU0MruZMwosciPQ6cYX5I9SBd0JZccJ+7e5LSnmUS6Jo2VXNRgE6OT5k5Fv06WO85iurYP/dSZ2L7QwKFVPhAyg+47RfWUliKFyCcQklxoCptoyYXLTHQsHoLoFxejexdHMA6phw6sQgi1+DTgMnm+H28v4DlFvQGNr4DDjSYZd17ToxVoKzlFY+1TcCUXe/5lHYcejHLxGLqvV6v7VKwuqjR0l6FzSSvNpdLQmxHbB875yfjx9ysOGHTVNsuI55LeGvpnrrgHAPC337k7+LuKwBFYbCbmvZlruEs0hsMWeR0V9z3OtSRI77uPLC8ydHrPDEnznaJpZvxumVSE85+/d19dnKsMfqq5YuiNAkNXDNROix5d6uDbtz/qbONr6PSwiKF0smIcOgcZ9NCKRqVOUdZ+Z6FokgOkKjoV6cQiKcGSSATmdYwvTYepZoQf5QIALzz1MJxzwg4AQItqqVCUS1fdH9Lg9xxsF9pOx6LjzTdjNJPIKdXqrt9Y1NA7mV1QN9KGNmQQeZRLlkvHRwAUU/9XTOw4M6LSrimaaoO+c7Fl2LNfz9x/GbnkQfDj8Plgx41m05uCu221z9kydGGKr5nzM4O+1MmUPm0qUtp7zjV0LpG0WV340Awtioohji5Dz02Ui7kuNssQwn03qFQCDTptz6BzA0oaupQSf/Tlm3Hrwy65oiUZn3L01kK7AXVf40g4lRxbSayXifNYs5fJnEtVO79gI/QsjxcT48gkCvfJL5dcCFvs5mYZxCxX5QB++dNX4Zp796vjTFJyEUK8XAhxkxDiViHEBYHf3ySE2COEuEr/+2+jb6oLd0mxHAdWUmyZT0wn4lPyFpM6Lr35YWS5xAtPPczsf1AbdCp/Sw6OeaZJ+pmiHN1USS6k2XLQg29xySXLnPbzF52X36TiXCLE0HXnI01TRbm4zD/LYQpZ0RSvmUSII5Z0pO8Pre7zMDfomX0xuQYZR6oS36FA3RBqE+/wlM1JBp3K2pqwv4BTMYkjHbZI57RRLuqaXMa62LKLh+RSspdJGfTDt7RY1FIfhh4w6Koeut3GZegsjp4xdCnVgJREESLhOjQdp6iXfMIlpE6aY6GZGCNFx1hoUkihncH4DJ07jzkiAcvQ9TXZxKKihg5YKWm5k6GVRKY/dbLcZJkWGLr3PWBnvXuXOvjji2/BT3/0O07baN+ldjFqDbBhizwLVYUt2tj/ssQicvb6Bp18DqUGPc8L/dCvmljMFM1sYT0p8bD245BTeWIMXQgRA/gggHMBnAbgDUKI0wKbflpKeYb+99ERt7OAYtiiYuj0rGiNRV5jPM1tiu/Jh1kpgozifCNGyjIP6eVUDD0qZ+h57ix+DKiOd/feZScBwWroLpN2ZAMjudjEIrX0nY1aEEJp6ICdXVA6P49zpdV9+GBEceBkrNrd3MoweY49B9vYrCOFKBqE6sRwg96II1dDdwy6rdPdaqisvDTPjVEyma8hpyiTXLgjkie+cOZJ+u6mVqJZszROUXJSH2qn2DyXGCPEJQn1PCoydMaiHQ3dYejWWUu7U6GwFUdDt05RX0On2c6hNg1WNoKEjrF5LnGyOEMMnfsaOGxxNyu58Fo5qR4w5xuu0QRUGGUrie0AIK0ck3gDpmXotg1GxqTsXq+uEn1/qMSgUxbrQpMzdDf1369RTtdFRdv813jFRODY6+XbqAgn9xqLxbkCGrqWXNIsL8zSJukUPRvArVLK26WUHQCfAvDqsbRmADjsKbMa+l17VRVEcoB1spyxphxL+iXZtmA92gWjmAUkF2FjpH0op2ikE1lUu37/Czfief/nEtytqzI2WViZHxXCnU6UsJEzw0Rhi9SZARiGQp7++WasNHQajBKVPKQGATsYNRNaMchq6PSCppnEnkNtozXzBYoBlqkqBJpx5FT249PbAytd5x5SjZmC5BLQ0CnRJonUWox+uFgu1T8aHIpOOmVIo8gydHo+Zu1RbUQePLCKr930cKFkMI+95985kkvKJZeihs5j+ONItZ8P3O0uZ+jCY+jqb2Kpc424MCPZPNdQcehcQ2/Y8Ehas5U7nAmRUNtyp6h1xktDHOabRcllpZtirhEZ9g3YCBmet8E/cyJEyUb03Eiu+cwV9+C2PYdMHzsYyCsBVB9sxJGTtNRkUS5CADSR7ngMndh95Fl0ev84Q+d9Ms/BGLrrj7Nx6O7MfDW1iUWqv7rPb0wEvZJBPwrAPezzvfo7Hz8mhLhGCPFZIcQxoQMJIc4TQlwhhLhiz549QzTXwtfQD7VTJwb9ZU8+HICroXczaUq0zrMOQQ+HjKIxRvoBS4neGroO/eMe7YtvfBiATSluJuVOUdLQzz5hB3793FMBWM2PFjvOmbYJwDCU/XwwYtEkc5oZZ7lEzHTDVmLX9ATUy0dT6H3LHXTSHEdudaNBbCq1ZV7+VJ5HCnHJhWKZO47kouu7h+K49TaNWJjwN8AtzsW3oxefwugouShmDD3V980wSBYP/qaPX96ToVv/i+cUzZjkwg06k/d4SKBKtXcXE1H3MtL+AtfnANh+0Yyt/4WOsWUuMSV4I6HOQYuDrKZuSQgfkSiWX7bliWHuV4ihK8kldowi9a2E+YjoutX3jKEz6QaAieD6tc9eg1f96TeNES416DlVgtQ1f2I9cGuGHuvIEqAY5ZLmOmrMe41X+xj0TLIyziWZov7i6lShleRK6nsr3QyNWJiBbNQYFe//VwDHSymfCuDLAP4qtJGU8iNSyrOklGft3r17TSfkbGn/isoE3DJvC+ofpRl6l013FENX8eqtgEebs0nAdj7ALnARakeqJReKHvnXq+83zp6USS7ElvywRWIrP37WMVigWi6aYfn10GNj0NV2VGiMnE0dztC1TBMxY0ZsnE7fSXOtq0cmo/QJOgGH6//8cxSJgqGgELLtCw0cWEntINmwgyQ9B6oe6adqA9Zw04zBr6Hha5f7V9zMxdWuq01nOq46iaMCgyQ8eMDNpA1VSiSGPmdYcNhocnnPGHShJCoetthmA4+fWER/mgE1EYzhkeTSMBo6GWPO0On9CEVukIbuZooKc53U70Ia+opeyJszdB7Nwq/N+EPYe0PvXUhmXOpkTHJxQ4sJRGro3aSZl5LabLgqUIxyMWWVPWNKEhy/Xt4nuQPfZsN6ZCeQaUoO2EzalalWOpm5T+NAlSPfB4Az7qP1dwZSyr1SSvKmfRTAM0bTvHK4BYPUw9/USnD521+Mq9/xUnPTHA1dG/SFVhxkLsTQO+QUbboGPaR7rXYzdLTBiCKldf/i333P/E46s2Loluk6dcu79gUwCR65tOyLaej0ciwaht7RTk83Dp20a8NadAfd1ErUAOEz9EgYVkQp8vRiWmeulVz8e0FlALYvNHFg1Uouc0zGorZTJw8ZRGJAtMCF0dBN0Ssbiw/Y9G/KXCT2HekXV0roCBv7ovuLePggPZtr9RSHzmW40AyDl241kos2MmTEkkiYdnIWR/CrZCZRxBYBIclFaeg8G5T6OdfG5wMGnYx1u2tnQL4RpExR/7rUDNdl6GQfC3HoHnMHrORCA5MQ1qDSfVbXYCOl8lzi+/c+pn7PyWFLM7lIOx4puql4LXQMI7kUnKJZ4V7xWQVFVvFrtHHoYQ2drj+O1Lmpj690s7HFoAPVDPrlAE4WQpwghGgCeD2AC/kGQogj2cdXAbhhdE0MI7QU1UIrwe7NLWxdaIBrXdaQ6up1zWJGKUAauu1IPGGEj/wcVEu9GYclGRNWGLNM0dStDrlKuhpjp7aD+hp6pK/Vaug0O0i181EI15HJ5aLFVuI4b7mGTtgyZx3K1Hb+OSS5HFpNEQk1Szqw0kWa6Xbo6BvSsele8vrqoeJcjcKLo5kRc8wmkTBlHMj3YBi6sJE97W7uFFfzGboPnvpPma1ZrjRzY9BZyF/IoPPCYpEmAzQTm2/Gjs7sG3TfWduIRcFnsGW+ofoeGyjN7CHtzdCFUDHrnSyHvyQa3e84ioJhi8TQeVc30Sye5NLLKWoju4QxqEK4hpF8CO+/+Ba88gPfxG9/7nrcvmfJyYpVDJ1HhYnCtQBFnxQHyXRcctnMwiI5+SCiaOqhJ+65zjx2m70vkS2fa6KU2unYIlyACgZdSpkCeCuAL0IZ6s9IKa8TQrxbCPEqvdn/EEJcJ4S4GsD/APCmcTWYQDcpiYTRbxf4CMvYgmLXwjD0xUCJAIA5FnMrW/DjhR7ESifDo0sdbJ1vFJwtgPXWc4PezlwNfaXrTlEjAUcTNFEhWZGhq9R9W8GQ4r0pkoUGBerkm1qxY0A6qXIa82koz5AF4EhWQHi20smU0dwy38CB1RQdbcBJx+5muZl28gGLH1/dA71NwThY6QPQ09lIGB8CSS58kQruBE0YQ/cjK3zwZesoWoZmC3OsHIRZCNgLuzSlf3OSXJRRptjzhWbMQkJRyDAmvZZXcCxKLgmk1HW3Y5+h29lDyKDHkf2e2LG/mj3fRh3b1dA5ATAaujdgBp2iuo0//7dXAlDPsZ3aNnBHJs0Yv3jtgwCAj37zDrUdc4qSHi0lTKkMak+oHjpFiXFYH5o14r/4oifiF374JDzvlN3IchSc82Vhi7/1qtPNMQTT87lkOK4YdKCihi6l/LyU8hQp5UlSyvfq794hpbxQ//02KeWTpZRPk1K+QEp549harGGYZ8wMOotNNQZBM8VEj5RUX7qcodsqgDwpgxvFSFin61InxR17l3Di7k2O5k441E6N46bFnaLsBbaebytJWMnFreVCbZhrRGaqS4YTUGy0EdkyBMopagejTXOJkYYA9TI1dYQOwTI9T3JhL6qfsNLR9Z+3zCU4qKNcmlq3Nho6C1v0a2sQ6IVpRO45/YUFyNDSvbMaupVc3HtiNXQ+xQ/BpN7nrmMrL0guansuGVFBppSVTaABcNXEO1vDoWq5eNX/zOxJX7tj0MkpqmZRB1ct4yPi0k4zM5jwbE9zTiGYgU7NvoAt7+rPSF2DHjmyhR/lUsgUZffHf+8EvNK6rJoiGfS7HnULzHENXcBdkIS/p34ZDLN4eED/B1zJZbGZ4NdefirmG5EKUGAzQ36NvkHn0TfKj2P/JjTYOUeN8Q0VYwY5g5IoMqn7/EXhK4KQ4e+k5BSN0Qpp6A2fobNjMKN4yuGb8Z+fodwKt+9ZQifNccKuRccpSzi0mpoXfr4ZQwgVEcJT9H2jRbVO8lw5ECNha7mQwRNCmBlJM7YauWKjNlEoy9049MVWYmYAanvF0N3QMrfIky+5KCefz3JUgoli6F0dpmhnUEvMGWSmyCENnVVbBGxkjV/FMBJ2m2YSmbBFK7nY31c9hs7xNC8jcdemps5QVZm6amZm9fx5Nnsh1ub3k4aXFEVOUQI3HDwah8AjkABlAEJRLoAiDK7hjR3JJaShC8FL7box47w2DN+fz1bnGrFr0I2GbiUffgzet3xnJ9fQk0gt3kyDM81u/QGYO2wzKc35u5k0yTyAG7YoGUPn3YC3bcHzmdH/ruTi9kNbH536Ao9ltz4xFiA1eYY+jUgpHT8WpnRu6IEA6sbSij7L7RQLTEPnLyOF2JmFlxOXOfJMUXIY/YKeOp64a9EwC46D7dQcp5lEeMLWedy1d8lhZCYc0GGwbmKRz9B5GxqJNcgHV9WCCJROnktiMOp8m5qJE7ZITuMQGzMVEr3PIQ2dpK0tcxTlQuUQIty2ZwlX37Pfk1xYIgiLlTYM3SxS4LL4NHcZOqCMGx2bGyiupZJh9vHKpz3B+XyEjsHPdZioqcehB0e65+00HLZIg103s5mlkRBONqzfT0miAdy66KQtc4a+0lFlWamWyqHV1LkuqqJoyjSUOEX9+jLWUNn7CwBH6ogn/p60ErfyKJ+50r3hx+BOwDecfSx26fVIAUBA2FBTLbls10mBh9rdQjggtZWYcJbbGQLZhMgzugCTXIQbh+4MtOy5RJF9F3lfJRtA/TLWWcBGjoxtBBgV5wLcKJiJaujTCkrjTaLILFDBXxTeiSLtIOumKl6dl9nlRpgkl9DK3NyAAEVt8oTdi04cPOHQauq88MfvWsAde5ed6aAfFUAMNpNuYhGPcgHY+pvacAIqS3OhpaIQqC5NEgvDchZbiRNJQ8W5ggy9xCmaBDR0Wnd1y7zK2DywmqIRRw4jM5JL1ENy8abpbc9pRxEoqlyr2mZTK3GiCOgc3OioKCTb3l2bWvjK+c/DG3/wePzMc4433x+hI3x8uUoZaFuBs8OScvgMI4qEjtDJmeQCZ0boR0/xAZYzdZsHYO83+UjIUPsM3VRR1PZjLpDOHgn7jG0ZX0/S0p8pycxNnoodlkuatND3yg9b5LPl7QtNvOUFJ7F97UyQpCpi6AdXU5Mqz9HN7bJ+tJgJoGwCtSWOhDG6KpzYJUgEbiecgdaTP6XH0GmxEopgMgadzV45qeCO+ElHuUwVPv/9B/Cmj1+GlU5mNENijq426U4J1TRYLce2oItLAcC2BWvQF5jDC/Cm0p6B4Mzn7ON3YPemlik3wLHSzVyDvnMRdz6yVMg6BEKSC9PQczfKBbBROFxDP7DS1dX5mGwjhM2onEtMZ+3q6JNWErnH9TRzn7FHkV24wFyDLo+wQ2fgPnxgFY1Y4MYHD5pteJQLhWHy6wasITcvQreMQdrvNs81zD1eZU5R16C7DH2uEeGJh21GI47wzlc+2XxPDJ18KfTc//Y7d+P+x1adKBdqv8vQlUTSZTH0iqGXTe1dpyjrFo7jjUsFzTgyhvrgauoYCJ+hh/w6EWO4RcnFhloCMElmvA5NK4kghE3Q4fYpjkRRcond58DfHa6hJ3pmQ9LlcicLhpgeWk1LJBe3roxdhELFqVONGldyKZHCCpKLq6GbaCDtlLXRQXb2ymVBl6HXkovBvfuW8bWb9mA1zZQhKxlhuZEgDXOpo2qMLDJGxxl6y2emnkEPxdMCwGd+7tkQQgQlF8BloCfsWsRjK13sOcSLYLmsyEao2MQiPw4dsC9rk+nDB1a7WGjGxhmpHEFuzRM6D7F2JbnY9vo1QQpOUSFw+BY7babf4sg6Jx88sIpGHDnrt/LiXPSSCAEn6sCwOk+bJEOfMSMZG4NunyddU+wZ9EbkhtqV1dIwDF37LPyInn5hizExdJZJ6mvonHg0YzfqKLRsHI/Np8/UjqWOGwbXMgydnKLFSpCUKQoEGDrzUQDAE/QA9xBLvqL+wVmsaWskAuVz3efAZ7dCCCe7N80lts2rPrTUToMhpgdWu2Y1MQocsH/DHKtrchZsrRce/aTuSXjW7QYooKChd9m7EAvhyJGcuFhfUM3QgyAmSRUQG8zRxhl14jlF+Qoni4yhkxFOIlGQFvhL6BuI+cBUlhv0Y3bMm7/5lPz4nYsAgNtY2VCfoVOtFZ5Y5GeKAnCSKyxDV2GZcWQjZWIhDNNRTlG1LbF2JblEheP6TtGuYejW8BGIHVGCz0OPtdGIIzzvFJsRTB2Zh1T6WXvGeHlRLtbgWIZuQzGTIkOPhMf8hZEE+PEITzlKOUcpdE0t7mHlIUIjEVrrZZminoaexMJZ7akwKPAU88SGRQJhg0770nNoxLYu0FI7dQyUYeh50WFLf6sFLlyJyl8rkwb9n37WcTj9qC34qXOOLRwnYv2VkMSRE4YIwMnKVrMD992x1SHV562MobcDEUkHGUPPc2lmCt1MOhE3RnKJqQSERBKLQnsJnBCagSFyM0UT712gGZwruViD7tcP4vdlHJg5g85jXSnmF1Csx2F6bBSksEUqwrXYSnDk1nn85DnH4iWnqfBDmtYCbFEKzrxi4WiBxHC4PeJTtgvf8ly2rd2PsjDv379ivuNSBgBT6yR3NHS3lgtvA2+7YehsGhhFwiyMvKmVGDZOIWtNz8ll6oZ798Fh6Ftdg95J1cLClODT0XHnf/HGs/DqM5Tj0TDEiCQXl90B1rCYPIKMYrFJ41Vt4MZ581zD/G4YeuQabV4YjB+f8MmfPQdf/9UXGPkg05JXLNyVhqgwmSO5eL6WRuQxdEYW4sgtm2Dq6Ac0dLNNRIZcmPPxdTN5P6WlBDNPIgCsRCeEm8rPtzOJW/q5HLZlDp/7xR/C0dstQSFjSod2JQyrodMx/cGfD2gqysXWb6draCVqRr0ayBk4uNr1JBdi6HaxjUiw1YH0Ahu8CqdprzPDL0q2RKb8tW27bLCmGTSgyA49Dy7TOpLLGKNcwmsuTTGskyEz01ugyJh9L3wjiXCvrnxIKxv9zn96Cq6+Zz8AgNcMJ922VcLQhRDYNt/Auacfgf/y7OPMNnxA4SGM/IXbvVkZvAM6fpivWh9MLIp0+VxIU/CHYBg6r0+d5ipxJbVlgGMhTDbqQtOGnFFY2KZW7E3bPYbuaehJFBVe0lTPBHZsslUsm9qZd5i+Zl6cyyY9OYcpOEV5+judR90jT3LxyukWNHRmyDsoSi6b5xrYPNcw5Xsp6zaJIqcaZqQ10k6aY76h2KHrPIdehNjmM8TC6qoUymnvUWTCIgE4NddN2wOSS8MbFAitJMb+la6j3/NzAW6Ui5/UZiQt77n4swC6LjoeIY5sWQNqNx8MABi5BFDE5h+uvBeAXay7Easl5pbbvRi6OgYtpA7YRDBqB1+QmYrd+dUWGwHfkbp+d7ZcKrlEfj+zhdSEsPeIS0ehdV5HhZkz6Jyhk5QCwCz44G8HEGsSxmNOhbsAOxBw2SHI0CNXQ48igQ/9dHnJGnrQvMATYGuOAKoDpZ3Mie+mY4cSi3gtEbU/19BdjfbgasokEqtT8hhimrFsajW8gcImzwDFAkRRZAcm/5o3txIdtmdT/Te1GuZ32p+WkiuVXLxMUVvLxUouxOh2LjaZhs4MujNjc52toZh0wL6AeQ6TB8BTyMk4U+lZklj4PUjiKCC5WHadeMaYZJ3f/8KN+NCltxXalLB9aZ9QQTNA9ak2c4ry67TOOhba580OTZ/xnkuof3CfD2+LZejqfE/Y5hp0Tr5yCXzv7v0ALMttJBEWmjGWOmkwq/edrzzNYegxa7uVSgTaHetspcWvQ1IcgYeWmsGKkQ9+H1IWr+8mWTHiUsLQyxbKGQVmTnKhTtTu5jpyQX3mabuAO63xWRTvYGQgm162JVA06GVGoAz0AvpTbIqzbXmG0+rHNpmBarkoL32OIEOP3bDDRZ3e7+vPdL1Gnlkhhp4UWKO6D+WZoiGnopp+CuMYpWewiRbMSK2xldKWJeCg41rJpUxDFyahbPtis6Ch+8+Lh5Lxzz544gg3FvwaW8agSx1tw/uaQDMW6KZ5UEP3Q0SJsWe5xOV3PoqAhM4MObU9cu6/K7nEWOlmuP7+A+Y+EYgARBFPj3cNFW8zR5ChBwx6HAsnDJHaxBGKjQdYsk6k1gxdbmeFpKK3nXsqXn76kSYgIGOhimnmM3RLSHIKWywZ6NV27sBM//Pa/VaWtezfuX6mofNZPTfodaYoA3/RVS1pdQn+8lH8peGFmuYa1qCqzzY5p6eGzrS3qo+DJxRxUGKFHx7InaJUfjUWpOPZ+jWFtseuBr7QTFyDLgT+4o1n4a0veCIO39IyRtQy9ISxLWtUaZpo68m77G3nYhMn7l4057Xfq+ujCAIqdMQrDNJLUsYE/axDKwmQhm5rsO9cbJo2c4buM2d+nLLB2cbooxAmSr9vW2hg/3IHmZSOlk9QEoq72hJ3bPqskO4HjwhyjmekFjqGO6D6DP2uvcs4/zNXF67TFJtjzmg+44lEMbHIXLco9jsbCeJeux+26KNsMWZ6do04wkIrzNDpHsx5hfMApWsbQyw8yYXyOLyMYR7lwuUXHuUiJUzEmYl5Z+8Cv0zuIxFsJsQlFx7hNmrMnORiNPRuhmSxaQycb9D5Q1NhWuomH7Vt3tG6TbYle9H8hBqAElX6j3+f/NlzTA0Ka9Ddtu3e3MItDx9i8d3uS0SaX2HFIk9Dbxld1i2utdgsMvQnHrYZv/KyJ6nPvuQyZxm60KxCiEBikceWv/ubL8Geg208871fUe3W949kJTI6PLuSrjMzIZUeQ/ccgFZy8aIwhI13dhl6eCpMx7UMPfwsOUMnpyhHLAR2LLbw6FJHLXwibBbom597grkPK11pBp8osv2v4TF0mhmqBczDRcMSr82JPyiwa/GNJb9MakPGIkNsmKK6X2kFyaXFpBv/NxUB5A7CPsoNus1MXmwmKsrFC1ukfuFEzujTZLldsNqPZFEGvehbabDZT+RdBx2b/Fk06AG2H/LAjEjoSpYN6muuhr65leBgO8U1uhTwODBzBp0ztziyySK9GHoUAc84bge+ckNxubE5bhS96ZFfRc8avfL2/eBJu8zfZAh9fd8ydDeRydY60Qw9pxVWFEvo5rm7+gvJRYlwimst6BK5vgEm0Av56JJiCiryRbMKdr0dLw7dpDt7mimBvj9u5wK+cYs9L53PlVzCUS6xJ43wWYbgDJIZqp2LTSR6ELJp5F61TDpuwAhxGIbOan84vwtg12ITtz18yCzi/dwn7sLfvPkc/OBJOwGovqSWoLP3xWXorgRHDjwqBeyjwZi5+uw5RQOhiba9bPAggy7tdfLqlfz+FqUm+zc3WGrfkv7A/v7q/3q+WYA8FPLrXG8ksNCM8cihtpH9zG89GLpayKT4fBvaSY3IFlsz7WV+idD1mtmkhE6m0rMB5nvwBzaqhKoGD3WcdprhB56wBZfd8WghoGCUmDmDbqNc3GXFFnto6JEQ+LEzj8LvfeHG4HbNOHLqmZclFtG5QzpnCLQ/d4QC1qFoS7FS7LQ9V06JRcItB8r1N2IpvNY33YuEZdD6OjW9UHv0C7Z5LimwqTgShfvQ1pUrneXHAi/wk5+gYropGcVP2IojFhboEWWfjZprEJbZA6oGCGH7YhNCuDXHhXAXaDBOUS/O3QfPSA0a9EjF2u9dahunaBwJPPfkXc4xqOwC3ZcGMxy+0UsigUcDKe503UYuYsdw/DIhWYUdn0D70EBE16nOo4wVl2DcdpRLLqHVi6idhBN3b8KJu9XC7HNJ+N7z/RZbiQ5bdAkY3Tu6ls16wRZAvR+tJAm2qZPmkLko+lZKZmxOgIIOW+TPguyP2sbdh6q+cmPf0VVNv/DLP1SagDgKzJxBt0ZXhS0+ol+EJ+vEEH87QN3ow7bM4S/eeBZO0p2KY64ROfVQTIakNygMmhBA8cukKRN+/KxjICXwoh84DD/10e844YDUdsrypGqLAGVjFtmYhGt4KDSRBh4/koScUo8c6iDRcoANyYRpS6iWSyEqJWDQT9cG/Sad9m8YetdO5ylzr+x4ofUpI2ElAr7bNv2CtOLIGACePAPAWXwaKHeK8qzDoFNUSy6r3RyH2t3gbI3KTFAIogqb1YbIk1zo2ghHbZvHfSxHIeS0K+jwfNbmyXv8/vLl8fh10nVHophYZI7TQ3LhYyNvb9ksqF8cNkW58LBFIRSRomsVQuD//89PwzOO244r79pnriskuTSiCEsyNb4Dl6HbWU/oep0QW+GSPp43wvfhDN30Yx3QcOoRW3pe+1oxcwadGBZV0KM48nNO2OFuFzA0L/qBw4PHnNeZo74R8R98YjpTtbbSakU+Q3/SEZvxjleeZqZtPBxQ/e/WcrEhZWGnaJa7jHOhGXuG1m0Xsbg9B9tYbKmELFOWF7ZzFqNcsp4vOv19yhFq0KQBZaeOeqG1SlVYJoxTMXQ8E+/LNF3FIGE+EwxzTSITbx9HIrikGDW31NgwKSLktCWGDgAPH2wHj5PEdkCmc/GIJ9+g8Wd18uGbHIPuR0jR8UP1b4AiQ+fPi36jkguAm3krIBxN3TlOgKGHolycdg1IgAiNSBiG3k7VosrkM+GD1+uecTQAGBvAfUxuJIsKKpCyuKao7Rfh61XvIgohqp00Y3kjrkEnhk4BDYB6F8aZIUqYOYPuGqoIW+YSHFhN8QNHuiMff2j9DPBCM3GmwiEvve9MqQIqaOQzdL+NvoZOYWyUWETtpxK1BGJKuScN8IqK1HYOMnR7DrVNHXGzv/6vEQscansaelZk1I7jUb8crSTGH/7408wzOfnwzfjIf3kGfvCJu/Q+XHJxj0cG3k/9V5KLjXLxrwlQxm+V6fRzjaKGbhl6mCXy8D2q6NmMIyb9COzSBn1PiUFvxJEOW7T9iEc8FeUt25bTn7AVX7tpT6HdvM1qWTwq0ytL65Hw66H7A7jhfVZDF/r+Fv0k/nEsQ4e5J6HtBn1fCMTQV7u5WSFJQMscgZkVd/CGBmySMKX+m/ub6J5s8wrrcUcnYB3JXHLhmc98H2LoEkVSOG7MnEH3HXIXvvW52LtUfLHsWpzhl59j52IT29k6pH6iD2C1TqA6QzfH9xg6b6MQxRkBOUVtlIttVyhcjTLgCJtZRUV+XAJpy48udXDqEZvVNoEX2NfQO2leMEZljOy1Zx7tbPfSJx9hj60ll0z2mpa7g6ugKAzGKP/mzedg/4rVnsmRRu13VnH3olzKzsuTqGgFnO/8xovwO5+/AX//3XuRZjl26AH64YPtYN9qmFou9r7waIpeDP31Zx+DhVaMb922F9+45RFn5sUlF2prN8tcht7DKUoMnafLpywZJxK8XIR7Tfx++YlFcUkfqFpV8EeeeiS2zDXwd5fdba6LjOK+5Q5aSWRr5weMolucq9imBkW5hBi63s5PlPOZvkpaskEYnSw375EZREhDb9rFQ9xzVbsfa8HsGXRvxDt+1yKO37UY3DaJowKrDeEDP3kmmkmEW3XBLL+eM513UENOKDPogBsva51fwqzIzuNcSYcjmEgFT+s9fMucw0IKBp0ZOp+h05ZJFBnJxCQaBSSXskJHvUC1XLhzzoefnUovImm8QriOSAA47Qlb8LlrHtDb+6u4uy96mYZO0+XlbmY0/u2LTZOM1s2lkZD2HGybeuEcia7lwmcTZU5R3iZAVav8hR9+okkMapQwdHUe4XwG3Mge/9jN2Ba04szTGH3hauocvVL/+aZOQbuKjHTHQtMkn9F10XN4dEkZdKqdEppZ8SQpLpXw4+WSygSE5ardm1yD7h8nzVynKIWshralxUdWujlCQQPjxPiHjBHDqa3c5wZVZdRHbJ3DjsVmMVSOP4xhrTlgaoSHEIrbNWGLuvStqxczg871OW/azdtbJrkAtvP508HQFLtscEz6GEkfkcd6QvBrjURCPceyKAwAePqx283fJEn4bezH0IkZLrczU50PcBfKbgVC5jj8Wi6q9oo9jn+veT+e9/TpUM0Wv02uX8WLcilh6Ca7khl01e/Coa5Bhk5s2JHdqr2fv/Sik3HsjgVzHTxSp5lEZmA6oCsrNs0gFjLo6n+eSc1vcSOOzMI1fi0XKrrlM3RfuunmeWEw8H0I9Jth6J2sdAY7LsycQed6Y79En5CDpBd4FqoQyig88/jt5juCqJwrqo/bg7n6Oj21w5bPdVcpd9dKVf/7kgu/Fv9vwF3FhpiRiUMXxX1MvHyJAbYVDKt1J/OSZOWzJzIaVECMnMNlTjsAOPPYbfYc3n2jZ0AvcJlfg17GpU7qOEV5tUe/NLOPRhyhq4t7UVtpgGoGGDrP0hXCMxIOQ3eNfMgf4DN0/kjIKGYeQ6fbFInyTFH+DvnacciPAvRmpP/zJafgJ56p1uVtegusJJH1ORxc7TqDYDMpHtPEhrNr8WfykhKLItcoP3JISXa7NvWWXKjEQMhH4Bt2IgWr3oy2ZugBDDLihbzwVbZvd2143s885wR9jOrx54R3vfK0wpqVhXMG9Lw4UgyPap3w1ocGgKwkRT30N+AydFo2z5Y1KBoSYnaq2mPxGvxQw34w+m0gisScM4kghF2AgXwJZdUAARX/zkuXhtr40AGlsfsVAAkkQS21U0fKIuPpO4bLZiz0/Ggbt5ZLWEN32bj+ztHQ7TEAmFDI0LMKtc8wdHbf+TMQTNLyL0vowzaTiGnn6ruyNTr7ESkeFus7f2nQOLCSotWwUVsh0kDXyBm67/8ytVwit717dXJdgaF7s3uSXPxlKfm2xilKkksnC0bUjBMzZ9CdEbKPAaHaEFUD+f2YUQB4xVOOxD+/5TmOk6+q+vKm55yAP33D03tuw6+Bdwwq2RkLt1ZEo0xy0RvRlDuUwWmPYePOt2k5yI9D5wMED50LvlDEYisydGpaL/+GEAJzSVyoNdJlGrqPZhLh9Cds0dsXrxlQKykBwDF6uu/DaOidDBkLg+MLZfPLDDVfrSkqnVoiXP/2+y2dgyeybTcFzorG0gwAkWX9hIKGzu7DmVqSOuu47cHIlEiUF+ei4zjLMgq7n712+51PJHzwjGzer5Xkog36ahetJCrITRx0mpzp2m7yUIRMF7fzk/AoEa3gFPWOQ/Jg6F2k70ySo+5DqzpXhlBLLgH0MlQ+qDaEH5JUfmzt/Ou6huaMY7aVhrmtFXQNvjZno1zgTdtsOyiu+6TDNpmpMnXMflM9enGpUFmvhCFnaa7AbTCSS0WGbhhVXqy2yOGswu4z9JJnT0arwNC9tpUZdJJEDEM3g1WRBYbOo46hiQFLiuLsulEib3HDTI5Xp0qfJ7n4/wNFDV0Igf/09KMAAM86cSeu+N8vxrlPOdIhJcYnKsolLbpOf/k4/x700rp9vPZM1a4ffeqRzvaU7Aao659rxE7pBB+8raE2xTFV97T9iPCe15yONz/3BDz7xJ3B6/XlQV6MzWQfe0ydFspY6eTBgXOcmLkol7LpXS9QOdd+cCo5BgzG6UdtxU+ecyx+9odOrHS8Kggt4xXrKAn63tHQmWF6xnE78Jn//myceew2kyH5G+f+gHMt/rF90PqNxBppS9cJxqb9gRc1JBn0gi13mvc26N7SZZFjcML7/PCTDsMnvnUXti+6g7jf7rJ6GkKopJblTuak/vMVgvhLGnaKqm1X2eIRpP3yInDGqehJKYDV+A+sFtdkpe382vGh9sSRwP953VPxW69WC2GTVhy6hkgA7ax3lIu/cLq/baiWShlOOXwz7nzfj+hr48eInHvRYhp6SLbgTaWf+axDhcnCVFvk9+uY7Qv4zR89rXBM7igGKAvVHptyFPg2ZDMMQ++uP0OfOYPuVKrrUxOCsK1HlAmH1dCzYMeJI7XK0ShhtUE+82B1qr1pnt8pztYZspviyLwcgKch9pjJ0OylzKkaiWJNGx9ly7qVgd6nTiax2GMQIM2XDsslgTKG/tyTd+Hqd760UACqVxSPj8VmjEPt1MSh8/27WV6YTfngxIDaSiGDPLFIeNvzAZFWfqKa9aoNblRLiKH7S9ip0tERthRqlRT/FhDIshLJJQoYdM/o8bYMarz4zJOv+UvnpAE5dNzQ4MTbRv2GfAduBFhZezyDzgbyJBJogy0Y4vkSiKH7Br1qGOdaMHMG3Z3eVbtBlRk609DLSnyOGqFEiDiKnMJajnGuyIL9apNlKGrobnv8Wuuhgc6fgvaDo0tGqgt+4Zd/CEvt1Nlu3guPU5KArQ5YhlA1P3q2//DzzzZlg8uw0Epw255DSHOJw7WERYz+6O0LfSUXP/w1iVgtF5ZY5D97zlJJcuHL31F/9+vR8P1O3L2IHYtNU+yr7NmXMfSuCVv0t1f/u5KL+5tqo5YhBjReSU+GHju1cHpeizfjpegom1jkPrOQL4ZfE92HUBaqz9D9sEV/UfeqPqa1YOYMehLw+vfD9ooaujU0vbXdUSIUFx1Hbg0TxxFTlQVX9DVsNwzdvZduIoyrb/rwQ/v6gUsu1LZQ0aLCQgqRWw99ENDL9IzjdvTddrEZm5rVTztmGwDgnBN34uM/80w856RduoyqckaH2mFmegEN3UksIgNh7h+TXDYVwyrNMVjJZ3+/hWaCK3/zJTj+gouctvhwNXQ7YPJSAO72qh+GJBc/RBAYnKH7fafpXFPslMXw4TqpPYYeqe9ofYE4ivoOyEAxfJRLbf6CI7E3iDT0gPQrLz2lb0TUqDFzBt1h6BUlly1zgzlFgeqx62uFP9rTd3YRWvflqtop3Hj98n22LrjrfdKWPGvVkXx61NKo3jb7kvRypBqGTlNaIVC25mXfcw7AGBdbCTK9OhSvEfSCJx1mjycE0kA1RiDM0E1xroRr6Gp7+txyNPTirJKvWMQ/93JAlvVjMtDKUUjfsXroJQMVZ+j+rA5wqyEOAroGChvl7/Z8M7azkT4MPfb6IhEifl1u6G/vdlkHfl5wYtsoFxpE7H43//a5AIB79y2zaxy/TalkEYUQLxdC3CSEuFUIcUGP7X5MCCGFEGeNroku+E2pytCrsu0qI/eoURY322VMtCxxo/dxi+cIwThFPdbIdV3u2Q9NG83ivlXbpq+nLFGJEMpIzPo4RcswyHSXNNAfOHJLqfTWK2kt8Qx6HClHaySAzXONQsx/KGwxdN6mp53T51CyDaFX3/cdf5FgJZdLZmJ80LHynN2G2jZozgbdEzLoPPxyrmEZeug59pJcYi25EBGoKrkQbIy7q6Gr/10fT6/BHVgfDb1vLxdCxAA+COBcAKcBeIMQouAWFkJsBvBLAL4z6kZy8JsSGq3XgtAiseNGMGxRCMeh1o8hB49bkaGbiIkShk4ST2h6TaDsy6oMhN6hULEvjjnjFCUmCKahD8gAB2Loypg87ehtpdvYaXbxN15MjT7vWGzisz//g06InmHobPD0cfxOG17Z8Kb6fsZosJ097hPXzvn/QNhHUWDoZj9OONTfckCLTte0ea7I0OcakXnXe8Wh87bwsh+RjnJR1xANxNBDJRJiz3fR692YxiiXswHcKqW8HQCEEJ8C8GoA13vbvQfA7wH41ZG20IOTkj7i2PBJMPSysEXeDicsrPJsg50j8HbuXGxiL1slpyxum+u1ZeVL6WUZzilafj3WKWqvo1ctl14Y5GWiTD/Sz0PotZQdd67zc/sx8r5O6xv0y9/+4uCqS77k0mtm1Ov+UrfgGrq5vpBx8hi6z/B5WwYk6OaeLRqGziSXRswWKCm2y2m316ZWI3b6ShzBi3Lpw9CZvydhK4Tx/0Ox7/7+fPtxoopBPwrAPezzvQDO4RsIIc4EcIyU8iIhRKlBF0KcB+A8ADj22GMHby28ztNjqgkAX/qfzxuo6gq/4etkz8Nhi44xdtlS9XopvRn6V85/vlnMmp/fr0fuF7UKvVAS5aVNQ+DFuXozdAr1s9JLWa2RMvz5fz0Ln778noEYPa0Be8YxW0u3CdUxMb8xSYlvSzA6s/4sve8JfvZiMVzRZYoh9CIm3NkMePHcgesSoizKhRkt3bZ8QIZORzAMPXYNOhU4Cz1Hh6GbOHT1fyuJCgbcfc/d473h7GNNGV9+nG4msdD03gVi6IGBze7P7810MPSeEEJEAP4QwJv6bSul/AiAjwDAWWedNeggDmAwDf2UwzcPdGxH2liH0RToz9CLYYsVGXoftrV9sWnSy0Pb+DJAr9BEw9Crpv4zp2iVTFHKiBXCXdS4Cl5y2uF4yWnhlarKcPpRW/HUo7fixF3F5QoJvabZfHGO0IDll1kgacavZe6j6UsufRbrAPpJLu42oYxLjqO3L+DYncUMW376ppFcSk8bxJJeTIU0dN4v5psxkrhYA4cQjEPX+6uaQO4Mlx/Gv8zffe1T8LuvtbkmNrHIlnzw3w2+FnChbes8669i0O8DcAz7fLT+jrAZwOkAvqZv3BEALhRCvEpKecWoGkoIpRmPCuT865eSPkqQfS5j6HyRaKC6c8/VCftfi50+uvtTpw3FShOkkVwGH2yqMHSKAY+j/qn/o8CrzzgKrz7jqJ7b9HKK8rDFUD/yZ0PksOsXtVVILErcZxRCr+7iF5fiLQ0Zn8/94nODA6lrMIdj6IfaKjeADDrHXCPG9oVGaQmPUF+3ma1xIeCgF0MvO3Zo8Qw/Dj1kj6r29VGhikG/HMDJQogToAz56wH8JP0opXwMgFlpQAjxNQC/Mg5jro9v/h61UxRQDysNrEY/LlgHWQlD95yig4YGVt3HZ/7+4rlWegndmEElF3benlEu6lw7A+nqY7TnleDX73B+09/xdSc5yNTRT8TQ+90/8inMe1puT8mlx40yg3eAoYf2KyM5TvIMvZMDMnSqZR8aSOcaMX7u+SfhJ84Ky7Qi8H7wyCFHwvQYer9Xg8ehGzmyJA49tJCNnzA4bvQ16FLKVAjxVgBfBBAD+JiU8johxLsBXCGlvHDcjSzDqJ2igE3rXa84dHrGoZRq9Xt5LZdeGKSIGd+GtrQ6oe60ppxr8VjDSi78PCGQoduh67KEohkmhaphi6Hft8438IIn7cZ5zzsJgGXo/STEZ524A+//iTNM9E3TSzDq1c4QfD8Ab6qo9Chpf/sN9Y9BGTqv6+JjvhFj81wDm0vyScJZr+WSyyAM3cqDeWE2Te8iHSGUkT6NUS6QUn4ewOe9795Rsu0Pr71Z1TAOhq4MWFaZCa8VVusrLpemfve0/YqDGJ++V7Gz1jFGjNxlf/S5V9hi1cGmavbc/mU1Dd+uyxOIwIs7KVTRTTtZHvR5xJHAx3/mbPP5qdpA88SlEJI4wmuebhlslTr0vZzBBcmlD0PvdxzADi75UB6yMOb7lOFwDbr6n+6NinJx+w1/ZP0u00a5hCQXda0UXLAjsGgKv49Vy3ivBTOXKcoxjpK2flTHuEHTsLJlzSIhCgyjCnjnqcKcI4+h+44fn7FzDM7Q+d/l10OVFQ/TGrrL0CudamwwUlkPjbyMoft42jHbcMO7Xx6sQdMLvUrKVoFxikbuZ/XdkAY9obDF0Vn0+Wbv6wu1mztF+e1JvEiZftFP1FdpCTqgyND369pAoexe3j/8qKVxYKYN+qidogBLGFknBkjkymHonpPHZejV2sUdSFXsrD9Djj1m3mvdUJNYNGDYIj9uCP/rJU/Ctvkmzj39iMJ+gyYWjRo2QiT0GzPoFQ3joMYcYLOnId8DEz8djHKpfhy3ABVJLkM1KYh+hfJCBjpiBj0kyVQF3RspiwED1N/3Lat8jn5FAA8vKdk8Ssy2Qe8Thz4M1p+hq/PwmuO+xjxMYhFn6FVYIkUXvO6so53z0D3unSmq/q86Y6qqYW5fbOJXXvYku60z0FU61djgF2TiMIlFAxj0YUCGrl+4YxmoaTaxyP5Wpc/YOHT73bBO0V7oZ9D9wnaAbX8riYeqhUSIPHLFj0H9+DEtDYacohwhBj9qzLRBH4fkQsx03TJFWccjJJ7hch0r1a6Zh39VuZb5Zowb3v1yYxxiw8y92Oeg5DJY6r9TKnWgqT3/e9IM3WW3HCbKJcsLS8KNEq8982gcs2PBZFcOCt9ADWv4oqj4PAd1ivZCfw2d/+0OtM0kcmZRgzom3Tox7m9FyaW3pLIeodDrFJw3HlSttjgIejn/xgEybmUMPRLCOAX59v3gOBAHmPb7i1X4TqYgQzdtq8rQhzQcU+QU7Vm/Q7etrFTCqLBjsYmXPfmI4G+bKxj54mIQ9rdBJK2wU3R0Br0fQw8mFpnYcBFk2VURinG3eRfqWs1yjovjd3r2Q83QPfQKRxsHQgzdjwLZtZkZ9CFiWYe5FjJEvs4aDlscLMqFG/5hDfqk49DNgBcy6AM6RceBL5//fNzDSreGYCQTinDS3w9KZvg1No1TdHTo1x5+i23NchpwozVJLrHT57RB15+pD5x13HZccde+sc7GqqI26B56vajjQEhD952ifCo3DOMbZrbBq9Xx/0MsXA4Y5TIsQ3de3AmL6FGPgZ9LLus10/NxxNY5HLG1txMuVD4XGJwA8M3p2Y6QoPeFm5TntimJReUw2eCxA0lINkxX/fiJN59tQmzLcOoRg5UhGRYzbdCHdQb1wrArrgwLOgsf3Z0pYiQcaWmYdg0jT5CGTjW7pfk+ILkYp+jgGvogL9ggZU/HjZ7VFplRm5RBrwIbtuga9EG7ixPlsl4p1gyheuh5bv06w4ZjFo7t3RjqxwvNxNTQD+Gy33gRNs2tj6mdaYM+HsmlPL54HOjqjlfG0H22NEyI2loYutm1h9E2TtFhNPQhtdpJa+i9qi1OogzzMChcg2fg+4G2GmYBlir4+M88E7c9fKjvdqEl6GiBmCR2wxYHnX2ESIQhMBVnpIetQ7giYaYN+jheFuP8WyeDkWbFSnu9wvOGY+iDt8uvCGi/D0gu+v/KUS68tO8AEpLrtKu821hgGXrgt1kx6N4sw8bWDypLcIM+uut9wZMO65s9CyBosCkprRGJQhjwIAjlPphy0WMIm14rZjrKZRzwi1GNG7ToMffkOxq6145B2vU/XvhEAMMl4fgdv1fN89zTFAc59iDGY5pS/826oD2cov7f0wZqmv1/OMklGIe+jgg5y6luvmLodtuBnaI9ydX0mc+ZZujjAK2xud6SS1nqv98BB+mQ57/0STj/pU/qv2EANK0s6IY91hSt6rBtDB3lwv+esORSIQ697PdpQalTdA2RIIOs3ToqhAw2EaVG7CbmDfpeh449qM9oPVEbdA+06MN6vYhdXVFwrkdiEQD83c8+C1+87sF1S3knRk6ns5Es5ecfplb78HHolXcbC3rGofeYYU0T/KXT/NT2/vu7/wOTMXKhmVvGnaLsetaSWETnsYl0NUOfelB67noRK9L6nMV3A8kMzz5pJ5590s71aRSsAfcHkF4svDpDH9KgR8WXa1LwZQoO/qKvl3Q3DMw1GIPu/j8MJiExOTM3/YFKEsee5DLaxKLpe7a1QfdABXYOttM+W44G5I136qFPgQZLsbb+2Xu1p/KKRSNg6JNXMnow9DXEPa8nipKL+n4ts1MhBI7ePo///vyT1ty+qgg6RTMetsgY+oBGOBjloj9PIkSzH2qD7oEK7BxY6Z0oMCoQQ2/1YejrDeq0YoBOXFVycTT0gcIW+d+TNZS95Il4yBnIesMacPW/8L6vCj+J6Ju//sI1tWtQhIxuV79XvkEfOIIn5IiXxfNOC6ZviJkwiKH3y/waFbppb4Y+MYNOkovH0UMSAi3CXFUv3ggaOiEYh74GA7Ke8EvN+oWtZgWhDGLS0Bu+5LIGp6i15+HZ6zRgJhn6V85/PlY62ViObQz6Smcsx/fRNRr6dEouNpmivOb5B37y6XhsgBnNSFL/p8RQznYcuvrfLD84ZJTLpBFi0c87eTf+5ar78QNHbsG9rKbNoD6NaSBXg2AmDfoTD9s0tmNT3ZT1Yug2vCoctjip0Kjcc4ra5KGiBWslMQ7bXL0w0bDFktxCSZV3GytmOlPU09DpUqoaLr8sxKQQquXyY884Gi958uHYMtfA/ftXgttWOnaPTNFJO+ZDqCUXD8TQ+5XsHBUoU5SnzXMW0a/G8rhQ9pKOOmpjVsvnEoJriorev08LfInFTzSaFZT5VrboRaXFGp5HHOhzvn9pmjCTDH2caCYRfve1T8HZJ+xYl/PRy9QoYXVb5ifziHbo2s60bJZfA3pUGGiBi0DNjkmBzh4yEEIIJJFAmsupNujWsav+HzaxaNLgTHlzoAhWs4QsVQG/F2a2WhIBNg2oDXoAbzj72HU711/+zNn45+/d5ywgG+pE643XnHEUIiHwI0850vl+1C/7IIbZTSAZaTOGRln7o0gAuZxqp6if7Tqo5DKN2BGY0e7cZL8b1Cnq+m3U/9PM0GvJZcJ44mGb8Csve9KaivCPA0IIvPqMowwjH1cnHiQu2I04mPw9Asqf1XqvTTsMzMIWnlO0sobuacrTgNC6nbvYWp80eJ1xzDYsVFiYOyS5vPc1T8HzTtmN04/autbmjhw1Q59CTKURGNNbOwgb9BNgpgFlDLxXvfRpQbHa4vS3uR+2Bww6X8KRcgT++S3PqXS8UIz7aU/Ygk/8f2evoZXjQ83QpxChNR43KoZxik6DJGDkiZL2r/di48OgUMtFfz/FTe6LxQDrdsrnDth3hBB9n/U0oTboUwh6wTizmBaMukvPqkEnlPmISXKZiVouHoGoarim6DEY9JPihhlg4ynsd2WoDfoUYqWrkqa2LUx+FXEfo9auh0n9n6b3qtQpqr9faE2vqunPBIddU3SWMNTqXbF7n6YZ09vbHsc4YdciXnjqYTj/JadMuikG83oqO+qXfSCnaDR9TKnMQFBiVkgCmBYUMkMHjHLZOq8IB89ynnYM038bcYTVbj5V/a4MtUGfQjTiCB970zMn3QwHf/z6p+NTl92D04/aMtLjDha2SPuMtAlrQpmBaOtZ1uIUM3Q/TNEmGlXb/+0/chqeeNhmvPDU/svETRon7lrE7Y8sDaWDUxz7tERW9cL09rYaU4XDt8zhl1588siPO8giAdOkoftFy3ysptqg91gNflpQWFO0otHb1Erw5ueeMK5mDYQkEvjPZx1d+vtnf/4HcfNDB4c6NpXlmCYiUYZKvU0I8XIAfwwgBvBRKeX7vN9/DsBbAGQADgE4T0p5/YjbWmMDYpBFX/wEmGkG1blfaE2v5GKXGVT/0yA1DQPmoLj1d17R8/cdi00868ThFoihxaBn4b70fZ2EEDGADwI4F8BpAN4ghDjN2+yTUsqnSCnPAPD7AP5w1A2tsTExCENveElOs4BpllzoThrfhFcCoIbCLDH0Km/T2QBulVLeLqXsAPgUgFfzDaSUB9jHRczWO1djghikNAwtpE3Li00D+nX0aZZciKHPevnccYMWbtkoGvpRAO5hn+8FcI6/kRDiLQDOB9AEEFyyRAhxHoDzAODYY9evXkqN6UU8AEOnRUA66fQY9H6okl4+afgGnKfK1+Bhi9Nv0EcWbySl/KCU8iQAvw7gf5ds8xEp5VlSyrN27949qlPXmGEMEkZGJY3zKZj/VW32pimWXGx9HnUxdz6yBAB4xnHbJ9Si6UTiOY2nGVUM+n0AjmGfj9bfleFTAF6zhjbVeBxhEKcoX6ZvVjDdTlFl0ikV4Mq79wEAnnHc+pSOnhWYKKAZsOhV3pDLAZwshDhBCNEE8HoAF/INhBA8nu1HANwyuibW2MgYxCnaSqbXOJZhFhg6GazXnqnC/k7avTihFk0nTK2b6bfn/TV0KWUqhHgrgC9ChS1+TEp5nRDi3QCukFJeCOCtQogXA+gC2AfgjeNsdI2Ng1ln6P2KUM7NwCBEzPO9rzkd73zlaTPh/FtPkEGfhZIIleiDlPLzAD7vffcO9vcvjbhdNR4nGIShr9eygFVQ9d2e5mm6jUO3US6zOAsaN6iPPq6cojVqDINBWE9rhmqGzAKM5DIDhmqSmCXJpX5DakwU8QDFuaZRcpllkFN0mmcR0wB/AZBpRv2G1JgoBmLoUyQHHL19AUB5ieMXPGk3jto2v55NGhojXvd7w8GvdTPNmF4XfI3HBQbJSpymMq3/66Wn4Mxjt+M5T9wV/P3jPzOdS5SFMAvMc5JINljYYo0aY8MgBn2aGHorifHy04+YdDNGgtqg94bV0Kf/PtUGvcZEMQjpqTX00cLUcpkB5jlJbLRM0Ro1Ro4Lzj0VQgzGeuool/GgZui9Ec9Q2GKtodeYCH7u+Sfh555/0kD7TJPkshEgqXzu9NupiWKaF/r2UVOeGjODWhoYLWrJpRootDabhqpwfVAb9Bo1HqcwmaK1Qe8JYui1Qa9Ro8bUo84U7Q3SztPaoNeoUWNaYTX02qD3AjH0vDboNWrUmFZYyWWy7Zh2kIZeM/QaNWpMLcyKRagZei9YDX36lz6sDXqNGo9z1IpLb1Aces3Qa9SoMb2Yfvs0FZilKJc6sajGTOHyt7940k3YMCCnaE3Qe4Pi9GeBodcGvcZMYffm1qSbsGFATtFZKDo1ScwSQ68llxo1Hueo7XlvGIae1Qa9Ro0aU4rpN0/TAVrM5Ojt079gSS251KjxOAUtQVcT9N542ZMPx1+/+Ww856TwYibThNqg16jxOIWJQ68tek8IIfBDJ++edDMqoZZcatSoUWODoDboNWrUqLFBUBv0GjUep5DGK1prLhsFtUGvUeNxijm9pF+9wMXGQe0UrVHjcYr3/8TT8cnv3IWnHb110k2pMSLUBr1Gjccpjtg6h/Nf+qRJN6PGCFFLLjVq1KixQVDJoAshXi6EuEkIcasQ4oLA7+cLIa4XQlwjhLhYCHHc6Jtao0aNGjV6oa9BF0LEAD4I4FwApwF4gxDiNG+z7wE4S0r5VACfBfD7o25ojRo1atTojSoM/WwAt0opb5dSdgB8CsCr+QZSykuklMv647cBHD3aZtaoUaNGjX6oYtCPAnAP+3yv/q4Mbwbwb6EfhBDnCSGuEEJcsWfPnuqtrFGjRo0afTFSp6gQ4qcBnAXg/4R+l1J+REp5lpTyrN27Z6M2Qo0aNWrMCqqELd4H4Bj2+Wj9nQMhxIsBvB3A86WU7dE0r0aNGjVqVEUVhn45gJOFECcIIZoAXg/gQr6BEOLpAP4vgFdJKR8efTNr1KhRo0Y/CCn7l7kXQrwCwPsBxAA+JqV8rxDi3QCukFJeKIT4CoCnAHhA73K3lPJVfY65B8BdQ7Z7F4BHhtx33JjWttXtGgx1uwbHtLZto7XrOCllULOuZNCnDUKIK6SUZ026HSFMa9vqdg2Gul2DY1rb9nhqV50pWqNGjRobBLVBr1GjRo0Nglk16B+ZdAN6YFrbVrdrMNTtGhzT2rbHTbtmUkOvUaNGjRpFzCpDr1GjRo0aHmqDXqNGjRobBDNn0PuV8l3nttwphPi+EOIqIcQV+rsdQogvCyFu0f9vX4d2fEwI8bAQ4lr2XbAdQuFP9P27Rghx5gTa9i4hxH36vl2l8xzot7fptt0khHjZGNt1jBDiEl32+TohxC/p7yd633q0a6L3TAgxJ4S4TAhxtW7Xb+nvTxBCfEef/9M6+RBCiJb+fKv+/fh1btdfCiHuYPfrDP39evf/WAjxPSHE5/Tn8d4vKeXM/INKbLoNwIkAmgCuBnDaBNtzJ4Bd3ne/D+AC/fcFAH5vHdrxPABnAri2XzsAvAKqeJoA8CwA35lA294F4FcC256mn2kLwAn6WcdjateRAM7Uf28GcLM+/0TvW492TfSe6evepP9uAPiOvg+fAfB6/f2HAfy8/vsXAHxY//16AJ8e0/0qa9dfAnhdYPv17v/nA/gkgM/pz2O9X7PG0PuW8p0CvBrAX+m//wrAa8Z9Qinl1wE8WrEdrwbwCanwbQDbhBBHrnPbyvBqAJ+SUrallHcAuBXqmY+jXQ9IKa/Ufx8EcANUFdGJ3rce7SrDutwzfd2H9MeG/icBvBBqDQSgeL/oPn4WwIuEECNfjbpHu8qwbv1fCHE0gB8B8FH9WWDM92vWDPqgpXzHDQngS0KI7wohztPfHS6lpBIIDwI4fDJNK23HtNzDt+op78eYLDWRtunp7dOh2N3U3DevXcCE75mWD64C8DCAL0PNBvZLKdPAuU279O+PAdi5Hu2SUtL9eq++X38khGj57Qq0edR4P4BfA5Drzzsx5vs1awZ92vBcKeWZUKs5vUUI8Tz+o1Tzp4nHhU5LOxg+BOAkAGdA1f/5g0k1RAixCcA/APhlKeUB/tsk71ugXRO/Z1LKTEp5BlTF1bMBnLrebQjBb5cQ4nQAb4Nq3zMB7ADw6+vZJiHEjwJ4WEr53fU876wZ9EqlfNcLUsr79P8PA/gnqE7+EE3h9P+Tqj5Z1o6J30Mp5UP6JcwB/DmsRLCubRNCNKCM5t9KKf9Rfz3x+xZq17TcM92W/QAuAfBsKMmCynDzc5t26d+3Ati7Tu16uZaupFSlvD+O9b9fzwHwKiHEnVDS8AsB/DHGfL9mzaD3LeW7XhBCLAohNtPfAF4K4Frdnjfqzd4I4F8m0b4e7bgQwH/V3v5nAXiMSQzrAk+z/E9Q943a9nrt8T8BwMkALhtTGwSAvwBwg5TyD9lPE71vZe2a9D0TQuwWQmzTf88DeAmUvn8JgNfpzfz7RffxdQC+qmc869GuG9mgLKB0an6/xv4cpZRvk1IeLaU8HspOfVVK+VMY9/0apUd3Pf5BealvhtLv3j7BdpwIFV1wNYDrqC1QutfFAG4B8BUAO9ahLX8HNQ3vQulyby5rB5R3/4P6/n0fanHv9W7bX+tzX6M78pFs+7frtt0E4Nwxtuu5UHLKNQCu0v9eMen71qNdE71nAJ4KtRj8NVDG8R3sPbgMyhn79wBa+vs5/flW/fuJ69yur+r7dS2Av4GNhFnX/q/P+cOwUS5jvV916n+NGjVqbBDMmuRSo0aNGjVKUBv0GjVq1NggqA16jRo1amwQ1Aa9Ro0aNTYIaoNeo0aNGhsEtUGvUaNGjQ2C2qDXqFGjxgbB/wNgL5auqlstQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABltklEQVR4nO29d/wlVX0+/pyZWz59e2MLS1maVFlQUMGGgg39xgIalXxNiN2o0S9+Y4ii38SY/DQmYkFjiY1gi6hIUVAUpSxSFxZZlgW290+/ZWbO74+Z98yZM2fa/dzOeV6vfe3n3jt35szcmWeeed7lMM45NDQ0NDR6H0anB6ChoaGh0RxoQtfQ0NDoE2hC19DQ0OgTaELX0NDQ6BNoQtfQ0NDoExQ6teHFixfztWvXdmrzGhoaGj2Ju+++ex/nfInqs44R+tq1a7Fhw4ZObV5DQ0OjJ8EYeyLuM225aGhoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGiAc47xmXqnh9FSPLBtHPc9dajTw2gpNKFraGjgjscP4PRP3oTdE5VOD6VleOXnf4cLr7yt08NoKTSha2hoYNd4BZbDsX+q1umhtBybdk3gH37yIPpxch9N6BoaGqjbDgDAcpwOj6T1+POv3olv/uEJ7J2qdnooTYcmdA0NDViOq1brdv+pVhl00yoY/Ud//bdHGhoauWGRQrf7X6Hb3k1LWy4aGhp9CVLmpNT7GbSPtiZ0DQ2NfgTZEPWngUKnfe3HcIEmdA2NPsD4bH1OFgIpdFsr9J6GJnQNjR7HnskKTvn4jTj7UzejatkNrYOUebcGRSt1Gwenm5NSSTzu9OHNSxO6hkaP4+C0W+G5c7zScB655Xvo3elDvOVrd+K0T9zU1HX249OIJnQNjR6H6Hs7DdoIdYeyXLqT5O58/EDT16ktFw0Nja6DqDQbFdhE5E+HoChBWy4aGhpdBzHVsFGFTvnn/WhDxEErdA0Nja6DSMKNklSdKkWfToTeh/uqCV1Do8chBjIbTV1sd6Xot/6wFT+9b0fu7zWzuvORXZNNy5zpFmhC19DocYQ89Ab5zq8UbVNQ9Eu/2YIf/nFb7u81qqpVN4IPXHMfLvjcb2O/M1Hpvf7wmtA1NHocIgnLhHfHlv2ZiMnPQ29D2mKlbmPH+CxqVv5tNdqaIO5GsCum//vNm3bj5I/d2JLsmlZCE7qGRo8jLig6PlvHG666He/6zh/T10GVom1Q6E8dmAHnaIjQGw765rwR/H7zfgDouRmONKFraPQ4bEFViwK7UnerRh/eOZm6Dr+XSxsChVv3zwAAag349Y0q9Lzfo8UZa2hzHYMmdA2NHkecQiebwcxwlQceeustlyf2TwNoUKE3arnkfPLg6M0MmEyEzhg7nzH2CGNsM2PsMsXnn2WM3ev9+xNj7FDTR6qhoaGEHUPoZKOYGWQmKfR2tM/dSoTeVoWeb1t0GI0ek+iFtAUYYyaAKwGcB2AbgLsYY9dyzh+iZTjn7xeWfw+A01owVg0NDQXEoKhI6NSoyzTTSanexkrRJ8hyaaNCz2+5uMsbvcXnmRT6mQA2c863cM5rAK4GcGHC8hcD+F4zBqehoZEOUX2KvFX1CDOTQrfz9XI5NFPDTM3KMcoAj+9r3HJpl4fuK/QeY/QshL4SwFPC623eexEwxg4HcASAm2M+v5QxtoExtmHv3r15x6qhoaGASFai/UKWhpmBlGgdWYnv1Ctuwks+e2ueYQJwnxp2HJoNjS8PGs1Dz+uhk0LvLTpvflD0IgA/4JwrmzJzzq/inK/nnK9fsmRJkzetofH0RJyHXq1nJ3RSy3mCotsOzmZeVvyOw4FFw6WGFLq4r5xzXPfAzkxjzu2he/8z4enm95v34doGqlvbiSyEvh3AauH1Ku89FS6Ctls0NNoK0SYR07RJAWcJ7OVV6I1i854pAMC6ZSNztlx+/sBOvPM7f8RVv92S63tZwH0PPTh2b/zqHXjv9+7p6h4wWQj9LgDrGGNHMMZKcEn7WnkhxthxABYA+ENzh6ihoZEEO85ysXJYLv6MRXmzQfKR2//csx0Lhoo4bc0CWA7PHeQUn0AOeH1YyMJJQt6WBiToVffCjTvGc62rnUgldM65BeDdAG4A8DCAazjnGxljVzDGXiUsehGAq3kzu+d0GDvHZ/0AjoZGtyIuD93PcslA6I32cpmsZg+MTlTquPGh3Xjd+tUYKbsJdnl9dHF8pJ6zrCKvqqbjKH5v7aIhAMBtXhVpNyI1bREAOOfXAbhOeu9y6fXHmjes7sBZ/+TGdrd+6uUdHomGRjxClaK8QYXeYB767vEKxgaKmZY9OF2D7XAcu2wUB2dcdV2zHQwUzczbE/ePCD2Lhszbo4YOg+jPj3r7uf3QTK51tRO6UlRDo8chTuws8lYtV9piY3OK7p6oZl52puY+MQyXTZQKRmiMWSHecOg+laW/S16FTpWi4vboiaeLLXRN6BoavY7YLBcre1C0njMPnRDXrVAFylsfLBVQMhsjdHFfKUc8i+WSuy0wj26v4mUNdbOrrAldQ6PHEeeh57NcGqsUzVNcNF31FHrJRNEj9LzbCxF6DsulUQ9dpdC7Ocslk4euoaHRvbBjKkXzFBb5Cj0DWXHFTSMLyHIZKhUatlxsheWSNO2eZTs477O3Yv3hC3Jtx0lQ6F3M51qha2j0OmKzXLz2uWmOC+c8yHLJwFaqm0YWkJofKgUe+qZdk/juHU9mXodKoTscuH/bIexR2D/TNRuP75vG9++Onx1JpfBpO2oPvXsZXSt0DY0eR1weetUj2zSLQPw8S9WlKtc9CZv3TOELt2zGsctHAQBDQlD0Pd+7BwBw8ZmrQ1WZcRCDtkS2Dud41edvw+hAAT9/z/OwxksvzLM/BamBWV2aY5VzHij0LpboWqFraPQQ7nnyID59/abQe3WpUtRxOB7cPi6U80cJaKJSx/n/dis27ZoIqdAswUOR0LN44D+7fwd+dM92/NMv3HEPlQooS03as6ZLhvu9hwl2smLhnH+5BU8dCNIKszxB1BX7XJduhuJ6upjPNaFraHQDbnpoN174r79OJcjXfOH3+MKvHwsFI0UP3XY4vvibx/CK//idPx+mKhXxtkf3YdOuSXz2pj+FtpklX1tcXxaFvnC4FHo9WDRRLISpJ2twVLzhiApdxHahclQe3yVnr8WP3nl26D0V6csWFKlz1fa6CZrQNTS6AB/50QPYsm8aB71y9jTsmwyWkz30e548BCBonqWyXCiQaBosTJK5FXr68uI6ywUDpsH8tMU86wHUE3jI3w3doCSy/t/POQInrBiLXV5+j/aV/HN5DN0GTegaGt2EBBv50ExA4nunggCg7XCfIDkPyEiVekcI5sxkIVWerXNhNNc9CSqLpqRQ6D+/fydOveLGEHkmbTtQz+HlRTUtj880WSQvP4nQ6WmkKir01s8B0jA0oWtodAXSVd9DOyf8v/dOBhWalsNR9IJ6NucBQSlS7/ytCd0ESekyBtRsjvd87x7ctfVA7DicnB56XZFWKRO6ZXP843UP49BMHXsSqk/DAWB3vZQOSZiYrft/y5ZLwWCRNE7VU4nc20Yr9B5HNxcPaPQfiCNYgkSnwhwgTOi2zX2CdARClxX6ZKWOd3z7buydrAYTSLOAlAeLJvZNVfHT+3bg4qtujx2HqJKzeOiqySWilouDsrcPSapfZffICn2iUo8sQygYLDKtnNpDD+flhz302OF1HJrQY9BIr2YNjVZCPCfDCt3xKy8dh6NmU7DQ+9wjp4d2TOAXD+7CPU8e9InRMJhPeqMDBWGd8ayVN8tFta6ywnIpe026ZIKO27YdY7lMzAYB46hCNyLpkT/+4/ZI5lBNe+j9BU3oGu0E9/+PJ4uaLSj0qbDlEih0oO6duzVJZc56xDdbt0Oz2pNPvHL+YOIYZ2s23vXdP2Lr/qCldCaFriD0oiIoSiQ/ldCS11Z46NOy5SIodPGYAeoJsz9/y2Z84dePYdd4BR/6/n2YqVkpCr17CV0XFsWgaserBA2NZoM87SSuIPJcMFQMWy5CULRuO5GeI/T/rEd8MzXbN3YMFvjEqxcO4Y9ehgwAjM/WMW8waI37q0278fP7d2Lz7qlgTBkVesk0QsvKHvobrvoDDs24RDxViSf0cM68o1w+7KFHLZc4/NcftuL7d2/DkUtGUPe+d2C6ikMzNf+YGkxbLj2JrGlUGhrNRFLshrzlZWMDODgTkJYleOif/PnDeGxveFIWIkEKHs7W7FDaIqnRNQuHQt/bKk3uQjeEYiEgxSwK3bIdvxLz6KUj/nZFHBL2Z1pq+CUGYcOFReEnD8K4SOh2NCgah9Xe/t/71EH/qeW2zftx6hU3+Qp9qFTo6kpRrdBjoC0XjU4g6XGezsmxwSKmq2JhEY8oXhEy8c3WbT8rxrVcPIW+IEzoMlGSVy3aJVk99ILBcM/fn4dy0f1uUsOwSUlx24rcc1qvCiHLRU5bTNgufXTfU+OR75FCHyyZ2nLpRWhC12gnfA89gStIoY8NFP35NIFwUFQFIt3AcrH8WYIMFij0wyQPXSZrUqnitrJYLm6vFAMLhIrRpEk3ZA89rt97XM68Kij62TecgrufOJjYL4aCybsmKpEbJO37YLG7CV1bLjHI26dZQ2MuII7IotBHBwqhzA5L8NBViCj0muOvS/TQB0vJ5fhk2ZC6HygavtecBMvhEWVsGCy2C+R0AqHfuHG3fzPLotBpH85ZtwSffPVJieMURVxEodep9a+pC4t6EWIubDd7Zhr9haRTrWY7KJkGBopmKOvCsnmkN4qIiIdetwJCFzz0gmHguOWjWLXAVepyHGnSI0oi8cGimVGhO0rvOk6lT1YsjM/U/UCxaLncufUA/vKbd3nrVR8s8UZE+5lkSRGS0iVpP8sJCn3PRKXjQlATegzEO3Q3P2Jp9AeIvJLOtWrdQalgYKBo+IoRCGe5qBBkubjKd6Zm++l8bqsA9/OCyXD935yDr19yBoCoQj/kBRtn6tTXvJAxKBptTwsEU8jJ2LhjHKdccSO+4/VJlwXVpl2T3vjUx0r02YmIsxB60uxLtK2yaSh/o+mqhTP/8Vf4+E83pm6nldCEHgNReSTNiKKh0QwEHnpyHrpL6CYqlmi5OJFCHRG2w8E59y2XmZotdBN0/IwO8sbjpoejTBSqWB0oGpnTFgtGdHxxCv1PXlrkz+7f4Y8/tD6b0jHV21Yp9KJi+zLkFgIiKFBbLDCo7iP7p1wb6JZNe1O300poQo9BXVAems812oVEy8XyLJeCibrNQ3nmKgUswna4T1iVuu0Tne1wnyDJFiH7RvbHx2dd0iKPe6hUyGQx2AoPHYjPOCGep+CoTOjUGybOQ69LCr1ostinAREz1SD7BwCec/Qi/29KhSyahvKme9BrnCZW23YCfUvoB6driQ2G0hBS6NpD12g1MgZFyXIBAs+Xgo5JnGU53F9+pmb7MSLLDnq/BArdXZHcG50UOt0YBopGNsslxkOPGy+tf/9UDROVeuQJmV7GtfqV+7Un2VEipmsWCoaBH73zbFz33ueFbgwTlTpMg8FkTPkb7Z92C71GyprQW4JXf+E2vO5Lf8g0I7gK2kPXaCfoDEvKoKh5DawGpJ4ntpfnnQRLUOiu5SIodCfw0IHAnqhbag+dCn8GiqZSoe8cn8WJ/3ADHva6Q+ZV6HTt7Ryv4OSP3RgrqJIUOl33ddtJDBiLx2225ir0Z65ZgBMOGwvt28SsS+iMMageSshyGdEKvTV4Yr87DVWWfs0qhKac6uI0JY3+QtagKABUvHO7bnOYhpFo19g2FypFgyyXusP9fG5foZPlIilgCsTSEIdKrvUjBy1/88heTFUtfO13j/vrKShUclKRT2jsMTsW56GL30lT6IMl0/97pmaHgqcyoVOnRpVI3O+lUmqF3gKIBzwpFSkJWqFrdAKJlovt+EFRQLRc1JaGCMtx/OVnQx664xM3KXOyXOSAp0ysg944ZGuG+r+Q7xz3BCFPNBGHAzGzOKkU+rnHLAl9RjZVHMRxzdSscBWsJVoulmu5GDGWi9csLe13aDX6jtCnq5Y/9RYQLV/OCpHQdZaLRqsRpC3GL1P11Ga5EBA65xzTVSv2UZ/UqRgU3T1RxfUbdwEIe+gRy0UidJlAB0vuNmUffXQgTOiW4+SyXGTsGq9E3qvbDiybY1hQ2Fs/9XI89+jFobFX7WRCN4Xsl5maHdvWIFDoTPkbkULPkvXTSvRd6f8z/uGG0OvZhFSkJIg/plboGq2G76GnBEVHBwp+P5RK3cFs3U1BHBsoKr9TNBlqtmutqMSNykM3PCUqBx1jFbq0HAlvUaGrWhNkVeg7FIQ+PluH7XCsWTTse/XiPtCY6imWi/jRTM32jy0QJufx2TrmD5XAmLrQkDx0caq6TqDvFLqMRhV6aOJd7aFrtAlJQfyq5QVFPYVerds+aYptbkWQOrVtrhQ3dUfIchHUatFkIVHDOVcodHd5WaET8U/M1nHtfTuwcceE0kNPS7Uk7Bqfjbw3PltH3XGweKQUep9uHBQXqKUpdBa2XEoxCp0ajMVZLpS22GmF3v+ErhW6Rg8g6OUSv0zNslEumH5Q9FPXb8JOT72mEXrdcTBTs3Dyqnmhz23HtS4MFq7cLEr9y1XjIoX+s/t34Peb9wXr9HZmfLaO937vHszU7Fyl/zJ2KhT6Y3umlN58kHKZLShqhDz0sOWi6tQYZ7nQsqokjId2TMTGAZqNTITOGDufMfYIY2wzY+yymGVezxh7iDG2kTH23eYOs3E0rNCFx0idh67RatBMRUl9g+Sg6P3bxvG5Xz4KABgbjPHQPUIfn63D4cArTz4Mn7voVP9zy+aoK7o1lkxDUqhRoiIP/ZM/fxhv/Ood/vu0D+JMQiq/PEuxDxAl9NULB/G5Xz0Ky8vuEUEVqaTQ63ZyJ0pxXFXLCRUWReYjNd2GYio+CKaqCx+n6x7YiZf9+2/xqV88HDuGZiKV0BljJoArAVwA4AQAFzPGTpCWWQfgIwCewzl/BoC/af5QG0OjCj1kuWiFrtEm2JzjJ/duV2Zn+ZWixSAQSIJFVOjHLR/1/yYyO+gpxHmDRSwZLQfb8ypFZdIrmCxV1IgBydA+KJZtRKFfdsFxOGbZCB7bOxV6/zWnrsTGHROo2W52z60fegF+8b7n+eMGAjJOy3KRx5DUGpgKi1S2mJgmKeJHf9wGAHhk91TkO61AFoV+JoDNnPMtnPMagKsBXCgt81cAruScHwQAzvme5g6zcTSu0Htjlm+N/gBxxG2b9+F9V9+Lf73hkcgycqWo+0X3P5HQX3v6Kv9vshsoC2NssIClAqFbXh667GfLlgsJHHHbwzE51yoB1IhCP2fdEpy6en5oNiMAGPBuJLM1GwWTYc2iIRy/YswftzvewAJJInR5DKosF9rnpCwXspnEyaSBgH/2CVMGthJZCH0lgKeE19u890QcA+AYxthtjLHbGWPnq1bEGLuUMbaBMbZh797mN7FRKYNG89BFha4tl+7Ck/tnsPayn2PjjvFOD6VpoDNs94R74e+ciPrGRE4UFAWCyaLFLBeRwOhv8nDHBopYMjrgf245DuqK5lmu5SJcA97fw6WAxONSJVVxQZXtkVaRbxoMpx++IPI+3aRm61Fvnl5TDnmlbvtev3IbEYUevL74zDUAgn02DQOGoU5jtmy1Qqc2xzvHZ9syaU6zgqIFAOsAPB/AxQC+whibLy/EOb+Kc76ec75+yZIlTdp0APnuCCR3UEuCHOHX6B788uHdAIDvb9jW4ZE0H2SNqAJ5NStc+g8EOdpjgkIXv0t/+4Q+WMSYQMSWzVGXvGPAJWCx9J8EzlA52PZojEJXEZ4yDz3FcokjdOosOV21Ih663ynSU+iVuhN+opGQpNA/eeGJ2PSJ8/2nF1LoSZaL7KGToHQ4sO3gTOw4moUshL4dwGrh9SrvPRHbAFzLOa9zzh8H8Ce4BN9WVBQ5oI1aLqIq14VF3QW6BvvxRrv9kJuiJ9sWjpcvXioYoVa5s3Ubo+VCiDBFhU551ZQnPW+wCMYYPv1nJ2PNwiE/D122XApS2iJdD1kUuiqwq6wUTbFcTINh7aJh//W/vPZk3HbZC/39k4OYgJi26Cl0yw7dAKPbCL8W+74YBsNA0fTXmZTlYsV46JW6jWVjrsX1xIHuIPS7AKxjjB3BGCsBuAjAtdIy/wNXnYMxthiuBbOlecPMBpVCrzSs0HUeereCyKuvnDBvX6jKmQiYIE7UYBgMr18f+ORjUsqiqDKpqpS6AZI18/ozVuOU1fNhe3nocr/womn4qX9A4EmLvUri+paoLMqGFDpjofz1o5aOYOX8wdANS14v3ZgoBlappxC6NAbVk5HYhdKIyXJxYjz0St3xb0q7FemXzUYqoXPOLQDvBnADgIcBXMM538gYu4Ix9ipvsRsA7GeMPQTgFgAf4pzvb9Wg4yAq9HLBwGDRnENhkc5D71bQRL/99OREaYvUA3zfVDiIRo/u5J9/+rWnYMGQS87JhB4odMbC/boLBkPdy0NXpi1aUYW+dCwIqA6VslsuykrRFIUuz0lB5CuuKykPnXPuWi6KoOhLn7EMRy8dwcde9QysWTgUuz5xndRtUcUHfiGT5YSeHKuWjZXe5NsHZlqfi56p9J9zfh2A66T3Lhf+5gA+4P3rGMS7Y6lgoGQazakU7SPi6AdQyXg/Wi4EmdDpPBa7Aw4WTRxEHfOkHPRSISClgNCrGCkXQiRqGgy2zd3mXrJ1UWChMnZ6Yl0qBFTjgo0qy6VRDx0AFg6XcGC65r8WVbRcgSrmoZOfXVaM88tvXu//fcPfnIPjL78eAJStdmmdBcOAaTDlhDd0w3O4yx10E6jUHcwfKmGwaOLAVOsJva8qRUWFTvm6s7XG/BJL4R9qdAeIG/rJCpNJYv90LXQOUj2FSKKUvidXiZbMYBmyXPZN1yLLFU0Gy+HK9rYFw1B66MvnBYQeN+2dSqEr89AzeOgAsMLbpmp+0EiWi5+H7vg3pCTLRfwOEGe5BAo9znIR91n00V3Lx/BvSq1GnxF6WKEPlkzM1uMnfk2CWFSh+by7YPgeev/8MOKelEwDnIfbxlYU5DTkEbrcmEsVFK1ZTmQ502BeUNRBUZHtUbOjHvrysYDQ4yyTzApdeE+0PfzPPQVPHRTpdYjQY4KidZv7864mZbkA4ZuCHGQV1xnkoauzXKjQKpgNyoHlcAwUTZfQ22C59BWhiylDJfLQMwZFN++ZCt0QtOXSPPzk3u24+4nGpwOUYfShhy5i1ULXc6WMFyDecgGiCl0kJVFFy1kppMJdhS4FBwtM+ZSaZc7MzEFR772Lz1yDt5x1OICgU6P4+YfPPw7f/atn4ZTV8yP7JNs+YmGRHHeIA2PMV+Yqr78gKnTPcvnSbx7DX39rg7+M5fBIO2GagEQr9AYhEnLRzB4UnazU8eLP/AYf/sH9/nuhoKiW6HPC+66+F3/2xT80bX1B2mLTVtlxiPEAyooQ+/oH5BRcsgMxhB5S6AXRfglf7qTQVf1OipFeLtz/ThzoOlFN9amajIJuzOIqxZa69ARgGgxnH7XYf1+0lGQ7xS8ssrnyqSYOtF+qrpC+QveyXBzO8alfbMING916CMfh4Dx4YqJYnv+bkULXhJ4PIYVuGv4JmwYqPrp9S5CYE6qS6yfmgFu88u3bn+j0MBoGXfP99OQk7gnZD6GJWmpRhe5bLhEPXST9aMYLoeB56JYd7VroqvdotbRcUSqCPG6VALIU5aM0TMoeAcKB0rjZf8QblpxpI+ahB4SaTnO02VKC5WIaBgzGInxAr+n38BW68ISgCb0BhBR6IZ7Qn9w/g3uePOi/pmVEdWAJfZT7iDcAAO+/5l589H8eDE0M0Eugh6dufnC68/ED+OVDuxv67thAAQuGinhKqCz0LZdiFstFrdDlniaFBIVeKrBwLxc7XaH7E0+r0voSbJiwKg8+j5sAQ9wP6slOEIOis4JCTgNtSWm5kHr3K0XDnxN/DEkeOj0hlD3LZaZmN9yKJCv6asYiUaGXTbcAQ/X4d86/3ALAnbIKCH4Q8WS1HY6yaaBmOX2X5bLH6xfSq/vlp4h18fhf/2XXYqJzLA0iSRgGw+qFQ8qpFEVyGozJchHPY3EGHjmDwzQMV6ErZhQqmobSQy+YDH//ihOUfXSCeUrje52IIMI2DeYTqqjQ424epSQPXZg+L49Cp9GpCJ1SGalSVIbfFsF7WlBZLvO9moGDMzWsmDeYOp5G0VcKvSpluZjCdFGX/fB+vOHLah9XReh1m/snTj892gPB/mSdAqzbQBdQ2u/ytd89jqfaUG7dbJiMYeX8wVDvj6oiKErkLlsuhZigaKRFrkG50rYyW6SuyHIxDYa3PfcIfOb1p0bGTcsrLZdEhQ6cffQiAMD5J64IPo9T6Kao0KVAL1WKOoGHXk4JigJBsLesIP9iSKGHP6tatt+4jH4bSpesWgGhlwQrqJXoL0IXFHrRZCHL5eq7nsIdj6szLSzfchHfc/yLoW8JvUd/fXqkT/pdpqoWrvjZQ/jZ/TvbNaymwTQZRsqFUNsKleUy5Cv0MKmJwqRgGP55LVsutNxU1Yoo3YIZtlwCD71By0XloVNQ1GA4bvmYO8nzukX+53FpkSFCj8tysZ0Qoabhe3/1bHz05cfj/Gcsj3wW6uUijenYj16PL/7mMQBBs7KKr9C9oGzBELJvNKFnhpyHrsoZVVUX0oko/ljUCAlQtwPtBszULLz5P+/A5j35mufTOdWrCt2m4FvCtUGKVkUk3Q6TeZM0CztIBXIDCg89Uvov3KkNI8jckAmd0hsPzdQj6YhkN5LazpLlQoJKpdBVNoyfxSJ66BnOyXBQVCZ0Mcslu+Vy5JIR/OXzjsSikXLkMzp+hRjL5Xt3Pgkg6A9fqbt2z0d+9IC3fdM/bq0+H/uK0MN56KYyKEq9MkQQoZuhoGj3Wy53bDmA3z66Dx//6cZc36MLrjfpPEiLS5tQGUCowVSvgJSgeN7N1m0/c4tw2poFOPOIhVg4FJ4o2TTDBFmKIXSx9exIOXxTmO+tc6LiTi5B11HSdG71hBut6nfwFToLP1GkoaRI3SQw/2bo5EpbTEJQKWpELBfAFVaASOg2fv3IXjzp2X0DRdN/stEKPQfCeejMC4qGD+A+RT+FuiKCb9mO7711a/CNVBXN/J4Vjm9ZNH1IbYHtxAffCGK1Xq/BYAwFSaFTCbmI5xy9GNf89VmKsv0woZOvXE5YTi46WjjsEjql2sUp9LOPCiySJMvFVvRpIIUe7i8TWSwCcQyDimnwCgYLKfSkCS6yQMxDVz2h1P3JP9ztVOpOKFA9UDT836jViQh9Reii+i4XDJiMRchYbnoECJYLU1su3Up8dJHJU3SlgS643s1ycf9PGn5SxkW3g7IpbInQVeQV933V33EeOhCdrGKBR+gHvXJ1ImTZQ//6X5yBf7/4NADBMVcJoOceHZ3QhlYVzmzJR0lDCrKmoqhmKfSC1G0xDqJCF387UaHXWyww+iptcVog9KJpwDSciFrYq5jbL/DQg/csh/tB0W4tLCIVmluh+4TYnfuVBiKXpPFTQEyeub0XYBquQheJcTZlKjURom1hsCAlUiZ00X+OKPQhUujuuRWXh14umP4cpRRElW+iV1/6bDzriIWRcRI3iqvMotBFKBW6N8F1xbL95Ii5oBTy0OOXGxGCoiJxDxQCD10r9ByYrtr+o2LJ9IKi0g1RpdD9k1W4+9ZDhUXdSQr0SNm45dKd+5UGulaShl/1FXr7LZe5XrSmoQqKJk/UIH+fIE6ZJuehiwFAebKKBcNe3rRkuag8brIk/Kci6YdZMlpOVLZhyyUfJak6PhZNA5bjYKpizVmdu2Nyx8eQHLQdFCwXIvQ/e+YqzBsqhtIpW4m+IvSpquUn8JcKBkwjuLhI3Yizb5MCqqmyXGzuXwDd+tguz1+YFU7PWy6eP55A1rUOBkXFvvyNiAGTqYOijZCTwZhfNFOS8rEXjwTB1FgPfSbZQweCG4WYh57U4lZGyCLKmXmlulEUPQ/9D1v24+RV83KtT7kNL32AI3lSjqLJUC4YqNZt/1hces6RAIIboVboOTBTs/xHxSL1cvEuCrpjHhLULE0kq8pysXvAQxcLqfJ4c3avWy7+b5puuXQiKCp2+GzkAjYMdVC0keCeOCGDbLksFhS67KEPFk2UC4av0ClVVEXOtF4xKCoqZ1XDKxFhy2XuuVcDJRMPbh/H5j1TeNFxy+a8Pr//PueJlotpuHMwVOqB5SL2Ugda76H3FaFPV20/mOPnoTvc70sMIDQLC11sZLmId9+6E1gu3ZrlIir0PI1/ej3LhX7LpIuDfudWP+KqIHb4bGT7Ys8QUvhps9fHgbFgHXKvb1LhADAq9UpnjIUaSvkKXdm8yn0vCESHrZA4hU7K1wgFRedO6KetXoBNuyYBAOedMHdCp+Fxnmy5mIab0SJaLmIvdUAr9FyYqlpYOlrGsctGcdzyUV+hixVvoYZDkuVCCt322mE2WinKOcc1G57K3Iu9UYiEnmdbvW65OE66QqfftNWl1ipUQlO35VdkpNCB4Deq206q0lXBNALLRfabxZxy2XIBXMIPslziK0V9D13othiuVs1huTSBkajatFwwsFoxcUZekK3DkWwJ+QrdCiwXMeURaL3A6JssF845pqsW5g0WccP7zwEA/PbRfbCFng5A2N+kHgxilstU1fKVBuWh581y+d3mffjwD+7Hg9vHccWFJza+UykQ8+7zzJ1KhCg+efz+sX0YLRdxUhM8x1ZDVOh/8fU78fxjl2LjjnH87tF9+P1HXgRAVOgO9nuBcFUVYCsQmiilgRsKeeiAu68F0yXUNGJUQayWli0XEar0v7GBoh9wT/LQywrLxcxRLGTMIW1RBUqR/MgFx815XSIczpFk8RcMhoGCO6kOxXfo6SWY61QTeiZULddWGRa8QNNL/RJJXJzvz5ItF8bwt9fchxnvgmzUQ5+quOmTuycq+XckB0IKPQ+he/sj3qje+JU7AGTvDthJOAKh3/LIXtzyyN7IMoGHznH6J38JIP++7Tg0i/M+8xv8+F3PwTHLRjN/T/wt6hmybGRLzzQCVes/TXGeGJCLg9juVZwYIrKcYt0DRQP7p91zOakfupzl4jjhscqNvwgqcswaFD1+xVjs08+S0TIevuL8zHn7afCHlGq5MNdysRz/WNBTlV/63+Ksq74hdJqkYlj4EQ3mXgjVkEKPeuh+UNRg2DVRwaRX7kzR++710APiyNNnWZyhvBfhK/SELB+/UnQOO3njxl2Yrtn49u1P5HrSyqvQ5SdAgzGBAIKnqbwZIO664vPQ00ABPnEcqnuKKigaV9yUhqzL/uJ9z0v8vFlkDgQkzpE8PtNgKHvHjI5XMLVdezz0viF0KioSFbphuHnoFYH4RHKnu6XooVctx785NNrLpV09r8R9yUPoflA058n1oe/fh1se2YMNHz0v83dakcNP468lZrmEM5gaganokPdff9iK+7eN419fd0rs9/JmucjnlzvVmafQnUChp5HdLz9wLvZIT4Wuhx5vudz0/nOwc1z9JFkuGKF8/kJMpWRRSlu0pZtPUv8XIHyONCMo2mz4Aj3FcjENhsGiiUMzNV9sFKQsF90+NyOo7F8skDC96aJCCl3RElTMcqlZtn9z8CtFG7yrNpvLOOc459O34Ad3bwMgK/TsxEXjyrtf3797m7IXThJaIUjo90p6fK02ofTfD0wKF+HlP9noH/84zOZMJ5V3Q+y/Eij09E6ERy8dwdlHLw69xxjzfwO5sAgA1i0bxTnHRMvyATeGJGYLxZEtqU+/26JkD8VxtOBk+OhGQvcVeorlUiDLpe749Q/BbEfeTc9xWlqo2DeErlLo1G2RTrSRciGUu61Kf6taDqYlhd4t6drbD83iyQMz+Pv/eRBAWKFfdesW3PqnqJesgi34sq1Gs3PdHW+GHSDNcgk89EbRaIe88FNg+LsHp2v40+7J0Hvy7yDOjOMrdIc3lAHi5qGnB0VVKBcN/zjainlHCczr6OhbLpJCj6sSVb3fjYQezGGbbrkEWS4OimbwREM36H2TNRz70etxtddyt9noG0KfUlku3sEkxTQ6UFA27RfTrcQp50oN9nKhi7jZdLlpp0sEh80fAODefMa8dLN7nzqEt3ztzkzrof1rR0uDZm/i7E/djB/fsx2AOm3R/039StHGLZeC73s6sGwHn/rFpkzfS1Lor/z87/CSz94aek++6ZlMSFsUbr6NkJ3BgqckVZl8EsoFw3/yS1LogKvSxTz0PAFccfcbyeRpFzjSCovcLJdK3UbdCs/TSvu1b6qKmu00pSWBCn1D6NNV9yIakRQ6AMx4ZD82UAyrJ3p0p5JlzsM91c2oh/7g9nE851M349BMvPVAJ3azyWzTrgkAwGHz3TkJq5bt961uBO0oomy2Qt8leMQ1xQ4QgTbDQydBYDkcN2/agy95M9OkISkoKs4TOlW18MiuyUgswzCEtEWhnL4xQg++00hQtGrZGJ+p4+ZNexLz4IuFQKE7vLGnCSDfjaBdEC2XpJ40ouUiz9NqCoQOwG9R0vSxtmStHcBU1c1MEQskfEL3LJR5g8XELBebh9May8VoP/R/++Wj2H5oNnY6OyC8jmaCqt+IJKuWE5kgOA8atVzylNO3264ikqcbN6WQAsDay36OOxN+Nxli/408fXMqisC7Cm/+zzvw0n+7NeLzFwzmWxb0W1sNZ7lkD07KKBcMOBx4/zX34skDM4nVyEmWSx50o0JfMc99Il61YDBbYVHdRs2zXAh07Pd7Mai5CLEk9A2hT3oXrjiVFp3MM6LlYokeeljFyTnrQXOuYDtxfaFFBMqxuWy2/ZCr7mhfK3Ubw+Xwo1seGyVt2Tu27Fcuk4fc2t0vhnx1+g0mK+EZqq7Z8FTudVoOzxVcFc+h937vXv93E2E7HPc8echfvwjDUAVFG8xDF67w3B66V1i3QzF+GUXTiA2K5kE3Tot4/onL8bVL1uMvnnNE4jy8BYNh8UgZVcvB/dsOJSr0BVqhJ2PCu3BHSqJCd//3LZdYhR74ruK1VSqEVRIgFCMlXOCtUuhUtUckVbWiXpxqir04JJHUdQ/sxBuuuh3/fVeUALua0L3fkoLfMqEnWWUyxIlA5N87y/R3gHsT/oefRKcIFK0g+XwxWUzaYgNkJ35HleWShLLXO0bs+RKHUsGITVtMQ7dnuTDG8MLjlqVOcGEYDK8/YzUWDBXx4PaJUEEVHY+9ZLkMaoWeiKmKhZFyQUqXilouql4udHHJ1ZYDBROMhUmJSHCqEk+cjba1TcOET+ju/9W6gwGpJapqAo84qAidiGrTTtevV+Uoiwo0De1OECJyrEpKnZBndqegTS+P9FVPEuzy8VH5+LVQZlV4eZrgAgjfVBohO8YYnrlmPoBoc640UBB1QQZ7oGQa/tORnfFpQlkp2oWELiLpRlUwGOYNFnHq6vkAwhaX4U2OMVmxYDBEJuVuFvqmsGiyEp25PPDQAztGFFayhy4T+mDJdKexUyh0IlUVWhEU5Zz7Cn3CV+i2r6IIeyarOHLJSKZ1qtQzqf4JhYXlL5Mn573N3WuJKOOekg7lmAxEDEjKCr1uOzANdaaCXBNA1t7vHt0XjFMYn7y8wRRB0QZtDNNg+Mb/PhNPHZhJVJcq0NNflsByscCCbDHOM032rEK3E3pa6T8QZNoVpWNQMA3UvLhXq4K/mY46Y+x8xtgjjLHNjLHLFJ9fwhjbyxi71/v3l80fajImK1YsoU9VbTDmZrmIuPVPezFbCzqjyR0Lh8sFb27H4D3bJ/R4he6TShPTSGa9pvmj5QJqloOqZaNSdyKpaHkUOnGUGPSlMU8JmUEy2mW5WLaD32/el76ggCDLRf0UkU+hBzd8ORMlyXKTj0/d5ti6bxp//p93RMapWr5gsmgvlzmU/o8NFPGMw+bl/i6dW9O1dBsvEhTNlbYYHMtuDIqKoOGpWhnT7zPs2b7FQnhfaN9aFRAFMhA6Y8wEcCWACwCcAOBixtgJikX/m3N+qvfvq00eZyomq/VIT2e6m05XLbdhv/QjfPnWLfj7nzwYr9CLJgwjfMJRAVOSV+0H5ppovZA6X7nATVmcrFioWnYk0JVHgdqCP0s499O3YM9k0M9GPmZAPstlLoT+mZv+hDd+9Q5s2Jo9M0VOW5QxPpvfQ3/qwAwekYqBLNvBnskK7nvqUOR71bodsjcs24mcL6IgkM+TkEJ3ODjncHhjKX1zCTJSUHTKSwn+l9eeHLts0VOfgJstlslyQXSZbgyKiqCnHFUeOfWKJ4UuP6WYPqG3JiAKZFPoZwLYzDnfwjmvAbgawIUtG1EKvnPHEzj7n34V6V0ylajQLX8GFhmb90wFhB6r0ANSIoU3kUGhN9NLJ0JftcDt7zxZcdv8liUPvZrS00W8Oan6oh+cqePae3f4hBNny2TFXEr/H/HSNA+mqOrLX3EC3vvCowEE5Bh3M63bPHMPGzouO8Yr+Pbt4cq+us1x4edvw4VX3hb5XtVyQvUQlsP9OA5BjE2oPHRTCIom9SJPw1we7X2FXrWweKSE161fHbtsqWCE+6Ez4PeXvRC/+uC5ubbZ7QqdOEU1e1TBt1zcz+SYBXnq8+eQapyGLIS+EoCY6rDNe0/GnzHG7meM/YAxpvzlGWOXMsY2MMY27N2brUxdRqXuYMd4JeLjTnpBURF0UUxVLQyWzAj5Ae4jlG+5SGQ45HvowXuHPIWXpNDTSKURjM8QobsKfapioW7ziEJPI1vRKvB72chpc4z5hG7ZHLdv2Y/th2b9kznLfl3/4E5s3jM1p2pUKyORDRRNnHWU28Mky810MmMmUFLbANvhPinLwWU3nTQ4F+s29wPahF3jQSqgPNZQpajD/SeFRvzlRvPBgeDpbLpqpXriKsvlsPmDOCohniPOBEToxsIiEYHlolDokocuX1f0+VxqR1LH16T1/BTAWs75yQBuAvBN1UKc86s45+s55+uXLFE3BEoDeVcVSdVMVKyo5WKELRdVHq7BWGzQp1wwQlkulbrtB7CyBEWb6aEHCt0l9IlK3SteyEfo4r7S+SYXCpkG8/fPdjguuup2vPBff+2TTBbL5e3f/iNe/JnfzCnLhYKJcf20g/GKLVyp6Cp+jFlvtElpneJxlM8FWaHXLBsT0jK7J6rC55LlYgTnru1wv3lXI3bEXPgxsFys1JtJ0TRQt4QAboaxdjd1q0GWiyoFNPDQ3eMm/64FifBbgSyEvh2AqLhXee/54Jzv55zTGfpVAKc3Z3hRUJqebLlMVup+XxMCHfNpX6HnI3TGmHuiep+LAcfEtEVFYG7D1gP46m+3xH4nDUToVPZPr8V9KhWMVLIV+584MQrd4TxQ6E5QlUo3jzxZLnMLipJCpyZp6nUZXnMoIFv8IuuNNinw6ZZ2uxfoxGz4XKhaTuiinahYEYUuBmcjQVHDCKUtBgo907BDmIviHRAUelrKY1GwXLIGRekJIG86ZSdB+6XaP1mhRwjd7A5CvwvAOsbYEYyxEoCLAFwrLsAYWyG8fBWAh5s3xDDoUUe0R9ysDyfioRui5RKn0I3ki79UCII9VHq/ZLScnOWiIJWf3LsDn/vlo4n7lgQi8GVjA6HXRZPhh+84C599wykYKBipZCuqcVvhoQNu3j7ZEuJnBalNahbMxUP3LZeUyQFMg/kZBWlBUSA9zkBIuhlZdqDCZfVdtcKWy/hMHfulsvlDQnBWvgmLCl2sUm1Moc89KOpwpM5nWgoFRbOlWL7rBUfjnc8/Chc/a03DY2w34ibcBgL1PuRlucjCgYLAQ02cfENGKqFzzi0A7wZwA1yivoZzvpExdgVj7FXeYu9ljG1kjN0H4L0ALmnVgAdLnuUiEBf52bLlEgqKxnroLLGXuBjs2bhjHIwBZ6xdkNtDtxwe6sWeFxMVC4wBS0fdeTFJ8ZVMA6cfvhCvOW0Vyl4zpSSIqlPsExLeVt0fu/iZr9DzZLnMgdHp5kPcEKeYTYNFJiquWk6s3ZD1hpTkodftYLpDWX1X6w5GRcvFdvAfN28OLSN+R1UpKgZF6Ri23UMXBFBaHKMk5qFnTLEcKhXw4fOPU16X3Qo/QJ1wgxuJUegkNlpJ6Jm0P+f8OgDXSe9dLvz9EQAfae7Q1FBZLvS3nBtKJ1Wl7sRmubiEHk9QovLYuGMCRywextLRAUxU4vOj5WpFIGjN6856kv8iq1o2SqbhnwykCovCPpUzKPSaNCYgPIEDEJ9SV/IJPUdhURMUOt0H46wS0XKpWW6rW9txc/ZVAdCs45erQ8Of8RSFnnzRjs/GWy6mEZ6Cbi5BUTaHKJlItGmNvURrstFWv70AsiyT9m+orPbQ6fVQqbOWS1eBOiCKJGz7Cia8O+Jj32BJbbkwljx9m9vk3/0hNu+ZwvHLxzBYMiMpjiJU1Yp0UTYaKLVsjpJp+HMlkm8rBmfEKcNi1xPKcqH3wt8ZF/xd8dj4lkvKTUP0uvkcwqKWHbaE4hSzabBQUJSO8VAMqdLvcvWdT+LynzwYv/2koKgTWHzjCoUuWi7/67RoUpj4HTmlUST0Pz550D/XOpXlAqQHpsXS/yyzKyXhg+cdg+/85bMa/n4rQddKku8fp9DpddrNfi7oudJ/P8tFQejyY6F4Mg8WTWXuqMEYKkkeuqDQJysWxgaLGC6ZsDzFrbpJiHYFBYhIDVcVueNZULcdFAuG/4RChFAKKfQMlksGD/2g0MBKzCbKarnYIVsncdFE0OQUdIOIa9trsMByqduOf8NxK/ailbM0/st+9AAAxE4AndRe2LIFhS4FRSuWHUpre9vzjsCP7gnlEYQIfVaqxBR7uXz5N1vw6O4p9/22e+jBuSWXscuIBkUb3ize86J1jX+5xQhSaYMdvPH95+Bhr/cREFgqssVa1Qo9ikFfoYf9aSAa0RcVzWDRVHpXjGUPilbrNgaKhv+DzMSURIvrEwNF8md5ULfdSXoNT43SY35IoRfTFbp43HiMhy4W8ohqnA5nnqeAuWS5iJWsW/dN48x//JVyOddDD3LkiVhIJQ9Lv3vWLB3ZihJh2U7wtFSp+yradjjqNg+R4ZGLg1zsWz/0AgDJCl2sFAXcSVWABitF53CFMxY8+WRS6LZb1drPlkvZu96WjJbxspOW48PnH4tjlo3iwlODp7BYhd4tHno3YUBhuRBpyApdvACGSqZ/AYpII9hSwfQvPlLX9IPM1GzMH4p+R7RVapZ74duCQm8ENSuYAWWwaApZLsEVS9NfJUFU3D5hSoQutpgNH2caS/I+iOubU2GRYLl8+/YnYpcT89BrgkKn32n+UAnTtfhCntjtJ1ou3I8P3PLIHvzHzZvxrbedifWHLwQQ9p/pvDtu+ahvA4k3Vtm+ExU6vQbar9ABV6XXLCc9y0WwvBwnWx56L+KsoxbhE68+Ef/rtJWx6YdpClwrdAEqQrdiAhXiBTBQMpUHMq1/OFkutsO9uQANDJWzK/QHd7jqSp7rMi/qdmDvDBZNP0siFBTNpNAFQo9V6HGEnu2mJFoVqnk/s8LyLZdk/9hgzLcE6rbjWyp0wS0YDmc/1exsWTpJhUW2E8w9++B293H7qlu3+Nsma/CEFWMAgA0ffTF++I6zlRad3PxK7IcOJOc+p2EuHjoQ3JiKqYVF3hOS7fS1QmeM4c3PPjwxl5x+40vOXqv8XHvoAuhCmRUUjh8UZbJCD/4eLJrKk2xCKNCpWg4YC2dmuArFFi5UE0PFQKGrULUcvOyk5di4YwKf+NlDuP5vzhEUevaUPxE0izjgKr7xuKBoip0gfh7MKO++d8nZa7Fvqoqf3b/TX6aiWD7VQxdIfDrHhBsyRIWeZDeYnhVVMJhH6I7/PhDt553ZcvFOhJedtBzXPbAr9Fnd5pH4wO827/OPV7lg4vaPvMgPnC4ecdNNxRvkcMnEdM2OWi5CUFTcj0Ysl7kKZbreslgugNvS4NBMvW8VelY8/k8vi81mG9YKPYAqbdFP6zLjFXqcb0UpenTHLRcMvPWsw3H1pc8GEOSh04U6UDD8x2aamFpGzbKxdHQAZx+1GNsOzuLl//5b3P3EQQD5qixF1O3AcnH7lVNQNNjHLEFR0XIJSv/dP15ywjK/+VfS8qnFSwLT5ZlBCQDue+qQH/y0BA89cS5H77Oi5+MSodN65Hal8hPGA9vGcdoVN0bmzLRtjuVjA/j0a0+JbNOyeSQ+wHlQ8FYuGFg+byCi5ESLjOomVBlTzbJcGkmRFVH2PfT0oCgAvPgztwLo/r7mrUbScVdZv81CzxE6BQXDXrCnyKSDKJ5UqmY6QBCcomBryTTw8QtPxLOPXOS/rlmOkOtupgZFK5aDctHNGZ+qWti4Y8KvFGw0bbEu9G0ZLAaB2pIZ7FeWtMWK4skmSPtkkVx+VTZRkrcsLgfkI/Q7tuzHhVfehq/d9ri7HTvIckniB1KuRZP5veLFccrd7eSb3pdvfQwHZ+r4/WPh2gLLy1AaUpw7luMoA750U1C1HQbCKYmk3lVPeqIap/N6LpkjjSK75RIenFxspRFAK3QJcol70PMjKSiqPoh00ZOvVZYuXspyEQl9uBRvuVAB0UBBnVXTuEIPWy4EsYl+Xg9drhQtmCxyYYo3ALqBJc1kD4Q9dLHnTVqA9F6vtzh1MawLhUVplgvgBrBrthOkjXrnxQJpTsy4pkmyZ247jm/nyKjb6omj93tzRialppI9MebdaFTCQKnQ55Ky0iDKxWwKXS7au+PxAy0bU69DNTlGs9CbhF4MF/aIClOEnIeeBCJ8uYtaQOjkjQbFPaoLkQh1oBiTVZMxICcjrNCD9ZZyZrnQ+AoGi/RDNw0jsv/i+ugGllQSD4Q9dFGhy3x+00O7cePGwJsmIj9s3mBoXLaie9/bzz3K/5s+K5kMdSvw0C95zlqsWzqCN565RlhWVZlpKPfLcrhPrO+TcqNtx1FWwW7dPw0geVZ3ujGPZVToRgcVOlmcqc25pMG9NSYgqDF3GywJPUnogyUzbLnElEaH8tBLybsaKHQFoQuZE65Cj78QxTYEqkf1RhV6TfLQCcXceeju+IZKplApGjzhyBeuSOi07qTsD3d9wRjENgKyRfFX/7UBl37rbv/1Tq9HOPnOtB3Oeaio6EfvPBuvW7/Kf02/85KxATy6Z8of51FLhnHTB87F8nluQ7PXnb7K60gpE3p03DReWvf7zzvGz1gBKCgaPQ4PeBkvRywejnxGKHkkmeShm4osl04EGn2FnlZYJJyH1/z1WXjbc49o6bg01Oi5LBcgqkStGIVuhBR6ttxQWaGWC26gzQ92FUWFriB0i4JiplJRNeyhW2qFLj7qlgtuvrtlx+cNVwXrSM5ycbsWxlsu/lgcjqcOzOCJ/TN47rrFkc9FwhezXNKqRkmhy8RqS43NikJ7WSAgv5c+Yxk+ff0j+OdfbAIQtj02feJ8FE0DNz60G9W6HbpB+ApdGqBlx6ffUb8YGfdvO4R5g0UsHI6fN7JECn3QEwZ1O5Jdpcpy6USgsZyxsEjsdLpmoaI4QwP/9oZTcf+28ZZuoycV+kDRCAf3pL7ZhLBCD4KeKpAvrvLQgUBpDnhNvkyDKS0XPxumaGBQ4dvPxUOnjJaQhy6lLQLJeeIVy51YumCwSB56wVB46IqsGdtx8IJ//XVo0uPQ5wIziTewtKrRHYc879yWvWweOm7FQjhPm372V5x0GABg+yFX6Ys53wNe2mqZspaEY+RPyBzx0MOELgpkSygsEvHE/hkcuWQ48bGabpqk0G2HR85LJaHnUOgvP3lF+kIZ4AdFU/yeM9YuxLnHLMHikZLfEVQjjFefthKXv1I1HXPz0JOEXi6aoX7oRCDyU6F4DvpZLIrCDgA++ZZlD917TdkwAwUTjLmZD6q0xVA2jMpyaTAP3fVzo5ZLuJdLOqG77QtMGEoPnUWCWypP3rK5fxMYn63jC7/eHG4VLBCyOHlIWtEoFTTJPVs4D98YCoYRUoxEeGsWDeGqNwdzq6i6a5aLbkBd3C+xs2FoPwUPXYbYBVFGkt0CuJNOA26JOHF0hNAV5J0nD/3zF5+Gx/7xZZmXj4Ov0FO2bRoM3/zfZ+L3l72o66eR62f0JKEPFs3QJAVBcy6p2yKLKnQ6QY9bPhq6iAKFHrVcgCANiyLUQ2V1x8UgKGqos1waLv13Uj10ej/pplGpu9WuBgsahokzAyVluRBE4nvL1+7Ep69/BHc8vt9/T7Qiala2vi6c89i0SJtLCt1kYY9Z+Pusoxb5f6syTUqm66GLhE7niWyhiB66DMtWpy0CwNpFyYT+nKMXgzHgVacc5le4ylaXSIp0g8tjuTDGmmLR0DmVdfLmOMGk0R705NEflBR6nIcuN+cCAoL+0p+fjne94Gj/cyrnV2W5AO4EE0BgyQyXCpGSbUBQ6AV1lkujhC5aLkMhyyWctuiOIclysX37gYS0r9AVaYsqiIR7n5dquG8q6GoYLv3PZrmIx6VuO6EUR9vhoZtU0TTCWSDC3+IkJypyoeIr8RjR/cDy4g+/eni3F4vgscFA6lmiwkpvmsA4fOUt6/GnT16A1QuH/CeNpCySWoYe3K1C1sIije5AT/5KQyUzFJCMm9ElSPcKsjfoInc4D13wQzEKvSQrdO/1ivkDuPuJgxEfveIHT9W9Y+bSy4XIdpEQcBO9Wtpe0nynlbqNcsGAwYLjRm1q5SyXuHxZ1cQPuyequHnTbuyeqISUrmpSavl9IBxgpr45BM556LgVTKYMispQESBlAokKnZaybAc3b9qDt31zA/75+k0pHroT2h9xPCsXJBP6QNH0f0v6XpKy9RV6J7Ncemjez6czepLQB6QJJsSgngi6GIeKZjBbt+AzixeRf2FFPPTwDEH0CPq+Fx2DneMV/Fjqcx0Kiio99LmX/lManozFIy7R75+O9gAXt08KXeWhlxQWjgxVHvruiQre/q0/4ju3PyF56OrOi3KGkHhjrNthAncVejjLJVRJmUO5UjWtMjbgcOz2JgK/6tYtsLzCIhUsqbBIXC5NoYug3zTpyajegOXSLASVoj1JFU879OSvNFQ0JUWnPuHp9YBgUbz/xccAAFYtGAwROi0r+66BQg+yXADglNXzAIRnbwcQyldXWy6NBUVrtuOrpOVjakJfNOxmF+yfqik/B1yFPlAwYTAWmQmoIKUtDsRUO6pK/3eNV1CzHczW7UwKXY4/iL+nJVR7AoDNw082xUI4bVEOwn3opcfiGYeNQYVSwfQIPWq52A7Hbi91EnCPeSyhO+E8dJGQ4264KpgxQkIE3RQ7koeeMW1RozvQk3noQyXXQ3e8LnzEGXGWi6iULzhpBbZ+6uUAgnzgdUtHgmrDgtpymazU3WAc9Q0R2rWKCPd8yd9/PQ6W7fgX/bIYwlikUOiUUbHayw2u1N2p04yqWqGHg6xxlkuU0Hd4RFiznEweuqjIHYeHCd2bJILAedhDT5qZCnBnkxfjIyJKpoFq3Vb2ebcdjt0TwbGbqdlYNipYLgj+loOiIuFliUPIyyZ9x4oRLO2AHxTVHnpPoCcJnVIMK5aNoVIhVaHHdVqkvOfzTljmqzw51Y1IdKJihRQrtTgVCeupAzP44q8f89fTLMvFdtxWrXTRj8b0Yh4pF1AyDb8RGAA879O3AIB/E6vUbSweKXuWi7uMOK1WKMgao9DlmxgA7PByv2u2E/LYQ5NSCwQoBrVrtoOZqmi5OKHioojlYhoh+yaPG1A03RuZmF9P+1O3HeyaCCbCmKnasSRad7jkoTdGeAUhtvOFNz3T7wUjIuj339Am5gS6HtKac2l0B3qS0MUZg4ZKhXgP3VNucV7wa09fhS37pvGO5x+Fn97n9gCPU+gTs/VIwLRgsJBf/I7v3I2t+2f8barycRtR6EQ4ROhxRSuMMSwaKcVaLn/7/fuwadckjl46AoOJ3Ra9oKgpe+jZFPrYQAF7Pe+5ZvFMeeii5VKzHclyCfvTthQUNQ0WrqrMYUWYBoPl8ND2aYw1y/GrVQF34onEtEVhjAYD/vCRF6bm2sugc7ZoMrzsJHUxEAWIO1r6rxV6T6AnCZ28aXEeRyDqpZJoimvMtXrhEP7j4tMABOpHVqViHvqY1Ia1ZBqhbAyRlAZishYa8dBrPqGnX9AuoauDoj+4exsAN4ApFhb5aZ/CHJJAtGqWIHvow+WCn9ZZk0riawK5OzFB0ZrlhFJA644T2gbn7pPNi45bivef58ZAxJtaHiuiYLBIFg3ZO1XLwa7xChYMFXFwxp0nNG7dh2bqkTTMFfOyB0MJmSyXmErodqCcsTmXRnegJwmdFDo9tttxCj3FchER56GTSp2sWjhiSbhgpGCGFbqYAx2naBpS6NT7XBjb1y85w8+8EbFouByyXESsXTSErftnsGuigmWjA6F+6AZzb4iqQiUZciWnaFPVLDvkoVsxQVGZ0OnmXCoYUYXutSRePFLGiSvnRcaTpzLRNNz1i+qafpP90zXM1GysWzqCgzPjkUpRuoecsmoefrVpT2qTsiwgy0VV1UqgJ4hOJJoElaJaofcCevJXGpKaY6U15xrIQejyhbVkJAhA0jRiBHeGnICwxgai98dffuCcUOOiRjz0ukKhveC4paGZxglJlgv1Bf/im06PKHRad3jSafXpISt08UYj9wkPBUWF98WgpKvQ3ddjA0W/qIdAhUWxk0bksCIKBoPlOMox7qL2vULaoaoH+dued2SEzBuldtVxJ3zuolMBxJ/f7UAQFNUKvRfQk4ROnRMpU8IRLAMRdAGk9UIXl5UV+thgwSf5JUpCDy5l1XaOXjqKFUJWSmOEnt1yWTl/EDvHZ5VtCWqWgxcfvwwnrpznFRa574sFNFny0GUyK4UUupOQhx58Z0by0Ge933LeYAF1ybZxPA89LrUvl+ViupaLmEpPYyT/XEw7VG0yLijdCIp+pWh0QxeeuhKHiWPpYNqitlx6A71tuaQodLoAMlkuMVkujDEsGS1j28FZLB4Nt0Qtmm6Wyz9e97CXWqcma1HlzSUomqVPxjMOmweHA5t2TeC0NQtCn1W9TovumIIMHbfE3SMWYQYkIhkxVlCUbCb6nFCzZA89PW2RFHrRZBgsmW4JvhP+XtWb1k+FPMHCghcUdRQKndoXHDZPrdCZ/17zyG2eF5eJ89DFWEEnml6dtGoeLj3nSJx5xKL0hTU6jp5U6LLlQgpTzv4w8ij0GA9dfE9W6AXTgOU4uOrWLfjKbx+PneFevFazBkWf3D+Dt33jLkxW6r6CzJLffNIq12N+cPt45LOqZfuELhYW1YWiJXEbqrL0ohQIlr9TtbPloYtPEFXPQx8smigYro3l8LDKtxwemj9VRB6CNQ0Dts1jxwi4bR0IqqZU4nt0PPNmtxCOXjrqjStuvOktDlqJcsHE/33Z8Rhp4lOJRuvQk4QeyXJJmBX+xccvw/q1C1PXGZflAgQX0uLRqOUidhMkHziaD59foX/+lkfxq0178LP7d0bSFpNw2LwBLBgq4gEVodcDlWsaDFNVCzXLwWSl7gd0Qz1SFI2jkm54gBvAFdNI65Y6KHpgJvD5a5aD6aqF4XLBfwIQnwJIzccrdOXbShRMV6GLTxHyE8eKkOUSXbn43ly7C65bOgIAoXRJEeLmdVtajTT05G13qBT20OUmSiK++tb1mdbJYoKiQHABR4OiLGQNzNQsvPzkFfjM608JLSeSpGzLxI196ahLKjsPzeL3j7mtabMEphhjWLVgCPsUgVHXcnFvWAZj2LxnCm/66u0YHSj6gVvxKYfGLWbsqHzsUJaL7cAWLKK4Xi6P7Z32/657eeiDJVehy0HLfZPuviwcUs8ClGeORtMLijoxttBg0cS8wWA7SoUuFV9NIr4ZWhrWLXMJneYilWE0mJ6p8fRETyp033KpB5MWZ+3XHAczgdDpiWBY6p5YNI2QupuqWJg/WIyofDOG0G/cuAtH/d/r8NCOicg2aV7Ne546hJ/etwNAcr+P8LiYspqzJjQkoxHdtfUgJit1jA1EJzUO2hwkl7XLQVE6JDQ7EEFU6I/tmcKR3kQQNcvBTM3CcKmAgsl8i4WwZ9JVr3IMoxGQhx6aVUn4TRYOl0LngPjbjXg3PdUsUY3iqCUuocf1zRFV+VzPcY3+R6azkTF2PmPsEcbYZsbYZQnL/RljjDPGssniBlEuGGBMLCxy5vw46ucDKx7rP/v6U/Hnz16D41eMhr9jhKeh2z9d84lYhDg0kTxoguSHd0YJndb720f3Bd/NOB+paiJk6odCBCTmqk/MWqHUSoJKoasITLzR1IXSfzlLhnzx2ZqN7Ydmcbw36XLNdoOiQyW3rays0Pd4VajUfGwuKBgGOI+fVWnRSJjQxfPqs68/FR887xictHKef2yC86UxE324XMDn33gavnbJGcrPQ5ZLBzx0jd5CKqEzxkwAVwK4AMAJAC5mjEUmxmOMjQJ4HwD1RJNNBE0BNyN46HNVL88+chE+9NJjccqq+ZHP1i4exidffVKkWKhUMHBQ6raoyqgRmzpRUFS0Hya9AqH9U1V8/bbHwTlXTm93/HJ1B0EZcn48QN0BA0KmnOuiyVyFPqhS6NFOeyrPuChluZC6lsmfCP2xvVPu/ng3SCosGiqZfjuFkEL3GmbJMYxGQPsi3hzFbS0eKYeesMRg4NKxAbznRetCswFlfWpKwitOPsxvniZDWy4aeZDFQz8TwGbO+RYAYIxdDeBCAA9Jy30CwD8D+FBTRxiD0YGiT4RJHnpWDBTN2A59cSgYDAekqkxVNoA4b2TN6wEiPvL/9P6dWDo2gG/f/gR+/9h+nHPMksjEGdRcKwvKBQMHpsOEToqdyGrXhEvoS0cHMD5bT1ToYi/stKBozXL8SbvlZW94cBdOWDGGf75+E8oFA886cpH/nemahTXlIXDOvaCl0ODLI19xYo9GQeeJ+KQk/v3KU1aEntLmKW50gHtsqohvj9AshNIWNZ9rpCCLvFgJ4Cnh9TbvPR+MsWcCWM05/3nSihhjlzLGNjDGNuzduzf3YEXMHyri0Ewd37njCXzvzqc6ol6KpuFPHk1QzVJE1yR58XK/k7ufOIh3fuePeHSPq1xth2OqamGNp9oOy9Ffm8YlK/SXfvZWAFGSXTxaxlTVSvTQFwwHn6V66ELaorytf795M27YuBu/fXQf3n7uUTh8kbt/VdtT6F7aomU7kWrU0XIhttApD+gmFe7l4v79/GOX4FWnrAyp7jhC9/vnt7hpFa3eYPmCvxpPT8w5y4UxZgD4DIBL0pblnF8F4CoAWL9+/ZwaYcwbLOLQbB1/9+MHAXTmcVRFbsPleNIZKpkYn62jajlKtXXIS+WbrlqYqdmYN1jEbz/8gtyBN7mCFQC2e+1t5XVRrxWVQidVf+rqBbjj8QPgXG0xyIRu2W5vGNXxefKAm82xeuEQyl5euZi2aPN6pH0AEPR6nytUCt1yOI5fMYZv/MWZkeXnD8UodG/f4lIpmwVxGkUNjTRkORu3A1gtvF7lvUcYBXAigF8zxrYCeDaAa1sdGF0wVPIJEOhMBoCqHFrOhAECD50UetWylY2diISnqzamqxaGSiZWLxzC0pgZiuJQKhix+e5EQF980zMBAAc9y0il0B/YfggA8Mw182OblwFhlep2RnS7FKp+k8kKlfgX/XXVLHemo8GSiaKXtijnhsspo42ioCD0uuXEFvakKfRmeOhJIFWuA6IaWZDlbLwLwDrG2BGMsRKAiwBcSx9yzsc554s552s552sB3A7gVZzzDS0ZsQeyXAidKLpQdVQ8TsqEEUEVq9W6E1HQIqZrFqZrljJjJgtU1ZwE8tAvOGkFnrdusV/gMzYY3dZzj14CADhj7UI/rJsWFAXcLpimwZSqkibbnjdY9G+IMzULdZtjuGSiYDLsnqjig9+/D0BAnHFKOS8o0CtW7NZsJ7YwLZbQKc21xQqdNINOWdTIglTG4JxbjLF3A7gBgAnga5zzjYyxKwBs4Jxfm7yG1mCeROiOQvG2GjKRPeOwMaxaEM1WIK4YEjz0pCKhmZqFmaqNoUWNecYlk6FmOaFMmuCzcGk/za05qlDobz/3SLz17MMxVCp4CpGnBkUBYLbmoGAYyparFHMYGyygYBoomQa2H3TtoMFSIXJMS6aBWceOnT0pL/wsFyvsoccJgvmDaqtHVuiNlv6ngZS5rhLVyIJMEpBzfh2A66T3Lo9Z9vlzH1Y6FgyVQiq00bk65wLRcrn5g+cqyVwETZ1Xrcd3DgSAqartKnSFfZMFboWmA9U9TlSUYksC0XL59tueBQ7upoeWqILUW3eKhw4As3V3ph/VTWtcUOgAcNZRi/ATr3Bq2EtbFFE0GWbrcy+xJ6iCog6P75Oiii2IoBtNq+QEEbpW6BpZ0JOVogAwX3oUbqQt7VxBarJcMHDkkpFY0iEfdNAj05qQxXHK6vmR5WeqrkKfi+Uit6AliEpXvCENCvnzz123GM9btyT0Pd9Dz0DoM7V4D53SPInQX3nKYf44B0umItffjN1uI1AFRYF4BRz/Po2vxUFRb/WqvuwaGjJ69iyRPdVOEDopUJVdocKQr9BtP8/6L597BP7fa04MLTdVJQ+9MZuBslzEPjMEMcslrQJUBPGa0nKRPfRavIe+d7Lqtsn14gmnH77A/2y4VIjcBGhczVPoQSBWRN5OhhTonmvpfxq0QtfIgx4m9LC32QnLhYhMNVORCkGWSxAULRgs0t53/3QNDlfntGcal0cy5I+rPqNtE9I6OdJTRloeurtdGwWDKT30vVNVjA0U/fWJnQ2HSmYknZOeIppF6HSTkQVA3hl5aJytnjxZpy1q5EFPdlsEgCVSGXjWPifNBBFWms9Kl+JQMci79if+NQ3IUws/sM1tfduoQqcbzWw92j6gHEvoyYTBcij0mQSFXrd5KHNELBYaKhcwJbU8KDVdoUc9dCCaFvi3LzkmNMG1DOYTrfs6brq+uYIsHz0FnEYW9CyhH7VkBN/4izOwf6rmp7i1GzS7z0gaoUuVolXL8e2QgslQECZuWDxSwgPbx7F4pIwXHLu0oXER+ammoRNL1UNtcVMtl3ilHA2KxnvoAJR9YwBXoU9KE1/TTbNpHrpHjFXp6UW++bz7hesS10O/6aLhMt7/4mPwilNWNGV8MmhYWqFrZEHPEjoAPP/YpfjT7smObZ96nIyWkz10uhSJ0A/O1DDt9WopGCxkYwyXC9g3VcNbzzo8tmFT6rhMslyihC6nLcrfiQMtquy2qLBcxgaLsSSUTOjhHjakkVU3kh+/8+zI8mmg3yxNoadBtELe9+Jk8p8LaDtFHRTVyICeJnQg2/RyrULRD4pmO4xkuXz0fx703ysYRmgfaOaaY5fHFyhlHZeK0EUSFx/j0wmdPPQo8aksl4XDpVibQJ5kuey1+x0smpishhU6BY9VNxJ5ztQsELNcxLlS8z4A0GFsdX64VugaedDzt/1GU/uaAbIssma5DCpa6xa8iZEJFNw9LmOrXBV8y0Ui9He/4GgsEDoWEonH+d0iWELaYlFhuRhMHRQFoi2Gv/Tm03HG2gWYP1TCyVL7YivHfKpZIBYWiTecvIRJWS6t5lk/y0V76BoZ0PMKXdV/vF0gtZruobvLqboFqrJcAGDVAjlUmh1+UFTy0P/63CNDr/P0IwnSFqNjlb/PuXtTiSNJ+Sb8gmOX+vGCD5x3DAwGXHnLYwCCXuXNznKp2Y7X6tg9RnktF1q81RM36ywXjTzoeUJvdR5wEooZ0xbpUlSNtWgaIaL/7l8+C1v2Tc/pUb4Yk+UiK+ZijgwK4i2V5RI3i1FcUDTpJlw0DRwrPJ1Q0VGzgqI0JtvhIdWfW6G3qWkW/WQ6D10jC3qe0DvZIzqwXLJluZiG4c33GaTDmUbYcjn76MU4++jFcxpXkIcuEbpExjT+LGRBxKXqWRKX+WLG3CjSnqrkKe3ittEIzFAguHHLpX0eulboGtnR8x56J1HKWSnKOY/YLkWTNT2HuRhjucj2AJFElpsiEcuAR8anCi0L4gg9XqEn3wBLheB7dpMtF/EpJaTQG7Rc2uah6ywXjQzoeYUOAKetmY+zvOnM2omshUVkunC4WTliqp1pGE2vNgyCosn9SkihZiElIrDDFw7h+28/CyPlAi743G+99agtl7j+I2kFU+L64mY/ahThzJ65KPQ2WS5+RapW6Brp6AtC//E7n9OR7a5aOIiiyXD4wuHM35EzXUQVu3ZRY3nnMkoJeejhbbvL5VHopsFwxuqF2LpvOthekxW6SOiU5dKsqd7icu/zWie+h95qy4XiHNpy0ciAviD0TuG45WN4+IrzUxU28SXn0bx5Ul6/+uC5WDzcnFl5qII1ldC9bWehCtqHIB4QfCuuA2Oc6k310IUbBFXUtsZDb9xy8T30Nlku2kPXyAJN6HNEXrtE9tBJJR+1ZKRpY0rq5aLadhYuk4lF/I5INgZz+4uXC0Zsf5hUD120XFrqoc/dcml92qL7v/bQNbJAnyVtQHDJ84hCT2uK1QjigqIyCr6HnsVyof+jilEkNdp2szx0yghqhUIXb8a589Dp/xYTOo1XK3SNLNCE3gaELBfJbmjFhRpXKSqDfNksZCYTl0ji4kdid8RG8tDFdYTea4GHXgrloedbT7usEOZnuWhC10iHJvQ2YI3XZGv+UEmh0Jv/EwRB0eSWwnnsIkO4KQFhghf/FiekiPfQ04Ki0e+1Pssl5/rb5qG7/2uFrpEFmtDbgA+99Dhc9ebTcdZRiyIeeisu1KKv0JM7EVKlaBYuo94ljsfoceMOLBcztK/PPnKh/3faXKnKIGvTFHpMHnrXNufKXs2roaEJvQ0oFQy85BnLAYQnaQZa8yg9VDTBGDAxm0zofoAzQ54LiXCf0GNsGtFyWSBME3j1pWf5f6ualKnWkfZeI2hWlkvQnKtNhK6DohoZoM+SNkO+/FsRVDMMhpFSAYdma4nLEaFluacQEfqWS8yZQ0q6VDAi8776y6SQc5Zp7hqFeAMNZefkzXLxhqPTFjW6CZrQ24x2tZ4ZGSjg0HQ9cZk8WS5ZFXpRIPR5g+F5X89YuyB1O+I6RDTLcjEMpsylz5+HThZUU4aVsB33fx0U1cgCTehtRhZ7oxkYHShgsprNcskypEvOPgIAsHrBUPi7EnzLxWQRhf6ttz0LGz764tRtqYKizWyPoMruabRSlKu6lTURftqi9tA1MkAXFrUZbVPoGSb+ICWcZUivPX0VXnv6Kv91nKoXPfT50lRzA0VT2RNeRjtyu+s2D9kl+Se4cNFiPtdpixq5oBV6m9GuyzJLB8g8eegy4vilJGS5NENVr5g3MOd1yKD5OUNFRg22z+VoLaMHaYv6UtVIh1bobUa7+rdnmeeUMicaIfRUy6VJQcyfvee52DVRacq6CGRfiDZL/hmLPA89OdV/zqDbhVboGlmgCb1PkYXQVX1ZsiLuxiRmuTQDi0bKWDTSnKZlBCp+EgOhjU5w0WLHxQ9C6zx0jSzQz3FtxhvOWN2W7WSxXMguaOZTQ9EPinbvqUU+/lzSFiEVWrUKtPpW57tr9Ae696rrUxy/YgxbP/Xylm8nS1DUzylv4nabpdC/+KZn4ifvak2f+wFvomuRJEczHC8RQSuEVhM6D21PQyMJ2nLpU2SxXEhdNlP8EZGTrXHde5+HXROzuddzwUkrmjcoCQNFCooG7x29NF/74nbloTtaoWvkQCYZxRg7nzH2CGNsM2PsMsXnb2eMPcAYu5cx9jvG2AnNH6pGHmRR6PO8tMKTVs6b8/buvfw83Hv5ef48q0TsJxw2hhcet2zO628myHIRbZa8hH74Imq4lm0+2UYR3HQ1oWukI/WqZ4yZAK4EcB6AbQDuYoxdyzl/SFjsu5zzL3nLvwrAZwCc34LxamREFg/98EXD+OE7zsKJTSD0+UNuVWiplzx0gSSz5MeL+OBLjsX6tQtx9lGLmzo2Ga2wxTT6F1muujMBbOacb+Gc1wBcDeBCcQHO+YTwchitD/5rpCBr/vbphy9EuZCPzJLQ7LTFViCwXBqnyVLBwHkntP7Jw9EeukYOZPHQVwJ4Sni9DcCz5IUYY+8C8AEAJQAvbMro+hgGa60veuzy0ZatOwnFJqcttgJlISj6g7ef1fS0yGYirV2xhoaIpgVFOedXAriSMfZGAB8F8FZ5GcbYpQAuBYA1a9Y0a9M9iY0fb60jlddCaBZ6QaHT2EyDYf3ahSlLdxZ+0FV76BoZkIXQtwMQk6dXee/F4WoAX1R9wDm/CsBVALB+/fqntS2T1hO8V/GSE5ZjtmbnTgNsJ+gpohdUb5CH3tlxaPQGssiouwCsY4wdwRgrAbgIwLXiAoyxdcLLlwN4tHlD1GgUN73/HPzdy45v6zaPXjqCD77k2K7OyqCUyl5IBQzy0Lt/rBqdRyqhc84tAO8GcAOAhwFcwznfyBi7wstoAYB3M8Y2MsbuheujR+wWjfZj3bJRXPKctZ0eRteh6PeB7/BAMsBPW+zwODR6A5meiznn1wG4TnrvcuHv9zV5XBpNQt6JG54OIMulbre4s1YToEv/NfKgeyNXGk1Bqycx7kUQodfs7g/j2C2o5tXoX3Rv5Eqjabjk7LW44MTlnR5G14CyXLRC1+g3aEJ/GuBjr3pGp4fQVaAq1rrVC4TuBUX1s7RGBujTRONpBwqK1npAoevmXBp5oAld42mHYg9ZLro5l0YeaMtFo2Gcd8IyHNaCOT9bDT8oanV/UFQ359LIA03oGg3jK29Z3+khNIRyDyn015y2Ej9/YCdOXT2/00PR6AFoQtd42kE1BV234sUnLGvLDFca/QFN6BpPO7zouKV4x/OPwl8978hOD0VDo6nQhK7xtEPBNPB/zj+u08PQ0Gg6dJaLhoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn4BRv+W2b5ixvQCeaPDriwHsa+JwmoluHZseVz7oceVHt46t38Z1OOd8ieqDjhH6XMAY28A578rOUN06Nj2ufNDjyo9uHdvTaVzactHQ0NDoE2hC19DQ0OgT9CqhX9XpASSgW8emx5UPelz50a1je9qMqyc9dA0NDQ2NKHpVoWtoaGhoSNCErqGhodEn6DlCZ4ydzxh7hDG2mTF2WYfHspUx9gBj7F7G2AbvvYWMsZsYY496/y9owzi+xhjbwxh7UHhPOQ7m4t+943c/Y+yZHRjbxxhj273jdi9j7GXCZx/xxvYIY+ylLRzXasbYLYyxhxhjGxlj7/Pe7+hxSxhXR48ZY2yAMXYnY+w+b1wf994/gjF2h7f9/2aMlbz3y97rzd7na9s8rm8wxh4Xjtep3vvtPv9Nxtg9jLGfea9be7w45z3zD4AJ4DEARwIoAbgPwAkdHM9WAIul9z4N4DLv78sA/HMbxnEOgGcCeDBtHABeBuAXcCeSfzaAOzowto8B+FvFsid4v2kZwBHeb222aFwrADzT+3sUwJ+87Xf0uCWMq6PHzNvvEe/vIoA7vONwDYCLvPe/BOAd3t/vBPAl7++LAPx3i45X3Li+AeC1iuXbff5/AMB3AfzMe93S49VrCv1MAJs551s45zUAVwO4sMNjknEhgG96f38TwKtbvUHO+a0ADmQcx4UA/ou7uB3AfMbYijaPLQ4XAriac17lnD8OYDPc37wV49rJOf+j9/ckgIcBrESHj1vCuOLQlmPm7feU97Lo/eMAXgjgB9778vGi4/gDAC9ijDV9Vu6EccWhbec/Y2wVgJcD+Kr3mqHFx6vXCH0lgKeE19uQfLK3GhzAjYyxuxljl3rvLeOc7/T+3gVgWWeGFjuObjmG7/Yeeb8m2FIdGZv3eHsaXHXXNcdNGhfQ4WPm2Qf3AtgD4Ca4TwOHOOeWYtv+uLzPxwEsase4OOd0vP6fd7w+yxgry+NSjLnZ+DcAHwbgeK8XocXHq9cIvdvwXM75MwFcAOBdjLFzxA+5+/zU8bzQbhmHgC8COArAqQB2Avj/OjUQxtgIgB8C+BvO+YT4WSePm2JcHT9mnHObc34qgFVwnwK6YqZteVyMsRMBfATu+M4AsBDA/2nnmBhjrwCwh3N+dzu322uEvh3AauH1Ku+9joBzvt37fw+AH8M9yXfTI5z3/54ODS9uHB0/hpzz3d5F6AD4CgKLoK1jY4wV4ZLmdzjnP/Le7vhxU42rW46ZN5ZDAG4BcBZcy6Kg2LY/Lu/zeQD2t2lc53vWFeecVwF8He0/Xs8B8CrG2Fa41vALAXwOLT5evUbodwFY50WKS3CDB9d2YiCMsWHG2Cj9DeAlAB70xvNWb7G3AvhJJ8aXMI5rAbzFi/Y/G8C4YDG0BZJn+Rq4x43GdpEX8T8CwDoAd7ZoDAzAfwJ4mHP+GeGjjh63uHF1+pgxxpYwxuZ7fw8COA+uv38LgNd6i8nHi47jawHc7D3xtGNcm4SbMoPrU4vHq+W/I+f8I5zzVZzztXB56mbO+ZvQ6uPVzIhuO/7BjVL/Ca5/93cdHMeRcLML7gOwkcYC1/f6FYBHAfwSwMI2jOV7cB/D63B9ubfFjQNudP9K7/g9AGB9B8b2LW/b93sn8gph+b/zxvYIgAtaOK7nwrVT7gdwr/fvZZ0+bgnj6ugxA3AygHu87T8I4HLhOrgTbjD2+wDK3vsD3uvN3udHtnlcN3vH60EA30aQCdPW89/b5vMRZLm09Hjp0n8NDQ2NPkGvWS4aGhoaGjHQhK6hoaHRJ9CErqGhodEn0ISuoaGh0SfQhK6hoaHRJ9CErqGhodEn0ISuoaGh0Sf4/wG2WSuQME7B4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Simulator Tutorial.ipynb.txt b/_sources/notebooks/Simulator/Simulator Tutorial.ipynb.txt new file mode 100644 index 000000000..00fa37407 --- /dev/null +++ b/_sources/notebooks/Simulator/Simulator Tutorial.ipynb.txt @@ -0,0 +1,886 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of initializing and using the functionalities of simulator class. Various ways of simulating light curves that include 'power law distribution', 'user-defined responses', 'pre'defined responses' and 'impulse responses' are covered. The notebook also illustrates channel creation and ways to store and retrieve simulator objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, Powerspectrum\n", + "from stingray.simulator import simulator, models\n", + "from stingray.fourier import poisson_level" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a Simulator Object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has a simulator class which can be used to instantiate a simulator object and subsequently, perform simulations. Arguments can be passed in Simulator class to set the properties of simulated light curve. \n", + "\n", + "In this case, we instantiate a simulator object specifying the number of data points in the output light curve, the expected mean and binning interval." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=False)\n", + "sim_pois = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also import some sample data for later use." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "sample = sampledata.sample_data().counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are multiple way to simulate a light curve:\n", + "\n", + "1. Using `power-law` spectrum\n", + "2. Using user-defined model\n", + "3. Using pre-defined models (`lorenzian` etc)\n", + "4. Using `impulse response`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (i) Using power-law spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By passing a `beta` value as a function argument, the shape of power-law spectrum can be defined. Passing `beta` as 1 gives a flicker-noise distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5sElEQVR4nO2dd5gV1fnHv+82ll6XDi5dEBBwxQJKFRCMJb+YaIyxhsQSNSYaQKNGTULUqDFqDFGsaIyKDRBFSrAAsjTpvcPCgjRZYFn2/P64M7t3706fc2fO3Pt+noeHvXPnnnln5sw757znLSSEAMMwDBNdMsIWgGEYhvEHK3KGYZiIw4qcYRgm4rAiZxiGiTisyBmGYSJOVhgHbdKkicjPzw/j0AzDMJFl0aJF+4QQeYnbQ1Hk+fn5KCwsDOPQDMMwkYWIthptd2xaIaKJRLSXiFbEbXuciNYQ0bdE9D4RNZAgK8MwDOMCNzbyVwCMSNg2A0B3IURPAOsAjJUkF8MwDOMQx4pcCDEXwHcJ2z4TQpRpH+cDaC1RNoZhGMYBMr1WbgTwidmXRDSaiAqJqLC4uFjiYRmGYdIbKYqciO4DUAZgktk+QogJQogCIURBXl61RVeGYRjGI769VojoegCXABgiOAMXwzBM4PhS5EQ0AsC9AAYIIUrkiMQwDMO4wY374VsA5gHoQkQ7iOgmAM8CqAtgBhEtJaIXkiQnwzAeOXqiDNNXFIUtBpNEHI/IhRBXG2x+SaIsDMMkgbGTl+OjZbsw/a4LcHrzemGLwyQBzrXCMCnO9gMxq+fRE6dCloRJFqzIGYZhIg4rcoZhmIjDipxhGCbisCJnGIaJOKzIGSZirNx1CBx7x8TDipxhIsRnK4sw6pkvMXnxzrBFYRSCFTnDRIgNxd8DANbtPeL4Nzx4T31YkTNMhNCVMoHCFYRRClbkDBNByIceP3TsJPZ9f0KeMEzosCJnmDSj98OfoeDRzys+L91+EPljpuKlLzeHKBXjB1bkDBNB/BhWyhNs5pc/9xUA4JEpq3y0yoQJK3KGiRDsdsgYwYqcYSJExWKniyG5H3s6Ew1YkTNMBHHjtcKD+NSHFTnDRAhdJz87ewNmrdkTqiyMOrAiZ5iIUF4uMGvN3orPN75SGKI0jEqwImeYiDBpwVYs3X4wbDECQwiB+z9YjtW7D4ctivKwImeYiLDj4LGwRQiUosPH8cb8bbj+5W/CFkV5WJGHyN3/XYr8MVNDO/7Og8ew5/Dx0I7PuCPdwvIzNXebPYdPoDzR+Z2pguPiy4x8wspgd/JUOTrd90nF5y3jR4UiB+OOdHMjzMyoPOHjZadQK6dSXZ08VY6l2w/i7PxGYYimHI5H5EQ0kYj2EtGKuG2NiGgGEa3X/m+YHDHlsPPgMZz1yAxs2Xc0bFFCpYSL8KYM97yzzHHelMQXgerBRfGKPJHHpq/BlS/Mw7UvLQhQInVxY1p5BcCIhG1jAMwUQnQCMFP7rCwfLNmJ/UdL8Xbh9rBFYRgpvLNoB/4ybY3lPvoC6R8+WIEXv9hUsX3xtgNKK3OymIKs2xNL5/vF+n2G37/y1Wac8cD0pMilIo4VuRBiLoDvEjZfBuBV7e9XAVwuRywmWZSXC7w6b0vYYjAeMFNrTk0uK3cdxqNTV1d8/r9/zsOHS3f5FywE7M75oY9X4Whp+sw8/S52NhNC7Nb+LgLQzGxHIhpNRIVEVFhcXOzzsIxXpq8swpMz1oUtBuOBZNjIN+z9Xn6jAZBmywW2SPNaEbE5muk8TQgxQQhRIIQoyMvLk3VYxiXfnygLWwTGIyVpNMIEgG93HDT9zsrsko74VeR7iKgFAGj/77XZn2EYj7z81ZawRQiUjRGdLYSBX0X+EYDrtL+vA/Chz/aSysZi7hg8jmHiEeaTaCZCuHE/fAvAPABdiGgHEd0EYDyAi4hoPYCh2mdl0f22i4/E3LXyx0zFmPe+DVOkwOHHNvVQ2PHEF2w+cY4br5WrhRAthBDZQojWQoiXhBD7hRBDhBCdhBBDhRCJXi3K85+F4bgiquz2xUSL9xbvQGlZedhiSMerHj9+Mr3WEgAO0Q+Ndwp3hHJcHuOkJkeOn/T0O5XHE/F9NVFOq37c/6+zkyGO0qSlIldBmX210TiQgWGY6rh53ziNdE0l0lKRB8m6PUewM82y1jEMEyysyJPMsKfmot/4WdW2qzilXbT1AKZ8G81Iv6jyhw9WYNz7y0M7voLdsJI4I3nimtLMNezpHA8r8pD4aJl6CvP//vk1bn9zSdhipBWvz9+KNxdsC1sM5Sl49HMMfmJO2GIoS1oq8nT2amKXLiaKnCgrxyaPWUsnfrkZI56eK1kitUhLRR4V3lywDX/8eGXgx12y7QDue385u0imASrf4j98sMJ+Jwc8PGUV1hQdkdKWqqSlIg+i8w56Yo7v6j/j3l/uOyy77FQ5fvzCPHy1wbmXzE8mzMekBdtwIgV9k4Ok7FQ5np+zAcfSLEeKE7btL8GyNKo/mmwipciPHD+JW95Y5Nu96OuN+yVJZM5mF9NAu5Hvd0dLPcux7/tSfLPlO9z936U4VS6cjfAVHqUFQeGW71BS6j+52PtLduKx6Wvx9Exn2SY37D2CAz7utReKDoXjUXXh47Nx2XNfhXLsVCRSivydwh34ZEURnp21wVc7J0+FN9I8fPwkPlhStcSb3Qzh/SX+S8LtOXwCCzbtx5Hj9gqqVLs+6WhOLzp0HD96YR7uedd/6obtB2JK0umIfOiTc3HRU3JtuXa1LlclVKi/9NkvpR6fCYZIKXJZ7D0SXsDAve98i7veXhrKsd3Wr023Yr8AcFQbia/eddh0n5+9uABTv91t+r3OMzPXAwAyXLwRvc42E29taVk58sdMxchnvrD83dGEsn/f7jjk6fiqcrCkcoZTUlqGWWv2hChN8khLRQ5Y5zpOJrsNqtarYMk4VFI9xDsdR+RO1k++3LAPt7252HGbbhS5V95fvLNKnz6q5Z23W+RTKVjt0LGTmC3ZP3zok5UznDHvLceNrxTaFtM4cLQUp9yOekImbRX5jFWp+WZOxKkOGTM5vbJA2iJR91rUEDbksIe8KX+athqXPltpc5b17jhwtBRrA/L4uHXSItzwykKpIfbxbW3ZH1u3OmpRXOXoiTL0fmQGHg7BW8wPkVLkMgc2ekpbI1btOowPl/q3SxtiMOQLys3vz9NWm37nZ0GVsSbDpSZ/QJLbnVduemUhXp+/FQBw6XNfYnhAPtibimOKNkxvKV3JT1tRFJoMXoiUIteRofisppQjn/kCd/5nqe9jOGWFhT0WkKfoExe2dE6UnTI076jsY5w8rE+62MP6yh4Dc5oVh455y2Qoi5lr9lb4cG//LjjTi/66CzN+IapdPlKKXL/Ra/ccwSat2s/mfUfR5f5PsHW/t6gvFbj8ua9Czdi2YmdqLXAlk9fnbXH9m9UmL1AzZCiTKC5U61HHdnr8+Tn+vNasuOL5mHnKyws7TCKlyHXmb/oOg//2PwDA5MU7cKKsHB8utc5donqUYqKL2qNTVvlqTwiBmav3+Fq0OXTsJPLHTMXHCuaFCQsvKQ6yMtw9Zn66qp27YSrw2PS1SWu7baNaSWs7mURSkcfjtNPvOuRueuuV8nKBMg9+6onn8eKXm33JMW15EW56tRAT5m5ytL+RXVIPakqUZd2eIymvMDYVH8UZD0yvtj3T7colgCt6t3K1v58re8Fjs9HjoU/x+vwtPloJh3T0kpJFpBR5FBI+3fX2UnS875OwxUCRZpd95estjvZ3Gi69evdhDHtqLv7hMyhLVU6eqlSjRw0CeTzocWRluvuR2eyxT9sGtr/97mgpjhwvwxOfOYsmVZFkTZ7d+si7XdsIk0gpcj8E9QqwTU/r4GWkSm4Oo0W33VpI95LtB4IWJxDsTFFOBxPxgShOfvHfQvvasT1bN7Dd51iE61Xql1a4nJNYuRO6Jf4lsnV/ibR2k40URU5EvyGilUS0gojeIqJcGe0msqbI3aKRSrhRzkdOhOu1oPOL1wqrbdMX0ZyOmspOlePZWeuVeTn5xUlwz7HSU1UCcZy4H85cXRnXsPew8ULbspCC2Mz4Yn0x8sdMleZo4LZv6Ux0aYZcuMVZjXgvs6+w8K3IiagVgDsAFAghugPIBHCV33aNeOsb7xXvw7bK3Pue84CbICIB4ylxo2Rdivbfwh144rN1+Mes9e5+mATeXLAN8zdZJ0wrt9EimQ6emOte/gZXTZhf8dnskp0oq7zu8Yddu8c4AGfJtoP2B08SRuYePRZj0VY5s7PKEbk5urdaPKdcav5Hp5rHUxjJEwVkmVayANQkoiwAtQAE7uaQjGsuM1x4pY2LX/x0MlGRJ3tt4NqXvrH83s/Rj2tTfVcviyQx7v3luGrCfGwq/h7bTKbNdm57T86wtz1/szlhxGdy/87980zbtnTe+ibcKkLTllcPkFkqOQ2tEz/yfd9XD1xLnqtldDS5b0UuhNgJ4AkA2wDsBnBICPGZ33a98NSMdcgfM9XQzunlZt/wykJ5ORccHP6DJTuRP2ZqhfJTkcOa3TxqPitD/zan4u/Bf/sfLnx8tqd2jp9075FkdusPGOS3MWPs5PDqegLA/qPVzT26V5PfccaWfUcxc/UeR9HFMsc0K3cdsnxppNWInIgaArgMQDsALQHUJqKfGew3mogKiaiwuLjY72EBVA9k0QMFXvpyEzbslZMfQta9tGuHQBXZ8nYnuEp6CU6Q6TcfP/LSI14j1McBAP075flu45Pl9hkPjYiSQjBD5imUJri6DnxiDm56tRCHtRTLQQwSZqzag1HPfIn3LFJ1eKGktAzrTUxjyUSGaWUogM1CiGIhxEkAkwGcn7iTEGKCEKJACFGQl+f/oQKAS/5RNXeyrrv+PG1Nte+8PkyyOpWdeaTqSn3Vo77wv42SpJCP3SKmKiN3O9u4jpXHxC2TrDMeCmFcuMPJmocq18kUiW+jR2yC3azGIDsOyPEk2ajZ2hOVbvxpejnj0a8twkVPzQ08e6IMRb4NwLlEVIti2moIAGerCRKIf/DiL13iFFj1QdE7hTs8F5fdVPw98sdMxacrizBz9R7c8dYSydIZ8/GyXej6wHTXIehhEETNxi37SwxL8+U4WCGdu07OLDVZyHx+nHqNGPH5qurrVvHKd9z7zkxQZi8LvxPZrzc6L6kokyy/DQghFhDRuwAWAygDsATABL/tOuW52bHR6tHSU9bmBIc9MXHaFxTPzq4MsFm3xzpfciJ6oMO05bsrUhX0bF1fnnAm6IvBK3cdRtcW9ZJ+vCBIRjCKkybTqT6q/TV29xzHb3pzgctFYQu9EKWc5FK8VoQQDwohThdCdBdCXCuECDzjzKFj5gsldjckf8zUikCXfuNnVflOlq15w97vMc2hjfVVh9GYTCVz18V8mot8pmKwcz9MZMeBEtz99tLQBgBBYWVZke01YnULZLnmOgk6cqvIN+87WlGFK+jcTikV2Zl46Ub+/QsIIdBh3DT0/ZO1q5c+tc12GU7thlsnLU7KkM9tJFwq8oaWP3vp9oM44qEwg47bK3nf+ysweclOfLVxn6k6M92uuL0vPtXzip2HpeWs99NfZV0y/TG0egm5lXLQE3M8y+OXFFLk1W/Iqt2HKwoJO8Xtzes3fhZGPD3XdgFH51sHKWPdjgr/4yNQSgZOHq6glNaaosPo8dBn1Qpch8kzJsFQiutxrItbCHzrm22+CzMfLCmtkrrADKveL6sfPf5pLINioiNBFZcDH+OjoPNCpZAiN77wX6zzt/hgdy93HjyGNUVH8JLDMGEnncNtB1qQGIASACWlZUrNA3RZ9IXX/3lcPHR77eN3LzOZipvl7Ag6gtctidLtOGBcZMLpafR6eAZ6PTzDdj+3S12yLuPKXYeqB3N5hE0rknE7uvVz/f1M6eMxUwhuSHY/iq++roI+0muw6lPl+PB3N9Sukelq/3hvk3cX7XD1W6v7/K//baxwkYsKPR78FDe/utB2P7u+6db08sRn6/Cah4IflfLEjnf9y1Vlj5LJMmUUuSxlUuQjdeXIZ76QIsNmj26I8SQGFckmI8PdqGPZ9oPSgrSs0AsXG4WUO6F2jndHrmOl8rLw/eWTNfjxC/OkteeF711mFTxyogyfr7ZPa2HXa4QAOt03zfA7s1mM03TNRsSnLo5n+3dplv1QBY6bBKaM8Rna7GZkG2R9QzsmfuWvMIUd8YtETl6ii7cdxNAnk1/E9+uN1QN/xk52nrDMzf1ekBBkJNsuul9bXJQVBOOW299MTjzCbot6uQBw8d+/MFWuZgsLfmagZeXG62i/f285Vu6KRhnElFHkk00Wt7g6fHJwqrNUKLHnJmummxnZU59XJtAi2F+Tm15ZiKc/d1/w4Qf/8LfIqBpGBTucYuZl4taEGs/JMvPfLtjkzWYedK9PGUXuF7MOEiU7WdCm6uhcGWOmr9iNL9ZXXRT98zTnQcnzEx5yu8XLmWv24unP3aXzveL5r1wl10p1zC6xjPGCUdPHy05FIpc+K3KXCCHw2rwthtVzwiC+OkqQipWAiihSK1/cIB6CEo+26V+9sbhaCl+ja1h2qhzjP1lj255VIQInFYCMCDMHuVMWS8pH7oRk+ORbDdYem74WXQ1qt9rx8bJdyB8zNbBiOKzIdRx0hAc/XIGeD32GBz5ciXEhpxXViZ9SBpnzZOdBZyaIkx4KUbvljAc/TWr7n6wocpS4zGpEfu+7zu30UePVeVvDFsGXaSUZ3P3fZQCAW9+wTrQmC1bkNsT3j1fnbcURbQR8wEFgQxDEL7C5zdHih3gFbbUgFMTMReozbNCY41BtBdwww+KwgevtjgMlFRG3sjB7V27/7hj6/3WW8Zc2yOg/Ya8FsSLXcPsMBn3f9n1vnL5GBd3x7y82Y9aaPSgpLcPnq/ZU+S5xtBalRESMc4wKX1zz4gLc/8EKqS9zq1mPWcCSDOxyjL+90Nh0FlRvZ0UeEdaapGENKzowsVr7ln0lGDd5OW5+rdBUVgCGIdq3vLEIc9bKK6un8+FSZ2H6dsFDKgQ8qc4uA5fCCo8xidosGQMBvcW9FgVcLnrK2nV2+krzuIUbX1mItxcmt1QfK3KNoHMjuEU16RKz/REBW7UACreBJJ+sKKoWVScDpznIF289iIMlpfh64z5PpdwA9/3H6wKtqlhdtz1HjjuqdeqEZJjq9n1/okpeGZnsPXwcs9bsxe/fS+6amu985KnEfQ6T0gMhuCWqpsk9knjVkmlbdNo0EXDdywuxTHIxYSt6PBRKWdukUZ4wUp65eg+OaKXbhtmMZt2QjBG5X/nu/2A55qw1zu0T7zO/fs8REBE6Nq3j63hGsCKPY5JBUnpVFsP/9tk6HBt4CkO6NquyXU0/d4Ht35XgdYOFLlWuZzwEa48fJ7bX6yZ+Y7tPPKm2VpDYD10XeIgAx0pPoWZO9Vw8b8x3dq66eWbL+FFS5QLYtFKB6gPeRVsP4KZXC6ts23XwGFbsDMblcMm2A/h6g/NMkrdOWowJczfZ7qeCYs+wcgBHZcpTBpi9dq/h2oPX95LbOIMwu8s3PkrUJRsekWt8/O2usEVwxZJtB3DF818Hdjy7YyWqQjP/cTcziJOnynGqXCA3211GQrfHotjOjANu0NYyLj2zpeV+TpcM3AbbhOnmZ3RKBxRJAcIjcg0zG5dqpgs9X/L6AH3GneJlVmN1dX/4/Nc4/Q/uo+rcQqTefVadxPQEiQp2rs86ACpi5CF2wWOzQ5CkOqzII8bjn8ZCxSOreFyIvdxBNSU5kBImniiR6D2ysbhq6mW3lbmcsklCimevEAGLtx3A9BWVtXfdemglC1bkHgn7BqqmeHbapCY1YvO+o45C+PfEZSScvWYvXnGYovdf/7O30QPeZE93zFK/JhuzaktBQIjNEn8VUNi9G6QociJqQETvEtEaIlpNROfJaFcFzBRmUIuMZiimx/HvL6oq1w17jU0/uty7Dx3DoCfmYICDqWl8+a0bXlmIhz52Vh/VKWuLDptez7BDrxnGCbIWO/8OYLoQ4kdElAOglqR2lUAIgcURyEKnEmZlzHS9qBfhqF8rG3ssIur8snW/v6n4HI+1P5nU5lDJSbyzKNyi5/H4VuREVB/AhQCuBwAhRCkANZZyJXD4+EkMemKOYfhumKO1qA8Ufz5xgel3W/cfRXZm5WTRz6lahV3rEMj0XhYn8SUTZUpOqJ+jWzbxRUfOfFitgC4ZI/J2AIoBvExEZwJYBOBOIUSVoRARjQYwGgDatm0r4bDBMOypuRURaomEqUyjutipy62HdBtdwwGPz6ny+Y63lqDo0DGMvrCD6+Nd6aDuZQaZvyyiUFQgDKLa//zwlIfqTkEhw0aeBaAPgH8KIXoDOApgTOJOQogJQogCIURBXl6ehMMGg5kSB8KxU+tFHFQekVvJ9siUVeh83yeV+zps88/T7As7+MFM5gc/WpnU40aVRMtZTmbq+02EtL7rCBlXfweAHUIIfa78LmKKPeXZWBy8L/c3W76DENEdD01bXmTomqZ4zjKpbA7RhU4WiS+++Ht6xCA3OZNcfCtyIUQRgO1E1EXbNASAXLcCRZGZDMgNG4u/V3tIHjGCznw56Ik5vn7/8e395QjiA6uhRKolBNNR2YNJltfKrwFM0jxWNgG4QVK7jAHFR0ojOyJXkajNBnq0rh+2CGk5jth1yFl5wzCQosiFEEsBFMhoi7Hn6n/Px+gL24ctRjW8uGgmjnLCGPUcVSQ6L0qoPDpNR1J/hSJFSdVoRLdZ9LZIsDcnBjMx9rAaVwtW5FGFnyQAwK/eWBS2CGkJD8jVghV5RFmy7UDYIkhBVwhU8dmdhmCFEg7bvgsv5wlTHc5HHlFUXnhxg57NTjepODWt/PL1Qnx/oixyC5WpwktfsjlKJViRM0oRnyDLik9X7gEAnN68bjLFYZhIwKYVRilOqhw+pxCNa+eELQKjEKzIGaVIrMbOGHNZr1a+fv/Bbf0kScKoACtyRims9Pjew9XXBYKOylQFv0kaerVpIEcQRglYkTPK8POJ31h6rfT988wApVEbt946mRnp+cJLFyKlyLkvpjZz1xW7DghKV2pku3t0rz33tIq/n78mLXLapRWRUuS1a6jjZNOuSe2wRfDNA5d0C1uEarj1I0/Xd3vN7EzH+w7t2qzK55E9WsgWhwmZSClylR7aOgq9VLzSskHNKp9/P+L0kCSpZNz7y13tn6Ymclczl9+P6GK/ExMYx0/KL1YSLUWerk9tkhh+RtWRWpYCtiuVZl0qkle3RuwPlzOX5vVzAaTvi08l5m3aL73NSClyRi6JL0YVHvIdB1IzGZgsdP09onvMPNK2kX2dc6LKGeTVfaNTZpFxTqQUuQqKRkdGjZ47BneUIIk8ojjjiaDIUujWsh62jB/Fka0m5De2f8GlEtFS5GELEIeMZE29T2vov5E0Z/XuI2GLEDBVO56zF1nlTlFLMlbXo6ntpevPliyJ2kRKkauEjAdCpReTTILUFafYXzGlqVgTcEnDWgqnMEhCl42UIo/a1P9PV3T3/NvbB3XE12MGS5TGHllrnVEb9UWJJ648U1pbCqxt22Lm5munChqlWS6aaClyCW3kZMk5ZSe6imwkrpubbfpdw9o5aOpxNGLE8oeG2e4j67kuZ02eFG4b1AEDuzR1/TsiY8W3/KHhEqQKh6UP2PfndCJSilwGQQ5CerSyLpJbv6a5/U92TUSrl4aOrBkPK/JoEBVXzy/uHVTN26Z+Tfv+nE5ESpGrZFpxomjtqp13bGrucSCEPFPamIuDDfRhPZ4c7GZ45r8DzmgZ64vnd2gsUaJgaNOoFprVkzc7DZsTZfJTNUtT5ESUSURLiGiKrDaTQVR0TLkQ0mYPI85o7mg/We/JVFfkXhfgwqRXmwZY9sAw/ODMlqb7jL6wfYASpS9Fh+THSsgckd8JYLXE9qohQ9HIUo5riuS4vZ1l4oIoAGRlBjthknVtZPjYq4zTtQunL1A/6KN0q7S0WRmxflS/VnVzxL+uPQsttKjPM1rWky+gTxSahEsjGZYFKZqCiFoDGAXgRRntmR4nmY0rRp+2MQV/z/Dg8mTMd1hmzY7X5m2V0k7UeeHas5J+DP2l+UuL0XRbi+CY4Wc0R+dm6gcVpdIsLxkvJ1lDvqcB3AvA1PhDRKOJqJCICouLiz0dpFaO84xvUadvu0YA5Cx6Om2hVJLtbsaqPVLaYRidFNLjSRmQ+lbkRHQJgL1CiEVW+wkhJgghCoQQBXl5eZ6O9eJ1cqO1/v3zAqntRZ0o+BUzVfG6AFqlDa0JpUe9Sgvnjlo58r2FZIzI+wG4lIi2APgPgMFE9IaEdqvRumFN+51sGNqtmf1OKYbTUX1GKhokU5wGmt07NzsTNTzGSERBR0ZARMe4LQriBN+vBiHEWABjAYCIBgL4nRDiZ37bNUKGnqkRt4AYptqafOv5AOT7izth0s3noEmd6gt2rMidEZbiM7o991/SDZ2b1cXALnloVDsHuw9Vr2uaCnBsgjWR8iNPJfTFTDuXLxn9N7GJfh2boItB1jzW49GjTo0s3Ni/nS9PiArTisLj3lTS48k4F6mKXAgxRwhxicw24/FqD6yXWznxiL+GKiius/MbhXr8+EpHXKDXGQdKSsMWIe0w0n23DeoQuByqkhYj8tYNo5ubOMiBCKtxZ3z5+8FKFmgoS8lMkLFeWW5wbvcMD780oSpESpF7HUHXzY1GTolk0d6iUHS8jZ5t5M7IzCC01IJoVMIoW2b/jk0c/z5I88UtA92NplPxFSWTaClyj79rkBDR1rJ+Lu4b2TUQ08rZ+f6KR0jJe+7wRFXKZaM6KiqW7MwMzBs7GIX3D63Y9sbN54QokX9G9YxFx4bhFBAlIqXIZTCsWzN8PXYIfhFQXomJ15+t9IwgXnm3aeTfvZNxz9IHLnK0n5PXbIv6NdGkTg20a1Ibdw3t5E+wkNnwp4txRe/WAICUtBpJRF0NY4CMEePFPVpUtheAVbhubjbq18zGkeNlnn6f7EFy/EinVQNW5GHQIAnVbGb/bqDjffUuFqRpzckAOz7XkN8B+dCuzVB0+BhW7DzsryEJJOOdlHYjcqf87Fx5i1lz7xmEBeOGePqtzBnl+B/2wMe396+y7Yo+rSr+JiIMPr0pHrnsDHkHTVH6dZSbDvaac8JbPNW7WD2L/Phh49eP/MXrCjDl1xdIkkY9WJGbIHO0npFBaFYv/MWxq/q2rZYj/Y+XVi1HN/H6s3HtefkBShVNzjpNrtuo28U/Jrokw94fKUXu1c3Z9LpFYG0v2UEa7DtujJWnT2gkyfQRRg9w2695sdOaSClyIgrMf1cVB47TmzvLEf3ur85LsiTRp+C0hnjm6t62+718w9mY5cLGLANV9NSCcUOC6fsm59upaR3D7bzYaU2kFDkgN0Of3lT3Vv4T6o/q2SIpL5kR3Z0VJzAKuXdL/KX9xQXtHP3m/lFdfR83KBrXycGlFhVydAZZFDiWbRu34kdnta7y+WKHfcErQgDN6uWicQAV6M308vS7LjTc7sfzKytOaTSpU6PKZzOeuPJMz8cLg8gp8mTQqHb1BFJu3xfDujVDfPesF7DLoWwf8KFdnWWJdPqiUQmzqkxOGNXD/kUgi9pa/v2HftANW8aPQtcW6lXw8YqZqcTM1JdtUi3LymX2lwPa48Z+7bD0wWEV2+aPHYzVj4ywla/ARx8Jg8gpci/6ym5W5tf+dumZLTE8oayXkym8ani5tlEKItJv82mNopGy4RJt9tDPRXSmH/RbGYhlxeUjF/+M/i1utFynRvXydTpjL+6KB37QrUo+oazMDNOXQpXjuRMvdCKnyO34+XmnVdtmpqitlJDZd0Yj7Weu7o3c7MyKzvnnK3pgoMX0PBnIePjiE3hFSUEn8qcrutvv5JEgMwSend8IW8aPQqeASrHp/ffrsUPwwW39MH+sN5dZR8fysX+8mSWKi6DKZz8MglM21cg65FVfLDmVBislfoI59BFLm7iRaoT1uL0d3Me5JUtvNK1XAw0NiiMHQeJLOzszA73aNEDzJOaTcT8id77vLwfIjdr+Ye9W9juFTOQU+U89LCh6yQqXzE4cT91c+4f33Pb2Pss1fdQz/eTOC/DPa/p4/j3jnxpZmVjywDD7HZNAGKNatzObQafHZrjN6+Xiws7WpSKduI5aDVTa59VGi/qxRd8J156FM9s0cCOqLcmY1UVOkfdoXR9bxo8y/d7I42BT8VHDfa0GZjf3d+a1EY/+PLgZzeY4KM/lNDgpg4C+ceaRYQ7L2rVpVKtK6gI3RGngLuPxcdrGb4Z2BmBs6ounUQAeIn6YN7Z6RkUZuH13nHVaQ2wZPwrzxw1BbnbloMWonZOn7Bu36rcZRMjNzsSiP1yEYWdEYzE/corcjraNa+H68/MrPs/67QDMvXeQ5W+MOkOWgwUR2Xx4Wz9fv9/0l1H4b5w/+YSfF1i+9KzoaGCiMqKFw5mL3Sgq1ejdtgEAe7fQJnXCV+RW6yEt6qudf6dFg+r977NVe3y16dT11itsI/dA+7w6gUUv6lMmu6NFwf7c0OFI0XGKXD/CuMRMJrfue0YL205fcE7vsR9XyCgjy5zz95/0xqieLTD9rso8KqfKbRbSYN1vf3K2ekVD7Eh5RS6bSxwElNg9xBHQ4ynJee1jwTxe8+g8cnl3nNfBWUCQ02OMuVidgCoz3XplQmCSlGNJaqd+rWw899M+VSKga2R5Xy+KKmmtyL0Unb28l/kKttNBhlvXvrBH8Oe0858gKshzyDVZd6jwk/YoS35j5/7nicfIq1s96AwIPnDMC48nIcox/ln5peTaADsPlNjuE+QjdWO/5JpqgAgr8nuGdzH9zmja9soNZ7vK0ZxMzDpR2ArbDCcLsiphtr4RpHNG4r0c2rX6IvygLnmR9tf3Q/zgadgZzhblnfLpbwbY7hPkZW9cJ6dKmmIlbeRE1IaIZhPRKiJaSUR3yhDMjm4t3dk7B3ZpinaKZLRz6/Md1rM+7Y4LMPt3A33nggaqBhtFBT9nfU47bzlZflwg34xhh5PuJXuxOr5LyU4JLBv9+bvmnLZ47ca+ntrIb5xc3SNjqFUG4LdCiG4AzgVwGxF1k9CuJee1b2zauZw+gLIrBOnHtWs3UTH3aFXfeMeQ6dayHto1qS0lv4jT3C3JxOlidCK6Z47T99lXYwYbLLA7dSFVc4ReK9vY7pyd6U3esEP0vDz7GUSe7k/iT5SsECSE2C2EWKz9fQTAagBJD4XKzc70/HZMRNZUZ/HWAwCAzjYuZ9VvbNjd2pqr+7bBnUOiXf8xniwT5fPhbf0w8fqCatvdPrrGJfPUvce1tMhes+tiRXweEzf0at3A0++k4eJU9YXUrzfu83y4jCR7zkldaSGifAC9ASww+G40gNEA0LZtct17nJoCZA9+Zv52APYeOWFaDahLs7pYu+cI2jQ0XjQLooaoF4gI9Wr6Cx+vaTKiCxL9+t41tDOWbT+EN24+B30emVHxvVkEX6rbsR+9rDu6NKuDCzu5N594de1NrFR138iuvqKT3ZLp4p72bdcIX48ZjJYNauLL9d6U+TXntMUjU1YBULxCEBHVAfAegLuEENUqnAohJgghCoQQBXl58uxtb9x0TrVtYaVWIbIu6XaTFmiQ2Ilt21VUwbuhrQuPj0RkBc3oM59m9XIx7c4L7KMqpfYjde9h/VrZuH1wJ8tRo5necxuZero2W03UZb+4sD1+dq51FKxMarucSbT0WZg8N8kDGSmKnIiyEVPik4QQk2W06ZT+nSpTfI7sEQundfvGc7O7n8HZwC55qJ2TWc0dqXWDmJKrmWN8O5I9LXNC0BLo9xJITpV5nYcdFJrO0G6LusaR5GPW73Wzw19+2APjf9jDcXthmxPf/uW5uHeEuedbMlHSRk6xeedLAFYLIZ70L5J3WmrhxA4CuwBUKicBgWUPDktq2k4AaFo3FysfHoHuCYubj1/ZE89f0wcdmxrb1h/7v55JlUt1ajmYco/q6S1XTI6DVAyyZkS9HCRfUjWVgd01qJmdiascJLTTFwvDzj7bIa8Obh3YUWqbZuOtIGbUMkbk/QBcC2AwES3V/o2U0K5r9L6h28jdpAWtXzM7sIyHidTNzcZIi6RVzevnYtXDwzHHxA8+cbT03E/7SE/lGTTxnd948bAqz/00edkbm9WLBfMkvlAmXl9QJTTcDifrDMl2U5ONVVDd6zdVd0ZI1eWG317UGWseubjis12yNNn4XuwUQnwJxQyAuo183Eh1wp/9UisnC/lNnN2uUT1beB6hMpXoqunhy7pj+Y5D1cp/DT5dvkulqorOSyzBBRaLp2GPyL2S+MIyS0r38GXdcW77xrh10mIM0GZZ/7ymD26ZtDgpFZ+iFbLnEN1Gbufz2bhObKTVrYWaftx2/OzcaCT3saqraErcrUu8jfH2c78MceDfXqdGFn58dpuU916xIl8Lpnv6J718tVNhWkmDFYeRPVpgy/hRFcGLF2ufncww3aJ+ogcX6I+ZPnrIsHlNdWleF5NvPV+pgJzc7AwcP+nMyB+V5EBN63owWcU954mjt1o5Hrutge6wMr/pA4I01t8V3H1RZ5zfoTEu6JSHu95e6rmdClOMhR6/Y0gnnLQrBRYSqnqQpdSIXO8benHVLDtNDqBP24aOirEGxdx7BmHKr/uHLYYr5t4zCM9LrjB08Fhpxd+J4f1z1u6Vdhwno2w/I/GLujZDw1rZVXLkW+E1wCbZZGdmWJpKErGzEQvEkpCNG3l6te/uvqgzfj+i+vYguMhhMRbVUEeDSeT+Ud3wqwEdcHH3aFT3iKdpvdxqXi1mZDgY3cjm+vPz0aRO1Ux+bRvXQuuG5tNFL96TX23YX/H3JWdWtfe7USjxWF0mI11dmXLBO03r5WLJA8PQpXldR+3E102NAmbn1L1lrA8nXleq8FoRmHPPIIy+sINUefw+83Zl4lQ1Can5+vdJ/VrZGHNxct7oKk2spny7G0DwozgjpWcVhCV7OtrYJAjlX9eehdpezS4WuBmQW7201FQBycFM4VW6/MrHazUsmbx+U1+UlJ4K/LgpqcjThSt6t0LDWjkY2CVY3+Pm9XJRfORElW0lpWWe2+veqh5W7KwWDAwg5haaiFlk7HCb+opeXydOX0SzfzdQSg3OKb/ujx0HjvluJ1k0r5eLosPHHe1LMFbaqnqt2Ill1xe8zhb9kpKmFVl0alq9rJfb9LmyiV+cE4iFNndqZp2kSzYvGSSWssxdYaMH6+WaLzjmZGU4Ctpxglfd4XRE3qROjuGLp+L4DrVX91b1MUJhs6BRUrjEUzM71coZi6KaPKKkhCK/2kFEmRcS3641szO9e0xIYskDw0I9PhDzQvnDJd3w3i2VhZ6N0ggM0xeObJ7ZFTsPmX4nRPUQ/aBGPboycjqSt1sUTfTF/u2wcELEg6BifSHhmpAikZ1m2L1sVbWRp4Qi75AXTDQcu6FVclP/dlUKAhjZhm/s76zElVnWQTNkmC90HN1SSfd9QEL4vdNFbdVwcjkS9eHndw+oEn2rpjp0/oJpWT8XU+9Qx7ssJRR5UKg6ilAD76YVo1wqunK/sX++d5ESaOvRI8TOLuq0FN4vLmiPhfcN9SSDioz/YQ/HrpmnNa6FUT1bVKQzVnVM5PQRb5dXG2e0VOdFnFKLnbIVrarTKB2VXizLth+sts2pfEYeL3+6vDua1q2BphZpgd3wn9HnGrr2ORHRTldNu+MCfLqyyNZ7iIhMizBHCf16NK1nfi5mz86TPz4Tr83bij5tGxp+z3iDR+QWqKQow+by3q3Qs3V93HyBsbnEbY71eMoNNHkGkWMl7qRohV3NUCNd7bQ0XMemdXDbILmZ9FSmcu2Aqm1L5Omf9ELnZnWQpdnemtbLxe+Gd1EiNbMRTp951SI8U2pELsuGfVmvWI3KxIWPhy5NeilSZWlUOwcf3W5uEzQKdXd6P4wSMrmZDTmpLOOna6RzjhUjKlNgmF8X/Zb+4MyW+MGZ/mu+BoXqs3AzeESewLcPDcPfrjwTQOW0+5aBHbBg3BD85OyYd0zh/eHaOW8bJDcaLlk4Hd1c1K26q12L+vITC3klGWq8o4Fra1Rw4s0TTXXovM+qpvBTSpHLMIXUy81Glua3rI88WtbPrVLCzU29v2Sgl6lSrTOZYXe1ru7bBiv/OLzKNjeeKX5m6RkUM8388VLzSkGyb/ec3w3E5FvPl9togFSMyMncwNAl4NgGr0Qlg6gdKWVakU2F6baaL2zwskQZ22g5Itc1FBNa8P5LIqx+ZIThd0a2YBnk2+TzUB39uli9QPu2s16TUIUGNb25sqpmI0+pEblszKaQ9XKz0T8JyeGjTJgLw0Yv1p8UtPHdbsV7nJ+SKpS7jZSKEMmocB8E3EUtMS5QkZFBeOPmc8IQCIB6owE73ErbuZk7+7GRWaRD06qjXj+zqGhd7eSjq7r450Lf9tHt/fDo5d0Dl8krieZJp2pcNbMmm1Ys0Is4K+oppfyKkllnn/Lr/sjKJNTIyjS8the6DME3qncqc2DFXisJWAzIe7ZugJ6tGwQpDQNW5JYM7toUbxduV65jRl2vBBGa3j5PgldI6loQfFHhXx/1jojqs9thBh5UTn4XNlIUORGNAPB3AJkAXhRCjJfRbtgMP6M51j16sWkI9sTrC9AyCfX3UoUwO/s57eUttqWAvpKK7gRAhJR6y6mQz9wrvhU5EWUCeA7ARQB2AFhIRB8JIVb5bdsp9bTUoVb1F71ilUcjGVXU3aC4ZcWzHfE6h2XRrJCpX1QbfYVNZXFz4NaBHbFs+0EMOb1pyFKlNzJG5H0BbBBCbAIAIvoPgMsABKbIf9SnNU6eKseVZ/n3VGDk43ZEK7PcWXYmYcG4ob7MADwir8rVfdti8baDOK1xbTSpUwMzfzswbJECo7PmH39lQeuQJamKDEXeCsD2uM87AATq0pGRQbjmHOtir0xysRp7h+nRlZWR4TntrWqeCapwZUEbXCnBvTOKNKuXq6QJJjD3QyIaTUSFRFRYXFwc1GFTEh4gBguPyBnVkaHIdwKIfz231rZVQQgxQQhRIIQoyMsLp65dqqFy8MKKPw5Hcy2twY4DJdLbz8601q4yPSrYRp66pMpLWoYiXwigExG1I6IcAFcB+EhCu0yEqVMjC+3z6mD27wZi7r2Dpbe/+mHjsPpEUuVBZRgrfNvIhRBlRHQ7gE8Rcz+cKIRY6VsyJiVoJymvSI2sDJwoK6/4nCWpILMVCk94GEmkyj2W8jQIIaYJIToLIToIIf4ko03GHBVHmcl+IKbfdaGr/WVcor/8sAea1q1RURSBST1UfJa8wJGdESZVRhNO8Dqy93ON0tk7I11oXl9OKcGw4aRZEUT1xbd+HRuHLULKjLSY5HJBx5jjRauIR2jziDyCXNW3DZbtOIhbFawTmZOVgX//vCBsMSpgX3DGCRkRH9KyIo8gdXOz8exP+4QthiGnNaqFWjnG3WrMxaeje8vkJ8wC1J+1MGqQKi96VuRMYPxqQDRqjTLpR9Rf/BGfUDCqoZptOp0WhBnvRH1kzoqckYJqD0Km5jLYOSJFgJlwiPpIXIdNK0xkGNq1Kb7csM/RvjlZGZh08zno1qJekqViooxqAxCvsCJnIsOL153tav9+XCCbcUjUR+asyBmp+HkgZv12AA6UlEqUhmHSA1bkjDJIqbPJMC6oUyOmAgtOaxiyJP5gRc5IQY+M+9XA9iFLwjDOaVynBj6960Kc1lheVaowYEXOSKFubraSlVMYxo4uzaPv2cTuhwzDMBGHFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYfdDJrL8/apeaNMo2v6/DCMDVuRMZLmsV6uwRWAYJfBlWiGix4loDRF9S0TvE1EDSXIxDMMwDvFrI58BoLsQoieAdQDG+heJYRiGcYMvRS6E+EwIUaZ9nA+gtX+RGIZhGDfI9Fq5EcAnZl8S0WgiKiSiwuLiYomHZRiGSW9sFzuJ6HMAzQ2+uk8I8aG2z30AygBMMmtHCDEBwAQAKCgoSI2yHAzDMApgq8iFEEOtviei6wFcAmCIEFzqlmEYJmh8uR8S0QgA9wIYIIQokSMSwzAM4wa/NvJnAdQFMIOIlhLRCxJkYhiGYVxAYVhDiKgYwFaPP28CwFkpdXXhcwifqMsP8DmoQNDynyaEyEvcGIoi9wMRFQohCsKWww98DuETdfkBPgcVUEV+TprFMAwTcViRMwzDRJwoKvIJYQsgAT6H8Im6/ACfgwooIX/kbOQMwzBMVaI4ImcYhmHiYEXOMAwTcSKlyIloBBGtJaINRDQmbHmMIKI2RDSbiFYR0UoiulPb3oiIZhDReu3/htp2IqJntHP6loj6hHsGlRBRJhEtIaIp2ud2RLRAk/VtIsrRttfQPm/Qvs8PVXANImpARO9qOfNXE9F5UboPRPQbrQ+tIKK3iChX9XtARBOJaC8RrYjb5vqaE9F12v7rieg6Bc7BtPYCEY3VzmEtEQ2P2x6cvhJCROIfgEwAGwG0B5ADYBmAbmHLZSBnCwB9tL/rIpanvRuAxwCM0baPAfBX7e+RiGWNJADnAlgQ9jnEncvdAN4EMEX7/F8AV2l/vwDgFu3vWwG8oP19FYC3w5Zdk+VVADdrf+cAaBCV+wCgFYDNAGrGXfvrVb8HAC4E0AfAirhtrq45gEYANmn/N9T+bhjyOQwDkKX9/de4c+im6aIaANppOiozaH0VWkf1cHHPA/Bp3OexAMaGLZcDuT8EcBGAtQBaaNtaAFir/f0vAFfH7V+xX8hytwYwE8BgAFO0h21fXGeuuB8APgVwnvZ3lrYfhSx/fU0RUsL2SNwHTZFv15RZlnYPhkfhHgDIT1CCrq45gKsB/Ctue5X9wjiHhO+uADBJ+7uKHtLvQ9D6KkqmFb1j6+zQtimLNr3tDWABgGZCiN3aV0UAmml/q3peTyOWEK1c+9wYwEFRWUgkXs6Kc9C+P6TtHybtABQDeFkzD71IRLURkfsghNgJ4AkA2wDsRuyaLkK07oGO22uu1L0wIL72ghLnECVFHimIqA6A9wDcJYQ4HP+diL2ilfX7JKJLAOwVQiwKWxYfZCE2Pf6nEKI3gKOITesrUPk+aHbkyxB7IbUEUBvAiFCFkoDK19wJTmovhEGUFPlOAG3iPrfWtikHEWUjpsQnCSEma5v3EFEL7fsWAPZq21U8r34ALiWiLQD+g5h55e8AGhCRnvo4Xs6Kc9C+rw9gf5ACG7ADwA4hxALt87uIKfao3IehADYLIYqFECcBTEbsvkTpHui4veaq3QsAVWovXKO9kABFziFKinwhgE7aqn0OYgs6H4UsUzWIiAC8BGC1EOLJuK8+AqCvvl+HmO1c3/5zbQX/XACH4qahoSCEGCuEaC2EyEfsOs8SQlwDYDaAH2m7JZ6Dfm4/0vYPddQlhCgCsJ2IumibhgBYhejch20AziWiWlqf0uWPzD2Iw+01/xTAMCJqqM1MhmnbQoMqay9cKqrWXvgIwFWa11A7AJ0AfIOg9VWQCwgSFiBGIuYFshGxUnOhy2QgY3/Epo7fAliq/RuJmL1yJoD1AD4H0EjbnwA8p53TcgAFYZ9DwvkMRKXXSnutk24A8A6AGtr2XO3zBu379mHLrcnVC0Chdi8+QMwDIjL3AcAfAawBsALA64h5Rih9DwC8hZhN/yRis6KbvFxzxOzQG7R/NyhwDhsQs3nrz/QLcfvfp53DWgAXx20PTF9xiD7DMEzEiZJphWEYhjGAFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYUXOMAwTcf4f3Jnkxmg4ENcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(1)\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When simulating Poisson-distributed light curves, a `smooth_counts` attribute is added to the light curve, containing the original smooth light curve, for debugging purposes." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOSklEQVR4nO2dd5zUxPvHP7Ptjt5BinKogKICIgiKBUURxfqzARZEsWL9qogVBQTEgqioIBakKXbkpEsRld57Pekd7oC72zq/PzbZzWbTN9lN9ub9evFiL5lkJpPJk8kzTyGUUjAYDAbDebgy3QAGg8FgGIMJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUDzprKxmzZo0Ly8vnVUyGAyG41m2bNlhSmkt8fa0CvC8vDwsXbo0nVUyGAyG4yGE/Ce1nalQGAwGw6EwAc5gMBgOhQlwBoPBcChMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh8IEOIPBKJMEwxFMWroLkYhzQ2qn1ZGHwWAw7MIXf23H0GmbAArc1eb0TDfHEGwGzmAwyiRHTwYAAIUlwQy3xDhMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh6IqwAkhpxNC5hBC1hNC1hFCnuG2VyeEzCSEbOH+r2Z9cxkMBsNcKJxrRqhlBh4C8DyltBmAdgB6E0KaAegLYDaltDGA2dzfDAaD4QgIyXQLUkdVgFNK91FKl3O/TwDYAKA+gFsAjOGKjQFwq0VtZDAYDIYEunTghJA8ABcCWASgDqV0H7drP4A65jaNwXAOPyzdhby++dhfWJrppjDKEJoFOCGkIoCfADxLKS0S7qOUUkBakUQIeYQQspQQsvTQoUMpNZbBsCs/Ld8NANh++GSGW8IoS2gS4IQQL6LCezyl9Gdu8wFCSF1uf10AB6WOpZSOopS2ppS2rlUrKScng8FgMAyixQqFAPgSwAZK6QeCXZMB9OB+9wDwm/nNYzAYDIYcWoJZtQdwH4A1hJCV3LZXAAwBMIkQ8hCA/wDcZUkLGQwGgyGJqgCnlC4AIGdw09Hc5jAYDAZDK8wTk8FgMBwKE+AMhglQ5zrzMRwME+AMhokQWW0jg2E+TIBnEZNX7cWcjZLWnAwGIwthKdWyiKcnrgAAFAzpkuGWMBjOwcnqLzYDZzBMxMmR7coaJAuiWTEBzmCYQBbIAoYDYQKcwWAwHAoT4AyGCThZj1pWoVlw05gAZzBMhJkROg8nq7+YAGcwGGUaJ0/EmQBnMBhlEmaFkkZ2HD4luf3YqQCOFwfS3Brnc/RUABv2FaE0GLa8rl1HixEKRyyvh8EoazhCgE9ftx9XvTcX09buS9p34YCZaNl/ZgZa5WxaDZiJ64f/hUfHLrO0noMnSnH50DkYmL/B0noYjLKIIwT4hn3RDG7r953IcEuyj3mbrU1zd7w4CAD4e+thS+thMMoijhDgDAaDwUjGEQLcyavEDAbD3jhZvDhCgPM4f82YwWDYhWyQJ44S4AwGg8GIwwQ4g8FgOBRHCHAn66gYDIY9yQa54ggBzpMFjlNlDrYAzbA7ThYrjhLgDG3k9c3HKX8o081IINtfvuw95VycfO+cIcDZNE43K3cdz3QTyiTZ/qLKJrLhVjlDgDMYDAYjCWcIcDatcTzsI4rBMB9nCHD29DuWsvbuZUOVkU6cIcA5WLYThl1hI5ORCRwlwBnaYTNBBiP7YQKcYSll5UVSRi4zK3HyGHWEAHdw/zI4yoouvKxcZ1aQBffKEQL8GJcyzU4Px9o9hdh5pDjt9W4/dBIb9hVh2tr9iETkX227jmlvW3HAeqefzQdOYu/xEqzZXYhdR9Pfb05l55FirN1TmOlmZIxwhGL6uv2gFkyT1+8tMv2c6cYRAnzcwp0AojfTLtz48QJc8e6ctNd79fvzcP3wv/DYuGWYuGSnbLmXf16j+Zx9f9JeNhUuHfInbvpkAS4fmv5+cypXvDsHN368INPNyBij/9qOR8cuQ/6a5HSKqfLXFudniXKEAGdIc6DIb8p5Co5IJ4xmMDLN3uMlAIDDJ8wZ61LY6cteL0yAMxgM22Kfb2574igBzm4mg1E2IRZOk5kVCsPROPgL0j44WAgwnIujBDgTNAxG2cLJs+N04CwBziR4Imx02wc2Ni2FPfvSqApwQshXhJCDhJC1gm1vEkL2EEJWcv9usLaZUZi8sgj2dDAYjkTLDPwbAJ0ltg+jlLbk/v1hbrMYDAaDoYaqAKeUzgdwNA1tUUVpolhYHNR8ni8X7EBe33wEQhETWmUe3UYtRKdh8yT3LSk4iry++bLHjl34n1XNSjufz9uGvL75uh23flu5B3l983HsVMCilqWH3uOXo/XAWZluhmkMn7VFcexawei/tiOvbz6C4cRnvN2g2cjrm48+P66KbXtn2sa0ts1MUtGBP0kIWc2pWKrJFSKEPEIIWUoIWXro0KEUqlNWoezU4Z798Z9bAMB2eSP/3X4Emw+clNw3eeXe5I2CN9rnc7cZrtduCpRhMzcDQNLDp8Y3/xQAALYfdrZjUv6afTh80jrHlXQzbNZmw8dSg+Y9w2dFn/GSYDhh+/6iUgDApKW7DbfJThgV4J8BOAtASwD7ALwvV5BSOopS2ppS2rpWrVoGq2MwbA5bn7EUo5OMbF83MyTAKaUHKKVhSmkEwBcALja3WdKwtbayhfGHL3NPLRuiNoG/EUyAJ0MIqSv48zYAa+XKmkm2v011I+iQVKK12e3FaLQ9NrsMhgkYHdZlZSx41AoQQiYC6ACgJiFkN4B+ADoQQloi+n4rAPCodU00H/YiSB9GdZipHsvIMgy+1bN9DKkKcEppN4nNX1rQlpQwcqPsNvNUwkltTZVUc59m8gWd3eLCOfCxU7J9suYoT0yGNWTLu8HKgEfqlWeuakYyZWXC4ygBnuUv04xhZb+mMpvO9tkTw3qyfQg5SoB/NHsLvv57h+7jpqzei1W7jgMAIhGKwhLtTj9ClhQcxfR1+xO2fbVgBz6du1XSeaSwOIgRc7bKpj77csEO7C8sla1v6pp9WL7zmHyDuGlGIBTBXonzfDhrM35buQfT1u7H0gLtvljFgRD6/LgKXy1I7uutB09g0pJdqudYuP0IZm84oLlOAJi3+RAWbDmc8uzJ6oe2NBjGkKkb8cGMTThRGsRHs7cgpGCzXliSOA6mrd2PZf+Z4xu3/dBJTFgkn5nJrhwsKsW5r09DqchOW4zeexkKR3DF0Dk4rsOxz8mo6sDtxlu/r8eNzeuhVqUczcc8OWEFAKBgSBfM2XTQcN13fv5v7Dw8/aesBwCs2nUcI+9rnVC+3+S1+HXlXjSrVxlXNa2dsG/X0WIMmLIev67Yg9+fukyyvsfHL0+qLwFuijpxsfQD/CHnzMAjex4Rw2dtiTk63Nm6ASrlemP7Og2bjwgF7mpzuuI5uo5aCACY/uwVmuoEgB5fLQYAlPe5Aeh/eNP11fzZ3G34fF7UcWrikl04JMgWI9WG/r+vx0/Ld6NpnUq4plkdPDZuGQDt90OJmz/5Gyf9IXRve0bK50onFw+aDQDoNWYpxvVqq1pe6739ecWeBKc+K3Jp2glHzcB5UrkpVrnPn/InzyROctuCEnWGuNnYidLUZwpqsxg1xA9HcSB+PnFPpyMtqd3Vl0LvvuPF6m77vMevXs9SLZy0mTexXswY/0L8omctu8W3QwU4I31k1KLDYOXpbHOWT/AyDutfZZgAzzDZPj6z3Q6XkRpaR0dZsSrRS5kT4HYZCDZpBgAV8zsHyt903mMHdk9WI7712T6DL3MC3C7YdYEuG0ivCiXLJQTD1jhTgEtIMyPPUaoef2WBTKhAjDrk2OXrimEfsl2F50wB7jCkhpCdZI1SW5zolp7OWbGWmrJdiKSC+q1Kse+yvOsdLcCVEjIUlgRREghLmHnJi6sjKQbRLwmEccofSgrG7w9FYuZSgVAEhcVBHBE5/igF8I9EqCnme4XFQUlTthOlIfhDcdO4I6fU+6E4YK75mvB8Rl9uer6oTvpDkuaX/lAYRSqmbYdPaB8n/lAYJ0qj1yb1hXDsVACHTvh1v3SckvBB6MQm5dCm9nI7cjL6nBw9mWyuefRUQNZJjoe/z2plC7gkIOEIxf7CUt3mjceLA4rOXFbhaAF+Xr/psvtavDUD574xDS37zxTtEYRgFfzOX70PFw2chSU6PBbFtBs8G+f1m47WA2dh5vq4F+LTE1fggjdnAAAe+HoxWvSfgds/+ye2f/q6/YoptIbN2mxKyrQW/WfgyQnLk7ZvOnAC945eBABYv7cIf6yJe5vKDfkWb81IuT1Cmr0Rv5cn0mDbfH6/6bhi6Jyk7d2/WITmbypf288r9miup/sXi/DPtiOS+wqLg7hwwEy0eXsWRs7frvmcq3cfR+uBs/DTMvtnlRkxZ2vs97szNuk6dvuhk5jBPUfvz9yMRdvj/Xj0VACtBsxUPefV78/Def2mo9WAmYqZgTq8NxdHTvoxZOoGtBs8O/a8aiEcoWjZfyZe+mmN5mPMwtECXEiq+s/FO6KDY92eQsPnELroy7nASz3My/5TcJcHEl4GqTJ9nfS5lhRE27Dl4AlN5wmGtc0YMxELRethByVm0mr3Qi9K5zteEp9VztXhIbxxf/Qe/btd+sVgJ2ZtjF+XOAyFGv+J0iSu21sU+32U+0qcITqnlBzgc6uqPUfHigOYulZfGwEgFInOvH9fJZH20GIcKcClhAJbxLSGVPXJadX/ZuB2MiMUC1HoW6v63Wn305ECPDWUn/J03z+nDZi0wvpGkbI2diSNAcq46VEZFODSmD0Q0jGsytjzqxm7Cjaz2uVUkWX3dtt13CjBBLgIs26intMwZxBzsIOAKOszQkZ6KXMCPBufL/6aXIjgPKI/XroSmXy1ZJv9tHjsCd/b2foOF16y3peb+P6ziU4yZU6AJ2ChME/ne4If173dvyI/51U0J9vSWDsjUzjtBSclgM22NMqEYUIm3ytZI8CdNZTNQTxUz3cVAADqEnOyvQCZDiebubqNko5ZYjapaVLtLjN7giLF+5eB2+JIAT5k6kb0+22t7P781fu0nUhwrxbviAq9D0XG/hMW7cQXIicLqZvM24LyfDp3G2aJUor1GrNEognSA0aYok3KXllIss258iDsNWap5PZ/th6W3D5q/jZcMng2flgqnUqt4PApPDp2KUbM2YpxC/9L8HgLy3i/vfJL1Olh8NQNmKZge0spRZ8fV2FJwVHM3nAAA7gMSEIG/bHBsK18rzFLsed4SdL2vL75+H3VXjz3/cqE6/l07taksnr4V+AHsFjFaaz3+ESnq4MnSvHQN0tMS4KQv3of3puuz7kmXfyyYjeGz07s64H5G3DJ4NnI65uPF39YBQAoKg0ir29+LEOSErz9fLp4+ec1+Geb9DNlFo5LqQYAPy1P9kATvvx6S3gbqrF+X9RJoKg00QuQFzQPX3FmbFtIQihtOXBStY5ZG6SdNaRe+mP+LYj9PiqRb1MI75xDNU4BxC8Wnu6jF2F415aJbQPFoD82AgBe/HG15HH9Jq/DvM2HYu3ockHd2L5dImcMngmLdmLQbRdg5Dx5D0RCgEA4gklLd+PXFXsR4FyVX7+xWUK5UfO3Y9T87WjbqHqszVqZteEAKuV6MOzulkn7npoYTcX38vXnoHblXADA0GmpCbxuXyyM/e4j0588+WsSJyIj/tyK2RsPxl/oCTp0qntmzj8nL1zXVNdxejD6sfDc96skt+/jcr+u2h11uDtQFO2LIVM34rErz7JVPtWJi3di4uKdpqTOk8ORM/BsIiVPRRPbYRWpfJHqPTaLNAuKlJXrNIIT1W6pULYFuIkPguHIeaCSD6RtVHFl7IFIlWzST5uBcBw7oW+c9gLIGgGuOTWTpa1giEnlmTX8LNn2IWSjz2oy+o7IwLjLGgHOsAbbykIJjKqjVC0PmNxl2BQmwG2A2d6fJM1i1wFfxlmFkz7zhWND0g48jW3RQkq29cyMkMFjZBh5ELXSuM29wLx2GInymPDQplK3sYPtJhTMwgk6ZL2YbTefSg856cXIU+YEuPAhyLbnoRaJ2oN3ci/TVP4612LUgrnxr4HMPQjZdj/VEHazE4SPE15ATuhHIVkjwA8Wcfahu44rlpNzLNHDX1sOJW1Ts9WWY9fRZCcSQNtMQmyP3tKlPauLD0GM9H2I73wDNR8jZuvBE9h8wDrniEU74o4uAYl0VUWlQYwV2MvHjpNJdHC8OICx/xZItnnX0WJZm/XVu/Ql+di0/wQOFJXGnMPiyI89fs9KmfG7v7A05huw65h0O42y+cAJLNx+BAe4ZwiIOpJt2FekcJT5lATCsolQtPDN3zsEqQopvNCX2emkKBPUnI0HEYlQBMMRiXupzEFBX67ZbTxJjBqOdOSR4pGxy7BpYGfcMuJv2TK/rtiT4CBj9G374DfSnoxGCRvUDX42dxte6nyOoTp5PXl9YtxT7JoP5gMAOjStZfgcSjwxfjkWvdJRdv+NHy3AToHQ5bMdffTnVnQ8tw5anF41oXybt2fJZhK6XCK9Gk+vb5di5RvXomp5n6Z2X/fhfE3lxBwvDuBWmfHbbvBsQTlzPDF5Og2Lt5d3Ornx4wXYc7zEUicUMS/8sAr5a/Zh8avy91yJN3+Pe+n29UzEY54paFI6BgF4k8q+6PkOe2gtTAjH63p07DK4BDOnnt8sQb+bmmF/USlGztuO33q3TxpTcgjv102fLMCOwTdY8gWSNQIcUJ9d7zh8ClsPqntMpptMfrapDalMB0wqCSQnHubZKTNjBqQTM8sJby1XWBo0I2Gtcm/rrcPKuCtS4QWMoEdkreHSGSrdc610d0cFaA6CkgK8t2cyACQI8MMn/ahdKSehXMHhU7FxpiXZN48ZSci1kDUqFECbILS/Fo4hROrrhMHQil6LLKXSdhyKWSXA1SDEnouYku1I02hRqyVlKxT9h4vqT0N0PwPH1MIxfO/rj+pIr57Yydj9a08KCu2Lr5kQJ2VLgFvUxR6E4FTjtXQNurPIHjzt/ln3cRJrl7bgIc80tHVtxF3uuaacj0D/hILK/LYr2r2lzRuVWgO8xcpblEjZqnlI2RLgxPxZdyUUY2vu/ejt/s3cE9sEI+NOarB+7xuA/3l/RCXos6CIGLUFT5NEM2s4OUEAl1Vs8qEuiSMEuA9B1IB1pjipUJNE23WHe57hc9hRt2Y2PhiznDDD7FMNQy8p01uR/dhZEGrBjvdcVYATQr4ihBwkhKwVbKtOCJlJCNnC/V/NykaO8A7HstzHVcupdbB4ADl9QKUDLTpoK/vR6MstXesb4kUyu6yrOAWrJy9mhJXQek8VF0BTboU0Wmbg3wDoLNrWF8BsSmljALO5vy3jWrf+BA1yWPV86dW12YUcEsQFRLsDkF5SfUCNqlDsiJogcOYIsitGe1PB2cqGY1FVgFNK5wMQuyHdAmAM93sMgFvNbZY1vD9zM44JnCB+WLobeX3z8efGxAw1LfvPSEqjltc3X/KcZrzhxQMjr28+PvoztdRdqnUKBvhA71ex3898tzKh3GXvyDu48Ig92IRek0rZka5+f67queUcs64f/pficQ9+sxSDp25A64GzkNc3PyEtmpjfVu5Vbcekpbtw9it/qJYzyuIdR3HxoNnqBQWUBhPtpdu8PSsh5dvzk1bh7pH/mtI+I3QaNg/Ldx6P/S309JTCGvmo76SHTyZ6VH/773+ymbQAYMCU9egscNxavOOorKywAqM68DqUUj7f034AdeQKEkIeIYQsJYQsPXQo2QU9k/Tn8it+Njcxn97x4iDe/mODrnPZbwauPHCFL55Un5sdh08l/H3kpLawAtsPnVIvJIMWN++R87bj8Mmo80Uwkpo5ywczNyeELojf78TeS+ckjU8nFq2X4tAJf0LKt5+W704IR5BuNovSDIrTFQLSpoNWq6FcMM+06csFO1BwJLowTwB8888O086thZQXMWl0+ig7bCmloyilrSmlrWvVssblOlUy/WVkRvUVkOg5dx4p0HG0uU9MWdAD2+9jOnsw83mUGopXuVaYV4FGrFK/GBXgBwghdQGA+1/+G8NUKJqTbbjXPVN6bwYksTkqlNSOv8y1ButyH0rYlqPD6iPVrwc97U93rHKr0dNzmZ4olEWkxpsHxlz17Xj7jArwyQB6cL97AEiLETQBxeSc1zHQ+7Wp57XjjdFDJ1dycK2PfJ+krX61hcY6OIpcGIvWyCh7mPEFp5TcxEyjiEyjxYxwIoB/ATQlhOwmhDwEYAiAawkhWwBcw/1tOdn6ZZ7qgJUSnw0EUQbLoRRnkAMSpeSPTwWX4IJyEMCi3CfhI2GurszcRau8cJPqSePlOX3iYRVuhOHm9NxSt+MOd3zRsQXZigvJFk3n1RZrKb3jWzUaIaW0m8wuYzEfUyDbPr95Uvq0Dpagh0dapcTzrW8I2rg2I690gnT9qapQRH8LhdgZJFG7li33MJdTUem5nrKwNmAH1uf0RA6JLpiq3Z/fct4AANlnQy9y8VwyaQduG9RuRjpFQ3vXGtzm+ivWplSEYEpBfErUA+C3cW1Wqd86HXi2CGwxD3mmWnp+H4IY5PkCU319URfSCSqyDTPWCBqQQzHhDej5atdSuf3GsqMEuMuiDjSy+DneNxjDfJ/Fz2FTBQ+RMZkSCtbWrs140G1cIIn7T6kn7NJPUdd++z2QPHe756C7Zw7Ode3EI54pquXteyXpRWx9pXUCUQXGTVpjdZH0q1AcJcClbsaj7t/xkDvqYPHlX8ZsMIXOBkLGL/pPcntNHXFZKqEYBbndcZPrH9ky4xbulN0XFcDyg7DdoFmK9fdwz4j9bkj240wi7bTyhnes4nl43AijtiiPpti+V0lVYMaMfNLSXbqPmbI6ft2VUIzNuT3wtPuXlNtShSQ++C/9uFq27P++X6n5vD4N6cDU0geKCYQi+GzuNnw+b5tkKjopZq4/gL+3HsZvK/doKu8PhTHmnwIUB6Tbv3F/UcILf/OBkzh4IurgIzVuzifbUZDbXXENJ6H+JK2wtvH2lEd9LNjRishRAlzK/Odl70S87h0HABg+W9tihFZe/WVtwt/VUIT2rjUJgZmU3rePuycj3/cyAGCI9wvd9VfFCezIvRfDvSNky1Qm8tH9XvGMRz0S//yel/M//Jnzgu52COnn+RaLc3ujssKMxeqB3kdBSMrxv0mrYr+rkWhOzNvdxlKfCRGba24/LN8vp7hMM26EdTmTmPXV8tncbXhn2kYMmboRr/+2TtMxD3+7FPeMXoRnvluJoIbYviPmbEO/yetwuYwHb+cP/8LfWxNVQhe/HfVAlRo3d3JB4q5yrdTUXvET+aiGrxcA6GWCSkwp7hoLJwtgTs7zsvt6uKcDAMqj1JJM6wAwzjcY432D4SbxF0lcB57MS97vcIYr6n1agfjRgGj3RL3FtQArcx+N/nb/Ax+CuNW1IKmmK12rJI6O8ojHfJfea7mM9xWg7BZdVjDyRbEt9z5sz71XsYwVqqbCEnNzaUpxvDhqLnpEIcm33OxcCYUIJbjEtS5WQtxvYsHczzMG2YSjBHhtclx2Hx9Y/1ff61iS29uS+puS6Ke7cIjwXwVaHjc92VsucyXO/jfn9sCHvk9xtciLzOiDblSVUZcc5epVOLegSWr1DPR8iSsUXkJA1BRxuq8P2pCNWpupSKpqnA6Ce2AXnX46sKMK4TrXEkz0vY37OVWhWhN7eqYbrsuGl+8sAa4E/xg1cWnT1RmrI3m2/UfOKwCAxly9FVGMtmSD5OKhnoddruzD7j9QkNsdBbndUQXqCZrlBl17l7ZPaGNov857PbPxre8d1EQh3vV8jhwJh58mZDeaunbjDe+3ZjbSsPC9xBXPft7ctU2hpHFowm9zXhJONGNUazKvImxE9gMAIjYVaVali7Pn1WpEKMCkHnyz0TL+h3tH4PucAdih8olslEvcceFxOjmoOwY6z2jf+ym1QyhUquAkHndPBi92jAiKSb63cKdnPm50LdRUp11o6TIeivcj78d4zvODKe2w4+zYTMT33ocgnnD/KnDYkVdl8ng1LAwrtsGGfexoAb4q95HY74qkRKGkubgVFqCakN2y+yiAJmQX6iHqJUkQgVsmLoMWYRUto1xOys1ejjvdczWXFbbvbe9XeMn7HZ5wT0ZLohwGd5Kvv+TL9kxXdAZVjviT9snZ2ldACW5zSYeVbUm24hbXAuWLMIhZL5Kb3f/iGRnrhw4qaiUj2O/1p04F7rlu60pUn/X1TEQf7yS85h0PALjRHX3xS5kaE0SQg4CuZ8Ewae5kRwtwIXUk9OOn4QhW5/TC2QpCVQ8uEh0c97mlTfeucy3G6S7lhcoZOS/hn9ynAQCjvMOwLfc+yXK3uKXjYOslz6XN/AoA3vWO0lxW+JhU5CIh9vF+j19z3kgYw+LxfI5rFwZ5v5Q9r5SlkdzsapD3SwzzfYbmJFmN8WvOGxju+1ThCszh7/B5SWaVQs4ie3CXWz2mupgr3XFLGxtO/GQxe5Z6uzv6EuYFNE8HkVVKTVKEid6BeMEzKekceeQANuU+gAdVLE2ak20op7A4b5UaJBUcLMDVO/MN71hUJsX4zDscBbndYzPfVJGzSR3p+1DxOPHMjbfokCKXaLMYMDIbNCcDT7xe8Z1QuzMtOIErtU5QnRShn2cMPFD3pjuNW1AtLzFrVyLVRUy+XgBo716HxRKL5le6VmFJzuOYnfMihhowIRUifKmVRykmegeiEdmncISzkVPBtXetUTzuEvd6tJBQaT3BJRy/yKVsZjw553V85I0GgSvI7Y43POatuTAzQhFavDJvcC8GEF9g7O/9Gk3ILgzyjDacZBewVzQzI+MilQTMWmpWM1c727UXFVCCCyXULU97fkVPz3S8Iyn0Ep9s/uVlVCAbfaZudcs7ZfG84hmPWkSrw5dySx7wzEBtHENBbne86Pkel7jXo4/nu4QypaG4kBdnHwqFIwiGIwmZkpQQZ/qJt5IiEIroTDRNkQu/aEsy/lA41j45YTfeN1hwDu0Tlzs92u39hS+ABz3TEtsYjPcf36dCAqGIbOYnf8i8JBJCHCvApR5aJecSALjGvQIzcl5Cd8+fuMmViVRTZivIjJ1PLfhVHPkHVanm//s0KuC6uBaivcgckqeX+w9FZ5bb3XHdtpwOnNLU+rORDvWSXvS8VOqLvgzF6gEg3h9yZnDN34x73D71XaKp6ZXvzkXjV6fi23+lPYuFvD9jE855fZrs/iavTcXj4+S/HMX0dE/DxtyeCWqmBVuSv4SbvjYNh05EBf17MzYl7U8XSnft+R/i6xI3frwAjV9NVslMXbtf8tgWb83AnuPmr9NllQCvTrTbWduRh91TsCTnMc3l83NeQT+NLvB68CKEgtzu2JDTU7aMFgE1wvdRzEtWDNURNUKLhQEQVW1psUZqTLSZmt7rnomLiDFhoufVIlYZvC2xRvCSN3HGfYFLPmxE/upE9YoewfGxQi5WfmY8Y732F9/13FdwHtmPPLIPNVCIOZuU879oyVGaaTbuP6H7mP8UvHSN4lgBrqZCqQrlDpY6+jLXGjQg1iUXUhNAr3onoBYpSnAUyQR8QKByRF4YJubU1D8TDsNlWqTCx92TUR6lmJ/zHD7wqi9c3uPWljx4oPdr/JTzlqE26bk2scpAy7HlHeIJG1dzAXNznse/OU+act5ZkVamnEeMlDGEWVihBnesAFcb5Lwbuh7G+QZjQc6zBltkHt/43s1o/cKePYfsjJk78kHDAGXhrq0OggtdyiaHPLIqFO7/K9xrcB+XZu8KlYUuq4nqe6nuxLnDvCNiZpz1iHoiYqeZBBLOgstHjKUzE3OAVjflPGqcRfagsgaHOS1YsZDpWAEuhdMGNc/1rkWZboIAivsFOvJpOX3xuHsy7nHPSlCHvCmIKXGWTIRDJSqSErzsnaipbDfPHK5l0ouYAGIp28Qv9jwJaw0rZkL3umeiLo5gY25P9HDPQI0kdZ5SNA+C29x/6zLjtCtiUzv+Hp1PjEUKFeNCBLnwy4ZJNgOhwJ6d82LM29qOOEKAb4o0SNomNcPRk6w0E159cnV+5huOOlCfdaWDa1zLExYQAaC5awcqiCwJ+MBcPgTR0KVf7dRKxaRLCJ8Cy4jgFbb7ctdq/J3zlGTC5xwE8L2vv2ETy4Her2PZh25wL0JAFNZU6YvRyFjMhEWykRkkv9DMO9zoQcrJbXvuvdiY2xPPeH7W3xiNjPR+mPB3A3IYZ2lcN1HCCjtyRwjwU8hN2iY15IWf+GbSimw2vJglZGrOy7L7FuWaoxtMFSnd6jlkp6QNbkOyH5tzexiqp51rg2oZM8MjeBHCWN8Q1CdH0FDC+uRcshNtXRvxe85rhl2uqxD5T+2bFEIEXKjjZcZTXaEuvXR2LcY837OyXsGpICWyCAFudS3A7z7lme01Lnlrl8oWel4Lw1XwNCPqFjxqWKFCUc2JaQekZtZSM3Cl2Nip8HPOm5ac1ynkuQ4gD4lCj4Cqus2nigfhhHm/nA5c3C5IlBLG/q6N47Hfl7jW4d/IeQmhfvt6JmJB5HyZVsk/haN8w2K/xYvsj3smY3LgUsnjrjHoV1AFJ1GIioaOFTLYOxrVyElUQjGOo5JsOSMzSLmviw9VvGTr4Cje9n6luz6rMCNIVpldxJSKPS1OlgsoxygRIx5YTYj+LC/ZiFbriTNd++Ej0jPV5zw/KLok62mL0JpISQcux5WuqEu6cBLgFSykTfS9DSCawoznIc9UfC2zkMyHLVaiKdmFGiTRCkqpX//PbSxmi96F0kwgddVaZqKDvF+ipo3Mgs0QvkZSN6rhiBm41OCXWljQY7p1sWsjfo1cFvv7a99QY43LMnTZL8v09zOeX1AJqX/iVkIJhinM1M53FcR+P+f9CUA0cYZQDVSLMwsza83jIqKu7qhKku19+b5SczYzi0sGazOV1MO2g+ptD4akFzGF7D5WAgmtaAJ2eznxM/C3fl+Hf7fpSTJN4UEYIYtErSNm4FoFs9TilBzdPX8abY4pKAVAyiS36ZgNKolEsRuyEe71zJTUlXdzz8YgzxeoJqMHftkzIfZbqyCoq2C614ZsjMVgzzFoPsmP4aYmfukRAL3c+diWc0/Svn2F2r+AtD5fPb9ZrFpm1oZEVZvRF6fdQgfzPfT13wW6nHi6u//E1tz7cRqOlF0Vitet7WaeQDnDdViV8V4OqQBIdkAYBU+NZqIM4GbTkEgLg8HeL9HdIx/hTyjYtYqBs13yppDvekfGftfSkdBaCD++rnSrhYnVNw5f846Hm6Q2dvkvBjVBri8GijZakc2S2+0mwLu7jU34eP+EM8hBS5TgjhDg6UBpBsaQRntMFWPc6E60j9diuQIkzrrlnID0IAzJa9R7lD9ObZ1Gz/nN8mTlOceV+tcB0ZnN4wPvZ5Lb7Ra4Vc/ERsi5rp0AouOvzJoRah2oLNGucxgQTP7s18LlLvUH6QKB04jZQs5NjOlm+ZeKmkpH3xqEMe52z0FBbndURKLVVgnNUTxOS08K5XcFlEhGZOzt/jX2Wy5evS/F7Dl24A9f3Gw4hwTLriem1ocw3WoQhnGucxvLjjLWN0S1jDCphtkf4uLMMFrhIx+aOQOX4iF3Pk6D8iLbw+58APG45kU0qno8SKvGyrzmGYv3NcSVEUMQjYX+g+9NTPG9EpuBCnnRm5x0QUx1oj9YlPVovzdehNDMFbcdr4XjZViAa7xys2dbDOu42JWekKH8mLhHJotSOqmAElMFuDDpRVOyEw3IIbzuHY+FuU8pHicMMOVCJOYU87I3vvjbyzM1lg0ndhwFnvP8iBtd/8qaxBECfOz9GG1cm1MK1yu0MLILeu6NMNQEAATLshXKDPcVmsqZJcDPIcmzBifxd/i8TDfBNvAxSc5zpe5JlypveMaaqkLhE5YAwPScvobig1QX2Nnf5Jb3FuV5xvMzPvF9LLvfZSSjtUPQc2UXi77UdtC6ZdcKZQ1pqqnc5W7p5AFyyLkO93SnbgLHsAdGVTVWUJWcVJ2B64nFInbdpwYeZz3u81ocUVIV38O8I/C8RF5Lp/Ck+xfM9j0vOZkss448VlEZp3AMlZO2C7tZzszJzjBVUiJKMTXSjdo6jZ6wDeKM9hGNGYqELcjVYddOKWIS+u+tR1DO50Z5nxvhCEWOx4WGNSrgYOFJVM41FtKiDo7iNpOSeVuBlufqBe8PAIBtkbqiPdakRHaEALdKIF3mWovfI8nxKXJJAAQR1MVRR8ZBsSomjFMZ7Xtfcf/tLu05E1NFLvyAGUQ0zn/5MBQEVPWL4EyyF93dszEwdC9O+EMxD8p7v0wOgdy97Rm42aWeL1SOL1TuU6aRkkM3u/5GM9d/GB76P/jhi22vKAq25QItu8GsrLIK/dj3CX4vTRbgt7r/QQnNwbTIxZbUazV2XACyM+/7Pk9LPRQkFhrXCpJjkEuTS6Iey0Qi8YQbYVQVxMMe7X0PZ7r2Y2z4WvxHT1M877KCY2huwMySDyhW1aTECVYh9Xr8yDcCAPCYZwrGhTrGtosz+xDQpNR5ZuAIHTgsjovgkbA57eaZgzG+dyyt1wp4kzBG2SM/51XZfTkI4H739ISFzp7uaUkqHQKKRTm9E/4W/q9GhOoXKVdqsO23A2p9oBTozCotgiMEeIla5JsU0RPF0O4MC92R6SYwbIQXIbzt+RIzfH3Q3zsGXQTZn7p65kqOfY9gFs2bHGr1sdCqxhHCfwWUI36VkplFTQgrpYuzyjbHEQJ8CWmOEaGbLTv/NS5j8ZjtiFX2pozU6exekvY6O7mW4h7P7FjWpO6ihM5iFYo4oceZrv0AtM0gCYkmq9YL34ZaNgofK0Uqs2irois6QoCDEEwKd7Dk1NVQhBG+jyw5dyYwI/A8I3sQC45LRdlmKokW204jqUXJNBJzxike1E94fjN8bASusuuJacWF89yowXnBSURAElyiGQwlPvZqm7x01PiVaiQdXSbNXgsidTSXfdrzq+F6hF6uZpKSACeEFBBC1hBCVhJCLPOYoLAuvOQA7zeWnDdTREDQwf9BppshyaLIOZluAkOEVrWFVFAqKV7yfqe7DZlM3rCP1tB5RPRlM9QzEne652o+ymgMHTXMUJheRSk9bMJ5FHHGR1bmoSAotnjR1yhDg3eDgOLHnP6ZbgpDBrnZcEuXtvynYvM5LThFhQIAuQigFD7c5ZmHuzAv081xjgrFbgHe7UgRLYe54ZaZboYsFAQ7qfZPVkbq6H1q5Mq3cW1WdbvXk6lGSENyIKOz8F6B5zWXfc870laezqkKcApgBiFkGSHkEakChJBHCCFLCSFLDx06JFVEYzX247Vgz0w3Icas8IVo7v8Sh1A1YfteWh0tS0dKH5QB7HknsxOCiG7BeFLh6004U25LpJNrhDW68wu5wr0GI72ZUfv9GmmPWZGLNJe/zLXGVlPJVAX4ZZTSVgCuB9CbEJIUNpBSOopS2ppS2rpWrVopVGWnbovyR7htppsQQ24QBqkHx1Epza2RJjpzsd99zEZOwxGsynkEHyokhZZCyalGOPNsLRMO2IgZIQBc606/KW+j0nH4Xqd1W1VyCoM8o61pkAFSEuCU0j3c/wcB/ALAEt9zSoEDtBp205oYE7rWiioMYSfdnVxbDqNKmlsiTxhuQ44eDP0szH3KUEycZzw/y+4TCnA5pxsjEREzRbSt+sdjV89c09tiFMO9TQipQAipxP8G0AmAvniuOgjCg8v8H2FmpLVVVejGTrowubbsoql89ZjH4GA3rKRnsbUMm1Nb4yLkk57f0IALivWQ+w8U5HaHCxEbPRHJBKk7sw2g2kP3aiWV12UdAAsIIasALAaQTym1JJA2lfmdaYpQPtNNiHGEJobFfSbwhKbjhgS7ok/wYSualMDI8E1Qe+UtizS2vB0M44jv3oKcZ3Eh2YI+nu8BGLMBTyeZ/vqrfsh8T1zDApxSup1S2oL7dx6l9G0zGyaHnTwN/fAhr9QaA309nKS5mBZpY+jYz8M3YVL4KpxIUxAspftXSCukpQ0MY3RyJbt6nEn2ZaAl6uyI1MEU0RrVw8HnMSfcIkMtAjxB80MF2EcaKmBFJotsYnqkNVJdHPwkdKspbVEj2+7k0kiTTDchbfChU5Ohgl/2UJFdFRiGQyKP5PmRFugZfCkzDQLgCZ0y/ZyOEOBC7DJAngwoJ45NJ6n1SPToUNqGgnxr7XJv9fBruH2mm2Ab7Hb/ttL6mW5CAsRmOvCMQA3YmVrBCR3679/CyUkjzETK1rcUOQCAE1RbO9PVq0p6SCfNztuUjkCj0nEYF74m003JOELduJ0W9seHO+L//G9muhlxLNAkOEKA23URU4kZ4ahd9sLIufgufJWhc2yMnC67b2SoS+y3lEicEbkIA4L3YHCoe8L2t4PdJUrri0exMnKW5rJi7DZLMw4xbIaWTbzv+zwWB5vY7u4SLKfRhfF0rfEoYcXLzREC/M2bzov9Fg+Rw7QyOvjtkUtPKFRfDD6KN4I90DXwGgLUWMiZ78JXYbwgTZMQYS9ICV8KF74Md4nFRSmlXgDA2PC1eDDwguL51PgvBXd4uz3iRsmW6zCT3p5fkcOla7MPBP2CPXBLYEBsS7vSj9G69LOEUj+HL7O+KdT8cAGOEODCXHLiT/C1kUYooOIM0NYjfJf+FL4cALBZMGMuREV8G74OqczQlN7YBBRHaUUd5zIP/RHc4ijNQZhQdDaphFvVXVcgnvbt/aByFqox4euwndaL/b0fNZIc3PamMKa1QsqqCkWI+CFXC7CTDmaFWwEA1tG8tNXpAsWbwR4A9Ak+ubLp0l3ayQw0FVLtrfWRhqplVkXOjE0OGIlMjsQXj8eEr8tgS7RTsWiz6ed03NMkFgA+knnngamRtmha+g020jNMPe+KSGNZwToj3BpHEXXe2Ulrazibssj5O3K+5nb9Hr5Ec9lsJdWvhRsCg1XL3BIYiOeDjydtHxsq2wun+eHEiB1FSN1/QGlxfULo6pTPDwC5xftNOY8Qxwlwsbmbn9PtphvxA+yHT7as0dntSnq27L5F9FwsiFyAXoHn8WHodtVz8W2QEzyHqPaYKal8aWSLmiRTi+l5pRPweujBDNVuD/ZYEB5CaVyupMYX7RPqIOa78jtOgJdw5nE8J5D51WU1rBRZsyIXIaQhLwffBgqC/bS67H4rEHq/Kbsz20u474zICwqtLyI7eOpmG1a4xCsFpjOrtpOV5SdkRnGcAN9G6yXoBXcbeBt/lCavQx6z9MuXlH6c8jkogPVp1NVPCF2Nx4LPCeqXfhz+FCWiEAceutw/DG1K9YVGTRXeBE2KbPmScCJW9P2EUEfLv+a3NzU/5pDjBDhA8HzwceSVTkCvwPN4L3S3YulRnGnf6ND1sW2TTXCs0TOIzNDRAcA+RFfKD5iQtLiT/x28Enwo9rf4JdM18Jruc7YoHZW0bRetnaBekuu3B4N94Ef8AfozcqHoPHWSklXopW+wF6aGtceM2UVryy42mvFKvsI/TFO5h3RkjMlG7vS/gQ8EliZSMcc3RE7Hv+FmhuvYhxq4XsO6RCpEXOa/IBwhwOWsb2ZFLkJQQn0gNNr/IXwl2pR+ioGh++LnM+ENXiTj4dg/eB9u9SfmfNxIz8D9AekYDIW0fFIWk2v9Q/FA4EXJ8ueXjsaVGh98IWIBvZmejgnhjrL7F0b0PwyFUDdrVPr8ncotTn0SukV33VpRu/c7BFnKA9SDmwX2w7tpTVPbopRe7jb/W7Hfs3VkjMlGltBz8FH4/2J/S42h6wPv4OXQQ0nb9ZCp9bRUcIQA18sLwUdjvwlo0szNDAG+WmZh46vw9ZKLj/MjzSXLt/CPRhfRm38LbYC5ohnoO8GuAICTKB9zk9eD2iJmwJT81vJc3IjXuxO8FbxPskx+pC16BZ7HB6E7EYT5Cz6LIufipIpH3v8F3sKCcNRxjHJJyXj2JAhwa1UoKyTUN3vSYKvsBMbJJHVJ9bneg1roHXga7wXvTNhulgr07Nra/Ta0kpUC3A9fzA1dqvMzo7+Ur7MK1KOU6Yk93rROcgq1z8I3A5CfAR9CtaRt3QKvonfgaeSVTsBZpWM11y+E7/2vHoirLuR7gmBW5CJE4MJnoZs1nX+ujvCgO2hd7Oeuc2uknmSZY6iMVdzLmSo8ulrGkB5VV0TwFbYqcmbS/tv9/XCLf2Ds7+NlOPRuMTeB6R54JcELO5XFTY8remx+pB0+Cd+Ka/1DU2ukBPWrmX/PHCHAqYY3oFyHC2/pw4H/4elAb9vFU9Hyaa7PWSf5Ct8L3Y280gm6Ul79GzkP+ZF2AKLp0ITc7u+HYUF180W+3XpDAq+jjWTVTkJ6B5+W3XeZ/0PZfSWKZp9RKOT7XelqugVeTfj7Tv8bCqWT2RxpkLRtGW2a4D24WkLIZyPtJBbu+XvyT+T8BC9sfnsg5cw7BFtoA8Ff5kgMYsG80RECXAvCDl8XaRjrcmHnz4y0xuRIexwVZa/JNHtQC9f5h0ju4xfzVqUQQMoKltGmGB5WF+A8Rh6B+RH12XWpQBBPCbeL/R4S7IrdmhyclCCQ+15QeqHywpVPer2EniNbdm0kjztfnAGhe3W1Mlt5OvAk9kOP2ih6T04ZMC1Oz6TOCvNHB6A3hEBUHSDfWUWogDt0zoqsYJfAzphfjN0WSYzrMityEZqUjtHlPGNV/ouZ4YuwKCIvjCTbwv+v0CalmbbcYnH8/AQvBx/Cz+HL8KRgNv55WJsKRgivY9Yy41IS4KdQDi1LR2JASFrXL6X2EZ6vSMNisFPMGPU4iInRq77i1VBmD38797S1K1c2QO5hXKowK1LjqcCTho8VIjSHUhIaAehbHTc6gB8MvICvfO8lvUR4Hg4aN2dTUqEozbSv9Q9FHjmgeO6J4Y6YGJaO2iiH1EMZoa6EfUpCUq2PjyN5HULp2L20Bs4gh1TO6jz20eqoRQoNHatXfRVT19la5JpLVs7AgfhNtOJW/h4xJ0GDVZ9tRlPQ8U5RIRMsQEYJQutG2xT/rUeneADVsYieK7tf75VO5+zAZ0VaJe0jhHLti4b9VFoUkzJf1Yo41ZcRnCKklPrwJ5UQrvICXGYGbnMBTlxlVIWilU9DN+PxwDMAgKGhu1FEy2M7PU3z8bz5mBxFtDw6+t9NqY1CrBpodlikFZstRmyS13QdbYS80gmSDjriuOpKLdYSvkCOfqEesd8bItEAaHoyPDkJpRfdLyqRFpdEmuqqK5XnSWnSMzOsboevyYa8rIaT1bp6OzTUFVMj0YWjuZGWaO4fjRIuoYEWlFynJ4WuxGX+4dhmYp69HRmIY64FM1bdebty/gGOWCS/1R7a80tHS26XVKHAJbvPTIRj8rXQg7jL/zp26JhoAOa/pIWOQ2ZCQXC5fxial36R5Kkr5VEp5KCEaSt/Tuntif+bhRYP4I4B+YndgOA9CFEXSFkNZpWuyZvSg/tR+LYEl/i2jZIDQr11s/QM/okOyRYkiyLn4NlgPCi9mqONEj3b5yX8PaJ7snpAzJk1k21SzVQ7fRK6FZ+GbsaEcEf06dwU1StErUXuap1sIhdrUy11O1lhIP8oia19JfhQghnfSY0z289DN+H+QF/ujPruxUGBSuSJgLxZoxR++LBYQUWUDm72D5B0HDKLXbQOilABhaiIddyXz/zwBVgUMfu6ieh/bTSrm7pVmpLF0zfhzjjbP84SO0JHCPB0QUBlF/DEg6J25fgsqmBIFxQM6YIel+ahYEgX8YG4pWXyrH1uuKWhz2a+LuHf/W46D5OfjAe4P7du5Vg5cXmeP1/ogPvaJaoRxO/Jcw0M7DAl2BapixLkYmioKwLw4okOZ8PtIigY0gVD72iBmhWlbbD/fL4DCoZ0wa0tpZ1sAPXgZRPCHfFvRFkVBiTbgQ8JdYtlbZET4Pzfzwcei20rGNIllq4OAP6ItIMUzUu/SPh7+euJ3oTieOw3tagXu3dXNEm+ZqmIkkaR8yo2A7mX4DuhbpLJPXg15kEN6wR9OjeN9dFPj18KvXPvTs2ioQye7tjYUrWjlTp5RwjwdGlPCSjcOpL7aj6vPddUTIHP+n2ERq0uGvvH4hqFz0kAcKlkUdJ6vx8NPKuxZDLzI83xRrCH5D6hI48Ue5DoePVG6AEAwBrOplsKcUAzsc51Ylhf0oD+IhPF/yKp2rwnMk4mF2uq/BW5AEB8vIh5I9QTgPLip5RAJESb9ZDcGaXo4h+Ey/zDdZ4rGf5amCOPxRDoy86uF6VoacYHH3eciW85D7RnOVpOm+Aa/1Bcyy3uRuBS9/bkFOKbI/XxdrB70m6t1zI9crF6IVkIl7M0mR/DVwCIOn4BwGvBnrjeLx+p7hgnjNR0ukKS1wSUAgwko2dtxwhHRDkjzWJoqCsuLf1I1kGnmEbd5LU8B8SAl2zC8YLDpcbcOppnKFw1z6/hSzkva+tmcI6wAzdqFqcXAgoXka7LjCZ0C76Gl+hEPO75XbZMJm01eHvdRq6o3bXWYbeVyuu1pYm+JGdFLsIX4Rt1HcmrN5ZFrNPZbqANExIxjAtLB09KBTWrHOGY1zImjC489w32MnScVsSCOAIX9kI+dEQqoi6VdSQreDaY6C9iRavYDFwAUQxfZH5dQvis2KN0CrTY+UwYHTWR6HBhVU8QqmxnrVTvAUR1v/PD0tEd04EZY8QuZpWTwh0sPf/SSBNDxxnpHZfNBHg6YAJcAAFVTK1kBvwn2T7RItQplENe6QT8GL7S0vqFiIW+HhVAKvxFona103QkV+DZTWuhbekn+Ch8m9nNUqWAixUu596vJjb4CJmAPrNKLeKIF1pKenjp4/Rt18sHoTvVCwnQ83IUBm0jiOfLPU71hW3V8i6VSlbCszlinmmxXpyhQklTPUo68NScBOK/J4Svxh5aE3M1BGpKN3zALD+NDgur5jGbkKeYK1JNZcbPwtNNv9ADmBm5COtoI0PH3xV4A7XJMQBAxGTDeKPqA6tnq1KWJlow0q5DqIbXgw9ocrwB5HXoUmhJVpIJHCHA00V0Bp4owP3UgxyifVFPDQoX5kZamnY+M+EfmiOwNlqjmuwy+4XdI/CSalAsLfjhSyk7ThEqoIiL462qAzdYh37BJ13ehQimhNvhRvdCgy0xhpYZOO8kJiWAx4Y7md4msyBl1Q78rFrRt98158qnoFKj/dnyYSknhaJqCykVCi/MxA9GmzxpLzG70kjguHNG9agwu/CMqgllhNd4zbm1cXlj/SnELmqo3i/iesW00XAOPcyLtLDUUUWv0Lz6nNqolJvser1TEJ1S2AftzkwcuxfUT7YQ4R2WtAj+PkH15LpuRCzJiiRGbK7IyzipPr3RPxBX+d8H/9I5p27cFLFmRX1ZqirnetCGc8Y7o0Z6whhY8a3jiBn4RQ2r4a8+V6FBtXLYcfgUcr1uzN5wAK//tg71quTi+0cvwZCpG5G/Zp/sOcY91BbL/juGelXL4dIhfybs4wPlE0TzMt7rmR3b93DgBTzgnhbL5MJzX7uGaHdmDVQrn+yUsuL1a1Fw5BQe+HoJCkuCSftHdG+F+tXKgVKK2z79B4QAL19/Dgb9sTGh3KDbLsArv6wBANx2YX281kXdc61uFWnzsilPXYaSYNT+upzXzZ2zAVo3rI5whMLjJug7aTk27WmAwaFu+Lx7K3jdLnRoWhsRSnHP6EWoUcGHUfe3Rl6N8rho4KyE8w/v2hLXNqsDFyE4eioQ6+MH2yerG+5qfTpmrj8AFwGmPXsF/jtSjMaCdFM9Ls3DWbUr4sjJADo0rYUIBTbuK8LPK/bgx2W7k87XpXld5K/ehzZ51bCk4Fhs+/LXr8X+wlL8u/0IBkxZn1C2bpVc7CssVe3PijkenPQrf4Ed5SIPLucsY75+oA38oQia1KmIq9+fx/V1ffyyYg8a166IL3u0BiEEf/e9Gu25fhp9f2vc9O3bqEWO44+nL8e5AuH06BVn4uJG1XFG9fIoLAmgflVO4AyK/vd2sDvW04YY79OWlHdS+CrMCl+ExmQPAGDeix1w5btzNR1rhIUvR4V0u8Hx5+rze1vB7XLh13ELcS9mC0rLv4LW0mic9fG92sLncaFNXlyVVrtyogD/q89VqFrei2CYYsfhU1ix8xgG5m/ANefWxtA7WsDrJqiY40GnZnVwevW4AF/y6jV46/d1mLI6LksaVCuH3cdKFK/x03taAT8pFoHLgmBWjhDgAGKdfCY3G2/CpQ1rUK08Tq9eHpXLKV8KIQSt8xJ1pydoOVQiJXFDe1D0Cz2AD0J3Ynlu1NtuHc3Di6HHJM/XRCJ1GQBUq+BDtQo+1K6UIynAuzSPentu3F8EAGhcuyI6nlsHg/7YiEY1K2DH4WiKtWrl47O0Fg2qoIbCLIP/IpebiVTI8aBCTnIfCQdvw9pVcN2OaGajXE7IX3JWDew+VhzbJjfDFnqb1qsaD6gv90IBgKua1kaTOpWS+pEQgssbJ9rfXnp2zQThzFOjgg91KkXraC8qU72CD9Ur+NCsXuWYAOe/PmpXjgrwd4JdcZV7hWwbtViL7Ka10cn/DrZzsW2qVfCh5elVcfBE9AVRs2IOWp5eFb+s2INLzqoR+5SuL+in06rkohAVUUgrolm9RBWWy0Vi/V6rUvz+tiwdiQhcKEIFtCRbVdsp5CgqYxGX2ER4v2J1gqaUokzIaRJjoEG18ji7dkU8ztnaJ9XvklcOtD87+ctQrE4RjuvqFXxYvy/6rNWpnBsL6yAux5ct70v88mjdsJqqAL/hgrqqAtwKHCPAxfAPQfwBMz7YwrEgRhRhuHEUlXGNf2jKCzxaVV7CwSc8JMHRwOQ604VSezLRVnGVn4VvjuULTYXNNG5h4k7ThQljjqeybiDVWgIai4+ul/nhC7A4cg7qk8OqZcVRHffSmpgZboUfyt0JKMvMBMzqcgL9gdfGhq/FAHOq142DBXj0fzMWvPiBKlzA1O+cIo9cTk/h5M4mZsGmY+Z1qT2kWurS+6AbaX9yHem7uWqX1z3wiuZzGbUg8cOLTwyaeUbgwsPBF1C/QjnokuAmIrYQUrt7Y8OdMibAHbGIKQWvTjLDSzM+AzcXrWZKCQ98wiE2m05nGLlbrUco8/dE67gx4nDDt0d4/632JtbytdiidBT+EQXNAuJfs138g+LbQOHXmQmKR5wAWw5TX+4mVUYIEDahYZrig5uAYwU4f8v4l2Uqn1BCHbgVyI2HxO2Zn4KnqwVmCjOrtRVGWuq2YLFKja20Po7Sing3dLfk/u2R02RtmfnWCvOuEgBfhzsDAFZySZrF8MkoxGzWGDOf/zLlvwpmhS/UdJwUWk30tBRL1UT/KK2Itv5PUjuJRlIS4ISQzoSQTYSQrYSQvmY1Slvd0f9T0YAn+nGZL8D1CBdepsnqwDMv3zOOmcJaa38aedm4DDQ01ftbjFy08o/CAi7aX9L5dT4hLkSwg9bF04He6BnoI1lmqMzLopCqx3UH4tf8T+R8XFA6Go8Fn9PVRiFmDQ1CSMpOVvtoDcWcqGZiWICTaHqJEQCuB9AMQDdCiHy4PZOJ3TATJJuV+TMBhRm44IURexHJPPxMfstj7OWtrUeNDC8lAW5HpZhUc/lNkyPtcQyVJcO/ppo7Vdi1J1A+YUFT7zvQzJe7nNrsycBT5lViEqnMwC8GsJVSup1SGgDwHYBbzGmWOh7OzCjHEx1EvNmbHgq4NFa8Zxc85uqt+DbJWUTxD3o5nzum0y8nuA6P4FPco/JZzn+253iM31K5Y/l25nj1n1tKneBx823Vd8+87uT6czxu+Lh2+zRcO19Ga93lDIwr/pp5oZLrdcPDtV3qGoRlraIU0kk0onUnVy524pFKsHCYVkGb0k+Ttgc06M5dRHmFSO/zLLwGqXGg1v/CsS8u4+P+nhK5JCkxhxRG1w6MkIoVSn0AuwR/7wbQVlyIEPIIgEcA4IwzpHVmRji/fmU83bExul8cPefznZrgywU7ULNiDl654RycUb08th86BX8ojJanJ9ouj3uoLY6c8mPLvnewaOEEfBvuhFqkEJ2feA+fHI7gyQlxu+C8GuVx3fmnweMiCIUpzqpVEcGItpjhn97TCt8v2YWmdSrht97t0W/yOrwqcMY557RKeKZjY3S9+HScVjkXz13TBHe0boDVu46j/5T16NC0Nn7r3R63fvo3ul2c2HcDbjkv4brOq5fYH0Z4qfM5+PrvAkx/9oqE7XWr5OKFTk1wc4u4bvPDu1vi/Zmb8NbN5yEQSu6PFzo1weKCY7inXXJ7rmxSG090OAu9LpfWrcrRs30e5m8+hL2FJfjvSDFubF4XL3RqilqVchCOUPS6vBHcLoL3Z2xC/1sSF+te63Iupqzeh4cvPxOn/CE83bExPpmzFV4XQefz62L17uOolOvF76v2YvnOY6hfrRxaNKiKZ69pjM/mbsO97Rpi0tJdqFIuWqbrxWeg6WnRWemEXm3RffQi3NP2DNSpnIs8zrOvZsUcvHhdU3S5oC7qVS2HXUeL8VTHRI/Q/13bBIt3HMV59Spj8pPtsWp3oeb+uKppLZxXrwrK57gxdNqm2Pa3gvehITmA38LtcYv7bzzgmYFHAv+L7X/66rPRpXk93DN6Ycyv4puebfDA10vQN9gLQ7yjcbzdS7hsfwkWbI2aAj4QeAl/5TyDzoF38KznJ7RybcEGGs3o1C3wKm52/YNunjkAgN/Cl8bqGnp7PGrk5/e2wmPjlqOCz41z61YCIQRdLqgbc8C7OK86Bv3f+Zi6Zj9uvbA+Zm84gDaNqoNSYMXOY6hRMSfJRlt8j7ccOImHLk92Hru9VQMUHD6FJ68+W/LY35+6DPM3H4r2383noX61cjhY5MdPy3fjtS7NUBIMY8XO49hzHHgn2BXLI40xyDsab4Z64M2booqHEfXewbW7P0JvLrF6p2Z18MCleYhQ4Mgpv2y7U4EYXVAihNwBoDOltBf3930A2lJKn5Q7pnXr1nTp0qWG6mMwGIyyCiFkGaU0yespFRXKHgCnC/5uwG1jMBgMRhpIRYAvAdCYENKIEOID0BXAZHOaxWAwGAw1DOvAKaUhQsiTAKYDcAP4ilK6zrSWMRgMBkORlFzpKaV/APjDpLYwGAwGQwcO9sRkMBiMsg0T4AwGg+FQmABnMBgMh8IEOIPBYDgUw448hioj5BCA/wweXhOAeoR4e8OuIfM4vf0AuwY7kO72N6SU1hJvTKsATwVCyFIpTyQnwa4h8zi9/QC7Bjtgl/YzFQqDwWA4FCbAGQwGw6E4SYCPynQDTIBdQ+ZxevsBdg12wBbtd4wOnMFgMBiJOGkGzmAwGAwBTIAzGAyGQ3GEAM9k8mStEEJOJ4TMIYSsJ4SsI4Q8w22vTgiZSQjZwv1fjdtOCCEfcde0mhDSKrNXEIcQ4iaErCCETOH+bkQIWcS19XsufDAIITnc31u5/XkZbTgHIaQqIeRHQshGQsgGQsglTroPhJDnuDG0lhAykRCSa/d7QAj5ihBykBCyVrBNd58TQnpw5bcQQnrY4Bre5cbRakLIL4SQqoJ9L3PXsIkQcp1ge/rkFaXU1v8QDVW7DcCZAHwAVgFolul2SbSzLoBW3O9KADYjmux5KIC+3Pa+AN7hft8AYCqi+WPbAViU6WsQXMv/AEwAMIX7exKArtzvzwE8zv1+AsDn3O+uAL7PdNu5towB0Iv77QNQ1Sn3AdFUhTsAlBP0/QN2vwcArgDQCsBawTZdfQ6gOoDt3P/VuN/VMnwNnQB4uN/vCK6hGSeLcgA04mSUO93yKmMDVUenXgJguuDvlwG8nOl2aWj3bwCuBbAJQF1uW10Am7jfIwF0E5SPlctwuxsAmA3gagBTuIfssGAQx+4HorHgL+F+e7hyJMPtr8IJQCLa7oj7gHiu2epcn04BcJ0T7gGAPJHw09XnALoBGCnYnlAuE9cg2ncbgPHc7wQ5xN+HdMsrJ6hQpJIn15cpawu4z9gLASwCUIdSuo/btR9AHe63Xa/rQwB9APCZimsAOE4pDXF/C9sZuwZufyFXPpM0AnAIwNecGmg0IaQCHHIfKKV7ALwHYCeAfYj26TI46x7w6O1zW90LCR5E9MsBsMk1OEGAOwpCSEUAPwF4llJaJNxHo69k29ptEkJuBHCQUros021JAQ+in8GfUUovBHAK0c/3GHa+D5ye+BZEX0T1AFQA0DmjjTIBO/e5FgghrwIIARif6bYIcYIAd0zyZEKIF1HhPZ5S+jO3+QAhpC63vy6Ag9x2O15XewA3E0IKAHyHqBplOICqhBA+e5OwnbFr4PZXAXAknQ2WYDeA3ZTSRdzfPyIq0J1yH64BsINSeohSGgTwM6L3xUn3gEdvn9vtXgAACCEPALgRwD3ciwiwyTU4QYA7InkyIYQA+BLABkrpB4JdkwHwq+k9ENWN89vv51bk2wEoFHxuZgRK6cuU0gaU0jxE+/lPSuk9AOYAuIMrJr4G/tru4MpndJZFKd0PYBchpCm3qSOA9XDOfdgJoB0hpDw3pvj2O+YeCNDb59MBdCKEVOO+RDpx2zIGIaQzoirFmymlxYJdkwF05ayAGgFoDGAx0i2v0rlAkMLCwg2IWnVsA/Bqptsj08bLEP1EXA1gJffvBkT1kbMBbAEwC0B1rjwBMIK7pjUAWmf6GkTX0wFxK5QzucG5FcAPAHK47bnc31u5/Wdmut1cu1oCWMrdi18RtWhwzH0A8BaAjQDWAhiLqKWDre8BgImI6uyDiH4FPWSkzxHVM2/l/vW0wTVsRVSnzT/TnwvKv8pdwyYA1wu2p01eMVd6BoPBcChOUKEwGAwGQwImwBkMBsOhMAHOYDAYDoUJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUP4fhJWeNqSRcesAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(1)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Passing `beta` as 2, gives random-walk distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA26ElEQVR4nO3dd3gTV9YH4N+VZMtgm25Mx3TTmxMIxYTe0jfJpmxCevZLNnV3sySkENJI3YRkUwhpm142nUDoxIQEYno1GDAdbAPGvUi63x+aGc2MRtKMijWSz/s8eTKaGY2vkH10defccxnnHIQQQszLEu0GEEII8Y8CNSGEmBwFakIIMTkK1IQQYnIUqAkhxORskbhoq1ateEZGRiQuTQghcWnDhg3FnPM0rWMRCdQZGRnIzc2NxKUJISQuMcYO+jpGQx+EEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHAVqQhqg9QdOo7i8JtrNIDpRoCakgeGc48q3fsPV83+PdlOIThSoCWkATpytxomz1QCA6joXAGBvYXk0m0QMiMgUckKIuQx/ZjkAYGKfdDx/+YAot4YYRT1qQhqQpTtPIrfgTLSbQQyiQE1IAzP7hx3StstFa6bGAgrUhMQ5dXZH26ZJ0nbBqYr6bg4JAgVqQuJcaVWd4vEfsqGPBCuFgFhA7xIhcW77sVKfx/JOlNVjS0iwKFATEufSU+0+j93yX1rgIxZQoCYkztU56YZhrKNATUicq3U6/R4vr3HUU0tIsChQExLnnvlpt9/j419YVT8NIUGjQE1InKuu89+jHtm9VT21hASLAjUhce7wmSoAQJdWybAw7+PFFbX13KLAOOfgnMbWRRSoCWkgFszIwt8n9fLa73S5otAa/ya//Au6PPhTtJthGhSoCWkgEq0W3HF+N+nx5kcnAgAOn64M+dqcc9Q4/A+xGLHnJFX2k6NATUgcu/i1NdJ2xxaNwRhDZptUdG7ZGMl2d/HMK7M6hvxz5i7ajV4PL8bTP+0K+VrEG5U5JSSObTly1mvf4nuzAbh7wRYG1DhCH/p465f9AID5v+zHQ9N6h3StFbtPSttOF4dVa2C9gaEeNSFxSl4Zj2nEOsYY7DZrWAK13Be5h3Wfe+hUJZbsOKHYd6DYMxRz2oQ3OqOBAjUhcaq81jORxVef1J5gQU2A9D1/vtt8FJmPLFLse+CrrdL2K8v2ImPmQqzNL/bK4jhbVYfs51fitg83KPbLx7qfoaEUABSoCYlbZdWeQN20UYLmOSWVdfjgt4NB/4x7PtssLe2l5d/L9gAArlmwDu/+WiDt33y4BAMfXyI9PlVegyNnKrH+wGk8tzhP2v/1pqN4d82BBl83O2CgZoz1Yoxtlv1Xyhi7tx7aRggJQVm1p7zpmco6P2fWj+83H5W21x84pTg29MllGPXsStz5yUav5835cSdGzF0e8faZWcCbiZzzPACDAIAxZgVwFMA3kW0WISQUnHP8uOW49LhZY+0etWhfUTm6paVEtE3yG5sf/a7diy8qq9HcL/920BAZHfoYD2Af5zz470qEkIjLfm4lXluZLz0ONMnv201H/Z9gwBVDOwQ8p1ebJoau+dcx3RSPSyprsXZfsaFrxDKjgfoqAJ9qHWCM3cYYy2WM5RYVFYXeMkJIUIrLa6Rp44A74+PJS/r5fc4R2fl6bT/qnfoHAAu3eXrymW1SFcfEsealO0/CiBeX7lFkk1y7YB2ueXsdzlZFf0inPugO1IyxRAAXAfhS6zjnfD7nPItznpWWlhau9hFCDNp9XLlqy8aHJ+LCge00z01OtAIABnZoquvanHMs23kSLhdHzl5lj/aVqwYBACpr3VkbZ6vqsFu1gszEf6/WVcOjR2vvYRh5NskOYdWauz7dpKvdsc5Ij3oqgI2cc2MfhYSQemVR/VU3EoKxFnHyS2O7vrlv3285hlv+m4uP1h2ESxVw7TblDz5yxntq+r6iCr9ZIp7n6uvhbzx4JvBJccBIoL4aPoY9CCHmcKaiFiWqDA91AJVLEQJ0pc7FA46VVAMAXluR75V/nWC1oFe6e6hj3vK9sGjNsgEw+/sd0nZGy8aa53Ro3shrn9blGsqiB7o+RhljyQAmArg9ss0hhASrzunC4CeWeu1nPgImADS2u3vbFbX+J70cP1uF/UUVeHaxexGCwrIar5Q/m9WCvJPuoY6Xlu5Boo8PiM9lY83L7h+D7rMWeZ2jVUP7nvE9/LYxnunqUXPOKzjnLTnn2ncPCCFRt3Dr8cAnqSRaLWAAPlaly9U5Xbj70014dvFuOJwunPfMCly7YJ3inA+F54hZHt1V48pzF/lfWQZwB/f+7ZXj4w9OzcTKf5yPxfeOxvzrhkr7NzSQYQ4tVJSJkDhRUmm8LgZjDBYLg1M13vz0T7vw/ZZjAICvco/4vcbVwzrhiUv6ISlBeyz8oWmZeNrPcmCPXtgHV7z5GwBg39PTpCJMmW2aIFOWxpeztxgHiivQpVWytG96/7Z+26ZXxsyFAICCudPDcr1woynkhMSJl5buCep5ThfHydIa5Bd6akDLU++KyrUnoYgaJ1qlIP3ynwd5HR/auYXm8yb1SQcAnJPRAneN647bs7sGrJT32op8xXTyOqf5Fj2IBArUhMSJB6ZkKh7/c3IvzLm4r+7nT3hpNQCgqtaJOqf+2hryXq+8tytq0zQJ78zI8tr//BUDpe2/T+qFB3WUR/3fxiP4Yesx6bEzDDVAvpSNme8U0v7MhoY+CIkT6nKld47tbvgau46XYuorOUG3oXdb7xmH7Zs1Qvtm3lkcvgpFBfKYLGukLohA/fqqfPRonYqJQo/+Q9n4/LR5Och7cgrsNt8pjdFAPWpC4sT7vx4I+Rpvrd4X8JzhXbWHMgAg0WbBE7JZkE9d6tnu1MKTiveirDcdyLT+bdBINv4tTz80ut6jw+nCc4vzcOt/c3H8bBVOllZjq2pxhVV55ptZTYGakDihnoASjG83Hwt4zh3n+++pXza4PVokJ+KvY7rh2mGdpf33TvCk1/1JRz0Q0evXDsWqf56vecxhYIgGgKK0as7eYgx72rsq3+0fbjBdHREK1ITEiWlBZkAEqqwnOjfD3ZPObJvq97xkuw0bH5mImVMz/Z5nhK9UcIfBoQ95vri/QlRmW/uRAjUhceDw6Uq8nRPc0EeCVV8YuHpYRxx4ZhpapyZJ+5bel63754jBdnSPVobaBwBpKXbN/fJAffBUBTJmLsS6/ac0z1Vbu8/3eT3T/X8Y1TcK1ITEgfyi8sAn+aB36dhEq1Wa5fj29VmYf91Q9DAQ0OYt3wsAQVW8Y4xh15wpXvvlY9S/CEWifA3f6CkGJfp641FUmGh6OgVqQuKA1c808UDev/Fcn8duH9NVc//EPumY1LeNoZ8zLtOdZaG+eadXo0QrbhnVRbFPPkb92HfbAQAnS6s1nx8o5fCTW4cpHk/69y/BNDMiKFATEgfUE0XO76W/1HCfdk1wzbBOmscenNobLZITAQAOgxkWarOm9cZ1wztj55zJQV/jvok9pe3MNqnS0Mfrq/IhjoJs81EnO9DkGHVK3tES4zW6I4UCNSFxQF7EKP+pqXh3xjmGnv/JukM+j4ljyqFmlVgsDE9c0g+NE4OfvpEsK8faMz0VDiH4yhfEvWlkF6/nAUCtkGfu6zhg3gV0KVATEgeqhEA9tV8b2KwWWAJMxVZTL3UlJxZ7CrFDHTa92zbB8K4tYLMwqUc9sntL6XiNQ7sSoNijbqxRn7tji0YY1LE5bhiREf4GhwEFakLiwEtL3HU+HtIxDVvLv6b08tr3yS3uMducf43FtP5tMLW/sTHpSFl0z2h8eutw2KwMR85U4Y6PN+DQKc8iBeoZmur96iyXh6ZlIueBcbBaGGZf1Bcf3OR7zD5aKFATEgduHJkBwP9qLv4wxqRr5DwwFt/cMQIjuruHPNo2bYTXrx0a0pBFuDHGYBWWsvlp2wlcO9wzsabWR6AWe9SpScrXoV7gYExP9/i+r0UNAGDF7pNeP+ftX/bj1v/m6nwFxlCgJiTGcc7xhVCK1FepUT0eu7AvCuZOR8cWjTG4U/NwNS9ift5xQtqukS3v5Wvoo1YI1G2aJimq/Pmqm11wynspMQD4ff8p3PR+Ll5cmqfYv2pPoeFFe/WiQE1IjFuZVyhlOiT5WXYr3pyu8NTfLqv25Gbv0KiAV1JZiykve4pNXTK4vTRWfYef4lVaudTiz31r9X7F/l/z9U20CUbDeVcJiVOHT3vSyGw6ZxnGmwVrPLMyNx0qQUFxheL4FlnuthjUxbTDbD8zJUs0JufI16Cc+NLqsJRaDaRhvquExJFGIQx3xDKx9oiWM6rVbma8u17aFoeHTpx1T4yRT4kXXTyoHQB4LeALeGZYAsDewnLFEEykUKAmJMaJC9Q2NNU+xqJFi7YdR8bMhahSLdwrTg66ZbR71mXrJt51RC4Y4A7UFTXeP2OLamblit2FOH7W/a0m2BrbgZjnNi4hJChMd7WO+OJvKnqtw4X/+3gjAOCB/21VHGslFHh6YHIv3D2+u+YN2GRpdfbA9T6+2nAEa/YWw26z4KpzOupuvxHUoyYkxr24JC/wSXGog8aqMSJ5LvVP25Srsw/r4h4ysViYz5TDZGF/WbUyULt8jEefKK1GjcMVsRRGCtSExDhxanfXNO/1CuPZ13eO8NrXv31TAMpcavnNvqzOzaUKgP6IU9XVedFdH/rJ7/O0Zj2GAwVqQmKcWFDp+7+NinJL6pfWuobPXzEAgCdnWu0e2Soz/iRrjPvrKZMa7ISjQChQExLjKoWbZQ0t+yNZIygmCumJb6zahwsHtlOeb7didA99VQWTND4EjpwJXE1Pz5qTwaCbiYTEuKo6J+w2i1ep03hns1pQMHc6qmqdqKpzokVyIg6ecudPbzt61muqeN+2TXVfW6tS4FXzf5e2LxvSHuMyW+Nvn2xSnHODz8p8oaEeNSExrqrWGbGx0VjQKNEqTV6RZ3Col9qyJ+gPd6lJ3ml28vrUPVqnSil8cgnWyHxYUqAmJMpKKmsxb/lenxkFgXz4+0GcqTS+vFU8Sm/iPXlFVK0xecWXRNnsw6paJ85/fqXiuM3Ht5dIfaehQE1IFDmcLpz/wiq8tHQPVu8pCuoaDW1sOlh/FJwJ6nn7isq9CjTlHjytee5lQzoE9TMCoUBNSBS9tjIfJUJv2BFkj3pIp+YY2tn81e5ildaEmIJid+B+QFXHW74CTThRoCYkivYVeYoHMQDdHvoJ172zztA11uQXY8PB4HqLJDCtIRNxBZ07zvddeS+cdAVqxlgzxthXjLHdjLFdjLHzIt0wQhqCH7Yck7atFganiyNnb3EUWxT7ltyXLW0bWeRX7fZsdy0QrfrWz18+QNoWF1yIJL096lcALOacZwIYCGBX5JpESMPRWb6KSBB3ovRMwmhoeqanYul92dg1Zwr2FZZL+1f8fYyh64zNbA0AqK5zKd6agrnT0a+9J9XvNiGgR1LAQM0YawogG8A7AMA5r+Wcl0S4XYQ0CAdlN6mCyfoQa1qMDaHnGI96pKeiUaIVV53rnrV548gMdE1LMXSNx77bDgBYvqtQWp98/azxXueJFfMenJoZfIMD0NOj7gKgCMB7jLFNjLEFjDGvogKMsdsYY7mMsdyiouDuXhPSkP1nZb7h54glPPcXVQQ4s2ES/01/22d89ZWLB7cHALz7q2dRAq3a1Y0TbSiYOx23+1nJPVR6ArUNwBAAb3DOBwOoADBTfRLnfD7nPItznpWWRp/uhBi18VCJ4eeszCsEAAzv2jLMrYkP4jeOozqmf6v5W5igvukJ1EcAHOGci7eiv4I7cBNCQnCytDrka3z4+0EAwB8F2nm9DV3+U1Nx4cB2yH1kguHnDujQLPwNClLAQM05PwHgMGNMTBgcD2BnRFtFSAMQjpS6G0ZkAADenpEV8rXiEWMMr149WLPSXiDq6eB/jeDQRiB6s7PvAvAxYywRwH4AN0auSYQ0DHcIK5Bocbq4riJLYo6v1qQMEhrGGBJtFqm29U2jMqLWFl3peZzzzcL48wDO+SWcc8quJySCZn+/Q9d54s3EJBvNXYsEu2xVd60bifWF3l1Comz2hX289n34+0FdtT+qhd5epArWN3RlNYHXTKwPFKgJibLpsnKZd4/zTEme8e56aWjjZGk1Nh7y/iIrDX0EMQZLYgctHEBIPfsy9zDeztkvPRYnTADwmpRRWl2HpAQrxr+4GuU1DhTMna44Xl3nQqLVItWeIPGJAjUh9ejN1fswd9FuxT557eMxPZVzEKpr3UMb5T6+gtc43Ku7kPhG7zAhEXaguAKPfrcdVbVOryAtaiIsG9U8OVERuF9f5X+2osPJkUCBOuIm9UmP6s+nHjUhETZ9Xg4qa50YqDGBIklYHmrFP87HmYpaAO7KbPd8thkAsL9Ye2p4SWUtVuYVShNeSGQ8flFfLN5+Am9dNzSq7aBATUiEdUtLwbajZ/Hqir1ex+6b0BMA0CrFjlYpdgDKFVsuHqRcl8/l4rBYGO7+bDN+CXJFGKLfjBEZmCFMKoom+s5ESISJM9zUyzkBQO+2Tbz2NU709J/EyRaiovIaAMCxEuO1K0jsokBNSITZrL7/zFKTvL/UNkr0nK8O1MOeXo4P1hYgX1ZnmcQ/CtSERFiin0A9uJP3Woc2i+f8GlWgBoDHVLMWbxnVJYTWkVhAgZqQCLNZjeU4y2t8qHvUWkZ2b2W4TSS2UKAmJMJW5Wnf9NManwZUgdrpgjPAyi+JlJ4X9+gdJiRK5NPF5bq3TpHydmsdLtQ5/feq9fS6SWyjQE1IPVs7cxyeuaw/pvRro3k8wWrB/Ouz0CrFjhqHC6VVdX6vp3VDksQXeocJqUdL78tGu2aNcLWw6Ko/xeU1+HT9IXy6/pDf84Z29r4hSeILBWpCIui6d9ZJ2+qCSuHCGBVkinc09EFIBOXsLY7o9fc9PS2i1yfmQIGakBjz/OUDAAAWBl3LdZHYR0MfhERQWqodRWU1YblWy+REnKqoRYrdhtX/PB/NkxPDcl1ifhSoCYmgGmEFli2PTQr5WqeE6npl1Q50bpkc8vVI7KChD0IiqHvrFIzu0UqxikuoNh2mtaUbGupRExJBu0+UBT1z0G6zaNb6sFCWR4NDgZqQCEpvkoR+7ZsG9VzuY+a4nRaybXBo6IOQCKqqdaJRQnB/Zk9e0g+A+ybiH7Mm4Dkh2+PSwe3D1j4SG6hHTUgEVTucihVbjOjVJhUA0L55I6Sl2nFlVkdcmdUxnM0jMYJ61IREyE3v/4GSyjokJQYXqO1CTzy9SVI4m0ViEPWoCYmQFbsLASDoHnVmmyZ44YqBmBjlFbBJ9FGgJiTCkoIM1ABw+dAOYWwJiVU09EGIQT9tO46zlZ7So3VOFzJmLkTGzIXSPoeshnSwPWpCRNSjJsSAwrJq3PHxRgCeanjfbT4mHeecgzGGihqntI8CNQkV9agJMaDO6Z3c7JItlSVOUHHJkqB3Hi+NfMNIXNPVo2aMFQAoA+AE4OCcZ0WyUYSYlVi7Q65NU09WRnWdE0kJVtS5PEMf6w+crpe2kfhlZOhjLOc8ssV1CTE5+ZRul4vDYmGoqHFI+6rqnGgGwCHreb934zn12EISj2jogxAD8gvLpe1KoXf9v41HpH1r80+Bcy4tSPviFQMpD5qETG+g5gCWMMY2MMZu0zqBMXYbYyyXMZZbVFQUvhYSYiJ3fbpJ2q4UetLiDEIA+PuXWzD6uZXSWHZCkAWZCJHT+1s0inM+BMBUAHcyxrLVJ3DO53POszjnWWlpaWFtJCFmIL9pCLiHQdbtP4X/rNyn2H/kTBUOn6kEACTQCiwkDHSNUXPOjwr/L2SMfQPgXAC/RLJhhJhNmWwsGgDGv7gafds30Tx378kyAECClXrUJHQBf4sYY8mMsVRxG8AkANsj3bD6UlZdhwU5+6PdDBIDDp+uVDyudbqw85h26l1NnXuM2malHjUJnZ4edTqAb4Ql6W0APuGcL45oq+pR/9lLAAA90lMxpicN2cSz9349gLRUOy4Y0C5s12yUaNUs7v/i0j0AgETqUZMwCBioOef7AQysh7ZEVX5hOQXqOLZ6TxEe/2EnAAQdqP/55RavfSWyqeRa6GYiCQf6LRIUllZHuwkkgma8uz7ka9w/qZfh59joZiIJAwrUgqKymmg3gZhceY3/3rMWuplIwsG0v0X5heX4ZN2hevt5y3adrLefRaKL+1qMMIDyanfWxz8m9YRV1VMumDsdn9w6DC9dqRwlpEBNwsG0v0XT5+XgoW+21dvP0yq2Q+KT02X8veac45HvdgAAbhndFf+5Zoh0rGurZADAiG6tcNkQZf3oWo0bjYQYZdpArb6T7nC6UK1RECdc7EEuQEpiTzAfyiPnrpC27TaLokf9yAV9fD6veXKC4Z9FiJrpo5P4NTXzkcXIfCRyWYGB7t6T2KUe6qhxGPvAr65z4myV5/eDMYa1+zz1ycZmtlacP6xLC2m7WeNEQz+LEC2mD9QOFwfnHI4gvq76U1pdV69DKyR6vtxwRPH4iR93GXr+K8v3oqJWGdxHdW/l8/xtR89K23ZKzyNhYPrfIocz/EEaAKa9nFOvNytJ9Dzw1VbFY3m1Oz2Wa9xo7tE6VeNMt0pZUKebiSQcTP9bVOt0SSUjgfDdnBnQsWlYrkOi64O1BXj8hx2Gn1dWrX+oS+vmI/OTHt0ymYY7SHiZPlDXOV2K4HwyTBNTqKcT+85W1uGx73fgvV8L/J4n3vf7/Lbh0r5VefpL8WpNEU9Ltfs8/49ZE3RfmxA9TB+tVucV4eYPcqXHf/1oQ1iuK1+QVG7z4RKp8hkxt4Fzlkjb6hKkcnabe3HZwZ2aS/sOqQos+XPkTJW0vfQ+d4XfJD8L1lpoNiIJM9OvQv7t5qPYcPCM9HjHsVIUFFcgQ8hdDac6pwuX/OdXAJ4VpklsqHW6kGTRDp5VQlpngqyS3fM/5+HOsd0DXlf9AdAj3TM2/cgFfdCpRWPN5+19aiqs/sZHCDHAlD1q+fhhzl7vZRrv/GRjWH+e+AfcY9aisF6X1B+xrKhaxsyF0jYLInBWy1L59jw5VXHs5lFdMLFPuubzEqwW6lmTsDFVj7q6zomnf9qF3IIzfs9zhDCLcPeJUqSnetawa5WSiOLy2qCvR8yhvNaBpo19Ty7JbOOdpeF0ca+p4GoLtx6XthMp1Y5Eial+877ddBT//e0gdh7XLsYuOllWjYyZC7E23/ii6FNezsHgJ5ZKj7+5Y6Tha5Do+G7zUfxN9m2qW5pn+OvzPw77fe7uE973HfTMdJ3zo7s06sAOlCVEosdUgbpctdSRL+Iswo/XG8uD1qqQ19HHGCMxn3s+24wfZT1c+Teh5ETfN/d80crmEJ2ucF+7TCjElGw31ZdP0sCYKlAbZXQE8Jynlike35bd1ee5RqcZk/ojTgnv3dYznPHMot2Gr+PrPe718CIMeWIpnhR60wBw3fDOhq9PSLiYKlA3TjTWa1l34LTftKxAxD/4z2T5tSJ5bQdiLg4Xh9PF8fv+0yFdx9cNSLGnvWDNAWnf1P5tQ/pZhITCVIG6mexmUCNVnuqy+7MV6VWAeyhjiGy82ai3c9x/iMO7tsTd45SpWr7+iONBfmEZVu4ujHYzgjbtlRyU6vgg1ZpR+MpVg6RtraGPV5fvDalthESCqQK1fAZiVZ0TrWWzv7q3TsXOOVO8nlMSQs/35lFdpO15K/IVxyJRX8QsrnjzN9z4/h/RbkbQ9haWo9YZ+IO0stb7nsfFg9rjnRlZALSHPsRFaeX8FWAipD6YNlADwMK7Ryseh3vad8fmjaTtm0Z2URxz6AgEsepMHJR01VPzZecxT/bQy38eJG2LMxWrVd+aNh8u0bzOiO4tjTeQkDAyVaCuUPWA9BbzLywLrv7HtAGecUf5jSnAvWp1vIu1G6bnZnjqPH+iI+OnuVAc6YUrBuKSwe2l/eLvlfr1i7NS1RIspvozIQ2QqX4DH/9hp+JxYz/1FOSCWVoJAFrLJr5cPKi94tiTC43VLI5FvSO4EEMkyGcJvrFqHwDgn5N7Ybpwo0+9QIDY626SpLxJPft7d7U9vfchOOJ3GIzEBlMFajWbzqEOPTMVxT9sXxrirLNYGIYvr3GgpNKd07z1yFmv404Xx8Jt7txq9bcg8T6Desjsmcv6AwAe/W67rja8vIxuMJLoMlV0unhQO2k7u2caAODZP/WXKpYBwOJ7R3s9r07HePKzi915tv7KU8pFamWOrzYcwe/7T0Xk2pG2+0QpvggwAzDcBs9ZgkFzfGf2uGS96Ie+Vq7YI/5eqAO1Raj54a+w15VZnkVqe6b7XiSAkPpgqulWYunRD246V6rN8OdzOinO6Z6W4vW8QBkax0o8ZSrPzWiBSwe3R7/2/qcE92nXRFebjfrHl1sARKc6345jZzF93pqgnz/l5RwAwJXndAxXkwIKtBDtTaO64NCpSny96SiOna1GrcMlfTuqc4iBWpnW2amlezbqOGGtw6MlVVKvHXDPcnxwam98keteCaZzS5q9SqLLVD1q0ZieaUhvkqR5zGa14MlL+mF0D0/KVKAMgBGyFaQXbjuOCX3S0aap9/XnXtZf+oDYdKgEGTMXoqo2tm64+bM2X9mTH961hY8z/TOyOko4aU0Tb5KUIN00BICeD3sqIIorv6iH0JKErI/31xYAcK8wLv8Am31RX6TIxrWpXCmJNlMG6kD+MrwzPrx5GBZc786HveDVNThV7l3Hw6irzu2ExfdmK/adrgxfZb1QZlGGgzqrpqrOhdMVtbjz4404GyBlT36j7hbZQg71ydc3pxtHZmjuFxcKEOt2iBKsDBYGXDq4vdbTMLxrS8VwyeVDO2ieR0h9MV2g7tiiUeCTBPIbgEOfXObnzODZwlhT+JUoznrbeaxUKqAv2nOiDO+uOYCF245j+rwcv8/PlGWIrDsQ2tTtYKkD9ZyL+wIAOjTXHpr4TBhPV7+DjDG4OPDqinzNFEV1oa4RNOGFRJmpAnV6EztGdNX/R/H0T4FT6ILJFb5EdlMzlKnkZypqkTFzIdbsLcau46VRC9R7TpZh2rwcvLV6v2J/VZ0TH607CADI7pXm9xrtm+v/AI2ER7/b7pWG+ZdhnkJJb/5lqLRdXF6jGA4b0rk5fBnxzAqfxwgxC1MFaqcLsFr192AfvaBPwHNKq5Rf928f47tinuiCAZ5A/cZq/2l9/tz3xWYAwF/eWYfDqjX6/A01VNc58c6aA0Hnh6v5q4shloz9ZN0hv2P9+4sqAv6cwrJqfPj7QeMN9EE+3PLf35TXTU60KlZQOV/2QbN810kcP+u5gdzYTwnUUxX+h7bC+Y2KkGDpzvpgjFkB5AI4yjm/IBKNcbpchv4winSMS09TfaX/1+TMgM9pnuwpDvXp+kNS3q1R8pWu1SG3rKbO54okLy7Jw9s5B9AiOQGXDg59fDTQKiaiz/44hOvPywh43lChh1pQXIFnF+/GlsMl6NY6xbNsGue4Tsd1AvH3QaV+TfLFZv/1P2WaXrCplpsfnUir1RNTMJKedw+AXQAik7cG9xik3qACAKN7eHpRU/q20TxHvljA6B6tdK1jN6ST76/KwVLPmlM9hMvFwZh7/FSs6hfoBp9eeoONnvoZgDs/+bvNR3HPZ5ulfcfOeqbxv7+2IKRALf5b+Eu7NLL+YTBrJQJAs8aJgU8ipB7o+gtmjHUAMB3Agkg2xunihnrU8vxYpyryFZXVKBY2/f5vI/HhzcN0XZcxhnMyQg/WLYS0sRS7TQq+InX1t64P/YSbVdkU4UoS0bPkFOC757nnpGcZq/QmdtQ6XIogrWYJMZ2t3+yfMfWVnACBWt+1Hp7eW3P/hocnBNM0QqJC7/e6lwE8AMBnl4sxdhtjLJcxlltUFFxBo3GZrdGrjf4Ou7z3rZ6d+JmqaE//ABNc1N6Q3ZwKljihorzGgQ0HlQv2ynuvYttXqGpEh2t49Lp31nvt01rsVWutyt/2ncKkf/8iPU622zTXH5QLdbJQZa0Tu0+U+e3ha/3TvC2ka8q1bap9E7S5qrf8syotkxAzCRioGWMXACjknG/wdx7nfD7nPItznpWW5j+DwJfXrhliKGdV3nNT/1Gr6wob/frbKsWuqNYWDH89WfkHS6WPSTUtUvRNdw9EnZYHABcObOe179P13tPDNxxUpuLpuanoa7KSHodOeW66TnxptaHntmvm/XN91XBRD4H1aO2e8drVz7RyQqJFT496JICLGGMFAD4DMI4x9lFEW6WTvx51OKwvcAepUc8Gl8KlrncMALeOdte91jMevPlQCXYc8y5EFA7yRRP8eWGJ5wNPK7hrCSVbpdbp+VDRysh48pJ+ALx7xID20M0LP+fp+rkWC8Oy+7NpVXpiSgEDNef8Qc55B855BoCrAKzgnP8l4i3TweqnRx1OR85UBT5Jg1YO9/je6QCAh7/1VG6Tz1iUB+Z3fz0QUm0Of5J8lJDtP/tn6UNPnVKod6Vv8b1wuThyC4xNjtH6cPvHpJ7SdtumSXj0gj744KZzvc5LtHq373FhUoyWxy9SHuveOtVnJg4h0RTTuUfyr6+1for3RCsVVmvoQ1wLcrAss+SMbJr64u0ndF1HL3WwBfynq5VVO1BW7cDmwyUY/dxKxTE9GTOA+zW4XBx3fbYJl7/5G9bmFyuOv74qH5mPLNJ87kWveX8wtZGNM3du2Rg3jeriNXsQ0F5oYo6qxrlcVhhuGBNSHwwFas75qkjlUIdql8aNMNF3d46qx5Z4aPUOGwm90k9lNzt/k5U9fVW1diPge+URPW77UHlrYebUTOQ9OVV6zADkPDBWcU6tw4W8E97/ngkWhj9nBa6cN7pnK7z76wEs3OquEy1P3QOA5xbnobrO5ZWyCGhnuqzbfwrL7s/Gguuz0L2175KjYrElueevGODz/E4awZ4QMzJVmdNQ1TicsNusigDwyz/HSmUtjRrTMy2kJbn2FpbBwpTBR726OgAkJ/p/GwJlWfhzstQTJB+/qC+uPtdTNnbJfdlo3jjRq0a3w+XSXKE7KcGK3m2b4PNc/zWp65wcb8pmdPrqhztdHDYdM1FrHC50b53qN0gD2j1qf98eUpNomIPEhpge+lB79FthiSVZkAk2SAOhTXz5/I9DqK5zYfqAdpjYJ13a30hjnPfezzf7vZZ4AzIY8spxM0ZkKLIgeqanai6k4HByzeGWH7ce85vb/NC0TKTabah1OBWTRXwl3HSftQi3fOBZDd3XfQa9k6C0grLWuDUhsSbmA7W8AP/nuYdxtrIOZ/3UtjDib+O6B/1ccRpzit2Gt6/Pwp+zOuLdG7IUdSf0jj3X9zRmh8ulGZCPlVRrZluIbsvuhi5pyahxuJBfWC7t95cZuWxXIWocTny/5Ri+33JM2r/872N0PV9OKwVT7wLJhJhZXA19AMC9n2/CvRN6Bj5RB6uFoUmSzXBGSXmNpxCUWBzo2cu9x0pLq+p8Zl/IhfLBM7lvOn7ecdLQTLw6J8eWwyVe+/u2b4Jp/dtg3tWDMa1fG3Sf5X1DMCnB6rXYQqCZii8u2YP5vygr+8k/EO4L4f0M9CG3+p/ne9WrJsRs4qK70S3NM0lhZV4R3vol+Ip3aqN7pqGdwRKf767xTBfXGuN++c+DALjzhNUTSrQE+qAoq67D4DlLsHafMrviWEkVft5xEql2G1oamDwz9ZUc/LzjpNf+e8b3BGMMFw1s53Ph4QQr8+qNv7p8LxZuPe7ztZ5Q3WwEgGaNPOPHWqvx+HL1uZ3wwJRe0uNku/8Pws4tkxUZOISYUVwE6q9VkxR+2uad4hYsu81iuCa1fMVzrdolYq70Q99sw5/e+E3a/80dIxQ/F3Cno8nrgnDOUSpbCmtfUTn6z16CM5V1eGmJcjbmO8IHRlmNstSrlm/vDDzRQ732oBabxQKHavLRxL5tcOcnGxWvVU4+5CGSpwIaGfp55rL+uFq2zqZdIxOEkFgTF4G6aSPtu/daGRZGWRjD0ZLAE152HS+Vsk3kU7ZT7N6jS+2auXvomw6VKPZ3a+1ZuHfLY5Ow/fHJXh8UX+YewYDZS7C/yD0G/Ns+T2rfxkPKeiLbj+qf1TioYzNcpJp5aLMwRQ66OmCunzUen946HIAnVz3ByrBXNj4NKD+4rnxLO1jLzfEzSUUPGpcm8SZufqNbyb7ai/WSt86eFPJ1v9rgXona35qMS3eexNRXcjBBqE0hzz7QKhR02RDteibiB8s943sgKcGKFLsNiTaLokf90Dfum5RiASX5DUn5iEPeiTLNyS7+XH9eZ8XjTi0bY/8z09FOGHp48kfl5JHWqUk4r1tLfH3HCPz24HgA7puDvmqXAMB6Hct4yVduCQb1okm8iZtA/do1g6XtMxW1SLHbwpotkecnl1ksAzqxj7sm9owRGQCA+yf2RJZGYadEjXa9f+M5SLBaUDB3Ou6b6Ll5VlrlwPajZ7GvqByP/7BDqsgn1tPwlTky+eVfvCaaBKIu3iQGPPE6T17aT/N5Qzo11yzE1CQpuHvV4rDHJ7cOw4c3e08VD8RITXNCYkHcZH0M7tRM2t5fXOFzkoVRrVPtKCyrwTUL1ilSAbWIyQ0uF0ejBCvuHt9D8zytSR7ZPbQrDh4SesXT5+Wgus6Fnunu4ZF7PtuMvBNl+HbTUencVI1hFgBoprN+xTHVEI96TNpoBcLnLh+Av3600dBz5EZ0o0VlCQHiqEet/robppr7GNixmbTtq/cqFlWyMOCj3w9iwZoDmqVFRVo3GAPV0RCnoxfIyoC+vmqfotdcVuPAS0v34OuNRxTP/ey24X6vLeqRrpz55xDqp4jj7Ear4qXYaeYfIeEQNz3qSGkhy+ctqaxDm6be459i+GJgfosAiRhj6JqWjNSkBM18ZX8CperN01jp3NfNVrXBsg8lwDMOnmK3obzGoevm7ITerbFsl3sBhC1HSjTPSbAyJNmsmtkok2SzOAkhbnHTo46U2bJSmMOfWY4lO7xT/z7/w137wsKAOpc7kAYqCWq3WXUF6YlhCFx6x+p9DW38ePcoPHVpP/TVsXLL/Os8N099rarDGEPuIxPwuayn3ys9Fd/dORLzNW6+BmPh3aPw24PjwnItQqItrgL10vvCv5ySujaHuhodALiEtLx5K/KlRWsr/GQ+AP6r/cn1a2dsCTEtwd5UFbM9WqXYce2wzrrGqOVDONk903D3uO64fUxXxTm1DhfsNqu0piQA/HxftmKYKVR92zX1uQwXIbEmroY+5GOs9bkG3nGD2RVq/pZ/0pMTnGi1eC2Wqz4ejNLqwBNltCQnWqUPqvsnuWcJXjSwndciCJSdQYg+cdWjluulsXhrpAQbCEX9O/juNfsr0ynqEGCKe5KBCSCzpvXGAKE93WUTcIzY8MhEbH50omJf33ZNcfW5ylrW4SqeRUi8i9tAHU7d0/wveNo8xOWb/uRjAgzge3FWubLqOrx3wzle+zPbpOK9G84xlFZ3a3ZXaYkqrcL+eiQlWBVlTkVje7VWPG4VpsV7CYl3FKh1uMtHPrToZJn3rMWFd+tfVSa7p+9V2/XUGVkw4xwM6exdWOihab0xNrO1xjP8EwOo1mSdUKin09P6hIToE3eBOhLDnvKbXkDgFc9vz+6KvgFuAh54Zpqun+2vzog4IaV1E7tmTZE+OrI0tHRs0RiL7hmtqEIXDsmqNqYk2pCUYMFTPmY8EkLc4upmIgBsf3yy5rp7oRjVvRXmXzcU+4srMHfRblTWOtG0keczrkmSTXHjbVr/tgGvKQ5HBKpIN6F3ulQFT23b7Mk4cqZSym5Ydv8Yqd4IoFyl3ajebYML8v4M6NAUt47ugkl93VPtLRaG3U9MDfAsQkjcBerGAdYfDAZjDJP6tsHH6w4CcM9QlE8iSbYrA7XeRVN3zpkcsKi+1hj1xD7puHeCu3CTfB3B7q1TkGBlqBNmFJqtihxjDLOm94l2MwiJOeb6SzY5cRkt+QomLhdXpOf9MWsCmif7Xq5KeT1bwBVe5Fkf905wj5U/PL23z6GVpy7pDwCYf93QiHxoEULqH/0lG/D6SnddZXkZT7GXDbgDqNZisaGQ96gvHtQed47t7ncCyxVZHTC5bxu6UUdIHKFAbYB4o1JecOmR73ZI27eM7qp+SsjkOdqdWzQOWLyJMUZBmpA4Q0MfBjwhDCuoF28FgL+NDX7Fcn/kPepAQZoQEp8oUBsgVo/TKmGaGmSR/ED0THghhMQ3igIGiAWa5IG6i1Cn4/xexieW6KFnCjkhJL7RGLUBUqCu9aTiDezQFC7OI1ZbhHrUhBCKAgZIQx+yMeqKWmdYVjv3JdSCT4SQ2EdRwAAxj/qFJXukZbmqap1eU6PDyeg6hYSQ+EOB2gBxvLi8xoE3V7tzqtfkF2PvSd8rlIdD//ZNpYp2hJCGJ2BXkDGWBOAXAHbh/K84549FumFmJO/dyie9BFtgX68f7tJfiY8QEn/0fGevATCOc17OGEsAsIYxtohz/nuE22ZqLheXquilUV1lQkgEBQzU3F09vlx4mCD8F+b6dLHHxYHznlkOABgXRM1nQgjRS9cYNWPMyhjbDKAQwFLO+TqNc25jjOUyxnKLiorC3EzzeX/tARSX1wIAPs89HOXWEELima5AzTl3cs4HAegA4FzGmFeld875fM55Fuc8Ky3N94ol8SLcNa8JIcQXQ1kfnPMSACsBTIlIa2IUrf1HCImkgIGaMZbGGGsmbDcCMBHA7gi3y7R+1MjASE6M3IQXQgjRk/XRFsAHjDEr3IH9C875j5Ftlnn1a+9dsH/xvdlRaAkhpKHQk/WxFcDgemhLTMpskyrVACGEkEigmYlBuHNst2g3gRDSgFCgDsLNozwruVTURnZWIiGEUKAOQgvZ4rUnS2ui2BJCSENAgTpINmFZrFqHK8otIYTEOwrUQXLQjBdCSD2hQB2kxy7sE+0mEEIaCArUQZo+oC0AgBYGJ4REGgXqIFmF2tQZwuK2hBASKbS4bZBaptgx+8I+mNKvbbSbQgiJcxSoQ3DDyC7RbgIhpAGgoQ9CCDE5CtSEEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHOM8/FXgGGNFAA4G+fRWAIrD2Jz6FuvtB+g1mEWsv4ZYbz9Qv6+hM+c8TetARAJ1KBhjuZzzrGi3I1ix3n6AXoNZxPpriPX2A+Z5DTT0QQghJkeBmhBCTM6MgXp+tBsQolhvP0CvwSxi/TXEevsBk7wG041RE0IIUTJjj5oQQogMBWpCCDE50wRqxtgUxlgeYyyfMTYz2u3xhTHWkTG2kjG2kzG2gzF2j7C/BWNsKWNsr/D/5sJ+xhibJ7yurYyxIdF9BW6MMStjbBNj7EfhcRfG2DqhnZ8zxhKF/Xbhcb5wPCOqDRcwxpoxxr5ijO1mjO1ijJ0Xg+/BfcLv0HbG2KeMsSSzvw+MsXcZY4WMse2yfYb/3RljM4Tz9zLGZpjgNTwv/C5tZYx9wxhrJjv2oPAa8hhjk2X76y9mcc6j/h8AK4B9ALoCSASwBUCfaLfLR1vbAhgibKcC2AOgD4DnAMwU9s8E8KywPQ3AIgAMwHAA66L9GoR23Q/gEwA/Co+/AHCVsP0mgP8Ttu8A8KawfRWAz6PddqEtHwC4RdhOBNAslt4DAO0BHADQSPbvf4PZ3wcA2QCGANgu22fo3x1ACwD7hf83F7abR/k1TAJgE7aflb2GPkI8sgPoIsQpa33HrKj+ssr+kc4D8LPs8YMAHox2u3S2/TsAEwHkAWgr7GsLIE/YfgvA1bLzpfOi2OYOAJYDGAfgR+EPqVj2iyq9HwB+BnCesG0TzmNRbn9TIcgx1f5Yeg/aAzgsBCub8D5MjoX3AUCGKsgZ+ncHcDWAt2T7FedF4zWojl0K4GNhWxGLxPehvmOWWYY+xF9a0RFhn6kJXz8HA1gHIJ1zflw4dAJAurBtxtf2MoAHALiExy0BlHDOHcJjeRul9gvHzwrnR1MXAEUA3hOGbxYwxpIRQ+8B5/wogBcAHAJwHO5/1w2IrfdBZPTf3XTvh8pNcH8TAEzyGswSqGMOYywFwP8A3Ms5L5Uf4+6PWFPmPTLGLgBQyDnfEO22hMAG91fXNzjngwFUwP2VW2Lm9wAAhHHci+H+0GkHIBnAlKg2KgzM/u8eCGNsFgAHgI+j3RY5swTqowA6yh53EPaZEmMsAe4g/THn/Gth90nGWFvheFsAhcJ+s722kQAuYowVAPgM7uGPVwA0Y4yJq9LL2yi1XzjeFMCp+mywhiMAjnDO1wmPv4I7cMfKewAAEwAc4JwXcc7rAHwN93sTS++DyOi/uxnfDzDGbgBwAYBrhQ8cwCSvwSyB+g8APYQ73olw3yz5Pspt0sQYYwDeAbCLc/6S7ND3AMS71zPgHrsW918v3AEfDuCs7GtiveOcP8g578A5z4D733kF5/xaACsBXC6cpm6/+LouF86Pao+Jc34CwGHGWC9h13gAOxEj74HgEIDhjLHGwu+U+Bpi5n2QMfrv/jOASYyx5sI3i0nCvqhhjE2BezjwIs55pezQ9wCuErJuugDoAWA96jtm1ecAfoDB/WlwZ1DsAzAr2u3x085RcH+12wpgs/DfNLjHC5cD2AtgGYAWwvkMwH+E17UNQFa0X4PstZwPT9ZHV+EXMB/AlwDswv4k4XG+cLxrtNsttGsQgFzhffgW7uyBmHoPADwOYDeA7QA+hDuzwNTvA4BP4R5Tr4P7m83Nwfy7wz0OnC/8d6MJXkM+3GPO4t/0m7LzZwmvIQ/AVNn+eotZNIWcEEJMzixDH4QQQnygQE0IISZHgZoQQkyOAjUhhJgcBWpCCDE5CtSEEGJyFKgJIcTk/h/C5Usiz5J1cAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(2)\n", + "\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABAq0lEQVR4nO2dd5gURfrHP+/MbABEAUVEUVeQpJ6ioqKgh4cBAfU8Pc+MATFhOhNmz3BnOLOeOSvq705RBCOKCqLAooLkuGTJGWZ3Z6Z+f0zP7ISe2Yk7Yd/P88wz3VXV1W93V3+7urrqLTHGoCiKohQvjlwboCiKomQXFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocV64NsGOXXXYxFRUVuTZDURSlYJg8efIaY0xru7h6hV5EXgUGAKuMMQdYYe8Dna0kLYANxphuNttWAZsBL+AxxnRPxOCKigoqKysTSaooiqIAIrIoVlwiNfrXgWeANwMBxpi/hWT+KLAxzvbHGmPWJLAfRVEUJQvUK/TGmO9FpMIuTkQEOBP4U4btUhRFUTJEuh9jjwZWGmPmxog3wJciMllEBsfLSEQGi0iliFSuXr06TbMURVGUAOkK/dnAu3HiexljDgFOAq4SkWNiJTTGvGiM6W6M6d66te33BEVRFCUFUhZ6EXEBfwHej5XGGLPM+l8FDAcOT3V/iqIoSmqkU6M/DphljFlqFykizUSkeWAZOAGYlsb+FEVRlBSoV+hF5F3gR6CziCwVkUusqLOIaLYRkd1F5FNrtQ0wTkSmABOBUcaYzzNnuqIoipIIifS6OTtG+IU2YcuBftbyAuCgNO0rOmb9voktbg/dK1rl2hRFURoJeTkytpjp+8RYAKoe7J9jSxRFaSyorxtFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXLqFXoReVVEVonItJCwe0RkmYj8av36xdi2r4jMFpF5IjI0k4YriqIoiZFIjf51oK9N+OPGmG7W79PISBFxAs8CJwH7AWeLyH7pGKsoiqIkT71Cb4z5HliXQt6HA/OMMQuMMTXAe8CpKeSjZIkl67ZhjMm1GYqiZJl02uiHiMhUq2mnpU38HsCSkPWlVpgtIjJYRCpFpHL16tVpmKUkwuRF6zj64TG8P2lJ/YkVRSloUhX654AOQDdgBfBouoYYY140xnQ3xnRv3bp1utkp9TBv1RYAfl68PseWKIqSbVISemPMSmOM1xjjA17C30wTyTJgz5D1dlaYoiiK0oCkJPQi0jZk9TRgmk2ySUBHEdlHREqBs4ARqexPURRFSR1XfQlE5F2gN7CLiCwF7gZ6i0g3wABVwGVW2t2Bl40x/YwxHhEZAnwBOIFXjTHTs3EQiqIoSmzqFXpjzNk2wa/ESLsc6Bey/ikQ1fVSURRFaTh0ZKyiKEqRo0LfSNHu84rSeFChb+QIkmsTFEXJMir0iqIoRY4KvaIoSpGjQp/H1Hh8PP7VHNy13mDYM9/MZegHU6nx+Gy3WbR2K2/+WGW7rR2TFq3j/yqXMOv3TRm1XUmdl8cuYMXG7bk2I2XGzl3NmFmrktpmybptvPbDwixZlBjDJiwOjhjPNL8sXs8nU5bz6riFLF2/LSv7iEe93SuV3PHWT4t48uu5OES49riOLFm3jX9/OQeA/XbfkQuOrIja5q/P/8iqzdVsrfby5NdzAbj++E4x97Fg9VZu/t9UAKoe7J/5g1CSYsm6bdw/aiYf/bqMkVcfnWtzUuL8VyYCyZWnc1+ewOJ12zjt4D1o0bQ0W6bF5bbhv1HqcjDn/pMynvdp/xkfXB42cTGj//7HjO8jHlqjz2MCtXG3x//vC+kqU11rX6PfuL3WdlulMPD4/Nd4i9uTY0salk1uf7nNdW+wWG/KmWSzdawNiQq9oig5J9cCX+yo0BcQmbwZ9L5S8hHR3r5ZQYW+ALAr+7FuCBVwpZDRmn12UKEvAOzKvt4QxY1eXiWTqNAXGYm++eobcn7S2K+LNt1kBxX6AkDLvqIo6aBCX6AkXPPRNgBFySty4V9KhT6PMSk0xAe20FdgRVECqNAXAAHRzmTlXCv6itJ4UKFPkkPv+4p7P5mR0rYdb48/2dbaLdVUDB3F6Bkrw8LtKvb3j5rJ4rXRPjMiK/IvfL8gyo/NoDcmceuHv0VtWx0xinb0jJVUDB3F2i3Vce1W/NwzYjrd7x+dkbxCr/nDn89i/7s+z0i+6TBv1WYqho5i6tINaee1fMN2KoaOYvy8NUBqb6/ZxuszVAwdRcXQUVRWrYsZF2BLtScY9vm0FQ1tblxU6JNk7dYaXk3R+VKtN35hnrHCL8ivj68CQOppf/lh/pqE9vvl9PAHx+iZ9g6nNm0PH3YfOM5Zv29OaD+NndfHV7EmzYei3SX/z7fz2VqTe1cWX1vlZuTU9EVskiWc705aknZe2SK04vO/yUtjxgUIdVb20tjcOmiLRIU+j0mnlpOHFSRFiUl9lZpiwuSg4bReoReRV0VklYhMCwl7RERmichUERkuIi1ibFslIr+JyK8iUplBuxsVydwDqu9KIZKPTTehJGJePh9CIjX614G+EWFfAQcYYw4E5gC3xtn+WGNMN2NM99RMVJTGQz6LRUNQKFNbpnOd8rJ7pTHme2BdRNiXxphAg+5PQLss2NZoSfTVztYHTibtaOSik0saUUtG3lIoD51EyEQb/cXAZzHiDPCliEwWkcEZ2JeSAukKdvEU98JBH7L5RWTlq9AexGnNMCUitwMe4J0YSXoZY5aJyK7AVyIyy3pDsMtrMDAYYK+99krHrIInVk0imXbMQiuIip9CuG753p7eENidgnw+LSnX6EXkQmAAcK6JceWNMcus/1XAcODwWPkZY140xnQ3xnRv3bp1qmYVFakUnDwua0qBk42HUEA6tNxml5SEXkT6AjcDpxhjbGe6FZFmItI8sAycAEyzS6uEE/WaGKOG31C1P70JlUxTCN0pC8DEhEmke+W7wI9AZxFZKiKXAM8AzfE3x/wqIs9baXcXkcDwzzbAOBGZAkwERhljcj+8L4/JxMefIiqbSiNCy212SaTXzdnGmLbGmBJjTDtjzCvGmH2NMXta3Sa7GWMut9IuN8b0s5YXGGMOsn77G2MeyPbBpMO8VZuTGtU4edE6Ji8KHxZd6/VFhcXDGMPEhevYVuPh5bELmLhwrX06DNOXbwyOTAwwqWo9Xp99fTt0cumN22uj3CDY8duyDWyv8bJk3TaWbdjOlmp/Hpm+CScuXFdw7bxbqz38tnQji9duY/mG7cHwiQvX4bO5BoFr2xB2fTH9d5as28aqzW7mr96Scl7LN2xn5NTlLFm3jQUh+azeXJ1QvvNXb2H15rp7KHSkaCShTTZTlmzAHTHZ/SZ3LdOXb2TCgrXBtKs2uVm4ZmvCxzNt2UY2u2tZun4bS9dv443xVcFJyOtj4sJ1DP9lWUJpF6/dxswVm8LyDlx/u3Ie601h2rKNwXsu06T1MbaYOO6x79mhzMW0f5yYUPrTn/sRgI+u6km3PVsA8O8vZ/PCdwsYeXUvDthjp3rzGDZxMbcPj27NsqvZ939qXFTY/yYvZa9WTbmmT8eouJfH1Q3BfvWHhbz6w0KqHuwf156LX6/kxP3b8EWEywRPjIdJKoyesZJBb1Zyz8n7cWHPfTKWb7YZMuxnxsxeHVyverA/381ZzcBXJ3J7v65cekz7sPRv/riIu0dM56ULunP8fm2S3l+iXWwvf3syY+eGu8Ko7zrH4qgHv7HNp8e/vsbrM9zWr0vc7fs8+h2OkKLb66ExMW35v0q/64NRU1cwKtSlgrX9wFcn8sviDQA88bdu/PngPTj8n1+H2RUPn88w4OlxHFbRkklV64Phd4+YntD2Z77wY71pAhzzyJiosJ8Xb+DMF37kybO6cWq3PerNo9rjZcDT4+i57868M6hHwvtOFHWBEEIqT9M1ITWYWSv8PmFWJ/hmsHC1fe0k0TZ6gLmrwmta6Ury1KUb08whPoFaXjI1s3zglyUbosICNXu72m6gRrwsTq3WjmSb735etL7+RGkS663RjkSTVq2JcV6s7QMiD7B4XXLnMCQbJmfo/KT6ArokQdsD5/jnRRtS21E9qNAripIUBdbqlhUK7RSo0KdJNr/M50thKqbeB6mSr+JWCL1X7Ij5jaYwDycpclGWVOhzSKHco8U0FFxJn0Ipt5kkUpsL7RSo0OeQ+p7shVaYlIanUMtIzDeRPH1ziiRbZmbLhbEKfR6TyCWPul0KxK9NgdzPQZLtDpru8eVrU5GSHIk2rWX7rVmFPoMke28m+gqcnD/69BQi2/pSqG3KqZL14y3Q01lo4ygyaa5dkcj2ZCQq9Glid9Fyee9pe3rDkU2tamTPQ8UiW/evCn0ek5pTs8yrj4pO/pKLS5PNB1wuptlrDKjQ55DG1oxRbDS2y1dIb4v50jSU/Led7NhdVC4Q3p+0mDs/ms5Pt/WhVbNS/v7+r3z4yzKO67or1/bpxMnPjKNzm+YMv+oompbWHfq2mroRsR6vD5cz8effxa9XMmJIT0555odg2IWvTQLA5ZCY7gOuefcXRkxZbhv3w7y1VAwdFVx/+pt5MfcfKTa13tgF5ZVxC7lv5IyY8QArNrqjwmo8fj8kn09bwdqtNZx7xN5x8ygmPF4fJzz+PZvc4aOmI2/gMbPC/RDFYvKi9Xw1YyXrt9Zwc9/O7LxDWTDuv5VLWLU5sVHVj3wxiz5d20TZBX6fS3d9PJ39d9+RtVtqeHz0HN69tAdHdtjZNq8HRs3gpbELo8LHzl3N0R3rXIYHRGj8/LU89+18rujdga3VHu4ZMZ07T94vpq3j561h6rKNXP7HDsGwZCo5kSkrho7iiH1aMezSHkxcuI5flqznyt772m8rEvcVpNbro+8T3zM/ZJT6Lf+bGpXug5+Xcv+fD2Ds3NWs3OTmtEMSm1Tv31/O4Yj24ec98h575ItZWf/4XlRCf8sHvwHw8OezePD0A/nQcko0euYqRlsOwWav3Mx7E5dwca86PyvDJiwOLk9cuI6j9t0lqf2Ginwo8XzExBL5bFKfyMfio1+XcWyXXbn87Z8BMiL0eVLhqpcfF6xlgY27hkhBvuj1SWHrsY7v9OfG16XB8PAZBwXXbwoRmPrOz7Nj5vPsmPm2cWPnrubdiYvDws5+6aeYPl7sRB7g/Fcmhm2zapP/mGes2MSMFZu4oncH3vixiv9OXsouzcts8wA45+UJAGFCny4TFq6jsmodZ7/0E0BMoa+PcfPWhIk8wPuWH55IXvh+Pk+MnguQsNAD/PX5+H5zYl3HTKJNN0TcVIXzdgoUjmAGKJbmjkQPo1iOF2L0Fslw+bOduSlG2kTeCjLZhFNITVeRNEqhL6abr9AotAdTujS2421I4ol4oXz/aqhvCUUp9DriNLNkoywWyH2YMln1gVTPBSnkmqeSHYpS6BsTDSGYjblSGk9TtbaupEtDlaFGKfRxX+v05m0Qil0k0z2+tLYvgAp9rLeSfC4WoV0f86X7ZqIUpdAn2xdVB2nEJ5O6USxNNobEjiUbx5srjYm33yK5rA1OQ13KohT6tNASqxQ4WoSVSBISehF5VURWici0kLBWIvKViMy1/lvG2HaglWauiAzMlOHpUCy1SiX76LteHZm8bzLRKybetclG00o2PnJH2pmtt7VEa/SvA30jwoYCXxtjOgJfW+thiEgr4G7gCOBw4O5YD4SGpJh0vpiORUmM+rSgULoW2mEn0OkcTSGfi0ySkNAbY74H1kUEnwq8YS2/AfzZZtMTga+MMeuMMeuBr4h+YOQcr69u2efzT9RrjMHn8/8Cy/n4AcZr/PZ6vL6kJnFOhlqvD58vsuZhgmGR+40Xly1C9xmPWq8veB0T3Sb2PhNL5/H6gr/oPBIvWx7L9vrOaaxjCtjg89WfR6h9dcvhcd4Qu+ONAg+1K9XzbXd+fCFhoefW66v76uaz2c7rM7hrvdR6fUk9RLwheaVbrL3WuUjkvGWCdFwgtDHGrLCWfwfa2KTZAwgdT7zUCssbflqwloc+nxVcP++VCVFpLv9jB57/LvvDlFPhkynL+STL7hQ+m/Y77W/7NCzsuMe+Y8m67bxw/qFc9PokRl3Ti/133wmAf302ixe/X8DIq3sx4OlxvHphd/7UJbx4ZPoD+D0jpvPGj4tiDvMHmLp0A6c88wNddmvO59cdw5//M54pSzbE3SYWAtw23O9yY8aKTVHxgeNbv7WWfW//LGY+d308nbd+WkS3PVuEhS/bsD0q7b63f8ZuO5bz+6Zof0ShRLpjCN0+lF/vOp4WTUsTzuvlceGuEjqElIkXv18QNx8gWIZSOd8X2xzTOS/V3av73v4Zn117NLvsUMZhD4zmzgF+3zt2z89Qu586++CEbXjq67nB5YP+8WXC29nRIeJ+CpCtF5CMfIw1/sdtWneuiAwWkUoRqVy9enWa9tS7s+Di2Ln17+uVcfUX4sbG/NVbqfH6GD1zJQA/L94QjHv9hyrA748E4OuZdQ6/svUi/caPi+pNM27eGgBm/b4ZgClLNtS7TSx7Q4vY1KUbY26/YmO0YIfy1k9+u39NwBagXpFPhkQcqH07O717MVOMScCOX5dsYOn6bQAM/2VpQvmu3ZKYE7lCJx2hXykibQGsfzv3fcuAPUPW21lhURhjXjTGdDfGdG/durVdkqzgSMhfRgMYUkQUU3fV4jmSwqCxn+9cf4y1YwQQ6EUzEPjYJs0XwAki0tL6CHuCFZZTJMZyLOza+ZQIbNpy8+0zmF7GwiTRyxZa3vRah5No98p3gR+BziKyVEQuAR4EjheRucBx1joi0l1EXgYwxqwD7gMmWb97rbCskkTLTUKNYlpmkiPyfGnHB6WhSLaXTWN5ICT0MdYYc3aMqD42aSuBQSHrrwKvpmRdA6AalCFUzQuOYr5ijUXAE6XRj4xNpI1eSYCwphv/cjGc2nzsUlvMpHu6i6DIZYVGKfShI9wSESO911OjmM9bMR9boRJ6Lyd6eRrLZWycQh9SILQGkCFsnpiBm0j9oyvpkEzpCRRDfRMLp1EKfSjF0LyQF4Q23eTQDCVxtOw3HopS6JOZYUp9YWSefK1MpVLLiz1faXq2QO7fdPLxOjX0GIzGUvMvSqH/ZMpyajzRfkUC/LbMP5JxUtU6nhg9p6HMKhruHzkjuFxr+Rh5+pt5rNrkZt6qzcG4EZZrhm9mreLJ0XMZP39NMG78/LW2w/wDeLw+PvplWdI34ke/LKPW6+OXxeuZt2ozo2es5JVxC1m3tYZ/f2l/rcfPX8PitduiwtduqeaRz2fbbvPNLLvxgX4CrhEgvpiuqGeU68H3fsn3c7I3MvX4x79nwNNjs5Y/2I/4vevjaTGv/T9GzGDk1HCXHo9+ldg9umKjO/jwDIx+ro+VGRxpnM9IPj7RunfvbiorK5PermLoqODy4RWtmFgVu8t+1YP9w9Ir6bNHiyZxxRvgvlP3586PpwNQXuJg1n0n2aZ7dsw8HvliNk+e1Y1Tu9XvHin0Wl7bpyNPhvglsWPGvSey313hY/cifbD0f2os05dH+7FJhKM77sLYuWs467A9eW/Skvo3UDLCJ0N6cfIz43JtRsqUuhzMud/+nqgPEZlsjOluF1eUNXqAuasSe6IrmaM+kQfC2jzctbHfulZZNa31W2uStiMRHy6JeA2sWrM16X0HqLaOTVsGlXygaIVeUdIl/951lWInW/UCFXpFUZQiR4VeyUuKpTadh5/AihptKrNHhV5plCSiByrSSrFQtEKv/eOVXBLoD67FUEmGbNUtilbo87HbqNIYXU40viNW8o+iFXolP0llEonCRiscSu4pWqHXppvCptDlMdfuDRorhX7ba/dKRWlgMuF3RVsQlXwgoRmmCpF19YyoVPcHueGN8VUx46o9Xs58/kfuGLBfMGzD9loqho6iYuemfHvTscHw24b/xt6tmnLZHztwX4jvHUi9Vnfy0+OCfpDSJeB+Q90fNCz9nypc9wcA1XF8dKWD1uiVBmXeqi0x4xau2cqUpRu5Y/i0YNhXM1YCUBXhdGzYhMX867NZALwybmFGbMuUyCtKvqFCrxQd2lyiKOGo0CuNEv1YrzQmUhZ6EeksIr+G/DaJyHURaXqLyMaQNHelbbFS9KT7EVQ1XFHCSfljrDFmNtANQEScwDJguE3SscaYAanuR2k82HVJVNFWlPTJVNNNH2C+MWZRhvJTGiENPY2cojQWMiX0ZwHvxog7UkSmiMhnIrJ/rAxEZLCIVIpI5erV2Zs+Tcl/dLCRomSWtIVeREqBU4D/2kT/DOxtjDkIeBr4KFY+xpgXjTHdjTHdW7duna5ZSgGjNXtFySyZqNGfBPxsjFkZGWGM2WSM2WItfwqUiMguGdinUoRoTV5RskMmhP5sYjTbiMhuYvVjE5HDrf2tzcA+FUVRlARJywWCiDQDjgcuCwm7HMAY8zxwBnCFiHiA7cBZRv0HKyH8vtGNwwEtm5byuzUh+IqNbjZtrwVg/qq6Cbq31XjYuL2Wtjs1CYa5a71Rec6PM/o2wIZtyU86riiFiuSj7nbv3t1UVlYmvZ36r2kcPH/eIVz+9s8AdNmtObN+35xjixQlc1Q92D+l7URksjGmu12cjoxVCo5fl9T5pFGRV5T6UaEvINrJKjrKUhxkx8OdoijFSdG6KS42DpE5fFh2T3C9wj0sd8bkGO1+qSjJoTX6AiFU5AF2YJt9QkVRlAhU6AuAcqqjwn4ouyYHluQJWqFXlKRQoc8yxzsqmVN2Ph1kGZ+X3sJfnd8mncc1rmhfcTtJ463Rq84rSnKo0GeZl0ofo1S8fF12E10cS3ik5EXbGno8Bjn93Ub7Vz9A/+p/BsNvcr3HMyVPJpVXF1nMKY7xuPAktZ2iKIWLCn0WkRi9Y2aVX2Sb9nznl9ziepdTHePoIMtw4KOrLKJU/IOCZpi9mW4qgttc5RrBAOcE9pWlNMUd046/Or9lVtlAyqjh87KhPFX6DHe53krr2BRFKRy0102WuMj5GTvJ1pjxD7te4GZPcEAxh8oc7it5PSrd054/B5eN9Vx+2XMSg1yfBcNHl90MxO6J80jJiwB8X3ZdMOwC11fc5bkIMFSVn8tNtYP5r7d3PUeVH+TjID9FiUdnWUxTqvnFdMzJ/rVGnwVas4G7S97iOteHYeGfeHsEl890fUcztgNQRg0HO+bZ5nW16yMAjnI/FQz7wXeAbdrLnJ9EhZVRN9S/jWwIizvd8T1V5ecC/odBKzbFOKL8QnVeyVd2ZCsdZWlYWFdZxBdlQxledneOrFKhzziCj0GucFcMQ2quppv7Ba6uvYbu7ueC4bvIRtqyltnlF3J7Sfx+8atpEVwe4+tmm+bWknfpJEvCwvaSVTHzfLT0+bD1f5c8T7s46fOFD39ZlmsTFCXIza73qCo/h3+5XmJq+aV8VXYzJSHfwP7q/C6H1vlRoc8A5VRzrfMDjpCZLCw/j8tChL5/9T8Z6TuSDTQHYA078aqnL+Cv+f9YfrVtnltNWdh6bVgrm3CY+1m6ul+lm/uFsHRflt0SXB7o/IKvrGadsd66t4A7ay+03eefnL8yzmre2VNW8mjJc3n50XbdVnVIpjQszSPGrQS+v/V0/MaVrhEAnO0aE4z/m9O/7MDHxa7Pg+GHyuxsm2qLCn0GuMP1NteXfMD7ZfeFhVe4h4V9PA0w1dcegP+V3RsVV+F+h87u1/nI2ysY1tMd3bNmNS3ZTjkbaE6Fexj9qx8Ixu0rSymlln+UvBEMu9UziNtrL2Zf95u85T0hLK9jqh+PyN0wtux6TneO5dGS51GUxszJjvH8Vj6IrrKIoa53GV82hIXl5+HCwzul/7Ld5v6S17jS+THHO8KdM35Q9o+GMDkKFfoM0Mf5S1LpP/UdESdWqKaUez3nc17NrVS432EZ9c+4Nd3sE1weXXYzc8oHhsUvNbvyjvc4PDbf3xebNmHrgXZ7gFOd49lHVtS7f6U42VeWUlV+Dje4/i/XpmQcwceVzo+oKj+HqvJzYqZ7uvQZwN9Ec7nrE3aXdQDMK78gmGaDaRa13c0l7/NC6RMA/L3m8gxanjwq9Bmg0tcpbP0z72Hs5341ZvoaSsLWA4Vgo2kaDKumlHG+P0ASsy6dXXN7VNgkXyeur7kiKvxn374AfOs9CIBu7hd42XOSbb5jym6IeyMo+UcLNoe1E6fK7a53gLpOAcXCJc5PWVh+HjeX1D3A6vs+daxzSsy4E6sfirvtcF/dG3prNgSX28tydqL++RPSRYU+BQK1nOdKHqeq/BxOdv7ELN+eVLiHUeEexhW117ON8rh5nFZd9wr3pa877d1v0636xbTs+snXNSrs77VXMNx3dFT4BTVD6Vf9Ty6s9bfpb6A593vOD0tzWc11Yet7oJO2FwK7sZZfyy9jbvkFvF4SW4B2Yy0DnV/EzetAxwIAfvTuFwwL1ICHOKNHbBcCZdRwZ8nbUeG7hggwwOXOEQlVcMZ792MlrYLrf6x+LCx+gq9LsGs0QB/nz9aS4ZuyG5lSPpgmccbBZAIV+hQI9Fs/yTkpGNbFsSRWclt+M/vwibcH59cMZQtN8eEIKwypYHAwpOZq5vj2CIYtNfbNPltoygyb7wc93U/y95rLqXAP4wvf4WF5/VB+LeqAIP85zflDcLm3cwqdZbFtup/Kr+YfJW9wi+tdTnRMsh3gt7P4/f03l23szEb+U/JEMO7Gkv9m1nAbDpNZMQcepsr5zq/C1gNv5JdanSgCD7KhJe8F02wx4RW3NWbH4PI5tf436UBFb5HZLWxMyx21FwMEe9w9WPIyAC1CavIzyy9O76DqQYU+Q8zy7ZlUeg8urq69hrG+AzNqx0jfkfSv+RczfXvy95rLk354LKM1H/qOCa6fXXMHF9XcFFzv4/jZbjMlj7glRKAAvigbGjf9Fa5PeKH0ce5zvRYM24FtvFtyf3C9pWxmcvkV9HNODNu2j2NyBiwOZz+pwoWHC52f89+ye5lfFvqmaegm80inwtFK6iarecNzPBfV1FXc/HlHc6/n/LBOD8dWP8ZH3qOsZlf75tX7as9lvq8tc007ANZQ93CoKj+HPo7wb3vJukZJBp1KMEl2ZCtTyy8NCzuh+iEWmrYRXSCLi9BX2MbsCz8fudj5Gb/6OvCz6YQDHwvKzwPgptrBwVHR4O/RFSpKz5Q8yQDnhLC8jqt+mBGld9JU4ovOKtOCXa0BeI/WnsHT3r9QggfBUENJsLzYlZVA3BnVd1FpuoTEGJ4qeYZTnD/ylOfPXBPxXeDu2oFc5PycCsdK7qs9j1e8/eLaGIsRpbfTSZbSpfp1AucjYNMEXxeOcMwKpq02Lh70nM1r3r4k870sFvGagj72HsW1tUN0KsFcshNbuNn1Hgc4FgLwpOc0AE6uvp85Zs+iFnkIiISfm1zvxUmpNBTN2cb8snO5q+QtPiy7h6ryc5hdVtfbKtKlRaA31U5soar8nCiRB3i39IEokQ98sA9lZMgo7xtK/gfA6NIbmVM+MK6YneoYF1wOdC9uxSarueRcTnH+CMApjh+jtv1HyRtUOFYCcIIz+Yog+CfwOdCxkHKpxU64Q0Ue4Oraq3nNe5Jt2lTo6H4zKuyh2rMAfw+3w2VmRvYTSdpCLyJVIvKbiPwqIlFnX/w8JSLzRGSqiByS7j5j0ZoNtGZ9VHgT3FSVn8PdrjdstkqMM5zfcaVrBMNK/d4jv/V2o8I9jN9M+5TzLCzqCvpVrhF5OZAqlzTBTRvWpbx9OdU0Y3uwffjL0rrmstdKHuK9Uv8Yjd6OX7nR9T4Av5UPwinhb+QllgO8e2r9Xf/e9/QOi+8kS5hSPji4Pt/XliPczwQ/traWjURydW3doL6bay9lUM0NPOz5W1iaK50fsbcjutfKYTILMBwiczjKMY0nS/8TFj+h7Ep+Lo/uehgQ9Fgc4ZgV1nslUU5xjgfgF6vXWYAe7qfD1o+pfpzHas9gtO/QpPcRj1pcYaPjAZ7znhxcDgy+yjSZqtEfa4zpFuO14SSgo/UbDDxnkyZ9arYxqfxKJpVfxV8c31NVfk6w//cxjt8AuMj1Bam27bWTNWHrs0xybfLFwKCaG4LLn5XemkNLGo4DZEG9FYTdWcPM8ouZUD6k3vyceNmFaDEdXXYT08svCa53ciwjUFaPdU6hh2MmQ13DeL30YYa4Pq63N8jb3uMAuMUzOOxtLHTkNEApHlbSik99h0fl8YKnP+3db7OZum6/n3qPYLTvUNyUcbC7bjBdaDfFUP5bdi+9HVP4sOyeYCUplEj/S5HcWXshJ1ffbxs3qfzKuNsGOMP5XfABeqHrSwCuqw3f9nd2DltfbNrwlPcv+LLQ6LGGnYLLndxvABLsh782pB0/kzRE082pwJvGz09ACxFpm/G9lNYVxscsHy5jym5gf1nIQY75wbiznGOiNq2PVmyyHhJ1bK+n+2QxMtp3KP+qPRuAjo7G4W9mZNkdXOT6gr/HGDDU1zGR8eV1s33Fm7jdgY/55edTWX5FVO0/siIBcIAspAV1Hw4vd420zfdAd3S3XE+Ey4zLI7rKjvYeDMDLVjv3J94jw+Ifrz2dpzx1QlfhfocK9zC2hIj+enYME/tQjnA/E1x+vfThqPhIewLcURvuwvst7wn8ZtoHa9zDPMcyzHNsMP4S56i4LroB/l3yQlTYErNrVNgUa8T63bUDo+IyzYHul+jpfjI4pqZb9Uv85OvK3hL/TSZVMiH0BvhSRCaLyGCb+D2A0L6HS62wMERksIhUikjl6tWZ6689quz2sNchu6/q/pszdk3/07Lw2utttZfESFn8vOAdEFx24o2K7yB1NdFiIvBh8K/Ob6kqP4cdra5xz1sjHwMEPoTacWfIHADPlvq9kQ4vvSuqdj7B5/9AObLsDvZ3VNVr2yZ2oMI9jPZuf9/whb42UWk+9x3OfF9d/WpQ7U3s636TNyx3GBtoTj9rUpsB1ffzpPd0ttIkJAf7Nur17Mha0zy4/qTnLxxd/TgracU47/4xbf484g0iMIBvhPcourlfoFf1E2Efcn9nZ06tvpd7PRfwqOfMYPidJe8woeyq4PqFzs+DTVuA7aCxu2sH2tbUT6253zonJ8a0O1NsolnUiPcFvt2yNgo9E18QexljlonIrsBXIjLLGPN9spkYY14EXgR/r5tUDOnsfp3Z5RfGTXOW61uGevzPo1Jqudo1nKtdH/G+pze3eOyeU7Cb+Nv9b629hHe9fVIxrYiou+Hnl58fdjOe6JjEC6WPc1nN9XzhOywXxmWc0N4ld7veCL7ZTS0fzAfe6IFo8dhZ6txAbzelMd1TX1MzJNgMFMuXSoATqx8MLvtw0Kv6ybA+3qH0qXmUIx3TmefbHYis9cMMU5FSj6rTa+7h2zJ/s16lrxNLLJcavZzTo9I+VHsWX1rt3vu636QFW8OaMgJsCHl4BJhi/A8DN2VcWXMN/7Eels3F/21jtPdgjrPckXzp7c5U057bXeEDo57w/CWukNu5CGkoXvb25y3vCXxmDEhmPv4GSPuojDHLrP9VIjIcOBwIFfplQGiDdjsrLONUU8pJ1f+iqyyiv3NCmA+av9dcHmzSCRDqD+Zvrm9thT50sIaKvJ8+1Y/wddlNUeHXuT4A4FTnD8w27agymW+ha0iasT0o8kBU893pzrHB5dOq/xH0N15Vfg4nV98f9qG+FZuCPUpWmx052jmN2c4Lo/Y5y7cnK2nFYl9r9nLUvdlWuN+hDes53jmZj709w9rNQ4k1QC7Aj77YtexUCb3OP/nqRtAuN63YXdbxg3d/3vf2ZoSvZ9h2Hly2Ip8In/p6AE+FhR0Xcr+PKLszLO5tTx/u8OT3m/gC438AZ1rkIc2mGxFpJiLNA8vACcC0iGQjgAus3jc9gI3GmKx5yZpp9uZD3zHcWFs3e1N393N86DuGdWYHAB4teS7mx6w/yAKqys8JTgpyhtP/zLqv9lzb9I2R+WYPNhv/a/2JDv/o4BI8dHX4R2D2c04M1vAKmdOc/q6Am4y9qAb4g/vlqJmDPim7g6ryc7jV8hUT2rOkdUjNHmC6b2+6uF+jwj2MvjV+lwXH1ER6LBVW0oq3vcfHFPlcEhgVGtrN+KjqZ6hwv8O5tbdHiXwmOML9DG5TUn9CsGZTa7yk20bfBhgnIlOAicAoY8znInK5iARK9qfAAmAe8BKQ2KfyNFnPjozxHsTFNTcGaw3rrdfB0JpYKC+VPMonZXcAML38EpqxPTjg5Hezs+02jZXnPf4uYS+UPs6DrhfpZfVsKiZ2sB72f6upqx2uMzvQp/qR4Pr5NUODwhsaHuAy1yjru0VsBtQ8gJuymPGfeQu5GSzztdMAK2lF1+rX6k13ZvWdWek9U0ikdfTGmAXGmIOs3/7GmAes8OeNMc9by8YYc5UxpoMx5g/GmNRGOqTARbW38I2vrtv++TXRXQJDnYsd7wwfzh3a3W2UrwdKHb+FuEU+y/Utr5VGi1yXGD5WCoV9Hcv53bRkptkrGHZo9fMsNG3xGAcDa24Jc2Ex3+xh28Yd2cx1ZnXdg+OU6vtiuql40vMXAK6ptZ+cRiHq3A2quYFvvN2C69fVXMlEE+3sr7FR3MM5I1jOLrzk6celrk8BeMnTj19MR3q6n7Qcdtlj5xWysfN9DB8959XcytvWB8TPy4ZyiPt51mWpb3C2CTTbgdDT/SRNpRqDAwPsWx3t/TDAoJobeLn0UbabUppI3WxY831tObnmAbZRznHVD9NBljPVdIiZz+OeM3jcc0aGjqZ4qXAPw4GP7jKbiaYrY31/oK1nbcF/I8okje595gHPecH2xAc8/q5wy2jNNTV1XbQeqT0zbBs7P++KcLj72ajQH3z781htnTj9XH45B8r8qHQNTUfLtfR+UpVQ+siJ0pfROuicqj5G+w6lwj2MXtXh7ezH1zwSdF89z7TjC5tBSkpq+HAEa+7VlKrIR9CoavTxGOHryfzqPZhu9gaELo7FnOz8CYh+PVT8rKJlVJjBwVPe0+jiWBz0dNjNMY+p3tg112zixIsDE5w799Oy2xLqQhgYWGc3aUuirGUnBlTfTzWlCT8kFCUbqNCHEDq/6/2157HG7MQ/PdrbJh4V7mGUUsuc8oEhbaNCdcgsWveWvMGbDTAIxY755edHhTXFzTbKaEJ1zBHON5f4B92M8x1gG58o0xqNLyQln9GqagxW0op/eAYWvVfKTFBDCYe5n+Wy2r8Hw57znJJDi/zYjdwF/0fiW13DmFl+sa1ztlDHeKtt3loUpdBQoVcywmpahj0U55g9w5pIqsrPob0sr9cvSSZ5rSTcx8qlNf4HUVtZx2XWbEKBUc8BHPiYVH4VilJMqNArWeW6mrphE9+U3ciMLE+Z5sLDmc4xtGUtxzjD+/ZPsHpPDQmZ0GJc2bXB0c8OfPxWVtelNrTrraIUMtouoWSV8TZD7supjjtAKB3mlfv9sId8ImBo7SAqfZ3YhN8VbGAEb4D7Xa9xu+cS/iALaBYy6UbkaFdFKVS0Rq9klVW05LyIgWpDXB+xq80EMenyQsljUWGjvQfznvdPzIvT6+Vc19cAYS5iQ324K0qho0KvZJ1xvj8E3dACDHF9zMTyq/iDLLBNf5RjGgNsppKLRxdZzIkR08tN9e3DoNrwUamh3h7f8BwfFne9yz8l3p+q/002h+4rSkOjQq80CINrbuDqmvAZmD4pu4MjHeGubHdmI8NK/8kzpeFTu9XH52VDg8sV7nfY1/0mp9Q8EJVuttmL7aYUgEdCpsPbnTXsY01fF/QiqChFggq90iCsYSc+8R0V5ucF4EZr5qYjHdNx4WFyed0AJYkzW1MobVkbXH7Gcyogcf2Kn1NzO294jmdLyMQaobNEKUqxoUKvNCgTTdewaeZWmxb0cMzg3dIHeLwkfOLoc5zfJJTnAGddM8+/IyattuMX05G7PRcBEjVb2Hdeex8+ilLIqNArDc5KWvnnHzXl9HVO4i5rir2Ay4kAD5S8ynel14UNYLKjlfjnVf1r9V1J2zIsYjKZ//P2TjoPRcl3VOiVnLHS+Eed7udYFDPN3o5VvFj6eNx8rnB9AsAMs3dKdgScs600LRjlOyKlPBQln9F+9ErOmOjrQgdH9GRjf62+i6mmfXD+X7t5VcE/OOqr0rpeNeGTWSfOKlqmNFeqohQKWqNXcsY9noF87/1DVPgk04VqSuld/Wjc7Q9zzA72lFEUJTYq9ErOqKaUC2pvpcI9jGsiul6Cf9Lp9dY8v5G48PBuaV33ydAPvIqihKNCn+d0btM81yY0CCN8RwUnhAnlLe9xgN8pWmBC9x6OGdzjeiMs3doCncVKKX7a79Is1yZoG32+I418gOYSs2vYuuDjvdL7g+uP157OSF+PuP3mFSWXmFwbQBo1ehHZU0TGiMgMEZkuIlGTropIbxHZKCK/Wr/k+78pjZpNJrw29HJJeLv9W97jmW/2aEiTFKXgSKca5AFuMMb8LCLNgcki8pUxZkZEurHGmAFp7EdpxIz37c9y04rdZR0AfZy/BOOqTUnBTjyuKA1JyjV6Y8wKY8zP1vJmYCagVSslo2ymKUdVP0MPd7jvmzOr76RL9Ws5skpRCouMfIwVkQrgYGCCTfSRIjJFRD4TkWjn5HV5DBaRShGpXL16dSbMUoqI39mZCb4uwfUppoNO2q4oCZL2nSIiOwAfANcZYzZFRP8M7G2MOQh4GvgoVj7GmBeNMd2NMd1bt26drllKETK4pm5O2mpKc2iJohQWaXVVEJES/CL/jjHmw8j4UOE3xnwqIv8RkV2MMWvS2a/SONnIDlxccyNrzE65NkVREsaY3Pe7SVnoRUSAV4CZxpjoqX38aXYDVhpjjIgcjv8NYq1dWkVJhG98h+TaBEUpONKp0fcEzgd+E5FfrbDbgL0AjDHPA2cAV4iIB9gOnGXy4fGmKIrSiEhZ6I0x46hnvjVjzDNA0Y5Nb1LiZHutN6v76NSmObN+35zVfSiKkj0679acqrXbcmqDdltIg9/uOSFs/YMrjmLwMe2D67f07cLIq3vx1iWHc+FRFUnnP+TYfXno9AMZc2Nvnj/vUMbdciw39+0cluagPVvwysDufHX9MXHzuq2fv8fKe4N7RMVdf1wnptwVfiz/+ku0szElv3E6khtGfWXvDlFhd/TvGhV2yF4tOK7rrlHhADedGF4e/3JIXQ/rdi2bcOjeLZOyCeDxvx2U9DaZ4to+HePGt92pPGbcXQP2Cy5f2bsDlXccx+39uvLYmd0S3v+YG3snnDYZikroky3oAFUP9k95fy5n+Ok7dO+W3NavK13b+gfxHNNpFw7YYyeO7tg6SqABWjWL33OkR/udaVLqZJ9dmtH3gN1o17Ipf+wU3iPp46t60qdrGzq2ac7eOzeNmdclvdpT9WB/erTfOSru2uM6slPTkrCwsw/fK25+Sv4x/5/9kkp/c98uUWGDjm7PiCE9w8KuP74TZx++V3D9huM7BZfPPWIvdm1eFlwP9c305FndeP68Q5OyCeDkA6Pn7N1/9+iBcS0jymwmGHT0PrS2jscu/8P3aWW73f1/PoCLe+0TXP/LIXuwyw5lXHpMe5qV1TWcHNQufkeCfbLkF6eohL7Qmv8LzV6l8RKrqEaGh/tmSs1Rk9g4ePI10K1iYizXR777pCoqoW/sZLqs5XnZVbKE2Fz5WKJnaBiRs6sUZVv7kzksu3NmnzA3d5UKvaIocYkUsVCB9RkTFp+w4BUAdg+SWEenNXolZewKT7wbKV4NJ8/LoZJHmHrqyqGVa189zY/15WWHXVltqFZOCdmXnR12zUqxc8ofVOizQKJt7/UVGm3CV/KF0DIdKt7GxK7NZrKWa/fAyIaU1nfLxazRJ51Tw6JCn0Ua+jU2v+oQSjERS7b8TTd1hIp7JsujXaUn21KqH2PzlPx6hqb22hpKvhcepTiJ35MmsummvswyYlLe3duRJFqpy9UtXVRCny8k2o7XkBc9328UpXAI+xjrMzHLe+Lt2ZHbRYfV9y0gs8TZV+JtN3mFCr2iKPWSeD/60B44mTQgk5klhu3H2BhHlec6X1xCH1nompY6G2zfe7WKP4q01Jn8qe7YZoeosD1aNgkuX/bH9mFxlx7TPjJ5kFgFccix+0aFnXzQ7mH5hQ5rV/KTPl38LgrO77F3VNzO1ghsu/vhpAN2Y6cmJRy6d8vgqNbIEdEd2+xAWUld+T2+a5u6vHco5ZaT6kbYHtu5buT23js3Zccm0aNLL+pZwZnd2xE6kP3Wk6JH6QLBUeaDjo4u23ZlN12alDi5orc/3+utEcBHhIyGPbN7O675kz9+55CR7YdVhI+YbbNjbFcJAXruGz1KPVtIPo7O7N69u6msrEx6u4qho4LL39zwR9q33iEsPJ67g3tGTOf18VXcNWA/7h0ZPu1tmctBtccHwGkH78HwX5ax+07ljL+1j21efZ/4nlm/b2bUNb3Yf/fwIc83/XcK/528FPC7QPj5zuPpfMdnVHt8zLqvL+Ul6T+cPv51Gde+9yunHLQ7T519cMLbJXKeAmkCtkeyZks13e8fHXc/C/7ZD4dD+H7Oai54dWLC9tlR9WB/3vppEXd+NM02LrRMBChxCiOG9OKkJ8fGzDORc5EMkXa8dEF3rhr2MzXWde9y5+dR+3vmm7n8+8s5YXYBfDNrJRe/XsmxnVvz2kWH17vPyGNI5dgC16rXvrvw9qAjEt6uPkJtCSwv/Fc/9rn10ygbI89hrOOKZME/+9H+tuj8AO78aBpv/bSIe0/dnwuOrEj9QBLkz8/+wK9LNvDBFUel5AcoHiIy2RjT3S6uqGr0oaTaPlhvvkmlzd1Q7myTTgXBkYJPokySN4N66jmFscpwLutmDdFBINP3brzs0u0wkSy56mBRtEKfr8QTyEzfwPn+TMmYfXn4VlofsbokKko2UKGPINuDPOx6DxTijR6zp0UD25EqhXjOA+TC9sJ7lOY7DXtGi1bos3YvWBnHdTcQ504slqabvKKQVTsFCvAFJqck0hTUUCVI+9FnmFTv/fpuokTad+M1zzRsf+DskVcf8VOwJZ/MT5VsfYeyI6+ut5I0RSv0+YCtu9c490tDfxhSckv9zsPyrzw05MNFyRwq9EmSbjm3baMvmJbt+ikUIcgnM5O9/nmo/0qek5bQi0hfEZktIvNEZKhNfJmIvG/FTxCRinT2l5RteSqeXm2kzziFekbTFWx1oZE+uXpoNvR+UxZ6EXECzwInAfsBZ4vIfhHJLgHWG2P2BR4HHkp1f/lCujeX6rwSST69XdRHAZmaHA10EXL1xptOjf5wYJ4xZoExpgZ4Dzg1Is2pwBvW8v+APpLFI20SMqo02b2UufynwuUUykvCT0uTkKHjpVa6eCNYA3EOm7Mb2A9AubWcaVcNLmvHJc7sFaomMY4/mbFQrgwNnHLZneg4lJc4cORYXZ0OCZarQO0u0k1GSQy3GU7rupa6Gq7lNXCtGnKfmS6/drYHwjJVFusjoC0NLfiu+pPEZA9gScj6UiBybHQwjTHGIyIbgZ2BNZGZichgYDDAXnvtFRmdECOG9OTtnxaxyw5ltAvxCfPmxYezcXtt3G2v7tMRgL8dtied2jTntuG/0X6XZrTZsZyLeu7DlCUbeGnsAu7ovx+7t2hiO1N9gP+cewj/V7kk6DsklPv+fAB779yUpqVOBlh5/N/lR/LVjJU0LU3nctRx4v5tuPyPHbj8j7F939iRyHm6/rhOPD56DiOvOdo2vkXTUm7u25k2zcup9fqo9RnKnA62VHto37oZW6u9wbRHtt+Z3p1b8+3s1QDsvlM5yze6+ezao3l2zDxGTl0Rlf9xXXeleXkJ5xyxFzNXbALgjEPb8eOCtey2YxkHtmvB1e/+wgOnHQDA+4N78NhXc/AZQ7uWTWnXsgmndtuDDq2b0afLrnRp25zenXdl4ZqtYKB962YAjLqmF5MWrkvq/MXjuXMPYfWWav756Uy6792KYzq1ZviVR/HNrFWUuhzc0b8rx3RqHbbNwKMqWLe1hnYtm9B5tx2D4cd0bM2VvTvY+n8J5aULutt+0B11TS8mJnlsPTvswlXHduCinvsktV19DL/yKGau2AzAR1f1ZPryjQDc0b8rR3cMPx93n7wfw39Zxo0ndGaDTTkddukR/LRgHU1KnDgd0KzMRbnLGcwv8vwC/P34TpQ6HZx+SLuMHlcsHj+zG2/9tIhD9mrRIPsLkLKvGxE5A+hrjBlkrZ8PHGGMGRKSZpqVZqm1Pt9KEyX0oaTq60ZRFKWxki1fN8uAPUPW21lhtmlExAXsBKxNY5+KoihKkqQj9JOAjiKyj4iUAmcBIyLSjAAGWstnAN+YfOwcrCiKUsSk3ChstbkPAb4AnMCrxpjpInIvUGmMGQG8ArwlIvOAdfgfBoqiKEoDktbXP2PMp8CnEWF3hSy7gb+msw9FURQlPXRkrKIoSpGjQq8oilLkqNAriqIUOSr0iqIoRU5eTg4uIquBRSluvgs2I28LiEK3H/QY8oVCP4ZCtx8a9hj2NsZED/8lT4U+HUSkMtbosEKg0O0HPYZ8odCPodDth/w5Bm26URRFKXJU6BVFUYqcYhT6F3NtQJoUuv2gx5AvFPoxFLr9kCfHUHRt9IqiKEo4xVijVxRFUUJQoVcURSlyikbo65uoPF8QkT1FZIyIzBCR6SJyrRXeSkS+EpG51n9LK1xE5CnruKaKyCG5PQI/IuIUkV9EZKS1vo81Afw8a0L4Uis8ZxPEx0NEWojI/0RklojMFJEjC/AaXG+VoWki8q6IlOf7dRCRV0VklTUpUSAs6fMuIgOt9HNFZKDdvhr4GB6xytJUERkuIi1C4m61jmG2iJwYEt5wmmWMKfgffjfJ84H2QCkwBdgv13bFsLUtcIi13ByYg39y9YeBoVb4UOAha7kf8Bn+eZl7ABNyfQyWXX8HhgEjrfX/A86ylp8HrrCWrwSet5bPAt7Pte2WLW8Ag6zlUqBFIV0D/NN0LgSahJz/C/P9OgDHAIcA00LCkjrvQCtggfXf0lpumeNjOAFwWcsPhRzDfpYelQH7WDrlbGjNymlhzeCJPxL4ImT9VuDWXNuVoO0fA8cDs4G2VlhbYLa1/AJwdkj6YLoc2twO+Br4EzDSuhHXhBT04PXAP1/Bkdayy0onObZ/J0skJSK8kK5BYD7mVtZ5HQmcWAjXAaiIEMmkzjtwNvBCSHhYulwcQ0TcacA71nKYFgWuQ0NrVrE03dhNVL5HjmxJGOv1+WBgAtDGGBOYDft3oI21nI/H9gRwM+Cz1ncGNhhjPNZ6qI1hE8QDgQnic8k+wGrgNav56WURaUYBXQNjzDLg38BiYAX+8zqZwroOAZI973l3PSK4GP+bCOTJMRSL0BccIrID8AFwnTFmU2ic8T/i87Lfq4gMAFYZYybn2pY0cOF/9X7OGHMwsBV/k0GQfL4GAFY79qn4H1q7A82Avjk1KgPk+3mvDxG5HfAA7+TallCKRegTmag8bxCREvwi/44x5kMreKWItLXi2wKrrPB8O7aewCkiUgW8h7/55kmghfgngIdwG/NxgvilwFJjzARr/X/4hb9QrgHAccBCY8xqY0wt8CH+a1NI1yFAsuc9H68HInIhMAA413pgQZ4cQ7EIfSITlecFIiL459KdaYx5LCQqdCL1gfjb7gPhF1g9EHoAG0NecxscY8ytxph2xpgK/Of5G2PMucAY/BPAQ7T9eTVBvDHmd2CJiHS2gvoAMyiQa2CxGOghIk2tMhU4hoK5DiEke96/AE4QkZbWm80JVljOEJG++JszTzHGbAuJGgGcZfV62gfoCEykoTWrIT9gZPnjSD/8PVjmA7fn2p44dvbC/2o6FfjV+vXD3176NTAXGA20stIL8Kx1XL8B3XN9DCHH0pu6XjftrQI8D/gvUGaFl1vr86z49rm227KrG1BpXYeP8PfeKKhrAPwDmAVMA97C37Mjr68D8C7+bwq1+N+sLknlvONvB59n/S7Kg2OYh7/NPXBPPx+S/nbrGGYDJ4WEN5hmqQsERVGUIqdYmm4URVGUGKjQK4qiFDkq9IqiKEWOCr2iKEqRo0KvKIpS5KjQK4qiFDkq9IqiKEXO/wPB3e/dO1x1vwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(2)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These light curves can be used for standard power spectral analysis with other Stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABBcklEQVR4nO2deZgcVbn/v6d6nenZlyQzmUwmOwlkZUhYwmpYA0QFFYTrQgD5XUEfr5d7UblXxY3rxY0LiigYFAUBURMSBNkMsmSFbCSBkGSSyTaT2ffezu+P6lNdVV3VXb3XTL+f58mTmerqqjM1Pd966/u+5z2Mcw6CIAhi7CPlewAEQRBEbiDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBCc+R5APGpqanhTU1O+h0EQBDFq2LJly0nOea3Ra7YUfMbYVQCumj59OjZv3pzv4RAEQYwaGGMtZq/Z0tLhnK/hnN9aXl6e76EQBEGMGWwp+ARBEETmsaXgM8auYow93NPTk++hEARBjBlsKfhk6RAEQWQeWwo+QRAEkXlI8AmCIAoEWwp+uh7++vfbsfFAJ070DoPaPxMEQcjYsg6fc74GwJrm5uZbUnn/f/91Jw52DAIAilwONFYVo7G6GJOrijG5uhiN1T40VRejvqIILoct73kEQRAZx5aCny6rPr8YBzsGcKhzEAdPDuJQ5wAOnhzA+vfbMRIMK/s5JIaJFUXyTUDcDKp8aKqRvy92j8nLQxBEgTImFa2pxoemGl/M9nCYo61vBC0dA2jpHMShjsHI/wN4bvsx9AwFNPvXlnowWXk68GFydXHknw+VxS4wxnL1IxEEQaTNmBR8MySJYUK5FxPKvVgytTrm9Z7BAFo6B9DSMYhDnYPyjaFjEG992IFntx7R7FvqdeLmpVNx+0XT4ZBI+AmCsD+2FHx1L51cUl7swrziCsxrqIh5bTgQQmuXbBG1dA5i44EO/OSl97G5pRM/u24hqnzunI6VIAgiWZidq1iam5u5XZuncc7x5KbD+ObqXajxufHgDYuwsLEy38MiCKLAYYxt4Zw3G71GJSopwhjD9Ysb8afbzoYkMXzyl2/hsTcPUhkoQRC2hQQ/TeY2lGPtHefivBm1+ObqXfjSk+9iYCSY72ERBEHEQIKfAcqLXfjVZ5px56WzsHb7Uax48A3sa+vL97AIgiA0kOBnCEli+OKF0/H4yiXoHvTj6gfewOptR/M9LIIgCAUS/Axz9vQaPHfHuZhTV4YvPfEOvvnXnfCrJnsRBEHkC1sK/mjvhz+h3Isnbj0TNy+dgsfeasEnf/kWjnYP5XtYBEEUOLYU/LHQD9/lkHD3lXPw8xsWYV9bP5bf/zrWv9+e72ERBFHA2FLwxxJXzK3D6tvPwbhSLz77m4342UsfIBym0k2CIHIPCX4OmFpbgj9/8Wx8bMFE/OSl93Hr7zaT6BMEkXNI8HNEsduJH31yPr568Uy8tLsNWw915XtIBEEUGCT4OYQxhs8vnQKvS8Jf36WSTYIgcgsJfo4p8TixbPZ4rNtxDIEQlWsSBJE7SPDzwIoFE9Ex4Mcb+07meygEQRQQJPh54PyZtSgvcmE12ToEQeQQWwr+aJ94lQi3U8Llp03AC7uOY8gfyvdwCIIoEGwp+GNh4lUirl5QjwF/CC/vOZHvoRAEUSDYUvALgSVTqjG+zEPVOgRB5AwS/DzhkBiumleP1/a2oWcwkPgNBEEQaUKCn0dWLJiIQIjj+Z3H8j0UgiAKABL8PHLaxDJMrfGRrUMQRE4gwc8jjDFcvaAebx/owIne4XwPhyCIMQ4Jfp65en49OAfW0OpYBEFkGRL8PDO1tgRzJ5bTcogEQWQdEnwbsGJBPba39mB/e3++h0IQxBiGBN8GXDmvHoyBonyCILIKCb4NmFDuxZlTqrH63aPgnBZGIQgiO+RM8BljH2WM/Yox9kfG2CW5Ou9oYcWCeuw/OYCdR3rzPRSCIMYoaQk+Y+xRxlgbY2ynbvtljLG9jLF9jLG7AIBz/hfO+S0AbgPwqXTOOxa5/LQ6uBwMf333SL6HQhDEGCXdCH8VgMvUGxhjDgAPArgcwBwA1zPG5qh2uTvyOqGivNiFC2aNw5rtRxGi9W4JgsgCaQk+53w9gE7d5sUA9nHO93PO/QCeBLCCyfwPgOc551vNjskYu5Uxtpkxtrm9vT2d4Y06rp5fjxO9I9h4QH9JCYIg0icbHv5EAIdV37dGtt0BYBmAaxljt5m9mXP+MOe8mXPeXFtbm4Xh2Zdls8ej2O3A6m1k6xAEkXlylrTlnN/POT+dc34b5/yhXJ13NFHkduDSUydg3Y7jGAnSwigEQWSWbAj+EQCTVN83RLZZZqyveBWPqxfUo2cogPXv03q3BEFklmwI/iYAMxhjUxhjbgDXAVidzAEKYcUrM5ZOr0GVz03VOgRBZJx0yzKfAPAWgFmMsVbG2ErOeRDA7QBeALAbwFOc813pD7UwcDkkLJ9bh5d2n0D/SDDfwyEIYgyRbpXO9ZzzOs65i3PewDl/JLJ9Hed8Jud8Guf8e8ket5AtHUCehDUcCOPv7x3P91AIghhD2LK1QiFbOgCwqLESEyuKaGEUgiAyii0Fv9CRJIar5tfj9Q9OoqN/JN/DIQhijGBLwS90SweQbZ1QmFMHTYIgMoYtBb/QLR0AmF1XhvkN5fj9hkPUQZMgiIxgS8EnZG44czL2tfVjA7VaIAgiA9hS8MnSkblqXj3Ki1z43dst+R4KQRBjAFsKPlk6MkVuB649vQEv7DyOtr7hfA+HIIhRji0Fn4hyw5JGBMMcT206nHhngiCIOJDg25yptSVYOr0Gf9hwiPrkEwSRFrYUfPLwtdx4ZiOO9gzjlT1t+R4KQRCjGFsKPnn4WpbNHo/xZR48TslbgiDSwJaCT2hxOiRcv7gR/3i/HS0dA/keDkEQoxQS/FHCdWc0wiEx/GHDoYT7BkNhujEQBBEDCf4oYUK5F5fMGY+nNh/GcMB8NSzOOf7tqW24+Mfr0TMYyOEICYKwO7YUfEraGnPjmZPRNRjAuh3HTPd5fMMhrN52FP5QGO8d683h6AiCsDu2FHxK2hpz9rRqTK3xmSZvt7d24ztr3sPpkysBALtJ8AmCUGFLwSeMYYzhhjMnY+uhbrx3VCvmPYMB/Ovvt6KmxI1ff6YZNSVuEnyCIDSQ4I8yrl3UAK9LwuMbolF+OMzxb0+9ixO9w3jghkWo9Lkxu66MLB2CIDSQ4I8yyotduGpePf7yzhH0DctJ2V+u34+X97Th61fMxqJG2c6ZU1eGD070IxAK53O4BEHYCBL8Uci/nDUZg/4Q/vzOEWzY34H7XtyL5XPr8Lmzm5R9ZteVwR8KY387lWcSBCHjzPcAiOSZ11CBeQ3l+M0bBzEwEkRjVTHuvWYuGGPKPrPrygAA7x3rwawJpfkaKkEQNsKWET6VZSbmxiWTceDkAHqGAvj5DYtQ6nVpXp9a64PbKWH3sb48jZAgCLthS8GnsszEXDW/HufOqMF9n5ivRPNqXA4JM8eXUKUOQRAKZOmMUorcDvxu5ZK4+8ypK8PLu9vAOdfYPQRBFCa2jPCJzDC7rgwdA360943keygEQdgAEvwxTDRxm31bZ/exXnBOC7QQhJ0hwR/D5Erw3z3cjct/9jre+rAjq+chCCI9SPDHMOVFLkysKMp6pc7GA7LQt5F1RBC2hgR/jDO7rizrlTpbW7oBAP0jwayehyCI9CDBH+PMqS/D/vb+uD3004Fzjq2HugCQ4BOE3bGl4NPEq8wxp64UYQ7sPZ4dW+doz7Bi5fQPk+AThJ2xpeDTxKvMke3E7daWLuVrivAJwt7QxKsxzqTKYpR4nFnz8bce6oLXJaHM60IfRfgEYWtsGeETmUOSGE6ZUJo1wX/nUDfmNVSgotiFAYrwCcLWkOAXAHPqy7D7WB/C4cxOjBoOhLDraA8WNlagxOMkS4cgbA4JfgEwu64M/SNBtHYNZfS4u472IBDiWNRYiRKvC30k+ARha0jwC4BsJW7fOdQNAFjUWIlSjxP9kRW4CIKwJyT4BcCs8aWQWOYFf+uhLkyqKkJtqYcsHYIYBZDgFwBFbgem1Pgynrjd2tKNhZPkNXR9HicGRrIzuYsgiMxAgl8gZLrFQmvXII73DmNRYwUAoMQrR/iZTgyPNZruWov/+svOfA+DKFBI8AuEOfVlaO0aQs9QZnz2F3edAACcN7MWAFDqkad0DPjJ1knE795uyfcQiAKFBL9AEInbPRmK8tftOIZTJpRiam0JADnCB2i2LUHYmZwJPmNsKmPsEcbYM7k6JxFlTkTwM2HrHO8ZxuaWLiyfW6dsK4lE+NRPhyDsS1qtFRhjjwK4EkAb5/w01fbLAPwMgAPArznn93LO9wNYSYKfH8aVelDtc+NHf38ff999AjPHl2LW+FLMnFCKBQ0VkCTra94+v/MYAOCKeQaCTxE+QdiWdHvprALwAIDfig2MMQeABwFcDKAVwCbG2GrO+XtpnotIA8YYfnjtPLyw6zj2nujHkxsPYyjSMvkbV8zGLedNtXwsYedMi9g5AFk6VqAlIIl8k5bgc87XM8aadJsXA9gXiejBGHsSwAoAlgSfMXYrgFsBoLGxMZ3hETo+Mns8PjJ7PAAgHOZo7RrC8v97HYc6By0f40SvbOd8ZdlMzXaydBJDBUxEvsmGhz8RwGHV960AJjLGqhljDwFYyBj7mtmbOecPc86bOefNtbW1WRgeAchN1Rqri1Fb4kHngN/y+57fcQycA1eo/HsgKvi5bK8wEgzh2l+8iS0tnTk7ZzqESPGJPJOz9sic8w4At+XqfIQ1qnxudAxYX4t23Y7jmDW+FNPHlWi2l3pzH+G39Y5gc0sX3jnUjdMnV+XsvKlCgk/km2xE+EcATFJ93xDZZhla8Sp3VPnc6BqwVpvf1juMTS2dMdE9IM+0BZDTFskiXzDkHx0zfEPk4RN5JhuCvwnADMbYFMaYG8B1AFYncwBa8Sp3VJe40WHR0vnru0fBObB83oSY11wOCR6nlNOkrbi5DGZpvd5MEwqR4BP5JS3BZ4w9AeAtALMYY62MsZWc8yCA2wG8AGA3gKc457uSPC5F+DmiyudG16A/YUuEcJjj8Q0tWNxUhenjSg33KfU6c+rhD0Qie3WE7w+GcetvN2dtDd90oAifyDdpCT7n/HrOeR3n3MU5b+CcPxLZvo5zPpNzPo1z/r0UjksRfo6oLHYjFOboTdDaeP0H7WjpGMSNZ0023afE48yph69E+Kp2Dsd7hvHieyewRbXWrl0IhsP5HgJR4FBrhQKnusQNAAkrdR5/uwU1JW5cdmqsnSMo8TqT8vAH/UEs+/E/sGF/h+X3qOlXBD8a4Q8H5a+zGU0//nYLrvnFm0m/j/SeyDe2FHyydHJHlc8DIL7gH+4cxMt72nDdGY1wO80/Mj53cpbO0e5h7Gvrx7bWbsvvUTNgkLQVX4dC2VPXu/+yE1taupKuuqEIn8g3thR8snRyR7VPjvDjJW7/sPEQGIBPL4k/Ea7Um5ylIzp3dg2m1sFzwCjCD4gIP6VDJkXXoPX5CwBF+ET+saXgE7mj0hff0hkJhvDHTYexbPZ41FcUxT1Wsqte9QrBT2LilxqRtFVX6Yh2Ebnoy3+y3/r8BSA2wj/cOYhVbxzI5JAIIi4k+AVOdQLBX7fjGDoH/PiXOMlagVgERfD7DS1455B58jQa4aco+IqlEz3ncEAW1WAWBV/0/j/Zl2SEr8sr3PjIBnxrzXvoSfEJhyCSxZaCTx5+7vC6HCh2O0wF/8mNhzG1xodzptUkPFaJx6UIfjjM8e017+GJjYdM90/X0jFM2ooIP4tJW9EoLvkIXzumvoj9FUjC6wmEwtSgjkgZWwo+efi5pcrnNhX8fW39OHNataX2ySUeB/zBMEaCIZzsH4E/GI67zq0Q/O60I/xYSyeYRRO/NEXB1yd5JSZf02Tsp1t+uxmnffMFNN21NmOrlxGFgy0Fn8gt1T7j2baBUBgdA36MK/VYOk6J0l4hhMNdcgfOeFU7QrA6LbZ20CNuJsZJ2+QFn3OOE73DCfdzOeQ/m/Y0BT9ymKTG+treduXrw0l0OSUIgASfgJy4NUqcigh2XKnX0nFKvC4AcgO11q6hyNfmYt6rivBT6RUv1s8dCoSUKDmdpO1jbx7Eku+/nHCW7khQtmC6k7xRxQh+JMJPtamaPxTGyf6RlJ+QiMLDloJPHn5uMbN02nqF4CcX4feNBJToM57fLCL8YJin5EurJ3mJCVfpJG3Xf3ASQOLIWTxFBJKs9dfnFYRNlqr9NBwIofm7L2HBPX9P6f1dA37sOpr+31jTXWtxzxrtchfbDnePmrbVhYQtBZ88/NxSbdIiua0vIvhl1gRfeNsDIyElwrfi4QOw3LFTjfrYwtZJJ2krbhIOR/x8hbip+JMUfL2wO4Tgp1ign0obi/eORtc0/tjP38Dy+/+Z0rn1PKorL13x4Bu45hdvpXSstr5htHaRXZUNbCn4RG6p8nkwHAhretIA8h8eANRajPB9yrq2gaiHH8fS6RkKwBUR11RKM/tHgvC5HQCiidvhNJK2oYjwOhMkqEeCqUX4eq9eWDqBFCP8PpXg72uTbaje4YBp1L5uxzFccf/rWLPtKADgYIf8O+oa8OPl3SdMz3OkewhXP/BP/G3n8bhW2dZDXWi6ay3ufX6P6T67jvYktO8Wf+9lLP2fV+PuQ6QGCT6BKp/svXf0a0W3rXcEjAE1JUlaOmoPfyRo+gfeOxTApMpiAMkLPuccAyNB5WY0qOucmVKEHxFeRyLBj0T4yQp1TJVOmpaO+ma67Mfrse1wNz776EYsv/+fyjXnnMMfyTkc7BgAAOw8or0hfG7VJqx8bLOprfbI6wewvbUHtz2+Bb9586DpeD7+c7m/0EP/+NDw9b/tPI7l9/8Tf333qLUfkMg4JPiE0k9HL7rt/SOoKnYrVSmJEJZO71AAR7uH4HZICPNoIlVPz1AAk6tlwe9OshbfHwojGObKzWhQlcAFUkuEiveIyNtsH2HlJB3hmyRtk6nDV7NLZc8AwKHOQbxzqFtzrh++sBcz734eI8EQ9rX1A4j9few9Lh/H7MbMEd2+v70/pbECwP6T8ntf3duGYBLX7sVdx9F019qYc+880oM/bjKf55EKw4EQbvj12xnJbQhe2XMCx3sSV3/lAlsKPiVtc0uVST+dtt4Ry3YOEI3wP2wfQCDElWUQjSLHQCiMAX8Ik6t9ABJ369Qj/Hsxvqilk3rSVrxH/9ZAKIxP/+ptbGnpVOwcsV3NByf60HTXWrxt0v0z0xH+01taNd+rn2rEz/L7t1sAAMP+MJ7dKi88N6wTfHHNzO476vuApLsZJlNdJayyv757NMbzj8faHccAANtbtXpw5f/9E//5px2Wj2OFnUd68Ma+Dvz3X5NawiMuN63anFJ31WxgS8GnpG1uUdor6Cyd9r5hjCuzVpIJAMVuBxgD9kQixlPq5IVSjJKLoiSzsaoYjCU/+UpU6OgtneE0yjKFIOuF+UjXEN78sANffvJdRRyBWEvnH+/LNfIv7Doe9/gCpyL4iaPdE73DyvHNUGuv/makTgyrfwY1H//FG5obb/9IENt1nUz1bpdVvf+/lz/QjH+PQenr4c5BnPG9l2K2S2mWr6ZCKmXCRojP4ZHuoYwcL11sKfhEbqky6Ynf1jdiuSQTABhjKHE7sfuY/Mc8e0IZAOMIX1ToVPpcKC9yJd1eQRyzVlg6Aa3ghzjHcCCk+NdWEFGxvmpGtITu6PdromO1qPYMBvD0ZjniLnI5DI9vFuFbqfa574W9+OyjG+Puo47w9Tcj9fertx01vC4ftg/g2a3Rp4Z//f1WXP3AG5pkPtNF+FYnjf3o7+/jjX3RJ58ilwMPvPKB5no+s6UV7X2x1WJC8L/69DYcODlg6XxWGQ6E0HTXWjwZaQESx81LiVTtumxBgk+g1OOEy8HQqYqyw2GO9iQFH5D7zPQMBcAYMHNCnAg/sq28yIWqYnfSSVshQlFLJ9bDv+W3m3HPc9YfzUWVjl6YQ6pJXSMqoVSL5n/+aTv2npBvdMVuE8GPqdKR/7di6Vhpo6AedjAUxoneYeU66wVeVOroEdbY8Z5hrI9E5Or3CvH99ppd+OHf9qQcda/dcQz3vfg+Hnhln7JNH1W/uqctcs7otusffhtAtCoJAL727Pa454r3tCeCnJ++9EFki3yyTD1L5PKpxAok+AQYY6gsdmssna5BP4JhnpSHD0R9/PGlXsUqihfhlxe5UFHsSlrw+yMefjRpq4vwwxxHu4dwvMd6+4NohG8s+OrjS0wb4av76hS5nYbHj7V0pMj5EkeBouQ1HpoIP8w10bD+KcKsiun1yOSzH724V9mmvh6PvnEAr+5pw2/eOIifv/Zhyk3qRJJevbSmXhs/v2oTAG3VlPjcbDgQndT1xMbDmvdxzpWbx6o3DmDq19eh+bsvoaVjAI/884BmYp2I6I/3DmtsRfWPdbR7KKmV3NSor52R1RcMhfHq3raUjp0KJPgEADlxq07aKpOuLLZVEIhOkg2VRYr4JxL8ymJ30hOvzD38aJQeCvOEghQOc1z20/V47M2Dph6+OjIXgl/qdWn+mMXPDQAek1XBYi0d+X8r5Z2uBJPBAGjC0mAorBFKfYSvT74KNh7sxIneYbSoRFF/CX/1+n7laysR7NE4/rX6Zzf6XX39zzs0NlJIKTc1P9/X/7wDU762DgDw7Dtyovpk/wh++MJefOe593DjIxuUfRmix15wz9+xQ5ezCIbCOPveV/DFP2w1P6GKO5/ehpsf26R6f3SgX/jdFk3SHwB+8dqH+PxvNilPM9mGBJ8AIK9t26mabZvsLFuBEPlJVcWqiVjmgl9W5EJFsTvppK04ZpXPDYlFrQi1pROM/IvHpoOd2HO8D99cvUv549S/R20JiPOWF7kQUImoOgI3u8noj6ufabv5YCemf30d2nQN3N472osP2xN711oPP6yxQvRJ3Hhe9XAghI2qCFr/BKI+jxWL+ux7XzF9TZ2wNvpV/WHDIairgsUNJt5vVR3xq/Mpa7fL1T5qe0z/u/qWrkWEuCGpm9bF4+ktrXhpd1S89ddO/9EQN9b2vhF8ELEEB/1BdPSPZCxxrMaWgk9lmbmnstitSZy29yXXR0cgBL+hskipy++LU6VT5nWhypd80lZE+D6PE8VuZ6ylwyMRfgLB/3MkAhxf5lH+OEO6P1J1hL/5oLygy6wJpfCrordSleCbRez6sUi6mbbfX7cbwTBXcgFHuofQ0T+CK+5/HVtauuL+HIBWMOVJc1FVT0bw9RPP9DkG9eVJlLQ1K1FV3q8aNLfgnJs9Uby8+wSa7lqryU003bVWY/0o51Edwux4YqtZ0lVdV987HMCnfvkWHnx1X8x++uPrL5e40s/vPIaLf7Ief9t5HI/+8wBO/+5LKc/AjoctBZ/KMnNPtc+Njn51hC9/oJO2dESEX1kMj1OCU2KG/mfPUAAepwSvy4GKYjeGAqGY+nA1hzsHNf1VhMD7PA4UuR0YCsgzevURfiLLYdNBWRBO9vuVpwS9wKm/f/PDk6gt9aC+3KsRUfXkNLMJWaYRfojj7f0d2BqZNFUa6Tp6zr2v4PTvxpYpmqGOVj/96w2an11v6aitDD16u0c/bnXU2pGgRfR1kSSrGQG14Jv8qgy36zZ+5zk5Mr/jiXfing+QP3uiTDLRE2DIQHS3HurCmT94GX+KzIP44EQfNhzoxP++sDdm35ibJef4wbrdeHqz/BTy90hLC5FvefdwN+578X0AiWd8p4ItBZ/IPVU+D3qHg4pYtfWOoNTjRJFJxYkZag+fMRaz7KGgZzCA8iJZ2CqL5eRuvMTtnc9sw9f/vFP5vn8kCJeDweOUV+wa9IfgD4UVHQiFOYKhcMIItGswAJ/bgVCYKxUt+puEWki3t/bg1PoyuBySxo5QC6pZXb04jtBTMdM2GA5rhDHMOW74dXyhjHd8gdpy0idt40X4+iumtyUOdUY9+Yt/sj65QeqPHQqjpWMAfcMBwydBo/EYIfoCWeWce19B14A/bpABRJ8A1QjrZcMB+ekl3tNXjD3IOX65fj/ufGY7mu5aqySvj0aeGPpHok+6WdB7JE79EwWBqMXvGvBjXJkX7X3JzbIVlCqWjtwywed2GpZl9gxFBV/08ukaCKCu3Hih9EMdgyiL7A/Ilk5xpBqmyCUL/rA/KkxWIvxwmKN70I9zptco1SlA/CqdkWAYU2p8cDklzSO3OhnnN3kUF9Ge+DsWdfj6R3fOuaZm3Sp6wfSb3JCA2Hp6NU9s0LYr0I8v2ZW+4hEIcZz/v69hfkM5trUaW7jZ8LIBYOF3zNtKC7G957mop/+t1bvwtStOgbis4mPx/XXmzeL09qBZzkP8ftR/K/F+R6lCgk8AUM22HZQFv61vOCXBn9dQgXkN5airkK2gUq/TcNUrteBXRCJ8s8RtKMxxok/rSfePBBX7qL6iCB+c6FN64ov3hBIIfu9wAGEOnD65UiP4oTDH33YeQ2OVD3Pqy2KO4XZIcEks8kTBwRjDSDCMiRVFONI9pET4f9rSimA4jE+d0QhAHeEzHO4cxN/fkx/n9U8Eqepbr65WXy3UetGOJyUPr9+v+d7sGlYUu5LugaRHrDBmJvZA7PUIhTn+K4OtD4wocjnwoq6MctWbB/Gnra3KjTVeBdigP4h//f3WmGRvoqqxo1nuuUOWDgEgaquIWvy2vpGk2ioIls0Zj9W3L1U87RKP09DD7x2OCn59JKrfZ9KY62T/CEJhrqmuGBgJwueR7aYLZtXiYMegptd7iMsRfrw/MJEobqwqhtcV/VMIhjlue3wrrrj/dflYBjNkxc8nngZGgmFU+dzwuiRl21ef3qbp9SJyBG6HpNSYq48h+JIFH/r8mbX4z8tO0WzTT85S30iOdGstj2SCRzOLKhPx544jiQsz9L/CJzZmtmGaEUUuB2793ZaY7eqnqGe3HsHCe140fP/KVZsNK3su/sk/4p73PV1DvExDgk8AkMsyAbmBGuccbb3Jz7I1wtTDV0X4k6qK0FRdjJd3G9ciH1P8zaAiPoP+kFIKeeGscQDkfu8C4eHHm8UqcgaVxW5U+6I/q9rX3XSwU2n1LHBKDK5Irb3IeYwEQ/A4Jbgckmk7B9H+waFLZOurO6xEeQ6JYWKl1v7q1a09oLZ09LbDV/74bsJzCMyqRZKtrEoV/U377r/sNNkzc7xssS7e7Bq8ZVKddLI/fvlxKiu/JQNZOgSAaMfMzgE/+keCGAqEMiL4Po8ThwwSaj1DAcWTZ4zhI7PH43dvtUQid+3H8nhPVHD7hoOo9Lk1ls6kqmLMGFeiEfxgKIwwj/8ILSykimIXako9SuWGup/LJx6KXbVJYtEIX4jhSCAMj0sWfLOZsyLC108IUy/CbhWJxdbZ6CevxSvri/eaPsGb6opcmcJezQlGNyxbCZFMUDV5Nr/464/mexgFAQew8UAnJlYUoabEjW2tPZhW67O8+IkZ+08OoHvQj0WNlZrtGyLnaohEqb3DAew+1ocZ40qUm4/geO8wWiI3jfkN5fC6HNje2g2vy4GZ4+V+PYe7BnG0W46MJQZ4nA4MBUIockmY11BhOLaT/SP4sH0A8xvK0dIxiO6IJVJV7EJnnOi1obIITonhYMcgFjVWwOWQsONID9wOCQP+ICqK3Zha41NqwJdMqZKvRXs/2vv9YJAj9FRaOAsqi12oLvEoPe4BoMglYSgy09jlYGioLM5IszGvU8JwEk3oMk1NiTthZDwWEZ+bZHnqtrO3cM6bjV6zpaUjJl4Fg9l9vCGiKCIUCisRntviwifxcDAW44ELoVMvJVjqdcHBjEsz1RZJtP2Btk55YkXU3nBITJnEEy+eEVGuyyFp2xAk6F7JEK2gEIfnnENicn27WRCVhXk0GkR1kMQAr9ORseqWfIeEQyk8ARHG2DrCb25u5ps3b873MAqGi370GmZPKMOlp03Al554By9+5Twlgk6Vn770Pn760gf48PtXKKLa0jGA8//3Ndz3ifm49vQGZd87nngHb+47iY3fWKYR4C8/+Y6yLN7vVi7GuTNqMf/bL2LFgnrcs+I0Zb+uAT/+/M4RvPnhSew+1ocj3UOYXF2Mf9x5oeHY/veFPXjoH/vxwXcvx3+v3onH35aTgaLaxoy7Lj8FNSUe/PvT27D+zgvRWF2M8374KhY1VuDdw92Y11CB+69fiKa71gIADt67HABw06pNeGVPGxwSQ6nXGbfCpczrVOYFGLF8bh2umFtn2ONlfJkHEyuKsHxevTIhKR3qy71Zrx4hYhGfm2RhjI2uCJ/ID9U+NzoGRpReLhlJ2hr00xGJrspil2bfc2fUoGPAr6y9KjjWM4yKyL69Q/JxBv2xXn+lz42blk6Bx+lQ2hjHK8vsGgygosgFSWIo8UTHImYZm+FgTGlm5tckbR1wOaSYmbbDgRDaeoeVls5hnrjlQ6IJb4yZV9r0DQex9VA3ntp02HiHJDES+0QLvRPWmFRlPO8kW5DgEwpVPjc6B/xo7xuB2ykpVTTpYCz4Ilmq9erFYib6evLjPcPKk0bPUAAjwRACIa4cW48kMfiDide27R70KzeSUq+2F47bKWlKNfXHdzu0rY1HgnLS1umQYhKin/vNRiz+/suKNcG5caMwNR5nfME/d0aNaVmkSAKLnjzZwGuyyAthnfs+MR+v/8dFOT0nCT6hUOXzoHMggLa+EdSWeDIy00+0WlCXIXYr5ZAuw33Vtc6ccxzvGcYpkcVUeocDynq2ZguNOBisRfgDAWX+gVrwAaDG5zYVXaeqDj8QjFbpeF0OuBwspqrl7f1y8nZA5UUnWgDdrMWy4JPNk+K+nm3sIPgVxckHJNcvTnzdptb6NF+r80PNkyuN3pI0H1s4ER9bOBEAcPfy2Rk5phVI8AkFuWulHyd6h5Nui2yGiMLVIt6tWDpuw33VTwOdA374Q3I7A6fE0DMU0HTKNMIhSYrVoi/L7B70K5UrXYN+5SnjgpnjNPtVFLtNRVdS1eE/8OoH+PjP38BQIFqHbybm6uRjoqZu7jiC75AYGGOmlo7Zk0kmydQ50ikMELbYqfVllt8jWn7Ew6G6sK989QLN78Ls93LO9Grl64vnjE94jpVLpyh5qpvPnZpw/0xBgk8oVPk8CIU59rX1Z8S/B6KRs97DZwya3jiASvBVNwcx6aqu3IvyIhd6hwLKscwsHYcUrc7Rlz5e9tPXceF9r0XG4VeeMhqri3Hw3uWoiUxAK3I7TP+4HYzBFfljfWHXCaXLpdshdwc1q3FXrw2bqCQznuCLQovJ1T7D111SLgQ/QxF+Eg+RHzlFe1MWv+Mbz5xsuP8dF01PaUjjdTPMxWcCAJwmN6hk51I4rSxokwVI8AkF0U9HXrw8+bYKRvgMRLx70I8yryum/WtZpC2wuveO6Ds+obwIZUUu9AwFFOE0j/BVKyTphPV4JCHNOUfXYCCm5l+81+OUTCN89UxbzXaHFNNFU42VdWkFiSwdAJhdV4bFTdpa7aXTa5SmbNlEXf+fDlaHev3iRnxRJ+DiN2uWQJ41IbbCTP/7NuL+6xdqvn/whkVYMKki7rlGArGlw2q+cL4cxYt5LWZNArMNCT6hoP5jSKVxmhEiCh/QRfh6/x6A0hunT9UiQJRH1ld4UVbkQu9wUFnPtsRj4uGr/ijNqmGGAiH4g+GYxLFYZ9bjlOA28fDVvXS055UnPAVC3LAGPsy18wXiYXZuPQ269gqnT65Muo/6jWc2JrV/JjFbatEIvf0jrrHLIeG6M6zlNIxyH2c0aX15/U1hXKlX8f7NBP/+6xcoXxvOG4h8HFYunYKD9y6PWxDx0r+djw+/f4Xp6+lAgk8oqD/oGbN0PLFRe7fKO1fjdEgocjk0TwNHuofgdkqo8XlQ5nVqPPxik8XC1R6smXViVhoqxNLtlMwtHcl4jVmJsUiVTtjU1tH3vzEjnretPrI+se52SkmJKAB89qympPbPJNbHymNsEPGrdToY7r1mHurLtU+lRou8OCSmyT8smz0eT992dsKad3GDN7rRA8D0cdGniSFVL6bl8+rw40/OV/ozWcl9lBU5s7L4CUCCT6jQCH6GkrYialeLuNo711Oqa7Z2pHsIEyuKIEkM5UUu9Fny8KMfa7NeOl0DxqWhTsXScZjaKg5JMhRkicnlmvJausa2jj4iN8NjMSmq10uHxJBMHrSputhUxJLlkc82x4huIpKRNf04xe9WPJXpb37jdZ/h9+65FID2JvPAp7X2jeCrF8/EU184y/TcgDwJ0IjFqpYID356ET6+qAFfvGg6LpkzHteoJhqaUepJvxzaDGqeRihoI/zMePhOh1zPrl7Jp2sggJnjjGfwluj65x/pGkJ9pLe+8PATV+lEvzarhulOEOHH8/AdkUg+9rwMTgeTI/yg8XkbqxJXiQCAJ16Erzq0kWAmM3k+zJNrlSyY11CO7boe9pOqipNP5lo8N+exyWjxc4qnLfFzrL79HARCYZw+WZvfEE+E6idAs/He8ZEZmu/FOYLhML5xxWycNa0ap00sx7LZ43HWtGrNvndeOitmTYFxpV48/BnDya8xZLPKKmcRPmPMxxh7jDH2K8bYDbk6L2Edr8sBX6S2PVOWDgCUeFyK7w7IyUsjSweQV8zqG46N8AGgPEbwzT12QZgbr5jUKeYCmCVtXXEE38zSkRickoRAMGy6+LXVG2m8Kh3NOXVqnWynlDDnSVtAAPDQjacbjCX5vjtm5/7DzUs033MOuJzafb959RxcdMo4nD2tBoBq6UiJxYi95pwp2CVinKEwxy3nTcVpE+X1tn/92WasXDpFs6/LIeGH18zDv5hUD8Xj9f+4MCsrXQnSEnzG2KOMsTbG2E7d9ssYY3sZY/sYY3dFNn8cwDOc81sAXJ3OeYnsUVXihsSA6jS7ZKpR2zT+YBj9I0FTS6fE60R/JGk7HAihvW8EEyvkqLjM60IwzHGy36+sZ2uEPrFmFOWfjLRA1s8FED6xxxmnLNPU0pGjs5GgeR/+Ire1PzmrHq5eG7jSNs4aqbbSMgoIGDNvHGeG0Y/pdUk4e3oNvv+xuZpJUE5dhD+ttgSPfu4MpQ2FEGX1TcRoUtNZU6tjtiVC/D7izZ/49tWnKuL/yTMm4TsfPc10Xz2rbz8HL3/1fEyy+ASYKulG+KsAXKbewBhzAHgQwOUA5gC4njE2B0ADANHcg9rf2ZSqYjeqSzwZTRqVeKIi3j0U7UFvRKnHpdwcREmmSHSKyoaj3UOmCVtA+8gOwHAhc7Euq34cDlWVjtkNRY7wDSwdxpQF1b/27HbD93otVt9YjbqNdktGdDnnKUW8aktLPO2or7vVHjFG0axItn56SSNuVU1K0t9k9XaMkeAbTWr67sdkITbLARkh/h7izZ/47NlN+K8r51g+ppp5DRWYVluS0nuTIS3B55yvB9Cp27wYwD7O+X7OuR/AkwBWAGiFLPpxz8sYu5Uxtpkxtrm9PXaJMCK7NFQVY3KGowyfx6G0QxDeuZmlI0f4suCrSzIBleD3DMX9Y3XoIkEjd+Vk/whKPc4Y4RZS4XYaR/FAZAEUg+hfkhiK3U4MBUJ41WB5O8B6Mtb6DTd2v6Q9/AT7fPHCaXFfF9dQYkx5upg3scLS+Y1+TDOrTl+loy/LVRaHT/ADVfvc+NzZTXjy1jMtjRGIPl0kmiFtd7Lh4U9ENJIHZKGfCOBZANcwxn4BYI3ZmznnD3POmznnzbW1tVkYHhGP7330NPzCwJ9NhxKPS0nEiuoYvZUS3Tfq4R+JLC3YELF0RFL5QPuAqSgAiKlSMaqYOdnvR4Uv9ilDVH7Et3SYYT22g7G44xLHtUKi4wiMFkBPRpKsePhfvXiW4XZxfYTgqw9j9tTwzG1n6bbE7vfHL+j3ka0q/c055inP5Mf49JJGZeKUPE6Gb119quLDC6bUGM9cBqxF+KOBnFXpcM4HAHw+V+cjUsMs8k4H2cOXI/suJcI3tnTKvE70+4MIhzmOdA+BMWBCpNTvjKZKNFYV41DnoGmFDhArNkYRfv9wEMWu2GOICC5ulY7JxCtJAoriWE3iuFa4eelUPPjqhwn3EwLkdpj3D4oHR+KIWJIYdnzrEsz9lnbB7hnjSrDraK8mgS1ObXbMZt3MYKP91NaGuIlwHpso1zfPEzcu/U///Y/NNR6Mjhe/cp7ptRNPF4naWtudbET4RwCop7M1RLZZRqx41dPTk3hnwvbIHr4ctXebVMco+3qd4Fxe8PtI9xDGl3qVSNLpkHDb+dOUY5qhj76P9w7j4MkBjbc9HAwZ9jNRBN8VZ+IVY4aWi8SYUuVkhtUI3+ty4Mu60kAjhECJ8SSbNPU4JUulkaXe6A36uTuWAgAeu2kxfv2ZZuVnYgxKythqDiLRfurJU3q/Xz0m+Vjy/8nc8NS4HPHyNmMjws+G4G8CMIMxNoUx5gZwHYDVyRyAc76Gc35reXl54p0J21PilW2aUJgr68aaVulEJp30Dwc1NfiCa06fiPpyr9I73wi9iFz60/W44L7XNEsXDgdChrZMMBy1dBL98Rttj5dMBpKbUGXFx1dmm0qxUbYVilyOpMsyhRVSU+LBMpPOkJYzEFbr8FVfOySGXd++NOb6iJtDNhbxc1qo0hkNpFuW+QSAtwDMYoy1MsZWcs6DAG4H8AKA3QCe4pzvSvK4FOGPIWaMK0Ew0oWza9APt1NuoWBEqdITPyDX4Ova2XqcDvzl9nPwzatPNT2fmVCOqNbGHQmGDSdPqS2deB6+4fZIlY6aZbO1HR6tWjqSyVOEHhHNrlhYDwC49NQJSUW4XpcjqdmuiVBOrTpodZyGZYnOLW6Q4slp57cvxd7vXGZo6antn0wjboqjPcJPy8PnnF9vsn0dgHVpHHcNgDXNzc23pHoMwj7MjyTMth3uRveAvKyg2eQSsQhKz1AAx3qGsHxeXcw+iSYvmTW4Glb1ODGP8CMLuCfw8I1gBklbvT5YtXQcEtPcoEyJHH9OXXm0H0wWI/zTLS4AYtTHxnC/yLln15Vh97HemNevnFePQx2DuClS3x7PyhM/R6qWTjxEHuny0yZk/Ni5hHrpEFlnSrUPpV4n3m3tjvTRMY/4SiN/0Pva+hEIccutCNSYVYiol04cDoQNE68iwRsvwjcTSCNLR91LXRzXChIDeiL5DkBOyt6zIvapRjyRqH+UZOTO63ZYtlW23L0Mv9fNgNWTKGmrR1TQ3vtx48SqQ2K44yMz4ibpBdmM8GtKPNj+rUtw+4Wp9di3C7YUfLJ0xhaSxDC/oUKO8AcDcZemExH+rqNytDfJwgpFeswi/LbI7FpAjvCNInUR4ccryzRbvMIhaStHLjt1Aq6cV6/Zx2qvGcaYku8A5NzF7LrYlZ2iSdvEDeOMuHJuneWp/NUlHsPxL2ysAKAtk1TfFPWjmaaaPWv1ScAKiuAn3eDBGmVeV07WGsgmthR8StqOPeZPKsee43041jsUP8KPVF68F3m8TynCNxGwdpXgjwTDhv1wREsEj8s8z6Cfyas+r1r0rppfH3PTsNojB4hOUgPkqNXorELaNBG+Tu/M9Pz3Ny/BJ8+YlFLzNDX3fWI+nrtjqab5Xrxjrr59qfL1vdfMxUdOGWd4M0sW0bvGyjKGhYotBZ8Ye8xvqEAozHG4cwiVBhOeBMKj3XOsFw6Joa4i+a6dZh67WvCB2N4sgLpKR8JFp4xTykDVmEV5ks7DF2vcWhmbEeqKEG7S1VKUYapvcndeqp0oZXZGca1TaZ6mxutyKJU7YjyfOmOSphKrRlVV5fM4lddOmVCGRz53RlI3QjM+dUYjDt673NKqVoUKCT6RE9QzHeNN7lJWyPKHUFfuTalXu2XBN4jww6qyTJ/HiZvOaYrZx8wyckhM81TgcUmGTxFW+Z9r5ykrj3FwQ+tFRPPqn/mmyKpKAjPLJtp7JuUhmjKuzIvnvnRuZIwcr915AbbcvSxmTNlIsBLm2FLwycMfe4wr8yqLY5jV4AOycIkSvFTsHHEMI2Ij/Hh1+JLpscwiYokxjbh6nA5T++qq+fWG29VMrCjCv18yE4C5paN4+HGidHXPmOsXR5czFG/JpI++6qbF+Pw5Tagv92qOWuJxajqwfnTBRACxs2WJ7GJLwScPf2wiyjMTtW8QidtUBd8sAm/v10f48evw5WMZL3RihH67xylhUlVxTAXKwXuX43sfs9Y6V5lMBOMbjXB94iUTz2iqwrcj8xbUh1AE3+StCxsrML8hub/BmeNL8c2rTgVjLK5V9I3ls7H9W5cknKhGZBa62kTOmD+pAs/vPI6KOAs4A3I0eAIjKfcGt5K0BYwXMVFX6QDGto/ZDUW/WUwaOtOg/3q8iFyDqtTQ0MO3eDzxsnqMwk0xe+uf//Uca2M0QZzLyLRxSAxlutYIP79hEaaPy36L4EKGBJ/IGedMq4FTYppFLYwoiQhBqoKfTtJWRMxCrA0tHTPB120X7ZWNjmF5gZPI/xzc0Hrhul46yRCtmc9SqWGSh71ibuwkOyKz2NLSIQ9/bDK3oRw7v30pppusZysoi1g6kywu+K3HTPw6BvyW9gOiYm220InheSPbxZODJ5LANeysaXmBk2iYbFylEzleAsFXvzpXVNREYm/1a1Y7S1ohazcSImVsKfjk4Y9drEw8EpU6mU7a6jGydB5fuQQfXzhREVCjQ5mJqziv8KWVlaAi29X6l3yEbyz4VpK26pNzru4qKf+vFuZPL2nUvzNlSO7thy0Fnyhsyrwu+NyOlOuprfrjRknbpTNq8ONPLVC+NyppNPPwxa436/q+iP3V77LqwETbBRgvVBJW6vATHCfyv3zj0JZEZs3RoQjfdpCHT9iOledOwUWzx6UsGJYj/BQL0BNV6dx+0XT8vwumKTcUh0NE+NH3Wf3ZVI6OSYSf3PHUyV+uCH52hFm5yVCpvW0gwSdsx8zxpZg5Pr7PHw+rgq9f+9Yqps3TWFTY1dU9zjj2UCLUPd6NzsutRviq1yWVvZNNKMC3H7a0dChpS6SDVcE3a4KW8H2R4+s7YcZruQCkNsFJE+EbvG6lDh8AlkyRlxZcPrcOp9bLfWvKE5THEmMPW0b41A+fSAcjwf/CeVNx+uRKOCSGlY9tBmCctLWCENfnv3wejvUM4eoH3pC3m4S0okrn2uaGmNdqSjw4qZsQZgTnPEEvnfjvnz6uVGm3sHhKFVYsqMeMNJ6ikiHZZReJ7GFLwSeIdDAS3kqfG5ecOkFTi5+qpSOoLfUovW6AOOWakUXA9bNKn7ntLDRWF2Px9142PYfw19XJVjXR/mrWb15up4TTJ1cl3jFNMtmygcgMJPjEmENYNS4HQyDS7ljYMOoKm3QamxkR7/6hX3AbAJqbEouuMsIE7ZGNIvx7VpwKXx5bF4jrUVee2nwKIvOQ4BNjDhFpux0SAiF5WUPRftehSaZmNoWVymzXRKgX9YiftI197TNnNWV8PMlQ6nXhZ9ctwFkGrSWI/ECCT4w5hPB6XA4M+GXBF+KujvBTTdqakY2ZpeoqnXgTr+xaEbMi0hWTsAe2rNIhiHQQgu9WTaxy6ma9AuYTqIxoqk486zddwX/9Py6M2aZep9W4l05mzk0UBrYUfCrLJNJBiJ9ogAZE/Xq1jWM009aIPd+5DC9+5fyE+6Vq6VwwqxaAcbO4c6bXYPq4Enx52YwEE69SOjVRYNjS0qGyTCIdRDTvUS2bJ4RerclWZ9paXXjccstjHb/+TLOSXNZTXuTCS/8m32xauwZjXldmy1JFDGEBWwo+QaSDkrR1qiN8+WvGGJwSQzDMLUf4VmEpHs7pkOC0cE8xTtpGXrPlszphN+hjQow5jDx8dQmmw6BEMyPnzbKvEjdpSxE+YQESfGLMoVTpqMJmdTSv1ORnuEonG2WZaowifNFzSCwLmQnGl3kS70SMSsjSIcYcovWBxtKRjCL8zMY72a6UMTr6D6+dhxvObMTEisxNbnr9Py5SFkchxhYk+MSYwykZJG0dsV8nO9P21X+/AF2DftPXsxzgGyq+z+PE2dNqMnoa9Y2SGFuQ4BNjjmhZptrSiY3wk7VgptT4MAXm6/Hmw9IhiGSgWzkx5hDCq47g3QYevtFas+mQ7RWeSO6JdLGl4NPEKyIdRLWMU2JRv96oSifDSdtsQxE+kS62FHxaxJxIB0liYExuf2yUoBWRfaaTttmG9J5IF/LwiTGJU5InWIloPxd1+Nkmm7X2j69cggnlVI451iHBJ8YkEpPtnKh9k/06/GyT6kxeKyydkdlKH8KejK5nWoKwyPgyL8aXeQ0TuI4sJW2zzei6PRF2ZHR94gnCImu/tBQ3nzslKu6SQYQ/yiwdStoS6UKWDjEmEUsKCpE0rNKhpC1RYIyuTzxBJIlRzb2y+tUo8/ApwifShQSfGNMYVeSM1jp8gkgXEnxiTCNJiNTkx65l6yJLhygwRtcnniCSxClJcEmSpu2BIzIxS6KkLVFgkOATYxqJxVo3TomNuugeoLJMIn1yVqXDGJsK4BsAyjnn1+bqvERh44jMuI3ZZlP//g+3LEFNifGMV4rwiXSxFOYwxh5ljLUxxnbqtl/GGNvLGNvHGLsr3jE45/s55yvTGSxBJItDkmImWDklKaM1+N/56Gn43NlNGTnW2dNqlFWs9JDeE+liNcJfBeABAL8VGxhjDgAPArgYQCuATYyx1QAcAH6ge/9NnPO2tEdLEEnikGItHTnCz5yl8y9nTs7YseKR7fbLxNjHkuBzztczxpp0mxcD2Mc53w8AjLEnAazgnP8AwJWpDogxdiuAWwGgsbEx1cMQBAC5VXJshB9r8xBEIZBOmDMRwGHV962RbYYwxqoZYw8BWMgY+5rZfpzzhznnzZzz5tra2jSGRxByNK8X/ElVxWisKs7TiAgif+Qsacs57wBwW67ORxCAcdL2KxfPxFcunpmnERFE/kgnwj8CYJLq+4bItrShFa+ITCGxzPr1BDGaSecvYROAGYyxKYwxN4DrAKzOxKBoxSsiUzgdTNMamSAKGatlmU8AeAvALMZYK2NsJec8COB2AC8A2A3gKc75rkwMiiJ8IlMsmVKNs6ZV53sYBGELrFbpXG+yfR2AdRkdkXzcNQDWNDc335LpYxOFxZc+MiPfQyAI20D98AliFHHezFp8dEF9vodBjFJsKfiMsasAXDV9+vR8D4UgbMVvb1qc7yEQoxhbli9Q0pYgCCLz2FLwCYIgiMxDgk8QBFEg2FLwqSyTIAgi89hS8MnDJwiCyDy2FHyCIAgi85DgEwRBFAi2FHzy8AmCIDIP45znewymMMbaAbToNpcD0N8JrGzTf18D4GQGhhkPo3Fl8n2J9ov3Ol3H5PY1e93q9kTX1s7XMZn3Zvs6Gm3L9WfSztcRAGZwzo0ToJzzUfUPwMOpbDP4fnM+xprJ9yXaL97rdB0zcy2tbk90be18HZN5b7avo5Vrm+1raefrmOg1W1o6CViT4jajfbJNque0+r5E+8V7na5jcvuavW51u9XrnU3SOV+2P5PJbM/3Z9LO1zHua7a2dLIJY2wz57w53+MY7dB1zAx0HTMHXUtzRmOEnykezvcAxgh0HTMDXcfMQdfShIKN8AmCIAqNQo7wCYIgCgoSfIIgiAKBBJ8gCKJAIME3gDE2mzH2EGPsGcbY/8v3eEYrjLGPMsZ+xRj7I2PsknyPZ7TCGJvKGHuEMfZMvscy2mCM+Rhjj0U+hzfkezz5ZswJPmPsUcZYG2Nsp277ZYyxvYyxfYyxu+Idg3O+m3N+G4BPAjgnm+O1Kxm6jn/hnN8C4DYAn8rmeO1Khq7jfs75yuyOdPSQ5DX9OIBnIp/Dq3M+WJsx5gQfwCoAl6k3MMYcAB4EcDmAOQCuZ4zNYYzNZYw9p/s3LvKeqwGsBbAut8O3DauQgesY4e7I+wqRVcjcdSRkVsHiNQXQAOBwZLdQDsdoS2y5iHk6cM7XM8aadJsXA9jHOd8PAIyxJwGs4Jz/AMCVJsdZDWA1Y2wtgD9kcci2JBPXkTHGANwL4HnO+dYsD9mWZOrzSERJ5poCaIUs+u9ibAa4SVEoF2Aiond5QP4QTDTbmTF2AWPsfsbYL1G4Eb4RSV1HAHcAWAbgWsbYbdkc2Cgj2c9jNWPsIQALGWNfy/bgRilm1/RZANcwxn6B/LQFsRVjLsLPBJzz1wC8ludhjHo45/cDuD/f4xjtcM47IOdBiCThnA8A+Hy+x2EXCiXCPwJgkur7hsg2IjnoOmYGuo6Zh66pBQpF8DcBmMEYm8IYcwO4DsDqPI9pNELXMTPQdcw8dE0tMOYEnzH2BIC3AMxijLUyxlZyzoMAbgfwAoDdAJ7inO/K5zjtDl3HzEDXMfPQNU0dap5GEARRIIy5CJ8gCIIwhgSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgC4f8D0ms9A+23UnIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pds = Powerspectrum.from_lightcurve(lc_pois, norm=\"leahy\")\n", + "pds = pds.rebin_log(0.005)\n", + "poisson = poisson_level(meanrate=lc_pois.meanrate, norm=\"leahy\")\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.axhline(poisson)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (ii) Using user-defined model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Light curve can also be simulated using a user-defined spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVqElEQVR4nO3dbYxc133f8e9/d/kgUZZIiltCJumQroimbJ4sLGQ6DgLDqm1JMUy9cAwJQcw6Qoi0cuJUBRyqBiKkQQC7LexYReqEiJTIgCNbUeyKMJTKjKQgCFDJXlmynmhZa9oySVDm6omO9URy998Xc5aa2ZkluTu7s8sz3w8wmHvPPXPvOcPhb+6eOTM3MhNJUn8YWOwGSJJ6x9CXpD5i6EtSHzH0JamPGPqS1EeGFrsBp7Nu3brcvHnzYjdDks4pDz/88POZOdxp25IO/c2bNzM6OrrYzZCkc0pEPDvTNod3JKmPGPqS1EcMfUnqI4a+JPURQ1+S+oihL0l9xNCXpD5SZei/evwkn/3G0zzyo5cWuymStKRUGfqvHZ/glvvHePzwscVuiiQtKVWGviSps6pD34uCSVKrKkM/Iha7CZK0JFUZ+pKkzs4Y+hFxW0QcjYgnmsr+R0R8NyIei4ivRcTqpm03RcRYRDwdER9oKr+ylI1FxO5570kHXvRdklqdzZn+XwNXTivbB/xcZv4C8D3gJoCI2AZcC/y78pj/HRGDETEI/BlwFbANuK7UXRAO7khSZ2cM/cz8J+DFaWXfyMyTZfVBYGNZ3gF8OTPfyMwfAGPA5eU2lpkHMvM48OVSV5LUQ/Mxpv9bwN+X5Q3AwaZth0rZTOVtImJXRIxGxOj4+Pg8NE+SNKWr0I+ITwEngS/NT3MgM/dk5khmjgwPd7za19nva57aJEm1mPPlEiPiPwAfBK7INz8xPQxsaqq2sZRxmvJ554xNSepsTmf6EXEl8EngQ5n5atOmvcC1EbEiIrYAW4FvAt8CtkbElohYTuPD3r3dNV2SNFtnPNOPiDuA9wDrIuIQcDON2TorgH3li1APZubvZOaTEXEn8BSNYZ8bMnOi7OfjwL3AIHBbZj65AP1p4YxNSWp1xtDPzOs6FN96mvp/AvxJh/J7gHtm1bo5CidtSlJHfiNXkvpI1aHv6I4ktaoz9B3dkaSO6gx9SVJHVYe+P7gmSa2qDH2/nCVJnVUZ+pKkzgx9SeojVYa+ozuS1FmVoS9J6qzq0HfyjiS1qjL0w+k7ktRRlaEvSerM0JekPlJ16Kc/uSZJLaoMfUf0JamzKkNfktRZ1aHvlE1JalVl6DtjU5I6qzL0JUmdVR36ju5IUqsqQz+cvyNJHVUZ+pKkzs4Y+hFxW0QcjYgnmsrWRsS+iHim3K8p5RERt0TEWEQ8FhGXNT1mZ6n/TETsXJjutHL2jiS1Opsz/b8GrpxWthu4LzO3AveVdYCrgK3ltgv4AjTeJICbgXcClwM3T71RLARn70hSZ2cM/cz8J+DFacU7gNvL8u3ANU3lX8yGB4HVEXEJ8AFgX2a+mJkvAftofyORJC2wuY7pr8/MI2X5OWB9Wd4AHGyqd6iUzVTeJiJ2RcRoRIyOj4/PsXkN/vaOJLXq+oPczEzmcXZkZu7JzJHMHBkeHp6v3UqSmHvo/7gM21Duj5byw8CmpnobS9lM5ZKkHppr6O8Fpmbg7ATubir/aJnFsx04VoaB7gXeHxFryge47y9lC8rZO5LUauhMFSLiDuA9wLqIOERjFs6ngTsj4nrgWeAjpfo9wNXAGPAq8DGAzHwxIv4Y+Fap998yc/qHw/PG2TuS1NkZQz8zr5th0xUd6iZwwwz7uQ24bVatkyTNK7+RK0l9xNCXpD5SZej7g2uS1FmVoS9J6qzq0E/nbEpSiypD3ymbktRZlaEvSeqs6tB3dEeSWlUZ+o7uSFJnVYa+JKmzqkPf0R1JalVl6IfTdySpoypDX5LUWdWh7+wdSWpVZeg7uCNJnVUZ+pKkzqoO/XT+jiS1qDL0nbwjSZ1VGfqSpM4MfUnqI1WHvlM2JalVlaHvN3IlqbOuQj8i/nNEPBkRT0TEHRGxMiK2RMRDETEWEV+JiOWl7oqyPla2b56XHkiSztqcQz8iNgC/B4xk5s8Bg8C1wGeAz2XmpcBLwPXlIdcDL5Xyz5V6C8rRHUlq1e3wzhBwXkQMAecDR4D3AneV7bcD15TlHWWdsv2KcBxGknpqzqGfmYeB/wn8iEbYHwMeBl7OzJOl2iFgQ1neABwsjz1Z6l88fb8RsSsiRiNidHx8fK7NkyR10M3wzhoaZ+9bgLcCq4Aru21QZu7JzJHMHBkeHu52Z902R5Kq0s3wzr8HfpCZ45l5Avgq8G5gdRnuAdgIHC7Lh4FNAGX7RcALXRz/tBw4kqR23YT+j4DtEXF+GZu/AngKeAD4cKmzE7i7LO8t65Tt92d6Ki5JvdTNmP5DND6Q/TbweNnXHuAPgBsjYozGmP2t5SG3AheX8huB3V20++zauNAHkKRzzNCZq8wsM28Gbp5WfAC4vEPd14Ff7+Z4s+HojiS1q/IbuZKkzqoOfT8xkKRW1Ya+3/uSpHbVhr4kqV3Voe/lEiWpVbWh7+COJLWrNvQlSe0MfUnqI1WHvlM2JalVtaHvjE1Jaldt6EuS2lUd+o7uSFKrakM/nLQpSW2qDX1JUruqQ9/ZO5LUqt7Qd3RHktrUG/qSpDZVh74/uCZJraoNfUd3JKldtaEvSWpXd+g7uiNJLaoNfX97R5LaVRv6kqR2XYV+RKyOiLsi4rsRsT8i3hURayNiX0Q8U+7XlLoREbdExFhEPBYRl81PF2bm6I4kter2TP/zwP/NzJ8FfhHYD+wG7svMrcB9ZR3gKmBrue0CvtDlsU/L396RpHZzDv2IuAj4VeBWgMw8npkvAzuA20u124FryvIO4IvZ8CCwOiIumevxJUmz182Z/hZgHPiriHgkIv4yIlYB6zPzSKnzHLC+LG8ADjY9/lApaxERuyJiNCJGx8fHu2ieJGm6bkJ/CLgM+EJmvgN4hTeHcgDIzGSWQ+uZuSczRzJzZHh4uIvmQfqLa5LUopvQPwQcysyHyvpdNN4Efjw1bFPuj5bth4FNTY/fWMoWhFM2JandnEM/M58DDkbEvylFVwBPAXuBnaVsJ3B3Wd4LfLTM4tkOHGsaBpIk9cBQl4//XeBLEbEcOAB8jMYbyZ0RcT3wLPCRUvce4GpgDHi11F1Qju5IUquuQj8zHwVGOmy6okPdBG7o5niz4eiOJLXzG7mS1EeqDn1HdySpVbWhH07fkaQ21Ya+JKld1aHv7B1JalVt6Du4I0ntqg19SVK7qkM/nb8jSS3qDX3HdySpTb2hL0lqU3XoO3tHklpVG/qO7khSu2pDX5LUztCXpD5i6EtSH6k29P3BNUlqV23oS5LaVR366ZxNSWpRbeg7uiNJ7aoNfUlSu6pD38EdSWpVbeg7uiNJ7aoNfUlSu65DPyIGI+KRiPh6Wd8SEQ9FxFhEfCUilpfyFWV9rGzf3O2xz8TJO5LUaj7O9D8B7G9a/wzwucy8FHgJuL6UXw+8VMo/V+otGL+cJUntugr9iNgI/Brwl2U9gPcCd5UqtwPXlOUdZZ2y/YowmSWpp7o90/9T4JPAZFm/GHg5M0+W9UPAhrK8ATgIULYfK/VbRMSuiBiNiNHx8fGuGuflEiWp1ZxDPyI+CBzNzIfnsT1k5p7MHMnMkeHh4Tnvxz8hJKndUBePfTfwoYi4GlgJXAh8HlgdEUPlbH4jcLjUPwxsAg5FxBBwEfBCF8eXJM3SnM/0M/OmzNyYmZuBa4H7M/M3gAeAD5dqO4G7y/Lesk7Zfn/64ziS1FMLMU//D4AbI2KMxpj9raX8VuDiUn4jsHsBjt3CtxRJatXN8M4pmfmPwD+W5QPA5R3qvA78+nwc72w4L0iS2vmNXEnqI1WHvqM7ktSq4tB3fEeSpqs49CVJ01Ud+s7ekaRW1Ya+s3ckqV21oS9Jald56Du+I0nNqg39wQgmJ89cT5L6SbWhPxAw4Se5ktSi3tAfCCYNfUlqUW/oRzA5aehLUrNqQ39wIDDzJalVtaEfjulLUptqQ38wAq/RIkmtqg39gQgmHN+RpBb1hr5j+pLUpt7QD5y9I0nTVBv6g87Tl6Q21YZ+RDBh5ktSi2pDfzBw9o4kTVNt6Dt7R5LazTn0I2JTRDwQEU9FxJMR8YlSvjYi9kXEM+V+TSmPiLglIsYi4rGIuGy+OtGJv70jSe26OdM/CfyXzNwGbAduiIhtwG7gvszcCtxX1gGuAraW2y7gC10c+4was3cW8giSdO6Zc+hn5pHM/HZZ/hdgP7AB2AHcXqrdDlxTlncAX8yGB4HVEXHJXI9/Js7ekaR28zKmHxGbgXcADwHrM/NI2fQcsL4sbwAONj3sUCmbvq9dETEaEaPj4+NzbtNAhL+9I0nTdB36EXEB8HfA72fmT5q3ZWP6zKySNzP3ZOZIZo4MDw/PuV0D4TdyJWm6rkI/IpbRCPwvZeZXS/GPp4Ztyv3RUn4Y2NT08I2lbEH4jVxJatfN7J0AbgX2Z+ZnmzbtBXaW5Z3A3U3lHy2zeLYDx5qGgeadY/qS1G6oi8e+G/hN4PGIeLSU/Vfg08CdEXE98CzwkbLtHuBqYAx4FfhYF8c+o3CeviS1mXPoZ+Y/AzHD5is61E/ghrkeb7Yav6ffq6NJ0rmh3m/kDnjlLEmartrQHxoY4OSE386SpGbVhv6KoQGOnzT0JalZvaG/bIA3DH1JalFv6A8N8vqJicVuhiQtKRWHvmf6kjRdxaE/yMnJ9MNcSWpSb+gva3TtuKEvSadUG/orhxpde+OEoS9JU6oN/RXLBgF4/aQf5krSlHpDv5zpv+6ZviSdUm3oX7hyGQA/ee3EIrdEkpaOakN/zarlALz46vFFbokkLR31hv75jTP9lw19STql2tBfO3Wm/4rDO5I0pdrQv3DlMgYHgud/+sZiN0WSloxqQ39gIHjb2vN59oVXFrspkrRkVBv6AG9ft4oD44a+JE2pOvQvXX8BB8Zf4bXjfkFLkqDy0P/lf72O4xOTPPiDFxa7KZK0JFQd+u/cspa3rBzirtFDi90USVoSqg79lcsG+c3tP8M9Txzhn595frGbI0mLrurQB/j4ey/l0uEL+O0vjnLHN3/k7+tL6ms9D/2IuDIino6IsYjYvdDHO3/5EH/z29v5+Y0XcdNXH+ddn76fT33tcf7PI4fZf+QnvHr85EI3QZKWjMjM3h0sYhD4HvA+4BDwLeC6zHyqU/2RkZEcHR2dl2NnJv+w/yh3jh7k/33/BX76xpthf/Gq5axdtZw1q5az5vxlXHTeMs5fPsTKZYOct2yQ85YPcN6yQVYsG2T54ACDA8GywWBwYIChwWBoIBiaYTkCIoKBCAYCgkbZwEAQ8GZ5lPLmegON9al6U9tP3Z96Xk89v/PyXEk6t0XEw5k50mnbUI/bcjkwlpkHACLiy8AOoGPoz6eI4H3b1vO+beuZmEyefu5fOPD8T3n2hVc5/PJrvPTKcV585Tg/eP4Vjr12gteOT/D6iclz+spbze8Bb75BxLT1qe3RUnGm7dG2vXV/7Y/v/LjTtYUZjnU2ZvO+F7PY82zfT2fX5oV5s57VczHr/i3Mc7eQz9usai+BNv/bSy7kf133jlns/ez0OvQ3AAeb1g8B72yuEBG7gF0Ab3vb2xakEYMDwba3Xsi2t154xroTk8nrJyZ47cQErx2f4MTEJBOTyYmJbNxPNtZPTiQnJyfLdXmTiclJTkwkSeOvjEyYzGQyW9eTzuUz1cuEycnGdoDGFshT60XTX3A5rWimx0zfTtv2s3vc9D8eTz2upezs2tL6qNObzR+ts6o7izbMft8Ltd8FasQsq89mJGGhnovZ73th2jy7f5Jk05rzZrP3s9br0D+jzNwD7IHG8M4iN4fBgWDViiFWrVhyT5UkzVqvP8g9DGxqWt9YyiRJPdDr0P8WsDUitkTEcuBaYG+P2yBJfaunYxaZeTIiPg7cCwwCt2Xmk71sgyT1s54PVGfmPcA9vT6uJKkPvpErSXqToS9JfcTQl6Q+YuhLUh/p6W/vzFZEjAPPdrGLdUC//aZyv/W53/oL9rlfdNPnn8nM4U4blnTodysiRmf60aFa9Vuf+62/YJ/7xUL12eEdSeojhr4k9ZHaQ3/PYjdgEfRbn/utv2Cf+8WC9LnqMX1JUqvaz/QlSU0MfUnqI1WGfq8vvr6QIuK2iDgaEU80la2NiH0R8Uy5X1PKIyJuKf1+LCIua3rMzlL/mYjYuRh9OVsRsSkiHoiIpyLiyYj4RCmvtt8RsTIivhkR3yl9/qNSviUiHip9+0r5SXIiYkVZHyvbNzft66ZS/nREfGCRunRWImIwIh6JiK+X9dr7+8OIeDwiHo2I0VLW29d145J89dxo/GTz94G3A8uB7wDbFrtdXfTnV4HLgCeayv47sLss7wY+U5avBv6exmU7twMPlfK1wIFyv6Ysr1nsvp2mz5cAl5XltwDfA7bV3O/S9gvK8jLgodKXO4FrS/mfA/+xLP8n4M/L8rXAV8rytvKaXwFsKf8XBhe7f6fp943A3wBfL+u19/eHwLppZT19XS/6k7AAT+q7gHub1m8CblrsdnXZp83TQv9p4JKyfAnwdFn+C+C66fWA64C/aCpvqbfUb8DdwPv6pd/A+cC3aVw/+nlgqJSfem3TuCbFu8ryUKkX01/vzfWW2o3GlfPuA94LfL20v9r+lvZ1Cv2evq5rHN7pdPH1DYvUloWyPjOPlOXngPVleaa+n7PPSfkz/h00znyr7ncZ6ngUOArso3HW+nJmnixVmtt/qm9l+zHgYs6tPv8p8ElgsqxfTN39hcbl0b8REQ9HxK5S1tPXtVf7PsdlZkZElfNuI+IC4O+A38/Mn0TEqW019jszJ4BfiojVwNeAn13cFi2ciPggcDQzH46I9yxyc3rpVzLzcET8K2BfRHy3eWMvXtc1nun3w8XXfxwRlwCU+6OlfKa+n3PPSUQsoxH4X8rMr5bi6vsNkJkvAw/QGN5YHRFTJ2fN7T/Vt7L9IuAFzp0+vxv4UET8EPgyjSGez1NvfwHIzMPl/iiNN/bL6fHrusbQ74eLr+8Fpj6x30ljzHuq/KPlU//twLHyZ+O9wPsjYk2ZGfD+UrYkReOU/lZgf2Z+tmlTtf2OiOFyhk9EnEfjM4z9NML/w6Xa9D5PPRcfBu7PxgDvXuDaMttlC7AV+GZPOjELmXlTZm7MzM00/o/en5m/QaX9BYiIVRHxlqllGq/HJ+j163qxP9hYoA9LrqYx4+P7wKcWuz1d9uUO4AhwgsbY3fU0xjLvA54B/gFYW+oG8Gel348DI037+S1grNw+ttj9OkOff4XG2OdjwKPldnXN/QZ+AXik9PkJ4A9L+dtphNgY8LfAilK+sqyPle1vb9rXp8pz8TRw1WL37Sz6/h7enL1TbX9L375Tbk9OZVOvX9f+DIMk9ZEah3ckSTMw9CWpjxj6ktRHDH1J6iOGviT1EUNfkvqIoS9JfeT/A6eL3sW0puviAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]\n", + "spectrum = np.power((1/w),2/2)\n", + "plt.plot(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABRAUlEQVR4nO2dd7gVxfnHv+85t1CliwjIRcAWFVFUQLFrbElsSTSxxpLEVH9JDNYUSzTFJGqisZeoMdEYexcLgiCgCEivggiXdulw7z3z++PsnDM7O7M7u2f3lHvm8zw8nLs7uzs7O/POO++88w4xxmCxWCyWyiRV6gxYLBaLJTpWiFssFksFY4W4xWKxVDBWiFssFksFY4W4xWKxVDA1xXxYz549WUNDQzEfabFYLBXPlClTVjPGeqnOFVWINzQ0YPLkycV8pMVisVQ8RLREd86aUywWi6WCsULcYrFYKhgrxC0Wi6WCCRTiRPQAEa0iohnCsT8Q0Wwi+oSIniGironm0mKxWCxKTDTxhwCcKB17HcC+jLH9AcwFcFXM+bJYLBaLAYFCnDH2LoC10rHXGGMtzp8fAOiXQN4sFovFEkAcNvHvAHhZd5KILiOiyUQ0ubGxMYbHWSwWi4VTkBAnomsAtAB4TJeGMXYPY2w4Y2x4r15KX3WLxWKJxMvTV2DNpu2lzkZJiSzEiehCAKcC+DazQcktFkuRadrSjO8/NhXfeejDUmelpERasUlEJwK4EsCRjLEt8WbJYrFYgml1dMcla6tbBJm4GD4BYAKAPYloGRFdDOBOAJ0BvE5EHxPR3Qnn02KxWFykKPt/JlPdhoBATZwxdo7i8P0J5MVisViM4UZcIiptRkqMXbFpsVgqEq5/V7kMt0LcYrFUJtyfospluBXiFoulMqluS3geK8QtFktFkrGezQCsELdYLBWKndjMYoW4xWKpSKwinsUKcYvFUpFk7MQmACvELRZLhWJt4lmsELdYLBXH2s07cMnDdtN1wApxi8VSgTwwbhFmf7ERgF3sY4W4xWKpOKpdcItYIW6xWCqOancrFLFC3GKxVBzk81e1YYW4xWKpOFKCJl7tSrkV4haLpeJIVbngFrFC3FI1ZDIMG7Y1lzoblhiodu1bxApxS9Vw66uzsf+vX8NGK8grHnFis9rluRXilqrhhWkrAADrt1gh3paodq3cCnFL1ZByartdrm1pS1ghbqk6qOoH4Ja2hBXilqrBKuBtByZ8zGrvlK0Qt1Qd1W5DtbQt2qwQ/2DhGutOZrFUAdXeKQcKcSJ6gIhWEdEM4Vh3InqdiOY5/3dLNpvh2LitGWff8wG+9+iUUmfFUkZYc0rbpNq/q4km/hCAE6VjYwC8yRgbAuBN5++yoaU1+1VnLG8qcU4sFkvSWE08AMbYuwDWSoe/BuBh5/fDAE6LN1vxUO09tEVNtTf6tka1f86oNvHejLEVzu8vAPTWJSSiy4hoMhFNbmxsjPi4cLQ60tv6A1tEuEeDDWNqaUsUPLHJsi1DKy0ZY/cwxoYzxob36tWr0McZ0ZrhQrwoj7NUGMx27hWP/YR5ogrxlUTUBwCc/1fFl6XC+WRZ1hZuI51ZRHi7twKgbVHtI6uoQvw5ABc4vy8A8Gw82YmHSx/JbqBa7R/XYqkGqn1kZeJi+ASACQD2JKJlRHQxgFsAHE9E8wAc5/xtsVQEVd7mLW2MmqAEjLFzNKeOjTkvsWP1cIsIF95MP4VjsVQcbXbFJgArxS1KrCbetqj2z9mmhXjGuqdYBLgGbmtF5WO/YZ42LcSbrRC3KKj2ibBqZFtzK9Zs2l7qbCRCmxbiVhN3s2FbM1a30YochiRrxcZtzfjBY1OxfP3WBJ9iETHpk8+9byIOuvGN5DNTAtq0EG+xQtzFkb8fi+FttCKbkJvYTLBajJ3TiBenr8Adb85L7iGW0Exesq7UWUiMNi3ELW7W2b0lHZKT4pu3tyR272rg6SnL0DDmRWxrbjW+ptq9jawQt1QNxVixmcnFZ0nuGW2ZP742BwCwdvMO33R2WiOPFeKWqiPJ9p8XLpUhxVszDH96bQ7Wb/EXmsUmzDdqzSSWjYrACnFL1ZGkFsc9Xyolbs87c1fhjrfm41fPzSx1VgDku74wHkTNVS7FrRC3VA3FWLHZ7GxIUpuujKaVceTfpm3lYcvn8Y7CdLQtVoi3PQ4akN0t7og9ihP6ttKodj/pJF+/xZGKNQGq+JI1m7FlR+kFZzqdzWeQJ9f4+atx/G3vYHuL+YRjIYTxLKv29SBtUoi3q22TrxUbrVVb6ZN/b66J1wRo4kf+4W1c/NDkxPMTF9c/NxPzVm3C4tVbivK81oy/di2OpnTmlLWbd+CztcXJbylpk9KOC6lq1zh1VKv/fDH8xPkCs/vHLcRna7dgj2tfxpl3jVemnbBwTXIZiRk+smjcmOxiMe7VE6aO6r7nkb8fi9G/HxtDrsqbNinEeSdevRqnP9UqxDlJ2sT5nZtbGb5930TsaMlgShtaaHLu/RMTvX9OiLeaf6PBO3dSHt9YJT77bVKI8z02rRBXU60TQcXe2adpq3pxlR0hBhOm7XZpX+s5pivjtlj2bVOI58wpxXle48btaBjzIv47dVlxHlgg1a6JJ4k4nanbqLuc5Ei5ekK2BhSSeFpVzv+Zom6L5VT2cdEmhTj/qEEVIS4Wr9kMAHhs4tKiPK9QwgxV2yLFasi655RT6ZdTXgCAnG4lSBMXNWpV0kmL1uZ+X//sjPx1BeavHGmTQjy/231xPlkYbWbz9paSRxKs1sURvOEXwyYuPk+mWPWykgkS4uLpIBPJIxOWGKetRNq2EC9Ds8FX7xxX8kiC1T5XUKx2rCvmNihHYoNPbAZq4hA18RCeLJFyVd5UnBB/dMJinPa397Hfr17F7Zpwn8U2p3BMevkFjZtjf+7gq1/Cz/8zzTh9S4APblL8+8PPMPzGN0quDSX5dHFUptP4yynqXjnYxKcva8LY2atcx8Jo4qrqrDVllU/Rx0bFCfHrnp2Jjz9bj43bW3Db63OVafKaeHHyVOqIdS0Zhqc0EzkqmktkE7/6melYvWl7yZ6f904pzvO3NasrYDkJknLIylfuHIeLHvoQAJAif5v4jOVNePD9RYETmzraoikrcLf7SoR//7b4weKgVBObtekUWjKt2N7Sirqa0ukPiUYxNElThtWyXLLE9SGdED/1jnEAgO8esXvumKo8y2m0kzQVp4mbsMlx8i+27Vf3tFkrNuC3z39acjMCJylzStCEaQ2P01EqTbwYKzYNbl5OAmb5ujLbRo7bxAPKUXSTVZa5NaeYQURXENFMIppBRE8QUbu4MhaWGcubMGN5E5q2NueWBhdPE/e3p5x3/0Q88P4i/HvyZ0XKjz9JdG4vTV+BIde8jJte/FSbJjdULnlLStA7xeDWQWm27GjBPe8uKMrE/LX/y7rfJWERfGrKstCeWEGaOEdcsKZq57qry6kDjYvIQpyI+gL4MYDhjLF9AaQBnB1XxsJy6h3jcOod41yR4QptAy2tmVACL6hx/vLp6bnfz0/7PGq2CiYJm/SrM78AANz73iJtGh7Yr1ReQzkXwwQfbzLaCkrxh1fn4OaXZuPF6SviyZQBcRfJqo3b8PP/TMPFD5sH+drW3Jqb+A8U4sL5MN+z5PpDAhRqTqkB0J6IagB0AFB0ySSHxkwLIUAL1cQHX/MyTv/7+wXdI5sP77H73ltY8H2jUioXw1Jr4kz6P05mft6EZeu2GCkOqno5dvYqzPliIwBgoxPbe6tin8lVG7fh9L+/j1UbtgEA7n13IWYsb3KlYYzhj6/OwaLV8XlCUcjZe/6KK9abm2vWCbsLBXun5M+r6pN22b1xbiqHyEKcMbYcwB8BLAWwAkATY+w1OR0RXUZEk4locmNjY/ScanjyQ7eJQjT3xiGsPlnWFJzIQVfPVY22lCaF5gRs4iavQwGeB4mToE38lNvH4fBbx5rZxBVJLnroQ3z5L+8CEEwbinSPfbAUHy1dj39+kF3ActNLs3KTfZwVTdtw59j5uOCBSWFeIRGiFnWwOUUQ4oq0WnNKG1TFCzGndAPwNQADAewKoCMRnSunY4zdwxgbzhgb3qtX/Js0bJIilYmNqNjDdl39UOWjlIsmWxMwp5jcMW9Oif3xRsTlYvjmrJVY0LjJ9xky785txEpHexYTqdxk+YhF1SHwkaZf1ebKRJgd48sBl2AO+Eai4Fa1L21bbHsyvCBzynEAFjHGGhljzQD+C2BUPNkyZ0eLWyLwip+i4n2woJFmOXT+Yjkl4Z1iIhi5cCrVYqP8svvCuPjhyTj2T+8AyAqQFz/J2651mvj5D0zC1+5835Pmb2Pn50wjHF6fTAS1H35ptjW3FkXJCWOEEb2bgjTx1gBzipYyaItxU4gQXwpgBBF1oOw4+VgAs+LJljlyReTyoSadKshkMXnxWu25rTtasXWHuZajysesFRs8HVBSbGtuxR7Xvpz7+9EPlvikjkYoTbzUKzZjfPyL01fgB49PNbr3F46wFpO0ZhgOuflNV7rcPpMRJQ7PA2lEaEtrBntd9wp++4LekyguwryBKLjDTGyqRrW6q+96Z0GIHFUGhdjEJwJ4CsBUANOde90TU75cPDJhMX4oNBSR5gzDuHmrc39zAVGbosiaxubtLTjr7gna8/v/5lUM/a3H/K+tODqhJZuCkmK71Fm8P38NZq3YgOufnYGN29Qxr0MTyiYezyPDEpc5RWS5NHFn5J0SkMZPExcvNb2PDBeA/0ygMy+ElhBCXDQJhlEK7m6DQrygFZuMsV8B+FVMedGyePUWT2wFzl1vL8Bdb+c/DP+g6RRF1vjkeNtfuWMcNmxrxju/OBoAd9HLpwkaMuqWX5dyc4Z731uI/05djg51NRhz0l4F389Ea0w5KkOpA3AV8vTNUscrv4vJq93x1vwCcpCFfJ4VlAXl2piYR0dRbifa8MNp4ubeKW2RilixWZsm440MuOCuq0lFFhayBjN9eROWrNmCFz5xe1DKk1vTPluPv411N1C/0UCxPFRUeUhz+3RMHYmJmdtvwq4Y8McW8vyv/c3tcioLC5N7PzR+sdGzgpQD/aYTzPf6KGaasIuBojzj9L/n9yJVtd1VG7cJ54XFPm1xtjIEFSHEUyG0av49a1KpSNrAefdPxP6/9ppKAOCjpetdf/PJLZE/vDpHyo+PEC9S5VN1Fnw39rg6EiNNPDex6U37v4+WY/6qjbHkRQf3uy7kleevUnulcOIozvfnrw5OhOCdg3S+3apqF9YPPIhCy0FVL102c+aftpqoCCGeJjIWeKI5JcrHfW+evgHp8qBqAF80bQNjzHd4XSwhrtJU+CRjXHkwKWq/Z/70yY9x3G3vxpKXIOIsdXkgE8cwfsmaLUbpoj5Klccw+Z6+rAmLAxYSFTraUtURcaJW1MRLbZ4rNRUhxLOauFlF4x+Um1O27mjFlCV6T5MwmG6+uqBxE0b87k3c+95C38ocx/J3ozJRpMkEDLnDYtKOTM0pLa0ZrNu8wzdNWMbP905+F8qTHy7FNmnFcKHyZO7K/Ggk6Fa69wh6P57HqMr3V+4ch6P++LZvmkKDjSmFOKnPl9rbqdRUhBBP5xp/cFr+PWtSBMaAq/77Cc68awJWNBUerc10ImmZExnuvXmrfStxHBqESf1VPYYrMvFVf3Nzyvot/h4xv3t5Nobd8Hqsi1UueUSI4RHTS//y6emuSXWgcIHym+dn+p5372ijThMkpFUdf9zmlEJRa+J5PliYV8xURR7mfTKSh1ulURlCPIRXA0/DzSmzVmQ1m6at8bjSqWfC3X+nheXl/pp44ZOKJiJjpbSYBACejDmiotmy++z/lz7iHxTpP07etmu8eqKQFhq1/E0YY5iyZF0szyl0s2zRZOArhkg/T5QbZWmFuOq58ZKEOUV3R9Wz/N7niN+Pdf39wPuLcO79E/HGpytD5LB8qBAh7kzCGQjxnJ94OoUMY8Z79pmiFrzue4uudH6V2dTjxg+TxnKGMOsvE585JTgf5aLtyVl9ZMISnHnXeK0bazkybl4jrn1mhvJckImNfys52ZuzVmrLIGxNTWJiU3dP1eHnfKKELl3rnnPgcxDL1pnNRZQbFSHEw6z0y3mnpLPmlKDVa2FgYNihEOKebAnDWf+JzcI1zbAaz9D+XQt+pgqTXAgBJvFFU350oI84l4ytUy4z7iq6ZE38+5+GxTSEw9Sl67WCKhNQ58W358/r1K4GFz88ObdNmve55t+iaUsznvlouXF6FarJeFVdP31Y34I7jDLRLSJTEUI8H/QnnCYO5ON0pGJ602bFUnm5vvE/CeRb+eOZ2AyXviaVTI01yYcYJnjSYr1Nk0LMgZjCNL8BMURufM8rJUHmFLEd9e/WAUA0r5rz7p+I65/1jgZ+8dQ0/FWzibkpqlGq3P7r0ins1j16/jlhWkTT1uay09grQoiHadQLHa2qNu0OexqHJg6oK5dcgfJ+uv55jmObMl3dfXn6CjSMeRFrpJ1VZCG+ckO4nVd0mESPFM0pYplF9bKIivy9eJkUY9HIQ+8vKuh6E62RD/C0SYXX5GUcxdz43rzVeGSCd+n+qo3BdWrZui24/c15WuFrMvfUypjg8SSmi/YdTa464c/v4PBbxwYnLCIVIcTD7AjDd8/hdvQ47M4cxoB/TfJOCHqtKdkjKZ/Jp2zekjOn3D8uKyzmrHQvoOEjFM4rzo48IvNXbUJTgAeJHzM/36A8LvYfKddEo/o+SQnxHVLnyUcIxVg08uvnowWdenvOKjSMeTHQswcwdzEE8m0qqJnM/sJ8IVbaYLT3g8em4rbX5+Z28pFRCXH5vVoz+Tkvt1JgnFUA3rmaNZu240NNALy4lJ44qQghHsacwqmTNuWNQyCs39qMP7/hjf8s39qtifsI8Tg08YDzW7a73fRMdpk/7rZ38JU7xwWmc+VDyIjuWlFwp3y8RVT3NOWiByfhgXH+2u6Pn/jI9XfJN6sQ0E3+/n1s1pVx1gp1B3n1M9NzIRSCV2x6BZ6f9irHiwnCRBPe7EQB1X179doGbzreX4inoipH/JHfuncivn73hIqJv1IRQjyKjbRG0sTjEOJi3GgReQJO/OuNT/UeD0lq4rz9ypES69Jmn1yewY+aDxFRQROzIV+bj+IX/puNndOoDLHq1yC5OaUshLjiWOPG7Vi9OasB6rTcxycuxWTHTTJoIZf4loWYU3SY3EmM+688bzixmZcNojnPIAM+8NFrGVQHIwqKYlgsosShTuds4m7txI8bo8ZXlu6dn1giXP3MdMUFWeIw9ejei1duOdSsiSYeZz5ESKuJq9MXqxGlIoz0isnBN72R++1nqjAddXIBKY4U/co6bLmYJOdpUprRgsncEwDBnCJeG1ETl/7OMIZ07B708VMRmniU6He1KXewJZNr7wsYhuvw3JkPZwOue29u4avEdBomf/aGbW5NPMwO6lOXrjPPh4H+JWpXJhtaFys6XdCcy2+f/xTX/U/tk50kqtz4CnFHeOVew2QSlPH/9WUd9jPox6XiPfU3ra9JaTRx998pyjssiLcLO6oIszduOVIRQjzMsntOLkpfJv7hokgmw7w2ceQ1HT/i0IqDXmuDtFL1sME9je/tt0hIxqS+NwuZdWni0kvwM8VqQ7kVtpoHPvD+okR2QwpC1UGbuIjmTRX+NnFCfuLdr6yDbMPPTfsc/xZWAJvYkvMjAG/aDnVpjSbu/rtjXU2ujc36YgM+dzboiDrCfXTCYld4jlLtBRuWihDiuVWXISYCuYthXhOPPVsAgE07WrB+qztYU36BkT9dO9QW/Hx9UK7s/7ImfsQQcyEeLh/BaVzb0QmFo/s2cXqLqO7UmmH4fP1WwZwS2+MiowvyxDHJY85cojkvFmvGQMkJeuaPn/gIVz71ifL++jzCea73XIe6Gt+gbZz2dencKOqMv4/HqFvecu4ZUhN3Smrxmi341bP52DVWE48RrlGoVkvq4BObvJIGaQdRZ6K/csc4/PDxj6R7Zf/XaUIcedu0KOiDcmVPyDZx2cWwmAzZuVPut1jeHj97zfG4+csbczHqlrdyq0eDzDc6t7OkUAYuC7FqWX9emAQ0MqeEtIkbmNb4t1WFsWhXm1IqbHI+OtbXKNd/FDLXtFhYtXv8bd79AsqRihDi3A4YJmBUTUhNPOp3V8V+zpkkA1TxeBb7hNPEkxLiJg1XNAWIQ1XdlUnrQeOc8LR8xxhRg1u6Zgv+8OpsV/l+3Wff1bgQq4zq25pombmdfXQBsITfKnPKN/8xAT//zzRPGlOMNHEnjep96mrMzClXfnlP5TuGGbED+tHP503ewHHlSEUIcV7IYYS4LKyCF0DEJzLyFcFfivNnrtq4Dbe8PDuS3T5IAMqaOO/ctPeLutrN4DKV8JB/x5EXE7bsaEEtH63ltNH8+csfn4K/jV2AhQGbHySJqlzCaOLa2CmCvS/nYijcd+KitXhqyjIhvWmO3c/3g3f6Kk+SujRh8ZrNno0n5Hc/ab8+Sl/4Qlx3C507m/bZejSMeRFzQiyOKpSKEOLcLBFKE5cmgIIqf5zygu+zGaSJ8wpzyE1v4u53FuQ0wzAELVnftC2cn3jUcjC5TLuqTmcSSlAVf23mSmyX6pNYljx0cVKxZnRQgOuliXzyq+s7WjK5d9vRkjEyp5gKNh5SwGzzluz/qtFobTqF+as2eTae8FvsI1KIOaWVMaPQBrp3fGlG1vvrrSJGxKwIIc7NKTOWb1AeV1EjCaugehWnJj59eROA4IlNefJGFVwrCLG+Pjphsee4bHcP0sSTnMxxyW3RJq7NS3zPlt/rp09+jGmfrQfgjv/O4UPyoHmNJFF9CyNXTh9zyoUPTsKZd+XNQnyyOQ4/8V8//6ln83Ad/PurOghxFC3OQ5jGDQ8bp59cv82iLOmKpBSbgVeEEOey+lfPuXc9qfURSLUhNfEkCGr/8kSaqQbx9bvH43uPTvHc4zphZp3Xsh2SEFfZxAuJO6G6h0jTlubcphQuX17XxKbmnjFaxf3eiysDYvhUP5ttkri+hYFdWH0P/bnxC9YEPjfKMznNrRmj9Pz7N6uEuOB6K85DmO5IVOg3M4l7r5MnYeI8xUVBQpyIuhLRU0Q0m4hmEdHIuDImPUd5vL4mrb1G9sEOM2MfF4sC7KlyZTMduX+4eF0ucJUu2/zWslai6vhcAZEMvHjueHOeKxznjpYMpi5dr0w/8pY3cejNb2avFY777ZHI/4zTT9d32b1TJmKIAi5kfh2wXVrcuOcNvOfDhGMOswmHv4uhedtIE7k6X9Wlf31jXi6QlxxT/9Yz98vFPZJR3UvVZvhoYN++OxnlWSwmBmamiWuO82JMFdEMV6gm/lcArzDG9gIwFMCswrPkJa2ojL061/uaUzxCPECKJ9Fxzl3pP7T8z5RlOE5wY4qy841qq7Hnpn2e259S1sRrFIHVxQYc1F6XrNmCP70+F5c+MiV37C+KoGCcLTvyAbj0mz+oCauJ+wlqv+/LLztscI98eueCt+c0hspDobCADtXITzxCXfY3p5jfZ92W5sD0YhA52Sb+zYN303pQKe+raDNXPJn1rPnekYMwtF8X/8zA2+7MbOLq40Gx3JMgshAnoi4AjgBwPwAwxnYwxtbHlC8Xqg0dhvbr4ttjykJ8RdO2XJQ3FWE8IUbHuGBm/iozG6IO2a5+xZMf48dPfIR5zn1l33pVAzHxFJHZsiOvtS5fb7YJNYM62NRMZw7Bkz6kMJLTL1u3BY1ObGu/9+JnRKWwVAs9gjTxMPvMhlEG/TtA87L4xj8muNIHmhQV99YLcW9a+R3FUBFNW5v1CoKYR5/8zdDVTc2d+W1VimdSFKKJDwTQCOBBIvqIiO4joo5yIiK6jIgmE9HkxsZoWo1aQ/UvJNkL4+pnpuO21/UaYxhtIylf6yifXW58//vYvWWXV4h7n6KzVatIKSYBTSssY0wIK5w/ftmjU5TpwwpSOf2Zd43Hl//yrvNs/3wB7oa5roB46oWwUJgYVAnWMEvaw8gRv84htKunkDzoUtXuVrrJd/XEpjvtGX8fj2P22hkAcMp+ffTzLT7HxXs++aF6Q3GtJp7rQCtDiNcAOBDAXYyxYQA2AxgjJ2KM3cMYG84YG96rV69omdQUiF85qeKS/Heqz75/IeppkNtZ1JgoUb77pyv8/VHlyiZ77QDZxpHJMLzx6UrjCRkxr6b2P8bC7aITVnbIHdDKDduxdvMObG9p1VzhPCfcYxJl2TohdoeiAKYtU2uGIq0RBInqWZu3t+BL17+CN2aFc5djmt8AsH6LO0SFqvPQtS9Tm/hbs1ehf/f26NqhTq8xi3/4FFOQxi2T89GvBHMKgGUAljHGJjp/P4WsUI8dlaaXPeRjE1cIKz/Xo1AREgM08a7to8VEidJ7X+sT6pbTt2v73G+VJr6wcTP+OXEJLnlksraj29bcilteno3NO7wbBJjmmjGzsK9c81OlmbJkLY7509vKjQp0t9zz2lcC8sV8rw/CZCebKESdpwmKJ65C9e6LVm/G5h2tuPWV2ZGeL+bhyQ+X4u05q3DpI5NdaVUeWWnNhrhNQjC3A5wNv3VNpmOdf5Rt39EFiT81HYq2cwg/qVwokYU4Y+wLAJ8R0Z7OoWMBRAzI7U+UNqLShv3KNYwQD/K1jrzYIMJ7qjRrme4d63K/VR3Q5Y9PwSpn2yndZhBPTFqKu99ZgJP++p6T1XxmTesrg9qcok/v5dZX5mBh42ZMW7becy6qHZtfFlUjb1/r9ZLq1629ImU4MhmGcfPCLwBr9VEH99qls/qaGOcAVLf65dPTceGDH3om+2XvFECtib8/fzUuf2wqAOCp743EM5ePAqAXsh3q0tq8AO76J95DTi9m5b73FiqvFxGvX7VxG8YWYdFPoZtC/AjAY0RUB2AhgIsKz5IXXa8W1pziJyXDVGGVh4dI2MUGhWCyolDsdJQTm5l8mofGLzZ+9sLGTZi8eF1wQgDvzG10mVN0QoN71QBqbYmPylSXR+07N24Lt/2YTIe6tGcHpbd+dhQmLlqDF6atwJOT1XbVIDKM4dz7JwYnlBAnNldu2IYUEXp1rgcA7NROPUpUxQCK2imK18l3kOufWhP31ukpS/L1jIjyMkGnidcHaOJCzmQ54lr8I5y88cW8813QPEGKstu8zV+1CQtuPjmx0RpQoIshY+xjx969P2PsNMaYWYsOiaoAgopEZU5ZvWm71nc7nDnF/+lRhbjfXV+Zkd29fnXA7vUqaoVOR5f3oNdXfYOTb38PVz79idEatwsemASGvMnouv/NUG7GfPY9H/jmiTe+N2etcnnIANGFDg93MGnR2kiLNDopBEZdTQqjh/TCtw7dLVKe2tWmIndKM4QVw4fe/KZrZ6AwRF/4pT8n19ebXvR6JavqtFj/XKc1z2rnjI50E7bMpYm7MXIx1BwXTVlLnY4xaE6mUCpqxaZIUP3STS6e8ff3lcfDtP9Ac0rE6IR+drQH318MAJgrBdbZu0/wgoYgTZyxYI9sOW8MDNuaM865wCw4z3E3UB5nQuTjz9bnIi+qF7tk/3/g/UUY87R7PoDFMAB6fNLS0Ne0r9MvOouqgdWmU6E7pSue/BhvzV6JhycsAQAUGiRTZeowwS/MsFwe4jqCXJqA9iXWRV3N5cqK+PhvCx2qadHq5ql0dY3fl4hyrtEqD5w4qQghHmWSQCfEda5jQR+1m7CBQ5A5JapN3O8tef5kTxATn3XRbq4SKhlmNjwU+Wytv284X2rvhrnyH+TzrMyTcGhB4ya8M7cRN734KT5bu8Ul9FYpnx+M6B1iit9Ed1RXsxRR6InWdVuaXaEpdnZMKJz73luISYqY6LqgaHKsIlP8QriadGoqTVysC+JpXRnxydHcytuv7IPj9u6dO+/ny24y37N683b85vmZHi1b3NUrF0cl4SX4FSHEo5hT6kO6+QVpPcMbuud+B5lTdARpzX454JVRLguT+iHHkYmCnzBSFd31z3r3pJQ18aCO45EJS1xp1m7e4RJCRFkzzb3vLcLo3491fcNDnKX+xcDPpBVVE09RNPOQeIns1XWjwnQB6EeWvEOIc92TiflPzve4eavxxKT8vELKpYn7P4eX4eFDeknL6/P4mQN1Z37/ymw8+P5ivDLjC9fxnCYuXJv0wrGKEOJR2kGQtiwTVMy//dqX8vfWaC6vXXGE9vo/f3MoDh3YXXse8BdqOt9fuYIM262r59ogQcLg3SdUxu8WYh52697BOaZOJ+YlaIT14vQV+ETwix7z9Cc+qeMJVjV+werQ9/Hzk9cp6d0CtuZLERX8PqbCI8ndnuQc6DqMgwZ0w53fGqa85tz7J2pXBes18exzjt4zu/BHLm/35Kvb/LNVmFzXVVFuSpRNJfyvf36wFJsdU1Gcnj8qKkSIe0syRf7TabVhNfGABtNOCLal0yb88mMyrDZZVSg/2qR+iI1UNQnHmN62eO+7WbcqP4ErFh1vPKrUDPIEVXCZiN4qsgeIN23hRvFPljXhjrfmhbrGT7vUveM5h/hPeBJRwfF8TC8PGlnG6fKsK49vH7obTt1/VwDB5shUCJv4VSfthQ+uOhY9OtVLoZDVv2VTkC6/uWiFUgPkf85ZmZ+7SnrD5coV4gE5D2vyCPTOEO6n0/L9Krto3jl/5ABlGv99Dt3/665RdUai9tOuNo0FN5/sOs+gf/+bXsoOwf1K8+mp+V1g/MqAMfdCDpMRlpgteZ5DFtrNMbWWuSvD7crCO6Y9enfSnpMJ6sDSqQjL3SVMrw8aqRUSB8T0FcRHBClUYvML0sRr0ins0qWdk1Y94er7OM2rk8berSpza06BWmCrNEPxUNiKF+SfId6vtkZ3b/0zj927N/buk11occI+u6CzRiPWwSuCR2hL18xTBNSSOx1Vo/Ub8mUyzHiCjqdTpc9q4t60fojvK7+HHDwsrtjfO1qC79O5Xf77cU188M5eIR4lZAS/Lkrjdy/bN7smyPSouo24gMyPbc2teNDZ8ccPsZyCNHHX4hxNmsB3EjVxn7Yf5D5rUsb3vLuw4A7Zj8oQ4ooa30NRicR0YSeUgj6GeD/dbL6uYd58+n6oTafwjeH98foVR+DwIT2Vaf2Xomf/l90X5WtULlsmoxI/7ac5kzEuT55s/ILVrmXSAA+AJZQdBWuL4umg94hj42nAzM//3BH50RR/J5ViobMBB5VmKg5zilB4ckhikaBvq+ocTVvX9pYMfvN88EJuseyCOmO3n7g6reqdxKQum7jP43RFw4+v3+qOBaO610PjF2Pm59E8fUyoECHu/vvCUQ246qS9fdOFDcoeJEzESqGbCNI9kTdkIsKQ3p21+fOruzwaoSp+eBDBmyP7az/NrWb7DgL5jnTDthZc+vBkxXl32qDsiw06KMRAXMNWEyHu8gJxsqVSNnQjwqBJXYronSIiftI9rn1Zmy7J1YQyulcScxAkxHVeJiKqeQqxjouP8GtD+s+UPfH7V+a4juq0+iRNKoUuuy8KcuM4f+QAtK9La/w7s4UV1pwSpPXUGAhxHcoAXsqU6kxMWbIuZzqQha2JtlaTSuGFHx2uXFoNOO5sPjdqac0Y++qL6WZ+3uQ6x5i8n2HIlbIBwqaQDXJF/LRWjsuc4tQHVfZ0HY+JOaXQdm9atsXcC1on5MQ2HuTNoZuUFFEpLoN65SNlm9rEdeYU3WS27l5JhqatEE3cXQAmE4thtYsgjVYUTtohsuZDqdKr0uoqwJl3jc+n8Qjx4IZamybs27cLTtm/j/J8/+4dfBsOY+YNXUwn75/IwFzvnUqFc7/yWxkJRF9hKBOkie/dZydcMnpg7m/eoFVFpDen+Bfo1uZWTFyo3g8zbsK64wLxh1oV601rgFlM7Kx17VYVCXHwzp1x7SnZEXzGoCMAgCWagHCifBHri3akkWBHWZFCXFfnTNzX5MPNrRk0bWnGVf8NDunK0drENelNFyuZCORImnjAyGH4gG6x7HYOSBNUrRnsLmg/jRu3u97bRNsUT6vcI0XisonvCLjPD48e7NrflW9CcNZB/T1payN4MgHZsvJb+WiC6XeLw5xy1kH9jNKZCLmgEZX4ncOYU4B8HRrxuzfxvhMzx6+cnp/2ufK4KLhd2xtqcmQSXygqlSHEpVxyzUEuGFGA6D6iLNzPunsChv72NUwWoqQFobWJa76TySo1ALjr7QV4beYXvmkWrZa8T0w0cZ/nt69N+7oYAtmGYtJZpFPkXhINoHuH/AT03JWb3D6+zEzQtGaym1a0ZBja1eqrbFyTR82tGd+NPeSGOqhXJyy+5RQcNKCbJ23Uic04MB2YxCHEg/zeObqvLY7QguqEOHoLcjGUEevfqwFtzQ+xo3HZ8JP1JlRSGULcUBMXk+kEqnx42mfrA58/1AlAz9F5Seh6W9WoQJW/mZ9v0G5Vxrn5JXeA/qiaeM9O9bl8ZDIscLWoyQSqaiGS5yohTYYxo/wPuvolXP7YVLS0ZtCuNq1d7fjbF+IJZ9/cmgkV74J/X9U31SoTRTBEm240bSrEH7zoYOEv9zWm6zJ09UhsI0ft6b8D2ABnVTCgl5naNioc5ms3okw6ipq4X+hdVZq4qUghrrPhiemixCA3JbQmHjHWigkmlUP1/Fd/OhqvX3FE1qQRcJ8z/j7eaJKNnHuJyI1W9kIIyv/jE5cAAF6Z+QVaMgw1KTKeZI3KjpaM0laviowH5IWgurOOpx6a7NouY9oPmQpx0Ywo5990sl+riQu/v3ZAX98QFd0E9+IwNnHA/Y24SewRJ+pjGESTjjji0eUnrjUMKipDiEu51AW3MqmLcdimwg4/1RUqHkFkFgDL+/weneoxpHfnnIeI332Wr99q1FmkyFtZ5atc7mEseHXeqzNX5n63tGZjryStw65o2qbstPbaJRvArI+zApDD64OuXrx35dH47pG7u46FfYt9+4YX4pMWeSMWqjCtzyN271HwPXRSXK6iQZs65G6n807RjoDyvzu1i+6c1yJIbrHD11XnJOOnVIYQl7p9LsTlCRATN54drRm8PSfklknSBwirWZvaxMOy93WvGAWc98svUfb1gjQFI5s4EW4/Z5jvdaLwahU6j84GDSqriZeuyv7fCXvgX5eNcEW0BPLKg+4z9+/eAZ2kPR/DauJJ+nKbuuOmU4SvDt0VVxy3h+ecafZ0yoA8YjE1P+iEo+6VRBmh2lZPhUrRECe/TbTsJFfeV6QQ5zbendrJDcOsJl344IcF5Ue/gEOd3tQmHpatza1Yu3lHYDq/oS4RgTHmqohXnrinJ91WxQbJMqkUYVAvaem5bE4h5CYnsyOA7PmGHh0RREsmU5Bp6uuGHhQqduveAcMHdFNqo7mgXz4fVbaBh5XJSfoZh+kgbj9nGH5y3BDFbjhm99BtkOCNzmmWH5Ode3Q0btyOhjEvBqZrzmQwfoF7r9MWjU1cR9Uvuxc/1OnD+uZ+P/ydQ1zpirVoQTcpFcZPPIjtLa24f9wiV2VRYbLAxW/SKUXZEa6o0aj8dIPc7gC1mUtlTnntp0cCyDZU3gBMJvq4TTwqpkN0Fe/84ih01uxPaRah0l0SXTvU+U7gvf3zo1x/J7pHY4R7y69s2sm0aFxm5KtNhZ7OHGcygTr7CzNvpuZWlttqjdOi0cT1E5tGj4pERQjxXp3r0b97dvfwboLLWn9hlhrQV6QDFTG2o8Bv36V9tjHLi2d01TjsphZ7XvsyzrtvEm544VM88aH/JrtBCyMA/8Uc5ARaEu+jcrcM6kwA4EfHDPEck9sSgdCxPjuMzWQYvnVvdiNgEznS2po1p0RVSlNE+MNZ+xunv/yoQbnffpqmSX52ap/vADrWpXHmgf1wxoH6kUFDz44uN0exDnXrUIuxkpAvhDjm3U1NMjpffrntmk4Eaned16SXXVxNyK5Ydh8TI2aa3KbqvVMA4KJRAwH4F4ZOW7lgVAN6djKLuuYHv3vndjWYfcOJ+MUJbrNDoX7inO0tmdwONhu3qbeT47xi4OvqF1s9xW3iQrmqbIUmGv8Foxo8x2Q3N6L8d2puzeTCCZhoci0hAnGpIMovzDGha8DGDRwx7z85dgie/v4oT5pvCX7UFx8+EOkUBWubwmnxGbt0aY+BPYPNT6bEoeWbdqy6kAZyFkxDKAzaWV0OuqIVn7PDcENzlQnIvUqTKX+LWCGOfEWTC+M3X83vuKOrSIVWUv5Ero2lidCuNu25b6F+4knhH3MkGy1P1Hx+cpxXo/7Dq3M8x0xQjZ55OYrbhZl8opYMc0xD0QqvJk3o0akeb//8KOwqeZioCBt+FwCuOH4PzaKfFEY69nRT+7HYAca1+U4vad9NIJq93bPQzrCNbdcITrlMTDVxvpGEjMkEqrjhiB8tmYznfV2rRg2yWtYTm0SUJqKPiOiFODKkg9cR+eOK2p9+F45ojf7Hxwx2/c3vwiusR4jrNHFV7BRDQfTiJ94d4cPit+w++wruic2OdTWx2WDlupsiUt7b5Bs1t3JNPHyLaF+bxjeGZ5fFN/TsiDd/dlTgNeZC3CwP3KoVpTqqzBXP/uAwXH3yXqHuIwaByt07wreWNWVTc4pOE5cvv/VMc7OXCl0nID5nqyTEzxDm20RaWhle+9Q94g27g325a+I/AaDegTVG9nI2GVZpOZyg2L9hOVbYHRvIVwBeYU3NJIVMxsWxlDzIxTCT8e7+HddAwbPYh9Tfw0SQLF+31RWzJAyzbjjR5TkTFEwLMK83xhEenVI17cDFolNpukP7d8VlRwzyHA/KwxOXjnAdizKxuV9f96bfhfb5coc5eOdOuO0bQyPfT2eOEZ+zYavb40pXDmPnrMIbs9xuyas3bc/9NpHP785tTMxDpSAhTkT9AJwC4L54sqPn4IbuGPfLo30ng/RBrwo0pzhlzxsf36pN/uj6iU1vMSdpTjntgF1xg7Cxsy5gF+AEoQJzDQ/TKe/Ky7ggqL+Tida7eM0WTFi4BnF1MTeetq/veVPhZi7sw6UXv0EhW6SJTFi4BiMHud0ko4xU7/jWgXjysnxnUGgbU5VJ2Hydc8hu+O4Ru/umEe+4VIpQqCvj65+d6XtP10bLmjT3vrcI97630Pc+USlUE/8LgCsBJLwVaJZ+3Tr4nvf30y68EfCPxTVrz0fX2eSLaQAH8PXh/XHeyIbc334jAUJ2hl+c2IzTnS3DWC5OC5Bt7Oo9U82eOWpQD8QVZWjUIP0KRCCaTdwE0+RMGh0lRRTvlE71Na5RcaFVRvV+pu/M6+tZB/XDD44ZjHMO2U05yQ74r5yMuo7MVMHeu89OwYkiEFmIE9GpAFYxxnwjNhHRZUQ0mYgmNzY2Rn2cEbwx/fDowdJxb1qTiRO5EvGPlYuVYTixmVbaxJNDFtp+NvHsYh+3v212FWc8gpIxt596VhP3pjMVAqcdoLZbRiHITinuV+lHeCFuOrHpvka1ETNQuAstr8dH7OEfeEpG7OwLrS2qMjEt19k3nIjZN5yIgwZ0w07tavG7M/bThi3W+ZWPHtIz8twZA7BpewuWr/evLx3qktmDpxBN/DAAXyWixQD+BeAYIvqnnIgxdg9jbDhjbHivXuEqSVj4RzhscE/Pce6bzBl09UuB95Pb+NUnZwPK81gksrCMy8WwUGSh7WdO4QJbtCGmiXDSvuoNJMLC4LbJiy6GImGWfsdlWgzyMFu3eQf+ddkI/OWbB/imI8NWJAuJQA9D6fy1p+zjHHefePTiQ80yoIGXfdhqKgreQr+J6tGmQrU2nUI7wyX0Olv56CE9I49AGWP47qOTcdgtb/mmS0oORBbijLGrGGP9GGMNAM4G8BZj7NzYchYB/s09q8lShPsvONh7QQD77LoTvvyl3vi9s0DkO4cPxOJbTtF7pwC45PCBnvuEiW4XB7LQ9pvYVEUxTBHhzz6Cq1+39sZ5YUyOd6KOQigea+ihN5vVpKPtAq8iKF5LhjGM2L0HTtN4LXBMhQ0PkRBV49Nd1rG+Bq9fcUSkewL5+lHI0v6gDTtETH3ck5B5uhF4SmPmM4EBeH9+8C5MSa26rRg/cRP4R5DbeIqys93HhljoAWR7+H+cN1xry5I/OhHhmlO8GzgXcyNawCu0/ZbdE2WFlVi5UynSborw+hVH4KWfjDbOC5Oer5+3EH/7dzpxsWvX9njhR4drz5sulTb9vNOXNwGAUdAyGcaYr1dL947RF7OlfDTxvXbJbuwdtHNP+7o0/v3dkUbP66DwDFKVdRIx13WaeHZDk6iauFm6pOLfxGKkYYy9DeDtOO5VCLqJCf7dTHaKH7xzp9wqwiCUy+kVHyrpic0eHeuwX78ueHtOds5BDnjl55aXouxiH9Fn1q/t9OvWIdA9L2uiyf5mzL3sX+/BEyzogeyQtEv7Wqzb4r+SlTNk507YuE0fvMsvxKvppgphGyfvMMNcFrTPaRwCQq67/7psBA7o3xUTFq7B0XsGK0BitetYl8bmHerOKh8wTKwn3rKeGmK3LVN0NvF0igpYUJW/p194iqT2FWhTmrhOWPKClb+f6nv++RsHYPiAbrjmZK9GLRN2kYdI3HL9rm8flPsta95+Q11Cdh/BhY2bc8d4I7v1zP286Q3y7Y5PwTw28aBr/ARSOkUYc5L5ApfX/+9IfHD1scbpRUw1rLDfUmcOumDkAO2oLcPgOxseR32S2w8BaFebNhLggPQNfRpHXvPPp1FpyMsCJgqjoPNOSRF58vzXsw8wuqd4S91iJv6MJGhTQlxnZ+YFKzcelX2MCHjq+6NwaYC/KX+eGA5Xv8tIspo4Q3Y429kR1nxik+8G4xe9T1VkvLL13sm7NN2kHopJGNwTOtpVtaaaeJpw4r59cNoB6uXWcZKUi6HOTFNfm8aUa4/DpGu8nU4mwJxSyFYZOf91SRqErbeunbV80uV3Qsofa1ZosOeNGBDq+SaEMacM2bmz0T3FO/rFY7E2cQN4GcnD4Gbnw8kyVqURhW2Qn/z6yzl7pEnkNE6SFhauid93wcH493dH+m766+faFXVRjhwprsZnWy+OOHggEO47fzi+Mdxrh+ULpwrZlcWUqwyXtIetMzoNnzGGrh3qsHNnb+fJ4D/yU3nIjB7SE7soOmKRbh1q84vZPHM8vpd6cH13n3RcmInloIpuuHuMQb449RqbSYq8IxHzfUPzv7c3+5hTrBA3R25UeXOKmSYeFRN7bxLwEQB/G+4C2atzPQ7x2asQgNL+77dnpInAEpNkGJP8xNXXiwKECDhun9646LCBnnS8IZjEBn/mcm80wTCIi5T8MP28fLONSD74jPmHw1Uce/TiQ3MhnHW8/fOjc79VE/VB1KQIhw3OLppytS+fV+TCUkzv2UwEybSbU/bvg7MP7u/xiVeZU/zWV4iISqOfJp7U5thtSojzDSPkHrxZJ8Rj0MTF++oqvcpWn8ROkdxlziQuiB+8rqnqnEmuZU3cFXbAOXXT6e4l7+J9+fUqzYU37HYGMVSG7dbNILeFY+oumvOe0pz3k+0M/gqGrt4G9RddhHC7suJp0hbm33wyHrsku/xeNFVce6p+TonPkfDk547YDbsp3EqT2IqvY30Nbjlzf09o6qw5RX5+eE3czyaelIND8mPSInLuiAE455DdPD3owJ7ZXl5WvCcv9m4kG6Wz/ONZQ/Gn1+fmNovw3LMINnEAePzSERg3f7XxwgcdOaGkEuKaV/nK0LyNWn5dMRQu5Y5JDVS4RrciFsg3rHpni7fRQ3qiviblClD0zOWjQvktF4ucuU8jWf3kbYYx4Xrved13CaPzm8YC0iGObM86qD927doe590/yfscKbO6vS5VK53jQhao6RR5jvmZIUXE76Gy7YvPSII2pYkTkXIIxE0KsnuRyvUsyiKc4/bpjZd/MjrUR4qzU+a3GtizY6yTQWEWKak0aUDlnZL9/ekKd3RGt3dK9n8TTTxFhO8f5Y7kt0fvzhjS22xSqpikcmaE7N9yWfrVn+w14Sc2w5huvOYU40sBuN3rUgSMGtQTP5LCOQPe99Rp/Em65srPTKcU5hRTTVzoKv1C1FohHgNeP3FvmiKvy8nx+hVHhF6MxElq9WcY05KYVGwMnzdtwxbBX5ifkeNMuMrdZ2KVD7H5aKNV4XsXtrGceWA/HNxQHNMLoHcx9BfiTLsiWXcMMNPEeZpC675oxiPKxo3/2QneTbdNbe9JTv5v2u5W4NLk3WnJ2CZuqolbF8PCkc0p6sZQHCkuP2VI784u+2Qh94qLqI1aLsIJC9Z4zskRBFWmKNXiCC7o1m3JLmEfN3+1J03YT/inbwzFf75X2CSoCbxuyTKc22dH7K6PqpjJMO2K5Oy91dfpFPGrT94LX/6SO15+oX7MpnMQpjGHknQImLtyo+vvHa0ZjxZt6p0i4ivE7WKf8IzYvbsrXKbc037RtM1zjem2UEkQd0yNQonrvimFTfzsg3dzpTlREXBLpblwwb5B2HtU1myTWlRRKHKuuHlv1KCe+OTXJ+BInyiCrRn/zlprTtGkv+yIQfjHecPd9yhSuflMh7gQv//lR4Xb/CIIPqfCWbpmCxat3uw6Zjqx6nIx9JnYtC6GEfjXZSNdm9bK8vl3L8/2XBPnNkp9u+rdu9T+2bE9OhaiNmr5qva16dymw1ygy1qOMrKhz7FLR+cXY8k+xoUWY79u7Y06ML9dplTwe3JlgisMNSnCTu38R2GiOUWFtu6EqM+y9SAuDyqvJ5LZfcXO/4Qv7RJLXnL3lgqzlTFs2eE2sRj7ibts4nohXm84URqW8pvCj8AhA7tj0iKvp4mMiYBWLTqIyvM/OhxrN29XnlNVD7/Kfcawvnj+k881Eyelt4n7UZtO4eyD++POsfNz9/RObnmvU2lCXJvhPtzH7rVz7Jr4098fhV4GPuKPX3ootvks7pDhueK57dM1uxBnz12CJ2Gz3imOOUWhX4sd7i9P3CsXuCqUd0qxTInk/7eKuBUc+V0zGeaJx0NEuOqkvZTKnutal01cX+JJjXTahBC/9cz9MU+ycakwMZWodgOPSveOdaGiy/mN3kStZM/enTFHeN+kNPgwt3XPS7qvrK9JeXzP5TTq3X68zxGF/0fXHY+O9TX4YKE7DGihbYXIzC20viYdas9P+Z1HDeqJp78/CsP6dw28NqjuitkVvXVkveW6U/fxXMsX2piGiA2LnAceoC2dIrRm/MMJcOLuYOTPO2JQDxw2uCeuema6K47QifvuEijEmTNKYqw05tg2IcQH9uxoVAFNRpZxCvGw+PXU2dlz57dUA/kkX9xErY7yW9SkydfjRD7Of6k18fyxbk4HKWvihWo8SSzEEhGza2qSCTKn6N5Z1tpVuwNdNKoBQ/t1KSicrR+HSquGLxk9EB3q0ujUrgb/eMds38m4hbjchoYP6I66mhTe+tlRaBjzYqjn3vHW/Ng2KolCm7aJywSZU0bs7r9E3ZRbztgP/7pshG+asEaRVCq/ebFcAVVLluOEB9LyI0hwNjkdzUdL12uu9x4L0sQ5cTegpEY2utg+JrQK3ilhyEjWHlUHlUoRhjd0T8wbZEjvzlh8yym5AG07tavFTafvh47OdmUmrxV33kx99E1GZG/NXqU9VwwLVZvQxE0JEuIPXXRILM85+5DdAtOEDb6VTmU1mvEL1ig2fSivvlh+DcaAKUuzsaHnaMxeqldXaeKqxhbnZHQ2L8m6+0QZcWdYNIHgnS/Qp41D2+3SvhZNW9Wx3mUlJMxnSxHwx68PxcCe/pulmyK/qVguZx3UL+cC61del44eiHvfW+T7nBSR7+bMcVBlQtz/fDF34Am70ChNhHvOH47l67bi6memu69LKN+xbZYMFmqhg9/iE/VGHBEzpiHpOYYoxZoxtB3LcK8gbn/2u0Uc9f+N/ztSL8SdF4/ynFSKAncXCoP8CcSO+49fH5p/rqZynbp/H4we0stAiAPh93EKR3mpcAnj5/4DJL8Dj4g4pOYxGvw0wFSK0Km+RunJkJT/Ke/0UikKOVcgz/xH62hU5aF61yP32BnfNYj/bvzchGzihVQvUZsL0wnccc6B+M1Xv4TBjsnN793iqEe9Otdj8M5q8x6vT1FGjqXy/RefO1SYgE6nyDC2fvL5riohrtrEWCTpQFUi919wMM4bMQDTrj8BU687HoB/Ixc7GFlDTqrz4c8hZDWsCVcdY3SdKjtBeTSt7Drf8asMdmIyJvFqEF4Vjzoo6tW5HheMasgpDb7mFMOVlFHhHZHsf23ymNjruGF5ikUyrH9XPH7JoQCy8XmM6mwRREpVCfELDxuIBTefXOpsAMhWghtO2xddOtTmIu4FbUumI4GInQAETZyy+1r26WK+y737Psy3gxw9pKfSa0JFMUxeyZlTwtuCc9dSPEI1yAMqSfgKVa6Jh5ngjV+Gmz1brG8pIowa3BNPXjYC3ztyUOhdrpKiqoQ4UPyd58MQ5J3CkatfUu/EJ8XCDmXl1Iz5C4ifn7Cn8WRiUqYjkaQmNrkGahriVCSuHPmu+hTKtq4mFbvfODdHeMwpBuWd1GrHIMS6wIvn0N17ZM0pBtfztnP8Pr0DUkanqiY2yx3/zWX116UTUsVzGmOBEoSB+Y4WZG8bv8cVI75HUk/46gG7Yu7KjfjRsUNCXbdb9w745Ul7KUMnm8Jyoyp9GlEZmHvjSZGfpeOBCw/G4tWbI3mnhFlUZYLps8Xy8lQ9Q9fI9648OtH1J1WniZczfo3UT5NNKna+iR1VhZzVDMv7K8vRC4G8K+ENX/sSgNKPlpKaRKuvSeOaU/YJjJMic9e5B0Y2ZXkpnTmlS/ta1+Qgx+SpcsCqYiHWRc8epIbdff/uHQreqMWPyCVDRP2JaCwRfUpEM4noJ3FmrBp5ZcYK7TmXOUXSIuIQevv23clzjAuOwwf3DHUvuXIzlp/U+rFCC+Wa+B7ORg6ltniVWxDEODs138nzIhd8mKmBUplT/Dp0k3oSl5uuH4WYU1oA/IwxNpWIOgOYQkSvM8Y+jSlvReOG0/ZFp/rkekpTfCc2fbxTCtEcT92/D174ZIVSCxvYsyPeH3MM+vjsmH5IQ3dMUmxzJ8IYy01qqQSFvPlx/27eBR379t0JM5Zv8BxPgnIT4vL3jSIW8r730SbPk8RogjDmj2JahuJj5XZXLtUkcvfGGFvBGJvq/N4IYBaAvnFlLEn+/M2hrr+H9uuC04fFt5AgKqaTTrtLy+wLWbF54agGz/1F+nZt72urP/uQ/p5j3ih1+VVrKiHChce+fbvgb986EDdKoUuBbFjhiVcfq81HnBTDtzcMuaBhMdzLd/K82K9dyoAjhojKjXdTmfKoJ7GMUYioAcAwABMV5y4joslENLmxsTGOxxVM1w7uQD/ls4mAmZYkx2c+eT/vhgqm8KhraSJcOKoh8iy637CRCAGaeL4anrJ/H3So8w4QO9XXoLfPiCBOyqY6OHj25oxwD35NlCBaSVNunaaIe79Y9zkjc0rM+VFRsHcKEXUC8DSAnzLGPONdxtg9AO4BgOHDh5dF1yvvtF5ujVaFqBGIQm7eTScVpIkP7JV1Izt3xACcNiz8QEpVdqpJfK6J++3WUy6UT6eeheeHrzj22/uxTxf/jq6cBGYphYGprdplTkF4c0oxSrsgIU5EtcgK8McYY/+NJ0vJM2pQD7SvTWNrczaqQbk0WlNzikihwa927twOi285paB7BEGU30OzncLLoBi+32Eor9zk6yf3ajlwt67KdG/83xG5zTJkct6iAS938n674KtDd42SzdB0bpcVP906RttbthhQgZp4MUY3kYU4ZXN3P4BZjLHb4stS8qRShDd/diRG3fJW9u8yEeJ+lJmyGgoC4a9nD8NL01dgSG9v7JdSuxTKlFt14PnZrUcHPPfDw7DXLl5PIgAYvHPwDkFB7/b3bx8UNnuRuXDUQLSrTeNbBlE/4ybKKMAbLbM8KkohatxhAM4DcAwRfez8K4817QaIq+bKpdH6ZaPcBJ2MWL13SFtU7dKlHXp2qsf5IxuU15ZfKN3yKmvx2+/fr2ukFZ+ccjKn1NWkcP7IBl/zUDnh3Xwk+JqyNqcwxsahXLqiCIiCo8zlI4DiBucKg0oofOuQ/rj9rfm5v+89f7gnjUi5d1ClJo6RIrcBJxVnJyme+t7IshHyHu8Ug2uKoQ+UR+mUgLq0qImXvxApZpjcQrni+D3wwo8OB5BdpBG05LjcbOLlRpzFU06auAnDG7rjAIM9SMOyc4hl8NwbzGsTDy7LYsiWqhXiYjjMSrCJl3sexQpORLkJTBPbYyV0oqUkzlGYLeosN5++Xy7MQxD56JMRvFOsJp4c7hCTJcyIgN/OQ2VrTtFki/t+F2PZcVsnzg68PGtR8enRqR7naeZoZHjT8251F1yaZx6Y/CLCqo1i6A4xWR5V20/glYlZMMeAHh2wi8/iG+77HWU/SYubWM0p5VHVKwouH/xcDFV7i/7hrP2LIsTLTDSUhnKp2N061mnPlUtHw3nnF0fjye+O1J7nmnjcmxhXI9bcVGJymrh0WPgs0351gueyzu1qijKCrlpNXKRcBOQDFxyMI/4wttTZiIQsqrkm7ifDbz9nGD793D+o1feOHIR1m3cUmLvKJg7vHduVRievics28aDvUhy5YoU4ykcT79tNHzO60hRaObSBiq8O3TVwdeCYk/YyfuZxe++MKUvWGaevFOJV5sqkslcQOpt4kNwollyxQhzlo4n7NdZKM0uUIh7KfRccXPRnFoNyqZ/VCi9+uQX6fZd9++6EgwZ0Sy5TAlaIo3w0cT/bZ4XJcLuAJ0ZiEeIVVn/KCTmKJEf3Wfp3b48XfjQ64VzlsRObqAxNp9w1cdleyFfEtk9wW6pqwfaHpYVyQlx2MVSnL3ZTtZo4KsNKWK4iXDd6SKcI156yN47co1eRc9T2qAQloxrwfgX1d7FCvARUwtC/EhfNXDJ691JnIRT3XzAcs1YUZwu4MMTiplb+Vbxs4W3Ps1GyVKYXjmrAQ+MXFylXeaw5BeXlhzv1uuNx7Sl7e46XUx5VVF4X4+XYvXvjh8d4N3JuE7SFD1QiMrmtBd3H5RES36qw2AqX1cRRXpp49451yoBQtWUaUDynpZQ4HxYzylwXKDo3nubdz1Umk91QySO05aLkQeqK3V9aIY7ymzhSLVXfu496I4BSw/e9LNf8WSx+nDtiQGCaYc5OSvL+sx6hXqIe0gpxlN/EkTwL/smvT8htzVVujNi9B57+/kgM618cn1hLNDJ2xBSZ3Xt1wqzfnoj2dW5PK1lslGpEb4U4yk+IyyY1lQBPEbDPruWh/R40oHups2AJILdRdbkNOysEWYCrKFXMfyvEUX4V28QnfMHNFbMTnqUMuOqkvfGL/0zLmb8shSN7DeVWdloXw+JTZjLcKHxruXurWMqLk/frg5P361PqbLQpPBObKT6xWVwpbl0MUX4CsdxXZ1osFtXEZonyUZrHlgd81tlisVjCUi66X1WbUx69+FCs3ri91NnwcMGoBixbtwVPTPqs1FmxlJB0itBqt0YqW7gM58K8VJtQV7UQ71Rfg0715VcEnepr8Lsz9rdCvMp578qjsXpT+SkZliw6M2yxraEFmVOI6EQimkNE84loTFyZslgswK5d22P/fl1LnQ2LBlmGd+tYi64danH9V/Ypaj4iq6FElAbwNwDHA1gG4EMieo4x9mlcmat2Lh09EH266Hf7sVgspUOe2KyvSePj6717bSZNIbaEQwDMZ4wtBAAi+heArwGwQjwmrjmluD26xWIxp0zmNQsyp/QFIBptlznHXBDRZUQ0mYgmNzY2FvA4i8ViKR/yE5qlJXEXQ8bYPYyx4Yyx4b162Q0CLBZL26Bc1pcUIsSXA+gv/N3POWaxWCxtnjKR4QUJ8Q8BDCGigURUB+BsAM/Fky2LxWIpb8olcF7kiU3GWAsR/RDAqwDSAB5gjM2MLWcWi8VSxpSHCC9wsQ9j7CUAL8WUF4vFYqkYchObJdbIqzp2isVisUSlXMwpVohbLBZLBWOFuMVisRRAqeMvlV/0J4vFYqkA2tWmMeakvXDc3r2DEyeIFeIWi8USke8dOajUWbDmFIvFYqlkrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCoYYY8V7GFEjgCURL+8JYHWM2akE7DtXB/adq4NC3nkAY0y5NVpRhXghENFkxtjwUuejmNh3rg7sO1cHSb2zNadYLBZLBWOFuMVisVQwlSTE7yl1BkqAfefqwL5zdZDIO1eMTdxisVgsXipJE7dYLBaLhBXiFovFUsFUhBAnohOJaA4RzSeiMaXOT1SIqD8RjSWiT4loJhH9xDnenYheJ6J5zv/dnONERLc77/0JER0o3OsCJ/08IrqgVO9kChGliegjInrB+XsgEU103u1JIqpzjtc7f893zjcI97jKOT6HiL5colcxgoi6EtFTRDSbiGYR0ci2/p2J6AqnXs8goieIqF1b+85E9AARrSKiGcKx2L4rER1ERNOda24nMtiNmTFW1v8ApAEsALA7gDoA0wDsU+p8RXyXPgAOdH53BjAXwD4Afg9gjHN8DIBbnd8nA3gZAAEYAWCic7w7gIXO/92c391K/X4B7/5/AB4H8ILz978BnO38vhvA953flwO42/l9NoAnnd/7ON++HsBAp06kS/1ePu/7MIBLnN91ALq25e8MoC+ARQDaC9/3wrb2nQEcAeBAADOEY7F9VwCTnLTkXHtSYJ5KXSgGhTYSwKvC31cBuKrU+Yrp3Z4FcDyAOQD6OMf6AJjj/P4HgHOE9HOc8+cA+Idw3JWu3P4B6AfgTQDHAHjBqaCrAdTI3xjAqwBGOr9rnHQkf3cxXbn9A9DFEWgkHW+z39kR4p85gqnG+c5fbovfGUCDJMRj+a7OudnCcVc63b9KMKfwysFZ5hyraJzh4zAAEwH0ZoytcE59AYDvvKp790ork78AuBJAxvm7B4D1jLEW528x/7l3c843Oekr6Z0HAmgE8KBjQrqPiDqiDX9nxthyAH8EsBTACmS/2xS07e/Mieu79nV+y8d9qQQh3uYgok4AngbwU8bYBvEcy3bBbcbvk4hOBbCKMTal1HkpIjXIDrnvYowNA7AZ2WF2jjb4nbsB+BqyHdiuADoCOLGkmSoBpfiulSDElwPoL/zdzzlWkRBRLbIC/DHG2H+dwyuJqI9zvg+AVc5x3btXUpkcBuCrRLQYwL+QNan8FUBXIqpx0oj5z72bc74LgDWorHdeBmAZY2yi8/dTyAr1tvydjwOwiDHWyBhrBvBfZL99W/7OnLi+63Lnt3zcl0oQ4h8CGOLMctchOwnyXInzFAlnpvl+ALMYY7cJp54DwGeoL0DWVs6Pn+/Mco8A0OQM214FcAIRdXM0oBOcY2UHY+wqxlg/xlgDst/uLcbYtwGMBXCWk0x+Z14WZznpmXP8bMerYSCAIchOApUdjLEvAHxGRHs6h44F8Cna8HdG1owygog6OPWcv3Ob/c4CsXxX59wGIhrhlOH5wr30lHqSwHAi4WRkPTkWALim1Pkp4D0OR3ao9QmAj51/JyNrC3wTwDwAbwDo7qQnAH9z3ns6gOHCvb4DYL7z76JSv5vh+x+FvHfK7sg2zvkA/gOg3jnezvl7vnN+d+H6a5yymAODWfsSv+sBACY73/p/yHohtOnvDOA3AGYDmAHgUWQ9TNrUdwbwBLI2/2ZkR1wXx/ldAQx3ym8BgDshTY6r/tll9xaLxVLBVII5xWKxWCwarBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlg/h8Nt2E/3DB5MwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(spectrum)\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iii) Using pre-defined models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One of the pre-defined spectrum models can also be used to simulate a light curve. In this case, model name and model parameters (as list iterable) need to be passed as function arguments.\n", + "\n", + "To read more about the models and what the different parameters mean, see `models` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4XElEQVR4nO29eZgkR3km/kZmVlX3TPcc0owGnUhCAiHAIDGISwbEZQ4bDAYbr41ZH6ufF7wYe31wGGzDLvjgMF6zZmXAYDBgw2LDcoOQAIEM6Eb3jW7NjObqnu7qqsqM3x8RX8QXkZF1d1fXTLzPM890XZmRkRlfvPF+RwgpJSIiIiIipg/JpBsQERERETEcogGPiIiImFJEAx4RERExpYgGPCIiImJKEQ14RERExJQiW8uTbdu2TZ588slrecqIiIiIqcfll1++R0q53X9/TQ34ySefjMsuu2wtTxkREREx9RBC/CT0fpRQIiIiIqYU0YBHRERETCmiAY+IiIiYUkQDHhERETGliAY8IiIiYkoRDXhERETElCIa8IiIiIgpRTTgEVOD6+87iMt/sm/SzYiIWDdY00SeiIhR8KK//S4A4M6/ePGEWxIRsT4QGXhERETElCIa8IiIiIgpRU8DLoT4iBBilxDiWvbeUUKIbwghbtH/b13dZkZERERE+OiHgX8UwAu8994I4EIp5ekALtSvIyIiIiLWED0NuJTyOwD2em+/FMDH9N8fA/Dz421WREREREQvDKuB75BS3q//fgDAjqovCiHOF0JcJoS4bPfu3UOeLiIiIiLCx8hOTCmlBCC7fH6BlHKnlHLn9u2leuQREREREUNiWAP+oBDiWADQ/+8aX5MiIiIiIvrBsAb8CwBeo/9+DYDPj6c5ERERERH9op8wwk8BuBTAo4QQ9wghfhPAXwB4nhDiFgDP1a8jIiIiItYQPVPppZS/XPHRc8bcloiIiIiIARAzMSOmDkVR6TOPiDiiEA14xNShEw14RASAaMDXFd7w6Stx8hu/NOlmrHvk0YBHRACIBnxd4d+vum/STZgKtIti0k2IiFgXiAZ8gmjnBW7dtTjpZkwd8jwy8IgIIBrwieIdX7wez33vt/HAgeakmzJViAw8Yr3i3v3LuGPPoTU7XzTgE8Sltz0EADjYbE+4JdOFqIFHrFc8/S++hfPeffGanS8a8AmikMoQiQm3Y9rQiRJKRASAaMAnCm2/IUQ04YMghhFGRChEAz5BkBlKPPsdE1W6I48aeEQEgGjAJwqSUHxzHRlmd7SjhBKxzrFWJCwa8AmCDLh/s6OTrjti/0SsdzQ7+ZqcJxrwCYKUgFx6BlxGA9UN07JCaXUKyHgvj0gstaIBP+xBg9tnlDFRpTs6+frXwHcdbOKRf/IVfPw/fjLppkRMAEsr0YAf9iC77fvkIgPvjkkx8GY7x95Drb6+e/e+ZQDAv11572o2KWKd4lCrsybniQZ8giANvONZcP91hItJxYH/0v+5FGe/4xt9fZcii6ZE7YkYM5aiAT+8IKXEy/739/Cla+637+n/C18Dj6O+KyY1wV19z4G+v5vo2P6ogR+ZOBQllMMLhQSuvGs/XvfJK8x7VgN3vxsNeHdMQ/8Iw8DXf1sjxo/oxDzMEGKNZIdKTswpMFDjws0PLlTGzFa9Pw1x4EIXSKDbfueeQzjv3Rdj98LKmrWhKCT+/cp7j6jnab0gSiiHGUKDyMSBH6ESyiW37MHz3/cdfObyu0ufff/WPTj1zV/GjwOyxTT0j39vb921iDv2HMJde5fWrA3/94p78IZ/uQofueSONTvnkY6ZmjKphyIDP7wQipwghnmkMvBv3vAgAGDvoXI1xu/dtgcAcOGND5Y+mwYnL91vMuB5RcjoamL/kurXBw/GcsVrhUaWAgCWViIDP6wQiu0m4p1L6QzsaUlUGRXX3afY9XFbZkqfHbWxAQDYFwjbm4ZqhJaBq9d0f9dy8kl0KMyR8jytB9SzyMCHxs0PLqzbHW6CDJyl0reZJ/NIYeDX3nuw8rPNszUAwEMBAz5K/0gpccF3bsNDi6urRdMk4ydrreXkk2kDPk5H6v6lFm7bvT7H2HoA3e/IwIfA89/3HTz3vd923muvk6y9kNGhdzqFROsINODLbcVSQgaG3ntosWzAR9mR57r7DuKdX74Rb/iXqwb63aD3hL5Pl1ZMQEJZDQb+ovd/F895z7d7f/EIRcestGIxq5Fx84MLOP0tX8FXr31g0k0JZlc6DLxTdP3u4YyQPSamGsp8HMUIptqo7To4GAMfNLOOpBLfcK+lnJEKioQZ3znvO0y2//vARbfiwhvK/pVRkXu+j9XGYW3AL7tzHwDg4pt2TbglYQ3c6KNSOgP7SGHghNDDTiunkIQyShhhLVVGjdh/v1hsDmbA7UB2X69lLfNUj+5p1MA/+YO78Jsf/dFQv73mnv04+Y1fqtybstUp8Ndfuwm/+bHLRmliEFNlwIUQvyeEuE4Ica0Q4lNCiLI3aoKgWMwN9WzCLQk7r7g+2mIMfBqcdONEdwNeZsqjGEFSqgY14IcG1DT9KBT6fy1j2JNVYOBrhWvvO4DL79o31G8/d4WqP3PRjYq43bZ7EX/3rVvM5zc/uAAAqKfj5692oh77oYMY+gqEEMcDeD2AnVLKxwJIAbxqXA0bByiddWMjLX221qU+w3Hg9L/rxBx19t57qLVutP9+ELIvbeMELH82CqOkibQ5YJTAAjPg/Tw3vgZOt2MtV1d0pmmU5PJcDl2V00xc+rpf+cFL8e6v34xFfQ+v0bkFjzl+0xha6sJs0jINDBxABmBWCJEB2ADgvtGbND5UMfClVgeP/JOv4H3fvCX0s1VByOjwVHrOzEYxUAeW2jj7Hd/A+75x89DHWC1cfNMufPeW3aX3uzHwEEZZoZABHYWB93N7SnHgeuJYSznDssEpNOCerDgIEq+MAflRaLxdq8NXj98yO2Iry/Dv+2pjaAMupbwXwLsB3AXgfgAHpJRf978nhDhfCHGZEOKy3bvLg3dcCM14h4wBdxl4s60G04e/e/uqtcdHVwZeCiMcnj1/4Ro1h974wMLQx1gt/Od//BFe/eEfAnDvV5iBsxWJ/gINzFGMIE2Ugx6Da+AmVKzVwXIFk8+rnJhruDKic62GAV9tWSYv5NArB3JU+11Nw4ru5bivoCgkizoa88ErMIqEshXASwGcAuA4ABuFEL/qf09KeYGUcqeUcuf27duHb2kPhLRFKqrubxpMA3Ctgu2B7gajUzLgw5/n69epiJtHPWx++IOsAXh3hCZffj9pIJuwyxE6aFhjttLhEpf6/8y3fQ1nvaPEWQDYVYJ1VOv315ANd1aRga+2LJMXcuh2CxGOf889f8S4ZY7cISXrnIEDeC6AO6SUu6WUbQCfA/C08TRrcIT2oKOKYP6gmcSKshurzqV0DdYIDJx0vvXuuOKDM9RWP7FJSsn05NE18MF/Fx6ctJrzYTVwGyrK318L0CSyKgZ8LRi4vu+DgnyTVXvNrlZMPj/eWrkdRjHgdwF4ihBig1BT3nMA3DCeZg2OkFOKJBT/Ro1rdvzSNffjWX99UV8PQjfdtiyhDN8memjXe+hYMYCEkrOlqfpsdA18UBQDDk6rherzyrW/L4aBr4I1WQsDDgxHtkz8u/dbm3eB4Oejgj/TazVRj6KB/wDAZwFcAeDH+lgXjKldAyPEhKoZ+Hg696YHF3DnQ0tY6WMH6m43NPcM+CAs8cf3HMBnLrPV/MaxbP7kD+4ydUpWC0WP5aYvofT6fr8Y1gE66PLYdyAebhr4ak9EdsIbvL9IQsmlG56bexPauCWUqlXaamKkKBQp5Z9KKc+QUj5WSvlqKeXaFTv2EJJQKHJgtar9rbTDE0QI3b5TlCSU/tv3c393Cf7ws9eUfjvKNb75336MF//tJUP/vh/w5vWKQikK6TicRhl4/D7wwT3I7/oZnKU48AmsjExa9wgrlgcONPG/LrxFS1jdZa9xwjDwIeY7cmIWhXQyeUuy1rgZ+JRJKOsKzUBYmGHg3gPMH4rQ7wY9Zz/xqr5Bld5ya1zFrIoJLNWHgaOB95BQOoXLwEe5Mu5fGCQ5xxmcA3yfmr2aDsUqEHttjcD6f+eTV+A937gZNz244ByHrudzV9yDf1+FjZtHqd6YsiJee1jRMp/cjJslTx0DX08ISSiLhoG7n/HO7XeX8RCWB2Dg3VYBuRzdgPu1NibtxLx77xJ+71+uqpwgix4PO590eXhW1ff7Bb9XCwOkxzsOqj5sSlUm5iQY+CArDR8UqZUX0hlj1B+//69XD1wYrB+MwsAF21Cax/vnHvNeTQYeDfiACBmKZoWBzcdkwOmB7suJ6X3HqX2Sy5JBHxSmst+IS/VxMcT3fP0m/NuV91YWEnMYdeCUPtvr5fTsF/z6BmGm+YCDc33Egatz9uOj6QUprWQIrE0YITCkBg7LwEPRTr6sNS7kY3pGB8FhYcAvvmmXs9egX4O5m3wxysNtJ4jeD5nfBodxS+nc8GGMKCWU2J1fhjMU40rBpw0ZqnaDcR72vsII7Wej2A7uaxhES/edmL0Gf8djkJPYkYfOtTICA+cpFA4DX+WaLr7DcRBwA10EiFHVVoajwl81rgWm3oDvWmjiP//jj/DfP3O1ec/XG/2wM26jRnm4jYTSx8PsG3n/ZvMbPozTqWkYuHo97Pga1xL/mE3KgO8KbOJblkQC7cg9gymHM7w++MQ2yKX6mn0v9u4zyEk4MWkSXKmIVe8HJEdIT45Y7Z2FRpnwTPx7BTGq0sCvvns/3j9geY1v37wbv/3xyyHHGCk1CCZfpm9ENFvlB6mTS9RSbsjd7/CHYpSYYhoYg2rgUkpnU4JxhMkte6uBoRn4CBMax2xNlS8IMfBWXvSUjMoSiv1sXBr4IMbBv3+9jCKPA1dJKfr9NZRQLAMffpVpDDikI1OutoEaZQcjbvzdlZ7+v0IDf+kHvgcA+N3nnt73uV77ictxqJXjwYMrPR3zq4GpZ+DBELSicBmt15v8N6M4eCh0cVANPC+k82DmhWvE+He/ffNuRx6qgpFQRqx6N8puN85xdENo4wTOmlt5UWLUh1Y6OPcvv4Uf3P6Q83uAGHt3zbxfDKplh3/X2yi6JKGYSDGrttHAR5FQhDlW02Hgg1/Hj+7cawILemHQSJH7DyyzbFd1ve28CEsoXjhh1bn7wSOOmQMAXH//gaGfrVEw9QY8xN7yvPsGCbxzR9F8l1vDaeAdz4AXFUu9Tl7gNR/5IX71Qz+oPC7te0ghk6OmCY+rFjn1/64FxcD5SqfVKZzogkJK3PjAAu7Zt4x3feVG/X2XgfeSXDg+f9W9+NI19wc/czXwvi7FtNH8DtIxiiFDwPuxlRcT0sC1hDKKAacCYnnhSijec8L74KHFFfzTpXc67+1fauGVH7wUr//UlX2dd5AdjO7eu4Snvutb+F/futX5Tavjrmz9SaHq0IPYhNO0Ab/h/gXHFsU48D4RGhDtoigZTA7+chIMvJ0XroTiO1v03zRg7ngovLMIANR04QfjUM1HY3rDGnApJb5w9X2ldlCUjxP90SngR5VkpoKcXTqT8ciLwTTw3/30VXjdJ68IfuZq4P1fqxvj6zLwUF/z87Q7hZVQ1pKBM813VOmmU7hhhH7fccnrK9c+gLd9/jpn5UiTyI/v7S/D14YR9mHA9y0BAL5/2x71W/0M+1KdITfSfe1jkHvUyJRUeN19B0qkbC0w9QY8NFv62le3GOyRDPggGjhrZzv3JRTXQHU8A95t5xB/izBqyrBMb9ikj69c+wBe/6kr8SFdotf3LfAJq80YKaAe9tTbgLeVF5jRg8NfoQxyZb/1scvw4r/9rnk9bLKFE+PrGbPQM8jP02ET9Jpq4OweNId8zikKpZ0XXSct7ouiMcX7iI7TrwN6kNoxNDk0tN+Fftv2iEJVgTEfg9wjs3PUYmu6aqGsF4SckB1vNw//IfD12GHRbA3HwDu+E8930ukXNCjqWfVtqmsjt+y1pVeb/vbCW/DxS+8MtLP//njC279ujkG1U1qm3jbFQevjehKKr2nz9GdADYyZWqKP5aVxD2B4v3nDg7juvoPmdT4kS/IrzbW8Cbnb91udYiCDNC7we7k04KbMBnoZ1PFzFbzrCEWocINPX++3ywcpCUEO5YYeJzl7hkLjqlehrEFsAhl7KcvPyFpg6g14iEF3Cuk8vN2iUMYhofQjOzhOLY9x515cMQ3ypbYadJlf0JyBGPhSezAD/t5v3Iy3fv660vX3K6EUhcT+pTbe+vnrAAD37FsGAGzdUHOOE0pgWWGSAh3LZioW5vczmlH5tVBGsYFt9uNBjuMz95UBGHiLOdPWNpXenqtq44n+j1WUVo0c3MEZcp7aCb36+kMyYl8GXI9DMuB8FReKdqK3KiWUAWREutbcTxqKEkp/CA4eb4nu3xD+WZXD4sq79uGr14YdYXSOtsc2u8HRwH0NuAiHEdKgq3WVULQGXkrk6e8B+vbN7i5J/TpwfOfx3XuVDklMrO0ZcG4424GB5TutFANPzXurEgc+gDH17w9nl1UyHj+Pz8Cb7Ry37lrdXZP4c780pAG3Ekr3wICQg3MlUAmwqss/fMkdOPXNXy4VoOtLQjEMXEsopIFXSChFj7YMZsDtxETHTxMRDXi/CC13OkX35R7v2yoG/rL//X389ifCjjDA1RT7echchl2WUGiA19PEPEA0KBpdJBSugcuAIazCphmVAnDnHtdB2m9cvP+A3q0ZuB+ZYwwXu0/+wJLStrfDBh9dd+FJTKOMDd8Z2S+c5TE8dtlDQuH7O1I//Pn/ux7Pfe93nGJLIYxSbM2VUIY04GYbu8KZ/LoZcDJqfGzZTarLfVUUEu/44vUAgAd03sAgYYSGgddcBu4TBT8Ds4oItPIcn7vinr60cD/eH1Bjcq0WWlNvwEOJJx3PSViqheKxwWHAB1Y/acVuFIoXNihtmFwtFWag9MPACcvtfKBkF/rYZ9L9OnD8RceSZk5kKDgDl9Itl+vHgfPUdD4BzdatU2pchYLGo4G7YYQhElHycXgT6x17FgGoeu5V+NaND+KMt36163e6oZNL4wAfVUJpd7ozcL6hSjuggRsHYuDYt+1eNH8fWG6r75uJvx8Drs7Hnd5AYJx5ZQ2q7v/Hvv8T/P6/Xo1P/fCunuc2DJyRsFqSRAbeL0KMsV2El04E/tnKGAz4oJmYbd+AsRVDLUvMg0CsppZVa+Am5LCVu6GTPR78qnjxdp/UwTf89DNylvGJIPd8EiXnEmeoXELJUuc9Ap264yVq9ANfy77pgQU8+q1fxe3MiIRQSuTpEhOtzsOlmrKme+axmwGg68YZF96wCwBwxV37uratCp1CYl6vtIZ1YiaagodCc3nfhySUVkADlxL46rUPmL1b/d8aAz6QBk5RKJ4G3imCurohLxXHpnvSz7gOSSi1LBrwvtHKy8xCGQxXsuBwEnk6w3W0w8D7uNElBu4PBpq908QxyvReFWgCW27lA6Xj06e+8ek3lb4UmqnPF9oFKZfuiqjV8Ze27pKZGDtFoVT5CE57y1fw6x/9UV/tJTiGVQJfufZ+LLdzfPw/ftL1d37Y40rHnZBK3/euv/AY5VxDTU7X3nuw9FsCHaGLD7srOkWBTbPKqbw8pBRDp+7k5U1H+D3mIYM0eYc1cInf/sTlOP/jl5vPeP8d9A14PxKKF27LMzFDOyn5htzHffuVjLNtrtHz3HylScfNEjFUGdxhMFUGPC8kdnm1NUIGuOQkK0ko9u/QBOCfMwTnge0rE9N9wKuq29USUdLAuxlwnvTjxx5zHFhu44EDzdLnJQmlzyfP1w+lZ8D9aoL89UopjNDViOlvcmKWwizZ374TtgqhKJBCSuP4unXXAAy8QE8JxZcbrDTk+gbu0s7fEEwXiWoL3mzneOnfXYKr795fbkPOGfiIEkpe1sD5s+Jo4IwB299Xyxa8L/cv+Qy89/NI/iiflPhSnc/qq0gO6fBJl34nhMIIa2lk4EG89xs34Zx3XmjSs4Fq/bF7JqbLBrvhK9feH9QPR2Xg/P6SgUoTgTQVVkJp9U7k4VEN3Sat8959MZ7yrgvt78x+ie7100DrxfqqkqOWA7sg+U7ldu7Xabbt4MbeNeD8fHLg8E96Tni7pJSm2Na1gQzBqk02/CiUXk7MQkqT/WeNSPkcZWhD0+X5uuaeA7j6ngPGCcjRKSQ2zSgGProTs7yqdcIUuQHvdGPg5XPwe1mWUHq3kZ45f5L2JRTfedlr2PZDZvjEROetZ0mMAw/h4psU26ICSUBVGGH3KJTCMybd8DufvBJv/+J1pfeXR9DA/ZhRKmaVCLWjNmfVAJCl3TRwq8GF9D6CvzcgfVzeaEIdT/RgH7nHoOkwh0gD98L1SrVQHEZtJZYO+65JzJDlWij7l3pvxOHWfS/M8c01FDDp3ge93Xlu3bWA09/yFVNTxY+aafWQUEqZtp7GT8frljRCXXioi35N/ZwGZtycaeDLQ2rgVMzKTz4rpJssx52YdI1u5qa+mIENeG8juuSH0BonZngl3suJadrchwOV7n0urRMzi2GEYZCU4Cxf2d9JgC1kTJIgcOPRD5O7e+9y6b3Q9lLd4DjPAppuISWEEEgTZsBNgarex/UZUrc2+ZX+nM861Qx8uZXj5Dd+Cf/wndsdjY8/q8teFIptG79nrl7PJzSKWgHs/ebvAaq/9umldjf4kwa1hR+HVnP+Oa7RkR9fv1452xzmjv40cOrDgl2/n+DUzedAx13ssvUbdWtokm/nBWZrKbJE4L4DTZz7l98KrjT6gR8H3sndksjNHmGE3WQLfp9KUSh9jK1lnfDmM/ByFIrLvHvZ2EHyO3wJZbV3LCJMlQEnKWEl8LAAdsnN2UIjS0rGzMRcZ0lfabOhVHYnCqWPY+Q+I/O0OSkV+86Schx4iIXc9MACdi00HYPQby0Gv9Kf81kXBr5Xs96PfO+OkgEmLAUqNOaF68RUA8tltHwi4gPBXhuc7+/Tbem2UODX2QpIRlJKZ8OJ0GDnG+Ty7/mSkI9OUZjnRoVB2vf58bs9fws6NLPb5suWgZef0byQyFKB2XqKi27chXv2LeP9Fw62YYE1pIHcBfY6FBfvZmJqQ8eO/Zz3XIy7HloyfqiZWoIDy20nn6EfcrTklZHgUTAh57e/tVoV+smJoEkqd55bsWYSylRt6EADgtcUbrFOnqmlWGrljhFo1NJyFIr+bCZL+mLgIQ16UAnFj8pAoQyDCvqXhrE1aolJ0fdjqjl+5m++g5laworUu17wqjbxDFKgPEDo4e+mgQvvd4VjwDulNvtOzFCVOD8qBbDhk/7kVEhpJJS5uvsIcxbtnLNjGXAiyAi7clxeyJLBToVbJZE+cyekMAOvpwmabXWtfoaskVC6PH/EvBe6GHAz0QTuVzuXSJMEG+qpMSiDJgZ1mO/A3wbQkYlYv9N4awWMOr+Pt+0+hI987w48+th5AMAx8zM4sNQOTqTdUJJQmFTiS5W8Db2O3d/KuhxGmEUnZhiUdch3E3cYuKmFUJiOradlBk6dO1NL+0rkofhSjpUBnZh+CrcJ+teZl4WUSBKBWT0JAZyBh4/fbBfO0pw7Ueh8zXaOP2DbzTU7RaVzDrD9SdqnlBIf+u7teMjLGHTj2O37Phuiv/mEshIoJxuqElhLuIRiz6EYuFpqb2y4BpyftxUw4HkhDbM/tNLBcjvHZh1q565g1P9+lUR1/nJcu49OIU2hMT64/e3+ujNwdY3dJBSaKImBX3PPfmOk86JALRXYUM/MxBoy4A8ebFauIm1cftmvVCXZtQwD52PERmtwrHRyc2+2zdVxYLnd1X8VQsmJyQy0MxmUJtHux+3HNtgMU/bcplEDD4IGHmfgXEO0EopdsjZqSWUm5kwt7YuBh1LZ3TDCwRk413kp0zARAhsbmXkgm4GYah/0kZNIwCati27chc9efg9rd97DgLsM/Ad37MX/+NINePsXr/c8+vY3NDBma6nKCC3c+tMdj4GrPUD5NYQzLY2EIssMnCSUjTqemp/LvxbAGvB2Ic1KjgzMhno5YYgMTlIhoVSdx/5esup49vclDbzLMp0MdzcnJl1Dmqhx8ZK/+x5+55NXmnOlmhSQk9aPRnnwYBNPfueF+Fu9GULoOlQ7VdQJrUYVYQg/R3TvqerkroPNyme42S6Mwd+yoY7lQDTVUqtjau2EQJNTSDcP1b6hW9mrpg5Vwfz0D++qzGQ1Tkw2odXSBH3I52PBdBnwoIRie6rOqpERQwpp4HTfZmpJX7NsSANfHpCB85rXSi9T76ubbcMIZ+upeSAtm+3PmcK1fWoTpaObdrfykoPROY5uGMXAUuw4X0ILFilD1wYAczMZpFRVGktJH35YoRfFEqpRwiUUn4FTvHDmab+ONu3Eatu+JMNKhoNr7f5x/I0mAL2C4tdTwcBpxcj1UZ+B+1oyB600uzFwYtRZkphV4TdveJC1ITETFFBO6PnuLWoThJseCCcU0T3vFAXy3E5Khaxm4FwD/+j378Q577wQNz0QLtzFGfhsLXXkJkAZ5f/v45fjp//qokqDS2SKmuBsphGQC0NRKKF7kBcSl972EN74uR/j7YEwTX6tTi5HmoxUcG0QjGTAhRBbhBCfFULcKIS4QQjx1HE1LAjdJ5USSsCJWc8CDJxJKNzRstzKg3v21dO09F6zndvldT+1UFhdikJyCUWYEKREABtqqZntVwYoV8vT8evMC06bC/N2d41Codeagd+vDfhRG+uVujcNwPmGTRopOTG9nXCcqJIizJTqjhPTY+A6LNKfgP2djwgrTAOvGRapZTZWNMv+llYiZQMu9XkoUzREAgrG9PnqyMS7B7T6vJB42+evNWzTGPAuGjgZrzQRJTmmUxSGFJjve0zyh3eoPUgffeym4PH5SqFTSCddvaq8rK2FUuBbN6pyAFUJS812YZ6fRk0RD9/hT5NM1dZwRhKhSdIhC+5z5/5vjxG6h/w9ql1T9R2+KquxXI7VxqgM/P0AviqlPAPA4wHcMHqTqkEGbaFpQ8haLBOTbwBgo1DSag08S52H/lnvvgiP/dOvAbB6O/8+R7OtQrQSEWbI+5daTpGenA3ovIAjodCmvYkQ2FBPTW1vvz4IIbgHo3PNloH7xGLZM+BVDJwGw0/0dm6FLKdSm2Nqo0Axx4dWOs6E1SnKjlOuMeeyrJFT39D3eSsVy9fLdN9oBSJPgLAGzpe8QDiahq+a6JkotAZOk2MrMMF2nPvNGDgxtsD1Xv6TffinS3+CP/rsNYqZUhhhFwNucgUSUa7tXkhkiTD3hX+f0C2Vn46h2q38LXxSrcr85VEgVOo1rQgXarZztHJFhoh4+KWgqZ9pQnvdP1+BV3/Y7hNbcl4G2sLf545/QlUs/wZNSg4sl+8BXzmWnZjByx07hjbgQojNAJ4B4MMAIKVsSSn3j6ldQdCD7mjgQQbuGjN/iUuDp+FJKA+yiASevh5yNC23c8zUEhX2F7hbL3z/d/Gc93zbvO4ww+EUryIGXigDPlvPsLQSrqnNj+WDGwm+6vAjcHwJpcqJaavmKQN+sNkJshnAGjuqu7HQ7KBdFIat8WJOdE76fZYIJ2wMsLJArYKBS9jlqj/wqsL7uAZOhph+WyfDzCclf4MMadtDYY+zbMXng6JQqK98fZbbfD9uOkncLcoOrVRHjlBfJZ4BL7TslCbCZGMCZQ18pce+rmQA2wUxcJsd26lYydH1rHRyc/ykIqxJrQjVPUkT4cTMA6rvSAKicf+lH99vWDk/t5/Io9pSnmRsRiaC3+Pfp+9SjRYO/hvK5QDUynEaJJRTAOwG8I9CiCuFEB8SQmz0vySEOF8IcZkQ4rLdu/urW1EFms25Jsgf2oajgVtj5j+cRh+ucGIWzNgC4WSLlXaOmVqKtCJk7/4Dbs0W7tRSN1u9rxyOMBr4hrpaFXT0P6BspIJLdukacCl1Aon3YPoMvMqJSQ/jvftVEtPB5ba5TiH8yBN1PzYzA8531FEMXP0g04lK3IDz5Se1EbDJKdzpq9pm20ftXWp1cPIbv4T/853bg/3E48ApOoT6hjPya+89gLd9/lqTubjSsb/LmEMzZ9dXFUboTEAeO+QGz0wuuV15kBHbPFvDoVanp/6bF25yEcXsp0KYiZWuJ1RJs8qZyhl4ntvJr5xaHzLghWlTla+JJJR6mpjVGH+2eFnhxWYnGBNvNO0QAy8KkysQilLx2+xcO6t2GTLgZZnQkrJ1z8ChYsjPBvD3UsqzABwC8Eb/S1LKC6SUO6WUO7dv3z7C6Wzp1340cBrgjYAGTi9VGGG5p/cttRwJJXRzmx1lwEOZniGUEztcCaUo1C7sxDaWmKGtMrLu8d1NIeg8ftt9Dbwqld6EuekBeLDZroz7XfYY+OJKB+0Kh9dMLXWYDcXM8msklmiuw8uo49+nyZVWTx/53h2sn8oSSie30oZh4Ezq+NUP/wD/dOlPcJ+egK30Yg09TTiNLhJKLj0JxTDw8j1texM1X9XNNZRjuMrAkjFu5254KOnoaSqMb4LAjZGNiqnSl22/KUlGG9pSYk/5meKTRVX8uWLpalJNtHPc35CcxsTCShs3BpyhfJXErwmAZve8JIN1iPeqicQnqVAsPr8nRJiA6YkDvwfAPVJKEqM+C2XQVw3kZV+oiEKZyVIIAc1gyYB30cBrNpGHMxyenQeEB89yS0koKduAIQQ6ruPEZAaslgp0dP1yJaHYTYrtlm1hmcO5JsbyuOHwf9ts+3q0x+47xMBdje/gcrtU45tABnezMeBtdIrCkbTot40s0RKS+q1h4KxNxH7dgWe/r2Ju1Wu6/0Z2YVEpIQlFSRvC+bzGpA7qQ6qRQsfnqzLSwGupQD1LnHhnQlFIh7Fb3dXNA+Bto/bUM2Hu8Zw2vs3AOQArgbTzwjFCRsP3GDgAp+a7KfLVh4RCceXKgHvFvmT5Ny3GwHnYLQcx8EaWGAnFd2LO6mStxWYHN7JoGbpek1kZYuA5WzkV1Ts7hWP5w/Xmf3jHXnz4kjvMbxq6/rdZ9WtSthYY2oBLKR8AcLcQ4lH6recACMfajAl0w3hxet7xWSowV8+w0OyU9ODQruYztZQZAHucXQsrzkMQ0sDJidkt65H/dnGlg02z6kHkLKOmHR5cQlHXmAfZmn/NBF82ot/5311u58aYqiWre5y2vyzMiYF3zMAXwp3wyOlKWuuikVB4O9wVkWXgpIFzuUOa9im5xn4/1Zo5nb/tGXBeE8QNI7SGqsacq4CrtVMJAapS2KJIoKIwxybNPksEGlnibHBMKCSXUPxlvQw+X1z7JyNIce5VDJZXf3Sctuwe03NHCIVAVmrgTELpFCoUNuvBwEMSSjcG3s7ZxOA7MQuJDTWrge9dtEXMSBMPZWDytqTCHruqZn6wJHBeJkAA8Iv/51K844vXM5KYODJZmkyHhAIA/w3APwshrgHwBADvHLlFXcBDwQicZZHHfaHZMTfRLuPtceheUSKPlNIU0QFQSjzoJqHw4lMh0KSz0Oxg82xdnZ8xSEq6yaWSUGZrdgcVw358DdyrgV7PEpeBM03XXz0oZq+ON8MyNj9yyR24dddCZRnYg8ttVCVuLPsa+EoH7bywm8xqxpomwiwvzXIzcdmLuj5rfFIhHINPg4PvMJ4X0hgyYlt+v9F93nuoxSQUy3jpmkgvtQa8MOehY0u9YsiSRIeihjcVqTHJzJcFHAPuEROugc/pSTE0SQCWeLQ8Bt5ifcidmIA7SXcqVnm8rYBO5NHXTPekMg7cSCi5WTVXhQAaDTxLkAgRDCnlTkxuaCkajb4e1Lb1PVVVPt34ficKxRtT842slH0qpZtwZhh4TZUqyKWa1FWphrWx4CPVQpFSXgVg53ia0hs0UELhYYBKJ56fqWGhaR1ujcw60tLE3TPPOqE8A64ZOLFrvu/d927bg3NP24blVo5tcw1Hr2znBXYvrOBpf/Et1uYC81AP25YNNXMcq4GrCUBKiVRYBs4NbYmBe7IHsVqeyEPn8SMkltu5Ybiz9dQk6Lz9i9dj00yGc0/fZr5bSGlY90qnMNEQAm6cKw3ODXW1Illsdpw4aZpIskQYpy9dUqav33c8ASobNNHMiU6XCqGiULzlL8lqWUX00EqnwHu/cTMOLLdx9Ea10wr1DZdqyPz7Eo3rhFav0y4MXEq1OQfdB//63BA29fch0v4zroGnuv3qszv3HEKzk+OMh20CYKUVv1ZJ22HgrgF3CBCt8io0dvq8nUsISFOznjvIM4/E0ATc6pOBt3JlwNNET3YVTsyFZseZCMgX5jsxO/p4rY4KBEgTgSSh/AOYfukwo+0z8I2NrLTKOLjcwe7FcinrempJSJIINRFNgQa+5qCBEnpQAWUMDQMPOKgIppgVS8Tg9aX3HmohLyR+86dPwVNPPRrtjsQXrr4P/+lD/4FXf/iHuOTWPVjpFCUG/ooPXuoYb8Ayv8WVDrbogcSXctyJp1Lp1cN6qGV32OmlgZMGx2Uj+h0Z4P/05JMAqIFk9egUhZQmbPFgs+PE1RMDJ2a9j/URn0NM0ksiMDdjJSza0zLPpdE5E+FqwKSBu5KCPV6mdVEz8FLF0nwmRNEJqcPAbUnXVqfADfcvYOuGGt70ojOcfgxJKKYtTDvPmAbe1pKKnwxGyKUbheLHJgcZOF2DsI5xo4HrZ/9Z774YL/ib75rfcidmqMRtIgIMnDuxjcYd9qtQv1N9oSwVhtjwbGdnBcUSebhDM4S2fjbqaWJq4fthhLTyWVzpODWIDjbD26/lhTSTJ5UTSD0HKQ/p9fsEADY0UhM6STjUcjV4IwvWbDmMVAgIMT0SyprChCRVbGeVkoSy0jbabsNbLgP2RpOBaXUKh4FTJmcqBLJUZbi9/lNX4j9u36uPpbzrM1niaOChba1anQKHWmrHeGLgTsy2llAKCV3Myhbg9+tmEPzlHjlq+TEB7WzT/fOHz38UNtRTV0LRdWJ4rQ1npyFtaKjd+w6pPhLeEtFo6kJgrpEZQ09x4LmUJtJArVgKtgJJSqn0dH8TEZBQNLvxGSwZ8FriSiicSS802zh9x7xdeRX+YLZ7QBLcBKCwBh5il1xCIcmIS1uc0dP9ONSyert1YmoJpcKJ2WSkJiShZCENXF837/e8ULXR9zCG6Sfn0KrDRIsYIpSWJijeBtXO6lj2Vl6gliYmVtyR8XK7m9FCs+1JKJ3gJiYd1vdtPSknfvgqS8qi/uOoJYkTzUbXw31lbUaEpLSJU2nSu87KuDA1BjwvrJOmnZcfFoA08JpmgKRPuWnTgF0eNxgDdwy4nqkznR1Wmp3rGZbbOWbrqQmpqrphK53CaHWbNygNnDMbqlymilnBcWKa5W3hOmH95Z6RUIxsVE53zlJhik1xCSUvpOMU5gOYJkxKWOGREL6jCVCSx1wjM3VKDAMvGAPXEQwlTTugLabCLtfp+zTI/e+HJBTO1habHSw0O9g0k9mNP8wSmGKb3b1KeR9wRl1IYnaJklAC7JJLKMT8+GqwkDaOnH5P96HVkSUJJRTFsbjSMZmy7ZIT0/aXz8BNBcvCvYfn/M8LsfN/fLP0PXX8woQRkmRCzxbPteCTAp90qhg4XXc9S0y2ppunYCf7xWbHkau4r0udW/1fSF50yzoxfd+L+q7uL699WSpKTsyWF6rZMgbcFvhK2AS3FpgaA/6IN38ZgDJ4rdwaTG6YlQaulvC+Bu5LKIlwd/ghAz6rS8xKqY5XCxjwTi4VA6+lyNIE7VyasDMfrU5htDouoTjlZPWA5lEoiysdSOnKIbsONh0JhGCcmJ4Gnud215RaqhxuzbZNEJrRzJ1n+vEQSlOjQh+PWJRAOPMu0Ssgn4F39ORb1yuWUO3kkNM40c6nTuGGEXItk9pJDJwrINxoXHzzLhxstjE/UzP1TbgBAtTA9wtHcQ3cSeTRr1WfBhi4dOOP88KNP88Lm8lpGPiKlUPoPSqXG2Lg7/h/15uyuu28cFamfFW0wStoZsJT+aq0IreA/90hP0ZKUoclDJz9AurerfTJwBebHTO5Ay5B4TW9//2q+3D/gSaO3qiI0EIzXHrWiTTyJJSCPUeAJRL+BEkrayc6qlM4Y4/qyvCVlIqcihJKJUgTNN5x1lNZKowTkx7IWW+5DNjKgLzjeT0PevDSRFVA9CM5lIRSGAklLyRu230o2N5WnhsGTs4kbmwzE4WiqvxRcggZ/RnG2s5554V41QX/UWoPMfBQbQ+ebUg7EFkJRRtwxsD3HmrhuM0zAKzRoEkwtEktYA1BoiUUYuD0u6KQaHVy1PUymRvkmmHgYfaYkMGGPUchy6FiZHg5Q6NBecq2jbh77zLu2beM+ZnMGHlfQjm0kjtGC/A1cBuF0i4KpKmoZOCFZJq5vt+8jkgubaVIPwqFIj4AVeGRXwsHlTkA7CTptztLlUHZsamBc0/bZs6vrr9wfl+6Zi8eu6OvmSZVs8pluRZm4qlnziTb1YCv5NqJKZzz276yB7r09odw9Jwy4IvNjiNxkA4tJTOqOhMzKREHey9D7ct0JBDnSisdW/oWsCtSmphb5DDVz9dayChTYcA5A6YH2rII+xmFEbZzaWKTjaOy487qQggzcFt5YQYzea8BYuDlIkGU6t1gqfS0lPWx0i5MLeb5mYylC5NeTU46iVRYZrBi2u+ytKvu3l9aEdQrnJh5oRiDEEqqqKUC7Y5N5KGsyCWv1sbDjAF3ZShuHLmdI0OQJirsLcjAO4yBs0FJcd2u3mo1cJN6r09NceO+Br6or6HpLNvV3097xNHmvU0zNbNU96NQ9nvp0jsfvtVJFuGJPOQoCzFwyvYjaSYvKHOTa+BF6d5yBk730joxy+eYn8nwmOM24eVnH49Wx9XAuRMTAH7w5ufi9573SOezduD7AHD/AVU+wc8JoFUHPcO+E08dR/2/wavT3o2RLrU6qKVcQnEnjqKQeNSOefPexkaGmVqChZWOQyQKRmLIQPsMnIxqiYF7K5wsETqM0J0UeT8tt+wEZs4lhOnztWDhU2HA/QpqAEvMYDdbxbyqB37/UhtC2M71S6imQhhG1O4oZ18tVUadM/CQBk5ZbrXUJjVUVYxbya2EsmkmM/GoZilHFdgKFYVCLMToz0wTJ/Ad5gF1jdzRx6setgtpshPLDFxJL/6GAcduntVtcJeI9Fp4YVKcgTeyxLTVyleFDRUTNvNU9WE5ld6GwKlj+k5MKculQElC4YaOWOuxekIC1CRaJaH4O90/+thNTgIQ6aayhwbO5SG6fs4KlTEEZmuWQADudnR+JqZ/jlZu+7SmHcOOE5MlQxFqqXvdfNLkEUa0ibcvT1AiT5oIp2QzSSg3P7iAK36yD0B5p6RuWGrZ1RngbcWmJ/tGLcG2uYY5H620efAMl1tosnUSeQq7cuMRRUBAQvFkIoAyvMuykC+hUJevRSjhVOyJyWsY379fJViYCm6sQxOhJBRADcZMs0763kon16FzmpGapQ9lg6llnN3lJDEadSNL8MSHb8X3b3vIDDQqwEOaeAgt5sScn6mZeFS+lCu0Uy9hszcNWHIE8voVl+lBQmjo4lUmMYWXce3YDMJ6mhgWoRi5jkKpYuBtl2Hwh9yVUCzb47sXkQMuL2CcmFJaVkXXTwyVQNchdBQQT4FOtPEotDEh5/aiMeB88FupiDA/U2MSCjFw9QZF2fzizhNw1klbcduuRSsnSLecLLHRLCkzcGorDWa+ulPXp9pP7aJzUBQKOQwBawh930ezpcIGa2mCWqbY4gr7nCfyEGgCon7hxGQP833cvU/VUfEzDe01q9dtJqEcWsnx/Pd9xxxjY30w06Imd5TaRTH0VGpZfTfF/EyGg54Tk1cy5AXKEhYHXtLA9alKEkqSoJO7US4tT0Ih20Pjyxhwj92vJqaCgXP2+atPeTgAe5P5wBfC1qTet9QyRgoArrnnAB71J1/F1657AJRxZ3a517JCpuOOeQhWLU207FDgKO08MQw8S8xMXVXrYYU5MecNA1dLOaElk1xSGCEYA9cSin5oD7Ia6LsX3EqHDW9jAc70KLQJUA+1YuC2fKcfhQJYxmokFI+BA14t5cKyPb57EdWwyAubbackp4INJBVGmAcGRsrCCGk3jywRkPr8hvl0wisgU55VWFakNHCVot/xJjxaibz87BPwy+ec5MhproQCowfP1MoMnPqGpCuSKlwNXLJ64upzcqRzJyaPA1/iqwu9k00jUyWNlRMzsIphXl0jKxQqc/Uzl9mt9niCyn26AqVT0VNLJlmaoJYlaOX2nlEeAoe/1V0vVGngIQe/ZeCuhMJ9PjMs+oyc4Zw41DwGTpLld//oPFzyx+cpudGPQvEkFF58DFCrHgqzBNxcidXCVBhwklD+/lfOxmOP3wxADT6/jjRgH/j9S22kTOd+15fVXhM3PbCg9OZEmBRqWrLSQ0QDMkkEaplAs6PiuGnA8Wp5qc7EbLZzZ/eb7/zheQDUTb9r7xJqOoyP4lFzSZKJraPADQ2xX3JiHmQF5f2azmQY6MH3a6FQH5BBMqsN/VD7DHzHJs+JWbMTHaCjUAJx4FyyAmBqWHQKHQeul8m5LKc0V8WBk/OJs1piwGTAv3XjLlx77wH44PVA6N7QBJ8IWzCKVmIkw9BxKSOStFUeO0wTYyOQSs/lHn4emxUsHQbe7qhEL1tAyxoiHoXC92WkqpJ17Zxu54XZNg5wMzEJNJF3cok//3/X4f0X3sK+b/ufJhLHSan1YBVaqyYlE4US2Hc2xMD9aBgOLqHwlQQx/0RYObGRJZhvZEpC4U7Mwq6q6kY6leY54gl01C9WA1eT4YlHbcAJWzcYcuMmmLmrIBpvpr58Z+0llKky4LP11JFEQlUCa5k1NuS4A2AciVs31IzxpK3SVHiQjXHlDLye2igUE6OtB3o9S1DXmnmzkztbV5HRu333Ij5z2d34+SccD8HjUaVlmIBisRSClAjrVJkNMHDfJ2C84AED3smt4Wn4BjxV7JYz8C0baoxxu8yRx0RztwAZm1S4DHyjkVBcJybFzRNDLaSO3fUSW8wKpXAHXlEoHZoM4Beuvg+ztRSnHzPn9EuLTcTUjySxpdyA6+tb9rT7utcPNaOBK/aZJQlmsgTNtpsHQIOefBq07PbLy2YpfZ7jdrZ7U7vjbglYT9U5eC3s5Xbu9GlHZzSaYwQMONeFb9kV3iIMsHIdZeXO1hOzaxKtapXMU2hNvFx9L6SB+/HoHHQddP0EcmC7EooNF/admLxoGgDbRiFKG6kAVu6isGBCliZoe6n07Y5bW8jfOapTFJ4TM2rgAKwGPsv2i6QHiEPAGpvlVm6WexzKs6weCG4w2nlhBxTph4zBA1bOOMQY+Gw9xUo7N2GFf/WKn8Kp2zaadlxzzwG0c4lf0dIPX8opA6aOraJF1I1PE8EYeFkD93fI9uOJeQp3u7AMnAbe0kqOjY3UGFPuxNwxP2MMvo1C0WGEtNVb7hX1IYOVuBq4lVAoE1MZInImJVrKIEbbII2eSTKUFEFjwexRySSU5XaOuZnMZIyadjEZgQYnObmFYBKBJ6HQ5Evv0wTHQ8+IkTeYDGLDJmH6IxWCRRTZZT1l+tbTBFfdvR8fuOg2AMDpx8yp55G03ESgUVPZnksOA2dOTO3LUJq40OnpZScm3x4utDECAJx01AZDdogozDVq2KXrrZOseGilg6WWWnWmAiUGTnIjx+bZGh442Cy9T31N95ZWTlRjhEIwKUu5kalnt8TApVu2WPW1DQ7gceDUFzTxNvUOW4RaUk7kWdGOY4KRUAyptCQMiFEoBvTgztZT4z32Z0OCNT65ZtnuJZL+nCZ2FiajUU+VnmijUFwDToaSqu/VswSztQTL7dzM4L+480TsPPkoMzkYo6BfW0lAOg4P5S1X50mElXHooTrYrJZQZrx4Yp68xDfxpSiUhZUONtYzYxx5GOExmxolR6rPyP3Y3ConJjGmXEpt4FgYYWElBuXYtBteOKn0HgPPWP/NMElL1egoT9bqOMBZJ21V91C3KWH1Rui8S15iRsN7v6SBswmLs3Aroaj7TYaQZAWSUGiF+L1bHzJtPn3HnBMHnqUJGpmqt8JXXsut3NQQoed4qZWbCd8PI1THsqs97jOgZywRwPFbZo2E0jQGPGVRKIn2pagCcJtna0YG5OCRP+Y83SQUpoETeaFCb3kXDZxzOJeB24mVF5ji0U+ANbJU24jApU1Cq+MmS/GVOlCWUGIcuIaRUGquhBLai5AGcbOt9DpeHxqAWRZxBk7HIgZOhipLrQRD5weYBp4lJj2dGCaB/vbLnJqiOoWt9QFYpgDAiYQxEgpj4L7TkdpF2iHP3uywrcAoCmWx2cH8TGbkCc7Aj5mfMX244oVJGQZelOOwqd1BA84LFmknJkkoCTHwvCyhpNqpyxN/zATINPBWp0AtSZx7TddKv/nLX3gcPv6b5+CErRvUe6K8YvEllBnvfvPYYa6BA4ownPKmL+Ntn7/WTG6JDrmj53cDk5RIjqgzn8G2uQZma5kTRpgm2lHqM/COlVBqbKXgT+a8T0gC6uSuHEPPz2wtxZYNNfOsUX/MNTLDbjPtO2rnBQ4ud7BptlaqRgjYSCYOXurXB0WAAWpDEEDlfOQSxj9E7WxoCWWplTuMuJC232wJDZVf4Wva1JacM3B2L9RKpig5MUMJT1yaoslCtafycseG6TLg9dTGbjMNnG6GYIx7uZ2XGDQAsz0XZ+dcF85Sazy5kQesQaL21NIEM7pAVElD0zPxIbP8VseheFQVNmiXcsQUAGXkVzw27WjgHgOndlEUAk06PHIAoKxSFbEx18iYBp6bY7xy5wkgIuu3gXaC93cq4eVf3f6yjJNHoRTSlmPlhZF4DRcAns/A6uwUB84dplQlj9DQqw36zYZ6hp8+3W7plyRcA7cMFrCMlNpPYaCmvreeUDIdBw4ADx5QEsM/XfoT0zcUFkrHJQauimyp8LY6M7AX/+GzjHG0WbW6YFYnNys/QE2mRgPX93dxJS/JaSEG3sl9Bq4NYy3F5tmaYeBm5aC3dSskkZpEG/A2Ns9mJruWgxzhdC8AV87xQfXAVX9T1FbNJH2lzI9BDByw44I2B/cjizpFwZyYdnXEs2Rf+cHv42vXPehIKFkqSkRFhRHyWPvCOVZbT3Chej2rhakw4E3OwJm25WtQQriMI03KEkpb35QkgaeBK0PHNfDMmwDoQT+0wiUUvbxtuRqa0Maf5AkyLjYeVTqzdYeVPk24Bl4jBs4kFM+JacPRXMac5zZBCYBxuC6udDCnMxILqfTQJz58K+5414vwlFOPtgy8lImZm+NWpdJzozpTSwzDtjWfbRhhqgcWacq+M1b5IJSmS+MoS+0E0OCapY4IIjRqCUKOPIIjoXhaN12D3YvRrXTInzu6PzfoMqPb5uo2Zl2oynTLLXc1RROW7/TdUEutg5CFqM3UUqy0C4eBL7dzrOg+pUlgaaVjnsFW4NptHLgrP9I1zGQJNs3WjFG0GnjGjmFDaw8st7FpplbaHAGAqVcC2MifWtrdgFNbedgtX62a51gzcAA4sEQGPEFRsAJTJrRWOmWJTUav0cCBH925T/+GE7DE7EJEK8dWnneXUEwmJvSxowEH4GrgfLliWErizpzm7xADL6wDqeYzcH2jnTBCz4AL4YYR0sO/f7ntMHD63OxNWJJQpMkQo+uhvzMmoVgN3DJw/7kwep+JGrHaM8W3q+8lprjWXCMzBXsOrSgGbp2o6rjlTEwbe8/JBWd7joykfQotHVXRyFITRVJ4Eopf7ImOV9NSiKlGKOyWai4DTxwDwTNoRcBuJIKHnFmtWwhraPhu6HQOwDWO1Dc33r8AQGnItkyAut8hDZxWINbBLMzzxuOPa3qSaHZcCWW5pfeSTC0DJ6ciUDYuqv3uBETwGXizrZLemoyBE8IauCjJmXws0ASZJtXmpsEY+MFm20TfmDrbia1EKYTdqHn/ckv3U6J9Pu6qEbDRXo4vxYsD99tsi1lpsqefw94SCkoSyvdv3YNXfvD7uOuhpcrrHxZTYcCJwcxkYQ3c1z4JPIyQ0MmlyXqkgbtncQXNdu7ocABNADwMS6CWJCUNHFCZn1xDA9SAoMFLbbTxqFYioOshA5okwiQGzRoG3jZOQB/GC04PFNsiTEXXuFEoiyttXZdFZUYuaqem7Tdi3OX4ZTquEwfOoka4Bt6opUgSy+T8VHqSUEwUCovdVf2gBjZVh6R7IqElFC9qgN+7ht4uj9rlgzPwGjOAjSwx98Ew8KYbhUJSFVUjBIAb7lcMfMemGVdCSYR5frkGbmS8zN4bOgdtyk0RDWQ8uHRGOjHXwA+1OoZFBiUU3Q9+KQYiCY0sMVE6B5c7jgbOj1HX+jA34Op67DH5c5CmlphUgY+9hWYHG+s02VsJxejWhWQZ15aBU6ijf/4kUf94FVC/Fgpgcy4AXcwqp+zTxMmhINBEXmMTY5YkpTjwe/Yv40d37gsSiVExFQacQnw4I+YaOBkcAbceNE+XJ5CulbAH4h++eweuuGt/KZKBJ4AAMBo5T6Wnz/cttR0JhT4n0HEpHpVYBWfgxokphIkDNxJKs4ONjazklKV2ArYamknY0M4yvvQspHLwzjUyw7QPNttO8SFyrPpRKAQ/PtZGobgaOGUJ8hUL1QMnRzKV3syLwvFvqOMFGLherudSOhMmabMEkl749XAIIRjLtRKKk4hkDLg2EonbvoxNWCShFExnpWJcxolZt8Y1LygSSv2e+o1WDu3Crsgo85FHoZBOXeNRKCvWD8Mdy/ya00Q4dU8AG6raqKWmYubBZjsoodCqYanVwXI7twy8KJyxwp8D6reuGniamOdxodnGhrpb+I07/JUBtwl76vdqXPk1ugEbzURF4wBX9gi2ORW6GqE0zzXtO0qX4a9yqB64DSNUxyansL+13TgwFQZ8mWU5uhKKt0wUriMrTYQjrwDQdTRgtj7iqHsMXIUuMfahP+cMfIbpmr6E4rAQ0sDZUo4n8pC3nL67EmDgs7W0dD10TEA9UEqWsQ6ajpeJSVAGXL1WjMcdpEA5E5NAmjWBb6lGBjAR1pG7zPqLYs8LqcvFCrsJQDkKRZgsQzpbxgaiO+Ds6kRVzHOjUHxwZY0ycpVj1H5AceyUITk/Y52QAJCmCbbp0qZkSFq5ndwoTNQwcBYXn5MT02PgaocitfohzZ0YuAqNVW0jnwhn4K28MCyySv/P2PNLcBi4NjIHlpUBV05SV4bhJZY3b6iZCA8nkY1LGIm7ognBd2JubKRqdcYYOK8xQucyOzFliePE5Hq2cZazBDS6pgUmTbr76ypi8cVr7kOW2oS9TlEugcCltYz5tYjcH2x2VJmPAQp89YupMOAqSsJ1hKg4cNWBjz1+EwCVhFBzWG9AQinsDvA+/EgG5fl2Z+Ua07VrjIEDKGvg3owOEIO0JW3NNlKFDSNMkrLxPNhsq+Qb73ooWxGw2admUihIA3eNBKBCtLgRcycqn4GXB55br8I6HQ2T1FJEptkavWfiujWzMfW9C8kmZ4pCIdnH3ZFHSrvBAq/zwjNOs0SYAZYEbjZ/j3wGgDtZUSmA+w+o5JMtekelFca8qHKj7ZfcKbxVpYEXhd3xSbXBvUeUiKb6TUkWzbZiuTO1xBgensGo2u8aF9+A19j9IBgnZi3FNr3h84MHmljR53N09CRxnqPNFWGE/Nmn6+hWodB3YnIGTv4iLqEk7Bmn6yLJEAAarI2cgdt8grJviU9stMLZs9gy0iBJKH4RMi6hkOOa2nnZnXvx43v2Y76RBYnEqJgKA77MsqTMMruwEsqvP/0UfP51T8czH7ndCaQnpxkH1VAJLeeIYRN4Bh/gsjzA1cCBMlP1I2LU/3Z3bJWGbL/PwwhpPMyyJTHtAOScgzGTVkcxANIcqTobl1AI84yBA27xIbrGJmPOPng4lV9OFrBGn69YGiyMkFYgibBRGX5RLnI0r3R48SurgXMnIFXJAxRz5mGCaeAp5wacfAYAHFmGWN59uj42ZRdydrux4WaAug5X14DyKJSOF4Vimbj6/nI7d6KHiIHP1FI0stQkdtVTN9vY32fTl4+yVJRq3/D46tN3zKGWClxz7wEsa6do4hhwN/Rx02zNTMLtXGLbXAPf/P1nlnxJQHcGyuuBL7dzw8DzQseBs+c8Z+PX6tCJTuRxo1AAmBjye/c3jZxBY9OtMWT/fgYLOaX7RDXXfQPOt2dLHSemxH/71JW46KbdqyKfAFNiwJstW2fEsLRO4TihHn/iFvN9y1ySkkzCE3l81NPyctHXwDn7UKn09rXvxHRXA1YD5wV6eDvomecDxveM+2GRCWMmrVxVyHM0cBYHzlnJnE7kIXB2RO1uelEoHCtO2VbrdKwbA26v1zgxUxtGSCsQqi2eFzKogVsnptWzKZGHR4xwJ9hs3a1pE7rX/C1+n/jAV5ERtoTxURtrTvvo3MdvsSy8lVsDzutiAK4GrvpLsPa7k+xSKzfPDMlIzbbKZq1xP0yWOLKaeuZZKKa3YlMSisvAG8yAz9RSnPGwTbj67v1m31c/koX3F4URAuqcL3n8cTjNq0lDXbCxkeEffm2nkZ2cNmSJ89wrBg4roQhhjOpzzthhawgxFuxsMuHIl8BvnHsK9h5awfkfv1x/v8zA+cR23hnH4BfOPkH/Xji19Ok++uVkVf9am9MpJB7UpQO61YEZBVNhwF/xxBPw6087BQAPhbL1iH1ZgQxByPAo/TGsi9JuI4Q0SVxpIXEzO+tZ4hhYX0KhgSUYE+Op9EnpfJaBh46ZeRMMYCMdAKuBm3ohhXKGkZbKmeact6Tj+iSdw89M5OCV70Kp9GQIU6YBm0QezapSff0kifhVFcnAtTpFORNTugyWZ81uqGVOsaqqKBSCY8DZtQohsLGemfodJKH4zvPjtAHfsqFmQibp9/zcJKGYUg3CZmKa69DHXG53rBPTMHDF/rhjmAy6uRYt21Q5cPlvCWZ1q9vwUydsxo/vOaAyO2uplwzkkhj+HK108qCTvcmcoc87cwc+8J/OLn2HSyiqr1Imoaj7/tjjN+POv3gxzjnlKJNs1nYYOMJhhInAk04+Cn/+ksc47wE2wghAaWMT/gzzMEJ/KzzeH+TXAVSNdVo5bj6SGfgLH3csfuGJajbkDhvDwD3HXhaQDAhGQgnIUTUdNUFIhSh51k1KvDY+rgbuno8MpqOrMycmZ88AnGJWoWNyzdccj73X6rhRKH41Qq71Uhw4YaMzUWkGbsIIy/3Y7kjG/K3TjkdTANBRO3YisGGE0CsQm9iUpsIpMpUIyz55LRSpfQg8KilLbCLPrB78bSbt+OB9XHcMuHuttnaKZVGGeSUuAz/56I1KQinsOZxJskFp9yEG7kooS63cYeWtvECTORV5MhmX1Wo60sfUk/FuHb8f5hopQEB/+eSjN2JhpYM9iy3M1FzSUEvcyK4NjKGTrOWDniOKZuHfoT95MSvVV5lxYha6dhGHjd6yz0UupSmExu8jjavnnfkw5zoAl4G/8YVnOOdomEnVSijtTmFW2v5zQH/TdZDvBAA2za5O3cCpMOAcThRKYAkDWAMUMjydLhJKLXGXvGkiMFP3Dag70Ko877wdzgOb2D0e/SU2sSX+3qzHwP3EpES4YX9cEzdOzEAUytFzDaddPIyQrq1ZEYUC6NR/rWGTE1MI2wdGA+cSCtPAyQBTHLhJbPKYM1Xa45EdlNZNYYbq2IyB11PPSPSSUOwL/5mhlQk56wC7bKdznP3wrThh6ywefvQGRwNPEzhEYYPH3HjcPE0iZORu333I3jePgXNHej1N3XBVrSWvGONS9pn4lQhplUfjiCKr9i+1lAbuMXCugft9zY3Z2372THzsN86xDJxqsbPvmImrKwOXpZVEqXJhpioXms0zuISiv0tRRIBdPZEGfskfn4ef/anjnHNwP46tuS5L9WYcBi4sA+eVF/37MC6MfFQhRCqEuFII8cVxNKgXiPmqWFmbrcZBD5hvUOcamU3kCUkonkThp+LzSAd6vysDp4fTY/UUx8ylFcCyEZeBuxq4P1lRfwCagTMNnIr7GAmF/XbrhpozKDZ64ZKAdWKGJJSVTm52EOL1wEMSih+FAujKbU4cuA0V48yZ+pBXiCx0JmYi7DUpBi5Mn4WkKQ5/oqav+NdKoYRbNtTtVmyeBv6Sxx+HS/742dhQz9RONTIsoRBzM1v2OROQ+v9ZjzoG2+YaOLDcNvfRauC5ibBxGThfTQinUFfZiVneQWim5hINCkXce6ilo1D4BOFq4BQtwvuS8BvnnoJnPnJ7KaOTt4lH4fD3N9Tt7lXkxOSwJSisEZWS70rVPYzRODE1A58LOFjpWRYCLIywMHuZ+qU81Lls2x5gDNzf9GNcGMe08LsAbhjDcfpGLVVGg2bbEssIME5A3cBOQQXi1XuP3GEdLn4mJmXCEfhylbRLbmD9MCka4Kk3KdiStu4Sm/7m7zVKEornJGQGfKWTO4as0yUOnPabtG0PRKEwB5FPYlvMADtx257/gWqAAy5bazMGL6XNTOQMjmvqRnYQKgrFT0XnhqWW+uGgKIE+FsI1tP5qgzNw2orN18AJKtQsN5mYfIVFSUyk6QPQxaxcBj5bT/Gys44z/amuRyVgkSadpW42sOMs1+exPgP3ukPZkLwKJuAmj83UU6f/al4Y4UwtKUkIPug5CkkoXO50VoR1Ff3CnZgcvoRCY82v3wPY1RYfy2ajFx2VEgpxpGPkhdTJVFpCYVEoQrgTUppYKYgz8KotF0fFSAZcCHECgBcD+NB4mtMfaG9Hs4Fp5htwYuDu+xsbmYmAoAfg67/3TPzc44/TxxVdH8YsESy5onyOp5x6tNcOq6ER+JZiPLsMsAPJVlcEGimXNhIz0OmBKzkxmUHPc1tEKtQf7oApR6Ess3h3aic1t6WzzuyelTBx7bXUOuc4s3cNOJdQyCDD6w/bFiqkZeuBq/PxBBg6dj1zQ9+6xYGnnvGqklAoVDARIqh9qvMmOgrFnsM/bpp4xdK8RB4AOPEoVfKWYpHp/i00O8ZpyTejcMs9+OUgwqtCDrtLTXlVOVtLnYnKZ+A8l0FdX0Bu62LAa2zC9w14KpiE4vU13TceRghYpuuU1Ajcf+oX26fldvO6+mazkdwm8qwwEmOv306aDzIDzsNux4lRlfW/AfBHAOarviCEOB/A+QBw0kknjXg6BarpYWZffyDRQxFgU7wWij0eZzo2IaGUBMGWq3WzvLLf8T3NfHlvjilgdln3o1CMhKKP6de4TpmEQg+R48TMCze7U2vg3MiFzgOglIkphNXAaVKgLLSlVo6W3jAjEa4+DagHnwwW19ZpWUxtTQRsHHjixvrS8fxtzUgDp/bbPuZJPQKdvD8DzmPvgXIkETHdo3QEikB1liNp1WZLtQRsUrHO1pUQA2cTByUH7dIZoHTfFpqagbPzKu2fy3weKahw/nF0vPs348mCDgNP7V6yhF4MnEAaeMiAq4nHfpdi+XNd+Kwkoejv0r2gfmy2C2ecVF0zfb640qnMELUx9dI6MYvC+L1s/W/7G27Q9y21cPyWWTzl1KPx2vMeUdkvo2BoBi6E+FkAu6SUl3f7npTyAinlTinlzu3bt3f7at+gZah1YrqXQR3Ioy4AZaQoCy5U5CeUiemcly0f+YD79PlPwQ/e/JxyOwNOTJJQqB64EwduJBR7nf5y02a1UXSEXaa3cyvLcAPsJ4tQOFwoyYS3nReQ8nVEyvoMxbHXM1snu5qBF46E5FdnBFyGTasBf8LjBoBXXfQnAh/Ux6lnyH0G/lMnbAag9Fx1znIdcQLVmuH6s5FQGAPnGrifSg8Ax21RtbT9PU4XmrqgmZOL4GbnUhSKuXZv8gqVdO14RIjnNmysuwlffiYm9Yk5XzcDXrerRt4eIgj8fcXI4Ti4OfhzRNcNkIzoHsvPBaHrAGBqqodgyjLrMg/LrRxSusl1ifDHt5VQqObQe37x8XjE9rnyCcaAURj40wG8RAjxIgAzADYJIT4hpfzV8TStGptna9i/1DbMwXfsUdKHz8Bn6ikOLLdL4U70gNaSBB10YeDMoPKH2JdOzPcpjDDlRseNY/Y/4+fN0rK+SINsI1uO+slH9N1my11OCqjPtuiVwvZ5lTZdz5LSQ5wmAsitH4DadMz8DPYstnDlXfuxba4RlCo2NlKzXCaDTxEX3OHK61/QMpk+p8OSwdm71HLK9wLwaom4RszX0n34fe0zZcKfvPhM/PELzjDnFcJWI/SPS78lpx1fYTVYO20UCoIM/DgvPZ/kOsrGdcrmZokXhSI8TdZny/a7//bap+G23Ydw10OHTHtVW91wU348X0Kh90J/+yDS4TNwW27WM+DkxAzkbRjSQpuYZNZo1ryQxJAPxJafyEsyk2lDjapwqkJri9oZ72y9FpJQ9MtmK0dj8zjcjNUY2oBLKd8E4E0AIIR4FoA/WAvjDSjDs2dxhUkobieRDOKzKbVRqUoKcZY9+mvlcMTyrM+z43qBvuuzepuJ2T2MsMzArQHkhjE0YFX0R5iBP/nUowCofSK/98ZnIwmMuSwVQLts4J5+2tF45I45/PtV95l63v65/9cvn22y7TYyQ+6Uz+0UOkTN/p77BHzD99DiCuZnMvCm8iiVLE2YQ6vsjPZhSvfqj8gh7juz1KTCJg3GwKv0ZQqb5PeXM3Beo8Wmy9s2+psz82dNOQ0T5zM/DpxPgj775M/4E07cgrNO2oq//tqN+nqIgbuOeX6ZfjayuiYmEXZh4GZXKuE+06ZOEGfgOoW/UxFNY1edPgNXpSN4m4MaeMqew9nuEgoVWqMV6axHInwyyEsC+JnT48bqHn2VsH2ugd2LK5Vx4ORE8o1slrpJNOZ9fbelx8y5Yw+gJX2ZgVfBz64DyIlJrKJ7GCGl5fIqe7Q+2GCWo55Xn2m6fOs3ADhl20Z8+vyn4M9YRtrxW2ZLBZn4b/i56ZrOOFYVDyOnqW2/+vsJJ24xe08S6+ITDmBL3wpv8qHPhXD7ee+hFuZnMo/xcz+DcBxavjPUR+r19SE92fXKmEuE3QjCJ24+A1fX435GG1zQ5+Ts9R2DHH6mqM/A/Zr1Rh4Kab/sPpqUb7aBMuAyTJXwlTi/942SY5AD5/z1p5/s/Ib3W505vEMM3Eb8uMc0Ekrha+CqCFiVhEIhk5lj8HtIKLlb+bJRS4wzn8d9Uzt5Kn0/RG8UjCU9SEp5MYCLx3GsfrB9voHdCytOXWYOCuMKJdYY7TUQ/eFv0+XHdQP2xvdTGpJnbRJ4PfAs8wwNM77qXPb3ahPdxFzbRs7AA2wzTYQxJPwhqpJ7qtpu+5aYYmpYqio3ag1eyFDSRENaOGfg/n3g15J6zPWhxRZO3rbRCWfkYYS1NDH7PNZTT5oKaeCifG+A3jUr+EYQ/m8bxojY+ujcsUu/4Q7ZUKExAPjG7z3DGFJu/EoM3JOLuHwQdt4lpWMaKZIYuBca6zoxE9QyN6IiJEdy/OnPPQZ/+nPlNHY6XmjPTIrlN6uVkoSi/rf7wFqD7MeU8+NurGdotltMQing+9AIZoORwtXJs0T1ufE5eato3tRQMuE4sTr5nauM7fMNNNsF9i21dYyyz8B1iFUFA5cI63Y8vBAIOz9Igw7tul36LotRJqSGgZPD0X7fj4zgLHhFH4euzaZ4l40g/W8ZePWytnfb1f+8T+caNg6WuksEluuAnWgoGsVEoRgD7l5/WQPXDryVjpZQ3PvDy7Byp19ImuIwfe191qtqnBAsDryXBi7cOHBA3UNeZCvkxASA03fYwC632qDvtLQ+Cto9xshQoec3MGH4O7Vz4jI34zkxmQbuy2v8GN3ga+rUFt+J2c0ZK4SbsMTDTbM0PCYANSE9dKhlrlmVMQ63mceB++UWUm3Ay+PPbfdqM/DplFC08+3+A8tBBwRJKDT7PUzvkE2dTrWkCbx2SOgBfNLJW83flP153Jay7OCDHgy+h6Wq7wDkspyp57NPn8Greg90bDuI3AkiMf8vs4JHg4I7QwEeKyzckMMuxgJQNS0AVWCKHzfMwK3h9icxQLFjZ7kq3EmSD+Zu0USAjWcvM/DunEYItSEFbyPBGnBroMthhMKpJ84TnqrQKDHwsgxi3xMsmql83fR8cIP0uvNOw/PP3IGX63pDM44TM/UkEut0LK/Sumvgoe/UmAYeklC6HZczdHqumloSEaw7+aP5xIersexvBhICDyPkY2iGZacmwpWE+DOsjlG9icU4MJ0MfE4Z5PsPNINe77xwnZjf/O/PxEo7x1999SYWs1x2vKh9CMs38xO/9WQz6Pbo2Nxj+2DgxF6lE9kCm4kpXMPnG5XMY8FZmhjjweushDRIvvNKP3p9qe3e4CxYn/K0Y+sMDA9cMvYbWNgjAKzkbt0W+swycJIebNvnZ7JS2CVFHzjJLZm7Q32oacMy8ETAKR3AQYZtmWvg3nWkSYJDej9Lvq1fN2dXmYGr19ywU6o3Z+AhMkL1QLgB2z7fwAW/ttNeo8dYC6aY1FKBvHAngYEZOPvOMfN2HPH+JCemaVPFKsqPA19pqzBCx/izv9/18sfhl885qbTPZwjc+JYcyWzS8Rm4n729mphOA64Z+H37l4PGSXoSylwjU+FQqaqEJxGO986lu4M7QSWmqJu5e5EMeD8M3DpH+bkou4wbLIBFoSTWKAEwogHf+YR77gfRwPuFYfj6PNw4uruUU5vDxyHDXa2B2++qa3GNAr+/8zM1xxg7UShJgtc/+3QcWungl550It73jZtLbeQILf+B/jTwdlGOSQdCTkyYuiin6jjgWhqOA+92j5zley0JyiBmxZTaSTF03ZSQ1C3cj2NjPXOqF2ZpgtQ4Pcvn6YeBc8P8jp9/jJP4ROiXgROxqrGV3cZGVimhzNRSnHPKUbhR72EKVPc9twH1EgO3489fRaZraMCnUkLZqgvr71tqB7OorITiJ6cIU9nOkR2ME9NGVVR1PO2PSMkW3VAtoVRlYpIcoV6XUvlTYdgQl1CCUSiJu5HCoKD+ofOQIaqlrgGnU1dJKIaB18uRBmEnpnvcusfAObtJHA1cYOvGOv7qFY/XBZbYCivQtioJZb4PCcXsQNTDgAshcOuuRQB227+yEzOsgXP4USihUFaTYJYmrA8DBlzvKtT0SspWYX4mKz1f9Iyd8TB7TebzPiYGv2gV7TBfklC4fyhkwAUjNKzvS2GEgd+GEvl88IAGnhSoslMtcfFJiK/lryamkoFzljQfYEx5RRx4miQ2ZIr1+svOPh4f/f6deOUTT8QN9x8M/pZAS7ZBnJjMflsnZmBHHmtUwoOaah4DKprkwYNNvO680xwvuuPEJAllGA2camvriITCYeBuHCxQLaGQ4TYG3Hf48IefLX15LDxBSShgv0elAew1+K2E4r7vp9KXf8dSzyvC/YyEIgSu18/T445XGZ1cA+eJSF0ZeMXy3U2htzJbNwnlaB2fv+iVlK3CxkaGfUu2ZnYtTTCzMcVHf/1JOOukraXzhCRIH1Us3TV8voRS/j7vfnq+DrXKYYShvuXH6xWF4h+Da+B+9nCWuIXfooQSwExN1UBu5UXQ6SSrEnm0hCLgaqQnbN2Ay9/6PADAzQ8uAKhmrf9y/lNxya17+nJO0IMtGQVPNGugiJew/EHtdSeALElYFEqCv37l4wG4pSpdCcXVBweBqXeuDRpNHPUSA3dlHx8mkYcyR52VD0pM2dfAeds3zdSc7cB4qr0/CPlxw/opfa8/KSF0LN9WNTwGngi1E8wP79iLk3SBqkaW2jrSibuCqALvg21zjWA5B741WzcnJjHwfg14lUP4WY86xrznlzzuharJ3nVuVuvYoe9TuOpCs13aHCL0/Pf6HOguoaSsj8ulid2JaDUxlQYcUDtc7FlsBRl4lYSSJmr5KyArl3rddvMBgMedsBmP0/UxeiF0jDSxu4z4USjlVPqQhFJO464HGDhPbBmGBRDDoMFJc1AtS5woFGp+1bjdaDTwMAP3y7762rQvoTT5ZCVsBI5f0KzX4K9yYvYC/7p/XAq/I804SYAPv2YnDjY7RvrhIXqNWorjtszi2M0zpX0kOXgfnLh1Q9DxmbGViJ/NyrFVa+CFLH1UiV67qYd8It1Q9R3Xoe+NjS5+DMBKdYXUfgD29dBq2pFQqsIIuQFPXQPONXDnmUiSkpa/mpheAz5Tw57FVnCrorxwnZiELFW7uwhRVD9EA6TK9wLP8LTHtxKKvyOPL0eUd1NJDBP249VrqQqRzJKyYRpFA/clhUaadJ10fGyZreOUbRuNXuqHb/rHouNR87lMsG2+gT2HWvb7CY+v9u91NVNW7w1nwLsVbqK+WmKFt+Znag7J4KSikSU4amMdl76pXAiNg7PzTbNZsN49l5K63ZOjAxsK90KVf4MQqiXfDfSVMx7mFjGtqndS1Qb++QanDW4kSMi/EMrE9lEVTTLDavr4EkqaeNLLEGNvEEytAZ/X4V6hqIHKRB7d0e1clhib/52xGHByYsKVUIrC7h/oGjD1v43AKDNwKivsGx5VYjc3E5CT7DFCFIpfpdDvF2tww/1ZzxJc9AfPst/3WJWf5NSNgZ914hbc9MCCc26TSu/1Va/ICL+v//gFZ5S+E4ITBeMdl+Qm2i0nNDn48cT9wN+IoxboG15SwK+0yEESyiDoxarnBmTgQgh85refitN6VOjrdQ/5e912xgqNZVen7t7mJ59yVDkOXI8PX0JJhHBk3dB2hOPE1Bpw6qSwBq7+D0kQhCpnS0h7HRZ0jMKJQrElMoXwHlJvWW/iyNmGvo8+dh433H+wVLOjnqldWsbGwPVxZrLug8FPPur3uPS3P0h9DZy+//Kzji85pxJhN0ToVp+jWxQCGeH/+qz+6jV3Y4U02S12M+BcQulzYi1X/0tKv+e6eFWIpPpNf5PGN3//mU5Nl25w9m3tc+/HJ518VM/vhHarcj5nKw1nZyyvhlHQiek8h9VtvuKtz8OGeoq79i6Z93hFyESU5Ri+4ooMvALEvEMa+AWvfiI+8r07TP1hgmM8KnQvP4Z8FBgG7m0SkUtK5AnrfIaBew9tliZ458tUIgLt2kLw05udov9DOTHDDDy0qTI/by/4Btsv+2oNuHpPCIEb3/ECY6z4adxqhNUMvJsTa9AqA/z8JQklcyWUUJdwA9o3A0/JH+E6PB0NnN33XrLWppkML3zssV3PyTX5XvfWL0g2LvTrxEyFcFh3adUYuP9++eEq0IrF9zPx8eY/k37hq9XE9BpwrX2HNPCnnbYNTzttW+l9Z2ecigdtxdTTGN17HAojTITaUaYT2FLN33IqVN52ppYG2YufFecYsBFS6WdrYQnlzGM3YWMjNXVB+pWSa95A8DNi/VUI4Bo612Fk2ZbfTt9H4KMqDrwXQkXQzOtEpcYTAw8y4B7F0oLnTATe9fLHmUJkIZnP1FTpwcAB4Jo/+5m+zksYpI/6TRDq77zhvwnGgZ646f9+bkhIQuTPSz+1gqrk2KpaROZ36eh2pBum1oDPd2HgVXAKWFUa8OGTX3yYB8NzYgLagCduwgElkZQklB5tBtxaG/w8TjsGAP2+4Rtw3aYv/+5PAwB+4e+/XzpfN5S2iKtg4FXH48ZYCIHnPHo7PvirT8TDj94YbH/VffSlmn7hTiDl387WU+xfsqnyPlwnZv+D+5fPsdsRhpyYZjs5lko/6LVVoR/HJGGcDLzbZAmwFatwJRTfgDcCz4AT+jiEAa+zFaErx7jHWu0olNU9+irCauADGPA+GHgrD+/mMwyqEnkA2pUdFQxc/74koVQ/aH5BIC5FVCUqdANF8lQxcIJhQX1r4D4DF8HXVU5RX4OeqaV4wWMfFjiPnoAqBlAvmaEKbiZo+XOn2H/gGoh1J2K4iRUISyg2CsXGgQ9ieLthkIlgXOcE+nBiMj8Gv8+zfWjgfOOLfmoFhZLqqF2+hNLr3OPE9BrwWWLg/S8i3BKy4Ut//pk78LKzjsfbfvbM0RoIHkboRqEAdk9I/mCalOKSE9M9XghVDHyYQlaAzTac9T36JQ3c1ax7oeatglxGzsP7wr93BkuXS6PjzFRsWDu8hGL/D00y3ICHdFti3Y0srZykeqFbKr0jQ43JmE6KgfcbB54mblE0n4FXGdFsgDFSTgqkidiVUGyWbFnmWg1MrYRy/JZZpInAjk29U9oJ/eyePVNL8b5fesKozQNgw5NcBq7+7+hawnwQz5tdu21ML0c3Bs7LyAKjh0PSbkf9hhH2zcDZNSVCOJOSet1LQimfO3geMuAVK6lhE3l6MXd3z87y52QI+tW/Qwin0qusTiGsLDcsw/cxyETQbxRKX+ftMw7c/6ykgVcY6FpKFRz7kFDSagMeyotoZCnaeSdKKFV49hnH4OI/eFZfNUkIvgNttRFK5KEb3NFhhBzWgKvXpTjwLoPDbhFG/3fXgHuBasb4kRLlmiODSRE1bxItSSg94sp76aJ+u2YqdOZu2YrdQMaz6tx8wusWBz5KijXdA24csjQptW2+0b+8OC6sFgPvFgdeFY9PqCIxg6xS/XNwyZLf5i0605Um6MjAKyCEKIXS9QK/UePU6qpAN1ZW7HRfiiPWD57VMPtn4JYZutEoQzPwosqAu22gSxiKgXtOzFSwUqgVh+s3ZM0Y8IpQPeraQRm4378+ekko1J6RGHjg3vLNhqltg8iL48Ko4+rc07Zhp95AZRAnJoe/MXUVibESyuBtNgw8cSPJKLuUS2Wriak14MOAM5a1YOD00PGC+I4BLxlD94H048i7DQ7fcVUlw/SLjm60bwB9ZmwTYvo7rh8J5OucvSIo+LvdbG8vCeWhRZWSHwpD7YZahdEgVIU8EsbJwLlheuojjjZ1cqhtvTanGCcSobOLR5RtPvFbTzZ/D5pNS+gl+xFCUlS/MJmYIhzyam3NAEVnhsARZcD9jUkngV66HsCXdoNIKK4kQD8dloFTfHcvCWZQZ2nNi0IppdKTDFAxWfXTf/x7VQyc2vvaZ53WV7t5G7u1b4PZqzQsAzXGwcADDrKXPP44vOTxxwGwJmOQCK1RMVNLsdTKMZr5dtErDjytIA8lJ2YlA9f+oiEMeJ0kFCGCE/WTTz0at+85VIqIGTeOKAPuSChjTDiowjGbGthYT/GmF9k6G71YBcDTyAeQUBL3O6G9DwdBx9trcNtcA3v0bkRuW9X//TpresWB07K/6krdKJTq/qiqSEl4+0sfg9edd1rXKoAhhHah4SAJpdLJOQYGHopC4aBaLIOuLkbBB37lbPz9RbeZsq7jwLASCu2/SujNwPuzBfUswfMevUP/1kooQgi87WfPxLmn2+TBP3/JY/ArTz4Jx/exd+4oOKIMeCjxYTXRyFJc9/YXOO+lPR5KoMzA+0nkKZWi1f+HdizqB/5O5V97w0+b7eRC5+3XIJVrofAoFLsB9cFmuF61G4VSfR5KyKpiukfPNXD0XKOvNnPYzWwrDLju7yonLDHwUfIMeoWoHdI10wdJchsV5z3qGJzHaoSPA06xqsBzTGPJ74d+JZRBV483/48Xmr9rTEIBgN8495TSOR97fH9lp0fBEWXAax77mwSSfhg4GeFS8kD1g+aHVNExyCs+KEhCoQe1yuAlFYOoCk4ijO/EZGGhtHVd1993kVCoEFO/9Ub6hfUxhD+n81XJOzaMcAQGHtDAORZX1LWHCr1NE3gf+pElQLUB9klLFfGpeSG3g8BPnJsUpjaMcBg01oEG7up6FQzcSCieBt41DjzMwLduGI6FvfQJSk89tkeYpkm5H2rTiHIMLRnwkFxD3wn97YN2IxpFaw6hV/XFkKHhsE7M8UahcFgJZe3DCMcJTnZC/ZpU9IP/3arV0ChOzNCG5ZPAdE/RA4IXlpkYAw8YoDe/6AycvsMWt7dx4IOHEfoa7dYh6j8DwPnPOBWvedrJPZkiXc4wmi5P3AGIgXeXNXgPdLuH1A9HbRxcJukGHj4WwmxdfU67IfmwYYTDM/Djt8zixKNm8cgd88HPjQEfo4RyxsPmcW6gQNxqgt/fUEYtDYdShcw+x/YgmZg+zGbfg2xttAoY2oALIU4E8E8AdkDJtBdIKd8/roatBmqscPtaODFDcJ2Y6v/zn+HWovaNMfpIpbchVa4B2TIkAxdegaDq82oGPgTTzVJR2pD5mPnujJ93Qbcwwl/ceSIOLLfxG08/pfpLQ6BX4hJFHVQN7HEw8K0b6/juHz278nOqhjjOOPCvvuEZYztWv0j6lFBISjrvUdtx0U27+z4+PXvD2AKSUCZsv0di4B0A/11KeYUQYh7A5UKIb0gprx9T28aOUP3ktcZgTsxw1mO339DxF7QTcOuQGni/GEVCSZPy9my9tPR+E3lqaTJwiGA/yHpIKDvmuzP+xhgYeC9QPfJpl1Dciprl54KeBTKm//BrOytXPiHYTccHbxu1p5iwhjI0DZBS3i+lvEL/vQDgBgDHj6thq4F1EQfehxOzKg6863EpaUg/UAtNVdJ0WA28X5AdGybePA1IKIByvj3zkdvD52N/j6tc6iDoFQd+XI+wsZkxMPBeILY615huhbTXLk9+FEqWJgOFMRLz7hT9G33/t1MroXAIIU4GcBaAHwQ+Ox/A+QBw0kkn+R+vKda6FkoIvbb64u/TJPO+X3oC3n/hLV0HJB3WGnDFwIeNQukXg4YRcpTKyepjddtwoF8n5mqBlt1VxqWXAc/SBK9+ysNx3hnjDbnj+LfXPg0/vHPvxCMkRkUvjjVqxU0aX1T3ZxCsFwY+sgEXQswB+L8A3iClPOh/LqW8AMAFALBz586JXq0joawDDbxSQvE08OeeuQPPPXNHX8f1GfiwGni/IAYynITiJfL0cQjXgA98ypGR9WDg/ax43vHzjx1rm3ycvmPecYpPK3pNQCYKZUgDfvxWNdkO47+pHQ4MXAhRgzLe/yyl/Nx4mrR66Ee+WMs2VOnwyRDMgow+SYAHl8cfiRACaY7jCCPs557wOW8S99A6McOfD1vjO6KM3hKK+n9YBv7WF5+Js07cgqfqreoGwXqJQhlaiBPqSf0wgBuklO8dX5PWBuvCiVnRhmHCm4Sngb/8bOWOOGrIMMJ+0RnBgKeJWw+9n53t3UzMtb+HNVYDI2J10SscsCoOvF/M1lO8cueJQ026h4OE8nQArwbwYyHEVfq9N0spvzxyq9YAwxSwGQe4TFBlBJ5y6tH43eecjscct6nv49LlUEW6P/yZR+H1zzl9VaMdAJuxOawGztFP/G7SxwS4mqAwzW7n/i8/fQpufGBhrZp02KJfJ2YV0Xn9c05fNZlt6sMIpZSXoLrm0LrHemDgVRLAxkaG33veIwc6ro1CUa/7jeMeFW1i4EPoiP7198XA2d+T1MC7tfUtLx59O76IPjRwMuBZ+Hu/P+AYGgRTL6FMO9aDBj5OBnnsZuWQ2bzGsb+dfDQnJkdfDLwPJ/BqoteOPBHjQ98SygRW0xTBMs0SylRjUgy833rWg+K15z0CJx09ixc9rrxD+2qCYmjHIaH0M6nyr0xiEjbJH6tcqD+i//ExCQNO+91OmoEfsQZ8YnHggVT6caCWJnjZWSeM74B9okUbPwyZyNPtdRj2O1smkGlIGvikixgdCegVVkr+ntoq7zsZAjHwSRvwI1ZCGTb0aFT0k0o/TRg1CoWjvzhw+/ckHNHWeRUt+GqjV6li2rd1EmN5vUShHLEGfHIa+OTbME50RohC8ZOp+mHgk570UiOhRKw2TJZvhYEm41mfQFLeeknkOXIN+IQMgb+J77RjmCgU6vqShDJgIs8kMEoBpIjBQP6VKgaeT5CB09id2jDCacekjGe6Sk7MSaFNg2yQpCMoBusb7H4SKoiVrXW0DcFq4NGCrza2zzXwmqc+HK86J1xDiQz4sIk8o8BmPkcn5hGFflLppwntzuCOpEQIFFKOJCEdPbe6GaZVyNIooawVhBD485dW140hhj4JBu7XHpoUjlgJZVLoJ5V+mmAHUf/XYiSUIa7/oC7StW2IDYnHgSihrB9Q3Z+JSihRAz+yMGjxpvUOSqUfTEKhglCDX/9GXe/56Y9Y2+29CGmMA183IPY7CHkYF2jD6Of1qBK62ogSyhpj0pmE48Y//NpOfPT7dwxU9XAUBv74E7fg31/3dPzU8ZsH/u04YMLHBt8DIGLMoDDCSaxk52dq+NFbnrvqG6b0whFnwJ/76GPwzRt2Tez8/dRCmSacc8pROOeUowb6DXXBsLsiPeHELUP9bhyIYYTrByRfTCoYYHuP7fPWAkecAb/g1Tsn6njopxrh4Q4joUzh9VsNPJrwSYMiQA4HIjQsjjgDniQCyQSLKLpOzIk1Y6KgLpjG66fsz2i/J49owKMTc81xuDkxhwFp/9NoA2Mxq/UDioA6HMJxh8URx8AnDWdbtymUEMaBT/2Xp+BfL7sb81O4a3oawwjXDWgv4sMhHHdYTN8ImnIcbnHgw+BxJ2zG406YTBTJqMjWSQJHxOSdmOsBUUJZY6SRgU81jAY+4XZEAOeernIBjtk0+WiQSSEy8DVGcpiFEY4Dm2drOLDcnnQz+oLRW6MFnzj+4PmPwq88+SSzG9WRiGjA1xjRiVnGd/7oPCy38kk3oy/EOPD1gzQROGHrhkk3Y6KIBnyNMektwdYjNs/WJlZdcFDEDR0i1hOiBr7G4CVTD4dU+iMNcUu1iPWEaMAniMjApw+piHHgEesH0YBPEDEKZfpAtywWs4pYD4gGfIKYxlTyiIiI9YNoQiaIKKFMH5JYzCpiHWEkAy6EeIEQ4iYhxK1CiDeOq1FHCqITc/owo7eOO23H/IRbEhExQhihECIF8AEAzwNwD4AfCSG+IKW8flyNO9wRGfj04ei5Bv75t548taUAIg4vjMLAzwFwq5TydillC8CnAbx0PM06MhCdmNOJp5+2baAdiCIiVgujGPDjAdzNXt+j33MghDhfCHGZEOKy3bt3j3C6ww9HajGriIiI8WDVnZhSyguklDullDu3b9++2qeLiIiIOGIwigG/F8CJ7PUJ+r2IiIiIiDXAKAb8RwBOF0KcIoSoA3gVgC+Mp1kREREREb0wdBSKlLIjhPgdAF8DkAL4iJTyurG1LCIiIiKiK0aqRiil/DKAL4+pLRERERERAyBmYkZERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSUIhrwiIiIiClFNOARERERU4powCMiIiKmFNGAR0REREwpogGPiIiImFJEAx4RERExpRipFkrEcPjorz8Jh1bySTcjIiJiyhEN+ATwrEcdM+kmREREHAaIEkpERETElCIa8IiIiIgpRTTgEREREVOKaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiSiGklGt3MiF2A/jJkD/fBmDPGJszLqzXdgHrt22xXYMhtmtwrNe2Dduuh0spt/tvrqkBHwVCiMuklDsn3Q4f67VdwPptW2zXYIjtGhzrtW3jbleUUCIiIiKmFNGAR0REREwppsmAXzDpBlRgvbYLWL9ti+0aDLFdg2O9tm2s7ZoaDTwiIiIiwsU0MfCIiIiICIZowCMiIiKmFFNhwIUQLxBC3CSEuFUI8cYJt+VOIcSPhRBXCSEu0+8dJYT4hhDiFv3/1jVox0eEELuEENey94LtEAp/q/vvGiHE2Wvcrj8TQtyr++wqIcSL2Gdv0u26SQjxM6vYrhOFEBcJIa4XQlwnhPhd/f5E+6xLu9ZDn80IIX4ohLhat+3P9funCCF+oNvwL0KIun6/oV/fqj8/eY3b9VEhxB2sz56g31+z51+fLxVCXCmE+KJ+vXr9JaVc1/8ApABuA3AqgDqAqwGcOcH23Algm/feXwF4o/77jQD+cg3a8QwAZwO4tlc7ALwIwFcACABPAfCDNW7XnwH4g8B3z9T3swHgFH2f01Vq17EAztZ/zwO4WZ9/on3WpV3roc8EgDn9dw3AD3Rf/CuAV+n3Pwjgv+q/Xwvgg/rvVwH4lzVu10cBvCLw/TV7/vX5fh/AJwF8Ub9etf6aBgZ+DoBbpZS3SylbAD4N4KUTbpOPlwL4mP77YwB+frVPKKX8DoC9fbbjpQD+SSr8B4AtQohj17BdVXgpgE9LKVeklHcAuBXqfq9Gu+6XUl6h/14AcAOA4zHhPuvSriqsZZ9JKeWiflnT/ySAZwP4rH7f7zPqy88CeI4QQqxhu6qwZs+/EOIEAC8G8CH9WmAV+2saDPjxAO5mr+9B9wd8tSEBfF0IcbkQ4nz93g4p5f367wcA7JhM0yrbsR768Hf08vUjTGKaSLv0UvUsKOa2bvrMaxewDvpMywFXAdgF4BtQjH+/lLITOL9pm/78AICj16JdUkrqs/+p++x9QoiG365Am8eNvwHwRwAK/fporGJ/TYMBX284V0p5NoAXAnidEOIZ/EOp1kMTj81cL+3Q+HsAjwDwBAD3A3jPpBoihJgD8H8BvEFKeZB/Nsk+C7RrXfSZlDKXUj4BwAlQTP+MSbTDh98uIcRjAbwJqn1PAnAUgD9eyzYJIX4WwC4p5eVrdc5pMOD3AjiRvT5BvzcRSCnv1f/vAvBvUA/1g7Qk0//vmlDzqtox0T6UUj6oB1wB4B9gl/xr2i4hRA3KSP6zlPJz+u2J91moXeulzwhSyv0ALgLwVCgJIguc37RNf74ZwENr1K4XaDlKSilXAPwj1r7Png7gJUKIO6Gk3mcDeD9Wsb+mwYD/CMDp2pNbhxL7vzCJhgghNgoh5ulvAM8HcK1uz2v0114D4POTaF+XdnwBwK9pb/xTABxgssGqw9MbXwbVZ9SuV2lv/CkATgfww1VqgwDwYQA3SCnfyz6aaJ9VtWud9Nl2IcQW/fcsgOdBafQXAXiF/prfZ9SXrwDwLb2qWYt23cgmYgGlM/M+W/V7KaV8k5TyBCnlyVB26ltSyl/BavbXuD2wq/EPyot8M5T+9pYJtuNUqAiAqwFcR22B0q0uBHALgG8COGoN2vIpqKV1G0pX+82qdkB53z+g++/HAHaucbs+rs97jX5oj2Xff4tu100AXriK7ToXSh65BsBV+t+LJt1nXdq1HvrspwBcqdtwLYC3sXHwQygH6mcANPT7M/r1rfrzU9e4Xd/SfXYtgE/ARqqs2fPP2vgs2CiUVeuvmEofERERMaWYBgklIiIiIiKAaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSU4v8H0t+PQeueM4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABgmUlEQVR4nO19ebglRXn+W72cc+46d5Y7wzAzMDDsiywZVllEcAE0qNHEXRMjGjXRGDUQozGJRuMW9afRENx3RYwLEpEdhCADM8DAADPAMAuzb3c/53R3/f7o/qqrq6vPcu9Z79T7PPPMPWvX6a76+q332xjnHAYGBgYG3Qer3QMwMDAwMJgejAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLYQy4gYGBQZfCaeXBFixYwJcvX97KQxoYGBh0PR544IHdnPNh9fmWGvDly5dj1apVrTykgYGBQdeDMfas7nkjoRgYGBh0KYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwKeBNZv3Y+3WA+0ehoGBwUEOY8CngU/c8Bg+dePj7R6GgYHBQY6WZmLOFkyUfPiBaYRhYGDQXhgDPg2UvKDdQzAwMDAwEkqt8AOOd3x3FR7ctA8lP0DRGHGDgxSb905g5+hUu4dhAMPAa8Zz+yfx20d3YO3WEQScIzC9RA0OUpz/6dsAABs/dXmbR2JgDHiNIHvNGFAsB/AD1t4BGRgYHPQwBrxGcIQW3GIMJS+AbxkDbmBg0F4YA14jKOjEYqET0zLeA4ODEJ5vfD+dhKpmiDH2DcbYTsbYWum5eYyx3zHG1kf/z23uMNsP0rwZY8KJyY0ObnCQYazotXsIBhJq4ZHfAvBS5bmrANzCOT8awC3R41mNIKLgXhAyEM6Bsm8MuMHBhdEpY8A7CVUNOOf8TgB7laevAPDt6O9vA3hFY4fVeSBjXfZio130/HYNx8Cg5Vi79YCIQDHoDExXyV3EOd8W/b0dwKKsNzLGrmSMrWKMrdq1a9c0D9d+EPOm/wGYWHCDgwpfv/uZdg/BQMGMXXE8FIIztQTO+TWc85Wc85XDw6mmyl0DwcB9mYEbA25w8GB4IN/uIRgomK4B38EYWwwA0f87GzekzgTVPpG98MWykVAMDh7M78uJv13bhNF2AqZrwH8J4C3R328B8IvGDKdzQYbbMHCD2YSrr38E7/7Bg5goVXdOMslm97h2E0dlUCtqCSP8IYB7ARzLGNvCGHsbgE8BeBFjbD2AS6LHsxrliIGXjQZuMIvwwz9swg0Pb8P1D26t+t5iOZ7vvTmTQtIJqHoVOOevy3jp4gaPpaNBDFwO/TYSikG3ozdnY6Lk1xTfXZLkQ57t9jJoIUw+YY3QxXwbBm7Q7ZiMSEgt9e3l+W7q4XcGjAGvEboJawy4QTej7AdiRxnUYJBLXoA5PS7ecs7hJomtQ2AMeI2Q478JJpHHoJsxLskmfg1lIYqej5xjwbEtw8A7BMaA1withFI2DNygeyHr3rUw8KIXIO9YcCyGsilq1REwBrxG6KqwGQnFoJsxVicDL3lBxMCZYeAdgq4y4Lc+vqNtd35Pq4EbCcWgezEmFaaqZVmFDNyGbVnwAm6qcXYAusaA37JuB/7iW6vwX3c81ZbjGwZuMNuQkFDqYOBu1MzEsPD2o2sM+FO7xgAAe8fLbTm+loEbDdygi5GQUGrSwH3kbQt2lEavWxMGrUXXGPB9E6HhntvrtuX4+jhwI6EcDPj4rx/D/6yunqnYbZCjUO59ag8+9stHK76/5AXIuxbcqB2VMeDtR9cY8P0TJQDAkFRQp5XwlTDCvpxtJJSDBNfe/Qze9+M17R5Gw0HNGRgDHts2gm/ds7Girl30AuRsC3YkoZj2au1H1xjwfZF0kmtTFTSZgedsCwXXNgzcoKtBEspgId7VVkrQEQzcSCgdg64x4HsjBt6uSSMn8rg2Q96xjAZu0HaMTpVx3EduxJ1P1t8sZbzooce14dqxGahESmIGHkkoJhuz7egaA04SSi0JB82APFltiyHvZkso9zy1G8uvugF7xoqtGp5BhC37JvDbR7e3exgtw+PbRzFVDvDFW9bX/dmJko+enA3JfqNUQRYsRWGEjmDghsC0G11jwMmJSQx8suTjlw8917Ljy8zfta2QgWewlWvvCltPrd60vxVDM5BwxZd/j3d894F2D6PlmI6wGHAOx2KwpULflfw6IpVeaOCGgbcbXVPU90BkwCnc6eM3PIbv37cJh84pYOXyeU0/vuywsa1IQsmY7LQczPRuPfaMxzs1y5r9XWNmkkvj+Ry2xRLniea05wfgQEJeiTMxTRRKp6ArGDjnXNQipkmzdf8kAGC0hjrGjUA5xcDtTA2cCA159HeNFnHf03uaPkaDGKUGRUh0erYhjY9N417lB6EBtxMGPNxVvvgLd+K4j/xv4v1yLRTASCidgK4w4FPl7DrEreJYMgN3bIa8my2h0KhopH/y1XvwZ9f8X3MHaJBAo0I8u4VksmmsBJ9HBlyWUKK19vSu8cRa8wMOL+BGQukwdIUBlzPGaNK0mhjJ28WqEopg4OH/m/ZORI/NhG8VKjnj6kGns8yZzCgvyJZQVND5TDoxzXxuN7rOgNdSNa0ZkNmGa4USylRGS7V4PSTHaiZ869CoomezmWUGgc6JqZ/TZMBDBh6aDTW5zaD16A4DnqiaFvWmjB6z6Yh/04DMxKo7McMxqfba1FBuHRrBwJ/eNYarrn+kAaNpATTL4MrvrMKtj+/I/IgXcFgsycDV80YyStEPDbusgZuuPO1HVxjw0WJcwEplsa2KC5cnqys08NokFN13GDQXjXBivvsHq/GrFoaqTgdZG1I/4LjpsR1YtXFf5meDgMOxWSIOXJ3T46WQPJE2nnPiVHpTjbD96AoDPl6Mt3W+0MDD/xsVbVANSScmRaHot5tkwFX91DDw1kFmkvsnSjj/07fisedG6vqObvBZUBlYlYDTXKs057yAw2aVJRTa/VLz496cLcIIzXxuP7rCgI9VYOCtmkR1OTGj5aRuR2ezntppkK/N3Rt2Y/PeSXz5tvqzFTsdNC9VJbEkDHj2nAu4xomphMZSxcLJUmjAe1xbSCgHCwOfKvu496nODAPuDgM+la5bTOSoZQZclVAiA65laYzG1p6bjUHy5knJKCWvPoPTKv/KdHD/xr3wA57pSCxHv39ksozHt+t3HpTIo2ZiynOa8izIYd/jxlEoB4sk+MuHnsPrr/0/7I2SxDoJXWHAaRIN5J00A69zUU4XshziWBbyrg1AL+FYjCZ48rVWyT0GyXOdm2Vb/md2j+M1X7sXdzy5UxCL8aKPzVG4KhD//utXb8VLv3AXdo2m6/L42jBCP2GYBQOPDHghZ0tRKAeHAR8veuC8M+v/d4UBHy96cCyG3rwtnJYcrdXA5UntRBIKoI+bZeIz4WtCEz9IGEsnQMfA6zXgncq/D0yGkuLolCeM6CNbD+D8T98m3qMSm4c27099j885HMtKJfJMSYaKdr86Bt7pMfKNAq3bTrxhdYUBH5vy0F9w4ETNVGW0ilXJF8+xJQOuSaen9UA3lyxGbtA8yAa802+gG3eP4y+/fT8+d9MTNb2fnOeezzNzC1Ris3pzOhrFi+rFyKn0JT9I5DeMqQxc0sA79Xw2GmUKXZZ+7pdvXY+frtrcphHFmJEBZ4z9LWPsUcbYWsbYDxljhUYNTMZo0UN/3oFjszgOvMUauHwcJ0rkAfTbKsHAIxZkCU3cGPBWYXSqjE/+Zh3Gi54wcvXu1lQJvFlRKXet34Wb1+3EV2+vrWG3KDgVBJnNiNW59uCz+1PvoUQe+XcWvSBBSoQBL4XPhQz84JJQdAz8szc9iQ9e93C7hiQwbQPOGFsC4G8ArOScnwTABvDaRg1MxthUaMBti2kYeGsmUSkRRhjGgQN6CcVXbi4UlVLPWMeKnmjkbFA/vnPvs/ivO5/GV27bIEJAZaN2z4bd+MptG+r6zmbNNU/IgrWB5lzZ55ksWDXgu8eK4JyLqp50XIspxazKvmDbQFoDl6NQygeNhBL+znZlgVfCTCUUB0APY8wB0AugKVkPRyzow2mHDcFmTNwFiXk0quZFNUyV4kkdMvBsCYV2CaoGXg8Df/PX78PFn7tjusM9KCEzZLrhjkkMXD7/r7/2Pnzmt7VJFoRmab40p2tltLTr8/wg8zPqupgs+/jqHU/hlH+5CTtHpwDoU+m/fe+zuP2JneLx79btRFmSVQo566ALIyyLyLfO+73TNuCc860APgtgE4BtAA5wzm9S38cYu5IxtooxtmrXrvrbPgHA1Zcdj0++6nkJBk7Mo1WyhMxKQidmWkJ5ds841mzeL5jaTDTwB6NmEO3qQNSN0OnBJS+Q5kr69YlS7eWIm83AgdqMBJEGL6hdA58s+fjNI9sAAM/tn4o+H6SiUADg337zuPj7oc37cdvjOzFV9mGxMKKHolAOljBCwcCjU9pJhnwmEspcAFcAOALAoQD6GGNvVN/HOb+Gc76Sc75yeHh4+iNFKF0Eip5Zq1F86RfuxCdvXDftYycMuK2PQrnwM7fjFV/5fWrLbmXEhdcCE3pYO3S7sZIXCOasmyt7xmqP7W0WWZCZbC1zhKJEyn6FOHDleyZKvjC8E5EsIuqBZ8S7f+41pwAI0+knSz56XBuMMbjOweWULysaeKNKFTcCM5FQLgHwDOd8F+e8DOB6AOc2Zlh62FIUSknSAWvB49tH8V93PF3X8XaOTmH5VTfgJ/dvTtQkd6zKGrjYsgsnJnnt67/wnTRZOh2yASeWVPSDiru1PRWSM1S71qyoC3lcUzXEGhMD94Mgk4GXNRIKSR/0m31qqaYw8N5cuLuc0+OK402Ww/6ZQBxXX6t8+eP7N+Ed311V03s7EUQASLadKHVOPPhMWqptAnA2Y6wXwCSAiwE09So5VqyBEzNtJkPdsDN0In7vvmcBhBmYZZ/DkbaROqOcqkOhhBXWg1Zp/LMB8vmlG26xLDPwZCy/F3DsHa+98XQrGPhU2cdgwa34ftmJqerQnHMwxrRzjYz9+p1jWH7VDQCAs45ISyikdw+SAfdCA16Iktcc24LFap+bf/+zLqnomAG6cZMBH29RF7BaMG0Dzjm/jzF2HYAHAXgAVgO4plED0yHUwJPGUWUajQTtTmmi9uUd7J8ow7GZlBySZkBepgZeP4PrxOyvToXsUKYqeiU/EOddnis9ro3RoofdFSQUtctNswy4zKKz2vTJEE5MDQP3owqDurHSPF61ca94zrEYvOhn9rg2Jsu+KINMDLzkhU5MMuBA2Nhhts/NGx7ehpGpckpCmS0MHJzzfwLwTw0aS1XYLDbgsYTSPAPuK5EufbnQgNuMIVdBB1SjHojgTEdCMQy8dpT8dPhbyfNTuzYA6MmFBrye+hbNasihMvBqiBsPpxm4zzkc6OfNrrFwtyGn1VuSE/PlpyzGEzvGRNamkFA8X2jghJxjzfq5+e4fPAgAuOLUQwHE9f3H63B8NxtdkYlJcGwmGcf4/+se2JKq9XD7Eztxw8PbMr9rx8hU1QgPchAVBQMPJ7DFWMX0bHXLPp0oFDL6RgOvHfK5EpFAXqAtrUr69p6xbAlF1cCbxsClndlkLQa8nC2h0K5Rt9ujNbJTWityGKFtWSg4sUnoLziwWCyh9CQYeHY1zix0UvRGPVAllIli5zDwrjLgtiVFoUSTZ+v+SXzgpw/hL7+TlN+/+fuN+Ood+kSNqbKPs/7tFvzdTx+qeDzV+UUT2GKoWBNZ/RxVtSvVIaGQ0Z/tLKeR0BmUkh/LDLKto/KolZyYqr1plhNTjiSZmqGEQkZGnpd5J7nMqZYKgEQij2Mx4agEwvlOTHuyHKCQmxkD79awQ9q50c3SMPBpwpHiwOmk0qJ9bv9k4r1+wEUUiMq0aXv989VbK7KCQGkaQbHfjDG4FUpq0uKhCT4dCYW2tYaB146sMEKZpf7Dz0OHGhnK0ansxaiy21Zo4LKEkjU3p6Q4cDWMUJX9AGCoN9sp6kgSim0xFKI5TpnPodYdoFj20ePG5iLvWCjWeT66tfgVrdtAaODhnFGjd9qBrjLgdhSFwjlPaeCqcfQDLgyvylLkx0/sGM08Hn0lOb8odJCxyiVK0xr49CUUw8BrR5YBl8/7D+7bBM8P4rlR4Zqo16tZDFKngY8XPRxx9W+09VHkTMysFoOy3j/Uk8s8tm3LEkrMwPvzoXsslEr8RBQKAOQcuyaHq4xWlX5uBGTSp+7gxopxf9B2o/0jqANUjVCetLQVVre3fhAb+UpMaqwCAxMOU4WBqxr4hp1jiW2pmvkXp9LXL6HMZk//bx7Z1tB6L8SMHIkZjZf81NyQdeZKjsn0jb8FDDyas9tHwmzJn2gq3iWcmJp5DyTnODkjgZh4EGxJQrEtJoz0QCE04LlI6y55QeKzOceqOyy2ESG/6k67WRiVQgXpXPpCAw9fk29o7UJXGXBi4DLTokWrFtbxOY+dV8pr8oKuxHDjxRD+X4gYeKiBxxLKa6+5F/91R8yU1FBH3aKqBvsg0MA/dN3D+O69zzbs+ygkcPFQXBSTqhFaDDjriHlYNJhPGvAKN9VWtcSjjEggZuByCzMVIg5ck0rvazRwcr4DwCFzkgVDHYsJshAa8HCO9xdkBh6I8ERC3rEye8JmYaYS1D1P7ca5n7oVv364+Y2mRzSEjFj5eHRt1JthO9D+EdQBigOXJwItRpVlewGX5JVsJlWJFajfSXdcxhjcKJFnquxj91gJ+yZiZxgtMPpunWOpGtSa4rMNnHOMl7y6apEQfvvodqz4h9+kEiooJHDxnB7x3ETJR8kLUHBtHLWwH37AhXEEKrPqVnVU8gKOvki6IANOZVx7cxoDXo4llHQiT/i/vNvrzcfRwiceOph4f1gPPPzbZkzcMAaiZKJ8JJX4UeVCQn4aDHymBpwS6+5pQX9KeUddFhJKkoFnlfJtJbrOgPt+koFPSSFVMgKJqauLVO6NWAsDJ5DmxVg48R2LiSgG2SjQIhQ3EIXJ1wJiZPXqjN2CsPfi9JIiPvPbJ+AHPLWd3jtewkDBSWUybt43ASe6Xl7AEwy80jVJSShNjEIhzXnTnglwzgUDlI0vIVFOVpPIAyTndX8u/o5Tlw0l3p9m4KEB743+J6mE0u4J+WlFocxsLvdFv2OiBZmQSQae3EnT/OkEAz6jRJ5Ww7EYfM5riswIGXh4gisx8EoLuJwy4BEDjzL0XNvC3mjbLhsFcVOJbhS+n2bgG3ePY35/TjAdFUIDn6UMnAx3LYkrKmhBOcoWdvdYEQv684lQOAB4dOsBuLYFKyIAdGzGKpdEVbN8m6aB+xx9kaG+9u5nsGnvBF50wiIAsSGVkWjokGXAlaQlwvz+fOL9chq9bcUMnOQSkkp8nyfem5tGHPhMncC0G2lFJqTOp0UGmx43K7GrHnQfAw+4cOxV0qCCKAqF83SygzyR5Ow9FfICdm0mJjXNY8dmYtuum1QkD6glcAHgBZ+9Ha/6z3syjy3CCKdh4LoBdMOrJXFFBV0/Rwnj2jtewry+nAh3m9cXRl88d2AKtsTAqbb7QN6pyApV30kzo1DyUojeTY/twCNbDwDIkFC8WDbMjAPXtJQDIKQagmMx0UjCtpiI9SYnPRlqlYHn7MYw8Kt+9jDe+s0/1PU98s1/rElsPCmhkBQaPVYYeTvRdQzcC7hguAMFJzMRg9iSrIWL16THlUKb5M8V3LihMrHjnG1hd1QMSRdPPDLloRxtP9XvA8KiQlmwZrkGPlmiVl3TMeBJ3wJh73gJy+b1ChY51OuiP+9g094JuLYF27Lg85iBD/a4FVmUarCbVcTICzhsK0lGNkUd5vM6Bi5kwyAVB64aGSDcMb7vkqNxxvJ5qd8rH9e2GFwpqQcId517vJLon0mYTi0UnQH/0f2195WUm3TsGi3ijE/cDNtiWP3RF1UtAFYvRqZCA26xdEs1NbGnnegyBm7B97nYdlOokw7yRNY5OAmVJAo1m40+RozGtS1RT5ouOGHhQLhV3Tte0m5rq0FIKLNUA6cei9PZDmcxoN1jJczvywkWmbMtrBjuAxDulqiaJbH+/ryTGQceBMmdm20x0cmm0fADntpNbIuaLujqfcdx4BU0cKVswPsuOQbPP2oB+vPJG4LN4oQhhnhtuJG/J++GceCBMsbpZGKWZhgHTjfUiZKH7Qfo/HDxdyMR7/KsOJFHIWLGgNcJ24LCwLPvunLRK5VJyYa50iSUX7MtBg6K6440cIeJrdbIZJKdUbjWrtGiuND1OMGm24i30zEyVcaHrnsIH/vVowCmp4GXFU0SCA3uvokS5vfnBAO3LYb+aI7YUd1rP+CCSQ/1ukk5zQvw5VvXY6rsp+SThQN57BipvfRsPaDOOGcun4eVh88FADx3IHTQ/mTVFpz9b7ck3i8YeKCphSIyMfVzrTeXJD22JEMyFu9OiYnn7VBC8QKeaPzQDicmfX686CfqpssFyR54di+e2J6dnFcr5LWqRqGo1QnbiS4z4Bb8oEYGHs2Vko6ByxenwqSSa5c4liVCtIiIuNL2U/ZaA8CiwdiAq8eSHU9Z6dK0kLqZgX/0F2txzIdvTDz3izXP4SertuCBZ/cBmK4GTgwofm6s5MEPOIZ6YgPuS+F5rhX3cqSb7lBPLjE3fnT/Jnz2pifxtTueSt1sFw4WsGOkuQz8J+88B//+6ucBSEpy20emEvMkTuTRl5MFVAklRr8S1WIzlqj5Qt9H0kretQRhkuWWWpyYX7/7Gdy1Pm6j2CgDPlHyEjf+fZIB/5Ov3ouXfOHOGR0HSDYwVluqqYk97UTXaeA+5+LuW8mAyxUBU4k8QW0MXJ5wlhXfgWlBuBJ7UZnyIZEBlxe9aAMnHf/AZBlDvelU57imePc6Mb+jSdL59UPJJAxVA//yrevxP2uew83vvzDze3VbWLqOsjPQD7hgnI7NYEdO6P1kwHvdxFygsYwXvZSxWTSQx7N7JjLHNBN4AUfBDcemGlhC2efIOUw454GMcrIaAy5r16pTVJZFGBjOPnI+AODFJ4ZRMHnHlmp/xJ/LOVZUiyVOQpKx7cAk/vXXj6V+QxaoEUUl0DXeN1HGJ26I2yNWKkg2XZB05XOeSuShc8t5+JzaEKOV6DIGziIGXl1CERPZSzPwUo0MXH4twcCtWELJAkko8rb73qf24P+e3pMYT9a2nIx8NzNwFZxz3L9xr9ClgTQD/+xNT4qEjSzQ6ZMlFLpWrm2JWGY/4CILkeLAAWD/RBk9ro28YyWMCvkdOE8bm0WDBexogQauizoBpAJpsgNeU42QTonMUGUj3afcICwpCgUATloyBxs/dbkw5DnHEn4KmYFTSG0WAbr+wa0AgEGJZFVaa7VUYZR/++OSTLKvCQbck2STOAolnc/RbhbeVQacJiJpmCoDl7eZMhOpFIWim4BBwLHtwGSSxbC4qhsd160QxjjU6yLnWGLRv++So+Fzjt9v2J1YdFnbcrWrT7Px/h+vwT0bdjf1GH7AEXBg6dxe8VzZT0cJAbVp44lmwJHmm7MtIaF4EgOXIz1GJsvoLzhwbCsxF4gABjxtbBYN5rF/ojwtzb4aPD8em6pRE2ieyjd0P+DpOPBoDRyYLOOiY4fxxrMPwztfsEK8rhZgSjBwDR+R368ycHlcKh7esh9Aco1UMuC1ZORmRYztnWgCA4/Wn3wz10WTtVsH7yoDTlvgMWHAkwxc1uTISBa9IJ3Ik4gDT0+qnz6wGRd+5nbsGo0nhm0xvPuio/CvV5yIK05ZAiCpgatwLQsL+nLYGRnoOT1uGDvrB4kCRLrwQ87j6IJWMPAg4Lh+9Va8/tr7mvL9dGOlBTC/PykZ6Yyi6lMYnSrjwU37Es/J7IekJteRDLgfCEZb8oKYgU+WMJB3EuWJE+NFfFNhDFg6twcLI0lsZxMcmV4Qjy0s4ZqeV3H55GQdFzW5iAzKgckyFg/14OOvODkRYqfKFLbFUnXPZSQNuJV6vpgh8ZFjUZY3KhnwWnwhZT+AxYA3nn2YeK43Z9fVValWyPOCzqnai0B+rV3oLgPOkgx8UGHgsrGT9apUIk8VDfyep/ag5AXYsi/WPG0r3Jq/6ZzlNUkoOcfCvP6c6H7iWEwkP8iTQ5fdJ78+Ewa+Yeco1kYJIZVAx6siQU4b8QIIH8/vSxpw3eLdrxjwd33/QbzqP+9JMDWZfZYEA49LooYMPPy76AVCq90/UUZf3kl0eAJi4yazri/82am4++9fiCVDYX2VLfsbr4N7ARfkBNAbBZqnJDXkbEs7twMellveP1HGUE/12OhqNa1zsgFn6eezCIZOl67U0KSWfICyH8C1rcQuZfGcQlMMuC5NXudfaHc2ZncZcElCYSy93fzbn6zBl25ZDyBZfyQtoYSvhRpoegKuiXoCyhEkOrWkkoTi2haGenIiTty2LOSc9KLTLVZ5hzCTLfsln78TL/t/d1d9H43BapIFp2tBjHmuasA1i/eAYsBXb9oPIC0hEOg65hxVA3fE67YUhdKfd+BEUU20QyBbxnmc7UtMc+ncyIDvq72c6a7RIj5xw2OpWPPP/PZx0XeSxilLGTqjQLtLGldv3k6VVgbCm9pYVIExq5HDr95znshSlcNjdSCtG0iGHNJ5Kflhw+NP3rgOX7x5vXh973hJVDYkqKUJ5BtwLfkAJT9ATtphAcChQz2JQnKNgu4a0FPya9XaMjYbXWXAaZKPFX0UHDvBDgDg1sd34vO/exJAMug+qx54b85OMfA9Y0URbSCzCFtj3MiAu3b6tZxjYU6viz1RpqZthe8ve7zqHVzeIeybCA3ZLet24Bdrtqbe2wjQ8ZrlTBeZa1SW10k66mQGTobhwETSgNP1lON/kxJK7MRMauCxhJIw4AUn1VWJfn7AY2mL5IfFc3pgMWDL3toZ+Md++Sj++65ncNsTcSid5wf4ym1P4abHtkvP6SM5ZKMuNHCpwbZubvsR+wayGzmcvHSO2FHI81oXBSKTFDUOHAhvqGu3HsB/3fE0/uPmJzE6VUbZD7B/ooxjFw0kvitVVE5TVbQSyn5Yk1x29A4P5LFvvIwg4Imb4kyh1lkH9GUKDAOvA5RWvH+ihJ6crTWcNOnlRBi1KBW91ptzUtEGazImgW6B0fEXDhS0rw31uIkYWtdhqbj0agycmu5+656N+M/b0t1ZGgGarNXCuKYLT3ECqedSZuDEnlUGHkdXZDBwTzLguZiB0y6tKGngo1Ne1DIsnP5kWCyhkZfxzO5xAGG6PRDekA8ZLNTFwHWVAYsZzkg1ExOIs3mBmHQQAw+zSHnKvxMEUpx7hVZqoo2aXVkDl2uAq5mYQLS+pDGMF33BiI9RDLi61uRzoNuFcc7x5VvXY2N0LcoejySU2IAP5B2MFT188sZ1uOIrv8/+IXVCZ5jjLFcuObyNAa8ZFP2xe6yIgmMlilmRUThqYT+CgItJGfZEjCcK51xsaXtzdioZYc3m/VotWG/Aw+MvHMynXsvZVmIBCQ3cVzVwnQEPxzTU62LveCnc0peDlFGrFdUSKETyRpMMuBq3rcbNyuyrJ8OA00KRF3oiDlzLwAMtAwdCA0g3YOEDiF771UPP4errw96ZsgNw6bxePLNnHFd8+e5EgkoWHPH9GgOusDi1siIA4TiVfx8Zvf6CAy9IM/Cndo0J2UyXX0CgU5Fg4LrfIJ0ztRYKEJ5X2YiNlzyhSR+3eDDxXepuV3bI6iSU3WMlfPamJ/Gmb4TO9bIfwHUYeiTpdKDgYqzo4boHtmh/53ShM8x0qst+IHaRhoHXAYo62TVaRMG1E9u7tR97CV5+yqGichqhrDCEsFcmMXA75SRcvWk/jj9kMMXudfowHX+RhoHnHAtzpQVkWWEbNrXJrq8cPwg4roqMx6KBAryAY2TSQ9Hz6zLgsnauRnSoiDXwmr++LqgGXL1RyEaZEnFUJyZd0u/cu1E8l4wDj/0aPRoNvOQHcKQoir4oCgWIdwi6pTjYExuLpXN7sHrTfjy05QA+dN3DFX5xCJofMksmoyUbL1+KQpEhM/CUhJJ3Ig08OX/kbjWVGDhdA91xZTgJkhQ/L5yYnp8wYuNFT5RYPv4QlYGrBjx+rAsjHI3qC23eG+56SsKJGTPw/oIDP+BCamwU9Bp4LMuSvm808DpADHzXWBF51xYFd4A4/KpY9lPOLV9hvJ4fLpi8Y6ccK49sPYBTlg2l2IujkWuEAdcwcNe2Er0IHYsJJ6a86NSJsnO0iFsf3xl+b5QMtHu8iKlygMmyX3P9if3ShK5m+IWE0CIJxbEYfvD2s/Cxl58AICz3qr5XvenQ4pGr18n2oCRJKIUcSSM8UT5VZuADURx4eMw4s1GFnBkpX89azhQZxw27xkS8v2qIaZy6HZ58vJLixOzL2ZkJR4RKUSh0rWVWrbv8rvS6LoxQ3eGOF33hOxoeSK6LtAFPN0GRMaKE2JIGLtc3z8pczSpRUSt0RcTkKJSCW5mByzv9Wx/fgYs+ezue3TM+ozHp0FUGnMIGyz5HwbUSLNkhA64w3LLHE1EAQRRj7dgs1Zh1rOjhwGQZh8/vxVyFvegZePjcqYcNpV7LOVbiJmBHEkq1KBSZiSyKFsCesZJw3tXKwmXPfFUDrjRfbjTUGjCWxXDuigV4y7nLsXAgjz88s1e8tyj9zv9duw1v/86q8LMVwrrkY7g2E9Lah15yXKKjjZMhoZCPROePcBKRF7HhqMVfQDf9r97+FM76t1swMlWuSQP/xCtPwoXHDCcIyl3rd2PXaFH4AGhnoRo+WYqYU4GByxpuJWPnZDgxYwaezLMYj9YQEN6A5DWq3mxkf4ZOQlHnbdkPNfC+hISiN+AzlTZ0N3M6V2WfJ3Z5Onzrno046sM3Ys9YEfsnYp9Ko9FVBlxO3Ck4tlioFguNQsG1UxKKqjnfvG4nrrnzabhWeAOQWQGVpVw8p5Bi4JU08EWDBfzNxUenXlM1cJJQKmngcoF6SsffO14UC7VmAy5F0KhyhApPMqzNgFq9jWwCY2Htjfue3iOMCBm4kcky3vm9B/G7x3YgiDI4VQSaKJScY4Exho2fuhx/9YIViZAzOda6J2cLRik6JlXpuKNGPVWDoyR6/fzBrcJwJxJygmQ98DecdTi+/RdnJtjvN37/DM74xM3YGrWRI+apGj6aP6cdNpS44aiQywbQWdRq4LbMwCUDbscMXNXAPckfcehQ3J+0soRSOZlrMupt6tosKaFkMPCZNgPXauBS2Ga+igEnTf65/VNiLPXOn1rQZQY8vlghAw+HTywhZOB+IgSopDCEv/nh6ugzLFXTmAz4IYMFzFMllAoGfLDg4v0vOga/es954rW8YyW2sJbF4DoWSkrkgDoB5MxMcmLtHisJtlI7A4/fV6sG3mwnprhRSMc57bAh7Bwtio7ytKjl8zCV0ThAGweuOANlo6P2dIwZeDLMMQtyVmItp0qV3UYmy5IGXj0KRZdn8GBUxZFqvKgdaSjJ7YdvP7vi2Oh+EbLK8G9tGKHS8IFABkwlJOPFWBN3bIaTDp0jXqtXQpHn+pZ9E0IDr0VCqdeA37JuR4L0aKNQeBwCTF2fsgw4zfGAx8XHmtHFfkbfyBgbYoxdxxh7nDG2jjF2TqMGpkOPa4tJJDsxRe1ix04l7pQ1JTeBqPuInZRQtkU1mBfP6cGbzz0c5x+9QLymk1By0QKlSAW5Ep5rW4ktLEWhlL3KGrhsuBZJTSFoslczxoS6JJSA0sablcgTSShCA4/PE+2qJks+OI8bUY9Khmm8qDfgCQYuaeAq/vWKE/Gr95yXNECOJcbhCQY+fQM+JkkHBHUsk2U/FYVCLf+0ceCa30LzQy1KRZgo+WAsXfNERWxgYh+OmmAVjiEjjNCOnZiyEZsoebEBtyx86k9OxkdedgKWzetJhxFKRlbXGk1uknJgMowvzzlpJ6YO9WQwr9s2grd9exU+8Zu4wqHOMAc8rsdSqMLAaX5woKMZ+BcB/C/n/DgApwBYV+X9MwJjTLDwgmsj58T1I4DYgMrbsbIfaLuuFMtBJgNfOJjHuSsW4LtvOwunR/q2zolJC4wiFeRF6NoM8/tiJ45tMeS0ceDJsY1Kkzbc5jNMlX0tA9+wczSzo8xWqWO7mhSjotlRKJTmrkooQBw2OFn2E4tOPg9ZadZ+wHHzYzuw/KobRHy2q1kkbzpnOU5eOidx48g5lrimcZRM5UUvtzdjiuBw1iduxin/fFPiuVS8e9lPRaH4wthVTuQh0I1tbkaI4HjRQ49rV70ZCwMecLzzwhX44mtPxcuftzj1PlnDToQRurEGLs/nsaIX/yabYaDg4m3nHSFCaGXIfgCdAZfnetEL4kQeV9LA83qdvx4Gfsu6HQCSEpJWAw9iNi0MeIb/IC7LEDdh7ygDzhibA+ACAF8HAM55iXO+v0HjygQt+IWDeSkTMpZQgFCHI5R8rmVWE2VfOBUJ20amMK8vJy4OIHnrNQvitMOGcP7RCwQDVxMdktt3SxwvoYH72Qyc8/A75RsSsZKNu8dxyefvxGdvejI1LgBYvWkfnrd0Dnpzdu0aeJMZuC5lvyeKGJmS2CmQPA/jSojZW845XHzfd/7vWQDAI1sOAKi8TZVfyjtxIpiu6bQOlRj4uOYmo0pSU2U/1sDLSVnJ1hAEHUanymFlzIwIEzLg1UBzM+BhDPoVpy7RGn35pqdn4Mn5PFHyxZqSf78b7T5l0E2sx7UxpuspK3W5KnmBSOSRJZQsJ2a1ZhMybo8yZeVdjY5Z+1LYZkFIKPrj0KkKeDyWTpNQjgCwC8A3GWOrGWPXMsb61Dcxxq5kjK1ijK3atat68kM1UHGoExYPCsNtSxIKkGbgWSFBKgPfOTKViL0FpIw1DRs6/+hhfPdtZ4n3WMqEBYAjFoSnhDHEceCSoajkxByZKsO1rYQxIzZN5+H+jXuhwvMDPLT5AE4/bC56c07VNGUyXM1i4GpTWHk3QwkRk5Jxm9PjJs6DWu/5+UeF0lbAuTAKJKfosnMJakcZ4cQMksaUcPTC/sTjhAHPPEoMlZ1NltISSiUGrnOkjRU95B07UzoYL/kJApKF9158NBbPKWDl4fMqvk+e9/L8lp2YOgZOgQXi/Zq6Q3QO5vfn9E3BNQzcdawEk82Skuph4ERw5KbVOmatl1D035nQwL1AONcbjZkYcAfA6QC+yjk/DcA4gKvUN3HOr+Gcr+ScrxweHp7B4ULQZJENOP1f0EgoqhNTBlUHJIxMeqnkB2IR1aq2AUnDRBP8jOVzAYTMyXXSDDztxIwn7ZweF47NMFZMx3TLhZdUPLZtBJNlH6cdNoSCa1UtiNVsDVzUQuFpBk4NiGUJZX5/stXZbsWAU3q7H8Rjnyj5cG1W8TeoDJJ8J6TNynLUK09bgp++M+nSSTLw6udKvbZT5SAloagtzGTo5NXRKQ9518o0XAASDDULpywbwr1XX1wx1BBI6viOIqeomcW9OTvqZpTOLNWV7iUDvqA/n/B5EEamyoJhl/wgcmLGY7jo2OFMWaIeDZyu+3jJwz0bduOep3Zr/WayQ7IgZfvqQFOt7AcoeQHyTWDfwMwM+BYAWzjnVET6OoQGvSU4YkGfMJI0sQQDlyZDlhMTSPf1Gy166Fc0NVpXtURoJNhK9Pc/vfxEfPAlx+KCo4elcrKyE1PVwD0MD+Tx03eeg/OPHoZrWwknHhlw2Umi4ubHdsBiwHlHLUCPa1c14HGKe9WfOC2oLank80Tb/WLZRzEa54K+5C5o92iyBjdJVn4UkwuE9XEqVYdUjxtq4EknpjxPTloyJxVKmogDl56XoynGi55Is1eJg86JWYmB627OfsCRd6xE9IU6NWuRUGpFwmgrB8o5ForlQFzXwYKL8aKvzSx17XQTZHG9+3MJkgJQU5UpkQxULPtCAweARz72Ylzz5pWZ466HgdMcGiv6eP219+H1/31f5q49jkKxo3Hqv5N8JGU/rGzZDP0bmIEB55xvB7CZMXZs9NTFAB6r8JGG4FOvOhmvO/MwOLYl6nHHEkrtTkwgvAiedFHGiuWUpmbVwcB1Rr4v7+DdFx0Fx7ZE4lClRJ7RoofBgoMzlodbW9diCVYeO3biOF4VN67djjOPmIf5/Xn05OyqtZZnooH7AcfOKq3G1DBC+TwVJCemYGQDScO5e0wx4JHTOJA0yX0T5aqLRA0jdJQwQtng6qI4Es9Jp0rOev3I/6zFm77+Bzy9ayxlBCa1GnikF9cooYTjsBMMXA2lU8u4zgRuhgYejsNCyY/DBgd7nJiBW2ljr0ooRCyGB/IpCeX79z2LDTvH8PLnHQogLppFN+mBgiv+fvUfLcVbz12e+Hw9BpyuwZi0zjyfp+S4QAojpHOcxcBpipe9QEgozcBMv/WvAXyfMfYwgFMB/NuMR1QFrz3zMHzyVScDkMq5Sh20gWQ2Y8lL10wm9EjbdwAYi6rUybAraOAq1MQNFWHiUDIOXOfE7JcSlhzbSmwvqzHwoudj/c4xnLsi1IkLjl1VA/f96RvwD173EM78xC01NYeuxMD3jJWEBjlfYeBUU51AmXh+EJ/LybJfPwOPHvsaBq7TkfMZhlFuKPBsVG5291gp8X0DBSdy1MYSCoUQAlkauP53qAz8c685BZdLESS1aOC1IiuRB4gZON2o5vS4GC+FGrgqobi2lQojHJ3ykI9qBo1NeYkdx6PPjWBBf14Y5tCJGWiv8Wdfcwr+/PnLE88VM3IHdKA5JO90d4xMpZyOCQMe7caybrK0lsqR9NMsAz6jrvSc8zUAsvcxTYZjqQw8PKnjCgPPKthDpUYnS74oS6k6h+rRwKtFEuRsOyqmFbMunQYudxpybSbYSW/OFgZcTHZlApGTkwr2F3J21djxWAOv+DYtqHnteNFDztGHtqk9BXUG/ONSl3G15ZpasJ/Os7yggOpe/lQYoVJOVmZTegaejk4Ckk5W+j0TJS9xbef35RJOzIBTXZ70OSGoxoGx8HLnXStR4+Xw+X34+BUn4YaHtyXG0AhUMuB5J6mBD/XmsH7HaKJFHEHNegbCWicDBTeqrBg2K5dJVV/eToQrFqNqhDqoY6tPQqEduOQ4nyhjbq+bsCWhhJJ0Ymb512iqlUgD71AG3lYwFjpSXKGBRwy8mAw/ymbgseQSerl5ioGTs6oWdlpNJ6fJR5JG3rFSYxsveolaD65tiYm1aLAgjDFNJPWXyXUogDBjrLoTc3oMXK7Epob6Jb9fycTUxBPLWNCfZODq9prOsx/whDxUjeXIN1g5jLCsYeBVJRQJcuMPMnhyRiIQ3lAnlVBJOYZal2egkju6QfW4doLh9ubsxDmtxYlZK7IyMQGIKC6aBwv6c9g/WYankVDUpDkgJiuUzDUq6eBTZR89rp2IdpE1cBXq7rceJyZd/12Kr0WeTxYLneaqhJLFwGUNvJMllLbDtVmcSp+VyJOhU/W4VE/CkxolqxJK+H+1spvhe6sx8PDLSNLIO1aKgU+W/cQCdOw4DnzhQF4YaPqcOn8oJIqiaXrcGiSUaabSPyNVV6vUEqusODFVLVrFAoWBjyoOLjrPPueJGPdKIYS64wonptDA43mikyHkRSjfvOQdAp3DfROlxLWd15eP4sDj81Qs+5IGnj4PqhOTjq+OrTdnJ0JAW8XAKQiAblTz+nIYiTImdRKKTi4cKDgYiEiTfKOeLIcV/xzbgsXC+cV5dhtDdWz1xIHTNVCNvny9844dFbJSo1CyEnnC/8t+gKKXfeOZKbregDt2nDBT0EgoJT+7EQKl5E6VfZFIMDMNvIoBjyYEscaCa4vJ879rt2H5VTdg897JhBNKZhYLBwsYjxIlaCKp/QxJQiEGXnBjJ+a1dz2N25/YmRpXtWqEQcCxfsdo6nm5Q3tlA56dyKMLxxtW6qvLC3turys+XywHiePWpYHbsQauFtsCqksosoHYLLVZE119JpIa+IL+XBRGmGTglKXqauYOlROWxwzoDLiT+G2N1MCzWqoB4fmgOHDGwuzQgIfyQzUJ5SerNuPR5w5goOAK0iQn80yVfLEO8o4tolSyrrF6PJJQOOe4/YmdmXW7qbpgpWJ1QLh2fc7F9aqeSi9p4IaBZ8OVJRSNE7PsB9h+YCrBrF952hLc8DfnCaY7UfIFA8+UUGow4NXeQxNiopRm4D97MO53KRsK+c5NSUYjk2UtA99+YCpm4FE/xIIURvjxG9bhrd+8PzWuak2Nv3LbBrzoP+7Eum0j2s8BSdkqHJfsqE0m21S7Gc7vyyXeQwb8l+95PlZ/9MXiNbUbeTUDrnaXIXYZ13mu4sSUFqHM1h7ZekD8Ted630Q5EYUyN5JQZDmr6AUpyUvGlecfiS+//rTU71PHVnAtJbu1cQZcvg4pBm5boqGDYzHxG/aMF1PvdaWsZ88P8KHrHsbusRIGCo5Yc7IGPeX5YieRc+JQ2ixDqPqfyID/z5qteOs378ePV23G27+zCn/1vQeUZhqRfq85//Lao7VK169aOdk4Dpyj6AfIVagMORN0vQHP2UxsP4UTU7rYZZ9j52hRNHEFgIuOW4gTD50jOZx8YSTkkrVA7Z1LahurKqHYgqXJE1NeoPIWlooOhYV9Ilkimj+/WLMVZ3/yFtz8WFjXgRI0enJ2ou6yDqKpccZsWBVVwNt+IBkuKJdfVRl4st1ZUmOuZsB78zb+4bLjxWNiZnFZg/D5DTvHEp+rxnLUG2xczCq5QwD02rz8nBxZ8+jWESEDUBOCfeNJCaU/H3aOGZMiHdZuPYA7ngxjxnXtzxzbwsuiMDr59/UoY2OMaR3DjYBTwYDn3VgDty0mfsPu0ZJWQiGjOiHdxAZkDVypf1OQDDgZ91yGTKbuDojErd8RzpE9Y0X87rEduHHtdpE6D8RzUpfQJN+w864FzoF7ntqNgbyDI4bDDOtq1QjLxolZGa5jSdUIkwy8xw0zw/aOlxIGnCY4SSiTEgNPx4HT/zM34K6QUMJj5d2Ygct3+4SEIj1P3VY+fsM6vPN7DwCIme6qjaGRveep3WAMwqAUnLBtnKzvqk7NagycmLP6slwSQHVi+hoG7tdqwHMO3nbeEbj77y/CyUvmCLZLNzPGGCwGPLRlPwDguKh1V/UolPS2HoiZt7zF19XSlr+fjNGmvRMYLXo4/fC5AGIjpGrgNDcPTMa7hr/+4Wp87Y6wUfU8TSVAwqp/vAQP/OMlYry63UEiu7WBceCyxJWK7bZjDdyx4vr3e8aLGXHgUchnSTbgsYSS1MBjBp53LBFiWqsGTjsbWtdy3PzqTftxZ3TjpGsuM3D6LlUDL3oBfvfYDlx8/MLaGbgXdGYiT6cgjEIhBh7+Py40Zgtboyp1i4diPZFOvhyyRBpbVn3hWjTw6mNl4ng0drmTDEFeoDLjWBhpw9RyTTe+kSkPc3pcwTYp0kaOcd2otHbyaowDV/Vq2Tk8VvQSOqOuVreQUKoch67P0rm9ij8gyQYnSj4OGSzgsHm9AKo7MdNhcFEWqJdm4Doj6Ei6ORlwqvp4bHQToQJM+ybK8AKO4w4ZwJqPvkjMtf0ZlSEr9a9c0J/H/P682IarBARI1rGRm/42EuoOhqJQqPYJGcEwlT5bA5drjoQMPG3Ap8qBKLMgM/BaNXCqh0+7N5kIfe2Op/Dmb/wBQDz3j5caMJNUSceyWPj963eOYt9EGRceO5xwpOtAT3dyKn1H4KpLj8PbLzgSAES2I7GgHtcWSTByZxAyar0iCkVyYioMnC5PQwy4lClqsXCCkNGQJ2bBkY1W+DdjwPBAmqXRRJHHJ+uptNjlSAlVeqhWTlYU/FeelzXjD/98LY776P/iie2hs9NLGPBIQqkQ80zIa6o4EuQbDP190pJBId9Uqg+ifhdA2nFsUOSqlVmGgkiCF3C86/sPCMNCDJrm3oHIT9GbszHUmxPX4aldY2J3FP+W2hyPsa8nfO9dH7oId37wIgDJm2tvAyUUGelMTFuEQjqa+vfJz4Yhs5zzhNzWn3fEdUto4GVfBCXkpFBaXblgID2n6EZJ638yI8yVZMDjFg+KdUPXUm4YYzGGZ/eEzuqjhgdiA57BwGn+l0wYYWVcfPwi/FG0fQXCvpl08eRFIUsoBZWBlzxxoZvJwGlCTJX9kM3ZcYGfhAHXaOB5xxJFnGRQFIq8YOTtIC32vZIB3yRFTQDV48AzJRRl8pa8AOt3hgY8WXExycArOXtVI5xsKJCOSR4eyOOYRSH7feeFKzK/F0jfoBhj6IsSuMLfE+8o3AyHgLwQf/PIdnHjpw5OxOanyn4UDx3HbgOhz+JP/mhp4juzMi5V0Pmj75rfn8dh83tT76NuPY2GjoGThGJLTkwgfbOk81b2ebLqXxCViHXtpAZe9gXRykdSKJCtgau7w/3RfKfrkxWJRqTCtRju+vuL8It3Pz+hvdNr8vpfvqA3kYugAz3/5I5R7BwtGgNeKwYKrrh4sjf+EKlbN2VgunZ4YSbLPqYyOpkQ+2ykE3O86MOxGBwpEzOf4cSUIw90kQo6Bj6oYeCv+s97xHMkKxFIo84y4HQMdbKqmXXycwkGLho6hI8rnUvVAZeIgpBjkqOx5mwLH3rpsfjDP1yMk5bMyfxeQB+y2C8ZcM/nOGnJID7xypMyq/Sp2jhFwqga9lTZT3TaWTo3NLRLhnrwasWA1wo6f9U07mZJKNpaKF5cvCrv2OL66SQUIJwfshOTDHN/Ib4O1PhbaOC2JQxxtUgjIJSjaMdJ3ynXFpdBBtyxLQwWXJyybEisRTK6jm2Jm9fCgTwGCq6YizoDfu1dT+MPUZlnkjubFQfenCvdRgwUHMFoZGMgG7XDI82UMYZe18ZEyYcd/a0ucro8jXBiErs8MFmGbYXRMzSBklEo8d/CceXYyDt2VB42Npw6iUfO5NRFJMjdeoDY2Gb9RGL5ai0LXRJDWem+A0g9JzXlZIHwmpH+qd5AE6xbllDIce3aKET/poO+vCOMiBdwrBjuxxvOOjzz/Wp0ChXaUtuRFaOqk/lIpjt56Rys/eeXoMe1UzfQWkE+hmpRJr0NDCOUoV63vMTA6bW+fJg4pgsjBCIDLvljzo1qu8tzgHxEMhMmv1YtBnx+Xy7lxMxi4DQ3Zf8JrUXSrV2bid0b1fcXGaIaEiOXhSBk1dGZKWYhA9cbL5rUiwbzqbTjyZKfyoBUUauEcvWlx+Gbf36G9jUqg7p/opRi4LKhyickFGLg4f8qC+ea2OpeaQutGracbWHLvkkEAcff/ngNVm/aF8eUZ/wmssUq49YZ8JJg4PF7RaKMVANGxh0fvAhvjrrsqDeRrDA2ESkwQ2bTl3fw+w278aVb1sPzg6rXWY1S2jVWhMXS14W0Yfn7+vNhws10FzPdAKvdrBoZRihDZeBzel0UvQBjU16qpLMqobiSwaOIpds/8AKcfeR8AGHUFBnwqVLSgMs39ZoMeH8e+yfK4JwLWUburylDMPBE1UUy3JZ4TORhWUT+aEzFKiG6hJxt4sBrgtwjj7zYPa6NZXN78c4LV+D6dz0/8f6eXMjA5bhTGToDWQnvuHAFLjp2oX5s0eIfL/mwLQu2zVL6MBBnlAJxhh6NLWXAo/9ldiTr+KqxWLGwH1v3TWLPeAk/X70Vb/7GH4Qh1tWflg+SMuAa9qGLqaauOUTg1XM5ry+HoyMdW2V5dkIDj/+msc40vnYg72BkysPnf/ekNnpCxWdefQr++oVHice7x0royzkpWcOPijPp5CJ1zGrpgCwQA69mwKs5c6cL9bodOif0K23eN5nqS6sLOQTCmzklfcm7YllCoR2mqkWHf1dfhwv6c/ACjtGiJ/xhuoJunpTRrGveHEsoTJA+8i8xxpBzLEzVWPUwq5zHTDH7DLjEkMgQUrGfqy49LuHMBOJaIZNlX7v1bGQUihzhojJw2eDJOwE1RDKlg2uMa28FDfSohf2YLPuihvfolCecd1kOGbq5pCQUTSU2XWGoLftDp6munCyBIm8qMXB556STnqYD2eE3UfKq+jqOXzyYSLrZPVpEX97RjmO85Gl/q6yjH3fIAH75nvNqGmvMwCv/5mZJKKq8SJFdm/dOiPNGay6lgUeG15M0cHmcA3lXsOVJJdtRvuHVwmSpHPHOkaKYhzoJpexzbRgvkQbhxLStuGmFHCAQldOtBWoSXKMwCw245MDLJY2fDr05GxMlL5E4oEO9hZ50cG1LTFoncqDSBJPjSXWJPCSrDBb0DFzW4volo7Ty8Ll43yVHi8ek4VFIFIBUVqcKLt5Xu4RCN4MlQz14cscYPKnsqO5cEttKMXBLz8B1GazTgcxWR6c8bVEpFfuliJ7dY8Ww7Klc/kAKF9XViJfHfOGxw4kQ10rwa9TAG5lKXwmHRrkVY0VPXLcsBk7ngTRwSwkY6C84wlEp0tVzSWcigMxysjLIobztQOxrGJlKOzHlUri65s2CgVtM7A5kAlVw7VTd8axd7PYRY8BrQr+GgVeq091fcDE25WEiqxlsxrZ/uqAdQiUGnpBQlOw7lYHT1oych0CSgTPG8MazY6fc0shYPCc5Mv0qEkrMwAM8uGmfyHQluWRYagQd17sIP3PCoYMoeQE27pmQwgjTxyCjpLK8rHKm9Lt1GZP1QJabvCDdhUWHE6Skj91jRfTnnYQxoms0VtQzcNtiUgnk2sdfq4TSrDhwFYsGC8K559gqA8/QwD2O8VJYMlm+1lonppOWUGrRwOn8y52cdBJKOUNCoWsmx4GTbk/doAA9A88iQR948bH6F2aIWWfA5WYIxESyYnrp/SNTHqYyJZT6NPBqoB2CiEIJkkkuQEYYYTSJ1Vhwz+f4yf2b8dtHt4vn1DhgWVZaOjc04HIkCiVWZDLw6Pndo0W86j/vwft+tAZAnPhy5wcvwqP//JKwca1S2Y+M3RPbR7UOW/U3q6fZ1iwsYPoM/OpLj8M33xo7mVW9uJbrfOnJi3Ft1I8x4OF3yM5UmoMlL7uZCBnuejR82qVVY9iq8WwWXNsS5R1o51LI0sCdOIxwsuQnHO1A5MQsenj/j9fEBjxH50hf3C0LROL2jie72qsI2y3y1PeKDl9CQmEik1neAYcMXN2Vpo9zw9+ch1OWDVUd93Qw6wx4QgPPiElNvj/U3iZKlaNQaqlGWAsGBQO3FAYu16KWJZRk9p3KwMt+gA/97OGEQVaNkrwAKB5ZZuBUDjWrOD09S8lOD27aJ8ZsWww9ubBHoyOlS5OxWbGwHwCwZd9ExYxP+s2qhJKIQpFeo6HW68R8x4UrcNFxsZNZZau1MDwAWB5JUUB4vuX5MUdTV0OFiDWuw9iKOPAmVbabDg6JSt7SEstnaeBSGOF4yU+EugIQRb6uX71V1Ezv0Tgxa7k+lOm6d7yYek2Wn+QG4/JNj0gDzUXHYkLeUTVwta6Qzlepyp6NxCw04Okklkq9Kgd7HIxMehWiUML/G6GBy+Ozo+wuT4TdZTBwK8nA1YQRXesodXHIWDiYh20xPLc/1uR2RVvNbAYevkCTVd41yAZW7rpCNyRaTFPluGaGLqGGDGCKgUdPMKa/ic5UAy8rP7rWnZZ8s1ezdxMZiRnkgQx4PSGFQY1OzFaC5rOTYuDZYYQTRS9Fll4o3VTlcssAEu3japG4iIGrvVTD8cbXqhw1Sg7Hm/a1iCxnaV7PUZ2YNTBwY8DrwIBOQqlw0QcLrmj6oJVQovXdIPstxldwQwY+MuWFBecl9iuzSkfRwF9x2hL88SlxiVGdI7FSGFnesTCvL5dg4JTIUk0DJ5bkSZEmiaL3UtcV+j8fNQ+e8nz4XF84Xz62atxpMWVLETObwqoTStdYQQeZyZFktWxeKE8N1sLAiV3WxcCjtO8WSSS1gErbiqYq0e/KSuTxfI6xopdaa+cdvQAffdkJAOLWZnSO5PmcVQtFBt1Q94ynDbh8sy15cU/SROMKMuCcxh7/FlVCyarsmThmoTlhncAsNOCnLBvCH59yKP71ihPFha/EqkjSGCt6Fb37DbLfYoKfumyu2Kq99Zv3JzRw2YjFqfRxGOGrTl8iXtd1wqkURsYYw/y+XGJyxxq43oATyx+LwrzkFmSJKBFZQpFCBmmiU91oHSj066wj5iWep61t1udmysDVTi21LrakAQ8/c8bycOzyIs7a/anp2rXgS687DWcun6etidMukMNcrtkjPybIqfSb906kwnmBeHdJERt0c5N3lLXc8AYEAw9vBGS0846VON9yu0V5vLTmiFTI1zDlxPQCjBe92LGvMeCN8p/pMOsM+GDBxZdedxredM5yUfimklMnGXaYXrxqy7KZ4uldYSXAs4+cl2CVWTHYuhrQ1SZxtUQOtes7edizJBTaJo4rDLysRG3IEooIz7KZSP/3Ap4pRS1f0Ieb/vYCfPAlSW89naOsz82Ugb/rBUfh7CPjm4ausUK1486NPvPyaGckN2WupoHXE4Vy4THD+Mk7z2mqQagXtMslvVj4nTIY+J7xEp47MIVjovK7MqgcwQ4y4CShyAy8BgPeJzTwkKTI7QVlQy1LKLpoJx0Dl2/cYTVGHyf+029xyj/fBCBNCJqNWWfAZeQkL3IW5DuqjoE3WkI5ddlcAMCZR8xL3NnJSH78FScl3u8oHnGg+jayWjW6eX3Jru/0G6sy8GKSZfhKL8GwvjnH7zfsxpNRD03bssKJHhV3quQMPmbRQOpmawttvHI0x3Qxty+HL73uNPFY11pLB/l3UBz3RccuxI3vPR9vOOsw8Vq1KJRmValrFXoVg03zVI2nJ8P72HMjAIBjFqYNOFV0pKQXoYFL87m23rQWCq4ldpmxAbcSREBudKLLxCRbLK9TeXcs1yXSJbA9/6j5+MZbV1Yd70ww64pZyWAg/bRGBl7ROdQYC37VpcfhL88/AkO9yb6P+yZKWDHcl4jZBmJjXRcD1+wkvve2s7A1yoicl1FpLyuTngy42nWnHATJBAg7dMq+4dr74uesiIF7Pvq5U3dVx1obRc8E8o27VgYu41Cp+fDxiwexZV+cJJWtgVdPMqsXH3/FSTWn5deDz77mlFQNeQLJdXRDoxuwykRpzj763AEAcQMMGXP7wnlJBpw+k1XiOQu2xdCbc7QMXEbJC4QTWxcH7gVB2MzBZrjgmGHRxYdADFyGvJN+3tIhvPC4RXWNvV7MagMugvQrauCxMdOloDd6Q5RzLMHYZIO4d7ykvdGIdnGa2PAs6HYS5x29QPytK0sLVGfgch1nIJRSVAlFzdaMNfB0cadaQAYh6zo0wgDK171SZ5wsqJmU8q6gmvO1kQxcvfk3CpXK31KsNjHZ2PglrxhlUD6+fRR5x6qogW8bmQorAEbfVW9tF9tiyk05MuDKbm2qHOD+Z8Kyr7KEIhyu0Xx1bQvf+YszU05+tTIokDTgjYpcq4RZbcBr6cGYiBtvQRSKjL1SmNOe8RKG+/Op94hqhDUU9OnPO3jj2YdXjVnPcoJlGfCin5RQCKpBdu10WJUTGfCiF0kodZ7IVjBw+TfUKqHIWDiQvG5yaGDWtZhtEgr5PuiGrhY6I6M4OuXhyAV92vPS49rCMSjvMqfHwONoGLoBzOl1E1Ejn7vpCayPdhYyA18+P4zxP2xeLywWZ82qEVJ5TSq9fOPKWk+NRHfPnioo1xB2pWt+kEQU3tbQkYXYK0WC7BkramOG1TBCILugz2mHDeGqS4+retxMBq5JQuCcCwauso2yHyTOrWuzVM9Hy4qdmNNh4NXeP1MNXEVWI4dKUHX7Qh0MvFndylsF2r3QHCHtO8XAJYYr96eVwRgTDmH5xlY3A2exAe9xbfFdy+Ymuxetl2QheR5fdvIh+PGVZ+O1ZyyDbbHMIAhdHLjMwLMCExqJGc8expjNGFvNGPt1IwbUSFCrNdmppKIvZwsWvniOfmIB+uSTmUIO5Qu43lFHTCTpxNSPRVcdUIcsA66LA1crECaOF/BU+NVeJfY2Z1soOGEYYaU48CyIpIoMNtNoBtuIG0Kisl1WGGETNPB2gKJQyIDT9VKNV38hLrlLZWh1oBR7+TrU2yKOsoNpfDTllsztyfTzyAacMYazjpwPxhhsxjJzAwqunfo+OZGnFQa8ERLKewGsAzBY7Y2txpKhHmz81OUV38MYw4MfeRF2jxWxWDOxmrkL+pcrTsQHf/ownogiNnRsjSaiHJ+c5cSsdcLIBjwnhf7pPq7rOAJQDC1PGCjXthLNk+k5igOfHgOvrIE3q1VVLbjxvedrb7ryzb56LZTOSYufDmjXSkyUbugqA7cthqMW9mPt1pGK1ReJOcs35nrPkayB97i2yMikOkBZn9Hhry8+CqcfNlf7mu7mK+9idTHhjcaMZj9jbCmAywFc25jhtAeubWmNNxAbjmZIKM9bOoRf/XVcC1o3iU5bNoSvvuF0nH3EfPFcVhhhrUXjZZlAnoSk2d2/ca+IxS2W9QXr//3Gx3Hnk7sS7MS1rVRikWuHHWiEhFKvBl4ldbqW1Opm4fjFg9poCiD2mVSthdLlDJwMbkkJGNA1+6D4+Eo7XV39k3phsVja6XFt7IwyO5cO9dSd13HlBSuwcvk87WuqAf/J/Zvx8i/fLR53g4TyBQAfApBpORhjVzLGVjHGVu3atSvrbR2PZjmUc06yRnj6uAyXnrw44fSRWec3//wMnBpVOpsOA5cdbvTx13ztXlz2xbsAZDPwa+9+JjVmnTHNOZZwYga8chy4DrGEon+9GdJWIyBKAFSphdLOHUQjoEootGPSzUUiSZUS6yiZbibnhbGkhELNSw6pcOOYDvKKz+wff7E28djvZCcmY+xlAHZyzh+o9D7O+TWc85Wc85XDw8PTPdysxqAocFXb5ZD1uouOXYgPRdmLtW7ZZAMuf5fsNSd9vtpNwdGEX6ljDTXwkIHXGwfeqqzDBz/yIqz+yIsa9n3EzHXFxgCpVGoHFaaaDlQnpmDgmnnzgRcfgz9buQyXnnRI9ve5jTkvtNMb6nVx9aXHY0F/XlTibBRUBq5e61ZkZc5EA38+gD9mjF0GoABgkDH2Pc75GxsztM7AK05bglsf35m5VW4EiC3UqgaoRo2MQa0MXI62kUlCwHkqjruaKqOrISEj1MAtoYHXH0ZIGnhzF4Na5XGm+MCLj8Vbv3l/ppPyVactxSGDhYrt77oBqoRCgQOvPG1J6r3z+/P491c/r+L30VqY6c6E2rZdef6ROPeoBbjs5MXa973noqO0Ra9qQbXGGq3QwKc9ezjnVwO4GgAYYy8A8IHZZrwB4I9POTRR/a8ZyEo/rhVkkGs14LLsINqcWQxBwNPV1apsA5MMPGmcqWRuwbXhBRxFr3rX99T325UllE7FC45diN++7wLRwk7FIXMKeNXp2Qky3QIyYtSZZtm83qqBA5XQo3FiAsAP3362to58Fq669DhcdtIhOPeoBRXf944Lj0xkY9eDgSrhjZ3OwA0ahLxST6Je0GSfjtOE6nb3553IgKstoip/p0yUVAYeF+IKn58o+dMOI1TxpyuX4r4oi65T0cxdW6dAZeAzha6RMQCcs2K+7u2ZWDLUo832VKdzvUlCMg6bX1mS6WgGLoNzfjuA2xvxXQcjKMuyUu/OSqikO2bh+nedi4G8g1d99R4A4UTeP1HSdBihZCiGss9TpWjl2PO0AU/WcRkvetNKi9bh068+pa7vMWgOyOAev7gxNytdGGGtOGphf2bNlizMxAleKZ4dAFYu14cfNhKGgXcAiIHXG2JHWzhygtYzYSi2lVj7QCEs/kOpwTQUuicUHBtl30N/wUkY8CkplViVUEjHpMzEiZJfd3cSp0ocuEF7YVkM173zHKwY7m/I91XTlSvh5+86V9t9XkYjpbhKEVX//eaVuOT4hZmvNwrGgHcAiIHXI6Hc/P4LRZGeuX053PS3F+CwefV72YlB9+cdBDyWUIg9k4HPuxZGi2nn0mRJNuDJ14hF5YWE4mk70leCYODGgncssuKkp4NeURyr/gs+UHCnrWc3GofP721JiKsx4B0AwcDrMOBHLUwynmMWTW8LS8k//QUHnMd9LylBhzTwQ4d6sHuslNLEZc28moQyOuVVLO2rQzsTdQxaD5Jkml0I6iMvOyHRh3O6OHnJHDyy9UDq+VaFv3Z3EOosgWDgbTBWJJEQA6eUaMr2pIVEN4ytUi9NICmhqCDjS0y86AV1/0bRHcVQ8IMCPXWGxNaLC48Nc1EuP3lxZoRQPfjB28/CK05NR6m1opQsYAx4RyCvNIZtBwYKbiShhAaZmDKto6OjDipT5SDB/qckCYUaJVNMNTFwuRJdvQy83vcbdDdESGyT7tcfePGxuOeqFzYsK3Og4OLEQ+eknjcM/CACOfladdfWYaDgIOCxJEL9RIkJrRiO2cqPrzwb//FnYRSIXE5z096wEw0ZeEraqZZuXwlqf0KD2Y2CyGloTFiiCttiFYtpTQeVykA3G8aAdwBiBt6+y0HMZ5IYuNKZW84YnN+fx4XHhPqhHHb44cuPxwuOHca5SsxusrxqfRObPmvs98GBrHK0nQxd8EGryJhxYnYAiIG3Q+f91XvOw90bdosU+smozZurMHCLhWFa5OWnBAi5MuJJS+bgW39+Jq6962kAcShitXopldBJHdgNmg8KzWsSAW8KdMSrVfPWGPAOQKHOVPhG4uSlc3Dy0jn48q3rAUCUgxVhhBEDtyyG06S6yDnHwocvO144hWTQZ4UB13T8rhUiDtxoKAcFyPC1opJfo6Cb063y3RgD3gEgCaVS95tmg2JWVQNO60hXhOrtFxyp/S6VZSc719fJwE0Y4UGF4w4ZQF/OxnsvPrrdQ6kZOrbdqnlrDHgHgOo+6IrgtwpkoEkDtxQtsh67K5rAIu3ErJ+BGw38YMJAwcWj//LSdg+jLugcliaM8CCCk9EItpUguzoRaeBUA4XiwOvJKksl9CQYeGMbOhgYtBs6ucSEER5EyOoj2EpYioTiKwa8HkZRSQOv14lp4sANOh06Yz3dyqL1wqyODoBg4G2UUMjYThQVAx4NqZ5GDCrLdmYQRmg0cINOh85Y19s6cLowBrwDQAaunU5MMqzUyYSiAOIolNq/iwpe0RROhBE2qB64gUGnoJ0kwxjwDoArJJQOcGJGGjgxcArfaxQDrzsKxRhwgw5HO0mGMeAdgFhC6QQnZlJCIVWnHkMqdO7I6DfCifm8pel6EwYGnYB2+mlMGGEHIO6o004NPBzDWDHJwINpMPA4jDDETMIIGWO4/l3nYsWCxjQMMDBoNNpRRVQcu21HNhA4IioU9dITD2nbGMhAj0cG3AsCjE6VJQNez7cpEoolG/D62crpUgaogUGnoZ0yn5FQOgCL5/TgsX95Cd5y7vK2jYHm4GjUkmrHSBEnf+wm7BotApjeJCXSzhgTRtw0aDCYbTAauAF6c05LWjBlgRi4XB4WALbsm0y8XhvSWj7dAOp1YhoYdDoMAzdoO7LsMxn0euJaKWtS/gQ5Nk1UicFsQzudmMaAGwDIZtglMuB12N1Fg2G3kwuOiSsVkqPHSCgGsw3GiWnQdmSRCGrYUE8q/bJ5vbj36hdi0UDctopYikmNN5htMBq4QdshM/DeqLEsEIcV1qvPL57Tk5BdXMPADWYpjAZu0HbIBnqgEG/MKKxwppOUtpntbBtnYNAMGA3coO2Q7TO1TQNiBj5TkiEkFMPADWYZ2snAjQZuACApocgMXBjwmTJwigM3DNxglkHWwG/5uwsTjb6bfuzpfpAxtgzAdwAsQhj4ew3n/IuNGphBa1Gdgc9UQjFhhAazE/KucsVwa0s+zISBewD+jnP+IGNsAMADjLHfcc4fa9DYDFoIWQMf1GngMzTgxolpMFvRlRo453wb5/zB6O9RAOsALGnUwAxai6SEEjNwqlE+0yRRx2RiGsxSdH0UCmNsOYDTANynee1KxtgqxtiqXbt2NeJwBk2APAdlBk6YeRQKxYEbBm4wu9DVceCMsX4APwPwPs75iPo65/wazvlKzvnK4eHh9BcYdARkJ+WAxoDPWAMXDNwYcIPZBVo777vk6JYfe0ZRKIwxF6Hx/j7n/PrGDMmgHZAN9GCPq3l9Zt8fM3AjoRjMPmz81OVtOe60VxMLvV5fB7COc/75xg3JoB2QDbTaOd5i9WdiqnBNOVkDg4ZjJnTo+QDeBOCFjLE10b/LGjQugxaDGHiPa6f07pnKJ0AsnRgnpoFB4zBtCYVzfjfU1isGXQuy0cvm9aRCBmeaxAMYJ6aBQTNg6JABAGBkMoz3Xjq3N+VobITNFU5MY8ANDBoGY8ANAABFL0z/PfHQwZRkMtMkHkCuhWKmnIFBo2BqoRgAAC4/eTFGpjz82cpluGXdjsRrjdDATSamgUHjYQy4AYCQGb/p7MMBpDXvxmjgVE7WGHADg0bB7GcNUlB16sZo4OFUM9UIDQwaB7OaDFJQGXcjWLNrM1isMWzewMAghDHgBimoJnamSTwAcMicHhwyWKj+RgMDg5phNHCDFALOE4+Vh9PCW845HK89Y9nMv8jAwEDAGHCDFIJAedwAC+7YlgkhNDBoMMyKMkjBVwy2HzSAghsYGDQcxoAbpBAoBlt9bGBg0BkwBtwghRQDb4QIbmBg0HAYA26QgiqZGAnFwKAzYQy4QQorl88DAPzpyqUAGuPENDAwaDyMATdIYclQDzZ+6nJceMxCAIaBGxh0KowBN8gE1S8x9tvAoDNhDLhBJnImbtvAoKNhVqhBJtTemAYGBp0Fs0INMqF25jEwMOgsGANukAnDwA0MOhtmhRpkwmjgBgadDbNCDTJhJBQDg86GMeAGmTASioFBZ8OsUINMGAnFwKCzYVaoQSaMhGJg0NkwBtwgE0ZCMTDobJgVapAJI6EYGHQ2ZrRCGWMvZYw9wRjbwBi7qlGDMugMGAnFwKCzMW0DzhizAXwFwKUATgDwOsbYCY0amEH7YSQUA4POxkxW6JkANnDOn+aclwD8CMAVjRmWQSfANQzcwKCjMRMDvgTAZunxlui5BBhjVzLGVjHGVu3atWsGhzNoNRgzBtzAoJPR9D0y5/wazvlKzvnK4eHhZh/OwMDA4KDBTAz4VgDLpMdLo+cMDAwMDFqAmRjw+wEczRg7gjGWA/BaAL9szLAMDAwMDKrBme4HOeceY+w9AH4LwAbwDc75ow0bmYGBgYFBRUzbgAMA5/w3AH7ToLEYdCA+/SfPwxHDfe0ehoGBgQYzMuAGsx9/esay6m8yMDBoC0ymhoGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwA0MDAy6FMaAGxgYGHQpjAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLwTjnrTsYY7sAPDvNjy8AsLuBw2kUOnVcQOeOzYyrPphx1Y9OHdt0x3U45zxVzrWlBnwmYIyt4pyvbPc4VHTquIDOHZsZV30w46ofnTq2Ro/LSCgGBgYGXQpjwA0MDAy6FN1kwK9p9wAy0KnjAjp3bGZc9cGMq3506tgaOq6u0cANDAwMDJLoJgZuYGBgYCDBGHADAwODLkVXGHDG2EsZY08wxjYwxq5q81g2MsYeYYytYYytip6bxxj7HWNsffT/3BaM4xuMsZ2MsbXSc9pxsBBfis7fw4yx01s8ro8xxrZG52wNY+wy6bWro3E9wRh7SRPHtYwxdhtj7DHG2KOMsfdGz7f1nFUYVyecswJj7A+MsYeisf1z9PwRjLH7ojH8OOqJC8ZYPnq8IXp9eYvH9S3G2DPSOTs1er5l8z86ns0YW80Y+3X0uHnni3Pe0f8Q9tt8CsCRAHIAHgJwQhvHsxHAAuW5TwO4Kvr7KgD/3oJxXADgdABrq40DwGUAbgTAAJwN4L4Wj+tjAD6gee8J0fXMAzgius52k8a1GMDp0d8DAJ6Mjt/Wc1ZhXJ1wzhiA/uhvF8B90bn4CYDXRs9/DcBfRX+/C8DXor9fC+DHLR7XtwC8WvP+ls3/6HjvB/ADAL+OHjftfHUDAz8TwAbO+dOc8xKAHwG4os1jUnEFgG9Hf38bwCuafUDO+Z0A9tY4jisAfIeH+D8AQ4yxxS0cVxauAPAjznmRc/4MgA0Ir3czxrWNc/5g9PcogHUAlqDN56zCuLLQynPGOedj0UM3+scBvBDAddHz6jmjc3kdgIsZY6yF48pCy+Y/Y2wpgMsBXBs9Zmji+eoGA74EwGbp8RZUnuDNBgdwE2PsAcbYldFzizjn26K/twNY1J6hZY6jE87he6Lt6zckiakt44q2qqchZG4dc86UcQEdcM4iOWANgJ0AfoeQ8e/nnHua44uxRa8fADC/FePinNM5+0R0zv6DMZZXx6UZc6PxBQAfAhBEj+ejieerGwx4p+E8zvnpAC4F8G7G2AXyizzcD7U9NrNTxhHhqwBWADgVwDYAn2vXQBhj/QB+BuB9nPMR+bV2njPNuDrinHHOfc75qQCWImT6x7VjHCrUcTHGTgJwNcLxnQFgHoC/b+WYGGMvA7CTc/5Aq47ZDQZ8KwC5NfrS6Lm2gHO+Nfp/J4CfI5zUO2hLFv2/s03DyxpHW88h53xHtOACAP+NeMvf0nExxlyERvL7nPPro6fbfs504+qUc0bgnO8HcBuAcxBKEI7m+GJs0etzAOxp0bheGslRnHNeBPBNtP6cPR/AHzPGNiKUel8I4Ito4vnqBgN+P4CjI09uDqHY/8t2DIQx1scYG6C/AbwYwNpoPG+J3vYWAL9ox/gqjOOXAN4ceePPBnBAkg2aDkVvfCXCc0bjem3kjT8CwNEA/tCkMTAAXwewjnP+eemltp6zrHF1yDkbZowNRX/3AHgRQo3+NgCvjt6mnjM6l68GcGu0q2nFuB6XbsQMoc4sn7OmX0vO+dWc86Wc8+UI7dStnPM3oJnnq9Ee2Gb8Q+hFfhKh/vbhNo7jSIQRAA8BeJTGglC3ugXAegA3A5jXgrH8EOHWuoxQV3tb1jgQet+/Ep2/RwCsbPG4vhsd9+Fo0i6W3v/haFxPALi0ieM6D6E88jCANdG/y9p9ziqMqxPO2fMArI7GsBbAR6V18AeEDtSfAshHzxeixxui149s8bhujc7ZWgDfQxyp0rL5L43xBYijUJp2vkwqvYGBgUGXohskFAMDAwMDDYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXYr/D7pqz+4kZMSJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iv) Using impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before simulating a light curve through this approach, an appropriate impulse response needs to be constructed. There\n", + "are two helper functions available for that purpose. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`simple_ir()` allows to define an impulse response of constant height. It takes in starting time, width and intensity as arguments, all of whom are set by default." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUqElEQVR4nO3df5BdZX3H8fcnuxIUWsCQasmPbhxiO0FpxW3EqbUOaTWxlNhpmAkyY5wyEztjWlvt2FBnEKn/0DrSdhptM4JS/BEo1XZHoykVZ5xxJGZBBUNIXUFJEMvyQyw6GO453/5xzg3Xy8Y9+yt37/1+XjOZvfec5959zjy7nz35nueeRxGBmZkNriW97oCZmS0sB72Z2YBz0JuZDTgHvZnZgHPQm5kNuOFed6Db2WefHSMjI73uhplZX7nzzjsfjYjlU+1bdEE/MjLC+Ph4r7thZtZXJH3vRPtcujEzG3AOejOzAeegNzMbcA56M7MB56A3MxtwjYJe0kZJhyVNSNo5xf7XSrpLUkvSlq592yR9u/63bb46bmZmzUwb9JKGgF3AJmAdcJmkdV3NHgTeCnyy67UvBN4LvApYD7xX0llz77aZmTXVZB79emAiIu4HkLQH2Azc224QEd+t95Vdr30DcFtEPF7vvw3YCHxqzj03szmZeOQpxr75ffCtyheNl774F7j4/HPm/X2bBP0K4EjH86NUZ+hNTPXaFd2NJG0HtgOsXr264Vub2Vx89CsP8In9DyL1uifWdvH55/Qs6BdcROwGdgOMjo769MLsJHimKHnxL57KHX+9odddsQXW5GLsQ8Cqjucr621NzOW1ZraAihKGlvh0PoMmQX8AWCtpjaRTgK3AWMP33we8XtJZ9UXY19fbzKzHirJkiSdYpzDtMEdEC9hBFdCHgFsi4qCkayRdAiDpNyUdBS4F/kXSwfq1jwN/Q/XH4gBwTfvCrJn1VhEw7KRPoVGNPiL2Anu7tl3V8fgAVVlmqtfeANwwhz6a2QIoy8CVmxz859wsqVZZukafhIPeLKnqYqwjIAOPsllSZQRDToAUPMxmSbXKYMiflkrBQW+WVFmGa/RJOOjNkioc9Gk46M2SKiJY4tJNCg56s6SKMhgectBn4KA3S6oofUafhYPeLKlqeqWDPgMHvVlSrcLTK7Nw0Jsl5TP6PBz0Zkl5emUeDnqzpIoyWOKgT8FBb5ZUEcGwgz4FB71ZUoXvdZOGg94sKZdu8nDQmyVVlC7dZOGgN0uqDJ/RZ+GgN0vKNfo8HPRmSbU8jz4NB71ZUl54JA8HvVlShW+BkIaD3iwp3wIhDwe9WVK+GJuHg94soYigDDy9MgkHvVlCRRkAPqNPwkFvllARVdB7zdgcHPRmCZVl9dVrxubgoDdLqFUn/ZATIAUPs1lC7TP6oSWOgAwajbKkjZIOS5qQtHOK/Usl3Vzv3y9ppN7+PEk3SrpH0iFJV85z/81sFto1epfoc5g26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19bbLwWWRsTLgVcCb2v/ETCz3nm2dOOkz6DJGf16YCIi7o+IY8AeYHNXm83AjfXjW4ENkgQEcJqkYeD5wDHgR/PSczObNZducmkyyiuAIx3Pj9bbpmwTES3gSWAZVej/GHgYeBD4QEQ83v0NJG2XNC5pfHJycsYHYWYzc7x045xPYaGHeT1QAOcAa4B3SXpJd6OI2B0RoxExunz58gXukpmV9QemPL0yhyZB/xCwquP5ynrblG3qMs0ZwGPAm4EvRMQzEfEI8BVgdK6dNrO5aZX+wFQmTYL+ALBW0hpJpwBbgbGuNmPAtvrxFuD2iAiqcs1FAJJOAy4E7puPjpvZ7BU+o09l2qCva+47gH3AIeCWiDgo6RpJl9TNrgeWSZoA3gm0p2DuAk6XdJDqD8ZHI+Lu+T4IM5uZ8niN3kGfwXCTRhGxF9jbte2qjsdPU02l7H7dU1NtN7PeahV16cZBn4KvuZsl1D6jd+kmBwe9WULHb1PsM/oUHPRmCbVn3XjhkRwc9GYJtUs3rtHn4KA3S8grTOXioDdLqHDpJhUHvVlC7aB36SYHB71ZQu2bmvmMPgcHvVlCReEafSYOerOECt8CIRUHvVlCpT8wlYqD3iwhn9Hn4qA3S8i3QMjFQW+WkD8wlYuD3iwhn9Hn4qA3S8ifjM3FQW+WUOGbmqXioDdLqPSasak46M0SarlGn4qD3iwhX4zNxUFvllDpD0yl4qA3S6jlefSpOOjNEvK9bnJx0JslVJTVVwd9Dg56s4SOLzzinE/BQW+WUFGWDC0Rco0+BQe9WUJF6QuxmTjozRIqI1ji3/40PNRmCbWKYNhJn4ZH2iyhMsIXYhNpFPSSNko6LGlC0s4p9i+VdHO9f7+kkY5950v6qqSDku6RdOo89t/MZqEow1MrE5k26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19avHQY+DvxJRJwHvA54Zt56b2az0nLQp9LkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGVfO2Xg/cHRHfBIiIxyKimJ+um9lslQ76VJoE/QrgSMfzo/W2KdtERAt4ElgGvBQISfsk3SXp3VN9A0nbJY1LGp+cnJzpMZjZDBURnl6ZyEJfjB0GXgNcXn/9Q0kbuhtFxO6IGI2I0eXLly9wl8ysKMPLCCbSJOgfAlZ1PF9Zb5uyTV2XPwN4jOrs/8sR8WhE/ATYC1ww106b2dwUZXgZwUSaBP0BYK2kNZJOAbYCY11txoBt9eMtwO0REcA+4OWSXlD/Afgd4N756bqZzVYRPqPPZHi6BhHRkrSDKrSHgBsi4qCka4DxiBgDrgdukjQBPE71x4CIeELSB6n+WASwNyI+t0DHYmYNFYVr9JlMG/QAEbGXquzSue2qjsdPA5ee4LUfp5piaWaLRBGedZOJPxlrlpCnV+bioDdLyGf0uTjozRLyLRBycdCbJVSUvhibiYPeLCF/YCoXB71ZQj6jz8VBb5ZQEcHwkIM+Cwe9WUJlGSzxGX0aDnqzhHw/+lwc9GYJeXplLg56s4RK348+FQe9WUIu3eTioDdLyPe6ycVBb5aQ73WTi4PeLKGyxNMrE3HQmyXUKksvJZiIg94soaLE97pJxEFvllAZwZB/+9PwUJsl1CpKhpf41z8Lj7RZQmX4YmwmDnqzhKpbIPS6F3ayeKjNEvLCI7k46M0SKiI8vTIRB71ZMhHhFaaScdCbJVNG9dWlmzwc9GbJFHXSu3STh4PeLJkyqqD3GX0eDnqzZFr1Gb1r9Hk46M2SaZdufJviPBz0ZsmUDvp0HPRmyRThoM+mUdBL2ijpsKQJSTun2L9U0s31/v2SRrr2r5b0lKS/nKd+m9ksuXSTz7RBL2kI2AVsAtYBl0la19XsCuCJiDgXuA64tmv/B4HPz727ZjZXhS/GptPkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGqfopkvQm4AHg4Lz02MzmpB30nl6ZR5OgXwEc6Xh+tN42ZZuIaAFPAssknQ78FfC+n/cNJG2XNC5pfHJysmnfzWwW/IGpfBb6YuzVwHUR8dTPaxQRuyNiNCJGly9fvsBdMsvNF2PzGW7Q5iFgVcfzlfW2qdoclTQMnAE8BrwK2CLpb4EzgVLS0xHxT3PtuJnNTnt6pRceyaNJ0B8A1kpaQxXoW4E3d7UZA7YBXwW2ALdHRAC/3W4g6WrgKYe8WW+1POsmnWmDPiJaknYA+4Ah4IaIOCjpGmA8IsaA64GbJE0Aj1P9MTCzRcjTK/NpckZPROwF9nZtu6rj8dPApdO8x9Wz6J+ZzbP2Tc08vTIPfzLWLBmXbvJx0Jsl43vd5OOgN0vGNfp8HPRmyRSeXpmOg94smfYHpoaHHPRZOOjNkvEZfT4OerNkSt8CIR0HvVkyrcI3NcvGQW+WTPuM3qWbPBz0ZskUZfXVpZs8HPRmybTKKumH/NufhofaLJlnL8b61z8Lj7RZMsdLN67Rp+GgN0umqEs3PqHPw0Ntlkz7jH7YSZ+GR9osmfYtEJzzeXiozZIp6lN61+jzcNCbJVN/MNalm0Q80mbJtBcecc7n4aE2S6bwTc3ScdCbJeMVpvJx0JslczzofTE2DQe9WTI+o8/HQW+WTFEGSwTyGX0aDnqzZIoIn80n46A3S6Ysw4uOJOOgN0umVfqMPhsHvVkyhYM+HQe9WTKla/TpOOjNkmmV4Tn0yTQKekkbJR2WNCFp5xT7l0q6ud6/X9JIvf33JN0p6Z7660Xz3H8zm6HSpZt0pg16SUPALmATsA64TNK6rmZXAE9ExLnAdcC19fZHgT+IiJcD24Cb5qvjZjY7rtHn0+SMfj0wERH3R8QxYA+wuavNZuDG+vGtwAZJioivR8T36+0HgedLWjofHTez2Sk8vTKdJkG/AjjS8fxovW3KNhHRAp4ElnW1+SPgroj4afc3kLRd0rik8cnJyaZ9N7NZKCIYHnLQZ3JSLsZKOo+qnPO2qfZHxO6IGI2I0eXLl5+MLpmlVfhibDpNgv4hYFXH85X1tinbSBoGzgAeq5+vBD4DvCUivjPXDpvZ3JQRLHGNPpUmQX8AWCtpjaRTgK3AWFebMaqLrQBbgNsjIiSdCXwO2BkRX5mnPpvZHLSKYNhBn8q0QV/X3HcA+4BDwC0RcVDSNZIuqZtdDyyTNAG8E2hPwdwBnAtcJekb9b9fmvejMLPGyvDF2GyGmzSKiL3A3q5tV3U8fhq4dIrXvR94/xz7aGbzyNMr8/EnY82SaZWu0WfjoDdLpgzX6LNx0Jsl4+mV+TjozZIpymCJf/NT8XCbJVOUwbCTPhWPtlkyReCLsck46M2SKcoS3+omFwe9WTJFCUMu3aTi0TZLplp4pNe9sJPJw22WTOE1Y9Nx0JslU90Cwb/6mXi0zZKpPjDV617YyeSgN0um8L1u0nHQmyVTfWDKQZ+Jg94sGV+MzcdBb5ZMWXrhkWwc9GbJtLzwSDoOerNkSgd9Og56s2SK8P3os3HQmyXj0k0+DnqzZFy6ycdBb5aMp1fm46A3S6Qsgwg8vTIZB71ZIkUEgD8Zm4yD3iyRoqyC3ve6ycVBb5ZIWZ/Ru0afi4PeLJFW6dJNRg56s0TKdunGF2NTcdCbJdKu0bt0k4uD3iwRB31ODnqzRApfjE2pUdBL2ijpsKQJSTun2L9U0s31/v2SRjr2XVlvPyzpDfPYdzOboeNn9K7RpzJt0EsaAnYBm4B1wGWS1nU1uwJ4IiLOBa4Drq1fuw7YCpwHbAQ+VL+fmfWA59HnNNygzXpgIiLuB5C0B9gM3NvRZjNwdf34VuCfJKnevicifgo8IGmifr+vzk/3n3XfD37En37y6/P9tmYD5VhRAjDkom0qTYJ+BXCk4/lR4FUnahMRLUlPAsvq7Xd0vXZF9zeQtB3YDrB69eqmff8Zpw4PsfZFp8/qtWaZXLD6LF79krN73Q07iZoE/YKLiN3AboDR0dGYzXuMnH0aH7r8lfPaLzOzQdDkP3APAas6nq+st03ZRtIwcAbwWMPXmpnZAmoS9AeAtZLWSDqF6uLqWFebMWBb/XgLcHtERL19az0rZw2wFvja/HTdzMyamLZ0U9fcdwD7gCHghog4KOkaYDwixoDrgZvqi62PU/0xoG53C9WF2xbw9ogoFuhYzMxsCoqYVUl8wYyOjsb4+Hivu2Fm1lck3RkRo1Pt8yQrM7MB56A3MxtwDnozswHnoDczG3CL7mKspEnge3N4i7OBR+epO73mY1mcfCyLU/Zj+ZWIWD7VjkUX9HMlafxEV577jY9lcfKxLE4+lhNz6cbMbMA56M3MBtwgBv3uXndgHvlYFicfy+LkYzmBgavRm5nZzxrEM3ozM+vgoDczG3ADE/TTLWC+mElaJelLku6VdFDSO+rtL5R0m6Rv11/P6nVfm5I0JOnrkj5bP19TLxw/US8kf0qv+9iEpDMl3SrpPkmHJL26z8flL+qfsW9J+pSkU/tlbCTdIOkRSd/q2DblWKjyj/Ux3S3pgt71/LlOcCx/V/+c3S3pM5LO7Nh3ZX0shyW9YabfbyCCvuEC5otZC3hXRKwDLgTeXvd/J/DFiFgLfLF+3i/eARzqeH4tcF29gPwTVAvK94N/AL4QEb8G/DrVMfXluEhaAfwZMBoRL6O67fhW+mdsPgZs7Np2orHYRLX+xVqqZUo/fJL62NTHeO6x3Aa8LCLOB/4HuBKgzoKtwHn1az5UZ15jAxH0dCxgHhHHgPYC5n0hIh6OiLvqx/9HFSYrqI7hxrrZjcCbetLBGZK0Evh94CP1cwEXUS0cD31yLJLOAF5Ltd4CEXEsIn5In45LbRh4fr0S3AuAh+mTsYmIL1Otd9HpRGOxGfjXqNwBnCnpl09KRxuY6lgi4r8iolU/vYNqRT6ojmVPRPw0Ih4AJqgyr7FBCfqpFjB/ziLk/UDSCPAKYD/wooh4uN71A+BFverXDP098G6grJ8vA37Y8UPcL+OzBpgEPlqXoT4i6TT6dFwi4iHgA8CDVAH/JHAn/Tk2bScai37PhD8GPl8/nvOxDErQDwRJpwP/Dvx5RPyoc1+9NOOinwsr6WLgkYi4s9d9mQfDwAXAhyPiFcCP6SrT9Mu4ANT1681Uf8DOAU7jueWDvtVPY/HzSHoPVTn3E/P1noMS9H2/CLmk51GF/Cci4tP15v9t/3ez/vpIr/o3A78FXCLpu1QltIuo6txn1uUC6J/xOQocjYj99fNbqYK/H8cF4HeBByJiMiKeAT5NNV79ODZtJxqLvswESW8FLgYuj2c/5DTnYxmUoG+ygPmiVdewrwcORcQHO3Z1Lrq+DfjPk923mYqIKyNiZUSMUI3D7RFxOfAlqoXjoX+O5QfAEUm/Wm/aQLX+cd+NS+1B4EJJL6h/5trH03dj0+FEYzEGvKWefXMh8GRHiWdRkrSRquR5SUT8pGPXGLBV0lJJa6guMH9tRm8eEQPxD3gj1ZXq7wDv6XV/Ztj311D9l/Nu4Bv1vzdS1ba/CHwb+G/ghb3u6wyP63XAZ+vHL6l/OCeAfwOW9rp/DY/hN4Dxemz+Azirn8cFeB9wH/At4CZgab+MDfApqmsLz1D9b+uKE40FIKqZeN8B7qGaadTzY5jmWCaoavHtDPjnjvbvqY/lMLBppt/Pt0AwMxtwg1K6MTOzE3DQm5kNOAe9mdmAc9CbmQ04B72Z2YBz0JuZDTgHvZnZgPt/PP6JMlAe4GMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = sim.simple_ir(10, 5, 0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using `relativistic_ir()`. Its arguments are: primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAk/klEQVR4nO3deXhc9XX/8ffRaLTakmxLlhfJ+wICjGMLCGExCZshBLckJJC0TVoSkhSapCRtyC/5kTT5pVnakqQNSSBLeUIJhKx1CRQIOCwJi21278ZYRl5lebeW0YzO748ZmZElW2N7pHtn9Hk9jx7P3HulOWjmHL46997v19wdERHJfQVBByAiItmhgi4ikidU0EVE8oQKuohInlBBFxHJE4VBvXB1dbVPmTIlqJcXEclJy5cv3+nuNf3tC6ygT5kyhWXLlgX18iIiOcnMmo60Ty0XEZE8oYIuIpInVNBFRPKECrqISJ5QQRcRyRMDFnQz+4mZ7TCzVwc47gwzi5vZe7IXnoiIZCqTEfqdwMKjHWBmEeAbwMNZiElERI7DgAXd3Z8Adg1w2N8BvwJ2ZCMokY07D/L42pagwxDJKSfcQzezicCfA9/P4NjrzWyZmS1raVGyypF9d8l6PnXvC0GHIZJTsnFS9NvAZ929e6AD3f0Od29098aamn7vXBUBkiP0Pe1ddHdrARaRTGXj1v9G4F4zA6gGLjezuLv/Ngs/W4appl1tuMP+jjiVZdGgwxHJCSdc0N19as9jM7sTuF/FXE5EWyxOy/5OAPa2d6mgi2RowIJuZvcAFwDVZtYMfBGIArj7DwY1OhmW3tjVfujx3vauACMRyS0DFnR3vzbTH+buHzqhaESAptaDhx6roItkTneKSuhs2tV26PGe9liAkYjkFhV0CZ2m1jaS59g1Qhc5FiroEjqbdrUxo2YEoIIucixU0CV0Nu1qY1btSIoLC1TQRY6BCrqESqLbad7dRv3oMipLo+xtU0EXyZQKuoTKlj3tdCWcyWNSBV0jdJGMqaBLqPRc4TJ5tAq6yLFSQZdQ6Snok8aUUVWmgi5yLFTQJVSaWtuIRozxlaVUlEbZox66SMZU0CVUNu06SN2oMiIFRmVplH0aoYtkTAVdQqWptY1Jo8sAqCyNsr8zTkJT6IpkRAVdQsPd2dTaxuQxbxZ0QKN0kQypoEto7GnrYn9n/NAIvSo1be4eFXSRjKigS2g09VyyOKYceHOEritdRDKjgi6h0TNtbnoPHVTQRTKlgi6hsak1dQ26CrrIcVFBl9DYtKuNsSOLKS2KAFBZWgTA3jbNiS6SCRV0CY2mXW9e4QIaoYscKxV0CY1NrclZFnsUFRZQGo2ooItkaMCCbmY/MbMdZvbqEfZ/wMxeNrNXzOxPZnZ69sOUfNfRlWDbvg4mjy7vtV0TdIlkLpMR+p3AwqPsfx1Y4O6nAV8B7shCXDLMNO/uuWSxrNf2qjLN5yKSqcKBDnD3J8xsylH2/ynt6TNAXRbikmGmqfXNWRbTVWiELpKxbPfQrwMePNJOM7vezJaZ2bKWlpYsv7TkspVb9gEwrVotF5HjlbWCbmZvJ1nQP3ukY9z9DndvdPfGmpqabL205IEn1+/klAkVVJUV9dquGRdFMpeVgm5mc4AfAYvcvTUbP1OGj4OdcV7YtJtzZ1b32VdZGtVcLiIZOuGCbmaTgF8Df+nua088JBlunn29la6Ec96Mvn+1VZVGaYsl6Ep0BxCZSG4Z8KSomd0DXABUm1kz8EUgCuDuPwBuAcYA3zMzgLi7Nw5WwJJ/nly3k+LCAhqnjOqzr7LszZuLqkcUD3VoIjklk6tcrh1g/4eBD2ctIhl2nlq3kzOnjqYkGumzL/1uURV0kaPTnaISqG17O1i34wDnzujbP4fkZYuArkUXyYAKugTqqfU7Afo9IQrJHjpo1SKRTKigS6CeWtfCmPIiTh5X0e9+TdAlkjkVdAmMu/PU+lbOmVFNQYH1e4wKukjmVNAlMKu37Wfngc4jtltAPXSRY6GCLoF5al2yf37eUQp6NFLAiOJCjdBFMqCCLoF5cv1OpteUM76y9KjHaT4XkcyooEsgOroSPPd6K+fNHHhOH824KJIZFXQJxIOvbqWjq5sFswcu6JWlhext17qiIgNRQZch1xlP8G8Pr+WUCRUsyGCErpaLSGZU0GXI/ezZTTTvbucfF550xMsV01WVFqmgi2RABV2G1IHOON99bD1nTxvD+Ue5uiVdZZlG6CKZUEGXIfWjJzfQejDGZy87idTsnAOqLI3S0dVNR1dikKMTyW0q6DJkdh7o5IdPbOCyU8cxt74q4++r0HwuIhlRQZch893H1tMR7+Yzl84+pu+r0u3/IhlRQZch8evnm7nrmSbe21jH9JoRx/S9ms9FJDMq6DLo7np6Izfd9xJnTR3NF97ZcMzfX6n5XEQyMuCKRSIn4rYl6/mXh9Zw0clj+e775/W7KtFANEIXyYwKugyKHfs6+Paj6/jZs5tYNHcC/3r16UQjx/cHoQq6SGZU0CWrNrW2cfsTr/GL5c3EE938zTlT+cI7T87oBqIjOTSFrgq6yFENWNDN7CfAFcAOdz+1n/0GfAe4HGgDPuTuz2c7UAmn9liCF97YzdLXd7N04y6e3tBKxIx3z6/jo+dPY0p1+Qm/RqTAGFlSqMsWRQaQyQj9TuC7wE+PsP8yYGbq6yzg+6l/JQ90JbrZuqeD5j1tbN7dTvPudjbvaWfLnuS/m3e3E+92zGB27Ug+ct40/vqcKdRWlGQ1Ds3nIjKwAQu6uz9hZlOOcsgi4Kfu7sAzZlZlZuPdfWu2gpRgJLqdBd9cwpa9HYe2mcHYkcVMrCplTl0VV8wZz/zJo5g/efShXvdgqCqLsvNA56D9fJF8kI0e+kTgjbTnzaltfQq6mV0PXA8wadKkLLy0DKaOrgRb9nZw5ekTuOaMeiaOKmV8ZSlFhUN/tetpE6v4n5e20JXoPu6TqyL5bkgzw93vcPdGd2+sqRl42lQJVizeDcBbJlXxthnVTB5THkgxB1gwq5oDnXFe2LQnkNcXyQXZyM7NQH3a87rUNslxsUSyoAdVxNO9bUY1kQLjibUtQYciElrZyNTFwF9Z0luBveqf54eeEXpRCFocFSVR3lJfxeMq6CJHNGCmmtk9wNPAbDNrNrPrzOxjZvax1CEPABuA9cAPgb8dtGhlSHXGwzNCBzh/Vg2vbtlLq06OivQrk6tcrh1gvwM3ZC0iCY0wjdAhWdBvfWQtT63fyaK5E4MORyR0wpGpEkph6qEDnDaxklFlUbVdRI4gHJkqoRQLWcslUmCcO7OGJ9ftJPmHoYikC0emSiiFreUCcP7Malr2d7Jq6/6gQxEJnfBkqoROLJFcwzMsI3RI9tEBnlintovI4cKTqRI6sXiyrRGmgl5bUcJJ40bqenSRfoQnUyV0ek6KFoeooENylL5s427aYvGgQxEJlXBlqoTKmz30Y19laDCdP7OGWKKbZza0Bh2KSKiooMsRhe0qlx6NU0ZRGo2wZLXaLiLpwpWpEiqxePKkaDRy/KsNDYaSaITzZlbz6KrtunxRJI0KuhxR2G4sSndRQy1b9nawYsu+oEMRCY3wZaqERlhbLgAXnjSWAoNHVm4POhSR0AhfpkpohPHGoh5jRhQzf/IoFXSRNOHLVAmNzkQ3RZECkuuAh89FJ9eycus+Nu9pDzoUkVBQQZcjisW7Q9lu6XFxQy0Av9coXQRQQZej6EqEu6BPqxnB9JpytV1EUsKbrRK4WLw7lP3zdBc11PLMhlb2dXQFHYpI4MKdrRKosLdcAC5pqCXe7fxhjW4yEgl3tkqgYiFvuQDMrR9F9YgitV1EUEGXo4jFu4mGvOUSKTDecdJY/rBmx6HLLEWGq4yy1cwWmtkaM1tvZjf3s3+SmS0xsxfM7GUzuzz7ocpQ68yBlgvAxQ3j2N8R59nXNVmXDG8DZquZRYDbgMuABuBaM2s47LAvAPe5+1uAa4DvZTtQGXqxeDfFIR+hA5w3s5ryogi/e3lr0KGIBCqTbD0TWO/uG9w9BtwLLDrsGAcqUo8rgS3ZC1GCkgs9dEhO1nVRQy3/u2IbXQm1XWT4yiRbJwJvpD1vTm1L9yXgL8ysGXgA+Lv+fpCZXW9my8xsWUuLrkoIu1y4yqXHu+ZMYE9bF0+t3xl0KCKByVa2Xgvc6e51wOXAXWbW52e7+x3u3ujujTU1NVl6aRksuXAdeo/zZlUzsqSQ+19S20WGr0yydTNQn/a8LrUt3XXAfQDu/jRQAlRnI0AJTtjvFE1XXBjh0lPG8fDKbXSm5nEXGW4yydalwEwzm2pmRSRPei4+7JhNwIUAZnYyyYKunkqOy6WWC8AVc8azvyPOE2vVdpHhacBsdfc4cCPwELCK5NUsK8zsy2Z2ZeqwTwMfMbOXgHuAD7mWksl5uXJStMc5M6oZVRbl/pd1Tl6Gp8JMDnL3B0ie7Ezfdkva45XAOdkNTYLWmUM9dIBopICFp45n8YubaY8lKC0K1+LWIoMtd7JVhlyutVwA3jVnPAdjCZas2RF0KCJDLreyVYaMuydbLjk0Qgc4a9oYqkcUq+0iw1JuZasMmXi34x7O9USPJlJgXH7aOB5bvYMDnfGgwxEZUrmVrTJkwrxA9EAWzZ1AR1c3D76ia9JleMm9bJUhEeYFogcyb9IoplWX84vlzUGHIjKkci9bZUj0zImSiyN0M+Pd8+t47vVdNLUeDDockSGTe9kqQ6Izh1suAFfNm0iBwa80SpdhJDezVQZdLDVCL87Rgj6+spRzZ9bwq+c3092te9xkeMjNbJVBl8s99B7vmV/H5j3tPL1BC1/I8JC72SqDKpevculxSUMtI0sK+aXaLjJM5G62yqDqabmEfU3RoymJRrjy9Ak8+OpW9nV0BR2OyKDL3WyVQZUPI3SAqxvr6ejq1vJ0MizkdrbKoMmXgn56XSUzxo7gF8veGPhgkRyX29kqg6YzD06KQvKa9Pc11vP8pj2s3rYv6HBEBlVuZ6sMmly/bDHd1Y11FBcW8NOnm4IORWRQ5X62yqDoypOWC0BVWRFXnj6B376wWSdHJa/lfrbKoIjl8K3//fmrs6fQFkvozlHJa/mRrZJ1+XBjUbrT6iqZW1/FXc80odURJV/lR7ZK1uXLVS7p/ursyWxoOcifXtOdo5KfMspWM1toZmvMbL2Z3XyEY95rZivNbIWZ/Sy7YcpQy7eWC8Dlp41ndHkRP316Y9ChiAyKAbPVzCLAbcBlQANwrZk1HHbMTOBzwDnufgrwqeyHKkMpXy5bTFcSjfC+M+p5ZOV2tuxpDzockazLJFvPBNa7+wZ3jwH3AosOO+YjwG3uvhvA3bVCb46LxbuJRgwzCzqUrPrAWZMA+NmzmwKORCT7MinoE4H02+yaU9vSzQJmmdkfzewZM1vY3w8ys+vNbJmZLWtpaTm+iGVIxOK5t0B0JupGlXHRybXc/WwTbTGtOSr5JVsZWwjMBC4ArgV+aGZVhx/k7ne4e6O7N9bU1GTppWUwxBKJvOqfp/vogmnsbuviF8t0CaPkl0wydjNQn/a8LrUtXTOw2N273P11YC3JAi85KhbvztuCPn/yaBonj+KHT24gnjr5K5IPMsnYpcBMM5tqZkXANcDiw475LcnROWZWTbIFsyF7YcpQ60p43hZ0gI8umE7z7nZ+94pmYZT8MWDGunscuBF4CFgF3OfuK8zsy2Z2Zeqwh4BWM1sJLAH+wd11sW8Oy9ceeo8LTxrLjLEj+MHjG3SjkeSNjDLW3R9w91nuPt3dv5radou7L049dne/yd0b3P00d793MIOWwdcZ76aoMBJ0GIOmoMC4/vxprNq6jyfX7Qw6HJGsyN8hmJyQWCJ/e+g9Fs2dQG1FMbc/8VrQoYhkRX5nrBy3WDxBcR63XACKCyNcd+5U/ri+lVea9wYdjsgJy++MleOWz1e5pLv2zEmMLCnkPx5bF3QoIics/zNWjksskbxTNN+NLIny4XOn8fDK7RqlS85TQZd+DZcROsDfnDuFqrIotz6yJuhQRE7I8MhYOWaxPL/KJd3IkijXnz+NJWtaWN60O+hwRI6bCrr0K9+vQz/cB8+ewpjyIo3SJacNn4yVYxLL8ztFD1deXMjHL5jOH9e38swG3RMnuWn4ZKwck1g8QfEwKugAf/HWydRWFHPrw2t196jkpOGVsZKx4XBj0eFKohFuePsMntu4i8fXanpnyT3DK2MlY8Oth97jfWfUM2l0Gf/8wCrNxCg5Z/hlrAwonuim2/NrPdFMFRdG+D+Xn8Ta7Qe4d+kbA3+DSIgMv4yVAeXjAtHH4tJTxnHW1NF865G17OvoCjockYwNz4yVo4qlFoiODsOWC4CZ8X+vaGBXW4zbHlsfdDgiGRueGStH1VPQh+sIHeDUiZW8e14d//nHjWxqbQs6HJGMDN+MlSPqTBX0fJ9tcSD/cOlsCiPG1x5cFXQoIhkZ3hkr/RruPfQetRUlfHzBdB58dRtPaREMyQHDO2OlX10q6Id85PxpTK0u5/O/fYWOrkTQ4YgclTJW+jjUQx/mLRdI3mz01T87labWNs2ZLqGXUcaa2UIzW2Nm683s5qMc924zczNrzF6IMtR0UrS3t82o5qp5E7n98Q2s3b4/6HBEjmjAjDWzCHAbcBnQAFxrZg39HDcS+CTwbLaDlKGlgt7XF97ZwMiSQj7361fo7tY8LxJOmWTsmcB6d9/g7jHgXmBRP8d9BfgG0JHF+CQAneqh9zG6vIjPv7OB5U27uWfppqDDEelXJhk7EUi/B7o5te0QM5sH1Lv77472g8zsejNbZmbLWlo0+VFYqYfev3fPm8jbpo/h6w+sZvOe9qDDEenjhDPWzAqAW4FPD3Ssu9/h7o3u3lhTU3OiLy2DRC2X/pkZX79qDt3ufOa+l9R6kdDJJGM3A/Vpz+tS23qMBE4F/mBmG4G3Aot1YjR3aYR+ZJPGlPHFd53C0xta+ckfXw86HJFeMsnYpcBMM5tqZkXANcDinp3uvtfdq919irtPAZ4BrnT3ZYMSsQw63Vh0dFc31nFxQy3ffGgNa7bpqhcJjwEz1t3jwI3AQ8Aq4D53X2FmXzazKwc7QBl6arkcnZnxtatOo6KkkE/9/EU647rhSMIho4x19wfcfZa7T3f3r6a23eLui/s59gKNznOb7hQdWPWIYr5+1RxWbd3HrY+sDTocEUB3iko/OtVDz8hFDbW8/6xJ3P74Bn6/cnvQ4YiooEtfOimauVuuaODUiRXcdN+LmmZXAqeMlT5iiW6iEaOgwIIOJfRKohG+/4H5AHz87uWawEsCpYIufQzXBaKPV/3oMr71vrms2LKPLy1eEXQ4Mowpa6WPWLxbJ0SP0YUn13LD26dz79I3uPc5TQ0gwVDWSh+xePewXU/0RNx08WzOm1nNF377Kn96TQtiyNBT1kofsYRG6McjUmB89/3zmFpdzsf/63leazkQdEgyzChrpQ+1XI5fZWmUn3zoDAoLjL+5cym7DsaCDkmGEWWt9NGpk6InpH50GT/8YCNb93bw0buW6U5SGTLKWumjK9FNsUboJ2TepFHc+t7TWbpxN5+850XiqbtvRQaTslb6UMslO66YM4EvvquB/12xjX/81cuablcGXWHQAUj4xBLdlERV0LPhr8+ZyoGOOP/2yFrKiwr58qJTMNMNWzI4VNClj1i8m4oSfTSy5cZ3zOBAZ5zbn9hAeXEhn104W0VdBoWyVvpQyyW7zIybLzuJA51xfvD4a5jBP16qoi7Zp4IufSSvQ48EHUZeMTO+suhUHPj+H16jPZbglisaNF+OZJUKuvSRvFNUhSbbCgqMr/7ZqZRGI/z4qddpjyX456tOI6KiLlmigi59dMZ12eJgMTO+8M6TKS+K8O+PraetK8G/Xj2HYv1FJFmggi59xOIJ3Vg0iMyMmy6ZTVlxIV9/cDU79nVw+1/Op6qsKOjQJMcpa6WProTrpOgQ+NiC6Xznmrm8sGkPV33vTzS1Hgw6JMlxylrpQ5NzDZ1Fcydy90fOYldbjD//3p9Y3rQr6JAkh2WUtWa20MzWmNl6M7u5n/03mdlKM3vZzB41s8nZD1WGQqLbSXQ7RRH1dIfKGVNG85u/PYeKkkKuueMZ7nqmCXfdVSrHbsCCbmYR4DbgMqABuNbMGg477AWg0d3nAL8EvpntQGVoHFpPVCP0ITW1upz/vuFczp1Rzf/97at8+r6XaI9pUi85Nplk7ZnAenff4O4x4F5gUfoB7r7E3XtWyH0GqMtumDJUVNCDU1kW5ccfPIObLp7Fb17czJ9/74+8vlN9dclcJlk7EXgj7XlzatuRXAc82N8OM7vezJaZ2bKWlpbMo5Qh05lIjgpV0INRUGB84sKZ/OeHzmDbvg7e+e9P8vOlm9SCkYxkNWvN7C+ARuBf+tvv7ne4e6O7N9bU1GTzpSVLekboxbpsMVAXzB7Lg588j7n1VXz2V6/w0buW03qgM+iwJOQyydrNQH3a87rUtl7M7CLg88CV7q5PXo7qKejRQt29GLTxlaX813Vn8YV3nswf1rRw6bef5OEV24IOS0Isk4K+FJhpZlPNrAi4BlicfoCZvQW4nWQx35H9MGWoxFILMegql3AoKDA+fN40/vvGc6geUcT1dy3n4/+1nO37OoIOTUJowILu7nHgRuAhYBVwn7uvMLMvm9mVqcP+BRgB/MLMXjSzxUf4cRJyOikaTiePr+B//u5c/uHS2Ty6egcX3fo4dz/bpEUzpJeMbv139weABw7bdkva44uyHJcEpCuhgh5W0UgBN7x9BpefNp7P/+YVPv+bV7nnuU3ccsUpnDl1dNDhSQgoa6WXzp4Ruk6KhtbU6nLu/vBZfOeaubQeiPHe25/mhruf541dbQN/s+Q1Tc4lvajlkhvMjEVzJ3JJwzjueGID3398PY+s3M77z5rE3759OmNHlgQdogRAWSu9HLpsUQU9J5QWRfjkRTNZ8pkLuGreRO56pokF3/wDX39wNbsPxoIOT4aYslZ6iamHnpPGV5by9XfP4fc3LeCSU2q5/YnXOOcbj/GV+1eydW970OHJEFHWSi8x9dBz2tTqcr5zzVt46FPnc+kp47jzTxs5/5tL+MwvXmLNtv1BhyeDTD106UU99Pwwq3Yk33rfXG66eBY/fup17l26iV8ub+at00bzwbOncHFDLYX6n3beUUGXXtRyyS/1o8v40pWn8IkLZ3Lfsje46+kmPn7384yvLOHqxnqunl9H/eiyoMOULFFBl14O3fqv0VteGV1exMcWTOcj503jsdU7+OnTG/mPx9bx74+u423Tx3B1Yx2XNIyjvFglIZfp3ZNeOnWVS16LFBgXN9RycUMtm/e086vlzfxyeTN///OXKIm+woUn1/KuORO4YHYNJVFN/5BrVNCll0N3imqEnvcmVpXyiQtncuPbZ7CsaTf3v7yF3728ld+9vJXyoggXzB7LJafUcsHssVSWRoMOVzKggi69xOLdFBYYBQWabXG4KCgwzpw6mjOnjuaWKxp4ekMrD7yylUdW7uB3r2ylMLV/wawaFsyuYXbtSMz0+QgjFXTpJRbXAtHDWWGkgPNm1nDezBq++mfOi817eHjFdv6wZgdfe3A1X3twNbUVxZwzo5qzp43h7OljqBulk6phoYIuvcQSKuiSVFBgzJs0inmTRnHzZSexbW8HT6xt4fG1LSxZvYNfP59cFqF+dClnTB7N/CmjmD95FLPGjtRfeAFRQZdeYvFu9c+lX+MqS3jvGfW894x6urudtTv28/RrrTz9WiuPr23h1y8kC/zIkkLm1FVy2sQqTq+r5LS6SiZWlapNMwRU0KUXtVwkEwUFxknjKjhpXAV/fc5U3J2m1jaWN+1m+abdvNy8hx89uYF4ar72ytIoDeMrOHl8BSePH8ms2pHMrB1BWZFKUDbptym9dKrlIsfBzJhSXc6U6nLePb8OgI6uBKu37eeV5j2s3LqfVVv38bPnmujo6j70fXWjSpkxdgTTqkcwraacaTXlTBlTzriKErVtjoMKuvSilotkS0k0wtz6KubWVx3aluh2mloPsnb7AdZt38+a7ft5reUgz2xo7VXoiwoLqB9VyuQx5dSPKqVuVBkTR5UysaqU8VUlVJcXq+D3QwVdelHLRQZTpMCYVjOCaTUjWHjquEPbu7udbfs62NBykKZdB9nU2sbG1oM0tbax9PVd7O+M9/o50YhRW1HC+MoSxlaUUDuyhNqKYsZWFFM94s2v0eVFRIZR4VdBl140QpcgFBQYE6pKmVBVyrlU99m/t72Lzbvbad7dxrZ9HWzZ08G2ve1s3dvBqi37WLJvB22xRJ/vM4Oq0iijy4sYU15MVVnycVVZEaPKolSWvvlVURqloiRKRWkhI4oLc3LysowKupktBL4DRIAfufvXD9tfDPwUmA+0Au9z943ZDVWGQpd66BJCPUW3YULFEY/Z39FFy/5Odh6IsfNAJy37O2k9GGPXwU52HYzReiBGU2sbL7yxhz1tMboSR19gu6wowojiQkaUFDKyuJDynq+iyKHHpdEI5cURSosKKYtGKC2KUBqNUBKNUBItSP2belyYfFxcWDBo7aIBC7qZRYDbgIuBZmCpmS1295Vph10H7Hb3GWZ2DfAN4H2DEbAMrliimxEl+sNNcs/IkigjS6JMqxn4WHfnYCzB3vYu9rZ1sbe9i30dXezviLMv9fhAR5wDnXH2d8bZ3xHnYGecXQfbOBiLc7AzQVss3qvvfyw+tmA6N1920nF979FkkrlnAuvdfQOAmd0LLALSC/oi4Eupx78Evmtm5u5H/1/gcXh8bQv/7/6VAx8ox6VpVxsXzMogI0RymJklR9/FhUysKj3un9Pd7bR3JTgYi9MR66a9K1no27sSdHYln3d0JeiMdx/6t7Orm3mTq7L3H5Mmk4I+EXgj7XkzcNaRjnH3uJntBcYAO9MPMrPrgesBJk2adFwBjyguZGbtiOP6XhnYzNoRXD2/PugwRHJCQYEdar+EwZBG4e53AHcANDY2Htfoff7kUcyfPD+rcYmI5INMzn5tBtKHbHWpbf0eY2aFQCXJk6MiIjJEMinoS4GZZjbVzIqAa4DFhx2zGPhg6vF7gMcGo38uIiJHNmDLJdUTvxF4iORliz9x9xVm9mVgmbsvBn4M3GVm64FdJIu+iIgMoYx66O7+APDAYdtuSXvcAVyd3dBERORY6A4SEZE8oYIuIpInVNBFRPKECrqISJ6woK4uNLMWoOk4v72aw+5CDYmwxgXhjU1xHRvFdWzyMa7J7t7v/ByBFfQTYWbL3L0x6DgOF9a4ILyxKa5jo7iOzXCLSy0XEZE8oYIuIpIncrWg3xF0AEcQ1rggvLEprmOjuI7NsIorJ3voIiLSV66O0EVE5DAq6CIieSLnCrqZLTSzNWa23sxuDjCOn5jZDjN7NW3baDN7xMzWpf4dFUBc9Wa2xMxWmtkKM/tkGGIzsxIze87MXkrF9U+p7VPN7NnU+/nz1BTNQ87MImb2gpndH5a4zGyjmb1iZi+a2bLUtjB8xqrM7JdmttrMVpnZ2UHHZWazU7+nnq99ZvapoONKxfb3qc/8q2Z2TyoXBuXzlVMFPW3B6suABuBaM2sIKJw7gYWHbbsZeNTdZwKPpp4PtTjwaXdvAN4K3JD6HQUdWyfwDnc/HZgLLDSzt5JcUPxb7j4D2E1ywfEgfBJYlfY8LHG93d3npl2zHPT7CPAd4H/d/STgdJK/t0Djcvc1qd/TXGA+0Ab8Jui4zGwi8Amg0d1PJTkF+TUM1ufL3XPmCzgbeCjt+eeAzwUYzxTg1bTna4DxqcfjgTUh+J39N3BxmGIDyoDnSa5NuxMo7O/9HcJ46kgm+zuA+wELSVwbgerDtgX6PpJcjex1UhdUhCWuw2K5BPhjGOLizfWWR5Ocrvx+4NLB+nzl1Aid/hesnhhQLP2pdfetqcfbgNoggzGzKcBbgGcJQWyptsaLwA7gEeA1YI+7x1OHBPV+fhv4R6A79XxMSOJy4GEzW55aYB2Cfx+nAi3Af6ZaVD8ys/IQxJXuGuCe1ONA43L3zcC/ApuArcBeYDmD9PnKtYKeMzz5v97Argk1sxHAr4BPufu+9H1BxebuCU/+SVwHnAmcNNQxHM7MrgB2uPvyoGPpx7nuPo9ki/EGMzs/fWdA72MhMA/4vru/BTjIYW2MID/7qV70lcAvDt8XRFypnv0ikv8jnACU07dVmzW5VtAzWbA6SNvNbDxA6t8dQQRhZlGSxfxud/91mGIDcPc9wBKSf2pWpRYWh2Dez3OAK81sI3AvybbLd0IQV8/oDnffQbIffCbBv4/NQLO7P5t6/kuSBT7ouHpcBjzv7ttTz4OO6yLgdXdvcfcu4NckP3OD8vnKtYKeyYLVQUpfLPuDJPvXQ8rMjOQar6vc/dawxGZmNWZWlXpcSrKvv4pkYX9PUHG5++fcvc7dp5D8PD3m7h8IOi4zKzezkT2PSfaFXyXg99HdtwFvmNns1KYLgZVBx5XmWt5st0DwcW0C3mpmZanc7Pl9Dc7nK6gTFydwkuFyYC3J/uvnA4zjHpI9sS6So5brSPZeHwXWAb8HRgcQ17kk/6x8GXgx9XV50LEBc4AXUnG9CtyS2j4NeA5YT/LP5OIA39MLgPvDEFfq9V9Kfa3o+awH/T6mYpgLLEu9l78FRoUkrnKgFahM2xaGuP4JWJ363N8FFA/W50u3/ouI5Ilca7mIiMgRqKCLiOQJFXQRkTyhgi4ikidU0EVE8oQKuohInlBBFxHJE/8ftBDZCqJovU8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = sim.relativistic_ir()\n", + "r_ir = sim.relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)\n", + "plt.plot(r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Now, that the impulse response is ready, `simulate()` method can be called to produce a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since, the new light curve is produced by the convolution of original light curve and impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter `full`." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'full')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, some times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to `filtered`." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'filtered')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To learn more about what the lags look like in practice, head to the `lag analysis` notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Channel Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we demonstrate simulator's functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where you can create a new channel for each energy range and simulate.\n", + "\n", + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, there is an option to simulate light curves and add them to corresponding energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.simulate_channel('3.5-4.5', 2)\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Above command assigns a `light curve` of random-walk distribution to energy channel of range 3.5-4.5. Notice, that `simulate_channel()` has the same parameters as `simulate()` with the exception of first parameter that describes the energy range of channel.\n", + "\n", + "To get a `light curve` belonging to a specific channel, `get_channel()` is used." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABLAklEQVR4nO2dd5hU5fXHv2dmtlCWvkuHpSNIERakKWBBEGvEqNEYjQlBiTGxG40xRn8SNcXEFmISjd0olohBIsUOuEiVzrJ0Yemd3Z15f3/c+8688869M3dm79Q9n+fhYebeuzPvzNx77nnPe873kBACDMMwTPbjSfcAGIZhGHdgg84wDJMjsEFnGIbJEdigMwzD5Ahs0BmGYXIEX7reuFWrVqK0tDRdb88wDJOVLF68eI8QothqX9oMemlpKcrLy9P19gzDMFkJEW2228chF4ZhmByBDTrDMEyOwAadYRgmR2CDzjAMkyOwQWcYhskR2KAzDMPkCGzQGYZhcgQ26AwTJ/PW7MbWfcfSPQyGiSBthUUMk22U3j0Tlwxsh3eW7kC+z4N1D01I95AYJgz20BkmDt5ZugMAUF0bSPNIGCYSNugMwzA5gqOQCxFVAjgMwA+gVghRpu1vCuAlAJ3M13xcCPFPd4fKMAzDRCOeGPpYIcQem31TAawSQlxIRMUA1hLRy0KI6roPkWGyB9mjl4jSPBKmPuJWyEUAKCLjLG4MYB+AWpdem2HSTo0/MmZu1WD9xQWb0eWeD7D3yMlUDIthwnBq0AWA2US0mIgmW+x/EsApAHYAWAHgFiFExBVARJOJqJyIyquqqhIeNMOkms82RE5OawORBv3VRVsBADsPnkj6mBhGx6lBHyWEGARgAoCpRHSmtv88AEsBtAMwEMCTRNREfxEhxHQhRJkQoqy42FKfnWEykv1HI6OHfguDvnrnIQCA18MhFyb1ODLoQojt5v+7AbwNYKh2yPUAZgiDDQA2Aejt5kAZJp1UHY4MoQQsQi4SHxt0Jg3ENOhE1IiIiuRjAOMArNQO2wLgbPOY1gB6Aahwd6gMkz4e+e+aiG3b9h9Pw0gYxh4nWS6tAbxtrtr7ALwihJhFRFMAQAjxLIDfAnieiFYAIAB3RcmIYZicYOmWA+jZushynz+K984wySKmQRdCVAAYYLH9WeXxDhieO8PUG7qVNLbdV+tng86kHq4UZZgEqdVSGQPKIum6XYdTPRyGYYPOMImiZ7ks2bo/+PihmatTPRyGYYPOMIly4HhN8PH+o9W47Jkvg8+tCpEYJtmwQWeYGMiK0DZNCsO23/Ty18HHm/YeDdtnlaPOMMmGDTrDxGD/McMTH9y5ue0xugFnD51JB2zQGSYGg377PwBAg3yv7TF6VstpneyNP8MkCzboDOOQBnn2Bl330Mf1aZ3s4TBMBGzQGcYh0Tx0vZCohvPQmTTABp3JanYcOI7Su2fiD7PXJv29okmc6y3p/AGOoTOphw06k9X8b9UuAMCf525I+nsdPWkv8a9ro7OHzqQDNuhMVtO+WYOkvr5a/WklxiVj57r55rRFRlLjD+B4tT8l78UGnclqpIRt+2YNcMtrS1zvFNT1lx8EHzdrkBd8fPu4ngCAWjO0ohr+fJ/HsvkFUz8Z89h8nHL/rJS8Vzw9RRkm45j84mIAwPYDx7F96XE0KczDby85NSnvpdroPK/hC0lPXF0U9XkoQueFqb9sP5A6mWX20JmcYtv+Y0l77VPahppwyY5EMlauhlh8HmIPnUkLbNCZnKJzy0ZJe+0+7UIGXXYkCsbQTfs997bROHSiFmu/ZbVFBvh9CrKvVNigMzlFMlu/je4Z6oPrNUMuMoYuDbv03L+s2Ju0cTDZw1+U7KtACmZtjgw6EVUS0QoiWkpE5TbHjDH3f0NEH7s7TIZxxvGa5GQTLPt1eP8W3UOXMXRPtGR1jbcWb0Pp3TMt+5UyuUcqwnDxLIqOtWsrR0TNADwNYLwQYgsRlbgxOIaJlx5RugjVhQJfuO8jDbrUcAloHroTXvtqCwCgouoIiosK3Bgmk8GkIpXVrZDL9wDMEEJsAQAhxG6XXpdh4iJZl4zuePu81h56PAadYBzL66f1g9oUVA87NegCwGwiWkxEky329wTQnIjmm8dca/UiRDSZiMqJqLyqqirRMTNMkDN6tAp77rYX5CGgecM8FPi82nbTQ9fy0OMJuSB54X4mA8kkD32UEGIQgAkAphLRmdp+H4DBACYCOA/Ar4iop/4iQojpQogyIURZcXGxvpth4ka/SNyOU7ZolI8J/dpGbP93+TYAwLtLd4SNQ/XQdTkAHXmoSNq8gskkUhFDd2TQhRDbzf93A3gbwFDtkG0APhRCHDXj7J8AGODmQBnGioBmNN32gmoDAnkWYZT9x6oBAJV7jbx3Kd3iVTz0WEORIRe25/WDjPDQiagRERXJxwDGAVipHfYugFFE5COihgBOB8BdcpmkIoTAgop9Ydv0RhN1xe8X8HpCl8miX56Nr+49B3dP6A0AGNChKY5V1wY7FOX7PPjZWd0BRN5s7GB7Xj/IlCyX1gDeJsPz8AF4RQgxi4imAIAQ4lkhxGoimgVgOYAAgOeEELrRZxhXOWoheOS2bG1NIBBcAAWAErOv6K5D+QCAh2auxrtLd+Cs3kZiV4HPgwb5xmVV6xeI0hMjuNDq1PAz2cXuQyfCnn+1aR/an9Y+qe8Z06ALISpgET4RQjyrPX8MwGPuDY1homOVvy29oBGPzEHbZg3w1o0j6vQe/oCwLFZSFz9XbD+IEd1aojDPA4+HkGfeAKr9ATSAvUWXL+H2rILJDOatDU/2+/nrS3FJkg06V4oyWcvjH0aWVcs45Y6DJ7B48/46v0etnUHXrpzjNf5gi7p8M2c9mkDXH2avxecbjGrSldsP1nmcTOYRV8aTW++Z8ndkGJeYuWJnxDY345T+gIAQCIuhS7zaxbpkywHsP1YDIKTEGK3JhdqQ4/f/W+fGcJkMo33zSK3+k7XJ1UVng85kLVaNmPVMggf/swpPzUusm5HMMVdj6BKP5rWvULxsX1CJkSV06zNWN/R5a5Jbf8MGnclaxvVtE7Ht+S8qw57/4/NNeMwiNOMEGdu2CrnoHrqKDLmwQa/f1NRG/v5TXlqc1Pdkg85kLYlkh8z4ehtmfL0t+Pzdpdux72h1xHEna/2Y8MSnAACfN/Iy0e356V1a4PQuLQA4C7no7HG50xKTfqrNG/oPhncO255M1UU26EzWIisxGxeEJ2ut2Ga/yHjrG8tw6xvLAAC7Dp3ALa8txZQXI72mXvfNwpZ9RtHQtwcjO87osfoTtaH0xkRCLieSpBLJpA/5+/doXRS2vTqJMzc26EzWIm1qg/zw1MBNe486/HvjBTbvi3786p2RzSp0L2vZ1gPwmYuneWbIJZ4Ll9KQEcEkl2oz5LJh95Gw7cksMGKDzmQduw6dwGXPfIFvDxqFGyO7tQzb76RR9MKKvcHS+12Hoh9vle9udU1Kz1we/8k6+wWwSwa2C3tuFW9lshsZcutWHN5FK5m/NRt0Juv4+2ebsHjzfjwxZz0A4M7xvcP2HzxeY/l3agbMFdMXhDV2lhw9WYsH/7MqbJvaek5ipbsuhblkXrm+QKuiqzcmsoC6dOsBLN68L/aBTFqoNlMUS1tpBp1DLgxjGOqqwyexX1vELPB5UDltYvB5w3zr6kw9B9hvsWj53Keb8I/PN4Vts9I419MWAWD2ql0AgK7mBXzgWA2enm+dMqnfTBKJq17y1Oe47Jkv4/47JjVID10/fziGzjAAhj8yB0Me/gj/XrwtbLtekdeikXX3Hz1MYtVw4P3lOyK2xdundFJZx+DjR2dZp0ye1KbdXP6fe0jD3bVV+GwunuyneGGDzmQNxyzEuICQtywLjaptYpS6R66GYPYdrcZdby7Hem0BS339WFw11DDkDaIpcplUa7OFeKfhs1ZGVskymYU8D0uKCsJmkBxyYZgoSHt781k9AEQaSwB4dNaaCI9czTaY8MQneL18q+XrTx3b3dE4Gpkqi07a0EmPvHUTYzYR7zR8yktfx3U8k3pq/AH4PBThENg5HG7ABp3JemTIRUqufLFxb8QxT8/fiE/Xh/c4Vz30aJku7ZtFanIAke3v9h2LLFCyoyYgMLBjMzx99SDjOYdcco7q2kCwalhFD7e5CRt0JuuRBl3mgcvFSZ2fv7407LldCMcpw7qGp0vO+Hq747+tqQ0gz0vBqtJoyoxMdqIqcALAL84xunI+OXd90t6TDTqTFUTrzynXRC0q9KNyrLq2DiMCfnxGVzx4cd+E/rY2EECe16PIBLBBzzVO1ARQqBj0/5rrHvPWJk+gy9ElQESVRLSCiJYSUXmU44YQUS0RTXJviAwTvbouGHKJs9ryeB099HyfB9cOLw0+10Mw0aj2C/i8HqUZBodcco0TNX4U5oVM7FVDOyX9PePxacYKIQYKIcqsdhKRF8DvAMx2ZWQMoxAtrc8T9NDjM+huC2K1bJRvuX3tt5HSAcu2HsBn66s45JLDzFyxExurQrISPxhRCgDIj3cqGQduvvLNAN4CsDvWgQwTL9GyQKRnHq9B/9W738Q8Ri/Rj4aVKiMA7LAQ9wKMvHhp0NftikyXZHKTan/AstuWGzg16ALAbCJaTEST9Z1E1B7ApQCeifYiRDSZiMqJqLyqKrlC70xuEc2DlWlh8Rr0WNx/QR88OiminW4EVw4x8s+njO5quf/6f34VUd0qkQqNz368EQBw6dOfY+rLnJKYC/RqXYTxFpr9APBkgk1XYuHUoI8SQgwCMAHAVCI6U9v/JwB3CSGizhuFENOFEGVCiLLi4uL4R8vUW5wo1Llt0EtbNbRMO9OZdll/VE6biO4lRbbHbD9g7aXr0+8lWw5YttaLRrQFYyZ91PgDQeXNVOHo3YQQ283/dwN4G8BQ7ZAyAK8RUSWASQCeJqJL3BsmU9/Rs0Ckgp0qkiULe5zSu429AQase4kmypKtB4KiXar0bp5NmGbD7si4ux2cw56ZVPsDwUVvnUtPa5+U94x5xhJRIyIqko8BjAOwUj1GCNFFCFEqhCgF8CaAm4QQ77g/XKa+ohuteyeeAgBo07QwuK1A8YZG9zRmgNF0WGJ5/fFquKg8f/2QsOe/emclLvjLZwCAGqVi1U4m4OWFW2xfW8/OOc7NMTKSGn8AeTZOwYUD2iblPZ24IK0BfEZEywAsAjBTCDGLiKYQ0ZSkjIphNHQjVlSYBwBo0yRk0NVFyXZKdefAjs3C/rZpA+Nv9cYDOp1bNkxorAAwplcJZv9Cj0waqJWCdjox0dqUPfdpRdhzzpDJTGr8Ank+6993YMfmSXnPmHNUIUQFgIiVISHEszbHX1f3YTFMOPe8vSLseVnn5nhsUn9M7G/t6by6yPBwA0LgzvN64XvPLQzue3RSf/zEou2cyvIHxqGJedNIlJIia9XHEzb572os/NT2TW1fV9d7T2IDHCYBHvzPKnQvaWxWA1v7zC1sUlzrSnxBR6beMGvltwCA8adar9KnmmVbD4Q9JyJcrsjU2vHTs3pEpBPGEkf61w+H1tmYA5Gt8SSHT1pXqFbuPRZ8HO2Cr9Ra7CXSLJtJHlJPv8DniVj0Lm3ZMOx3dhs26IwlU14yPFhV9jPbqJw2EUIIfL1lf9j2WCX/Z/Z0JwPLroDEriH02MfnBx9Hi+8fPRn+92zQM5Maf6SH/uEvzoSFDL9rsJYLExXpqWcrRIRDJ0IGPN/rwaTBsT17t97bCun93zm+l+3f+qMYdD0VLtqxTPpQC8ckBT6v7czNDdigMxGopeqvLLLPtshkwlISFXv3wS2j4HK6elTm3T4mYpv0vtuaGTqyMYZKNCOtZ9/Udwf94LEa+AMCizbtw7w16S1Uv/WNpWHPN2vhsWTDBp2J4PkvQj017cIDqaZDc2tNcjv+7zv9go/VkETrJoUgogijePngDnUboA1WecjSWMs898GdW9geY4VeQFWfPfSdB49jwIOzcfVzC/Ddv36J65//Kq3j0SWUZyxxLqnsBhxDZyJQY3yLNmVGV/lzTmmN57+odHy8qrzYuCB0mst0R5+Xgp6yXCe4eGD7uAp6nKDH0a+avgDXDu9sjMFDYf+rRDPS6ucBIhtO1yd2mBW4Cyoy4zzVOa1Ts5S+H3voTARCiVE0TGK8Lx5qAwFbNUOVf08Zjm7FjdCrdSjkMrRLpAfssyj4GNWjFa4b2aVuA9XQpQO+rNiLO99aDiCUW7/PQuclmkHv264JAOBXF/QBUL9L/wt8xvl5StsmaR6J9e8wZXS3lI6BDToTgXpeOtEySQU1tQI+L+Hs3iW4+Sz7Hp9DSltgzm1jwhaerBYnj9ikDrqNVR7yYXORdqmZiumzCMus22U9Uyi9eyYemrkaQKhAqj7XFcmQ4AGl/V/3X36QlrFYdcCqS7VxInDIhYlA9TP8GaITUhMIwOfx4O/XDYl9sAV3nNcLZ/ZIvSCcXWEJAFxmxu2tbjjPfbYJ95keuB3b9xvhhg27j6BXDF2aXOXzDUb/2J0HTwS31QYE/AHhulhbLP5qKmaqpHoMmeF+MRmF6qHbFcGkmqrDJ+uUbz11bHf062BffZks7MSZgJD2zA4bJcZYfLzOyOiY9U12p5bWhbJSo4T+1PbhIZd0LBTrFbyAdWgvmbBBZyI4EEf3+lTx6fo9YV5YtmCXiw6EvPerhiTWmuyu8b0BABMypJo3lbz+1RbMW7M7qMJJCP+e01FsZdVGMMX2nEMuTCSLKjMzYyDXkN57JwsRsAsHxO6U1LKxoRVTHxtM3/WWoe3z3LVGR0y9sjYdHrpVii976EzaqU9JE/MtCn9SRbT4eqGDxWjZgPhkTf0y6Kq65I/+ZfSs19Up05HKKcM/KhxDZ9JObTLFJjKMukjk1hWr7BaJlUHSjVahqaV+ojYzir9ShV68A4RrzAPR5YeThaz8ffDivsFtqc5yyQmDXusPYOzj8/FBnK27GGvqU+VhtBh3slGLjmbcNCJsn9VvoDeyCBr0DKnmTRVHLcTVdEnidJzD8h48sGOzoLwEe+gJcLTaj017juKuN5eneyg5QX0y6OlElfUd1Kk5Hr881HbA6jf40QvlYc/lDSGWHHCuYRVNqdG+r1SfwjsOHMeJmtACraxUjjYLSwaOFkXNXqGHAfgB1AohyrT9VwO4CwCZx90ohFjm7lDtkdMrJ42EmdgM6tQc5Zv3xz4wxYzs3jLdQ6gTXVs1QsWekFhTgRYnV2V9v7b4/r+s2Bv2XC6q1oeeorX+ALbtP47SVo1g9Wn1m1oqs1w27z2K0Y/NDz4nktITAt4UzwDj8dDHCiEG6sbcZBOA0UKIfgB+C2C6K6NziFzl596K7jCqRysA8QtiJZN8rwf92jdL9zDqxEe3jg57ri+Kvq0IOe2IkaL5u8v6gYjg9VC9WPN4+IPVGPP4fHxr873oOeCpnGXuOnQy7LmHKJiumJUhFyHEF0II6VIsAJAc6Tob9OkWUzf8AQEiYFT3VrZt1FKNXwhESQrJCtT+oU9fPShifzyhE3kz8HkItfXAQ/9s/R4AwIHj1Y60a1Jp0PWZFlEoLz5T0xYFgNlEtJiIJsc49gYA/7XaQUSTiaiciMqrqqriGWdUapQLofTumfj97LWuvXZ9pDYg4PNQmCJhuvEHUj99dYuiwsjIptrEWqJmRPQoaRz1NRvmG6+Z5/XUj5CLeR5WHT4ZFkNXm4SrpLOLk4cotCia4hi6U4M+SggxCMAEAFOJyLKdORGNhWHQ77LaL4SYLoQoE0KUFRe7p6uhF1b8Ze4G1167PhIwdTB8Hk9GFK1Ij8yT4umrW3zwszPw1PcMj1z2CpU55CptmoaMU6wb6Vm9SwAYi25HTtbgun8uQkXVEbeGnHHI2cv3/74I1co5afc9pdIP0d/KQyH55oxMWxRCbDf/3w3gbQBD9WOIqD+A5wBcLITYq+9PJvXBQ0kltaY3nOfNjOm8nD57stRD79iiISb2bwsAaGCmGhb6ImWJ/3LVIJQUFaBNk0Js2mPf6eaSge2CKpg+jwcfr6vC/LVV+O37q5Iw+sxANeJNlBnPniPh8evrR5YCSG3Ixa+tYRAZ/4DUn7MxDToRNSKiIvkYwDgAK7VjOgGYAeD7Qoh1yRhoNDLBi8wlpFKdz+vJiAU3WWTj5gLTp3eOxfs3j3Lt9Zwiv08rWeJ8nweL7j0H3x6yXviTAlSqZnuel4IOTbbe8JygGuhosxe5tpDKkIvu9BiLomQ+TtkwjPdzcExrAJ8R0TIAiwDMFELMIqIpRDTFPOZ+AC0BPE1ES4mo3O7FkoFudLrHiD/qLNt6AKV3z8QLX1Riv0WzgfqGPyDg83qQ5zGMRbobKOw2swjctFcdWzTEqe1Tr74ofQ8nNyf9e29SmIfBnZtjYMdmwW0+LwXDEekskko2arn/q1H63MqvIJUeun6DyfN6gjfXVF85MQ26EKJCCDHA/NdXCPGwuf1ZIcSz5uMfCSGam2mNdqmNSaO6Nvxr6x+nTOrFT30OAPj1e9/glteXujWsrKVW8dCB9Bca3fuOMSFcXJl5ufHxcvu4ngCAZg3zbI+RDa717726NhDR0i7P4wk268hhe45DJ0I5+ut22a8VbN13DEBqz9m3vt4W9tzrIVwzzGgzqLcLTDZZnghmoIdcdCnNeNi4O3cXlpzy6qItqDp8Mljllu5MFzlryoXemVcO7YTKaRODrdOsuGigobSof+81/kBEqEatRDxkocdd35AGNJWniq4t4yHCL87pgY3/d35QniFV5IRB10MuIo6Jjq6DsT3BZgO5SJ6ZQ5vuNQr5/rp3mqvYfe8nay0MupLnbKVxUt/o286Ynafz5t+maWGw6CvV5MQVoodc4vktv/vXL10eTe4Q9NDTkOny6qIt+GSdUasgY8R5GdLfNNnYfe/VFh66+p3U1Gb/DKauyHTQp+elJ3U51SEWnZy4Qir2hIdJ4lnhXr7toNvDyQoWVuy1LKNWqxVlDF2XJk0F98xYgWv/sQiA4ZkCqc/pTRfyc+ohl+raAAq0WYr6lew9Wm1bGl9f2FhlpHvOXrUr6e+18+Bx/G7WGkwd2y24LVrLwVSQEwb90VnhlaF1DfnOXbMLV01fkPbsjmRyxfQFGPbInIjtd88IKVbmedLnoavIMFgO/xxhyBupHkqstgi5qOw5chLDHpkTJvJV30hlmGP4I3PxzPyNqKgK1QxE+31SQU4Y9In92oY9r6u4/Q+fL8eXFXszpkFyKlEFooKGJY0GfaGiMFhP7HnIQ3cQcrG6yW0xMz1yhcMnoi/23nJ2j+DjZg1C2UMPpajQ6r8rQ026o3WhSgU5YdAHdQ5v/TRnjTvTLRnDrU+oBiIoz5rG4qIrpi8IPs7lGZNKXtBDj522aEWufU3Pf14Zse3cPq2DejdqQZXai/W5zzYlfWw66VgIVckJg6575Cfq0GOxUX4ozejvaTghUkG0GUx7RTRqg5nCmSmpnDlmp2zxBj302CGXHRZZWekUpkoGVllW/1u1C5cOag8gXDa7OM3qoJv3pnd2lN4lWZdwM0XpqNLKKlc7wege96/eWYmSogIcOlETlrYppXN1rem0kVt2yhbpoav6JYGAQG1ARBj03YfDtUwAoHLPsWD6nhssrNiLAR2bpTynWmInj9292PDQu7Qy+sI2zPfWm4VzO3LDoCep8OWbHYdcfb2NVUfQtVWjtJdo62JmLy7YbHncaZ2MUFbTBvZVjakknvqCbKYgL7K1nDTuThbdpr7yNSb2n+jKWDbtOYorpi/Ad8s64NFJRou8EzV+7D1aHTabc5tlWw+gW0ljNC7w4Zn5G4Pbe5Q0xvrdR/CT0V0xrm8bvDllOAZ1ao6zerdGvs+T0mtrTK9izF+bWWHZrA+5bN13LDjt/NGoLjGOTh9fbtyLs3//Mf69eFvsg5OMPpW3wuehoPGozhDxsyuGdEr3EFLCcXOWuF4pcZepm6kurpKzs7XKWG544SuMnDY3aWsax6prcfFTn+PGlxZH7Ovd1hAokze7stIW8HgIxUUFQcfjnFNaJ2VcOpmoz5/VBn3b/mM449F5eHmhIdbzy/NPCe5zcrL9wMxzTgVrvjW8/VUue/2J4ERueMn952ZcE+LRPd3T0M9kpM7L7sOhnHL5G+jdcZLFvqPVWLr1QDAev2zrgeC+zzcYmUcnk3ReyPPz0/V78PWW/cHfvWurRsGMl71H7EX0rhjSMSnj0kn3TNuKrDboK7eHFwV5PBSM++p9/qz4WMliuW/iKRjft03Mv3nxy0q8FkXtzQ65sJPuwgMgfJHJ7sZXVJgX8tAzxKDXF2QXno4tGga32YVcLh+cnG6Plzz1OS556vOoXmiyNH7Ut/zO018Er1MBYGiXFgCAtk2tOxUBqIOSU3SEEMHCrX4PfIiPVie/eClestqgT3np64htncyL4EicOeTjT20TJnRkx6/e/QZ3z1gR12sDIa8j3XmqQHh+c7SLMtNCLvUFX1DLJfTbyDaLukF/7PIBqJzmTrxcReayR0vDe+SD1aj1B7Cx6ggOHHNPdtpucj2sa0v4/bG18ZPlOL+yaAuGPTIH3+w4iMMnMrNGJf3WxWWuHmbEWePNB+3QvGFSje0f/2f0/cgEg65muUQrGmIPPT2EtFzUVmtyhpfa8yeaY/Tywi2Y9c23OPv3H2PCE5+69p52abW/uagvLhrYDgU+DyZFmZmoSpa7bJqFJMIKUyZkqRJ+0hnZvaVr75cI6bcuLiO9GycLfzr6TWB4V/d+HOkJp7vwYMeB43hK6bl6stZve6yMoT80c3XSx6WSbv31dOMLFnRFzqRSvRB3+7+XRd0vf6udLmrI2M0a830edG7ZCGsfmoCuxfZNbEZ0C123boaF5O8S7fzs2iq+5jpu4yhtkYgqARwG4AdQqzewIGN14AkA5wM4BuA6IURkPCQFBKsbEyhX1zUwvqxwvzVqurXFb3ihHKt3hhZmj9fENuiAsUBXUmQft3ST8sp9EduevnpQSt47E5Dyudv2h4pUah2EGpLBtv3R5aST0fbOao3q/H6x17ckajPxusqAhL2u7EIU5SVTtWhtRzzvPjZKN6IJAHqY/yYDeMaNwdmxZe8xjJw213KfV3rocZSry2nSByu+jdh3y2tLEhghsG7XYRyy0KBId073QS3Webw60qCXmVIK4RdGcselol8vw7u2xPmaXk8uIz3Bv35cEdwmvUK7dZ7BmvxFqkiGQa+0qLa0ujad4Obw5Ge1qsQ9r29rDOzYDD9Mc+q0W7eTiwH8SxgsANCMiJJ2Bb6yaIttIwqrLju/fX8VPvzG/oRQ0x113l26I6ExjvvjJ7jyrwsitjcuSE+1nUSvqrXy0Fs3SY0nbod+wdQn7xwIb1ohCYXsrC/ZVHxHWy1Ev5IxYdBbuiWCrBh9o9y9ug95c7By+kuKCvHO1JFol8RiKyc4NegCwGwiWkxEky32twewVXm+zdwWBhFNJqJyIiqvqkq8wiraXVdOV9WFvL9/tgk/eTG8SEFN1+vVuijq+72/fAceeO+bsG17j8ROi1ylhDYk6U4Y0dM59Y5NAPDrC/tEbEtVB5hafyBC01tWTtYXrKpBgx66jQVt3aQQj3ynH0Z2b4mOLeIzKjX+AJ79eKPluaBiJQERbYEwnTQxZ8J/nrMeizdHhvASQba2tEr1TffamMTplTJKCDEIRmhlKhGdmcibCSGmCyHKhBBlxcWJF4lE++6kh37l9EjvWEVNxfPFyBz46StL8PwXlWHbBj/0UdypkUB6hZOsxnu82vgefqZIkJZYeOj+FEnoPvzBatz6RvhCXCZkBqUSK+MgQ4jRDMdVQzuhXdMGccsdv7l4G6b9dw2eVkrsrZi/dnfEtveWJTaDjZdWjeMT3Xr4klODj19btDXKkc7xBD30LDfoQojt5v+7AbwNYKh2yHYAanlWB3NbUrCK20kv22nhTiKpeEc1g/jorDWWx+l3cDVOnU6DfvXfIm9yciG4T9vosxSr9YBkMGd1pNGo74JLQGwPXeLzUtwL73JGtCfGrPPx2esiz+0YXr1b3DW+V1zHt1VCH27JbXxlLtZbfb1ZY9CJqBERFcnHAMYBWKkd9h6Aa8lgGICDQoidro9Wjsli26ntDXU5q/ijZMPuw8HHMgvm3ijxc51Fm8Knbnblx3pa07X/WBh87Oaqe7wss2i3Jy/IPK8Hlw3qgOtGlFr+baKLw/FiJcCViSXWqcZp2qvP44k77fOJOesBWGeXqHRs0SDCmB045u6N/tP11qFYK1XJaCTDCZDXj+qUycXorDHoAFoD+IyIlgFYBGCmEGIWEU0hoinmMR8AqACwAcDfANyUlNGaqBd4c1P3YsnW/QCif7Hz1oROFumhN1Kauv5wpLFC/dldY3GRIpQv0bUrZq6wvmfp8eavKvcr+2yH5wpCCLy6aIvjNmQyburzevD77w7AAxf1tTxuo9Jmi0k+U8d2CzNKMuQVzWEBjPO/JsFCsFj3gatP7xxxs3D7Xvv9v1vrK1Xuie/8c1L1HXrPhSi9e6bj419eELrxSamRnTZJGqkmpkEXQlQIIQaY//oKIR42tz8rhHjWfCyEEFOFEN2EEP2EEOXJHLRadrvf9BBkX7/V2kKk6hGrJ19FlaEepy5A3X9hH1ROm4gOzRuitGVIR0Oih1js5EOjeUh62MZtPl5XhXtmrMAjH1iHg3RkOCjP5kY44VTn+b+Mexyr9qM2IILnr1MPvajQh6PVtXHNBK8fWerouCaFeRHndpeWjRy/Tyw2RTHa8fbqjHXjU/l0/R4A9rpGm/YcxUdK02k1w062n3snwWw4t8nK1abSViFj284U6blxjNF5W1/QU73lh2auDpbvfu85Iwxid6JcPaxzxLYK7YQb2KmZ5d9GM+h/MCUAksUh82a376gzbY3jZnenPJvvYWDHZq6Mi4mPf5pt19buMsKEsfLQJc0a5iMgYq95bNl7LJi10s2surxqaHSVQn8gEDH7bGV6qEWFdW+t8Pjstbb74l3oTUQEz2o9QAiBsY/Px4/+lVQf1TWy0qCrIRdZ/CKrGk/TjKxuXN8oD1/x1gttJK2bFOKO86IvxMxcvhM3vRyp2RwrhlnjDyRNSzrg0JOTHDdDM3Yxx1SHr3Ose1qdOWQaXSdZLgDwmRmDnr3KXgnw4PEanPnYPFzwF0N/RT8X7bz72oCIOLdPuijrO3N5eAhTFR0bH0elKBCeuXZuH2f66FbV5bGyeGQMPd0aLpKsNOjblXJkGfbo084QvlcN08laf8wVf6ntbMXUsd1jjuWDFd9GFC09q1T4WdHj3v/ipYXxS/A6QZ2a7zx4HJv3Ro89lm824vt2qYGUNDFSJho/P8dII5UzTqdZLmf1LgGAqO3ippg1GVv3HQ97bVkNbNcU3B8QWLLFOF9+MNyYwZ40vdpk34jH9iqJ63hV88bpIrGV/pNV1pXktxf3DSYRpLsCXJKVBv3Zj8PzZefdPgbnmVrmDZQTec+R6oj86X3HqvE9JX3PjbZmP3lxcZiXo4/PineXJCerU/XQhz8yF6Mfmx/1+C82Gjc0JxK5N7+a3EyXW15bElM7pL4gxaekMZIL67E89MZm6OPxD+3DF7LZikR3eqpsMkqq/QE8aQq7SUdAJhfsdRjiSxXq9zR3jb1RVrFy/qw8dHlTPa9vm+AMVlV4TCdZadBVigp96NIqtDCjhmOMxrpaZsrynUEjBrjX3cQuH9dO9bF8835LHZW6ImOc0VT5RnZviZ+as48zerQCEIqj6lyoZPv8J4lFJIdP1ETILJzZszjYvae+IY2GNOivmimFsRb7jpnn1BaLMn07ZNjEa8ad7W4aj85aGzTkMqShryu5RV0bwSQSKnSavy+vMZ/Xg3F92uC6EaW4b6Lz9OdkkvUGvUeUsn2/RcxPJ94KNDtesQmhRBPC/7JijyvvLZnx9bagQp8qrKUvkLZp0iAYV5Qelt1Uvk3TQssUTrcIBARmLt+Jfg/Mjtj3wvVD8PV95ybtvTMZaVSXbt1vud0OVSEzEBC4683lEZ299PRbGTaRr2y3AKmeIwUWITp1llrXQrS6NqBu2Sg/7r9xKrktP6bX7Lv7wEV90dIlO1JXst6gNymM9ODkQkVtIBDzrutWQYCdZni0d4935T4aJ2r8uPWNZXhqnhHuUS8+vQLwskHtg8URC81iqWjfQ8P85E0n3/x6G6a+Yq20TERhN6b6hPz97nprRTBurW63Q43lvl6+Fa+Xb8WPXgjP0DimzQxPmAZeOj81mmG7cEA7NMz3hl1LVh6w/PuP11Wh/wOz8cVGZw7L8m0HcOnTnwdrSgBggJld9e7UkXj/5lGOXkclkWK0eCW3M6GdpE7WG/TvDIrQAMPkM7sCAE7UBGJ66H3MLuLJ4vdRUrHcLJvWF6XUajZdKmFE91bYqsWqoxmKw0nMnd8WR2igPqHeYC99+ovQ9hhG5PQuRrbFz8/pgXvMVom6gdaRHro02PL/O87rhaICH+4Y1yviJmAl1LV6p5FiucDsIzD9k+jJAZL73/0GS7YcCNaUAMDdE3oDMAy7rAJPNnp4NlYmWqZUh6pkvUG3knotUHphRvPQ7zivV0J38tm/cK5N9nKUbBar2UWi6PnBNVr7Mv3Glq9NmaOdnHo6mZv8WemexISwyzqKpT8uQ+xPz9uobLP/m3tmrMC3Zps2GXKQ50634sZY8Zvz0MmiyK55w8iQhkwwkM7E/LXOFFWtFBv18zMZVFQdwRcbQrMIfcYcK6QeT/FSqsi8EbmALBbaf7Qa/iidGd5dmlimSddW7lTHuXmH17N5lm0NxU1rakWEl1aoSdI6vbEl07gzIezOjVj53vIsULOWVOOo39hfXbQFH36zK+xvaoMNze3PiZImkTFjmWGmNuZItKdnKrzfi578PFhgCETOZFZoaw86Geig56ZBlyf9DS+UR/XQLx8cO8Oli4XxdutkczN1V58uygpDwLhQ9bREmbcfL2o8l0kediGwWFLCjfKNtEU1O0i9V8+LksL3wYpv8bdPKvDHj4xq5miy0peeFhnq1BdbAeD+d3UdP2e4sXZy67k9g4+tQq+6nPRyTbzuMxuhMMD4fTJRNC7rDLrMsx7apQU++NkZlsfke0OLeNEWHts0jd2Z542fDMdz14Z33Uv0hzznlPDiCH1VfdOeo7j+n4scC2upWF1Mkhp/IOJ7SLQ/6Ovl7mhLM9FJ1Gnwegjdihvh9C4tgtu27T+OBRV7MXfNrpgl7A9/sDoYKrHT9wGAMRaFPla1DF9vORD1/WLF9+uCqvEfrRm65NdmE5udB49jz5GTeHy2vUxHunsD25F1Bn3ptgMAjHZYdl6mGtryKws8Ok4kNouLCjC6l7NmHNEWUV6bPCxY/CTRT+axj8/HvLVVCYU13oyi+bx137GoHZY6tYiMkaq8O3Vk8HG0NEzGPeoSn833eYNhFMmV0xfgh8/Hp0cSq/GLzsMWmV52RUoSOxG5aHUUiRBPzcfwR+ai7KGPXH3/VJF1Bv3vn20CAOw8aB+bU+2qvJNarZQ79YKcaivLm/Z5fSO1Iwp8nmAGgqTaZvZgdV9YvfMQHv9wreVN43i1P6ro1x1vLse5f/wEgPVnjlWEkomr+blOPPKvOm79XPGOYfHm+MNxX2shvHZNC/HGT4aHyVq7wdGTzgx6ojH/TCHrDLqTwLNaLBSqsIs8OZ0aKqchFjkbUON1coF2YMdmEdkCdrrVVtO5CU98iifnbYhIHwOAe99Z4Wh8APC7y/o7PlZyyCJFzQ2c5inXR6zO1z9eMcDR336zI7KXbSLk2cwSfnyG0TegVePYxTt9Y6zV6JdWs4b5GKqEi9xin40In87p/zfHcvv828dg/u1jXBxRcsg6g15synWe2t7+RFFj4zIUcbzaj+evHxJ2nFuep1Rak+laYQbd68HFA9tZ3hTs4ocyj9cKqzWBGV87z9ZJpJOL/M7dJtZ0vD5jdW4WplgvxM5Dl6J1TvRLYs3+9Hz2zhYpkm7wL60nsBVjbUKr828fg9JWjVDaqhGuHR4pq51JODboROQloiVE9L7Fvk5ENM/cv5yIznd3mCGkx3tB//jL0Vto5cBuGPSR3VvizB7GieDXCjMA4Gh1rW2qmZ1B1wWB1P6nJ/11K0ZKZCrfo3URXvnx6XV6XytidZmvz1idm/E2eagrdmmLUslRjvEWZfHxsme+CDv28IlazFm9C7+z6b9boXXCevDiUy2PqytORN+223QdalgQunHpYdNMI54z5BYA1vXtwH0A3hBCnAbgSgBP13VgdshYeK820Zsa63i9FFGUEY9B/9nZPTCiW0v87rJ+YdsfmzQg+Dp+Cw9diMiTVmIXQ9e58aWQ5vqXG+29dydYLbYNKW0e8+/kidyjxFrEKxGenMdFRXZYhd16RtEtSgbquaKe99Kgy9nesK4hI2cVR7/hhXI8Mz+2AikANCpIzizEqrJVZ92uI5bb1dCTrq2TaTgy6ETUAcBEAM/ZHCIAyBhIUwBJk+W7aEA7zL1tdNz6yIRI7zQere9bz+2JV348DFcM6RS2vZ0iIqS3C5OU2ywWzVrpLJtljpI7fMtrS2OK7kfjeE1klooTLWevh9C7TRFKYxRVfbKuCuuUHPhoSD1uSccWdRNkyiWsFsY7xshGchv1erFapJS54i0b56N/h9jl+U6ausSqhI2XK8qMWpMrY3Rjiob6PVw8MDL/PpNw6qH/CcCdAOySRh8AcA0RbYPRMPpmq4OIaDIRlRNReVWVs7JgK7raSL2q6LHiAp83YkHRrsO4E9776Uh8fMcYAMC/vtwMwCjMAJwL6n9VuR/7E9CR/pmiSx5P70gAmLsm8jMXOZQgyPN6YirSXfuPRRhnZtTEy/i+bcK61NRn6tK1Xq93SBS1tkEa2kaKUFtrs1rUQ+SoVD9arYTE7Yyqn4w2dJ30cKsVdo6NWsy1I0OaQdsR81cgogsA7BZCRPZaC3EVgOeFEB0AnA/gRSKKeG0hxHQhRJkQoqy42Flud6KM7R1+Uvfv0DQit7UutQH9OzRDZ7NBroy97Txo/B9P0UEiqV4qJxwUTKhcNyJyUcepbobPS0ktqIg37zmX6dyyYVAC9qzeJfibVtwWDbUf7oybRlgec/ngDnGNR145o0z9fAD485Wn4aFLTkX3ksaO1mbGxGi2Ariffy6NsV3YEwCGd22Jvu2a2IYeVYMulVwzFSdX0EgAFxFRJYDXAJxFRC9px9wA4A0AEEJ8CaAQQCukkf8pPRXH922DRgW+iLt/vkvyl/Jl/QGBldsPYpkmNnTV0FCY5p/XD8FbN4YuMqvKvXgaM3/vbwtjH6TQt13k1LjMQQwdMGKJ1Q68LDu+2LgnTAxJR3qlf/3+YLzxk+EJv08uQET46VlGNknH5g0c98UEwr37QZ2sf1v95nnX+N4Rx3RsHgrxSDurRk1aNi7ANebNI5YkAYCgCJiK3sDE7Wp6Oa4n5qwP235UKfvv2KIBfB6ylc9V7UaTDGk1Z0fMX0EIcY8QooMQohTGgudcIcQ12mFbAJwNAER0CgyDnng8w2VkR3v9ZCkrdSfftW1TI/ab5/XglUWR6oo3jekWfDy2V0nMu3yJliYYbbpopVQ3sV9b2+PVXpNrHxqP1ycPwySH3trSrQeC+umJ8L2/LQwTQ9KRi3Dn9W2TlFzkbEMaz3ilJmJ5ubed2xPXDOsUpnN/Zs9w/2tEt5ZaVo3xmnbzs0RDJS0b5WNi/9D56rY+itW4Jv+rPKIS1OMhR5IbTm5c6STh0RHRg0R0kfn0NgA/JqJlAF4FcJ1IVlv7BJCaFPqP65bReGySUazTtdh6wTCWQl6tPxBWoaaHNeL9KgMOjy/weXF615aOLyInfUfrQl2qI3MRKbgWr7GMJWz16fo96NuuKVY9OD64TZ+5PXPN4LDnVh66ip499fNzeqC7RUaUvr5U4xdJlcq1OrVnr9oV1ovA5/XA5yHHfVF/dnYPPPW9QW4N0VXi+iaFEPOFEBeYj+8XQrxnPl4lhBgphBgghBgohIjsJ5ZG5F1Vbzfn1okkT9J7315paXxj3dX3HavGyws2B5+r+enPfVoRJvzvhGzI77b6nlhiIJwTNcZ5oEsdx0J+j1YGFQAWVUafZf34jC5xd7HXF3FXbDuIKy369eoiWTX+QFI7/zjpOXDpae3hIYoaZ1e59dyeYbOKTCKz5w8ukeczTphWjQuw6N6zg3E7t9qbydTF9s0a4NVFkWqEebE0rEV4owe1GtSutZ0dkwZ3wPfNarZhXVvg0zvHBivgGrusj1EXVm6PLE+vS2ZHLvLdso7o1boIV58eX3Xilr1GdeaG3dZ51Sr/+ekoPHtNuLf5/WGlcb0fEDm7enRSf0tH5rP14WsohkFPnhnK93nQuWVDXDLQuhDx1R8Pw5DSFjkzO6wXBl2dDpYUFeL9m0fhr98fHOUv4kNKDay1yb+2mglMHRuKq+shEn9AQAiBj1bt0v8sDHWB8rFJ/fH89UPw+OUhvY8GeV50bNEQf7xioOX7xIuVNrwdsdIprXRc2EMPp03TQnz4izPDah2csPdodEmFAUrOeL8OTTH+1HBv00rCJfTLxG4gDRgLppbx6xfDk+X2HKlOqoQuYJxXNTbnozTkav57vLOTTCJnDfofvhsybHrJdIfmDSOkbOuClYehnstWU8pLTwstROpxxUWV+/BG+daY2tVqymKvNkVBjWrp4csLSmY01NWgn9W7JCwPORpVUeR6AWCQxcJwXVM4GYNYBqmPRaaTSpQmX7Yst+juE2vGJSWd3yjfhvdvHoVp3+kX9fhE8XkooqOXJHiNKGO9UUliyDZy1qCrFY3JnspbeSJv3xTSELdadGxSGAp/6NNQwOj2HgtVrfEUpdm1XPDRS7Q7NK9bpaHPa+/p6IyYNhezVn5rue/wiRrL4quPVkefkTDOuHxwR5R1bo5P7xwLAJhz22jM+nmoGcx9E0+J+vdFhZGhOVnMd1Zv6/RJNf4sBaxizbhU7ZRT2zfFlUM7RTk6cbwej239hM8iYaJBXmpF0NwkZw16M8VLSUWqUZ6XMLpncdA76tuuCc7o0cpWYrSkSWFQhvTuGc7lb1Vk3uwj3+kX9hllHvsV5qJUYZ4Xz1w9CK/8qG4CW6t2HEJ1bQDLzSYj0fAHBKa8ZF2L1u+B2ZbeeGEWX0iZhMdDePPGEUGpgG7FjdG7TeiGb6c1Xn7fOXjhh0PR3CJNtntJYyy7fxyuiqOEPlZcOlVVlz4P2fYWluFY1aBnYGc5x+SsQVflAZIdowOAHiVFyPN6giJAPq8HL95wOsrvO9f2b6yKfOy4QFlVlyEk+bn0G1bnlo1QOW0izugRqsad0K8tSpok1nZO8qk5k7jvHes+kfGkV0qD/uaUUAGR7IfJJIf3fjoyasVpq8YFGN3TvoK7acM82xTXlspNQNZ3xNJKkjNGmfabLLyeUIWzvrYjbzqqQe/QPLRm0bxhdsXTc9agq6RCdzvPS3HfOOLJsnlfaUsnF0OrgwY9tS7F0ZPWBRiHbbZb8c0OI+aqfgfJ0l1nDPp3aBZXxWk8qBWUFw0wMkqEzQLqi19W4uCxmuD1oqcTu02el4IhPr35hzTkm/aEdNvlLHti/7ZY8Muzkzo2t6kXBj0VU/k8r8dRI1qVeEP7Zyre0/YDx4MXRDILM1Rk79HrRpRa7v/Ne6scv9auQ8ZN1uchPHhxXwDA3RMiy8+Z7MDKcbdbXP3Vu99gwIOzg15zskOiqoe+aW94rrmMoa/eGTL0gzo1x7Tv9MO07/Rz1MQjk6gXBj1WGpcbHK32Y0FFfGXx8QoR/euHQ0Pvd7IWNbWpuSAkT19t5CtbxVgBYMNuZ7K5Kh4iXDu8FJXTJobpajPZhdW5HCurSs40kz3DXFCxD4tMyYqVWjaO1cItEeHKoZ0cq5BmEvUiaCllbZNJIn039Xhks4Z5OOCwKvSFLypx+IQR4ohVuOQWDcyURTt54GihLT2+Xta5Oco378+Zgo76jlzgfG3ysOC2WCsq/y43ivD2O+z3WVeOnqzF9E8qwrZlujZLvOTWp0kjaq776Q41YnTn4Pwoolo6Ly/cEmx0kaoYuvTC7Az6joORanoyLLREExGT2thuy6Uy6eGo2WtgvVpcp5wmlw2KFID7qtJYGLfqopUMrPTYc62YjQ26S6gnhtNKM/1kuus8+xiyXDiy6gyTqhh6sNWejUG3avArDfqRE+ELplJvJtcuqPrK780KZbXqVA25/Ozs7hF/c/UwI+98ZPfUKG1bJS3kmtxEThv0/95iFFMsSsFKtVqG79RIqeXGzRvmoWnDPNuu5zKf3SojIFXTRpmRYhcbtRJCCgigvHJfMFwjkeEiNui5wWWDO6By2sSwTCX1LLFqXiKrN1MVdiuvjKx9kOefk7662UBOG/RT2jZB5bSJdc6/dsKWfaG0J8cGXTlOKiq+f/OooJiWioy3/8AiwyRVF0Qo5GK9/8IBkSGjOat3YdKzX+LyZ78M2y6bHbBBz116m43c7zivV1DCWkVWHSfbS75+ZCkAYO23kYJw0hmS3ceynXqxKJpqnOqLW53HRYV5wfRAlT5maX/H5pFCTbsPn0Tf+IaYEDLU6bfx0K02PxxDLZINeu5yWqfmWPjLs1FSVGApAf3nOevh85DrTS10Xv/KWHxVFU0l8vzLlbWcnPbQ04Xegs4Ou5No3a5w2dPrRpTiEVO4SBcaA4B+7Z1XnNYFOd5f2VSKWull7NYyX966Mby1XK5cSIw1rZsUgohsb9ypuKHrzeHD3t88/247r2fSx5EKHBt0IvIS0RIiet9m/3eJaBURfUNEr7g3xOzDadaJ6pmcoTTf3ad1Tjmrd0nQkFsJbOWlKEtAvfgCAYHnP9+EI0p1qN1iqYqe0cAeev3A7ppId9qgDHuWFCU/LJsK4vk2bwFgOX8moh4A7gEwUgjRF8DP6z607MVpZerbS7YFH/dpFxJP0p1WPcb4xJUDw543TZHehBrzP/sPH+OB/6zCX5Tmu3aKdip6vD/Z020mM7DLxOI6BHdxZNCJqAOAiQCesznkxwCeEkLsBwAhxG53hpedWIVFrFDlQ2cqWi0H9SIl7ZxXe6G2j7P5QV1QwyOb9hgl1GohlD8QiLnAlaqcYyaz8Hk9WPmb83CVJpGbivOhdRNnWjGvTx6Gt28akeTRJBen3+afANwJwE59qieAnkT0OREtIKLxVgcR0WQiKiei8qqqqvhHm8GoqoFOmTQ4VGyhNpLeqRXotG0abrRbK9PDWA2o3cS6TNr4/0SNH0/N2xjTS9c9Mg651B8aF/jQsUX4uZyKCdrc28Y4Ou70ri1xWqfsTl+MaQ2I6AIAu4UQ1uLWBj4APQCMAXAVgL8RUTP9ICHEdCFEmRCirLjYXqYzGykrbYHnrx8CwL4zuo5qqK+waKgLAJ/cMTai9ZvHQ5h8ZlcAzmcDbmAVSpIX5PJtkR1rrNDj/dnc7ouJH11St9qietNtGhX44m60na04+ZQjAVxERJUAXgNwFhG9pB2zDcB7QogaIcQmAOtgGPh6hZw+OlUFH6R4A2onGNlR5uM7xqCTTaGRNKQFKW4K0a6pvnhkDMTphckx0/qN7pHXtS2iU1RHYrBF+8NcIaZBF0LcI4ToIIQoBXAlgLlCiGu0w96B4Z2DiFrBCMFUoJ4RNFYOT1J15V8NndwwqguWPzAuarGDjGenMuQCAF7NIMuGAVZNn61gg16/aahVDKfInoedt89FafKR7SRsDYjoQSK6yHz6IYC9RLQKwDwAdwgh9roxwGxCLgg6PUfVDA81dEJElmX0KlI24FsLQaxkoi9irTMlc5+ev9HR36cqxZLJTK4c0gm/OCeU850qD109b3WnJJeI6+oSQswXQlxgPr5fCPGe+VgIIW4VQvQRQvQTQryWjMFmOnKBL5G4YLwCWzKFUJUcSAX6GqaVaNhHt44ONq3QYQ+9fpPv8+CWc0LRWCe1C26gZl95ifDqj4fho1tHp+S9UwmX/ruIPDkrta4oToh3cXNhRXomQIdOWLeZu3JIJyzfZjS77l7SGIdOWOu6p7uQhMksrCRtk4HUDgKM2e3wbrnZTIWvLheRRuxETQIeerwGfVN83ZHcQm9iIReYdGnSZjbZKwU+D/7v0n7JGRzDOCCVmWGpJnc/WRqIphkRi0QV58rSvGIvQ6BS31zStbhxWMs8CVeGMoBRxJMucrn2gQ26i5xzipF6qJfmOyFRQ6frjKeaWtMzP2pxM1ObWqvInOBrhnWy3M/kPqlOt60vcAzdRQrzvKicNjEl7/XAhX3wwH9WoVlD64bNqaLaNOh/VjRdYjGxf1us2H4QN47plqxhMRlOqrps1TfYoKeZJb86N6xzkVOkIU/35FEa9KJCHw6fqMU7U0eG7S8pKoiQ0C3wefHrC1Oh4M5kKjKOnUotIiD3Z4V8m0wzzRvl10ktMd0h6ZpaI4g+plcJurZqhIEdm4Xt/+yus7D4vnPSMDImk5EFcSJVlUUmuS4Ol9ufLocRZvlSuuz5VUM7oUWjfFT7jdh5TW3AMiUx3+dBUYwiKab+4Y2zCM/t981V2KBnKdKxSVfWyCPf6Yd8ryfoodf4A8jz2TUxyO2LiImfRgVGtHdU91YxjnSXZPcvTTccQ89SUjxTtSTPR8EY+ucb90Qo6Uk4VZHRadogD3NvG42OFv1zk8mqnZGNonMJ9tCzFGnP02kqt+47jreXbAdgFFMdr0k8D5+pf3QtbpzyyuFP1zsTkctW2EPPUoKLSSm26Pdf0Acrtltrn+vNC1TWPzwh7Rk5DJPrsEHPUkIeemrN5A9HdbHc3qZJIYZ3tdfHYA0Xhkk+fJVlKX3aGk2lz+yZ2kUlO2oDAt4cTwljspd/mt3EnPYXzVbYQ89STm3fFMvuH1enHHY3qQ0EOJuFyVi6tWoMAOjZuijNI0kubNCzmEwx5nuOnMSBYzXYceB4uofCMJZ0atkQj18+AOecUpLuoSQVx3NkIvIS0RIiej/KMZcRkSCi3O3xxAQ5rVMzAMD7y3YAAD5avTuNo2GY6Ewa3CHt2kfJJp6g5y0AVtvtJKIi85iFdR0Ukx0M79qSwywMk0E4MuhE1AHARADPRTnstwB+ByC1TS6ZtOHzEGr8Av4MKHJiGMa5h/4nAHcCsGzFQ0SDAHQUQsyM9iJENJmIyomovKqqKq6BMpmHz0xF1JtbMAyTHmIadCK6AMBuIcRim/0eAH8AcFus1xJCTBdClAkhyoqLrZsfMNmDbPj8ysItaR4JwzCAMw99JICLiKgSwGsAziKil5T9RQBOBTDfPGYYgPd4YTT3kUJH283slhzXPWKYjCemQRdC3COE6CCEKAVwJYC5QohrlP0HhRCthBCl5jELAFwkhChP1qCZzECv/jyjB8+6GCadJFzaR0QPEtFFbg6GyS707um3j+uVppEwDAPEWVgkhJgPYL75+H6bY8bUdVBMdqD3hdQNPMMwqYWvQCZhdAPu45x0hkkrbNCZhCnQDHrnFDcrYBgmHDboTMJEeuh8OjFMOuErkEmYfK833UNgGEaBDTqTMBwzZ5jMgg06kzBeriRimIyCDTqTMB5ig84wmQQbdCZhgo2qAfRr3zSNI2EYBmCDztSBVTsPBR+/9KPT0zgShmEANuhMHRjRrWXwcdMGmdEOj2HqM2zQmYTpXpLbDXcZJtvgJtFMnXj7phFhoReGYdIHG3SmTpzWqTlO69Q83cNgGAYccmEYhskZ2KAzDMPkCGzQGYZhcgTHBp2IvES0hIjet9h3KxGtIqLlRDSHiDq7O0yGYRgmFvF46LcAWG2zbwmAMiFEfwBvAni0rgNjGIZh4sORQSeiDgAmAnjOar8QYp4Q4pj5dAGADu4Mj2EYhnGKUw/9TwDuBBBwcOwNAP5rtYOIJhNRORGVV1VVOXxrhmEYxgkxDToRXQBgtxBisYNjrwFQBuAxq/1CiOlCiDIhRFlxcXHcg2UYhmHsIVUxz/IAokcAfB9ALYBCAE0AzBBCXKMddw6AvwAYLYTYHfONiaoAbE5w3K0A7Enwb7MV/sz1A/7M9YO6fObOQghLjzimQQ87mGgMgNuFEBdo20+DsRg6XgixPsFBxjOOciFEWbLfJ5Pgz1w/4M9cP0jWZ044D52IHiSii8ynjwFoDODfRLSUiN5zZXQMwzCMY+LSchFCzAcw33x8v7L9HFdHxTAMw8RNtlaKTk/3ANIAf+b6AX/m+kFSPnNcMXSGYRgmc8lWD51hGIbRYIPOMAyTI2SdQSei8US0log2ENHd6R5PohBRRyKaZ4qafUNEt5jbWxDR/4hovfl/c3M7EdGfzc+9nIgGKa/1A/P49UT0g3R9JqfoQm9E1IWIFpqf7XUiyje3F5jPN5j7S5XXuMfcvpaIzkvTR3EEETUjojeJaA0RrSai4bn+OxPRL8zzeiURvUpEhbn2OxPRP4hoNxGtVLa59rsS0WAiWmH+zZ+JiGIOSgiRNf8AeAFsBNAVQD6AZQD6pHtcCX6WtgAGmY+LAKwD0AeGsNnd5va7AfzOfHw+DEkFAjAMwEJzewsAFeb/zc3HzdP9+WJ89lsBvALgffP5GwCuNB8/C+BG8/FNAJ41H18J4HXzcR/zty8A0MU8J7zp/lxRPu8LAH5kPs4H0CyXf2cA7QFsAtBA+X2vy7XfGcCZAAYBWKlsc+13BbDIPJbMv50Qc0zp/lLi/AKHA/hQeX4PgHvSPS6XPtu7AM4FsBZAW3NbWwBrzcd/BXCVcvxac/9VAP6qbA87LtP+wRBumwPgLADvmyfrHgA+/TcG8CGA4eZjn3kc6b+7elym/QPQ1DRupG3P2d/ZNOhbTSPlM3/n83LxdwZQqhl0V35Xc98aZXvYcXb/si3kIk8UyTZzW1ZjTjFPA7AQQGshxE5z17cAWpuP7T57tn0nf0K40FtLAAeEELXmc3X8wc9m7j9oHp9Nn7kLgCoA/zTDTM8RUSPk8O8shNgO4HEAWwDshPG7LUZu/84St37X9uZjfXtUss2g5xxE1BjAWwB+LoQ4pO4Txq05Z/JKKQ6htxzCB2Na/owQ4jQAR2FMxYPk4O/cHMDFMG5m7QA0AjA+rYNKA+n4XbPNoG8H0FF53sHclpUQUR4MY/6yEGKGuXkXEbU197cFIIXO7D57Nn0nIwFcRESVAF6DEXZ5AkAzIpJVy+r4g5/N3N8UwF5k12feBmCbEGKh+fxNGAY+l3/ncwBsEkJUCSFqAMyA8dvn8u8scet33Y7wvhKOPnu2GfSvAPQwV8vzYSygZKVujLli/XcAq4UQf1B2vQdArnT/AEZsXW6/1lwtHwbgoDm1+xDAOCJqbnpG48xtGYcQ4h4hRAchRCmM326uEOJqAPMATDIP0z+z/C4mmccLc/uVZnZEFwA9YCwgZRxCiG8BbCWiXuamswGsQg7/zjBCLcOIqKF5nsvPnLO/s4Irv6u57xARDTO/w2uV17In3YsKCSxCnA8jI2QjgHvTPZ46fI5RMKZjywEsNf+dDyN2OAfAegAfAWhhHk8AnjI/9woYLf/ka/0QwAbz3/Xp/mwOP/8YhLJcusK4UDcA+DeAAnN7ofl8g7m/q/L395rfxVo4WP1P82cdCKDc/K3fgZHNkNO/M4DfAFgDYCWAF2FkquTU7wzgVRhrBDUwZmI3uPm7wugtsdL8myehLaxb/ePSf4ZhmBwh20IuDMMwjA1s0BmGYXIENugMwzA5Aht0hmGYHIENOsMwTI7ABp1hGCZHYIPOMAyTI/w/oJW4yy6FpDoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.get_channel('3.5-4.5')\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A specific energy channel can also be deleted." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.delete_channel('3.5-4.5')\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, if there are multiple channels that need to be added or deleted, this can be done by a single command." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', 1)\n", + "sim.simulate_channel('4.5-5.5', 'smoothbknpo', [.6, 0.9, .2, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "sim.get_channels(['3.5-4.5', '4.5-5.5'])\n", + "sim.delete_channels(['3.5-4.5', '4.5-5.5'])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reading/Writing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulator object can be saved or retrieved at any time using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "sim.write('data.pickle')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.read('data.pickle')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb.txt b/_sources/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb.txt new file mode 100644 index 000000000..1c53c94aa --- /dev/null +++ b/_sources/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb.txt @@ -0,0 +1,1320 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7GoFZn8bp_6J", + "metadata": { + "id": "7GoFZn8bp_6J" + }, + "source": [ + "In this tutorial, we will run a quicklook spectrotemporal analysis of a NICER observation of one epoch of the 2018 outburst of the accreting black hole MAXI 1820+070, largely reproducing the results from, e.g., [Wang et al. 2021](https://ui.adsabs.harvard.edu/abs/2021ApJ...910L...3W/abstract), [De Marco et al. 2021](https://ui.adsabs.harvard.edu/abs/2021A%26A...654A..14D/abstract). We will not give a scientific interpretation, just pure exploration.\n", + "\n", + "We will use the [Stingray](https://docs.stingray.science) software package, at the version specified in the installation process.\n", + "\n", + "Let us first install the correct software version. From the shell,\n", + "\n", + "```\n", + "$ pip install stingray pyfftw\n", + "```\n", + "\n", + "The source code is available in the [official Github repository](https://github.com/stingraysoftware/stingray)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 3072, + "status": "ok", + "timestamp": 1642601518655, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "outputId": "36746cbf-a295-43e0-f252-2203f73ea7ef" + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from astropy.table import Table\n", + "from astropy.modeling import models\n", + "\n", + "from stingray.gti import create_gti_from_condition, gti_border_bins, time_intervals_from_gtis, cross_two_gtis\n", + "from stingray.utils import show_progress\n", + "from stingray.fourier import avg_cs_from_events, avg_pds_from_events, poisson_level, get_average_ctrate\n", + "from stingray import AveragedPowerspectrum, AveragedCrossspectrum, EventList\n", + "from stingray.modeling.parameterestimation import PSDLogLikelihood\n", + "\n", + "params = {\n", + " 'font.size': 7,\n", + " 'xtick.major.size': 0,\n", + " 'xtick.minor.size': 0,\n", + " 'xtick.major.width': 0,\n", + " 'xtick.minor.width': 0,\n", + " 'ytick.major.size': 0,\n", + " 'ytick.minor.size': 0,\n", + " 'ytick.major.width': 0,\n", + " 'ytick.minor.width': 0,\n", + " 'figure.figsize': (6, 4),\n", + " \"axes.grid\" : True,\n", + " \"grid.color\": \"grey\",\n", + " \"grid.linewidth\": 0.3,\n", + " \"grid.linestyle\": \":\",\n", + " \"axes.grid.axis\": \"y\",\n", + " \"axes.grid.which\": \"both\",\n", + " \"axes.axisbelow\": False,\n", + " 'axes.labelsize': 8,\n", + " 'xtick.labelsize': 8,\n", + " 'ytick.labelsize': 8,\n", + " 'legend.fontsize': 8,\n", + " 'legend.title_fontsize': 8,\n", + " 'figure.dpi': 300, # the left side of the subplots of the figure\n", + " 'figure.subplot.left': 0.195, # the left side of the subplots of the figure\n", + " 'figure.subplot.right': 0.97, # the right side of the subplots of the figure\n", + " 'figure.subplot.bottom': 0.145, # the bottom of the subplots of the figure\n", + " 'figure.subplot.top': 0.97, # the top of the subplots of the figure\n", + " 'figure.subplot.wspace': 0.2, # the amount of width reserved for space between subplots,\n", + " # expressed as a fraction of the average axis width\n", + " 'figure.subplot.hspace': 0.2, # the amount of height reserved for space between subplots,\n", + " # expressed as a fraction of the average axis height\n", + "}\n", + "mpl.rcParams.update(params)" + ] + }, + { + "cell_type": "markdown", + "id": "90aece42-47bc-49af-981f-c12b81b0f729", + "metadata": { + "id": "90aece42-47bc-49af-981f-c12b81b0f729" + }, + "source": [ + "## Load events and plot light curve\n", + "\n", + "Let us take a look at the light curve. We load the NICER event list into a `stingray.EventList` object, and create a `stingray.Lightcurve` from it." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fa9bf7ab", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 358 + }, + "executionInfo": { + "elapsed": 256, + "status": "error", + "timestamp": 1642601523824, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "fa9bf7ab", + "outputId": "7be21b43-046a-4753-e2e1-da99ab63f3ef" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/io.py:235: UserWarning: Column energy not found\n", + " warnings.warn('Column ' + a + ' not found')\n" + ] + } + ], + "source": [ + "fname = \"ni1200120106_0mpu7_cl_bary.evt.gz\"\n", + "events = EventList.read(fname, \"hea\")\n", + "events.fname = fname\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5d922d6d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts/bin')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlsAAASvCAYAAACOz0zGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3gVZf7//1cSQhJaQhPpCoICgoCiyK5KZ8VGUwRUmoqi62JBWdsiFpSFVXbXBRQSWkCQjgofOhaKCEGq9CJNICSU9DK/P/hlvgk5JznJOZk55fm4Lq7rnLnvued9Zw5z5sx77nuCDMMwBAAAAAAAAAAAgGIJtjsAAAAAAAAAAAAAX0ayBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAgM9bt26dgoKCFBQUpBtuuMHy7Q8YMMDc/siRIy3fPgAAAAB7kWwBAAAAYIvcCQo7EiQAAAAA4CkkWwAAAADAS9k9YgcAAACAa0i2AAAAAAAAAAAAuKGU3QEAAAAAgLvatm0rwzDsDgMAAABAgGJkCwAAAAAAAAAAgBtItgAAAAAAAAAAALiBZAsAAAAAn1ecB8n/8ssvGjJkiBo0aKCyZcuqcuXKatGihd5++20dO3bMrJfTblBQkI4ePVqkuFauXKnHH39cN910kyIiIlSpUiW1bt1ao0eP1pUrV5yuN2DAAAUFBaldu3bmsmPHjuWJJfe/qVOnFimughw6dEgffPCB2rZtq9q1ays8PFwRERGqW7euunbtqjFjxujQoUMO1x05cqQZ04ABA1zaXk5fg4KCNHLkSId1nO3f/fv3680331TLli113XXXKTg4WFFRUZKkNm3amOu8+uqrRfgLSE2aNDHXHTVqVIF1k5OTNXnyZHXv3l3169dXuXLlVK5cOdWvX1/9+vXTwoULmeIOAAAgAPDMFgAAAAABxTAMDR8+XJ9++qmys7PN5cnJybpw4YK2b9+uzz77TF9++aX69OlTrG1cuXJFQ4YM0axZs/IsT01N1ebNm7V582ZNmDBBK1as0C233OJWfzwlOTlZr776qiZPnqzMzMx85cePH9fx48e1bNkyjRgxQvPmzVOPHj1siPSqsWPH6s0331RGRobD8n79+mnjxo2SpK+++kr//Oc/FRxc+P2GcXFx2rNnj/n+iSeecFp37ty5evnll3Xq1Kl8ZYcPH9bhw4c1a9Ys3XXXXZozZ47q1q1b6PYBAADgm0i2AAAAAAgoQ4cO1cSJE/Msq1+/vmrXrq2LFy9q586dSkpKUr9+/RQZGVnk9rOystSzZ0+tWLFCklStWjU1aNBAkrRz505dvHhRkvT777+rS5cu2r17t8qVK5enjaZNm6pLly66cOGCtmzZIkkKDw/Xfffd53CbNWvWLHKcuZ07d07333+/tm7dmmd5nTp1VKdOHQUHB+v06dM6ePCgDMOQYRi6dOmSW9t0x7hx4zR8+HBJUunSpXXrrbeqQoUKOnXqlM6ePStJ6t27t15++WVlZGTo1KlTWrt2rTp06FBo27Gxsebru+++W/Xq1XNYb/To0XrzzTfzLKtdu7Y58mb//v36448/JEmbN29WmzZt9MMPPzhtDwAAAL6NZAsAAACAgDF//vw8iZY77rhDX3zxhVq0aGEuO3/+vN5++21NmjRJ/fv3L/I2JkyYoPj4eN188836z3/+o44dOyooKEiSlJGRoU8++UTvvPOOpKujRcaNG6d//OMfedp49dVX9eqrr2rdunXmVGLVqlXT8uXLixxPYbKzs/X444/nSbQ8+uijGjlypBo3bpynbmJiohYvXqwJEyZ4PA5XnT17ViNGjFCpUqX07rvvatiwYSpfvrxZnjPFWZUqVdSlSxd98803kqSZM2cWmmzJzs7W7NmzzffORrXMmzcvT6KlZ8+eeu+999SkSRNzmWEYWr58uZ5//nkdO3ZMp06dUt++ffXjjz+qVCl+igMAAPgbntkCAAAAICBkZ2fneXZHs2bNtGbNmjyJFunqRfqJEydq2LBhOn/+fJG3Ex8fr4YNG2rDhg3q1KmTmWiRpNDQUL399tsaOnSouSwmJqYYvfGciRMnas2aNeb7999/X3Pnzs2XaJGkqKgo9e/fX5s2bVKvXr2sDNOUkpKizMxMTZ06Ve+8806eRIt0dZRSjtzJkgULFig1NbXAtteuXWtOCRYaGqrevXvnq5OYmKhnnnnGfP/OO+9o3rx5eRIt0tVn/dx///3auHGjatSoIenqCJc5c+a42FMAAAD4EpItAAAAAALC8uXL8zz4fuLEifku1Oc2evRo1a5du1jb+uKLL1SpUiWn5a+88or5+tixYzp58mSxtuOurKwsjR071nx///336+2333Zp3WunPrPSAw88oH79+hVa7+GHHzb38aVLl7R06dIC6+eeQqxLly6qXLlyvjpffPGFEhMTJUlt2rTRqFGjCmyzevXqGjdunPn+888/LzRuAAAA+B6SLQAAAAACwrfffmu+btasme6+++4C64eHh2vAgAFF3s7NN9/s9NkqOerXr6/q1aub7/fu3Vvk7XjCpk2bdOTIEfP9tdOZeatnn33WpXoRERHq0aOH+X7mzJlO66ampmr+/Pnme2dTiM2YMcN8/fLLL7sUR48ePVSmTBlJ0s8//6ykpCSX1gMAAIDvINkCAAAAICDkPGhektq3b+/SOq7Wy61NmzYu1atVq5b5OiEhocjb8YQffvjBfF2zZk3dddddtsRRVH/+859drps7abJs2TJduHDBYb2lS5fq0qVLkqQKFSro4YcfzlfnwoUL2r17t/m+sGfA5ChdurQaNmwo6epool9//dXl+AEAAOAbeCofAAAAgIBw/Phx83WjRo1cWsfVerldf/31LtXLGekgScnJyUXejifkHlFz++232xJDUUVFRRU4Rdu12rdvrxo1aujUqVPKyMjQ119/rSFDhuSrl3sKsR49eigiIiJfnd27d8swDElScHCw+vTp43IcuaewO3funMvrAQAAwDeQbAEAAAAQEHKesyFdvWDvisjIyCJvp3Tp0kVeJ+cCvtVyj/K47rrrbImhqAp6zo4jOUmRnOemxMbG5ku2JCQkaNmyZeZ7Z1OIxcfHm6+zs7P1f//3f0WKJcfFixeLtR4AAAC8F9OIAQAAAIATwcH+/ZMpLS3NfB0WFmZjJK4rzj7JnTz58ccf84wykaS5c+cqPT1dklSjRg21a9fOYTueetZKdna2R9oBAACA9/DvXw4AAAAA8P/LPUrF1ZEFdj1LxSq5R/jkHvljpaysrBLfRvPmzdW4cWNJV0cRzZo1K0957inE+vTp4zShk/szFBYWJsMwivVvwIABnu8kAAAAbEWyBQAAAEBAqFOnjvk697NKCvLbb7+VVDheIffzZQ4cOOB2e7mnUMvIyHBpHauSPLlHt+ROrhw/flw//vijw3rXqlatmvk6LS1Nly5d8nCUAAAA8FUkWwAAAAAEhFatWpmv165d69I6rtYrKblHWJTEc11at25tvt6+fbvbyYPcz1PJ/TyYguzcudOtbbqqX79+CgoKknT1Qffbt2+XdDXxkvO3bdKkiZo3b+60jdtuu00RERHm+40bN5ZYvAAAAPAtJFsAAAAABISuXbuar7dv367NmzcXWD8tLU1Tp04t4agKVrZsWfN1SkqKx9tv3769SpUqJUlKT093u79169Y1X7uSRNm+fXu+56eUlDp16uiee+4x3+eMbsk9yqWgUS3S1ZE7uZ/nEhMT4+EoAQAA4KtItgAAAAAICPfff79q165tvn/uued05coVp/XfeustyxIBzuSe5uv8+fMuP2umKO336tXLfD9y5EidOHGi2O21aNHCfH3y5Mk803M58tZbbxV7W8WRO5kye/ZsxcXFaffu3ZKkoKAg9e3bt9A2Xn75ZfP1119/rWXLlnk+UAAAAPgcki0AAAAAAkJISIjGjh1rvt++fbs6dOhgTieVIz4+XkOHDtW4ceNUpUoVi6PMq2bNmrruuuskXZ1GbPz48R7fxsiRI1WmTBlJUkJCgtq2bWsmIJxZtmyZw0RK7dq1dccdd5jvX3rpJYcJraysLL388sv67rvv3Iy+aHr16qWwsDBJV5NBzz//vFl2zz335HmujzMdO3bUAw88IEnKzs7Wo48+mmd0jDOnT5/WqFGj9Ne//rWY0QMAAMCblbI7AAAAAAA4duyYwsPDi7TOihUrdO+99xZpnccee0wrV67U5MmTJUk///yzWrRooZtuukm1a9fWxYsXtWPHDmVmZkq6Ok3UQw89ZK6f+wHwVunbt68+++wzSdI//vEPTZkyRY0aNcrz93rppZfUvn37YrV/8803a8KECRowYIAMw9ChQ4d02223qVevXvrLX/6iOnXqKDg4WKdPn9aWLVu0aNEiHTlyRDExMfrzn/+cr73hw4erd+/ekqS4uDg1b95cf/vb39S0aVNlZGRox44diomJ0e7du3X99deradOmWrlyZbFiL6qKFSuqa9euWrhwoSTlmUqusCnEcpsxY4Zat26t/fv3KykpSU888YT++c9/qmfPnmrevLkqVqyolJQUnT9/Xr/++qt+/PFHbdy4UdnZ2ebfBgAAAP6FZAsAAAAAr5CWllak+tnZ2cXazqRJk1SuXDmNHz/efDD6wYMHdfDgQbNOmTJlNGnSJHXs2DHPupGRkcXapjtGjhypVatWadeuXZKk48eP6/jx43nqdOvWza1tPPXUUwoJCdGgQYOUnp6urKwszZkzR3PmzClyW4899piWLl2qmTNnSpIOHTqkl156KV+9ihUrauHChZo4caJbsRfVE088YSZbcoSFhenRRx91uY2KFSvqp59+0qOPPqp169ZJkn799Vf9+uuvngwVAAAAPoRpxAAAAAAElODgYH366afavHmznn76adWrV08RERGqWLGibrvtNo0YMUK7du3SE088obNnz5rrRURE5HlgvVUiIyP1888/6z//+Y86deqk6tWrF3kUkCv69eunPXv2qE+fPuZUW45ERUVp8ODBeR4Uf62pU6fqvffeM6cnyy0oKEidOnXStm3b1Lp1a4/EXhQPPPCAoqKiCl1WmCpVqmj16tWaPXt2nmfVOFKqVCn96U9/0qeffqr//Oc/RYwYAAAAviDIyLmVCwAAAACQx7x588wRD61bt9bGjRttjsgaycnJ+v7773Xs2DHFx8crNDRU1113nRo3bqyWLVsqJCTEpXYuX76sNWvW6PDhw8rIyFDNmjXVpk0b3XjjjSXcA+udPn1aGzZs0JkzZ5SYmKiwsDBVrlxZDRs2VLNmzVS+fHm7QwQAAEAJItkCAAAAAE7cf//9Wr58uSTplVde0bhx42yOCAAAAIA3YhoxAAAAAAHF1fvNoqOjzUSLJA0YMKCEIgIAAADg60rZHQAAAAAAWOmFF15QaGioHn/8cd11110KDs57D9qxY8c0btw4/fe//zWXde/eXU2bNrU6VAAAAAA+gmnEAAAAAASUJ554QrGxsZKkMmXKqGHDhqpUqZIyMjJ04sQJHTlyJE/9G2+8UZs3b1bVqlXtCBcAAACAD2BkCwAAAICAknskS3JysrZv3+60bseOHRUbG0uiBQAAAECBGNkCAAAAIKCkpKTou+++0+rVq7V161YdO3ZMiYmJysrKUsWKFVWzZk39+c9/1qOPPqp7773X7nABAAAA+ACSLQAAAAAAAAAAAG4ILrwKAAAAAAAAAAAAnCHZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4oZXcAgLdKTEzU+vXrzfe1a9dWWFiYjREBAAAAAAAAAK6Vlpam33//3Xx/3333KSoqytIYSLYATqxfv17dunWzOwwAAAAAAAAAQBEsWrRIjzzyiKXbZBoxAAAAAAAAAAAAN5BsAQAAAAAAAAAAcAPTiAFO1K5dO8/7RYsW6aabbrIpGgAAAAAAAACAIwcPHszzSIhrr+1agWQL4ERYWFie9zfddJOaNGliUzQAAAAAAAAAAFdce23XCkwjBgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4IZSdgcAAAAAAAAA+KPU1FT99NNPioiI0J133qlSpbgUBwD+iiM8AAAAAAAA4GE7d+5Uhw4ddO7cOUlSw4YNtXbtWtWoUcPmyAAAJYFpxAAAAAAAAAAP69mzp5lokaT9+/frmWeesTEiAEBJItkCAAAAAAAAeNCuXbt04MCBfMu/++47paSk2BARAKCkkWwBAAAAAAAAPGjjxo1Oyy5cuGBhJAAAq5BsAQAAAAAAAAAAcAPJFgAAAAAAAAAAADeQbAEAAAAAAAAAAHBDKbsDAAAAAAAAAIBAduDAAa1cuVLXX3+9OnbsqAoVKtgdEoAiItkCAAAAAAAAADaJjY3VU089pezsbElSgwYNtHbtWtWsWdPmyAAUBdOIAQAAAAAAAIANrly5ooEDB5qJFunqKJc333zTxqgAFAfJFgAAAAAAAMAihmHYHQK8yFdffaWMjIx8y6dPn25DNADcQbIFAAAAAAAA8KCgoCC7Q4CPWLt2rd0hAPAQki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAGADppwD/AfJFgAAAAAAAAAAADeQbPGg8+fPa/HixXrrrbf08MMPq0mTJqpYsaJCQ0NVpkwZ1axZU126dNHo0aN18uTJQts7evSogoKCivTvpptuKlLMe/fu1fDhw9WsWTNVqlRJZcuWVcOGDdW/f3+tXr262H+HsWPHqk2bNqpevbrCw8NVt25dde3aVTNmzFBGRkaR20xPT9eMGTPUtWtX1a1bV+Hh4apevbratGmjsWPH6vz588WKFQAAAAAAAAAAd5WyOwB/MmDAAH377bcOyzIzM5WSkqJTp05pxYoVeu+99/T3v/9d77zzjoKD7cl5ffjhh3rvvffyJT8OHDigAwcOaPr06erTp48mTZqk8uXLu9TmN998o0GDBuncuXN5lh8/flzHjx/XsmXL9Nlnn2n27Nlq2LChS23+9ttv6tOnj7Zv355n+ZkzZ3TmzBlt3LhR//znPxUTE6OuXbu61CYAAAAAAIAdDMOwOwQAQAkg2VJCqlSpokaNGqlu3boqV66ckpOTdfDgQf3888/KzMxUWlqaRo4cqcOHD2vatGmFtle+fHk99dRThdarWrWqS/G9++67ev/998331atX1z333KPw8HBt3bpVu3fvliTNnj1b8fHx+vbbb1WqVMEflxUrVqh79+7KzMyUJJUpU0YdOnRQ1apVdejQIX3//fcyDEPbtm1Thw4dtHnzZtWoUaPANk+cOKEOHTro1KlTkq7OY3nvvfeqfv36OnfunFatWqWUlBSdPXtW3bp10/Lly9W+fXuX/gYAAAAAAAAlgedwwFV8VgD/QbLFg9q2bauHHnpIHTp0cDqd1x9//KGXX35Zs2fPliRNnz5dDz30kHr16lVg25UqVdJ///tfj8S5evXqPImW4cOH64MPPlDp0qXNZbNnz9agQYOUmpqqFStW6KOPPtK7777rtM34+Hj17t3bTLR06NBBX331lapUqWLW+fXXX/Xwww/r+PHjOnHihJ588slCpyrr27evmWipW7euFi9erNtuu80sP3/+vB5//HGtXr1aGRkZevTRR3Xo0CFFRUUV6W8CAAAAAAAAAEBx8cwWD3rttdc0ZMiQAp+bUq1aNcXGxuYZfTFp0iQrwjP9/e9/N18//vjjGjNmTJ5EiyT16dNHn376qfm+sOeifPLJJ0pMTJQk1a9fX0uWLMmTaJGk2267TUuXLlVoaKgkac2aNVqxYoXTNr/77jv98MMPkqTSpUtr6dKleRIt0tURRIsXL1a9evUkSRcuXNCYMWOctgkAAAAAAAAAgKeRbLFBUFCQBg4caL6Pi4uzbNtbtmzRli1bJEnBwcEFJiaGDBmiBg0aSJIuX76sGTNmOKyXkZGhL7/80nw/atQolSlTxmHdZs2aqX///ub7zz//3On2c5f1799fTZs2dVivbNmyGjVqlPl+0qRJ5ggbAAAAAAAAAABKGskWm+R+tsrly5ct2+6iRYvM1x07dlTt2rWd1g0KCsqTGFm4cKHDeuvWrTNHtZQvX149e/YsMIYBAwaYr1esWKGkpKR8da5cuZJnirHcySlHevbsqXLlykm6Orrl+++/L7A+AAAAAAAFWbVqlZ544gl17dpVEyZMUHZ2tt0hAQAAL0ayxSZ79uwxX99www2WbXft2rXm67Zt2xZav127dubrDRs2KC0trcA27777boWFhRXY5p133mmOfElNTdXGjRvz1cm9rbJly6pVq1YFthkeHq67777bfL9mzZoC6wMAAAAA4MzixYv1l7/8RbGxsVq2bJmGDh2qYcOG6ejRo9q5c6cMw7A7RAAA4GVIttjg1KlTGjt2rPm+V69eha6TmZmplStXavTo0Xr11Vf11ltv6dNPP9UPP/zgMAHizN69e83XLVu2LLR+ixYtzNdZWVnav3+/222GhobmmRIs9/qOljVt2lSlSpUqtN3c23bUJgAAAAAArhgzZoyysrLyLPvPf/6jG2+8Uc2aNdNNN92kgwcP2hQdfMG1n5/cSNYBgH8q/Ao2PCI5OVlHjx7VsmXLNGbMGJ09e1aS1KhRI40YMaLQ9U+ePKnOnTs7LKtYsaKGDh2qESNGmFNpOXL27Flzui9Jqlu3bqHbjYiIUNWqVXXu3DlJ0m+//Zbv2Sn79u0rUpuSVKdOHW3evNls81rFbTOHozYBAAAAAHDFhg0bCiw/fPiwHn744TyzVgC5FfYZAnIEBQXZHQIAD2FkSwn58ccfFRQUZP4rW7asmjRpotdee81MtHTt2lUbNmxQ+fLl3dpWQkKCPvzwQ91xxx0OR57kiI+Pz/O+WrVqLrV//fXXm68vXLhQYLve3CYAAAAAAJ6yd+9e7d692+4w4KWmTZtmdwgAAIuRbLFBxYoVNXv2bH377beKiooqsG758uU1YMAAffXVV9q3b5+uXLmitLQ0/f777/r666/VsWNHs+6+ffv0l7/8xRyFcq0rV67keR8REeFSvLnrXdvGtcu8uc3iCg8PN0cMZWVlKTEx0Rzye+nSJaWnp0uSUlJSlJSUJOnqtG+5RxFdvHhRGRkZkq6OckpOTpYkZWRk6OLFi2a9xMREZWZmSpKSkpKUkpIiSUpPT9elS5ckXR1unJiYaA5JvnLlilJTUyVJaWlpunz5siQpOztbiYmJ5kMcL1++bE45l5qaav6N6BN9ok/0iT7RJ/pEn+gTfaJP9Ik+5e1T+fLlzeeR5v5NGBISoqioKPNO9O+++85n+uSP+8mb+xQUFKSoqCiFhIRIksqVK6fw8HCzni/2yR/3k7f0KTIyUqGhoZKkMmXKmM869uU++eN+ok++0Sc7kWwpITVq1NALL7ygF154QUOHDtWTTz6pO++8U6VKlVJCQoL69Omj9u3bFzgSpXr16jp16pRiYmLUu3dvNWzYUGXLllXp0qVVq1Yt9erVSytXrtSkSZPME70jR47o73//u8P2cj7cOUqXLu1SX3I/8D7nP5Kzdr25zeJq3bq1+Vydc+fOafz48eYBIDo62hw2vn79ei1dulSSdOLECY0fP95sY8KECTp06JAkacWKFVqxYoUk6dChQ5owYYJZb/z48Tpx4oQkaenSpVq/fr0kac+ePYqOjpZ09eA0fvx4M6k2b948bdq0SZIUFxen2NhYSVcPQOPHjzcPeLGxsYqLi5Mkbdq0SfPmzaNP9Ik+0Sf6RJ/oE32iT/SJPtEn+uSgT/369TOfYZr7N2HVqlU1bNgw8/dnSkqKz/TJH/eTN/cpLCxMw4YNU9WqVSVdfV5v69atJUkHDhzwyT75437yhj4FBQXp+eefV/369SVJnTt3Nh8l4Kt98sf9RJ98p0+2MmCpkydPGgMGDDAkGZKMihUrGr/++qvb7b755ptmmyEhIcaZM2fy1fn555/NOpKMlJQUl9q+8847zXXGjh2br7xMmTJm+bJly1xq8/XXXzfXefDBB/OVd+3a1Sx/4403XGrzu+++M9cpV66cS+sUZNeuXYYkIzw83ChXrpyxa9cuIzMz00hISDCys7MNwzCMixcvGmlpaYZhGEZycrJx5coVwzAMIyMjw0hISDDbSkxMNNLT0w3DMIykpCQjKSnJMAzDSE9PNxITE816CQkJRkZGhmEYhnHlyhUjOTnZMAzDSEtLMy5evGgYhmFkZ2cbCQkJRmZmpmEYhnH58mVzX6amphqXLl0yDMMwsrKyjISEBCMrK8swDMO4dOmSkZqaahiGYaSkpBiXL182DMOgT/SJPtEn+kSf6BN9ok/0iT7RJ/p0TZ/Kly9vhIWF5flNmPN7OyoqyggKCjIkGWPGjPGZPvnjfvLmPgUFBRlRUVFGSEiIeZ0iPDzckGQcOHDAJ/vkj/vJG/r01FNPGZGRkUZoaKghyShTpox5re3LL7/0yT75436iT97fp5xruTn/du3aZVgtyDD+/3E4sNTf/vY3/fvf/5YkNWrUSDt37jSHlhbHlStXdN1115kjOmbMmKEnnngiT529e/eqcePG5vsLFy6oYsWKhbbdrFkz7dy5U5I0ceJEDRkyJE95tWrVzOfQLFiwQN27dy+0zZdeekn/+c9/JEmPP/64Zs+enae8d+/emjt3rlnXlezkggUL1LNnT0lXn99y+vTpQtcpyO7du3Xrrbea73ft2qUmTZq41SYAAAAAwPu5+sDqsWPH6tVXXy3haOCLCvoMHTt2THXq1LEwGniz/v37a/r06Q7LgoKCdPToUT4vgAu84Vou04jZZPTo0apQoYKkq0mQZcuWudVeuXLldNddd5nv9+7dm69O5cqV87z/448/XGr7zJkz5utKlSoV2K43twkAAAAAAAB4k4ISc4ZhaMqUKRZGA8AdJFtsUqZMGbVp08Z8/9NPP7ndZvXq1c3X58+fz1d+3XXXKSoqynx/7NixQttMTU0159mTpFtuuSVfnZtvvrlIbUrS8ePHLW8TxWMYhvkALAAAAAAA4B4mmUFR5DwPA4D3I9lio9xTeMXHx7vdXlJSkvm6bNmyDus0atTIfJ3z4KGCbNu2zXwdEhKihg0but1mZmamOS3Ztes7WrZz506XLvbnjtVRmygawzA0evRo3XDDDYqKilL37t098jkFAAAAAADAVYUl33IeSg44YhiGVq1apb///e+aMGGCyzMEoWSQbLFR7meKeGLaq9yJjho1ajis065dO/P1unXrCm1z/fr15us2bdooLCyswDY3btyo9PT0AtvcsmWLkpOTJUnh4eG6++6789XJva2kpCT98ssvBbaZlpamTZs2me/bt29fYH0Ubvz48XrzzTd1/PhxJSUladGiRbr//vu5AwcAAAB+a9GiRXryySc1YMAAt6d6BgAAKGnvvvuuOnXqpI8//lhDhw7VXXfdpaNHj9odVsAi2WKT+Ph4bdy40Xzv7kiMVatW6ffffzfft23b1mG9bt265VmnsOz41KlTHa6bW9u2bRUZGSlJunTpkhYsWOBym506dXI4CqdcuXLq0KGDw3UcWbBggS5fvizpauLq3nvvLbA+Cjdz5sx8y7Zs2aL9+/fbEA0AAABQsv773/+qe/fumjlzpqZNm6auXbsW+jsEAAB3FfTMlhy5r/kBOX7//Xd98MEHeZYdO3ZMH3/8sU0RgWSLh1y4cMHlutnZ2XrxxReVlpYmSQoLC9ODDz6Yp056enqhI0RynDt3Ts8995z5vlGjRmrZsqXDuq1atVKrVq0kSVlZWRoxYoTTdr/44gvzwnr58uX11FNPOawXGhqqZ555xnz/7rvvKiUlxWHdXbt25fnB8sILLzjd/tChQ83XU6dO1e7dux3WS05O1rvvvmu+f/bZZ1WqVCmn7cI1W7dudbj8s88+szYQAAAAoIRlZ2frvffey7d81KhRNkQDAEBeqampdocAL/Tf//7X4fJJkyZZHAlykGzxkOnTp6tVq1aaPn26Ll265LTejh071LVrV3311VfmsuHDh6ty5cp56p06dUr169fXmDFjnD4g3jAMffvtt2rVqpUOHTok6Wo2fOzYsQoOdr5rR48ebb6OjY3ViBEjlJGRkafO3LlzNWzYMPP9a6+9pipVqjhtc8SIEYqKipIkHThwQI888ki+53vs2LFDDz30kJlEateunbp06eK0zQceeED33HOPpKvThD344IPasWNHnjrx8fHq1q2bDh48KOnqqJY33njDaZtwnyvPzwEAAAB8yYYNG3T+/Pl8y48cOaIDBw7YEBEAAEDBfvzxR7tDwDW4/d+DfvnlF/Xv31+lSpXSLbfcoptvvlkVK1ZUUFCQ4uPjtWPHDjMpkKNnz576xz/+4bC9EydO6I033tAbb7yhG264QU2bNlWVKlUUGhqqc+fOafPmzTp16lSedcaMGaOuXbsWGGeHDh309ttvm8PMPvnkE82YMUP33HOPwsPDtXXrVu3atcus36lTJ7355psFtlm5cmV99dVXevDBB5WZmamVK1eqTp066tixo6pWrapDhw5p/fr15vM+atas6XCaqmvNmjVLd955p06fPq2jR4+qefPmuu+++1S/fn2dO3dOq1atMp//UqpUKc2dO9dM+gAAAACAK669USy3K1euWBgJACDQuDKNGADfQLLFQ3I/OD4zM1O7du3Kk7C4Vvny5TVy5Ej97W9/U0hISKHtHz16tMCHG9WsWVP/+9//9PDDD7sU76hRoxQWFqZRo0YpIyNDp06d0pw5c/LVe/zxxzVp0iSXpuXq0qWLFixYoEGDBun8+fNKTk7WkiVL8tVr0aKFZs+erRo1ahTaZq1atbRmzRr16dNH27dvl2EYWrdundatW5enXtWqVRUTE5PnOS8AAMA/pKamKjw83O4wAAAAPCLnRlQAgH8h2eIhzz//vDp06KBVq1Zp8+bN2r17t44fP67ExERJUoUKFVS9enU1b95cHTt2VM+ePVWuXDmn7dWtW1c7d+7Uxo0btWHDBu3evVvnz59XfHy8kpOTzfZatWql+++/X927d1doaKjL8QYFBentt99Wz549NXnyZK1YsUK///67MjIyVL16dd19993q37+/OnbsWKS/w0MPPaQ9e/YoJiZGCxcu1OHDh5WYmKhq1aqpSZMm6tOnj/r06VOkWG+55RZt3rxZX331lWbPnq3du3frjz/+UFRUlOrVq6cePXpo4MCBBU5zBgAAfM+CBQv05ptvav/+/WrRooX+97//6a677rI7LAAAAAAA8iHZ4kENGzZUw4YN8zzYvbiCgoJ066236tZbb83z8HlPa9SokcaNG+fRNqtWrarXX39dr7/+usfaLF26tJ566ik99dRTHmsTxZOQkGB3CACAALBhwwY99thjysrKkiRt27ZNnTt31s6dO1WnTh2bo4OvYFQUAKAkbNq0SUuWLFGZMmXUo0cPNW7c2O6Q4MOYRgzwH86fog4ADsyfP9/uEAAAAeDrr782Ey05Ll26pO+++86miOBLvv32WzVp0kQRERFq3ry5vv/+e7tDAgD4iRkzZqhNmzYaPXq03nnnHd1xxx1au3at3WEBALwAyRYAAAB4nc8++8zh8ueff97aQOBztm3bpu7du2vPnj2SpF9//VVdu3bVwYMHbY4MAODrsrKyNGzYsDzPXElJSdEbb7xhY1QAAhXPf/I+JFsAAAAA+I358+crIyMjz7KkpCQtWbLEpojg67iQgYLw+Qgsa9eu1YULF/It37Jli/nMXsCZhIQE7du3j+MG4MdItgAAAADwGx999JHD5a+++qrFkcCXMF8+AFccPXrUadmVK1esCwQ+JSMjQ0899ZSqVKmiW265RfXq1dOuXbvsDgtACSDZAgAAAAAAABSioMRsdna2y+0wsiGwjBo1SjNmzDA/I0ePHlXHjh2VmZlpc2QAPI1kCwAAAAAAAFCIgpItJFDgzIQJE/It++OPP7R+/XobogFQkki2AAAAAAAAFANT0AWW4GDnl9FItsCZ+Ph4h8snT54sieMICpaUlKSFCxfq448/1k8//cSxxsuVsjsAAAAAAAAAwNt5ahoxAHDFxYsX1blzZ/3888/mshEjRuijjz5SUFAQiTovxMgWAAAAAAAAoBBMIwbASuPHj8+TaJGkjz/+WDt37rQpIhSGZAsAAAAAAE5wARVADqYRQ0lgdAKc+cc//uFw+WeffSaJ4443ItkCAACAgJWRkaF//etf6tq1q5577jlt3brV7pAA2IALXQBcwTRi8KSDBw/aHQJ81MKFC+0OAU7wzBYAAAAEJMMw1LdvX82bN89cNnPmTK1evVp33XWXjZEBAABvxDRi8KRffvlFGRkZdocBwIMY2QIAAICAtG/fvjyJFklKSkrS+PHjbYoIAAB4M09NI0ZiBjk2bdpkdwgAPIhkCwAAAALSJ5984nD57NmzLY4EgN248AnAFUwjBk/74IMP7A4BgAeRbAEAAEBAYp5sAK7geS4AcnhqGjGOKwDckZiYyBR0XopkCwAAAAAgICQnJ2vo0KG64YYb1KpVK02ePNnukAD4kIKmEWNkCwArVatWTRs3brQ7DFyjlN0BAPA9u3fvVpMmTewOAwAAACiSHj166P/+7/8kSceOHdMvv/yioKAgVa1a1ek6TDEGIIenRrYAuTHSCcWRkJBgdwhwgJEtAIrs7rvv1ubNm+0OAwAAAHDZ8ePHzURLbl988QUXugC4pKCRLSRb4MixY8fsDgGAhUi2ACiyy5cv8xA3AAAA+JTPP//c4fKff/7Z4kgA+KqCErNMI4ZrTZ48WTfccIPdYQCwEMkWAMXyzTff2B0CAAAA4LIrV67YHQL80M8//8xF9gDiqWnEGAXj/06ePKlnnnnG7jAAWIxkCwAAAAAAQDHMnTtXgwYNUlZWlt2hwAJMIwZXTZkyxeW6TGWJa2VnZ+utt96yOwwUA8kWAAAAAACAYpo2bZoWLFhgdxiwANOIwVWzZ892qR5JOjgyYsQIffTRR3aHgWIg2QIAAADAZyUlJWnVqlU6cOAAFywA2ObDDz+0OwRYwFPTiAGAM9nZ2Zo6dardYaCYStkdAAAAAAAUx/Lly9W9e3elpqZKkh566CGbI4I/4gIqXPHrr7/aHQIswDRiKAlMI4bcDh06pHPnztkdBoqJkS0AAAAAfE5iYqK6detmJlokaenSpQWuk7sukBsXupAjLS1Ny5YtszsMeKmCjhUPPPCA2rRpow8//FCZmZkWRgVfR6IOuTEloW9jZAsAAAAAn/P1118rLS2tSOv07NlT33zzDRfWATiUnJyshx56SGvWrLE7FHipgr4/4uPjtXHjRm3cuFH79++3MCoAgLdgZAsAAAAAnxMdHV3kdb777jsugAUw7hxGYSZNmkSiBQUqaBqx3GbMmFHCkcCfcBMI4D9ItgAAAAAIGGPGjLE7BABe6o033rA7BHg5Vy+KF5bcJfkLAP6JZAsAALBFRkaGNmzYoC1btigrK8vucOBDmAcd7jhz5ozdIQDwUhkZGXaHAC/HCAQAQEFItgAAAMsdOHBA9erV05/+9CfdeeedatKkiU6ePGl3WPAR77//vt0hAACAAOTqNGIAgMDEtwQAALDcY489phMnTpjv9+3bp4EDB9oYEXzJ//73P4+0U5SpQM6ePcuUH4AfO3z4sN0hAPABjGyBpxmGwecKpi1btmj48OF2hwE3kGwBAACWOnr0qLZv355v+cqVK3Xp0iXrA4LPOX/+vGXbmjNnjmrXrq1q1arpxhtv1HfffWfZtgFY529/+5vdIQDwAYxsgatIoKCovv32W/3pT3/S0qVL7Q4FbuBbAgAAWGrLli1Oy37//XcLIwEKtmnTJvXt29ec4u7YsWPq3r279uzZY3NkAADADlxAh6sYEY2ieuedd3h2mB8g2QIAAAA4MG/ePGVnZ+dZlp6erkWLFtkTEAAAsBXJFpQEPldISEhQXFyc3WHAA0i2AAAAAA6MGzfO4fK33nrL4kjgSdxpGrjY9wDc5amL4o888oguX77skbYA+L7k5GS7Q4CHkGwBAHjMjz/+qHbt2qlixYrq0qWLduzYYXdIAOAUF159G3eBAgCs5qnvnt27d+vJJ5/0SFsAAO9Ryu4AAAD+YdeuXfrLX/6ipKQkSdKKFSu0bds2xcXFqVatWjZHBwAAAADu8WSif/Hixbp8+bLKly/vsTbhe1atWsVnAPAjjGwBAHjE3LlzzURLjvPnz2vp0qU2RQQAAPD/pKen2x0CAB8XHOzZy2jff/+9R9uDb1q4cKHdIQDwEJItAAC3nTx5Uu+//77DsqFDh1ocDQAAQF6XLl1SdHR0sdZlykEAOZjCEgBQEJItAAC3nD9/Xm3btrU7DAAAAKc+/PBDu0MA4AdItgAACkKyBQDglsWLF+vgwYN2hwEfwh3CAACrjRkzxu4QEAA+++wzu0NACSPZAgAoCMkWAIBbnn76abtDgB/hBywAAPBVL7/8sjZs2GB3GAC8AL9rUBTckOg/SLYAAAAACBj8mAVQkr788ku7QwAAADYh2QIAAAAAbjIMQxcvXrQ7DAA2mzp1qt0hAAAAm5BsAQAAgM+JiopS586dFRcXZ3cosIk3Tc/x6aef6vrrr1dUVJRatmyp3bt32x0SAMAHMNrSf7FvgcBEsgUAAAA+5+LFi1q5cqU6duyo48ePF6sNb7pYD981e/ZsvfLKKzp79qwkKS4uTu3atdOlS5dsjgyewgUzAAAAuIJkCwAAAHzWhQsXtHjxYrvDQACbO3duvmXnzp3T+vXrbYgGAAAAgF1ItgAAAMCnvfTSS3aHgAC2aNEih8v/9re/WRsIAAAAAFuRbAEAAJZiOhYAgYBp6gAAAIDAQrIFAAB4DS5OAihpViV8Dx8+rO3bt1uyLQAAAAD2I9kCAAAAAMWwdOnSAstbtGihjz76yKJoUFK4ESAwZGRk2B0CACBAMfuD/yDZAgAAACBgePLC+eTJkwut89ZbbzHCBfABmzZtsjsEAADg40i2AAAAAEAxLFmyxKV6LVq00H333aenn35acXFxJRwVPI27TQPDW2+9ZXcICEAcX/yXp0dFMsoS8A0kWwAAAIBrXLlyxe4QUAhfu+jw/fffa8qUKWrbtq1+/fVXu8MBcI34+Hi7QwAAp0jMAb6BZAsAAPAa/IiAt3j66aftDgF+6tKlS5o0aZLdYQAAvICv3TgAACgYyRYAAGApflSiMN6QdJszZ47dIcCPTZgwwe4QAABACfKG81kA1iPZAgAALMUPDxTm0KFDdodQqMzMTLtDAAB4EDeDAAAAd5FsAQAAXoMLHZCkf/3rX3aHUKiMjAy7Q0AxkfAFAAAAUBJItgAAAMCrHDlyxJLtcNEdAAAAAOApJFsAAAAAAHCCxCyAksLxBQD8C8kWAAAAAAEjISHB7hAAeCGmMgUAAO4i2QIAACyzf/9+jRs3zu4wAElcWAtUP//8s90hAPBzKSkpdocAAAhwu3btsjuEgESyBQAAWGL16tVq3ry5tmzZYncogNuY9sO3JScn2x0CAD+2aNEiu0MAYDNu6oHdevbsaXcIAYlkCwAAsMSLL77InZ4APMadixhHjhzxYCQA/IEnL4xOmTLFY20BAFAc+/fv186dO+0OI+CQbAEAACXu0KFD+u233+wOAwAAoMStXr1aR48etTsMAH6EkTIojh9//NHuEAIOyRYAAFDiTp06ZXcIAAAAlomJibE7BJQAphGFXfjsAb6BZAsAAPAa3LEFAPA2XOBCccTExCgrK8vuMAAAgIVItgAAAAAAAHjQ77//rjVr1tgdBrwcyVz/xb5FUfB58R8kWwAAAACgiE6ePGl3CLAIoy5RXFOmTLE7BAAAYCGSLQAAAEARcfcZ/ve//7m1/g8//KDdu3fzWQL82MKFC3XhwgW7wwAAABYh2QIAAACvwl3k8AVnzpxxa/17771Xt956q/785z/r4sWLHooKQHGVxHdPenq6YmNjPd4uAADwTiRbAAAAAMAmGzZs0LBhw+wOA0AJiY6OtjsEeDFuMAEA/0KyBQAAAABsNHXqVLtDAFBCtm/frm3bttkdBgCLkUgDAhPJFgAAAAAAnOC5OoGhJC+MMroFAIDAQLIFAFDili1bZncI8BHcAQbAChxrAFgpNjZWKSkpdocBAABKGMkWAECJmzVrlt0hwGbcFQwAAAJVYmKiFi1aZHcY8EKcIwOQpNGjR9sdAjyEZAsAoMTNnDnT7hDgI/jBCQAA/BFTiQFwB6Ny/dfKlSs1ceJEu8OAh5BsAQAAQEDiRysAIEdJfyesWrVKR48eLdFtAPBf3JTmvyZNmmR3CPAgki0AAAAAACCgWXEhc+rUqSW+DfiWmJgYu0MAYLP58+fbHQI8iGQLAAAAABQRI6MAOFOzZk2Hy2NiYpSVlWVxNPBmixYt0q5du+wOAyWAkShAYCLZAgAAShwXJeGN+BEMAMjhyXOVAQMGOFx+/PhxrVmzxmPbgX9gxBMA+A+SLQAAwO/Ex8dr/vz5+vHHH5WRkWF3OPBSCQkJxV6XRI397E7i8hkIHOxrFFW/fv1UunRph2VTpkyxOBp4u3HjxtkdAgDAQ0i2AAAAv7J8+XLVrFlTvXr10j333KO77rpLFy5csDsseCF3pu3g4isAwJnKlSurW7duDssWLlzIeQkQAOy+KQSAPUi2AAAAr+Huj5LU1FT16tVLaWlp5rK4uDiNGDHC3dBgIV/4ccpdqIiOjrY7BABebNCgQQ6Xp6enKzY21uJoAACAFUi2AAAAv7FkyRIlJSXlW/7ll1/aEA382fTp0+0OATbiAdeA//F0or9jx46qXbu2wzKStQAA+CeSLQAAwG98++23doeAAHHkyBG7Q4Ab3L2oum7dOs8EAsBvhYSEaMCAAQ7Ltm/frri4OGsDAgAAJY5kCwAAKHE83wKAPzl79qzdIcBCvjC1IbzTwIEDnZZNmTLFwkgAAIAVSLYAyOfy5ct2hwAAAOC1MjIy7A4BgIeVRFLtxhtvVPv27R2WxcbGKjU11ePbBAAgBzeMWI9kC4B8evbsaXcIAAAAXotkS2BhdCbcMXjwYIfLExMTtXDhQoujAeCruGgO+AaSLQDy+OOPP7Ry5Uq7wwAAAPBa6enpdocAwEd0795dkZGRDsuio6MtjgaAr8rKyrI7BAAuINkCII/p06fbHQIAAECh7LzDk5EtAFwVERGhfv36OSxbtWqVjh49am1AAHzS6tWr7Q4BgAtItgDIIzMz0+4QAAQwhscD8AUkWwD/U5LnIIMGDXJaNnXq1BLbLgD/8dNPP9kdAgAXkGwBAAAAgCIg2QL4n5J8Nk/Lli112223OSyLiYlheiAAhcrOzrY7BAAuINkCIA/uKgcAAP7O3YuqJFsAFEVQUJDT0S3Hjx/XmjVrLI4IgK8pyYQw/BefG+uRbAEAAH6Dk0kAViDZAvifkr7prF+/fipdurTDsujo6BLdNgDfx8gWwDeQbAEAACWOUXMoCj4vKGnufsZItgQWEvnwhMqVK6tbt24OyxYuXKgLFy5YGxAAn0KyBfANJFsAAAAAoAjS09PtDgGAD3I2lVhaWppmzZplcTQAfAnJFsA3kGwBAAAljruCAfgTRrYA/seKUZUdO3ZU7dq1HZZNmTKlxLcP93FOC7vw2QN8A8kWAAAAACgCki0ACuIscRMSEqIBAwY4LNu+fbvi4uJKMCoAvoyRLYBvINniQefPn9fixYv11ltv6eGHH1aTJk1UsWJFhYaGqkyZMqpZs6a6dOmi0aNH6+TJk0Vuf/Xq1XrqqafUsGFDlS1bVpUqVVKzZs00fPhw/fbbb8WKee/evRo+fLiaNWumSpUqqWzZsmrYsKH69++v1atXF6vN8+fPa+zYsWrTpo2qV6+u8PBw1a1bV127dtWMGTOK9eM0PT1dM2bMUNeuXVW3bl2Fh4erevXqatOmjcaOHavz588XK1YAAOB9uHMPrrDz2T4kWwAU18CBA52WMboFgDOcH6M40tLS7A4h4JSyOwB/MmDAAH377bcOyzIzM5WSkqJTp05pxYoVeu+99/T3v/9d77zzjoKDC855Xbp0Sc8++6zmzJmTZ3lycrISEhK0c+dOjR8/3mzTVR9++KHee++9fD8WDxw4oAMHDmj69Onq06ePJk2apPLly7vU5jfffKNBgwbp3LlzeZYfP35cx48f17Jly/TZZ59p9uzZatiwoUtt/vbbb+rTp4+2b9+eZ/mZM2d05swZbdy4Uf/85z8VExOjrl27utQmnOOhxAAAAAUj2QKguG688Ua1b99ea9asyVcWGxursWPHKjw83IbIAHgzki0ojqNHj9odQsAh2VJCqlSpokaNGqlu3boqV66ckpOTdfDgQf3888/KzMxUWlqaRo4cqcOHD2vatGlO28nIyFD37t3znIjdeuutatmypVJTU/XDDz/o9OnTysjI0JtvvqmMjAy9++67hcb37rvv6v333zffV69eXffcc4/Cw8O1detW7d69W5I0e/ZsxcfH69tvv1WpUgV/XFasWKHu3bsrMzNTklSmTBl16NBBVatW1aFDh/T999/LMAxt27ZNHTp00ObNm1WjRo0C2zxx4oQ6dOigU6dOSbqaCLj33ntVv359nTt3TqtWrVJKSorOnj2rbt26afny5Wrfvn2h/QcAeKc+ffpo1apVqlixYrHWJ2EMwAo557sA/IeV5xCDBw92mGxJTEzUwoUL1adPH8tiAeAbmEYM8A1MI+ZBbdu21cSJE3XgwAGdO3dO33//vWbMmKEJEyZo2rRp+umnn3TixIk8J07Tp0/XvHnznLb5/vvvmydh4eHhmj17tnbu3Klp06Zpzpw5Onr0qIYPH27WHzlypNavX19gnKtXr86TaBk+fLiOHj2qOXPmaNq0adq1a5dmzZpl3k2zYsUKffTRRwW2GR8fr969e5s/PDt06KBjx45pyZIlmjJlitatW6e4uDjVqVNH0tUkypNPPllgm5LUt29fM9FSt25dxcXFad26dZoyZYqWLFmi48ePq0OHDpKuJqYeffRRJSYmFtouAMA7bdu2TV26dOHOLQBejZEtgYXvJHha9+7dFRkZ6bAsOjra4mgA+AKSLYBvINniQa+99pqGDBmim266yWmdatWqKTY2Ns/oi0mTJjmse/bsWf3rX/8y33/22Wd6/PHH89QpXbq0xowZo969e0u6+kOgsKnEcpc//vjjGjNmjEqXLp2nTp8+ffTpp5+a7wt7Lsonn3xiJjnq16+vJUuWqEqVKnnq3HbbbVq6dKlCQ0MlSWvWrNGKFSuctvndd9/phx9+MPu5dOlS3XbbbXnqVKlSRYsXL1a9evUkSRcuXNCYMWOctgkA8H5btmzR3r177Q4DAJwi2QLAHREREerbt6/DstWrVzPtC4B8SPwDvoFkiw2CgoLyPBQvLi7OYb1p06YpKSlJktSwYUM9++yzTtscM2aM+eyXjRs3Om1zy5Yt2rJliyQpODi4wMTEkCFD1KBBA0nS5cuXNWPGDIf1MjIy9OWXX5rvR40apTJlyjis26xZM/Xv3998//nnnzvdfu6y/v37q2nTpg7rlS1bVqNGjTLfT5o0iakdAMDHjR071u4QAMCp9PR0u0OAhZiiMjBYvZ8HDx7scLlhGJo6daqlsQDwfoxsAXwDyRabVK1a1Xx9+fJlh3UWLVpkvh4wYECBJ3916tTJM1pm4cKFhbbZsWNH1a5d22mbQUFBeRIjztpct26dOaqlfPny6tmzp9M2pat9ybFixQozoZTblStXtHr1avN97uSUIz179lS5cuUkXR3d8v333xdYH87xYxKAN0hOTi7WetzxBcAKjGwB/I/V5xAtW7ZUs2bNHJbFxMRwYRVAHhwTAN9AssUme/bsMV/fcMMN+cpTU1O1adMm833btm0LbbNdu3bma0cP25OktWvXFrvNDRs2KC0trcA27777boWFhRXY5p133mmOfElNTdXGjRvz1cm9rbJly6pVq1YFthkeHq67777bfO+s/wAAAIC7N5eQbAHgrqCgIKejW44fP57n5kMA4KYywDeQbLHBqVOn8kyP0qtXr3x19u3bZ2atg4KC1KJFi0Lbbdmypfna2Vz3uZfnru9M7u1mZWVp//79brcZGhqaZ0owR7HmXta0aVOVKlWq0HZd6T8AwDfwYyKwMcoS3o5kCwBP6NevX77np+aIjo62OBoA3oyRLYBvINlikeTkZO3Zs0fjxo1TixYtdOrUKUlSo0aNNGLEiHz19+3bZ76+7rrrFB4eXug26tSpY76+cOGCzp07l6f87Nmz5nRfklS3bt1C24yIiMgz5dlvv/1WYKyutHltrFa1CQCwD8kTAJ5mZ1KOZAvgf+w4plSuXFndunVzWLZw4UJduHDB2oAAeC2SLYBvINlSQn788UcFBQWZ/8qWLasmTZrotdde09mzZyVJXbt21YYNG1S+fPl868fHx5uvq1Wr5tI2r7/++jzvrz0xy91mcdt1dLLnbqxWtQnXcDcxAG9AcgaANyPZElj4TkJJGjRokMPlaWlpmjVrlsXRAPBWfBcBvoFkiw0qVqyo2bNn69tvv1VUVJTDOleuXDFfR0REuNTutfVyt+HofXHavbaNa5d5c5vFFR4ernLlykm6OpVaYmKi+SV36dIlpaenS5JSUlKUlJQkScrMzMwziujixYvmj/Lk5GTzwc8ZGRm6ePGiWS8xMVGZmZmSpKSkJKWkpEiS0tPTdenSJUlXv2ATExOVlZVl9jU1NVXS1RPyy5cvS7p610NiYqJ598Ply5fN5+Ckpqaaf6Nr+5SdnW0OZY+IiFDZsmUlSaVKlcrzeY2MjPSZPvnjfvK2PoWFhZmJ4+DgYEVFRSk4+OpXTPny5c1nOflSn/xxP9nZp5zXoaGhioyMNOtFRUWZU0WWLVvWPJYHBwcXq0+lSpVy+NkLDw9nP/lYn0JCQhQVFWXeBFChQgWXvp+K0idHn73SpUurQoUKkq7egBAVFaWQkBBJUrly5czRxmFhYewnm/uU8/+7sP3k7PvJnT5lZGQ4PDcKDQ2VJJUpU8Z8RqGrxz1/3U/e1qfi7Kf09HSv7pM/7ic7+pRzLHF2HpHzm9DV7ydX+3TffffplltuMevl/uzNmDGD/eSlfXJ2LC/KeUTu7ydv6JM/7ic7+5TD1XPYwr6fcv5G7Cf/61NRz2GL8v2U8zrQ9pOdSLaUkBo1auiFF17QCy+8oKFDh+rJJ5/UnXfeqVKlSikhIUF9+vRR+/btHT4DRZL5QZTkdA7Xa137YPqcD72jNovb7rVtXtuuN7dZXK1btzafq3Pu3DmNHz/ePABER0drz549kqT169dr6dKlkqQTJ05o/PjxZhsTJkzQoUOHJEkrVqzQihUrJEmHDh3ShAkTzHrjx4/XiRMnJElLly7V+vXrJUl79uwx5+xNS0vT+PHjzWni5s2bp02bNkmS4uLiFBsbK+nqAWj8+PHmAS82NlZxcXGSpE2bNmnevHkO+5SSkqLGjRtLunri/9BDD0mSatWqpWHDhpmxPv/88z7TJ3/cT97WpxYtWqhfv36Srn6hDxs2zPyR0a9fP/P5T77UJ3/cT3b2Ked1/fr19fzzz5v1hg0bplq1akmSHnroId13332Srp5AFqdPdevWdfjZa926NfvJx/pUtWpVDRs2zPx+HzRokEvfT0Xpk6PPXuPGjc27jMPCwjRs2DBzStVevXqpdevWkq4e99hP9vYp5/93YfvJ2feTO33KyMhweG5Uv359SVLnzp3VuXNnSa4f9/x1P3lbn4qzn/bu3evVffLH/WRHnyIiIpyew+b+Tejq95OrfTp69Kh69+5t1sv92atXr575t2Q/eVefnB3Li3Iekfv7yRv65I/7yc4+5SROXD2HLez7KediM/vJ//pU1HPYonw/5VxTDbT9ZCsDljp58qQxYMAAQ5IhyahYsaLx66+/5qs3ZswYs85dd93lUtvJycnmOpKMX375JU/5zz//nKc8JSXFpXbvvPNOc52xY8fmKy9TpoxZvmzZMpfafP311811HnzwwXzlXbt2NcvfeOMNl9r87rvvzHXKlSvn0joF2bVrlyHJCA8PN8qVK2fs2rXLyMzMNBISEozs7GzDMAzj4sWLRlpammEYV//+V65cMQzDMDIyMoyEhASzrcTERCM9Pd0wDMNISkoykpKSDMMwjPT0dCMxMdGsl5CQYGRkZBiGYRhXrlwxkpOTDcMwjLS0NOPixYuGYRhGdna2kZCQYGRmZhqGYRiXL18292Vqaqpx6dIlwzAMIysry0hISDCysrIMwzCMS5cuGampqYZhGEZKSopx+fJlwzCMfH1q1qyZUbp0aUOSERERYZQtW9aQZJQqVcqIiooy/8aRkZE+0yd/3E/e1CdJRlhYmFG+fHlDkhEcHGxERUUZwcHBhiSjfPnyRlhYmE/1yR/3k919WrlypSHJCA0NNSIjI81jSVRUlFGqVClDklG2bFkjIiLCkGQ89thjxerTwIED8332co7l7Cff6dMDDzxghISEGFFRUUZQUJAhyahQoUKB30/F6ZOjz17p0qWNChUqGJKMoKAgIyoqyggJCTHPL8LDw83jXqDvJ7v71KVLF5f2k6Pvp71797rVpxtvvNHhuVFoaKghyShTpox5juzqcc9f95O39Mmd/bRmzRqv7JM/7ic7+9S6dWuH57C5fxNKcun76ezZs0Xq044dO5weI/7617+yn7yoT5s3by7wWF6U84jc30/sJ//rU+PGjV06h3X1+6lNmza298kf95M39Kko57BF/X4aNmxYQO2nnGu5Of927dplWI1ki01eeuklc8c3atTI/BDm+N///meWN2vWzKU24+Pj83ygfvvttzzle/bsyVN+4cIFl9pt2rSpuc7EiRPzlV933XVm+YIFC1xq869//au5zuOPP56v/LHHHjPLX3rpJZfanD9/vrnO9ddf79I6BfGG/6B2yN3nwv4BhuH6ZwaBbf369UU6vvTq1atY23nyySf5DPqBBx54oEifl+Lu36Jug8+Ud2nbtm2x993evXvd2natWrXc/vzwebKWO/vmxx9/tDt8WOCuu+7y2P/ns2fPFnn77du3d9hWxYoVXb5REiUvJ9nCdwAKk5Ns8dQ/V2/Ehu8piWNKzr+cZEug8IZruUwjZpPRo0ebw7/27t2rZcuW5SmvXLmy+fqPP/5wqc0zZ87keV+pUiWnbRa33WvbvLZdb24TAAAA8IScea0BwFNypp66VkJCghYtWmRtMADcZnj4gfY5z7YA4N1IttikTJkyatOmjfn+p59+ylN+8803m6/Pnj2b73krjhw/ftx8XalSJXPOvxzXXXddnodvHTt2rNA2U1NTzXn2JOV5cJ+jWF1p89pYrWoTAOA7ivvjxNM/agDAEZItgP/JeYiwXXr06KHIyEiHZVOmTLE4GgDehmQL4BtIttioYsWK5uv4+Pg8ZTfffLOCg6/uHsMwtH379kLb27Ztm/m6UaNGDuvkXp7z4CFX2wwJCVHDhg3dbjMzM1M7d+4sMNbcy3bu3KnMzMwixeqs/wAAAIC7SLYEFhL5KKriJG4iIiLUt29fh2WrV6/W0aNH3YwKgC/juwjwDSRbbHT69Gnz9bXTXoWHh6t169bm+3Xr1hXa3vr1683X7du3d1inXbt2xW6zTZs2CgsLK7DNjRs3Kj09vcA2t2zZouTkZElX+3n33Xfnq5N7W0lJSfrll18KbDMtLU2bNm0y3zvrPwDANxT3x4Tdd6UCsI47/9/dPVa4ciMQABTV4MGDHS43DENTp061NhgAXoWRLYBvINlik/j4eG3cuNF872gkRrdu3czXhZ1Y/f7771q9erXDdZ21uWrVKp04caLAdnNv11mbbdu2NYc7X7p0SQsWLHC5zU6dOqls2bL56pQrV04dOnRwuI4jCxYs0OXLlyVdTVzde++9BdYHAAAAiouRLQBKQsuWLdWsWTOHZTExMVxsBQIY//8B30CyxUMuXLjgct3s7Gy9+OKLSktLkySFhYXpwQcfzFevf//+ZiJi3759mjx5stM233jjDWVlZUmS7r77brVs2dJhvVatWqlVq1aSpKysLI0YMcJpm1988YX2798vSSpfvryeeuoph/VCQ0P1zDPPmO/fffddpaSkOKy7a9euPImTF154wen2hw4dar6eOnWqdu/e7bBecnKy3n33XfP9s88+q1KlSjltFwBgvaKOVGGYPABvxsgWACUhKCjI6eiW48eP57nBEkBg4fcR4BtItnjI9OnT1apVK02fPl2XLl1yWm/Hjh3q2rWrvvrqK3PZ8OHDVbly5Xx1r7vuOr3yyivm+5deeklz587NUycjI0MjRozQ7NmzzWWjR48uMNbc5bGxsRoxYkS+u/Pmzp2rYcOGme9fe+01ValSxWmbI0aMUFRUlCTpwIEDeuSRR/I9h2bHjh166KGHzGnG2rVrpy5dujht84EHHtA999wj6eo0YQ8++KB27NiRp058fLy6deumgwcPSro6quWNN95w2iYAAPB+TAcHV3DRAYA/6tevn0qXLu2wLDo62uJoAHgLRrYAvoHb/z3ol19+Uf/+/VWqVCndcsstuvnmm1WxYkUFBQUpPj5eO3bsMJMCOXr27Kl//OMfTtt855139NNPP2nNmjVKSUlR79699cEHH6hly5ZKTU3V999/n+fZL++9957uu+++AuPs0KGD3n77bX3wwQeSpE8++UQzZszQPffco/DwcG3dulW7du0y63fq1ElvvvlmgW1WrlxZX331lR588EFlZmZq5cqVqlOnjjp27KiqVavq0KFDWr9+vfmjuGbNmpo5c2aBbUrSrFmzdOedd+r06dM6evSomjdvrvvuu0/169fXuXPntGrVKvP5L6VKldLcuXPNpA8A75KSkqKIiAi7w4CP4CIqAACwkrck+itXrqxu3brlu9FSkhYuXKgLFy7ke+YrAP/H7yPAN5Bs8ZDcD47PzMzUrl278iQsrlW+fHmNHDlSf/vb3xQSEuK0XmhoqBYsWKBnn33WPNnauXOndu7cma/eyJEjC02K5Bg1apTCwsI0atQoZWRk6NSpU5ozZ06+eo8//rgmTZrk0rRcXbp00YIFCzRo0CCdP39eycnJWrJkSb56LVq00OzZs1WjRo1C26xVq5bWrFmjPn36aPv27TIMQ+vWrdO6devy1KtatapiYmLyPOcFgHeZM2eOBgwYYHcYAAAAReItF+EROAYNGuQw2ZKWlqZZs2bpxRdftCEqAEXh6e8Oki2AbyDZ4iHPP/+8OnTooFWrVmnz5s3avXu3jh8/rsTERElShQoVVL16dTVv3lwdO3ZUz549Va5cOZfajoyM1Jw5c/TMM89o2rRp2rhxo06fPq3Q0FDVrl1bXbp00eDBg9WoUSOX4w0KCtLbb7+tnj17avLkyVqxYoV+//13ZWRkqHr16rr77rvVv39/dezYsUh/h4ceekh79uxRTEyMFi5cqMOHDysxMVHVqlVTkyZN1KdPH/Xp00ehoaEut3nLLbdo8+bN+uqrrzR79mzt3r1bf/zxh6KiolSvXj316NFDAwcOLHCaMwD227JlC8kWAIBX4IIFioLPC6zWsWNH1a5dW7///nu+sujoaJItQADiuwjFwefGeiRbPKhhw4Zq2LBhnge7e1LHjh2LnPwoTKNGjTRu3DiPtlm1alW9/vrrev311z3WZunSpfXUU0/pqaee8libAADvxUkhAMBTkpKS7A4BKJKQkBANGDBA77//fr6yuLg4xcXFqUWLFjZEBsAuPLMF8A3BdgcAAAD8n1VTsJCkAQBcKz093e4Q4AO8bbq4gkaER0dHWxcIAK9AsgXwDSRbAACA1yFpAqAw3nZhFAA8qV69emrfvr3DstjYWKWmplocEYCi8PTvmYMHD2rjxo0ebROA55FsAQAAABBQ3EnUZGVleTASAHBu0KBBDpcnJCRo0aJF1gYDwHb33nsv//cBL0eyBQAAeB1GtgDwVhkZGXaHAKAEeONouR49eigyMtJh2ZQpUyyOBhLnqLBXZmam3n77bbvDgA/hmGU9ki0AAKDEcZIHwF+QbAFglYiICPXt29dh2erVq3X06FFrAwJgu927d+vUqVN2hwHACZItAADA65CcAeCtSLYAsNLgwYMdLjcMQ1OnTrU2GABe4fLly3aHAMAJki0AAAAA4CKSLYGHGwBgp5YtW6pZs2YOy2JiYpSdnW1xRAAAwBmSLQAAAPAq3jhvPpCDZAsAKwUFBTkd3XL8+HGtWbPG4ogAuILzWSAwkWwBAFiCk01Ygc8ZgJJGssX38N0AX9evXz+VLl3aYdmUKVMsjgaAK86dO2d3CADnQDYg2QIAALwOU7YA8FYllWzhuAf4D09f3KpcubIeeeQRh2ULFy7UhQsXPLo9AO4j2QIEJpItAADAb3CxEggcdt2px8gWwD95+92/zqYSS0tL06xZsyyOBgDgC7z9u80fkWwBAABeh6QJAG+Vnp5udwgoIr5T4A86duyo2rVrOyyLjo62OBoAAOAIyRYAAFDiuBMcgL/geAbADiEhIRowYIDDsri4OMXFxVkbEAAAyIdkC4Bi4y5BAK767rvvilSf4wuAkuTOlAokWwDYxVmyRWJ0CwAA3oBkCwAAKHHLly+3OwQA8AiSLYB/8oV57evVq6f27ds7LIuNjVVqaqrFEQEAgNxItgAAAK/DyBYA3opkS+DxhYvwCByDBg1yuDwhIUGLFi2yNhgAAJAHyRYAAAAAcBHJFgB26tGjhyIjIx2WMZUYAAD2ItkCALAEd4UCcBUjm+DNSLb4Hs5B4Apf+ZxERESob9++DstWrVqlY8eOWRwRAADIQbIFAAB4HS62A/BW6enpdocAIMANHjzY4XLDMDR16lRrgwEAACaSLQAAAAB8jl13oTOyBYDdWrZsqWbNmjksi4mJUXZ2tsURAQAAiWQLAADwQsUd2cKIGP/gK1O5IDCRbAk8fLfA2wQFBWnQoEEOy44dO6Y1a9ZYHBEAAJBItgAAAAtw8RyAvyDZAsAbPPHEEypdurTDsilTplgcDQAAkEi2AAAAL8RdxAC8VUklWzjulRz+tvBHlStX1iOPPOKwbOHChbpw4YLFEQEAAJItAAAAAOAiRrYA8BaDBw92uDwtLU2zZs2yOBoAAECyBQAAeJ3i3oXMdGUAXOHOsYJkC+CffPEcomPHjqpdu7bDsujoaIujAQAAJFsAAIDXycrKsjsEAHCIZAsAbxESEqIBAwY4LIuLi1NcXJy1AQGwhC8mh4FAQbIFAACUuKKOVFm7dm0JRQIA7klPT7c7BBQRF6Xgz5wlWyRGtwAAYDWSLQAAAADgIka2AP7Jk0k5KxN89erVU/v27R2WxcbGKjU11bJYAADepbjTc6P4SLYAAIASx13FADzNruMKyRYA3mbQoEEOlyckJGjRokXWBgNAktSiRQu7QwBgA5ItAIqNDDkAAPBF7pzDkGwB4G169OihyMhIh2VMJQbYo3z58naHAMAGJFsAAECJs+oOdJLAAEoayRYA3iYiIkJ9+/Z1WLZq1SodO3bM4ogAAAhMJFsAAAAAwEUkWwD/5OtTnjqbSswwDE2dOtXaYAAACFAkWwAAQIljxAmKwlcueJ05c8buEGADki0AvNHtt9+uZs2aOSyLiYlRdna2xREBABB4SLYAAADAq5w+fdruEFzSsGFDjRkzRmlpaXaHAguVVLLlyJEjJdIu3OcrCWAEtqCgIKejW44dO6Y1a9ZYHBEQ2PjugDdIT0+3O4SAQ7IFAFBsV65csTsE+Ah+bKAotmzZYncILrl8+bLeeOMNNWnSRIsWLWIElw9x55hUUj9ak5KSSqRdAIHjiSeeUOnSpR2WRUdHWxwNAMBuX3zxhd0hBBySLQCAYlu8eLHdIQCA7Q4dOqTu3burU6dO2rlzp93hoISV1MgWknXei30DX1G5cmU98sgjDssWLFighIQEiyPyPxwPAPiSrKwsu0MIOCRbAADFNnnyZJfrMrIBgL9bvXq1mjdvrqFDh+r8+fN2h4MSMn/+/BJplwt4ADxh8ODBDpenpaVp1qxZFkcDBC6+14HARLIFAACUOH5sIFBkZ2drwoQJatCggT777DMepl6C7EjiX7hwocTa5jgJwBM6duyo2rVrOyybMmWKxdEAABBYSLYAAAAAHpaYmKiXX35ZTZs21XfffWd3OPCQ2NjYEmubZAtgL38ZhR0SEqIBAwY4LIuLi1NcXJy1AQEAEEBItgAAAL/hLxdK4D/27dunBx54QPfff7/27t1rdzhw01dffWV3CABQKGfJFkmKjo62LhAAAAIMyRYAAACgmG644QaX6i1fvlxNmzbV3/72Nx5QDAAoUfXq1VO7du0clsXGxio1NdXiiAAACAwkWwAAQImzasQJ0/DAapMnT9a8efNcSrpkZWXp3//+t2666SZ9/vnnyszMLPkA4TOSkpLsDgEIaP42Onbw4MEOlyckJGjRokXWBgMAQIAg2QIAAAAUU1BQkHr27Km9e/fqww8/VNmyZQtd58KFC3rxxRfVvHlzrVq1yoIo/ZO/JVfnzp1rdwgA/EiPHj0UGRnpsIypxAAAKBkkWwAAxfbDDz/YHQIAeIXw8HC9+eab2r9/v/r37+/SOrt371anTp30yCOP6MCBAyUcIbzdl19+qaysLLvD8Ev+NmIBcEVERIT69u3rsGzVqlU6duyYxREBAOD/SLYAAIqNi0IAkFeNGjU0depU/fzzz2rTpo1L6yxZskRNmjTR8OHDdfHixRKOEO4oyYv2aWlpWr58eYm1DyDwDBo0yOFywzA0depUa4MBACAAkGwBUGz+Nn0HiqaoiRbuKg1s7H8EmlatWunHH3/UrFmzVKtWrULrZ2RkaOzYsWrYsCEjHCzgrcekSZMm2R0CELA8eVzwlmPM7bffrmbNmjksi4mJUXZ2tsURAYGjJI8D3nKMAZAfyRYAQLEw5Q0AFCwoKEh9+vTRvn37NHLkSEVERBS6ztmzZ/Xss8/qjjvu0Pr16y2I0nf544WGb7/9Vr///rvdYfgdbhBCoAoKCnI6uuXYsWNas2aNxREBAODfSLYAAIpl27ZtdocAAD6hTJky+sc//qF9+/apT58+Lq2zfft2tW3bVo8++qiOHDlSwhHCW2RnZ2vy5Ml2hwHAjzzxxBMqXbq0w7Lo6GiLowEAwL+RbAEAFAvJFgAomtq1a2vWrFn66aefdMcdd7i0zrx589SoUSO99dZbunLlSglHiMJYMZpm8uTJyszMLPHtAAgMlStX1iOPPOKwbMGCBUpISLA4IiAwMKoSCEwkWwAAxUKyBQCKp02bNtq8ebOmTp2q6tWrF1o/LS1NH330kRo2bKhp06Yxx76fO3XqlL755hu7wwDgR5xNJZaWlqZZs2ZZHA0AAP6LZAsAoMgMwyDZAgAq/kiH4OBg9e/fX/v379ebb76psLCwQtc5ffq0BgwYoNatW2vDhg3F2i58w8SJE+0OAYAf6dSpk2rVquWwbMqUKRZHAwCA/yLZAgAosiNHjujixYt2hwEfYtUweobrw9eUK1dOH374ofbu3atevXq5tM6WLVv0pz/9SX379uVh6haz6hizYsUKHT582JJtBQIrpn8DvFlISIgGDBjgsCwuLk5xcXHWBgQAgJ8i2QIAKLKtW7faHQIA+JUbb7xRX3/9tdatW6fbbrvNpXVmz56tm2++We+9956Sk5NLOEJIsmwKN8Mw9OWXX1qyrUBw7tw5u0OAD/D3pNzAgQOdlkVHR1sYCQDASjwL0FokWwAARcYUYgBQMu677z5t3bpVX3zxhapWrVpo/ZSUFI0cOVK33HKLZs+ezeiuEpaRkWHZtqKjo5Wenm7Z9vzZypUr7Q4BsF29evXUrl07h2WxsbFKTU21OCIAgBX4fWAtki0AgCIj2QJvVdBdqb/++quFkQDFFxISomeeeUYHDhzQa6+9ptDQ0ELX+f3339W3b1/9+c9/1pYtWyyIMjBZmWw5e/asFi1aZNn2/NnQoUPtDgHwCoMHD3a4PCEhQYsXL7Y4GgAA/A/JFgBAkRiGQbIFRWbV1ByNGzd2WvbBBx9YEgPgKZGRkfrnP/+p3bt36+GHH3ZpnQ0bNujOO+/UgAEDdOrUqRKO0F52TPljZbJFkiZNmmTp9oBA5u/TiElSjx49FBkZ6bBsypQpFkcDAID/IdkCACiSEydO6Pz583aHAThUt25dp2Xz58/X7t27LYwG8IwGDRpo8eLFWrFihZo0aeLSOtOmTVPDhg310UcfMTWMA8W9qGp1smXNmjXav3+/pdtEfps2bbI7BMAjIiIi1LdvX4dlq1at0rFjxyyOCAAA/0KyBQBQJIxqgTcr6AKqYRj68MMPLYwG8KxOnTpp+/bt+vzzz1WpUqVC6yclJemtt95So0aNNG/ePOZr9gCrky2S9MUXX1i+TeT18ccf2x0C4DGDBg1yuNwwDE2dOtXaYAA/Fgij5QDkR7IFAFAkJFvgy+bMmaN9+/bZHQZQbKVKldLQoUN14MABvfTSSwoJCSl0naNHj+rRRx9Vu3bttH379pIP0o+VZLLlhhtucLg8JiaG0Uk2u3Dhgt0hwAKBcmH09ttvV7NmzRyWxcTEKDs72+KIAADwHyRbAABFsnXrVrtDAIotOztbH330kd1hwI/YdXGuUqVKGj9+vHbu3Km//OUvLq2zfv16tWzZUs8++6zOnj1bwhF6t+KO8inJZMuQIUMcLr9w4YLmz59fYtsFEFiCgoKcjm45duyY1qxZY3FEAAD4D5ItAIAiYWQLfF1sbKwOHTpkdxiARzRq1EjLli3Tt99+q5tvvrnQ+oZh6Msvv1SDBg00duxYpaenWxCl/yjJZEvv3r1VoUIFh2UTJ04sse0CuCqQplrs16+fQkNDHZZFR0dbHA3gnwLpmALg/yHZAqDYOHkIPKdPn9bp06ftDgM+yKq7/105LmVlZWn06NEWRANYp2vXrtq5c6c+/fRTRUZGFlr/0qVLGj58uJo0aaIlS5bwne6izMzMEmu7bNmyevLJJx2W/fjjj9q9e3eJbRtAYKlSpYq6devmsGzBggVKSEiwNiAAAPwEyRYAgMvi4uLsDgHwiGnTpunYsWN2hwF4VGhoqIYNG6aDBw/q+eefV3Bw4af6Bw8e1COPPKLOnTtr165dFkTp20pyZIvkfCoxSZo0aVKJbhsIdJ68McQXnv/ibCqxtLQ0zZo1y+JoAADwDyRbAAAuYwox+IvMzEx9/PHHdocBlIgqVarof//7n7Zv36727du7tM6qVavUvHlzvfjii4qPjy/hCH1XSSZbgoKC1LRpU7Vp08Zh+fTp05WcnFxi2wcQWDp16qRatWo5LGMqMQAAiodkCwDAZe4kW3zhDj8ElujoaJ04ccLuMIAS07RpU61atUoLFy5U/fr1C62flZWlzz//XA0aNNC///3vEh/F4S47vleysrJKfBvPPfecw+UXL17UnDlzSnz7AAJDSEiIBgwY4LBs27Zt2r59u6XxAADgD0i2AABcxsgW+JP09HSNGTPG7jCAEhUUFKRu3bpp9+7d+uSTT1S+fPlC10lISNDf/vY33XbbbVq+fLkFUSK3Xr16qWLFig7LJk6caHE0QOAIxBuDBg4c6LSM0S2A9wrE4xXgK0i2AABcEh8fzzMu4He++OILnT592u4wgBIXFham119/Xfv379fgwYNd+pG+d+9e3X///XrggQe0b98+C6K0jjdfpIiIiHB6t/nPP//M89MAeEy9evXUrl07h2UzZ85UamqqxREBAODbSLYAAFzCqBb4o7S0NI0dO9buMODDvPmivSPXX3+9Jk+erF9++UX33HOPS+t89913uvXWW/Xyyy8rISGhhCOEJD377LNOyyZNmmRhJAD83eDBgx0uT0hI0OLFiy2OxvsZhmF3CAAAL0ayBQDgEpItcIfdF6QrVaqkGjVqOCybMGGCzp49a3FEgL1atmyp9evXa+7cuapbt26h9TMzM/XZZ5+pQYMGmjhxojIzMy2IMnDdcsstatu2rcOy2NhYXb582dqAAPitHj16KDIy0mHZlClTLI4GAADfRrIFAOASki3wZeHh4XrjjTcclqWkpOhf//qXxREB9gsKCtKjjz6qvXv36v3331eZMmUKXSc+Pl7PP/+8WrZsqTVr1lgQZeC4Nik9ZMgQh/WuXLmiWbNmWRESEFDsvjHELhEREerbt6/DslWrVjGNMFBMgXpMAQIdyRYAgEtItsAd3jDlwjPPPKNq1ao5LPvvf/+r+Ph4iyMCvENERITefvtt7d+/X08++aRL6+zcuVMdOnRQ9+7ddejQoRKO0Hs888wzlm2re/fuqlq1qsOySZMmecVxFYBjvvb/c9CgQQ6XG4ahqVOnWhsMAAA+jGQLAKBQFy9e1MGDB+0OAz7MqosOBW0nIiJCw4cPd1iWlJSkzz77rISiAnxDzZo1NX36dG3atEmtW7d2aZ1FixapcePGeuONN3Tp0qUSjtB+LVu2LLG2rz1+hYWFaeDAgQ7rxsXFacuWLSUWC4DAcvvtt6tp06YOy2JiYpSdnW1xRIDv87WkKwDPINkCACjU9u3b7Q4BcEvOMP7nnntOVapUcVjn3//+txITEy2MCvBOd911l3766SfNnDlTNWvWLLR+enq6xowZo4YNG2rKlCnKysqyIEp7hISEWLq9Z5991mnZpEmTLIwE8H+BPOVPUFCQBg8e7LDs2LFjWrt2rcURAQDgm0i2AAAKxRRi8Bdly5bVq6++6rDs0qVL+ve//21xRIB3Cg4OVr9+/bRv3z69++67Cg8PL3SdP/74Q08//bRatWqlH374wYIo/V/9+vXVuXNnh2WzZ88mQQx4UKDfhd6vXz+FhoY6LJsyZYrF0QAAPCWQbyawA8kWAEChtm7d6nYbfMEHNm/a/y+88IIqVarksOzTTz8NiKmQAFeVLVtW7733nn777Tf17t3bpXXi4uJ07733qnfv3iX6YGVvOq6UpCFDhjhcnpKSopkzZ1ocDQB/VaVKFXXr1s1h2YIFC5SQkGBtQAAAjwj0mwmsRrIFAFAoRrbAXd50UbR8+fIaNmyYw7LExER9/vnn1gYE+IC6devqq6++0g8//KDbb7/dpXXmzp2rW265Re+8846uXLlSwhH6PmfHyYceekjVq1d3WDZx4kR+QAPwmEGDBjlcnpaWplmzZlkcDQAAvodkCwCgQElJSfrtt9/sDgPwqL/+9a+KjIx0WDZu3DguDMNl3pRItMKf//xn/fzzz4qOjtb1119faP3U1FR98MEHuvnmmzVjxgweslwMoaGhTp+lsHv3bm3YsMHiiAD/FGjHc0c6deqkWrVqOSyLjo62OBoAAHwPyRYAxcadlIHh119/ZV/D70RFRemll15yWBYfH68JEyZYHBHgO4KDgzVw4EDt379fI0aMUOnSpQtd59SpU3rqqafUpk0bbdq0yYIoC+ZrF1WfeeYZBQc7/uk2ceJEi6MBUBhfO8bkCAkJ0YABAxyWbdu2Tdu3b7c0HgAAfA3JFgBAgZxNIVahQgWLIwE8a9iwYSpXrpzDsrFjxyo5OdniiADfUr58eY0ePVp79+5Vjx49XFpn8+bNuvvuu/XEE0/oxIkTJRyh59l180GdOnV0//33Oyz7+uuvFR8fb3FEAAriyzcqDRw40GkZo1sAACgYyRYAQIGcJVtatGhhcSSAZ1WqVEkvvviiw7KzZ8/qiy++sDgiwDfVq1dP8+fP15o1a9SsWTOX1omNjdXNN9+sUaNGkdh00XPPPedweVpamqZNm2ZxNID/8dXRKJ5Wr149tWvXzmHZzJkzlZqaanFEAAB3XLx40e4QAgrJFgBAgZwlW1q2bGlxJIDnvfLKKypTpozDsjFjxnBBASiCdu3aadu2bZo4caKqVKlSaP3k5GT94x//UKNGjTRnzhyfvhPcEwq70Hv//ferdu3aDssmTZoU8H8/AJ4zaNAgh8sTEhK0ePFii6MBfBMJXHgLbsqxFskWAIBTqamp2r17t8Myki3wRkW92Fi1alU9//zzDstOnz6tKVOmeCIsIGCEhIRoyJAhOnDggF555RWVKlWq0HWOHz+uxx9/XPfee6+2bt1qQZS+KSQkRM8884zDsv3792vdunXWBgTAb/Xs2VORkZEOy5hKDAB8y+nTp+0OIaCQbAEAOLVz505lZmY6LLv99tstjgYovoLuLHvttdcUHh7usOzjjz9WWlpaSYUF+K2oqCiNGzdOu3fv1oMPPujSOj/++KNatWqlQYMG6cyZMyUcYfEcOnTI1u0PHjxYISEhDssmTZpkcTSAf+Eu9P8nIiJCffr0cVi2cuVKHTt2zOKIAADwDSRbAABOOZtCrEyZMmrYsKHF0QAl4/rrr9ezzz7rsOzEiRMMuwbc0LBhQy1dulT/93//p8aNGxda3zAMxcTEqEGDBvr444+9biq/WbNm2br9GjVq6OGHH3ZYtmDBAv3xxx8WRwTAXw0ePNjhcsMwODcCXMD0nkBgItkCAHDKWbKlefPmTu+sBXzR66+/rtKlSzssGz16tDIyMiyOCPAvnTt31vbt2/Wf//xHFStWLLT+lStX9Pe//12NGzfWwoULveaCxYkTJ0qsbVf7OGTIEIfLMzIyFBMT48mQAASw22+/XU2bNnVYFhMTo+zsbIsjAgDA+5FsAQA45SzZwvNa4G9q1qypp59+2mHZ0aNHNXPmTIsjgq9g2hnXhYaG6sUXX9SBAwf04osvupS0P3LkiHr06KEOHTpox44dFkTp/Tp16qQbb7zRYdkXX3zBBVAAHhEUFOR0dMvRo0e1du1aiyMCkIPzTxSFt9y0FChItgAAHMrIyHB6YYtkC/zRG2+8odDQUIdlH330kdPnFwEomsqVK+s///mPfv31V3Xu3NmlddauXasWLVroueee07lz50o4Qnu4euEkODjY6dSHR44c0cqVKz0ZFoBi8JcLW/369XN6bjRlyhSLowEAwPuRbAEAOLRnzx6lp6c7LCPZAn9Up04dDRgwwGHZwYMH9dVXX1kbEODnmjRpouXLl2vp0qVq0KBBofWzs7M1adIkNWjQQP/617+cfkcFgoEDBzq9ADpp0iSLowHgr6pUqaJu3bo5LFuwYIESEhKsDQgAAC9HsgUA4JCzKcTCwsJcesgxkJuvDHUfMWKE06mNPvzwQ2VlZVkcEeDfgoKC9OCDD2rXrl0aN26cIiMjC13n4sWLevXVV7VmzRq3tuvLqlWrpu7duzssW7JkiU6dOmVxRAD81aBBgxwuT0tL06xZsyyOBgAA70ayBQDg0NatWx0ub9asmdO7aQFfV69ePT355JMOy3777TfNmzfP4oiAwFC6dGm98sorOnDggIYMGaLgYH6mFOa5555zuDwrK4vpfYBi8PUkbEnp1KmTatWq5bAsOjra4mgAAPBu/IoBADjkbGQLU4ihOHxp7vI333zT6YXe999/n4dPAyWoatWqmjhxorZt26a2bduW2HZ86ZjkTNu2bdWwYUOHZV9++SUj8QB4REhIiNNpVrdt26bt27dbGg8AoGj84bzXl5BsAQDkk5WV5fSHE8kW+LsGDRqoT58+Dst2796tRYsWWRsQEIBuu+02rVmzRvPnz9eNN95odzheKSgoSEOGDHFY9vvvv2vZsmUWRwQgh7+Nkhk4cKDTMka3AADw/5BsAQDks2/fPqWkpDgsI9kCb+apu3beeustpxdK3n//fe4OAiwQFBSkHj16aM+ePRo9erTKlStnd0glqjgXZ/v376+wsDCHZRMnTnQ3JACQdHWa1Xbt2jksmzlzplJTUy2OCPB+/pZ0BeAaki0Aio2Ljf7L2RRipUqV0q233lqsNjnZhJ2K+vlr1KiRHn30UYdl27dv1zfffOOJsAC4IDw8XCNGjND+/fs1cOBAvk9yqVy5stNj1Xfffadjx45ZHBHguzx5bPHH30mDBg1yuDwhIUGLFy+2OBoAALwTyRYAQD7Oki1NmjRReHi4xdEA9nj77bedlo0aNcovL6Sg6Ljwb53q1asrOjpaW7Zs0Z/+9Ce7w/Eazz33nMPlhmFo8uTJFkcDwF/17NlTkZGRDsuYSgwAgKtItgAA8nGWbGEKMRSXL16Qbtq0qbp37+6w7JdfftH//d//WRwRvJEvfrZ93e23364ffvjB7jC8Rps2bdSkSROHZVOmTFFGRobFEQHwRxEREU6fabdy5UpG0gHX4MYseAs+i9Yi2QIAyCM7O1txcXEOy0i2INAwugWFIdliD3/8uxf3eBIUFOR0dMvp06e1dOlSd8ICAoY/Hlc8bfDgwQ6XG4ahadOmWRwNAADeh2QLACCPQ4cO6dKlSw7Lbr/9doujAezVsmVLPfjggw7LNm7cqDVr1lgcEbwNF+fgDZ544glFREQ4LJs0aZLF0QDwV7fffruaNm3qsCwmJkbZ2dkWRwQAgHch2QIAyMPZFGLBwcFq1qyZxdHAX/jyCJB33nnHadmoUaMsjATeiGSLb/LG/eZOTFFRUU6n91mxYoUOHTpU7LYBIEdQUJDT0S1Hjx7V2rVrLY7Ier58TgsAKHkkWzzs6NGj+vLLL/XEE0/otttuU8WKFRUaGqpKlSqpWbNmGjJkiNavX+9ye0FBQUX6V6pUqSLFe/z4cY0cOVK33367qlatqoiICNWvX1+9evXSwoULi3UiceXKFU2YMEHt2rVTrVq1FBYWplq1aql9+/aaOHGirly5UuQ2DcPQwoUL1atXL9WvX18RERGqWrWq7rjjDr333ns6fvx4kdsE4JizZMstt9yismXLWhwNYL8777xTXbp0cVj2/fffF+l7Hf7HGy/aIzANGTLEadmXX35pYSQA/Fm/fv0UGhrqsCw6OtriaAAA8C4kWzwkLi5Od911l2688UY9++yzio2N1Y4dO5SYmKjMzEwlJCRo586d+uKLL9S2bVu1a9fO9gTBlClT1LhxY7333nvatm2bzp8/r9TUVB0+fFjz589Xjx491LlzZ505c8blNjdu3KhmzZpp6NChWrdunU6ePKn09HSdPHlSa9eu1fPPP6/bbrtNmzdvdrnNU6dOqWPHjurRo4fmz5+vw4cPKzU1VefPn9fWrVs1cuRINWnSRFOnTi3GXwHAtZwlW3heCwLZu+++67Ts/ffftzASeBuSLfAWrVq1UosWLRyWRUdHKz093eKIAPijKlWq6JFHHnFYNn/+fCUkJFgcEQAA3qNowyDg1L59+/Tzzz/nWdawYUPdeuutqlKlihITE7VhwwadOHFCkrRu3Trdfffd+uGHH1SvXj2XtvHCCy8UWickJMSltqKjo/X000+b76OiotS+fXtFRkZq165d2rJliyRp1apV6tKli3766SeVK1euwDZ//fVXde7c2Ry5Ehoaqvbt26tWrVr6/ffftWbNGmVmZurw4cPq3LmzfvrpJ916660Ftnnp0iV16dJFu3btMpfdeeedatKkiS5evKg1a9YoMTFRV65c0cCBAxUcHKynnnrKpb8BgPwMwyDZAjjQpk0btW/f3uEzWlavXq0NGzaoTZs2NkQGAFcFBQVpyJAheu655/KVnTt3TgsXLlTv3r1tiAwIPP4+1dTgwYM1b968fMvT0tI0e/ZsDR061IaoAACwH8kWD7vpppv09NNP64knnlDNmjXzlGVnZ2vq1Kn661//quTkZJ06dUr9+vXThg0bXLor8r///a9HYty3b1+eH2H9+vXTpEmT8kwPtGbNGvXq1UsJCQnasWOHXnrppQKHBGdkZKhnz55mouW2227TokWLdMMNN5h1jh49qm7duunXX3/VpUuX1LNnT+3evbvAqc9efPFFM9FSqVIlff3112rfvr1ZnpSUpCFDhig2NlaS9Mwzz6hNmza66aabivZHASDp6tSCFy5ccFjmbrKFu78Dm1X7vyQvbrz77rsOky3S1dEty5YtK7FtA4Ar+vbtq9dee83htL0TJ04k2QLAIzp16qRatWqZN5PmNmXKFJItAICAxTRiHlK9enXFxMTot99+0xtvvJEv0SJdfbj0oEGDNHPmTHPZpk2btGLFCitD1TvvvKOMjAxJ0p/+9CdNnz4933MY2rdvbyYwJGn69Onau3ev0za//PJL88GbFStW1PLly/MkWiTphhtu0LJly1SxYkVJ0v79+wtM4OzatStPDLNmzcqTaJGksmXLavr06ebdxOnp6QVO9QKgYM5GtUhS8+bNrQsE8DBPJHvuu+8+3XPPPQ7Lli9fnm+EKwBYrXz58urXr5/DsnXr1um3336zOCLAd3BjkOtCQkI0YMAAh2Xbtm3T9u3bLY0HAABvQbLFQ+677z4NGDDApWm8unfvrjvvvNN8/+2335ZkaHn88ccfmj9/vvl+zJgxCg52/DG4//771bFjR0lSVlaWJk6c6LTdzz//3Hz92muv6frrr3dYr3r16nr11VcdrnetCRMmKDs7W9LVO2ecPZw4ODhYY8aMMd/PnTtX58+fd9ouAOe2bt3qcHmDBg0UGRlpcTTwJ/5yAaOghP4HH3xgYSQA/I2njpNDhgxxWvbFF194ZBsAMHDgQKdlBd1UCQQKf/n9A6BoSLbY5E9/+pP5+ujRo5Ztd8mSJWYCo2HDhoXOL5/7bpVFixY5rHPw4EHt2bPH4TqFtbljxw4dPnw4Xx3DMLRkyRLzfUEnctLVv2fO1GFZWVl51gXgOp7XAhSsQ4cOat26tcOypUuXKi4uzuKIACCvFi1a5LmxK7epU6cqJSXF4oiAwBMIF1nr1aundu3aOSybOXOmUlNTLY4ICByBcIwBfBXJFpvkPjBmZWVZtt21a9ear9u2bVto/dwnT8ePH9fBgwfz1ck9f33Dhg1Vo0aNAtusWbOmGjRo4HD9HAcOHMgz/2tRY3U2pz4A5wzDcDqyhWQLcFVQUBCjWwB4vdzPZ8wtISHB4UOtAaA4Bg0a5HB5QkKCFi9ebHE0AABHSvK5psiPZItNdu7cab6uXbu2S+t8//33Gjt2rIYPH64RI0Zo7NixWrlypZKSklzebu7nrrhy8bRGjRqqVq2aw/WL2+a19Qpr8/rrr1f16tXdbhNAwU6fPq2zZ886LCPZAnf50wneX/7yF91xxx0OyxYsWJDnOx4A7NC7d2+n038WNDUwEMi4U7zoevbs6fRYw1RiCHT+9PsHgOtIttjg+PHjeUZe5DwXpTD33Xefhg8frrFjx+qTTz7R8OHD1blzZ1133XX661//6vQiaW779u0zX9etW9el7dapU8d87eihmr7SJoCCOZtCTLo6JQngDn/6sREUFKR33nnHafmHH35oYTQAkF+ZMmX01FNPOSzbsGEDSWEAHhEREaE+ffo4LFu5cqWOHTtmcUQAANiLZIsNXnnlFXPqsDp16uihhx5yq73k5GT997//VfPmzbVp0yan9VJSUvLM0Zx7xEpBcj/s/sKFC/nK4+Pjva7N5ORkpaWlubQeis+fLp7CebKlbt26qly5ssXRAN7toYce0m233eawbO7cuYywBLycN97BXqFCBY+2N2TIEKdlkyZN8ui2AOQVSL+TBg8e7HC5YRiaNm2axdEAAGAvki0WmzZtmubPn2++Hz16tMLCwpzWDwsL02OPPaapU6dq165dunTpktLT03XmzBl988036tWrl/lj8fTp03rggQe0f/9+h21duXIlz/uIiAiXYs5d79o2rl3mLW06a7c4wsPDVa5cOUlXn6+TmJhonjzn7A/pajIrZ0q3zMxMJSYmmm1cvHhRGRkZkq4mgpKTkyVJGRkZunjxolkvMTFRmZmZkqSkpCQzOZaenq5Lly5JunrSmpiYaCbsrly5Yj58MC0tTZcvX5YkZWdnKzExUdnZ2ZKky5cvmwmo1NRU8+9zbZ8qVKig0qVLS7r6Ny1btqwkqVSpUoqKijJjjYyM9Jk++eN+Kok+5TzYu2zZsub/p9KlS+uuu+5y2qfw8HBJV49V5cuXlyQFBwcrKipKwcFXv2LKly9vHufYT4Hbp5zjSmhoaJ7pJqKiolSqVClJ+T97xelTRkaGw89e6dKlPdqnlJQU/f3vf3fYp8jISI0ePdon95M3ffZCQkIUFRVlnue4+v1UlD45++zlXPQOCgpSVFSUQkJCJEnlypVzeNwL5P1kZ5+Kup+u/X4qTp8KOzcKDQ2VdHVkSZkyZSS5ftzLysry6H6qX7++2rdvLyn//6eFCxcqISHBkv3kDZ89T+wnb+uTP+4nu/uUcyxxdB6R+zehq99P3tAnK/ZTs2bN1LRpU4f/n2JiYswYfKlPruyngs5hi/P95A198sf9ZGefchTlGour3085sbKf/KNPRT2HLer3k2EYAbef7ESyxUK//PJLnodV9unTR3379i1wnZMnT2rOnDnq37+/mjRpovLlyys0NFTVqlXTAw88oK+//lpLliwx/zNeuHBBQ4cOddhWzoc7R87BvjC5k0G5R8Y4atdb2nTWbnG0bt1avXr1kiSdO3dO48ePNw8A0dHR2rNnjyRp/fr1Wrp0qSTpxIkTGj9+vNnGhAkTdOjQIUnSihUrtGLFCknSoUOHNGHCBLPe+PHjdeLECUnS0qVLtX79eknSnj17zDlv09LSNH78eJ07d06SNG/ePHNEU1xcnGJjYyVdPQCNHz/ePODFxsaaF9M3bdpkPhz12j4NGjRIjRs3lnR16rqckVe1atXSsGHDzFiff/55HTlyxCf65I/7qST6dPLkSUlX79i/7777JEmNGzc2Pw+O+tS6dWtJV6cZ69evn6SrX+jDhg0zf2T069fPnIaM/RS4fWratKmkqxf/nn/+ebPesGHDVKtWLUn5P3vF6dPJkycdfvaaNGni8T6VLl1aTZo0cdinH3/8UQcOHPC5/eRNn72qVatq2LBh5ve7q99PRemTs89ezgN/w8LCNGzYMFWtWlWS1KtXL4fHvUDeT3b2qaj76drvp+L0qbBzo/r160uSOnfurM6dO0ty/bhXEvspJ4Zr/z899thjmjFjhiX7yRs+e57YT97WJ3/cT3b3KTQ01Ok5bO7fhK5+P3lDn6zYT4cPH9agQYMc/n86evSo1q5d63N9cmU/FXQOW5zvJ2/okz/uJzv7lJOMK8o1Fle/n3JiZT/5R5+Keg5bnO+nQNtPtjJgicOHDxvXX3+9IcmQZDRr1sy4ePGix9r/4osvzLYlGb/88ku+OmfPns1TZ+/evS61/dhjj5nrvPjii/nKGzdubJZPmDDBpTb/97//mevceuut+cqHDh1qlvfu3dulNvfs2ZOnf+fPn3dpPWd27dplSDLCw8ONcuXKGbt27TIyMzONhIQEIzs72zAMw7h48aKRlpZmGIZhJCcnG1euXDEMwzAyMjKMhIQEs63ExEQjPT3dMAzDSEpKMpKSkgzDMIz09HQjMTHRrJeQkGBkZGQYhmEYV65cMZKTkw3DMIy0tDTz85KdnW0kJCQYmZmZhmEYxuXLl42UlBTDMAwjNTXVuHTpkmEYhpGVlWUkJCQYWVlZhmEYxqVLl4zU1FTDMAwjJSXFuHz5smEYRr4+VahQwShdurQhyYiIiDDKli1rSDJKlSplREVFmX/fyMhIsw1v75M/7idP9+ngwYNGqVKlDElG2bJljYiICEOSUbp0aWPRokVO+xQeHm5IMsLCwozy5csbkozg4GAjKirKCA4ONiQZ5cuXN8LCwoxXXnmF/RTAfbrjjjsMSUZoaKgRGRlpHkuioqKcfvaK06cvv/wy32dPknHTTTeVyH6aPXu20z4NHDjQ5/aTt3z2JBkhISFGVFSUERQUZEgq9PupOH1y9tmrUKGCIckICgoyoqKijJCQEEOSUa5cuXzHvc2bNwfsfrK7T0XZT9d+Px05cqRYfSrs3Cg0NNSQZJQpU8YoU6ZMkY57JbGfzp07Z1SqVMnh/6fWrVsHzGfPE/vJ2/rkj/vJ7j716NHD4Tls7t+Ern4/nT9/3iv6ZNV+OnfunFGhQgWH/5/69u3rk31ytp9++umnQs9hi/P95G//n+zeT97Qp3vvvdelc9jifD/t37+f/eRHfSrKOWxxvp9eeumlgNlPOddyc/7t2rXLsBrJFgucOnXKqF+/vrmj69WrZ5w6dcqj28jKyjLq1KljbuP999/PVyc5OTnPB27btm0utf3QQw+Z64wYMSJf+Z133mmW/+tf/3KpzXHjxpnr5PzQy+311183yx9++GGX2ty6dWue/uX8Jy0ub/gPaofcfS7sn7t/Y3iP5cuXO93PZ86ccbpeUT4vr7zyioU9grdp1qxZkT4vUvFOUWJiYhy2VbduXc926P+XmZlp3HzzzQ63GRISYhw+fLhEtuvvivpZKe7npTjbufbf5s2bPdx7uMqd/XbkyBHLt1kSn2FXvPrqq063uXXr1hLbrjfx5v0D79GjRw+P/X9298Y/X9SrVy+Hf4uwsDDjwoULdofnMTnJFl/5DoB96tWrV2LnDIcOHbK7e/Cgkjy/lGS89NJLdnfRMt5wLZdpxEpYfHy8OnXqZA7Hql69ulatWqXq1at7dDvBwcHmnMySHD6YNyIiIs9zTf744w+X2j5z5oz5ulKlSvnKcz8421vaLFOmTIHPwgGQ17Zt2xwur1GjhqpVq2ZxNIDvCAkJ0VtvveWwLCsrSx9//LHFEQFAXs8++6zTskmTJlkYCQB/NnjwYIfL09LS/j/27js8imr/H/h700kHEiCAoYTeIXSQXgSlSEClSEmkiOWiV9GLXq6K5cLlXi9eFYLSpCNRiiAEpAhSlFBCB4EQQg/pvc3vj/yy34TMJJvN7pnZ2ffrefI8yXxmz36GHWZn5jPnHKxfv15wNkTqu379utopEJEKWGyxopSUFAwePBjnz58HAPj5+WHv3r1o0KCBVd6veAEnPj5edp2mTZsaf79586ZJ7cbGxhp/b9asmc22SUTKlIotHTp0EJwJke0ZO3ascXzlx61YsaLE9xPpT9GkjkRa1aRJkxIPZRW3du1a41jZRESVMXDgQOMcJo9btmyZ4GyIiIjUwWKLlaSnp2Po0KGIiooCAPj4+GDXrl3GiYms9Z5FPDw8ZNdp3ry58feiiYfKcufOnRI9S4q/3tw2gZI3dstr8969eyV6rZjbJhEpY7GFrE2SJLVTsBonJyfMmTNHNpabm4v58+cLzohEys/PVzsFonJNnz5ddnl6ejrWrVsnOBsi/dPzeY8SR0dHTJ48WTZ28uRJnD59Wmg+REREamCxxQqysrIwfPhw/PbbbwAKh7TasWMHgoODrfq+xQsdtWvXll2nb9++xt8PHDhQbpsHDx40/h4YGIhGjRqV2ebly5dx9+7dMtu8c+cOrl69avxb7km7xo0bl3gqpqK5Kj29R0SlJSYmKnZxZrGFyDQvvvgi6tWrJxv79ttvcfv2bcEZERH9n5EjR6JGjRqysSVLltjljWGixxkMBrVTsHlTpkxRjC1fvlxgJkREVITneWKx2GJhubm5CAkJwb59+wAArq6u2Lp1K3r06GHV97106RKOHDli/LtPnz6y6w0fPhwODoUf++XLl3Hs2LEy2125cqXx9xEjRsiu07hx4xI9dlatWlVmm8XjrVu3RsOGDUutYzAYMHz4cNk85Bw9ehRXrlwBUPhEzbBhw8pcn4j+T1lPmbHYQpai9xsYzs7O+Nvf/iYby8nJwb/+9S/BGZEoet+3qaRevXqpnYJZXFxcEBoaKhs7c+YMfv/9d8EZEZEeNWzYsMTDmMWtWbMGWVlZgjMiIiISi8UWC8rPz8e4ceOwc+dOAIXDimzatAkDBgwwq720tDST1svIyMDkyZONw1j4+fnhqaeekl23Zs2aGDVqlPHv2bNnK1Y4IyMjERkZCaCwgDFjxgzFHGbOnGn8feHChYqT2t+7dw8LFy40/v3KK68otjljxgxjYWj37t3Ys2eP7HoFBQWYPXu28e8xY8bA399fsV0iKklpCDE/Pz/FcZeJKsoebkhPnjxZ8f9MeHi4SUNiEpG2de3aVe0UzDZ16lTFY/GSJUsEZ0NEeqVU2E1MTMS2bdsEZ0NERPZwLa4lLLZYiCRJCAsLw+bNmwEADg4OWL16dYneGRVVv359zJ07F5cuXVJc57fffkO3bt1w/Phx47J58+bB09NT8TXz5s2Ds7MzAODQoUOYNGlSifleAGD//v0YN26c8e+JEyeWOd/MtGnTjJMDP3r0CEOGDCk1sf3NmzcxdOhQJCQkACicrDMsLEyxzdatW2P8+PHGv8eOHVtqOLH09HRMnjwZhw8fBlD41N68efMU2ySi0ormlnpccHAwv5SJKsDV1RXvvPOObCwrKwv//ve/BWdERJZWdA5tixo2bIhBgwbJxjZu3IjExETBGRFpiyXPe+35HDokJAQ+Pj6ysWXLlgnOhoiIOIyYWE5qJ6AXixcvLjE8VlBQEA4fPmwsApTnyy+/LLXs0aNHmDdvHubNm4fatWujTZs2qFmzJtzc3JCQkICoqKhS8yy88sorZfZAAYBmzZph8eLFeOmllwAAq1evxk8//YR+/frB29sbFy5cKFG8adOmDRYtWlRmm87OzoiIiEDPnj2RlpaGU6dOoXHjxujfvz/q1KmDuLg47Nu3D7m5uQAAb29vREREwMmp7F3wyy+/xMmTJ3H+/Hk8evQIffv2RZcuXdCiRQukpKRg3759JS4Mly5dKjuvDBEpU+rZYukhxOz5opPsx0svvYRPP/1Udv6yr7/+GrNnz2bvSyJSzYwZM7B79+5SyzMzM7F69Wq8/vrrKmRFRHpSpUoVjB07VrbH3J49exAbG4vAwEAVMiMiIrI+Flss5MGDByX+vnr1aolJ4MsjV2wp7s6dO7hz545ivGrVqliwYIGxgFKesLAwSJKEWbNmIT09HYmJiYiIiCi1Xv/+/bF69Wp4eXmV22bbtm0RGRmJ8ePH48aNG8jNzcWuXbtKrdewYUOsXbsWrVq1KrdNb29vREZG4sUXXzTOg3P8+PESxSAA8PT0xBdffIFJkyaV2yYR/Z/U1FTjfEeP43wtZIvUfmrHzc0Nb7/9Nt58881SsYyMDHz++ef49NNPVciMiCyh6HzUVj3zzDOoXbu27HVFeHg4XnvtNT4cQUSVFhoaKltskSQJK1euxNy5c1XIioiIyPo4jJiGXblyBatWrcKMGTPQrVs3NGrUCL6+vnBycoKvry+aNGmCsWPHYtmyZYiLizO50FLkpZdewoULFzB37ly0b98e1atXh6urK+rXr49Ro0bhhx9+wJ49exAQEGBym926dUN0dDS++uor9O7dGwEBAXBxcUFAQAB69+6Nr776CmfOnKnQeNe1a9fG3r17ERERgVGjRqF+/fpwdXVF9erV0b59e8ydOxfnz5/HlClTKrT9RFQ4Ka7SzWkWW0hPRN48nD59OmrUqCEb+/LLL43DaRKR7Tl69KjaKVSKk5OT4jXDhQsXTO6VT0RUlo4dO6J169aysRUrVqCgoEBwRkT6ovYDZkSkjD1bLOSDDz7ABx98YNE2GzdujMaNG2PixIkWbbe4wMBAfPjhh/jwww8t1qanpydmzpyJmTNnWqxNg8GAUaNGYdSoURZrk4iUhxDz8fFBgwYNBGdDpA/u7u546623MHv27FKx1NRULFq0yKLfu0REFfHSSy/h448/lr3ZGR4ejieffFKFrIjUZ8kHM+z9RqjBYEBoaCjeeOONUrGYmBjs378f/fv3VyEzIiIi62LPFiIym71fROhBWfO1cBgRsiR7O168/PLLqF69umxs0aJFSE5OFpwRWYu97dtk+5544gk8/fTTsrHvv/8e8fHxgjMiIj2aMGECnJ2dZWPLly8XnA2RvvBanUi7WGwhIrJjZRVbiMh8np6esvO2AEBycjL+97//Cc6IrOXcuXNqp0BUYdOnT5ddnpOTg1WrVgnOhoj0yM/PDyNGjJCNRUREIDExUXBGRERE1sdiCxGRncrMzMSFCxdkY8HBwYKzIb2zx6f/X331Vfj6+srGPv/8c6SmpopNiKwiLS1N7RSIKuypp55CYGCgbCw8PJzzKRCRRYSFhckuz87Oxvr16wVnQ0REZH0sthAR2ano6Gjk5+fLxtizhajyvL29MWvWLNlYQkICvv76a7EJERH9f46Ojpg6daps7OrVq9i/f7/gjIhIjwYOHIi6devKxjiUGBGRGPb44KOaWGwhIrJTSkOIeXp6onHjxoKzIdKn119/HV5eXrKxhQsXIj09XXBGRESFwsLC4OjoKBsLDw8XnA0R6ZGjoyMmT54sG4uKisKZM2fEJkRERGRlLLYQEdkppWJLu3bt4ODArwciS6hatSpef/112Vh8fDxvaBKphBPLAgEBAYrzKfz444+4d++e4IyISI+Uii2AbfZu4RPiRGRreNwSi3fTiIjslFKxxVpDiPHGFtmrWbNmwcPDQza2YMECZGZmCs6ILIkXL2TLZsyYIbs8Ly8PK1asEJwNkbp4rmodQUFB6NOnj2xszZo1yM7OFpsQERGRFbHYQkRkh3JycnD27FnZGOdrIVumxRvffn5+eOWVV2Rj9+/fx7fffis4IyLS4rFCDf3790fDhg1lY0uXLkVBQYHgjIj0gceYksLCwmSXJyQkYOvWrYKzISIish4WW4iI7ND58+eRm5srG7NWseXu3btWaZdsg9pPi6r9/n/9619RpUoV2dj8+fP5VCcRqcLBwQHTp0+XjcXExCAyMlJwRkSkR6NGjYK3t7dsbNmyZYKzISIish4WW4iI7JDSEGJubm5o3ry5Vd4zKyvLKu0S2YIaNWooDtdz+/ZtDtdDRKqZMmUKnJ2dZWNLliwRnA2Reiz5YIbaD3lojbu7O8aNGycb27NnD2JjYwVnREREZB0sthAR2aGoqCjZ5W3btoWTk5PgbIjsw9tvvw1XV1fZ2GeffYacnBzBGZEl8IYa2Tp/f3+EhITIxn766SfExcUJzoiI9Cg0NFR2uSRJWLlypdhkiIiIrITFFiIiO6TUs4XztRBZT0BAAKZOnSobi42NxerVqwVnRERUSKnnXX5+Pof4ISKL6NixI1q3bi0bW7FiBeeIIiIiXWCxhYjIzuTl5eHMmTOyMRZbiKzrnXfegYuLi2zs008/RV5enuCMiIiAXr16oVmzZrKxb7/9lscmsgvsqWhdBoNBsXdLTEwMDhw4IDYhIiIiK2CxhYjIzly6dElx/hQWW4isq27dupgyZYps7Pr161i3bp3gjIiICm+CTp8+XTYWFxeHnTt3Cs6IiPRowoQJinNEsRcdEZF18GECsVhsISKyM0pDiDk7O6Nly5aCsyGyP++++67i3Egff/wx8vPzBWdElcGLF9KLiRMnKs4rFR4eLjgbItsmSZLaKWiSn58fRowYIRuLiIhAYmKi4IyIiPSP30lisdhCRGRnlIotrVq1UrzJQkSWU79+fUycOFE2dvXqVWzcuFFwRkREQLVq1fD888/Lxn7++WfExMSITYiIdCksLEx2eXZ2NtavXy84GyIi/WOxRSwWW4jIbDxg2yalYguHECMSZ86cOXB0dJSNffzxx5wk1obwu9A2sUeSPKWhxCRJwrfffis4GyLSo4EDB6JOnTqyseXLlwvOhoiIyLJYbCEisiMFBQU4deqUbCw4ONiq780bWySCrdz4DgoKwrhx42RjFy9eREREhOCMyFy2ss8RmaJbt25o3bq1bGzZsmXIzc0VnBER6Y2joyMmT54sG4uKisKZM2fEJkRERGRBLLYQEdmRq1evIi0tTTbGni1kTWrfkNZise+9995TzIu9W4isS+1jklYZDAbF3i337t3Dtm3bBGdERHo0ZcoUxRh7txARkS1jsYWIyI4oDSHm6OiINm3aCM6GyL41bdpUcX6E6Oho3tQkIlVMmDAB7u7usrElS5YIzoZIHC0+mKFXQUFB6NOnj2xszZo1yM7OFpsQERGRhbDYQkRkR5SKLc2bN0eVKlUEZ0NE77//vmJs3rx5fPqeiITz8fHB2LFjZWN79+7Fn3/+KTgjItKjsLAw2eUJCQnYunWr4GyIbAuLw0TaxWILEZEdUSq2cAgxsjYWDeS1bNkSISEhsrGTJ09i586dgjMiIgJmzJihGFu6dKnATIhIr0aNGgVvb2/ZGIcSIyIiW8ViCxGRnZAkSdViC2+2E8lj7xYi0pqOHTsqnhusWLGCQ/wQlcPZ2VntFDTP3d0d48aNk41FRkYiNjZWcEZERESVx2ILEZGdiImJQVJSkmyMPVvI2tjVXVm7du0wfPhw2djx48exZ88ewRkRESn3bomPj8cPP/wgOBsi67PkuYqvr6/F2tKz0NBQ2eWSJGHVqlWCsyEiIqo8FluIiOyEUq8Wg8GAdu3aWf39ebPdvon6/C9cuCC7/Pr160Le31x///vfFWMfffQRe7cQkXBjx46Fl5eXbGzJkiWCsyEiPerYsSNat24tG1u+fDkKCgoEZ0RERFQ5LLYQEdmJqKgo2eVNmjRRvJliSSy2kAhbtmxROwWzdOzYEUOHDpWN/fbbbzhw4IDYhIjI7nl6emLChAmysV9//RUXL14UnBER6Y3BYFDs3RITE8PzHyIiC+CDe2Kx2EJEZCfUnK+FSNQJntZ7sJSlrN4t8+bNE5gJVQQvXkjPpk+frhgLDw8XmAmR9fHBIHVMmDBBcY6bZcuWCc6GiEh/eL0iFostRER2QJIkFluINK5r164YOHCgbGz//v04dOiQ4IyI9Is3VU3Ttm1bdO3aVTa2atUqZGZmCs6IiPTGz88PI0aMkI1FREQgMTFRcEZERETmY7GFiMgO3L59Gw8fPpSNsdhCpB3s3WJ7eNOe9E6pd0tSUhI2bdokOBsi6+GTv+pRGkosOzsb69evF5wNERGR+VhsISKyA0q9WgCgffv2AjMhorI8+eST6NOnj2xsz549OHbsmNiEiMjuPffcc/D19ZWNcSgxIrKEQYMGoU6dOrKx5cuXC86GiIjIfCy2EBHZAaViS4MGDVC1alXB2RBRWdi7xbawZ4tt4hPspnN3d8ekSZNkY0ePHkV0dLTgjIisg8dz9Tg6OmLy5MmysaioKJw5c0ZsQkRERGZisYWIyA5wvhYi29G3b1/06NFDNrZz505ERUUJzojKwpv2ZA+UhhID2LuFiCxjypQpijH2biEiIlvBYgsRmY03mGyH0s1ZFluItMdgMLB3ixn4nURkPc2bN0evXr1kY6tXr0ZaWprgjIhIb4KCghSHUl2zZg2ys7PFJkREpBPsuSkWiy1ERDp379493LlzRzYWHBwsLA9+wROZbtCgQejcubNsbOvWrRxOg4iEU+rdkpqaig0bNgjOhsjyeK6qvrCwMNnlCQkJ2Lp1q+BsiIiIKo7FFiIinTt16pRirH379sLy4AUskenK693y8ccfC8zGNrBnC5F1hYSEwM/PTza2ZMkSwdkQkR6NGjUK3t7esjEOJUZERLaAxRYiIp1Tmq+lbt26qFGjhuBsyF7xRnjFPf3004oF0YiICJw/f15wRkRkz1xdXcucwPrEiRNiEyIi3XF3d8e4ceNkY5GRkYiNjRWcERGR7eO1uFgsthAR6ZxSsYXztRBpW1m9WyRJwieffCI4IyKyd9OmTVOMhYeHC8yEiPQqNDRUdrkkSVi1apXgbOTzICKyJTxuicViCxGRzmml2MIveKKKGzFiBFq3bi0b27hxIy5fviw4I+3iMYYqgkNbmqdx48bo37+/bGz9+vVITk4WnBGR5fC4oA0dO3ZEq1atZGPLly9HQUGB4IyIiIhMx2ILEZGOJSQkICYmRjbGni1E2ufg4KDYu6WgoACffvqp4IyIyN7NmDFDdnl6ejrWrl0rOBsi0huDwYCwsDDZWExMDA4cOCA2ISIiogpgsYWISMdOnTqlGGOxhUTi06LmCwkJQfPmzWVja9euxbVr1wRnpE2pqamqvC/3bbI3I0aMQM2aNWVjS5YsYS8zIqq0CRMmwNnZWTa2bNkywdkQERGZjsUWIiIdi4qKkl1es2ZN1K5dW3A2RGQOBwcHvP/++7Kx/Px8fPbZZ4Iz0qbvv/9e7RSI7IKzs7PiU+dnz57FsWPHBGdEZBksnmuHn58fRowYIRuLiIhAYmKi4IyItIXHKyLtYrGFiEjHypqvhSdoRLbj+eefR+PGjWVjq1atUhwu0J5ERESonQLZEPa+qJypU6cqnkeEh4cLzobIMnhc0JbQ0FDZ5dnZ2diwYYPgbIiIiEzDYgsRkY6VVWwRjcUdIvM5Ojrivffek43l5eVh/vz5gjOiIrw5R/aofv36eOqpp2RjGzdu5FPnRFRpgwYNQp06dWRjHEqMiIi0isUWIiKdSklJwdWrV2VjnK+FyPaMGzcODRo0kI0tX74ccXFxgjPSFhY9iMSaPn267PKsrCx89913grMhqjw+GKQtjo6OmDx5smwsKioKZ86cEZsQERGRCVhsISLSqdOnTyvGWGwh0XgjvPKcnZ0xZ84c2VhOTg4WLFggOCMCuG+T/Xr66acVnzpfsmQJ/28QUaVNmTJFMbZ8+XKBmRAREZmGxRYiIp1SGkKsatWqqFevnuBsiMgSJk6ciMDAQNnY0qVLcffuXcEZaQefSCYSy8nJCS+99JJs7NKlSzh06JDgjIhIb4KCgtCnTx/Z2Jo1a5CdnS02ISIiG8QHYMRisYWISKfKmq+FNyWJbJOLiwveffdd2Vh2djYWLlwoOCPtUOsigsdTsmcvvfQSHBzkLymXLFkiOBsi0qOwsDDZ5QkJCdi6davgbIiIiMrGYgsRkU5FRUXJLucQYkS2bcqUKahdu7ZsbPHixXjw4IHgjOwbnxQje1a3bl0888wzsrHNmzfj4cOHgjMiMh+L59o0atQoeHt7y8Y4lBgRUfl4vSIWiy1EZDYesLUrPT0dly5dko0FBwcLzoaILMnNzQ3vvPOObCwzMxP/+c9/BGdERPZsxowZsstzc3OxcuVKsckQke64u7tj7NixsrHIyEjExsYKzoiIiEgZiy1ERDoUHR2NgoIC2Rh7thDZvqlTp6JmzZqysS+//BKPHj0SnJH94pPQZO8GDRqkOBdceHi44vkIEZGplIYSkyQJq1atEpwNERGRMhZbiIh0SGm+Fi8vLwQFBQnOphBvSBJZTpUqVfD222/LxtLT0/Hf//5XbEIawN6WROpwdHTEtGnTZGPXrl3Dvn37BGdEZB6eq2pXx44d0apVK9nYihUrWNQlIiLNYLGFiEiHlIot7du3V5zI1tp4I5TIsmbMmAE/Pz/Z2BdffIGkpCSxCRHZkPz8fLVT0JXQ0FA4OTnJxpYsWSI4GyLSG4PBoNi75caNGzhw4IDYhIiIbAgfJhCLxRYiIh1SKrZwCDEi/fDw8MBf//pX2VhKSgq++OILwRnZJxaSbdP+/fvVTkFXatWqhZEjR8rGtm7dirt374pNiIh0Z8KECXB2dpaNLV++XHA2RERE8lhsISLSmezsbJw7d042pmaxhU9TEFneK6+8gmrVqsnGPv/8c6SkpAjOiMg2cGgry5sxY4bs8ry8PN4IJaJK8/Pzw4gRI2RjERER7NFLRESawGILEZHOnDt3Dnl5ebIx9mwh0hcvLy/MmjVLNpaUlIQvv/xSbEIqYg8TqgjuL5bXt29fNGrUSDb2zTffcOg20jw+GKR9oaGhssuzsrKwfv16wdkQERGVxmILEZHOREVFyS6vUqUKmjVrJjgbIrK21157DT4+PrKx//znP0hLSxOcEZH2sdhieQ4ODpg+fbps7ObNm9i9e7fgjIgqhscF7Rs0aBDq1KkjG1u2bJngbIiIbAO/38RisYWISGeU5mtp164dHB0dBWdDVCg5OVntFHTL19cXr7/+umzs0aNHWLx4seCMiLSPF53WMXnyZLi4uMjGwsPDBWdDRHrj6OiIyZMny8aioqJw5swZsQkRERE9hsUWIjLijQd9UCq2cAgxUtOtW7fUTkHXZs2aBU9PT9nYwoULkZGRITgjIm3jOY91+Pn5YfTo0bKxn376id8FpGkcRsw2TJkyRTHG+aGIiEhtLLYQkREvgG1fbm4uoqOjZWMsthDpV7Vq1fDqq6/Kxh48eIClS5cKzohI21hssR6locQKCgo4zA8RVVpQUBD69OkjG1uzZg2ys7PFJkREpHE87xWLxRYiMsrNzVU7BaqkixcvKl5gqF1s4dOCRNb15ptvwt3dXTa2YMECZGVlCc7IPOZeDPAigiqC+4v1PPnkk2jevLls7JtvvkFeXp7gjIhIb0JDQ2WXJyQkYNu2bYKzISIi+j8sthAR6YjSEGIuLi5o0aKF4GyISCR/f3+8/PLLsrG7d+/azBPlHG+dRGCxxXoMBoNi75Y7d+5gx44dgjMiIr0JCQmBt7e3bMxWzneIKoMPMhJpF4stREQ6olRsad26teKEtUSkH2+99Rbc3NxkY//85z9tYmiNK1euqJ0C2YG0tDS1U9C1iRMnKh6LlixZIjgbItPw5qXtcHd3x9ixY2VjkZGRHB6biIhUw2ILERnxAsP2RUVFyS5XewgxIhKjVq1amDZtmmwsLi4Oq1atEpwRkTZFRkaqnYKuVa1aFc8//7xsbPfu3bhx44bgjIhIb8LCwmSXS5KElStXik2GiIjo/2OxhYhIJ/Lz83H69GnZWHBwsNhkZLCYRyTG7NmzFXuyffbZZ7qdn4vDQhFpy4wZM2SXS5KEb775RnA2RKQ3HTt2RKtWrWRjK1asQEFBgeCMiIiIWGwhokrgjS1tuXLlCjIyMmRj7NlCZD/q1KmDl156STYWExODNWvWCM6IiOxRly5d0KZNG9nY8uXLkZOTIzgjorLxwSDbYjAYFHu33LhxAwcOHBCbEBEREVhsIaJieIFh25Tma3F0dETr1q0FZ0NEanrnnXfg7OwsG/v000+Rl5cnOCPTmVvI53cYkbYYDAbF3i3379/H1q1bBWdERHozYcIExfOd5cuXC86GiEib+KC0WCy2EJERD8C2TanY0rJlS8VJakXi/kUkTmBgICZPniwb+/PPP7FhwwaxCQnAYwyR9owfPx4eHh6ysfDwcMHZEJHe+Pn5YcSIEbKxiIgIJCUliU2IiIjsHostREQ6oVRs4RBiRPbp3XffhaOjo2zs448/Rn5+vuCMiMjeeHt7Y9y4cbKxX375BVeuXBGcERHpTWhoqOzyrKwsrF+/XnA2RERk71hsISIjDsFiuwoKClhsIaISGjZsiBdffFE2dvnyZWzevFlwRtbFni1E2jR9+nTF2NKlSwVmQkR6NGjQINSpU0c2Zo2hxHi+QUREZWGxhYhIB27cuIGUlBTZGIstRPZrzpw5cHCQP92bN28eCgoKBGdkPXxggEibgoOD0bFjR9nYypUrkZWVJTgjItITR0dHxaFTT5w4gejoaLEJERGRXWOxhYhIB6KiomSXGwwGtGvXTmwyRKQZjRs3xtixY2Vj58+fx5YtW8QmZAJznxjlk6ZE2qXUu+XRo0eIiIgQnA0R6c2UKVMUY9bo3UJERKSExRYiMuJTwbZLaQixZs2aKU5MS0T24b333lM8vs+bN49Fikrivx9R+V544QV4e3vLxsLDwwVnQySP10K2KygoCH369JGNrV69GtnZ2WITIiIiu8ViCxGRDtjCfC28gCVSR/PmzTFmzBjZ2OnTp/HTTz8Jzsg61Cp6sNhCVD5PT0/FOaQOHTqE8+fPC86IiPQmNDRUdnlCQgK2bdsmOBsiIrJXLLYQEdk4SZJsothCROp5//33FWMfffQRCwZEZHVKQ4kBwNKlSwVmQkR6FBISotiDbtmyZYKzISIie8ViCxGRjbt16xYePXokG2OxhYgAoHXr1nj22WdlYydOnMDu3bsFZ0RE9qZ169bo3r27bGzVqlXIyMgQnBFRSeyFbdvc3d0V56mLjIzErVu3BGdERET2iMUWIiIbp9SrBQDatWsnLpFy8AKWSF220rvF3Dy0kj8RKVPq3ZKcnIxNmzYJzoaI9CYsLEx2uSRJWLlypdhkiIg0gtdJYrHYQkRk45SKLUFBQfD19RWbDBFpVocOHfDMM8/Ixo4ePYp9+/YJzoiI7M2YMWNQtWpV2diSJUsEZ0NEetOxY0e0atVKNrZixQoUFBQIzoiIiOyNk9oJmKqgoAAXL15ETEwMUlJSkJuba/JrJ06caMXMiPSDPQ9sU1RUlOxyDiFGRI/7+9//jp9++kk29tFHH6F///6CM7IcPrFFpH1VqlTBpEmT8N///rdU7Pjx4zh9+rSmeuUSkW0xGAwIDQ3Fm2++WSp248YNHDx4EH379lUhMyIisheaL7bcvHkT8+bNw/fff4+0tLQKv95gMLDYQkS6ptSzJTg4WHAmRKR1nTt3xuDBg2XnaPn1119x8OBB9O7dW4XMiMheTJ8+XbbYAgDh4eFYvHix2ISI/j8+eKYPEyZMwDvvvCP7gO6yZctYbCEiIqvS9DBiO3fuRKtWrbBixQqkpqZCkiSzfoiI9Oru3bu4d++ebIw9W4hIzty5cxVj8+bNE5iJZfGcj8g2NGvWTLGou2bNGqSmpgrOiIj0xN/fH8OHD5eNRUREICkpSWxCZJeUrtGJ1MDrJLE027MlNjYWY8aMQWZmpnFZrVq10LZtW1SvXh3Ozs4qZkdEpA1KvVoAoH379gIzKR+/4Im0oXv37ujXr5/sHC2//PILjhw5gu7du6uQWSEeK4j0b8aMGTh48GCp5WlpaVi/fj2mTZumQlZEpBdhYWGIiIgotTwrKwvr16/Hyy+/rEJWZE9+++03q7bPnnhE2qXZYsvChQuRmZkJg8GA2rVrIzw8HEOHDlU7LSJdq+gXNm+IqU+p2BIYGAg/Pz/B2RCRrZg7d65ssQUo7N3y888/C86o8tT6TuLFLlHFPfvss/Dz80N8fHyp2JIlSzB16lT+3yIisw0aNAh16tTB7du3S8WWL1/OYgtZ3eHDh9VOgYhUotlhxPbs2QMAcHJyQmRkJAstRAKweGJ7lIotWhxCjDdNiLSjd+/eePLJJ2Vju3btwu+//y44I9vF706yhGeeeUbtFIRydXVFaGiobOzUqVM4ceKE4IyISE8cHR0xefJk2diJEycQHR0tNiGyO9bu2UJE2qXZYsutW7dgMBjQp08fNG/eXO10iIg0yZaKLUSkLWXN3fLxxx8LzIRIPCcnbXXwnzp1qtopCFfWNoeHhwvMhIj0aMqUKYqx5cuXC8yE7E16enqZw30Tkb5ptthSNCdLgwYNVM6EyH6w54FtiY+PR2xsrGxMi8UW7l9E2tK/f3907dpVNrZ9+3acOnVKcEaFzO0pwh4mVBFt27ZVO4USGjZsqHYKwjVq1AgDBw6Uja1fvx7JycmCMyIiPQkKCkKfPn1kY6tXr0Z2drbYhMhu/P7778jPz1c7DSJSiWaLLfXq1QMApKSkqJwJEZE2lfW0jBaLLUSkLQaDQZO9W1g0IREcHDR7GWRXpk+fLrs8IyMDa9asEZwN2Ts+GKQ/SsMVJiQkYNu2bYKzIXvB+VpIa3h9JZZmrzKGDRsGSZJw9OhRtVMhItIkpWJLQEAAAgICBGdDRLboqaeeQseOHWVjP/zwA86ePSs4I/OpdRHBm3O2iRed2jB8+HDUqlVLNrZkyRJ+TkRUKSEhIfD29paNLVu2THA2ZC84XwuRfdNssWXGjBnw9vZGbGws1q9fr3Y6RHaBN4xsC+drIaLKMhgM+Pvf/64Y/+STTwRmY5t4M5jIfM7OzggLC5ONnTt3jg/eEVGluLu7Y+zYsbKxyMhI3Lp1S3BGpHf5+fk4cuSI2mkQkYo0W2ypU6cOVq5cCQcHB0yfPh179uxROyUiIk2xtWILb0gSadOwYcMU56/YtGkTLl68KDgj8/AYQxXB/UU7pk6dqvjAz5IlSwRnQ/aMD57pk9JQYpIkYdWqVYKzIb07d+4cUlNT1U6DiFSk2WJLbGwsOnTogCVLliA3NxdDhgzByJEjsXbtWkRHR+PmzZuIjY016YeISG+SkpJw7do12ZhWiy1EpE1l9W6RJAmffvqp4IyIyJ7Uq1cPQ4YMkY1t2rQJCQkJgjMiIj3p1KkTWrVqJRtbvnw5CgoKBGdEesb5WojISe0ElNSvX7/EkyWSJGH79u3Yvn17hdoxGAzIy8uzdHpEusSnuWzH6dOnFWMsthBRRT377LNo2bIlzp8/Xyq2bt06zJ07F40bN1YhM9OxpwLZMns/B5sxYwZ27txZanl2djZWrVqFN954Q4WsiEgPDAYDQkND8eabb5aK3bhxAwcPHkTfvn1VyIz0iPO1EJFme7YUKbpwLroAkSSpwj9EZBr+f7EdSkOIVa9eHU888YTgbExj7zeSiLTMwcEB77//vmysoKAAn332mbBc+F1EZH+GDBmCunXrysbCw8N5XCCiSpkwYQKcnZ1lY8uWLROcDekZe7YQkWaLLYGBgQgMDES9evWMvxf9XZGfwMBAtTeFiMjioqKiZJd36NBBs0UNreZFRIXGjBmDpk2bysa+++473LhxQ3BGtoE3gYkqz8nJCVOnTpWNXb58GQcPHhScEdkjnqvql7+/P4YPHy4bi4iIQFJSktiESJdu3bqFW7duqZ0GEalMs8OIxcTEqJ0Ckd3hBYbtUOrZEhwcLDgTItILR0dHvPfee5g4cWKpWH5+Pj777DMsXbpUhcxMw6IHkW0LCwvDRx99hPz8/FKxJUuWoE+fPuKTIiLdCAsLQ0RERKnlWVlZWL9+PV5++WUVsiI94RBiRARouGcLERHJS0tLw+XLl2VjnK+FiCpj7NixCAoKko2tXLkSsbGxgjMiIntRp04dDBs2TDb2ww8/4MGDB4IzIiI9GTRoEOrUqSMbW758ueBsSI84hBgRASy2EBHZnDNnzig+wa3lYgufOifSPicnJ8yZM0c2lpubi/nz5wvOyHRqHWPYK5TIcmbMmCG7PDc3FytWrBCcDRHpiaOjIyZPniwbO3HiBKKjo8UmRLrDni1EBLDYQkTF8IaRbVAaQszHxwcNGzYUnA0R6c2LL76IevXqyca+/fZb3L5926rvz8Iskf0aOHAgGjRoIBtbunQpCgoKBGdERHqiVGwB2LuFKiclJYUFOyICwGILEVUCb4ipQ6nY0r59exbMiKjSnJ2d8be//U02lpOTg3/961+CMzINv5OIbJ+DgwOmTZsmG7t+/Tr27t0rOCMi0pNGjRqhd+/esrE1a9YgOztbcEakF8eOHeMDAUQEgMUWIiKbo1Rs0fIQYkRkWyZPnoy6devKxsLDw3Hv3j3BGWmX0hwTRBXBhyX+z5QpU+Dk5CQbCw8PF5wN2RP+P7QPYWFhsssfPXqEbdu2Cc6G9ILztRBREVWLLY6Ojsafx0+oi8cq86N0om4tMTEx+OabbzBhwgS0bdsWVatWhbOzM6pVq4Y2bdpg+vTpOHjwoFlt//HHH5g5cyZatGgBb29veHt7o0WLFpg5cyb++OMPs9qMjY3FBx98gODgYPj7+6NKlSoICgrC6NGj8eOPP5r1lGhaWhoWL16Mvn37om7dunB1dUXdunXRr18/LFmyBGlpaRVuU5Ik/Pjjjxg9ejSCgoJQpUoV+Pv7o2PHjvjwww85YS/ZjaysLJw/f142pvViCy9giWyHq6sr3nnnHdlYVlYW/v3vfwvOqHxq9WypWrWqKu9LlcOeUNpVs2ZNjBo1Sja2detW3LlzR3BGRKQnISEh8Pb2lo2ZMpQYvz9IDudrIaIiqhZbir6kJEkq9YX1eKwyPyKcOnUKXbp0QYMGDTBt2jSsXbsW0dHRSEpKQl5eHhITE3H27FksXboUffr0Qd++fU0uEOTk5OAvf/kLunTpgsWLF+PixYtITU1FamoqLl68iMWLF6NLly544403kJuba3LOy5YtQ4sWLfDhhx/i5MmTiI+PR1ZWFq5fv46IiAiMGjUKgwYNqtDTq0ePHkWbNm0wc+ZMHDhwALdv30ZOTg5u376N/fv34+WXX0bbtm1x/Phxk9u8c+cOBgwYgFGjRiEiIgLXr19HVlYW4uPjERUVhQ8++AAtW7bEypUrTW6TyFZFR0cjPz9fNsZiCxFZ0ksvvYSAgADZ2Ndff42HDx8KzoiI7MX06dNll+fn53NeBSKqFHd3d4wdO1Y2tnv3bty6dUtwRmTrcnNzcezYMaHvyWtrIu1SfRixsoohtvTEwOXLl/H777+XWNakSROMGjUK06ZNw3PPPVdiOI4DBw6gW7duuH79erltT506FV988YXx36Nhw4YYN24cxo0bZ5wMW5Ik/Pe//8WMGTNMynf58uV46aWXkJ6eDgDw9fXFqFGjMGXKFHTq1Mm43t69ezF48GCTeqOcOXMGgwYNwo0bNwAUjvk+ePBghIWFYdCgQcZeRtevX8egQYNw7ty5cttMSUnB4MGDsW/fPuOyzp07Y8qUKRg1ahR8fX0BFPammTJlCr777juTtp/IVikNIebh4YEmTZoIzoaI9MzNzQ1vv/22bCwjIwOff/65Vd7X3PM/XnQS6Uffvn0Vz2uWLl2q+OAJEZEpQkNDZZdLkoRVq1YJzoZs3ZkzZ5CRkaF2GkSKbOn+uh6oWmwpKCgw/jx+wlw8Vpkf0SfijRo1wj//+U/ExcXh8uXLiIiIQHh4ODZu3IibN29i2bJlcHd3B1DYY2P8+PFl7vTLly83FhAcHBzw+eef4+rVq1i7di3Wrl2Lq1ev4vPPP4eDg0Op9ZVcvny5RFFm/PjxiIuLQ0REBJYvX47ff/8dv/zyi3FYjOjoaLz++utltpmbm4uQkBBjUaZt27a4cuUKdu3ahW+//Ra7d+/G1atX0bZtWwCFRZSQkBDk5eWV2e6rr75qLMpUq1YNv/zyC44fP47ly5cjIiICcXFxGD9+vHH9qVOn4s8//yyzTVLGG1Xap1RsadeuHRwdHQVnQ0R6N336dNSoUUM29uWXXyIhIUFwRsp4EUEVwf1F2wwGA6ZNmyYbu3XrFnbt2iU4I7IHvBayH506dUKrVq1kY8uXL+dE51QhnK+FiIpTvWeLXgQEBGDFihW4dOkS3nnnHdSpU6fUOg4ODggNDcWaNWuMy44dO4bIyEjZNrOzs/HBBx8Y/549ezZmzZplLKwUtTlr1qwST57OnTsXOTk5irn+/e9/Nw431qNHD3z33Xfw8PAosU6/fv2wdu1a49/fffcdLl68qNjmN998g2vXrgEoHLt8165dqF+/fol16tevj59//tlYxLly5UqZwwCcO3euRA7r1q1Dv379Sqzj4eGB7777Dt27dwdQOOTa3LlzFdsksnVKxRatDyFGRLbJ3d0db731lmwsNTUVixYtEpwREdmLSZMmwdXVVTa2ZMkSwdkQkZ4YDAbF3i03btwwe55dsk+cr4WIimOxxUJ69+6NyZMnm/Rk+bPPPovOnTsb/96xY4fsetu2bTOOF+rj44O///3vim3OnTvXOMnbzZs3Fdu8f/8+IiIijH8vWLCgRPGmuCFDhmDAgAEACsdHLuui5quvvjL+/tZbb6FWrVqy6wUEBOCvf/2r7Oset3jxYuMTJQMHDsTgwYNl13NwcMCCBQuMf2/atAnx8fGK7RLZqpycHJw9e1Y2xmILEVnLyy+/jOrVq8vGFi1ahOTkZMEZyWNPBbK2rKwstVOwK35+fhg9erRsbOfOnSbPf0lEJGfChAlwdnaWjS1btkxwNmSrJElisYWISmCxRSU9evQw/h4TEyO7zpYtW4y/P//888bhx+S4u7vjueeeM/79448/yq63bds2YwGjSZMmxh4hSiZPniybT3F//vknLly4IPua8tqMjo6WnbdGkiRs27bN+PeUKVPKbLNHjx5o1KgRgMLCUPHXkunYdV7bLly4oNhrjcUWIrIWT09PvPnmm7Kx5ORk/O9//xOckbbwu9N+FM11SOIozUdZUFCAb7/9VnA2pHc8ntsXf39/DB8+XDYWERGBpKQksQmRTbpx4wbu3r2rdhpEpCEstqik+Imc0rwy+/fvN/7ep0+fctvs27ev8ffiE8pbqs3Y2FjZ+VCKv1eTJk1Qu3btMtusU6cOGjduXGauV69eRVxcnNm5Km0/kS1TGkLM1dUVzZs3F5wNEdmTV199Fb6+vrKxzz//HKmpqRZ7L3N7qLBnC9ky3uSV16NHD7Ro0UI29u233xqHRiYiMkdYWJjs8qysLGzYsEFwNmSLlHq18HudyH7ZTLElLS0N33zzDcaNG4fmzZvDz88Prq6u8PPzQ7NmzTBu3Dh88803xgnata74UEBPPPFEqXhycnKJ6rgpT60XX+f27dtISUkptU7xeVdMabN27dqoWbOm7OvNbfPx9cprs1atWggICKh0m1Q+3qjStqioKNnlbdq0UewCT0RkCd7e3pg1a5ZsLCEhAV9//bXYhIjILhgMBsXeLXfv3sVPP/0kOCMi0pNBgwbJzrcLcCgxMs3hw4dll7dq1UpwJkSkFZovthQUFGD+/PmoXbs2ZsyYgY0bN+LKlStISEhAbm4uEhIScPXqVWzcuBEzZsxA7dq18c9//tM4VJYWxcbGluh5UTQvSnGXL18u8XdgYGC57T6+zuNtPL6sXr165bb5eLuXLl2y2TaJbJ1Sz5bg4GDBmRCRPXr99dfh5eUlG1u4cKHFhlhizxYiKu7FF19ElSpVZGPh4eGCsyEiPXF0dMSkSZNkYydOnEB0dLTgjMjWKPVsKT51ABHZF00XWzIyMjBo0CDMmTMHaWlpkCTJ+FNc8eVpaWl47733MGDAAGRkZKiUednefPNN49BhgYGBGDZsWKl1Hj16ZPzd29tb8QKjOHd39xI3QRISEkrEMzMzkZmZafy7eI+VshSf7P7xNh/PVSttZmRkIDs726TX0f9hV1ftysvLw5kzZ2RjtjJfC/cvIttWtWpVvP7667Kx+Ph43vQkIqvw9fXFCy+8IBvbvXu37PyPRESmKmt+2OXLlwvMhGxNQkICzp8/Lxvr2bOn4GyIlPFejFiaLraMHTu2RA+QgIAAvPHGG9i0aROOHTuGs2fP4tixY/j+++/x5ptvGrt/SpKEgwcPYuzYsWqlrmjVqlWIiIgw/v3ZZ5/B1dW11HrFh0MzpdAit+7jQ6o9/rep7ZbV5uPLtNKmUrvmcHNzg6enJ4DC+XWSkpKMBb+UlBTjhOWZmZnGp3rz8vJKTKiXnJxsHFM6IyPDWAjMzc1FcnKycb2kpCTk5eUBKJyEtag4lpOTYxwWTpIkJCUlGQt2aWlpyMrKAgBkZ2cbx80vKChAUlKSsZdXamqqsQCVlZVl/Pd5fJu8vb3h4uICoPDf1MPDAwDg5ORUYrx+Hx8fm9kmPXxOFy9ehKurq/FLsvjn1KpVK9W2yc3NDUDhvDFFxV4HBwf4+vrCwaHwK8bLywuurq6QJEn3nxO3SXmb3N3dAQDOzs7w8fExrufr6wsnJycAgIeHh/FY7uLiYtY2ye17QOGxnJ9T5bdp1qxZ8Pf3L/E5eXt7AwAWLFiAe/fuVXqbil7v6OgIX19f2eNeWd9PFdkmpX2vaJsMBgN8fX3h6OgIAPD09JQ97mntcwL0t+/JbVNFP6fi30+SJJm1TeWdGxUN6+nu7l7h455ePydLbFPRvArFz8uLjhHffPNNudtkic9J7/+fuE2FyjqPeHzfK+/7SQvbpMfPydLbVL9+fQwePNiYa/FjxObNm5GYmCi7TWWdw5rz/cTPyfa26eDBg4rHiLZt21b4HLYi30/8nPS1TRU5hwXM+36yt89JTZottmzbtg3bt2+HwWCAJEl4//33cePGDfz73//G6NGj0blzZ7Rs2RKdO3dGSEgIFi5ciOvXr2Pu3LnG1/z000/Yvn272ptidOLEiRJjDo8dOxbjxo2TXbdoRwRg/I9hiuKFm+K9WB5vsyLtltXm4+1qpU2lds3RtWtXjB49GgDw8OFDLFq0yHgAWL58OS5cuACg8Iu2aH+Li4vDokWLjG0sXrwY165dAwBERkYiMjISAHDt2jUsXrzYuN6iRYsQFxcHANi+fTsOHjwIALhw4YLxqZrs7GwsWrQIDx8+BFB4Anjs2DEAwKlTp7B27VoAhQegRYsWGQ94a9euxalTpwAAx44dw+bNm2W3KTQ01DgRae/evY09r+rWrVtivP6XX34ZN2/etIlt0sPndPz4ccyaNcu4nxd9Tk5OTkhISFBtm7p27QoAaN++PcaPHw/g/+Z2KLrIGD9+PNq3b28XnxO3SXmbBg0aBAAICgrCyy+/bFxv1qxZqFu3LgBg2LBh6N27NwCgRYsWZm2T0r7XtWtXfk4W2CY/Pz9Mnz69xOcUGhoKoPAkPTw8vNLbVPR6f39/2eMeIP/9VHQCXpFtUtr3irbJ1dXVWGACgNGjR8se97T2OQH62/fktqmin1Px7ydJkszapvLOjYKCggAUzgNQ0eOeXj8nS2yTg4MD2rVrV+K8vOgYsXr1auTk5JS5TZb4nPT+/4nbVHgzq6zziMf3vfK+n7SwTXr8nKyxTd26dTPmWvwY0alTJ6xatUp2m8o6hzXn+4mfk+1t0+nTp2WPES1atEBERITJ57BFKvL9VJQrPyd9bFNFzmEB876f7O1zUpWkUSNHjpQMBoPk4OAgffLJJxV67aeffmp87ciRI62UYcVcv35dqlWrlgRAAiC1adNGSk5OVlx/06ZNxnVr1qxp8vvUqFHD+LrNmzeXiD148MAYAyBdvHjRpDafe+4542teffXVUvEWLVoY44sXLzapza+//tr4mlatWpWKz5w50xh//vnnTWrzwoULJbYvPj7epNcpOXfunARAcnNzkzw9PaVz585JeXl5UmJiolRQUCBJkiQlJydL2dnZkiRJUkZGhpSWliZJkiTl5uZKiYmJxraSkpKknJwcSZIkKT09XUpPT5ckSZJycnKkpKQk43qJiYlSbm6uJEmSlJaWJmVkZEiSJEnZ2dnG/aWgoEBKTEyU8vLyJEmSpNTUVCkzM1OSJEnKysqSUlJSJEmSpPz8fCkxMVHKz8+XJEmSUlJSpKysLEmSJCkzM1NKTU2VJEkqsU13796VvL29JRcXFwmAVKVKFcnDw0MCIDk5OUm+vr7Gf18fHx/jv7GWt0kvn9OsWbMkX19fyWAwSACMn1O7du1U3SY3NzcJgOTq6ip5eXlJACQHBwfJ19dXcnBwkABIXl5ekqurqzRx4kTdf07cJuVtcnd3lwBIzs7Oko+Pj/FY4uvrKzk5OUkAJA8PD6lKlSoSAMnFxcWsbZLb94qO5fycLLNNN27ckKpWrWr8nLy9vSUAksFgkJo2bWpsw9xtCg0NlQBIjo6Ossc9pe+ndu3aVXiblPa94tvk6+srOTo6SgAkT0/PUse9u3fvavJz0uO+9/g2VeRzevz7qW3bthXepvj4+HLPjZydnSUAkru7e4WOexcuXNDt52SpbVq8eLHxvPzxY8SGDRvK3CZLfE56///EbZKk1157rczzCLl9T+n7SSvbpMfPyRrbdOfOHeN3yuPHiGeeeabENh08eLDcc1hzvp/4OdneNvXv31/2GPHcc89JiYmJJp/DmvP9dP36dX5OOtqmipzDmvP9NGnSJLv5nIru5Rb9nDt3ThJNs8WWunXrSgaDQQoICDD+g5oqPz9fql27tmQwGKQ6depYKUPT3blzRwoKCjJ+0A0bNpTu3LlT5mt27txpXN/b29vk9yr6jwhA2rVrV4lYRkZGiR3u5MmTJrU5bNgw42vefffdUvHOnTsb4//5z39MavPf//638TVdu3YtFZ89e7YxPnz4cJPajIqKKrF9Rf9JzaWF/6Ci3b17t8Q2l/dT/KBL1tWrVy/ZzyA0NFTVvCqyv0ycOFHVXEldFdlXin4s/T5kOW+88Ybiv7OpD14oKf6QR0V+2rZtW+H3Mud9Hv+5e/dupbaXzFeZz82c/SU+Pt4i+4zcz4ULFyz/D6QzKSkpxpsJj//07du3zNda4jMi/Xvttdcs9n+abM/06dNlP0uDwSDFxsYa1ysqtlj6h2xLVlaW8Wb34z9ffPGFJEmW+e5R+im+T5Lts+a+AkCaNGmS2psojBbu5Wp2GLGHDx/CYDCgd+/eFZ7Ix8HBAb169QJQcqJ1NTx69AgDBw40dscKCAjA3r17ERAQUObrqlevbvw9JSWl1BBgcjIyMkqMN1utWrUS8SpVqpSY1+T+/fsmbcO9e/cU23w8V6206e7uLjsXDpEtKigoMHanfFyHDh0EZ0NEBLz99tuK37OfffaZcRxde8AJJ+2H9P+HqrMG7kfl8/LyMg6n8bj9+/fj8uXLgjMiIj0pGvrrcZIkGYcSIypy8uRJ47BGj+vRo4fgbIhISzRbbCkar65oMqCKKnqdn5+fxXKqqJSUFAwePBjnz5835rJ37140aNCg3Nc2bdq0xN9Fc2OUJTY2tsw2Hl9mSpuPt9usWTObbZPIVv35558lCqnFsdhCRGoICAjA1KlTZWOxsbFYvXq14IyseyOciLRh+vTpirGlS5cKzISI9KZTp05o1aqVbGzFihXGSZyJAOC3336TXe7h4YE2bdoIzoaItESzxZbmzZtDkiRjj5CKunbtGgwGg2o33dPT0zF06FBERUUBAHx8fLBr1y7jxETl8fHxKdH7Remp9uJOnjxp/L1OnTrGiZOKa968eYXavHPnTomeJcVfb26bj+daXpv37t0r0WvF3DapfDVq1FA7BZJRfN8uzsHBAW3bthWcDRFRoXfeeQcuLi6ysU8//RR5eXmCMyKyLvY+UV/79u3RuXNn2djKlStNGg2ASAn/j9s3g8Gg2Lvl+vXrxomgiQDg8OHDssu7desGJycnq78/HzIi0i7NFluKuogfOnQI169fr9Brr1+/jkOHDpVoR6SsrCwMHz7cWOl2d3fHjh07EBwcXKF2+vbta/z9wIED5a5f/Mu/X79+Fm8zMDAQjRo1KrPNy5cv4+7du2W2eefOHVy9erXMXBs3boy6deuanavS9lPZHBw0e0iwa0rFlubNm8Pd3V1wNubjBSyRvtStWxdTpkyRjV2/fh3r1q0Tmg8vOonsg1LvloSEBGzevFlwNkSkJxMmTICzs7NsbPny5YKzIa2SJEmxZwuHECMizd5ZHT9+PLp164a8vDy88MILSExMNOl1ycnJeOGFF5CXl4euXbtiwoQJVs60pNzcXISEhGDfvn0AAFdXV2zdutWsA+7IkSONv2/cuBGZmZmK62ZmZmLTpk2yry1u+PDhxhvqly9fxrFjx8rMYeXKlcbfR4wYIbtO48aNS/TYKW880+Lx1q1bo2HDhqXWMRgMGD58uGweco4ePYorV64AABwdHTFs2LAy1yeyJUrFFg4hRkRqe/fddxWf3vv444+Rn58vOCMi07A4Z7uef/55+Pj4yMaWLFkiOBsi0hN/f/8S9yGK27x5M5KSksQmRJp05coVxMfHy8Z69uwpOBsi0hrNFlucnJwQERGBLl264MSJE2jbti1WrVqFjIwM2fUzMzPx3XffoW3btoiKikKXLl0QEREhpPtekfz8fIwbNw47d+40bsOmTZswYMAAs9obPny4sXdHUlISPvnkE8V1582bZ/zir1evHp555hnZ9WrWrIlRo0YZ/549e7bixWZkZCQiIyMBFBYwZsyYofj+M2fONP6+cOFCxUnt7927h4ULFxr/fuWVVxTbnDFjhrEwtHv3buzZs0d2vYKCAsyePdv495gxY4xz/hDZOkmSdFNsYc8WIv2pX78+Jk6cKBu7evUqNm7cWOE2eROciMri4eGBF198UTb222+/4dy5c4IzIr3guSoBUBxKLCsrCxs2bBCcDWmRUq8WBwcHdOnSRXA2RKQ1qhZbQkNDy/yZM2cOgoKC4OLigri4OISGhsLPzw9dunTBmDFjMGnSJIwZMwZdunSBn58fpkyZgtjYWLi4uKBRo0aYM2cOwsLChGyLJEkICwszdl13cHDA6tWrFZ+KMIWrqys+/PBD49+fffYZvvjiixITsxUUFOCLL77A/Pnzjcs++ugjxTHUgcLCTFHX2EOHDmHSpElIT08vsc7+/fsxbtw4498TJ04sc76ZadOmISgoCADw6NEjDBkypNTE9jdv3sTQoUORkJAAAGjSpEmZn0/r1q1LDAM3duzYUsOJpaenY/LkycbxMl1cXDBv3jzFNolszc2bNxV79tlasYWI9GnOnDlwdHSUjX388cfCJpRlkYbIfigNJQYA4eHhAjMhIr0ZPHgw6tSpIxtbtmyZ4GxIi5Tma2nXrh28vLyE5MDiMJF2iev2IWPlypUmHyAMBgMkSUJWVhZOnDiBEydOlIgXXWAbDAbk5OSUGCdcxBfi4sWLSwyPFRQUhMOHDysehB/35Zdfyi4PDQ3FgQMHsHr1ahQUFOAvf/kLvvjiC3Tt2hUAcOzYMVy7ds24/pQpUxSfMC3SrFkzLF68GC+99BIAYPXq1fjpp5/Qr18/eHt748KFCzh+/Lhx/TZt2mDRokVltuns7IyIiAj07NkTaWlpOHXqFBo3boz+/fujTp06iIuLw759+5CbmwsA8Pb2Nqnn0ZdffomTJ0/i/PnzePToEfr27YsuXbqgRYsWSElJwb59+0rciF66dKnsvDJEtkqpVwtQeDJHRKS2oKAgjBs3DqtXry4Vu3jxIiIiIjBmzBgVMiMivWrVqhV69Ogh+3Tx6tWr8c9//hMeHh4qZEa2jEV7AgpH9Zg0aRI+/fTTUrETJ04gOjpahaxISzhfCxGVRdViC2DeCU1Zr3k8Jqra++DBgxJ/X716tcQk8OVRKrYAwLfffgsfHx989dVXkCQJ165dK1FgAQq387XXXisxRFdZwsLCIEkSZs2ahfT0dCQmJiIiIqLUev3798fq1atNqs63bdsWkZGRGD9+PG7cuIHc3Fzs2rWr1HoNGzbE2rVr0apVq3Lb9Pb2RmRkJF588UXjPDjHjx8vUQwCAE9PT3zxxReYNGlSuW0S2RKlYkvjxo3h7e0tOBsiInnvvfce1qxZI3uO9vHHHyMkJMQ4NKi18CYZVYTW9hc+oVpxM2bMkL3hlZycjI0bNyoOBUREVJ4pU6bIFlsAYPny5YKzIS158OCBcb7gx3G+FiICVC62rFixQs23txkuLi743//+hxdffBHLly/HgQMHcPv2bQBAnTp10KdPH4SFhaFTp04Vavell17CoEGDsGzZMmzfvh2xsbFIS0tDQEAAOnTogAkTJmDkyJEVuvjr1q0boqOj8d1332HTpk24cuUKHj16hOrVq6NJkyZ47rnnMHHiRHh6eprcZu3atbF37178+OOPWLt2LU6ePIm7d+/C09MTgYGBGDZsGMLCwhAYGFih7SeyBVFRUbLLbXEIMd5IItKvpk2b4vnnn5cdyzw6Ohrbtm3DyJEjxSdWjjp16hjPqczFY5t6Xn/9dXzxxRfC3k9rBRp7N3r0aPzlL38xDlFcXHh4OIstVGE8nlORRo0aoXfv3jh48GCp2KlTp1TIiLTiyJEjijH2bCGt4jmsWKoWW/TUC+GDDz7ABx98YNX36Ny5Mzp37mzRNgMDA/Hhhx+WmBumsjw9PTFz5kzMnDnTYm0aDAaMGjUKo0aNslibRFonSZJisSU4OFhwNkREZXv//fcVJ46dN28eRowYYdUbWeZcRDz11FMcf92G9e3bV2ixhbTFzc0NkydPxn/+859Ssd9//x2nTp1C+/btVciMiPQgLCxMtthC9k1pqoD69euXmuunY8eOpaZAICL9s+54DkREZLY7d+7g4cOHsjFb7NlCRPrWsmVLhISEyMZOnjyJnTt3Cs6ofM7OzpVug0+KqcfNzU3tFEhl06ZNU4yFh4cLzISI9CYkJITDNlMpFZmv5amnnrJ2OkSkQaoXW+bPn4+LFy+qnQYRkeYozdcCwCaf1OTQDET69/777yvG5s2bZ9XCBIseVBHcX/ShadOm6Nu3r2xs7dq1SE1NFZwR2TKeq1Jx7u7uGDt2rNppkIZkZmYqjjwhV2ypXr26tVMiIg1Svdjyt7/9Da1atULjxo3x5ptv4sCBA8jPz1c7LSIi1SkVW+rXr49q1aoJzoaIqHzt2rXD8OHDZWPHjx/Hnj17ym3D3JvgvHlOZJ+mT58uuzwtLQ3r1q0TnA0R6QnnfqLi/vjjD+Tm5srGevbsKTgbItIq1YstQOHF8bVr17Bo0SL0798fNWrUwPjx47FhwwakpKSonR4RkSqUii0cQoyItOzvf/+7Yuyjjz6yWlGExRayNj71rk3PPvss/P39ZWNLlizhsYGIzNapUye0bNlS7TRII5SGEPPx8eF+QprGc1ixVC+2bNmyBWFhYahZsyYkSYIkSUhMTMSGDRswfvx4+Pv7Y8CAAVi0aBFu3LihdrpEVAwvXq1Lb8UWfsET2YeOHTti6NChsrHffvsNBw4cEJsQEemai4uL4tPnp0+fxh9//CE4I7JVPFelxxkMBoSFhamdBmnE4cOHZZd3794dDg6q314lIo1Q/WgwfPhwfPPNN7h79y6OHTuGOXPmoHXr1sbCS25uLvbv348333wTjRo1QqtWrTBnzhwcPXpU7dSJiKzmwYMHiIuLk43ZarGFiOxHWb1b5s2bV+ZrebOL7BH3+8qZNm2aYmzJkiUCMyEivZkwYQKcnZ3VToNUVlBQgCNHjsjG5OZrISL7pXqxpbjOnTvj448/xpkzZxATE4MvvvgCAwcOhLOzs7H4cvHiRcyfPx89e/ZErVq1EBYWhi1btiAjI0Pt9ImILEapVwvAYgsRaV/Xrl0xcOBA2dj+/ftx6NAhxdey1yQRVVTDhg0xaNAg2diGDRsEZ0NEeuLv7684Hx3ZjwsXLiApKUk2xvlaiKg4TRVbigsMDMSrr76K3bt34+HDh9i0aRMmTJiAqlWrGgsvDx48wMqVKxESEgI/Pz88/fTTCA8Px507d9ROn4ioUpSKLXXq1EHNmjUFZ0NEVHHm9m5hsYWIzDFjxgzZ5ZmZmYIzISK9URqqkOyH0nwtTk5O6NSpk2yMvVaJ7JNmiy3FeXl5YfTo0fjuu+/w4MED/Prrr3jrrbfQtGlTY+ElKysLu3btwsyZM/HEE0+gY8eO+Oijj3Dq1Cm10yciqjC9zddCRPbnySefRJ8+fWRje/bswbFjx2Rj5hZbzHmdJS6CeSFtP1gI1LZnnnkGAQEBaqdBNozHc1IyePBg1KlTR+00SEVK87UEBwfD3d1dNsbzBiL7ZBPFluIcHBzQs2dPLFiwABcvXsSVK1ewcOFC9OrVCw4ODsbiy6lTp/Dhhx+iY8eOCAwMxMyZM7Fr1y610yciMokeiy28gCWyP5WZu4WIqCKcnZ3x0ksvqZ0GEemQo6MjJk2apHYapCKlni2cr4VsAQt/YtlcseVxjRo1wptvvokDBw7gwYMHWLNmDZ577jl4eXkZCy9xcXEIDw/HM888o3a6RETlSkxMxI0bN2RjLLYQkS3p27ev4kXozp07ERUVVWq5uccKXkRQRXB/0aeXXnoJDg42f4lLRBo0ZcoUtVMgldy5c0fx+pzztRDR43R1Jlq1alWMGzcOGzZsQHx8PPbs2YPXX38dDRo0MBZeiIi0rqzhD2252EJE9sdgMFS4dwvP14jIXIGBgRg6dKjaaRCRDjVq1Ai9e/dWOw1SgVKvFgDo3r27wEyIyBboqthSnJOTE/r374///ve/uHbtGs6ePYtPPvlE7bSIiMqlNISYv78/xwomIpszaNAgdO7cWTa2detWnDlzxiLvwyKN/WGPSZIzY8YMtVMgIp0KCwtTOwVSgVKxpVGjRqhZs6bi63ieQmSfdFtseVzLli3x7rvvqp0GEVG55IbVAQp7tfCEjYhsTXm9Wz7++GOB2RBpE7/fLeepp55CYGCg2mkQkQ6FhISonQKp4PDhw7LLOYQYEcnRRbHlhx9+wOTJkzFkyBBMmjQJGzZsUDslIiKzKfVsCQ4OFpwJkW1hzwbtevrpp9G+fXvZWEREBM6fP2/8mzedSau4b9oGR0dHTJ06Ve00iEiH3N3d0bRpU7XTIIHS0tJw+vRp2ZjSvIREZN80W2y5f/8+evXqhV69emHOnDmy6xQUFGDUqFEYM2YMVq9ejcjISKxZswbjx49H3759kZ6eLjhrIqLKSUlJwZUrV2RjnK+FqGxZWVlqp0AKyurdIklSiaFezS2asdhGREVCQ0Ph6OiodhpkY1hQJVNw3hb7cvz4ceTn58vG1OzZwuMVkXZpttjy448/4vDhw/jtt98Un+b+17/+hS1btkCSpFI/v/76K8fTJCKbU9bcBbZebOEJIVkbH7LQthEjRqB169aysY0bN+Ly5csAWDQhosqrXbs2RowYoXYaRKRDvKaxL0rztVSvXl3VXk7cD4m0S7PFlkOHDgEAXFxcMGTIkFLxnJwcLFiwAAaDAQaDAQMHDsQXX3yBt99+G25ubpAkCd9//z1OnDghOnUiIrMpDSHm6+uL+vXri03GwnhCSNaWkZGhdgpUBgcHB8XeLQUFBfj0008r1b5aRRoe22wTi3r6N336dLVTICIiG6c0X0uPHj14DkhEsjRbbCkau7tVq1Zwd3cvFf/555+RmJgIABg+fDh2796NV199FfPnz8eKFSuM661Zs0ZMwkREFqBUbOnQoQNP5ojKwZ4t2hcSEoLmzZvLxtauXYtr164JzYfHVaoIFmhsy4ABA9CwYUO10yAbwu8EIiouLy8PR48elY2ZMl+LNY8pPF4RaZdmiy1xcXEwGAxo0qSJbHzPnj3G399+++0SsTFjxqB27doAgGPHjlkvSSIiCyur2EJEZWPPFu1zcHDA+++/LxvLz8/HZ599ZvbFI2+EE1FxDg4OmDZtmtppEBGRjTp79izS0tJkY2rO1wKw2EKkZZottqSmpgIAfHx8ZONFw4z5+fmhe/fuJWIODg4IDg6GJEnCn5Aksie8sWVZGRkZuHDhgmxMD8UWnhCStbFni214/vnn0bhxY9nYqlWrEBMTIzYhsks8h7EPU6ZMgbOzs9ppEBGRDVKar8XV1VVxbmlReG1NFcHzXrE0W2wpOnDk5eWViiUnJ+P8+fMwGAyK1eSaNWsCAFJSUqyXJBGRBUVHR6OgoEA2pvbJHJEtYM8W2+Do6Ij33ntPNpaXl6fYw6885lxE8MKDKkLuuoS0rUaNGhg1apTaaRARkQ1Smq+lU6dOcHV1FZxNSSy2EGmXZostvr6+AAqHE3vcr7/+arwhqTROYtHFkKOjo3USJCKyMKUbjJ6enmjUqJHgbIhsD4sttmPcuHFo0KCB2mkQVYjSE66WwJsm1jNjxgy1UyAbwf+HRFSc0ve+KfO1WBuPV1QR3F/E0myxpWnTppAkCUePHkVWVlaJ2ObNm42/P/nkk7Kvv3fvHgCgevXq1kuSiMiClIot7du3h4ODZg/XJuMXPFkbhxGzHc7OzpgzZ47aaRBVyOPXJGQbevfurXYKZCPY25GIisTGxso+/A1oo9hCRNql2bt3/fv3B1A4DNi7775rXH7kyBFs3LgRBoMBNWvWRMeOHWVff/r0aRgMBgQFBQnJl4iospSKLXqYr4VIBPZssS0TJ05EYGCgxdrjTTL7k5SUpHYKZAP4sAcREVWU0hBiAErNG01EVJxmiy2hoaGoUqUKAOB///sf6tevj+DgYPTt2xc5OTkAgKlTp8qePF+8eNHYs6V9+/bikiYiMlN2djbOnTsnG2Oxhcg07NliW1xcXEo8UENUUb/88ovZr2Vxjogex8IcmYL7iX1QGkKsefPmHEGHiMqk2WJL3bp18fnnnxsvhG7duoXTp08jNzcXANC4cWO8/fbbsq/dtGmT8feePXtaP1kioko6f/688fj2OL0UW3hhQtbGni22Z8qUKahdu7ZF2uLNc7I2a36P5efnW61tIiKyHJ5v2Aelni28x0hE5dFssQUApk2bhh9++AFt27aFJEmQJAlubm544YUXcPDgQXh6epZ6TW5uLpYuXQoAcHJywoABA0SnTURUYUpDiLm5uaFZs2aCsyGyTezZYnvc3NzwzjvvqJ0GkUmseYMtOjraam0TERGR6ZKTk3H27FnZWEXma+HDhkT2yUntBMozcuRIjBw5Eunp6UhJSYGfnx+cnZ0V18/Ozsa6desAAFWqVIGPj4+oVImIzBYVFSW7vG3btnBy0vyh2iR8CoysjT1bbNPUqVPx6aef4v79+5Vqh8cYsmUFBQVqp0BEREQAjh49qnheWZGeLTw3JbJPNnMHz8PDAx4eHuWu5+npid69ewvIiIjIcpR6tgQHBwvOhMh2sWeLbapSpQrefvttvPXWW8Lfm08c2jZ+fkRkSTymEBGgPF9LzZo10bBhQ8HZEJGt0ewwYr/++it+/fVXXLt2zazX37hxw9gGEZGW5ebm4syZM7IxvczXQiQCe7bYrhkzZsDPz69SbfDpQSIiIiKqrLLma6lIUZYFXCL7pNliS58+fdC3b18sWrTIrNd//fXX6Nu3L/r162fhzIiILOvSpUvIzs6WjbHYQmQ69myxXR4eHvjrX/+qdhpEREREZMdyc3Nx/Phx2VhF5msh0hI+lCaWZostliBJEncoItI8pSHEnJ2d0bJlS8HZWA+f7CFrY88W2/bKK6+gWrVqaqdBNqQy3yu8RiCix/FclYhOnTqFzMxM2VhF5mshIvul62ILEZEtUCq2tG7dGi4uLoKzIbJd7Nli27y8vDBr1iyzX8+b5/aHxRYiIiKyJKX5Wtzd3dGuXTuxyRCRTdJtsaXo6VY3NzeVMyEiKptSsYVDiBFVDHu22L7XXntN7RSIVMHiDxERkfqUii2dO3eGs7Oz4GyIyBbptthSdPOyspOtEhFZU35+Pk6dOiUbY7GFqGJYbLF9vr6+8PDwMOu1vFlNRESVwWHEyBTcT/RLkiQcPnxYNsYhxIjIVE5qJwAAsbGxirHU1NQy48Xl5ubi9u3b+P7773H8+HEYDAZ28yOyIt7YqryrV68qDn0UHBwsOBvr4oUJWRuHEdOHWbNm4ZNPPlE7DZPx2EZEpA+8tiFTcD/Rr+vXr+P+/fuysR49egjOhohslSaKLfXr15e9UJUkCd999x2+++47s9seO3ZsZVIjIrIqpSHEHB0d0bp1a8HZENk29mzRh2rVqpn1Ot78sD8sdBEREZGlKPVqMRgM6Natm+BsiMhWaaLYUkTuIrkyF85jx47FCy+8UJmUiIisSqnY0qJFC1SpUkVwNkS2jT1biIiIiIjIHErztbRu3Ro+Pj6CsyEiW6WJYktgYGCpJ9Nu3rwJg8EAT09Pk55wNBgMcHNzQ/Xq1dGqVSuEhIRgwIAB1kqZiMgilIotepyvhU8gkzXl5uYiNzdX7TSIiIjIRvFclci+cb4WIrIETRRbYmJiSi1zcHAAAEyaNAlffPGF4IyIiKxPkiS7KrYQWROHECNz8Maa/bpy5YraKRAREZFGPHr0CBcvXpSNcb4WIqoIB7UTKAvH3iYiPbtx4waSk5NlYyy2EFUMiy36wQIImYr7ChEREVnCkSNHFGPm9mzheQppBfdFsTTRs0XOjRs3AADe3t4qZ0JEZB1KvVoMBgPatm0rOBsi28b5WogP6ZAt4/5LpD7ejCKyX0rztdStWxeBgYFmtcljCmkFzzPF0myxpV69emqnQERkVVFRUbLLmzRpAi8vL8HZENk29mzRD14MEBEREZFInK+FiCxF08OIERHpmVLPluDgYMGZENk+9mwhc4o0LOwQERFRRbC3gv5kZWXhjz/+kI1xvhYiqijN9mxRkp6ejpSUFOTm5pr8GnO7/BERWYskSYrFFr3O18ILE7Im9mwhtfDYRkRERGS7oqKikJOTIxtjsYWIKkrzxZaCggKsW7cO69evxx9//IFHjx5V6PUGgwF5eXlWyo6IyDxxcXGIj4+Xjem12EJkTSy26Ie5xQv2UiEiIiJr4/mG/ijN1+Ll5YXWrVsLzoaIbJ2miy0xMTEYOXIkzp49C4BfakSkH0q9WgCgffv2AjMh0gcOI0ZERERERBWlVGzp2rUrnJw0fduUiDRIs0eNjIwM9O/fHzdu3CixvEqVKqhatSqcnZ1VyoyIqPKUii0NGzaEr6+v2GQE4VA7ZE3s2UJ8KMf+8HuFiIiIKkOSJMViS8+ePSvdNpEWcF8US7PFlkWLFuHGjRswGAxwcnLCX/7yF4SGhqJZs2Zqp0ZEVGn2Nl8LkbWxZwsRWZs1L1R5EUykPv4/JLI/ly9fVpyugPO1EJE5NFts2bJli/H3devWISQkRL1kiIgsLCoqSna5nostvIAla2LPFiIiIiIiqojDhw/LLnd0dESXLl0EZ0NEeuCgdgJKrl69CoPBgA4dOrDQQkS6cvfuXdy9e1c2pudiC5E1sWcLmVPQ5TBURERERPZLaQixdu3awdPTU3A2RKQHmi22ZGdnAyg8wBGRNrGngnlOnTqlGNNzsYU3Ncma2LOFyP7o6XuF51RERETiKfVsqex8LURkvzRbbKlbty4AIDc3V+VMiIgsS2m+lieeeAL+/v6CsyHSB/ZsIbVuVjs4aPZ0mizMmvuYn5+f1domIiLL0VOh397dv38ff/75p2yM87WQnvChHrE0e3XYq1cvSJKEs2fPqp0KEZFFKRVb9Nyrhezb/fv3rf4e7NlCaqlataraKdgt0Te8rHmh2qpVK6u1TURERKUpDSEGWKbYwsIckX3SbLFlxowZcHBwwOnTpxUnkiYiskX2Wmzhyab92r59u9Xfgz1biE9skS3jdyQREZFYSsWWBg0aoHbt2oKzISK90GyxJTg4GO+99x4kScK4ceOEPBVLRGRtjx49ws2bN2Vjei+2kP3aunWr1d+DPVuI7A8LFERERGQupflaOIQYEVWGZostAPDhhx/iH//4B/7880+0bt0aixYtwu3bt9VOi4jIbKdOnVKM6b3Y8sQTT6idAqkgLS0Ne/bssfr7sNiiH+b2UGHPFrI27mNERMTvAn3IyMhQHHGiZ8+eFnkPPhRCZJ+c1E5AScOGDY2/Ozs7Iz4+Hm+++SbefPNN+Pj4wMfHx6QDl8FgwLVr16yZKhGRyZSGRaxZsyYCAgIEZyNW3bp11U6BVBAZGYns7Gyrvw+HESMiW8YbMkREROL88ccfyMvLk42xZwsRVYZmiy0xMTElLjqKfpckCUlJSUhOTi63DUmSeOFCRJqi9PRMcHAwj1ekS1u2bBHyPuzZoh88FhIRERGRNSkNIebr64sWLVoIzoaI9ESzxRag7O6Z7LpJRLZIqdii9yHEyD7l5eXhp59+EvJe7NlCPDe0P3oqzHH/JSIiEue3336TXd69e3c4OGh6xgWiCtPTObMt0Gyx5caNG2qnQERkUcnJyfjzzz9lYyy2kB4dOnQIiYmJQt6LPVvIHLzwsG0sUBAREVFFFRQU4MiRI7IxS83XQkT2S7PFlnr16qmdAhGRRZ0+fVoxxmIL6dHWrVuFvRd7thBvvBORkvr16yMmJkbtNIiISAPOnz+vODUB52shospi3zgiIkGUhhCrVq0aAgMDBWdDZF2SJAmbr0WSJPZs0RH2NiFTid5XWNCzXZMmTVI7BbIB/D9OpuB5iu1Tmq/F2dkZnTp1EpwNkfXx+00sFluIiAQpa74WnrST3kRHR+PmzZtC3iszM1PI+5AYvBggIkvjeRYRERVRmq8lODgYVapUEZwNEekNiy1ERIJERUXJLucQYqRHonq1AJyvhYjEYCGQiIjI9in1bLH0fC0s9BPZJxZbiIgESE9Px6VLl2RjLLaQHnG+FrIFvHlOREREZD/i4uIUe99zvhYisgQntRNQ0rBhQ4u0YzAYcO3aNYu0RURkrjNnzije1AsODhacDZF13bx5E6dOnRL2fuzZQubivmPb9DRnCwt/RES2gcdr26Y0hBgAdO/eXWAmRKRXmi22xMTEVPgCqviXnsFggCRJ7LZHZEU80TSd0nwt3t7eFisuE2nFtm3bhL4fe7boi8hzt7S0NGHvRURERETqUiq2NGnSBDVq1LDoe/F+CWlFamqq2inYFc0WWwDzDkxFRRYe1IhIS5SKLe3bt4eDA0d0JH0ROV8LwN4JZD4WW4iIiIjsh1KxhUOIkZ4dOXJE7RTsimaLLTdu3DBpvYKCAiQnJ+Ps2bPYtGkTduzYATc3N3z11Vfo16+flbMkIjKNUrGF87WQ3iQmJuLgwYNC35PFFjIXiy1ERERE9iE1NRWnT5+WjfXs2VNsMkSkW5otttSrV69C67dr1w4vvvgiduzYgeeffx4zZszApk2bMGLECCtlSERkmqysLJw/f142xmIL6c2OHTuQn58v9D05jBgB5g0/xn3HtokeLpjDExMREdmu48ePo6CgQDbGni1EZCm6G7vm6aefxuLFi5Gbm4vJkycjLi5O7ZSIyM6dO3cOeXl5sjF7KrZweEf7sHXrVuHvyZ4tBJh3jGGxhSqC32NERMTCu+06fPiw7HI/Pz80adLE4u/HfYW0gvuiWLortgDAiy++iMDAQKSkpGDJkiVqp0NEdi4qKkp2ubu7O5o2bSo4GyLrycrKws8//yz8fXnDnMzFYcSoIlhssV28yUBERGXN18LvCSKyFF0WWwCge/fukCQJ27ZtUzsVIrJzSvO1tGvXDo6OjoKzIbKeffv2qVL4YM8WMheLLbZNTzdGWMghIiKynry8PBw9elQ2xvlaiMiSdFts8fb2BgDExsaqnAkR2TulYos9DSFG9mHLli2yy6tWrYo6depY7X3Zs4XMxWKLbRNdbGFBhIiIyDZFR0crXjNwvhYisiTdFluuX78OAMIn6SUiKi43NxfR0dGyMRZbSE8KCgqwfft22djTTz8NZ2dnq703e7aQuXieSERERVhQJdIvpfla3NzceF1ORBaly2LLxYsXcfDgQRgMBjzxxBNqp0NEduzChQvIycmRjfGkjvTk999/x71792RjI0eOtOp7s2eLvuhpaCjSF96ItV387IjIUng8sU1K87V06tQJrq6uVnlPntOSVnBfFEt3xZY9e/ZgyJAhyM3NBQAMHjxY5YyIyJ4pDSHm4uKCFi1aCM6GyHqUhhBzdXXF4MGDkZqaarX3Zs8WfenVq5eQ92GvFiIiIiL9kyRJsWcLhxAjIktzUjsBJaGhoSavm5eXh0ePHuHMmTO4e/eucbm7uzveeusta6RHRGQSpWJLmzZtrDqsEpFoW7dulV0+YMAAeHp64tGjR1Z7b/Zs0ZeGDRsKeR/uN0RERET6d/PmTdy5c0c21rNnT6u9L3tBkVY4OOiur4WmabbYsnLlSrO6ORUdzDw8PLB582arTshLRFSeqKgo2eUcQoz05PLly7h06ZJsbMSIEVZ/f/ZsIXOw2EIVVaNGDau1zf2RiIjIOpSGEAOAbt26CcyEqLTMzEy1UyAL03RpS5KkCv94eXkhLCwM586d4xBiRKSq/Px8nD59WjbGYgvpiVKvFoPBgGHDhln9/Vls0RdRYwqnpaUJeR/Sj8aNG1ut7cTERKu1TRyrnIjInikNIdayZUtUq1ZNcDZEJYkY2pjnQWJptmfLihUrTF7X2dkZ3t7eqF+/Ppo3bw5HR0crZkZEZJrLly8rPqUQHBwsOBsi61Gar6Vr166oVauW1d+fT4QTUPGhGlhssX28cCQiItH43WN7lHq2cL4WIrIGzRZbJk2apHYKRESVojRfi5OTE1q1aiU4GyLruHfvHo4dOyYbEzGEGMCeLWQeFltIS3jzjoiIyPKSkpJw7tw52Zg152sBOGcLmYb7if5oehgxItI2fimUTanY0rJlS7i5uQnOhsg6tm/frngsGDlypJAc2LOFzMFiCxEREZG+HT16VPFahT1byF7woR6xWGwhIrISpWIL52shPVGar6Vp06Zo2rSpkBzYs4XMwWILaQkvgomIiCxPab6WgIAANGjQQHA2ROpwdXVVOwW7wmILEZEVFBQU4NSpU7IxFltIL9LS0rB3717ZmKheLQB7tuiNqJvOLLbYPhYoiIiIqCxlzdfC8wjSAhEjxrRr187q70H/R7NztsjZs2cP9u/fj5MnTyI+Ph6pqanw8vKCn58fOnTogH79+mHAgAFqp0lEhOvXryMlJUU2xmIL6cXu3buRnZ0tGxM1XwvAni1kHhbpSEt4w4eIyDZwKG3bkZOTg+PHj8vGrD1fC5GWODiwr4VINlFs2bJlC2bPno1r164prrNnzx7Mnz8fjRo1woIFC4Te5CEielxUVJTscgcHB7Rt21ZwNkTWsWXLFtnlNWvWRJcuXYTkkJubi9zcXCHvRfrCni1ERERE+nXq1ClkZWXJxkTM18LCHJmC+4n+aL609de//hUhISG4du0aJEkq9+fq1asYNWoU3nrrLbVTJyI7pjRfS7NmzeDh4SE4GyLLy83NxY4dO2Rjw4cPF/b0DHu1UJGKXqiw2EJERMXxhheRvijN1+Lu7i7kAUj2WiWyT5ru2bJgwQJ8/vnnMBgMkCQJzs7OeOqpp9CjRw/Ur18fHh4eSE9PR0xMDI4cOYKff/4Zubm5kCQJn3/+OWrUqIHZs2ervRlEZIeUii0cQoz04tChQ0hMTJSNcb4WqgzO2UKm0tNNDD1tCxERkRYozdfStWtXODs7C86GiOyFZostcXFx+OCDD4yFlhEjRuCrr75C7dq1FV9z9+5dvPrqq/jxxx8hSRI+/PBDjBs3DnXr1hWYORHZO0mSWGwh3du6davscg8PD/Tr109YHuzZQuZisYWIiIgqisVx2yBJkmKxRcQQYkU5EJH90ewwYt9++61xbMUXX3wRP/74Y5mFFgAICAhAREQEJk6cCADIysrCsmXLrJ4rEVFxsbGxSEhIkI2x2EJ6IEmS4nwtQ4YMgZubm7BcWGwhc7HYQlrCm3dERESW8+eff+LBgweysZ49ewrOhkgZi3L6o9liy+7duwEAnp6e+Oqrryr02i+//BKenp4AgF27dlk8NyKisij1agGAdu3aiUuEyErOnDmD2NhY2diIESOE5sJhxKgI52wha+PFMBERkW1Q6tXi4OCArl27CsmBD1KQKXh+qT+aLbbcuHEDBoMBffv2NRZOTOXp6Yn+/ftDkiRcv37dShkSEclTKrY0atQIPj4+grPRDp5E6IdSrxZHR0c8/fTTQnNhzxb9EXVhykKd7dPTTQw9bQsREZHaDh8+LLu8TZs28Pb2FpwNkTIR90l4nimWZostRZPu1qpVy6zX16hRAwCQlJRkqZSIiEwSFRUlu5xDiJFeKM3X0rt3b1StWlVoLrxhTuZizxbSEgcHzV6WERER2Ry152sB+LAhmYb7if5o9qy+6GbNvXv3zHr9/fv3AQC+vr6WSomIqFySJLHYQroWExOD06dPy8ZGjhwpNBeAPVvIfCy22D49PaXn4eGhdgpERES6EB8fj0uXLsnGOF8LEVmbZostDRo0gCRJ2L9/f4UvhtPT07F//34YDAY0aNDAShkSEZV29+5dxYn4goODBWdDZHnbtm1TjA0fPlxgJoXYs4XMxWILkf3QU2GOiNTFp9C178iRI4oxkT1biEzBY4r+aLbYMmjQIACFF8KzZs2q0GvfeOMNpKamAgAGDx5s6dSIiBQpzdcCAO3btxeYCZF1KM3X0r59e9SrV09sMmDPFjIfiy1ERERE+qM0X0tgYCCeeOIJYXmw0E+mYLFFfzRbbAkLC4ObmxsAYMWKFRg7dqzi0+JF4uPjMWHCBCxbtgwA4OrqipdeesnquRaXn5+P6OhoLFu2DC+//DI6duwIFxcXGAwGGAwG9OnTx+S2YmJijK8z9adRo0YVyvfixYt4++230aZNG1SrVg0eHh5o0qQJJk2ahF9++aWCW18oPj4eCxcuRPfu3REQEAA3NzfUq1cPQ4cOxerVq5Gbm1vhNnNycrB69WoMHToU9erVg5ubGwICAtC9e3csXLgQ8fHxZuVKZGlKxZZ69eqhevXqgrMhsqyEhAT8+uuvsrERI0YIzqYQe7boj4gLU0mSWGwhIiIi0iEtzNcC8CY6mYb7if44qZ2AksDAQLz33nv4+9//DoPBgE2bNmHLli0YOnQounfvjnr16sHDwwPp6emIjY3FkSNHsHPnTmRnZ0OSJBgMBrz//vtCq9ZbtmzB+PHjbeYp208++QQffvhhqeLH1atXcfXqVXz33XcYO3YswsPD4eXlZVKbP/30E0JDQ/Hw4cMSy2NjYxEbG4uff/4Z//3vf7F+/Xo0adLEpDYvXbqEsWPHlpoj4N69e7h37x6OHj2Kf/3rX1ixYgWGDh1qUptkGfxSKE2p2ML5WkgPduzYgfz8fNmYGvO1AOzZQubJyclBXl6e2mkQERERkQVlZWXhxIkTsjEOIUZaxPtq+qPZYgsAvPfee7h79y6+/vprGAwGZGdnY8uWLYpDmBTfQV955RXMmTNHUKaFkpKSrHbTx8vLCxMnTix3PX9/f5Pamzt3LubNm2f8OyAgAE8++STc3NwQFRWF8+fPAwDWr1+PR48eYceOHXByKnt3iYyMxLPPPmu8eeHu7o7+/fvD398f165dw6+//gpJknDy5En0798fx48fR+3atctsMy4uDv3798edO3cAFD7t2qtXLwQFBeHhw4fYu3cvMjMz8eDBA4wcORK7du1Cv379TPo3ILIGFltIz7Zu3Sq7vF69emjTpo3gbAqxZwuZg71aSGt4oW1d/PclIkvh0FDaduLECeTk5MjGevbsKTQX7itE9knTxRYA+PLLL9GrVy/87W9/w40bN8o9UW7QoAH++c9/YsyYMYIyLK1mzZro1KmT8Wf37t1YtGhRpdqsVq0avvzyS4vk98svv5QotLz99tv4+OOP4eLiYly2fv16hIaGIisrC5GRkfj0008xd+5cxTYfPXqE559/3lho6d+/PzZs2AA/Pz/jOmfOnMHw4cMRGxuLuLg4vPjii+UOVTZu3DhjoaVevXrYunUr2rZta4zHx8fjhRdewC+//ILc3FyMGTMG165dg6+vb4X+TYgs4eHDh7h165ZsjMUWsnVZWVnYtWuXbGzkyJGqXUywZwuZg0U6IiIiIv1RGkLM29sbrVq1EpwNUflEPBDCwp9Ymi+2AMBzzz2HMWPGIDIyEvv27cOpU6fw8OFDpKWlwdPTE/7+/mjfvj369euHQYMGqbYTPfXUU7h58yYCAwNLLD9+/Lgq+Sj529/+Zvz9hRdewIIFC0qtM3bsWCQnJ+Pll18GACxcuBAzZ84sUTwpbv78+UhKSgIABAUFYdu2bXB3dy+xTtu2bbF9+3Z07NgRubm52LdvHyIjIzFo0CDZNnfu3IlDhw4BAFxcXLB9+3a0bt26xDp+fn7YunUr2rRpg+vXryMhIQELFizAp59+ato/BpEFKfVqAVhsIdv3yy+/KN6gVmu+FoDFFj0ScR7Hni1ERPS4oof8iMh2HT58WHZ5t27d4OjoKDgbovKx963+OKidgKkMBgMGDx6M+fPnIzIyEqdOncLVq1dx6tQpREZGYv78+Rg8eLCq1bpatWqVKrRozR9//IE//vgDAODg4CBbaCkyffp0NG7cGACQmpqK1atXy66Xm5uLb775xvj3Rx99VKrQUqRNmzaYNGmS8e+vvvpK8f2LxyZNmlSq0FLEw8MDH330kfHv8PBwjsNOqlAqtgQEBKBWrVqCsyGyLKUhPKtWrYonn3xSbDLFsIcCmYPFFjIHL4aJ9Cs7Oxvbt29XOw0iqoSCggIcOXJENsb5WkirRJxf8hxWLJsptpBlFL9ZNmDAADzxxBOK6xoMhhKFkR9//FF2vQMHDhh7tXh5eSEkJKTMHCZPnmz8PTIyUvZGWVpaWokhxqZMmVJmmyEhIfD09AQAJCQk4Ndffy1zfSJrUCq2BAcHC86EyLLy8/Oxbds22dgzzzxT7pxe1sSeLWQOFlv0gReOZCoOn0HliYyMREpKitppEFElXLp0CQkJCbIx0fO1EJmK57P6o5lhxBYuXGi8YTJw4EB069atwm0cPXoUe/bsAVB40/+NN96waI56sH//fuPvffr0KXf9vn37Gn8/cuQIsrOz4erqqthmt27dSsUf17lzZ7i7uyMjIwNZWVk4evQoBgwYUGKdovcCCnuudOrUqcw23dzc0K1bN+Pnv2/fPvTr16/c7SOyJKViC4cQI1t3/PhxPHjwQDY2cuRIsck8hj1byBwsthARUXGbNm1SOwUiqiSl+VocHR3RuXNnwdkQmYbFFv3RRLFlw4YNmD17NgwGA1q1aoW3337brHbatm2L6dOn4/z58wCARo0aYdiwYZZMVTV5eXnYs2cPTpw4gfj4eLi5ucHPzw8dO3ZE586dyy1wFLl48aLxd1NuALdv3974e35+Pq5cuVJqOK+Ktuns7IzWrVsb57K5ePFiqWJL8TZbt25t0lPTHTp0MBZbir+eSITExERcv35dNsZiC9m6rVu3yi53dXVVnHdLFPZsIXOw2EJEREWysrIUe/ASPY43RrVLab6WDh06wMPDQ3A23FeI7JUmii0ffPABgMI5RNavX48qVaqY1Y67uzvWrVuHdu3aoaCgAB988IFuii23b99WvKFVtWpVzJw5E++++65xKC05Dx48MA73BQD16tUr932rVKkCf39/PHz4EEBht8zHiy2XL1+uUJsAEBgYaCy2XLp0qVTc3DaLyLVJZE2nT59WjLHYQrZOab6WgQMHlvm9IwJ7tuiPiOF+WGwhIqIiHEKMSB+UeraoNV8Liy1kCu4n+qP6nC3Hjh3DlStXYDAYMH78eLRo0aJS7bVq1Qrjx48HUHjzs6wboHqRmJiITz75BB07dsSVK1cU13v06FGJv2vWrGlS+8Un9pYb/7J4u1puk8ialIYQ8/PzQ926dQVnQ2Q5ly5dUvxuGTFihOBsSmPPFjIHi3RERFSEQ4gR2b579+7h2rVrsjG15mvhfGFkChHFFu6LYqlebCneXfe1116zSJvF21F6GtdWeHl5YfLkydiwYQMuX76MtLQ0ZGdn49atW/j+++9LDL91+fJlPPXUU8ZeKI97/ClOU3sQFV9P7knQ4su03Ka53NzcjE9u5+fnIykpyXgwTElJQU5ODgAgMzPTePMmLy+vRC+i5ORk5ObmAii8MVh0czA3NxfJycnG9ZKSkpCXlweg8EZQZmYmACAnJ8f4tJUkSUhKSkJ+fr5xW7OysgAA2dnZSE1NBQAUFBQgKSkJBQUFAIDU1FTjPDhZWVnGf6PHt8nb2xsuLi4ACv9Ni7rbOjk5wdfX15irj4+PzWyTiM/p5MmTcHFxgbe3N4DCLzNfX18EBwfDYDDY5DaZ8jm5ubkBKBxOysvLC0BhL0VfX184OBR+xXh5eRmHOrSFbdLj51SZbfrxxx/h6+trPEErOkYYDAYMHDjQ5G1yd3cHUDiUpI+Pj3E9X19f41CRHh4exmO5i4uLSduUk5Nj0r7n5uam689Jj9vk6Ogou+8BZX8/mbJNaWlpZe57jx/LHR0dAQCenp6yxz17/pzU3KYipn5Ojx8jzNmm8s6NnJ2dART2uK/ocU+vn5MWtqn4jQxzPyetbZMePyc1tik5ORm//PILgPLPI4quCU39fuLnpM9tKvrcLXke4eDgwM+pktt08OBBAPLH8i5duqi6TRW5x2Lq91PRttva56THfa+y2xQfH1/hc1hzvp/s7XNSk+rFlj/++ANAYe+F4OBgi7TZsWNHY2+IoqGqbFFAQADu3LmDFStW4Pnnn0eTJk3g4eEBFxcX1K1bF6NHj8aePXsQHh5u/I9048YN/O1vf5Ntr2jnLlL0H648xeeDKfqPpNSults0V9euXTF69GgAwMOHD7Fo0SLjAWD58uW4cOECAODgwYPYvn07ACAuLg6LFi0ytrF48WLjUxaRkZGIjIwEAFy7dg2LFy82rrdo0SLExcUBALZv3248Ybhw4QKWL18OoPDgtGjRImNRbfPmzTh27BgA4NSpU1i7di2AwgPQokWLjAe8tWvX4tSpUwAKe5Rt3rxZdptCQ0ONPcx69+5tHIqvbt26mDVrljHXl19+2Zir1rdJxOcUFRWFFi1aIDQ0FEDh/jhr1izjEGK2uE2mfE5du3YFUDi/U1GvQm9vb8yaNct4kTF+/Hjj/E+2sE16/Jwqs0379+/HrFmzjMfYomNEt27dcPHiRZO3qWgozKCgILz88svG9WbNmmXs/TVs2DD07t0bANCiRQuTtqlRo0Ym7Xtdu3bV9eekp20qehDH399fdt8Dyv5+MmWb0tLSytz3Hj+W+/v7AwBGjx4te9yzx89JC9tUtG+Y+jk9fowwZ5vKOzcKCgoCAAwaNKjCxz29fk5a2KbixRZzPyetbZMePyc1tmnTpk0YOXIkgPLPI4quCU39fuLnpO9tsuR5hLe3tya2yZY/p+joaADyx/Kim8Oit6nou6ci91hM/X66f/++TX5Oetz3KrtN27dvr/A5rDnfT/b2OalKUllgYKDk4OAgPfXUWdAcIwABAABJREFUUxZt96mnnpIMBoNUv359i7Zrjn/84x8SAAmA1Lt3b6u8x5w5c4zv4ejoKN27d6/UOr///rtxHQBSZmamSW137tzZ+JqFCxeWiru7uxvjP//8s0ltzp492/iaZ555plR86NChxvg777xjUps7d+40vsbT09Ok15Tl3LlzEgDJzc1N8vT0lM6dOyfl5eVJiYmJUkFBgSRJkpScnCxlZ2dLkiRJGRkZUlpamiRJkpSbmyslJiYa20pKSpJycnIkSZKk9PR0KT09XZIkScrJyZGSkpKM6yUmJkq5ubmSJElSWlqalJGRIUmSJGVnZ0vJycmSJElSQUGBlJiYKOXl5UmSJEmpqanGzzIrK0tKSUmRJEmS8vPzpcTERCk/P1+SJElKSUmRsrKyJEmSpMzMTCk1NVWSJKnUNnl7e0suLi4SAKlKlSqSh4eHBEBycnKSfH19jf/GPj4+UlxcnE1sk7U/p/v370sGg0FycXGRvL29JQCSwWCQfH19pY0bN9rkNpn6Obm5uUkAJFdXV8nLy0sCIDk4OEi+vr6Sg4ODBEDy8vKSXF1dpXXr1tnENunxczJ3m+7cuSM5OjpKvr6+ksFgkAAYjxELFiyo0DYVfVc4OztLPj4+xmOJr6+v5OTkJAGQPDw8pCpVqkgAJBcXl3K3KT8/36R9r+hYrtfPSW/bFB8fbzyfkdv3lL6fir77TdmmmTNnlrnvPX4sd3R0NJ5fPH7cs9fPSQvb9M4775j8OckdIyq6TWfPni333MjZ2VkCILm7u1fouHf58mXdfk5a2Kannnqq0p+T1rZJj5+TGts0YcIEk88jPD09Tf5+4uek322aMWNGueewFTmPKNr3+DlVbpu6d+8ueywPDQ1VbZv+97//mXQOa873U9G9GFv7nPS471V2m5566qkKn8NW9PtpzJgxdvM5Fd3LLfo5d+6cJJrqxRYvLy/JwcFBmjx5skXbnTx5smQwGCRvb2+LtmsOEcWW1NRU45c7AGn16tWl1rlw4UKJHS4hIcGktlu3bm18zZIlS0rFa9SoYYz/8MMPJrX52muvGV/zwgsvlIo/99xzxvjrr79uUpsRERHG19SqVcuk15RFC/9B1VB8m8v7uX//vtrpasKhQ4cU/42uXbumdnpWVZH9Zd26dWqnSxUUHh6u+Hlevny5Qm1VZF8p+ilPenq6RdsjbcjKyjJrfym6uWWKiRMnmvUe3K+0pfjDOyI+u7Nnz1psv6nsMZUqhv/XSU5GRobxBpWlf0i/ioot3Ge0Iy0tzVj4evwnPDxctby+/PJLq503yD1gTbbnwYMHxgKKNX/GjBmj9qYKo4V7uaoPI1Y0zlrR+HSWUtRe8fGc9czT09M4DiUAXLx4sdQ61atXL/F3UbfD8ty7d8/4e7Vq1cpsV8ttElnLyZMnZZf7+PigQYMGgrMhshylec+aN2+OJk2aiE1GBic5J3NZcm43sh+SgAlMiUic3bt38/uASAd+//1341Bhj+vZs6fgbIhMt2XLFuOcJaQfqhdb/Pz8AEBxUndzxcfHA7Cvm+4BAQHG34u2v7gaNWqUmHzr5s2b5baZlZVV4rNp1qxZqXWaNm1aoTYBIDY2VnibRNaiVGzp0KGDcT4lIluTmppqnDD2cSNGjBCcjbyiifuIKoo314iIaNOmTWqnQEQW8Ntvv8kur1q1Ku8NkaZFRESonQJZgerFFn9/f0iSZJzMylKio6NhMBhQo0YNi7arZcWf8PXw8JBdp3nz5sbfiyYeKkvxm8iOjo6yTzJXtM28vDycPXtW9vVyy86ePav4lIJSrnJtkuXxCc9CZRVb6P9wf7Etu3btUuwdWjSRrNpYbCFzsVcUEZF9y8zMNE6qS0S27fDhw7LLe/ToAQcH1W97EslKTExUfLiRbJvqR52OHTsCKOyVIDf0lTkuXbqEmJgYAEBwcLBF2rQFxQsdtWvXll2nb9++xt8PHDhQbpsHDx40/t69e3e4urqW2ebRo0fLHbrtjz/+MN4gc3NzQ7du3UqtU/y90tPTceLEiTLbzM7OxrFjx4x/9+vXr8z1iSwlMzMTFy5ckI2x2EK2bOvWrbLLAwIC0KlTJ8HZyOMNc30S0SOQPVuIiOzbrl27+F1AZuEDZNqSn5+Po0ePysZ69OghOBsi023bts2kB8stgSOuiKV6sWXgwIHG3z/77DOLtFm8neLt69nevXtx69Yt4999+vSRXa/408h79+5FXFxcme2uXLlS9rXF9enTBz4+PgCAlJQU/PDDDya3OXDgQNleOJ6enujfv7/sa+T88MMPSE1NBVA4dFyvXr3KXJ/IUqKjo5Gfny8bY7GFbFVubi527NghGxs+fLhmnhBjzxYyF2+wkdbwIphILA4hRqQP586dQ0pKimyM87WQlnEIMf1S/W7JkCFDULVqVUiShHXr1lW6K+9PP/2EtWvXAgB8fX0xdOhQS6QpXE5OTrk9RIo8fPgQM2bMMP7dvHlzxZu8nTp1Mj6RnJ+fj3fffVex3aVLl+LKlSsAAC8vL0ycOFF2PWdnZ0ydOtX499y5c5GZmSm77rlz50oUTl555RXF9585c6bx95UrV+L8+fOy62VkZGDu3LnGv6dNmwYnJyfFdoksSWkIMQ8PDzRu3FhwNkSW8euvvyIpKUk2ppX5WgD2bCHzsdhCRGS/OIQYkX4ozdfi4uJiHElHLY6Ojqq+P2lXSkoKdu/erXYaZCWqF1u8vLzw17/+FQBQUFCAF154wezq3o8//ogXXngBBQUFMBgMePPNN+Hl5WXJdIW5c+cOgoKCsGDBAsUJ4iVJwo4dO9CpUydcu3YNQOFTcQsXLizzqePiPX/Wrl2Ld999F7m5uSXW2bRpE2bNmmX8+6233oKfn59im++++y58fX0BAFevXsWIESPw6NGjEutER0dj2LBhxiJS3759MXjwYMU2n376aTz55JMACocJe+aZZ0rN7fPo0SOMHDkSf/75J4DCXi3vvPOOYptElqZUbGnfvj1PrshmKQ0h5unpqalhGtmzhczFYgsRkf36+eef+cAGmY09EbVFab6Wjh07ws3NTXA2JVWrVk3V9yft2rFjh8kP2JPt0cTj/2+88QY2btyIc+fOITMzE8899xxCQkLwxhtvyM7n8bhjx47hP//5DyIiIiBJEgwGA1q1aoU33nhDQPYlDR06FHfu3Cmx7N69e8bfT5w4gXbt2pV63c6dO0vNsxIXF4d33nkH77zzDurXr4/WrVvDz88Pzs7OePjwIY4fP17qvRYsWFBub57+/fvj/fffx8cffwwAmD9/PlavXo0nn3wSbm5uiIqKwrlz54zrDxw4EHPmzCmzzerVq2PDhg145plnkJeXhz179iAwMBADBgyAv78/rl27hoMHDxrHN61Tpw7WrFlTZpsAsG7dOnTu3Bl3795FTEwM2rVrh969eyMoKAgPHz7E3r17jTfbnJycsGnTJmPRh0gEpWILhxAjWyVJErZs2SIbGzJkiOzcXWrhjRJ9svZNjIKCAu47RER2TGkIserVq5d6YJCItE2pZwvnayEt27x5s9opkBVpothSpUoVbN++HV26dMGDBw8gSRIiIiIQERGBwMBAdOnSBS1btoSvry88PT2RlpaGpKQkXLhwAcePHzf2/Ci6kV+jRg1s374d7u7uwrflwoULij1RgMIbQ2fOnCm1vLyKZkxMDGJiYhTjderUwddff43hw4eblOdHH30EV1dXfPTRR8jNzcWdO3ewcePGUuu98MILCA8PN2lYrsGDB+OHH35AaGgo4uPjkZGRgW3btpVar3379li/fn2p4pKcunXrYt++fRg7dixOnz4NSZJw4MABHDhwoMR6/v7+WLFiRYl5XoisLScnB2fPnpWNsdhCtur06dMl5gArTmnuLrWwZwuZg/sNEZH9ysjIwE8//SQbGzVqFL755hvBGRGRuW7duoXY2FjZGIstpFXp6en4+eefhb5n0f1yEkMTxRYACAwMxNGjRzFmzBhERUUBKNwZbt68idjYWHz//feyryvaYYqeguzQoQO+//57BAYGikncSurVq4ezZ8/i6NGjOHLkCM6fP4/4+Hg8evQIGRkZ8Pb2RkBAADp16oQhQ4bg2WefhbOzs8ntGwwGvP/++wgJCcG3336LyMhI3Lp1C7m5uQgICEC3bt0wadIkDBgwoEJ5Dxs2DBcuXMCKFSvw448/4vr160hKSkLNmjXRsmVLjB07FmPHjq1Qrs2aNcPx48exYcMGrF+/HufPn8f9+/fh6+uLhg0bYtSoUZgyZUqZw5wRWcP58+dLDcFXhMUWslVKvVqcnJw0Nw8aeydQcaZeRHC/IS3iRTCRGGUNIfbcc8+x2EJkQ5R6tQBA9+7dBWZCZLpdu3YpznNN+qCZYgsA1K9fH0eOHMH8+fPxv//9Dw8fPgQA49Bgjyt+UVK9enW8/vrrmD17NlxcXITl/Liyep9URNFQaK1atSox+bylNW/eHP/+978t2qa/vz9mz56N2bNnW6xNFxcXTJw4ERMnTrRYm0SVpTSEmJubG5o3by44GyLLUJqvpXfv3pobppE9FMgcnK9FP0QXKFgQIbJ9SkOI+fn5oU+fPmKTIaJKUZqvpWnTpvD39xecTWmc34fkqDGEGPdFsTRVbAEAZ2dnvP/++3jrrbewefNm7Nu3D4cOHcLNmzeRl5dnXM/JyQn16tVDz5490a9fP4wZM0b1ya+IyL4oFVvatGlj0tB7RFpz48YN2aEugcoPIRYQEIC7d+9Wqo3HsYcCmYPFFiIi+1TeEGI8fyeyLUo9W3r27Ck4EyLTZGVlKX4PkX5o9mzCzc0NEyZMwIQJE4zLUlNTkZqaCi8vL3h5eamYHRERjEMePo5DiJGtkptnq4ipc4KJxJ4t+mTtJ69YbCEisk87d+5UPHd47rnnBGdDRJWRkpKC6Oho2RjnayGt2rNnD69F7IBmiy1yWGQhIq3Iy8tT7AEQHBwsOBsiy1Car6VDhw6anAuNxRYyBy9wiIjsk9IQYv7+/ujdu7fgbMhWcUhJbTh27BgKCgpkY1rp2cJ9hR6nxhBiJJ6D2gkQEdmiS5cuISsrSzbGni1kix49eoRDhw7JxkaMGCE4G9NwGDEyB4stRET2Jz09HTt27JCNcQgxItujNISYv78/GjVqJDgbovLl5OSUOZIE6QeLLUREZlCar8XZ2RktW7YUnA1R5e3YsQP5+fmyscrO12It7NlC5mCxhYjI/nAIMbIUTjStDYcPH5Zd3rNnT35GpEn79u1DUlKS2mmQACy2EBGZQanY0qpVK7i6ugrOhqjytm7dKru8fv36aN26teBsTMOeLfrEOVuIiMjSyhpCrFevXoKzIaLKyM3NxfHjx2VjnK+FtCoiIkJ2OafL0B8WW4iIzKBUbOEQYmSLMjMzsWvXLtnYyJEjNft0GHu2kDlYpCMisi9lDSEWEhLCIcSIbMyZM2cUz+e0Ml8LUXF5eXmK86MOGzbM6u+v1et5vWKxhYjMZq8TvhUUFODUqVOyMRZbyBb98ssvioULrc7XAvCmOZmHPVuIiOzLjh07kJmZKRvjEGJEtkdpvhY3Nze0b99ecDZE5fv1118RHx8vGxs9erTgbMjaWGwhIqqgq1evKt6sY7GFbJHSUzbVqlXT9NNh7NlCxTk4mHZay2ILEZF9URpCrEaNGqWGEJs0aZKIlIioEpTma+ncuTNcXFwEZ0NUPqUhxNzd3TF48GDB2ZC1sdhCRFRBSkOIOTg4oE2bNoKzIaqc/Px8bN++XTb2zDPPaHpoDfZs0Sdzu7n/5S9/MWk9Flv0Q3QPW3vt0Utky9LS0rBz507ZWEhICBwdHUssmzlzpoi0iMhMkiQp9mzR8kNiZL8KCgrwww8/yMaGDh0Kd3d3wRmRtbHYQkRUQUrFlhYtWvCLkmzOsWPH8ODBA9nYyJEjxSZTQezZQsU1bdrUpPVYbCEish8VHUKsc+fO1k6JiCrhxo0buHv3rmysR48egrMhKt+RI0dw79492RiHENMnFluIiCpIqdjCIcTIFm3dulV2uZubGwYNGiQ4m4phzxYqztQeMSy2EBHZD6UhxGrWrIknn3xScDZEVFlKvVoMBgO6desmOJuycVJyApSHEHN1dcXQoUOF5MDe2WKx2EJEVAGSJLHYYiZ+wWuPJEmK87UMHDgQHh4eYhOqgNzcXOTl5amdBtkgFlv0gzcxiKgsFR1CjMgUzs7Oaqdg15SKLS1btkTVqlUFZ0NUNkmSFIstgwcPhpeXl+CMSAQWW4iIKiAmJgZJSUmyMRZbyNZcunQJV69elY2NGDHCou9l6ZuiHEKMzMUeUURE9uGnn35CVlaWbExuCDEiU7z22mtqp2DXDh8+LLuc87WQFv3xxx+4deuWbIxDiOkXiy1ERBWg1KsFANq1aycuESILUOrVYjAYMGzYMLHJVBBvmOuXtXsrsGcLEZF9KGsIMd6YJXM1atQIXbp0UTsNu5SYmIjz58/LxjhfC2mRUq8WZ2dnodfb7A0uFostREQVoFRsadKkCbuAks1Rmq+le/fuqFGjhuBsKoY9W8hcLLboB4enJCIlqamp+Pnnn2Vjo0eP5hBiZDaDwYCdO3ciJCRE7VTszpEjRxRjLKCS1kiShM2bN8vGBgwYAF9fX6G5kDgsthARVUBUVJTscg4hRrbmzp07OH78uGxs5MiRYpMxA3u2kLlYbCEi0j8OIUbWVK1aNcWbqGQ9SvO11K5dG/Xq1ROcDVHZzpw5g+vXr8vGWKzVNxZbiIhMJEmSYs8WFlvI1mzfvl0xZun5WqyBPVvIXCy2EBHpn9IQYrVq1eJwQ0Q2Smm+lh49enCYJNIcpYKso6NjqevtFStWiEiJBGGxhYhK6Nu3r9opaNbt27fx8OFD2VhwcLDgbIgqR2m+lhYtWqBx48YWfz9Ld11mzxb9subFck5ODnJycqzWPhHpk7Ozs9opUAVwCDEi/cnOzsYff/whG+MQYqRFSvO19OnTB35+fiWWDRkyRERKJAiLLURUwuzZs9VOQbOUerUAQPv27QVmQlQ5KSkp2Ldvn2zMFnq1AOzZQuZhkY4qw5rjXXMsbW1r2bKl2ilQBWzfvh3Z2dmyMQ4hRmSbTp48qTg0IHurkdZcuHABly5dko3JDSFWs2ZNa6dEArHYQkQlDB48WO0UNEup2NKgQQNUrVpVcDZE5tu1a5fi0/22MF8LwJvmZB7uN0RE+qc0hFhAQABvyhLZKKX5Wjw8PNC2bVvB2RCVTWkIMYPBgGeffVZwNiQaiy1EVILBYCjVpZEKcb4W0outW7fKLg8ICEDHjh0FZ2Me9mwhc3C+FiIifUtJScGuXbtkY6NHj4aDA2+BENkipflaunbtCicnJ8HZEJVNaQixnj17olatWoKzse4wzVQazzSIqBQeiOWx2EJ6kJubix07dsjGRowYYTM3IdhDgczBYgsRkb5xCDEi/ZEkCUeOHJGNaXm+loEDB6qdAqng6tWriI6Olo3JDSFG+mMbd1SISJPsaXzx+/fv4/bt27IxFlvIlhw8eBDJycmyMVuZrwVgzxYyD4st+qKn8xA+6EJkGUpDiNWuXRvdu3cXnA2RaerVq6d2Cpp29epVPHz4UDam5aEBfX191U6BVKDUqwUARo0aJTATUguLLUREJlDq1QKw2EK2ZcuWLbLLvby80LdvX7HJlKG8G4/s2ULmYLGFiEi/OIQY2So3Nze1U9A0pSHEHBwc0LVrV8HZVMzcuXPVToEEUyq2dOnSBU888YTgbEgNPNsgIjKBUrGlbt26qFGjhuBsiMwjSZLifC1DhgyBq6ur4IzMx54tZA4WW4iI9Gvbtm3IycmRjXEIMSLb9dtvv8kub9u2Lby8vARnUzE+Pj5qp0ACxcTE4MSJE7Kx8oYQe++996yREqmAxRYiIhNwvhbSg5MnTyIuLk42NnLkSLHJVBKLLWQOFlv0hUNvkSh6GrJOz5SGEKtTpw66desmOBsishSlni1anq+F7NMPP/ygGDOl2DJo0CBLp0QqYLGFiMgELLaQHij1anFycsKQIUMEZ1M5HEaMzMH9Rl94A5yIiiQnJ2P37t2yMQ4hRmS7Hj58iCtXrsjGtDxfC9knpSHE2rdvj4YNG5b52ipVqmDXrl34xz/+YY3USCCecRARlSMhIQExMTGyMRZbyJYozdfSt29fm5vAkT1byBzs2UJEpE8cQoxIn5SGEANYbCFtuX37No4cOSIbGz16tEltGAwGtGrVypJpkQpYbCEiKsepU6cUYyy2kK24fv06zp49KxsbMWKE4Gwqjz0UyBwsthAR6VNZQ4iJnkDb3d1d6PsR6ZlSsaVevXqoW7eu4GyIlP3444+KsfKGELM2Dr0rFostRETlUBpCrEaNGqhdu7bgbIjMozSEGAAMHz5cYCaWwZ4tZA4WW6gyOGwZkTYlJSUhMjJSNjZmzBjhQ4jZ4kMsRFqlNF8Le7WQ1igNIdayZUs0bdpUcDakJhZbiIjKERUVJbu8Q4cOfEKAbIZSsSU4OBhPPPGE4Gwqjz1byBwstugLix9EBGhvCDEXFxfh70mkR5mZmYrX4j179hScDZGyBw8e4Ndff5WNmTqEGOkHiy1EROVQ6tnCIcTIVsTHx+PQoUOysZEjR4pNxkLYs0Xfpk2bZpV2WWwhItIfpSHE6tatiy5dugjOBvD39xf+nkR69McffyA3N1c2Zis9W7y8vNROgQTYsmULCgoKZGMVHUKMDxPZPhZbiIjKkJKSgqtXr8rGgoODBWdDZJ4dO3YonvzZ6lAX7Nmib//5z3+s0i6LLfrC3qVEpLUhxADg9ddfF/6eRHqkNF+Lj48PWrZsKTgb8/j4+KidAgmwefNm2eWNGzfWxIT3LOCIxWILEVEZTp8+rRhjz5aK4Re8epSGEGvYsKEmTv7MwZ4t+ubh4WGVYVhYbCGyT40bN67U63kOo11bt25VfPJdjSHEQkJCbHJ4ViItUiq2dOvWDY6OjoKzIZKXkJCA/fv3y8ZGjx7Nh4PsEIstRERlUBpCrGrVqqhXr57gbIgqLjMzE7t375aNjRgxwmZP/tizhczB/UZfeAOcTDVp0iS1UyArURpC7IknnhA6hFiXLl0wd+5crFu3Tth7EulZQUGBYrHFluZr4bmK/m3btg15eXmysYoOIQaw57YeOKmdABGRlpU1Xwu/BMkW7N27V7EXiK3O11JQUIDMzEy10yArs8bFKXu2ENknX19ftVMgK0hMTMSePXtkY2PGjBF2rt61a1ccPXpUyHsR2YuLFy8iKSlJNmYr87WQfVAaQqx+/fqaGQ2F967EYs8WIqIylFVsIbIFW7ZskV1evXp1dO/eXWwyFpKVlaV2CmSjWGwhItIPrQwhxptYRJZ3+PBh2eVOTk7o3Lmz4GzMx54t+pacnKxY9A8JCeH3g51isYWISEF6ejouXrwoG2OxhWxBfn4+tm/fLhsbNmwYnJxss4Mrh4KyD+zZQkREZVEaQiwwMNCmbsYSUWlKQ4h16NAB7u7ugrMhkvfTTz8hJydHNmbOEGKkDyy2EJHZ9P6URnR0NAoKCmRjLLaQLTh69CgePnwoGxsxYoTgbCxHaVg00hdLf8dIksRiC5GdCgoKUjsFsjCtDCFGRNah1LPF1oYQ0/s9E3sXEREhu7xOnTpC5w0jbWGxhYhK4cVJIaUhxLy8vNCoUSPB2RBV3NatW2WXV6lSBYMGDRKaiyUvNNizhcyRmZnJC16dEf15WvP9uG9a18CBA9VOgSxsy5YtihMSixxCDOC1E5Gl3blzBzdu3JCN9ezZU3A2RPLS0tLw888/y8ZGjRoFBwfecrdX/OSJiBQoFVvat2/PL07SPEmSFOdrGThwoE13v2fPFvtg6ZvP7NVCZL8cHR3VToEsTGkIsXr16qFTp05Cc2GxhciylIYQA9izhbTj559/VpxLlEOI2TfeLSQiUqBUbOEQYmQLLl68iD///FM2ZstDiAHs2ULm4X6jP7yBQWSfEhISsHfvXtmYGkOIsdhCZFlKxZZGjRqhZs2agrMhkqc0hFiNGjXYA8vOsdhCRCQjOzsb586dk42x2EK2QKlXi4ODA4YNGyY2GQtT6tni4uLCXmekiD1biMhcLOxpi5aGEANYbCGyNL3M1wLw+0OvMjMzsWPHDtnYs88+yx61do53JIiIZJw7d07xIo7FFrIFSvO1dO/eHf7+/oKzsSylHgoeHh6CMyFbwmKL/vAGJ5F9UhpCrH79+ujYsaPgbHgsIrKktLQ0nD59WjbG3gKkFZGRkYrXFqNHjxacTfn4PSUWiy1ERDKUhhCrUqUKmjZtKjgbooq5c+cOfv/9d9nYyJEjxSbz/1nyBE+pZ4stz0NDpXHOFiIietyjR4/wyy+/yMbUGEKMiCzr999/R35+vmyMPVtIK5SGEKtWrRp69+4tOBvSGhZbiIhkREVFyS5v27YtnJycBGdDVDHbtm1TjNn6fC0Ae7aQeVhsoeIaNGigdgpEZAatDSEG8IlhIktSGkKsevXqaNasmeBsiErLyclRvN4eMWIEnJ2dBWdEWsNiCxGRDKWeLRxCjGyB0nwtLVu2RKNGjcQmYwXs2WIf2LOFrKlXr15qp0BEZihrCLHg4GDB2RRisYXIcn777TfZ5d27d7fJ/2vs2aI/v/zyC5KTk2VjWhxCjMRjsYWI6DG5ubmIjo6Wjal1EUdkqpSUFOzbt082podeLYBysYU9W6gsLLboT2VuYNjiDRsie1fWEGLP/T/27jw8qvu8+/9Hu4RAiH0HG8yOWM0OxuxmERKLYzuuTe02btM+ycPTp4ndNHUTJ22fuO5Cf02cpInjxHUcO2wCjG1sMBjMYpDZN2MWs5gdCQHapfP7g2iK4HxHGmnmO2dm3q/r4rqkc4+O7sOMZjn3ue/vV74Str9rnk+A4KiqqtLWrVtdY6zXAq8wjRDLyMjQ5MmTLWcDL6LYAgB3OHTokMrKylxjdLbA69555x1VVFS4xsK1XkuwmcaI0dkCf0yPG0QurhYFYsvy5cuNazmEa4SYRLEFCJZ9+/bp+vXrrrFIXK9Fkh588MFwp4AgqqysNE6RmDNnjlJSUuwmBE+i2AIAdzCNEEtOTla/fv0sZwMEJi8vz3V7x44do6Yzi84WNASdLWgsijtAeJlGiN17771hvSCKYgsQHKb1WpKTkyP2c0yXLl3CnQKCaOPGjbpy5YprbP78+UH5HaF4TUlOTg76PmFGsQXAXaJl1FBDmYotWVlZvEjB08rLy/X222+7xnJychQfHzkv+/5OatLZAjd1nQin2AIAkevy5cvGManhHCEmUWwBgsW0Xsvw4cOVmppqOZvgSUhICHcKCBLTCLH09HRNnz7dcjb1N3Xq1HCnEFMi56wLAGsWLVoU7hTCylRsYYQYvG7jxo0qKipyjUVTEZXOFjQExRYADUVXU/h5dYSYRLEFCBZTZ0ukjhCrQXdLdKiqqtKyZctcY7NmzVJaWlpQfk8o3nNEcrEyElFsAXCXvn376m//9m/DnUZYVFVVadeuXa4xii3wOtP82IyMDE2cONFuMiHkr7Pll7/8pWvsq1/9aihTQgj8xV/8RVD3R7EFiG0ZGRnhTgGNYBoh1r17dw0ZMsRyNrVRbAEa79SpUzpz5oxrbNy4cZazAe62ZcsWXbhwwTUWrBFiiA4UWwDcJS4uTj/4wQ+0ZcsWPfXUU+FOx6rPPvvMeNU8xRZ4meM4xvVaZsyYEVUj8Ex/o02aNNFDDz3kekLt0UcfDXVaCLI///M/D+r+KLZEn2g6wRlNx+JV//qv/xruFNBAly5d0ocffugaC/cIMQDBYepqkaQxY8ZYzARwt2TJEtftqampmjlzpuVs4GUUWwC4iouL0+jRo/Xcc88ZbxONIxVMI8QSEhI0cOBAy9kA9Zefn6+zZ8+6xnJzc+0mE2Kmzpb09HS1b99ea9euVZ8+fSRJbdu21Y9//GNlZ2fbTBFBkJWVpdatWwdtfxRbgNj26KOPasKECeFOAw3g5RFiEsVSIBhM67X07dtXrVq1spxNcEXjeZNYU11dbRwh9tBDD6lp06aWM4KXUWwB4FesfXgwFVv69+/PnMtG4k1maJm6WpKSkjRjxgzL2YSWv84WSRo5cqQOHTqky5cv6/z580EfRwV7/s//+T9B2xfFlujD6woCkZ6erjVr1ug//uM/wp0KAmQaIdajRw8NHjzYbjIuYu3zEhAKpmJLpK/XguiwY8cO45g7RojhThRbAOA2pmILI8Tgdab1WiZOnKjmzZvbTSbE/HW23K5Vq1acAIGP6XGDyBVJxZbExMRwpwDdKso//vjjAf/cpUuXQpAN6iMSRoh5IQcgkl27dk179+51jbFeC7zANEIsKSkp6BMUeE2JfBRbAOAPqqurKbYgIh07dkz79+93jeXk5FjOJvTq6mwB3NDZgnB56aWXVFRUFO400AimBXEResuWLVN1dbVrzAsjxCROjAGNtW3bNuMFFNHQ2RJJF4fgbo7jaOnSpa6xqVOnRt2FjWg8ii0A8AcnTpwwngyh2AIvM40Qk6Q5c+ZYzMQOU7Hlzs4WRL5gfjil2IJwSktLC3cKQEQyjRC77777NGjQIMvZuKPYAjTO5s2bXbe3a9dOPXr0sJwNUNuuXbt04sQJ1xgjxOCGYgsA/IGpqyUuLs4zH+YAN6Ziy/3336/OnTtbzib0TOOg6GyBPxRb0FhcmQrYdfHiRW3YsME15pURYtKtE8IAGs7fei1e+TtH7DJ1tSQkJETlFAk0HsUWAPiD/Px81+29e/dW06ZNLWcTGbhSN/wuX75svBosNzfXbjJ+BOskZUVFhSorK11jdLbApLKyUqWlpeFOAwAQgEgYISZJ3/rWt8KdAhCxKioqtG3bNtdYNIwQQ2RzHMe4XsvEiRPVqlUryxkhElBsAYA/YL2WwD3xxBPhTiHmrV692ngiIhqvtPG3yDmdLTDx97hB5IqUq10zMjLqvA1dM8DdTCPEevbsqYEDB1rO5paEhIRa30+bNk29e/cOSy5ANNi9e7dKSkpcY+PGjbOcTWjwGh+5Dhw4oM8++8w1xggxmFBsAQDdegNkKrYMGzbMcjZA/a1YscJ1e48ePdS/f3+7yVhgWq9ForMFZowQQzgxYijysfitfRcuXNDGjRtdY+EaITZhwgStXLlS2dnZGjJkiL797W9rxYoVEVP4BbzI1KGflpamIUOGWM4GqM00QiwuLk5z584Nye/s1atXSPYLexLDnQAAeMHp06d15coV1xidLfCq4uJirV271jWWk5MTlR/+6WyJLd26dQvKfuhsiU5cKQpb2rRpE+4UYo5XR4jNnDlTM2fODNvvB6KNab2WkSNHKikpyXI2QG2mYsv48eNDdjFNVlaW7r33Xp04cSIk+0fo0dkCADKPEJOkwYMH20sECMD7779vbLv30notweSvs4ViS/RZsGBBUPbjr7OlT58+QfkdsC9Sii3RWPiOZNwfkcE0QqxXr17KysqynA2AUHAcx9jZEk3rtUTK+xXU9tlnn2nfvn2usWB9RjF59dVX+WwbwSi2AIDMxZYePXooMzPTbjJAPeXl5blub926tcaMGWM5Gzv8dSgwRiz6pKamBuWqRn/Flt/+9reN3j8AIHjOnz+vjz76yDUWrhFiAILv+PHjunDhgmssWtZrQeQydbVI0rx580L6ux944AEdPnw4pL8DoUOxBQBkLrYwQgxeVVVVpVWrVrnGsrOz71rANVqYOlvi4uKUkpJiORvY8OyzzzZ6H6ZiS0pKSlSubQQAkcyrI8QABJdphFhcXJxGjx5tORugtiVLlrhuHzVqlDp16hTy39+lS5eQ/w6EBsUWAJCUn5/vup1iC7xqy5Ytunz5smssJyfHcjb2mDpb0tPTudIVRqZiS9OmTRntAAAeYxoh1rt3bw0YMMByNgBCxTRCLCsrS82bN7ecTXgNGzZMgwYNCnca+IMTJ04YL8gN9QgxRD6KLQBi3rlz53T+/HnXGMUWeNWKFStct6elpWnq1Kl2k7HI1NnCTFv446/YAgDwDkaIAbHD1NkSTeu11Nfw4cO1e/fucKeBP1i2bJkxFuoRYg311FNPhTsF/AHFFgAxz3TFgkSxBd7kOI5xvZZp06ZFdeHBX2cLolMwOk/obAGAyLB06VLj8zIjxIDocfXqVR08eNA1FovrtfB+1FtMI8SGDh2qe++913I29fPKK68oLS0t3GlAFFsANEK0vCEwFVu6du2q1q1bW84GqNuBAwd07Ngx11hubq7dZCyjswUNYSrS0dmCQETL+x7Ay0wjxPr06cMaW0AU2bJlizEWi50t8I4zZ85o27ZtrjGvjxCj2OINFFsA+BULrfqmYgtdLXWbM2dOuFOISaaulvj4eM2ePdtyNnaZii10tsAfxohFJ4ofQHQ5d+6cNm3a5BpjhBiiWSy+npnWa+nUqZO6du1qOZvQqs/9y/ObdyxfvtwYmz9/vsVMEKkotgCIeRRbGm7atGnhTiEmmdZrGTduXNR3Y5k6FOhsiV7B+PDJGLHoxH0HRBevjxDjOQcIHtN6LePGjaPwgLAyjRDLyspSr169LGeDSESxBUBMu3z5sk6dOuUao9hSt6SkpHCnEHPOnj2rnTt3usZycnIsZ2MfnS1oCFOxhccNbOCkEVA/phFiffv29cQIMYotQHCUlZVpx44drjFGiCGcLly4YOywpKsF9UWxBUBM27VrlzFGsQVetHLlSmMsFootdLagIfx1tsTH83Y4UlHEAKLHl19+aRwr5IWuFqCxeM36H/n5+SorK3ONjRs3znI2wP9Yvny5sbBOsQX1xadLADEtPz/fdXv79u3VoUMHy9kAdTONEBswYIB69OhhN5kwoLMFDeGv2JKSkmI5GwDAnfyNEHv44YctZwMEV5MmTbRv3z799Kc/DXcqnmAqrDZt2lRZWVmWswk9uuIix9KlS1239+7d2xMdlogMFFsAxDTWa0EkuXbtmj788EPXWG5urt1kwoTOFjSEv2ILACD8TCPE+vXrxwkuRLRRo0ZpzZo1PI5vY1qvZfTo0UpMTLScDXDLlStXjJ+158+fT3ca6o1nMQAxzVRsGTZsmOVMoh9X9DTeO++8o4qKCtdYLIwQk8ydLRRb4I+pSFdTbMnKytK+fftspgQA+IOzZ88aT74yQgyRbuvWreFOwVMcxzH+vbNeC8IpLy9PVVVVrrEFCxZYzgaRjM4WADGrsLBQx44dc43R2QIvysvLc93eqVOnmCkQmk6aM0YM/tDZAgDexQgxIHYcOXJEV65ccY1F63otXHQYGUwjxO69914NHjzYbjKIaBRbAMSs3bt3G2MUW+A15eXlWrNmjWssJycnZtqa6WxBQ1BsAQDvMo0Q69+/v/r162c5GwChZOpqSUhI0MiRIy1nA9xSWFio999/3zXGCDEEimILgJhlGiHWqlUrdenSxXI2gH8bNmxQUVGRayxW1muR6GxBw1BsiU62rxTlylQg+BghBsSWzZs3u24fPHgw78sQNqtXrzaO62aEGAJFsQVAzDIVW4YOHcqVC/CcFStWuG7PyMjQhAkT7CYTRnS2xJ7Gtu07jmMsttQU6TiJjlC65557wp0C4FlLliwxxrw2QozXCqDxWK8FXmQaIda5c2cNHz7ccjaIdBRbAMSs/Px81+2MEIPXVFdXa+XKla6xWbNmKTk52XJGgQvWCQpTsYXOluiVnZ3dqJ8vKyszLnbJFZSwYcCAAXXepk2bNhYyAbzHNEJswIAB6tu3r+VsgOCKlTUV6+vChQs6evSoayyaiy0Uar3txo0bevfdd11j8+bNU3w8p84RGB4xAGLSjRs3dOTIEdcYxRZ4TX5+vs6ePesay8nJsZxNeJnGiNHZEr0aW0w0dbVIFFvgHS1btgx3CoB1Z86c0ZYtW1xjjBBDNHjmmWfCnYKnmP7epegutsDb1qxZo9LSUtcYI8TQEInhTgAAwmHPnj3GK0wotsBr8vLyXLcnJSVpxowZlrMJn+rqapWUlLjG6GyBCcUWhNPkyZPDnQLuwBXG3hFJI8SAQP385z/X1772tXCn4Smm9VruuecederUyXI2wC2mEWLt2rXTmDFjLGeDaEBnC4CYZFqvpXnz5urRo4flbAD/TOu1TJo0SRkZGXaTCSNToUWiswVmpm4oiWJLpOOkORDZTCPEsrKy1KdPH8vZAMGTlpZGocWFab2WcePGWc7Ervbt24c7BRiUlJTo7bffdo3NmzdPCQkJljNCNKDYAqDBIvkkh6nYMmTIEMXFxVnOBjD7/PPPdeDAAddYrI0QM63XItHZAjM6WxBOvKcA3J0+fVpbt251jTFCDIg+xcXFxjVTo32E2D//8z/XeZsnnnjCQia403vvvWe8MGv+/PmWs0G0oNgCwK9oPUlgKrYwQgxeYxohJklz5syxmEn4+etQoLMFJqZiS1xcnNLS0nxfA4gNkXyxUDSJxBFiPHZQX7yvuNuOHTtUWVnpGov2zpZx48ZpwIABxniXLl00atQoixmhhum1qFWrVpowYYLlbBAtKLYAiDmlpaXGTgGKLfAaU7Fl+PDhMTfb2F9nC8UWmJiKLenp6b6TIZxAi0zcb0DkMo0QGzhwoHr37m05GwChZlqvJTMzU/369bOcjV2pqalav369nn76aXXt2rVW7L777tP777+v+HhOz9pWVlamVatWucZyc3OVmBg5y5z/v//3/8KdAm4TOY8cAAiSffv2qaqqyjVGsQVecunSJeNs49zcXLvJeIC/zhbGiMHEVGxhhBgQmyjShd+pU6e0bds21xgjxIDoZPpMM2bMmJgoNLRp00a//OUvfd8XFBToypUr6tGjB51QYbJu3ToVFRW5xiJphFirVq082xEaq6L/GQ0A7mCaFdukSRP16tXLcjaA2erVq1VdXe0ai7X1WiQ6W9AwFFsQLKE6SZ+amhqS/QJeFYkjxAA0XHV1tbZs2eIai/b1WkxatGih++67j0JLGJlei5o3b67JkydbziZw7dq10/z58/Xhhx+qe/fu4U4Ht6GzBUDMMa3XMnjwYCUkJFjOBjBbsWKF6/b77rsv6tvt3Zg6W1JSUvjbhRHFFnjF//pf/0v/+Z//edf2119/PQzZAOFjGiE2aNAgT1/4RFcU6osT6LUdOHBA165dc41F+3ot8KaKigrjuO45c+YoOTnZckaBO378OBccehSdLQBijqnYMmzYMMuZAGbFxcV6//33XWM5OTkx+SHO1NnCm0z4YyrSUWyBDbefOH7iiSfu6mLp3r27pkyZYjutmMYJ8/D64osvtH37dtcYI8SA6GQaIZaUlKThw4dbzgaQNm7cqKtXr7rGImmEGLyJYguAmFJeXq59+/a5xlivBV6ydu1alZSUuMZicb0WyVxsYb0W+ENnS/Ty0klz02jH//t//6/v6xEjRmjNmjWaNm2aOnfurEcffVQbNmxQRkaGrTSBsGOEGBB7Nm/e7Lp96NChSktLs5wNYH4tatq0qaZNm2Y5G0QbxogBiCkHDx5UeXm5a4xiC7zE1Nbcpk0bjR492nI23mDqUKCzBf5QbIENf/VXf6X169fr+vXrvm1PPPHEXTO0J06cqIkTJ9pOD7fxUpEuFplGiA0ePFg9e/a0nA0AG0ydLYwQQzhUVVVp+fLlrrFZs2ZRAESjUWwBEFNMI8RSUlLUt29fy9kA7iorK7Vq1SrXWHZ2dsyuT0JnCxrCVGy5/XEzZ84c7d+/31ZKCBIvjVMcPny4Nm3apFdffVWnTp3SlClT9Mwzz4Q7LcBTTp48qU8++cQ1xggxIDqdPXtWJ0+edI2NHTvWbjKAbnVaXbx40TUWSSPEvPQ+GLVRbAEQU0zFloEDByopKclyNoC7LVu26MqVK64x06iaWEBnCxqiPp0tf/7nf65//Md/tJUSgqRZs2bhTqGWQYMG6d/+7d/CnQbgWYwQQ6zgJOj/MHW1SBRbEB5Lly513Z6WlqYZM2ZYzgbRiDVbAMSU/Px81+2MEIOXrFixwnV7kyZNNHXqVLvJeAidLWiI+hRbunTpon/913+1lRKCpGXLluFOARGIMWLh8/vf/951+5AhQ3TfffdZzgaADab1Wnr27Km2bdtazgaxrrq6WsuWLXONPfTQQ4wZRlBQbAmyqqoq7d27V7/85S/19a9/Xffff7+Sk5MVFxenuLg4Pfjggw3e97p16/Tkk0+qV69eSk9PV8uWLTVw4EB961vf0uHDhxu0z0OHDulb3/qWBg4cqJYtWyo9PV29evXSwoULtW7dugbt8/Lly3rppZc0ZswYdejQQampqerWrZtmzpyp1157TRUVFQHvs7y8XK+99ppmzpypbt26KTU1VR06dNCYMWP00ksv6fLlyw3KFbGlsrJSe/bscY1RbIFXOI5jXK9l2rRpMT1Dls4WNER912z5P//n/wS8744dOzYoJwCINYwQA2IT67XAS7Zv366zZ8+6xhYsWGA5G3u40MQuxogF0YoVK/T4448br7xtqKKiIj3zzDN68803a20vLi5WQUGB9u3bp8WLF+v73/++/uZv/qbe+/2Hf/gHff/737+r+HH06FEdPXpUv/nNb/TYY4/pZz/7Wb3HNKxevVpPP/20Ll26VGv7qVOndOrUKb3zzjv693//d73xxhvq1atXvfZ5+PBhPfbYY9q9e3et7efPn9f58+e1detW/fM//7N+9atfaebMmfXaJ2LTkSNHVFJS4hqj2BJ6vMDXz/79+3X8+HHXWG5urt1kPMb0+kqxBf6YinTBuHLt7/7u7xq9D4TGE088oddeey3caQD4A1NXi8QIMUSf2bNnhzsFT7h+/fpd53FqMEIM4WAaIZacnBwVf7eMMPQGOluCqLCwMOiFloqKCs2dO7dWoWXAgAF68skn9ZWvfEUdOnTw3e473/mOXnjhhXrt9/nnn9d3v/tdX6GlQ4cO+spXvqInn3xS/fv3993ujTfe0IIFC1RZWVnnPteuXau5c+f6Ci1NmjRRdna2nn76aU2YMMH3R//pp59q8uTJ+vLLL+vc55kzZzR58mTfC3RcXJwmTJigp59+WtnZ2b4rvC9evKjc3FytX7++XseP2GRaryUxMVFZWVmWswHcmbpa4uPjNWvWLMvZeIvppDljxKJfv379Gvyz9e1sqcs//dM/1fr+4Ycf1p/8yZ80OC80nr8i/je/+U21atXK2u8D4J+p2DJ06FD16NHDcjYNw3MA7vS9733Pdfu3vvUtu4l41Pbt21VdXe0ao7MFtjmOY1w7bOrUqcrIyLCcEaIVxZYQaNeunWbPnq3vf//7WrNmjf73//7fDd7XD37wA18BITU1VW+88Yb27dunX//613rzzTd18uTJWi/k3/ve97Rx40a/+1y3bp1+8IMf+L7/1re+pZMnT+rNN9/Ur3/9a+3fv1+//e1vlZqaKulWEaWuRWOvXLmiRx55xFeUmTx5sr744gutXLlSv/zlL7Vhwwbt2rVLXbt2lXSriPLEE0/Uefxf/epXfUWZbt26adeuXdqwYYN++ctfauXKlTp16pQmT54s6VbB6eGHH1ZhYWGd+0VsMhVbBgwYoJSUFMvZAO5M67WMHz9erVu3tpuMx9DZErtuf98SqGAVW5577jkdO3ZMr732mj799FP97ne/U1JSUoPzQmgNGDDAOCcegF0nTpzQjh07XGORNEKMYgvu9I1vfENDhgypte1//a//dde2WGUaIda6det6TzoBguXTTz/VF1984RqLxBFidLF4F8WWIHrooYf0xRdf6Pz581q1apWef/55zZgxQ5mZmQ3a38WLF2st1vrv//7vevTRR2vdJjk5WS+++KIeeeQRSbfeANY1Suz2+KOPPqoXX3xRycnJtW7z2GOP6d/+7d9839e1LsqPfvQjX5GjR48eWrly5V0nBQcNGqRVq1b5TkysX79ea9euNe5zzZo12rRpk+84V61apUGDBtW6TevWrZWXl6fu3btLkq5evaoXX3zRuE8EV6R94DAVWxghBq84ffq08vPzXWM5OTmWs/EeOltiV3Z2tubOndugnw1WsUWSunfvrj/6oz/SkCFDFB/P22iv69Onj5588slwpwGPibT3r9GAEWKIVi1bttSGDRv029/+Vn/3d3+ntWvX6j/+4z84CfoHposexo4dy/9RI/FaFjjTCLHExETNmTPHcjaIZnxKDKL27dv7OjeC4de//rXvxFKvXr30zDPPGG/74osv+j70b926Vbt27XK93Y4dO3xXFcXHx/stTPzZn/2ZevbsKenWrE3T3OuKigr913/9l+/7F154wXiV8cCBA7Vw4ULf9z/+8Y+Nv//22MKFC41jntLT02uNT/vZz35Wr7FnqJ9oeRNUXV1t/Lug2AKvWLlypTEW6cWWYHwgoLMldiUlJenNN9/0+zfipqqqyvi4oUiHYIqW90tAKJiKLcOGDfNdNAdEqoyMDD322GN64YUXNHXqVF4P/qCyslLbtm1zjbFeC2zzN0Js4sSJatmypeWMEM0otnjY7aNk/viP/9jvi3bXrl01adIk3/fLly+vc59TpkxRly5djPuMi4urVRgx7XPDhg2+rpZmzZpp/vz5xn1Kt46lxtq1a12vVL5x44bWrVvn+/6pp57yu8/58+f7rlC9evWqPvroI7+3R+w5duyYrl+/7hqj2AKvMK3XkpWVxckI0dkS65KSkpSdna3OnTvX+2f8raXXkM4WRA+uCAXsOH78uHbu3Okai6QRYgACs3fvXmN3McUW2LZ//34dPXrUNRaJI8TgbRRbPKq0tLTWVQAPPvhgnT8zceJE39emheI//PDDBu9zy5YtKisr87vP0aNH17n2xYgRI3xXIZeWlmrr1q133eb235Wenq7hw4f73WdqaqpGjx7t+950/IhdptFM8fHxGjhwoOVsgLsVFhbWej69XW5urt1kPIrOFgTK9CFfotgCxKqGFNoozjUcI8SA2GRaryUlJUXDhg2znE3kmDVrVrhTiEqmEWLx8fF81kbQUWzxqCNHjqi6ulrSrQ6T+iywdvvV+YcOHXK9ze3b63M1/+2/t6qqSp999lmj95mUlFRrJJhbrrdvy8rKUmJiYp37rc/xI3aZ1mvp06cPV8XDE9555x3jCMRIHyEWLIyDQqAotgBAeJmKLffff7/uvfdey9kAsMW0Xsvw4cPrvEA3ln3jG9/wrXOM4DGNEHvggQfUtm1by9kg2lFs8agjR474vm7btq1SU1Pr/Jnb14u5evWqLl26VCt+8eJF37gvSerWrVud+0xLS1ObNm183x8+fNhvrvXZ55252tonYpup2MIIMXjF7WMeb9e5c2cep39gGiNGZwtMTI8Zyb3Y0rFjR9fbfvWrXw1aTrCL2fm4E10q9hw7dszYXc4IMSB6OY5jLLaMGzfOcjaRZfr06XrnnXf0la98hXVEguTw4cM6cOCAa6yuZRC8jPe43kWxxaOuXLni+7pdu3b1+pn27dvX+v7q1avGfTZ0v3fu8879enmfiF2O4xiLLbQwwwvKysr0zjvvuMZycnJ4I/UHdLYgUP46W9weN88//7zrbf/3//7fQcsJwcNJc8Db/I0QY0Y+EL2++OILffnll64x1mup2+TJk/Xmm28aC1YIjGmEmCTNnTvXYiaIFRRbPOr2kwNpaWn1+pk7b3fnCYY7v2/Ift1OWjQ2V1v7bKjU1FTf1a9VVVUqLCz0fbgvKipSeXm5JKmkpMR3BW1lZWWtLqJr166poqJC0q2ThTUnDCsqKnTt2jXf7QoLC31jhG7evKmSkhJJUnl5uYqKiiTdOrFQWFioqqoq37GWlpZKunXCtmYR+OrqahUWFvrG0V2/ft23Dk5paanv/6iuY6rJITExUZmZmb5cmzdv7svV68d08OBB332TlpbmO8GWmJiovn37RsX9FO7HXkpKipo1aybp1tzTzMxMxcffeolp1qyZr1U8ko7J5v307rvv+n5vkyZNfJ0aSUlJmjFjRkQe0533U02HZlJSkpo3b+67XWZmpm9UZHp6uu+5PDk5udYxXbx40ZdD06ZNfftLSUlRQkJCWI4pGh57kXpMdz6X3/76dPsxFRQU1Pp7qnnsJScnq7i4+K5jevrpp7VgwQJlZGRIunXF2N///d/7CvPcT946pprfGRcXp8zMTN9zQdOmTX25xsXFGV+fQvnY437y7jHduHHDN6Llztdc0+tTamqqp4/Jq/fT73//eyUkJCgzM9N34UhGRoZGjRqle++917PH5PYeNjU1VcnJyVF5P3FM9o6pqqqq1nvYmtenuLi4iD0mt/vp448/Nn4mHDNmTEQek2T/sVezb7fXp0g9pnDcT2+//Xat5/Ka83tjx45Venq6p4/J3zkWt/up5na3v+bWvHZ55ZhsPfbCiWKLR9U8ECX5/jDqcufcy5oHvds+G7rfO/d55369vM+GGjVqlO/Kq0uXLmnx4sW+J4BXXnlFBw8elCRt3LhRq1atkiSdOXNGixcv9u3j5Zdf1rFjxyRJa9eu1dq1ayXdaq1/+eWXfbdbvHixzpw5I0latWqVNm7cKOlWseCVV16RdOvJafHixb4xcUuWLNG2bdskSbt27dLrr78u6dYT0OLFi31PeK+//rp27dolSdq2bZtvZmVdx1Sz786dO2vRokW+XL/+9a/r7NmzEXFMeXl56tevnyRpwoQJys7O9h1Tze+J9Psp3I+9IUOG6PHHH5d06wV90aJFvpOVjz/+uG/9p0g6Jpv306effqoePXpIkqZNm6Zp06ZJurVm1b59+yLymO68n8aMGSNJ6tGjh77+9a/7brdo0SJ17txZkpSdna0JEyZIkvr161frmF5++WXfWMsFCxZo1KhRkm499vbu3RuWY4qGx16kHtOdz+W3vz7dfkzHjx/3/T3d/thLT093PaakpCT9zd/8jf72b/9Wv/jFL7Rr1y7FxcVxP3n0mGo+FKakpGjRokW1niN27Ngh6daHUdPrUygfe9xP3j2mpUuXur7m+nt9GjVqlKePyYv302uvvaZPP/1Ubdq00aJFi3yf1Z5++mnNmTPH08fk9h521KhRGjRoUNTdT9H42PPyMRUWFtZ6D1vz+tSkSZOIPSa3+2nz5s2unwkfeughtWzZMiKPSbL/2NuzZ48k99enixcvRuQx2b6fjh8/rkGDBtV6Lq85v5eTk+P5Y/J3jqXmM/Dt91PLli3ves2tORfmlWOy9dgLKwch9/d///eOJEeSM2HChHr9zIsvvuj7mZEjR9brZ4qLi30/I8nZuXNnrfgnn3xSK15SUlKv/Y4YMcL3My+99NJd8SZNmvji77zzTr32+e1vf9v3M7Nnz74rPnPmTF/82Wefrdc+16xZ4/uZpk2b1utn/Nm/f78jyUlNTXWaNm3q7N+/36msrHQKCgqc6upqx3Ec59q1a05ZWZnjOLf+/2/cuOE4juNUVFQ4BQUFvn0VFhY65eXljuM4zs2bN52bN286juM45eXlTmFhoe92BQUFTkVFheM4jnPjxg2nuLjYcRzHKSsrc65du+Y4juNUV1c7BQUFTmVlpeM4jnP9+nXffVlaWuoUFRU5juM4VVVVTkFBgVNVVeU4juMUFRU5paWljuM4TklJiXP9+nXHcZw6j6nm/yExMdHJzMz0/R83b97cOXbsWEQc09/+7d86ycnJjiQnLS3NSU9PdyQ5vXv3jpr7KZyPPUlOSkqK06xZM0eSEx8f72RmZjrx8fGOJKdZs2ZOSkqK8+qrr0bMMdm8n6qqqpyePXs6SUlJjiSnSZMmvufVxx9/PCKPye1+6tq1qyPJSUpKcpo3b+57LsnMzHQSExMdSU56erqTlpbmSHKSk5NrHdOhQ4echIQE33N8amqq77G3a9eusBxTpD/2IvWYOnfuXOu5vOb16Te/+c1dx/SLX/zC9/d0+2OvS5cunjqmaLyfbBzTP/zDPziSnLi4OCczM7PWc0TNPv74j//Y9fVp4cKFAR/Tli1bXB97Ne+ruZ8i45gOHz7s+pqblJTkjBs3zvX1qX///p4+Ji/eTzV/nwkJCU5mZqYTFxfnSHIyMjKczz77zNPHdOd72JrPhOPHj4+6+ykaH3tePqYf//jHtd7D1rw+1XwujcRjcrufsrKyXD8T/tmf/VnEHpPj2H/s7dq1y/j56fTp0xF5TLbvpxdffPGu5/KmTZs6kpzPP//c88fk7xxLzT5uv5/atGlz12tucnKy8/vf/94zxxTqx17NOcyaf/v373dso9hiQUOKLT/5yU98PzNw4MB6/cyVK1dqPaAOHz5cK37w4MFa8atXr9Zrv1lZWb6f+elPf3pXvG3btr74smXL6rXPb3zjG76fefTRR++Kf+UrX/HFv/nNb9Zrn0uXLvX9TPv27ev1M/544Q/UC44dO1br/+H2f1988UW406uXGTNmuOb/yCOPhDu1qGB6fNz579VXXw13qp60fft24//Zm2++Ge70gub214r6/rvdZ599ZrzdqVOnwnRUCIfOnTu7Pg5qii23+//+v//P9bZ9+/YNQ+YItn/8x380Pi/UfFhbuHCha3zhwoUB/74tW7YYf199L2JC+J0+fdp4P95+kdnt/3r06BHutCPOkCFDjP/HXmd6fNT3IkjA5Kc//anrY6tXr17hTi1oCgoKfCd67/z361//OtzpRZQ7z+Hd/u/cuXPhTi8ijBw50vX/7/777w93avXi77NyTZHidq1atXK97e9///swZB8eXjiXyxgxj2rVqpXv6wsXLtTrZ86fP1/r+5YtWxr32dD93rnPO/fr5X0iNjmOo/z8fNfY0KFDLWcD3G3FihWu25OTk/XQQw/ZTcbDamaxunFb6ByQzGu41cxqBoKlZjY2Ihv3Y3AcPXrUNwrkTl/5ylcsZwPApq1bt/rWVrjTuHHjLGeDWHb69Glt377dNTZ//nzL2QRfzfot8B7uGY/q3bu37+uLFy/etd6Km1OnTvm+btmypW9udY22bdvWWsTziy++qHOfpaWlvjl7ktSnTx+/udZnn3fmamufiE1ffvmlb57pnSi2wAvy8vJct0+aNMk3kxXyLdLnpmZxY+BOpiIdxRYACJ3f//73xljNrHwA0enjjz923d6+fXvde++9lrNBLFu2bJkxFunFlvvuuy/cKcAPii0e1bt3b1+V0nEc7d69u86f+fTTT31f9+3b1/U2t283XW1k2mdCQoJ69erV6H1WVlbWWvDZLdfbt+3bt0+VlZUB5Wo6fsSe2x8Xd6LYgnA7evSob3G3O+Xm5tpNxuNMJ83j4+N9CwACd6KzJbp1797dGONqP5iYrrhG8JiKLSNHjlS3bt0sZxM8PHaAum3evNl1+9ixY+kehFVLly513T5w4ED17NnTcjbB1bZt23CnAD/4FOJRqampGjVqlO/7DRs21PkzGzdu9H09adIk19tMnDixwfscM2aM6wmt2/e5detWlZeX+93njh07fFcop6amavTo0Xfd5vbfdfPmTe3cudPvPsvKyrRt2zbf96bjR+wxFVvuuecexs0h7ExdLZKUnZ1tMRPvM3W2NGnShA9uMKLYEt1yc3NdO9vGjx+vpKSkMGSESMfrSeN99tlnxgsFGSEGRLfy8nJ98sknrjFGiAWO16SGO3/+vLHwF+ldLfA+ii0edvtVza+++qrf254+fVrr1q1z/VnTPj/44AOdOXPG735v/72mfT744INq3ry5JKmoqMhvq96d+5w6darrrP2mTZtq8uTJrj/jZtmyZbp+/bqkWyPUHnjgAb+3R+wwFVvoaoEXmIotI0eOVMeOHS1n422mYgvrtcAfii3RLSUlRf/0T/9Ua1taWpp+8IMfhCkjRDo6FxqPEWJA7Nq1a5dKSkpcY2PHjrWcDWLZ8uXLja/pvBYh1Ci2eNjChQt9J5GOHDmiX/ziF8bbPvvss6qqqpIkjR492ngiefjw4Ro+fLgkqaqqSs8995xxnz//+c/12WefSZKaNWumJ5980vV2SUlJ+trXvub7/vnnnze+wO7fv79W4eQv//Ivjb//L/7iL3xfv/rqqzpw4IDr7YqLi/X888/7vn/mmWeUmJho3C+CJxI+kFJsgVddvHjRONM4JyfHcjbeZxojxnot8MdUbKFIFz2++c1v6v3339c3vvENffe739X27ds1YcKEcKcFD+vUqZNat2591/a4uDjNnTs3DBlFF1OxZdSoUeratavlbADYZPps06RJEw0ePNhuMohpphFiffr0Ub9+/Sxng1hDscXD2rZtq7/6q7/yff/Nb35Tb731Vq3bVFRU6LnnntMbb7zh23bnFX53uj3++uuv67nnnlNFRUWt27z11ltatGiR7/u//uu/dv1QUuO5555TZmampFtrEOTk5OjKlSu1brN3715lZ2f7xoxNnDhR06dPN+5z1qxZGj9+vKRbY8Jmz56tvXv31rrNlStXlJubq88//1zSra6WZ5991rhPBC6SW1cvXrxo7N6i2IJwW716tbFgyXotd6OzBQ1BZ0tsmDJliv7jP/5DP/jBD5SVlRXudOBx8fHxevjhh+/aPnXqVLVq1SoMGUWPI0eOaM+ePa6xaBghFgkXmgHhZBrbNHLkSMZ7wprLly8bl01ghBhs4PL/IJs5c6a+/PLLWtvOnz/v+3rnzp2uFf01a9a4joz5u7/7O3388cdav369SkpK9Mgjj+iHP/yhhg4dqtLSUn300Uc6d+6c7/bf//7367yab/Lkyfrud7+rH/7wh5KkH/3oR3rttdc0fvx4paamKj8/X/v37/fdfurUqfrOd77jd5+tWrXS7373O82ePVuVlZV6//331bVrV02ZMkVt2rTRsWPHtHHjRt8b1E6dOum///u//e5Tkn77299qxIgROnfunE6ePKnBgwdrwoQJ6tGjhy5duqQPPvjAdwIuMTFRb731lq/oA5i6WiSKLeHAB9TaVqxY4bq9Z8+e6tOnj91kIgCdLWgIii0A3CxevFjl5eX63e9+p4qKCj300EP6zW9+43cEFurGCDEgdjmOY+xsYb0W2JSXl+eb/HMnXotgA8WWIDt48KC++OILY/zmzZuuV/uYFpVPSkrSsmXL9Mwzz/i6Wvbt26d9+/bddbvvfe97dRZFarzwwgtKSUnRCy+8oIqKCn355Zd6880377rdo48+qp/97Gf1Gss1ffp0LVu2TE8//bQuX76s4uJirVy58q7bDRkyRG+88Ua91iPo3Lmz1q9fr8cee0y7d++W4zjasGHDXVXqNm3a6Fe/+lWtdV4AU7GlY8eOateuneVsgP9x8+ZNvf/++66x3NzciO4oCxU6W9AQpiIdxRY0BBcNRI+kpCT94he/0E9+8hNVVlZSuA8SU7Fl9OjR6tKli+VsANj0+eef6+LFi64x1muBTUuWLHHd3r17dw0aNMhyNohFFFsiQPPmzfXmm2/qa1/7mn79619r69atOnfunJKSktSlSxdNnz5df/Inf6K+ffvWe59xcXH67ne/q/nz5+sXv/iF1q5dq9OnT6uiokIdOnTQ6NGjtXDhQk2ZMiWgXLOzs3Xw4EH96le/0vLly3X8+HEVFhaqXbt26t+/vx577DE99thjAbWQ9unTR9u3b9fvfvc7vfHGGzpw4IAuXLigzMxMde/eXfPmzdNTTz3ld8wZYhPrtcCr1q5dq9LSUtcY67W4o7MFDUFnCwB/kpOTlZycHO40osLhw4fvGvlcIxpGiAHwz9TVEh8fr9GjR1vOBrGqsLBQ69atc40tWLAgai5q5AIgb6PYEmQnT54M2b6nTJkScPGjLn379tW//Mu/BHWfbdq00be//W19+9vfDto+k5OT9eSTT+rJJ58M2j4R/UzFlmHDhlnOBKgtLy/PdXvbtm01atQoy9nY0dg3tqbOFoot8IdiC2yJlg/vQEMxQgyIbaZiS1ZWljIyMixng1i1atWqu9akrsF6LbAlPtwJAEAoFBQU6MSJE64xOlsQTpWVlVq1apVrLDs7WwkJCZYzsqOxV9+YOlsYIwZ/KLYAgB2mYsuYMWPUuXNny9kAsG3z5s2u21mvBTaZRoh16dJFw4cPt5wNYhXFFgBRadeuXcYYxRaE08cff6yrV6+6xnJzc+0mE0HobEGgysvLjVe2UaQDgOA5dOjQXWuK1mCEGPA/orUL8vLlyzp8+LBrjPVaYMv169f13nvvucbmz58ftX9/8B6KLQCikmmEWJs2bdSpUyfL2QD/Y8WKFa7bmzRposmTJ9tNJoLQ2YJAmbpaJDpbACCY/I0QY2wLEP22bNlijFFsgS1r1qxRWVmZayzaXosoHHkbxRYAUclUbBk6dCgvTAgbx3GM67VMnz5daWlpljOKHHS2IFAUWwDADlOxZezYsYwQA2KAab2WLl26qGvXrpazQawyjRDr0KGDxowZYzkbxDKKLQCiUn5+vut2RoghnPbt22dcS4gRYv6Zii10tsDE1A0lUWwBgGA5ePCg9u/f7xpjhBgQG0zrtdDVAluKi4u1Zs0a19jcuXMVH8/pb9jDow1A1CkqKtJnn33mGqPYgnAydbUkJCRo1qxZlrOJLKYT53S2wITOFgAIvVgaIfb444+HOwXAc0pLS7Vz507X2Lhx4yxng1j17rvvGi/Oi7bXIngfxRYAUWfPnj3G2LBhwyxmAtRmWq9l/PjxatWqld1kIgydLQiUv2ILRToACA5TsWXcuHERu07i3/7t3961LSEhgWIL4GLnzp0qLy93jdHZAluWLl3qur1169Z64IEHLGeDWEexBUDUMa3XkpmZqXvuucduMsAfnD592vjYzMnJsZxN5KGzBYEyFVvS09MZJYAGcRwn3CkAnnLgwAEdOHDANRbJI8S+853vaMqUKb7vExIS9MYbb6h169ZhzArwJtN6Lc2aNVNWVpblbBCLysrKtGrVKtdYbm6uEhMTLWeEWMcjDkDUMZ3QHjp0qOLi4ixnA9xiGiEmUWypDzpbECh/xRYAQOOZulri4uIiemxLkyZN9N5772nv3r06ceKExo8fT6EFMDCt1zJ69GglJCRYzgax6P3339f169ddY5H8WoTIRbEFQNTxV2wBwsVUbBk4cKDuvfdey9lElurqapWUlLjG6GyBianYwnotABAc/kaIdezY0XI2wRUfH6/Bgwdr8ODB4U4F8Kzq6mpt2bLFNcZ6LbDFNEIsMzNTkyZNspwNwBgxAI3gxXEaxcXFOnjwoGuMYgvCpbCwUBs2bHCN5ebmWs0lEpkKLRLFFphRbIFNdM4i1hw4cMD4njuSR4gBqL8jR47o6tWrrjHWa4ENFRUVxosa58yZo+TkZMsZARRbAESZvXv3qrq62jVGsQXhsmbNGlVWVrrGGCFWN9N6LRIjoWBGsQUAQuett95y3R7pI8QA1J9phFhCQoJGjhxpORvEog8//FAFBQWusQULFljOBriFYgsAvyLtSk3TCLGmTZuqZ8+elrMBblmxYoXr9i5dumjIkCF2k4lApvVaJDpbYGYq0lFsAYDGcRzHOEJs/Pjx6tChg+WMAITDxx9/7Lp9yJAhXBAFK0wjxJo2baqpU6dazga4hWILgKhiKrYMHjxY8fE85YXCwoULw52Cp5WVlemdd95xjeXk5ERcQTMc6GxBfdw52pLOFgAIjQMHDujQoUOuMUaIAbHD1NnCCDHYUFVVpeXLl7vGZs+erdTUVMsZAbdw5hFAVDEVW4YNG2Y5k9jx4osvasCAAeFOw7PWr19vPOnLei31Q2cLGoJiCwCEBiPEAJw/f17Hjh1zjY0bN85yNohFmzZt0qVLl1xjjBBDOFFsARA1ysrKtH//ftcY67WETtu2bbVjxw6tW7dOv/3tb5WSkhLulDzFtGBfZmamHnjgAcvZRCaKLWgIii0AEHz+Rog98MADat++veWMAISDaYSYRGcL7DCNEEtLS9NDDz1kORvgf1BsARA1Dhw4oIqKCtcYxZbQSk1N1aRJk/TYY4/xIfs21dXVxmLLrFmzlJSUZDmjyGQaI5aSkqKEhATL2SBSmIotjJ4DgIbbv3+/Dh8+7BpjhBgQO0zFlu7du7NuE0KuurraWGyZMWNG1LzfN13I+tRTT1nOBIGg2AIgaphGiKWmpqpPnz6WswGkHTt26Pz5866xnJwcy9lELlNnS7S8iUZo0NmCYLtzXSAgFvkbITZv3jzL2QAIF9ZrQTht27ZN586dc41F0wixZ5999q5tKSkpevjhh8OQDeqLYguAqGEqtgwaNEiJiYmWs8GdYvEk1YoVK1y3Jycn09ocAFNnCyPE4A/FFgAILn8jxCZMmEB3MxAjbt68qV27drnGWK8FNixZssR1e3JysmbNmmU5m9D5zne+ozlz5vi+T0tL04oVK9S8efMwZoW6cPYRQNTIz8933c4IMbvi4uLCnYJnmEaITZ48Wc2aNbOcTeSiswUNYSrSUWwBgIbZt2+fjhw54hpjhBgQOz755BNVVla6xuhsQag5jqNly5a5xqZPn66MjAzLGYVOSkqK8vLydOzYMZ08eVKjR4/mgsMIQLEFQFSoqKjQnj17XGMUWxAOn332mQ4dOuQay83NtZtMhKOzBQ1BZwts4kIDxALTCLH4+HhGiAExxLReS4sWLdS3b1/L2SDW5Ofn64svvnCNzZ8/33I2dvTo0UM9evQIdxqoJ8aIAYgKhw8fVllZmWts2LBhlrMBzF0tkpSdnW0xk8hn6myh2AJ/KLYAQPDUNUKsXbt2ljMCEC6mYsuYMWMUH89pRoSWaYRYYmJirZFbQLjwLAggKpjWa0lKSlL//v0tZwOY12sZNWqUOnToYDcZD2jMmj2mzhbGiMGkurqaMWIAEER79+7VZ5995hpjhBgQO6qqqrRlyxbXGOu1INQcx9HSpUtdY5MnT1aLFi0sZwTcjWILgKhgKrZkZWUpOTnZcjaIdRcuXNDWrVtdYzk5OZaziXx0tiBQJSUlxgIfRToACBwjxABI0oEDB1RUVOQaY70WhNq+ffv0+eefu8aidYQYIg/FFgBRwVRsYb0WhMOqVauMJ3pZryVwdLYgUKYRYhKdLQAQKH8jxB588EG1bdvWckYAwmXz5s2u25OSknT//fdbzgaxxjRCLD4+ns/Z8AyKLQAiXnV1tXbt2uUao9iCcDCt19KrVy/16dPHcjaRj84WBIpiCwAEz549e3T06FHXGCPEgNhiWq/l/vvvV1pamuVsEGtMI8QmTJigNm3aWM4GcEexBUDE++yzz4xXvlNsgW03btzQ+++/7xrjapuGobMFgTI9ZiSKLQAQKH8jxObOnWs5GwDhZOpsYYQYQu3QoUM6ePCga4wRYvASii0AGqwxC14Hk2mEWEJCggYOHGg5G8S6tWvXqqyszDXGei0NQ2cLAkVnC0LBK+97AJv8jRCbOHEiI8SAGHL69GmdOnXKNTZu3DjL2SDWmLpa4uLiKPzDUyi2APArLi4u3CnUyVRs6du3L63MsG7FihWu29u1a6eRI0faTSZKmIotdLbAxFRsSUxMVHJysuVsAES6WC607d6927gYMSPEgNhiGiEmSWPGjLGYCWKRqdgyZswYdezY0XI2gBnFFgARz1RsGTZsmOVMEOsqKyu1evVq11h2drYSEhIsZxQdTCOh6GyBianY0rRp04i4iAAAvMI0QiwhIYEriYEYYyq29O7dm/UyEFLHjh3T7t27XWOMEIPXUGwBENEcxzEWW1ivBbZt2rRJBQUFrjHWa2k4OlsQKFOxhccMQoUiHqJRXSPEOLkKxBbWa0G4mLpaJIot8B6KLQAi2okTJ3Tt2jXXGMUW2JaXl+e6PT09XZMnT7acTfSgswWB8tfZAgCon127dunYsWOuMUaIAbGlqKhIe/fudY2xXgtCzVRsGT58uLp27Wo5G8A/ii0AIpqpqyUuLk6DBg2ynA1imeM4xmLLQw89pNTUVMsZRQ86WxAoii0A0HiMEANQY9u2baqurnaN0dmCUDp16pQ++eQT19iCBQssZwPUjWILgIhmKrb06tVLzZo1s5wNYtnevXt18uRJ11hOTo7dZKKI4zh0tiBgpscMxRYAqB9/I8QmTZqk1q1bW84IQDiZ1mtp06aNevbsaTkbxJJly5YZY4wQgxdRbAEQ0fLz8123M0IMtpm6WhISEjRr1izL2USPiooKVVVVucYotsCEzhYAaJxPP/1Ux48fd40xQgwILsdxwp1CnUzFlrFjx7JuGUJqyZIlrtsHDRqkHj16WM4GqBvFFgARy3EcY2cLxRbYtmLFCtftDzzwgFq2bGk3mShi6lCQGCMGM4otABqCE4b/w98IsdzcXLvJAAiryspKbdu2zTXGCDGE0rlz57RlyxbXGCPE4FUUWwBErDNnzujy5cuuMYotsOnUqVPatWuXa4wTEo1jWq9ForMFZhRbAKDh/I0Qmzx5MiPEgBizZ88e4wVQ48aNs5wNYsny5cuNnV+MEINXUWwBELFMXS0SxRbYZRohJrFeS2PR2YKGoNgCAA2Xn5+vEydOuMYYIQbEns2bN7tuT01N5XM3Qso0Qqxv377q27ev5WyA+qHYAiBimYot3bt3V2Zmpt1kENNMxZbBgwerW7dulrOJLnS2oCFMxRYKdGiMSJipDwQDI8QA3M60XsuIESOUnJxsORvEikuXLmnjxo2uMUaIwcsotgCIWKzXAi8oKCjQhg0bXGN0tTSev2ILJ85hQmcLADSMvxFiU6ZMUatWrSxnBCCcHMcxdrawXgtCacWKFaqurnaNMUIMXkaxBUDEotjiTabFZaP1iuA1a9aoqqrKNcbVn41nGiMWHx/PlXQwotgCAA2zc+dOnTx50jXGCDEg9pw8eVLnzp1zjbFeC0Jp6dKlrtvvu+8+DRw40HI2QP1RbAEQkc6fP68vv/zSNUaxBTatWLHCdXu3bt00aNAgu8lEIVNnS3p6urGwB5iKdBRbECo8HyFamEaIJSYmchEJEINMXS2SNHr0aIuZIJYUFBRo3bp1rrH58+fzvgueRrEFQEQydbVI0pAhQyxmglhWWlqqd9991zWWk5PDm8AgMJ00Z70W+ENnCwAErq4RYi1btrScEYBwM63XMmDAALVo0cJyNogVK1euVGVlpWuMEWLwOootABosnGOhTMWWzp07q23btpazQaxav3698aQu67XU1tDnC3+dLYAJxRbUJVpHWwKNsWPHDn3xxReuMUaIAbGJ9VoQDqYRYl27dtX9999vORsgMBRbAPjl1SvzTcWWYcOGWc4EsSwvL891e4sWLTR+/HjL2UQnOlsQqIqKCpWVlbnGKLYAgJm/EWJcRALEnoKCAh04cMA1xnotCJWioiKtXbvWNcYIMUQCii0AIpKp2MJ6LbClurpaK1eudI3NmjVLSUlJljOKTqbOFootMDEV6CQ6ogDAxN8IsalTpzJCDIhBW7duNcbobEGovP3228YLpxghhkhAsQVAxLly5YpxxAHFFtjyySef6Pz5864xrv4MHtOJc06ax666rmYzjRCT6GyJRVz9CNTPJ598olOnTrnGGCEGxCbTCLEOHTronnvusZsMYoZphFiHDh00evRoy9kAgaPYAiDi7Nq1yxij2AJbVqxY4bo9JSVF06dPt5tMFKOzBYGi2AIAgTONEEtKSuIiEiBGffzxx67bx40bx8UMCImbN29qzZo1rrF58+YpPp7T2PA+HqUAIo5phFi7du3UoUMHy9kgVpnWa5k8ebKaNWtmOZvoRWcLAuVvjBjFFjSG4zjhTgEIibpGiLVo0cJyRgDCrby8XJ988olrjBFiCJV3331XJSUlrrEFCxZYzgZoGIotACJOfn6+6/ahQ4dyhQ2sOHLkiA4fPuway83NtZtMlKOzBYHy19lCkQ4A7rZ9+3adPn3aNcYIMSA2ffrppyotLXWNjRs3znI2iBWmEWJt2rTR+PHjLWcDNAzFFgARx9TZwggx2GLqaomLi1N2drblbKKbqdjCSXOYmIotaWlpSkhIsJwNAHgfI8QA3Mm0Xkt6eroGDRpkORvEgtLSUq1atco1lpuby/t4RAyKLQAiyrVr1/T555+7xii2wBbTei2jRo1S+/bt7SYT5UwjoehsgYmp2MIIMYQSnbWIVNXV1VqyZIlrbNq0acrMzLSbEABPMK3XMmrUKCUmJlrOBrHg/fffN76PZ4QYIgnFFgARZffu3cbYsGHD7CWCmHX+/Hlt27bNNcbVn8FHZwsCRbEFAOqPEWIA7uQ4jrHYwnotCBXTCLEWLVpo4sSJlrMBGo5iC4CIYhoh1rJlS3Xt2tVyNohFq1atMi6SzHotwUdnCwJlKrZQoAOAu/kbITZnzhzL2QDwgqNHj+rSpUuuMdZrQSiUl5cbR3XPmTNHSUlJljMCGo5iC4CI4m+9FkZ4wAbTm8DevXurd+/elrOJfnS2IFB0tgBA/fgbITZ9+nRGiAExyrReS3x8vEaNGmU5G8SCDz/8UIWFha4xRogh0lBsARBR/BVbgFC7ceOGPvjgA9cYXS2hQWcLAmV6zFBsAYDatm3bpjNnzrjGGCEGxC7TCLFBgwapWbNmlrNBLDAV/ps1a6apU6dazgZoHIotACLGzZs3dfjwYdcYxRbY8N5776msrMw1xnotoWHqbKHYAhM6WwCgfkwjxJKTkxkhBsQw1muBTZWVlVqxYoVrLDs7WykpKXYTAhqJYguAiLFnzx5VV1e7xii2wAbTm8B27dpp5MiRdpOJEaYuBcaIwYRiCwDUra4RYs2bN7ecEQAvuHTpko4cOeIao9iCUNi0aZMuX77sGps/f77lbIDGo9gCIGKYRog1a9ZMPXr0sJwNYk1FRYXefvtt19icOXMUH89LarBVV1ertLTUNUZnC0wotiBUHMcJdwpA0GzdulVnz551jTFCDIhdW7ZsMcbGjRtnMRPEClPhv0mTJnrooYcsZwM0HmeGADSY7ZMO/tZr4UQ3Qm3Tpk0qKChwjbFeS2iYRohJdLbAjGILANTN3wix7Oxsy9kA8IrNmze7bu/atas6d+5sORtEu+rqai1btsw1NnPmTC6wQ0Ti7CQAv+Li4sKdgo+/YgsQanl5ea7b09PTNWnSJMvZxAZ/xRbeeMPEVGyhQAcAt/gbIfbQQw8xQgyIYab1WuhqQShs2bJF58+fd40xQgyRimILgIhQWlqqAwcOuMYotiDUHMcxrtcyY8YMpaam2k0oRpjWa5E4cQ4zOlsQDl66OAWoy5YtW/Tll1+6xhghBsSukpIS7dy50zXGei0IhaVLl7puT0lJ0axZsyxnAwQHxRYAEWH//v2qrKx0jVFs8RbTCadInnW/Z88enTp1yjWWk5NjOZvYQWcLGoJiCwD4ZxohlpKSwggxIIbt3LlTFRUVrjE6WxBsjuMYiy3Tp09Xs2bNLGcUvSL5XEwkotgCICKYRoilpaWpd+/elrNBrDF1tSQkJHDFTQixZgsawtQRRbEFAOoeIZaRkWE5IwBeYVqvJSMjQ/3797ecDaLdjh07dPr0adcYI8Qahk5rb6DYAiAi5Ofnu24fPHiwEhISLGeDWGNar2XChAlq0aKF5WwiU0OupvE3RiwtLa0x6SCK0dkCAGYff/yxzp075xpjhBgQ20zrtYwZM4bP3Ag6U1dLUlISXZaIaBRbAEQEU2cLI8QQaidPntTu3btdY7m5uVZziTWmzpbU1FQ+8MGV4zgUWwDAD0aIAXBTXV1tLLawXguCzd8IscmTJ3NBIyIaxRYAnldRUaG9e/e6xii2INRWrlxpjM2ZM8diJrHH1NnCei0wKS0tVXV1tWuMYguAWFdVVWU8uTVjxgzm4wMx7NChQyosLHSNsV4Lgm3Pnj06duyYa4wRYoh0FFsAeN7BgwdVXl7uGhs2bJjlbBBrTOu1DBkyRN26dbObTIwxdbawXgtMTF0tEo8bAGCEGAATU1dLYmKiRowYYTkbRDtT4T8hIYHpEYh4FFsAeJ5phFhycrL69etnORvEkqtXr+qjjz5yjeXk5FjOJvbQ2YJA+Su20NmCxmrI2lOAl/gbITZ79mzL2QDwks2bN7tuHzJkCO+9EXRLlixx3T5hwgS1bt3acjZAcFFsAeB5pmLLwIEDlZSUZDkbxJK3335bVVVVrjGuuAk9U2cLH/hgQrEFANz5GyE2c+ZMRogBMc7U2cIIMQTbwYMHdfjwYdfYggULLGcDBB/FFgCeZyq2sF4LQi0vL891e7du3TRw4EDL2cQeU2cL46BgYnrMSBRbAMS2zZs36/z5866xhx9+2HI2ALzk3LlzOn78uGts7NixlrNBtDMV/uPi4jR37lzL2QDBR7EFgKdVVVVp9+7drjGKLQil0tJSvfvuu66x3NxcxcXFWc4o9tDZgkCZOlvi4+OVmppqORsA8A7TCLHU1FRGiAExztTVIlFsQfCZRoiNHTtW7du3t5wNEHwUWwB42pEjR4wnXCm2IJTWrVtnvEqe9VrsoLMFgTIVW5o2bUqBFEDMYoQYAH9M67X06NGDk98Iqs8//1x79+51jTFCDNGCYgsATzONEEtMTFRWVpblbBBLTCPEWrRoofHjx1vOJjbR2YJA+Su2AECs2rRpky5cuOAaY4QYANZrgS2mwr8kzZs3z2ImQOhQbAHgaaZiS//+/RkJg5Cprq7WypUrXWOzZ89WYmKi5Yxik6nYQmcLTCi2AMDdGCEGwOTGjRvatWuXa4wRYgg20wixESNGqEuXLpazAUKDYguABnMcJ+S/w1RsYYQYQmn79u3GK0Bzc3PtJhPDTGPE6GyBianYQoEOQGPYeM8bKv5GiM2aNYtiNBDjPvnkE1VVVbnG6GxBMH3xxRfauXOna4wRYogmFFsA+BXOGffV1dXGq2wotiCUVqxY4bo9JSVF06ZNs5tMDKOzBYGiswUAavvoo4908eJF1xgjxACY1mtp2bKlevfubTkbRDN/I8Tmz59vMRMgtCi2APCs48ePq6ioyDVGsQWhZFqvZerUqZy0tYjOFgTK9Jjh7xZArDKNEEtLS9OsWbMsZwPAa0zrtYwdO1bx8ZwyRPCYii1DhgxR9+7dLWcDhA7PnAA8yzRCLC4uToMGDbKcDWLF4cOHdeTIEddYTk6O5WyiR0O65OhsQaDobAGA/1FZWally5a5xhghBqCqqkpbt251jbFeC4Lp7Nmz2rJli2uMrhZEG4otADwrPz/fdXufPn042YqQMXW1xMXFKTs723I2sY3OFgSKYgtCKZLX7UBsYoQY4C3hHNHtZt++fbp+/bprjGILgmn58uXGGMUWRBuKLQA8y9TZwggxhJJpvZbRo0erXbt2dpOJcabOFootMKHYAgD/gxFiAPwxjRBLTk7W/fffbzkbRDPTCLH+/furT58+lrMBQotiCwBPchyHYgusO3funLZv3+4ay83NtZsMjJ0tdLbBhGILANzib4TY7NmzeS0FoM2bN7tuv//++5Wammo5G0Srixcv6qOPPnKN0dWCaESxBYAnnTp1SlevXnWNDRs2zHI2iBWrVq0yjolhvRb7GCOGQJmKLZxURCh5bSwMIEkbN27UpUuXXGOMEAMgmTtbxo0bZzkTRLMVK1aourraNUaxBdGIYgsATzJ1tUjS4MGD7SWCmGJar6Vv377q1auX5WxgelPOiXOY0NkCALeYRog1adJEM2fOtJwNAK85deqUTp8+7RpjvRYEk2mEWM+ePZWVlWU5GyD0KLYA8CRTseW+++5T8+bNLWeDQJiu8PX6wsLXr1/XBx984Bqjq8Vb6GyBiakbimILgFjCCDEAdTF1tUjSmDFjLGaCaHb16lWtX7/eNTZ//ny6gxGVKLYA8CTWa4Ft7733nsrLy11jrNfiLZwkggmdLQAgbdiwQZcvX3aNMUIMgGRer6VPnz5q3bq15WwQrVauXKnKykrX2IIFCyxnA9hBsQWA5ziOo/z8fNcYxRaEyooVK1y3d+jQQcOHD7ebTBQKZmcTnS0wodgCoDGi5QpbRogBqAvrtcAG0wixe+65h3M7iFoUWwB4zrlz53ThwgXXGC/ICIWKigq9/fbbrrE5c+YoPp6XSy+hswVuqqqqVFJS4hqj2AIgVvgbIZadnc0FCwB07do17d271zXGei0IlqKiIq1du9Y1Nm/evKi5wAG4E2ePAHiOaYSYJA0ZMsRiJogVH330kQoLC11jrNfiPZwoghvTei0SxRYAsePDDz/UlStXXGOMEAMgSdu2bTN2ndPZgmBZvXq1cUw3I8QQzSi2APAcU7Gla9euzI9FSOTl5blub9q0qSZNmmQ5G/iTkJCg5OTkcKcBDzKNEJMotiA4gjkOEQgV0wix9PR0zZgxw3I2ALzINEKsbdu26tGjh+VsEK2WLFniur1jx44aOXKk5WwAeyi2APAcU7Fl2LBhljNBLHAcx7hey4wZM5SSkmI3IfjVpEkTWs7hyl+xhdFzAGJBRUWFli9f7hpjhBiAGps3b3bdPnbsWN5nIyhu3rypd9991zU2f/58xnQjqvHoBtBgobrC01RsYb0WhMLu3bt1+vRp1xgjxLyHE0UwobMFQKxjhBiAulRUVGj79u2uMUaIIVjeeecd41qK8+fPt5wNYBfFFgB+2b6y5dKlS8YT3xRbEAqmrpbExETNnDnTbjKoEx0KMPG3ZguPG4QSVwHDKxghBqAuu3fvVnFxsWts7NixlrNBtDKNEGvbti1FPUQ9ii0APGXXrl3GGMUWhIJpvZYJEyaoRYsWlrNBXehsgYmpsyUlJUVJSUmWswEAu/yNEJszZ47S0tIsZwTAi0zrtaSlpWnIkCGWs0E0Ki0t1dtvv+0amzt3rhISEixnBNhFsQWAp+Tn57tu79Chg9q3b285G0S7EydOaM+ePa6x3Nxcu8mgXuhQgImp2MIIMQCxYP369bp69aprjBFiAGqY1msZMWKEkpOTLWeDaLR27Vrj+3JGiCEWUGwB4Cms1wKbVq5caYzNmTPHYiaoLzpbYEKxBUAsM40Qa9q0qR566CHL2QDwIsdxjJ0tjHZCsJhGiLVo0UIPPvig3WSAMKDYAsBTKLbAJtN6LUOHDlXXrl3tJoN6obMFJhRbAMQqRogBqI/jx4/r/PnzrjHWa0EwlJeXGy9ozM3NZbQvYgLFFgCeUVBQoOPHj7vGhg0bZjkbRLsrV65o06ZNrrGcnBzL2aC+6GyBianYQoEOQLRbt26dCgoKXGOMEANQw9TVEhcXp9GjR1vOBo3hOE64U3C1bt06Xbt2zTXGCDHECootADxj9+7dxhidLQi2t99+W1VVVa4x1mvxLk6cw4TOFgCxihFiAOrDtF7LgAEDlJmZaTcZRKWlS5e6bs/IyNCUKVMsZwOEB8WWCPDqq68qLi4uoH9/+qd/Wu/9r1u3Tk8++aR69eql9PR0tWzZUgMHDtS3vvUtHT58uEE5Hzp0SN/61rc0cOBAtWzZUunp6erVq5cWLlyodevWNWifly9f1ksvvaQxY8aoQ4cOSk1NVbdu3TRz5ky99tprqqioaNB+4R2mEWKtW7dW586dLWeDaJeXl+e6/Z577lFWVpblbFBfdLbA5ObNm67bKbYgWLx6FSliW3l5uXEsak5OjlJTU+0mBMCzWK8FoVRZWWl8PcrOzlZKSordhIAwSQx3AgifoqIiPfPMM3rzzTdrbS8uLlZBQYH27dunxYsX6/vf/77+5m/+pt77/Yd/+Ad9//vfv6v4cfToUR09elS/+c1v9Nhjj+lnP/uZmjVrVq99rl69Wk8//bQuXbpUa/upU6d06tQpvfPOO/r3f/93vfHGG+rVq1e9c4W3+FuvJS4uznI2iGYlJSV69913XWO5ubk83jyMzhaYXL9+3XU7xRYA0YwRYgDq4+rVqzp48KBrjPVaEAwbN27UlStXXGOMEEMsodgSYfr06aPJkyfXebsxY8b4jVdUVGju3Llav369b9uAAQM0dOhQlZaWatOmTTp37pwqKir0ne98RxUVFXr++efr/L3PP/+8fvCDH/i+79Chg8aPH6/U1FTl5+frwIEDkqQ33nhDV65c0dtvv63ERP8Pw7Vr12ru3LmqrKyUdOuq5smTJ6tNmzY6duyYPvroIzmOo08//VSTJ0/W9u3b1bFjxzpzhff4K7YAwbRu3ToVFxe7xlivxdvobIFJzfuEO1FsARDNTCPEmjVrpunTp1vOBoBXbdmyxRij2IJgMI0QS09PZ6QlYgrFlggzcuRI/ed//mej9/ODH/zAV2hJTU3Vr371Kz366KO+eHl5ub773e/qn//5nyVJ3/ve9zRhwgRNmDDBuM9169bVKrR861vf0g9/+EMlJyf7tr3xxht6+umnVVpaqrVr1+of//Ef/RZxrly5okceecR3AmXy5Mn63e9+p9atW/tus2fPHs2ZM0enTp3SmTNn9MQTTzR4VBnC5/r16zpy5IhrjGILgs3U3tyyZUva6D2OzhYEimILQo1uSIQLI8QA1JdphFinTp3UrVs3y9kg2lRVVWnZsmWusZkzZyotLc1yRkD4sGZLDLp48aL+9V//1ff9v//7v9cqtEhScnKyXnzxRT3yyCOSbs2ormuU2O3xRx99VC+++GKtQoskPfbYY/q3f/s33/cvvfSSLl++bNznj370IxUWFkqSevTooZUrV9YqtEjSoEGDtGrVKiUlJUmS1q9fr7Vr1/rNFd6zZ88e4yx0ii0IpqqqKq1atco1Nnv27Dq77RBedLYgUBRbAESrDz74wPdZ6U6MEANwu82bN7tuHzt2LBcNoNG2bNmiCxcuuMYYIYZYQ7ElBv3617/2LSLbq1cvPfPMM8bbvvjii4qPv/Uw2bp1q3bt2uV6ux07dmjHjh2SpPj4eL344ovGff7Zn/2ZevbsKelWN8Nrr73meruKigr913/9l+/7F154wXiSbeDAgVq4cKHv+x//+MfG3w9vMo0Qa968ubp37245G0Szbdu26eLFi66x3Nxcu8kgYBRbECi6oQBEK9MIsYyMDE2bNs1yNgC8qqyszHe+5k509SMYTCPEUlNTNXPmTMvZAOFFsSUG3d5q/sd//Md+r2Lo2rWrJk2a5Pt++fLlde5zypQp6tKli3GfcXFxtQojpn1u2LDBd6VWs2bN6qyG//Ef/7Hv67Vr1/oKSogM/tZr4UobBFNeXp7r9tTUVE5MRABOnCNQdLYAiEaMEANQX/n5+SorK3ONsV4LGqu6utpYbJk+fbqaNWtmOSMgvCi2xJjS0lJt27bN9/2DDz5Y589MnDjR93XNOi93+vDDDxu8zy1btri+8N++z9GjRyslJcXvPkeMGOG74rm0tFRbt26tMw94h79iCyKLqThmGhNnk+M4xhMTU6dO5UR+BKCzBYGi2AI3XnhNAhrj/fff17Vr11xjjBADcDvTei1NmzbVwIEDLWeDaLNjxw6dOXPGNbZgwQLL2QDhx2D6CFNYWKjf//73OnDggK5du6aMjAx17NhRo0ePVlZWVp0dAEeOHFF1dbWkWydEhwwZUufvvP1k96FDh1xvc/v2+pwcv/33VlVV6bPPPlNWVlaj9pmUlKSsrCxt377d9/NTpkyp8+fQcME6UVFSUqKDBw+6xii2IJgOHz6so0ePusZycnIsZxNbgvV8QUEMgaLYAiAaMUIMQH2Z1msZNWoU61Wi0UxdLUlJSZo9e7blbIDw41k1wuTl5RlH4PTs2VPPPvusnn76aWPR5ciRI76v27ZtW6/28q5du/q+vnr1qi5duqQ2bdr4tl28eLHWwozdunWrc59paWlq06aNLl26JOnWCdA7iy2351qffdbkWlNsOXz4cL1+Bv7ZGOG1b98+VVVVucYotiCYTF0tcXFxys7OtpsMGoTOFgSKYguAaFNWVmb8TJibm1vnRAAAscNxHGNnC+u1oLEcx9GSJUtcY1OmTFFmZqbdhAAPYIxYFDl69Kj+9E//VHPmzDGuV3LlyhXf1+3atavXftu3b1/r+6tXrxr32dD93rnPO/cbrH3Cm/Lz8123p6enq2fPnpazQTQznZgYM2aM2rZtazkbNASdLQgUxZbYFsyLRhg9Bq9ghBiA+jpy5Mhd52xqsF4LGmv37t06ceKEa4wRYohVFFsiRNeuXfV//+//1Zo1a3T69GmVlpbq5s2bOnLkiH7yk5+oT58+vtuuXr1aX/3qV33jwm5348YN39dpaWn1+t133u72fbh935D93rmPO7cFa58NkZqa6jtRU1VVpcLCQt+H7aKiIpWXl0u6NQqrpshVWVlZq9vn2rVrqqiokCQVFxeruLhYklRRUVHrg1JhYaEqKyslSTdv3lRJSYmkWwtgFhUVSbr1Qb+wsNDXCXLjxg2VlpZKunWV2/Xr1yXdWqSssLDQ9zi4fv26b22c0tJS3/9PXcdUk0NiYmKtqxKaN2/uy7Wxx/Tpp58qMzNTCQkJkm6dGEtNTdXgwYNVWVkZ9GOKxvvJS8cUFxenzMxMxcffeolp1qyZ7wrLcB7T8ePHtX37diUnJysjI6NWrjUjxGLpfrJ9TDWdlElJSWrevLnvdpmZmb7xBenp6b7ncbf7KSEhQU2aNPHMMUXj/RQpx5SWluYrvLm9PiUlJUm61QlV87XXjyka7ycvHFNcXJxvYdb4+Phar0/BfuxxP0X+MdUcg1T79Sk1NdVTx/T73//e9XmvefPmGjt2bNTfTxwTxxSpx1RVVeV7T5ySkuJ7fYqLiwvZMX388cd3vTdq0qSJEhISNHToUO4nDx9Tzb7dPj955ZiWLFni+t4oISFBOTk5MXE/eemYat7r1lxslJGRoeTk5Ig+pobeT+FEsSUC5Obm6sSJE3rppZc0Y8YMde7cWSkpKWrSpIl69eqlr3/969qzZ4+eeuop38+sXLlSv/3tb+/aV80DXJLvD64ud7ah1/wxue2zofu9c5937jdY+2yIUaNG+Sryly5d0uLFi31PAK+88opvrZGNGzdq1apVkqQzZ85o8eLFvn28/PLLOnbsmCRp7dq1Wrt2rSTp2LFjevnll323W7x4sW9hsVWrVmnjxo2SpIMHD+qVV16RdOvJafHixb4RbEuWLNG2bdskSbt27dLrr78u6dYT0OLFi31PeK+//rp27dolSdq2bZuv1bOuY9q0aZMkqXPnzlq0aJEv169//es6f/58UI5p7969WrRokW883YIFCzRq1CgNHTo0JMcUjfeTl46pSZMmWrRoke9E+eOPP+5bpymcx1QzS7Zfv356+umnJd16zli0aJEmTJgQc/eT7WOqGVPQo0cPff3rX/fdbtGiRercubMkKTs723dfuN1Pbdq0UXp6umeOKRrvp0g5pgkTJvhG/7m9PvXo0UOSNG3aNN9YUa8fUzTeT144pqZNm+rxxx+XdOsD5+2vT8F+7HE/Rf4x1by3lWq/Po0ePdozx1RWVqadO3e6Pu/l5uZq48aNUX8/cUwcU6QeU0FBgUaNGiXp1jq2Na9PTZo0Cdkxbd68+a73RtOmTdOgQYN08eJF7icPH9Pu3bsluX9+unjxYtiP6cCBA1q6dKnre6OJEyeqVatWMXE/eemYWrZsqUWLFvnOjT799NPq169fRB9TQ++nsHIQNaqqqpzx48c7khxJzoABA+66zYsvvuiLjxw5sl77LS4u9v2MJGfnzp214p988kmteElJSb32O2LECN/PvPTSS3fFmzRp4ou/88479drnt7/9bd/PzJ49u14/Y7J//35HkpOamuo0bdrU2b9/v1NZWekUFBQ41dXVjuM4zrVr15yysjLHcW79P924ccNxHMepqKhwCgoKfPsqLCx0ysvLHcdxnJs3bzo3b950HMdxysvLncLCQt/tCgoKnIqKCsdxHOfGjRtOcXGx4ziOU1ZW5ly7ds1xHMeprq52CgoKnMrKSsdxHOf69eu+//PS0lKnqKjIcZxbj4eCggKnqqrKcRzHKSoqckpLSx3HcZySkhLn+vXrjuM4dR7T559/7khyEhMTnczMTN//b/PmzZ0DBw40+pjKysqcpKQkJzMz00lISHAkOU2bNnVSU1OdV199NSTHFI33k5eOqWfPnk5mZqYTHx/vSHKaNWvmpKSkOD//+c/DekyzZs1yJDnJyclORkaGI8mJi4tz7r///pi8n2wfU8eOHR1JTlJSktO8eXPfc0lmZqaTmJjoSHLS09OdtLQ01/up5jni+vXrnjmmaLyfIuGYunTp4qSlpTnp6enG16ekpCRHktOkSRPnxIkTnj+maLyfvHJMTz/9tNOsWTNHkhMfH+97fXriiScCPqa1a9e6PvYSEhK4n6LkmH72s5+5vj717dvXM8e0cuVK4/Pe6tWrY+J+4pg4pkg9ppdfftlJTU11JDkpKSm+16devXqF7Jh69ux513ujJk2aON/4xje4nzx+TLt37zZ+fjp16lTYj6kmP7f3Ri+//HLM3E9eOqa2bds6mZmZTlxcnCPJycjIcJKTk5233norYo8p0Pup5lxuzb/9+/c7tlFsiTIffPBBrQfV6dOna8V/8pOf+GIDBw6s1z6vXLlSa5+HDx+uFT948GCt+NWrV+u136ysLN/P/PSnP70r3rZtW1982bJl9drnN77xDd/PPProo/X6GRMv/IF6wdmzZ2v9P9z+78iRI43e/6effmrc/969e4NwBLDtvvvuc70/f/7zn4ctp6KiIic5Odk1r7/5m78JW16xpGXLlsa/9UD+1bwZQ+zq0qVLQI+ZmjfgiE1PPfWU6+PiiSeeCHhfa9eudd1XYmJiCDJHOPzyl790vY/vvffecKfm80d/9EeuOTZv3tx38gGAN/385z93/fvt2bNnSH7fhQsXjO+P3nzzzZD8TgTPoUOHjPffl19+Ge70nO9973uuucXFxTnnzp0Ld3oxqXXr1q73yVtvvRXu1KzxwrlcxohFmQceeMA3i1OSDh06VCveqlUr39cXLlyo1z5vb6eXbrWlmfbZ0P3euc879xusfcJ7Pv30U9ftqamp6tu3r+VsEK3effdd31zPO+Xm5tpNBg2WmprqW2sBqI+4uLh6r/sGAF5XWlqqlStXusbmzp1b79HLAGLDxx9/bIyNHTvWYiZoiJp1N7yqZkz3ncaPH6/27dtbzgbwDs5YRJmkpCS1bt3a9/3ly5drxXv37u37+uLFi3ett+Lm1KlTvq9btmzpW1ejRtu2bWst0PjFF1/Uuc/S0lLf/D5J6tOnz123uT3X+uzzzlzd9gnvMRVbBg4c6FuUFGisFStWuG7v0KGD7r//frvJoMGaNGkS7hQQYdLT0ynQAYgaa9eu9c02v9PDDz9sORsAXmcqttxzzz3q1KmT5WwQTT777DPt27fPNTZ//nzL2QDewqfPKHTz5k3f1+np6bVivXv39p10cBzHt+CWP7efDDd1Gty+vWZBo/ruMyEhQb169Wr0PisrK2s92dMVERlMxZahQ4dazgTRqqKiQm+//bZrLCcnhxOxEeTO1zSgLk2bNg13CgAQNG+99Zbr9szMTE2ZMsVyNgC8bvPmza7b6WpBY5m6WiRp3rx5FjMBvIczTFHm+PHjta526tixY614amqqRo0a5ft+w4YNde5z48aNvq8nTZrkepuJEyc2eJ9jxoxRSkqK331u3brVOAKoxo4dO1RcXCzp1nGOHj26zjwQXpWVldqzZ49rjGILgmXjxo26du2aaywnJ8dyNmgMOlsQKIotAKIFI8QABKK4uNh4YeO4ceMsZ4NoYyq2jBo1Sp07d7acDeAtFFuizCuvvOL7unnz5ho8ePBdt7l9fYJXX33V7/5Onz6tdevWuf6saZ8ffPCBzpw543e/t/9e0z4ffPBBNW/eXJJUVFSkZcuW1XufU6dO5QroCHD48GGVlJS4xii2IFjy8vJctzdr1qxWURfex/M6AkWxBUC0eO+993T9+nXXGCPEANxpx44dqqiocI3R2YLGOHHihPLz811jjBADKLZ43o0bN+p92y1btuhf/uVffN8/+uijrmteLFy40HfC6siRI/rFL35h3Oezzz6rqqoqSdLo0aONJ8CHDx+u4cOHS5Kqqqr03HPPGff585//XJ999pmkWyc7n3zySdfbJSUl6Wtf+5rv++eff954Yn7//v21ii1/+Zd/afz98A7TlTZJSUkaMGCA5WwQjRzHMRZbZsyY4dpVB++iswWBokAHIFqYRoi1aNFCkydPtpwNAK8zrdfSvHlz9e/f33I2iCb+LoSm2AJQbPG8JUuWaMSIEfrNb35jHINTWlqq//iP/9CUKVN8C95nZmbq7//+711v37ZtW/3VX/2V7/tvfvObd715r6io0HPPPac33njDt+2f/umf/OZ6e/z111/Xc889d9eVFG+99ZYWLVrk+/6v//qv1bp1a+M+n3vuOWVmZkqSjh49qpycHF25cqXWbfbu3avs7GzfmLGJEydq+vTpfnOFN5iKLQMGDOAkOIJi165dOn36tGvM1FUH7+LEOQJFZwuCyXGccKeAGFVSUsIIMQABMa3XMmbMGNasRKOYRogNHTpU9957r+VsAO+5u+0BnrNjxw4tXLhQiYmJ6tOnj/r06aMWLVqoqqpKZ8+e1datW2ut05KWlqa8vDx16NDBuM+/+7u/08cff6z169erpKREjzzyiH74wx9q6NChKi0t1UcffaRz5875bv/9739fEyZM8Jvn5MmT9d3vflc//OEPJUk/+tGP9Nprr2n8+PFKTU1Vfn6+9u/f77v91KlT9Z3vfMfvPlu1aqXf/e53mj17tiorK/X++++ra9eumjJlitq0aaNjx45p48aNvg+/nTp10n//93/73Se8w1RsYYQYgmXFihWu2xMTEzVjxgy7yaDR6GxBoCi2AIgG7733nnHiASPEgMgX7GJ+dXW1tmzZ4hpjvRY0xpkzZ7R161bXGF0twC0UWyJIZWWl9u/fX6tgcacRI0bo1VdfVd++ff3uKykpScuWLdMzzzzj62rZt2+f9u3bd9ftvve979VZFKnxwgsvKCUlRS+88IIqKir05Zdf6s0337zrdo8++qh+9rOfuY45u9P06dO1bNkyPf3007p8+bKKi4tdr+waMmSI3njjDXXs2LFeuSK8qqurtWvXLtcYxRYEi2mE2MSJE31dc4gcdLYgUBRbAARDuLuaGCEGIBAHDhwwTkZhvRY0xvLly42xBQsWWMwE8C6KLR732GOPqVevXtqyZYu2bdumY8eO6fLly7py5Yqqq6vVvHlz3XvvvRo1apQWLFgQ0FUKzZs315tvvqmvfe1r+vWvf62tW7fq3LlzSkpKUpcuXTR9+nT9yZ/8SZ2Fm9vFxcXpu9/9rubPn69f/OIXWrt2rU6fPq2Kigp16NBBo0eP1sKFCzVlypSA/h+ys7N18OBB/epXv9Ly5ct1/PhxFRYWql27durfv78ee+wxPfbYY0pKSgpov2icxnzw/Pzzz41X6FFsQTCcOHFCe/fudY3l5ORYzgbBQGcLAkWxBTbExcWFOwVEsZKSEq1atco1Nm/ePD7/ALiLab2WxMRE31q7QEMsWbLEdfuAAQPUq1cvy9kA3kSxxeNSUlI0ZswYjRkzJmS/Y8qUKQEXP+rSt29f/cu//EtQ99mmTRt9+9vf1re//e2g7hf+heoEQn5+vuv2+Ph4DRw4MCS/E7HF1NUiSXPmzLGYCYKFzhYEimILgEj37rvvMkIMQEBMxZZhw4Zx8RIa7MKFC9q0aZNrjBFiwP9gVSwAYWFar6Vv3768AURQmNZrGTZsmLp06WI3GQQFzw0IFMUWAJHONEKsZcuWmjRpkuVsAESCzZs3u25nhBgaY8WKFcbpJowQA/4HxRYAYWEqtjBCDMFw5coV41U3ubm5dpNB0FBsQaAotgCIZIwQAxCos2fP6uTJk66xQMbOA3cyjRDr1auX+vfvbzkbwLsotgCwznEcii1RzDR6zubisqtXr1Z1dbVrjPVaIhdjxBAoHjMAItk777yjmzdvusYYIQbAjWmEmKSQjqdHdLty5Yo+/PBD19iCBQtYvw64DcUWANadPHlShYWFrrFhw4bZTQZRybReS/fu3TVgwADL2UAKTrGNzhYEis4WAJHMNEKsVatWmjhxouVsAEQCU7GlZ8+eateuneVsEC1Wrlypqqoq1xjrtQC1UWwBYJ2pq0WSBg8ebC8RRKWSkhK99957rrGcnByuuolgdCkgUBRbAESq4uJirV692jXGCDEAJqzXglAwjRC75557NGTIEMvZAN5GsQWAdaZiS69evdSsWTPL2SDafPDBByouLnaNsV5LZKOzBYGi2IJgsjkOE2CEGIBAXb9+Xbt373aNsV4LGuratWt6//33XWOMEAPuRrEFgHWs14JQWrFihev2Vq1aMac4wtHZgkBRbAEQqX7/+9+7bmeEGACT7du3G9etpLMFDbVq1SpVVFS4xhghBtyNYgsAqxzHUX5+vmuMYgsaq6qqSqtWrXKNzZ49W4mJiZYzQjDR2YJAUWwBEImKi4uN72fmz5/P+xkArkzrtbRq1Uq9e/e2nA2ixdKlS123d+rUSSNGjLCcDeB9FFsAWHX27FldunTJNUaxBY21detW4+OLEWKRj84WBIpiC2xgfAaCbc2aNcaRqIwQA2Dib70WXqvQEDdu3NC7777rGps/f77i4zmtDNyJvwoAVplGiEliYTU0Wl5enuv21NRUTZ061XI2CDY6WxAoCnQAIpFphFjr1q314IMP2k0GQESorKzUtm3bXGOMEENDrVmzRqWlpa4xRogB7ii2ALDKVGy599571bJlS8vZIJo4jmNcr2XatGmcdI0C3IcIFJ0tACLNzZs3tXr1atcYI8QAmOzbt083btxwjY0bN85yNogWphFi7dq1o4gHGFBsAWCVqdjCCDE01qFDh/T555+7xnJycixng1CgswWBSEpKUnJycrjTABBBvDBmhxFiABrCNEIsJSVFw4YNs5wNokFJSYnefvtt19jcuXOVkJBgOSMgMlBsAWAVxRaEiqmrJT4+XtnZ2XaTQUjQ2YJA0NUCIBKZRoi1adNGEyZMsJwNgEjx8ccfu24fPny4UlJSLGeDaPDee+/p5s2brjFGiAFmFFsAWHPhwgWdPXvWNUaxBY1lWq9lzJgxatOmjeVsEGwJCQlKSkoKdxqIIBRbAEQaRogBaAjHcYydLYx6QkOZRoi1atWK4j/gB8UWAA3mOE5Atzd1tUjSkCFDGpsOYtiXX36pTz75xDWWm5trNxmERJMmTTwx3gWRg2ILgEjz9ttvq6SkxDXGCDEAJqdOnTJe1Mh6LWiIsrIyrVy50jWWk5PDRXCAHxRbAPgVzJObpmJLp06d1K5du6D9HsQe0xtBifVaogUjxBAoii0ItkAvMgECZRoh1rZtWz3wwAOWswEQKUxdLdKtLn8gUOvWrVNRUZFrbMGCBZazASILxRYA1rBeC0LFtF5L//79dd9999lNBiHRpEmTcKcAj6jvRQAU6ABEkhs3bhgXImaEGAB/TOu19OvXTy1btrScDaKBaYRY8+bNNXnyZMvZAJGFYgsAayi2IBSKioq0fv161xhdLdGDE+cIFJ0tACIJI8QANBTrtSCYKioqjBczZmdnKzk52W5CQISh2ALAiqtXr+rkyZOusWHDhtlNBlHlnXfeUUVFhWuM9VqiB50tCBTFFgCRhBFiABqisLBQ+/fvd42xXgsaYuPGjbp69aprjBFiQN0otgCwYteuXcYYnS1ojLy8PNftHTt2pJAXRehsQaAotsCWYK5vh9jkb4TYggULlJCQYDkjAJFi69atxjXF6GxBQyxZssR1e3p6uqZNm2Y5GyDyUGwBYIVphFjbtm3VsWNHy9kgWpSXlxtPTuTk5Cg+npe5aEFnCwJFsQVApFi9erVKS0tdY4wQA+CPab2Wdu3aqXv37pazQaSrqqrS8uXLXWOzZs1SWlqa5YyAyMNZKABW+FuvhStC0VAbN25UUVGRa4z1WqILnS0IFMUWAJHCNEKsXbt2Gj9+vOVsAEQSU7Fl3LhxfM5GwD7++GNdvHjRNcYIMaB+KLYAsCI/P991OyPE0BimhfsyMjI0ceJEu8kgpOhsQaAotgCIBNevX9eaNWtcY4wQA+BPRUWFtm/f7hpjhBgawjRCLDU1VTNmzLCcDRCZKLYACLmioiIdPXrUNUaxBQ3lOI5xvZYZM2YoOTnZckYIJTpbECiKLQAiASPEADTUrl27VFJS4hobN26c5WwQ6aqrq7Vs2TLX2IwZM3hvDdQTxRYAIbd7925jjGJL9DG1q5sWbmyo/Px8nT171jWWm5sb1N+F8KOzBYGiQAcgEphGiLVv356TpQD82rx5s+v2Jk2aaPDgwXaTQcT75JNPjJ+v58+fbzkbIHJRbAEQcqb1Wlq0aKF77rnHbjKIGqaulqSkJFqcPaixxTaKLQgUV98h2IJ90QDACDEAjWFar2XkyJFKSkqynA0inWmEWFJSkmbPnm05GwQT72HtotgCIORMxZahQ4eyaB8azLRey8SJE9W8eXO7ySDk6FJAoCi2APC6VatWqayszDXGCDEA/jiOY+xsYb0WBMpxHC1dutQ1Nm3aND5fRwjOr3kDxRYAIeev2AI0xLFjx7R//37XWE5OjuVsYAOdLQgUxRYAXmcaIdahQwdOlgLw69ixY7p48aJrjBGECNSnn36qkydPusYYIQYEhmILgJAqLi7WoUOHXGMUW9BQphFikjRnzhyLmcAWOlsQKIotALysqKhI77zzjmuMEWIA6mLqaomLi9OoUaMsZ4NIZ+pqSUhI4PM1ECCKLQBCas+ePaqurnaNUWxBQ5mKLffff786d+5sORvYQGcLAkWxBbYwsgENwQgxAI1hWq9l4MCBjHxCQBzHMa7XMmnSJLVq1cpyRkBko9gCoMHqs8iWaYRY06ZNdd999wU7JcSAy5cvG6/kys3NtZsMrKGzBYGi2ALAyxghBqAxWK8FwbJ//34dPXrUNcYIMSBwFFsA+NXYqzVNxZYhQ4YoPp6nIARu9erVxm4p1muJXnS2IFAU6AB4lb8RYg8//DDvkQH4deXKFR0+fNg1RrEFgTKNEIuPj+diRqABeBcHIKRMxRZGiKGhTCPEevToof79+1vOBvXV2MItJ84RKAp0ALxq5cqVKi8vd40xQgxAXbZs2WKMjRs3zmImiAamYsv48ePVrl07y9kAkY9iC4CQKSsr0/79+11jw4YNs5wNokFxcbHee+8911hOTg5z86MYJ84RiCZNmrC4NADPMo0Q69ixo8aMGWM5GwC2BOuzimmEWOfOndW1a9eg/A7EhiNHjhjP2TBCDGgYii0AQmb//v2qrKx0jdHZgob44IMPVFJS4hqjxTm60dmCQLBeCwCvunbtmt59913XGCPEANTHxx9/7LqdrhYEytTVIknz5s2zmAkQPXgnByBkTCPE0tLS1Lt3b8vZIBqsWLHCdXvr1q25EjTK0dmCQFBsAeBVjBAD0BilpaXasWOHa4z1WhCoJUuWuG4fPXq0OnXqZDkbIDpQbAEQMqZiy6BBg5SYmGg5G0S6qqoqrVq1yjWWnZ3NyKAoR7EFgaDYglBwHCfcKSAKmEaIderUSaNHj7acDYBIk5+fbyzY0tmCQBw/fly7du1yjTFCDGg4ii0AQiY/P991OyPE0BBbtmzR5cuXXWM5OTmWs4FtFFsQCIotALyosLDQuPYcI8QA1IdpvZZmzZopKyvLcjaIZMuWLTPGKLYADce7OQAhUVFRob1797rGKLagIfLy8ly3p6WlaerUqZazgU2pqamcgEJAWOMHgBcxQgxAY5nWaxk9ejSd/giIaYTYsGHDdM8999hNBoginLkAEBKHDh1SWVmZa4xiCwLlOI5xvZZp06bR9RDlOHGOQNHZApvi4uLCnQIihGmEWOfOnTVq1CjL2QCINNXV1cZiC+u1IBCnT5/W9u3bXWMLFiywnA0QXSi2AAgJ03otycnJ6t+/v+VsEOkOHjyoY8eOucZyc3PtJgPrKKYhUBRbAHiNvxFiCxYsoIMTQJ2OHDmiq1evusZYrwWBYIQYEDq8owMQEqZiS1ZWlpKTky1ng0hn6mqJj4/X7Nmz7SYD6+hsQaAotgDwmry8PFVUVLjGvvKVr1jOBkAkMq3XkpCQoJEjR1rOBpFs6dKlrtuzsrLUs2dPy9kA0YViC4CQMBVbGCGGhjCt1zJu3Di1bt3acjawjc4WBIpiCwCvMY0Q69KlCydJAdSLaYTY4MGDuTgJ9Xb+/Hlj4Y4RYkDjUWwBEHRVVVXavXu3a4xiCwJ19uxZ7dixwzWWk5NjORuEAx8eESiKLQC8pKCgQGvXrnWNMUIMQH2Zii2MEEMgli9fLsdxXGOMEAMaj3d1AILus88+082bN11jFFsQqJUrVxpjFFtiA50tCBTFFtTFdJIBcNPYxwsjxAA01oULF/T555+7xsaOHWs5G0Qy0wixPn36qF+/fpazAaIPxRYAQWcaIZaQkKCsrCzL2SDSmdZrGTBggHr06GE3GYQFnS0IFMUWAF5iGiHWtWtXRogBqBdTV4tEsQX1d/nyZW3YsME1Nn/+fMXFxdlNCIhCFFsANJjpKj9TsaVfv35KS0sLZUrwANMbtIZcFXrt2jV9+OGHrrHc3NyA94fwacxVwXS2IFAU6BAKdMOgIeoaIcaJLQD1YVpj495771XHjh0tZ4NIlZeXp6qqKtcYI8SA4KDYAsCvhnwANBVbGCGGQL3zzjvGsRuMEIsdnDhHoOhsAeAVK1asUGVlpWuMEWIA6ov1WhAMphFi3bt31+DBg+0mA0Qpii0Agqq6utpYbBk2bJjlbBDp8vLyXLd36tSJx1MMobMFgaLYghp0DSDc/I0QGzFihOVsAESi4uJi42dsRoihvgoLC/XBBx+4xhghBgQPxRYAQXXixAkVFRW5xuhsQSDKy8u1Zs0a11hOTg5vBmMIxRYEimILbOL1CCZXr17V+++/7xp7+OGHeewAqJdPPvnE2CFHZwvqa9WqVcapEYwQA4KHYguAoDJdcRMXF6dBgwZZzgaRbMOGDcbCHSPEYgtjxBAoii0AvIARYgCCwbReS2Zmpvr27Ws5G0Qq0wixLl260GkJBBHFFgBBZSq29O7dm5NfCMiKFStct2dkZOjBBx+0mgvCi84WBIrXGwBeYBoh1q1bNw0fPtxyNgAilWm9lrFjxyo+ntN6qNv169f17rvvusbmzZtHpyUQRDwrAwiq/Px81+2MEEMgqqurtXLlStfYzJkzlZycbDkjhBOdLQgUxRYA4XblyhXjbHxGiAGor6qqKm3ZssU1xnotqK81a9aorKzMNbZgwQLL2QDRjWILgKBxHMfY2UKxBYHIz8/X2bNnXWO5ubl2k0HY0dmCQFGgAxBujBADEAwHDhwwjlam2IL6Mo0Qa9++vcaMGWM5GyC6UWwBEDSnT5/WlStXXGMUWxCIvLw81+1JSUmaMWOG5WwQbpw4RyASEhKUkpIS7jQAxDjTCLF77rlH999/v+VsAEQq0wixpKQkxhGiXoqLi/X222+7xubOncsoOiDI+IsCEDSmrhZJGjJkiMVMEOlM67VMmjRJGRkZdpNB2NHZgkA0bdqU8TwAwooRYgCCZfPmza7bhw0bprS0NMvZIBK99957Ki4udo0xQgwIPootAILGVGzp0aOHMjMz7SaDiPX555/rwIEDrrGcnBzL2cAL6GxBIFivBaHiOE64U0CEWL58uaqqqlxjjBADEAhTZ8u4ceMsZ4JItWTJEtftrVq10gMPPGA5GyD6UWwBEDSs14JgMI0Qk6Q5c+ZYzAReQWcLAkGxBUC4mUaI3XvvvRo2bJjlbABEqjNnzuiLL75wjbFeC+qjrKxMq1evdo3l5uYqMTHRckZA9KPYAiBoKLYgGEzFluHDh6tTp06Ws4EX0NmCQFBsARBOly9f1rp161xjjBADEAhTV4tEsQX188EHH6ioqMg1xggxIDQotgAIinPnzuncuXOuMYotqK9Lly4ZP1Tk5ubaTQaeQWcLAkGxBUA4MUIMQLCY1mvp1auX2rRpYzkbRCLTCLHmzZtr0qRJlrMBYgPFFgBBYepqkaQhQ4ZYzASRbPXq1aqurnaNsV5L7KLYgkBQbIFtdCrgdqYRYt27d+cCJAABYb0WNEZFRYVxakROTo6Sk5MtZwTEBootAILCVGzp0qULV92g3lasWOG6/b777lO/fv3sJgPPYIwYAsHjBUBDNbZwdunSJa1fv941xggxAIG4fv269uzZ4xpjhBjq48MPP1RBQYFrbP78+ZazAWIHxRYADeY4ju9r1mtBYxUXF+v99993jeXk5HCCIkYlJCQoKSkp3GkggtDZAiBcGCEGIFi2bdtm7PinswX1sXTpUtftTZs21bRp0yxnA8QOii0A/KrvCW5TsWXYsGHBTAdRbO3atSopKXGNsV5L7EpPT6fQhoBQbAEQLqYRYj169GCsLoCAmNZradOmjXr27Gk5G0SaqqoqLV++3DU2e/ZspaamWs4IiB0UWwA02uXLl3Xq1CnXGJ0tqC/TPNk2bdpo9OjRlrOBV7BeCwJFsQVAODBCDEAwmdZrGTNmDM8nqNOmTZt06dIl1xgjxIDQotgCoNF27dpljFFsQX1UVlZq1apVrrHs7GwlJCRYzghewfobCBTFFgDhsGzZMuPIH0aIAQhEZWWltm3b5hpjhBjqwzRCLC0tTTNmzLCcDRBbKLYAaDTTCLH27durQ4cOlrNBJNqyZYuuXLniGsvJybGcDbyEzhYEimILQuX2teqAO5lGiN13330aPHiw3WQARLQ9e/bo5s2brrGxY8dazgaRprq6WsuWLXONzZgxg4vZgBCj2AKg0fLz812309WC+lqxYoXr9iZNmmjq1Kl2k4Gn8GEAgaLYAsC2ixcv6sMPP3SNMUIMQKBMI8RSU1P5jI06bdu2TV9++aVrjBFiQOhRbAHQaKbOFt4IxibTCQXTFcGO4xjXa5k2bZrS0tKClhvCp6FXhNPZgkBRoANgGyPEAATT5s2bXbcPHz5cKSkplrNBpDGNEEtOTtbs2bMtZwPEHootABqlsLBQx44dc41RbEF97N+/X8ePH3eN5ebm2k0GnsOJcwSKzhYAtplGiPXs2VODBg2ynA2ASOY4jrGzhfVaUBfHcYzFlmnTpikjI8NyRkDsodgCoFF2795tjFFsQX2Yulri4+M1a9Ysy9nAa+hsQaAotsA2RkTFtgsXLmjDhg2uMUaIAQjUyZMnjSOgWK8FdcnPz9cXX3zhGmOEGGAHxRYAjWIaIdaqVSt17drVcjaIRKb1WsaPH6/WrVvbTQaeQ7EFgaLYAsAmRogBCCZTV4skjRkzxmImiESmrpbExETNmTPHcjZAbKLYAqBR/K3XwpV8qMuZM2eUn5/vGsvJybGcDbyIMWIIFMUWADaZRoj16tVLAwcOtJwNgEhnWq+lf//+atGiheVsEEkcx9GSJUtcY5MmTVLLli0tZwTEJootABrFX7EFqMvKlSuNMYotkOhsQeAotgCw5fz589q4caNrjBFiABqC9VrQUPv27dPnn3/uGluwYIHlbIDYRbEFQIPduHFDhw8fdo1RbEF9mEaIZWVlqXv37naTgSfR2YJAUWwBYAsjxAAEU0FBgfbv3+8aY70W1MU0Qiw+Pl65ubl2kwFiGMUWAA22Z88eOY7jGqPYgroUFhbqww8/dI3xZhA16GxBoCjQAbDFNEKsd+/eysrKspwNgEi3detWY4xiC+piGiH2wAMPqE2bNpazAWIXxRYADWYaIZaRkUFXAur0zjvvqLKy0jXGCDHU4MQ5ApGamqqEhIRwp4EoZbrABLGJEWIAgs20XkuHDh107733Ws4GkeTQoUM6ePCga4wRYoBdFFsANJip2DJkyBDFx/P0Av/y8vJct3fu3JnOKPjQ2YJAMEIMgC1Lly41FuAYIQagIUzrtYwdO5YCLvwyjRCTpLlz51rMBABnQwE02N69e123Dxs2zHImiDRlZWVas2aNaywnJ4cPE/ChswWBoNgCwBbTCLE+ffpowIABlrMBEOnKy8v1ySefuMbGjRtnORtEGlOxZcyYMerYsaPlbIDYRrEFgF/+TnqXlZW5bqcrAXXZsGGDrl+/7hpjvRbcjs4WBIJiCwAbzp07p48++sg1xggxAA3x6aefqrS01DXGei3w59ixY9q9e7drjBFigH0UWwAEHcUW1GXFihWu25s3b64JEybYTQaeRmcLAkGxBeHAifXYwwgxAMFmGiGWnp6uwYMH200GEcXfCLF58+ZZzASARLEFQJA1adJEvXr1Cnca8LDq6mqtXLnSNTZr1iwlJSVZzgheRmcLAkGxBYANphFiffv2Vf/+/S1nAyAabN682XX7yJEjlZiYaDkbRBJTsWX48OHq1q2b5WwAUGwBEFSDBw9WQkJCuNOAh+3cuVNffvmlaywnJ8dyNvA6OlsQCIotAELtyy+/1KZNm1xjjBAD0BCO4xg7W1ivBf6cOnXKuNbP/PnzLWcDQJIojwMIKkaIoS55eXmu25OTk/XQQw9ZzgZeR2cLAkFxDkCoMUIMQLCdPn1a5eXlrjHWa4E/y5YtM8YotgDhQWcLgKCi2IK6mNZrmTRpkjIyMuwmA8+j2IJA0NkCINRMI8T69evHCDEADWIqtMTHx2vUqFGWs0EkMY0QGzRokO677z7L2QCQKLYACDKKLfDn6NGjOnjwoGssNzfXbjKICHQqIBAUWwCE0tmzZ43rKjz88MOWswEQ7QYOHMjFaDA6d+6ccfwcXS1A+FBsARA0KSkp6tevX7jTgIeZRohJUnZ2tsVMECnS0tLCnQIiCMUWAKHkb4QYxRYAwcYIMfizfPly42sSxRYgfCi2AAiagQMHKikpKdxpwMNMxZaRI0eqY8eOlrOB16WlpSk+nrcqqD+KLQgl0wkNxA7TCLH+/fszQgxA0I0bNy7cKcDDTCPE+vbty0WwQBhxBgNA0DBCDP5cvHjR2Oack5NjORtEAtZrQaAotgAIFUaIAbCNzhaYXLp0SRs2bHCN0dUChBfFFgBBQ7EFkhQXF+e6ffXq1carglmvJfo15Ipw1mtBoCi2AAiVJUuWGGMUWwAEW9euXdWlS5dwpwGPysvLU3V1tWtswYIFlrMBcDuKLQCChmIL/Nm5c6fr9p49e6pPnz6Ws0EkoLMFgaJAByBUTCPEBgwYwLgWAEFHVwv8MV0A0KNHDw0cONByNgBulxjuBABEh8TERA0YMCDcaSAC5ebmGrthENs4cY5A0dmCcOA1LPpdvnxZX3zxhWuMrhYAocB6LfBn7969rtvnz5/P+xIgzOhsARAU/fv3V2pqarjTQARivRaY0NmCQFFsARAKN2/eNMYotgAIBTpb0BCMEAPCj2ILgKAYNmxYuFNABGrTpo1GjRoV7jTgUXS2IFAUWwDYlJWVpb59+4Y7DQBRJiMjg6kRCFjXrl11//33hzsNIOZRbAEQFKzXgoaYM2eOEhISwp0GPIrOFgSKYgsAm+hqARAKo0eP5jMSAjZv3jxGiAEeQLEFgF/1fbGm2IKGYIQY/KHYgkBRbAFgE8UWAKHAei1oCEaIAd5AsQVAo8XHx2vgwIHhTgMRpkmTJpoyZUq404CHMUYMgaLYAsCWgQMHqk+fPuFOA0AUYr0WBKpDhw4aPXp0uNMAIIotAIKgT58+nBRFwKZPn660tLRwpwEPo7MFgYiPj1dqamq400AUcxwn3CnAQ+hqARAKCQkJGjFiRLjTQISZN2+e4uM5xQt4AX+JABqNEWJoiNzc3HCnAI+jiItApKenM6cagDUUWwCEwtChQ3kPjIDNnz8/3CkA+AOKLYgY5eXleu211zRz5kx169ZNqamp6tChg8aMGaOXXnpJly9fDneKMYtiCwKVkJCgWbNmhTsNeBydLQgEI8QA2DJo0CD17t073GkAiEKMEEOgWrdurfHjx4c7DQB/kBjuBID6OHz4sB577DHt3r271vbz58/r/Pnz2rp1q/75n/9Zv/rVrzRz5szwJBnDKLYgUOPHj1erVq3CnQY8jqv6EAiKLQBsoasFQKiMGzcu3CkgwsydO1eJiZzeBbyCv0Z43pkzZzR58mR9+eWXkqS4uDg98MAD6tGjhy5duqQPPvhAJSUlunjxonJzc/Xuu+9q0qRJYc46tgwZMiTcKSDC5OTkhDsFRAA6WxAIii0IF8bXxR6KLQBChc4WBIoRYoC3UGyB5331q1/1FVq6deumvLw8DRo0yBe/fPmyHn30Ua1bt04VFRV6+OGHdezYMWVmZoYp49jSs2dPZWRkhDsNRBiKLagPOlsQCIotAGwYPHiwevXqFe40AEShHj16qH379uFOAxGkRYsWXGwMeAxrtsDT1qxZo02bNkmSkpOTtWrVqlqFFunWfMq8vDx1795dknT16lW9+OKL1nONVYwQQ6AGDhyoe++9N9xpIALQ2YJAUGwBYANdLQBCha4WBGrOnDlKSkoKdxoAbkOxBZ724x//2Pf1woULlZWV5Xq79PR0vfDCC77vf/azn6mysjLk+YFiCwKXm5sb7hQQIehsQSAotgCwgWILgFBhvRYEihFigPdQbIFn3bhxQ+vWrfN9/9RTT/m9/fz5830nWq5evaqPPvoopPnhFootCBQjxFBfdLYgEBTnAITakCFD1LNnz3CnASBK0dmCQDRr1kxTp04NdxoA7kCxBZ61ZcsWlZWVSbp1AmX48OF+b5+amqrRo0f7vl+/fn1I88MtQ4YMCXcKiCBdunThMYN6o9iCQNDZAiDU6GoBECotW7ZUnz59wp0GIsjs2bOVmpoa7jQA3CEx3AkAJocOHfJ9nZWVpcTEuh+uQ4cO1fvvv3/XzyM0unXrplatWoU7DUSQnJwcxcXFhTsNRAg6FRAIii0IxOeff65XX301oJ/59NNPQ5MMIgbFFgChMmbMGMXHcz006o8RYoA3UWyBZx05csT3dbdu3er1M127dvV9ffjw4aDnhNoYIYZAsV4LAkFnCwJBsQWB2LZtm7Zt2xbuNBBBhg4dqvvuuy/caQCIUowQQyCaNGmiGTNmhDsNAC4om8Ozrly54vu6Xbt29fqZ9u3b+76+evVq0HNCbcOGDQt3CoggmZmZeuCBB8KdBiIInS0IBMUWAKFEVwuAUBo3bly4U0AEmTFjBhemAR5FsQWedePGDd/XaWlp9fqZ2293+883Rmpqqu8ETlVVlQoLC+U4jiSpqKhI5eXlkqSSkhLdvHlTklRZWanCwkLfPq5du6aKigpJUnFxsYqLiyVJFRUVunbtmu92hYWFqqyslCTdvHlTJSUlkqTy8nIVFRVJkhzHUWFhoaqqqnzHWVpaKkkqKyvT9evXJUnV1dUqLCxUdXW1JOn69eu+NXBKS0t9/z91HVPNvhMTE5WZmenLtXnz5ho0aFBEHlM03k9eOqaEhARlZmb62uCbNWumlJQUzZo1S1VVVRF5TNF4P9k+pl69ekmSkpKS1Lx5c9/tMjMzfWMi09PTfc/jycnJvmP16jFF4/0UCccUHx+vtLQ0XzGu5vWp5rU6Eo8pGu8nrxxTQkKCmjVrJkmKj493fX2Sar/fq3kdqxl7mZGRoeTkZElyfezV7I/7KfKPqeZ3Sne/Ps2ZMycijyka7yeOiWOK1GNyHMe3xkZKSorv9SklJUU9e/aMyGOKxvvJK8dU8zNun5/mzZsXkccUjfeTl46p5r2u23vYSD2mht5P4USxBZ5V88coyffkUJeaD8ySfH/0jTVq1CgtWLBAknTp0iUtXrzY9wTwyiuv6ODBg5KkjRs3atWqVZKkM2fOaPHixb59vPzyyzp27Jgkae3atVq7dq0k6dixY3r55Zd9t1u8eLHOnDkjSVq1apU2btwoSTp48KBeeeUVSbeenBYvXqxLly5JkpYsWeIbg7Fr1y69/vrrkm49AS1evNj3hPf6669r165dkm6NzliyZEm9jmnTpk3q3LmzOnfurEWLFvly/frXv+7rOIq0Y4rG+8lLxzRkyBAtWrRIGRkZkqTHH39cQ4YM0fz58yP2mKLxfrJ9TE899ZQkqUePHvr617/uu92iRYvUpUsXSVJ2drYmTJggSZo+fbr++7//29PHFI33UyQc05AhQzRhwgRlZ2dLku/1afjw4RF7TNF4P3nlmHr37q3HH39c0q0PnG6vT1Lt93tt2rTRokWLfO8rn376afXr10+SXB97NWNVuZ8i/5jOnTvnu92iRYvUuXNnSdITTzyhU6dOReQxReP9xDFxTJF6TKWlpRo1apSkW5+Zal6fpkyZop/+9KcReUzReD955ZiOHj2qJk2auH5+Gjx4cEQeUzTeT146ppYtWxrfw0bqMTX0fgorB/ComTNnOpIcSc6zzz5br59Zs2aN72eaNm3aqN+/f/9+R5KTmprqNG3a1Nm/f79TWVnpFBQUONXV1Y7jOM61a9ecsrIyx3Ecp7i42Llx44bjOI5TUVHhFBQU+PZVWFjolJeXO47jODdv3nRu3rzpOI7jlJeXO4WFhb7bFRQUOBUVFY7jOM6NGzec4uJix3Ecp6yszLl27ZrjOI5TXV3tFBQUOJWVlY7jOM7169edkpISx3Ecp7S01CkqKnIcx3GqqqqcgoICp6qqynEcxykqKnJKS0sdx3GckpIS5/r1647jOPU6pn/91391EhMTnczMTN//71//9V9H9DFF4/3klWP66KOPnDZt2jjx8fGOJKdZs2bO2LFjnaqqqog9pmi8n2wf05UrV5yhQ4c6SUlJTvPmzX3P05s3b3a+9rWvOZKc9PR0Jy0tzZHk/PKXv/T8MUXj/RQJx/TBBx84zZo1c9LT0x1JTmJiojNjxgzf7SLxmKLxfvLKMX3xxRdO7969HUlOfHy8k5mZWev1KSUlpdb7PUlOQkKCk5mZ6cTFxTmSnIyMDCc5OdmR5KSlpdV67LVo0cJZsWIF91OUHNOVK1ecKVOmOJKczMxMJzEx0ZHkvPfeexF7TNF4P3FMHFOkHlNhYaHvOSYlJcVp1qyZEx8f76xfvz5ijyka7ycvHdN3vvOdWp+fJDn/+I//GNHHFI33k1eOqV27dq7vYd98882IPaZA76eac7k1//bv3+/YFuc4f+jDATzmkUce0VtvvSVJ+uY3v1mvCuWyZcs0f/58SbfWb7n96rRAHThwQAMGDPB9v3//fvXv37/B+4t0v/rVr/Tqq68qPj5ec+fO1Te+8Q1fayJwp40bN+qll17SpUuXNHr0aH3ve9+r1fqM2FRQUKDvf//7+uijj9SnTx8tWrRII0aMUFVVlV566SXl5eWpRYsWWrhwob7yla+EO1142AcffKCXX35Zp0+f1sSJE/W9732v3iNHEXtOnDihf/qnf9KmTZuC1vkcFxengQMH6plnntGsWbOCsk94w7Vr1/Tiiy/q3XffVZs2bfTcc8/pwQcfDHdaAKLEtWvX9KMf/UjvvvuuOnTooO985zsaO3ZsuNOCR1VXV+snP/mJXn/9dSUlJempp57SwoULfSNMgdsNGzas1vrXNf7zP/9Ts2fPDkNG9nnhXC7FFnjWX/zFX/ja1R555BH97ne/q/NnfvKTn+gv//IvJUn9+vXTgQMHGvz7vfAHCgAAAAAAAADwzwvncimFwrN69+7t+/qLL76o18/UzFKWpD59+gQ9JwAAAAAAAAAA7kSxBZ7Vt29f39f79u1TZWVlnT/z6aefuv48AAAAAAAAAAChQrEFnjVmzBilpKRIkm7evKmdO3f6vX1ZWZm2bdvm+37SpEkhzQ8AAAAAAAAAAIliCzysadOmmjx5su/7V1991e/tly1bpuvXr0uSWrZsqQceeCCU6QEAAAAAAAAAIIliCzzuL/7iL3xfv/rqq8YF74uLi/X888/7vn/mmWeUmJgY8vwAAAAAAAAAAKDYAk+bNWuWxo8fL+nWmLDZs2dr7969tW5z5coV5ebm6vPPP5d0q6vl2WeftZ4rAAAAAAAAACA2cek/PO+3v/2tRowYoXPnzunkyZMaPHiwJkyYoB49eujSpUv64IMPVFxcLElKTEzUW2+9pczMzPAmDQAAAAAAAACIGRRb4HmdO3fW+vXr9dhjj2n37t1yHEcbNmzQhg0bat2uTZs2+tWvflVrnRcAAAAAAAAAAEKNYgsiQp8+fbR9+3b97ne/0xtvvKEDBw7owoULyszMVPfu3TVv3jw99dRTat26dbhTBQAAAAAAAADEGIotiBjJycl68skn9eSTT4Y7FQAAAAAAAAAAfOLDnQAAAAAAAAAAAEAko9gCAAAAAAAAAADQCBRbAAAAAAAAAAAAGoFiCwAAAAAAAAAAQCNQbAEAAAAAAAAAAGgEii0AAAAAAAAAAACNQLEFAAAAAAAAAACgESi2AAAAAAAAAAAANALFFgAAAAAAAAAAgEag2AIAAAAAAAAAANAIFFsAAAAAAAAAAAAagWILAAAAAAAAAABAI1BsAQAAAAAAAAAAaASKLQAAAAAAAAAAAI1AsQUAAAAAAAAAAKARKLYAAAAAAAAAAAA0AsUWAAAAAAAAAACARqDYAgAAAAAAAAAA0AgUWwAAAAAAAAAAABqBYgsAAAAAAAAAAEAjUGwBAAAAAAAAAABoBIotAAAAAAAAAAAAjUCxBQAAAAAAAAAAoBEotgAAAAAAAAAAADQCxRYAAAAAAAAAAIBGoNgCAAAAAAAAAADQCBRbAAAAAAAAAAAAGoFiCwAAAAAAAAAAQCNQbAEAAAAAAAAAAGiExHAnAHhVWVlZre8///zzMGUCAAAAAAAAADC589ztned2baDYAhicPn261ve5ubnhSQQAAAAAAAAAUG+nT5/W0KFDrf5OxogBAAAAAAAAAAA0AsUWAAAAAAAAAACARohzHMcJdxKAFxUWFmrjxo2+77t06aKUlJQwZgQAAAAAAAAAuFNZWVmtZSEmTJigzMxMqzlQbAEAAAAAAAAAAGgExogBAAAAAAAAAAA0AsUWAAAAAAAAAACARqDYAgAAAAAAAAAA0AgUWwAAAAAAAAAAABqBYgsAAAAAAAAAAEAjUGwBAAAAAAAAAABoBIotAAAAAAAAAAAAjUCxBQAAAAAAAAAAoBEotgAAAAAAAAAAADQCxRYAAAAAAAAAAIBGoNgCAAAAAAAAAADQCBRbAAAAAAAAAAAAGiEx3AkAsayqqkoHDhzQjh07tHPnTu3YsUN79+5VRUWFJGnChAnasGFD0H/v5cuX9fHHH+uTTz7Rvn37dOzYMX355Ze6ceOGkpKS1KJFCw0YMEAPPvignnzySXXq1KnOfZaUlGj79u3aunWr9u3bpyNHjuj06dMqKiqS4zhq3ry57rvvPo0ePVp/9Ed/pCFDhgSc96FDh/TKK6/ovffe05kzZ1RWVqZOnTpp9OjRevLJJzV58uSA9ldZ+f+3d99hUVz7/8DfS5cigiCCBexdESOWBEGBWGI3seaKiS22lBs1Jia2mGa990aNsWLsvUVNsGCvqGBBwQgoFlCagnQ4vz/4Mr9d2TK44CK8X8+zzzPDfuYzZ5Y5W+bMOScXW7ZswZ49e3Dp0iU8ffoUpqamcHFxwTvvvIMPP/wQ3t7exS4nkTqs7/LLW/j6FL5Wjx8/lp4PDg6Gj4/Pq7wUSEhIQGBgIHbt2oXo6GgkJyfDyckJzZo1w5AhQzB48GCYmpq+Um4iZazv8stb0vU9PT0dV69eVcl5584dCCEAADNnzsSsWbOKlZNIG9Z3+eUt6fp+5coVHDlyBGfPnsXNmzcRFxeHrKwsVKlSBfXr10enTp0wcuRINGjQoFh5ibRhnZdf3pKs81FRUTh9+jSuXLmCGzduICYmBvHx8cjIyIClpSUcHR3h7u6O9957DwMHDoS1tbXs3ESasL7LL29p/YZ/WV5eHtq3b4+QkBDpbwEBAQgMDCyR/CVCEJFB7N69W1haWgoAGh/e3t6lsu/33ntP636VH+bm5mLWrFkiLy9Pa8758+fLzglADBo0SCQmJsou89y5c4WpqanWnEOGDBHPnz+Xle/q1auiQYMGOss5dOhQkZKSIrucROqwvsur7x06dNCZKzg4+JVeh/379wtHR0etuT08PERERMQr5ScqxPpuuPo+depUYWxsrDXnzJkzi5WTSBvWd8PU9w0bNgg3NzdZZVQoFGL8+PEiPT1ddn4iTVjnDfcZb2VlJbucTk5OYseOHcXKT/Qy1nfD/4ZXZ8GCBUXyBwQElFj+ksCeLUQGkpKSgvT0dEMXAw4ODmjSpAlcXV1hbW2N9PR0/PPPP7h48SJyc3ORlZWFWbNmISoqCuvWrZOV09LSEk2aNEG9evVQpUoV5Obm4sGDBzh//jyeP38OANi6dSvCw8Nx+vRpVK5cWWu+GTNm4Pvvv5fWnZ2d4eXlBQsLC1y+fBk3b94EAGzevBmJiYk4cOAATEw0v71dunQJPj4+0uuvUCjw1ltvoXnz5sjLy0NYWBjCwsIAAJs2bcKDBw8QFBQEc3NzWcdP9DLWd3n1/dGjRyVynC8LCgpCv379kJubK5XZ19cXjo6OuHv3Lk6ePAkhBK5cuQJfX19cuHABLi4upVIWKv9Y3w1X3+Pj45GXl1fieYk0YX03TH0/deoUYmJipHUTExN4eHigbt26qFy5Mh4+fIhTp05Jd+suW7YM4eHhOHToECwsLEq0LFSxsM4b9jt9IVdXVzRu3BjVq1dHpUqVkJKSguvXr0vXBeLj4/HBBx9g1apV+Pjjj0u1LFR+sb6XjfquLCoqCjNmzHht+3tlhm7tIaqo1q5dK9110bNnTzF79mxx8OBB8dlnn5V6K/n8+fPF8uXLxZ07dzTGxMXFiSFDhqi0Fm/fvl1j/J49e8QPP/wgQkJCRE5OjtqYjIwM8dNPPwkjIyMp54QJE7SW9ciRIyplmDJlisjKylKJ2bRpk7CwsJBiZs+erTHfixcvRM2aNaVYV1dXcfHixSJxR48eVbkL/vPPP9daTiJtWN/l1XdXV1dhamoqWrduLcaMGSNWrlwpQkND9borJiEhQVSpUkXa3tfXVzx9+lQlJjQ0VNSuXVuK6dKlS7H2QaSM9d1w9T0gIEAAEPXr1xdDhgwRixYtEqdOnVK54449W6gksb4bpr6PHTtWABBeXl5i3bp1anu2p6amii+++EJlH1OnTpW9DyJ1WOcN9xk/fvx4sX37dhEfH68xJjQ0VHh4eEj7sLS0FPfu3SvWfogKsb4brr5r4ufnJwAIOzs70b179zLbs4WNLUQG8vjxY7Uf/DNnziz1N2658vPzRZcuXaTy+Pn5lUje2bNnSzltbGxERkaGxti2bdtKsYMHD9YY99tvv6nkfPliaiHlLodWVlYiMjJSY86LFy8KExMTAUCYmZmJu3fvyj9IIiWs7/Lqe1hYmNrn9fmiNmXKFGnbevXqiRcvXmjct/JQhX///Xex9kNUiPXdcPU9MjJSJCUlFfm7t7c3G1uoVLC+G6a+r1y5Uhw/flxW7Keffirtw8zMTDx79kz2fohexjpvuM94uRITE4WDg4O0n7lz55bKfqj8Y30vW/V9zZo1Ur6VK1dKN1mVxcYWIxCRQVSvXh21a9c2dDG0UigU+Oijj6T1q1evlkhe5a68qamp+Oeff9TGFU6uBQBGRkaYN2+expxjx46VJr9MTU3F+vXr1cZt375dWtY1YWbbtm3x/vvvAwCys7OxfPlyjbFE2rC+F9BW3wGgZcuWJTq8R05ODlauXCmtz5kzB5aWlhr3HRAQIK0vXbq0xMpBFQvre4HXXd8BoEGDBrCzsyvRnETasL4XeN31fdSoUfD29pYVO2fOHJiZmQEo+D5/5MiREisHVTys8wUM8Rkvl729Pfr06SOtl9TxU8XD+l6gLNT3+Ph4fPnllwAALy8vjBw5slT3py82thCRVo6OjtJyampqiefUlnfPnj3Ssp+fH2rVqqUxp0KhULlQunv37iIxeXl5CAkJkdZ79Oihs6zvvfeetLxz506d8URvMkPW99Jw/PhxpKSkAABsbGwwYMAArfEjRoyQloOCgvDixYtSLB2RYZW3+k5EmlXk+m5ra4tmzZpJ68pzvRCVVxW5zgOlc/xEZVVFqO+TJk1CcnIyzMzM8Pvvv0OhUBi0PLqwsYWItAoPD5eW3dzcSjyntrzBwcHSso+Pj868nTt3lpbPnj2LrKwslecTExNVJs51dXXVmVM5Jioqij/QqFwzZH0vDcrvIR06dIC5ubnWeE9PT6nnS2ZmJs6dO1eq5SMypPJW34lIs4pe35Uvyij/FiAqryp6nS+N4ycqq8p7fd+7d680Qs3UqVPRpEkTg5VFLja2EJFGjx49woIFC6T1wiG19JGdnY1p06ZJ6x07doSzs7Pa2Fu3bknLHh4eOnO3bt1aWs7Ly0NkZKTK80KI4ha3iJs3b+qdg6gsMnR9Lw3FfQ8xNTVFixYt1G5PVJ6Ux/pOROpV9PqelZWFO3fuSOvaesoTlQcVvc4fO3YMf/75p7ReEsdPVFaV9/r+/PlzjB8/HkDBcMHTp083SDmKi40tRKQiPT0d4eHhWLhwIVq3bo1Hjx4BAJo0aaLyhlsc2dnZuHfvHjZs2IB27dohKCgIQMGwPr/++qvabZ48eSIN/wPI64VSqVIlle6Ot2/fVnm+atWqMDL6/2979+/f15nz5RhefKXypKzU99ISEREhLct5DwGgMi7vy+8hRG+y8l7fiej/Y33//3bu3CkNf6JQKNClSxcDl4io5FXkOi+EwLNnz3D+/Hl88cUX6N69O/Lz8wEAw4YNg7+/v4FLSFSyKlJ9nzp1qnR8y5cvN9hcUMVlYugCEJFhnT59Gl5eXlpjevTogY0bN8LGxkZ2XhMTE63d9Bs2bIidO3eiefPmap9PTExUWXdycpK13+rVq+Pp06cAgKSkpCJlatmyJUJDQwEAf/31F959912t+Q4ePKiy/nJOojdJWa3vpUX5faQ47yGFWN/pTVbR6jtRRcb6rt6LFy/w9ddfS+sffPABqlWrZsASEZWMil7n586di++++07j8yYmJvjyyy/x448/vsZSEZWOilrfT548iRUrVgAAhg8f/kbdLMGeLUSkkZ2dHTZv3owDBw6gSpUqJZLT2NgY33zzDW7evKn1TTstLU1lvVKlSrLyK8e9nAMA+vTpIy2vWrUK0dHRGnNdvXpVGhuykKEnBiMqLYas76VF+T2gpN5DiMqD8ljfiUi9ilzfJ06cKPVSt7S0xA8//GDgEhGVvopc5wGgadOmuHjxIn7++WeVUS2IyqPyWt8zMzMxevRoCCFQtWpVLFy40CDleFXs2UJUwbm4uGDChAkACrrgpqamIiIiAleuXEFycjKGDBmCFStWYPny5WjYsKHsvBMmTJBayV+8eIHY2FhcvHgRqamp+PHHH7Ft2zb8+uuv6Natm9rtMzMzVdbNzMxk7Vd5AuyMjIwiz0+aNAn/+c9/8OzZM6SmpsLf3x/btm0rMp/DyZMnMWjQIOTk5Kj8XV1OojdFWa3vpUX5faSk3kOI3hQVrb4TVWSs70UtWbIEgYGB0vrixYtRv359wxWIqARV9Drftm1b6fjz8vKQnJyMsLAw3L59G+Hh4fD09MRHH32EBQsWoHLlygYtK5G+KmJ9nzNnjjQH84IFC+Dg4PDay6AXQURlysyZMwUAAUB4e3sbrBwPHz4UI0aMkMpiZ2cnwsLC9MqZlpYmfvnlF2Fubi4ACCMjIxEYGKg29uLFi9K+AYiMjAxZ+/D09JS2WbBggdqYvXv3CiMjIylOoVCIdu3aiY8//liMGDFCtG7dWnquUaNGomnTptL6559//srHT/Qy1nd5lN8LgoODZW9naWkpbXfo0CFZ20ydOlXapmfPnq9UXiJ1WN/ledX6ro23t7eUc+bMmSWSk0gb1nd5SqO+CyHEvn37hLGxsZR7xIgRJZabSB3WeXlKq84Xunz5smjfvr20j9atW4tnz56V+H6oYmN9l+dV63toaKgwMTERAISPj4/GuICAACl/QEDAK5WxtLBPHRGp5eLigrVr1+LTTz8FACQnJ2Pw4MFax3TUxcrKClOnTsXmzZsBAPn5+fjkk08QFRVVJNba2lplXe4d5spxL+co1Lt3b+zfvx9Vq1YFUHB3wIULF7BmzRoEBgbi6tWrAIA2bdrgr7/+grGxsbRtSXXNJCpLDF3fS4vye0BJvocQvcnKa30noqIqYn0/ceIEBg0aJB1jr169sHLlSgOXiuj1qIh1XpmHhweOHTuGdu3aASgYFnzKlCkGLhVR6SiP9T0vLw8jR45Ebm4uzM3NsXz58tey35LGxhYi0uqnn36Sut7eunULhw4d0jtnv3794OvrC6BgmJ9ly5YViSlsCCkUHx8vK3dcXJy0bG9vrzGuR48eiI6OxsKFC+Hr64tq1arB1NQU1apVQ+fOnbFq1SqcP38ebm5uSEhIkLarVauWrHIQvYkMVd9Li/L7SEm/hxC96cpbfScizSpKfQ8JCUGvXr2kGyd8fHywbds2mJhw9HSqWCpKnVenUqVKWLBggbS+du1aJCcnG7BERKWrPNX3JUuW4PLlywCAr7/+Go0aNXot+y1pbGwhIq0sLS3RsWNHaf3MmTMlktff319rzmrVqqn0Irl3757OnJmZmXj69Km03rhxY63xNjY2+Pe//40jR44gPj4e2dnZiI+Px7FjxzBy5EiYmJggOTkZjx8/lrZp27atznIQvakMVd9Li/KXMznvIQCkiXQB3e8hRG+y8lbfiUizilDfr1+/jq5duyI1NRUA4OnpiX379sHCwsKg5SIyhIpQ57Xp2LEjLC0tAQA5OTm4ePGigUtEVHrKU30vHGUGAPbu3Yv27dtrfBw4cECKPXDggMpzytfwDIG3eBCRTnZ2dtJyYmLia8vZpEkTnDt3DkDBm27Xrl215rxy5Yq0bGxsXKzJwTQ5e/astGxra4umTZvqnZOoLDNUfS8NTZo0wZ49ewCofnHTJDc3F9evX1fZnqg8K0/1nYi0K8/1PSIiAv7+/khKSgIAtGjRAocOHYKNjY3BykRkaOW5zutiZGQEW1tbpKenAyjbZSUqCeWxvsv5/V4oISFBZUSarKys0iiSbOzZQkQ6KbcKl9SwOnJydu7cWVo+fvy4zpwnTpyQljt27Ahzc/NXL+D/2bp1q7Q8dOhQlflbiMojQ9X30qD8HnLu3DlkZ2drjb906ZL0o8zCwgIdOnQo1fIRGVp5qu9EpF15re/R0dHw8/OThgtt2LAhDh8+zPcfqvDKa52XIycnR+XicFkuK1FJqMj1vSxiYwsRaZWYmCj1LgFK7k7vP//8U2fOvn37SstHjhzBgwcPtOYMDAxUu+2runXrljQxmEKhwCeffKJ3TqKyzJD1vTT4+PjA1tYWAPD8+XPs2rVLa7zye4i/vz+srKxKs3hEBlXe6jsRaVZe6/vDhw/h6+sr/UZwdXXFkSNH4OTk9NrLQlSWlNc6L1dQUJDKTVZluaxE+ipP9T0wMBBCCFmPgIAAabuAgACV59zc3F5LeTVhYwtRBVPYvV6O/Px8TJw4UeqCZ25ujp49exaJe/HiBTIzM2Xn/e233xASEiKtDxgwQG1c27ZtpTlS8vLyMG3aNI05V6xYgcjISAAFc7EMHz5cdnnUSUlJwdChQ5GbmwsAGD16NFq2bKlXTqLX7U2q76XB1NQUo0ePltZnzJghTZr7shs3bqg0tkyYMKG0i0dUoip6fSeqSFjfgSdPnsDX1xfR0dEAABcXFxw9ehS1atV6reUgeh0qep0vzhBGSUlJmDx5srTepk0buLq6lkaxiEpFRa/v5QEbW4jKiZiYGCgUCumhfNFQ2R9//IG2bdvijz/+wPPnzzXmu3btGnr06IEtW7ZIf5syZQqqVq1aJPbOnTuoX78+5s+fj9jYWI054+Li8MUXX6hcxPTy8lL7YVDop59+kpY3btyIadOmIScnRyVm27Zt+Pzzz6X1yZMnw8HBQWPOxYsXY8WKFUhOTlb7fHBwMDp27IjQ0FAAQN26dTF//nyN+Yhet/Ja30vDtGnTUKVKFQAFZe/Tp0+RH2zXrl1Dr169pDvgOnfurHOOKKLXhfWdqOJgfZcnOTkZ7777LiIiIgAADg4OOHz4MOrVq/faykBUEljn5Rk9ejTef/99/PXXX9LNkC/Lz8/HwYMH0aFDB9y+fVv6+y+//PK6ikmkFet7xWFi6AIQVWQ9evTAo0ePVP4WFxcnLYeEhMDd3b3IdgcPHoSLi8sr7zckJAQBAQEwMTFB48aN0ahRI9jZ2UGhUCAxMRHXrl3DP//8o7LNgAEDMHPmTI05Hz58iKlTp2Lq1Klwc3ND8+bN4eDgAHNzczx//hy3b9/GtWvXkJeXJ23TqFEjlTlR1PH19cW3336LuXPnAij4srR+/Xp4eXnBwsICly9fxo0bN6R4f39/fPPNN1pzRkRE4Pfff8eECRPQqlUrNG7cGNbW1khISMDly5cRExMjxdapUwfBwcGoXLmy1pxEurC+667v+/btw4wZM7TGjBo1CtbW1ip/6927N+bMmaM2vmrVqtiyZQt69uyJ3NxcHD58GLVr14afnx8cHR1x9+5dnDhxAkIIAECNGjWwYcMGrWUg0oX13TD1/dGjR+jRo0eRvysf8/Lly7Fnzx6V511cXHDw4EGtZSHShPX99df3sWPHIiwsTFpv3rw5li1bpjV/oQYNGuCzzz6TFUukDuv866/z+fn52L17N3bu3AkrKyu0aNECbm5usLW1RXZ2NuLi4nD58mU8efJEZbtFixbB19dXazmItGF9N8x3+jeeICKDcXV1FQCK/YiOji6SKzo6WiVm7dq1ave5bNmyYu3LxsZGLFy4UOTm5mo8jhs3bggjIyPZOY2MjMTo0aNFUlKSrNcpPz9ffP/998LU1FRr3sGDB4tnz57pzDd27FhZ5Rw8eLCIi4uTVUYiXVjfddf3tWvXvtJrFBAQoDP3vn37hIODg9Y8rVu3Frdv39aZi0gX1nfD1PeXXyu5D1dXV53lJdKE9f3113dvb+9XygdAeHt76ywvkTas86+/zg8cOLBYeerWrSsOHDigs5xEurC+G/Y3vDYBAQEllquksWcLUQUzbtw4+Pr64siRI7hw4QJu3ryJ+/fvIyUlBQBQuXJlODs7w93dHX5+fhgwYECRFuiXNWvWDHFxcTh8+DDOnj2La9euISoqComJicjJyYGNjQ2qVq2KFi1a4O2338aQIUNQo0YN2WVWKBT49ttvMWDAAKxatQpBQUGIjY1FTk4OnJ2d0aFDBwQEBMDPz09WvhkzZqBdu3Y4evQorl27hvj4eCQnJ8POzg41atSAr68vBg8ejDZt2sguI1FZ9CbW99LSq1cvhIeHY+3atdi9ezeioqKQkpICJycnNGvWDEOGDMGQIUNgampq6KISvRLWd6KKg/WdqGKp6HV+8+bN+OKLL3D8+HFcunQJERERePDgAdLS0mBqagpbW1u4ubmhTZs26NWrF/z9/WFsbGyQshLpq6LX9/JAIcT/jZtBRERERERERERERERExWZk6AIQERERERERERERERG9ydjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1EREREREREREREROVUXl4erl27htWrV2PcuHF46623YGZmBoVCAYVCAR8fH0MXEQCQk5ODnTt3YujQoWjUqBEqV64MU1NT2Nvbw93dHWPGjEFwcLChi6mRQgghDF0IIiIiIiIiIiIiIiIqWXv27MGwYcOQnp6uMcbb2xvHjx9/fYVSIywsDMOGDcPNmzd1xvr6+uKPP/6Ai4vLayiZfCaGLgAREREREREREREREZW8lJQUrQ0tZUF4eDg6d+6M5ORk6W/16tVDs2bN4ODggNjYWFy5cgWJiYkAgKNHj6JTp064dOkS7OzsDFXsIjiMGBEREdEbbNasWVLX71mzZhm6OG+Ey5cvw9jYGAqFAosWLTJ0cYrYvn07evXqhRo1asDc3LzMde0nIiKSY/ny5dJn2OnTpw1dHCKiCs/JyQk9e/bE7NmzcfDgQXz22WeGLpJk/PjxUkOLvb09tm/fjjt37mDv3r1YvXo1goKCcO/ePcycORMKhQIAcPfuXcycOdOQxS6CjS1EREREr0FMTIx0waGkHmxcKT4hBCZOnIj8/Hy4urpiwoQJhi6SRAiBYcOGYeDAgfjzzz/x6NEjZGdnG7pY5YZyw6Tcx9y5c4u9n8jISMyZMwcdOnRAzZo1YW5uDicnJ7Rq1QpDhw7FypUrERMTU6ycCQkJ+O2339C1a1fUrVsXlpaWsLOzQ5MmTfDee+9h3rx5CAkJ0ZrDx8en2Mcv9+KoEAJBQUH4+OOP0bx5c1SpUgUmJiaoUqUKmjZtin/961/Yt28f8vLyinXcxZGQkIAFCxagY8eOcHZ2hoWFBVxdXdGjRw+sX78eOTk5xc6ZnZ2N9evXo0ePHnB1dYWFhQWcnZ3RsWNHLFiwAAkJCa9U1qNHj2L48OFo2LAhrKysYG9vj5YtW2LKlCm4ffu2rByv8v8sfLi5uanN+Sp1RPmh7rw+fvy4XjkDAwPVlvVVPlPr168v8z9UcAfwggUL4OfnB2dnZ5ibm8PR0REeHh6YPn06IiMjZecCgCtXrmDevHno27cvGjRoABsbG5iZmaFatWro2LEjpk2bhjt37sjO9yqvq5+fn+z8cXFxmD17Nt5++21Uq1YNZmZmqF69Otq3b48ff/wRDx8+lJVn1KhRaNCgAQBg0qRJpfoeQEREmnXr1g337t1DXFwc9u/fjxkzZqB79+6oUqWKoYsGoOBz/cSJE9L66tWr8f7770uNKoWsrKwwa9YsjB8/Xvrbpk2bUKZmSRFEREREVOqio6MFgBJ9zJw5U8ycOVNlnbTbunWr9HotX77c0MVRsWHDBpX/r6enpxgxYoSYMGGCmDBhgvjPf/5j6CK+0ZTritzH999/Lzt/amqq+Oyzz4SxsbHOvO+9956snPn5+WLZsmXC1tZWZ04rKyutuby9vYt9/KdOndJZxujoaPHOO+/Iyufh4SHCw8NlHXtx7N+/Xzg6Ourcd0REhOyct27dEu7u7lpzVqtWTRw4cEB2zmfPnolBgwZpzWlqaip+/PFHnble5f9Z+GjXrp3anK9SRwofZmZm4tmzZ0VyBgcH6/U5d+jQIbVlfZXP1Hr16sn6P23atElnnTMzMxM//PCDyM/P15prw4YNws3NTVb5FAqFGD9+vEhPT9dZxld5XX19fWUd/8KFC4WFhYXWXDY2NmL16tWy8q1Zs0baLjAwUNY2RET0eih/9nt7exusHHv37pXKYWVlJXJzc7XGnz17VuVzKSEh4TWVVDfO2UJERET0GlSuXFlnL4qLFy/i0qVLAAAXFxf069dPa7ynpycuXrxYYmUs7/Ly8qRu5k5OThgxYoRhC/SS9evXS8uzZ8/GjBkzDFia8q1t27bw9PSUFSdHSkoK/Pz8cPnyZelvrq6uaNOmDRwcHJCVlYWYmBiEhobi2bNnsnIKITBmzBisWrVK+luVKlXQsWNHVK9eHUDB3edhYWGy7zIv1LdvX9SoUUNnnK4JR+Pi4uDj44N79+5Jf6tZsyZatmwJZ2dnPHr0CGFhYXj06BGAgrv7O3XqhAsXLqBu3brFKrMmQUFB6NevH3JzcwEAlpaW8PX1haOjI+7evYuTJ09CCIErV67A19cXFy5c0HlcDx48gK+vr1RuhUKBTp06oV69enj69CmOHDmCjIwMPHnyBH379sVff/2FLl26aM2Zk5ODfv364dixY9LfmjdvDg8PD2RmZuLUqVN4/PgxcnJy8M033yAnJ0fre0C/fv3QvHlzWa9RSkoKNm7cKK1/+OGHauM8PT2L1dtv7dq10vjvvXr1QuXKlYvE1KhRo1g5g4KCpB4eTk5Osnpj2NjYYPjw4TrjHB0ddcYsXboUEydOlNbNzc3RqVMnuLm5ITU1FadPn8aDBw+QnZ2N6dOn49mzZ/jll1805jt16pRKjx8TExN4eHigbt26qFy5Mh4+fIhTp07h+fPnEEJg2bJlCA8Px6FDh2BhYaGzvIC87wsA0LhxY50xU6ZMwYIFC6R1a2treHt7w8XFBUlJSThx4gQSEhKQmpqKkSNHIjs7G5988onWnB9++CG+++47PHz4ELNnz8bQoUNhamqq+8CIiOiNkJOTgy1btmD//v0ICQnB06dPkZ+fj2rVqqF9+/YYOHAg+vbtW6SXirK0tDRpuXLlyjA2Nta6T3t7e5X1/Px8/Q6iJBm4sYeIiIiI/k9ZubOovNqxY4f0+k6fPt3QxSlC+c78Bw8eGLo45U5p9QLLyckR7du3l3K7u7uLkydPqo3Nzc0VJ0+eFKtWrdKZ98svv1TpQbFu3TqNd/ndunVLzJ07V2s+5Z4QwcHBOvcvR0BAgJTT3Nxc/P777yInJ0clJjs7WyxZskSYmZlJsb169SqR/SckJIgqVaqo3Ln/9OlTlZjQ0FBRu3ZtKaZLly4683p5eUnxrq6uIjQ0VOX5p0+fCl9fXynG3t5eJCcna8353XffSfEWFhZi8+bNKs9nZWWJKVOmqPRyOH78uLwXQoclS5ao9Mgoibs/b9y4oXJH6b59+/TOmZubK6pXry7l/Pe//60xVrlni6urq977FkKIy5cvCxMTEymvn5+fePjwoUpMXl6e+O9//6vSg23Pnj0ac44dO1YAEF5eXmLdunXi+fPnRWJSU1PFF198ofJ6Tp06VWtZlXu2lNT3BeW7igGIYcOGFTmvMzMzxddffy3FGBsbi8uXL+vMrfz+u2HDhhIpLxER6U/f35/BwcGiXr16OntXtm/fXuvvm1OnTql8trz8fe5lyr/rXFxcil3u0sTGFiIiIqIygo0tpUt5qKOoqChDF6cI5Yt8eXl5hi5OuVNajS1z586V8nbq1EmkpaXpnfPUqVNCoVAIAKJ69eoiMjJS75wl3djy4sULUalSJSnn4sWLtcbPnz9f5Ud0UlKS3mVQbpyoV6+eePHihdq4sLAwYWpqKsX+/fffGnMeOHBApWHi2rVrauPS0tJE3bp1pdivv/5aY874+HhhZWUlxWobwlB5mLEOHTpojCuOtm3bSjn79etXIjmVX/tq1aoVaWR7FcqvPQARFhamMbY0Glt69uwp5WzRooXIzMzUGLto0SIptnHjxhqPf+XKlbIbzT799FOVc0/dsGyFSqOxpUWLFlLOrl27ah0iTbmsfn5+OnPfu3dPek976623SqS8RESkP31+f27btk3l+1WlSpVE586dxUcffSRGjhwpvLy8VH7f1KpVS8TFxanNlZWVJZycnKTYsWPHatxvamqqaNmypRRbnGF/Xwc2thARERGVEWxsKT0RERHSa+vp6Wno4qilfJGRSl5pNLbEx8cLc3NzAUBYW1uL2NjYEsmrPFeItrvmi6OkG1vCwsJUzllNP54LPXr0SCU+JCREr/1nZ2er9GrZuHGj1vhRo0ZJsb1799YY16NHDylu9OjRWnMqz7Nkb2+v8YL7vHnzpLiGDRtqvYh97949YWRkJMVfuXJFaxl0CQ8PV3nd9+7dq1c+IQp6oDg7O0s5v/jiC71zCiHEwIEDpZytW7fWGlvSjS2pqakqF4R27dqlNT4nJ0fUrFlTii/O3D2apKSkqPQA27lzp8bYkm5suXXrlsp5ouu8S0pKUmlsvXnzps59dOjQQYrX1IhJRESv16v+/rxx44b0OaBQKMTkyZPV9vK9e/euyg1v3bt315hz/fr1Kp9FPj4+4tChQyI2NlZkZGSIyMhIsXr1apW50Pr37y+ys7Nf4chLjxGIiIiI6I01a9YsKBQKKBQKzJo1S21MYGCgFFM4T0l+fj42bdqE7t27o1atWjA3N4eTkxMGDBiAc+fOFcmRnZ2N9evXw9fXF7Vq1YKFhQVq166NgIAA3Lp1q1hlzsnJwfr16zFw4EDUrVsXNjY2sLKyQp06dTBkyBDs3r0bQojivhRaKc9X0LdvX9nl3LBhA/r374+6devC2toaJiYmsLGxQf369dG1a1fMmDFDr3lz3NzcpP+NssK/KT80bVc4H8Ddu3cxffp0tG7dGo6OjjAyMoK7u7va/d68eRNTpkxB69at4eDgAHNzc7i4uMDHxwe//PILEhMTdZa9rJ1XhrBmzRpkZWUBKJiXoGbNmnrnPH/+PEJDQwEUzLHQp08fvXOWBuWxtQHAzs5Oa3xJj619/PhxpKSkACiYs2PAgAFa45XnaAoKCsKLFy+KxKSlpeHo0aPS+kcffaQ154ABA2BtbQ0ASEpKwsmTJ9XG7dmzR6Uc2sYsr127tsr8L7t379ZaBl3WrVsnLTs6OqJ79+565QOAw4cP4/Hjx9J6QECA3jlTUlKwb9++Es1ZHJcvX5bm/TE2Nsa7776rNd7ExARdu3aV1nfu3Kl3GWxtbdGsWTNpXXmul9J24cIFabl69epo3bq11ng7Ozt07NhRWpdz/MrzymzYsOEVSklERGXFp59+ioyMDADAwoULMX/+fFSpUqVIXN26dfHXX3+hadOmAIBDhw6pfOYo+/DDD7F582ZUqlQJQMF3vcLfFJUqVULDhg0xcuRIxMTEoG7duli8eDF27NhR5uYBY2MLERERUQWTkJAAf39/DBs2DH/99Zc02e+TJ0+wa9cuvP3221i7dq0U/88//8Dd3R3Dhw/HsWPH8ODBA2RlZSE2NhZ//PEH3N3dVS4manP8+HE0adIEw4cPx/bt2xEdHY20tDSkp6cjJiYGW7ZsQf/+/dGxY8diT/qtzf79+6VlXRNZA0BkZCRatWqFf/3rX9i9ezeio6Px4sUL5OXlIS0tDXfv3kVQUBC+//57tGvXDv/880+JlfVVrFixAs2bN8ePP/6I0NBQJCQkqG2wys3NxaeffopWrVphwYIFCA0NRWJiIrKzs/H48WOcOHEC06ZNQ/369VUu0sphyPPKUJQvGOq62G/InKWhdu3aKus3b97UGn/jxg1p2dTUFE2aNNFr/8HBwdJyhw4dYG5urjXe09MTlpaWAIDMzEy1jX9nz56VGs+srKzQtm1brTktLCzQoUMHaf3YsWNFYjIzM3H+/Hlp3cfHR2tOAOjcubPWnHLl5+erNDSX1MTkf/zxh7TcqlUrtGrVSu+c27ZtQ2ZmJoCC82Po0KF65yyO+Ph4adnBwQFWVlY6t3F1dZWWlRvp9KHcEJeXl1ciOeVQPn7l49KmuMev/Nn7559/FqN0RERUloSFhUnfT1q3bo3PP/9ca7yVlRW+++47aV35u8nLBg8ejPv372PChAkab06pVKkS+vXrh379+mm9gcVQTAxdACIiIiJ6fXJzc9G/f3+cOnUKFhYW8Pb2Ru3atZGUlISjR48iJSUFQgiMGjUKDRo0QMOGDdGlSxfExsaicuXK6NSpE5ydnREfH48jR44gPT0d2dnZGDp0KG7evIk6depo3Pf27dsxbNgw5OTkACj4oty+fXu4ubnByMgIkZGROHfuHHJzc3H+/Hl06NABly5dgpOTk17HnJCQIPUUqFSpEtq0aaM1PjU1FX5+foiNjQUAGBkZoXXr1mjSpAmsra2Rnp6Ohw8fIiwsDAkJCXqVLSAgQOpFsnTpUunvEyZMkJ1j+/btmDp1KgDAxcUFb7/9NmxtbfHo0SMkJSVJcfn5+RgwYIDK3eP29vbw8fGBvb09YmNjERwcjOzsbKSkpGDEiBFISUnBZ599prMMhjyvXkV8fDw2bNiAyMhIpKWloUqVKqhZsybeeecdNGzYUFaOlJQUhIeHS+uF59XOnTuxdu1ahIaG4unTp7Czs0Pjxo3x3nvvYezYsahcubLWvGfOnCmS89KlS1i+fDmOHz+OR48ewdLSErVr14afnx/GjRuHunXrFuv4b9++jfDwcMTGxiInJwf29vZo2LAhvLy8ZNe3mjVronXr1rh69SoA4Ntvv8W+fftgbGxcJDY3Nxdff/21tD58+HCpR8irUu755OHhoTPe1NQULVq0kO6mvHXrFvz8/DTmbNGiBUxMdP9c9vDwwOHDh4tsXygiIkLqxaNQKHT2GCjMqa5MxXX06FE8ePBAWlfu3fOqnj9/XqSnTklQbtzt0aMHHB0dZW+bm5uLw4cPIyQkBAkJCbCwsICDgwPeeusteHp66myIA6B3b8r79+8jLS1Nr/M6KysLd+7ckdZr1aola7uMjAzs378fYWFhSEpKgpWVFZycnNCuXTu0bt1a1nms7/HramwFCi7IWVtbIy0tDeHh4Xj06BFcXFz02i8REb1+Bw8elJaHDBkiq8FDucH99OnTGuNCQ0Px5ZdfSo05jRs3hoeHB6ytrfH48WOcPn0aycnJWLhwIZYsWYIlS5Zg1KhRehxNKTDkGGZERERE9P+9ypi5cuahWLt2rRRTOL9Enz59RHx8vEpcUlKS8PLykmI7d+4s+vbtKwCITz75RDx//lwlPjY2VjRp0kSK/+ijjzSWszTG9ZVLedLlNm3a6Iz/z3/+I8U3bdpU3L59W21cfn6+uHjxohg3bpy4f/++3uWE0hjFuri6ukqxJiYmwszMTKxYsaLIXBDKEzz/8ssvKvuYNm2ayMrKUol//PixePfdd1Vynz9/Xm0ZysJ5VRzKdUXbw8PDQ+zevVtnvsOHD0vbWFtbi+TkZNG9e3etuatWrap1boeMjAyVeSMuXbokvvrqK5U5PF5+mJqairlz5+osr/KcLZoeCoVC9O7dW4SGhsp6TYODg1UmRnV3dxc7duwQ0dHRIiMjQ0RFRYmtW7eqTLz9zjvviJSUFFn5tVE+R3777TdZ23zwwQfSNuPHjy/y/Lhx46TnBw0aJCvn0qVLVd4vXrZ161bpeScnJ1k5b968qfJ/efLkiaztXjZs2DApR8uWLV8px8tWrlyp8v7wcn1/FZGRkSrHq2u+FCFU52zR9rCzsxPTp08XqampWvMdPXpU5bhevHihswzK8wAV1ld9bNy4UaUuanttleds0fZwcXER8+fP1zme/erVq6VtnJ2dZZXXz89PZV9Pnz7VuY3yvC1y3meJiKh0vcrvz169eqn8VpswYYLOx/jx46VtHBwc1Obds2ePNHdZjRo1xOHDh4vEpKeni2+//VYoFAop35YtW/R5CUocG1uIiIiIyojX0dgCFEw2mJubqzY2JiZGGBsbq8QHBARo3P/p06elOBsbG40TRHfp0kWKW7RokdZjSktLE02bNpXiNV3sl+unn36Scg0bNkxn/IABA6R4dV/yS4vya66LcmMLALFhwwat8c+ePRPW1tZS/OTJkzXGZmZmirZt20qxnTt3VhtXFs6r4pDb2FL4GDVqlMbjEUKINWvWSLGOjo4q57irq6sYOnSo+Pjjj0XHjh1VGkuMjY3F/v371eaMiopSKcOgQYOkZVtbW9G3b18xevRo0aNHD5XJqQGIqVOnaj1+OY0thQ9zc3OxYsUKWa/r0aNHhb29vc6czs7O4rvvviuxSUyrVatWrIvzQggxadIkaZvBgwcXeV55gvZPP/1UVs6dO3dK21SvXr3I88uWLZOel9vgkZiYqPLaaWrw1eb58+fC0tJSyrFw4cJi51BHuTG8V69eJZLz22+/lXJWrVq1SCOwOnIbWwofjRo1EhERERrzJSUlqdTTvXv3at1/bm6uqF27tso+/v7772Ife6G0tDSVfAMHDtQaL7expfDRvn17ERcXpzFfaGioSnxYWJjW/aekpKicXwC0vr6FPv74Yyl+1qxZOuOJiKh0vcrvzzZt2hTrM+jlh7GxcZGc//zzj7CyshIAhIWFhQgPD9dahunTp6t8d5Bzk8TrwjlbiIiIiCqYxYsXqx3qBygYg1150ltzc3PMmzdPY663335bGuokNTUVt2/fLhJTmuP6yhEdHS0ty5nA/Pnz59JycYayMRRPT08MGzZMa8ymTZukCc2dnJwwZ84cjbHm5uZYsmSJtB4cHIyIiAid5Xjd59WraNy4Mb799lscPXoUjx8/RnZ2NlJTU3H9+nXMnz9f5fxYtWqV1iHUCidnB4CnT5/i2LFjMDY2xq+//oro6Ghs3LgRq1evxpkzZ3D58mXUq1cPQME8DAEBAXj69KnWnACwdetWAMDHH3+MBw8eYPfu3VixYgUOHDiAmJgYlcnO58+fr3XeBIVCAW9vbyxevBjnz59HUlIScnJykJSUhFOnTuGLL76Q5qnIysrC2LFjsX37ds0v5v/p0qULYmJiMGvWLI3DFRkbG6Nnz54YNGhQiU1iWng+A5AmUtVFOU55+7KcU1NeXXbs2IH09HQABZO5f/jhh8XO8bKoqCiVYe5KYggxIYTKPEVDhw6FmZmZrG1tbGwwYsQIbNmyBREREUhLS5Pmfdq+fbvKMHERERHo1q2b2noHFEz47uXlJa3PmjVLGvJSneXLl+P+/fsqf0tNTZVVbnUmTpwo5bO0tMQPP/ygcxtHR0eMHz8eu3fvRlRUFNLT05GZmYmoqCisW7dOZc6h8+fPo1evXtJkxi9r2bKlynCN06dP17rvuXPnSudXITnHX6NGDWk5JiZGZzwREZU9z54902t7dXOSLViwAC9evABQMNysrrn9vvnmG2lo3sTERJX5OQ2NjS1EREREFUi9evXg7u6uNaZFixbSspeXF6pVq6Y1vnnz5tKycsNGodIc11cO5Yl/q1atqjNeeZz85cuX67Xv12Hw4ME6Y5Qn2R4yZIjOi76enp4q54HyZOTqGOK8Kq5Jkybh1q1b+P7779GlSxdUr14dpqamsLa2RvPmzTF58mTcvHlTpQFj6dKlGs+/wh+EyubPn4+JEycWOcfd3d0RFBQkNWYkJSWpNGhpy9mnTx+sXr26yFwQ1apVw549e6TJyYUQWhvRduzYgePHj+Pzzz9Hu3btYGdnBxMTE9jZ2eGdd97BokWLcPnyZWn+FyEExo0bp/MHdXR0NAICAjB79mzk5ubC1dUVgwYNwpgxY9C/f384OTkhLy8PK1euRMuWLbWWsTgKJ1MHIPvivPLcHeouOpfFnJry6qI8B0q3bt101jc5/vjjD2luD3t7e/Ts2VPvnCdOnFC56B4QECBrO2dnZzx69Ahr167FoEGD0LBhQ1hZWcHMzAw1a9bE+++/j8OHD+P333+X6mN0dLTK3EEvU25guHr1Kvr06YO4uDiVmPz8fCxfvhxffPFFke1f5f8EAEuWLEFgYKC0vnjxYtSvX1/rNm+99RYePHiApUuXom/fvqhTpw4qVaoEc3Nz1KlTB8OHD8eFCxdUbly4dOkSFi5cqDafQqHAN998I63/+eef+Oijj4rU/+zsbMyaNQsLFiwokkPO8Ts4OEjLL7+2RET0Zij8PgsAu3btgigYOatYj5f99ddf0rLy70BNLC0t0b59e2k9JCREz6MqObpnSiMiIiKickP5ArYmdnZ20nKzZs10xtvb20vLyr1CCp07d05aDg4Oxr1793TmVP4SXjhR/atSvoBtaWmpM37gwIFYs2YNgILGlsuXLyMgIABdu3bVeQHMEAonUdemcBJzACo9TLR5++23cf36dQDAlStXtMYa4rwqLjkNbZUrV8aOHTvg7u4uTVT9yy+/4J133ikSa2FhobJes2ZNfPrppxpz161bF+PGjZMuUm7duhWzZ8/WmrNw/5qYmZnhhx9+kC56nzx5EnFxcahevXqRWDnH36hRI+zfvx+tWrVCbm4uEhMTsWrVKnz55Zdq48+fP49u3brh2bNnsLW1xe+//46BAweqNDbl5ubit99+w+TJk5GdnY2ZM2fCwsICU6dO1VkebSwsLKQ767Ozs2Vtk5WVJS2ra3BUfv3LSk5NebWJiYnByZMnpXW5DRjaCCGwfv16aX3IkCGyG4+0UW4Uat68uaz3M6CgQUrOxPdjxozBvXv38OOPPwIAAgMD8cMPP8DJyalIrL+/P7788kupQeLQoUOoU6cOvL29Ubt2baSlpeHMmTNSD5T+/ftj165d0vY2Njayyq5s//79Kr09R4wYgTFjxujc7uXGV3UUCgXmzJmDu3fvYtOmTQCARYsWYdq0aWp7oY0aNQp///03duzYAaDgtdq5cyd8fHzg7OyMpKQknDx5Ek+ePAHwasev/BmsrnGZiIjKPuXP0JJqOH/48KG0LOc7K6DagK9vb5uSxMYWIiIiogrE1tZWZ4zyRZjixqsbduXRo0fS8qFDh3Tme1lycnKxt9FE3Z1UL+vatSsmTZqEX3/9FUDB3cCXLl0CUPDj4p133oGPjw/69u0ra1iy0iZnqDPloXNcXV1l5XVzc5OWExIStMYa4rwqLZaWlvjqq68watQoAAW9grKzs4tcWH75Ymfv3r01DqNWqF+/flJjS0REBBITE1V+UL6cs2nTpmjUqJHWnF27dkWlSpWku8rPnj2L/v37a91Gm6ZNm2Lw4MHS0E6HDh1S29iSnJyM/v37Sz9ud+/ejc6dOxeJMzExwaRJk1CpUiWMHj0aAPDdd99h6NChetUfa2trqbFFbo8C5Th1F6uV/1ZWcmrKq8369etVeqD07t27WNurc/r0aURFRUnrJTGEWHp6Onbu3Cmtl0SjkDpff/01Fi9ejIyMDOTl5eHw4cMah1VbsGAB7OzsMHv2bOTk5CAzMxN///13kbhhw4Zh3rx5Ko0NVapUKVa5Tpw4gUGDBknDqfTq1QsrV64sVg455syZIzW2JCcn4/z582obkIGCISerV6+OpUuXQgiB1NTUIkOzKBQK/Pvf/8bgwYOLffxyPoOJiKhsa9euHYKCggAAZ86cwbhx4/TOWalSJen7flJSkqxtEhMTpeXifgaXJg4jRkRERFSByBnCS594dUpjXN/iUO7qLvdi5//+9z/s2rULnp6eKn+Pj4/Hzp07MWnSJNSuXRvvv/9+kXH7Xzc5d70rz/mg/Hpooxynayx+Q5xXpUl5rof09HS1vbFevuuuadOmOvO+PP60ckPkq+Y0MTFBgwYNpHXlOwNflfLx37p1S23MihUr8PjxYwDAu+++q7ahRdnIkSOlcmZnZ+s9F5Pya6U8VKA2yndfKvecKss5NeXV5o8//pCWBw8eXOI9UJo2bYq33npL75y7du2S3luMjY11zj31qqytrdGuXTtpXdM5XWj69OmIjIzEV199hTZt2sDe3h5mZmaoVasWPvjgA/z999/YsGFDkbl0lIeg1CUkJERlDhUfHx9s27ZN47xH+qhXr55K47m24zc1NcWvv/6Ka9euYdKkSWjRogVsbW2l4clGjBiBc+fOYcGCBSoXw0xNTdX2FnqZ8mew3M8iIiIqW5SHEd21a5fs7zfa1K5dW1rWNXwxUPB5cv78eWm9LI0+wMYWIiIiIipVpTGub3EoD6mkq4eGsn79+uHChQu4d+8e1q1bh7Fjx6pc/BZCYOfOnfDw8EBkZKReZSxtynfGyx26RTnuVYbHeZM5OzurrKs7bxo3bqyyLqf3wcuv48uNWI6OjioX1uX2aFDOq88k3YWUj19TnSnu2NoKhUKlQUbfsbWVe/zIGZoQgErD6Mv/v9eR88mTJypzuMjJaW9vL6v3WqEzZ87gn3/+kdZLordIRkYGtm/fXqI5AdUGnHfffbdIvStJcs5pZW5ubvj5558REhKCxMREZGVl4f79+9i2bRveffddAMDNmzel+KpVq0rzHely/fp1dO3aVaqrnp6e2Ldvn9phBEtKcY+/efPm+N///odr164hJSUFmZmZiIqKwtq1a6WGK+Xjb9GihazyK/eyVDfcIRERlX2enp7w8fEBUPAd4V//+pfsoVKzs7PVjlqgfKPPunXrEBERoTXPzz//LN3Qp1Ao4O/vL7P0pY+NLURERERUqkpjXN/iqFOnjrT84MGDYm9fu3ZtDB8+HMuXL8fNmzdx//59zJ49Wxp7PjExEf/+979LrLylQflirdyeOMqTViuPiVwRvNwgpe4O7EaNGqnchf7yXe7qvNwQom44NeX5b+TkfDmvnCHadFE+fk13nxt6bG3lXkLKcxJpkpubK81B9PL26v52/fp15Obm6syrPJ+RupyNGjWCkVHBz24hBEJDQ/XOqY1yA0aTJk2K9M57Fbt375bmTTI2Nsa//vUvvXM+ePAAx44dk9ZLYlgybeSc08V19uxZablDhw6ytomIiIC/v7/UK6RFixY4dOhQqTdol/bxy50LTPl9Q7m3DRERvVl+/fVX6aagw4cPo1OnTrhw4YLG+MjISHz//fdwc3PDmTNnijw/adIkmJqaAihowPH391fbwyUjIwOzZs3C999/L/3tgw8+UPm9Z2ics4WIiIiISlVpjOtbHC1btpSWdd0lJUetWrUwY8YM1KtXTxr3PygoCFlZWbImbDaE1q1bS3e7nz17Fu+//77ObZQvpHl4eJRa2cqily/eu7i4FIkxMzODl5eX9EMwPDxcZ17l4XsUCgVq1KhRJMbX11ea3FxOztzcXNy5c0daL85QRpooH7+6YwdUh68zxNjanTt3xk8//QQAOHfunNp5dZRdunRJmuPFwsJC7cXxjh07wtzcHFlZWXjx4gVCQkLQvn17jTmzsrJUhrBQ18PHwsIC7du3l+rT8ePHteYECuby0JZTk8zMzFLpgaI8LJm/v3+J9EDZsGED8vPzARScCyUxr4w2cs7p4sjPz1d5reU0QEVHR8PPz08abqVhw4Y4fPhwsYeJK6709HSVz76SOP60tDQcPHhQWpfbAKf8HtiqVSu9y0FERPL16NGjyBC2yjfChYSEwN3dvch2Bw8eLPLZ0bx5c2zevBmDBg1Ceno6Lly4gPbt26NevXrw8PCAvb09MjMz8eTJE1y7dk3nMLd169bFokWLMGnSJABAbGwsunTpgiZNmqBNmzawtLREXFwcTp06pdIzpk6dOtI8m2UFe7YQERERUakqjXF9i6Nt27bSHCHh4eGy7laXQ/niYE5OjuwLzoagfMF2y5YtOocyCgkJwbVr16R1XfNxlDdr1qyRlps1a6axZ4/yRPT79++XLh5rsmfPHmm5VatWahsclHOGh4frHKIuKChImgfByMgIXl5eWuN1yc7OxoYNG6T1wmEiXlbcsbWFEDh+/Li0ru/Y2j4+PlIvnufPn6tM1K1OYGCgtOzv76/27n5ra2v4+vqq3UYd5TlH7O3t0alTJ7Vxffv2lZ0zNjYWR48eVbutLnv37kVKSgqAgnNB0yTwxfHo0SMcOXJEWi+NIcQGDRpUqkNoHTlyBLGxsdK6pnO6OFavXi0NNVe9enWd/6eHDx/C19dX6l3p6uqKI0eOyJrnRF+bNm1CVlYWgIJGXk3naXH89NNPUuOlh4eHrB5U+fn5uHHjhrReEr2uiIhIvvDwcISFhak8lH+XvXjxosjzYWFhGocI69mzJ86ePYs2bdpIf7t79y62b9+O33//HevWrcOhQ4eK9GqsWbOm2nwTJ07EunXrVHpp37p1Cxs2bMCKFSuwb98+lYaWLl264OTJk6hWrdorvyalgY0tRERERFSqSmNc3+JwcHCQ7tLKyMjA5cuXtcbLnddF+eKdkZGR7KGUDGHo0KFSV//Hjx9j9uzZGmOzs7Olu8qAgoYW5Xkn3kRyh+MCgB07dmDTpk3SurYL1h9++KF0V3psbCyWLFmiMTYmJga//fabtK5p2KTmzZurNI5NmzZNY86cnBx8++230nrv3r1hZ2dXJK44xz958mRER0dL65qOX3ls7b///lvqjaNJYGCgyt31Xbt2lV0mdUxNTTF69GhpfcaMGSqTbyu7ceOGSiPHhAkTNOYdP368tBwYGKgyL4Wy9PR0zJgxQ1ofM2aMxsnNAwICpMadiIgIrFq1SuP+v/rqK+Tl5QEoGJqqOL3KlBsw/P391facKq4NGzZI5bG1tS1W448mFy9exO3bt6X14g4hlp2dLfsz5OnTp/jkk0+k9SZNmujdUy80NBRTp06V1hctWqS1V9WTJ0/g6+sr1SsXFxccPXr0lXuhpaen62zYLXTnzh2V95B3331X74tSQUFBWLBgAYCCz77//e9/sra7evWq9F7UtGnTEulhQ0REhtWqVSuEhITg77//xrhx49CyZUs4ODjAxMQEVlZWcHNzQ9euXTFjxgycOXMGUVFRanvPFBo+fDju3buHJUuWoE+fPnB1dYWVlRVMTExgb28Pd3d3jB07FidOnMDRo0c1NtwYlCAiIiKiMmHmzJkCgAAgvL29i73NzJkz1casXbtWigkICCiRnMoCAgKk+LVr16qNuX79urC2tpbi2rVrJ86fP68xZ0REhJgzZ45wdnYW+/fv11kGXWbMmCHt+8cff9QaW79+fTFkyBBx8OBBkZWVpbF8b731lpTT399f7zIW5pLzFd3V1VWKjY6OlpX/l19+UdnHt99+W+T44uLiRLdu3aQYExMTjf+nsnBeyTVr1izh5+cnduzYIdLT09XGpKSkiBkzZghjY2Npv3Xq1NEYX2jx4sUqr9eyZctEfn6+SkxYWJho0KCBSt4XL15ozBkSEqJSjtGjR4u0tDSVmCdPnoj33ntPijEzMxOhoaFq8/n7+4uPP/5YnDhxQuTl5amNuXv3rnj//fdVzpFBgwZpLGNKSoqwt7eXYu3s7MT27duLxOXk5IglS5YIc3NzKdbT01NjXuXzStf5nZCQIKpUqaJSDxMSElRiwsLChJubmxTTuXNnjfkKeXl5SfFubm4iLCysyH79/f2lGHt7e5GcnKw153fffSfFV6pUSWzdulXl+ezsbPHVV1+pHPvx48d1lrXQ48ePVc6ZTZs2yd5Wm2bNmkk5x4wZUyI5x48fL+Vs2LBhsbePjo4WNWvWFL/88ouIiYlRG5Ofny/+/PNPlfdKhUIhDhw4oDX3hAkTxN69e9W+92dnZ4uVK1cKOzs7Kef777+vNV9SUpJo1aqVFO/g4CBu3rwp/2DVCA4OFo0bNxbLli0T8fHxamNyc3PF+vXrRdWqVWW9RxQaNmyYOHr0qMjNzS3yXHp6uvj555+FhYWFlHPy5Mmyyz1v3jxpu6lTp8rejoiI6E3COVuIiIiIqNSV9Li+xTVs2DDMmTMHQMFQTl9//bXG2JycHGzevBmbN29GpUqV0LJlS9StWxeVK1dGcnIyoqKiEBISIsVXqlRJusu3LJs8eTJOnz6N/fv3AwDmzp2L3377DZ07d4adnR1iY2MRHBwsDTcDAPPnz0e7du0MVeQSI4TAkSNHcOTIEZibm6NZs2aoX78+qp7T2BMAAAmzSURBVFSpguzsbMTExODChQsqPSMcHBxw8OBBlblJ1Pnss89w/vx5bN26Fbm5uRg/fjzmzZuHt99+GxYWFoiIiMDZs2elO9FtbGywc+dOWFpaaszZpk0b/O9//5N6YKxcuRLbt29H586d4ejoiIcPHyI4OFgaxkehUGDJkiUa50DIzs7GmjVrsGbNGtja2qJVq1aoVasWbGxskJaWhvDwcISGhqrcLe/p6YnVq1drLKOtrS3WrFmDAQMGIC8vD8nJyfjggw/g5uaG9u3bw9bWFgkJCThz5ozKeOD29vYqc4Doo2rVqtiyZQt69uyJ3NxcHD58GLVr14afnx8cHR1x9+5dnDhxAkIIAECNGjVUhkjTZNOmTfD09MTjx48RExMDd3d3eHt7o169enj69CmOHDkivfYmJibYtm2bzjlovvvuO5w5cwbHjh1DRkYGBg0ahLlz58LDwwOZmZk4efIkHj9+LMXPnj0b3t7esl+LjRs3lngPlMuXL6v07CmJIcSys7OxZcsWvXM+ePAAX331Fb766iu4ubmhRYsWcHBwgKmpKZ4+fYoLFy4UGZd+3rx56NGjh9a8R44cwdKlS2FtbY02bdqgTp06MDExQVxcHE6fPi0N0wYA3bt313k+jR07FmFhYdJ68+bNsWzZMlnH2KBBA3z22Wdqn7t9+zbGjx+PiRMnon79+mjWrBns7e1hZGSEuLg4nDt3TqWXprGxMf744w+d86Ts2LEDGzduhL29Pdq0aSP1vnn48CFOnTolnfcAMGrUKMybN0/WsQDA7t27peVhw4bJ3o6IiOiNYujWHiIiIiIqUJ57thQKDQ0Vbdq0Ubl7W9vDzc1NXL16VWcZ5HjnnXeku5ujoqI0xjVv3lx2+erUqSPOnDlTIuVTzqvLq/RsEaKgl8HEiRNV7oBX97C1tdX5vyxL51Vx9i3n0a1bN/HgwQPZ+bOyssSnn34qFAqF1rwNGzYU165dk5131apVwsbGRmvOKlWqiC1btmjN4+3tLfvYTU1NxWeffSYyMjJklfHgwYPC2dlZVm53d3edd/UXp2dLoX379gkHBwet+27durW4ffu2rGMSQohbt24Jd3d3rTkdHR3Fn3/+KTtnSkqKGDhwoM7X/4cffpCds1CLFi2kHKNHjy729upMmjRJ5dwtCTt37pRyGhkZidjY2GLniI6OLlZ9rlGjhti7d6+s3I0aNdKZz9zcXMyaNUtjz0dlxal7Lz80fQ8IDg4uVp5GjRrJ/pxS7oGm6WFrayuWLFlSpAefNvfv35feH9u0aSN7OyIiojcNe7YQERER0WtTOK5vUFAQ9uzZgzNnzuDRo0dISUmBubk5HB0d0ahRI7Rr1w5du3ZFhw4dpMnt9fX555/j9OnTEEJg1apV+OGHH9TGhYaG4vz58wgODsbFixcRERGBR48eIT09HZaWlqhevTrc3d3Ru3dvDBw4EObm5iVSvtfBxMQEv/76Kz755BOsWbMGR48eRWxsLFJTU2Fvb4+GDRuiR48eGD16dJmeg6a4pkyZAm9vb5w9exbnz5/HvXv3kJiYiMTERCgUClSpUgUNGjRAx44dMWTIEJ13f7/MzMwM//3vfzFixAgEBgbi6NGjePjwITIyMuDo6Ig2bdqgX79+GDZsmMZ5PdQZOXIkunXrhsDAQOzbtw8xMTFITk6GnZ0dGjdujB49emDMmDFq52lRtm3bNpw9exbnzp3DpUuX8PjxYyQmJiI5ORkWFhawt7dHixYt4OXlheHDh8PZ2Vl2Gbt37467d+9i27ZtOHDgAK5evYr4+Hikp6fDxsYGLi4u8PT0xIABA9CjRw8YGZX8tKG9evVCeHg41q5di927dyMqKgopKSlwcnJCs2bNMGTIEAwZMgSmpqayczZu3BgXLlzAli1bsHnzZty8eRPx8fGoUqUK6tati/79++Ojjz6Cg4OD7Jy2trbYunUrRo8ejXXr1uHcuXN4/PgxTE1NUatWLXTt2hUjR45EkyZNinX8V69exfXr16X1kuiBUtjDr9Dw4cP1zgmozivTpUuXVxpr3dXVFdevX8e5c+dw9uxZ3Lx5EwkJCUhMTER6ejoqV64MZ2dntG3bFt27d0e/fv1k/+937NiBoKAgBAcH486dO3jy5AlevHiBatWqoU6dOujZsycGDx6M2rVrF7vcJcXLywshISHS8UdEREjvZ1lZWbC1tUWtWrXQrl079O7dG926dZP9OXry5EkcOXIEx48fR3R0NJ48eYLs7Gw4OTmhQYMG6NOnDwYNGgRHR8dilXnNmjVSD7PPP/+8uIdMRET0xlCIwk88IiIiIqJyLD8/H82aNcPt27fh5OSEmJgYWFhYGLpYRERE5VZOTg7q1q2LBw8ewM3NDZGRkcVq+CQiInqTlPxtRUREREREZZCRkRFmz54NAIiPj0dgYKBhC0RERFTObdy4EQ8ePAAAzJw5kw0tRERUrrFnCxERERFVGEIIdOzYEefPn4erqysiIiLeqGHAiIiI3hS5ublo1qwZIiMj0apVK1y+fBnGxsaGLhYREVGpYc8WIiIiIqowFAoFlixZAiMjI9y7dw9Lly41dJGIiIjKpdWrVyMyMhIAsGTJEja0EBFRuceeLURERERERERERERERHpgzxYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTw/wAI2xKGDTlS3AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create light curve and apply GTIs\n", + "lc_raw = events.to_lc(dt=1)\n", + "lc_raw.apply_gtis()\n", + "\n", + "plt.figure()\n", + "plt.plot(lc_raw.time, lc_raw.counts, color=\"k\")\n", + "plt.title(\"Light curve\")\n", + "plt.xlabel(f\"Time (s from {events.mjdref})\")\n", + "plt.ylabel(f\"Counts/bin\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "cbfb45d0", + "metadata": { + "id": "cbfb45d0" + }, + "source": [ + "The light curve seems reasonably clean, with no need for further cleaning. Otherwise, we would have to filter out, e.g. flares or intervals with zero counts, doing something along the lines of:\n", + "\n", + "```\n", + "new_gti = create_gti_from_condition(lc_raw.time, lc_raw.counts > 0, safe_interval=1)\n", + "lc = copy.deepcopy(lc_raw)\n", + "lc.gti = new_gti\n", + "lc.apply_gtis()\n", + "\n", + "plt.figure()\n", + "plt.plot(lc_raw.time, lc_raw.counts, color=\"grey\", alpha=0.5, label=\"Raw\")\n", + "plt.plot(lc.time, lc.counts, color=\"k\", label=\"Cleaned\")\n", + "plt.title(\"Light curve\")\n", + "plt.xlabel(f\"Time (s from {events.mjdref})\")\n", + "plt.ylabel(f\"Counts/bin\")\n", + "plt.legend();\n", + "\n", + "events.gti = new_gti\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "17c0427c", + "metadata": {}, + "source": [ + "## Calculate periodogram and cross spectrum\n", + "\n", + "Let us now take a look at the periodogram and the cross spectrum. \n", + "The periodogram will be obtained with Bartlett's method: splitting the light curve into equal-length segments, calculating the periodogram in each, and then averaging them into the final periodogram.\n", + "\n", + "We will use the fractional rms normalization (sometimes referred to as the _Belloni_, or _Miyamoto_, normalization, from the papers [Belloni & Hasinger 1990](https://ui.adsabs.harvard.edu/abs/1990A%26A...230..103B/abstract), [Miyamoto et al. 1992](https://ui.adsabs.harvard.edu/abs/1992ApJ...391L..21M/abstract)). The background contribution is negligible and will be ignored.\n", + "\n", + "Note: since the fractional rms normalization uses the mean count rate, the final result changes slightly if the normalization is applied in the single periodograms from each light curve segment, with the count rate of each chunk, or on the averaged periodogram, using the average count rate of the full light curve. We choose the second option (note the `use_common_mean=True`).\n", + "\n", + "We will first plot the periodogram as is, in units of $(\\mathrm{rms/mean)^2\\,Hz^{-1}}$.\n", + "\n", + "Then, from the periodogram, we will subtract the theoretical Poisson noise level of $2/\\mu$, where $\\mu$ is the mean count rate in the observation, and we will multiply the powers by the frequency, to have the periodogram in units of $(\\mathrm{rms/mean)^2}$\n", + "\n", + "In both cases, we will rebin the periodogram geometrically, averaging more bins at larger frequencies, in order to lower the noise level." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a1ce6955", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "65it [00:00, 65.69it/s]\n" + ] + } + ], + "source": [ + "# Calculate the periodogram in fractional rms normalization.\n", + "# Length in seconds of each light curve segment\n", + "segment_size=50\n", + "# Sampling time of the light curve: 1ms, this will give a Nyquist \n", + "# frequency of 0.5 / dt = 500 Hz.\n", + "dt=0.001\n", + "# Fractional rms normalization\n", + "norm=\"frac\"\n", + "\n", + "pds = AveragedPowerspectrum.from_events(\n", + " events, segment_size=segment_size, dt=dt, \n", + " norm=norm, use_common_mean=True)\n", + "\n", + "# Calculate the mean count rate\n", + "ctrate = get_average_ctrate(events.time, events.gti, segment_size)\n", + "# Calculate the Poisson noise level\n", + "noise = poisson_level(norm, meanrate=ctrate)\n", + "\n", + "# Rebin the periodogam\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "87f5cb03", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAAR9CAYAAAAKglvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOydd5xTVfr/P0lmMplMHzpSBkGkKqAUQZptseNXRFER0FWxs191V91dAd1V1l0XxwLodwUsiAWV4qKwIoNYUDoOxaUNMMMM09Iz6ef3B6/cXzI1uS0nN8/79ZoXk8zN5zyf+5z73HDPvefoGGMMBEEQBEEQBEEQBEEQBEEQBEEQGkSf6AAIgiAIgiAIgiAIgiAIgiAIgiCUggZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZqGBEIIgCIIgCIIgCIIgCIIgCIIgNAsNhBAEQRAEQRAEQRAEQRAEQRAEoVloIIQgCIIgCIIgCIIgCIIgCIIgCM1CAyEEQRAEQRAEQRAEQRAEQRAEQWgWGgghCIIgCIIgCIIgCIIgCIIgCEKz0EAIQRAEQRAEQRAEQRAEQRAEQRCahQZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZqGBEIIgCIIgCIIgCIIgCIIgCIIgNAsNhBAEQRAEQRAEQRAEQRAEQRAEoVloIIQgCIIgCIIgCIIgCIIgCIIgCM1CAyEEQRAEQRAEQRAEQRAEQRAEQWgWGgghCIIgCIIgCIIgCIIgCIIgCEKz0EAIQRAEQRAEQRAEQRAEQRAEQRCahQZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZqGBEIIgCIIgCIIgCIIgCIIgCIIgNAsNhBAEQRAEQRAEQRAEQRAEQRAEoVloIIQgCIIgCIIgCIIgCIIgCIIgCM1CAyEEQRAEQRAEQRAEQRAEQRAEQWgWGgghCIIgCIIgCIIgCIIgCIIgCEKz0EAIQRAEQRAEQRAEQRAEQRAEQRCahQZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZklLdAAEIQWr1YotW7YIr7t3746MjIwERkQQBEEQBEEQBEEQBEEQBEE0xuv14tSpU8Lr8ePHIz8/X5W2aSCESGq2bNmCyZMnJzoMgiAIgiAIgiAIgiAIgiAIIg5Wr16NG2+8UZW2aGosgiAIgiAIgiAIgiAIgiAIgiA0Cw2EEARBEARBEARBEARBEARBEAShWWhqLCKp6d69e9Tr1atXo0+fPgmKRn3cbjdKSkowYcIEmM3mRIcjCd68qB2Pku3JqS2HlhQN3vpJqqOVfPDmg+qPcnpUf7SDlvLBmxeqQcppidXgrY+kOlrKB29eqP4op0XfgbSDVvLBow81Y0qW+iOHXuPPHzlyJGqZg8bXdpWEBkKIpKbxwuh9+vTBwIEDExSN+vh8PqSnp2PAgAEwGo2JDkcSvHlROx4l25NTWw4tKRq89ZNURyv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJQP3rxQ/VFOi74DaQet5INHH2rGlCz1Rw69tj7f+NqukugYY0y11ghCZvbv349BgwYJr0tLS1NqIIQgCIIgCIIgCIIgCIIgCCIZSOS1XFojhCCSmIaGBnz11VdoaGhIdCiS4c2L2vEo2Z6c2nJoSdHgrZ+kOlrJB28+qP4op0f1RztoKR+8eaEapJyWWA3e+kiqo6V88OaF6o9yWvQdSDtoJR88+lAzpmSpP3Lo8ZRrGgghiCQmFArBarUiFAolOhTJ8OZF7XiUbE9ObTm0pGjw1k9SHa3kgzcfVH+U06P6ox20lA/evFANUk5LrAZvfSTV0VI+ePNC9Uc5LfoOpB20kg8efagZU7LUHzn0eMo1TY1FJDU0NRZBEARBEARBEARBEARBEAT/0NRYBEGIIhAIoKysDIFAINGhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8sGbF6o/ymnRdyDtoJV88OhDzZiSpf7IocdTrmkghCCSGKfTiXfeeQdOpzPRoUiGNy9qx6Nke3Jqy6ElRYO3fpLqaCUfvPmg+qOcHtUf7aClfPDmhWqQclpiNXjrI6mOlvLBmxeqP8pp0Xcg7aCVfPDoQ82YkqX+yKHHU65paiwiqaGpsQiCIAiCIAiCIAiCIAiCIPiHpsYiCIIgCIIgCIIgCIIgCIIgCIJQABoIITSByWRCdnY2ACAYDMJqtSL8sJPdbofP5wMANDQ0wOVyATg7R53VahU0bDYb/H4/AMDtdsPtdgMA/H4/bDabsJ3VahXmtXO5XGhoaAAA+Hw+2O12AABjDFarFcFgEMDZx8A8Hg8AwOv1wuFwAABCoRCsVitCoRAAwOFwwOv1AgA8Ho/w2FhLnmw2G1588UVUVlYmvafy8nK8+OKLsNlsXOSpurpaiEdqnoC2+15tbS0WLFiAqqoq2T2dOXMGCxYsQHV1NRd5OnXqFBYsWACbzRa3p3CfP3PmDAB5j6dY8pQsx5NanmpqaoT+kMyeKisrBR885Kmurk6IR448qVkjGnuqrKzEggULUFdXJ0vfC8daU1MjKk8nT54U9m0qn3O1UPfq6+vx4osvCvEms6fTp09jwYIFqK+v5yJPkceJGn0vfGydPHlSdk+R2jzkSez3vbCP8vJyIU9UIxLnKZyPurq6pPck5Xu5Ep7U/j+hnDWisSer1YoFCxagvLycizxJ+b6npXOuFupeRUWFcJwksycp38uV8iT1/xqJqhGNPdXV1WHBggWorKyUpe9ZLBYsWLAAFRUVsv6fMBHQQAihCUaNGoUpU6YAOHthrri4WDg4ly5digMHDgAAtmzZgnXr1gE4+yWruLhY0Fi8eDGOHj0KANi4cSM2btwIADh69CgWL14sbFdcXCz8J2TdunXYsmULAODAgQNYunQpgLOFo7i4GDU1NQCAVatWYdu2bQCA3bt3Y8WKFQDOFofi4mKhGK1YsQK7d+8GAGzbtg2rVq1q1ZPZbEbPnj1RUlKS9J5WrVqFIUOGwGw2c5Gnw4cPw2w2w2w2S84T0Hbfq6qqwuTJk/HDDz/I7qm0tBSTJ0/G4cOHucjTihUrMHnyZJjN5rg9mc1m5OXlobS0FIC8x1MseUqW40ktTydPnkRaWhrMZnNSeyopKUHPnj1hNpu5yJPFYoHP54PZbJYlT2rWiMaeSkpKMHnyZFgsFln63s6dOzF58mScPHlSVJ6WLVuGq666CmazOaXPuVqoe263Gz6fDwaDIek9bdiwAZMnT4bb7eYiT8uWLcOECRNgNptV6XtmsxljxozBsmXLZPdkNptx7bXXYtmyZVzkSez3PbPZjCFDhgj7lWpEYj2ZzWb4fD5YLJak9yTle7kSntT+P6GcNaKxJ4PBgMmTJ2PVqlVc5EnK9z0tnXO1UPfWrl2LAQMGwGw2J7UnKd/LlfIk9f8aiaoRjT1ZLBZMnjwZJSUlsvS9QCCAyZMnY+3atbL+nzAR0BohRFITnlfOZDIhLS0N27ZtQ79+/eBwOJCXlwedTge73Q6TyQSj0YiGhgaEQiFkZWUhEAjA6XQiPz8fwNnRVbPZjPT0dGFk1Ww2w+/3w+12Iy8vD8DZ0dXs7GykpaXB5XJBr9cjMzMTPp8PHo8Hubm5YIzBZrMhJycHBoMBTqcTaWlpMJlM8Hq98Pl8yMnJQSgUgt1uR25uLvR6PRwOB4xGIzIyMuDxeBAIBJCdnY1gMEieyBN5Ik/kiTyRJ/JEnsgTeSJP5EmjnnJycgBA8GQ0GuH1ehEIBJCVlYVgMAin04nc3FzodDo4HA6YTCakp6fD4/EgFArBbDYjEAjA5XIJsdrtdmRmZiI9PV24MzgzMxN+vx8NDQ3Izc0VvGdlZSEtLQ1utxt6vR4mkwl+vx8ejwc5OTlgjMFutyM7OxsGgwEulwtpaWnIyMiAz+eDz+dDdnY2QqEQHA4HcnJyoNfr4XQ6yRN5Ik/kiTwloSen04m8vDwYDAbZzrkVFRUJWyOEBkKIpCbVF0t3u93YuHGjMIqezPDmRe14lGxPTm05tKRo8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1ZErH4wxuN1uOJ1OuFwu4U5aNWk8sJRo1I5Hyfbk1JZDS4oGb/0k1dFKPnj0oWZMyVJ/wnq1tbU4//zz0b59e6SlpcX1+cbnzURey40vcoIgCIIgCIIgCIIgCEI0fr8f5eXlwpzsBEEQBMEzRqNRWOOjW7duwjrNyQY9EUIkNan+RAhBEARBEARBEASRPHg8Hpw6dUpYoJcgCIIgkgmdTidpMCSR13L5ePaIIAhR+P1+HDp0CH6/P9GhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6UfDDGcPLkSW4GQRhjCIVC4OX+WLXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUn+b0GGMoLy+P+VzG0/cYmhqLIJIYt9uN1atX44EHHhAWUEpWePOidjxKtienthxaUjR46yepjlbywZsPqj/K6VH90Q5aygdvXqgGKaclVoO3PpLqSMmH0+lEMBiMei89PR15eXnIyspCeno6dDqdnOG2SiAQQF1dHdq1axf3nO9aiEfJ9uTUlkNLigZv/STV0Uo+ePShZkzJUn8YY3A6naisrGzyvsPhQEFBQZsaPH2PoamxiKSGpsYiCIIgCIIgCIIgkoFTp07B6XQKrzMyMtCjRw9uLgISBEEQRHMwxnDixAk0NDQI75nNZvTs2TNuLZoaiyAIgiAIgiAIgiAIQqMwxuByuaLeKywspEEQgiAIgnt0Oh0KCwuj3nO73VxNbRYLNBBCEEmM1WrF/PnzYbVaEx2KZHjzonY8SrYnp7YcWlI0eOsnqY5W8sGbD6o/yulR/dEOWsoHb16oBimnJVaDtz6S6ojNR3PztZvNZhkji59AIIDTp09zs2aJ2vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWepPpF56enqTv4VCoTY/z9P3GJoai0hqUn1qrEAggPLycnTr1i3p7yTizYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKojJY+HDx+Oeu+8885LaE4ZY/D5fDAajaquTcJLPEq2J6e2HFpSNHjrJ6mOVvLBow81Y0qW+hOpp9frceTIkai/xXIea3zeTOS1XBoIIZKaVB8IIQiCIAiCIAiCIPiHx4EQgiAIgogVuc5jtEYIQRCicLlc+PDDD5vMNZuM8OZF7XiUbE9ObTm0pGjw1k9SHa3kgzcfVH+U06P6ox20lA/evFANUk5LrAZvfSTV0VI+gsEg6uvrEQwGEx0KAPXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUHzn0eDpv0kAIQSQxer0e+fn50OuT/1DmzYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKqjpXzodDoYDAZupqVROx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2RQ4+n8yZNjUUkNTQ1FkEQBEEQBEEQBME7NDUWQRAEkczQ1FgEQSQUn8+HPXv2wOfzJToUyfDmRe14lGxPTm05tKRo8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1dFSPkKhENxuN0KhUKJDAaB+PEq2J6e2HFpSNHjrJ6mOVvLBow81Y0qW+iOHHk/nTRoIIYgkxuPxoKSkBB6PJ9GhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8sEYg8PhAC8Thagdj5Ltyakth5YUDd76SaqjlXzw6EPNmJKl/sihx9V5kxFEElNaWsoAMJPJxLKzs1lpaSkLBALMYrGwUCjEGGPMZrMxr9fLGGPM7XYzp9PJGGPM7/czi8UiaFmtVubz+RhjjLlcLuZyuRhjjPl8Pma1WoXtLBYL8/v9jDHGnE4nc7vdjDHGvF4vs9lsjDHGQqEQs1gsLBAIMMYYczgcrKGhgTHGmMfjYXa7nTHGWDAYZBaLhQWDQcYYY3a7nXk8HsYYYw0NDczhcDDGGHkiT+SJPJEn8kSeyBN5Ik/kiTyRpyT2ZLVaWWlpKTtw4ADbv38/279/P/P7/SwUCgn/hmMP+wsGg8Ln490ujN/vF7YLBALCdsFgsMl2csdAnsgTeSJP5Ek7njweD9u/fz87cOAAKy0tZb/88gvz+/1xn3PD13LDP6WlpUwt6IkQQhOMGjUKU6ZMAQDU1NSguLgYXq8XALB06VIcOHAAALBlyxasW7cOAFBeXo7i4mJBY/HixTh69CgAYOPGjdi4cSMA4OjRo1i8eLGwXXFxMcrLywEA69atw5YtWwAABw4cwNKlSwEAXq8XxcXFqKmpAQCsWrUK27ZtAwDs3r0bK1asAADY7XYUFxfDbrcDAFasWIHdu3cDALZt24ZVq1a16okxhk2bNmnG0969e8EY4yJPu3btwvvvvw/GmOQ8AW33vSNHjsDj8Sji6ccff4TH48GuXbu4yZPH4wFjLG5PjDF8/PHH+PHHHwHIezzFkqdkOp7U8LR//368/fbbYIwlvadNmzaBMcZFnk6dOoXi4mLhjhul+57cNaKxJ4/HI3iSmqctW7bA4/Fg//79ovMUriWpfs5N9rpXXV2N4uJi4c6yZPfk8XgETzzkqby8HIwxVfoeYwzHjh1TxBNjDDabjZs8if2+xxjD3r17qUZw4in8HfbUqVNxeVqzZg1cLheAs9OMBAIBAEAwGER1dTWCwSAAoK6uDm63GwDgcrlgsVgAnJ2bvbq6Wvh+UFtbK9RAh8MBm80G4OwUJNXV1YKnmpoaYT/Y7XZh33m9XtTU1CAUCoExhurqamHaEpvNBofDAeDsnby1tbWC9+rqaiF2i8UieHK73airq5PsqaGhQbj7WKynMG15YowJscbiady4cdDr9dDpdEhLSxMWDzYYDEhLS0NOTg569eqFa6+9Fq+99hosFkuLebrrrruQnp4OnU4HnU6H9PR0QS8zMxOdOnVCnz59MGrUKMyaNQtLlizBoUOHROfJZrNhzZo1mDFjBgYPHox27drBaDQiJycHXbt2xahRo3DnnXeiuLgY+/fvj8qT3+9XpO/Fmie1+l4yeXK5XGCMJb2nQCAAxhhXeQqFQqr1vVAopJinUCgka98LhUKwWCzC9FiRnsT+nzAhKDzQQhCKkupPhFgsFjZv3jxWUVGR9J5OnjzJ5s2bxywWCxd5qqqqEuJR486z6upqNm/ePHb69GnZPYW9VFVVcZGnEydOCBrxegr3+aqqKsaYdu4QTNa7Hs+cOSPkMpk9VVRUCD54yFNNTY0Qjxx5UrNGNPYU3rc1NTWy9L3Kyko2b948dubMGVF5iqw/qXzO1ULdq62tZfPmzWP19fVJ76m8vJzNmzeP1dbWcpGnyONEjb4XPrZOnDghu6dIbR7yJPb7XtjHyZMnhTxRjUicp3A+ampq4vLE4xMhHo+HVVRUML/fz8Wd0V6vV4hHjTuj/X4/q6ioYB6PJ6ZYx40bF3UXc1s/OTk57O23325Wb8aMGXFphX8uvfRStnLlyrj269atW9n5558fVzvXXHONoBfeT+F9m0x3sGvxrvy2jpNk8RRZf3jJk8/nYxUVFczn8ynep8LHldfrld1T2Edb2vHG6na7RT0R0vj/hIl8IkTHGEeTsRFEnOzfvx+DBg0SXpeWlmLgwIEJjEhdgsEgampq0KFDBxgMhkSHIwnevKgdj5Ltyakth5YUDd76SaqjlXzw5oPqj3J6VH+0g5bywZsXqkHKaYnV4K2PpDpi8xEIBHD48OGo98477zykpaXJHWLMMMYQCASQlpYGnU6XsDgSFU+87U2YMEF4+mf48OEYMWJElJbVasX27dub5PnNN9/EfffdF/XezJkz8c477wAA+vXrh8svvzxKy263w2q14r///S8OHz7cZG7+a665BkuXLkWnTp1ajXnDhg248cYbhTu1AaBHjx4YOnQoOnToINyRvnfvXpw4cULYZsyYMfjuu+9E7SdCWbSSDx59qBmTkm3JrR3WA4AjR45E/S2W81jj82Yir+XSQAiR1KT6QAhBEARBEARBEATBPzwOhBDxETkQMnfuXMybN6/Z7T7//HPMmjVLmOImIyMDR44cQbdu3YRtIgdCZsyYgeXLl7fYbn19PT755BMsXLgQv/76q/B+UVERfv75Z3To0KHFz51//vnCdDj9+/fHokWLMGHChGa3P3XqFD7//HMsX74cZrNZGAghCIIA5DuPJfJaLq0RQhBJjNPpxPLly+F0OhMdimR486J2PEq2J6e2HFpSNHjrJ6mOVvLBmw+qP8rpUf3RDlrKB29eqAYppyVWg7c+kupoKR/BYBC1tbXCnPaJRu14lGrvpptuwrvvviu89nq9WLRokWi9vLw83HzzzdizZw8eeeQR4f2ysjLcdNNNwp3ajXn77beFQZBOnTrh888/x9ixY1tsp3v37nj00Uexa9cuYZAG4K+fpDpayQePPtSMScm25NaWqsfTeZMGQggiiUlLS0NRUZEm7iLizYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKqjpXzodDpkZGRwMy2N2vEo2d51112HwYMHC6+//vpr0VrhOI1GI1599VU8+OCDwt++//57fPDBB81+buPGjcLvM2fORNeuXWP22rt37ybt89JPUh2t5INHH2rGpGRbcmtL1ePpvElTYxFJDU2NRRAEQRAEQRAEQfAOTY2V/MQ6NVaYBx98EIsXLwYAtGvXTng6A4hvaqzGeL1e9O/fH8ePHwdwdo2R/fv3Q6+Pvtd5wIABOHjwIABg8eLFmD17dsxtEARBNIamxiIIIqF4vV5s27YtauGzZIU3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8hEKheB0OhEKhRIdCgD141GyvVAohKysLOG13W6XpBUZZ0ZGBh5++GHh74cOHcLevXubfC5yYOTYsWOivfLWT1IdreSDRx9qxqR0/ZFTW6oeT+dNGgghiCTG5/Nhz5498Pl8iQ5FMrx5UTseJduTU1sOLSkavPWTVEcr+eDNB9Uf5fSo/mgHLeWDNy9Ug5TTEqvBWx9JdbSUD8YY3G43eJkoRO14lGyPMRb1BEheXp4krcZx3nLLLVHbbN26tcnnIqe3euedd1BWVibKK2/9JNXRSj549KFmTErXHzm1perxdN6kqbGIpIamxiIIgiAIgiAIgiB4J94pRRhjXNw9yztqrjEQ79RYF154Ifbt2wcAGD58OH7++Wfhb1KmxgrTtWtXVFZWAgCmTZvWZK2QZcuW4e677xZe9+jRA8888wymTJmCdu3axd0eQRCpjRamxqLJKAkiiQmFQrDb7cjNzW0yH2iyYbfbcejQIWRmZnLhJRQKoaGhQbV4QqEQgsEg+vbtC7PZLLu2XP1EDi0pGlrq81pAK/ngzYfa8SjZntzaUvWo/mgHLeWDNy9Ug5TTEqvBWx9JddTKR3gqESVhjIExBp1Ox8WCxWLiGTVqFEwmk+j2gsEgDAaD7P6/+OILYRAEAC6//HLRWi3Fef755wsDIWfOnGnyuTvvvBOvv/46du3aBQA4efIkZs+ejQcffBCDBg3CiBEjcPHFF+OSSy7BoEGDWuzPSu4nIn60kg8efagZk5Jtya0d1hP7LAVP32PoWxRBJDF2ux3FxcWS5htNNA6HA1dffTX69OmDL7/8EuPGjcOgQYMS/jNu3DhV4xk3bhzWrFmDXr164dZbb4Xb7ZZtH8vZT+TQkqKhhT6vJbSSD958qB2Pku3JrS1Vj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/lgjMHlcnEzNY3a8QSDQVRXVyMYDMqqu3r1akyfPl14nZGRgQcffFC0XktxRk63ZbFYmnwuPT0d69evx6WXXhr1figUwr59+/Cvf/0Ls2fPxoUXXoj27dvjt7/9rTBoEkv7RGLQSj549KFmTEq2Jbe2VD2ezps0NRaR1KT61Fg8jaqK5ZprrsGXX34JvV6P3Nxc2O12LhbLUjuexu3deuut+PDDD2XR1srdkHK1T8iHVvLBmw+6G1s5Pao/2kFL+eDNC9Ug5bToiRBtIDYf8U4p4vF46ImQGFDziZDIqbGGDx+OESNGRP3darXi559/bpLnN954o8lASDxTY7UU55133okVK1YAAPr06dOk3TChUAgffvghXn31Vfz000+tetTpdLj77rvx+uuvC/uVxzv3Uxmt5INHH/RESOt6jDEcOXIk6m+xTI3V+LxJU2MRBCEKvV6P/Pz8RIchmoaGBmzatAnA2cJotVoTG1AEasfTuL01a9bA4/GI/lIfiZz9RA4tKRrJ3ue1hlbywZsPteNRsj25taXqUf3RDlrKB29eqAYppyVWg7c+kupoKR+8DICEUTsenU4X99z2YbZv347t27e3uk1OTg6Ki4sxa9YsUW2EaSlOh8Mh/J6bm9vi5/V6PW6//XbcfvvtOHXqFEpKSrBt2zbs3LkTe/fuhcfjEbZljOHtt9/G8ePHsWHDBqSlpUnaT4T8aCUfPPpQMyYl25JbO6wXCAREfZ6n8ybdTkIQSYzD4cCSJUuivgAlE+Xl5fD5fADOfkmcPXs2cnJyEhzVWdSOp3F7Ho8HVVVVsmjL2U/k0JKikex9XmtoJR+8+VA7HiXbk1tbqh7VH+2gpXzw5oVqkHJaYjV46yOpjpbyEQqF4HK5uHgiH1A/Hrmnj8nOzkbPnj1x/fXXY+HChdi5cyfuuusuybotxWmz2YTfCwsLY9Lo2rUrpk+fjjfeeAPbtm2D1WrFhg0bcPPNN0cNQn3zzTd49dVXW22fSAxayQePPmhqLGX0eDpv0kAIQSQxRqMRQ4YMgdFoTHQokvH5fNizZ48wMJJo1I5Hyfbk7CdyaEnR0FKf1wJayQdvPtSOR8n25NaWqkf1RztoKR+8eaEapJyWWA3e+kiqo6V86HQ6pKenc/NUiNrx6HQ6mM1mUe3NnTtXmMor/ONwOFBWVoa1a9fi0UcfRZcuXWTx0lKchw4dEn7v3LmzKI2MjAxcddVVWLVqFT799NOou8iLi4tb/SyRGLSSDx59qBmTkm3JrS1Vj6fzJq0RQiQ1qb5GSLJz+PBh9O3bN9FhcMvx48dRVFSU6DAIgiAIgiAIgpBIvGuEMMbg9XrVCC2pycjIUO1CauQaIXPnzsW8efNEa8WzRkhznDhxIur/iq+//joeeugh0fGEuf/++/HWW29FtdOjRw/JugRBJD/xnsdagtYIIQhCFOEF9KQsEMcLJpMJo0aNwrZt2+DxeLB+/Xr06dMnYfH4fD4cOnQI/fr1U2zU2u/3Y9OmTXj00Ueb+JcTOfuJHFpSNLTU57WAVvLBmw+141GyPbm1pepR/dEOWsoHb16oBimnJVaDtz6S6qiVD51Op3i+w1NRZWVlxbXwu1biUbI9ObWb0/rkk0+ithk3bpws8UyaNClqIKSyshLdunXjqp+kOrwdt2Lh0YeaMSVL/YnUy8jIEPV5nr7H0EAIQSQxgUAAZWVluPjiixMdimTS0tJQVFSEHTt2AAB69OiB8847L2HxOJ1ObN++HT179kR2drYibXi9Xuzbtw9AU/9yImc/kUNLioaW+rwW0Eo+ePOhdjxKtie3tlQ9qj/aQUv54M0L1SDltMRq8NZHUh0t5SP81InZbE50KADUj0fJ9uTUbqzl9XrxxhtvCH8fNGhQ1N3VUuJpfJEyIyODu36S6mglHzz6UDOmZKk/kXpibxLm6bxJU2MRSQ1NjZXctDY1Virk0uv14vPPP8e0adOa/TtNjUUQBEEQBEEQ2kCuKUWIxMHL1FgPPfQQFi1aJLz+4IMPWvw/ZbwsWLAATz/9NICzTyVVV1ejffv2smgTBJHcaGFqLD6ePSIIQhTBYBBVVVUIBoOJDkUyBoMBnTt3hsFgSHQoANTft0r6l9OLHFpSNLTU57WAVvLBmw+141GyPbm1pepR/dEOWsoHb16oBimnJVaDtz6S6mgpH4wx+P1+8HJ/rNrxKNmenNphLZ/Phzlz5kQNgkyYMAFTp05t9nNz584VZhyIJZ7q6mphgXQAuPjii9G+fXvu+kmqo5V88OhDzZiSpf7IocfTeZMGQggiiXE4HHjzzTfhcDgSHYpkcnJyMHv2bOTk5CQ6FADq71sl/cvpRQ4tKRpa6vNaQCv54M2H2vEo2Z7c2lL1qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9gMIiamhouLk4B6sejZHtyatfU1GDhwoW48MILowYqzjvvPHz66act3ky3YcMGDB8+HJdddhmWL1+OI0eONBsPYwwbN27EmDFjUFVVJbwffjKEt36S6mglHzz6UDOmZKk/cujxdN6kqbGIpCb8OJXJZEJaWhq2bduGfv36weFwIC8vDzqdDna7HSaTCUajEQ0NDQiFQsjKykIgEIDT6UR+fj4AwGazwWw2Iz09HW63GwBgNpvh9/vhdruRl5cHALBarcjOzkZaWhpcLhf0ej0yMzPh8/ng8XiQm5sLxhhsNhtycnJgMBjgdDqRlpYGk8kEr9cLn8+HnJwchEIh2O125ObmQq/Xw+FwwGg0IiMjAx6PB4FAANnZ2QgGg816Sk9Ph9VqRXp6OrKzs5PO0759+3DRRReBMSa04XQ6YTKZsHXrVlx00UUJ8+TxeOBwOIQ7YKTkqaW+l5mZic8//xyzZ8+G2+2GwWAQFrJyu904fPgwOnToINmTwWCATqcDcHaBdil9z2azQafTIScnBx6PR9Tx5HK5YDKZkJGRAZvNFpcnvV6Puro6ZGVlITMzU9bjSYs1QmlPXq8XNpsNHTp0EPSS0ZPT6YTf70d+fj78fn/C8+T3+1FfX4+OHTsKx52SfU/OGtHYUzAYRFpaGgwGA1wul+S+p9PpoNfrodPp4PV6486TzWZDRkYGMjMz4XQ6U+qcq7W6FwgEUFdXhw4dOkCv1ye1J7/fj/T0dKEeJTpPVqsVRqMRZrMZLpdL8b4Xbsfv96OgoEBWT+HvK2F/ic5TZmYmQqEQgsEgdDpdzJ5MJhMcDgcYY8jLy6MakWBPjDFUV1ejsLAQ6enpMXuy2WwoLy+HXq8X7qrt27cvDAYDgsGgcD4O9w+9Xo9QKATGGAwGAxhjcW0XnqokEAhAr9dDr9cLF7EMBgNCoRBCoZBwXlUihni3CwQCwnaMMdGeIrdrLYZwO6FQKKZYJ0yYgG+//RYA8Oc//xnz5s1r1VNYOxxr5HaRU2P169cPEydOhE6ng06nQygUgsPhgM1mw+HDh/Hrr782uRP7xhtvxJIlS9CxY8cWY7j00kvx008/CZ/R6XTo378/+vbtK/w/98yZM9i1axdOnz4dpf/www/jlVdeEfQCgQDS0tJk7Xux5kmNvpdsniL/lsyeIv/GQ57CxwkAVfpeazVCiqfwdSXGmKyx+v1+HD16VKhTjDH069cPOp0urv8TVlRU0NRYBCGFUaNGYcqUKQDO3i1RXFwMr9cLAFi6dCkOHDgAANiyZQvWrVsHACgvL4+6m2Lx4sU4evQoAGDjxo3YuHEjAODo0aNYvHixsF1xcTHKy8sBAOvWrRPmCD1w4ACWLl0K4OzaD8XFxaipqQEArFq1Ctu2bQMA7N69GytWrAAA2O12FBcXw263AwBWrFiB3bt3AwC2bduGVatWtepJp9Php59+whdffJGUntauXYuMjAwAwN13343evXuDMYbx48dj165dCfW0Z88efPrpp0IRl5InoPW+98ADD6B3797weDy46qqrcNVVVwEATp8+LYunn376CSaTCXv27JHc95YtW4Zjx45Bp9OJPp6WLFkCk8kEnU4XtyedTocvvvhC+EIv5/HUVp54P54S4engwYP44IMPhIvSyeop3Kd0Oh0XeaqoqMCSJUuEL+FK9z05a0RjT1988QVMJhMqKipk6XvffvstTCYTDh48KCpPr776Knw+H3Q6Xcqdc7VW92pra7FkyRL4fL6k9/Tpp5/CZDKhtraWizy9+uqrcDgc0Ol0qvQ9nU6H2tpavPrqq7J7Cl9UfPXVV7nI07Fjx2AymfCf//wnLk86nQ7Hjh3DsmXLhDxRjUicJ51OhyVLlqCioiIuT2vWrIHL5QIAhEIhBAIBAGfvtK2urhYubNXV1QmDMC6XCxaLBcDZi1vV1dXCBfHa2lp4PB4AEC6aA4DP50N1dbXgqaamRtgPdrtd2Hderxc1NTXCQEh1dbVQU202m3DnrsfjQW1tLQAIg0Dh2C0Wi+DJ7Xajrq5Okqe6ujp4vV7hoppYT2Ha8hT+rhWrJ7/fL2g3NDS06Sl8E1dzeYq8s/rQoUNYvHgxFi1ahDfeeAOLFy/G+++/j3Xr1uHQoUNRgyCXXHIJPvjgA6xevRpGo7HVPE2aNAmdO3cWPssYw4EDB7B69Wr861//wttvv40vvvgiahCkoKAAixYtwgsvvBDlqaamRva+F2ueIj0p1feSzZPH44FOp0t6T+EL9bzkyel0Qq/Xq9b3WqsRUjz5/X7o9XpZ+55er4fFYkEoFGriSez/CRMCI4gkprS0lAFgJpOJZWdns9LSUhYIBJjFYmGhUIgxxpjNZmNer5cxxpjb7WZOp5Mxxpjf72cWi0XQslqtzOfzMcYYc7lczOVyMcYY8/l8zGq1CttZLBbm9/sZY4w5nU7mdrsZY4x5vV5ms9kYY4yFQiFmsVhYIBBgjDHmcDhYQ0MDY4wxj8fD7HY7Y4yxYDDILBYLCwaDjDHG7HY783g8jDHGGhoamMPhYIyxFj3ZbDb28ssvs8rKyqT0tGvXLqbT6RgA1rVrVzZnzhyWm5vLMjMz2Y4dOxLqqbq6mr388svMZrNJzhNjzfc9j8fDVq5cyfLy8lhhYSGbM2cO69ixIzObzQwAO3z4sCyezpw5wxYuXMiqq6sl973y8nL2z3/+k9lsNtHH06lTp9jChQuZzWaL21O4z585c4YxJu/x1FKeYvHEw/GUCE81NTXCcZLMniorKwUfPOSprq5OiEeOPKlZIxp7qqysZAsXLmR1dXWy9L1wrDU1NaLydPLkSaGGpdo5V2t1r76+nr388stCHMns6fTp02zhwoWsvr6eizxFHidq9D2bzcb++c9/spMnT8ruKVKbhzzV1tayhQsXsqqqqrg8hX2Ul5cLeaIakThP4fNBXV1dXJ6sVisrLS1lBw4cYPv372f79+9nfr+fhUIh4d9w7GF/wWBQ+Hy824Xx+/3CdoFAQNguGAwyr9fLqqqqWCAQUCSGeLeLjEesp8bbtRZDIBBgVVVVzOv1xhTruHHjGAAGgP35z39u1ZPf7xe0m9tuxowZglbjn/T0dFZYWMh69erFRowYwe6++27297//nR08eDDu/RoKhdiPP/7I/va3v7EbbriBXXDBBaxdu3YsPT2dGY1G1r59ezZkyBB21113sXfffTfqWAvr+f1+VllZKexbOfpePHlSo+8lk6e2jpNk8RTpg5c8+Xw+VlVVxXw+n+J9qq0aIcVTWNvn88kaq9vtZvv372cHDhxgpaWl7JdffmF+vz/u/xOGr+WGf0pLS5la0NRYRFITnhorjJqPU/GAz+fDgQMHMGDAABiNxkSHEzeHDx9G3759AQBGoxEDBgzAgQMH4PP5Ep5LNfat1+vF559/jmnTpjXxDwDHjx9HUVGR5Hbk9CKHlhSNZO/zWkMr+eDNh9rxKNme3NpS9aj+aAct5YM3L1SDlNMSq8FbH0l1xOYjEAjg8OHDUe+dd955wnQmiSAUCsHj8cBkMglTqSQSteNRsj05teXQkqLBWz9JdbSSDx59qBlTstSfSL20tDThqckwsZzHGp83E3ktlwZCiKQm1QdCkp3IgZDGpEIuIwdCmkOugRCCIAiCIAiCIBILjwMhBEEQBBErcp3HEnktl48hN4IgRNHQ0ICvvvoKDQ0NiQ5FMpmZmZg0aRIyMzMTHQoA9fetkv7l9CKHlhQNLfV5LaCVfPDmQ+14lGxPbm2pelR/tIOW8sGbF6pBymmJ1eCtj6Q6WspHKBSCzWYT5nxPNGrHo2R7cmrLoSVFg7d+kupoJR88+lAzpmSpP3Lo8XTepIEQgkhiQqEQrFYrVycOsej1euTn53P1SKSa+1ZJ/3J6kUNLioaW+rwW0Eo+ePOhdjxKtie3tlQ9qj/aQUv54M0L1SDltMRq8NZHUh0t5YMxhmAwCF4mClE7HiXbk1NbDi0pGrz1k1RHK/ng0YeaMSVL/ZFDj6fzJk2NRSQ1NDVWckNTY9HUWARBEARBEASRCtDUWARBEEQyQ1NjEQSRUAKBAMrKyhAIBBIdimTS0tJQVFTEzX8E1N63SvqX04scWlI0tNTntYBW8sGbD7XjUbI9ubWl6lH90Q5aygdvXqgGKaclVoO3PpLqaCkfjDF4vV5u7shWOx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2RQ4+n8yYNhBBEEuN0OvHOO+/A6XQmOhTJZGdnY+bMmcjOzk50KADU37dK+pfTixxaUjS01Oe1gFbywZsPteNRsj25taXqUf3RDlrKB29eqAYppyVWg7c+kupoKR/BYBB1dXUIBoOJDgWA+vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWeqPHHo8nTdpaiwiqaGpsZIbmhqLpsYiCIIgCIIgiFSApsYiCIIgkhmaGosgCIIgCIIgCIIgCIIgCIIgCIJjaCCEIJIYm82GBQsWwGazJToUyeTl5eGpp55CXl5eokMBoP6+bc5/eXk5ysrKJP+UlpbihRdeQGlpqaxaHo9HlFcp+1ZLfV4LaCUfvPlQOx4l25NbW6oe1R/toKV88OaFapByWmI1eOsjqY6W8hEIBFBZWcnFvO2A+vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWeqPHHo8nTfpGUyCSGLMZjMmT54Ms9mc6FAk43a7sXr1arjd7kSHAkD9fduc/7Fjx8qinZ6ejt69e2PevHnw+/2yaRkMBtx4441YunRpXPtJyr7VUp/XAlrJB28+1I5Hyfbk1paqR/VHO2gpH7x5oRqknJZYDd76SKqjpXzo9Xrk5+dDr+fjHlm141GyPTm15dCSosFbP0l1tJIPHn2oGVOy1B859Hg6b9IaIURSk4prhAQCAZSXlyc6DFkoKyvDxIkTm/1bKuSyrTVCkoVbb70VH374YaLDIAiCIAiCIAhuoTVCCIIgiGSG1gghCEJ1ysvL0atXL/Tq1QsDBw7E7373OwwcOFB4L5l+IgdBeBohBtR/QiWZ74Zcs2ZNXNNkSdm3vD05lOpoJR+8+VA7HiXbk1tbqh7VH+2gpXzw5oVqkHJaYjV46yOpjpbyEQwGYbFYEAwGEx0KAPXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUHzn0eDpv0kAIQRBEgkhLS0NhYSGMRmOiQ5GEx+NBVVVVosMgCIIgCIIgCIIgCIIgiGahqbGIpCYVp8YqKytDr169Eh2G4qRCLgFg9+7dePzxx7F58+ZEhyKJ48ePo6ioKNFhEARBEARBEASX0NRYBEEQRDJDU2MRBJFQ0tPT0a9fP6Snpyc6FMlEejEajejatWtC4/H7/Th06JDkxcXbon///nj22Wdx+eWXY9CgQYrkUs5+IoeWlH2rVl6I2NBKPnjzoXY8SrYnt7ZUPao/2kFL+eDNC9Ug5bTEavDWR1IdLeUjFAqhoaEBoVAo0aEAUD8eJduTU1sOLSkavPWTVEcr+eDRh5oxJUv9kUOPp/MmDYQQRBLD27oaUoj0MnbsWOTn5yc0HrXmMDSZTBg3bhyWLVuGadOm4euvv8bPP/8s68/XX3+NO++8U5L2ypUr8eqrr8rS52iOfu2glXzw5oPm51dOj+qPdtBSPnjzQjVIOS1aI0QbaCkfoVAIVquVmwuRasejZHtyasuhJUWDt36S6mglHzz6UDOmZKk/cujxdN6kqbGIpIamxtIWRqMRY8aMwbJly9CzZ89Eh0NE8O233+L06dOYNm1as3+nqbEIgiAIgiAIomVoaiyCIAgimdHC1Fh0xiWIJKNbt2749ttv4fP5Eh2K7HTr1g3nnHMOsrOzEx0KQRAEQRAEQRAEQRAEQRAagQZCCCLJSEtLw9ixYwEAVqsVxcXFeOyxxxI+lZRUIr3wgNr7Vsn25NTOz8/HnDlz8Morr8Bqtaoej5b6vBbQSj5480H1Rzk9qj/aQUv54M0L1SDltMRq8NZHUh0t5SMQCKC6uhodO3bk4skUteNRsj05teXQkqLBWz9JdbSSDx59qBlTstSfSL3CwkJRn+fpvElTYxFJTSpOjRVJIBBAeXk5unXrxs2JQyy8eVE7HiXbk0M7PDXW9OnT0a1bN5SXlyMQCAh/j2dqLCnx8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1ZGSR96mxmKMwefzwWg0QqfTJSyORMWjZHtyasuhJUWDt36S6mglHzz6UDOmZKk/kXp6vR5HjhyJ+lss57HG581EXsulgRAiqUn1gRCCUAtaI4QgCIIgCIIgxMPjQAhBEARBxIoW1gjRq9IKQRCK4HK58OGHH8LlciU6FMnw5kXteJRsT07trKws3HbbbcjKykpIPLz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9gMIj6+noEg8FEhwJA/XiUbE9ObTm0pGjw1k9SHa3kg0cfasaULPVHDj2ezps0EEIQSYxer0d+fj70+uQ/lHnzonY8SrYnp3YoFILVakUoFEpIPLz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lA+dTgeDwcDNtDRqx6Nke3Jqy6ElRYO3fpLqaCUfPPpQM6ZkqT9y6PF03qSpsYikhqbGIgh1oKmxCIIgCIIgCEI8NDUWoRYTJkzAli1bAACbN2/GhAkTJGsuX74cs2bNAgDMmDEDy5cvl6yZypSUlGDixIkAgPHjx6OkpCSxARFEDNDUWARBJBSfz4c9e/bA5/MlOhTJ8OZF7XiUbE9ObaPRiCFDhsBoNCYkHt76SaqjlXzw5oPqj3J6VH+0g5bywZsXqkHKaYnV4K2PpDpaykcoFILb7Zb0tLecqB1PvO1NmDABOp2uxZ+cnBz06NEDkyZNwl//+lccOXJEFi9y7BcpGqFQCF6vV3TbhLw0l8vly5e32jczMjLQqVMnjBkzBk888QRKS0tbbaOkpKRFLb1ej7y8PPTo0QODBw/GlClT8OKLL+Lrr7+Oa+qkxj4OHTqEP/7xj5g4cSK6du2KzMxMGI1GFBYWYtCgQbjxxhvx3HPP4T//+Q88Ho+4nRdnTEqiZFtya0vV4+m8SQMhhCYwmUzIzs4GcHbuOqvVivDDTna7XTjYGhoahDnpAoEArFaroGGz2eD3+wEAbrcbbrcbAOD3+2Gz2YTtrFYrAoEAgLPz3DU0NAA4e2Db7XYAAGMMVqtVOAk4nU6hUHu9XjgcDgBNpxlyOBzCFwyPxwOn09mqJ4/Hg2+++Qb19fVJ76mmpgabN2+Gx+PhIk82mw3ffPMNPB6P5DwBbfc9h8OBkpISWCwW2T1ZrVaUlJQI7UjJU/v27TFhwgSYTCZkZmYKa4WEt4slT9XV1SgpKYHH44nbU7jPh9uS83iKJU/Jcjyp5clutwvHSTJ7qq+vF3zwkCen0ynEI0ee1KwRjT3V19ejpKREaEdKnlwulxCr3W4XlaczZ84I55pUPudqoe65XC588803UfUoWT3V1dWhpKRE6OOJzlPkcaJG3/N4PNi8eTPOnDkju6dIbR7yJPb7XthHTU2NkCeqEYnzFD4fRNajWDy5XC4hbsaYEBtjDIFAQHgdDAaF7UKhkPD5eLcLEwgEhO2CwaCwXSgUQiAQgMPhUCyGeLeLjEeKp8jtWouBMQaHwxFzrG1NqOJ0OnHq1Cls2LABf/rTnzBgwADMmzcvKj418tSYsJ7D4YjSjlUvFApFXXgO50eqp8jtEt335Dqe4vHUXJ6kHCet4fP5UF1djR9++AEvv/wyBg8ejLvuukvo/815agnGGOx2O06dOoXS0lJ8+umneOaZZ3DllVeiR48e+NOf/oS6urqYPDkcDlgsFtx1113o378/XnjhBZSUlKCyshIejwd+vx8WiwX79+/H2rVrMXfuXFx11VUoLCzEiRMnZM+TlOMk3u1CoVCT/S9X3wtryx1ruG423k7s/wkTAQ2EEJpg1KhRmDJlCoCzF9SLi4uFL8RLly7FgQMHAABbtmzBunXrAADl5eUoLi4WNBYvXoyjR48CADZu3IiNGzcCAI4ePYrFixcL2xUXF6O8vBwAsG7dOuGR0wMHDmDp0qUAzn5ZLy4uFv6zsmrVKmzbtg0AsHv3bqxYsQLA2eJQXFwsfFlesWIFdu/eDQDYtm0bVq1a1aqn3NxcDBgwQHiMMpk9ffLJJ5g4cSJyc3O5yNPRo0dhNpuRm5srOU9A232vpqYGc+bMwY8//ii7pwMHDmDOnDk4evSo6DyFT6xTp04VLkKOHz8e119/fdR2seTp/fffx5w5c5Cbmxu3p9zcXBQWFgr7Vc7jKZY8JcvxpJan8vJy6PV65ObmJrWnkpISDBgwALm5uVzkyW63w+FwIDc3V5Y8qVEjWvJUUlKCOXPmCHpS8rRu3Trs2rULc+bMQXl5uag8LV26FLNmzUJubm5Kn3O1UPfCF0YzMjKS3tOGDRswZ84cQS/ReVq6dCmmTZuG3NxcVfpebm4ubrrpJiEGOT3l5ubigQcewNKlS7nIk9jve7m5uZg4cSI++eQTIU9UIxLnKTc3Fw6HQ4ghVk9r1qwRBmAiL1wFg0FUV1cLF5Tq6uqEARiXywWLxQLg7MWt6upq4UJTbW2tcHHa4XAIAzXhC55hampqhP0QeSOB1+tFXV0dOnXqBIPBgOrqauHCVeTNER6PB7W1tQDOXhSrrq4WYrdYLIInt9sddfFTjCeLxYKcnBwYDAbRnsL7G0CbngwGAzp06IDa2tqYPIUHyQBgyJAhuO+++/DQQw/h3nvvxd13340777wzaroXv9+P559/Ho899piqeWqMxWKBx+NBp06dBL148hQ58BFuS2rfiydP4RiU7HtyHE/xegoT2f9j8WS1WpGVlQWDwRDlKUxOTg4eeughzJo1C/fffz8eeugh3HnnnRg9ejTS09OF7d577z1cf/31qKioaNZTJA899BBmzpyJ2bNnC3rXX389LrnkEmRmZgrbnT59Gn/9619xwQUXYOPGja16qq2thV6vxxVXXIH33ntP0MjKysLo0aMxc+ZM3HvvvbjhhhswbNiwqFkpwhfX5c6T2+1Gp06d4Pf7Fe97er0enTp1Eo5PQL6+FwwG0alTJzgcDlmOJwDo1KkTbDabUAsiPYn9P2EioDVCiKQmPK+cyWRCWloatm3bhn79+sHhcCAvLw86nQ52ux0mkwlGoxENDQ0IhULIyspCIBCA0+lEfn4+gLNFz2w2Iz09XShWZrMZfr8fbrcbeXl5AM6edLKzs5GWlgaXywW9Xo/MzEzhbtHc3FwwxmCz2YQvcU6nE2lpaTCZTPB6vfD5fMjJyUEoFILdbkdubi70ej0cDgeMRiMyMjLg8XgQCASQnZ0tjEo39pSeng6r1Yr09HRkZ2cntSebzSY8Thx+CiOReQrfLdy+fXvhjgexeYql72VmZgoj6jqdTlZPkYta+f1+UXnau3cvKisrcf/994MxBqfTCZPJBL1eD5fLhdWrV6OgoABmsxnA2S8mRqMRBoNB+GJhNBoRDAbh9XqRnp6OtLQ0NDQ0ICMjAwaDAV6vFzqdDkajEYFAAH6/H5mZmWCMoaGhQWiPMYbc3FxkZGSgoKAAer1eluNJizVCaU9erxc2mw0dOnQQ9JLRk9PphN/vR35+Pvx+f8Lz5Pf7UV9fj44dOwr1Ucm+J0eNaMlTMBhEWlqa8B81qX0v/Di+TqeD1+uNO082mw0ZGRnIzMyE0+lM2XOuFupeIBBAXV0dOnToAL1en9Se/H6/cF50Op0Jz5PVaoXRaITZbIbL5VK874Xb8fv9KCgokNVT+Htl2F+i8yT2+57JZBLu/s3Ly6MakWBP4QtIhYWFSE9Pj9mTzWYTbiIJX4bp27cvDAYDgsGgcD4O9w+9Xo9QKATGGAwGAxhjcW0XnrM9EAhAr9dDr9cLF+gMBgNCoRBCoZBwXlUihni3CwQCwnbhJzDEeIrcrrUYwu2EQqGYYp0wYQK+/fZbAMCf//xnzJs3r9nttm7diunTp+PkyZMIs337dgwbNkyVPDVeI2Ts2LFRixyLyVMgEEBaWpqsfS/WPKnR99T2tHXr1iZrhMQTa+TfGGN47733hDVcevbsibKysmb1ysvLMX36dGzdulXoDwsWLMCTTz4Z5SkyvnCfacmT1+vFd999h9dffx1r1qwR6ptOp8PKlStxyy23tOjp3nvvFdabMRqNeOGFF3D//fcjMzOziXePx4Mvv/wSH3/8MT777DOUlpaid+/esuYpHLfY4yTe7cL1JxyrXH0vvCg5Y0zWWP1+P44ePQqdTids169fP+h0urj+T1hRUZG49Z4ZQSQxpaWlDIDwU1pamuiQVMVisbB58+Yxi8WS6FAkw5sXteNRsj05tLds2cJWrlzJ8vPz2bx581h+fn7UsRfPjxSNxp81mUzs1ltvZS6XS74dRsQMb8etWHjzQfVHOT0pn+etn6Q6WsoHb16oBimnJVaDtz6S6ojNh9/vZwcOHIj68fv9ygQZR0wVFRUJjyOM2vHE29748eOF/5fMnTu31W23b9/OdDqdsP29996bkDg3b94sSkNK+0TbbN68WcjR+PHj4/psc/lYtmyZoNezZ89WP2+321mvXr2E7bt06dJqfPFcOl6/fj0rLCwUPpeZmcl27tzZ7Lbl5eVMr9cL27733nsxt1NZWcmcTmfM28eKmn1dybbk1g7rNTQ0iDqPNT5vJvJaLj0RQiQ14SdCwqg6isgBwWAQNTU16NChAwwGQ6LDkQRvXtSOR8n25ND+9ttvcfr0adx5553o0KEDampqYpqLtDnCj6CL0Wjps7feeis+/PBDUfEQ4uHtuBULbz6o/iinJ+XzvPWTVEdL+eDNC9Ug5bTEavDWR1IdsfkIBAI4fPhw1HvnnXeecBdvImCN7vRPNGrHE297kU9azJ07F/PmzWtV+7LLLhOm1Dz//PNx6NAh1ePcvHkzJkyYIGnf8tZPtEBJSUmTJ0Jipbl8LF++vMkTIa3xyiuv4He/+53wev/+/RgwYECz8YXbjJUffvgB48ePF6ZdmjhxIr755psm273//vuYPn06AKBLly6oqKhIeP9Ss68r2Zbc2mE9ADhy5EjU32I5jzU+bybyWi6tEUIQSYzBYEDnzp018R8i3ryoHY+S7cmpHQwGUVVVJXoQRKpGS59ds2ZN1AJ+hDrwdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpjpbyodPpkJ6envCLj2HUjkfJ9nQ6HYYOHSq8Pn36dEyfO3jwIJ555hmMGDECnTp1gtFoRMeOHXHppZdi7ty5Mes0pry8HPPnz8eQIUNQWFiIrKws9OvXD7/73e+aXNhszsuKFSuE6blmzpzZ7HYlJSXQ6XTQ6XSYMGGC8P4333yD2267Deeeey5MJhPatWuHcePG4fXXX49ad6U5ysrKBM2ioiLh/R07duC3v/0t+vbtC7PZjIKCAowYMQIvvPCCsNZBrNTV1eHll1/GlVdeie7du8NkMiE/Px8DBgzAQw89hB07dsSld/jwYcyZMwf9+vVDVlYWCgsLMWTIEDz77LPCeklSkKPfjh49Our1sWPHpIYVpf373/9eeL1582b8+OOPTbaL7Ms9evTgog6pWYOUrj9yakvV4+m8SQMhBJHEOJ1OLF++HE6nM9GhSIY3L2rHo2R7cmhnZ2ejsLAQBQUFmDlzJrKzsyVpidVo6bMejwdVVVWiYyLEwdtxKxbefFD9UU5Pyud56yepjpbywZsXqkHKaYnV4K2PpDpaykd4wWIpNznJidrxKNleeB2HMG3dtOX1ejF79mwMHjwYL774IrZv347q6mph0eaff/4Zzz//PPr06YPXX389rljWrl2LwYMH469//Sv27dsHi8UCt9uNX3/9Fa+88gouuOACvPXWW616CS+4HA8+nw/33XcfLr/8cnz00Uc4fvw4vF4v6uvrsXXrVjzyyCMYNWpUi4u8NwdjDHPnzsXIkSPx9ttv4/Dhw2hoaIDVasX27dvxxz/+EYMHD475wv4bb7yB3r1744knnsDXX3+N8vJyYR3EgwcPYtGiRRgxYgTuueceYe3L1li0aBEuuOACFBcX49dff4Xb7YbFYsHevXvx/PPPY/DgwVi3bl3MfptDjn4bXpMrTHMLpEvhkUceiVrcvK3ZG44fPy5r+2JRswYpXX/k1Jaqx9N5M3HPYBIEIZm0tDQUFRUl9HFqueDNi9rxKNmeHNrnnHMO7HY7LrroIpSVlQmPRYohEAiI1pDyWUJ+eDtuxcKbD6o/yulJ+Txv/STV0VI+ePNCNUg5LbEavPWRVEdL+dDpdMjIyODiTmxA/XiUbE+n06GmpkZ43alTpxa3dblc+M1vfoPvv/9eeK9379646KKLUFBQgLq6Onz//feorKxEQ0MDHnnkEdjtdjzzzDNtxrFjxw788Y9/hM/nQ2FhISZMmIDCwkKUlZVhy5Yt8Pv9aGhowP333w+DwYB77rmnWS/p6elx7gHgvvvuwzvvvAO9Xo+RI0eiX79+CIVC2LZtG3799VcAwK5du3DXXXdh/fr1MWnOnz8fzz33HABgyJAhGDx4MNLT07Fnzx7s2rULwNmL6pMnT8auXbtaPU7nzJmD4uJi4XX79u1xySWXoHPnzvB4PNi9ezdKS0vBGMPSpUtx+vRp/Pvf/xYWom7Mm2++iYceekh4nZ6ejgkTJqBnz56or69HSUkJ6uvrMWXKFLzwwgsx+W0OOfqtxWKJep2Xlydaqzk6d+6MSy+9VJgSK3Jx9jC9e/cWfq+ursayZcuE6b0ShZo1SOn6I6e2VD2ezpu0RgiR1KT6GiEEoSbV1dU4duwY/vSnP2Hr1q0x3RGjJsePH496XJogCIIgCIIgeCHeNUICgYAs0+honW7duql2cS2eNUICgQDOPfdcnDp1CgAwZcoUfPLJJ81uO2PGDLz77rsAgL59++LNN9+MmloKOHtH9ltvvYXf/e538Hq9MBgM2Lp1Ky655JJW4zQajfD5fHjiiSfwl7/8BRkZGcJ25eXluP3224WL1GazGfv27Yu6QB0mcg2KGTNmYPny5U22iVxXIiMjA16vF8OHD8e7776Lfv36CdsxxvDqq69izpw5wntbtmzBuHHjmmiWlZWhV69eghe/349zzz0XH3zwAUaMGBG17SeffII77rhDmG7rnXfewV133dVEEwCWLl0qDPrk5ubi5ZdfxowZM5oM+GzevBnTp09HRUUFAOBvf/tb1LRPYQ4fPowLLrhAePJn/PjxeP/999GtWzdhG6/Xi6eeegqvvPKKkJfwtvGsEdIc8a4RsnDhQvzv//6v8FrONULCPPPMM3jxxRcBAHq9Hk6nE5mZmcLf7XY7unXrJjxtlJaWhgceeAC//e1vccEFF8TdHqE8cq11lchruYkfiiEIQjRerxe7d+/G0KFDo77QJCO8eVE7HiXbk0u7Y8eOyMvLw1/+8hf079+/yV0kseLz+XDkyBH06dMn6nHZligvLxf+E1hdXY2VK1di9+7d8Hq9oton5IO341YsvPmg+qOcnpTP89ZPUh0t5YM3L1SDlNMSq8FbH0l11MpHeXm5cAGYaBkpN0OFQiG43W6YzeYW7/IXy4svvigMggBnn45ojq1btwqDIL1798b333+P9u3bN4kz/NRGZmYmZs2ahWAwiOeeew5ffvllq3H4fD7Mnj0bf/vb3+B2u5Geni547datG9avX4/hw4fj0KFDcLvdmD9/vhBPZPvxrsfo9Xpx3nnn4ZtvvmkyrbFOp8Njjz2G7777DqtWrQIArFy5stmBkMZe2rVrh2+//RZdu3Zt8vdbbrkFP//8M/7xj38Ims0NhDgcDjz++OMAzg6ubNy4ESNHjmy2zYkTJ+I///kPhg0bBo/Hg5deegkPP/wwzGZz1Hbz5s0T9tHAgQOxfv36JttkZGRg4cKFcDqd+Ne//tWq19aQ2m+dTidee+014XWXLl2iBkHk4vzzzxd+D4VCqK2tRffu3YX3srOz8fTTTwtPNgUCAbz22mt47bXX0KVLF4wcORIXX3wxRowYgUsuuUTS9NyxomRNULMtubXDerFcv2kOnr7H0BohBJHE+Hw+7Nmzh7s788XAmxe141GyPTm1w1p6vR5FRUWifrp06YKTJ0+iS5cuMW3frVs3dO7cGZ07dxYWmhN7AibkhbfjViy8+aD6o5yelM/z1k9SHS3lgzcvVIOU0xKrwVsfSXUoH9qBMQa32y3qbvfmsNvt2Lp1K26//XY8++yzwvu/+93vcOWVVzb7mX/+85/C7y+//HKTQZDGcc6cOVN4umLDhg2oq6trNaacnBwsWLCgRa/Z2dl46aWXhNeffPIJbDZbk/bF9PcFCxa0evH67rvvFn7/+eefY9J85plnmh0EaU5z+/btzW6zdOlSWK1WAMCDDz7Y4iBImP79+2PGjBkAzi6s/tVXX0X93Wq14tNPPxVev/TSS00GQSJ56aWXkJWV1WqbrSGl3544cQLXXntt1JockU/myEnj6bYa30jJGMM999yDefPmNblYX1lZidWrV+NPf/oTrrrqKuTn52PixIl49913FV2/Q+6akKi25NaWqsfTeZOmxiKSGpoaiyC0T1lZmfBob1VVFaZNm9bsdjQ1FkEQBEEQBMEr8U4pEjklENEyav4fIHLKqVho164dnnzySfzhD39o9u+BQAD5+flwuVzIzc1FfX09DAZDm7oPPvggFi9eDABYs2YNbrjhhhbjvOOOO/D++++3qhcMBtGlSxdhTZMvv/wSkyZNitom3qmxTCYT7HZ7q2uLVFVVoUuXLgCAwsLCZgd1Gh8HJ0+ejHqqoDGMMWRlZaGhoQHA2cGpnJycqG1+85vfYOPGjQDODsAMHz68Rb0wH3/8MW699VYAZwe2Igew1q9fj2uvvRbA2VkUKisr27wL//bbb8fKlSsByD81Vk5OTpMnYTweD44cOYIffvhBmDoMAC699FJ8/fXXTe7Sl2NqrK+//jpqAPC7777DmDFjmt12//79+Nvf/obPPvsMLperVd3+/fvjo48+wuDBg+OOiZAGTY1FEERCCYVCsNvtyM3NVfyxPaXhzYva8SjZnpzacmhJ0WCMIT8/H3a7HaFQSFT7hHzwdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpDuVDOzDGEAwGYTAYZF+w2GAw4IUXXsC9997b4jb79u0TLvqmp6fjscceazFOxhh0Oh10Ol3Ukw6R0281R3gNkda8GgwGDB8+XFiwfPfu3VEDIeHPxsP555/f5gLr7dq1E3632+1taubl5bU6CAKcnXaroKCg1YGQH3/8Ufj9rbfewjvvvNNm25Hr9TTe57t37xZ+HzFiREx14ZJLLhEGQuKlrX7rcDjwxhtvtKlz++23Y9GiRYpNVRRe+yNMbm5u1OtIHwMHDsS7776LJUuW4Pvvv8fWrVuxY8cO7Nq1C2fOnIn63MGDBzF69Gh8//33sq8lomRNULMtubXDemKfpeDpvElnbYJIYux2O4qLi2P60sA7vHlROx4l25NTWw4tKRqBQABz5sxp8iWKSAy8Hbdi4c0H1R/l9KR8nrd+kupoKR+8eaEapJyWWA3e+kiqQ/nQDsFgENXV1aKm2hk+fDgeeugh4WfGjBmYOHGicFE5GAzi/vvvF9Y/aI7Tp08Lv9fV1eGNN95o9mfRokVYvHgxFi1ahDfeeAM7duwQPtfWuo09evSIyWt4OwDCkyFhgsFg3P298bRIzRE5UBIIBGTRbKwb+fQDcHZ9jMgL9P/6179a3O+RP2vWrBE+03ifR+6vyP3YGrFu1xxi+q3RaETHjh1xySWX4PHHH8fevXuxYsWKmPepGBpPsVZYWBj1ujkfZrMZV155JZ577jmsX78eVVVVOHDgAJ599lkUFBQI2zmdTkyfPl32aaWk1ASe2pJbW6oeT+dNeiKEIJKY3NxcPPbYY5q4KMybF7XjUbI9ObXl0JKikZaWhldeeYWLEyjB33ErFt58UP1RTk/K53nrJ6mOlvLBmxeqQcppidXgrY+kOpQP7WAwGNCxY8eYpqNqzDXXXIN58+Y1eb+qqgr/+7//K9ztv2DBAgwdOhRTp05tsm3jC8ViaGsAIbxWRVteI9esaHwnv8FgiLu/K3E3vRyaSuxzp9Mp/N7a2iCRSFkjpK1c9uzZU5haOpEcOnRI+N1gMDRZ/ybW469///6YP38+Zs+ejSuvvBL79+8HcPaJqsZTeElFSk3gqS25tcN6YgeeeDpv0kAIQSQxer0e+fn5iQ5DFnjzonY8SrYnp7YcWlI0dDqdsLAdkXh4O27FwpsPqj/K6Un5PG/9JNXRUj5480I1SDktsRq89ZFUR618dOvWLWpBY6J5unXrJvqzOp0u7rnt26Jz5854//33UV9fjw0bNgAAHnjgAVx55ZVRd7QD0RfDL7jgAuzdu1fWWADA7XYDaNtr5LoMjaeS0ul0qlwYVoPGAxD19fVN8hIvkQvCh/d3W7S1DkZrKNFvleCnn34Sfh86dGiTKbji9dGlSxf83//9H0aPHi28t3XrVlkHQtTct0q2Jbd2WC+WJ7eag6fvMTQ1FkEkMQ6HA0uWLGlyx0YywpsXteNRsj05teXQkqIRCAQwe/bsJl/OicTA23ErFt58UP1RTk/K53nrJ6mOlvLBmxeqQcppidXgrY+kOmrlIy0tDUVFRYr+dO/eHWazGd27d1e8LaXikXKxT6mpafR6Pd58803h6YD6+nq88MILTbbr1KmT8HtVVZUicZ48eTImjch1LxrfuS9maixeyc/Pj7og39p+j5UOHToIv4f3d1u0tbZLa6g5fZNYKisr8f333wuvx40b12QbMT4uueSSqOm8KisrpQUqQ0w8tsXb1Fg8fY+hgRCCSGKMRiOGDBkCo9GY6FAkw5sXteNRsj05teXQkqKh0+mwZ88e+Hw+0e0T8sHbcSsW3nxQ/VFOT8rneesnqY6W8sGbF6pBymmJ1eCtj6Q6WsqHTqeD2WxWfFHgWFE7HiXb6969Ox566CHh9euvv97kovuQIUOEi/LV1dU4cuSI7HFu27atTY1gMBi1APuwYcOatK+F/h5mxIgRwu+RF+vFMnToUOH37du3IxQKtfmZyAXb44W347Y5Xnvttaj1WW677bYm24j1ETmQJfdC72ruWyXbkltbqh5P500aCCGIJCYjIwOjRo2SvfgnAt68qB2Pku3JqS2HlhQNg8GAbdu2wev1im6fkA/ejlux8OaD6o9yelI+z1s/SXW0lA/evFANUk5LrAZvfSTV0VI+9Ho9srOzodfzcWlI7XiUbE+v1+Ppp58WnmT3eDx46aWXorbJzMzEZZddJrxetGiR7HGuXbsWdru9VY2vvvoK1dXVAACTyYRLLrmkSfsmkynutnnluuuuE35fvHix5AW3R48eLdSDM2fOYOPGja1ub7PZsHbtWtHt8XbcNuaHH37A3//+d+H1VVddheHDhzfZToyP06dPi1qcPlbU3LdK1x85taXq8XTe5POoIQgiJjweD0pKSuDxeBIdimR486J2PEq2J6e2HFpSNILBICZMmKCpL+LJDG/HrVh480H1Rzk9KZ/nrZ+kOlrKB29eqAYppyVWg7c+kupoKR+hUAgOhyOmO9jVQO14lGwvFAohLS0NDz/8sPDem2++GXURFwD+8Ic/CL+/9tpr+Prrr2OOM5Zpnex2O5555pkWNVwuF37/+98Lr6dMmRI19VC4fS309zD333+/sF7Brl27MH/+/Jg/W1tb22R6oPz8fNx8883C69///vdoaGhoUeMPf/hD1ALr8cLbcRvJV199heuvv15YSyIrKytqUCSSNWvW4PXXX4/rJsc///nPUQNXkyZNkhZwI9Tct0rXHzm1perxdN6kgRCCSGICgQDKyspEL1jEE7x5UTseJduTU1sOLSkajDHJcwET8sHbcSsW3nxQ/VFOT8rneesnqY6W8sGbF6pBymmJ1eCtj6Q6WsoHYwxer1fyHfFyoXY8SrYX1p4zZ46wmLbb7cbLL78ctd348eMxY8YMAGf71rXXXosXX3wx6kJ5ZJwejwerV6/GjTfeiBtuuKHNOIxGI9544w089dRTcDgcUV4rKipw7bXX4sCBAwDOPqEyd+7cZr1ETnOU7OTl5WHhwoXC6/nz52PGjBktru/BGMP333+PBx98ED169Gh2kOPZZ58V7nb/5ZdfcO2116KioiJqG6/XiyeeeAJvvvmmpCmCeDtuA4EAtmzZgptvvhnXXnst6uvrAZx9imDFihW44IILmv1cRUUFHnnkEfTt2xfPPvssDh061GIbJ0+exB133IGlS5cK791www0YMGCArF7U3Ldq1B+5tKXq8XTe1DFejhyCEMH+/fsxaNAg4XVpaSkGDhyYwIgIgpCbsrIylJWVATh719O0adOa3e748eMoKipSLzCCIAiCIAiCiJFAIIDDhw9HvXfeeefRDT5JxIQJE7BlyxYAwNy5czFv3ryYPvfUU0/hb3/7GwAgOzsbJ06cQGFhofB3r9eLG264IWpKJbPZjJEjR6JHjx7IyMiA1WrF0aNHUVpaKtxBf9FFF2HHjh2txvnSSy/hj3/8I/x+P9q3b48JEyagoKAAJ06cQElJSdTai2+++Sbuu+++Zj0sX74cs2bNAgDMmDEDy5cvb7JNSUkJJk6cCODsAE9JSUmb+yZyzYHmLk+WlZWhV69eAICePXsK/y9sjaKiIpw4cQJA6/9HfPbZZ/H8888Lrw0GA4YMGYJ+/fohOzsbTqcT5eXl2LNnD2w2m7Cdw+EQBrciWbRoUdS6MEajERMmTEDPnj1hsViwefNm1NXVwWg04q9//SuefPJJALHvq9aIzE+s+6k1InMJIMoXcPYOf6vViqqqKuzatavJ4FD37t2xfPnyqKnfGrNkyRI88MADUe916NABw4YNQ8eOHZGVlQWbzYaDBw9i7969Uf2jb9++KCkpQZcuXaTYJOJErvNYIq/l0hmXIJKYYDCImpoadOjQAQaDIdHhSII3L2rHo2R7cmrLoSVFgzGGzp07o6ampskjyYT68HbcioU3H1R/lNOT8nne+kmqo6V88OaFapByWmI1eOsjqY6W8sEYQyAQQFpaGhcLL6sdj5LtRWo//vjjeP311+FyueB0OrFw4cKoC/AZGRlYv3495s+fj5dffhlutxtutxubN29uUT89PR2jRo1qM47hw4fjk08+wV133YXa2lqsWrWqyTYmkwn//Oc/WxwEYYxp8v9ezz33HAYNGoTf/e53OH36NILBIHbu3ImdO3e2+JkRI0YgPT292b89+OCDCAaDePLJJ+H1euHz+ZqsF5KXl4d3330Xubm5ouNOxHH7xhtvxLRdt27dcM8992DOnDnC9GMtMXjwYFx00UVR+7umpgYbNmxo9XN33HEHFi5ciA4dOsQUUzyouW/Vqj9yaIf1xMLTeZOmxiKIJMbhcODNN9+Ew+FIdCiS4c2L2vEo2Z6c2nJoSdEIBAKYPXu2sOggkVh4O27FwpsPqj/K6Un5PG/9JNXRUj5480I1SDktsRq89ZFUR0v5CF+c4uUit9rxKNlepHaHDh2i7nx/7bXXYLVao7Y3GAx47rnnUFZWhn/84x+YNGkSevToAbPZjPT0dBQUFGDo0KHC0xgVFRV4/fXXY4rlxhtvxK5du/Dwww9j0KBByMvLQ2ZmJvr27YtHH30U+/bta3JnfmMvdrtd1H7gnalTp+LYsWNYvnw5pk2bhj59+iAvLw8GgwG5ubno378//ud//gcLFy7Er7/+ip9++qnVBZ8feeQR7Nu3D4888gjOO+88ZGZmIj8/H4MHD8bTTz+Nffv2xTSlWWsk+rjV6XTIyclBt27dMHDgQPzP//wP/vrXv2LTpk0oKyvDvHnz2hwEAYCRI0di7dq1KCsrw3vvvYfZs2dj7NixOOecc2A2m2EwGJCXl4dzzz0X1113Hf7617/i6NGjeP/99xUZBAHU3bdq1R8e9Hg6b9LUWERSk+pTY4Xn6cvIyODiDh4p8OZF7XiUbE9ObTm04tWInBqrsrISd999d7PzU9LUWOrD23ErFt58UP1RTk/K53nrJ6mOlvLBmxeqQcppidXgrY+kOmLzwePUWIwxMMag0+m46Ftqx6Nke3Jqy6ElRYO3fpLqaCUfPPpQM6ZkqT+ResFgEEeOHIn6WyznscbnTZoaiyAIUeh0OphMpkSHIQu8eVE7HiXbk1NbDi0pGjqdDh6PR1L7hHzwdtyKhTcfVH+U05Naf3jqJ6mOlvLBmxeqQcppidXgrY+kOlrKB08XIAH141GyPTm15dCSosFbP0l1tJIPHn2oGVOy1J9IvVAoJPrzvJw3aWosgkhi7HY7XnnlFU08psqbF7XjUbI9ObXl0JKi4ff7MWfOHElzqhLywdtxKxbefFD9UU5Pyud56yepjpbywZsXqkHKaYnV4K2PpDpaykcwGMSZM2e4mhpLzXiUbE9ObTm0pGjw1k9SHa3kg0cfasaULPVHDj2ezps0EEIQSYzJZMKECRO4GVmVAm9e1I5Hyfbk1JZDS4qGwWBASUkJPRXCCbwdt2LhzQfVH+X0pHyet36S6mgpH7x5oRqknJZYDd76SKqjpXyE5/rn5a5steNRsj05teXQkqLBWz9JdbSSDx59qBlTstQfOfR4Om/SGiFEUpPqa4QQRCoQuUZIVVUVpk2b1ux2tEYIQRAEQRAEwSs8rhFCEARBELEi13kskddy6YkQgkhiGhoa8NVXX6GhoSHRoUiGNy9qx6Nke3Jqy6ElRSMYDGLSpEnIzMwU3T4hH7wdt2LhzQfVH+X0pHyet36S6mgpH7x5oRqknJZYDd76SKqjpXyEQiHYbDbR877LjdrxKNmenNpyaEnR4K2fpDpayQePPtSMKVnqjxx6PJ03aSCEIJKYUCgEq9XK1YlDLLx5UTseJduTU1sOLSkajDHk5+dDr6fTFw/wdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpjpbywRhDMBgELxOFqB2Pku3JqS2HlhQN3vpJqqOVfPDoQ82YkqX+yKHH03mTpsYikhqaGosgtA9NjUUQBEEQBEEkOzQ1FkEQBJHM0NRYBEEklEAggLKyMgQCgUSHIhnevKgdj5Ltyakth5YUjVAohKKiIvoPIyfwdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpjpbywRiD1+vl5o5steNRsj05teXQkqLBWz9JdbSSDx59qBlTstQfOfR4Om/SQAhBJDFOpxPvvPMOnE5nokORDG9e1I5Hyfbk1JZDS4pGMBjEzJkzkZ2d3eRvBw8exL59+2T5OXLkiPAkSllZGTwej2i/Woa341YsvPmg+qOcnpTP89ZPUh0t5YM3L1SDlNMSq8FbH0l1tJSPYDCIuro6BIPBRIcCQP14lGxPTm05tKRo8NZPUh2t5INHH2rGlCz1Rw49ns6bNDUWkdTQ1FgEoX1inRpLSUwmE2688UYsXboUZrNZ9fYJgiAIgiCI5IamxiIIgiCSGS1MjUVnXIIgCIJoA4/Hg48++ggA8OGHHyY4GoIgCIIgCIIgCIIgCCIeaGosgkhibDYbFixYAJvNluhQJMObF7XjUbI9ObXl0JKi4ff78dRTTyEvL090+1JYs2YNTZMVAW/HrVh480H1Rzk9KZ/nrZ+kOlrKB29eqAYppyVWg7c+kupoKR+BQACVlZVczNsOqB+Pku3JqS2HlhQN3vpJqqOVfPDoQ82YkqX+yKHH03mTBkIIIokxm82YPHmyJqbq4c2L2vEo2Z6c2nJoxasRuV379u3xxRdfwO12i25fCh6PB1VVVQlpm0d4O27FwpsPqj/K6Un5PG/9JNXRUj5480I1SDktsRq89ZFUR0v50Ov1yM/Ph17Px6UhteNRsj05teXQkqLBWz9JdbSSDx59qBlTstQfOfR4Om/SGiFEUkNrhBCE9vH7/dixYwe8Xi8A4LnnnsPmzZsTFs/x48dRVFSUsPYJgiAIgiCI5IPWCCEIgiCSGS2sEcLPsBtBEHHjdruxevXqhN0dLye8eVE7HiXbk1NbDq14NdLT0zFkyBAUFhYiGAzi5ptvxpVXXgmj0Sg6BkIeeDtuxcKbD6o/yulJ+Txv/STV0VI+ePNCNUg5LbEavPWRVEdL+QgGg7BYLAgGg4kOBYD68SjZnpzacmhJ0eCtn6Q6WskHjz7UjClZ6o8cejydN2kghNAEJpMJ2dnZAM4eoFarFeGHnex2O3w+HwCgoaEBLpcLwNmRTKvVKmjYbDb4/X4AZw/S8AHq9/uj5rGzWq3CvHgulwsNDQ0AAJ/PB7vdDgBgjMFqtQpFwul0CusKeL1eOBwOAEAoFILVakUoFAIAOBwO4a53j8cDp9PZpqdAIKAJTw6HQ9DmJU/hduTIEy+eeMhTONZ4PHm9XgwcOBCjRo1Cx44dsXLlSlitVhw6dAilpaU4duwYjhw5gn379uHIkSM4duwYSktLcejQIRw7dgyHDh3C/v37cezYMRw+fBj79u3D0aNHcezYMfzyyy/44YcfsHLlSrz//vt477338OqrryItLQ35+flCrHl5eUhPT0+KPKnZ98LtJLun8O+85Cn8vlx54sETD3XPZrNF1bNUPefynqdYPfl8Ps154iFPNptNiFUtT+HjU0lPyZ6nYDAoxKrVvpdMnnw+X9yeXC6XEDdjTIiNMYZAICC8DgaDwnahUEj4fLzbhQkEAsJ2wWBQ2C4UCgnvh7eTO4Z4t4uMR6ynxtu1FUP4b0rt/8j9nMg8Rfa3eD2Ft43cX1I9xZsnpfteMnlq6zhJFk+Nj0Ee8iTlOElkjWi8XazaYmKN7Ifh7cSecxMBDYQQmmDUqFGYMmUKAKCmpgbFxcXCF+KlS5fiwIEDAIAtW7Zg3bp1AIDy8nIUFxcLGosXL8bRo0cBABs3bsTGjRsBAEePHsXixYuF7YqLi1FeXg4AWLduHbZs2QIAOHDgAJYuXQrg7Jf14uJi1NTUAABWrVqFbdu2AQB2796NFStWADhbHIqLi4UvyytWrMDu3bsBANu2bcOqVata9WQ2m5GdnY1NmzYlvaeVK1eid+/eMJvNXOTp119/RV1dHcxms+Q8AW33vcrKSkyePBnfffed7J727duHyZMn49dff+UiT8uXLxfmh4zXU1ZWFlwuF3755RdkZmbCYrFg69at6NWrF9q1a4fPPvsM7dq1Q69evbB161ZYLBb06tULlZWV+Pnnn9GrVy9kZ2fjs88+Q9euXdGrVy98/fXX8Pl86Ny5MxoaGmC1WtGhQwd069YNc+bMETw98MAD6N27t+J9T84aEUvfk3I8lZWV4fTp0zCbzUntadOmTcjOzobZbOYiT/X19Th48KAwh6rSdU/OGtHY06ZNmzB58mTU19fL0ve2b9+OyZMno6ysTFSe3nrrLUycOBFmszmlz7la+G7kcrlw8OBBGAyGpPe0fv16TJ48GS6Xi4s8vfXWWxg9ejTMZrMqfc9sNmPYsGF46623ZPdkNptx9dVX46233uIiT2K/75nNZvTu3RsrV64U8kQ1InGezGYzDh48iPr6+rg8rVmzJmrwL3xxKRgMorq6WrigVFdXJwzAuFwuWCwWAGcvIFVXVwsXmmpra4XBIofDIQzU+Hw+VFdXC55qamqE/WC324V95/V6UVtbi4KCAhgMBlRXVwsXrmw2mzD45PF4UFtbC+DsRbHq6mohdovFInhyu92oq6uT5Km+vh4ZGRkwGAyiPYX3N4A2PRkMBuTl5aG2tlZ2TzqdDgUFBaivr+ciTw0NDSgoKIDH44nbUygUgsfjgU6nAyBP34snTy15krPvJZMni8WC9PR0GAyGpPZUW1uLnJwcGAwGbvLkcrlQUFAAn8+neN+Ts0Y09hQIBFBQUACHwyFL32OMoaCgIOpmmUhPYv9PmBAYQSQxpaWlDAAzmUwsOzublZaWskAgwCwWCwuFQowxxmw2G/N6vYwxxtxuN3M6nYwxxvx+P7NYLIKW1WplPp+PMcaYy+ViLpeLMcaYz+djVqtV2M5isTC/388YY8zpdDK3280YY8zr9TKbzcYYYywUCjGLxcICgQBjjDGHw8EaGhoYY4x5PB5mt9sZY4wFg0FmsVhYMBhkjDFmt9uZx+NhjDHW0NDAHA4HY4y16Mnn87E9e/YIPpLZU21tLdu3bx/z+Xxc5MnhcLBdu3Yxn88nOU+Mtd33XC4XO3jwoPC7nJ7sdjs7ePCg8Hui81RTU8MOHjzIfD5f3J58Ph/btWuX4EOu4+nkyZNs8+bNbOPGjWzDhg1s5cqVLC0tjeXn5zMADADLy8tj6enp7Pjx49wfT2rVPafTyXbu3Ml8Pl9Se7JYLGzPnj3M5/NxkSe328127Ngh+FC67slZIxp7slgs7ODBg8LvUvLkdDqZzWZjBw8eFH6PN0/V1dVs//79zOfzpfQ5VwvfjRoaGtiOHTsEH8nsqb6+nh08eJA1NDRwkafq6mpWWlrKfD6fKn3P5/Ox0tJSVl1dLbsnn8/HDhw4wKqrq7nIk9jvez6fj+3bt4/V1tYKeaIakThPPp+P7dixI+r7UCyerFYrKy0tZQcOHGD79+9n+/fvZ36/n4VCIeHfcOxhf8FgUPh8vNuF8fv9wnaBQEDYLhgMCt/pg8GgIjHEu53f72cul4sFg0HRnhpv11oMwWBQOMbk9hTWjow1kXkKBALM7XZHacfqKRgMMqfTGRWfVE/x5EnM/k/E8aSWp7aOk2TxFNmvecmTlOMkkTWiue1i0Y431oaGBrZ//3524MABVlpayn755Rfm9/vj/j9h+Fpu+Ke0tJSpBQ2EEElNIg8eHrBarezFF1+M+o9GssKbF7XjUbI9ObXl0JKiodR+qqysZJs3bxZ+Vq5cGVVbIn+OHz8ua9vJDG/HrVh480H1Rzk9HusPIQ4t5YM3L1SDlNMSq8FbH0l1xObD7/ezAwcORP1EXrxKBH6/n50+fTrhcYRROx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2J1GtoaBB1Hmt83kzktVwdYxET/RFEkrF//34MGjRIeF1aWoqBAwcmMCKCIJKRqqoqHDp0KOr1tGnTmt32+PHjKCoqUikygiAIgiAIQgsEAgEcPnw46r3zzjsPaWlpCYqIIAiCIGJHrvNYIq/l0hohBEEQBEEQBEEQBEEQBEEQBEFoFhoIIYgkxmq1Yv78+bBarYkORTK8eVE7HiXbk1NbDi0pGrz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9AIIDTp08LC+YmGrXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUHzn0eDpv0tRYRFKT6lNjBQIBlJeXo1u3bkn/SDVvXtSOR8n25NSWQ0uKhlL7iabGEgdvx61YePNB9Uc5PR7rDyEOLeWDNy9Ug5TTEqvBWx9JdaTkkbepsRhj8Pl8MBqN0Ol0CYsjUfEo2Z6c2rFozZs3D/PnzwcAzJ07F/PmzZMtHt76SaojJR8zZ87EO++8AwBYtmwZZs6cqUCEsaFkvyoqKsKJEycAxPf/dzX7eiLqj9T9otfrceTIkai/xXIea3zeTOS1XPoWRRBJTFpammYuyPLmRe14lGxPTm05tKRo8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1dFSPnQ6HTIyMhIdhoDa8cTb3oQJE7Bly5YW/56dnY127drhwgsvxBVXXIG77rpLFj9y7BcpGrz1k1RHK/ng0YeaMSnZltzaYT2xT4TwdN6kqbEIIolxuVz48MMP4XK5Eh2KZHjzonY8SrYnp7YcWlI0eOsnqY5W8sGbD6o/yulR/dEOWsoHb16oBimnJVaDtz6S6mgpH8FgEPX19QgGg4kOBYD68cjdntPpxIkTJ7B27Vo8+uij6N69O5YvXy5ZV444pWjw1k9SHa3kg0cfasakZFtya0vV4+m8SU+EEEQSo9frkZ+fD70++cc0efOidjxKtienthxaUjR46yepjlbywZsPqj/K6VH90Q5aygdvXqgGKaclVoO3PpLqaCkfOp0OBoOBm+mO1I5HSnvDhw/HiBEjhNeMMVitVmzfvl2YAs3hcGDWrFnw+Xy47777EhKnHBq89ZNURyv54NGHmjEp2Zbc2lL1eDpv0hohRFKT6muEEAQhD7RGCEEQBEEQBKEkPK4RQsRH5NRYza3DEebzzz/HrFmzYLPZAAAZGRk4cuQIunXrplaoBJHSiF0LQ+tI3S9ynccSeS038UMxBEGIxufzYc+ePfD5fIkORTK8eVE7HiXbk1NbDi0pGrz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9QKAS3241QKJToUACoH49S7d1000147733hNderxeLFi0SrSdHnFI0eOsnqY5W8sGjDzVjUrItubWl6vF03qSBEIJIYjweD0pKSuDxeBIdimR486J2PEq2J6e2HFpSNHjrJ6mOVvLBmw+qP8rpUf3RDlrKB29eqAYppyVWg7c+kupoKR+MMTgcDvAyUYja8SjZ3jXXXBN1h/PXX38tWkuOOKVo8NZPUh2t5INHH2rGpGRbcmtL1ePpvElTYxFJDU2NRRCEHNDUWARBEARBEISS0NRYyU+sU2OFefDBB7F48WIAQLt27VBbW9vsdhs2bMBHH32E7777DlVVVfD7/ejYsSOGDRuGG2+8EXfccQfS09NbbWvevHmYP39+TLF98803WLFiBX7++WecOnUKTqcTRqMRhYWF6NWrFy666CJcccUVuOqqq2A0GpvVOHXqFJYuXYpNmzbh119/hdVqBWMMOTk56NatGwYOHIixY8fipptuQufOnVuNvba2Fv/617/w5Zdf4r///S/q6+uRk5OD7t2744orrsCsWbMwYMCAVjXKysrQq1cvAEDPnj1RVlYGANixYweWLFmCb7/9FuXl5cjIyMB5552HyZMn47HHHkNWVlarurGyfPlyzJo1CwAwY8YMLF++HMDZadKWLl2KvXv34syZM8jLy8OQIUNw11134Y477oh5zQXGGFatWoXPPvsMP//8M86cOQMA6NSpE0aOHIn/+Z//wc0339ym3syZM/HOO+8AAJYtW4aZM2e22N6aNWvw8ccfY+fOnaisrITL5YLJZEKHDh1w7rnnYvjw4Zg0aRLGjx/f5toPp06dwvLly7Fx40YcPXoUdXV1yMrKQs+ePXH55ZfjvvvuQ9++fWPaF7EQ7xRQfr8fH374IdatW4cdO3agpqYGoVAIHTt2xKhRozB16lRMnjy52f1bXV2Nc845B4FAAHq9HidPnsQ555wTU5znn38+/vvf/wIAPv74Y9xyyy0tbrtp0yZ88skn2Lp1q5CPdu3aYfDgwbj++utxzz33IDMzs9X2aGosAIwgkpjS0lIGQPgpLS1NdEiqEgqFWENDAwuFQokORTK8eVE7HiXbk1NbDi0pGkrtp8rKSrZ582bhZ+XKlVG1JfLn+PHjsradzPB23IqFNx9Uf5TT47H+EOLQUj5480I1SDktsRq89ZFUR2w+/H4/O3DgQNSP3+9XKMrYCIVCLBgMctO31I4n3vbGjx8v/J9g7ty5bWo//fTTwvbp6elNtjlz5gy7/PLLW/x/R/jnvPPOYz/99FOrcc6dO7fV2EKhELPb7eyGG25os73wz//93/81u5/efPNNlpmZGZPGmDFjWt1Pb7/9NsvLy2tVw2AwsDlz5rBAINCizvHjx4Xte/bsyUKhEHv22WeZXq9vUbdXr17s6NGjrcYXK8uWLRN0Z8yYwaxWa5v7etKkScztdrep/d///pcNHTq0zX190UUXtelnxowZwvbLli1rdpuqqip2ySWXxNxP/vOf/7TYXjAYZH/+85+ZyWRqVSMtLY0988wzsh37PXv2jPn/75s3b2a9e/du0+eoUaNYeXl5sxpXX321sN1LL70UU4zbtm0TPpOXl8caGhqa3e7kyZNswoQJbcbXtWtX9u233zLGWq5t8eyXSMJ6Pp9P1Hms8XkzkddyaWosgkhibDYb/va3vwmLsCUzvHlROx4l25NTWw4tKRq89ZNURyv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJSPYDCIqqoqBIPBRIcCQP14lGwvGAyioqJCeJ2Xlxf19zNnzmD06NHYtGmT8F7v3r1x++23Y9asWRg5cqTw/uHDh3HZZZfh22+/lRTP1KlTsXbtWuG9Pn364JZbbsH999+Pu+++G9dff32zd4hH7qfVq1fj/vvvR0NDAwAgNzcXv/nNb3DPPffg/vvvx2233YZhw4a1+CRJJP/4xz9wzz33RC0qf9VVV+G3v/0tbr75ZhQWFgrtv/LKK5g6dWrMU/PMnz8fzz33HEKhEIYMGYLp06fj7rvvxrBhw4Rtjh8/jsmTJyMQCMSkGSuBQAA333wz1q5dC6PRiAkTJuCee+7BHXfcgR49egjbffXVV/jf//3fVrUOHjyIMWPGYPfu3cJ7gwYNws0334w777wTgwcPFt7fuXMnRo8eLTxhIIZgMIhrr70WP/74Y1R7t912G2bPno2ZM2di0qRJ6NKlS0xaU6dOxfPPPy9MiXTOOefgpptuwn333YfbbrtN6G+BQAAvvPAC7r//ftGxi+GTTz7BVVddhaNHjwIAMjMzMXr0aMyYMQP33HMPxo4dKzztsG3bNlxyySXC0ziR3HnnncLvK1asiKnt999/X/h9ypQpMJlMTbY5ePAgRo4ciZKSEgCATqfDRRddhOnTp+O+++7Dtddei5ycHADA6dOnceWVV2Lz5s2y1zapelydN1UbciEIBUj1J0ICgQCrrKxs9c6IZIE3L2rHo2R7cmrLoSVFQ6n9RE+EiIO341YsvPmg+qOcHo/1hxCHlvLBmxeqQcppidXgrY+kOmLzwesTIT6fj6snQtSMJ9724n0iZPDgwcL2w4cPj/p75B3kWVlZbOXKlU00tm/fzs4991xhu+7duzOLxdJse209EbJ7927h79nZ2Wz9+vUtxn706FH2l7/8ha1du1bwEt5PQ4YMEXQefvhh5nK5mtVwOBzs448/Zn/4wx+a/fv333/PDAaDoHX11VezqqqqqG08Hg978skno/4v9vLLLzerF/lEiNFoZDqdjvXu3Zv99NNPTbb9+OOPWXp6urD9O++80+K+iJXIJ0IyMjIET42fIPD7/eyJJ54QttXpdC3+/9Lr9bILL7xQ2LZjx47sP//5T5N+u2HDBta+fXthu2HDhjGfz9esZltPhKxevVr4e5cuXdi2bdta9FxaWsr+8Ic/NLuPGWPsz3/+s6DVuXNn9umnn0Yda2EfH330UdRTQR999FGLbcZKLE8+lJaWCk826XQ69sQTT7D6+vomNeHo0aPs0ksvjeqrjXG5XCw7Ozvma5OBQIB17NhR2H7z5s1NtnE6nax///5R7R45cqTJdjabjT3wwANRebNYLM3WNilPhPh8PtFPhDQ+bybyWi4NhBBJTaoPhBAEIQ80EEIQBEEQBEEoidSBkJN1rmZ/GnyxDcjYG3zNfr7K1vx0LM1x2upuVsPpic2H2xto9vPllranBwpzxh57vHITz0DIF198EfV/iKeeekr42zfffBP1ty+++KJFnePHj0ddJJ4/f36z27U1EPLaa68Jf//jH/8Yk9/GOByOqEEZKQNW48aNE7RGjx7NvF5vi9s++uijwra5ubnMbrc32SZyIAQAa9euHauoqGhRM3IwYtKkSaJ9hIkcCAHAxo4d2+LxHQqF2PDhw4VtFyxY0Ox2S5cuFbZJT09nu3btarH9n3/+maWlpbU5uNPWQMjjjz8u/D08NZoYjh8/Lgx0FRYWNnsBP5LIY6J///6SB0NjueB/2WWXCdv885//bFXP6XSyAQMGCNs3N0B01113NXu8N8eXX34pbNujR49m/T733HPCNjfddBMLBoOtakbmtqU+JXYgJIxcA/o0NRZBEKJwOp1Yvnw5nE5nokORDG9e1I5Hyfbk1JZDS4oGb/0k1dFKPnjzQfVHOT2qP9pBS/ngzQvVIOW0xGrw1kdSnUTlY+xLm5v92X3SGtPnP95R3uznp//fjzFPdzJl8Y/Naqz/pTKmz397uKbZz0965eyUT8FgELW1ta3G88gHu2NqKxZiaU8Mq1evjpoqJyMjAw8++KDw+s033xR+v+GGG3Dttde2qFVUVISnnnpKeL1kyZKYp4eKxGq1Cr936NAhrs+G95PFYhHea9euXcwLfTfm4MGDUdN8vf76661OpfXCCy+gffv2AAC73Y4PPvigzTaeeeYZdO3atcW/33333cLv27dvjyXsuHjllVdaXEBap9MJC6sDwM8//9zsdpH95IEHHsDQoUMBNN9vhw8fjnvvvVd4vXjxYlFx2+124fd4+0kkxcXFQnzPPvssevfu3WSbSB8TJ07Eb37zGwBn+0fkVGBKsHfvXnzzzTcAgKFDh2LOnDlNYookKysLf/7zn4XXzU1/FXnMf/DBB60ep5HTYt12221NjiW/34/XX38dwNn6sWTJkjYXpH/hhRcEnRUrVsha26TWSp6+x9BACEEkMWlpaSgqKmrxBJtM8OZF7XiUbE9ObTm0pGjw1k9SHa3kgzcfVH+U06P6ox20lA/evFANUk5LrAZvfSTV0Vo+dDqd6AvacqPT6ZCRkaFaPFLaW79+PR5++OGonzvvvBN9+/bFTTfdFDXw8M9//hPdu3cXXm/evFn4PfKCfEvMmjVLuAhaWVmJX3/9Ne54I9t/99134Xa7Y/5seD916NBBWMegtLQU33//fdxxANH+hwwZIlzgb4msrCxMmzat2c+3xC233NLq3/v164fMzEwAQF1dHRwOR5uasXLuuedGrUXSHJGey8rKmvzd4XBgx44dwuvIftJSv/3tb38r/L59+3a4XK54Q4/qJ//3f/8n+sL3+vXrhd9vv/32Zrdp7OOyyy4T/vbdd9+JaldMfNOmTRNiaK0mtBXf5ZdfLqydcvLkSWzdurXZtl0uF1avXi28jhxACbNjxw5UV1cLuh07dmzTU9euXdGvXz8AZ49Pj8cjWy2VWpt5Om8mPgKCIERjMpkwYcKERIchC7x5UTseJduTU1sOLSkaPPST8vJyWfU6d+7c7MJoyQAP+ZAD3nxQ/VFOL9nrD/H/0VI+ePNCNUg5LbEavPWRVEdr+dAbDG3eaawWer1eWPiX9/a2b9/e5pMEOTk5KC4ujrr7v6KiQrjACQCjR49us61OnTqhb9++OHToEABg165dwgXPWLnuuuuQlZUFl8slfP6ee+7Btddei6FDh8JgMLT42cj9NHnyZHz44YcIBAK47LLLcOutt2LKlCkYN24c8vPzY4ol8m7/WPwDwJgxY/Daa68BOOu/NfLy8qIu6DeHTqdDQUGBsOi73W6Xre9FLmDeEu3atRN+j3wKI8y+ffuEQYjs7GxccMEFwt9a6rdDhgwRchwMBrF3796Y92+YKVOmYN68eQiFQvj3v/+NQYMG4e6778bVV1+NgQMHxnQhvK6uTliw3Wg0Yv78+TG1feDAAeH3U6dOxRV3vEQuBr9582acOHGizc9EPuHRXHx6vR7Tpk3DP//5TwBnn/oYN25ck+1Wr14tDFINHTq02f4SGV95eTkefvjhNuMD/v+TX4wx2Gw2dOvWLabPtUW4zwUCAVGf5+m8SQMhBJHEeL1e7N69G0OHDkVGRkaiw5EEb17UjkfJ9uTUlkNLigYP/WTs2LGy6plMJtx4441YunQpzGazrNpKw0M+5IA3H1R/lNNL9vpD/H+0lA/evFANUk5LrAZvfSTV0Vo+QqEgQqEQF4MhoVAIbrcbZrNZlXjkbi87Oxvt2rXDBRdcgMsvvxw333xzk+mZampqhN8zMzNjmn4oFAqhe/fuwkBIbW1t3LEVFBTg9ddfx3333Qe/349Tp05h3rx5mDdvHrKzszFy5EiMHz8e119/PYYMGdKk/fB+WrhwIXbu3InDhw/D5/Phvffew3vvvQe9Xo+BAwdi7NixuPLKK3H11Ve3eHxE7oOePXvGFH9RUZHwe1v+8/LyYtJMT08Xfvf7/TF9JhZiab+ttiP3Uffu3aMGIFrqt3q9XnI/6d+/P1566SU8+eSTYIzh0KFD+P3vf4/f//73KCgowOjRozF+/HjceOON6Nu3b7MalZX/f6o8n8+HN954I+44IqdhU4LTp08Lv3/55Zdxf76l+O68805hIGTVqlXNTvsWOa3WLbfc0mz9jYxv37592LdvX9wxVlRUoH///rLUtnCfa20Ku9bg6byZ+DMdQRCi8fl82LNnD3w+X6JDkQxvXtSOR8n25NSWQ0uKBm/9RA48Hg8++uijmB6L5w2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1dFaPkKhkKg1J5SAMQa3261aPFLamzt3LhhjUT8OhwNlZWVYu3YtHn74YRiNxibakXPkZ2VlxRxn5MVDMdM4McZwzTXX4Mcff8RNN90UdSHe6XRi06ZNePbZZzF06FBcfPHFUdP6RO6nzp07Y8eOHfjTn/6ETp06CduEQiH88ssvWLRoEW666SZ06dIFCxYsaHZqJTH7IHK7tvwneqo3OdpvbR+11m/j2U8t8fjjj2Pz5s24/PLLo7xYLBb8+9//xu9//3ucf/75uOKKK/DLL780+bzNZhPVbiRinzyIFakxtjRl2NChQzFw4EAA/39/RVJdXY3//Oc/AACDwYDrr7++2TzKsQ9dLpdstVRqbebpvEkDIQSRxOTk5GD27NmqPj6sFLx5UTseJduTU1sOLSkavPUTOVmzZg08Hk+iw4gLreSDNx9Uf5TTo/qjHbSUD968UA1STkusBm99JNXRWj7S0tJbnRZJTQwGAzp27KhaPEq215J2dna28HusazgYDIaoC8Ni+l44nosuugifffYZqqursWbNGjz55JO45JJLogZGdu7ciYkTJ+KTTz5p1ktubi6ef/55VFRUYNu2bfj73/+OyZMnCwuaA2cvAj/99NO4+eabm1w8FbMPIrfTyrHXGq3to9b6rVz7afz48fj6669RWVmJjz76CI8++iiGDRsW9XTBpk2bMHLkyCZrxUQOxuTm5jYZMIzlZ/ny5aJjj4XIGD/77DNRMbZE5JofjRdV/+ijj4Rj+fLLL8egQYOazWNkfI8++qio+G666SbZapvUWsnTeZOmxiKIJCYUCsFutyM3N5eLR5mlwJsXteNRsj05teXQkqKh1H5qfEIvLCyE0WhU9Y4Fj8eDqqqqqMe+eYe341YsvPmg+qOcHo/1hxCHlvLBmxeqQcppidXgrY+kOonKx9bfT2z2/Q45sU0zMvXibrhqQKdG7zLocfaiWSx3sa964BIEgk0vABZmxTZdyrjzOjTrQ68/2zZjDMFgEAaDocV4Xru99YW14yGW9uTWjpwKq6GhAbW1tVEDCC1pRS6o3db2scSTn5+PG264ATfccAOAs+tUfPbZZ5g7dy5OnjyJYDCIBx98ENdddx1MJlOzXgwGA0aOHImRI0fiiSeeQCgUwg8//IC///3vWLt2LYCzN3t9+umnmDJlSrP74OTJkzHFL9V/shG5j8rLy6OO0Zb6VigUilq7Qo791KlTJ0ydOhVTp04FcHbKrg8++ADPP/886urq0NDQgPvvvx+lpaVRnwljt9uFabwao+Tx1xaRMVZVVcka0x133IFnnnkGjDF88cUXsNlswnRp77//vrDdnXfeiUAg0GxbLcUXK3Lv27Ce2CdCePoeQ9+iCCKJsdvtKC4ubnZxrWSDNy9qx6Nke3Jqy6ElRUOp/dR4Hlej0YgxY8bI2oYW4e24FQtvPqj+KKfHY/0hxKGlfPDmhWqQclpiNXjrI6lOovLRvdDc7I8pPbY7dHNM6U0+2yU3AzqPvcVpXhrTJS+z2RiyMmK7xzbTaGj28+fkZwI4O91MdXV1q/F0zDHF1FYsxNKe3NrnnHMOOnbsKLz+4Ycf2tQ6c+aMsPg0AAwbNky2eMLk5uZi5syZ+Oabb4RpuGpra/Hjjz/GvJ/0ej0uvfRSrF69GldeeaXwfnhQJMzQof9/MCsW/423E+M/2bjggguEm/UcDkfUFFQt5WPv3r3CEyEGgwEXXnih7HF16NABjz32GNasWSO8t3//fhw7dkx43aVLl6jF6lvKsZLHX1uMHDlS+D3yiRY5YurevbuwSLrX68WqVasAAEeOHMHPP/8M4OwTHzfccEOLbUXG98MPP8Q9ACH3vpWqx9P3GBoIIYgkJjc3F4899hhyc3MTHYpkePOidjxKtienthxaUjSU2k9GoxG9e/eOeu/3v/89Jk6cKHpBsFSAt+NWLLz5oPqjnB6P9YcQh5bywZsXqkHKaYnV4K2PpDpayofaU1G1RSpMjQUAEyf+/6diYpkC6L333kMoFAIAdO3aFeeff76s8UTSu3dvYY0D4OwgTLz7SafT4frrr4/SiOSyyy4Tft+9e3ebC0G73W58+OGHzX5eq+Tk5ODiiy8WXkf2k5by8fbbbwu/jxgxIub1V8QwZswYFBYWCq8b5/i6664Tfl+0aFGzGomsP5HxffbZZ0L8csUUOT1W+CmQyKdBJk+ejNzc3BbbGjNmDPLz8wGcfSJo3bp1cbUv976VqsfTeZOmxiKIJEav1wvFMdnhzYva8SjZnpzacmhJ0VByP3Xv3h15eXmwWCzw+/0AgLfeegterxc1NTVx67lcrmYXqHM6nbj33nslx8sDvB23YuHNB9Uf5fR4rT9E/GgpH7x5oRqknJZYDd76SKqjpXzodDqkpfFzWUjteJRsrzXt+++/Hx999BEA4PPPP8eGDRvwm9/8ptltT5w4gRdeeCHqs2Kmuqmrq4tpqqRgMIjKykrhdceOHQUvDocDGRkZMd0oFjlFU+QTMADQr18/jBs3Dt9++y0A4OGHH8amTZui1imJ5E9/+hOqq6sBnL2gevvtt7fZvha4//778dNPPwEA3njjDcycORMXXHBBs31r586dePPNN4XXs2fPFtVmLFO1AYDVao1a0L1xjh9//HG89dZbCAaD+Pzzz7F8+XLMnDkzapuWjpGqqip07txZVPyxMmLECEyYMAElJSVoaGjA9OnT8cUXX8BoNLZZE3w+H1wuFwoKClrc5pZbbsEjjzwCj8eDb7/9FuXl5VHrhUyfPr3VGpGRkYE5c+Zg3rx5AIAHH3wQF110Ec4555yY/FVXV0dNryWVcKxiF7Hn6bxJT4QQRBLjcDiwZMmSZi+2Jhu8eVE7HiXbk1NbDi0pGkrnJTc3Fz179kSfPn2En4EDB2LChAlx/1xwwQXo3Llzk5/GXxKTGd6OW7Hw5oPqj3J6PNcfIj60lA/evFANUk5LrAZvfSTV0VI+Ejk1TXOoHU8ipsYCzj4RcvXVVwuvp0yZIixMHsnOnTtxxRVXwGq1Ajh749ajjz4qKp4nnngCl1xyCZYvXy7oNaaurg733nuvMBCSm5uL0aNHC15+/vlnFBUVYd68eThw4ECzGsFgEB999BFee+014b1Ir2FefPFF4e7yrVu34uabbxYGO8L4fD48/fTTWLhwofDe3LlzoxYS1zJ33HGHML2Vz+fDb37zG2zevLlJ3/r6669x9dVXCxephw0bhmnTpolqc+rUqbjuuuuwatUquN3uZrepqKjA7bffLqyn2bdv3yazK/Tu3Rt/+tOfhNd33303nnjiCdTW1grvRfoIBALYuHEjpk+fHjV1mpK89tprQl/6z3/+g3HjxuGHH35o8bj973//i+effx5FRUVNFohvTF5envDUSSgUwpw5c3DkyBEAQOfOnXHFFVe0WX8ef/xx4emsiooKXHzxxfjkk0+Ep8MaU1tbi7feegvDhg3D3/72N66mxuLpvMnP0D9BEHFjNBoxZMgQTUzdw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR0v50Ol0MJvNqi9U3BJqx6Nke21pL1u2DGPGjMHRo0fhdDoxdepUnHfeeRg5ciSMRiMOHDiAn376SVgbICsrCytWrBB9VzVjDNu2bcO2bdvw29/+Fv369UP//v1RUFCAhoYGVFRU4PvvvxcubgPAP/7xD2RmZiIUCgleKisrMX/+fMyfPx+dO3fGkCFD0LlzZ6SlpeHMmTPYuXMnTp8+LWiMHTsWt912W5N4Ro8ejQULFuDJJ58EAKxbtw49evTAxIkT0b17d1gsFmzevBl1dXXCZ2666Sb87ne/E+U/GTEajVi5ciXGjx+PmpoaVFVV4bLLLsOFF16IgQMHIi0tDXv37sXevXuFz3Ts2BErV65s8ematgiFQvj3v/+Nf//73zAajRg4cCD69u2LvLw8OBwOnDx5Ej/++KNwMd5gMKC4uLhZrblz56KsrAzvvPMOGGN4+eWX8dprr+Hiiy9G7969kZmZCYvFgvLycuzbt09Y36Rdu3aiYo+XQYMGYeXKlbj11lvhdrvx008/YcyYMTj33HMxbNgwtGvXDh6PB9XV1di3bx8qKiri0r/zzjuF9UE+/fRT4f1p06bBYDBEHVfNkZ2djbVr1+KKK67A8ePHUVVVhalTp6J9+/YYNWoUOnfuDMYY6uvrceDAARw+fFjIy8SJE2WtbVJrJU/nTRoIIYgkJiMjA6NGjUp0GLLAmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/nQ6/Vc3V2vdjxKtteWdqdOnfD999/j9ttvxzfffAMAOHz4MA4fPtxk2z59+uCDDz7A8OHDRccTOTd/MBjE/v37sX///ma3zcnJwcsvvyxM5xv2kpWVFTU9TlVVFb766qsW25wyZQqWLl0Kvb75yWieeOIJFBQU4H//939ht9vh9Xqb1TMYDHj44Yfx8ssvczNopxb9+/fHd999h9tuuw27d+8GgCaDH2GGDRuGjz/+uMnTGfGQk5Mj/O7z+bB7926h3cZ07NgRb731FiZNmtTs33U6HZYvX46LLroIc+fOhcVigc/nww8//NDiAuo6nQ5jxowRHX+8XHfddfjhhx9wzz33YOfOnQCAY8eORS3+3piioiJ069atTe1rrrkGhYWFqK+vj3o/vH5ILPXn3HPPxY4dOzB79mysWrUKjDHU1tbiiy++aPEz+fn5uOCCC2StbeFYxU6NxdN5k6bGIogkxuPxoKSkBB6PJ9GhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8hEKheBwOFqcakVt1I5HyfZi0e7UqRM2bdqEL7/8EjNnzkSfPn2QnZ2NjIwMdO/eHTfccAOWLl2K0tJS9OvXT1KcxcXF2L59O4qLi3H77bfjwgsvREFBAdLS0mAymXDOOefgqquuwj/+8Q8cOXIkak3DsJfhw4ejuroaH3/8MR599FGMHTsWXbt2RUZGBtLS0lBYWIjhw4fjkUcewU8//YRPPvkk6sJ6c9xzzz04evQoXnjhBYwdOxadOnVCeno6CgsLceGFF+Lxxx/Hvn378MorryRkUW0e6Nu3L3bs2IGPPvoIU6dORVFREcxmM8xmM4qKinDrrbfik08+wY4dOyQNggDA2rVrsXPnTrz00ku4+eabMWDAAOTm5sJgMMBsNqNnz564/vrrsXjxYhw+fBg33nhjm5qPPPIITpw4gTfeeAOTJ09Gr169kJ2djbS0NOTn52Pw4MG47bbbsGTJEpw4cQJr1qyR5CFeLrzwQuzYsQMbNmzA7NmzMWjQILRv3x5paWnIyspCUVERfvOb3+DZZ5/F999/j2PHjmHIkCFt6qanp+PWW2+Neq9///4YNmwYgNjrT2FhIT7++GPs27cPzzzzDEaPHo0uXbrAaDTCZDKhc+fOuPTSS/Hoo49i7dq1qKysxPTp02WtbVJrJU/nTXoihCCSmEAggLKyMlx88cWJDkUyvHlROx4l25NTWw4tKRq89ZNURyv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJQPxhi8Xi/MZnOiQwGgfjzxtldSUqKI9qRJk1q8qx44+wSHw+FoVWvevHnCwsotxVNUVIShQ4fGvc5IpJeCggLccsstuOWWW+LSaI327dvj6aefxtNPPy1ao6ioSJhGLFbKyspEt9eYmTNnNlkMvDXijVev12Pq1KmYOnUqgsEgLBYLCgoK4h4cWr58OZYvX97i33U6HYYNGyZcrJeLnJwcPPjgg3jwwQeF96T4aAsxub3qqqtw+eWXyxrTokWLsGjRomb/Fm/9GTRoEP7617/GtG0wGGxWW2yfD8cqdmorns6bOhZvpSAIjti/fz8GDRokvC4tLRUWEyIIgkgkp06dwtGjR5u8b7fbW7xz5vjx4ygqKlI4MoIgCIIgCEJtAoFAk2mPzjvvPKSl0f2pBEEQBP/IdR5L5LVcmhqLIJKYYDCIqqoqBIPBRIciGd68qB2Pku3JqS2HlhQN3vpJqqOVfPDmg+qPcnpUf7SDlvLBmxeqQcppidXgrY+kOlrKB2MMfr8/7jvplULteJRsT05tObSkaPDWT1IdreSDRx9qxpQs9UcOPZ7OmzQQQhBJjMPhwJtvvgmHw5HoUCTDmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/kIBoOoqanh4uIUoH48SrYnp7YcWlI0eOsnqY5W8sGjDzVjSpb6I4ceT+dNmhqLSGpSfWqs8Dx9GRkZ0Ol0iQ5HErx5UTseJduTU1sOLSkavPWT1kiFqbGSKR+twZsPqj/K6aVK/UkFtJQP3rxQDVJOS6wGb30k1RGbDx6nxmKMgTEGnU7HRd9SOx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2J1AsGgzhy5EjU32I5jzU+bybyWi5NRkkQSYxOp4PJZEp0GLLAmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/ng6QIkoH48SrYnp7YcWlI0eOsnqY5W8sGjDzVjSpb6E6kXCoVEf56X8yZNjUUQSYzdbscrr7wCu92e6FAkw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR0v5CAaDOHPmDDdT06gdj5Ltyakth5YUDd76SaqjlXzw6EPNmJKl/sihx9N5kwZCCCKJMZlMmDBhAjcjq1LgzYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKqjpXzodDrk5ORwc1e22vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWeqPHHo8nTdpjRAiqUn1NUIIguCXVFgjhCAIgiAIgogNHtcIIQiCIIhYkes8lshrufRECEEkMQ0NDfjqq6/Q0NCQ6FAkw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR0v5CIVCsNlsoud9lxu141GyPTm15dCSosFbP0l1tJIPHn2oGVOy1B859Hg6b9JACEEkMaFQCFarlasTh1h486J2PEq2J6e2HFpSNHjrJ6mOVvLBmw+qP8rpUf3RDlrKB29eqAYppyVWg7c+kupoKR+MMQSDQfAyUYja8SjZnpzacmhJ0eCtn6Q6WskHjz7UjClZ6o8cejydN2lqLCKpoamxCILgFTmnxgqFQqisrITNZpO04FlaWhoKCgrQqVMnruZiJQiCIAiC0Do0NRZBEASRzNDUWARBJJRAIICysjIEAoFEhyIZ3ryoHY+S7cmpLYeWFA3e+okahEIhlJaW4vDhw6iurkZdXZ3onzNnzuDQoUP49ddfZbk7RCv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJQPxhi8Xi83d2SrHY+S7cmpLYeWFA3e+kmqo5V88OhDzZiSpf7IocfTeZMGQggiiXE6nXjnnXfgdDoTHYpkePOidjxKtienthxaUjR46ydqYLVaUV9fL6tmVVWVLPNzaiUfvPmg+qOcHtUf7aClfPDmhWqQclpiNXjrI6mOlvIRDAZRV1cn6YljOVE7HiXbk1NbDi0pGrz1k1RHK/ng0YeaMSVL/ZFDj6fzJk2NRSQ1NDUWQRC8ItfUWGVlZSgrK5M9vvPPPx9dunSRXZcgCIIgCIJoSjAYxH//+9+o9/r06YP09PQERUQQBEEQseP3+3HkyJGo9/r27QuDwRCXDk2NRRAEQRBEsyi1oBjdB0EQBEEQBKEeen3Tyy8+ny8BkRAEQRBE/Pj9/ibvNXdu45nkipYgiChsNhsWLFgAm82W6FAkw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR2w+dDodTCZT1Ht2u13O0OImEAigsrKSi3nbAfXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUn0i9xuesjIwM6HS6Nj/P0/eY+JZ1JwiCK8xmMyZPngyz2ZzoUCTDmxe141GyPTm15dCSosFbP0kkGRkZ6NixY5vbKflFTiv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1pOQjJycHHo9HeG2325GXl5ew3Or1euTn53NzR6/a8SjZnpzacmhJ0eCtn6Q6WskHjz7UjClZ6k9YLycnB5WVlVHvZ2VlxfR5nr7H0BohRFJDa4QQBMErcq0RcuzYMZw8ebLJtgUFBbjwwgvbjOOnn35qdmH0vn37omvXrm1+niAIgiAIgpAHn8/X5PuhXq9Hbm4ucnNzkZ6eztVFQYIgCCK1CYVCcLvdqK+vh9frjfpbjx49Yh4MiSSR13LpiRCCSGLcbjc2btyIq666iouRVSnw5kXteJRsT05tObSkaPDWT1IdreSDNx9Uf5TTo/qjHbSUD968UA1STkusBm99JNWRkg+j0YicnBw4HA7hvVAoBKvVCqvVKnOkbcMYQzAYhMFgiGl6E63Fo2R7cmrLoSVFg7d+kupoJR88+lAzpmSpPy3pmUymmM+BPH2PoVsNCIIgCIIgCIIgCIIgVKBr167Izs5OdBgEQRAEETM+nw/hSaXS0tLQrVs3bgaw4oGmxiIUo6qqCl9//TV27NiBHTt2YM+ePXC5XOjZsyfKyspkaYOmxiIIgldoaiyCIAiCIAiiOUKhEE6fPh31ZAhBEARB8E5aWhq6d+8Ok8kkWiOR13LpiRBCMT788ENMnz4dxcXF+P777+FyuRIdkubw+/04dOgQ/H5/okORDG9e1I5Hyfbk1JZDS4oGb/0k1dFKPnjzQfVHOT2qP9pBS/ngzQvVIOW0xGrw1kdSHTnyodfr0a1bN/Tu3RsdOnSQdEFJCowxeDwe8HJ/rNrxKNmenNpyaEnR4K2fpDpayQePPtSMKVnqTxifz4fOnTujT58+cZ+zePoeQ2uEEIqRm5uLyy+/HBdffDEuuuginD59GnPmzEl0WJrC7XZj9erVeOCBB5CXl5focCTBmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHznwYjUa0b98e7du3B2MMoVBI1YuCdrsdS5cuxd13343c3FzV2uUlHiXbk1NbDi0pGrz1k1RHK/ng0YeaMSVL/dHr9bDb7ViyZAkeeOABUdNh8fQ9hqbGIlRj1apVuOWWW2hqLIIgUoKWpsaqq6vDlClTmv3Mxx9/jC5dukS9Z7PZmp02ITc3FwMGDIh6r3Pnzk3uzqCpsQiCIAiCIAiCIAiC4IFEXsulJ0IIgiAIQkVaexx06tSpkrRNJhNuvPFGLF26FGazWZIWQRAEQRAEQRAEQRCEVqA1QlQkGAxi3759ePvtt/HAAw/g4osvhtFohE6ng06nw4QJE0Rr+3w+vPfee7jmmmvQs2dPmEwmdOnSBaNHj8Y//vEP1NbWymeE4Aar1Yr58+fDarUmOhTJ8OZF7XiUbE9ObTm0pGjw1k94w+Px4KOPPsLdd9+tSntayQdvPqj+KKdH9Uc7aCkfvHmhGqScllgN3vpIqqOlfPDmheqPclr0HUg7aCUfPPpQM6ZkqT9y6PGUa5oaSyVWr16NO+64A263u8Vtxo8fj5KSkri1Dx06hGnTpmHPnj0tbtOxY0csW7YM11xzTdz6ckFTY8lPIBBAeXk5unXrhrS05H7AizcvasejZHtyasuhJUWDt37SGuXl5Thy5EiT96uqqjBt2jRF2zaZTLBYLDCZTIpOjZVM+WgN3nxQ/VFOL1XqTyqgpXzw5oVqkHJaYjV46yOpjpbywZsXqj/KadF3IO2glXzw6EPNmJKl/sih1/jzibyWSwMhKrF8+XLMmjWr1W3EDISUl5dj5MiROH36NABAp9Nh3Lhx6N27N2pqavD1118LF8DS09Px1Vdf4bLLLhPlQSo0EEIQRCpht9uxa9euJu/7fD5cf/318Pl8irZ//PhxFBUV0RohBEEQBEEQBEEQBEFwQSKv5dLUWCrTqVMnXHfddZg/fz7Wr1+Pxx57TJLe7bffLgyC9OzZE7t370ZJSQnefvttrF27FidPnsTll18O4Oy89LfccgsXjyIR8uByufDhhx/C5XIlOhTJ8OZF7XiUbE9ObTm0pGjw1k9aIycnB+3atWvyvtFoxJgxYxIQkfwkUz5agzcfVH+U00uV+pMKaCkfvHmhGqScllgN3vpIqqOlfPDmheqPclr0HUg7aCUfPPpQM6ZkqT9y6PGUaxoIUYlJkybhxIkTqKqqwrp16/Dss8/i6quvRn5+vmjN9evXY+vWrQDOXlhbt24dLrzwwqht2rdvjzVr1uDcc88FANTX1+Oll15qVu+pp54S1iuJ9ycQCIj2QYhHr9cjPz8fen3yH8q8eVE7HiXbk1NbDi0pGrz1k9bQ6XQYOHAg+vTpg3bt2iEvL0/4+ctf/oKrrroKGRkZiQ5TEsmUj9bgzQfVH+X0UqX+pAJaygdvXqgGKaclVoO3PpLqaCkfvHmh+qOcFn0H0g5ayQePPtSMKVnqjxx6POWapsZKMPPmzcP8+fMBxD811rXXXov169cDAO6991689dZbLW67YsUK3HnnnQCAwsJCnDlzpsm8bs8//zyKi4vjdHCWM2fOwGAwtLoNTY1FEAQRjcfjQVVVlejPl5eXY+zYsc3+bevWrejWrRt2794Nr9fb5O+9evVCp06dmrzfuXNnmEwm0TERBEEQBEEQBEEQBEE0B02NRfw/9t49Oq7yvPf/jjQajWRZkoUVBBgj20kKBoJNbqYOxaSEXFoCTWixy2nrOD1taE6os7pKvU5/IYTmrBXSnmI5JMLBSKaJkQ0OtmMuwWBsAw4yNxmQ5ass2ZY0us99Zs/Mnnl+f7jax5ZtWZr97j3vfvfzWWsWQpr93c/X33c/8+7ZM++eMrFYDDt37jT+/2L3H/nmN7+JiooKAKe/FfL666+f85wf/OAHGB4ezutxsYsgjDWk02ns37/f8nsN2IFsXuyux8r9idQWoWVGQ7ZxYha/34/6+vq8H7Nmzbqg9s0334w5c+bgG9/4BpYtW3bOY9GiRZgzZ845jxkzZmDp0qVIJBIXrV+VPGTzwf3HOj3uP+qgUh6yeeEeZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkypovhDiU3//+98YnfKdNm4bPfvazEz7f7/fjpptuMv7/tddes7Q+xh40TcPu3buhaVqhSzGNbF7srsfK/YnUFqFlRkO2caIimqZh06ZNWLFixaSeq0Iesvng/mOdHvcfdVApD9m8cA+yTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlzUtjFZh8l8ZqaGjAypUrAQCLFi3CW2+9ddFtVq1ahUceeQQA8I1vfAO/+c1v8qo5X3hpLIZhGLF0d3djzpw5lmj7/X4Eg0FeJothGIZhGIZhGIZhGCHw0ljMlDl8+LDx81VXXTWpbWbPnm38fOjQIeE1MfZDRNA0DSpcz5TNi931WLk/kdoitMxoyDZOCo2V9/OYzP1LVMlDNh/cf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UKIQxkZGTF+Pt/Nbs9HXV2d8fPo6KjwmsZz6tQpzJw503iMLbMy/vff+973LK9FVcLhMB555BGEw+FCl2Ia2bzYXY+V+xOpLULLjIZs46TQ+P1+3HnnnQXbvyp5yOaD+491etx/1EGlPGTzwj3IOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6EmVNTEF5Yc//CEBIAB0yy23THq7r33ta8Z2//Iv/zKpbV588UVjm4qKijwrnjxdXV3G/iZ6/M3f/E3e+2hvbycA5Pf7qaKigtrb20nXdQoGg5TL5YiIKBwOUyqVIiKiRCJBsViMiIgymQwFg0FDKxQKUTqdJiKieDxO8XiciIjS6TSFQiHjecFgkDKZDBERxWIxSiQSRESUSqUoHA4TEVEul6NgMEi6rhMRUTQapWQySUREmqZRJBIhIqJsNkvBYJCy2SwREUUiEdI0jYiIkskkRaNRIqILetJ1nbq6uoz9OtnT6OgonTx5knRdlyKneDxOx44dI13XTedEdPGxl0wmKRAIUCQSEe4pFotRIBCgeDwuRU4jIyMUCAQM7al40nWdOjs7jf2KPJ4mk5OMx1M8Hqd77rmHLr30UvJ4PASAKisryefzEQAqKyujadOmEQDyer1UXV1t9N+qqioqKSkhAFReXk7l5eUEgEpKSqiqqoq6urom9JRIJOjo0aOk67ptfc+KnMLhMHV1dZGu6wXp5eM9aZpGR44cMfZr9dgT2SPGewqHwxQIBEjTNCHHUzQapUAgYGhPNafh4WHq7e0lXddd/Zrr9L43pn3kyJGzjmOnegqFQhQIBCiVSkmR0/DwMPX09JCu67aMPV3X6dSpUzQ8PCzck67r1NfXR8PDw1LklO98T9d1OnnyJI2Ojho5cY8onCdd1+nIkSPGfp3sycy83ApPdp8TiuwR4z1lMhkKBAI0OjoqRU5m5nsqveaq0PeCwSCdOHGCdF13tCcz83KrPJk91yhUjxjvSdM0CgQCFA6HhYy9dDpNgUDA0J5qTuPPCcfeyx17tLe3k13wN0Icypk3mPH5fJPaprS01Pg5mUwKr2k89fX1IKKLPtavX296X4sWLcLdd98NABgaGkJDQ4NxM/mmpiZ0dHQAAPbs2YPt27cDAHp6etDQ0GBoNDY2orOzEwCwY8cO7NixAwDQ2dmJxsZG43kNDQ3o6ekBAGzfvh179uwBAHR0dKCpqQkAkEql0NDQgKGhIQCn74/S2toKAGhra8OGDRsAAJFIBA0NDYhEIgCADRs2oK2tDQDQ2tqKzZs3T+ipuLgYhw4dwosvvuh4T0899RRGRkZQXFwsRU4ffvghXnnlFRQXF5vOCbj42Ovu7kZdXR127twp3NM777yDuro6fPjhh1Lk9Mtf/hJ1dXUoLi6esqfi4mK8/vrreOeddwCIPZ4mk5OMx1N5eTlWr16N++67D4cOHUJXVxd+8IMf4IUXXkBXVxf+/d//HT/60Y/Q0tKCtWvXYuXKlWhpaUFrayseeOABbNq0CQBw++234/bbbwcAzJs3D/fdd99FPR0+fBjPP/88iouLbet7VuT04osv4tChQyguLi5ILx/vKRAI4Omnn0ZxcXHengrVI8Z7evHFF1FXV4dAICDkeHrzzTdRV1eHw4cP55XTY489hvLychQXF7v6NdfpfQ84/e3mp59+GrquO97Tli1bUFdXh9HRUSlyeuyxx1BcXIzi4mJbxl5xcTF0Xcdjjz0m3FNxcTFmzJiBxx57TIqc8p3vFRcXY2RkBE899ZSRE/eIwnkqLi7G008/jUAg4HhPZublVniy+5xQZI8Y70nXddTV1eGpp56SIicz8z2VXnNV6HsbN25EX18fiouLHe3JzLzcKk9mzzUK1SPGewoEAqirq8OLL74oZOzF43HU1dVh48aNQs8JC4Jtl1yY86LyN0LswO3fCIlGo7Ru3ToaGBhwvKe+vj568sknKRqNSpHT8PAwPfHEExSNRm35VMno6Cg1NzfTwMCAcE9DQ0PU3NxMw8PDUuTU29tLzc3NFI1Gp+xpbMwPDQ0Rkfs+/ZOPp9dff51efvll2rVrF+3cuZNeeukl2rVrF/X29lIoFKKjR4/m/Y2QkZER4zhx8qe0BgYGaN26dRSNRqX45FkwGDT+XfP1VKgeMd7TwMAANTc3UzAYFHI8DQ4OUnNzM42MjOSVU09PDzU1NVE0GnX1a64KfS8UCtETTzxhbOdkT/39/dTc3EyhUEiKnM48TuwYe9FolJqamqinp0e4pzO1Zcgp3/leNBqlJ598kvr6+oycuEcUzlM0GqUnnnjC2M7JnszMy63wZPc5ocgeMd5TJBKh5uZm6uvrkyInM/M9lV5zVeh7gUDAOE6c7MnMvNwqT2bPNQrVI8Z7CgaDxnxDxNgLh8PU3NxsfKtjqjmNPycs5DdC+EJIgcn3Qshf/MVfGNvdf//9k9rmN7/5jbFNXV1dnhXLRSEPHhlIJpO0a9cuo2E5Gdm82F2PlfsTqS1Cy4yGbOPECbS2ttKuXbvOefT29hLRxMsYjl0IuRCq5CGbD+4/1ulx/1EHlfKQzQv3IOu08tWQbYy4HZXykM0L9x/rtHgOpA6q5CGjDztrckr/EaE3fvtCvpfrIZLglu0u5qGHHsKPfvQjAMAtt9yC3bt3T2q7f/iHfzC++nTPPfdg48aNF93mF7/4Bb773e8CAObPn48DBw7kV7REHDhwANddd53x/+3t7bj22msLWBHDMIxc7Nu377zLIX7yk5/E5Zdfju7ubsyZM+e823Z1daG+vt7iChmGYRiGYRiGYRiGcQOFfC+X7xHiUP7gD/7A+PnEiROT2ubkyZPGz1dffbXwmhj7SaVSaG1tNdbhczKyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfHD/sU6P+486qJSHbF64B1mnla+GbGPE7aiUh2xeuP9Yp8VzIHVQJQ8ZfdhZk1P6jwg9mbLmCyEO5ZprrjF+/uijj4ybVk3E+++/f97tGeeSTqexf/9+pNPpQpdiGtm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+uP9Yp8f9Rx1UykM2L9yDrNPKV0O2MeJ2VMpDNi/cf6zT4jmQOqiSh4w+7KzJKf1HhJ5MWfPSWAUm36WxYrEYZs6caVxNe+utt7Bo0aILPj+VSqG2thbRaBQAsHPnTnzxi180V7wE8NJYDMMwE8NLYzEMwzAMwzAMwzAMIwO8NBYzZSoqKvDHf/zHxv+vX79+wuc/99xzxkWQmpoa/NEf/ZGV5TE2kcvlEAqFkMvlCl2KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhzMP/zDPxg/r1+//oI3P08kEnjwwQeN//+7v/s7eL1ey+tjrCcSiaChoQGRSKTQpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw/uP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1XWxBSUH/7whwSAANAtt9wy5e1vvvlmY/v6+nr64IMPzvr78PAwfelLXzKeU1NTQ8FgUEzxEtDe3k4AyO/3U0VFBbW3t5Ou6xQMBimXyxERUTgcplQqRUREiUSCYrEYERFlMpmz/i1CoRCl02kiIorH4xSPx4mIKJ1OUygUMp4XDAYpk8kQEVEsFqNEIkFERKlUisLhMBER5XI5CgaDpOs6ERFFo1FKJpNERKRpGkUiESIiymazFAwGKZvNEhFRJBIhTdOIiCiZTFI0GiUiuqCnbDZLgUDA0HOyp2AwSAMDA5TNZqXIKZFI0KlTpyibzZrOaUxvIk+aplEwGKRoNCrcUzwep2AwSIlEQoqcRkdHjX1P1VM2m6Wenh5DT+TxNJmcnHI8nenp9ddfp5dffpl27dpFO3fupJdeeol27dpFvb29FAqF6OjRowSAysvLqby8nABQSUkJVVVVUVdX14SekskknTx5krLZrK2eROcUiUQoEAhQNpstWE5nekqlUnTixAlDz+qxJ7JHjPcUiUQoGAxSKpUScjzFYjEKBoOUTCbzymlkZIRGRkYom826+jVXhb6XTqfpxIkThp6TPYXDYQoGg5ROp6XIaWRkhIaHhymbzdoy9rLZLA0NDdHIyIhwT9lslkZHR2lkZESKnPKd72WzWRoYGDD0uEcU1lM2m6UTJ04Yek72ZGZeboWnoM3nhCJ7xHhPY/8dmwcVOicz8z2VXnNV6HuhUIj6+/spm8062pOZeblVnsyeaxSqR4z3NHbuFYlEhIy9sVrG5jJTzWn8OeHYe7ljj/b2drIL/kaIjXzta1/DggULzno8/vjjxt/ffffdc/6+YMEC9PX1XVDz6aefxmWXXQYA6O7uxoIFC3Drrbfib//2b3HnnXdi9uzZeOWVVwAAXq8XzzzzDKqrqy31WQgWLVqEu+++GwAwNDSEhoYG4/4pTU1N6OjoAADs2bMH27dvBwD09PSgoaHB0GhsbERnZycAYMeOHdixYwcAoLOzE42NjcbzGhoa0NPTAwDYvn079uzZAwDo6OhAU1MTgNP3ZGloaMDQ0BAAYPPmzWhtbQUAtLW1YcOGDQDOvSq6YcMGtLW1AQBaW1uxefPmCT0VFRVh//79eOGFFxzvaf369ejr60NRUZEUOX3wwQd4/vnnUVRUZDon4OJjr6urC9XV1Xj11VeFe3r77bdRXV2NDz74QIqc1q5di+rqahQVFU3ZU1FREV555RW8/fbbAMQeT5PJySnH05meOjs7ceTIEUNv3759Z3kae425/fbbcfvttwMA5s2bh/vuu++ing4dOoTf/OY3KCoqstWT6JxeeOEF7N+/H0VFRQXL6UxPfX19aG5uRlFRUd6eCtUjxnt64YUXUF1djb6+PiHH0xtvvIHq6mocOnQor5x+9rOfoaioCEVFRa5+zVWh742MjKC5uRmZTMbxnp577jlUV1djZGREipx+9rOfIZPJoKioyJaxV1RUhFgshp/97GfCPRUVFaGsrAw/+9nPpMgp3/leUVER+vr6jOWQuUcU1lNRURGam5uNOZSTPZmZl1vhye5zQpE9YrynTCaD6upqrF+/XoqczMz3VHrNVaHvtbS0oKurC0VFRY72ZGZebpUns+caheoR4z319fWhuroaL7zwgpCxF4vFUF1djZaWFqHnhAXBtksuDF111VVnXfGa7GPsE7kX4uDBg7RgwYIJNWpra+n555+3x6iNuP0bIZFIhH7+859Tf3+/4z319vbSz3/+c+OKdaFzGhoaoscee4wikYgtnyoZGRmhxsZGGhgYEO5pcHCQGhsbaWhoSIqcenp6qLGx0fhUwFQ8RSIReuyxx2hwcJCI3PfpH9m+ETI8PGwcJ07+lFZ/f78xrmX45Nno6Kjx75qvp0L1iPGe+vv7qbGx0fgko5mcYrEYDQwMUGNjIw0PD+eV06lTp+gXv/gFRSIRV7/mqtD3gsEgPfbYY4a+kz0FAgFqbGyk4H9/KrDQOZ15nNgx9iKRCP3iF7+gU6dOCfd0prYMOeU73xvrP729vUZO3CMK52lsPjo6Oup4T2bm5VZ4svucUGSPGO8pHA5TY2Mj9fb2SpGTmfmeSq+5KvS9vr4+4zhxsicz83KrPJk91yhUjxjvaXR0lBobG6m/v1/I2AuFQtTY2Eh9fX1CzgkL+Y0QDxGRXRdd3E59fT1OnDgx5e26urpQX18/4XPS6TQ2btyIlpYWHDhwAAMDA6iursbcuXPxjW98A9/61rcwc+bMPCuXlwMHDuC6664z/r+9vR3XXnttASuyl1Qqhba2NixcuBClpaWFLscUsnmxux4r9ydSW4SWGQ3ZxokT2LdvH5LJ5Dm//+QnP4nLL78c3d3dmDNnznm3vdjrjyp5yOaD+491etx/1EGlPGTzwj3IOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6I3fvpDv5fKFEMbRuP1CCMMwzMWw8kIIwzAMwzAMwzAMwzDMZCnke7l8jxCGcTCapmH37t3QNK3QpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw/uP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRyMruvo7u6GruuFLsU0snmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMNMDC+NxTAMwzAMwzAMwzCMDPDSWAzD5EU2m0V/fz+y2WyhSzGNbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh/cf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UIIwziYaDSKtWvXIhqNFroU08jmxe56rNyfSG0RWmY0ZBsnbkeVPGTzwf3HOj3uP+qgUh6yeeEeZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkypqXxmIcjduXxiIipFIplJaWwuPxFLocU8jmxe56rNyfSG0RWmY0ZBsnTsDKpbFUyUM2H9x/rNPj/qMOKuUhmxfuQdZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0Jv/PaFfC/Xa8teGIaxBI/HA7/fX+gyhCCbF7vrsXJ/IrVFaJnRkG2cOJkjR47gyJEj6O/vv+BzWltb0d3djZKSEtTU1OATn/gEvN7/N3VQJQ/ZfHD/sU6P+486qJSHbF64B1mnla+GbGPE7aiUh2xeuP9Yp8VzIHVQJQ8ZfdhZk1P6jwg9mbLmpbEYJfD7/aioqABweu25UCiEsS87RSIRpNNpAEAymUQ8HgcA6LqOUChkaITDYWQyGQBAIpFAIpEAAGQyGYTDYeN5oVAIuq4DAOLxuPFJ63Q6jUgkAuD01c5QKGSsfxeLxaBpGgAglUoZXwfL5XIIhULI5XIATn9dLJVKAQA0TUMsFpvQUyQSwX/+538ab2Q62VNvby8effRRRCIRKXIaGhrCf/7nfyISiZjOCbj42BsZGcHq1asxMDAg3NPg4CBWr16NoaEhKXLq6enB6tWrEYlEpuxpbMwPDg4CEHs8TSYnpxxPZ3pKp9PGz7lcztjPmMaYdnl5OcrLywEAJSUlqKqqMp4XjUYRCATw4YcfIhaLGZ6Gh4eN48ROT6Jz6u/vN3wUKqczPY2Ojhr15OupUD1ivKf+/n6sXr0ao6OjQo6nsVqHh4fzyunUqVNGD3Pza64KfS8YDOI///M/jTqc7CkQCGD16tUIBoNS5HTmcWLH2ItEInj00Udx6tQp4Z7O1JYhp3zne2M+ent7jZy4RxTO09jrwejoqOM9mZmXW+HJ7nNCkT1ivKdwOIzVq1ejt7dXipzMzPdUes1Voe/19fUZx4mTPZmZl1vlyey5RqF6xHhPo6OjWL16Nfr7+4WMvVAohNWrV6Ovr0/oOWEh4AshjBIsWrQId999N4DTb2A3NDQYB2dTUxM6OjoAAHv27MH27dsBAD09PWhoaDA0Ghsb0dnZCQDYsWMHduzYAQDo7OxEY2Oj8byGhgb09PQAALZv3449e/YAADo6OtDU1ATgdONoaGjA0NAQAGDz5s1obW0FALS1tWHDhg0ATjeHhoYGoxlt2LABbW1tAE5/Envz5s0TevL7/aitrcVrr73meE/PPvss5s2bB7/fL0VOhw8fNq5am80JuPjYCwQCWLJkCfbu3Svc00cffYQlS5bg8OHDUuT061//GkuWLIHf75+yJ7/fD5/Ph48++giA2ONpMjk55Xg601NnZyeOHDli6O3bt8+o9d133zUmWrfffjtuv/12AMC8efNw3333Gc/bt2+fcbK4bds2w1N3dzd0XYff77fVk+icXnvtNdTW1sLv9xcspzM9jYyMIBqNGp+asXrsiewR4z299tprWLJkCUZGRoQcT++88w6WLFmC7u7uvHJqamrC5z//efj9fle/5qrQ92KxGKLRqPH1fCd7+t3vfoclS5YgFotJkVNTUxNuvPFG+P1+W8ae3+/H9ddfb9Qg0pPf78cXvvAFNDU1SZFTvvM9v9+PefPm4dlnnzVy4h5ROE9+vx/RaBQjIyOO92RmXm6FJ7vPCUX2iPGePB4PlixZgmeffVaKnMzM91R6zVWh723btg2zZ8+G3+93tCcz83KrPJk91yhUjxjvaWRkBEuWLMFrr70mZOyl02ksWbIE27ZtE3pOWBCIYRxMe3s7ASC/308VFRXU3t5Ouq5TMBikXC5HREThcJhSqRQRESUSCYrFYkRElMlkKBgMGlqhUIjS6TQREcXjcYrH40RElE6nKRQKGc8LBoOUyWSIiCgWi1EikSAiolQqReFwmIiIcrkcBYNB0nWdiIii0Sglk0kiItI0jSKRCBERZbNZCgaDlM1miYgoEomQpmlERJRMJikajRIRsSf2xJ7YU96e9u3bRy+//DLt2rWLdu7cSS+99BLt2rWLdu3aRS+99BJt2LCBAFB5eTmVl5cTACopKaGqqipqaWkxnrdz507atWsXdXV1FdyTijmxJ/bEntgTe2JP7Ik9sSf2xJ7YE3tiT6p7Gnsvd+zR3t5OdsE3S2ccjdtvlp5MJrFnzx7ccsstKCsrK3Q5ppDNi931WLk/kdoitMxoyDZOnMCpU6eMT46cj/7+fixbtuy8f2tpaUFdXd1Zv5s/fz4+9rGPAVAnD9l8cP+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCL3x2xfyvVxeGothHMz4NQidjGxe7K7Hyv2J1BahZUZDtnHiBGbNmoXLL7/c+Cq7SFTJQzYf3H+s0+P+ow4q5SGbF+5B1mnlqyHbGHE7KuUhmxfuP9Zp8RxIHVTJQ0YfdtbklP4jQk+mrPkbIYyjcfs3QhiGYSaLruvGzczO5OTJk7jhhhvOu83FvhHCMAzDMAzDMAzDMAwzWfgbIQzD5IWu68bNip2ObF7srsfK/YnUFqFlRkO2ceIkvF4vqqurz3lUVlbmralKHrL54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhjGwcRiMTz11FPn/ZS305DNi931WLk/kdoitMxoyDZO3I4qecjmg/uPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlDUvjcU4Gl4ai2EYxhzd3d2YM2fOef/GS2MxDMMwDMMwDMMwDCMKXhqLYRiGYRiGYRiGYRiGYRiGYRjGAvhCCMM4mHA4jJ/85CcIh8OFLsU0snmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfj9qWxMpkMOjs7MW/ePJSUlBS6HFPI5sXueqzcn0htEVpmNGQbJypgZmksVfKQzQf3H+v0uP+og0p5yOaFe5B1WvlqyDZG3I5KecjmhfuPdVo8B1IHVfKQ0YedNTml/4jQG799Id/L5QshjKNx+4UQhmEYs/A9QhiGYRiGYRiGYRiGsQO+RwjDmMTv96OiogIAkM1mEQqFMHaNLxKJIJ1OAwCSySTi8TgAQNd1hEIhQyMcDiOTyQAAEokEEokEgNNXLs/8+lYoFIKu6wCAeDyOZDIJAEin04hEIgAAIkIoFEI2mwUAxGIxaJoGAEilUohGowCAXC6HUCiEXC4HAIhGo0ilUgAATdMQi8Um9JRIJLB582YMDQ053tPAwAB+85vfIJFISJFTMBjEs88+i0QiYTon4OJjLxwOY+vWrRgeHhbuaXR0FFu3bkUwGJQip/7+fmzduhWJRGLKnhKJBJ599lmMjo4CEHs8TSYnpxxPU/E0Vmt5eTnKy8sBACUlJaiqqjKep2maUcNY9mNen3nmGSQSCak8TTWnoaEhbN68GYlEQoqcIpGI8e+ar6dC9YjxnoaGhrB161ZEIhEhx9PIyAi2bt2KUCiUV06BQABbtmxBIpFw9WuuCn0vGo3imWeeOeu4caqnwcFBbN26FdFoVIqcAoEAnnvuOSQSCVvGXiKRwHPPPYdAICDcUyKRwJYtWxAIBKTIKd/5XiKRwG9+8xsMDAwYOXGPKJynRCKBZ555xqjdyZ7MzMut8GT3OaHIHjHeUzwex9atWzEwMCBFTmbmeyq95qrQ9wYHB43jxMmezMzLrfJk9lyjUD1ivKdIJIKtW7diaGhIyNiLxWLYunUrBgcHhZ4TFgK+EMIowaJFi3D33XcDOP2GVkNDg3FwNjU1oaOjAwCwZ88ebN++HQDQ09ODhoYGQ6OxsRGdnZ0AgB07dmDHjh0AgM7OTjQ2NhrPa2hoQE9PDwBg+/bt2LNnDwCgo6MDTU1NAE43joaGBuPNks2bN6O1tRUA0NbWhg0bNgA43RwaGhqMZrRhwwa0tbUBAFpbW7F58+aLehoYGDBqdbKnp59+2mjeMuT00Ucf4fjx48Jyupin7u5uAMDu3buFe3rvvfcMTzLktH79elOeTpw4YXgSfTzJMPbs9tTX1wcAuP3223H77bcDAObNm4f77rvPeN6+ffuMGvbs2WN4OnLkCI4dOyadp6nmtGPHDuPNJRly6uvrw8GDB015KlSPGO9prNa+vj4hx9Nbb70F4PTYyyenX/7yl8YJhJtfc1Xoe8PDwzh48KASnp5//nnDkww5/fKXvzRqsGvsJRIJ/PKXv7TEUy6Xwy9/+UspcjIz3wuHw3j66aeNnLhHFNbTwYMHjTmUkz2ZnZercE4oqkdM5EmGnMzM91R6zVWh723evNn4YKCTPZmdl1vhyey5RqF6xHhPY69PO3bsEDL2xi6MbN68Weg5YUEghnEw7e3tBID8fj9VVFRQe3s76bpOwWCQcrkcERGFw2FKpVJERJRIJCgWixERUSaToWAwaGiFQiFKp9NERBSPxykejxMRUTqdplAoZDwvGAxSJpMhIqJYLEaJRIKIiFKpFIXDYSIiyuVyFAwGSdd1IiKKRqOUTCaJiEjTNIpEIkRElM1mKRgMUjabJSKiSCRCmqYREVEymaRoNEpExJ7YE3tiT5Z5Onr0KAGg8vJyKi8vJwBUUlJCVVVV1NLSQrt27aKXXnqJdu7cSbt27aKuri7pPamYE3tiT+yJPbEn9sSe2BN7Yk/siT2xJ/bkdE9j7+WOPdrb28ku+B4hjKNx+z1CZLy5VL7I5oVv1GedFt+oTy4mukfImjVrUFtbe9bv5s6dixkzZgA4/XXdQCCAyy67DF6vF3V1dfD7/QAAr9cLj8djbfGCkG1ccf+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCL3x2/M9QhiGyYtEImGsFep0ZPNidz1W7k+ktggtMxqyjRPVuf/++7Fs2bKzHp///OfxyU9+Ep/85Cdx00034ZVXXsFNN92ET37yk5g5cya+/OUvY+fOndi3b5/xNWPZkW1ccf+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsuZvhDCOxu3fCGEYhjHLRN8IyZdbb70VDz74IADg6quvRl1dnVB9hmEYhmEYhmEYhmGcB38jhGEYhmEYZdi7dy/S6TQAYHBwsMDVMAzDMAzDMAzDMAzjdvhCCMM4mFAohB/96EcIhUKFLsU0snmxux4r9ydSW4SWGQ3ZxokKnHlfj6lSXV2Nhx56CNXV1Wf9Pp1OY3R0FACk+PrrxZBtXHH/sU6P+486qJSHbF64B1mnla+GbGPE7aiUh2xeuP9Yp8VzIHVQJQ8ZfdhZk1P6jwg9mbLmpbEYR+P2pbF0XUdPTw9mzZoFr9db6HJMIZsXu+uxcn8itUVomdGQbZyowtKlS7Fp06Ypb+f1ejFr1iz09PRA1/Wz/tbS0mJcZFm0aJGoUi1BtnHF/cc6Pe4/6qBSHrJ54R5knVa+GrKNEbejUh6yeeH+Y50Wz4HUQZU8ZPRhZ01O6T8i9MZvX8j3cvlCCONo3H4hhGEYRgSJRAIrVqzAtm3boGmaEE0nXQhhGIZhGIZhGIZhGMZ6+B4hDMPkRTwex8aNGxGPxwtdimlk82J3PVbuT6S2CC0zGrKNE1UoLy/Hxo0bEQwG0dXVddajs7MTBw4cQHt7+zmP559/HkuXLsW0adMKbcEUso0r7j/W6XH/UQeV8pDNC/cg67Ty1ZBtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1nJ894hhmLwoKipCdXU1ioqcf01TNi9212Pl/kRqi9AyoyHbOFENv9+P+vr6ST/f6/UiFAohl8tZV5QNyDauuP9Yp8f9Rx1UykM2L9yDrNPKV0O2MeJ2VMpDNi/cf6zT4jmQOqiSh4w+7KzJKf1HhJ5MWfPSWIyj4aWxGIZhCkd3dzfmzJlz3r/x0lgMwzAMwzAMwzAMw5wJL43FMExepNNp7N+/H+l0utClmEY2L3bXY+X+RGqL0DKjIds4cTuZTAYLFiyAz+crdCmmkG1ccf+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsuYLIQzjYDRNw+7du4Xd3LiQyObF7nqs3J9IbRFaZjRkGyduJ51OY8mSJfD7/YUuxRSyjSvuP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWvDQW42h4aSyGYZjCwUtjMQzDMAzDMAzDMAwzWXhpLIYxid/vR0VFBQAgm80iFAph7BpfJBIxvn6VTCYRj8cBALquIxQKGRrhcBiZTAYAkEgkkEgkAJxe+iUcDhvPC4VC0HUdABCPx5FMJgGc/mR0JBIBABARQqEQstksACAWixlXPlOpFKLRKAAgl8uddaPhaDSKVCoF4PQV01gsNqEnIkIwGDSe52RP4XAYkUgERCRFTpqmYWhoCERkOifg4mMvnU5D0zTE43HhnpLJJDRNg6ZpUuQUCoWgaZpR61Q8ERGGh4eN54k8niaTk1OOJzs91dbWwuPxwOPxoLq6GsXFxca+xraR3VMsFkMwGAQRSZFTJpPBwMDAWcedlWNPZI8Y72ns32zs2DeT01h/1DQNqVQqr5yCwSASiQSIyNWvuSr0PV3XMTAwYDzPyZ6i0Sg0TTNqLXROwWAQ8XgcRGTL2BvbTzAYFO5pbL4SDAalyCnf+R4RIRKJGM/jHlFYT0SEgYEB43lO9mRmXm6FJ7vPCUX2iPGecrkcNE0zjv1C52RmvqfSa64KfW/s9YCIHO3JzLzcKk9mzzUK1SPGe8pkMsY+RYy9bDYLTdMQiUSEnhMWAr4QwijBokWLcPfddwMAhoaG0NDQYBycTU1N6OjoAADs2bMH27dvBwD09PSgoaHB0GhsbERnZycAYMeOHdixYwcAoLOzE42NjcbzGhoa0NPTAwDYvn079uzZAwDo6OhAU1MTgNONo6GhAUNDQwCAzZs3o7W1FQDQ1taGDRs2ADjdHBoaGoxmtGHDBrS1tQEAWltbsXnz5gk9hcNhrFmzBlu2bHG8pyeffBKPPvoowuGwFDm99dZb+MUvfmFMxs3kBFx87H300Ud45JFH8MILLwj3tGfPHjzyyCN46623pMnpkUceQTgcnrKncDiMn//858bzRB5Pk8nJKceTXZ6OHDmC7373u6iqqkJpaSlWrlyJ2tpaAEBfX5+xjeyetmzZgjVr1iAcDkuR0+HDh/H4448bE1qrx57IHjHe05YtW/DII4/g8OHDQsbeK6+8gkceeQTvvfdeXjmtWbMG//7v/45wOOzq11wV+l5XVxcef/xxQ8/JnjZt2oRHHnkEXV1dUuS0Zs0a/Md//AfC4bAtYy8cDuP//t//izVr1gj3FA6H8dOf/hRr1qyRIqd853vhcBiPPvoonnzySSMn7hGF8xQOh/H444/j8OHDSnjKd15uhSe7zwlF9ojxnoaGhvDII4/gySeflCInM/M9lV5zVeh7v/rVr7B69WqEw2FHezIzL7fKk9lzjUL2iDM9HT58GI888gi2bNkiZOz19vbikUcewa9+9Suh54QFgRjGwbS3txMA8vv9VFFRQe3t7aTrOgWDQcrlckREFA6HKZVKERFRIpGgWCxGRESZTIaCwaChFQqFKJ1OExFRPB6neDxORETpdJpCoZDxvGAwSJlMhoiIYrEYJRIJIiJKpVIUDoeJiCiXy1EwGCRd14mIKBqNUjKZJCIiTdMoEokQEVE2m6VgMEjZbJaIiCKRCGmaRkREyWSSotEoEdEFPem6Tl1dXcZ+nexpdHSUTp48SbquS5FTPB6nY8eOka7rpnMiuvjYSyaTFAgEKBKJCPcUi8UoEAhQPB6XIqeRkREKBAKG9lQ86bpOnZ2dxn5FHk+Tyckpx5Ndng4ePEjz5s2j4uJi8ng8VF1dTcXFxQSAfvWrX9Err7xCb731lvSewuEwdXV1ka7rUuSkaRodOXLE2K/VY09kjxjvKRwOUyAQIE3ThIy9aDRKgUDA0J5qTsPDw9Tb20u6rrv6NVeFvpdKpejIkSNnHcdO9RQKhSgQCFAqlZIip+HhYerp6SFd120Ze7qu06lTp2h4eFi4J13Xqa+vj4aHh6XIKd/5nq7rdPLkSRodHTVy4h5ROE+6rtORI0eM/TrZk5l5uRWe7D4nFNkjxnvKZDIUCARodHRUipzMzPdUes1Voe8Fg0E6ceIE6bruaE9m5uVWeTJ7rlGoHjHek6ZpFAgEKBwOCxl76XSaAoGAoT3VnMafE469lzv2aG9vJ7vge4QwjobvEcIwDFM47LxHCP33V7/j8TgGBgYmfK7X60Vpaanx/2N1MAzDMAzDMAzDMAxTOPgeIQzD5EUsFsP69euNdfmcjGxe7K7Hyv2J1BahZUZDtnHidpLJJJYvX27co8kqRkdHsXv3bvzJn/wJrrjiClx33XUTPq6++mrMmTPHeMyYMQNLly411lEdj2zjivuPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlLW30AUwDJM/Xq8X9fX18HqdfyjL5sXueqzcn0htEVpmNGQbJ26nuLgY3d3dxg3mrCCZTKK9vR3/9m//hl27duWloWkaNm3aBADYuHHjOX+XbVxx/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMMUjomWxlqzZg1qa2vh9Xoxd+7cCXVmzZqF2tpaeDyec/7W09ODjo4O3HHHHUin06bq9fv9CAaDvEwWwzAMwzAMwzAMwxQAXhqLYZi8SKVSaG1tRSqVKnQpppHNi931WLk/kdoitMxoyDZO3E46ncaiRYvOuh/HGPfffz+WLVuGP//zP8enP/3pCR9XXnklvvSlL2FoaOgcnVQqhdHRUdMXQYDT3wzp7+8/7z5kGlfcf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UIIwziYdDqN/fv3C3mDsNDI5sXueqzcn0htEVpmNGQbJ25H13UsWLAAPp/PlE46ncbOnTuxbNkyFOKLqrKNK+4/1ulx/1EHlfKQzQv3IOu08tWQbYy4HZXykM0L9x/rtHgOpA6q5CGjDztrckr/EaEnU9a8NBbjaHhpLIZhmMIx0dJY+eDz+dDX14dLLrnE+F1nZyfeeecdLFu2TMg+tm/fjssvvxw+nw81NTW47LLLzrskF8MwDMMwDMMwDMMwYuGlsRiGyYtcLodQKIRcLlfoUkwjmxe767FyfyK1RWiZ0ZBtnLidj33sY7j00ktRVCRmOpFOp9HT0zOlbXbt2oUjR47g2WefRUtLC1paWrBmzZoLPj8WiyESiWB4eBhHjhzBsWPHpBtX3H+s0+P+ow4q5SGbF+5B1mnlqyHbGHE7KuUhmxfuP9Zp8RxIHVTJQ0YfdtbklP4jQk+mrPlCCMM4mEgkgoaGBkQikUKXYhrZvNhdj5X7E6ktQsuMhmzjxO2k02ncd999qKysLFgN9fX1+MQnPoHLLrsMdXV1qKurQ21t7aS37+3txcjIiFTjivuPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlDUvjcU4GrcvjZXL5RCJRFBZWSnsE9mFQjYvdtdj5f5EaovQMqMh2zhxO7lcDgMDA/j+97+Pbdu2QdM005r79+/HDTfcYPz/xZbG6urqQn19Pfbt24dkMgkA6O/vv+DzW1paUFdXd9bvrrvuOni9XmnGFfcf6/S4/6iDSnnI5oV7kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNAbv30h38v12rIXhmEsoaioCNXV1YUuQwiyebG7Hiv3J1JbhJYZDdnGidspKirCZZddho0bN0LTNPT3909qu56eHtx8881Ca6murjYuhEwVj8cj1bji/mOdHvcfdVApD9m8cA+yTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlLcclN4Zh8iIajeLxxx9HNBotdCmmkc2L3fVYuT+R2iK0zGjINk7czpl5+P1+1NfXT+oxa9Ys4bXMmTMH06ZNy2vbWCwm1bji/mOdHvcfdVApD9m8cA+yTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlzd8IYRgH4/P5sGDBAvh8vkKXYhrZvNhdj5X7E6ktQsuMhmzjxO3IlIfP58ONN96IcDiMkpKSKW8riw+A+4+Vetx/1EGlPGTzwj3IOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6MmUNd8jhHE0br9HCMMwjBPp7u7GnDlzzvu3fO8RMln9890j5Prrr8cll1wyBQcMwzAMwzAMwzAMw0yVQr6Xy0tjMYyD0TQNu3fvFnKD4kIjmxe767FyfyK1RWiZ0ZBtnLgdVfJIpVJS+eD+Y50e9x91UCkP2bxwD7JOK18N2caI21EpD9m8cP+xTovnQOqgSh4y+rCzJqf0HxF6MmXNF0IYJfD7/aioqAAAZLNZhEIhjH3ZKRKJIJ1OAwCSySTi8TgAQNd1hEIhQyMcDiOTyQAAEokEEokEACCTySAcDhvPC4VC0HUdABCPx42b86bTaUQiEQAAESEUCiGbzQI4vf782AGfSqWMdfFyuRxCoRByuRyA0+vmpVIpAKcbRSwWm9CTruvo7Ow09utkT8FgEMePH4eu61LkFI/HcezYMei6bjon4OJjL5lMoru7G5FIRLinWCyG7u5uxONxKXIaHR1Fd3e3sc1UPI2N+bH6RB5Pk8nJKceTXZ4SiYRxnEzFUywWQ1HR6SnI9OnTUVpaCuB0Lx/bZrynyspK46u0ZWVlxv1Axp53pqexWsvLy1FeXg4AKCkpQVVVlfE8TdPO+nft7OyErutS5KRpmvHvKiInO3vEeE+RSATd3d3QNE3I2ItGo+ju7kYikcgrp5GREXR1dUHXdVe/5qrQ91KpFI4dO2bU52RP4XAY3d3dSKVSUuR05nFix9jTdR1dXV0YGRkR7ulMbRlyyne+p+s6jh8/jmAwaOTEPaJwnnRdx7Fjx846b3CqJzPzcis82X1OKLJHjPeUyWTQ3d2NYDAoRU5m5nsqveaq0PdCoZBxnDjZk5l5uVWezJ5rFKpHjPekaZox3xAx9tLpNLq7uxEKhYSeExYCvhDCKMGiRYtw9913AwCGhobQ0NBgHJxNTU3o6OgAAOzZswfbt28HAPT09KChocHQaGxsRGdnJwBgx44d2LFjB4DTy7I0NjYaz2toaEBPTw8AYPv27dizZw8AoKOjA01NTQBON46GhgYMDQ0BADZv3ozW1lYAQFtbGzZs2ADgdHNoaGgwmtGGDRvQ1tYGAGhtbcXmzZsn9FRRUYErrrgCr732muM9bdq0CTfeeCMqKiqkyOno0aPQdR0VFRWmcwIuPvYGBgawfPly/P73vxfuqb29HcuXL8fRo0elyOm//uu/sHz5clRUVEzZU0VFBYqLi9He3g5A7PE0mZyccjzZ5enkyZOIxWKoqKiYkqff/OY3qKysBADce++9WLhwIYDTvfydd945y9PYZG/FihWYP38+AOCWW27BHXfccdbzzvTU19cHALj99ttx++23AwDmzZuH++67z3jevn37jH/Xffv24YorrkBFRYUUOYVCIfT29hoX+K0eeyJ7xHhPr732GpYvX45QKCRk7L333ntYvnw5Tp48mVdO69atw5/92Z+hoqLC1a+5KvS9ZDKJ3t5e455ATvb00ksvYfny5Ugmk1LktG7dOnz1q19FRUWFLWOvoqICt956K9atWyfcU0VFBZYtW4Z169ZJkVO+872KigrceOON2LRpk5ET94jCeaqoqEBvb6/xZo6TPZmZl1vhye5zQpE9YrynkpISLF++HJs2bZIiJzPzPZVec1Xoe1u3bsX8+fNRUVHhaE9m5uVWeTJ7rlGoHjHeUygUwvLly/Haa68JGXu5XA7Lly/H1q1bhZ4TFgRiGAfT3t5OAMjv91NFRQW1t7eTrusUDAYpl8sREVE4HKZUKkVERIlEgmKxGBERZTIZCgaDhlYoFKJ0Ok1ERPF4nOLxOBERpdNpCoVCxvOCwSBlMhkiIorFYpRIJIiIKJVKUTgcJiKiXC5HwWCQdF0nIqJoNErJZJKIiDRNo0gkQkRE2WyWgsEgZbNZIiKKRCKkaRoRESWTSYpGo0REF/Sk6zp1dXUZ+3Wyp9HRUTp58iTpui5FTvF4nI4dO0a6rpvOiejiYy+ZTFIgEKBIJCLcUywWo0AgQPF4XIqcRkZGKBAIGNpT8aTrOnV2dhr7FXk8TSYnpxxPdnlKJBJ09OhR0nV9Sp4++ugjKioqIgA0ffp0Ki0tNXp5a2vrWZ6OHj1KLS0tVFlZST6fjwBQWVkZTZs2jQDQsWPHzvF09OhRAkDl5eVUXl5OAKikpISqqqpozZo11NLSQv/1X/9FGzZsoJaWFtq7dy+99dZbdOzYMQqHwwXPSdM0OnLkiLFfq8eeyB4x3lM4HKZAIECapgkZe9FolAKBgKE91ZyGh4ept7eXdF139WuuCn0vlUrRkSNHjP062VMoFKJAIECpVEqKnIaHh6mnp4d0Xbdl7Om6TqdOnaLh4WHhnnRdp76+PhoeHpYip3zne7qu08mTJ2l0dNTIiXtE4Tzpuk5Hjhwx9utkT2bm5VZ4svucUGSPGO8pk8lQIBCg0dFRKXIyM99T6TVXhb4XDAbpxIkTpOu6oz2ZmZdb5cnsuUahesR4T5qmUSAQoHA4LGTspdNpCgQChvZUcxp/Tjj2Xu7Yo729neyCL4QwjqaQB48MBINBeuihh85qjk5FNi9212Pl/kRqi9AyoyHbOHE7+ebR1dV1Vu8+87F///6znnvs2DFqaWm54PO7urqmpH++R3V1NT300ENUXV1Nfr+f7rnnHmNiWQi4/1inx/1HHVTKQzYv3IOs08pXQ7Yx4nZUykM2L9x/rNPiOZA6qJKHjD7srMkp/UeE3vjtC/lerofovxfwYhgHcuDAAVx33XXG/7e3t+Paa68tYEX2QkRIpVIoLS2Fx+MpdDmmkM2L3fVYuT+R2iK0zGjINk7cTr55dHd3Y86cOef92/79+3HDDTcY/9/Z2Yl33nkHy5YtO+/zu7q6UF9fP2n98+HxeFBaWopUKmWsa3rPPfdg48aNk9YQCfcf6/S4/6iDSnnI5oV7kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNAbv30h38v12rIXhmEswePxwO/3F7oMIcjmxe56rNyfSG0RWmY0ZBsnbkeVPIjIuDncGNu2bYOmaQXxx/3HOj3uP+qgUh6yeeEeZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkyppvls4wDiYSiWD16tXGzZicjGxe7K7Hyv2J1BahZUZDtnHidmTNo66ubkoTrcrKSqxcudK4gTsAaJqG/v5+K8q7KNx/rNPj/qMOKuUhmxfuQdZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqz5QgjDOBi/348lS5ZIc2XVDLJ5sbseK/cnUluElhkN2caJ25E1D7/fjzvvvHPSz9c0Dbt37z7nWyGFgvuPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlDXfI4RxNG6/RwjDMIwTsfoeIQCQSCSwYsUKY4mrfLiQNsMwDMMwDMMwDMMwU6eQ7+XyN0IYxsEkk0n87ne/QzKZLHQpppHNi931WLk/kdoitMxoyDZO3I7MeZSXl2Pjxo0IBoPo6upCV1cXNm7ciJaWlrMea9asQVlZGb7yla+grKys0GUD4P5jpR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc03S2cYB5PL5RAKhZDL5Qpdimlk82J3PVbuT6S2CC0zGrKNE7fjhDz8fr/xrY6TJ0+et9aioiJUV1ejqEiOz4dw/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMM4DzuWxjofr7/++jmTr/7+fiHaDMMwDMMwDMMwDMNMDC+NxTBMXui6ju7ubui6XuhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8vB6vaivr4fXK8cXZbn/WKfH/UcdVMpDNi/cg6zTyldDtjHidlTKQzYv3H+s0+I5kDqokoeMPuysySn9R4SeTFnzhRCGcTCxWAxPPfUUYrFYoUsxjWxe7K7Hyv2J1BahZUZDtnHidlTJo6KiAsuXL0dFRUWhSwHA/cdKPe4/6qBSHrJ54R5knVa+GrKNEbejUh6yeeH+Y50Wz4HUQZU8ZPRhZ01O6T8i9GTKmpfGYhwNL43FMAzjPHhpLIZhGIZhGIZhGIZxH7w0FsMwDMMwDMMwDMMwDMMwDMMwjAXwhRCGcTDhcBg/+clPEA6HC12KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHlVVVVi1ahWqqqrO+n0qlSpIPdx/rNPj/qMOKuUhmxfuQdZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqz5QgjDOJjy8nLcddddKC8vL3QpppHNi931WLk/kdoitMxoyDZO3I4qeSQSCWzduhWJROKs37e1taGzsxN2ryLK/cc6Pe4/6qBSHrJ54R5knVa+GrKNEbejUh6yeeH+Y50Wz4HUQZU8ZPRhZ01O6T8i9GTKmu8RwjgavkcIwzCM85joHiFbt27FJz/5SeP/+/r60NHRgfvvv/+8z7fyHiEtLS2oq6vD9ddfj0suuWRS+2AYhmEYhmEYhmEY5vzwPUIYhsmLC32K2YnI5sXueqzcn0htEVpmNGQbJ27HijzuuusuzJ8/33jcdtttF7wIMlU8Hs95f3+xT6iMjo4K2f9k4f5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhiGYRiGcQUVFRV5bafruuBKGIZhGIZhGIZhGIaxE14ai3E0vDQWwzCM85hoaaypMpWlsQYHB9HR0XHW7yazNNall16Ka665xmypDMMwDMMwDMMwDONqeGkshmHyIpPJ4NChQ8hkMoUuxTSyebG7Hiv3J1JbhJYZDdnGidvJN4+6ujqUlpaa3r/f70ddXd2kn/+xj30M1113HS655BL4/X74/X6UlpaipKQEV199NUpKSkzXJALuP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEUQK/328seZLNZhEKhTD2ZadIJIJ0Og0ASCaTiMfjAE4vdRIKhQyNcDhsHJSJRMJYuy6TySAcDhvPC4VCxjIp8XgcyWQSAJBOpxGJRAAARIRQKIRsNgsAiMVi0DQNAJBKpRCNRgEAuVwOoVDIuHlvNBpFKpUCAGiahlgsNqGnRCKBLVu2YHh42PGeBgYGsGXLFiQSCSlyCgaDRj1mcwIuPvbC4TC2bt2KkZER4Z5GR0exdetWBINBKXLq7+831oecqqexMT92zwaRx9NkcnLK8WSXp1AoZIyHqXjSNA1f+tKXAADTp083Loqc2cuLi4tRXV1t3NejsrISPp8PAFBWVoZp06bhzjvvhNfrnZKnmTNn4vrrr8fVV1+Nz3zmM1i4cCEuueQS4x4hPp8PlZWVRk6aptmeUyQSMf5dReRkZ48Y72l4eBhbt25FJBIRMvbGag2FQnkdT4FAwPi3dfNrrgp9LxqNYsuWLWcdN071NDQ0hK1btyIajUqR05nHiR1jb+zYCgQCwj2dqS1DTvnO98Z8DAwMGDlxjyicp7E8xmp3sicz83IrPNl9TiiyR4z3FI/HsXXrVgwMDEiRk5n5nkqvuSr0vcHBQeM4cbInM/NyqzyZPdcoVI8Y7ykSiWDr1q0YHh4WMvZisRi2bt2KwcFBoeeEhYAvhDBKsGjRItx9990AgKGhITQ0NBgHZ1NTk7EUyp49e7B9+3YAQE9PDxoaGgyNxsZGdHZ2AgB27NiBHTt2AAA6OzvR2NhoPK+hoQE9PT0AgO3bt2PPnj0AgI6ODjQ1NQE43TgaGhowNDQEANi8eTNaW1sBAG1tbdiwYQOA082hoaHBaEYbNmxAW1sbAKC1tRWbN2+e0FNVVRUWLlxo1OBkT5s3b8ZXv/pVVFVVSZHT8ePHMWPGDFRVVZnOCbj42BseHsaqVavQ2toq3NPBgwexatUqHD9+XIqcNmzYgFWrVqGqqmrKnqqqqnDZZZfh4MGDAMQeT5PJySnHk12eent7UVZWhqqqqil7Wrt2Lf7kT/4E/+N//A8sXLgQwNm9vLa2FitXrjQukqxYsQLz588HAHzxi1/Ed77zHTQ1NQnxtGTJEuzfvx/hcBjz58/HihUrAJye+O3bt8/497crp2g0inQ6jaqqKiE52dkjxnvas2cPVq1ahWg0KmTstbW1YdWqVejt7c3reGpubsZ9992HqqoqV7/mqtD30uk00uk0/H6/4z3t2LEDq1atQjqdliKn5uZmfOtb30JVVZUtY6+qqgrLli1Dc3OzcE9VVVX4/ve/j+bmZilyyne+V1VVha9+9avGvyv3iMJ6qqqqQjqdNt4ocrInM/NyKzzZfU4oskeM9+T3+7Fq1Sps3rxZipzMzPdUes1Voe9t374dt956K6qqqhztycy83CpPZs81CtUjxnuKRqNYtWqVcT5mJqeGhgZ4PB6sWrXK+Deaak4XOicsCMQwDqa9vZ0AkN/vp4qKCmpvbydd1ykYDFIulyMionA4TKlUioiIEokExWIxIiLKZDIUDAYNrVAoROl0moiI4vE4xeNxIiJKp9MUCoWM5wWDQcpkMkREFIvFKJFIEBFRKpWicDhMRES5XI6CwSDpuk5ERNFolJLJJBERaZpGkUiEiIiy2SwFg0HKZrNERBSJREjTNCIiSiaTFI1GiYjYE3tiT+xJWU8DAwPU3t5Ohw8fpo8++oj2799Phw8fpo6ODnrvvffo0KFDdPjwYWpra6MDBw5QV1cXjY6OCvPU1dVF06ZNo7KyMgJAPp+PKisrCQA9/fTT9NJLL9FHH33k+pzYE3tiT+yJPbEn9sSe2BN7Yk/siT2xJ7Oext7LHXu0t7eTXfCFEMbRFPLgkYFgMEgPPfTQWc3Rqcjmxe56rNyfSG0RWmY0ZBsnbkeFPLq6uqi6upoeeughqq6uPus1paWlhXbt2kUdHR221sT9xzo97j/qoFIesnnhHmSdVr4aso0Rt6NSHrJ54f5jnRbPgdRBlTxk9GFnTU7pPyL0xm9fyPdyPUT/vYAXwziQAwcO4LrrrjP+v729Hddee20BK7IXXdfR09ODWbNmwev1FrocU8jmxe56rNyfSG0RWmY0ZBsnbkeFPLq7u/GJT3wCs2bNQk9Pj7FGLAC0tLSgrq4Ol156Ka655pqLamUyGRw/fhzBYPAsnfFUVlbiyiuvxIwZM877d+4/1ulx/1EHlfKQzQv3IOu08tWQbYy4HZXykM0L9x/rtHgOpA6q5CGjDztrckr/EaE3fvtCvpfLF0IYR+P2CyEMwzCMObq7uzFnzpzz/m0qF0JyuRzef/9944ZxF8Pj8WDBggXGfUAYhmEYhmEYhmEYRnUK+V4u3yydYRxMPB7Hxo0bEY/HC12KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHtOmTcPSpUsxbdq0vDWi0eikL4IAABEhEAic92/cf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UIIwziYoqIiVFdXo6jI+YeybF7srsfK/YnUFqFlRkO2ceJ2VMkjl8shFAohl8vlrZHvSeX54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc1LYzGOhpfGYhiGYcwgamms3t5eHD16dEr7nj59Oj796U9PaRuGYRiGYRiGYRiGcSq8NBbDMHmRTqexf/9+pNPpQpdiGtm82F2PlfsTqS1Cy4yGbOPE7aiSh8/nw4IFC+Dz+QpdCgDuP1bqcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRyMpmnYvXs3NE0rdCmmkc2L3fVYuT+R2iK0zGjINk7cjip5+P1+LFmyBH6//6zfDw0Nob+/H0eOHMGbb7551uPo0aOIRqMX1S4tLUVdXd2U6uH+Y50e9x91UCkP2bxwD7JOK18N2caI21EpD9m8cP+xTovnQOqgSh4y+rCzJqf0HxF6MmXNS2MxjoaXxmIYhmHMMNHSWBPh8/mwePFi/PznP8c111xzwaWxysvLcdlll6Gzs/Ocv/HSWAzDMAzDMAzDMIyb4KWxGIbJCyKCpmlQ4XqmbF7srsfK/YnUFqFlRkO2ceJ2VMnD4/HA7/fD4/FMept0Oo1du3bhu9/9bl43Sp8I7j/W6XH/UQeV8pDNC/cg67Ty1ZBtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1nwhhGEcTDgcxiOPPIJwOFzoUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKoqqrCqlWrUFVVNeVt9+7di/7+/vP+LZ1Oo6+vD6dOnUJ/f/85j76+PnR3d5/zFWHuP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWvDQW42jcvjRWNpvF0NAQamtrUVxcXOhyTCGbF7vrsXJ/IrVFaJnRkG2cuB0V8tA0DZdccgkqKysxNDSEbDY7ZY0333wT9fX1xtJYmqbhpz/9Kfbu3TupG8L5/X7ceeedaGpqQnl5OfcfC/W4/6iDSnnI5oV7kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNAbv30h38vlCyGMo3H7hRCGYRjGPEuXLsWmTZvy3n78hZCHH34Yu3btmrLOPffcg40bN+ZdB8MwDMMwDMMwDMPIDN8jhGGYvIjFYli/fj1isVihSzGNbF7srsfK/YnUFqFlRkO2ceJ2VMljzZo1+Od//mdccsklprXS6TT27t2b17bbtm2DpmncfyzU4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6asvYUugGGY/PF6vaivr4fX6/xDWTYvdtdj5f5EaovQMqMh2zhxO6rkUVlZia997Wv43//7fyMUCp33OT09Pbj55psvqjU6Ojqp5bDOh6Zp6O/vR11dHfcfi/S4/6iDSnnI5oXnQNZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqx5aSzG0fDSWAzDMIwddHd3Y86cOef925lLY/X392PZsmV576erqwv19fUAACJCNBpFf38/BgcHz3mux+PB9OnTMX36dFx22WXw+/1575dhGIZhGIZhGIZhrIaXxmIYJi9SqRRaW1uRSqUKXYppZPNidz1W7k+ktggtMxqyjRO3o0oesvlIpVJ466238O677+Kuu+7C9ddfj5tvvvmcxxe+8AXccMMNmDt3LmbMmIGlS5cikUjktT8n9B8Retx/1EGlPGTzwnMg67Ty1ZBtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1nwhhGEcTDqdxv79+/NehkUmZPNidz1W7k+ktggtMxqyjRO3o0oedvlYs2YNWlpasGbNmovW8/777+MHP/gBdu3aNam6NE3Dpk2bsGLFiinX5ZT+I0KP+486qJSHbF54DmSdVr4aso0Rt6NSHrJ54f5jnRbPgdRBlTxk9GFnTU7pPyL0ZMqal8ZiHA0vjcUwDMPYgYilsVpaWlBXVzfhc8aWxuro6MDChQunPFn0+/0IBoO8TBbDMAzDMAzDMAwjHbw0FsMweZHL5RAKhZDL5Qpdimlk82J3PVbuT6S2CC0zGrKNE7ejSh6y+cjlcujq6oKu61PeduyG61PdnxP6jwg97j/qoFIesnnhOZB1WvlqyDZG3I5KecjmhfuPdVo8B1IHVfKQ0YedNTml/4jQkylrvhDCMA4mEomgoaEBkUik0KWYRjYvdtdj5f5EaovQMqMh2zhxO6rkIZuPSCSCd999F5WVlbbtzwn9R4Qe9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0ToyZQ1L43FOBq3L42Vy+UQiURQWVmJoiJnX9eUzYvd9Vi5P5HaIrTMaMg2TtyOKnlMxsdES2Nt3rwZV1xxBbq7uzE0NIT777//vM+bzNJYbW1tuP766/G73/0OX//61/P61MzY8lqTxSn9R4Qe9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0Tojd++kO/lem3ZC8MwllBUVITq6upClyEE2bzYXY+V+xOpLULLjIZs48TtqJKHWR933323sFreeOMNHDp0CNFo9IIXQcZutn6hCy5TxSn9R4Qe9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0ToyZS1HJfcGIbJi2g0iscffxzRaLTQpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhk4/7778ff/d3f4f3338f06dPP+9zamtrUVtbK2yfTuk/IvS4/6iDSnnI5oXnQNZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqz5QgjDOBifz4cFCxbA5/MVuhTTyObF7nqs3J9IbRFaZjRkGyduR5U8ZPORTqexf/9+pNNpW/bnlP4jQo/7jzqolIdsXngOZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkypovhDBK4Pf7UVFRAQDIZrMIhUIYu/1NJBIx3kxKJpOIx+MAAF3XEQqFDI1wOIxMJgMASCQSSCQSAIBMJoNwOGw8LxQKQdd1AEA8HkcymQRw+o2rsRv/EBFCoRCy2SwAIBaLQdM0AEAqlTKuguZyOYRCIWP5k2g0ilQqBQDQNA2xWGxCT6WlpbjhhhuMepzsKZVK4cYbb0RpaakUOQHAtddei9LSUtM5ARcfe0VFRVi0aBGy2axwT0SERYsWGbUXOidN07Bo0SKUlpZO2VNpaSmuu+66s+oRdTxNJienHE92efJ4PJg/fz5KS0sd7UnXddxwww0oLS29YE51dXWoqamB3+8HAJSWlhrf2Bj7qu/YeqnTp09HaWkpgP/3+uTz+VBdXQ1N0wxPlZWVxmSwrKwM06ZNM7wfOnTI+HepqqpCSUkJAKC8vNyou6SkBFVVVYan6upqeL3ec3Kys0eMz0nXdSxatAjFxcVCxl4ul8OiRYvg8XjyOp6SySQ+97nPobS01NWvuSr0Pa/Xi6uvvto4hpzsKZPJYNGiRfB6vVLklEwm8dnPfhalpaW2jL3S0lJ85jOfMeoR6am0tBSf//znkUwmpcgp3/leaWkpbrzxRqMe7hGF9VRaWoqrr74axcXFjvdkZl5uhSe7zwlF9ojxnnw+HxYtWoRUKiVFTmbmeyq95qrQ99LpNBYuXIjS0lJHezIzL7fKk9lzjUL1iPGeiouLsWjRIui6LmTslZSUYNGiRUin00LPCQsBXwhhlGDRokXGGu1DQ0NoaGgwDs6mpiZ0dHQAAPbs2YPt27cDAHp6etDQ0GBoNDY2orOzEwCwY8cO7NixAwDQ2dmJxsZG43kNDQ3o6ekBAGzfvh179uwBAHR0dKCpqQnA6cbR0NCAoaEhAKdvpNva2grg9I1wN2zYAOB0c2hoaDCa0YYNG9DW1gYAaG1txebNmyf0pGkaNmzYgG3btjne05NPPonnnnsOmqZJkdPbb7+NtWvXQtM00zkBFx97Bw8exO7du/HSSy8J9/Tmm29i9+7dePvtt6XJaffu3dA0bcqeNE3DunXr8OabbwIQezxNJienHE92efrggw/wi1/8ApqmOdrTtm3bsGHDBmiadsGc/H4/vvWtbxknkAsXLsS9994L4PQFjZUrV6KyshIAcO+992LhwoUA/t/r02233QZd17Fv3z5UVVXB5/NhxYoVmD9/PgDglltuwR133AEAmDt3LlauXGlcdLnvvvswb948AMBXvvIV499u3rx5uO+++wxPK1euxKxZs87Jyc4eMT6nbdu2Yffu3Th+/LiQsbdz507s3r0bH3zwQd7H044dO4zXT7e+5qrQ98ZqHTvxc7KnZ555Brt37zZqlSGnl156CZqm2TL2NE3D888/b4knTdOwc+dOaXLKd76naRqee+45PPnkk2flxD2iMJ7G5rDHjx9XwlO+83IrPNl9TiiyR4z3FA6HsXv3bjz55JNS5GRmvqfSa64Kfe/Xv/41nn32WWia5nhP+c7LrfIk4lyjUD3iTE/Hjx/H7t27sW3bNiE5DQ0NYffu3fj1r38t9JywIBDDOJj29nYCQH6/nyoqKqi9vZ10XadgMEi5XI6IiMLhMKVSKSIiSiQSFIvFiIgok8lQMBg0tEKhEKXTaSIiisfjFI/HiYgonU5TKBQynhcMBimTyRARUSwWo0QiQUREqVSKwuEwERHlcjkKBoOk6zoREUWjUUomk0REpGkaRSIRIiLKZrMUDAYpm80SEVEkEiFN04iIKJlMUjQaJSK6oKdoNErr1q2jgYEBx3vq6+ujJ598kqLRqBQ5DQ8P0xNPPEHRaNR0TkQXH3ujo6PU3NxMAwMDwj0NDQ1Rc3MzDQ8PS5FTb28vNTc3UzQanbKnsTE/NDRERGKPp8nk5JTjyS5PIyMjxnHiZE8DAwO0bt06ikajE+bU29tLX/nKV8jn81FpaSlNnz6dAFBRURFVV1dTUVERAaDp06dTaWkpAaCqqir6y7/8S4rFYhQIBOj999+nAwcO0Fe/+lWqrKwkn89HAKisrIymTZtmbPO3f/u3VFFRYfx/SUkJAaA//dM/pR07dlBLSwuVlJRQVVUVASAAVF1dTV6vl7q6ugrWI8bnNDAwQM3NzRQMBoWMvcHBQWpubqaRkZG8jqeenh5qamqiaDTq6tdcFfpeKBSiJ554wtjOyZ76+/upubmZQqGQFDmdeZzYMfai0Sg1NTVRT0+PcE9nasuQU77zvWg0Sk8++ST19fUZOXGPKJynaDRKTzzxhLGdkz2ZmZdb4cnuc0KRPWK8p0gkQs3NzdTX1ydFTmbmeyq95qrQ9wKBgHGcONmTmXm5VZ7MnmsUqkeM9xQMBo35hoixFw6Hqbm5mQKBgJBzwrH3csce7e3tZBceov/+3grDOJADBw7guuuuM/6/vb0d1157bQErYhiGYVRG13X09PSgq6sLE02hKioqMGPGDFx55ZXGNzvOJJFIYMWKFdi2bdtZS/JdiNLSUnz961/HqlWrEIlE0N/fj2XLlp33uV1dXaivr5+0J4ZhGIZhGIZhGIaxg0K+l+u1ZS8Mw1hCNpvF0NAQamtrjTVqnYpsXuyux8r9idQWoWVGQ7Zx4nZUyWMqPrxeL+rr601faCgvL8fGjRuhaRr6+/vPqSccDqOqqsqop66uDn6/HwcPHjS+bn0hurq6zrnRusfjQWVlJS655BLjPiJn7s8J/UeEHvcfdVApD9m88BzIOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6MmUNd8jhGEcTDQaxdq1a40bGTkZ2bzYXY+V+xOpLULLjIZs48TtqJJHIX34/X7jwsrY45JLLsH27dtxySWXGL8737dKLkR7ezvef//9sx5dXV04ePAgPvjgEhuxhAABAABJREFUA+Mme2M4pf+I0OP+ow4q5SGbF54DWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsualsRhH4/alsYgIqVQKpaWl8Hg8hS7HFLJ5sbseK/cnUluElhkN2caJ21ElD9l8TFTPwYMHMTAwMOHSWOfD5/Nh8eLFeOCBB3DNNdfgqquumtT+zCJa26we9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0Tojd+el8ZiGCYvPB7PlD4lLDOyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfFhRTzqdxq5duwAAq1evtnx/Vmmb1eP+ow4q5SGbF54DWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsualsRjGwUQiEaxevfqi68U7Adm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+rKxn7969SCQStu1PtLZZPe4/6qBSHrJ54TmQdVr5asg2RtyOSnnI5oX7j3VaPAdSB1XykNGHnTU5pf+I0JMpa74QwjAOxu/3Y8mSJdJcWTWDbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh+TqaempgY+n2/K2ul0GiMjI1PeX76I1jarx/1HHVTKQzYvPAeyTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlzfcIYRyN2+8RwjAMw7iLsXuEAMDDDz9sLHc1FdauXYvPfOYzAIDy8nJcddVVKCsrO+9zR0dHceTIEWSz2bN+X1xcjKqqKsyZM0eKCS3DMAzDMAzDMAwjP4V8L5e/EcIwDiaZTOJ3v/sdkslkoUsxjWxe7K7Hyv2J1BahZUZDtnHidlTJQzYfE9VTXl5u/PzAAw/g1ltvnfI3Q/7+7/8en/70p/HpT38a11xzDS677DLcf//9Z31TJJFI4Otf/zouu+wy3HTTTfjCF75w1uOmm27C/PnzUV1djaVLl56z3NZkvOSDWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+WTrDOJhcLodQKIRcLlfoUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzcdE9dTW1uLkyZPIZrPw+/148MEHkU6nMTo6etbzhoaGcP/9909qf7quG8/fsGEDAOBv/uZvsH379otum0qlsGnTJgDAxo0bp+QlH8zqcf9RB5XykM0Lz4Gs08pXQ7Yx4nZUykM2L9x/rNPiOZA6qJKHjD7srMkp/UeEnkxZ89JYjKPhpbEYhmEYtxEKhXD8+HFEo1GcbxpXXFyMZDKJL3/5y1PS9fv9CAaDAIAZM2ZA07Qpb8vLZDEMwzAMwzAMwzAXgpfGYhgmL3RdR3d3N3RdL3QpppHNi931WLk/kdoitMxoyDZO3I4qecjm42L1VFdX48Ybb8TNN9983scXvvAF/NEf/dGkL0p4vV7U19dD13X09/ejv79/ShdBAEDTNJw4cWLKXqaKWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+EMIwDiYWi+Gpp55CLBYrdCmmkc2L3fVYuT+R2iK0zGjINk7cjip5yOZjsvUUFRWhuLj4nIfH44Hf78fXv/71Se2voqICy5cvR0VFham629ra0N7eftZXnkX/25rV4/6jDirlIZsXngNZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMMwzPlJJBJYvnw5fvvb3yKVSk1qm66uLgDAnDlzpry/lpYW1NXVYfbs2Zg7d+6Ut2cYhmEYhmEYhmHUhpfGYhiGYRiGYYRSXl6OZ555BqFQCF1dXejq6kJbWxvWrFlzwW1+//vf4/3337/g33/wgx9cdL8jIyN51cswDMMwDMMwDMMwVsEXQhjGwYTDYfzkJz9BOBwudCmmkc2L3fVYuT+R2iK0zGjINk7cjip5yOZDdD1+vx/19fWor6/H7NmzUVtbe9bfq6qqsGrVKlRVVeHee+/FN7/5zQtq1dTUXHR/6XTa+Fm0F7N63H/UQaU8ZPPCcyDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRxMeXk57rrrLpSXlxe6FNPI5sXueqzcn0htEVpmNGQbJ25HlTxk82F3PYlEAlu3bkUikRCuLdqLWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+RwjjaPgeIQzDMAwzeUKhEH73u99h2bJleW3/6KOP4vvf//55/zZ2j5CSkhIsXrzYTJkMwzAMwzAMwzCMgvA9QhiGyQsrP8VrN7J5sbseK/cnUluElhkN2caJ21ElD9l8WFnP9OnTUVNTA5/PZ/xusp/Q8fl8mD179pT2J9qLWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+EMIwDMMwDOMSiouLcc011+T1jY3Fixdj5syZFlTFMAzDMAzDMAzDMNbCS2MxjoaXxmIYhmGYqdPb24u///u/x6uvvopUKjXhc30+HxYvXoyHH34Yl156KT75yU+e93m8NBbDMAzDMAzDMAwzEbw0FsMweZHJZHDo0CFkMplCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD7sqOeKK67A888/j1AohKNHj2LPnj3Yv38/3nzzTezateusx/vvv4+NGzdi0aJFKCkpmdJ+RHsxq8f9Rx1UykM2LzwHsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhjGwci0zp5ZZPPC69Nap8Xr06qDKnnI5sPOevx+P2pra/H73/8e9fX1WLx4MZYsWXLW49prr8XHPvYxeL3eCbWGhobQ39+PQCAATdMs8cL3CGHGUCkP2bzwHMg6Lb5HiBqolIdsXrj/WKfFcyB1UCUPGX3wPUKs0ZMpa14ai3E0vDQWwzAMw9hHd3c35syZc9Hn+f1+3HnnnWhqarroTdgZhmEYhmEYhmEYd1DI93In/mgfwzAMwzAMw0wRTdOwadMmAMDGjRst2Ucul0N3dzeCweBZX7P2+XyoqanBVVddBY/HY8m+GYZhGIZhGIZhGGfBS2MxjIMJhUL40Y9+hFAoVOhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNh0r9Z/fu3UK1x2oNBoNob2/HyZMnEY1GoWma8YhEIuju7sbBgwcvuD33H+ejUh6yeVGpB6kyB5JtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1rw0FuNo3L40lq7r6OnpwaxZsy66drvsyObF7nqs3J9IbRFaZjRkGyduR5U8ZPMhc//RNA0zZsww7gFyMbxeL9544w185jOfEeJlrNaamhq0trZidHT0nOfU1NTA5/Od9f/z5s3DtGnTuP8ohEp5yOZF5h5USO1CzoFkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROiN376Q7+XyhRDG0bj9QgjDMAzD2M3SpUuNZa8mQ1dXF+rr64XtP5FI4C//8i/x0ksvIZ1On/N3n8+HxYsX44EHHoDf7wcAlJSU4DOf+QxKS0uF1cEwDMMwDMMwDMNMjUK+l8tLYzGMg4nH49i4cSPi8XihSzGNbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh+y95+mpibcc889xkWGiZg2bRpee+01YV7i8TgefPBBvPrqq+e9CAIA6XQau3btwk9/+lPjd5lMBiMjI9x/FEKlPGTzInsPKpR2IedAso0Rt6NSHrJ54f5jnRbPgdRBlTxk9GFnTU7pPyL0ZMpaju8eMQyTF0VFRaiurkZRkfOvacrmxe56rNyfSG0RWmY0ZBsnbkeVPGTzIXv/KS8vx8aNG3Hy5En8/ve/BwAMDQ3h/vvvP+e5uVwOANDT02N8G6Ourm5SF1HOR29vLw4dOmToTsTevXuRTqeNZbLi8ThmzJjB/UcRVMpDNi+y96BCaRdyDiTbGHE7KuUhmxfuP9Zp8TmYOqiSh4w+7KzJKf1HhJ5MWfPSWIyj4aWxGIZhGKYwDA4OoqOjAwDQ39+PZcuWTWo7v9+PO++8E01NTSgvL5/0/oaHh/Hqq69Oej8A0NLSgrq6OgDAFVdcgU984hOT3pZhGIZhGIZhGIYRCy+NxTBMXqTTaezfv/+Cy4M4Cdm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+VOo/Pp8PCxYsOOvm5ZqmYdOmTVixYsWUtAYGBpDL5c7Rmwrcf9RBpTxk86JSD1JlDiTbGHE7KuUhmxfuP9Zp8RxIHVTJQ0YfdtbklP4jQk+mrPlCCMM4GE3TsHv3bmiaVuhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNh0r9x+/3Y8mSJeddCmvbtm1T2mcikUA2m72g3mTg/qMOKuUhmxeVepAqcyDZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc1LYzGOhpfGYhiGYZjCcObSWOl0GnfccceUP+XT1dWF+vr6ST33nXfeQWdnJy+NxTAMwzAMwzAM41B4aSyGYfKCiKBpGlS4nimbF7vrsXJ/IrVFaJnRkG2cuB1V8pDNhxP7j8/nw+LFi8/5vcfjgd/vh8fjMVOiARGZ0uP+ow4q5SGbFyf2IDu0CzkHkm2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRxMOBzGI488gnA4XOhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNh1P7zwMPPIBbb731rPt3VFVVYdWqVaiqqspbN5lM4uDBg+js7MTAwIApPe4/6qBSHrJ5cWoPslq7kHMg2caI21EpD9m8cP+xTovnQOqgSh4y+rCzJqf0HxF6MmXNS2MxjsbtS2Nls1kMDQ2htrYWxcXFhS7HFLJ5sbseK/cnUluElhkN2caJ21ElD9l8OKX/nLk01pmk02mMjo4COP3pn/7+fvzzP/8zstnsOc/97W9/i8svvxwAUFJSgpqaGlxxxRXweDxIJBL4q7/6Kzz//PPGklvFxcWora3F0NDQefXGM35prLlz53L/UQSV8pDNi1N6kN3ahZwDyTZG3I5KecjmhfuPdVp8DqYOquQhow87a3JK/xGhN377Qr6X68gLIf/4j/+IWCyGJ598stClMAXG7RdCGIZhGKZQXOhCyHj6+/sveF+PNWvWoLa2FgBQU1MDn8+Hj33sY7jmmmuwdOlSPPPMM6Zq5HuEMAzDMAzDMAzDyAPfI2SKPP3001i/fn2hy2Akwu/3o6KiAsDpK42hUMhYey4SiRifJE0mk4jH4wAAXdcRCoUMjXA4jEwmAwBIJBJIJBIAgEwmc9bXt0KhEHRdBwDE43Ekk0kApz8BG4lEAJz+BGwoFDI+rRqLxaBpGgAglUohGo0CAHK5HEKhEHK5HAAgGo0ilUoBADRNQywWm9DT2AXBwcFBx3sKBAJoampCLBaTIqeRkRGsW7cOsVjMdE7AxcdeMBjE+vXrMTg4KNzT8PAw1q9fj5GRESly6uvrw/r16xGLxabsaWzMDw8PAxB7PE0mJ6ccT3Z5Gh0dNY4TJ3saHBzEk08+iVgsJkVOoVDI+HcVkZOVPSKXy5213msqlTK0M5kM4vE4Tp48iaqqKlRXVxu1VlVVoaSkBPfffz++/e1v49vf/jbuuOMO/PjHP8bRo0cRCoXw29/+FtXV1fB6vQCAadOmYebMmVi+fDlmzJiByspKAKfvQ1JdXW18OqmiogJ+v9/ItqenB/39/Ugmk+jt7UVzczNisZirX3NV6HvhcBjr1q0ztnOyp4GBAaxfvx7hcFiKnM48TuwYe7FYDM3Nzejt7RXu6UxtGXLKd74Xi8XQ1NSEQCBg5MQ9onCeYrEY1q1bZ2znZE9m5uVWeLL7nFBkjxjvKRqNYv369QgEAlLkZGa+p9Jrrgp9r7+/3zhOnOzJzLzcKk9DQ0NYv349RkdHLR97InvEeE+hUMiYb4gYe5FIBOvXr0d/f39eOQ0ODmL9+vVGbYXEkRdCGGY8ixYtwt133w0AGBoaQkNDg3FwNjU1GZ9Y3bNnD7Zv3w4A6OnpQUNDg6HR2NiIzs5OAMCOHTuwY8cOAEBnZycaGxuN5zU0NKCnpwcAsH37duzZswcA0NHRgaamJgCnG0dDQwOGhoYAAJs3b0ZraysAoK2tDRs2bABwujk0NDQYzWjDhg1oa2sDALS2tmLz5s0TevJ6vSAivPrqq473tHHjRpSXl8Pr9UqRU0dHB0KhELxer+mcgIuPvVOnTqG+vh5vvPGGcE/79+9HfX09Ojo6pMjpv/7rv1BfXw+v1ztlT16vF9FoFPv37wcg9niaTE5OOZ7s8tTZ2Ynh4WF4vV5He3r11VdBRPB6vVLkNDg4iN7eXuMCgNVjL98eUVRUhEQigX379hmT6La2NkP7xIkTOH78OMrLy3HppZdi5cqVRq333Xcf5s2bBwC4/fbbcfvttyOdTqO3txfvvvsujh07Bk3TsHLlSsyaNQsAcMcdd+Dzn/88uru78fGPfxwrVqwAAJSWlmLlypXGN0vuvvtuLFq0CMDpb4Ts3bsXy5Ytw5e+9CWsW7cOM2fOhNfrdfVrrgp9LxQKnfXGlZM9vfDCC6ivr0coFJIip3Xr1qG2thZer9eWsef1ejFjxgysW7dOuCev14srr7wS69atkyKnfOd7Xq8X5eXl2Lhxo5ET94jCefJ6vejt7TUujDvZk5l5uRWe7D4nFNkjxnvKZrOor6/Hxo0bpcjJzDmhSq+5KvS9LVu2wOfzwev1OtrTunXrcNlll+U1L7fK0759+1BfX4/Ozk7Lx57IHjHe0+DgIOrr6/Hqq68KGXvJZBL19fXYsmVLXjm9+uqrqK+vx+Dg4FmeCgI5kJkzZ1JRUVGhy2AkoL29nQCQ3++niooKam9vJ13XKRgMUi6XIyKicDhMqVSKiIgSiQTFYjEiIspkMhQMBg2tUChE6XSaiIji8TjF43EiIkqn0xQKhYznBYNBymQyREQUi8UokUgQEVEqlaJwOExERLlcjoLBIOm6TkRE0WiUkskkERFpmkaRSISIiLLZLAWDQcpms0REFIlESNM0IiJKJpMUjUaJiNgTe2JP7Ik9sSfpPKXTadq5cye99NJL9Nprr9GuXbvod7/7Hb366qu0a9cu2rFjB7388svU0tJCXq+XqqurCQABoKqqKiopKSEAVF5eTuXl5QSASkpKaObMmfT6668TAKquriav10sAaNq0aVRWVkYAyOfzUWVlJQEgj8dD1dXVVFxcTACooqKC/H4/AaDS0lKaPn06AaCioiKqrq6me+65x1U5sSf2xJ7YE3tiT+yJPbEn9sSe2JMsnsbeyx17tLe3k10U7B4hc+fOzXvbkydPgogmdZNMRm3cfo+QVCqFtrY2LFy4EKWlpYUuxxSyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfDip/5w4cQJdXV0X/Luu6+jt7cX/+l//y/jq9GT4zW9+g29+85vn/L60tBQLFy5EW1sbUqkU/H4/brjhBuzbt29SuqWlpfjsZz+L559/HlVVVZOuB5BvnLgdlfKQzYuTepCd2oWcA8k2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoTd+e1feI6S7uxsnTpxAd3f3lB9j660xjNtJp9PYv3+/sfaek5HNi931WLk/kdoitMxoyDZO3I4qecjmw0n956qrrsKnPvUpzJo1C5deeulZj9mzZ4OIMDQ0hMWLFwup1efz4U//9E/x3nvvoaurC8FgELt37zbuCTKZ7a+77rqz7kUwWWQbJ25HpTxk8+KkHmSndiHnQLKNEbejUh6yeeH+Y50Wn4Opgyp5yOjDzpqc0n9E6MmUdcG+ETJ9+nQkEgk8+uijuOKKK6a07YoVKxCLxfgbIYzrvxHCMAzDMDLT09Nj3O/jpz/9Kfbu3TupCXBTU5NxD5DxbNmyBXfddddZv1u6dCk2bdo06bq6urpQX18/6eczDMMwDMMwDMMw5inke7leW/ZyHhYsWIDf//73uOKKK8679MFEfOc737GoKoZxFrlcDpFIBJWVlSgqKtgXvIQgmxe767FyfyK1RWiZ0ZBtnLgdVfKQzYdK/eeyyy7D0NAQiAgPPvgg0uk0RkdHAZy+qd79999/3u3C4fB5f19UVIR0Oo1cLndWrWM3/tu2bRs0TbtgPUVFRaisrJzw28W6ruP48eMIBoPIZDIAAI/Hg4qKCtTU1OCKK66QYpy4HdmOWzPI5kWlHqTKHEi2MeJ2VMpDNi/cf6zT4nMwdVAlDxl92FmTU/qPCD2Zsi7Y3j/zmc8AAN57771ClcAwjicSiaChoQGRSKTQpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw+V+k80GsVvf/tbXH/99Vi4cCE+97nP4Stf+Qq+8pWv4Itf/OKU9SorK3Hw4MFzai0vL8fGjRsRDAbx8ssvo6WlBWvWrDnv9itXrkQikTivPhHhww8/RF9fH5LJJHRdh67ryGQyCAQCaGpqQiAQmHLdjHhkO27NIJsXlXqQKnMg2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0ZMq6YEtjbdiwAX/1V3+F2267DTt27JjStjNnzkQwGOSlsRjXL40l01VVs8jmhT+NZJ0WfxpJHVTJQzYfbuk/3d3dmDNnznm3e/TRR/H973//nN8XFRWhpaUFd9999wVrPXDgAIaGhtDf349ly5ads31lZSXee+89zJ0795xto9HoBT+kQ0RIpVL4+Mc/jo9//OPnfQ5jH7Idt2aQzYtbelAhtPgbIWqgUh6yeeH+Y50Wn4Opgyp5yOiDvxFijd747V25NNZtt92GRx99FJWVlVPedv/+/XwRhGFw+g2d6urqQpchBNm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+uP/AWD5rPLlcDj6fz9SbAKFQ6ILbx+PxC27r8Xjg9/sv+G0Sxl5kO27NIJsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxOZg6qJKHjD7srMkp/UeEnkxZF+yS26WXXop//Md/xLe+9a0pbztr1ixcddVVFlTFMM4iGo3i8ccfRzQaLXQpppHNi931WLk/kdoitMxoyDZO3I4qecjmg/sP8G//9m/n/f306dNx+PDhvGudPn06vvOd70y4NNaFSKVSePfdd5FMJvPaNyMW2Y5bM8jmhXuQdVr5asg2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoSdT1nJ894hhmLzw+XxYsGABfD5foUsxjWxe7K7Hyv2J1BahZUZDtnHidlTJQzYf3H8uTDqdRk1NTd566XQa+/fvh9c79S9FFxcXo66uLq9tGfHIdtyaQTYv3IOs08pXQ7Yx4nZUykM2L9x/rNPiczB1UCUPGX3YWZNT+o8IPZmyLtg9QhhGBG6/RwjDMAzDOJWJ7hEyEVu2bMFdd911wb9PdI+QMTo7O897j5BAIIDDhw9PuP+amhp86lOfQi6Xg6Zpxu/Lysrg8XgmZ4JhGIZhGIZhGMaFFPK9XP5GCMM4GE3TsHv37rPeiHEqsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xy4pf/U1dXB7/dPSW/69OkIh8N51+r3+7FkyRK89dZbePvtt9Hb2zvpbXVdR3d3N1KpFA4dOoQ333wTb7/9tvF48803cfz48QmX12LEIdtxawbZvLilBxVCK18N2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0ZMpa6gshuVyOTyYZZgLG3pTRdb3QpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw+39B+/348777xzSno33XQTIpFI3rV6vV7U19eDiJBIJHD06FEEAoFJbTt2o/VgMIj+/n7kcrmz/p7NZnHy5MkpXVxh8ke249YMsnlxSw8qhFa+GrKNEbejUh6yeeH+Y50Wn4Opgyp5yOjDzpqc0n9E6MmUtdRLYxUVFaG2thYDAwOFLoWRFF4ai2EYhmGcSyKRwIoVK7Bt27YJPyHk8/mwePFiPPDAA6ipqcHnPve5Cz53MktjtbS0oK6uDgBQVVWFhQsXApjc0lgX40w9hmEYhmEYhmEY5v9RyPdypb/bo8TXaRim4GSzWQwNDaG2thbFxcWFLscUsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xy4qf+Ul5dj48aN0DQNJ0+exPvvv39enbEbpOdyOUQiEWSz2bxqLS4uRm1t7Vnzy0QiMaltc7kcEokEysvLUVR04S9Vy/CVbzcg23FrBtm8uKkH2a2Vr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZS310lgMw0xMNBrF2rVrEY1GC12KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL5cGP/8fv9mDNnDurq6s778Pl8AIB0Oo29e/fmXev06dPxne98x/hadjqdRiAQQHd3N7q7u3Hq1Cn09/cjnU6fs206ncZ777133r8x9iPbcWsG2by4sQfZpZWvhmxjxO2olIdsXrj/WKfF52DqoEoeMvqwsyan9B8RejJlLf3SWDNnzsTg4GChS2Ekxe1LYxERUqkUSktL4fF4Cl2OKWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL5cHP/efvttyf8hgYRoba2Ftdee+0F9SZaGsvj8aC0tBS/+MUv8Ktf/Qp79+694IWNa665Bg888IBxQ/cZM2aguLgYxcXF8Hg8SKfTGB0dPWe7uro6LFmy5IIehoeH0dPTg2g0CiKCx+PB9OnTMXv2bNTU1FxwO+ZsZDtuzSCbFzf3IKu18tWQbYy4HZXykM0L9x/rtPgcTB1UyUNGH3bW5JT+I0Jv/PaFfC+XL4QwjsbtF0IYhmEYRiWGh4dx4MCBCy6NWlpaigULFqCsrOyCGocOHUJ/f/+E9wi55pprcPDgwSnVNnafkn/8x39EQ0PDBS+i+Hw+/Nmf/RmamppQXl5+1t9GR0fx0Ucfndefx+PBDTfcgOrq6inVxTAMwzAMwzAM4xQK+V4uL43FMA4mEolg9erViEQihS7FNLJ5sbseK/cnUluElhkN2caJ21ElD9l8uLn/zJw5EzfeeCNmz56N2trasx5z587FvHnzsHbt2gn1qqqqLvi3yspKrFy5Er29vVP24vf7ccMNN+Cv//qvsWvXrgt+kySdTmPTpk1YsWLFOX/r7++/4EUeIsLAwMCU63Irsh23ZpDNi5t7kNVa+WrINkbcjkp5yOaF+491WnwOpg6q5CGjDztrckr/EaEnU9bS3yydYZgL4/f7sWTJEmPZDicjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzYfb+8/06dMxffr08/4tnU5fVO/SSy/F8PAw+vv7z/mbpmnYvXt3Xjc0n+q227Ztg6ZpZ9Uaj8cn3CYWi025Lrci23FrBtm8uL0HWamVr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZc1LYzGOhpfGYhiGYRhmPLlcDh9++CEWLlxY0Dq6urpQX19v/P8777wz4cWQ6dOn49Of/rQNlTEMwzAMwzAMw9gPL43FMExeJJNJ/O53v0MymSx0KaaRzYvd9Vi5P5HaIrTMaMg2TtyOKnnI5oP7j3m9oqKi895ro6ysDF/5ylcmvMfIhTCzLSMe2Y5bM8jmhXuQdVr5asg2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoSdT1nwhhGEcTC6XQygUQi6XK3QpppHNi931WLk/kdoitMxoyDZO3I4qecjmg/uPdXpjF0iKis4/BZ45c2be2zL2IttxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi8/B1EGVPGT0YWdNTuk/IvRkypqXxmIcDS+NxTAMwzDM+eju7sacOXOmtE1LSwtqamowOjqKoaEh3H///aZqOHNprNHRUXz44YcTPp+XxmIYhmEYhmEYRmV4aSyGYfJC13V0d3dD1/VCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/4jRq6urO+eGfF6vF/X19fB6vec83+fzoaamBj6fD3V1daitrZ30thdi7PNGPT09F70IwkwN2Y5bM8jmhXuQdVr5asg2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoSdT1nwhhGEcTCwWw1NPPYVYLFboUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzQf3HzF6fr8fd95551m/q6iowPLly1FRUXHO8xcvXgyfz3dBvYm2vRDRaBS5XA7Hjx+f9DbM5JDtuDWDbF64B1mnla+GbGPE7aiUh2xeuP9Yp8XnYOqgSh4y+rCzJqf0HxF6MmXNS2MxjoaXxmIYhmEY5kIkEgmsWLEC27Ztg6Zp532Oz+fD4sWL8cADD5z1DZL+/n4sW7bM1P7feOMNfOpTn8L7778/qefz0lgMwzAMwzAMw6hMId/Lnfx3+wvAAw88MKVP3TEMwzAMwzDMGOXl5di4cSM0TcOBAwdw9OjRc54zthyWVchwU0CGYRiGYRiGYRi3I/XSWD/5yU/w//1//1+hy2AYaQmHw/jJT36CcDhc6FJMI5sXu+uxcn8itUVomdGQbZy4HVXykM0H9x/xen6/H7Nnz0Z1dTWOHTuG6upq1NXVoa6ubtIXQaqqqrBq1SpUVVXlUzojGNmOWzPI5oV7kHVa+WrINkbcjkp5yOaF+491WnwOpg6q5CGjDztrckr/EaEnU9ZSL43FMBfD7UtjZTIZdHZ2Yt68eSgpKSl0OaaQzYvd9Vi5P5HaIrTMaMg2TtyOKnnI5oP7jzV6Q0ND+PDDDxEMBjFjxgwUFxdP+PzxS2OVlJRg3rx56OzsRCaTmdQ+W1paUFdXN+kaeWmsySPbcWsG2bxwD7JOK18N2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0xm9fyPdy+UII42jcfiGEYRiGYZjJMTQ0hAMHDkz6+SLuEdLS0oKamhqMjo5O6vmzZ8/GH/7hH5raJ8MwDMMwDMMwjKwU8r1cqZfGYhhmYhKJBLZu3YpEIlHoUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzQf3H+v0MpkMDh06NOlvdJxJeXk57rrrLpSXl096m4cffhh33HEHli1bNqnHF7/4RSxdulSasSgzsh23ZpDNC/cg67Ty1ZBtjLgdlfKQzQv3H+u0+BxMHVTJQ0YfdtbklP4jQk+mrB1xIaS4uNh45HPPkO9973soLi6G1yv1veEZhmEYhmEYhTh48CDS6fSkn59KpbBp0yasWLHCwqoYhmEYhmEYhmHchyOWxioq+n/XazweD/7sz/4Mv/rVr1BWVjap7b/3ve/h5z//OTweD7LZrFVlMgWAl8ZiGIZhGGYyFGJprHzx+/0IBoPw+/0F2T/DMAzDMAzDMIwV8NJYk8Dj8QAAiAhbtmzBzTffjL6+vgJXxTCFxcwSH7Ihmxe767FyfyK1RWiZ0ZBtnLgdVfKQzQf3H+v0stkshoeH8/pgTElJCa6++mpbbuaoaRr6+/st34+Tke24NYNsXrgHWaeVr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZe2YCyEAsGDBAkybNg1EhPfffx+f+9zn8N577xW6LIYpGDKts2cW2bzw+rTWafH6tOqgSh6y+eD+Y52e3fcIYaxDtuPWDLJ54R5knRbfI0QNVMpDNi/cf6zT4nMwdVAlDxl98D1CrNGTKWvHLI3l8Xjw3e9+F9/+9rdxxx13oKenBwBQVlaG5uZm/MVf/MUFt+elsdSFl8ZiGIZhGGYyRKPRKX2AppBLYwFAV1cX6uvrC7Z/hmEYhmEYhmEY0RTyvVzH3T38hhtuwNtvv4277roLb7/9NpLJJJYtW4aDBw/ihz/8YaHLYxiGYRiGYSSkoqICZWVlSCaTF3zOVVddhdmzZwMAOjs74fP5pnSz88mwZs0a1NbWAjh935L7779fqD7DMAzDMAzDMAxzLo5aGmuMuro67Nmzx/iUHhHh4YcfxrJly5BKpQpcHcPYRygUwo9+9COEQqFCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/1ij5/F4UF9fjz179kDTtLP+5vV6MWvWLNTX16O4uBjFxcWYNWsWFi9ebDynuroaDz30EKqrq015qK2tRV1dHerq6owLIszUke24NYNsXrgHWaeVr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZe24pbHWrFlz1t9+/OMfn/VNkM985jPYtm0b6urqjN/x0ljq4valsXRdR09PD2bNmgWv13Ff8DoL2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/1inN7b9mfNEACgtLYXH4znn+SdOnMCKFSvw5ptvIpfLYdasWejp6YGu6wAAn8+HefPm4eDBg5OuoaWlxdj/RMtv8dJYEyPbcWsG2bxwD7JOK18N2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0xm9fyPdyHX8hBACee+45/PVf/zWSySSICLNmzcJvf/tbLFiwAABfCFEZt18IYRiGYRjGWogIw8PDOHnyJEZHR5HL5VBcXAwAuPzyy6HrOm644YZJ6/GFEIZhGIZhGIZh3Eoh38t15NJY4/nGN76BN954A1dccQUAoKenBzfffDO2bNlS4MoYxlri8Tg2btyIeDxe6FJMI5sXu+uxcn8itUVomdGQbZy4HVXykM0H9x/r9PLZ3uPxoLa2FldffTVGRkbwhS98Abfddhtuu+02zJ8/H5WVlXnVwphDtuPWDLJ54R5knVa+GrKNEbejUh6yeeH+Y50Wn4Opgyp5yOjDzpqc0n9E6MmUtRIXQgBg4cKFePvtt/HZz34WwOl/5D//8z/H//k//6fAlTGMdRQVFaG6uhpFRc4/lGXzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZa3E0lhnkkql8K1vfQsbN2401nquqKhANBrlpbEUhJfGYhiGYRimkHR3d2POnDmTfj4vjcUwDMMwDMMwjFvhpbEEUlpaiqeffho/+tGPjN/FYrECVsQw1pFOp7F//36k0+lCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/1inx/1HHVTKQzYv3IOs08pXQ7Yx4nZUykM2L9x/rNPiOZA6qJKHjD7srMkp/UeEnkxZO+ZCyFS/uPKDH/wAmzZtQllZ2ZS3ZRinoGkadu/eDU3TCl2KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnZ4M/cfr9ZranjmNbMetGWTzwj3IOq18NWQbI25HpTxk88L9xzotGeZAjBhUyUNGH3bW5JT+I0JPpqwdsTTWnj17AABXXHEFPv7xj09p27a2NvzsZz8zLoY0NzcLr48pHLw0FsMwDMMwhUTTNFRXVyOVSl30uX6/H6OjoxgaGsLx48d5aSyGYRiGYRiGYVwFL411EW655RbccsstU74IApy+iXpTUxOam5v5IgijHEQETdOU+NaTbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh/cf6zTs6L/+P1+3HLLLZPSuPPOO1FWVjblfTPnIttxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi8/B1EGVPGT0YWdNTuk/IvRkytoRF0IYhjk/4XAYjzzyCMLhcKFLMY1sXuyux8r9idQWoWVGQ7Zx4nZUyUM2H9x/rNOzqv/88Ic/xK233gqfz3febX0+H/7iL/4CTU1Nk97fRx99hEQiMeU63YJsx60ZZPPCPcg6rXw1ZBsjbkelPGTzwv3HOi0+B1MHVfKQ0YedNTml/4jQkylrRyyNxTAXwu1LY2WzWQwNDaG2thbFxcWFLscUsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOz6r+09bWhnA4jHQ6jdHR0XO2rampwRe/+EXj/iAnT5686NJYLS0tuOqqq/D5z38eRUX82aXxyHbcmkE2L9yDrNPKV0O2MeJ2VMpDNi/cf6zT4nMwdVAlDxl92FmTU/qPCL3x2xfyvVy+EMI4GrdfCGEYhmEYpvCMXQiZiC984QtTvhBSV1eHBQsWoLq6WnTJDMMwDMMwDMMwtsP3CPlvvvjFL1r6+OM//uNCW3QVH374IR5++GHcdtttqKurQ0lJCaqrq3HTTTfhP/7jP3i5BwHEYjGsX78esVis0KWYRjYvdtdj5f5EaovQMqMh2zhxO6rkIZsP7j/W6Tmx/ySTySlvQ0Q4deoU3n33Xbz++ut4/fXX8fbbb6O7u1uKtXlFINtxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOy4lzIOb8qJKHjD7srMkp/UeEnkxZewtdwJns3r0bHo/HEm0iskybOZfOzk7ccMMNxv9ffvnlWLBgAQKBAFpbW9Ha2oonnngCr7zyCmbPnl3ASp2N1+tFfX298QlTJyObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNB/cf6/Rk6T8VFRWmNSbi5MmT6OrqOut3iUQC3d3d0HUdH//4xy3dvx3IdtyaQTYv3IOs08pXQ7Yx4nZUykM2L9x/rNOSZQ7EmEeVPGT0YWdNTuk/IvRkylqqpbGsXv/Y4/Egm81aug/mNMeOHcMf/uEf4rvf/S7+6q/+CnPnzjX+tnfvXtx77704ceIEFi1ahLfeeivv/fDSWAzDMAzDFJqpLo2Vy+Xw/vvv49ixYxddGusP/uAPcNlll026FiLCvn37oGnaef/u9XqxePFi/oAQwzAMwzAMwzC2U8j3cgt/KeYMfvjDH07qeS+++CLeeecdeDwePPjggxZXxeTDrFmz0NXVhWnTpp3zt8WLF2PDhg34whe+gNbWVnzwwQdnfXuEmTypVAptbW1YuHAhSktLC12OKWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnZ4s/aeoqAg33HADotHoRZ97+PBh9PT0YPr06bjiiiswffr0CZ+fzWYveBEEAHRdh6ZpKCsrm3LdMiHbcWsG2bxwD7JOK18N2caI21EpD9m8cP+xTkuWORBjHlXykNGHnTU5pf+I0JMpa0deCBkeHsY777wzpW0Ye/H7/RP+ffHixaiqqkI4HMahQ4f4QkiepNNp7N+/H9dee23Bm4lZZPNidz1W7k+ktggtMxqyjRO3o0oesvng/mOdnkz9p6SkBHPmzJnUc+PxOOLxOIaGhrBgwYKLXgxxA7Idt2aQzQv3IOu08tWQbYy4HZXykM0L9x/rtGSaAzHmUCUPGX3YWZNT+o8IPZmylmpprMnyve99Dz//+c8dt9RVNpvFgQMH8M477+Ddd9/FO++8gw8//BCZTAYAcMstt2D37t15aafTaWzatAktLS04cOAABgYGMGPGDMyZMwff+MY3sHz5csycOVOgG3Pouo6qqiokEgn89re/xR133JGXDi+NxTAMwzBMoZnq0lhjdHd3X/BiSEtLC2pqajA6OnrW7+fPn49PfepTF9yPrut48803J6zl85//vOO/EcIwDMMwDMMwjPPgpbFcwNatW3HvvfcikUgI1z506BCWLVuG/fv3n/X7/v5+9Pf346233sK///u/o7m5GV/72teE7z8ftm7dikQiAa/Xi5tuuqnQ5TiWXC6HSCSCyspKy++xYzWyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfHD/sU7PSf3n4YcfRmdnJ9Lp9Fm/Ly0txV133YWmpiaUl5efs52maejv7z/n9zU1NfD5fMZzdF2Hx+NBeXm5FON+qsh23JpBNi/cg6zTyldDtjHidlTKQzYv3H+s03LSHIiZGFXykNGHnTU5pf+I0JMpazlGmgsIhUKWXATp6enBH//xHxsXQTweD2655RasWLECd9xxh/Fpv8HBQdx111147bXXhNcwVYLBIP7pn/4JAPA//+f/lOqbKk4jEomgoaEBkUik0KWYRjYvdtdj5f5EaovQMqMh2zhxO6rkIZsP7j/W6Tmp/xw8ePCciyDA6TV2N23ahBUrVpz1+0QigaVLl6K2thbLli0753HHHXfg4YcfhqZp+OCDD/Dee+/h3Xffxd69e3Hq1ClbPIlEtuPWDLJ54R5knVa+GrKNEbejUh6yeeH+Y52Wk+ZAzMSokoeMPuysySn9R4SeTFnz0lg2sX79enzrW9/CpZdeis9+9rPG4+WXX0ZDQwOA/JbG+qM/+iO88cYbAICrrroK27ZtO+t+G8PDw1i6dCl27twJ4PSnATs7O1FdXS3E11TJZDL42te+hldffRVz585FW1sbKisr89Zz+9JYMl1VNYtsXvjTSNZp8aeR1EGVPGTzwf3HOj2r+o8VS2NdDL/fj2AwaNyXbenSpdi0adNFt7v11lvx4IMPnvP76667zlEfTpHtuDWDbF64B1mnxd8IUQOV8pDNC/cf67T4HEwdVMlDRh/8jRBr9MZvX8j3cuUYaS7gK1/5Ck6cOIH+/n5s374dDz74IL761a+auiDx4osvGhdBfD4ftm/ffs5Nx2fOnIlt27Zh7ty5AIDR0VH89Kc/Pa/eqlWr4PF48nroun7RenO5HP76r/8ar776Kmpra/HCCy+YugjCAEVFRaiurpbmRcMMsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOT6X+c+YSWJqmYdu2bZPabu/evef9psnw8LDQ+qxGtjzMIJsX7kHWaeWrIdsYcTsq5SGbF+4/1mmpNAdyO6rkIaMPO2tySv8RoSdT1oWvwCXU1dVh9uzZQjV//vOfGz//zd/8Da6//vrzPm/atGl4+OGHjf9fu3bteS9cTJs2DZdcckleD4/HM2GtRIRvf/vb2LhxI2pqavDKK6/g6quvztM5M0Y0GsXjjz+OaDRa6FJMI5sXu+uxcn8itUVomdGQbZy4HVXykM0H9x/r9KzqP+O/6TEej8dj6cQ/EAhA07RJPTedTp9zA3bg9JJbwOkPrqRSKaRSKcj8xXHZjlszyOaFe5B1WvlqyDZG3I5KecjmhfuPdVp8DqYOquQhow87a3JK/xGhJ1PWfLN0hxKLxYzlrgDgW9/61oTP/+Y3v4nvfOc7iMViGB0dxeuvv44vfvGLZz3nBz/4AX7wgx8Ir5WI8Hd/93dYv349Kisr8fLLL5/zzRUmP3w+HxYsWGDc/NTJyObF7nqs3J9IbRFaZjRkGyduR5U8ZPPB/cc6Pav6T3V1NUZGRi64bVVVlaUXQk6ePGlaI5vNoqOjA8PDw8jlcgBOe77yyitx5ZVXmtYXjWzHrRlk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LT4HUwdV8pDRh501OaX/iNCTKWu+R0iBeeihh/CjH/0IwNTuEbJjxw58+ctfBnD6mxyhUOiin0a8/fbb8corrwAA/vVf/xU//vGP8y98CvzDP/wDGhsbUVFRgZdffhl/+Id/KEzb7fcIYRiGYRim8ORyObS3t5/3mxZjE//y8vJz/mbmHiEA0NXVhfr6emzZsgXf+MY3Jr1dS0sL6urqJv38q6++ekrPZxiGYRiGYRiGOR98jxBmyhw8eND4+frrr7/oRRAAuPHGG8+7vZXcf//9aGxsRHl5OZ5//nmhF0GY02uC7969e9LLYciMbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh/cf6zTs6r/FBUV4brrrsPChQsxb948zJ07F3PnzsW1116Lz33uc+e9CCKKTCZjLGtlFUNDQ5bq54Nsx60ZZPPCPcg6rXw1ZBsjbkelPGTzwv3HOi0+B1MHVfKQ0YedNTml/4jQkylrvhDiUA4fPmz8fNVVV01qmzPvUXLo0CHhNY3ngQcewM9+9jP4/X789re/xS233GL5Pt2Gruvo7u6e1M3qZUc2L3bXY+X+RGqL0DKjIds4cTuq5CGbD+4/1ulZ2X+KiopQVVWFK6+8ErNnz8bs2bNRW1s7qQ+r5IumaXj33Xct0x8jmUxavo+pIttxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi8/B1EGVPGT0YWdNTuk/IvRkylqqpbHOvKH3RLzwwgt455134PF48MMf/nBK+3jwwQfzKc0y8l0a65577sEzzzwD4PS3LhoaGi66zXPPPYdvfvObAE7fvD0QCORX9CR46623jG9/fOxjH8MnPvGJCz53xYoVWLFiRV774aWxGIZhGIZxKmaXxnrxxRdRXFyMjo4OfP/735/0do8++ijmz58/6XV6y8vL8bnPfS7fMhmGYRiGYRiGYQAU9r1cqW6W/tBDD8Hj8UzquWPPG7uIMFlkuxCSL7FYzPi5rKxsUtuc+bwzt7eCM5doGBwcxODg4AWfe9ttt5nen9/vNz5xmc1mEY1GUVVVBY/Hg0gkAr/fD5/Ph2QyiVwuh2nTpkHXdcRiMVRXVwMAwuEwysvLUVJSgkQiAeD0iX8mk0EikUBVVRUAIBQKoaKiAl6vF/F4HEVFRSgrK0M6nYamaaisrAQRIRwOY/r06SguLkYsFoPX64Xf70cqlUI6ncb06dORy+UQiURQWVmJoqIiRKNR+Hw+lJaWQtM06LqOioqKC3oqLi7GqVOnUFNTg8rKSkd7CgaDiMViuPzyy5FOpwueUyKRQCAQQH19vfFvnm9Okxl7paWlCIVCmDZtGoqLi4V68ng8iEajqKysRDabLXhO0WgU6XQatbW1iEajU/IEACdOnMCll16KadOmCT2eVOwRVntKJpPo7e3FnDlzUFRU5FhPkUgEo6OjuPLKK5HNZgueUyqVwsmTJzF37lwUFxdbPvZE9ojxnsZqnDFjBpLJpOmxR0SIxWKoqqpCJpOZck7BYBCpVAqXXnopEolEwV9zk8mkcSz5fD74/X5EIhF4PB5UVVUhGo0im82ioqICuq5D0zSUlpbC5/MhGo3in//5nzE4OGjcqH369OlIp9NIpVLG3CgWi6G4uBjTp09HOBwGEeGHP/whNE3DvHnz8E//9E8oLS2F1+tFLpdDNptFSUkJgNP3oRtb1ku2vpdOp3HixAnMmTPHOI6d2stTqRSSySRqamqMGgr5+jQ6OgpN01BXV4dkMml53/P7/QgEAigrK8Mll1wi1NO0adMwODgIn8+H6urqgueU73zP5/Ohr68PFRUVmDFjhjLzCKfOjbLZLI4fP47Zs2ejtLTU0Z7MzMtVOCcU2SPGe6qoqMDw8DBKS0sxbdq0gudkZr6n0muuCn0vFAohEongiiuuQCaTcawnM/NyqzyZPdcoVI8Y76msrAzBYNB4vtmxN23aNIyMjMDv96OsrMz0OWEhkW5pLCKy7KESZ66rNtlP85WWlho/Wz3wlixZMulcHnroIdP7W7RoEe6++24Ap9exbmhoMC7GNDU1oaOjAwCwZ88ebN++HQDQ09Nz1jdpGhsb0dnZCeD0zeh37NgBAOjs7ERjY6PxvIaGBvT09AAAtm/fjj179gAAOjo60NTUBOD0haCGhgZjTe3NmzejtbUVANDW1oYNGzYAACKRCBoaGhCJRAAAGzZsQFtbGwCgtbUVmzdvntBTNBrFU089hW3btjneU3NzM5qamhCNRqXIad++ffj1r3+NaDRqOifg4mPvwIEDWLt2LV566SXhnt544w2sXbsW+/btkyKntWvXYu3atYhGo1P2FI1G8atf/QpvvPEGALHH02RycsrxZJensVqj0aijPW3btg1PPfUUotGoFDkdPXoUTz/9NKLRqJCc7OwR4z1t27YNa9euxdGjR4WMvZ07d2Lt2rVoa2vLK6fHHnsMTzzxBKLRqBSvuW+99ZaxdOj8+fONb8iWlpZi5cqVqK2tBQDcfffdWLRoEQBg4cKFuPfeewEAvb29+O53v4vKykoAwL333ouFCxcCOHtuVFtbi5UrVxpzwRUrVmD+/Pk4ePAgNm/ejBdeeAHLli3Dv/7rv+L48eNYtmwZli1bht///vd4/PHHoWmadH3vxIkTePrpp42LQE7u5c8++yzWrl2LEydOSPH69Nhjj2HdunWIRqO29L1oNIonn3wSjz32mHBP0WgUv/zlL/HYY49JkVO+871oNIqmpiY0NzcbOTn1NVeFuVE0GsXTTz+No0ePOt6TmXm5FZ7sPicU2SPGexoZGcHatWvR3NwsRU5m5nsqveaq0veam5sRjUYd7cnMvNwqT2bPNQrVI8Z7Onr0KNauXYtt27YJGXuBQABr164Vfk5YCKRaGmvJkiWT/kZIvuzatctS/amS79JYf/Inf4IXX3wRAPAv//Iv+MlPfnLRbV566SV87WtfAwBUVFQYb7A4mbGvU4196rG1tRVXX321o66Cm/m0QklJCUKhEEpKSoxPizrVUzgchsfjwfTp06FpWsFz0jQN0WgUM2fOBBFZ/qmSsrIy45O4Ho9HqKfi4mKjt2YymYLnFI/H4ff7UVpainA4PCVPRUVFGBkZwbRp01BWVua6T//I5imVSiEcDhtv1jrVUywWQyaTQXV1NTKZTMFzymQyGB0dxcc+9jHjuLNy7InsEeM9ZbNZeL1eFBcXIx6Pmx57Ho8HRUVF8Hg8SKVSU85p7BPZZWVliMViBX/NPXjwID796U/n/Y2QoqIiVFZWIhKJIJfLTfobIZWVldA0Del0GmVlZSgqKkI8HofX60VFRQVCoRAAoKqqColEArfccotxAUiWvqfrOkZGRlBbW4uioiJH9/JMJoOSkhIjr0K/PoVCIfh8PpSXlxvjwsq+N7afTCaDGTNmCPU0Nl8Z81fonPKd7/n9fkSjURARqqqqlJlHOHVuREQYHBxETU0NSkpKHO3JzLxchXNCkT1ivKfKykrjNbmsrKzgOZmZ76n0mqtC34tEIsZ8LpVKOdaTmXm5VZ7MnmsUqkeM9zRt2jRks1nouo7i4mLTY2/69OnIZDJIp9MoLS01fU7Y29tbsKWxpLoQ4kZUvUeIXfA9QhiGYRiGcSqapmHGjBlnfdNXRsaW8/H7/YUuhWEYhmEYhmEYB1PI93KlWxqLmRxj6+cCwMDAwKS26e/vN36uqakRXhNjP5FIBKtXrza+eudkZPNidz1W7k+ktggtMxqyjRO3o0oesvng/mOdnmz9x+/348477xSmZxWpVAr9/f3I5XLIZDLIZrOFLkm649YMsnnhHmSdVr4aso0Rt6NSHrJ54f5jnZZscyAmf1TJQ0YfdtbklP4jQk+mrPlCiEP5gz/4A+PnEydOTGqbkydPGj9fffXVwmti7Mfv92PJkiVKfEJTNi9212Pl/kRqi9AyoyHbOHE7quQhmw/uP9bpydh/mpqacM8990z6nm+Twe/345577sHw8DC+8Y1vCNE+ePAg3nzzTezduxdvvPEG3nvvPYTDYQHV5odsx60ZZPPCPcg6rXw1ZBsjbkelPGTzwv3HOi0Z50BMfqiSh4w+7KzJKf1HhJ5MWfPSWAUm36WxduzYgS9/+csAgGnTpiEUCsHr9U64ze23345XXnkFAPCv//qv+PGPf/z/s3fu8VGVd/7/zCWTIeQyBIIBAUGQi6JgtYrFC2irtkrl17WtLNuluuuqvUm7W9ru/haFXX+11BZilahVJEWMFwQ0tkAQBlQwKJcAgXAxQCAkk+vc75fn90d2zpKQkGTOZZ7zzPf9es1LzJz5nO8nn2e+85ycOc9JvXBOoKWxCIIgCIIQgZ07d/a4bGkkEsGCBQv6rbN8+XI89NBDKC4uBtC5nvCePXvQ0dGBUCiEZcuWoba2dsD1lZeXS5pJTCYTvvrVr3JxUEMQBEEQBEEQBP/Q0ljEgPna176G7OxsAIDf78fevXsvuX04HEZVVZX0/3feeaeq9RHaEAwGsXnzZgSDwXSXIhvevGhdj5r7U1JbCS05GryNk0xHlDx480H9Rz09nvtPdnY2iouLL3oM9GqO4uLii05MWCwWFBcXY+zYsVi5ciW2bNmC8vLyix7PP//8gPYVj8fR3t4+oNcoBW/vWznw5oV6kHpaqWrwNkYyHZHy4M0L9R/1tHieAxEDQ5Q8ePShZU166T9K6PGUNZ0I0Sm5ubm46667pP9fvXr1Jbdfv349vF4vgM77g9x+++1qlkdoRCKRgMvlQiKRSHcpsuHNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NPLxP6TlZV10c+SJ0a6P4qKigasHwgElChzwOg1j57gzQv1IPW0UtXgbYxkOiLlwZsX6j/qaWXiHEhURMmDRx9a1qSX/qOEHk9Zc7E01uHDh3Hs2DHk5OTglltu6fNG3qtXr8bZs2exePFijSpUj1SXxgKAv/71r7j//vsBdH6LcN++fT1eShQIBDBt2jR8+eWXAIBf//rX+O1vfyu/eA6gpbEIgiAIghCBqqoqhEKhi37ucDgwb968fuuUl5fj3nvvhc1mAwAwxvD555/36xtYl9pXT0tjAcDll1+Oq666qt/1EQRBEARBEASRuWTs0lgNDQ2YOXMmpk+fjoceegjf/va3MWLECPz0pz+Fz+fr9XWvvfaadPIgk7nvvvtw2223Aehc+ur+++/HoUOHumzT3t6OuXPnSidBCgsL8atf/UrzWgl1iMViOHPmDGKxWLpLkQ1vXrSuR839KamthJYcDd7GSaYjSh68+aD+o55eJvYfg8GAqVOnKnozdh7Qax49wZsX6kHqaaWqwdsYyXREyoM3L9R/1NPKxDmQqIiSB48+tKxJL/1HCT2esk7biZBgMIivf/3rqKqqAmMM+fn5GDRoEKLRKFauXImvfOUrOHnyZLrKU4VvfetbmD59epfHSy+9JD2/d+/ei56fPn06Ghsbe9V88803MWLECADAmTNnMH36dMyePRv//M//jAceeABjxoyRbpBuNpvxzjvvSN8QFAmr1Yrc3FwAnetVu1wuJC928ng8iEQiADrHnd/vB9D5RnS5XJKG2+1GNBoF0HkVTXKph2g0CrfbLW3ncrmkN6/f75e+YRmJRODxeAB0fvvS5XIhHo8DAHw+n/Qtz3A4LC1T1v3yMK/Xi3A4DAAIhULSCcHePPl8PpSVlaGlpUX3npqamlBWVgafz8dFTu3t7VI9cnMC+h57TqcTZWVlaG1tVdxT0kt7ezsXOTU2NkoaA/WUHPPJNemVfD/1Jye9vJ+08tTR0SFlqWdPLS0tkg8ecnK5XFI9SuSkZY/o7in5u3W5XIqMvba2NpSVlaGjoyOlnC7sP7x95sZiMakexhhCoZD0+8/NzZXu+5GdnY28vDwAgNFohM1mg9HYOaXPy8tDPB5HVlZWF09WqxVTpkzB9OnTcc011+CKK66QToxEo1Eps0Qi0WWeWFBQIC2tFYvFJH/xeLzL1Svp6HtutxtlZWXS6/Tcy5ubm1FWVga3283F59OF7xMt+l7yvXXhMY9Sni7U5iGnVOd7SR9NTU1STnr9zBVhbpTMI/k6PXuSMy9Xw5PWx4RK9ojunrxer/S+5SEnOfM9kT5zReh7DodDGg969iRnXq6WJ7nHGunqEd09uf7neLKlpUWRsefxeFBWVgaHw6HoMWE6SNuJkJUrV+LEiRO44oor8Omnn8LpdMLtduOdd97B6NGj8eWXX+L2229HTU1NukpUnKNHj+LgwYNdHs3NzdLzfr//oucPHjwoDZ6eGDVqFLZv347p06cD6BzMO3bswGuvvYYPPvhAemMUFRVh48aNXe4rIhIzZszAgw8+CABobW1FSUmJ9OZctWoVjh49CgDYuXMnKioqAHRekVRSUiJplJaWoq6uDgBQWVmJyspKAEBdXR1KS0ul7UpKStDQ0AAAqKiowM6dOwF05rtq1SoAnY2jpKQEra2tAIB169ZJN6s/cOAA1q5dC6CzOZSUlEjNaO3atThw4ACAziUy1q1bd0lPNpsNN998Mz7++GPde3rvvffwwAMPwGazcZHT6dOncdlll8Fms8nOCeh77LW3t+Opp57Cnj17FPdUW1uLp556CqdPn+YipzfffBNPPfUUbDbbgD3ZbDZcccUVqK2tBaDs+6k/Oenl/aSVp8bGRhQUFMBms+na08cff4ybb74ZNpuNi5ySE8rkH6TVHntK9ojunj7++GM89dRT8Pl8ioy96upqPPXUU2hsbEwpp9dffx1PPvkkbDYbd5+5zc3NUj3xeBx79uyR5nEPPvggZsyYAQC4/vrrMX/+fABAfn4+Fi5ciPz8fADA/Pnz4ff7kZOTc5Gn559/HlarFUVFRXj//ffR0dEBAKivr8eJEycAdB7QLFy4UKr1iSeewPjx46X6ampq4HA4cOrUKXzxxRfSHDUdfS95IDho0KAuOQH66+Vbt27FU089hWg0ysXn0+uvv47HHnsMNptNk75ns9mwYMECvP7664p7stls+NWvfoXXX3+di5xSne/ZbDY88MADeO+996Sc9PqZK8LcKPn5nPy81rMnOfNyNTxpfUyoZI/o7mnQoEF46qmn8N5773GRk5z5nkifuSL0vQ8//BD33HMPbDabrj3JmZer5UnusUa6ekR3Tz6fD0899RQ+/vhjRcae0WjEU089hQ8//FDRY8K0wNLELbfcwoxGI9u9e/dFzzmdTvb1r3+dGQwGVlRUxPbv39/l+VtvvZUZjUatSlWMK664ggEY8OP06dN9aofDYVZWVsbuvfdeNnr0aGaxWNjw4cPZjBkz2LJly1hra6v6BtNATU0NA8CsVivLzc1lNTU1LBaLMafTyRKJBGOMMbfbzcLhMGOMsUAgwHw+H2OMsWg0ypxOp6TlcrlYJBJhjDHm9/uZ3+9njDEWiUSYy+WStnM6nSwajTLGGPP5fCwQCDDGOjNwu92MMcYSiQRzOp0sFosxxhjzer0sGAwyxhgLhULM4/EwxhiLx+PM6XSyeDzOGGPM4/GwUCjEGGMsGAwyr9fLGGPkiTyRJ/JEnsgTeRLc0yeffMI2b97M7HY72759O9u0aRPbtm0bKy8vZ7m5ucxqtTIALDs7m+Xl5TEAzGg0MpvNxoxGIwPA8vLy2L59+/rlaf/+/cxut7PKykq2ZcsWZrfb2dq1a5nNZpPmoAUFBSwrK4sBYDk5OSwnJ4cBYFlZWaygoIBZLBb2rW99izU2NmZMTuSJPJEn8kSeyBN5Ik/kiTyRp9Q9Jf+Wm3zU1NQwrUjbiRCbzcZGjx7d6/PRaJQ99NBDzGAwsCFDhrCqqirpOb2eCCGUJ51vHh5wuVzst7/9bZemp1d486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0eO4/n332GbPb7Rc9ysvLFf8CDWOMHTp0SPa+ko/vf//7/dpnR0cH+/LLL9nRo0fZyZMnWVtbm3TANFB4e9/KgTcv1IPU00pVg7cxkumIlAdvXqj/qKfF8xyIGBii5MGjDy1r0kv/UUKv++vT+bdcs5JXlwwEv9+PiRMn9vq82WzGm2++CavVirKyMtx9993461//iltvvVXDKgmCb3JycjB37lzk5OSkuxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/UYf3338foVBIuo9JT5w8eRL79u3r8rPCwkKMHz9eWn5rIIiUB29eqAepp5WqBm9jJNMRKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjK2sDY/9zJRGNGjBgBs9mMc+fO9bnto48+itdeew25ubl4//33sXjxYuzevVu6qQuRuRw5cgRTp06V/r+mpgbXXHNNGisiCIIgCIIYOFVVVV1uQJ7E4XBg3rx5/dY5ffo0xo4d2+d2hw8fRnt7u6x99We/gUAADz/8MDZu3HjRfe8sFgtmzpyJd999F0OHDk1pvwRBEARBEARB6Id0/i03bTdLnzp1KhobG3HmzJk+t/3zn/+Mxx9/HD6fD/fffz9OnjypfoEEoQMCgQA2btwo3UxVz/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR//lfBg8erMl+HnnkEbzzzjsXnQQBgEgkArvdjn/6p38asK5IefDmhXqQelqpavA2RjIdkfLgzQv1H/W0aA4kDqLkwaMPLWvSS/9RQo+nrNN2IuT2228HALzxxhv92n7lypX4yU9+gmAwKN3VniAIgiAIgiCIgTN8+HAYjeoeCoRCIbz//vt9brdly5Yer4YhCIIgCIIgCIJQirQtjXX48GFMmzYNw4cPx+nTpzFo0KB+vW7RokV47rnnYDAYaGksgpbGIgiCIAhCCLReGgsAXC4X6uvr4Xa7wRhDW1sbHnzwwX7vq/t+R48ejfb2dni9XjDG0N7ejhkzZiheN0EQBEEQBEEQ+iQjl8a69tpr8eWXX2LXrl0wmUz9ft2yZcuwe/dubN++XcXqCEIfRKNRHDt2DNFoNN2lyIY3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+k9XbDYbpk2bhttvvx133HEHbrjhhpS1mpub8cknn+Do0aM4d+4cGhoacPr06ZS0otEo2tra0NzcLJ1U6WkbUfLgzQv1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1mn7UQIAFx55ZUYP348LBbLgF43Y8YM3HHHHSpVRRD6gad19uTCmxdan1Y9LVqfVhxEyYM3H9R/1NOj/qMeqZ706M758+exa9cu1NTUoLa2Fvv27cO+ffsuuseISHnw5oV6kHpadI8QMRApD968UP9RT4vmQOIgSh48+qB7hKijx1PWaVsaiyCUgJbGIgiCIAhCBNKxNFZ3QqEQhgwZktL9OsrLy1FcXNzlZwOp/fTp0xg6dCj27dvX4/NFRUU0xyMIgiAIgiAInZORS2MRhJJYrVbk5uYCAOLxOFwul7SMgsfjkb5FGAwG4ff7AQCxWAwul0vScLvd0mVagUBAOlMZjUbhdrul7VwuF2KxGADA7/cjGAwCACKRCDweDwCAMQaXyyXdx8bn80l/VAiHw/B6vQCARCIBl8uFRCIBAPB6vQiHwwA6/xjh8/nIE3kiT+SJPJEn8pQBnmKxmFQPYwyhUEiqNTc3F1arFQCQnZ2NvLw8AIDRaITNZpNuep6XlyfVmoons9nc5R4hBQUFyMrKAgDk5OQgJycHAJCVlYWCggJpO5vNJtUaiUSk30MikUB+fj4AwGAwwGazSUvidvcUCATQ0dEheU/WGg6HEYvF0NHRgWAwmPacRBx75Ik8kSfyRJ7IE3kiT+SJPGntKR3o9kQIYwytra04c+YMzpw5g9bW1h7XDyYygxkzZkgH7q2trSgpKZHenKtWrcLRo0cBADt37kRFRQUAoKGhASUlJZJGaWkp6urqAACVlZWorKwEANTV1aG0tFTarqSkBA0NDQCAiooK7Ny5EwBw9OhRrFq1CkBn4ygpKUFraysAYN26daiqqgIAHDhwAGvXrgXQ2RxKSkqkZrR27VocOHAAQOc3Q9etW3dJTy6XC8uWLcP69et17+nVV1/Fb3/7W7hcLi5y2r17N/74xz/C5XLJzgnoe+wdOnQIS5YswYcffqi4px07dmDJkiXYvXs3FzmtXLkSS5YsgcvlGrAnl8uFP/zhD9ixYwcAZd9P/clJL+8nrTzt3bsXy5cvh8vl0rWn9evXY9myZXC5XFzkdOzYMZSUlEiTRLXHnpI9orun9evXY8mSJZInOTlVVFSgsrISS5Yswd69e1PO6b/+67/gcrm4+8xtbm6W6onH49izZ490gPPggw9KNx2//vrrMX/+fABAfn4+Fi5cKJ1smD9/Pr788ssB53Th+2nChAm49957YbFY8MQTT2D8+PEAgLvvvht33303AGD8+PF44oknJE8LFy6UDp5OnDiB+vp6RCIRNDQ04JFHHgHQebJj4cKFKCoq6tHTRx99hGg0inA4jD179ki1Hj58GA6HA/F4vIunU6dOoaSkBC0tLX164r2Xv/XWW1iyZInkiYfPp//+7/+Gy+XSpO+5XC4888wzqnhyuVxYunQpNzmlOt9zuVz47W9/i1dffbVLTnr8zBVhbpScwx47dkz3nuTMy9XwpPUxoZI9orunlpYWLFmyBK+++ioXOcmZ74n0mStC3/vLX/6CZ599Fi6XS/eeUp2Xq+VJiWONdPSI7p6OHTuGJUuWYP369Yrk1NDQgCVLluAvf/mLoseE6UA3S2Pt27cPW7duxeeff46DBw+ioaFBOsOVxGw2Y9SoUZg2bRpuuukmfOMb35B100eCf5KXU1mtVpjNZlRVVWHy5Mnwer0oKCiAwWCAx+OB1WqFxWJBMBhEIpHA4MGDEYvF4PP5YLPZAHSeXc3JyUFWVpb0h4ecnBxEo1EEAgHpm48ulwu5ubkwm83w+/0wGo0YNGgQIpEIQqEQ8vPzwRiD2+1GXl4eTCYTfD4fzGYzrFYrwuEwIpEI8vLykEgk4PF4kJ+fD6PRCK/XC4vFguzsbIRCIcRiMeTm5iIej/foyWg0oq6uDsXFxSgoKNC1p46ODrS3t2PcuHGIRqNpz8nv96O+vh4TJ06E0WiUlVN/xp7FYkFzczMKCwthNpsV9QQAbW1tKCoqQiKRSHtOHo8HXq8Xo0aNgs/nG5AnxhhOnjyJ0aNHIzc3V9H3k4g9Qm1PgUAAp0+fxqRJk2AymXTrye12w+FwYPz48UgkEmnPKRQK4csvv8TkyZOl+tQce0r2iO6eIpEInE4niouLEQqFZI+9RCKB9vZ2DB8+HLFYbMA5dXR0wOPxYMyYMQgGg1x95n766afw+/3Izs4GYwzhcBgWiwUtLS149NFHEYvFEAqFkJ2dDYvFAq/XC6PRiPz8fHg8Him7vXv3YuLEibLeT+fOnUNTUxOam5thMplgNBoRi8UQjUbxyCOPICsrCzk5OdK3z2w2G5YvXy59fv7pT3/CwYMHYbFYYLVa4fF4YDAYUFBQAK/Xi3g8jtzc3C6e9u/fD4vFgnPnziEcDiM7OxsGgwHhcBgmkwlmsxk33XQTEomE1P9PnjyJSZMmISsrS9e9PBQKweVyYcSIEQgGg2n/fGpvb4fb7cYVV1yBUCiket/Lzs5GfX09CgoKMGzYMEU95eTk4Ny5c8jLy8OQIUPSnlOq872srCxp+bjCwkJh5hF6nRvFYjEcO3YMEyZMkPqeXj3JmZeLcEyoZI/o7mnw4ME4f/488vPzkZubm/ac5Mz3RPrMFaHvOZ1OtLa24sorr0QsFtOtJznzcrU8yT3WSFeP6O7JarXC4XBgyJAhsFgsssdeTk4OGhsbUVBQgJycHNnHhOfPn0/b0lhcnwg5evQoXn/9dbz55ptwOBxdnuutbIPB0OX/i4uL8fd///f44Q9/SOsKCwjdI4QgCIIgCBHYv3+/9A2yC9HyHiFJDh8+jPb2dtm1DITTp08jFotJ38rridtvv11aBowgCIIgCIIgCP1B9wjpxvbt23HPPffg2muvxR//+Ec4HA4wxro8eqP7dg6HA3/84x9x3XXX4Z577sH27ds1dEIQ6uL3+/HWW29J6+3pGd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT2e+8/QoUNV0U0FPZxs4O19KwfevFAPUk8rVQ3exkimI1IevHmh/qOeFs9zIGJgiJIHjz60rEkv/UcJPZ6yNqe7gAvZv38/fvnLX0prvydPeBgMBkydOhW33XYbpk+fjilTpuDyyy/HsGHDkJOTA8YYgsEgWltbcf78edTW1uLgwYP45JNPcOTIEUnno48+wkcffYRZs2bh97//Pb7yla+kyypBKEL3m6TqGd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT2e+8+YMWMQCATQ3Nzc5eeFhYXIzs6W1ty9FFarFcXFxbJryc/Pl9YM5hXe3rdy4M0L9SD1tFLV4G2MZDoi5cGbF+o/6mnxPAciBoYoefDoQ8ua9NJ/lNDjKWtulsZ67LHHsGrVKiQSCTDGYDAYcOedd+J73/se5s6dK91YcaC0trZi48aNePfdd7Ft2zZJ22g04p/+6Z/w0ksvKeyE0BJaGosgCIIgCJGIRCLw+XxgjMFkMiEvLw/z58/H22+/3edr/+7v/k66aaEcotEoqqurL/rWlppLY3355ZdgjNHSWARBEARBEAQhMLQ0FoA///nPiMfjyMvLw6JFi/Dll19i69atePTRR1M+CQIARUVFePTRR1FZWYm6ujr88pe/RF5eHuLxOP785z8r6IAgtCcSiaC6uhqRSCTdpciGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPTw/9x2KxoLCwEEOHDoXNZoPJZMKqVavw4IMPwmKx9Pqa2bNnY+XKlYrUkJWVhenTp2PChAkoKirCsGHDMHLkSEycOFER/Z5oamoa0Pa8vW/lwJsX6kHqaaWqwdsYyXREyoM3L9R/1NPSwxyI6B+i5MGjDy1r0kv/UUKPp6y5ORGSl5eHJUuW4OzZs3j22Wcxbtw4xfcxduxY/O53v8PZs2fx9NNPIzc3V/F9EISWhEIh7NixA6FQKN2lyIY3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU9Pr/0nJycHZWVlqKioQHl5+UWPiooKLF68GDk5OYrtMysrC6NGjcI111yDqVOnYuLEiSgsLBywzpQpU/D666+jvLwcZWVlvW7ndrsHpMvb+1YOvHmhHqSeVqoavI2RTEekPHjzQv1HPS29zoGIixElDx59aFmTXvqPEno8Zc3N0lhtbW0YNmyY8PsklIWWxiIIgiAIIhMIBAL4/PPPL7nNjTfeqOoXfc6cOdPvLystX74cV199dZerWC61tNbGjRtxzTXX0NJYBEEQBEEQBCEwtDQWkJYTEnQShNA7jDGEQiFwcj5TFrx50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf+RRXFwMq9Xa53YWi+WikyBKI1IevHmhHqSeVqoavI2RTEekPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylrbk6EEAQxcNxuN373u98NeDkJHuHNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NOj/iMPq9WKBx54oM/tZs6ciUGDBsFms/Vb+/Tp0wiHw5fc5sKDJ5Hy4M0L9SD1tFLV4G2MZDoi5cGbF+o/6mnRHEgcRMmDRx9a1qSX/qOEHk9Zc7M0FkGkQqYvjRWPx9Ha2oqioiKYTKZ0lyML3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9PT33Hx6WxkrW8dBDD2HLli0X3fDQYrFg5syZWLRoEQYPHoxbbrkFx44dQ0dHBxKJxCWXxur++p6uPLnwhu3pzkNJePNCPUg9rVQ1eBsjmY5IefDmhfqPelp6ngMRXRElDx59aFmTXvqPEnrdX09LYxGETKxWq3TgH4/H4XK5pG8Nejwe6UA9GAzC7/cDAGKxGFwul6ThdrsRjUYBdB7kBwIBAEA0Gu1y1tLlciEWiwEA/H4/gsEgACASicDj8QDo/Maiy+VCPB4HAPh8PummQOFwGF6vFwCQSCTgcrmQSCQAAF6vV/o2ZCgUgs/nu6Qnk8mEgoICSVvPnvx+PwoLC2EymbjIKRaLYfDgwTCZTLJzAvoee4lEAsXFxQiHw4p7ikajKC4uRiwW4yInn8+H4uJimEymAXsymUzIzc2VtJV8P/UnJ728n7TyFI/HkZOTA5PJpGtPoVAIBQUFMJlMXOTEGIPVapUmmWqPPSV7RHdPoVAIxcXF0n7l5OT3+xGJRFBcXIx4PJ5STl6vF8OHD4fJZNLtZ24sFpPq7n6Zuc/nU/39lJOTg5KSEqxbt066Wftf/vIXrF27FhUVFfj1r38tjd1EIoExY8bg1ltvxYwZMzB58mTpudzcXOlkR3Z2NvLy8hCJRLBz50784Q9/QFNTExwOBxoaGnD+/HlEIhGcPXsW7e3tUn1Wq1W6Z4iee3kwGERxcbG033R/Pnm9XulAVYu+ZzKZMGzYMElbSU8mkwmXXXYZvF4vFzmlOt8zmUwoLCzs8jmh189cEeZGJpMJVqu1y/xYr57kzMvV8KT1MaGSPaK7J6PRiOLiYmn+ku6c5Mz3AHE+c0Xoe4FAAEOGDIHJZNK1JznzcrU8yT3WSFeP6O6JMYbi4mJp/iInJ5fLBYPBgOLiYgQCAUWPCdOBbk+E+Hw+HDlyBJ999hk+/vjjfj8IMZkxYwYefPBBAEBraytKSkqkN+eqVatw9OhRAMDOnTtRUVEBAGhoaEBJSYmkUVpairq6OgBAZWUlKisrAQB1dXUoLS2VtispKZFu5FlRUYGdO3cCAI4ePYpVq1YB6GwcJSUlaG1tBQCsW7cOVVVVAIADBw5g7dq1ADqbQ0lJidSM1q5diwMHDgAAqqqqsG7dukt68vl8KC0txYYNG3Tv6bXXXsMrr7wCn8/HRU5VVVX405/+BJ/PJzsnoO+xV1NTg9WrV+Nvf/ub4p4+/vhjrF69GlVVVdzktHr1avh8vgF78vl8eOGFF6R+ruT7qT856eX9pJWn/fv34/nnn5f++KpXTxs2bEBpaSl8Ph8XOZ08eRIlJSXSxFLtsadkj+juacOGDVi9erXkSU5OFRUV+Oijj7B69Wrs378/5ZxWrVoFn8+nu8/cffv2Aei84fjhw4el7fbs2SPVun79ek3eT+fPn8fBgwdRXFyM4uJinDp1Cjk5ObBYLDhx4gTq6+u7eEr+4eT9999HUVERAODBBx/EjBkzAADXX3895s+fDwDIz8/Hrbfeih/96EeYN28edu3ahRdeeAFz5szB2rVr8e677wIA6uvrUVJSIp0Y0XMvf/vtt7F69WrJEw+fT6+99hp8Pp8mfc/n8+HVV19VxZPP58Prr7/OTU6pzvd8Ph9eeeUVvPbaa11y0uNnrghzo+Qc9uTJk0J4SnVeroYnrY8JlewR3T21t7dj9erVeO2117jISc58T6TPXBH63po1a/Dyyy/D5/Pp3lOq83K1PClxrJGuHnGhp5MnT2L16tXYsGGDIjk1NTVh9erVWLNmjaLHhGmB6QiPx8P+67/+i1199dXMZDIxo9E4oIfJZEq3BUJhampqGABmtVpZbm4uq6mpYbFYjDmdTpZIJBhjjLndbhYOhxljjAUCAebz+RhjjEWjUeZ0OiUtl8vFIpEIY4wxv9/P/H4/Y4yxSCTCXC6XtJ3T6WTRaJQxxpjP52OBQIAxxlg4HGZut5sxxlgikWBOp5PFYjHGGGNer5cFg0HGGGOhUIh5PB7GGGPxeJw5nU4Wj8cZY51jPBQKMcYYCwaDzOv1MsZYr56CwSCrrKxkbW1tuvfU3NzMPvroIxYMBrnIyeVysc2bN7NgMCg7J8b6Hnsej4fZ7XbW3t6uuCen08nsdru0n3Tn1NzczOx2OwsGgwP2FAwG2ZYtW6R9Kfl+6k9Oenk/aeXJ7XZL7xM9e2pra2OVlZUsGAxykZPX62WbNm3q0o/UHHtK9ojuntra2pjdbpf2Iycnn8/HOjo6mN1uZ263O6WcHA4H2759OwsGg7r7zG1vb2d2u51t3bqVbd68mdntdrZ9+3a2adMmtn37dma321lTU5Mm76dTp06xTZs2Mbvdzux2O9u0aRPbtm0bs9vtbMuWLayyspJ9/PHHF3lyOBwsJyeHAWC5ubnMarUyACw7O5vl5eUxAMxoNDKbzcaMRiMDwPLy8lh2drY03/u7v/s76Xe3adOmLv1Ir728tbWV2e125vP5uPh8cjgcbNu2bdIYUrvvBYNBtm3bNuZwOBT3FAwG2fbt25nD4eAip1Tne8FgkH300UesublZykmvn7kizI2CwSDbtGmTtC89e5IzL1fDk9bHhEr2iO6eAoEAs9vtrLm5mYuc5Mz3RPrMFaHvtbS0sK1bt7JgMKhrT3Lm5Wp5knuska4e0d2T1+tldrudtbW1KTL2/H4/s9vtrKWlRZFjwuTfcpOPmpoaphW6uUfI/v378e1vfxtNTU0Aut4ssb8YDAbpsh9CDDL9HiEEQRAEQWQGvNwjBADOnTsnfSOtN0wmE2677baLfv7QQw/h7bffTnnf2dnZcLlcPd5DhCAIgiAIgiAIvqF7hPRBe3s77rnnHjQ2NoIxBsYYzGYzJk2ahK997Wu44447+vW4/fbb022FIBQlHA6jqqpKuvxMz/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/0k/q1atwve+9z1YLJaUXh8Oh7Fz504Eg0Fh8uBtbFEPUk8rVQ3exkimI1IevHmh/qOeFs2BxEGUPHj0oWVNeuk/SujxlLUuToT84Q9/QHt7OwwGA/Lz8/HCCy+go6MDtbW1+PTTT2G32/v9IAiRiEQiqK6ulm5CpGd486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP8oQ1ZWVsqvzcnJQXl5OSoqKlBWVpaShtPpxMmTJ4XJg7exRT1IPa1UNXgbI5mOSHnw5oX6j3paNAcSB1Hy4NGHljXppf8oocdT1rpYGmv69Ok4dOgQjEYjduzYgVtvvTXdJRGcQEtjEQRBEASRCfC0NFYoFJJuqNgbZrO51zl7IpHAxx9/DABYunTpgL+sVF5ejnHjxuHmm28e0OsIgiAIgiAIgkgvtDRWH5w+fRoGgwEzZ86kkyAEcQGJRAIulwuJRCLdpciGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPMlitVlx99dWX3CY/P79fWosWLcLs2bMHvFRWKBQSJg/exhb1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nr4kRI8hc1efLkNFdCEHzh8XhQUlICj8eT7lJkw5sXretRc39KaiuhJUeDt3GS6YiSB28+qP+op6fn/mO1WmE09j51NxgMGDRokGb1DB8+HNOnT+/xOaPRiNGjR/dLx2q1YvHixaioqEB5ebn06GvZrHA4zNX7Vg7pHlvdoR6knlaqGryNkUxHpDx480L9Rz0tPc+BiK6IkgePPrSsSS/9Rwk9nrLWxdJYV199NY4fP4758+fjL3/5S7rLITgi05fGSiQS8Hg8yM/Pv+QfR/QAb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOent77z4kTJ9DY2Njjc8XFxWn50pDP54PD4YDX6wUADB48GMXFxZe8IuTCpbF6Yvjw4aitrcWDDz7Y4/Pl5eUYMWIEpk2bxs37Vg48jK101qOXHpTOORBvYyTTESkP3rxQ/1FPS+9zIOJ/ESUPHn1oWZNe+o8Set1fn86/5Zo12YtM7r77bhw7dgx79+5NdykEwRVGoxE2my3dZSgCb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOent77z1VXXYWsrCy0trYiGAwC6LyioqioCOPGjUtLTbm5uZgwYYKimv05wOIhD6XgzQv1IPW0UtXgbYxkOiLlwZsX6j/qael9DkT8L6LkwaMPLWvSS/9RQo+nrPk45dYHP/rRj5CdnY3jx49j69at6S6HILjB6/XipZdekr6FqWd486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X09N5/DAYDxo0bh5tuugl33HEH7rjjDtx888248sorYTAY0lbXQDEYDMjOzu71+ZycnD41wuHwJfNIJBJwOp1obGxEa2srotFoyvWqDQ9j60KoB6mnlaoGb2Mk0xEpD968UP9RT0vvcyDifxElDx59aFmTXvqPEno8Za2LEyETJ07E8uXLwRjDD37wAxw5ciTdJREEF1gsFkyfPn3ANxjlEd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP3xgMBhw2WWX9fic0WjEsGHDLvn6SCSC5uZmMMbwwQcfoLKyEvX19YhEIgCAYDCIPXv24ODBgzhx4gSOHDmC3bt3o729XXEvSsDb2KIepJ5Wqhq8jZFMR6Q8ePNC/Uc9LZoDiYMoefDoQ8ua9NJ/lNDjKWtd3CMkSVlZGR5//HEYDAY89thjePDBB3Httddecg1iQmwy/R4hBEEQBEEQeoQxhlOnTqG5uVk6gZGXl4fx48fDZrPhvffe6/UeIT1hsVhw6623Ys2aNWhpaYHL5bpoG6PRiJkzZ8JkMillgyAIgiAIgiCIAZDOv+Xq4ooQk8kEk8mERx55BJFIBKFQCM8//zxuv/12DBkyRHq+r4fZrItbohBEvwmFQtixYwdCoVC6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUffjAYDBg/fjxuueUWzJw5E7fddhtuuOGGfq8fbLVaMWvWLFitVgCdV4ls374dP/jBD+B2u3t8TfJGjbzB29iiHqSeVqoavI2RTEekPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylrXZwISV60kvzvhWsgM8YG9CAIkYjFYjhz5gxisVi6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUf/jAYDMjKyhrwVRpmsxljx4696ItOn376KcLhcK+v6+teIbFYDIlEYkC1yIW3sUU9SD2tVDV4GyOZjkh58OaF+o96WjQHEgdR8uDRh5Y16aX/KKHHVdZMBxgMBkUeRqMx3VYIhampqWEAmNVqZbm5uaympobFYjHmdDpZIpFgjDHmdrtZOBxmjDEWCASYz+djjDEWjUaZ0+mUtFwuF4tEIowxxvx+P/P7/YwxxiKRCHO5XNJ2TqeTRaNRxhhjPp+PBQIBxhhj4XCYud1uxhhjiUSCOZ1OFovFGGOMeb1eFgwGGWOMhUIh5vF4GGOMxeNx5nQ6WTweZ4wx5vF4WCgUYowxFgwGmdfrZYwx8kSeyBN5Ik/kiTyRp4zy9O677zIALC8vj2VnZ3eZ7wFgJpOJ2Ww2ZjAYGACWn5/PLBYLA8DeeOMNtmXLFma329m2bdvYpk2bmN1uZ3a7nX355Zc9ejp9+jTbvn07s9vtbMeOHWzXrl1STZQTeSJP5Ik8kSfyRJ7IE3kiT8p4Sv4tN/moqalhWqGLK0ISiYQij3g8nm4rhErMmDFDWke6tbUVJSUl0rcBV61ahaNHjwIAdu7ciYqKCgBAQ0MDSkpKJI3S0lLU1dUBACorK1FZWQkAqKurQ2lpqbRdSUkJGhoaAAAVFRXYuXMnAODo0aNYtWoVACAcDqOkpAStra0AgHXr1qGqqgoAcODAAaxduxYA4PF4UFJSIi3TsHbtWhw4cAAAUFVVhXXr1l3SUzwex9/+9jd88MEHQnj67LPPEI/Huchp3759KCsrQzwel50T0PfYO3nyJBwOB7Zs2aK4p927d8PhcGDfvn3c5ORwOBCPxwfsKR6P480338Tu3bsBKPt+6k9Oeno/aeGppqYGf/7znxGPx3Xt6YMPPsDf/vY3xONxLnKqr69HSUmJNG9Re+wp3SMu9PTBBx/A4XBInuTkVFFRgR07dsDhcKCmpiblnOrq6hCPxzP+M5f3vpe8cmP+/Pm4/vrrAXSd71122WVYuHAhBg0aBAB45JFHcPXVVwMA2tvbceLECUlvz549Uq3vvPPORZ4cDgf27t2LXbt2Aei84nzr1q34+OOPEY/HVc/p3XffhcPhgMPh4Can2tpaxONxTcZePB7HoUOHVPEUj8dx9uxZbnJKdb4Xj8fx2WefUY/gxFNyDltfXy+Ep1Tn5Wp50vKYUMke0d1TIBCAw+HgJic5871k3wsEAlJO1CPS6yn52aB3T6nOy9XypMSxRrp6xIWe6uvr4XA48MEHHyiSk9PphMPhUPyYMC1odsqFIFQg068IcTqd7Omnn2bnz5/XvaezZ8+yp59+mjmdTi5ycjgcUj1anNlvaWlhTz/9NGtsbFTcU9KLw+HgIqf6+npJY6CekmPe4XAwxugbGOn21NzcLGWpZ0/nz5+XfPCQU2trq1SPEjlp2SO6e0r+bltbWxUZe01NTezpp59mzc3NKeV0Yf/J5M9cPfS9vq4IKSwsZE8//TSz2WwXXRGyatWqAV0RUl1dzT766KMu223atIlt27aNtbe3q55TQ0MDe/rpp1lbWxsXOV34PtFi7CXfW/X19Yp7ulCbh5xSne8lfZw9e1bKKdN7RDo9JfNobW3VvSc583I1PGl9TKhkj+juqaOjQ3rf8pCTnPleW1sbe/rpp1lHRwdjjHpEuj2dO3dOGg969iRnXq6WJ7nHGunqEd09JY8nz58/r8jYa29vZ08//TQ7d+6cIseE6bwixMAY3TiD0C9HjhzB1KlTpf+vqanBNddck8aKtIUxhnA4jOzs7C73ztEjvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/9IPdbse9996LSCTS4/MGgwHZ2dkIh8M93gdw9uzZWLRokXQz9SQTJkzA5Zdf3iXDqqqqXm/eOGHCBIwaNUqGk77hbWxRD1JPK1UN3sZIpiNSHrx5of6jnhbNgcRBlDx49KFlTXrpP0rodX99Ov+Wq4ulsQiC6BmDwQCr1crNh4YcePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/6Ifs7GzMnDmz1+cZYwiFQj2eBAE6T6QsW7bsop9/+eWXqKqqQlNTk2K1yoW3sUU9SD2tVDV4GyOZjkh58OaF+o96WjQHEgdR8uDRh5Y16aX/KKHHU9Z0IoQgdIzH48GKFSukNQj1DG9etK5Hzf0pqa2ElhwN3sZJpiNKHrz5oP6jnh71H32xaNEizJ49GxaL5aLn8vPzsXDhQuTn5/f6ervdjrNnz150VUk4HMbx48fR0dGheM2pwNvYoh6knlaqGryNkUxHpDx480L9Rz0tmgOJgyh58OhDy5r00n+U0OMpa3O6CyAIInWsVitmzZp10bIPeoQ3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o++sFqtWLx4MSKRyEUnLQYNGoT/+q//6nVJqyQLFiyAxWLBzJkzL1oq69ChQ7j99ttVqX0g8Da2qAepp5WqBm9jJNMRKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWrf3CPH5fDh48CDa2trg9XqRSCT69bp//Md/VLkyQksy/R4hBEEQBEEQIrJ79+5e7w+SZOnSpbDb7f3WnDJlClasWNHlCpOxY8fC4XCk9R4hBEEQBEEQBJEp0D1CBsCbb76JW265BTabDbfffju+853vYMGCBXj44Yf7fDzyyCPpLp8gFCUYDGLz5s0IBoPpLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xCEajeL73/8+vvGNb/T7NbW1tbj33nuxdOlS6cQHD8tj8Ta2qAepp5WqBm9jJNMRKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWjcnQoLBIObMmYMf/OAH+Pzzz5FIJMAY6/EB4JLPEYQoJBIJuFyufl8RxTO8edG6HjX3p6S2ElpyNHgbJ5mOKHnw5oP6j3p61H/EgTGGaDSKf/u3f0NFRcWAXnfhjdT7uupEC3gbW9SD1NNKVYO3MZLpiJQHb16o/6inRXMgcRAlDx59aFmTXvqPEno8Za2bpbH+/u//Hm+99RaAzrXFZs+ejdOnT+PYsWMwGAz4x3/8R3i9XtTX1+PQoUOIRqMwGAwYPHgwvvOd70h3pn/99dfTaYNQGFoaiyAIgiAIQjwOHjwIp9PZ7+0HukyWxWJBRUWFdLN1WhqLIAiCIAiCINSHlsbqgz179uCtt96CwWDAVVddhdraWvz1r3/FXXfdJW3z+uuvY926dfjiiy/Q2tqK3//+98jNzYXf70dLSwuef/55OglCCEcsFsOZM2cQi8XSXYpsePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/6IcRI0Zc8vnu3yxbtGgRZs+e3eX+H5eipxuwpwvexhb1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nr4kRIWVmZ9O9Vq1bhiiuuuOT2+fn5+Nd//Vfs3bsXI0aMwJYtW/Dwww+rXSZBaI7P50NZWRl8Pl+6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUf/TB8+HBMmTKl1+cjkQgOHjyIK6+8ElOmTMGkSZNQUlKCiooKlJeXX/K1vMHb2KIepJ5Wqhq8jZFMR6Q8ePNC/Uc9LZoDiYMoefDoQ8ua9NJ/lNDjKWtdLI113XXXoaamBhMmTMCJEyekn//0pz/Fiy++CIPBgHg83uNrt23bhm984xswGAz44IMPcN9992lVNqEBtDQWQRAEQRCEuESjUezatavH50wmE2bOnAmjsfO7XS6XC9XV1QA6l7patmzZJZfLKi8vR3FxMbKzsxEOh3vchpbGIgiCIAiCIAjloKWx+qCxsREGgwHXX399l58n7/sB9H6jw7vuukv6Zb7xxhvqFUkQBEEQBEEQhKJkZWVh7NixPT535ZVXSidBumO1WrF48eIuV5b3Rm8nQQiCIAiCIAiCEAddnAjxeDwAgKFDh3b5+aBBgy7apie+8pWvgDGGffv2qVMgQaQJt9uNZ599Fm63O92lyIY3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o8+ueKKKzB16lSMHDkSw4YNw+WXX44rr7wSa9as6TOPS90zxOFw9PplKiVIJBJobm7GiRMncPz4cTQ3N0v3NLkQ3sYW9SD1tFLV4G2MZDoi5cGbF+o/6mnRHEgcRMmDRx9a1qSX/qOEHk9Zm9NdQH/IycmB1+tFNBrt8nObzSb9u76+HsOGDevx9cnVv5qamlSrkSDSQU5ODubOnYucnJx0lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/+sRgMGDYsGFd5vrRaFR2Hj//+c9hsVgwc+ZMLFq0CFar9aJtwuEwWlpaYDQaUVBQgKysrD51w+EwOjo6cPz48S4/b2pqQnNzM6ZOndrlShbexhb1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nr4h4h1157LY4ePYoHHngA69evl37+3nvv4bvf/S4MBgNKSkrwk5/8pMfX33jjjdi/fz8GDx4Mr9erVdmEBtA9QgiCIAiCIAig6z1CkjgcDsybN6/P186ePRuLFy/uc7srrrgCWVlZ8Hg8MBqNsNlsGD58uHRio6OjAzU1NT1e+ZHkmmuuQVFRUZ/7IgiCIAiCIAjRoHuE9MG1114LxthF36q66aabpPuEvPLKK4jFYhe9trKyEvv374fBYMCVV16pSb2E9litVuTm5gIA4vE4XC6XdCWQx+ORlj0IBoPw+/0AgFgsBpfLJWm43W7pqqNAIIBAIACg8xuHF16+5XK5pLHm9/sRDAYBdN6nJrlEG2MMLpcL8XgcAODz+RAKhQB0fksweUIukUjA5XJJB8ter1dapzoUCsHn813SUyAQwLp169Da2qp7T83NzXjvvfcQCAS4yMnpdOLdd99FIBCQnRPQ99hzu93YuHEj2traFPfU0dGBjRs3wul0cpGTw+HAxo0bEQgEBuwpEAjg3XffRUdHBwBl30/9yUkv7yetPLlcLrzzzjsIBAK69tTa2op169YhEAhwkZPH45F+r0rkpGWP6O6ptbUVGzduhMfjUWTstbe3Y+PGjXC5XCnl1NTUhA0bNiAQCGT0Z64Ifc/r9eKdd97p8r5JeopGo9K/E4lEl6vIL7yqIycnR/pm2p49e9DR0QGHwwGHw4Fz585J9UUiEen3cOrUKRw5cgQtLS1oampCdXU1jhw5AsYYvF4vDh48iEQigVgsJtXNGEMoFOpylfqFnlpaWrBx40Z4vV4ucmpqasL69esRCAQ0GXuBQADr16/vcvW+Up4CgQA2bNiApqYm2WNPiZxSne8FAgG89957aG5ulnKiHpE+T4FAAO+8845Uu549yZmXq+FJ62NCJXtEd09+vx8bN25Ec3MzFznJme9d6jOXeoT2nlpaWqT3iZ49yZmXq+VJ7rFGunpEd08ejwcbN25Ea2urImPP5/Nh48aNaGlpUfSYMB3o4kTI7bffDgA4fvy49McvABg9ejRuvfVWMMZw5MgRPPDAAzhw4IA0CNasWYP58+dL28+ZM0fz2gltmDFjBh588EEAnX/QKikpkd6cq1atwtGjRwEAO3fuREVFBQCgoaEBJSUlkkZpaSnq6uoAdJ5Aq6ysBADU1dWhtLRU2q6kpAQNDQ0AgIqKCuzcuRMAcPToUaxatQpAZ+MoKSmR/liybt06VFVVAQAOHDiAtWvXAuhsDiUlJVIzWrt2LQ4cOAAAqKqqwrp16/r01NzcLNWqZ09vvvmm1Lx5yOnw4cM4deqUYjn15enMmTMAgB07dijuKXl/pMOHD3OR0+rVq2V5qq+vlzwp/X7iYezpydOJEyfw5Zdf6t5TZWWl9MclHnJqbGxEbW2tYjlp2SO6e0rW2tjYqMjY++yzzwB0jr1UcnrllVekA4hM/swVoe+1tbWhtra2i6dkP6qvr8eJEycAdN5sfeHChVKtTzzxBMaPHw8AuPvuu3H33XcDAMaMGYMvvvgC8+bNw7x583Dq1Cn89Kc/xdKlS3Hs2DHU19dLv8tkPfF4HHv27EF9fb10AjO5ncPhwOHDhyXve/bskWq12+1dPH344YeSJx5yeuWVV6QatBp7gUAAr7zyiiqeEokEXnnlFdljT4mc5Mz33G433nzzTSkn6hHp9VRbW4vGxkbde5I7LxfhmFCpHnEpTzzkJGe+19NnLvWI9Hlat26d9LdRPXuSOy9Xw5PcY4109YjunpKfT5WVlYqMveSJkXXr1il6TJgWmA6or69nRqORGY1GVlZW1uW53bt3S8/19jAYDGz48OGstbU1TQ4ItaipqWEAmNVqZbm5uaympobFYjHmdDpZIpFgjDHmdrtZOBxmjDEWCASYz+djjDEWjUaZ0+mUtFwuF4tEIowxxvx+P/P7/YwxxiKRCHO5XNJ2TqeTRaNRxhhjPp+PBQIBxhhj4XCYud1uxhhjiUSCOZ1OFovFGGOMeb1eFgwGGWOMhUIh5vF4GGOMxeNx5nQ6WTweZ4wx5vF4WCgUYowxFgwGmdfrZYwx8kSeyBN5Ik/kiTyRJ/LUh6fm5mZmt9tZZWUl27JlC7Pb7Wzbtm3s3nvvZQAYAFZQUMCysrIYAJaTk8NycnIYAJaVlcUKCgqk7Ww2GzObzQwAu/vuu1llZSWz2+3so48+Yps3b2Z2u51t376dbdq0iW3bto3V19ezc+fOsa1btzK73c62bt160Xbbt29ndrudHThwIKNzIk/kiTyRJ/JEnsgTeSJPmesp+bfc5KOmpoZphS7uEQIAv/zlL9HQ0IAbb7wR//qv/9rluVWrVuHxxx/vcWksACgqKsL777+PGTNmaFEqoSGZfo+QaDSKuro6jB8/vl837+QZ3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4tBTHq4e7hECdF66v2zZMuzevVv6ptpAsFgsqKiogMVi6XWbsWPHoqCgAAcPHuxTb+TIkZg4ceIlvaQT6kHqaaWqwdsYyXREyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJve6vp3uE9IPf//73KC8vv+gkCAA88sgjOHjwIP75n/8ZV155JaxWK3JycjB16lT85je/QU1NDZ0EIYQkEAhIa4XqHd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IwkDysVisWL16Mw4cPY/ny5QPeVyQS6bI8r9LwNraoB6mnlaoGb2Mk0xEpD968UP9RT4vmQOIgSh48+tCyJr30HyX0eMpaN1eEEERPZPoVIQRBEARBEEQnvV0RkmT8+PHYtWsX5s2bN2Dt8vJyFBcX9/q8nCtCCIIgCIIgCCJToCtCCIIgCIIgCIIgCIIgCIIgCIIgVIBOhBCEjnG5XFiyZAlcLle6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApD968UA9STytVDd7GSKYjUh68eaH+o54WzYHEQZQ8ePShZU166T9K6PGUtS6XxgqFQti8eTM+/fRTnDt3Dk6nE/F4HNu2beuyHWMMwWAQAJCVlcXNzXcI5cj0pbFisRgaGhowatQomM3mdJcjC968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+LQUx5erxf79u3r9TUTJ07Exx9/zN3SWLyNLepB6mmlqsHbGMl0RMqDNy/Uf9TTojmQOIiSB48+tKxJL/1HCb3ur0/n33J1dyLkueeew7Jly9De3i79jDEGg8GAeDzeZdv29naMGTMGoVAIN998M3bv3q11uYTKZPqJEIIgCIIgCKITxhh27dqFWCx20XNWqxUTJ07E3r17MWfOHEQikQFpL1++HFdffTUsFkuPz9M9QgiCIAiCIAiib+geIf0gGo3ivvvuw69+9Su0t7eDMSY9emPo0KFYsGABGGPYs2cPvvzySw0rJgj18fv9eOutt+D3+9Ndimx486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+IQ095GAwGTJ48GQaDocu2RqMRkyZNAgBYLBbMnDlzwPv7+c9/jnvuuQc/+tGPcObMmQGfSLkUvI0t6kHqaaWqwdsYyXREyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJPZ6y1s2JkCeeeAKbNm0CYwzZ2dl47LHH8Pbbb+OBBx645Ov+4R/+Qfr33/72N7XLJAhNMRqNsNlsMBp181buFd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+LQWx7Dhg3DTTfdhKuuugpjxozBxIkTcdNNN2HIkCHSNosWLcLs2bN7vbrjUtTW1uLhhx/GnDlzsHTpUoRCIdW8pAvqQeppparB2xjJdETKgzcv1H/U06I5kDiIkgePPrSsSS/9Rwk9nrLWxdJY+/btw0033QQAuPzyy1FZWYnJkycDAH7605/ixRdf7HFprCRDhgyBx+PBd77zHbz77rua1U2oDy2NRRAEQRAEQfSHjo4OHDp0SPr/SCSCjo4O6f8dDgd+/vOfD0hz9uzZWLx4MfLy8nDllVfS0lgEQRAEQRAEcQloaaw+eP3116UlsNasWSOdBOkv06dPB2MMtbW1apRHEGkjEomgurpa0eUZ0gVvXrSuR839KamthJYcDd7GSaYjSh68+aD+o54e9R9xUCIPi8WC4uJi6XGpe4D0xq5duxCJROD1etMyLtWAepB6Wqlq8DZGMh2R8uDNC/Uf9bRoDiQOouTBow8ta9JL/1FCj6esdXEixG63AwCmTp2KO+64Y8CvHzVqFADg/PnzitZFEOkmFAphx44diizLkG5486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+Igxp5pHL/kEgkAofDAQBwOp0p7Ze3sUU9SD2tVDV4GyOZjkh58OaF+o96WjQHEgdR8uDRh5Y16aX/KKHHU9a6WBorubTVD37wA6xevbrLc/1ZGuuJJ57Ayy+/DLPZzMXZJ0I5aGksgiAIgiAIoj90XxqrJ0KhEJYtWyZd6dFfZs+ejd/+9rcIBoN9bktLYxEEQRAEQRCZCi2N1QfJM0ZWqzWl1/t8PgBAbm6uYjURBA8wxhAKhaCD85l9wpsXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxSySMrK6vPbaxWKxYvXoyKigqUl5fj9ddfx5QpU/p8nd1ux1NPPdXvWi6Et7FFPUg9rVQ1eBsjmY5IefDmhfqPelo0BxIHUfLg0YeWNeml/yihx1PWujgRUlRUBADSZecD5dixY110CEIU3G43fve738Htdqe7FNnw5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8Rh1TyGMiXopL3Dxk7dixWrlyJsrKyPl+zY8eOlK4+521sUQ9STytVDd7GSKYjUh68eaH+o54WzYHEQZQ8ePShZU166T9K6PGUtS6Wxrr77rvx0UcfoaioCI2NjTCZTNJzfS2Nde7cOVx55ZVIJBKYN28e3njjDS1LJ1Qm05fGisfjaG1tRVFRUZf3hR7hzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDqnm0dLSgqNHjw54f5FIBHPmzOnzREd5eTmKi4svuU33pbF4G1vUg9TTSlWDtzGS6YiUB29eqP+op0VzIHEQJQ8efWhZk176jxJ63V+fzr/l6uJEyB//+Ef827/9GwwGA1599VU8/PDD0nN9nQj54Q9/iL/85S8wGAxYvXo1fvCDH2hZOqEymX4ihCAIgiAIghgYn332GcLh8IBft3TpUtjt9ktu058TIUDnElzRaBT5+fkYPXo0CgsLB1wPQRAEQRAEQegNukdIH/zwhz9EQUEBAOAXv/gF9u7d26/XLV26VDoJMnLkSDz00ENqlkkQmuPz+bB69WrpPjh6hjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jzjIyWPq1Kkwm80Dft2iRYswe/bsAb+uJ0KhEOLxOJxOJ/bu3YtXX321i5d4PA6/39/jF73UhnqQelqpalD/4QuR8uDNC/Uf9bRoDiQOouTBow8ta9JL/1FCj6esB34EkAYKCwvx3//93/jpT38Kj8eD2267DT/+8Y8xb968Lt/m8ng8aGpqwq5du1BaWor9+/dLzy1fvrxfN0gkCD1hNpsxduzYlA7meYM3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o84yMkjLy8PM2bMgMvlQigUgtVqxcmTJ/u8SiR5I/Uf/vCHWLBgQZ/7iUQi6Ojo6PKzwsJCWCyWLj8zGo2w2Wwwm81IJBI4duwYWltbwRiD0WjE8OHDMXHiRBiN2nyHjXqQelqpalD/4QuR8uDNC/Uf9bRoDiQOouTBow8ta9JL/1FCj6esdXFFCAD8+Mc/xs9+9jMwxhCJRLB8+XLcdNNNeO211wB03oF+yJAhuPrqq/Hoo49i//790t3o//M//xMPPvhgOssnVMZqtUo3wIzH43C5XFL+Ho9HWs85GAzC7/cDAGKxGFwul6ThdrsRjUYBAIFAAIFAAAAQjUa73NDH5XIhFosBAPx+P4LBIIDOg12PxwOgczy6XC7pW3w+nw+hUAgAEA6H4fV6AQCJRAIulwuJRAIA4PV6pYPwUCgknS3tzZPVasXNN98s7UfPniKRCL72ta/BarVykZPBYMANN9wAq9UqOyeg77FnMpkwa9YsJBIJxT0BwKxZs2AwGLjIKRwOY9asWbBarQP2ZLVaceONN0r7UfL91J+c9PJ+0sqT0WjEV77yFVitVl17isfjuPnmm2G1WrnIyWw2Y/r06bBarYrkpGWP6O4pHo9j1qxZMJvNiow9xhhmzZoFo9GYUk6hUAi33347rFZrRn/mitD3srKyMH36dGRnZ6fkyWw2IycnB4WFhRg2bBgMBoNUT3JfyRoikQii0Sguv/xyjB07FgaDAUDnXMFms0lrJefm5iIejyMUCuGZZ57BvHnzMG/ePMyfPx9PPPEE5s+fjzlz5uDZZ5+VfMRiMSQSCQwbNgwOhwMHDhxAc3MzGGMIh8OIRqNwOByora3VLKdQKITbbrsNVqtVk7FntVpx6623dvn9K+XJarXijjvukK7AAVIfe7FYDLNmzUJWVpbm8z2r1Yqvfe1r0n6oR6TXk9VqxfTp06U/6OjZk5x5uRqetD4mVLJHdPeUnZ2NWbNmIRKJcJETkPp8T+5nrtycevPE2/tJK0/RaBS33HILrFarrj3JmZer5UnusUa6ekR3T2azGbNmzUI8Hldk7FksFsyaNUvqRwPNqbdjwnSgmxMhALBixQq8+uqrKCgoAGNM+gUbDAYYDAbpZ8mHzWbD66+/jqeffjq9hROqM2PGDOlkV2trK0pKSqQ356pVq6SbYu7cuRMVFRUAgIaGBpSUlEgapaWlqKurAwBUVlaisrISAFBXV4fS0lJpu5KSEjQ0NAAAKioqsHPnTgDA0aNHsWrVKgCdjaOkpAStra0AgHXr1qGqqgoAcODAAaxduxZAZ3MoKSmRmtHatWtx4MABAEBVVRXWrVt3SU/hcBhvvfUW3n//fd17eu2111BRUYFwOMxFTl988QX+/Oc/IxwOy84J6HvsHTt2DFVVVdi0aZPinj799FNUVVXhiy++4CanqqoqqdaBeAqHw1i1ahU+/fRTAMq+n/qTk17eT1p5OnjwIEpLSxEOh3Xt6f3338dbb72FcDjMRU6nTp3qsp3aY0/JHtHd0/vvv4+qqirJk5ycKioqsH37dlRVVeHgwYMp57Rz506Ew+GM/swVoe+dP3++y3ZyPbW2tnZZfnfPnj2S9okTJ1BfXw+TyQSXyyV5zc7OxsKFC1FUVAQAePDBB3Hu3Dk888wz8Pl8+N73vgcAyM/Px8KFC5Gfn49IJIJx48bh7bffluo7cuQIGhoaUF1djQ8//FA6KD1w4ID0+/r88881zWnbtm0Ih8OajL1wOIzKykpVPIXDYXz66aeKjL133nkHVVVV0tjTcr4XDodRUVEhfQmQekR6PSVrPXXqlBCeUp2Xq+FJ62NCJXtEd08ejwdVVVV47bXXuMhJznxP6c9c0XuE2p7eeOMNbNiwAeFwWPeeUp2Xq+VJiWONdPWICz2dOnUKVVVVeP/99xXJqbW1FVVVVXjjjTcUPSZMC0yHeL1eVlJSwu655x6Wn5/PDAaD9LBarez2229ny5YtY263O92lEipTU1PDADCr1cpyc3NZTU0Ni8VizOl0skQiwRhjzO12s3A4zBhjLBAIMJ/PxxhjLBqNMqfTKWm5XC4WiUQYY4z5/X7m9/sZY4xFIhHmcrmk7ZxOJ4tGo4wxxnw+HwsEAowxxsLhsDTmEokEczqdLBaLMcY6x2wwGGSMMRYKhZjH42GMMRaPx5nT6WTxeJwxxpjH42GhUIgxxlgwGGRer5cxxnr15PF42IsvvsgcDofuPZ0/f569+OKLzOPxcJFTa2sre+GFF5jH45GdE2N9j7329nZWWlrKmpubFffU0tLCSktLWWtrKxc5NTQ0sNLSUubxeAbsyePxsBdeeIG1tLQwxpR9P/UnJ728n7Ty1NbWJr1P9OzJ4XBI45qHnDo6OqTfqxI5adkjuntyOBystLSUdXR0KDL2mpubWWlpKWtra0spp3PnzrGVK1cyj8eT0Z+5IvQ9p9PJXnjhBUlfrqfPPvuMbdq0idntdma329mmTZvYtm3bmN1uZ1u2bGGVlZWsrq6OhcNhtm7dOgaAGQwGZrPZmMlkYgBYbm4us1qtDADLzs5meXl5DAAzGo3MZrMxo9HIALC8vDyWm5vLtmzZwrZu3co++OAD9vvf/5797W9/Y5s2bWLbt29ndrudbd68mX300UfMbrezyspKybvaOV34PtFi7Hk8HrZy5Up27tw5xT1dqC137DU1NbHS0lLmdDo1n+8l+8/58+elnKhHpM9Tcj7a0dGhe09y5uVqeNL6mFDJHtHdk9vtZqWlpez8+fNc5CRnvqf0Z67oPUJtT42NjdL7RM+e5MzL1fIk91gjXT2iu6eOjg5WWlrKHA6HImPP5XKx0tJS1tjYqMgxYfJvuclHTU0N0woDY/9zWYWO8fv9cLvdGDx4sHRTdSIzOHLkCKZOnSr9f01NDa655po0VkQQBEEQBEHojS+++EJaiqA3xowZgyuvvBIVFRX49re/LXuf5eXlKC4u7vf2d9xxh7QsF0EQBEEQBEHokXT+LVdXS2P1xuDBgzFy5Eg6CUJkHN3XINQzvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEGkPNj/3JeDl++nUQ9STytVDZHGuwiIlAdvXqj/qKdFcyBxECUPHn1oWZNe+o8SejxlLcSJEILIVLqvQahnePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iEM68xg6dCgsFotieuFwGHv27JHWVU431IPU00pVg/oPX4iUB29eqP+op0VzIHEQJQ8efWhZk176jxJ6PGUtxNJYROaS6UtjJRIJeDwe5Ofnw2jU93lN3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4qB0HjU1NWhra7vkNsmlsfbt24df/vKXsNvtsvaZXBqLMYZwOIzs7OxLLn2l1dJY1IPU00pVg/oPX4iUB29eqP+op0VzIHEQJQ8efWhZk176jxJ63V+fzr/lmjXZC0EQqmA0GmGz2dJdhiLw5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8RB6XzGD58eJ8nQi5k0aJFAIBdu3YhEomktE+HwyH9u7CwkJv7f1APUk8rVQ3qP3whUh68eaH+o54WzYHEQZQ8ePShZU166T9K6PGUNR+n3AZAMBjEunXrsGjRInz3u9/FPffcgzvvvLNfj7vuuivd5ROEoni9Xrz00kvwer3pLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEHpPIYPH46rrrqq39tbrVYsXrwYFRUVKCsrS2mfP//5zzFv3jz8y7/8CzZu3Ihnn30WoVAoJS0loR6knlaqGtR/+EKkPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylr3VwRwhjD73//ezzzzDPw+XwpvZ6Xb1kRhFJYLBZMnz5d0XWq0wVvXrSuR839KamthJYcDd7GSaYjSh68+aD+o54e9R9xUCOPyy+/HK2trXC5XAOqY8yYMZg9e3bKS2VFIhEcOHAABw4cQCQSweLFi1PSUQrqQepppapB/YcvRMqDNy/Uf9TTojmQOIiSB48+tKxJL/1HCT2estbNPULmz5+Pt956C3LKNRgMiMfjClZFpJtMv0cIQRAEQRAEoRzV1dW9ngi58B4h3b/RFgqFsGzZMllLZQGdB4oVFRU9HihqdY8QgiAIgiAIglCLdP4tVxdLY7355psoLy+X/n/SpEn4z//8T7z99tvYunUr7HZ7vx7bt29PowuCUJ5QKIQdO3ZwsYyCXHjzonU9au5PSW0ltORo8DZOMh1R8uDNB/Uf9fSo/4gDb3lcuFRWeXm59OjPsllWqxWzZs2C1WpFJBJBR0dHj9sdPXoUu3fvxmeffYZjx47JOuFyKagHqaeVqgZv4z3TESkP3rxQ/1FPi+ZA4iBKHjz60LImvfQfJfR4yloXJ0JeffVV6d8///nPceTIESxZsgTf/e53cdddd+GOO+7o94MgRCIWi+HMmTOIxWLpLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xIHXPCwWC4qLi6VHf5YAMJvNGDt2LMzmS69a3NraikgkgnA4DIfDgYMHDyKRSChVugT1IPW0UtXgdbxnKiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nrYmmsYcOGwel0Yty4cTh58iRdEk5I0NJYBEEQBEEQhFIcOXIEra2tPT535ZVXYsyYMT0ujdUbDocD8+bNG1AN5eXlKC4u7te206ZNw5AhQwakTxAEQRAEQRDpgpbG6oPkpTO33XYbnQQhiAuIx+NwOBxC3PuGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPOKiVx6VOKhQWFiq6ryQmkwnFxcUwmUwDfq3P51O8HupB6mmlqkH9hy9EyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sWJkDFjxgAAjEZdlEsQmuH1evHyyy/3+1uJPMObF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/Ucc1MpjxIgRuOyyyy76+YQJE5Cbm6vovpLk5eXh8ccfR15enir6A4V6kHpaqWpQ/+ELkfLgzQv1H/W0aA4kDqLkwaMPLWvSS/9RQo+nrHWxNNbDDz+MsrIyzJgxA7t37053OQRHZPrSWIwxhMNhZGdn6/5qKd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+Kg9rgNhULweDwwGo0oKCjocq8PpZfGMhgMyM7ORjgcBmNsQEtjjR8/HqNHj+7Xtv2FepB6WqlqUP/hC5Hy4M0L9R/1tGgOJA6i5MGjDy1r0kv/UUKv++tpaaw++MlPfgIA+OKLL1BTU5PmagiCHwwGA6xWKzcfGnLgzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDmqP20GDBuGyyy5DUVHRRTc8V/oq9eSJF16+n0Y9SD2tVDWo//CFSHnw5oX6j3paNAcSB1Hy4NGHljXppf8oocdT1ro4EXLDDTfg8ccfRzwex7x589De3p7ukgiCCzweD1asWAGPx5PuUmTDmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHNKZR0FBQb+3LSwsvOhESnfy8/OxcOFC5Ofnyy1NEagHqaeVqgb1H74QKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWhcnQgDghRdewKOPPipdPvPCCy+gqakp3WURRFqxWq2YNWsWrFZrukuRDW9etK5Hzf0pqa2ElhwN3sZJpiNKHrz5oP6jnh71H3FIZx6jR4/G4MGD+7WtxWLBzJkzL7lNKBTCjh07EAqFAHQup9XbIxKJyK6/L6gHqaeVqgb1H74QKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWhf3CLmQFStW4Be/+IV0OU1BQQEKCgr6dXmNwWBAXV2d2iUSGpLp9wghCIIgCIIgtCcWi6G9vR1erxeJRAKNjY29bhsKhbBs2TLs2rVLkRMZU6ZMwaJFizBy5EhMmTJF8XuEEARBEARBEIRa0D1C+kE0GsUTTzyBX/3qVzAYDGCMgTEGl8uFs2fPor6+/pKPM2fO4MyZM+m2QRCKEgwGsXnzZgSDwXSXIhvevGhdj5r7U1JbCS05GryNk0xHlDx480H9Rz096j/ikO48zGYzLrvsMkyYMAFjx4695LZWqxWLFy9GRUUFysvLUV5ejuXLl0vPDxo0CPfeey8GDRrUr33X1tbi4Ycfxpw5c/DjH/8YgUDgom0YY/B6vQgEAgO+9wj1IPW0UtVI93gnuiJSHrx5of6jnhbNgcRBlDx49KFlTXrpP0ro8ZS1Od0F9Id4PI4HHngAW7ZsAYCLJvM6u6iFIBQjkUjA5XIhkUikuxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQc95mGxWFBcXHzRz41GI2w224Bvwh6JRFBRUYFHHnkEb731lvTzlpYWnDhxArFYDACQnZ2NqVOnIi8vr1+61IPU00pVQ4/jXWREyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sXSWKWlpfjxj38sXQny9a9/HfPmzcO1116LIUOGwGzu//mcK664QsVKCa2hpbEIgiAIgiCIdBKJRLB79+4BvcbhcGDevHmK7N9qtcLpdMJqtcLn82Hfvn0XfVHMbDbjlltugclkUmSfBEEQBEEQBJEKtDRWH5SVlUn/fu6551BZWYmHH34YN954I8aPH48rrrii3w+CEIlYLIYzZ85I3/jTM7x50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf8RBpDzMZjPGjh07oC93XUgoFILD4QAAdHR09Hi1fCwWg9vt7pce9SD1tFLVEGm8i4BIefDmhfqPelo0BxIHUfLg0YeWNeml/yihx1PWujgRcuTIERgMBlx99dX4xS9+ke5yCIIbfD4fysrK4PP50l2KbHjzonU9au5PSW0ltORo8DZOMh1R8uDNB/Uf9fSo/4iDSHnk5ubihz/8IXJzc2VrhcPhlJ67EOpB6mmlqiHSeBcBkfLgzQv1H/W0aA4kDqLkwaMPLWvSS/9RQo+nrHWxNFZeXh4CgQAefvhhvPrqq+kuh+AIWhqLIAiCIAiCSCdqLo21fPly2Gw2LFu2DLW1tb1uV1dXhyFDhuDgwYO9bjNp0iSMGDFiQHUSBEEQBEEQhJKk82+5urhZ+uWXX46TJ08iHo+nuxSCIAiCIAiCIAhZFBYWwmKxIBKJ9LqNxWLB1VdfDYvFgpUrV+Ls2bNYsGBBj9t+/vnnPd6I/UI6OjrgdrsRDAaRl5eHESNGYPDgwbJ8EARBEARBEIRe0MXSWHfeeScYY6iurk53KQTBFW63G88++2y/13zmGd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+Kg9zwsFgtmzpwJACgoKMCvf/1rFBQUdNlm5syZsFgsXV4jh9bWVjgcDrjdbjQ0NODAgQM9LlFAPUg9rVQ19D7eRUOkPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylrXZwIeeyxx2AymXDo0CF88skn6S6H4BCr1SqtqxyPx+FyuaQbRXo8HunbdsFgEH6/H0DnzXpcLpek4Xa7EY1GAQCBQACBQAAAEI1Gu7xZXS6XdIMfv9+PYDAIoHNZBI/HAwBgjMHlcklXMfl8PoRCIQCd6zN7vV4AQCKRgMvlQiKRAAB4vV5p/eZQKCQdnPbmKScnB9/85jeln+vZUywWw3333YecnBwucjKZTLjnnnuQk5MjOyeg77GXlZWFuXPnSr6U9GQ0GjF37lyYTCYucopGo5g7dy5ycnIG7CknJwf33HMPjMbOjy8l30/9yUkv7yetPJnNZtx9993IycnRtSfGGL75zW8iJyeHi5wsFgu+8Y1vICcnR5GctOwR3T0xxjB37lxYLBZFxp7BYMDcuXNhNptTyikSieDb3/42cnJyMvozV4S+l52djW984xsYNGgQN54ikYj0mlgsJtXNGEMoFJJ+/9FoFDabDYsWLcLXv/51WCwWbNy4EaFQCDabDRaLBbNnz8aTTz4paUejUUnbbDbDZrNJtRYUFEi/r+TnbDL35O84+ftLbheJRBAMBnH+/PmLPEUiEcyZMwc5OTmajL2cnBzMmTOny9UxSuWUk5ODBx54AJFIRPbYSyQSmDt3LrKzszWf7+Xk5OC+++7r8rlFPSJ9nnJycvCNb3xDOjmpZ09y5uVqeNL6mFDJHtHd06BBgzB37lzEYjEucpIz3+PxM5fH95NWnuLxuPQ+0bMnOfNytTzJPdZIV4/o7slisWDu3LlgjCky9qxWK+bOnYt4PK7oMWE60MWJkGnTpuGZZ54BYwwPPfQQjh07lu6SCM6YMWMGHnzwQQCd33YrKSmR3pyrVq3C0aNHAQA7d+5ERUUFAKChoQElJSWSRmlpKerq6gAAlZWVqKysBNC55nJpaam0XUlJCRoaGgAAFRUV2LlzJwDg6NGjWLVqFYDOxlFSUoLW1lYAwLp161BVVQUAOHDgANauXQugszmUlJRIzWjt2rU4cOAAAKCqqgrr1q27pKesrCw0NTVh8+bNuve0Zs0axONxZGVlcZFTTU0N9uzZg6ysLNk5AX2PvbNnz2Ly5Mmw2+2Ke9q3bx8mT56MmpoaLnJ69dVXMXnyZGRlZQ3YU1ZWFg4ePIh9+/YBUPb91J+c9PJ+0srTyZMn8fHHHyMrK0vXnjZv3oympiZkZWVxkVNzczM+/PBDZGVlKZKTlj2iu6fNmzdj8uTJaG5uVmTs7d69G5MnT8bJkydTymnlypUYOXIksrKyMvozV4S+53K58OGHH0oHm+n05HK5YDabcfToUek1DocDhw8flrbbs2cPTCYTvva1r6Gurg6hUAi5ubmYP38+fvOb3+Cpp57CSy+9hIULF2LDhg1YvHgxamtrpd9XfX09mpubAQCjRo3CwoULpVqfeOIJ6aC5rq5O8ud0OrF3715puz179ki/1xMnTqC+vh5tbW0XeVq5ciWGDh2KrKwsTcZeVlYWBg8ejJUrVyqeU1ZWFsaNG4eVK1fKHnvvv/8+Jk+eDJfLpfl8LysrC/F4HGvWrJFyoh6RPk9ZWVn48MMPpfeknj3JmZer4UnrY0Ile0R3T4lEApMnT8aaNWu4yEnOfI+nz1ye309aeXrnnXfg9/uRlZWla09y5uVqeZJ7rJGuHtHdU3NzMyZPnozNmzcrMvaCwSAmT56Md955R9FjwrTAdMTLL7/MrFYry8nJYb/4xS/Yrl27mNvtTndZRBqpqalhAJjVamW5ubmspqaGxWIx5nQ6WSKRYIwx5na7WTgcZowxFggEmM/nY4wxFo1GmdPplLRcLheLRCKMMcb8fj/z+/2MMcYikQhzuVzSdk6nk0WjUcYYYz6fjwUCAcYYY+FwWBqPiUSCOZ1OFovFGGOMeb1eFgwGGWOMhUIh5vF4GGOMxeNx5nQ6WTweZ4wx5vF4WCgUYowxFgwGmdfrZYyxXj35/X727rvvspaWFt17cjgcbN26dczv93ORU0dHB3vnnXeY3++XnRNjfY89l8vFNmzYwFpbWxX31N7ezjZs2MA6Ojq4yKmpqYlt2LCB+f3+AXvy+/3snXfeYe3t7YwxZd9P/clJL+8nrTw5nU729ttvM7/fr2tPLS0t7N1332V+v5+LnNxut/R7VSInLXtEd08tLS1sw4YNzO12KzL22tra2IYNG5jT6Uwpp8bGRrZ+/Xrm9/sz+jNXhL7n8XjY22+/3eV9k05PJ06cYFu2bGFbt25ldrudbd26lW3evJnZ7Xa2fft2tmnTJrZnz54unj755BO2detW9uGHH7LS0lK2efNmtmnTJrZ9+3Zmt9vZ5s2b2UcffcTsdjurrKxka9asYQCY2WxmNpuNAWAAWEFBAVu7dq20XWVlJbPb7eyjjz5imzZtYna7ndntdrZp0ya2bds2Zrfb2ZYtW6TtuntqbGxk7733HvP7/ZqMPb/fz9577z3W2NioeE5+v5+tX7+eNTY2yh57zc3NbMOGDczj8Wg+3/P7/WzdunXM4XBcNPbkeBK5R6jpye/3s7fffluqXc+e5MzL1fCk9TGhkj2iuyefz8c2bNjAHA4HFznJme/x9pmrZE567HvNzc3S+0TPnuTMy9XyJPdYI109orsnt9vNNmzYwFpaWhQZe16vl23YsIE1NzcrckyY/Ftu8lFTU8O0Qhc3SzeZTF3+nzGGFStWYMWKFQPSMRgM0iVPhFhceNm/yWTqslxAfn6+9O/kpZxAz8sKJEkuRwJ0fuPnwucufM2FN5i0WCzS5dEGg6HLdsllu4DOy0qzs7MBAEajsct2eXl50r+tVmufnmKxGMxms1SHnj3l5eVJ73Veckp+G1tuTv3xlLysMScnR/KllKekdnZ2tqSdzpwu/L2k4ikrK0uqUcn3kxxPvL2fyNPAPZnNZq48XXgvALVzUrJHdPfE/ufyaLPZ3KX2VD0ZDAbJU/J1A8mpoKBA0sjkz1xReoTFYpHyTLenCRMmwGAwSN8qNJvNUl8xGAywWq3Sso5JT4lEAmazWXqfGI1Gae6R/L1cWF9Sr6elEpLaF77eZDJ1OY668PfX/d4jF3oqKCiQ9LQYe4FAQHp/JlEqp0AgIHlK/i5S9ZT8JrTJZOrynBbzvUAg0GW/1CPS78lisUjvST17kjsv1/sxoZI9orun5Ps9Ly9P+v2lMye58z2ePnOTnpLw8n7SylNubq40XvXsSc68XC1Pco810tUjuntKag8ePFjSlDP2knq5ubnSc3KOCc+fP490YWDJajjGaDRKg7E7AynfYDBI658RYnDkyBFMnTpV+v+amhpcc801aayIIAiCIAiCyFSam5tRW1vb43O5ubm48cYbpf/ft2+ftAZzf3A4HJg3b16Pz5WXl6O4uHhgxf4Ps2bNSul1BEEQBEEQBDFQ0vm3XF3cIwToPOHR04MgMploNIpjx45JN0zSM7x50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf8SB1zx6+/JWT0yYMAFA5w0m29rauPnCFvUg9bRS1eB1vGcqIuXBmxfqP+pp0RxIHETJg0cfWtakl/6jhB5PWeviREgikVDkwcvBBUEoRSAQwMaNG6XL1PQMb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRAhj4KCAlgsFq4ODgHqQWpqpaohwngXCZHy4M0L9R/1tGgOJA6i5MGjDy1r0kv/UUKPp6x1sTQWQfQGLY1FEARBEARB8EJLSwuOHj3a43Pdl8YCgGAwiOrqaoTD4T61aWksgiAIgiAIQu+k82+5XN0s3eFwpDyBJwiCIAiCIAiC0BODBg3CzTffDLfbjWAwiFgshlOnTg1YJxKJqFAdQRAEQRAEQYgDV0tjjRo1CjNmzMAzzzyDQ4cOpbscguAel8uFJUuWwOVypbsU2fDmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/xEHXvPIzc0d8HMejwfPP/88cnJykJ+fn9J+FyxYgKVLlyIUCiESicDhcPT46M8JE4fDgSVLluD48eOaLGGglx6UzjkQr+M9UxEpD9680BxIPS2aA4mDKHnw6EPLmvTSf5TQ4ylrrpbGMhqNXW4wOGbMGNx///349re/jVmzZiErKyuN1RE8kulLY8ViMTQ0NGDUqFEwm7m6wGvA8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQde82CM4dChQ3A6nV1+bjQaMW3aNBQUFFz0mgu9+Hw+VFdX96h9qaWxLsRisfR6wsNisWDmzJlYtGgRrFYrgK5LYzU1NaG2thYejwf5+fkwGo248sorMWbMmD73myp66UHpnAPxOt4zFZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwm97q9P599yuToR8n/+z//BRx99BL/fL/0seWIkNzcX99xzD7797W/jW9/6FgoLC9NVJsERmX4ihCAIgiAIguCLeDyOM2fOoKOjA9FoFPn5+Rg1ahRsNlufr3W5XLJPhPSH2bNnY/HixQD+90RIJBLB7t27e9z+q1/9KgYPHnzRzyORCM6ePQuXywWTyYShQ4di9OjRXb7cRhAEQRAEQRBJ0vm3XK6WxtqwYQPa29vx17/+FY8//jguv/xyMMbAGIPX68V7772HBQsWoLi4GHfccQeee+45nDhxIt1lE0Ta8Pv9eOutt7qcPNQrvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xIHnPEwmE8aPH4+vfvWr+NrXvoapU6de8iRIf70UFhbCYrEoUqPdbofP5+vys+RyBZFIBDU1NV2uKulpKYNYLIaDBw+ioaEBPp8Pbrcbp06dGvDxmV56UDrnQDyP90xEpDx480JzIPW0aA4kDqLkwaMPLWvSS/9RQo+nrLk6EQJ0Xq79zW9+EytXrsS5c+ewb98+PP300/jKV74inRSJxWL49NNP8atf/QpTpkzBpEmT8Mtf/hKffPIJEolEui0QhGYYjUbYbDYYjdy9lQcMb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApj/56SS5rpRRz5szB0qVLpfuAxGIxAJ1X5Fut1i5XdSSfu5COjo4eD2ibmpoQjUb7XYdeelA650AijXcRECkP3rzQHEg9LZoDiYMoefDoQ8ua9NJ/lNDjKWuulsbqi8bGRlRUVKCiogLbt29HKBQCgC6T9CFDhuBb3/oW5syZg3vvvRd5eXnpKpfQAFoaiyAIgiAIghCFSy2NNXjwYDidTjz77LOw2+2K7fP+++/HM888A5fL1euXysaNG4crrriiy8/q6upw7ty5HrefNm0ahgwZoliNBEEQBEEQhBjQ0lj9ZOTIkXjsscfw4Ycfoq2tDRs2bMAjjzyC4cOHS1eLdHR0YO3atXjooYdQVFSEu+++Gy+88ALOnj2b7vIJQnEikQiqq6t7vSGmnuDNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NOj/iMOIuXRXy8GgwHXX389Fi9ejLKyMsX2X1lZCYfDIZ0EicfjcDgciMfjKWsO5Lt2eulB6ZwDiTTeRUCkPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6esdXUi5EJycnLwwAMP4NVXX0VjYyM+++wz/OY3v8HUqVOlkyKRSATbtm3Dk08+iXHjxmHatGn4z//8T3z++efpLp8gFCEUCmHHjh3S1VF6hjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlMdAvBQVFeGqq65S7F4hQOfBaUdHh/T/sVgMZ86c6XE5LDXQSw9K5xxIpPEuAiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ6PGWtq6Wx+suZM2ekJbR27twprVF74RJaxcXFOH/+fLpKJBSClsYiCIIgCIIgROFSS2Pl5ubixhtvBABs3rwZ3/zmN/ulOWXKFNTW1l5ym/LychQXF/f6/ECXxrruuutQWFjYr/oIgiAIgiCIzIGWxlKYsWPH4qc//SkqKyvR1taGt99+G/Pnz8eQIUOkq0UcDke6yyQI2TDGEAqFBrT8AK/w5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8RB5HySMXL1KlT+3VViMViwe9+9zvMnj17QPXEYjHqQSpopaoh0ngXAZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwk9nrIW8kTIheTl5eG73/0u1qxZg5aWFuzYsQO/+MUvcNVVV6W7NIKQjdvtxu9+9zu43e50lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4iBSHhd6ufAK9u5c+JzVasXMmTP71J45cyby8vIGdF+RcDiMXbt2IRwO92t7ueilB6VzDiTSeBcBkfLgzQvNgdTTojmQOIiSB48+tKxJL/1HCT2eshZyaSwic8j0pbHi8ThaW1tRVFQEk8mU7nJkwZsXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEyuNCL4wx7Nq1q8dvzI0cORITJ04EALS1tWHv3r1YtmwZdu3addHNJy0WC2bOnIlFixbBarUCABwOB+bNm9djDRcujZVIJBAIBJCTkwOjsfN7c2oujaWXHpTOOZBI410ERMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfS6vz6df8sV7kTI+vXr8cEHH6C5uRnDhw/HN7/5TTz00EPpLotQiUw/EUIQBEEQBEGIxcmTJy+6l6HZbMb06dORm5sLoPNESE1NDYCLb3YOAIWFhRctndXfEyE9QfcIIQiCIAiCIJSA7hHSB83Nzbj99ttx++2349///d973CaRSOA73/mOtAxWZWUl3njjDcyfPx+zZ8+G3+/XuGqCUB+fz4fVq1fD5/OluxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8ujuZcKECbjqqqswZMgQ5ObmYsSIEV1OgnTHYrGguLi4y6M/9w/piUgkgoaGBnz++edoaGi46EoTNdBLD0rnHEik8S4CIuXBmxeaA6mnRXMgcRAlDx59aFmTXvqPEno8ZW1OdwH9YcOGDfj0009hMBjw5JNP9rjN73//e2zcuLHH5z7++GP80z/9E9566y0VqyQI7TGbzRg7dizMZl28lS8Jb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApj+5eDAYDLr/8clx++eWXfM1AGDx48CWfD4VCWLp0KXbt2gWj0YgZM2agqqoKiUQCM2fOxDPPPIMrrrgCiUQCjDFFl3DQSw9K5xxIpPEuAiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ6PGWti6Wx5s+fj/LycmRnZ6O9vR05OTldno9EIhgxYgRcLhcA4Otf/zrmzJmDc+fO4U9/+hNCoRAMBgP27NmDG2+8MQ0OCLWgpbEIgiAIgiCITCORSGDXrl2Ix+P92n7YsGGora3F9773vR6fnzJlCmpra3t9/ezZs7FixQq4XC4kEgnk5+fDZDLB6XT2uD0tjUUQBEEQBEH0BC2N1QdHjhwBAEydOvWikyAAsGnTJmkS/u1vfxtbtmzBT37yE/zud7/D66+/Lm33xhtvaFMwQWhEOBxGVVUVwuFwukuRDW9etK5Hzf0pqa2ElhwN3sZJpiNKHrz5oP6jnh71H3EQKY9UvBiNxgEfMN5www29PnfhSZDs7GzMmDED2dnZ0s927doFh8OBRCIBAPB4PL2eBBkoeulB6ZwDiTTeRUCkPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6esdXEipKGhAQaDARMnTuzx+a1bt0r//uUvf9nlue9+97sYOXIkAKCqqkq9IgkiDUQiEVRXV2uyfrPa8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8kjVy0CuuDCZTDAa+3foZ7FYMH369C73GenphuxKoZcelM45kEjjXQREyoM3LzQHUk+L5kDiIEoePPrQsia99B8l9HjKWhdLY2VnZyMWi+Gxxx7DypUrL3p+2rRpOHz4MIqKitDc3HzR8w888AAqKiowdOhQtLa2alEyoRG0NBZBEARBEASRqezcuRP9OZybNGkSwuEwxo0bl/K+ysvLUVxc3K9taWksgiAIgiAIoidoaaw+MBgMAIBYLHbRc263G0eOHIHBYMCtt97a4+svu+wyAJ2XcBOESCQSCWmtZr3Dmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHETKQ20vQ4cOlY6H+oPRaITNZuv3FSQ9kbx3Y3/QSw9K5xxIpPEuAiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ6PGWtixMhNpsNQOcSWd35+OOPpV/kzJkze3x98gSKyWRSp0CCSBMejwclJSVCnOTjzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDiLloZaX4uJiTJs2Dddccw2MRiOKi4u73PejN/Lz87Fw4ULk5+envO+zZ8/2+CW2ntBLD0rnHEik8S4CIuXBmxeaA6mnRXMgcRAlDx59aFmTXvqPEno8Za2LpbHuuOMOfPLJJygoKEBTUxOsVqv03IIFC7BmzRoYDAZUVVXhq1/96kWv/9a3voXNmzfj8ssvx7lz57QsnVCZTF8aK5FIwOPxID8/X9a39niANy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPOIiUhxwvl1oaa8aMGV2Om4DOJYM/+OCDS2oajUbk5+fD4/F0+ebeQJbGAoCpU6di2LBhfW6nlx6UzjmQSONdBETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0ur+elsbqg7vuugtA5xmkX//619LPd+/ejbfffhsGgwGXXXYZbrzxxh5fX11dDYPBgPHjx2tSL0FohRJLF/ACb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApDy29/OEPf8Ds2bMvuY1Syxf094aYeulB6ZwDiTTeRUCkPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6es019BP3jkkUcwaNAgAMCf/vQnjB07FjfccANmz54tTbAfffRR6V4iF1JbWwuHwwEAuP7667UrmiA0wOv14qWXXoLX6013KbLhzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDiLloaWXQYMGYfHixSgrK+t1m7y8PDz++OPIy8vr8vP+ntgYKHrpQemcA4k03kVApDx480JzIPW0aA4kDqLkwaMPLWvSS/9RQo+nrHVxImTUqFFYvny5dNn3uXPnUF1djWg0CgC46qqr8Mtf/rLH177zzjvSv3u7mTpB6BWLxYLp06fDYrGkuxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8tDSi9lsBtB5/5De9heJRFBdXX3RiY8FCxZg6dKlCIVCitaklx6UzjmQSONdBETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0eMpaF/cISbJx40YsXboU1dXVAACr1Yq5c+di+fLluOyyyy7aPhqNYuzYsWhqakJWVhZaWlpQUFCgcdWEmmT6PUIIgiAIgiCIzGWg9wgJh8P47LPPAABLly6F3W4f8D6nTJmCFStW9HkwO3HiRIwcOXLA+gRBEARBEIS40D1C+sncuXOxf/9+eL1enD9/Hm63G2+++WaPJ0GAzon+m2++CbvdLt1snSBEIhQKYceOHYp/My8d8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8tDSS3Z2tvTvRYsWYfbs2Red0LBarZg1a9ZFJ1GS1NbW4t5771Xs6hC99KB0zoFEGu8iIFIevHmhOZB6WjQHEgdR8uDRh5Y16aX/KKHHU9a6OhGSZPDgwRgxYgSysrIuuV1ubi7uuOMO3HHHHbjppps0qo4gtCMWi+HMmTOIxWLpLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEGkPLT2kjwZYrVasXjxYlRUVKC8vBzl5eUoKyuD2WzG2LFjpWW0eoIxBrvdjmXLliESicDhcEiP7ktqtbW14cCBA/j444+xd+9eNDY2dnleLz0onXMgkca7CIiUB29eaA6knhbNgcRBlDx49KFlTXrpP0ro8ZS1rpbGIoju0NJYBEEQBEEQRKaye/fuXm9ifsstt3S5AiTJZ599hnA43KvmQJfMMhgMXZbnslgsmDlzJv785z+jsLAQhw4dumj5Llo2iyAIgiAIIjOhpbEIgkiJeDwOh8OBeDye7lJkw5sXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEykOOl8LCwh5/np2dnfINKf/t3/4N999/P0wmU7+2736SIxKJwG634xe/+AUcDkeP9zBpamqS/q2XHpTOOZBI410ERMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfR4yppOhBCEjvF6vXj55Zfh9XrTXYpsePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIecjxMnr06B6XCx43bhwMBkNK9RiNRtx4441Yv349pkyZkpIGAFRWVuLcuXM9PnehV730oHTOgUQa7yIgUh68eaE5kHpaNAcSB1Hy4NGHljXppf8oocdT1rpbGisYDOKvf/0rPv/8c5w+fRoejwfRaLRfrzUYDNi2bZvKFRJakulLYzHGEA6HkZ2dnfLBLi/w5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8RB5HykOslEAjA4XDA6/Vi0KBBKCoqwpAhQ3rdvq+lsRhjiMfjMJlMCIfDWLZs2YCWyrqQ8vJyFBcX9/jcrFmzpP3poQelcw4k0ngXAZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwm97q+npbH6AWMMy5YtQ3FxMb7//e/jD3/4A9avX4+PPvoIO3fu7POxY8cO7NixI902CJWwWq3Izc0F0HnJlcvlki7D93g80trJwWAQfr8fQOfNelwul6Thdrulk2qBQACBQAAAEI1G4Xa7pe1cLpd0gx+/349gMAigcxkAj8cDoHO8ulwu6bIvn8+HUCgEAAiHw9JZ0EQiAZfLhUQiAaDzLGnywDQUCsHn813SU3JN5mStevbk9XphNBphMBi4yCkSiSAajcJgMMjOCeh77MViMVitVgSDQcU9hcNhWK1WRCIRLnLyeDywWq0wGAwD9mQwGBCLxaRalXw/9ScnvbyftPIUjUa79CK9egoEAmCMwWAwcJFTPB5HKBSSJplqjz0le0R3T4FAAFarVdpOTk5+vx+hUAhWq1XqJQPNye12w2KxwGAwZPRnrgh9L5FISK/Xuye/3w+r1SptN9CcotEoRo8ejWnTpmHUqFHSfUF682Q2m6V5DtA5PpL1JA9Uk5/1eXl5WLduHdavX4/s7Gzk5eUB6LxqxGazwWjsPJzMy8vrchP25LycMYZQKCR5CofD0u8r6clgMMBsNnepVamcDAYDsrOz4Xa7056TnPmewWCA0WiUaqUekV5PBoMBoVBIqlXPnuTMy9XwpPUxoZI9orsnoLMfer1eLnKSM98T6TNXhL7n8/lgMBikXqRXT3Lm5Wp5knuska4e0d1TPB6H1WpFIBBQZOwxxmC1WqVeMtCcejsmTAe6ORHyD//wD/jNb34Dr9cLxtiAH4TYzJgxAw8++CAAoLW1FSUlJdKbc9WqVTh69CgAYOfOnaioqAAANDQ0oKSkRNIoLS1FXV0dgM5L+SsrKwEAdXV1KC0tlbYrKSlBQ0MDAKCiogI7d+4EABw9ehSrVq0C0Nk4SkpK0NraCgBYt24dqqqqAAAHDhzA2rVrAXQ2h5KSEqkZrV27FgcOHAAAVFVVYd26dZf05PF4sGLFCmzYsEH3nl577TWsWLECHo+Hi5w+++wzqR65OQF9j73Dhw9jxYoV+Otf/6q4p507d2LFihX47LPPuMkpqTFQT8kxn9xOyfdTf3LSy/tJK0/79u2TstSzpw0bNkg+eMjp+PHjXfTUHntK9ojunpK/26QnOTlVVFRg69atWLFiBfbt25dyTsmsM/kzV4S+d/r06S56evb09ttvY8WKFZIntXMaOnQoTpw4gfr6egCd4yNZTzwex549e1BVVYVwOIyDBw/i0KFDyM7OxvXXX4/58+cDAPLz87Fw4ULk5+cDAObPn4/rr78eQNd5eTgcxp49e6QD7QMHDki/r6Sn5HtLjZwu1OYhp1Tne0kfr732mvR7pR6RPk/JGo4fPy6Ep1Tn5Wp40vqYUMke0d1Ta2ur9L7lISc58z2RPnNF6Htr1qyRxoPePaU6L1fLkxLHGunqERd6On78uHTcokRO58+fx4oVK7BmzRpFjwnTgS6WxnrzzTfxD//wD9I38SZNmoTvfe97mDp1KgoLC2E2m/utdccdd6hYKaE1ycuprFYrzGYzqqqqMHnyZHi9XhQUFMBgMEjfnrBYLAgGg0gkEhg8eDBisRh8Ph9sNhuAzrOrOTk5yMrKks6s5uTkIBqNIhAIoKCgAEDn2dXc3FyYzWb4/X4YjUYMGjQIkUgEoVAI+fn5YIzB7XYjLy8PJpMJPp8PZrMZVqsV4XAYkUgEeXl5SCQS8Hg8yM/Pl77lZbFYkJ2djVAohFgshtzcXMTj8R49AUB1dTWuuuoqDBkyRNee2tracObMGVx33XWIx+Npz8nr9aKmpgY33HADzGazrJz6M/bMZjNOnjyJsWPHwmKxKOopkUjg1KlTGD9+PACkPSeXy4Xz58/j6quvRiAQGJCneDyO/fv34+qrr0Z+fr6i7ycRe4Tannw+Hw4fPowbbrgBWVlZuvXkdDpx8uRJTJ8+HQDSnlMgEEB1dTVuvPFGWCwW1ceekj2iu6dQKIT6+npMnDgRkUhE9tiLxWI4ffo0JkyYgEQiMeCc2tra0NDQgKlTpyIcDmfsZ64IfS8YDOLAgQO44YYbkJ2drWtPgUAAZ8+exaRJkxAOh1XPKRaLoaqqCtFoFFlZWYjH44jFYsjOzpauevJ4PBg+fDiGDh2KyZMnY/v27fjOd74Di8UifWM7Pz8fHo8HiUQCeXl5iEQi0jeOzWYzfD4f3nzzTQwZMkRaCiEcDsNsNsNkMuHmm29GIpFAVlYWDh8+jNGjR2P48OGK5mS1WnHkyBFcfvnlGDp0aNpzSnW+ZzKZcOjQIYwdOxbDhg2jHpFmT5FIBHv37sX06dORk5Oja09y5uUiHBMq2SO6exo0aBBqa2sxatQo5Ofnpz0nOfM9kT5zReh77e3tOHXqFKZNm4ZEIqFbT3Lm5Wp5knuska4e0d2TxWLBiRMncMUVV8Bqtcoee1arFceOHcPo0aORm5sr+5jw/PnzaVsaSxcnQu68807s2LEDBoMBCxcuxO9//3vpMmwis8n0e4QQBEEQBEEQxEAJhUJoamqC1+uF3++XvsHXnREjRmDSpEn429/+hvvuu2/A++nPPUIuhDEm/SEieXBOEARBEARBiAPdI6QPDh06BIPBgHHjxuG5556jkyAE8T8Eg0Fs3rxZWvNPz/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/xEHkfJIhxer1Ypx48bhuuuuw6RJk7o8F41G8eWXX0rrUKtN0n9HRwc+//xz7N27F9XV1di1axeam5sV0db7HEik8S4CIuXBmxeaA6mnRXMgcRAlDx59aFmTXvqPEno8Za2LMwrJG7bcdtttitztniBEofvNmPQMb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApD968dL/BefJnapH0f/To0S4HyIlEArW1tdJNQ+Vo630OxNsYyXREyoM3LzQHUk+L5kDiIEoePPrQsia99B8l9HjKWhdLY1199dU4fvw4fvjDH0o3iCMIgJbGIgiCIAiCIAg5dHR04NChQz0+l1waa+vWrbj77rsHrN3fpbHC4TA+++yzHrcbP348Ro8ePeB9EwRBEARBEPxBS2P1wc033wzGGGpra9NdCkFwRSwWw5kzZxCLxdJdimx486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+Ig0h58Oalp2/tJW9irgaxWAx1dXW9fktQzjIKosyBeBsjmY5IefDmheZA6mnRHEgcRMmDRx9a1qSX/qOEHk9Z6+JEyE9+8hMAwBdffIGampo0V0MQ/ODz+VBWVgafz5fuUmTDmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHETKgzcvkUgEBw8eRCQSkX42evRoWCwWVfbn8/nw7rvvdtmfktoizIF4GyOZjkh58OaF5kDqadEcSBxEyYNHH1rWpJf+o4QeT1nrYmksAPjRj36El156Cddccw127NiBoUOHprskggNoaSyCIAiCIAiCSJ3+LI0VCARw//33w263D0i7rKwMY8aM6fG5C5fG8nq92LdvX4/bjRw5EhMnThzQfgmCIAiCIAg+oaWx+sELL7yARx99VPplvfDCC2hqakp3WQRBEARBEARBEEJjMpmwaNEizJ49e0BXhixYsABLly5FKBRSsTqCIAiCIAiC6BvdnAgxGo14+eWX8cc//hHNzc148sknMWrUKBQWFmLcuHG48sor+3yMHz8+3TYIQlHcbjeeffZZuN3udJciG968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IgUh68eQmFQvj000+7nLzIzs6GzWbD4sWLUVFRgfLycumxfPnyS+rZ7XYsW7bsop/X19cD6PT/4osvqnKyRJQ5EG9jJNMRKQ/evNAcSD0tmgOJgyh58OhDy5r00n+U0OMpa90sjRWNRvGzn/0Mq1atQiwWw4VlGwyGPl/PGIPBYEA8HlezTEJjMn1prGg0irq6OowfPx5ZWVnpLkcWvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEGkPNLtpfvSWPF4HE6nE0OGDMGoUaMwadIkAIDT6cTBgwcver3D4cC8efMuuQ+LxYKKioqLriYZNWoURowYgRMnTqCjowMmk+mi18pZGkuUOVC6xwjRFZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwm97q9P599ydXEiJB6PY86cOdiyZQsAINWS6USIeGT6iRCCIAiCIAiCkEN/7hGSpL6+HqdPn+6yTSQSwZw5c/q82Xl5eTmKi4sv+rnZbMb48eNx/PjxHl9H9wghCIIgCIIQB7pHSB+88sor2Lx5M4DOkyBf//rX8dprr+Hzzz/HyZMncfr06X49Tp06lWYnBKEsgUAAGzduRCAQSHcpsuHNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NOj/iMOIuXBm5doNIpjx44hGo1e9FxPJzIsFgtmzpyZ8v6CwSDef//9Hvd3IfF4HC6XC8FgsN9fjBNlDsTbGMl0RMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfR4ytqc7gL6Q1lZmfTv5557Dr/4xS/SWA1BEARBEARBEETmkZ2djeHDh6OlpaXLzxctWgSg834gveFwOKR/FxYWDuim601NTTh58iQSiQQAIC8vD9dee+2ANAiCIAiCIIjMRhdLY+Xl5SEQCODqq6/G4cOH010OwRG0NBZBEARBEARBpM5AlsYCAJfLherq6h63P3v2LBYsWNDnPpNXkSxatAhWq/WS2+bl5cHr9V708yFDhmDatGl97osgCIIgCILgB1oaq5/cfPPN6S6BILjiUksX6A3evGhdj5r7U1JbCS05GryNk0xHlDx480H9Rz096j/iIFIevHmJx+Noa2tL6d6K/b1CIxKJwG63Y9myZX3ur6eTIEDnzdv7qlGUORBvYyTTESkP3rzQHEg9LZoDiYMoefDoQ8ua9NJ/lNDjKWtdnAi5/PLLAYBudE4Q3eBpnT258OaF1qdVT4vWpxUHUfLgzQf1H/X0qP+Ig0h58OZFy4PVXbt2IRAIyPrj3KUQZQ7E2xjJdETKgzcvNAdST4vmQOIgSh48+qB7hKijx1PWulga60c/+hFeeuklTJs2DQcOHEh3OQRH0NJYBEEQBEEQBJE6Si6N5XA4MG/evAHtv7y8vMebsPeHGTNm9Lm0FkEQBEEQBMEPtDRWHzz22GMwmUw4dOgQPvnkk3SXQxAEQRAEQRAEIQS5ubkpPUcQBEEQBEEQekIXJ0KmTZuGZ555BowxPPTQQzh27Fi6SyIILnC5XFiyZAlcLle6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApj3R7sVgsKCoqkv4/FAph586diMfjGDZs2EXbG43KHkL6/X7s3LkToVBIUV1AnDlQuscI0RWR8uDNC82B1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sXSWEleeeUVPPnkkzAajXj88cfxd3/3d5g6dSry8/PTXRqRJjJ9aaxYLIaGhgaMGjUKZrM53eXIgjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAcPXhKJBE6fPo329naEw2HE43F85Stf6fE4K5FI4NNPP0UikbjouVSWxjKbzbj//vvx6KOPIicnZ0Cv7WtpLFHmQDyMEeJ/ESkP3rzQHEg9LZoDiYMoefDoQ8ua9NJ/lNDr/vp0/i1XFydCTCZTl/9njMFgMAxYx2AwIBaLKVUWwQGZfiKEIAiCIAiCILSmsbERJ06cuOjnkUgEc+bMQSQSGbDm7NmzsXjx4gG9hu4RQhAEQRAEoS/oHiF90P1czYUnQRhjA3oQhEj4/X689dZb8Pv96S5FNrx50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf8RBpDx489KfekaOHImvfOUruOKKK7r83GKxYObMmQPa3+DBg/HQQw/h888/x9mzZ+FwOOBwOFI6mdIdUeZAvI2RTEekPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6es+bj2qB/QSQyCuBij0Qibzab4Ws3pgDcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAdvXvpbT35+PvLz81FUVITq6mrpyvtFixYBAHbt2tWvkxmJRAIulwuJRAILFiyQfp48qbJo0aKUr/oQZQ7E2xjJdETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0eMpaF0tjEURv0NJYBEEQBEEQBJFe/H4/mpqa4PP5MHjwYJw/fx6RSAQdHR3SNi+++CI+/fTTAWtfasksWhqLIAiCIAhCX9DSWARBpEQkEkF1dbUiSwekG968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IgUh68eUmlnsGDB2PChAmYPn06rrrqKgCdV3QUFxdLj//4j//A7NmzL3qtxWLB9OnTYbFYetTu75UlSnlRUytVDd7GSKYjUh68eaE5kHpaNAcSB1Hy4NGHljXppf8oocdT1ro4EfKd73wH3/nOd/D9738f0Wg03eUQBDeEQiHs2LEDoVAo3aXIhjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAdvXtSqx2q1YvHixSgrK7vo57Nmzer1yo7uV5YMBFHmQLyNkUxHpDx480JzIPW0aA4kDqLkwaMPLWvSS/9RQo+nrHWxNJbRaITBYMBdd92FysrKdJdDcAQtjUUQBEEQBEEQfLFjx45en3M4HJg3b96A9MrLy1FcXHzRz2lpLIIgCIIgCH1BS2P1wZAhQwAAY8eOTW8hBMEZjDGEQiHo4Hxmn/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/xEHkfLgzYvW9RgMBlitVhgMBsW1RZkD8TZGMh2R8uDNC82B1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sWJkJEjRwIAAoFAmishCL5wu9343e9+B7fbne5SZMObF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/UccRMqDNy9a11NQUIBf//rXKCgoUFxblDkQb2Mk0xEpD9680BxIPS2aA4mDKHnw6EPLmvTSf5TQ4ylrXSyNtXDhQjz//POYMGECTpw4ke5yCI7I9KWx4vE4WltbUVRUBJPJlO5yZMGbF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/UccRMqDNy9K1DOQpbFMJhOKiorQ2tqKeDze42tSXRpLlDkQb2Mk0xEpD9680BxIPS2aA4mDKHnw6EPLmvTSf5TQ6/76dP4tVxcnQg4dOoQbbrgBiUQCGzduxJw5c9JdEsEJmX4ihCAIgiAIgiB4g+4RQhAEQRAEQfQE3SOkD6677jr8x3/8BxhjWLBgAXbt2pXukgiCC3w+H1avXg2fz5fuUmTDmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHETKgzcvWteTm5uLH/7wh8jNze11m9bWVjgcDkQikQFpizIH4m2MZDoi5cGbF5oDqadFcyBxECUPHn1oWZNe+o8SejxlbU53Af3l6aefRm5uLv793/8ds2bNwne/+118//vfxw033ICioiJkZ2enu0SC0Byz2YyxY8fCbNbNW7lXePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIefDmRet6YrEYzpw5g1gs1us2P/vZzwAAFosFM2fOxKJFi/p1JYgocyDexkimI1IevHmhOZB6WjQHEgdR8uDRh5Y16aX/KKHHU9a6WBqr+/pjjDEYDIYB6xgMhktOsAn9QUtjEQRBEARBEARfKL00Vndmz56NxYsX09JYBEEQBEEQOoOWxuqD7udqLjwJwhgb0IMgRCIcDqOqqgrhcDjdpciGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPOIiUB29etK4nOzsbM2bMGNAV/rt27erXMlmizIF4GyOZjkh58OaF5kDqadEcSBxEyYNHH1rWpJf+o4QeT1nr4kQI0PsJD4LIZCKRCKqrqwe8XjKP8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8uDNi9b1WCwWTJ8+HRaLpd+viUQi6Ojo6Nd2IsyBeBsjmY5IefDmheZA6mnRHEgcRMmDRx9a1qSX/qOEHk9Z62JpLILoDVoaiyAIgiAIgiD4Qu2lsQCgvLwcc+fOpaWxCIIgCIIgdAQtjUUQREokEgm4XC4kEol0lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4iBSHrx50boeo9EIm80Go1H5Q1NR5kC8jZFMR6Q8ePNCcyD1tGgOJA6i5MGjDy1r0kv/UUKPp6zpRAhB6BiPx4OSkhJ4PJ50lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4iBSHrx5UbueW265pcsyWPn5+Vi4cCHy8/OlnxkMBpSVleH5558fsH48Hkd7ezvOnz+PpqYmIeZAvI2RTEekPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6esaWksQtdk+tJYiUQCHo8H+fn5qnyLTkt486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+Ig0h58OZFiXoutTTWzTffjPvuuw92ux1A5xUh+fn58Hg80jcFZ8+ejcWLF19yGa2elsYKhUKorq5GKBQC0Hmfyfz8fEyfPh0mkyklL0nSOQfibYxkOiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ63V+fzr/lmjXZC0EQqpBcSkAEePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIefDmRYt6Fi1aBADYtWsXIpEIXC4XgM4bp8+cOVN6fqCcPHlSOgkCdF5Z4vV60d7ejuHDh8uqOZ1zIN7GSKYjUh68eaE5kHpaNAcSB1Hy4NGHljXppf8oocdT1nyccgPQ2Nio+T6bmpo03ydBKInX68VLL70Er9eb7lJkw5sXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEyoM3L2rXYzQaYbVasXjxYlRUVGDNmjX47W9/izVr1qCiogKLFy/u9w3Qz549ixMnTmDfvn2ora1Fe3t7l+fD4TD27t2LhoYG2XWncw7E2xjJdETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0eMqamxMhEydOxP/9v/8XTqdT9X05nU78+7//OyZOnKj6vghCTSwWC6ZPn95lnWW9wpsXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEyoM3L2rXY7FYkJ2dLf27uLgYo0aNQnFx8YD2GYlE0NjYiMbGRni9XjQ3N1+0jclkQnFxMfx+vyJ1p2sOxNsYyXREyoM3LzQHUk+L5kDiIEoePPrQsia99B8l9HjKmpt7hBiNRhgMBgwePBj/8i//gieeeALjx49XdB91dXV48cUX8eqrr0qT4Xg8rug+CG3J9HuEEARBEARBEARvXOoeIbNmzUJLSwuOHj3ap86l7hECdN5LZNGiRX1eQZKdnY1bbrmlz/0RBEEQBEEQ6pLOv+Vyc0XIz372M5hMJvh8PixfvhyTJk3CnXfeiZdffrnHb/f0l+bmZrz88su48847MXHiRJSUlMDn88FkMuHJJ59U0AFBaE8oFMKOHTu6rIWsV3jzonU9au5PSW0ltORo8DZOMh1R8uDNB/Uf9fSo/4iDSHnw5kWLeoYPH44pU6YAAGKxGM6cOYNYLDZgHbvdjmXLlvX6fFI7Go2mXGuSdM6BeBsjmY5IefDmheZA6mnRHEgcRMmDRx9a1qSX/qOEHk9Zc3MiZMWKFdi/fz/uvfdeMMaQSCSwc+dO/OhHP8LIkSNxzTXX4PHHH8fKlSuxfft2nDhxAu3t7QgGgwgEAmhvb8fx48exbds2rFy5Eo899hiuueYajBw5Ej/60Y+wc+dOMMbAGMM3v/lNHDhwAH/84x/TbZsgZCHnwJE3ePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIefDmRat68vPzAQCJRAIulwuJRCIlneQN13siqa3EgXc650C8jZFMR6Q8ePNCcyD1tGgOJA6i5MGjDy1r0kv/UUKPp6y5WRrrQnbt2oVnn30Wf/vb35Asz2AwpKR14evvu+8+/OY3v6HLogWClsYiCIIgCIIgCL6orq6Gy+W66OdFRUXSXD0YDGLPnj2X1IlEIpgzZ06vJzqSlJeXo7i4+JLb3HzzzRg0aNClCycIgiAIgiBUhZbG6sbMmTNRUVGB48eP49e//jXGjBkjXc0x0MeYMWPwm9/8BsePH8cHH3xAJ0EIoYjH43A4HELc64Y3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o84iJQHb16UqGfkyJEX/cxgMGDEiBEX/TyRSMDn8110RYjRaERhYSHuvPPOlOu4UHvPnj2orq5OS/+Qq8HbGMl0RMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfR4yprLEyFJJkyYgP/3//4fzpw5g4MHD+K5557Dd7/7XUyaNKnHG+JZrVZMnjwZ3/ve9/Dcc8/h4MGDOHPmDJ555hlMmDAhDQ4IQl28Xi9efvlleL3edJciG968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IgUh68eVGinuHDh+Pqq6/GkCFDkJWVhcLCQkydOhWFhYUXbRuJRLBv374uV30MGTIEt912G2688Ua88cYbmD17dkp1dNd2uVz48ssvpecTiQQ8Hg+CwWCfWumcA/E2RjIdkfLgzQvNgdTTojmQOIiSB48+tKxJL/1HCT2esuZyaaz+4na74ff7AQCDBw9GQUFBmisitCbTl8ZijCEcDiM7Ozvl5eN4gTcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAdvXrSqJ7k0FmMM8XgcJpNJ2l9hYSGuu+66LtudPXsWCxYs6FGrt6WxetK2WCz42te+hra2NtTW1krfTszNzcV1110Hi8XS4z7SOQfibYxkOiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ63V+fzr/lmjXZi0oUFBTQyQ+O+etf/4pNmzZh3759OHfuHNra2mAymTB69GjMnj0bTz75JCZPnpzuMnWNwWDo8eooPcKbF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/UccRMqDNy/p6EFmc9+Hpb2doADQ6z1EetKORCIIhUI4cuSIdD9JAPD5fDh69CimT5/eq1a65kC8jZFMR6Q8ePNCcyD1tGgOJA6i5MGjDy1r0kv/UUKPp6y5XhqL0DfLly/Hiy++iL1798JoNOLaa6/FiBEjUFdXh5deegnXXXcd3nzzzXSXqWs8Hg9WrFgBj8eT7lJkw5sXretRc39KaiuhJUeDt3GS6YiSx/9n783Do7rOPP9vLSqVlpLEamETTGC8YBNbdCcxDk4sJT1Jd6bp9nQ8T0fxzEOW7rbTmZnY0/OoPZNuxiGdOKYncVcyHZx0zBIHK53gmFi2AWEoyQYjYbCEEULGCISQUGmtfbtVdc/vD/3qtval7lLnnno/z8PzINW93/N+9Z771rl16p7Dmw+qP/rpUf0RB5HywZsXo+NJJBJoaWlBIpHIWmPbtm3YsWMH4vH4grTHxsYmTYJk8Pv9SKVSM7aRyzEQb30k3xEpH7x5oTGQflo0BhIHUfLBow8jYzJL/dFCj6dc00QIoRvbtm1DY2MjgsEgent78c477+Dy5cvo6enBf/yP/xHJZBJf+9rXcP369VyHalqcTieqq6u5mVlVA29ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eTE6HrvdjrVr1y7oqZC58Hg82Llz54K051qjeranS3I5BuKtj+Q7IuWDNy80BtJPi8ZA4iBKPnj0YWRMZqk/WujxlGtT7xFCmJd4PI5Vq1bB7/dj165deOyxx7LSyfc9QgiCIAiCIAjCjGT2/piJmfYI8Xq9qK2tnVPT4XCgoaFhzmW0AGDVqlUYGBiY8bWPf/zjKC4uXoADgiAIgiAIYrHk8rNceiKEyAlOpxPr1q0DAGXDe2LxxGIxHD58GLFYLNehqIY3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3rwYHU8ymcTly5eRTCbnPG7p0qXzTnBIkoSxsbFFay+EXI6BeOsj+Y5I+eDNC42B9NOiMZA4iJIPHn0YGZNZ6o8WejzlmiZCDCSdTuO9997D888/j69//ev46Ec/CofDAYvFAovFgurq6qy1JUnCCy+8gM9//vO49dZb4XQ6sWrVKnziE5/A//2//xcjIyPaGdGAkZERdHV1AQA+9rGP5Tga8yLLMvx+P2RZznUoquHNi9Hx6NmeltpaaKnR4K2f5Dui5IM3H1R/9NOj+iMOIuWDNy9Gx8MYQzwen3HPjok4HA5s2bJFF+2FkMsxEG99JN8RKR+8eaExkH5aNAYSB1HywaMPI2MyS/3RQo+nXNPSWAZx8OBBPPLII4hGo7Me8+CDD6KpqWnR2l1dXaitrUV7e/usx6xcuRJ79uzB5z//+UXra8nw8DDOnDmDb33rW2hra0Ntba2qDdNpaSyCIAiCIAiCMB+LXRoLGF9ed+fOnfB4PLPqPvvss6isrFR0ZnqKZOXKlRgaGprxfFoaiyAIgiAIQj9oaaw8wO/3zzkJki19fX34zGc+o0yCWCwWPPjgg/jqV7+KrVu3oqioCAAwNDSEhx56CMePH9c8hvk4ePCg8tTLypUr8fnPfx4+nw+7du3C/v37DY9HJFKpFHp6epBKpXIdimp482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M2L0fHM9y3BgoIC5f9OpxPbt2/Hvn37ZtV74oknUFtbi9raWjz00ENwu93T7sNmmwSZi1yOgXjrI/mOSPngzQuNgfTTojGQOIiSDx59GBmTWeqPFno85ZomQgzmpptuwh//8R/j29/+Nl5//XV885vfVKX3pS99CTdu3AAA3HrrrWhra0NTUxOef/55vPLKK+jt7cVnPvMZAONr5P6n//Sf4Pf71dpYFMuWLcOWLVtw//3349Zbb4XNZsO1a9dQX1+vLI9FZEc4HMa+ffsQDodzHYpqePNidDx6tqelthZaajR46yf5jij54M0H1R/99Kj+iINI+eDNi9HxSJKEc+fOQZKkGV+32+3TfjffXiEZCgsLUVVVhR//+MeqYgRyOwbirY/kOyLlgzcvNAbST4vGQOIgSj549GFkTGapP1ro8ZRrWhrLILxeLyRJwpo1ayb9/qmnnsK3v/1tAItfGuv111/Hf/gP/wHA+M3AmTNn8JGPfGTacZFIBPfccw+uXLkCAPhf/+t/4Xvf+96045588kk888wzC25/IslkcsablJkYGBjA3/3d32H37t0oKyvDe++9h1tvvTWrdmlpLIIgCIIgCIIwH+l0GidPnpzxSZB169ZNum86c+bMpJtnr9eL2traBbflcDjQ0NCwoAkUWhqLIAiCIAhCP2hprDygsrJy2iSIWv75n/9Z+f+2bdtmnAQBgJKSEuzYsUP5+ac//emMjyOVlJRg2bJlWf2zWCwLjnvVqlV4/vnn8dnPfhbBYBDf/e53F+GaIAiCIAiCIAizY7PZsHz58mm/t1qtWLZs2aTfOZ1OVW1JkoSxsTFVGgRBEARBEIS5oYkQkxIOh3Hs2DHl56985StzHv+FL3wBpaWlAICxsTG8+eab0475+7//e4yMjGT1z2azLdrD1q1bAYx/w4vIjkAggO9///sIBAK5DkU1vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmxch47rjjDpSWluLkyZOIx+MoLi7Gxo0bUVJSMum4dDqdlX55eTmefPJJlJeXq441l2Mg3vpIviNSPnjzQmMg/bRoDCQOouSDRx9GxmSW+qOFHk+5XthaRgR3vP3220gkEgDGn+T42Mc+NufxTqcT999/P44ePQoAOH78OD796U/rHudcZJ5KyfbGhgCKi4vx0EMPCfH4Pm9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eTEyHpvNhnvvvRfFxcVYu3btrG1O3DB9MUSjURw8eHDaZulz0dfXB0mS4HA4sHLlSlRUVADI7RiItz6S74iUD9680BhIPy0aA4mDKPng0YeRMZml/mihx1OuaY+QHJPtHiFutxuPP/44AGDz5s04derUvOdM3APkz/7sz/DSSy9lFbMWMMbwyU9+EidPnsS2bduwd+/erHRojxCCIAiCIAiCEJvR0VGcP39e+VmSJGzdunXWDdZnor6+HpWVlYtu+6677sLKlSsXfR5BEARBEAQxHdojhFg077//vvL/hW40PnGPkq6uLs1jmsiZM2fwd3/3d5PizHDt2jV88YtfxMmTJ2Gz2fDNb35T11hEJptvufEKb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x54bEGuVyuST87HA5s2bJlXu2J30BczKTJRHp6ehYc53xkq8FbH8l3RMoHb154rD88aNM9GDERUfLBow8jYzJL/dFCj6dc09JYJmV0dFT5/0033bSgcyZ+A0rvzQLD4TC++93v4rvf/S6WLVuGNWvWwOFwYGhoCD09PWCMoaSkBM8//zw2bdqkaywEQRAEQRAEQZgXh8OBJUuWwOfzKb+rq6sDAJw8eXJBkxzbtm1DTU0N6urqFrX5ejQaVZb0JQiCIAiCIMwLPRFiUsLhsPL/oqKiBZ0z8biJ5+vBvffeix//+Mf4whe+gGXLluHKlSs4e/YsAoEA7rvvPvzd3/0durq68Od//ueatOd0OpXN4NPpNPx+PzKrvgWDQeXmKBaLIRKJABjfo8Tv9ysagUAAyWQSwPgNT2amMplMTtrQx+/3KzdDkUgEsVgMwPgj+sFgEMD40l9+v1/Z/yQcDiMejwMAEokEQqEQAECWZfj9fsiyDAAIhULK3i/xeFzJ02yeiouL8bnPfU75vZk9pVIpfP7zn0dxcTEXebLZbPjMZz6D4uJi1XkC5u97BQUFeOihhxRfWnqyWq146KGHYLPZuMhTMplUvp25WE/FxcX4gz/4A1it429fWl5PC8mTWa4nozzZ7XZ8+tOfRnFxsak9Mcbwuc99TvnGcK7z5HA4UF1drayhqnff07JGTPXEGMNDDz0Eh8OhSd+zWCx46KGHYLfbs8qTJEn4kz/5ExQXF+f1e64Ida+wsBDV1dXK+NbMnmRZxkMPPYTCwkIu8pRZdqq4uNiQvldcXIw//uM/njSZMZOnu+++G0uWLFGOczqdqKurw+9+9zvU19fjhRdewA9+8AMA43W0rKwM0WgUv/vd7+BwOGCz2eDxePDss88qf4dUKqXEzRhDPB5XYk0kEspxQ0NDSKfTqvOU7XivuLgYn//85ye9b1GNyJ2n4uJiVFdXw+FwmN6TmnG5Hp6MvicsLi7Gn/7pn0KSJM09FRUV4aGHHkIqleIiT2rGeyK954pQ99LpNP7oj/4IxcXFpvakZlyulye19xq5qhFTPTkcDjz00ENgjGnS95xOJx566CGk02lN7wlzAU2EmJRMBwWgDMDmo7CwUPl/5kLQiyVLluC//tf/igMHDuD999+H3+9HMpnE6OgoTp06he985ztYvXq1Zu1t3rwZDz/8MABgeHgYbrdbuTh3796Nzs5OAEBzczMaGhoAjG+E6Ha7FY1du3ahu7sbANDY2IjGxkYAQHd3N3bt2qUc53a70dfXBwBoaGhAc3MzAKCzsxO7d+8GMF443G43hoeHAQAHDhxAS0sLAKCtrQ379+8HMF4c3G63Uoz279+PtrY2AEBLSwsOHDgwp6dkMomXX34Zr7zyihCejh07hmQyyUWezpw5g927dyOZTKrOEzB/33v//ffR1dWFw4cPa+7p5MmT6OrqwpkzZ7jJU1dXF5LJ5KI9JZNJ/OIXv8DJkycBaHs9LSRPZrqejPB0/vx5/PSnP0UymTS1p1deeQUvv/wykskkF3nq6emB2+1WBrp69z2ta8RET6+88gq6uroUT2ry1NDQAI/Hg66uLpw/fz7rPLW1tSGZTOb9e67Z697AwADcbrdyA2ZmT7/5zW/Q1dWleOIhT6dPn0YymTSk7yWTSbz99tvzerLb7SgsLMS7776r3Ne0trYiHo+jsrISfr8fdvv4ggd33XUXvvrVr6KgoAAbN27E448/jhUrVgAAbrnlFly7dg0A4PV6lb1HEokEWltblVjPnz8Pr9erxLB7926cPXtWVZ6yHe8lk0kcO3aMagQnnjJj2MyyaWb3lO24XC9PRt4TJpNJnD9/XhdP4XAYXV1d3ORJzXhPpPdcEereL3/5Sxw+fBjJZNL0nrIdl+vlSYt7jVzViImeenp60NXVhVdeeUWTPI2OjqKrqwu//OUvNb0nzAmMyCn/5//8HwaAAWAPPvjggs/7/Oc/r5z3t3/7tws65/XXX1fOKS0tzTJivujo6GAAmNPpZKWlpayjo4OlUinm8/mYLMuMMcYCgQBLJBKMMcai0SgLh8OMMcaSySTz+XyKlt/vZ5IkMcYYi0QiLBKJMMYYkySJ+f1+5Tifz8eSySRjjLFwOMyi0ShjjLFEIsECgQBjjDFZlpnP52OpVIoxxlgoFGKxWIwxxlg8HmfBYJAxxlg6nWY+n4+l02nGGGPBYJDF43HGGGOxWIyFQiHGGJvVk9/vZ9/73vfYjRs3TO/p+vXr7Hvf+x7z+/1c5GlwcFCJR22eGJu/7w0PD7Onn36aDQwMaO7J6/Wyp59+mg0ODnKRp97eXvb0008zv9+/aE+ZPu/1ehlj2l5PC8mTWa4nozwNDQ0p/cHMnm7cuKH44CFPIyMjSjxa5MnIGjHV040bN9jTTz/NRkZGNOl7mViHhoayytO1a9eUv20+v+eKUPdGR0fZ9773PSVeM3vq7+9nTz/9NBsdHeUiTxOvEyP6Xubaunbt2oI9tba2Mo/Hww4dOsSOHTvGPB4PO3LkCHv11VeZw+FgDoeDlZWVsfLycvbkk0+yD33oQ8xmsyn3Qb/85S+Zx+Nhr732GnvhhRdYfX09e/HFF9nvfvc7dvz4cebxeNjhw4fZ0aNHmcfjYUePHmW/+93v2D/8wz+woaEhw8d7mb/R9evXNe17ItcIPT1l8jEyMmJ6T2rG5Xp4MvqecGL90dqTz+djTz/9NLt+/ToXeVIz3hPpPVeEutfX16dcJ2b2pGZcrpcntfcauaoRUz2NjIywp59+mt24cUOTvjc2Nsaefvpp1tfXp8k9Yeaz3My/jo4OZhQWxv7/51aInPDUU0/h29/+NgDgwQcfRFNT04LO+/M//3P8+te/BgD89//+3xc0o/bb3/4WX/jCFwCM7xcyMDCQXdAcceHCBWzcuFH5uaOjA3fffXcOIyIIgiAIgiAIQk9Onz4964abO3bsgMfjmfP8PXv2KE+YTlySK7MJ+1z7iNx6660oKipCWVkZioqKYLFYsjdCEARBEASRZ+Tys1zaLN2kLFu2TPn/4ODggs7JPNoNAEuXLtU8JoIgCIIgCIIgiFyS2UR9rsmQnTt34uLFi9N+L0mSct727dtnPDezrBYA3HzzzbjttttoMoQgCIIgCMIE0B4hJuWOO+5Q/j9xMD4Xvb29yv/vvPNOzWMijMfv9+Pb3/52zjcb0gLevBgdj57taamthZYaDd76Sb4jSj5480H1Rz89qj/iIFI+ePNihhpUWlo662tOpxPbt2/Hvn37UFFRgaeeegoVFRWTjplpEmQiU58UAcb3aGxubp60V+ONGzcwMjKy4Liz/dvy1kfyHZHywZsXM9SfXGjTPRgxEVHywaMPI2MyS/3RQo+nXNPSWDkm26WxGhsb8bnPfQ4AUFJSAv+EzQFn47Of/SyOHj0KAPjWt76Ff/iHf8g+cE7I96WxUqkU+vr6sHr16nnzzzu8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88ObFDDVoaGhI2YRzNrxeL/7Lf/kvWL16Nfr6+pBKpRYVV319PSorK5WfZVlGMBhEWVkZrNZ/+z7hTTfdhA0bNixIM9u/LW99JN8RKR+8eTFD/cmFNt2DERMRJR88+jAyJrPUHy30pp6fy89yaSIkx2Q7ERIOh7F8+XIkEgkAwKlTp7B58+ZZj08kElixYgVCoRAA4NixY/j0pz+tLngOyPeJEIIgCIIgCILINxhjePPNNzHXrazX60VtbW3WbWzYsAE//OEPZ90rJIPVasWnPvWprNshCIIgCILIJ3L5WS4tjWVSSktL8ZnPfEb5ee/evXMe/9vf/laZBFm6dCkN1gUhEongV7/6FSKRSK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHkxQw2yWCwLegqjpKQEX/ziF1FSUrLouC5evIidO3cqP0uShI6OjmlLZi2GbP+2vPWRfEekfPDmxQz1JxfadA9GTESUfPDow8iYzFJ/tNDjKdc0EWJi/vqv/1r5/969e3HhwoUZj4tGo5M2+/urv/orbh47I9RhtVpRUVEx6fF8s8KbF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb17MUoPm26B86dKlsNls8Pv9kGU5q9gm7hVisVjgdDpVbYyerVfe+ki+I1I+ePNilvpjtDbdgxETESUfPPowMiaz1B8t9HjKNS2NlWOyXRorw6c+9Sm89dZbAIC1a9fid7/7He655x7l9dHRUdTW1ip7gyxduhTd3d3TNgw0K7Q0FkEQBEEQBEHkHyMjI+jo6JjzmB07dsDj8ahqZ+peIVOhpbEIgiAIgiAWDi2NlSd8/vOfR1VV1aR/zz33nPL6mTNnpr1eVVWFGzduzKr54osvYtWqVQCAnp4eVFVVoaamBn/xF3+BP/3TP8WaNWuUSRC73Y5f//rXwkyCTMTpdKK0tBQAkE6n4ff7lTWDg8Gg8k2uWCymPIqVSqXg9/sVjUAggGQyCWD8KZpoNAoASCaTCAQCynF+v1/ZbDESiSAWiwEYf1w+GAwCGF+32O/3I51OAxjf0yUejwMY368ls0yZLMuTvqUWCoWUfV/i8TjC4fCcniRJwunTp+Hz+UzvaWRkBGfOnIEkSVzkKRQK4dSpU5AkSXWegPn7XiQSQXt7O/x+v+aegsEg2tvbEQqFuMjT8PAw2tvbIUnSoj1JkoSWlhblNS2vp4XkySzXk1GewuGwcp2Y2ZPP58Pp06eVuprrPEWjUbz99tvKa3r3PS1rxFRPPp8P7e3tiEajmvS9QCCA9vZ2Je7F5mloaAjvvvsuJEnK6/dcEepeLBbD22+/rbxmZk9jY2Nob29HLBbjIk8TrxMj+p4kSTh79iyGhoYW5cnlciEejysxSJKknJNOp5FIJPA3f/M3+OIXv4hVq1bBZrMBGF9iOLPvR2FhIVwuF4Dp31Z0uVwoLCxU/uaxWAxerxfJZBLxeFzxFI/HdR/vSZKEM2fOYGRkRMkT1YjceZIkCW+//bbympk9qRmX6+HJ6HtCSZLQ1taGoaEhzT0lEgm0t7djZGSEizypGe+J9J4rQt0bHR3FO++8A0mSTO1JzbhcL09q7zVyVSOmeopGo2hvb4fP59Ok78XjcbS3t2N0dFTTe8JcQBMhBtLZ2Ylz585N+jc4OKi8HolEpr1+7ty5OdehXb16NY4fP46qqioA4525qakJzz//PF555RXlwlixYgUOHjw4aV8Rkdi8eTMefvhhAMDw8DDcbrdyce7evRudnZ0AgObmZjQ0NAAA+vr64Ha7FY1du3ahu7sbANDY2IjGxkYAQHd3N3bt2qUc53a70dfXBwBoaGhAc3MzgPH87t69G8B44XC73RgeHgYAHDhwAC0tLQCAtrY27N+/H8B4cXC73Uox2r9/P9ra2gAALS0tOHDgwJye4gegUHAAAQAASURBVPE4jh07htdee830nl544QUcP34c8XicizydPXsWb7zxBuLxuOo8AfP3vffffx9NTU04evSo5p5OnTqFpqYmnD17los8Pf/882hqakI8Hl+0p3g8jjfeeAOnTp0CoO31tJA8meV6MsrT+fPncfToUcTjcVN7eu2113Ds2DHE43Eu8nT16lXl76pFnoysEVM9vfbaa2hqasLVq1c163tNTU04f/58VnnatWuXUn/y+T1XhLrX39+Po0ePKjd+Zvb08ssvo6mpCf39/VzkadeuXfB4PIjH44b0vXg8Do/HMynWhXgqLCxEa2urEsOlS5dw7do1pd22tjbY7Xbcc889ePTRR/Hzn/8c9fX1+Pu//3v84z/+I+rr6/HDH/4Qf/d3f4cNGzagrKwMjz/+OMrKygAAjzzyCDZt2gRJktDX14eLFy+ip6cHoVAIra2tyocHbW1tuo/34vE4jh8/jhdeeEHJE9WI3HmKx+M4evQorl69anpPasblengy+p4wHo+jqakJu3bt0txTIBBAU1MTXnjhBS7ypGa8J9J7rgh171//9V+V68TMntSMy/X0pOZeI1c1Yqqnq1evoqmpCa+99pomfW94eBhNTU3413/9V03vCXMBLY1lIGvXrlUG54vh6tWrWLt27ZzHSJKEX/3qV6ivr8eFCxcwODiIiooKrFu3Dn/2Z3+Gr3zlK1i+fHmWkfNL5nEqp9MJu92OlpYW3HnnnQiFQigvL4fFYkEwGITT6YTD4UAsFoMsyygpKUEqlUI4HFaekAkEAiguLkZBQYEygVRcXIxkMoloNIry8nIA47OrpaWlsNvtiEQisFqtKCoqUmbjy8rKwBhDIBCAy+WCzWZDOByG3W6H0+lEIpGAJElwuVyQZRnBYBBlZWWwWq0IhUJwOBwoLCxEPB5HKpVCaWkp0uk0eSJP5Ik8kSfyRJ7IE3kiT+Rpgiefz4e2tjZYrVZIkgSLxYKCggKk02mkUikUFhaCMYZEIgGHw6EcZ7VaYbfbkUqlkE6n4fP58Mgjj6CsrAzBYBCyLMPlckGSJCQSCfzBH/wB/tt/+28oKyuDLMuQJAmFhYWwWCyQJAnV1dWUJ/JEnsgTeSJP5Ik8kacFeOrv78/Z0lg0EUKYmnzfIyRzY5e5ETMzvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmxWw16Ny5c8qSdTNpp9Np2Gy2ObW9Xi9qa2vnbKempgb/+3//7xm1qqurFxRrtl556yP5jkj54M2L2eqPUdp0D0ZMRJR88OjDyJjMUn+00Jt6Pu0RQhBEVgQCATzzzDOT1gM0K7x5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5kWkGpRIJHDy5EllqQY1dHR0zKqVWQ98PrL1ylsfyXdEygdvXkSqP3QPRuiFKPng0YeRMZml/mihx1Ou6YkQwtTk+xMh6XQaw8PDWLFihbIBpFnhzYvR8ejZnpbaWmip0eCtn+Q7ouSDNx9Uf/TTo/ojDiLlgzcvZqtBcz0RIssyotEoiouLlU3QZ0KSJGzdunXOvRltNht+/vOfY82aNTNqrV69GuvXr5/zm5LZeuWtj+Q7IuWDNy9mqz9GadM9GDERUfLBow8jYzJL/dFCb+r5ufwslyZCCFOT7xMhBEEQBEEQBJHPzDURshh27NgBj8cz5zH19fWorKyc9fWbb74Zt99+u+pYCIIgCIIgRIWWxiIIIivC4TD27t2LcDic61BUw5sXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXkSqQZIkob29fc4nPTLU1dWhpqZm1tdLS0vR29s7p9bg4CAYY5BlGclkctrr2XrlrY/kOyLlgzcvItUfugcj9EKUfPDow8iYzFJ/tNDjKdf2XAdAEET22O12rF27Fna7+S9l3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzIlINslqtqKiomHNZrAxOpxPbt2/Hl7/8ZWzbtm3a66lUat4lttLpNNrb2xEKhSDLMkpLS3HnnXeitLQUQPZeeesj+Y5I+eDNi0j1h+7BCL0QJR88+jAyJrPUHy30eMo1LY1FmBpaGosgCIIgCIIg8pe5lsYqKSlBJBJZlJ7X60Vtbe2Mr823NNZMFBQU4L777uPi5p8gCIIgCCLX0NJYBEFkRSKRQEtLCxKJRK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHkRqQYtWbIEfX19SKVSqrUKCwsxNja2aK1kMgm/3w8ge6+89ZF8R6R88OZFpPpD92CEXoiSDx59GBmTWeqPFno85ZomQgjCxCxm3WPe4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3LyLVoIqKCni9XqTTadVaDocDwWAwK63MEyvZeuWtj+Q7IuWDNy8i1R+6ByP0QpR88OjDyJjMUn+00OMp1zQRQgiB0+lU1t5Np9Pw+/3IrPoWDAaViy0WiymPx6dSKeXbWQAQCASUTQ2j0Sii0SiA8W9xBQIB5Ti/3698EywSiSAWiwEYv7CDwSAAgDEGv9+v3CiFw2HE43EA4zOhoVAIACDLMvx+P2RZBgCEQiFlhjQejysbCc3myeVyYdu2bcpaxWb2xBjDV7/6VbhcLi7y5HA48Mgjj8DlcqnOEzB/33M6nXjsscdgs9k091RQUIDHHnsMDoeDizzJsozHHnsMLpdr0Z5cLhf+83/+zygoKACg7fW0kDyZ5XoyylNhYSG+9KUvweVymdqT1WrFtm3b4HK5uMhTUVERvvjFL8LlcmmSJyNrxFRPVqsVjz32GIqKijTpe3a7HY899hgKCwuzylM6ncZf/dVfweVy5fV7rgh1r7i4GF/84heV8Z+ZPVksFjz22GMoLi7mIk/pdBp/+Zd/CZfLZUjfc7lc+Iu/+ItJEwyL8ZQ5T5Ik5Zx0Oo1EIgGXy4VPfOITygbmmeMyf4dUKqXEzRhDPB5XYnW5XCgsLAQwfq/BGMPatWtRUFAw6bhEIqHEkEwmFX+yLCt/u4ynbMd7LpcLX/3qVyeNx6hG5M6Ty+XCF7/4RRQVFZnek5pxuR6ejL4ndLlcePTRR5FOpzX3VFpaisceewyMMS7ypGa8J9J7rgh1DwC+8pWvwOVymdqTmnG5Xp7U3mvkqkZM9VRUVITHHnsMVqtVk75XUlKCxx57THl9sXma7Z4wF9BECCEEmzdvxsMPPwwAGB4ehtvtVi7O3bt3o7OzEwDQ3NyMhoYGAEBfXx/cbreisWvXLnR3dwMAGhsb0djYCADo7u7Grl27lOPcbjf6+voAAA0NDWhubgYAdHZ2Yvfu3QDGC4Pb7cbw8DAA4MCBA2hpaQEAtLW1Yf/+/QDGi4Pb7VaK0f79+9HW1gYAaGlpwYEDB+b0JMsyGhsb8corrwjh6cyZM5BlmYs8vfvuu/jFL34BWZZV5wmYv+998MEH8Pv9OHLkiOaeTp06Bb/fj3fffZebPGUGCIv1JMsyfvWrX+HUqVMAtL2eFpInM11PRni6cOECfv7zn0OWZVN7euWVV9DY2AhZlrnIU29vL9xutzKI1rvvaV0jJnp65ZVX4Pf7FU9q8tTQ0ICmpib4/X5cuHAh6zz19fVBluW8f881e90bHByE2+1Wbu7M7snv9yueeMjTlStXIMuyIX1PlmV0dXVl7WlsbAwAcOnSJVy7dk1pt62tDbIsIxwOo7W1VfnAoLOzU/k7eL1enD9/XvHe2tqqfCDyyCOPYNOmTQD+7V4jmUwiEomgtbVV+fCgra1N6QPXrl3DpUuXlL9Ra2vrJE/ZjvdkWcaZM2eoRnDiKTOG7e3tFcJTtuNyvTwZeU8oyzKGhoZ08RSLxeD3+7nJk5rxnmjvuRPzZNa69/bbb0OWZdN7ynZcrpcnLe41clUjJnrq7e2F3+/HK6+8okme/H4//H6/5veEOYERhInp6OhgAJjT6WSlpaWso6ODpVIp5vP5mCzLjDHGAoEASyQSjDHGotEoC4fDjDHGkskk8/l8ipbf72eSJDHGGItEIiwSiTDGGJMkifn9fuU4n8/HkskkY4yxcDjMotEoY4yxRCLBAoEAY4wxWZaZz+djqVSKMcZYKBRisViMMcZYPB5nwWCQMcZYOp1mPp+PpdNpxhhjwWCQxeNxxhhjsViMhUIhxhib1ZPP52NPPfUU6+/vN72n3t5e9tRTTzGfz8dFnrxerxKP2jwxNn/fGxoaYk899RS7ceOG5p4yXrxeLxd5unbtmqKxWE+ZPu/1ehlj2l5PC8mTWa4nozwNDg4quTSzp/7+fsUHD3kaHh5W4tEiT0bWiKmeMn/b4eFhTfrewMAAe+qpp9jg4GBWeZpYf/L5PVeEujcyMsKeeuopNjY2ZnpPfX197KmnnmIjIyNc5GnidWJE38tcW9euXcvKU1dXF/N4POzIkSOssbGReTwe9sYbb7DDhw8r9fTgwYPs2LFjynFHjx5lHo+HHT16lB0+fJh5PB52/PhxdujQIfbiiy8yAMzlcrHCwkLlXuPmm29mTz31FNu3bx/7xS9+oZx3+PBh9sYbbzCPx8MaGxvZkSNHmMfjYceOHWOHDh1iHo+HXbp0SdV4L/M36u3t1bTviVwj9PSUycfw8LDpPakZl+vhyeh7won1R2tPY2NjynXLQ57UjPdEes8Voe5dv35d6Q9m9qRmXK6XJ7X3GrmqEVM9ZcY//f39mvS90dFR9tRTT7Hr169rck+Y+Sw386+jo4MZhYWx//+5FYIwIRcuXMDGjRuVnzs6OnD33XfnMCJjyTytUFZWpizVYVZ482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M2L2WqQz+fDuXPnpv2+rKwMVVVVaGpqgsVigcViWZCe1+tFbW3ttN9brVaUlZUhGAxClmU4HA5s2bIFdXV1cDqdc2recsstuO2227L2ylsfyXdEygdvXsxWf4zSpnswYiKi5INHH0bGZJb6o4Xe1PNz+VkuTYQQpibfJ0IIgiAIgiAIIp9hjKG7u1tZ2gIACgoKUFVVhZKSEpw6dUpZqmEhzDYRMhs1NTXYvn37nMd86EMfwvr16xesSRAEQRAEISq5/CyXjyk3giCyIhQK4bnnnlM2MjIzvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmxWw1yGKxYP369fjYxz6G2267DRs3bsR9992HkpIShEKhRU+EzIbL5VI2K57IyZMnlQ1BZ8PhcADI3itvfSTfESkfvHkxW/0xSpvuwYiJiJIPHn0YGZNZ6o8WejzlmiZCCMLEOBwOVFVVKTdXZoY3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3ryYsQZZLBaUlJTglltuwfLly2G32xXtm2++GTabbUE6t95666yvSZKE9vb2aZMekiTB6/UuSD9br7z1kXxHpHzw5sWM9ccIbboHIyYiSj549GFkTGapP1ro8ZRrWhqLMDW0NBZBEARBEARBELOx0CdCysrKsHTpUrS0tCxqaawMNTU1s+4Xsn79enzoQx8CML5ONi9roRMEQRAEQRgNLY1FEERWxONxNDU1IR6P5zoU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxfRatDly5eRSqXmPTbzFMnSpUtn/Mai0+lEdXX1rBujezwe7Ny5c1b94eFhvP322/jFL36BkydPLvgpEoC/PpLviJQP3ryIVn/oHozQA1HywaMPI2MyS/3RQo+nXNNECEGYmFQqhZ6engXd3PEOb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5Ea0G+Xw+yLI877HLly8HML58w5YtW6a9brfbsXbtWmXCZCZm2y/E7/ejs7MT4XAYfr8fkUgEXV1deP/99+H3++eNj7c+ku+IlA/evIhWf+gejNADUfLBow8jYzJL/dFCj6dc09JYhKmhpbEIgiAIgiAIgpiNd955B5FIZM5jHA4HPvrRj8Lr9eLKlSuIx+PYuXPngjZCn8qzzz6LysrKWZ8smY3i4mKsWrUKq1atmnOyhSAIgiAIwszQ0lgEQWRFOp2G1+tFOp3OdSiq4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L6LVIJvNNusTF4WFhVi5cqWygWd5eTmA8WWwtm/fjoaGBtTX16O+vh4vvvgi/vAP/3DejdefeOIJ1NbWYuvWrdixY8ekZSBkWUY4HJ4xnmg0iu7ubrz33nvT/ha89ZF8R6R88OZFtPpD92CEHoiSDx59GBmTWeqPFno85ZomQgjCxIRCIfz0pz9FKBTKdSiq4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L6LVoIaGhhmXYli3bh3uv/9+3HXXXSguLgYwvmF6ZjIEGH9SpLKyEpWVlViyZAk2b96Mf//v//2C2pYkadq+IZIk4ezZs3M+ZRIMBjE6OjrNB099JN8RKR+8eRGt/tA9GKEHouSDRx9GxmSW+qOFHk+5pqWxCFOTeZzK6XTCbrejpaUFd955J0KhEMrLy2GxWBAMBuF0OuFwOBCLxSDLMkpKSpBKpRAOh1FRUQEACAQCKC4uRkFBAaLRKIDxR9STySSi0ahyU+T3+1FaWgq73Y5IJAKr1YqioiJIkoR4PI6ysjIwxhAIBOByuWCz2RAOh2G32+F0OpFIJCBJElwuF2RZRjAYRFlZGaxWK0KhEBwOBwoLCxGPx5FKpVBaWop0Oj2jp4KCAvj9fhQUFKC0tNTUngKBACwWC1wuF+LxeM7zFI/HEQqFsHz5cjDGVOVpIX2vqKgIsiwjnU7DYrFo6slms8FisQAAkslkzvMUiUTgdDpRWFiIQCCwKE9WqxWjo6MoKSlBUVGRpteTiDVCb0+JRAKBQAArVqxQ9MzoKRwOI5lMoqKiAslkMud5SiaTGBsbw8qVK5XrTs++p2WNmOopnU7DbrfDZrMhEomo7nsWiwVWqxUWiwWJRGLReQoEAigsLERRURHC4XDevueKUPdSqRRGR0exYsUKWK1WU3tKJpMoKChQ6lGu8+T3++FwOFBcXIxIJKJ738u0k0wmsWTJEk09ZcYrw8PDGB0dRSgUgtVqRWVlJdavXw9JkqZ5KikpwfXr1/HBBx/AZrPBbrcjlUopT5dYLBb09PTgL//yL8EYQ1lZGeLxOCRJQlFREaxWq/J3Ky0tRTQaRUNDA2RZVpa8kmUZFosFBQUFSKfTSCaTyibs8Xgcq1atwr333qt4cjqdCIVCYIyhvLycakSOPTHGMDQ0hKVLl6KgoMDUntSMy0W4J8y0k/GnpaeysjJIkoREIoGioqKc50nNeE+k91wR6l4wGFTefxKJhGk9qRmX6+VJ7b1GrmrEVE8lJSVIp9NIpVKw2Wyq+57L5UIymYQkSSgsLFR9T9jf309LYxGEGjZv3oyHH34YADA8PAy3241EIgEA2L17Nzo7OwEAzc3NaGhoAAD09fXB7XYrGrt27UJ3dzcAoLGxEY2NjQCA7u5u7Nq1SznO7Xajr68PANDQ0IDm5mYAQGdnJ3bv3g0ASCQScLvdGB4eBgAcOHAALS0tAIC2tjbs378fwPg3vtxuN4LBIABg//79aGtrAwC0tLTgwIEDc3qyWCxobW3Fq6++anpPe/bswZUrV2CxWLjIU3t7O1566SWliKvJEzB/37ty5QqcTieOHj2quafW1lY4nU60t7dzkafnnnsOTqcTFotl0Z4sFgteffVVtLa2AtD2elpInsxyPRnl6eLFi3jxxReVgaJZPWX6lMVi4SJP/f39eO6555SbVb37npY1YqqnV199FU6nE/39/Zr0vTfffBNOpxMXL17MKk8/+tGPIEkSLBZLXr/nilD3RkZG8NxzzynfrDezp5deeglOpxMjIyNc5OlHP/oRQqEQLBaLIX3PYrFgZGQEP/rRjzT3ZLFYYLFYsGfPHqxatQqf+tSncPnyZfT19cFisczoKRKJYN26dTh//jy8Xq/yN7948SLsdjtisRj6+vpQWFgIAPjqV7+Ku+66CwDw4IMPYuvWrQCA1atX4/HHH4ckSRgbG8OZM2fg9/tht9tx5coVxZ/P58OZM2cUT62trejv75/kyWKx4MqVK9izZ4+SJ6oRufNksVjw3HPPTcuTGT2pGZfr4cnoe8JMjfjRj36kuSdJkuB0OrFnzx4u8qRmvCfSe64Ide/FF1/ExYsXYbFYTO1JzbhcL09q7zVyVSOmeurv74fT6cSrr76qSd8LhUJwOp148cUXNb0nzAmMIExMR0cHA8CcTicrLS1lHR0dLJVKMZ/Px2RZZowxFggEWCKRYIwxFo1GWTgcZowxlkwmmc/nU7T8fj+TJIkxxlgkEmGRSIQxxpgkSczv9yvH+Xw+lkwmGWOMhcNhFo1GGWOMJRIJFggEGGOMybLMfD4fS6VSjDHGQqEQi8VijDHG4vE4CwaDjDHG0uk08/l8LJ1OM8YYCwaDLB6PM8YYi8ViLBQKMcbYrJ4CgQD7wQ9+wAYGBkzvqa+vj/3whz9kgUCAizwNDQ2xH/zgBywQCKjOE2Pz972RkRH27LPPMq/Xq7mnwcFB9uyzz7KhoSEu8nT9+nX27LPPskAgsGhPmT4/ODjIGNP2elpInsxyPRnlaXh4WLlOzOxpYGBA8cFDnkZHR5V4tMiTkTViqqeBgQH27LPPstHRUU36XibW4eHhrPLU29ur1LB8fs8Voe6NjY2xH/zgB0ocZvZ048YN9uyzz7KxsTEu8jTxOjGi7wUCAfbDH/6Q9fb2au5povZi83T48GF29OhR5vF42NGjR9krr7zCnn76afb666+zX/ziF8xisTAArKysjDkcDgaAFRUVsZKSEgaA2e12VlFRwQCwffv2sUOHDrHXXnuNPf3006yhoYE1NjYyj8fD3njjDXbo0CHm8XiYx+Nhhw4dYidPnpzkKeOjr69P074nco3Q01Pm/WB0dNT0ntSMy/XwZPQ9oZoaMZ8nv9/Pnn32WdbX18dFntSM90R6zxWh7vX39yvXiZk9qRmX6+VJ7b1GrmrEVE+jo6Ps2WefZQMDA5r0PZ/Px5599lnW39+vyT1h5rPczL+Ojg5mFLQ0FmFqMktjZTDycSoekCQJnZ2duOuuu+BwOHIdjip482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1aBxmpqaJv2cTqcxPDyMFStWIJ1OY+vWrXPu9TGVmpoa/M3f/A1CoRBWrFgx56brRUVFuO+++zTxQWiPSPngzQvVH/20aAwkDqLkg0cfRsZklvqjhd7U83P5WS5NhBCmJt8nQgiCIAiCIAiC0J6pEyFT2bFjBzwez6I0a2pqsH379nmPmzoRQhAEQRAEIQq5/CyX9gghCBMTi8Vw+PBhxGKxXIeiGt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1aGaSySQuX76MZDIJAKirq0NNTc2ivhl59uxZvP/++4rGQuGtj+Q7IuWDNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85dqe6wAIgsgeWZbh9/shy3KuQ1ENb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRo0M4wxxONxZBZUcDqd2L59u7IZuiRJ2LZt25wa6XQa4XAYi12Ugbc+ku+IlA/evFD90U+LxkDiIEo+ePRhZExmqT9a6PGUa1oaizA1tDQWQRAEQRAEQRBaM9/SWDOxkOWy6uvrUVlZOecxtDQWQRAEQRCiQktjEQSRFalUCj09PUilUrkORTW8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFatDMLOTbjJnlsmbDbrcjGo0u+huRvPWRfEekfPDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZiYcDiMffv2IRwO5zoU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQTMjSRLOnTsHSZJmPSazXNa+fftmfL20tBTXr1+fU2MmeOsj+Y5I+eDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBKE12SyNlcHr9aK2tnbG12hpLIIgCIIg8hlaGosgCIIgCIIgCIIgOGH58uW5DoEgCIIgCILQEJoIIQgTEwgE8P3vfx+BQCDXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA0ax2qdfKscj8dx4sQJxOPxrOMpLy/HBx98sGgN3vpIviNSPnjzQvVHPy0aA4mDKPng0YeRMZml/mihx1OuaWkswtTk+9JYyWQS3d3dWL9+PQoKCnIdjip482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1aBxOjs7MTQ0pPycTqfh8/mwZMkS2Gy2Oc+dbWmsgoICuN1u3H777XNqTF0ai7c+ku+IlA/evFD90U+LxkDiIEo+ePRhZExmqT9a6E09P5ef5dJECGFq8n0ihCAIgiAIgiAI7Zk6EbIY5tojBAA2bNiAuro63HzzzXA4HNNepz1CCIIgCIIQFdojhCBU4nQ6UVpaCmD821p+vx+ZOb5gMAhJkgAAsVgMkUgEAJBKpeD3+xWNQCCAZDIJAIhGo4hGowDGZy4nPr7l9/uRSqUAAJFIBLFYDAAgSRKCwSAAgDEGv9+PdDoNAAiHw8oj8IlEAqFQCAAgyzL8fj9kWQYAhEIhJBIJAOOP34fD4Tk9RaNRHDhwAMPDw6b3NDg4iJdeegnRaJSLPPl8PvzmN79BNBpVnSdg/r4XCARw8OBBjIyMaO5pbGwMBw8ehM/n4yJPXq8XBw8eRDQaXbSnaDSK3/zmNxgbGwOg7fW0kDyZ5XoyypPf78evf/1rRKNRU3saHh7GgQMHEI1GuchTMBhU/q5a5MnIGjHV0/DwMA4ePIhgMKhJ3xsdHcXBgwfh9/uzytPAwABefvllRKPRvH7PFaHuhUIh/PrXv5503ZjV09DQEA4ePIhQKMRFngYGBvDb3/4W0WjUkL4XjUbx29/+FgMDA5p7ikajePnllzEwMLDoPMViMUU7lUohEomgq6sLiUQC8Xhc8ZRIJBTtZDKp+LPb7aioqFBiLS8vR1lZGR566CEMDQ3hG9/4BrZu3Yp/+Id/mOQpHo8rehlP0WgUL730EgYHB5U8UY3InadoNIpf//rXSuxm9qRmXK6HJ6PvCdXUiPk8RSIRHDx4EIODg1zkSc14T6T3XBHq3tDQkHKdmNmTmnG5Xp7U3mvkqkZM9RQMBnHw4EEMDw9r0vfC4TAOHjyIoaEhTe8JcwFNhBBCsHnzZjz88MMAxj/QcrvdysW5e/dudHZ2AgCam5vR0NAAAOjr64Pb7VY0du3ahe7ubgBAY2MjGhsbAQDd3d3YtWuXcpzb7UZfXx8AoKGhAc3NzQDGvzW2e/duAOOFw+12Kx+WHDhwAC0tLQCAtrY27N+/H8B4cXC73Uox2r9/P9ra2gAALS0tOHDgwLyeBgcHlVjN7OnFF19UijcPeTp//jyuXLmiWZ7m89TT0wMAaGpq0tzT2bNnFU885Gnv3r2qPF27dk3xpPX1xEPfM5OnS5cu4fLly6b31NjYqHy4xEOebty4gYsXL2qWJyNrxFRPmVhv3LihSd87deoUgPG+l02efvaznyk3EPn8nitC3RsZGcHFixeF8PTqq68qnnjI089+9jMlBqP6XjQaxc9+9jNdPMmyjJ/97GeLztNbb70Fr9er/M0vXboEYPyGvrW1VfnwoK2tbdIYJXPc6tWr8fjjjyuxfv3rX8fatWsBANXV1fjsZz8LSZLQ39+PM2fOKMe1trZiaGgIjLFJngKBAF588UUlT1Qjcuvp4sWLuHHjhuk9qR2Xi3BPmG2NWIwnHvKkZrwn0nuuCHXvwIEDyhcDzexJ7bhcD09q7zVyVSOmesq8PzU2NmrS9zITIwcOHND0njAnMIIwMR0dHQwAczqdrLS0lHV0dLBUKsV8Ph+TZZkxxlggEGCJRIIxxlg0GmXhcJgxxlgymWQ+n0/R8vv9TJIkxhhjkUiERSIRxhhjkiQxv9+vHOfz+VgymWSMMRYOh1k0GmWMMZZIJFggEGCMMSbLMvP5fCyVSjHGGAuFQiwWizHGGIvH4ywYDDLGGEun08zn87F0Os0YYywYDLJ4PM4YYywWi7FQKMQYY+SJPJEn8kSeyBN5Ik/kiTyRJwM9nTlzhh09epR5PB529OhRduTIEebxeNixY8fYoUOH2PHjx5nH42GHDx9mb7zxBvN4PKyxsZEdOXKEHTlyhBUVFbGKigoGgAFg5eXlrKCggAFgxcXFrLi4mAFgBQUFbPny5Yr+oUOH2LFjx9iZM2eY3++nPJEn8kSeyBN5Ik/kSShPmc9yM/86OjqYUdAeIYSpyfc9QnjcXCpbePNCG/Xpp0Ub9YmDKPngzQfVH/30qP6Ig0j54M0L1aBxrly5gt7eXuXnxWyWDgA7duyAx+OZ9LuCggKsX78e3d3dyrdgM9TX16OysnLS726++Wbcfvvt3PWRfEekfPDmheqPflo0BhIHUfLBow8jYzJL/dFCb+r5tEcIQRBZEY1GlbVCzQ5vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGjTOsmXLJv2cTCbR1dU1bQJjNurq6lBTUzNpM/Ti4mI89NBDKC4uXpDGyMgIkskkent7lX1U6HuMuYe3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKdf0RAhhavL9iRCCIAiCIAiCILSHMYZLly5N2sTdarXCZrMteDIEGN+c9MaNG9i5c+ek/Z+mMtMTIQBQVFSkbHQKACtXrsSGDRtgsVgWHANBEARBEAQv5PKzXLshrRAEQRAEQRAEQRCESbBYLLj99tuxYsUK+P1+FBQUYNmyZRgaGkJPT8+CdRwOB9auXYuf/OQn6O3txbZt2xYVx8RJEAAYGhqC0+nEunXrFqVDEARBEASR79DSWARhYvx+P7797W/D7/fnOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB/4bFYsHSpUuxbt06uFwu/OM//iPs9uy/S2ixWPDUU0+hoqJi2mterxderxeSJE17LR6Po7m5GfF4HADQ29u7qKdSCG3h7ZpVA29eqP7op0VjIHEQJR88+jAyJrPUHy30eMo1LY1FmJp8XxorlUqhr68Pq1evVnVTxgO8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFatD8Wv39/bh69eqiNW7cuIFvfetb6OvrQyqVmvEYh8OBLVu2oK6uDk6nEwAgyzKCwSDKyspgtY5/l/Huu+/GihUrsjdEZA1v16waePNC9Uc/LRoDiYMo+eDRh5ExmaX+aKE39fxcfpZLEyGEqcn3iRCCIAiCIAiCIIwnGAzi3XffXdQ5Xq8XtbW1Czq2pqYG27dvn/X1oqIi3HfffYtqnyAIgiAIItfk8rNcWhqLIExMJBLBr371K0QikVyHohrevBgdj57taamthZYaDd76Sb4jSj5480H1Rz89qj/iIFI+ePNCNWhhWmVlZaiursaWLVsWrJFKpfDFL34RJSUl8x578uRJZZksSZLQ0dExadmsWCyGoaGhRbogtIC3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKdc0EUIQJsZqtaKiokJ5RN7M8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pBi9MqKChYsIbFYoHf74csy/MeK0kSxsbGlPOcTicsFsukY7JZnotQD2/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmlpLMLU0NJYBEEQBEEQBEHkkqampgUdt5ilsQCgvr4elZWVcx6zZcsWFBQUKPuIhEIhuFyuSfuJEARBEARB8AItjUUQRFZIkoT29vZJj8mbFd68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SFsth8Oh/F+WZVRVVU363UJIp9Pwer1Ip9PTXmOMQZZldHR0oL29Hd3d3Whvb8f58+dnPJ5QD2/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmkihCBMTDweR1NTE+LxeK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqStVnFxsfL/dDqN6upqOJ3ORWmkUin09PQglUrN+Hp/f7+yjFYGn8+HGzduLKodYmHwds2qgTcvVH/006IxkDiIkg8efRgZk1nqjxZ6POWalsYiTA0tjUUQBEEQBEEQRC6Za2ksu92uTGDosTTWXJSXl2PTpk1Zn08QBEEQBKE1tDQWQRBZwRhDPB6HCPOZvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQtlqlpaWTNGba9HwhbadSqUW3HQgEFnU8sTB4u2bVwJsXqj/6adEYSBxEyQePPoyMySz1Rws9nnJNEyEEYWICgQCeeeYZIW5yePNidDx6tqelthZaajR46yf5jij54M0H1R/99Kj+iINI+eDNC9UgbbVWrlyp/L+kpARPPvkkysvLF6URCoVw8uRJ9PX1cbG+dr7D2zWrBt68UP3RT4vGQOIgSj549GFkTGapP1ro8ZRrWhqLMDX5vjRWOp3G8PAwVqxYAZvNlutwVMGbF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb16oBi1ea66lsT75yU+io6MDPp8Psizj2WefxaFDhxa0kfnPfvYz1NfX49SpU6ioqMDw8DBsNhu2bNmCurq6Be018uCDDy76CRRibni7ZtXAmxeqP/pp0RhIHETJB48+jIzJLPVHC72p59PSWAShEqfTqTx2nk6n4ff7lUeugsGg8s2pWCyGSCQCYHzTQb/fr2gEAgEkk0kAQDQaRTQaBQAkk8lJs5Z+v19Z5zcSiSAWiwEAJElCMBgEMP7Yl9/vV25wwuGwsilQIpFAKBQCAMiyDL/fD1mWAYx/2yuRSAAY30woHA7P6clms6G8vFzRNrOnSCSCpUuXwmazcZGnVCqFkpIS2Gw21XkC5u97siyjsrISiURCc0/JZBKVlZVIpVJc5CkcDqOyshI2m23Rnmw2G0pLSxVtLa+nheTJLNeTUZ7S6TSKi4ths9lM7Skej6O8vBw2m42LPGWWTskMMvXue1rWiKme4vE4KisrlXbV5CkSiUCSJFRWViKdTmeVp1AohJUrV8Jms+X1e64IdQ8YH/9ZrVbTe4rFYso+EDzkKRQKKTeqRvQ9m82G5cuXK9paerLZbLjpppsQCoV0zVNGO5lMKv5kWUY8HofNZsNHPvIRLFu2DIwxfOMb38CnP/1p5amQgoKCSU+IVFRUwG63AwCeeOIJtLS0IB6PY2xsDCUlJZAkCU1NTXC73UqskiQpf4dUKqXEzRhDZ2dnXtYIPT3ZbDY4nc5J42OzelIzLtfDk9H3hFrWiKmerFYrKisrlfFLrvOkZrwHiPOeK0Ldi0ajWLJkCWw2m6k9qRmX6+VJ7b1GrmrEVE+MMVRWVirjFzV58vv9sFgsqKysRDQa1fSeMBfQRAghBJs3b8bDDz8MABgeHobb7VYuzt27d6OzsxMA0NzcjIaGBgBAX18f3G63orFr1y50d3cDABobG9HY2AgA6O7uxq5du5Tj3G43+vr6AAANDQ1obm4GAHR2dmL37t0AxguH2+3G8PAwAODAgQNoaWkBALS1tWH//v0AxouD2+1WitH+/fvR1tYGAGhpacGBAwfm9BQOh7Fr1y68/PLLpvf0/PPP42c/+xnC4TAXeWppacGPf/xjhMNh1XkC5u97HR0d2Lt3L15//XXNPb355pvYu3cvWlpauMnT3r17EQ6HF+0pHA7j//2//4c333wTgLbX00LyZJbryShP7777Ln70ox8hHA6b2tPLL7+MXbt2IRwOc5GnDz74AG63WxlY6t33tKwRUz29/PLL2Lt3r+JJTZ4aGhrwxhtvYO/evXj33XezztPu3bsRDofz+j1XhLp37do1uN1ujI6Omt7Tv/7rv2Lv3r2KJx7y9PzzzyMcDhvS98LhMH7+85/r4ikcDmPPnj265ymjfe3aNVy6dEnRa21tBQBYrVa89tprGB4eRldXFx566CF873vfQ319Pb773e/i61//uuLp8ccfx+rVqwEAW7duxYMPPojS0lL81V/9Fb72ta8BAAoLC7F582blg4/Ozk7l7+D1enH+/HklnwcOHMjLGqGnp8wY9oMPPhDCU7bjcj08GX1PqGWNmOppdHQUe/fuxfPPP89FntSM90R6zxWh7r3wwgv46U9/inA4bHpP2Y7L9fKkxb1GrmrERE8ffPAB9u7di5dfflmTPA0MDGDv3r144YUXNL0nzAmMIExMR0cHA8CcTicrLS1lHR0dLJVKMZ/Px2RZZowxFggEWCKRYIwxFo1GWTgcZowxlkwmmc/nU7T8fj+TJIkxxlgkEmGRSIQxxpgkSczv9yvH+Xw+lkwmGWOMhcNhFo1GGWOMJRIJFggEGGOMybLMfD4fS6VSjDHGQqEQi8VijDHG4vE4CwaDjDHG0uk08/l8LJ1OM8YYCwaDLB6PM8YYi8ViLBQKMcbYrJ5isRhrbGxkIyMjpvc0ODjI3njjDRaLxbjIk9/vZ4cPH2axWEx1nhibv+8Fg0Hm8XjY6Oio5p58Ph/zeDxKO7nO0+DgIPN4PCwWiy3aUywWY0eOHFHa0vJ6WkiezHI9GeUpEAgo14mZPY2MjLDGxkYWi8W4yFMoFGKHDh2aVI/07Hta1oipnkZGRpjH41HaUZOncDjMxsbGmMfjYYFAIKs8eb1edvz4cRaLxfL6PVeEuhcOh9mhQ4cm1SOzehoeHmYej4eFw2Eu8uT1etmxY8eUv7fefS8Wi7Fjx44xr9eruadYLMaOHz/OvF6vrnk6fvw483g8rLGxkR05coR5PB527NgxdujQoUmeDh8+zPbs2cNef/111tjYyDweD9u/fz8rLy9nABgAVlFRwex2OwPASkpKWFFREXM6newzn/kMW7FiBQPALBYLq6ioYC+++CLzeDzsyJEj7OjRo8zj8bCjR4+yw4cPM4/Hw44fP84OHTqk/I3yqUbo6SkWi7FDhw5Nqkdm9aRmXK6HJ6PvCbWsEVM9RaNR5vF42ODgIBd5UjPeE+k9V4S6NzQ0xI4ePcpisZipPakZl+vlSe29Rq5qxFRPoVCIeTweNjIyoknfi0QizOPxsKGhIU3uCTOf5Wb+dXR0MKOgPUIIU5Pve4QQBEEQBEEQBJFburu7cf369Wm/v+WWW3DbbbcpP8+0l4gkSdi6dWtWm6DX19cry3XNxSc/+Ulu1l8nCIIgCCK/oT1CCILIikQigZaWFuXxMzPDmxej49GzPS21tdBSo8FbP8l3RMkHbz6o/uinR/VHHETKB29eqAYtXmvVqlVwOByTfldQUICbb7550u9SqRT6+vqU9cgBwOFwYMuWLXO2nVkKq7CwMKvY33rrLfT29mZ1LjEd3q5ZNfDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZgYSZLQ3t6e1TfIeIM3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3rxQDVq8VnFxMaqqqvChD30IFRUVWL16NaqqqlBSUjLpuPLycni9XmVz0gx1dXWoqamZtW2Hw4Gqqqppky2L4cqVKxgcHMz6fOLf4O2aVQNvXqj+6KdFYyBxECUfPPowMiaz1B8t9HjKNS2NRZgaWhqLIAiCIAiCIAgz4Pf70d7ePuvrvb292LZt24L1Fro0Vobly5dPunciCIIgCIIwGloaiyCIrJBlGX6/H7Is5zoU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfpplZWVIR6PY7bvIs72xIfVakVFRQWs1sm374v9ZuXIyAgYY4hGo7h+/TquXbuGK1euoL29HadOnUJnZydisdiiNPMR3q5ZNfDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZiYYDAIt9uNYDCY61BUw5sXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6acVDAbR2tq66DWyy8rK8Pjjj6OsrGzS77dt24YdO3YgHo8vWOvq1at455130N3djatXr6K3txd+vx+JRAJDQ0PcLF3BM7xds2rgzQvVH/20aAwkDqLkg0cfRsZklvqjhR5PuaalsQhTk+9LY8myjGAwiLKysmnfEDMbvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflqyLKOxsRGFhYWwWCzTXvd6vaitrZ32e6vVirKyMgSDwRm/TVlTU4Pt27dnFdNM3HHHHVi1apVmeqLB2zWrBt68UP3RT4vGQOIgSj549GFkTGapP1roTT0/l5/l0kQIYWryfSKEIAiCIAiCIAjz0NTUNOtrkiRh69ati34iw+FwoKGhQdVm6hNxuVz4/d//fU20CIIgCIIgJkJ7hBAEkRWhUAjPPfccQqFQrkNRDW9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9WKBTCmTNnZl0ay+FwYMuWLdN+73K58Nhjj8Hlcs14niRJ8Hq9Wcc1U5zE7PB2zaqBNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85ZomQgjCxDgcDlRVVWn27a9cwpsXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6aflcDhQWVkJm8026zF1dXWoqamZ1I4kSfPu3ZHNfiFzQQtHzA5v16waePNC9Uc/LRoDiYMo+eDRh5ExmaX+aKHHU65paSzC1NDSWARBEARBEARBmIUTJ04glUrNe5wkSRgbGwMAxONxPP/88zhx4sS852m1X8hHP/pRlJaWqtYhCIIgCIKYCC2NRRBEVsTjcTQ1NWn2za9cwpsXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6acVj8fh9XoXNBGSeXqksrISq1evxte+9jXs3r173vNOnjy56D1GZouVmBnerlk18OaF6o9+WjQGEgdR8sGjDyNjMkv90UKPp1zTRAhBmJhUKoWenp4F3UzxDm9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9WKpVCKBSCLMuLOk+WZfj9fqxYsWLeZSUmPkmihqtXr6rWEBXerlk18OaF6o9+WjQGEgdR8sGjDyNjMkv90UKPp1zT0liEqaGlsQiCIAiCIAiCMBMtLS1Zfytyx44d8Hg8cx5TX1+PysrKrPQn8qlPfQpWK313kiAIgiAI7aClsQiCyIp0Og2v14t0Op3rUFTDmxej49GzPS21tdBSo8FbP8l3RMkHbz6o/uinR/VHHETKB29eqAbpp5XRuPnmmxd1nizLCIfDkGVZ2Ux9LrRYGgsAYrGYJjqiwds1qwbevFD90U+LxkDiIEo+ePRhZExmqT9a6PGUa5oIIQgTEwqF8NOf/hShUCjXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STyujUVZWtqjzJEnC2bNnIUkSnE4ntm/fjn379s16/LZt27Bjxw7Va3FrNaEiGrxds2rgzQvVH/20aAwkDqLkg0cfRsZklvqjhR5PuaalsQhTk+9LYzHGkEgkUFhYCIvFkutwVMGbF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb16oBumnNVGjubl5Ueel02nYbDalba/Xi9ra2jnPe+CBB/Cd73wnq1gB4Oabb8btt9+e9fmiwts1qwbevFD90U+LxkDiIEo+ePRhZExmqT9a6E09n5bGIggiKywWC5xOJzdvGmrgzYvR8ejZnpbaWmip0eCtn+Q7ouSDNx9Uf/TTo/ojDiLlgzcvVIP005qoUV5evqjz7Hb7ots+ceIE/vIv/xI9PT1ZPd1x48aNRZ+TD/B2zaqBNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85ZomQgjCxASDQfzTP/0TgsFgrkNRDW9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ/WRI3ly5cv+LxEIoGWlhYkEgnld0uXLoXD4Zj33MuXL+MrX/kKtm7dqslyWQR/16waePNC9Uc/LRoDiYMo+eDRh5ExmaX+aKHHU65pIoQQAqfTidLSUgDjm/D4/X5kVn0LBoPKN6BisRgikQgAIJVKwe/3KxqBQADJZBIAEI1GEY1GAQDJZBKBQEA5zu/3I5VKAQAikYiyiaAkScpFzRiD3+9XNgIKh8PKTUcikVDWxZNlGX6/H7IsAxhfNy9zgxOPxxEOh+f05HQ68YlPfEJpx8yeJEnCAw88AKfTyUWeLBYL7rvvPjidTtV5AubvezabDdXV1ZBlWXNPAFBdXQ2LxcJFnhKJBKqrq+F0Ohftyel0YvPmzUo7Wl5PC8mTWa4nozxZrVblOjGzp3Q6jU984hNwOp1c5Mlut+PjH/84nE6nJnkyskZM9ZROp1FdXQ273a5J32OMobq6GlarNas8xeNxfOpTn4LT6czr91wR6l5BQQE+/vGPo7Cw0PSeUqkUqqurUVBQwEWeJl4nRvQ9p9OJT37yk5M+oNfKk9PpxIMPPoh4PM5FniaO95YuXYpbbrlFqU0Z4vG4EoMkSUgmk7Db7VizZo3igTEGWZbxwAMPAABKS0uV94zCwkK4XC4A4+/TFRUVsFqtkCQJZ86cwQ9+8AMlvkzcmRgynhKJhNKW2a4nI+qe0+nExz/+cdjtdtN7UjMu18OT0feEWtaIqZ4KCwtRXV0NSZK4yBOQ/XhPpPdcEcZGyWQSW7ZsgdPpNLUnNeNyvTypvdfIVY2Y6slut6O6uhrpdFqTvudwOFBdXa3Uo8XmabZ7wlxAEyGEEGzevBkPP/wwAGB4eBhut1u5OHfv3o3Ozk4AQHNzMxoaGgAAfX19cLvdisauXbvQ3d0NAGhsbERjYyMAoLu7G7t27VKOc7vd6OvrAwA0NDQo6/t2dnZi9+7dAMYLh9vtxvDwMADgwIEDaGlpAQC0tbVh//79AMaLg9vtVorR/v370dbWBgBoaWnBgQMH5vTkcDgwNjaGI0eOmN7TL3/5S9jtdjgcDi7ydOHCBZw7dw4Oh0N1noD5+97169dRVVWFpqYmzT29++67qKqqwoULF7jI0/PPP4+qqio4HI5Fe3I4HOjq6sK7774LQNvraSF5Msv1ZJSny5cvo7W1FQ6Hw9Sejhw5grGxMTgcDi7yNDQ0hKNHjyrf9NW772lZI6Z6OnLkCKqqqjA0NKRJ3zt16hSqqqpw+fLlrPK0a9curFu3Dg6HI6/fc0Woe4FAAEePHlVuuMzs6ZVXXkFVVRUCgQAXedq1axduvvlmOBwOQ/qew+HAsmXLJsWqlSeHw4ENGzZg165dXORp4njv6NGjuO2221BZWYn29nbluNbWViWGS5cu4dq1a7DZbLBarXjvvfcAjH/g0Nrair/+679GTU0NHn74YeWLIps2bcIjjzwCACgrK8Pjjz+ubM7+yCOPIBaLQZIk9PX1KXFHo1G0trYqH4i0tbUpfy+zXU9G1D2Hw4GjR49iaGjI9J7UjMv18GT0PaGWNWKqJ8YYqqqq8Mtf/pKLPKkZ74n0nivC2Og3v/kN0uk0HA6HqT2pGZfr5UntvUauasRUT0NDQ6iqqsKRI0c06XvxeBxVVVX4zW9+o+k9YU5gBGFiOjo6GADmdDpZaWkp6+joYKlUivl8PibLMmOMsUAgwBKJBGOMsWg0ysLhMGOMsWQyyXw+n6Ll9/uZJEmMMcYikQiLRCKMMcYkSWJ+v185zufzsWQyyRhjLBwOs2g0yhhjLJFIsEAgwBhjTJZl5vP5WCqVYowxFgqFWCwWY4wxFo/HWTAYZIwxlk6nmc/nY+l0mjHGWDAYZPF4nDHGWCwWY6FQiDHGZvUUjUZZQ0MDGx4eNr2nwcFB9uqrr7JoNMpFnnw+H/vd737HotGo6jwxNn/fCwQC7NChQ2xkZERzT2NjY+zQoUPM5/NxkSev18sOHTrEotHooj1Fo1H2u9/9jo2NjTHGtL2eFpIns1xPRnny+/3s4MGDLBqNmtrT8PAwa2hoYNFolIs8BYNB5e+qRZ6MrBFTPQ0PD7NDhw6xYDCoSd8bHR1lhw4dUurmYvM0MDDAXn/9dRaNRvP6PVeEuhcKhdjBgweVmMzsaWhoiB06dIiFQiEu8jQwMMBee+01Fo1GDel70WiUvfbaa2xgYEBzT9FolL3++utsYGCAizzNNt4bGxtjHo+HeTwedujQIXbs2DHm8XjYkSNHWGNjIxsZGWG/+tWvWENDA/N4POz48eOTjmtoaGD33HMPA8AKCwuZy+ViAJjVamUVFRXMarUyAMzlcrHCwkK2b98+dvToUXbkyBHm8XjYsWPH2KFDh9jx48eZx+Nhhw8fZm+88QbzeDymu56MqHvRaJQdPHhQicnMntSMy/XwZPQ9oZY1YqqnSCTCDh06xAYHB7nIk5rxnkjvuSKMjQYHB5V7FzN7UjMu18uT2nuNXNWIqZ6CwSA7dOgQGx4e1qTvhcNhJVYt7gkzn+Vm/nV0dDCjsOdwDoYgNGPi4+Q2mw0VFRXKz5lvQAFAUVGR8n+73T7puIkbFhYXFyv/LygomPTaxHNKSkqU/zscDuXbuxaLZdJxmWW7gPHH1TOPlGYeV8+QeYwdgPJ4+1yeIpEIwuGw4svMnkpKShAKhSDL8qQYcuWpoKAA0WgUsiyrzhMwf9+LRCLw+/1wOp2KL608ZbQLCgqU83KZp9LSUuWR0cV6yiwdlnlNy+sJEK9G6O3JbrcjFotBlmVTeyoqKkI4HIYsyygqKsp5nqxWq/J3zdZTrmrEVE+Zx6mtVuskDTWeMo97Z35eTJ5cLhcCgQBkWc7r91wR6p7FYkEsFlO+nWpmT5nlBKbq5cqTy+VCMBiELMuG9L1IJIJgMKhZjZjoKRKJIBAIwOVywWazAchtnhYy3pv498vkJbN045IlSwD826ajGUpLS/HMM89g586d8Hg8yjcyMzU4Q2api23btmHDhg2oq6tTnv6ZqJf5myzEUwZerqcMetY9WZYRi8VgtVpN70nNuFwPT0bfE2pZI6Z6ylzvJSUlyt8vl3lSM94T6T03g5nHRiUlJcq9y0Rts3lSMy7X05Oae41c1YipnjLaRUVFiqaavjcx1sxrau4J+/v7kSssLFPJCMKEXLhwARs3blR+7ujowN13353DiAiCIAiCIAiCIBaOLMt48803Z3xtyZIluPfee8EYm7Zh+kyEQiH87d/+LS5evLigth0OB7Zs2YK6urpJH2pkuP3225UPU1auXDnpwy+CIAiCIIjFksvPcmmPEIIwMalUCj09PcrmTmaGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbjVQqhWvXrk360GA2XC4XfvKTn2Dfvn0L0pYkCR6PBzt37pzx9UuXLmFoaAjXrl3Du+++q6x9ns/wds2qgTcvVH/006IxkDiIkg8efRgZk1nqjxZ6POWaJkIIwsSEw2Hs27cP4XA416GohjcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rW43Meel0GnfdddeCzqmsrFSWwFgIHo8Hvb298Hq9kCRpxmPS6TR6e3sXrCkqvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBGFmFrI0VoZQKISzZ88uSHfHjh3weDyLjme+5bKqq6sXrUkQBEEQBAHQ0lgEQRAEQRAEQRAEQWhIXV0dampqFvVkCDD/clkEQRAEQRBmhCZCCMLEBAIBfP/730cgEMh1KKrhzYvR8ejZnpbaWmip0eCtn+Q7ouSDNx9Uf/TTo/ojDiLlgzcvVIP008pWI9vznE4ntm/fjoaGBuzZswcbNmxY1PknT56cdZmsfIa3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKde0NBZhavJ9aaxkMonu7m6sX78eBQUFuQ5HFbx5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5as2nMtzTWXXfdpZwXj8cXvDTWTPT29mLbtm0LPr6+vh6VlZWTfpfvS2Pxds2qgTcvVH/006IxkDiIkg8efRgZk1nqjxZ6U8/P5We5NBFCmJp8nwghCIIgCIIgCMLc6LVHyExIkoStW7cu+EmPmSZCHnzwQQCAxWLJOg6CIAiCIPIT2iOEIIisiEajOHjwIKLRaK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqSfVrYaE8+z2+1Ztw/820boajhx4gROnjyJixcvIp1OAwASiQSuXbuGjo4OXLt2TegltXi7ZtXAmxeqP/pp0RhIHETJB48+jIzJLPVHCz2ecq1uFEUQBEEQBEEQBEEQhCE4nU44nU7E4/GsNerq6gBkvwdIZvJjcHAQ6XQat912G9rb2xGLxQAAIyMj8Hq92LRp06I3aicIgiAIgtALWhqLMDW0NBZBEARBEARBEGZmrqWxli9fPul+BxhfHuvdd9+F2lt5SZIwNjYGr9eLJ554YsZjZloaayIWiwW33HIL+vr6pr22bt06rFmzRlWMBEEQBEGIBS2NRRBEViSTSXR1dSGZTOY6FNXw5sXoePRsT0ttLbTUaPDWT/IdUfLBmw+qP/rpUf0RB5HywZsXqkH6ac2mYbFYUFhYOOM5K1asmHaey+VSvbwVML5MVmVl5ZwTHfPBGJtxEgQABgYGstblGd6uWTXw5oXqj35aNAYSB1HywaMPI2MyS/3RQo+nXNNECEGYGJ7W2VMLb15ofVr9tGh9WnEQJR+8+aD6o58e1R9xECkfvHmhGqSf1mwaFotlxsmIgoICLFmyZMbz7HY7Pvaxj2Udy0JRs9dHZqks0eDtmlUDb16o/uinRWMgcRAlHzz6oD1C9NHjKde0NBZhamhpLIIgCIIgCIIgzA5jDFevXoXX60UymUR5eTluu+02lJSUzHmeJEl4++23VbXt9XpRW1s76+s1NTWoq6uD0+lctHZ1dbWKyAiCIAiCEI1cfpZLm6UTBEEQBEEQBEEQRA6xWCxYt24dPvzhD4MxBqt1YYs3OBwOLFmyBD6fT7fYPB4PAGD79u26tUEQBEEQBKE3tDQWQZgYv9+Pb3/72/D7/bkORTW8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFapB+WgvRsFgs0yZBeOgjJ0+eVLVM1mwMDQ3h3LlzeOedd/DBBx8glUpp3obW8JAPreDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFOT70tjpVIp9PX1YfXq1bDbzf2AF29ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9WthrznXfu3DlVT4RIkoStW7fOO9FRX1+/6I3Vb7nlFqxfvx7BYBCJRALl5eXKElterxddXV2Tjne5XNi0adOCn4jJBbxds2rgzQvVH/20aAwkDqLkg0cfRsZklvqjhd7U83P5WS5NhBCmJt8nQgiCIAiCIAiCyG/UToQAwI4dO5QlsGZjw4YN+OEPf5jVXiETue2223DLLbfgzJkzCIfD017ftGkTysvLVbVBEARBEASf5PKzXH6/ZkEQxLxEIhH86le/QiQSyXUoquHNi9Hx6NmeltpaaKnR4K2f5Dui5IM3H1R/9NOj+iMOIuWDNy9Ug/TTylbDiJzU1dWhpqZmzmMuXryInTt3qm7rgw8+QDQanXESBAAGBwdVt6EnvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pokQgjAxVqsVFRUVXD86vlB482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1SD9tLLVMCInTqcT27dvx759++Y8Tqu9Qq5cuTLra3rsRaIlvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBJHPvP/++xgYGNBEayH7hWSzV8hiWL58+aR7PIIgCIIgxIGWxiIIIiskSUJ7ezv335paCLx5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5a2WrMd97KlStn/H1ZWdmiJxQcDge2bNmyqHO0ZmRkBNFoFLx+Z5O3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKdc0EUIQJiYej6OpqQnxeDzXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbjfnOKy8vR0VFxaTfWSwWrFmzJqs46+rqsGHDhllf93q9yj+9PtQ4ffo0rly5wuVkCG/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmlpLMLU0NJYBEEQBEEQBEHkO+l0Gv39/fD7/SgsLMRNN92EiooKjIyMoKOjY9F6Xq8XtbW18x6XeYKkrq4OTqczm9Dn5J577sHSpUs11yUIgiAIIjfQ0lgEQWQFYwzxeJzLb0otFt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SD+tbDUWcp7NZsOaNWtwzz334I477lCeELHb7VnHuxAkSYLH48F3v/tdXfRHR0d10VUDb9esGnjzQvVHPy0aA4mDKPng0YeRMZml/mihx1OuaSKEEAKn04nS0lIA49+G8vv9ygUWDAaVR7ZjsRgikQgAIJVKwe/3KxqBQADJZBIAEI1GEY1GAQDJZBKBQEA5zu/3I5VKAQAikQhisRiA8ZuAYDAIYPwi9/v9SKfTAIBwOKw8ApZIJBAKhQAAsizD7/dDlmUAQCgUQiKRADD+6Fg4HJ7TUyAQwDPPPKNsjmhmT319fXjmmWcQCAS4yNPQ0JASj9o8AfP3vZGRETzzzDPwer2ae8p4GRoa4iJP169fVzQW6ynT54eGhgBoez0tJE9muZ6M8jQ8PKzk0syeBgYGFB885Gl0dFSJR4s8GVkjpnrK/G1HR0c16XuDg4N45plnMDw8nFWeJtaffH7PFaHujY2N4ZlnnlHiNbOnGzdu4JlnnsHY2BgXeZp4nRjR9zLX1vXr1zX3NFGbhzxlO97L+Ojr61PytNC+l/GTeS2jnUqllLhlWZ70AUUikVDOKyoqQklJCYDxSZWJS3CVl5ejoKAAAPDuu+9ix44diMfjSKfTk5a/iMfjip4kSUpu0+m08jfOfEgy8bhUKoX+/n7u6l4mH5lJGjPXcjXjcj08GX1PqGWNmOrJ7/cr1y0PeVIz3hPpPVeEsVF/f7/SH8zsSc24XC9Pau81clUjpnrK3E8ODAxo0vd8Ph+eeeYZ5T15sXma7Z4wF9BECCEEmzdvxsMPPwxg/IM5t9utXJy7d+9GZ2cnAKC5uRkNDQ0AxgdZbrdb0di1axe6u7sBAI2NjWhsbAQAdHd3Y9euXcpxbrdbuQlpaGhAc3MzAKCzsxO7d+8GMF443G43hoeHAQAHDhxAS0sLAKCtrQ379+8HMF4c3G63Uoz279+PtrY2AEBLSwsOHDgwpyeXy4WNGzcqMZjZ00svvYTq6mq4XC4u8tTd3Y1ly5bB5XKpzhMwf98bHh7Go48+ipaWFs09XbhwAY8++ii6u7u5yNOLL76IRx99FC6Xa9GeXC4XVq1ahQsXLgDQ9npaSJ7Mcj0Z5amvrw+lpaVwuVym9tTc3IyNGzfC5XJxkafMQNblcmmSJyNrxFRPzc3NePTRRxEIBDTpe21tbXj00UfR19eXVZ727NmDL33pS3C5XHn9nitC3cvcrDkcDtN7amxsxKOPPop4PM5Fnvbs2YMvfOELcLlchvQ9l8uFrVu3Ys+ePZp7crlc+PKXv4w9e/Zwkadsx3sulwvV1dV46aWXlDwttO/9+Mc/xi233AIAOH/+PLxeLywWCyKRiBJ3NBpFa2ur8oFIW1ub8iHIgw8+iK1btwIAVq9ejccff1yJ9etf/zrWr18PAPjsZz+L8vJy7Ny5Ez6fD2fOnFGOa21tVf6uly5dwrVr15T+kfkbp9NptLa2Kh/sdHZ2Kn8H3upe5v05835t5lquZlyuhyej7wm1rBFTPTkcDjz66KN46aWXuMiTmvGeSO+5IoyNXn31Vdx///1wuVym9qRmXK6XJ7X3GrmqEVM9BQIBPProo8r9mJo8ud1uMMbw6KOP4tVXX9X0njAX0B4hhKnJrCvndDpht9vR0tKCO++8E6FQCOXl5bBYLAgGg3A6nXA4HIjFYpBlGSUlJUilUgiHw8q3mgKBAIqLi1FQUKAMwIuLi5FMJhGNRlFeXg5gfHa1tLQUdrsdkUgEVqsVRUVFkCQJ8XgcZWVlYIwhEAjA5XLBZrMhHA7DbrfD6XQikUhAkiS4XC7IsoxgMIiysjJYrVaEQiE4HA4UFhYiHo8jlUqhtLQU6XSaPJEn8kSeyBN5Ik/kiTyRJ/JEnrLyFI1G0dfXh4KCAlRWVsJms+HNN9+Ew+GALMuQJAmFhYWwWCxIJBIYHR3FI488gqKiIlitVkQiEdjtdpSWlirf5iwvL0c0GkUymURxcTGA8W+wHjx4EBaLRdkzJB6Pw+FwwGq1QpIkWCwWFBQUIJ1OI5VKobCwEIwxJBKJScdZrVbY7Xbcf//9eZMn8kSeyBN5Ik/kSXRP/f39OdsjhCZCCFOT75ulh8NhHDhwAA8//LCyNJhZ4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L1SD9NPKVkOvv1FTU9Osry10s/SZ2LdvH9asWZNlVNOprq7WTEsLeLtm1cCbF6o/+mnRGEgcRMkHjz6MjMks9UcLvann02bpBEFkhd1ux9q1a3XfBNEIePNidDx6tqelthZaajR46yf5jij54M0H1R/99Kj+iINI+eDNC9Ug/bSy1eCtj8zHtm3blP1CRMRs+ZgL3rxQ/dFPi8ZA4iBKPnj0YWRMZqk/WujxlGt6IoQwNfn+RAhBEARBEARBEEQ2zPVEiCRJ2Lp1q7LZaTbU1NRg+/btWZ+fgbcnQgiCIAiCyB56IoQgiKxIJBJoaWlRNiQyM7x5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5a2Wrkoo84HA5s2bJFlcbJkydVTaTwCm/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmkihCBMjCRJaG9vF+IGgzcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rW41c9ZG6ujrU1NTA4XBM+r3D4cADDzww7/mSJMHr9eoVXs7g7ZpVA29eqP7op0VjIHEQJR88+jAyJrPUHy30eMo1LY1FmBpaGosgCIIgCIIgCGLxzLU01kQkScLY2Jjy89KlS+FwOLBjxw54PJ55z3/ggQfwta99DU6nc9L5C2Xq0lipVArd3d0YGxuD3W7HypUrsWbNGlgslgVrEgRBEASRG2hpLIIgskKWZfj9fsiynOtQVMObF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb16oBumnla1GrvuIw+FAZWWl8i8ziZF5YmQ+Tpw4ga985Suora1FbW0ttm7dmtVm6ul0GowxnD9/HgMDA0gkEohEIrh69Sp6enqysZYVuc6HlvDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZiYYDAIt9uNYDCY61BUw5sXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6aeVrUYu+sj9998/7zFOpxPbt2/Hvn37FqUtSRI8Hg927ty5oOOHhobQ2tqKt956C83NzQgEAtOOGRgYgFGLXfB2zaqBNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85ZqWxiJMTb4vjSXLMoLBIMrKymC1mntekzcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rWw29/kZzLY11//3349SpUwvSkSQJW7duXfTa3w6HAw0NDYtaJmsuPvGJT8yq1d/fD6/XC0mSsGTJEqxfvx4FBQVZtcPbNasG3rxQ/dFPi8ZA4iBKPnj0YWRMZqk/WuhNPT+Xn+XSRAhhavJ9IoQgCIIgCIIgCCIbtJoIAbDg/UKmUl9fj8rKykWfNxOzTYT09fXh8uXLk37ncrnwe7/3e7SvCEEQBEEYDO0RQhBEVoRCITz33HMIhUK5DkU1vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflrZauj1N8r2iYiZWOh+Ibngxo0b034XCoVy8l7CG7x5ofqjnxaNgcRBlHzw6MPImMxSf7TQ4ynXNBFCECbG4XCgqqpKs8fJcwlvXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqSfVrYaev2NVq9ePePvs3lCI9v9QvSGMYZoNDrja0NDQ1lp8nbNqoE3L1R/9NOiMZA4iJIPHn0YGZNZ6o8WejzlmpbGIkwNLY1FEARBEARBEASxeGKxGN59910kk0nld1arFffeey+cTueilsbK4PV6UVtbu+Dj9V4aizGG5ubmGY+/6aabsGHDBk3aJgiCIAhiYdDSWARBZEU8HkdTUxPi8XiuQ1ENb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Gnr9jYqKinDvvfdi5cqVcDqdWLZsGe655x6Ul5dr2o5RpFIpQ9rh7ZpVA29eqP7op0VjIHEQJR88+jAyJrPUHy30eMo1TYQQhIlJpVLo6ekxbNCvJ7x5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5a2Wro+TcqLS3FXXfdhc2bN+MjH/kIKioqNG/DKHw+n6rzGWNYyIIZvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBEFoSzqdxltvvbXo8yRJwtatWyFJ0oKO13JprKVLl+Kee+6Z9LuFLI2VSqVw6dIljI6OwmazYeXKlVi/fj0sFosmcREEQRAE8W/Q0lgEQWRFOp2G1+tFOp3OdSiq4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L1SD9NPKViMXfcRms2W1RJbD4cCWLVt0iEg/zp8/j6GhIaTTaUiShL6+Ply+fHnW43m7ZtXAmxeqP/pp0RhIHETJB48+jIzJLPVHCz2eck0TIQRhYkKhEH76058iFArlOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq5GrPpLtRuJ1dXWoqamZtnH5THi9Xni93gU/QaI1sVgMgUBg2u8HBwdnXSaLt2tWDbx5ofqjnxaNgcRBlHzw6MPImMxSf7TQ4ynXtDQWYWryfWksxhgSiQQKCwtN/+g2b16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2GrnsI2fPns36gwtJkjA2Ngav14snnnhizmMzT5LU1dXB6XRm1V42S2OVlZXhgw8+mPH1+++/H4WFhfD5fBgcHIQkSViyZAluueUWSJLEzTWrBqo/VH+Map/QDlHywaMPI2MyS/3RQm/q+bn8LNduSCsEQeiCxWLJ+kaBN3jzYnQ8eranpbYWWmo0eOsn+Y4o+eDNB9Uf/fSo/oiDSPngzQvVIP20stXIZR+59dZb0dHRkdW5Dodjwft/SJIEj8cDANi+fXtW7Y2NjU36ORwOo7+/f85z5vte6PDwMDo7O5XjxsbGEAwGcdddd3HzwZ0aqP5Q/TGqfUI7RMkHjz6MjMks9UcLPZ5yTUtjEYSJCQaD+Kd/+icEg8Fch6Ia3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzQjVIP61sNXLZR5YvX46qqipUVFQY0l5TUxN6e3uzXjLr+vXruH79OgYGBtDe3o6BgQFV8fT29k6bLOnr6+PqmlUD1R+qP0a1T2iHKPng0YeRMZml/mihx1Ou6YkQgjAxTqcT1dXV3MysqoE3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3rxQDdJPK1uNXPeRiooKVFVVQZZlvPnmm7q2xRjDtm3blJ8Xu2RWd3e3pvHMtCyY3W7HRz7yEW6uWTXkum9NheqPflo0BhIHUfLBow8jYzJL/dFCj6dc0x4hhKnJ9z1CCIIgCIIgCIIgjCDbiRBJkrB161ZVG6LX1NRkvWRWttx///04derUjK+tWrUKd9xxh6HxEARBEIQI5PKzXFoaiyBMTCwWw+HDhxGLxXIdimp482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1SD9tLLV4K2PLJbMUx1qOHnypKqJFC1JJpN49913TZuPifDWt6j+6KdFYyBxECUfPPowMiaz1B8t9HjKNU2EEISJkWUZfr8fsiznOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbH5mJpUuXYt26dbO+XldXh5qaGjgcjqz0JUmathl6rmCMIRKJcJ2PhcJb36L6o58WjYHEQZR88OjDyJjMUn+00OMp17Q0FmFqaGksgiAIgiAIgiAI/ZlraawVK1bg7rvvRlNT05wamQkNr9eLJ554YlHtb9iwAT/84Q8NW2P89ttvx6VLl2Z8bdWqVVi3bh2SySSKiopgsVgMiYkgCIIgzA4tjUUQRFakUin09PQglUrlOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbH1GDw+FAZWUlKisrF33uxYsXsXPnTh2impnZJkFkWcbFixfx1ltv4fTp02hpaUEwGDQsLi3hrW9R/dFPi8ZA4iBKPnj0YWRMZqk/WujxlGuaCCEIExMOh7Fv3z6Ew+Fch6Ia3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzQjVIP61sNXjpIxaLBVbrzB8hLF261JAYPB5Pzv8OkiTh3Llzyp4liUQC586d4+IDnsXCS9/KQPVHPy0aA4mDKPng0YeRMZml/mihx1OuaWkswtTQ0lgEQRAEQRAEQRDG0NnZiaGhoUm/s1gs2Lx5MwoLC+ddGiuDJEnYunVr1hug19TU4IknnkAkEgEwPhGT7f4jWrFx40YsX748pzEQBEEQBO/k8rNcuyGtEARBEARBEARBEARham677TZEo1HlW50WiwV33XUXCgsLF6XjcDiwZcsWeDyerOLweDyTzs3o1dXVGbaHyFQGBwdpIoQgCIIgOIaWxiIIExMIBPD9738fgUAg16GohjcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rWw2e+khBQQF+//d/Hx/96Edxzz334IEHHsCKFSuU10tKShasVVdXh5qaGk2e5JAkCR6Px5A9ROLxOE6cOIF4PD7p92ZcbIOnvgVQ/dFTi8ZA4iBKPnj0YWRMZqk/WujxlGtaGoswNfm+NFYymUR3dzfWr1+PgoKCXIejCt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SD+tbDV46yNzcfXqVVy7dm1R50iShLGxMeXnzH4jf/iHf7joyQWHw4GGhgZdl8lKp9Pw+XxYsmQJbDab8vvly5dPujc1A7z1Lao/+mnRGEgcRMkHjz6MjMks9UcLvann5/KzXJoIIUxNvk+EEARBEARBEARB8EIymcTJkyc10dqxY0dWS2fV19ejsrJSkxgWgxknQgiCIAjCaHL5WS4tjUUQJiYajeLgwYOIRqO5DkU1vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflrZavDWR+bCbtduG9LM0lm8kUwm0dXVhWQymetQVMNb36L6o58WjYHEQZR88OjDyJjMUn+00OMp1zQRQhAEQRAEQRAEQRAEVzidTmzfvh379u1b1HmSJOkUEUEQBEEQZoaWxiJMDS2NRRAEQRAEQRAEwQeMMTQ3N2uq6fV6UVtbu6hzampqUFdXB6fTqWksc0FLYxEEQRDE/NDSWARBZIVIj2Xz5sXoePRsT0ttLbTUaPDWT/IdUfLBmw+qP/rpUf0RB5HywZsXqkH6aWWrwVsfMQMejwc7d+7URTudTmNkZATpdFpTXcYYQqEQfD4fZFnWVHs2eOtbVH/006IxkDiIkg8efRgZk1nqjxZ6POWaJkIIIXA6nSgtLQUwPjD1+/3IPOwUDAaVx6NjsRgikQgAIJVKwe/3KxqBQEC5KKPRqLJ2XTKZRCAQUI7z+/1IpVIAgEgkglgsBmD8EexgMAhgfBDr9/uVwXE4HEY8HgcAJBIJhEIhAIAsy/D7/cpANxQKIZFIAADi8TjC4fCcnqLRKF5++WWMjIyY3tPg4CBefvllRKNRLvLk8/mUeNTmCZi/7wUCARw8eBCjo6OaexobG8PBgwfh8/m4yJPX61XWh1ysp0yfHxsbA6Dt9bSQPJnlejLKk9/vV/qDmT2NjIwoPnjIUzAYVOLRIk9G1oipnkZGRnDw4EEEg0FN+l4mVr/fn1WeBgYGlL9tPr/nilD3QqEQXn755UnXjVk9DQ8P4+DBgwiFQlzkaeJ1YkTfy1xbAwMDmnuaqM1DnrId72V8DA4OKnniuUak02klnkxbmRgkSVLOSafTSjyMsWnHZf4OZWVlWLp0KQDAarWioqICVuv4RxkulwuFhYUAJt8T2mw2dHR0KPqJREL5eyWTScWfLMvTYp143MRYM8clk0lcvHhR0c54Gh0dhSRJGB0dxfDwMAYHBydNmMyVp+HhYbzzzjs4e/YsTp8+jTfffBOhUEj3Wq5mXD6fp1zda+SqRkz1FIlEcPDgQQwODnKRJzXjPZHec0UYGw0NDSnXiZk9qRmX6+VJ7b1GrmrEVE/BYBAHDx7EyMiIJn0vHA7j4MGDGBoa0vSeMBfQRAghBJs3b8bDDz8MABgeHobb7VYuzt27d6OzsxMA0NzcjIaGBgBAX18f3G63orFr1y50d3cDABobG9HY2AgA6O7uxq5du5Tj3G43+vr6AAANDQ3Ko9+dnZ3YvXs3gPHC4Xa7MTw8DAA4cOAAWlpaAABtbW3Yv38/gPHi4Ha7lWK0f/9+tLW1AQBaWlpw4MCBOT2Vl5dj06ZNSgxm9nTgwAH80R/9EcrLy7nI05UrV7BkyRKUl5erzhMwf98bGRnBk08+iZaWFs09Xbx4EU8++SSuXLnCRZ7279+PJ598EuXl5Yv2VF5ejlWrVuHixYsAtL2eFpIns1xPRnnq7+9HUVERysvLTe2pubkZmzZtQnl5ORd5CoVCkCQJ5eXlmuTJyBox1VNzczOefPJJhEIhTfpeW1sbnnzySfT392eVpz179uDrX/86ysvL8/o9V4S6J0kSJElSlr0xs6fGxkY8+eSTkCSJizzt2bMHX/nKV1BeXm5I3ysvL0dtbS327Nmjuafy8nI88cQT2LNnDxd5yna8V15ejj/6oz9S/q681wifz4czZ84ox7W2tioxXLp0CdeuXVPazcSTTqfR2tqqfLDT2dmp/B3Gxsbw1a9+FcD4pMjjjz+OsrIyAMAjjzyCTZs2AZh8T7hixQp84xvfUCav29ralL/XtWvX0NXVBa/Xi56eHrS2tsLr9cLr9eKdd95Rjuvu7lb8TfTkdDohy7LyIU/GE2MMb731Fv7lX/4FFy5cwPnz5/HP//zPOHHiBBhjc+bpJz/5ifJFn/Pnz6Ovrw/nz5/HqVOndK3lasblgPnvCbWsEVM9OZ1OPPnkkzhw4AAXeVIz3hPpPVeEsVFDQwNqampQXl5uak9qxuV6eVJ7r5GrGjHVUygUwpNPPqncj6nJk9vthsViwZNPPqn8jRabp9nuCXMB7RFCmJrMunJOpxN2ux0tLS248847EQqFUF5eDovFgmAwCKfTCYfDgVgsBlmWUVJSglQqhXA4jIqKCgDjs6vFxcUoKChQBuDFxcVIJpOIRqPKB1J+vx+lpaWw2+2IRCKwWq0oKiqCJEmIx+MoKysDYwyBQAAulws2mw3hcBh2ux1OpxOJRAKSJMHlckGWZQSDQZSVlcFqtSIUCsHhcKCwsBDxeBypVAqlpaVIp9PkiTyRJ/JEnsgTeSJP5Ik8kSfyxLWnoqIiHD9+HMlkUvnQNB6Pw+FwwGq1QpIkWCwWFBQUIJ1OI5VKobCwEIwxJBKJScdZrVbY7XakUilEo1H80z/9E95++20UFRUhGAxClmW4XC5IkoREIqHcE4bDYdhsNrhcLvzkJz/BqlWrkEgkYLfbkUwm8cMf/hDvvPMO/H4/7HY7SktLlW+olpeXI5lM4r777sMTTzwBp9OpxKrG04c+9CGsWrVq1jw1NjaisLAQFosFiUQCNpsNdrsdGzZsQElJCfU98kSeyBN5Ik/CeOrv78/ZHiE0EUKYmnzfLN3v98PtduOb3/ymUhzNCm9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9Wthq89ZG5mGuz9BUrVijfPs0WSZKUJyfi8Tief/55nDhxYtbj9+3bhzVr1ig/79ixAx6PZ0Ft1dTUYPv27dN+H4/H0draivvuu2/Bm7FbLBZ86lOfgsVimfH1pqamGX9/66234sMf/vCC2sgG3voW1R/9tGgMJA6i5INHH0bGZJb6o4Xe1PNz+VkuTYQQpibfJ0JSqRT6+vqwevVq2O32XIejCt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SD+tbDV46yNzMd9ESDqdViYytKK3txfbtm2b9fWamhrU1dXBarXic5/73IJ1HQ4HGhoa4HA4Jv1+6jdkF8oDDzwwa/5mmwhZs2YN1q1bt+A2FgtvfYvqj35aNAYSB1HywaMPI2MyS/3RQm/q+TQRQhBZku8TIQRBEARBEARBELww10TImjVrcPPNNyvrkGuF1+tFbW3tnMd87GMfQzgcVvaZWyj19fWorKxUE54CjxMhBEEQBGE0ufwslzZLJwgTE4lE8Ktf/QqRSCTXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbDd76yFxYLBZlI/OprFixAk6nc9bX9eSdd95Z9CTIbEiShI6ODmWzdLX4fL5ZX+vt7cXFixcRj8c1aWsqvPUtqj/6adEYSBxEyQePPoyMySz1Rws9nnJNEyEEYWKsVisqKioW9Ug2r/Dmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfppZavBWx+Zj1tvvXXaXhgrVqxAaWkpAExbakotS5cu1VxzLiwWC5xO56z7fczG2bNn0d3djWQyqfwuHA7j3Llzc543ODiI9vb2SedpBW99i+qPflo0BhIHUfLBow8jYzJL/dFCj6dc09JYhKmhpbEIgiAIgiAIgiD4IhAIYGhoCJIkoaKiAqtWrVI+AOno6MDIyIim7S1mE/TFoOXSWBlcLheqqqpgtVrx1ltvQZblBZ23YcMG3HTTTZrGQhAEQRBGQ0tjEQSRFZIkob29XbPHsnMJb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Grz1kYVQXl6O2267DXfffTduueUW3b8FWldXh5qamkU/pQGMTzDMxo4dO6YtS5VOp+H1epFOpxfdFgCEQiEMDAygpaVlwZMgAOZd2iuZTC56CS01fSuZTOLatWvo6OhAT08PEonEojW0jIe39kSpP1q1T2iHKPng0YeRMZml/mihx1OuaSKEIExMPB5HU1OTbmvGGglvXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqSfVrYavPURHnE6ndi+fTsOHz4858TGVDZs2IC6urpZX7948SJ27tw56XepVAo9PT1IpVJZx3v58mVNJg6A8YmZ8+fP4+TJk2hpacE777yDWCy2oHOz7VupVArnzp3D1atXMTIygp6eHk0+5KL6o58WjYHEQZR88OjDyJjMUn+00OMp17Q0FmFqaGksgiAIgiAIgiAI86DH0lgTicfj+O53v4sTJ07MeZzFYsHhw4cxNjaG2traWY9zOBxoaGiYtA+JJEkYGxtTfjZqn5Lq6uppv7t48SIGBwcn/c7pdOK+++7L6gmZhTAwMID3339/2u/XrVuHNWvW6NImQRAEIQa0NBZBEFnBGEM8HocI85m8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFapB+Wtlq8NZH9MRms6nWcDqd+M53voMHHnhgzuOqq6vhcDjmncSQJAmdnZ3wer0IhULYsWMHHn74YXzpS19CbW0tamtrsXXr1hmX0dIbxhhGR0en/T4ejyMSiUz6XSqVQiwWm9SPsu1bN27cWNTvFwrVH/20aAwkDqLkg0cfRsZklvqjhR5PuaaJEIIwMYFAAM888wwCgUCuQ1ENb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Grz1ET256667NHuK4Vvf+hZqamqmTXI4HA7U1NQoS2I5HA5s2bJlTq0nnngCtbW1+JM/+RO0tbXhb/7mb1BeXq68LkkSPB7PtGW09CadTs+6RFdmgkSWZXR2duLEiRNobW1Fa2srwuEwgOz7VigUmvH3aieCqP7op0VjIHEQJR88+jAyJrPUHy30eMo1LY1FmJp8XxornU5jeHgYK1as0OTbU7mENy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbDd76iFrmWhqruroa8XgcPp9vxqWXsmEhy1jF43H8j//xP+bdkBwYf2plxYoVGB4enrZh+kzLaGnJRz/6UZSWlio/p1KpWZcA+/CHP4xbb70Vly9fRl9f36TXCgoKcP/994MxllXfampqmvW1mZbvWihUf/TTojGQOIiSDx59GBmTWeqPFnpTz8/lZ7k0EUKYmnyfCCEIgiAIgiAIgjAT802EZJjrw3Y98Hq9c+4VslDq6+tRWVmpQUTTufvuu7FixQrl57kmQtauXYu1a9fi1KlTM27Mfu+992LJkiVZxaHXRIheMMYQDofhcDhQWFiYsziSySRGR0chSRKWLFkCl8uVs1gIgiByBe0RQhBEVoTDYezdu1d5tNnM8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbHzGKgoKCXIcwI6Wlpfjyl7886ckMXpFlecZJEAAYGhrirm/pEU8oFMLbb7+Ns2fP4tSpUzh//jxkWdatvQxTtWOxGM6cOYOuri5cuXIFZ8+eRX9/f1ZaWsRj1LmE9oiSDx59GBmTWcY/WujxlGuaCCEIE2O327F27VrY7fZch6Ia3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzQjVIP61sNXjrI0Zxyy23GNrefJumZ0ilUujp6Zl1bw49uXDhAs6cOYPLly8vqP25lvpijC26bzHGsvKdSqUwOjqKcDg852a5mXhsNhuuX7+O9vZ2XLhwYcYN4ReCLMt47733kEwmld+Njo7i6tWrk9ozov5cvXp12qTUBx98MCm2hWppEY9R5xLaI0o+ePRhZExmGf9oocdTrmlpLMLU0NJYBEEQBEEQBEEQ5mGhS2PF43G0tbXN+kSDHuzYsQMej0eVhp5LY02krKwMGzduxNtvvz3j63a7fc5JC6fTic2bNy+4Pa/XO+OH+VOZujTW6OgoLly4oDyFUVFRgY985CNzrjPf1dUFr9c76XfLly/HHXfcsagnhcbGxvDee+8tKE69mW05sTvuuAOrVq0yNBaCIIhcQktjEQSRFYlEAi0tLYbeHOgFb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Grz1EaNwOp2oqqrChz70IVitxnx0UVdXh5qamjmfDCksLMTmzZtzutcEAASDQZw7d27W1+d7ciMejyMejy+ob/l8PnR1dS26D6ZSqUmTIADg9/vR09Mz4/GJRAInTpyYtrk7AIyMjODMmTOIxWILbn/qZMpM7eW6/vh8Ps209NLI1xrEK6Lkg0cfRsbEQ/0xSo+nXNNECEGYGEmS0N7eDkmSch2KanjzYnQ8eranpbYWWmo0eOsn+Y4o+eDNB9Uf/fSo/oiDSPngzQvVIP20stXgrY+oZa4nAaZSVFSE9evX45Of/KQhS2o4nU5s374dDQ0NqK+vR319Pfbs2YMHHnhAmRxxOByoqqpa0DJaehOJRFSdf/HixUl9K5lMYmBgAN3d3RgZGVGWsRoeHs5Kf2RkZNIkSIbr16/PeLwkSWhra0M6nZ7x9UQigcuXLwMYX6arr68P7e3teO+99zA4OLjo+Kj+GNc+oR2i5INHH0bGZJb6o4UeT7mmpbEIU0NLYxEEQRAEQRAEQZiH2ZYrKi4uxsc//vFZz/P5fJM2ujYaSZIwNjYGYPxJgyeeeGLG44xaGksrMktEZT6oikajyms33XQT7rzzTjQ3Ny9aDwDee+895W8213ET6e7unnWiJMODDz6I7u7uaU+O/Lt/9++wevVq5eeLFy/OOkHCy9JYK1euxF133WVoLARBELmElsYiCCIrZFmG3+/P2c2AlvDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfppZavBWx9RS3l5OZxO57Tf33TTTXOet2TJEmzevBl33XUX7r77bnzsYx9DUVGRXmFOw+FwoLKyEjfddBOWLVtm2HJdesIYU/rW9evXJ02CAMDg4CACgYBh8ciyPO+G6pnj+vv7p/3+8uXLk85diA7VH2PaJ7RDlHzw6MPImMxSf7TQ4ynX5n/nJog8JhgMwu12IxgM5joU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfppZavBWx9Ri81mQ1VVFZYuXQqr1Qqn04m1a9dizZo1857rcDiwcuVKrFixAiUlJfjoRz+KjRs3ory83IDIx0kkErhy5QrKyspmPUaSJHi9Xni9Xi6WApmNRCKh9K2hoaEZj5lvnw0tCQaDOHjw4LzryI+Njc06yTGbj9nao/pjTPuEdoiSDx59GBmTWeqPFno85ZqWxiJMTb4vjSXLMoLBIMrKykz/jSTevBgdj57taamthZYaDd76Sb4jSj5480H1Rz89qj/iIFI+ePNCNUg/rWw1eOsjWpL5OMJisajSGRoaQmdnpxYhzUtmb4ovf/nLM367dcOGDeju7lYmQBwOB7Zs2YK6uroZn4TJJYwxbNq0CWVlZXjzzTc10VSzNJYsyzh//jzGxsbm7BN33HEH3n///RlfKy8vx6ZNmwDMvzSWkfVHzdJYdA9GTESUfPDow8iYzDL+0UJv6vm5/CxX/93GCILQDavVioqKilyHoQm8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFapB+Wtlq8NZHtETtBEgusFgsKCgomHWJj4sXL076WZIkeDweJJNJfOMb31B+v3Tp0pxvuG6xWLjqW1arFaWlpfD5fFlrLGYpL6o/xrWfDYwxU9YIvRHlPYFHH0bGZJb6o4UeT7nmY8qNIIisCIVCeO655xAKhXIdimp482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1SD9tLLV4K2PiMZiJyMSiQR6enrgcrkWdd6JEydQW1ur/Nu6dSv+/u//Hj09PTlbRiuRSGDXrl3TJm+MoKmpCd3d3ZOWuAqFQnjttdfmXRpLC2RZpvpjYPuLIRKJoK2tDW+++SbOnDmDkZERQ9o1C6K8J2TjIxgMoru7G1euXNFlmSUj/7ZmqT9a6PHUZ+mJEIIwMQ6HA1VVVTn/JpEW8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbH8l3bDYbysrKVE9aSJKEEydO4MSJE5N+v2HDBjzzzDOLnmjJBpvNBpfLhf7+ftjt2n48JMvyrMtiZbh+/TrS6TRuv/12AON9fd26dbDZbJrGMhMnTpxASUkJNm7cuOBrizGGUCiEcDiMsrIylJSUzPrEgij1R6v2F4okSWhvb0cymQQAhMNhXLhwAffeey833yjPNaK8JyzWx9DQEC5evKhMnl6/fh133303li9fnrOYeG1LpHswraE9QghTk+97hBAEQRAEQRAEQeQ7avYIcTgci57U8Hq9qK2tzaq9hVJTU8PlviLzcfPNN6O4uBh9fX2Ix+PzHm+1WvHAAw/AarWCMYbm5uZ5z7n99ttx6dKlWV+vrq5GIpHAqVOn5tUqLi7Gxz72sXmXYJJlGRcvXsTw8LDyuzVr1uDDH/7wgpZvUrNHiF6k02lYrVZdlp/K7AkQi8VQXl6O4uLiBZ3n9XrR1dU17fe33HILbrvtNq3DJBZBOp02ZJJyJhhjaGlpmfa0WFFREe67776cxERkTy4/y6WlsQjCxMTjcTQ1NS1ogMk7vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflrZavDWR0Rjsd9QTaVSGBkZ0X2CwuPxYOfOnbq2kUql0NPTg1QqpZnmjRs3cPny5QX3V1mWEQ6HAQAffPCBJvEkEgm0t7fPe1wqlUJnZydGR0fnPdbr9U6aBAGA3t7eWZfn4bn+ZP4+J06cwNtvv42enh7M9R3pxbafTqdx7tw5tLe34/3338fp06dx/fr1BZ070yQIAPT39y/o/HzA6PeEQCCAM2fO4K233sLp06ezWqqMMYYrV67g9OnTeOedd3Dt2jXEYrEF+wiHwzMumReLxRCNRhcdz2zM9LdNpVK4dOkSWlpa0NbWNq0OaNmWVoh0D6Y1NBFCECZGj4FrruDNi9Hx6NmeltpaaKnR4K2f5Dui5IM3H1R/9NOj+iMOIuWDNy9Ug/TTylaDtz4iEtls4CrLMpLJJIqKivQJagInT57Udd8QWZbh9/tn3fjdKGKxGPr7+9HT07OgeOb7MG1wcBCxWGzedjP+e3t75z322rVrM/6+r69vxt/nov4kk0lcvXoV586dQ3d397QPc3t6epBMJnHu3Dn4/X4wxpBMJtHT0zOrj2y8XL9+fdqm9d3d3Zp9YJ1KpeacuBEdI98TYrEY2tvblcnKaDSKjo6OOfvLTHzwwQfo7e1FNBpFJBLB1atXceXKlQX5YIzh3Llzs76eWUZNC6b+bRljeO+993Djxg3E43EEAgFcuHBBk31rzDL+0UKPp3EMLY1FmBpaGosgCIIgCIIgCCK/yXZprDvuuAPRaHTB31afyI4dO+DxeBZ93mKpr69HZWWl7u3kMytWrJjzc4R0Oo233npr1terq6vnbWOupbE2bNgAWZZVLTuUTqfR1tamfGANAIWFhfi93/s9FBYWKr8LhUI4e/bstPNdLhd+//d/P+v2J8Yx298qs0/AxGWyfD4fRkZGYLVasWLFCrz77ruzam/cuBFXr15FJBKBw+HA2rVrcfPNN6uOmZidixcvYnBwcMbX7rrrLixfvhzxeBxFRUWzLrEmyzJOnDgxbYKzoKAAn/jEJyadl0wm4fP5YLfbUV5eDpvNBp/PN+dEyIc//GHceuutys+MMfh8Pvh8PhQWFmLFihXKNZBOp5WJupKSEmUpv3Q6DYvFAqt18vMC4XAYZ86cmdbm0qVLcc8998waEzE3ufwslzZLJwgTk06nMTw8jBUrVuRsrUat4M2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L1SD9NPKVoO3PiIKGzduxPLly9Hd3b2o82RZRjQaxf/8n/8TwPSnNjZs2IBvfvOb+OUvf4nTp09rsqm6XmS8FBcXT/sAMBcYHU+mvWXLloExhoGBAYyNjaGgoACVlZVwuVzo6upa0Le/JUlSNodfunQpbDbbgq7boaEhjI2NIZ1Oo6KiAhs2bJi2XNtCasDo6OikSRBgfImwwcFBrFmzRtGYzUsoFJo1xmg0iitXrmDZsmVYvnw5CgoKZjwumUzi5MmTs+pIkoR33nkHGzduxLJly3Djxo1Je73M95RBR0fHJK1Lly7B4XBoulm2GdDiPYExhlgshnA4jLKyshmX+mOMzToJAgCdnZ2w2WxIp9MoKCjAnXfeiWXLlk07zufzzfiUVyKRQE9PD9asWQObzQa/34/33ntPObaoqAhVVVWzPo2V4erVq3A4HPD5fAgEAtOW0Lp+/TqqqqpQWFiI9957T3layefz4caNG3A6nYjFYrBarVi6dCmWLFmCm266CTabbdanxcbGxhCNRpUnA69evaocu2rVKtx2223z1jCzjH+00ONpHJP7dzqCILImFArhpz/96ZyDFrPAmxej49GzPS21tdBSo8FbP8l3RMkHbz6o/uinR/VHHETKB29eqAbpp5WtBm99RBRcLldW50mShLNnz8JqtWL79u1oaGhAfX096uvrceTIEfzkJz/BHXfcge985zuTXquvr8cDDzyw6Pa2bduGv/7rv0ZPTw+8Xi+8Xu+0yRFJkpTXZnp9Pi96TrYsBqPjybQXi8Vw+fJlXLp0CSMjIxgYGEB7eztaWlowNDQ071JdwWAQra2t6OrqQldXF06fPo0bN24s+LrNLPXk8/nw3nvvTVv2aSE14IMPPpjx91euXJmksZAlwya27/f7ceLECbz00ks4d+4cTp8+jUgkMuN5C9mcnjGG999/X9kzYrZ2F8rE/RokSeKmLy+UZDIJv9+PdDq94HPUvicwxnD58mWcPn0anZ2daGlpwdWrV5W/fzwex4ULF9Dc3DyvVibuZDKJjo6OGfvXbNePJEn4xS9+gVAoBMYYLly4MOnYWCyGU6dOwe/3zxvH+++/j6GhoRn3EUkkEujt7YXf75+2ZFtmMpQxpjwt8i//8i/K33auZbdOnz6NkydPorm5edKEycDAAE6fPj1vfzbL+EcLPZ7GMbQ0FmFq8n1pLMYYEokECgsLZ30M0Szw5sXoePRsT0ttLbTUaPDWT/IdUfLBmw+qP/rpUf0RB5HywZsXqkH6aWWrwVsf4ZFslsa6//77UVhYiO7u7kUtjZX5wMxmsy06H/F4HDt37pz0FInD4cD69etx8eLFBes4HA5s2bIF3/zmN+F2u6c9lZJ5va6ubs5N3dV40QOj48m053A4VO2TUlJSMm1yoLi4GPfcc49y3c62NNZMrFu3DpIkobi4GCtWrIDdbp+3Bsylv2nTJpSVlSGRSODy5cuzPhVy++234/r160gkEigvL8cdd9yB9vZ2xGKxSXkpLy/Hpk2bwBhDOByG/P+xd+/xbdRnvvg/usu2bDmOnTj3KyQO5Aa5kQAJpd22ULZsgbIpuyeFbktpu0C3XZLf9pByOWcPl7aLt11CekoSTptCu6EE0kJIoI5DAjYk2OTihIBDLnbiuyXrPrrM7w+jQbZkW5ZmpNHo83698nolzuiZ76Nn9Hikr+Y7kQhKSkqS+uA8avr06Thz5kzS2w9n1apVOHbsmPQhd2lpKS677LIhr1xRA1EUB1xFoNPpcOmll2LChAlJPTad3wmdnZ04fvx43M8XLlyI4uJiHDp0KOWbWg9epmq4/UVff7NmzYLdbseRI0dS2meybDZb3FVTQ43puuuug8FgwAcffIDe3t6U9rdkyRLYbLZh95UL5z9yxBv8eC6NRUQp0el0w57Y5hK15ZLp8Si5PzljyxErnRhqO07ynVbqobY82H+Ui8f+ox1aqofacmEPUi5WqjHUdoxoTWlp6agmQnQ6HYzG1D5KsVqt2LhxY9wySj09PVi7dm3ScQRBQE1NzZD3KIn+PwBs3LhxyDjp5KKETI8nur90bxaf6AqJ6I3BU/nQMPZKiTNnzuDKK6+ETqdDd3c3iouLYbFYEAgE0NzcDIfDIS3PM5TGxkZcdtllKCgoGHaZr9hlqnp7e1FXVyflEFsXp9MJj8cz4AqA2PuQJGPwN/PTceLEiQHxHA4HTp48ifnz50s/EwQBXV1d8Pv9GDNmDEpLSxWfbPN4PHA4HLBarSgtLR2wJFBXV9eAqwiiV8oUFxcP++E5kP7vhKH6XWtrK8aNG5fyJAjQv0TU4ImQoUSPq5GWvpLLSJMgwGdj6u7uxrhx49La34ULF3DppZcOu69cOP+RI56azmO4NBZRDuvr68NTTz2Fvr6+bA8lbWrLJdPjUXJ/csaWI1Y6MdR2nOQ7rdRDbXmw/ygXj/1HO7RUD7Xlwh6kXKxUY6jtGNGa0tLSUW0fCARQV1eXcAmWZJnNZlRWVqKyshJmsxllZWVx94WQQ/RKkaGWzpIjFzllejxK7i8QCODpp59O+3UrCAL27duH//iP/8Dhw4fxzjvv4OOPP0ZjYyM6OjogCMKIkwqiKOLkyZP41a9+lVKuiZ6no0ePDlgGabRxU/2WfSLRScVY3d3dCIVCAPrH1tDQgFOnTuHcuXP44IMP8Mknn4xqH6IojmrZrdbWVrz33nv46KOPcPToUTQ0NAxYZqm1tTXh49ra2kaMLcf5cCJdXV2jvrIuHWrrP8BnY4peoZfOIkqJltUTRVH6Wa6c/8gRT03nMeqZ+ieiUbNarVizZo1qZlbTobZcMj0eJfcnZ2w5YqUTQ23HSb7TSj3Ulgf7j3Lx2H+0Q0v1UFsu7EHKxUo1htqOEa0xGAwwmUzDrgUfy2g0Yvr06bJeuRBdymqoKzxSJQgC7r//fjQ3NydcOutHP/qR7LmkQ4nnNlv7MxqNWLFihSyv28HjHOmm4okEAgFMmzYtpVwTPU/pXDWQKW63G6WlpTh37lzcvSvOnTuHiRMnJlWfs2fP4vz58wiFQigsLMQll1yCYDAIi8WC4uJi6PV6BINBhEIhFBQUIBAIxN2zxe124+DBg7j88stRXl4+5H0vWlpaMHv27GHHk8zvhFAoBJ1Ol5UbU4uiCJ1OB5fLhe7u7iGXQMv06z0Z0TFFJ9GSuT/JUEKhEA4cOICxY8fCarWitbVVmgQZM2YMZs+enRPnP3LEU9N5DO8RQjkt3+8RQkRERERElO/SuUcIADQ1NaGjo0OJoSUt0f1DlHbdddcNu3QWpWfRokXSFUejuUcIySP6/A/13E+ePHnESYe2tjacPHlyyP8vKiqCyWSSPjAvLCxESUnJsFd2jHR/lDVr1gw7piiHw4H29naEQiGUl5dj3LhxCIVCeO+996QeUl5ejqqqqgETIkofixaLBWVlZWhra0vriop8cM0112RlsirbsvlZLpfGIsphPp8Pu3fvjvt2Qy5SWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbceIFo0dOzbpbYPBID7++OOkryBJVvT+Ibt27cLWrVtRVVUla/xEDh8+jA8//FD2XFKl1HObjf0Fg0HU1tbK8rqVY5zpxMh0XeQSDoeH/f/YJcWG+sC+vb192BjR+4BEeb3eEZe3GumeGNGrEYbi8/nw0ksv4dChQ7h48SI6Oztx4sQJ1NbWxk2kdnV14cMPPxw2ntwCgQAuXrw44iSIGo+rTI4pGAxi69atOH78eNr3KRpMS+/B5Kae64+IaNQikQgcDofsTTMb1JZLpsej5P7kjC1HrHRiqO04yXdaqYfa8mD/US4e+492aKkeasuFPUi5WKnGUNsxokYj3Vx4JGVlZdDpdEl9e1kURfj9fsW+6Ww2mzF9+nQ8/fTT0k3VOzs7ce+998q+r3A4DLfbrZpvbSv93GZyf6Io4vz58zhy5AhMJlPasdIdZzoxMl0XuRw9enTY//d6vQgGgzh16hR6e3thNpsxefJkTJw4UdpGznuZRI30PB44cAClpaWYN2+edO+gYDAIo9EInU6HSCSC9vZ2FBUVJbW/jo4OzJ07F3q9ur4Lr8bjKpNjiu4rumTW/PnzZYutpfdgcuPSWJTTuDQWERERERFRfhNFEe+99x68Xm/Sj4ldGgvo/+b08ePHpQ/ARnPfEKW1tbVh7dq1isR+/vnnUVlZqUhsIrWz2Wxwu90DfjZ37lzpNZHNJc2Ki4sxa9YsfPjhh7J8k95qtcJms6Grq0uG0ZHcVq5cKU18aR2XxiKilIRCIZw5c2bESydzgdpyyfR4lNyfnLHliJVODLUdJ/lOK/VQWx7sP8rFY//RDi3VQ225sAcpFyvVGGo7RtRIp9Nh/vz5KCwslH5WXFyMKVOmJB2jvLwcq1atwuWXX44rr7wSK1euTLidmr7Zmi6j0Qiv16uaXHhFmnKxeFVsYoMnQQDg5MmTeOedd9DQ0JCFEX3G5XKhsbExbhIk1Xr4/X5VTYKo8bjK5JgG70vOJcy09B5MbpwIIcphbrcbzz33XMJf3rlGbblkejxK7k/O2HLESieG2o6TfKeVeqgtD/Yf5eKx/2iHluqhtlzYg5SLlWoMtR0jalVQUIClS5di+fLlWLFiBa688spRf7vWaDSivLwcxcXF0Ol0CbcRBAEffPBBxm5oDvQv3aXEN4VtNhvOnz8Pt9uNtrY2tLW1ZTSvwTL93Cq5PzljyxErnRjZOOazLRAIDLiHiJpopR5qzCOTYxq8r+7ubtlia+k9mNy4NBblNC6NRURERERERImcP38ezc3NCf9v8NJYiWRzWZzBHnnkEdTU1Mget6qqCs3NzQM++KuqqsIDDzyAiRMn5s1SLURE2bZmzZpsDyEjuDQWEREREREREREl9MADD+C6665LODFRVVWFV155BTU1Nbj66qtHFffEiRNx334+ceIE7rzzTtx000145JFH4Pf7AfR/g1kNV44QERGlghMhRDnM6XTiscceU+0lm6OhtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfDJ58uS4n/n9fhw4cECaHMgUq9WKjRs3YteuXXj++eelP6+//jqefvppFBcXAwB+8pOfDDlhMpjdbseGDRtgt9sT/r8gCKipqcGjjz6KRx55BDfddBPWrl2LtWvXxk2SRLdPZ6Ik08+tkvuTM7YcsdKJka1jnhLTSj3UmEcmx6TkvrT0HkxuXBqLclq+L40VDAbR3NyMWbNmwWQyZXs4aVFbLpkej5L7kzO2HLHSiaG24yTfaaUeasuD/Ue5eOw/2qGleqgtF/Yg5WKlGkNtx0guuXjx4pA3oF25cuWIkwW9vb344IMPBvwsHA6jt7cXY8aMgcFgkG2schMEAT09PQCAtrY2/PCHP4zbxmQyYdasWWhubkYwGExpP9dddx0eeOABPPHEEzh48KA0AWI2m7Fq1So88MADsFqtScXK9HOr5P7kjC1HrHRi5Moxny+0Ug815pHJMSXal1xLY6n9PVg2P8vlRAjltHyfCCEiIiIiIqLEBEHA22+/Hfdzq9WK5cuXD3lD9Fjnzp3D6dOnpX9PmjQJs2fPhk6ng8PhwAcffAC1f6zS1taGtWvXKhJbp9Nh1qxZ+PjjjxP+/3XXXYeNGzcqsm8iIi3hPUKUx6WxiHKY1+vFzp074fV6sz2UtKktl0yPR8n9yRlbjljpxFDbcZLvtFIPteXB/qNcPPYf7dBSPdSWC3uQcrFSjaG2YySXmM1mTJw4Me7nU6dOTWoSJLrt1VdfjYULF2LlypWYNGkSXn75ZXi9XpSWlmLJkiUJl9BSk7KysoRXvxQWFuLmm29GYWFhyrFFURxyEgTAgKtERhIMBnHy5Mlhr06JXX4r3XuVJLM/NcSWI1Y6MZR8nmj0tFIPNeaRyTEpuS8tvQeTmzHbAyAiIiIiIiIiUsIll1yCoqIi9PT0wGAwYNy4cSgvLx9VDKPRiDFjxgAAQqHQgP8rKirC7NmzUVZWhiNHjsg2bjlFl6mqqanJ+L4FQUBTUxMqKysH/Hzw5IwgCOjo6IDP50N7ezuMRuOA7fx+f9zyW1FVVVV4/PHHpfukEBERJcKlsSincWksIiIiIiIiyrZwOIyGhga43e5sDyWh6ERCNiZDEolOztx3332orq4e8sqR6HaBQCDhMmexovcrSfaeJEREasKlsZTHpbGIcpgaLyVMldpyyfR4eFl25vZP8tFKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfDdUPQwGAxYuXIhJkyahqKgoS6MbmtVqxcaNG/HKK6+gqqoKQP/N0ufOnQuTyQSz2YzrrrsOK1euzMh4BEFATU0Nbr75ZtTU1EAQhAHjGbzdSJMgAFBTU4Mnnngi6TGEw2F0dXUhHA6nlEOmYssRK50YSj5PNHpaqYca88jkmJTcl5beg8mNEyFEOUxN6+ylS225cH1s5WJxjX7t0Eo91JYH+49y8dh/tENL9VBbLuxBysXiPUK0Ybh6mEwmXHLJJViyZEkWRpac4uJiPP3003j99dfx7LPP4hvf+AaeffZZ7Nq1Cxs3bsSDDz6I6667LuE9RZQmxz1L5L4nSaq0MhEr1/5JPlqphxrz4D1ClImnpvMYLo1FGdPY2IilS5dKa6rKcehxaSwiIiIiIiJSE1EUUVtbm+1hpEUQBPT09Ej/bmtrww9/+MMsjih5zz//fNw9SYiI1I5LYymPN0unjAiFQrjrrrvibixHREREREREROpiNpsHTCZEb1qe7NUWajJ4Uidq8A3biYhI27g0FmXEk08+iYaGBvzd3/1dtoeiKQ6HAw8//DAcDke2h5I2teWS6fEouT85Y8sRK50YajtO8p1W6qG2PNh/lIvH/qMdWqqH2nJhD1IuVqox1HaM5Dst1cPv96O2thZ+v3/EbaM3LR/OypUr01pWq7S0FA899BBKS0tTenxUW1sb2tra4HK58Mgjj+Cmm27C2rVr4/78wz/8A2pra+F0OtPaXyKjeW4zESudGHLmQunTSj3UmEcmx6TkvrT0HkxuXBqLFHfy5EksWrQICxcuxP/5P/8H119/PQAujSWHUCiElpYWTJ48GUZjbl/gpbZcMj0eJfcnZ2w5YqUTQ23HSb7TSj3Ulgf7j3Lx2H+0Q0v1UFsu7EHKxUo1htqOkXyXTD1yZWmsSCSCvr4+lJSUQK8f+Xuyfr8fTzzxRNx9OKKTJA888ACsVuuQV2A88sgjOHHixJDxjUYjJk+ejJaWloysJhHd38yZM/Hggw/KGnu0z63SsdKJIWculD6t1EONeWRyTIn2JdfSWGp/D5bNz3I5EUKKikQiuOaaa/Duu+/i8OHD6OnpwXXXXQeAEyFERERERESkPbkyEZKqwRMdyS4xFZ1IqampGXa7lStXQq/X48CBA2mPNVnPPfcczGYzl8sioqzhPUKUp44ptzwQDodx5MgRPPvss7jnnnuwZMkSmM1m6HQ66HS6tA52QRDw29/+FjfccAOmTZsGq9WKCRMmYOXKlfjZz36Grq4u+RIZpV/96ld4++238eMf/xgLFizI2ji0yuPx4IUXXoDH48n2UNKmtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfKelegiCgGPHjo36vh/R+4dE/yQ7cWC1WrFx40a88sorqKqqivv/0tJS/OAHP8CGDRvw6KOP4uqrrx7VuEarqKgIf//3f4+ioiKsW7cOa9euxU033YQHH3wQZ86ckZbYSuW+KKk+t0rFSieGnLlQ+rRSDzXmkckxKbkvLb0Hkxuvq82AnTt34o477oDX65U99smTJ7F27Vo0NjYO+Hn0F/Y777yDJ598Elu3bsUNN9wg+/6Hc+bMGfzbv/0bZs2ahY0bN2Z03/lCr9ejtLRUNZcRpkNtuWR6PEruT87YcsRKJ4bajpN8p5V6qC0P9h/l4rH/aIeW6qG2XNiDlIuVagy1HSP5Ltl66HQ6WVZBUJJOp4PVaoVOp8vofouLi/H000/HXVlSXFyMixcvwmq1AgB+8pOfDLkU16xZs4ZdZisZkUgEDocDkUhE+pkgCDhw4EDc1ShVVVV4/PHHUVxcnFRsOZ9bOWKlEyNbxwklppV6qDGPTI5JyX1p6T2Y3Lg0VgZs27YNd95557DbrF69Gvv27RtV3JaWFixfvhwXLlwA0P8iuvbaazFr1ix0dnbijTfegM/nAwCYTCbs3r0bn/vc51LKIRVf+MIX8MYbb+CNN96Q7guyb98+Lo1FREREREREmnbs2LGsrs6gJYmW4urp6cHatWszPpaqqirpXijRsZjN5gFjHG55rVSXFSMi7ePSWMrL/lRMHhk/fjy+8pWv4OGHH8arr76K++67L6143/jGN6RJkGnTpqGhoQH79u3Ds88+i1deeQXnzp2TJiCCwSBuu+02OByOdNNIyrPPPos33ngD69atk8ZA8hMEAY2Njaq6lDBVassl0+NRcn9yxpYjVjox1Hac5Dut1ENtebD/KBeP/Uc7tFQPteXCHqRcrFRjqO0YyXfJ1uOSSy5BQUFBhkaVmnA4jLa2NoTD4WwPBcDQ40l1Ka6RmM1mLFq0aFTxTpw4gTvvvBNr167F2rVr8cUvfhHXXXcdvvjFLw742b333otjx45JX071+/145JFHcNNNN0nbRZfieuSRR+D3+wfsRxAEaaWPCxcuoKWlJa06pVNrtR0n+U4r9VBjHpkck5L70tJ7MLlxIiQDvvSlL+Hs2bNoa2vDrl27sHHjRnz5y19GaWlpyjFfffVVvPXWWwD6f3nv2rULCxcuHLBNeXk5Xn75ZcycORMA0NPTgyeeeCJhvA0bNkj3Kxntn1AoNCDWhQsX8KMf/QgVFRX4+c9/nnKONDK/3499+/bFnTTlIrXlkunxKLk/OWPLESudGGo7TvKdVuqhtjzYf5SLx/6jHVqqh9pyYQ9SLlaqMdR2jOS7ZOthsViwdOlSLFq0CPPmzcvQ6EYnFArhzJkzce/psyXT47FarVizZo10dYeczp49i+bmZvzjP/4jHnnkETz66KOoqamJ+yBQEATU1NTgX/7lX9DW1oYzZ87gwQcfHDBhcs899+Dw4cN48sknpeMudqIk9s9QHzTGPrexj03mg0m1HSf5Tiv1UGMemRyTkvvS0nswuXFprCx66KGH8PDDDwMY/dJYN954I1599VUAwLe//W38+te/HnLb7du34x/+4R8A9F922d7eDqNx4O1hHn30UVRXV48yg37t7e0wGAzSv2+55Rb86U9/wm9/+1tpv1FcGouIiIiIiIjyzWiXwqbhCYKAm266KelvGJvNZqxatQqBQABvv/22wqNTzsyZM2GxWIa8P0o0z9jlu6L8fn/cPVeG2z6RZJcAS7R9so8hyldcGkt5vFl6DnK73XjzzTelf490/5FbbrkF3/3ud+F2u9HT04P9+/fH3SvkwQcfxIMPPijL+A4fPgwA+PGPf4wf//jHA/4v9iSlsrISQP8kzLe//W1Z9p1vRFFEIBCAxWJR1Q2mUqG2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8l616VFRUYPLkySgpKZFuxC4IAkwmE86ePYuuri54PJ5RxRRFEeFwGAaDQRXH1mjGE/0Av6amZshtqqqqsHHjRgCffQAfOxkQDAZhsVgQCARkv7G9TqeTLXZsrNOnTw+7bfQKk7a2tgG5m0wm/PznP8e+ffsGjCe6PQBs3Lgx4cSFyWSCx+PBL37xi4STKD/84Q+lYy/6PLtcLqxfvz5uwma0Ey8UT22v21SpMY9MjknJfWnpPZjcOBGSg95++20EAgEAQFFREZYuXTrs9larFVdddRX27t0LAPjrX/+akZumt7e3J/X/oz1ZG85Fpw8lPV7p3xXFFlhNhmEe0c/lD8LhDcb93GzUY3xJcr+cLzp9CIXjT3DKiswosoz8UvMJYXS5A3E/1+t1mFSaeG1Zp9OJ6upq3HfffSgtLUWHy49AMBK3XUmBCfYC04hjEEIRtPclvlRtUmkB9PqRG1aPR4AnEH9pX5HFiLKiob/5Ec3ln//5XnhgSbjN+BIrzMaRV/Rz+oLo88XX02LSY1xxcvX88Hw7/rB1M25b9x0Ul9iln5fbLCgwj3xMeQIh9Hjiv51kNOgwwR5fz8G1BID2Pj+EUHw9SwtNKLaOXE9/MIxOVwCuPif++7lfD8hlSlnhiI8HgC53AD7hszUro7Hu/M49mDph3IiPD4UjuOgceExFY3z/B/+M8rFlI8ZweAW4/KEBj71t3XcwrrwM5bbEx8pg52P6Qiyt94jB5O4RsfWYO7VS0R4RFYmIaHX4Ev5fqj0imscd3/ouZk8eP+LjAaDV4UMkEl9POXpEgRiI6weJqLFHRBVbjSgtNCfsbbES9YioCXYrjIaB9UwUL7ZHxCowG+J6xFDjSaZHDJcLe0S/TJ5HDFUPJXpE1GjOI0bTIxLlMtrziERS7RHR8Xz3ez+AYEi8L7l6ROz+Er22RtsjBovGHnw+ByTuEUM53+NN2CtHex4xOEayPWK4PNgj+mXyPOJ8exe2bn46rh6j6RHdvggStAiUWHQYP3YM5syZg9OnT6O3txcWiwUTJkzA5MmTpe0G9ogwjPbxqLSPx9kznyDU15nUGHr9EXh9fnx85D3MXrAUZkv/2G1mHQqMI9dCCItwBhJ/wF9RmNwq7H0BEYGY331CoH88ly9ehrElIx+XP/rxvyJoLsHhw4cgCJ/1bbPZhOXz52D9A/8a92G71WqVPvBvb2/H6dOnMWn2ZXjut78bEEcMBRDxOpPKw1AS/77IXlKMe//pH/HUU0+NeK9WnbkAemtx/H9EQgi7e2C323H//fcPG8tQPBbQfdaPTrV24x/uvg8RXx/EoB8LFizA1772NRw6dChhjH1vvY1z963HmTNnBvzcZDLi6sXzcPXVV6OhoWHAl1ujkyjRiRR9USl0hoGvQ0PJOEQCHogBz4DHAJAmaqJCERG9fhHBYDBujKVmEdEWMfiqktjJG09Ih8Cnv3ZKS0thMvX3JqtRh2LzyMd1RBTR7Ut8XI+x6mBMok95giK8wfgYJgNQaknutTFcjxCDAdTX12P58uVDTib5QyJcQnwAgx4osyY3hl5/BAlOI4bsEYOvFoLBNGyPCARGzmNwj4gqMOpgS6Ke4YiIHn/iMZRZdTAMqmeiMbkFEb5QfAyLQYcSS3If6nd645/IaL8bLv+o0b7XSHRulc57jeHOQ5I5j4g+/o5vfReWwmJcdCb+PZwJXBori1JdGqu6uhr3338/AGDFihV45513RnzMhg0b8PjjjwMAvva1r+HFF19MaczpUnpprAl3/RfMFdOkfz//7RW4atbYEeM8e+ATPPrnprifV00owWv3XZPUWFY99teEJ9VP3roAty2ZMuLjXz/ehrt/ezju58VWI44+9MWEjwmHw+js7ERFRQUMBgNu3/wO6j/pidvuvusvwQ+/cOmIYzh+wYkb//NAwv/74Kd/k9QbnB/98QO8+H5L3M9vuWIyfv71hQke0S+ai9lWiiv+15sJt/nLvVfjson2hP8X6z/2nkL1mx/F/Xz5jDL84e6rRnw8ACx46DUYA244RCsiMbdT2vyPV+KLl1WO+Pj/PnQe/7rjSNzPJ5UW4OCG+InIwbUEgC9Xv4UTF/vitn3wK/PwratnjDiGd5q7sfb/1kGPCEp1/gG5nHnsxhEfDwDf/n+HsLfps0nNaKyvrpiLn351/oiPP9/jxTVPDPyWVjTGn/7lS5hekeCEf5CHdx3H1oNnBjzWIVpx/bwJ+L//Y0lSeUzf8JeEP9d6jxhM7h4RW4+Gn35J0R4R5fQFsfDhPQn/L9UeEc3jkmkT8Yfvrhrx8QAw/6HXE374LkeP2P+vq+P6QSJq7BFRd66ajp/edFnC3hYrUY+IeuuB6+I+bE0UL7ZHxPrCvPFxPWKo8STTI4bLhT2iXybPI4aqhxI9Imo05xGj6RGJchnteUQiqfaI6Hia+/S4Y8t7CbeRq0fE7i/Ra2u0PWKwcDiM/7WjDs819Aw4nwMS94ihTN/wl4S9crTnEYNjJNsjwuEwbnz8LzjVp4vLgz2iXybPI37x+gn8bt+xuPcJI/WI2Pf797zhgS/BsvC/+Ls5uHnpTOj1/XFFUUz47dmhesREuxU/W12Q1HJRDx70odUVijuu184144vTR67Fie4wHn8v8cTWti8Vjfh4AKh+34+Gjs8mS6OvkSun2HDHvJEnQjq9Efzr/sQfqD15bcGIEzKRSAQ7jjmw+4Ip7rW1sFyHHy4pHPLKhljT1v857md6RBDa/QQuHHtnxJshFy/5W5Rd/524nwvtp3Fx270wGAyoqKhAZ2fnkLEmffdZGO3xX+jp+st/wHPszRFjFFyyAuO+9j/jfh7xu3HhV3eMuH8AGL/2/8A6Nf49ouPA7+E8+Pu4nz/33HMDJjQ+cQSx+UziL8qde+p2aTIlelXJPffcg5/+9KcDajP2hvthm//5uMdfMSaIr0/zS5MoQy3x5QmK+P6bib8g8/BKK6aVJD43j413wGHHn8/Ef/A9oyiEuy/x9U8SAAOuvBnsoSM2+CPxr/1/XmzB4go9vF4vCgsLpV4x2FstQTx7LL4PlJoi2HDZZ19GHm6psgcP+nDeFZ9HbI8QBAEXLlzAE088MaAOZrMZV3zpdlysuj1h7G1fKkIkEhkxj8E9ImpVuYB1C4oSjj22Fj0BHZ44YUsYO7ZHRB8jiiKsVivsdrs0pu0nAth7Nr5hLx5nwH1XJDf5/c3d8V8A1yOC+y+P4PKJxdK+hloaa7TvNRKdW6XzXiMcDuPluhP48a5P4nplMucR0fHct7MZ9WccEDrP4uKW70v/z6WxaFgffvih9Pdp06YNs+Vnpk6dKv395MmTso+JssNgMEhLjOW6aC7OBN/AzAYRevSIyX3bUQ5K1jIiYy5SrCFOVEYTY7gPeEfcP6mCVuoh5aFL/biWU6Z7u5J1lDuXdOOl83gt/c7VAi3VQ225RMfziac7o/tTKjYKSxGBI+1YcvTKVGMYDAa49DZEkL1vUNJndHqDYr83i2y2AR8IjnYJEZ1OhyuuuAIdHR3wer1oa2sbdnu1nctl+pxMr9cjaCpCBPEfckbrUFxcjKeffnrAh6vR5bWGmxyJQI+OHueIkyDJCIfDI9ZSyRhy7D+RdevWDfi3adwMTLzzlyM+bvCVKMnYv78WL7361JD/X1VVhQceeAClFROG3Ka7qxuWQd/sT3Qs2Fd9A6VXfyPu8SdOnMDajf9fUuOdct8L0FvjP8B39DrQIYZQVlYGvV4ft5RZlNNpBBA/mdjV1Ym1a7814GfR3AdflSCKib+06Orrw5kzrmFfA4IgoKGhEZVDTIREj6doHrGPi32dHfmgHZhwedzjX9v9Gnb85DksW7YM3/rWt2C1WhPWwlAyDpPv2ZJwDJ2dnfCIvoSTOLFLvnk9FgDxEy6RSCRuzEOLfy4j0MNUMPQkUDqUeA9WVFqOCM6mNx7dJ7KNKVWcCMlB3d2fvSkZPz65JTxiXwAjv0ApV7jdbuzYsQO33norbLbEs9y5IprL39z41WwPBQBggYBV5lOoFWbBh5G/EZUuJWtZgCBWm5tlySUaC8HUf6lGY3g9S4Ekl9YY/NhaYVbK+yf5aKUe0Tz6wldmeygAMt/b5ewRg8mdS7rx0nm8ln7naoGW6qG2XKLjmb5E+aV0Y/enRP5utxs4tQ8FmCTbOVA6vTLVGG63G0uEI+jB9Iycl9LwIoIPXzKfHHUdJ06ciAsXLig4sn5Wq1X6IuTcuXPh8XjQ29sLv9+PlpaBV9MoeQ6Qiuh4xPClwBDLJctJEARU9B5HAWaOmL/ZbB7wuUrs5MiGxvjtCxDEN264Fv+9/ZP+XpQGm82GW2+9FTt27Eg5Vjox5Ni/2p04cQJ33nkndJYiTL3/Dwm32fD/bUCwI7sf5P78Fz+H4eKxEetRdPn1KL/xh0nFjOY+2IRv/ifM42fG/fz//fb/4b8OvTK6gQ+ydu1a6bj64IMPcPfdd6O6ujpuYqXi736CwiHmpgRBwIEDB3DgQOIrDUdy7733ItzXMeBnscf63/7t3wIAxlz/bZQsif+c6p2338Yr//q/k9pXoqvGChBE+8ljKJ42CRMmTEjpi6JDUeI92PF9r6AA41L6XREdjyE8Pe2xpEsdX32kUYltdAUFya3nGrudFn9xWa1W6cWtRwQ2XQBA/9JbfX190qXBPp9PuidJKBQasO5kkS4AA/q/rWFBEBb0X5kQDAbhdH62NqjD4UAo1P+NEY/HA5+v/5tZBjGMQkQvPRRh0wWgR/8Msdvtht/ff9lwIBCAy+UC0D+D7HA4pJnkAggwfToGM0Io+HQM4XAYDodDWk4smpPRaMSkSZOke8boxPCnucfn5PV64fV6R8zJiiDMn34jxojPchJFEQ6HQ/pGy1A5Qex//nWfPv+xOfn9fun4G5yT1+vFlClTYDAaYUYI1k9zN0j17Od0OhEMBkfMyaYLwPDp8x+bkyAI6OvrGzEnPUR0RQoRhg66T+sZzcnlcknP+XA5FUKAMaae0ZwGH3tOpxOiKGL69OkQBEHKSS+GURSTe2xOscfecDkVIAg9wmiLFEOHCAo+refgY2+onKL1jL6ezAiiI1IE6PTDvp5i6xT7ejIgDIsuiLZIMQxG45Cvp9icIH72egpDh65IIfSfPq/DvZ5ic4p9PeVTjxick9w9QocIuj99nSjdI2JzkrtHGBFCZ6QIok6fdI8wIiS9nuTuEUD/FxiMRuOwOamxR8Tm5PP5EAgEMH36dABIukfE5jT49RQMBjF9+nREIpGEPSKaU/QYHfx68ng8mDZtGoxG46h7xODfuewR2T2P0Ol0qKyslN40KtkjUjmPGE2P8Pv9mD59OnQ6XcrnEXL2CI/Hg6lTp0JvMA54PZkQlr1HeDweGI1GTJ06dcB9A1PtEYNzMhqNQFE5rDohqR4x3HmECSG0RYohflrPVM4jABFtkWIYER5VjzAajXDoimGWfk+wR2TzPEKnN6AnUgDx0zEk2yNsNpv0PBhjXk9Kv9cIhUIYP348Zs2ahWAwKOWnFz87Lw9DN6BHCIIgbRcOh6XxiKIIv98fc0wl7hHR7aJjDQQCUu6hUEiqhW6I9xqiTo9gMChtF4lEpOMh+rxEn9fhekTsWBPlpNfrETAWD9kjQqFQXO6xOen1elRWViY8jwgDaO3oRkFBgbR8T0FBAYqK+pcNMxqN+PznP4/nn38e3/jGHUOeR5hMJhQWFuLMmTMIhUIoLS2VzhGLioqwcOFCzJw5E0ZdZMjzCJvNBoPBgDNnzkCv16O4uP/b6Xq9HqWlpdI30ofqEZFIBG1tbVINS0pKEuZk0IlD9ojCwkIUFhZKOdntny1DF5vTUD0iul30977NZpOuYLBYLFJOOmDIHhH7uZHBYEBpaal01VVsTsP1CLvdLt13ZLichjqPMJvNKCkp6R+rTjdkTqZheoTVasX58+cRCoWGzWmoHmE0Ggfck2uonIw6ccjziKKiIulzxuFyGqpH6PV6FBUV4ezZszhx4gT+9V//FadPn46rk16HIc8jBr+ehsppuB4x+PVkNBpx5swZ6HQ6Kado7ol6ROyxN/j1VFxcDIvFIj3/iXrEgXffx7/8y79I91CW6/MIAJg+fToCgYAs7zX0ej1KKiZ+ej40+vOIz94TDuwR2cCJkBwUewIw1Fp+g0VffACkF0E2rFmzBqIoynJ/kFgrVqzArbfeCgAo1flxm/UozJ++OLds2YKmpv619Gpra7Fr1y4AQEtLC6qrq6UYX7U0YZK+/6R1qakFS03935Zpbm7Gpk2bpO2qq6ulb9Ls2rULtbW1AIDxkS7cYOlfdsyMMG6zHkWprr9WO3bsQF1dHQCgoaEB27dvB9DfHKqrq6WT5S9YPsIlhi4AwDxje/8379F/yV51dbV0EhbNyWq1IhwOY+/evQCAAsGJ26xHE+a0Z88e7NmzZ8ScVprPYpGp/5tK0w29Uk6BQP/Nezs7O4fNSRf04TbrURTphLic6urqsGPHjoQ5/f73v8fYsWNhtVqxyHQBK839l9xV6N0Dctq0aROam5tHzOk261FU6N1xOTU1NWHLli0j5jQJPZhocEGAEUU6YUBO27dvR0NDw4g53WA5iemGXgAYkNPgY2/Tpk1obW3FmjVrsH//fikne7AHX7V8tg5kbE6xx95wOa02N+MSYzcaQ5Mw3eDAFyz9a54PPvaGyskkuAa8nr5g+Rh9YgFgNA/7eoqtU+zraZK+DzdYPkRjaBIsFuuQr6fYnBAOSq8nAUaU6724xNh/Zdxwr6fYnGJfT/nUIwbnJHePmGhwYZrBAQFGxXtEbE5y94il5lYYdCIielPSPWI6OqXXk9w9oqurC/X19dIboaFyUmOPiM2ptrYWe/fuxZo1a9DV1ZV0j4jNafDrqb6+HmvWrMHp06cT9ohoTvOM/W8mBr+ennnmGSxevBhWq3XUPWLw71z2iOyeR7hcLtTX10tv9pXsEamcR4ymR/z5z3/GmjVr4HK5Uj6PkLNHPPPMM5g3bx5MZsuA19Mlhi7Ze8SuXbtgtVoxc+ZMPPPMMwlzGk2PGJyT1WoFxl+Km60nkuoRw51HrDSfRWNoEgp1oZTPIyr0HjSGJmGh6eKoeoTVaoVXX4gvWD4GwB6R7fMIndGMy0ydKNX743Iarkfs2bMHgiCgpKQEs/Rdip1HDNUjdDodWltbpfzGip+dlwswDugRp06dwtmzZ6X9RscTDodRX18vTRAN1SOiNxyOjvXo0aPSUjgtLS1SLawRX8L3GqLeiLNnz+LUqVMA+o/l+vp6KadDhw6ht7c/9+F6RH19vXT8J8rJaDTCVTRxyB7R1taGo0ePjphTovMIQIev3L4O9957L66//vr+2KtX46abboLZbMZXvvIVXH311aisrMSYMWOGPI+YNWsW7rrrLuzbtw9+vx/3338/Vq5cia1bt+Lf//3f8YMf/AD/9V//hUuLQ0OeR9x6661YvHgx9u3bh3nz5uGOO+4A0P/h//333y994DtUjygpKcGKFSuk5/Wuu+7CvHnzBuQEAOOt4pA94m/+5m/wN3/zN1JO99xzj7Td/fffj8mTJwMYukdYLBbcf//9qKiokHKKjmnx4sVSTjazfsgeEfu5UUVFBe6//37ps7LYnIbrEffccw9mzZo1Yk5DnUfMmzcPd91114g5XWpxDtkjbr31Vng8Hvj9/mFzGqpHTJ48Wbrv8HA5TS4IDnkecdNNN2H16tUj5jRUjygpKcE999yDhoYG+P1+3HHHHVi8eHFcncosGPI8IvbYGy6n4XpE7LF30003YcWKFdi3b5/0ugMAs0E35HuN2GNv8OspNqehesSBhhO44447pIkHuT6P6Orqwpo1a7B3715Z3msIgoAply3BasvplM4jou8JLSHvgNdTNvBm6VmU6s3Sb7zxRrz66qsAgPXr1+Oxxx4b8TGvvfYabrjhBgD9s8zSN2pyXPRm6VarFUajEcVffxzWiiko1AXhFs14/ttX4bIKE6xWK8xmM3w+HyKRCIqKihAKheB2u1FaWopnD3yCX/ylAX7RiDAM0szqzAlj8cr3VsDr9Uqz+w6HAzabDUajER6PB3q9HgUFBbj2/+xFl9MNL8zon+UU4BVNePzWRfjy3DEwGo2wWq0IBAIQBAHFxcXSN1pLSkqw90QH7v/tOwjBgCAMMCMEA0QYrQVofPDzcLlcsNvt0Ol06Ovrg9VqhSiKqK+vx+WXX46ysjL8/TMHcOxsB9xi/y++Il0AftGIH1w/F3ev6m/uhYWFCAaDCXP6sMODW/6zBhHoIMAII8IwIwwvzGjc+AVA8KK4uBgGgwFutzthTj/6QwNeb/wEHtEMEToUQEAIBvztFdPwv/92DkKhEGw2G8Lh8ICcOjs78eGHH+LSyxfh6sfehB4i/DDBgAgKdEG4RQv+cu/VmFzUn4PJZJJOwAfn9B97T+HZvx6DTzQhDD2sCCICHRbPGIff3nkl/H4/SkpKIIoinE5nwpyWPvQKJgbb0RQejxD0KNIJ8IhmPPOPS7Byav9NuSwWC/x+f8KcdhxuwU93HIIAA0Kf1lMPEWNLS1D742ulYw/o/+aZwWDAsWPHMGfOHFgsFhQWFuLGp/bhTHsPPJ/W06YLwCea8G9fuRx/v3icdOwJgpAwp3fPOHDX/30LOkQw3eDAmfAYiAB8MOP0v39ZOvb0ej1cLlfCnL793Lt452QL3KIZgA52+DDF4MDSpUvwwBfnJHw9RXMqLCxEmyuIzz/R/wYyABMMCMOmEzBJ34df/vPfYaxVl/D1FJvTw68cw3+/cwpe0QQDRMwztOOj8FismjcVv7p9fsLX0+CcLt3wMgwQ4YMJekTypkcMzknuHlEAAXMMnTgersR7G7+kaI+I5uQL67D04Vdl7RE2+DHD0APb5Ll47lvLk+oRix/6C/x+AT6YoYMoa4/Y88/L8e6772LlypWwWCzS62lwTmrsEYUQIMCAf1w1Cw98fiZ8Ph9OnTqF+fPnIxgMJtUjrLoQPKIFbz1wHYr1woDXUzAYxMmTJ3HZZZdBFMW4HhGBHgUIIgwdVs+bFNcjOjs70dzcjCuvvBKCIIyqRwz+ncsekd3zCK/Xi/r6elx11VWwWq2K9ohUziNG0yM8Hg8++ugjLFiwAIIgpHQeIWeP6OjoQHNzM8JjZuA7z9Uj/Gk9TQjDiLCsPSISicBoNOLQoUOYPXu2tOxvqj1icE4WiwWP/fZVvNQcQt+nN4MerkcMdx5hQQhTDE40h8tg0kVSOo8Ii3rMNPTgXLgUQeiT7hF6vR53PvECjnuK4EQBe0SWzyN+8dpx7D9wECfC4xCASfEeIcd7jWhO0Q/vTSYTfnrADYfHj0n6PnwULodFF4JPNOHrc624bmL/TdpNJhPC4TBCoRAsFgtEUUQgEIDZbMaHvSL+8z1Xwh6x9YuFCAQCsFgs0Ol0CAQCMBgMMBqNCIVCiEQiMJvN+M/DXpzq8se915g4cQJuu9QMURRhNpsRiUQgCIL0JRG/3w+TyYSegA7/c39fwh7x5LUFKNb3/66P3kthcE4GgwF/aTyPmm5bXI+4bJwF319gRDgcHpB7opy+s9sZdx4REA347gwn5k4eK32ZorOzE6IoYty4cTAajVJOr58J4pUPXXHnEe6OFlSd24nvfOc76Orqgt1uR3FxMWyf3ksmNqcH9rng9ofiziM6/lIN3Zl66PV6zJs3D8ePHwfQ/4UCvV6PkpIS9PX1wTJrGaZ97YG4HuHxB9D16zuxYsUKvP322wgEAigpKYHf74cgCCgoKIBer4fH48HEb/w7xkydE9cjug/8AcGGnQD6r7SKXuUS/RZ7aWkp3G43dGVTMPPOXyTsEeeeuh32AhNcLhfC4bB0hVW015vNZrhcLpTfcD/GL7gmrkf0Hq2B56/PwGg0wu12w2AwoLi4WFqdIZpTUGfC7Pu3J+wRF7b+MwoDPfB6vQgGg9KVE4Nzsq/6BiZfc0vceUTfuRPoffGn0nmLTqeD3W5PmNPM+7bDbC2I6xHtf/rfKOz5CHPnzsWhQ4eg0+kS5lR42ecw9cbvx/UIt7MH7b+5GzabTbpywG63J8xpyp3VKB4/Oe48ovPN3yBy4k1EIhH4fD6YzeaEORknzsOMbzySsEecf/JvUV5ejlmzZuH999+XbmAfCASkz/fcbjfGf+0nKL/0irjziJ5Df4b/7d9Jx57RaEyYU6RgDGbdszlhj2jZdBeK9QLcbjdCoZB0RUhVVRWOHTsGvV6Pvr4+jLn+25i49Etx7zUcp95D36s/k4692NdTJBJBcXGxlNMl63cm7BGVHzyHk4feQnV1NSZOnIjly5fL8nlEtN9feumlKCgoSPu9hsViwR9efwu/qHPBB9OozyOi7wn/830/jpzvQU9HW9Zuls6JkCxKdSLk9ttvxx//+EcA/Wvaxc4QDuVPf/oTbrnlFgD9y21cvHgxtUGrTHQiJGrvwfcwZ+486d8VxRZYTSOvs+fyB+Hwxt+k22zUY3yJNcEj4l10+hAKx7+cyorMKLKMfDsenxBGlzv+EjG9XodJpYmXQHO5XNi+fTvuuOMOFBcXo8PlRyAYiduupMAEe8HI6/gJoQja+/wJ/29SaQH0+pFv1tfjEeAJxN9srshiRFnR0FcwRXNZu/Yb6Asnfr7Gl1hhNo58IZvTF0RfgpuuW0x6jCtOrp6nWjrw+ss78Dc33YrCmDUVy20WFJhHPqY8gRB6PELcz40GHSbY4+s5uJYA0N7nhxCKr2dpoQnF1pHr6Q+G0ekKwOt2Y8+ugblMSfLeHF3uAHzCZzf4i8b6u9tux+RxY0d8fCgcwUXnwGMqGuMf7rgDY0rtQzzyMw6vAJc/NOCxf3PTrRhbZke5Lbm1g8/3eBP+XOs9YjC5e0RsPS6ZXKFoj4iKRES0OhJf2Zhqj4jm8ZWv3YYZEypGfDwAtDp8iETi6ylHj7DpQ3H9IBE19oioYqsRpYXmhL0tVqIeETXBboXRMLCeieLF9ohYBWZDXI8YajzJ9IjhcmGP6JfJ84ih6qFEj4gazXnEaHpEolxGex6RSKo9IjqeW77+9/AnuDkoIF+PiN1fotfWaHvEYC6XC//vt7/D579yy4DzOSBxjxjK+R5vwl452vOIwTGS7REulwvP/b/f4Qs3xefBHtEvk+cRrR09+NN/vxD3PkGpHpFIqj3i1KlT0n1Kev0R+PwBnDt1HFMvvQwm86cfdpp1KDCOXAshLMIZSPxxUkVhcouP9AVEBGJ+9wWF/vFcOu9ylNlGfi7DERE9/sRjKLPqYBjhmAoEAvjgyFFMvuSz/KMsBh1KLMndrL7TG/+6CAoBtH58HAvmzx+wQkcivpAIt9CfRzAYlD7MLS8rxbhiCwKBAI4ePYr5w8Tq8UcQjh8GLAjC29eLUCiElpYWTJ48GUajEWVlZf2P+/QeskIEcAc/XVKpsBDPPvssDh8+BCEgoBD939ivr6/Hvffei4kTJw54rN/vx7PPPotDx04htkWYzSYsXLgI9Qf2QQx4MCK9EQZbmfTP2bNn4+6774Zer8f93/4fiC6PNJTZs2fjez98AJuf3YaPP/54wP+JQT8ivr6RxwAdDCWJ3w+E3T1AJL7/xEWwFEFvKYr7uRgWEPE4khgDYCiuAHTxx1/E64StwIw77rgD27dvH/JLzjqTFfqCkvj/EMMIu7rjf55oDLYyQB//+yXid0EUklhpxmCCoWhMwv8K93WguLh4xDz0hXbojPHHvCh4EfEnsey/Tg9DcXniMbi6AHHgiybRmPRWG3Tm+PMeMRRAxOuM+3kihpJxcT+zFRVi7Ve/jO3bf4df//rXqKysxJo1axI+frTvNRKdW6XzXsPlcuF3v9uOz934tbjzkGTOI6Lj+eJXb4HRUoQPTzbhC6uWSv/PiZA8kepEyPe+9z3psqfbb78dL7zwwoiPefrpp/H97/fPtsV+CyDXDZ4IyeSLh4iIiIiIiChXxE6EEI0kejN4ACgrKxtxafbY7WMf88gjj6CmpibhY6qqqrBx48a4nw/e33AxAODqq6/Go48+mnAsfr8fTzzxRNyNuNWgqqoKDzzwAKxWKwRBwLp16xTf33333ZfwxuRyxP3d736Hd999V7o/hJxmz54dN8GlFc8///ywEyFak83Pckf+6gipzpw5c6S/R9e4HMm5c+ekv8+dO1f2MVF2DL6EP5epLZdMj0fJ/ckZW45Y6cRQ23GS77RSD7Xlwf6jXDz2H+3QUj3Ulgt7kHKxUo2htmMk3+VyPex2+4CJkMHLPclBp9OlfE9QJcaTrf3JGVuOWKnEMJvNqKyslB4riuKwj41uP9gDDzwAADh48KD0AbnZbMaqVaukSYCRJIoxOM5wY3n66acTTtQA/feJGGpSYKiJmkQGX2Uz+P+iyz8NN7l03XXXDTnhM3PmTFgsFnz44YcDlmCKjnOk5zJ2f4meD2D4SaOh9hEb99FHH00YN9E+EuUx1L5GO6kW3d7lcmH9+vUj5hO9qum9995DQUHBkM9tKs/P4Lyjj41dSktuWnoPJjdOhOSgqqoq6e9Hjx5FKBSC0Th8Kd9///2Ej6fcFr1x0X333SetAZur1JZLpsej5P7kjC1HrHRiqO04yXdaqYfa8mD/US4e+492aKkeasuFPUi5WKnGUNsxku9yuR4VFRX48MMPpQ/4ojcAX758eVIfRidjNKtdDKbEeLK1PzljyxErnRjp7t9qtWLjxo2jvsJkpBijjTPURM0vfvELPPHEE2lN1MRKtI+RxhCVzKRRX18fGhoaMHPmTJhMplE/lyONZahJo3Sf58H7GJxHMvsa7aRacXFx0vk8+uijST236Tw/sY8NBoM4ffo0Zs6cKd1cXi5aeg8mNy6NlUWpLo3ldrtRXl6OQKB/jdd33nkHK1asGHL7QCCAiooKaX27N998E5/73OfSG7xK5PvSWGqaVU2X2nLhtyGVi8VvZGuHVuqhtjzYf5SLx/6jHVqqh9pyYQ9SLhavCNGGXK9HZ2cnmpqaIIqiIldErFmzJuWJEF4RolysdGJkui7Zks5ETSbHopV6pJOHUrXK5HObaF9yLY2l9vdgXBqLRsVms+H666/Hq6++CgDYtm3bsBMhf/rTn6RJkLKyMlx77bUZGScpT6/XZ302VS5qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd7lej4qKCixfvhy9vb0wmUxobW1Fb29vtocFoH9ZrUxcCZKJ/ckZW45Y6cTIdF2yJZkrGTJluLFopR7p5KFUrTL53Cq5Ly29B5Nb7n19gQD03zA9atu2bUPe/Nzr9Q5Yz/A73/nOiMtoUe5wuVx45plnpImuXKa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p4V6WK1WTJgwARaLBQcOHJBWm8i2QCCAQ4cOZWw8Su5PzthyxEonRqbrQsPTSj3UmEcmx6TkvrT0HkxunAjJUTfeeCOuueYaAP0vnq985Ss4cuTIgG26u7tx88034+OPPwbQfzXI+vXrMz7WTLBarbDZbACAcDgMh8Mh3aCtr69PWjvQ5/PB4/EAAEKhEBwOhxTD6XQiGAwC6J9A8nq9AIBgMAin0ylt53A4EAqFAAAejwc+nw9A/6V50ZsciaIIh8OBcDgMoH85M7/fD6C/XtEXfyQSgcPhkNZodblcUhP0+/1wu93D5mQ2mzFv3jxp3Lmck9/vx+WXXw6z2ayKOomiiLlz58JsNqddJ2DkY0+n02HRokUIhUKy5xSJRLBo0SKIoqiKOvl8PixatAhms3nUOZnNZlRVVQ1Y11iu11MydcqV11OmcgIgvU5yOadgMIh58+ZJNzDMdp30ej3mzJkjXeKt9LEnZ48YnFMwGMSiRYug1+tlOfbC4TAWLVok7Wu0dfJ6vViwYIF088R8/Z2rhb5nMBgwZ84caU3pXM5JEAQsWrQIBoNBFXWKfZ1k4tgzm82YP3++NG45czKbzVi4cCG8Xq8q6pTq+Z7ZbMbll18+4DyVPSJ7OZnNZsyZM0daHiSXc/L5fLjiiitQWFgIv98vjUEQBOkx4XBYGo8oinHbRWsbCoXitouONRAIDNguOu5IJDJgu1AohHHjxsFgMCAYDMZtF+X3+6XnNRgMDhjr4O2Gy8lgMGD8+PEIBoOy56TX61FZWYlQKDRgrKnkFAqFUFlZCYPBkHKdRFEccOPz0eSk0+kwduxY6ZgPBAJp5zSaOg2Vk5zHXi7lFPs6yeWcgsEgxo8fD4PBoJo6RSIR6UoTpY+9RD1Crt+5er0eixYtkvp8dNyp/n4yGo1YtGgRAoGArO8Js4ETIRlyww03YNGiRQP+PPPMM9L/Hzp0KO7/Fy1ahAsXLgwZ8/e//z0mTJgAADhz5gwWLVqE6667Dv/0T/+Er371q5g6dSr27t0LADAajfjjH/+omkuR5LZixQrceuutAPrXPK2urpZenFu2bEFTUxMAoLa2Frt27QIAtLS0oLq6WoqxadMmNDc3AwD27NmDPXv2AACam5uxadMmabvq6mq0tLQAAHbt2oXa2loAQFNTE7Zs2QKgv3FUV1ejs7MTALBjxw7U1dUBABoaGrB9+3YAn90wKNqMtm/fjoaGBgBAXV0dduzYMWxOFosFXq9XGmsu57R9+3bYbDZYLBZV1KmpqQknT56ExWJJu07AyMdeS0sLVqxYgdraWtlzamhowIoVK9DU1KSKOm3ZsgUrVqyAxWIZdU4WiwWffPKJNFY5X0/J1ClXXk+Zyqm5uRmNjY2wWCw5ndOePXvg9XphsVhUUafOzk7s378fFotFljplskcMzmnPnj1YsWKFtF06ddq1axfq6uqwYsUKqZeMtk7PPPMM5s2bB4vFkte/c7XQ9/r6+rB//35pDLmc065du7BixQppu2zX6ZlnnsHMmTNhsVgycuxZLBZMmjRpwHsjuXKyWCxYvHgxnnnmGVXUKdXzPYvFApvNJo2VPSK7OVksFuzfv18aay7ntGXLFlx11VW48sorUV9fj76+Puj1epw/f1768Kyzs1MaTzgcRn19vfQBXFNTk1TbtrY2HD16VMq9vr5eGuvRo0fR1tYmjS86bq/Xi/r6eunDuKNHj8JsNsNoNOLs2bM4deqU9BzV19dLOR06dEhazqu5uVnKr7e3F4cOHZK2i+YEAKdOncLZs2cH5GQ0GjFhwgQcPnxY9px0Oh0mT56Mo0ePSsdAqjk1NDRg8uTJMBqNI+Y0VJ3a2towefJkdHV1jTonQRBw7tw56T4GDQ0Naec0mjoNlZOcx14u5XTixAno9XoYjcaczunw4cOoqKiA0WhUTZ1aW1sxefJk6XWXTp1S6RFy/c7t7OzEihUrsGfPHll+PwUCAaxYsUJ67wjI854wG3iz9AyZPn261CRG45NPPsH06dOH/P+TJ09i7dq1aGxsHHKbiooKbN26FTfeeOOo96920RvsWK1WGI1G1NXVYe7cuXC5XLDb7dDpdOjr64PVapW+wR6JRFBUVIRQKAS32y1NDjmdThQWFsJkMkkNrrCwEMFgEF6vF3a7HUD/7KrNZoPRaITH44Fer0dBQQEEQYDf70dJSQlEUYTT6URxcTEMBgPcbjeMRiOsVisCgQAEQUBxcXHcDYNcLhfMZjMsFgv8fj9CoRBsNhvC4XDCnCKRCN566y1cccUVGDt2bE7n1NHRgaNHj2LVqlUQRTHrdXI6nairq8Pq1athNpvTqlMyx55er8fhw4exYMECWK1WWXMKhUJobGzE4sWLodfrs16n3t5eNDU1YcWKFfD7/aPKKRgMYv/+/Vi2bBlKS0tlfT1psUconVNfXx/eeecdrF69GhaLJWdz6u7uxvvvv49rrrkGer0+63Vyu904cOAA1qxZI/UjJY89OXvE4Jy8Xi+OHj2KJUuWIBQKpX3sCYKADz74AFdccQUAjLpO0RvEXnXVVQgGg3n7O1cLfc/j8eCtt97C6tWrpX6Uqzm53W4cO3YMS5cuRTAYzHqdOjo6cPz4caxcuRKhUEjxY89gMODtt9/GZZddhvHjx8uak9lsxjvvvIN58+ahvLw863VK9XxPp9Ph4MGDmD9/PsaNG8cekeWc/H4/9u3bh6uvvlrqR7ma0+DzcpPJBKvVKn1bubu7Gx9++CFCoRAsFot0NYHZbIZer4cgCNIHsqFQCGazGddeey1qamoQCHx2E+Do1RfR7SKRiHTlvSAI0nYejwft7e2YOnWqdDP32O2i6+lHxxq9cgQATCYTwuEwgsHggO1ix6rT6aTtQqEQDAYDzp8/j4qKChQWFibMKRwOD8g92ZwMBgNaW1tRUVEBq9UqjTWVnPx+Pzo7OzF58mTpeR4qp6HqFIlE0NbWhsrKSuh0ulHlFJ0ImTZtGkwmEwKBAIxGY1o5jaZOyRx7qdYpdrtcySn2dQIgZ3PyeDzo7OzElClTEA6HVVGncDiM9vZ26UvnSh57iXrE8uXLZfmdazQacejQIcyfPx+FhYVp/34ym8149913cdlll6GkpCTt94Stra1Zu1k6J0IyRKmJEKB/dv6FF17A888/j+PHj6O9vR2lpaWYOXMmvva1r+HOO+9EeXl5iiNXt+hESFQmXzxq4Ha7sWPHDtx6663S0mC5Sm25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/UYKRePx4P33nsv6XhTp07FzJkzsW/fvpTGIwgCmpqapCVLlabk/uSMLUesdGJkui40PK3UQ415ZHJMifa1Zs0aWWKr/T1YNj/L5UQI5bR8nwghIiIiIiIiUsJwEyHFxcUDbnxbUlKCBQsWwGg0pjwRQkSUz+SaCFG7bH6Wy3uEEOWwcDiMtrY2ab3EXKa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p6V6pJPLlClTsGzZMlx66aXSPU6NRmNK45gzZw6A/iV+3G63dFNiANINupWQaH9qjC1HrHRiKPk80ehppR5qzCOTY1JyX1p6DyY3ToQQ5TCXy4XNmzcP+CZOrlJbLpkej5L7kzO2HLHSiaG24yTfaaUeasuD/Ue5eOw/2qGleqgtF/Yg5WKlGkNtx0i+01I90slFp9OhsLAQEydORGlp6YAJi+j6+skymUwYM2YMBEHA4cOHIQiCFGfBggUoLCxM+LiZM2eOetyxBu9PTnLGliNWOjGUfJ5o9LRSDzXmkckxKbkvLb0HkxuXxqKclu9LYw2+GVMuU1sumR6PkvuTM7YcsdKJobbjJN9ppR5qy4P9R7l47D/aoaV6qC0X9iDlYqUaQ23HSL7TUj1GymW4pbEuu+wyVFRUJPw/l8uFxsbGAd/+jd4wOJHLL78cdrsdTU1N6OzshMlkwrhx4zBnzhxpgiV6c/fOzk7o9XqMGzcOY8eOxYULF3Dq1KnRpg6gP//oTZqV6D9yxZYjVjoxlHyeaPS0Ug815pHJMSXal1xLY6n9PVg2P8tN7bpFIlIFnU4Hq9Wa7WHIQm25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/UYKZdUvzdbXFyMRYsWobW1FT6fD6WlpSgrK0NDQ8OQjzGZTFi4cCFCoRD0en3ckljRyZFx48YN+HlRUVFKYwT68091Oa9MxpYjVjoxlHyeaPS0Ug815pHJMSndf7TyHkxuXBqLKIf19fXhqaeeQl9fX7aHkja15ZLp8Si5PzljyxErnRhqO07ynVbqobY82H+Ui8f+ox1aqofacmEPUi5WqjHUdozkOy3VQ8lciouLMXfuXCxevBgzZsyAxWIZctvo//X19eFXv/oV3G530vspKSmByWRK+H9D/TwqEAigrq4OgUAg6f0lS87YcsRKJ4aSzxONnlbqocY8MjkmJfelpfdgcuNECFEOs1qtWLNmjWpmVtOhtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfKelemQyF6vVmvBeHxaLBTabLeXx6HQ6TJ06Ne7ns2fPxuLFi4edDDEajZg+fboi38qWM7YcsdKJoeTzRKOnlXqoMY9MjknJfWnpPZjceI8Qymn5fo8QIiIiIiIiIiW43W4cOnQo4f8Nd4+QoXR3d+PYsWPSkls6nQ5VVVVxy12lor29HZ2dnQAwYAmt4e5zQkSkJnLdI0TtsvlZLq8IIU2wWq3St0jC4TAcDod0ctXX1wdBEAAAPp8PHo8HABAKheBwOKQYTqcTwWAQAOD1euH1egH035TN6XRK2zkcDukmbx6PBz6fDwAgCIJ0mZcoinA4HNLN4dxuN/x+P4D+y99cLhcAIBKJwOFwIBKJAOi/qVz0sji/3y9dEjxUTj6fD3/+85/R1dWV8zl1dHTgL3/5C3w+nyrq5HA48Morr8Dn86VdJ2DkY6+vrw+7d+9Gd3e37Dn19vZi9+7dcDgcqqhTe3s7du/eDZ/PN+qcfD4fXnnlFfT29gKQ9/WUTJ1y5fWUqZycTidefvll+Hy+nM6pq6sLf/7zn+Hz+VRRJ5fLJT2vctQpkz1icE5dXV3YvXs3XC6XLMdeT08Pdu/eLfXN0dapra0Nr732Gnw+X17/ztVC33O73Xj55ZelMeVyTp2dndi9ezfcbrcq6tTW1oZXX30VPp8vI8eez+fDq6++ira2Ntlz8vl8eO2119DW1qaKOqV6vufz+fCXv/wFHR0dUp3YI7KXk8/nw8svvyyNKZdzGum8XKfTIRwOS+MRRRF+vx+RSAR6vX7UOY0dOxbz5s3DuHHjMHXqVCxYsABms1mW9xrjx4/HnDlzMGXKFGkSxOFwwGKxoKqqCoIgSI+J5hQMBvHRRx/B5XJJYxUEQXoeQqFQXO7RsQYCgQHbRWsRiURgNpshCAI+/vhjuN1u6RgIBoMDtos+d9Fax24XO1a3242PP/4YwWBQev6jYx2c0+A6Rbfz+Xz4+OOP4fP5Rp1TIBDAyZMnB/w73ZwGb5dKTunWafB2uZKTx+PBqVOnEAwGczonl8uFjz76CMFgUDV18nq9+Pjjj+H3+xU/9hL1CLl+57pcLuzevRtdXV2y/H7yeDzYvXs3Ojo6ZH1PmA2cCCFNWLFiBW699VYAQGdnJ6qrq6UX55YtW9DU1AQAqK2txa5duwAALS0tqK6ulmJs2rQJzc3NAIA9e/Zgz549AIDm5mZs2rRJ2q66uhotLS0AgF27dqG2thYA0NTUhC1btgDobxzV1dXSN1J27NiBuro6AEBDQwO2b98OoL85VFdXS81o+/bt0g3k6urqsGPHjmFzikQiOH36NF5//fWcz2n79u1oaWlBJBJRRZ2OHDkiPcfp1gkY+dg7ffo0HA4HampqZM/pvffeg8PhwJEjR1RRp61bt0pvjEabUyQSwcmTJ6Vvdcn5ekqmTrnyespUTidPnsSxY8cQiURyOqfXX38dp0+fRiQSUU2dGhsbpZNtpY89OXvE4Jxef/11OBwO2Y69gwcPwuFw4OTJkynVafPmzejq6kIkEsnr37la6XuNjY3Sm7tczumVV16Bw+FQTZ02b96Mjo4ORCKRjBx70UnKzZs3y55TJBJBT08PNm/erIo6pXq+F4lE0NLSIo2VPSK7OUUiETQ2Nmoip5HOywsLC9HT0yONJxwOo76+Hj6fD2PGjEkpp+PHj+Pdd9/FzJkzpedI6feE5eXl+OSTT3D27FnpuWxoaIAoivD5fHj//felDxWbmpqk56GtrQ1Hjx6V6llfXy+N9ejRo9IEbktLi1QLURSxd+9ehEIh+P1+HDt2TDoGzp49i1OnTknPUX19vTTWQ4cOSV/2am5ulvLr7e1FY2Oj9AFrfX299LyeOnUqLqfYOsXmdOHCBfj9fnR0dIw6J6/Xi/b2dulD3YaGhrRzir3SKNWc0qmT1+tFfX299EFwLuXU1NQEp9MJURRzOqfo604URdXU6fz58/D7/ejq6lL82EvUI+Tsew6HA6+//rosv5+cTiccDgd27Ngh63vCbODSWJTTopdTWa1WGI1G1NXVYe7cuXC5XLDb7dDpdOjr64PVaoXZbJa+3V9UVIRQKAS3243S0lIA/bOrhYWFMJlMUoMrLCxEMBiE1+uF3W4H0D+7arPZYDQa4fF4oNfrUVBQAEEQ4Pf7UVJSAlEU4XQ6UVxcDIPBALfbDaPRCKvVikAgAEEQUFxcLH3IXlJSAr1eD5fLBbPZDIvFAr/fj1AoBJvNhnA4zJyYE3NiTsyJOTEn5sScmBNzYk7MiTllNKcPP/wQZ86cgcVigSiKCAQCmDZtGqqqqnIqp76+PnR3dyMYDMJiseDkyZMDcjKbzdDr9RAEAXq9HkajEaFQCOFweMB2FosFOp0OgUAABoNB2i56JcicOXNQUFCATz75BE6nE4FAAEajEQaDAcFgEKIowmw2IxKJQBAEac18v98Pk8kkbQf03+w9HA4jGAwO2C52rDqdTtouFAopklN0rLHbMSfmxJzkz2n58uV58fuptbU1a0tjcSKEclq+3yMkFAqhpaUFkydPVtUNplKhtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfKeleiSTiyiKOHfuHNrb2yGKIioqKjBjxgzodLqsjEcu+/bti/uQL10TJkzApZdeCp1Oh+bmZhw9elSW2HKMM50Ycj9PlB6t1EONeWRyTIn2Jdc9QtT+Hoz3CCGilLjdbjz33HPSuny5TG25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VIJhedTodp06Zh2bJlWL58OWbOnKnIJEiy45GTIAj44IMPpLXsAUj3Hh2tK664QpoEAfrXxR8cW85xZjKGHPsn+WilHmrMI5NjUnJfWnoPJjdeEUI5Ld+vCCEiIiIiIiKi0dm3b1/Cn48dOxbTpk3D+++/P+zjKyoqMG3aNJhMJlgslrj/b2trw8mTJ+UYKhHlCbmuCFG7bH6Wm9vXcRIREREREREREcmkpKQEa9asgSiKcLlcCSdFxo4dO+zVIxUVFZwIISJSGS6NRZTDnE4nHnvsMTidzmwPJW1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyyfR4/H4/Dhw4AL/fL/0sdv17nU6HkpISzJ49e8DjJk2ahPHjxw8b2+12x8WWc5yZjCHH/kk+WqmHGvPI5JiU3JeW3oPJjUtjUU7L96WxgsEgmpubMWvWLJhMpmwPJy1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyyeR4PvjgA3R1daG3txdjxoyBwWAAACxduhRFRUUJx+ZyuVBUVJRwKaxE27/55pswmUxS7FSFw+G4cQ5n0qRJaG1tTSuGXI8l+WmlHmrMI5NjSrQvuZbGUvt7sGx+lsuJEMpp+T4RQkRERERERESj09HRgaampgE/s9vtWLRokWw3g+/s7MTx48dliTUagz9MPXr0KLq7u2Xdx9SpU9Hd3Q2j0aiKb3kTaQHvEaI8Lo1FlMO8Xi927twJr9eb7aGkTW25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy6ZHM+4ceMwffp0nD59Gnq9HhMmTMD8+fNlmwTxer04ePAgZsyYkXasYDCIkydPIhgMjrjtrFmz0o6RzGNnzpyJpUuXYvHixSgsLBwxxkhLiVHy0qmlmqgxj0yOScl9aek9mNw4EUJERERERERERHll3LhxKCsrw5IlSzBnzpwB9weRS0VFBdasWYOpU6fKEm+kZWkqKytl2c9oTJo0acRthpqgIaJ+alieMB9waSzKaVwai4iIiIiIiIjUzu1249ChQ0lvP2fOHFgsFpw9exZut1u6cft777035GMSLa2jxNJYsfsRRRG1tbVDbnvNNddAr9cPuw0AlJWVYfbs2fjggw8QCATkGipRTpg3bx7GjRuX7WFkBJfGIqKUqPFSwlSpLZdMj0fJ/ckZW45Ycl+WTdmjlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy5a7z82my3ppbJ0Op10xcrll1+O8vJyzJs3L+GN3JMRDofR1dWFcDgs+2N1Oh3mzZuX8P9mzZqV9E2nx48fj8LCQqxYsQJXXHEFli1bhgULFox6vJkwffr0rF3lkk4t1USNeWRyTIP3VVZWJltsLb0HkxsnQkgTrFYrbDYbgP5m4nA4EL3Yqa+vD4IgAAB8Ph88Hg8AIBQKweFwSDGcTqf0ovR6vdLadcFgcMDNvxwOB0KhEADA4/HA5/MBAARBQF9fH4D+b0Q4HA6pobndbvj9fgBAIBCAy+UCAEQiETgcDkQiEQCAy+WSvvng9/vhdruHzcnr9eKll15CV1dXzufU3t6Ol156CV6vVxV16u3tlcaTbp2AkY89p9OJnTt3oru7W/acenp6sHPnTvT29qqiTm1tbdL6kKPNKXrM9/T0AJD39ZRMnXLl9ZSpnBwOh3Q85HJOXV1dUh5qqFNfX580HjnqlMkeMTinrq4u7Ny5E319fbIce9GxOhyOlOp08eJF6bnN59+5Wuh7LpcLL7300oDXTa7m1NnZiZ07d8LlcqmiTrGvk0wce9HX1sWLF2XPKTa2GuqU6vleNI/29napTuwR2cspWo/o2HM5p3TOy5XIKdPvCeXsEYNz8ng82LlzJ9rb2wfUqbi4WIoX3U80RnQMwWAQlZWVMBgMUp1efvllqU7RMQiCID0P4XBYGs/gOvn9fvh8Ppw8eRI+n2/Adn6/X3r+A4GA9HyFQiFp3IFAACdOnBjw78HH3tixY2Gz2QbkZDAYUF5eLtUpdqyDc585cybGjx8Pj8cDv9+PkpISGI1G6XmNjjU299ixjjan6PMfu13s8z94u6iCggKsWrUK06dPl7YdKqdk6pRKTh6PBydOnEAwGJQlp8HHXqZycrvdUh5y1ynVnKKvE7/fn3adRspJEAScPHkSbrcbl112GYxGo2x9r6+vDzt37kRXV5csvdztdmPnzp3o6OiQ9T1hNnAihDRhxYoVuPXWWwEAnZ2dqK6ull6cW7ZsQVNTEwCgtrYWu3btAgC0tLSgurpairFp0yY0NzcDAPbs2YM9e/YAAJqbm7Fp0yZpu+rqarS0tAAAdu3aJV3e2dTUhC1btgDobxzV1dXo7OwEAOzYsQN1dXUAgIaGBmzfvh1Af3Oorq6WmtH27dvR0NAAAKirq8OOHTuGzclut2Px4sXSGHI5px07duDLX/4y7Ha7Kup0+vRpjBkzBna7Pe06ASMfe11dXdiwYQPq6upkz+nEiRPYsGEDTp8+rYo6bd++HRs2bIDdbh91Tna7HRMmTMCJEycAyPt6SqZOufJ6ylROra2tKCgogN1uz+mcamtrsXjxYtjtdlXUyeVyQRAE2O12WeqUyR4xOKfa2lps2LABLpdLlmOvoaEBGzZsQGtra0p12rp1K+655x7Y7fa8/p2rhb4nCAIEQYDVas35nPbs2YMNGzZAEARV1Gnr1q248847YbfbM3Ls2e12rF27Flu3bpU9J7vdjh/+8IfYunWrKuqU6vme3W7Hl7/8Zel5ZY/Ibk52ux2CIEgfFOVyTumclyuRU6bfE8rZIwbnZLVasWHDBuzYsWNAnfbs2YO5c+eir68P9fX1APq/Cd7Y2AiDwYAJEyagp6dHer+TqE7RMZw6dQpnz56V9hsdz+A6vfvuu+jq6sLVV18Nh8OBo0ePStvV19dLz//Ro0fR1taG8ePHo6WlRRp3JBJBJBKR7mHQ0NAQd+wZDAaMGTMG9fX1qKysxOzZs3Hw4EFpfHv37pVq1tvbO2CJsPr6eulD5sF1ij6v4XAY9fX10oe/TU1NUm3b2tqknEKhEOrr61FSUoJJkyahubkZbW1t0nEUHbfX60V9fT3Gjh0r5RR9vs6ePYtTp06hqKgIHo9HqlNBQQFqamqkPN5+++1hcxqpTrE5FRcXD5nT4DqdOnUKM2bMgNVqTZhT9MPtRDkBGHDsAcChQ4fQ29srHW9y5TRcnQKBABobG7F06VJYrVbp2BuqTpnKqa2tDVdffTVcLldKOSV6PQ2Vk8lkwtVXX40TJ06gtbUVgHy/c10uFzZs2CC9H4uOO9VertPpsGHDBun9GCDPe8Js4D1CKKdF15WzWq0wGo2oq6vD3Llz4XK5YLfbodPp0NfXB6vVCrPZDJ/Ph0gkgqKiIoRCIbjdbpSWlgLon10tLCyEyWSSGlxhYSGCwSC8Xq/0gZTD4YDNZoPRaITH44Fer0dBQQEEQZC+uSCKIpxOJ4qLi2EwGOB2u2E0GmG1WqVvTxQXFyMSiaCvrw8lJSXQ6/VwuVwwm82wWCzw+/0IhUKw2WwIh8PMiTkxJ+bEnJgTc2JOzIk5MSfmxJyYE3PSQE5erxcXLlzA+PHjYbPZ0NfXl3RO77//PvR6PQRBgE6ng8lkQjgcRigUwhe/+MW4nM6fP48PP/wQRqMRoVAI4XAYFosFJpMJNpsNPT090Ol0CAQCKCgowJIlS3D8+HH09vbCbDYjEolAEARYLBZpu+uuu25UdYpOKOj1eoTDYQSDQenLDLNnz0ZlZWXCOrW1teH06dMQRRGBQABms1nKXa/Xx+U0c+ZMlJSUDKhTfX29tF0kEpFyCoVC+MIXvoDa2loEAgEYjUbpKhxRFDFt2jRMnz4dFy5cwJgxY1BSUgKXyyXl1NraiqamJun5j83J7/fDbDbDaDTC7/fDZrNBEASpThaLZUBOn/vc59DV1QWTyYSGhoYBOUW3i33+DQZDwpwG12lwTrHbxY7VZDJJ2wEYNqehjr3BOQ1XJ+b0WU5GoxHLli3Li74Xzam1tTVr9wjhRAjltHy/WbrD4UB1dTXuu+8+qTnmKrXlkunxKLk/OWPLESudGGo7TvKdVuqhtjzYf5SLx/6jHVqqh9pyYQ9SLlaqMdR2jOQ7LdVDbbmw/yQXa9++fUNum+hm6ZFIBDU1NThw4ACWL18ufQg8Y8YMTJ06FT09Pejt7YXFYkFFRQWsViu6urpw7NgxAP0fFtfX1w94bKL9jOTEiRPSEn9RFosFK1asgE6nS/iYnp4eHDlyJOl9zJ49G5MnTx7ws48++kj6xn2s6M2ph3o+J0yYgDlz5gy5r0gkgv379w87nmuvvRbhcBgmkynpug23HZC4HnKaMmUKOjs7EQwGFb1Xhtx5XHLJJfB4PLhw4YJqxpTMvj73uc/hmmuukTW22t+DZfOzXE6EUE7L94mQUCiElpYWTJ48GUajMdvDSYvacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+SizXaiRCg/9vkBw8ehNVqhcFgQGVlJS699NIhJyBEUZSW1Bn8rfDh9jNSHkeOHJGWIjKZTFi4cKF0v9dE5JgI6evrQ2Njo7T8FtA/AbNkyZJhJygmTpyISy+9dNj9HTt2TLp/XCLJTnCMZiIkUT2GU15ejrKyMmkZqeGMHTsW8+fPBzDwGFDCaPMYSfQ5HOn5y+SYktnXxIkTsWzZMlljq/09GCdCiFKU7xMhRERERERERJQ/UpkIAT67mbPZbIbBYBhxP4cOHZJuhjya/QxHFEX4fD6EQiEUFxcPORET5Xa7B9zTYSSXXHIJJk2aFPfznp4enDt3Dh6PByUlJZg9ezYKCgoAAIcPH5bu+RNr2bJlKCwsHHZ/Xq8X77777pD/r8RESCKFhYWYMGGCdA+JWNdeey26u7tx/PjxEePEToSkOpZskWMiJBtsNhuWLFmS7WFkVDY/y+XN0olymMfjwQsvvACPx5PtoaRNbblkejxK7k/O2HLESieG2o6TfKeVeqgtD/Yf5eKx/2iHluqhtlzYg5SLlWoMtR0j+U5L9VBbLuw/ysXyeDz4wx/+gEgkktQkSCxBEHDs2DEIgpDy/qN0Oh0KCwtRUlIy4iQIABQVFaW9T6D/hvSLFi3CqlWrMH/+fGkSBADGjx8ft31xcfGAbYaSTA5yG1yP0tJSXHnllZgyZQpWrVqF2bNnw2azYdasWVi9evWormyorKxMa2wLFy4c8SqaqNEcV1arFTNnzkxrbMmw2+0jjqmyshITJ05Me1/R/KM3GJeTlt6DyS371z4SUcr0ej1KS0sVv2QvE9SWS6bHo+T+5IwtR6x0YqjtOMl3WqmH2vJg/1EuHvuPdmipHmrLhT1IuVipxlDbMZLvtFQPteXC/qNcrHRi6HQ6WK3WrHzor9PpUFVVhRMnTii2j0mTJiESieDChQsIBoMYM2YM5syZk5V8kxFbj5KSEixcuFAaq8lkwuTJk+OWB0uGwWBAWVlZ0tsXFhZKN+222WxYsGABzGYzCgsLodPpMHgBopkzZ2LMmDHSzcIbGxuTPq7mzJmDMWPG4PTp06NLahTMZjMuueQSHD58eMgxlZeXS8eGKIq4ePFiwu1mzJiBTz75ZNj9ReuYaCIuXVp6DyY3Lo1FOY1LYxERERERERFRvkh1aazROnPmDM6cOaP4fpLhcDjQ2Ng44nZDLY2VjOjHo6OZAAmHw3jrrbcS/t+cOXMwYcIE6d9D1c1ut2Px4sUjbjdYYWEhFi1aBLPZPOK2nZ2dwy6NZTQaMX/+fNjt9gE/H24sq1evhtfrhU6nQ0FBwYDnraOjAydOnJCe04qKClRVVUkfhIuiiNOnT+P8+fMjjt1qtWLZsmXQ6/X4+OOP0dLSErfN1KlTpStGGhsb4XA4Rowba/r06Zg+fTqA5F9fH3744ZATIZdeemlS92QB+q+iGTNmTLJD1QQujUVEKYnOostxiWq2qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9J7lYQy3ZNNxSTqmMJ/ohfjgcRltbG8LhMABgypQpSceQS3FxseL70Ol0o74KZLirKGInQYD+qwQSiX4AP5KqqiosXboU06ZNg8FgwOWXX57UJAgw/BJj8+fPx8qVK+MmQUai0+lQVFQkXQESa9y4cVi1ahUWLFiA5cuX47LLLhtwNYBOp8OUKVNQVFSEOXPmYOXKlUPWeNGiRdJjx40bl3AcsT8f7bJVV199tVQDQRAGHOtKir6uklmCbbS09B5MbpwIIcphfr8f+/btg9/vz/ZQ0qa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p6V6qC0X9p/kYg31gfpQP091PBaLBZdccglCoRDOnDkj3eB86tSpo0sggyoqKjK+zzlz5gy4qbrZbMayZcvitpswYULczdfLy8tRWlo64GeJPuzX6/WoqKhAUVERxo4di8OHDyMUCiU9xsLCwoQ3frfb7Rg7dqwiSxYZjUaUlZUN+UG/3+/HwYMHUVRUBLPZjAULFkhjsVgsmDZtGlavXg2r1So9pqSkBFVVVTCZTAD6n+t58+bBZrNJ21RUVIxquSmj8bO7Rvj9fulYT0fseIYSCoVw/vx5RSYHtPQeTG5cGotyGpfGIiIiIiIiIqJ8EYlE0NTUhK6uLuln5eXlmDdvniIfaHu9XvT29qKgoAB2u33UN1uXw3BLUEWVlpZi0aJFmRnQIKIowuVyIRKJoKSkZMg6BINBtLe3w+v1oqSkBOPGjYvb1u/344MPPoDP5wPQf8XDvHnz0p7kcblc+OCDD6QP+c1mMxYtWpRwgiQqU8uwxYpEIiNenSOKIgRBgNlsTrhdIBDAO++8k9T+BufR1NSEjo6OEbcdbmms1atXo66uLuGN0KMTLxUVFbjkkktUcd+MTMvmZ7m8WTpRDhNFEYFAABaLRbU38kqW2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/koul1+sxb9489Pb2wuVyobi4GGPGjBn2A9V0xlNQUCB9S18Nx0kiZWVlqKqqytr+ozcuH0n0ZubDsVqtuPLKK9Hb2yvdvD32qopUa1lcXIwVK1bA4XBAp9OhtLQ0K5NaUUPlkczEgE6ng8ViUWRMFRUVaG9vj3tuo/cgid12uPFVVVXhyJEjiEQiAD6beIqtZS70Hzniqel3Tf5NOxFpiNPpxOOPPw6n05ntoaRNbblkejxK7k/O2HLESieG2o6TfKeVeqgtD/Yf5eKx/2iHluqhtlzYg5SLlWoMtR0j+U5L9VBbLuw/ycfS6/UYO3Yspk+fntTSRlo+B5o2bRoWLFggLZekBUajERUVFZg4cWLc0lLp1MNoNKK8vBxjx47N6iQIoM7jyul04umnn46774vdbsekSZNGFau0tBTLly/H3LlzMW/ePCxdulS6n4pOp8uZ/iNHPDXVmktjUU7L96WxwuEwOjs7UVFRkfVfYulSWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbcdIvtNSPdSWC/uPcrFy/RxouKWxZs6cqer7lsgtk/U4evQouru7434+fvz4tK/AUTKPVJfGio6pvLwcHo8HTqcTRUVFCa+eOXnyJNra2kaMOZRc6T9yxBv8+Gx+lssrQkgTrFardDOicDgMh8MhXabW19cn3XzI5/PB4/EA6L8xkcPhkGI4nU4Eg0EA/Wtger1eAP1rOMbOWjocDmlNRY/HI63bKAgC+vr6APRf9uVwOBAOhwEAbrdbuilQIBCAy+UC0L/2ocPhkC6Vc7lc0hqCfr8fbrd72JwMBgPsdrsUO5dz8ng8KCsrg8FgUEWdQqEQioqKYDAY0q4TMPKxF4lEUFlZiUAgIHtOwWAQlZWVCIVCqqiT2+1GZWUlDAbDqHMyGAyw2WxSbDlfT8nUKVdeT5nKKRwOo7CwEAaDIadz8vv90nrHaqiTKIqwWq3SSabSx56cPWJwTn6/H5WVldJ+06mTx+OBIAiorKxEOBxOqU4ulwvjxo2DwWDI69+5Wuh7QP/5X/QbsLmck8/nQ2VlpbTfbNfJ5XJJb1QzcewZDAaUl5dLseXMyWAwYPz48XC5XKqoU6rnewaDAWVlZQN+T7BHZC8ng8EAq9U64Pw4V3NK57xciZwy/Z5Qzh4xOCe9Xo/Kykrp/CXbdUrnfA9Qx+9cv98vjVUQBOkxgiCo4vWUqb7n9XoxZswYGAwGxXMqLi6Wtot9/ktLS9POKZ3z8mRyio4hGAxK+YXD4QE37Pb7/Qnfa0TvUzJ16lSUlZUN2SNCoZA07ugxGh1rJnvE4GNPFEVUVlZK5y/p1Mnx6VJqlZWV8Hq9sr4nzAZOhJAmrFixArfeeisAoLOzE9XV1dKLc8uWLWhqagIA1NbWYteuXQCAlpYWVFdXSzE2bdqE5uZmAMCePXuwZ88eAEBzczM2bdokbVddXY2WlhYAwK5du1BbWwug/4ZKW7ZsAdDfOKqrq9HZ2QkA2LFjB+rq6gAADQ0N2L59O4D+5lBdXS01o+3bt6OhoQEAUFdXhx07dgybk9vtxqZNm/DSSy/lfE7PPvssfv3rX8PtdquiTnV1dfjlL38Jt9uddp2AkY+9Y8eOYdu2bXj11Vdlz2n//v3Ytm0b6urqVFOnbdu2we12jzont9uNX/3qV9i/fz8AeV9PydQpV15Pmcrp/fffx3/+53/C7XbndE4vvfQSNm3aBLfbrYo6ffTRR6iurpZOLJU+9uTsEYNzeumll7Bt2zYpp3TqtGvXLrzxxhvYtm0b3n///ZTrtGXLFrjd7rz+nauFvnf27FlUV1dL31LM5Zz+8Ic/YNu2bVJOaqjTs88+C7fbnZFjz+124ze/+Y0iObndbmzdulU1dUr1fM/tduPXv/41nn322QF1Yo/ITk7Rc9iPPvpIEzmlel6uRE6Zfk8oZ48YnFN3dze2bduGZ599VhV1Sud8Ty2/c+vr66UPf5uamqTHfPTRR6p5PY02p1SOvd/+9rfYvHkz3G634jm98MILmD59OgCgvr4efX19mDVrFmpra2XJKdXz8pFy2rJlC3p7e6U8ovn19vbi0KFD0nb19fUpv9cwmUxoa2vD0aNHpe3q6+ulsWa6R0RFfz9t27YNL730kix1unjxIrZt24bf/va3sr4nzAqRKIcdO3ZMBCBarVbRZrOJx44dE0OhkNjb2ytGIhFRFEXR6XSKgUBAFEVR9Hq9otvtFkVRFIPBoNjb2yvFcjgcoiAIoiiKosfjET0ejyiKoigIguhwOKTtent7xWAwKIqiKLrdbtHr9YqiKIqBQEB0Op2iKIpiJBIRe3t7xVAoJIqiKLpcLtHn84miKIp+v1/s6+sTRVEUw+Gw2NvbK4bDYVEURbGvr0/0+/2iKIqiz+cTXS6XKIrikDn5fD5xz549YldXV87n1N7eLr7xxhuiz+dTRZ0cDoe4e/du0efzpV0nURz52Ovr6xNramrE7u5u2XPq7e0Va2pqpP1ku07t7e1iTU2N6PP5Rp2Tz+cTX3/9dWlfcr6ekqlTrryeMpWT0+mUXie5nFNXV5e4Z88e0efzqaJOLpdLfO211wb0IyWPPTl7xOCcurq6xJqaGmk/6dTJ7XaLPT09Yk1Njeh0OlOqU1tbm/jXv/5V9Pl8ef07Vwt9z+12i6+99tqAfpSrOXV2doo1NTWi2+1WRZ3a2trEN998U3q+lT72fD6f+Oabb4ptbW2y5+Tz+cS//vWvYltbmyrqlOr5ns/nE9944w2xvb1dqhN7RPZy8vl84muvvTagH+VqTumclyuRU6bfE8rZIwbn5PV6xZqaGrG9vV0VdUrnfE8Nv3ODwaD42muviW+++aZYU1Mjvv766+LevXvFmpoa8aOPPlLF6ylTfa+jo0Pcu3ev6PP5MpaTIAjimTNnpPHJkVM65+Uj5RTtJTU1NeKePXvEPXv2iDU1NeIbb7whvvbaa2JNTY1YU1Mjvvbaaym/1/D5fOLevXvF3bt3izU1NeJf//pX8bXXXhMPHTokimJme8TgY8/lcok1NTViV1eXLMeex+MRa2pqxI6ODlneE0Y/y43+OXbsmJgpvEcI5bR8v0cIEREREREREZGW8R4hNBqRSERaRWIkydzPYyiJ7qEyb948jBs3LuWY+YD3CCGilAQCAdTV1UmXn+UyteWS6fEouT85Y8sRK50YajtO8p1W6qG2PNh/lIvH/qMdWqqH2nJhD1IuVqox1HaM5Dst1UNtubD/KBeL50DaoZV6KJmHXq9HRUWF4mO67LLLMGXKFBQVFWHMmDGjmgTJlf4jRzw1HbOcCCHKYYIgoLGxUboJUS5TWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbcdIvtNSPdSWC/uPcrF4DqQdWqmH0nlceumlKCkpUXRMer0es2bNwtKlS7Fw4cJRXQmSK/1HjnhqOma5NBblNC6NRURERERERESkXcMtjTVr1ixMmTIlwyOiXCCKInw+H959990ht0lnaSxKDZfGIqKURCIROBwORCKRbA8lbWrLJdPjUXJ/csaWI1Y6MdR2nOQ7rdRDbXmw/ygXj/1HO7RUD7Xlwh6kXKxUY6jtGMl3WqqH2nJh/1EuFs+BtEMr9chEHjqdDoWFhaoaUyb2paX3YHLjRAhRDuvr60N1dTX6+vqyPZS0qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9R7lYPAfSDq3UQ415ZHJMudJ/5IinplpzaSzKafm+NFYkEkFfXx9KSkqg1+f2vKbacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+Ui5Xr50BcGuszaqiHHDKZx6FDh+B2uxP+X+zSWJkcU670HzniDX58Nj/L5UQI5bR8nwghIiIiIiIiItIyURRRV1eHQCAQ938rV66E2WzOwqgoV/T09ODIkSNxP582bRpmzJiRhRHlN94jhIhS4nK58Mwzz8DlcmV7KGlTWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbcdIvtNSPdSWC/uPcrFy/RxIp9Nh/PjxcT8fM2ZM3k2CqKEecshkHqWlpSgtLR3wM4vFggkTJmRtTLnSf+SIp6Zj1pjtARBR6sxmMxYtWqSJX/xqyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLpYWzoFmzJgBURTR1taGSCSCsrIyzJkzJ6tjyga11CNdmcxDr9dj/vz5uHDhApxOJ4qKijBhwgRYrdasjSlX+o8c8dR0zHJpLMppXBqLiIiIiIiIiCg/iKIIURRz+v4YRPmMS2MRUUr8fj/27dsHv9+f7aGkTW25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy7sP8rF0tI5kE6ny+tJELXVI1VqzCOTY8qV/iNHPDXVOn87B5EGhEIhnDlzBqFQKNtDSZvacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+Ui8VzIO3QSj3UmEcmx5Qr/UeOeGqqNZfGopzGpbGIiIiIiIiIiIiI1I9LYxFRSsLhMNra2hAOh7M9lLSpLZdMj0fJ/ckZW45Y6cRQ23GS77RSD7Xlwf6jXDz2H+3QUj3Ulgt7kHKxUo2htmMk32mpHmrLhf1HuVg8B9IOrdRDjXlkcky50n/kiKemWnMihDTBarXCZrMB6H+BORwORC926uvrgyAIAACfzwePxwOg/9Ish8MhxXA6nQgGgwAAr9cLr9cLAAgGg3A6ndJ2DodDupzL4/HA5/MBAARBQF+9lJ0lAAA1nUlEQVRfH4D+m3c5HA7pRe52u6W18AKBAFwuFwAgEonA4XAgEokAAFwuFwKBAID+NfTcbvewOblcLmzevBnt7e05n9OFCxewefNmuFwuVdSpq6tLGk+6dQJGPvZ6enqwefNmdHR0yJ5TNJeuri5V1Km1tVWKMdqcosd8V1cXAHlfT8nUKVdeT5nKqbu7W6plLufU3t4u5aGGOvX29krjkaNOmewRg3OKPre9vb2yHHudnZ3YvHkzuru7U6pTbP/J59+5Wuh7DocDmzdvluLnck5tbW3YvHkzHA6HKuoU+zrJxLEXfW21trbKnlNsbDXUKdXzvWgeFy5ckOrEHpG9nKL16O3tzfmc0jkvVyKnTL8nlLNHDM6pr69Pet2qoU7pnO9p6XeuFvrexYsXpeMhl3NK57xcqZzSfa+RrR4xOKfo+8n29nZZjj2n04nNmzfj4sWLsr4nzAZOhJAmrFixArfeeisAoLOzE9XV1dKLc8uWLWhqagIA1NbWYteuXQCAlpYWVFdXSzE2bdqE5uZmAMCePXuwZ88eAEBzczM2bdokbVddXY2WlhYAwK5du1BbWwsAaGpqwpYtWwD0N47q6mp0dnYCAHbs2IG6ujoAQENDA7Zv3w6gvzlUV1dLzWj79u1oaGgAANTV1WHHjh3D5mS323HllVdi//79OZ/Tiy++iBtuuAF2u10VdTp9+jTGjRsHu92edp2AkY+9rq4urF+/HvX19bLn1NTUhPXr1+P06dOqqNPvf/97rF+/Hna7fdQ52e12TJkyRXpe5Xw9JVOnXHk9ZSqn1tZWlJSUwG6353RO+/fvx5VXXgm73a6KOkVPPO12uyx1ymSPGJzT/v37sX79erhcLlmOvcbGRqxfvx6tra0p1Wnr1q347ne/C7vdnte/c7XQ96JvrqxWa87ntHfvXqxfvx6CIKiiTlu3bsU3v/lN2O32jBx7drsda9euxdatW2XPyW6347777sPWrVtVUadUz/fsdjtuuOEGvPjii1Kd2COyl1P093P093Uu55TOebkSOWX6PaGcPWJwTlarFevXr8eLL76oijqlc76npd+5Wuh7f/7zn/G5z30Odrs9p3NK57xcqZzSfa+RrR4xOCeXy4X169dj//79shx7Op0O69evx5///GdZ3xNmhUiUw44dOyYCEK1Wq2iz2cRjx46JoVBI7O3tFSORiCiKouh0OsVAICCKoih6vV7R7XaLoiiKwWBQ7O3tlWI5HA5REARRFEXR4/GIHo9HFEVRFARBdDgc0na9vb1iMBgURVEU3W636PV6RVEUxUAgIDqdTlEURTESiYi9vb1iKBQSRVEUXS6X6PP5RFEURb/fL/b19YmiKIrhcFjs7e0Vw+GwKIqi2NfXJ/r9flEURdHn84kul0sURZE5MSfmxJyYE3NiTsyJOTEn5sScmBNzYk7MiTkxJ+bEnHI6p+hnudE/x44dEzOFEyGU07L54lEDp9Mp/sd//IfUzHKZ2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/lIvFcyDt0Eo91JhHJseUK/1HjniDH5/Nz3K5NBZRDrNarVizZo10iWouU1sumR6PkvuTM7YcsdKJobbjJN9ppR5qy4P9R7l47D/aoaV6qC0X9iDlYqUaQ23HSL7TUj3Ulgv7j3KxeA6kHVqphxrzyOSYcqX/yBFPTbXWieKndzIhykHHjx/H5ZdfLv372LFjuOyyy7I4IiIiIiIiIiIiIiIaLJuf5fKKEKIc5vP5sHv3bvh8vmwPJW1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLhbPgbRDK/VQYx6ZHFOu9B854qmp1pwIIcphkUgEDocDkUgk20NJm9pyyfR4lNyfnLHliJVODLUdJ/lOK/VQWx7sP8rFY//RDi3VQ225sAcpFyvVGGo7RvKdluqhtlzYf5SLxXMg7dBKPdSYRybHlCv9R454aqo1l8ainMalsYiIiIiIiIiIiIjUj0tjEVFKQqEQzpw5g1AolO2hpE1tuWR6PEruT87YcsRKJ4bajpN8p5V6qC0P9h/l4rH/aIeW6qG2XNiDlIuVagy1HSP5Tkv1UFsu7D/KxeI5kHZopR5qzCOTY8qV/iNHPDXVmhMhRDnM7Xbjueeeg9vtzvZQ0qa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p6V6qC0X9h/lYvEcSDu0Ug815pHJMeVK/5EjnppqzaWxKKdxaSwiIiIiIiIiIiIi9ePSWERERERERERERERERArgRAhRDnM6nXjsscfgdDqzPZS0qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9R7lYPAfSDq3UQ415ZHJMudJ/5IinplpzaSzKafm+NFYwGERzczNmzZoFk8mU7eGkRW25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy7sP8rF4jmQdmilHmrMI5NjypX+I0e8wY/P5me5nAihnJbvEyFEREREREREREREuYD3CCGilHi9XuzcuRNerzfbQ0mb2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/lIvFcyDt0Eo91JhHJseUK/1HjnhqqjUnQoiIiIiIiIiIiIiISLO4NBblNC6NRURERERERERERKR+XBqLiFISDAZx8uRJBIPBbA8lbWrLJdPjUXJ/csaWI1Y6MdR2nOQ7rdRDbXmw/ygXj/1HO7RUD7Xlwh6kXKxUY6jtGMl3WqqH2nJh/1EuFs+BtEMr9VBjHpkcU670HzniqanWnAghymFqWmcvXWrLhevTKheL69Nqh1bqobY82H+Ui8f+ox1aqofacmEPUi4W7xGiDVqqh9pyYf9RLhbPgbRDK/VQYx68R4gy8dRUay6NRTmNS2MRERERERERERERqR+XxiIiIiIiIiIiIiIiIlIAJ0JIE6xWK2w2GwAgHA7D4XAgerFTX18fBEEAAPh8Png8HgBAKBSCw+GQYjidTmm9Oq/XK12yFQwG4XQ6pe0cDgdCoRAAwOPxwOfzAQAEQUBfXx8AQBRFOBwOhMNhAIDb7Ybf7wcABAIBuFwuAEAkEoHD4UAkEgEAuFwuBAIBAIDf74fb7R42J4fDgYcffhgXLlzI+ZzOnz+Phx9+GA6HQxV1am9vl8aTbp2AkY+9zs5OPPzww7h48aLsOUVzaW9vV0Wdzp07J8UYbU7RY769vR2AvK+nZOqUK6+nTOXU0dEh1TKXc7pw4YKUhxrq1NXVJY1HjjplskcMzin63HZ1dcly7LW1teHhhx9GR0dHSnWK7T/5/DtXC32vu7sbDz/8MHp7e3M+p9bWVjz88MPo7u5WRZ1iXyeZOPair61z587JnlNsbDXUKdXzvWge58+fl+rEHpG9nKL16Orqyvmc0jkvVyKnTL8nlLNHDM6pt7dXet2qoU7pnO9p6XeuFvpeS0uLdDzkck7pnJcrlVO67zWy1SMG5xR9P3nhwgVZjr2enh48/PDDaGlpkfU9YTZwIoQ0YcWKFbj11lsBAJ2dnaiurpZenFu2bEFTUxMAoLa2Frt27QLQ/8ujurpairFp0yY0NzcDAPbs2YM9e/YAAJqbm7Fp0yZpu+rqarS0tAAAdu3ahdraWgBAU1MTtmzZAqC/cVRXV6OzsxMAsGPHDtTV1QEAGhoasH37dgD9zaG6ulpqRtu3b0dDQwMAoK6uDjt27Bg2J5vNhqqqKmkMuZzTiy++iFWrVsFms6miTs3NzRgzZgxsNlvadQJGPvY6Ojqwbt061NXVyZ7T8ePHsW7dOjQ3N6uiTr///e+xbt062Gy2Uedks9kwfvx4HD9+HIC8r6dk6pQrr6dM5XT+/HkUFRXBZrPldE61tbWoqqqCzWZTRZ2iJ7LRCX6ljz05e8TgnGpra7Fu3To4nU5Zjr33338f69atw/nz51Oq09atW3HLLbfAZrPl9e9cLfS96Js6k8mU8znt2bMH69atg8/nU0Wdtm7diptuugk2my0jx57NZsMXv/hFbN26VfacbDYb1q5di61bt6qiTqme79lsNqxatQovvviiVCf2iOzlFP39HP19ncs5pXNerkROmX5PKGePGJyTyWTCunXr8OKLL6qiTumc72npd64W+t6uXbuwdOlS2Gy2nM4pnfNypXJK971GtnrE4JycTifWrVsnvR9Lp07V1dWIRCJYt24ddu3aJet7wqwQiXLYsWPHRACi1WoVbTabeOzYMTEUCom9vb1iJBIRRVEUnU6nGAgERFEURa/XK7rdblEURTEYDIq9vb1SLIfDIQqCIIqiKHo8HtHj8YiiKIqCIIgOh0Parre3VwwGg6IoiqLb7Ra9Xq8oiqIYCAREp9MpiqIoRiIRsbe3VwyFQqIoiqLL5RJ9Pp8oiqLo9/vFvr4+URRFMRwOi729vWI4HBZFURT7+vpEv98viqIo+nw+0eVyiaIoMifmxJyYE3NiTsyJOTEn5sScmBNzYk7MiTkxJ+bEnJhTTucU/Sw3+ufYsWNipnAihHJaNl88auB2u8Xnn39eaiq5TG25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy7sP8rF4jmQdmilHmrMI5NjypX+I0e8wY/P5me5XBqLKIfp9XqUlpZCr8/9l7Lacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+Ui8VzIO3QSj3UmEcmx5Qr/UeOeGqqtU4UP72TCVEOOn78OC6//HLp38eOHcNll12WxRERERERERERERER0WDZ/Cw3+1MxRJQyQRDQ2NgIQRCyPZS0qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9R7lYPAfSDq3UQ415ZHJMudJ/5IinplpzIoQoh/n9fuzbtw9+vz/bQ0mb2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/lIvFcyDt0Eo91JhHJseUK/1HjnhqqjWXxqKcxqWxiIiIiIiIiIiIiNSPS2MRUUpEUYTf74cW5jPVlkumx6Pk/uSMLUesdGKo7TjJd1qph9ryYP9RLh77j3ZoqR5qy4U9SLlYqcZQ2zGS77RUD7Xlwv6jXCyeA2mHVuqhxjwyOaZc6T9yxFNTrTkRQpTDnE4nHn/8cTidzmwPJW1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLhbPgbRDK/VQYx6ZHFOu9B854qmp1lwai3Javi+NFQ6H0dnZiYqKChgMhmwPJy1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLhbPgbRDK/VQYx6ZHFOu9B854g1+fDY/y+VECOW0999/H1deeaX07507d2L27NlZHBERERERERERERERDfbxxx/j5ptvlv59+PBhXHHFFZnZuUiUw3bu3CkCyNs/NptN/OY3vynabLasj0VruWR6PEruT87YcsRKJ4bajpN8/6OVeqgtD/Yf5eKx/2jnj5bqobZc2IOUi5VqDLUdI/n+R0v1UFsu7D/KxeI5kHb+aKUeaswjk2PKlf4jR7yRHr9z586MfY7MK0Iop7388ssDZhGJiIiIiIiIiIiISP127tyJr371qxnZF2+WTkREREREREREREREmsUrQiinORwO1NbWSv+eMmUKLBZLFkdERERERERERERERIMFAgGcP39e+vfq1atRWlqakX1zIoSIiIiIiIiIiIiIiDSLS2MREREREREREREREZFmcSKEiIiIiIiIiIiIiIg0ixMhRERERERERERERESkWZwIISIiIiIiIiIiIiIizeJECBERERERERERERERaRYnQoiIiIiIiIiIiIiISLM4EUJERERERERERERERJrFiRAiIiKZtLW14Xe/+x3uv/9+XH311bDZbNDpdJg+fXq2h0ZEOe6dd97BLbfcgvHjx8NqtWLGjBn43ve+h9bW1mwPjYg0jOc2RJQtR44cwSOPPILPf/7zqKyshMlkQmlpKa666ir87Gc/g9frzfYQiSjH6ERRFLM9CCIiIi146qmn8MMf/jDu59OmTcOZM2cyPyAi0oTf/OY3uPvuuxGJRFBZWYlJkybh1KlTcLlcGDNmDGpqarBw4cJsD5OINIjnNkSUDc3NzZg9e7b074kTJ2LixIm4ePGi9CWQSy+9FHv37sXUqVOzNUwiyjG8IoSIiEgmJSUluP7667F+/Xr88Y9/xFNPPZXtIRFRjjt69Ci++93vIhKJ4Oc//zlaW1tx6NAhXLhwAV//+tfR29uLv/u7v0MgEMj2UIlIg3huQ0TZIIoiKioq8NBDD6G5uRmtra1477330NLSggMHDmDatGk4deoUbr/99mwPlYhyCK8IISIiUsiOHTtw22238VuTRJSyW2+9FS+++CK+/vWv4w9/+MOA//P5fJg7dy7OnTuHTZs24bvf/W6WRklE+YLnNkSUCX6/H+FwGEVFRQn//+DBg7j66qsBAI2NjbwyloiSwitCiIiIiIhUyOPx4C9/+QsA4Pvf/37c/xcUFODOO+8EALzwwgsZHRsRERGRUqxW65CTIACwatUq2O12AMDJkyczNSwiynGcCCEiIsWEw2EcOXIEzz77LO655x4sWbIEZrMZOp0OOp0Oa9asSTm2IAj47W9/ixtuuAHTpk2D1WrFhAkTsHLlSvzsZz9DV1eXfIkQkWapuU81NDTA7/fDbDZjxYoVCbeJjq++vh6RSCTlsRJRdqi5BxGRtuVy/wmFQggGgwCAwsLCtGIRUf4wZnsARESkTTt37sQdd9wBr9cre+yTJ09i7dq1aGxsHPDztrY2tLW14Z133sGTTz6JrVu34oYbbpB9/0SkDWrvU6dOnQIATJ06FWazOeE20RuJ+v1+nD17FjNmzJAvCSJSlNp7EBFpV673n507d8Lr9cJoNOKqq66SYdRElA94RQgRESnC4XAocmLd0tKC66+/Xjqx1ul0WL16Ne666y7cdNNNKCgoAAB0dHTg5ptvxl//+lfZx0BE2qD2PtXT0wMAGDt27JD7Kisrk/7e29srUwZElAlq70FEpF253H96e3vxox/9CADw7W9/G+Xl5bKNn4i0jVeEEBGRosaPH4+lS5dKf15//XVUV1enHO8b3/gGLly4AACYNm0aXn755QE3x+vq6sLf//3f480330QwGMRtt92G5uZmlJaWppsKEWmUWvuUz+cDgCGvBgH619COUuIDDSJSnlp7EBFpX671n2AwiK9//es4d+4cZs6cicceeyzlsRJR/uFECBERKeJLX/oSzp49i6lTpw74eX19fcoxX331Vbz11lsA+j8Y3LVrF+bPnz9gm/Lycrz88stYsGABTp8+jZ6eHjzxxBP493//97h4GzZswOOPP57SWILBIIxG/holymVq71PRb00KgjDk/vx+v/R3rpFNlFvU3oOISLtysf9EIhH8j//xP/DGG2+goqICf/nLX1BSUpLyeIko/3BpLCIiUkRlZWXciXW6/uu//kv6+7p16+JOrKOKiorwyCOPSP/evHkzQqFQwu3Gjh2b0h+dTidrbkSUeWrvU2PGjAEAdHd3D7m/6PJZsdsTUW5Qew8iIu3Ktf4jiiK+9a1v4YUXXkBZWRn27t2LuXPnyjNwIsobnAghIqKc4Ha78eabb0r/vvPOO4fd/pZbboHNZgPQ/0Hh/v3747Z58MEH0dXVldIfg8Egb4JElPPk7lNz5swBAJw7d27Iq0I++ugjAP1LZE2bNi3lsRNR7lPiXImIKBlK9h9RFPGd73wH27ZtQ0lJCV5//fUBy20RESWLEyFERJQT3n77bQQCAQD93yJaunTpsNtbrVZcddVV0r95I1AiUprcfWrx4sWwWq0QBAF1dXUJY9TW1gIAli1bBr2ep/ZE+YznSkSULUr2n+9///v4zW9+A5vNhtdeew1LliyRZ9BElHf4bomIiHLCiRMnpL/Pnz8/qftzXHHFFQkfT0SkBLn7VFFREW644QYAA5ebiPL5fNi6dSsA4Pbbb09pzESkHTxXIqJsUar/3Hvvvdi0aRMKCwvx5z//GStXrkx/sESUtzgRQkREOeHDDz+U/p7s8i+x696ePHlS9jEREcVSok9t3LgRBoMBf/zjH/GLX/wCkUgEQP8SFN/85jdx7tw5TJs2Dd/61rfSHD0R5TqeKxFRtijRfx544AH88pe/hNVqxSuvvILVq1enP1AiymsjT9ESERGpQOzNgsePH5/UYyorK6W/x95QWCnnz5/H4sWLpX9H1/Q/f/48ysvLpZ+vXbsWv/zlLxUfDxFllhJ9auHChfiv//ovfO9738OPfvQjPPnkk5g0aRJOnToFl8uF0tJSvPTSS7BYLOknQEQ5TYkexHMbIkqG3P3nnXfewZNPPgkAKCkpwU9/+lP89Kc/TRjnrrvuwl133TXaIRNRHuJECBER5QS32y39vaCgIKnHxG4X+3ilhMPhAW8CoiKRyICfu1wuxcdCRJmnVJ+6++67MX/+fDz55JM4ePAgjh49isrKStxxxx34yU9+gsmTJ6c3cCLSBCV6EM9tiCgZcvef6P1GAKCjowMdHR1Dxvn85z+f7DCJKM9xIoSIiHKC3++X/m42m5N6TOw3pH0+n+xjGmz69OkQRVHx/RCROinZp1auXImXXnop9cERkeYp0YN4bkNEyZC7/6xZs4a9h4hkx3uEEBFRTrBardLfo8syjCT2m0TJfjOJiChV7FNElE3sQUSULew/RJQLOBFCREQ5wWazSX9P9uqO2O1iH09EpAT2KSLKJvYgIsoW9h8iygWcCCEiopwwduxY6e/t7e1JPaatrU36e1lZmexjIiKKxT5FRNnEHkRE2cL+Q0S5gBMhRESUE+bMmSP9/ezZs0k95ty5c9Lf586dK/uYiIhisU8RUTaxBxFRtrD/EFEu4EQIERHlhKqqKunvR48eRSgUGvEx77//fsLHExEpgX2KiLKJPYiIsoX9h4hyASdCiIgoJ6xcuRIWiwUA4PF4cOjQoWG3DwQCqKurk/79uc99TtHxERGxTxFRNrEHEVG2sP8QUS7gRAgREeUEm82G66+/Xvr3tm3bht3+T3/6E1wuF4D+NWevvfZaJYdHRMQ+RURZxR5ERNnC/kNEuYATIURElDO+973vSX/ftm0bjh8/nnA7r9eLjRs3Sv/+zne+A6PRqPj4iIjYp4gom9iDiChb2H+ISO04EUJERDnjxhtvxDXXXAOg/3Lqr3zlKzhy5MiAbbq7u3HzzTfj448/BtD/DaP169dnfKxElJ/Yp4gom9iDiChb2H+ISO10oiiK2R4EERFp0w033IALFy4M+FlbWxva29sBAEVFRZg9e3bc41599VVMnDgxYcyWlhYsW7YMFy9eBADodDqsXr0as2bNQmdnJ9544w14vV4AgNFoxO7duwdcpk1EFIt9ioiyiT2IiLKF/YeI8g0nQoiISDHTp0/H2bNnR/24Tz75BNOnTx/y/0+ePIm1a9eisbFxyG0qKiqwdetW3HjjjaPePxHlD/YpIsom9iAiyhb2HyLKN1yEj4iIcs7cuXNRX1+PF154Ac8//zyOHz+O9vZ2lJaWYubMmfja176GO++8E+Xl5dkeKhHlKfYpIsom9iAiyhb2HyJSK14RQkREREREREREREREmsWbpRMRERERERERERERkWZxIoSIiIiIiIiIiIiIiDSLEyFERERERERERERERKRZnAghIiIiIiIiIiIiIiLN4kQIERERERERERERERFpFidCiIiIiIiIiIiIiIhIszgRQkREREREREREREREmsWJECIiIiIiIiIiIiIi0ixOhBARERERERERERERkWZxIoSIiIiIiIiIiIiIiDSLEyFERERERERERERERKRZnAghIiIiIiIiIiIiIiLN4kQIERERERERERERERFpFidCiIiIiIiIiIiIiIhIszgRQkREREREREREREREmsWJECIiIiIiIiIiIiIi0ixOhBARERERERERERERkWZxIoSIiIiIiIiIiIiIiDSLEyFERERERERERERERKRZnAghIiIiIiIiIiIiIiLN4kQIERERERERERERERFpFidCiIiIiIiIiIiIiIhIszgRQkREREREREREREREmsWJECIiIiIiIiIiIiIi0ixOhBAREREREZEqPfXUU9DpdNDr9Th06FC2h5OWDRs2QKfTwWq1orm5OdvDISIiIsornAghIiIiIsoxa9asgU6nG/Wfffv2ZXvoRElrb2/HT3/6UwDA7bffjiVLliTc7pvf/KZ0jH/zm98c1T62bdsmPXb69Olpjnh4GzZswJgxYxAIBPDDH/5Q0X0RERER0UCcCCEiIiIiIiLVefjhh9HX1wedToeNGzdmezhpKy0txT//8z8DAHbt2oXa2tosj4iIiIgofxizPQAiIiIiIkrd0qVLsWzZsqS2nTRpksKjIZLHmTNn8Jvf/AYA8NWvfhVVVVVZHpE87r33XvzsZz+D1+vFT37yExw4cCDbQyIiIiLKC5wIISIiIiLKYTfccAMeeuihbA+DSFY///nPEQwGAQDf//73szwa+YwdOxa33XYbnnvuORw8eBAHDx7EqlWrsj0sIiIiIs3j0lhERERERESkGk6nE1u3bgUAzJgxA9dff32WRySvf/qnf5L+/tRTT2VvIERERER5hBMhREREREREpBp/+MMf4PF4AAC33XYbdDpdlkckr1WrVmHixIkAgJdffhnd3d1ZHhERERGR9nEihIiIiIgoz5w5cwY6nQ46nQ7Tp0+Xfn7gwAH80z/9E+bOnQu73Q6dTof7778/YYzz58/j0UcfxTXXXIOJEyfCYrGgrKwMixcvxo9//GOcOnVqVGN6//338e1vfxszZ85EQUEBKioqsGzZMjzxxBPo6ekBAGzbtk0a9ze/+c2EcR566CFpm2SWDNu3b5+0/Zo1a5Ia64kTJ/Bv//ZvWLZsGcaPHw+z2YyKigosX74cGzduxIULF0aMsWbNGmm/+/btAwD09PTg8ccfx9KlS1FeXo6CggLMnDkT3/rWt3Ds2LGkxhbrtddew913343LL78cY8eOhclkQmlpKa644grcfffdeOWVVxAKhaTtOzo6YDabodPpYDAY0NramtR+RFHEjBkzpHxeeeWVUY811vbt26W/33zzzWnFSlfsa2W0f86cOZMwpk6nk/IKBoP44x//mLmEiIiIiPIU7xFCRERERJTnBEHAvffei82bN4+4bSQSwUMPPYQnn3wSfr8/Lk5vby8aGxtRXV2NBx54AP/rf/2vEb/R/z//5//EY489hnA4LP3M7/ejq6sL7733Hn75y1/iv//7v1NLTkaBQAD33XcffvOb3wwYKwB0dXWhq6sL7777Ln72s5/hiSeewA9+8IOkYx88ePD/b+/ug6qu8jiOfxSRJMWQfEATZB2ZakIzErXGSWkbXTWyJiXbfEKlbFK31amkJtJJMTeaCmWTVsPK8iGLHpZG1kXzgUJtEbLVTENU1CxQkQcfuNz9g+HsvXLhXuACdX2/Zpo5v/s7v+8554oz+ftyzlfR0dG1kg/5+fnKz8/XmjVr9Pe//10zZ850Guv777/X1KlTtXfv3lr3zp8/r5ycHOXk5CglJUXR0dFat26dJKlbt26KiorSpk2bVFVVpdTUVD3//PNOx/v3v/9tXvoHBgZqzJgxLqzYsbNnz2rXrl2SpE6dOmnQoEGNjvVbFhkZqeTkZEnSF198oVmzZrXyjAAAADwbiRAAAADgGvf000+bJEhYWJgGDBggb29vHTp0SG3b/n8TucViUXR0tDZt2mQ+69WrlyIiItS1a1eVlpYqOztbR44cUWVlpZYsWaJffvlFKSkpdY4dFxenhIQEc+3r66vIyEgFBgbq9OnTyszM1IkTJzR69Og6d6e0hLKyMo0cOdK8pJekvn37Kjw8XP7+/iouLtauXbt08uRJVVRUaPbs2SopKVFcXJzT2Pv379eCBQtUWlqqbt26adiwYQoICFBhYaEyMzNVUVEhi8WiJ554QmFhYRoyZEidsbZt26aoqChduHDBfBYUFKSIiAh16dJFZWVl+uGHH5Sbm6srV67USmbFxsaaP9/Vq1crLi7OaSJr1apVpj116lR5eXk5XXNdMjMzTZJpyJAhateudf/J6ufn53Kx9ry8PO3YscNc1/e9DRs2zLS3bdumysrKVl8rAACAJ+P/tAAAAIBr2IkTJ5ScnKzevXtr7dq1di9opepdEDUWLlxoXpL36NFDK1as0IMPPljrhe/GjRs1c+ZMnT9/Xm+//bb++Mc/asKECbXG3r59u5YuXWquH374YaWkpMjf3998dv78eT3xxBNat26dFi9e7JY1N8aTTz5pkiChoaFauXJlraO0LBaLUlJS9PTTT+vSpUt68cUXNWLECA0dOrTe2PPnz1dlZaUSExM1Z84cuxfix48f1+jRo7V//35VVVUpLi5OmZmZDuMcP35c48ePN0mQkJAQJScna9SoUbX6nj17Vhs2bNDhw4ftPr/vvvsUEhKi/Px8/fTTT9q2bZtGjBhR59yLi4v1ySefSKp+8T99+vR61+pMdna2affv379JsdyhS5cuWr58udN+x48fV0REhLmeOHGigoOD6+zfrVs3BQYG6tSpUyovL9f+/ft1++23u2PKAAAAcIBECAAAAPA7lp6erl9//dVpvwULFqhXr161PrdYLPL19dWWLVsUGhpa676Pj4+k6loJS5YskVT9cnjnzp3q27evw7HGjx+vG2+8UZGRkZKq63Y4Knq9YMECWa1WSdK9996rdevW1dpN0LlzZ61du1bFxcXKyMhwus7msGPHDr377ruSqneB7Nq1SzfeeGOtfl5eXpo1a5Y6dOigadOmyWKxaNGiRfryyy/rjX/p0iWtXLlSsbGxte717t1bH374ofr37y+r1apt27bp1KlTCgwMrNV3wYIF5mchODhYX3/9tbp37+5wTH9/fz3++OO1Pm/Tpo1mzJhhjsRatWpVvYmQtWvXmmTZ8OHD6/yZcFVeXp5p33zzzQ1+Pjs7u0FHkh08eLDBY1ytrKxMUVFROn36tCRp8ODBWr16tdPnbrnlFp06dUqSlJubSyIEAACgGZEIAQAAAH7H9uzZoz179jjtN2PGDIeJEEl66qmnHCZBbL3xxhvmyKIXX3zR6QvvESNGaOTIkdq8ebMOHDignJwc3XHHHeb+gQMHlJWVZa7ffPPNOo9Uatu2rZKSknTzzTebxElLeu2110w7MTHRYRLE1tSpU/XKK6/o4MGD2rx5s4qKihQQEFBn/7CwMIdJkBq33XabBg0apN27d8tqtWrv3r26//777foUFhZq/fr15vqtt96qMwnizLRp0xQfH6/Kykpt2rRJy5cv1w033OCwr+2xWDNmzGjUeLby8/NN+6abbmrw8wcPHnRLcsNVVqtVkyZN0r59+yRVJ67S0tJ03XXXOX3W9u9jXYXVAQAA4B5tnXcBAAAA4MkeeeQRp33S09NN+9FHH3Upbs2OEEnauXOn3b2tW7eadnh4uG699dZ6Y4WGhtZbG6O5VFZW6l//+pek6noRY8eOdem5ml0UVqvVrq6II+PHj3cab+DAgabt6KX5li1bVFlZKUnq16+fw+OwXBUYGGjWefHiRX3wwQcO+3377bfKzc2VVL3D5KGHHmr0mDV+/vln064vefRb8fzzz5ujwa6//np99tln6tGjh0vP2ibUanaTAAAAoHmwIwQAAAD4HYuPj9dLL73U6Oe9vb0VFhZWb5+ioiIdOnRIktS+fXstXLjQpdj//e9/Tfv48eN293JyckzbWQ0N235ff/21S33dJS8vT2VlZZKqv6u5c+e69JztLp2r1341Z9+/ZJ8UKCkpqXX/m2++Me2ra5c0RmxsrNLS0iRV7/p48skna/Wx3Q3y2GOPubQLwpma71qSfH19G/z8lClTlJqa6nL/1NRUTZs2rcHjSNL777+vhIQESdVHir3//vsNOt7Kdn226wYAAID7kQgBAAAArmH+/v52xbkdqaljIEmXL1/WihUrGjzO2bNn7a5/+eUX0w4KCnIphqv93OnkyZOmXVRU5Ja1X61z585OY3h7e5v2lStXat233Unxhz/8oQGzc2zkyJEKDg5WQUGB/vOf/2jfvn12L/krKirsdoq441isq7XGMWiu+uabb+zWvGTJEo0bN65BMX7L6wMAAPA0HI0FAAAAXMM6dOjgtM/58+ebPE7NsU01SktLTdvV3/y//vrrmzyPhmqOtV/t6iLyjXHhwgXT7tixY5PjtW3bVtOnTzfXtrs/JGnTpk3muxk0aJD69+/f5DEl+z/jiooKt8R0t2PHjmncuHGmSPzkyZP13HPPNTiO7fpa42cbAADgWkIiBAAAAEC9bF/S+vn5yWq1Nvi/q48rsn1ZX15e7tI8muP4oKqqqnrv2669f//+jVp7U44uc1WnTp1M2zbJ1BQxMTGmgP3atWt18eJFc8/dRdJr2NbX+PXXX90W113KysoUFRVlduDcfffdSklJaVQs211RrtYVAQAAQOOQCAEAAABQr+7du5t2SUmJy4mL+nTt2tW0jx075tIzzmptSPZHSDnbiSE53/Fhu/bfckFr23nm5+e7JWavXr00evRoSdXHe9UUBT9y5Ii++uorSdWJookTJ7plPEkKCQkx7RMnTrgtrjtYrVY99thjpkB8cHCwPv74Y/n4+DQqXmFhoWn36dPHHVMEAABAHUiEAAAAAKhXYGCgevfuba6zsrKaHHPgwIGmbVvouz6uFEr38/Mz7aKiIqf9v/vuu3rv33777eZF95kzZ3T48GGnMVvDkCFDTHvr1q1uixsbG2vaNbtAVq9ebepbjB8/3m43SlPZHrH1ww8/uC2uO8TFxZkC8p06ddLnn3+ubt26NTregQMHTHvAgAFNnR4AAADqQSIEAAAAgFNjx4417eTk5CbHGzFihGnv3btXBw8erLf/4cOHXUqE2P5m/b59+5z237BhQ733O3TooMjISHPtjrU3h/vuu88Uvf/xxx+1efNmt8T905/+ZJJgmZmZOnz4sN0xZ+4ukh4REWHaNTsvfgvee+89LV26VFJ1/ZQPP/xQYWFhjY535swZs8PI19dXt912m1vmCQAAAMdIhAAAAABwat68eaZexCeffFKr5kd9HB0pdcstt+iuu+4y13Pnzq2zXkdVVZXmzJljdiHUZ9CgQab4eHZ2tt1v3V8tOTlZ33//vdOYzz77rGknJSVpy5YtTp+p0VLHafXs2VPR0dHm+vHHHzd1LJrCy8tLMTExkv5/NNTJkyclVf8Z3n333U0ew1ZkZKT5OcvOznbpeLPmlpWVpZkzZ5rrZcuWacyYMU2KuWPHDtMePny4SWIBAACgeZAIAQAAAOBU37599cILL5jrmJgYzZ8/v86C1pWVlcrIyNCkSZPsjsGytXjxYpO0yMjI0KOPPqpz587Z9SkpKdGkSZP05Zdfqn379k7n2aNHD7ODw2q1auLEibVqTVRWVioxMVFz5sxxqb7DPffcoylTpphnx4wZo4SEhDqLkl+8eFFpaWl64IEHFBUV5TS+uyQkJKhLly6SpIKCAg0dOrTOnSHnzp1TSkqKnnnmGadxp0+frrZtq//pmJ2dbfe5u/n7+5vkyoULF7Rnzx63j9EQx44d04MPPqhLly5Jqv65nzdvXpPjZmZmmrbtbisAAAA0D37tBAAAAIBL4uPjdfToUa1Zs0ZWq1WJiYlKSkrSnXfeqb59+8rX11clJSU6evSo8vLyVFZWJkkKCAhwGG/48OGaP3++/va3v0mS1q9fry+++EKRkZHq0aOHfv75Z2VmZqq0tFT+/v6aO3euXnrpJafzXLx4sbZu3aqqqirl5uYqNDRUkZGR6tWrl4qLi7V9+3adOXNGHTt2VEJCgmbPnu005sqVK3Xq1CllZGTo8uXLiouL08svv6zBgwcrKChIPj4+OnfunI4cOaL9+/ebF+fh4eEufrtN17t3b23YsEHjxo1TaWmp8vPzNWrUKAUHBysiIkJdunRRaWmpDh06pH379unKlSt64IEHXIo7atQopaenm8/at2+vyZMnN8s6/vznP2v79u2SpLS0NA0dOrRZxnHFO++8ozNnzkiq3h3Trl07PfXUUy49u2jRIpOYsmW1WvXpp59Kkry9vTVhwgT3TRgAAAAOkQgBAAAA4JI2bdooNTVV4eHhio+P19mzZ3X58mVlZWXVWUC9TZs29R6ftGzZMnl5eWnZsmWqqqpSWVmZPv/8c7s+PXv21EcffeRy8ezBgwfr7bffVmxsrCwWiyoqKvTPf/7Trk9gYKDWr18vi8XiUkwfHx+lp6dr4cKFSkxMVHl5ucrLy+stTO7t7W1XxLwl3Hvvvdq5c6emTJliamwUFBSooKDAYf+OHTu6FDc2NtYuERIVFaWuXbs2fcIOREdH669//avKysq0ceNGLV261Owcamm2x7FZLBalpKS4/Oz8+fMdJkKysrJUWFgoqfp7rCtRCAAAAPfhaCwAAAAADTJ79mwVFBRoxYoVGjdunEJCQtSxY0e1a9dO/v7+CgsL0yOPPKK33npLBQUF5rff65KQkKDdu3crJiZGffr0kY+PjwICAhQeHq7FixcrNze3wbsCYmJilJeXp+nTpyskJETXXXedbrjhBg0cOFAvv/yy8vLyNGzYsAbF9PLy0qJFi3T06FG9+uqrGjVqlIKCguTr6ytvb28FBATojjvu0JQpU5SamqrCwkItX768QWO4w4ABA5STk6OPP/5YkydPVr9+/eTn5ycvLy/5+/srPDxcs2bNUnp6ut59912XYo4ePdruGDF3F0m31blzZ02bNk2SlJ+f36CaLL8H//jHP0z7L3/5S+tNBAAA4BrSxupKxUEAAAAAaGWpqanmBXlNsgEt46uvvtLw4cMlScHBwfrpp59M3ZDmcPToUYWGhprju9LS0pptrJZUVFSkoKAglZeX66677tKuXbtae0oAAADXBHaEAAAAAADqtWrVKtOOiYlp1iSIJPXp08fsOvnss8904MCBZh2vpSQlJam8vFxSdS0bAAAAtAwSIQAAAACAOp0+fVobN26UJLVr165Zj8WyFR8fLz8/P1mtVi1atKhFxmxO586dU1JSkiRp7NixZocNAAAAmh+JEAAAAACAQxaLRXPnztXFixclSRMmTFDPnj1bZOzu3btr4cKFkqT169fr22+/bZFxm8srr7yi4uJi+fj46PXXX2/t6QAAAFxTqBECAAAA4HeBGiEt44MPPtDu3btVWlqqHTt26NChQ5IkHx8ffffdd+rXr18rzxAAAABomHatPQEAAAAAwG9HRkaG1qxZU+vz1157jSQIAAAAfpdIhAAAAAAAHOrUqZPCw8M1b948jR07trWnAwAAADQKR2MBAAAAAAAAAACPRbF0AAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB6LRAgAAAAAAAAAAPBYJEIAAAAAAAAAAIDHIhECAAAAAAAAAAA8FokQAAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB6LRAgAAAAAAAAAAPBYJEIAAAAAAAAAAIDHIhECAAAAAAAAAAA8FokQAAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB6LRAgAAAAAAAAAAPBYJEIAAAAAAAAAAIDHIhECAAAAAAAAAAA8FokQAAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB7rfw5MunTuR3htAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAAR9CAYAAAAKglvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOz9e3QU15nvD3/7Vt3qmy4gECCDAIO5xRYGG2KwASfx+CQhOAmJIZ45HpNJxiRzbDIzi/Gac8Iv9jkn4zBzkpFnbOzYxjiYSLaJDcixDb5wMyDZgAAJgRFCFwRqXfve6q6+1PuH3q5RS91Sd1dVd3Xp+azVa4G6+tn7W8+up/auXfvZKo7jOBAEQRAEQRAEQRAEQRAEQRAEQSgQdbYrQBAEQRAEQRAEQRAEQRAEQRAEIRU0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBQLTYQQBEEQBEEQBEEQBEEQBEEQBKFYaCKEIAiCIAiCIAiCIAiCIAiCIAjFQhMhBEEQBEEQBEEQBEEQBEEQBEEoFpoIIQiCIAiCIAiCIAiCIAiCIAhCsdBECEEQBEEQBEEQBEEQBEEQBEEQioUmQgiCIAiCIAiCIAiCIAiCIAiCUCw0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBQLTYQQBEEQBEEQBEEQBEEQBEEQBKFYaCKEIAiCIAiCIAiCIAiCIAiCIAjFQhMhBEEQBEEQBEEQBEEQBEEQBEEoFpoIIQiCIAiCIAiCIAiCIAiCIAhCsdBECEEQBEEQBEEQBEEQBEEQBEEQioUmQgiCIAiCIAiCIAiCIAiCIAiCUCw0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBQLTYQQBEEQBEEQBEEQBEEQBEEQBKFYaCKEIAiCIAiCIAiCIAiCIAiCIAjFQhMhBEEQBEEQBEEQBEEQBEEQBEEoFpoIIQiCIAiCIAiCIAiCIAiCIAhCsdBECEEQBEEQBEEQBEEQBEEQBEEQioUmQgiCIAiCIAiCIAiCIAiCIAiCUCw0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBSLNtsVIAghOBwOHD16lP//LbfcAr1en8UaEQRBEARBEARBEARBEARBEMMJBAK4fv06//9Vq1ahoKAgI2XTRAiR0xw9ehQPPfRQtqtBEARBEARBEARBEARBEARBpMC+ffuwbt26jJRFqbEIRWAwGGA2mwEAGo0GBQUFUKlUAACr1QqGYQAAeXl5MJlMAACtVhsz45ifnw+dTgcAMBqNMBqNAACdTof8/Hz+uIKCAmi1g3OIJpMJeXl5AACGYWC1WgEAKpUKBQUF0Gg0AACz2QyDwQAA0Ov1sFgsAAC1Wo2CggKo1YOXosVi4Ve0kCbSRJpIE2kiTaSJNJEm0kSaSBNpIk2kiTSRJtJEmkiT0jRlA5oIIRTB8uXLsX79egBAcXExtmzZwl+cmzZtwoIFCwAMLrdau3YtAKC0tBRbtmzhbWzevBmzZ88GADzwwAN44IEHAACzZ8/G5s2b+eO2bNmC0tJSAMDatWuxatUqAMCCBQuwadMmAIOBY8uWLSguLgYArF+/HsuXLwcALF68GI888giAweCwZcsWPhg98sgjWLx4MWkiTaSJNJEm0kSaSBNpIk2kiTSRJtJEmkgTaSJNpIk0KVJTNlBxHMdltQYEIYCzZ89iyZIlMBgM0Gq1eOONNzBr1iwMDAzAaDRCpVLB5/OBYRhotVqwLItIJAKDwYBwOAy/38/PTA49LhAIABgMDqFQCCzL8rOtXq8XBoMBGo0Gfr8farUaDMPEHMdxHHw+H/Ly8qBWq2OOCwaDCIVCyMvLQyQSwcDAAH/cwMAAtFotdDpdTF2jxw3XxLIsDh8+jHvuuQeFhYU5ramvrw81NTVYs2YNtFpt1v3kdDpx/Phx3H///TAYDIL8lEzbC4fDOH78OO655x7k5eWJqikQCODEiRNYsWIFGIbJup+cTidqa2uxevVqcByXkia/34/Dhw9j5cqVyM/PF/V6UmKMkFqTy+XCsWPHcP/99yMvLy9nNdntdpw8eRJr1qzhY2s2/eR2u3H06FHcf//9MBqNkrc9MWPEcE1erxenTp3CvffeC7VaLbjt+f1+nDx5EitXroRWq03ZT/39/aitrcWaNWugUqnG7T1XCXHP4/HgyJEjWLNmDUwmU05ril4n9913H1QqVdb91NfXx18narVa8rYXiURw+PBhLFu2DBMnThRVEwDedlFRUdb9lG5/LxQK4fDhw1i+fDkmTJhAMSLLmnw+Hz799FOsWrUKFoslpzUJ6ZcrYUwoZowYrgkYTOW9bNky5OfnZ91PQvp7SrrnKiHu9ff349SpUyOuk1zTJKRfLpUmoWONbMWI4ZoikQiOHz+Or371qzCZTILbHsdxOHbsGJYvXw6LxSJ4TNjZ2RmzzcGZM2dw5513IhPQHiFEThOdbfT7/QCAW2+9FQsXLsxmlTIKy7LQ6XRYsGABv+wsV2FZFlarVTZaojeITNWHZVkYDAZJyhNTixh+EmJDSW1eCbAsi7y8vJz3B8uyMJvNstEhZTxIVJ5U8U7sc8uyLEwmU9r2WJZFfn4+xR8FwLIs9Hq9IvwhxxiU7nWSbnlSXVti2hbDT+nGd4o/8kJJ/pDjGCyT9ZE6/jAMI6sxWLr9PSXdc5UAy7KwWCw5749M9zeSQehYI9WyxIoR8WyLOZ4UGgOG96EuXrwY83302W4moBUhRE5z8eJFLFq0iP9/Q0PDuJoIIQiCIAiCIAiCIAiCIAiCyAWy+SyX9gghiBxmYGAAH374Ib+sLpeRm5ZM10fK8sS0LYYtITbk1k7GO0rxh9x0UPyRzh7FH+WgJH/ITQvFIOlspWtDbm1kvKMkf8hNC8Uf6WxRH0g5KMUfctSRyTrlSvwRw56cfE0TIQSRw0QiETgcDkQikWxXRTBy05Lp+khZnpi2xbAlxIbc2sl4Ryn+kJsOij/S2aP4oxyU5A+5aaEYJJ2tdG3IrY2Md5TkD7lpofgjnS3qAykHpfhDjjoyWadciT9i2JOTryk1FpHTUGosgiAIgiAIgiAIgiAIgiAI+UOpsQiCSItQKITW1laEQqFsV0UwctOS6fpIWZ6YtsWwJcSG3NrJeEcp/pCbDoo/0tmj+KMclOQPuWmhGCSdrXRtyK2NjHeU5A+5aaH4I50t6gMpB6X4Q446MlmnXIk/YtiTk69pIoQgchiPx4PXX38dHo8n21URjNy0ZLo+UpYnpm0xbAmxIbd2Mt5Rij/kpoPij3T2KP4oByX5Q25aKAZJZytdG3JrI+MdJflDbloo/khni/pAykEp/pCjjkzWKVfijxj25ORrSo1F5DSUGosgCIIgCIIgCIIgCIIgCEL+UGosgiAIgiAIgiAIgiAIgiAIgiAICaCJEILIYZxOJ5599lk4nc5sV0UwctOS6fpIWZ6YtsWwJcSG3NrJeEcp/pCbDoo/0tmj+KMclOQPuWmhGCSdrXRtyK2NjHeU5A+5aaH4I50t6gMpB6X4Q446MlmnXIk/YtiTk68pNRaR04z31FjBYBDNzc2YPXs2dDpdtqsjCLlpyXR9pCxPTNti2BJiQ27tZLyjFH/ITQfFH+nsUfxRDkryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsDf99Np/l0kQIkdOM94kQgiAIgiAIgiAIgiAIgiCIXID2CCEIIi18Ph/27dsHn8+X7aoIRm5aMl0fKcsT07YYtoTYkFs7Ge8oxR9y00HxRzp7FH+Ug5L8ITctFIOks5WuDbm1kfGOkvwhNy0Uf6SzRX0g5aAUf8hRRybrlCvxRwx7cvI1TYQQBEEQBEEQBEEQBEEQBEEQBKFYKDUWkdNQaiyCIAiCIAiCIAiCIAiCIAj5Q6mxCIJIi2AwiMuXLyMYDGa7KoKRm5ZM10fK8sS0LYYtITbk1k7GO0rxh9x0UPyRzh7FH+WgJH/ITQvFIOlspWtDbm1kvKMkf8hNC8Uf6WxRH0g5KMUfctSRyTrlSvwRw56cfE0TIQSRw8gpz55Q5KaF8tNKZ4vy0yoHpfhDbjoo/khnj+KPclCSP+SmhWKQdLZojxBloCR/yE0LxR/pbFEfSDkoxR9y1EF7hEhjT06+ptRYRE5DqbEIgiAIgiAIgiAIgiAIgiDkD6XGIgiCIAiCIAiCIAiCIAiCIAiCkACaCCGIHMbhcODpp5+Gw+HIdlUEIzctma6PlOWJaVsMW0JsyK2djHeU4g+56aD4I509ij/KQUn+kJsWikHS2UrXhtzayHhHSf6QmxaKP9LZoj6QclCKP+SoI5N1ypX4I4Y9OfmaUmMROc14T40VCoXQ0dGB0tJSaLXabFdHEHLTkun6SFmemLbFsCXEhtzayXhHKf6Qmw6KP9LZo/ijHJTkD7lpoRgkna10bcitjYx3lOQPuWmh+COdLeoDKQel+EOOOjJZp1yJP2LYG/57So1FEAIxGAwwm80AgHA4DIfDgegcn8vlAsuyAICBgQF4vV4Agxfi0NlIp9OJYDAIYHAjn+gmPsFgEE6nkz/O4XAgFAoBALxeLwYGBgAALMvC5XIBADiOg8PhQDgcBgB4PB74/X4AQCAQgNvtBgBEIhE4HA5EIhEAgNvtRiAQAAD4/X54PJ5RNWm1WkyePJn/TS5r8vl8mDp1KrRarSz8FA6HMWHCBGi1WsF+AsZuexzHoaysDCzLiq4pFAqhrKwM4XBYFn7yer0oKyuDVqtNWZNWq8XEiRP534h5PSXjp1y5njKlKRKJoKioCFqtNqc1BQIBTJ48GVqtVhZ+AoCCggK+kyl12xMzRgzXFAgEUFZWxtdPiJ+8Xi+CwSDKysoQiUTS8pPH48H06dOh1WrH9T1XCXFPpVKhoKAAGo0m5zX5/X6UlZVBpVLJwk8ejwe33HILtFptRtqeVqtFaWkp/xsxNWm1WsyYMQMej0cWfkq3v6fVajF16lT+NxQjsqtJq9WioKCA/00uaxLSL5dCU6bHhGLGiOGaNBoNysrK4PP5ZOEnIf09Jd1zlRD3BgYGMGXKFGi12pzWJKRfLpUmoWONbMWI4ZoAoKysDIFAQJS2p1arUVZWxo/vUvVTojFhNqCJEEIRLF++HOvXrwcA9PT0oKKigr84d+7cicbGRgDA0aNHUV1dDQDo6OhARUUFb2PHjh1obm4GABw6dAiHDh0CADQ3N2PHjh38cRUVFejo6AAAVFdX4+jRowCAxsZG7Ny5E8Bg4KioqEBPTw8AYO/evaipqQEA1NXVYc+ePQAGg0NFRQUfjPbs2YO6ujoAQE1NDfbu3TuqJq/Xi5dffhn79u3LeU2vvvoqXnvtNXi9Xln4qba2Fs8//zy8Xq9gPwFjt72LFy+iqqoK77//vuiajh07hqqqKtTW1srGT1VVVfB6vSlr8nq9eOGFF3Ds2DEA4l5PyfgpV66nTGmqq6vDf/zHf8Dr9ea0pn379uHll1+G1+uVhZ+amppQUVHBd4Klbntixojhmvbt24eqqipekxA/VVdX4+OPP0ZVVRXq6urS9tOePXvg9XrH9T1XCXGvvb0dFRUV6O/vz3lNb775JqqqqnhNcvDT7t274fV6M9L2vF4v/vCHP0iiyev14o9//KNs/JRuf8/r9eK1117Dq6++GuMnihHZ0RTtwzY1NSlCU7r9cik0ZXpMKGaMGK6pv78fVVVVePXVV2XhJyH9PSXdc5UQ93bv3o1XX30VXq835zWl2y+XSpMYY41sxYihmpqamlBVVYV9+/aJ4iebzYaqqirs3r1b1DFhVuAIIodpaGjgAHAGg4Ezm81cQ0MDFwqFOLvdzkUiEY7jOM7pdHKBQIDjOI7z+Xycx+PhOI7jgsEgZ7fbeVsOh4NjWZbjOI7zer2c1+vlOI7jWJblHA4Hf5zdbueCwSDHcRzn8Xg4n8/HcRzHBQIBzul0chzHcZFIhLPb7VwoFOI4juPcbjc3MDDAcRzH+f1+zuVycRzHceFwmLPb7Vw4HOY4juNcLhfn9/s5juO4gYEBzu12cxzHJdTk8/m46upqrqenJ+c1dXV1ce+99x7n8/lk4Se73c7t37+f8/l8gv3EcWO3PafTyX3wwQdcb2+v6Jr6+/u5Dz74gLPb7bLwk81m4z744APO5/OlrMnn83H79+/n+vv7OY4T93pKxk+5cj1lSpPD4eD27dvH+Xy+nNbU09PDVVdXcz6fTxZ+crlc/HkVw0+ZjBHDNfX09HAffPAB53K5RGl7fX193AcffMDHzVT91NnZyb3//vucz+cb1/dcJcQ9t9vN7du3j69TLmvq7u7mPvjgA87tdsvCT52dndyf//xnzufzZaTt+Xw+7s9//jPX2dkpuiafz8e9//77XGdnpyz8lG5/z+fzce+99x7X1dXF+4liRPY0+Xw+bt++fXydclmTkH65FJoyPSYUM0YM1+T1erkPPviA6+rqkoWfhPT3lHTPVULc6+rq4scuuaxJSL9cKk1CxxrZihHDNblcLu6DDz7genp6RGl7Ho+Hr6sYY8Los9zop6GhgcsUtEcIkdOM9z1CCIIgCIIgCIIgCIIgCIIgcgHaI4QgiLRgWRbnzp3jc+/lMnLTkun6SFmemLbFsCXEhtzayXhHKf6Qmw6KP9LZo/ijHJTkD7lpoRgkna10bcitjYx3lOQPuWmh+COdLeoDKQel+EOOOjJZp1yJP2LYk5OvaSKEIHIYv9+PI0eO8Jsa5TJy05Lp+khZnpi2xbAlxIbc2sl4Ryn+kJsOij/S2aP4oxyU5A+5aaEYJJ2tdG3IrY2Md5TkD7lpofgjnS3qAykHpfhDjjoyWadciT9i2JOTryk1FpHTUGosgiAIgiAIgiAIgiAIgiAI+UOpsQiCSAuO4+D3+6GE+Uy5acl0faQsT0zbYtgSYkNu7WS8oxR/yE0HxR/p7FH8UQ5K8ofctFAMks5Wujbk1kbGO0ryh9y0UPyRzhb1gZSDUvwhRx2ZrFOuxB8x7MnJ1zQRQhA5jNPpxG9+8xs4nc5sV0UwctOS6fpIWZ6YtsWwJcSG3NrJeEcp/pCbDoo/0tmj+KMclOQPuWmhGCSdrXRtyK2NjHeU5A+5aaH4I50t6gMpB6X4Q446MlmnXIk/YtiTk68pNRaR04z31FjhcBg9PT0oLi6GRqPJdnUEITctma6PlOWJaVsMW0JsyK2djHeU4g+56aD4I509ij/KQUn+kJsWikHS2UrXhtzayHhHSf6QmxaKP9LZoj6QclCKP+SoI5N1ypX4I4a94b/P5rNcmgghcprxPhFCEARBEARBEARBEARBEASRC9AeIQRBpIXH48GuXbvg8XiyXRXByE1LpusjZXli2hbDlhAbcmsn4x2l+ENuOij+SGeP4o9yUJI/5KaFYpB0ttK1Ibc2Mt5Rkj/kpoXij3S2qA+kHJTiDznqyGSdciX+iGFPTr6miRCCyGG0Wi3Kysqg1WqzXRXByE1LpusjZXli2hbDlhAbcmsn4x2l+ENuOij+SGeP4o9yUJI/5KaFYpB0ttK1Ibc2Mt5Rkj/kpoXij3S2qA+kHJTiDznqyGSdciX+iGFPTr6m1FhETkOpsQiCIAiCIAiCIAiCIAiCIOQPpcYiCCItAoEAampqEAgEsl0VwchNS6brI2V5YtoWw5YQG3JrJ+MdpfhDbjoo/khnj+KPclCSP+SmhWKQdLbStSG3NjLeUZI/5KaF4o90tqgPpByU4g856shknXIl/ohhT06+pokQgshhWJbFuXPnwLJstqsiGLlpyXR9pCxPTNti2BJiQ27tZLyjFH/ITQfFH+nsUfxRDkryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsycnXlBqLyGkoNRZBEARBEARBEARBEARBEIT8yeaz3OzvUkIQRNpEIhG4XC5YrVao1bm9wEtuWjJdHynLE9N21BbDMOju7k7bhs/ng9FoTLk+w39bUlICg8GQVj0I4cjtuk0Xuemg+COdPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX8ujpREEkRYulwsVFRVwuVzZropg5KYl0/WRsjwxbXd1daGiogKzZs3CzJkz0/osWbIEf/rTn7BkyRLBvy0sLMSGDRvg8/lEOFNEqsjtuk0Xuemg+COdPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX1NqLCKnGe+pseQ0qyoUuWmht5FGwnEcfvCDH+CTTz6By+VCJBJJy45arYbVak3LRqLfPvzww6iqqkqrPkT6yO26TRe56aD4I509ehtSOSjJH3LTQjFIOlu0IkQZKMkfctNC8Uc6W9QHUg5K8YccddCKEGnsDf99Np/l0kQIkdOM94kQgsgUoVAIX3zxBVavXi2LDa6GYzAYYLfbKU0WQRAEQRAEQRAEQRCETMnms1x5TLkRBJEWbrcbL774Itxud7arIhi5acl0faQsTwzbV69eRVtbG/R6PR5//HFYLJa0bVkslrRtJPqt3++HzWZLu05Eesjtuk0Xuemg+COdPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX9NECEHkMAzDoLy8HAzDZLsqgpGblkzXR8ryxLBtt9sBACzL4ty5c4JWhQixIUb5hHjI7bpNF7npoPgjnT0hv5dbOxnvKMkfctNCMUg6W+nakFsbGe8oyR9y00LxRzpb1AdSDkrxhxx1ZLJOuRJ/xLAnJ19Taiwip6HUWASRGY4dO4abN29i48aN2a5KQo4fP47S0lJJbJeUlFDaLYIgCIIgCIIgCIIgCAFk81muNiOlEAQhCX6/HzU1NVi+fHnOP6SVm5ZM10fK8sS0bTAYsHz5ctTU1MDv9/N/f+6551BcXJyUjXA4DLvdjsLCQmg0mpTK7+rqwr59+0aUDwD33ntvSrZSwWAwYN26ddi5cyeMRqNk5eQacrtu00VuOij+SGdPyO/l1k7GO0ryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsycnXlBqLIHKYUCiE1tZWhEKhbFdFMHLTkun6SFmemLa1Wi3Kysqg1cbOo0+dOhXTp09P6jN16lREIpGkfzNt2jSUlJSgpKQEEyZMiFu+1Pj9frz55pvYtGlTRsuVO3K7btNFbjoo/khnT8jv5dZOxjtK8ofctFAMks5Wujbk1kbGO0ryh9y0UPyRzhb1gZSDUvwhRx2ZrFOuxB8x7MnJ15Qai8hpKDUWoSTkvOF3bW0turu78cQTT8T9vqWlBWVlZZKU3draitbWVgCAzWbLanoug8EAu92e9bcYCIIgCIIgCIIgCIIgcg1KjUUQRFqEw2H09PSguLg45RRDckNuWjJZH5/Ph02bNuHUqVO4ceMGwuGwqPY1Gg2Ki4vR09Mj2LYYtoSc24KCApSWlqKzs1P085QM0ckqqSZ9cg25XbfpIjcdma6PlOWJbVuoPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX1NqLILIYdxuN1566SW43e5sV0UwctOSqfpwHIcf/vCHOHjwIDZt2gSLxSJ6GRaLBY8//rgotsWwJfTc/s3f/I0k54lIHbldt+kiNx2Zro+U5YltW6g9Ib+XWzsZ7yjJH3LTQjFIOlvp2pBbGxnvKMkfctNC8Uc6W9QHUg5K8YccdWSyTrkSf8SwJydfU2osIqcZ76mxOI5DIBCAXq+HSqXKdnUEITctmapPQ0MDlixZgmAwCL1ej0AgALHDskqlEs12IluppMZK9dwOTY3FcRy8Xi9++9vf4sSJE2BZNh0ZgpAyDdhoeL1eOBwOQSthtFotCgsLkZeXJ0qd5HbdpovcdGS6PlKWJ7ZtofaE/F5u7WS8oyR/yE0LxSDpbKVrQ25tZLyjJH/ITQvFH+lsUR9IOSjFH3LUkck65Ur8EcPe8N9TaiyCINJCpVIpZq8CuWnJRH04jsOlS5f4h/l+v1+ycsSyHc+WwWBASUlJ0jZSPbcmkynmt2azGdu2bQPLsujv70/aTir09PQk3A8lGwydDBKD2267DVOmTBFsR27XbbrITUem6yNleWLbFmpPyO/l1k7GO0ryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsycnXlBqLIHIYl8uFf//3f4fL5cp2VQQjNy2ZqA/Lsvzb/VarFVu2bIHVahW9HDFtx7O1bt26lG5qqZ7bwsJC3n4gEEBNTQ0CgQAYhkFJSYkkn+Li4oT16ejo4CcmxPiMNUnlcrlEnQQBgC+//FKU1TRyu27TRW46Ml0fKcsT27ZQe0J+L7d2Mt5Rkj/kpoVikHS20rUhtzYy3lGSP+SmheKPdLaoD6QclOIPOeqIVyeO49DT04MrV66gra0NAwMDkpUlFkoag4kNTYQQisBgMMBsNgMY3ITH4XDwaXtcLhf/wG9gYABerxcAEAqF4HA4eBtOpxPBYBDA4ObVPp8PABAMBuF0OvnjHA4HQqEQgMFUNdEgyLIsf1FzHBeTwsbj8fAPOwOBAJ8XLxKJwOFwIBKJABjMmxcIBAAMrg7weDyjajIYDLjnnnv4cnJZE8uyWLlyJQwGgyz8pFKpsGzZMhgMBsF+AkZve/n5+QiFQjhy5AhUKhWMRiMAQKfTIT8/nz+uoKAAWu3gQj6TycSnN2IYhp+YUKlUKCgo4DegMpvN4DgOR44cQSQS4ffWUKvVKCgogFo9eBuwWCzQ6/UAYq8njUaDgoICfvmjTqfD8ePH4ff7kZ+fjx/96EfYuXNnSn4KBAJYvXo1DAZDUn7SaDSYOXMmioqKoNfrUVpaymsNh8NgWRYqlYpfrcJxHFQqFT/RpFKpEAqFRhwXtREIBPg2EAwGeZ9ptVoUFBTE+Emn0+Hee+/FwoULsXDhQsycORNz585FeXk5Zs6ciZkzZ2Lx4sWYM2cOZs6ciUWLFmHBggWYOXMmbrvtNtxxxx2YOXMmZs2ahcWLF+PWW29FYWEhHnnkEX51y/Dr6fr163ybCgQC/PmKaooeF9UePS6epuhxwOA1IvR6UqvV/HWSqbgHiB/Lw+Ew7rnnHhgMhqzE8uGatFot7r77bn4CUOq4BwCrV6+GSqUSXVM4HMbq1auh1WpFieUcx2H16tVQq9Vp+cnv9+O+++6DwWAY1/dcJfSNdDod7r77bv7elcuaQqEQVq9eDZ1OJws/Db1OMtH2DAYD7r333pgXA8TSZDAYsGrVKvj9fln4SaPRYPXq1YhEIilpMhgMWLlyJV8OxYjsajIYDLj77rv5fnkua0q1X660MaGYMWK4Jr1ej9WrV4NlWVn4CUi/v6eke64S4l4wGMSKFStgMBhyWpOQfrlUmuKNNZqbm3HmzBl0dHSgpaUFp06dQl9f35h+ymSMGK5Jq9Vi9erVCIfDorQ9hmGwevVqPh6l6qdEY8JsQBMhhCJYvnw51q9fD2AwpU1FRQV/ce7cuRONjY0AgKNHj6K6uhrA4FvdFRUVvI0dO3agubkZAHDo0CEcOnQIwGDQ27FjB39cRUUFOjo6AADV1dU4evQoAKCxsRE7d+4EMBg4Kioq0NPTAwDYu3cvampqAAB1dXXYs2cPgMHgUFFRwQejPXv2oK6uDgBQU1ODvXv3jqqJYRj09/fj4MGDOa/pjTfegFarBcMwsvDTxYsXcf78eTAMI9hPwOhtb/PmzZg+fTrOnTuHNWvW4IEHHgAA/Mu//Av+4R/+AZWVlaisrMSWLVvw0ksvobKyEk8//TSeffZZVFZW4rnnnsPWrVtRWVmJ3bt3Y8uWLXjllVdQWVmJX/7yl/j1r3+Nf/qnf8JvfvMb/PM//zMqKyuxa9cubNmyBbt27UJlZSX++Z//Gb/97W9RWVmJf/3Xf8Uvf/lLVFZW4pVXXsGWLVuwe/duVFZW4he/+AV+8pOf4K233sLrr7+OtWvXwmg0puSnV199FeXl5WAYJmk/vfjii5g0aRJWr16NUCgEvV6PVatWwWQy4dq1a1i1ahUWL16M2tpaLF68GKtWrcK1a9dgMpmwatUqaLVa3Lx5E6tWrcL8+fNRW1uL5cuXY9WqVbh06RI/kG1ra8OVK1cAAKWlpdiyZUuMn2bPng0AeOCBB3g/zZ49G5s3b+aP27JlCz9Zs3btWqxatQoAsGDBAmzatAkAoNfrsWXLFhQXF8Pv94NhGGzbtg3AyOtp7969fJuqr6+HzWbj21G0ffl8PtTW1vIdmbq6Or5dD9XkcrlQW1sLYLBjJfR6unr1Kmpra8EwTMbiHiB+LD948CD6+/vBMExWYvlwTd3d3fjoo4/AMEzamlKJe2fPnkV5eTkuXrwouqaDBw+ivLwc3d3dosTyU6dOoby8HFevXk3LTzt27MCsWbPAMMy4vucqoW/kdDrx0Ucf8QOuXNZ04MABlJeXw+l0ysJPO3bswNSpU8EwTEbaHsMwmDBhQkxdxdLEMAzmz5+PHTt2yMJP169fR3l5OY4cOZKSJoZhoNVq8cYbb/B+ohiRPU0Mw+Cjjz5Cd3d3zmtKp1+upDGhmDFiuCaO41BeXo433nhDFn4S0t9T0j1XCXHv7bffRjgcBsMwOa1JSL9cKk3DxxqBQACtra2ora3lJx4uXLiATz/9dEw/ZTJGDNfU3d2N8vJyHDx4UJS25/f7UV5ejrffflvUMWE2oM3SiZwmusGOwWCAVqtFTU0N5s2bB7fbjfz8fKhUKv5ND4ZhMDAwgEgkApPJhFAoBI/Hw7/x7XQ6YTQaodPp+ABnNBoRDAbh8/n4N/MdDgfMZjO0Wi28Xi/UajXy8vLAsiz8fj+sVis4joPT6YTFYoFGo4HH44FWq4XBYEAgEADLsrBYLIhEInC5XLBarVCr1XC73WAYBnq9nn/zzGw2IxwOx9UUDofxySefYPny5Zg4cWJOa+ru7sYXX3yB+++/HwCy7ieHw4Fjx47hG9/4BvR6vSA/JWp7eXl5ePfdd/H4448jEolgxYoV+Pzzz+H3++Hz+XD27FkUFxfzqz2cTidMJhO0Wi18Ph/UajX/BnsgEIDFYgHHcXC5XDCbzdBoNPB6vQiFQqirq8Odd94JtVoNs9mMSCQCt9sNi8UCtVoNj8cDnU7HawqHwzCZTAiHw/B4PLBarVCpVOjt7UV9fT0/CZCOn/r7+1FXV4dVq1YhEAik5CeWZfHRRx/h3nvvRWFhoWjXk9PpRHNzM4LBIDiOQ39/P/7qr/4KZrOZf2MhPz8fPp8PwWCQX7Xj8/mg0+lgNBr5tzAKCgrg8XgQCoVgMpkQiUQwMDAAhmFgMBjgcrmgUqmQn58Pt9uNcDjM+8tms/GrWaKaGhoa0NfXx69e0Wg00Gq1CIVCiEQiYBgGkUgELMvym48FAgFotVpoNBpe09DjDAYD5s6dC5PJJOh6cjqdOHLkCB544AEYDIaMxD0pYnlvby9qamrwta99DRqNJuOxfLgmt9uNTz/9FA888AB/nqWMe8FgkJ8c1Gg0omryer04ffo0VqxYgXA4LDiWBwIBfP755/jqV78KlUqVsp+6u7tRV1fHT6qO13uuEvpGHo8Hn3zyCb7xjW/AaDTmtCa3240zZ85g5cqVCIVCWfdTV1cXzp49izVr1iAcDkve9tRqNQ4fPow777yT33NMLE06nQ5HjhzB4sWLUVxcnHU/qVQqnDx5EnfddRfy8vKS1gQAn376Ke666y5MmjSJYkSWNQ0MDODQoUO4//77YbFYclqTkH65EsaEYsaI4ZoYhsGxY8dw5513oqCgIOt+EtLfU9I9Vwlxr7u7G59//jm+9rWv8dkPclGTkH65VJqGjzV6e3vR1tbGp+ZWq9VgWRZqtRpf//rXeU3hcBjXrl2Dx+PB1KlTMXPmTPh8vozFiOGaNBoNTpw4gaVLl/LZRIS0vWhmkDvvvBP5+fmCx4Q3btygzdIJQghDl9JHU/lEGbqXQTSVEBA/7U2U6ENOIH56oihDN3FmGIZ/ezeanihKNM0QMPgmeHRJaTQ9UZRo2iIAMXsuJNLk9Xr5B+q5rin68C8a9KNkS1P05hIdoAvxExC/7UVny6MTHNG/RW9qhYWF/MqC4fZG2+9j6HmwWq3wer3w+XwoLCyMOReJ6jrcdmFhYYzGzz//XJCfopMLkUgkZT9FU0lEvxPreoqec51OBwAoKiqCWq0esRQ1SvR4IP5S1CjRZa0AYpa8RpeiRokuKbXZbCgrK4vRZDab+bRZ0b9H/z303A5lqHav18svz41OnkURej1ptVq+s5apuAeIH8vz8vLg8XgQiUSQl5eX8Vg+XJNarebPa7qaUol7Xq8XDocDOp2O/51YmqLLqdVqdYwNIZqiy72j/0/FTxaLBU6nMyZVYLKalHTPVULfSKVSYWBggH87NZc1RdMJDLeXLU0WiwUulwuRSCQjbc/r9cLlcokWI4Zq8nq9MQN9ILt+isZbg8EwairU4Zq8Xi/cbndacW+8xggpNUVfcolOUuWyJiH9cik0ZXpMKGaMGK4per2bTCb+/GXTT0L6e0q650bJ5bhnMpn4sctQ27mmSUi/XEpNQ8cara2tIzb6jmqNaurv78eXX37J/62jowMejwd33HEHn2Jc6hgxXFPUdl5eXkxK9XTb3tC6Dk2pPlxTlLHGhDdu3EC2oBUhRE4TXRESJZOziAQhlEAggHfffRcbN26M+31LSwvKysoyW6lxis1mw+XLl2P+9swzz+Dw4cMZrUc8n1+7dg3t7e0jji0sLMQdd9wxps3a2tq4G7rNnTsXU6dOTbuuBEEQBEEQBEEQBKFULly4wL+UOJzonl/Hjh2L+/2SJUtiJniI/yKbz3JpjxCCyGFCoRBaW1v5zZ1yGblpyXR9tFotysrK+L0qxERMLWLYEmIjk37ZunUr1qxZE/PGBxGL3K7bdJGbjkzXR8ryxLYt1F6uxB9ibJTkD7lpoRgkna10bcitjYx3lOQPuWmh+COdLeoDKQel+EOOOlKt09DMEMNpa2sTtaxUUNIYTGxoIoQgchiPx4PXX3+dT6uTy8hNS6brYzab8dd//dcxSxLFQkwtYtgSYkMqv8Sb7DAYDNi2bRuqq6v5DevF+Lz88sui1j2byO26TRe56ch0faQsT2zbQu3JMf4Q6aEkf8hNC8Ug6Wyla0NubWS8oyR/yE0LxR/pbFEfSDkoxR9y1JFKncLhcNzMDVGiqdDFKCtVlDQGExtKjUXkNJQai8hlKDWWfAiHwzh58iTC4bDkZblcLqxbty7ud5QaiyAIgiAIgiAIgiCyz2ipscbCYrFgyZIlItdIGWTzWS5tlk4QhCzw+/2w2WzZrkZGCQQC6OnpyXY1CAxu7vWVr3wFDQ0NsliumQ6JrqGbN2/GfRslLy+P37x9KCUlJTEbnxEEQRAEQRAEQRAEQeQ6lBqLIHIYp9OJZ599dtS8hHLH5/PhoYcewvTp0/HSSy+hvLwcM2fOzPqnvLxc8vrMmzcPTzzxBAAgPz8fTz31FPLz80U/x2K2EzFsCbEhZZsvKCjAPffcg8WLF2PRokWCPyUlJaLXMR4+nw8bNmxAYWFh3Hb2ve99Dxs3bhzxWb58edzjCwsLsWHDBvh8vjHLVkIMAuSnI9P1kbI8sW0LtSfX+EOkjpL8ITctFIOks5WuDbm1kfGOkvwhNy0Uf6SzRX0g5aAUf8hRRybrlCvxRwx7cvI1rQghiBzGaDTioYcegtFozHZV0mbjxo04cOAAdDod9u3bl9TD10zg8/kyWh8pyxOznYhhS4gNqdu8Wq0WbTIqXjoqKdi0aRPefPNN0ez5/X7eXlVV1ajHKiEGAfLTken6SFme2LaF2pND/AkEAuju7obb7QbHcVCpVLBYLJg8eXLc/YqI+MjtuhWC3LRQDJLOVro25NZGxjtK8ofctFD8kc6WHPpAhDgoxR9y1CFlnXp7e9HZ2YlQKIQJEyagpKQkJ+KPGPbk5GvaI4TIaWiPkNzG7/cjPz8/bnoegvYIyXWuX7+O5ubmEX8Xc4+Q2267DYWFhfD7/aLUeSgGgwF2u53SZBGEiAwMDODcuXMJ09WVl5dDr9dnoWYEQRAEQRAEIX+i+3pqNBrJyxJrj5Curi5cunQp5vspU6bgtttuE1zHXCSbz3IpNRZB5DCZXrUgNtevX+cnQeQ0Qwxk/20kg8EgWmolMduJGLaE2Mj1Ni82NptNkkkQILl9e5TiD7npUNKKNLFtj2WP4zj4/X7+M3yiPdvxp6OjI+4kCDA4SXLjxo20bY835HbdCkFuWigGSWcrXRtyayPjHSX5Q25aKP5IZyvbfSBCPJTij1R1hMNhNDQ04LPPPsNnn32Gixcv8pMiQvD7/ejs7ERXVxccDock57ajo2PE39rb2/HOO+/IPv6IYU9ObZZSYxEEQciQdevW0Zv4BEEQY+Dz+WC32xEMBtHa2hr3GKPRiDlz5qCwsDCzlYvDWHlx5ZA3lyAIgiAIgiDkxqVLl9Db28v/v6enByqVCgsWLEjaBsdxcLvdcDqd/EuoFy9eRCQS4b8PhUKi1NftduP69etQqVRwu91xj/F4PKKURSQPpcYichpKjZXbNDU1Ye7cudmuhqxgGAZr167FH/7wB9msjiHSI53UWMePH0dpaWnM39rb23Hz5s0Rx1qtVlitVtx7773iVDgOlJ6NkDM2mw2XL19O6li1Wo2lS5dmPa5+8cUX8Hq9Cb8fuoSeIAiCIAiCIIjB1SDHjx8f8XeVSoV7770XavXYCY84jkNLS0vctNNDyc/Px+LFiwEIS42VLKtXr5bUvhzJ5rNcWhFCEDlMMBhEc3MzZs+eDZ1Ol+3qCEKn02H27Nlobm5GMBjEm2++ienTp2etPuFwGL29vZg4cWJGck+Gw2E4nU7cc889KCgoENW2mO1EDFtCbCipzcdDzEmN6KRKXV1d3FQ8M2fOxOTJk9HR0ZF2uUrxh9x0ZLo+UpYntu2ovenTpyccmBQVFY3YdDwSiaCvrw86nS6p+kQiEbhcLgSDQQCDg6y8vDxcv36d/20kEolJTZeXlweVSiVYI5EccrtuhSA3LRSDpLOVrg25tZHxjpL8ITctFH+ks0VjMOWgFH+koiPRqunoCo/8/Pwxy/N4PGNOgoTDYTQ3N2PevHnIy8uTNJVTOByG3W7H+fPn8ZWvfCWpyZxkkWoMlq49ObVZmgghiBwmmmdv8+bNSQV+ORPdI2PHjh1wOp1YuHBhVlf3OJ1O7NixI2PnNlreihUrRLctZjsRw5YQG0pq81JTWlqKsrIydHV1YWBgYMT3t9xyC6ZOnSqoDKX4Q246Ml0fKcsT23bU3tmzZ7F///4Re4AAgyvrVqxYga1bt8akGPT7/UnVx263o6GhYUTOYb/fj7Nnz2Lz5s3o6upCd3c3v4weGNywcdq0aZg5cyZNiGQAuV23QpCbFopB0tlK14bc2sh4R0n+kJsWij/S2aIxmHJQij8yreP69etjHhMMBnH58mXcd999yMvLE2UPkrHKMpvN0Gq1oj7/kmoMlq49ObVZSo1F5DSUGiu3GS01FvmSyHXSSY0lJtG0VrW1tXEnQubOnYupU6eitbUVM2fOHNUGQciJDRs24M033xzzuDVr1mDbtm38/6dNm4Y5c+aM+ptQKISTJ0/GTHAMR6fT8StF4nHrrbeOSHEX5cSJE6P+llJjEQRBEARBEEQs/f39uHDhQtzvFi9enNTD9SNHjiRd3l133QWTyTRm311MVqxYkfXVEpkim89yxVt3QxAEQRDEmEyYMCHmLXUpMBgMKCkpkbQMgsgGfr8f+/fvT+rYEydOxF0xMhpOp3PUSRAAYw6Genp6RvwtEAjgzJkzGRtIEQRBEARBEMR4hOM49Pf3o7m5GTdu3IibJnosEqXikpLu7u6MlzkeoYkQgshhHA4Hnn76aTgcjmxXRTAFBQX41a9+Jfr+GOmS6XMrZXli2hbDlhAbSmjzwWAQ99xzj6RlrFu3TvLJFkAZ/gDkp4PiT2KuXr2Kp556Kql7BcuyI/YQGas+o02c+P1+HD16lN8XhGVZ2Gy2EZ94A6f6+nq43e4x60wkj9yuWyHITQvFIOlspWtDbm1kvKMkf8hNC8Uf6WyN9zGYklCKP6TS0draigsXLuD69etoamrC2bNn42ZIiEe0v59o9YmYDB9bjPUyViqIfW6F2pNTm6XUWEROM95TY4VCIXR0dKC0tBRabe5t+TM0NZZWq0VpaSk6OjoQCoWy7stMn1spyxPTthi2hNjIpTafKDUWMNjp2b59e1pvrI+GwWDAunXrsHPnThiNRgCQNDVWLvljNOSmg+JPfDiOw6FDh/D444/z94qxqKys5FdHRffvGK0+nZ2d+PLLL+Paim6gzjAM/u3f/i3h9cswDL773e/y16Hf70dNTU1SGik1VvLI7boVgty0UAySzla6NuTWRsY7SvKH3LRQ/JHO1ngZg40HlOKPVHT09vaioaEh7ndDU2MFAgGcOnVqxDFTpkxBZ2fnmHWK9vetVivuv/9+SVNjDS1LrVZj+vTpmDVrlii2xW4jQu0N/302n+Xm7hVDEAS0Wq1i8veHQiG0trZmuxo8mT63UpYnpm0xbAmxoZQ2bzAYsG3btrhvrCeL1WrFggULYv5WUlKSkZUgUbLhD7/fD5vNlvD7UCgEn88X87fJkyePOC8Mw8BgMEClUsmuXVH8ic/169dht9sF3SuE1EetVqOgoADPPPMMDh8+nPA4lmX5PUyqqqr4t7yGHxPv2mcYJq26jUfkdt0KQW5aKAZJZytdG3JrI+MdJflDbloo/khni8ZgykEp/khWRyQSSTgJMpwbN27E/XsykyDAf/X3M8Hwsvr7+0WbCBG7jQi1J6c2S6mxCCKH8Xq9qKqqgtfrzXZVBGMymbBhwwaYTKZsVwVA5s+tlOWJaVsMW0Js5FKbT+aBJsMwKCkpSeszc+ZMlJWVxXwyOQkCZNYfPp8PGzZsQGFhIWbOnJnwM2fOHNxxxx0xn+nTp+O73/0uTp06hbq6OtTV1aG2thZffPEFfD6f7NoVxZ/49Pf3IxQKpXSv6Onp4VNWBQIBQfVhWRYXLlxAXV1dUsfv379/xCSI3+/HM888g7Vr12Ljxo0jPvfffz82bNgwYjIvHdxuN5qbm9HQ0ICGhgZcvXo1qXzHkUgEfr8fgUAA2Vg4HolEYLPZcPnyZTQ2NqK1tTWuv+R23QpBblooBklnK10bcmsj4x0l+UNuWij+SGdrvIzBxgNK8UeyOpJJpxQOh3Ht2jW0t7cLqhPLsmhoaBA1a0OyZXk8HtFsi91GhNqTU5ulFSEEkcNEZ5DV6tyf04xEInA4HKLmRRRCps+tlOWJaVsMW0Js5FKbLywshEqlkuxBYlFRkSR2UyFT/uA4Do888gj27duX1u9ZluXf4N+2bRv/d5/PhwsXLuD222+XVbui+BOfYDAIlUqV0r3iiSee4P+t1+vxve99Dz/60Y/Sqo9KpQKApDdcjK5eGvqm1/bt20ddTRIIBGJWk6RLf38/6uvrR8Sfjo4OLFiwAJMmTRrxm3A4jMuXL6Ovr48/vwzD4JZbbsEtt9ySdl2G4vV60d/fj2AwCK1Wi8LCQlgsFv77SCSCixcvoq+vL+Z37e3t/HUaJZfuB2MhNy0Ug6Szla4NubWR8Y6S/CE3LRR/pLM1XsZg4wGl+CNZHS0tLaN+f/PmTfj9flE2OFepVHzWAKmRsiyx24hQe3Jqs7RHCJHTjPc9QnKdoXuEDId8SSiBvr4+NDY2IhwOi2r3lltuwaxZs5LqNEm5R0gm4DgO586dw/LlywW/mcMwDKqrq0es1lm6dCnMZrMg24T0fPHFF2hubsbGjRsF2Xn44YcTTjKMtkcIANhstpTKb2lpgcFgwJEjR8CyLB599NGkfmcwGGC329Ne5XX69OlR3yrLz89HKBSCSqWC1WrFtGnT0Nraip6enrjHz5s3j99rJV26urpw6dKlEX+fPXs2P9HS19eH+vr6uL+3Wq248847BdWBIAiCIAiCyC2OHDmSlXJXrVqFo0ePZrTM1atXZ7S8bEF7hBAEkRYsy6KxsRELFizI+bziDMNgwYIFaGxszMgyxLHI9LmVsjwxbYthS4iNXGvzEyZMwIoVK+ByuZLa2Hksog8tdTqdYFt+vx9ut3vUh6Uejwdutxs6nS7uA9lM+MNut+PLL78UJS5E92UY/kDX7Xbj6tWrsmlXcoo/DocDTU1NI9qvVquF1WrFjBkzRn1YL7aWSCSC8vLytO8VDMPg2rVr/MaE8Ui0f0d+fj6cTicYhkm67O9///u4ePFi0qtIokRXk6QzERkOh8dcWj/0jTmPx4Ourq5RJ2y7u7sFTYSEw2GcP39+xHktKipCc3MzJk2aBL1eP+qbfG63G5FIhH+TLNfuB6MhNy1yikFysp3NPpDc2sh4R0n+kJsWij/S2RpPYzCloxR/yFFHOBxGT08PiouLJd/DdmhZGo1GVNtin1uh9uTka5oIIYgcxu/348iRI5g1a1bWg4lQDAYDVq9ejWvXrsliIiTT51bK8sS0LYYtITZysc1ncsO1VGhvb0d7e/uoG483NDSgt7cXwOA+PgsXLoTRaOS/z4Q/xFjiPBYsy8qqXckh/vh8PmzcuBEffvjhqDGZYRisWLEC//RP/4SJEydi6tSpmDJlimRawuGwoHuFwWDAihUrcP369RFvHfl8Pjz++OMJNU+YMAGbNm2CwWBIuuyzZ8+mXEehpLPYe6xVa36/HxzHwe12g2VZaDQaWK3WpAZtPp8Pf/mXf4k///nPI85btP28+uqrmDlz5qgpz4brysX7QSLkpkUOMUiOtrPZB5JbGxnvKMkfctNC8Uc6W+NtDKZklOIPOeoIhUJobW1FYWFh0husi1GW2BMhYp9bofbk5GtKjUXkNJQaK7eh1FgEIT2JUmNFGS3VT2VlZcxb4Hq9HsuXL89IztQozc3N+OKLLwSnQ4ry3HPPobi4OOZvt912GwoLCwEAJSUlGd90Xo784Ac/wN69e5M+fs2aNfz+K/Pnz8fkyZNFq0tvby+uXLmC9vZ29PT0xOz7kS7x0r5t2LCB359DDqSbmi4UCuGzzz4TvT46nQ7BYJD/v0qlwpw5czB16tRRf5fMef3Od76D/fv34+rVq+jo6Eh43H333SeL3MKpEp0AyvbAjyAIgiAIItfIVmqsbECpsaSHVoQQRA7DcRwCgQD0en1GH0xKgUqlgl6vRyAQkGxz6VTI9LmVsjwxbYthS4gNJbX5XCQQCMDtdvMpheTgj3gTG6M9LI/396HxR6/XY926ddi5c2fM6pdMMvy8RtMkjYaQCZx45b333nsp2Thx4gRYlgXDMOjs7OQnQoS0EZ/Phw0bNuDgwYP8g+TopoLx7hXLli3D+fPn4ff7E9qM+jr62+i59fv9Yz6sl9t9KhGJ2ktRUVHCB/GJ0oEN/c3QSRBg0LdXrlyBxWKJ2fB8eF32798/Zp0PHTo0qt/iIUX84TgOwWAQGo1GlDfzHA4Hrly5Ap/PBwAwGo2YM2cOP/E6tNxsx9Js1of6QJkpmxAPJflDbloo/khni8ZgykEp/pCjDo7jEA6HodFoJK+TlGWJfW6F2pOTr3PvlSqCIHicTid+85vfZCR1jNTk5+fjqaeeQn5+frarAiDz51bK8sS0LYYtITaU1OYzhdgP84c+rJSDP+bNm4fbb7895jP07ZJkGBp/og/EN23aJFGNxyZ6Xm02Gx5++GEUFhZi5syZo34KCwuxYcMG/oFrOuVF/RidGEiFoQ/SvV5vQtup8Oijj6K6ujomndJo94qqqirY7XYcPHgQlZWVeO6550YcE/39J598ggceeAAFBQWYOXMm5s+fP2Z95HafGk504qi4uBgbN24c8Vm7di2eeeaZGN/6/X4888wzWLt2bdK/GU68CZQoybalZCb7hiN2/Ll+/Tpqampw8uRJfPbZZ6irq0vreooyMDCA+vr6GBs+n2/E3wB5xNKhUB9IOlvp2pBbGxnvKMkfctNC8Uc6WzQGUw656o9QKISenh709vYiFArJUkcgEMCJEydS3t9PbmWJfW6F2pOTryk1FpHTjPfUWFJurpQJhqbG0mg0KC4uRk9PD8LhcNZ9melzK2V5YtoWw5YQG7ne5rNBd3c3GhsbE36fSmosAFiwYAEmTZoEIDP+GCs1Vrz0Qa2trZg5c2bSZQyPP8DgXhJ2uz3lVRYulwt2u33E5uJRVCoVLBYLioqKEp6z6Hn927/9Wxw4cCCl8h9++GFUVVWl9Jvhfkz1/EWJthedTocVK1bEtZ0sfr8fhYWFIx6ix/NVlGhbuHjxInp6euK27ejvJ0yYgIsXL6akb7Sy04FhGMyePRuXLl2K+32qqbGSTe01NI3ZM888g8OHD6f0m+FMmzYNc+bMiftdKm2ppaUFoVAo6dRYYsafzs5OfPnllyP+zjAMli1blrL9UCiEixcvwm63x/1+9uzZuOWWW/j/y+3eRn0g6Wyla0NubWS8oyR/yE0LxR/pbNEYTDnkoj/cbjfOnz/Pj5EYhsFXvvIVeL3eGB1erxf9/f3QarWYMGECGIbJaGqsSCQCn88Ho9EoeTrWeGWJlRpL7DYi1N7w31NqLIIg0kKj0Yx4SJmrhMPhlN8GlZJMn1spyxPTthi2hNhQUpvPFJMmTUIoFML169dH3SskWQYGBuByufj/G43GmBUAwODDfqPRmLWOeTRNVLKrGuLFn+gb6qk8iG5ra0NLS0tSx1osFtx+++3Q6XQjvosuj/7www+TLjvK/v374ff7U5rAkWP8SbSSING9wmAwJFVO9Pfp3G/Euk9F07kVFRWhv79flP1vkk1BBQymMfN4POjv709qEiT6m2jqM7kgZrvt7u6O+3eWZeF0OlFUVJS0LafTiQsXLow6WTY8Fsvt3kZ9IOlspWtDbm1kvKMkf8hNC8Uf6WzRGEw55KI/Ll26FPOiGMuyaGpqwp133sn/bfgLfDqdDuXl5ZmsJtRqNcxmc86XJXYbEWpPTm2WUmMRRA7j8Xiwa9cueDyebFdFMGazGX/913+dsZvOWGT63EpZnpi2xbAlxIaS2nwmmTp1KpYtW4Z7770XK1eujPksXbo0JVstLS04e/Yszp49i5qaGuzcuRM1NTX8386ePYszZ87gs88+Q1NTU1b2UjAYDFi3bl3Sx4sRf/x+f9KTIMDgW1GJ3nz3eDyoqqpK66FzOimGUrmu/u///b+S2U6GRL5at25dUpM/Qnwt1n2quLgYJSUlok4qpJLOjGVZrF27Fo8++mjS9lmW5SeQhn6Gpi0DBldCdHV1oampCZcuXUJ9fX1KOlJBzLY12iRxKumxOI5DQ0NDyiuG5HZvoz6QdLbStSG3NjLeUZI/5KaF4o90tmgMphxyzR8+ny9uf6q3txevvfYaPB4PIpHIiNW5wWAQzc3NmaomgME+77lz50b0cXOtLLHbiFB7cmqztCKEIHIYrVaLsrIyaLW5fymHQiG0trYmTCeTaTJ9bqUsT0zbYtgSYkNJbT4bxFuhIeRcqtVqFBQUxF02zHEcbty4AYPBEJMCJlPs3LkTwH+tkBgNMeKPw+FI+TeJcqRqtVpYLJa069PV1TXiIbtKpYLVaoXRaByxQV0q19WECRMSftfT08Pbi65KEfuaHe6r6KRX1N+p/l5I2VLT3d2NGTNmJLWhYCYmHONNnDAMg69//et4++23wTAMzp8/D7fbzX8/fLWYUBwOB786Y6y21dvbi+7ubvh8PjAMg6KiIkybNk3SDRq9Xu+ITeWTQW73NuoDSWcrXRtyayPjHSX5Q25aKP5IZ4vGYMoh1/yR6KUStVqNadOmQavVoq+vL+6LJKPtRScFo41vc6kssduIUHtyarPZrwFBEGljMBhEyyGYbfx+f0ZzP45Fps+tlOWJaVsMW0JsKKnN5wLRB9ujYTAY0NvbCwAoKioa8QC+t7c3KxMhRqMRVVVVMSskamtrRzww7unpwRNPPCE4/qSzZ0Si3xgMBsyYMSPlDcujtLS0xLzhPnQj86KiItx6660xHe6SkhL+uuI4Lu0H/U888UTM/5ctW4adO3eirKwsZpVKNHVZOvj9fmzcuBGvvfZaWraSvdfE278j0/epa9euwWq14rbbbhvz4f3169czVKtYWJbF+++/j8ceewybN28e8V26qcSGttkoRUVFqK+vx8qVK6HRaEa9H8Tb86O/vx9utxvz589Pq07JkM4kCCC/exv1gaSzla4NubWR8Y6S/CE3LRR/pLNFYzDloBR/aLVaLF26FAaDAZ2dndmuDoD/emCf62WJ3UaE2pNTm6WJEILIYQKBAOrq6rB48WLo9fpsV0cQer0eixcvRl1dHQKBQLark/FzK2V5YtoWw5YQG0pq87nA8Afbwxl+3TIMgxUrVmDr1q38w+lsX88Gg4HvYLa3tyMSiYw4Rqr4E+9h7lDcbjcmTJgw4mF+IBDAjRs3oNfr49bnueeeA5DYP9EJLL/fj+3btyfcjDuKXq/HunXrsGHDBgSDQXR1dY2pLRlqa2tx5513jji30Y7w1q1bY65jnU6HoqKiUQcEer0eKpUKU6ZMSSsGjOXr0fbvyMZ9ymazgeM4GI1GWCyWhG+N9fX1ZaQ+idi/fz9+/OMfg2EYvt1F9xVJFo/Hg2AwiGeeeSbub6Px5d/+7d+waNEicByX8H7Q3t4et4yuri7MnDkz7Yk4qZDbvY36QNLZSteG3NrIeEdJ/pCbFoo/0tmiMZhyUIo/QqEQzpw5g+XLl2e7KjyhUAg2mw0lJSWSr16Qsiyx24hQe3Jqs7RHCEHkMJnMXyg1DMOgvLxcNhuxZvrcSlmemLbFsCXEhpLavBIYft2yLIvDhw9j+/btWa5ZaiSKP/EmTZLB7/fjmWeewdq1a7Fx48aEn+985zuYOXMmCgsLsWHDBn7ZOMuy6O7uThgPi4uLUVxcnLD8J554Ahs3bsRjjz025iQIAD5t0KOPPoqHH354zAmwVIh3bv1+Pz788EP8/Oc/R3t7O/+x2+24fv066uvrE6Z6YhgG/f39aceAse41o+3fkY37FMuyOH/+PE6dOoVDhw7h/fffj5tbN9sTjoFAgJ/02759Ow4fPpyyjxoaGvAP//APCX8bjS//+I//iDNnzsDpdMa9HwSDwVH3/BiauitdgsEg+vv74XA40o4TQ5HbvY36QNLZSteG3NrIeEdJ/pCbFoo/0tmiMZhyUIo/wuEwLl68KCsd4XAYNpstrdX+cipL7DYi1J6c2qyKy8YupgQhEhcvXsSiRYv4/zc0NGDhwoVZrBGRCk1NTZg7d27c78iXBJEZWltbMXPmTFFtMgyD6upqMAwDg8Eg6C2f5uZmfPHFFzFv5g+lpaUl6SXFx44dG/HQ0mazJbT95ptvYuXKlZg6deqYtm/cuIGmpiYAwDPPPIPDhw8nVaehPPzww6iqqgIAfPLJJ/j6178e97jKykoASFhvKXn77bfxV3/1V2mn7RqNoSuKpk+fnvAe8O677+Khhx5KaKelpQVtbW2j+jYRlZWVKCkpATB62xBCsmXMnz8fzc3NIwYMer0eDz30EHbu3Amj0Yienh588skngusaLx1YKlRWVqKoqAhr165Na5Dz8ssv4yc/+cmYx0Xjy7Rp0+K2kWAwiBMnTiT8/YwZMzBjxoyYlTU1NTUJ2/Stt96K0tJSAIOp41paWmJWnKjVasyfPx/FxcWw2+04f/78mBqmTp2asP9DEARBEAShJHp7e9HQ0BD3u6VLl8JsNvP99/GOXNJHSU02n+XSihCCyGEikYhobyNmm0xuSpUMmT63UpYnpm0xbAmxoaQ2LxeE7NeQ6LodKyWU3EikIxKJ4MqVKylthM6y7KgPYUcjurF7JBKB3+/PWDxMJf6azWasW7dOEttDVxR1dHQktMey7KgxYNKkSQnLE3KvEes+pdVqk9qw+9KlS3EnFAKBAN58801s2rQJNpsNdXV1ae/FAQxOuFRWVqK6uhrbtm1L2w7LsmhsbEz7Ta9kJkGi5fT398Nut/Mbot+8eRN9fX3o7+9PmBYrSltbG44dO4b6+vqU7yXd3d0j7EciETQ2NgqaHBx+b4tEIrDb7bhx40ZW7nnUB5LOVro2qP8jL5TkD7lpofgjnS0agykHpfiD4zg4nU5Z6eA4Dn6/P+Hq9FwpS+w2ItSenNqsPJ44EgSRFi6XCxUVFXC5XNmuimCsViu2bNkCq9Wa7aoAyPy5lbI8MW2LYUuIDSW1eblgMBhSerA9lNGu256eHthsNrS1teH9998f9XPu3Dl0d3dnpMMZj7HiTyr7LwhJ2+T3+/HGG29g//79OH369KjxMN7G9OmSbPxlGAbz5s3Dzp078fDDDyc1gZZObD9x4kTCB/tWqxWXLl0aNQaYTCbcfvvtsFgsotRHjN8OZcmSJbjzzjsF2QAGVyxt3LgRa9euxS9+8YuEx82fPz9hqq81a9bgt7/9bcJ0YKnw6KOPjloPMWFZFi0tLXj++edx8OBBHDt2DGfOnMGFCxeS3ji+r68Px44dQygUGvW4zs5OXL58GV9++WXC1TIcxwma/B16b/P7/fj8889x/vx5NDU14dy5czh9+nRG059RH0g6W+naoP6PvFCSP+SmheKPdLZoDKYclOKPQCCAV155RVY6AoEAamtrM9LvkrIssduIUHtyarOUGouQjAsXLmDfvn04duwYGhoa0NfXB5PJhPnz5+P73/8+fvazn8FoNAoqY7ynxopEInC5XLBarbJZSZEKQ1NjqdVqWK1WuFwuRCKRrPsy0+dWyvLEtC2GLSE2cr3NyxWfz4dNmzbxKxKSZfh1my7RlEjPP/885s+fH/OdmKmxTp8+PWJ/BZvNhkceeSSujmgKo8mTJ4+o13CiqbHESKc01nmN1ivdFFyplhfl29/+Ng4cOMCvZmhvb8fJkyf57+Ntzp5uG/nnf/5n/PrXv45b18rKSqxfv37MGOD3+1FYWBjTpkerz9CUbsDgw/ahaZ7Eau8tLS2YMWMGrly5grq6OslTnEU1DX9QH28yTap0YFIw3B9DU6ulssrtlltuQU9Pj+B0b2VlZcjPz08rNdbQe1tDQ0PcSZXi4uKM9YuoDySdrXRtUP9HXijJH3LTQvFHOls0BlMOmfYHx3Fwu91wuVwwm83Iz89PanVzlESpsTiOw9y5czFlyhS0tbXJIjUWx3EIBALQ6/UpaRSrLLFSY4ndRoTaG/77bD7LFXdbeoL4/9Pc3Iw77riD///UqVNRXl6Ozs5O1NTUoKamBi+//DI++ugjTJ8+PYs1zW2iaTqUQHSpnFzI9LmVsjwxbYthS4gNJbV5OWE0GlFVVQW/359Sip2Ojg7ce++9gsuPpkT6+c9/jo8++ggajUawzXhMmTKF38djKHKLP8nWZ+vWrQAGV1AkswqlvLwczz77LOx2e8ykxVjlGQwGfOc738Frr70WMyAwGAz8XhdRXnjhhbip0Z555pmU9p6INwkCgH/gnUwHPLra6c0334z5fSKtK1asiJkYiD5Yj042idFOoudMpVJh7ty5cTc+F5uFCxeip6cno5u8x+N3v/sdioqK8Oijj4pib7g/onEEQEyKr+HtcfgEkN1uF6U+Qoje2yKRSMKVJb29veA4TvJB+dD6ZArqA2WmbEI8lOQPuWmh+COdLRqDKYdM+oPjOFy9ehU3btzg/zZx4kQsWLBA8AN2lUqF1tZWWU2uqVSqtNNGy6kssduIUHtyiiHyaW2EouA4DsXFxfjVr36F5uZm3LhxA1988QU6Ojrw2Wef8W9CPvzww9muak7jdrvx4osvwu12Z7sqgrFYLHj88cfjpjLJBpk+t1KWJ6ZtMWwJsaGkNi9HDAYDysrKkv4UFRWJet2eOHECPT09otiKx7Rp0zB79uwRqxEzFX+ee+45VFZW4ne/+92oxyVbH4PBgG3btqG6uhqVlZVxP2fOnEFLSwsGBgZQV1eHv/iLv8DKlStRVlaGF154AQcPHsTu3bvxL//yL9i9ezf/u7feegv19fVoaWmB3W7Hm2++mfQqToZhUFJSgpKSEhQWFqKjowPPPvss1qxZI/hhvMViwZdffpl0DBiexiveuY2miIpOLA1l69atfL0T/fab3/wm7rvvvqTqs27dOr4uKpUKEyZMSOp36WIwGDBlyhQsWrQoY4O6eDAMgwULFoiSgitKouvk8OHDaG9vR2trK372s5/hL/7iL7Bx40b+s3btWjzzzDP8CpCxUmNJgdvtRltbG5qbm9Hd3Q273Y4XX3xx1HQBmVzET30g6Wyla4P6P/JCSf6QmxaKP9LZojGYcsikPxwOR8wkCDD4ckZXV5dg24FAAKdOncKFCxdksRoEGKxTplKSSlmW2G1EqD05xRBaEUJIQmlpKVpaWmAymUZ8t2LFCuzZswcrV65ETU0Nzp8/H7N6hEgehmFQXl6e9bc8xYBlWZw7dy7t3Ppik+lzK2V5YtoWw5YQG0pq80pg2rRpaGhoEO26ZVkWXV1dI1YZiMktt9yCW265hX+o2NramrH4U1xcjJKSEv6N9ETljVYfhmFQVFQ04m+JztmcOXNGPCguLS2F2WxGX18fWJZFSUkJLBYLZs6cCZ1OB5PJhOLiYuTl5aWp9L/QaDQoKSmB0WjEtm3bYt7Ot9lsKe8pwbJsSvujDF3tdPHiRVy+fBlOpxM7duzgVx6NZi862cSyLHp6emJ+W1paiiVLliAvLw8nT57E//pf/yvh6hyGYfDQQw9h586dKekVytCJl2XLlsHr9fKDrdbW1owNRoautlm5ciU+/fRTwTZHu05GW3UyfOWI0JRY6eB2u2POfSgUwrRp07JSl3hQH0g6W+naoP6PvFCSP+SmheKPdLZoDKYcMumP9vb2uH//8ssvMWXKFEG2o+MEqbIBpEMm6yRlWWK3EaH25BRDaCKEkISx3jpcsWIF8vPz4XQ6cfnyZZoISRO9Xo/ly5dnuxqiEAgEUFNTk+1q8GT63EpZnpi2xbAlxIaS2rwSyM/Px7Rp0/DZZ59luyopE00vo1KpMh5/hqdcGs5o9fn2t7+ddAfSYDDAbDbH/a6goCBmefLtt9+elM1U0Wq1KC0t5f8/dNJmrAmheHAch3nz5kGv16dUD4PBgOnTp8PtdmPatGkp/RYYnFCaN28egMFBS0FBQczLHnl5eSMmeoZSVFSE+++/H1ptZrre0bRgQydeVCoVzGYz3yY8Hs+IiZB0fJJMPZ577jloNBpotVrs378fP/7xj7Fv37645cyfPx9bt26FWq0edUJD6HUbnbQaej2NlUZLKrRaLSwWCy5fvix5WclAfSDpbKVrg/o/8kJJ/pCbFoo/0tmiMZhyyKQ/Rksh2tbWBpVKBa/XC6vVmvJD/eHjBDmQyTpJWZbYbUSoPTnFEEqNlUHC4TAuXLiAV199FZs3b8bSpUvBMAxUKhVUKpWgTXFYlsXu3bvxzW9+EzNmzOBTIdxzzz34t3/7N/T29oonRARCoRCCwSAACN4wfTzj9/tx5MgR2bxBKASDwYDVq1dnNXXHUDJ9bqUsT0zbYtgSYkNJbV4J+P1+/PjHP8bGjRtlc+2mQ6L409PTA5vNhosXL+K9996L+Xz++edob29HOBxOq8yhKZeSqY/BYMDDDz+M3bt3Y/78+dDpdKPaN5lMuOOOO5LaT0DK6yoUCqG1tTVu+iGGYZJOKRXlvvvuQ3t7e9p1Ha0+UaKrhqZPn44FCxZg5cqVmDlzJiZNmoRr165hwoQJcVe8ArFpwYZ+Mvn20+9+9zu0tLSgqqpq1D7W5MmTR9QrOkknBhUVFbDb7aiqqsKkSZMwYcIE5Ofnw2w2o7KyMm5Kt4MHD+KFF15AWVnZmOdMaL9h6KSH3+/HM888g7Vr146aRksqkmmXwOAqnnPnzuH8+fNob29HJBKRpD6pxASfz4f6+nocP34cp06dwpUrV1KOi9QHykzZhHgoyR9y00JjMOls0RhMOcjFHy0tLbh27Rq6urrQ1NSEhoaGlPomyfZ/Mkkm6yRlWWK3EaH25NJmAVoRkjH27duHRx55BD6fT3Tbly9fxsaNG3Hu3LmYv9tsNthsNpw6dQr/+q//itdeew3f/OY3RS8/Hfbt2wefzwetVouvfvWr2a5OzhINnEuXLs12VQSj1WpRVlaG06dPZ7sqADJ/bqUsT0zbYtgSYkNJbV4JhEIh3LhxA7///e+xc+fOpDdaF2uTdbFIFH+eeOKJhL+JPjD+9a9/jbvvvjvlMoemXBq+giAUCsHlcuGFF17g01OVlJTwD3yNRiMmTZqEgYGBuIMNnU6X0oqJdK+rZFY3RDe0fvDBB2GxWGL2OYiuDti0aRP2798/asc4er7/x//4H2hra0t7wBCtz9SpU+N+r1KpMHv27Ljf5Ur8GdpWRsNgMGDx4sXo6OiAy+XiN6LfsWMHnnzySRw+fFjQypCx6jFaSrdJkyahr69vVPti9BtsNhuKioqwffv2uCu0Em3AHg8he3iM1S6jDM2fbbfb4XA48JWvfEX0DdSTbevD05OFw2HcvHkTfr8/pVVm1AfKTNmEeCjJH3LTQmMw6WzRGEw5yNUfdrsddrs96T3wku3/ZJJM1knKssRuI0LtyanNqrhM7rw3jtm1axcee+yxUY9ZtWoVjhw5kpLdjo4OLFu2DDdv3gQwOIC/7777MHv2bPT09ODjjz/GwMAAgMEHIx9++CHuv//+tDSIhd1uR3l5Odrb27F582a88MILadu6ePEiFi1axP+/oaEBCxcuFKOaRAZoamrC3Llz435HviQI5dLa2oqZM2fG/e7cuXMx6RKbm5vxxRdfYOPGjXGPb2lpQVlZmSR1SYY1a9bgnXfegdfrRVNTE2w2W8K6VlZWJrX/yYQJE7Bo0SLRH26KTSgUwokTJ8Z8AKzT6XDPPfeMqsfv98Nms+H8+fN8v2UoQ1MUTZs2DXPmzEm5vj09Pbh48eKox6hUKqxatSpl23V1dXA6naMes3LlyhGTR0LbXzwqKyvx4IMPxqQ+S5X6+np0dnaOmKRjWXbUdFVDefPNN/HDH/4w7neRSATHjh1L+NuSkhJcvHgR69evT77SaaJSqcZswwzD4E9/+hM8Hg//t3hps+644w6cP3+e/3+8iU6x020tXrwY+fn5MX/z+XxoaWmB0+mEWq1GYWEhZs+eLXpqNpvNljCd11e/+tWUU9gRBEEQBCEfxuqvxcNkMuGuu+6K+Vtvby8aGhrErJpiEZIpKJfI5rNcWhGSYSZPnoy77rqL/xw8eBAVFRVp2/vRj37ET4LMmDED+/fvj3mA1Nvbiw0bNuCTTz5BMBjED37wAzQ3NwsaHAshGAzihz/8Idrb2zFr1iw8++yzWamHUgiHw+jp6UFxcbGsNphKB41Gg+LiYvT09KSdakZMMn1upSxPTNti2BJiQ0ltXgkoxR9C4s+JEyfQ09OTVJrH0tJSmEymhGVotVoUFhZi6tSp6Orqkn380Wq1mD9/Pi5dujTqg+Ti4mJEIpFRbRsMBpSVlSE/Px/19fUJl9UzDAOGYRAOh1M+NwaDAZFIBD6fD0ajEWr1yAyxo20Qr5T2ngx5eXlxV2xE99QYa6UIwzAoKipK+L1KpRrVTl5e3pj7lQy9biORSNorMpL5HcuyWLt27Yi/R/czmTp1KhiG4SdK/H4/tm/fzu9DMpTo6qatW7fyK2bGapej4Xa7YyZCWJbF+fPnEQgE+L91dnbC6/Vi0qRJ6O7uxsDAACwWC0pLS+P6Kdm27vV6R/0u2YkQ6gNlpmxCPJTkD7lpoTGYdLZoDKYcMuWPsVbnxmO0vsFwhPR/pCKTdZKyLLHbiFB7cooh8mhp44AHH3wQbW1tsNlsqK6uxrZt2/Df/tt/EzQh8f777+P48eMABgdV1dXVIzYdnzhxIvbv349Zs2YBAPr7+7F9+/a49p566il+v5JUP8mkqIhEIvjv//2/4+OPP0ZxcTH+/Oc/w2q1pq2fGBz8vvTSSyM2O81FLBYLHn/8cVgslmxXBUDmz62U5YlpWwxbQmwoqc0rASX4o6SkBBMnTkw7/rAsi+7u7qSOLS0txeLFi7F06dK4n/LycsyYMQNerzdn4s+kSZOwbNky3HbbbZg1a1bMZ/78+ViwYAEqKyuTtl1YWIglS5Zg1qxZMXtsTJkyBXPnzsWtt96KXbt2pVVXs9kMtVqNM2fOJHy4PmnSpIS/V0J7T5ZJkybFXcHDMExSb6qtWLFi1IfgKpUq4blWqVSYOHEi9Hr9qPuVRPsN3/jGN/Dhhx+O2G8k+vnd7343Zn3T5dKlS3jsscf4vUSi6QGjqbbitbNouq2h/XGWZUdtl6MxfCKnr68vZhIkisvlwtWrV+FyuRAMBtHf34/6+vq4m6BSH0g6W+naGE/xJxdQkj/kpoXij3S2aAymHDLlD5fLJal9If0fqchknaQsS+w2ItSenGIIpcbKMr/61a/w9NNPA0g9Nda3vvUtvP/++wCAn/zkJ/j973+f8Ng9e/bgL//yLwEMLsnv6uoasTz+f//v/5326pSurq5RZ/U4jsOmTZuwa9cuFBUV4dNPPx0xaZMO4z01FsdxCAQC0Ov1sk+hEo+hqbFUKhX0ej0CgQA4jsu6LzN9bqUsT0zbYtgSYiPX27zSSNcfckqNBQAbNmzA/v37+fiTKp999hnKysrGTI2VbF0p/khnz+/3o76+fsTbajqdDlOmTMHMmTMT2h2tbLmlxlq7dm3CDd2Tpbe3F9euXeP3t1Or1SgqKsL06dPxl3/5lzh48OCoqx1MJtOoewFxHIempiZ0dXXxq6Ty8vJw6623YsKECTh58iRcLteoKyvuu+8+/P3f//2oK3miqzkyMaBds2YNnnrqqaTKU6lU2LVrFxiGAcdxyM/PR15eXsrtevbs2bjlllv4/zc1NeHGjRtJ/37SpElYsGBBzN+Svc6am5tx/fr1uN/dfvvto64KSqe8dFBKH4j6P/JCSf6QmxbqA0lni8ZgyiFT/hjtPj8aw1+aSZQai+M4fpW3XNpVJusUryyxUmPJbQw2/PeUGotIGY/Hg08++YT//1j7j3z/+9/H448/Do/Hg/7+fhw7dmzEXiG//OUv8ctf/lL0unIch5/+9KfYtWsXrFYrDh48KMokCDE4iE5mQ9RcgOO4UTfKzTSZPrdSliembTFsCbGhpDavBJTij507dya1YXcibDYbNBoNbDYbenp6BNeH4o909gwGA+666y6Ew+GY1awMw4zZqZfiPEU3FBfz/qfT6ZJK1TYWEydOxMSJExEKhRCJRKDVavll+88//zwuXbokaP8LlUrFr/JhWRZqtXrEbw0GA7Zt2zbmXhsajSZhyrno5Ey8zdDF5sSJE7DZbElNunAcF7PfSryUWZlgeNoLjuPQ3d0Nu90OjuNQUFCAyZMnS5oeIldiUDb7QEq53yoFJflDblqoDySdLRqDKYdc80eiF81UKpXo+5cJJZN1krIsuY3B5NRmKTVWjnLy5El+2Xu8zYiGYzAY8NWvfpX//6effipp/Yby85//HK+88grMZjM++OADLF26NGNlKx2Xy4V///d/l3zJYiawWq3YsmWLbNKlZfrcSlmemLbFsCXEhpLavBJQij9CoRCWL1+OtrY2tLS0xP1EU1HGY/369fjqV7+KjRs34oknnhBcH4o/0tmL/j66f0H0k8ybTVKcJ4PBgHXr1olmDwDmzp0r6htsWq0WDMOMeBAe3UNk6CedTcDVajUMBsOov41XFsdxqKmpQVlZGVauXIkVK1bg9ttvj/v7rVu3Ys2aNZJv3h1vwiYZrFYrfvazn+HMmTMJU9hG7dtsNv4zfMKF4zh+BU+yDJ1A4jgOV65cwblz57Bv3z60t7fjyy+/HHMfIKHkSgzKZh9IKfdbpaAkf8hNC/WBpLNFYzDlkGv+SLRvSCAQQE1NTdyUntkik3WSsiy5jsHk0GblNfVGJM2lS5f4f3/lK19JahbxzjvvxEcffTTi91LyxBNPYMeOHTAajXjvvfdwzz33ZKTc8YLBYMDq1atlM7MqBL/fjyNHjshmVUimz62U5YlpWwxbQmwoqc0rAaX4I6qjoKBg1D0iMl0fij/i25Nj/Nm5cycA4N133xUlfZNc9tqSGq1Wi7KyMphMJqhUKuh0uoSrFqIrS6ZNm4Y///nP+MUvfiFZvaL7hKTC0D5QNA1YdGKIZVncvHkT27dvH9F/ZxgGf/EXf4GqqiqEQiE0NDQIakMDAwPo7Ozkz210fNHT0wOXyxWzKbuY5EoMymYfSCn3W6WgJH/ITQv1gaSzJcc+EJEemfKHWC9BtLa2xv378P6GHMhknaQsS0ljMLGRT2sjUuLLL7/k/z1jxoykfjN9+nT+35cvXxa9TsPZunUr/uM//gMGgwEHDhzAqlWrJC9zvMEwDMrLy7NdDVFgWRbnzp3LdjV4Mn1upSxPTNti2BJiQ0ltXgkoxR9y00HxRzp7UsWfsVZCaDSahA/pjUYjqqqqcPToUXR2do74nmXZmBRKciCZ1FtSD3Q0Gk3Kq1AMBgMWLFgAhmEk2zPkN7/5Tcq/Gd4H6u/vR0FBQcL9UYb+rrq6Go899hj+7u/+LmF6sGSJvqUXPbfDv5NqIiRXYlA2+0Byu0+Nd5TkD7lpoT6QdLZoDKYcpPZHIBBAS0tLWi93DGe0tMHx+hvZJpN1krIsJY3BxIZSY+UoQ/P5Tp48OanfDL3A0lm2nwqnTp3Cv/7rvwIYXO7///1//x9WrlwZ9xN9E5JInYGBAXz44YcYGBjIdlUEk5eXhwcffHDUDU8zSabPrZTliWlbDFtCbCipzSsBKfxx8+ZNtLa28p+Ojg5R9t0YjWR0lJSUCEqrYzAYku7oUvyRzp5U8WesTaELCwvH3GNBr9ePSP+UbropqSkoKBjzfi10ddVYEynBYBBXr15NOZ1AdC+OsVi5ciUqKytjPgcPHsThw4fx+uuvp1TmWMTrA23fvh2HDx9OasLmwIEDolxjkUgEwH+d22AwOOI7KciVGJTNPhD1f+SFkvwhNy3UB5LOFo3BlIOU/giFQjh//rwokyBA4tUgQPz+RrbJZJ2kLEtJYzCxoRUhOYrH4+H/neyD46HHDf29FAwdlHZ3d6O7uzvhsV//+tclrYuSiUQicDgckg5OM4VarUZBQYGkm3GmQqbPrZTliWlbDFtCbCipzSsBKfzxzW9+UzRbyZKMDoPBgG984xt477330ipj3bp1Sb8hT/FHOntSxZ+SkhK43W7cvHlzxHdmsxm33XZbWvWVKxqNBuXl5WhqakJvb2/Md1qtFlOmTIlZiZwOxcXFo+YR5jgOgUAgrRcotm7dCgBxV1sks2m52JNTw/tA7e3tKW3u7vf70d/fL9pbhRzHwe/3S7ovyFByJQZlsw9E/R95oSR/yE0L9YGks0VjMOUgpT/sdnvK+43FIxAIoKGhIeH+IEDm+xvJkMk6SVmWksZgYiOPJ45EygzdRyHZwdjQN1mlnoVbvXo1OI5L6vOrX/1KcHkGgwFmsxnA4KaPDoeDDyYul4sf5A4MDPCBOBQKweFw8DacTic/E+vz+fjgHwwG4XQ6+eMcDgdCoRCAwU2foueSZVl+wM5xHBwOB5+iwOPx8D4LBAJwu90ARgYDt9vNTyL5/X5+wiqRJpPJFLPJaq5p8ng8/IauGo0G77zzDrxeL/Ly8njb2dKk1WrxrW99CyaTSbCfgLHbHsMw2LBhA1QqleiaNBoNNmzYAK1WK7jthcNhfO9734PJZEr7egqFQtiwYQNMJlPKmkwmE7797W9Do9EAEPd6SsZPcr6esqFJp9Phm9/8JkwmU0qaPB4P/8DPYrHw96ehsVyj0aCgoICPEVarlb/f5eXlwWQyxWgXogkYnKgwmUyj+unFF1/Egw8+CIZhoNfr+b0Yhj/EHKopPz8fP/rRj7Bz586k/aTX6/Hggw/yGqVue2LGiOGaAGDDhg3Q6/WitD21Wo0NGzZAp9OldT0Fg0H88Ic/hMlkEvWeq1KpMHnyZNx1111YtGgRZs2ahVmzZuGuu+7C7bffHjOgTOSnUCjE1yc6MIqef7PZzD+UH6vtRc+/1DHC7/dj0aJFWL16Ne644w4sXboUy5cvR3l5OaZOnQqVSiUo7k2dOhXTp09HKBTiz1coFOLrrdVqsWbNGj5mDNUUDAb5f0cikZh+s9/vh06nw7Zt2/DOO+9g9+7dqKysxJ49e/CHP/wB1dXV2LZtG/9bYPAaip4HjUYDk8kEhmGgUqlQUFDA35NS8dPQuKdSqVBVVQW/34+CggI89dRTABLHPa1Wi4KCAl5Tfn5+zGqOaF3D4fAI7fE0DfdTJBKJSSEWPf/xYnm0TQUCgRg/RdtUMm3PZDJh/fr1MW9EihX3TCYTHn74YQSDQcH3XI7jsGHDBhgMhoz390wmE773ve/xGpTSj8jVvpHJZMKDDz7IX8e5rElIv1wKTWKMNbIVI4ZrMhqN2LBhA8LhsCz8JKS/ZzAY8OCDD/KpMSlGZFdTJBLBd7/7XZhMprQ12e12OBwOdHR04Pr16/xxFy9eTLkfEQ6HY/qwDocD9fX1cLvdMf2I4X3dSCSChQsXgmGYEf2I4f24of2N6Pkaq7839LhkNalUKixatAgajSZhv3w0TcPrOpomnU6HRYsWgeM4vq5itT29Xo8NGzbwNqP1Trft5eXlYcOGDYhEIqKOCbMBTYTkKEPfUEs2x/HQVRpyST8kFsuXL8f69esBDOYgrKio4PXu3LkTjY2NAICjR4+iuroaANDR0YGKigrexo4dO9Dc3AwAOHToEA4dOgQAaG5uxo4dO/jjKioq0NHRAQCorq7G0aNHAQCNjY18mq9AIICKigo+ncvevXtRU1MDAKirq8OePXsADAaHiooKPhjt2bMHdXV1AICamhrs3bt3VE2hUAjV1dU4cOBATmo6cOAAP4DYtGkT7rvvPmi1WqxatQpnz57NqqYzZ87gtddeQygUEuwnYOy2d+XKFbS2tuLgwYOiazp58iRaW1tx5swZUdresWPHEAqFBF1Pra2tCIVCKWsKhUJ44403cPLkSQDiXk/J+EnO11M2NNXX1+P3v/893wFMVtOf/vQnWK1WAMAjjzyCxYsXA4iN5cXFxdiyZUtMjFiwYAEAYNWqVVi7dm2MdiGaDhw4gOrqaoRCoVH99NFHH+Ef//Ef8eWXX+Lll1/Gtm3b8PHHH+PAgQPYsmULDhw4gI8//hjbtm3D66+/jitXrmDv3r34xje+AaPRmLSf2traUFFRwXecpW57YseIoZoOHDiA1tZWXpMQP1VXV+Pw4cNobW1FfX192tdT9P4pxT33+vXrmDhxIs6ePYuzZ8/CZDLh2rVrSfmpq6uLr084HEZtbS0/wFm/fj2WL18OAFi8eDEeeeQRAIMPyrds2RJzPV29ejVlPwmNEc899xx6e3thMBjw3nvviRL33G43Zs2ahatXr4JhGMyaNQsOhwNNTU2YMmUKJk2ahLfffpsfLO7cuZPX3tbWhitXrvD2amtr+bqePn0adrsdAHD9+nV4PB4+BVlbWxs/8VBbW8u3/ytXrqCtrQ3Tp0+HxWLBpUuXsGLFCuj1emzZsgXFxcUp+2lo3PvBD36AsrIylJSUJBX3SktLsWXLFl7T5s2b+fPQ3NzM+8xut+P06dP8cfE0AcDHH3+MF198EVeuXOHbXldXFyKRCBobG/n2OtxP+/bt49tUfX09n0ajo6MDH374IYDk2l4oFMLp06clueeGQiE0NTWJcs99++230drais7Ozoz390KhEI4dO6a4fkSu9o2ifdjoNZTrmtLtl0ulSYyxRpRMxojhmrxeL1pbW2XjJyH9vWjcG3rPpRiRPU1vvPEGPvnkE4RCobQ0tbe347nnnsO5c+dw9epVvP766zh+/Dg4jsPly5dT7kf09PTE9GErKir4PsHQfoTNZkN9fT2vvba2Fj09PYhEIiP6EdF6+3w+1NbW8g/s6+rq+POVbH8vlb5Ra2srHA4Huru7E/bLx9KUqG80XFMwGITD4YjRJFbba2trQ2trKw4cOCBK2+vv70drayveeOMNUceE2UDFyWkN0jjkV7/6FZ5++mkAgwOcI0eOJPW7hx9+GG+99RYA4IknnkiqIb3zzjv4/ve/D2AwhUO8DTlzjYsXL2LRokUwGAzQarWoqanBvHnz4Ha7kZ+fD5VKBZfLBYPBAIZhMDAwgEgkApPJhFAoBI/Hw79R53Q6YTQaodPp+ABnNBoRDAbh8/n4DSIdDgfMZjO0Wi3/dmpeXh5YloXf74fVagXHcXA6nbBYLNBoNPB4PNBqtTAYDAgEAmBZFhaLBZFIBC6XC1arFWq1Gm63m3/T2O/3IxQKwWw2IxwOx9Xk8/lQUVGBn/zkJ5g6dWrOabpw4QKWLFkCjuNQWlqKv/mbv8G///u/IxAI4Pjx41iyZEnWNHV1deHFF1/Ek08+CavVKshPybQ9lmXxwgsv4Kc//Sny8/NF1eT1evHiiy/i8ccfh9FoFNT2rl+/jp07d+LJJ5+EXq9P63rq7OzEa6+9hieffBIAUtLkdrtRUVGBxx9/HJMnTxb1elJijJBaU3d3N3bs2IEnn3wS+fn5SWvq6enBjBkzEAgE+DfYA4EAH8ujb61ZLBY4nU5wHAer1Qq/3w+WZZGXlwe1Wo1wOMxPkAnRdPPmTbz88st48sknYTQas+6n3t5ePP/883jyySdRUFAgedsTM0YM12S32/Hyyy/j5z//ecxb7OlqcrvdeOmll7B582YYDIaU/dTR0cHHH41GI6t77meffQav1wu9Xs+nfWIYBt3d3fjJT36CUCgEv98PvV4PhmHgdruhVqv5e1QkEoHFYsHp06cxd+5cWcQIKeNeX18f/vM//xNPPPEECgsL4XK54Pf70djYiGAwCI7jwDAMIpEIWJaFwWDA7NmzcfHiReh0Omg0Gv6tOp1Oh3A4jGAwyL9s5Pf7wTAM1Go1/4bg7NmzUVpais8//xwejwfbt29HQ0MD+vv7EQ6HYTabk/bT0LhXVFSEn/70p3juuecQiURGjXterxdarRZms5l/oy4/Px8vvPACpk6dOkKTz+fjH1wFg0FoNBqo1WqEQiEUFhbCZDIhHA4jFArxbc/lcuHcuXNYtmwZ1Go11Go15syZg/z8fPT09CAvLw9WqxUtLS3o7++HSqVCIBCARqOBVqtFKBSCWq3GmjVrEIlExmx7wWAQFRUVeOyxx/iUamK1vUgkwtueNm2aoLbX19eHV155BX/3d38HjUaT0f5e9IHFpk2bcMsttyimH5GrfSOHw4GKigr8/Oc/x8SJE3Nak5B+uRSaxBhrZCtGDNfEcRyee+45bNq0CZMnT866n4T09+LdcylGZE9TR0cHXn31VTz55JMwGAwpa7px4wbq6+tj+jw6nQ7l5eX8C6nJ9o2ixw3tR5SWluL69ev8cWq1mu8fhMPhuP0NlUoV04+IRCIx/Ti9Xs/3N7RaLd+Pi9ffG6op1f4ey7I4c+YMli5dCq1WO6JfPpamQCAQU9fRNHEch88//xzl5eUwm83QaDRYtmyZKG0vFArh+eefx09+8hMUFhYKbnuRSAT/8R//gR//+McoLi4WPCa8ceMGFi1ahCgNDQ1YuHAhMgFNhGSZdCdCfvazn/Ezfg8//DCqqqrG/M0LL7yAn//85wCABQsW4OLFi+lVWkZEJ0KiZPLiIYTT1NSEuXPnxv2OfEkQyuaBBx7ARx99JMhGsvc/gsgFampqYpbqR7HZbNi4cWPSdlpaWlBWViZizXIHlmX5FYPDUalUWLhwIRoaGtK2P336dMyaNQtnzpzhUwawLIv+/n74/X5s374dly5dStu+ECorK2P2CInWJ94+KFGS2Q8lislkGjXPdzzuvvtufoDe29sLt9sNo9GIiRMnjlpeNH2uXPaNIwiCIAglUVtbGzddfvTFNqGo1WpZ7AWRi6xevTrbVcgI2XyWS5ul5yhDN92MLkcbi/b2dv7f8+bNE71OBEEQBJEsL774Iv7mb/5m1Id0iWAYBt/5znf4pb0EQRDAYGwoKipCf3//iO8mTZoUs1+emGVGJyBeeOEFfmIkitlsxve///2U41w85s+fn9REC8uy+Pu///sxj2VZlt+UPbovSiJSnQQBBt9c1Gq1OHfuXMw+OW1tbSgvL+f3PIkSDofR1NSE3t5ehMNhWK1WzJkzh98HhiAIgiAI4STaM1iMSRAANAlCyBp6zSZHmT9/Pv/v+vr6mA1fExFd4jb890Tu4nQ68eyzz4p2w8om+fn5eOqpp/jlfNkm0+dWyvLEtC2GLSE2lNTmlYAQf8yaNQuVlZU4fvw49u7dm9TnT3/6Ew4dOoSOjg68/fbb/IaN2dQhBRR/pLNH8Uc5JPLHwoULUVJSAp1OB2BwomLatGm47bbbMvJAPToxEv2YzWasWLFi1N+M1QdiGAZr1qzB1q1bR7Xj9/vxzDPP4MEHH0xpZcrQCWmWZXH9+nUcP348ZvPUdOA4DtevX4+ZBAEGU3Rdu3aN/3/Ul2fOnIHNZkMoFOJTNpw/fz5mn8NUUUofiOKPvFCSP+SmhfpA0tmiPpByUIo//H4/Pvvss7grorNFJuskZVlKGoOJDa0IyVHuuece6PV6BAIBeL1enD59mt+cMR6BQIDf+AYA7r///kxUk5AYo9GIhx56SLSHgdnE5/Nh3759IwbL2SLT51bK8sS0LYYtITaU1OaVgFB/TJ48GZMnT8bdd98tcs1SQ27tiuKPdPYo/iiHRP7QaDSYN28en15JpVJBpVLx3y9evJjf5DFTRCcwEq2AG60P9Lvf/Q4LFiwAwzD8hpuJ2L59O7/CIxVYlsXNmzfxhz/8ASdOnADHcZg9ezaam5uhUqmSTp8Vj+gmnMPp6+vj/200GrF27VrYbDZoNJqY44LBIPr7+zFlypSUy47aVkIfiOKPvFCSP+SmhfpA0tmiPpByUIo/dDod5s2bx7+8IgcyWScpy1LSGExsaCIkRzGbzfja176G999/HwCwa9euUSdC3nnnHT6XcVFREe67776M1JOQlmjgVALBYBCXL1/OdjV4Mn1upSxPTNti2BJiQ0ltXgkoxR9y00HxRzp7FH+Uw1j+GD4BEiU/Px933nlnzEppqTEYDNi2bVtM2iybzYZf/OIXAEbvA5WUlIBhmDHL8Hg8OHHiRNp1HL6/ydD6JJs+Kx7JvOWo0+kwffr0hJMmbrc77YkQpfSBKP7ICyX5Q25aqA8knS3qAykHpfhDo9Fg4sSJ2a5GDJmsk5RlKWkMJjaUGiuH+dnPfsb/e9euXQk3P/f5fDEDl5/+9KfQapU1B2YwGPh0B+FwGA6HAxzHAQBcLhf/9t3AwACf4zgUCsHhcPA2nE4ngsEggMFzFn0rLxgMxizfcjgcfCoyr9fL51dkWRYulwvAYCoAh8OBcDgMYHBwGh0IBgIBflIqEonA4XDwORTdbje//N/v98Pj8YyqyefzYe/evfzAMdc0eTwe/iHFpEmT8L3vfQ9GoxF5eXm87WxpstvtePvtt+Hz+QT7CRi77TmdTuzbtw+9vb2ia+rv78e+fftgt9sFt72uri786U9/gs/nS/t6stls/JuvqWry+Xx4++23+QdJYl5PyfhJztdTNjQ5HA689dZb8Pl8Oa2pp6cHe/fuhc/nk4WfXC4Xf17F8FMmY8RwTT09Pdi3bx9cLpcoba+vrw/79u2Dw+FIy0+dnZ1499134fP5ZHfPDYVCfH04joPf70ckEkFRUREKCwv5t/H1ej0sFguAwc0oCwoK+E2lJ06ciMLCwpT9lItxz+1246233oq5bpLVlJeXh/vuuw9z587FjBkzcMcdd4BhmJiH9tHzH9URPQ8sy/L6hvop+l30PMTzp06nQ0lJCQoLCzF37lwwDAODwYDi4mI89NBDMJvNKCgo4PtGEyZM4NNlBYNB3rZWq0VBQQFf1/z8fPzsZz8Dy7IwGo3823Y6nS4m3VZBQQE/BjCZTMjLywMwmHrrxo0bAAYnkEpKSvDd734XRqMRZrMZBoMBJ06cgM/nG6Ep2qYCgUCM9qgvIpHIiOOibSDqJ5/Ph/fff59vA9HzHz0uEAik3fZ8Ph/effdddHZ2Cm573d3d2LdvH9xud8b7ez6fD3/605/Q1dXFn/9cvecqoW/k8/nw1ltv8XXPZU1C+uVSaBJjrJGtGDFck9frxb59+9DV1SULPwnp7wm5547HGCG1pu7ubv46SUdT9N4cZeg9NxgM8vrC4XBSfaNwOBy3Dxs9LlHfyO1249KlSwgGg2n1I4LB4IjjhGry+Xy4fPky/H5/WppS6RuxLIvLly/D4/GM6BtFf5Nu23O5XNi3bx96enpEaXsejwf79u1Dd3e3qGPCbEATITnMt771Ldx7770ABhvqt7/9bVy4cCHmmL6+Pjz00EO4evUqgMHVIP/0T/+U8bpKzfLly7F+/XoAgw+0Kioq+Itz586daGxsBAAcPXoU1dXVAICOjg5UVFTwNnbs2IHm5mYAwKFDh3Do0CEAQHNzM3bs2MEfV1FRgY6ODgBAdXU1jh49CgBobGzkN+4NBAKoqKjgH5bs3buXT01WV1eHPXv2ABgMDhUVFXww2rNnD5+uoaamBnv37h1TU1dXF1/XXNN04MABfuPSRx55hB/Ur1q1in9TM1ua6uvr+fzVYvhprLbX2toKADhy5Ijoms6cOcNrEtr2/vjHP/I32XSvp127dgnS1NbWxmsS+3pSYoyQUtOVK1f4+0suazp06BD/cEkOfrp582bMm9lStz0xY8RwTdG63rx5U5S2d+rUKQCDbS8dP/3+97/nBxByu+d2dXXx9QmHw6itrYXP5wPDMHj00Uf5lb+LFy/GI488AgCwWq3YsmULrFYrAODHP/4x33bkECOkvJ56e3tx6dKltDWp1Wp8/vnnOH/+PAoLC9HX14fTp0/zx9XW1vJ1uHLlCtra2nhNJ0+eHOGn6HfR82Cz2VBfX89rr62t5etaX1+P/v5+rFixAsuXL8fatWsBDE5kbdmyhe8b/eQnP+HvuW1tbXycKi0txZYtW/i6bt68GbNnzwYAPPDAA3jggQcAALNnz8bmzZv547Zs2YLS0lIAwNq1a7Fq1SoAwIIFC7Bp0yYAgxNtjz/+OD/xtn79eixfvhwsy6K1tTWuJpZlUVdXhytXrsBms6GtrY33hc/nQ21tLT/Qrqur49vAUD8NDAzErNI5ffo07HY7/5sPPvgAV65cwYcffoj//M//RGdnJ4Dk2l4kEsHvf/97wW3vvffeAzDY9rLR33M6nfjjH//In/9cvecqpW906dIl3Lx5M+c1Ce2Xi61JjLFGqm1PrBgxmiY5+ElIf0/oPVcMP+XC9ZQpTXv37uVfDExHk8vlQm1tLV/Xoffc5uZmXp/dbk+qb9TT0xO3DxvVm6hvdPbsWX5yob6+nk8B2tHRkVQ/oq2tDVeuXBFVU7SufX19aWka3t9LRlNDQ0PcvpGQthe9Px06dEiUthedGNm7d6+oY8JsoOKi0zWE5Hzzm9/kG2MUm83GD2pMJhNuvfXWEb97//33MXXq1Lg2Ozo6cPfdd/ODAZVKhVWrVmH27Nno6enBxx9/zF+sWq0WH374Ib72ta+JKSurXLx4EYsWLYLBYIBWq0VNTQ3mzZsHt9uN/Px8qFQquFwuGAwGMAyDgYEBRCIRmEwmhEIheDwe/uG70+mE0WiETqfjz5nRaEQwGITP5+PfqHM4HDCbzdBqtfB6vVCr1cjLywPLsvD7/bBarfwGjxaLBRqNBh6PB1qtFgaDgR8wWiwWRCIRuFwuWK1WqNVquN1uMAwDvV4Pv9+PUCgEs9mMcDisSE0XLlzAkiVLwHEcrFYrPyuel5eH48ePY8mSJTmnSYl+Ik2kiTSRJtIkvabPPvsMXq8Xer0eHMchEAiAYRio1Wq4XC68+OKL+OSTT6BSqcAwDNxuN9RqNaxWKwYGBnDPPffg1VdfxdSpU2WjKZf8dOHCBdy8eZOfAPD7/fz5Z1kWKpUKs2fPRmlpKT7//HN+Q++hfmJZFmq1GlqtFqFQCOFwOMafer0eKpUKgUAAGo0GoVAI/+///T+cOXMGdrsdGo0GFosFPp8PK1aswJNPPgmz2QyNRoNgMIiuri781V/9FbRaLcxmM/9GXX5+Pnw+H4LBIL8axOfzQafTwWg0wul0Ys2aNfjRj36EzZs3IxQKwWQyIRKJYGBggF+Z4nK5oFKpkJ+fD7fbjXA4DLPZjFAoBL/fjzfeeAMTJ07kNUUHxydOnIBerwfLsggEArBYLPjqV7+KF154AW1tbWBZNka7VquFRqPBsmXLeD/Z7XbU1tbGnH+dTgeNRgOr1QqPx4NIJIJwOIxgMAiDwYBZs2bBarXmfNtT4vVEmkgTaSJNpEm+mj799FOwLBv3nht9YUin08XccxP1jaLHhUKhuH3YVPtG0eMikQgYhkEkEknYjwgGg+A4Lua4XNc0tG+kxLYX1XTjxg0sWrQIURoaGrBw4UJkApoIySBlZWX8jGkqtLS0oKysLOH3ly9fxsaNG3Hu3LmExxQXF+O1117Dt771rZTLlzPRiZAombx45EAwGERzczNmz54tqw2mkqWpqQlz584FMHhTim7MGQwGs+7LTJ9bKcsT07YYtoTYyPU2rzSU4g+56aD4I509OcefmpqaUfdTsFqt6O3t5d8AHEpRUREYhsHSpUv5VKFKR2x/2O12XLhwAaMNjaZPn45Zs2bhzJkzMWmchDIwMICOjg6YTCao1Wren8NhWRZr166Nu+H6aLz++uuYPn06bDYbNm7cOObxw/tkUZ577jkUFxcDGGxzzz777Kibs3/nO9/h90GJx+rVqwGA7/f19/eP2CwdGHzRK55fdDod7rnnnrh7wURRSh9Ibvep8Y6S/CE3LdQHks6WnPtARGoI9ceRI0fEr1QahMNh2O12FBYWxr3/Z4NM1ileWdG+kVDkPgbL5rNcSo2lAObNm4fa2lq8/vrrePDBB3HLLbeAYRhMmjQJy5cvx/bt29HY2Ki4SRBi8G2/aK7QXMdoNOKhhx7i32TMNpk+t1KWJ6ZtMWwJsaGkNq8ElOIPuemg+COdPTnHn7EGWxqNBgzDoKSkZMQnmc20lYbY/igsLIwZkI2G2HvtqVQqdHV1oaioaFR/MgyDFStWpGw/1faRqE/2xBNPYOPGjdi4cSMefPDBUSdBgMF0DMlM2vh8Phw8eDBm0mUoiSanhuYGH822EvpAcrtPjXeU5A+5aaE+kHS25NwHIlJDKf4IBoO4fPlywvt/NshknaQsS0ljMLGhFSFETjPeV4TkOkNXhAyHfEkQBEGMJ5qamvgNq+Mxc+ZMtLS0jGpjPK0IkYpz584l3MQxuiKkvb2d30cs0/j9fmzfvn3MSYihVFZWYtq0abhx40ZSK0LEpLKyEiUlJXG/G/rWo9vt5vPXp8Ly5cv59BYEQRAEQYyNXFaEECMRa0WI3KEVIQRBEARBEAQxjpkxYwZMJlPc7yZNmoSJEydmuEbjE7U68fAomoKptLQ0K/4wGo0wGo3Ytm0bv5HmWDAMg6KiIhQWFmLZsmUS15AgCIIgCIIg5AtNhBBEDuNwOPD0008nfHMxlygoKMCvfvUrfiOobJPpcytleWLaFsOWEBtKavNKQCn+kJsOij/S2ZNz/GEYBosXL8bChQsxY8YMTJ8+HWVlZSgvL8f8+fNH3QdhPCKVP6xWa8LvoptQqtVqLFy4EHfddRduu+02zJkzJ2n7xcXFKC0txR133IF77rkHwOAqj6NHj466R0y03GhZZrMZa9asGbO8FStW8Kmxkm1DmeqT9fb2wu12w26347e//e2Y+tNBKX0gud2nxjtK8ofctFAfSDpbcu4DEamhFH8k2//JJJmsk5RlKWkMJjaUGovIacZ7aqxQKISOjg6UlpaKnq86EwxNjaXValFaWoqOjg6EQqGs+zLT51bK8sS0LYYtITZyvc0rDaX4Q246KP5IZy+X44/P58Pnn38+6jHjKTWWVP5gWRbnzp0bkcN4woQJWLhwYdwVIyzL4uTJk2PaNpvNWLp0aczfPB4PPv/8c7hcLlit1lFXpER/7/F4cPr0aT5N1okTJ0bslRHdT2Tr1q0wGAyYOHEibr31VhQUFCAQCIxaz+F9MiGMlhoril6vh9FoRF9f36j64zFWaiyl9IGyHX+IWJTkD7lpoT6QdLZyuQ9ExCLUH3JJjRWJRJLq/2SSTNYpXllipcaS+xgsm89yaSKEyGnG+0RIrkN7hBAEQRBEctBESOZgWRbd3d1wuVxQq9UoKCjApEmTEg6IhUyEAEA4HIbL5cLAwACCwWDCvWCG/r63txcNDQ18+f39/THHFhUVxWySPnHiRCxatAjr1q3DgQMHxqyrWCQzEQIMTr6kM+lCe4QQBEEQRGrIZSKEGAntESI98phyIwiBGAwGfuAfDofhcDgQneNzuVz8W3IDAwPwer0ABmckhy7LcjqdCAaDAAYfNkTfBAwGg3A6nfxxDoeDH6h5vV4MDAwAGByEulwuAADHcXA4HAiHwwAG3/aLLncLBAJwu90ABmeAHQ4HIpEIgMGNIqNv6fn9fng8nlE1eb1e7NmzB93d3TmpyePx8GkaJk+ejI0bN8JkMiEvL4+3nS1N/f39eOONN+D1egX7CRi77TkcDlRVVaGnp0d0TX19faiqqkJ/f7/gtmez2fDHP/6RLz+d66mzsxNVVVXwer0pa/J6vXjjjTfQ19cHQNzrKRk/yfl6yoYmu92O3bt3w+v15rSm7u5u7NmzB16vVxZ+cjqd/HkVw0+ZjBHDNXV3d6OqqoqPc0L85PV60dvbi6qqKtjt9rT8dPPmTVRWVsLr9ebsPTcUCvH15jgOfr+fr6vH48n69ZSpuOdyubB79+6Y/4uliWEYmM1mzJ07F/PmzYPFYuHrMJomlmX58xDPT4k09fX14eDBgzCbzVCpVLyfAoEAbzsYDPK/CYVCfB2i56y4uBglJSWYMGECJkyYAIZhEA6HY9ItOBwObN++HWvWrEFBQQHy8vJ4vdGUYCqVClOmTMGGDRuwZs0a7N69G2+88Qaee+456PV6WCwWAOAniKKTQxaLBXq9HkBsv3x4Gx2uiWVZsCyLurq6GE1+vz/muKjPhmtyOp2jtj2v14vKykrcvHlTcNuLxjOXy5Xx/p7X68Uf//hH2Gw2/rzm6j1XCX0jr9eL3bt3x/w/VzUJ6ZdLoUmMsUYqbU/MGDFck8fjQVVVFWw2myz8JKS/J+U9Nxk/JdIkt+spU5q6urr4sUs6miKRSMy9NNl77tC+DMuyMccl6vOM1jdyuVyor68Hy7IIBAIxx0XrHa3raP0IMTV5vV40NDRgYGAgLU3D6zqapkAggIaGBrjdbr6uYrU9p9OJqqoqdHd3i9L23G43qqqq0NXVJeqYMBvQRAihCJYvX47169cDAHp6elBRUcFfnDt37kRjYyMA4OjRo/zmkh0dHaioqOBt7NixA83NzQCAQ4cO4dChQwCA5uZm7Nixgz+uoqICHR0dAIDq6mocPXoUANDY2IidO3cCGAwcFRUV6OnpAQDs3bsXNTU1AIC6ujrs2bMHwGBwqKio4IPRnj17UFdXBwCoqanB3r17R9WkVqvh8Xjw0Ucf5aSmAwcO8IPmH/3oR9BqtYhEIli1ahXOnj2bVU0XL15EZ2cn1Gq1YD8BY7e99vZ2FBQU4NixY6JrOnv2LAoKCnDx4kXBba+yshLhcBhqtTrt6+n111/nH56kqkmtVqO7u5tvH2JeT8n4Sc7XUzY0NTU1oaOjA2q1Oqc1ffTRR/B4PFCr1bLwk81mw7Vr1/gHjFK3PTFjxHBNH330EQoKCmCz2URpezU1NSgoKEBTU1Nafnr55ZdhNBqhVqtz7p575swZvn3U19fzx9XW1vJ1feedd7J+PWUq7vX39+PatWv8gDCbmqKT842Njfxv4vkpOsAcrum9995DQUEB+vv78dprr/GD0rq6Ov58tbW18fY6Ojqwe/duvq6nT5+G3W7ndUT12e12nD59GgCg0+lQUVEBr9eLbdu24emnn8b/+T//B/Pnz8eCBQuwadMmAINpqv72b/8WhYWF+Pu//3v09vYiGAyiuLgYixcvxiOPPAJgcC+VLVu28BMojzzyCBYvXgwgtl/u8XhQW1ubUNOVK1egUqmgVqv5c5KsJgB48cUXR/WTWq2GxWLByy+/LLjtDfVTpvt7arUa4XAYlZWVfJvK1XuuEvpGarUa165d4yemclmTkH65FJrEGGuk0vbEjBHDNQWDQRQUFKCyslIWfhLS35PTPVfO11OmNL3zzjtgWRZqtTotTS6XC7W1tXxdk73n1tbW8nW4cuUK2tra+HKj5zgcDqO2tpZ/SD9a36iurg46nQ4qlQr19fV8TO3o6ODr7fP5xuxHiKnpxo0bMBgM6O/vT0vT0H75WJoikQgMBgMuXrzIaxKr7dlsNhQUFOCjjz4Spe15vV4UFBSkPdZINCbMBpQai8hposupDAYDtFotampqMG/ePLjdbuTn50OlUsHlcsFgMIBhGAwMDCASicBkMiEUCsHj8fAbQTqdThiNRuh0Oj7AGY1GBINB+Hw+foNMh8MBs9kMrVYLr9cLtVqNvLw8sCwLv98Pq9UKjuPgdDphsVig0Wjg8Xig1WphMBgQCATAsiwsFsuInIButxsMw0Cv18Pv9yMUCsFsNiMcDitS04ULF7BkyRJwHAer1Qq/3w+WZZGXl4fjx49jyZIlOadJiX4iTaSJNJEm0pR9TSzL4sKFCwiFQgiHw9Dr9eA4DoFAAHq9HiqVCvPmzUNhYWHOaFKSn06fPg2n0wm1Ws2neRrup6KiItx9992jarpx4waam5uhUqkQCASg1Wqh0WgQDAZhNBqxYsUKhEIh9PT04MsvvwQw+EaeTqfjjwMGJz7C4TCCwSAMBgMWLFgAhmGg1Wpx+vRpsCwLlUoFnU6HgYEB9Pb2QqfTgeM4mEwmmM1mqNVqsCyL/Px8tLS04K//+q/BMAzcbjfUajWsVitcLhcikQgsFgv/Rme0X+7xeKDRaPCNb3wDmzdvhs/nQzAYhEajwcSJE/nVLwzDIBKJgGVZPs1VMpoAYP78+ZgwYcK4bnukiTSRJtJEmkhTKpo+/fTTtO65fr8fDMPw/YNoPyIcDiMUCsX0eYYeN1rfKNqHDQQC0Gg0/HGRSCSmfzD0uKF9I6H9CLlpWrZsmaLbXlTTjRs3aI8QgkiH8b5HCMuyaGxs5Ae3ucbQPUIYhsGCBQvQ2NgIlmWz7stMn1spyxPTthi2hNjI9TavNJTiD7npoPgjnb1cjj/J7EMxnvZLyLY/hmOz2XD58uVRj0m0R8hQLT6fD+fOnRvz9xzHjUgnlYhp06bh1ltv5dORjpUbPBwOo6enB8XFxSgtLcVtt92G999/H9/61rfGLCtZhm7mrtPp+PI0Gk1KdsZq80rpA8mtvY93lOQPuWmhPpB0tnK5D0TEItQfctkjZGh/I9X7v1Rksk7xyhJrjxC5j8FojxCCINLC7/fjyJEjMTkOcxWDwYDVq1fL5gFOps+tlOWJaVsMW0JsKKnNKwGl+ENuOij+SGcvl+MPwzAwGo0Jv8/Ly5PNPTQTZNsfwykpKcFXvvIVfrIhFdLRolKpcPvtt496zMyZM7F8+XLMmTMnpl7RtKSJCIVCaG1tjdm8vLi4WNSHXyzL4vDhw9i+fTtfns/ng81m4z/R3NJCUEofSG7tfbyjJH/ITQv1gaSzlct9ICKWsfwRTdfU0NDA720nR+L1N7JNJuskZVlKGoOJDa0IIXKa8b4iJNcZuiJkOORLgiAIgojF4/Hg3LlzIwZMWq0Wt99+O79fA5E9uru7+ZzIw0m0ImQoHo8nJnf1UAoLC3HHHXfE/O3o0aNINJxLtFri1KlTfA7nsZgyZQpuu+022Gw2/OhHP8Lhw4eT+l0q7N27F88//zxOnDgRM/kxdNVIokm+8bQKiiAIglAegUAAXq8XFosFOp1OsL329nZcu3Yt5m9z5szBtGnT+P/LZUUIMRKxVoTInWw+y9VmpBSCICRheA7CXEalUkGv1yMQCCQc0GeSTJ9bKcsT07YYtoTYUFKbVwJK8YfcdFD8kc5erscfs9mM5cuXw+Fw8G9U6fV6FBQUiDJ4ziXk4I94qNWJF9wn+m6oFpPJBIZh4q6GKCwsFK2eo8FxHMLhcExKCKvViq1btwLAiAkLofzgBz+AXq/nc3hHia4aAYBt27alZVspfSC5tvfxipL8ITct1AeSzlau94GUBsdxuHbtGq5fv87/7dZbb0VpaWlSv43nD47j0N7ePuL49vZ2TJ06VXa+G9rfkEvdMlknKctS0hhMbCg1FkHkME6nE7/5zW/gdDqzXRXB5Ofn46mnnuI3eMo2mT63UpYnpm0xbAmxoaQ2rwSU4g+56aD4I509JcQfrVaLiRMnorS0FKWlpSguLh53kyCAfPwxnNH6MdHNLoczVItKpcKiRYtG5KWO+jwTBAIBnDhxImbViEqlgsFgwLZt21BdXY3KysqYz4EDB7BmzZq0yhurD5jqxEskEoHD4eBTbCmhDyTX9j5eUZI/5KaF+kDS2VJCH0hJ9Pb2xkyCAMDVq1eT2vsrkT8cDkfcNEuBQAADAwPCKiwB8fob2SaTdZKyLCWNwcSGUmMROc14T40lx82lUmFoaiyNRoPi4mL09PQgHA5n3ZeZPrdSliembTFsCbGR621eaSjFH3LTQfFHOnsUf5SDnP0RLy2F0WhEeXl53H024mkJh8NwOBxgWRZWqxVGozHuG3TppMZqbGwcNWd4JBKBz+eD0WjEtGnTcNttt4HjOJw8eXLEqo142h999NFRjxnO8D5gPCorK1FSUjLi78M1BgIBnD9/Hj6fj9diNptx5513QqsVlgwhm30gObf38YiS/CE3LdQHks4W9YHkRV1dXdyHwtGUlKORyB9NTU24ceNG3N8sXboUZrMZgHxSYw3tb4y2ojaTZLJO8coSKzWW3MdglBqLIIi00Gg0cQeFuUg4HIbNZst2NXgyfW6lLE9M22LYEmJDSW1eCSjFH3LTQfFHOnsUf5SDnP0xffp05Ofno7+/H6FQCBaLBRMmTEi4cieeFo1GgwkTJkhSv+Li4lEnQtRqNf+wJIpKpUJZWRmamppGtZ3OhurJ9AGj3xcVFY1aRlNTEz8JAgxq8fl8sNvtKC4uHnE8x3Hwer3Q6XRjbiKfzT6QnNv7eERJ/pCbFuoDSWeL+kDyItGb8Z2dnWNOhET94XQ60d3djVAohAkTJqCrq0uKqkpGvP5GtslknaQsS0ljMLGRx5QbQQjEYDDwAST6Bl307TiXy8Uvpx8YGIDX6wUAhEIhOBwO3obT6eTfcvP5fPwgKhgMxtykhi439Hq9/BJDlmX5ZYwcx8HhcPBvtXk8Hj6XdyAQgNvtBvBfS/cjkQgAwO1288vi/H4/PB7PqJo8Hg9effVVfjCba5o8Hg//dmNJSQkee+wxmM1m5OXl8bazpamvrw+vvPIKPB6PYD8BY7c9u92OXbt2obu7W3RNvb292LVrF/r6+gS3vc7OTuzcuRMejyft6+nmzZvYtWsXPB5Pypqibb63txeAuNdTMn6S8/WUDU39/f38dZLLmrq7u/Hqq6/C4/HIwk8Oh4M/r2L4KZMxYrim7u5u7Nq1Cw6HQ5S219PTg127dqG/vz8tP924cQOvvfYaPB7PuLvnKi3uOZ1OvPLKK/zv5KbJYDBg4sSJmDNnDiZNmgSv15tQU1dXF3bt2gWn05mWn/x+P1+HYDDI60ukqbi4OGbT1HA4zNeH4zi4XC7U1dWBZVkMDAzwmiZOnIgZM2bwx/n9fr6ugUCAP19D++UajQYFBQV8f89qtfITGXl5eTCZTDCbzXjssccwdepUvk75+fn8xJHRaMT//J//Exs3bsR3v/td/OY3v+Hr5HQ6+XI9Hg8/YRLVxLIs6urqcOXKlRF+6u/vx7Fjx3DixAmcOnUKp0+fRk9Pj2R+EtLf83g82LlzJzo7O/nzTzEie5o8Hg9eeeUV/ne5rElIv1wKTWKMNVJpex6PB6+99hpu3Lghuia3241du3ahs7NTFn4S0t+T+z1XLtdTOpr8fj9fV5Zl+d+Mpslms+Gll15CbW0t2tracP36dTQ2NoJl2RH35uj5GqopEonw5y56XuL1I8Lh8IjjhtZ16HFD+xGJNIVCoYT9jaH9iFAoxPsiWtd4moLB4IjjhGryer04d+4cBgYG0tKUqG8UT1MgEMC5c+fgdrvj+klI23M4HHx/Q4zryeVyYdeuXbDZbKKOCbMBTYQQimD58uVYv349AKCnpwcVFRX8xblz5040NjYCGEwfUF1dDQDo6OhARUUFb2PHjh1obm4GABw6dAiHDh0CADQ3N2PHjh38cRUVFejo6AAAVFdX4+jRowAG0wzs3LkTwGDgqKioQE9PDwBg7969qKmpATC4BHLPnj0ABoNDRUUFH4z27NmDuro6AEBNTQ327t07QlMoFMJLL72EQ4cO4cqVK/B6vXjnnXfQ0NCA48ePo6KiAg0NDWhoaMDzzz+PTz/9FA0NDXjrrbfw1ltvoaGhAZ9++imef/55/riKigocP34cDQ0N2LNnD2/v0KFDeOmll9DQ0IC6ujpUVFTg1KlTaGhowOuvv44DBw6goaEB77//Pl599VU0NDTgiy++QEVFBb744gs0NDTg1Vdfxfvvv4+GhgYcOHAAr7/+OhoaGnDq1CkcOHCAf/tu48aNGBgYQCgUwqpVq3D27Nms+qmxsREOhwNarTYtP6Xa9q5fv46ysjIcP35cdE3nzp1DWVkZGhsbBbU9AKiqqoLRaIRWq037evrDH/6AsrIyaLXalDVptVq43W6cO3cOgPDrKVU/5UKMyKSm5uZm9Pb2QqvV5rSmjz/+GBzHQavVysJP3d3duHHjBp/GReq2J2aMGK7p448/RllZGbq7u0Vpe7W1tSgrK0Nzc3NafnrllVcwZcoUaLXalDVptVpwHIePP/4YAMWIbGtyOBwxD65yWdOf//xnlJWVweFwpOWn06dPw2638zqi+lpaWhJqOnPmDPx+P5YtWwaGYfj6hMNh1NXVwWQyQa1W4+TJkzGaDh48iLlz5yIQCKC2tpava319PT8JMbRfXlxcjC1btvD9vU2bNmHBggUAgFWrVmHt2rUIhUKw2+346U9/ytd18+bNmD17NgDggQcewAMPPABgcLVNeXk5tm/fDgB48cUXY/zU2toKYLDN19XVQa1WIz8/Hx9//HGMnz777DM0NDTg+vXrqK+vBzCYr/2FF16QzE9C+ntarRZGoxFVVVUAKEZkW5NWq8WNGzf4ifFc1iSkXy6FJjHGGqm0Pa1Wi1tuuQWvvPKK6JrC4TDKyspQVVUlCz8J6e8p6Z4rp7gXDodRW1vLP9BubGzkfzOapnfffRfhcBhqtRodHR18vX0+H2pra3k/1dXV8efr2LFjvCaXy4Xa2lq+ron6EXa7HadPn+aPq62t5etw5coVtLW18edyaD8ikSabzcbfcwOBAOrq6mCxWKBWq2P6Eclqamtrw5UrV0TVdOPGDRQUFKC/vz8tTYn6RvE0cRyHgoICXLx4kdckVtvr7u5GWVkZPv74Y1Gup4GBAZSVleHdd98VdUyYDWiPECKnieaVMxgM0Gq1qKmpwbx58+B2u5Gfnw+VSgWXywWDwQCGYTAwMIBIJAKTyYRQKASPx8NvXOl0OmE0GqHT6fgAZzQaEQwG4fP5+A0cHQ4HzGYztFotvF4v1Go18vLy+Nl3q9UKjuPgdDphsVig0Wjg8Xig1WphMBj4t9MsFgsikQhcLhesVivUajXcbjcYhoFer4ff70coFILZbEY4HOY1tbW14Y477oDf7wfLssjLy4NarYbX64VWq4XZbOZnWPPz8+Hz+RAMBmE0GgEMBl2dTgej0cjPGhcUFMDj8SAUCsFkMiESiWBgYAAMw8BgMMDlckGlUiE/P5+frTabzQiFQvD7/dDr9WAYBm63G2q1GlarFS6XC5FIBBaLhZ/hj/rJ4/FAo9HAYrHA6XSC4zhYrdYYTcePH8eSJUty1k9KbHukiTSRJtJEmkgTaZKXpqNHj2JgYAA6nQ4ajYZ/U1Cn02HJkiWIRCJjarLZbDh//jz0ej04jkMgEADDMFCr1SgoKMC8efNiNEUnSwKBAPR6PVQqFQKBADQaDSKRCNavXw+O45Lq76Xbhx0YGEB1dTXuuOMOTJgwgbdTU1MDnU6HcDiMUCgUo2nZsmUoKCjgV5e1tbUhFAohHA7HHHf//ffz/Vpqe6SJNJEm0kSa/n/svXt0FNeV7//td+vVEgJBg7GNTYzBDi87Nth4YpOZcbKSSyY38UxCEsdOMncSex52/gjOb5KwbkjuvQMzN46cxJgkxngcTDIhflyNYwfHRmAEEkhIvMRTIIEkWu9+d3V1VfXvD62u0aMldXedqj5dvT9rsWx1V++zv7VP7XqcOvvooen48eOTzrmiKMJqteIv/uIvptUUCARw7Ngx2O12SJIERVHgdDqhKApEURx3brbb7er1gdPpRGlpKUKhEERRVNfYEgQh7XWELMtIJBLjthvrq8VimfKcO1FTyteJ59yJ1xHZakomk+O2K3RNa9asKYrjqaenJ29rhNBACFHQFONi6Z2dnbjlllsAAC6XC6tXr1ZvRguZiVryHcvUGwqrV6+esWY07+2xtM3ClhYbRseFmB6zxIM3HZR/9LNH+cc8mCkeWrS0tbWlLTFgsVjwwAMPZLSg5fDwME6ePKn+LUkSfD4fvF4vbrzxxkm1yv1+vzozMx1btmzB/v37p/x+2bJlOHv2rPp3rteze/bswQMPPACfz6eWZpjIWC2pwZaVK1fi8uXLapmpidx7773q4MtY8nkNZKb+bgbMFA/etNA1kH626BqIL6ZbsHymBbNjsRh+//vfq+e2QmXiOZoHjPQpXVusFkvn/R4sn89yqTQWQRQwTqcTq1atymlhSt7gTYsoimhra1PrGhZyeyxts7ClxYbRcSGmxyzx4E0H5R/97FH+MQ9miocWLekWAAeA2bNnZzQIko7U4uWpMhTZsmnTJqxfv37SNZ3T6cT69euxadOmSZ/neg146dKlKQdBgMlawuEwLl26lHU7QH6vgczU382AmeLBmxa6BtLPFl0DmQdRFDWdp3lB6/WGHhjpk55tmekejDU0I4QoaIp9RohZcTqdGB4eRllZWb5dIQiCIAiC4JZkMonLly+jp6dHXcSzuroad9xxR8ZvMk6cETKW+fPnT5oREg6Hx9XXngpRFDE8PKz+XV1dDafTCZ/Ph40bN2bk23Ts2bMHXq8369/Z7XbU1NRkPSOEIAiCIFihZUaIoig4ePAgW4cILmA1I4R3aEYIQRA5kardbLUW/qE8VsvHPvaxvA+CKIoCv9+vPlQo5PZY2mZhS4sNo+NCTI9Z4sGbDso/+tmj/GMezBQPLVosFgsWL16MBx54AB/5yEewbt06rFixQlM5h2QyCUEQMNX7cmVlZRnN3nA6nfB6veq/qX6j5/VsOi2SJOVkK5/XQGbq72bATPHgTQtdA+lni66BjEcQBPh8Pub7TlGUac/ThcJM1xv5wEif9GzLTPdgrCn8p6cEUcR4PB48/fTT8Hg8+XZFMyktn/70p/G73/0u3+4gGAyitrYWwWCw4NtjaZuFLS02jI4LMT1miQdvOij/6GeP8o95MFM8WGixWq0oLy+Hw+HQ7E88HkdTU9OU63VYLBZ8+MMfnnKwpaSkJKv2prqeffbZZ/Hss89O+btMyivMpCUb8nkNZKb+bgbMFA/etNA1kH626BrIWK5fv47GxkacO3cObW1taGtry3kgfiLBYJDZuS2fsDxHs8JIn/Rsy0z3YKyh0lhEQVOMpbEkSUJXVxeSySQURUE0GkVpaWnBzwpRFAUejwdz587lQouiKAgGg/B4PIb4o2d7LG2zsKXFhtFxIabHLPHgTQflH/3sUf4xD2aKR761TCyNlUwmEY/H4XK5sGDBgkmlsVLIsoxAIABJklBZWQmXywVFUWC1Wqct+TGxNJbVaoXH40EwGBz3puCePXsAYNoyWqk1R9xud9rvx2qxWCzq5/Pnz5+yNNbq1ashiiKcTic8Ho/6u3xeA+W7jxDjMVM8eNNC10D62aJrIOMQRRGHDx+e9PmNN96IxYsXA9BWGkuSJPzpT3+adG4rNKY6R+cTI31K1xar0li834Pl81lu7nOmCYLIC3a7XT15EvqRKtNghvZY2mZhS4sNo+NCTI9Z4sGbDso/+tmj/GMezBQP3rRYLJYpBxbGYrPZUF1dPe6zXG+O/X5/1r8DgP379wMANm/enPb7TLWMpbW1Vf3/kpISrFq1Ci6XK6/XQLz1kWLHTPHgTQtdA+lni66BjMPn86X9/Nq1a0ye5Vit1qzPbTySyzlab4z0Sc+2zHQPxhoayiWIAiYUCuGFF15AKBTKtyua4U2L0f7o2R5L2yxsabHBWz8pdswSD950UP7Rzx7lH/NgpnjwpiUej6O5udmwUhUVFRX45je/iYqKipx+39DQMGWZrKm0CIKQke1YLIYjR46gu7sbfX19eP7559He3o729nZ0d3dnXeYk11jz1keKHTPFgzctdA2kny26BjKOgYGBKb+LRqOa7YdCIUPP03ph9PVGJhjpk55tmekejDU0I4QgChin04lVq1ZltGAl7/CmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM88q1l4iwOm80Gr9cLm82mS1mI6upqOJ1OdfBCFEW0tbWNG8xwOp3qbJOx26ZDFEUMDw/D6/VO+m6slrGMjIxk5fOlS5cgSRI8Hg96e3tht9vR39+Pvr4+rFy5MuPF6XONdb77CDEeM8WDNy10DaSfLboG4oNjx45h2bJlOf1WlmWcPXsWPp8v7bmt0JjqHJ1PjPRJz7bMdA/GGlojhChoinGNEIIgCIIgCIJghSzLOHToENLdFi5btgzz5s3L2uZ0tc8BYMuWLWpZq3SsX79eLXc107YA8PLLL+Omm27K2k8WLFmyBAsWLMhL2wRBEGZGkiTdBuX1pKWlZdo3361W67g1sSZyww03YPbs2aiuroYsy/D5fBgeHsbQ0JAe7hIcwWqNEN7J57NcKo1FmAK3243y8nIAozdzfr9fvZkLBoPqW2SxWAyRSATA6El1bD3iQCCARCIBYHS6YmrKYiKRQCAQULfz+/3qNPhIJIJYLAZg9G20YDAIYHTRI7/fD1mWAQDhcFidgh+Px9WTYqomcuokGAqF1GlxgiAgHA5Pq0kQBLz77rvqCbGQNfX39+O9996DIAhcxCkQCOCPf/wjBEHQHCdg5r4XCoVQX1+P4eFh5pr8fj/q6+vVdvIdp/7+ftTX10MQhKw1CYKAffv2qW2xPJ4yiVOhHE9GaQoGg+pxUsiahoaG8O6770IQBC7iFA6H8c4774zLR3r2PZY5YqKmoaEh1NfXq+1oiVMkEsHIyAjq6+sRDAZzilNfXx/2798PQRCK+pxrhrwXiUTwzjvvjMtHhappcHAQ9fX1iEQieYmTLMuoqalRNYXDYVy5cgWlpaVwu905aUr5rSiKeo5I2ZBlGZs2bcJf/uVfoqqqCm63Gx/72Mcwb948OJ1OrF+/Hk899ZS6X7/1rW/hL//yLwEADocDlZWVqqaqqirY7XY89thj+D//5/9gZGQEPp8Pvb29uHbtGqLRKK5cuYJwOKz6Koqiuh8kSVL9TiaTk3wdu100GkVnZ6eaD1LbpT7LJE65Xu8JgoD33nsP/f39qq+UI/KnSRAEvPPOO+PyUaFq0nJdrocmo+8JBUHA/v370dfXx1xTLBZDfX09+vv7uYiTlus9o8+5/f39OHbsGA4cOID6+nr4fL6COJ7Gako9R0jFJvUbWZbV/Zg670w8P/X09OD48eM4d+4cTp8+jQsXLqCnp0f1NRKJ4PLly5AkCZIkzXjOTfk3cbuxvo7dbqyvE7ebStPEc2km59zU9Ubq87Hb5UtTLBZDZ2cn4vF4Tpqmu46Y6GsikUBnZycikYjqK6vjKRwOo76+HkNDQ0xyeTQaRX19PQYGBpjeE+YDGgghTMHatWvxyCOPABitx1hbW6senDt37kR7ezsA4MCBA6irqwMAdHd3o7a2VrWxfft2dHR0AAD27duHffv2AQA6Ojqwfft2dbva2lp0d3cDAOrq6nDgwAEAQHt7O3bu3AlgNHHU1taqtSH37t2LxsZGAKMLMO7evRvAaHKora1Vk9Hu3bvVBRobGxuxd+/eaTVJkoRTp07h7bffLnhNu3fvxtmzZyFJEhdxamtrQ0tLCyRJ0hwnYOa+d+nSJXR2duL9999nruno0aPo7OxEW1sbF3HauXMnOjs7IUlS1pokScLx48dx9OhRAGyPp0ziVCjHk5Gajh07pl4AFqqmt99+G6dOnYIkSVzE6dq1a2hqalIvnPXueyxzxERNb7/9Njo7O3Ht2jUmfe/QoUPo7OzMOU4vvPACOjo6IElSUZ9zzZD3+vr60NTUpN4sFrKmN998E52dnejr68tbnPbt24fly5ejpqYGLS0tiEQiWLJkCV5//fWcNKX8jkajaGpqUm+0W1tbMTAwALfbjb/5m7/BD37wA/zyl7/EX/zFX+CJJ55AXV0dNm/ejFOnTqnlq3p6evDZz34WL7/8MhYvXownnnhC1fT0009j4cKFAEZLbv3iF7/Axo0b8a//+q84fvw4vvzlL+PUqVNoaWlRHxik1vcARhe0PXXqlBrPpqYmdf+fOnVKXfC2u7sb58+fh9/vRyQSGafpgw8+0P16T5IknD17Vt3/lCPyq0mSJDQ1NeHatWsFr0nLdbkemoy+J5QkCVeuXMELL7zAXFMkEkFnZyd2797NRZy0XO8Zec598803UVdXh0gkgoGBATQ1NeHcuXPw+XzcH09jNTU1Nak+XLhwAV1dXWq7KX9kWUZTU9OU56f//M//xMjIyKTzU3t7OwYGBqAoCrq7u2c85wJAV1cXLly4oO6jpqYm1dfm5mb1nNvR0aHqGxkZQXNzM1NNY8+5LS0tGBkZgaIok865+dJ09epV+P3+nDVNdx0xUVMikYDf78epU6dUTayOp2vXrqGzsxNvv/02k1w+MjKCzs5O/O53v2N6T5gPqDQWUdCkplO53W7Y7XY0NjZi6dKlCIVCqKyshMViQTAYhNvthtPpRCwWg6IoKCsrgyRJCIfDqKqqAjA6ulpaWgqHw6EmuNLSUiQSCUSjUfXtM7/fj/LyctjtdkQiEVitVpSUlKhvh3k8HiSTSQQCAVRUVMBmsyEcDsNut8PtdiMej0MURVRUVEBRFASDQXg8HlitVoRCITidTrhcLgiCAEmSUF5eDlmWSRNpIk2kiTSRJtJEmkgTaSoITQcPHoTT6YSiKBBFES6XCxaLBfF4HHa7HTabDYlEAslkctx2brcbwOhbhg6HQ90OGJ2995WvfAWlpaXqm49VVVUIh8OQJAllZWVQFAWxWAxOpxNutxvBYBAWiwUf//jH8e1vfxtWqxWiKMJqtcJut0OSJMiyDJfLhWQyiXg8Ps5Xm82mbqcoSlpNoijioYceKsg4mbHvkSbSRJoKW9Ply5fR0dEBh8MBWZYhSRJcLhe8Xi+8Xm9BaGppacHAwACcTqd63rFYLJM0pc47Y7djeX7Scs5N+ZpIJMZtR5r01bRmzZqiyBE9PT15K41FAyFEQVPsa4TIsoyBgQHU1NRwtcBULvCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNPCwp/p1ghZvXo1fD4frl+/DmC07EI0GkVpaemkhdtLS0tx88034+zZsxBFERs2bJh24fSJ2Gw21NTUwO/3480339S0SOdUflqtVnz0ox/NyEau+5a3PlLsmCkevGmhayD9bBXKNdB0549CWT9hpjVCtDLdebOQ4FGHkT6la4tVH+f9HozWCCEIIidCoRB27Nih60nWKHjTYrQ/erbH0jYLW1ps8NZPih2zxIM3HZR/9LNH+cc8mCkevGnR25/KykosWbIEc+bMATBas7qlpWXcAIfH48H999+Pe++9Fx6PBwDgdDqxbt26rNqqqKjAN7/5TbjdbgwPD0/6XhRF+Hw+9d90gyzp/MyWXPctb32k2DFTPHjTQtdA+tmiayD9GB4eRnt7O06ePDluLQ+9YHE+4gEedRjpk55tmekejDU0I4QoaIp9RsjEqXeFDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy0s/Mnkjd5YLIampiYkk0nIsgybzaa2V11djRUrVozbDhgtYbFt2zbs378/Iz8sFgtcLhfi8TheffVVeL3ecXYaGhomPYBYtmwZtm7dioqKinGfp/MTmDwjRJZldUHTqqoquFyucTZy2be89ZFix0zx4E0LXQPpZ6tQroEKbUbIwMAAzpw5Y2ibU52PCg0edRjpU7q2WPVx3u/B8vks125IKwRB6ILFYlFrGxY6vGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etOQjB9ntmd2Wut1ubN68GY8//jgee+yxGbdPJpMQBAEAxg14TDeYcvbsWXz605/G+vXrsWnTJnVfTOWnoii4cuUKampqYLVa0dbWNq6t22+/HfPnz1dt5LJveesjxY6Z4sGbFroG0s8WXQPljiAI6OvrgyAIqKqqgt1ux8jICJxOJ65du2a4P9mcN3mGRx1G+qRnW2a6B2MNlcYiiAImGAziJz/5CYLBYL5d0QxvWoz2R8/2WNpmYUuLDd76SbFjlnjwpoPyj372KP+YBzPFgzctRvsTj8fR2NiIeDye8W8yXevD4/Hg6aefhsfjwWOPPYYtW7YgFAqhoaFhxt/u378f27Zty8jPrq4utLS04OjRo5NmmJw/f14djMl13/LWR4odM8WDNy10DaSfLboGyo1YLIbW1lZcuXIF169fx9mzZ3Hq1Cl0d3fj8uXL6kLcRpLLeZNHeNRhpE96tmWmezDW8DX0RhBEVrjdbjz00EPcjKxqgTctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBmxaj/bHb7Vi0aNGUb0WOLS2VLYIgoL6+Xh2I2L9//4xrgYwlVTrL6XTO6Od0FaeHhoZwww035LxveesjxY6Z4sGbFroG0s+WGa6BkskkhoaGEAgEUFpaijlz5sDhcOjaZnd3N1cP6oGZz5uFAo86jPRJz7bMdA/GGlojhChoin2NEIIgCIIgCILgjWzWCEnH2DVC0tkTRREbNmwwZDHTl19+GTfddJMmGzfccANuu+02Rh4RBEGYl+nOH/Pnz8f169fVv8vKyrBy5cqMZwmy9ocgWMPjOjh6kM9nuVQaiyAKmFgshnfeeQexWCzfrmiGNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFqP9SSQSuHTp0rTlRaqrq8f97XQ6sW7duhltl5SU4BOf+ARKSkpy9i9VUiscDs/o50zkum956yPFjpniwZsWugbSz5YZroHGDoIAQCQSQW9vb568yR+ZnDcLAR51GOmTnm2Z6R6MNfzMPyIIImsURYHf74eiKPl2RTO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960sPCnuroaw8PDkz73er2TPkstaD5doYJ0323atAnAf5WvSofVakVVVRWsVm3v/+3fvx8OhwMbNmyY1s+ZSLdvh4eHcf36dQiCgMrKStx0002T3m7mrY8UO2aKB29a6BpIP1tmvQbq7OzEokWLMto2FotBEAR4PB7YbDZ9HdORTM6bhQCPOoz0Sc+2zHQPxhoqjUUUNFQaiyAIgiAIgiD4YmRkBKdOnRp3w2uz2bBq1SpUVFQAyK40Vnt7O/r7+9NuK4riuEGXsrIyPPvss9i/fz8LKSpOpxN1dXU5lWBJlcZKJBIIhUIoKSlBb28vrl27Nmnb0tJSrF69Wve69wRBEDySSymqhx56CH6/HwMDAwCAmpoaVFVVqd8rioL29nYMDg4CGB0kv/POOzF79mxd/CGIXKHSWPpDpbEIooCRJAmdnZ2QJCnfrmiGNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFhb+zJo1CytXrsT8+fPh8Xhwww03YPXq1eogyFgyeUtwwYIFU37ndDrh9XrVfxUVFdi8eTNefvllpguRKoqC7u7unN9mvHTpEj744AMcPHgQR44cSTsIAgDRaBRDQ0PjPuOtjxQ7ZooHb1roGkg/W2a+Burr60NbWxt6enrQ09ODtrY29PX1qd9fvXpVHQQBRvP56dOnuSrJlA08vV2vBR51GOmTnm2Z6R6MNTQQQhAFTDgcxssvv4xwOJxvVzTDmxaj/dGzPZa2WdjSYoO3flLsmCUevOmg/KOfPco/5sFM8eBNCyt/Kisrcfvtt+Ouu+7CbbfdhvLy8rTbiaKIEydOTLvweWVlZdbte71ezJo1C48//viUbWdDeXk5rl27ltMC7SMjI+ju7s5IK4BxD/AA/vpIsWOmePCmha6B9LNl5mugy5cvT/rsypUrasmhdAPPyWRSnUFSaGR6LuEdHnUY6ZOebZnpHow1VBqLKGhS06ncbjfsdjsaGxuxdOlShEIhVFZWwmKxIBgMwu12w+l0IhaLQVEUlJWVQZIkhMNhdcpkIBBAaWkpHA4HotEogNGp6YlEAtFoVL0B8/v9KC8vh91uRyQSgdVqRUlJCURRVOtNJpNJBAIBVFRUwGazIRwOw263w+12Ix6PQxRFVFRUQFEUBINBeDweWK1WhEIhOJ1OuFwuCIIASZJQXl4OWZZJE2kiTaSJNJEm0kSaSBNpMo2m4eFhNDc3w+l0QlEUiKIIt9sNAHC73bj77rvHaYpGozh58uS47QRBgNPphNVqhSiKsFgscDgckGUZkiRh69atqK+vR2VlJUKhEGRZRnl5OSRJgiAIcLlcKCsrw8qVK/FP//RP2LFjB/bt2wdFUVBRUQFRFBGPx9V7jV/+8peYO3cuRFGEy+WCxWJBPB6H3W6HzWZDIpFAMplMq0kQBDgcDnU7AKqviURi3HYejwf3338/F3EyY98jTaSJNPGrad++fZNyucvlQjKZRDweH5fzrVYr7HY7JEmCLMvjtnO5XLj33nuhKAqamprU7RRFUXO0w+HAAw88MK2m999/P+dcPt35KVdNqfOOzWZLq0nv8xNp0lfTmjVriiJH9PT0UGksgtDC2rVr8cgjjwAABgYGUFtbi3g8DgDYuXMn2tvbAQAHDhxAXV0dAKC7uxu1tbWqje3bt6OjowMAsG/fPuzbtw8A0NHRge3bt6vb1dbWoru7GwBQV1eHAwcOABitXbxz504AQDweR21trfqGwd69e9HY2AgAaG1txe7duwEAwWAQtbW1CAaDAIDdu3ejtbUVANDY2Ii9e/eSJtJEmkgTaSJNpIk0kSbSZDpNTU1NuHDhgmpv7Hoh77///iRNc+bMwZw5c9R2UjZSPly4cAFdXV1qu62trdi0aRP+/M//HE8//TRqamoAAI888gjWrl2LZcuWYdu2bfjOd76DzZs3w+12Y+3atfjFL34BAPjSl76E1atXAxh/rxGNRtHU1ARZltX9ktpfXV1dU2pqbm7GyMiIGpuUvpGRETQ3N4/T5Pf7uYmTGfseaSJNpEl/TcFgED//+c+xb98+dHR04I9//GNGmtLlcgCQZRlNTU3qA+D29nb1Nz6fD6dOnVK1NzU1IR6PI5FIYPfu3fD5fKp/Kb+j0Sjef//9GTVpyeXTnZ9y1QQAp06dmlKT3ucn0qSvpmLKEfmCZoQQBU2xzwiJxWJ4/vnn8fjjj2P+/PkFram7uxuvvPIKnnzySXWUPJ9x6u/vx4svvognn3wSFRUVur8pk0gk8Ktf/QqPP/44PB4PU02RSAQvvfQSvva1r6GkpCTvcfL5fNi9ezeeeOIJJJPJrDSFw2E8//zz+NrXvoZ58+Zx/0ZTvnOE3poGBgbwq1/9Ck8++SQ8Hk/Barp+/Tp27dqFJ598EiUlJXmP09DQEH7xi1/gySefRGVlpe59j2WOmKjJ7/fj5Zdfxv/4H/8DNptNc98Lh8N46aWX8PWvfx0ulyvrOHV3d2P37t148sknYbVai/aca4a8Nzw8jB07duCJJ55AVVVVQWsaHh7Gv//7v+Pv/u7vYLVa8x6na9euqcdJ6k1GvfremTNnMDg4iGPHjmHFihXqdkuWLMGcOXOm1HT58mUEAoEZ3+RMJpM4duwYli1bhkQiAYvFAkmSUF1djdLS0rRvco6MjOCLX/zipBkhs2bNwje+8Q3ccsstsFgsmDt3LlwuV1Zvp8qyjNbWVqxcuRJutzvjGSGiKOL555/Ho48+ioULF1KOyLOmQCCA559/Hn/3d3+H2bNnF7QmLdflZrgnTCaTeP755/GlL30JN9xwA1NNAPDCCy/gy1/+MubOnZv3OGm53sv2nGu1WnHixAlEIhH1rXy3240Pf/jDKC8vV+Pk8XjQ09ODq1evoqSkBPPnz8fJkyeZvZW/evVq2Gw2080ICQaDOHHiBO655x7Y7faCnT0RDAZx8uRJ3HPPPbBYLFzMCBFFEW1tbVi9ejXsdruuM0KSySRaWlqwfPlylJeXM50RIssyfvnLX+Kxxx5DVVWV5lyeTCaxY8cOPProo5gzZ47me8J8zgihgRCioEkNhKQw8uDhgUQigY6ODixevBgOhyPf7miCNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFiP9kWUZp0+fxsWLFzFr1iyUlZXhtttuw+zZs6f93bVr19S3ImeyPzIyglmzZsFms2Xkk8/nw8aNGyd97nA4sHjxYnR0dCCRSMDpdGLdunXYtGmT+kCFlT8lJSVYs2aN+jdvfaTYMVM8eNNC10D62TLyGuj8+fO4fv36pM9Xr149bs2njo6OtOt3sGLVqlWoqqpCfX192u8rKipw9913T2tjqt/mk1zObTzCow4jfUrX1kMPPcTENu/3YPl8lksDIURBU+wDIQRBEARBEARR6Ix9mzQTBEFQSziwZqqBkKlYtmwZfvKTn8DpdDLzYeJACEEQRCEx1eBBVVUVVq1aBQBQFAWHDh2Coii6+WHWgRDCvLAaCOGdfD7LpTVCCKKAiUajeOONN9RpcYUMb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LfnIQXV1dWqt7Exwu9245ZZbZtwukUjg3LlzalkMLZSWluIzn/kMSktLx31+9uxZfOITn8CWLVsQCoXg8/ng8/kgiiIzf3jrI8WOmeLBmxa6BtLPFg/XQIIgqP8/NDSk6yCImWF5bssnPOow0ic92zLTPRhr7Pl2gCAIgiAIgiAIgiCyoaysLN8uqCSTSezfvx/79+9XP8uldBZBEISZGVuQRpKkPHpCEESxQqWxiIKGSmMRBEEQBEEQRPGhV3msbEtjzUQupbOoNBZBEIXMdOWk5s2bhyVLlqC/vx/nz5/X1Y9MSmOtXLkSFy9exPDwMFwuF2644QbMnz9f3YZKYxFGQqWx9IdKYxFEAcPjVMJc4U2L0f7o2R5L2yxsabHBWz8pdswSD950UP7Rzx7lH/NgpnjwpqVQcpDb7cbcuXOn3UaWZQwODmZVdmsqHA4Hli5dmvUioWNLZ0UikZz84a2PFDtmigdvWgol/xht20z3YH19fTh79qxmO6w4efIk+vr6kEgkEA6Hcf78efh8vny7NS0sz235hEcdRvqkZ1tmugdjDQ2EEEQBw1OdPa3wpoXq0+pni4f6tAQbzBIP3nRQ/tHPHuUf82CmePCmpZBy0NKlS6f93og1QjIhVTrrZz/7Ga0RYgLMFA/etBRS/jHSttnuwYaGhrh4+B2JRBAMBid9zvtACE8PlbXAow5aI0Qfezyda6g0FlHQUGksgiAIgiAIgiheTpw4gZGREWb2RFHEhg0b0i52rhWn04m6uroZy2RRaSyCMCf9/f3o7e2FKIqorq7GrbfeCqvVXO8nR6NRHD16dMbtZs2axTR3p2Om0ljTkSpRRKWxCCOh0lj6Y66MSxAEQRAEQRAEQRAAbDZb1r9JLXI+HR/60Idy8kcURQwPD+f0W4IgCpu+vj60t7fD7/cjGo2iu7sbZ86cybdbTAmHwzh+/Hi+3WBCMBjUZUCcIIj8QgMhBFHA+P1+/OAHP4Df78+3K5rhTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmxUw5aMmSJThw4AAEQcjqd5s2bcL69evHzdyoqqrC//yf/xOf+MQn8OMf/zirxc/H2jh//nxW/sRiMZw+fRo/+MEPcP78eS7KyRQ7vB2zWuBNi5nyz0Tbvb29k7YZGhrKKB8Uyj1YZ2cnJEnKzUHOOH78OA4fPpxvN9IiCEJO5zbe4FGHkT7p2ZaZ7sFYQ6WxiIKm2EtjSZKE7u5uLFy4EHa7Pd/uaII3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZuWQstB05XGuueee1BfX4+SkpKcys+MncGhKAocDgdmz54Nq9WKLVu2YP/+/VnZs9vt2LFjBxYtWjSjP6tWrYLdbkdbWxtEUUQwGITH44HVasV9990Hl8s16TeyLCMajaK0tDSn2TBEZvB2zGqBNy2Fln+ysT1ViaWFCxfOOMusUO7BsikjxXtpLJ5RFGXcOaFQ4VGHkT6la4tVaSze78Hy+SyXBkKIgqbYB0IIgiAIgiAIopiZbiDkvvvuw/HjxxGPxzOytXjxYnR0dGS0rSAI2LZtGxoaGsaVT3E6nbjppptw6dKltL/bs2cPvF7vjPatVitsNtuUi6h+9KMfVR+cJJNJdHV1oaurC8lkEhaLBTfddBMWLVoEi8WSkR6CIPRlqofxXq8XS5cuNdYZneBtIAQA5syZg8HBQd3bIQgW0Boh+sPHkBtBEDkRiUTwm9/8BpFIJN+uaIY3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZsWs+Wg1tbWjOq8ezweVFdXT/m9KIo4ffq0asvtdmPz5s2oq6vDnj171H91dXX44Q9/mNZGWVkZenp6MvJHURR1EGRi2wDGPdgbGBhAZ2cnUu84pgZG+vv7Z2yHyB7ejlkt8KbFbPmH7sHyjxkHQdKdEwoRHnUY6ZOebZnpHow1NBBCEAWM1WpFVVUVN9MItcCbFqP90bM9lrZZ2NJig7d+UuyYJR686aD8o589yj/mwUzx4E2L2XJQSUlJxrMiSktLsWDBgrTfWSwWuN3uSbacTie8Xq/6b7q1QxRFgSiKGBgYgM/ny/jhR7q229vbEQqFAEz9oM+MDwB5gLdjVgu8aTFb/qF7MEIPpjofFRo86jDSJz3bMtM9GGuoNBZR0FBpLIIgCIIgCIIoXliVxpozZw4+/OEPI5lMYnBwEGfOnMnZJ5/Ph40bN864ndPpxLp167Bp0ya43e6s26moqMDdd989bTmaYimzQRC8w2NpLEVRYLFYmD2I5bE0FkEUEsVyzqbSWAShEbfbjfLycgCjiwT6/X51angwGFTftorFYupULEmS4Pf7VRuBQECdfh6NRhGNRgEAiUQCgUBA3c7v90OSJACj07tisRgAqIsYAqPT0f1+P2RZBgCEw2EIggAAiMfj6ttbiqLA7/dDURQAQCgUUm/UBEFAOByeVpMoijh69Kh6AVHImgYHB9Hc3AxRFLmIUygUwpEjRyCKouY4ATP3vUgkgra2Nvj9fuaagsEg2traEAqFuIjTwMCAuvBntppEUURjY6P6HcvjKZM4FcrxZJSmcDisHieFrGlkZARHjx5V82q+4xSNRnH48GH1O737HsscMVHTyMgI2traEI1GmfS9QCCAtrY21e9s49Tf34/jx49DFMWiPueaIe/FYjEcPnxY/a6QNQ0PD6OtrQ2xWIyLOI09Tozoe6IooqWlZVwZp2w0pfa/KIrqb2RZRjwehyiK6O7uRiQSUX0VRVHdD5IkqX7Pnj1b9bWmpgbxeHzcdrFYDD6fD4lEAoIgqJri8bjqQyKRUPXZ7XZUVVWpvlZWVqK0tBSrVq1S/18URRw6dAi1tbXqdoIgjPM1kUhAlmX09vaq+yGZTEIQBAQCAcRisSk1pfrodHFKJpMIBALo6OhQY13Ix5MReU8URRw+fFj9rpA1abku10OT0feEoiiitbUV/f39zDXF43G0tbVhcHBQjdPYHKEoitqOEXEae703ODiIEydO4MCBA3j//fdx5coVJJNJzefciZoEQRiXH8fm6LEz1tLlvdR2Y/PZxO2mynsTc/TY7Sbu/5lyeTaaJm6nl6ZoNIqenh7IslzQmiKRCK5fv67+noc4CYKgztjUu+9JkgSfz4doNKr6yirvRaNRtLW1YWRkhEkuFwQBbW1tGBoaYnpPmA9oIIQwBWvXrsUjjzwCYLRGbm1trXpw7ty5E+3t7QCAAwcOoK6uDgDQ3d097qZj+/bt6uKI+/btw759+wAAHR0d2L59u7pdbW0turu7AQB1dXU4cOAAgNHp6Tt37gQwmjhqa2sxMDAAANi7dy8aGxsBAK2trdi9ezeA0eRQW1urJqPdu3ejtbUVANDY2Ii9e/dOq0kQBLz33nt46623Cl7TK6+8gvfffx+CIHARp5aWFvzpT3+CIAia4wTM3PfOnz+P+vp6vPvuu8w1HTlyBPX19WhpaeEiTi+++CLq6+shCELWmgRBwJ/+9CccOXIEANvjKZM4FcrxZJSmU6dO4d1334UgCAWt6a233sJ7770HQRC4iNOVK1fU/coiTkbmiIma3nrrLdTX1+PKlSvM+l59fT1OnTqVU5y2b9+u5p9iPueaIe/19PTg3XffVW/8ClnT66+/jvr6evT09HARp+3bt2P//v0QBMGQvicIAvbv3z/O12w0pR4KXLhwAV1dXWq7bW1tkGUZHR0daG5uVh8YtLe3q/vB5/Ph1KlTKC8vh8PhGKfp1KlT8Pl86j4/e/YsOjs7EQqF0NTUpD48aG1tVftAV1cXLly4AABYuHAhnn76adXXJ554ArfffjseeughPPzww3j44YcBjC7QvmrVKly9ehU+nw9NTU2qDylNkiThypUrOHHiBIDRBw5NTU2IRqNoampKqykVz+ni9Lvf/Q4nTpzABx98gF//+tc4dOgQurq6Cvp4MiLvCYKAd999F1euXCl4TVquy/XQZPQ9oSAIqK+vx/bt25lrCgQCqK+vxyuvvKLGaWyOCAaDaGpqMixOqeu95uZm/Pu//ztGRkYQj8dx6NAhnD9/Hj09PZrPuRM1NTc3qy+QdHR0qPpGRkbU+zkAafNeal+m/Bmb91J6p8p7TU1Nap+amMtTfqfy50y5PBtNzc3Nhmg6c+YMrly5AkmSClpTc3MzOjs7IUkSV3Hq7OxEX1+f7n0vHo+js7MTJ06cUDWxyntXrlxBfX093nrrLSa5fGBgAPX19fjtb3/L9J4wH1BpLKKgSU2ncrvdsNvtaGxsxNKlSxEKhVBZWQmLxYJgMAi32w2n04lYLAZFUVBWVgZJkhAOh9U3tQKBAEpLS+FwONQEV1paikQigWg0isrKSgCjo6vl5eWw2+2IRCJq7eHU6LHH41HfrKqoqIDNZkM4HIbdbofb7VbfTquoqICiKAgGg/B4PLBarQiFQnA6nXC5XOoIcXl5OWRZJk2kiTSRJtJEmkgTaSJNpIk0TdBksVjQ1taGeDwOi8UCh8MBWZbh8Xhwzz334PDhwwgGg3A6nbBarRBFEVarFXa7HWVlZSgrK8Ntt90Gm802TtMf//hH2Gw22O12SJIERVHgdDrVdT5cLhcsFgvi8TjsdjtsNhsSiQSSySSGh4fx6KOPory8XH3zsbKyEtFoFIlEAqWlpQBGH4Y4HA6UlpaqDxhramqwfPlyfPvb34bVah2nSZIkuFwuJJNJxOPxtJokSYIsy+p2LpcLa9euTRunixcvYmhoaJKmD33oQ5g7dy71PdJEmhhqOnz4sJojxuaSRYsWYenSpYZpGhoaQnNz87hc4nK5UFlZidtuuy2tpsHBQVy7dg0VFRWYO3cuAKSN0/vvvw9RFNVSf4IgwOFwqPkRgJrPEonEuO3G5jOteS+lKZWjc83lY7cjTaTJCE1r1qwxVd6bKpf39PTkrTQWDYQQBU2xrxEyMdEWMrxpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rQUYg4aHBzEhQsX1IcYs2fPxrJly2C1WtVSg+lsP/jgg1O2ObHWfTKZhCzLsNlsM/opiiI2bNigloVIYbFY4HK5EI/HMdNt+Pr167F58+as207HPffcg9LSUlgsFiSTSXR3d2NgYEB9C3YiN954IxYvXpx1O8UCb8esFnjTUoj5J1PbWtYIYXkP1tHRob4FPpF06xP09vbi/Pnzag6yWq348Ic/jNmzZ0/aNps1Qojc0XpO4AUedRjpU7q2WK0Rwvs9GK0RQhBETgQCAWzdunVcPcBChTctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBm5ZCzEFz5szBfffdhzVr1mDdunX48Ic/DJvNhkAggD/96U9qqYaxlJSUZHUzH4/H0dDQkNbWRFKLoE+ksrIS3/nOd9S3NqejoaFBHUjJpu10HDt2DO3t7VAUBZcvX0ZHR8eUgyAA1JIfRHp4O2a1wJuWQsw/RthmeQ+WepM8E5LJJC5fvjwuB6U+A0ZzU29vL3p7e8etu0Doi9ZzAi/wqMNIn/Rsy0z3YKyhGSFEQVPsM0JkWcbAwABqampgs9ny7Y4meNNitD96tsfSNgtbWmzw1k+KHbPEgzcdlH/0s0f5xzyYKR68aTFbDrp69SquXr06aQbGLbfcgptvvnnK3058s1lRFESjUZSWlsJqnfl9QkEQsG3btnEDGjabDTU1NRgYGFDrnU/Hnj174PV6s257Km699VZ0dXVl1Dart1LNCG/HrBZ402K2/DPWtpYZISzvwQYHB8ctVD6Wicf9yMgITpw4kTYHLV++HO3t7Wo+sdlsGeUWQjuszgn5hkcdRvqUri1W517e78Hy+SyXBkKIgqbYB0IIgiAIgiAIgpgev9+PK1euqDWrvV4vbrrppmlnhLAq8SKKIoaHhwGMLqr6rW99K+PfpgZC8sF9990Hl8uVl7YJwoxoGQhhSXt7O/r7+9N+N/EhrM/nw7lz59JuSwMfBMGeYnkJgUpjEQSRE+FwGLt27UI4HM63K5rhTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmxYw5yG63Y/Xq1fjoRz+KNWvW4Oabb56xLJbD4Rj3tyiKaGtrm7Tux0w4nU54vV54vV7MmTMHjz/+OMrLy7PWcfToUXR3d2fdfq6EQiFD2ilEeDtmtcCbFjPmH97uwXIpYZUu/9EgSP7I9XzEGzzqMNInPdsy0z0Ya+z5doAgiNyx2+1YtGgR7PbCP5R502K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpMXMOymZNkFmzZo17a9pqtaKqqkpTqQyLxYLOzk5IkpTR9oIgYMuWLWhubsbdd9+NxsZGKIqCdevWYdOmTXC73Tn7MhPnz5/HnDlzdLNfyPB2zGqBNy1mzj/5tpWykUsOY5H/CHaYJR486jDSJz3bMtM9GGuoNBZR0FBpLIIgCIIgCIIgWDNd+Zhc8fl82LhxY8bbL1u2DGfPnk373fr167F582ZWrqXlz/7sz7hYN4IgzICRpbEURZny4WompbGSySQsFsu0pbEIgmAPlcbSH36G3QiCyJp4PI7GxkbE4/F8u6IZ3rQY7Y+e7bG0zcKWFhu89ZNixyzx4E0H5R/97FH+MQ9migdvWigHpUeSJHR3d2c8myMdsixj7dq1Ga+9kRoEcblck343dhF2vYjFYrraL1R4O2a1wJsWyj/abAWDQbS0tODgwYM4duzYuEXRUzYSicSUv/f5fGhubkZDQwNOnz6t5hgW+Y9gh1niwaMOI33Ssy0z3YOxhgZCCKKA4bGmYq7wpsVof/Rsj6VtFra02OCtnxQ7ZokHbzoo/+hnj/KPeTBTPHjTQjkoPbIsw+fzaaqLn0wmsWrVKjidzqx+53Q6J/1u7CLsehGNRnW1X6jwdsxqgTctlH9ytyUIAk6ePKmu7xOJRHDmzBkEg8FxNqZ76Hru3DmEw2FIkoTBwUFcvnwZAJv8R7DDLPHgUYeRPunZlpnuwVhDpbGIgoZKYxEEQRAEQRAEwRoeSmPNxJ49e+D1epnZm8jcuXNxxx136GafIIoJvUtj9fT04OLFi5M+v/HGG7F48WL1bz1yG0EQbKDSWPpDM0IIooBRFAV+vx+KouTbFc3wpsVof/Rsj6VtFra02OCtnxQ7ZokHbzoo/+hnj/KPeTBTPHjTQjkoPclkEoIgQMt7hLNmzUJNTU3WC6Pma0FZeliaHt6OWS3wpoXyT+620g2CAMC1a9c0+8Mi/xHsMEs8eNRhpE96tmWmezDW0EAIQRQwwWAQtbW16nTXQoY3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZsWykGjuN3ucX/H43E0NTVlXd96bDmrZDKJv//7v4fH48nKhsfjwdNPPz3pdzyUmChGeDtmtcCbFj39EUVxUgkaXvOPHra02Mg1/xH6YJZ48KjDSJ/0bMtM92CsodJYREFT7KWxFEVBMBiEx+Mx/A0x1vCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOWiUQCCA1tZW9e9kMol4PI5Zs2Zh9uzZ6O7uzsiO0+lUByySyaT6MCCbxc6tVis8Hg+CweCktynXr1+PTZs2TRq4YUWxlOnIBt6OWS3wpkUPf2KxGM6cOYNwOAyr1Yp58+ZhyZIlsFgshuYfLaWxMvFzKvvA6HGcstHa2gqLxZKpDAD/lf9cLlfWvyXYY5Z48KjDSJ/StcXqnMv7PVg+n+XaDWmFIAhdSE2TNwO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960UA4axePxYP78+bh+/ToAwGKxoLS0FEuWLEFVVRVqamowMjICQRDg8/mmtLNgwQJ0dnaqNiorK7F58+Zxi53//Oc/x6FDh6a0kSopkY79+/cDADZv3pyDypkZGRlBIBCA2+3G7Nmz4XA4dGmnkODtmNUCb1pY+5NMJnHixAkIggBg9Fi6fv067HY7Fi9ezG3+0cNWykYuD3ctFotug61E9pglHjzqMNInPdsy0z0Ya/I/5E8QRM6EQiG88MILCIVC+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDhrFYrFgyZIlWL58OW688UbMnz8fp0+fht1uVwc0Fi1aNOOb3HPnzoXdPvr+YTweR3NzM+LxOJxOJ7xeL7xeL7773e9i/fr1U9qoqKjAN7/5TVRUVKT9fv/+/QiHw1lrzIQTJ06gs7MT586dQ3NzM2KxGFP78Xgcvb29uHLlCvx+P1e14qeCt2NWC7xpYe1POBxWB0HGMjAwoEt7Y+H1HiyXMjxjcxeRf8wSDx51GOmTnm2Z6R6MNTQQQhAFjNPpxKpVq8bVHi5UeNNitD96tsfSNgtbWmzw1k+KHbPEgzcdlH/0s0f5xzyYKR68aaEc9F9YLBbMnj0bixcvxqJFi3DXXXdlbau0tBSrVq3CnDlzYLPZ4PV6YbPZxm3jdruxefNmvPzyy2ltiKKItra2aUtpbdiwAVu2bEn70JcV8XgcV65cSfudLMvo7+9HR0cH+vv7J63FkI5IJILm5mZcuHABXV1daGtrw5UrV7gfDOHtmNUCb1pY+zPVbK3UccJz/mFty+l0Yt68eZPyTyZMlbuI/GCWePCow0if9GzLTPdgrKE1QoiCptjXCCEIgiAIgiAIIr/MVJs/k+2A0Ye2Gzdu1OTL+vXrdSuTBYwODj344IPjPpMkCSdPnhy3CGplZSWWL1+uzoZJx8mTJ9XyYGO59957UVpays5pomi5cOECent7035n9Po3WtYI0WIfAB544AHIsowjR45obocgCP0olnW58vksl2aEEEQBIwgC6uvrdX3zyyh402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykny1JktDZ2QlJktJ+X11dnfZtSbfbjYceeiijWuKpRdhFUYTP51P/Zbow+0yke4+yt7d33CAIMLrY/HRrpwBIOwgC/FfZIl7h7ZjVAm9aKP/oY+vo0aO4ePHitPlnOmbKXYSxmCUePOow0ic92zLTPRhraCCEIAoYHk8cucKbFqP90bM9lrZZ2NJig7d+UuyYJR686aD8o589yj/mwUzx4E0L5SD9bNlsNvj9fiiKkvZ7p9OJdevWTfrcbrdj0aJF086uSCGKIr7whS/g4x//ODZu3Kj+07N0Vn9/f1afzwQPNcSng7djVgu8aaH8o48tURTR29s7bf6ZDkVRcv4twR6zxINHHUb6pGdbZroHYw2VxiIKGiqNRRAEQRAEQRBEPsm0NNZ0ZXpSCIKAbdu2qTM7UqQGSeLxOA4fPpyzr+lKZ4miOG52xlQzU1LMnTsXFosFNTU1mDNnTsb6JzLV7+bMmTPuHo8gcoVKYxEEUUhQaSz9oRkhhClwu90oLy8HMLpQn9/vV6dtB4NB9SYiFoshEokAGB2R9Pv9qo1AIIBEIgEAiEajiEajAIBEIoFAIKBu5/f71VHMSCSCWCwGYPQGIjUlPJlMwu/3q4sEhsNh9e2reDyuvuU0cQQ4FAohHo8DGL0JCofD02qSZRmdnZ1qu4WsaWRkBNeuXYMsy1zEKRqNoqOjA7Isa44TMHPfEwQBPp8PoVCIuaZIJAKfz4doNMpFnIaHh+Hz+VTb2WiSZRmXL19W22V5PGUSp0I5nozSFIvFcOnSJciyXNCagsEgOjs7IcsyF3GKx+O4ePGi2q7efY9ljpioKRgMwufzIR6PM+l74XAYPp9PtZ1tnIaGhtDb2wtZlov6nGuGvCeKIi5evDjuOC5UTakSQqIochGnoaEh9PT0QJZlQ/qeLMvo7u7G0NAQc02yLOP69esYGhrSNU4p24lEQtWnKMq42ReBQADz589HOBxGPB5X9cmyPGmWxve+9z3U1dXhlVdewa9//Wu8+uqr2L17N7797W/j+9//PtavX4+qqip1gdXy8nK1bJbL5UJFRQUAwGq1oqqqClbr6G1/RUUFDh8+jKtXr6KnpwcdHR34/ve/j7/6q7/CE088gS9+8YvYuHEjvvjFL+JHP/oRBEFIq6m/vx99fX1obm5GR0eHqn0qTSMjIwgGgxgeHkYgEFDjJMuyuo+TySQEQYCiKBgcHMTx48fVwRne8p4sy7h48aLabiHnci3X5XpoYn1PGA6HVR9EURzXR1nniImaJEmCz+fDyMiIGqeZcoSWOE11PKW0i6KIcDgMURQnbZfa//F4XLUtSZLqqyRJ4/ZRPB7PKO8JgjBuu6lyxERfx243naaxvmarKeXr2O0KRVMsFkMgEICiKAWtKXXvoSgKN3GKx+MIh8NIJBK6973UdVYsFlN9ZXW9F4/H4fP5EAwGmeTyRCIBn8+n2k7tO633hPmABkIIU7B27Vo88sgjAEZrytbW1qoH586dO9He3g4AOHDgAOrq6gAA3d3dqK2tVW1s375dvZDft28f9u3bBwDo6OjA9u3b1e1qa2vR3d0NAKirq8OBAwcAAO3t7di5cyeA0cRRW1ur1rfdu3cvGhsbAQCtra3YvXs3gNHkUFtbqyaj3bt3o7W1FQDQ2NiIvXv3TqspFArh5Zdfxptvvlnwml566SXs3LkToVCIizg1NTXh17/+NUKhkOY4ATP3vTNnzmDHjh14++23mWv64IMPsGPHDjQ1NXERpx07dmDHjh0IhUJZawqFQnjllVfwwQcfAGB7PGUSp0I5nozSlPI1dSNYqJrefPNNvPzyywiFQlzE6eLFi3j11VfVC1C9+x7LHDFR05tvvokdO3bg4sWLTPree++9hx07dqC1tTWnOP3sZz/DL3/5S4RCoaI+55oh73V1deHVV19VH54Xsqbf/e532LFjB7q6uriI089+9jP86le/QigUMqTvhUIhvPjii/jZz37GXFMoFMIvfvEL/OxnP9M1TinbXV1duHDhgmqvqalpnKYLFy6gpaUFly5dUvWNjIygublZ3a6pqQnBYBBOpxN+vx+xWAyzZs3CmTNn0NbWBrfbjX/+53/G008/jZqaGgDAI488grVr1wIAVq9ejS996UsAAI/Hg6effhoejwcA8KUvfQmrV6/GY489hl/96lc4dOgQDh06hKqqKjz99NNwuVwAgEcffRRDQ0PYtm3btJqam5vVfdTR0ZFWkyRJeO655/D+++/j5MmTeOWVV/D222+r/SP1e1mW0dTUpD7YOXjwIN566y3E43Hu8l4oFMKrr76KixcvTtn3gMLI5Vquy/XQxPqesK6uTvXhwoUL6OrqUttlnSMmahoaGsKOHTvw0ksvqXGaKUdoidN0x1N7ezuuXr2KlpYW9PT04NSpU2o8m5qa1P1/6tQpdW2f7u5u1e9AIIDTp0+rD1RbW1szynvNzc0YGRlRdcyU99LFaTpNqf3g8/my1hSNRtHU1KQ+CC4kTadPn0ZbWxtEUSxoTceOHcPx48chiiI3cers7ERLSwt8Pp/ufS8Wi6GlpQVtbW2qJlbXexcvXsSOHTvw5ptvMsnl169fx44dO5jfE+YDKo1FFDSp6VRutxt2ux2NjY1YunQpQqEQKisrYbFYEAwG4Xa74XQ6EYvFoCgKysrKIEkSwuEwqqqqAIye3EtLS+FwONQEV1paikQigWg0isrKSgCjo6vl5eWw2+2IRCKwWq0oKSmBKIoQBAEejwfJZBKBQAAVFRWw2WwIh8Ow2+1wu92Ix+MQRREVFRVQFAXBYBAejwdWqxWhUAhOpxMulwuCIECSJJSXl6tvrk7U5HA44Pf74XA4UF5eXtCaAoEALBYLKioq1NH2fMZJEASEQiHMmTMHyWRSU5wy6XslJSVQFAWyLMNisTDVZLPZYLFYAIy+LZDvOEUiEbjdbrhcLgQCgaw0Wa1WDA0NoaysDCUlJUyPJzPmCL01xeNxBAIB9UFMoWpKvfVTVVWFRCKR9zil3vxLlR7Ru++xzBETNcmyDLvdDpvNhkgkornvWSwWWK1WWCwWxOPxrOMUCATgcrlQUlKCcDhctOdcM+S91NupNTU1sFqtBa0pkUjA4XCo+SjfcfL7/XA6nSgtLUUkEtG976XaSSQSmDVrFlNNqeuVlD694tTS0gKLxYJEIoFkMgmn0wlFUSCKIj7xiU+Mu947ePAgFEWBxWKBw+GALMtIJBLqjA5BEOB0OmG1WiGKIiwWC+x2O0RRRDKZhNvtRjKZRCgUwuc//3kIgqAeE4IgwOVywel0IhQKwWq1wuPxIBgMQlEUVFRUqG+8pu6fUueBiooKBAIBJJNJeDwe9c3Q1157DQ6HY5ymsb46HA7YbDb1LdWJmqqqquDz+SZpeuCBB3D48GFIkgSXy4VkMol4PD5uO6vVijvuuAOzZ8/mKu8lk0n09/ejuroaDoejoHO5luvyQrgnPH78OPx+/7i+l+qj99xzD9McMVGTx+NRj7eSkhIcPnw4bY5YtGgRli5dqjlO77333rTHk8VigcViQTKZhKIo47ZzuVzqtZXNZoPdbockSVAUBU6nU52hU1paCqvVing8rl7fpdOUTY6YKu+ltpspR6R8lWU5K00pX8duVyiaUvnZ5XKpFSwKUZMgCLDb7eo5joc4AVBnUU7c/6z7Xur/JUlSfV2zZg2T672ysjI1LjabTXMur6ioUGfguFwuzfeEPT09eSuNRQMhREFDa4QQBEEQBEEQBJFPOjo6cO3atUmf33DDDbjtttvGfcayjv+WLVuwf/9+ZvbSsWfPHni9XuZ2KyoqMloUvbS0FPfee6/m9lIlRkRRxKxZs1BSUqLZJsE/Zl8jJBgMqoOsp0+f1uAdQRA8QGuE6A+VxiKIAiYYDOInP/mJOpWvkOFNi9H+6NkeS9ssbGmxwVs/KXbMEg/edFD+0c8e5R/zYKZ48KaFclD2tubPnz9pcXGHw4EFCxZMstHY2KiWjsiUeDye9nebNm3C+vXrp13YnFcyGQQBoL71qgVBENDc3IzTp0/jwoULaGpqwvXr13O2x9sxqwXetBRj/vH5fDh27BiOHDmCCxcuqCWAZrLV2dmJ48ePo6OjI6NBkKnySCZo+S3BHrPEg0cdRvqkZ1tmugdjjT3fDhAEkTtutxsPPfSQOq2vkOFNi9H+6NkeS9ssbGmxwVs/KXbMEg/edFD+0c8e5R/zYKZ48KaFclD2tkpLS7Fq1Spcv34doVAI5eXlmD9/PsrKyibZWLRoEez27G7D7XZ72t+53W5s3rwZoiiqC4unEEURjz/+OKgAxOjaWxMXpD9//jxmz56d0yASb8esFnjTUqz5J7U4cm9vL+LxOJYvXz6trUgkgs7Ozqz8mSqP6P1bgj1miQePOoz0Sc+2zHQPxhoqjUUUNFQaiyAIgiAIgiCIQoFlaayZYFE6S6/SWNmgpVRIMplUF4qdyO2334758+fnbJsY3b+xWAxut1utq88TrEtjhcNhXL16FeFwGB6PB4sWLcr4wV42x/79998/7SDddLoIgihcqDSW/vB3piIIImNisRjeeecdxGKxfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnKxaL4dq1a+rCrZmSSCRw6dKlrH9XyKWzZkIURfT392N4eDhtKaFM8Pv94/6Ox+Np93FqUdnBwUEkEgnujlktaNHi8/nQ0NCAo0ePoqGhAd3d3cz8iUQi6OjowLFjx9Da2gqfz5d2e0EQ0Nvbi76+vqyPj7HtZaI/Go2ira0N/f39iEaj8Pl8aGtrUxdY1mJ7IhP1TrQ1ODiYtc1c84jW3xLsMUs8eNRhpE96tmWmezDW8DP/iCCIrFEUBX6/H4qi5NsVzfCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W4qiwGKxZF2uKplMQhCErH83Vemsn//85zh06FBGNqZ6yJtPhoaGcPr0aXV/uFwurFq1KucF0AVBwOnTpxEOhwEA1dXVuOOOO2C32yGKIk6cOKGWLrJYLLjlllu4Oma1kGu/DgaDOHfunPq3LMu4dOkSSktLUV1drdmfs2fPqvEAgEAggP7+fjUuADA8PIzTp0+rvjudTqxcuXJSSbpM2stEf19fHyRJGveZIAgYGhpKO7NIS864fPkyfD4fSktLcdNNN8Fms2F4eBgDAwOYO3du1vaA3POI1t8S7DFLPHjUYaRPerZlpnsw1lBpLKKgodJYBEEQBEEQBEEUEocOHZr0QNVIBEHAtm3b0NDQkNFAx/r167Fp06a81fYeWypElmU0NDRMephSVVWFVatWTfrtdKWx5s2bh6VLl+Lo0aOT3lKtqanBnXfeiTNnzmBgYGDcdxaLBevWreOqrr3RXL58GVevXp30+YIFC7BkyRJNtgVBQGNjY9rv3G43Vq1aBZfLhcOHD096k3piP2BZGmuq0lYlJSVYs2ZNzr+fCZvNhsrKyknrABEEYT6oNJb+UGksgihgJElCZ2dnXm+kWMGbFqP90bM9lrZZ2NJig7d+UuyYJR686aD8o589yj/mwUzx4E0L5SD9bKVs3HLLLVn9TlEUxGIxZm9SpmaK1NXVYc+ePXj22Wen3X7//v3Ytm0bk7a1MjIyknY/+P3+nEpkRSKRtKU6hoaGoCgKhoaGJn0nyzJOnz7NzTGrhVz7dbpBEACa162QJAknT56csq8LgoBLly4hEAikLSeTbT9gcVxPVeqFVf6RZRmDg4M0K59QMUs8eNRhpE96tmWmezDW0EAIQRQw4XAYL7/88rhpw4UKb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVspFN6R5gtDzV0aNHUVpamnPb6XA6nfB6vRkthp7p7BG9mW7/5zIQMnGdkBSKoiCRSKR9QCWKIt58801ujlkt8Jh/3n777Wn72uDgILN+UCj5J1WiTcsxqMUGi/YJdpglHjzqMNInPdsy0z0Ya6g0FlHQUGksgiAIgiAIgiAKjQ8++CDjB7Zutxtr166Foig4ceIEAoEAU19EUcSGDRtmfBizZ8+ejAZNWPPQQw8hmUxCFEVcv34dnZ2dabe7//77Jy0MP1NprIqKCly6dCnt9/fddx+OHDmS9rv58+fj9ttvz1yEyZiuzJPW0i4dHR24du3atNt86EMfmjJuixcvxo033gjAmNJYmdrKtTQWQRDFA5XG0h+aEUIQBEEQBEEQBEEQBpLNgsepB+5WqxUf+tCHmPvidDqxbt26GbfbsmULBEFg3v5MXL9+HUeOHMGRI0emHAQhiBTpypkRBEEQBEADIQRR0AQCAfzLv/wL87fC8gFvWoz2R8/2WNpmYUuLDd76SbFjlnjwpoPyj372KP+YBzPFgzctlIP0szXWxk033QSXy5Xxb/WOyaZNm7B+/fpptzl79mxe1go5f/48V6VTBEHA73//e26OWS3wmH9++9vfahpwm6rc2USuXLmCq1evMtUvSZK6dgnLfSsIAg4dOqRpv2ixwaJ9gh1miQePOoz0Sc+2zHQPxhp7vh0gCCJ3SktL8ZnPfIZ5veB8wJsWo/3Rsz2WtlnY0mKDt35S7JglHrzpoPyjnz3KP+bBTPHgTQvlIP1sjbXhcDhw9913Y2BgAKFQCD6fL+1vnE4nysvL1d/p9XAmtYD6448/jscee2zK7VJrhUwsQVVMOBwOrFy5Ej6fD729vZg1axbmzZsHi8WSb9eyhsf8c//99+e03ku2dHV1QZZl3H///Zr1y7KM9vZ2dTZKVVUVlixZwmzfOhwOLF26FA6HIy82WLRPsMMs8eBRh5E+6dmWme7BWENrhBAFDa0RQhAEQRAEQRBEIaMoCg4ePJj2u1mzZmHlypXq36FQCC0tLbr5ksl6Ic8++6y6Vkh1dTU3gyJGrhEyEa/Xi9tvv70gB0NyIdv1MsLhMEZGRuB2uzFr1izY7VO/k6t1jZCxPky3RshY7rvvvhlnaE2nee7cuejv7x/32cRjl9YIIQhiJmiNEP2h0lgEUcBEo1G88cYbiEaj+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq42jIxJJuuFfOtb38LGjRuxceNGfPzjH8eTTz6JUCiku2+8kEgkcO7cObUEEgD4fD7EYrE8epUbRvStnp4eNDc3o6OjA2fOnMHx48enHGiLRqM4fPjwuH2rJ6lYXr16VZOdiYMgqc9ee+01Jvs2XZ8z0gaL9gl2mCUePOow0ic92zLTPRhraCCEIAiCIAiCIAiCIAoAI2YcbNq0CcuWLct4+7Nnz+LTn/503hZTTxEOh/PWNgD09fVpthGPxxGNRmGWwh2JRAIXL14c91k0GuVu0ftM1xXJFp7WtiEIgiCoNBZR4FBpLIIgCIIgCIIgCplsSmMlk0kcOnRI9zUUfD4fNm7cmPXvli1bhp/85Cd5KZc1b968SQM405XGKikpmXYWRzalsQBgzpw54+5Ns0GWZZw5cwbDw8Oqb8uXL+einno6Mi2NdfXqVVy+fHnG7caSj9JY1dXVWLFiRdrvRFHE8PAwzp07N6Odidx5552oqakBQKWxCIKYGSqNpT80I4QgChgepxLmCm9ajPZHz/ZY2qZp2cRYzBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytTH2dxaLBbfeemvOPujN2bNn8YlPfGLc7BBRFOHz+dR/er0lP3G/yrKMs2fPTrl9rqWsZFnG4OAg08Gojo4OdRAEGPXt1KlTus8M0ft4z3amRSKRwLVr1wxZLB34r1hKkpT2+1AohKNHj+Y0CCLLMi5fvsxk37Loc1ps6NHnidwxSzx41GGkT3q2ZaZ7MNbQQAhBFDA81dnTCm9aqD62fraoRr95MEs8eNNB+Uc/e5R/zIOZ4sGbFspB+tlitUbIDTfcgBUrVnCzSPlEkskk9u/fjx/+8IfYsmULNmzYoK4psnHjRmzYsEH3MlqSJOHEiRNp127IlLa2trSf6/FAJ92shVgspnu5Lx7zD6s1QhRFwdDQ0LTbpGI51eDchQsXphwkmYlEIoH333+f1gghmGOWePCog9YI0cceT+caKo1FFDRUGosgCIIgCIIgiEImm9JYEwkGgzh+/Dhzn3ItjZUN69evx+bNm5nZG1veqLOz0/B1KLSUxpqqbNLNN9+MW265RYNX+pBpaayTJ0+Om+ky1XZjYVEa68/+7M9w+vRpjIyMTGsnRbrSWKIo4vDhwxn9fiqoNBZBENlApbH0h2aEEARBEARBEARBEEQB4vF4MGvWrHy7kRMNDQ26lckaGBjQxS5RGPh8vowHQSaSSCSgKApXb6kTBEEQbKCBEIIoYPx+P37wgx9kXXuVR3jTYrQ/erbH0jYLW1ps8NZPih2zxIM3HZR/9LNH+cc8mCkevGmhHKSfrVxt8NZHWJFahFoPIpGILnYBQBAEHDhwQNfSXkbBW9/y+/349a9/rXnfZjoQloplJBJBPB5Ha2srGhoacOjQIVy4cEGTD4Ig4Pnnn2eyb1n0OS02zNTnzYBZ4sGjDiN90rMtM92DsYZKYxEFTbGXxpIkCd3d3Vi4cCHsdnu+3dEEb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LM1lY2ZSmPdeeed07Z94sSJnN9+n4pMS2MtW7Zs2gXJZ2LPnj3wer05/34iFRUViEajui50qygKgsEgPB4PrNb/ere0EEtj5dqv9SqNJUkSmpqaEI/Hx+3bicxUGitTUrG8+eabIUkS0wE0RVFQXV2ND3/4w7Db7ZpKY03V54yywaJ9gh1miQePOoz0KV1brEpj8X4Pls9nufm/0iYIImfsdjsWLVqUbzeYwJsWo/3Rsz2WtlnY0mKDt35S7JglHrzpoPyjnz3KP+bBTPHgTQvlIP1s5WpDS9vz58/H9evXs/5ddXU1nE7ntKWrnE4nfvKTn8Dn8+Gxxx7LyT/WhEIh3duwWq2oqqrSvR1gdOH5TJEkCbIsw+VyZfybbPqWKIrw+Xy6LuBut9vh9XpnXCOEFalYxuNx5m9lW61W3HDDDUweQrLoc1psGNnniZkxSzx41GGkT3q2ZaZ7MNbwMeRGEERORCIR/OY3v9F16rdR8KbFaH/0bI+lbRa2tNjgrZ8UO2aJB286KP/oZ4/yj3kwUzx400I5SD9budrQ0vbs2bOz/g0wOsixbt26abdZt24dnE4nvF4vnE5nTu0UIqIo4vTp07qtbzKWwcFBxOPxabeRZRmnT5/GoUOHcOTIERw7dgyxWGzcNsFgEBcuXMCZM2fQ29urDrBk2rdEUURraysuX76M/v5+baKmIRKJoL6+3pB9C/xXLIPBoC623377bSb5h0Wf02LDyD5PzIxZ4sGjDiN90rMtM92DsYYGQgiigEmNIPMyjVALvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WLjZKSkry1kc2bdqE9evXTxrkcDqdWL9+PTZt2qT+PdOgiZmwWCxwu92wWCy6txWNRnHkyJFpZ0hcvHgRg4OD6t+RSAQnT55UBzuGh4fR1taG3t5eDAwM4MKFCzh//jyAzPvk9evXJw2u6IHVakV5ebkh+xbQN5YWiwUVFRVMjlsWfmqxYWSfJ2bGLPHgUYeRPunZlpnuwVhDa4QQBU2xrxFCEARBEARBEETh09LSkras08qVKzFr1qxpf9ve3j7lW/rLly/HqVOnNPk2cVHzVNmssQiCgG3btmH//v1Z2Wa9Rkg+qa6uxooVKyAIAq5evQq/34+5c+fC6/XC7XZP+9tM1o+466674PF4xn2WTCbR0NAASZImbf+Rj3wE5eXlaGtrS7tA7dq1a2f0K0VjY2PGpaO0rBECAB0dHTOWxmK1Roje3HnnnaipqQGQWYwJgihuWK0Rwjv5fJab/6EYgiByRhRFtLW1cTWVMFd402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykn63pbNxyyy2T3pScPXs2KisrZ2x77ty5aT8vKyub9OA8RTZvZabKX6X+pSuD5Xa7sXnzZrz88ssZ2y1UZFmGz+ebtCB7SUkJhoeH0djYiN7eXkSjUXR2dqKxsXHatUvSDWKko7e3N60vU/1+aGgIANIOggBAX19fxv2a9foZUyGKIjo6OnRd7H4sU8WSle1z584xyT8s/NRiQ8/9RGSPWeLBow4jfdKzLTPdg7GGBkIIooARBAH19fWGXZjqCW9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzNZ2N6upqrF69GjfeeCPmzp2LJUuW4M4774TVap2x7aqqKpSUlEz6fMGCBXA4HLjhhhsmfbdw4cKcdUxHMawVIkkSOjs70w5ATDX75uLFi2k/TyaTaGpqyqhdn8+XuZMZEIvFuMw/J0+ezHhwSCvTxZKF7WPHjjHZtyz81GJDz/1EZI9Z4sGjDiN90rMtM92DsYZKYxEFDZXGIgiCIAiCIAii2InH47h8+TL8fj9cLhe8Xi8WLFgAYPRhe29vL4aGhmCxWDBnzhx4vV4cOHCAuR8+nw8bN27MeHszlcaaiY9+9KOTZuIMDAzgzJkzGduYWDZFkiQcOnQo7ba33HILbr755ilLMnm9XixdujSjdrMp66S1NNYHH3ww4xvSN910E65evZqxT/mCSmMRBJENVBpLf2hGCGEK3G43ysvLAYxOL/P7/ericMFgUJ1+FYvFEIlEAIxeNI6dJhwIBJBIJACMLkoXjUYBAIlEAoFAQN3O7/erI7aRSERdNE4URQSDQQCjNxt+v1+9gAuHw+rIZzweV6dGK4oCv98PRVEAAKFQCPF4HMDoiGk4HJ5WUzKZxMjIiLpdIWsKBAIIBoNIJpNcxEkQBAwMDCCZTGqOEzBz3xNFEYIgIBKJMNeUettLEAQu4uT3+yEIguprNpqSySQGBwfV7VgeT5nEqVCOJ6M0xeNx9Pf3I5lMFrSmcDiMkZERJJNJLuKUSCTQ19c37rjTs++xzBETNaX2WerY1xKnVH4UBAHxeDynOI2MjCAajSKZTBb1OdcMeU+SJPT19anbFbKmUCgEQRBUX/Mdp5GREUQiESSTSUP6XqqdkZER5ppS1ysjIyNcxCnX671kMolgMKhul67vJZNJLFu2DHfddRduu+02LFiwQNWUTCZxww034JZbbsGSJUswf/58xONx1W9FUdRrs9R+SdlOJBKTtkshCMK47VIxczgcqKysVLerqqqC3W4HMFquKzV7xel0qr9JJpMQBEHd/6IoqvtBkiQ1Fqntxvo6dju9NMmyrG6X6rOp7URRHLfdRF/H5qmJfa+npycrTVP1vXSaUttNpSnVRzO5Lp9K01Rxmng8pdN0/PhxdHV1qddgwOjMmdR5ero4DQ0NzRinlPaxvk6MU6qdWCzGvO8pioJ4PK4e+1PFaayvU2mKxWKQJCnt/s+k76W2kyQJiUQia02yLCMcDo+LJ6vjKZM4TaWJ1xyht6bUdXsymSxoTbFYDIlEAslkkps4pfxNt//1yBGSJI3zldX1XiKRUK/HWFzDpvZbMBhkek+YD2gghDAFa9euxSOPPAJg9K2a2tpa9eDcuXMn2tvbAQAHDhxAXV0dAKC7uxu1tbWqje3bt6OjowMAsG/fPuzbtw/A6GJt27dvV7erra1Fd3c3AKCurk59k6q9vR07d+4EMJo4amtrMTAwAADYu3cvGhsbAQCtra3YvXs3gNHkUFtbqyaj3bt3o7W1FcDognR79+6dVlMgEMBzzz2H119/veA1vfjii3j22WcRCAS4iNORI0fw/PPPqw/+tcQJmLnvnTp1Clu3bsVbb73FXNOBAwewdetWHDlyhJs4bd26FYFAIGtNgUAAP//5z9XtWB5PmcSpUI4nozS1tLRg+/btCAQCBa3p9ddfx3PPPYdAIMBFnM6fP48XXnhBvaDVu++xzBETNb3++uvYunUrzp8/z6Tvvfvuu9i6dStaWlpyitNzzz2Hf/3Xf0UgECjqc64Z8t6VK1fwwgsvqPYKWdNvf/tbbN26FVeuXOEiTs899xz+7d/+DYFAwJC+FwgE8H//7//Fc889x1xTIBDAtm3b8Nxzz3ERp1yv9wKBAJ599lm8+OKLapxY9L2U39FoFE1NTeoDkdQ2ANDV1YULFy6o9saWcWpublYHsDo6OtDR0YHq6mrcfvvteOKJJ9Ttnn76abUU14YNG/Dggw8CAO644w5cuXIFPp8PsVgMTU1N6oOd9vZ2dT/4fD615FQ8HkdTU5O6/0+dOqWWjOru7p5WU2p/ZasJAEZGRtDc3Kz60NLSoq7BceHCBXR1dQEY7fOp/SfL8jhNr7/++qQ4+f3+rDRN7Htnz57NWZPP58v4unwqTVPFKdX3Ug/g0mkKBoM4deoUnnvuOVXTa6+9hsbGRsTj8Wk1vfvuuzPGCQCamprU/p8uTvF4HIcPH8bRo0eZ971oNIoXX3wRL774ojrrJ9e+19LSgoaGBtWH6TRNFaeuri40NDSgu7s7a01+vx8tLS2qPZbHUyZxmkoTrznCCE2pvwtZ09GjR3H48GHE43Fu4nTlyhU0NDTg+vXruve9aDSKhoaGcZpYXe+dP38eW7duxeuvv87kGranpwdbt27FK6+8wvSeMB9QaSyioElNp3K73bDb7WhsbMTSpUsRCoVQWVkJi8WCYDAIt9sNp9OpvulRVlYGSZIQDodRVVUFYHR0tbS0FA6HQ01wpaWlSCQSiEaj6ltNfr8f5eXlsNvtiEQisFqtKCkpUd/w8ng8SCaTCAQCqKiogM1mQzgcht1uh9vtVt++qqiogKIoCAaD8Hg8DWL8MwABAABJREFUsFqtCIVCcDqdcLlc6htn5eXlkGU5rSabzYZr166huroaHo+noDWl3rJdsGABRFHMe5yi0SiuX7+ORYsWqfs81zhl0vdcLhf8fj/Kyspgs9mYarJYLAiFQvB4PJBlOe9xCoVCEEURNTU1CIVCWWkCRi945s2bh7KyMqbHkxlzhN6aYrEYenp61AVeC1VTMBjE8PAwbrzxRvVtl3zGKR6P4+rVq7j11lths9l073ssc8RETSkfZ82ahVgsprnvpd7CraysRCKRyDpOIyMjiMfjmDdvHqLRaNGec82Q90RRRFdXF2655Rb1OC5UTfF4HLFYDNXV1aoP+YzT8PAwBEGA1+tFLBbTve+53W5cv34dJSUlmD17NlNNZWVl6O/vh9PpRFVVVd7jlOv1ntPpRG9vL8rLyzFr1ixmfe/gwYNwOp1QFAWiKMLlcsFisSAej+P+++9HS0uL+rbu2O3cbjeA0bdBHQ4HbDbbuNkgP/rRj9Dc3KwO6FdVVSEcDkOSJJSVlUFRFMRiMTidTrjdbgSDQTidTnzsYx/DN7/5TfXtd4vFgpqaGlitVsiyDJfLpb45PNZXm80Gu90OSZKgKMqUmux2u+prtppkWUYikYDb7VbPJ5WVlbDb7RBFERaLRd1OkqRxvjqdTlitVqxatQput3tcnFpaWrLSdNddd43re3a7HUePHk2raenSpXC73Whra0urac6cOeo1/UzX5fv370+rSRRFWK1W1VdZlvHxj39c7XudnZ3qYM9UmpLJJNavXw+r1Yq3335b7b+p2eC5xim13VhfJ8bJ4XAgEonAZrPB7XZPqSmXvudwOBCLxeBwOOBwOGC1WnPue/F4HIqioLS0FKIoTqtpqjgBUH+bTCaz0iRJEgKBgJpHWR5PmcQp077HS47QW1MsFhuX5wtVUywWgyzLKCsrQyKR4CJOqVliLpcLiqLo2vdSOcJms8HpdMJms2HNmjVMrvdKSkowMjKibq/1GrasrAxDQ0Nwu90oKSnRfE/Y09OTt9JYNBBCFDS0RghBEARBEARBEET2TLdmwX333YcjR47kZFcQBGzbtg0NDQ3qA9hccTqdWLduHTZt2qQ+uCpUHnjgAbVEGAD09/erb8xmSjZrhCxatAjd3d1TLsQ7b948LFu2bNxnkUgEvb296ssLCxcuhNVq1WWNkLHce++9KC0tpXU0CIIoamiNEP2h0lgEUcCEw2Hs2rVLrctXyPCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PzITb7cbmzZtRV1eHPXv24Nlnn83ZVmo2wrZt2xh6qA1RFNHW1qZ5kCdVVkYvgsHglIMgANDX1zeub0UiEbS2tqKnpwfDw8O4fPkyTp8+DSPenU21wWrfZoqe7bG0zcKWFhtGx4WYHrPEg0cdRvqkZ1tmugdjDQ2EEEQBY7fbsWjRonFvFhUqvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WrjZ46yOZ4nQ64fV64fV6Nduqr6/n5mGZ1WpFVVUVrNbsHqccOXIE7e3t6mK/qQVx9SKT/SXLstq3enp6Jg2cDA8Pq4vmZkuq1F425Lpvc0XP9ljaZmFLiw2j40JMj1niwaMOI33Ssy0z3YOxhkpjEQUNlcYiCIIgCIIgCILIHr1KY03E5/Nh48aNmu0sW7YMP/7xjwu+RFZJSQk+9KEPqQvsZsNHP/rRcQ/NpiuNVV5ePuPbtzfeeCMWL14MYOr+MGvWLHXR4UxIlXa5evUqLl++nNFv7rnnHpSVlVFpLIIgihoqjaU//Ay7EQSRNfF4HI2NjYjH4/l2RTO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960UA7Sz1auNnjrI9lSXV0Np9Op2c7Zs2fHlcgSRRE+nw8+n8/Q2SKSJE279sZMxGKxnAZBgNFFcFly5cqVGftWNoMgY+nv789q+2QyqXnfZoue7bG0zcKWFhtGx4WYHrPEg0cdRvqkZ1tmugdjDQ2EEEQBw2NNxVzhTQvVp9XPFtWnNQ9miQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PZEtqwXMW7N+/H0NDQ9iyZQs2bNiAjRs3YuPGjdiwYQO2bNkCQRCYtDMdsizD5/NBlmXd20rXdqZkUotdlmVda9RnyoULF9DQ0GD4vtWzPZa2WdjSYiOffZ6YjFniwaMOI33Ssy0z3YOxhkpjEQUNlcYiCIIgCIIgCILIHqNKYwGAIAjYtm0bGhoadH0Qsn79emzevFk3+/nmzjvvRE1Njfr3dKWxMiVVioVVWSrW9giCIIoFKo2lPzQjhCAKGEVR4Pf7oShKvl3RDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasNvfbRrFmz0n6uxxocbrcbmzdvRl1dHfbs2YNnn32WeRsAdB9oAUZLOAmCADO8U5pMJnXpW7mW8DJ63+rZHkvbLGxpsWGmPm8GzBIPHnUY6ZOebZnpHow1NBBCEAVMMBhEbW0tgsFgvl3RDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasNvfbR3Llzp/zcZrMxbSuF0+mE1+uF1+vVxb4oihgeHs76N6m1RjJZbyQej6OpqYmLWudaicfjzPtWMplEe3t7zv4YuW/1bI+lbRa2tNgwU583A2aJB486jPRJz7bMdA/GGiqNRRQ0xV4aS1EUBINBeDweWK2FPa7Jmxaj/dGzPZa2WdjSYoO3flLsmCUevOmg/KOfPco/5sFM8eBNC+Ug/WzlakOvfSTLMk6fPj1uMezy8nKsXLkSDocDR48eRTQaZdbeWHw+HzZu3KiL7T179sw40CKKInp7e7Ft2zacPXt23HepNU02bdqUdnZMMplEPB6Hy+WCxWJh6vtM3HDDDaioqEBVVRXcbrfm0ljJZBKrV6+Gx+PBwYMHGXqauz9G7ls922Npm4UtLTby2eeJyZglHjzqMNKndG2xKo3F+z1YPp/l2g1phSAIXbBaraiqqsq3G0zgTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytaHXPrLZbFi+fDmGh4cRDAZRXl6O6upq2O2jjwluv/12tLa2Mm8XAKqrq+F0Og1fODWTtUpEUcT+/fsBIO16IxaLRZfyYZnQ09Oj/v+SJUumnNWTKRaLhav8Y/S+1bM9lrZZ2NJiI599npiMWeLBow4jfdKzLTPdg7Em/68cEQSRM6FQCC+88AJCoVC+XdEMb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw0995HVasWcOXNw6623Yu7cueogCAB4PB7m7aVIzbqYjvvvvx/r16/P2vZ0gyvbtm3D/v37MxqAmWqwJB6Po7m5Oe/lXC5cuABBEDTZiMfjXOUfo/etnu2xtM3ClhYbvPR5YhSzxINHHUb6pGdbZroHYw0NhBBEAeN0OrFq1So4nc58u6IZ3rQY7Y+e7bG0zcKWFhu89ZNixyzx4E0H5R/97FH+MQ9migdvWigH6WcrVxv56iMWiwULFy7Uzf6mTZuwfv36SbqcTifWr1+P73//+9i8eTNefvnlrOw+9thj2LJly6RBAlEU0dDQkLGdqdYbsdls8Hq9uq2jkg3Nzc2afm+z2bjKP0bvWz3bY2mbhS0tNnjq84R54sGjDiN90rMtM92DsYbWCCEKmmJfI4QgCIIgCIIgCEIvkskkLl68iL6+PsiyPOV2c+bMwcKFC9HW1pZ1GxMHHFJls1Lkup7I+vXrx5W2ysVOJuuNFDqpmvT19fV59YMgCKLYYbVGCO/k81kuzQghiAJGEATU19drnhLNA7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq428tlHLBYLlixZgnXr1uH++++fdrtc6387nU54vV71H6s3RqdbB0QLkiShs7MTkiQxt200kiRxlX+M3rd6tsfSNgtbWmyYqc+bAbPEg0cdRvqkZ1tmugdjDQ2EEEQBw+OJI1d400IX4frZootw82CWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasNHvqI1Wodt35IITBVaSutKIoCv98PRVGY2zYaRVHQ2dmJRCKRb1cAGL9v9WyPpW0WtrTYMFOfNwNmiQePOoz0Sc+2zHQPxhoqjUUUNFQaiyAIgiAIgiAIQn8URcHBgwfTfldTU4M777xTl/JKuZbGAsaXtmJZGmumcl6FxO23347z58/n2w2CIIiih0pj6Q/NCCGIAkaWZfh8vmnr9RYKvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WrjZ46yNGw2KQQRAEbNmyRbMvgiDghz/8Ib7+9a/jy1/+MjZu3IiNGzdiw4YNaRdo5x1FUdDS0sLNG9mKoiAcDhs6I0Sv9ljaZmFLiw2j40JMj1niwaMOI33Ssy0z3YOxhgZCCKKACYVC2LFjB0KhUL5d0QxvWoz2R8/2WNpmYUuLDd76SbFjlnjwpoPyj372KP+YBzPFgzctlIP0s5WrDd76iNE4nU6sW7dOk41t27bh7Nmzmn3Ztm0bjh8/jr/9279FRUWF+rkoiti/fz+2bdumuQ0jEUURLS0tuqylkgtG+6Nneyxts7ClxQZv/aTYMUs8eNRhpE96tmWmezDWUGksoqAp9tJYyWQS8XgcLpcLFosl3+5ogjctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBmxbKQfrZytUGL30kX6WxgNGZGNu2bZu0ALrT6cTixYunHOTYs2cPqqursWHDhpweNi1btgw//vGP4Xa7IYoiNmzYgEQiAZfLhXg8jomPU5xOJ+rq6gqmTFYymYQsy7DZbNzkHyP90bM9lrZZ2NJig7d+UuyYJR486jDSp3RtsSqNxfs9WD6f5RbWamcEQYzDYrHA7Xbn2w0m8KbFaH/0bI+lbRa2tNjgrZ8UO2aJB286KP/oZ4/yj3kwUzx400I5SD9budrgrY/kA7fbjc2bN6ddm2N4eHjKtT9S2+f6xu3Zs2exbds2bN68eZydqUpgpdpLt64Ij1gsFtjt/DwWMtofPdtjaZuFLS02eOsnxY5Z4sGjDiN90jv/mOUejDVUGosgCphgMIif/OQnCAaD+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq42eOsj6bBaRx8tlJaW6tqO0+mE1+tV/8008+Kxxx7Dk08+Oe02y5Ytm/b7ibNQPB4Pnn76aXg8nswd55R4PI7GxkbE4/F8uwLAeH/0bI+lbRa2tNjgrZ8UO2aJB486jPRJz7bMdA/GGhoIIYgCxu1246GHHuJmZFULvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WrjZ46SMWiwUulyvtdzU1NeP+yxMjIyNTfrds2TJs3bp12gGVibNQBEFAfX19wS2Mng673Y5FixZx81a20f7o2R5L2yxsabHBWz8pdswSDx51GOmTnm2Z6R6MNbRGCFHQFPsaIQRBEARBEARBEEbR0dGBa9eujfvM4XBgzZo1sNvtSCQSaGhoMNQnn883ZWmsmdizZw+8Xi+2bNmC/fv3T7nds88+CwD41re+lbFNgiAIgsgGVmuE8E4+n+XSjBCCKGBisRjeeecdxGKxfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnK1cbPPWRW2+9FQsWLIDNZgMAVFRUYNWqVeobrfl4s7e6ulrz4uSbNm2atkTWt771LXUQpKSkBJ/4xCdQUlKiqU0eSCQSuHTpEhKJRL5dAWC8P3q2x9I2C1tabPDWT4ods8SDRx1G+qRnW2a6B2MNDYQQRAGjKAr8fj8URcm3K5rhTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytcFTH7FYLFiyZAkeeOABPPDAA7j77rtRVlaWV5+cTifWrVunyUZqMfZMsFqtqKqqUtdFKWSSySQEQQAvhUKM9kfP9ljaZmFLiw3e+kmxY5Z48KjDSJ/0bMtM92CsodJYREFDpbEIgiAIgiAIgiD4IJlM4sCBA4a3KwgCtm3bNmlh8+lwOp2oq6tTZ5NoKbE1FiqNRRAEQeQClcbSn8J/hYEgihhJktDZ2QlJkvLtimZ402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykn61cbfDWR3gkNaOjrq4OL7300rRlrlKsW7cup5JaPC7wmys8vaUL0Iw0PW3RrFjzYJZ48KjDSJ/0bMtM92CsoYEQgihgwuEwXn75ZYTD4Xy7ohnetBjtj57tsbTNwpYWG7z1k2LHLPHgTQflH/3sUf4xD2aKB29aKAfpZytXG7z1EZ5xOp1YtGgRnn/+efy///f/0g6IOJ1OrF+/Hps2bcqpjfLycjz++OMoLy/X6m7eEUURJ06cyHgWjd4Y7Y+e7bG0zcKWFhu89ZNixyzx4FGHkT7p2ZaZ7sFYQ6WxiIKGSmMRBEEQBEEQBEHwQb5KY02HKIoYHh5W/55qcXUqjUUQBEHkEyqNpT+FP5eTIAiCIAiCIAiCIAiusVqteSmB4nQ6MxqYSA2Q8PR2MkEQBEEQ7KDSWARRwAQCAfzLv/wLAoFAvl3RDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasN3vpIrsyePTvfLkyL0+nEunXrZtyusrIS3/nOd1BZWWmAV/oiCAIOHToEQRDy7QoA4/3Rsz2WtlnY0mKDt35S7JglHjzqMNInPdsy0z0Ya2hGCEEUMKWlpfjMZz6D0tLSfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnK1cbvPURM5NaN6ShoWHczBCn04l7770XX//61+F0OtHT04NoNJovN5nhcDiwdOlSOByOfLsCwHh/9GyPpW0WtrTY4K2fFDtmiQePOoz0Sc+2zHQPxhpaI4QoaGiNEIIgCIIgCIIgCD6Ybo2QmpoauN1uXLt2zWCvsmemdUWmW0+E1gghCIIgcoHWCNEfKo1FEAVMNBrFG2+8YYq3kXjTYrQ/erbH0jYLW1ps8NZPih2zxIM3HZR/9LNH+cc8mCkevGmhHKSfrVxt8NZHtLBo0aJ8u5ARqXVFUv/GDoIkEglcv36dizdbtZJIJHDu3DkkEol8uwLAeH/0bI+lbRa2tNjgrZ8UO2aJB486jPRJz7bMdA/GGhoIIQiCIAiCIAiCIAhCd2w2G+bMmZNvNwiCIAiCKEKoNBZR0FBpLIIgCIIgCIIgCD6YqTTWnXfeidOnT2NwcNBgz9gyU2ms6upqtbTWxLJaBEEQBJEOKo2lPzQjhNCNt956C//wD/+A++67DwsXLoTb7UZZWRmWLl2KJ554AufOncu3iwUPj1MJc4U3LTQtWz9bNC3bPJglHrzpoPyjnz3KP+bBTPHgTQvlIP1s5WqDtz5S7MiyjFAoNOUCt1u2bMGGDRuwceNGbNy4ERs2bMCWLVsgCILBns6MLMsYHByELMv5dgWA8f7o2R5L2yxsabHBWz8pdswSDx51GOmTnm2Z6R6MNTQQQujGs88+i5///Odobm6G1WrF8uXLMX/+fHR0dOCFF17AihUr8Oqrr+bbzYKGpzp7WuFNC9XH1s8W1eg3D2aJB286KP/oZ4/yj3kwUzx400I5SD9btEaIOUgkEvD5fFOuEXL27FmIoqj+LYoi9u/fj23btk3aVhRF+Hw+9d/Y3xkBTw+nABqI1dMWvQxiHswSDx510Boh+tjj6TqGSmMRuvHKK6/A6/XigQceQElJifp5T08P/vEf/xGvv/463G43Lly4gBtvvDGnNqg0FkEQBEEQBEEQBB9QaaypsVgs2LVrF5xOJwRBwIsvvoijR49OGvxYtmwZtm7dioqKCpYuEwRBEJxDpbH0x25IK0RR8uijj6b9/IYbbsCrr76K+fPnw+/346233sI3v/lNg70jCIIgCIIgCIIgjKLYH+wnk0k89thjM2539uxZfPrTn8b69euxadMmuN1uA7wjCIIgCPNDpbGIvOB2u3HrrbcCACKRSJ69KVz8fj9+8IMfwO/359sVzfCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PTIfFYsGsWbPSfjdnzhyDvdEHQRBw/vx5VFVV6drOVOW0WCIIAg4cOMDN+iVG+6Nneyxts7ClxQZv/aTYMUs8eNRhpE96tmWmezDWUGksA5FlGWfOnMGxY8fQ3NyMY8eO4eTJk2o9uAcffBD19fU52RZFEb/97W+xZ88enDlzBn19fZg1axZuueUWfPazn8Xjjz/O1YXn4OAgbr75ZkSjURw4cAAf/ehHc7JT7KWxJElCd3c3Fi5cCLu9sCd48abFaH/0bI+lbRa2tNjgrZ8UO2aJB286KP/oZ4/yj3kwUzx400I5SD9budrgrY/MRDgcxokTJ8bVPb/55puxaNEiWCyWaUtjlZeXIxwOG+VqTiiKgs7OTnzjG9+AJEm6tuV0OlFXVwen06mLfUVREAwG4fF4YLXm/z1Zo/3Rsz2WtlnY0mKDt35S7JglHjzqMNKndG2xKo3F+z1YPp/l0kCIQbzxxhv40pe+NO3CMLkOhJw7dw4bN25EW1vblNvMnTsXL730Ej75yU9mbZ8lAwMDaG5uxne/+120trZi48aNmhZML/aBEIIgCIIgCIIgCN6Ix+MYGhpCPB7HrFmzUFlZCYvFAgDTDoTcf//9OHv2LPx+P3h+VJHLGiG5smfPHni9XkPaIgiCIPIHrRGiP3wMuRUBfr9/2kGQXOnu7saf//mfq4MgFosFDz74IL72ta9hw4YN6iLl/f39+MxnPoP333+fuQ8z8cYbb8BiscBisWDu3Ln45Cc/iZGREWzfvh27d+823B8zEYlE8Jvf/MYU5cV402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykn61cbfDWRzLB5XJhwYIFuOWWW1BVVaUOgsyE0+nEypUrsW7dOp09zB1RFNHT04OysrJ8u6IiiiJ8Pp/6b+IC7NP97vTp0xlvrzdG+6Nneyxts7ClxQZv/aTYMUs8eNRhpE96tmWmezDW8D+v1mTMmzcP99xzj/rvj3/8I2pra3O298UvfhG9vb0ARqcbv/nmm1i5cqX6/eDgIL7whS/gvffeQyKRwF//9V+jo6ND93qmY5k9ezbWrVsHRVHQ29uL7u5udHV1Yc+ePXjwwQexbNkyw3wxG1arFVVVVdxMI9QCb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw3e+ogR8FwCzGKxwOFwQFGUfLsCQRCwbds2NDQ0jHuY5nQ6sW7duhkXW7dYLHC73RkPVOmN0f7o2R5L2yxsabHBWz8pdswSDx51GOmTnm2Z6R6MNVQayyBSb2XcdNNN4z7/n//zf+IHP/gBgOxLY/3hD3/Apz71KQCjFzrNzc1Yvnz5pO0ikQhWrFiBy5cvAwD+v//v/8P//t//e9J23/nOd7B169aM2x9LIpHI+GL1+vXr+N73voedO3fC4/Hg5MmTuPnmm3Nql0pjEQRBEARBEARBFA7TlcYaWxYk1/UzjYCX0lhbtmzB/v37p/zt+vXrsXnzZr1cIwiCIBhCpbH0J/9DMUWC1+udNAiilZ///Ofq/z/22GNpB0EAoKysDFu2bFH/3rFjR9pF3crKyjB79uyc/mUzgjl//ny8+OKLePjhhxEMBvG//tf/ykI1MRZRFNHW1sbVVMJc4U2L0f7o2R5L2yxsabHBWz8pdswSD950UP7Rzx7lH/NgpnjwpoVykH62crXBWx8pdmRZRiAQ0G0B80wRRRENDQ3TbjNxpshEZFmGz+eDLMus3csJo/3Rsz2WtlnY0mKDt35S7JglHjzqMNInPdsy0z0Ya2ggpEAJh8N477331L+/+tWvTrv95z73OZSXlwMAhoeHcfDgwUnbfP/738fg4GBO/2w2W9YaNmzYAABobm7O+rfEKIIgoL6+HoIg5NsVzfCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PGAWv5bEkScLg4OC0JaeMYHh4eMaHSqIoqtulW0NEkiR0dnamfVEyHxjtj57tsbTNwpYWG7z1k2LHLPHgUYeRPunZlpnuwVhDpbHyTK6lsfbt24ePf/zjAEZncvj9/hkvFB9++GG8++67AIDvfve7+NGPfpS74wz4yU9+gm9961tYsWIFTpw4kZMNKo1FEARBEARBEARROGRaGuvKlSvo6uoyyKvsYFkay+l0YvHixTh79mza719++WXcdNNN6qAGAFRXV2N4eDgjH5YtW4aOjo6c1hAhCIIgjINKY+kPn69YEDMy9iJp+fLlGb0tc9ddd6kDIVNdZBlFMpnE3r17AQCrV6/Oqy+FTDKZRDweh8vl4mqBqVzgTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytcFbHzEKr9eL69evc1FKYyzJZBIejwdOp3Na3ywWC9atW4evf/3r6mBDdXW1+rtMBzUee+yxSZ+lBk8yId29vyiK6toi//zP/wybzcZF30omk5Bl2TB/9GyPpW0WtrTYMDouxPSYJR486jDSJ73zj1nuwVhDpbEKlPPnz6v/n+lC42PXKDl37hxzn8bS3NyM733ve+P8TNHV1YUvfOELaGhogM1mw1NPPaWrL2YmEAhg69atCAQC+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq42eOsjRlFSUoJVq1bhhhtuyLcr44jH4zh27Bg+9rGPTbnNsmXL8M477+CHP/whFi1aBK/XC6/Xq64r4nQ6J32WDaIoMnm58fTp02hoaEA8HtdsiwXxeNxQf/Rsj6VtFra02DA6LsT0mCUePOow0ic92zLTPRhrqDRWnsm1NNbnP/95/Md//AcA4J/+6Z9QW1s7429ee+01fO5znwPwX2/X6EV9fT3Wr18PAJg9ezZuuukmOJ1O9Pf3o7OzE8lkEmVlZXjxxRfx+c9/Pud2ir00lizLGBgYQE1NTU7rtPAEb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw3e+ohWMi2NNZZEIjHjwuC5MtPMjokoioJoNAqr1Yp/+7d/G7cgea4lp1iW2soGm82GX/3qV7jppptgteb/PdnUvi0tLTXEHz3bY2mbhS0tNoyOCzE9ZokHjzqM9CldW6xKY/F+D5bPZ7l89DQia8LhsPr/JSUlGf1m7HZjf68HK1euxE9/+lN87nOfw+zZs3H58mW0tLQgEAhgzZo1+N73vodz585pGgQZi9vtVheDl2UZfr8fqTG+YDCoXpjGYjFEIhEAowsT+f1+1UYgEEAikQAARKNRRKNRAKMX3WNHLf1+v7qYUSQSQSwWAzD6Vk4wGAQwOu3L7/dDlmUAo/s7tShQPB5HKBQCMJr4/H4/FEUBAIRCIXU0WBAENU5TabLZbKisrFRtF7KmSCSC6upq2Gw2LuIkSRLKyspgs9k0xwmYue8pigKv14t4PM5cUyKRgNfrhSRJXMQpHA7D6/XCZrNlrclms6G8vFy1zfJ4yiROhXI8GaVJlmWUlpbCZrMVtCZBEFBZWQmbzcZFnJLJJNxut3qRqXffY5kjJmoSBAFer1dtV0ucIpEIRFGE1+uFLMs5xSkUCmHu3Lmw2WxFfc41Q94DRq//UjeOhawpFovB6/Wq7eY7TqFQSL1RNaLv2Ww2zJkzR7XNUpPNZsO8efMQCoW4iFOu13s2mw3V1dXjzhOFnCNStmVZVv1JJpMQBGFKTWPPJ4IgqL7G43H1N5IkqbYVRZlyu0QiMW67VL9J7Zex26X0ybKs+mO1WmG32+F2u7F582a89tpr+PWvf409e/bgjTfewDPPPAO32636mtr/oiiq+0GSpHHaS0tL4XK5AAAVFRXq/4+9z7XZbKiqqlLLiqTKcwGj9/plZWUARheZr6qqUjVVVlbC4XAAAEpLS1FaWgoAcDgcKC8vV3PpRF/Hap8Yp0w0Tdz/Y7ebKk6JRAIlJSWwWq2T4jR2kd1M4pTabjpNVqsVZWVlEEWRuSaLxaLet0zV9zLVJIoiysvLNcVJURSUl5dDUZSsNQGj/SrV96Y7nvSI01SaWPa9QtKUSCTU47aQNYmiiLKyMlitVm7iJMsyysvL1VJOWuKUS45gdc5NJpPwer3q9UvK71yvYS0WC7xeL6LRKNN7wnxAAyEFytgDN9OptKmLKQDjLvb0YNasWfiHf/gH7N27F+fPn4ff70cikcDQ0BCOHDmCH/7wh1i4cCGz9tauXYtHHnkEADAwMIDa2lr14Ny5cyfa29sBAAcOHEBdXR0AoLu7e9xMmu3bt6OjowPA6GL0+/btAwB0dHRg+/bt6na1tbXo7u4GANTV1eHAgQMAgPb2duzcuRPAaOKora3FwMAAAGDv3r1obGwEALS2tmL37t0ARpNDbW2tmox2796N1tZWAEBjY6O6jspUmsLhMLZv347XX3+94DW9+OKL+MUvfoFwOMxFnBobG/HTn/4U4XBYc5yAmfve6dOnsWvXLvzhD39grungwYPYtWsXGhsbuYnTrl27EA6Hs9YUDofxs5/9DAcPHgTA9njKJE6FcjwZpen48eN47rnnEA6HC1rT66+/ju3btyMcDnMRp4sXL6K2tla9sNS777HMERM1vf7669i1a5eqSUuc6urq8Kc//Qm7du3C8ePHc47Tzp07EQ6Hi/qca4a819XVhdraWgwNDRW8pt/+9rfYtWuXqomHOL344osIh8OG9L1wOIxf/epXumgKh8N46aWXuIlTrtd74XAYv/jFL/Diiy+Oi1Oh5ohUSaeBgQHVH1mW0dTUNK2m22+/HTU1NWhqaoLL5cJtt92GK1euoKSkBIsWLUJ3d7fqdzQaRVNTk/qQp7W1VbXd1dWFCxcuqPvo0KFDqq/Nzc0YGRlRdaT0jYyMoLm5GcDow6SmpiY1/1y5ckUdKAsEApM0pR5Wtbe3q/vB5/Ph1KlTajxbW1vVigpf+tKX1HU0x97n1tTU4Omnn1bv67/2ta/hjjvuADBaXWLDhg0AgIULF+Lpp59WNT3xxBPqeiIPP/wwHn74YQDA4sWL8cQTT+Dq1auqplRfuXDhgrpQfbo4ZaKpqalJ7VOnTp2Cz+cDgBnj1NLSAlEUJ8WpqakpqzgBmFGTKIpoa2vTRVMsFkNbW9u0fS8bTW1tbZri1NXVhba2NvT09GStKRAIqJpScWKhKdM4TaWJdd8rFE0nT55Uj5NC15Q6DnmJ0+XLl9HW1obr16/r3vfS5QhW59yLFy9i165deP3115lcw16/fh27du3CK6+8wvSeMB9Qaaw8k2tprE996lP4wx/+AAB45pln8C//8i8z/ubtt9/GJz/5SQBAeXn5uLeuCpXUdCq32w273Y7GxkYsXboUoVAIlZWVsFgsCAaDcLvdcDqdiMViUBQFZWVlkCQJ4XBYfVsmEAigtLQUDodDTXClpaVIJBKIRqOorKwEMDq6Wl5eDrvdjkgkAqvVipKSEoiiCEEQ4PF4kEwmEQgEUFFRob5Nl3prKB6PQxRFVFRUQFEUBINBeDweWK1WhEIhOJ1OuFwuCIIASZJQXl4OWZbTalIUBR988AHuuusuzJ49u6A19ff349SpU1i3bh2SyWTe4xQIBNDY2IgHH3wQTqdTU5wy6XtWqxUtLS1YsWIF3G43U02SJKGtrQ2rV6+G1WrNe5xGRkbQ3t6OtWvXQhCErDQlEgkcPHgQ9957L6qqqpgeT2bMEXprCgaDOHLkCB588EG4XK6C1TQ0NITjx4/jz/7sz9Q37fIZp3A4jEOHDuGhhx5S85GefY9ljpioKRqN4tSpU/jIRz4CSZI09z1RFHHixAncddddAJB1nAYGBtDe3o777rsPiUSiaM+5Zsh7kUgEH3zwAR588EE1HxWqpnA4jNOnT+Oee+5BIpHIe5z6+/tx5swZ3H///ZAkSfe+Z7PZcPjwYdx5552YN28eU01OpxNHjhzBHXfcgTlz5uQ9Trle71ksFjQ0NGD58uWYO3duweeI8+fPIxgMQpZlSJIEl8ulvn37l3/5lzlpCgQCOHnyJBRFgdPphKIoEEVRXZg1Ho/DbrfDZrMhkUggmUyq2yWTSXUWpiAIcDgc6nbA6MwJWZbVt7AlSUJnZ6da/lkURVgsFnW7iZqcTiesVitEUVRnk0iSBFmWx22XTCbxr//6r2huboYoiojH4+p9bjgchs1mQ0VFBQKBgLpguyAIEEVRnUURiURgt9tRXl6uvnVbWVmJaDSKRCKhzgaJRqNwOByYNWsWvv/972Pp0qWQJGmcryw0jd3/NptN3W6qOEUiEfT19eGmm25CMpkcFydRFNVyY5nEKbXddJpsNhuuXbuGmpoatTwNK002mw09PT2oqalRZ/pO7HuZahIEAQMDA1i4cGHOcVIUBT6fD16vFxaLJStNoiji6tWruPnmm+FwOKY9nvSIkxF9r5A0jT1OABSspkgkgoGBAdx4441q9Yd8x0mWZfT19WH+/PkAoGvfS5cj1qxZw+Sca7fb0dzcjOXLl6O0tFTzNazT6cTRo0dx5513wuPxaL4n7OnpyVtpLBoIyTNmXSPEKIp9jRCCIAiCIAiCIIhCIpc1Qmaiv79fffs0W7JdI0RvwuGwOrvDCPbs2aOWfSMIgiDyB6s1QniH1gghsmb27Nnq//f19WX0m9SULACorq5m7hNhPPF4HI2Njer0s0KGNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFspB+tnK1QZvfaTYkSQJ3d3dau131pSXl6tlsvTG5XJheHhYNy3Zove+NbI9lrZZ2NJiw+i4ENNjlnjwqMNIn/Rsy0z3YKyhgZAC5fbbb1f/P1WXbyauXr2q/v/SpUuZ+0QYT6qmKU9vMOUKb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw3e+kixI8syfD6fWrNeDzZt2oT169dnvB5orqRKAOupJRuM2LdGtcfSNgtbWmwYHRdieswSDx51GOmTnm2Z6R6MNVQaK8/kWhpr3759+PjHPw4AKCsrU2vATcfDDz+Md999FwDw3e9+Fz/60Y9yd5wTqDQWQRAEQRAEQRBE4UClsTJHFEUMDw/D5/PhW9/6li5tUGksgiAIPqDSWPpDM0IKlPvvvx8ulwsAEIlE0NzcPO32qWlIKT72sY/p6h9hDIqiwO/3Q1GUfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnK1cbvPWRYieZTEIQBBjxTqnT6YTX69VtoMJqtaoLDvOAkftW7/ZY2mZhS4sNo+NCTI9Z4sGjDiN90rMtM92DsYYGQgqU8vJy/Pmf/7n6965du6bd/rXXXkMoFAIwuj7IRz/6UT3dIwwiGAyitrYWwWAw365ohjctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBmxbKQfrZytUGb32k2InH42hqauKi1rlWPB4PLl++zI0Wo/etnu2xtM3ClhYbZurzZsAs8eBRh5E+6dmWme7BWEMDIQXMk08+qf7/rl27cObMmbTbRaNRbN68Wf377/7u72Yso1VouN1ulJeXAxits+f3+9VR1WAwqE51jsViiEQiAEYXJvL7/aqNQCCARCIBYHSfRaNRAEAikUAgEFC38/v96mJGkUgEsVgMwOi05dRBnUwm4ff71Vp/4XAYgiAAGE12qUGpiaOioVBITYKCICAcDk+ryePx4Bvf+AZsNlvBawKAJ554Ah6Ph4s4uVwufP3rX4fH49EcJ2DmvldSUoKnnnoKdruduSan04mnnnoKLpeLizglk0k89dRT8Hg8WWvyeDz427/9W7VeMsvjKZM4FcrxZJQmt9uNr33ta/B4PAWtyWaz4Rvf+AY8Hg8XcSotLcVXv/pVeDweJnEyMkdM1GSz2fDUU0+htLSUSd9zOBx46qmn4Ha7c4qToij4x3/8R3g8nqI+55oh75WVleGrX/0qKioqCl6T1WrFU089pZa7zXecFEXBP/zDP8Dj8RjS9zweD/7+7/9+3FuCrDR5PB780z/9ExRF4SJOuV7veTwePPHEE+o2hZ4jUrZlWVb9Sb0Zq0WTJEmqbUVRxr1pG4/HVduJRGLcdql+k9ovY7dL6ZNledx9wqpVq+BwOACM9rex203UlPJVFEV1P0iSNGm7sb6O3S7lq81mQ1VVFSwWC4DRQYzUNXFJSQnKysoAAHa7HVVVVaqmyspK1dfS0lKUlpYCgPrZrbfeCpfLNclXIzRNjBMAfOQjH4HL5ZoUp9T+zzROqe2m0+RyuXDvvfequY+lJqfTiTVr1qjtpXzNRVMymcSaNWs0xclms2HNmjWw2WxZa3I4HFi1atW4ezCtmrKJ01SaWPa9QtIEAHfffTdcLldBa0omk7j33nvhcrm4iZPVasWaNWtgt9t173vpcgSrc25paSmeeuop2Gw2Jtew5eXleOqpp2CxWJjeE+YDGggpYD71qU/hz/7szwCMdtT/9t/+G06ePDlum6GhIXzmM5/BpUuXAIzOBnnmmWcM91Vv1q5di0ceeQQAMDAwgNraWvXg3Llzp1ov9sCBA6irqwMAdHd3o7a2VrWxfft2dHR0ABhdg2Xfvn0AgI6ODmzfvl3drra2Ft3d3QCAuro6HDhwAADQ3t6OnTt3AhiNR21tLQYGBgAAe/fuVUuTtba2Yvfu3QAmj4ru3r0bra2tAIDGxkbs3bt3Wk1WqxVtbW146623Cl7Trl270NvbC6vVykWcTpw4gf/8z/+E1WrVHCdg5r535coVVFVV4U9/+hNzTUePHkVVVRVOnDjBRZx27NiBqqoqWK3WrDVZrVa8++67OHr0KAC2x1MmcSqU48koTefOncPvf/97WK3Wgtb01ltvoa2tDVarlYs49fb24qWXXoLVamUSJyNzxERNb731FqqqqtDb28uk733wwQeoqqrCuXPncorTT3/6U1itVlit1qI+55oh7w0NDeGll15SbwgLWdNrr72GqqoqDA0NcRGnn/70p0gkErBarYb0PavVinA4jJ/+9KfMNVmtVpSUlOCnP/0pF3HK9XrParWit7dXrQJQ6DkidW86MDCg+iPLMpqamjRp6u7uVv2ORqNoampSH/K0traqtru6unDhwgXV3qFDh1Rfm5ubMTIyoupI6RsZGVHLUVssFrS1takPii5cuICurq4pNaUeVrW3t6v7wefz4dSpU2o8x74VfOrUKfh8vkmaampq8PTTT6slsr/2ta/hjjvuADC63uiGDRsAAAsXLsTTTz+tanriiSewePFiAKPrhj788MMAgMWLF+Ob3/wmHA4HLBYLmpqa1P1qlKaJcUrtV4vFMilOTU1NWcUJwIyaLBYLHA4Hjh49ylyToihwu91oa2ubsu9lqqmlpQVut1tTnHp6euB2u9HX15e1plgshra2NvVB8HTHkx5xmkoTy75XSJpOnz4Nv98Pi8VS0JqOHj0Ki8UCi8XCTZyuXr0Kt9uNwcFB3fteuhzB6pzb29uLqqoqvPXWW0yuYcPhMKqqqrBnzx6m94T5gBZLN5BPfvKT6O3tHfeZz+dDX18fgNE32z70oQ9N+t0f/vAHLFiwIK3N7u5u3Hvvvbh+/TqA0YuyBx98EIsXL8bAwAD+9Kc/qQer3W7HO++8M66kVqGTWmDH7XbDbrejsbERS5cuRSgUQmVlJSwWC4LBINxuN5xOJ2KxGBRFQVlZGSRJUg9mYHR0tbS0FA6HQ91npaWlSCQSiEajqKysBAB1NNRutyMSiag3WKIoQhAE9c3oQCCAiooK2Gw2hMNh2O12uN1uxONxiKKIiooKKIqivq1mtVoRCoXgdDrVNz0kSUJ5eTlkWU6rKR6P45VXXsHnPvc5zJs3r6A19fb24o033sCjjz4Ku92e9zgNDg7it7/9Lb7yla+grKxMU5wy6XuyLOM//uM/8NnPfhbl5eVMNcViMfz+97/HI488ApfLlfc49ff3o66uDl/60pcgy3JWmqLRKP793/8df/M3f4Oamhqmx5MZc4TemoaGhvCb3/wGX/nKV1BeXl6wmvr6+vD73/8ejz76qOpHPuM0MjKCV199FV/5yldQUVGhe99jmSMmagoGg3j99dfx+c9/HhaLRXPfi0QieO211/DXf/3XcDgcWcept7cXdXV1+PKXvwwARXvONUPe8/v92L17Nx599FF4PJ6C1uT3+/HGG2/gC1/4AgDkPU49PT3qcWKxWHTve4qi4Ne//jU2bNiAhQsXMtVksVhU2/Pnz897nHK93pMkCa+88go+85nPYMGCBQWfI6LRKM6cOQNZliFJElwuF5LJJFwul/rGeraaAoEATp48CUVR4HQ6oSgKRFGEy+VS32C12+2w2WzqDOXUdpWVleqghiAIcDgc6nbA6NvwsiwjkUio/pw4cQLLly9X+1vqgfpETfF4HE6nE1arVX3b2G63Q5IkyLI8bruxvtpsNnU7RVEwPDyML3/5y+p1QTKZhMfjgSAIEEURJSUlsFqtiEQisNvtap5M9dVoNIpEIqHOBolGo3A4HKipqcE//uM/YvXq1eo+Sfmqt6Z0cQoGgzh//jxWrFgBq9U6Lk6iKMLtdmccp9R202kCgJMnT2LJkiWoqKhgqgkYfWC9ZMkSlJWVpe17mWqKRCK4cOECli9fnnOcEokEzp49i2XLlsFut2elKRaL4dSpU1ixYoV6DEx1POkRJyP6XiFpCoVCOHfuHFasWAGbzVawmoLBIC5cuIAVK1YAABdxSh0nd9xxB2w2m659L12OWLNmDZNzbjKZxG9/+1v89//+3+HxeDRfw1osFuzZswd/9Vd/herqas33hD09PXlbLJ0GQgxk0aJF6ohpNly5cgWLFi2a8vtz585h48aNaGtrm3KbmpoavPTSS/jUpz6Vdfs8kxoISWHkwcMD8Xgcra2tWL16tfpmUKHCmxaj/dGzPZa2WdjSYoO3flLsmCUevOmg/KOfPco/5sFM8eBNC+Ug/WzlaoO3PqKVZDKJ8+fPq2/KAqMPwFasWKE+yMmW/v5+9e3TbPB6vXA4HLh27VrGv5EkCT6fD16v17CS0z6fDxs3bmRu1+Vy4cc//jGWLFnCRfnsTPatKIoYHh5W/66urlZLNunRXq6wtM3ClhYb+ejzxNSYJR486jDSp3RtPfTQQ0xs834Pls9nuTQQYiB6DYQAoxcDv/nNb7Bnzx6cOXMGfX19qKqqwq233orPfvaz+OpXv4o5c+bk6Dm/FPtACEEQBEEQBEEQRKGRTCYxMDCAkZERuFwu1NTUqGtc5EIuAyELFizAbbfdhsuXL2c1EJIP9BoIAYA9e/bA6/XqYpslgiBg27ZtaGhoUN+mBkZnd65btw6bNm1S3/ImCIIoRFgNhPBOPp/l0hohBtLZ2akuCJTNv5kGQYDRk/9XvvIVvP3227h69Sri8Tj6+vpw5MgRfPvb3zblIAgxejFYX18/brGnQoU3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZsWykH62crVBm99hAUWiwVz587F7bffjkWLFmkaBMmVm2++WV14PBskSUJnZ6daWokn0pXano5USWBetEy3b7dt24b9+/ePGwQBRl8K3b9/P7Zt28a0Pa2wtM3ClhYbPPf5YsQs8eBRh5E+6dmWme7BWEMDIQRRwPB44sgV3rQY7Q9dhBvXPsEOs8SDNx2Uf/SzR/nHPJgpHrxpoRykn61cbfDWR4odRVHg9/vVhaN54oc//CHWr1+f8fZ2ux3RaBSCIMDn8036N3HQYSZEUcz5t8DU+1YURTQ0NEz72/r6+qzb1DOWLG2zsKXFBs99vhgxSzx41GGkT3q2ZaZ7MNZQaSyioKHSWARBEARBEARBEMVNLqWx7rvvPrhcLnR0dJimNNaePXtQVVWVtoTUVCxbtgwdHR1pt8207FS6slUsS1Zlqn/ZsmX48Y9/TCWyCIIoSKg0lv7QjBCCKGBkWYbP54Msy/l2RTO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960UA7Sz1auNnjrI8WOoigIh8OGvsWcyYLgTqcT1dXVcLvd2Lx5M+rq6rBnzx7s2bMHzz77bNrf2Gw2jIyMTNm3Mi07la5sVS4lq7Tu27NnzxranlG2WdjSYiMffZ6YGrPEg0cdRvqkZ1tmugdjDQ2EEKbA7XajvLwcwOgB5vf7kZrsFAwG1QuyWCyGSCQCYHRqlt/vV20EAgEkEgkAQDQaRTQaBQAkEgkEAgF1O7/fr07nikQiiMViAEYv9ILBIIDRxf/8fr96kIfDYbUWXjweRygUAjB5KlwoFEI8Hgcw+lZNOByeVlMoFMKOHTvQ19dX8Jp6e3uxY8cOhEIhLuI0ODio+qM1TsDMfW94eBg7duxAf38/c00pLYODg1zEqaenR7WRraZUnx8cHATA9njKJE6FcjwZpWloaEiNZSFr6uvrU3XwEKeRkRHVHxZxMjJHTNSU2rcjIyNM+t7AwAB27NiBoaGhnOI0Nv8U8znXDHnP7/djx44dqv1C1uTz+bBjxw74/X4u4jT2ODGi76WOrZ6eHuaaxtrmIU65Xu+ldPT29qpxohwxWZMkSarfiqJAEARVUzweV20nEgl1O0mS1P2Q2i9jt0vpk2VZ9UcURbS0tIz7e+x2KX+SySQEQVB9FUVR3Q+SJE3abqyvY7cTRRFOpxMPPPAAqqqq1HVNPB6POjhSUlKChx56CE6nU9XudDrh9XpRVVWFuXPnAgBKS0tRWloKAHA4HFiwYAG++c1voqKiAlVVVbDb7QCAsrIylJSUABgdYDl58iREUUQ8Hse1a9dw/fp1iKIIURQRjUbR0NAAl8uFiooKAIDVakVVVRWsVisaGhoQDocnaUoXp1AohJaWFnWfjt2uqqpKjVNlZSUcDkdaTadOnVJ/N3H/T4xTKpapez6tcRqrKR6Pq7bT9b3Udpn0vbH7ZSZNU/W9aDSKlpYWRKPRrDUJgoCWlhb1d1MdT9lomrhdLppYxGmmHMGjpnA4rPaHQtY0tl/zEqfUcRKLxXTve+lyBKtzbup+sq+vj8k5NxAIYMeOHbh+/TrTe8J8QAMhhClYu3YtHnnkEQDAwMAAamtr1YNz586d6jTpAwcOoK6uDgDQ3d2N2tpa1cb27dvR0dEBANi3bx/27dsHAOjo6MD27dvV7Wpra9Hd3Q0AqKurw4EDBwAA7e3t2LlzJ4DRxFFbW4uBgQEAwN69e9HY2AgAaG1txe7duwGMJofa2lo1Ge3evRutra0AgMbGRuzdu3daTZWVlbj77rtx8ODBgtf0+9//Hp/85CdRWVnJRZwuX76MuXPnorKyUnOcgJn73uDgIJ555hk0NTUx19Te3o5nnnkGly9f5iJOr776Kp555hlUVlZmramyshI33nijul9ZHk+ZxKlQjiejNPX09MDj8aCysrKgNR08eBB33303KisruYhT6sKzsrKSSZyMzBETNR08eBDPPPMMQqEQk77X1taGZ555Bj3/P3t/Hx9Ffe7/46/ZnZ3dbPbOQEqoqNHYCtQbUCsobQl6SmnPoaUtbaGocDi1FXpOG3tOac8dKufm29JTNedRQaqCqIhtsRXTqgctN61ootEAkYAoCjXAQkiyd9mb2Zmd3x/57XwSCCTZec/se2ev5+PBoxZmX+/rtdc11+zcvd/HjhWUpw0bNuDOO+9EMBgs62OuHfpe/uQqP/1JKXt66aWX8KMf/QiyLHORpw0bNmDJkiUIBoOW1F4wGMTChQuxYcMG5p6CwSC+//3vY8OGDVzkqdDfe8FgEF/4whfwzDPP6HmiHnG2p87OTj3uZDKJlpYW/SJPW1ubrn306FEcOnRI/8yzzz6rx9ra2ore3l7dR95fb28vWltbAQBut1uPGQAOHTqEo0eP6t9lPh5VVdHS0qJfrOro6NC/h3A4jPb2dl2npaVF12tvb0c4HD7L0/Lly9HQ0KA/ALh06VJMnjwZkiRh0aJF+Ou//mv9O2ppaRnkKX9hbfbs2Zg9ezYAoK6uDosWLcJPfvITRKNRNDQ0YMKECQCAuXPnYubMmQCAyZMn47bbbkNDQwO+9rWv4f3338cPfvADzJ07Fy+88AIOHToEWZYxdepULFq0CED/TZqGhgYEAgHIsoy33357SE9n5unAgQO4/PLL4Xa7B+UpnU6joaFB97Rs2TLU1dUN6elb3/oWenp6AAAtLS16rQyVJ7fbjWnTpmHPnj3M8pT3JIoiZsyYgQMHDgxZe0Pl6Vy1197ejhkzZsDtdg/r6Vy119XVhRkzZuh6o/GUz0/+Rtm59qfReMrvTyPJ07k8scjTcD2CR0+HDh3CpZdeCrfbXdKe9uzZg+uuuw5ut5ubPIXDYcyYMQOxWMz02huqR7A65sbjcfzoRz/Cn/70JybHXEEQ8KMf/Qi///3vmZ4TFgNaI4QoafLzynk8HoiiiObmZkycOBHxeBzBYBCCICAWi8Hj8UCSJKRSKeRyOVRWVupP/+SfLIlGo/B6vXC5XHqD83q9yGazSCaT+gWpSCQCn88HURTR19cHh8OBiooK/emMQCAATdMQjUbh9/vhdDqRSCQgiiI8Ho/+5Inf70cul0MsFkMgEIDD4UA8HockSXC73Uin01AUBT6fT38KhDyRJ/JEnsgTeSJP5Ik8kSfyRJ7I02BP0WgU+/btQy6X09+KkGUZbrcbgiAgk8lAFEU4nU5ks1lomoaZM2fC6XRi//79+gWzdDoNl8ulbwf0v2Wgqiqy2ax+8zX/xoXD4YAsyxAEQd9OURS43W5omoZMJjNoO4fDAVEUoSgKVFUdtN3AWJ1Op77dmZ4EQUBvby+y2SycTifGjh0LQRCgadqg7QbG2tPTg0WLFulvTiSTSbhcLni9Xv1J4lAopL+5UVlZiVwuh1QqBUmS4PF4EIvFIAgCgsGg/gSzz+fDZZddhn379sHtdkOSJMTjcTgcDgQCAcRiMeRyOTzxxBOoqak5p6fz5UmSJBw/fhzf/e539SeJg8EgkskkstnskJ4eeugh1NTUFDVPw3kaKk+81x55Ik/kyVxP06ZNK4ljrtHfEceOHSvaGiF0I4Qoacp9sfRYLIb169dj6dKlCAQCxQ7HELx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViM8YmSx9J6eHuzbt2/En8tkMmhra8PUqVP1t0N451yLjQcCASxduhTr16/Xn4o2g82bN6OmpmbY7c713Y50sXRW47GApTYLLSMapVjzdsYu+eDRh5UxDTUWq8XSeT8Ho8XSCYIoCI/Hg/r6ev1udinDmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81YjcGrj0xEkRRRG1trT5NUCmTTqexc+fOQXPmFxOrv1szx2OpzULLiIadat4O2CUfPPqwMiYzx7LTORhr6I0QoqQp9zdCCIIgCIIgCIIgyh0jb4QAwGuvvabPbW5HRvtGBWtG+obGuTDrjRCCIAieYPVGCO/QGyEEQRREKpXCiy++iFQqVexQDMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzViR/Jzq4+EbDaL9957T593vpSpqKjAnDlzUFFRUexQAFj/3Zo5HkttFlpGNOxU83bALvng0YeVMZk5lp3OwVjDz/tHBEGMmlwuh0gkglwuV+xQDMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7miahnQ6DTtMruFwOBAKheBwFP8ZWVmWcerUKUSjUZw8eVKfLqaqqsq0Mc3MJUttFlpGNOxU83bALvng0YeVMZk5lp3OwVhDU2MRJQ1NjUUQBEEQBEEQBFHeGJ0aq6OjA6dOnTIjNC7geWqsdDqN1atXY/fu3ZBl+ax/lyQJdXV1OHDgAJPxCIIgeIWmxjKf4t/2JwiiYBRFwZEjR6AoSrFDMQxvXqyOx8zxWGqz0DKiwVudlDt2yQdvPqj/mKdH/cc+2CkfvHmhHmSeVqEavNVIucPTk61G4WGx4tWrV2PHjh2QZXnIeGRZHtVNkNFAb6RZNz7BDrvkg0cfVsZk5lh2OgdjDd0IIYgSJpFIYOPGjUgkEsUOxTC8ebE6HjPHY6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5Y4sy9i7d++Qby+UGj6fD0uWLIHP5zN9LFmWEQ6H9T+yLEOWZezevbso8eRjMiuXLLVZaBnRsFPN2wG75INHH1bGZOZYdjoHYw1NjUWUNPnXqTweD0RRRHNzMyZOnIh4PI5gMAhBEBCLxeDxeCBJElKpFHK5HCorK6EoChKJBEKhEAAgGo3C6/XC5XIhmUwCALxeL7LZLJLJpL6AXiQSgc/ngyiK6Ovrg8PhQEVFBWRZRjqdRiAQgKZpiEaj8Pv9cDqdSCQSEEURHo8HmUwGsizD7/cjl8shFoshEAjA4XAgHo9DkiS43W6k02koigKfzwdVVckTeSJP5Ik8kSfyRJ7IE3kiT+SJPA3hKRqNYt++fcjlcpAkCblcDrIsw+12QxAEZDIZiKIIp9OJbDYLTdMwc+ZMfazjx4/j1KlTSKfTcLlc+nYA4HK5oKoqstksPB4PgP7pnCRJgsPhgCzLEARB305RFLjdbmiahkwmM2g7h8MBURShKApUVR203cBYnU6nvt1oPA3cbmCsPT09WLRoEbxeLwAgmUzC5XLB6/UiGo0CAEKhEBKJBBRFQWVlJXK5HFKpFCRJgsfjQSwWgyAICAaDiMfjUFUVPp8PiqIgnU7D7XZDkiTE43E4HA4EAgHEYjHkcjlMnToV7777LhKJhH7uLssyPvaxj+HYsWOIRqPQNA2BQADpdBqyLKOiogIOhwN9fX0QRRE+nw+RSARA/+L2yWQS2Wx2SE8PPfQQampqSi5Pdqw98kSeyNPIPU2bNq0kjrlGf0ccO3aMpsYiCCNMnz4d8+fPBwB0dXWhsbERmUwGALB+/Xp9vthdu3ahqakJANDZ2YnGxkZdY+3atTh8+DAAYNu2bdi2bRsA4PDhw1i7dq2+XWNjIzo7OwEATU1N2LVrF4D+eWXXr18PAMhkMmhsbERXVxcAYMuWLWhubgYAtLW1YdOmTQCAWCyGxsZGxGIxAMCmTZvQ1tYGAGhubsaWLVvIE3kiT+SJPJEn8kSeyBN5Ik/kiTwN46mzs1OPO5lMoqWlBaqq6hp57aNHj+LQoUNDemptbUVvb6/uI++vt7cXra2t+nYtLS16DIcOHcLRo0f17zIfj6qqaGlp0S9YdXR06N9DOBxGe3u77r2lpUX//tvb2xEOhwv2FIvF0NLSMshTX18fAGD27NmYPXs2AKCurg7Lli3Tt2toaMCECRMAAHPnzsXMmTMBAJMnT8bSpUsBAG63Gw0NDaiurgYAzJ8/H9OnTwcATJ06FYsWLQIABAIBNDQ0IBAIAACmTZumX/TKn7vLsozu7m40NDToa7UsXboUkydPBgDMnDkTc+fOBQBMmDABDQ0NeqzLli1DXV3dsJ5KLU92rD3yRJ7I08g9ldIxl8XviGJAb4QQJU25vxGSSqWwZs0aLFmyBOPHjy9pT52dnXjiiSewfPly/S55MfN06tQpPProo1i+fDn8fr/pT9Nls1k88sgjWLJkCQKBAFNPfX192LBhA5YuXYqKioqi5ykcDmPTpk1YtmwZNE0bladEIoE1a9Zg6dKlGDduXNk+9ciLp66uLjzyyCNYvnw5AoFAyXo6ceIEHnvsMSxfvhwVFRVFz1N3dzd++ctfYvny5QgGg6bXHssecaanSCSCjRs34o477oDT6TRce4lEAhs2bMDf/d3fwe12jzpPnZ2d2LRpE5YvXw6Hw1G2x1w79L2enh6sW7cOy5YtQygUKmlPPT09ePzxx/Htb38bDoej6Hn68MMP9f0k/ySjmbWnKArWrFmDRYsW4eKLL2bqSdM0XfvCCy8sep4K/b0nyzLWrFmD2267DRMmTKAeYcIbISdOnMDJkydH9BRxOp3GG2+8geuuuw5er5eLp4iHezJa0zTMmzdPX3sj//bEuHHjcOutt2Lt2rUQBMG0N0L8fj9kWUYmk9HP3ROJBJxOJ/x+v/5GyIUXXojbbrsNa9eu1b8vM98I0TQNb7zxBq6++mr4/X6medI0DW+++Sauuuoq+Hw+Q0+wJxIJtLe34/rrrweAgp5gl2UZe/bswZQpU+ByuUblKZlM4s0338T111+PiooK2z+Vz7unWCyGvXv34pOf/CREUSxZT7FYDPv27cMnP/lJCILARZ7y+8nUqVMhiqKptTdUj2D1Roiqqnj44YexePFihEIhw8dcTdOwbt063HbbbRg7dqzhc8JivhFCN0KIkiZ/IySPlTsPD2SzWRw+fBh1dXVwuVzFDscQvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWIzxy6tQp/enTkXLjjTfqbyJ0d3frT/UOh6qq6O3txQUXXACn0znqWIvFqlWrsGPHjkF/53K5UFdXh8OHD+sXC4sJq3g2b96MmpqaYbczM5cstVloGdEo1Zq3K3bJB48+rIxpqLHq6+uZaPN+DlbMa7l0I4Qoacr9RghBEARBEARBEES5Y/RGiKqqeO2116AoihnhcUE6ncbq1auxe/duyPLZi/NKkoQbbrgBr7zyShGiY8tIb4QQBEHwBKsbIbxTzGu5tEYIQZQwyWQSzz77rP5aXCnDmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81YkecTieuvvpqSJKk/93YsWOH3DabzeLgwYNcvEExGjweD1auXImmpiZs3rwZmzdvxhNPPIH77rsPTzzxBJqamvAf//EfmDVrVtFi9Hq9mDdvnj7dldmYmUuW2iy0jGiUas3bFbvkg0cfVsZk5lh2OgdjjVjsAAiCIAiCIAiCIAiCIIpJIBDAjTfeiGQyCUmS4HK5sHPnzmKHxRxJkvS3JbLZLBKJBMaNG6dPd7JixQoAGPTmiCRJqKurw4EDB4oTNEEQBEEwgKbGIkoamhqLIAiCIAiCIAiivDE6Nda5sOONkJEiyzJ6enoAAFVVVejp6cHChQstG/+CCy5Ab29vQZ+lqbEIgihFaGos86GpsQiihOHxVcJC4c2L1fHQa9nWjU+wwy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3VFXF6dOnoapqsUMxzPm85N8cqampGTRl2HBMmjRpyO0vuOCCYT/rcrkwceJEuFwurFy5csRjFoqZuWSpzULLiIadat4O2CUfPPqwMiYzx7LTORhr6EYIQZQwPM2zZxTevND82OZp0Rz99sEu+eDNB/Uf8/So/9gHO+WDNy/Ug8zTojVC7AFPF3SMYoaXM9ch2bx5M/7v//4Pa9asGfaztEaIeVr0MIh9sEs+ePRBa4SYo8fT7xiaGosoaWhqLIIgCIIgCIIgiPKGpsYyn3A4PKKpsc41LdVIP5/n/vvvx1133TWqGIeLgSAIgmdoaizzocXSCYIgCIIgCIIgCIIgCFszcN0ToH/tk9FM+0UQBEGUNjQ1FkGUMJFIBPfeey8ikUixQzEMb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLmTTqexa9cupNPpYodiGN68hEIh3HPPPQiFQkx10+k0Vq1ahblz52LhwoX6n1tvvRW7du1CNBplOl5+TFbfLQstIxq81Um5Y5d88OjDypjMHMtO52CsoRshhC3weDzw+XwA+hccikQiyM/6FovFIMsyACCVSqGvrw8AoCjKoJ0wGo3qc/Mlk0l97rpsNjvoh1EkEoGiKACAvr4+pFIpAP1Pl8RiMQCApmmIRCL6okeJREJvbplMBvF4HACQy+UQiUSQy+UAAPF4HJlMBkB/U0wkEuf15PP5sGDBAgiCUPKecrkcvvnNb8Ln83GRJ5fLha997Wvw+XyG8wQMX3tutxuLFy+Gw+Fg7kkURSxevBgul4uLPKmqisWLF8Pn843ak8/nw9e//nWIYv8LjSz3p5HkqVT2J6s8SZKE+fPnw+fzlbQnQRCwYMEC+Hw+LvLk8Xjw1a9+VT+umV17LHvEmZ4EQcDixYvh8XiY1J7T6cTixYshSVJBeVIUBbfddht8Pl9ZH3Pt0PcqKirw1a9+FZWVlSXvCQAWL16MiooKLvKkKApuvfVW+Hw+S2rP5/Ph1ltv1WNj6cnn8+H222+Hoihc5KnQ33s+nw/f/OY39dioRwztSVEUPe5cLod0Oq17ymQyunY2m9W3G85T/r9VVdXjkSQJkyZN0n+PyrI8aLt8PJqmIZ1O67HKsqx/D4qinLXdwFgHbjdaT/nt8qTT6UHbDYw1l8vhmmuugSRJZ8U6lCdBEBAKheB0OgEAPp8PHo8HAOB2u+H3+8/pKR/DwHN3p9OJUCikH1sFQcCTTz6JRCKBXC6n93hRFAfdHAkGg3C5XAD61xXJrynicrkQDAYHec/lcviv//ovvP7663rckiQhEAigt7cXjz32GNatW8c8Ty6XC9dccw00TbM8T0PVnsPhwDXXXAOHwzFqT6IoYtKkSfp3zqL2ztyuEE+87U9WedI0DVdeeSUkSSppT7lcDldffTUkSeImT4Ig4JprroHT6TS99obqEayOuR6PB4sXL4YgCEyOuV6vF4sXL4amaUzPCYsB3QghbMH06dMxf/58AEBXVxcaGxv1nXP9+vX6fLG7du1CU1MTAKCzsxONjY26xtq1a3H48GEAwLZt27Bt2zYAwOHDh7F27Vp9u8bGRnR2dgIAmpqasGvXLgBAR0cH1q9fD6C/cTQ2NqKrqwsAsGXLFjQ3NwMA2trasGnTJgD9zaGxsVFvRps2bUJbWxsAoLm5GVu2bDmvJ1EU8cEHH+CFF14oeU+PP/44+vr6IIoiF3lqb2/Hn/70J4iiaDhPwPC1d/ToUdTW1mL79u3MPbW2tqK2thbt7e1c5Onhhx9GbW0tRFEctSdRFNHS0oLW1lYAbPenkeSpVPYnqzwdOnQIL730EkRRLGlPL7zwAj744AOIoshFnsLhMJ555hn9AovZtceyR5zp6YUXXkBtbS3C4TCT2tu9ezdqa2tx6NChgvL04IMPoqqqCqIolvUx1w59r7e3F88884x+AlfKnp599lnU1tait7eXizw9+OCDqKyshCiKltSeKIpwOp148MEHmXsSRRHjx4/Hgw8+yEWeCv29J4oi+vr68Pjjj+t5oh5xtqfOzk497mQyiZaWFr1HtLW16dpHjx7FoUOHRuQp/9+9vb3670+Hw4EDBw7oF4AOHTqEo0eP6t9lPh5VVdHS0qJfrOro6NC/h3A4jPb2dt17S0uL/v23t7cjHA4X7CkWi6GlpUX31Nrait7eXj03Az299dZbCIVCcDgcaGlp0b/Xc3lyu91oaGhAdXU1AGD+/PmYPn06AGDq1KlYtGjROT0pigJJkgadu1dXV6OhoUFfqyX/sFT+4uLcuXMBABMmTEBDQ4PuadmyZairqwMAzJ49G7NnzwYA1NXVYdmyZfp2LS0tuP/++/HKK69g7ty5mDlzJgBg8uTJWLp0KRRFQTgcxrRp0/QLiazypGkaQqEQ9u7da3mehqq948ePIxQK4dSpU6P2lE6nceDAAf0iJ4vay+9P+TwV4om3/ckqT/v370cqlYLD4ShpT2+88QYqKirgcDi4ydOHH36IUCiE7u5u02tvqB7B6pgbDodRW1uLF154gckxN5lMora2Fr/61a+YnhMWA1osnShp8gvseDweiKKI5uZmTJw4EfF4HMFgEIIgIBaLwePxQJIkpFIp/ckSRVGQSCT0J0ui0Si8Xi9cLpfe4LxeL7LZLJLJpP5kSSQSgc/n009IHA4HKioqIMsy0uk0AoEANE1DNBqF3++H0+nUn7j1eDzIZDKQZRl+vx+5XA6xWAyBQAAOhwPxeBySJMHtdiOdTkNRFPh8PqiqOqSnbDaLZ599Fp/97GfxkY98pKQ9hcNhbN++HV/60pfgcDiKnqeenh48//zz+PKXv4yKigpDeRpJ7WmahhdffBG33HILKisrmXrKZDJ46aWXMHv2bLhcrqLn6fTp09i1axfmzp2LbDY7Kk/pdBq/+93v8PnPfx5jxoxhuj/ZsUeY7am3txe///3v8ZWvfAVer7dkPZ06dQovvfQS5s2bB5fLVfQ8RaNRPPfcc/jKV76i/38za49ljzjTUzwex/bt2/H5z39e/7FvpPZSqRRefvllfO5zn4PT6Rx1nsLhMHbt2oUvfvGLyOVyZXvMtUPfi8Vi2Lp1K7785S/r/79UPcViMWzfvh1f+MIXkMvlip6nEydO6PuJpmmm1x4AbN26FfX19fjoRz/K1JPT6cRzzz2HmTNnYty4cUXPU6G/93K5HLZu3Yqbb74ZNTU11COG8BSNRrFv3z69t+dyOciyDLfbDUEQkMlk9Jtu2WwWmqZh5syZ+ljn8rR79264XC6oqopsNguPxwNZlnHgwAFcccUV+v8XBEHfTlEUuN1u/clZSZLgcDj0p/JFUdTfUhq43cBYnU6nvt1oPA3cLv+mRv7J4/x2APRYk8kkjh49io9//OP6OPlYz/TU29uLb37zmwgGg4jH4/rb2oqiIJ1Ow+12Q5Ik/PKXv8S4ceOG9PTf//3feO211yCKIhKJBJxOJ/x+v75/jBs3DjfffDOee+45rFq1CitXrtQfwsq/TQ70vxGSf2Mn/zZIMpmEy+WC1+vFQw89hJqaGvz0pz/Fyy+/DEVRUFlZiVwuh1QqBUmS4PF4oKoq5s6di127duHnP/85xo8fzyxPgiDg3XffxSWXXAKv12tZns5Ve4qi4P3338dll10Gp9M5Kk/pdBrvvPMOJk6cCLfbzaT28vtTfrtCPPG2P1nlKZFI4P3338fEiRP1Y0QpeorH4zh69CiuuOIKaJrGRZ6y2Sw++OAD1NXVweFwmFp7Q/WIadOmMTnmCoKAF154ATfffDP8fr/hY67T6cQf/vAHzJo1C6FQyPA54bFjx2ixdIIwwsBX2/Kv1+YJBAL6f1dUVOj/PdTrtXnyP6aAs1+vHfiZ/Ku6QP/rtfmF1vKvDOfJv/oL9D9Fk3/ixeFwDNou/yoxAL0xn8+TqqoYM2aM/rlS9hQMBlFVVaWfGOUplqeKigqMHTsWDofDcJ7yeufzlEqlEAqF4PP59G1ZecrHVVFRoWsXM0+hUEh/omm0nhwOB8aOHatrstyfAPv1CLM9eTweVFdXw+FwlLQnv9+PMWPGwOFwcJEnSZL077VQT8XqEUN5CoVCkCRpkMdCPeXj8ng8ut5o8nTBBRfgggsugMPhOKuWh/Nkp2OuHfqey+VCdXW1Ps1JKXvK3yR0uVyDYi+Wp4H7ycBxzaq9VCqFqqoqXHDBBcw9pVIp3c/AqXwK8cQiT4X+3st/R/ntqEec7SkQCOhvUua3G+gx//l8fCP1lN/W6XTqNSQIAiorKwdNs5TnzO0GxjBwO1EU9XjP3G5grIV4OnO7M3vnwFg9Hg88Hs95Yx3oKT+dSp78WzFA/xPGA6fQGirWFStW4Ac/+AEOHDgA4P9Np5InFouht7cXuVwOY8eO1S9gDjVFTJ78BUFg8BQxsixj+/btg6ZlyyPLMmRZ1qe6y184PNO7kTzlL7Z6PB79+7MqT0Ntl/87l8ul64/Uk9Pp1H+HnbldoZ7ysZ65XSnvT1Z68nq9EAShpD3lzz0EQThru2J5yscviuI59xMzewSrY27+90b+Jkg+7kKPuXm9QCCg/5uRc8Jjx46hWNAbIURJk38jJI+VdxEJgiAIgiAIgiAIPmhtbR10YX44brzxxkEXqoZi586dBqOyD+FwGAsXLhx2u82bN6OmpoaJzi9/+Uvs2LFjVHHmPwtgROMM/Mz54iYIgjCb+vr6YodgCcW8lktrhBBECSPLMvbs2aMvQlTK8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjfDK1VdfPeitmaqqKlxyySXMx1FVFeFwGDfddBNzbavJe8nPv19sJEnClClT9KeWV6xYgVmzZg16Aju/3aRJk5iPxxKW3y0LLSMavNVJuWOXfPDow8qYzBzLTudgrKEbIQRRwqTTaezcuXPQ1GClCm9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81QivSJKEqVOnYsaMGZgxYwauvvrqQdORsEJRFBw5cgTpdNoUfSvJe8lPH1VsPB4P6uvr9SlXPB4PVq5ciaamJmzevFn/09TUhJUrVzIfjyUsv1sWWkY0eKuTcscu+eDRh5UxmTmWnc7BWENTYxElDU2NRRAEQRAEQRAEQQzFhx9+iMOHDw/5b0anxqqvr8d7772Hzs5OIyGWDMWYGqtQHZoaiyCIUoSmxjIfeiOEIEoYTdOQTqdhh/uZvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+WOpmlQFAWapmHChAnD3kzhmYFehqOqqmrYKaQkSUJVVVXB8eQXG84vXG42Zo43mu/WCi0jGiy9EMaxSz549GFlTGaOZadzMNbQjRCCKGGi0Sh++tOfIhqNFjsUw/Dmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UEy6X66y/y2Qy2L17N6LRKDweD6699lpcdtllRYjOOHkvmUxm2G0lScKMGTPOu82MGTOGvVlyvhsqwWAQP/7xjzF27FhDN1RGSn68/NoyLBnNd2uFlhENll4I49glHzz6sDImM8ey0zkYa2hqLKKkKfepsVRVRVdXF6qrq+F0OosdjiF482J1PGaOx1KbhZYRDd7qpNyxSz5480H9xzw96j/2wU754M0L9SDztArV4K1GSgmjU2MN9flcLgefz4frrrtuUD5ef/11JJNJ40FbSC6XQzKZhNfrhcMx/HOy6XQaq1evxu7duwctepu/SbJixYoRrbexatUq7Nix46y/dzqdqK6uxuTJk/Hv//7v59VgMTVWfryuri48+eSTTKfGGu13a7aWEQ2WXgjj2CUfPPqwMqahxmI1NRbv52DFvJZb2it7EUSZ43Q6bTOPKW9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81Ug5UV1djb/85S/IZrP634miiIkTJ9rippTD4YDP5xvx9vnFy2VZRk9Pj/73I5k2ayArVqwAgLNuqDidTkyaNAk//OEPR6xlBFVVEQ6HTdEe7XdrtpYRDZZeCOPYJR88+rAyJjPHstM5GGv4uOVGEERBJBIJPPbYY0gkEsUOxTC8ebE6HjPHY6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5YTH48E111yDsWPH6utf1NXV4be//a0t8iHLMvbs2TPoZsRIkCQJNTU1+p/R3AQB/t8NlaamJmzevFn/88wzz+CLX/yiZU+H+3w+LFmyxJSLkYV+t2ZpGdFg6YUwjl3ywaMPK2Mycyw7nYOxht4IIYgSRhRF1NbWQhRLf1fmzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKTd8Pt+gKTzS6bRt8uFwOBAKhYo2LU3+hkoeRVEsjUdRFBw5cgSKojDXZvndstAyolHsOiEGY5d88OjDypjMHMtO52Cs4afaCMIAHo9Hf4pDVVVEIhHkl7+JxWL6HdZUKoW+vj4A/T96IpGIrhGNRvVXnpPJpD6/azabHbSgTyQS0X8o9fX1IZVKAei/mxuLxQAAmqYhEolAVVUA/Xc/0+k0gP4FkeLxOID+OQEjkQhyuRwAIB6P6wslpdNp/W7puTx5PB5MmzZNH6eUPcmyjJtuugkej4eLPAmCgOuuuw4ej8dwnoDha8/pdKK+vl6fJ5KlJ6B/rklBELjIUyaTQX19PTwez6g9eTweXH/99fo4LPenkeSpVPYnqzw5HA5ce+218Hg8Je1JVVVMmzYNHo+HizyJoogpU6boc2ybXXsAux5xpidVVVFfXw9RFJnUnqZpqK+vh8PhKChP6XQan/nMZ+DxeMr6mGuHvudyuTBlyhR9fv9S9qQoCurr6+FyubjIUzqdxqc//Wl4PB5Las/j8eBTn/qUPg5LTx6PBzNnzkQ6neYiT4X+3vN4PLjpppv0cahHjN5TJpPRtbPZrO6vEE8ejwdTpkzRL+gM9KSqqh5Pfn/KxyrLsv49KIpy1nYDYx24XT7W/HFsOE/57fIMrP9sNqv7U1UViqLoF6fOjHXgdlZ5UlUVF110EURRHNZTPgav1wuv1wug/9gQDAYRDocRDocRCoX0PFVWVqKiogJA/w2YQCCAdDqNXbt26b9lWXpyOp2ora2Fqqpc5AkAamtr9dhH48nhcKCmpkafDo5F7Z0rn8WqvVLypKoqJkyYAFEUS9qToii45JJLIIoiN3nSNA21tbUQBMH02huqR7A65oqiiPr6eqiqyuSYK0kS6uvr9es5+e/O6DlhMaAbIYQtmD59OubPnw8A6OrqQmNjo75zrl+/Hh0dHQCAXbt2oampCQDQ2dmJxsZGXWPt2rX6Qnjbtm3Dtm3bAACHDx/G2rVr9e0aGxvR2dkJAGhqasKuXbsAAB0dHVi/fj2A/sbR2NiIrq4uAMCWLVvQ3NwMAGhra8OmTZsA9DeHxsZGvRlt2rQJbW1tAIDm5mZs2bLlvJ4ymQyefvppbN26teQ9Pfroo2hqakImk+EiT2+88QYefvhhZDIZw3kChq+9gwcPorm5GS+88AJzT6+88gqam5vxxhtvcJOn5uZmPdbReMpkMli/fj1eeeUVAGz3p5HkqVT2J6s87d27F2vXrkUmkylpT1u3bsXTTz+NTCbDRZ7ef//9QduZXXsse8SZnrZu3Yrm5mbdk5E8NTU1Yfv27WhubsbevXsLztOuXbuQyWTK+phrh7537NixQduVsqdf//rXaG5u1j3xkKc//vGPyGQyltReJpPBtm3bTPGUyWTwyiuvcJOnQn/vZTIZNDU14dFHHx2UJ+oRw3vKX4hpa2vTtY8ePYpDhw4V7Ckf6/vvv3+Wp66uLj0eVVXR0tKiX6zq6OjQv4dwOIz29nZdr6WlRf/+29vb9XUrOjs79Vwkk0m0tLToF67O5SkWi6GlpUX31Nrait7eXt1H3l9vby9aW1vR2dkJRVHQ0tKif6+HDh3C0aNHi+LpnXfegaIow3rKXyycPXs2Zs+eDQCoq6vDsmXLcNddd+Guu+5CQ0MDJkyYAACYO3cuZs6cCQCYPHkyli5dCrfbjRkzZqChoUGPlZWnTCaDzs5ObvL0l7/8BZ2dnTh+/PioPeVjzW/HylMeXmqvlDwdPHgQiqKUvKf8G1m85OmDDz5AZ2cnwuGw6bU3VI9gdcx9//330dzcjK1btzI55nZ1daG5uRlPPvkk03PCYiBo+ds1BFGC7N+/H1deeSU8Hg9EUURzczMmTpyIeDyOYDAIQRD0p8EkSUIqlUIul0NlZSUURUEikUAoFALQf3fV6/XC5XLpDc7r9SKbzSKZTCIYDALov7vq8/kgiiL6+vrgcDhQUVEBWZaRTqcRCASgaRqi0Sj8fj+cTicSiQREUYTH40Emk4Esy/D7/cjlcojFYggEAnA4HIjH45AkCW63W3/yzOfzQVXVIT1lMhk88cQT+OpXv4px48aVtKfjx4/j2WefxW233QZRFIuep9OnT+NXv/oVbr/9dlRWVhrK00hqT1VV/PrXv8ZXvvIV+Hw+pp5SqRSeeeYZzJ8/H263u+h5OnXqFJqamrBo0SKoqjoqT8lkEo8//ji+/vWvo7q6mun+ZMceYban7u5uPP3007j99tvh8/lK1tPJkyfxzDPP4LbbbtPjKGaeent78dRTT+H222+H3+83vfZY9ogzPcViMfzud7/DN77xDQiCYLj2+vr68Nvf/hZf+9rX4HK5Rp2n48ePo6mpCbfeeisAlO0x1w59LxKJYNOmTbjtttsQCARK2lMkEsGzzz6LBQsWAEDR83Ts2DF9PxEEwfTay+VyePLJJzF37lz9giUrT4Ig6Nrjx48vep4K/b2nKAqeeOIJzJs3Dx/96EepR4zCUywWw/vvv49MJgNRFOF0OpHNZqFpGmbOnKmPNRpP8Xgcjz/+OL75zW/iggsu0D3t378f0WgUiqLA7XZD0zRkMhlIkgSHwwFZluFwOPSnuFVVHbSd2+3Wn0J2Op36drlcDpIkIZfLQZblQdud6Wngdvk3S9PpNFwul74d0P/mhKqq6Ovrw6FDh3DVVVfpn8/HKgiCvp1VnmKxGN555x1cffXVcDgc5/XU09ODRYsW6W+DJJNJuFwueL1e/enoUCiERCIBRVFQWVmJXC6HVCoFSZL0t0AWLVqEpqYm/OxnP8P48eOZeQKAt99+Gx//+MdRWVlZ9Dxls1kcOHAAkyZNgiiKo/KUSqXQ3t6Oq6++Wt8njdZeNpsdtF2xa6+UPMXjcRw8eBBXX301nE5nyXqKxWI4dOgQrr76agDgIk/5/WTy5MlwOp2m1t5QPWLatGlMjrmapuFXv/oVvvzlLyMQCBg+5gqCgM2bN+NLX/oSqqqqDJ8THjt2bNCUk2+//TY+8YlPwAroRghR0uRvhOSxcuchCIIgCIIgCIIg+OXDDz/Un6A9kxtvvFGfXo8F4XAYBw8eZKZHnJ9wOIyFCxcy09u8efOg9UoIgiCspr6+vtghWEIxr+XS1FgEUcKcOUduKcObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7pwrHxdccAFXi/6OhDPntC82VsczcLHi/Loi+Se1jcLSCwstIxq81Um5Y5d88OjDypjMHMtO52CsKa2jNEEQgzhzjtxShjcvVsdj5ngstVloGdHgrU7KHbvkgzcf1H/M06P+Yx/slA/evFAPMk+rUA3eaqTcOVc+3G43rrrqKkiSVKTIRs+Zc9oXG6vjCQQCaGhoQCAQwF133YWFCxdi7ty5WLVq1aAFlQuBpRcWWkY0eKuTcscu+eDRh5UxmTmWnc7BWENTYxElTblPjXXmHLmlDG9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81UgpYcbUWMPlQ9M0JJNJvPHGG6PWtpoz57QvNqOJh8XUWA6HQ19n6swnlWfNmoWVK1cWrM3yu2WhZUSDtzopd+ySDx59WBnTUGOxmhqL93OwYl7LFS0ZhSAIU8i/ymsHePNidTxmjsdSm4WWEQ3e6qTcsUs+ePNB/cc8Peo/9sFO+eDNC/Ug87QK1eCtRsqd4fIhCIK+gDfvCIKgLxrMA1bHk5+uZSh2794NWZYLfsOHpRcWWkY0eKuTcscu+eDRh5UxmTmWnc7BWEOPkxBECROPx/HQQw8hHo8XOxTD8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dspHJpNBa2srN1PTWB2P3+/HnXfeCb/ff9a/ybKMnp6egrVZemGhZUSDtzopd+ySDx59WBmTmWPZ6RyMNXQjhCBKGEmSMGXKlJKah/Zc8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqH0+lETU0NnE5nsUMBYH08sixjz549zBZIHwhLLyy0jGjwVifljl3ywaMPK2Mycyw7nYOxhtYIIUqacl8jhCAIgiAIgiAIghgaM9YIGQmapmHXrl2maBP9sFgjZDg2b96MmpoaU8cgCILIw2qNEN4p5rVceiOEIEqYdDqNnTt3Ip1OFzsUw/Dmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UEqJ47mVRC10I1075UBQFR44cgaIoxQ4FgPXxeDwe1NfXmzJPP0svLLSMaPBWJ+WOXfLBow8rYzJzLDudg7GGboQQRAnD44GjUHjzYnU8Zo5HP8IJs7BLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUZKiaqqqiH/3u12w+VyFaRpp3zkFwvP5XLFDgWA9fGIooja2trz3jArFJZeWGgZ0eCtTsodu+SDRx9WxmTmWHY6B2MNTY1FlDQ0NRZBEARBEARBEARxLg4cOICTJ08O+rvLL78cEyZMMG1MmhrLfGhqLIIg7AZNjWU+9EYIQZQwqqoiHA5DVdVih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkVJj4sSJuOyyyxAKhTBmzBhMmjTJ0E0QO+Ujl8shkUhw80S21fGYuVgxSy8stIxo8FYn5Y5d8sGjDytjMnMsO52DsYZuhBBECROPx7Fu3TrE4/Fih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkVJDEARcfPHFmDJlCq666iqMGzfOkJ6d8iHLMt58803IslzsUABYH4/f78edd94Jv9/PXJulFxZaRjR4q5Nyxy754NGHlTGZOZadzsFYQ1NjESVNuU+NpWkaMpkM3G53wYv98QJvXqyOx8zxWGqz0DKiwVudlDt2yQdvPqj/mKdH/cc+2CkfvHmhHmSeVqEavNVIuTOSfJTK1FiapkFVVTidTi5qazTxsJgaSxAEuN1uZDIZDHVpzMjUWCy/WxZaRjR4q5Nyxy754NGHlTENNRarqbF4Pwcr5rVc9itCEQRhGYIgwOPxFDsMJvDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO3bKhyAIpiwUXihWx6NpGtLptCnaLL2w0DKiwVudlDt2yQePPqyMycyx7HQOxhqaGouwBR6PBz6fD0D/3HORSER/oiMWi+mvmqVSKfT19QEAFEVBJBLRNaLRKLLZLAAgmUwimUwCALLZLKLRqL5dJBKBoigAgL6+PqRSKQD9r7XFYjEA/T+oIpGIPv9dIpHQf2BlMhn9dbBcLodIJKLPCRiPx5HJZAAA6XQaiUTivJ5isRjuu+8+hMPhkvd07Ngx3H///YjFYlzkqaurC/fddx9isZjhPAHD1153dzceeOABnDx5krmnU6dO4YEHHkBXVxcXeers7MQDDzyAWCw2ak/5mj916hQAtvvTSPJUKvuTVZ5Onz6t7yel7CkcDus+eMhTT0+PHg+LPFnZI870FA6H8cADD6Cnp4dJ7eVjPX36dEF5+vDDD/UeVs7HXDv0vd7eXtx33316HKXs6cSJE3jggQfQ29vLRZ4G7idW1F4sFsP999+PDz/8kLmngdo85KnQ33t5H8eOHdPzRD2ieJ7yx4Oenp5hPaXTaT1WWZb170FRFD3u/Hb5WDOZzKDt8nHncrmztst/X9ls9qzt8qTT6UHb5f3lf1s3Nzcjk8mcFevA7c6M1SxPsVgMr732GjKZzLCe8jF4vV54vV4AgMvlQjAY1LcLhUL6hcbKykpUVFQAACRJQiAQQCAQQENDAyZMmKCvE+Lz+fQLdkN5H6mndDqN5uZmxGIxLvLU19eH5uZm9PX1jdpTKpXCa6+9NmifNOrpXPksVu2Vkqd4PK7vJ6XsKRqN6j54yVN+P0kmk6bX3lA9gtUxt6enBw888ADC4TCTY24kEsEDDzyA48ePMz0nLAZ0I4SwBdOnT8f8+fMB9F/Abmxs1HfO9evXo6OjAwCwa9cuNDU1AQA6OzvR2Nioa6xduxaHDx8GAGzbtg3btm0DABw+fBhr167Vt2tsbERnZycAoKmpSX/luaOjA+vXrwfQ3zgaGxvR1dUFANiyZQuam5sBAG1tbdi0aROA/ubQ2NioN6NNmzahra0NANDc3IwtW7ac15PH40F1dTW2b99e8p5+85vfoK6uDh6Ph4s8vfPOO/pda6N5AoavvRMnTqC+vh67d+9m7qm9vR319fV45513uMjTk08+ifr6eng8nlF78ng8kCQJ7e3tANjuTyPJU6nsT1Z5OnLkCBRFgcfjKWlP27dvR3V1NTweDxd56u7uRjwe10/Cza49lj3iTE/bt29HfX09uru7mdTeG2+8gfr6ehw5cqSgPK1fvx7Tpk2Dx+Mp62OuHfpeIpFAPB7XX88vZU8vvvgi6uvrkUgkuMjT+vXrce2118Lj8VhSex6PB1dddZUeA0tPHo8Hn/rUp7B+/Xou8lTo7z2Px4O6ujr85je/0fNEPaJ4njweD+LxOLq7u8/rSVVVtLS06BerOjo69O8hHA7rv2czmQxaWlr0WNvb2/Wb7p2dnXrcyWQSLS0t+oWrtrY2/fs6evQoDh06pH9HLS0tuqfW1lb09vbqPvL+ent7sW/fPtTW1kIURbS0tOjf66FDh3D06FH9u8x/x2Z76ujoQFVVFURRHNZT/mLh7NmzMXv2bABAXV0dli1bpm+Xv8kBAHPnzsXMmTMBAJMnT8bSpUuRTqexe/dufOtb30J1dTUAYP78+Zg+fboea1tbG2RZHrUnQRBQW1uLjo4OLvJ08uRJ1NbWoru7e9R5kmUZsizrx1wWtdfa2qpvx0PtlZKnd955B8FgEKIolrSnPXv2YMKECRBFkZs8HT9+HLW1tYhEIqbX3lA9gtUxt7u7G/X19di+fTuTY64sy6ivr8fWrVuZnhMWA1ojhChp8vPKeTweiKKI5uZmTJw4EfF4HMFgEIIgIBaL6RdPU6kUcrkcKisroSgKEokEQqEQgP67q16vFy6XS29wXq8X2WwWyWRSf7IkEonA5/NBFEX09fXB4XCgoqICsiwjnU4jEAjod7f9fj+cTicSiQREUdQvFsqyDL/fj1wuh1gshkAgAIfDgXg8DkmS4Ha7kU6noSgKfD4fVFUlT+SJPJEn8kSeyBN5Ik/kiTyRJ/JUAp78fj927tyJTCYDSZLgcDggyzIcDgdEUYSiKFBVFW63+6y50zOZDJxOp75dLpeDJEnI5XKQZXnQdqIowul0IpvNQtO0QdvlH6hIp9NwuVz6dkD/mxOqqiKbzQ7abmCsgiDo2ymKMihWHjz19PRg0aJF+tsgyWQSLpcLXq9Xfzo6FAohkUhAURSEQiFccskl2Lt3LyRJ0h94EwQBwWAQ8XgcqqrC5/NBURSk02m43W5IkoRMJoMZM2bg+9//PgKBAOWJPJEn8mSKp2nTppXFMffYsWNFWyOEboQQJU25L5aeSqWwa9cuzJw5U3/Nt1ThzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKXdGko9SWSw9m83i6NGjuOSSS+ByuYodzqjiGeli6ffffz9qampQVVWFnp6eQZ+pqKjAzJkzsWvXLn36mPMxa9YsrFy5cngjYPvdstAyosFbnZQ7dskHjz6sjGmosVgtls77OVgxr+XS1FgEUcKcOUduKcObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH2fOaV9szIinpqYGNTU1kCTprH9zOBwIhUJwOEZ2aWz37t36vPfDwdILCy0jGrzVSbljl3zw6MPKmMwcy07nYKyhN0KIkqbc3wghCIIgCIIgCIIg+KJU3ggpZUb6RsjmzZtRU1Mzqs+MVI8gCIIlrN4I4R16I4QgiIJQFEVfrLjU4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil37JQPnp7SBayPRxRFfRFy1pzLiyzLCIfD+p+RvGFCb+UTA7FLPnj0YWVMZo5lp3Mw1tCNEIIoYRKJBDZu3IhEIlHsUAzDmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu7YKR+yLGPv3r0jnu7JbKyOx+fzYcmSJfD5fMy1z/SSTqexatUqzJ07FwsXLtT/zJ07F6tWrUI6nR6xFot4rPoswR675INHH1bGZOZYdjoHYw1NjUWUNDQ1FkEQBEEQBEEQBMETNDWW+RQyNZYsy5g7d66hC4+FTo21atUq7Nix45z/PpqF2AmCsCc0NZb50BshBEEQBEEQBEEQBEEQhK2RJAkzZsywfFxZlrF79+7zbjOahdgJgiCIwqAbIQRRwkSjUfzkJz9BNBotdiiG4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil37JSPdDqNV1555bzTMlmJFfGsWLECs2bNgiRJCAaD+PGPf4xgMMh8nIFeenp6hr3JIcsyenp6htViEY+VnyXYY5d88OjDypjMHMtO52CsYb8iFEEQluH1ejFv3jx4vd5ih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkXLHTvlwuVyYOHEiXC5XsUMBYE08Ho8HK1euhCzLOH36NI4dO4ZkMsl8HJZeWGgZ0eCtTsodu+SDRx9WxmTmWHY6B2MNrRFClDS0RghBEARBEARBEATBE7RGiPkUskaIEZ2R6hkZo9D1RwiCsAe0Roj50NRYBFHCJJNJPPvss6Y8wWI1vHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+WOnfKRzWZx8OBBZLPZYocCwPp4stksTpw4MaqnlFetWjWiqWxYemGhZUSDtzopd+ySDx59WBmTmWPZ6RyMNXQjhCAIgiAIgiAIgiAIgiCG4cCBA1i9enWxwyAIgiAKgKbGIkoamhqLIAiCIAiCIAiC4AmaGst8ijU1FgBIkoSmpiZIkjSi7WlqLIIgRgJNjWU+9EYIQZQwPL5KWCi8eSnGa9lmjUevZRNmYZd88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqHqqo4ffo0VFUtdigArI9HVVXE4/FRL1YsyzJ6enqG1WblhYWWEQ3e6qTcsUs+ePRhZUxmjmWnczDW0I0QgihheJpnzyi8eaH5sc3Tojn67YNd8sGbD+o/5ulR/7EPdsoHb16oB5mnRWuE2AM75YOni1NAcW7Enjx5EsFg0BRtO9yIZTU+wQ675INHH7RGiDl6PB03aWosoqShqbEIgiAIgiAIgiAInqCpscyH5XRTq1atwo4dO0Y1/mimsaKpsQiCGAk0NZb5cPFGSHt7O37zm9/gD3/4w7CvFwLAY489hlWrVlkQGUEQBEEQBEEQBEEQBGFXVqxYgVmzZg1a80OSJEyaNKmIUREEQRCsKeqNkM7OTsyYMQNTpkzBggUL8MUvfhHjx4/HP/zDPyCRSJzzc48++ijuvfdeCyMlCD6JRCK49957EYlEih2KYXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKHTvlI51OY9euXUin08UOBYD18eTHA4CVK1eiqakJmzdvxubNm9HU1ISVK1eOWEuWZYTDYYTDYciyzNQLCy0jGrzVSbljl3zw6MPKmMwcy07nYKwp2tRYqVQKU6dOxbvvvgtN0xAMBpHNZpFMJiEIAurq6vCHP/wBH/vYx8767Kc//Wm8+uqrXC2oQxSHcp8aS1EUdHZ2YsKECRBFsdjhGII3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3BlJPkplaqxcLodYLIZAIACHo/gThowmHhbTTQ033vnGyOum02msXr0au3fvhizLAPrfJvnUpz6F73znOxg7dixOnTplKFYWeTKiwVudlDt2yQePPqyMaaixWE2Nxfs5WFlOjbVmzRocOnQIl1xyCV555RX09vYiGo3i17/+NS666CK89957+MxnPoO33367WCESBPeIooja2lpbnBDx5sXqeMwcj6U2Cy0jGrzVSbljl3zw5oP6j3l61H/sg53ywZsX6kHmaRWqwVuNlDt2yofD4UAoFOLmIqTV8RgZL3/TY/Xq1dixY4f+//P/tn37djz00ENMvLD4Xoxo8FYn5Y5d8sGjDytjMnMsO52DsaZo1fbMM89AEARs2rQJN910EwDA6XRi/vz52LNnD2655RacPHkSN998M9ra2ooVJkFwTV9fH55++mn09fUVOxTD8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqHLMt4++23B13ELyajiaeqqmrQmh5DIUkSqqqqmIx3JosXL8a3vvWtcy6yXllZiZqaGiZ1wiJPRjR4q5Nyxy754NGHlTGZOZadzsFYU7QbIQcOHMCFF16IG2+88ax/C4VCeOGFF/CNb3wDp0+fxi233IKWlpYiREmUCh6PBz6fDwCgqioikQjys77FYjG9saRSKX3HUxRl0Px00WgU2WwWAJBMJpFMJgEA2WwW0WhU3y4SiUBRFAD9O3MqlQLQ38RisRiA/lehI5GIPn1bIpHQ5/3LZDKIx+MA+l+Fi0QiyOVyAIB4PI5MJgOgf77A/Fo55/LkcDjg8/n0GErZU19fH/x+PxwOBxd5ymaz8Hq9cDgchvMEDF97qqoiFAohnU4z9yTLMkKhELLZLBd5SiQS+pMPo/XkcDjg9Xr175Xl/jSSPJXK/mSVJ0VRUFFRAYfDUdKeUqkUfD4fHA4HF3nK5XL698oiT1b2iDM9pVIphEIhXc9Invr6+pDJZBAKhaAoSkF5isfjCAaDcDgcZX3MtUPf0zQNFRUVEASh5D0lk0mEQiFdr9h5isfj+jQNVtSew+FAIBDQtVl6cjgcCAaDiMfjXOSp0N97DocDfr9f16YeUVxPDocDFRUVegzn85ROp/XtZFnWvwdFUfS489vlY81kMoO2y8edy+XO2i7/fWWz2bO2y5NOpwdtl/enqipkWYbH44EgCGfFOnC7M2M1y5Msy5AkCYIgDOvJ6XRixowZ8Hq98Hq9AACXy4VgMKhvd/PNN+tPIA/lSRAEuN1uZDKZIT2pqgq/36/nfeDT236/H52dnQAGX49wOp36b5/e3l4cP35c166oqEBlZSWA/iekQ6GQHmswGNS3MyNPqqrC4/EMud1wedI0bdCT3Cxq78ztil17peQpm83q+0kpe8pkMnC73RAEgZs8KYoCj8eDXC5neu0B/b0jv38C7I65uVwOoVBIPx/Lx13oMRfov1afPx/Lf3dGzwmLQdFuhPT19WH8+PHn/HdRFPHUU09h8eLFiEQimD17Nl555RULIyRKienTp2P+/PkAgK6uLjQ2Nuo75/r169HR0QEA2LVrF5qamgAAnZ2daGxs1DXWrl2Lw4cPAwC2bduGbdu2AQAOHz6MtWvX6ts1NjbqP3iampr0uV87Ojqwfv16AP2No7GxEV1dXQCALVu2oLm5GQDQ1taGTZs2AehvDo2NjXoz2rRpk/4GVHNzM7Zs2XJeTxUVFRBFES+//HLJe3rqqadw4YUXoqKigos8HTx4EMePH0dFRYXhPAHD197x48cxZ84c/PnPf2buae/evZgzZw4OHjzIRZ42bNiAOXPmoKKiYtSeKioq0NPTg7179wJguz+NJE+lsj9Z5emDDz7ABx98gIqKipL29PLLL0MURVRUVHCRp+7ubuzZswcVFRVM8mRljzjT08svv4w5c+agu7ubSe29/vrrmDNnDj744IOC8rRu3TrceOONqKioKOtjrh36XiKRwJ49e/QLUqXs6Q9/+APmzJmDRCLBRZ7WrVuHa6+9FhUVFZbUXkVFBSZPnox169Yx91RRUYFZs2Zh3bp1XOSp0N97FRUVuPDCC/HUU0/peaIeUTxPFRUV2LNnD7q7u8/rSVVVtLS06BerOjo69O8hHA6jvb1d997S0qLH2t7ejnA4rMeXjzuZTKKlpUW/cNXW1qZ/X0ePHsWhQ4f072jgg6Stra3o7e3VfeT99fb2Ys+ePbj88svhcrnQ0tKif6+HDh3C0aNH9e8y/x2b7entt99GIBCAy+UakacVK1bg9ttvx5w5cwAAdXV1WLZsGSRJwqxZszB9+vTzenK5XLj00kvx1ltvDekpGo1i0aJFAIBAIICGhgYEAgEAwKJFizB16lQAg69HVFdXo6GhAZqm4cUXX0RHRweefPJJAMDMmTMxd+5cAMCECRPQ0NCge1q2bJl+AdSMPJ08eRKXX345uru7sW/fPoTDYXR2do4oT9lsFidPntSPuSxqr7W1Vd+Oh9orJU8HDhyA1+uFy+UqaU9vvfUWLrroIrhcLm7ydPz4cVx++eWIRCKm157D4cDll1+Ot99+W/fE6pjb3d2NOXPm4OWXX2ZyzM1ms5gzZw5++9vfMj0nLAZFWyx9/PjxEEURH3744bDb3nHHHXj00Ufh8/mwdetWrFy5khZLJwD8v8XSPR4PRFFEc3MzJk6cqD/xKQgCYrEYPB4PJElCKpVCLpdDZWUlFEXRn0wH+n/k5A8m+Qbn9XqRzWaRTCb1J0sikQh8Ph9EUdSfYquoqIAsy0in0wgEAtA0DdFoFH6/H06nE4lEAqIowuPxIJPJQJZl+P3+sxZHisfjkCQJbrcb6XQaiqLA5/NBVdUhPQHAnj178LGPfQwXXHBBSXs6ffo0jhw5gquvvhqqqhY9T/F4HG+//Tauu+46iKJoKE8jqT1RFPHuu++itrYWkiQx9ZTL5fD++++jrq4OAIqep0gkgmPHjmHy5MlIJpOj8qSqKt566y1MnjwZgUCA6f5kxx5htqdEIoH29nZcd911cLlcJeupt7cX7777LqZMmQIARc9TMpnEnj17cP3110OSJNNrj2WPONNTOp3G0aNH8fGPf1x/88RI7SmKgg8++ACXX345crncqPN0+vRpdHZ24sorr0QmkynbY64d+l4qlUJbWxuuu+46uN3ukvaUTCbxl7/8BVdccQUymUzR89TV1aXvJ7Ism157+QsgF110ET7ykY8w9eTxeLB//35ceOGFGDNmTNHzVOjvPafTiX379qG2thZjx46lHlFkT7Iso7W1FVOmTIHX6x3Sk9/vx86dO/VjTf6tU4fDAVEUoSgKVFWF2+0e8slop9Opb5fL5SBJEnK5HGRZHrSdKIpwOp3IZrPQNG3QdvljVzqdhsvl0rcD+t+cyD8ZHY/HUV1drT9lno9VEAR9O0VRBsVqlqdkMolIJIJx48Yhl8uN2JMsy4jH48jlclBVFePGjYMkSUin0+f1JIoiTp06hUAgoL+NO9BTMpnEbbfdhp6eHv3ttVgshlwuB7/fD1mWkclk9OsRiUQCTqcTfr8fyWQSkydPxocffoh4PA5ZlvUx+vr6IIoifD6f/nR0MBjEmjVr8NGPftSUPGmahlOnTuHJJ59Ea2ur7mnMmDG48sorsWLFCgiCMGSestkswuGwfh2PRe1ls9lB2xW79krJUzKZRG9vL2pqaqBpWsl6SiaTiMVi+MhHPgJFUbjIU/6NhaqqKmiaZmrtiaKI06dPIxAIwO12w+l0Ytq0aUyOuZIk6etyezwew8dcj8eDgwcP4qKLLoLP5zN8Tnjs2LGiLZZetBshn/3sZ7F9+3YcPnwYtbW1w26/fPlyPPTQQ6ioqIDf70dXVxfdCCH0GyF5rNx5eCAWi2H9+vVYunSp/mRKqcKbF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7owkH5qm6U/h8kwmk0FbWxumTp0Kt9td7HAsj2ck461ateqc64Ccj0AggKVLl2L9+vX6E+fDsXnzZtTU1ADon8amp6cHQP8bGceOHTP0vWQyGezcuRNr1qwZMp5Zs2Zh5cqV5/wsT3VS7tglHzz6sDKmocaqr69nos37OVgxr+UW7UbIf/zHf+Cee+7Bvffei3/7t38b0We+973v4Re/+IU+FzDdCCHK/UYIQRAEQRAEQRAEwRelciOEGJ50Oo3Vq1dj9+7d+pz3ZrF582aEQqEhx5MkCTNmzMCKFSv0p9lHgyzLmDt37jk9SJKEpqamYRegJwjCPFjdCOGdYl7LLdoaIfPmzYOmafjFL36hL9wyHP/7v/+Lf/qnf0KR7t0QBHecuRhTKcObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH5qmQVEUbrxYHc9IxvN4PFi5ciWampqwYcMGXHDBBSPSFgRBX+B8NKxevRo7duwYdMNCEAQ4HA7s3LkTq1evHpVenu7ubjgcjnPGM/ANlDPhrU7KHbvkg0cfVsZk5lh2OgdjTdFuhFx11VV47733sHv3bjidzhF/bvXq1Xj11Vexfft2E6MjiNIgGo3ipz/9KaLRaLFDMQxvXqyOx8zxWGqz0DKiwVudlDt2yQdvPqj/mKdH/cc+2CkfvHmhHmSeVqEavNVIuWOnfGQyGezevVtf4LbYWB3PaMaTJAm1tbVYs2bNiLSDwSB+/OMf6/P2jwRZlrF79+7zahX6ZoqiKKOOJw9vdVLu2CUfPPqwMiYzx7LTORhrijY1FkGwoNynxlJVFV1dXaiurh7VDUUe4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3RpKPUpkaK5fLIZlMwuv1wuEo2nOyRYunkPHC4TAWLlw47HZOpxPV1dWjWt/2/vvvx1133TWs1sC1REbKiRMn8IMf/OC88ZxLl7c6KXfskg8efVgZ01BjsZoai/dzsGJeyxUtGYUgCFNwOp2j/gHEK7x5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPljp3y4XA44PP5ih2GjtXxmDmeqqoIh8PcaAmCULAGb3VS7tglHzz6sDImM8ey0zkYa/i45UYQREEkEgk89thjSCQSxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPljp3yIcsy9uzZY/oi4CPF6njMHM/n82HJkiVMLnSy0FIUpWAN3uqk3LFLPnj0YWVMZo5lp3Mw1pTsGyGapuH06dPo6+sDAFRWVmLs2LGjXoiKIEoZURRRW1sLUSzZXVmHNy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNyxUz4cDgdCoRA309JYHY+Z4ymKgiNHjkBRFC60BEEoWIO3Oil37JIPHn1YGZOZY9npHIw1JbNGyJtvvomXXnoJr7/+Ovbu3YvOzs6zGrgoipgwYQKuueYa3HDDDfjsZz+L6667rkgRE1ZQ7muEEARBEARBEARBEHxRKmuEEKNnpGuEFMK51gg5k0LWCBlJ3IXoEgTBDlZrhPBOMa/l8nPbbQg6Ojrwwx/+EBdeeCFuuOEG/Ou//iu2bt2KI0eOIJvNQtO0QX+y2SyOHDmCrVu34l//9V9xww034MILL8QPf/hD7N+/v9h2CII5mUwGzc3NyGQyxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPljp3yoSjKkA+ZFgur4zFzPLfbjenTp8PtdnOhpapqwRq81Um5Y5d88OjDypjMHMtO52Cs4fJGyPbt2/G5z30OV111Fe677z6Ew+GzbnqcizO3C4fDuO+++3D11Vfjc5/7HLZv326hE4IwFx7nVCwU3rzYaX5altostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH/lFuFVVLXYoAKyPx8zxJEnClClTIEnSiD+zatUqZlpnomlawRq81Um5Y5d88OjDypjMHMtO52Cs4WpqrLfeegs//OEPsXPnTgDQb3gIgoBPfOIT+PSnP40pU6Zg0qRJuPDCCzF27Fh4vV5omoZUKoWuri4cO3YMBw4cwN69e/HnP/8Z+/fvH6QD9L9q9LOf/QzXXnttUXwS7KCpsQiCIAiCIAiCIAieoKmx7IuZU2ONFJoaiyDsCU2NZT7cvBHyne98B9OmTcPOnTv1Gxe33HIL1q1bh3A4jH379uHBBx/EHXfcgU996lO49NJL4ff74XQ6IYoi/H4/LrvsMnz605/Gt7/9bTz44IPYt28fwuEw1q1bh7/6q78C0P+DZOfOnZg2bRruvPPOYlomCMPkcjlEIhHkcrlih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkXLHTvnQNA3pdPq8s25YidXxmDkey4WQWWhpmlawBm91Uu7YJR88+rAyJjPHstM5GGu4uRHy8MMPQ1VV+P1+rFixAu+99x5eeukl3HHHHaiuri5Yt7q6GnfccQe2bduGw4cP44c//CH8fj9UVcXDDz/M0AFBWE8sFkNjYyNisVixQzEMb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljp3xkMhm0tLRwMW87YH08hYxXVVU1oumlAoEAGhoaEAgEjITITEtRlII1eKuTcscu+eDRh5UxmTmWnc7BWMPN1FjBYBD/9E//hO9///tMDhTnIxaL4YEHHsDPf/5zRKNRU8cizKXcp8bK5XKIxWIIBAJMnjQpJrx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlzkjyUSpTY2mahkwmA7fbrU8lXk7xFDreqlWrsGPHjvNu43A4EAgEEIvFDD8FfaZWIVNYnThxAsuXLz9vPOfS5a1Oyh275INHH1bGNNRYrKbG4v0crJjXcrm5EXL69GmMHTvW9mMSbCn3GyEEQRAEQRAEQRAEX5TKjRCiMNLpNFavXo3du3cPWvxXkiTU1dXhwIEDpo6/efNmVFVVoaenB8DI3lKhNUIIgn9ojRDz4eZxkmLckKCbIESpE4/H8dBDDyEejxc7FMPw5sXqeMwcj6U2Cy0jGrzVSbljl3zw5oP6j3l61H/sg53ywZsX6kHmaRWqwVuNlDt2ykcmk0Frays3U9NYHU+h43k8HqxcuRJNTU3YvHmz/qepqQkrV64EAPj9ftx5553w+/2G4zxTa9WqVZg7dy4WLlyIhQsXYu7cuVi1ahXS6fQ5NRRFKTge3uqk3LFLPnj0YWVMZo5lp3Mw1ojFDoAgiMKRJAlTpkwZ0RylvMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH06nEzU1NXA6ncUOBYD18RgdT5Kkc75BIcsy9uzZM+iNkUI5U+vMN05kWcaOHTsQDofxwAMPDFmbgiAUHA9vdVLu2CUfPPqwMiYzx7LTORhruJkaiyAKgabGIgiCIAiCIAiCIHiCpsYqX0YyBZWZCIKA+vp6rFixAh6PZ1Rx0dRYBFFcaGos8+FmaiyCIEZPOp3Gzp07z/sKbKnAmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu6MJB+CICAUClkXVIEoioIjR45AUZRihwLA+njMHM/j8aC+vn7QzQgrtDRNw44dO7B69epBf6+qasHx8FYn5Y5d8sGjDytjMnMsO52DsaZkb4QkEgns378fr732Gv70pz+N+A9B2AkeDxyFwpsXO/0IZ6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5c5I83HZZZdxNeXLUORyOUQiEeRyuWKHAsD6eMwcTxRF1NbWQhSNz0hfiNaZC7lrmlZwPLzVSbljl3zw6MPKmMwcy07nYKwpqamx4vE4GhsbsXnzZrzzzjsYbeiCIHDxpRPsoKmxCIIgCIIgCIIgCB5JpVLo6upCNpvFhx9+WOxwCAso9tRYAxk41RVNjUUQ/ENTY5lPybwR8tZbb2HSpEm4++67cfDgQeRyOWiaNuo/BGEnVFVFOByGqqrFDsUwvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+XOaPJRUVGBiy++GHV1dRZENnpyuRwSiQQ3T2RbHY+Z47FcCJmFlqZpBWvwVifljl3ywaMPK2Mycyw7nYOxpiRuhHR3d+Nzn/scjh8/rt/QEEURV1xxBW666SbMnDlzRH8+85nPFNsKQTAlHo9j3bp1iMfjxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlDi/5uPTSSyFJkiENWZbx5ptvDppCqZhYHY+Z4/n9ftx5553w+/1caCmKUrAGb3VS7tglHzz6sDImM8ey0zkYa0piaqx/+Zd/wU9+8hMIggC/34///u//xu233w6fz1fs0IgiU+5TY2mahkwmA7fbDUEQih2OIXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKnULzsXPnTqZxTJ8+Hb29vXjnnXcK1tA0Daqqwul0clFbVsdjxnj5KagEQYDb7UYmkzE8O0mhWgOnujpx4gSWLl16Xo1zTY1l5HuSZRk9PT36/6+qqjJ8A6/c4W2/LRQefVgZ01BjsZoai/dzsGJeyzW+apMFPP/88wD6m//vf/97fOpTnypyRATBB4IgwOPxFDsMJvDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO7zkg8WUS4IgMFnMmxVWx2PmeJqmIZ1Oc6MlCELBGoV8T+l0GqtXrz5r0XZJkjBjxgysWLGCi/2oFOFtvy0UHn1YGZOZY9npHIw1JTE11gcffABBEDBjxgy6CUIQA4jFYnjggQcQi8WKHYphePNidTxmjsdSm4WWEQ3e6qTcsUs+ePNB/cc8Peo/9sFO+eDNC/Ug87QK1eCtRsodHvLh9/vhcrkMz5KRyWTQ3NyMTCbDKDJjWB2PmeMFAgE0NDQgEAhwoZXNZgvWKOR7Wr16NXbs2HHWtD+yLGPHjh1YvXr1qOMg+uFtvy0UHn1YGZOZY9npHIw1JXEjJL9wzMSJE4scCUHwhcfjQX19PTd3Vo3Amxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu4UOx9OpxOXX345AMDn8xmaZkgURdTW1nLzVLbV8Zg5Xjqdxs6dO5m8FcJCy+l0Fqwx2u9JlmXs3r37vNuc+aYIMXJ4228LhUcfVsZk5lh2OgdjTUmsETJ58mS88847WLRoER5//PFih0NwRLmvEUIQBEEQBEEQBEHwD4s1Qurq6jB27FhUVFTofxeNRrFv3z6oqmpYnzBOfo2QkTJp0iQcOHDAlFgGrvkxkrjOtUbIQAau+XGu9T5G+h2MZDyCKCdYrRHCO8W8llsSb4TMnj0bmqahtbW12KEQBFekUim8+OKLSKVSxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlTjHzcdFFFw26CQIAwWAQN95446CLSiMlm83ivffeQzabZRWiIayOx8zxKioqMGfOnLPydSYrV67Exo0bmWidD1VVC9bIZrN455138N///d+YO3cuFi5ciIULF2Lu3LlYtWoVs7VQiJHB235bKDz6sDImM8ey0zkYa0riRsjy5cvhdrvxzjvv4KWXXip2OASHeDwefX5UVVURiUSQf9kpFovpr1ymUin09fUBABRFQSQS0TWi0ajegJLJJJLJJID+5hSNRvXtIpEIFEUBAPT19ek7sizL+nx3mqYhEonoT+UkEgn9x0Emk0E8HgfQP+1bJBLRp3+Lx+P6/IDpdBqJROK8nnK5HLq7u3W9UvYUjUbR09ODXC7HRZ5SqRROnz6NXC5nOE95vfN5ymQyiEQiSCQSzD0lk0lEIhGkUiku8hSJRPSxR+spl8vh9OnTuh7L/WkkeSqV/ckqT+l0Gl1dXcjlciXtKR6Po7u7G7lcjos8ybKsf68s8mRljzjTUzweRyQSgSzLTGqvr68PkUgE6XS6oDz19vait7cXuVyurI+5duh72WwWXV1dul4pe8rvJ/ljZLHzNHA/saL2crkcenp60Nvby9zTwP2ehzwV+nsv/x3lt6MeUVxPuVwOXV1dut5IPcmyrH8PiqLocecXws7HmslkBm2XHyfvfShP2WxWv8Cdy+UGXZhOp9N6DNlsVvenqirS6bQ+djqd1r9XWZYHbXdmrAO3M+pp4HbpdBqpVAqapiGbzZ613Ug9DdzufJ40TUMqldL3MxaeNE1DKBSCw+FAKBRCIBDQ35qoqKhAZWUlgP5pcUKhEID+BcSDwSBcLhcAwOv1wuv1AgBcLheCweAgzfxUOpWVlXreJUnS1/8QBAGhUEiPNe8pFArB4/HA7/cDgK7ncDh0H0N5UlUVHR0dePXVVyHLsu5JlmU0Nzfj/vvvHzJPw3kaaZ4Gfv9m1V4mkxlUU2bXnlFPyWQSmqaVtKf8vqdpGjd5kmUZ6XR6yO+fde3l/3dgrKyOuflzr3g8zuSYm48lFosxPScsBiVxI+TjH/847r//fmiahttuuw379+8vdkgEZ0yfPh3z588HAHR1daGxsVHfOdevX4+Ojg4AwK5du9DU1AQA6OzsRGNjo66xdu1aHD58GACwbds2bNu2DQBw+PBhrF27Vt+usbERnZ2dAICmpibs2rULANDR0YH169cD6G8cjY2N6OrqAgBs2bIFzc3NAIC2tjZs2rQJQH9zaGxs1JvRpk2b0NbWBgBobm7Gli1bzuupsrISY8aMwfbt20ve09NPP43JkyejsrKSizwdOnQIiUQClZWVhvMEDF974XAYCxYswO7du5l7am9vx4IFC3Do0CEu8rRx40YsWLAAlZWVo/ZUWVkJRVHQ3t4OgO3+NJI8lcr+ZJWno0ePoru7G5WVlSXtafv27RgzZgwqKyu5yFNvby/ef/99/UTZ7Npj2SPO9LR9+3YsWLAAvb29TGqvtbUVCxYswNGjRwvK08MPP4zPf/7zqKysLOtjrh36XjKZxPvvv69fDCplT88//zwWLFiAZDLJRZ4efvhhzJo1C5WVlZbUXmVlJW666SY8/PDDzD1VVlbiy1/+Mh5++GEu8lTo773KykpMnjwZTz/9tJ4n6hHF81RZWYn3339fv3k3Uk8dHR369xAOh/Xfs5lMBi0tLXqs7e3tCIfDenz5uEdae7FYDC0tLbqn1tZWPdbDhw/r/np7e7F3715ceeWVkCQJLS0t+vd66NAhHD16VP8u89+xqqpoaWnRL8Cx8NTS0qJfjNu/fz+qq6shSRKOHj2KQ4cOjdrTwJlEhvMkSRImTZqEtrY2Zp4ymQwaGhqgqiqefvppLFy4EJMnTwYAzJw5E3PnzgUATJgwAQ0NDXqsy5YtQ11dHYD+WVFmz54NoH86tCVLluDpp59GX18fGhoaMGHCBADA3LlzMXPmTAD9U8ovXboUAOB2u9HQ0KDH2tHRgXg8jqeffhpXXHEFFi1aBODsRdg7OzuH9JRKpVBVVaXnaenSpYM8jRkzRr/IOjBP5/O0bNmyEecJML/22tra9H3Vitoz4ungwYP6tGSl7KmtrQ0f+9jHIEkSN3k6ceIErrzySkSjUdNrz+l04sorr8T+/ft1T6yOub29vViwYAG2b9/O5JirqioWLFiA3/3ud0zPCYtBSawRkmfjxo248847IQgCvvOd72D+/Pm46qqr9KZNlB/5eeU8Hg9EUURzczMmTpyIeDyOYDAIQRAQi8Xg8XggSZL+pEf+YmoikdCfwohGo/B6vXC5XHqD83q9yGazSCaT+hMLkUgEPp8Poiiir68PDocDFRUV+p3jQCAATdMQjUbh9/vhdDqRSCQgiiI8Hg8ymQxkWYbf70cul0MsFkMgEIDD4UA8HockSXC73fpdaJ/PB1VVh/TkcDhw+PBh1NTUIBgMlrSnnp4edHd349JLL0U2my16nvr6+nD06FF8/OMfh8PhMJSnkdSeJEk4efIkqqqqIIoiU08AcPr0aVRXVyOXyxU9T7FYDPF4HBMmTEAikRiVJ03T8O677+Kiiy6Cz+djuj/ZsUeY7SmZTOKDDz7AFVdcAafTWbKeotEowuEw6urq9CdzipmndDqN9957DxMnTtTjM7P2WPaIMz3Jsoze3l7U1NQgnU4brr38Wxkf+chHoCjKqPPU09ODWCyGiy++GKlUqmyPuXboe5lMBu+++y6uuOIKuFyukvaUTqcRiUQwfvx4pFKpouepu7sb0WgUl1xyCdLptOm153a7cfToUQSDQYwdO5apJ6/Xiw8//BB+vx8XXHBB0fNU6O89l8uFDz74AGPGjEFVVRX1iCJ7UhQFBw8exOWXX66fN4zE07Zt2+BwOCCKIhRFgaqqcLvd+tPQbrcbgiAgk8nA6XTq2+VyOUiShFwuh2uvvfa8nt544w39Ddf8orTpdBoulwtOp1N/mtjlculPceef8JdlGZIkweFwQJZlCIKgb6coyqBYB25n1JMsy/p2qVQKyWQSF1xwAVRVhaZpg7YbiadsNjtou/N5crlciEajcLvd+rHeqKcTJ05g+fLlSCQSmDBhAqLRKPr6+iDLMioqKuBwONDX1wdRFOHz+fQLmHfeeSeSySSy2az+5kQymYTL5YLf70cgEEBnZyd8Ph8SiQQURUFlZaX+pr4kSfB4PIjFYhAEAcFgEGvWrMH48eMhyzJOnjyJlStX4tSpU3A6nYjH43A4HAgEAvobdE888QRqamrO8nTs2DH85Cc/wcGDB/XfX+l0epCnRx55BB/5yEf0J74XLlyIYDB4Tk9erxcPPfSQ/hux2LWXyWQgiqJeU2bXnhFPA/eT/AwWpegplUohk8kgGAwim81ykad8XPl9y8zac7lciMfjcLvdkCQJTqcT06ZNY3LM9Xg8CIfDuOCCCyBJkuFjrtfrxfHjxxEMBuH1eg2fEx47dqxoa4SUxI0Qp9M56P9rmgZBEEatIwiC/loSYQ/KfbH0SCSCxsZGfP/739ebY6nCmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu4Umg8Wi6UPt5DuaMdIp9NoaWnBtGnT9AuDxcTqeMwYL79QeCgUQkNDAx544IHzTgWzefNmADjv4uIj1RpKO78Y+Ycffoj333//vBrnWrx8tJ+lxdLNhbf9tlB49GFlTEONxWqxdN7PwYp5LbckboQ4HA4IgjDkDZDRhC8Igv46FWEPyv1GCEEQBEEQBEEQBME/PN4IIdgz0psAeUZyI6RQRntz4lw3Jkb7WboRQhCFwepGCO8U81quaMkoDMjf8CiB+zYEQRAEQRAEQRAEQRAEQRAEQXBCSSyWnp/zzugfehuEsBvRaBQ/+clPEI1Gix2KYXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKHTvlI51O45VXXkE6nS52KACsj8fM8YLBIH784x/r8/YXWyubzRasYeSzBHt4228LhUcfVsZk5lh2OgdjTUncCCEIYmi8Xi/mzZunLzxWyvDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO3bKh8vlwsSJE+FyuYodCgDr4zFzvGQyiWeffVZf1LjYWk6ns2ANI58l2MPbflsoPPqwMiYzx7LTORhrSmZqLIIgzibfOO0Ab16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljp3w4nU6MHTu22GHoWB2PmeNls1kcPHiQGy2Hw1GwhpHPEuzhbb8tFB59WBmTmWPZ6RyMNfRGCEGUMCyfMik2vHmxOh4zx+PtaSQjGrzVSbljl3zw5oP6j3l61H/sg53ywZsX6kHmaRWqwVuNlDt2ykf+Ans2my12KACsj8fM8Xh7I01RlII1jHyWYA9v+22h8OjDypjMHMtO52CsoRshBEEQBEEQBEEQBEEQBEEQBEHYFkHTNK3YQRBEoezfvx9XXnml/v/ffvttfOITnyhiRARBEARBEARBEAQxmJ07dxrWqK+vN30MwhjhcBgLFy4c8fabN28GgFF9ZjTaNTU1I45r4PYDGe1nR/odnGs8gihXhuvxdqGY13JL9o2QRCKB3bt3Y+vWrXjyySfx+OOPj+gPQdgJHl8lLBTevNjptWyW2iy0jGjwVifljl3ywZsP6j/m6VH/sQ92ygdvXqgHmadVqAZvNVLu2Ckfqqri9OnTUFW12KEAsD4eM8djuRAyC61cLlewhpHPEuzhbb8tFB59WBmTmWPZ6RyMNSV3I+Spp57CjTfeiFAohM985jP4yle+gsWLF+Nv//Zvh/2zdOnSYodPEEzhaZ49o/DmhebHNk+L5ui3D3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ4WrRFiD+yUD54uTgH2uhHL2xohqqoWrGHkswR7eNtvC4VHH7RGiDl6PB03S2ZqrFQqha9//et4/vnnAQDnC1sQhCH/XRAEru40EsahqbEIgiAIgiAIgiAI3qGpscoDq6fGmjRpEg4cOHBObZoaiyBKB5oay3xES0ZhwN/93d/hD3/4AwDA4/Fg1qxZ+OCDD3Dw4EEIgoDbb78d8XgcR48exb59+5DNZiEIAiorK/GVr3wFgiAU2QFBEARBEARBEARBEARBGGfjxo2QJMmU9UUIgiDsSElMjdXS0oKnn34agiDgYx/7GA4cOIA//OEPuOWWW/RtNmzYgC1btuCNN95AV1cXfvazn8Hn86Gvrw+nTp3C//7v/2LDhg1FdEEQ7IlEIrj33nsRiUSKHYphePNidTxmjsdSm4WWEQ3e6qTcsUs+ePNB/cc8Peo/9sFO+eDNC/Ug87QK1eCtRsodO+UjnU5j165dSKfTxQ4FgPXxmDleKBTCPffcg1AoZJqWJEkj1shmswXHY+SzBHt4228LhUcfVsZk5lh2OgdjTUncCNm4caP+3+vXr8cll1xy3u0DgQD+8R//Ea2trRg/fjz+7//+D3/7t39rdpgEYTk+nw+LFy+Gz+crdiiG4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3ipWPMWPGMNeUJAnXXHPNqC6om4nV8Zg5XiKRwGOPPYZEIsGFltPpLFjDyGcJ9vC23xYKjz6sjMnMsex0DsaakrgR8sorrwAA6urqMGPGjBF/7mMf+xg2btwITdPwu9/9Tp9aiyDsgiiKqK2thSiWzCx354Q3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3ClGPvJjssbhcCAUCsHh4OPSkNXxmDmeoig4cuQIFEXhQsvhcBSsYeSzBHt4228LhUcfVsZk5lh2OgdjDT/Vdh6OHz8OQRAwderUQX8/cN0PWZaH/Owtt9yiL7jy5JNPmhckQRSBvr4+PP300+jr6yt2KIbhzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKXesyscnPvEJfPSjH8Wll16Ka6+9Fn6/n/kYsizj7bffPuf1FKuxOh4zx6usrMSCBQtQWVnJhZaiKAVrGPkswR7e9ttC4dGHlTGZOZadzsFYUxI3QmKxGICzXwWtqKg4a5uhuPbaa6FpGt58801zAiSIIsHjHfRC4c2LnZ5GYqnNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5Y5V+aiursbHP/5xXHLJJfB6vaaMIQgCPB7PoIdMi4nV8Zg5Xi6XQyQSQS6X40JLEISCNYx8lmAPb/ttofDow8qYzBzLTudgrBE0TdOKHcRwhEIhxONxLF26FA8//LD+9//f//f/4V//9V8hCAJef/11XHfddUN+/vbbb8eTTz6JyspKxONxq8ImLGD//v248sor9f//9ttv628AEQRBEARBEARBEAQP7Ny5c1Tb19fXmz4GwZ5wOIyFCxeOePvNmzcDwKg+M9LPbt68GTU1NSOOa+D2AxntZ0f6HZxrPIIoVwrp+6VIMa/lFv9WzAi46KKLAADd3d2D/v7jH/+4/t+vvfbaOT/f0dFhTmAEUWRkWcaePXu4epWwUHjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKHTvlQ1VVhMNhqKpa7FAAWB+PmeNJkoQpU6YwWQiZhVYulytYw8hnCfbwtt8WCo8+rIzJzLHsdA7GmpK4EXLVVVdB0zS88847g/7+hhtu0F8h+uUvfznkwk3btm3DW2+9BUEQcNlll1kSL0FYRTqdxs6dO5FOp4sdimF482J1PGaOx1KbhZYRDd7qpNyxSz5480H9xzw96j/2wU754M0L9SDztArV4K1Gyh075YPlgt4ssDoeM8fzeDyor6+Hx+PhQktV1YI1RvPZdDqNVatWFRIiMUJ4228LhUcfVsZk5lh2OgdjTUlMjfXQQw9h+fLlcDgcOHXqFKqqqvR/mzlzJv785z9DEATMmTMH//mf/4krr7wSyWQSzz33HH7wgx+gu7sbgiDgn//5n/Gf//mfRXRCsIamxiIIgiAIgiAIgiB4h6bGKg/KfWqsVatWYceOHSMJn6bGIogzoKmxzKck3gj5whe+AEEQoGkafv/73w/6t5/85Cf6WyEvvvgirr/+eng8HlRVVWHJkiXo6ekBAIwdOxYNDQ1Wh04QpqJpGtLpNErgfuaw8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqHpmlQFIUbL1bHY+Z4LBdCZqGlaVrBGiP9rCzL2L17d6EhEiOEt/22UHj0YWVMZo5lp3Mw1pTEjZCLL74YP/jBD/D1r38dXV1dg/7txhtvxMMPPwyn0wlN04b8U11dja1bt2Ls2LFFckAQ5hCNRvHTn/4U0Wi02KEYhjcvVsdj5ngstVloGdHgrU7KHbvkgzcf1H/M06P+Yx/slA/evFAPMk+rUA3eaqTcsSIfLpfLNO2BZDIZ7N69G5lMxpLxhsPqeMwcLxgM4sc//jGCwSAXWoqiFKwx0s/29PRwsQaA3eFtvy0UHn1YGZOZY9npHIw1JTE11kg4cOAA7r//fmzfvh3Hjx+Hw+HAZZddhrlz56KhoQHV1dXFDpEwgXKfGktVVXR1daG6uhpOp7PY4RiCNy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNwpNB+jmbaqrq4OF1100ahjG+3UWLlcDslkEl6vFw5H8Z+TtToeM8bLTyPldDpRXV2Nrq6u8y6GPJKpsc6lNZqpsU6cOIEf/OAH543nXFNVjfSzw/kY6XjE+eFtvy0UHn1YGdNQY7GaGov3c7BiXssVLRnFAiZNmoRf/vKXxQ6DICzF6XTa5ocDb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljdj6qq6tx4YUXmqY/EIfDAZ/PZ8lYI8HqeMwcT1VVhMNhbrQEQShYw8hnCfbwtt8WCo8+rIzJzLHsdA7GGj5uuREEURCJRAKPPfYYEolEsUMxDG9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81Ui5Y0Y+brrpJlx55ZX45Cc/icmTJ1v2dLQsy9izZw830xlZHY+Z4/l8PixZsoTJhU4WWoqiFKxh5LMEe3jbbwuFRx9WxmTmWHY6B2ONbd4IIYhyRBRF1NbWQhRLf1fmzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKXfMyIckSUVZ09ThcCAUCnEzLY3V8Zg5nqIoOHLkCBRF4UJLEISCNYx8lmAPb/ttofDow8qYzBzLTudgrCnJNULS6TRefPFFvPLKK/jwww/R29sLVVXxxz/+cdB2mqYhlUoB6F9szKoFxwjrKPc1QgiCIAiCIAiCIAj+Od/6HazmhR/tGiEEe/JrhIyUQtbWGOlnB67BMZK4zrVmx0g/e75YRjMeQZQrrI4FvFPMa7n83HYbIf/zP/+Diy++GF/96ldx//33Y8uWLXj55ZeHPOD39PSguroafr8fM2fOtD5YgjCZTCaD5uZmZDKZYodiGN68WB2PmeOx1GahZUSDtzopd+ySD958UP8xT4/6j32wUz5480I9yDytQjV4q5Fyh+d8CIIwqu0VRUFnZyc3T/pbHY+Z47ndbkyfPh1ut5sLLVVVC9YYyWfD4TCtI2IRvO23hcKjDytjMnMsO52DsaZkboRks1n89V//NX70ox+hu7sbmqbpf87FmDFjsHjxYmiahpaWFrz33nsWRkwQ5sPjnIqFwpsXO81Py1KbhZYRDd7qpNyxSz5480H9xzw96j/2wU754M0L9SDztArV4K1Gyh2e83HJJZeMavv8ItyqqpoU0eiwOh4zx5MkCVOmTIEkSVxoaZpWsMZIPnvXXXfhrrvuKjg+YuTwtt8WCo8+rIzJzLHsdA7GmpKZGutb3/oW1q9fDwDweDxYvHgxbr75Zjz11FPYunUrBEEYsnheffVVfOpTn4IgCLj//vvxve99z+rQCROhqbEIgiAIgiAIgiAI3rFiaqxcLof9+/eju7ubiR4xesp1aqxCoKmxCGIwNDWW+ZTEGyFvvvkmNmzYAEEQMGHCBLz11ltYu3Ytvva1r2HChAnn/exNN92EYDAIAPjzn/9sRbgEYRm5XA6RSAS5XK7YoRiGNy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNzhOR8OhwNXXnklbrjhBjidzmG31zQN6XT6vDNtWInV8Zg5HsuFkFloaZpWsIaRzxLs4W2/LRQefVgZk5lj2ekcjDUl0cU2bNigF8YTTzyBiRMnjurzU6ZMgaZpOHDggBnhEUTRiMViaGxsRCwWK3YohuHNi9XxmDkeS20WWkY0eKuTcscu+eDNB/Uf8/So/9gHO+WDNy/Ug8zTKlSDtxopd3jPhyAI8Hq9qKqqGnbbTCaDlpYWLuZtB6yPx8zxAoEAGhoaEAgEuNBSFKVgDSOfJdjD235bKDz6sDImM8ey0zkYa0piaqxPfOITOHDgAK666irs3bt30L/9wz/8Ax588MFzTo0FALfddhs2bdqEYDCI3t5eK0ImLKLcp8bK5XKIxWIIBAIl/3QGb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLlTaD6smBprIPv370dXV9d5t9E0DZlMBm63e9QLrZuB1fGYMV5+GimHw4FAIIBYLHbep6BHMjXWubRGMzXWiRMnsHz58vPGs3nzZlRVVaGnp0f/u6qqKnR3dw/72UKgqbEKg7f9tlB49GFlTEONxXKaRJ7PwYp5LVe0ZBSDHD9+HIIgYOrUqQV93ufzAQD6+vpYhkUQRSf/iqwd4M2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil37JQPQRDg8XiKHYaO1fGYOV5+KhhetARBGFZj1apVOHz48KAFjSVJQl1dHTMvhHF4228LhUcfVsZk5lh2OgdjTUk8TpJOpwGg4AJJJBIA/t8NEYKwC/F4HA899BDi8XixQzEMb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljp3xkMhm0trZyMzWN1fGYOZ7f78edd94Jv9/PhZaiKMNqHDhwYNBNEACQZRmdnZ3MvBDG4W2/LRQefVgZk5lj2ekcjDUlcSOkuroaQP8rhoVw8ODBQTpEcdizZw9cLhcEQeDmtbdSR5IkTJkyBZIkFTsUw/Dmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO3bKh9PpRE1NzYgWVrcCq+MxY7yqqipIkgRZlrFnz56zbiwUAgstQRAK1mDphTAOb/ttofDow8qYzBzLTudgrCmJNUJmz56Nl19+GdXV1Th+/PigIhlujZAPP/wQl112GXK5HBYuXIgnn3zSytCJ/z+KouCGG25AW1ub/ncsSq/c1wghCIIgCIIgCIIg+IfHNUIIc1i1ahV27Ngxom1HskZIoZ8duAZHfu0SnqA1QghiMGYcC3ikmNdyS+KNkDlz5gAATp8+jccff3xUn/33f/93/QbJ5z73OeaxESPjZz/7Gdra2vDlL3+52KHYinQ6jZ07d+rTx5UyvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+WOnfKhKAqOHDkCRVGKHQoA6+Mxa7wVK1bgr/7qr1BfX89kDQCPx2NYS1XVgjVYjE+wg7f9tlB49GFlTGaOZadzMNaUxI2QJUuWIBgMAgB+8IMfoLW1dUSfW7VqFR5//HEIgoCPfvSjWLBggZlhEufg4MGDuPfee3HDDTfg7//+74sdjq3g8cBRKLx5scuPcNbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu7YKR/5RbhzuVyxQwFgfTxmjefxePDDH/4Qc+bMgSiKhvVEUURtba0hLU3TCtZgMT7BDt7220Lh0YeVMZk5lp3OwVhTElNjAcCDDz6If/iHf4AgCJAkCd/97nexcOFCrFu3Do888ggEQUBvby9OnDiB3bt3Y+3atXjrrbegaRoEQcCvfvUrzJ8/v9g2yo5cLodPf/rTeP311/Hmm2+ip6cHs2bNAkBTYxEEQRAEQRAEQRDlAU2NVX6MZDoqmhqLpsYiiDw0NZb5lMQbIQDw3e9+F9/73vegaRpkWcb999+PG264AY8++iiA/ovqF1xwASZPnow77rhDvwkC9E+PVeybIKqqYt++fXj00UexbNkyXH/99ZAkSV843Eixy7KMJ554Al/4whdwySWXwOPxYPz48bjpppvwP//zPzh9+jQ7I6PkF7/4BV599VX80z/9E66++uqixWFXVFVFOBwecn2cUoM3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3CmVfIzk6f1cLodEIsHNE9lWx2PmeLlcDul0mslCyCwWVdY0rWANHhe1Lmd4228LhUcfVsZk5lh2OgdjTcncCAGABx54AI888giCwSA0TdNvdORvJuT/Lv8nFAphw4YNuOeee4oa97PPPotAIIBrrrkG3/rWt/DQQw/hzTffRDabNax98OBBTJs2DbfffjteeOEF/OUvf0Emk0E4HMZrr72GH/7wh/jEJz6B559/noGT0XHkyBH8y7/8C+rq6rBy5UrLxy8H4vE41q1bh3g8XuxQDMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7pRKPkbypL0sy3jzzTchy7IFEQ2P1fGYOZ4syzh69Cj8fr9hLb/fjzvvvNOQlqIoBWuwGJ9gB2/7baHw6MPKmMwcy07nYKwpmamxBpJIJLB+/Xo8//zzeO211wZ9kW63GzfccAP+5m/+Bt/5zncQCASKGGk/jz32GP72b//2vNvMnDnzvK/KDkVnZyemTZuG48ePA+i/IfSZz3wGdXV16Orqwssvv4xUKgUAcLlcePHFF3HzzTcX5KEQPvvZz+Lll1/Gyy+/jFtuuQVA/+vANDUWOzRNQyaTgdvthiAIxQ7HELx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlTqH5sHpqLE3T8MYbbyCZTJ53G1VV4XQ6uagtq+MxczxN03D8+HHcdttt5732MZKpsQRBgNvtRiaTGaQ1mqmxTpw4gaVLl56lMRLONb5RaGqswuBtvy0UHn1YGdNQY7E6FvB+DlbMa7kludKRz+fD9773PXzve98DAPT19SEajaKyslJfVJ1Hxo0bh09+8pP6n//7v/9DY2NjwXrf/OY39Zsgl1xyCbZu3YprrrlG//fTp09jwYIF+OMf/4hsNouvfe1rOHz4MEKhkFErw/Loo4/i5ZdfxuLFi/WbIAR7BEGAx+MpdhhM4M2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3SiUfgiDgmmuuwaFDh9Db2zvk9CuCIHC1ALbV8Zg5niAIcDqdTG4caJqGdDptOJ5CNViMT7CDt/22UHj0YWVMZvcfu5yDsaakpsY6F5WVlfjoRz/K7U2QOXPm4OjRowiHw2hqasLKlSvx+c9/3tANieeffx5//vOfAQCSJKGpqWnQTRAAGDt2LLZu3YrLLrsMANDT04PVq1cPqffjH/9Yn2JstH8URRmkdfz4cfzjP/4jqqur8fOf/7xgj8TwxGIxPPDAA4jFYsUOxTC8ebE6HjPHY6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5U4p5cPtduOqq67Cpz/9aVRVVZ3175lMBs3NzchkMkWI7mysjsfM8TKZDA4fPsxklpJAIICGhgZDWtlstmANFuMT7OBtvy0UHn1YGZOZY9npHIw1trgRwjs1NTW4+OKLmWo++OCD+n8vXrwYV1111ZDbVVZWYtWqVfr/X7du3Vk3LvLbjRkzpqA/Z74W9Q//8A+IRqO47777MGbMGEaOiaHweDyor6/n5s6qEXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKnVLMx7mmMhFFEbW1tdw8lW11PGaOJ4oixo4dy+RNinQ6jZ07d45aa9WqVfpnnE5nQRpGxifMgbf9tlB49GFlTGaOZadzMNaU5BohduGee+7BvffeC2B0a4QkEgmMHTtWv2v46quv4sYbbzzn9ul0GtXV1UgkEgCAP/7xj6auFVJbW4ujR49i3LhxZ/2bLMvo7e0FAP3f/+M//gN33HFHQWOV+xohBEEQBEEQBEEQBP9YvUbImezbtw89PT2mj0P8P8Lh8HnX/gBGtkaIkc/OmjULK1euHFEsVkNrhBDEYKw4FvBAMa/l0hshJcirr76q3wSprKzEJz/5yfNu7/F4Bt0o2b59u6nx5Tl58uRZf/I3QQb+e19fnyXx2JFUKoUXX3wRqVSq2KEYhjcvVsdj5ngstVloGdHgrU7KHbvkgzcf1H/M06P+Yx/slA/evFAPMk+rUA3eaqTcsVM+stks3nvvPWSz2WKHAsD6eMwcL5vN4tSpU6ioqDCsVVFRgTlz5hSktXv3bsiyDFVVC9YwMj7BHt7220Lh0YeVMZk5lp3OwVjDz/tHIySVSuEPf/gDXn/9dXzwwQeIxWIjLhpBEPDHP/7R5AjN58CBA/p/X3XVVSN6jeraa6/FSy+9dNbnzeDIkSPn/LedO3di1qxZAMBk0bByJ5fLIRKJDLnwXanBmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu7YKR/5RbB5OTe3Oh4zx9M0DdlsFg6H8eePHQ4HQqHQkFpVVVWQJAmyLA/5WVmW0dPTA03TzqlhZHzCenjbbwuFRx9WxmTmWHY6B2NNyUyNpWkafvazn+G//uu/9CmeRvt5QRCgqqoJ0RVGoVNjLV++HGvXrgUAfOMb38DTTz897GfWrFmD7373uwCAyZMnY//+/YUFbRDWN0JoaiyCIAiCIAiCIAiCd2hqrPLDiqmxampqsGrVKuzYscOUMcyEpsYiiMHQ1FjmUzK3c2+99Vb88z//M+LxODRNG/UfO9Hd3a3/91DrcAzFwIML/fixD4qi4MiRI1AUpdihGIY3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3LFTPnh6Shew3xtpyWSSyULIwy2qvGLFCkyaNGnYeApdmJnHRa3LGd7220Lh0YeVMZk5lp3OwVhTEjdCnnrqKf0ONgBcccUV+Pd//3f86le/wksvvYQdO3aM6I9Va2OYzcA3YkY6R+PA7Qp5o4Z3PB4PfD4fAEBVVUQiEf0GWCwW018TTaVS+pokiqIgEonoGtFoVJ9mLZlMIplMAuifty8ajerbRSIRfeft6+vT57iTZRmxWAxA/9sukUhEfwMpkUggnU4DADKZDOLxOICzG188HtfXf0mn03quzuUpkUhg48aNOHXqVMl7OnHiBDZu3IhEIsFFnrq7u/V4jOYJGL72ent7sXHjRnR1dTH3lPfS3d3NRZ6OHz+ua4zWU77m8zeEWe5PI8lTqexPVnnq6enRc1nKnk6dOqX74CFPkUhEj4dFnqzsEWd6yn+3kUiESe2dPn0aGzduRE9PT0F5Gth/yvmYa4e+F41GsXHjRv1zpezp5MmT2LhxI6LRKBd5GrifWFF7+X3r+PHjzD0N1OYhT4X+3sv7OHHihJ4n6hHF85TPR/5zI/Uky7L+PSiKosed384KT9lsVv9vVVURj8exd+9eyLKMdDqtxyDL8qDtBsZ65nbn8jRwypdMJjNou3zcuVxu0HYD48lms2dtlyedTuvf65meztzufJ5kWcbevXsRj8eZe8pkMvjwww9RU1MDSZIA9F+XqaysBNB/cyEUCumxBoNBuFwuAIDX64XX6wUAuFwujB8/HkuWLIHP50MoFNJvSCiKgmw2C4/Hg3/7t39DIBAA0D8tfCgUgtPpHBTfkiVLUFVVBb/fD+DsKa/8fj/cbjeAwddYAoGAPn7+/xv1FAwGR5yngd+/WbWXyWQG1ZTZtWfEUyKR0PeTUvY0cH/nJU/JZBJ79+5FKpUyvfYymYzef/Kxsjrm5s8nT506xeSYG4vFsHHjRoTDYabnhMWgJG6EPPLII/p/33XXXdi/fz/uvfdefO1rX8Mtt9yCmTNnjviPHRi40+YPPsORP5gBKOriNPX19aa8pTN9+nTMnz8fANDV1YXGxkZ951y/fj06OjoAALt27UJTUxMAoLOzE42NjbrG2rVrcfjwYQDAtm3bsG3bNgDA4cOH9anIAKCxsRGdnZ0AgKamJuzatQsA0NHRgfXr1wPobxyNjY3o6uoCAGzZsgXNzc0AgLa2NmzatAlAf3NobGzUm9GmTZvQ1tYGAGhubsaWLVvO6ykUCmHatGn405/+VPKennnmGXzpS19CKBTiIk8ffPABxo0bh1AoZDhPwPC1193djbvvvhstLS3MPR04cAB33303PvjgAy7y9NRTT+Huu+9GKBQatadQKIRLLrlEX+uI5f40kjyVyv5klafjx48jGAwiFAqVtKc//elPmDZtGkKhEBd5yv+gzJ9Iml17LHvEmZ7+9Kc/4e6770YikWBSe3v27MHdd9+N48ePF5SnDRs24Pvf/z5CoVBZH3Pt0PfyJ4L5h31K2dNLL72Eu+++G9lslos8bdiwAd/5zncQCoUsqb1QKITFixdjw4YNzD2FQiH86Ec/woYNG7jIU6G/90KhEL70pS/hmWee0fNEPaJ4nvLH5/zxeqSeOjo69O8hHA6jvb190HZWeDp8+LD+3729vWhvb8fMmTPh8XjQ0tKix3Do0CEcPXpUHzcfj6qqaGlp0S/Anc9TS0uLHmt7ezvC4bAeXz7uZDKJlpYW/WLcgQMHcMUVV8Dj8eDo0aM4dOiQnveWlhbdU2trK3p7e4f01Nraqm83nCePx4MZM2Zgz549zD25XC5cccUVmD9/PiZPngygf0r0uXPnAgAmTJiAhoYGPdZly5ahrq4OADB79mzMnj0bAFBXV4dFixbhnnvuQSQSQUNDAyZMmAAAOHnypO4pHo9j6dKlAPqv/zQ0NKC6uhpA/2/2RCKBe+65B5dddhkWLVoEoP+GRkNDg34DZdGiRZg6dSqAwddY8ted8teili5datjTsmXLRpwnwPzaa2tr0/dVK2rPiKdDhw6hrq4OHo+npD3t2bMH06ZNg8fj4SZP4XAYM2fORDweN732XC4XZs6ciQMHDuieWB1zE4kE7r77bvzpT39icsx1OBy4++678fvf/57pOWExKIk1QsaOHYve3l5ceumlePfddyEIQrFDYkKha4T89V//NZ5//nkAwI9+9CP85Cc/GfYzL7zwAr7whS8AAHw+n353r9TJzyvn8XggiiKam5sxceJExONxBINBCIKAWCwGj8cDSZKQSqWQy+VQWVkJRVGQSCT0H7LRaBRerxcul0tvcF6vF9lsFslkUn9iIRKJwOfzQRRF9PX1weFwoKKiQn+KJhAIQNM0RKNR+P1+OJ1OJBIJiKIIj8ejP3ni9/uRy+UQi8UQCATgcDgQj8chSRLcbjfS6TQURYHP59Of1iFP5Ik8kSfyRJ7IE3kiT+SJPJEn8lR6nrZt2waHwwFRFKEoClRVhdvthqZpmDp1qumeDhw4gJMnTwLofyJfVVX9bQKg/yK3JElwOByQZRmCIOjbKYqix5rJZAZtdy5PmUwGbrcbgiAgk8nA6XTq2+VyOUiShFwuB1mWB20niiKcTiey2Sw0TRu03cBYXS6Xvh2vnk6ePInvfOc7SKfTkGUZFRUVcDgc6OvrgyiK8Pl8+gXMO++8E8lkEtlsVn9zIplMwuVywev16k98h0IhJBIJKIqCJ554AuPGjYPL5cLx48exbNkyxGIxCIKAYDCoP2n+xBNPQBAE3HrrrXC73ZAkCfF4HA6HA4FAALFYDLlcDn6/X386P3+NJZFIwOl0wu/3IxqNQtM0BAKB83rKP/EdDAbP6+mhhx5CTU1N0fNkx9ojT6Xpadq0aWVxzD127FjR1ggpiRshPp8PqVQKt99++6AnhUqdQm+EfOMb38Cvf/1rAMD3vve9Ed1N++1vf4uvfvWrAPrXC8m/Vl3qlPti6dFoFGvXrsWyZcsGvVpaivDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO4Xmg8fF0tPpNFpbW3H99dfrFwaLidXxmDleOp3GG2+8gZ///OeDpq05k5EsZB4MBrFs2TKsXbt2kNbAxcbPtzD75s2bkc1m0dHRcZbGSDjX+EahxdILg7f9tlB49GFlTEONxepYwPs5GC2WPgwXX3wxAOjzFpY7Y8aM0f87/0THcORfxwKAqqoq5jERxcHr9WLevHn60xWlDG9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81Ui5Y6d8uFwuTJw4UV/HodhYHY+Z47lcLtTU1OhPbhshmUzi2WefNaTldDoL1mAxPsEO3vbbQuHRh5UxmTmWnc7BWCMWO4CRMG3aNBw8eFCfE77cueKKK/T/zs/JNxx/+ctf9P+eOHEi85iI4pBvnHaANy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNyxUz6cTifGjh1b7DB0rI7HzPHy00nlp+UxQjabxcGDBw1pOByOgjVYjE+wg7f9tlB49GFlTGaOZadzMNaUxCsWf//3fw8AeOONN/D2228XOZriM2nSJP2/29vboSjKsJ956623hvw8UdrY6ckM3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkXLHTvnIX+BmcbGeBVbHY+Z42WwWJ06c4OaNNEVR6K1Ym8DbflsoPPqwMiYzx7LTORhrSuJGyHXXXYc777wTqqpi4cKF6O7uLnZIReWmm26C2+0GAPT19aG1tfW822cyGTQ3N+v//+abbzY1PoIgCIIgCIIgCIIgCIIgCILghZK4EQIAv/jFL3DHHXfoC6r84he/sM2C36PF5/Phlltu0f//Y489dt7tf/vb3yIejwPoXx/kM5/5jJnhFQWPxwOfzwcAUFUVkUgEmqYBAGKxGGRZBgCkUin09fUB6H8iIhKJ6BrRaFS/E5tMJvU7ldlsdtCCYJFIRH8Lp6+vD6lUCgAgyzJisRgAQNM0RCIRqKoKAEgkEkin0wD6b0zl85HL5RCJRJDL5QAA8XgcmUwGQP/CSYlE4ryevF4vPve5z+l/X8qeFEXBF77wBXi9Xi7y5HQ6ccstt8Dr9RrOEzB87blcLsybN0/3xdKTw+HAvHnz4HQ6uchTNpvVnygarSev14u/+qu/0teMYrk/jSRPpbI/WeVJFEXcfPPN8Hq9Je1J0zR87nOfg9fr5SJPkiShvr5ef+rO7Npj2SPO9KRpGubNmwdJkpjUniAImDdvHkRRLChPsizji1/8Irxeb1kfc+3Q99xuN+rr61FRUVHynnK5HObNmwe3281FnmRZxty5c+H1ei2pPa/Xi7/5m7/R/56lJ6/Xiy996UuQZZmLPBX6e8/r9eILX/jCoOMW9YjiefJ6vaivr4ckSaPyJMuy/j0oiqLHnd/OCk/53+J5PVVV9Tnq83Wej3XgdgNjPXO7c3lKp9N6rJlMZtB2+bhzudyg7XK5HD72sY/B5XIhm82etV2edDqtf69nejpzu/N5crlcuOKKK6CqKnNPoihi/PjxEEVRr5WKigpUVlYC6P8dHQqF9FiDwaC+VoDX69V/B7pcLrhcLv1p6lAoBFEU9XHznnK5HAKBAABAEASEQiE4nU59O0EQ8Oyzz0JVVfj9fgD902WFQiH93Mrv9+sP3Q68xpLJZLBz5069zgOBgGFPAxdc5qH2MpnMoJoyu/aMeMrlcrj88svhcrlK2pOqqrjiiivgcrm4yRPQv5yAw+EwvfZEUcTEiRORy+X0WFkdcyVJwrx586BpGpNjrsfjwbx58wblmsU5YTEomRshDocD69atw3333YeTJ0/i+9//PiZMmICqqipceumluOyyy4b9U1dXV2wbzFi+fLn+34899hj2798/5HbJZBIrV67U//+3v/1t/aBpJ6ZPn4758+cDALq6utDY2KjvnOvXr0dHRwcAYNeuXWhqagIAdHZ2orGxUddYu3YtDh8+DADYtm0btm3bBgA4fPgw1q5dq2/X2NiIzs5OAEBTUxN27doFAOjo6MD69esB9DeOxsZGdHV1AQC2bNmiv5XT1taGTZs2AehvDo2NjXoz2rRpE9ra2gAAzc3N2LJly3k9ZbNZ/O53v8Nzzz1nC09//OMfkc1muchTa2sr1q9fj2w2azhPwPC198477+DgwYN48cUXmXvavXs3Dh48iNbWVm7ylH8FdLSestksHn/8cezevRsA2/1pJHkqpf3JCk/t7e1Yt24dstlsSXt67rnn8Lvf/Q7ZbJaLPB05cgSNjY36D12za491jxjo6bnnnsPBgwd1T0by1NTUhB07duDgwYNob28vOE9tbW3IZrNlf8wt9b534sQJNDY26idgpezpN7/5DQ4ePKh74iFPr7/+OrLZrCW1l81m8eqrr5riKZvNor29nZs8Ffp7L5vN4o9//CP1CE485X/DHjlyZFSeOjo69O8hHA6jvb190HZWeDp8+LD+3729vWhtbcXp06ehqipaWlr0GA4dOqSvR9rV1aXHk98ufwHufJ5aWlr0WNvb2xEOh/X48nEnk0m0tLToF+Pa2trw/vvvQ1VVHD16FIcOHdLz3tLSontqbW1Fb2/vOT3lGc6Tqqo4deqUKZ5kWUY8HsfSpUsxefJkAMDMmTMxd+5cAMCECRPQ0NCgx7ps2TL9mtXs2bMxe/ZsAEBdXR2WLVum37BqaGjAhAkTAAAnT57UPeXHAvofFmhoaEB1dTUA4Pjx4+jp6cHEiRNx3XXXYdGiRQD6b2g0NDToN1AWLVqEqVOnAhh8jWX8+PFoaGjQb3iw8jTSPAHW1F5+X7Wi9ox6Onz4MFRVLXlPJ06cgKqq3OTpyJEjOH36NE6ePGl67cmyjNOnTw/yxOqYe+TIERw8eBDPPfcck2Nud3c3Dh48iCeffJLpOWExELT87RrOyWaz+N73vof169dDURQMDFsQhGE/r2kaBEHQdx4euOeee3DvvfcC6D947Ny5c1Sf/8xnPoM///nPAIDa2lps3boVV199tf7v3d3dWLhwIV566SUA/W+DHD58eNAd+lIn/4aQx+OBKIpobm7GxIkTEY/HEQwGIQgCYrEYPB4PJElCKpVCLpdDZWUlFEVBIpHQv49oNAqv1wuXy6U3OK/Xi2w2i2QyqT+xEIlE4PP5IIoi+vr64HA4UFFRAVmWkU6nEQgEoGkaotEo/H4/nE4nEokERFGEx+NBJpOBLMvw+/3I5XKIxWIIBAJwOByIx+OQJAlutxvpdBqKosDn80FV1SE9pVIprFmzBkuWLMH48eNL2lNnZyeeeOIJLF++HJIkFT1Pp06dwqOPPorly5fD7/cbytNIai+bzeKRRx7BkiVLEAgEmHrq6+vDhg0bsHTpUlRUVBQ9T+FwGJs2bcKyZcugadqoPCUSCaxZswZLly7FuHHjmO5PduwRZnvq6urCI488guXLlyMQCJSspxMnTuCxxx7D8uXLUVFRUfQ8dXd345e//CWWL1+OYDBoeu2x7BFneopEIti4cSPuuOMOOJ1Ow7WXSCSwYcMG/N3f/R3cbveo89TZ2YlNmzZh+fLlcDgcZXvMtUPf6+npwbp167Bs2TKEQqGS9tTT04PHH38c3/72t+FwOIqepw8//FDfT5xOp+m1pygK1qxZg0WLFuHiiy9m6knTNF37wgsvLHqeCv29J8sy1qxZg9tuuw0TJkygHlFkT9FoFGvWrMG3v/1tjBkzZsSetm3bBofDAVEUoSgKVFWF2+2GpmmYOnWq6Z4OHDiAkydPAuh/Il9VVSQSCbS3t+P6668H0P9War7mBEHQt1MURY81k8kM2u5cnjKZDNxuNwRBQCaT0fuJoijI5XL6uYQsy/p20WgU+/btwyc/+Uk4nU5omjZoO4/HA6D/SWSXywWn06k/OJKPNZvNDtrufJ40TcMbb7yBq6++Gn6/n6knTdPQ2tqKdevWoaurC7Iso6KiAg6HA319fRBFET6fT7+AeeeddyKZTCKbzepvTiSTSbhcLowbNw633nor1q5dC0EQkEgkoCgKnnjiCYwbNw4ulwvHjx/HsmXLEIvFIAgCgsEg4vE4VFXFE088AUVR8M477+DRRx9FOp3G/4+99w+Torrz/d/VXf1jevrHoAyOisoGNyFIdFATJnGzEJNliQlZNkEDjokEf8CY3TDJvTcxu8/NjXtvNmpyn6QTI6NRwCioCUnUMaw7rhFUdEbAGX4Nig4BnIGGGZj+PdXVXdXfP+bbdWfGAWaqz6k+Xf15PQ/Pg1L1Pp/3fM751FSdqnMSiQQcDgeCwSDi8Th0XUcgEICqqshkMsYzlmQyiSlTpmD16tV48MEHEYvFEAwGoSjKGT0V3vgOhUJn9OTz+dDS0oK6urpz5smKvpfJZCDLstGnePe9YjzF43Hs3r0bH//4xyHLctl6isfjxniXJEmIPKmqiq6uLsydOxeyLHPte/l8Hrt27cLHPvYx+P1+OJ1OzJs3j8k1V9M0/PrXv8att96Kmpqaoq+5+XweDz30EL72ta9h6tSpRd8T9vX1Yc6cOSiwb98+XHHFFbCCspgI0TQNixcvxn/+538CAMyGXMqJkBtuuAHHjh0b9f8ikYjxi0h1dTUuv/zyD5y3ZcsWXHTRReNq9vb24hOf+ISxRJgkSZg/fz5mzpyJ/v5+/Nd//ZcxOGRZxgsvvDBqSS07UJgIKWDl4CEIgiAIgiAIgiCIiXC2Fx8XLFjAvf09e/bg9OnT3Nsh/h+RSATLly8/6zFPPvkkAJzzuDOdW1dXd862immDJyPjJwjCmmuBCJTyWW5ZrJH08MMP44UXXoAkScjn8/jc5z6H5cuX42Mf+ximTJlSFks9dXd3G5+NjUcqlcLu3bs/8P9HrpU7lunTp+PPf/4zli9fjq6uLuTzeWzduvUDv2DV1tZi/fr1tpsEIQiCIAiCIAiCIAiCIAiCIIhzURZ7hDz22GPG33/605+ira0N3/jGN3Dttddi5syZuOyyyyb8x27MmjULHR0deOyxx7Bo0SJccsklcLvdmDZtGhoaGnD//feju7sbX/jCF0odKsGBaDSKe+65p+SbDbFANC9Wx8OzPZbaLLSK0RCtn1Q6dsmHaD6o/vDTo/pjH+yUD9G8UA3ip2VWQ7Q+UunYKR+KomDbtm2jNg8uJVbHw7M9RVHwzjvvMFmavKamBj/84Q+L0spms6Y1WLRPsEO0cWsWEX1YGRPPtux0D8aaslgaKxAIIJ1OY/bs2cYmNAQB0NJYuVwOvb29mD59ell8GXU2RPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WO2XyIuDTW2D1XSo3V8fBsT9d1HD58GKtWrUIulzvjcRNZtkqWZUyfPh29vb2jtCazNJau6/jXf/3XD2hMhDO1Xyy0NJY5RBu3ZhHRh5UxjdcWq2uB6PdgtDTWBJk3b16pQyAIoZBlGTNmzCh1GEwQzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yofD4RDqLX+r4+HZnsPhgM/nYzJxkMvlcPjw4aLjMavBon2CHaKNW7OI6MPKmHi2Zad7MNaIMeV2Di6++GIAKNlG5wQhKqlUCk899RRSqVSpQyka0bxYHQ/P9lhqs9AqRkO0flLp2CUfovmg+sNPj+qPfbBTPkTzQjWIn5ZZDdH6SKVjp3yoqop9+/addW9SK7E6Hp7tqaqKvr4+VFdXF61VXV2NZcuWFaWVy+VMa7Bon2CHaOPWLCL6sDImnm3Z6R6MNWUxEXL99dcjn8+jq6ur1KEQhFAUZpBF+YywGETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3yIUkSvF4vJEkqdSgArI+HZ3uSJMHlckHX9aK1dF1HNBotSkuSJNMaLNon2CHauDWLiD6sjIlnW3a6B2NN6SOYAKtWrYLT6cSePXvw6quvljocQkC8Xi/8fj+A4S+HotEoCtvfxONxY4Z1aGjImIHM5XKjNuqJxWLIZrMAgHQ6jXQ6DWB4U7FYLGYcF41Gjc9bU6kUhoaGAAzP5sbjcQBAPp9HNBo1vmJKJpPGBkiZTAaJRALAB3+hSCQSyGQyAIY3Tkomk2f1VFVVhfnz5xvnl7OnbDaL66+/HlVVVULkyeFw4LrrrkNVVVXReQLO3fdkWcaiRYuQz+eZe5IkCYsWLYLD4RAiT6qqYtGiRaiqqpq0p6qqKvzN3/yN8csCy/E0kTyVy3iyypPT6cSnPvUpVFVVlbUnXdcxf/58VFVVCZEnl8uFhoYGVFVVMcmTlTVirCdd17Fo0SK4XC4mfQ8AFi1aBKfTaSpPmUwGCxcuRFVVVUVfc+1Q99xuNxoaGuD1esvek6ZpWLRoEdxutxB5ymQy+Lu/+ztUVVVZ0veqqqrwuc99zjifpaeqqir8/d//PTKZjBB5Mvv7XlVVFa6//nrjZ0I1orSeqqqq0NDQAJfLNSlPqqoaP4dcLmfEXTjOCk/ZbNb4u6Zp0DQNl19+OVwuFxRFMWJQVXXUcSNjHXvcmTwpimLEmslkRh1XiFvX9VHH6bqOv/qrv4LL5TLuG0YeV6AwJsfzNPa4s3lyuVyYOXMmNE1j7kmWZUybNg0ulwtutxvAcN8pfFUhy/KoZXFCoZDRp3w+H3w+HwAY57/wwgsYGhpCTU2NsUZ/LpczPOm6jmAwCGD4AWtNTQ2cTqdxHAC88MIL0HUdgUAAwAcfTgYCAXg8HgCjn7Goqor29nbjZxsMBov2FAqFJpynkT9/Xn1v5HXCir5XjCdd1zFjxgy4XK6y9qRpGmbOnAmXyyVMngDg8ssvh8Ph4N73ZFnG5ZdfDl3XjVhZXXNdLhcWLVoEXdeZXHM9Hg8WLVo0yi+Le8JSUBYTIVdddRV+9KMfIZ/PY9myZXj77bdLHRIhGA0NDVi6dCkAoL+/H+Fw2Bic69atQ3d3NwBg27ZtaG1tBQD09vYiHA4bGmvXrkVPTw8AoK2tDW1tbQCAnp4erF271jguHA6jt7cXANDa2opt27YBALq7u7Fu3ToAw4UjHA6jv78fALB582a0t7cDADo7O7Fx40YAw8UhHA4bxWjjxo3o7OwEALS3t2Pz5s1n9aSqKjZv3oxnn33WFp5eeOEFqKoqRJ527NiBRx55xLhYFJMn4Nx975133kFXVxdeeOEF5p62b9+Orq4u7NixQ5g8dXV1QVXVSXtSVRUbNmzA9u3bAbAdTxPJUzmNJys87dmzBy0tLVBVtaw9Pfvss9i8eTNUVRUiT3/5y18QDoeNXx559z3WNWKkp2effRZdXV2Gp2Ly1Nraij//+c/o6urCnj17TOepvb0dqqpW/DW33OvesWPHEA6HjRu1cvb0u9/9Dl1dXYYnEfL02muvGX2ed99TVRVbt27l4klVVezcuVOYPJn9fU9VVbzwwgtUIwTxVPgd9i9/+cukPHV3dxs/h0gkgr179446zgpPPT09xt8HBwexc+dORCIRaJqGjo4OI4aDBw/iyJEjRruFeArHFR7Anc1TR0eHEevevXsRiUSM+Apxp9NpdHR0GA/jOjs78d5770HTNBw5cgQHDx408t7R0WF42rlzJwYHB8/oqcC5PGmahmPHjnHxpKoqYrEYVq5cidmzZwMA5s+fj8WLFwMApk+fjubmZiPWpqYmzJw5EwCwcOFCLFy4EAAwc+ZMNDU1ob6+Hm63G83NzZg+fTrcbjdOnz5teEokEli5ciUAwOPxoLm5GbW1tQCGr5mnT59GfX09rr32WjQ2NgIYntBobm42JlAaGxsxd+5cAKOfsVx44YVobm42JkZYeZpongBr+l5hrFrR94r1dPDgQWiaVvaeent7oWmaMHk6fPgwIpEITpw4wb3vqaqKSCQyyhOra+5f/vIXdHV14dlnn2VyzR0YGEBXVxeeeOIJpveEpUDKF6ZryoCHH34Ya9asgcPhwOrVq/GVr3wFc+bMMYo2UXns378fc+bMgdfrhSzLaG9vx6xZs5BIJBAKhSBJEuLxOLxeL9xutzETWV1djVwuh2QyabyxEIvF4PP54HK5jALn8/mQzWaRTqeNNxai0Sj8fj9kWUYqlYLD4TDeIlYUBcFgEPl8HrFYDIFAAE6nE8lkErIsw+v1IpPJQFVVBAIB6LqOeDyOYDBovInrdrvh8XigKApyuRz8fj80TRvXk6IoeOSRR3DzzTejrq6urD319fXht7/9LW677TbjE+JS5qm/vx+PP/44br/9dvj9/qLyNJG+l8vl8Pjjj2P58uUIBAJMPaXTaWzatAmNjY3wer0lz9OJEyewefNmrFy5ErquT8pTKpXCI488gltuuQXTpk1jOp7sWCN4exoYGMBvfvMb3H777QgEAmXrKRKJYNOmTbj99tuN2lrKPJ0+fRobNmzA7bffjmAwyL3vsawRYz3FYjE89dRT+PrXvz5qQ0CznlKpFDZt2oRbbrkFbrd70nnq6+vD5s2bcdttt0GSpIq95tqh7g0ODmL9+vW47bbbEAqFytrT4OAgnn76adx6662QJKnkeert7TXGicPh4N73NE3Do48+iqVLl+KSSy5h6gmAoX3RRReVPE9mf9/LZrN49NFHcdNNN+Hiiy+mGlFiT/F4HI888ghWrFiB8847b8Ke2trajDGVy+WgaRo8Hg/y+Tzmzp3L3dOBAwdw4sQJAMNv5GuahlQqhe7ubsydOxf5fB5utxsOhwOqqhpLO2mahlwuZ8SayWRGHXcmT5lMBh6PB5IkIZPJwOl0Gsfpug632w1d16GqqnFcPB7H/v37cfXVV8PhcBgxFY4rfAWoKApcLhecTqfxhnQh1mw2O+q4s3kCgLfeeguzZ89GIBBg6gkAdu3ahQcffBADAwPG16UOhwOpVAqyLMPv9xsPMFevXo10Oo1sNmt8OZFOp+FyuTBt2jTceOONWLduHRwOB5LJJD796U/j7rvvNjwdO3YMTU1NiMfjRo1KJBLQNA2PP/44crkcdu/ejSeeeMJ449vhcCAYDCIejxtfihRecCo8Yyn0pZUrV+KRRx4xxp+iKGf0VHjjOxQKndGTz+dDS0sL6urqzpknK/peJpOBLMtGn+Ld94rxlEgksG/fPlx99dVwOp1l6ykej6O7uxtXX301AAiRp2w2i7179+LKK6+E0+nk2vcAoKurC7Nnz0Z1dTWcTifmzZvH5Jqr6zp+85vfYNmyZQiFQkVfcwFgw4YNuOmmm3D++ecXfU/Y19eHOXPmoMC+fftwxRVXwArKYiKk8DlfgXw+b2oNNUmSjIsdYQ8KEyEFrBw8BEEQBEEQBEEQBDERtm7desZ/W7BgAff29+zZg9OnT3Nvh/h/RCIRLF++/KzHPPnkkwBwzuMKuN1uXHfddfjud79rPMw9V1uTbcMqnnzySdTV1ZU6DIIQBiuuBSJQyme5siWtFMnYiY+Rfy+DeRyC4MbYGedyRjQvVsfDsz2W2iy0itEQrZ9UOnbJh2g+qP7w06P6Yx/slA/RvFAN4qdlVkO0PlLp2CkfhXX6nU6nEF6sjodnewVtSZKKfm4lSRL+7//9v6irq8P5559v7M8x2XgKb3tPNh5JkuDxeEydS7BHtHFrFhF9WBkT7/pjl3sw1pTFHiHA8A9tvD8EUcnEYjHcd999ozZGKldE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8pHJZLB9+3ZjXfdSY3U8PNvLZDJ47733Rm0KbpbCkmxTpkwxNQkCDG+8fPfdd5uKJxQKmT6XYI9o49YsIvqwMiaebdnpHow1ZbE0FkGciUpfGkvTNPT396O2tvYDS8iVG6J5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx2w+RFwaS9d1pNNp+Hw+OBylf0/W6nh4tqfrOo4ePYrbb7/d2Oh5PCaybJXT6cQjjzyCSy+99IxxnmtprHw+j+985zvo7+8/azxnar+2ttbUuWeDlsYyh2jj1iwi+rAypvHaYnUtEP0ejJbGIgjCFE6n0za/OIjmxep4eLbHUpuFVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlw+FwwO/3lzoMA6vj4dmew+GA1+tlMnGgaRq8Xm9RD2YlSUIkEjHdvtlzCfaINm7NIqIPK2Pi2Zad7sFYI8aU2/8PFVaCmBzJZBIbNmxAMpksdShFI5oXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JQPVVXR1dUFVVVLHQoA6+Ph2Z6qqjh69CiTB51+vx9Hjx4tKs5cLocVK1aYisfv95s+l2CPaOPWLCL6sDImnm3Z6R6MNUJNhEyfPh0NDQ340Y9+hD179pQ6HIIQHlmWMWPGDMhy+X/cJZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JQPh8OBmpoaYZalsToenu05HA74fD7kcrmitXK5XNFL9UiShMOHD5uKJ5fLmT6XYI9o49YsIvqwMiaebdnpHow1Qu0R4nA4Ru0ef+mll+KLX/wivvSlL2HBggVwuVwljI4QkUrfI4QgCIIgCIIgCIIQHxH3CCH4crZ9OwpMZI+QwnFnW1rmXHuETKQNq6E9QghiNFZcC0SglM9yxZl2A/AP//AP8Pl8yOfzyOfzOHLkCB588EEsWrQIU6dOxU033YQnnniCLt7EB/B6vcZnmpqmIRqNojDHF4/HjU/NhoaGkEqlAAy/1RCNRg2NWCyGbDYLAEin00in0wCAbDaLWCxmHBeNRo03IVKpFIaGhgAMf9YWj8cBAPl8HtFo1FgPNJlMQlEUAEAmk0EikQAwvDlSNBqFrusAgEQigUwmAwBQFMX4bOxMnjKZDF555RVjTJSzp/7+frz22mvIZDJC5Ckej2Pr1q3IZDJF5wk4d99LJpNob2/H4OAgc0+xWAzt7e2Ix+NC5OnkyZNob29HJpOZtKdMJoNt27YZPxeW42kieSqX8WSVp0QiYYyTcvZ0+vRpvPLKK8hkMkLkKZVK4eWXXzY0ePc9ljVirKfTp0+jvb0dqVSKSd+LRqNob29HIpEwlacTJ07g9ddfN/5/pV5z7VD30uk0Xn755VHX7XL1dOrUKbS3tyOdTguRp5HjxIq+l8lksH37dpw4cYK5p0wmgzfeeAMnTpwQIk9mf9/LZDJ47bXX0N/fb+SJakTpPGUyGbz88sujrtsT8aSqqvFzyOVyRtyF46zwlM1mjb9rmoZUKoXe3l7kcjkoimLEoKrqqONGxjr2uDN5UhTFiDWTyYw6rhC3ruujjkulUjh69ChyuRyy2ewHjiugKIrxcx3raexxZ/OUy+Xw/vvvI5lMMveUzWZx+vRpTJ06FW63GwBQVVWF6upqAMNvSNfU1BixhkIh4+Vfn88Hn88HAHC5XKitrcXp06fPmidd1xEMBgEMf/1RU1NjbGpciK+hoQGBQACBQADAB99IDwQC8Hg8AEY/Y6mqqsJnPvMZ49+CwWDRnkKh0ITzNPLnz6vvZTKZUX2Kd98rxtPIcVLOnpLJJN5//33j/4uQp6GhIfT29iKTyXDve9lsFr29vUilUkasrK65qVQK7e3tOH36NJNr7tDQENrb2zEwMMD0nrAUCDUR8sc//hGnTp3Cn/70J6xevRoXX3yxMSmSSCTw+9//Hrfeeivq6uowf/58/PSnP8XBgwdLHTYhAA0NDVi6dCmA4Qe14XDYGJzr1q1Dd3c3AGDbtm1obW0FAPT29iIcDhsaa9euRU9PDwCgra0NbW1tAICenh6sXbvWOC4cDqO3txcA0Nraim3btgEAuru7sW7dOgDDhSMcDhs3K5s3b0Z7ezsAoLOzExs3bgQwXBzC4bBRjDZu3IjOzk4AQHt7OzZv3nxWT6qqoqOjA1u2bCl7T0888QR27NgBVVWFydP27duNi0UxeQLO3ffeffdddHV14b/+67+4eOrq6hImT+vWrTPWwpysJ1VVsX37di7jaSJ5KpfxZJWn/fv349VXXzUeEperpy1btqCjowOqqgqRpyNHjuCVV14xfnm0ou+xqhFjPW3ZsgVdXV04cuQIk773yiuvoKurC/v37zeVp5aWFnR2dkJV1Yq+5tqh7h0/fhyvvPKKcaNWzp6eeeYZdHV14fjx40LkqaWlBbt27YKqqpb0PVVVsWvXLrS0tDD3pKoqOjs70dLSIkSezP6+p6oqduzYgSeeeMLIE9WI0nlSVRWvvPIKjhw5MilP3d3dxs8hEolg7969o46zwlNPT4/x98HBQXR2diISiUDTNHR0dBgxHDx40PDX399vxFM4rvAA7myeOjo6jFj37t1r7Anb29trxJ1Op9HR0WE8jNuzZw/6+vqgaRqOHDliPO+Jx+Po6OgwPO3cuRODg4Pjetq5c6dx3Lk8FTYB37VrF3NPhfvIr33ta5g9ezYAYP78+Vi8eDGA4aXhm5ubjVibmpowc+ZMAMDChQuxcOFCAMDMmTNx2223IR6PnzVPiUQCK1euBAB4PB40NzejtrYWAHDs2DFEo1HU19fj6quvRmNjI4DhCY3m5mZjAqWxsRFz584FMPoZy4UXXoj58+cbEygrV64s2lNTU9OE8wTw73udnZ3GWLWi7xXjqbu72xgn5exp165dOH78ODRNEyZPR48eRSQSwcmTJ7n3PVVVEYlEsGfPHsMTq2vukSNH0NXVhS1btjC55p46dQpdXV347W9/y/SesBQItTTWeHR2dqK1tRXPPfcc3nrrLeP/j1xC6/LLL8eXvvQlfOlLX8J1110n1PpyBF8Kn1N5vV7Isoz29nbMmjULiUQCoVAIkiQhHo/D6/XC7XZjaGgIuq6juroauVwOyWTSeGMhFovB5/PB5XIZBc7n8yGbzSKdThtvLESjUfj9fsiyjFQqBYfDgaqqKqiqCkVREAwGkc/nEYvFEAgE4HQ6kUwmIcsyvF6v8cZxIBCAruuIx+MIBoNwOBxIJBJwu93weDxQFAW5XA5+vx+appEn8kSeyBN5Ik/kiTyRJ/JEnsgTeSpTT21tbXA4HJBlGblcDpqmwePxIJ/PY+7cudw9HThwwPjyyuVyQdM0ZLNZeL1eAMNv97rdbjgcDqiqCkmSjONyuZwRayaTGXXcmTxlMhl4PB5IkoRMJgOn02kcp+s63G43dF2HqqqjjpNlGU6nE9lsFvl8ftRxI2N1uVzGcaJ6OnHiBFatWgVFUaCqKqqqquBwOJBKpSDLMvx+v/EAc/Xq1Uin08hms8aXE+l0Gi6XCz6fDy0tLairqzujp2PHjqGpqQnxeBySJCEUCiGRSEDTNDz++OOQJAm33HILPB4P3G43EokEHA4HgsEg4vE4dF1HIBAwXnAqPGNJJpNwOp0IBAKIxWLI5/MIBoNn9VR44zsUChXlifoeeao0T/PmzauIa25fX1/JlsYSfiJkJMeOHUNraytaW1vx5z//2fhsZ+SkyJQpU3DDDTdg8eLFWLRokTFjTdiTSt8jZGxRKmdE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY7ZfIi4R8jYB3elxup4eLZXWNnkpptuMt6SHovb7UZraytOnz591v07HA4HNmzYgOnTp58xznPtEZLP53HXXXcZkx6TYeyECStojxBziDZuzSKiDytjGq8tVtcC0e/BaI+QCXLRRRdh1apVeP755zEwMIA//vGPWLlyJaZNm2YsoXX69Gls3LgRy5YtQ21tLRYuXIgHHngAR48eLXX4BMGcsZ+GlzOiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+Ri7lEupsToenu1lMhl0dnbiM5/5zBmPue6664y9Ns5GMBjEoUOHTMdZ2NNg5DJYk2HsElpEaRFt3JpFRB9WxsSzLTvdg7GmrL4IORP5fB5vvvkmnnvuObS2tmLfvn3Gv42cwZszZw6+9KUvYfHixfjEJz5RilAJxtAXIfZ5O0w0L/Q2JD8teiPbPtglH6L5oPrDT4/qj32wUz5E80I1iJ8WfRFiD+iLEH7Y7YuQTCaDfD6Pn/zkJ8b+k8DwlyDXXXcdvvvd78Lr9Z71aw6g+C9CAGD27Nk4duxY2X4Roqqq0X/PO++8CU0g2RXRxq1ZRPRBX4Tw0RPpixBbTISM5fDhw8YSWtu2bTPWgxvZievq6tDX11eqEAlGVPpECEEQBEEQBEEQBCE+Ik6EENZxtgf555rEAM49aTARDdGYyESIoii4//77zzqRRBB2wYprgQjQ0liMmTFjBv75n/8ZbW1tGBgYwNNPP43GxkZMmTLFWEIrEomUOkyCKJpEIoGWlhYkEolSh1I0onmxOh6e7bHUZqFVjIZo/aTSsUs+RPNB9YefHtUf+2CnfIjmhWoQPy2zGqL1kUrHTvnIZDLYuXOnMEvTWB0Pz/bGarvdbtTV1aGurm7SXzMEAgEcPny4qDgDgQBWr15tah/dYs4tlvvvvx8vv/yyMQkCDE8qvfzyy7j//vstj0cERBu3ZhHRh5Ux8WzLTvdgrJFLHQBvAoEAbrzxRtx4443QdR2vvfYannvuOTz//POlDo0gisbtdqO+vt4Wn4WK5sXqeHi2x1KbhVYxGqL1k0rHLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075cPpdKKurg5Op7PUoQCwPh6e7bHUVlUVwWDwrFqFr0xGThiM1ejq6jrjv5+rfbPnFoOqqti+ffsZ/73wlYgdxuJkEG3cmkVEH1bGxLMtO92DscaWS2MRlQMtjUUQBEEQBEEQBEGIDi2NRZwJFktjAcC//du/4eWXX2YZGldYLPc1mX1GCEJ0aGks/thuaaw//OEPWLFiBT7/+c/j1ltvxVNPPVXqkAiCG4qiYOvWrVAUpdShFI1oXqyOh2d7LLVZaBWjIVo/qXTskg/RfFD94adH9cc+2CkfonmhGsRPy6yGaH2k0rFTPnK5HA4fPoxcLlfqUABYHw/P9lhqe71eDAwMnFPru9/9Lj7zmc+cUWPBggWm9tQo5lyCPaKNW7OI6MPKmHi2Zad7MNaUxUTIiRMn8Ld/+7f427/9W/zLv/zLuMfouo4vf/nLuPHGG/H444+jra0NTzzxBBobG/GZz3wGqVTK4qgJgj8iXjjMIpoX+iWcn1YxGqL1k0rHLiHomfgAAQAASURBVPkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075UPXdUSjUei6XupQAFgfD8/2WGrLsox0On1OLa/Xix/84Ad47LHHxtWYMWMGZHnyK+QXcy7BHtHGrVlE9GFlTDzbstM9GGvKYiLkj3/8I1577TVs374d11xzzbjH/OQnP8EzzzxjbIY+8s8rr7yC2267zeKoCSvxer3w+/0AAE3TEI1GUVj1LR6PG2tZDg0NGZNiuVwO0WjU0IjFYshmswCAdDqNdDoNAMhms4jFYsZx0WjUGLypVApDQ0MAhtevjMfjAIB8Po9oNApN0wAAyWTSmPnMZDLGBkFjC18ikTA2SlIUBclk8qye/H4/vvrVr0KSpLL3pOs6br75Zvj9fiHy5HK58JWvfAV+v7/oPAHn7nsejwcrVqyAw+Fg7kmWZaxYsQIul0uIPGmahhUrVsDv90/ak9/vx9KlS41fwlmOp4nkqVzGk1We3G43vvzlL8Pv95e1J0mS8NWvfhV+v1+IPHm9XixZssS4rvHueyxrxFhPkiRhxYoV8Hq9TPqe0+nEihUr4Ha7TeUpl8vh61//Ovx+f0Vfc+1Q96qqqrBkyRJUV1eXvScAWLFiBaqqqoTIUy6Xw9e+9jX4/X5L+p7f78ctt9wy6uaYlSe/349bb70VuVxOiDyZ/X3P7/fj5ptvNmKjGlFaT36/H0uWLDHejp+oJ1VVjZ9DLpcz4i4cZ4WnbDZr/F3TNOi6bqzbriiKEYOqqqOOGxnr2OPO5ElRFCPWTCYz6rhC3Lqujzoun8/jYx/7GNxuN7LZ7AeOK6AoivFzHetp7HFn8+R2u3HVVVdB13XmnlwuF+rr65HP50fFeiZPoVAILpcLAODz+eDz+QAM35c6nU5ceumlE86Ty+VCTU2NsfeA3+9HLpfDhg0bkM1mjU3PHQ4Hampq4HAMPxoMBALweDwARj9jGRoawjPPPGP0sWAwaKz1X1VVZVyLZVlGTU3NhDyFQqFz5knXdQSDQQDDv6+P9VQYgyz6XiaTmVCeWPW9kbFOtu/l83nMmTMHbre7rD3puo6rrroKbrdbmDxJkoT6+no4nU7udW+8GsHqmuv1erFixQpIksTkmuvz+bBixQrk83mm94SloCwmQl599VUAww9cPv/5z3/g31VVxf333w9JkiBJEv7u7/4Ov/jFL/A//sf/gNfrRT6fx+9+9zvs3LnT6tAJi2hoaMDSpUsBAP39/QiHw8bgXLduHbq7uwEA27ZtQ2trKwCgt7cX4XDY0Fi7di16enoAAG1tbWhrawMA9PT0YO3atcZx4XAYvb29AIDW1lZs27YNANDd3Y1169YBGC4c4XAY/f39AIDNmzejvb0dANDZ2YmNGzcCGC4O4XDYKEYbN25EZ2cnAKC9vR2bN28+qydN07BlyxY899xztvD0xhtvQNM0IfK0a9cuPPbYY9A0reg8Aefue++++y4ikQj+8z//k7mn119/HZFIBLt27RImT5FIBJqmTdqTpmnYtGkTXn/9dQBsx9NE8lRO48kKT/v27cOvf/1r45ffcvX03HPPYcuWLdA0TYg8HTlyBOFw2PjFlHffY10jRnp67rnnEIlEDE/F5Km1tRVbt25FJBLBvn37TOepp6cHmqZV/DW33OteJBJBOBw2bgLL2dPvfvc7RCIRw5MIeTpw4AA0TbOk72mahj179nDxpGkajh49KkyezP6+p2ka3njjDaoRgngq/A575MiRSXnq7u42fg6RSAR79+4ddZwVnnp6eoy/Dw4OYufOnUgmk9B1HR0dHUYMBw8eNPz19/cb8Wiaho6ODqP2ns1TR0eHEevevXsRiUSM+Apxp9NpdHR0GL/zdHZ24v3334eu6zhy5AgOHjxo5L2jo8PwtHPnTgwODp7RU4FzedJ1HbFYjIunbDaLZDKJzs5Oow+czVNTUxNmzpwJAFi4cCEWLlwIAJg5cyaampqMB7ETyZOu62hubkZtbS0AYOnSpfjkJz+Juro6XH311WhsbAQwPKHR3NxsTDY0NjZi7ty5AEY/Y7ngggvQ3NyMqqoqAMDKlSsxe/ZsAMD8+fOxePFiAMD06dPR3Nw8YU/nylMikcDKlSsBAB6P5wOeGhoais7TyL43kTyx6ntAcePpyJEj0HW97D2dPn0auq4Lk6fDhw8jmUzi5MmT3OveeDWC1TX3yJEjiEQieO6555hccwcHBxGJRJjfE5aCstgsvb6+Hnv27ME111yDHTt2fODfn332WfzjP/4jJEnCl770Jfzxj380/u3pp5/G8uXLIUkS/vmf/xk///nPLYyc4E1hgx2v1wtZltHe3o5Zs2YhkUggFApBkiTE43F4vV643W4MDQ1B13VUV1cjl8shmUwabyzEYjH4fD64XC6jwPl8PmSzWaTTaeONhWg0Cr/fD1mWkUql4HA4UFVVBVVVoSgKgsEg8vk8YrEYAoEAnE6n8cat1+tFJpOBqqoIBALQdR3xeBzBYBAOhwOJRAJutxsejweKoiCXy8Hv90PTtHE9pdNphMNh3HHHHbjooovK2tP777+PdevWYc2aNfB4PCXP04kTJ9DS0oI1a9YgGAwWlaeJ9D1VVfHggw/izjvvRCgUYuoplUqhpaUFq1evhs/nK3mejh8/jvXr12PNmjUAMClPiUQC4XAYq1evxgUXXMB0PNmxRvD2dPLkSaxduxZr1qxBKBQqW0/Hjh3Dr3/9a6xZswY+n6/keRoYGMCvfvUrrFmzBjU1Ndz7HssaMdbT4OAgfv3rX+Ob3/zmqLcEzXpKJBJ46KGH0NTUBK/XO+k89fb2GvXH6XRW7DXXDnXv1KlTeOCBB/Ctb30LU6ZMKWtPp06dwiOPPIJ/+qd/gtPpLHme3n//fWOcyLLMve9ls1mEw2F84xvfwKWXXsrUk67rhvbFF19c8jyZ/X2v8MBi5cqVuOSSS6hGlNhTNBpFOBzGN7/5TUydOnXCntra2uBwOCDLsvGVksfjQT6fx9y5c7l7OnDgAE6cOAFg+I18TdOQTCbR1dWFefPmARh++dThcBhvRheOy+VyRqyFLykKx53JUyaTgcfjgSRJyGQycDqdxnG6rsPtdkPXdaiqahwXi8WMeJxOJ/L5/KjjCl8AFN6mdjqdxhvShViz2eyo487mKZ/Po6OjA/X19QgEAkw95fN5vPnmm6ivr4ff7zdiHc9TJBLB6tWrkU6nkc1mjS8n0uk0XC4X6urqcNttt004T8ePH8ddd92FRCJhfFVfXV2NpqYmPPjggxgaGkIikYDD4TDudXVdRyAQgKqqyGQyxjOWZDKJ8847D9/61rfw85//HNFoFMFgEIqiQFVVVFVVweFwIJVKQZZl46t/YPiLkDN58vl8aGlpQV1d3RnzdOzYMTQ1NSEej0OSJIRCoVGecrkc1q9fj6lTpxbd9zKZDGRZPmueWPa9YsZTPB5HZ2cn5s2bB1mWy9ZTPB43xrskSULkSVVV7Nq1C9deey1kWeZa98arEfPmzWNyzc3lcvjVr36FO+64A1OmTCn6mqvrOn75y1/itttuQ21tbdH3hH19fSXbLL0sJkKmTp2KwcFBLFu2zJiVGsk//dM/4cEHH4QkSXj11VfxqU99yvg3Xddx6aWX4vjx4/j4xz9uzHAR9qAwEVLAysEjAmMLbTkjmher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTM5mPr1q1n/LcFCxYUH9g52LNnD06fPj3q/xWWZHE6nUL0Lavj4dneZLQjkQiWL19+xn+XJAmPP/44LrroognFOZ6eJEnweDzIZDKY7GPAYs49G08++STq6urO+O/n+rlMRMOOiDZuzSKiDytjGq8tVtcC0e/BSvkstyyWxiqsTTZyDcGRFJbOmjp16qhJEGB4zcNrrrkG+Xze+ISIIOyCJEnwer3CXDSKQTQvVsfDsz2W2iy0itEQrZ9UOnbJh2g+qP7w06P6Yx/slA/RvFAN4qdlVkO0PlLp2CkfkiRBlmVhvFgdD8/2WGrn8/miH8yO3b/AqnMJ9og2bs0iog8rY+Jdf+xyD8aaspgIKfygxttdPhaLYf/+/ZAkCX/zN38z7vkXXHABABjrvhGEXYjH4/j5z39ui74tmher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTslI9MJoP29nZjXfdSY3U8PNtjqR0MBtHT01OU1tj9QKw6l2CPaOPWLCL6sDImnm3Z6R6MNWUxEVJYD62wGc1IXnnlFei6DgC47rrrxj2/MIHidDr5BEgQJcLr9WLBggXG+obljGherI6HZ3sstVloFaMhWj+pdOySD9F8UP3hp0f1xz7YKR+ieaEaxE/LrIZofaTSsVM+ZFnGjBkzIMtyqUMBYH08PNtjqa0oCqZOnVqUlqIo2Lp1KxRFsfRcgj2ijVuziOjDyph4tmWnezDWlMUeIfPnz8err76KUCiE48ePj/rB3XrrrXj88cchSRLa29vx8Y9//APn33DDDXjhhRdw8cUX4/3337cydIIzlb5HCEEQBEEQBEEQBCE+Iu4RQogB670wJqInArRHCEGMxoprgQjQHiHn4LOf/SyA4U9p7r77buP/v/7663j66achSRIuuOACXHvtteOe39XVBUmSMHPmTEviJQirGBoawgsvvIChoaFSh1I0onmxOh6e7bHUZqFVjIZo/aTSsUs+RPNB9YefHtUf+2CnfIjmhWoQPy2zGqL1kUrHTvnIZrN47733kM1mSx0KAOvj4dkeS+2qqiqcPHmyKK2qqiosWrQIVVVVlp5rBaqqIhKJGH9UVS11SFwRbdyaRUQfVsbEsy073YOxRpzvj87CypUrcd9990FRFPzyl7/EM888g/PPPx/79u1DNpuFJEm44447xt105cCBA4hEIpAkCXPnzi1B9ATBD13XEY1GjeXhyhnRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfIi2CbbV8fBsj6W2w+FANpstSsvhcKCmpgYOx+Tfhy7mXN7827/9G3p6ekZNfrjdblx33XX47ne/K8RSPKwRbdyaRUQfVsbEsy073YOxpiyWxgKAhx9+GKtXrx412VEI/cMf/jB27twJv9//gfPuuece3HPPPZAkCb/97W/xla98xbKYCf7Q0lgEQRAEQRAEQRCE6NDSWMSZoKWxxqdYH5/5zGfwgx/8wPT5BGE1tDQWf8Sbzj0Dd955J/7whz/gqquuQj6fRz6fh9frxbJly7Bt27ZxJ0Gy2SwefvhhAMOb0Hzuc5+zOmyC4Eoul8Phw4eRy+VKHUrRiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyodO+VDpLd0Afoi7UzIsox0Ol2UVjEbM4u4qfVE2L59uy2XyRJt3JpFRB9WxsSzLTvdg7GmbCZCAGDJkiV46623kEgk0NfXh1gshk2bNuGCCy4Y9/hMJoNNmzbh5ZdfNjZbJwg7kUwm8dhjjyGZTJY6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yoeqqti9e7cwD4utjodneyy1/X4/3n///aK0/H4/VqxYMe5LxDzPLSWqqtryKyjRxq1ZRPRhZUw827LTPRhrymZpLIIYD1oaiyAIgiAIgiAIghAdWhqLOBO0NNb4sPAxmZ8bQZQaWhqLP2X1RQhBEARBEARBEARBEARBEARBEMRkoIkQwhZ4vV7jM01N0xCNRlH42Ckejxufmg0NDSGVSgEYXqMuGo0aGrFYDNlsFgCQTqeRTqcBDO81E4vFjOOi0aixrl0qlcLQ0BCA4c/a4vE4ACCfzyMajULTNADDn4EpigJgeMm2RCIB4INrAiYSCWQyGQCAoijGZ2Nn8hSLxfDjH/8Yx48fL3tPvb29+PGPf4xYLCZEnk6ePGnEU2yegHP3vYGBAdx7772IRCLMPZ04cQL33nsvTp48KUSe3n//fdx7772IxWKT9lTo8ydOnADAdjxNJE/lMp6s8tTf32/0h3L2dPz4ccOHCHk6deqUEQ+LPFlZI8Z6On78OO69916cOnWKSd8rxNrf328qT0ePHjV+tpV8zbVD3Tt9+jR+/OMfG/GWs6djx47h3nvvxenTp4XI08hxYkXfK4yto0ePMvc0UluEPJn9fa/go7e318gT1YjSeSrk49SpU5PypKqq8XPI5XJG3IXjrPCUzWaNvxd+t37ttdegKAoURTFiUFV11HEjYx173Jk8KYpixJrJZEYdV4hb1/VRx8ViMbz66qtQFAXZbPYDxxVQFMX4uY71NPa4s3lSFAWvvvqqcc/H0tPQ0BBee+01xGKxUbGeyVMoFILL5QIA+Hw++Hw+AIDL5cL06dPx7rvvTipPNTU1cDqdAIaXtpo2bRruvvtu1NbWIhAIAAAcDgdqamrgcAw/GgwEAvB4PABGP2OZMmUKvv/97xvLzQeDQbjdbgBAVVUVqqurAQzvJVJTUzMhTyOXrj+TJ13XEQwGAQCSJH3Ak9frBQB4PJ4zesrlchPqe5lMZkJ5YtX3CnkyM57i8bgxTsrZ08jxPtEawdtTMpnEa6+9hlQqxb3ujVcjWF1zT506hXvvvRfHjx9ncs0dHBzEvffei76+Pqb3hKWAJkIIW9DQ0IClS5cCGH4wFw6HjcG5bt06dHd3AwC2bduG1tZWAMMPdMPhsKGxdu1a9PT0AADa2trQ1tYGAOjp6cHatWuN48LhsHET0traim3btgEAuru7sW7dOgDDhSMcDqO/vx8AsHnzZrS3twMAOjs7sXHjRgDDxSEcDhvFaOPGjejs7AQAtLe3Y/PmzWf15PP5cNlllxmfWZezp82bN6O+vh4+n0+IPL377rvGL2vF5gk4d9+LRCJYsmQJXn/9deae9u3bhyVLluDdd98VIk8bN27EkiVL4PP5Ju3J5/MhFAph3759ANiOp4nkqVzGk1Wejh49ClmW4fP5ytrT1q1bcdlll8Hn8wmRp8HBQaiqatws8u57LGvEWE9bt27FkiVLMDg4yKTv7dq1C0uWLMHRo0dN5Wn9+vVYuHAhfD5fRV9z7VD30uk0VFU1HoiUs6f//M//xJIlS5BOp4XI0/r167FgwQL4fD5L+p7P58N1112H9evXM/fk8/nwhS98AevXrxciT2Z/3/P5fKivrzd+rlQjSuvJ5/NBVVUMDg5OylN3d7fxc4hEIti7d++o46zw1NPTY/x9cHAQe/fuxaxZs+ByudDR0WHEcPDgQRw5csRotxCPpmno6OgwHsCdzVNHR4cR6969exGJRIz4CnGn02l0dHQYD+MOHDiAuro6uFwuHDlyBAcPHjTy3tHRYXjauXOn8fMf62nnzp3Gcefy5HK58OEPfxhdXV3MPTkcDsyaNQsHDhww+sCZPJ133nloamrCzJkzAQALFy7EwoULAQAzZ87ELbfcgr/+67+ecJ50XUdzczNqa2sBAEuXLsWcOXPwzDPP4K//+q/R2NgIYHhCo7m52ZhsaGxsxNy5cwGMfsZSXV0Nj8dj5GnlypWYPXs2AGD+/PlYvHgxAGD69Olobm42fv5n89TU1HTOPCUSCaxcuRLA8GTHWE8NDQ0AgLlz557RU29v74T6Xmdn5znzBLDre4D58XTw4EFMmzYNLperrD11dXVh5syZcLlcE64RvD0dP34cs2bNQiwW4173xqsRrK65g4ODWLJkCbZu3crkmpvL5bBkyRI899xzTO8JS0HZ7REyNDSEP/3pT3jzzTfxl7/8BfF43JgROxeSJOGll17iHCFhJYV15bxeL2RZRnt7O2bNmoVEIoFQKARJkhCPx+H1euF2uzE0NARd11FdXY1cLodkMmm8sRCLxeDz+eByuYwC5/P5kM1mkU6njTcWotEo/H4/ZFlGKpWCw+FAVVUVVFWFoigIBoPG7HYgEIDT6UQymYQsy/B6vchkMlBVFYFAALquIx6PIxgMwuFwIJFIwO12w+PxGLP7fr8fmqaRJ/JEnsgTeSJP5Ik8kSfyRJ7IE3kqU09tbW1wOByQZRm5XA6apsHj8SCfz2Pu3LncPR04cMD4qtrlckHTNGSzWeOtekVR4Ha74XA4oKoqJEkyjsvlckasmUxm1HFn8pTJZODxeCBJEjKZDJxOp3Gcrutwu93QdR2qqo46TpZlOJ1OZLNZ5PP5UceNjNXlchnH2cHTfffdh5deegnZbNZ4GSadTsPlcuGzn/0svve9703Y0/Hjx3HXXXchkUhA0zT4/X7kcjkoigKPxwO3241EIgGHw4FgMIh4PA5d1xEIBKCqKjKZjPGMJZlMwul0IhAIGF+BB4NBKIoCVVVRVVUFh8OBVCoFWZbh9/uNN75DoRDS6fS4nnw+H1paWlBXV3dGT8eOHUNTUxPi8TgkSUIoFJq0p8cffxx1dXXU98hTWXiaN29eRVxz+/r6SrZHSNlMhOTzefzkJz/Bj370I1O7zOfzeUiSZMwiEvag0jdLT6fTaGtrM95uLWdE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY7ZfIi4WXo2m0VPT4/xVnapsToenu1NVltRFNx///3Yvn27saSM2+3Gddddh29/+9vo6+ubsNZ4m4z7fD4sXLgQbW1txkPUiVLMuWeDNks3h2jj1iwi+rAypvHaYnUtEP0erJTPcmVLWmHALbfcgqeeegplMm9DEARBEARBEARBEARBEOfE6/XiBz/4AVRVNSaszjvvPLjd7gmvgkIQBEGcnbL4ImTTpk245ZZbIEkS8vk8PvKRj+Cmm27CnDlzcN5550GWJz6fM3/+fI6RElZT6V+EEARBEARBEARBEOIj4hchhD1h8SWFFdAXIQQxGiuuBSJQyme5ZbFZ+iOPPGL8/dvf/jb279+Pe+65BzfeeCM++9nPYv78+RP+QxB2IpvN4u2337bFGyKiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+dA0DQMDA8IsIW51PDzbY6nNQsvlcmHWrFmmlvsp5txS82//9m9QFKXUYTBFtHFrFhF9WBkTz7bsdA/GmrKYCNmzZw8kScJf/dVf4ac//SkcjrIImyC4k06n8cwzzzBdp7NUiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyodO+VDpIdTAE3E8tTy+XxYsmSJqfX9izm31Bw4cAD3339/qcNgimjj1iwi+rAyJp5t2ekejDVlsTSW3+/H0NAQvv71r2P9+vWlDocQCFoaiyAIgiAIgiAIghAdWhqLsApaGms0brcbra2tcLvdRWsRBE9oaSz+lMWnFZdeeikA0JcgBEEQBEEQBEEQBEEQBEFMiJEb0BMEUdmUxczCvHnzkM/nceDAgVKHQhBCEY1Gcc899yAajZY6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yoeiKNi2bZsweyhYHQ/P9lhqs9CqqanBD3/4Q9TU1Fh6LsEe0catWUT0YWVMPNuy0z0Ya8piaaxdu3bh4x//OJxOJzo7O0d9PkNUNpW+NFYul0Nvby+mT58OWZZLHU5RiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyods/kQcWksXdcRj8cRDAaFWIHD6nh4tsdSe7Ja4y0pJcsypk+fjt7eXuRyuUm1X8y5Z8OqpbEm0lY5Idq4NYuIPqyMaby2WF0LRL8HK+Wz3LKYCAGAu+66Cy0tLbjiiiuwdetWnH/++aUOiRCASp8IIQiCIAiCIAiCIMSn1BMhe/fuxalTp7i3Q5Qe2iNk8m0RhAjQHiH8EWPKbQI88MADuOOOO4wf1gMPPIDjx4+XOiyCKCmpVApPPfUUUqlUqUMpGtG8WB0Pz/ZYarPQKkZDtH5S6dglH6L5oPrDT4/qj32wUz5E80I1iJ+WWQ3R+kilU675uPDCCz/w/1RVxb59+6Cqagki+iBWx8OzPZbaLLSqq6uxbNkyVFdXW3ouwR7Rxq1ZRPRhZUw827LTPRhryua7WofDgYceeggf/ehH8Z3vfAdr1qzBmjVrEAqFEAqFIEnSOTUkSUJPT48F0RKENTgcDtTU1AjzGWExiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyqdcs3HePs7SJIEr9c7oecpVmB1PDzbY6nNQkvXdUSjUei6bum5BHtEG7dmEdGHlTHxbMtO92CsKZulsbLZLL71rW9h3bp1yOVyGBn2RDpNPp+HJEnQNI1nmITF0NJYBEEQBEEQBEEQhOiUemksYPj+ub+/35K2iNJBS2NNvi2CEAFaGos/pZ+KmQCapuEf/uEf8PDDD39gEgQYnuQ41x+CsCOqqqKrq0uoTwnNIpoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l0yjkfwWBw1H9rmoZIJCLMC6NWx8OzPZbaLLTcbjfq6+vhdrstPZdgj2jj1iwi+rAyJp5t2ekejDVlMRHy8MMP44UXXgAwPOnxuc99Do8++ijefPNNvPvuu/jLX/4yoT+HDh0qsROCYIuiKNi6dSsURSl1KEUjmher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTslI9cLofDhw8jl8uVOhQA1sfDsz2W2iy0vF4vFixYAK/Xa+m5BHtEG7dmEdGHlTHxbMtO92CsKYulsRoaGvDmm29CkiT85Cc/wXe+851Sh0QIQuFzKq/XC1mW0d7ejlmzZiGRSBh7x8TjcXi9XrjdbgwNDUHXdVRXVyOXyyGZTBprpcZiMfh8PrhcLqTTaQCAz+dDNptFOp1GKBQCAESjUfj9fsiyjFQqBYfDgaqqKqiqCkVREAwGkc/nEYvFEAgE4HQ6kUwmIcsyvF4vMpkMVFVFIBCAruuIx+MIBoNwOBxIJBJwu93weDxQFAW5XA5+vx+appEn8kSeyBN5Ik/kiTyRJ/JEnsgTeSpTT21tbXA4HJBlGblcDpqmwePxIJ/PY+7cuZZ4evfdd3H48GG4XC5omoZsNms83FYUBW63Gw6HA6qqQpIk47hcLmfEmslkRh13Jk+ZTAYejweSJCGTycDpdBrH6boOt9sNXdehquqo42RZhtPpRDabRT6fH3XcyFhdLpdxHADyNMLT8ePHcddddyGRSEDTNPj9fuRyOSiKAo/HA7fbjUQiAYfDgWAwiHg8Dl3XEQgEoKoqMpmM8YwlmUzC6XQiEAggFoshn88jGAxCURSoqoqqqio4HA6kUinIsgy/349oNAoACIVCSKfTyGaz8Pl8AIB0Og2XywWfz4eWlhbU1dWd0dOxY8fQ1NSEeDwOSZIQCoVMe9qwYQOmTp0qVJ7s2PfIU3Ge5s2bVxHX3L6+Ploa62zs378fkiRh9uzZNAlCjEtDQwOWLl0KAOjv70c4HEYmkwEArFu3Dt3d3QCAbdu2obW1FQDQ29uLcDhsaKxduxY9PT0AgLa2NrS1tQEAenp6sHbtWuO4cDiM3t5eAEBrayu2bdsGAOju7sa6desAAJlMBuFw2Fh/dfPmzWhvbwcAdHZ2YuPGjQCAeDyOcDiMeDwOANi4cSM6OzsBAO3t7di8efNZPeXzebz00ku28bR7927k83kh8vTWW2/hiSeeQD6fLzpPwLn73nvvvQdFUbh4euONN6AoCt566y1h8qQoCvL5/KQ95fN5/Pa3v8Ubb7wBgO14mkieymk8WeFp//79ePTRR41f+srZ00svvYR8Pi9Ent5//32Ew2FjaU/efY91jRjrSVEUw1Oxedq2bRsURcH+/ftN56lQSyr9mlvude/kyZMIh8PGm2Xl7klRFMOTCHnq7e1FPp+3pO/l83kcOnSIi6fCjb4oeTL7+14+n8fu3bupRgjiqfA77Pvvvz8pT93d3cbPIRKJYO/evaOOs8LTm2++afx9cHAQO3fuNJYf7+joMGI4ePAgjhw5YrRbiEfTNHR0dBgP4c7mqaOjw4h17969iEQiRnyFuNPpNDo6OoylYTo7OxGJRJDP53HkyBEcPHjQyHtHR4fhaefOnRgcHDRyM9ZTgXN5KvwOy8NTLpdDLpdDZ2en0QeK8TSZPOm6jubmZtTW1gIAli5dioaGBni9XsydOxeNjY0AhpdKa25uNpZMa2xsxNy5cwGMfsZSW1uL5uZmeDweAMDKlSsxe/ZsAMD8+fOxePFiAMD06dPR3NxseGpqasLMmTMBAAsXLsTChQsBADNnzkRTU9M585RIJLBy5UoAgMfjGdcTgAl7OlffY5Gnc3liNZ6OHTuGfD5f9p5SqRTy+fykagRvT7lcDidPnuRe98arEayuue+//z4URWF2zY3FYlAUhfk9YSkoiy9CAoEA0uk0vvGNb+CRRx4pdTiEQFT6FyHpdBrhcBh33HEHLrroorL29P7772PdunVYs2YNPB5PyfN04sQJtLS0YM2aNcYbJTzf0lJVFQ8++CDuvPNOhEIhpp5SqRRaWlqwevVq+Hy+kufp+PHjWL9+PdasWQMAk/KUSCQQDoexevVqXHDBBbZ5Q7Bc33o8efIk1q5dizVr1iAUCpWtp2PHjuHXv/411qxZA5/PV/I8DQwM4Fe/+hXWrFmDmpoa7n2PZY0Y62lwcBC//vWv8c1vfhOyLBfd9xKJBB566CE0NTXB6/VOOk+9vb1G/XE6nRV7zbVD3Tt16hQeeOABfOtb38KUKVPK2tOpU6fwyCOP4J/+6Z/gdDpLnqf333/fGCeyLHPve9lsFuFwGN/4xjdw6aWXMvWk67qhffHFF5c8T2Z/3ys8sFi5ciUuueQSqhEl9hSNRhEOh/HNb34TU6dOLasvQgoP+gpvPCeTSXR1dWHevHkAUPI3o2OxmBGP0+nk/rZ3YWKhvr4egUCAqad8Po8333wT9fX18Pv9Rb3BPtk8jfdFSHV1NZqamvDggw9iaGhoUl+EnHfeefjWt76Fn//854hGo/RFSIm/NIjH4+js7MS8efMgy3LZeorH40a/liRJiC9CVFXFrl27cO2110KWZa51b7waweqLkFwuh1/96le44447MGXKlKKvubqu45e//CVuu+021NbWFn1PWMovQspiImTWrFl499138fWvfx3r168vdTiEQBQmQgpYOXhEQNM09Pf3o7a2Fk6ns9ThFIVoXqyOh2d7LLVZaBWjIVo/qXTskg/RfFD94adH9cc+2CkfonmhGsRPy6yGaH2k0jGbj61bt57x3xYsWFB8YBPg6NGjo/ZO1XUd6XQaPp8PDkfpFwyxOh6e7bHUnqxWJBLB8uXLR/0/p9OJ2tpa9Pf3T3pz5mLOPRtPPvkk6urqzvjv4/ng1VY5Idq4NYuIPqyMaby2WF0LRL8HK+WzXNmSVork+uuvx8GDB9HV1VXqUAhCKJxOp20u5qJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075cDgc8Pv9pQ7DwOp4eLbHUpuFlqZpxjI9Vp5LsEe0cWsWEX1YGRPPtux0D8YaMabczsGqVavgdDqxZ88evPrqq6UOhyCEIZlMYsOGDUgmk6UOpWhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8qGqKrq6uqCqaqlDAWB9PDzbY6nNQsvv92PFihWmHrwWcy7BHtHGrVlE9GFlTDzbstM9GGvKYiLkqquuwo9+9CPk83ksW7YMb7/9dqlDIgghkGUZM2bMgCyXxcddZ0U0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpHw6HAzU1NcIsS2N1PDzbY6nNQiuXy+Hw4cPI5XKWnkuwR7RxaxYRfVgZE8+27HQPxpqy2COkwMMPP4w1a9bA4XBg9erV+MpXvoI5c+YgGAyWOjSiRFT6HiEEQRAEQRAEQRCE+Ii4RwhhT1jurcET2iOEIEZj1bWg1JTyWa44025nwel0wul0oqmpCaqqYmhoCD//+c/x6U9/GlOmTDH+/Vx/RJh5IgiWZDIZtLe3I5PJlDqUohHNi9Xx8GyPpTYLrWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKRy6XQ29vrzBv+lsdD8/2WGqz0PJ4PGhoaIDH47H0XII9oo1bs4jow8qYeLZlp3sw1pTFRMjYj1YkSRr1b5P5QxB2QsQ1Fc0imhdan5afVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlo7AJtqZppQ4FgPXx8GyPpTYLLbfbjfr6erjdbkvPJdgj2rg1i4g+rIyJZ1t2ugdjTVksjcVqvTRJkoQaYETx0NJYBEEQBEEQBEEQhOjQ0liEVfBeGuujH/0oenp6in6oSUtjEcRoaGks/pTFFyG6rjP5Q5MghN3QdR3RaBS6rpc6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2ykc+n4eiKMKsnmF1PDzbY6nNQquYjZnHnvuDH/wAra2tePLJJ/Gzn/3MdEyEOUQbt2YR0YeVMfFsy073YKwpi4kQgiDGJx6PIxwOIx6PlzqUohHNi9Xx8GyPpTYLrWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKRyaTQUdHhxDrtgPWx8OzPZbaLLSCwSCam5sRDAaZnOt2u1FXV0dfWZQA0catWUT0YWVMPNuy0z0Ya8piaawvf/nLAACXy4UnnngCLperxBERolDpS2Ppuo54PI5gMMhsCblSIZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l0zOZDxKWx8vk8MpkMPB7PqL1YS4XV8fBsj6X2ZLXGW1LK4XAgGAwiHo9P+q3sseeOXGaqmOWraGksc4g2bs0iog8rYxqvLVbXAtHvwUr5LFe2pJUieeaZZyBJEj772c/SJAhBjKDwiaodEM2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dsqHJEnwer2lDsPA6nh4tsdSm4VWYWkaq88l2CPauDWLiD6sjIlnW3a6B2NNWbxOMmXKFADAjBkzShsIQQhGIpFAS0sLEolEqUMpGtG8WB0Pz/ZYarPQKkZDtH5S6dglH6L5oPrDT4/qj32wUz5E80I1iJ+WWQ3R+kilY6d8ZDIZ7Ny5U5ilaayOh2d7LLVZaAUCAaxevRqBQMDScwn2iDZuzSKiDytj4tmWne7BWFMWEyEXXXQRACCdTpc4EoIQC7fbjfr6erjd7lKHUjSiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+XA6nairq4PT6Sx1KACsj4dneyy1WWipqoquri6oqmrpuQR7RBu3ZhHRh5Ux8WzLTvdgrCmLPUKam5vxi1/8ApdffjkOHjxY6nAIgaj0PUIIgiAIgiAIgiAI8RFxjxDCnrDcW2M8aI8QguCDVdeCUlPKZ7ll8UXIypUr4XQ60dPTg9bW1lKHQxDCoCgKtm7dCkVRSh1K0Yjmxep4eLbHUpuFVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHbP5ONN+p6FQiEVYpsjlcjh8+DByuVzJYhiJ1fHwbI+lNgstr9eLBQsWmNqToJhzCfaINm7NIqIPK2Pi2Zad7sFYUxYTIVdeeSX+9V//Ffl8Hrfeeiu2b99e6pAIQghEvHCYRTQv9Es4P61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDpm81FY8nssF154IYuwTFHYBFvX9ZLFMBKr4+HZHkttFlqyLGPGjBmQZdnScwn2iDZuzSKiDytj4tmWne7BWFMWS2MV+OlPf4p/+Zd/QT6fx4033oivfvWruOaaa1BbWwuPx1Pq8IgSQEtjEQRBEARBEARBEKKjKAq6urpGvREbCARw1VVXWfaAmZbGqgxoaazJt0UQIkBLY/GnLL4IcTqdcDqd+N73vgdN06BpGp5++ml8+ctfxmWXXQafz2ccc7Y/NHtN2A1N0xCJRKBpWqlDKRrRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWM2H16vF3PnzsWMGTNQW1uLmTNnWjoJMh66riOZTArzRrbV8fBsj6U2C61iNmYWcVPrSka0cWsWEX1YGRPPtux0D8aaspgIGfvRiiRJo/5tMn8Iwk4kEgk89NBDSCQSpQ6laETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVTjH58Hg8mDFjBq644gpccsklJX9ZU1VV7Nq1C6qqljSOAlbHw7M9ltostAKBAFavXo1AIGDpuQR7RBu3ZhHRh5Ux8WzLTvdgrCmLpbEcDjbzNZIkCTH7RLCj8DmV1+uFLMtob2/HrFmzkEgkEAqFIEkS4vE4vF4v3G43hoaGoOs6qqurkcvlkEwmUVNTAwCIxWLw+XxwuVxIp9MAAJ/Ph2w2i3Q6bWxiF41G4ff7IcsyUqkUHA4HqqqqoKoqFEVBMBhEPp9HLBZDIBCA0+lEMpmELMvwer3IZDJQVRWBQAC6riMejyMYDMLhcCCRSMDtdsPj8UBRFORyOfj9fmiaNq4nl8uFaDQKl8sFv99f1p5isRgkSUIgEICiKCXPk6IoSCQSmDp1KvL5fFF5mkjfq6qqgq7r0DQNkiQx9eR0Oo0J5Gw2W/I8pVIpeL1eeDwexGKxSXlyOBw4deoUqqurUVVVxXQ82bFG8PaUyWQQi8VQW1tr6JWjp2QyiWw2i5qaGmSz2ZLnKZvN4vTp05g2bZox7nj2PZY1YqwnTdMgyzKcTidSqVTRfU+SJDgcDkiShEwmM+k8xWIxeDweVFVVIZlMVuw11w51L5fL4dSpU6itrYXD4ShrT9lsFi6Xy6hHpc5TNBqF2+2Gz+dDKpXi3vcK7WSzWUyZMoWpp8LvKwV/pc6T2d/3vF4vEokE8vk8QqEQ1YgSe8rn8zh58iTOO+88uFyusvJ08OBBHDlyBC6XC5qmQVVVuFwuOJ1OZDIZuN1uOBwOqKoKSZKM43K5HDweD/L5/AeOczgckGUZuVwOmqaNOs7j8RjX7MIqHblcDrquw+12Q9d1qKpqHKcoCiRJgtvtRi6XQz6fH3VcYbNuRVGMuLPZLAAYsWaz2VHHnc1ToZ2CP5aeCn/P5XKjYjXjabJ5On78OO666y4kEglommZcNwEY7ScSCTgcDgSDQcTjcei6jkAgAFVVkclkjGcshd8Vp06dipMnTyKfz+M3v/kNLrroIjidTvT19WHVqlXG9cLv9yMajQIAQqEQ0uk0stksfD4fACCdTsPlcsHn86GlpQV1dXVnzNOxY8fQ1NSEeDwOSZIQCoU+4ElRFHg8nnN62rBhA6ZOnXrGvpfJZIzfWc3maTJ9r5jxVFhez+PxQNO0svWkKApkWYYsy1BVdUI1grcn4P89gx7782dd98arEfPmzWNyza2urjby4nQ6i74+BQIBZLNZIxfF3hP29fXR0lhnQ9d1Jn9oEsS+NDQ0YOnSpQCA/v5+hMNhZDIZAMC6devQ3d0NANi2bRtaW1sBAL29vQiHw4bG2rVr0dPTAwBoa2tDW1sbAKCnpwdr1641jguHw+jt7QUAtLa2Ytu2bQCA7u5urFu3DgCQyWQQDofR398PANi8eTPa29sBAJ2dndi4cSMAIB6PIxwOIx6PAwA2btyIzs5OAEB7ezs2b958Vk+SJKGjowPPP/982Xtav349Dh06BEmShMhTV1cXfv/73xtFvJg8Aefue4cOHYLX68WLL77I3FNHRwe8Xi+6urqEyFNLSwu8Xi8kSZq0J0mS8Pzzz6OjowMA2/E0kTyVy3iyytOBAwewadMm4xe9cvVU6FOSJAmRp76+PrS0tBiTE7z7HssaMdbT888/D6/Xi76+PiZ975VXXoHX68WBAwdM5ekXv/iFceNWyddcO9S9gYEBtLS0GDet5ezp97//PbxeLwYGBoTI0y9+8QskEglIkmRJ35MkCQMDA/jFL37B3JMkSZAkCb/4xS+EyJPZ3/ckScKhQ4ewfv16I09UI0rnSZIktLS0oK+vr+w87dixw/j74OAgdu3aBVmWjWtcIYbChEmh3UI8mqaho6PDeAjX3d1t5DYSiWDv3r2G946ODiPWvXv3IhKJGPEV4k6n0+jo6DCe1XR1dWFwcBCSJOHIkSM4ePCg8TMq/P4PADt37sTg4KCRm5Gedu7caRx3Lk+FGvHmm28y96TrOmRZRldXl9EHzHqabJ50XUdzc7PxstLSpUvR0NAARVEwd+5cNDY2AgCCwSCam5sRDAYBAI2NjZg7dy6A0c9Yamtr0dTUZOzNe/ToUcPTqVOnsHjxYgDA9OnT0dzcbHhqamrCzJkzAQALFy7EwoULAQAzZ85EU1PTOfOUSCSwcuVKAMMP/cfzBGDCns7W9zo7O4vO02T6HmB+PO3btw8DAwOQJKmsPb355pvGiwETrRG8PR09ehSyLGNgYIB73RuvRrC65vb19cHr9eL5559ncn1KJBLwer3YtGkT03vCUlAWX4QQxJmo9C9CFEXBI488gptvvhl1dXVl7amvrw+//e1vcdttt8HlcpU8T/39/Xj88cdx++23w+/3c39LK5fL4fHHH8fy5csRCASYekqn09i0aRMaGxvh9XpLnqcTJ05g8+bNWLlyJXRdn5SnVCqFRx55BLfccgumTZsm3BuCoownqzwNDAzgN7/5DW6//XYEAoGy9RSJRLBp0ybcfvvtRm0tZZ5Onz6NDRs24Pbbb0cwGOTe91jWiLGeYrEYnnrqKXz961+Hw+Eouu+lUils2rQJt9xyC9xu96Tz1NfXh82bN+O2224z3jitxGuuHere4OAg1q9fj9tuuw2hUKisPQ0ODuLpp5/GrbfearzxWso89fb2GuOk8MYjz76naRoeffRRLF26FJdccglTTwAM7cLby6XMk9nf97LZLB599FHcdNNNuPjii6lGlNhTPB7HI488ghUrVuC8884rK09jvwhJpVLo7u7G3LlzjTerS/lFSDwex/79+3H11VfD4XBwf4MdAN566y3Mnj3b+PqclSdgeGJn9uzZqK6uLuoN9snmabwvQqqqqtDY2IgnnngCmUxmUl+E1NTUYOXKlXjkkUcQj8fpi5ASfxGSSCSwb98+XH311XA6nWXrKR6Po7u7G1dffTUACPFFSDabxd69e3HllVfC6XRyrXvj1QhWX4Touo7f/OY3WLZsGUKhUNHXJwDYsGEDbrrpJpx//vlF3xOW8osQmgghyprCREgBKwePCKiqiu7ubsyePRtut7vU4RSFaF6sjodneyy1WWgVoyFaP6l07JIP0XxQ/eGnR/XHPtgpH6J5oRrET8ushmh9pNIp53wcPXoUhw4dMv5b0zT09/ejtrZWiI2wrY6HZ3sstSerFYlEsHz58lH/z+12Y/bs2eju7jYewk6Usec++eSTqKurO2NbE2WkzngUoz3ZtsoJ0catWUT0YWVM47W1YMECJtqi34OV8lkuTYQQZU2lT4QQBEEQBEEQBEEQxEQYOxFC2BOWEwjjQRMhBMEHVhMholPKZ7llsUcIQRDjMzQ0hBdeeAFDQ0OlDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfKRzWbx3nvvGUvHlBqr4+HZHkttFlpVVVVYtGgRqqqqLD2XYI9o49YsIvqwMiaebdnpHow1wkyEHDt2zPI2jx8/bnmbBMESXdeN9f/KHdG8WB0Pz/ZYarPQKkZDtH5S6dglH6L5oPrDT4/qj32wUz5E80I1iJ+WWQ3R+kilY6d85PN5KIoCURYKsToenu2x1GahVdirzeGY/GPAYs4l2CPauDWLiD6sjIlnW3a6B2ONMEtj+f1+NDc347/9t/+GKVOmcG1rcHAQP/nJT/DLX/4SiUSCa1sEX2hpLIIgCIIgCIIgCII4N7Q0VmVAS2NNvi2CEAFaGos/wkznptNp/PjHP8Zll12G//7f/zt6enqYt9HT04PvfOc7uOyyy3DfffchnU4zb4MgrCSXy+Hw4cPI5XKlDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfIh0lu6AH2RxlNLlmXMmDEDsixbei7BHtHGrVlE9GFlTDzbstM9GGuEmQj51re+BafTiWQyiZ/97Gf4yEc+guuvvx4PPfQQTpw4YVr3xIkTeOihh3D99dfjwx/+MMLhMJLJJJxOJ9asWcPQAUFYTzKZxGOPPYZkMlnqUIpGNC9Wx8OzPZbaLLSK0RCtn1Q6dsmHaD6o/vDTo/pjH+yUD9G8UA3ip2VWQ7Q+UunYKR+qqmL37t1QVbXUoQCwPh6e7bHUZqHl9/uxYsUK+P1+S88l2CPauDWLiD6sjIlnW3a6B2ONMEtjAcOfwnz3u9/FCy+8AACQJMn4t1mzZuHTn/40rrzySsyaNQvTp0/H+eefD5/Ph3w+j6GhIQwMDKC3txfvvPMOdu/ejddeew1vv/22oVGw+vnPfx73338/LaFkA2hpLIIgCIIgCIIgCII4N7Q0VmVAS2NNvi2CEAFaGos/Qn3XNmfOHGzZsgXbt2/Hvffeiy1bthiTF2+//faoSY2JUjhfkiR88YtfxPe//3188pOfZBo3QRAEQRAEQRAEQRAEQRAEQRBiIszSWCO57rrr0NrainfeeQd33303Lr30UuTzeVN/Lr30Unz/+9/HO++8g+eee44mQQhbEYvFcO+99yIWi5U6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yoeiKHjttdegKEqpQwFgfTw822OpzUIrFArh7rvvRigUsvRcgj2ijVuziOjDyph4tmWnezDWCPVFyFguv/xy/Pu//zv+/d//HXv37sWLL76Ijo4O7NmzB0eOHPlAZ/F6vZgxYwauvPJKfOITn8Df/d3f4WMf+1iJoicI/vh8PixZsgQ+n6/UoRSNaF6sjodneyy1WWgVoyFaP6l07JIP0XxQ/eGnR/XHPtgpH6J5oRrET8ushmh9pNKxUz5cLhdmzZoFl8tV6lAAWB8Pz/ZYarPQSqfTeOaZZ5BOpy09l2CPaOPWLCL6sDImnm3Z6R6MNULtETJZYrEYUqkUAKC6uppmpysQ2iOEIAiCIAiCIAiCIM4N7RFSGdAeIZNviyBEgPYI4Y+QS2NNlFAohIsuuggXXXQRTYIQFYmd3swQzYvV8fBsj6U2Cy16G8k+2CUfovmg+sNPj+qPfbBTPkTzQjWIn5ZZDdH6SKVjp3xks1m8/fbbyGazpQ4FgPXx8GyPpTYLLfoq1j6INm7NIqIPK2Pi2Zad7sFYU9YTIQRBEARBEARBEARBEARBEARBEGejrJfGIghaGosgCIIgCIIgCIIgzg0tjVUZ0NJYk2+LIESAlsbiD30RQhBljIifEppFNC/0WTY/rWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKh6ZpGBgYgKZppQ4FgPXx8GyPpTYLrWI2ZhZxU+tKRrRxaxYRfVgZE8+27HQPxhqaCCGIMkakdfaKRTQvtD42Py1ao98+2CUfovmg+sNPj+qPfbBTPkTzQjWInxbtEWIP7JQPkR5OATQRy1OL9gixD6KNW7OI6IP2COGjJ9J1k5bGIsoaWhqLIAiCIAiCIAiCIM4NLY1VGdDSWJNviyBEgJbG4g99EUIQBEEQBEEQBEEQBEEQBEEQhG2hiRCCKGOi0SjuueceRKPRUodSNKJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075UBQF27Ztg6IopQ4FgPXx8GyPpTYLrZqaGvzwhz9ETU2NpecS7BFt3JpFRB9WxsSzLTvdg7GGlsYiyppKXxorl8uht7cX06dPhyzLpQ6nKETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVTjnnY+zSWLquIx6PIxgMwuEo/XuyVsfDsz2W2pPVGm9JKVmWMX36dPT29iKXy02q/bHn0tJYpUW0cWsWEX1YGdN4bbFaGkv0e7BSPsuliRCirKn0iRCCIAiCIAiCIAiCmAi0R0hlQHuETL4tghAB2iOEP2JMuREEYYpUKoWnnnoKqVSq1KEUjWherI6HZ3sstVloFaMhWj+pdOySD9F8UP3hp0f1xz7YKR+ieaEaxE/LrIZofaTSsVM+VFXFvn37oKpqqUMBYH08PNtjqc1Cq7q6GsuWLUN1dbWl5xLsEW3cmkVEH1bGxLMtO92DsYYmQgiijHE4HKipqRHmM8JiEM2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dsqHJEnwer2QJKnUoQCwPh6e7bHUZqGl6zqi0Sh0Xbf0XII9oo1bs4jow8qYeLZlp3sw1tDSWERZQ0tjEQRBEARBEARBEMS5oaWxKgNaGmvybRGECNDSWPwp/VQMQRCmUVUVXV1dQn1KaBbRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfGiahkgkAk3TSh0KAOvj4dkeS20WWm63G/X19XC73ZaeS7BHtHFrFhF9WBkTz7bsdA/GGpoIIYgyRlEUbN26FYqilDqUohHNi9Xx8GyPpTYLrWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKRy6Xw+HDh5HL5UodCgDr4+HZHkttFlperxcLFiyA1+u19FwzqKqKSCSCSCRiSXvlhmjj1iwi+rAyJp5t2ekejDW0NBZR1tDSWARBEARBEARBEARxbmhprMpgIktKffSjH8WBAwdM6fNaGktRFNx///3Yvn078zfHaWksohygpbH4Q1+EEEQZk8/noSgK7DCfKZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JSPfD6PXC4njBer4+HZHkttFlpjN2b+wQ9+gMcee8zUuby4//778fLLLwuxfI7IiDZuzSKiDytj4l1/7HIPxhqaCCGIMiYWi+G+++5DLBYrdShFI5oXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JSPTCaD7du3I5PJlDoUANbHw7M9ltostEKhEO6++26EQiHj/010z4/xzmWNqqrYvn07N307Idq4NYuIPqyMiWdbdroHYw1NhBC2wOv1wu/3AxjecCgajRozjfF43HijYGhoCKlUCsDwenzRaNTQiMViyGazAIB0Oo10Og0AyGazowZrNBo11vBLpVIYGhoCMHzhjsfjAIZnO6PRqLHpUTKZNNbCy2QySCQSAABd1xGNRqHrOgAgkUgYRVBRFCSTybN6CgQCuPXWW+FwOMreUz6fx8qVKxEIBITIk9vtxi233IJAIFB0noBz9z2v14tVq1bB6XQy9+RyubBq1Sq43W4h8qTrOlatWoVAIDBpT4FAAF/72tfgcrkAsB1PE8lTuYwnqzx5PB40NjYiEAiUtSeHw4Fbb70VgUBAiDxVVVXh5ptvRiAQYJInK2vEWE8OhwOrVq1CVVUVk74nyzJWrVoFj8djKk+apuGOO+5AIBCo6GuuHeqez+fDzTffbPz+V86eJEnCqlWr4PP5hMiTpmm4/fbbEQgELOl7gUAAt91226jNQll5CgQCuPPOO6FpmhB5Mvv7XiAQwMqVK0f9PkY1onSeAoEAbr75ZlRVVZWdJ0VRjL9rmgZd13HNNdfA7XZDURQjBlVVRx1XiKfwVu/I4wq5zeVyHziuEGsmkxl1XCFuXddHHZfP541NubPZ7AeOK6AoivFzzWazo2Ide9zZPLndblx99dXQdZ25J5fLhWuuucaoq4VYzXgyk6eamho4nU4AgN/vh6qqaGlpQSaTMX7HLBxX+N0mEAjA4/EAGP2MJZVKYePGjUafzWazRqyapqG6uhoAIMsyampqDE+hUMi4b/P5fPD5fAAAl8s1alJFURQMDAxAVVVUV1cbY8vtdiMYDAIY/iplrKfCniUej8fw5HA4zujpbH0vk8kUnafJ9L3Cz9/MeBo5TsrZk67ruPrqq+F2uydcI3h7kiQJ11xzDZxOJ/e6N16NYHXNraqqwqpVq+BwOJhcn6qrq7Fq1Srj3ws/u2LvCUsBTYQQtqChoQFLly4FAPT39yMcDhuDc926deju7gYAbNu2Da2trQCA3t5ehMNhQ2Pt2rXo6ekBALS1taGtrQ0A0NPTg7Vr1xrHhcNh9Pb2AgBaW1uxbds2AEB3dzfWrVsHYLgwhMNh9Pf3AwA2b96M9vZ2AEBnZyc2btwIYLg4hMNhoxht3LgRnZ2dAID29nZs3rz5rJ6cTifefvttbNmypew9PfbYYzh16hScTqcQedqzZw9efPFFOJ3OovMEnLvvHT58GHV1dXjppZeYe9qxYwfq6uqwZ88eIfL08MMPo66uDk6nc9KenE4nXnnlFezYsQMA2/E0kTyVy3iyytM777yD559/3vhFsVw9bdmyBW+//TacTqcQeTp+/Dg2bdpk3Ojx7nssa8RYT1u2bEFdXR2OHz/OpO+99tprqKurwzvvvGMqTw888AB8Ph+cTmdFX3PtUPdOnz6NTZs2GTeY5ezpj3/8I+rq6nD69Gkh8vTAAw/A6XTC6XRa0vecTidyuRweeOAB5p6cTiemTJmCBx54QIg8mf19z+l04tSpU8YyNlQjSuvJ6XRi06ZNOH78eNl52rFjh/H3wcFBvPXWW/D7/XA4HOjo6DBiOHjwII4cOWK0W4hH0zR0dHQYD+C6u7uN3EYiEezdu9fw3tHRYcS6d+9eY+Pr3t5eI+50Oo2Ojg7jYdzu3buNh2ZHjhzBwYMHjZ9RR0eH4Wnnzp0YHBw0cjPS086dO43jzuXJ4XCgqqoKO3bsYO4pn8/D7/dj9+7dRh8w62myedJ1Hc3NzaitrQUALF26FJ/4xCcQiURw1VVXobGxEcDwg9bm5mZjsqGxsRFz584FMPoZy/nnn4/GxkZjUuPo0aOGp1OnTmHx4sUAgOnTp6O5udnw1NTUhJkzZwIAFi5ciIULFwIAZs6ciaamplF5KjyEXbx4MebPnw8AmD17NlauXAlgeLJjrKeGhgYAwNy5cw1PwWDwjJ7O1vc6OzuLztNk+h5gfjzt378fiUQCDoejrD3t2LEDLpcLDodjwjWCt6f3338ffr8fp06d4l73xqsRrK65x48fR11dHbZs2cLk+pRKpVBXV4ennnqK6T1hKaDN0omyprDBjtfrhSzLaG9vx6xZs5BIJBAKhSBJEuLxOLxeL9xuN4aGhqDrOqqrq5HL5ZBMJo03FmKxGHw+H1wul1HgfD4fstks0um08cZCNBqF3++HLMtIpVLGL0+qqkJRFASDQeTzecRiMQQCATidTiSTSciyDK/Xi0wmY7xZqus64vE4gsEgHA4HEokE3G43PB4PFEVBLpeD3++HpmnjelJVFU8//TQWL16MadOmlbWn48eP4z/+4z9w0003wel0ljxPp06dwh//+EcsW7YMPp+vqDxNpO/puo5nn30WN9xwA/x+P1NPiqLg+eefx+LFi+F2u0uep/7+frS1tWHp0qVGOxP1NDQ0hKeffhr/8A//gKlTpzIdT3asEbw9nT59Gn/4wx+wbNkyVFdXl62nkydPorW1FV/96leNN+1KmadoNIrNmzdj2bJl8Pv93Pseyxox1lMikcCWLVuwZMkSACi676XTafzpT3/Cl770JciyPOk8HT9+HG1tbbjxxhuRz+cr9pprh7oXi8Xwu9/9Dl/96lcRCATK2lMsFsN//Md/4B//8R+Rz+dLnqdjx44Z4wQA976Xz+fxu9/9DgsXLsTFF1/M1JPD4TC0Cy9hlDJPZn/f0zQNv/3tb/H5z38eF154IdWIEntKJpN46qmnsHTpUtTU1JSVp8LDS5fLBU3TkE6n0dPTg9mzZ0PXdbjdbjgcDuPN6MJxuVwOHo8H+Xze+JKicJzD4YAsy8jlctA0bdRxHo8HkiQhk8nA6XQaxxXa0nUdqqoaxyUSCbz33nu44oorIEmSca0uHFf4AqDwNrXT6TTekC7Ems1mRx13Nk+SJGH//v2YOXOmMdHAypMkSThw4ABmzpxpvISRzWZNeZpsno4fP4677roLiUQCmqbB7/fD4/Fg8eLFeO6555DNZvHwww8jn8/jrrvuQjweh67rxtfRmUzGeMaSTCYRDAZx00034amnnkIymcRvfvMbXHTRRXA6nejr68OqVauML3f9fr/xxncoFEI6nUY2mzW+Bkmn03C5XPD5fGhpaUFdXR0URcHp06fR2NiI6upq6LqOoaEhuN1ueL1exONxSJKEUCg0ylMul4OiKPB4PMaXzQ6HA8Fg8AOeNmzYgKlTp56x72UyGciyXFSeJtP3ihlPyWQS7777Lq644go4HI6y9ZRIJNDT04MrrrgC+Xx+QjWCt6dsNot3330XH/nIR+BwOLjWvfFqxLx585hccwHgmWeewQ033IBAIFD09cnhcOAPf/gDFi1ahClTphR9T9jX11eyzdJpIoQoawoTIQWsHDwioCgK2tvb0dDQYBTyckU0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6ZRzPo4ePYpDhw4Z/53L5dDb24vp06dDluUSRlaaeHi2x1J7slqRSATLly8f9f+8Xi8aGhrQ3t4ORVHw5JNPAsAHjhuP8c6tq6s7Y1sThZXOZNsqd0Qbt2YR0YeVMY3X1oIFC5hoi34PVspnuTQRQpQ1lT4RQhAEQRAEQRAEQRATYexECGFPJjKpMJmJkPHOtXIi5Hvf+x7uu+8+U22M1xZBiAqriRDRKeWzXNojhCDKmEwmg/b2dmMdvnJGNC9Wx8OzPZbaLLSK0RCtn1Q6dsmHaD6o/vDTo/pjH+yUD9G8UA3ip2VWQ7Q+UunYKR+FN5IL+y2VGqvj4dkeS20WWh6PBw0NDcbG4VadywKawBiNaOPWLCL6sDImnm3Z6R6MNTQRQhBljKqq6OrqgqqqpQ6laETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3yoWkaIpGIsRFxqbE6Hp7tsdRmoeV2u1FfXw+3223puQR7RBu3ZhHRh5Ux8WzLTvdgrKGlsYiyhpbGIgiCIAiCIAiCIIhzQ0tjVQZ2WxrrZz/7Gb797W+bamO8tghCVGhpLP7QFyEEUcbouo5oNApd10sdStGI5sXqeHi2x1KbhVYxGqL1k0rHLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075SOfz0NRFIjyfqzV8fBsj6U2Cy2Hw4Gamho4HJN/DFjMuQR7RBu3ZhHRh5Ux8WzLTvdgrKEqRhBlTDweRzgcRjweL3UoRSOaF6vj4dkeS20WWsVoiNZPKh275EM0H1R/+OlR/bEPdsqHaF6oBvHTMqshWh+pdOyUj0wmg46ODiHWbQesj4dneyy1WWgFg0E0NzcjGAxaei7BHtHGrVlE9GFlTDzbstM9GGtoaSyirKn0pbF0XUc8HkcwGCz7tzNE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlU4552Ps0lj5fB6ZTAYejweSJJUwstLEw7M9ltqT1RpvmSmHw4FgMIh4PA5d1ye1NNZ459LSWKVDtHFrFhF9WBnTeG2xWhpL9HuwUj7LlS1phSAILhQ+UbUDonmxOh6e7bHUZqFVjIZo/aTSsUs+RPNB9YefHtUf+2CnfIjmhWoQPy2zGqL1kUrHTvmQJAler7fUYRhYHQ/P9lhqs9AqLE1j9bkEe0Qbt2YR0YeVMfFsy073YKwpr9cXCIIYRSKRQEtLCxKJRKlDKRrRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfGQyGezcuVOYpWmsjodneyy1WWgFAgGsXr0agUDA0nMJ9og2bs0iog8rY+LZlp3uwVhDEyEEUca43W7U19fD7XaXOpSiEc2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dsqH0+lEXV0dnE5nqUMBYH08PNtjqc1CS1VVdHV1QVVVS88l2CPauDWLiD6sjIlnW3a6B2MN7RFClDWVvkcIQRAEQRAEQRAEQUyEsXuEEPZkIvt2TGaPkPHOpT1CCII9rPYIEZ1SPsulL0IIooxRFAVbt26FoiilDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfKRy+Vw+PBh5HK5UocCwPp4eLbHUpuFltfrxYIFC0ztSVDMuQR7RBu3ZhHRh5Ux8WzLTvdgrKGJEIIoY0S8cJhFNC/0Szg/rWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKR2ETbF3XSx0KAOvj4dkeS20WWrIsY8aMGZBl2dJzCfaINm7NIqIPK2Pi2Zad7sFYQ0tjEWUNLY1FEARBEARBEARBEOeGlsaqDGhprLO3RRCiQktj8Ye+CCGIMkbTNEQiEWiaVupQikY0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpH7quI5lMCvNGttXx8GyPpTYLrWI2ZhZxU+tKRrRxaxYRfVgZE8+27HQPxhqaCCGIMiaRSOChhx5CIpEodShFI5oXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JQPVVWxa9cuqKpa6lAAWB8Pz/ZYarPQCgQCWL16NQKBgKXnEuwRbdyaRUQfVsbEsy073YOxhpbGIsqaSl8aK5/PI5PJwOPxQJKkUodTFKJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKp5zzMXZprHw+D03T4HQ6hfBidTw822OpPVmt8ZaZkiQJHo8HmUwG+Xx+UktjjXcuLY1VOkQbt2YR0YeVMY3XFqulsUS/Byvls1za6YggyhhJkuD1eksdBhNE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8iFJklAbYFsdD8/2WGqz0Mrn81AUxfJzCfaINm7NIqIPK2PiXX/scg/GGloaiyDKmHg8jp///OeIx+OlDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfKRyWTQ3t6OTCZT6lAAWB8Pz/ZYarPQCgaDaG5uRjAYtPRcgj2ijVuziOjDyph4tmWnezDW0EQIQZQxXq8XCxYsEGZmtRhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8iHLMmbMmCHMW9lWx8OzPZbaLLQURcHWrVtNfdlRzLkEe0Qbt2YR0YeVMfFsy073YKyhPUKIsqbS9wghCIIgCIIgCIIgiIkwdo8Qwp5MZN+OyewRMt65tEcIQbCH1R4holPKZ7n0RQhBlDFDQ0N44YUXMDQ0VOpQikY0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpH9lsFu+99x6y2WypQwFgfTw822OpzUKrqqoKixYtQlVVlaXnEuwRbdyaRUQfVsbEsy073YOxhiZCCKKM0XUd0WgUuq6XOpSiEc2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dspHYRNsURYKsToenu2x1Gah5XA4UFNTA4dj8o8BizmXYI9o49YsIvqwMiaebdnpHow1tDQWUdbQ0lgEQRAEQRAEQRAEcW5oaazKgJbGOntbBCEqtDQWf2g6lyDKmFwuh8OHDyOXy5U6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yodIb+kC9EUaT61iNmYWcVPrSka0cWsWEX1YGRPPtux0D8YamgghiDImmUziscceQzKZLHUoRSOaF6vj4dkeS20WWsVoiNZPKh275EM0H1R/+OlR/bEPdsqHaF6oBvHTMqshWh+pdOyUD1VVsXv3bqiqWupQAFgfD8/2WGqz0PL7/VixYgX8fr+l5xLsEW3cmkVEH1bGxLMtO92DsYaWxiLKGloaiyAIgiAIgiAIgiDODS2NVRnQ0lhnb4sgRIWWxuIPfRFCEARBEARBEARBEARBEARBEIRtoYkQgihjYrEY7r33XsRisVKHUjSiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+VAUBa+99hoURSl1KACsj4dneyy1WWiFQiHcfffdCIVClp5LsEe0cWsWEX1YGRPPtux0D8YamgghiDLG5/NhyZIl8Pl8pQ6laETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3y4XK5MGvWLLhcrlKHAsD6eHi2x1KbhVY6ncYzzzyDdDpt6bkEe0Qbt2YR0YeVMfFsy073YKyRSx0AQRDmKRROOyCaF6vj4dkeS20WWsVoiNZPKh275EM0H1R/+OlR/bEPdsqHaF6oBvHTMqshWh+pdOyUD6fTialTp5Y6DAOr4+HZHkttFlrZbBZvv/225ecS7BFt3JpFRB9WxsSzLTvdg7GGvgghiDLGTm9miObF6nh4tsdSm4UWvY1kH+ySD9F8UP3hp0f1xz7YKR+ieaEaxE/LrIZofaTSsVM+Cg+4s9lsqUMBYH08PNtjqc1Ci76KtQ+ijVuziOjDyph4tmWnezDW0EQIQRAEQRAEQRAEQRAEQRAEQRC2Rcrn8/lSB0EQZtm/fz/mzJlj/Pe+fftwxRVXlDAigiAIgiAIgiAIghCPo0eP4tChQ6UOg+BMJBLB8uXLz3rMk08+CQDnPO5M59bV1U24rWJ1fvazn+Hb3/62qTbGa4sgRGXBggWlDsESSvksl74IIYgyRsRPCc0imhf6LJufVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlQ9M0DAwMQNO0UocCwPp4eLbHUpuFVjEbM4u4qXUlI9q4NYuIPqyMiWdbdroHYw1NhBBEGSPSOnvFIpoXWh+bnxat0W8f7JIP0XxQ/eGnR/XHPtgpH6J5oRrET4v2CLEHdsqHSA+nAJqI5alFe4TYB9HGrVlE9EF7hPDRE+m6SUtjEdz44Q9/iHvuueesx3zve9/Dvffea7oNWhqLIAiCIAiCIAiCIM4NLY1VGdDSWGdviyBEhZbG4o9sSStERTNt2jT89V//9bj/NmPGDGuDIQiCIAiCIAiCIAiCIAiCICoKWhqL4M7nP/95vPbaa+P+Wb16danDK2ui0SjuueceRKPRUodSNKJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075UBQF27Ztg6IopQ4FgPXx8GyPpTYLrZqaGvzwhz9ETU2NpecS7BFt3JpFRB9WxsSzLTvdg7GGJkIIoozx+/249dZb4ff7Sx1K0Yjmxep4eLbHUpuFVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlw+1246qrroLb7S51KACsj4dneyy1WWglk0ls2LAByWTS0nMJ9og2bs0iog8rY+LZlp3uwVhDS2MRRBkjy7JtlhcTzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yofD4RDqLX+r4+HZHkttFlq5XA6HDx+2/FyCPaKNW7OI6MPKmHi2Zad7MNbQFyEWomka9uzZg0cffRRNTU249tpr4Xa7IUkSJEkqalMcVVXx+OOP44YbbsBll10Gr9eLCy+8EJ/61Kfw05/+FAMDA+yMTJLdu3ejsbER119/Pb70pS/h+9//Pnbt2lWyeOxEKpXCU089hVQqVepQikY0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpH6qqYt++fVBVtdShALA+Hp7tsdRmoVVdXY1ly5ahurra0nMJ9og2bs0iog8rY+LZlp3uwVhDX4RYxDPPPIPGxkak02nm2m+//TaWL1+Orq6uUf8/EokgEongjTfewE9+8hOsX78eN9xwA/P2z0VXV9eo2FpbW3Hvvffi1ltvRUtLC7xer+Ux2YXCDLLDUf5zmqJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075kCQJXq8XkiSVOhQA1sfDsz2W2iy0dF1HNBqFruuWnkuwR7RxaxYRfVgZE8+27HQPxhopn8/nSx1EJbBhwwZ84xvfOOsx8+fPx9atWyel29vbi3nz5uHYsWMAhgfS3/7t32LmzJno7+/Hf/3Xf2FoaAgA4HK58MILL+D666835WGyPPzwwzh+/Dj+/u//Hh/60IdQU1ODQ4cOYcOGDfjpT38KTdPQ2NiIJ554wnQb+/fvx5w5c4z/3rdvH6644goW4RMEQRAEQRAEQRCEbTh69CgOHTpU6jAIzkQiESxfvvysxzz55JMAcM7jznRuXV3dhNsqVudnP/sZvv3tb5tqY7y2CEJUilkpqJwo5bPc0k/FVBgXXHABvvjFL+Kee+7Bli1bsGbNmqL0br75ZmMS5LLLLkNnZye2bt2KRx99FM899xyOHj2Kz372swCAbDaLG2+8EdFotFgbE+LOO+/E//pf/wsNDQ2YNm0a3G43Zs2ahXvvvdeY/Ni4cSPeeOMNS+KxI6qqoqurS6hPCc0imher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTslA9N0xCJRKBpWqlDAWB9PDzbY6nNQsvtdqO+vt7UxszFnEuwR7RxaxYRfVgZE8+27HQPxhqaCLGIRYsW4ciRI4hEImhtbcUPfvADfP7zny9qY5wtW7bg1VdfBTB8YWptbcVVV1016pipU6fi2WefxYc+9CEAwOnTp3H//fePq3f33Xcb+5VM9k8ul5tU7MuWLcMnPvEJAMDmzZsna534/1EUBVu3boWiKKUOpWhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8lHYBHuy9/O8sDoenu2x1Gah5fV6sWDBAlNLkxdzLsEe0catWUT0YWVMPNuy0z0Ya2hprBLzwx/+EPfccw+AyS+N9YUvfAFbtmwBANxxxx14+OGHz3jsxo0bccsttwAAzjvvPJw4cQKyPHqLmP/9v/83wuHwJB0Mc+LECTidzkmd853vfAc/+9nPsHjxYjz33HOm2qWlsQiCIAiCIAiCIAji3NDSWJUBLY119rYIQlRoaSz+0BchZUoymcRLL71k/Pe59h/5yle+Ar/fD2D4q5BXXnnlA8f8z//5PzEwMGDqz2QnQQAYn1Vms9lJn0sMk8/noSgK7DCfKZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JSPfD6PXC4njBer4+HZHkttFlrFbMws4qbWlYxo49YsIvqwMibe9ccu92CsoYmQMuX1119HJpMBAFRXV+PjH//4WY/3er345Cc/afz3n//8Z67xTYS9e/cCAC655JISR1K+xGIx3HfffYjFYqUOpWhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8pHJZLB9+3bj2UKpsToenu2x1GahFQqFcPfddyMUCll6LsEe0catWUT0YWVMPNuy0z0Ya2hprBJjdmmscDiM5uZmAEBDQ8OENhy/++67cd999wEAvvzlL+P3v/+9qZhZ0NXVhWuvvRaapmHz5s34yle+Ykqn0pfG0jQN/f39qK2tNfVVjkiI5sXqeHi2x1KbhVYxGqL1k0rHLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKp1yzsfYpbF0XUc6nYbP54PDUfr3ZK2Oh2d7LLUnqzXeMlNOpxO1tbXo7++HpmmTWhprvHNpaazSIdq4NYuIPqyMaby2WC2NJfo9GC2NRUyad955x/j7ZZddNqFzLr30UuPvb7/9NvOYRrJ//37ceeed6Ozs/MC//elPf8LnP/95aJqGq6++Gv/4j//INRY743Q6UVdXV3a/gI+HaF6sjodneyy1WWgVoyFaP6l07JIP0XxQ/eGnR/XHPtgpH6J5oRrET8ushmh9pNKxUz4cDgf8fr8wDyGtjodneyy1WWhpmoZIJAJN0yw9l2CPaOPWLCL6sDImnm3Z6R6MNeL0NmJSnDp1yvj7BRdcMKFzRs5+nz59mnlMI8lms/j1r3+Nq6++GlOmTMHVV1+NefPmYdq0afjiF7+ISCSCK6+8Es8++6xQRa/cSCaT2LBhA5LJZKlDKRrRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfKiqiq6uLqiqWupQAFgfD8/2WGqz0PL7/VixYoWxd6xV5xLsEW3cmkVEH1bGxLMtO92DsYaeQJcpIztPVVXVhM4ZeRzvzjdjxgz8n//zf/DFL34R559/Pnp6eoyvQz73uc/hoYcewptvvonp06czac/r9RoXZU3TEI1GjU144vG4UViGhoaQSqUAALlcDtFo1NCIxWLGxu3pdBrpdBrA8KTOyHXsotEocrkcACCVSmFoaAjAcBGLx+MAhjcCikajxhsTyWQSiqIAGF4HMJFIABj+FC4ajULXdQBAIpEw1gdUFMXI05k8ybKMiy++2DinnD2l02lccsklkGVZiDxpmoYLL7wQsiwXnSfg3H0vn89jxowZUFWVuadcLocZM2ZA0zQh8pROpzFjxgzIsjxpT7Is46KLLjLOYTmeJpKnchlPVnnSdd0YJ+XsKZPJ4OKLL4Ysy0LkCRh+eUGWZSZ5srJGjPWUyWQwY8YMI75i8pRKpZDNZjFjxgzoum4qT6lUCpdddhlkWa7oa64d6p4kSaPeLCtnT4qiYMaMGZAkSYg8pVIpXHrppZBl2ZK+J8syLr300lE1kJUnWZZx2WWXIZVKCZEns7/vybKMSy65xDiHakRpPcmyPOolw3LypCiK8XdN05DNZlFTUwOHwwFFUYwYVFUddVwhnsKGtyOPK+Q2l8t94LhCrJlMZtRxhbh1XR91XDabRTAYhMPhQDab/cBxBRRFMX6u2Wx2VKxjjzubJ4fDgVAoBFVVmXuSJAk1NTXIZrOjYjXjyUyeampqjGuk3++H0+nE4cOH4XA4EAgERh1XeDk1EAjA4/EAGP2MRdd1RCIRw+9IT5qmobq6GsDw2KipqTE8hUIhuFwuAIDP54PP5wMAuFyuUfuNjPRUXV1tPLtyu90IBoMAYPw8R3ryer0AAI/HY3hyOBxn9HS2vpfJZIrO02T6XuHnb2Y8jRwn5exJVVWEQiE4HI4J1wjenjRNQ01NDfL5PPe6N16NYHXNBYafy2YyGSbXJ4fDgRkzZhj3d4WfXbH3hKWAJkLKlJED1+12T+icQvEHYAwEXtTU1OBf//Vf0draivfeew+xWAyqquLkyZN48cUXceedd46Kp1gaGhqwdOlSAEB/fz/C4bAxONetW4fu7m4AwLZt29Da2goA6O3tRTgcNjTWrl2Lnp4eAEBbWxva2toAAD09PVi7dq1xXDgcRm9vLwCgtbUV27ZtAwB0d3dj3bp1AIYLRzgcRn9/PwBg8+bNaG9vBwB0dnZi48aNAIaLQzgcNorRxo0bjQmj9vZ2bN68+ayevF4vNE3Diy++WPaeNm3ahPPPPx9er1eIPB04cAB/+ctf4PV6i84TcO6+19fXhwULFuCVV15h7qmrqwsLFizAgQMHhMjTunXrsGDBAni93kl78nq9OHbsGLq6ugCwHU8TyVO5jCerPB06dAgHDhyA1+sta08vvvgiNE2D1+sVIk8DAwPo6Ogwbu549z2WNWKspxdffBELFizAwMAAk77X0dGBBQsW4NChQ6by1NLSgrlz58Lr9Vb0NdcOdS+RSKCjowOSJJW9p+effx4LFixAIpEQIk8tLS2YPXs2vF6vJX3P6/XiQx/6EFpaWph78nq9+OQnP4mWlhYh8mT29z2v14vzzz8fmzZtMvJENaJ0nrxeLzo6OjAwMFB2nnbs2GH8fXBwEJ2dncYLSh0dHUYMBw8exJEjR4x2C/FomoaOjg7jAVx3d7eR20gkgr179xreOzo6jFj37t2LSCRixFeIO51Oo6Ojw3gYt3fvXvh8PsiyjCNHjuDgwYPGz6ijo8PwtHPnTgwODhq5Gelp586dxnHn8lSYZNy1axdzT5IkYcaMGdi7d6/RB8x6mmyedF1Hc3MzamtrAQBLly7F3LlzsXXrVsyePRuNjY0Ahh+0Njc3G5MNjY2NmDt3LoDRz1iCwSAaGhqMWI8ePWp4OnXqFBYvXgwAmD59urGXLQA0NTVh5syZAICFCxdi4cKFAICZM2eiqalpVJ4Kz7gWL16M+fPnAwBmz56NlStXAhh+njXWUyGmuXPnGp6CweAZPZ2t73V2dhadp8n0PcD8eDpw4ADcbjdkWS5rT7t27TJeqptojeDtqa+vDzNmzDDGXTF5MlMjWF1zBwYGsGDBArz44otMrk+qqmLBggX4/e9/z/SesBTQZuklxuxm6V/4whewZcsWAMD3vvc93Hvvvec85z/+4z9www03ABiePS/M8JUzhQ12vF4vZFlGe3s7Zs2ahUQigVAoBEmSEI/H4fV64Xa7MTQ0BF3XUV1djVwuh2QyabyxEIvF4PP54HK5jALn8/mMN9gLbyxEo1H4/X7IsoxUKgWHw4GqqiqoqgpFURAMBpHP5xGLxRAIBOB0OpFMJiHLsvGwUFVVBAIB443Wwmx+IpGA2+2Gx+OBoijI5XLw+/3GW7pjPeXzeXR0dGDOnDk477zzytpTf38/3nnnHXz84x+Hruslz1M8Hsdbb72FT37yk3C5XEXlaSJ9z+l0Yt++ffjIRz4Cj8fD1JOmaThw4ABmz54NSZJKnqfBwUEcOnQIc+fOxdDQ0KQ85XI5tLe3o76+HqFQiOl4smON4O0pkUhg165d+OQnPwm32122nk6fPo19+/Zh3rx5kCSp5HlKpVJ488038alPfQoej4d732NZI8Z6GhoawsGDB/Gxj33MeJuxmL6XzWbx9ttv44orrkA+n590nvr7+9HT04NrrrkGqqpW7DXXDnWvcBP5yU9+0rhul6unVCqFd999F1deeaXxdmQp83Ty5EljnGSzWe59T5Zl7Ny5E5dffrmx5C8rTx6PB2+99RY+9KEPYerUqSXPk9nf9xwOB3bs2IGPfOQjqK2tpRpRYk+ZTAavv/46PvGJTxjX7XLxVHh46XK5jDejBwcHUVdXh1wuB7fbDYfDAVVVIUmScVwul4PH4zHekh55nMPhgCzLyOVy0DRt1HEejweSJCGTycDpdBrH6boOt9sNXdehqqpxXCqVwqlTp3DRRRchn88jn8+POq7wkoiiKHC5XHA6ncYb0oVYs9nsqOPO5snpdOL48eOYMmWKsWExK09OpxMnTpzAlClT4PV6jVjNeJpsno4fP4677roLiUQCmqYZ+xDMnj0b+/fvBwA8/PDDyOfzuOuuuxCPx6HrOgKBAFRVRSaTMZ6xJJNJVFVVoaGhAa+//joymQx+85vf4KKLLoLT6URfXx9WrVplfOHn9/uNN75DoRDS6TSy2azxNUg6nYbL5YLP50NLSwvq6uqgKApOnz6NxsZGVFdXQ9d1DA0Nwe12w+v14p577sF3vvMdhEKhUZ5yuZxR691uNxKJBBwOB4LB4Ac8bdiwAVOnTj1j38tkMpBluag8TabvFTOeRo4TAGXrKZVKYXBwEBdeeCE0TZtQjeDtSdM0nDp1yphw41n3xqsR8+bNY3LNdblc2Lt3Lz784Q+jqqqq6OuTx+PB7t27cfnllxtfWRVzT9jX11eyzdJlS1ohmDNybcaJft0x8ji7re048gsZp9M56nPMwpsAwOjlwcb7bLNA4SINfPCzzZHnFD4BBYa/zCl8nVP4xK3AyJ+3x+MxvoYpfLZZoPA5JwCjMJ/NUyKRQHd3t/GGQzl78nq92LdvH6666qpR55TKkyRJePvtt3HNNdfA4/EUlSfg3H0vkUigq6sLV1xxxRk/GTbraaT22E+GJ+uJRZ6qqqqMeCbrKZ1O48CBA7j66qsBsB1PgP1qBG9PAM44TsrJk8vlMmppIBAoeZ50Xcc777yDa6+9Fh6Ph3vfY1kjxnrK5XLjjneznkbGOnaphJGeCozNk8/nw549e/Cxj32soq+5dqh7mqYZ48Tr9Za1p2w2O+44KZWnM40TXn0vkUhg7969uPLKK5l7SiQS2L17N+bMmTNqORUznljkyezve4lEwvj9C6AaUWpPqqoa9afcPHm9XmOposIDukgkgtra2lFtjVx1wul0GuNHkqQzHifLsrGs59jjRq4GUTim4H3kcbIs4+TJk7jgggtGnTP2uJF/L/gZG+vY48bzlMlkcOLECUybNs1YSomVp0wmY/xsCzGNjHUynszkaeTyM8lkEoFAAPX19di/f7/xUuzY40a+LDvyGYssy/jIRz6CnTt3IpPJGA+YC+2ebSmfAoUHt8AHl/Lxer3Gz3/kMomqqhrL6xSW8hnpqUAmkzHeRC8s5TOep7P1vZH5NJunyfQ9wPx4mug4Ed2Ty+Uyxt9EawRvTyPHbaEtXnVvvBrB6po78veNkUvNmb0+jdQbuXzeyJ/rZO4J+/r6UCroi5ASY/aLkLvuusv49OmrX/0qnnrqqXOe8+CDD+Kb3/wmAIx6E6CcKXwRUsDKWUSCIAiCIAiCIAiCKBeOHj2KQ4cOlToMgjORSATLly8/6zFPPvkkAJzzuDOdW9gnZyJtFavzs5/9DN/+9rdNtTFeWwQhKgsWLCh1CJZQyme5tEdImfKRj3zE+HthXb5zcfToUePvs2bNYh4TYT1jN9YrZ0TzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3yMXZz31JjdTw822OpzUJr7CbiVp1LsEe0cWsWEX1YGRPPtux0D8YaqmJlykc/+lHj73v37kUulzvnOW+99da45xPly9iN9coZ0bxYHQ/P9lhqs9AqRkO0flLp2CUfovmg+sNPj+qPfbBTPkTzQjWIn5ZZDdH6SKVjp3yM3dy31FgdD8/2WGqz0Bq7ibhV5xLsEW3cmkVEH1bGxLMtO92DsYaWxioxZpfGSiaTmDp1qjFg3njjDTQ0NJzx+Ewmg9raWmN9xJdeegnXX399ccELQKUvjTV2Y71yRjQvVsfDsz2W2iy0itEQrZ9UOnbJh2g+qP7w06P6Yx/slA/RvFAN4qdlVkO0PlLplHM+xi6NNXZz31JjdTw822OpPVmt8ZaZGruJ+GSWxhrvXFoaq3SINm7NIqIPK2Mary1WS2OJfg9GS2MRk8bv9+Ozn/2s8d8bNmw46/F/+MMfjEmQ8847D3/7t3/LMzzCIuz0iapoXqyOh2d7LLVZaNFn2fbBLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075aOwua8oDyGtjodneyy1WWjR8qD2QbRxaxYRfVgZE8+27HQPxprSR0CY5q677jL+vmHDhjNufp5Op/GDH/zA+O8777wTsixzj89KvF4v/H4/AEDTNESjUWOdvXg8DlVVAQBDQ0NIpVIAgFwuh2g0amjEYjFks1kAwz+zdDoNAMhms4jFYsZx0WjUWIoslUphaGgIAKCqqvGZVz6fRzQahaZpAIa/4FEUBcDw1zmFSamxv1AkEgnjKx9FUZBMJs/qKZFI4MEHH8SJEyfK3tOxY8fw4IMPIpFICJGngYEB/OpXv0IikSg6T8C5+97p06fR0tKCkydPMvfU39+PlpYWDAwMCJGnvr4+tLS0IJFITNpTIpHAr371K/T39wNgO54mkqdyGU9WeTp16pQxTsrZ04kTJ4x+LUKeBgcHjZ8rizxZWSPGejpx4gRaWlowODjIpO+dPHkSLS0tOHXqlKk89fb2Yu3atUgkEhV9zbVD3YtGo/jVr35l6Jezp0gkgpaWFkSjUSHyNHKcWNH3EokE1q5di97eXuaeRmqLkCezv+8V6s+xY8eMPFGNKJ2nwu+jg4ODZedJURTj75qmIR6PY+fOnchkMlAUxYhBVdVRxxXiKaxpP/K4Qm5zudwHjivEmslkRh1XiFvX9VHHxeNx7NixA5lMBtls9gPHFVAUxfi5ZrPZUbGOPe5snjKZDHbs2IFYLMbck6Io2LlzJ+Lx+KhYzXgyk6eamho4nU4Awy/STp06FatXr8b555+PQCAw6rjCw8lAIACPxwNg9DOWUCiEb37zm8Z52WzWiFXTNFRXVwMAZFlGTU2N4SkUCsHlcgEAfD4ffD4fAMDlciEUCo2bp+rqalRVVQEA3G63sRyXJEkf8OT1egEAHo/HiG3sA9eRns7W9zKZTNF5mkzfK/z8zYynRCJhjJNy9hSLxQwfE60RvD2lUins3LkT6XSae90br0awuuYODg6ipaUFJ06cYHJ9isViaGlpwfHjx5neE5YCmggpY77whS/g05/+NIDhjvrFL34Re/bsGXXMqVOnsGTJErz33nsAhr8G+d73vmd5rLxpaGjA0qVLAQD9/f0Ih8PG4Fy3bh26u7sBANu2bUNraysAoLe3F+Fw2NBYu3Ytenp6AABtbW1oa2sDAPT09GDt2rXGceFw2LhRa21txbZt2wAA3d3dWLduHYDhfITDYeNh7ebNm9He3g4A6OzsxMaNGwF8cJ28jRs3orOzEwDQ3t6OzZs3n9WT2+1GVVUVXnrppbL39PTTT+OCCy6A2+0WIk9vv/02MpkM3G530XkCzt33+vr6UF9fj1dffZW5p927d6O+vh5vv/22EHl6/PHHUV9fD7fbPWlPbrcbmqZh9+7dANiOp4nkqVzGk1WeDh06hGQyCbfbXdaeXnrpJVRVVcHtdguRp/7+fgwMDMDtdjPJk5U1Yqynl156CfX19cZxxeSptbUVO3bsQH19PQ4dOmQqT48++ihmzZoFt9td0ddcO9S9eDyOgYEB44arnD1t2bIF9fX1xnGlztOjjz6KmTNnwu12W9L33G43LrvsMjz66KPMPbndbsyZMwePPvqoEHky+/ue2+3GBRdcgKefftrIE9WI0nlyu90YGBgwYi0nTzt27DD+Pjg4iD179qCurg5OpxMdHR1GDAcPHsSRI0eMdgvxaJqGjo4O4wFcd3e3kdtIJIK9e/ca3keufb93715EIhEjvkLc6XQaHR0dxsO47u5uVFdXw+l04siRIzh48KDxM+ro6DA87dy505iI6unpGeVp586dxnHn8uR0OjFt2jR0dXUx9wQAdXV16O7uNvqAWU+TzZOu62hubkZtbS0AYOnSpbjqqqvQ1dWFj370o2hsbAQw/KB15N4fjY2NmDt3LoDRz1iCwSBqa2uNN9ePHj1qeDp16hQWL14MAJg+fTqam5sNT01NTZg5cyYAYOHChVi4cCEAYObMmWhqahqVp8JD2MWLF2P+/PkAgNmzZ2PlypUAhic7xnoqLA8/d+5cw9PY/UxGejpb3+vs7Cw6T5Ppe4D58fTOO++gqqoKTqezrD11dXVh6tSpcDqdE64RvD319fWhrq4Og4OD3Ose8MEaweqa29/fj/r6erz00ktMrk+KoqC+vh7PPPMM03vCUkB7hFjIDTfcYLzFUyASiRhvFlZXV+Pyyy//wHn/H3tvHx3Xddb7f2fmzItG86KkduK6DnExLca3FLstjYBeHGBhCsXrBjD3Juhym5iX2IZF1SzgmsW6rOYu1q8uLZBZl9ZOUxwnrVsDpk3jpnWcvsiQJlKtREpkK7YTJbIiRbJe533O+/z+0Jq9NLJiS+fsfWbPmeezVtdS6jPf5/nq2fsZnbe9v/3tb2Pjxo0rao6Pj+PDH/4wJicnASzeJd+5cye2bNmCmZkZfPe732WTVVEUnD59um5JrWantq5cLBaDoijo7e3F1q1bUSgUkE6nEQgEkM/nEYvFEIlEUKlUYNs22tvbYZomisUie2Ihl8shHo8jHA6z31k8HodhGCiXy+yJhWw2i0QiAUVRUCqVEAwG0dbWBl3XoaoqUqkUu7udTCYRCoVQLBahKApisRg0TYOu60gmk9esk1coFBCJRBCNRqGqKkzTRCKRYE/CkyfyRJ7IE3kiT+SJPJEn8kSeyBN5Ik9OPNUuXobDYViWBcMw2FP1qqoiEokgGAxC13UEAgF2nGmaiEajbE37pccFg0EoigLTNGFZVt1xtbXvNU1DKBRix9m2jUgkAtu2oet63XGKoiAUCsEwDFSr1brjluYaDofZcQDI0xJPk5OTOHDgAAqFAizLQiKRgGmaUFUV0WgUkUgEX/ziF1GtVnHgwAHk84t7fySTSei6Dk3T2DWWYrGIUCiEZDKJXC6HarWKxx9/HBs3bkQoFMLExATuv/9+lEolKIqCRCLBnvhOp9Mol8swDIO9DVIulxEOhxGPx3HkyBFs2LABqqpifn4eXV1daG9vh23bqFQqiEQiiMViePDBB/HAAw8gnU5f11OhULhmP5Oap2PHjmHdunVS1cmPY488ufN0xx13tMT308TERMP2CKEbIR6yefNmdsd0LbzxxhvYvHnz2/77xYsXcc8992BwcPBtj1m/fj0effRRfOxjH1tzfJlp9c3SVVVFb28vOjs7WSNvVmTz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir08z1WL5ZummaGB8fx6ZNm6RYPtvrfETG46m9Vq2VNh6PxWLo7OxEb28vVFVd02bpK32WNktvHLLNW6fI6MPLnFaKxWuzdNnPwWizdMIVW7duRV9fHx577DF89KMfxW233YZIJIJbbrkFnZ2d+Lu/+zsMDw/77iYIsdg4R0dH2bqDzYxsXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD9k2wfY6H5HxeGrz0FIUBZs3b3Z0cdfNZwn+yDZvnSKjDy9zEhnLT+dgvKE3QoimptXfCCEIgiAIgiAIgiCI1bD8jRDCn6zmLY21vBGy0mfpjRCC4A+vN0Jkh94IIQjCEZZlYWpqim0c1czI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9bBtG8ViUZonsr3OR2Q8nto8tEKhENtw3cvPEvyRbd46RUYfXuYkMpafzsF4QzdCCKKJKRQKePjhh1EoFBqdimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+Oneui6jhdeeAG6rjc6FQDe5yMyHk9tHlrJZBL79u1DMpn09LMEf2Sbt06R0YeXOYmM5adzMN7Q0lhEU9PqS2NVq1VomoZoNIpAINDodFwhmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWp1mrsfypbGq1Sosy0IoFJLCi9f5iIzHU3utWistMxUIBBCNRqFpGqrV6pqWxlrps7Q0VuOQbd46RUYfXua0UixeS2PJfg5GS2MRhEtisRgSiQSAxVeustksavf48vk8u8NaqVRQKpUALG7Wk81mmUYul4NhGACAcrmMcrkMADAMA7lcjh2XzWbZBj+lUgmVSgXA4t3cfD4PYHGSZ7NZ9tpXsViEqqoAAE3T2F3Q5ZsjFQoFaJoGAFBVFcVi8bqeAoEAqtUqy7WZPRUKBQSDQQQCASnqpOs6DMNAIBBwXSfgxmPPNE3EYjFUKhXunjRNQywWg67rUtQpn88jFoshEAis2VMgEIBpmixXnvNpNXVqlvnklSfDMOp6UbN6KpfLqFarCAQCUtTJsiyoqsr+yBQ99nj2iOWeyuUyYrEYO85NnUqlElRVRSwWY71krXXK5XKIRCIIBAIt/Z3rh75n2zb7fLN7KpVKiMVi7LhG1ymXyyEcDiMQCHgy9gKBABRFqcuVl6faxbtcLidFnZz+vRcIBBAMBlmu1CMa6ykQCEBVVZZrM3lSVZX9bFkWNE2DoijMUy2H2rnQ0uNqnpYfV6vt0r/Ra8fVctU0re64Wt61Xl47rvZ9GwgE2N+ZS4+rsfT3bxhGXa7Lj7uep0AggFAoBE3TuHsCFjcZ13W9LlcnnpzUqaOjgy1llUgkEI1GoaoqIpEIe7OjdlwwuHhpMJlMIhqNAqi/xhIMBhGLxViuhmGwXC3LQnt7O/Pb0dHBjkun0wiHwwCAeDyOeDwOAAiHw0in0yvWqb29HW1tbQCASCSCVCoFYHHeLfdUyykajTJPwWDwbT1db+xpmua6TmsZe7Xfv5P5VMutdm7crJ40TWM3AVbbI0R7Mk0TiqLAtm3hfQ+4tkfw+s61LAuxWAzlcpnL91O1WkUsFmPnjrXfndtzwkZAN0IIX9DZ2Yk9e/YAAGZmZpDJZNjkPHr0KIaHhwEAZ8+exalTpwAA4+PjyGQyTOPw4cMYGRkBAJw5cwZnzpwBAIyMjODw4cPsuEwmg/HxcQDAqVOncPbsWQDA8PAwjh49CmCxcWQyGczMzAAATp48id7eXgDAwMAAjh8/DmCxOWQyGdaMjh8/joGBAQBAb28vTp48eV1P+XweDz30EL7xjW80vad//ud/xkMPPYR8Pi9FnZ5//nmWj9s6ATcee0NDQ3jooYfw1FNPcfd09uxZPPTQQ3j++eelqVNNY62eamO+dhzP+bSaOjXLfPLK0wsvvMBq2cyevvGNbzAfMtTp0qVLdXqixx7PHrHcU+13W/Pkpk6nTp3CM888g4ceeggvvPCC4zrVat3K37l+6HtvvPFGnV4ze/qXf/kXPPTQQ8yTDHWqzRMvxl5tbonwtFRbhjo5/Xuv5uOf//mf6+pEPaIxnmo5XLp0qek8nTt3jv28sLCA/v5+9Pb2QtM09PX1sRwuX76MK1eusLi1fCzLQl9fH7sANzw8zGo7NTWFoaEh5r2vr4/lOjQ0hKmpKZZfLe9yuYy+vj52Me7FF19k+Vy5cgWXL19mv6O+vj7mqb+/HwsLC6w2yz3VuJEnTdPQ29srxFO5XEZvby9efPFFNgbceFpLnWzbRnd3N9avXw8A2LNnD3bu3Inu7m50dnaiq6sLwOKF1u7ubnazoaurCzt27ABQf41l8+bN6O7uxrp16wAsvllU8zQ3N4fdu3cDADZt2oTu7m7maf/+/diyZQsAYNeuXdi1axcAYMuWLdi/f39dnWoXYXfv3o2dO3cCALZt24a9e/cCWLzZsdxTZ2cnAGDHjh3MUyqVeltP1xt7AwMDXOq01JOo+fTyyy+z8dDsnmo+VtsjRHt6/fXX0dvbi7feekt431upR/D6zr106RI7b+Hx/TQxMYGHHnoIX/7yl7meEzYCWhqLaGpqr1PFYjEoioLe3l5s3boVhUIB6XQagUCAPX0eiURQqVRg2zba29thmiaKxSJ7YiGXyyEejyMcDrMGF4/HYRgGyuUye2Ihm80ikUhAURSUSiUEg0G0tbVB13WoqopUKsWepksmkwiFQigWi1AUBbFYDJqmQdd1JJNJ2LaNfD6PVCrFnvKKRCLsaQ3TNJFIJGBZ1oqeAGBwcBDvec97cNNNNzW1p9nZWYyOjuL9738/LMtqeJ0KhQLOnz+PD37wg1AUxVWdVjP2FEXBq6++is2bNyMSiXD1ZNs2Xn/9dfZHaKPrlM1mMTExgW3btqFcLq/Jk2VZePHFF7Ft2zakUimu88mPPUK0p2KxiKGhIXzwgx9EOBxuWk8LCwt49dVXsX37dgBoeJ3K5TIGBwfxoQ99CJFIRPjY49kjlntSVRVXrlzBe9/7Xui67nrsmaaJN954Az/xEz8B27bXXKfZ2VmMj4/jfe97HzRNa9nvXD/0vUqlgoGBAXzwgx9ENBptak/lchljY2P4yZ/8SWia1vA6zczMsHmi67rwsRcOhzE0NITbbrsNt9xyC1dPsVgMFy5cwLve9S684x3vaHidnP69FwqF8PLLL2Pz5s1Yt24d9YgGe9J1Hf39/di+fTvi8XhTeapdvAyHw+zJ6EKhgPXr18MwDEQiEQSDQfZmRu040zQRjUbZU9xLjwsGg1AUBaZpwrKsuuNqy6DUnvyuHWfbNiKRCGzbhq7r7LhyuYxsNotbb70Vtm2jWq3WHVf7PlZVFeFwGKFQiD0hXcvVMIy6467nSVEUTE9PI5VKoa2tjasnRVEwOzuLVCqFaDTKcnXiaa11mpycxIEDB1AoFGBZFhKJBAKBALZs2YLXXnsNgUAAX/ziF1GtVnHgwAHk83nYto1kMgld19nbwoqioFgsIhaL4QMf+AD6+/uh6zoef/xxbNy4EaFQCBMTE7j//vtRKpWgKAoSiQR74judTqNcLsMwDPY2SLlcRjgcRjwex5EjR7Bhwwaoqor5+Xl0dXWhvb0dtm2jUqkgEokgFovhwQcfxAMPPIB0Ol3nyTRNqKqKaDSKSCTCVi9IpVLXeDp27BjWrVv3tmOv9taNmzqtZey5mU/lchkLCwvYsGEDqtVq03oql8vI5/O45ZZbYJrmqnqEaE+1NyBuvvlmVKtVoX1vpR5xxx13cPnOjUQiuHz5Mm6//XbEYjHX30+xWAwXL17EbbfdVveGmdNzwomJiYYtjUU3QoimptX3CCEIgiAIgiAIgiCI1bB8jxDCn6xm34617BGy0mdpjxCC4A+vPUJkh/YIIQjCEZVKBadPn2Zr/jUzsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz0Mw8Brr73GnphuNF7nIzIeT20eWm1tbfjoRz/K9t/w6rMEf2Sbt06R0YeXOYmM5adzMN7QjRCCaGKWb6zXzMjmxet8RMbjqc1Dy42GbOOk1fFLPWTzQf1HnB71H//gp3rI5oV6kDgtpxqyjZFWx0/1WL65b6PxOh+R8Xhq89Bavom4V58l+CPbvHWKjD68zElkLD+dg/GGlsYimhpaGosgCIIgCIIgCIIgbgwtjdUa0NJY149FELJCS2OJh27nEkQTY5omRkdHYZpmo1NxjWxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FQPmZ7SBeiNNJFaiqJg8+bNUBTF088S/JFt3jpFRh9e5iQylp/OwXhDN0IIookpFot47LHHUCwWG52Ka2Tz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir46d66LqOl156CbquNzoVAN7nIzIeT20eWolEAvfeey8SiYSnnyX4I9u8dYqMPrzMSWQsP52D8YaWxiKaGloaiyAIgiAIgiAIgiBuDC2N1RrQ0ljXj0UQskJLY4mH3gghCIIgCIIgCIIgCIIgCIIgCMK30I0QwhfEYjH2mqZlWchms6i97JTP59mrZpVKBaVSCcDiGnXZbJZp5HI5GIYBACiXyyiXywAAwzCQy+XYcdlslq1rVyqVUKlUACy+1pbP5wEA1WoV2WwWlmUBWHwNTFVVAICmaSgUCgCuXROwUChA0zQAgKqq7LWxt/OUy+Xw6U9/GpOTk03vaXx8HJ/+9KeRy+WkqNP09DTLx22dgBuPvdnZWRw6dAhTU1PcPV29ehWHDh3C9PS0FHV68803cejQIeRyuTV7qo35q1evAuA7n1ZTp2aZT155mpmZYeOhmT1NTk4yHzLUaW5ujuXDo05e9ojlniYnJ3Ho0CHMzc1xGXu1XGdmZhzVaWxsjP1uW/k71w99b35+Hp/+9KdZvs3s6a233sKhQ4cwPz8vRZ2WzhMvxl5tbo2NjXH3tFRbhjo5/Xuv5mN8fJzViXpE4zzV6jE3N9d0nlRVZT/X/rZ+9tlnoaoqVFVlOei6XndcLZ9qtXrNcbXamqZ5zXG1XDVNqzuulrdt23XH5XI5/Od//ifLc/lxNVRVZb9XwzDqcl1+3PU8qaqK//zP/2TnfDw9VSoVPPvss8jlcnW5OvHkpE4dHR0IhUIAFpe2uuWWW3Dw4EGsX78eyWSy7rhgcPHSYDKZRDQaBVB/jeWmm27CX/3VXyGdTrP8arlaloX29nYAi3uJdHR0ME/pdBrhcBgAEI/HEY/HAQDhcJhpLa9Te3s72traAACRSASpVAoAEAgErvEUi8UAANFolHkKBoNv6+l6Y0/TNNd1WsvYq/3+ncynfD7P5kkze1o631fbI0R7KhaLePbZZ1EqlYT3vZV6BK/v3Lm5ORw6dAiTk5Ncvp8WFhZw6NAhTExMcD0nbAR0I4TwBZ2dndizZw+AxQtzmUyGTc6jR49ieHgYAHD27FmcOnUKwOIF3UwmwzQOHz6MkZERAMCZM2dw5swZAMDIyAgOHz7MjstkMuwk5NSpUzh79iwAYHh4GEePHgWw2DgymQxmZmYAACdPnkRvby8AYGBgAMePHwew2BwymQxrRsePH8fAwAAAoLe3FydPnryup3g8jttvvx09PT1N7+nkyZPYvn074vG4FHV69dVX2R9rbusE3HjsTU1N4a677sJzzz3H3dP58+dx11134dVXX5WiTsePH8ddd92FeDy+Zk/xeBzpdBrnz58HwHc+raZOzTKfvPI0NjYGRVEQj8eb2lNPTw9uv/12xONxKeq0sLAAXdfZyaLoscezRyz31NPTg7vuugsLCwtcxt4LL7yAu+66C2NjY47q9Oijj2LXrl2Ix+Mt/Z3rh75XLpeh6zq7INLMnp5++mncddddKJfLUtTp0UcfxZ133ol4PO7J2IvH4/iFX/gFPProo9w9xeNxfOxjH8Ojjz4qRZ2c/r0Xj8exfft29nulHtFYT/F4HLquY2Fhoek8nTt3jv28sLCAoaEhbN26FeFwGH19fSyHy5cv48qVKyxuLR/LstDX18cuwA0PD7PaTk1NYWhoiHnv6+tjuQ4NDWFqaorlV8u7XC6jr6+PXYx75ZVXsGHDBoTDYVy5cgWXL19mv6O+vj7mqb+/n/3+R0ZG6jz19/ez427kKRwO473vfS8GBwe5ewoGg9i6dSteeeUVNgacelprnWzbRnd3N9avXw8A2LNnD973vvfhiSeewHve8x50dXUBWLzQ2t3dzW42dHV1YceOHQDqr7G0t7cjGo2yOo2NjTFPc3Nz2L17NwBg06ZN6O7uZp7279+PLVu2AAB27dqFXbt2AQC2bNmC/fv319WpdhF29+7d2LlzJwBg27Zt2Lt3L4DFmx3LPXV2dgIAduzYwTylUqm39XS9sTcwMOC6TmsZe4Dz+XT58mXccsstCIfDTe1pcHAQW7ZsQTgcXnWPEO1pcnISW7duRS6XE973VuoRvL5zFxYWcNddd6Gnp4fL95Npmrjrrrvw5JNPcj0nbAS0RwjR1NTWlYvFYlAUBb29vdi6dSsKhQLS6TQCgQDy+TxisRgikQgqlQps20Z7eztM00SxWGRPLORyOcTjcYTDYdbg4vE4DMNAuVxmTyxks1kkEgkoioJSqYRgMIi2tjboug5VVZFKpdjd7WQyiVAohGKxCEVREIvFoGkadF1HMpmEbdvI5/NIpVIIBoMoFAqIRCKIRqPs7n4ikYBlWeSJPJEn8kSeyBN5Ik/kiTyRJ/JEnsiTY0+1i5fhcBiWZcEwDPZUvaqqiEQiCAaD0HUdgUCAHWeaJqLRKKrVKjRNqzsuGAxCURSYpgnLsuqOi0ajCAQC0DQNoVCIHWfbNiKRCGzbhq7rdccpioJQKATDMFCtVuuOW5prOBxmxwEgT0s8TU5O4sCBAygUCrAsC4lEAqZpQlVVRKNRRCIRfPGLX0S1WsWBAweQz+dh2zaSySR0XYemaewaS7FYRCgUQjKZZG+BP/7449i4cSNCoRAmJiZw//33o1QqQVEUJBIJ9sR3Op1GuVyGYRjsAZ9yuYxwOIx4PI4jR45gw4YNUFUV8/Pz6OrqQnt7O2zbRqVSQSQSQSwWw4MPPogHHngA6XT6up4KhQKCwSBSqdQ1no4dO4Z169ZJVSc/jj3y5M7THXfc0RLfTxMTEw3bI4RuhBBNTatvll4ul3HmzBn2dGszI5sXr/MRGY+nNg8tNxqyjZNWxy/1kM0H9R9xetR//IOf6iGbF+pB4rScasg2RlqdZq7H8s3SDcPAyMgIeyq70Xidj8h4PLXXqrXSxuPxeBy7du3CmTNnUC6X17RZ+kqfpc3SG4ds89YpMvrwMqeVYvHaLF32czDaLJ0gCIIgCIIgCIIgCIIgCIIgCEIA9EYI0dS0+hshBEEQBEEQBEEQBLEalr8RQviT1bylsZY3Qlb6LL0RQhD84fVGiOzQGyEEQTjCMAxcvHiRrXnYzMjmxet8RMbjqc1Dy42GbOOk1fFLPWTzQf1HnB71H//gp3rI5oV6kDgtpxqyjZFWx0/1sCwLs7OzbCPiRuN1PiLj8dTmoRUOh9mG615+luCPbPPWKTL68DInkbH8dA7GG7oRQhBNTLlcxhNPPME2SmpmZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvjp3rIdHEKoBuxIrXi8TjuuusuR+v7u/kswR/Z5q1TZPThZU4iY/npHIw3tDQW0dTQ0lgEQRAEQRAEQRAEcWNoaazWgJbGun4sgpAVWhpLPPRGCEEQBEEQBEEQBEEQBEEQBEEQvoVuhBBEE5PNZvHggw8im802OhXXyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/VQVRVnz56FqqqNTgWA9/mIjMdTm4dWR0cHPvWpT6Gjo8PTzxL8kW3eOkVGH17mJDKWn87BeENLYxFNTasvjWWaJsbHx7Fp0yYoitLodFwhmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWp1mrsfypbFs20Y+n0cqlUIw2PjnZL3OR2Q8ntpr1VppmSlFUbBp0yaMj4/DNM01LY210mdpaazGIdu8dYqMPrzMaaVYvJbGkv0crJHXcpvrW5sgiDoURcHmzZsbnQYXZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvjp3oEg0GpnvL3Oh+R8Xhq89AyTROjo6Oef5bgj2zz1iky+vAyJ5Gx/HQOxhs5brkRhEtisRgSiQQAwLIsZLNZ1F52yufz0HUdAFCpVFAqlQAsfpkvfS0rl8vBMAwAQLlcRrlcBgAYhoFcLseOy2azME0TAFAqlVCpVAAAuq4jn88DAKrVKrLZLCzLAgAUi0X2upumaSgUCgAW7wBns1nYtg0AKBQK0DQNwOJrcsVi8bqeSqUSjh8/junp6ab3NDU1ha9+9assfqPrND8/j6985SsolUqu6wTceOxls1mcOHECMzMz3D3Nzc3hxIkTmJ+fl6JOk5OTOHHiBEql0po9lUolfOUrX8Hc3BwAvvNpNXVqlvnklaeFhQV8+ctfRqlUampP09PTOH78OEqlkhR1yuVy7PfKo05e9ojlnqanp3HixAnW59zUqVQqYXZ2FidOnMDCwoKjOr311lv42te+hlKp1NLfuX7oe/l8Hl/+8pfr/rtZPdXmST6fl6JOS+eJF2OvVCrhq1/9Kt566y3unkqlEr72ta/hrbfekqJOTv/eq/2OpqamWJ2oRzTOU6lUwpe//OW6/24WT6qqsp8ty0KhUMD58+eh6zpUVWU56Lped1wtn2q1es1xtdqapnnNcbVcNU2rO66Wt23bdccVCgUMDQ2x+MuPq6GqKvu9GoZRl+vy467nSdd1DA0NIZ/Pc/ekaRrOnz+PQqFQl6sTT07q1NHRgVAoBABIJBK4+eabcffdd+Omm25CMpmsO672NHoymUQ0GgVQf40lmUzi93//99He3s7yq+VqWRb7/xVFqbuwm06nEQ6HAQDxeBzxeBwAEA6HkU6nV6xTe3s72traAACRSASpVAoAEAgErvEUi8UAANFolHmqXVxeydP1xp6maa7rtJaxV/v9O5lPxWIRL7/8Mju+WT3l83k231fbI0R7KpVKOH/+PCqVivC+t1KP4PWdm8vlcOLECUxPT3P5fioUCjhx4gSuXr3K9ZywEdCNEMIXdHZ2Ys+ePQCAmZkZZDIZNjmPHj2K4eFhAMDZs2dx6tQpAMD4+DgymQzTOHz4MEZGRgAAZ86cwZkzZwAAIyMjOHz4MDsuk8lgfHwcAHDq1CmcPXsWADA8PIyjR48CWGwcmUwGMzMzAICTJ0+it7cXADAwMIDjx48DWGwOmUyGNaPjx49jYGAAANDb24uTJ09e11MwGESxWMQzzzzT9J6+9rWvwbIsBINBKep04cIFTE5OIhgMuq4TcOOxNzY2ho6ODvzHf/wHd08vvvgiOjo6cOHCBSnq9Nhjj7E/TtfqKRgMYnp6Gi+++CIAvvNpNXVqlvnkladXX30V4+PjCAaDTe3pmWeeQbFYRDAYlKJOU1NTeP3119kJnOixx7NHLPf0zDPPoKOjA1NTU1zGXm9vLzo6OvDqq686qtMjjzyCeDyOYDDY0t+5fuh78/PzeP3119kJYTN7+ta3voWOjg7Mz89LUadHHnkEkUgEwWDQk7EXDAahKAoeeeQR7p6CwSCSySQeeeQRKerk9O+9YDAIy7LYUjbUIxrrKRgM4vXXX2c3pprJ07lz59jPCwsLeOmllxCLxRAIBNDX18dyuHz5Mq5cucLi1vKxLAt9fX3sAtzw8DCr7dTUFIaGhpj3vr4+luvQ0BD7fY2Pj7O8y+Uy+vr62MW4CxcuwLZtBAIBXLlyBZcvX2a/o76+Puapv78fCwsLrDZLPfX397PjbuQpEAggGo1iYGCAuyfbthGLxXDhwgU2Bpx6WmudbNtGd3c31q9fDwDYs2cPPvCBDyCbzeJ973sfurq6ACxeaO3u7mY3G7q6urBjxw4A9ddYbr75ZmzZsoXd1BgbG2Oe5ubmsHv3bgDApk2b0N3dzTzt378fW7ZsAQDs2rULu3btAgBs2bIF+/fvr6tT7SLs7t27sXPnTgDAtm3bsHfvXgCLNzuWe+rs7AQA7Nixg3lKpVJv6+l6Y29gYMB1ndYy9gDn8+mVV15h86SZPQ0MDCAcDiMQCKy6R4j2NDExgVgshvn5eeF9b6Uewes7d2pqCh0dHXjmmWe4fD+VSiV0dHTg61//OtdzwkZAe4QQTU1tXblYLAZFUdDb24utW7eiUCggnU4jEAggn88jFoshEomgUqnAtm20t7fDNE0Ui0X2xEIul0M8Hkc4HGYNLh6PwzAMlMtl9sRCNptFIpGAoigolUoIBoNoa2tjT2ekUilUq1Xkcjkkk0mEQiEUi0UoioJYLMaePEkmk9esCVgoFBCJRBCNRqGqKkzTRCKRYE+BkCfyRJ7IE3kiT+SJPJEn8kSeyBN5Ik9OPNUuXobDYViWBcMw2FP1qqqym6C6riMQCLDjTNNENBpFtVqFpml1x9VuZpqmCcuy6o6LRqMIBALQNA2hUIgdZ9s2IpEIbNuGrut1xymKglAoBMMwUK1W645bmms4HGbHASBPSzxNTk7iwIED7EnzRCIB0zShqiqi0SgikQi++MUvolqt4sCBA+yNmGQyyZ7Or11jKRaLCIVCSCaTyOVyqFarePzxx7Fx40aEQiFMTEzg/vvvR6lUgqIoSCQS7InvdDqNcrkMwzDY2yDlchnhcBjxeBxHjhzBhg0boKoq5ufn0dXVhfb2dti2jUqlgkgkglgshgcffBAPPPAA0un0dT0VCgUEg0GkUqlrPB07dgzr1q2Tqk5+HHvkyZ2nO+64oyW+nyYmJhq2RwjdCCGamlbfLF3XdQwPD2Pbtm2IRCKNTscVsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNVp5npcuXIFb7zxBvtvy7IwMzOD9evXsyWHGonX+YiMx1N7rVorbTweiUSwbds2DA8PQ9f1NW2WvtJnabP0xiHbvHWKjD68zGmlWLw2S5f9HKyR13JpaSyCaGJUVUVPT0/dGofNimxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FSP2ibYtXXsG43X+YiMx1Obh1YsFsOdd97JnoT36rMEf2Sbt06R0YeXOYmM5adzMN7QGyFEU9Pqb4QQBEEQBEEQBEEQxGpY/kYI4U9W85bGWt4IWemz9EYIQfCH1xshskNvhBAE4YhqtQpVVeGH+5myefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTParVKkzTlMaL1/mIjMdTm4dWIBBgG657+VmCP7LNW6fI6MPLnET3H7+cg/GGboQQRBOTy+Xwmc98BrlcrtGpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qh6Zp+OEPfwhN0xqdCgDv8xEZj6c2D610Oo2DBw+yDZW9+izBH9nmrVNk9OFlTiJj+ekcjDe0NBbR1LT60lgybi7lFNm80EZ94rTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXWauR7Ll8aybRvlchnxeBzBYOOfk/U6H5HxeGqvVWulZaZCoRDWr1+PmZkZWJa1pqWxVvosLY3VOGSbt06R0YeXOa0Ui9fSWLKfgzXyWq7iSRSCIIQQCoV882Uumxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1SMYDCKRSDQ6DYbX+YiMx1Obh5ZlWZiamvL8swR/ZJu3TpHRh5c5iYzlp3Mw3shxy40gCEcUi0UcO3YMxWKx0am4RjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHrusYHByEruuNTgWA9/mIjMdTm4dWIpHAvffe6+jCq5vPEvyRbd46RUYfXuYkMpafzsF4QzdCCKKJURQFmzdvhqI0/8tdsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz2CwSA6OjqkWZbG63xExuOpzUPLNE2Mjo7CNE1PP0vwR7Z56xQZfXiZk8hYfjoH4w3tEUI0Na2+RwhBEARBEARBEARBrIble4QQ/mQ1+3asZY+QlT5Le4QQBH947REiO428livPbTeCINaMpmno7e2FpmmNTsU1snnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz1M08T4+Lg0T/p7nY/IeDy1eWhFo1F0dnYiGo16+lmCP7LNW6fI6MPLnETG8tM5GG/oRghBNDEyrqnoFNm80Pq04rTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXX8VI/aJtiWZTU6FQDe5yMyHk9tHlqRSATbt29HJBLx9LMEf2Sbt06R0YeXOYmM5adzMN7QjRDCF8RiMbZxl2VZyGazqK36ls/n2WSrVCoolUoAFu++ZrNZppHL5WAYBgCgXC6jXC4DAAzDQC6XY8dls1l2x7ZUKqFSqQBYnNj5fB4AUK1Wkc1mWUMrFotQVRXA4p3QQqEAALBtG9lsFrZtAwAKhQK7Q6qqKttI6O08JZNJfPzjH2drCjazp2q1ir179yKZTEpRp0gkgq6uLiSTSdd1Am489mKxGPbt24dQKMTdUzgcxr59+xCJRKSok23b2LdvH5LJ5Jo9JZNJ/M//+T8RDocB8J1Pq6lTs8wnrzxFo1H83u/9HpLJZFN7CgaD+PjHP45kMilFndra2nD33XcjmUxyqZOXPWK5p2AwiH379qGtrY3L2FMUBfv27UM0GnVUJ8uy8Md//MdIJpMt/Z3rh74Xj8dx9913s7//mtlTIBDAvn37EI/HpaiTZVn4oz/6IySTSU/GXjKZxB/+4R/WXQjg5SmZTOL++++HZVlS1Mnp33vJZBJ79+6t+3uMekTjPCWTSdx9991oa2trOk+qqrKfLctCtVrFhz70IUSjUaiqynLQdb3uuFo+1Wr1muNqtTVN85rjarlqmlZ3XC1v27brjgOAHTt2IBqNwjCMa46roaoq+70ahlGX6/LjrucpGo3igx/8IKrVKndPkUgEH/rQh1i8Wq5OPDmpU0dHB0KhEIDFzc4Nw8CRI0fY3zRLj6v9bZNMJtlbH0uvsZTLZZw4cYKNRcMwWK6WZaG9vR3A4j4AHR0dzFM6nWbnbfF4HPF4HAAQDoeRTqdXrFN7ezubW5FIBKlUCgAQCASu8RSLxQAsnpPUPC3fd2Gpp+uNPU3TXNdpLWOv9vt3Mp8AYPv27YhGo03tqVqt4oMf/CCi0eiqe4RoT8FgEB/60IegKIrwvrdSj+D1ndvW1oZ9+/YhGAxy+X5qb2/Hvn372L/XfnduzwkbAd0IIXxBZ2cn9uzZAwCYmZlBJpNhk/Po0aMYHh4GAJw9exanTp0CAIyPjyOTyTCNw4cPY2RkBABw5swZnDlzBgAwMjKCw4cPs+MymQzGx8cBAKdOncLZs2cBAMPDwzh69CiAxcaQyWQwMzMDADh58iR6e3sBAAMDAzh+/DiAxeaQyWRYMzp+/DgGBgYAAL29vTh58uR1Pdm2jTNnzuDJJ5/0haf+/n7Yti1FnV588UU8/vjjsG3bdZ2AG4+9V199FdlsFk8//TR3T88//zyy2SxefPFFaepUO9lbqyfbtnHixAk8//zzAPjOp9XUqZnmkxeeLly4gC996UuwbbupPT355JM4c+YMbNuWok5jY2PIZDLsj23RY493j1jq6cknn0Q2m2We3NTp1KlT6OnpQTabxYULFxzXaXx8HLZtt/x3brP3vatXryKTybCTu2b3lM1mmScZ6vT666/Dtm1Pxp5t27h48aIQT7ZtY3p6Wpo6Of17z7Zt9Pf3U4+QxFPtb9ixsbGm83Tu3Dn288LCAvr7+9mFu76+PpbD5cuXceXKFRa3lo9lWejr62MX4IaHh1ltp6amMDQ0xLz39fWxXIeGhjA1NcXyq+VdLpfR19fHLsYNDAzgrbfeQrVaxZUrV3D58mX2O+rr62Oe+vv7sbCwwGqz3FONG3mqVqsolUpCPJmmCVVVMTAwwMaAG09rqZNt2+ju7sb69esBAHv27MHP/dzPoaOjAx/4wAfQ1dUFYPFCa3d3N7vZ0NXVhR07dgCov8Zyyy23oLu7m914GBsbY57m5uawe/duAMCmTZvQ3d3NPO3fvx9btmwBAOzatQu7du0CAGzZsgX79++vq1PtIuzu3buxc+dOAMC2bduwd+9eAIs3O5Z76uzsBLB486zmKZVKva2nG409HnVa6knkfHrzzTdRrVab3lM+n0e1Wl1TjxDtSVVVTE9PC+97K/UIXt+5Y2NjyGazePLJJ7l8P2WzWWSzWe7nhI2ANksnmpraBjuxWAyKoqC3txdbt25FoVBAOp1GIBBAPp9HLBZDJBJBpVKBbdtob2+HaZooFovsiYVcLod4PI5wOMwaXDweh2EYKJfL7ImFbDaLRCIBRVFQKpUQDAbR1tYGXdehqipSqRSq1SpyuRySySRCoRCKxSIURUEsFoOmaewpjNpF9lQqhWAwiEKhgEgkwp70ME0TiUQClmWt6KlcLiOTyeCP/uiPsHHjxqb29Oabb+Lo0aP4xCc+gWg02vA6Xb16FUeOHMEnPvEJpFIpV3VazdjTdR1f+MIX8Md//MdIp9NcPZVKJRw5coQ9xdjoOk1OTuLRRx/FJz7xCQBYk6dCoYBMJoN9+/bh1ltv5Tqf/NgjRHuanp7G4cOH8YlPfALpdLppPb311lt45JFH8IlPfALxeLzhdZqdncXnP/95fOITn0BHR4fwscezRyz3tLCwgEceeQR/8id/UveUoFNPhUIBDz/8MPbv349YLLbmOo2Pj7P+EwqFWvY71w99b25uDv/0T/+EP/uzP8NNN93U1J7m5ubwpS99CX/6p3+KUCjU8Dq9+eabbJ4oiiJ87BmGgUwmg/vuuw8/9mM/xtVT7YL1fffdh3e9610Nr5PTv/dqFyz27t2L2267jXpEgz1ls1lkMhn8yZ/8CdatW9dUni5duoSxsTGEw2FYloVisYjBwUHccccdABafwA8Gg9B1HYFAgB1nmiai0Siq1So0Tas7LhgMQlEUmKYJy7LqjotGowgEAtA0DaFQiB1n2zYikQhs24au6+y4XC7H8gmFQqhWq3XH1S7Eq6qKcDiMUCjEnpCu5WoYRt1x1/NUu7Gwfft2JJNJrp6q1Sp+9KMfYfv27UgkEixXJ57WWqfJyUkcOHAAhUIBlmUhkUigvb0d+/fvxxe+8AVUKhV88YtfRLVaxYEDB5DP52HbNns7WtM0do2lWCzi5ptvxp/92Z/hoYceQjabxeOPP46NGzciFAphYmIC999/P3tzN5FIsCe+0+k0yuUyDMNgb4OUy2WEw2HE43EcOXIEGzZsgKqqmJ+fR1dXF9rb22HbNiqVCiKRCGKxGB588EE88MADSKfTdZ5qF5Kj0Sh7szkYDLLz96Wejh07hnXr1r3t2NM0DYqiuKrTWsaem/mUz+cxMDCAO+64A4qiNK2nfD7PxnUgEFhVjxDtSdd1vPDCC+ytEJF9b6Uecccdd3D5zjVNE5///OfxR3/0R7jppptcfz/Zto3/9//+H/7gD/4A69evd31OODEx0bDN0ulGCNHU1G6E1PBy8sjA8j+amxnZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6jRzPa5cuYI33niD/ffyC3eNxut8RMbjqb1WrampKdxzzz11/9/yGwRf+9rXAOCa41Zipc9u2LDhbWOtltXq/OM//iM++clPOoqxUqxmR7Z56xQZfXiZ00qx7rzzTi7asp+DNfJaruJJFIIghFBb/9IPyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/UIBALsyWgZ8DofkfF4avPQqq317/VnCf7INm+dIqMPL3MSGctP52C8aa7HFwiCqKNQKODIkSNsI6NmRjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHpmno7+9n67o3Gq/zERmPpzYPrWQyiX379rFNxb36LMEf2eatU2T04WVOImP56RyMN3QjhCCamEgkgu3btyMSiTQ6FdfI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9QiFQtiwYQNCoVCjUwHgfT4i4/HU5qGl6zoGBweh67qnnyX4I9u8dYqMPrzMSWQsP52D8Yb2CCGamlbfI4QgCIIgCIIgCIIgVsPyPUIIf7KafTvWskfISp+lPUIIgj+89giRnUZey6U3QgiiiVFVFT09PVBVtdGpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qh2maGB0dhWmajU4FgPf5iIzHU5uHViwWw5133uloTwI3nyX4I9u8dYqMPrzMSWQsP52D8YZuhBBEEyPjF4dTZPNCf4SL03KjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPWqbYNu23ehUAHifj8h4PLV5aCmKgs2bN0NRFE8/S/BHtnnrFBl9eJmTyFh+OgfjDS2NRTQ1tDQWQRAEQRAEQRAEQdwYWhqrNdB1Hbt3737bPT0ikQhOnTqF+fl5WhqLICSClsYSD70RQhBNjGVZmJqagmVZjU7FNbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9bNtGsViU5olsr/MRGY+n9lq1IpEIfuEXfqHu/1u6MfMv/MIvrGnTYhk3tW5lZJu3TpHRh5c5iYzlp3Mw3tCNEIJoYgqFAh5++GEUCoVGp+Ia2bx4nY/IeDy1eWi50ZBtnLQ6fqmHbD6o/4jTo/7jH/xUD9m8UA8Sp+VUQ7Yx0ur4qR66ruOFF1542zcHvMbrfETG46ntROsv//Iv8Uu/9EvshkcymcS+ffvwq7/6q/jLv/zLNcWvfTaZTK7pc4QYZJu3TpHRh5c5iYzlp3Mw3tDSWERT0+pLY1WrVWiahmg0ikAg0Oh0XCGbF6/zERmPpzYPLTcaso2TVscv9ZDNB/UfcXrUf/yDn+ohmxfqQeK0nGrINkZanWaux/KlsarVKizLQigUksKL1/mIjMdT242WruuYn59HtVpFOp1GW1sb01jtslaBQADRaBSapqFardLSWA1GtnnrFBl9eJnTSrF4LY0l+zlYI6/l0k5HBNHEBAIBxGKxRqfBBdm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+KkegUBAqg2wvc5HZDye2m60IpGI6xsA1WoVqqq60iD4Idu8dYqMPrzMSXT/8cs5GG9oaSyCaGLy+Tweeugh5PP5RqfiGtm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+Kkemqaht7cXmqY1OhUA3ucjMh5PbR5abjRSqRS6u7uRSqUcxyf4Idu8dYqMPrzMSWQsP52D8YZuhBBEExOLxXDnnXdKc2fVDbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9FEXB5s2bpXkq2+t8RMbjqc1Dy42Gqqro6emht0IkQbZ56xQZfXiZk8hYfjoH4w3tEUI0Na2+RwhBEARBEARBEARBrIble4QQrY3T/T1ojxCCEAOvPUJkp5HXcumNEMIXxGIxJBIJAIBlWchms6jd48vn89B1HQBQqVRQKpUAAKZpIpvNMo1cLgfDMAAA5XIZ5XIZAGAYBnK5HDsum83CNE0AQKlUQqVSAbC4CVntNa9qtYpsNgvLsgAAxWKRPT2haRoKhQIAwLZtZLNZ2LYNACgUCuy1OFVVUSwWr+upUqngW9/6FmZnZ5ve0/T0NJ566ilUKhUp6pTNZvHkk0+iUqm4rhNw47GXz+dx+vRpzM3Ncfe0sLCA06dPI5vNSlGnq1ev4vTp06hUKmv2VKlU8OSTT2JhYQEA3/m0mjo1y3zyylMul8M3v/lNVCqVpvY0OzuLb33rW6hUKlLUqVAosN8rjzp52SOWe5qdncXp06dRKBS4jL35+XmcPn2a9c211mlqagrf+c53UKlUWvo71w99r1gs4pvf/CbLqZk9zczM4PTp0ygWi1LUaWpqCt/+9rdRqVQ8GXuVSgXf/va3MTU1xd1TpVLBd77zHUxNTUlRJ6d/71UqFTz11FOYnp5mdaIe0ThPlUoF3/zmN1lOzeRJVVX2s2VZKBaLeO2112AYBlRVZTnoul53XC2f2l4RS4+r1dY0zWuOq+WqaVrdcbW8bduuO65YLOLy5cswDAOGYVxzXA1VVdnvtXZsLdflx13Pk2EYePXVV1EoFLh70nUdr732GorFYl2uTjzxqFOlUsFrr72GSqVSd1xHRweCwcVLg8lkEtFoFED9NZb29nb8t//239DW1sbyq+VqWRba29sBLD7h3tHRwTyl02mEw2EAQDweRzweBwCEw2Gk0+kV69Te3s7iRCIRthxXIBBAR0cHQqEQACCRSLCny6PRKJLJJAAgGAy+rafrjT1N01zXaS1j7+3qtJqxVyqV2DxpZk+FQgGvvvoqDMNYdY8Q7alcLuO1116DqqrC+95KPYLXd26hUMDp06cxOzvL5fupVCrh9OnTmJ6e5npO2AjoRgjhCzo7O7Fnzx4AwMzMDDKZDJucR48exfDwMADg7NmzOHXqFABgfHwcmUyGaRw+fBgjIyMAgDNnzuDMmTMAgJGRERw+fJgdl8lkMD4+DgA4deoUzp49CwAYHh7G0aNHASw2jkwmg5mZGQDAyZMn0dvbCwAYGBjA8ePHASw2h0wmw5rR8ePHMTAwAADo7e3FyZMnr+vJtm28/vrrePrpp5ve0/HjxzE+Pg7btqWo08svv8x+x27rBNx47L3++uvIZrP4wQ9+wN3TuXPnkM1m8fLLL0tRp0cffZSd7K3Vk23buHjxIs6dOweA73xaTZ2aZT555enixYs4f/48bNtuak9PP/00Xn/9ddi2LU2dBgcH2R/boscezx6x3NPTTz+NbDbLbez98Ic/RDabxcWLFx3V6eGHH8bs7Cxs227p71y/9L3BwUF2ctfMnp588klks1lp6vTwww9jenoatm17MvZqNykffvhh7p5s28b8/DwefvhhKerk9O8927YxPj7OcqUe0VhPtm1jcHCwKT2dO3eO/bywsIDBwUF24a6vr4/lcPnyZVy5coXFreVjWRb6+vrYBbjh4WH2e5iamsLQ0BDz3tfXx3IdGhpiNzvHx8dZ3uVyGX19fexi3Pnz55HP51GtVnHlyhVcvnyZ/Y76+vqYp/7+fvZg1MjISJ2n/v5+dtyNPFWrVVQqFbz44ovcPZmmCVVVcf78eTYGnHriUae33noLqqpienqaeTJNs27vj66uLuzYsQNA/TWWW265BTt27GA3KMbGxpinubk57N69GwCwadMmdHd3M0/79+/Hli1bAAC7du3Crl27AABbtmzB/v376+pUuwi7e/du7Ny5EwCwbds27N27F8DizY7u7m6sX78eALBnzx50dnYCAHbs2IGuri4A1+5nstTT9cbewMCA6zqtZey9XZ1WM/aGh4eRy+VQrVab2lNt3lWr1VX3CNGe3nzzTaiqitnZWeF9b6UewfM7N5vN4umnn+by/ZTL5ZDNZnHy5Emu54SNgJbGIpqa2utUsVgMiqKgt7cXW7duRaFQQDqdRiAQQD6fRywWQyQSYU/3t7e3wzRNFItF9sRCLpdDPB5HOBxmDS4ej8MwDJTLZfbEQjabRSKRgKIoKJVKCAaDaGtrg67rUFUVqVQK1WoVuVwOyWQSoVAIxWIRiqIgFotB0zTouo5kMskusqdSKQSDQRQKBUQiEUSjUaiqCtM0kUgkYFkWeSJP5Ik8kSfyRJ7IE3kiT+SJPJEn8uTY06VLlzA2NoZwOAzLsmAYBnuqXlVVRCIRBINB6LqOQCDAjjNNE9FoFNVqFZqm1R0XDAahKApM04RlWXXHRaNRBAIBaJqGUCjEjrNtG5FIBLZtQ9f1uuMURUEoFIJhGKhWq3XHLc01HA6z4wCQJweeJicnceDAAeTzedi2jWQyCV3XoWkau8ZSLBYRCoWQTCbZxffHH38cGzduRCgUwsTEBO6//36USiUoioJEIsGe+E6n0yiXyzAMg70NUi6XEQ6HEY/HceTIEWzYsAGqqmJ+fh5dXV1ob2+HbduoVCqIRCKIxWJ48MEH8cADDyCdTqNQKMCyLCQSCXYhORqNIhKJoFAoIBgMIpVKXePp2LFjWLduXVPWyY9jjzyt7OmOO+5oie+niYmJhi2NRTdCiKam1fcIMU0T4+Pj2LRpk1QbTDlBNi9e5yMyHk9tHlpuNGQbJ62OX+ohmw/qP+L0qP/4Bz/VQzYv1IPEaTnVkG2MtDrNXI/le4Qsv8jVaLzOR2Q8nto8tFbSWO3+HoqiYNOmTRgfH4dpmrRHSIORbd46RUYfXua0Uixee4TIfg5Ge4QQBOGIYrGIxx57jK3L18zI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9dB1HS+99BJby73ReJ2PyHg8tXloudFIJBK499572Z4hRGORbd46RUYfXuYkMpafzsF4Q2+EEE1Nq78RQhAEQRAEQRAEQRCrYfkbIURr4/RtDnojhCDEwOuNENmhN0IIgiAIgiAIgiAIgiAIgiAIgiAEQDdCCKKJyeVyOHToEHK5XKNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD1VV8eyzz0JV1UanAsD7fETG46nNQ8uNRjqdxsGDB9lmzERjkW3eOkVGH17mJDKWn87BeEM3QgiiiYnH47jrrrsQj8cbnYprZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvjp3qEw2Fs3boV4XC40akA8D4fkfF4avPQcqNRLpfxxBNPoFwuO45P8EO2eesUGX14mZPIWH46B+MN7RFCNDW0RwhBEARBEARBEARB3BjaI4RYCu0RQhByQXuEiIfeCCGIJsZPT2bI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9TAMAxcvXoRhGI1OBYD3+YiMx1Obh5YbDZme5ibkm7dOkdGHlzmJjOWnczDe0I0QgiAIgiAIgiAIgiAIgiAIgiB8Cy2NRTQ1tDQWQRAEQRAEQRAEQdwYWhqLWAotjUUQckFLY4mH3gghiCZGxlcJnSKbF3otW5yWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+phWRZmZ2dhWVajUwHgfT4i4/HU5qHlRkPGTa1bGdnmrVNk9OFlTiJj+ekcjDd0I4QgmhiZ1tlzi2xeaH1scVq0Rr9/8Es9ZPNB/UecHvUf/+CnesjmhXqQOC3aI8Qf+KkeMl2cAuhGrEgt2iPEP8g2b50iow/aI0SMnkzfm7Q0FtHU0NJYBEEQBEEQBEEQBHFjaGksYim0NBZByAUtjSUeeiOEIAiCIAiCIAiCIAiCIAiCIAjfQjdCCKKJyWazePDBB5HNZhudimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OneqiqirNnz0JV1UanAsD7fETG46nNQ8uNRkdHBz71qU+ho6PDcXyCH7LNW6fI6MPLnETG8tM5GG9oaSyiqWn1pbFM08T4+Dg2bdoERVEanY4rZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvTzPVYvjSWbdvI5/NIpVIIBhv/nKzX+YiMx1Obh9ZKGqtd1kpRFGzatAnj4+MwTZOWxmowss1bp8jow8ucVorFa2ks2c/BGnktt7m+tQmCqENRFGzevLnRaXBBNi9e5yMyHk9tHlpuNGQbJ62OX+ohmw/qP+L0qP/4Bz/VQzYv1IPEaTnVkG2MtDp+qkcwGJTqKX+v8xEZj6c2Dy03GqZpYnR01FV8gh+yzVunyOjDy5xExvLTORhv5LjlRhCEI0qlEk6cOIFSqdToVFwjmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1UPXdZw/fx66rjc6FQDe5yMyHk9tHlpuNNrb23H33Xejvb3dcXyCH7LNW6fI6MPLnETG8tM5GG/oRghBNDG1O8iyvEboBtm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+KkegUAAsVgMgUCg0akA8D4fkfF4avPQcqNh2zay2Sxs23Ycn+CHbPPWKTL68DInkbH8dA7GG9ojhGhqWn2PEIIgCIIgCIIgCIJYDcv3CCFaG6f7e9AeIQQhBl57hMhOI6/lNv5WDEFwIBaLIZFIAAAsy0I2m0XtHl8+n2evmlUqFfYqlmmayGazTCOXy8EwDABAuVxGuVwGABiGgVwux47LZrMwTRPA4utdlUoFwOJrbfl8HgBQrVaRzWZhWRYAoFgsQlVVAICmaSgUCgCufbKiUChA0zQAgKqqKBaL1/Wk6zp+9KMfYWFhoek9zc7Oor+/H7quS1GnQqGA559/Hrquu64TcOOxVyqVMDg4iGw2y91TPp/H4OAgCoWCFHWamZnB4OAgdF1fsydd19Hb28v+jed8Wk2dmmU+eeWpWCyyedLMnhYWFvCjH/2I9dVG16lcLuO5555j/yZ67PHsEcs9LSwsYHBwEOVymcvYy+VyGBwcZHmvtU7T09N48cUXoet6S3/n+qHvVSoVPPfcc+zfmtnT/Pw8BgcHUalUpKjT0nnixdjTdR0vvPACpqenuXvSdR0DAwOYnp6Wok5O/97TdR39/f2YnZ1ldaIe0ThPuq7jueeeY//WTJ5UVWU/W5aFUqmEqakpWJYFVVVZDrqu1x1Xy6darV5zXK22pmlec1wtV03T6o6r5W3bdt1x5XIZb731FizLgmEY1xxXQ1VV9ns1DKMu1+XHXc+TZVmYnJxEqVTi7sk0TUxNTaFcLtfl6sQTjzppmoapqSlomlZ33NKntJPJJKLRKID6ayyxWAw///M/j0gkwvKr5WpZFlsyS1GUuj0P0uk0wuEwACAejyMejwMAwuEw0un0inVqb29HW1sbACASiSCVSgFYfHq+o6MDoVAIAJBIJBCLxQAA0WgUyWQSwLVPni/1dL2xVxsPbuq0lrH3dnVazdgrl8uYmJiAZVlN7alUKmFycpJ9fjU9QrQnVVUxNTXF5oybOjnpEby+c8vlMgYHB7GwsMDl+0lVVQwODmJubo7rOWEjoBshhC/o7OzEnj17AAAzMzPIZDJsch49ehTDw8MAgLNnz+LUqVMAgPHxcWQyGaZx+PBhjIyMAADOnDmDM2fOAABGRkZw+PBhdlwmk8H4+DgA4NSpUzh79iwAYHh4GEePHgWw2DgymQxmZmYAACdPnkRvby8AYGBgAMePHwew2BwymQxrRsePH8fAwAAAoLe3FydPnryuJ1VV8b3vfQ9PPfVU03v68pe/jO9///tQVVWKOr3wwgv47ne/C1VVXdcJuPHYu3TpEnp6evDMM89w9/T888+jp6cHL7zwghR1+ud//mf09PRAVdU1e1JVFd/97nfx/PPPA+A7n1ZTp2aZT155GhoawjPPPANVVZva01NPPYXvfe97UFVVijq98cYb7PfKo05e9ojlnp566in09PTgjTfe4Db2enp6MDQ05KhOhw8fZv2nlb9z/dD3JiYm8Mwzz7ATv2b29I1vfAM9PT2YmJiQok6HDx/GD37wA6iq6snYU1UVP/jBD+py5eVJVVX09PTg8OHDUtTJ6d97qqri+9//Pr785S+zOlGPaJwnVVXxzDPPsDcrmsnTuXPn2M8LCwsYGBjA6OgoTNNEX18fy+Hy5cu4cuUKi1vLx7Is9PX1sQtww8PDrLZTU1MYGhpi3vv6+liuQ0NDmJqaYvnV8i6Xy+jr62MX41566SW88cYbME0TV65cweXLl9nvqK+vj3nq7+9nDyaMjIzUeerv72fH3chTbRPw/v5+7p40TcPo6CheeuklNgaceuJRpzfffBOjo6OYnJxknkzTRHd3N7vZ0NXVhR07dgCov8byrne9C7t27WI3L8bGxpinubk57N69GwCwadMmdHd3M0/79+/Hli1bAAC7du3Crl27AABbtmzB/v376+pU+7t39+7d2LlzJwBg27Zt2Lt3L4DFmx3d3d1Yv349AGDPnj3o7OwEAOzYsQNdXV0AgFQq9baerjf2BgYGXNdpLWPv7eq0mrF34cIFNk+a2VN/fz8b16vtEV54Gh0dxdWrV4X3vZV6BK/v3DfeeAM9PT146qmnuHw/zczMoKenB//yL//C9ZywEdDSWERTU3udKhaLQVEU9Pb2YuvWrSgUCkin0wgEAsjn84jFYohEIqhUKrBtG+3t7TBNE8VikT2xkMvlEI/HEQ6HWYOLx+MwDAPlcpl96WezWSQSCSiKglKphGAwiLa2Nnb3OJVKoVqtIpfLIZlMIhQKoVgsQlEUxGIxaJoGXdeRTCZh2zby+TxSqRSCwSAKhQIikQii0Si7Q5xIJGBZFnkiT+SJPJEn8kSeyBN5Ik/kiTyRJ/Lk2NOlS5cwNjaGcDjM3rqoPVWvqioikQiCwSB0XUcgEGDHmaaJaDSKarUKTdPqjgsGg1AUBaZpwrKsuuOi0SgCgQA0TUMoFGLH2baNSCQC27ah63rdcYqiIBQKwTAMVKvVuuOW5hoOh9lxAMiTA0+Tk5M4cOAA8vk8bNtGMplkT8LXrrEUi0WEQiEkk0nkcjlUq1U8/vjj2LhxI0KhECYmJnD//fejVCpBURQkEgn2xHc6nUa5XIZhGOxtkHK5jHA4jHg8jiNHjmDDhg3srbuuri60t7fDtm1UKhVEIhHEYjE8+OCDeOCBB5BOp1EoFGBZFhKJBEzThKqqiEajiEQiKBQKCAaDSKVS13g6duwY1q1b15R18uPYI08re7rjjjta4vtpYmKiYUtj0Y0Qoqlp9T1CljfaZkY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0Os1cj+V7hFSrVViWhVAoJIUXr/MRGY+nNg+tlTRWu79HIBBANBqFpmmoVqu0R0iDkW3eOkVGH17mtFIsXnuEyH4ORnuEEAThiFwuh8985jN16wE2K7J58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9NE3DD3/4Q7acSaPxOh+R8Xhq89Byo5FOp3Hw4MG6fT2IxiHbvHWKjD68zElkLD+dg/GG3gghmppWfyPEsizMzMxg/fr1bNOwZkU2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0Os1cj+VvhNi2jXK5jHg8zjaXbiRe5yMyHk9tHloraaz2bY5QKIT169djZmYGlmXRGyENRrZ56xQZfXiZ00qxeL0RIvs5WCOv5SqeRCEIQgihUMg3X+ayefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPYLBIBKJRKPTYHidj8h4PLV5aLnRsCyLbfpMNB7Z5q1TZPThZU4iY/npHIw3ctxyIwjCEcViEceOHUOxWGx0Kq6RzYvX+YiMx1Obh5YbDdnGSavjl3rI5oP6jzg96j/+wU/1kM0L9SBxWk41ZBsjrY6f6qHrOgYHB6HreqNTAeB9PiLj8dTmoeVGI5FI4N5775XuonWrItu8dYqMPrzMSWQsP52D8YZuhBBEE6MoCjZv3gxFaf6Xu2Tz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir46d6BINBdHR0SLMsjdf5iIzHU5uHlhsN0zQxOjoK0zQdxyf4Idu8dYqMPrzMSWQsP52D8Yb2CCGamlbfI4QgCIIgCIIgCIIgVsPyPUKI1sbp/h60RwhBiIHXHiGy08hrufLcdiMIYs1omobe3l5omtboVFwjmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1cM0TYyPj0vzpL/X+YiMx1Obh5YbjWg0is7OTkSjUcfxCX7INm+dIqMPL3MSGctP52C8oRshBNHEyLimolNk80Lr04rTcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9aptgW5bV6FQAeJ+PyHg8tXloudGIRCLYvn07IpGI4/gEP2Sbt06R0YeXOYmM5adzMN7Q0lhEU0NLYxEEQRAEQRAEQRDEjaGlsYil0NJYBCEXtDSWeOiNEIJoYmzbRjabhW3bjU7FNbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9qtUqVFWFLM/Hep2PyHg8tXloudGQcVPrVka2eesUGX14mZPIWH46B+MNdTGCaGLy+TwymQzy+XyjU3GNbF68zkdkPJ7aPLTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXX8VA9N09DX1yfFuu2A9/mIjMdTm4eWG41UKoXu7m6kUinH8Ql+yDZvnSKjDy9zEhnLT+dgvKGlsYimptWXxrJtG/l8HqlUqumfzpDNi9f5iIzHU5uHlhsN2cZJq+OXesjmg/qPOD3qP/7BT/WQzQv1IHFaTjVkGyOtTjPXY/nSWNVqFZqmIRqNIhAINDCzxuQjMh5PbR5aK2msdlmrYDCIVCqFfD4P27ZpaawGI9u8dYqMPrzMaaVYvJbGkv0crJHXchVPohAEIYTaK6p+QDYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqpHIBBALBZrdBoMr/MRGY+nNg8tNxq1ZW0IOZBt3jpFRh9e5iQylp/OwXjTXI8vEARRR6FQwJEjR1AoFBqdimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+Onemiahv7+fmmWpvE6H5HxeGrz0HKjkUwmsW/fPiSTScfxCX7INm+dIqMPL3MSGctP52C8oRshBNHERCIRbN++HZFIpNGpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qRygUwoYNGxAKhRqdCgDv8xEZj6c2Dy03GrquY3BwELquO45P8EO2eesUGX14mZPIWH46B+MN7RFCNDWtvkcIQRAEQRAEQRAEQayG5XuEEK2N0/09aI8QghADrz1CZKeR13LpjRCCaGJUVUVPTw9UVW10Kq6RzYvX+YiMx1Obh5YbDdnGSavjl3rI5oP6jzg96j/+wU/1kM0L9SBxWk41ZBsjrY6f6mGaJkZHR2GaZqNTAeB9PiLj8dTmoeVGIxaL4c4775RuP4dWRbZ56xQZfXiZk8hYfjoH4w3dCCGIJkbGLw6nyOaF/ggXp+VGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OnetQ2wbZtu9GpAPA+H5HxeGrz0HKjoSgKNm/eDEVRHMcn+CHbvHWKjD68zElkLD+dg/GGlsYimhpaGosgCIIgCIIgCIIgbgwtjUUshZbGIgi5oKWxxENvhBBEE2NZFqampmBZVqNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD9u2USwWpXki2+t8RMbjqc1Dy42GjJtatzKyzVunyOjDy5xExvLTORhv6EYIQTQxhUIBDz/8MAqFQqNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD13X8cILL0DX9UanAsD7fETG46nNQ8uNRjKZxL59+5BMJh3HJ/gh27x1iow+vMxJZCw/nYPxhpbGIpqaVl8aq1qtQtM0RKNRBAKBRqfjCtm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLqNHM9li+NVa1WYVkWQqGQFF68zkdkPJ7aPLRW0ljtslaBQADRaBSapqFardLSWA1GtnnrFBl9eJnTSrF4LY0l+zlYI6/l0k5HBNHEBAIBxGKxRqfBBdm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+KkegUBAqg2wvc5HZDye2jy03GhUq1WoquoqPsEP2eatU2T04WVOovuPX87BeENLYxFEE5PP5/HQQw8hn883OhXXyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/XQNA29vb3QNK3RqQDwPh+R8Xhq89Byo5FKpdDd3Y1UKuU4PsEP2eatU2T04WVOImP56RyMN3QjhCCamFgshjvvvFOaO6tukM2L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+qhKAo2b94szVPZXucjMh5PbR5abjRUVUVPTw+9FSIJss1bp8jow8ucRMby0zkYb2iPEKKpafU9QgiCIAiCIAiCIAhiNSzfI4RobZzu70F7hBCEGHjtESI7jbyWS2+EEEQTU6lUcPr0aVQqlUan4hrZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHoZh4LXXXoNhGI1OBYD3+YiMx1Obh5Ybjba2Nnz0ox9FW1ub4/gEP2Sbt06R0YeXOYmM5adzMN7QjRCCaGJs20Y2m4Vt241OxTWyefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPWqbYMuyUIjX+YiMx1Obh5YbjWAwiI6ODgSDdAlRBmSbt06R0YeXOYmM5adzMN7Q0lhEU0NLYxEEQRAEQRAEQRDEjaGlsYil0NJYBCEXtDSWeOh2LuELYrEYEokEAMCyLGSzWXZXNZ/PQ9d1AIuvY5VKJQCAaZrIZrNMI5fLsVfSyuUyyuUygMXX1XK5HDsum83CNE0AQKlUYq926bqOfD4PYPHObjabhWVZAIBiscg2FtM0DYVCAcC1d0ULhQI0TQOwuCFZsVi8rifTNHHp0iWWXzN7mp+fx6uvvgrTNKWoU6lUwvDwMEzTdF0n4MZjr1KpYHR0FPl8nrunYrGI0dFRlEolKeo0NzeH0dFR9pm1eDJNE6+88grLj+d8Wk2dmmU+eeWpXC7jwoULME2zqT3lcjlcunQJpmlKUSdVVXH+/Pm6/ESOPZ49YrmnXC6H0dFRqKrKZewVCgWMjo6iXC47qtPs7Cxef/11mKbZ0t+5fuh7mqbh/PnzLL9m9pTNZjE6OgpN06So0+zsLEZGRmCapidjzzRNjIyMYHZ2lrsn0zTxxhtvYHZ2Voo6Of17zzRNvPrqq5ifn2d1oh7ROE+maeL8+fN15w3N4klVVfazZVkol8sstqqqLAdd1+uOq+VTe4J56XG12pqmec1xtVw1Tas7rpZ3LW7tuEqlgrm5Odi2DcMwrjmuhqqq7PdqGEZdrsuPu54n27axsLCAcrnM3VOtXpVKpS5XJ5541EnXdWSzWei6Xnfc0jc9kskkotEogPprLJFIBO973/vYps6GYbBcLctCe3s7gMXNnzs6OpindDqNcDgMAIjH44jH4wCAcDiMdDq9Yp3a29vZElyRSASpVAoAEAgE0NHRgVAoBABIJBJs4+VoNIpkMgng2rdXlnq63tjTNM11ndYy9t6uTqsZe0vnSTN7KpfLWFhYgG3bq+4Roj3VvuMNwxDe91bqEby+c1VVxejoKPvbo5a30+8nXdcxOjqKhYUFrueEjYBuhBC+oLOzE3v27AEAzMzMIJPJsMl59OhRDA8PAwDOnj2LU6dOAQDGx8eRyWSYxuHDhzEyMgIAOHPmDM6cOQMAGBkZweHDh9lxmUwG4+PjAIBTp07h7NmzAIDh4WEcPXoUwGLjyGQymJmZAQCcPHkSvb29AICBgQEcP34cwGJzyGQyrBkdP34cAwMDAIDe3l6cPHnyup6KxSJOnDiBJ598suk9HTt2DF/96ldRLBalqNOPfvQj/Nu//RuKxaLrOgE3HnvDw8N47LHHcPr0ae6enn32WTz22GP40Y9+JEWdvvjFL+Kxxx5DsVhcs6disYh//dd/xbPPPguA73xaTZ2aZT555WlwcBAnT55EsVhsak9PPvkkTpw4gWKxKEWdXnvtNfz7v/87+8NS9Njj2SOWe3ryySfx2GOP4bXXXuMy9r7//e/jsccew+DgoKM6ff7zn8eXv/xlFIvFlv7O9UPfGxsbw7//+7+zC8PN7umxxx7D2NiYFHX6/Oc/j6985SsoFouejL1isYivfOUr+PznP8/dU7FYxOOPP47Pf/7zUtTJ6d97xWIRX/3qV3Hs2DFWJ+oRjfNULBbx7//+73jttdeaztO5c+fYzwsLC3jxxRfx0ksvQdd19PX1sRwuX76MK1eusLi1fCzLQl9fH7sANzw8zGo7NTWFoaEh5r2vr4/lOjQ0hKmpKZZfLe9yuYy+vj52MW5wcBDnz5+Hruu4cuUKLl++zH5HfX19zFN/fz8WFhZYbZZ66u/vZ8fdyJOu63j55Zdx7tw57p4qlQpeeuklDA4OsjHg1BOPOo2NjeGll17CxMQE82SaJrq7u9nNhq6uLuzYsQNA/TWW22+/HXv27ME73vEOAIvfwTVPc3Nz2L17NwBg06ZN6O7uZp7279+PLVu2AAB27dqFXbt2AQC2bNmC/fv319WpdhF29+7d2LlzJwBg27Zt2Lt3L4DFmx3d3d1Yv349AGDPnj3o7OwEAOzYsQNdXV0AgFQq9baerjf2BgYGXNdpLWPv7eq0mrF3/vx5Nk+a2dO5c+fw8ssvQ9f1VfcI0Z5GR0fx0ksvYWpqSnjfW6lH8PrOfe211/DYY4/hySef5PL9NDU1hcceewxf/epXuZ4TNgJaGotoamqvU8ViMSiKgt7eXmzduhWFQgHpdBqBQAD5fB6xWAyRSASVSgW2baO9vZ095VZ7YiGXyyEejyMcDrMGF4/HYRgGyuUye2Ihm80ikUhAURSUSiUEg0G0tbVB13WoqopUKoVqtYpcLodkMolQKIRisQhFURCLxaBpGnRdRzKZhG3byOfzSKVSCAaDKBQKiEQiiEajUFUVpmkikUjAsizyRJ7IE3kiT+SJPJEn8kSeyBN5Ik/kybGnS5cuYWxsDOFwGJZlwTAM9lS9qqqIRCIIBoPQdR2BQIAdZ5omotEoqtUqNE2rOy4YDEJRFJimCcuy6o6LRqMIBALQNA2hUIgdZ9s2IpEIbNuGrut1xymKglAoBMMwUK1W645bmms4HGbHASBPDjxNTk7iwIEDyOfzsG0byWSSPRVfu8ZSLBYRCoWQTCaRy+VQrVbx+OOPY+PGjQiFQpiYmMD999+PUqkERVGQSCTYE9/pdBrlchmGYbC3QcrlMsLhMOLxOI4cOYINGzZAVVXMz8+jq6sL7e3tsG0blUoFkUgEsVgMDz74IB544AGk02kUCgVYloVEIgHTNKGqKqLRKCKRCAqFAoLBIFKp1DWejh07hnXr1jVlnfw49sjTyp7uuOOOlvh+mpiYaNjSWHQjhGhqaI8QgiAIgiAIgiAIgrgxtEcIsRTaI4Qg5IL2CBEPLY1FEE1MLpfDoUOH6tYDbFZk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OneqiqimeffbZuzfxG4nU+IuPx1Oah5UYjnU7j4MGDdft6EI1DtnnrFBl9eJmTyFh+OgfjDd0IIYgmJh6P46677mKvmTYzsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz3C4TC2bt3KNrRuNF7nIzIeT20eWm40yuUynnjiCbYcD9FYZJu3TpHRh5c5iYzlp3Mw3tDSWERTQ0tjEQRBEARBEARBEMSNoaWxiKXQ0lgEIRe0NJZ46I0Qgmhi/PRkhmxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FQPwzBw8eJFtplwo/E6H5HxeGrz0HKjIdPT3IR889YpMvrwMieRsfx0DsYbuhFCEARBEARBEARBEARBEARBEIRvoaWxiKaGlsYiCIIgCIIgCIIgiBtDS2MRS6GlsQhCLmhpLPHQGyEE0cTI+CqhU2TzQq9li9NyoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz0sy8Ls7Cwsy2p0KgC8z0dkPJ7aPLTcaMi4qXUrI9u8dYqMPrzMSWQsP52D8YZuhBBEEyPTOntukc0LrY8tTovW6PcPfqmHbD6o/4jTo/7jH/xUD9m8UA8Sp0V7hPgDP9VDpotTAN2IFalFe4T4B9nmrVNk9EF7hIjRk+l7k5bGIpoaWhqLIAiCIAiCIAiCIG4MLY1FLIWWxiIIuaClscRDb4QQBEEQBEEQBEEQBEEQBEEQBOFb6EYIQTQx2WwWDz74ILLZbKNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD1VVcfbsWaiq2uhUAHifj8h4PLV5aLnR6OjowKc+9Sl0dHQ4jk/wQ7Z56xQZfXiZk8hYfjoH4w0tjUU0Na2+NJZpmhgfH8emTZugKEqj03GFbF68zkdkPJ7aPLTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXWauR7Ll8aybRv5fB6pVArBYOOfk/U6H5HxeGrz0FpJY7XLWimKgk2bNmF8fBymadLSWA1GtnnrFBl9eJnTSrF4LY0l+zlYI6/lNte3NkEQdSiKgs2bNzc6DS7I5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9QgGg1I95e91PiLj8dTmoeVGwzRNjI6OuopP8EO2eesUGX14mZPIWH46B+ONHLfcCIJwRKlUwokTJ1AqlRqdimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+Oneui6jvPnz0PX9UanAsD7fETG46nNQ8uNRnt7O+6++260t7c7jk/wQ7Z56xQZfXiZk8hYfjoH4w3dCCGIJqZ2B1mW1wjdIJsXr/MRGY+nNg8tNxqyjZNWxy/1kM0H9R9xetR//IOf6iGbF+pB4rScasg2RlodP9UjEAggFoshEAg0OhUA3ucjMh5PbR5abjRs20Y2m4Vt247jE/yQbd46RUYfXuYkMpafzsF4Q3uEEE1Nq+8RQhAEQRAEQRAEQRCrYfkeIURr43R/D9ojhCDEwGuPENlp5LXcxt+KIQjCMbquY3BwUKpXCZ0imxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1cOyLExNTcGyrEanAsD7fETG46nNQ8uNRiQSwfbt2xGJRBzHJ/gh27x1iow+vMxJZCw/nYPxhm6EEEQTo6oqenp6oKpqo1NxjWxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FSP2ibYpmk2OhUA3ucjMh5PbR5abjRisRjuvPNOxGIxx/EJfsg2b50iow8vcxIZy0/nYLyhpbGIpoaWxiIIgiAIgiAIgiCIG0NLYxFLoaWxCEIuaGks8dAbIQTRxFSrVaiqCj/cz5TNi9f5iIzHU5uHlhsN2cZJq+OXesjmg/qPOD3qP/7BT/WQzQv1IHFaTjVkGyOtjp/qUa1WYZqmNF68zkdkPJ7aPLTcaMi4qXUrI9u8dYqMPrzMSXT/8cs5GG/oRghBNDG5XA6f+cxnkMvlGp2Ka2Tz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir46d6aJqGH/7wh9A0rdGpAPA+H5HxeGrz0HKjkU6ncfDgQaTTacfxCX7INm+dIqMPL3MSGctP52C8oaWxiKam1ZfGsiwLMzMzWL9+PUKhUKPTcYVsXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdZq5HsuXxrJtG+VyGfF4HMFg45+T9TofkfF4avPQWkljtctahUIhrF+/HjMzM7Asi5bGajCyzVunyOjDy5xWisVraSzZz8EaeS1X8SQKQRBCCIVCvvkyl82L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+oRDAaRSCQanQbD63xExuOpzUPLjYZlWZiamnIVn+CHbPPWKTL68DInkbH8dA7GGzluuREE4YhisYhjx46hWCw2OhXXyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/XQdR2Dg4PQdb3RqQDwPh+R8Xhq89Byo5FIJHDvvfdKd9G6VZFt3jpFRh9e5iQylp/OwXhDN0IIoolRFAWbN2+GojT/y12yefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPYLBIDo6OqRZlsbrfETG46nNQ8uNhmmaGB0dhWmajuMT/JBt3jpFRh9e5iQylp/OwXhDe4QQTU2r7xFCEARBEARBEARBEKth+R4hRGvjdH8P2iOEIMTAa48Q2WnktVx5brsRBLFmNE1Db28vNE1rdCqukc2L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+phmibGx8eledLf63xExuOpzUPLjUY0GkVnZyei0ajj+AQ/ZJu3TpHRh5c5iYzlp3Mw3tCNEIJoYmRcU9Epsnmh9WnFabnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHrVNsC3LanQqALzPR2Q8nto8tNxoRCIRbN++HZFIxHF8gh+yzVunyOjDy5xExvLTORhvaGksoqmhpbEIgiAIgiAIgiAI4sbQ0ljEUmhpLIKQC1oaSzz0RghBNDG2bSObzcK27Uan4hrZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHtVqFaqqQpbnY73OR2Q8nto8tNxoyLipdSsj27x1iow+vMxJZCw/nYPxhroYQTQx+XwemUwG+Xy+0am4RjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHpmno6+uTYt12wPt8RMbjqc1Dy41GKpVCd3c3UqmU4/gEP2Sbt06R0YeXOYmM5adzMN7Q0lhEU9PqS2PZto18Po9UKtX0T2fI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVqeZ67F8aaxqtQpN0xCNRhEIBBqYWWPyERmPpzYPrZU0VrusVTAYRCqVQj6fh23btDRWg5Ft3jpFRh9e5rRSLF5LY8l+DtbIa7mKJ1EIghBC7RVVPyCbF6/zERmPpzYPLTcaso2TVscv9ZDNB/UfcXrUf/yDn+ohmxfqQeK0nGrINkZaHT/VIxAIIBaLNToNhtf5iIzHU5uHlhuN2rI2hBzINm+dIqMPL3MSGctP52C8aa7HFwiCqKNQKODIkSMoFAqNTsU1snnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz00TUN/f780S9N4nY/IeDy1eWi50Ugmk9i3bx+SyaTj+AQ/ZJu3TpHRh5c5iYzlp3Mw3tCNEIJoYiKRCLZv345IJNLoVFwjmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1SMUCmHDhg0IhUKNTgWA9/mIjMdTm4eWGw1d1zE4OAhd1x3HJ/gh27x1iow+vMxJZCw/nYPxhvYIIZqaVt8jhCAIgiAIgiAIgiBWw/I9QojWxun+HrRHCEGIgdceIbLTyGu59EYI4Qnf/e538d//+3/Hpk2bEI1Gccstt+DDH/4w/uIv/gILCwuNTq9pUVUVPT09UFW10am4RjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHaZoYHR2FaZqNTgWA9/mIjMdTm4eWG41YLIY777xTuv0cWhXZ5q1TZPThZU4iY/npHIw3dCOEEIplWfiDP/gD/Oqv/ir+7d/+DdVqFT/zMz+DdDqNoaEhfO5zn8PExESj02xaZPzicIpsXuiPcHFabjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqpHbRNs27YbnQoA7/MRGY+nNg8tNxqKomDz5s1QFMVxfIIfss1bp8jow8ucRMby0zkYb2hpLEIo+/fvx5EjR7B9+3Y8/PDD+PCHP8z+Tdd19PT04IMf/CDe8Y53ONKnpbEIgiAIgiAIgiAI4sbQ0ljEUmhpLIKQC1oaSzz0RgghjLNnz+LIkSPYtGkTfvCDH9TdBAEWN8vZtWuX45sgxOIbN1NTU7Asq9GpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qh23bKBaL0jyR7XU+IuPx1Oah5UZDxk2tWxnZ5q1TZPThZU4iY/npHIw3dCOEEMbf//3fAwD+/M//HB0dHY1NxqcUCgU8/PDDKBQKjU7FNbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9dF3HCy+8AF3XG50KAO/zERmPpzYPLTcayWQS+/btQzKZdByf4Ids89YpMvrwMieRsfx0DsYbWhrLQyzLwoULF3Du3Dn09/fj3LlzePnll2EYBgBg586d6OnpcaSt6zr+5V/+BV/72tdw4cIFXL16FTfddBPe/e5347d/+7dx7733Yt26dRzdXB9VVZFKpWAYBi5cuIBgMIhHHnkE58+fh6IoeP/734+Pf/zj2Lp1q6s4rb40VrVahaZpiEajCAQCjU7HFbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TVaeZ6LF8aq1qtwrIshEIhKbx4nY/IeDy1eWitpLHaZa0CgQCi0Sg0TUO1WqWlsRqMbPPWKTL68DKnlWLxWhpL9nOwRl7LpZ2OPOKJJ55AV1cXyuUyd+2LFy/innvuweDgYN3/PzU1hampKTz//PP47Gc/i0cffRS/8Ru/wT3+Srz00kvsBs9zzz2HP/3TP4Wmaezfv/3tb+Ozn/0sPve5z6G7u9uTnPxIIBBALBZrdBpckM2L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+oRCASk2gDb63xExuOpzUPLjUa1WoWqqq7iE/yQbd46RUYfXuYkuv/45RyMN7Q0lkdks1khN0HGx8fxK7/yK+wmSCAQwM6dO7F3717s3r0bbW1tAIDp6Wncdddd+P73v889h5WYnJxkPx84cAD/5b/8Fzz33HNQVRWjo6PYv38/LMvCJz/5SXznO9/xJCc/ks/n8dBDDyGfzzc6FdfI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9dA0Db29vXUPLTYSr/MRGY+nNg8tNxqpVArd3d1IpVKO4xP8kG3eOkVGH17mJDKWn87BeCPXrbcW4NZbb8XP/uzPsv89/fTTyGQyjvV+7/d+D2+99RYA4Pbbb8c3v/lN/MzP/Az799nZWdx999343ve+B8Mw8Lu/+7sYGRkRvmdHsVhkP0ejUZw+fRrr169neX7hC1/A2NgYnnrqKfzN3/wNfv3Xf11oPn4lFovhzjvvlObOqhtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OneiiKgs2bN0vzVLbX+YiMx1Obh5YbDVVV0dPTQ2+FSIJs89YpMvrwMieRsfx0DsYb2iPEI6ampqDrOn7sx36s7v//1Kc+hQcffBDA2vcI+fa3v42PfexjAIBIJIL+/n789E//9DXHlUolvP/978frr78OAPirv/or/H//3/93zXEHDx7EZz7zmVXHX4phGHWT9+TJk/jd3/1dAItvhHz+85+/5jNnz55l69/NzMw42sOk1fcIIQiCIAiCIAiCIIjVsHyPEKK1cbq/B+0RQhBi4LVHiOw08louLY3lERs2bLjmJohblt5c+PjHP77iTRAAaG9vx//9v/+X/ffDDz8M0zRXPO4d73iHo/8t3yzn5ptvZj//1E/91Ip5bdu2jf08Ojq6Ks9EPZVKBadPn0alUml0Kq6RzYvX+YiMx1Obh5YbDdnGSavjl3rI5oP6jzg96j/+wU/1kM0L9SBxWk41ZBsjrY6f6mEYBl577TW2v2ej8TofkfF4avPQcqPR1taGj370o2zpdaKxyDZvnSKjDy9zEhnLT+dgvKEbIU1KsVjE9773Pfbf991333WP/53f+R0kEgkAwPz8PP7jP/7jmmP+z//5P5idnXX0v1AoVKe1detW9nM0Gl0xp6X/v2VZNzZNXINt28hms7Btu9GpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qR20TbFkWCvE6H5HxeGrz0HKjEQwG0dHRgWCQLiHKgGzz1iky+vAyJ5Gx/HQOxhtaGqvBOF0a68yZM/i1X/s1AItvcmSz2RuuK7dr1y4888wzAIC//uu/xt/+7d86T3wVvPvd78bo6CgOHjyIT3/609f8+8DAAD7wgQ8AWNz0/V3veteaY9DSWARBEARBEARBEARxY2hpLGIptDQWQcgFLY0lHrqd26S88sor7Oef/umfXtXmOrWbDss/L4q7774bAHD8+HFomnbNv3/pS18CsPj2iJObIARgmiZGR0dXXOqs2ZDNi9f5iIzHU5uHlhsN2cZJq+OXesjmg/qPOD3qP/7BT/WQzQv1IHFaTjVkGyOtjp/qIdNTugC9kSZSy42GjJtatzKyzVunyOjDy5xExvLTORhv6EZIk3Lp0iX28+23376qzyzdo+TixYvcc1rOn//5n+Omm27Cm2++iX379qFcLrN/++pXv4pHHnkEwOLbKYQzisUiHnvsMRSLxUan4hrZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHrqu46WXXoKu641OBYD3+YiMx1Obh5YbjUQigXvvvZctt040FtnmrVNk9OFlTiJj+ekcjDe0NFaDcbo01v/4H/8D//qv/woA+LM/+zNkMpkbfubrX/86fud3fgfA4ubtk5OTzpJeAz09PfjN3/xNlEolJJNJbN26FVevXsXY2BgA4JOf/CT+4R/+wbE+LY1FEARBEARBEARBEDeGlsYilkJLYxGEXNDSWOKhN0KalKV30dra2lb1maXHeXUX7s4778TLL7+MP/zDP8RNN92El156CcViEb/2a7+GU6dOuboJspRYLMaeTrAsC9lslm04lM/n2R3WSqWCUqkEYPHVrGw2yzRyuRwMwwAAlMtl9gaLYRjI5XLsuGw2y17nKpVKqFQqABbv5ubzeQCLmx5ls1m2CXyxWISqqgAATdNQKBQAXPsqXKFQYMuIqarK6kSeyBN5Ik/kiTyRJ/JEnsgTeSJP5Ik8ufGkqir72bIslk/t32o56Lped1wtn9rmvkuPq/0eTNO85rharpqm1R1Xy9u27WuOq/2+DMO45riluS49jjw597R0E/RkMoloNAqg/hpLKBRCR0cHAoEAy6+Wq2VZaG9vB7C4hFZHRwfLNZ1OIxwOAwDi8Tji8TgAIBwOI51Or+ipvb2dXbuKRCJIpVIAgEAggI6ODoRCIQCLb6nEYjEAQDQaRTKZBHDtxu5LPTVznfw49sjTtZ5a7fupEdCNkCZl6cSNRCKr+kyt+QNgE8ELfvzHfxyPPPIIrly5Ak3TMDc3h9OnT+M3f/M3ucXo7OzEnj17AAAzMzPIZDJsch49ehTDw8MAgLNnz+LUqVMAFjdoX/omzeHDhzEyMgJgcTP6M2fOAABGRkZw+PBhdlwmk8H4+DgA4NSpUzh79iwAYHh4GEePHgWw2DgymQxmZmYAACdPnkRvby+AxU3ijx8/DmCxOWQyGdaMjh8/joGBAQBAb28vTp48eV1PuVwOf//3f4+vf/3rTe/pS1/6Ej772c8il8tJUafnnnsO//iP/4hcLue6TsCNx97LL7+MQ4cO4Vvf+hZ3Tz09PTh06BCee+45Ker0hS98AYcOHUIul1uzp1wuh3/4h39gb8/xnE+rqVOzzCevPPX397N50syevv71r+Pv//7vkcvlpKjTxYsXkclk2B+0oscezx6x3NPXv/51HDp0iHlyU6dTp07hzJkzOHToEPr7+x3X6TOf+QxyuVxLf+f6oe+9/vrryGQymJ6ebnpPJ06cwKFDh5gnGepUmydejL1cLoe/+7u/E+Ipl8vh0KFD0tTJ6d97uVwOn/3sZ9kei9QjGuup9jdsbbnpZvJ07tw59vPCwgL6+/vx7LPPQlVV9PX1sRwuX76MK1eusLi1fCzLQl9fH7sANzw8zGo7NTWFoaEh5r2vr4/lOjQ0hKmpKZZfLe9yuYy+vj52Me7FF1/ED3/4Q6iqiitXruDy5cvsd9TX18c89ff3Y2FhgdVmuacaN/KkqiqeffZZIZ5KpRKeffZZvPjii2wMuPHktk6jo6N49tln8eabbzJPpmmiu7ub3Wzo6urCjh07ANRfY3n3u9+N7u5urF+/HgAwNjbGPM3NzWH37t0AgE2bNqG7u5t52r9/P7Zs2QIA2LVrF3bt2gUA2LJlC/bv319Xp9o1rt27d2Pnzp0AgG3btmHv3r0AFq9nLc1hz5496OzsBADs2LEDXV1dAIBUKvW2nq439gYGBrjUaaknUfPp5ZdfxnPPPQdVVZveU21cr7ZHiPb0+uuv49lnn8Vbb70lvO+t1CN4fedevHgRhw4dwte//nUu30/j4+M4dOgQHn/8ca7nhI2AlsZqME6XxvrYxz6Gb3/72wCA//2//zcOHTp0w8985zvfwW/8xm8AWLx7XrvD18zUXqeKxWJQFAW9vb3YunUrCoUC0uk0AoEA8vk8YrEYIpEIKpUKbNtGe3s7TNNEsVhkTyzkcjnE43GEw2GUy2VUq1XEYjHouo5KpcK+SHO5HNrb26EoCsrlMoLBIGKxGAzDgKqqSCaTqFaryOfzSCQSCIVCKJVKUBQF0WgUuq5D13UkEgnYto1CoYBkMolgMIhisYhIJIJIJMLuHre3t8OyLBSLRaRSKQQCARQKBfb0w6VLl3DbbbchnU7DNE2USiX2dEU+n0dbWxvC4TC7+dXW1gbDMKTzND8/j6mpKbznPe+BZVmwbRvxeLxhnkqlEkZGRvBTP/VTCIVCruoUDofZEwRv5ykcDmN8fBy33norwuEwV0/VahWTk5PYuHEjqtVqw+uUz+cxPz+PzZs3o1wur8mTbdt45ZVX8OM//uNIJBJc59Nq6tQs88krT+VyGa+++iq2bdsGRVFW5alaraJYLCKdTiMYDKJQKCASiSAajUJVVZimiUQiAcuyuPRyYPEJNMMwUC6XmfdsNotEIgFFUZDNZnHlyhVs27aNPcmTSqVQrVaRy+WQTCYRCoVQLBahKApisRg0TYOu60gmk7BtG/l8HqlUiounSqWC4eFhvP/970c4HHbkqVQqIRgMoq2tDbquX9dTtVrFxMQENm3ahGq1ytWTpmmYmprC7bffDk3TXNWpVCrBsiy89dZbuO2222BZ1prrNDc3h5mZGbznPe+Bqqpr8hQIBDA8PIzbb78dHR0dXMbeWurkxdhrJk+qquLChQv46Z/+aUQikab2VKlUcPXqVWzevBmqqja8TrOzs5iensZ73/teaJomfOxFIhFcvnwZt9xyC7vAxctTW1sbXnvtNaxbtw4333xzw+sUDocxNjaGd77znQiHw6v2pCgKLl68iI0bN+Id73gH9YgGezIMAy+//DK2bduGtra2pvJ06dIljI2NIRwOsyejK5UKbrrpJhiGgUgkgmAwCF3XEQgE2HGmaSIajaJarULTtLrjamPUNE1YllV3XDQaRSAQgKZpCIVC7Lja3LdtG7qus+PK5TIKhQLWrVsH27ZRrVbrjqudA6uqinA4jFAoxJ6QruVqGEbdcdfzpCgK5ufnEY/H0dbWxtVT7W/MeDyOaDTKcnXiiUedqtUqO68AFm8sTE5O4sCBA8jn87BtG8lkErquQ9M0do2lWCy9CiKAAAC/wElEQVQiGo3ife97H15++WUYhoHHH38cGzduRCgUwsTEBO6//372t38ikWBPfKfTaZTLZRiGwd4GKZfLrP8dOXIEGzZsgKqqmJ+fR1dXF9rb22HbNiqVCiKRCGKxGB588EE88MADSKfTKBQKsCwLiUQCpmlCVVVEo1FEIhEUCgUEg0GkUqlrPB07doyNq5XGXu37zk2d1jL23MynpfOkWq02rafaWw0333wzTNNcVY8Q7cm2bXZeXa1Whfa9lXrEHXfcweU7NxqN4sqVK9iwYQOi0ajr76e2tja88cYbuOWWW9De3u76nHBiYqJhS2PRjZAG4/c9QkTDe1252gW6bDbLLiATBEEQ/InFYkgmk0ilUqt+s5EgCIIgCIJwDu0RQiyF9gghCLmgPULEQ0tjNSnveMc72M9Xr15d1Wdqr2QBwM0338w9p2ZHVVW8+uqrGB8fZ0/Iys7y9fqaGdm8eJ2PyHg8tXloudGQbZy0Om7qoaoqZmZmMDIygvHx8YbWtFwu44knnmBP1jQar/MRGY+3tls9N5+XbZy0On6qh2xeqAeJ03KqIdsYaXX8VA/DMHDx4kX2xHSj8TofkfF4avPQcqMRj8dx1113sbc6iMYi27x1iow+vMxJZCw/nYPxhm6ENCk/+ZM/yX6urct3I8bGxtjPW7du5Z5TM2MYBt5880227mCzEAgEkEgk2KZlzYxsXrzOR2Q8nto8tNxoyDZOWh1e9SgUCpiYmKAbXARBEARBEARBEARBCIGWxmowTpfGOnPmDH7t134NANDe3o5sNgtFUa77mV27duGZZ54BAPz1X/81/vZv/9Z54pLA43WqarWK0dHRug3oCYIgCO9JJpPYtGlTo9MgCIIgCILwJbQ0FrEUWhqLIOSClsYSz/WvnBPS8vM///OIRqPQNA2lUgn9/f3o7Ox82+M1TUNvby/771/+5V/2Is2moFwuX3MTJBqN4uabb0Y8HkcwKO+LU7VNlmqbNjUzsnnxOh+R8Xhq89ByoyHbOGl1nNSjWq1C13Xk83m2iWGNQqHA9LzEMAyMjIxgy5YtCIfDnsaWIR+R8Xhru9Vz83nZxkmr46d6yOaFepA4Lacaso2RVsdP9bAsCwsLC7jpppsQCoUanY7n+YiMx1Obh5YbjXA4jC1btmBkZESqZYxaFdnmrVNk9OFlTiJj+ekcjDd0FalJSSQS+JVf+RX238eOHbvu8V//+tdRKBQALO4P8ou/+Isi0/OcWCyGRCIBYLGZZLNZtsdHPp+HrusAgEqlglKpBAAwTRPZbBbFYhHA4gW9arWKcDiMd73rXUgmk3UX9xRFYW/dhEIhKIqCQCCAYDAIRVEQDAYRCASgKAprYqKPCwaDrK5Lj1uaa00vEAgwPRk9AYsXQWu+lh/ntadAIMDyEeV9aa61eCI8raTd6DrVNNaaQ23ML9UTPUabcT555cnJPFEUBdFoFBs2bMBtt92GQCDA+rVt25iZmQGw9l5eI5fLsRO0crnM1iE1DAO5XI4dl81mYZomAGB2dhbf+MY3UC6X2U0aYPGmTTabZcsmFotFduNc0zTWf5fvlVIoFKBpGoDFvVBq3zOr9ZTP51k+Tj2VSiVUKhUAuKGn+fl5PPHEE1hYWODuaXZ2Fk888QTy+bzrOpVKJZZrNpt1VKfJyUn2u12rp3K5jG984xuYnZ0FwGfsraVOXoy9ZvJUKBTwjW98o27eNKunmZkZPPHEEygUClLUaek88WLs1ebW5OQkd09LtWWoUy6XwxNPPIG5ubk1ear5qO0NST2isZ5q9ajl3kyeVFVlP1uWhWKxyNaoV1WV5aDret1xtXyq1eo1x9Vqa5rmNcfVctU0re64Wt62bdcdVywW8corr8AwDBiGcc1xNVRVZb/X2rG1XJcfdz1PhmHglVdeQbFY5O5J13VcvHgRxWKxLlcnnnjUqVKp4OLFi6hUKnXHdXR0sL/9k8kkotEogPprLIlEAr/1W7/F9ggxDIPlalkW2tvbASyeO3R0dDBP6XSaXfSMx+Ps8+FwGOl0esU6tbe3o62tDQAQiUSQSqUALJ4vd3R0sHOORCKBWCwGYPFB1mQyCWDx3ObtPF1v7Gma5rpOaxl7b1en1Yy9UqnE5kkze1o631fbI0R7qs0TVVWF972VegSv79x8Po8nnngCs7OzXL6fisUinnjiCUxPT3M9J2wEdCOkiTlw4AD7+dixY7hw4cKKx5XLZfzN3/wN++8//uM/vuEyWs1GZ2cn9uzZAwCYmZlBJpNhk/Po0aMYHh4GAJw9exanTp0CAIyPjyOTybAmUy6XUa1WkU6nUS6XWYPQNI1dmAOA6elpNqFzuRxrEKqqsosj1WoV09PTrOktLCzUxZmbmwOw2Cymp6dZ81l6UlQqlbCwsABgsQFOT0+zpjI7OwtVVaEoCuLxOGs+uq5jenqa5TozM8N+D7Wnr2X1tLCwgHQ6DUVRUCgUWCNvlCdN09gFXbd1AnBDT6Zp4p3vfCeKxSJ3T6qq4p3vfCc0TZOiTnNzc3jnO98JRVHW7ElRFITDYfZ75TmfVlOnZplPXnkyDIPd7HDiKR6PQ1EU9kdl7Y/6Wm5r6eU1Dh8+jJGREQCLy0ieOXMGADAyMoLDhw+z4zKZDMbHx5nejh07kE6nMTw8jKNHj7LfQyaTYb+LkydPsrcrBwYGcPz4cfa7y2Qy7Pd3/PhxDAwMAAB6e3tx8uTJNXmqvRlTO0F04unUqVM4e/YsANzQ0yuvvIKDBw/i9ddf5+7p7NmzOHjwIAqFgus6nTp1CgMDAzh48CAmJiYc1enRRx/F/v37kU6n1+wpnU5jx44d7PfKY+ytpU5ejL1m8qTrOnRdZxdBmtnTmTNncPDgQei6LkWdHn30Udx3331Ip9OejL10Oo177rkHjz76KHdP6XQan/zkJ/Hoo49KUafZ2VkcPHiQ6a3WUzqdxq//+q+z3yv1iMZ6SqfT0HWd/T3UTJ7OnTvHfl5YWMDQ0BA+8pGPIBaLoa+vj+Vw+fJlthfpzMwMy8eyLPT19bG/R4eHh1ltp6amMDQ0xLz39fWxXIeGhjA1NcXyq+VdLpfR19fH/tZ95ZVX8J73vAexWAxXrlzB5cuX2e+or6+Peerv72d/B4+MjNR56u/vZ8fdyFMsFsPP/dzPYXBwkLuncDiMj3zkI3jllVfYGHDqiUedZmdn8ZGPfATZbJZ5Mk0T3d3d7GZDV1cXduzYAaD+Gks0GmUrkgCL+8/WPM3NzWH37t0AgE2bNqG7u5t52r9/P7Zs2QJgcan2Xbt2AQC2bNmC/fv319Wpdu6ye/du7Ny5EwCwbds27N27l+XQ3d2N9evXAwD27NnDVkXZsWMHurq6AACpVOptPV1v7A0MDLiu01rG3tvVaTVj7/Lly3j3u9+NWCzW1J4GBwfxsz/7s4jFYqvuEaI9TU1N4SMf+QgKhYLwvrdSj+D1nVsoFHDw4EF2PlbL2+n3UyAQwMGDB9n5GMDnnLAR0B4hDcbpHiE1fvEXfxH/+Z//CQDYvHkzvvnNb+L9738/+/e5uTncc889bG+Qm2++GSMjI3V36ZuZ2rpysVgMiqKgt7cXW7duRaFQQDqdRiAQQD6fRywWQyQSQaVSgW3baG9vh2maKBQKrDHVpsLmzZvZEwOhUAi2bcO2bXbzyDRNhEIhBAIBWJbFnnquvVESCoVQrVZhWVbDjluaa+3J/doXB3kiT+SJPMnkKZ/PY3x8HIFAgN0Q2bZtG2zbXnUvLxaL7Hstl8shHo8jHA6zP1bj8TgMw0C5XGY3F7LZLBKJBBRFQalUQjAYRFtbG3Rdh6qqSKVSqFaryOVySCaTCIVCKBaLUBQFsVgMmqZB13Ukk0nYto18Po9UKsXeWopEIohGo1BVFaZpIpFIwLIs8kSeyBN5Ik/kiTyRp4Z5unTpEsbGxhAOh2FZFgzDYDeUVVVlKyLouo5AIMCOM00T0WgU1WoVmqbVHVd7KMY0TViWVXdcNBpFIBCoe8jMNE3Yto1IJMKWWV16XO0tZsMwUK1W645bmms4HGbHASBPDjxNTk7iwIEDbLnaZDIJXdehaRq7xlIsFhEKhZBMJpHL5VCtVvH4449j48aNCIVCmJiYwP33349SqQRFUZBIJNgT37WHTA3DYG+DlMtlhMNhxONxHDlyBBs2bICqqpifn0dXVxfa29th2zYqlQoikQhisRgefPBBPPDAA0in0ygUCrAsC4lEAqZpQlVVRKNRRCIR9qZ6KpW6xtOxY8ewbt26pqyTH8ceeVrZ0x133NES308TExMN2yOEboR4yG/8xm/grbfeqvv/pqam2CvO7e3t+Imf+IlrPvftb38bGzduXFFzfHwcH/7wh9mr5IFAADt37sSWLVswMzOD7373u2yCKIqC06dP1y2p1ey43WDHsix2B7nGT/zETzR8zbrVUnsK/JZbbmn6t3xk8+J1PiLj8dTmoeVGQ7Zx0urwqIeu6+zJlhrvfe972WvvXpDNZpHJZPCJT3xCigcFvM5HZDze2m713HxetnHS6vipHrJ5oR4kTsuphmxjpNVp5nos3yxdVVX09fXhjjvuYBcGG4nX+YiMx1Obh9ZKGqvd6LyjowPd3d146KGHkM1mabP0BiPbvHWKjD68zGmlWHdy2ixd9nOwRm6WTjdCPGTz5s3s1bG18MYbb2Dz5s1v++8XL17EPffcg8HBwbc9Zv369Xj00UfxsY99bM3xZcbt5DFNE6+++mrd//ee97ynaS6wVqtVtrFwIBBodDqukM2L1/mIjMdTm4eWGw3Zxkmrw6MeMvRh0zQxPj6OTZs2SdH/vc5HZDze2m713HxetnHS6vipHrJ5oR4kTsuphmxjpNVp5nosvxGy/GnfRuN1PiLj8dTmobWSxmpvYiiKgk2bNmF8fBymadKNkAYj27x1iow+vMxppVi8boTIfg7WyBshzfWtTazI1q1b0dfXhxMnTuBrX/saLly4gKtXr6KjowM//uM/jt/+7d/Gfffdh3Xr1jU6VYIzgUCALePV7Mjmxet8RMbjqc1Dy42GbOOk1fFLPRRFue4DB17jdT4i4/HWdqvn5vOyjZNWx0/1kM0L9SBxWk41ZBsjrY6f6lHbWFoWvM5HZDye2jy03GiYponR0VFX8Ql+yDZvnSKjDy9zEhnLT+dgvJHjlluLMDo6imq1uub/rWawRCIR/K//9b/wne98B2NjY9A0DVevXsXzzz+Pv/iLv6CbID7FsizMz8+ztf2bGdm8eJ2PyHg8tXloudGQbZy0On6pR6lUwokTJ9jm7o3G63xExuOt7VbPzedlGyetjp/qIZsX6kHitJxqyDZGWp1mrsfyBUF0Xcf58+eh63qDMqrH63xExuOpzUPLjUZ7ezvuvvtutLe3O45P8EO2eesUGX14mZPIWH46B+MN3QghiCYmEAiwDYebHdm8eJ2PyHg8tXloudGQbZy0On6pR+1pHFleyfY6H5HxeGu71XPzednGSavjp3rI5oV6kDgtpxqyjZFWx0/1CAQCiMVi0vwt53U+IuPx1Oah5UbDtm1ks1nYtu04PsEP2eatU2T04WVOImP56RyMN7RHCNHUtPoeIQRBEM0O9WGCIAiCIAhvGB0dpSWOCIbT/T1ojxCCEAOvPUJkp5F7hDT+VgxBEI6xbRvlctkXT2bI5sXrfETG46nNQ8uNhmzjpNXxSz10Xcfg4KA0r2V7nY/IeLy13eq5+bxs46TV8VM9ZPNCPUicllMN2cZIq+OneliWhampKWmWOfU6H5HxeGrz0HKjEYlEsH37dkQiEcfxCX7INm+dIqMPL3MSGctP52C8oRshhC+IxWJIJBIAFptJNptl65/m83k22SqVCluTzjRN5HI5plHbk6WmUWtGtm3DNE12nGmadcfVLgDats0+U61WPTmuWq0in89fc9zSXGt6snsyTROFQgHVanXF47z2ZFkW8vk8GxcivC/3VCgUhHiyLOsa7UbXqaax1hyWj3kvxuhqPbmtk5fH8fLEa57Ufl563Fp6eTabZbnmcjkYhgEAKJfLKJfLAADDMOp6fjabZR7n5+fx/e9/H6qqQtd15PN5lms2m2U5FYtFqKoKANA0DYVCgeW9dLmAQqEATdMAAKqqolgsrslTsVhk+Tj1VCqVUKlUAOCGnrLZLHp6epDL5bh7mp+fR09PD4vjpk6lUonlms/nHdXp6tWr+MEPfgBVVdfsSVVVfP/738f8/DwAPmNvLXXyYuw1k6dSqYTvf//7LFYze5qbm0NPTw8b442u09J54sXYU1UVP/jBD3D16lXunpZqy1CnQqGAnp4eLCwsrMlTzcfMzAyrE/WIxnmqfR8s7UfN4klVVfazZVkolUoYHR2FaZpQVZXloOt63XG1fKrV6jXH1WprmuY1x9Vy1TSt7rha3rZt1x1XKpXwxhtvwDRNGIZxzXE1VFVlv1fDMOpyXX7c9TyZpok33ngDxWKRuyfDMDA6OopSqVSXqxNPPOqkqipGR0ehqmrdcUuXq0kmk4hGowDqr7HE43H88i//MmKxGMtv6d/stb1DFEWp2/w5nU4jHA4zjXg8DgAIh8NIp9Mr1qm9vR1tbW0AFm/ApFIpAIvLCHV0dCAUCgEAEokEyycajSKZTAK4dgmepZ6uN/Y0TXNdp7WMvber02rGXrlcZvOkmT0Vi0XmY7U9QrSn2jzRNE1431upR/D6zi0Wi+jp6cH8/DyX76dyuYyenh7Mzs5yPSdsBHQjhPAFnZ2d2LNnDwBgZmYGmUyGTc6jR49ieHgYAHD27FmcOnUKADA+Po6HH36YaSy9MLf0AoumaeykAwCmp6fZhF560UhVVczOzgJYbCrT09Os6S0sLLBmVi6XMTc3B2CxWUxPT7PmMzc3x5pZqVTCwsICy216eprlNzs7C1VVEQqF0NbWxnLQdR3T09Ms15mZGfZ7kN3TwsICkskkQqEQCoUCa+TX87Rz504oisL2KQiHwwgEAggEAgiHw0ilUti8eTN+8zd/E5/73OeQy+Xe1tO9994LRVHYfgeRSATvfOc7oSgKotEobr31VrznPe9BZ2cn7rvvPvzTP/0TLl26tKo6AbjG0+TkJE6dOoW9e/fi/e9/P2699VZs2rQJ6XQa73rXu9DZ2YmPf/zj+OxnP4sLFy64qpOqqrj11luhaVpD6rR87M3NzeHWW29FKBRas6dQKARFUdjvled8WqlOzTqfvPJkGAabf049LSwssD8ql3paSy/PZDIs18OHD2NkZAQAcObMGZw5cwYAMDIygsOHD7PjMpkMxsfHAQA9PT3Ytm0bUqkUhoeHcfToUfZ7yGQy7Hdx8uRJ9Pb2AgAGBgZw/Phx9rvLZDLs93f8+HEMDAwAAHp7e3Hy5Mk1ecrn8ygUCuzEz4mnU6dO4ezZswBwQ0/Dw8Po7u7GyMgId089PT3o7u5mem7qdOrUKbz44ovo7u7G+Pi4ozodPXoU9913H1Kp1Jo9pVIpbNu2DT09PQD4jL211MmLsddMnmonabWLG83s6emnn0Z3dzfTa3Sdjh49invuuQepVMqTsZdKpfBbv/VbLAeenlKpFPbv34+jR49KUaeZmRl0d3fj+eefX5OnVCqFX/qlX8K//du/sTpRj2icp1QqhUKhwHJoJk/9/f3s54WFBbz88svo7OxENBpFX18fy+Hy5cu4cuUKi1vLx7Is9PX1sb9Hh4eHWW2npqYwNDTEvPf19bFch4aGMDU1xfKr5V0ul9HX18f+LhweHsa73/1uRKNRXLlyBZcvX2a/o76+Puapv7+f/c04MjJS56m/v58ddyNP0WgUP/uzP4vBwUHunhRFQWdnJ4aHh9kYcOqJR51mZmbQ2dmJhYUF5sk0TXR3d7O/Obu6urBjxw4A9ddYYrEYUqkUOx8YGxtjnubm5rB7924AwKZNm9Dd3c087d+/H1u2bAEA7Nq1C7t27QIAbNmyBfv376+rU+3cZffu3di5cycAYNu2bdi7dy+AxZsd3d3dWL9+PQBgz5496OzsBADs2LEDXV1dABbn59t5ut7YGxgYcF2ntYy9t6vTasbepUuXcNtttyEajTa1p8HBQezYsQPRaHTVPUK0p8nJSXR2diKfzwvveyv1CF7fufl8Ht3d3ejp6eHy/QQA3d3dePLJJ7meEzYC2iOEaGpq68rFYjEoioLe3l5s3boVhUIB6XQagUAA+XwesVgMkUgElUoFtm2jvb2dvRFSuyhYmwrvfe972WZFoVAItm3Dtm22Xn3tYmwgEIBlWQgEAggGg+wNjdoFQcuyhB+39Oelxy3NNRgMIhgMsi8OWT2ZpsmOqz1dfiNPO3fuxH/8x3+serykUilkMhn8/u///jU53HfffXjsscfWPAb/63/9r9i/fz/uueeeVXt/7rnn8Ad/8Ae4ePHiquN87GMfwxNPPOH491+jEXVaaewFg0EWdy051LRDoZBnY7QZ55OXnpbqOclV0zSMjIwgEAiw47Zu3YpAILDqXl4sFtnTZ7lcDvF4HOFwmP2xGo/HYRgGyuUye/osm80ikUhAURQUi0UYhoGOjg4YhgFVVZFKpVCtVpHL5djNv2KxCEVREIvFoGkadF1HMpmEbdvI5/NIpVIIBoMoFAqIRCKIRqNQVRWmaSKRSMCyrFV5MgwD8/PzuOWWWxAIBBx5KpVKCAaDaGtrY083vZ2npRveG4bB1VNtfIRCIZRKJVd1KpVKbEzVxs5a65TL5RCNRtHW1oZisbgmT+FwGNlsFuFwGIlEgsvYW0udvBh7zeTJNE3Mzc1h/fr1CAaDTe3JMAyEw2HWjxpdp2w2i0gkgng8jlKpJHzs1eIYhoGbbrqJq6dkMglVVZm/Rtepra2NfXcGAoFVe4rFYuxt2nQ6TT2iwZ5qD3/cfPPNCIfDTeXp4sWLePPNNxEOh2FZFnRdRzgcRigUgqZpiEQiCAaD0HWdPVxmWRZM00Q0GkW1Wr3muP+fvT+Pj6LK/v/xV++dpdMBEowsAiIaFRFkdSXiyPjRQZ0ZGWVQNpXNDXXeo+OMCs6M464ZF8RRiAvquMwwMqOCiiwCiUaDbEYEDZCQkLXTW3qt/v2RX91vd/buulVdXX2ej0cej+rOrdc5p86t21V1696r1+thNBoRCoUQDodjylksFvabLb7QJI5INpvNEAQBgUCAlfP5fOylNPFFxehy4ggAn8/H/BbfkBZ9DQaDMeV6ikm0I8bHMyZxOxQKxfiaSEw88iQ+P4hE2kf2WywW1NbWYunSpXA6nRAEATabDYFAAH6/nz1jEa8V8/Ly2ItXr732GgYNGgSDwYCamhosWrSI/V5kZ2ezN77tdju8Xi+CwSAbDeL1emEymZCZmYkXX3wRBQUF8Pl8aG5uxuzZs5GVlQVBENDW1gaz2Qyr1YoVK1bgrrvugt1uZzMdiNcCPp8PFosFZrMZLpcLer0eOTk5nWIqKSlBXl5et3XP7/eza9ZE8xRP3ZNyPomdRhaLBeFwOGVj8vl8MBqNMBqNCAQCfWoj5I4JABtN1PH48273umojJk+ezOU3Nysri+VFfIFayu+TzWZjI3AsFovke8KampqkrRFCHSFESpPui6WLb4EPHDgwZXzujkRiKSoqYr3bEydOxKRJk9j/xBv5r776qlOOV61ahYULF8Z8N2/ePNYRUlhYiIsvvhhtbW3IyMhgDbnD4cCBAwfwww8/oGPTefnll2P16tU44YQTevR5w4YNuOqqq1hPOQCcdNJJGDt2LLKzs2E2m9Hc3Ixvv/2WvWEBAOeffz6++OKLPh2XjvCsJzy0pGhoqc5rAV71IdntsMPhQHFxMe64446Y4fzJQml/5LTHW1uqnpT91VZP0h0t5UNtsVAbJJ9WohpqqyPpTirno+Ni6T6fD2VlZZg8eTJ7MJhMlPZHTns8tXlodaXR14XOc3NzsWzZMjzzzDNwOBy0WHqSUdt5myhqjENJn7qyxWuxdLXfgyVzsXTqCCFSmnTvCIlE2ufaF6eHSmUSiSW6I+TBBx/E8uXLuyz373//G/Pnz2fTA1ksFhw8eBBDhgxhZaI7QubOnYs1a9Z0609zczPeffddPP300/j+++/Z98OHD8eXX37Jhut2pLm5GaeddhqbHun000/HCy+8gKKioi7jP3r0KP7973+jpKQEmZmZCXeE8KwnPLSkaGipzmsBHvlQQzscDofR0NCA/Px8NvIomSjtj5z2eGtL1ZOyv9rqSbqjpXyoLRZqg+TTSlRDbXUk3UnlfHTsCBEEAV6vF5mZmewt6GSitD9y2uOpzUOrK42+dmIYDAbk5+ejoaEB4XCYOkKSjNrO20RRYxxK+tSVLV4dIWq/B0tmR4g6ahpBEAkhDkXUwgNhOWP55S9/yeY4BNrnQ3zhhRcS9qd///5YtGgR9uzZg9tuu419X1VVhV/+8pdsjYSOvPLKK6wT5IQTTsDWrVvZD11X9oYOHYrbb78d33zzTULTdvUllmRoSdHQUp3XAlrJh8FgQEFBgWoeZijtj5z2eGtL1ZOyv9rqSbqjpXyoLRZqg+TTSlRDbXUk3dFSPvR6PbKzs1XzEFJpf+S0x1Obh5YUjXA4jLq6OjaVLpFc1HbeJooa41DSJzltaekejDfqqW0EQcRNOBxGY2OjJi5I5I7liiuuwNlnn80+f/rpp5L9MZlM+Pvf/46lS5ey77Zv344333yzy/LiYlYAMH/+fOTl5fXZnrjIXCLwPLY8tKRoaKnOawGt5MPtdqOkpARutzvZrgBQ3h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqjpXwEAgHs2rWLzY2fbJT2R057PLV5aEnRyM7Oxrx585CdnZ2wfYIfajtvE0WNcSjpk5y2tHQPxhvqCCGIFEan07GFmFIdJWI577zz2PaPP/7IzZ+nnnoKI0aMYJ//9re/QRCETuVqamrY9rBhwxK2Fy88tXloSdHQUp3XAlrJh9FoxPDhw1UzLaLS/shpj7e2VD0p+6utnqQ7WsqH2mKhNkg+rUQ11FZH0h0t5UOv1yM3N1c1b2Qr7Y+c9nhq89CSohEKhVBVVdXtzAeEsqjtvE0UNcahpE9y2tLSPRhvku8BQRAJo9frYbPZku0GF5SIpV+/fmzb6XRy88diseDWW2/F3XffDQCorKzEt99+i3HjxnXSFPnpp58SthcvPLV5aEnR0FKd1wJayYfVauU2HysPlPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkf4sMptaC0P3La46nNQ0uKhs/nw+bNmyXZJ/ihtvM2UdQYh5I+yWlLS/dgvFFPtxtBEHEjCALcbneXow9SDSViaWlpYdt2u52rPzNnzoz5vG3btk5loqe3KikpwfHjxxO2Fw88tXloSdHQUp3XAlrJh9/vR2lpKfx+f7JdAaC8P3La460tVU/K/mqrJ+mOlvKhtlioDZJPK1ENtdWRdEdL+QiFQqiurlbNm/5K+yOnPZ7aPLSkaFgsFkyZMgUWiyVh+wQ/1HbeJooa41DSJzltaekejDfUEUIQKUwkEoHX60UkEkm2K5JRIpbt27ez7eiprHj4M3ToUJx44onsc2lpaacyV199Nduur6/HpEmTsGrVKjQ1NckaP09tHlpSNLRU57WAVvKhtvlpaX5s+fSk7K+2epLuaCkfaouF2iD5tBLVUFsdSXe0lA+1LYKttD9y2uOpzUNLiobZbMbYsWNhNpsTtk/wQ23nbaKoMQ4lfZLTlpbuwXhDHSGEJrBarWzhrnA4DIfDwR7MOZ1OdrK1tbXB4/EAaO99bW1tZRqRSITtEw6HWWMkCALroY1EInC73Whra4PP54PH44HX64XP54PX64XH44HP50NbW5si5YLBILKzs+Hz+WLKiZ/dbjfT83g8TM/r9XYqx9PXYDAYcyzFt8UFQWDHNRKJIBQKxTxAzcvLg8Fg6LKcSCgUYnrR+3ZVLtqH9evXY/fu3ez/l1xySZc+iOh0OgwYMAAGg6FTue5iOu2009j+x48f71Ru1qxZOOecc1iZI0eOYPHixRg4cCDOOecc/PGPf8RLL72EiooKCIIQU/e6iqkvxzUcDkOn02HgwIHQ6XQ9lpMrTx3Pp0gkgoEDB8JgMMTtg8FgwIABA9iaFL3F3tdj1FO5vsTEI09KluMVUyLnSVflxO3ocvG05Q6Hg/na2tqKYDAIAPB6vfB6vQCAYDAY0+Y7HA4Wo16vx9y5c2Gz2RAIBNjUeZFIBA6Hg/kktptA+1stLpeL+e1wOFi8LpeLve0itrHxxJSRkYHrrruOTTuWSEwejwdtbW0A0GtMJpMJixcvhtls5h6TXq/H4sWLkZGRITlPHo8HRqMRixcvhsViSShP4XAYCxcuhM1mizsmm82GuXPnsmkOedS9ePKkRN1LpZgyMzNx3XXXseu/VI5Jp9Nh8eLFyMzMVEWewuEwbr75ZthsNkXqns1mw0033RTzIIBXTDabDYsWLYr5jUtmnqxWKxYvXgyDwRBXTDabDQsWLGA2qY1Ibkw2mw3XXXcdMjIyUi4mn8/HtsVrsAkTJsBiscDn8zEfAoFATDnRn0gk0qmcmNtQKNSpnOir3++PKSf6LQhCTDkAGDduHCwWC4LBYKdyIj6fjx3XYDAY42vHcj3FZLFYMH78eEQiEe4xmc1mTJgwgdkTfU0kJh55MhgMmDBhAgwGQ0y56DUKbDYbG/UR/YzF6/Xi7bffZnUxGAzGXLNnZWUBaJ/qJzc3l8Vkt9thMpkAtP9uZ2ZmAgBMJlPMDA3RvmZlZbFzy2w2IycnB0D7fUdubi4MBgOA9gXcrVYrgPYRK+J1c8d1F6Jj6qnu+f1+yXmKp+51l6e+1D0AGDt2LCwWS0rHFIlEMH78eFgslj63EXLHpNfrMWHCBBiNRtnbva7aCF6/uRkZGVi8eDH0ej2X36esrCwsXryY/V88dlLvCZMBdYQQmmDKlCm45pprAAANDQ0oLi5mJ+fq1auxf/9+AMCWLVuwfv16AEB1dTVWrVrFNKIfzDmdTtZA+P1+NDQ0sO3PP/8c27dvR2lpKbZu3YqtW7eitLQU27dvx+eff47S0lKUlpbi888/x44dO1BaWootW7Zg27ZtKC0txRdffIHNmzejtLQUO3fuxOeff46dO3eitLQUmzdvxhdffIHS0lJs27YNW7ZsQWlpKXbs2NFJe/v27di5cye2bt3KynXlQ1995RlTdXU1a1CbmppYA+3xeNj0VKFQCPX19eyYNzY2sjfLXS4Xa8gDgQDq6+tZnhoaGlhuo2+YQ6EQyxPQPuJCbHjffPNN3HDDDex/FosFS5cuRSQSQX19fZdDEb1eLxupEQ6HUV9f32tM0WsltLS0oLGxkf2YuFwueL1efPjhhzGLtgPtPy67d+/Gyy+/jKVLl+Kcc85BXl4eFixYgM8++6zLmFpbW9mPk8/nQ2NjIwB0iqmlpQVutxuhUIjFJB67vsTEI09dnU/i+RZvTJFIBM3NzewHl1dM0XlKNCapeRIveFItpoaGBnYhm0hMLS0t7KIyOqZ42vLi4mLm68qVK3Ho0CEAwMaNG7Fx40YAwKFDh7By5UpWrri4GNXV1QCADz74ABs3boQgCNi/fz9Wr17NjkNxcTE7Fu+99x4b7VVRUYG1a9eyY1dcXMyO39q1a1FRUQGgfXTYe++9F1dMR44cQXFxMTsuicS0fv16bNmyBQB6jWnnzp1wOBz45ptvuMf0wQcfwOFwsJik5Gn9+vXYvHkzHA4H9u3bl3CeqqurIQhC3DEJgoCNGzfigw8+AMCn7sWTJyXqXirFdPz4cRQXF7Obu1SPyeFwsJjUkKcff/wRgiAoUvcEQUBlZaUsMQmCgPr6etXk6YcffoDD4cCGDRviikkQBJSXl1MboZKYBEFAcXExjhw5knIxlZeXs+2WlhaUl5ezB3dlZWXMhwMHDuDw4cPMruhPOBxGWVkZux7dv38/y21dXR327NnDYi8rK2O+7tmzB3V1dcw/0W+v14uysjJ2XVhRUYFjx44hEong8OHDOHDgADtGZWVlLKby8nJ2zXjo0KFOMYn0FlMkEoHH45ElplAoBJ/Ph4qKClYHpMQkNU9Hjx6Fz+dDbW0tiykUCmHZsmWss2H27NlsncvoZywDBw7EsmXLWMfDkSNHWExNTU2YMWMGAGDIkCFYtmwZi2nJkiVseujp06dj+vTpANqnjF6yZElMnsR7lxkzZmDq1KkAgDPOOAMLFiwA0H4Pv2zZMuTn5wMArrnmGkyZMgVAe+fZ7NmzAQA5OTndxtRb3eORp+iY5Dyfjh49ikgkkvIxOZ1ORCKRuNoIuWPy+Xyor6+Xvd3rqo3g9Zt75MgROBwOfPDBB1x+nxwOBxwOB/d7wmSgi6T6fBZEWrNv3z6MHj0aVqsVRqMRpaWlKCwshMvlgt1uh06ng9PphNVqhdlsRltbGwRBQFZWFhsRIj4UFE+FU089lb1tLr71LggCjEYjfD4fduzYAZ1OB51OB0EQ2Lb4IFCv17NtucuJF26ZmZnsjWxxHwAxeuIDtWi97spJ9XXixInIyspiIxB0Oh30ej0bDSD6Gg6HYTAYoNPpEAgE0NjYiIEDBzKd6HJGoxFA+8WaXq+HXq/H1KlTsXXrVgDAxIkTMWHChJiYnE4nvvzyS/zwww8x9ebZZ5/FrbfeGuPD/Pnz8eqrrwIA5s6di3/84x9oaGhgIxeife0upuuvv579YJxyyimorKzsslw4HMZbb72F559/vssptKLR6XRYsGABnnvuORiNxl596HhcxbfyGxoakJ+fD71e3205ufIkXrSI51MwGERTUxMGDhzIvu+rD+JD9Pz8fJhMpl5j7+sx6qlcX2IS2wixHG8f1BpTMBiM+zzp6Kvf78ehQ4dYuxKJRFBYWAidTtfnttztdrO3z1pbW5GZmQmTycQuVjMzMxEMBuH1etnbZw6HA9nZ2TAajTh27Bj+8Y9/4I477kBmZiZ8Ph9ycnIQiUTQ2toKm80Gg8EAt9sNo9EIq9UKv9/PRgmI7U1OTg70ej1cLhfMZjN7ay8UCiE7OxvhcLhPMTU2NuL555/HHXfcgdzc3IRi8ng80Ov1yMjIQCAQ6DEmj8eDF198kb3pzDOmlpYW/OMf/8Att9wS85ZgojG5XC6sWrUKS5YsgdVqjTtP1dXVWLNmDe644w4YDIa4YvJ6vSguLsbNN9+MQYMGcal78eRJibqXSjE1NTXhueeew+23345+/fqldExNTU14+eWXceutt8JgMCQ9T0ePHmXnidFolL3uBYNBFBcXY/78+TjppJO4xiQ+sJ4/fz4GDx6c9DwFAgG88MILWLhwIex2e59jEh9YLFiwAEOHDqU2IskxORwOFBcX45ZbbkFeXl5KxVRZWYmjR4/CZDIhHA7D7XZj165dmDx5MoD2N/D1ej0CgQB0Oh0rFwqFYLFYEIlE4Pf7Y8rp9XoYjUaEQiGEw+GYchaLhV3vGQwGVk4QBJjNZgiCgEAgwMq1trYyf8Trxuhy4oN4n88Hk8kEg8HA3pAWfQ0GgzHleopJ7FgYO3YsbDYb15gikQi+/PJLjB07FtnZ2czXRGLikadAIICvv/4a48ePh8lkgsViQW1tLZYuXQqn0wlBENjoaL/fz56xuN1u9O/fH7fffjueeeYZOBwOvPbaaxg0aBAMBgNqamqwaNEiNnI3OzubvfFtt9vZTBbiaBCv1wuTyYTMzEy8+OKLKCgogM/nQ3NzM2bPno2srCwIgoC2tjaYzWZYrVasWLECd911F+x2O1wuF8LhMLKzs9mDZIvFwkY26/V65OTkdIqppKQEeXl53dY9v9/P7rcTzVM8dU/K+eR0OlFRUYHJkyfDaDSmbExOp5PVa51O16c2Qu6YxPNEHBUiZ7vXVRsxefJkLr+5oVAIzz//PG6++Wb069dP8u+TIAh49tlnceONNyI/P1/yPWFNTQ1Gjx4Nkb179+LMM8+EElBHCJHSiB0hIvGePKFQqNND8lGjRrGHfx3x+Xy9PrhWko6dE2phypQp7Ielr3R8ONoXioqKWO92X7DZbOxmuCPz5s2L6QhZs2ZN3P5cddVV7E3hc845B19//XWv+xw9ehSbN2/Gzp078fXXX2P37t0xQzVFpk2bhg0bNnRbN3sikWMrp5YUDZ6xENLhkY9422E56PgAItko7Y+c9nhrS9WTsr/a6km6o6V8qC0WaoPk00pUQ211JN1J5XxUVVWhqqqKfe744C7ZKO2PnPZ4avPQ6kqjrq4Os2bN6nXfjp0Lb731FgoKCuLS6Iq+6jz99NO48847E7LRla1UR23nbaKoMQ4lferKVlFRERdttd+DSX2WKwXlnjIQBMEdtXWASEGn03F/8JmdnY0BAwZgzJgx+NnPfoY5c+bEzFnK25/oeRn79+/fp32GDh2KG264gU3d5ff7sWXLFrz00kv417/+xUYqbdq0CX//+99x1113xeUTwPfY8tCSoiFHPSESRyv5EOcSVgtK+yOnPd7aUvWk7K+2epLuaCkfaouF2iD5tBLVUFsdSXe0lA+dThf3C2xyorQ/ctrjqc1DS4qGuE4AoQ7Udt4mihrjUNInOW1p6R6MN6n1+gJBEDEIggCPx8OmvUplOq4bEC8PPvggGyEj/rlcLlRVVeGDDz7A7bffHlfDm4g/lZWVbDvet01Ee0ajEdOnT8d7772H999/P+Yhc6JzKUo9try1pGjwjIWQjlby4XK58OKLL7K1T5KN0v7IaY+3tlQ9KfurrZ6kO1rKh9pioTZIPq1ENdRWR9IdLeXD7/ejvLyczeuebJT2R057PLV5aEnRsNlsWLx4ccyamETyUNt5myhqjENJn+S0paV7MN5QRwhBpDDinIxaGBWi0+mQmZmpmlji9efw4cM4fvw4+ywu3CbF3i9/+Uu2OBzQviiduCijVO1E4aElRUNt9STd0Uo+zGYzxo4dC7PZnGxXACjvj5z2eGtL1ZOyv9rqSbqjpXyoLRZqg+TTSlRDbXUk3dFSPgwGAwoKCmAwGJLtCgDl/ZHTHk9tHlpSNAKBAHbt2oVAIJCwfYIfajtvE0WNcSjpk5y2tHQPxpvUn8+CIBTEYrHE/YA7HbFYLHHvo9frkZ2dLYM3iRGvP++++27M54suuoiLvcsuuwwvvfQS+1xbW8sWEpWqnQg8tKRoqK2epDtayYfa2nal/ZHTHm9tqXpS9ldbPUl3tJQPtcVCbZB8WolqqK2OpDtayofRaMSQIUOS7QZDaX/ktMdTm4eWFA2/36+qtVLTHbWdt4mixjiU9ElOW1q6B+MNjQghiDgQ5/BTy5/ZbEYwGITZbE66L9F/ibwdLggCXC6Xaqb5iscfv9+P559/nn0ePXp0zMJPUux1nDMykU4mnseWh5YUDbXVk3RHK/nw+XzYvHkzfD5fsl0BoLw/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5CIVCqKqqQigUSrYrAJT3R057PLV5aEnRsFqtKCoqUt16DumK2s7bRFFjHEr6JKctLd2D8YY6QggihYlEIvD7/WxB7VRGbbHE489dd92Fqqoq9vm+++6LuzOoO3vffvst29bpdAm9McDz2PLQkqKhtnqS7mglH2q7CKeHAPLpSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkf4iLYanmpRWl/5LTHU5uHlhQNo9GI4cOHx6xfSSQPtZ23iaLGOJT0SU5bWroH440ukupPL4i0Zt++fTFv3u/duxdnnnlmn/cPhUL44YcfYr4bNWoU/cCnCEVFRdiyZQuA9sXSly9fnrDWvHnz8OqrrwIA5s6di5KSkl73CQaD+L//+7+YRcyLiorw6aefdjnP44MPPogZM2ZgwoQJffKpvr4eZ599Nurq6gAAEydOxJdfftmnfQkiVaB2mCAIgiAIQhmqqqpiXuAi0pu6ujrMmjUr7v3eeustFBQUSNKIR+fpp5/GnXfemZCNrmwRhFopKipKtguKIPVZrhRoRAhBpDCRSATBYDDl38YG1BdLT/40NzfjpZdewpgxY2I6QUaNGoX333+/28WuNmzYgIkTJ2LatGl47bXX4HA4urQXiUSwceNGnH/++awTBAD+8Ic/cI8lGVpSNNRWT9IdreQjHA6jrq4O4XA42a4AUN4fOe3x1paqJ2V/tdWTdEdL+VBbLNQGyaeVqIba6ki6o6V8CIIAt9utmjeylfZHTns8tXloSdFQ46LW6YzazttEUWMcSvokpy0t3YPxhjpCCE1gtVrZgr3hcBgOh4M9mHM6nQgEAgCAtrY2eDweAO1vIbe2tjIN8QG0qCGeoIIgxAzfCoVCMeXERksQBLZPJBJRpFw4HEZDQwOCwWBMuWhfRT21xxQMBtHQ0BATW28xRT987apcvD6IlJWV4ZZbbsHChQtxyy23YOnSpbj++utx5ZVX4vTTT0deXh4WLVqEyspKts9VV12FL774Ajk5Od3aFb///PPPMXfuXPTv3x9nnnkmfvnLX+Kmm27CvHnzMGPGDAwZMgQ///nPcfDgQaZ/2223YcaMGQkd/1AohIaGBoRCoaTkqWPdCwQCTCNeH8Q6L9pSoo72JSa1nU9KxSTWrXA4LMlXcTu6XDxteXSnYmtrK2sTvV4vvF4vgPa6G93mOxwOFuPx48exatUquFwuBAIBOJ1O5qvD4WA+ud1uNq+p3++Hy+VifkcPa3a5XPD7/QDa50N1u91xxdTS0sL8STQmj8eDtrY2AOg1psbGRqxatQqNjY3cYxKPbUtLi+Q8eTweNDQ0YNWqVWhqakooTzU1NezYxhuTy+XCqlWrcPz4cQB86l48eVKi7qVSTA6HA6tWrWL6qRxTXV0dVq1aBYfDoYo8RZ8nStQ98dyqqanhHlO0thry1NzcjFWrVqG+vj6umMQ4jh07xvJEbUTyYhLz0dLSknIx+Xw+th0Oh+FyufD1118jEAjA5/MxHwKBQEw50Z9IJNKpnJjbUCjUqZzoq9/vjykn+i0IQky5aH+CwWCnciI+n48d12AwGONrx3I9xRQIBPD111/HrHnHKya/38+0o31NJCYeefJ6vfj666/h9XpjyuXm5kKvb380aLPZ2JqU0c9Y7HY7Fi9eDJvNxvyLvmbPysoC0D6FVm5uLovJbrfDZDIBADIzM5GZmQkAMJlMsNvtXeYpKysLGRkZAACz2YycnBwA7dNE5+bmss6Y7OxstmaJxWJhvun1+m5j6qnu+f1+yXmKp+51l6e+1D23283qQyrHFF2v+9pGyB2TeJ60tbXJ3u511Ubw+s0V7yePHz/O5feptbUVq1atQm1tLdd7wmRAHSGEJpgyZQquueYaAEBDQwOKi4vZybl69Wrs378fALBlyxasX78eAFBdXY1Vq1YxjegHc06nkzUQfr8fDQ0NrFx9fT07oVtbW1kD4fP50NjYCKC9Uamvr2eNXktLC2vMvF4vmpqaALQ3FvX19azxaWpqYo2Zx+NhF9ehUAj19fXMv8bGRvh8PhgMBmRmZrLGJxAIoL6+nvna0NDAjoPaY2ppaYHdbofBYIDL5WINeU8xRfcmiw9kpcQkUllZiZUrV6KkpAQrV67EypUrsXbtWqxfvx6VlZUxHScXXHABXnnlFaxbtw79+vXrMk9A+0X9JZdcEjMcNxKJYP/+/Vi3bh1Wr16NN998E//73//YTS4A5Obm4oUXXsDf//73hPPU1taGgoIC+P3+pOSpY91rbm5mbxTFG5PBYIDZbGY/5jzPJzFPicSktvNJqZiCwSAMBgMMBkPCMbW0tLCLyuiY4mnLo0dmrVy5EocOHQIAbNy4ERs3bgQAHDp0CCtXrmTliouLUV1dDQDYunUrxo8fD7vdjv3792P16tXsOBQXF7Nj8d5776G0tBQAUFFRgbVr17JjV1xczI7f2rVrUVFRAQAoLS3Fe++9F1dM4vEVbxATiWn9+vVs6sDeYtq/fz/uuece/Pjjj9xj2rp1K+655x64XC7JeVq/fj127dqFe+65BzU1NQnlac2aNVi8eDHsdnvcMdntdowfPx5bt24FwKfuxZMnJepeKsUktkniQ5BUjumTTz7BPffcg0AgoIo8rVmzBvPmzYPdblek7tntdsyaNQtr1qzhHpPdbscdd9yBNWvWqCJPjY2NuOeee1BWVhZXTHa7HZdffjnef/99lidqI5IXk/j7LP5ep1JM5eXlbLulpQV79uzB+eefD4vFgrKyMubDgQMHcPjwYWZX9CccDqOsrIxdj+7fv5/ltq6uDnv27GGxl5WVMV/37NnDRrpXV1czv71eL8rKyth14XfffYdTTjkFFosFhw8fxoEDB9gxKisrYzGVl5eza8ZDhw7FxFReXs7K9RaTxWLB5MmTsWvXLu4xGY1GnH/++fjuu+9YHUg0Jh55amhowPnnn8/0gPZ7iGXLlrHOhtmzZ2PcuHEAYp+xmM1mAGD3F0eOHGExNTU1YcaMGQCAIUOGYNmyZSymJUuWYOTIkQCA6dOnY/r06QCAkSNHYsmSJTF5ErVnzJiBqVOnAgDOOOMMLFiwAEB7Z8eyZcuQn58PALjmmmswZcoUAMC4ceMwe/ZsAEBOTk63MfVU9yoqKiTnKZ66112e+lL3Dhw4gBEjRsBisaR0TLt27cL48eNhsVj63EbIHVNdXR3OP/98OJ1O2du9rtoIXr+5LpcL99xzD7Zu3crl90mn0+Gee+7Bf//7X673hMmA1gghUhpxXjmr1Qqj0YjS0lIUFhbC5XLBbrdDp9PB6XTCarWyh6eCICArK4uNCBEfCoqnwqmnnsoWujYYDBAEAYIgsPnqxYexOp0O4XAYOp0Oer2evfEvPhAMh8NJKxftq16vh16vZz8cWopp6tSp7IHUAw88gPvvvz/hmObPn8/WCOmIyWSCzWaD3W5Hfn4+xowZg/Hjx+OSSy7ByJEj44pJr9fjq6++wpYtW1BeXo7vv/8e1dXVcDqd0Ol0yMnJwZAhQzBmzBj87Gc/w5VXXslutlI1T1qsexQTP1/9fj8OHToEnU7HyhUWFkKn0/W5LXe73ezts9bWVmRmZsJkMrGL1czMTASDQXi9XnY+ORwOZGdnw2g0wuPxQK/XIyMjg71pJ47uam1thc1mg8FggNvthtFohNVqZW8R2mw2CIIAp9OJnJwc6PV6uFwumM1mWCwW+Hw+hEIhZGdnszf6KCaKiWKimCgmioliopiSEVNlZSWOHj0Kk8mEcDiMYDDIOpR9Ph/MZjP0ej0CgQB0Oh0rFwqFYLFYEIlE4Pf7Y8rp9XoYjUY2+jy6nMViYdd7BoOBlRMEAWazGYLQPlo8upzRaITBYGDTr0aXi/bVZDKxcgAopgRiqq2txdKlS+F0OiEIAmw2G3s7X3zG4na7YTAYYLPZ0Nraikgkgtdeew2DBg2CwWBATU0NFi1aBI/HA6PRiOzsbPbGt91uh9frRTAYZKNBvF4vTCYTMjMz8eKLL6KgoAA+nw/Nzc2YPXs2srKyIAgC2traYDabYbVasWLFCtx1112w2+3s7fns7GyEQiH4fD5YLBaYzWa4XC7o9Xrk5OR0iqmkpAR5eXkpmSct1j2KqeuYJk+enBa/TzU1NUlbI4Q6QoiUJt0XSw+Hw2hsbEReXl7Kz9eptliU9kdOezy1eWhJ0VBbPUl3eORDDe2w0+nE6tWrsWDBAvb2WDJR2h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqTyvnouFi63+9HRUUFxo0bx6YPSiZK+yOnPZ7aPLS60ujrQuc5OTlYsGABVq9eDafTSYulJxm1nbeJosY4lPSpK1u8FktX+z0YLZZOEERC6HQ62Gw2NoIllVFbLEr7I6c9nto8tKRoqK2epDtayYfVakVRURF7MyjZKO2PnPZ4a0vVk7K/2upJuqOlfKgtFmqD5NNKVENtdSTd0VI+jEYjhg8frpoXAZX2R057PLV5aEnR8Pl82Lx5c8zaCkTyUNt5myhqjENJn+S0paV7MN6op7YRBBE3er2eDTFNddQWi9L+yGmPpzYPLSkaaqsn6Y5W8mE2mzF27Nhku8FQ2h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqjpXwYDAZVvSWvtD9y2uOpzUNLikYgEMCuXbsk2Sf4obbzNlHUGIeSPslpS0v3YLyhESEEkcIIgoDW1la20HAqo7ZYlPZHTns8tXloSdFQWz1Jd7SSj7a2Nnz88cdoa2tLtisAlPdHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfwWAQBw8eZHPoJxul/ZHTHk9tHlpSNDIyMnDZZZchIyMjYfsEP9R23iaKGuNQ0ic5bWnpHow31BFCECmMuOiwFpb6UVssSvsjpz2e2jy0pGiorZ6kO1rJhyAIcDgcqunQUdofOe3x1paqJ2V/tdWTdEdL+VBbLNQGyaeVqIba6ki6o6V8RCIR+Hw+1VzLKe2PnPZ4avPQkqKh1+uRm5sLvZ4eIaoBtZ23iaLGOJT0SU5bWroH4w0tlk6kNOm+WDpBEESqQ+0wQRAEQRCEMnRcLJ1IbxJd6JwWSycIeeC1WLraocXSCYJIiEgkAr/fr6oe9ERRWyxK+yOnPZ7aPLSkaKitnqQ7WslHKBRCVVUVQqFQsl0BoLw/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5UNNbugCNSJNTS4qGGhe1TmfUdt4mihrjUNInOW1p6R6MN9QRQhApTDgcRlNTE8LhcLJdkYzaYlHaHznt8dTmoSVFQ231JN3RSj7cbjdeffVVuN3uZLsCQHl/5LTHW1uqnpT91VZP0h0t5UNtsVAbJJ9WohpqqyPpjpbyEQgE8O233yIQCCTbFQDK+yOnPZ7aPLSkaGRnZ2PevHnIzs5O2D7BD7Wdt4mixjiU9ElOW1q6B+MNTY1FpDQ0NRZBEERqQ+0wQRAEQRCEMtDUWEQ0NDUWQagLmhpLfmhECEEQBEEQBEEQBEEQBEEQBEEQmoU6QggihQmFQqitrVXFPHtSUVssSvsjpz2e2jy0pGiorZ6kO1rJR2trKx555BG0trYm2xUAyvsjpz3e2lL1pOyvtnqS7mgpH2qLhdog+bQS1VBbHUl3tJQPn8+HL774Aj6fL9muAFDeHznt8dTmoSVFw263495774Xdbk/YPsEPtZ23iaLGOJT0SU5bWroH4w11hBBECqPX65Gbmwu9PvVPZbXForQ/ctrjqc1DS4qG2upJuqOVfGRmZuLqq69GZmZmsl0BoLw/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5MJlMKCwshMlkSrYrAJT3R057PLV5aEnR8Hq9WLduHbxeb8L2CX6o7bxNFDXGoaRPctrS0j0Yb1L7yQVB/P+xWq1s4a5wOAyHwwFx+Run08kWH2pra4PH4wHQ/iZzdG9kJBJh+4TDYbb4ryAIMW87h0KhmHKCILBy4j6RSESRcnq9HhaLhX0vlov2VdRTe0yRSAQWiwV6vb7LckrHBABmsxl6vV622KN9BYCMjAxEIhHuMYna0Z+TmSdBEJCRkQG9Xh+3D3q9HmazmdlRoo72JSa1nU9KxQTwOU/E7ehy8bTlDoeD+dPa2opgMAig/aZNvGELBoMxbb7D4WAxBgIBDBs2DCaTCYFAAE6nk/nqcDiYT263m72x4/f74XK5mN8Oh4PF63K54Pf7AbS/6SMuCtfXmHQ6HQoKCthFcSIxeTwetLW1sfh6iikcDqOwsBCCIHCPKRAIoLCwEDqdTnKePB4PQqEQCgsLEYlEEsqTx+PBqaeeCpPJFHdMJpMJw4YNY/HxqHvx5EmJupdKMen1ehQUFLD1hFI5Jr/fj8LCQuj1elXkyePxYNSoUTCZTIrUPZPJhFNOOYXFxzMmk8mE0047DR6PRxV5AoDCwkIEg8G4YjKZTDj55JNZfNRGJDcmk8mEgoIC6HS6lIvJ5/Ox7XA4jGAwiLy8PBgMBvh8PuZDIBCIKSf6E4lEOpUTcxsKhTqVE331+/0x5US/BUGIKRcKhdCvXz8YDAYEg8FO5UR8Ph87rsFgMMbXjuV6islgMGDAgAEIBoPcY9Lr9cjLy0MoFIrxNZGYeOQpEokgLy8PkUgkplz0S002mw0WiwVA7DMWQRBQV1fH4g0GgzHX7FlZWQAAo9GI3NxcFpPdbmfXs5mZmewhqMlkihldEu1rVlYWu3c1m83IyckB0H59nJubC4PBAKB9AXer1QoAsFgssNlsADq/qBUdU091z+/3S85TPHWvuzz1pe6FQiF2LFI5pmAwiAEDBsBgMPS5jZA7JkEQkJeXx2xJyVMibQSv31ydTofCwkIEAgEuv08GgwGFhYXsekg8dlLvCZMBdYQQmmDKlCm45pprAAANDQ0oLi5mJ+fq1auxf/9+AMCWLVuwfv16AEB1dTVWrVrFNKIfzDmdTtZA+P1+NDQ0sHL19fXshG5tbWUNhM/nQ2NjI4D2RqW+vp41ei0tLawx83q9aGpqAtDeWNTX17PGp6mpiTVmHo8HLS0tzLf6+nrmX2NjI2vYGxsbWUMSCARQX1/PfG1oaGDHIRViam5uRjgchsvlYg15smLyeDwsDql5AtBrTD6fDy0tLWhtbeUek9vtZrGpJU8tLS3Mh3hiCofDaGhoYD+4PM+nvuQplc4nJWJqa2tj/iUaU0tLC7uojI4pnra8uLiY+bpy5UocOnQIALBx40Zs3LgRAHDo0CGsXLmSlSsuLkZ1dTUAYN26dVi9ejW8Xi/279+P1atXs+NQXFzMjsV7772H0tJSAEBFRQXWrl3Ljl1xcTE7fmvXrkVFRQUAoLS0FO+9915cMR08eBDFxcUs14nEtH79emzZsgUAeo1p27ZtWLduHcrKyrjHtG7dOqxbt47FJCVP69evx2effYZ169Zh165dCefpvffeg9frjTsmr9eL1atXY926dQD41L148qRE3UulmI4cOYLi4mLWZqRyTO+88w7WrVvHYlJDnt555x14vV5F6p7X68Xbb78tS0xerxf/+te/VJOn/fv3Y926dfjwww/jisnr9eKNN97AK6+8EpMnaiOSE5PX60VxcTEOHjyYcjGVl5ez7ZaWFpSXl6OyshLBYBBlZWXMhwMHDuDw4cPMruhPOBxGWVkZu0bZv38/y21dXR327NnDYi8rK2O+7tmzB3V1dcw/0W+v14uysjJ2XVhRUYHdu3cjGAzi8OHDOHDgADtGZWVlLKby8nLW/h86dKhTTCK9xRQMBvHdd9/JEpPP50NlZSUqKipYHZASk9Q8HT58GJWVlaipqWExhUIhLFu2jHU2zJ49G+PGjQMQ+4xl6NChWLZsGevkOHLkCIupqakJM2bMAAAMGTIEy5YtYzEtWbIEI0eOBABMnz4d06dPBwCMHDkSS5YsicmTeO8yY8YMTJ06FQBwxhlnYMGCBQDaOzuWLVuG/Px8AMA111yDKVOmAADGjRuH2bNnAwBycnK6jam3uscjT9ExyXU+7d69G99++y2CwWDKx7R//34Eg8G42gg5Y/rpp59QWVmJuro62du9rtoIXr+5Bw8eZPdhPH6fjh8/jnXr1uH111/nek+YDHQR8akJQaQg+/btw+jRo2G1WmE0GlFaWorCwkK4XC7Y7XbodDo4nU5YrVaYzWa0tbVBEARkZWWxESHiQ0HxVDj11FPZ2z0Gg4G9wS6+cRgKhWAwGKDT6RAOh6HT6djb8ZFIBAaDgb3VL3e5SCSC1tZW2Gw2mEwmVi7aV71eD71ez3441BpTMBiE2+1GTk4Oiy26nNIxhUIhOJ1O2O12Zot37NG+Au0PrLOzs6HX67nGFIlE4HK5YLPZoNPpkp6ncDjMNMT9++qDIAhobW1FTk4OjEajInU0Fc8npWLicZ74/X4cOnQIOp2OlRPfFulrW+52u9mNWWtrKzIzM2EymdjFamZmJnv7Vnz7zOFwIDs7G0ajEQ0NDdiyZQsuv/xyGI1G+Hw+Vj/FNtZgMMDtdsNoNMJqtcLv9yMQCMBms0EQBDidTuTk5ECv18PlcsFsNsNiscDn8yEUCiE7O5t1IPYWk9PpxMcff4xf/OIXyMzMTCgmj8cDvV6PjIwMBAKBHmMKBALYunUrpk6dCqPRyDUmt9uN7du3Y9q0aRAEQVKePB4PfD4ftm3bhqKiIuj1+rjzdPz4cZSWluLnP/85wuFwXDGFQiF8+OGHmDp1KvLz87nUvXjypETdS6WYXC4XPvroI1xxxRXsvEnVmJxOJ3bs2IFLLrkE4XA46Xmqq6vDzp07cdlll7HfAjnrnk6nw8cff4xzzz0XJ554IteYjEYjNmzYgClTpmDgwIFJzxMAfP7557jgggvY29F9iSkSieCjjz7CBRdcgBNOOIHaiCTH5PV68d///heXXXYZcnJyUiqmyspKHD16FCaTCeFwGG1tbaiursbIkSPZ76Jer0cgEIBOp2PlQqEQm4nA7/fHlNPr9TAajeylpehyFouFXe8ZDAZWThAEmM1mCIKAQCDAyrndbhw5cgSjRo0C0H6PHl1OHAHg8/lgMpnYyBEAzNdgMBhTrqeY9Ho9Dh48iCFDhiArK4trTHq9Hj/++COGDBmCjIwM5msiMfHIUzgcxuHDhzFs2DA2s0RtbS2WLl0Kp9MJQRBgs9kQCATg9/vZMxa3243s7Gxcfvnl+O9//wuv14vXXnsNgwYNgsFgQE1NDRYtWgSPxwOj0Yjs7Gz2oqZ4vgSDQTYaxOv1wmQyITMzEy+++CIKCgrg8/nQ3NyM2bNnIysrC4IgoK2tDWazGVarFStWrMBdd90Fu90Ol8uFcDiM7OxshEIh+Hw+WCwWmM1muFwudn3YMaaSkhLk5eV1W/f8fj+MRqOkPMVT96ScTx6PB4cPH8aoUaPYPVQqxuR2u1FdXY1TTjkFgiD0qY2QO6ZQKIQjR45g+PDh0Ol0srZ7XbURkydP5vKbq9frsWnTJpx//vnIzs6W/PtkNBrx6aef4rzzzoPdbpd8T1hTU4PRo0dDZO/evTjzzDOhBNQRQqQ0YkeISLwnTygUwg8//BDz3ahRo9jDP4IgCEJeqB0mCIIgCIJQhqqqKlRVVSXbDUIl1NXVYdasWXHv99Zbb6GgoECSRjw6Tz/9NO68886EbHRliyDUSlFRUbJdUASpz3KlQFNjEUQKI74pIU4rk8qoLRal/ZHTHk9tHlpSNNRWT9IdreQjGAyy6QbUgNL+yGmPt7ZUPSn7q62epDtayofaYqE2SD6tRDXUVkfSHS3lQ5xqWRwZnGyU9kdOezy1eWhJ0VDjotbpjNrO20RRYxxK+iSnLS3dg/GGOkIIIoURFy5K9YeQgPpiUdofOe3x1OahJUVDbfUk3dFKPrxeL9atW8eGGCcbpf2R0x5vbal6UvZXWz1Jd7SUD7XFQm2QfFqJaqitjqQ7WsqHmh5OAdQRK6eWFI3MzExcffXVbHorIrmo7bxNFDXGoaRPctrS0j0Yb2hqLCKloamxCIIgUhtqhwmCIAiCIJSBpsYioqGpsQhCXdDUWPJDI0IIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEClMKBTCsWPHEAqFku2KZNQWi9L+yGmPpzYPLSkaaqsn6Y5W8uFwOLBixQo4HI5kuwJAeX/ktMdbW6qelP3VVk/SHS3lQ22xUBskn1aiGmqrI+mOlvLh8/mwZcsW+Hy+ZLsCQHl/5LTHU5uHlhSN3NxcLF++HLm5uQnbJ/ihtvM2UdQYh5I+yWlLS/dgvKGOEIJIYQwGAwYMGACDwZBsVySjtliU9kdOezy1eWhJ0VBbPUl3tJKP7OxszJ07F9nZ2cl2BYDy/shpj7e2VD0p+6utnqQ7WsqH2mKhNkg+rUQ11FZH0h0t5cNsNuPss8+G2WxOtisAlPdHTns8tXloSdFwu90oKSmB2+1O2D7BD7Wdt4mixjiU9ElOW1q6B+MNTcBNECmMTqeDxWJJthtcUFssSvsjpz2e2jy0pGiorZ6kO1rJh9FoxPDhw5PtBkNpf+S0x1tbqp6U/dVWT9IdLeVDbbFQGySfVqIaaqsj6Y6W8qHX61X1lr/S/shpj6c2Dy0pGqFQiNaWURFqO28TRY1xKOmTnLa0dA/GGxoRQhApTDgcRnNzM8LhcLJdkYzaYlHaHznt8dTmoSVFQ231JN3RSj48Hg/efvtteDyeZLsCQHl/5LTHW1uqnpT91VZP0h0t5UNtsVAbJJ9WohpqqyPpjpbyEQgEsHfvXgQCgWS7AkB5f+S0x1Obh5YUjaysLFx33XXIyspK2D7BD7Wdt4mixjiU9ElOW1q6B+MNdYQQRAqj0+lgMBig0+mS7Ypk1BYLT3+Kioqg0+mg0+mwefNmLvZKSkqY5rx583osyzMWHlpSNOSqJ5s3b2bHs6ioiKu2llHbeZso4ts4er06LouU9kdOe7y1pepJ2V9t9STd0VI+1BYLtUHyaSWqobY6ku5oKR86nQ5Wq1U113JK+yOnPZ7aPLSkaAiCAIfDAUEQErZP8ENt522iqDEOJX2S05aW7sF4Q1NjEUQKo9frYbfbk+0GFxKJpaioCFu2bOn2/9nZ2ejXrx/OOOMMXHTRRZg7dy4GDx4smz9SkNMeT20eWlI0UqXOl5SUYP78+d3+32w2Izc3F6eccgrOPfdczJs3D6NHj+62/ObNm3HxxRd3+T+dTgebzQa73Q673Y7TTjsN48ePx8SJE3HxxRcnvH5HZWUlXn/9dezYsQPff/89WlpaEA6HkZ2djUGDBmHkyJEYP348zj33XFx44YWwWq0J2VEDGRkZuOyyy5LtBkNpf+S0x1tbqp6U/dVWT9IdLeVDbbFQGySfVqIaaqsj6Y6W8mEymXDKKack2w2G0v7IaY+nNg8tKRptbW34+OOPJdkn+KG28zZR1BiHkj7JaUtL92C8SX5XDEEQCSMIArxerybezJAjFrfbjaNHj2LDhg344x//iBEjRmDFihWIRCJJ8SdZ9nhq89CSoqGVOh8IBFBfX48dO3bgySefxFlnnYU5c+bA5XLFrRWJROB0OnH06FHs3bsX77//Pu677z5ceumlOOmkk/DAAw+gubm5z3oOhwNz587F6aefjocffhibN29GbW0tfD4fgsEgWlpasG/fPnzwwQd48MEHMX36dPTv3x9Hjx6N23e1EAgEsGvXLtUMy1baHznt8daWqidlf7XVk3RHS/lQWyzUBsmnlaiG2upIuqOlfITDYdTV1almmlOl/ZHTHk9tHlpSNMxmM8aOHauqRa3TGbWdt4mixjiU9ElOW1q6B+MNjQghiBQmEonA5XJpYrFiqbFMnDgRkyZNivmutbUV3377Lfbs2QMACAaDWL58ORwOB55++mlZ/YkXOe3x1OahJUUjFeu8zWbDnDlzYr5ra2vDwYMHsXPnTgSDQQDA66+/jiNHjmDjxo293mTccsstMZ99Ph9aWlpQW1uLXbt2oa2tDQBw7Ngx/PnPf8Yrr7yCNWvWYPr06T3qtrS0YNq0adi1axf7LisrCxMmTMCIESNgsVjgcDjwww8/xMxn2tbWBr/f36fjoUZ8Ph82b96Mk08+WRU3eEr7I6c93tpS9aTsr7Z6ku5oKR9qi4XaIPm0EtVQWx1Jd7SUD3ER7H79+iU8ijiV/ZHTHk9tHlpSNKxWK4qKivDjjz+q4kFmuqO28zZR1BiHkj7JaUtL92C80UX68mo0QaiUffv2xUwns3fvXpx55pl93j8UCuGHH36I+W7UqFEwGqmPMBWInhrrwQcfxPLly7sst2PHDsyaNQtHjhxh33311VeYMGGCEm7G+Pn555/TGhQqJHrqqalTp3a7lktfiZ4aa9iwYaiqquqy3OHDh3HDDTdg27Zt7LvHHnsM//d//9etfwB6HNUUDAaxfft2FBcX4z//+Q8rq9Pp8M9//hMzZ87sdt8FCxZgzZo1ANrf/Hr44YexZMkSZGZmdirb1taGDRs24J///Cfef/997N+/P6GhvdQOEwRBEARBKENVVVW316VE+lFXV4dZs2bFvd9bb72FgoICSRrx6Dz99NO48847E7LRlS2CUCvp8qxI6rNcKdDUWASRwkQiEQiC0KepntSOnLGcd955+M9//hOzCNVLL72UNH+UtsdTm4eWFA0t1XmgvZPkf//7H0aMGMG+6220Um+YTCYUFRXh3//+N/73v/+hf//+ANqP3dy5c/HNN990ud/x48fx6quvss+vvPIK7r777i47QYD2eT6vuuoqrF27FocPH8aJJ54oye9kEolE4PP5VFOvlPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfkUgEoVBINbEo7Y+c9nhq89CSoqHGRa3TGbWdt4mixjiU9Enu9kcr92C8oY4QQhNYrVZkZ2cDaJ9nz+FwsBPM6XTGTN/i8XgAtL+F3NrayjQikQjbJxwOs3n6BEFAKBRi5aIbqnA4zNYqEASB7dOxQZOrnDinoDi1jlgu2ldRT+0xBYNBNj9iV+W6iim6Ee2qXLQPY8aMield37p1a4++hkIh5g+P2KPpylfRXjAY5J4nUTsUCiUlTx3rXiAQYBrx+iDWedEW7zoq/j/emLrLUzTd+WCz2XDrrbeycrW1tWw6t54ujvoS0//7f/8P//nPf9joira2Ntx9991dxrRx40a2feKJJ+Laa6/tMqauzpP8/HxkZmYmfPzF7ehy8bTlDoeD+dra2sraRK/XC6/XC6C97ka3+Q6Hg+WttrYWjz76KFpbWxEIBOB0OpmvDoeD+eR2u+Hz+QAAfr+frekiCAIcDgeL1+VysanCfD4f3G53XDE1NTUxfxKNyePxsCnSeoupvr4ejz76KOrr67nHJB7bpqYmyXnyeDw4fvw4Hn30UTQ0NCSUp6NHj7JjG29Mra2tePTRR1FbWwuAT92LJ09K1L1Uiqm5uRmPPvoo8zeVYzp27BgeffRRNDc3qyJP0eeJEnVPPLei15riFVO0thry1NjYiEcffRR1dXVxxSTGUV1dzfJEbUTyYhLz0dTUlHIxiWu+iXpOpxPbt2+H3++Hz+djPgQCgZhyoj/iw6zocmJuQ6FQp3Kir36/P6ac6LcgCDHlov0JBoOdyon4fD52XIPBYIyvHcv1FJPf78f27dvhdDq5x+Tz+Zh2tK+JxMQjTx6PB9u3b4fH44kpl5ubC72+/dGgzWZjUxBHP2Pp168f7r33XtjtduZf9DV7VlYWAMBoNCI3N5fFZLfbYTKZAACZmZnsBSuTycS0OuYpKysLGRkZANpHqOfk5ABo74zJzc1lUwhlZ2fDarUCACwWC2w2GwBAr9d3G1NPdc/v90vOUzx1r7s89aXuuVwuVh9SOaboet3XNkLumMTzxOv1yt7uddVG8PrNFe8na2trufw+tbS04NFHH0VNTQ3Xe8JkQB0hhCaYMmUKrrnmGgBAQ0MDiouL2cm5evVq7N+/HwCwZcsWrF+/HgBQXV2NVatWMY3oB3NOp5M1EH6/Hw0NDaxcfX09O6HFBylAeyPQ2NgIoL1Rqa+vZ41eS0sLa8y8Xi+7aA6Hw6ivr2eNT1NTE2vMPB4PWlpamG/19fXMv8bGRvh8PhgMBmRkZDAfxAWYRRoaGthxUHtMLS0tsNlsMBgMcLlcrCHvKaboRaVCoVCvMY0dO5b9/9ixYz3G5Pf7YTQaceDAAfzhD3/AxIkTUVBQALPZjBNOOAGTJ0/GAw88gIMHD/aap44EAgFUVFTgT3/6E84++2zk5+cjNzcXF198Me644w62PkNPeVq5ciUMBgN0Oh3mzJnTZZ42b94Mo9EIs9mMWbNmwe/3o6mpCZs2bcJ1112HkSNHIiMjAwMGDMAFF1yAp59+GsFgsMc8ffvttxg8eDBMJhOGDx/O8rRz507MmTMHp556KjIzM5GXl4dJkybh4YcfRm1tbUzda25uRn5+PgwGQ5d5En+0p02bhqFDhzIfzzjjDNx+++3Yt28f+zHvS9374YcfcOutt6KwsBBZWVkYMGAAzj77bDzwwAOorq5GY2NjzFy34v5SzqfojhHxgqmn8yl6WKh4nKNj6qpDrS9tBACcddZZuO2229h+mzdvxs6dOzvF9OOPP7IyQ4YMYb6KMXXVRgQCAej1ehgMhoTbiJaWFhZfdEzxtOXFxcXM15UrV+LQoUMA2jt3Nm7cCAA4dOgQVq5cycoVFxezB0pbtmzB6NGjYbPZsH//fqxevRpAe26Li4tZft977z2UlpYCACoqKrB27VoA7fWhuLiY1Ym1a9eioqICAFBaWor33nsvrpjE80q8oUskpvXr17Mp+XqLad++fVi0aBEOHTrEPaYtW7Zg0aJFaG1tlZyn9evXo6KiAosWLUJ1dXVCeVqzZg1++9vfwmazxR2TzWbD6NGj2XHlUffiyZMSdS+VYhLbOHGe4VSOaePGjVi0aBF8Pp8q8rRmzRr8+te/hs1mU6Tu2Ww2zJgxg03NyDMmm82GefPmYc2aNarIU0NDAxYtWsT0+hqTzWZDUVER3n//fZYnaiOSF5P4+yz+XqdSTOXl5Wy7paUFe/bswfjx42E2m1FWVsZ8OHDgAA4fPszsiv6Ew2GUlZWx+7v9+/ez3NbV1bGXefx+P8rKypive/bsQV1dHfNP9Nvr9aKsrIxdF3733XcYNmwYzGYzDh8+jAMHDrBjVFZWxmIqLy9n14yHDh2Kiam8vJyV6y0ms9mMs88+G7t27eIek8FgwPjx4/Hdd9+xOpBoTDzy1NDQgPHjxzM9oP0eYtmyZayzYfbs2Rg3bhyA2GcsYoeDeD9w5MgRFlNTUxNmzJgBoP0eYtmyZSymJUuWYOTIkQCA6dOns/UKR44ciSVLlsTkSfxdnzFjBqZOnQoAOOOMM7BgwQIA7Z0dy5YtQ35+PgDgmmuuwZQpUwAA48aNw+zZswEAOTk53cbUU92rqKiQnKd46l53eepL3Ttw4ACGDBkCs9mc0jHt2rULo0ePhtls7nMbIXdMtbW1GD9+PJxOp+ztXldtBK/f3NbWVixatIjdj4l+J/r7FIlEsGjRIvz3v//lek+YDGiNECKlEeeVs1qtMBqNKC0tRWFhIVwuF+x2O3Q6HZxOJ6xWK8xmM9ra2iAIArKystiIEPFBp3gqnHrqqWzIp8FggCAIEASBvVEdCoXYA+hwOAydTge9Xs+m6xEfCIbD4aSVi/ZVr9dDr9ezHw4txTR16lRs3boVAPDAAw/g/vvv7zGm+++/Hw8//DCA9rdQxLcJuvKhra0Ny5YtwyuvvBLT4dKRjIwMPPLII7j99tu7jWnatGkxa4S0trZi7ty5Mb32HTWfeeYZ3HTTTd3mafXq1bjxxhsBAHPmzMHq1as7HdctW7bErHvx8ccf47bbbsPLL7/cbTznnHMOPvroIwwYMKDLPB06dIitAzFs2DAcPHgQf/7zn/GXv/yly4f1ADBixAhs2LABo0aN6rXurVy5En/605+6PTZA+9tA8+bNw4svvgij0dhjnXrxxRfxu9/9rssOKQDIzc3FmjVrkJOTg0suuQQAcNFFF2HLli2SzqfXX3+dXbSLa4T0VP8rKytx+umnM79ef/11XH/99azctm3bMG3aNPb/SCQS1/lUW1uLk08+md283H777SguLo6J6bHHHsM999wDABg4cCBqamoUaSP8fj8OHToEnU7HyhUWFkKn0/W5LXe73ezts9bWVmRmZsJkMrGL1czMTASDQXi9Xvb2mcPhQHZ2NoxGIzweD/R6PTIyMhAIBODz+ZCTk4NIJILW1lbWSet2u2E0GmG1WuH3+xEIBGCz2SAIApxOJ3JycqDX6+FyuWA2m2GxWODz+RAKhZCdnY1wOEwxUUwUE8VEMVFMFBPFlLSYKisrcfToUZhMJoTDYQSDQfaQ2+fzwWw2Q6/XIxAIQKfTsXKhUAgWiwWRSAR+vz+mnF6vh9FoZKPPo8tZLBZ2vWcwGFg5QRBgNpvZaPHockajEQaDAcFgEJFIJKZctK8mk4mVA0AxJRBTbW0tli5dykbE2Gw2BAIB+P1+9ozF7XbDYDDAZrOhtbUVkUgEr732GgYNGgSDwYCamhosWrQIHo8HRqMR2dnZ7I1vu90Or9eLYDDIRoN4vV6YTCZkZmbixRdfREFBAXw+H5qbmzF79mxkZWVBEAS0tbXBbDbDarVixYoVuOuuu2C32+FyuRAOh5GdnY1QKASfzweLxQKz2QyXywW9Xo+cnJxOMZWUlCAvLy8l86TFukcxdR3T5MmT0+L3qaamhtYIIQgpRA/JMhgMyM3NZZ0ZOTk57G3BjIyMmGGb0cMxdTpdTAeIOORSbOBEjEZjTDlxyKX4VrSopUS5cDiM5ubmmBg6+irqqT0moH2ai3A43GW5rmKK3rerch19OHbsGPv/CSec0K2vHo8HP/vZz/DSSy+xB94jR47Eb37zGyxatAgzZ87EoEGDALQP87vjjjvw8MMP9xi7SHl5OX7zm9+gtbUVAwYMwK9//WvcdNNNuOSSS9iw4ba2NixatAhr1qzpNqZoXZ1O1+NxBdqHSy5atAgvv/wy9Ho9zj33XMyfPx9z587Faaedxsp98803mDdvXq96In/5y1/w0EMPQRAEjB07FjfccAMWLFiAc845h5X56aef8Otf/5o9dNfpdGhsbGSdDKL23Xffjdtuu411guTl5WHGjBm4+eabccMNN7AfykgkgjVr1uCqq65ix7krX19++WXceuutrBPEZDLh0ksvxU033YRf/epX6N+/PxwOB6699lr2VoOoE60XffzjPZ+i6an+i2+hiPTr16/X4x/PeTd48GBccMEFbF9xcfbomEaNGsX+X19fj9dff73LmKK1I5EIWlpaWKdHom1EdL0Wy8XTlicyBD83N5flLRKJ4J///Cfcbjf3IfjR0wr0NSafz4d169ax37VEYopnWoFQKISSkhIEg0HuMUUiEZSUlMDn80nOU1ZWFsLhMEpKShAIBBLKk9FoxGuvvQa32x13TG63G//85z/ZixM86p6c0z8kUvdSKaa2tjasW7eOjTxL5ZgAoKSkBG1tbarIk9FoxOuvvw63261I3XO73XjjjTdifkt5xeR2u/Hqq6+yBwzJzpPf70dJSQkEQYgrJrfbjTfffDPmGpjaiOTF5Ha7sW7dOnaNmUoxWa1Wti1eq+3atYs9QBR9MJvNMeVEf3Q6XadyYm6NRmOncqKvFoslppzot16vjymn0+mwZ88eBAIBmEymTuVErFYrO64mkynG147leoopEAjg22+/ZS8G8YwpGAxi165dMfdqicbEI0+CIGDXrl0QBCGmXF+mZcvIyMDVV1/N6pj4gFm0K3Uqn2hf5Zxqrqe6Z7FYJOcpnrrXXZ76Uvd0Oh327t2LQCCQ0jHp9Xp8++23rFOgL22E3DFFIhHs2rWLdW5IyVMibQSv31yfz4eSkhJEIhEuv09erxclJSXQ6XRc7wmTgbH3IgRBiIRCITYETg0IggCv1wun09npgXsyGTJkSMzNbF8QG9TuHrhLJRQK4bPPPmOfxWG0XbF06VLs2LEDQPsIoVWrVqEoan0RoH145EsvvYQ777wTfr8fDzzwAC6++GKce+65Pfrxxz/+EYFAAL/73e/wl7/8hf2ICIKAAwcOYOHChewh9e23346ioiI2nFgKX3/9NXbs2IGJEyfitddeQ2FhIftfJBLB3//+dzaM+aOPPsLWrVtx0UUXddKJzk9tbS0eeughjBw5Em+++SYmTZoUU/bdd9/F7NmzEQwGsWfPHrz55puYM2dOl7levXo1GyKZk5ODJ598EnPnzmU/9CKfffYZ5syZg2PHjuHjjz/GE088gd///ved/Pzhhx9ihmVPnToVb7zxBoYMGcK+8/v9uPfee/HMM8/gvvvu68NRlI/t27fHfI5ePJ0XkydPxqZNmwC0T73V1tbGLooA4JJLLoHNZmM3EQsXLkRFRQVuuukmjBkzpktNuc9bpTAajRg+fHjc7ZZcKO2PnPZ4a0vVk7K/2upJuqOlfKgtFmqD5NNKVENtdSTd0VI+OnbCJBul/ZHTHk9tHlpSNEKhEKqqqmKm/yWSh9rO20RRYxxK+iSnLS3dg/Em+R4QRApRXV0tywNKrfHTTz9h+PDhce2j1+tZr7McPPLIIzGLcC5cuLDLctu2bcNrr70GoH0UyPbt25GXl9epnMFgwJIlS5CRkYH58+cjHA7joYcewkcffdSjH4FAAIsXL8bjjz8e871er0dhYSE+/PBDTJw4EZWVlfB6vVixYgXzRwp+vx+jRo3Cpk2bWK+9iE6nwx133IEvvviCzfH41ltvddkREv0jHQgEMGDAAGzdupWNkIlm5syZ+PLLL/HEE08wzTlz5nTKtcvlYgt4m81mbNy4EZMnT+4yjksuuQSffvopzjnnHPh8Pjz22GO49dZb2dsQIsuXL2dvCJ155pn48MMPO5WxWCx4+umn4Xa7e5wuTG7cbjeeffZZ9vnEE0/EGWecwd1O9MgfQRDQ2NiIoUOHsu9ycnKwfPlylotQKIRnn30Wzz77LE488URMnjwZEyZMwKRJk3DuueciOztb9vNWKaxWa6fOzmSitD9y2uOtLVVPyv5qqyfpjpbyobZYqA2STytRDbXVkXRHS/kQH06pBaX9kdMeT20eWlI0fD4fNm/eLMk+wQ+1nbeJosY4lPRJTltaugfjjXq63QiCSGsEQYDb7e52nYlEcDqd2LZtG37729/i/vvvZ9/feeeduPTSS7vc56mnnmLbf/nLX9C/f/8ebcybN4+NrtiwYQNbELo7bDYbHnnkkU7fi/FnZmbiscceY9+/++67Pa6XEQ8PP/xwp06QaMQ1LQDgyy+/7LJMx/zcd999XXaCdKX51VdfMY3oXK9evZoNoV66dGm3nSDivkOHDsWcOXMAtC/O9/HHH8eUcTgcbDFRAHjsscc6dYJE89hjj7Hhp0pz+PBhXHHFFfjpp5/Yd9EjWXgSPVwWAFs8Lpq77roLDz30UKe3Umpra7Fu3Tr86U9/wvTp05Gbm4uLL74YJSUlaG1t5XreJgO/34/S0lI2bD7ZKO2PnPZ4a0vVk7K/2upJuqOlfKgtFmqD5NNKVENtdSTd0VI+xBkP1PKmv9L+yGmPpzYPLSkaFosFU6ZMYbMZEMlFbedtoqgxDiV9ktOWlu7BeEMdIQRBqIJIJAKv18vmXo+XFStWsHVexD+73Y6LLroIb731FgBgwIABeOSRR2I6O6IJhUL45JNPALS/HT916tQ++SMuSB6JRDpNcdSRK6+8stMDaXFfMf7LL78c+fn5ANrfvtm5c2evPvSG1WrFL37xix7LjBs3jm1XVVV1Wabj8Zg5c2aPmoWFhWz6paamJrhcrk65/vDDD1n53/72tz3qifuKxxwAvvjii5gyO3bsYD+wAwcOxGWXXdajZr9+/XDllVf2WEYKzc3NuPXWW2P+brrpJhQVFWHUqFHYunUrK3vBBRfgjjvukMWPjp1g4hRYHbn//vuxe/du3HDDDd12EIXDYWzevBnz58/HpEmTsHv3bu7+KkkgEGDzLqsBpf2R0x5vbal6UvZXWz1Jd7SUD7XFQm2QfFqJaqitjqQ7WspHOBxGXV0dW3ch2Sjtj5z2eGrz0JKiYTabMXbsWDbnP5Fc1HbeJooa41DSJzltaekejDc0NRZBEKrAYDBg4MCBsuo/+uijuPHGG7sts3v3brbQm8lkwl//+tc+aYsjHQDETL/VFd2tIdIx/okTJ7IOgoqKil4f5vfGaaedFrMoWFcMGDCAbXdcvDvaTxG73R4ztVJX6HQ69OvXjy1453Q6YbPZYmKN7uh56aWX8Oqrr/aoCSBmrZ6Oxzx64fNJkyb1ac7Nc889l3WY8cblcuH555/vtdxvf/tbvPDCC7K9adWx40NcKK0rzjzzTLz22mt48cUXsX37dmzbtg3l5eX45ptvcPz48ZiyBw4cwIUXXojt27d3u5aI2rHZbFi8eHGy3WAo7Y+c9nhrS9WTsr/a6km6o6V8qC0WaoPk00pUQ211JN3RUj4sFgsmTJiQbDcYSvsjpz2e2jy0pGi4XC68+OKLkuwT/FDbeZsoaoxDSZ/ktKWlezDeUEcIQRCqIBKJIBwOw2AwJLTw8sSJE2MW63a73Thy5AgbHRAOh3HTTTfhxx9/7LaD49ixY2y7qampTw+vO9LVdEPRnHTSSV1+3zH+6HINDQ1x+9GRnJwcRCKRHo9t9MLk3Q3PjB4R0tXIlt50g8FgTKwejyfmAX0ia3V0PObRx6u7492RvpbjhdlsRm5uLkaOHInzzjsPc+bMkb0ToeMUa71N+wYAmZmZuPTSS2Omkvvuu+/w9ttv49lnn2XH3u1244YbbsCuXbtScuF0QRDgdDqRk5OjisX6lPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfkUgEfr8fFotFFddwSvsjpz2e2jy0pGjo9Xrk5OTA6XSm/JS4WkBt522iqDEOJX2S05aW7sF4k9q/2gRBaIZwOIz6+vqEhwVefvnleO6559hfSUkJNm3ahKqqKsyaNYuVe/jhh/HOO+90qcFjLY7e5nfsbq2KjvFHT0nU3RRG8frFa1i2SKI/1tGxynHM3W432+5pbZBo5FwjZNiwYYhEIjF/fr8fx48fx44dO/DEE08oMpKisrKSbRsMBuTl5SWkc/rpp2PFihXYt28fzjzzTPb97t27U3YRRafTieLi4m5HQimN0v7IaY+3tlQ9KfurrZ6kO1rKh9pioTZIPq1ENdRWR9IdLeXD7/ejrKxMFfO2A8r7I6c9nto8tKRo5OTkYNmyZT2OKCeUQ23nbaKoMQ4lfZLTlpbuwXhDI0IIIg6GDBkSs6hxspE6ikIuhgwZEvc+4tRQ0VMv8aCgoABvvPEGmpubsWHDBgDAkiVLcOmll6Jfv34xZaMfho8ZMwZff/0192Pr9Xq7/L5j/OIUXUD7MEKpmEwmLseWl4YYa8cOiObm5k55iaYvdT56LYzujndHoo+3VikrK2Pb48aNkzwF14knnoiXXnoJ559/Pvtu27ZtMeu3pAo5OTm44447VHNzp7Q/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5sFgsmDx5smoWwVbaHznt8dTmoSVFw+l04plnnlHFQ0xCfedtoqgxDiV9ktOWlu7BeEMdIQQRB0ajEcOHD0+2G5pEp9PBaJSnSdLr9Xj55ZdRWFgIj8eD5uZmPPzww3j88cdjyp1wwglsu66uThZ/jhw50uX3HeOPXvci0Tf3O+rz6NDhpSHGmpubC4vFwt6CqKur67EjpC/1RFxoHuj+eHekt7VdUp3a2lps376dfb7ooou46J533nmw2+1sZE9tbS0XXaXR6/XIzc1NthsMpf2R0x5vbal6UvZXWz1Jd7SUD7XFQm2QfFqJaqitjqQ7WsqHTqfrdR1BJVHaHznt8dTmoSVFQxAEOBwOSfYJfqjtvE0UNcahpE9y2tLSPRhvaGosgkhhpE4npSbkjmXIkCFYtmwZ+/zcc8+hrq4upszYsWNZb3x9fT3Kysq4+1NaWtrl99Hxh8PhmAXYzznnHMl2g8Eg96mxpGhE5zp6bZfoh/V92bcrxo0bx7a/+uqrPs1jG71guxZ59tlnEQwG2efrrruOi244HI5ZA0ZNb/PEg7gAJI9p6HigtD9y2uOtLVVPyv5qqyfpjpbyobZYqA2STytRDbXVkXRHS/nw+/0oLy9XzdQ0Svsjpz2e2jy0pGiICx3zmKmAkI7azttEUWMcSvokpy0t3YPxhjpCCCKF0el0yMzMVNW0WImiRCx33303u3jz+Xx47LHHYv6fkZGBadOmsc+vv/46d38++OCDLocUR8f/8ccfo76+HgBgtVpx7rnnSrar1+tVNSIkOte/+MUv2P9WrlwZsyB7b/t2xXnnncceyB8/fhwbN27s0Z/W1lZ88MEH8YSQUuzYsSNm9NP06dMxceJELtq1tbVoampin5VedJ4XZrMZY8eOhdlsTrYrAJT3R057vLWl6knZX231JN3RUj7UFgu1QfJpJaqhtjqS7mgpHwaDAQUFBdynJ04Upf2R0x5PbR5aUjQCgQB27dqFQCCQsH2CH2o7bxNFjXEo6ZOctrR0D8Yb6gghiBRGr9cjOzsben3qn8pKxNKvXz/cdttt7POqVavQ0NAQU+aee+6J+f+mTZv6rN9xhElXOJ1O3HfffZ2+F+Nva2vD73//e/b9NddcA7vd3mcfusNgMHA5trw0onO9aNEiNkzym2++wYoVK/q8b2NjY6fRIbm5ufj1r3/NPv/+979HW1tbt5r33HNPzALrWuLjjz/GjBkz2ILyWVlZnaaEE1m/fj1efvnlmJEjvfHggw/GdFxddtll0hxOEhaLBVOmTFHNiBal/ZHTHm9tqXpS9ldbPUl3tJQPtcVCbZB8WolqqK2OpDtayofRaMSQIUNkm6I4XpT2R057PLV5aEnR8Pv9KC0tVdWb++mM2s7bRFFjHEr6JKctLd2D8Sb1n54SRBojCAJcLlefpv5RO0rFctddd7HFtL1eL5588smY/0+dOhVz584FAIRCIVxxxRX429/+1u2Dcp/Ph3Xr1uGqq67ClVde2at9s9mM559/Hvfee2/MGzWCIOD777/HFVdcgf379wNoH6Hy4IMPJhRnR8LhMJdjy0sjOtd2ux1PP/00+/+KFSswd+7cLtf3EAQBTqcT27Ztw9KlS3HSSSd12cnxwAMPsB/ZPXv24IorrkBNTU1MGb/fj9/97ndYtWqVKt5M4EUoFMKWLVvw61//GldccQWam5sBtHcirV27FmPGjOlyv5qaGtx888045ZRT8MADD6CysrJbG0eOHMHs2bOxevVq9t2VV16JM844g28wCuHz+bB582b4fL5kuwJAeX/ktMdbW6qelP3VVk/SHS3lQ22xUBskn1aiGmqrI+mOlvIRCoVQVVXFXppJNkr7I6c9nto8tKRoWK1WFBUVqW49h3RFbedtoqgxDiV9ktOWlu7BeEMdIQSRwkQiEfj9/h6nEkoVlIplwIABuOWWW9jn559/nj0oFlm1ahUuvfRSAO3DgO+77z6ccMIJmDZtGubNm4dFixbh2muvxYQJE5Cbm4tf/vKX+OCDD/rUSfCXv/wFJpMJjz76KAYPHoyZM2di4cKFuOyyyzBmzBhs2bKFlX3mmWdwyimncIlbEAQux5aXRsdcz5s3D/fffz/7/Nprr+Hkk0/GhAkTcP3112Px4sW4/vrrcfHFF2Po0KG46KKLsHLlym5Hepx22ml46qmn2OfPP/8cJ598Mn7+859j4cKFmDlzJgYPHownn3wSZrMZf/3rXyXHpSS33nprzN9NN92Ea665BhdccAFycnJQVFSEf/3rX6xODh06FJ988gmuuuqqXrWPHDmCP//5zzj99NMxcOBAXHbZZZgzZw6WLFmC3/72txg3bhyGDx+ON998k+1z6qmn4sUXX5QtXrlR20U4PQSQT0/K/mqrJ+mOlvKhtlioDZJPK1ENtdWRdEdL+RAXwVbLi3VK+yOnPZ7aPLSkaBiNRgwfPlxVb+6nM2o7bxNFjXEo6ZOctrR0D8YbasUIIoUxGAzIy8tLthtcUDKWu+++G8899xw8Hg/cbjeefvpp/PnPf2b/t1gs+Oijj7BixQo8+eST8Hq98Hq9+Pzzz7vVNJlMmDJlSq+2J06ciHfffRdz5sxBY2Mj3nvvvU5lrFYrnnrqKSxcuDCxALvxj9f8tDw0usr1Qw89hNGjR+POO+/EsWPHEA6H8fXXX+Prr7/uVmvSpEkxi3VHs3TpUoTDYfzf//0f/H4/AoFAp/VC7HY7XnvtNeTk5EgLSmGef/75PpUbMmQIbrzxRixbtoxNP9YdY8aMwYQJE1BeXs6+a2howIYNG3rcb/bs2Xj66aeRn5/fJ5/USHZ2NubNm5dsNxhK+yOnPd7aUvWk7K+2epLuaCkfaouF2iD5tBLVUFsdSXe0lA9x3na1oLQ/ctrjqc1DS4qG2+1GSUmJJPsEP9R23iaKGuNQ0ic5bWnpHow3NCKEIFKYSCSCYDComREhSsWSn5+PJUuWsM/PPvssHA5HTBm9Xo/7778fP/30E5544glcdtllOOmkk5CZmQmTyYQBAwbgnHPOwdy5c1FSUoKamho899xzfbJ/1VVXYffu3bj33ntx1llnwW63IyMjA6NGjcJtt92G3bt3x/jHg0gkoqoRId3l+je/+Q1+/PFHlJSUYNasWTjllFNgt9thMBiQk5OD008/HVdffTWeeuopfP/99ygrK+txnknxeN52220YNWoUMjIykJubi7POOgt/+MMfsHv37j5NaaZmdDodbDYbhgwZgjPPPBO/+tWv8Ne//hWfffYZqqqqsHz58l47QYD2Rea/+uorVFdX4/XXX8fixYtx4YUXYvDgwcjMzITBYIDdbsfJJ5+MX/ziF/jrX/+KgwcPYs2aNSnfIRsOh1FXV9dpvZlkobQ/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5EAQBbrdbNW9kK+2PnPZ4avPQkqKhxkWt0xm1nbeJosY4lPRJTltaugfjDXWEEEQKEw6H0dDQoIrGRCqJxLJ582b2gH/58uVx2Xv88cfZvg6Ho9ODYtGf/v374+6778ZHH32Ew4cPw+PxIBAIoLGxEV9//TVKSkowd+7cHt+Gj/azqKgIADBs2DD87W9/w+7du+FwOOB0OrF582Y89dRTGDVqVK/+z5s3j2l293ZOUVER63R46623+nRsRc3uOjyGDh2KmpoaBINBVFVV9aoHAFVVVUxz+PDhvebaYrFg7ty5ePPNN/HDDz/A4XAgFAqhtbUVu3fvxvPPP4/bbrsNp556ap/sn3rqqfj73/+OAwcOwOv1oqWlBbt378bDDz+Mk046CcD/d6wikQg2b97cJ92eiM5PX49TT0T71/FPXDfl6NGj2Lt3L95//33cd999mDZtWkI3K4MHD8b111+PlStXYuvWraiurobH40EoFILD4cChQ4ewfv163HfffRg2bJgm2iCXy4VVq1bB5XIl2xUAyvsjpz3e2lL1pOyvtnqS7mgpH2qLhdog+bQS1VBbHUl3tJSPQCCAr7/+OmbtwmSitD9y2uOpzUNLiobNZsPixYths9kStk/wQ23nbaKoMQ4lfZLTlpbuwXiji2jhVXIibdm3bx9Gjx7NPu/duxdnnnlmn/cPhUL44YcfYr4bNWpUysx9KT4I1el00Ol0yXZHEmqLRWl/5LTHU5uHlhQNtdWTdIdHPtTQDovr1lgsFlXUK6X9kdMeb22pelL2V1s9SXe0lA+1xUJtkHxaiWqorY6kO6mcj6qqqpiXdCKRCMLhMAwGgypiUdofOe3x1Oah1ZVGXV0dZs2a1eu+Op0OFouFrfP41ltvoaCgIC6NruirztNPP40777wzIRtd2Up11HbeJooa41DSp65siS/O8tBW8z2Y1Ge5UkiNp70EQXSJlh4Gqy0Wpf2R0x5PbR5aUjTUVk/SHa3kQ6fTwWq1JtsNhtL+yGmPt7ZUPSn7q62epDtayofaYqE2SD6tRDXUVkfSHS3lQ6fTqeolQKX9kdMeT20eWlI0IpEIfD6fJPsEP9R23iaKGuNQ0ie52x+t3IPxhqbGIogUJhwO4/jx4yk/LQ2gvliU9kdOezy1eWhJ0VBbPUl3tJIPp9OJZ555Bk6nM9muAFDeHznt8daWqidlf7XVk3RHS/lQWyzUBsmnlaiG2upIuqOlfPj9fpSWlsLv9yfbFQDK+yOnPZ7aPLSkaOTk5GDZsmXIyclJ2D7BD7Wdt4mixjiU9ElOW1q6B+MNdYQQmsBqtSI7OxtA+4M5h8PB1jhwOp1szr22tjZ4PB4AYGsOiESvixAOh9mDPUEQEAqFWLlQKBRTTlzYSBAEtk8kElGknE6nQ3Z2NvteLBftq6in9pgEQUB2djZ0Ol2X5ZSOCQCysrKg0+lkiz3aV6B97lVxeCTPmETt6M/JzJMgCLDZbNDpdHH7oNPpkJWVxewoUUf7EpPazielYgL4nCfR9UssF09b7nA4mD+tra0IBoMAAK/XC6/XCwAIBoMxbb649oxo67zzzoPVakUgEGAXaJFI+xpCok9ut5u9Def3+9kcp4IgwOFwsHhdLhe7oPX5fHC73XHFZDQaMWnSJPbWTCIxeTwetLW1AUCvMQHtw7B1Oh33mMLhMIqKimA0GiXnyePxIBJpX2tJr9cnlCefz4eLLroIVqs17pisVivOO+88ZodH3YsnT0rUvVSKyWQyYdKkSbBYLCkfUygUQlFREUwmkyryFH2eKFH3rFYrLrzwwpi3jXnFZLVaMXXqVPh8PlXkyWAwoKioCIIgxBWT1WrFBRdcwOxQG5HcmKxWKyZNmsTe5E2lmHw+H9sOh8MIhUIYPnw4jEYjfD4f8yEQCMSUE/0R24jocmJuQ6FQp3Kir36/P6ac6Lf42xx9XXjSSSfBaDQiGAx2KicSfU4Hg8EYXzuW6ykmo9GIYcOGxVwT84rJYDCw9RGjfU0kJh55AoDhw4cz38Vyubm50OvbHw3abDb2uxr9jCUQCODLL79k/gaDwZhrdvH+zGg0xqy9abfbYTKZAACZmZnIzMwE0P4bbrfbu8xTVlYWMjIyAABms5l1vuh0OuTm5rI1ELOzs9m1ssViYfe7er2+25h6qnt+v19ynuKpe93lqS91LxwOY+jQoTAajSkdUygUwrBhw2A0GvvcRsgdUyTSvq6pTqeTvd3rqo3g9ZtrNBpRVFSEcDjM5ffJbDajqKgIwWCQ6z1hMqCOEEITTJkyBddccw0AoKGhAcXFxezkXL16Nfbv3w8A2LJlC9avXw8AqK6uxqpVq5hG9IM5p9PJGgi/34+GhgZWrr6+np3Qra2trIHw+XxobGwE0N6o1NfXs0avpaWFNWZerxdNTU0A2huL+vp61vg0NTWxxszj8aClpYX5Vl9fz/xrbGyEz+eDXq9HKBRivgYCAdTX1zNfGxoa2HFQe0zNzc3Q6XTQ6/VwuVysIU9WTG1tbfB6vdDr9ZLzBKDXmAKBADIzM+FyubjH5PV6kZmZiba2NlXkqbGxEZmZmdDr9XHHpNfr4fP5mK88z6e+5ClVzielYvL7/fB4PNDr9QnH1NLSwi4qo2OKpy0vLi5mvq5cuRKHDh0CAGzcuBEbN24EABw6dAgrV65k5YqLi1FdXQ0A2LBhA5qbm2E2m7F//36sXr2axVdcXMyOxXvvvYfS0lIAQEVFBdauXcuOXXFxMTt+a9euRUVFBQCgtLQU7733Xlwx1dfX45NPPoHZbE44pvXr12PLli0A0GtM33zzDcaOHYt9+/Zxj2nDhg0YO3Ys6uvrJedp/fr12LlzJ8aOHYuDBw8mlKeVK1fi5JNPhtlsjjsms9mM5uZmbNiwAQCfuhdPnpSoe6kUU2trKz755BPW7qVyTB988AHGjh2L1tZWVeRp5cqVGDRoEMxmsyJ1z2w2Y8CAATG+8orJbDbj9NNPx8qVK1WRp6NHj2Ls2LHYvHlzXDGZzWYYjUa88cYbLE/URiQvJrPZjE8++YRdU6VSTOXl5Wy7paUFFRUVKCgogMFgQFlZGfPhwIEDOHz4MLMr+hMOh1FWVsauR/fv389yW1dXhz179rDYy8rKmK979uxBXV0d80/02+v1oqysjF0X7t69G3q9HgaDAYcPH8aBAwfYMSorK2MxlZeXs2vGQ4cOxcRUXl7OyvUWk8FgQH5+PsrLy7nHBAAFBQXYvXs3qwOJxsQjT7W1tSgoKEBDQwOLKRQKxYz0mD17NsaNGwcg9hlLbm4upk+fzjoXjhw5wmJqamrCjBkzAABDhgzBsmXLWExLlizByJEjAQDTp0/H9OnTAQAjR47EkiVLYvIk3rvMmDEDU6dOBQCcccYZWLBgAYD2zo5ly5YhPz8fAHDNNddgypQpAIBx48Zh9uzZADqPXomOqae6V1FRITlP8dS97vLUl7q3f/9+RCIRGAyGlI6pvLwc/fr1g8Fg6HMbIXdM1dXVKCgoQHNzs+ztHtC5jeD1m1tfX4+xY8diw4YNXH6ffD4fxo4di3fffZfrPWEyoMXSiZRGXGDHarXCaDSitLQUhYWFcLlcsNvt0Ol07G0ws9mMtrY2CIKArKwsNiJEvIAVT4VTTz2VzXlvMBjYG+ziGz+hUIgtZhQOh9lDYUEQ2I9Rx0WP5CoHtDdMWVlZMJlMrFy0r3q9nj3MV3NMwWAQHo+HXbB0LKd0TKFQCG63Gzk5Oex/vGOP9lWn08HtdrO363nGFIlE4PF4YrSTmadwOAyv1wubzQZBEOLyIRKJwOl0Ijs7G0ajUZE6mornk1Ix8ThP/H4/Dh06xEYZRSIRFBYWstEJfWnL3W43e/ustbUVmZmZMJlM7GI1MzMTwWAQXq+XvX3mcDhYPWpsbERpaSkuueQSGAwG+Hw+5OTkIBKJoLW1FTabDQaDAW63G0ajEVarFX6/H4FAgNVjp9OJnJwc1kloNpthsVjYW8TZ2dkIh8N9isnlcmHTpk2YPn06MjIyEopJ7KDKyMhAIBDoMaZgMIiysjJMmTIFBoOBa0wejwfl5eU4//zzEQ6HJeXJ4/HA7/fjyy+/xLnnngudThd3nurr61FRUYGioiKEQqG4YgqHw/jss88wZcoU5OXlcal78eRJibqXSjG53W589tlnuPTSS5GZmZnSMblcLnz99de44IILEAqFkp6n48eP45tvvsHFF1/MfjPkrHt6vR6ff/45zjnnHLaQLa+YTCYTNm/ejHHjxiE/Pz/pedLpdNixYwcmTpyIjIyMPscEAJs2bcLEiRMxcOBAaiOSHFNbWxs2btyIadOmwWazpVRMlZWVOHr0KEwmE3tTuK6uDsOGDUM4HIbZbIZer0cgEIBOp2PlQqEQLBYLIpH2BW+jy+n1evZmejgcjiknLozr9/thMBhYOUEQYDabIQgCAoEAK+d2u3Hs2DGMGDECQPu9RnQ5cQSAeH4bDAb2hrToazAYjCnXU0x6vR5VVVUoKChAVlYW15j0ej2OHDmCgoICZGRkMF8TiYlHnsLhMGpqajB48GDo9XpYLBbU1tZi6dKlcDqdEIT2UfuBQAB+v589YxHvUX/2s59h48aNaGtrw2uvvYZBgwbBYDCgpqYGixYtgsfjgdFoRHZ2Nnvj2263w+v1IhgMstEgXq8XJpMJmZmZePHFF1FQUACfz4fm5mbMnj0bWVlZEAQBbW1tMJvNsFqtWLFiBe666y7Y7Xa4XC6Ew2FkZ2cjFArB5/PBYrHAbDbD5XJBr9cjJyenU0wlJSXIy8vrtu6JI4Sk5CmeuiflfPJ4PKipqcGIESPYPVQqxuR2u1FXV4fhw4ez5wK9tRFyxxQKhXDs2DEMGTIEOp1O1navqzZi8uTJXH5zDQYDtm/fjgkTJrBRVlJ+n0wmE7Zt24ZzzjkHdrtd8j1hTU0NLZZOEFKIHtpmMBhihmNGz2MpDrEE2odt2u121hESveCvONwSAHtIGL1fd+VEOi56JFe5cDjMbiC7KteTttpi6viwtLtySsUU/VBW/JGTK3aj0ciGQ4odFTxj6ko7mXkSH4RHIpG4fRAf0Ivnq5J1NJXOJ6Vi4nWedJXPeNryjkPwRcQbLqDzEPzofTIyMuB2uyEIAjIyMthIDHEIvog4PQDQ/laaOMxeHIIvIg7NBxCzKFxfY9Lr9eyBRqIxRU8hZzabe4zJ4/HA4XDAZDKx/XjFJA6n1uv1MRpSYhKHe4uf48mTzWZDa2sruzGOJyaPxwO3281yxaPuxZOn7mLiWfdSKSadToe2tjb2IksqxyROJ9BRL1kx2Ww29gBJibrn8XjgdDq5tRHRMXk8npgbfSC5eRLbW6vV2u0UMV3F5PF44HK5Emr30rWNkDMm8SGteN2SSjFZrVY2VZHBYIDZbGZTuUTbEmMQy0XfQ3RXzmg0smu8juXEWMVyInq9vpOeOD1NtHbHctHbYjwdfe1YrquYxIf+FouF5ZNXTOJDR7PZzHyK9jWemHjkSfRH1BPLRU9TI476BmKfsQDtdUw8RuIDZtFuT1P5iIgPboHOU/lYrVamLWoB7aPZO04JKCJOyQO0v90uvokuXnt2FVNPdS86n4nmKZ66ByR+PplMJnae9OSr2mOyWCzw+/2IRCJ9biOUiEmcfSX6PJGj3euqjeD1myteb2RkZMRMNZfo75Ool5WVFTN9nki894Q1NTVIFjQihEhpxBEhIvH2IoZCIfzwww8x340aNSqmkSIIgiDkg9phgiAIgiAIZaiqqkJVVVWy3SBUQl1dHWbNmhX3fm+99RYbwZeoRjw6Tz/9NO68886EbHRliyDUSlFRUbJdUASpz3KlQGuEEEQKIw6900J/ptpiUdofOe3x1OahJUVDbfUk3dFKPkKhEKqqqmIWiE8mSvsjpz3e2lL1pOyvtnqS7mgpH2qLhdog+bQS1VBbHUl3tJSPjgu1Jxul/ZHTHk9tHlpSNIxGI1usnUg+ajtvE0WNcSjpk5y2tHQPxhvqCCGIFCYcDqOpqYnN7Z/KqC0Wpf2R0x5PbR5aUjTUVk/SHa3kw+1249VXX40ZYp9MlPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfgUAA3377LZt+KNko7Y+c9nhq89CSopGdnY158+bFTJ9DJA+1nbeJosY4lPRJTltaugfjDU2NRaQ0NDUWQRBEakPtMEEQBEEQhDLQ1FhENDQ1FkGoC5oaS35oRAhBEARBEARBEARBEARBEARBEJqFOkIIIoUJhUKora1VxTx7UlFbLEr7I6c9nto8tKRoqK2epDtayUdrayseeeQRtLa2JtsVAMr7I6c93tpS9aTsr7Z6ku5oKR9qi4XaIPm0EtVQWx1Jd7SUD5/Phy+++AI+ny/ZrgBQ3h857fHU5qElRcNut+Pee++F3W5P2D7BD7Wdt4mixjiU9ElOW1q6B+MNdYQQaY1Op+v0XSrNFqfX65Gbmwu9PvVPZbXForQ/ctrjqc1DS4qG2upJusMjH10tDqd0fjMzM3H11VcjMzNTUbvdobQ/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5MJlMKCwshMlkSrYrAJT3R057PLV5aEnR8Hq9WLduHbxeb8L2CX6o7bxNFDXGoaRPctrS0j0Yb2gCbiKt6ephW1tbm6oa4p7Q6/XIyMhIthtcUFssSvsjpz2e2jy0pGiorZ6kOzzy0fGGSqfTddlJLSfiRahaUNofOe3x1paqJ2V/tdWTdEdL+VBbLNQGyaeVqIba6ki6o6V8GAwG5OXlJdsNhtL+yGmPpzYPLSkawWAQlZWVkuwT/FDbeZsoaoxDSZ/ktKWlezDe0Cu1RFqj0+k69Ug2NzenzKiQcDiMlpYWhMPhZLsiGbXForQ/ctrjqc1DS4qG2upJuiM1H6FQCM3NzTHfZWVlKd4Rora33JT2R057vLWl6knZX231JN3RUj7UFgu1QfJpJaqhtjqS7mgpH+ID7mAwmGxXACjvj5z2eGrz0JKioaa3uQn1nbeJosY4lPRJTltaugfjDY0IIdKenJycmJOxra0Nhw8fRv/+/WG1WlU9BU84HEY4HEYoFEqZzpvuUFssSvsjpz2e2jy0pGiorZ6kO4nkIxKJIBgMwuPxoLW1tdOFX25urgyeEgRBEARBEARBEASRzugi9CSJSGH27duH0aNHs8979+7FmWeeGZdGKBTCwYMH6aEqQRBEkjEajTjllFMUHxFCEARBEASRDlRVVaGqqirZbhAqoa6uDrNmzYp7v7feegsFBQWSNOLRefrpp3HnnXcmZKMrWwShVoqKipLtgiLweJabKOp91Z0gFMJoNGLIkCEp+eAtEolAEARNdOKoLRal/ZHTHk9tHlpSNNRWT9IdnvkwGo0YOnRoUtpitQ3Lpmkh5NOTsr/a6km6o6V8qC0WaoPk00pUQ211JN3RUj7C4TAaGxtVM+2s0v7IaY+nNg8tKRpqXNQ6nVHbeZsoaoxDSZ/ktKWlezDeUEcIQQDIzs5Oyc4QQRBQX18PQRCS7Ypk1BaL0v7IaY+nNg8tKRpqqyfpDq98WK1WDB8+HFarlZNn8aGmOUsBmp9fTj1aI0Q7aCkfaouF2iD5tGiNEG2gpXyo6eEUQB2xcmrRGiHaQW3nbaKoMQ5aI0QePTX9btLUWERKw3s4VSgUgsvlgtPpVMUJShAEoVUsFguysrKQnZ2NzMzMlOuIJgiCIAiCSDVoaiwiGpoaiyDUBU2NJT+0WDpBRGE0GtGvXz/069ePpuAhCIKQAZ1OB71eTx0fBEEQBEEQBEEQBEEoBk2NRRDdoNPpYDAYYDQaVfvndrvx17/+FW63O+m+aC0Wpf2R0x5PbR5aUjTUVk/S/S+RfBgMBtV1gjgcDqxYsQIOhyPZrgBQ3h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqjpXz4fD5s2bIFPp8v2a4AUN4fOe3x1OahJUUjNzcXy5cvR25ubsL2CX6o7bxNFDXGoaRPctrS0j0Yb2hqLCKlSeZwKjUQCoVQXV2NIUOGwGhM7QFeaotFaX/ktMdTm4eWFA211ZN0Ryv5UFsc1P7Ip0ftj3bQUj7UFgu1QfJpJaqhtjqS7qRyPjpOjSUIApxOJ3JycqDXJ/89WaX9kdMeT20eWl1p9HVaK6PRiCFDhqC6uhqhUIimxkoyajtvE0WNcSjpU1e2eE2NpfZ7MJoaiyCIhDAajRg+fHiy3eCC2mJR2h857fHU5qElRUNt9STd0Uo+1BYHtT/y6VH7ox20lA+1xUJtkHxaiWqorY6kO1rKh16vV9Vb/kr7I6c9nto8tKRohEIhWltGRajtvE0UNcahpE9y2tLSPRhv1NHlRhBEQng8Hrz99tvweDzJdkUyaotFaX/ktMdTm4eWFA211ZN0Ryv5UFsc1P7Ip0ftj3bQUj7UFgu1QfJpJaqhtjqS7mgpH4FAAHv37kUgEEi2KwCU90dOezy1eWhJ0cjKysJ1112HrKyshO0T/FDbeZsoaoxDSZ/ktKWlezDeUEcIQaQwYg+yWoYRSkFtsSjtj5z2eGrz0JKiobZ6ku5oJR9qi4PaH/n0qP3RDlrKh9pioTZIPq1ENdRWR9IdLeVDp9PBarWqZv02pf2R0x5PbR5aUjQEQYDD4YAgCAnbJ/ihtvM2UdQYh5I+yWlLS/dgvKE1QoiUJt3XCCEIgiAIgiAIgiCIvtBxjRAivUl0fQ9aI4Qg5IHXGiFqJ5nPcpPfFUMQRMIEAgHs2rVLVUMJE0VtsSjtj5z2eGrz0JKiobZ6ku5oJR9qi4PaH/n0qP3RDlrKh9pioTZIPq1ENdRWR9IdLeUjHA6jrq4O4XA42a4AUN4fOe3x1OahJUXDbDZj7NixMJvNCdsn+KG28zZR1BiHkj7JaUtL92C8oY4QgkhhfD4fNm/eDJ/Pl2xXJKO2WJT2R057PLV5aEnRUFs9SXe0kg+1xUHtj3x61P5oBy3lQ22xUBskn1aiGmqrI+mOlvIhLoIdCoWS7QoA5f2R0x5PbR5aUjSsViuKiopgtVoTtk/wQ23nbaKoMQ4lfZLTlpbuwXhDU2MRKQ1NjUUQBEEQBEEQBEEQvUNTYxHR0NRYBKEuaGos+aERIQSRwkQiEfh8PmihP1NtsSjtj5z2eGrz0JKiobZ6ku5oJR9qi4PaH/n0qP3RDlrKh9pioTZIPq1ENdRWR9IdLeUjEokgFAqpJhal/ZHTHk9tHlpSNNS4qHU6o7bzNlHUGIeSPsnd/mjlHow31BFCEClMa2srHn30UbS2tibbFcmoLRal/ZHTHk9tHlpSNNRWT9IdreRDbXFQ+yOfHrU/2kFL+VBbLNQGyaeVqIba6ki6o6V8+P1+bN++HX6/P9muAFDeHznt8dTmoSVFw263495774Xdbk/YPsEPtZ23iaLGOJT0SU5bWroH4w1NjUWkNOk+NVY4HEZDQwPy8/NhMBiS7Y4k1BaL0v7IaY+nNg8tKRpqqyfpjlbyobY4qP2RT4/aH+2gpXyoLRZqg+TTSlRDbXUk3UnlfHScGksQBHi9XmRmZkKvT/57skr7I6c9nto8tLrS6Ou0VgaDAfn5+WhoaEA4HKapsZKM2s7bRFFjHEr61JUtXlNjqf0eLJnPco2KWCEImejYc3rw4MEkeZJcmpqaku0CN9QWi9L+yGmPpzYPLSkaaqsn6Y5W8qG2OKj9kU+P2h/toKV8qC0WaoPk00pUQ211JN1JxXzU1NSgpqYm2W4QKqGxsbFP5cLhMOrq6tjno0ePoq2tLS6NruirTm1tbcI2urJFEGolPz+fq55a78E6PrtVdFRQhCBSmHXr1kUApO1fdnZ2ZN68eZHs7Oyk+6K1WJT2R057PLV5aEnRUFs9Sfc/reRDbXFQ+yOfHrU/2vnTUj7UFgu1QfJpJaqhtjqS7n9ayofaYqH2Rz4tugbSzp9W8qHGOJT0KVXaHx56ve2/bt06xZ4j09RYRErzn//8B1dffXWy3SAIgiAIgiAIgiAIgiAIgiDiYN26dbjqqqsUsaWOSdgIgiAIgiAIgiAIgiAIgiAIgiBkgEaEECmNw+HAli1b2OehQ4fCYrEk0SOCIAiCIAiCIAiCIAiCIAiiI36/H0ePHmWfp06ditzcXEVsU0cIQRAEQRAEQRAEQRAEQRAEQRCahabGIgiCIAiCIAiCIAiCIAiCIAhCs1BHCEEQBEEQBEEQBEEQBEEQBEEQmoU6QgiCIAiCIAiCIAiCIAiCIAiC0CzUEUIQBEEQBEEQBEEQBEEQBEEQhGahjhCCIAiCIAiCIAiCIAiCIAiCIDQLdYQQBEEQBEEQBEEQBEEQBEEQBKFZqCOEIAiCIAiCIAiCIAiCIAiCIAjNQh0hBEEQBMGJuro6vPHGG1i2bBkuuOACZGdnQ6fTYfjw4cl2jSCIFGfnzp349a9/jRNOOAFWqxUjRozA0qVLUVNTk2zXCILQMHRtQxBEsti9ezceeugh/OxnP0NBQQFMJhNyc3Nx7rnn4oknnoDX6022iwRBpBi6SCQSSbYTBEEQBKEFnnnmGdx5552dvh82bBiqqqqUd4ggCE3w8ssvY9GiRRAEAQUFBRg8eDAOHDgAl8uFfv364fPPP8fZZ5+dbDcJgtAgdG1DEEQyOHToEE455RT2edCgQRg0aBBqa2vZSyCnnnoqPvnkE5x00knJcpMgiBSDRoQQBEEQBCdycnJwySWX4J577sE777yDZ555JtkuEQSR4uzZsweLFy+GIAh48sknUVNTg/Lychw7dgy/+c1v0NLSgl/+8pfw+/3JdpUgCA1C1zYEQSSDSCSC/Px8LF++HIcOHUJNTQ2++uorVFdX44svvsCwYcNw4MABXHvttcl2lSCIFIJGhBAEQRCETLz33nuYOXMmvTVJEETCXHPNNXj//ffxm9/8Bv/85z9j/tfW1obCwkIcOXIEK1euxOLFi5PkJUEQ6QJd2xAEoQQ+nw/hcBhZWVld/n/79u244IILAAC7du2ikbEEQfQJGhFCEARBEARBECrE4/Hgf//7HwDglltu6fT/jIwMzJ8/HwDw9ttvK+obQRAEQRCEXFit1m47QQDg/PPPh91uBwBUVlYq5RZBECkOdYQQBEEQshEOh7F792688sorWLJkCSZMmACz2QydTgedToeioqKEtQOBAF5//XVcfvnlGDZsGKxWK0488UScd955eOKJJ9DY2MgvEIIgNIua26mKigr4fD6YzWZMmTKlyzKif2VlZRAEIWFfCYJIDmpugwiC0Dap3P6EQiEEg0EAQGZmpiQtgiDSB2OyHSAIgiC0ybp16zB79mx4vV7u2pWVlZg1axZ27doV831dXR3q6uqwc+dOPP7441izZg0uv/xy7vYJgtAGam+nDhw4AAA46aSTYDabuywjLiTq8/lw+PBhjBgxgl8QBEHIitrbIIIgtEuqtz/r1q2D1+uF0WjEueeey8FrgiDSARoRQhAEQciCw+GQ5cK6uroal1xyCbuw1ul0mDp1KhYsWIAZM2YgIyMDAFBfX4+rr74amzZt4u4DQRDaQO3tVHNzMwBgwIAB3drq378/225paeEUAUEQSqD2NoggCO2Syu1PS0sL7r77bgDAzTffjLy8PG7+EwShbWhECEEQBCErJ5xwAiZOnMj+NmzYgOLi4oT1fvvb3+LYsWMAgGHDhuE///lPzOJ4jY2NuO666/DZZ58hGAxi5syZOHToEHJzc6WGQhCERlFrO9XW1gYA3Y4GAdrn0BaR44EGQRDyo9Y2iCAI7ZNq7U8wGMRvfvMbHDlyBCeffDIeeeSRhH0lCCL9oI4QgiAIQhYuu+wyHD58GCeddFLM92VlZQlrfvjhh9i2bRuA9geD69evx1lnnRVTJi8vD//5z38wZswY/Pjjj2hubsZjjz2Ghx9+uJPevffei0cffTQhX4LBIIxG+hkliFRG7e2U+NZkIBDo1p7P52PbNEc2QaQWam+DCILQLqnY/giCgDlz5uDTTz9Ffn4+/ve//yEnJydhfwmCSD9oaiyCIAhCFgoKCjpdWEvl+eefZ9tz587tdGEtkpWVhYceeoh9XrVqFUKhUJflBgwYkNCfTqfjGhtBEMqj9naqX79+AICmpqZu7YnTZ0WXJwgiNVB7G0QQhHZJtfYnEongxhtvxNtvv43+/fvjk08+QWFhIR/HCYJIG6gjhCAIgkgJ3G43PvvsM/Z5/vz5PZb/9a9/jezsbADtDwq3bt3aqcz999+PxsbGhP4MBgPfAAmCSHl4t1OnnXYaAODIkSPdjgr54YcfALRPkTVs2LCEfScIIvWR41qJIAiiL8jZ/kQiESxcuBAlJSXIycnBhg0bYqbbIgiC6CvUEUIQBEGkBDt27IDf7wfQ/hbRxIkTeyxvtVpx7rnnss+0EChBEHLDu50aN24crFYrAoEASktLu9TYsmULAGDSpEnQ6+nSniDSGbpWIggiWcjZ/txyyy14+eWXkZ2djY8++ggTJkzg4zRBEGkH3S0RBEEQKcF3333Hts8666w+rc9xzjnndLk/QRCEHPBup7KysnD55ZcDiJ1uQqStrQ1r1qwBAFx77bUJ+UwQhHagayWCIJKFXO3P7bffjpUrVyIzMxP//e9/cd5550l3liCItIU6QgiCIIiU4Pvvv2fbfZ3+JXre28rKSu4+EQRBRCNHO/XAAw/AYDDgnXfewVNPPQVBEAC0T0Exb948HDlyBMOGDcONN94o0XuCIFIdulYiCCJZyNH+/P73v8ezzz4Lq9WKDz74AFOnTpXuKEEQaU3vXbQEQRAEoQKiFws+4YQT+rRPQUEB245eUFgujh49inHjxrHP4pz+R48eRV5eHvt+1qxZePbZZ2X3hyAIZZGjnTr77LPx/PPPY+nSpbj77rvx+OOPY/DgwThw4ABcLhdyc3Px73//GxaLRXoABEGkNHK0QXRtQxBEX+Dd/uzcuROPP/44ACAnJwcPPvggHnzwwS51FixYgAULFsTrMkEQaQh1hBAEQRApgdvtZtsZGRl92ie6XPT+chEOh2NuAkQEQYj53uVyye4LQRDKI1c7tWjRIpx11ll4/PHHsX37duzZswcFBQWYPXs2/vjHP2LIkCHSHCcIQhPI0QbRtQ1BEH2Bd/sjrjcCAPX19aivr+9W52c/+1lf3SQIIs2hjhCCIAgiJfD5fGzbbDb3aZ/oN6Tb2tq4+9SR4cOHIxKJyG6HIAh1Imc7dd555+Hf//534s4RBKF55GiD6NqGIIi+wLv9KSoqoraHIAju0BohBEEQREpgtVrZtjgtQ29Ev0nU1zeTCIIgEoXaKYIgkgm1QQRBJAtqfwiCSAWoI4QgCIJICbKzs9l2X0d3RJeL3p8gCEIOqJ0iCCKZUBtEEESyoPaHIIhUgDpCCIIgiJRgwIABbPv48eN92qeuro5t9+/fn7tPBEEQ0VA7RRBEMqE2iCCIZEHtD0EQqQB1hBAEQRApwWmnnca2Dx8+3Kd9jhw5wrYLCwu5+0QQBBENtVMEQSQTaoMIgkgW1P4QBJEKUEcIQRAEkRKcfvrpbHvPnj0IhUK97vPNN990uT9BEIQcUDtFEEQyoTaIIIhkQe0PQRCpAHWEEARBECnBeeedB4vFAgDweDwoLy/vsbzf70dpaSn7PG3aNFn9IwiCoHaKIIhkQm0QQRDJgtofgiBSAeoIIQiCIFKC7OxsXHLJJexzSUlJj+X/9a9/weVyAWifc/aiiy6S0z2CIAhqpwiCSCrUBhEEkSyo/SEIIhWgjhCCIAgiZVi6dCnbLikpwb59+7os5/V68cADD7DPCxcuhNFolN0/giAIaqcIgkgm1AYRBJEsqP0hCELtUEcIQRAEkTJcccUVuPDCCwG0D6f+xS9+gd27d8eUaWpqwtVXX42DBw8CaH/D6J577lHcV4Ig0hNqpwiCSCbUBhEEkSyo/SEIQu3oIpFIJNlOEARBENrk8ssvx7Fjx2K+q6urw/HjxwEAWVlZOOWUUzrt9+GHH2LQoEFdalZXV2PSpEmora0FAOh0OkydOhUjR45EQ0MDPv30U3i9XgCA0WjExx9/HDNMmyAIIhpqpwiCSCbUBhEEkSyo/SEIIt2gjhCCIAhCNoYPH47Dhw/Hvd9PP/2E4cOHd/v/yspKzJo1C7t27eq2TH5+PtasWYMrrrgibvsEQaQP1E4RBJFMqA0iCCJZUPtDEES6QZPwEQRBEClHYWEhysrK8Pbbb+Ott97Cvn37cPz4ceTm5uLkk0/Gr371K8yfPx95eXnJdpUgiDSF2imCIJIJtUEEQSQLan8IglArNCKEIAiCIAiCIAiCIAiCIAiCIAjNQoulEwRBEARBEARBEARBEARBEAShWagjhCAIgiAIgiAIgiAIgiAIgiAIzUIdIQRBEARBEARBEARBEARBEARBaBbqCCEIgiAIgiAIgiAIgiAIgiAIQrNQRwhBEARBEARBEARBEARBEARBEJqFOkIIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEARBEARBEARBEARBEARBEIRmoY4QgiAIgiAIgiAIgiAIgiAIgiA0C3WEEARBEARBEARBEARBEARBEAShWagjhCAIgiAIgiAIgiAIgiAIgiAIzUIdIQRBEARBEARBEARBEARBEARBaBbqCCEIgiAIgiAIgiAIgiAIgiAIQrNQRwhBEARBEARBEARBEARBEARBEJqFOkIIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEARBEARBEARBEARBEARBEIRmoY4QgiAIgiAIgiAIgiAIgiAIgiA0C3WEEARBEARBEARBEARBEARBEAShWagjhCAIgiAIgiAIgiAIgiAIgiAIzUIdIQRBEARBEARBEARBEARBEARBaBbqCCEIgiAIgiAIgiAIgiAIgiAIQrNQRwhBEARBEARBEARBEARBEARBEJqFOkIIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEARBEARBEARBEARBEARBEIRmoY4QgiAIgiAIgiAIgiAIgiAIgiA0C3WEEARBEARBEARBEKrkmWeegU6ng16vR3l5ebLdkcS9994LnU4Hq9WKQ4cOJdsdgiAIgiCItII6QgiCIAiCIAgixSgqKoJOp4v7b/Pmzcl2nSD6zPHjx/Hggw8CAK699lpMmDChy3Lz5s1jdXzevHlx2SgpKWH7Dh8+XKLHPXPvvfeiX79+8Pv9uPPOO2W1RRAEQRAEQcRCHSEEQRAEQRAEQRCE6lixYgWcTid0Oh0eeOCBZLsjmdzcXNx2220AgPXr12PLli1J9oggCIIgCCJ9MCbbAYIgCIIgCIIgEmfixImYNGlSn8oOHjxYZm8Igg9VVVV4+eWXAQBXXXUVTj/99CR7xIfbb78dTzzxBLxeL/74xz/iiy++SLZLBEEQBEEQaQF1hBAEQRAEQRBECnP55Zdj+fLlyXaDILjy5JNPIhgMAgBuueWWJHvDjwEDBmDmzJl49dVXsX37dmzfvh3nn39+st0iCIIgCILQPDQ1FkEQBEEQBEEQBKEaWltbsWbNGgDAiBEjcMkllyTZI77cdNNNbPuZZ55JniMEQRAEQRBpBHWEEARBEARBEARBEKrhn//8JzweDwBg5syZ0Ol0SfaIL+effz4GDRoEAPjPf/6DpqamJHtEEARBEAShfagjhCAIgiAIgiDSjKqqKuh0Ouh0OgwfPpx9/8UXX+Cmm25CYWEh7HY7dDodli1b1qXG0aNH8ec//xkXXnghBg0aBIvFgv79+2PcuHH43e9+hwMHDsTl0zfffIObb74ZJ598MjIyMpCfn49JkybhscceQ3NzMwCgpKSE+T1v3rwudZYvX87K9GXKsM2bN7PyRUVFffL1u+++w3333YdJkybhhBNOgNlsRn5+PiZPnowHHngAx44d61WjqKiI2d28eTMAoLm5GY8++igmTpyIvLw8ZGRk4OSTT8aNN96IvXv39sm3aD766CMsWrQIo0ePxoABA2AymZCbm4tzzjkHixYtwgcffIBQKMTK19fXw2w2Q6fTwWAwoKampk92IpEIRowYweL54IMP4vY1mrVr17Ltq6++WpKWVKLPlXj/qqqqutTU6XQsrmAwiHfeeUe5gAiCIAiCINIUWiOEIAiCIAiCINKcQCCA22+/HatWreq1rCAIWL58OR5//HH4fL5OOi0tLdi1axeKi4vx+9//Hn/5y196faP/T3/6Ex555BGEw2H2nc/nQ2NjI7766is8++yzePfddxMLjiN+vx933HEHXn755RhfAaCxsRGNjY348ssv8cQTT+Cxxx7Drbfe2mft7du349prr+3U+fDTTz/hp59+wquvvoqVK1fi5ptv7lVr3759mDdvHsrLyzv9r7W1FRUVFaioqMBLL72Ea6+9Fm+//TYAYODAgbjyyivx/vvvQxAElJSU4I9//GOv9j777DP20P/EE0/EFVdc0YeIu6alpQXbt28HANhsNkycODFhLTUzbdo0vPDCCwCA//73v1iyZEmSPSIIgiAIgtA21BFCEARBEARBEGnOnXfeyTpBzjrrLJx99tkwmUw4cOAA9Pr/bxB5OBzGtddei/fff599N3jwYEyaNAn5+flwu90oKyvDoUOHEAqF8PDDD6OhoQEvvfRSt7bvu+8+/O1vf2OfMzMzMW3aNJx44omoq6vDpk2bUF1djcsvv7zb0SlK4PF48POf/5w9pAeAkSNHYvz48ejXrx+am5uxfft2HDt2DG1tbbjtttvgdDpx33339aq9d+9e/OEPf4Db7cbAgQNx4YUXYsCAAaipqcGmTZvQ1taGcDiMxYsX46yzzsKUKVO61dq8eTOuvPJKuFwu9t1JJ52ESZMmoX///vB4PPj+++/x7bffIhgMdurMWrhwIcvv6tWrcd999/XakfXKK6+w7Xnz5sFgMPQac3ds2rSJdTJNmTIFRmNyb1lzcnL6vFj77t27sW3bNva5p+N24YUXsu3NmzcjFAolPVaCIAiCIAgtQ1daBEEQBEEQBJHGVFdX44UXXsDQoUOxdu3amAe0QPsoCJEVK1awh+QFBQV4/vnn8ctf/rLTA993330XN998M1pbW/GPf/wDP/vZz/Cb3/ymk+2tW7fikUceYZ+vueYavPTSS+jXrx/7rrW1FYsXL8bbb7+Nv/71r1xiToSlS5eyTpBTTz0Vq1at6jSVVjgcxksvvYQ777wTfr8fDzzwAC6++GKce+65PWr/7ne/QygUwpNPPonbb7895oH40aNHcfnll2Pv3r0QBAH33XcfNm3a1KXO0aNHMXPmTNYJMmLECLzwwgu47LLLOpVtaWnBO++8g4MHD8Z8f+mll2LEiBH46aef8OOPP2Lz5s24+OKLu/W9ubkZ//73vwG0P/i/8cYbe4y1N8rKytj2mDFjJGnxoH///njuued6LXf06FFMmjSJfZ41axaGDRvWbfmBAwfixBNPRG1tLbxeL/bu3YuxY8fycJkgCIIgCILoAuoIIQiCIAiCIIgU5sMPP0RjY2Ov5f7whz9g8ODBnb4Ph8PIzMzEp59+ilNPPbXT/y0WC4D2tRIefvhhAO0Ph7/44guMHDmyS1szZ85EXl4epk2bBqB93Y6uFr3+wx/+gEgkAgC45JJL8Pbbb3caTWC327F27Vo0Nzdj48aNvcYpB9u2bcNrr70GoH0UyPbt25GXl9epnMFgwJIlS5CRkYH58+cjHA7joYcewkcffdSjvt/vx6pVq7Bw4cJO/xs6dCjeeustjBkzBpFIBJs3b0ZtbS1OPPHETmX/8Ic/sLowbNgw7Ny5EyeccEKXNvv164dFixZ1+l6n0+Gmm25iU2K98sorPXaErF27lnWWFRUVdVsn+sru3bvZdmFhYdz7l5WVxTUlWWVlZdw2OuLxeHDllVeirq4OADB58mSsXr261/1OP/101NbWAgC+/fZb6gghCIIgCIKQEeoIIQiCIAiCIIgU5quvvsJXX33Va7mbbrqpy44QALj11lu77ASJpri4mE1Z9MADD/T6wPviiy/Gz3/+c2zYsAHfffcdKioqcM4557D/f/fdd9ixYwf7/Pe//73bKZX0ej2effZZFBYWso4TJXnqqafY9pNPPtllJ0g08+bNw6OPPorKykps2LABTU1NGDBgQLflzzrrrC47QURGjx6NiRMn4ssvv0QkEkF5eTlmzJgRU6ampgb//Oc/2ecXX3yx206Q3pg/fz4efPBBhEIhvP/++3juueeQm5vbZdnoabFuuummhOxF89NPP7HtIUOGxL1/ZWUll86NvhKJRHDDDTdg165dANo7rtatWwer1drrvtHnY3cLqxMEQRAEQRB80PdehCAIgiAIgiAILXPdddf1WubDDz9k27/97W/7pCuOCAGAL774IuZ/n3/+OdseP348zjjjjB61Tj311B7XxpCLUCiETz75BED7ehG/+MUv+rSfOIoiEonErCvSFTNnzuxVb9y4cWy7q4fmn376KUKhEABg1KhRXU6H1VdOPPFEFqfP58Obb77ZZbmvv/4a3377LYD2ESa/+tWvErYpcvz4cbbdU+eRWvjjH//IpgbLysrCBx98gIKCgj7tG92hJo4mIQiCIAiCIOSBRoQQBEEQBEEQRArz4IMPYvny5QnvbzKZcNZZZ/VYpqmpCQcOHAAAmM1mrFixok/a+/fvZ9tHjx6N+V9FRQXb7m0NjehyO3fu7FNZXuzevRsejwdA+7G64447+rRf9CidjrF3pLfjD8R2Cjidzk7/Ly0tZdsd1y5JhIULF2LdunUA2kd9LF26tFOZ6NEg119/fZ9GQfSGeKwBIDMzM+79586di5KSkj6XLykpwfz58+O2AwBvvPEG/va3vwFon1LsjTfeiGt6q+j4ouMmCIIgCIIg+EMdIQRBEARBEASRxvTr1y9mce6uENcxAIBAIIDnn38+bjstLS0xnxsaGtj2SSed1CeNvpbjybFjx9h2U1MTl9g7Yrfbe9UwmUxsOxgMdvp/9EiKk08+OQ7vuubnP/85hg0bhsOHD+Obb77Brl27Yh7yt7W1xYwU4TEtVkeSMQ1aXyktLY2J+eGHH8bVV18dl4aa4yMIgiAIgtAaNDUWQRAEQRAEQaQxGRkZvZZpbW2VbEectknE7Xaz7b6++Z+VlSXZj3iRI/aOdFxEPhFcLhfbzs7Olqyn1+tx4403ss/Roz8A4P3332fHZuLEiRgzZoxkm0Bsjtva2rho8ubIkSO4+uqr2SLxc+bMwb333hu3TnR8yajbBEEQBEEQ6QR1hBAEQRAEQRAE0SPRD2lzcnIQiUTi/us4XVH0w3qv19snP+SYPkgQhB7/Hx37mDFjEopdytRlfcVms7Ht6E4mKSxYsIAtYL927Vr4fD72P96LpItEr6/R2NjITZcXHo8HV155JRuBc/755+Oll15KSCt6VFRf1xUhCIIgCIIgEoM6QgiCIAiCIAiC6JETTjiBbTudzj53XPREfn4+2z5y5Eif9ultrQ0gdgqp3kZiAL2P+IiOXc0LWkf7+dNPP3HRHDx4MC6//HIA7dN7iYuCHzp0CFu2bAHQ3lE0a9YsLvYAYMSIEWy7urqamy4PIpEIrr/+erZA/LBhw/Cvf/0LFoslIb2amhq2PXz4cB4uEgRBEARBEN1AHSEEQRAEQRAEQfTIiSeeiKFDh7LPO3bskKw5btw4th290HdP9GWh9JycHLbd1NTUa/k9e/b0+P+xY8eyB9319fU4ePBgr5rJYMqUKWz7888/56a7cOFCti2OAlm9ejVb32LmzJkxo1GkEj3F1vfff89Nlwf33XcfW0DeZrNh/fr1GDhwYMJ63333Hds+++yzpbpHEARBEARB9AB1hBAEQRAEQRAE0Su/+MUv2PYLL7wgWe/iiy9m2+Xl5aisrOyx/MGDB/vUERL9Zv2uXbt6Lf/OO+/0+P+MjAxMmzaNfeYRuxxceumlbNH7H374ARs2bOCi+//+3/9jnWCbNm3CwYMHY6Y5471I+qRJk9i2OPJCDbz++ut45JFHALSvn/LWW2/hrLPOSlivvr6ejTDKzMzE6NGjufhJEARBEARBdA11hBAEQRAEQRAE0St33303Wy/i3//+d6c1P3qiqymlTj/9dJx33nns8x133NHteh2CIOD2229noxB6YuLEiWzx8bKyspi37jvywgsvYN++fb1q3nPPPWz72WefxaefftrrPiJKTac1aNAgXHvttezzokWL2DoWUjAYDFiw4P/X3t2FZl32cQD/+mxzIcuaEpnRVETPImqRWERjnYwUtRN7Q0eThCAzcnQQwXI4VqtFsIKyotlBsIywtwU7MNIaaES5gkAot8BehGzYtsycew7kuR8lzfno5tPd53P0v//8/7/rul9O7vt7X9evIcl/t4b6/vvvkxx/D2+66aZzHuNEtbW1hc/Zrl27xrW92UTr7e3NfffdV3jc1taWJUuWnFPNnTt3Fo5ramoKIRYAABNDEAIAAJzR/Pnz89hjjxUeNzQ0pLGx8bQNrY8ePZqenp6sWrXqpG2wTtTS0lIILXp6enL33XdncHDwpGsOHTqUVatW5YMPPsjUqVPPOM9Zs2YVVnCMjY3lrrvu+lOviaNHj6a9vT0PPvjguPo73HLLLamvry/cu2TJkrS2tp62Kfnhw4ezbdu2LF++PMuWLTtj/fOltbU1M2bMSJIMDAxk8eLFp10ZMjg4mM2bN+eRRx45Y901a9bkX/86/tVx165dJ50/3yorKwvhyq+//ppPP/30vI9xNr777rvcfvvt+f3335Mc/9xv2LDhnOtu3769cHziaisAACaGv50AAADj0tTUlP7+/mzZsiVjY2Npb29PR0dHrr/++syfPz/Tpk3LoUOH0t/fn76+vgwPDydJZs6cecp6NTU1aWxszFNPPZUk6erqynvvvZfa2trMmjUrP/30U7Zv356hoaFUVlZm/fr1efzxx884z5aWlnz44Yc5duxY9uzZk4ULF6a2tjZXXnllDh48mB07duTAgQOpqKhIa2tr1q1bd8aaL774Yn744Yf09PTkyJEjefTRR7Np06YsWrQoVVVVKS8vz+DgYL755pt89dVXhR/Oq6urx/nqnrurrroqb7zxRlasWJGhoaHs27cvdXV1mTNnTm644YbMmDEjQ0ND2bt3b7744ov88ccfWb58+bjq1tXVpbu7u3Bu6tSpWb169YQ8j3vuuSc7duxIkmzbti2LFy+ekHHG49VXX82BAweSHF8dU1pamgceeGBc9zY3NxeCqRONjY3l7bffTpKUlZVl5cqV52/CAACckiAEAAAYlylTpqSzszPV1dVpamrKL7/8kiNHjqS3t/e0DdSnTJnyl9sntbW1paSkJG1tbTl27FiGh4fz7rvvnnTN7Nmz8+abb467efaiRYvy0ksvZe3atRkdHc1vv/2W999//6RrrrjiinR1dWV0dHRcNcvLy9Pd3Z2NGzemvb09IyMjGRkZ+cvG5GVlZSc1MZ8Mt956az7++OPU19cXemwMDAxkYGDglNdXVFSMq+7atWtPCkKWLVuWyy677NwnfAp33HFHHn744QwPD2fr1q154oknCiuHJtuJ27GNjo5m8+bN4763sbHxlEFIb29v9u/fn+T463i6oBAAgPPH1lgAAMBZWbduXQYGBvL8889nxYoVmTdvXioqKlJaWprKyspcffXVufPOO/PCCy9kYGCg8O/302ltbc3u3bvT0NCQuXPnpry8PDNnzkx1dXVaWlqyZ8+es14V0NDQkL6+vqxZsybz5s3LRRddlEsvvTTXXnttNm3alL6+vtx8881nVbOkpCTNzc3p7+/P008/nbq6ulRVVWXatGkpKyvLzJkzc91116W+vj6dnZ3Zv39/nnvuubMa43y45ppr8vnnn+ett97K6tWrs2DBgkyfPj0lJSWprKxMdXV17r///nR3d+e1114bV83bbrvtpG3EzneT9BNdcskluffee5Mk+/btO6ueLH8HL7/8cuH4oYceunATAQD4B5kyNp6OgwAAABdYZ2dn4Qfy/4QNTI6PPvooNTU1SZI5c+bk22+/LfQNmQj9/f1ZuHBhYfuubdu2TdhYk+nnn39OVVVVRkZGcuONN+aTTz650FMCAPhHsCIEAACAv/TKK68UjhsaGiY0BEmSuXPnFladvPPOO/n6668ndLzJ0tHRkZGRkSTHe9kAADA5BCEAAACc1o8//pitW7cmSUpLSyd0W6wTNTU1Zfr06RkbG0tzc/OkjDmRBgcH09HRkSRZunRpYYUNAAATTxACAADAKY2Ojmb9+vU5fPhwkmTlypWZPXv2pIx9+eWXZ+PGjUmSrq6ufPbZZ5My7kR58sknc/DgwZSXl+fZZ5+90NMBAPhH0SMEAAD4W9AjZHK8/vrr2b17d4aGhrJz587s3bs3SVJeXp4vv/wyCxYsuMAzBACAs1N6oScAAADA/4+enp5s2bLlT+efeeYZIQgAAH9LghAAAABO6eKLL051dXU2bNiQpUuXXujpAADA/8TWWAAAAAAAQNHSLB0AAAAAAChaghAAAAAAAKBoCUIAAAAAAICiJQgBAAAAAACKliAEAAAAAAAoWoIQAAAAAACgaAlCAAAAAACAoiUIAQAAAAAAipYgBAAAAAAAKFqCEAAAAAAAoGgJQgAAAAAAgKIlCAEAAAAAAIqWIAQAAAAAAChaghAAAAAAAKBoCUIAAAAAAICiJQgBAAAAAACKliAEAAAAAAAoWoIQAAAAAACgaAlCAAAAAACAoiUIAQAAAAAAipYgBAAAAAAAKFqCEAAAAAAAoGgJQgAAAAAAgKIlCAEAAAAAAIqWIAQAAAAAAChaghAAAAAAAKBoCUIAAAAAAICiJQgBAAAAAACKliAEAAAAAAAoWv8G1IoJM7SLqxEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "plt.plot(pds.freq, pds.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5, label=\"PDS\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.axhline(noise, ls=\":\", label=\"Poisson noise level\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2 Hz^{-1}}$\");\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, (pds.power - noise) * pds.freq, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5, label=\"PDS\")\n", + "plt.plot(pds_reb.freq, (pds_reb.power - noise) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "plt.legend();\n" + ] + }, + { + "cell_type": "markdown", + "id": "3cb801af", + "metadata": {}, + "source": [ + "We will now do the same with the cross spectrum between the bands 0.3--5 keV and 5--12 keV.\n", + "\n", + "In this case, there is no need to subtract the Poisson noise level, as it is zero in the cross spectrum, provided that the energy bands do not overlap." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "84a1cd9c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "65it [00:00, 112.32it/s]\n", + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/fourier.py:720: RuntimeWarning: invalid value encountered in sqrt\n", + " dRe = dIm = dG = np.sqrt(power_over_2n * (seg_power - frac))\n", + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/fourier.py:722: RuntimeWarning: invalid value encountered in sqrt\n", + " dphi = np.sqrt(power_over_2n * (seg_power / (Gsq - bsq) -\n", + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/crossspectrum.py:2761: UserWarning: Some error bars in the Averaged Crossspectrum are invalid.Defaulting to sqrt(2 / M) in Leahy norm, rescaled to the appropriate norm.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "ref_band = [1.5, 3]\n", + "sub_band = [0.5, 1]\n", + "events_ref = events.filter_energy_range(ref_band)\n", + "events_sub = events.filter_energy_range(sub_band)\n", + "\n", + "cs = AveragedCrossspectrum.from_events(\n", + " events_sub, events_ref, segment_size=segment_size, \n", + " dt=dt, norm=norm)\n", + "cs_reb = cs.rebin_log(0.02)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6d8aa019", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/pupperemeritus/.local/lib/python3.9/site-packages/matplotlib/cbook/__init__.py:1333: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return np.asarray(x, float)\n", + "/home/pupperemeritus/.local/lib/python3.9/site-packages/matplotlib/cbook/__init__.py:1333: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return np.asarray(x, float)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAASDCAYAAAAlGiOpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOy9e3Rb1Zn3/5Usy4os3xJMQggkEC4JhBIKlAAtMW2n7dBJ42mhJKU0Le+0bztdi8s7748ys6aQMGuVhM7bImbawHRwmJI0CTjkYiDBkItDEhyS4CR2nKsTx1fZsq27dCQdaf/+8OiML7It65wj7XP0fNbygthHz36+evZ5zj5nn/1sA2OMgSAIgiAIgiAIgiAIgiAIgiAIQocYs+0AQRAEQRAEQRAEQRAEQRAEQRCEWtBECEEQBEEQBEEQBEEQBEEQBEEQuoUmQgiCIAiCIAiCIAiCIAiCIAiC0C00EUIQBEEQBEEQBEEQBEEQBEEQhG6hiRCCIAiCIAiCIAiCIAiCIAiCIHQLTYQQBEEQBEEQBEEQBEEQBEEQBKFbaCKEIAiCIAiCIAiCIAiCIAiCIAjdQhMhBEEQBEEQBEEQBEEQBEEQBEHoFpoIIQiCIAiCIAiCIAiCIAiCIAhCt9BECEEQBEEQBEEQBEEQBEEQBEEQuoUmQgiCIAiCIAiCIAiCIAiCIAiC0C00EUIQBEEQBEEQBEEQBEEQBEEQhG6hiRCCIAiCIAiCIAiCIAiCIAiCIHQLTYQQBEEQBEEQBEEQBEEQBEEQBKFbaCKEIAiCIAiCIAiCIAiCIAiCIAjdQhMhBEEQBEEQBEEQBEEQBEEQBEHoFpoIIQiCIAiCIAiCIAiCIAiCIAhCt9BECEEQBEEQBEEQBEEQBEEQBEEQuoUmQgiCIAiCIAiCIAiCIAiCIAiC0C00EUIQBEEQBEEQBEEQBEEQBEEQhG6hiRCCIAiCIAiCIAiCIAiCIAiCIHQLTYQQBEEQBEEQBEEQBEEQBEEQBKFbaCKEIAiCIAiCIAiCIAiCIAiCIAjdQhMhBEEQBEEQBEEQBEEQBEEQBEHoFpoIIQiCIAiCIAiCIAiCIAiCIAhCt9BECEEQBEEQBEEQBEEQBEEQBEEQusWUbQcI/eJwOPDxxx/j6NGjOHr0KI4fP45AIIDZs2ejtbU12+4RBEEQBEEQBEEQBEEQBEEQOQBNhBCqsWnTJjzzzDPZdoMgCIIgCIIgCIIgCIIgCILIYWgihFCN4uJifO1rX8Ndd92FO++8E11dXXj66aez7RZBEARBEARBEARBEARBEASRQxgYYyzbThC5QXV1NR555BEqjUUQBEEQBEEQBEEQBEEQBEFkDNosnSAIgiAIgiAIgiAIgiAIgiAI3UITIRkkFovh5MmTeOONN/CLX/wCd911F8xmMwwGAwwGAyoqKtK2HYlE8NZbb+Ghhx7C7NmzYbFYcNVVV+G+++7Dv/7rv6Kvr085IQRBEARBEARBEARBEARBEAShEWiPkAyxbds2PPbYYwgGg4rbPnPmDJYvX47jx48P+73D4YDD4cCnn36K3/72t1i3bh0eeughxdsnCIIgCIIgCIIgCIIgCIIgCF6hiZAM4Xa7VZkE6ejowNe+9jV0dXUBAAwGAx544AHMnTsXTqcTH3/8MUKhEHp7e1FZWYldu3bhq1/9quJ+ZAu32426ujrp39dccw0KCgqy6BFBEARBEARBEARBEARBEAQxknA4jPb2dunfixcvRmlpaUbapomQDDN9+nTcfffd0s+HH34Iu92etr0f/OAH0iTI7NmzsX37dtx+++3S3/v6+rBs2TLs3r0b0WgUjzzyCFpaWjLWwdSmrq4OlZWV2XaDIAiCIAiCIAiCIAiCIAiCmATbtm3D0qVLM9IW7RGSIb71rW/h8uXLcDgcqKmpwfPPP4+//uu/ljUh8cEHH+CTTz4BAJjNZtTU1AybBAGAK664Atu3b8f1118PABgYGMDLL7+c1N5zzz0n7Vcy2R9RFNPWQRAEQRAEQRAEQRAEQRAEQRBqQStCMsSMGTMUt/mHP/xB+v8VK1bgtttuS3pcYWEhXnzxRfzwhz8EALz++ut48cUXYTKZRh03bdq0tHwxGAxpfY4gCIIgCIIgCIIgCIIgCIIg1IQmQjSK3+/H7t27pX//5Cc/Gff4733ve/j5z38Ov9+PgYEB7N+/f9ReIb/+9a/x61//WhV/1eKaa64Z9u9t27bhhhtuyJI3mScYDGLfvn2oqKiA1WrNtjuy4E1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnVk0iet5B8l7I38/IULF4ZtczDy2a6a0ESIRjl06BDC4TCAwZUcd99997jHWywW3Hvvvfjoo48AAHv27NHFpukjN0a/4YYbcOutt2bJm8wTiUSQn5+PW265BWazOdvuyII3LZn2R832lLSthC05NnjrJ7mOXuLBmw7KP+rZo/yjH/QUD960UA5Sz1a6NnjrI7mOnuLBmxbKP+rZojGQftBLPHjUkUmftJJ/lLA30edHPttVEwNjjGWsNWIUK1euxKpVqwAAixcvxr59+1L6nN1ux9NPPw0AWLRoET799NMJP/Pcc89hzZo1AIDvfve72LJlS1o+p0t1dTUeeeQRzJ49G62trYrYPHXqFBYsWCD9u6mpKacmQgiCIAiCIAiCIAiCIAiCILRANp/l0mbpGuXs2bPS/8+ePTulz1x77bXS/585c0Zxn4jMEwqFsGvXLoRCoWy7IhvetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8eBRRyZ90kr+UcIeT7Gm0lgapb+/X/r/6dOnp/SZoRu2DwwMKO7TSNrb23HHHXdI/45EItLvr7jiCun3y5cvx7/927+p7o8eicfjcLvdiMfj2XZFNrxpybQ/aranpG0lbMmxwVs/yXX0Eg/edFD+Uc8e5R/9oKd48KaFcpB6ttK1wVsfyXX0FA/etFD+Uc8WjYH0g17iwaOOTPqklfyjhD2uYs2IrPLCCy8wAAwAW7x4ccqfe+ihh6TP/epXv0rpMx988IH0GZvNlqbHqXPp0iWpvfF+VqxYkXYbTU1NDACzWCzMZrOxpqYmJooic7lcLB6PM8YY83g8LBwOM8YYCwaDzO/3M8YYi0ajzOVySbbcbjeLRCKMMcYCgQALBAKMMcYikQhzu93ScS6Xi0WjUcYYY36/nwWDQcYYY+FwmHk8HsYYY/F4nLlcLiaKImOMMZ/Px0KhEGOMMUEQmNfrZYwxFovFmMvlYrFYjDHGmNfrZYIgMMYYC4VCzOfzMcYYaSJNpIk0kSbSRJpIE2kiTaSJNJEm0kSaSBNpIk2kiTRpWlPiWW7ip6mpiWUKKo2lUQRBkP4/1Y1qhm4+k4nlSHPmzAFjbMKfN998U3ZbixYtwsMPPwwAcDqdsNvt0mbyVVVVaG5uBgDU1dWhpqYGANDR0QG73S7ZWLt2LVpaWgAAtbW1qK2tBQC0tLRg7dq10nF2ux0dHR0AgJqaGtTV1QEAmpubUVVVBQAIh8Ow2+1wOp0ABvdHqa+vBwA0NDRgw4YNAACv1wu73Q6v1wsA2LBhAxoaGgAA9fX1qK6uHleTKIqoqanBjh07dKFp//79EEWRizgdO3YM69atgyiKsuMETNz3zp07h9bWVnz44YeKazp06BBaW1tx7NgxbuLU2toKURQnrUkURaxfvx6HDh0CoOz5lEqctHQ+ZUJTY2Mj/uM//gOiKGpa044dO1BTUwNRFLmI0+XLl2G32yGKoiJxynSOGKppx44daG1tlTTJiVNNTQ327t2L1tZWNDY2ph2nxPUz16+5Ws973d3dsNvtCAQCmtf0zjvvoLW1VdLEQ5xOnDgBURQz0vdEUcTRo0dV0SSKIs6fP89NnNId74miiP3791OO4ERTYgx7+fJlXWhKd1yulqZM3hMqmSNGagoEAmhtbeUmTnLGe3q65uoh761fvx67d++GKIqa15TuuFwtTUrca2QrRwzVdPnyZbS2tmLHjh2KxGlgYACtra1Yv369oveEWSFjUy5EUvS8IiQT5PqKEJfLxVauXMk6Ozs1r6mtrY2tXLmSuVwuLuLkcDgkfzIxs9/b28tWrlzJurq6FNeU0OJwOLiI0+XLlyUbk9WU6PMOh4MxRm9gZFtTT0+PFEsta+rs7JR08BAnp9Mp+aNEnDKZI0ZqSny3TqdTkb7X3d3NVq5cyXp6etKK09D8k8vXXD3kvb6+PrZy5Uo2MDCgeU0dHR1s5cqVrK+vj4s4DT1PMtH3EufW5cuXFdc01DYPcUp3vJfQ0dbWJsWJckT2NCXi4XQ6Na9JzrhcDU2ZvidUMkeM1DQwMCCdtzzESc54T0/XXD3kvfb2dqk/aFmTnHG5Wprk3mtkK0eM1JS4n+zs7FSk7/X397OVK1ey9vZ2Re4Js7kixMAYY9mahCGAlStXYtWqVQCAxYsXY9++fSl97tFHH8Xbb78NAHjyySdTmlF799138b3vfQ/A4H4h3d3d6TnNEadOncKCBQukfzc1NeHWW2/NokcEQRAEQRAEQRAEQRAEQRDESLL5LJdKY2mUadOmSf/f09OT0mccDof0/1OnTlXcJ4IgCIIgCIIgCIIgCIIgCILgDZoI0Sg333yz9P+J2qQT0dbWJv3/vHnzFPeJyDwejwerV6+Gx+PJtiuy4U1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnVk0iet5B8l7PEUa5oI0Sjz58+X/r+xsVHaUHU8Pv/886SfJ7SL1WpFZWUlrFZrtl2RDW9aMu2Pmu0paVsJW3Js8NZPch29xIM3HZR/1LNH+Uc/6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9oJd48Kgjkz5pJf8oYY+nWNNEiEa57777UFBQAAAIBAI4evTouMeHw2HU19dL//7qV7+qqn+ZxmKxwGazAQBisRjcbjcS2994vV5EIhEAQCgUQiAQAACIogi32y3Z8Hg8iEajAIBgMIhgMAgAiEajw2Yt3W63NPEUCAQQCoUAAJFIBF6vFwDAGIPb7UYsFgMA+P1+CIIAYDAWPp8PABCPx+F2uxGPxwEAPp8P4XAYACAIAvx+/7ia8vPzMXv2bEmfljWFQiFcf/31yM/P5yJO8XgcV199NfLz82XHKaFvPE3A4EqtaDSquKZYLIZ58+YhHo9zEadgMIh58+YhPz9/0pry8/Mxa9YsSZ+S51MqcdLK+ZQpTYwxzJw5E/n5+ZrWFIlEMHv2bOTn53MRJ4PBgBkzZiA/P1+ROGUyR4zUFIlEMG/ePBgMBkX6niiKmDdvHhhjacUpEAjgpptuQn5+fk5fc/WQ94xGI2bMmAGTyaR5TeFwGPPmzYPRaOQiToFAADfeeCPy8/Mz0vfy8/Nxww03SPqU1JSfn4+bb74ZgUCAizgB6Y338vPzcf311w+7/lKOyJ6m/Px8zJgxAwaDQfOa5IzL1dCU6XtCJXPESE0mkwnz5s2TxkPZjpOc8Z6errl6yHuCIOC6665Dfn6+pjXJGZerpUnuvUa2csRITQaDAfPmzUMkElGk7+Xl5WHevHnSeGiycRrrnjAb0ESIRrHZbPja174m/fvNN98c9/h3331X6shTp07FAw88oKZ7GWfRokV4+OGHAQBOpxN2u106OauqqtDc3AwAqKurQ01NDQCgo6Nj2Cbza9euRUtLCwCgtrYWtbW1AICWlhasXbtWOs5ut6OjowMAUFNTg7q6OgBAc3MzqqqqAAwmDrvdDqfTCQCorq6WJqIaGhqwYcMGAIPJwW63S8low4YNaGhoAADU19ejurp6XE3BYBBVVVXYtm2b5jW98cYbWL9+PYLBIBdxOnz4MP74xz8iGAzKjhMwcd9rbm7Gtm3b8MEHHyiu6ZNPPsG2bdtw+PBhbuK0bds2BIPBSWsKBoN47bXX8MknnwBQ9nxKJU5aOZ8ypen48eP493//dwSDQU1r2rZtG6qqqhAMBrmI04ULF2C326XBrdp9T8kcMVLTtm3bsG3bNkmTnDjV1NRg9+7d2LZtG44fP552nKqrqxEMBnP6mquHvNfW1ga73Q6Xy6V5TW+//Ta2bdsmaeIhTm+//TaCwWBG+l4wGMSmTZtU0RQMBvHuu+9yE6d0x3vBYBDr16/HG2+8MSxOlCOyoykxhr1w4YIuNKU7LldDU6bvCZXMESM1uVwubNu2DW+88QYXcZIz3tPTNVcPee+tt97Cn//8ZwSDQc1rSndcrpYmJe41spUjhmq6cOGCdB+mRJx6enqwbds2vPXWW4reE2YFRmSVF154gQFgANjixYsn9dn33ntP+mxBQQFrampKelwgEGA33HCDdOxzzz2ngOd80NTUxAAwi8XCbDYba2pqYqIoMpfLxeLxOGOMMY/Hw8LhMGOMsWAwyPx+P2OMsWg0ylwul2TL7XazSCTCGBv8zgKBAGOMsUgkwtxut3Scy+Vi0WiUMcaY3+9nwWCQMcZYOBxmHo+HMcZYPB5nLpeLiaLIGGPM5/OxUCjEGGNMEATm9XoZY4zFYjHmcrlYLBZjjDHm9XqZIAiMMcZCoRDz+XyMMTampkAgwN555x3W29ureU0Oh4NVV1ezQCDARZwGBgbY22+/zQKBgOw4MTZx33O73Wzr1q3M6XQqrqm/v59t3bqVDQwMcBGn7u5utnXrVhYIBCatKRAIsLfffpv19/czxpQ9n1KJk1bOp0xpcrlcbPPmzSwQCGhaU29vL3vnnXdYIBDgIk4ej0f6XpWIUyZzxEhNvb29bOvWrczj8SjS9/r6+tjWrVuZy+VKK05dXV3s3XffZYFAIKevuXrIe16vl23evHnYeaNVTT09PWzr1q3M6/VyEaeuri62ZcsWFggEMtL3AoEA27JlC+vq6lJcUyAQYO+++y7r6uriIk7pjvcCgQCrrq5mDodDihPliOxpCgQCbPPmzZLvWtYkZ1yuhqZM3xMqmSNGavL7/Wzr1q3M4XBwESc54z09XXP1kPd6enqk80TLmuSMy9XSJPdeI1s5YqQmj8fDtm7dynp7exXpez6fj23dupX19PQock+YeJab+BnrebYaGBj773UrRFZYuXIlVq1aBQBYvHgx9u3bN6nPP/DAA9Kb0XPmzMH27dvxhS98Qfp7f38/li9fjo8++gjA4GqQlpYWlJaWKuJ/tjl16hQWLFgg/bupqQm33nprFj0iCIIgCIIgCIIgCIIgCIIgRpLNZ7lUGiuDPPTQQ1i4cOGwn9dee036+9GjR0f9feHChejq6hrT5l/+8hdcddVVAIDW1lYsXLgQDz74IP7u7/4OS5cuxbXXXitNgphMJrz99tu6mQQhBmsBnjlzRqoTqGV405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHZn0SSv5Rwl7PMWaJkIySHNzM06cODHsp6enR/p7IBAY9fcTJ05IG8wkY9asWdizZw8WLlwIYHDDm3379uGNN97Ajh07pPri5eXl2LZt27B9RQjtEwwGpVqhWoc3LZn2R832lLSthC05NnjrJ7mOXuLBmw7KP+rZo/yjH/QUD960UA5Sz1a6NnjrI7mOnuLBmxbKP+rZojGQftBLPHjUkUmftJJ/lLDHU6ypNFYGmTNnDi5fvjzpz126dAlz5swZ95hIJIJNmzZh48aNOHXqFHp6elBaWorrr78e3/3ud/GTn/wEV1xxRZqe8wuVxiIIgiAIgiAIgiAIgiAIguCfbD7LNWWkFQLAYOkqtTCbzfjRj36EH/3oR6q1QRAEQRAEQRAEQRAEQRAEQRBag0pjEbrAYrHAZrMBAGKxGNxuNxKLnbxer1ReLBQKIRAIAABEUYTb7ZZseDweqV5dMBiUlmxFo1F4PB7pOLfbDVEUAQyWMwuFQgAGV+V4vV4AgyXK3G43YrEYAMDv90MQBABAOByGz+cDAMTjcbjdbsTjcQCAz+dDOBwGAAiCAL/fP64mt9uNVatWSfvIaFlTe3s7Vq1aBbfbzUWcenp6JH/kxgmYuO85nU6sWrUK3d3dimtKaOnp6eEiTm1tbZKNyWpK9PlEWUElz6dU4qSV8ylTmnp7e6VYallTV1eXpIOHOPX19Un+KBGnTOaIkZoS321fX58ifc/hcGDVqlXo7e1NK05D808uX3P1kPf6+/uxatUquFwuzWvq7OzEqlWr0N/fz0Wchp4nmeh7iXOrra1NcU1DbfMQp3THewkd7e3tUpwoR2RPUyIefX19mtckZ1yuhqZM3xMqmSNGanK5XNJ5y0Oc5Iz39HTN1UPe6+jokPqDljXJGZerpUnuvUa2csRITYn7ya6uLkX63sDAAFatWoWOjg5F7wmzAU2EELpg0aJFePjhhwEATqcTdrtdOjmrqqrQ3NwMAKirq0NNTQ2AwYuH3W6XbKxduxYtLS0AgNraWtTW1gIAWlpasHbtWuk4u92Ojo4OAEBNTQ3q6uoADO4BU1VVBWAwcdjtdjidTgBAdXU16uvrAQANDQ3YsGEDgMHkYLfbpWS0YcMGNDQ0AADq6+tRXV09riabzYb58+dLPmhZ05YtW3D//ffDZrNxEaeWlhaUlZXBZrPJjhMwcd/r7e3FihUrUF9fr7imU6dOYcWKFWhpaeEiTn/5y1+wYsUK2Gy2SWuy2WyYPn06Tp06BUDZ8ymVOGnlfMqUpvb2dhQWFsJms2laU11dHebPnw+bzcZFnBID2cQEv9p9T8kcMVJTXV0dVqxYAY/Ho0jf+/zzz7FixQq0t7enFad169bhe9/7Hmw2W05fc/WQ9xI3dfn5+ZrXVFtbixUrViAUCnERp3Xr1mHJkiWw2WwZ6Xs2mw3f/OY3sW7dOsU12Ww2LF++HOvWreMiTumO92w2G+6//35s2bJFihPliOxpSlyfE9drLWuSMy5XQ1Om7wmVzBEjNeXn52PFihXYsmULF3GSM97T0zVXD3mvpqYGd999N2w2m6Y1yRmXq6VJ7r1GtnLESE0ejwcrVqyQ7sfkxMlutyMej2PFihWoqalR9J4wKzCC0DBNTU0MALNYLMxms7GmpiYmiiJzuVwsHo8zxhjzeDwsHA4zxhgLBoPM7/czxhiLRqPM5XJJttxuN4tEIowxxgKBAAsEAowxxiKRCHO73dJxLpeLRaNRxhhjfr+fBYNBxhhj4XCYeTwexhhj8XicuVwuJooiY4wxn8/HQqEQY4wxQRCY1+tljDEWi8WYy+VisViMMcaY1+tlgiAwxhgLhULM5/MxxhhpIk2kiTSRJtJEmkgTaSJNpIk0kSbSRJpIE2kiTaSJNGlaU+JZbuKnqamJZQqaCCE0TTZPHh7w+/1s48aNUlLRMrxpybQ/aranpG0lbMmxwVs/yXX0Eg/edFD+Uc8e5R/9oKd48KaFcpB6ttK1wVsfyXX0FA/etFD+Uc8WjYH0g17iwaOOTPqklfyjhL2Rn8/ms1wqjUUQGsZoNKK0tBRGo/ZPZd60ZNofNdtT0rYStuTY4K2f5Dp6iQdvOij/qGeP8o9+0FM8eNNCOUg9W+na4K2P5Dp6igdvWij/qGeLxkD6QS/x4FFHJn3SSv5Rwh5PsTYw9t87mRCEBjl16hQWLFgg/bupqQm33nprFj0iCIIgCIIgCIIgCIIgCIIgRpLNZ7nZn4ohCCJtIpEIjh8/jkgkkm1XZMOblkz7o2Z7StpWwpYcG7z1k1xHL/HgTQflH/XsUf7RD3qKB29aKAepZytdG7z1kVxHT/HgTQvlH/Vs0RhIP+glHjzqyKRPWsk/StjjKdY0EUIQGkYQBOzbtw+CIGTbFdnwpiXT/qjZnpK2lbAlxwZv/STX0Us8eNNB+Uc9e5R/9IOe4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQG0g96iQePOjLpk1byjxL2eIo1lcYiNA2VxiIIgiAIgiAIgiAIgiAIguAfKo1FEDKxWCyw2WwAgFgsBrfbjcQcn9frlZZfhUIhBAIBAIAoinC73ZINj8eDaDQKAAgGgwgGgwCAaDQKj8cjHed2uyGKIgAgEAggFAoBGFzq5fV6AQCMMbjdbsRiMQCA3++XZj7D4TB8Ph8AIB6Pw+12Ix6PAwB8Ph/C4TCAwRlTv98/ribGGFwul3ScljV5PB54vV4wxriIkyAIcDqdYIzJjhMwcd+LRCIQBAGBQEBxTaFQCIIgQBAELuLkdrshCILk62Q0McbQ19cnHafk+ZRKnLRyPmVKUzgcRm9vLxhjmtbk9/vhcrnAGOMiTtFoFD09PcPOOzX7npI5YqSmxHeWOPflxCmRHwVBQDgcTitOLpcLwWAQjLGcvubqIe+Jooienh7pOC1r8vl8EARB8jXbcXK5XAgEAmCMZaTvJdpxuVyKa0qMV1wuFxdxSne8xxiD1+uVjqMckV1NjDH09PRIx2lZk5xxuRqaMn1PqGSOGKkpHo9DEATp3M92nOSM9/R0zdVD3ktcDxhjmtYkZ1yulia59xrZyhEjNUWjUalNJfpeLBaDIAjwer2K3hNmA5oIIXTBokWL8PDDDwMAnE4n7Ha7dHJWVVWhubkZAFBXV4eamhoAQEdHB+x2u2Rj7dq1aGlpAQDU1taitrYWANDS0oK1a9dKx9ntdnR0dAAAampqUFdXBwBobm5GVVUVgMHEYbfb4XQ6AQDV1dWor68HADQ0NGDDhg0ABpOD3W6XktGGDRvQ0NAAAKivr0d1dfW4mjweD1599VVs3bpV85reeOMN/P73v4fH4+EiTp9++in++Mc/SoNxOXECJu57jY2NWLNmDd5//33FNdXV1WHNmjX49NNPuYnTmjVr4PF4Jq3J4/HgD3/4g3SckudTKnHSyvmUKU3Hjh3D2rVr4fF4NK1p69atePXVV+HxeLiI09mzZ/Haa69JA1q1+56SOWKkpq1bt2LNmjU4e/asIn3vo48+wpo1a3Ds2LG04vTqq6/it7/9LTweT05fc/WQ9y5duoTXXntNsqdlTZs3b8aaNWtw6dIlLuL06quv4l//9V/h8Xgy0vc8Hg/+3//7f3j11VcV1+TxePDyyy/j1Vdf5SJO6Y73PB4Pfv/73+ONN96Q4kQ5InuaPB4PXnvtNZw9e1YXmtIdl6uhKdP3hErmiJGanE4n1qxZgzfeeIOLOMkZ7+npmquHvPfWW2/hlVdegcfj0bQmOeNytTTJvdfIZo4Yquns2bNYs2YNtm7dqkjf6+zsxJo1a/DWW28pek+YFRhBaJimpiYGgFksFmaz2VhTUxMTRZG5XC4Wj8cZY4x5PB4WDocZY4wFg0Hm9/sZY4xFo1HmcrkkW263m0UiEcYYY4FAgAUCAcYYY5FIhLndbuk4l8vFotEoY4wxv9/PgsEgY4yxcDjMPB4PY4yxeDzOXC4XE0WRMcaYz+djoVCIMcaYIAjM6/UyxhiLxWLM5XKxWCzGGGPM6/UyQRAYY4yFQiHm8/kYY2xMTaIoskuXLkntalnTwMAAa2trY6IochGnQCDALly4wERRlB0nxibue6FQiHV3dzOv16u4Jr/fz7q7u1kgEOAiTv39/ay7u1uyPRlNoiiylpYWqV0lz6dU4qSV8ylTmoLBIDt//jwTRVHTmjweD7t06RITRZGLOAmCwM6dOye1q3bfUzJHjNTk8XhYd3c3EwRBkb7n8/lYd3e3ZHuycerr62OdnZ1MFMWcvubqIe+Fw2F27ty5YeexVjW53W7W3d3NwuEwF3Hq6+tjHR0dTBTFjPQ9URRZe3s76+vrU1yTKIqsq6uL9fX1cRGndMd7oiiytrY2NjAwIMWJckT2NImiyM6dOye1q2VNcsblamjK9D2hkjlipKZoNMq6u7vZwMAAF3GSM97T0zVXD3nP5XKxy5cvM1EUNa1JzrhcLU1y7zWylSNGahIEgXV3dzOPx6NI34tEIqy7u1uyPdk4jbwnTDzLTfw0NTWxTEF7hBCahvYIIQiCIAiCIAiCIAiCIAiC4B/aI4QgiLTw+/148803pbp8WoY3LZn2R832lLSthC05NnjrJ7mOXuLBmw7KP+rZo/yjH/QUD960UA5Sz1a6NnjrI7mOnuLBmxbKP+rZojGQftBLPHjUkUmftJJ/lLDHU6xpIoQgNIzJZMKcOXNgMpmy7YpseNOSaX/UbE9J20rYkmODt36S6+glHrzpoPyjnj3KP/pBT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA+kHvcSDRx2Z9Ekr+UcJezzFmkpjEZqGSmMRBEEQBEEQBEEQBEEQBEHwD5XGIggiLcLhMOrr6xEOh7Ptimx405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHZn0SSv5Rwl7PMWaJkIIQsNEIhEcP34ckUgk267IhjctmfZHzfaUtK2ELTk2eOsnuY5e4sGbDso/6tmj/KMf9BQP3rRQDlLPVro2eOsjuY6e4sGbFso/6tmiMZB+0Es8eNSRSZ+0kn+UsMdTrKk0FqFpqDQWQRAEQRAEQRAEQRAEQRAE/1BpLIIg0iIej8PtdiMej2fbFdnwpiXT/qjZnpK2lbAlxwZv/STX0Us8eNNB+Uc9e5R/9IOe4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQG0g96iQePOpTwKRKJpPR5reQfJezxFGuaCCF0gcVigc1mAwDEYjG43W4kFjt5vV5p+VUoFEIgEAAAiKIIt9st2fB4PIhGowCAYDCIYDAIAIhGo/B4PNJxbrcboigCAAKBAEKhEIDBZOf1egEAjDG43W7EYjEAgN/vhyAIAAZr4/l8PgCjk4HP55Nq5gmCAL/fP64mr9cLu90Oh8OheU2dnZ2w2+3wer1cxMnpdEr+yI0TMHHf6+/vh91uR09Pj+KaElqcTicXcero6JBsTFZTos87nU4Ayp5PqcRJK+dTpjT19fVJsdSyJofDIengIU4DAwOSP0rEKZM5YqSmxHc7MDCgSN/r7e2F3W5HX19fWnEamn9y+Zqrh7zncrlgt9slP7Ssqbu7G3a7HS6Xi4s4DT1PMtH3EudWR0eH4pqG2uYhTumO9xI6Ojs7pThRjsiepkQ8BgYGNK9JzrhcDU2ZvidUMkeM1OTxeKTzloc4yRnv6emaq4e819XVJfUHLWuSMy5XS5Ocew2fz4e6ujocPHgQBw4cQGNjo3RcQlMgEMDFixfR1NQkxVGJHDFSU+J+0uFwKNL33G437HY7urq6FL0nzAY0EULogkWLFuHhhx8G8D8PsBMnZ1VVFZqbmwEAdXV1qKmpAQAp6SZYu3YtWlpaAAC1tbWora0FALS0tGDt2rXScUNv1GpqalBXVwcAaG5uRlVVFYDBxDH0YW11dTXq6+sBAA0NDdiwYQOA/xlEJ5LRhg0b0NDQAACor69HdXX1uJqKi4uxcOFCyQcta9qyZQv+6q/+CsXFxVzE6eLFi7jiiitQXFwsO07AxH3P6XTiqaeeQn19veKampub8dRTT+HixYtcxOkvf/kLnnrqKRQXF09aU3FxMa6++mrpe1XyfEolTlo5nzKlqbOzE0VFRSguLta0prq6OixcuBDFxcVcxClhp7i4WJE4ZTJHjNRUV1eHp556SrInJ041NTVoaGjAU089hc7OzrTitG7dOvzkJz9BcXFxTl9z9ZD3EloKCgo0r+mjjz7CU089JdnLdpzWrVuHH/zgByguLs5I3ysuLsb3vvc9rFu3TnFNxcXF+PnPf45169ZxEad0x3vFxcX4q7/6K2zZskWKE+WI7GlKXJ8TPmhZk5xxuRqaMn1PqGSOGKmpoKAATz31FLZs2cJFnOSM9/R0zdVD3nvvvffwwAMPoLi4WNOa5IzL1dKU7r1GPB7HZ599hn379iEcDiMej+PDDz/Evn37JE2bNm3CsWPH0NzcjC1btuD06dN4/PHHFckRIzV5vV489dRT0v2YnDglfHjqqafw3nvvKXpPmBUYQWiYpqYmBoBZLBZms9lYU1MTE0WRuVwuFo/HGWOMeTweFg6HGWOMBYNB5vf7GWOMRaNR5nK5JFtut5tFIhHGGGOBQIAFAgHGGGORSIS53W7pOJfLxaLRKGOMMb/fz4LBIGOMsXA4zDweD2OMsXg8zlwuFxNFkTHGmM/nY6FQiDHGmCAIzOv1MsYYi8VizOVysVgsxhhjzOv1MkEQGGOMhUIh5vP5GGOMNJEm0kSaSBNpIk2kiTSRJtJEmkgTaSJNpIk0kSbSxJmm/v5+tmfPHrZz5062Z88etnfvXrZr1y526NAhSdP+/fvZ3r172e7du6XjDh06xNxuN5ea1IxT4llu4qepqYllCpoIITRNNk8eHvB6vWzt2rVSktIyvGnJtD9qtqekbSVsybHBWz/JdfQSD950UP5Rzx7lH/2gp3jwpoVykHq20rXBWx/JdfQUD960UP5RzxaNgfSDXuLBo450fWpoaGB79+5N+sPY4KTByN/v2rWL/fa3v2VdXV3c6FDL3sjPZ/NZLpXGIggNYzabsXDhQpjN5my7IhvetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8eBRh1o+Jfb2GEpeXh5mzJihaDsJ9HQPpjQGxv57JxOC0CCnTp3CggULpH83NTXh1ltvzaJHBEEQBEEQBEEQBEEQBEHkAocOHZI2Bx9JRUUFfD4fjh07lvTvt912G6ZNm6ame9yRzWe5tCKEIDSMIAjYt28fBEHItiuy4U1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnWk69NYkyDjIYoiWltbpQ3GlURP92BKQxMhBKFhEolTFMVsuyIb3rRk2h8121PSthK25NjgrZ/kOnqJB286KP+oZ4/yj37QUzx400I5SD1b6drgrY/kOnqKB29aKP+oZ4vGQPpBL/HgUUc6PsVisbTaisfjcLvd3OcfJezxFGsqjUVoGiqNRRAEQRAEQRAEQRAEQRBEpgmHw/j000/H/DuVxhoNlcYiCCItYrEYHA5H2jPQPMGblkz7o2Z7StpWwpYcG7z1k1xHL/HgTQflH/XsUf7RD3qKB29aKAepZytdG7z1kVxHT/HgTQvlH/Vs0RhIP+glHjzqyKRP8Xgcfr+f+/yjhD2eYk0TIQShYXw+H15//XX4fL5suyIb3rRk2h8121PSthK25NjgrZ/kOnqJB286KP+oZ4/yj37QUzx400I5SD1b6drgrY/kOnqKB29aKP+oZ4vGQPpBL/HgUUcmfYpEIjh27BguXLgApYs16ekeTGmoNBahaXK9NBZjDOFwGAUFBTAYDNl2Rxa8acm0P2q2p6RtJWzJscFbP8l19BIP3nRQ/lHPHuUf/aCnePCmhXKQerbStcFbH8l19BQP3rRQ/lHPFo2B9INe4sGjjnR8Src0FmMMsVgMeXl5mD59OubPn6/Y98D7PVg2n+WaMtIKQRCqYDAYYLFYsu2GIvCmJdP+qNmekraVsCXHBm/9JNfRSzx400H5Rz17lH/0g57iwZsWykHq2UrXBm99JNfRUzx400L5Rz1bNAbSD3qJB486MumTwWCAyTT4WL63txdz5syB1WpVzLZe7sGUhkpjEbrAYrHAZrMBGKw953a7paVlXq8XkUgEABAKhRAIBAAAoijC7XZLNjweD6LRKAAgGAwiGAwCAKLRKDwej3Sc2+2GKIoAgEAggFAoBGBwWZvX6wUwONvpdrul+nd+vx+CIAAYnC1OLAeLx+Nwu92Ix+MABpeLhcNhAIAgCPD7/eNq8nq9+N3vfgeHw6F5TZ2dnfj9738Pr9fLRZycTid+97vfwev1yo4TMHHf6+/vxyuvvIKenh7FNfX29uKVV16B0+nkIk4dHR145ZVX4PV6J60p0ed7e3sBKHs+pRInrZxPmdLU19cnnSda1uRwOCQdPMRpYGBA8keJOGUyR4zU5HA48Morr2BgYECRvpfwta+vL604tbe3Szksl6+5esh7LpcLv/vd7yQ/tKypu7sbr7zyClwuFxdxGnqeZKLveb1e/P73v0d7e7vimoba5iFO6Y73Ejo6OzulOFGOyJ6mxPVgYGBA85rkjMvV0JTpe0Ilc8RITR6PB6+88go6Ozu5iJOc8Z6errl6yHtdXV3SeaJlTXLG5WppknOvwRiDIAiSr+FwWLItCILkdzwehyAIEAQB9fX18Hq9iMViaGtrU0zTwMAAXnnlFTgcDkX6ntvtxiuvvIKuri5F7wmzAU2EELpg0aJFePjhhwEMPsC22+3SyVlVVYXm5mYAQF1dHWpqagAAHR0dsNvtko21a9eipaUFAFBbW4va2loAQEtLC9auXSsdZ7fb0dHRAQCoqalBXV0dAKC5uRlVVVUABhOH3W6H0+kEAFRXV6O+vh4A0NDQgA0bNgAYTA52u11KRhs2bEBDQwMAoL6+HtXV1eNqslgsKC8vx549ezSv6Z133sHcuXNhsVi4iNPZs2elWWu5cQIm7nvd3d2oqKjAwYMHFdfU2NiIiooKnD17los4rV+/HhUVFbBYLJPWZLFYYDab0djYCEDZ8ymVOGnlfMqUptbWVoiiCIvFomlNe/bsQXl5OSwWCxdx6u/vh8/nk96aUbvvKZkjRmras2cPKioq0N/fr0jfO3LkCCoqKtDa2ppWnKqqqnDPPffAYrHk9DVXD3nP7/fD5/NJy/O1rGnXrl2oqKiA3+/nIk5VVVX44he/CIvFkpG+Z7FYcNttt0k+KKnJYrHgy1/+MqqqqriIU7rjPYvFgrlz5+Kdd96R4kQ5InuaLBYLfD4f+vv7Na9JzrhcDU2ZvidUMkeM1GQwGFBRUYF33nmHizjJGe/p6Zqrh7y3fft2XHvttbBYLJrWJGdcrpamdO41hl6bDx8+LPna2NgovUB19OhRye9gMIjDhw/DYDBgzpw5aG5uhtPpRCgUUkxTf38/KioqsGfPHkX6XiQSQUVFBbZv367oPWFWYAShYZqamhgAZrFYmM1mY01NTUwUReZyuVg8HmeMMebxeFg4HGaMMRYMBpnf72eMMRaNRpnL5ZJsud1uFolEGGOMBQIBFggEGGOMRSIR5na7peNcLheLRqOMMcb8fj8LBoOMMcbC4TDzeDyMMcbi8ThzuVxMFEXGGGM+n4+FQiHGGGOCIDCv18sYYywWizGXy8VisRhjjDGv18sEQWCMMRYKhZjP52OMMdJEmkgTaSJNpIk0kSbSRJpIE2kiTaSJNJEm0kSaSJOKmkRRZN3d3czhcLB4PD6hJqfTyfbu3cv27NnDdu7cyfbs2cP27t3Ldu3axT766CMmiiL76KOP2Icffsj27t3Ldu/ePeq4jz/+mH3++ec5E6fEs9zET1NTE8sUtFk6oWlyfbP0xIzx4sWLMWXKlGy7IwvetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8eBRR1dXF3bu3Ilrr70W+fn5mDp1Km699Vbk5eWN+ZnwBJulT58+HT09PaN+H41GcfnyZcyePRv5+fkoKSnBHXfcoYgO3u/Bsvksl0pjEYSGGVkrUsvwpiXT/qjZnpK2lbAlxwZv/STX0Us8eNNB+Uc9e5R/9IOe4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQG0g96iQdvOkRRRHNzM0KhkLTXxcDAAC5fvizLbrJJEGD0niJKoqd7MKWhFSGEpsn1FSEEQRAEQRAEQRAEQRAEQaSPw+HAmTNnkv6toqJizM9NtCIkVZRcEcI7tCKEIIi0EEVR2qxY6/CmJdP+qNmekraVsCXHBm/9JNfRSzx400H5Rz17lH/0g57iwZsWykHq2UrXBm99JNfRUzx400L5Rz1bNAbSD3qJB286enp6MrpyQc229HQPpjQ0EUIQGsbv9+O//uu/4Pf7s+2KbHjTkml/1GxPSdtK2JJjg7d+kuvoJR686aD8o549yj/6QU/x4E0L5SD1bKVrg7c+kuvoKR68aaH8o54tGgPpB73Eg0cdkUgEJ06cQCQS0XRberoHUxoqjUVoGiqNRRAEQRAEQRAEQRAEQRBEupw4cQIulyvp36g0lrJQaSyCIAiCIAiCIAiCIAiCIAiCIAgVoIkQgtAwHo8Hq1evhsfjybYrsuFNS6b9UbM9JW0rYUuODd76Sa6jl3jwpoPyj3r2KP/oBz3FgzctlIPUs5WuDd76SK6jp3jwpoXyj3q2aAykH/QSDx51CIKAAwcOQBAETbelp3swpaHSWISmyfXSWNFoFC0tLZg7dy7y8/Oz7Y4seNOSaX/UbE9J20rYkmODt36S6+glHrzpoPyjnj3KP/pBT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA+kHvcRDbR0+nw8ejwdTpkxBWVkZjMbx1wKcOHECfX19cLlcKCsrQ15envQ3NUpjxWKxYW0pWRqL93uwbD7LpYkQQtPk+kQIQRAEQRAEQRAEQRAEQRCDtLa2orW1Vfp3SUkJbrvtNphMpjE/Q3uEZA7aI4QgiLQIBoPYtm0bgsFgtl2RDW9aMu2Pmu0paVsJW3Js8NZPch29xIM3HZR/1LNH+Uc/6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9oJd4qKUjEAgMmwQBBkszdXZ2Sn/v6uqC2+1GPB4fdlw0GsWZM2cQjUZTaisajaKvry8tPyfb1mTQ0z2Y0ow9FUYQBEEQBEEQBEEQBEEQBEEQGiAx4TGSS5cuDfsvAJSVlWHBggXDymClSm9vL06fPg0qtKQtaEUIoQssFgtsNhuAwTp7brdbSkZerxeRSAQAEAqFEAgEAACiKMLtdks2PB6PNBMbDAalmcpoNDpsQx+32w1RFAEMziSHQiEAQCQSgdfrBQAwxuB2uxGLxQAAfr9f2gApHA7D5/MBAOLx+LBZaJ/Ph3A4DGBw4yS/3z+uJqvVim9+85vS77WsSRRFPPTQQ7BarVzEKS8vD1/72tdgtVplxwmYuO/l5+ejsrJS0qWkJqPRiMrKSuTl5XERp2g0isrKSlit1klrslqt+PrXvy7V91TyfEolTlo5nzKlyWQy4atf/SqsVqumNTHG8M1vfhNWq5WLOJnNZlRUVMBqtSoSp0zmiJGaGGOorKyE2WxWpO8ZDAZUVlbCZDKlFadIJILvfOc7sFqtOX3N1UPeKygoQEVFBaZMmaJ5TfF4HJWVlSgoKOAiTpFIBEuWLIHVas1I37Narfibv/kb6fdKarJarVi6dCkikQgXcUp3vGe1WvHQQw8Nu25RjsieJqvVioqKCpjNZs1rkjMuV0NTpu8JlcwRIzVNmTIFlZWVEEWRizjJGe/p6Zqrh7wXi8Xw13/917BarZrWJGdcPp6m3t5eCIIg+ZA4hwDgwoULwzYn7+7uxuXLlyX/AGDevHkwGo3Sv5Np8nq9OH36NKLR6LDjBEGQfA2Hw9L3NTQPxONxCIIAk8mEefPmIR6PS7aVipPZbEZlZSUYY4r0PYvFgsrKSsRiMUXvCbMBTYQQumDRokV4+OGHAQBOpxN2u106OauqqtDc3AwAqKurQ01NDQCgo6MDdrtdsrF27Vq0tLQAAGpra1FbWwsAaGlpwdq1a6Xj7HY7Ojo6AAA1NTWoq6sDADQ3N6OqqgrAYOKw2+1wOp0AgOrqatTX1wMAGhoasGHDBgCDycFut0vJaMOGDWhoaAAA1NfXo7q6elxN0WgUW7duxY4dO3Shaffu3YhGo1zE6ejRo6iqqkI0GpUdJ2Divnf27FmcOXMGu3btUlzTwYMHcebMGRw9epSbOCWWgE5WUzQaxZ///GccPHgQgLLnUypx0tL5lAlNjY2NeP3116UBoFY17dixA1u3bkU0GuUiTq2trbDb7dJAV+2+p3SOGKppx44dOHPmjKRJTpxqamqwd+9enDlzBo2NjWnHqaGhAdFoNOevuVrPe93d3bDb7dINmJY1vfPOOzhz5oykiYc4ffbZZ4hGoxnpe9FoFIcOHVJFUzQaRWNjIzdxSne8F41GsXv3bsoRnGhKjGETpVe0rindcblamjJ5T6hkjhipye/348yZM9zESc54T0/XXD3kvfXr12PXrl2IRqOa15TuuHwiTUePHpX2+2hpaZH0uVwuHD16VDru8OHDOHnypORfa2sr+vr60NPTI/kTi8VGadq7dy8YY3A4HGhsbJS0Hz58WPK1sbERDodD8i/hdzAYxOHDhxGJRNDX14eGhgbJtlJxam1txZkzZ7Bjxw5F4tTf348zZ85g/fr1it4TZgVGEBqmqamJAWAWi4XZbDbW1NTERFFkLpeLxeNxxhhjHo+HhcNhxhhjwWCQ+f1+xhhj0WiUuVwuyZbb7WaRSIQxxlggEGCBQIAxxlgkEmFut1s6zuVysWg0yhhjzO/3s2AwyBhjLBwOM4/HwxhjLB6PM5fLxURRZIwx5vP5WCgUYowxJggC83q9jDHGYrEYc7lcLBaLMcYY83q9TBAExhhjoVCI+Xw+xhgbU5Pb7Wa/+c1vWFdXl+Y1tbe3s9/85jfM7XZzEaeenh7JH7lxYmzivud0OtlLL73Euru7FdfkcDjYSy+9xHp6eriIU1tbG3vppZeY2+2etKZEn3c4HIwxZc+nVOKklfMpU5p6e3ul/qBlTV1dXZIOHuLU19cn+aNEnDKZI0Zq6urqYi+99BLr6+tTpO8lfO3t7U0rTpcvX5a+21y+5uoh7/X397Pf/OY3kr9a1tTZ2cleeukl1t/fz0Wchp4nmeh7iXPr8uXLimsaapuHOKU73kvoaG9vl+JEOSJ7mhLx6Ovr07wmOeNyNTRl+p5QyRwxUpPL5WIvvfQSa29v5yJOcsZ7errm6iHvdXR0SOeJljXJGZePp+mTTz5hO3fuZB9//DHbu3cvq62tZbW1tWzv3r3s448/Zjt37mR79+5le/fuZTt37mS7d+9mjDF2+PBhVlNTw/7lX/6Fvffee2zXrl1s7969bM+ePaM0HThwgO3du5d99NFHw47buXMn27NnD9u7dy/btWsX++ijj6TjPvzwQ7Z37162e/dutnPnTvbBBx+wf/mXf2Hbtm1jH3/8Mfv8888Vi1NfXx976aWXWFdXlyJ9b2BggL300kuso6NDkXvCxLPcxE9TUxPLFAbGqJgZoV1OnTqFBQsWSP9uamrCrbfemkWPCIIgCIIgCIIgCIIgCIJQC/bfKzISpZumT58Oq9WKAwcOSCWpUqWiogInTpyQVpEk+3uC/v5+aRWIkpSUlOCOO+5Q3C6PZPNZLm2WThAEQRAEQRAEQRAEQRAEQXAPYwxnzpxBT0+P9Luuri4sXLgwrc3LE/uvTERbWxsuXrw4afupMNnJGyI9aI8QgtAwbrcbq1atyvpmQ0rAm5ZM+6Nme0raVsKWHBu89ZNcRy/x4E0H5R/17FH+0Q96igdvWigHqWcrXRu89ZFcR0/x4E0L5R/1bNEYSD/oJR4jdTDG0NPTg+bmZpw7d27YBuAjCQaDwyZBgMH9m86fPy9tAD4Z2traAAxuAF5XVzdsQ3UAuHjxImKxGC5dujRp22MxVltKoKd7MKWh0liEpsn10liiKKKjowOzZs2CyaTtBV68acm0P2q2p6RtJWzJscFbP8l19BIP3nRQ/lHPHuUf/aCnePCmhXKQerbStcFbH8l19BQP3rRQ/lHPFo2B9INe4jFSx6VLl3D58mXp7waDAQsWLMC0adNGffbMmTPSRuRKkJeXh+LiYvT398Pr9aK4uBhG4/C1AzabDX6/X7E24/H4sLYKCwtx9913K2Kb93uwbD7LpYkQQtPk+kQIQRAEQRAEQRAEQRAEQWiVWCyGAwcOjCprNda+GUePHlV0UiLR1nirUNRGyYkQ3snms1wqjUUQGiYQCGDTpk0IBALZdkU2vGnJtD9qtqekbSVsybHBWz/JdfQSD950UP5Rzx7lH/2gp3jwpoVykHq20rXBWx/JdfQUD960UP5RzxaNgfSDXuIxVEdvb2/SvT0yOTHh8XgQiUTQ1NSESCSientqtqWnezCloYkQgtAwRqMRpaWlo5bsaRHetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8RiqIxwOZ9sdAIPluCwWCwwGQ8bbUnKSQE/3YEpDpbEITUOlsQiCIAiCIAiCIAiCIAhCm7S2tqK1tTXp3yoqKkb9To3SWDyQTKseodJYBEGkRSQSwfHjxzOybE9teNOSaX/UbE9J20rYkmODt36S6+glHrzpoPyjnj3KP/pBT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA+kHvcSDRx2xWAwOhwOxWEzTbenpHkxpaCKEIDSMIAjYt28fBEHItiuy4U1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnWIoojW1laIoqjptvR0D6Y0VBqL0DRUGosgCIIgCIIgCIIgCIIgtAmVxhqESmOpD60IIQgNwxiDIAjQw3wmb1oy7Y+a7SlpWwlbcmzw1k9yHb3EgzcdlH/Us0f5Rz/oKR68aaEcpJ6tdG3w1kdyHT3FgzctlH/Us0VjIP2gl3jwqIMxBlEUM+KTmm3p6R5MaWgihCA0jMfjwZo1a+DxeLLtimx405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHeFwGAcPHkQ4HNZ0W3q6B1MaKo1FaJpcL40Vi8XgdDpRXl6OvLy8bLsjC960ZNofNdtT0rYStuTY4K2f5Dp6iQdvOij/qGeP8o9+0FM8eNNCOUg9W+na4K2P5Dp6igdvWij/qGeLxkD6QS/xGKqjvb2di9JY8XgcwWAQVqsVRqO6aweStaVUaSze78Gy+SyXJkIITZPrEyEEQRAEQRAEQRAEQRAEoVVoj5BBaI8Q9aHSWAShYfx+P958801dXAB405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xENun1SDSCSC48ePIxKJqGI/U23p6R5MaWgihCA0jMlkwpw5c2AymbLtimx405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHUajEaWlpaqXxVK7LT3dgykNTYQQusBiscBmswEYrD3ndruRqPrm9XqlGdZQKIRAIAAAEEURbrdbsuHxeBCNRgEAwWAQwWAQABCNRodt6ON2uyGKIgAgEAggFAoBGJzN9Xq9AADGGNxuN2KxGIDB2U9BEAAMbojk8/kADNYEdLvdiMfjAACfzydtlCQIgjRbOpYmi8WCe+65R2pHy5oikQjuu+8+WCwWLuJkMBhw5513wmKxyI4TMHHfy8vLQ0VFhVQnUklNwOASS4PBwEWcwuEwKioqYLFYJq3JYrHgrrvuktpR8nxKJU5aOZ8ypcloNOKLX/wiLBaLpjXFYjHcc889sFgsXMTJZDJh4cKFsFgsisQpkzlipKZYLIaKigqYTCZF+h5jDBUVFTAajWnFSRAEPPDAA7BYLDl9zdVD3svPz8fChQtRUFCgeU2iKKKiogL5+flcxEkQBHzlK1+BxWLJSN+zWCz48pe/LLWjpCaLxYLFixdDEAQu4pTueM9iseC+++6T2qEckV1NFosFCxculB7oaFmTnHG5GpoyfU+oZI4YqamgoAAVFRWIRCJcxAlIf7ynp2uuHvJeNBrFvffeC4vFwo2mjo4OnDx5EocOHcJnn30m+ZTquDwYDEq2RVGU/E5oT6YpGo0OO27oOGLoOR2NRiV9sVhs1HGJ7zUSiYAxhjlz5sBgMEj9JjE2GnrcUF9HHpfwNRwOj6lJEATk5eVhzpw5iMVikq9KxclkMqGiogKxWEyRvmc2m1FRUSHlo8R3J/eeMBvQRAihCxYtWoSHH34YAOB0OmG326WTs6qqCs3NzQCAuro61NTUAAA6Ojpgt9slG2vXrkVLSwsAoLa2FrW1tQCAlpYWrF27VjrObrejo6MDAFBTU4O6ujoAQHNzM6qqqgAMJg673Q6n0wkAqK6uRn19PQCgoaEBGzZsADCYHOx2u5SMNmzYgIaGBgBAfX09qqurx9UUDoexadMmbN++XfOa3njjDdTU1CAcDnMRpyNHjuBPf/oTwuGw7DgBE/e9M2fOoL6+Hjt37lRc04EDB1BfX48jR45wE6f6+nrJ18loCofDqKqqwoEDBwAoez6lEietnE+Z0nTixAmsXbsW4XBY05q2b9+OTZs2IRwOcxGnixcvDjtO7b6nZI4YqWn79u2or6+XNMmJU01NDfbs2YP6+nqcOHEi7TjV1dUhHA7n9DVXD3mvs7Nz2HFa1vT222+jvr5e0sRDnHbv3o1wOJyRvhcOh1FbW6uKpnA4jAMHDnATp3THe+FwGDU1NXjjjTeGxYlyRHY0JXy9ePGiLjSlOy5XQ1Om7wmVzBEjNXm9XtTX1+ONN97gIk5yxnt6uubqIe+tX78eW7duRTgc5kLT559/jg0bNmBgYADBYBA7d+7EwYMHEY1GUx6Xf/zxx3A4HJJ/Cb+DweCYmi5fvoxz585J9g4fPiz5evToUbhcLklHQp/L5cLRo0el4w4fPix9r+fOncOlS5fQ0dEBh8Mh9ZtYLIbDhw9LEw/Nzc3S9+BwONDY2CjF8/Dhw5KvjY2NY2pKHNfR0YGGhgapDygVp4sXL6K+vh7bt29XpO85nU7U19dj/fr1it4TZgPaLJ3QNIkNdiwWC0wmE+rr6zFv3jz4fD6UlJTAYDBIb3qYzWaEQiHE43EUFhZCFEX4/X6UlpYCGJxdtVqtyM/PlxKc1WpFNBpFMBhESUkJgMHZVZvNBpPJhEAgAKPRiClTpiASiUAQBBQXF4MxBo/Hg6KiIuTl5cHv98NkMsFisSAcDiMSiaCoqAjxeBxerxfFxcUwGo3w+Xwwm80oKCiQ3jyz2WyIxWJJNYXDYbz11lv43ve+h+nTp2taU1dXF7Zt24bHH38cJpMp63Hq6+vD5s2b8aMf/QiFhYWy4pRK34vFYnj77bfx3e9+FzabTVFNoVAIW7ZswcMPP4yCgoKsx6m3txc1NTV47LHHEIvFJqUpGAziz3/+M77//e+jvLxc0fNJjzlCbU39/f3YtGkTfvSjH8Fms2lWU09PD7Zs2YLHH39c8iObcXK5XPjLX/6CH/3oRygqKlK97ymZI0Zq8nq92Lp1Kx599FEYDAbZfS8QCODdd9/FI488gvz8/EnHqaurCzU1NfjhD38IADl7zdVD3nO73diwYQMef/xxFBcXa1qT2+3Gtm3bsGzZMgDIepw6Ozul88RgMKje9+LxONavX48lS5Zg1qxZimoyGAyS7auuuirrcUp3vCeKIt566y1UVlZi5syZlCOyrMnn8+HPf/4zfvCDH6CsrEzTmuSMy/VwT6hkjhipyWg04i9/+Qu+853v4Iorrsh6nOSM9/R0zdVD3uvu7sbWrVvx+OOPIz8/P+uazp49i9bWVhQUFIAxhnA4DLPZjFtvvRWFhYUpjcvb29vR1dUFk8kEURQRj8dhNpsRj8fxxS9+ESUlJRBFEV6vF0VFRTh06BCi0SgYY9JxiRXcwOBqhfz8fOTl5UmrKPLz8xGLxRCNRocdZzabYTQaEYlEEI1Gcfr0adxyyy3Iy8sbpSlxnNFolHyNxWLDjisoKJBWlOTl5SXVlFgt0dTUhJtuugmFhYXIy8vDPffco0icGGPYvHkz/vZv/xbFxcWy+57BYMDGjRuxdOlSTJ06VfY9YWdnZ9Y2S6eJEELTJCZCEmTy5CEIgiAIgiAIgiAIgiCIXGXfvn1Jf28wGLB48eKUbLS2tqK1tTXp3+6//340NTUNK/+kVyoqKrLtQkbI5rNcKo1FEBpmZK1ILcOblkz7o2Z7StpWwpYcG7z1k1xHL/HgTQflH/XsUf7RD3qKB29aKAepZytdG7z1kVxHT/HgTQvlH/Vs0RhIP2glHhO9d5+qjtOnT2dsEmTkPh9abUtP92BKQxMhBKFhRtaK1DK8acm0P2q2p6RtJWzJscFbP8l19BIP3nRQ/lHPHuUf/aCnePCmhXKQerbStcFbH8l19BQP3rRQ/lHPFo2B9IOW4uF2u6V9I0YyVMfQDcxHMjAwoJZ7oxi5z4dW29LTPZjSUGksQtPkemmskbUitQxvWjLtj5rtKWlbCVtybPDWT3IdvcSDNx2Uf9SzR/lHP+gpHrxpoRyknq10bfDWR3IdPcWDNy2Uf9SzRWMg/cBbPMYqjTWUK6+8EjfffDP6+vrg9XpRWFiIK664AsFgEMXFxdi/f7/6jqbAyH0+Mt2WUqWxeL8Hy+azXJoIITRNrk+EEARBEARBEARBEARBEIRaMMbg9Xrh9Xphs9lQUlIiPRBPZSIkGTabDbfffjvy8/PTtqE3aI8Q9cn+1CFBEGnj8/nw2muvwefzZdsV2fCmJdP+qNmekraVsCXHBm/9JNfRSzx400H5Rz17lH/0g57iwZsWykHq2UrXBm99JNfRUzx400L5Rz1bNAbSD5mOB2MM586dQ0NDA1paWnDixAk0NzfL3u+hv7+fu34VDodx9OjRjJXGUqstPd2DKQ1NhBCEhjGbzVi4cCHMZnO2XZENb1oy7Y+a7SlpWwlbcmzw1k9yHb3EgzcdlH/Us0f5Rz/oKR68aaEcpJ6tdG3w1kdyHT3FgzctlH/Us0VjIP2Q6Xi4XC50d3cP+11fXx96e3tl2c3Ly0NZWRlX/SovLw8zZsxAXl6eptvS0z2Y0lBpLELTUGksgiAIgiAIgiAIgiAIglCe48ePw+12j/p9QUEB7r33XtllrSoqKqg01n9DpbHUh1aEEISGEQQB+/btgyAI2XZFNrxpybQ/aranpG0lbMmxwVs/yXX0Eg/edFD+Uc8e5R/9oKd48KaFcpB6ttK1wVsfyXX0FA/etFD+Uc8WjYH0Q6bjkWwSBIDskk6iKKK1tZWrfpXwSRRFTbelp3swpaGJEILQMJlM0mrDm5ZM+6Nme0raVsKWHBu89ZNcRy/x4E0H5R/17FH+0Q96igdvWigHqWcrXRu89ZFcR0/x4E0L5R/1bNEYSD/oJR7xeBxut5srHQmf5O5/ku229HQPpjRUGovQNFQaiyAIgiAIgiAIgiAIgiCUZ7yyVUqUtbJYLFysFOABKo2lPrQihCA0TCwWg8PhQCwWy7YrsuFNS6b9UbM9JW0rYUuODd76Sa6jl3jwpoPyj3r2KP/oBz3FgzctlIPUs5WuDd76SK6jp3jwpoXyj3q2aAykH/QSj3g8Dr/fj2AwmG1XJBI+ZWpFiFpt6ekeTGloIoQgNIzP58Prr78On8+XbVdkw5uWTPujZntK2k7Y6uvrQ2tra1o/p0+fxuuvv47Tp0/L/iy9OZJdeDtv04U3HZR/1LMn5/O89ZNcR0/x4E0L5SD1bKVrg7c+kuvoKR68aaH8o54tGgPph0zGQ80iQpFIBMeOHUMkElGtjcmSSZ/UbEtP92BKQ6WxCE2T66WxGGMIh8MoKCiAwWDItjuy4E1Lpv1Rsz0lbQcCAfz0pz/F1q1b056EMBgMKCgoQDgcnvTAauRnLRYLli5diqqqKlit1rT8IdKHt/M2XXjTQflHPXtyPs9bP8l19BQP3rRQDlLPVro2eOsjuY6e4sGbFso/6tmiMZB+yGQ8ent70dzcPObf5ZTGYowhFoshLy+Pm36VSZ+StaVUaSze78Gy+SzXlJFWCIJQBYPBAIvFkm03FIE3LZn2R832lLIdj8fx+OOPY+vWrbLsMMbSnkQZ+VlBELB582YAwKZNm2T5RUwe3s7bdOFNB+Uf9ezJ+Txv/STX0VM8eNNCOUg9W+na4K2P5Dp6igdvWij/qGeLxkD6IZPx6OzsHPfvcja/NhgMMJn4eiydSZ/UbEtP92BKQ6WxCELDeL1evPLKK/B6vdl2RTa8acm0P2q2p4TtSCSCgwcPYv/+/Xj66adRXFyctq3i4uK0bYz12e3bt1OZrCzA23mbLrzpoPyjnj05n+etn+Q6eooHb1ooB6lnK10bvPWRXEdP8eBNC+Uf9WzRGEg/qBWPnp4eNDY2orGxET09PQAAj8cz4WfSJRwOo76+HuFwOG0bSpNJn9RsS0/3YErD19QbQRCTwmKxoKKigpuZVTnwpiXT/qjZnhK2W1pa0NnZCZ/Ph3379smadBAEIW0bY31WEATU19djzpw5afs1HjNmzOCmb/IEb+dtuvCmg/KPevbkfJ63fpLr6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9kGo8GGPo6emB2+2GxWLB9OnTMWXKlKTHtre3o6WlRfp3f39/SntXnD9/fnLOD8FkMmHOnDlcrQrJpE9qtqWnezCloT1CCE2T63uEEESmOHToENra2rB8+fJsu5IVaC8SgiAIgiAIgiAIghcGBgbQ09MDURRxxRVXYMaMGdL+DYwxnD17Fg6HQzrebDZj4cKFo+5nGWM4dOgQotHosN+bzWauNjLPBZTaI4R3svksl0pjEYSGCYVC2LVrF0KhULZdkQ1vWjLtj5rtKWE7UftzypQp+Na3vjXmmySpIMeGEu2nQ2IvkieeeCKj7fIOb+dtuvCmg/KPevbkfJ63fpLr6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9EAqFsHXrVhw7dgw9PT3o7+/H2bNncfHiRemYYDA4bBIEGCx33dHRMcqez+cbNQmSOF5NotEoLly4kLTtbJFJn9RsS0/3YErDz/ojgiAmTTweh9vtRjwez7YrsuFNS6b9icfjGBgYQGtrq+IP+UOhELq6umTZ7u7uhtPphNFoRGlpKYzG4fPor776KsrLy1OyJYoienp68Nhjj016GWhXVxeOHDkyqv1MkdiLhIclnTzA23mbLrzpyEb+Uas9pW3LtSfn87z1k1xHT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA2UXxhji8Tjy8vJk24rH4+jp6UFhYeGw33d0dGDOnDkwGAw4cuRI0s92dXXhpptuAmMMwWAQXq83axMRjDEIggCeChVl0ic129LTPZjSUGksQtNQaSxCDwSDQTzxxBOa3vB727ZtmDlzpiq2I5GINDiLRCJYsmRJVpfoXrp0SbW9SAiCIAiCIAiCIAh9wBjDxYsX0d3djVgshrKyMsyfPx/5+flp24zH49i/f3/Sv918883o7+9HX1/fmJ9fvHgxLl26hLa2trR9INSBSmOpD60IIQgNI4oiOjo6MGvWLK42mEoH3rRkyh/GGJYtW4adO3di1qxZ6OjokMpQKYXJZFLM9li2br/99pQnByb73ba2tqK1tVVq/6GHHsJ7772n+PfEM5FIBK2trXC73YjFYmnbyc/PR1lZGebMmaPI20i8nbfpwpuOTPujZntK25ZrT87neesnuY6e4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQGyg6XL19Ge3u79O+BgQGcPHkSd955Z9o2RVGE2+1GcXHxqEoJfr9/3EkQAPB4PFxMgsTjcXi93qQ6skUmfVKzLT3dgykNHz2NIIi08Pv9+K//+i/4/f5suyIb3rRkyp+zZ8/iww8/hM1mw49//GPYbDbF21DSthK2JvvdJjZ8AwYnBBYuXIivf/3rMJvNafugJURRxPHjx9HV1YVgMIhwOJz2j9/vR3t7O06ePKnIElzeztt04U1Hpv1Rsz2lbcu1J+fzvPWTXEdP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoDZYfe3t5Rv/P5fLL2SvD7/Thx4kTSKgkj9wVJxvHjx9NuW0kikciYOrJFJn1Ssy093YMpDZXGIjQNlcYitAxjDFu2bMEjjzySbVdkYbFY4HK5VNs3w+Vy4cSJE6N+H4lEMDAwoEqbTqcTTz75ZNK/ffLJJ5g1a5Zibc2YMWPc787pdOLUqVOKtZfgzjvvRFFRkeJ2CYIgCIIgCIIgCGDfvn1Jf3/NNddg7ty5adkcrzQWoW2oNJb60Jo2giCILBGJRHRR3mnp0qWqbh5eUlKCsrIyuFyuYb83m82YMWOGau2OxVe+8hVF7VksFixduhRVVVWwWq2j/q7WWxM+n48mQgiCIAiCIAiCIAiCyAmoNBahCywWi1SqJxaLwe12S2VfvF6vtNQsFAohEAgA+J+6igk8Ho+0IXMwGEQwGAQARKNReDwe6Ti32y09vA4EAtKSxkgkAq/XC2DwTf+htfz9fr+0CXY4HIbP5wMwOJPvdrsRj8cBDD6YDIfDAABBEKQHoGNp8ng8eOmll9Dd3a15TR0dHXjppZfg8Xi4iFNvb6/kj9w4AeP3vZKSEkybNg3PPfccpk+fLj0Mz8/PR0lJiXRcaWmpVE+xsLAQU6ZMATA4IVBcXAxgsIxUaWmptP+DzWbDlVdeieeeew7l5eXSg2+j0YjS0lKpFmVRUREKCgoADD+f8vLyUFpaKpWnuvrqq/Hcc8+hpKQExcXF+MEPfoCqqqpJxam9vR2rV6+Gx+NJKU4GgwGzZs3CnDlzMGXKFBw4cED63qxWKwoKClBSUoKioiLk5+ejqKgIJSUlKCgogNVqHfO44uJilJSUwGw2S2W2otGoFDOTyYTS0tJhcUpsame1WhWLkyAIeP/99/F3f/d3AEafTz6fT+pT4XBY+r5EUZR8jcfjEARh2HGJfj1UU+K4VOKUyvnkdDql8yRTeQ9QPpd3d3dLOrKRy0dq6u/vl/xRIk4Taerp6cHq1avR29uruKbu7m6sXr0a/f39iuTyhK9OpzOtOLW1tUnfbS5fc/UwNhoYGMBLL70k+atlTV1dXVi9ejUGBga4iNPQ8yQTfS9xbg2tV66UpqG2eYhTX18fVq9eDYfDMSlNCR0dHR1SnChHZE9TIh79/f2a1zTZcbne7gmVzBEjNbndbqxevRodHR1cxEnOeE9P19xs5L1IJCJ9JhaLSf6kq6mzsxOffPIJBEFQ5J5QEIRhxw31deRxCR/G0zTyuKH3r0OP83g8kg6l73PT1eT3+3HgwAEEAoG0NI30dTxNoVAIBw4cgMfjkXxVqu/19/dj9erV6O7uVuR8crlcWL16NTo7OxW9J8wGNBFC6IJFixbh4YcfBjD4YM5ut0snZ1VVFZqbmwEAdXV1qKmpATA4yLLb7ZKNtWvXoqWlBQBQW1uL2tpaAEBLSwvWrl0rHWe326WbkJqaGtTV1QEAmpubUVVVBWAwcdjtdjidTgBAdXU16uvrAQANDQ3YsGEDgMHkYLfbpWS0YcMGNDQ0AADq6+tRXV09riar1YrZs2dLyy21rKm6uhoLFy6E1WrlIk7nz5+XHnbLjRMwft/7xS9+gRkzZmDbtm2477778I1vfAMA8NJLL+Ef/uEfsHHjRmzcuBFPP/00Xn/9dWzcuBGrVq3C6tWrsXHjRrz66qt49tlnsXHjRrz11lt4+umn8Z//+Z/YuHEjfv3rX+Of//mfcf311+OFF17AP/3TP2Hjxo1488038fTTT+PNN9/Exo0b8U//9E/43e9+h40bN+K3v/0tfv3rX2Pjxo34z//8Tzz99NN46623sHHjRsnXP/3pT3jzzTexZMkSWK3WScVpw4YNqKyshNVqTTlO//7v/w6LxYIvfvGLmDp1KmKxGO644w7E43GcOHECd9xxB+bOnYuPP/4Yc+fOxR133IETJ04gHo/jjjvuQDAYxNmzZ3HHHXfg6quvxscff4xbbrkFd9xxBz777DNpQHH58mWcO3cOADBr1iw8/fTTw+KUWL78jW98Q4rT3Llz8Ytf/EI67umnn5ZKZy1ZsgSLFy8GANxyyy144oknAAAFBQV4+umnUV5eDgB4+OGH4XQ6IQjCqPNp69atUp9qbGyU6r52dHRI/SsYDOLw4cPSQKahoUHq10M1eb1eHD58OKU4pXI+tbW1wWQywWq1ZizvAcrn8n379mH27NmwWq1ZyeUjNblcLkQiEWmyTe2819TUhMrKSpw/f15xTfv27UNlZSVcLpciufzYsWOorKxEW1tbWnFat24dvvGNb8Bqteb0NVcPY6NgMIhIJCJN/GtZ04cffojKykoEg0Eu4rRu3TpUVFTAarVmpO9ZrVbcf//9WLduneKarFYrvv3tb2PdunVcxMnhcKCyshKHDh2alCar1YqFCxdK3yvliOxqslqtiEQi0mplLWtKZ1yup3tCJXPESE15eXmorKxEdXU1F3GSM97T0zU3G3nv3LlzuHz5stRuwp90Nb333nu48sorkZ+fr8g94dGjR6V81tLSIulzuVw4evSodNzhw4clH8bSFIvFcPjwYekhfXNzs/Q9OBwONDY2StqPHz+OuXPnIj8/X/H73HQ1dXd3Y968efB4PGlpOnz4cMr37kajEfPmzcPp06clTUr1PZfLhcrKSuzbt0+R80kURVRWVmLHjh2K3hNmA9ojhNA0ibpyFosFJpMJ9fX1mDdvHnw+H0pKSmAwGOD1emGxWGA2mxEKhRCPx1FYWAhRFOH3+6U3vj0eD6xWK/Lz86UEZ7VaEY1GEQwGpTe+3W43bDYbTCYTAoEAjEYjpkyZgkgkAkEQUFxcLM1uFxUVIS8vD36/HyaTCRaLBeFwGJFIBEVFRYjH4/B6vSguLobRaITP54PZbEZBQYE0u2+z2RCLxUiTDjVNmTIFW7duxc9//nMEg0FEo1HpwWfi4jh0FYfX64XVaoXJZEIwGITRaITFYkEkEkEkEoHNZgNjDD6fD4WFhcjLy0MgEIDJZEJBQYH01kZhYSHi8Tj8fj9sNhuMRiMCgQDy8/NhNpulNxcKCwsRi8UQCARQVFQEg8EgfWbatGnSWxF6iJPH40FLSwui0aj0FkNlZSUKCgqkNxZKSkqSxik/Px9Wq1V6C6O0tBR+v1/6DuPxOEKhEMxmMywWC7xeLwwGA0pKSuDz+RCLxWCz2SCKIk6fPo2rrrpqmKampib09/fDYDAgHA4jLy8PJpMJ+fn5uOqqq2C1WhGLxRAMBmGz2aQ4FRQUID8/H2fPnkU4HIbZbEY8HkckEoHFYsFNN92EwsJCTcUp13IEaSJNpIk0kSbSRJpIE2kiTaRJu5oOHDiASCQCg8GA/Px8xGIxiKKIG264Addff31amjweD44cOQKTyQRRFBGPx4fd6xUUFEj3jiaTCXl5edJ97sh7QmDwzf78/HzpOACSr9FodNhxZrMZRqMxqaaCggIwxqR7z8RxRqNR8jUWiw07bqivifvcXNZ0zz335MT51NnZmbU9QmgihNA0ub5ZejAYRG1trfR2q5bhTUsm/AmHw9i6dSuWL18Oq9WKb3zjG6itrZUuapcuXcKcOXNkt6OkFiVsybGhVlwcDgfOnDkz7Hcvvvgi9u7dq1gbqZAs5hcvXhxWLiRBWVkZbr/99gltHj58WFoOO5SbbroJM2fOTNtXgL/zNl1405Fpf9RsT2nbcu3xmH+I9NBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA2UGNzdL9fj/Wr18vrabQKtFoFC0tLVzpyKRPydpSarN03u/BaLN0giAIguCMZ599FgBw8OBBqb4lQRAEQRAEQRAEQRAEoT1oRQihaXJ9RQihbYauCEmGUitCiIkZWgN0JJFIBAMDA4q15ff78dOf/jTp37S2IoQgCIIgCIIgCIJIjhorQuLxOPbv3y/DK4JXlFoRwjvZfJZLm6UThIaJRqM4c+aMVPNQy/CmJdP+5OfnY968eaosv1RSixK25NhQKy7FxcWYMmVK0r+ZzWbMmDFDsZ8rr7xSUd8TCIKA1tbWUT9dXV1wOByjftrb25MeLwhCym3ydt6mC286Mu2Pmu0pbVuuPR7zD5EeeooHb1ooB6lnK10bvPWRXEdP8eBNC+Uf9WzRGEg/RKNR9PX1SRuIa5VYLMadjkz6pGZberoHUxqaCCEIDRMMBrFt2zZpTwktw5uWTPtjtVpRWVmpSs1VJbUoYUuODbXiYjAYcPvtt6O0tBQGg0FR22oTDAaxbNkylJWV4brrrhv1893vfhfLly8f9bNo0aKkx5eVlWHZsmUpfce8nbfpwpuOTPujZntK25Zrj4f809fXh+PHj+OTTz7B/v378cknn+D48eOKrjzLBXg7b+XAmxbKQerZStcGb30k19FTPHjTQvlHPVs8jIGI/0HOuC8YDHLzUFkOPD0cT5BJn9RsS0/3YEpDpbEITUOlsQgtQ6Wx+CQWiynyVkZXVxdaW1tH/d7r9WLp0qVJP5NOaaxly5Zh8+bNsv0dyaOPPopNmzYpbpcgcpmBgQE0NjYi2fB76IQsQRAEQRAEoW0EQUB9ff2Yf7/lllvSqhZApbH0C5XGUh/aLJ0gCC4IBoNob2/PthsZJRKJwOl0ZtsNYgR5eXnIy8tTxI7aCIKA7du3q2J7+/btEAQBFotFFfsEoTRutxvd3d0IBALS7/Ly8lBSUoJZs2bBbDZn0btBHA5H0kkQAGCMoaenhyZCCIIgCIIgNE4oFMLx48fHPaa9vV21sskEQSSHSmMRhIZxu91YtWoV3G53tl1JG7/fj4ceeghz5szBpk2bsGjRIsybNy/rP4sWLVLdny984Qt48sknAQClpaVYuXKlKg/AlOwnStiSY0MPfV5JHA7HpPb0mAyCIMDhcIx7jF7iwZuOTPujZntK2x5pL9FPjx8/juPHj6Onpwd+v1/68Xg8aGtrw4kTJyCKYtbzz9BJmmT4/f60becavJ23cuBNC+Ug9Wyla4O3PpLr6CkevGmh/KOerWyPgXKNzs5OhMPhcY/x+XxjviCTDMYYfD4fHA4H6urqVLsPzBSCIHCnI5M+qdmW2vdg2fZHDlQai9A0uV4aSxRFdHR0YNasWTCZtLnA69vf/jY++OADmEwmzJo1Cx0dHRBFMdtuZdyfZO0pVRpLyX6ihC05NrTU59vb29HS0jLq9+OVxvrkk08wa9asYb9ra2tDV1fXqGOLi4tRXFyMr3zlK8o4nISJ+qCW4jEevOnItD9qtqe07aH2BgYG0NzcnPJn58+fj2nTpimSf/x+P3p7e4fVubXZbJgxYwZsNtuYNo4cOTLuZEhRURHuvPPOSfmVq/B23sqBNy2Ug9Szla4N3vpIrqOnePCmhfKPerZy5R6MF/bt25fScYsXL05pj8pAIICTJ08iHA4jHo/D6/WiuLgYRqN232/nUUcmfUrWllKlsdS8B0vH3sjPZ/NZLk2EEJom1ydCtE4oFEJpaSkikUi2XeES2iNE26QzEcIb1AcJXhFFEXv27Em60eTUqVOTlsG6+uqrceONN6Zk3+VyweVySZsXGo1GFBcX44orroDL5cKpU6eSvsGXl5eHhQsXoqioKKldmgghCIIgCILQP0pOhDDGcPjwYa5WThDqQHuEqA8fU24EQaRFIBDApk2bJiy1wSsdHR3SJEhhYSGWLVuGwsLCLHs1SKb9GdmexWLBjBkzFLGtZD9RwpYcG1rv85nkk08+waVLl/Duu+9i48aNo37q6+tx6dIlfPLJJ2m3oZd48KYj0/6o2Z7StgOBADZs2IDly5djyZIlWL58+aifJUuW4MUXX0x6s5iKP62trThx4gTa2trQ3d2N7u5udHZ24sSJE/jTn/6E5uZmMMYQiUTgcDiG/XR2duLChQtJ7TLGuOljeoC381YOvGmhHKSerXRt8NZHch09xYM3LZR/1LNF92Dq4/P50NzcjM8++0xRu16vd9i4NhKJoKmpSfMvlPKoI5M+qdmWGvdgcuzxlENoTRtBaBij0YjS0lJulhHKIR6Pw+12Ix6PZ9sVAJn3Z2R7S5cuVWyTaiX7iRK25NjQU59Xm1mzZmHOnDno6elBKBQa9fdrrrkGM2fOlNWGXuLBm45M+6Nme0rbNhqN+Oyzz/D++++PedMQiUSwd+9eAMDzzz8/KX/C4TBaW1uT/s1gMMBkMsHr9eJ3v/sdDh48mNQHs9mMv/3bv0VVVRWsVisAIBgM4uTJk6nKJFKAt/NWDrxpoRyknq10bfDWR3IdPcWDNy2Uf9SzRfdg6hIIBKQ96ZSmoaFh2L8NBgMsFktKJbV4hkcdmfRJzbbUuAeTY4+nHEKlsQhNQ6WxtM358+dx0003ZdsNrigoKMDSpUuxbt066QEaoU3GKo0VjUaxZMmSCTfPk4PFYoHL5YLFYsHhw4eTToTcdNNNmDlzJlpbW3HdddcltUOlsQjeEAQBZWVlKZUGMJvNqKmpkcpkpVIaq7e3d8J9R1588UVpomU8Hn30UWzatAmMMXz22WdJz8ORUGksgiAIgiAI7XHx4kW0tbVN+nMjS2N5vV50d3cjEomgrKwMV199Nerq6pR0leAYKo2lPrQihCA0TCQSQXNzM2655Zak9dC1hNlsxi233ILm5mZEIhG89957mDt3btb8iUaj0mZO+fn5GWmvu7sbixYtQnFxsaK2lewnStiSY0MPfT4/Px/33XdfSg9S00XJFUXjkY14CIIAh8Mx5t/j8fioh+TTp08f9X3k5+dLPvPWrzLtj5rtKW37s88+w7x586RrxURtDwwMDCszOJE/sVhsTHuxWAzd3d0plzvYvn07BEFAPB4fNQmS8G0kPPQ/rcDbeSsH3rRQDlLPVro2eOsjuY6e4sGbFso/6tnK9XswNWGMpTUJMhKPx4MTJ05IVSL6+/vh8/lGHReLxeB0OlFeXo68vDzZ7WYLHnVk0ic121L6nJVrj6ccQhMhBKFhBEHAvn37cP3112c9mcjFYrGgoqICFy9eRCQSwZw5czBv3rys+eP1erF7927cf//9ik9MjNfeokWLFLetZD9RwpYcG3rp888++ywAjFlaJ10sFguWLl2KqqoqxWyORybjEQwG8cQTT0gPlyeD2WzG/fffj2effXbYhEhRURFuvfVWRCIRrvpVpvu5mu0padvhcODy5cvDrhUT4XQ6pf+/4oorZPkjiiIuX76c8o1KYtKutLR02O9efvnlMc/9goICVFZWDiurlYtEo1F4PB7EYjFYrVbYbLZRZQP0cj0A+NNCOUg9W+na4K2P5Dp6igdvWij/qGeL7sGUp7e3F21tbSmt+k2F9vb2UaW5e3p6Rh0niiJaW1tRVlbGzQRCOvCoI5M+qdmW0uesXHs85RAqjUVoGiqNpW3GK41FsSS0Tnd3N86ePTvuMWO9FZ4KU6dOHXX+zJgxY9TKB72Uxnr00Ufx9ttvy7Lx4IMPjtozwmq14u677+aqNi2RnMbGRpw6dQrLly9P6/OpTDJMdN46HI5Jtd/c3IyrrroKx48fBzD5slpycDgc6OnpQTAYBDA4UXrllVdi5syZSfs7YwxdXV1wOp0QBAEGgwE2mw1XX331sMkcOYiiCLfbjUgkApPJhNLS0lE3Qx0dHaM2nLfZbPjCF76Q9RsngiAIgiAIYHC1RmNjo2w7Q0tj7du3T7Y9QttQaSz1oRUhBKFhGGMIh8MoKCjQ/EM8g8GAgoIChMNh8DA/m+nvVs32lLSthC05NrTU51N5cGg2m4eV7ZkMN954I66++uq0PqsUmYrH5cuXsW3bNtl2Em/hD32YGgwGEQgEYDKZuOlXlH+SIwgCGGOwWCxpXSvC4TDefvttGI1GbNiwYUx/xpqgLCsrQywWg8FgSLltj8eDsrIyOByOYZu4T0Ri5VO6Je46Oztx/vz5Yb8Lh8PweDy4fPkyiouLEY1GYTAYUFxcjJkzZ8LhcIzaKD4UCqG/vx+33347SkpK0vIlQXd3N/bv3z/su5s6dSoWLlyIK6+8EgDg8/lGTYIAgN/vx7lz54bdMGnpejARvGmhHKSerXRt8NZHch09xYM3LZR/1LOVK/dgmSLZSo1MwRhDLBZDXl6epuPBo45M+qRmW0qfs3Lt8ZRDsr9dO0EQaePxeLBmzRp4PJ5suyKbkpISPPfcc7IftChFpr9bNdtT0rYStuTY0FKfnzJlyoQbM6fLFVdcgauuukqWjXg8DlEUIYrimMck/j7WQ99MxCMQCODTTz9VpITYWA+4nU4nV/2Kp/wjCAIuXryICxcu4MKFCzhy5Ai2bduGTZs2YdOmTaitrcW+ffuwb98+HD16FN3d3apqEUVR1rWipKQEN998M3p7e0f9LRgM4uc//zmWLFmC5cuXj/p5/PHHceHChUm1/cQTT2DOnDlYvnw5VqxYkfLnJtoLZyI6OjrG/FskEkFfXx88Hg/cbjfa2trw+eefj5oESRCPx9HV1ZW2L8FgEI8++ijmzJmDZcuWDftOlyxZgmXLlkn9Y7wVci6Xa1gu0tL1YCJ408JTDuLJdjbHQLz1kVxHT/HgTQvlH/Vs5co9WKZINpbMFOFwGAcPHkQ4HM6aD0rAo45M+qRmW0qfs3Lt8ZRDqDQWoWlyvTQWj5tLTYahpbHy8vJQXl4Op9OJWCyW9Vhm+rtVsz0lbSthS44NLfb5UCgEt9s97oRDqiTe3i4qKkr5TYqxSmMlGK/Uz8aNGzFjxgzk5eWhrKwMN91007DVFJmIR3t7Ow4ePJh2OaSRJDQN5ZZbbkE8HuemX/GQf4LBIFasWIGamppxB+fJ9l+ZN2+e9B3L1cIYQ3d3N86fP4/u7m709vbipZdekq4VkyVxrTlw4ADmzp077G/Lli3D5s2bJ/xsum1PlnRL08ViMXzyySeK+mK1WvGlL30J4XAYkUgEeXl5mDJlSkp5aKLvFQAqKyuxdetWXLhwYdxJnAceeABG4+B7XEqfJ/F4HF6vF36/X8p56a7ImSy8Xdt4yEE82s7mGIi3PpLr6CkevGmh/KOerVy7B1MbpcpYpVMaKx6PIxgMwmq1SuMiLcKjjkz6lKwtpUpjKX3OyrU38vNUGosgiLTIy8tLu6wOb8RiMVlvvypNpr9bNdtT0rYStuTY0GKfnzJlCqZMmZJtN2QRi8XQ19cHQRBw5513SoP1TMRDyc3kgeGbZycoKSlBWVkZ2tvbk+6zkmlGfq+prA6Q43eyOP7kJz9BdXX1hJ8dWu4psf+Kw+GQ7MnpI8FgEN///vfx0UcfKdYPEteakQN4QRCwffv2lD7LO6FQKKmfU6dOHXOPjbFWSyU+EwwGceTIEQQCAelv+fn5uPnmm3HFFVeM6Usq3ysA7Nq1C4IgTHjcUJTMP6Io4uTJk/B6vcN+n9hLSW14u7bRGEg9W+na4K2P5Dp6igdvWij/qGcr1+7BJoIxJu2jZrVas1auJxgMoru7e1IbrhuNRthsNhW9ygw86sikT2q2pfQ5K9ceTzmEjyk3giDSwu/3480334Tf78+2K7Kx2Wz48Y9/zM2FMNPfrZrtKWlbCVtybOipz2sRv98/7EEoD/F49dVXsXHjxmE/r7766pjHP/nkk6NKHj3wwANYtWoVbrvtNpSVlWHZsmXSjVE2SHyvvb29WLZsGcrKynDdddeN+yPH75FxFAQBO3bsmJSNxP4rABTrIytWrMD7778/bBJkvGvFPffcM+FkUOLzbW1t8Hq96O3txYEDB/DOO+9M+CCet+vUSILBIJYtW4by8vKkpb2WLFmCF198cZhOQRDw4osvjlkObOhnhsYVAKLRKE6dOjXq90NxOBwpTXCkUwpMyfzT2to6ahIEAM6dOzfpCZp04CGXDoXGQOrZStcGb30k19FTPHjTQvlHPVt0D/Y/hMNhHD16FEeOHMGRI0dw9OjRlF66UaOgzueff46Ojg709/en/JlIJILjx48r/sJYpuFRRyZ9UrMtpc9ZufZ4yiG0IoQgNIzJZMKcOXNgMmn/VBZFEa2trYqUD1KCTH+3aranpG0lbMmxoac+nyksFsuk3jCaiGAwKD0I5iEeV1555aj9UsZ6630shuYfQRCkMj6bNm2atJ2LFy/C5XKNm8uKi4sxa9YslJWVJf174nv9+7//e2zZsiWltuX4PTKOqT68HkpiRcHIN33S7SOCIOC9994b9fvxrhWbNm3CjBkzsH//fgwMDMDpdOLJJ59M+vkLFy5g5cqVwyZwJoK369RInnjiiXFLUA1dvfPcc89hYGAAL774Ik6fPp3SZxIrfobCGMPAwAAKCwuH/S6xsX08Hk9XzoQomX9cLteYf3O73Wm/wcYYg9/vh8fjAWMMpaWlsNlso9465SGXDoXGQOrZStcGb30k19FTPHjTQvlHPVt0D/Y/NDc3D3uRIxAIoLm5GQsXLkx6fHd3N9rb2yEIAkpKSnDNNdco5ks65VaNRiNKS0u5KSeVLjzqyKRParal9Dkr1x5POYT2CCE0Ta7vEaJ1hu4RMhKKJUEoQ2dnJ86fPz/m31PZI2Qot9xyC6688kpFfRyPlpYWHDlyZEwfk+2j0Nraiuuuu05WuxaLBS6XK+VyU4wxfP755/D5fCkdbzQacfvtt4+58XZfXx+uvvrqSb8hNFm/k5Hu95foL/n5+bj//vvTbj8dH4bqPnXqFJxO57h9e/78+eNOAGQCs9mMuXPnjunHZPYIEQQBZWVlKU9gGQyGSb3VaDabUVNTk3SS8eqrr8aNN94IYDDftLa2IhqNAgB6enqwbNmylNq4dOkSRFEcd4+Q+++/H/n5+Sn7nSr19fVjfnc33HADZs2aNWmbsVgMZ8+eHbWZ6syZM3HjjTdmrQQHQRAEQeQykUgEhw4dSvq3ZOMMp9OJU6dOZcI1glBsjxDeyeazXH6m3QiCmDThcBj19fXjbmSrFQoKCrBo0SIUFBRk2xUAmf9u1WxPSdtK2JJjQ099PlPMnDkT11xzjWJvmjidTrS2tqK1tRXnzp3DBx98gHPnzkm/S/z09/dnZEPpZEx2v4xk+WeypXq8Xm/KkyDA4OZ4Y9kPh8Oora1N60FpOiWGtJJ/gLGvFUuXLk0p5onPX7x4UbG2J0uinFtNTU3SVRbpMNlVPJN9DyoSicDhcIz6GTpRd/nyZZw/f16aBEmnnYk4deqUZDOVvsUYgyiKqq5MGUk0GsXJkyfxySefjJoEAYCurq5RK1B4u7bRGEg9W+na4K2P5Dp6igdvWij/qGeL7sEGGa+kZ7ISsz09PWq6kxaJF0d4XaWcKjzqyKRParal9Dkr1x5POYQmQghCw/BYUzFdzGYzFi5cOOmSNmqR6e9WzfaUtK2ELTk29NTnM4XBYMDcuXPx5S9/GXfeeeeon6FvYqTC0ImQS5cuobm5GZcuXRo1EdLY2IiGhoZhD0UzhcViwdKlS1M+Xon8M95N1ViMVSM1Eomgq6srbX9aWlpw5syZYT9nz55Fd3d30nhM5rz6l3/5lzH/lliF0d3dLT2UV/qcHRkri8WCRx99FFVVVWl9Xk7b6VJeXo4ZM2Zwc71LlRUrViTdQ+Tpp59GS0sLLl26JMu+3++XVoMkm3iJRCJwu91Sqb/x+hZjDBcuXMChQ4dw4MABHDhwAI2NjRm5djQ2NibdeH4oIydCeLu20RhIPVvp2uCtj+Q6eooHb1oo/6hni+7B0qOvry/bLowiFovB4XBk7aUzpeBRRyZ9UrMtpc9ZufZ4yiFUGovQNFQaS9tQaSyCyD7jlSB69dVXUV5enrKtqVOnjnq4O2vWLNxwww1p+5dOaSxg8I2uJ554Atu3b097s+PJlCZKVoIssW/GWBQWFuK2225LuoJl9+7d+PrXvz5pn4GJ4zZv3jypPqvFYsGsWbNgsVgQDAbhcrnQ0tKCxYsXJ/3sa6+9hp///Ocp+XHPPfegqqoKVqt12O8LCwvR398/anNqk8mEqVOn4tprr0VbW9uY/fL111/HN77xDQDJV/+kUhormwwtOTeejy0tLbjiiisQj8dhMBhQWFg4Zl3dc+fO4eabb1bN54l48MEHk65umUwMNm7ciNLSUrz88stJ924xm824//778cYbb0xYNu3ChQtJS2wVFhbirrvuGrXaSqnSWIIgoL6+fsLjZs6cOeb4hyAIgiAI9XC5XDhx4kTSv91xxx2jytbu27cvA14RxCBUGkt9sr9LCUEQaROPx+H1elFcXMzVBlPpYDQaUVxcDK/Xm9ESFmOR6e9WzfaUtK2ELTk29NTntcDIjaZHMvK8TTyofPbZZ6WH0+NtQqwmVqsVmzZtGlYq6vDhw6NK9TidTjz99NOK5h9BEMZ8mJuMxAqWxKRBPB6HIAgwGo1J/Xn11VcBjB2fieI2EqPRiHvvvRd/93d/B4vFAqfTOanPj8Xhw4dx2223Jf1u58+fP6yfAIMTaYkSYzabbUxfS0tLce2116aVA1K91iTbvyPT16nPPvts2B49BoMBV199NebOnTvqQX5ra6vq/ozHwYMH4ff7R61ymkxfikQi+D//5/+MuWdKYuP2Z555Btu2bRvzesAYG3OfkUAgAI/Hg9LS0pT9Gs9fo9E4bHIqsVplsvB2baMxkHq20rXBWx/JdfQUD960UP5Rz5ZW7sGi0Sj6+voQDAZRWlqKqVOn0r5aI2CMIRwOo6CgQNPfDY86MumTmm0pfc7KtcfTtSb7VzqCINLG6/XCbrePeqtWixQXF0sPI3kg09+tmu0paVsJW3Js6KnP64GR523iQeXLL78sHZPtpc4WiwVz5szBnDlzcNVVV2HGjBnDfsrLy8fMPw0NDWkth3/55Zexd+/elJf+CoKAzZs344knngAw2M+PHj06Zj4sLy+f1EqdiSguLsZf/dVf4ZlnnsHy5csnPZEyke1k3+3p06fxk5/8ZFSZpRdffBGdnZ1jvp1fXFyM06dPp50DJrrWjLd/RzauU0NLRHV3d+Po0aNJS1B5PB7ZbZnNZsyfPz+tz0YiESxZsmRU6azJ9KUVK1aktIH9rl274PV6k14PAoHAhCsyjh8/jsOHD6dc8ztx4+bz+cAYQ09PD+rr66WyW0ePHp3U/kDJ4O3aRmMg9Wyla4O3PpLr6CkevGmh/KOeLS3cg0UiETQ0NODs2bNob29HY2Mjzp8/r/ieY1onHA7j8OHDXOy3IAcedWTSJzXbUvqclWuPp2sNlcYiNE2ul8biaVY1HYaWxhr5pm22Y0lvI6lnSytvI+UK45XGmoix3pA3m82oqamB2WyGxWLBokWL0vYv3dJYydi/f/+oN/kdDgcee+yxpDo2btyIq666Cl/84hdRVFQ0ru1EaazEA+F06p9aLBa4XC6YzWbs3LkT3/nOd5KuPNi4cSMAKFb2aTIrHaqrq/HDH/4w5XJj6ayiePDBB/Gzn/0sqT6j0YiNGzfi4YcfHjMHXLp0CZcvX05almkif8YrW6XUipCPPvoI5eXlcLlc45aOmj9/PlpaWkb1pYKCAlRWVg4rO7Zp06a0+8P8+fPx/PPPY+rUqRgYGOCynNhIqqur8Y1vfAMulwtWqxV5eXkwmUw4efLkpPYluv3221FWVjZuaaxUMJlM+NKXvoRAIDBmuY2hjCyNxdu1jcZA6tmiFSH6QE/x4E0L5R/1bGnhHuzixYtoa2sb9fu77rprzNXCk0UPpbF4XEmRDjzqyPaKEKVKY/G+IoRKYxG65OTJk9i2bRv279+PpqYm9Pf3o7CwEPPnz8f3vvc9/P3f//2ouuHE5EiUCNED8Xgcbrc7225IZPq7VbM9JW0rYUuODT31eV5I7LGQzkPAsc7bSCSC5uZm6YHyRGV7pk+fjpkzZ+KGG25AXl7epP2Qy3j5hzGGvr6+CSdCEgwMDKS9CZwgCFi/fj1mzpyJtra2cR+2J/ZjUWLDucnk32nTpmHp0qXYvHmz4rYTHDx4ED/+8Y/HtGc2m8cdgJeXl6O9vV22PyO/Y6WuUzfccAOKioomLBs31uqIcDgsff8bNmzA559/LpV/S8ZYEyrJStlphUAggPfff3/Y75LtUTQRvb29KCsrk+2PKIrSJGaqMMbAGIPRaOTu2kZjIPVspWuDtz6S6+gpHrxpofyjni0t3IMlmwQBgPb29rRXreoRg8GgubFbMnjUkUmf1GxL6XNWrj2erjXZn/IndElLSwtuv/12vPDCC9i9ezfy8vKwcOFC2Gw21NfX4//7//4/3HHHHWNe6IjU8Pl8eO2112SXZOCBoqIi/PznP0/5YaPaZPq7VbM9JW0rYUuODT31eV5I7E+RDuOdt4kyS6n8fOtb38IvfvELHD16VK6ccZkyZcqkdQCQ9ab4ZPnpT3+KZcuW4eTJk+Pmw8RDbCVINf+azWZ84QtfQFVVFR599NGUBu7p5PZIJIKzZ8+Oae/s2bPj5gCbzYbbbrsNs2fPHvVgejx/zGYzpk6dOuzfQ79jJa9TpaWlY/bHVNm8eTO++c1v4stf/jKeeeaZMY97/vnnUVNTg40bNw77SZT/4u0GNBVWrFiBn/3sZ6irq5NWDyVKq03mfO3u7k57X4+RTMZOV1cXDhw4gP379+PIkSO4dOkSV9c2GgOpZytdGzT+4Qs9xYM3LZR/1LOl5XuwgYGBrLTLK+FwGEePHuWqpFQ68Kgjkz6p2ZbS56xce9nOIUOhFSGEKjDGUF5ejl/+8pd4/PHHcf3110t/O3jwIB577DGcO3cOjz76KD799NMseqptzGYzFi5cOOk3IHkkEong+PHjirzdrASZ/m7VbE9J20rYkmNDT32eJ6qqqgAA27dvn9RDRKXO28TeIv/4j/+IXbt2qRbf8vJyBAKBpO3zlH9S9efZZ58FgJQ3ZZfb3ne+8x1pomDTpk1oa2vDoUOHpL8nNokfupIh3e/2N7/5zZi+pvLmf1lZGe69915UVlbi7bffTsmf+++/f5Tdkd/xyM+azWbcd999KZdNsFgsmDFjhvSCiNw6ubt3757wmGuvvRaRSGTYxut6YGQ8EnkkGo3il7/85ZifG9l/Dh8+rLqvyUjsn5TYwP2mm24a5pcgCAgGg7BarRmfrKIxkHq20rVB4x++0FM8eNNC+Uc9W3QPNjkYYwgGg9l2Iyl5eXnSeFLL8Kgjkz6p2ZbS56xcezzlENojhFAFQRAQi8VQWFiY9O8HDx7El7/8ZQCDm1befvvtabWT63uEaJ2he4SMhGJJEJlHEIRxS+yMpLW1FQ8++KBi7ZvNZrS2tuKqq66SfqfkHiGMMbS0tMDhcEAURQCj94EYSmK/iOnTp0+4HD+xR8h49l599VWUl5fD4XCM+wb/RAzdxwIYfAA81ptyCxYsgM1mQzwel0rxHD9+HH6/f9SkxVgkVg0N3ZMCGCwr1NzcPOr4ZP4kmyRJl61bt6KysjKlY4PBIJ544olxJ/lGloi6++67pb91dXWhs7MzqabS0lLcd999KC4uxje/+U3U1tZO6M+jjz6KTZs2Sf+Ws0dPqly6dAmFhYVobm6ecLPR8fqvEihVzk2uD2OVBBsZ58mU25ozZw5KSkpS2iMkGYk8I4oiGhsb4fF4pL+VlZVhwYIFXD0oSBCPx+FwOOB2u2EymTBt2jRMmzYt224RBEEQGmSsF0vy8/MVWwmdyh4hwWAQjY2Niq0aJYhUUWqPEN6hPUII3THRm2v3338/SkpK4PF4cObMmbQnQnIdQRBQX1+PRYsWabK0xVASGyrL3bBUKTL93arZnpK2lbAlx4ae+jyPWCyWlCcVgMEHwV//+tdx4MABRc7bSCSC3t7eYRMhSmIwGHDDDTdg7ty50hLky5cvZyz/lJeXY8aMGRPu7zGePwUFBcPKNwGDD3aTve1vsVhw6623jtrob+bMmTh58iT++Mc/IhKJwOl0wuVyoaysTHrQWlpaihtvvFF6U2ky59tQf0RRREdHB2bNmiW1l3jQnM6EkMVigcPhgCAIKflktVqxadMmCIKAU6dO4cyZM6O0Dn3YbTAYhr3EccMNN2DGjBlwu90IhUJobm7GggULMH36dNhsNum7feGFFxCNRsdcnWM2m6UNzjNJYgVKYoKnv78f4XAYBoMBPp9P1b25/u3f/g1f+tKXcPHiRel3U6dORTwexx//+Ed8+OGHSb+r+fPn49lnn4XRaMSKFSvGtJ/ueZtYOQIMlg0D/meibmT8MrWPiiiKaGhowHXXXYeLFy8OmwQBBh/anD9/HvPmzVPNh6Gkeq2Nx+NoamoaNnnU1dWF6667DrNnz1a8vXTQyxiIxj98oad48KaF7sHUs5WKDcZY0g2ieesnasIY434SZOj42mTS7mNdHnVk0ic121L6nJVrj6ccwkdPyxFisRhOnTqFI0eO4OjRozhy5AhOnjyJaDQKAFi8eHHKpRVGEolEsHnzZmzcuBGnTp1CT08PysrKcN111+G73/0ufvzjH+OKK65QUI08RFGUdNOG6ekjiiJaW1tx1113ZdsV2ZhMJsyZM0f1PQJSJdPfrZrtKWlbCVtybOipz+sBk8mEO+64A/X19dl2ZVIM3ZiuoKBgzPzjdDoBAP39/aM2fJ8+fTpmzJiBGTNmjLtxdzISD1cTD2NHMl4+rKysxO23344LFy5I19FkFBYWYsGCBUlvZq1WK+655x6EQiGEw2EEAgHs2rULixcvRmFhIQoLCxVbtpzYYHzmzJkAhk+SpLPh+5QpUxAOh6UVPalisVhw7bXXor+/H06nE+Xl5SlpNBgMKCoqQlFREfx+Pw4dOoQZM2bAZrON8uv5558fc3XO1KlT8dWvfjXjN3lLly6V+rrVah025mKMobm5WernCT+VWrVx5ZVX4ktf+hLuvPNOuN1uRCIR5OXlobS0FN/4xjfw8ccfj/quhk5KTbQ6Te64Ye/evfjxj3+MGTNm4OWXX056PiabNFGDeDyO/v5+RKNR9Pf3Jz3G6XSirKwMHo8HBoMBZWVlmDZtWtJzPIEoijAYDJNeSZLqtdblciXt762trZg1a1bK7dIYKDNtE8qhp3jwpoXuwdSzNZ4Nh8OB9vZ2CIKAsrIy3HjjjSgoKFC0fa3g9/u5ngQBRo+vtQqPOjLpk5ptKX3OyrXHUw6h0lgZYtu2bXjsscfGrTGY7kTImTNnsHz5chw/fnzMY6688kqsW7cODz300KTtq0F1dTUeeeQRmEwmdHd3pz1JQ6WxtA2VxiII7ZNK6aHJMLJcopKlsZKRbmmixGTGmjVrcNddd6Grq2vC0lhDS1qN9Qb6WIwsT5WoWxyPx5P6NvTmVS3GKo2VjGuuuWbUhFFeXh6eeeYZvPvuuym3+eCDD2L16tX40pe+NClfAaCvrw9NTU3jHmM0GvHAAw9M2nZDQ8Oot/hH8uUvf3nURIhapbHGKmc2EsYY/H4/PB4PGGPIz8/Hk08+iXfeeUe2D5s3b8b3v//9pH+Lx+PYv3//uJ9Xu0xXAoPBMGHJMLPZjJqamgknz26//fZh5TaSTYyNV26rqKhoUptIzpw5EzfeeOOoyRCPx4Pz58/D7/fDYDCgpKQE8+bNQzgcRm9vLwRBQFFREaZPn44pU6ak3N5ILl68iLa2tqR/W7hwIUpLS9O2TRAEQWQGp9OJU6dODfud1WrFXXfdNemXfeTCQ2msgYEBXL58WZG2CGKyUGks9aEVIRnC7XarstFSR0cHvva1r6GrqwvA4M3cAw88gLlz58LpdOLjjz9GKBRCb28vKisrsWvXLnz1q19V3I/J4HK58A//8A8AgJ/+9KdcrVTRGrFYTHqzlce60ZMhLy8P5eXlcDqd0gai2STT362a7SlpWwlbcmzoqc/rgVgsBq/Xiw0bNiAajaa8v0hHRwe+8pWvqOxd6qSTfxJviv/qV7/C1q1bJ92mxWIZcwXB1KlTMW3aNJSWlkr9fGR5qpElnOSg5nkVj8cRDAZRVlY2qqQXALz11lvIz8+fcCItMfH0f//v/0UgEEAsFpu0r0VFRZI/Vqs16c19cXHxmJ/XSv75/e9/j2XLlqW0OfrQFS8J3nzzTfh8PuzZs2fUJF0qkwbAYLySxTuB0WjElClTxnzj8vrrrx9zZUQCpcYNqeiJRCJwOBzDJjCSTWgkxvrjTXQmK7eV6JfxeHxSD526urowc+bMYSuUQqEQTp48KX0njDG43e5RK/f6+/vR1dWFhQsXjposS7Wvj/fdJZukHQsaA2WmbUI59BQP3rTQPZh6tsaykWz8HgwG4fP5UFJSolj7hHJMNJ7VCjzqyKRParal9Dkr1x5POYSPnpZDTJ8+HX/zN3+DVatW4YMPPsBTTz0ly94PfvADaRJk9uzZaGhowL59+/DGG29gx44daGtrw9e+9jUAQDQaxSOPPKJqPeiJiEaj+P73v4+2tjZcf/31WL16ddZ80QM+nw+vv/76pN4e5JWioiL8/Oc/H/YwJptk+rtVsz0lbSthS44NPfV5PTA0Hon9RVL5mTVrVrZdH4ac/HPw4EH09vamdOzs2bNxxRVXoLS0VPq58sorMW/ePMybNw+33XYbHnjgAdx999147733MG3aNOk7U7OWarrnVSqD2EgkgmPHjo35wDuxh4fL5cKlS5fw/vvvY+PGjaN+ampq8Pzzz8NoNGL//v1p5YCCggKUlJTg2LFjSVfhGAwGXHvttWN+Xiv5Z7J7uozEarXid7/7HWpqakbFYdeuXXjwwQcntHH//fdPuCpprL2ATCYTrrzyygnbyPS4YcWKFVi+fLn0881vfhN///d/j9bWVqk/nT9/HgCkUlvJ+lliEvXll18e9rux+uVEjFyJ1N/fP6kJ3Y6OjlG/pzGQerbStaGV/JMr6CkevGmh/KOerbFsjPXiwdA9vnjrJ6nAGENXVxcaGxulPeL0gpxxA0/wqCOTPqnZltLnrFx7POUQKo2VIRwOByKRyKgb7JUrV2LVqlUAJl8a64MPPsC3v/1tAINvlx09ehS33XbbqOMCgQC+8IUvSBeyf/zHf8RvfvObUcc999xzWLNmTcrtDyUajU5Y9zoej+Oxxx7Dpk2bUF5ejv3798ve9DHXS2MxxhAOh1FQUDBujWheGVoay2AwoKCgAOFwGIyxrMcy09+tmu0paVsJW3JsaL3P64104zFeOaBMl8ZK1EIGIOWfyXLgwAHMmTNnwtJYqfqqlfwjiiIOHjw47neW+NvixYtTetNJEAQcP358zNUhibrVU6ZMSeu7icfjuHz5Mvx+/7A9Vmw2G6ZPny69+ZiM8b4nnkpjbdy4Ed/61rdklSVyOBw4c+ZM0r/FYjH87ne/w8cffzzuaofCwsJxV34xxtDR0QGHw4FgMAij0YiSkhJcd911KCoqwt69e/Gtb31rzJvDkeOGZMyfPx/PPffcuJuuK8FQ3UajEUuWLJnwpnZouS3GmLTKabL9eu7cubjmmmukf58/fx6dnZ2T8v2+++6T/s0YQ2dnJ3p7e2EymVBWVoarr7466fnb0tKC9vb2pHa/8IUvjLsqaCg0BspM24Ry6CkevGnRyhgo07bVzD9jPYMqKirCnXfeqVj7Q/1obW1Fb28v4vE4ysvLcf3118NoNCpaGuvChQvDJvsNBgNuvfVW5OXlab40lpxxA0/wqCOTPiVrS6nSWErnNrn2Rn6eSmPlAKmUJ5gsf/jDH6T/X7FiRdJJEGBww9QXX3wRP/zhDwEAr7/+Ol588cVRN+OFhYWYNm1aWr5MdCIwxvC//tf/wqZNmzB16lR89NFHsidBiOEb/modxpgi+wsoRaa/WzXbU9K2Erbk2NBTn9cDeohHYi+FzZs3p23D4XAgLy8PDodj2MbT6aKV/GMymXDTTTfh7NmzYx5jNBpx6623przc22Kx4Etf+hJ8Pt+oVSRFRUWwWq2yBvNGozHtiQc99PdUmT59OlwuF3p6eob93mg0YuHChXjttddw+vTpSe1/MRKDwYBrrrlm2EP8oRQUFOD+++9Puok5MHzcMHKD95Hlpx588MEx7SjB0E3Vf/azn6X0Zl8kEkFzc7N0jzB16tQJXypSg6G+MsZw+vTpYavcBgYG4HK5sGDBAtVKRNAYKDNtE8qhp3jwpkUrY6BM29bTPdjFixeHTaJ3dHRAFEVFnw+JojjqpQDGGNrb28d9Kcnv9ysyllcbg8GQlTGD0vCoI5M+qdmW0rlNrj2erjVUGkuj+P1+7N69W/r3T37yk3GP/973vifVDx4YGEi6QeWvf/1r9PX1pfUzUf3gn/3sZ3jzzTdRXFyMDz/8cNjbvkT6eL1evPLKK/B6vdl2RTbFxcV4+umnx63Pnkky/d2q2Z6StpWwJceGnvq8HtBLPOx2O/7pn/4J5eXlaX3+4Ycfxr333ovly5fjySeflO2PlvLPVVddhbvvvhtz587FtddeO+znxhtvxPz587F+/fpJ2U6sDJgxY8awn8LCQvh8PlnfDeWf1DAYDJg3bx7uuusu3Hjjjbjhhhtwyy234N5775VWmpjN5lExGjoJosTbZ88++ywefPDBpJMr06ZNw3PPPYdt27aNKuOVKKWWuOFK2JmoXJdc9u7dO+bm4cl45plnsHz5cvzv//2/sXPnTqxevXrSL4WEQqG0VrIlIxgMore3F+FwGPX19QiHwwAG7x3U7Pc0BspM24Ry6CkevGnR0hgok7b1cg/GGEu6J0lidYhSOByOpNfGiVbvnj9/XpW9fZVm5HVaq/CoI5M+qdmW0rlNrj2erjV8Tb0RKXPo0CHpZCksLMTdd9897vEWiwX33nsvPvroIwDAnj17MrZp+i9/+Uv853/+J2w2G3bu3Im77rorI+3mAhaLBRUVFdzMrMpBEATs27ePm1Uhmf5u1WxPSdtK2JJjQ099Xg/oJR5lZWV45JFH8Ktf/WrUG+4JMrnBu9byT2Fh4Zgbt0ciEUW1yPU1V/LPyM2v08FgMMBmsw3biHsyKPFig8ViwfPPP49IJDLq3CwpKYHH44HNZkNeXt64q68Tdq6++mq8//77eOaZZ2T7Nha/+tWvJv2ZxBioubkZkUgEzz//fNLjRn4PU6dORVdXF/r7+3HDDTfA6XSmvGdRMhI3pyaTCXPmzBn2lqLX65VVbm08aAyUmbYJ5dBTPHjTorUxUKZs6+UeLBgMDitNmiAej485Bk92rMPhgNvthtVqxYwZM2AymYZds3jac0INkl2ntQiPOjLpk5ptKZ3bsnkPpjT89DZiUpw+fVr6/9tuuy2lE+eLX/yiNBEy9PNq8uSTT2Lt2rWwWq147733htUgJuRjNpuxcOHCbLuhCJFIBMePH8+2GxKZ/m7VbE9J20rYkmNDT31eD+glHkN18LAqjfKPevbUyj9TpkwZ9y3D/Pz8pKtnExubK/kSQElJScrlqdJlvJXACWbPni2rjaErShKrT0YyZcqUSdm0WCy45ZZbRpXSyjZDx0AHDx5EJBKRYhiJRNDV1YWXX3551Ph9aAmwU6dOyfYj8fZssoklNbeV1EoOyuYYSC/XW72gp3jwpoXGQOrZ4v0eLJXrTDwex+HDh4e9Qd/a2gpg8MWcm2++mYuxvNpM9AKIVuBRRyZ9UrMtPd2DKQ2VxtIoQ+txp3qjOXSj9rE2wFSSZ599Fv/2b/8Gi8WCHTt2YPHixaq3mWuEQiHs2rVrVB11LTJlyhR861vfmvRDDbXI9HerZntK2lbClhwbeurzekAv8UhFx4wZM2SV1bFYLCkPdCn/qGdPrfxz5ZVXjvvZK6+8MmmpqMQeNUpy0003KWovGeNtKg8MvqQz0TETUVRUNO7fo9EoLly4gPnz5+NLX/oSFixYkNL+L4nJA54YOgZKrPoQBAEvvvgilixZgp/85CdJX2JK7E3y8ssvK+pP4rtN9tauGmglB2VzDKSX661e0FM8eNNCYyD1bGX7HiwWi43ae2woE70UEgwGsX///jHLCAUCAZw8eZKrMktqkenrtFrwqCOTPqnZlp7uwZSGVoRolP7+fun/p0+fntJnhj6ASXXZYbp8+umn+O1vfwtg8O3aF154AS+88ELSY5944gk88cQTqvqjV+LxONxut6L1NLOF0WhEaWmpahtxTpZMf7dqtqekbSVsybGhpz6vB9SIx4ULF4b9u6enR/VNC1PRYbFY8PWvfx3vv/9+Wm0sXbo05aXAlH/Us6dW/pk6dSrmzZuH1tbWYTfyeXl5mD59Om644YYx7VZVVQEAtm7dqsgqhVRWa8jFarVi9uzZuHz58qi/zZ07F9OmTZPdxjXXXIOBgYExYzV0s3Sr1Qqr1ZpyaYFnn30WwP+svhhKYqLkmWeeQSAQGPa3xGbwfr8fS5YsmaykMUk2Bnr55ZdT3uB95CoSuSS+WyVXgTDGIIoiTCbTqElBreSgbI6BaPzDF3qKB29aaAyknq1s3oPFYjE0NTXB5XKNeUxLS8u4Nj777LMJ2xFFEX19feO2owfUuE5nAx51ZNInNdvS0z2Y0hgYTz0uB1m5ciVWrVoFAFi8eDH27duX0ue+/e1v44MPPgAwWIt49erVE35m586deOihhwAANpsNPp8vPadTYN++fXjwwQdTOvaFF17AypUr02rn1KlTWLBgASwWC0wmE+rr6zFv3jz4fD6UlJTAYDDA6/XCYrHAbDYjFAohHo+jsLAQoijC7/dL9Y49Hg+sVivy8/OlDbKsViui0SiCwaD0ZqPb7YbNZoPJZEIgEIDRaJTe4BMEAcXFxWCMwePxoKioCHl5efD7/TCZTLBYLAiHw4hEIigqKkI8HofX60VxcTGMRiN8Ph/MZjMKCgogCAJEUYTNZkMsFtOlppMnT+LOO+8EYwzFxcUQBAGRSARTpkzBJ598gjvvvFNzmvQYJ9JEmpTW1NzcjNtvvx3xeBxFRUWIRCIIh8NSLvf7/cjLy0NRURE8Hk/SHGE0GhEIBHDhwgVMmzYtI5ouX76Mn/3sZ9i3bx8MBgPMZjN8Ph+MRiOKi4vh9XpHaSopKcG3v/1t/OlPf0JBQYGm4qTHvqe2psSqxsQD9NLSUoiimJKm3bt3o6urC/n5+cMeGkejUfzyl7+EKIoQBAEFBQXj9r2jR4/ipptuUj1OCd9dLhfcbjeKiopQXl4Oo9GoWJz8fj/OnTsHt9sNk8kEURQRj8dhNpsRj8chiiK+9rWvIS8vD16vF4IgoLm5GdFoFIwx6bhIJAKLxYK5c+fi1KlTUqmyQCAAl8sFk8mEeDyOWCyG6dOnw2w2QxAEmM1mGI1GRCIRGAwG5OfnIxaLQRRFrFmzBvv27UNJSQl8Ph9isRhsNlvKcRov7z333HN47rnnxsx7JpMJNpsNbrcbwOAKnT/+8Y+YOXOm9FZhwtdgMCj1x2g0ivLyclgslmGa7rvvPgiCAL/fj7NnzyIcDg/TbjQaMXfuXAiCgL6+PuTn56OkpASBQAA+nw8GgwHhcBh5eXlSnG6++WZcc801iMViuHDhAgYGBhAOhxGLxTBr1iypj+ZajiBNpIk0kaZsaiooKIDb7UYgEMDMmTMBALW1tSgoKBiVyy0WC2699VbYbDbE43FZmgYGBnDy5Mlh16doNCq9JDTRNbegoACMsaTXp8R1JxaLDTsumSZRFDF9+nT09/dL44Ohx5lMJuTl5Y05jkj4mhhHjLzmZkvT0LERadK2pnvuuScn8l5nZycWLFiABE1NTbj11luRCfh49ZqYNEPfNkz17a+hJT3UXo5UUVEBxlhKP+lOggxl0aJFePjhhwEATqcTdrtdWhJZVVWF5uZmAEBdXR1qamoADG58a7fbJRtr166V3kKora1FbW0tgME3E9auXSsdZ7fb0dHRAQCoqalBXV0dAKC5uVl6qzMcDsNut0tvMVdXV6O+vh4A0NDQgA0bNgAY3HjSbrdLm1Nu2LABDQ0NAID6+npUV1ePq0kURdTU1GDHjh2a1LRjxw6pXz7xxBN44IEHYDKZsHjxYnz++edZ1XTs2DGsW7cOoijKjhMwcd87d+4cWltb8eGHHyqu6dChQ2htbcWxY8cU6Xv79++HKIqyzqfW1laIojhpTaIoYv369Th06BAAZc+nVOLE8/mUDU2NjY34j//4D4iiOClNW7Zsker3PvbYY7jjjjsADM/l5eXlePrpp4fliFtuuQXA4IsDibexE9rlaNqxYwdqamogiuK4cdq7dy/+4R/+AceOHcMf/vAH/PM///P/z967R0dxXfn+335Vt1rdLSFe4i2DjQXGGIwdsLGNlIczk4kSZkImYUhM4kxi47krKHPvsDIr82ONueve2Mxc25qZBCeOIYxNcBzsEJSHTWIL2QhLWCCBQAiBhCQk1KBXv9VdXVX9+0OrTiTRkrq7qrpPl85nLdZCUtU++1v71K7HqbMPjh07hl/+8pcoLy/HL3/5Sxw7dgz/8i//gldeeQUXLlzAkSNH8JnPfAZ2uz3hOHV2dqKiogKCIKgSp3TniNGajh07ho6ODqJJSZwqKytRVVWFjo4ONDU1pXw+yddPLa657e3t4DgO1dXVqK6uhsFgSDhOHo8HPT09KCwsxOzZs9He3g6n0wmO47BlyxZs2LABALB27Vps27YNwMis2/Ly8jHnkzyrSusc8fLLL8PlcmHJkiU4evQojEYjnE6nqnnP5XKhvr6e+N3d3U38DgQC+Oijj8g97f79+4n2zs5OtLa2Ent1dXVEU319PflS9Pr16wgEAigsLATHcejs7CT31XV1daT/t7a2ktkvfX19aGhowK5du/CpT30K5eXlmD17NgAkFafRee/LX/4yioqKUFhYiPLycnJvPFHeW7hwIcrLy4mmHTt2kMGOtrY2tLW1IRwO4+WXX8apU6ewdetWbN26Fe3t7dixYweeeeYZNDY2or29/bY4iaKIuro63Lx5kwxcd3d3o7OzE2fOnEFdXR3C4TA6Ozvxu9/9jsSmqakJbrebxOndd98lx+6NN94g/n388cdoaGhAV1cX6XuCIKC+vl6Ta64gCLhy5Yoq19xf/epX6OjoQG9vb9rv9wRBwAcffKC7+4hsvTeS72HlvJDtmlK9L9dKkxrPGjLpzBHjNQWDQXR0dFATp5MnT+K9997Db3/7W7zxxhuoqalBd3f3mDU3RufylpYW7N+/H6dOncLp06eJJjlOyWga/Q8AhoaGUF9fT7ab6poL/Pn6JL8Alq9PAOB2u9HU1ES0T6Spu7sb7733HoCRUlt1dXUQRZHEWj5eid5HZFLTtWvXIEnSmHujbNTU19cHSZJui1OmNHV0dMDj8eDWrVuq973xmqLRKDwezxhNauW9zs5OdHR04NixY6rk8sHBQXR0dOD1119X9ZkwE7AZIRlGrzNC0sV0nxESCoVQUVGBb3/725g/f37WaRo9I2ThwoX4+7//e7z00kuIRCIZnxFy8+ZNvPzyy9i5cyf5ilPLr394nsePf/xjfOc730FeXp6qmoLBIF5++WU8/fTTsNvtivre9evXsX//fuzcuRNWqzWl86m3txcHDhzAzp07ASApTX6/HxUVFXj66acxd+5c3X2llW1fnt26dQv79u3Dzp07kZeXl7UzQm7cuIFXXnkFO3fuhN1uz3ic+vv78aMf/Qg7d+5Efn6+5n1PzRwxXtPQ0BBeeeUV/MM//APMZrPivuf3+/GTn/wEO3bsgM1mSzpO3d3dJP+YTCaqrrknT55EMBi87cuzW7du4dvf/jZ1M0LSmfcsFgv8fj/cbjfC4TDy8vJgNBpx6NAhfPe738WMGTNSmhGixheCfr8fQ0ND+MY3vpHyjJCCggJ85zvfwX/8x39AkqQp814iM0J++MMf4uTJk7Db7fB6vQBGZigFAgEIgoDc3FyYTCasW7cO//N//k+4XC6IoohYLAafz4fGxkasX7+ezPBJ9qvHBQsWYMWKFWhqakJPT89tXz26XC6sWrUKkiQhGo2ioqIC3/zmN8mahmr1PUmSiO0FCxYoyuUDAwP42c9+hv/xP/4HTCZTWu/35BcWTz75JBYtWqSb+4hsvTfyeDyoqKjAP/zDP2DWrFlZrUnJfbkWmtR41shUjhivKRaL4T/+4z/w5JNPktmGmYzTpUuX8Pvf/x7r1q2DxWIheXl4eHjKL9hDoRA+/vjjMdfcZPpeTU1NVn2VT/tMA5/Ph4aGBqxfv57Mas1GTaPvNwwGAxVx4nkeZ86cwQMPPEBmUWnV92KxGE6fPo01a9bA4XCoOiNEEAT86Ec/wre//W3MmDFDcS6XJAn/+Z//iW9961uYPXu24mfCTM4IYQMhGSbVgZCvfOUrePPNNwEA3/3udxMaUXv77bfxpS99CcDIeiG9vb2pOU0R8kCITDpPHoZyrly5MuGiriyWDIZ+CYfDyM/PV7yYoc1mw9DQUMJrbzAYNFNbWxt3oVC3242tW7cmbOfatWsoKipS0bPsIRgM4uOPP57w78XFxWhpaUnZ/rx58zBr1izy5d9o9uzZk/CaHlpw+PBhsh4gz/MoKytLeM2Z0tJS7N69W3WfHn30UXz44YcT/r2kpET1NhkMBoMRn0TfNU2E2WzGxo0bb1vnKR1tMxjThelyb5TJd7msNFaWMnoRyps3bya0jzwlCxhZ7JHBYDAYjExgs9nw+OOPK7aTzALkDAZD/9jt9jGlYEfjcDgULyZusVgwc+ZMOJ3O2/62a9culJaW3tZGKi+MUmH0oIfb7U54EASIv2i8GsgzVhgMBoOhHdFoFH19fZovRCyvecZgMBjZDBsIyVLuvvtu8n+5Lt9UdHV1kf8XFxer7hMj/Xi9Xjz33HOk5EE2k5eXh+9///tkOl+mSfex1bI9NW2rYUuJDT31eT2gJB6HDx9GWVnZhC8tJ8Nms+ErX/kKqXGqFNr6Fcs/2tlj+Uc/xIuHwWDAqlWrYLFYxmxrtVqxcuXK236vJjabDbt370ZlZSUOHz5M/r3zzjsoLS2ddN9E74FWrFgx4d+2b9+OH/zgB/jBD36A7du3J+U7z/MYHBwkP4fDYZw8eTLuDKVkSHTWXyLnViwWQygUwo0bNzAwMEDWUFLDdqJk8h6I5R+60FM8aNPC7oGSszU4OIiPPvoIFy9eRGNjI86ePUvKAI1HSW6X95XXUoiHXFaIoT1qXaczDY060umTlm3p6RlMbcyZdoCRGqMfhJqamiAIAszmycMpLz49fn9G9mK327F582bY7fZMu6KYUCiEo0ePUvOVSbqPrZbtqWlbDVtKbOipz+sBJfHIzc3FsWPHEA6Hx8xYTITCwkJVZ4LQ1q9Y/tHOHss/+mGieDidTjz00EPw+XxkDQ6XywWDwUDqSGv5oobjOFKiSmbXrl0AJp55MdU9EMdx2LhxI5544gl885vfnLDtU6dOKfB8BHlQZO7cuRgcHMSsWbMUz6SZitGxHBwcRH9/P6LRKPLz81FYWAij0Yj29nZcv36d7MNxHO677z7k5uYmbFtNP9Ntg+UfutBTPGjTwu6BErclSRIuXrw4ZhZIIBBAW1tb3A9fLRYLiouLU/ooQN43Jyfntr9Fo1FcuHCBvOCcMWMG7rnnninfTzFSR0ksaYJGHen0Scu29PQMpjZsRkiW8vDDD5OvaIPBIOrr6yfdPhKJoLa2lvz8yU9+UlP/0o3NZoPD4QAAiKIIj8cDefkbn89HHjqHh4cRDAYBjEztHD1l3+v1kq8nQqEQeRiNRqNjRi3lhYeAkWM/PDwMYOTBUf5CIhaLwePxQBRFACM3JPIobyQSIQvVS5I0Zgqr3+8nX8+Fw2EEAoFJNVksFixZsoToyzZNgUCAlIzIyclBe3s7otEocnJyiO1MaZIkCQsWLIDFYlEcJ2DqvgeMzNSSF7pSU5MoiiguLoYkSYr73vDwMJYuXQqLxZLy+RQKhcgFP1lNFosFCxcuJPrUPJ8SiRPN51MmNMViMcyfPx8WiyVlTdFoFPPmzUNRUREKCwsxa9YsFBUVYdGiRcjPz8eSJUtQVFSEgoICzJ8/H0VFRYjFYqpq4nkeS5YsgcVioSJOBoMBhYWF5KZY676nZo4Yr4nneRQXF8NgMKjS9wRBQHFxMVlgMdk4BYNBLF++nCy+TdM1VxAE4k8sFiOLuAIjZZ3kwT+r1UpKMxmNRuTn58NoHLmllxfhTjZO2Zj3jEYjCgsLyYuW0ZoikQgsFgvmzp2L3Nxc4qvBYMCSJUvI8YpGo4hGo8jNzYXRaBzzRd7o48/zPDkOPM+PyYHjt5OPw+h4Wq1W7Nq1C8eOHcPhw4fx2muv4fXXX8cjjzwCm80Gq9WKlpYWSJKE/Px8cm90//3349ChQ6isrMQ///M/E61ms5ksnAmMzCiR84XdbicPmRaLZcwsk/z8fGIjNzeXvNDiOA6BQAB79uxBWVkZ/uEf/gE7duzAtm3b8NWvfhX/5//8H7Ig5vg+GovFwPM8uru70dPTA7fbjVAoRGIhSRLZTo6N3AfkvmexWHDnnXeira0N58+fx40bN3D9+nW0tLTgwoUL6OnpQXt7O4CRviwvIN/S0jJl37NYLLj77rsRDAYV971IJILi4mIYjca03+9ZLBYsXbp0TN/Tw30EDdfcVDRZLBYUFhaSczWbNSm5L9dCkxrPGsn0PTVzxHhNZrMZxcXF5H5I7Tj19/djeHiY7COKIiKRCNxud9w4xWIxzJo1iyzoLMdzfI4efR2T/TYYDGSBdmBs32tsbERfXx85Rr29vTh//jxEURyjSb7myr4mcs2VNY32daprbqKaJrs+RaPR27Yb7evo7TKhSRAE5Ofnw2QyZbWmaDSKmTNnwmQyURMnSZIwa9Ys0paSOE2lyWg0YtasWWTBdUC9a67BYEBxcfGY+1YludxkMqG4uJjcD8nHTukzYSZgAyFZisPhwKc+9Sny889//vNJt3/77bdJRy4oKMBjjz2mpXtpZ8OGDdiyZQsAoK+vDxUVFeTk3L9/P5qbmwEA1dXVqKysBAB0d3ePWWR+3759aGtrAwAcP34cx48fBwC0tbVh3759ZLuKigp0d3cDACorK1FdXQ0AaG5uJmVaIpEIKioqyA3BkSNHyEBUQ0MDDh06BGAkOVRUVJBkdOjQITQ0NAAYWTT1yJEjk2oKhULYv38/jh49mpWajh07Rgb0vvWtb+FrX/sa7HY7Nm3aRGYwZUpTXV0dfvzjHyMUCimOEzB132tubsbRo0fx+9//XnVNH374IY4ePYq6ujrFfe/VV1/F66+/jlAopOh8kr98TVZTKBTCyy+/TBZfVfN8SiRONJ9PmdDU2NiI//qv/0IoFMpqTUePHsX+/fsRCoWoiNPVq1dRUVFBbm617ntq5ojxmo4ePYqjR48STUriVFlZiffeew9Hjx5FY2NjynE6cuQIQqEQddfcmzdvEn9EUURdXR1CoRAKCgrw5S9/GRs2bAAArF27Ftu2bQMAuFwulJeXw+VyAQC+9rWvkbXjaMgRWp5PXV1dqKiowNDQUFKaXnvtNcyaNQtr167FwMAAvF4vHnjgAXi93jEfFtXV1REfWltbSSna5uZmMvNidJzkv8nHwe12k0XVI5EI6urqEIvFUFhYSF5S/eAHP8BXv/pVfOUrX8HmzZuxaNEilJeXw+FwoLS0FFu2bIHRaATHcejs7MTg4CA4jsPChQtRXl5OfN2xYweWLVsGAHj88cfJGkzLli3Djh07yHbl5eVYuHAhAKCsrAybNm0CAKxcuRKtra2oqqqC0WhEeXk5/vZv/xZ2ux1f/OIXIQgC9u7dG1fT3r17UVZWhpqaGvzXf/0Xtm7dihdeeAF/+MMfMDw8jFAohLq6OvKg3dDQQPqAHKdQKIQ33ngDv/zlL4mv9fX1GBoawtDQEP7whz+Qfjg0NETi5Pf7p+x7oVAIb7/9tip9780338TRo0dJ30vn/V4oFMLrr7+OV199lRz/bL3m6uHeSL6HvXr1qi40pXpfroUmtZ41ZNKZI8ZrGhoawtGjR/Hqq69qEqehoaEx16e+vj7iTzgcvk1TZ2cnWlpa0NPTc1sul49/U1MTmand3d1N/Pb5fKirqyMvMOW+F41Gce7cObS2to7Zzufz4cMPP8SPfvQjcp60tbXFzeXAxNfc0ZqSveZOpWmy61NnZ+dtmmTk61MmNZ0/fx7nzp1DNBrNek1yP6IlTteuXUNLSwvcbrfmfS8cDqOlpSXuvZG8T6p57+rVq+Q5TI1cfvPmTRw9ehSvvfaaqs+EmcAQk4drGBnhX//1X/Hss88CADZt2oQTJ04kvO/vfvc7fP7znwcw8qXZmTNncM8999y2XSgUwn333UcuQN///vfxwx/+ULnzFHDx4kWsWrUKNpsNZrMZtbW1KC4uht/vR15eHgwGA3w+H2w2GziOw/DwMCRJQm5uLgRBQCAQIF/Ueb1e2O12WCwWkuDsdjv5AkP+os7j8ZCvIYLBIIxGI3JycsDzPMLhMFwuF2KxGLxeL5xOJ0wmEwKBAMxmM2w2GyKRCHieh9PphCRJ8Pl8cLlcMBqN8Pv94DgOVquVfHnncDggimJcTYIg4Pe//z02bdqE2bNnZ52m8+fPY926dYjFYpgzZw4eeeQRvPPOO4jFYvjwww+xbt26jGkaGhrCn/70J/zVX/0VbDabojgl0vcAoKqqCo888gj5mlMtTTzP44MPPsCmTZtgNpsV9b2bN2/i5MmT+Mu//EsYDIaUzqeBgQHU1tbi8ccfB8/zSWmKRCL43e9+h0996lMoKChQ9XzSY47QWpPH48Hx48fx+c9/Hjk5OVmrqa+vD9XV1fjc5z4Hs9mc8Tj5fD688847+PznPw+73a5531MzR4zXFAgEUFNTg09+8pPka3clfS8cDuPDDz9ESUkJjEZj0nG6efMmamtr8dnPfhaiKFJ1zT158iSCwSCsViv5WpPjOBiNRvzwhz/EBx98gHA4DKvVCo7j4Pf7yTHw+XyQJAlf+cpXcPDgQWpyhJZ5z+/34w9/+AP+6q/+ipw3SjTV1tbC4/GQmTfhcJgcf57nYTAYsGzZMixcuBCnT5+GIAi3xYnneRiNRpjNZvJ13+h4Wq1WGAwGRCIRmEwmsl0gEMC1a9fIF4hz5syB1WpFJBKB2WyGyWRCNBpFLBbDc889hw8//BAOh4O8kMrLy0MoFEI0GiWzQUKhECwWC8khALBu3TqcO3cOgiAgNzcXkiRheHgYHMeRex2DwYC5c+fioYcewrvvvguj0QhBEBAOh3H06FEygyUWi2Hv3r04fvw4JEkis5HkcmRmsxmPPPII/umf/gk8z4/RLmtav349JEmCwWDAb3/7W+Tk5JDZTuFwGBaLhWgHRr7CF0UR0WiUxGnFihWYOXPmhH3PbDbj3XffxYYNGzBnzhxFfc/n8+HUqVP41Kc+BVEU03q/F4vF8Ic//AGPPPII5s6dq5v7iGy9NwqFQvjtb3+Lv/iLv4DL5cpqTUruy7XQpMazRjJ9T80cMV6TxWLBH//4Rzz00EOYMWOG6nFqa2tDZ2cnDAYDyY+CIMBqteLBBx9ENBodE6cPP/wQnZ2dZGZkItcnSZLAcRwikQiuXr2KL3/5y5gzZw7pez6fDw0NDaT0pCRJ4Hl+zLX0zjvvRHd396S5PN41d7wmta65sibZ13jXJ/maO5GmRK5PWmoKBoPo7OzEXXfdRc6TbNQUCATQ3d2NO++8E5IkUREnQRDQ1dWFoqIiGAwGTfueXPpz4cKFyMnJGXNvpDTvGY1GvP/++9i4cSMcDofiXG42m/GnP/0JDz/8MPLy8hQ/E/b09GDVqlWQuXDhQtz32VrABkIyjJKBEAB47LHHyJfRRUVF+M1vfoPVq1eTvw8MDGDr1q344x//CGBkNkhbW9uY6fTZjDwQIpPOk4ehnCtXrmD58uVx/8ZiyWAwGIzpRG1t7YSLJYbDYbz44os4ceJE3DUm5DUk3njjDcyZM0drV3VJU1MTBgYGJt1m8eLFWLp0Kc6cOUNmWqebcDiMvXv3oqqqKqn9SktLp1xjJBFWrFiBXbt2YdasWfjSl7406XorHMehsrJywjVGVq5cSfqr3+/HmTNnkvZnw4YNqq4ZxWAwGNnC5cuX0dvbG/dvS5YswR133DHmd8m+a4rHgw8+OGZtpv7+fly4cGHSfeSBfQaDMTUlJSWZdiEtZPJdLlu9KI187nOfw40bN8b8bvQCsfX19VizZs1t+/3+97/H/Pnz49r8xS9+gU984hPo7e1FR0cH1qxZg02bNmHZsmXo6+vDn/70JzJSaDab8eabb+pmEIQxUguwra0Ny5Yto2qBqVSwWCxYtmwZ2trayIh9Jkn3sdWyPTVtq2FLiQ099Xk9oJd40KaD5R/t7GVr/rHZbPjhD3+I/v5+DA4O3vb3goICcBxHxQKE6ULteMyePXvKgRCtEEURQ0NDmDFjBkwm06Tb2mw27N69G9/4xjewffv2hOwfPHgQixcvHvPcMRmT3ZNdunQp4cEUeeH18YvHyzQ3N8PhcMBiseDq1asQRXFK/cmil3sg2q5T0x09xYM2LeweSB1bg4ODtw2EJHOtGY+8byrP6WwQRH2UxJImaNSRTp+0bEtPz2Bqw9YISSPNzc04d+7cmH9yHWdgZPGu8X8/d+7cpF9aLVy4EO+//z4ZQInFYjhx4gReffVVHDt2jAyCzJ49G0ePHh2zrggj+wmFQqRWaLZjt9uxefNmal7ipPvYatmemrbVsKXEhp76vB7QSzxo08Hyj3b2aM4/Uz0UWCwWcByHwsLC2/5N9MW9nlE7HoWFhVi6dGlC26p9rxKNRtHS0pLUC6ZkYi5vu2jRooS2T+c92a1btxAKhfDuu+9q8iGMXu6BaLtOTXf0FA/atLB7IO1spXKtGb+vvOgyI7MoiSVN0KgjnT5p2ZaensHUhpXGSiNFRUVkMaFkuHbtGoqKiibdhud5vPHGGzh8+DAuXryImzdvIj8/H0uXLsXf/M3f4Jvf/CapO6wnWGms7IaVxmIwGAwGY4T29nZ0dXVN+Pe77roLV65cmdTGAw88AIfDobZr04qGhgaylsN45NJYQ0NDOH/+PJQ+RuXk5CASiUCSpIS2z83NxfLly9HQ0AC3242tW7cmtN/hw4exatUq3HnnncjPz0/r17mHDx+ecEaIzKxZs7Bw4UI0NjYmbZ+VxmIwGNOVyUpjOZ1OrFu3bszvMlUai8FgJA4rjaU9rDRWGuno6NDMNsdxeOKJJ/DEE09o1gaDwWAwGAwGQxuKiooQCATilr4qKirCjBkzMuDV9GP04uLjycnJAQDMmDED99xzD7q6uuD3+1MaEMnJycHq1avR1taG/v7+hPYxGAzIy8vDHXfcAZ7nwXHcpDPHgZFnhIKCAgAjZbU++9nP4tixY0n7qyX9/f0IBoOZdoPBYDAYDAaDoXNYaSyGLrDZbOQLSFEU4fF4yEOpz+cjD4nDw8PkQUsQBHg8HmLD6/WSKWmhUIhM2YpGo2MeiD0eDwRBADBSzkyeHsrzPHw+H4CREmUejweiKAIAAoEAWQA1EomQBTYlSYLH4yFfAvr9fvKVXjgcRiAQmFSTx+PBs88+S9aeyTZNgUAABoMBwEiZt3/9139Ffn4+cnJyiO1Mabp58yaeffZZokVJnICp+15fXx+effZZ9Pb2qq5J1nLz5k3Ffe/69evkuKR6PnV1dREbyWqS+7xcVlDN8ymRONF8PmVC061bt0gss1nTjRs3iA4a4tTf30/8USNO6cwR4zXJx7a/v1+Vvud2u/Hss8/i1q1bKcVpdP6h7ZorCAKWLFmCT3ziEyguLsaCBQtQXFyMhx9+GLNmzRpzXZT9jsViCIfDxNdAIJDx8yldeW9gYADPPvsshoaGVNU0e/Zs0pbsA8/zkCQJBQUFRNOsWbOwdu1a3HfffVi/fj3ZTj4O8eJkNpuxevVqrFixAvfddx9ycnLIrO/q6mqEQqEx8YxEIuR4RaNRYq+wsBCSJGHjxo0AgLy8PFJazW63k5JWFosFn/zkJ0lpLI/Hg71796K0tBS5ublkYIfjOLhcLgAjgy2LFy8m92QOh4PMuLBarXA6nQAAo9GI/Px8GI0jj5NOpxNWqxXA2PtyWXskEoHb7cb169dx48YN8DyPaDQKnucRDofxzjvvjOlT4XB4jHY5ZqIokn4jx3Oyvieft11dXYr7Xk9PD5599lkMDAyk/X5P1nH9+nVyXLP1mquHeyM5HvIgZjZrUnJfroUmNZ41kul7auaI8ZqGhobIeatVnORcKrc7+rozPk6BQADV1dVj7hXG30dEIpEx1zHZ71AohOrqauLv6L4n53L5GI3O0Ynm8vHX3Ik0jd9usmvuVJpkXye65tKsyefzobq6GuFwOKs1eb1eooOWOMnnSTAY1LzvDQ8Po7q6Gl6vl/iqVt6Tnydv3LihSi4fHBzEs88+i+7ublWfCTMBGwhh6IINGzZgy5YtAIC+vj5UVFSQk3P//v1obm4GMPKQWVlZCQDo7u5GRUUFsbFv3z60tbUBAI4fP47jx48DANra2rBv3z6yXUVFBbq7uwEAlZWVqK6uBjCyBsz+/fsBjCSOiooK9PX1AQCOHDmC2tpaACMlFw4dOgRgJDlUVFSQZHTo0CE0NDQAAGpra3HkyJFJNTkcDqxYsYL4kG2ajh07Rh6at2zZgpMnTyIQCGDTpk04e/ZsRjW1tbVhxowZcDgciuMETN33bt26he3bt6O2tlZ1TRcvXsT27dvR1tamuO+99dZb2LhxIxwOR8rn0y9+8Qts374dDocjaU0OhwNz587FxYsXAah7PiUSJ5rPp0xoun79OnJzc+FwOLJaU3V1NVasWAGHw0FFnOQbWflFotZ9T80cMV5TdXU1tm/fDq/Xq0rfO3v2LLZv347r16+nFKcDBw7gS1/6EhwOB5XX3AMHDsButyM/Px+/+MUvAIy8pD5y5AjOnDkDAHC73WhqaiLa6+rqiK9vv/12xs+ndOU9+aFOHgBQS1NBQQGKi4tRV1dHfGhvb0cgEIDVao2rSV5kvbm5mRyHeHGSB1N+/etfkzJQ9fX1uHbtGrZt24Y777wTdXV15KG0oaGBHK/Ozk5ir7e3F3V1ddi1axdKS0uxY8cOLFu2DADw+OOP4/HHHwfHcfjiF79IBkvkOPl8PuzevRv/9//+X/z1X/81AGDlypV48sknAYwMdjz55JM4duwYVq9ejR/84Af4/Oc/DwBYu3Yttm3bBgBwuVwoLy8nAyjbtm3D2rVrAYy9L/f7/airq8OXv/xlbN26FWfPnsW//du/oaysDG+++SZaWlrAcRyWLVs2pjRWfX09GeRqa2sjMRsaGkJ9fT3Z7uWXX5607zkcDmzduhUHDhxQ3PeOHz+O7du3Y3h4OO33ew6HAxs3bsRbb701pu9l4zVXD/dG8vVZvl5nsyYl9+VaaFLjWSOZvqdmjhivyWKxYPv27Xjrrbc0i1Nrayspv97X10f8EQThtjj19fXhvvvuw9DQ0IT3EU1NTXC73cQ/2W/5Za7ZPFJUZnTf6+zsRGtrKzlGdXV1RFOiuXz0NXciTaIooq6ujrz8neqaO5WmUCg06TWXZk2tra2YP38+OI7Lak2NjY1YsWIFOI6jJk69vb2477774PP5NO97JpMJ9913Hy5dukQ0qZX3vF4vtm/fTp7HZL9TzeWSJGH79u2orKxU9ZkwE7A1QhhZjVxXzmazwWw2o7a2FsXFxfD7/cjLy4PBYIDP54PNZgPHcRgeHoYkScjNzYUgCAgEAsjPzwcwciNrt9thsVhIgrPb7YhGowiFQsjLywMwMrrqcDhgNpsRDAZhNBqRk5NDvmhzuVxkdNvpdMJkMiEQCMBsNsNmsyESiYDneTidTkiSBJ/PB5fLBaPRCL/fD47jYLVayei+w+GAKIq61HT+/HmsW7cOsVgMLpcL4XAYPM8jJycHH374IdatW5d1mvQYJ6aJaWKamCamKfOaeJ7H+fPnIQgCRFGE1WpFLBZDJBKB1WqFwWBAcXExZsyYkTWaaI7T0NAQrFYrLBYLeJ6fUlN9fT28Xi+MRiPMZnPcOM2cORMPPvjgpJp6enrQ1tYGg8GASCQCs9kMk8mEaDQKu92OjRs3QhAE+P1+XL16FcFgEH6/H36/H0ajkbysmjNnDtnPZrORdTgCgQCuXr0KnufB8zxeeOEFnD59GiaTCT6fDwaDAbNmzcK9996Lf/qnf4LRaITRaMSNGzfwne98BxzHkbZcLhd8Ph8kSYLT6QTP84hEIuS+PBAIYPny5bh16xa8Xm/c+71HH30U//zP/wxJksDzPJl9Eg6HYbFYiAZgZNBLFEWiCQBWrFiBmTNn6qrv6fF8YpqYJqZJfU1tbW3o7OyEwWAg+VEQBFitVjgcDtx5551jNNXW1k54fZLvIyKRCEwmE9lOkiRwHEdy9COPPEI+FLTZbORlcSwWG7Ndsrk8HA6D4zgYjUbwPB9Xk+zr6O0mu+Ymqmn0dqOvuUwT05QJTevXr58Wea+npydja4SwgRBGVjPdF0sPBoOorKxEWVnZmEXLsoXRi6Xn5uairKwMlZWVCAaDGY9luo+tlu2paVsNW0psZHuf1xt6iQdtOlj+0c5eNuefUCiE06dPT7rNdFosPdPxGM/Nmzdx6dKlSbeZN28e7r777tt+P1pLNBqdcNFwh8OBBx54gPzM8zxOnTqVkH+zZs3CqlWrEA6HyRd/o+2MXpvG6XTi2rVrWL58OSmrlczi7MnAcRzefvvt29pLlKkWS9fLPRBt/X26o6d40KaF3QMlbivZxdKPHz+O1tbWlHItz/NobW3F3/7t32LOnDnk92yx9MwgxyOVWNIEjTrS6VO8ttRaLJ32ZzC2WDqDwUiJ8fWZs5nxNVczTbqPrZbtqWlbDVtKbOipz+sBvcSDNh0s/2hnj+Uf/UBbPObOnQuLxYK+vr64L6aMRiPmzZsXd99UtXAcl9CC6fK2AOIOGnAch8LCQvKz/KWkvI6blsjr72jVnl7ugWjr79MdPcWDNi3sHkg7WwaDIeVcK+8rtz84OIgrV66QMpWM9KIkljRBo450+qRlW3p6BlMbNiOEkdVM9xkh2c7oGSHjYbFkMBgMBuPPsBkh2YMkSejo6MDg4CAEQYDT6cTChQtJyYLJ8Hg8Cc8IAUbqLifyOHfvvfdi5syZAIDGxsaEF6qcO3cu5s2bh/fffx9f+tKXEtonWQ4ePIjFixentO9UM0IYDAZDryQ7I+TEiROK23zwwQfR3t5O1sZiMBjqotaMENrJ5LvczA/FMBiMlOF5Ho2NjQl9CUg7HMdhzZo1VE2JTOex1bI9NW2rYUuJDT31eT2gl3jQpoPlH+3sZXP+kRcFnwxarqHpINPxmAyj0YilS5figQcewIYNG3DPPfdMOgiipRaDwYClS5eSQRAAKCgomHQfURThdrshiiL5gu/RRx/VrH99+9vfxk9+8hN4PB643W7yT+v7FkEQ0N7ejrNnz45Z0DQVW2r4o3XbDPXQUzxo08LugbSzNTq3p7pvb28vGwShACWxpAkadaTTJy3b0tMzmNqwgRAGI4sJh8M4ceIEwuFwpl1RjM1mQ0lJCTVf9aX72GrZnpq21bClxIae+rwe0Es8aNPB8o929rI5/1gslklfpjudzmk1EJLpeKjJaC2T3Qfl5OQkZbe4uBiPPPLIbbMtFixYgBkzZky4nyAI6OjoIAuvA0BeXh42btyYVPuJYrPZUFhYiO3bt2Pr1q3kX1lZGfbs2aPJPYcoijh37hy6urrg8/kwMDCAlpYWdHV1JW1LDX+02o+hDXqKB21a2D2Qdrbi5fZk9+3s7Ey5fYZ6KIklTdCoI50+admWnp7B1IaVxmJkNaw0VnbDSmMxGAwGg5E4kUgE58+fRzAYHPN7u92O1atXU/MxAUMZZ8+ehc/nu+3399xzD2bPnj3md5OVxpqsbJQkSfD5fPD5fAiFQhPOhhi9wPs777yDvXv3oqamJq1f9K1YsQK7d+8GMDKbZfSA3yc+8QkEg0H4/X7Y7XbMnDkTFosFgiAgEonAbrfHrb09MDCApqam235vsVjw8MMPU1WvnMFgMOKRidJYDAZDW1hpLO1hi6UzGFlMLBZDJBKB1WrN+gc2g8EAq9WKSCSSUK1rrUn3sdWyPTVtq2FLiQ099Xk9oJd40KaD5R/t7GV7/rFarXjggQcwPDxMvqiyWq0TvuzVMzTEQy3Ga7n33ntx6dIlDA0NIRaLgeM4LF68+LZBECXIJa/y8/MxODg4ZiAkFotBFEWYTKYx+6xfvx67d+8Gz/MYHBwc8zd5gKKrqwvbt29Pypep7gEvXbqErVu3Ahgp/7Zx40bs2rULNpsN586dQyQSIdtyHAebzQa/349YLAaTyYTFixdj8eLFY/rJ0NBQXF+i0SjC4XDc2TeZvAfSU3/XA3qKB21a2D2QdrZG5/ZU7oFS3ZehPnqJB4060umTlm3p6RlMbVhpLIYusNlsZHFQURTh8XjIg5TP5yNfrQ0PD5OvKAVBGLNQpNfrRTQaBTCyIGkoFAIw8kDk9XrJdh6Ph0xdCwaDGB4eBjBS807+ei8Wi8Hj8ZBaf4FAgLywiEQi8Pv9AEa+xvN4PJAkCQDg9/vJw1w4HEYgEJhUk9frxfPPP0++BMk2TYFAgCTBBQsW4Pvf/z7y8vKQk5NDbGdK061bt/D888/D6/UqjhMwdd/r7+/H888/D7fbrbomWcutW7cU973u7m5yXFI9n65fv05sJKtJ7vO3bt0CoO75lEicaD6fMqGpr6+PxDKbNfX29hIdNMRpYGCA+KNGnNKZI8Zrko/twMCAKn3v5s2beP7559HX15dSnEbnn2y95vI8D1EUUVBQgPz8fESjUeIrDedTuvLe4OAgnn/+eeJvNmu6ceMGnn/+eQwODsLj8cBsNmP16tVYvXo17r//fjz00EOYOXPmhJrC4TDxIRqNEn3JaJL9icVi8Pl8qKmpQSQSGTPoZrfbcffdd4PjOMydOxf5+fmYO3cuCgsLEYvFIAgCGYiQ78tNJhPy8/PJ/Z7L5SIzOnJycpCbm4u8vDx8//vfx6JFi4iveXl5ZF0cu90Ou91O/Dt79iz27t1L4ikfV57nEQwG4fP5yIyQYDCIn//852hubh4TJ1m7vJ1se/SxnCpO6bzfk/NPd3e3qn1PzzlCS01yPOS1ErJZk5L7ci00qfGskUzfk2N5/fp11TV5PB5y3moVJ57nyT6iKI7JZ+PjFAwGUVNTg2AweFvek49/JBIhtgVBGON3TU3NmOMy+rojbydJ0pjSNxNdn0RRvG270bl8Ik3jtxvta7KaZF9Hb5ctmvx+P7lOZ7Om0fcbtMRJPk9CoZDmfS8cDqOmpgY+n4/4qlbek58ne3t7VcnlQ0NDeP7559HT06PqM2EmYAMhDF2wYcMGbNmyBcDIi7mKigpycu7fvx/Nzc0ARsoHVFZWAhi5yaqoqCA29u3bh7a2NgDA8ePHcfz4cQBAW1sb9u3bR7arqKggDyGVlZWorq4GADQ3N2P//v0ARhJHRUUF+vr6AABHjhxBbW0tAKChoQGHDh0CMJIcKioqSDI6dOgQGhoaAAC1tbU4cuTIpJqcTidWrVpFfMg2TceOHYPVagUAbNmyBVVVVfD7/di0aRPOnj2bUU1tbW2YOXMmnE6n4jgBU/e9vr4+PPXUU6itrVVd08WLF/HUU0+hra1Ncd976623UFJSAqfTmfL59Itf/AJPPfUUnE5n0pqcTifmzZuHixcvAlD3fEokTjSfT5nQ1N3dDYfDAafTmdWaqqursWrVKjidTiriJN/IOp1OVeKUzhwxXlN1dTWeeuopeL1eVfpeQ0MDnnrqKXR3d6cUpwMHDuDv/u7v4HQ6p901V295T35Yk1+qZ7Om48eP46mnnkI4HB4Tp4MHD6K9vR0Gg2FSTfX19WSGQ1tbG9F37dq1hDS1tbURf0RRRGNjI1asWAGO43Dq1Kkxmn7zm99gzZo1iEQiqKurI76OXmx89H357NmzUV5eTu73nnzySaxcuRIAsGnTJpSVlcHv9+PYsWN48sknia87duzAsmXLAACPP/44Hn/8cQDAsmXLsGPHDlKeq66ujhzX1tZWUr++r68PDQ0N4DgO9913H44cOTImTpcvXwYAuN1uUiJL1iQ//Ccap3Tc7zmdTpSUlOCtt94ivrIckTlN8vVZvl5nsyYl9+VaaFLjWSOZvud0OvGNb3wDBw4cUF0Tx3F46qmn8NZbb6UUp3fffRetra1455138Nprr2Hr1q23xSle3gNGXoSOj1NfXx/WrVuHoaGh2/JevFze3d1N/JZf5sozBRsaGojtzs5OtLa2kmNUV1dHNE10fRoaGkJ9fT3ZbqpcDoxcn+rq6sjL3+bmZnIc4uXyqTSFQiHU1dWRF8HZpKm1tRULFy4Ex3FZramxsRGrVq0Cx3HUxKm3txfr1q2Dz+fTvO+ZTCasW7cOly5dIprUynterxdPPfUUeR6T/U41l8diMTz11FP47W9/q+ozYSZga4Qwshq5rpzNZoPZbEZtbS2Ki4vh9/uRl5cHg8EAn88Hm80GjuMwPDwMSZKQm5sLQRAQCASQn58PYORG1m63w2KxkARnt9sRjUYRCoXIAqUejwcOhwNmsxnBYBBGoxE5OTngeR7hcBgulwuxWAxerxdOpxMmkwmBQABmsxk2mw2RSAQ8z8PpdJL6zC6XC0ajEX6/HxzHwWq1IhwOQxAEOBwOiKKoS03nz5/HunXrEIvF4HK5EA6HwfM8cnJy8OGHH2LdunVZp0mPcWKamCamiWlimpgmpolOTdXV1RgeHobFYoHJZCJfClosFqxbtw6SJE2pye1249y5c7BaraR0AcdxpHxWcXHxGE2iKKKhoWFMiYNIJAKTyYT+/n5885vfhNlsRiAQgMlkgtPpJDMHx9/vGY1GBINBmM1mOBwO8pVgXl4eQqEQotEomQ0SCoVgsVhgt9vh9Xpx+PBh5OfnE195nofBYIDFYoEoihAEgWgCgMcee4zE6dq1axgYGIAgCBBFcYz2Rx55BA6Hg/U9polpYpoypikQCKCpqYl8/R6NRpGTk4P77rsPAOBwONDW1obOzs4J815hYSGWL19ONNXW1sJsNsfNe+NzubydJEngOA6SJIHn+THbmc1mct2RyzjK28nrU4XD4bjXJ1nT6O0SyeWjr088z8NoNDJNTJOuNK1fv35a5L2enp6MrRHCBkIYWc10Xyw9EAjgyJEj2LJlCylBkE2MXizd4XBgy5YtOHLkCAKBQMZjme5jq2V7atpWw5YSG9ne5/WGXuJBmw6Wf7Szx/KPftBTPJRomWhhdQB49NFHb1vnIx6Dg4M4f/48+ZnneTQ3N2PlypVYsmQJWSxdxuPxoLGxMa4tnudRVlaW1GLq4+8BE+Xw4cMoLCycdBtZy5o1a8YsQDrZIsOf+MQnyODLaDJ5D6Sn/q4H9BQP2rSwe6ARvF4v+eoa+HMue+yxx3D//fcDmDyPASPrLz3yyCPkOnD8+HGS2+XZlIky+rqQ7L4M9dFLPGjUkU6f4rWl1mLptD+DZfJdLiuNxWBkMWazGUVFRTCbzZl2RTGCIKCjo4NMu8006T62Wranpm01bCmxoac+rwf0Eg/adLD8o509ln/0g57ioUTLrFmz4v5+xowZCQ2CxEOeCWI0Jv+oKC9mPhkrVqwY87OW94BKtIwnk/dAeurvekBP8aBNC7sHGuHatWtjfpZz2eDgYMI2YrEYKcsz2kYq+VDNXMpQjl7iQaOOdPqkZVt6egZTGzYjhJHVTMcZIYIg4Pr165l2QxU6OjrwyU9+Mu7fpkMsGQwGg8FgMJQQi8Vw+fLlMS+7HA4HVq9enfCXjONnhIxm3rx5Sc0IkX363//7f5N1PGTkQZInnngC3/zmNxPybTIOHjyIxYsXJ7y9y+XCvHnzMG/evJRmhDAYDEa6OH36NCl9Mx75i/GpZoTIPPbYYzAajThx4oSKHjIYDC1Qa0YI7WTyXW7mh2IYDEZSdHd3Y+nSpQAAq9WKtWvXkjrN2QxtWiKRCBoaGrB27VqywGe2tqembTVsKbGR7rgwJkcv8aBNB8s/2tlj+Uc/6CkeSrQYDAYUFxdj6dKlCAQCsNlsyMnJgcFgSNkfQRDgdrunLDsVj7lz56K4uJjUrx799XJBQQE4jhszaAOkfg+4fft2lJaWYteuXaTW92RafD7fhGXEEiGT90B66u96QE/xoE0LuweKj5K87Ha7MX/+/DE2kv0qW8m+DPXRSzxo1JFOn7RsS0/PYGpDz/wjBoORNBzHYc2aNdTUU1QCbVp4nkdjY2NSNa5pbU9N22rYUmIj3XFhTI5e4kGbDpZ/tLPH8o9+0FM81NDCcRwKCgpgt9sVDYIAgCiKcLvdEEUx6X3NZjMMBgNZvLSwsJD8m+geT8k9YFVVFfbu3Tvh3+NpuXz5MpIpihCNRsHzfEbvgfTU3/WAnuJBmxZ2DxSf8blMFMWEZoMAQGtrKy5cuKAotyvZl6E+eokHjTrS6ZOWbenpGUxtWGksRlYzHUtjdXR04I477si0G5ozHWLJYDAYDAaDkWmSLY01PDyMurq6uNsvXboUixcvnrQEi9vtxtatW1P2dzwcx6GyslK1j2nWrVsHh8OBaDSK5uZmeDweAEBubi7uvvtuRCIRhEIhuFwu5OfnKx54YjAYjPFMVhpr06ZNOHfuHMlNDAZDP7DSWNrDZoQwGFkMjYtLpcpoLRzHJVXzWQskSYLH44EkSVnfnpq21bClxEa648KYHL3EgzYdLP9oZ4/lH/2gp3jQpiUWiyEcDk84a8JmsyE3N/e23xsMBsycOTPp9ia6n33xxRdx8ODBKQcaeJ6fcAHhqbTE48yZM/joo49w6tSpMS8aA4EATp06hQsXLuDatWs4d+4cmpubk4pbqrGmrY9Md/QUD9q0sHug+IzOZf39/SkNgqSSD9XYl6E+eokHjTrS6ZOWbenpGUxtsv/tKYOBkQcyh8MBYGR6mcfjIcnE5/OR6VfDw8MIBoMARurxjb6B8Hq9iEajAIBQKES+wIhGo/B6vWQ7j8cDQRAAAMFgEMPDwwBGHsLkusOxWAwej4dMcQsEAgiHwwBGauP5/X4AtycDv99PaiOHw2EEAoG4mlwuFziOg8vlQnl5OebOnQtgpBxBfn4+8TUvLw8WiwUAYLfbycKPFosFeXl5ZLv8/HxSkzA3Nxc5OTkAQNoARh5u8/PzYTKZAIwsxCnXY7ZarXA6nQBuf5h1Op2kBuDoOJlMpjFf0c2fPx/l5eVwuVz49Kc/TfbPVJz6+vpQUVEBn8+XcpyS6XsDAwOoqKjAzZs3Vdcka+nr61Pc93p6eshxSfV86u7uJjaS1eTz+YgWQJ3zSY85Il2a+vv7SSyzWZPb7SY6aIjT4OAg8UeNOKUzR4zXJB/bwcFBVfrerVu3UFFRgf7+/pTiNDr/JKtJzj/y+gYsR2RW09DQECoqKogf2aypt7cXFRUVGBoaylicZH9isRh8Ph/q6uoQiUQwPDx8myaDwYB77rkHJpOJ+CpJEu666y7k5uYiHA4TvyVJGvOQH4lEkJeXB47jkJOTg9zcXHI/u3DhQuLrrFmzcPfdd2Px4sX49Kc/PeU9rFy6Sj4OoigiEokgEomgrq6O3M/JeuXjIAjCGO2yr/IxGb2d3+9HXV0dOSaxWAx9fX24du2a5vd7cv7p6elRte/pOUdoqUmOhzwAl82alNyXa6FJjWeNZPqeHMvu7m7VNXm9XnLeJhun8flsdF4+c+bMmHw2Pu/JcQqHw2O2CwaDqKurQzAYjJv3ZL2j895ov+vq6sYcF/l4yeUD5WMkbyMfl9HbjfZ1/HapaJoql0+mKd71KVs0ydcjWVu2ahrdr2mJk3yehEIhzfteOBwm9yiyr2rlPfl50u12q5LLPR4PKioqcOPGDVWfCTMBGwhh6IINGzZgy5YtAP78Als+Offv34/m5mYAQHV1NSorKwGA3PTJ7Nu3D21tbQCA48eP4/jx4wCAtrY27Nu3j2wn3ygBQGVlJaqrqwEAzc3N2L9/P4CRxDH6Ze2RI0dQW1sLAGhoaMChQ4cA/PkmWk5Ghw4dQkNDAwCgtrYWR44ciavpySefxMqVK+Hz+dDQ0IBNmzYBABYuXIjy8nLi644dO7Bs2TIAwOOPP47HH38cALBs2TLs2LGDbDf64bOsrIzYW7lyJZ588kkAI4Md5eXlmD17NgBgy5Yt2LBhAwBg7dq12LZtGwCQh1l5AGXbtm1Yu3btbXGaPXs2ysvLySDJli1b8N577+HBBx/Ed77znYzHqb29HbNmzYLL5Uo5Tsn0vb6+PuzcuRO1tbWqa2pubsbOnTvR3t6uuO+99dZb+MxnPgOXy5Xy+fSLX/wCO3fuhMvlSlqTy+XCggULyHFV43zSY45Il6aenh44nU64XK6s1lRdXY01a9bA5XJRESfZjpxHte57auaI8Zqqq6uxc+dOYk9JnCorK9HQ0ICdO3eip6cnpTgdOHAA3/zmN+FyuZLW5HK5sGbNGnJcWY7IrCZZi3wfkc2a/vjHP2Lnzp3EXrrj1NbWRvwRRRGNjY1YtWoVrFYrTp06FVcTz/N4//33sXLlSjz44INobW1FV1cX0ST7HQqFUFdXRx60Gxoa4PV6sXHjRmzatAllZWXw+Xw4cuQIuecEgKeffpq8CPjiF7+IJ554AsDE97Dbt29HZWUl2tvbAYz0+YaGBlitVqxbtw6NjY3khUFzczM5Dm63G01NTSSe8gsZAGhqaiIDn93d3Whvb8f69eshiuIYTW+//faYOP3yl7/E6dOn8c4774yJp5L7PZfLhc985jN46623iK8sR2ROk3x9ln3IZk1K7su10KTGs0Yyfc/lcuHpp5/GgQMHVNdktVqxc+dOvPXWW0nHqaWlhfx/aGgITU1NWL9+PaxWK3lxCoys/9HZ2UnaHZ3L5Ze5st6+vj6sX7+e2JPjOVnek/2W85388WRDQwM5Xp2dnWhtbSXHaHTpxPr6egwNDZHYjNZUX19PtktVUyq5fLLrU7Zoam1txeLFi2G1WrNaU2NjI9asWQOr1UpNnNxuN9avX0/etSmJ01SazGYz1q9fj0uXLhFNauU9n8+HnTt3kucx2e9UczkA7Ny5E7/97W9VfSbMBGyNEEZWI9eVs9lsMJvNqK2tRXFxMfx+P/Ly8mAwGODz+WCz2cBxHIaHhyFJEnJzcyEIAgKBAJlB4fV6YbfbYbFYSIKz2+2IRqMIhULk6zOPxwOHwwGz2YxgMAij0YicnBzwPI9wOAyXy4VYLAav1wun0wmTyYRAIACz2QybzYZIJAKe5+F0OiFJEnw+H1wuF4xGI/x+PziOg9VqRTgchiAIcDgcEEWRaBJFEWfPnoXZbCZfwMViMVitVjK6LZcrCIVC4DgOZrN5zAsDeTRa/rouGAzCZrPBZDIhEonAYDCA4zgIgoBoNIqcnBzEYjGEQiHk5OTAaDQiHA6TMlbRaBSCICAnJweSJGF4eJhsNzw8DLPZDIvFAp7nIUkSbDYb2U5e1HN4eBh33HEH5syZo4s46bHvMU1ME9PENDFNTBPTpD9Nbrcb586dg9VqRSwWQyQSAcdxZJZvcXFx0po++OADcBwHSZLA8zysVisMBgMikQjMZjOi0SheeOEFfPzxx/B4PDCbzXA4HAiFQti4cSN27twJh8MBk8lEvn7s7e3F3//938Nut5MvH/Pz8xEIBCAIAnJzc/Hggw/iqaeegiRJEEURc+fOhcViGaOJ53kYjUaYzWYIggBRFMdoH+2ryWQi20mSFFcTz/MoKSkBx3G4ePEienp6xmxXUFCAdevWIRAIsL7HNDFNTNOkmmw2G6xWK06ePInh4WFYLBaIoohoNEqqMYTD4TH5zGAwkO0EQYiby9XOe3Iul3N0LBYbs91oXy0Wy5hczjQxTUzTxJrWr18/LfJeT09PxtYIYQMhjKxmOi6WPhq/349Dhw5h27ZtpDRVtkKblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPDKtZfxi6ZFIBE1NTbj33ntRVFR022LpiTDZYumj4Xket27dQnd3NxYuXIg5c+ZMuOh5KousFxQU4Mknn8Sjjz5KvuJPldHHRZ6JBIyUhX3ssccQi8Vw8uRJ8tXqaFavXo2CgoKUY53pPsIYi57iQZuW6XoP1NfXh/b2dgwPD8PhcJByMzIT5Z9kUGJDjfYZ6qGXeNCoI50+xWtLrcXSaX8GY4ulMxiMlOA4DmvWrJnwgTGboE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CkemdYirycnYzKZUFhYSL5iVJvRa3xwHIfCwkIsXLgQhYWFkx6DgoKCpI9RMBjEyZMn8Z//+Z8p+ysz+rjEY3Td8vHI5TlSjXWm+whjLHqKB21apuM9kNfrRXNzM6njP34QBJg6/ySCEhtqtM9QD73Eg0Yd6fRJy7b09AymNmxGCCOrme4zQhgMBoPBYDAYDCXEYjGcOnWKlI4YzX333YcZM2YkbXOyGSHr168fU8c7Gfbs2YOqqqqk9+M4DpWVlZo8gMszQsLhMKmvPZ4FCxbgrrvuUr1tBoNBP6IoYmhoCNFoFDNmzCAleWSuXLmCnp6eDHnHYDBoQq0ZIbTDZoQwGIyUCIfDOHHiBMLhcKZdUQxtWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8ci0FoPBgFWrVpEvEgVBQEdHB+bNm0fqUmuJ3J4gCFNuu2vXLpSWliZs22azoaSkBEajEYODg5Nuy/M83G433G43eJ5X5OdEpBrrTPcRxlj0FA/atOjtHuhPf/oTPvroI1y4cAGXL19GXV0d+vv7x2yXyCCIGvlHiQ012meoh17iQaOOdPqkZVt6egZTGzYQwmBkMTReOFKFNi3p9kfL9tS0zW7CGaPRSzxo08Hyj3b2WP7RD3qKBw1a8vLy8PDDD+Pee+/FsmXLIEkSFixYAIPBoHpb421KkgSPxwNJkqbc12azYffu3Th48GBCbZnNZhQVFU1a4iscDmPPnj0oKyvD1q1bsXXrVnz2s5/FM888g46ODjIokoyfE5FqrGnoI4w/o6d40KZFb/dAra2tZFFjYGQGXnNzc9J5RI38o8SGGu0z1EMv8aBRRzp90rItPT2DqQ0rjcXIalhpLAaDwWAwGAwGgy4mK421adMmfPTRR3FnXSRKKgunHz58GIWFhbf9fqpyWxzHYePGjdi1a9dtJW1kFi5cCKfTiUuXLsX9e7zSWJIkwefzwWg0wul0ajLoxGAwMstEuXDlypWYM2fOpNswGIzpByuNpT1sRgiDkcWIogi32z3hwozZBG1a0u2Plu2paVsNW0ps0NZPpjt6iQdtOlj+0c4eyz/6QU/xoE2L1v4YDAYsXbqU/CxJEgKBgCZfRI5eiDTewEsgEJhyzRGe51FVVYV/+7d/m9DP7u7uCQdBRiMf2/7+ftTU1KCxsRFnz55FbW0tWSh5sv1o6SPTHT3FgzYtersHmihneDyepGypkSeV2NAyTzOSRy/xoFFHOn3Ssi09PYOpDRsIYTCyGL/fj5/85Cfw+/2ZdkUxtGlJtz9atqembTVsKbFBWz+Z7uglHrTpYPlHO3ss/+gHPcWDNi3p8KewsBD33XcfFixYgNzcXJw5cwbz589XvR2n04mnn34aTqcT27dvJ+WuOjo68Mwzz6CsrCxhW01NTThz5oyimSzysT1z5syYlwGRSAQXLlyYcj9a+sh0R0/xoE1LNt8DhcNhXL16FY2NjWhra8PAwIDinCHD87xiW0psqNE+Qz30Eg8adaTTJy3b0tMzmNqw0liMrGa6l8aKxWKIRCKwWq1ZP52eNi3p9kfL9tS0rYYtJTZo6yfTHb3EgzYdLP9oZ4/lH/2gp3jQpkUNfyYr9TK+7IPcXjgcRmNjY0L2Ey2NZTAYYLVaEYlEoPSx12Aw4LXXXsP8+fOTPi5yaaxYLIbe3l5cvnw5ro2HHnoIVqv1tt/T1kemO3qKB21asvEeKBqNQpIkNDQ0jFkIOCcnB36/HyaT6Tbb8+fPx/LlywEkVhorFotBFMW4thJFiQ012meoh17iQaOOdPoUry21SmPR/gyWyXe5E68ax2AwqMdgMExYqzjboE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGnJVA6yWCwwGAwJDVgUFBSA47gpv6KMxWJjXkwqIRaLpfxipKenB4WFhXA6nZAkaUIb0Wg07kAIbX1kuqOneNCmJZvugfx+P1paWhAMBuP+fXh4GGZz/FduN27cwIwZMzBjxoyE/ZzIVqIosaFG+wz10Es8aNSRTp+0bEtPz2Bqw0pjMXSBzWaDw+EAMFJ7zuPxkIcon89HHpKGh4fJjYogCGNqc3q9XkSjUQBAKBRCKBQCMPJA4vV6yXYejweCIAAAgsEgqefL8zx8Ph+AkQclj8dDprwHAgHyEBaJRMh0MEmS4PF4SE1Av9+PSCQCYGRqbSAQmFSTz+fDCy+8ALfbnfWaenp68OKLL8Ln81ERp76+Przwwgvw+XyK4wRM3fcGBgbw0ksv4ebNm6prunXrFl566SX09fVREafu7m689NJL8Pl8SWuS+/ytW7cAqHs+JRKnbDmf0qWpv7+fnCfZrMntdhMdNMRpcHCQ+KNGnNKZI8ZrcrvdeOmllzA4OKhK35N97e/vTylO169fJzlsOl9z9ZD3hoaG8MILLxA/sllTb28vXnrpJQwNDVERp9HnSaqa5IddSZIQDoeJJofDcZsmn8+HF198ETdu3MCCBQuIDfm4Wq1W3HnnnQBG+nI4HCYLmOfn55OXCLm5ucjJyQEwssC5y+WCy+VCeXk5Fi5cCJPJRHyQ/bNarXA6nQAAo9GI/Px8GI0jj8hOp5MMSthsNhQWFqKtrQ3Dw8NjNEUiEeJrNBol+mTtMh999BHa29vxy1/+EoFAgMRM1jRZnORj1NPTQ+LEckTmNMnXg8HBwazXpOS+XAtN6Xwm9Hg86Orqwr//+7/j8uXLZLtENEWjUZw+fZq0JQjCbed+OBxGbW0tfD5f3BzR1NSEkydPEl9H571oNDomR/h8PtTW1pLZc/Jx5Xl+zHbyMZYHgUdvFwwGUVtbi2AweNt2o/OZfBxGaxoeHsZHH3005rgkkvcm0zR+u1Q0jfY1WU3jr0/ZpMnv9+Ojjz4i2rJVk9frJTpoiZN8noRCIc37XrwcoVbeGxwcxEsvvQS3261KLvd4PHjppZdw48YNVZ8JMwEbCGHogg0bNmDLli0ARl5gV1RUkJNz//79aG5uBgBUV1ejsrISwMiihhUVFcTGvn370NbWBgA4fvw4jh8/DgBoa2vDvn37yHYVFRXo7u4GAFRWVqK6uhoA0NzcjP379wMYSRwVFRXo6+sDABw5cgS1tbUAgIaGBhw6dAjASHKoqKggyejQoUNoaGgAANTW1uLIkSOTarLZbJg9ezbef//9rNf0q1/9CsuWLYPNZqMiTnLJApvNpjhOwNR9r7e3FyUlJaipqVFdU1NTE0pKSnD58mUq4vT666+jpKQENpstaU02mw0cx6GpqQmAuudTInHKlvMpXZo6OjogCAJsNltWa3r//fcxe/Zs2Gw2KuI0MDAAv99PXtRp3ffUzBHjNb3//vsoKSnBwMCAKn3v448/RklJCTo6OlKK0/79+7F+/XrYbLZpfc3VQ94LBALw+/3ky/ps1vTOO++gpKQEgUCAijjt378f999/P2w2W8qa5Ot0KBRCXV0dRFGEwWDABx98cJsmm82Ge++9F/v378eyZctw55134syZMwiHw1i0aBF6e3vx0UcfARgZAKuvrwcA7Nq1C+Xl5SgqKgIAlJWVYdOmTQCAlStX4sknn0Q4HEZNTQ3+/u//HrNnzwYAbNmyBRs2bAAArF27Ftu2bQMAMmjicrkAANu2bcPatWsBjDxr/OVf/iVmzZoFnueJJvm4yH2gs7MTra2t5BjV1dWR43/69GmcO3cOa9euxfXr10nMRmuaKE42mw3Lli3Dr371KxInliMyp8lms8Hv92NgYCDrNSm5L9dCU7qeCS9cuICf/vSnuHLlCubNm4c33ngDZ8+eRSwWS0jT0NAQGhoayMcR3d3dJBZy3jMYDCgqKkJzc/OEOUL2BwDq6+sxNDREdIzOEefPn0dRURHMZjPq6urIcW1tbUVnZyc5lvIxFkURdXV15EVpc3Mzbt68iaKiIgwMDJAcHYlEUFdXR45/U1NTXE08z4PneXLNTTTvTaZpdN5LVZMcW7fbnbSm0denbNN0+fJl5OXlwWw2Z7WmxsZGLFy4EGazmZo43bhxA0VFRfB4PJr3vXg5Qq28NzAwgJKSErz//vuq5HKe51FSUoLf/OY3qj4TZgK2Rggjq5HrytlsNpjNZtTW1qK4uBh+vx95eXkwGAzw+Xzk5enw8DAkSUJubi4EQUAgEEB+fj6AkdFVu90Oi8VCEpzdbkc0GkUoFEJeXh6AkdFVh8MBs9mMYDAIo9GInJwc8DyPcDgMl8tFRredTidMJhMCgQDMZjN5WcjzPJka7/P54HK5YDQa4ff7wXEcrFYrwuEwBEGAw+GAKIpME9PENDFNTBPTxDQxTUwT05Q1msLhMLq7uzE4OIjZs2eTWRmpaJIkCWfPniVfdcoDxfLXi/JX3waDAS6XCxUVFWhsbMTAwAAMBgPy8vLg9/shiiIcDgfxz2q1guM4+P1+GI1GzJw5E7Nnz0ZzczOcTid4nkckEiHPGq+88grmzJkDnudJnetIJAKz2QyTyYRoNIpYLAaO4yBJEnieH+OrxWIh2wGAxWKBKIpE0wMPPED6A+t7TBPTpJ2m9vZ2XLlyBVarldSu5zgO999/P8xm85SaPvjgA0QiEZhMJpjNZgiCAEmSxpz7WuQIeTuO42A0GsnghLydIAi3aZK3MxqNxFdRFMdsN9pXpolpYpoyp2n9+vXTIpf39PRkbI0QNhDCyGqm+2Lpw8PDqK6uxqZNm0gpgGyFNi3p9kfL9tS0rYYtJTZo6yfTHb3EgzYdLP9oZ4/lH/2gp3jQpoXWHDR6FkUi8DyP69ev4/3338evf/1rUhoiHitWrMCuXbswf/58DA4Oxl2IPScnB8899xxWrFgBi8WSsB+jiUaj6OzsxJIlS+LaeOCBB0i539EkExP5pYXVaqWiP+kR2s5ZJdCmJV3+NDQ0kDIzo8/JhQsXklJ8E9HT04MrV65M2cZU53syqGFLiQ01tTCUo5d40KgjnT7Fa0utxdJpfwZji6UzGIyUGF97NZuhTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aaE1By1atAh2ux39/f0QBIGUc5gIjuOwaNEiPPTQQ/i7v/s7Uu96PPLC61NhNBrJ16epMr5+eKIkeoz6+/vR3NxMtsvLy8O9995L3WK02Q5t56wSaNMykT+xWAx+vx+hUAgulwt2u11RO3I9/fHnZHd396QDIbFYDF1dXQm1ker5rpUtJTbU1MJQjl7iQaOOdPqkZVt6egZTGzYjhJHVTPcZIQwGg8FgMBgMxnSkr68PFy9eVN2u2+2OOyMEAA4fPozCwkLV25SZaEbIeGKxGFnwWK4THw6HUVdXd9sLlTlz5mDlypVaucxgaI4kSbh48SJZkwUAioqKyPpAqXDixIkJ/zbZF9mhUAinT59OuV0Gg8GYDLVmhNBOJt/lssXSGYwsRhAEslhxtkOblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjToqccpOYXiGazmaxXopU/PM/H/f3oYxSNRnH27FnU19ejqakJJ0+exI0bNzA4OBj3q9KBgQGqvrbVA7Sds0qgTUs8f3p6esYMggBAR0cHurq60N3dDZ/Pl3Ifj3dOTnYs5AWbU7WdKmxWPmM0eokHjTrS6ZOWbenpGUxt2EAIg5HFBAIBHDx4EIFAINOuKIY2Len2R8v21LSthi0lNmjrJ9MdvcSDNh0s/2hnj+Uf/aCneNCmRU85iOd5nDt3bsIBhmRwOBy4fv26IltT+XP+/Pm4ZXdGH6OrV6/eVuartbUV169fj2tTFEU2EKIytJ2zSqBNSzx/xg+CyLS3t+Pq1as4e/Ysrl69mlI/j3dONjY2ksWVlaBm/lHDlhIbamphKEcv8aBRRzp90rItPT2DqQ0rjcXIalhpLAaDwWAwGAwGY/qRidJYAFBaWopdu3bBZrOp3rbM2rVrkZeXF/dvH374YVJfpQPAY489BqNx4m8gvV4v+vv7EYvFMHPmTMyYMSMp+wyGlkxWxmo09913X8J9dyqbE5Xe8vv9OHPmTEJtMBgMRrKw0ljaw1ZNYzAYDAaDwWAwGAwGIwGqqqrgdruxe/du8jt5wXWe5zE4OHjbPokuyC4zMDAw4UBIsoMgU9Hb24vLly+Tn+XFohcuXKhqOwyG1ly/fl21QbyOjg5Fa5AwGAwGg05YaSwGI4vxer147rnn4PV6M+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21a9JSDwuEwTp48iXA4rNhWXl4evv/97yMvLw+XLl3C1q1byb/PfvazKC0txWc/+9kxv5f/lZWVYc+ePfB6vQn509fXN+ZnrY5RLBbD1atXb/t9e3u76gMueoK2c1YJtGlR4k+8QcipUDNHaGlbDVtKbGh5nBjJo5d40KgjnT5p2ZaensHUhs0IYTCyGLvdjs2bN8Nut2faFcXQpiXd/mjZnpq21bClxAZt/WS6o5d40KaD5R/t7LH8ox/0FA/atGRLDjIYDFNuY7FYUFxcDIvFkrDd0bM7RhMKhXD06FGEQqGk/ARG6oBXVVXBaDTi6aefTsofQLuYBIPBuAMekiTB5/OxElkTQNs5qwTatKTbn6lyxPDwMNxuN4aHh5GXlwen06mabTX91NqGmloYytFLPGjUkU6ftGxLT89gasPWCGFkNWyNEAaDwWAwGAwGY/rB8zxOnTqlie09e/agqqpKdbscx6GysnLKMlk5OTlYv3593L8lul7CaOKtESIIArxeL5qamuLus2rVKsyaNSvpthgMtUmmzydaXz8RmxaL5bZF061WKyKRSML+MBgMRjKwNUK0h5XGYjCyGCVfptEGbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB206WP7Rzh7LP/pBT/GgTUu25CCO47BgwYJJt4lGo2hpabntZeZU7Nq1C6WlpWNmnajxNaPZbMbFixeT8ofnebS3t+O1115DV1dXym0DI4MfAwMDaGhoQE1NzYSDIIzJoe2cVQJtWtLtz2Q5It7vkhkESTX/aGVLiQ01tTCUo5d40KgjnT5p2ZaensHUhg2EMBgMBoPBYDAYDAYj67jzzjs1sWuz2bB792688847WLFihaq2JUlKeNvh4WGcOXMGbW1tCAaDYxY1TwZ5LZCTJ0+iqakJXq8XrDAEgwYGBwdx+fJlXLp0CX19fejq6kJ/fz/Onj2Ljo6OpPsp69cMBoPBmAw2EMLQBTabDQ6HAwAgiiI8Hg+5CfL5fKTG7/DwMILBIICRL6I8Hg+x4fV6yUhsKBQiI5XRaHTMgj4ejweCIAAYqas7PDwMYORrLZ/PB2DkBszj8ZCau4FAgCyAFIlE4Pf7AYw8CHk8HvJA5Pf7yVcm4XAYgUBgUk12ux2f/exnye+zWZMgCPjc5z4Hu91ORZxMJhM+9alPwW63K44TMHXfs1gs2Lx5M9Glpiaj0YjNmzfDZDJREadoNEq+qExWk91ux6c//WlS3kHN8ymROGXL+ZQuTWazGZ/85Cdht9uzWlMsFsNnP/tZ2O12KuLEcRxKSkrIV8da9z01c8R4TbFYDJs3bwbHcar0PYPBgM2bN8NsNqcUJ57n8YUvfAF2u31aX3P1kPesVitKSkqQk5OT9ZokScLmzZthtVqpiBPP8ygrK4Pdbk9L37Pb7fj85z8/Zk2ORDV5vV64XC6iQ95HFEVEIhFYLBbcfffdEEWR+MrzPDkOgiAQv2OxGMLhMPE1EonAaDTihRdewKc//WlYrVYcPXoUkUgE+fn5ZLaIy+Uipa5ycnKQm5sLYOQamZ+fT3zNy8tDNBrF//pf/wv/9m//Ro6lKIpjFkoNh8OkT7W0tCAQCMBiseCuu+4iGmRfE9XU0dGB7u5uRCKRMdvJx1ySpNu0Z+v5lI68Z7fbUVJSQuJOk6ZoNIre3l60t7eTY67VfblSTW63G42Njbh27RrcbjcuXryIzs5O3HHHHRAEAVeuXMHFixeJvYnOE1mH3E4ifU+tHDHZ+WQ2m1FcXAxJksb4On67qTSJoghRFMlaAuPP/fF5b7Svo7czGAwoLi6GwWBIWpPJZEJRURHMZjPZTqmm8dulokmNOI3eLls0SZKEO++8ExaLJas1iaKIu+++GxaLhZo4AUBxcTGMRqPmfS9ejlDrmstxHDZv3oxYLKZKLrfZbNi8efOYWKvxTJgJ2EAIQxds2LABW7ZsAQD09fWhoqKCnJz79+9Hc3MzAKC6uhqVlZUAgO7ublRUVBAb+/btQ1tbGwDg+PHjOH78OACgra0N+/btI9tVVFSgu7sbAFBZWYnq6moAQHNzM/bv3w9gJHFUVFSgr68PAHDkyBHU1tYCABoaGnDo0CEAI8mhoqKCJKNDhw6hoaEBAFBbW4sjR45MqikajeLXv/41jh07pgtN7733HqLRKBVxqq+vx/79+xGNRhXHCZi6712+fBktLS145513VNdUU1ODlpYW1NfXUxMneQpospqi0Sj++7//GzU1NQDUPZ8SiVM2nU/p0NTU1ISf/OQniEajWa3p2LFj+PWvf41oNEpFnDo6OlBRUUFudLXue2rniNGajh07hpaWFqJJSZwqKytRVVWFlpYWNDU1pRynhoYGRKPRaX/Nzfa819vbi4qKCvIAls2afvWrX6GlpYVooiFOp0+fRjQaTUvfi0ajOHXqVMqahoaGAACtra3o7Owk7TY0NEAURdy6dQt1dXXkhUFzczM5Dm63m5SHikQiqKurI742NTXB7XbDZrNh27Zt+Jd/+Rf89Kc/xSuvvILy8nL87Gc/w4oVK/Dkk09i5cqVAIBNmzahrKwMs2bNwsKFC1FeXk583bFjB5YvX47i4mI4HA78/ve/BwAMDQ2hvr6ebFdXV0deEtTU1KCzsxOiKKK9vZ0cY1EUk9J05cqVMZqAkX4kxyIUCqGuro68EGloaCDHP9vOp3TkPfketqOjgypNb7/9Nmpra1FXV4fXXnsNdXV1CAaDmt2XT6RJkiRcv34dFRUVpC/H09TR0RG377W3t0MURXR2dhIffD4f6urqSJzq6+vJud/W1kb01dfXJ9T31MwRcj8afz7xPI/+/n40NDSQ49XZ2YnW1takNMk5or+/n5z7cl+Jl/eA+DlCnm1z48aNpDX5/X6iSY6TGppkUtWkRpxG971s0tTW1gZRFLNeU29vL0RRpCZOHR0d6O/vx82bNzXve/FyhFrX3I6ODrS0tODYsWOqXJ8GBgbQ0tKC119/XdVnwkzAFktnZDXyAjs2mw1msxm1tbUoLi6G3+9HXl4eDAYDfD4fbDYbOI7D8PAwJElCbm4uBEFAIBAgX2p5vV7Y7XZYLBaS4Ox2O6LRKEKhEPLy8gCMjK46HA6YzWYEg0EYjUbk5OSA53mEw2G4XC7EYjF4vV44nU6YTCYEAgGYzWbYbDbyhZXT6YQkSfD5fHC5XDAajfD7/eA4DlarFeFwGIIgwOFwQBTFuJqGh4fx4x//GN/4xjcwb968rNbU3d2N1157Dc888ww4jst4nG7duoVXX30VzzzzDJxOp6I4JdL3otEofvazn+Eb3/gGXC6XqpqCwSAOHDiAJ598Ejk5ORmPk9vtxqFDh7Bjxw7EYrGkNAUCAfz4xz/Gk08+iblz56p6PukxR2itqa+vDz/72c/wzDPPwOVyZa2m3t5e/PznP8czzzyDnJycjMdpYGAAP/3pT/HMM88gLy9P876nZo4Yr8nj8eDgwYP49re/DZPJpLjvBQIBHDhwAN/61rdgtVqTjlN3dzcOHTqEZ555Bkajcdpec/WQ9wYHB/GTn/wEO3bsQH5+flZrGhwcxH//93/jO9/5DoxGY8bjdP36dXKemEwmzfueIAj48Y9/jG3btmHx4sVJa/J4POjo6CBfPFssFoiiiFgsBkEQ8PHHH2P16tVwOp0wGo3geR5GoxFmsxmCIEAURVitVsRiMUQiEVitVvLFtKxfEASEQiGcP38e999/P4xGI9nO7/fD7/fDaDRCFEXk5+fD7/fj61//OhwOB3kRnJeXB7PZjG9/+9s4cOAAwuEw3nzzTZhMJkSjUdhsNgAjX1hyHIdPfvKTOH78OAwGA0RRJDry8vKIrxzHKdIkSRK5n+N5fsx29957L+bPn59151M68p7X68WPf/xjfOc738HMmTOp0BQKhXD69GkAf54BKVdNuOuuu1S5L7fb7ejr68PNmzcxd+5czJ07F6FQaIwmj8eDq1evgud5RCIR5OXlYe3atYhGo2M0BQIBXLhw4ba+5/V6cf78eTz44IMwmUyIxWJj+ujo88RisZDzBxhZ3NzlcmHZsmVT9r333nsPgiAgFoupliPGn0+xWAxnzpzBvffeC4fDQXxNVpMoiggEAmhqasIDDzwAAGPO/dF5TxCEMb6O3o7neTQ2NmLNmjWwWCxJaQqFQjhz5gweeOAB5OTkIBKJwGw2K9IUL+8lq0ntvJctmnw+H86dO4cHH3wQZrM5azX5fD5yvhsMBiriJJ8na9euhdls1rTvxcsR69evV+WaK4oiXnnlFWzfvh35+fmKr0+xWAw/+clP8PWvfx2zZs1S/EzY09OTscXS2UAII6uRB0Jk0nnyMBgMBoPBYDAYjMwyPDyM+vp68rWozLx58xCLxcjXmOlELi82utxXPA4fPozCwsK4f5s5cyYGBga0cC8hVq1ahVmzZmWsfUZyBAKBMV85j+bhhx8mZbxSRRAEnDt3jpRLAYCCggKsWrWKlKwFgNOnT9+2GO6MGTNw3333jfnd6IEbNSkoKMDq1aun3O7EiROqt81gMBhKKSkpybQLaSGT73JZaSwGg8FgMBgMBoPBYGQlOTk55GtuYGRtjvnz5+Ouu+7CokWLYLFY0u4Tx3HYuHFjQtvyPA+3203+yYMnmRwEmYxQKITu7m7cuHFjTJ11RmYZP/gwGvlr6FSJxWK4cuXKmEEQYGSh8/7+/jE+xPNjaGiI1MlnMBgMBiOTsIEQBiOL8Xg8ePbZZzO+2JAa0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rRkYw7Ky8vDunXr8Oijj2Ljxo1Yvnw5jEYjotEo/vSnP2HWrFmYNWsWFi1aNKWt+fPnx/19OBxGdXV1wi//d+3ahdLS0jG/ACYFsQABAABJREFUy8/Px7/+67+SMhf/3//3/6GsrAxbt24l/8rKyrBnz57bFnNNpm2t6Ovrw8cff4yrV6+itbUVp0+fJjXYpxO0nbNKmEqLJEm4cOECbt68Gffvt27dIv8fP1AymqlmR8mku69r2Z6attWwpcQGLTmIMYJe4kGjjnT6pGVbenoGUxtWGouR1Uz30liCIKC7uxsLFy6E2WzOtDuKoE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGnRcw6SJAkffPDBhNubzWY8+OCDOH/+PILB4Ji/jV/HIVG6urqwfft2Yn/hwoXo7u6e8gv50tJS7N69W1HbShhfGkuSJNTU1NxWgsxqtWLDhg0wGAxp8YsGaDtngZEBCXlh2vE8+OCDyM3Njfu3qbRcv36dLM47EXIpl5s3b+LSpUtxt1mwYAGpJe9yuTA4OEgWWh6N0r4ul8aKRCKIxWJkHQBgpHzYrVu3IIoienp6VGlvMtS0rYYtJTYykYMYE6OXeNCoI50+xWtLrdJYtD+DZfJdLhsIYWQ1030ghMFgMBgMBoPBYCROY2PjhF8krlu3Dk6nEx9//PFtAyGp4na7sXXr1qT34zgOlZWVitd2SJXxAyEejweNjY1xt/3EJz4Bu92eJs8Y8Uh1IGQqGhoa4PV6J90mkYGQdCEv/Cuf406nE6tWrUIoFEJTUxMkScqofwwGgzEZbI0Q7aFjyI3BYKREMBjEG2+8odqDWiahTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60adF7Dlq+fPltgwuFhYXYtGkTWWckHjzP48KFCwmX+IlHbm4uvvrVryb0UprneQwODqrWtlImW2di/CwRvUPbOauEqbRMNQgyGjVmBSnt636/f8xAp9/vx8WLF3Ht2rW4gyBanltq2lbDlhIbNOQgxp/RSzxo1JFOn7RsS0/PYGpDxzxOBoOREkajEfn5+dRMI1QCbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB206WP7Rzh7LP/pBT/GgTYvec5DdbseDDz4Ij8eDSCSCvLw8OByOKV/iGgwG2Gy2pF/2FhQUgOM48DwPSZLg8XiS/io91bYZ2kDbOasE2rRo0dd9Pl9a29PCthq2lNhgOYgu9BIPGnWk0yct29LTM5jasNJYjKyGlcZiMBgMBoPBYDAYaqJmaSwA2LNnD6qqqpLe7/DhwygsLBwzO0QeWEkHy5cvJ4vH9/X14eLFi3G3k0uKMTKHVqWxTpw4MeU2cimXyXxgMBgMxtSw0ljak/mhGAaDkTI8z6OxsZGqqYSpQpuWdPujZXtq2lbDlhIbtPWT6Y5e4kGbDpZ/tLPH8o9+0FM8aNPCclB8RFGE2+1OqQzUrl27UFpaCo7jsGbNmoQHMsLhMPbs2YO/+Zu/wfPPP4/t27ejrKwMe/bsQTgcTtqPZGltbcWNGzc0bUOSJHi9Xty6dYuac2AqaDtnlUCbFiXnGW3tqWlbDVtKbKQ7LozJ0Us8aNSRTp+0bEtPz2BqwwZCGIwsJhwO48SJE2l5ENIa2rSk2x8t21PTthq2lNigrZ9Md/QSD9p0sPyjnT2Wf/SDnuJBmxaWgwCLxXLb7wRBQEdHBwRBSNoPm82G3bt3Y9++fSgpKYHNZktov71796Kqqgomk4nsx/M8qqqqsHfv3qT9SIXe3l7NbPM8jzNnzqChoQHNzc04deoUbt68qVl7akHbOasE2rQoOc9oa09N22rYUmIj3XFhTI5e4kGjjnT6pGVbenoGUxtWGouR1bDSWAwGg8FgMBgMBkNNbty4gdbWVtXtut1ubN26VRVbHMehsrIyLWWy7rnnHvj9fnR1dcX9e6qlsS5evIi+vr7bfv/QQw/BarUmbS9VRFFEMBiE3W6H2azOMqqiKMJgMKStHjoNpbEmK5/GYDAYjKlhpbG0h80IYTCymFgshnA4DD2MZ9KmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBwEzJo1K64tQRAU3wOlsjBqvAVVR68bojUXL16ccBBECQMDA0n9Xgu6u7tx8uRJnD17FjU1Nbh27dqUMZ6sX0WjUTQ1NeHkyZM4efIkLl26pFrZk1AohGvXruHy5cu4desWNff2aqLGeUZLe2raViv/pGoj3XFhTI5e4kGjjnT6pHX+0cszmNqwgRAGI4vxer14/vnn4fV6M+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA4amW3hcrnG/C4SiaCmpgaRSCRlfwRBwPe//33k5eUltV9eXl5K+9GOJElxfz84OIhoNKp5CY2hoSFcvXqVvJiJxWLo7OyMO0tlNJP1qwsXLmBgYACxWAySJOHmzZu4fPmyYl/9fj/Onj2Lzs5O9Pb2orm5GW1tbeTvqR4r2vKPGucZLe2paVsNW0pspDsujMnRSzxo1JFOn7RsS0/PYGrDSmMxsprpXhpLFEX09fVh9uzZMJlMmXZHEbRpSbc/Wranpm01bCmxQVs/me7oJR606WD5Rzt7LP/oBz3FgzYtLAeN0NzcjFu3bpGfJUlCKBSC3W5PudxRb28v/vEf/xF9fX1JzRIwmUyYPXv2bfsdPHgQixcvTskXNUm1NFYiZZfsdjtWrVoFu92egmeTc+XKFfT09Nz2+zlz5mDlypUT7ieKIq5du4ZoNApRFDFjxgzMnz8fPM/jo48+um17o9GIRx55RFGZrMnKiIXDYTQ0NEy472SlsaY6R9JdGkuN84yW9tS0rYYtJTbSHRfG5OglHjTqSKdP8dpSqzQW7c9gmXyXq04BTAaDkRFMJhMKCwsz7YYq0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHBQfo9EIh8OhyIbBYIDb7U56P1EU4+63fft2rFixArt27cL8+fPTsl5IugmFQjh37hw2bNiQdEmxqYg3CAKMrLcx2UCI1+tFd3c3+bm/vx8ejwczZ86Mu70kSYhEIsjJyUnZ14lmqdy4cQNDQ0Mp26Ut/6hxntHSnpq21bClxEa648KYHL3Eg0Yd6fRJy7b09AymNnQMuTEYjJQIBAL4+c9/jkAgkGlXFEOblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjTwnLQCBaLZczPPM+jsbERPM+n7I8gCPjGN76R9IsPh8Mx4X6XLl3CN7/5TZSVlWHPnj2al5OKh9ZrekQiEfj9fk3bSIb6+vrb+kJfXx+CwWDaffH7/fD5fCnvr+b5p8ZAlRrnGS3tqWlbDVtKbKQ7LozJ0Us8aNSRTp+0bEtPz2BqwwZCGIwsxmw2o6ioCGZz9k/uok1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOWiE8V/3G41G5OfnKyqVUVBQgOvXr0MQhKT2EwQBHR0dk+7H8zyqqqqwd+/elP1LlY6ODty4cUPTNjwej6b2x3P69OkxpdFkYrHYhH0h3vZaM9E6K4lCW/5R4zyjpT01bathS4mNdMeFMTl6iQeNOtLpk5Zt6ekZTG3o6W0MhgJsNhv5QkoURXg8HrLonc/nIyOsw8PD5EsdQRDG3FB7vV5Eo1EAI1OwQ6EQACAajY5Z0Mfj8ZCHkGAwiOHhYQAjDx/y1zixWAwej4fU8A0EAuTrrNFfNEmSBI/HQ25g/X4/WSgpHA6T0dKJNNlsNqxfv560k82aeJ7Hww8/DJvNRkWcDAYD1q1bB5vNpjhOwNR9z2QyoaSkhNSJVFMTMFJr0mAwUBGnSCSCkpIS2Gy2pDXZbDY88MADpB01z6dE4pQt51O6NBmNRtx///2w2WxZrUkURaxfvx42m42KOJnNZqxZswY2m02VOKUzR4zXJIoiSkpKYDabVel7sVgMJSUlMBqNKcUpHA7jscceg81mm9bXXD3kPYvFgjVr1sBqtWa9JkEQUFJSAovFQkWcwuEwHn30UdhstrT0PZvNhkceeWTMTAa1NNlsNmzatAnhcDjpOJlMJrIuhSAIkCQJRUVFMBqNCIfDRFMkEiG2o9Eo0SfnHJlwOAyr1QpJkmA0Golti8UyZhH0/Px88qIgNzcXOTk5CIfDOHXqFCl9ZTAYkJ+fT+p0OxwOcs04deoUBgcHx8RztK/y8RIE4TZfU9Ekb3fx4kX09vbGjVNPTw+uXLlCFviW+7IoiqTfyL7Kx5/n+TG+yn0gmb7X0dGBhoYG1NTUoK6ujpSQGn0+TaRJLsk1XlM0GoXZbEZhYSF5ecXzPLnHnUyT0vMpXpzkYzRZnHw+36T35Y888giAic+nqeIkt8Xz/G3bJdv3RFHEokWLYDabE+570WiU6BNF8bbtRvs6ertIJAKz2YwlS5aQc1zebrSvqWoymUwoKiqCKIpJn0/jNQmCQF4iTqVpojgBQFFREfE9GU1GoxGFhYUk56SSI5TEaSJNasRJSd7LlCZRFLFw4UKYzeas1iQIApYsWQKz2UxNnGKxGIqKimAwGDTve/FyhFr3e2azGSUlJRBFUZV7WI7jUFJSQq4b8rFT+kyYCdhACEMXbNiwAVu2bAEwMi25oqKCnJz79+9Hc3MzAKC6uhqVlZUAgO7ublRUVBAb+/btQ1tbGwDg+PHjOH78OACgra0N+/btI9tVVFSQmrCVlZWorq4GMLKg4v79+wGMJI6KigpSy/XIkSOora0FADQ0NODQoUMARpJDRUUFSUaHDh0iC93V1tbiyJEjk2qKRCJ444038Jvf/CbrNb366quorKxEJBKhIk4ff/wxXnnlFUQiEcVxAqbuey0tLaitrcUf/vAH1TWdPHkStbW1+Pjjj6mJU21tLfE1GU2RSAT79+/HyZMnAah7PiUSp2w5n9Kl6dy5c9i3bx8ikUhWa/rNb36DN954A5FIhIo4tbe3j9lO676nZo4Yr+k3v/kNamtriSYlcaqsrMT777+P2tpanDt3LuU4VVdXIxKJTOtrrh7yXk9Pz5jtslnTm2++idraWqKJhji99957iEQiael7kUgEx48f10RTJBLByZMnU4rT4cOHIQgCli5dioGBAVy5cgWiKMJkMqGuro68PGhoaCC2Ozs70draSuzV1dURX+vr69Hf34+vf/3r2L59O/7iL/4CALBs2TLs2LGDbFdeXo6FCxcCAMrKyrBp0yZYrVaUlZXhySefBABYrVaUl5dj9uzZAIAtW7Zgw4YNAIC1a9fij3/8I/bs2UN8kI9/U1MTWWuku7ubxCIUCqWsSR5caGtrw5/+9Kfb4uT1evGzn/0MFy9exK1bt/CHP/wBR48eRSwWQ19fH+k3oiiirq6OvNhpbm4msXW73fjjH/8YN04T9b329nYcPHgQAwMDiEajqKqqwrvvvouhoaEx59NUmuR2R2sSBGHMwEprays6OzthNpsn1aT0fIoXJ3kmzmRxOnjwYNzz6cqVK/iv//ovvPHGG+Q8+dOf/oSrV6/i6NGj5HyaKk6ypkuXLqGpqQnASC5Jte9dvnwZgiAk1fdkfUNDQ6ivryfb1dXVkeMqx2m0JkEQ0NXVNWnfS1VTJBJBd3d3yufTeE3d3d2k702maaI4dXV1obu7Gzdu3Eha0/hcopamROM0kSY14qQ072VKU0tLCwRByHpN8mxHWuJ07do1dHd3w+12a9734uUIte732tvbUVtbi9/85jeq3MP29fWhtrYWr7/+uqrPhJnAEJOHaxiMLOTixYtYtWoVbDYbzGYzamtrUVxcDL/fj7y8PBgMBvI1GMdxGB4ehiRJyM3NhSAICAQCyM/PBzByk26322GxWEiCs9vtiEajCIVC5Estj8cDh8MBs9mMYDAIo9GInJwc8jWMy+VCLBaD1+uF0+mEyWRCIBCA2WyGzWZDJBIBz/NwOp2QJAk+nw8ulwtGoxF+vx8cx8FqtZIvBB0OB0RRjKspEongtddew5e+9CXMnTs3qzXduHEDR48exde//nWYzeaMx6m/vx+//OUv8cQTTyA3N1dRnBLpe6Io4s0338Tf/M3fwOFwqKppeHgYb731FrZs2QKr1ZrxON26dQuVlZXYtm0bRFFMSlMoFMJ///d/42//9m8xe/ZsVc8nPeYIrTUNDAzgjTfewBNPPAGHw5G1mm7evIm33noLX//614kfmYzT0NAQfvGLX+CJJ56A0+nUvO+pmSPGa/L5fPj1r3+Nr3zlK+QLZiV9LxgM4u2338aXv/xlWCyWpON048YNVFZW4mtf+xoATNtrrh7ynsfjwaFDh/D1r38dLpcrqzV5PB4cPXoUX/3qVwEg43Hq6ekh54nBYNC870mShNdffx1lZWVkAEAtTQaDgdieN2+eKnF65JFH0N3dDavVSr4YNZvNMJlMiEajiMVi4DgOkiSR2WTAn786bW5uRnFxMZmF19vbi2effZZ8zZmfn49AIABBEJCbmwtJkmA2m/G1r30NR48eRW9vLwwGA/Ly8uD3+8m9lCAIZNYJx3Hw+/1YuXIlvv/978NsNmPmzJmIxWIwmUzkK2JJksb4moomi8VCtgOAz3zmM2PidP78edy4cQMcx8FoNILneRgMBnziE59AfX09BEGA1WpFLBZDJBIZs53RaCS+Lly4EMXFxQn3vYsXL+L69etxNc2aNQtFRUWor69PWlNOTg6qqqpw7tw53HvvvaS/GQwG5OTkkC+Ax2t66KGHIIpiyufTaF9Ha5o5cyYCgcCkcVq+fDlmz5592/l04cIFtLe3o7W1Fffeey/Z32g0QpIk3Hvvvbh48SKZkTBRnB599FFEo1G0tbXh1q1bY7Yb7Wsifc/n8+Hy5ctYvXo1jEZjUn3PYrFAFEVEo9Ex243ve/J28pfa58+fx/Lly+F0OuP2PVEUU9IEABcuXMDy5cuRm5ub0vkk+xoMBuPGKZ6mieIUjUZx6dIlrFixAmazOSlNw8PDaGpqwurVq0n/TTVHpBKnRHJEqnFSI++lW5Pf70dLSwtWr14Nk8mUtZp8Ph9aW1uxevVqAKAiTvJ5snLlSphMJk37XrwcsX79elXu92KxGH75y1/ir//6r+FyuRTfwxoMBhw+fBhf/OIXUVBQoPiZsKenB6tWrYLMhQsXcM899yAdsIEQRlYjD4TIpPPkYTAYDAaDwWAwGNMLv9+PM2fOqGbP7XZj69atSe1z55134urVq0ntw3EcNm7ciO9973tjFvUuKCggJbfU4L777sOMGTPIzydOnIi73fz585NaV8Rms8FqtSIajaKgoAB33HEHKdMTj4nalbnnnntw8eLFhNouKSkh/+d5HqdOnYq7nfyyKx7r169HTk5OQu3FYyI9+fn5U5YZeeCBB5Cbm4tr166hv78fRqMRc+fORWdn56TrzuTm5ia0APyMGTPIl9cMBoPBSJ3R1xs9k8l3uaw0FoORxYyvJ5vN0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHDS5rdzcXFJnPxHmzp1L/j++fniijF5QtbS0FK+88gopnZEo8mLqX/jCF7B161byr6ysDHv27BlTM10JFy5cSOh4J7u4ejgchtfrRSgUQnd3N5qampI+jqORy5okAs/zcLvd6Orqgt/vTzmOmeTy5cvo6upCKBRCIBBAW1sbBEGYVEsigyAAVB0ESfex1bI9NW2rYUuJjWzs83pGL/GgUUc6fdKyLT09g6kNGwhhMLKY8fVksxnatKTbHy3bU9O2GraU2KCtn0x39BIP2nSw/KOdPZZ/9IOe4kGbFpaDprZVVFSET3ziE6QMRW5uLubMmUMWQAeAnJwcrFmzBi6Xi/xufP3wRHG5XCgvL8fjjz+OXbt2ARhZIL20tFSxLnmAZO/evYptASO11Ecv2qoVHo+HlAZJhWR8PHXqFFpaWtDe3o6mpqaU4zgauSxJV1cX+vr6SP370X+Xy8cpRZIk3Lx5M+7f1NCiJun2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2rDQWI6uZ7qWxxteTzWZo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgOUtdWT08Prly5AgC31Q8HRgYiysrKSL3weBiNRrz55psoKCgg+wEjsyT27t2LEydOKP6ilOM4VFZWqlIm66677sKCBQsATF2iSgl33HEHlixZQn6ORCLo7+9HKBRCT0+PZu3GiyOQWGkseYBDXrRaxul0YvXq1RgeHiYDJNFoFCaTCUuWLEF7e3tcu4mUxlq0aBGuX7+elJZMkW5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn+K1pVZpLNqfwTL5LpcNhDCymuk+EMJgMBgMBoPBYDDoZfRAyETs2bMHVVVVE/69tLQUu3fvnvDvPM+jvLwcly5dStlPADh8+DAKCwsV2UgnixYtwrJlywCMDAo1NjaqVuIrFWw224Ttr1+/HtFoFE1NTWThXjXIy8ubcnbLggULNB0YYjAYDIY6sDVCtCfznxwxGIyU8fv9ePnll+H3+zPtimJo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s5WJBJBfX39bWUwdu3ahdLS0ttmY3Ach9LSUpSXl8fdb/R2L7zwQlwb04Wurq60DYJMFEez2TzpPmfPnlV1EEQNJtKSKdLtj5btqWlbDVtKbNDWT6Y7eokHjTrS6ZOWbenpGUxtJr5SMxgM6uE4DmvWrNHFAw9tWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8aBNC8tB2tkymUwoLCyEyWQa83ubzYbdu3eD53kMDg6S3xcUFIDjOAiCEHe/yWz09fXhu9/9blL+PfPMM3jhhRcwf/58avrjVEiSBKPROOEaGFowURwno7GxUTuHFJCKFi1Jtz9atqembTVsKbFBWz+Z7uglHjTqSKdPWralp2cwtWGlsRhZDSuNxWAwGAwGg8FgMGglkdJYWuB2u7F169aU9uU4Dhs3bsSuXbtgs9lU9kxdjEYj8vPzxwwgTSdYaSwGg8HQD6w0lvaw0lgMRhYTDodx4sSJjNbCVQvatKTbHy3bU9O2GraU2KCtn0x39BIP2nSw/KOdPZZ/9IOe4kGbFpaDtLMlCAI6OjomXFBbzf3k2SSpwPM8qqqqsHfv3pT2TyeSJKV9ECTVONIIbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB4060umTlm3p6RlMbdhACIORxdB44UgV2rSwm3DtbLGbcP2gl3jQpoPlH+3ssfyjH/QUD9q0sBykri2DwUD+L0kSPB4PJElKykYq+8mzOpRQU1MDnucV2dAjqcaRRmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGrDSmMxshpWGovBYDAYDAaDwWDQSigUwunTpzPSdjgcxt69exUNaBw+fBiFhYUqe8ZQC1Yai8FgMPQDK42lPWxGCIORxYiiCLfbDVEUM+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA5S11ZOTg5mzpwJYOTrz0AgkNKMkFT2kxdQr6ysxOHDh8m/Y8eOobS0NClbjD+TajxohDYt6fZHy/bUtK2GLSU2aOsn0x29xINGHen0Scu29PQMpjZsIITByGL8fj9+8pOfwO/3Z9oVxdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykri2DwYB77rkHd9xxB6xWK86cOZP07Aye51PaT4bjOBQWFpJ/TqcTu3fvxrFjx7BixYop22aMRWk81ERpgQ+atADp90fL9tS0rYYtJTZo6yfTHb3Eg0Yd6fRJy7b09AymNqw0FiOrme6lsWKxGCKRCKxW65j6w9kIbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB206WP7Rzh7LP/pBT/GgTQvLQdrZisVieO+992AymZKyEYvFIIpi0vslSldXF7Zv3z7h31esWIHnn38eTqdT9bazEa3jkQwulws+n2/SbSYrjUWTlkz4o2V7atpWw5YSG7T1k+mOXuJBo450+hSvLbVKY9H+DJbJd7nmtLTCYDA0wWAwwGazZdoNVaBNS7r90bI9NW2rYUuJDdr6yXRHL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1sGgwFmc/KP4Knulygcx03690uXLuELX/gCSktL8b3vfQ/BYJD8raCgYMr99YbW8VCbyb59pU1Luv3Rsj01bathS4kN2vrJdEcv8aBRRzp90jr/6OUZTG1YaSwGI4vx+Xx46aWXpvwKKBugTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbPp8PtbW1iEQiSe0XiURS2k9tqqqq8IUvfAFbt24l/8rKyrBnzx6Ew+GM+pZOaIlHokxWf542Len2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2bCCEwchibDYbSkpKqBlZVQJtWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8aBNC8tB2tmy2WwoKipK+gtQs9mc0n6JomRWB8/zqKqqwt69e1X2il60jofaTFbGhDYt6fZHy/bUtK2GLSU2aOsn0x29xINGHen0Scu29PQMpjZsjRBGVjPd1whhMBgMBoPBYDAY2cOJEycy7UJc9uzZg6qqqpT35zgOlZWV065MVqZJZI2Q2bNno6+vL00eMRgMBiNV1FojhHYy+S6XzQhhMLKY4eFhvPPOOxgeHs60K4qhTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbw8PDuHr1KqLRaFL7RaPRlPZLhl27dqG0tFTRzJDBwUGVvaKTdMQjURIpMyIIwoR/o0kLkH5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGpDz/wjBoORNJIkwePxTFr3NVugTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbkiQhHA5Punh1PGKxWEr7JYPNZsPu3bvB8zxu3LiBf/zHf8TQ0JAqtscPkmT7AuvpiIeaGI0Tf/9Km5Z0+6Nle2raVsOWEhu09ZPpjl7iQaOOdPqkZVt6egZTG1Yai5HVsNJYDAaDwWAwGAwGI1ugtTTWeNxuN7Zu3ZrUPocPH0ZhYSH5ORwOY+/evaipqQHP8+T3HMdh48aN2LVrFxX1whkMBoPBoAFWGkt7WGksBiOLEQQBHR0dk053zhZo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s6WIAgpfRFJ05eUk7Fnzx6Ew2Hy8969e1FVVTVmEATI/gXWsyUeiUCbFjYjTTtbbFasftBLPGjUkU6ftGxLT89gasMGQhiMLCYQCODgwYMIBAKZdkUxtGlJtz9atqembTVsKbFBWz+Z7uglHrTpYPlHO3ss/+gHPcWDNi0sB2lnKxAI4Ny5c7cNDEwFz/Mp7ZduLl26RAY3eJ5HTU3NpNuPnymSLWRLPBKBNi3p9kfL9tS0rYYtJTZo6yfTHb3Eg0Yd6fRJy7b09AymNqw0FiOrYaWxGAwGg8FgMBgMRrbQ0NAAr9ebaTemJJXSWDKVlZUIBAIJ7T++nJbe1hNhMBgMBiNRWGks7WGLpTMYDAaDwWAwGAwGg5EGFi5ceNtAiM1mG1NSKtspKyvDihUrktqHrSfCYDAYDAZDa1hpLIYusNlscDgcAABRFOHxeCBPdvL5fORmenh4GMFgEMCfa/TKeL1eRKNRAEAoFEIoFAIARKPRMQ8rHo+H1LULBoMYHh4GMPL1ks/nAwDEYjF4PB6IoghgZBqY/HATiUTg9/sB3F4T0O/3IxKJABh5GJCnjU2kyev14oc//CF6e3uzXlN3dzd++MMfwuv1UhGnW7duEX+UxgmYuu/19/fjueeeg9vtVl3TzZs38dxzz+HWrVtUxOn69et47rnn4PV6k9Yk9/mbN28CUPd8SiRO2XI+pUtTX18f6Q/ZrKm3t5fooCFOAwMDxB814pTOHDFeU29vL5577jkMDAyo0vdkX/v6+lKKU1dXFzm20/maq4e8Nzg4iB/+8IfE32zWdOPGDTz33HMYHBykIk6jz5N09D353Orq6lJd02jbNMSpv78fr776KubNm4e8vDw4nU4UFhZi6dKlZLtwOEx84Hke0WgU4XAYH374IdEei8Vu204+DoIgEL/l7WRfI5HImO1kvyVJum072XZOTg5yc3MBAGazGfn5+cTXvLw8WCwWAIDdbofdbgcAWCwW3Lhxg2yXn58Ps3nkG8zc3Fzk5OQAGBnkkOO8d+9eNDQ0kDg5HA7YbDbwPI9Tp07hpZdeUqxJth2NRm/bbvTxH72d7J8oimQ7OR5yv5TjJG83/vhrGSelmrxeL06ePIlwOBy376Vbk9frxYcffohwOKw4TvJ2k2kafW6prWl4eBgnT56E1+ulIk6BQAAnT55EIBBIWlMoFMKHH35Icqya51MicZpIE23nU7o0+Xw+cp5ks6bR5zstcZLPk2AwqHnfi5cj1LrfGxgYwHPPPYfe3l5V7mGHhobw3HPPoaenR9VnwkzABkIYumDDhg3YsmULgJEXcxUVFeTk3L9/P5qbmwEA1dXVqKysBDDyQreiooLY2LdvH9ra2gAAx48fx/HjxwEAbW1t2LdvH9muoqIC3d3dAEamfVdXVwMAmpubsX//fgAjiaOiogJ9fX0AgCNHjqC2thbAyHT4Q4cOARhJDhUVFSQZHTp0CA0NDQCA2tpaHDlyZFJNdrsdS5YswYkTJ7Je05EjR7BmzRrY7XYq4nTlyhXyQKc0TsDUfc/tdmPz5s04deqU6pouXLiAzZs348qVK1TE6dChQ9i8eTPsdnvSmux2O/Ly8nDhwgUA6p5PicQpW86ndGnq6uqC2WyG3W7Pak0nTpzAkiVLYLfbqYjT0NAQeJ4nL5S07ntq5ojxmk6cOIHNmzdjaGhIlb535swZbN68GV1dXSnF6cCBA3j88cdht9un9TVXD3kvFAqB53mYTKas1/Tuu+9i8+bNCIVCVMTpwIEDKCkpgd1uT0vfs9vt2LhxIw4cOKC6Jrvdjr/6q7/CgQMHqIiTfL938eJFdHZ2Yt26dcSGTF1dHfGhtbUVnZ2dsFgsKCwsxKVLlwCMvHCoq6sjL0Gam5vJcXC73WhqaiLxrKurI742NTXB7XYT/2S/Q6EQ6urqyAuRhoYG8hJk06ZNKCsrAzAym6W8vJz4umPHDixbtgwA8Pjjj+Pxxx8HACxbtgw7duwg25WXl2PhwoUARmaLbNq0CQCwcuVKdHV1ged51NfXo7y8HLNnzwYAbNmyBRs2bAAArF27FkuXLgXP84o0yX2gs7MTra2tJO51dXXE1/r6egwNDQEY6W9yPxwaGkJ9fT2AkYEeSZLIyyU5TsBIn5f7TTripFRTU1MTiouLYbFY4va9dGu6dOkSCgsLYbFYFMcJiH8+jdZksViwfPlyNDY2qq7JaDSiuLgYly5doiJOt27dQnFxMQYHB5PWFI1GIUkSjMaRV4hqnk+JxGkiTbSdT+nS1Nraijlz5sBisWS1psbGRixbtgwWi4WaOPX29qK4uBher1fzvhcvR6h1vzc0NITNmzfjxIkTqtzDCoKAzZs349ixY6o+E2YCtkYII6uR68rZbDaYzWbU1taiuLgYfr8feXl5MBgM8Pl8sNls4DgOw8PDkCQJubm5EAQBgUCAfNXk9Xpht9thsVhIgrPb7YhGowiFQsjLywMwMrrqcDhgNpsRDAZhNBqRk5MDnucRDofhcrnI6LbT6YTJZEIgEIDZbIbNZkMkEgHP83A6nZAkCT6fDy6XC0ajEX6/HxzHwWq1ktF9h8MBURSZJqaJaWKamCamiWlimpgmpolp0qEmeRF1YOQLS47jYDQawfM8DAYDLBYLRFGEIAiwWq2IxWKIRCJjtjMajTCbzRAEAaIojtnOarXCYDAgEonAZDKR7SRJAsdxkCQJPM+P2W5gYADbtm1DTk4OjEYjgsEgzGYzHA4H+ZozLy8PoVAI0WiUDN6HQiFYLBbY7XbyhWp+fj4CgQAEQUBubi4ZROA4Dj/72c9gsVjwd3/3d8jLy4Pf74coinA4HBAEAeFwGFarFRzH4ac//Snmzp2bsiaz2QyTyYRoNIpYLDZmO7nsVjgchsViIdsBIMc/Go2O2Y6GODFNTBPTxDQxTfrRtH79+mlxb9TT05OxNULYQAgjq5nui6WHQiEcP36cfN2azdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykna3JbMizzeJhtVrR3NyMxYsXg+M4pOMRXsli6clw+PBhAEhpYfVMEY1G0dbWRr5kzmZo05Juf7RsT03bathSYoO2fjLd0Us8aNSRTp/itaXWYum0P4Nl8l0uK43FYDAYDAaDwWAwGAxGBlm8ePGEf5s5cyZmzpyJhx9+GPfff38avZqaFStWwGAwZNoNBoPBYDAYjClhM0IYWc10nxHCYDAYDAaDwWAwsp9gMIiPP/447t+WLl1KBkr8fj/OnDmjuT+Jzgg5fPgwCgoKUF5eTtYwSYZsnBHCYDAYDIYWqDUjhHbYjBAGg5ES0WgULS0tpOZhNkOblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjTwnKQdrZStSEIQtr7SEFBATiOm3QbjuPIdi+88AJKS0vT5F1mEUUR/f39ZPHebIY2Len2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2bCCEwchiQqEQjh49ShZKymZo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s5WqjbC4XDa+wjHcdi4ceOk22zcuJEMlthsNuzevRsHDx5Mh3sZhaYXOkqhTQsbiNXOFvsYRD/oJR406kinT1q2padnMLVhpbEYWQ0rjcVgMBgMBoPBYDCynURLY4VCIZw+fTotPoXDYezduxc1NTXgeZ78Xh4k2bVrF2w225h9kl1k/cUXX4TJZMJ3v/vdKbdlpbEYDAaDoWdYaSztMaelFQaDwWAwGAwGg8FgMBiKyMnJAcdxYwYmtEKe5cHzPAYHB8nvJyubJf8tUf++973vqeIrg8FgMBgMxlSw0lgMRhbj8Xjw7LPPwuPxZNoVxdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykna1Ubfj9frKfwWDAihUrYDSm71Ge4zgUFhaSf5OtHZJISa1sJxwOo7q6GuFwONOuKIY2Len2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2rDQWI6uZ7qWxBEFAd3c3Fi5cCLM5uyd40aYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHKSdrclsTFYaa/HixTAajWP2C4fDGBwchCRJKCgowOXLl+H1elPyS20mKqmllBdffBGFhYUJLeSuJZIkwefzweVypXVASgto05Juf7RsT03bathSYoO2fjLd0Us8aNSRTp/itaVWaSzan8Ey+S6XDYQwsprpPhDCYDAYDAaDwWAwsp9E1wiZCK/Xi4aGBi1cSxm5pJbb7Va1BNZka5QwGAwGg5GtsDVCtIeOITcGg5ESwWAQb7zxBoLBYKZdUQxtWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8aBNC8tB2tlK1cbw8PCU+xkMhpT90gq5pNbKlStVncHB8zyqqqqwd+9e1Wwm2/6FCxfSsk6L1tCmJd3+aNmemrbVsKXEBm39ZLqjl3jQqCOdPmnZlp6ewdSGDYQwGFmM0WhEfn4+NdMIlUCblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjTwnKQdrZStUFbH0kWrdYNUav0Fs/zcLvd5N9UNg0GA2w2G5WDT8lCm5Z0+6Nle2raVsOWEhu09ZPpjl7iQaOOdPqkZVt6egZTG1Yai5HVsNJYDAaDwWAwGAwGI9tRWhrL5/Ph7NmzWrimCpOtG7JixQpS5irZMlqHDx9GYWGhqj6x0lsMBoPByASsNJb2ZH4ohsFgpAzP82hsbKRqKmGq0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHKSdrVRtRKNRqvpIKthsNuzevRuVlZU4fPgw+ffuu+/ixz/+MYqKilBYWJjyoEYq7N27F1VVVbcd16lKb4miCLfbDVEU0+GmptCmJd3+aNmemrbVsKXEBm39ZLqjl3jQqCOdPmnZlp6ewdSGDYQwGFlMOBzGiRMnEA6HM+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA7SzlaqNniep6qPKEFeN0T+p+baIcnA8zxqamom3Wai0luCIKCjowOCIGjlXtqgTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoFFHOn3Ssi09PYOpDSuNxchqWGksBoPBYDAYDAaDke3ovTRWovA8j7KysoS/Gk21NJbb7cbWrVs1s89gMBgMRrKw0ljaw2aEMBhZTCwWQzgchh7GM2nTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA7SztZkNqxW64QLprpcLkVtW63WlPbLBFotrJ4qe/bsue0L1lgsBkEQqDlnlUCblnT7o2V7atpWw5YSG7T1k+mOXuJBo450+qR1/tHLM5jasIEQBiOL8Xq9eP755+H1ejPtimJo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s7WZDbMZjNmzpx52+9tNhskSVLU9uzZs1PaL1Ps2rULpaWlGSubNZpLly7dtlZIJBJBTU0NIpFIhrxSD9q0pNsfLdtT07YatpTYoK2fTHf0Eg8adaTTJy3b0tMzmNqw0liMrGa6l8YSRRF9fX2YPXs2TCZTpt1RBG1a0u2Plu2paVsNW0ps0NZPpjt6iQdtOlj+0c4eyz/6QU/xoE0Ly0Ha2ZrKhiiKaGlpwcDAAGKxGFwuF4qLi8Fx3JRtT1Ya65577oHH40FPTw/5XU5ODoaHh1PSkS54nsfg4CDcbje+973vxd1G69JYwMgslcrKSjIwI0kSQqEQ7HY7jMbs/raUNi3p9kfL9tS0rYYtJTZo6yfTHb3Eg0Yd6fQpXltqlcai/Rksk+9y2UAII6uZ7gMhDAaDwWAwGAwGQ19IkgRJkmA2mxPeJxqNTrj49/r162Gz2eD3++H1emGz2TBjxgycPHlSLZc1ZbJBixdffBGFhYUoKChIagZJMgMhAFsrhMFgMBjaw9YI0R46htwYDEZKBAIB/PznP0cgEMi0K4qhTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbidowGo1jBkES2c9iscQtreVyuZCTkwODwQCXy4VFixZh9uzZSQ2y0Mz3vvc9bN26FWVlZXHX89ACnufR0NCA7u5uuN1uuN3uhBd3pw2e59HY2EiN/+n2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2+rj7YTCmKWazGUVFRbp4kKFNS7r90bI9NW2rYUuJDdr6yXRHL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1up2kh0v5UrV6K1tZWU1iooKMDy5ctT9jeb4HkeVVVVAIDdu3ff9rfBwUHyc0FBQcrthMNh/L//9/8Qi8VQU1NDBl7kRd537doFm82Wsv10YzQakZ+fT01ZmnT7o2V7atpWw5YSG7T1k+mOXuJBo450+qRlW3p6BlMbVhqLkdWw0lgMBoPBYDAYDAaD8WfkR3yDwTDpdh9//DGCwWA6XFJEqut5hMNh7N27FzU1NWO+uOU4DsuWLcOlS5cS9uHgwYNYvHgx9uzZQwZc4lFaWnrbQAyDwWAwGInASmNpDz3DbgwGI2kikQhqa2sRiUQy7YpiaNOSbn+0bE9N22rYUmKDtn4y3dFLPGjTwfKPdvZY/tEPeooHbVpYDtLOVqo2kt3PYDBMOQgCAPPmzUvKj2xg9OyPvXv3oqqq6rayIzzPJzUIAgDbt2/Hv/zLv6CqqgpWqxUbNmyA1Wq9bbvxgy60IwgCuru7IQhCpl0BkH5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGrDBkIYjCyGxpqKqUKbFlafVjtbrD6tftBLPGjTwfKPdvZY/tEPeooHbVpYDtLOVqo2tDpGc+fOhd1uV9UmDfA8D57nJ1w8PlVkexzHYc2aNXEXZx9fhot2RFGE2+2GKIqZdgVA+v3Rsj01bathS4kN2vrJdEcv8aBRRzp90rItPT2DqQ0rjcXIalhpLAaDwWAwGAwGg8FIDZ7n4Xa74fP5kJubixs3biAajWbarTHwPI+ysrKkXqCsWLEi6VkfanH48GEUFhYmvd/oQZSCgoK4Ay0MBoPB0C+sNJb2sBkhDEYWI0kSPB4PJEnKtCuKoU1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOUg7W6na0PIYcRyHxYsXY9WqVbjjjjuQk5OjehtKkRciTwYtB0HUXuA2HA5jz549KCsrw9atW7F161aUlZVhz549ZDF2rYjFYgiHw6Dl+9h0+6Nle2raVsOWEhu09ZPpjl7iQaOOdPqkZVt6egZTGzYQwmBkMT6fDxUVFfD5fJl2RTG0aUm3P1q2p6ZtNWwpsUFbP5nu6CUetOlg+Uc7eyz/6Ac9xYM2LSwHaWcrVRu09ZFMsGvXLpSWllIxS8LlcqG8vBwul0sVe/HWMuF5HlVVVdi7d68qbUxEJBJBXV0dFXXbgfT7o2V7atpWw5YSG7T1k+mOXuJBo450+qRlW3p6BlMbVhqLkdVM99JYkiTB5/PB5XKp9kVSpqBNS7r90bI9NW2rYUuJDdr6yXRHL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1up2khnTNrb29HV1aVpG0qQy0fxPI/t27dr0sYjjzyCkydPTvh3o9EIl8sFn88X9+vWiUpjjV8/pKCgAAAmLfvFcRwqKys1GwCKxWKIRCKwWq0wGAyatEGzP1q2p6ZtNWwpsUFbP5nu6CUeNOpIp0/x2lKrNBbtz2CZfJdrTksrjGnJ7373O/zhD3/AmTNncP36dfT398NkMmHRokUoLS3Fzp07UVxcnGk3sxp5WrYeoE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOUg7W6naSGdMZs2aRfVACMdxZJChtLQUVVVVqtovLS3F7t270dXVNeFAi1ziI1HC4TD27t2LmpqaMQMeHMdh2bJlk659Ig+epLLmSCIYDAbYbDZNbKdCuv3Rsj01bathS4kN2vrJdEcv8aBRRzp90rItPT2DqU3mPzli6JYXX3wRP/rRj1BfXw+j0Yh7770X8+bNQ1tbG15++WWsXr0av/jFLzLtZlbj9/vx8ssvw+/3Z9oVxdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykna1UbaQzJk6nE4sWLdK8HTWQy2WpRWlpKXbt2gUAk87AcDqdePrpp+F0OhOyG6/0FTAyyJGpBd1lIpEI6uvrqSlNk25/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGrDBkIYmrF9+3YcP34cPp8PXV1d+Pjjj3H16lV0dHTgr//6rxGNRvGtb30L169fz7SrWQvHcVizZg0VtXKVQpuWdPujZXtq2lbDlhIbtPWT6Y5e4kGbDpZ/tLPH8o9+0FM8aNPCcpB2tlK1kc6YGAwGLF26FGvXrkVRUZHm7SnBZrNh9+7dOHjwoGJbBw8exO7duxP6OpfneTQ2Nk46k2P0tjU1NYr90wqTyYTCwkKYTKZMuwIg/f5o2Z6attWwpcQGbf1kuqOXeNCoI50+admWnp7B1IatEcLICOFwGPPmzYPH48G+ffvw9NNPp2Rnuq8RwmAwGAwGg8FgMBhaIEkSPvjgg0y7MSVutxtbt25VZGP8uh5KbI62pYVvDAaDwdAnaq0RQjuZfJfLZoQwMoLNZsPSpUsBAMFgMMPeZC/hcBgnTpxAOBzOtCuKoU1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOUg7W6naoK2P0EZBQUFavzK12WwoKSmZcPaI2+2G2+1OaMZIphEEAR0dHRAEIdOuAEi/P1q2p6ZtNWwpsUFbP5nu6CUeNOpIp09atqWnZzC1YQMhaUQURZw/fx6vvvoqduzYgQceeAAcx8FgMMBgMCga+eN5Hq+99ho+97nPYcmSJbDZbJg3bx4efvhh/Pu//zv6+/vVE6IC/f39aGlpAQA8+OCDGfYme6HxwpEqtGlhN+Ha2WI34fpBL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1up2qCtj9AGx3HYuHFj2tozm80oKiqC2WyO+/fvfe972Lp1K8rKyrBnz560+ZUK8sLvkiRl2hUA6fdHy/bUtK2GLSU2aOsn0x29xINGHen0Scu29PQMpjasNFaaOHr0KLZt24ZQKDThNps2bcKJEyeStt3S0vL/s/f24VGVd/7/+8ycOTOZp4yBCEoUvqVqQFTQtlCxErSlXdtsqaYtFBWlWxW7W2J3y9pvu3yVvbpVdreabRVdFXwg4rbYomnVYgVijSZrMGgwPNRgggEGQpJ5yjycOXPm90d+524S8jhznzP3nLlf18V1ATl535/3+XzOZ+Y83TdWrlyJ/fv3j7rNueeei61bt+KGG26YtD5Nuru70dzcjJ/85CdoaWnBypUrs1ownU+NxeFwOBwOh8PhcDj0yZepsYCBp003bdqEhoaGIW9iSJKE2bNnj7soOc2psWjDp8bicDicwoBPjaU//I0QgwgEAmPeBMmUrq4uXH/99eQmiCAIWLJkCdasWYPKykoUFRUBAE6fPo3ly5dj9+7d1GMYj507d5K3Xs4991zccMMN6Ovrw+bNm1FbW2t4PGYilUrB7/cjlUrlOpSsYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYqxEW0RZOr6urw/bt28mfuro6bNiwgepYLC7wmymqqiISiTDzRLbR8eg5Hk1tGlrZaLBWJ4WOWfLBog8jY9JzLDOdg9GG3wgxmGnTpuFrX/sa7r//frzyyitYt25dVnrf+c53cOLECQDAzJkz0dLSgr179+Kpp57Cyy+/jGPHjuH6668HACSTSXzzm99EIBDI1sakmDJlChYvXozPf/7zmDlzJqxWKzo7O7F9+3YyPRYnM8LhMB5//HGEw+Fch5I1rHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNcIykiRh+vTp5I8ea4d4PB7cdddd8Hg81LUzRZZlsjbJZNYnkWUZ+/btY2Y9E6Pj0XM8mto0tLLRYK1OCh2z5INFH0bGpOdYZjoHow2fGssgtC8jF1544ZD/v++++3D//fcDmPzUWK+88gq++tWvAhj4wtfc3IzLLrvsrO36+/tx+eWX4+jRowCAH//4x/i3f/u3s7a799578eCDD054/MEkk8lR50gdzsmTJ/HTn/4UW7ZsgdfrxQcffICZM2dmNG6hT42VTqeRSCRgt9shCEKuw8kK1rwYHY+e49HUpqGVjQZrdVLomCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NPKVCNXNZJPU2ONxUSmuZrM1FiCIMButyORSMCIyyljTY011pRgixcvxvr160dd1B0YqK1UKgWr1cpM/zEyHj3Ho6lNQysbDdbqpNAxSz5Y9GFkTCONRWtqLNbPwfjUWAXA9OnTz7oJki2PPPII+fvq1atHvAkCAC6Xa8gibY8//viIC9S4XC5MmTIloz+TORDOO+88PPXUU1i2bBlCoRB+9rOfTcI1ZzCCIMDhcDDzoZENrHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNVLopNNpxONxQ26CjMemTZuwZ8+es54olmUZe/bswaZNm8b8fUEQIIoiM7VldDx6jkdTm4ZWNhqs1UmhY5Z8sOjDyJj07j9mOQejDb8RkqdEIhG88cYb5N+33377mNvfdNNNcLvdAIDe3t4Rn+z5l3/5F5w5cyajP5nMj1pZWQkAaG5unvTvcgYIhUJ4+OGHEQqFch1K1rDmxeh49ByPpjYNrWw0WKuTQscs+WDNB+8/+unx/mMezJQP1rzwHqSfVqYarNVIoeP1elFdXQ2v12vIeKNNmyLLMhoaGsb83eFvigwnkUigsbERiUQiqxhpYXQ8eo5HU5uGVjYarNVJoWOWfLDow8iY9BzLTOdgtOE3QvKUt99+mxwsLpcLn/3sZ8fc3uFw4POf/zz5dy4WTR+O9lYKC4vl5CsOhwMVFRVjvu6cL7Dmxeh49ByPpjYNrWw0WKuTQscs+WDNB+8/+unx/mMezJQP1rzwHqSfVqYarNVIoROPx7F3717E43FDxlu9ejXuvvtudHR0DLmp0dvbO+7c8rIso7e3d9Sfi6KIWbNmTXiaa70xOh49x6OpTUMrGw3W6qTQMUs+WPRhZEx6jmWmczDasFNtnElx8OBB8vfLLrtsQgfOlVdeiddff/2s388F6XQaO3bsAAAsWLAgp7HkM5IkYf78+bkOgwqseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1km+UlJRAkqRRbxpIkoSSkpIJ68myjP3791OKbmIcPHgQt99++5C1P2hgtVpHXX8kFxgdj57j0dSmoZWNBmt1UuiYJR8s+jAyJj3HMtM5GG34GyF5yuHDh8nfJ7rQ+OA1Sg4dOkQ9psE0Nzfjpz/96ZA4NTo7O7FixQo0NDTAarVi3bp1usZiZmKxGF577TXEYrFch5I1rHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNZJvaDcPRmPx4sWQJGnCekVFRfjKV76CoqKirOKaM2fOpMYFJr72x0RJJpP46KOPkEwmqehli9Hx6DkeTW0aWtlosFYnhY5Z8sGiDyNj0nMsM52D0Ya/EZKn9PT0kL9PmzZtQr8z+E7jWK/H0iASieBnP/sZfvazn2HKlCm48MILIUkSTp8+jY6ODqTTabhcLjz11FP8jZAsUFUVgUAAqqrmOpSsYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5F8RHuDYvCaGZm+XWGxWODz+WCxZPdc6YYNG1BSUkKmuFq9evWEf7ehoQG33XZbVuMDbC38Dhgfj57j0dSmoZWNBmt1UuiYJR8s+jAyJj3HMtM5GG34GyF5SiQSIX+f6JMog7cb/Pt6cMUVV+CXv/wlbrrpJkyZMgVHjx7Fvn37EAwGsXDhQvz0pz/FoUOH8O1vf5vKeA6HgywGn0qlEAgESDMJhULky24sFkN/fz+AgTVKAoEA0QgGg+RObDQaRTQaBTBwlzYYDJLtAoEAWd+kv7+f3NGUZZks/JNOpxEIBMj6J5FIhMwhm0gkEA6HAZzdDMLhMFn7JR6PkzyN5snlcuHrX/86iS2fPaVSKdx4441wuVxM5EkURXz1q1+Fy+XKOk/A+LUnSRJWrFgBQRCoe7JarVixYgVEUWQiT4qiYMWKFXC5XJP25HK58LWvfQ1WqxUA3eNpInnKl+PJKE82mw033HADXC5XXnsCgK9//etwuVxM5Mlut+MrX/kKXC4XlTwZ2SOGewKAFStWwG63U6k9i8WCFStWwGazZZSnZDKJb33rW3C5XAX9mWuGvudwOPCVr3wFTqcz7z2l02msWLECDoeDiTwlk0l885vfhMvlMqT2XC4XqqqqhjwRScuTy+XCt7/9bSSTSSbylOn3PZfLhRtvvJF4MLJHJJNJ8ndVVYesixGPx0kMyWSS5CyVSp21nRaDLMtDttPi0S4IDd5O2w+Kopy1nRZrIpEYst3wWLXtBEHAT37yE9TV1WHbtm147rnnUFdXh5/+9KcYzGBPTqeT9BibzYbi4mKSl9dee23Imp3aubYkSWQRdUEQ4PP5yPdWt9tN5ke32+1QFAWSJGHatGk499xzsXTpUgCAx+OB3W4HMPQ812q1wufzQRAEyLKMM2fOkDdKioqKyPcGURTh8/mIp8H1PzxPqqpi3rx5kCSJiTyl02nypowRtSdJEi699FKoqkrdk81mw7x585BOp4fEmoknGnmyWCyYN28eLBbLpD2JoohPf/rTsNlsZLtsPbHWI/LJUzqdRnl5OSRJymtPqqri0ksvhSRJzORJEATMmzcPVqtV99obqUfQ+r5nt9uxYsUKoqnFnel32KKiIqxYsQKqqlI9J8wF/EZInjL4wJ3o67TalykAur+OdM455+Dv//7vsWPHDhw+fBiBQADJZBI9PT1455138K//+q8oKyujNt6iRYtQVVUFAOju7kZNTQ05OLds2YK2tjYAQH19Perq6gAAXV1dqKmpIRqbN29Ge3s7AGDXrl3YtWsXAKC9vR2bN28m29XU1KCrqwsAUFdXh/r6egBAW1sbtmzZAmCgcdTU1KC7uxsAsGPHDjQ2NgIAWlpaUFtbC2CgOdTU1JBmVFtbi5aWFgBAY2MjWUdlNE+KoqCurg4vv/yyKTy9+eabUBSFiTzt27cPW7duhaIoWecJGL/2jhw5go6ODvzxj3+k7untt99GR0cH9u3bx0yeOjo6oCjKpD0pioJt27bh7bffBkD3eJpInvLpeDLCU2trK/77v/+bfAHMV08vv/wy6urqoCgKE3nq7OxETU0N+eKsd+3R7hGDPb388svo6OggnrLJU11dHfbs2YOOjg60trZmnCft87PQP3Pzve+dPHkSNTU15GQxnz395je/QUdHB/HEQp7ef/99KIpiSO0pioLm5mZdPCmKgr/85S/M5CnT73uKouDNN9/MSY/o7OzEkSNHiF5TUxOJtbm5GX19fcSHlrO+vj40NzeT7ZqamkgMR44cQWdnJxlXiyeVSqGpqYlc2GlrayP7we/3o7W1lXhvamoisba2tsLv95N9rsUdjUbR1NRELvK0tLSgu7sbkiQhFoshEAhAkqQxPS1btgzLli0DAMyePRtr164FMHBRuLq6mkxRXVlZiSVLlgAA5s6dizVr1gAYOP+urq5GaWkpAKCqqgqLFi0CMLBOpuZP87Ru3TosXboUN998M5k1YfB5bmlpKaqrq8l5fSQSwdy5cwEAS5YsQWVlJQCgrKwM1dXVxFNHR8eYedJulrGSp87OTqiqakjtqaqK3t5eXTwlk0kEAgFSe0B2x1O2efrkk08QCARw8uTJSXuKRCLEk5YnGp4mmqfRPOnRI/LF08cffwxVVfPeU3d3N1RVZSZPHR0dCAQCOH36tO61N1KPoPV9r7OzEx0dHXj55ZepfIft7e1FR0cHtm3bRvWcMBcIaZbeQSpA7rvvPtx///0ABr687N27d0K/99WvfhWvvPIKAOCf//mf8cADD4z7O6+++ipuuOEGAANPo2h3+PKZDz/8EPPmzYPD4YAoimhsbER5eTnC4TCKi4shCAJCoRAcDgf50quqKlwuFxRFQSQSIU/LBINBOJ1O2Gw20uCcTieSySSi0Sh5AigQCMDtdkMURfJ0alFREWRZRjweh9frRTqdRjAYhMfjgdVqRSQSgSiKcDgcSCQSkGUZHo8HqqoiFArB6/XCYrEgHA5DkiTY7XbE43EoigK3241UKjWip2g0ipqaGnzve9/D+eefn9eePvnkE2zZsgXr1q2D3W7PeZ5OnTqFxx57DOvWrYPX680qTxOpPVmW8eijj+KOO+5AcXExVU/9/f147LHHcNddd8HpdOY8TydPnsTWrVvJ+kCT8RQOh1FTU4O77roL06ZNo3o8mbFH6O3p9OnT2Lx5M9atW4fi4uK89XTixAk88cQTWLduHZxOZ87zdObMGTzyyCNYt24dfD6f7rVHs0cM99TX14cnnngC3//+94c8oZqpp3A4jMcffxxr166Fw+GYdJ66urpI/7FarQX7mWuGvtfT04Nf/epX+MEPfoBzzjknrz319PTgySefxN///d/DarXmPE+ffPIJOU5EUdS99pLJJGpqanD77beTNQ1peVJVlWjPmDEj53nK9PuedsFizZo1uOCCCwzrEaIo4o033kA6nYYkSVBVFbIsk7catCdarVYruUBqs9mQSqWQTCaHbCdJEiwWC3niVttOURTY7Xak02nyhL62ncVigSiKUBQFqVRqyHZ2ux2CICCRSMBqtZLtVFUdEuvg7URRJLGO56m7uxvf/e53AQxctLLZbHA6nQgGg/D5fKiursYvf/lL9PT0kDfIY7EYJEmCw+FAKBSCIAgoLi5GOBxGKpWC2+2GoiiIx+Ow2+148sknUVZWdpanSCSC06dP4z/+4z/w8ccfQxRF8ganx+NBMBhEOp3Gf/7nf+LHP/4xZFlGUVERLBYL+vv7IYoi3G43eer22Wefxfnnnz9iniKRCPbv34+FCxcCQM7zFAwGSTxWq1X32kun02hqasL8+fPh8Xioekqn0/jf//1fzJ8/H263e8K1p1eeZFnGvn37cNVVV8Fms03KUzQaxbvvvovPfe5zKCoqmvTxZMYekUtPoVAILS0tWLhwIURRzFtPoVCI1LUgCEzkSTtOPvOZz0AURV1rb6QesXDhQirf9xRFwSOPPILvfe97OOecc7L+DquqKn75y1/iu9/9LkpLS7M+Jzx+/DjmzZsHjQMHDuDSSy+FEfAbITkm0xsh3/72t/HrX/8aAPCDH/xgQnfUfvvb3+Kmm24CMLBeyMmTJzMLmiG0GyEaRh48HA6Hw+FwOBwOh2NWVFXFm2++meswcoLf78fKlSt1HWP79u1D1vEciWPHjo26dshDDz2Ee+65Z9xx5syZg1/84hfkwh+Hw+Fw2KSioiLXIRhCLq/l8qmx8pQpU6aQv586dWpCv6O9kgUAJSUl1GPicDgcDofD4XA4HA6HQ4eJToM9FgcPHsSmTZsoRMPhcDgcTn7Db4TkKZdccgn5uzYv33gcO3aM/L28vJx6TBzjCQaDeOCBB4YsjJSvsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Qgw8GDeggULcNlll036dz/zmc/oEJFxFBcX49577yXTkOSKjRs3TnjbhoYGsnDtYOLxON56660ha5DmkonEI8sy/H4/+TOSL5rjsaBNQysbDdbqpNAxSz5Y9GFkTHqOZaZzMNqIuQ6Akxlz5swhf29tbYWiKBDFsdP53nvvjfj7nPzF6XRi+fLlcDqduQ4la1jzYnQ8eo5HU5uGVjYarNVJoWOWfLDmg/cf/fR4/zEPZsoHa154D9JPK1MN1moEACwWC4qLixGLxSb9u263W4eI6FJSUgJJkka8yB6NRrFz504yR3uu0BYCngiyLKO3t/esqbhsNhvKy8ths9kmpQP8dR/RZKx44vE4Nm3adNZNHUmSsHjxYqxfv37S039N1n+utGloZaOh537iTB6z5INFH0bGpOdYZjoHow1/IyRPufrqq2G32wEA/f39aG5uHnP7RCKBxsZG8u/rrrtO1/iMxuFwkC/UqVQKgUAA2vI3oVCIfFGKxWLo7+8HACiKQhaQAwbuUGqLKEWjUfLFNplMDrlrqS08BAzse+3LvyzLCIVCAIB0Oo1AIIBUKgUAiEQi5C5vIpEgC9WrqopAIABVVQEA4XAYiUQCwMAXvUgkMqYnm82GmTNnEn/57CkWi+FTn/oUbDYbE3lSVRUzZsyAzWbLOk+av7E8AQNvamkLXdH0lEqlUF5eDlVVmchTNBolH/iT9WSz2VBWVkb80TyeJpKnfDmejPKUTqdx/vnnw2az5bUnWZYxc+ZM2Gw2JvIkCAKmT59OvhTrXXs0e8RwT7Iso7y8HIIgUKk9RVFQXl5OFlicbJ76+/tx8cUXw2azFfRnrhn6nsViwfTp08mDQPnsKZFIoLy8HBaLhYk89ff346KLLoLNZjOk9mw2Gz796U8TfzQ92Ww2XHLJJejv72ciT0Bm3/dsNhs+9alPDfn8NapHJJNJ8ndVVYc8uTo4T8lkkvw9lUoN2U5buF7LjeYjlUqReNLp9FnbaftBUZSzttNiTSQSQ7YbHuvg7bT9NZaneDyOVCoFSZKwZMkSctHGZrORN0CSySRcLhfRdrlcKCoqAjBwUd7r9QIY+Dz3+XywWq0ABm4AaRfq7XY7iXssT9oi6wBgtVrh8/kgCAIAwOv1khsRRUVFcLlcAABRFMniusDAGyzad4rheUomk5g6dSqsVutZ+3/wdsFgEBs3bkRlZSXWrl2Lm2++GZWVlfj5z39O6ohGnhRFwTnnnEMWOB68XU1NDfbs2QNZlod4EkURTU1N2LRp07i1N9iTtpDxlClTkEwmqdeexWLB1KlTyWLK2v4fr/ayydNYx1M6ncbUqVPJgs6T8SQIAtxuNywWC9kuW0+TydNonnLZI3LpSVEU0lvy2VMymcSUKVNgtVqZyZOqqpg6dSoZK5s8ZdIjaH3fEwQB5eXlQz5zs/kOa7VaUV5eTr4Pafsu23PCXMBvhOQpbrcb119/Pfn3008/Peb2v/3tb0khl5SU4Nprr9UzPMNZtGgRqqqqAADd3d2oqakhB+eWLVvQ1tYGAKivr0ddXR0AoKura8gi85s3b0Z7ezsAYNeuXdi1axcAoL29HZs3bybb1dTUoKurCwBQV1eH+vp6AEBbWxu2bNkCYKBx1NTUoLu7GwCwY8cOciOqpaUFtbW1AAaaQ01NDWlGtbW1aGlpAQA0NjZix44dY3qKRqPYsmULdu7cmfeennrqKWzbtg3RaJSJPDU1NeHRRx9FNBrNOk/A+LXX1taGnTt34pVXXqHu6c9//jN27tyJpqYmZvKkPUU3WU/RaBSPPfYY/vznPwOgezxNJE/5cjwZ5Wn//v341a9+hWg0mteedu7ciS1btiAajTKRp48++gg1NTXky63etUezRwz3tHPnTuzcuZN4yiZPdXV1eOONN7Bz507s378/4zzt2LED0Wi0oD9zzdD3jh07hpqaGvJEdD57+vWvf42dO3cSTyzk6de//jWi0aghtReNRvHCCy/o4ikajeK3v/0tM3nK9PteNBrFtm3b8NRTTw3JkxE9orOzE0eOHCF6TU1NQzx1dHQQH1rO+vr6hjyo19TURGI4cuQI6uvrUVpaiu7ubhJPKpVCU1MT+exra2sj+8Hv96O1tZV4b2pqIrG2traStTC7urpI3NFoFE1NTeQiT0tLC9lfY3lqbm4mfeXrX/86br31VkiShNmzZ2Pt2rWQJAlf+tKXUFlZidmzZwMAKisrsWTJEgDA3LlzsWbNGgADNzuqq6tRWloKAKiqqsKiRYsAAAsWLCD+xvIUj8fxzW9+EwBQWlqK6upq8kDkmjVrMHfuXADAkiVLUFlZCQAoKytDdXU18bR27VoS60h5OnToEJLJ5Fl50qbg7u7uRmNjI/bs2QOLxUI8ybKM888/Hy+++CLVPH3wwQdIJpND8tTT00P23XBPy5Ytw7Jly9DQ0IDu7u4xa2+wp5aWFiSTSRw8eFCX2ovH4zh06FBGtZdpnsY6njo7O3Ho0CEcP3580p60WLULpbQ8TTRPo3nKdY/IlacPPvgA77//PpLJZN57amtrQzKZZCZPH3/8MQ4dOgS/36977Y3UI2h93/voo4/IeRiN77CnTp3Czp078dxzz1E9J8wFQlq7XcPJCffddx/uv/9+AANfXvbu3Tvh3/3DH/6Ar33tawAGvmTt27cPl1566VnbRaNRXHHFFfjoo48AAPfeey9+/vOfZx88A3z44YeYN28eHA4HRFFEY2MjysvLEQ6HUVxcDEEQEAqF4HA4IEkSYrEYVFWFy+WCoiiIRCLkaZlgMAin0wmbzUYanNPpJE9saU8ABQIBuN1uiKKI/v5+WCwWFBUVQZZlxONxeL1epNNpBINBeDweWK1WRCIRiKIIh8OBRCIBWZbh8XigqipCoRC8Xi8sFgvC4TAkSYLdbkc8HoeiKHC73UilUiN6UhQFr7zyCpYsWYLS0tK89nTq1Cm89dZb+Ju/+RsIgpDzPPX19eFPf/oTvvrVr8LhcGSVp4nUHgDs2bMH11xzDZxOJ1VPsizjzTffxJIlSyCKYs7z1NPTg8bGRixbtgyyLE/KUyKRwB/+8Adcf/31KCkpoXo8mbFH6O0pEAhg165d+NrXvoaioqK89dTd3Y36+nrccMMNEEUx53kKhUJ47bXX8LWvfQ1Op1P32qPZI4Z7ikQiaGhowHXXXQdVVbOuvXg8jj//+c+oqKiAxWKZdJ5OnTqFxsZGfPnLXyZP/BbiZ64Z+l44HMarr76Kr371q+S4yVdPoVAIb7/9Nq6//nqkUqmc58nv9+Odd97BV77yFaiqqnvtCYKA1157DZ///Odx3nnnUfUkiiL++Mc/YtGiRTj33HNznqdMv++l02m8+uqruOaaazBt2jTDeoQoinjjjTeQTqchSRJUVYUsy3A4HCgtLUVZWRkEQcB7771HnlK12WzkCXbt7Yd4PA5JkmCxWCDLMr7whS8gnU7jnXfegaIosNvt5Cn1wdtZLBaIokielh28nd1uhyAI5Kl+bTtVVYfEOng7URTJmwYjedJitdlsZDtg4MnZM2fOIJVKYdq0aRAEAYcOHcJ9992H3t5euFwuqKqKWCwGSZLIuYMgCCguLkY4HCZvdiiKgng8DrvdjieffBJlZWXjevr3f/937Nq1C1arFR6PB8FgEOl0Gl6vF/F4HLIso6ioCBaLBf39/RBFEW63mzx1W1xcjGg0imeffRZTpkwZkqdYLIauri7Mnj2bfC5q+18QBNhsNgSDQdx6662jehIEATt27IDFYsk6T5FIBMeOHcNFF11E9r0kSThx4gS+//3vn+UpmUySt3a0hxxKSkpGrT3NUyqVgqIosFgs+Oijj1BWVgaXy0W19iwWC44ePYqysjIUFRVlVHuTyZPmabTjKZVKobOzEzNnzoTFYpmUp0QigY8++ggXXXQR+Xemx9NEesREPbHSI4z21N/fj87OTlx00UXknDwfPUUiEXR1deHTn/40VFVlIk+KouDYsWOYNWsWBEHQtfZG6hELFy6k8n3PYrFg9+7dWLx4Mdxud9bfYUVRxJ/+9CdcffXVKC4uzvqc8Pjx45g3bx40Dhw4MOL1bD3gN0JyTDY3QgDg2muvJU9Gz5o1Cy+99BIuv/xy8vOenh6sXLkSr7/+OoCBt0Ha29uHvCqbz2g3QjSMPHg4HA6Hw+FwOBwOx6yoqoo333xzxJ+Vlpbi0ksvRSwWG/IU7nj4fD7Mnz8fAHDmzBkcOHCARqg5YePGjdizZ0/Gv799+/az1uwYiXg8jh/+8Ic4ePBgxmNNZrzB427atGlCHierPVn8fj9WrlyZ8zg4HA5HTyoqKnIdgiHk8lounxrLQG644QbMnz9/yJ/HHnuM/Ly5ufmsn8+fPx8nTpwYVfP5558nT051dHRg/vz5WLp0Kf7u7/4OX//613HhhReSmyCiKOLXv/61aW6CcAbmAtRekc13WPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaiQbtHNXAGQe9nwjlUrhzJkz+Md//EcsXbp0yILhkiRhzpw5VMdzOBzYsGEDVU0NzYs27cxgJnoTxIh4tLnmjRqPNW0aWtlo6LmfOJPHLPlg0YeRMek5lpnOwWjDb4QYSFtbG95///0hf06dOkV+3t/ff9bP33///TE/9MvKyrB7927yVE06ncbevXvx1FNP4eWXXyavS5WWlmLnzp1D1hXh5D/RaJSstZDvsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Ug2aIuKa2gLf+cT2gUdq9WKDRs2oK6uDtu3b8f27dtRV1en200LPRjt4pQsy2hoaMhZPCdOnIDf70dHRwf+5V/+BatXr9Z1PH4jVv/xOfQwSz5Y9GFkTHqOZaZzMNrwqbEMZNasWWQxocnw8ccfY9asWWNuI8syXnjhBWzfvh0ffvghTp06BZ/Ph0996lO48cYbcfvtt+ftEzdjwafG4nA4HA6Hw+FwOBz66DE11pVXXgmv10v+/c4775DFVc2CHtM4TVQzV+PRmJJKm4qroaEh4zdA+NRYHA4nn+FTY+mPaMgoHAADU1fphSRJuPXWW3HrrbfqNgaHw+FwOBwOh8PhcDi0KCsrQ3t7e67D4DBALqbi4nA4HE5hwafG4nDymEAggPvvvx+BQCDXoWQNa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajdBk6tSpsFjy67JEPB5HfX094vF4rkPJGla8aFNx+Xw+3HfffYata6qnf5raNLSy0WClTjgDmCUfLPowMiY9xzLTORht8usbB4czCg6HA263G8DAgkOBQADarG+hUIi8WhuLxdDf3w8AUBRlyEEYDAbJ3HzRaJTMXZdMJhEMBsl2gUAAiqIAGFjXJRaLARj48hYKhQAMrNUSCATIokeRSIQ0t0QigXA4DGDgdfNAIABVVQEA4XCYvBoej8cRiUTG9OR2u7FixQoyt24+e1JVFd/5znfgdruZyJPNZsM3v/lNuN3urPMEjF97drsdq1evhsVioe5JFEWsXr0aNpuNiTylUimsXr0abrd70p7cbje+9a1vQRQHXmikeTxNJE/5cjwZ5UmSJFRVVcHtdue1J0EQsGLFCrjdbiby5HA4cNNNN5HPNb1rj2aPGO5JEASsXr0aDoeDSu1ZrVasXr0akiRllCdFUXDLLbfA7XYX9GeuGfpeUVERbrrpJrhcrrz3BACrV69GUVERE3lSFAU333wz3G63IbXndrtx8803k9hoenK73bj11luhKAoTecr0+57b7cZ3vvMdEpuRPSKZTJK/q6o65ILN4Dwlk0ny91QqNWS7eDxOYohGo0PylEwmcfnll8PpdCIej8Nms5GfaftBURQSdzqdRjweJ7EmEokh2w2PdfB22v4ay1M8Hh+y3UietAXRte+jmg9tO+3vgiDA5/PBarUCANxuNxwOBwDAbreTuCfqyWq1wufzkc8hr9dLFmovKioi/VAUxSE3EoqLi8l+He5JVVVcccUVkCRpSJ4URSHruUiSRKYzG82T3+/H8ePH0dXVBVmWJ52nnp4eyLIMQRCwbds2RCKRCXtyOp1wOp2j5lPzNDxPiUQCkiTh8ssvh6qqQ7ajUXs2mw1XXHEF0ul01rU3Wp5G8jQ41sHbWSwWXHHFFbBYLJP2JIoi5syZQ/Y5zeNpInkazROrPUJvT+l0GvPmzYMkSXntSVVVXH755ZAkiZk8CYKAK664AlarVffaG6lH0Pq+53A4sHr1agiCQOU7rNPpxOrVq5FOp6meE+YCfiOEYwoWLVqEqqoqAEB3dzdqamrIwbllyxa0tbUBAOrr61FXVwcA6OrqQk1NDdHYvHkzeS17165d2LVrFwCgvb0dmzdvJtvV1NSgq6sLAFBXV4f6+noAQFtbG7Zs2QJgoHHU1NSgu7sbALBjxw40NjYCAFpaWlBbWwtgoDnU1NSQZlRbW4uWlhYAQGNjI3bs2DGmJ1EU8fHHH+PVV1/Ne0/PPvss+vv7IYoiE3lqbW3Fm2++CVEUs84TMH7tdXZ2YtasWdi9ezd1T83NzZg1axZaW1uZyNMTTzyBWbNmQRTFSXsSRRFNTU1obm4GQPd4mkie8uV4MsrTkSNH8Prrr0MUxbz29Oqrr+Ljjz+GKIpM5Mnv9+PFF18kF1j0rj2aPWK4p1dffRWzZs2C3++nUnsNDQ2YNWsWjhw5klGeHnnkEZSUlEAUxYL+zDVD3+vr68OLL75ITuDy2dPOnTsxa9Ys9PX1MZGnRx55BC6XC6IoGlJ7oijCarXikUceoe5JFEWcd955eOSRR5jIU6bf90RRRH9/P5599lmSJ6N6RGdnJ44cOUL0Bq8HsnnzZjL9c3t7O8lZX18f+a4GAE1NTSSGP/3pT2flyefz4fLLL0dTUxM+9alP4eKLL0ZbWxvZD36/H62trcR7U1MTibW1tRV+v5/scy3uaDSKpqYm0iNaWlrI/hrLU3NzM/r6+sb0ZLFYcPDgQXIB6MiRI2Qt0O7ubhw7dgzAwM2O6upqlJaWAgCqqqqwaNEiAMCCBQuIv4l6Ki0tRXV1Nex2OwBgzZo1mDt3LgBgyZIlqKysBDAw3Vh1dTXxtHbtWsyePXtET++99x58Ph8sFsuQPJ06dQpLliwBAMydOxdr1qwZ09M999yDX/3qV2hoaEBlZSU2bdo0qTxpFxi1h6UURZmwp2XLlmHZsmUABm4ejlZ7w/PU0tICi8UCj8eDd999l1xUpFV76XQaPp8P77//fta1N1qeRvIEDFyUbGpqGuLpxIkT8Pl8OH369KQ9xeNxHDx4kFzkpHk8TSRPo3litUfo7enDDz9ELBaDxWLJa0/vvvsuioqKYLFYmMnTJ598Ap/Ph56eHt1rb6QeQev7nt/vx6xZs/Dqq69S+Q4bjUYxa9Ys/M///A/Vc8JcwBdL5+Q12gI7DocDoiiisbER5eXlCIfDKC4uhiAICIVCcDgckCQJsVgMqqrC5XJBURREIhHyZEkwGITT6YTNZiMNzul0IplMIhqNori4GMDA3VW3201OSCwWC4qKiiDLMuLxOLxeL9LpNILBIDweD6xWK3ni1uFwIJFIQJZleDweqKqKUCgEr9cLi8WCcDgMSZJgt9sRj8ehKArcbjdSqdSInpLJJHbu3IkvfelLOPfcc/Pak9/vx+7du/H1r38dFosl53nq7e3FK6+8gm984xsoKirKKk8Tqb10Oo3XXnsN119/PVwuF1VPiUQCr7/+OpYtWwabzZbzPJ05cwb19fWorKxEMpmclKd4PI7f/e53+Ju/+RtMmTKF6vFkxh6ht6e+vj78/ve/x4033gin05m3nk6fPo3XX38dy5cvh81my3megsEgXn75Zdx4443k33rWHs0eMdxTOBzG7t278Td/8zfky342tReLxfCnP/0JX/7yl2G1WiedJ7/fj/r6evzt3/4tVFUt2M9cM/S9UCiEl156Cd/4xjfIv/PVUygUwu7du3HDDTdAVdWc5+nkyZPkOEmn07rXHgC89NJLqKiowPnnn0/Vk9Vqxcsvv4wlS5Zg2rRpOc9Tpt/3VFXFSy+9hOuuuw7Tp083rEeIoog33ngD6XQakiRBVVXIsgyHw4HS0lKUlZVBEAS899575ClVm81G3orQ3n6Ix+OQJAkWiwXl5eUoLi4e83hSFAVvv/02UqkURFEkb/TY7XbyNKrdbocgCEgkErBarWQ7rbdrsQ7eTrvplkwmR/SkxWqz2ch2I3mSZRkHDx7EJZdcQv4tCALZ7sSJE7j11lshCAKKi4sRDofJm82KoiAej8Nut+PJJ59EWVnZhDz19vbi5ptvhsfjIbXk9XoRj8chyzK5mKg9sKS9eQ0MvD0RjUbx7LPPYsqUKUM8RaNRdHZ24uKLLyb7Tru4escddyAWi0GSJDgcDoRCoXE9SZKEcDgMi8WCZcuWYf369RPKU19fH77zne9g2rRpuO666/Dyyy9DVdVxPSWTSfI2SDQaRW1tLUpKSkasveF5UhQFgiDg8OHDmDlzJtxuN9nOYrFkXXuCIOAvf/kLZs6cCafTmVXtjZankTwNjnXwdoqi4OjRo/jUpz4Fq9U6KU/xeByHDx9GeXk57HY71eNpInkazRONPOnRI/T2FIlEcPToUZSXl5PPiHz0FA6H0dnZiUsuuQTpdJqJPCWTSXz88ceYPXs2LBaLrrU3Uo9YuHAhle97giDg1VdfxXXXXQePx5P1d1ir1Yo//OEPWLp0KXw+X9bnhMePH+eLpXM42TD41TbtlWEN7TVeAOT1XmDk12s1tC9TwECzHPyzwb+jvaoLDLwyrL2arL0yrKFNbwIMPEWjPcVjsViGbOfxeMjftcY8lqdUKoUpU6aQ38tnT8XFxSgpKSEnsBq58lRUVETmLM42T5reWJ5isRh8Ph/cbjfZlpYnLa6ioiKincs8+Xw+8kTTZD1ZLBZMnTqVaNI8ngDz9Qi9PWkXQiwWS1578ng8mDJlCiwWCxN5kiSJ7NdMPeWqR4zkyefzQZKkIR4z9aTF5XA4iN5k8nTOOefgnHPOgcViOauWx/Nkps9cM/Q9m82G0tJSMj1LPnvSbhLabLYhsefK0+DjZPC4etVeLBZDSUkJzjnnHOqeYrEY8TN4Kp9MPNHIU6bf97R9pG1nVI9QVZVMhaPpDf49zZPmY7Cetr+Hj+V0OodMuTTS8aRdDGpuboaqqhBFkbwlKQjCED3NKwCyzUixDt5uLE/D+8xIngRBgMvlIv/WPGjbab+nTT2iob1BAoBczJuMJ23qEQ3tKWYAJA/AyNOpjObJ4XDA4XCcFYMoikOmU9GmOBnPk/Y0sKqq2L17N+655x5y820kT9r+16b7CoVC6Ovrg6qqE/akXRAcrKcx+O/D86RdINW+/2jfuwZvl03taRdbHQ4HqZVMa2+0PI3kaaRYJUki/2ez2Yj+RD1ZrVbyPWz4dtkeT8O3m4ynwbGy1COM8OR0OiEIQl570o49QRDO2i5XnrT4RVEc9TjRs0fQ+r6nfd/QboJocWf6HVbT83q95GfZnBMeP34cuYK/EcLJa7Q3QjSMvIvI4XA4HA6Hw+FwOGZFVVW8+eabI/7svPPOwyWXXIJYLDZkOpLxuPLKK4dcIBmL3t5efPDBBxPWZgW/34+VK1eOu9327dsxffr0CWnKsozKykpyQyITJjPeRD3QGtPo8TgcDodFKioqch2CIeTyWi5fI4TDyWNkWcb+/fuz+kLMCqx5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlalGrmpk+FtBg9HWiChEUqkU/H4/mbPeCCRJwuLFi6nrDvciyzL8fj+Z195oJEnC/PnzhzxxrSd65pKmNg2tbDRyUfOc0TFLPlj0YWRMeo5lpnMw2vAbIRxOHhOPx7F3794hU4PlK6x5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlalGLmvkvPPOO+v/ioqKhkzDUWgoioKOjg4oimLouOvXr8fSpUupampeIpEINm7ciMrKSqxcuRL33HMP1XEmisPhQEVFxZApV/REz1zS1KahlY1GrmqeMzJmyQeLPoyMSc+xzHQORhs+NRYnr+FTY3E4HA6Hw+FwOByOPqTTaXR1dcHv9yORSOCcc87Bpz/9aTJHuCzLePvttyesx6fG+iuZTuN07NgxrF69etK/N9Z4GzduxJ49eyatOR5z5szBL37xi3FvbPCpsTgcDodPjWUE/I0QDiePSafTiMfjMMP9TNa8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylQjlzUiCAIuuOACfPazn8U111yDSy+9dMgCsJIkDVmovhBIp9NQFCVnxyzNaaPS6TSi0SgaGhqoaQ7m4MGD+NnPfkam2xpvWhRtsWFt8XS90TOXNLVpaGWjkeua5wzFLPlg0YeRMendf8xyDkYbfiOEYwocDgfcbjeAgXn2AoEAOcBCoRD5whWLxdDf3w9g4DW0QCBANILBIJLJJAAgGo0iGo0CAJLJJILBINkuEAiQV9f6+/sRi8UADDwNFQqFAAwc5IFAgMz1F4lEyCtgiUQC4XAYwMAChIFAAKqqAgDC4TASiQSAgVfHIpHImJ6CwSAefPBBnDx5Mu89dXV14cEHH0QwGGQiT6dPnybxZJsnYPzaO3PmDB588EH4/X7qnjQvp0+fZiJPn3zyCdGYrCet5k+fPg2A7vE0kTzly/FklKfu7m6Sy3z2dPLkSeKDhTz19PSQeGjkycgeMdyTtm97enqo1N6pU6fw4IMPoru7O6M8De4/hfyZa4a+19vbiwcffJDEm8+eTpw4gQcffBC9vb1M5GnwcWJE7WnH1ieffELd02BtFvKU6fc9zUdXVxfJE0s9ory8HKqqkpylUqkh01/E43ESQzQanfDxpMWqKAr5+/CLKYlEguwvRVFI3KqqnrWdpp1MJs/abnCsg7cbyVMikUBDQ8MQH4O30/4uCAJ8Ph+sVisAwO12kzcj7HY7iTtTT16vl9wUKSoqIjekRFGEz+cjnoqLi2Gz2Ub0FAqF8O6778LpdMLn80EURQCAy+Ui68NIkkTe4hnPk8fjATCwvozP54PFYsFbb72FO+64A7fddhsqKyvxs5/9jOR9uKcZM2bg3nvvRXFx8YQ9OZ1OOJ3OUfOp1d7wPCUSCZLLUCg0ZLvB+z/T2ovH40Q729oLhUJoaGhAIpEY19PgWAdv19/fj4aGBvT390/aUywWQ0NDw5BjgNbxNJE8jeaJRp706BF6ewqHw6Qe8tnT4LpmJU/acRKNRnWvvZF6BK3ve9r55MmTJ6l8h+3r68ODDz6I48ePUz0nzAX8RgjHFCxatAhVVVUABi7M1dTUkINzy5YtaGtrAwDU19ejrq4OwMAF3ZqaGqKxefNmtLe3AwB27dqFXbt2AQDa29uxefNmsl1NTQ05Camrq0N9fT0AoK2tDVu2bAEw0DhqamrQ3d0NANixYwcaGxsBAC0tLaitrQUw0BxqampIM6qtrUVLSwsAoLGxETt27BjTk8fjwbx580gM+ezpxRdfREVFBTweDxN5am9vx5QpU+DxeLLOEzB+7XV3d+POO+9EY2MjdU8ffvgh7rzzTrS3tzORp+effx533nknPB7PpD15PB6cd955+PDDDwHQPZ4mkqd8OZ6M8tTV1QW32w2Px5PXnurr6zFv3jx4PB4m8qR9kdUuJuhdezR7xHBP9fX1uPPOOxEMBqnUXktLC+688050dXVllKetW7fiO9/5DjweT0F/5pqh72kna9pFwHz2tGvXLtx5552Ix+NM5Gnr1q246aab4PF4DKk9j8eDyspKbN26lbonj8eD2267DVu3bmUiT5l+3/N4PKioqMCLL75I8sRSj/B4POTCyyWXXAKHw4Hm5mayXVNTE4nhT3/604SPp/379wMYmDaptbWVbNfU1ERibW1tJQt7d3V1kbij0SiamprIRZ6Wlhai3dnZiSNHjpB91NTURGJtbm5GX18fyY1Wh319fcST1ne0PnTkyBF0dnaSfXn8+HFIkgS73Y7q6mqysHxVVRUWLVoEAPjMZz5DbqxP1pN2MW7NmjWYO3cuAGDJkiWorKwEAJSVlaG6upp4Wrt2LWbPng2/348DBw7gwIED8Pv9OHr0KFpbWzFz5kyEw2FUV1ejrKwMAFBZWYklS5YAAObOnYs1a9YAwJieFixYgFWrVgEYuElTXV1NbqCsWrUKCxYsIBcQ//jHP0KW5bM8VVVVYc+ePQiHwxPyBADLli3DsmXLAAzcPByt9obnqaWlBZIk4YorrsD+/fvJRcW2tjZyDGZTe1arFVdddRUOHjyYde21trbiqquugiRJ43oCBi5KNjU1DfHU3d2Nq666iuhNxpN2MVe7AUbzeJpInkbzRCNPevQIvT0dOXIEZWVlkCQprz3t378f8+bNgyRJzOTp5MmTuOqqqxAKhXSvvZF6BK3ve8FgEHfeeSc5H9PizvQ7bDqdxp133onf//73VM8JcwFfI4ST12jzyjkcDoiiiMbGRpSXlyMcDqO4uBiCICAUCsHhcECSJMRiMaiqCpfLBUVREIlEyJMlwWAQTqcTNpuNNDin04lkMoloNEoWBAwEAnC73RBFEf39/bBYLCgqKoIsy4jH4/B6vUin0wgGg/B4PLBarYhEIhBFEQ6HA4lEArIsw+PxQFVVhEIheL1eWCwWhMNh8qU5Ho9DURS43W6kUinuiXvinrgn7ol74p64J+6Je+KeuCfmPfn9fuzfv5+8KRCPxyFJEiwWC8rLy8nT/uN5CofDOHz4MBRFQSqVgt1uRzqdRiKRgN1uhyAISCQSsFqtEEURiqJAVVVIkgRVVSHL8pDtRFGE1WpFMplEOp0est3gWG02G9kOAGw2G3nTYyRPsixDEASynaIoePDBB7F3714UFxcjHA4jlUrB7XZDURTE43F88YtfxD/90z9l5Kmvrw/f+c534PV6EY/HIcsyioqKYLFY0N/fD1EU4Xa7yVO3xcXFiEajSCaT5M2JaDQKm82G4uJilJaW4uDBg/D5fIhEIlAUBS6XC6qqIhaLQZIkOBwOhEIhCIIwqie73Q5JkhAOh2GxWOD1esmbFh6PB7IsI5FIkHP3/v5+LF26FD/4wQ8QjUapeKqtrUVJScmE8zR4/w/ezmKxkP2fb7XHPXFP3FP+elq4cGFBfI84fvx4ztYI4TdCOHlNoS+WHolEsGPHDlRVVZGpwfIV1rwYHY+e49HUpqGVjQZrdVLomCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NPKVIO1GhmPnp4e8oTscMywWLosy2hra8PcuXNHXa8jHo9j06ZNaGhoGLIuhiRJWLx4MdavXz/uAuKjQWthcWBgaquqqirs2LGDTHFiNEuXLsUdd9yBlStXZh3P9u3bUVJSgt7eXgBASUnJmGuqTCSXmUJTm4ZWNhp67ifO5DFLPlj0YWRMI41Fa7F01s/BcnktVzRkFA6HowuiKGLWrFlkLtd8hjUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKncHrX4yGw+HAhg0bIMsyuSgPjH9h3mgURUFHRweZ+igXNDQ04LbbbqMSz8aNG9He3k5uPo1342kiucwUmto0tLLR0HM/cSaPWfLBog8jY9JzLDOdg9GGvxHCyWsK/Y0QDofD4XA4HA6Hw2EJs78RkmtovhHCCg899BDuuece3fSXLl2KDRs26KbP4XA4NKD1Rgjr5PJaLju33TgczqRJJBJobGwkCxLlM6x5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazUyHjabbdSfsfA0aLYoioKurq6cvkVBC7vdjkWLFsFut+c6FAD6xTN8ijINPXNJU5uGVjYaZqp5M2CWfOTKhyzL8Pv98Pv9Z/UFI2PScywznYPRht8I4XDyGFmWsX///hG/1OUbrHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNTIeHo9nxBsekiShqKgoBxHRJZVKwe/3I5VK5TqUrJEkCfPnz2dmui694hk+RZmGnrmkqU1DKxsNM9W8GTBLPoz2EY/HsXHjRlRWVmLlypVYuXIlKisrsXHjRsTjccNj0nMsM52D0YZPjcXJa/jUWBwOh8PhcDgcDofDFj09PThw4AC0yw0WiwWXXXYZzjnnnAlr8KmxRoZPjZUZ27dvx/Tp03Udg8PhsMvGjRuxZ8+eEX/GyvR5fGos/eFvhHA4eYyqqggEAlBVNdehZA1rXoyOR8/xaGrT0MpGg7U6KXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aWWqwVqNTIQpU6Zg4cKFuPjii3HJJZdg4cKFk7oJwjLpdBrxeBxmeKaUtcWKjY5Hz1zS1KahlY2GmWreDJglH0b6kGUZDQ0No/5cmz7PyJj0HMtM52C0YePTjsPJEofDAbfbDWDg9bJAIECaSSgUIq9fxWIx9Pf3AxiYjy8QCBCNYDCIZDIJAIhGo4hGowCAZDKJYDBItgsEAmQOv/7+fsRiMQADjTUUCgEYaGiBQIC84haJRMirdolEAuFwGMDZzSAcDpM58+LxOCKRyJieQqEQampq4Pf7897T8ePHUVNTg1AoxESeuru7STzZ5gkYv/Z6enpQU1ODU6dOUfekeenu7mYiT11dXURjsp60mu/u7gZA93iaSJ7y5XgyytOZM2dILvPZk9/vJz5YyFNvby+Jh0aejOwRwz1p+7a3t5dK7Z0+fRo1NTU4c+ZMRnka3H8K+TPXDH2vr68PNTU1JI589nTy5EnU1NSgr6+PiTwNPk6MqD3t2Orq6qLuabA2C3nK9Pue5uP48eMkT/nQIxwOB84//3wUFRXBarWOmqfRPGmxKopC/j78wlEikSD7S1EUEreqqmdtp2knk8mzttOIx+NDttP8pVKpIfu4qalpiI/B2w2PVdv/siwPiTVbT16vl0whVVRUBJfLBWBgHRafz0c8FRcXk3VbnE4nnE4ngIG1XGbMmIHq6mp4vV74fD4ypZnL5SLTmEmSRBa4FwQBPp+P5NPtdsPhcAAYWN/D4/EAOPuGhsfjIet+DD53t1qt8Pl8xNP5559P4snUU3FxMdlusKcTJ07g+PHjkGWZ5EnLpXbORzNP8XicaGdbe6FQCE1NTUgkEmfV1ERrr7+/H01NTejv75+0p1gshqampiHHAK3jSdsuE080j6d88hQOh0k95LOnwXWtd55Onz4NWZZH7RGyLOP06dPkOIlGo7rX3kg9gtb3Pe180u/3U/kOGwgEUFNTgxMnTlA9J8wF/EYIxxQsWrQIVVVVAP56AVs7OLds2YK2tjYAQH19Perq6gCAnORpbN68Ge3t7QCAXbt2YdeuXQCA9vZ2bN68mWw3+EStrq4O9fX1AIC2tjZs2bIFwEDjGHyxdseOHWhsbAQAtLS0oLa2FgDISY3WjGpra9HS0gIAaGxsxI4dO8b05PV6MX/+fBJDPnt68cUX8aUvfQler5eJPB09ehRTp06F1+vNOk/A+LXX3d2NdevWobGxkbqntrY2rFu3DkePHmUiT88//zzWrVsHr9c7aU9erxczZswg+5Xm8TSRPOXL8WSUp+PHj8Pj8cDr9ea1p/r6esyfPx9er5eJPGk62kUHvWuPZo8Y7qm+vh7r1q0jetnkqa6uDi0tLVi3bh2OHz+eUZ62bt2K22+/HV6vt6A/c83Q9zQv2oW1fPb0+uuvY926dUQv13naunUrvvOd78Dr9RpSe16vFzfddBO2bt1K3ZPX68Vdd92FrVu3MpGnTL/veb1efOlLX8KLL75I8lQIPWL//v0ABh5YaG1tJdtpF84AoLW1ldyg7urqInFHo1E0NTWRizwtLS1Eu7OzE0eOHCH7qKmpicTa3NyMvr4+4kPz19fXh+bmZgB/7TtaDEeOHEFnZyfZl9o+TqVS5IKa5lfbD9l40i7GrVmzBnPnzgUALFmyBJWVlQCAsrIyVFdXE09r167F7NmzAQDLli3DsmXLAACzZ8/GqlWr8PDDDyMUCqG6uhplZWUAgMrKSixZsgQAMHfuXKxZs4Z4r66uRmlpKQCgqqoKixYtAgAsWLAAq1atAjDwHUa7oQEAq1atwoIFCwAMPXcvLS0dEmtVVRV27dqFUCiUsae1a9eS7QZ7evfdd7Ft2zZUVlbiySefxHvvvQe73Y6rrroK+/fvp54nURSxcOFCHDx4MOvaa21txcKFC2G328mFU2Bytdfd3Y2FCxcSvcl40o4j7aYSzeMJQMaeaORJjx6ht6cjR47gwgsvhN1uz2tP+/fvx/z582G323XPk/Y7Y/WIU6dOwe/3Y+HChQiFQrrX3kg9gtZnbigUwrp168j5mBZ3pt9hAWDdunX4/e9/T/WcMBfwNUI4eY02r5zD4YAoimhsbER5eTnC4TCKi4shCAJCoRAcDgckSUIsFoOqqnC5XFAUBZFIhDxZEgwG4XQ6YbPZSINzOp1IJpOIRqPkrnEgEIDb7YYoiujv74fFYkFRURFkWUY8HofX60U6nUYwGITH44HVakUkEoEoinA4HEgkEpBlGR6PB6qqIhQKwev1wmKxIBwOQ5Ik2O12xONxKIoCt9uNVCrFPXFP3BP3xD1xT9wT98Q9cU/cE/dUMJ7C4TAOHz4MRVGQSqVgt9uRTqeRSCRgt9shCAISiQSsVitEUYSiKFBVFZIkQVVVyLI8ZDtRFGG1WpFMJpFOp4dsp73VEI/HYbPZyHbAwFsGqVQKyWRyyHaSJMFisUCWZQiCQLZTFGVIrIO3s1gsJNZMPfX19ZGblfF4HLIso6ioCBaLBf39/RBFEW63mzx1W1xcjGg0imQySd6ciEajsNlscDqd5Elin8+HSCQCRVHgcrmgqipisRgkSYLD4UAoFIIgCCguLkY4HEYqlYLb7YaiKIjH47Db7ZAkCeFwGBaLhTxQpqoqPB4PZFlGIpEg5+6RSARWqxUejwcbNmzAD3/4Q0M9LV26FPfee69ueTJj7XFP3FO+ejp16hRuueWWMXvEc889h2nTpuXU08KFCwvie8Tx48dztkYIvxHCyWsKfbH0cDiM2tparFq1iryGnK+w5sXoePQcj6Y2Da1sNFirk0LHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1amGqzViFGwulh6IpFAa2srLrvsMvJ2iJHQXCzd4/Fg1apVqK2tJVOh5AJtsXQj45EkCS+++CIOHTpENZeyLKO3txeKoqCrqwvz5s0jU4FlCo2ay0Yj1zXPGYpZ8mGkj4n0ze3bt+Occ84xLKaR/NNaLJ31c7BcXssVDRmFw+HogiRJmD9/PpkbNp9hzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkULHarVi+vTpZJ2MfEaWZezfv5/M5Z5rjIxHlmUEg0FquYzH49i0aRNZdNlut2PBggX42c9+hs9+9rNYv349HA4HuVGiUVJSMu6xPVbNTVQvm7o1U82bAbPkg0UfRsak51hmOgejDX8jhJPXFPobIRwOh8PhcDgcDodjRlh9IyTXyLKMyspKZm5e0EB7I2SizJkzBwcPHsx63O3bt2P69OlZ6wDAxo0bsWfPnlF/fvXVV8Nut5MbJRqSJGHx4sXkRslEGX7jJVs9DsfMTPSNEFr9IFNovRHCOrm8lssXS+dw8ph4PI69e/ciHo/nOpSsYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5FCR1EUdHR0QFGUnIyvXeimgcPhQEVFBTMXzCcaz/r16zFnzpysx0ulUlRyKcsyGhoahvzfcC9vv/029uzZc9YNLFmWsWfPHmzatGlU/ZFqbtOmTZPSy6Zuc13znKGYJR8s+jAyJj3HMtM5GG34jRAOJ49h8YMjU1jzYnQ8eo5HU5uGFv8Sbh7Mkg/WfPD+o58e7z/mwUz5YM0L70H6aWWqwVqNFDqqqiIQCEBV1ZzFsH79eixdunTINCPaAuBXX331hHVEUcSsWbMgimzMmj7ReBwOBzZs2JD1eOl0mkoue3t7z7ohMdl9O/zNjsEMr7mRbryMp5dN3bJQ85y/YpZ8sOjDyJj0HMtM52C04VNjcfIaPjUWh8PhcDgcDofD4ZgPPjXW+AxeH0JbG2KsKZNmz55NZUop2kx2aqzt27cDQNaLxtOaCofWAvYTjWei47Ew1Q+HwwJ8aiy24FNjcTicjEilUvD7/UilUrkOJWtY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNBRVRWRSISJp5glScL06dMxffp08naI9rZEXV0dtm/fTv7U1dWd9RYFa4sVGx1POp3WLZc0vdCouWw0WKp5jnnywaIPI2PScywznYPRht8I4XDymHA4jMcffxzhcDjXoWQNa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajRQ6sixj3759zC9WPvgmyeAbJYPxeDy466674PF4chDh2Rgdj6IouuWSphcaNZeNRr7UfKFglnyw6MPImPQcy0znYLThU2Nx8ppCnxornU4jkUjAbrdDEIRch5MVrHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNWIUrE6NlU6nkUqlYLVa8y4fsiyjsrKSXHgTBAF2ux2JRAK5vDSkTY010XhoTY31/PPPo7S0NOtcjjTtTib7drSpeYbXXCZTY2VTt/lc82bELPkw0sdEp8aaNm2aYTGN5J/W1Fisn4PxqbE4HE5GCIIAh8OR1x9+Gqx5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazVS6AiCAFEU8zIfkiRh8eLF5N/pdBrxeDynN0EGY3Q8euaSphcacWajkc81b0bMkg8WfRgZk55jmekcjDb8RgjHFDgcDrjdbgADc88FAgHyhSMUCpEnXmKxGPr7+wEMvAYbCASIRjAYRDKZBABEo1FEo1EAQDKZRDAYJNsFAgEoigIA6O/vRywWAzDwdE0oFAIw8KUnEAiQ+e8ikQji8TgAIJFIkNfBVFVFIBAgcwKGw2EkEgkAQDweRyQSGdNTKBTCL37xC/j9/rz3dPz4cTz00EMIhUJM5Km7uxu/+MUvEAqFss4TMH7t9fT04OGHH8apU6eoezp9+jQefvhhdHd3M5Gnrq4uPPzwwwiFQpP2pNX86dOnAdA9niaSp3w5nozydObMGXKc5LMnv99PfLCQp97eXhIPjTwZ2SOGe/L7/Xj44YfR29tLpfa0WM+cOZNRnj755BPSwwr5M9cMfa+vrw+/+MUvSBz57OnkyZN4+OGH0dfXx0SeBh8nRtReKBTCQw89hE8++YS6p8HaLOQp0+97mo/jx4+TPBVCj9BiVRSF/H34xeVEIkG0FUUhcauqetZ2mnYymTxrO414PD5kO81fKpUaso/feeedIT4Gbzc8Vm3/y7I8JNZcebrnnnuwdOlSOJ1OzJgxA9XV1fB6vfD5fBBFEQDgcrlQVFQEYODmidfrBTBwMcvn85F1L9xuNxwOBwDAbreTaaAsFgt8Ph8sloFLTh6PB3a7HcDQc3er1Qqfz0c8nX/++SSeoqIiuFwuAIAoivD5fMRTMpkk+9XpdMLpdAIAbDYbiouLyXbjeUomk3jnnXcQDAYzzlM8HsfPf/7zszx5vV5UV1fj/PPPJ9OSjeWpuLiYxDC89kKhEBobG5FIJIbU1Hh50mKVZRn9/f1obGxEf3//pGsvFovhnXfeGXIM0DqetO0G7/98Op5y4SkcDuOdd94h3vLVUzAYJD70zpOmPVaPUBSFHCfRaFT32ovH42hsbEQoFCKx0vrM7e3txcMPPwy/30/lO2wgEMDDDz+MEydOUD0nzAX8RgjHFCxatAhVVVUABi5g19TUkINzy5YtaGtrAwDU19ejrq4OANDV1YWamhqisXnzZrS3twMAdu3ahV27dgEA2tvbsXnzZrJdTU0Nurq6AAB1dXWor68HALS1tWHLli0ABhpHTU0Nuru7AQA7duxAY2MjAKClpQW1tbUABppDTU0NaUa1tbVoaWkBADQ2NmLHjh1jenI4HCgtLcXu3bvz3tNvfvMbzJ49Gw6Hg4k8HT58mNy1zjZPwPi1d/LkSVRUVKChoYG6p9bWVlRUVODw4cNM5Gnbtm2oqKiAw+GYtCeHwwFJktDa2gqA7vE0kTzly/FklKeOjg4oigKHw5HXnnbv3o3S0lI4HA4m8tTT04NwOEwuLOhdezR7xHBPu3fvRkVFBXp6eqjU3rvvvouKigp0dHRklKctW7Zg4cKFcDgcBf2Za4a+F4lEEA6HyZNl+ezptddeQ0VFBSKRCBN52rJlC6688ko4HA5Das/hcOCyyy4jMdD05HA4cM0112DLli1M5CnT73sOhwOzZ8/Gb37zG5KnQugR+/fvBzDwwIL23S+RSKCpqYnE2traSm5Qd3V1kbij0SiamprIRZ6Wlhai3dnZiSNHjpB91NTURGJtbm5GX18f8aH56+vrQ3NzM4CBC9iyLJOLUEeOHEFnZyfZl9o+TqVSaGpqItu1tbWR/ZBLT8ePH8eGDRvw1FNP4Y477sDhw4cRj8dRXV2NsrIyAEBlZSWWLFkCAJg7dy7WrFkDYOBmR3V1NUpLSwEAVVVVWLRoEQBgwYIFWLVqFQCQmwDahflVq1ZhwYIFAIaeu5eWlqK6uprE+q1vfQtHjx5FPB7HkiVLUFlZCQAoKysbsl1HRwe5WLhs2TIsW7YMADB79mysXbuWbDeeJ6vVigsvvBD79+8fNU8ffPAB/H4/urq6RszTpk2bUFJScpandDqNvXv34lvf+hbmzp0LAGN6Wrt2LfE0vPY++OADzJo1C6IooqmpiVywHC9PWqxtbW04deoUZs2ahZ6enknXnizLkGWZfObSPJ4AoKmpifSpfDuecuHp8OHDKC4uhiiKee1p//79KCsrgyiKuudJ+52xesSpU6dw4sQJzJo1C4FAQPfaEwQBs2bNQltbG4mP1mduT08PKioqsHv3birfYWVZRkVFBV566SWq54S5gK8RwslrtHnlHA4HRFFEY2MjysvLEQ6HUVxcDEEQEAqFyMXTWCwGVVXhcrmgKAoikQh5CiMYDMLpdMJms5EG53Q6kUwmEY1GyV3jQCAAt9sNURTR398Pi8WCoqIiyLKMeDwOr9dL7m57PB5YrVZEIhGIokguFsqyDI/HA1VVEQqF4PV6YbFYEA6HIUkS7HY74vE4FEWB2+1GKpXinrgn7ol74p64J+6Je+KeuCfuiXsqGE/hcBiHDx+GoihIpVKw2+1nzTOeSCRgtVohiiIURYGqqpAkCaqqQpblIduJogir1YpkMol0Oj1kO+3hg3g8DpvNRrYDBp4gTqVSSCaTQ7aTJAkWi4VcINa2UxRlSKyDt7NYLCRWljzJsoxTp07hzJkz+OEPfwiXywVVVRGLxSBJEnk4TBAEFBcXIxwOI5VKwe12k7ci7HY7JElCOByGxWKB1+slb9d7PB7IsoxEIkHO3SORCKxWKzweDzZs2IAf/vCH8Hq9iMfjkGUZRUVFsFgs6O/vhyiKcLvd5EniZ599FlarFatWrSJvg0SjUdhsNjidTvJ0tM/nw5133okHH3xwRE+PP/44pk2bNmKeFEXBf/7nf+K9995Db28vLBYLpkyZgnnz5mH9+vUQBAGpVArf+MY3SF4HewoGg0in0xP2VFxcjEcffRTnn3/+uLXX29uLVatWjZunRx99FOeddx7TtWfG44l7Ys/TqVOncMstt4zYIyKRCBRFwXPPPYdp06bl1NPChQsL4nvE8ePHc7ZGCL8RwslrCn2x9Fgshvr6eixZsoS8EpuvsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1YhRsLpYejKZRGdnJ2bOnAmbzZbrcLJiuJeJLsJNG22x9KKiIixZsgT19fVkOpeRmMxi6Zr2SGzbtg2xWGzEXG7cuBF79uwZ8feWLl2KDRs2jLm/JuplMKMtlp5pngbrZVO3Zqp5M2CWfBjpY6KLpU+ZMsWwmEbyX0FpsXTWz8FyeS1XNGQUDoejC8Pn/c1nWPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaqTQYW2B8WxgzcvwtUX0ZjT/siyjoaFh1N9raGgg89+PBk0vNPKUjQZrdVLosJoPWZbR29sLACgpKSFr44wGiz6MjEnPscx0DkYb/kYIJ68p9DdCOBwOh8PhcDgcDseMsPpGiJnJ9RshE4XWGyGjvYEx0afHJxrDRBktnuFk8kYIh6MX8XgcmzZtGnKDUJIkLF68GOvXryfTVeWSiR7TuT5eaL0Rwjq5vJbLF0vncPIYRVHIYsX5DmtejI5Hz/FoatPQykaDtTopdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppZarBWo0YhdVqHfVnLpfLwEiGwtKTrdnCmhdRFMmi4Eagp3+aXvhb+ZzBsJaPTZs2Yc+ePUPekpJlGXv27MGmTZtG/T3WfADGxqTnWGY6B6MNvxHC4eQxkUgEzzzzDCKRSK5DyRrWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaMQqPxzPitEKiKGLBggU5iGgAWZbx/vvvjzs1Uj7Amhe3243bbrsNbrfbkPFSqZRu/ml6oZGnbDRYq5NCh6V8ZDONHEs+NIyMSc+xzHQORhs+NRYnr+FTY3E4HA6Hw+FwOByOOfnkk0/Q3t4+5P8uuugizJgxA3v37s1NUCaGT401AJ8ai8OZGPky5VS+xMmnxtIfvlg6h8PhcDgcDofD4XA4HOa44IIL4HQ6cebMGQBAaWkpSkpKchwVZyzmzJmD9vb2IU85S5KE2bNn4+DBgzmMjMPhcDiFDp8ai8PJY4LBIB544AEEg8Fch5I1rHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNWI0U6ZMwSWXXIJLLrmEiZsg8Xgcb731FuLxeK5DyRraXiRJwsMPP4y6ujps376d/Kmrq8OGDRvG/f3i4mLce++9KC4uphLPeCSTSd1ySdMLjTxlo2GmmjcDZskHiz6MjEnPscx0DkYb/kYIh5PHOJ1OLF++HE6nM9ehZA1rXoyOR8/xaGrT0MpGg7U6KXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aWWqwVqNFDo2mw3l5eWw2Wy5DiVraHtZvHgxJEkCgIymmIlGo9i5cyei0eio20iShJKSEvT29mYcp4bVatUtlxPxMlFo5CkbDRZqXpZlkvOSkhJSZ4UIC/mgAYs+jIxJz7HMdA5GG34jhMPJY7TGaQZY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNCxWq2YOnVqrsOgQiZeRpv6avHixVi/fn1W8SSTSRw6dGjMbQbfbMkWi8WiWy4n4mWi0Ki5bDRyWfPxeBybNm0asuj24HpzOBw5iSuXmKUHsejDyJj0HMtM52C04VNjcTh5DM2nTHINa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajRQ62gXuZDKZ61CyJhMvGzZsGHXqq2wvSo/11LAkSVi6dGnWN1sGoyiKbrmk+QQ0jZrLRiOXNb9p0ybs2bNnyI03WZaxZ88ebNq0yfB4WMAsPYhFH0bGpOdYZjoHow1/I4TD4XA4HA6Hw+FwOBwOhzMhJEnKaOqrTHjooYcwffr0gp8OqRCRZRkNDQ2j/lx7S4TXBYfDmSj8jRCOKXA4HHC73QCAVCqFQCCAdDoNAAiFQuTpgVgshv7+fgADT38EAgGiEQwGyZ3YaDRK7lQmk8khC/oEAgEoigIA6O/vRywWAzDwIR0KhQAA6XQagUAAqVQKABCJRMgCSIlEAuFwGACgqioCgQBUVQUAhMNhJBIJAAOvgEYikTE9OZ1OfPnLXyb/n8+eFEXBDTfcAKfTyUSerFYrrr/+ejidzqzzBIxfezabDcuXLye+aHqyWCxYvnw5rFYrE3lKJpPk6ajJenI6nfjiF78Ii2Xg44vm8TSRPOXL8WSUJ1EUcd1118HpdOa1p3Q6jS9/+ctwOp1M5EmSJFRUVJAnCPWuPZo9YrindDqN5cuXQ5IkKrUnCAKWL18OURQzypMsy/jbv/1bOJ3Ogv7MNUPfs9vtqKioQFFRUd57UlUVy5cvh91uZyJPsiyjsrISTqfTkNpzOp342te+NuRpX1qenE4nvv71r0OWZSbylOn3PafTiRtuuGHI5xbvESr5maatKAqJW1VVxONx4imRSBDtZDJ51nYa8Xh8yHaav1QqRbaz2WyYNWsWrFYr8TF4O20fp9NpUjvadoNjHb7d4FiN8pRKpcgc9YNjdblcpL9KkgSv1wsAEAQByWQyI09aDIPP3a1WK3w+H9lOFEW88soriEajKCoqgsvlwvTp03HuueeSMTVP2r+dTif5zmSz2YYsTj5YeyRPoijikksuQSqVGuJJi9Vut8Pj8QAYmEbL5/OR8xBFUcb0FIvFsHPnToiiSC7Ua540rz6fj8RaXFxMYqCRp8HeZVmGIAgoLy+HIAiTrj2r1YpZs2ZBFMWz8pnt8TQ8n4OPpzNnzpC3jDRP2nHndrthsVjQ29vLzPE0EU80eoSqqvj0pz8Nm83GhKeRam9wnjTt4Z5SqRQuueQS2Gw23fOkaY/UI7S61rYpLy+HxWLRvZeLoojy8nKoqkpipfWZK0kSli9fjnQ6TeUz1+FwYPny5UPql8Y5YS7gN0I4pmDRokWoqqoCAHR3d6OmpoYcnFu2bEFbWxsAoL6+HnV1dQCArq4u1NTUEI3Nmzejvb0dALBr1y7s2rULANDe3o7NmzeT7WpqatDV1QUAqKurQ319PQCgra0NW7ZsATDQOGpqatDd3Q0A2LFjBxobGwEALS0tqK2tBTDQHGpqakgzqq2tRUtLCwCgsbERO3bsGNNTMpnE7373O7z88sum8PTGG28gmUwykafm5mZs2bIFyWQy6zwB49fe4cOHcejQIbz22mvUPTU0NODQoUNobm5mJk/aK6CT9ZRMJvHss8+SJ4NoHk8TyVM+HU9GeGptbcXjjz+OZDKZ155efvll/O53v0MymWQiTx0dHaipqSFfdPWuPdo9YrCnl19+GYcOHSKesslTXV0d9uzZg0OHDqG1tTXjPLW0tCCZTBb8Z26+972TJ0+ipqaGnIDls6ff/OY3OHToEPHEQp7+93//F8lk0pDaSyaTePvtt3XxlEwm0draykyeMv2+l0wm8cYbb/AeMYKn1tZW+P1+Ep8WdzQaRVNTE7nI09LSQrQ7Oztx5MgRotfU1ERibW5uRl9fH/Gh+evr60NzczOAgQs+TU1NZLsjR46gs7OT7EttH2vbaRer2trayH7w+/1obW0l3puamsj+N9rTmTNnSKzahbDKykosWbIEADB37lysWbMGwMCNgaNHj2bkSbtQN/jcvbS0FNXV1STWNWvW4Prrr4fNZsOSJUtQWVk5qiftYuGyZcuwbNkyAMDs2bOxdu1asl11dTXZXyN5UlUVp0+fPitP2v5asGABVq1aBQDwer2orq4mF3y7urrG9ORyuVBeXo41a9Zg7ty5ADDEU1lZ2RDva9euJZ5o5Km6uprs/7a2Nhw7dgxnzpzBiRMnJl174XAYTU1N5MImzeMJAJqamsgxPfh4CofDZ3kqLS0FAFRVVWHRokUA2DqexvNEq0e0t7cjlUox4Wmk2hucJ017JE8nT55EKpXSPU/a74zUI8rKygAAp06dQkdHB86cOYNTp07p3stlWcaZM2eGeKL1mdvR0YFDhw7h5ZdfpvKZ29PTg0OHDmHbtm1UzwlzgZDWbtdwOHnIhx9+iHnz5sHhcEAURTQ2NqK8vBzhcBjFxcUQBAGhUAgOhwOSJCEWi0FVVbhcLiiKgkgkQp7CCAaDcDqdsNlspME5nU4kk0lEo1Fy1zgQCMDtdkMURfT398NisaCoqAiyLCMej8Pr9SKdTiMYDMLj8cBqtSISiUAURTgcDiQSCciyDI/HA1VVEQqF4PV6YbFYEA6HIUkS7HY74vE4FEUhd9BH8hSLxfDoo4/itttuw3nnnZfXnrq6uvDcc8/h7rvvhiRJOc/T6dOn8dRTT+Huu++Gx+PJKk8Tqb1kMoknn3wSt912G7xeL1VP/f392Lp1K9asWYOioqKc58nv96O2thZr165FOp2elKdIJIJHH30Ua9aswbRp06geT2bsEXp76u7uxpNPPom7774bXq83bz2dPHkSTz/9NO6++24UFRXlPE89PT347//+b9x9990oLi7WvfZo9ojhngKBAJ555hl873vfI09IZlN7kUgEW7duxXe/+13Y7fZJ56mrqwu1tbW4++67YbFYCvYz1wx9r7e3F48//jjWrl0Ln8+X1556e3vx7LPP4o477oDFYsl5nj755BNynFitVt1rT1EUPProo1i1ahUuvPBCqp7S6TTRnjFjRs7zlOn3PVmW8eijj+KWW25BWVkZ7xH/v6c333wTiUSC1KmiKFBVlXxHlWUZdrudPAEviiKsViuSySTS6fSQ7bSnzuPxOGw2G9kOGHiCOJVKIZlMwuFwIB6P491338VVV11F3iYVBIFspygK7HY70uk0EokEJEkiebRYLCTWVCo1ZLvBsRrlKRKJoLW1FZ/5zGcAAL29vVi1ahVcLhdUVUUsFoMkSXA4HAiFQhAEAc888wxmzJgxaU9nzpzBzTffTM7dI5EIrFYrPB4PNmzYgB/+8IeYMWMGbrnlFmzevJloP/nkkzj33HPP8qTFqr0NEo1GYbPZ4HQ6yQ0Kn89HtEfy9Ktf/QodHR24/PLL4fF4iKfu7m7cfPPNsNvtkCQJ4XAYFosFXq8XoVAIqqriueeeg6IouP3220f0lE6nsXbtWjz33HPo7u6GLMsoKiqCxWJBf38/RFGE2+0mT0cXFxfj0Ucfxfnnn08lT5reeeedB1mWIcsy9u/fj/nz58Nms02q9qLRKPbt24fPfOYzKCoqono8adsNPk604+nEiRNYu3btEE/hcBipVAputxuKomDr1q2YOnUqE8fTRDzR6BGhUAjvv/8+PvvZz0IUxZx66unpwerVq8+qvcF5euyxxzBjxoyzPIVCIXzwwQf47Gc/C0EQdM3TqVOncMstt4zYIyKRCBRFwXPPPQefz4f9+/djwYIFEEVR116eTqexb98+XHbZZXC73bBarVi4cCGVz9xUKoUnnngCq1evhs/ny/ozN51O4/HHH8ctt9yCqVOnZn1OePz4ccybNw8aBw4cwKWXXgoj4DdCOHmNdiNEw8iDh8PhcDgcDofD4XA4uWHv3r25DsF0+P1+rFy5csxttm/fntH6IGNpP/TQQ7jnnnsmNd5EYtVTe86cOTh48OC440+Gie7biXrPNFesoGc9cuiQLznKlzgrKipyOr5R5PJaLhOLpbe2tuLQoUNwOp34/Oc/j5KSkjG3f/rpp3Hs2DFs2LDBoAg5HA6Hw+FwOBwOh8PhcDi02bhxY65DmDS0b4JwOBwOR39yukZIV1cXFi9ejPnz52PFihX427/9W5x33nn4h3/4BzLf70g89dRTuP/++w2MlMNhk0AggPvvvz/niw3RgDUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKnXg8jvr6+iEL8+YrrHjR5vL3+Xy47777hiwirifauod6+KfphUaestFgpU44A5glHyz6MDImPccy0zkYbXJ2IyQWi+GLX/wiGhsbkU6n4fV6UVRUhGQyiUcffRRXXnkl/vKXv+QqPA4nL3C73Vi9ejXcbneuQ8ka1rwYHY+e49HUpqGVjQZrdVLomCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NPKVIO1Gil0JEnCFVdcAUmSch1K1rDmJRKJ4Omnnx7zwViaWK1W3fzT9EIjT9losFYnhY5Z8sGiDyNj0nMsM52D0SZnN0IeffRRHDlyBDNnzsRbb72Fvr4+BINB/PrXv8YFF1yAjz76CNdeey0OHDiQqxA5HOYRRRGzZs2CKDIxy11WsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1UihY7FY4PP5YLHkdIINKrDmRVEUdHR0QFEUAAMXCsebOj0b9PQ/3Es20IgzGw3W6qTQMUs+WPRhZEx6jmWmczDa5KzaXnzxRQiCgNraWlx99dUABu7GV1VVYf/+/bj++utx6tQpXHfddWhpaclVmBwO0/T39+OFF15Af39/rkPJGta8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdGRZxoEDByDLcq5DyRrWvLhcLqxYsQIulwsAsHjxYl2fzFYUhbr/OXPmADjby0Tw+/3w+/1nxUMjT9losFYnhY5Z8sGiDyNj0nMsM52D0SZnN0IOHjyIGTNm4POf//xZP/P5fHj11Vfx7W9/G2fOnMH111+PpqamHETJ4bANi3fQM4U1L0bHo+d4NLX500icwZglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdARBgMPhgCAIuQ4la1jzoqoqAoEAVFXFnDlzsH79el3Ho+3/mWeewYYNGwAM9TJR7rnnHqxcuRKVlZXYuHEjWTuARpzZaLBWJ4WOWfLBog8jY9JzLDOdg9FGSKfT6VwMLEkSFixYMOYNjnQ6jTVr1uCZZ56Bx+PBH/7wB1xzzTX4whe+gLfffhupVMrAiDks8uGHH2LevHnk3wcOHMCll16aw4g4HA6Hw+FwOBwOh6M3e/fuzXUIpsPv92PlypVjbrN9+3ZMnz5dF+3JjDNRvYceegj33HPPpMaYbKyD9QBk9LsjsXTpUnJjZTATjS/TXLGCnvXIoUO+5Chf4qyoqMjp+EaRy2u5ObsVM2XKFJw4cWLMbQRBwNatW/Hd734X4XAYN9xwA/bs2WNQhBwO+8iyjP379zP1KmGmsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Uihk0ql4Pf7TfFgJmteJEnC/PnzDVs8WVVV3fzT8NLQ0ABZlqnkKRsN1uqk0DFLPlj0YWRMeo5lpnMw2uTsRsi8efNw4sQJdHR0jLvtE088gbvuuguRSARf+9rX8Je//EX/ADmcPCAej2Pv3r3kldl8hjUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKHZqLYOca1rw4HA5UVFTA4XAYMl4qldLNPw0vsiyjt7eXSp6y0WCtTgods+SDRR9GxqTnWGY6B6NNzqbG+td//Vfcd999uP/++/HTn/50Qr/zgx/8AL/61a/I/Gks3TXk5AY+NRaHw+FwOBwOh8PhFB58aiz68KmxMot1sB5Ab2osTXN4jHxqrL+S7x7znXzJUb7EyafG0p+cvRGyfPlypNNp/OpXv0IsFpvQ7/zXf/0X/umf/gk5unfD4TBHOp1GPB43xTHBmhej49FzPJraNLSy0WCtTgods+SDNR+8/+inx/uPeTBTPljzwnuQflqZarBWI4VOOp2GoiimyAdrXoxePFlP/zS90IgzGw3W6qTQMUs+WPRhZEx6jmWmczDa5OxGyGWXXYaPPvoIDQ0NsFqtE/69TZs24e2338bu3bt1jI7DyQ+CwSAefPBBBIPBXIeSNax5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazVS6CQSCTQ0NCCRSOQ6lKxhzUtxcTHuvfdeFBcXGzKeoii6+afphUaestFgrU4KHbPkg0UfRsak51hmOgejTc6mxuJwaFDoU2OlUil0d3ejtLR0UjcUWYQ1L0bHo+d4NLVpaGWjwVqdFDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tDLVYK1GWCFXU2OpqopoNAqn0wmLJWfPllJhuBdZllFZWTnqgraSJKGuri6jBcAnMjWN1WpFaWkpuru7sW3bNt2nxnr++efh8XjOyiWNqbEGe8lmWvft27fj3HPPHZKnTKbGyqZuc1Xz+TKdkdGw1IOyyZGRPiYa5/BjTU9G8k9raizWz8FyeS1XNGQUDoejC1ar1TQf+qx5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazVS6FgsFrjd7lyHQYXhXiRJwuLFi7Fnz54Rt1+8eHFGN0EAoKSkBJIkjXqTBRi4WOb3+zPSzwRBEHTLJU0vNGpOURREIhFEIhEAf82HUeObCW0Re2By+5EWZskHiz6MjEnPscx0Dkab/H58gcMpcCKRCJ5++mnyZSafYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5FCR5Zl7N+/f8wL+vnCSF7Wr1+PpUuXDrm4K0kSli5divXr12c8lnaTZSzcbjduu+02wy5EKoqiWy5pesmm5uLxODZu3IgVK1bgj3/8I773ve9h5cqVqKysxMaNGxGPx3Ud30xo+7KyshIrV66c9H6khVnywaIPI2PScywznYPRJm/fCEmn0zhz5gz6+/sBAC6XC1OnTjVsUS0OhwVEUcSsWbMginl7KBNY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNCxWCzw+Xw5n5KGBiN5cTgc2LBhgy5Pva9fvx5+vx8HDx4c8eeKoqCjowOKomQ91kQQBEG3XNL0kk3Nbdq0CXv27IHD4RgSjyzL5M2fDRs26Da+mdD25WAmsx9pYZZ8sOjDyJj0HMtM52C0YafaxmHfvn144IEHcOONN2L27NlwOByYPn06Zs+ejdmzZ2P69OlwOByYPXs2brzxRjzwwAPYt29frsPmGITD4SBPWqRSKQQCAWjL34RCIXKHNRaLkZtniqIgEAgQjWAwiGQyCQCIRqOIRqMAgGQyOWRBn0AgQL489Pf3IxaLARj4AAyFQgAGbtQFAgEyF2gkEiFPCCQSCYTDYQADcwIGAgGoqgoACIfDZKGkeDxO7paO5snhcGDhwoVknHz2JMsyrr76ajgcDibyJAgCrrrqKjgcjqzzBIxfe1arFRUVFWSeSJqegIG5JgVBYCJPiUQCFRUVcDgck/bkcDjwmc98hoxD83iaSJ7y5XgyypPFYsGVV14Jh8OR155SqRQWLlwIh8PBRJ5EUcT8+fPhcDio5MnIHjHcUyqVQkVFBURRpFJ76XQaFRUVsFgsGeUpHo/j2muvhcPhKOjPXDP0PZvNhvnz58Nut+e9J0VRUFFRAZvNxkSe4vE4vvCFL8DhcBhSew6HA9dcc82Qp2lpeXI4HFiyZAni8TgTecr0+57D4cDVV19NxuE94q+eEokE0VYUhcSt9XzNUyKRINrJZPKs7TQG10oymST+UqkU2U4URUyfPp1cvJJlech22j7WjictVlmWh8Q6fLvBsRrlSVEUcnFqeKyCIGD69OkoLS0lY2bryeFw4Cc/+Qk5d7darfD5fOSBVkmS8Pbbb5OYx/KkxeB0OuF0OgEMfDYMXpzc5/ORGFwuF4qKisg4Xq8XVqsVM2fOhKIoQzxp+8tut8Pj8QA4+6Klx+Mhn0GDr0ek02n4fD4kEgns3bsXkiSRm0hFRUVwuVykjnw+H4m1uLgYNpvtLE+qqo6ap5E8AX+9waMtxqzFtnfvXqTT6SGeDhw4QPI2Wu1ZLBZMnz6drA1A83gans/Bx5Oqqmd50mJwu93ku7IRx5Msy2hoaBg1T01NTaRPjeWJRo9IpVIoKyuDKIqG9b2xPI1Ue4PzNPi782BPiqJg5syZEEVR976naY/UI7SL84qiIJ1OY9asWRAEQfdebrVaMWvWLKRSKRIrrc9cURRRUVGBVCpF5TNXkiRUVFSQ6znaPs72nDAXMH0jpK2tDT/60Y8wY8YMfO5zn8NPfvITvPTSS+jo6EAymUQ6nR7yJ5lMoqOjAy+99BJ+8pOf4HOf+xxmzJiBH/3oR/jwww9zbYejI4sWLUJVVRUAoLu7GzU1NeTg3LJlC9ra2gAA9fX1qKurAwB0dXWhpqaGaGzevBnt7e0AgF27dmHXrl0AgPb2dmzevJlsV1NTg66uLgBAXV0d6uvrAQzU65YtWwAMNI6amhp0d3cDAHbs2IHGxkYAQEtLC2prawEMNIeamhrSjGpra9HS0gIAaGxsxI4dO8b0lEgk8MILL+Cll17Ke09PPfUU6urqkEgkmMjTu+++iyeeeAKJRCLrPAHj196hQ4fQ2NiIV199lbqnt956C42NjXj33XeZyVNjYyOJdTKeEokEtmzZgrfeegsA3eNpInnKl+PJKE/vv/8+Nm/ejEQikdeeXnrpJbzwwgtIJBJM5Ono0aNDttO79mj2iOGeXnrpJTQ2NhJP2eSprq4Ou3fvRmNjI95///2M81RfX49EIlHQn7lm6HvHjx8fsl0+e/r1r3+NxsZG4omFPL3xxhtIJBKG1F4ikcCuXbt08ZRIJPDWW28xk6dMv+8lEgnU1dXhqaeeGpIn3iOA1tZWsg5DV1cXiTsajaKpqYlc5GlpaSHanZ2dOHLkCNFramoisTY3N6Ovr4/40Pz19fWhubkZwMDFqaamJrLdkSNH0NnZSfalto9TqRSamprIxaq2tjayH/x+P1pbW4n3pqYmsv+N9tTV1UU8aftVT099fX3k3L20tBTV1dXkhsKaNWtQWVkJu92Onp6eMT1pFwuXLVuGZcuWAQBmz56NtWvXku2qq6vJ/qqsrMSSJUsAAHPnzsWaNWuQSqVw7Nixszxp+2vBggVYtWoVAMDr9aK6uppc8F21ahUWLFgAYOj1iEQigerqang8HixatAhr1qzB3LlzAQBLlixBZWUlAKCsrAzV1dUk1rVr12L27Nlneerv7z8rT9oFy5E8AQM3cKqrq3HmzBnIsoyqqiosXrwYixYtwmc/+9khnr7//e/j9OnTZ+VpcO1p+1/LJ83jCcCotRcOh8/yVFpaCgCoqqrCokWLABhzPPX29kKW5VHzdOGFF2L//v3jeqJ1PB06dAiKoujWI2RZxtGjR/Huu+/C7/dDluVRPY1Ue4PzpGmP5El7S0nvvqf9zkg9oqysDABw6tQpfPzxx+jq6oLf79e9lycSCXR1dQ3xROsz9+jRo2hsbMRLL71E5TO3u7sbjY2N2LZtG9VzwlwgpLXbNQyxe/duPPjgg/jTn/5E/i/TMAdPlfXFL34R//zP/4zrrrsu6xg5bPDhhx9i3rx5cDgcEEURjY2NKC8vRzgcRnFxMQRBIE+DSZKEWCwGVVXhcrnIYmHaUxjBYBBOpxM2m400OKfTiWQyiWg0Su4aBwIBuN1uiKKI/v5+WCwWFBUVQZZlxONxeL1epNNpBINBeDweWK1WRCIRiKIIh8OBRCIBWZbh8XigqipCoRC8Xi8sFgvC4TAkSYLdbidPnml30EfylEgk8Nxzz+Gmm27CtGnT8trTiRMnsHPnTtxyyy0QRTHneTpz5gz+53/+B7feeitcLldWeZpI7aVSKfz617/GjTfeCLfbTdVTLBbDiy++iKqqKvJUUy7zdPr0adTV1WHVqlVIpVKT8hSNRvHss8/iW9/6FkpLS6keT2bsEXp76unpwQsvvIBbb70Vbrc7bz2dOnUKL774Im655RYSRy7z1NfXh+effx633norPB6P7rVHs0cM9xQKhfC73/0O3/72t8kTYtnUXn9/P37729/im9/8Jmw226TzdOLECdTV1eHmm28GgIL9zDVD3wsEAqitrcUtt9wCr9eb154CgQB27tyJFStWAEDO83T8+HFynAiCoHvtqaqKbdu2obKyklyMoOVJEASifd555+U8T5l+31MUBc899xyWL1+O888/n/eI/9/Tm2++iUQiAavVSp6MVlUVkiRBVVXIsgy73U6e7BVFEVarlTxUOXg77cnyeDwOm81GtgMGniBOpVJIJpMknvfffx+XXXYZ8SEIAtlOURTY7Xak02kkEglIkgSLxQJZlmGxWEisqVRqyHaDYzXKU39/P44cOYLLLruM/L4Wq16ejh8/jrvuuguRSARWq5V810mn0zjvvPOwfPlybNu2DZs3b0Zpaemonnp7e7Fq1SryRH40GoXNZoPT6SRPR/t8PmzYsAE//OEP4XK5oKoqYrEYJEmCw+HAI488gpMnT+Liiy+Gx+Mhnrq7u3HzzTfDbrdDkiSEw2FYLBbyeaOqKjweD2RZRiKRINcjnnjiCaTTadx9991IpVJYtWoVXnrpJfT09ECWZRQVFcFisaC/vx+iKJLPM62nRKNRJJPJIZ5qa2vhdruH5EnzPpKnUCgEQRBQXFxMvGtvT1RVVeE3v/kNZFke4unRRx/FeeedN2rtxWIxtLa24vLLLyfHAK3jSdtupNo7ceIE1q5dO8RTOBwm55CKomDr1q2YOnWq7sdTIBDAypUrR82TzWbDU089hQsuuGBMTzSOp3A4jEOHDuHyyy+H1Wql2iPC4TB++ctfor6+Hul0mhxPkiThuuuuwz/8wz/A6XQSTz09PVi9evVZtTc4T4899hhmzJhxlqdQKIQjR47g8ssvBwBd+96pU6dwyy23jNgjIpEI+Zw955xzcPDgQcydOxdWq1XXXg4ABw4cwMUXXwyXywWr1YqFCxdS+cxNp9P4n//5H3zjG9+A1+vN+jNXEARs374dX//611FSUpL1OeHx48cxb948aBw4cACXXnopjICpGyHvvfcefvSjH2Hv3r0A/nrzQxAEXHrppfjCF76A+fPnY86cOZgxYwamTp0Kp9OJdDqNWCyG7u5uHD9+HAcPHsT777+PP//5z/jwww+H6AAD0z/8+7//O6688sqc+OTQQ7sRomHkwcPhcDgcDofD4XA4nNygXTfg5Bd+vx8rV64cd7vt27dj+vTpWes89NBDuOeeeyY1xkS1R9IDkNHvjqU5PEYa3scbgwUm4tOo2FmKRU82btx41joog1m6dOmQtVDyZb/kS5wVFRU5Hd8ocnktl5mpse68804sXLiQzFkIANdffz0ef/xx+P1+fPDBB3jkkUfwve99D9dccw3+z//5P+TOlSiK8Hg8+NSnPoUvfOELuOOOO/DII4/ggw8+gN/vx+OPP44vfvGLAAZuruzduxcLFy7EXXfdlUvLHE7WDJ8jN59hzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkUJn+Dzw+QxrXoxePFlP/zS90Igzm3hYq5NCR698aOugjEVDQwN5myFbWKwrI2PScywznYPRhpkbIU888QRSqRQ8Hg/Wr1+Pjz76CK+//jq+973vkbnlMqG0tBTf+973sGvXLrS3t+NHP/oRPB4PUqkUnnjiCYoOOBzjGT5Hbj7Dmhej49FzPJraNLSy0WCtTgods+SDNR+8/+inx/uPeTBTPljzwnuQflqZarBWI4XO8Hng8xnWvAxfh0NvtDU39PBPy4vf70dXV1fWcY4Vz8aNG4csND0c1uqk0NErH9o6KGMhyzJ6e3upjMdiXRkZk55jmekcjDbMTI1VXFyMf/qnf8K6det0/9ALhUJ4+OGH8Z//+Z9kXjhOflLoU2MNn/c3n2HNi9Hx6DkeTW0aWtlosFYnhY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rUw1WKsRVsjV1FjD54HPZ3LhZawpagavw1FbW6v71FjPP/88zjnnnLP805gaa/iaItlgsVgwZcoUzJs3D+vXryfrVYzHYO/jxTN8yqPB5KrmWZrOiKVY9MpHJtPWZbNfjKyricY5bdo0w2IayT+tqbFYPwfL5bVc0ZBRJkB7ezumTp1qyFherxcbNmzA3Xffbch4HI5eaK+3mgHWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaKXQEQSAL8uY7rHnRpk8xCj390/Siqiq6u7vJ2g133HEH9Xi0KY8kSTrrZ6zVSaFjlnyw6MPImPQcy0znYLRh5nESo26C5HpMDocm4XAYjz32GMLhcK5DyRrWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaKXQSiQSam5uZms4lU1jz4vF4cNddd8Hj8RgynqIouvmn6WWwVqZrNIwXz1hTHrFWJ4WOWfLBog8jY9JzLDOdg9GGmRshHA5n8kiShPnz54/41Ea+wZoXo+PRczya2jS0stFgrU4KHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5amWqwViOFjtVqxfTp02G1WnMdStaw5kWWZezfv5/aYszjIQiCbv5pehmslekaDdnEw1qdFDpmyQeLPoyMSc+xzHQORhtmpsbicDiTx263Y9GiRbkOgwqseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1UuiIooiysrJch0GFXHgpKSmBJEkjXpBPJBJobGyEJEkoKSnRPRbtQqQeaF5Y0cpGw0w1bwbMkg8WfRgZk55jmekcjDb8jRAOJ4+Jx+PYu3cv4vF4rkPJGta8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdBRFQUdHBxRFyXUoWZMLL5IkYfHixSP+zOFwoKKiAtdee60hTw6nUind/GteaKwBQEMrGw0z1bwZMEs+9PIhyzL8fj/5M5m3oIzct3qOZaZzMNrk7Y2QSCSCDz/8EO+88w7efPPNCf/hcMyEWT4AAfa8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdLRFp1VVzXUoWZMrL+vXr8fSpUvPutlRVFSE+fPn4x/+4R8MiSOdTuvmXxRFzJo1C6KY/UQsNLSy0TBTzZsBs+SDto94PI6NGzeisrISK1euJH8qKyuxcePGnMSUq7HMdA5GGyGdTqdzHcRECYfDqKmpwfbt23H48GFMNnRBEJjY6Rx6fPjhh5g3bx7594EDB3DppZfmMCIOh8PhcDgcDofD4ejN3r17cx0CJ0uGr3ehTZs1Efx+P1auXDnudg899BDuueeeEX+2ffv2EafGmqj2SHoAMvrdyTCWp0y20xhtf+SKieTBqJhZikUvJlr3g32ytF82btyIPXv2ZPz7LOSvoqIip+MbRS6v5ebNGyHvvfce5syZg//3//4fDh06BFVVkU6nJ/2HwzETqVQKfr8fqVQq16FkDWtejI5Hz/FoatPQykaDtTopdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppZarBWo0UOqqqIhKJ5P3T2EDuvUiShOnTp5M/oigaGk86ndZtPJoLIdPQykYj13XCGYpZ8kHThyzLaGhoYCqmXI5lpnMw2uTFjZCenh58+ctfxokTJ8gNDVEUcckll+Dqq6/GkiVLJvTn2muvzbUVDocq4XAYjz/+OMLhcK5DyRrWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaKXRkWca+ffsmNe88q7Dmxeh4FEXRbTyPx4O77roLHo+HCa1sNFirk0LHLPmg6aO3t5eKjpH7Vs+xzHQORpu8mBrr//7f/4sHHngAgiDA4/Hg3/7t33DrrbfC7XbnOjROjin0qbHS6TQSiQTsdjsEQch1OFnBmhej49FzPJraNLSy0WCtTgods+SDNR+8/+inx/uPeTBTPljzwnuQflqZarBWI6yQq6mx0uk0UqkUrFZr3ueDNS+TiYfG1FjPP/88SktLzxqPxtRYgiDAbrcjkUhkPTvJcK1MpsaaSDyjTQ2UqzphadqlbGLJZgq4kdArH0ZPjUXTR6bH7GC2b9+OadOmGVbrI/mnNTUW6+dgubyWm/2qTQbwyiuvABho3L///e9xzTXX5DgiDocNBEGAw+HIdRhUYM2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5FCRxAEKgtgswBrXoyOR8/x0uk04vG4LloTXfiZVjys1Um+EI/HsWnTJjQ0NAx56l+SJCxevBjr16/P+DPBDPlg0YeRMek5lpnOwWiTF1NjffzxxxAEAYsXL+Y3QTicQYRCITz88MMIhUK5DiVrWPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaqTQSSQSaGxsRCKRyHUoWcOaF6PjOXHiBBoaGnSZrsXr9aK6uhper5e6Vl9fn6HxsFYn+cKmTZuwZ8+es6Y+kmUZe/bswaZNmzLSNUs+WPRhZEx6jmWmczDa5MWNEG3hmPLy8hxHwuGwhcPhQEVFBTN3VrOBNS9Gx6PneDS1aWhlo8FanRQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bQy1WCtRgodURQxa9Ys5p5kzgTWvBgdz49//GPs2LEDK1euxMaNG6m9wQEMvA2wd+9eKpo0tLLRYK1O8oGJLN49/E2RiWKWfLDow8iY9BzLTOdgtGGn2sbgggsuwOHDhxGLxXIdCofDFJIkYf78+bkOgwqseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1UuhYrVZD1iQwAta8GB2PLMvYv38/AGDPnj0AgA0bNlDXZkErGw3W6iQfmMji3draIZPdt2bJB4s+jIxJz7HMdA5Gm7x4I2TZsmVIp9Nobm7OdSgcDlPEYjG89tprprhJyJoXo+PRczya2jS0stFgrU4KHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5amWqwViOFTjKZxEcffYRkMpnrULKGNS9Gx1NUVISvfOUrKCoqApD5E/oT0c61VjYag/MiyzL8fj/8fj+1fUUT1uOjAWvHbaaw6MPImPQcy0znYLTJizdC7r77bjz++OM4fPgwXn/9dXzpS1/KdUgcDhOoqopAIECmj8tnWPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaqTQ0RadTqfTuQ4la1jzYnQ8FosFPp8PFsvAM8LaE/p6aOdaKxuNdDqNaDSK//iP/8DevXvJDYZsF/2myUgLk7MUH01YO24zhUUfRsak51hmOgejjZBmqeLG4LHHHsPdd9+Nc889F2+88QYuvfTSXIfEYYAPP/wQ8+bNI/8+cOAArw0Oh8PhcDgcDofDMTl79+7NdQicHOL3+7Fy5cpxt3vooYdwzz33TFh3+/btADAhbZq/qweZeB9tqp6NGzeS6cOGs3TpUmpTig1mIjnWYtY7vsnEMtHth/9Orskk5snuF72YaOxjwUIuKioqcjq+UeTyWm5eTI0FAHfddRe2bt2KYDCIz372s7jnnnvQ0NDAxIrzHE6uUBQFHR0dUBQl16FkDWtejI5Hz/FoatPQykaDtTopdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppZarBWo0UOiw92ZotrHkxOh49FyumqU1DKxuNeDyOTz75ZNTfpTmlWCaMtzB5ruOjDWvHbaaw6MPImPQcy0znYLTJixshVqsVVqsVa9asgSzLiMfj+K//+i9ce+21OOecc8jPx/ujx4cbh5NLIpEInnnmGUQikVyHkjWseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1UujIsoz333/fFBdWWfNidDxutxu33XYb3G4309o0tLLR6O7uxs033zzq79KcUiwTxluYPNfx0Ya14zZTWPRhZEx6jmWmczDa5MXUWBaLBYIgIJ1OQxCEIT+bTPiCICCVStEOj5ND+NRYHA6Hw+FwOBwOh1N48KmxChs+Ndb40JoaK1fTH010XGD8fT48vsE3R0pKSiBJEpVY+NRYY2+vF3xqrPwil9dy8+YVCe2GRx7ct+FwOBwOh8PhcDgcDofD4XA4OuL3+ye1fSEtqs7hcM4mL6bGUlWVyh/+Noh5cTgc5DXNVCqFQCBAbpqFQiHyAReLxdDf3w9gYI66QCBANILBIJLJJAAgGo0iGo0CAJLJJILBINkuEAiQee36+/sRi8UADDxRoK1Zk06nEQgESM1FIhHE43EAQCKRQDgcBnD2nIDhcBiJRALAwAe09trYaJ6CwSB+/vOf4+TJk3nvqaurCz//+c8RDAaZyNPp06dJPNnmCRi/9s6cOYMHHngAfr+fuqdTp07hgQcewOnTp5nI0yeffIIHHngAwWBw0p60mj916hQAusfTRPKUL8eTUZ66u7tJPeSzp5MnTxIfLOSpp6eHxEMjT0b2iOGeTp48iQceeAA9PT1Uak+Ltbu7O6M8HTt2jOzbQv7MNUPf6+3txc9//nMSbz57OnHiBB544AH09vYykafBx4kRtacdW8eOHaPuabA2C3nK9Pue5qOrq4vkifcIlfxM01YUhcStqiri8TjxlEgkiHYymTxrO414PD5kO81fKpUi28Xjcfz5z38mfmVZHrKdto/T6TTi8TiJVZblIbEO325wrEZ5CgaDeOuttxCPx8+KNReegsEg/vznPyMej4/rSYvB6XTC6XQCAGw2G4qLi8l2Pp+PaLtcLhQVFQEYuPDt9XpRXFyMe++9FxdccAGsViuJT9tfdrsdHo8HwMBMJT6fDxbLwGU0j8cDu90OYOj1iHQ6DZ/PR7RnzJhB3jYoKiqCy+UCMLBmh8/nI7EWFxfDZrON6KmsrAz33nsviouL4fP5yLTvI3kCBmZDGezd7Xbj3HPPxb333ovS0tJRPSmKMmKeZFnGj3/8Y7JvvV7viJ4yOZ6G53Nw7amqepYnLU9utxsOhwP33HMP7r333gnlSVEUPPTQQ9izZw9SqRR8Ph8EQYAsy9i3bx/+4z/+g8Q6Wu2NlSctbk1jInlKJpOTPp5CoRA5TibbI2RZxokTJ/DJJ5/A7/eT5Qe07cY7njRPg/M0Uu0NzpOmPdzT4OOdRt+b6PE0midFURCJRPDWW2+hv79f974Xi8Xw1ltvIRgMEk+0PnN7enrwwAMP4OTJk1Q+c/v6+vDAAw/g+PHjVM8Jc0Fe3AjhcMZj0aJFqKqqAjBwYa6mpoYcnFu2bEFbWxsAoL6+HnV1dQAGLujW1NQQjc2bN6O9vR0AsGvXLuzatQsA0N7ejs2bN5PtampqyElIXV0d6uvrAQBtbW3YsmULgIHGUVNTg+7ubgDAjh070NjYCABoaWlBbW0tgIHmUFNTQ5pRbW0tWlpaAACNjY3YsWPHmJ6cTidmzpxJXgvPZ087duzA/Pnz4XQ6mcjTX/7yF/KBmW2egPFrz+/3Y/ny5Xj77bepezpw4ACWL1+Ov/zlL0zkqba2FsuXL4fT6Zy0J6fTieLiYhw4cAAA3eNpInnKl+PJKE/Hjh2DKIpwOp157Wnv3r2YOXMmnE4nE3nq6+uDLMvkC7vetUezRwz3tHfvXixfvhx9fX1Uam/fvn1Yvnw5jh07llGetm7dimXLlsHpdBb0Z64Z+l40GoUsy+REO589/fGPf8Ty5csRjUaZyNPWrVtRUVEBp9NpSO05nU4sXrwYW7dupe7J6XTiq1/9KrZu3cpEnjL9vud0OjF//nyyX3mP+Kun1tZW8kR4V1cXiTsajaKpqYlc5GlpaSHanZ2dOHLkCNFramoisTY3N6Ovr4/40Pz19fWhubkZwMCFNFVVycWlI0eOoLOzk+xLbR+nUik0NTWRi1VtbW1kP/j9frS2thLvTU1NZP8b6am1tRXl5eWw2Wxoamoi+zVXng4ePIjp06fDZrON60m7WLhs2TIsW7YMADB79mysXbuWbFddXU20KysrsWTJEgDA3LlzsWbNGkSjUfzhD3/Ad7/7XZSWlgIATpw4QfbXggULsGrVKgADF/+rq6vJBd9Vq1ZhwYIFAIZej0gkEmTcnTt34pvf/Cbmzp0LAFiyZAkqKysBAGVlZaiuriaxrl27FrNnzx7R080334ydO3ciGo2iuroaZWVlo3oCBm7gVFdXkwu3VVVVmDdvHnbu3ImLLrpoVE9dXV0j5imVSsFut5N9uWbNmhE9ZXI8ARi19sLh8FmetDxVVVVh0aJFk8pTZ2cnZsyYAQAoLS1FdXU1uUmyZs0aBAIByLI8Zu2NlaeOjg6y3dGjRyeUp6NHj076eDpy5AjOPfdc2Gy2CfeIo0ePoq6uDpWVlfjJT36Co0ePYuXKlaisrERDQwN50HC840nzNDhPI9Xe4DxpNTDc0/79+zF79mzYbLas+148Hp/w8TSap1OnTuHkyZMoLy9HMBjUve9ZLBaUl5fj4MGDxBOtz9y+vj4sX74ce/fupfKZqygKli9fjpdffpnqOWEuyIs1Qjic0dDmlXM4HBBFEY2NjSgvL0c4HEZxcTEEQUAoFILD4YAkSYjFYlBVFS6Xi9zt1e4aB4NBOJ1O2Gw20uCcTieSySSi0Si5axwIBOB2uyGKIvr7+2GxWFBUVETupHu9XnJ32+PxwGq1IhKJQBRFOBwOJBIJyLIMj8cDVVURCoXg9XphsVgQDochSRLsdju5u6/dQeeeuCfuiXvinrgn7ol74p64J+6Je+KeBjy9+eabSCQSsFqtEEURiqJAVVVIkgRVVSHLMux2OwRBQCKRgCiKsFqtSCaTSKfTQ7bTpsOJx+Ow2WxkO2DgxkcqlUIymRyynSRJsFgskGUZgiCQ7RRFgd1uRzqdRiKRGLKdxWIhsWoXl7XtBsfKPY3vqbe3F6tWrSIPjkSjUdhsNjidTvJ0tM/nw4YNG/DDH/4QLpeL3MCSJAkOhwOhUAiCIKC4uBjhcBipVArPPfccBEHAzTffDLvdDkmSEA6HYbFY4PV6EQqFoKoqPB4PZFlGIpEg1yOeeOIJpNNp3H333eSNaa/Xi3g8DlmWUVRUBIvFgv7+foiiCLfbTZ6OLi4uRjQaRTKZHNdTJBKBoijjetK8u91uKIqCeDw+pqfnnnsO06dPPytPJ0+eHNfTk08+iXPPPZdq7Z04cQJr164dMU8T9aTl6emnn0YqlcJdd92FSCQCq9UKj8dzlqdnnnkGU6ZMOav2AoEAVq5cOWaennrqKVxwwQUAgE8++QRr1qwZN0/PPPMMZsyYofvx9G//9m94++23R629z3zmM/i7v/s7fPe73x239p577jmUlJRAEAT09PRg9erVox5Pbrcbjz32GGbMmKFrjzhx4gS+//3vZ3U8Pffcc5g2bVpO+97ChQuZ/cyl+T3i+PHjOVsjhN8I4eQ1hb5YejQaxa5du8jTrfkMa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajbBCrhZLTyaTaG9vJ08y5zOseZlMPLIso7Kykky/MhKSJOGJJ57A6tWrR/y50+nEsmXLsGvXLnJhkdZi6SNpZ0qmWoMXS5+IxmiLRXd1deHFF1/M6HezgcYC2BqZLqo+mViMWix9ssctjWNltJizWSydZv+htVj6lClTDOuJI/mntVg66+dgubyWy6fG4nA4HA6Hw+FwOBwOh8Ph5A3aAtdjsXjxYrKWhVmZM2dOrkPgME5vb++YN0GAgZslvb29BkXE4eQOMdcBcDiczHE6nVi+fHmuw6ACa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajRQ6NpsN5eXluQ6DCqx5mWw869evBwA0NDQMudCr3SRZv379mAvzRqNR7Ny5c8j/ybJM5ebJSNq0tZ555hlIkjShJ+GziUcURWpeONnD2nGbKSz6MDImPccy0zkYbfL2RkgkEsH777+PM2fOIBwOk0WgxuPWW2/VOTIOxzhYe5U5G1jzYnQ8eo5HU5uGVjYarNVJoWOWfLDmg/cf/fR4/zEPZsoHa154D9JPK1MN1mqk0EmlUujr68M555wDq9Wa63CygjUvk43H4XBgw4YNZz3NXlJSMqGbGTabDbNnz0Z7eztZw2L16tVU3rIYSZu21mRu2GQTj6qqKC8vp+KFkz2sHbeZwqIPI2PScywznYPRJu+mxnr++efx+c9/Hj6fD9deey1uvPFGrF69Grfffvu4f9asWZPr8DkcqmhPdWQ75ygLsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Uihk0wmcejQIVNcEGbNS6bxSJKE6dOnkz8TvUGgPaU8fM77gwcPTmr8yWjnSisbjVQqRc0LJ3tYO24zhUUfRsak51hmOgejTd4slh6LxfCtb30Lr7zyCgBgrLAFQRjx54IgIJVK6RYjx3gKfbF0DofD4XA4HA6HwylEcrVYOie/oLng9nhks9C6HuMNXix9onqZLhT+zDPP4MILL5zwWBOBL5ZOh4nGMtF6obVYOk1oLZaud5zjQWuxdNbJ5bXcvJka67vf/S7+8Ic/ABh4/XHp0qX4+OOPcejQIQiCgFtvvRXhcBidnZ344IMPkEwmIQgCXC4XbrzxRgiCkGMHHA6Hw+FwOBwOh8PhcDgcjrlYvXo1li5divXr18PhcOQ6HA6HwxmRvJgaq6mpCS+88AIEQcBFF12EgwcP4g9/+AOuv/56ss3WrVuxY8cOvPvuu+ju7sa///u/w+12o7+/H6dPn8Z//dd/YevWrTl0weHQJxAI4P777x9zAbh8gTUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKnXg8jvr6esTj8VyHkjWseTE6Hp/Ph/vuuw8+n49pbRpa2Wgkk8kJ/e6ePXuwadOmzALkTBjWjttMYdGHkTHpOZaZzsFokxc3Qp555hny9y1btmDmzJljbu/1evGP//iPaG5uxnnnnYc//vGPuP322/UOk8MxHLfbjdWrV8Ptduc6lKxhzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkUJHkiRcccUVk1qomlVY82J0PJFIBE8//TQikQjT2jS0stGwWq0T/t2GhgbIspxJiJwJwtpxmyks+jAyJj3HMtM5GG3y4kbIW2+9BQCYPXs2Fi9ePOHfu+iii/DMM88gnU7jd7/7HZlai8MxC6IoYtasWRDFvJnlblRY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNCxWCzw+XywWPLicsqYsObF6HgURUFHRwcURWFam4ZWNhoWi2XCvyvLMnp7ezMJkTNBWDtuM4VFH0bGpOdYZjoHow071TYGJ06cgCAIWLBgwZD/H7zux2h3nK+//nqy4Mq2bdv0C5LDyQH9/f144YUX0N/fn+tQsoY1L0bHo+d4NLVpaGWjwVqdFDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tDLVYK1GCh1ZlnHgwAFTPPXOmhej43G5XFixYgVcLhfT2jS0stFQFEW3/cSZPKwdt5nCog8jY9JzLDOdg9EmL26EhEIhAMCUKVOG/H9RUdFZ24zElVdeiXQ6jX379ukTIIeTI1i8g54prHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNVLoCIIAh8Mx5MHMfIU1L0bHo6oqAoEAVFVlWpuGVjYagiDotp84k4e14zZTWPRhZEx6jmWmczDa5P6dlAngdDoRDoeRTCaH/P/ghZo6OzsxderUEX8/nU4DAE6ePKlbjBxOLigqKsJXvvKVXIdBBda8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdGw2Gz796U/nOgwqsObF6HhisRhee+01KlqSJKGkpIRMC0VTm4ZWNhpWq5WaF072sHbcZgqLPoyMSc+xzHQORpvc34qZABdccAEAoKenZ8j/X3zxxeTv77zzzqi/39bWpk9gHE6OkWUZ+/fvZ+pVwkxhzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkUInlUrB7/cjlUrlOpSsYc2L0fFIkoT58+dTWax48eLFQ3RoatPQykZDVVVqXjjZw9pxmyks+jAyJj3HMtM5GG3y4kbIZZddhnQ6jcOHDw/5/8997nPkFaL//u//HnHhpl27duG9996DIAj41Kc+ZUi8HI5RxP8/9t49PKrqXh9/99wzdy6RALFyDj0VISqIlqhtibaHY21TqaKFBkTTY0OslUjP6bE/n8NT/Z6ep9IL5NtKQMpdwAsqGK2WWk1UbKJoQK7SBoOEkBCSTGYmk9l79sz+/ZHvXp3cJzN771mzZ73Pk+cJZM27P+96P+uzZ6+199rhMGpqahAOh9MdSsqgTYvW8ah5PCW5leBKhYO2PMl26MUP2nSw+qMeH6s/+oGe/KBNC6tB6nEly0FbjmQ71HzBttagTYvW8dhsNhQVFcFmsyX8mauuumrQgsctt9yCn/70pylzKxmnkhzRaFQxLQypg7Zxmyxo1KFlTGoeS0/XYEqDk+R9oyjGhg0b8OCDD8JgMODixYsYP348+dv8+fPx7rvvguM43Hbbbfif//kfFBQUIBQK4ZVXXsGqVavQ0dEBjuPws5/9DP/zP/+TRiUMSuP48eMoKCgg/z527BhmzZqVxogYGBgYGBgYGBgYGBgY1EZNTU26Q2DIALS2tmLJkiWK8e3Zs6ffFljjx4/vtzCi9PFGiwXAsMdbu3YtHnnkkTHx5eXlDfr/sWoajmesULIvR+ur+HbJ9kH8ZxONXam+GgmJxpJovoxVJ00aR4IWcY6GoqKitB5fK6RzLjcjngi5/fbbwXEcJEnCq6++2u9vv/zlL8lTIW+88Qauv/562Gw2jB8/Hvfddx85OU2cOBEVFRVah87AoCokSUI4HEYGrGeOCtq0aB2PmsdTklsJrlQ4aMuTbIde/KBNB6s/6vGx+qMf6MkP2rSwGqQeV7IctOVItkOSJIiiqAs/aNOidTzJvqzYYrEgLy8PeXl5w24XpeSLkJXgSoVDkiTqXmqdzaBt3CYLGnVoGZOax9LTNZjSyIiFkC984QtYtWoV7rnnHrS3t/f724033ohNmzbBaDRCkqQhf3Jzc7F///5hX6bOwJCp6O7uxpNPPonu7u50h5IyaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliPZDp7ncfDgQfA8n+5QUgZtWrSOx+Px4NFHH4XH40kb99q1a7F27VpFuNTiEEVRtX5iGDtoG7fJgkYdWsak5rH0dA2mNEzpDiBR/OpXvxr2b6Wlpbjxxhuxdu1avPXWW2hpaYHBYMA///M/o7i4GBUVFcjNzdUwWgYGbeByuVBWVgaXy5XuUFIGbVq0jkfN4ynJrQRXKhy05Um2Qy9+0KaD1R/1+Fj90Q/05AdtWlgNUo8rWQ7aciTbYbFYMHfuXF28OJo2LVrHEwgEsGHDBgQCgbRxJ7IVjxJxpsJhMplU6yeGsYO2cZssaNShZUxqHktP12BKI2MWQkbDVVddhaeffjrdYTAwaAqj0Zj2PQyVAm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk22EwGOB0OtMdhiKgTYvW8USjUbS2tlLPrQRXKhwcx6nWTwxjB23jNlnQqEPLmNQ8lp6uwZRGRmyNxcDAMDSCwSC2bduGYDCY7lBSBm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk2yEIAg4fPgxBENIdSsqgTYvW8TidTtx3332qTEYqya0EVyocoiiq1k8MYwdt4zZZpKJDEAS0traitbVV0X7Qsm/VPJaersGUhm6eCGFgyEaYTCZMmzYNJlPmD2XatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLbDYDDA6/XCYMj8+0pp06J1PKIooqmpCaIoUs2tBFcqHBzHqdZPDGMHbeM2WSSjIxwOY82aNTh48CBZQLBYLJg+fXrK8bS2tiIajcLlcmnSt2r6qKdrMKWR/giSQDgcxhtvvIH33nsP586dQ1dXF6LRKP7yl7/0aydJEnp7ewEAZrMZZrM5HeEyMKgGm82GoqKidIehCGjTonU8ah5PSW4luFLhoC1Psh168YM2Haz+qMfH6o9+oCc/aNPCapB6XMly0JYj2Q55QkcPoE2L1vGEw2HU1NRQz60EVyocRqNRtX5iGDtoG7fJIhkda9aswdtvv93v/wRBwMmTJ1OO55FHHgHQt7By880346c//SlsNlvKvMNBTR/1dA2mNDJu+fDXv/41vvCFL+Cuu+7C2rVrsXfvXrz55ptDFuXOzk7k5ubC5XJh/vz52gfLwKAyeJ5HXV0deJ5PdygpgzYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7RBFEc3Nzbq4O542LVrHY7VaUVhYCKvVSjW3ElypcESjUdX6iWHsoG3cJoux6hAEAQcPHlQ1JqvViuuuuw7vv/8+1qxZo+qx1PRRT9dgSiNjFkIikQi+9a1v4b/+67/Q0dEBSZLIz3CYMGECli9fDkmSUF9fj7///e8aRszAoD70sjckQJ8WreNR83hKcivBlepeoDTlSbZDL37QpoPVH/X4WP3RD/TkB21aWA1SjytZDtpyJNshv3Q6Go2mO5SUQZsWreOxWCyYPXs2LBYL1dxKcKXCIUmSav3EMHbQNm6TxVh1dHZ2qn4ejB8n8dtvqQE1fdTTNZjS4KSRVhIowr//+79jy5YtAPoeqVm+fDluvfVW7N69G/v37wfHcUMmz/vvv4+vfOUr4DgOa9euxcMPP6x16Awq4vjx4ygoKCD/PnbsGGbNmpXGiBgYGBgYGBgYGBgYGBjUBtuqhyERtLa2YsmSJYrx7dmzB3l5eYodb8+ePQCQVIyjfXbt2rVku59E+YbSloymkfooUSjpXaL9nEofxH820diV6quRkGgsiebLWHXSmA+JQgt/4kHL9lFqI51zuRnxRMhHH32ErVu3guM45Ofn4+OPP0ZVVRXuvvtu5Ofnj/jZm266CR6PBwDw7rvvahEuA4NmiMVi8Pl8iMVi6Q4lZdCmRet41DyektxKcKXCQVueZDv04gdtOlj9UY+P1R/9QE9+0KaF1SD1uJLloC1Hsh2SJCEcDo+4O0WmgDYtWsej5suKleRWgisVDkmSdPFybr2AtnGbLGjUoeWL6NXUr6drMKWREVVs69atJDF27tyJGTNmjOnzs2fPhiRJirw8h4GBJvj9flRWVsLv96c7lJRBmxat41HzeEpyK8GVCgdteZLt0IsftOlg9Uc9PlZ/9AM9+UGbFlaD1ONKloO2HMkWjB8/fsj/53ke9fX1VOx1nipo06J1PG63GxUVFXC73VRzK8GVCocoiqr1E8PYQdu4TRY06lCzJgyEmvr1dA2mNDJiIeTtt98GABQUFCT10nP5qZHz588rGhcDQ7rhdruxcuVKXXwhoU2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW45kA2w2G770pS8N+Ter1Yp58+bp4sXRtGnROh6/349169apthCrFLcSXKlwmEwm1fqJYeygbdwmCxp1qFkTBkJN/Xq6BlMapnQHkAhaWlrAcRzmzJmT1OedTicAoKenR8mwGMaIw4cP44YbboAoigBA1eNvmQr5sT09gDYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmiV0ycOBGXXXYZzGYzPB7PsFujcBwHm82mcXTqgDYtWscjb9dCO7cSXKlwcBynWj8xjB20jdtkQaMONWvCQKipX0/XYEojI54ICYfDAJB0ggSDQQD/WBBh0B6iKKK0tJQsgjAog0AggA0bNiAQCKQ7lJRBmxat41HzeEpyK8GVCgdteZLt0IsftOlg9Uc9PlZ/9AM9+UGbFlaD1ONKloO2HNErzGYzLrvsMowbN27E/eF5nsehQ4eo2s4lWdCmRet4XC4XVqxYAZfLRTW3ElypcIiiOKbPPvHEE2Qej0F50DZukwWNOtSsCQOhpn49XYMpjYxYCMnNzQUAtLa2JvX5U6dO9eNh0B6/+tWv0NDQgO9+97vpDkVXsFgsmD17NiwWS7pDSRm0adE6HjWPpyS3ElypcNCWJ9kOvfhBmw5Wf9TjY/VHP9CTH7RpYTVIPa5kOWjLkWyH0WhEXl4ejEZjukNJGbRp0ToeQRBw+PBhCIJANbcSXKlwcBw3ps+ePHkSa9asGfNxGBIDbeM2WdCoQ82aMBBq6tfTNZjSyIitsWbMmIHm5mb89a9/RTQaHVOSnDt3DocPHwbHcbjhhhtUjJJhOJw6dQqPP/44vvzlL+Ohhx7Cyy+/nO6QdAOr1YrCwsJ0h6EIaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliPZDpPJRN5DmumgTYvW8fA8j7q6Ouq5leBKhcNoNI75swcPHoQgCFRMfOoNtI3bZEGjDjVrwkCoqV9P12BKIyOeCLntttsAAJcuXcKOHTvG9Nn//u//RjQaBQD827/9m+KxMYyMWCyGH/zgB4hGo9i0adOIjxgzjB3hcBg1NTW6eOyUNi1ax6Pm8ZTkVoIrFQ7a8iTboRc/aNPB6o96fKz+6Ad68oM2LawGqceVLAdtOZLtEEURTU1Nutj2mTYtWsdjs9lQVFSkyj79SnIrwZUKRzQaHfNnBUFAZ2fnmI/FMDwEQUBrayvOnz+PxsZGasZtsqCt/gDq1oSBUFO/nq7BlEZGzErfd9998Hg8AIBVq1bh0KFDCX3uiSeewI4dO8BxHKZMmYLFixerGeaIiEaj+OSTT7B582aUl5fj+uuvh8ViAcdx4DgORUVFSXMLgoCdO3fi9ttvxxVXXAGbzYbJkyfjpptuwq9//WtcunRJOSFjxO9//3u8//77+I//+A9cc801aYtDr6DxxJEsaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliPZDvllurFYLN2hpAzatGgdj8lkwrRp02AyKb9ZipLcSnClwiFJkmr9xDA6wuEwnnjiCRQXF2PJkiVYsWIFDh48iF/96ldUTCwnC9rqD6BuTRgINfXr6RpMaXCSJEnpDiIRPPXUU/jxj38MjuNgsVjwox/9CEuWLMHGjRvxhz/8ARzHoaurCxcuXMDBgwdRVVWFjz/+GJIkgeM4PPfcc1i0aFFaYt+3bx9KSkoQCoWGbTN//nzU1NSMmfvUqVNYsmQJDh8+PGybyy67DFu3bsXtt98+Zv5U0NTUhIKCAuTl5eHo0aPIyclBTU0NbrnlFgB9J9NUcfz4cRQUFJB/Hzt2DLNmzUqZl4GBgYGBgYGBgYGBgYFeJHP9PBImT56MK6+8UtVjMGiP1tZWLFmyRDG+PXv2IC8vT7Hj7dmzBwCSinG0z65duxaPPPLImPiG0jaSpnHjxqGrq2tMfIlCSe8S7edk+mCozyYaeyJ99MQTT+Dtt98e8m+33HILVq9ePeLnE40l0XwZq85U80CG0mM5ESgVe6JI5Sb5TEI653Iz4okQAPjRj36Ehx9+GJIkQRAErF27Fl/+8pexefNmAH2T6uPGjcPMmTPxwAMPkEUQoG97rHQtggCAz+cbcREkWTQ3N+PrX/86WQThOA7z589HaWkpiouLkZOTAwC4ePEiFi5ciLfeekvxGEbCAw88gJ6eHmzcuJHEwqAsotEoWltbyfZvmQzatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLYjFoshGAxSdRdzsqBNi9bxqPmyYiW5leBKhUOSpGE/O9okPENqEAQBBw8e7Pd/8V7K72LJRNBWfwBtX+Cupn49XYMpjYxZCAGAdevW4Q9/+AM8Hg8kSSILHfL2UvL/yT9erxdbt27Fz3/+8/QG/v8wadIkfPvb38bjjz+OP/7xj1i5cmVKfN///vfR0tICALjiiivQ0NCAmpoabN68Ga+88go+//xzfP3rXwcARCIR3H333fD5fKnKSAibN2/Gm2++ieXLl5MYGJRHIBDAxo0bEQgE0h1KyqBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDsEQcBHH32UsZOP8aBNi9bxuFwurFixAi6Xi2puJbhS4RBFUbV+YhgZnZ2dg8ZDvJeZ/C4W2uoPoG5NGAg19evpGkxpZMzWWPEIBoPYsmUL/vjHP+Kvf/1rv460Wq348pe/jG9/+9soKyuD2+1OY6R9aG1thSAI+MIXvtDv/3/+85/j8ccfBzD2rbH++Mc/4lvf+hYAwGKx4NChQ7j66qsHtevp6cE111yDM2fOAAB+9rOf4X//938HtXv00Ufx5JNPJnz8eEQikX7757W0tGDmzJmwWCw4efIkJkyYQP7GtsZSFpIkged5WK1WcByX7nBSAm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nKEFqRrayxJkhCNRmE0GjPeD9q0qBHPSNvpcBwHq9UKnucTnp9IdGusRLkT2bJpOK6xbI2VSDzDabtw4QJKS0uH/OxI2ymxrbFS3xprKJ6BXiq1XZvWW2ONdbxrsTXWWPs2FQylX6mtsWi/BkvnXG5GvunI6XTi4YcfxsMPPwygb7K/u7sbDoeDvFSdJqgxaJ566iny+/Lly4dcBAEAh8OBJ554AkuXLgUAbNy4EU888cSgF/84HI5+CxZjwcBB8OMf/xjd3d3YuXNn0pwMiYHjONhstnSHoQho06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWI9kOjuN089Jo2rRoHY8kSaq9bFpJbiW4UuHgOC6jX8qtN6iZt1qCtvoDaNu3aurX0zWY0siorbGGg8PhwJQpU6hcBFEDwWAQf/nLX8i/77///hHb33XXXXA6nQD6Hqt75513BrX57//+b1y6dCmpn4F753300UcAgP/4j/9AXl5ev58777yTtJP/b9OmTUn3RbbD7/dj3bp18Pv96Q4lZdCmRet41DyektxKcKXCQVueZDv04gdtOlj9UY+P1R/9QE9+0KaF1SD1uJLloC1Hsh08z6Ourg48z6c7lJRBmxat43G73aioqFBlJxEluZXgSoUjEomo1k8MY4eaeaslaKs/gLZ9q6Z+PV2DKQ1dLIRkG95//30yUBwOB2644YYR29tsNtx4443k31q9NL2trW3QT1dX16C/9/T0aBKPHmGz2VBUVETNymoqoE2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW45kO0wmE6ZNm0bdnczJgDYtWscTDodRU1Ojyh3gY+EeP348LBaLIlxqcBiNRtX6iWHsUDNvtQRt9QfQtm/V1K+nazClQU+2MSSMkydPkt+vvvrqhAbNddddhz//+c+DPq8Gmpqahv2b0u8IyXZYLBbMnj073WEoAtq0aB2PmsdTklsJrlQ4aMuTbIde/KBNB6s/6vGx+qMf6MkP2rSwGqQeV7IctOVItsNoNKq2Z7zWoE2L1vEIgoDDhw+nndtiseDmm2/G22+/nTKXEvEMhMFgUK2fGMYONfNWS9BWfwBt+1ZN/Xq6BlMa7ImQDMSnn35Kfr/iiisS+kz8i9pPnTqleEwM6UFvby/eeOMN9Pb2pjuUlEGbFq3jUfN4SnIrwZUKB215ku3Qix+06WD1Rz0+Vn/0Az35QZsWVoPU40qWg7YcyXZEIhH8/e9/RyQSSXcoKYM2LVrHk5OTg9tuuw05OTlp5/7pT3+KW265ZcgnQ5SIMxWOaDSqWj8xjB1q5q2WoK3+ANr2rZr69XQNpjQy7omQ3t5evPbaa/jggw/w2Wefwe/3J5w0HMf1e7dGpqKjo4P8PmnSpIQ+E7/K2NnZqXhMDOlBLBaDz+dDLBZLdygpgzYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7ZBfpquHHQ5o06J1PAaDAV6vFwaD8vcIj5XbZrNh9erVEAQBnZ2daG1txSOPPKJYnKlwSJKkWj8xjB1q5q2WoK3+ANr2rZr69XQNpjQyZtRIkoQ1a9YgLy8P3/ve9/Cb3/wGL730Et58803U1taO+lNTU4Oampp0y1AEwWCQ/J7oKmV8u/jP6wU2m428ED4ajcLn85Fi4vf7IQgCgL6FNPmdJKIowufzEY7u7m6yqBYKhRAKhQD0rdJ2d3eTdj6fD6IoAgB6enrIiqYgCOTFP5IkwefzIRqNAujrc3mPQZ7nEQgEAAwuBoFAgLz/JRwOE6+G0+RwOHDHHXeQ2DJZUzQaxZ133gmHw0GFTyaTCd/61rfgcDhS9gkYPfcsFgsWL14MjuMU12Q0GrF48WKYTCYqfBJFEYsXL4bD4RizJofDgW9/+9swGo0AlB1PifiUKeNJK01msxm33347HA5HRmsCgDvuuAMOh4MKn6xWK2677TY4HA5FfNKyRgzUBACLFy+G1WpVJPcMBgMWL14Ms9mclE+RSAT33HMPHA5HVp9z9VD3bDYbbrvtNtjt9ozXJEkSFi9eDJvNRoVPkUgEd999NxwOhya553A4sGjRon43tymlyeFw4Hvf+x4ikQgVPiX7fc/hcODOO+8kGliN+IcmnucJtyiKJO5YLNZvgonnecIdiUQGtRtOk/x7NBol7SwWC774xS+SLaoFQejXTu5jeZJLjlUQhH6xDmwXH6uSmsLhcL928bHGYjEUFBTAYrEMijUdmiRJwlVXXQWLxZK0poHt5FgdDgeZF7FYLHC73ejp6cFzzz0Hs9lMri+cTifZx95qtcLlcgH4xwTpaJrkRYNQKIRnn30WRqORPOWRk5NDvt+ZTCZ4vd5BmiwWCyZMmICJEycC6Pu+bTKZ8Oyzz6Knpwder5fkniiKpB9kTUDfTcDxsTqdTkSjUTz77LMQRXGQJnnSVxTFITUZjUa88cYbZIy73W6iKRaLDaspvvYm6lN87sVisUGaEvVJ1uRyuWC1Wslx5Xkjo9EIr9cLjuMGaRop9zweD8xmMwDAbreT7yFms7nfeSwSiRCfhso9WVMkEhl1PA3UZDAY8PLLL6Onpwc2m418ZqQaMVLujaTJ4/GQdvG5F+/TULkX75Mcw8AaEYvFMGvWLFgsloRrRLxPSmuS536effZZRCIRokmtumc2m1FQUABJkkgfKXXOtVqtWLx4MeGU4072nJuTk4PFixcjFospek2YDmTMQsjSpUvxs5/9DIFAAJIkjflHT4gvwiO9UCsecuEH/pGE6UBRUZEqnhQWFmLRokUAgPb2dlRWVpLBuWXLFpw4cQIAUFtbi+rqagBAc3MzKisrCUdVVRUaGxsBAAcOHMCBAwcAAI2NjaiqqiLtKisr0dzcDACorq5GbW0tAODEiRPYsmULgL7CUVlZifb2dgDA3r17UVdXBwBoaGjArl27APQVh8rKSlKMdu3ahYaGBgBAXV0d9u7dO6ImURRRXV2NV155RRea3nnnHYiiSIVPH330EbZu3QpRFFP2CRg9906fPo2mpib86U9/UlzT+++/j6amJnz00UfU+NTU1ARRFMesSRRFPPPMM3j//fcBKDueEvEpk8aTFpqOHj2Kp59+mnwBzFRNr7zyCqqrqyGKIhU+nT17FpWVleSLs9q5p3SNiNf0yiuvoKmpiWhKxafq6mq8/fbbaGpqwtGjR5P2ST5/Zvs5N9Pr3oULF1BZWUkuFjNZ0wsvvICmpiaiiQafjhw5AlEUNck9URRx6NAhVTSJooi//e1v1PiU7Pc9URTxzjvvsBoxhKajR4+itbWVxCfHHQqFUF9fTyZ5GhoaCPfZs2dx+vRpwldfXz+sJvn3rq4uHDp0CEDfxFB9fT2ZzDl9+jTOnj1L+lLu42g0ivr6ejJZdeLECdIPra2tOHr0KNFeX19P+l9pTYcOHUJXVxfxZqAmeWGpvr6e9Gs6NZ09exaxWCwlTTLq6+vJ/ElxcTHmz58PAJg5cyZKS0thMpnwL//yL6ioqEBubi4AYNGiRSgsLAQAzJkzByUlJQD6JmArKirI97PhNPE8j4qKCtjtdkybNg2lpaWYOXMmAGD+/PkoLi4GAOTn56OiomJYTbK306dPR3l5OXmpckVFBfLz8wEAbW1tZMcQWRPQN/9TUVFBJm4XLVqEm266CdOmTcPcuXMHaZInfJubm4fUFA6HiSYA/TTxPD+spqampoR9Gir3AoHAIE2J+iRrKikpwZw5c8hx5Xmj3NxcVFRUkLmyeE0j5V55eTmmT58OAFiwYAEWLFhAfIp/X+6ZM2eIT0PlnqzpzJkzo46noTR9/etfh8lkQmFhIVpaWgCMXCNGyr2RNJWXl5N28bkX79NQuRfvk5wDQ9WI9vZ2xGKxhGtEouMpGU3FxcUoKirCtGnTUFBQQDSpVfcikQh8Pl8/n5Q65549exZNTU145ZVXFDnndnZ2oqmpCc8884yi14TpACdlwCrB7t27sXTpUnAcB0mScOWVV+Kee+5BQUEBxo8fn9DLwmXIxYcG/PznP8fjjz8OoC+uRJ9Y+da3voU//vGPAID/+q//wi9/+ctRP/P666/j9ttvB9C3Iiuv7mU6jh8/joKCAthsNphMJtTV1WHGjBkIBALweDzgOA5+vx82mw0WiwW9vb3kjgVRFBEMBsmqcXd3N+x2O8xmMylwdrsdkUgEoVCIrBr7fD44nU6YTCZyd2pOTg4EQUA4HIbb7YYkSeju7obL5YLRaEQwGITJZILNZgPP8xAEAS6XC7FYDH6/H263GwaDAYFAABaLBVarFeFwGKIokhX0oTSFQiFUVlbigQcewJQpUzJa07lz57BlyxasXLkSVqs17T61tbVhw4YNWLlyJdxud0o+JZJ7giBg/fr1+OEPfwiPx6Oopp6eHmzYsAErVqyA3W5Pu08XLlzA1q1bsXLlSgAYk6ZAIIDKykqsWLECkyZNUnQ86bFGqK3p4sWLqKqqwsqVK+HxeDJWU0tLCzZt2oSVK1fCbren3adLly7hqaeewsqVK+H1elXPPSVrxEBNXV1d2LRpE370ox/1u1MrWU2BQAAbN25EeXk5bDbbmH1qbm4m9Ue+QzMbz7l6qHsdHR34/e9/j4cffhjjxo3LaE0dHR34wx/+gIceeghGozHtPp07d46ME5PJpHruRSIRVFZW4v777yfvNVRKUywWI9xTp05Nu0/Jft+TJyxKS0tx+eWXsxrx/zS988474HkeRqMRJpMJoigiFovBYrEgFotBEARYrVZwHAee52EymWA0GhGJRCBJUr92NpsNkydPRl5eXj9NBw8ehNlsRjQaRSQSgc1mQzgcRn19PW644QbY7XYIggCO40g7URRhtVohSRJ4nofFYoHBYIAgCDAYDCTWaDTar118rEppAkDuPJbbASCxBoNBHD58GPPmzQOAfrGmQ1N3dzeJx2g0JqVJ9klu19nZiZKSEnK3d29vLywWC2w2GwwGAyoqKrBlyxacP3+ePDEgiiLC4TCsVissFgsCgQAMBgPcbjfWr1+PyZMnD6vpwoULePDBBwH0TbL+4Q9/wMWLFyEIAnJycmAwGNDT0wOTyQSn04mqqirk5eUN0tTW1oZly5bBbDYjLy8PP/jBD7Bu3ToAfXdvi6KInTt3guM4LF26lGjy+/3gOA4ejwerV6/GqlWr4HQ64XA4UF5ejvXr16O3t7efJr/fj1gshp07dyIvL2+Qps8//xyfffYZ1q1bB5/PB7fbjXA4DEEQ8Jvf/AarV6/up0leJNyxYwemTJmSkE9D5V5LSwvKy8v7aQoEAgn5JGtyuVwQBAHbtm1DNBrFihUryBPRLpcL3d3dkCSJaNq+fTsmTJgwKPd8Ph+WLFkCj8dDnhaTF4ZCoRDMZjM2b96Myy+/HABw7tw5lJaWQhTFIXNP1rR9+3ZMnTp12PHU1dWFkpKSfpqmTp2KBx54AOvWrUM4HMamTZuQn58/bI1ob29HaWnpoNyTfZI1rVmzBo899lg/TXa7nTxt4PV6EQwGsXPnTowfPx4cx6GjowPLly8flHvxPm3YsAFTp04dVCP8fj8Z7xzHjVoj2traUFZWRnJvqPE0UNNQPg2lSfbJ6XSivLwcTz31FHiex8aNG8m8g9J1T5IkfPDBB5g9ezacTieMRiPmzZunyDlXFEU89dRTeOCBBzBu3LiUz7mxWAy/+93v8IMf/AC5ubkpXxOeP38eBQUFkHHs2DHMmjULWiAjFkJuvfVW1NTUgOM4VFRU4Fe/+lXG74UHJL8Q8r3vfQ/PP/88AODhhx9OaDXtpZdewl133QWg730hFy5cSC5oyiAvhMjQcvAwMDAwMDAwMDAwMDAwpAdKb309a9YschezWsdg0B6tra1YsmSJYnx79uzp9w7WVI83HF8iPHv27AGAYdutXbuWvGdErVhGOsZofTUalPRutL6Kb5eKH/JnE41diXxSKicTzZex6kw1D2QoPZYTgVKxJ4qioiLNjpVOpHMuNyNelv7JJ5+A4zj80z/9E37961+TPfyyFRMmTCC/t7W1JfQZ+XEsABg/frziMTEwMDAwMDAwMDAwMDAwZCIMBgPGjRuX7jAYGBgYGBgYVERGPFYh7+n41a9+NesXQQDgyiuvJL/Le/KNhs8//5z8PmPGDMVjYkgPuru78ctf/rLfi5EyFbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMsRPaKgoCDhLbfD4TDee++9fu/uzFTQpkXreDweDx599NF+L0+mkVsJrlQ4IpGIav3EMHaombdagrb6A2jbt2rq19M1mNLIiIUQea9YPWyHpQSuuuoq8vvRo0fJy7pGwscffzzk5xkyG3a7HQsXLiR7HmYyaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliN6w5e//OUx7ZpgNpsxY8YMmM1mFaPSBrRp0TqeUCiEffv2kf32aeVWgisVDqPRqFo/MYwdauatlqCt/gDa9q2a+vV0DaY0MmJrrHnz5uHUqVM4efJkukOhAjfddBOsVit4nkdPTw8OHTqEwsLCYdvzPI+6ujry71tvvVWLMBk0gFw49QDatGgdj5rHU5JbCa5UOGjLk2yHXvygTaHUSTcAAQAASURBVAerP+rxsfqjH+jJD9q0sBqkHleyHLTliN5gNBrH3H7ixIkqRaMtaNOidTyRSASnTp2inlsJrlQ4DAaDav3EMHaombdagrb6A2jbt2rq19M1mNLIiEcsHnroIQDAhx9+iGPHjqU5mvTD6XTi61//Ovn3tm3bRmz/0ksvIRAIAOh7P8jXvvY1NcNLC2w2G5xOJwAgGo3C5/NBkiQAgN/vhyAIAIDe3l709PQAAERRhM/nIxzd3d2IRCIA+laB5RXgSCTS7/Etn89HnsLp6elBb28vAEAQBPj9fgCAJEnw+XyIRqMAgGAwSB5343me+BGLxeDz+RCLxQAAgUAAPM8D6HtMLhgMjqgpFAph7969aG9vz3hNbW1tePHFFxEKhajwqaurCy+88AJCoVDKPgGj5153dzf27duHS5cuKa6ps7MT+/btQ1dXFxU+tba2krssxqopFArhhRdeQGdnJwBlx1MiPmXKeNJKk8/nw/PPP49QKJTRmtrb27F3716EQiEqfPL7/aRflfBJyxoxUFN7ezv27dsHv9+vSO51dHRg37598Pl8Sfl04cIFvPzyywiFQll9ztVD3QsEAnj++ef7jZtM1XTx4kXs27cPgUCACp8uXLiAl156CaFQSJPcC4VCeOmll3DhwgXFNYVCIbz88su4cOECFT4l+30vFArhxRdfJO+HZDXiH5p4nifcoiiSuGOxGMLhMNHE8zzhjkQi/dqNpEn+PRqNkngikQiOHz9O+lIQhH7t5P+XJAnhcJjEKghCv1gHtouPNVVN8VuthMPhfu3iYw0Ggzh16hQikcigWNOhKRgM4sSJEyTOZDQNbCfH6nA4kJOTAwCwWCxwu93kLuW8vDyyIOZ0OmGz2QAAVqsVLpcLQN9igNfrHVWTJEnwer2E+7LLLoPFYgEA5OTkwOFwAABMJhO8Xu+wmmRus9mMSZMmkbupvV4v2cZNFEXyGVkTAHAc1y9Wp9OJcePGYeHChfB6vYM0ybuviKI4pKZIJIJ77rmH3M3tdruJplgsNqymSCQyZp/icy8Wiw3SlKhPsiaXywWr1UqOK88bGY1GeL1esv1+vKaRcs/j8ZA7+O12O+kTs9lM4pY5ZJ+Gyj1ZUyQSGXU8DdR02WWX4c4774TdbofNZiOfGalGjJR7I2mK3yIqPvfifRoq9+J9kmMYWCMCgQBOnjyJSCSScI2I90lpTQ6HA+PHj8fChQvh8XiIJrXqniAIOHXqFILBIOkjpc65fr8f+/btQ3t7uyLn3GAwiH379uHixYuKXhOmAxmxEDJ37lysWLEC0WgUS5YsQUdHR7pDSjsefPBB8vu2bdtw/PjxIduFQiGsXr2a/PuHP/xhwnufZhIKCwuxaNEiAH0TWpWVlWRwbtmyBSdOnAAA1NbWorq6GgDQ3NyMyspKwlFVVYXGxkYAwIEDB3DgwAEAQGNjI6qqqki7yspKNDc3AwCqq6tRW1sLADhx4gS2bNkCoK9wVFZWksmSvXv3kqdyGhoasGvXLgB9xaGyspIUo127dqGhoQEAUFdXh717946qqa2tjcSayZp2795NijcNPh09ehRnzpxRzKfRNDU1NQEAampqFNf00UcfEU00+BS/eJuMprNnzxJNSo8nGnIvkzSdPn0af//73zNe04EDB8jkEg0+tbS09HsKVu3cU7JGDNQkx9rS0qJI7v31r38F0Jd7yfj09NNPkwuIbD7n6qHuXbp0CSdPntSFpldffZVoosGnp59+msSgVe6FQiE8/fTTqmiKxWJ4+umnqfAple973d3d2L17N/GJ1Yg+TUePHkVrayuJT447FAqhvr6eTPI0NDT0+y55+vRpwrdhw4ZhNcm/d3V14dChQ6TdpUuXyETR6dOnybs729vbSR9Ho1HU19eTyaoTJ06QfmhtbcXRo0eJ9vr6etL/Smiqr68nsR46dAhdXV3Em3hNhw8fJu3q6+tJv6ZL07Fjx8hnktUU71N9fT2Z3CsuLsb8+fMBADNnzkRpaSmAvgnxFStWIDc3FwCwaNEisuPGnDlzUFJSAqBvAraiooJMbA6nied5VFRUkMn3kpISzJw5EwAwf/58FBcXAwDy8/NRUVExrCbZ2+nTp+P+++8n7SoqKpCfnw+g73uJPD8Wr8lqtaKiooJM3C5atAjXX389AODqq68epEme8G1ubh5SkyAImDlzJtFUWlpKNPE8P6ympqamhH0aKvcCgcAgTYn6JGsqKSnBnDlzyHHleaPc3Nx+PsVrGin3ysvLMX36dADAggULsGDBAuKTXOMB4MyZM8Sn4XLParXizJkzo46ngZruuusuTJgwAUDfXFhLSwuAkWvESLk3kqby8nLSLj734n0aKvfifZJzYGCN+Pjjj0mOJloj4n1SWlNxcTFuuukmAH3vZpY1aVH3ZJ+UOufKOXHgwAFFzrny+W7v3r2KXhOmA5wkL9dQjlgshvLycmzatAmTJk3CY489hrvuuguTJ09Od2hJ4+c//zkef/xxAH0DuKamZkyf/9rXvoZ3330XADBt2jTs378f11xzDfl7R0cHlixZgj//+c8A+p4GaWxs7LdKmuk4fvw4CgoKYLPZYDKZUFdXhxkzZiAQCMDj8YDjOPj9fthsNlgsFvT29pI7FkRRRDAYJP3R3d0Nu90Os9lMCpzdbkckEkEoFCKrxj6fD06nEyaTCT09PTAYDMjJyYEgCAiHw3C73ZAkCd3d3XC5XDAajQgGgzCZTLDZbOB5HoIgwOVyIRaLwe/3w+12w2AwIBAIwGKxwGq1IhwOQxRFsoLONDFNTBPTxDQxTUwT08Q0MU1ME9PENPVpeuedd8DzPIxGI0wmE0RRRCwWg8ViQSwWgyAIsFqt4DgOPM/DZDLBaDQiEolAkiTSbtasWZg0adKQmg4ePAiz2YxoNIpIJELuQA+Hw7BYLDAYDBAEARzHkXaiKMJqtUKSJPA836+dwWAgsUaj0X7t4mNNVZMgCP1iNZvNpB2ArNLU2dmJkpISOBwOxGIx9Pb2wmKxwGazwe/3g+M4eDweBAIB8sSAKIoIh8OwWq2wWCwIBAIwGAxwu91Yv349Jk+ePKymCxcu4MEHH0R3dzckSYLb7SZ3f+fk5MBgMKCnpwcmkwlOpxNVVVXIy8sbpKmtrQ3Lli2D2WyG3W4nN6N5vV4Eg0GIooidO3eC4zgsXbp0SE2rV6/GqlWrRtXk9/sRi8Wwc+dO5OXljUnTb37zG6xevbqfJvmO7x07dmDKlClJ515LSwvKy8uT8knW5HK5IAgCtm3bhmg0ihUrViAYDMJoNMLlcg3StH37dkyYMGFQ7vl8PixZsgQej4c8LSY/ZRAKhWA2m7F582ZcfvnlAIBz586htLQUoiiOmHvbt2/H1KlThx1PXV1dKCkpGVITz/Ow2WzYtGkT8vPzhx1P7e3tKC0tHZR7sk+ypjVr1uCxxx7rp2mo3Nu5cyfGjx8PjuPQ0dGB5cuXjzieNmzYgKlTp6ZcI9ra2lBWVjbieBqoaSifhhtPQ/m0ceNGTJo0SbO6N2/ePGrPuUp+jzh//jwKCgog49ixY5g1axa0QMYshMhYt24dVq1aRR5f83g8pKNHA8dxZPVMa9x+++1kRU5Ga2sruQPV4XDgi1/84qDP/fGPf8SUKVOG5GxubsaXv/xl8hg5x3GYP38+pk+fjvb2drz55ptkcJhMJrzxxhv9ttTSA+SFEBlaDh4aEIlE0NjYiOnTp1P1gqlkQJsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthyhBWO9kXA43HjjjeSu8ESOIU9Ojhs3bszvF6ENtGlRI57W1lYsWbJkyL+ZzWZMnz4djY2N/bY1Ggl79uxBXl7eqMdLlHs4vvi4h+Pas2cPAAyrb+3atXjkkUdG5EgklpaWFvyf//N/hvxs/DES5UsUI3k3VozWV/HtRvMjkc8mGnui+RSPgV4mwzEURvJyuJjH2i/xGOt4VzIfhsNY+zYVDKW/qKhIEW7ar8HSOZebEVtjAX2dVl5ejv/6r/8Cx3GQJInsafb555/j7NmzI/40NTX1e0xNa5w4cQJHjhzp9yMvggB9e6UO/PuRI0fInmpDIT8/H2+99RZmz54NoG+Pt5qaGmzevBmvvPIKWQTJzc3Fvn37dLcIwtC3oi2/ayHTQZsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdsgv00104pxm0KZF63jk93jId4zTyq0EVyoc4XBYtX5iGDvUzFstQVv9AbTtWzX16+kaTGlkxBMh0WgUxcXF+NOf/gQASDZkjuPIHmxaY9q0aWT/vLHgs88+w7Rp00ZsIwgCnn32WezZswfHjx9HW1sbvF4v/vmf/xl33nkn7r//fkycODHJyOlGtj8RwsDAwMDAwMDAwMDAkI1I1xMhDJkFpe8iV+ru+9H4Er3THkjsiZBEsHbtWuTl5WH8+PGwWCwIh8NYs2YN3n777RE/w54IGfxZNZ8IUYMD0P6JkLFCiydCBkLNJ0KGglJPhNCOdM7lZsRbs59++mm88cYb5EmQb3zjG1iyZAmuvvpqjBs3LiNe/q3m0ygWiwX33nsv7r33XtWOwcDAwMDAwMDAwMDAwMDAwMCgT8iT4BaLBTfffDN4nsf777+f5qgYGBgYlENGbI21fft28vuvf/1rHDhwAPfffz+uv/56TJ8+HVdccUXCPwwMeoLP58Pjjz9OXgiVyaBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDvC4TBqa2sRDofTHUrKoE2L1vF4vV78/Oc/Jy8jppVbCa6xcAiCgLfffpssgqjZTwxjh178oK3+ANr2rZr69XQNpjQyYiHk+PHj4DgOM2fOxKpVq9IdDgOFsNlscDqdAPq2UvP5fGQLNb/fT9610tvbi56eHgCAKIr9BmF3dzfZmy8UCpG96yKRCLq7u0k7n88HURQB9L3bpbe3F0DflwW/3w8A5P018lZswWCQFDee5xEIBAAAsVgMPp8PsVgMABAIBMDzPIC+ohgMBkfU5HQ6sXjxYnAcl/GaYrEYvv/978PpdFLhk9lsxt133w2n05myT8DouWe1WrF8+XIYDAbFNZlMJixfvhxms5kKn6LRKJYvXw6n0zlmTU6nE/fccw95ElDJ8ZSIT5kynrTSZLFYsGjRIjidzozWxHEcFi9eDKfTSYVPNpsNd911FzmvqZ17StaIgZo4jsPy5cths9kUyT2j0Yjly5fDYrEk5ZMoili2bBmcTmdWn3P1UPdycnJw1113weFwZLwmAFi+fDlycnKo8EkURSxduhROp1OT3HM6nVi6dCmJTUlNTqcT9957L0RRpMKnZL/vOZ1OfP/73yexsRrxD008zxNuURRJ3LFYDOFwmGjieZ5wRyKRfu1G0iT/Ho1GSTwWiwVXXXUV+T4qCEK/dnIfS5KEcDhMYhUEoV+sA9vFx5qqpviJtXA43K9dfKyxWAzXXnst2QYpPtZ0aJIkCQUFBbBYLElrGthOjtXhcCAnJ4d46Ha7EQwGsW3bNhiNRvKyYqfTCZvNBgCwWq1wuVwAAIPBAK/XO6omSZLg9XoJN8dxsFgsAPrOXfJ5y2Qy9ZtsHahJ5jabzTAYDNi2bRuCwSC8Xi/JvfjaJmsC+r7bxsfqdDoRiUSwbds2CIIwSJPB0Dc16HK5yDZx8XMsoVAIe/fuJTXD7XbDYrHAYrHA4/EMq0m+9huLT/G5F4vFBmlK1KehNMnXkwBgNBrh9XrJ9zpZkxzrcLnn8XjIy6Ltdjt5l4TZbO73rodIJEJ8Gir3ZE2RSGTU8TRQEwDs2rULwWAQNpuNfGakGjFS7o2kyePxkHbxuRfv01C5F++THMPAGhGLxXDNNdfAYrEkXCPifVJak8PhgCiK2LZtG3ieJ5rUqntmsxnXXnstJEkifaTUOddms2H58uXgOE6Rc67dbsfy5cshSZKi14TpQEYshMiYN29eukNgoBSFhYVYtGgRAKC9vR2VlZVkcG7ZsgUnTpwAANTW1qK6uhoA0NzcjMrKSsJRVVWFxsZGAMCBAwdw4MABAEBjYyOqqqpIu8rKSjQ3NwMAqqurUVtbCwA4ceIEtmzZAqCvcFRWVqK9vR0AsHfvXtTV1QEAGhoasGvXLgB9xaGyspIUo127dqGhoQEAUFdXh717946oyWQy4bPPPsPrr7+e8Zp27NiBnp4emEwmKnw6evQo3nnnHZhMppR9AkbPvbNnz2LatGl46623FNd06NAhTJs2DUePHqXCp02bNmHatGkwmUxj1mQymVBfX49Dhw4BUHY8JeJTpownrTSdPn0af/7zn2EymTJa0+uvv47PPvsMJpOJCp9aW1vx4osvki/laueekjVioKbXX38d06ZNQ2trqyK5d/DgQUybNg2nT59OyqennnoK48ePh8lkyupzrh7qXldXF1588UVyAZfJmvbt24dp06ahq6uLCp+eeuopOBwOmEwmTXLPZDLBaDTiqaeeUlyTyWTC5MmT8dRTT1HhU7Lf90wmE3p6erBjxw7iE6sRfZqOHj2K1tZWEp8cdygUQn19PakRDQ0NhPvs2bM4ffo04duwYcOwmuTfu7q6yPdPg8GAkydPkgmg06dPk/eBtre3kz6ORqOor68nk1UnTpwg/dDa2oqjR48S7fX19aT/ldBUX19PNB06dAhdXV3Em3hNH3/8MZlgra+vJ/2aLk1HjhxBJBKBwWBIWpPsEwDU19eTyb3i4mLMnz8fADBz5kyUlpZCFEW0trbixz/+MXJzcwEAixYtQmFhIQBgzpw5KCkpAdA3AVtRUUEmNofTxPM8KioqYDKZ0NTUhOXLl2PmzJkAgPnz56O4uBgAkJ+fj4qKimE1yd5Onz4dP/zhD9HU1ARRFFFRUYH8/HwAQFtbGzo6OvppAvoWBioqKsjE7aJFi3DDDTegqakJ11xzzSBN8oRvSUkJ5syZA6D/HMv48eOxaNEi8t20tLQUM2fOxM0334xAIDCspqampoR9Gir3AoHAIE2J+jSUpq6uLqIpNzcXFRUVZJFE1gSMPJ7Ky8sxffp0AMCCBQuwYMEC4lP8lvhnzpwhPg2Ve7KmM2fOjDqeBmpavHgxJkyYAFEUUVhYiJaWFgAj14iRcm8kTeXl5aRdfO7F+zRU7sX7JOfAwBrx4YcfIicnBwaDIeEaEe+T0pqKi4vxla98BU1NTbjyyiuJJrXqnrxoeuTIEeKTUufc1tZWTJs2Da+//roi59xQKIRp06bhueeeU/SaMB3IiJelz5gxA3/7299w7733YuvWrekOh4EiyC/YsdlsMJlMqKurw4wZMxAIBODxeMBxHPx+P2w2GywWC3p7exGLxchKr3xHBdC3umq322E2m0mBs9vtiEQiCIVCZNXY5/PB6XSSCxKDwYCcnBwIgoBwOAy32w1JktDd3Q2XywWj0UjuuLXZbOB5ntyFEYvF4Pf74Xa7YTAYEAgEYLFYYLVaEQ6HIYoiWUEfSlMkEsG+ffvwr//6r7jssssyWlNrayveeust3HHHHTAYDGn3qbOzE3/84x/x3e9+Fzk5OSn5lEjuSZKEN954A1//+tfhcDgU1cTzPP785z9jwYIFMJvNaffp0qVLqK2tRXFxMSKRyJg0hcNhvPzyy/jmN7+JCRMmKDqe9Fgj1NbU1dWFV199FXfeeSfsdnvGarp48SL+/Oc/Y+HChTCbzWn3qbu7G6+88gruvPNO8m81c0/JGjFQUyAQwFtvvYVvfvOb5Mt+KrnX29uLN998E//2b/8Go9E4Zp9aW1tRW1uL73znO4jFYll7ztVD3fP7/di/fz+++93vkn9nqia/34+33noLt99+O2KxWNp9unDhAhknkiSpnnsAsH//fhQVFWHKlCmKajIajXjllVcwf/58TJo0Ke0+Jft9LxaLYf/+/bj11luRl5fHasT/0/TOO++A53kYjUaYTCaIokhqeywWgyAIsFqt4DgOPM+TRbdIJAJJkki7WbNmYdKkSUNqOnjwIMxmM6LRKCKRCGw2GwRBwMmTJ3HllVeSf3McR9qJogir1UrunLVYLDAYDBAEAQaDgcQajUb7tYuPNVVNgiCQu+XlO4/ldgBIrKFQCGfPnsWXvvQlchw51nRoCgQCZBJSfkfsWDXJPsntOjs7UVJSAofDgVgsht7eXlgsFthsNkSjURQXF6O2thYXL14kTwyIoohwOAyr1QqLxYJAIACDwQC3243169dj8uTJw2q6cOECHnzwQUQiERQXF+Ptt99GV1cXBEEgk77yjWVOpxNVVVXIy8sbpKmtrQ3Lli2D2WzGhAkTUFRUhOrqapjNZgSDQYiiiJ07d4LjOCxdupRo8vv94DgOHo8Hq1evxqpVq+B0OmGxWLBgwQL86U9/giiK/TT5/X7EYjG4XC4IggCe58kcSzAYhMvlwsKFC/HSSy+hp6cHbrcbN9xwA/7jP/4DHR0dKCsr66dJvuN7x44dmDJlSkI+DZV7LS0tKC8v76cpEAgk5NNATdu2bUM0GsWKFSsQDAZhNBrhcrlIbXa73QiHw9i+fTsmTJgwKPd8Ph+WLFkCj8dDnhaTnzIIhUIwm83YvHkzLr/8cgDAuXPnyGLbULkna9q+fTumTp067Hjq6upCSUlJP02XXXYZvvGNb2D//v2IRqPYtGkT8vPzh60R7e3tKC0tHZR7sk+ypjVr1uCxxx7rp0m+xgNAnnTauXMnxo8fD47j0NHRQe70H86nDRs2YOrUqYNqRCAQwNmzZ3HllVdCkqRRa0RbWxvKysoQDoeHHU8DNQ3l01CaZJ9sNhv+9V//FW+88QZisRg2btyISZMmqVL3OI7D3/72N1xxxRWw2+0wGo2YN2+eIudcjuPw+uuv49Zbb4XL5Ur5nGs0GvHaa6/hlltugdfrTfma8Pz58+xl6SPh1ltvxenTp3H48OF0h8JAKeIfVZQfcZQhr5oDII8jAkM/OidDLpTA0I/OyZAfwwNAHg0F/vE4oAz58Uugb4VcvutAfsRRhvw4JwDypWAkTdFoFBMmTCCfy2RNHo8H48ePJxdGMtKlKScnBxMnToTBYEjZJ5lvJE29vb3wer1wOp2krVKa5LhycnIIdzp98nq95M6zsWoyGAyYOHEi4VRyPAH6qxFqa7LZbMjNzYXBYMhoTS6XCxMmTIDBYKDCJ4vFQvo1WU3pqhFDafJ6vbBYLP00JqtJjstmsxG+sfg0btw4jBs3DgaDYVAuj6ZJT+dcPdQ9s9mM3NxcsvVCJmuSFwnNZnO/2NOlKX6cxB9Xrdzr7e3F+PHjMW7cOMU19fb2Ej3x23Qko0kJn5L9vif3kdyO1Qhvv7/FxyfDYDD00xjfTt4uZSi+gZrktvFbJ3EcB4fDQf4taxiqXXwM8e1MJhOJd2A7JTTFtxtYO+NjtdlssNlsI8aqpSb5/C5PhCejSY5Vbid/n5K3mwH6toiRJ1J9Pt+gLWJk8DxP7nCWt4iRt1IaThPHcfD5fIR74BYxMgZuezNQk8wpb3sjbwkX/5n448qagH9seyPHGgwGSTzhcJjEMZBP3g4H6D/HIooi2tvbyeL17373O3zhC18gfT7cVj7ywo78u4yhfJIRn1MGg2HQVj4yRvNpKE3yhC/wj618ZMjHGRjrwNyL34JInowG+nyK/5zZbO63JaCMgT7JW58N1B4/nobS1NnZSbZYktuNVCNGyr2RNA3ccklGfKxD5Z4MedFpoCaO48i1R/z2cXI7GQM1xfuktKaenh7S1zzPE3616p68GGiz2UgfKXXOlb9vyIsgctzJnnNlPrfb3W/7PBljvSY8f/480oWMWAgpKyvDpk2b8Mknn+Ddd9/FV7/61XSHxMBABXJycnDbbbelOwxFQJsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdpjNZnzxi19MdxiKgDYtWsfT29uLN954g3puJbhS4Rj42fiJYAbtoWbeagna6g+gbd+qqV9P12BKIyPeEXLttdfiF7/4BSRJwuLFi3Hq1Kl0h8TAQAUEQcDhw4fJ6nsmgzYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7YhGo2htbSVPEGQyaNOidTwWiwWzZ8+GxWLp91Sa0tw0cKXCoaQWhtShFz9oqz+Atn2rpn49XYMpjYxYCAGAn/70p9iwYQM6Ozsxd+5c/OQnP8H777/f77EoBoZsQzgcRk1NTb/HVjMVtGnROh41j6cktxJcqXDQlifZDr34QZsOVn/U42P1Rz/Qkx+0aWE1SD2uZDloy5FshyiK5MXVmQ7atGgdj81mQ1FREWw2G1avXq0aNw1cqXAoqYUhdejFD9rqD6Bt36qpX0/XYEojI16WHr93INC355y81+FYwHEcVQOMIXXIL0uXoeULdhgYGBgYGBgYGBgYGBjSg5qaGkV4brzxxn57uatxDIb0obW1FUuWLBm13dq1a/HII4+M2m7Pnj3Iy8tL+Xij8SXCs2fPHgAYtl2imsaK+JhHinO0vhoNY+3LkTBaX8W3S8WPRPolkeMle9xkOYDkxoAS8SUKJfMhUSgVe6IoKirS7FjpRDrncjPiiZCBazXxiyCSJI3ph4FBT5AkCeFwWBe5TZsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdkiSBFEUdeEHbVq0jkd+uXEyN9pqya0EVyocavYTw9ihFz9oqz+Atn2rpn49XYMpjYxYCAGGX/BgYAD6Hl9zOp0A+vbZ8/l8JD/8fj/Zh663txc9PT0A+h5D8/l8hKO7uxuRSAQAEAqFEAqFAACRSATd3d2knc/nI08W9fT0oLe3F0DfnnfyVm2SJMHn85G9/oLBIHkEjOd5BAIBAEAsFoPP50MsFgMABAIB8DwPoO/RsWAwOKKm7u5uPPnkk7hw4ULGa2pubsaTTz6J7u5uKny6ePEiiSdVn4DRc+/SpUt48skn0draqrgmWcvFixep8OncuXOEY6ya5Jy/ePEiAGXHUyI+Zcp40kpTe3s78TKTNV24cIHooMGnjo4OEo8SPmlZIwZqkvu2o6NDkdxra2vDk08+ifb29qR8iq8/2XzO1UPd6+zsxJNPPknizWRNLS0tePLJJ9HZ2UmFT/HjRIvck8fWuXPnFNcUz02DT8l+35N1NDc3E59YjYiRv8ncoiiSuGOxWL9JF57nCXckEunXbiRN8u/RaLRfPAcPHuynI76d3MfyxI8cqyAI/WId2C4+1lQ1xW8/Eg6H+7WLj9Xv9+PgwYPgeX5QrOnQFB9PspoGtpNjdTgcyMnJAdD3HgC32w2Px4NHH30Ul19+OYnB6XSSbXGsVitcLhcAwGAwwOv1jqpJkiR4vV7CPXXqVPK+gZycHDgcDgCAyWSC1+sdVpPMbTabkZ+fj0cffRQejwderxcmk4kcV/6MrAnom8yNj9XpdOKyyy7Do48+itzc3EGaDIa+qUGXy0WejoqfYxk3bhw5vhyffNxoNDqspvh2ifoUn3uxWGyQJnnHmNF8GkpTNBolmoxGI7xeL5nwdrvdxKeRcs/j8cBsNgMA7HY77HY78UmOW+aQfRoq92RNkUhk1PE0UNOUKVOIHzabjXxmpBoxUu6NpEn2HEC/3Iv3aajci/dJjmFgjYgf74nWiHiflNbkcDjIOJk4cSLRpFbdC4fDOHjwIPx+P+kjpc658vXkhQsXFDnndnV14cknn8T58+cVvSZMBzJiISQWiynyQ9MLeBiURWFhIRYtWgSgb2KusrKSDM4tW7bgxIkTAIDa2lpUV1cD6JvQraysJBxVVVVobGwEABw4cAAHDhwAADQ2NqKqqoq0q6ysJBch1dXVqK2tBQCcOHECW7ZsAdBXOCorK9He3g4A2Lt3L+rq6gAADQ0N2LVrF4C+4lBZWUmK0a5du9DQ0AAAqKurw969e0fU5HK5UFBQQGLIZE0vvvgiioqK4HK5qPCpsbEREyZMgMvlStknYPTca29vR1lZGerq6hTXdPz4cZSVlaGxsZEKn3bv3o2ysjK4XK4xa3K5XJg8eTKOHz8OQNnxlIhPmTKetNLU3NwMp9MJl8uV0Zpqa2tRUFAAl8tFhU/yF1n5gk7t3FOyRgzUVFtbi7KyMnR3dyuSew0NDSgrK0Nzc3NSPm3duhXf//734XK5svqcq4e6J1+syRfDmazpwIEDKCsrQzgcpsKnrVu34q677oLL5dIk91wuF4qLi7F161bFNblcLtx3333YunUrFT4l+33P5XKhqKgIL774IvGJ1Yg+TUePHkVrayuJT447FAqhvr6ezAE0NDQQ7rNnz+L06dOEb8OGDcNqkn/v6urCoUOHAPyj7sh16PTp0zh79izpS7mPo9Eo6uvryWTViRMnSD+0trbi6NGjRHt9fT3pfyU01dfXE02HDh1CV1cX8SZe09GjRzF37lxYLBbU19eTfk2XppMnT+KKK66AxWJJWpPsEwDU19cTn4qLizF//nwAwMyZM1FaWopAIIAtW7agtLSUTHIuWrQIhYWFAIA5c+agpKQEQN8EbEVFBZnYHE4Tz/OoqKiAIAjYsGEDFi1ahJkzZwIA5s+fj+LiYgBAfn4+KioqhtUkezt9+nSUlJRgw4YNCAQCqKioQH5+PgCgra0NHR0d/TQBfQsDFRUV/TTNnDkTGzZsIHzxmuQJ35KSEsyZMwdA/zkWecFBntj8/PPPSXwdHR3DampqakrYp6FyLxAIDNKUm5ubkE9Daerq6iKacnNzUVFRQRZJSktLiU8j5V55eTmmT58OAFiwYAEWLFhAfGpqaiLtzpw5Q3waKvdkTWfOnBl1PA3UVFxcjIMHDyIQCKCwsBAtLS0ARq4RI+XeSJrKy8tJu/jci/dpqNyL90nOgYE14vDhwygoKIDFYkm4RsT7pLSm4uJiXHfdddiwYQPy8/OJJrXqntFoxNy5c3Hy5Enik1Ln3O7ubpSVlZHrMTnuZM+5kiShrKwMr776qqLXhOlARrwjhIFhOMj7ytlsNphMJtTV1WHGjBkIBALweDzgOA5+vx82mw0WiwW9vb2IxWJwOBwQRRHBYJCsGnd3d8Nut8NsNpMCZ7fbEYlEEAqFyKqxz+eD0+mEyWRCT08PDAYDcnJyIAgCwuEw3G43JElCd3c3XC4XjEYjgsEgTCYTbDYbeJ6HIAhwuVyIxWLw+/1wu90wGAwIBAKwWCywWq0Ih8MQRZGsoDNNTBPTxDQxTUwT08Q0MU1ME9PENDFNfZreeecd8DwPo9EIk8kEURQRi8VgsVgQi8UgCAKsVis4jgPP8zCZTDAajYhEIpAkibSbNWsWJk2aNKSmgwcPwmw2IxqNIhKJkAnhcDgMi8UCg8EAQRDAcRxpJ4oirFYrJEkCz/P92hkMBhJrNBrt1y4+1lQ1CYLQL1az2UzaAcgqTZ2dnSgpKYHD4UAsFkNvby8sFgtsNhv8fj84joPH48Hq1auxatUqOJ1OiKKIcDgMq9UKi8WCQCAAg8EAt9uN9evXY/LkycNqunDhAh588EHyxLTb7UY4HIYgCMjJyYHBYEBPTw9MJhOcTieqqqqQl5c3SFNbWxuWLVsGs9kMu91ObpTxer0IBoMQRRE7d+4Ex3FYunRpSpr8fj9isRhcLhcEQQDP82SOJRgMwmg0wuVyEU07duzAlClTYDQacf78eZSVlfXTJN/xHd8umdxraWlBeXl5P02BQIA82TEWTdu2bUM0GsWKFSuG1CT7tH37dkyYMGFQ7vl8PixZsgQej4c8LSY/ZRAKhWA2m7F582ZcfvnlAIBz586htLQUoiiOmHvbt2/H1KlThx1PXV1dKCkpGdGnTZs2IT8/f9jx1N7ejtLS0kG5J/ska1qzZg0ee+yxfpqGyr2dO3di/Pjx4DgOHR0dWL58+aDci/dpw4YNmDp1aso1oq2tjdyQMNx4GqhpKJ+GG09D+bRx40ZMmjRJs7o3b948as+5Sn6POH/+PHtHCACyUsbAMFbEP5I10iOOajw6N9wjjqk+thn/KOpwmoLBIJ577jny+FkmazIYDNi9ezeCwSAVPkUiEbz44osIBoMp+wSMnns8z2Pbtm2IxWKKaxJFEdu2bUMkEqHCJ6PRiG3btpGT+lg0BYNB7N27l9yJpeR4SsSnTBlPWmkSBAEvvfQSgsFgRmuSJAnPPfccgsEgFT6Fw2Hs27ePnNfUzj0la8RATZIkYdu2bQiHw4rkXjQaxbZt2yAIQlI+mUwm7NixA8FgMKvPuXqoe729vdi3bx/ZPiCTNQHAtm3b0NvbS4VPJpMJO3fuRDAY1CT3gsEgnnnmGRKbkpqCwSC2b99OJhjS7VOy3/eCwSB2795NYmM14h+arFYr4TaZTCRug8HQb593q9VKuM1mc792I2mSfzcajf3uij916hT5PmqxWPq1k/tY3mtejtVisfSLdWC7+FhT1STHCvR5Hd8uPlaDwYDDhw+TRYb4WNOhieM4HD16FIIgJK1pYDs51qG2ZXM6nVi+fDlEUSQxjLZFzGiaOI6Dz+eDw+HAfffdRyY9gZG3vRmoSeaWt5e67777yESvnHvxtW2obW/iNZlMJtx3330wm81j3j4vJycHCxcuJLVAvqaT+3w4TfHtEvUpPvcMBoOi21HK15PAyFv5jJR7I21PJMctcySyJaDZbB51PA3UJEkSlixZAqfTiXA4TD4zUo1QepvDeJ9G23JJjmFgjTAYDDhy5AhZFEikRqi9daPRaMR9990Hi8VCNKlV9yKRCA4fPgyO40gfKXXODYfD2LZtGyRJUuScGwqFsG3bNnAcp+g1YTpA1UJIfn4+CgsL8Ytf/AKffPJJusNhYKAeJpMJ06ZN63fhmKmgTYvW8ah5PCW5leBKhYO2PMl26MUP2nSw+qMeH6s/+oGe/KBNC6tB6nEly0FbjmQ7Bi7GZDJo06J1PKIooqmpiUyE0sqtBFcqHGr2E8PYoRc/aKs/gLZ9q6Z+PV2DKY30RxCHWCyGDz/8EB9++CFWr16NL3zhC/j2t7+N73znOygqKuq3usrAwNC3AltUVJTuMBQBbVq0jkfN4ynJrQRXKhy05Um2Qy9+0KaD1R/1+Fj90Q/05AdtWlgNUo8rWQ7aciTbIU/o6AG0adE6nnA4jJqaGuq5leBKhUPNfmIYO/TiB231B9C2b9XUr6drMKVBz7IbgDvuuAN2ux2SJEGSJJw9exbr16/HbbfdhokTJ+Kee+7BM888g87OznSHysBABXieR11dHXnUM5NBmxat41HzeEpyK8GVCgdteZLt0IsftOlg9Uc9PlZ/9AM9+UGbFlaD1ONKloO2HMl2iKKI5ubmjL8bG6BPi9bxWK1WFBYWkq1eaOVWgisVDjX7iWHs0IsftNUfQNu+VVO/nq7BlAZVCyEvv/wyOjo68Nprr2HFihWYOnUqWRQJBAJ48cUXsXz5cuTl5WH+/Pn49a9/jdOnT6c7bAaGtEEQBLKna6aDNi1ax6Pm8ZTkVoIrFQ7a8iTboRc/aNPB6o96fKz+6Ad68oM2LawGqceVLAdtOZLtiEajaG1tJXvgZzJo06J1PBaLBbNnzyZ72dPKrQRXKhxq9hPD2KEXP2irP4C2faumfj1dgykNTpLfDEQpGhoaUF1djVdeeQUff/wx+X/5BSwA8MUvfhHf+c538J3vfAc333wzVfvLMaiL48ePo6CggPz72LFjmDVrVhojYmBgYGBgYGBgYGBgYFAbSm1fcuONNw57968etp/JdrS2tmLJkiWjtlu7di0eeeSRUdvt2bMHeXl5KR9vNL5EePbs2QMAw7ZLVNNYER/zSHGO1lejYax9ORJG66v4dqn4kUi/JHK8ZI+bLAeQ3BhQIr5EoWQ+JAqlYk8UtGwfpTbSOZdL/YrBnDlzsHr1ahw6dAjNzc2oqqrC7bffDqvVSp4W+fvf/47f/va3KCoqwmWXXYZ7770XL7zwAgKBQLrDZ2BQFbFYDD6fD7FYLN2hpAzatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLZDkiSEw2FQfk9pQqBNi9bxqPmyYiW5leBKhYPGl1pnMzLNj9bWVrS2tg56GoC2+gNo27dq6tfTNZjSyIxR8/8wZcoUlJWV4dVXX8WlS5fw8ssvo7S0FJdddhlZFOns7MSuXbuwePFi5ObmYsGCBfj973+Pzz//PN3hMzAoDr/fj8rKSvj9/nSHkjJo06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWI9kOnudRX19PxV7nqYI2LVrH43a7UVFRAbfbTTW3ElypcKjZTwxjR6b58cgjj2DJkiUoLi7GE088gXA4DIC++gNo27dq6tfTNZjSyKiFkHjY7Xbccccd+MMf/oCWlhb89a9/xc9+9jMUFBSQRRFBEPCXv/wFK1euxD/90z/h2muvxX//93/jgw8+SHf4DArDZrPB6XQC6Ntnz+fzkVVVv99PVp57e3vR09MDoO/FRD6fj3B0d3cjEokAAEKhEEKhEAAgEomgu7ubtPP5fORlRj09Pejt7QXQt+edPKglSYLP5yN7/QWDwX7FXn5aaeCqaCAQIEUwHA4jGAyOqMntdqOsrAxGozHjNQFAeXk53G43FT5ZrVb84Ac/gNvtTtknYPTcy8nJwcqVK2EymRTXZLFYsHLlSlitVip8kiQJK1euhNvtHrMmt9uNf//3fyd7dio5nhLxKVPGk1aabDYbSktL4Xa7M1qT0WhEWVkZ3G43FT7Z7Xbcf//95Au42rmnZI0YqMloNGLlypWw2+2K5J7ZbMbKlSths9mS8ikWi+HHP/4x3G53Vp9z9VD3HA4H7r//frhcrozXZDAYsHLlSjgcDip8isVieOihh+B2uzXJPbfbjR/96Ef97hJUSpPb7cbDDz+MWCxGhU/Jft9zu90oLy8nbViN+IcmnucJtyiKJO5YLNbvTlue5wl3JBLp124kTfLv0Wi033XC7NmzYTabiY74dnIfy3f7yrEKgtAv1oHt4mNNVZMcK9DndXy7+FglScK8efNgtVoHxZoOTQBw/fXXw2q1Jq1pYDs5VofDgZycHAB97wFwu93w+/1Yt24dOI4jMTidTthsNuK1fJ6R7xQfTZMkSfB6vYRbkiRy7ZKTkwOHwwEAMJlM8Hq9w2qSueU8W7duHfx+P7xeL0wmEzmu/BlZE9C3lXx8rE6nEzzPY926dQiHw4M0yXe/u1wusk1c/BxLMBjEli1byHiNRCLkuNFodFhN8e0S9Sk+92Kx2CBN8vew0XwaSlM0GiWajEYjvF4v2Xbf7XYTn0bKPY/HQzyx2+2w2+3EJzlumUP2aajckzVFIpFRx9NATbFYDOvXr4ff74fNZiOfGalGjJR7I2nyeDykXXzuxfs0VO4N5RPHcTh06BDWrFlD5m2//OUvw2q1Jlwj4n1SWpPD4YAgCFi3bh059wLq1T2LxYJ58+YBAPFJqXOu3W7HypUrYTQaFTnnOp1OrFy5EhzHKXpNmA5k7EJIPDiOw7x58/CLX/wCn3zyCc6cOYPKykp84xvfgMlkIgPs2LFj+N///V/ceOONmDp1arrDZlAQhYWFWLRoEQCgvb0dlZWVZHBu2bIFJ06cAADU1taiuroaANDc3IzKykrCUVVVhcbGRgDAgQMHcODAAQBAY2MjqqqqSLvKyko0NzcDAKqrq1FbWwsAOHHiBLZs2QKgr3BUVlaivb0dALB3717U1dUB6Hvvza5duwAMXhXdtWsXGhoaAAB1dXXYu3fviJoMBgMOHz6M1157LeM1bdu2DS0tLTAYDFT4dOTIEbz66qswGAwp+wSMnnufffYZvF4v3nzzTcU1ffDBB/B6vThy5AgVPm3cuJF8kRurJoPBgD//+c9kQVvJ8ZSIT5kynrTSdOrUKbz44oswGAwZrem1117D4cOHYTAYqPCppaUFW7duJRc7aueekjVioKbXXnsNXq8XLS0tiuTeu+++C6/Xi1OnTiXl0+9+9zsYDAYYDIasPufqoe51dHRg69at5IIwkzW99NJL8Hq96OjooMKn3/3ud4hEIjAYDJrknsFgQDAYxO9+9zvFNRkMBuTk5OB3v/sdFT4l+33PYDCgpaUF27ZtIz6xGtGn6ejRo2htbSXxyXGHQiHU19eTSZ6GhgbCffbsWZw+fZrwbdiwYVhN8u9dXV04dOgQgL75h8OHD5OJotOnT+Ps2bOkL+U+jkajqK+vJ5NVJ06cIP3Q2tqKo0ePEu3xdwUroam+vp5oOnToELq6uog38Zo++ugj2Gw2cByH+vp60q/p0iT3K8dxSWuSfQKA+vp6MrlXXFyM+fPnAwBmzpyJ0tJSMiG5cuVKMsm5aNEiFBYWAujbqr2kpATAP+4Ulyc2h9PE8zwqKipgsVjg8/lw//33Y+bMmQCA+fPno7i4GACQn5+PioqKYTXJ3k6fPh0rVqwgC4AVFRXIz88HALS1taGjo6OfJqBvYaCioqKfpnnz5sHn82H27NmDNMkTviUlJZgzZw6A/nMsEydORGlpKZmA/vzzz0l8HR0dw2pqampK2Kehci8QCAzSlJubm5BPQ2nq6uoimnJzc1FRUUEWSUpLS4lPI+VeeXk5pk+fDgBYsGABFixYQHxqamoi7c6cOUN8Gir3ZE1nzpwZdTwN1PT9738f//zP/4xYLIbCwkK0tLQAGLlGjJR7I2mKX4SPz714n4bKvZF8OnjwIAKBAD744ANwHAeO4xKuEfE+Ka2puLgYX/va1+Dz+XDVVVcRTWrVvVgsBpvNhsOHDxOflDrntrS0wOv14rXXXlPknBsMBuH1erFnzx5FrwnTAepflp4qAoEA3njjDbzyyit4/fXX0dnZCaDvy4s8kBgyF/ILdmw2G0wmE+rq6jBjxgwEAgF4PB5wHEdWyS0WC3p7exGLxeBwOCCKIhnMQN/qqt1uh9lsJgXObrcjEokgFAqRVWN5NdRkMqGnp4dcYAmCgHA4TO6M7u7uhsvlgtFoRDAYhMlkgs1mA8/zEAQBLpcLsViM3K1mMBgQCARgsVjIHTmiKMLpdCIajQ6pied57Ny5E3fddRcmTZqU0ZpaWlqwb98+LFu2DCaTKe0+Xbp0Cc899xzuvfdeOByOlHxKJPei0Sief/553HnnnXA6nYpq6u3txYsvvohFixaRu2XS6dPFixdRXV2NkpIScldOoppCoRB27NiBe+65B7m5uYqOJz3WCLU1dXR04Nlnn8W9994Lp9OZsZra2trw4osvYtmyZSSOdPrU1dWF3bt3495774XL5VI995SsEQM1+f1+vPzyy/je975H7hBLJfd6enrw0ksv4e6774bZbB6zTy0tLaiursbSpUsBIGvPuXqoez6fD7t27cKyZcvIXb2Zqsnn82Hfvn1YvHgxAKTdp/Pnz5NxwnGc6rkXi8XwzDPPoLi4mExGKKWJ4zjCPXny5LT7lOz3PVEUsXPnTixcuBBTpkxhNeL/aXrnnXfA8zyMRiNMJhNEUUQsFoPFYkEsFoMgCLBareQOVpPJBKPRSJ5QltvNmjULkyZNGlLTwYMHYTabEY1GEYlESDxHjhzB1VdfTXRwHEfaiaJI3mnK8zwsFgsMBgMEQYDBYCCxRqPRfu3iY01VkyAI5C7scDgMs9lM2gEgsfb09OD06dO4+uqryeflWNOhye/349NPP8U111wDg8GQlCbZJ7ldZ2cnSkpK4HA4EIvF0NvbC4vFApvNBkmSUFJSgurqavzkJz/BqlWr4HQ6IYoiwuEwrFYrLBYLAoEADAYD3G431q9fj8mTJw+r6cKFC3jwwQcRjUZRUlKC/fv3o6OjA4IgICcnBwaDAT09PTCZTHA6naiqqkJeXt4gTW1tbVi2bBnMZjNyc3Pxne98B7t27SLjQ64LHMdh6dKlRJPf7wfHcfB4PFi9ejXRZLPZsGjRIrzwwgsQBKGfJr/fj1gsBpfLBUEQwPM8mWMJBoPweDxYunQpduzYgUAggB07dmDKlCkwGo04f/48ysrK+mmS7/iObzeaT0PlXktLC8rLy/tpCgQC5BpyJJ8Gatq2bRui0ShWrFiBYDAIo9FIvmdLkgS3241wOIzt27djwoQJg3LP5/NhyZIl8Hg85Gkx+SmDUCgEs9mMzZs34/LLLwcAnDt3DqWlpRBFccjckzVt374dU6dOHXY8dXV1oaSkpJ+mvLw8fPe738UzzzyDSCSCTZs2IT8/f9ga0d7ejtLS0kG5J/ska1qzZg0ee+yxfprsdjt52sDr9SIYDGLnzp0YP348OI5DR0cHli9fPij3RvNp9+7dsNvtOH36NK655hoAGLVGtLW1oaysDOFweNjxNFDTUD4NpUn2yW6346677sLzzz8PURSxceNGTJo0SZW6B/S9JPxLX/oSHA4HjEYj5s2bp8g5V5IkPPfcc/jud78Lt9ud8jmX4zjs2bMHd9xxB8aPH5/yNeH58+fT9rJ0kyZHSSNcLhfuvvtu3H333YjFYnjvvffwyiuv4NVXX013aAwKIv5RRfkRRxnxe/vJjyMCQz86J0MulMDQj87JkB/DA/omU+Q7JOInewCQxy+BvhVy+a4D+RFHGfLjnADIl4KRNEmShOuuu478LZM1TZgwAddddx25OJORLk0ulwtz584lJ7tUfAJGzz2e5zF79mx4PB6iXylNZrMZs2fP7vdYcDp9mjhxImbPnj2IIxFNFosFc+fOJX2r5HgC9Fcj1NbkdDrJOMlkTV6vl+Q1DT7Z7XbSr8lqSleNGKjJYDBg9uzZsNvt/cZ7sppMJhNmz54Np9NJ+MbiU25uLubMmTOo/mTbOVcPdS8nJwdz584ln8tkTePGjcPs2bORk5PTLy/TpWm4caJW7vE8jzlz5pC7R5XUFM8dv01HMpqU8CnZ73s8z+O6667DhAkTALAaIbeL55Ljk2EwGPppjPdM3i5lIN9QmuS2RqOR5JDRaMSUKVPI32QNA9txHNcvhvh2JpOJxDuw3cDv2Mloim8X/3t8O6PRCLvdjry8PDJZN1SsWmqy2+1k0XKkdiNpkmOV28lP2MrbzQB9W8TIk6uHDx/GpUuXyBZJ8lYvQN/Yk+9wlreIkdsNp4njOPh8PsLd2dnZb4sYGQO3vRmoSeaMRCLo6OjA4cOHySLFUMeVNQH/2PYmXlMkEsHhw4cRDAYHaZIhP+UE9J9jCYfD+Oijjwi/vGAj9/lwW/nEtxvNJxnxOSXvzhCvScZoPg2lSZ7wBf6xlY+M+HcXjDSe4rcgkiejgT6f4j9nNpv7bQkoY6BPZrOZ5Ohw42mgpq6uLjQ0NJB8kNuNVCNGyr2RNA3ccklGfKxD5Z6M4XziOA4Oh2PI8T7S2I/3SWlNPT09EEURhw8fRk9PT79Y1ah7oigiLy8PdrudjAelzrny9w2v10viSOWcK/PJiyBAateE58+fR7qg+4WQeBgMBnzta1/D1772Nfz6179OdzgMDCnDarWSxwwzHbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMsRWnDZZZfhs88+0/y4JpOJPL2U6aBNi9bx8DxPtoOhmVsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGrp4R0g8XnrpJdx333345je/ieXLl+PZZ59Nd0gMDKohHA6jpqam390amQratGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlCC34whe+gMsvv5zcaRt/R6uaEEURTU1N5G7vTAZtWrSOx2azoaioqN+dzTRyK8GVCoea/cQwdujFD9rqD6Bt36qpX0/XYEojIxZC2trayJMc/9//9/8N2SYWi+HOO+/E3XffjZ07d+LAgQN45plnUFJSgltuuaXfo2gMDHoBjSeOZEGbFq3jUfN4SnIrwZUKB215ku3Qix+06WD1Rz0+Vn/0Az35QZsWVoPU40qWg7YcoQUcx2H69Om4+eabcfPNN+P666/X5LjyNjXyi6gzGbRp0Toek8mEadOm9du2hkZuJbhS4VCznxjGDr34QVv9AbTtWzX16+kaTGlkxKh5+eWX8d5774HjOKxcuXLINr/61a+wb9++If/2zjvv4Ac/+AF7OoRBd3A6nbjvvvvSHYYioE2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW47QBvnFylrBYrFg9uzZmh1PTdCmRet4gsEgtm3bRj23ElypcKjZTwxjh178oK3+ANr2rZr69XQNpjQy4omQd999F0Bfknzzm98c9HdBELBmzRpwHAeO4/Cv//qv+L//9//iP//zP2Gz2SBJEl544QUcOnRI69AZGFRFNBpFa2srotFoukNJGbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMuRbEcsFkMwGKTqLuZkQZsWreMxGo3kZfE0cyvBlQqHmv3EMHboxQ/a6g+gbd+qqV9P12BKIyMWQo4fPw4AKCgogN1uH/T3119/HV1dXQCA73znO/jTn/6Ehx56CE8++SS2bt1K2j3zzDPaBMzAoBECgQA2btyIQCCQ7lBSBm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk2yEIAj766CMIgpDuUFIGbVq0jsflcmHFihVwuVxUcyvBlQqHmv3EMHboxQ/a6g+gbd+qqV9P12BKg5MkSUp3EKNh4sSJ6OrqwuLFi7Fr165Bf3/ooYewfv16cByHd999FzfddBP5WywWwxe+8AVcuHABN9xwA+rq6rQMnUFlHD9+HAUFBeTfx44dw6xZs9IYkbaQJAk8z8NqtYLjuHSHkxJo06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWIzSjpqZmzJ+58cYbYbVaE+aTJAnRaBRGozHj/aBNixrxtLa2YsmSJUP+jeM4WK1W8DyP3/72t3jkkUdG5duzZw/y8vJGPV4890jTbsPxxcc9HNeePXsAYFh9a9euJZoSjWcoDPxsfMwj9e9ofTUaRuIeK0brq/h2o/mRyGcTjT3RfIrHSH4kyjEU4vMl0ZiT9WjPnj2YNGnSmMa7kvkwHMbat6lgqHpXVFSkGDfN12DpnMvNiCdC5BUjj8cz5N/lrbMmTpzYbxEEAAwGA+bOnQtJktDY2KhuoAwMGoPjONhsNiq+tKYK2rRoHY+ax1OSWwmuVDhoy5Nsh178oE0Hqz/q8bH6ox/oyQ/atLAapB5Xshy05Ui2g+M4mEwmXfhBmxat45EkCeFweMwLA1pzK8GVCoea/cQwdujFD9rqD6Bt36qpX0/XYEojIxZC5I4a6u3y3d3dOH78ODiOw1e+8pUhPz9p0iQAgN/vVy9IhrTCZrPB6XQC6Nt7zufzkcLl9/vJo2a9vb3o6ekB0JdPPp+PcHR3dyMSiQAAQqEQQqEQACASiaC7u5u08/l8JBd7enrQ29sLoO+xNjnHJEmCz+cj+98Fg0GEw2EAAM/zZHEvFovB5/ORPQEDgQB4ngcAhMNhBIPBETX5/X789re/RWtra8ZrOn/+PNauXQu/30+FT+3t7fjtb38Lv9+fsk/A6LnX0dGBdevWoa2tTXFNFy9exLp169De3k6FT83NzVi3bh38fv+YNck5f/HiRQDKjqdEfMqU8aSVpkuXLpFxksmaWltbiQ4afOrs7CTxKOGTljVioKbW1lasW7cOnZ2diuSeHOulS5eS8uncuXOkhmXzOVcPda+rqwu//e1vSRyZrOnChQtYt24durq6qPApfpxokXt+vx9r167FuXPnFNcUz02DT8l+35N1nD9/nvjEasTQmuS4Y7FYv8ksnucJdyQS6dduJE3y79FotF88f/3rX/vpiG8nxyNPqMmxCoJA+kEUxUHt4mONb5eMJjlWuV/i28XH6vf7UVdXB57nB8WaDk1+vx9//etfwfN80poGtpNjdTgcyMnJAdD3/lm32w23242Kigrk5+eTGJxOJ2w2GwDAarWSLXIMBgO8Xu+omiRJgtfrJdxTpkyBxWIBAOTk5MDhcAAATCYTvF7vsJpkbrPZjKlTp6KiogJutxterxcmk4kcV/6MrAnom0OLj9XpdCI3NxcVFRWYOHHiIE0GQ9/UoMvlIk9Hxc+xeL1erFq1ivBHIhFy3Gg0Oqym+HaJ+hSfe7FYbJAm+d0No/k0lKZoNEo0GY1GeL1eMt/odruJTyPlnsfjgdlsBgDY7Xayfb/ZbCZxyxyyT0PlnqwpEomMOp4Gapo8eTLJB5vNRj4zUo0YKfdG0hR/Q3p87sX7NFTujeaTJEno7u4m4z3RGhHvk9KaHA4HLrvsMlRUVGDChAlEk1p1LxwOo66uDn6/n/ik1Dm3s7MT69atQ2trqyLnXJ/Ph3Xr1qGlpUXRa8J0ICMWQuRkbm5uHvS3d955hyTjzTffPOTn5cTL9BcJMQyPwsJCLFq0CEDfBHZlZSUZnFu2bMGJEycAALW1taiurgbQl0+VlZWEo6qqijw1dODAARw4cAAA0NjYiKqqKtKusrKS5GJ1dTVqa2sBACdOnMCWLVsA9BWOyspKtLe3AwD27t1LtmVraGggW7z5/X5UVlaSYrRr1y40NDQAAOrq6rB3794RNdlsNuTm5uKtt97KeE0vvPACpk+fDpvNRoVPn376KVm1TtUnYPTcu3DhAoqKinDw4EHFNR09ehRFRUX49NNPqfDpmWeeQVFREWw225g12Ww2WCwWHD16FICy4ykRnzJlPGmlqampCaIowmazZbSmt956C7m5ubDZbFT41NHRgUAgQC4a1M49JWvEQE1vvfUWioqK0NHRoUjuffjhhygqKkJTU1NSPm3ZsgXz5s2DzWbL6nOuHupeMBhEIBAgExiZrOmNN95AUVERgsEgFT5t2bIF1113HWw2mya5Z7PZcPXVV5MYlNRks9nwla98BVu2bKHCp2S/79lsNkyfPh0vvPAC8YnViKE1yXGHQiHU19eTSZ6GhgbCffbsWZw+fZrwbdiwYVhN8u9dXV04dOgQgL4JN0EQyCTU6dOncfbsWdKXcjzRaBT19fWk3YkTJ0g/tLa2ku+zPM+jvr6e9P/Ro0fJontzc3NSmurr64mmQ4cOkXeqNjY29tP0ySefYNq0aTCZTKivryf9mi5NJ06cwPjx42EymZLWJPsEAPX19WRyr7i4GPPnzwcAzJw5E6WlpQiHwzh48CD+/d//ncwrLVq0CIWFhQCAOXPmoKSkBADIwoY8vzScJp7nUVFRAUmSUFNTg3vuuQczZ84EAMyfPx/FxcUAgPz8fFRUVAyrSfZ2+vTpWLZsGWpqahAOh8nCDQC0tbWho6Ojnyagb8K5oqKin6ZrrrkGNTU1uPLKKwdpkid8S0pKMGfOHAD951icTifcbjeZ5Pz8889JfB0dHcNqampqStinoXIvEAgM0pSbm5uQT0Np6urqIprkhSF5kaS0tJT4NFLulZeXY/r06QCABQsWYMGCBcSnpqYm0u7MmTPEp6FyT9Z05syZUcfTQE0LFy7EuXPnEA6HUVhYiJaWFgAj14iRcm8kTeXl5aRdfO7F+zRU7o3mkyiKOHz4MPLz82EymRKuEfE+Ka2puLgY119/PWpqajBt2jSiSa26x3Ecpk2bhhMnThCflDrndnR0oKioCG+99ZYi51xBEFBUVIT9+/crek2YDmTEO0Lmz5+Pd999Fx6PBxcuXCATAwCwfPly7Ny5ExzHoa6uDjfccMOgz99+++144403MHXq1H53GjFkPuR95Ww2G0wmE+rq6jBjxgwEAgF4PB5wHAe/308mT3t7exGLxeBwOCCKIoLBIFlo6+7uht1uh9lsJgXObrcjEokgFAqRVWOfzwen0wmTyYSenh4YDAbk5ORAEASEw2HyBaG7uxsulwtGoxHBYBAmk4lMFgqCAJfLhVgsBr/fD7fbDYPBgEAgAIvFAqvVinA4DFEU4XQ6EY1GmSamiWlimpgmpolpYpqYJqaJaWKamKYRNL3zzjuwWCyIxWIQBIHsR87zPEwmE4xGIyKRCCRJIu1mzZpFdpEYqOngwYMwm82IRqOIRCJkLiIcDsNiscBgMEAQBHAcR9qJogir1Ur2RI9vZzAYYDKZyJ388e3iYzUajaRdLBYbsyZBEPrFajabSTsAWaWps7MTJSUlcDgciMVi6O3thcViITe8cRwHj8eD1atXY9WqVXA6nRBFEeFwGFarFRaLBYFAAAaDAW63G+vXr8fkyZOH1XThwgU8+OCD6O7uhiRJcLvd5GmlnJwcGAwG9PT0wGQywel0oqqqCnl5eYM0tbW1YdmyZTCbzbDb7eSOb6/Xi2AwCFEUyVzY0qVLU9Ik74LgcrkgCAJ4nidzLMFgEEajES6Xi2jasWMHpkyZAqPRiPPnz6OsrKyfJvmO7/h2yeReS0sLysvL+2kKBALkyY6xaNq2bRui0ShWrFgxpCbZp+3bt2PChAmDcs/n82HJkiXweDzkaTH5KYNQKASz2YzNmzfj8ssvBwCcO3cOpaWlEEVxxNzbvn07pk6dOux46urqQklJyYg+bdq0Cfn5+cOOp/b2dpSWlg7KPdknWdOaNWvw2GOP9dM0VO7t3LkT48ePB8dx6OjowPLlywfl3mg+7d69G+PGjRtTjWhra0NZWdmI42mgpqF8Gm48DeXTxo0bMWnSJM3q3rx58zLqnJvs94jz58+n7R0hGbEQ8sQTT+DnP/85OI7Dj3/8Y6xbtw4A8P777+PWW29FJBLBpEmTcP78+SH3G5syZQra2trw1a9+NamXpzHQi2x/WXpvby9qa2sxf/588qhlpoI2LVrHo+bxlORWgisVDtryJNuhFz9o08Hqj3p8rP7oB3rygzYtrAapx5UsB205QjO0eFl6JBLB2bNnccUVV5CtVzIVtGlRI56RXrCck5OD+fPno7a2Fv/7v/+r6MvS47nlrWnGwhcf93BcY3lZeqLxDIWBn2UvSx/9s2q+LH0kPxLlGApavyx9woQJYxrvWrwsfax9mwqGqndFCr0snfZrMPay9FFQWlpKOvp3v/sdpk2bhrlz5+KWW24he4498MADQy6CnDx5kjyKJD8Ox8CgFwzcIzeTQZsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdujlRcUAfVq0jmfguxdo5VaCKxUONfuJYezQix+01R9A275VU7+ersGUhindASSC/Px8rF27FitWrADHcTh37hzOnTtHkuVf/uVf8J//+Z9Dfvb5558nvw/3MnUGhkyFw+HA4sWL0x2GIqBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDssFku/O1kzGbRp0Tqenp4ePPvss9RzK8GVCoea/cQwdujFD9rqD6Bt36qpX0/XYEojY5YPf/jDH+Kll17CtddeC0mSIEkSbDYbFi9ejNraWjidzkGfiUQiePrppwH0vdDsG9/4htZhMzCoClEUycuKMx20adE6HjWPpyS3ElypcNCWJ9kOvfhBmw5Wf9TjY/VHP9CTH7RpYTVIPa5kOWjLkWwHTXe2pgratGgdj8lkIi+Lp5lbCa5UONTsJ4axQy9+0FZ/AG37Vk39eroGUxoZsxACAAsXLsTHH3+MQCCA8+fPo7u7G7t37yYvNhsInuexe/duvP322+Rl6wwMekIwGMT27dsRDAbTHUrKoE2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW45kOwRBwJEjR8g23ZkM2rRoHY/T6cR999035I21NHErwZUKh5r9xDB26MUP2uoPoG3fqqlfT9dgSiMjXpbOwDAcsv1l6QwMDAwMDAwMDAwMDAx90OJl6QyZBTVfFJ3K8UbjS/Tl3EBiL0tXEuxl6aN/Vs2XpavBAWj/svSx5oYWL0sfCDVflj4UlHpZOu1gL0tnYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBQAWwhhIEhg9Hd3Y1f/vKX6O7uTncoKYM2LVrHo+bxlORWgisVDtryJNuhFz9o08Hqj3p8rP7oB3rygzYtrAapx5UsB205ku0Ih8N47733EA6H0x1KyqBNi9bxeDwePProo6pso64ktxJcqXCo2U8MY4de/KCt/gDa9q2a+vV0DaY02EIIA0MGw263Y+HChbDb7ekOJWXQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdZrMZM2bMgNlsTncoKYM2LVrHEwqFsG/fPoRCIaq5leBKhUPNfmIYO/TiB231B9C2b9XUr6drMKVhSncAY0Vvby9ee+01fPDBB/jss8/g9/sRiUQS+izHcfjLX/6icoQMDNpBLpx6AG1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk22E0GjFx4sR0h6EIaNOidTyRSASnTp2inlsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGhnzRIgkSVizZg3y8vLwve99D7/5zW/w0ksv4c0330Rtbe2oPzU1NexFZwy6g17uBADo06J1POxuJO2Oz6Ac9OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7Id8kRZojdk0gzatGgdD3siTbvjMygHvfhBW/0BtO1bNfXr6RpMaWTMEyFLly7Fs88+C0mS0h0KAwMDAwMDAwMDAwMDAwMDAwMDAwMDA0OGICMWQnbv3o09e/aA4zgAwJVXXol77rkHBQUFGD9+PEymjJDBwKA45NVqPYA2LVrHo+bxlORWgisVDtryJNuhFz9o08Hqj3p8rP7oB3rygzYtrAapx5UsB205ku2gaYuPVEGbFq3jke9Spp1bCa5UONTsJ4axQy9+0FZ/AG37Vk39eroGUxoZsTXWH/7wB/L7I488guPHj+Pxxx/H3Xffja9//euYP39+wj8M+oTNZoPT6QQARKNR+Hw+8vSQ3++HIAgA+t4x09PTAwAQRRE+n49wdHd3k0fSQqEQeWQrEomgu7ubtPP5fBBFEQDQ09OD3t5eAIAgCPD7/QD6tnLz+XyIRqMAgGAwiHA4DADgeR6BQAAAEIvF4PP5EIvFAACBQAA8zwMAwuEwgsHgiJoikQiOHDlCdGSypo6ODhw9ehSRSIQKn4LBIBoaGhCJRFL2CRg990KhEE6dOkV+V1JTIBDAqVOnyO/p9unSpUvkEdCxaopEImhoaCA6lBxPifiUKeNJK009PT34+OOPEYlEMlqTz+fDkSNHEIlEqPCpt7cXH330EdGhdu4pWSMGavL5fDh16hT5PRWfenp64Pf7cerUKfL7WH1qb2/HiRMnEIlEsvqcq4e6Fw6H8dFHHxEdmaypq6sLp06dQjgcpsKn9vZ2HD9+HJFIRJPci0QiOH78ONrb2xXXFIlEcPLkSbS3t1PhU7Lf9yKRCI4ePYqOjg7iE6sRQ2uS447FYgiHw0QTz/OEWz7fx/MNp0n+PRqNknii0ShaWlrI3+RzhPw3OR5JkhAOh0msgiCQfhBFcVC7+Fjj2yWjSY5V7pf4dvGx9vT04NKlS0RffKzp0BQKhdDW1ka+9yejaWA7OVaHw4GcnBwAgMVigdvtJhOREydOJDE4nU7YbDYAgNVqhcvlAgAYDAZ4vd5RNUmSBK/XS7jHjx8Pi8UCAMjJyYHD4QAAmEwmeL3eYTXJ3GazGRMmTCAvVfZ6veRmYFEUyWdkTUDf+3HjY3U6nXA6nZgxYwYcDscgTQZD39Sgy+WC1WoF0H+OxWq1Yu7cueSlzpFIhBw3Go0Oqym+XaI+xedeLBYbpMloNCbk01CaotEo0WQ0GuH1eskN1263m/g0Uu55PB7SD3a7nWyhZDab+21xFIlEiE9D5Z6sSZ5vkLUPNZ4Gaho3bhwKCgpgNpths9nIZ0aqESPl3kiaPB4PaRefe/E+DZV7o/kkSRJ6enrI+TnRGhHvk9Ka5LExY8YM2O12okmtuieKIi5duoRQKER8Uuqc29vbi1OnTpHf5biTPefyPI9Tp06hs7NT0WvCdCAjFkI++eQTcByHf/qnf8Kvf/1rMvgZGGQUFhZi0aJFAID29nZUVlaSwbllyxacOHECAFBbW4vq6moAQHNzMyorKwlHVVUVGhsbAQAHDhzAgQMHAACNjY2oqqoi7SorK9Hc3AwAqK6uRm1tLQDgxIkT2LJlC4C+wlFZWUku6Pbu3Yu6ujoAQENDA3bt2gWgrzhUVlaSYrRr1y40NDQAAOrq6rB3794RNYVCIVRXV+tC0/bt2/HKK68gFApR4dOHH36I6upqhEKhlH0CRs+9kydPYt++ffjTn/6kuKaDBw9i3759+PDDD6nwadOmTWR/yLFqknP+4MGDAJQdT4n4lCnjSStNR44cIeMk0zXJOmjwqbGxEa+++ir5cqt27ilZI4bStG/fPjQ2Niri09tvv419+/bhyJEjSfm0fv167N+/H6FQKKvPuXqoe+fOncOrr76Krq6ujNf04osvYt++fTh37hwVPsWPEy1yLxQKYf/+/Vi/fr3imuQ7O9evX0+FT8l+3wuFQnjllVewfft24hOrEUNrkuMOhUKor68nkzwNDQ2E++zZszh9+jTh27Bhw7Ca5N+7urpw6NAhAH2TTn/7299I/Tl9+jTOnj1L+lKOJxqNor6+npzPT5w4QfqhtbUVR48eJdrr6+tJ/x89ehStra2kz5PRVF9fTzQdOnSIxNrY2NhPU0NDA7lBqb6+nvRrujQdOXIEn376KSKRSNKaZJ8AoL6+nkzuFRcXk5tjZ86cidLSUnKX8kMPPUQmORctWoTCwkIAwJw5c1BSUgKgbwK2oqKCTGwOp4nneVRUVGDcuHFYuHAhli9fjpkzZwIA5s+fj+LiYgBAfn4+KioqhtUkezt9+nQ88MAD5L0FFRUVyM/PBwC0tbWRBVJZE9A34VxRUdFP080334yFCxfihhtuGKRJnvAtKSnBnDlzAPSfY7n88stRXFyMcePGAQA+//xzEl9HR8ewmpqamhL2aajcCwQCgzTl5uYm5NNQmrq6uoim3NxcVFRUkEWS0tJS4tNIuVdeXo7p06cDABYsWIAFCxYQn5qamki7M2fOEJ+Gyj1Z05kzZ0YdTwM1LVmyBHfccQfsdjsKCwvR0tICYOQaMVLujaSpvLyctIvPvXifhsq90XwSRRGHDh0i9SfRGhHvk9KaiouLccstt2DhwoW49tpriSa16l44HMapU6dw5MgR4pNS59zGxkbs27dPsXNuW1sb9u3bhz179ih6TZgOcFIGvHTD6XSit7cX9957L7Zu3ZrucBgowvHjx1FQUACbzQaTyYS6ujrMmDEDgUAAHo8HHMfB7/fDZrPBYrGgt7cXsVgMDocDoigiGAySVePu7m7Y7XaYzWZS4Ox2OyKRCEKhEFk19vl8cDqdMJlM6OnpgcFgQE5ODgRBQDgchtvthiRJ6O7uhsvlgtFoRDAYhMlkgs1mA8/zEAQBLpcLsVgMfr8fbrcbBoMBgUAAFosFVquVrBA7nU5Eo1GmiWlimpgmpolpYpqYJqaJaWKamCamaQRN77zzDiwWC2KxGARBgNVqBcdx4HkeJpMJRqORPMkqt5s1axYmTZo0pKaDBw/CbDaTJxTkO5vD4TAsFgsMBgMEQQDHcaSdKIqwWq2QJAk8z/drZzAYYDKZyJ388e3iYzUajaRdLBYbsyZBEPrFajabSTsAWaWps7MTJSUlcDgciMVi6O3thcVigc1mg9/vB8dx8Hg8WL16NVatWgWn0wlRFBEOh2G1WmGxWBAIBGAwGOB2u7F+/XpMnjx5WE0XLlzAgw8+iO7ubkiSBLfbTZ5WysnJgcFgQE9PD0wmE5xOJ6qqqpCXlzdIU1tbG5YtWwaz2Qy73U7u+PZ6vQgGgxBFETt37gTHcVi6dGlKmvx+P2KxGFwuFwRBAM/zZI4lGAzCaDTC5XIRTTt27MCUKVNgNBpx/vx5lJWV9dMk3/Ed3y6Z3GtpaUF5eXk/TYFAgDzZMRZN27ZtQzQaxYoVK4bUJPu0fft2TJgwYVDu+Xw+LFmyBB6PhzwtJj9lEAqFYDabsXnzZlx++eUA+m7YKC0thSiKI+be9u3bMXXq1GHHU1dXF0pKSkb0adOmTcjPzx92PLW3t6O0tHRQ7sk+yZrWrFmDxx57rJ+moXJv586dGD9+PDiOQ0dHB5YvXz4o90bzaffu3Rg3btyYakRbWxvKyspGHE8DNQ3l03DjaSifNm7ciEmTJmlW9+bNm5dR59xkv0ecP38eBQUFkHHs2DHMmjULWiAjFkJmzpyJTz/9FPfddx82b96c7nAYKIK8ECJDy8HDwMDAwMDAwMDAwMDAQA9qamrG/Jkbb7yR3BWuBB8DXWhtbcWSJUtGbbd27Vo88sgjo7bbs2cP8vLyUj7eaHyJ8OzZswcAhm2XqKaxIj7mkeIcra9Gw1j7ciSM1lfx7VLxI5F+SeR4yR43WQ4guTGQrEfJ5IaS+ZAoUs3hsaKoqEizY6UT6ZzLzYg9pubNmwdJknDy5Ml0h8LAQBV8Ph8ef/zxtO+xpwRo06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWI9mOcDiM2trafu8NyFTQpkXreLxeL37+85/3e7cAjdxKcKXCoWY/MYwdevGDtvoDaNu3aurX0zWY0siIhZCHHnoIQN+e/ceOHUtzNAwM9MDpdGL58uXkhV+ZDNq0aB2PmsdTklsJrlQ4aMuTbIde/KBNB6s/6vGx+qMf6MkP2rSwGqQeV7IctOVItsNiseDaa68lL+zNZNCmRet4gsEgtm3bRl74Syu3ElypcKjZTwxjh178oK3+ANr2rZr69XQNpjQyYiFk7ty5WLFiBaLRKJYsWUJeBsXAkO0wmUyYNm0aTCZTukNJGbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMuRbIfBYIDX64XBkBHTKSOCNi1axyOKIpqamsgL0GnlVoIrFQ41+4lh7NCLH7TVH0DbvlVTv56uwZQGPdk2Cn7/+9/jgQceIPuI/f73v8eFCxfSHRYDQ1rR09ODZ599Fj09PekOJWXQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdgiDg2LFjEAQh3aGkDNq0aB2Pw+HA4sWL4XA4qOZWgisVDjX7iWHs0IsftNUfQNu+VVO/nq7BlEb6l2IShMFgwMaNG3HVVVdh1apVWLlyJVauXAmPx0PeSj8aOI5DY2OjBtEyMGgDGlfQkwVtWrSOR83jKcmtBFcqHLTlSbZDL37QpoPVH/X4WP3RD/TkB21aWA1SjytZDtpyJNvBcRxsNltCcxC0gzYtWscTi8Xg8/kQi8Wo5laCKxUONfuJYezQix+01R9A275VU7+ersGURsYshEQiETz88MPYsmULOI6DJEkA+l640t3dPernJUmianAxMCiBnJwc3HbbbekOQxHQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdZrMZX/ziF9MdhiKgTYvW8fT29uKNN96gnlsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGulfikkA0WgUd9xxB55++mmIokgWQWRIkjTqDwODHiEIAg4fPkzVo4TJgjYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7YhGo2htbUU0Gk13KCmDNi1ax2OxWDB79mxVXlasJLcSXKlwqNlPDGOHXvygrf4A2vatmvr1dA2mNDJiIeTpp58mK3KSJOEb3/gGNm/ejA8++AB/+9vf8NlnnyX0c+bMmTQrYWBQFuFwGDU1NQiHw+kOJWXQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdenlRMUCfFq3jsdlsKCoqgs1mo5pbCa5UONTsJ4axQy9+0FZ/AG37Vk39eroGUxqclAGPSxQWFuKDDz4Ax3H41a9+hVWrVqU7JAZKcPz4cRQUFJB/Hzt2DLNmzUpjRAwMDAwMDAwMDAwMDAzpQE1NzZg/c+ONN8JqtSrGx0AXWltbsWTJklHbrV27Fo888sio7fbs2YO8vLyUjzcaXyI8e/bsAYBh2yWqaayIj3mkOEfrq+EgCAI6OzvR2tqqWPyj9VV8u1T8SKRfEjlessdNlgNIbgyMNd+H4kgUyR4rFSSbw8miqKhIs2OlE+mcy82Id4QcP34cHMdh5syZbBGEgSEOkiSB53lYrdaMfwcObVq0jkfN4ynJrQRXKhy05Um2Qy9+0KaD1R/1+Fj90Q/05AdtWlgNUo8rWQ7aciTbIUkSotEojEZjxvtBmxat4+E4DlarFTzPq8qd6v3HSnClwqGklpEQDoexZs0aHDx4kIotdGiFVn6oDdrqD6Bt36qpX0/XYEojI7bGkjFv3rx0h8DAQBW6u7vx5JNPoru7O92hpAzatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLaD53kcPHhQlclzrUGbFq3j8Xg8ePTRR+HxeKjmVoIrFQ41+ykea9aswdtvv80WQUaBVn6oDdrqD6Bt36qpX0/XYEojIxZCpk6dCgBUvUCHgYEGuFwulJWVweVypTuUlEGbFq3jUfN4SnIrwZUKB215ku3Qix+06WD1Rz0+Vn/0Az35QZsWVoPU40qWg7YcyXZYLBbMnTs3419UDNCnRet4AoEANmzYgEAgQDW3ElypcKjZTzIEQcDBgwdV49cTtPBDC9BWfwBt+1ZN/Xq6BlMaGbE11q233orTp0/j8OHD6Q6FgYEqGI1GTfcrVBO0adE6HjWPpyS3ElypcNCWJ9kOvfhBmw5Wf9TjY/VHP9CTH7RpYTVIPa5kOWjLkWyHwWCA0+lMdxiKgDYtWscTjUbR2tpKPbcSXKlwqNlPMjo7O9mTIAlCCz+0AG31B9C2b9XUr6drMKWREU+ElJWVwWg04pNPPsG7776b7nAYGKhBMBjEtm3bEAwG0x1KyqBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDsEQcDhw4d1MWlLmxat43E6nbjvvvtUmYxUklsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGhmxEHLttdfiF7/4BSRJwuLFi3Hq1Kl0h8TAQAVMJhOmTZsGkykjHu4aEbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMuRbIfBYIDX64XBkBHTKSOCNi1axyOKIpqamiCKItXcSnClwqFmPzGMHXrxg7b6A2jbt2rq19M1mNKgJ9tGwU9/+lNs2LABnZ2dmDt3Ln7yk5/g/fffh9/vT3doDBTAZrORFdtoNAqfzwdJkgAAfr+frLD29vaip6cHQF+B8/l8hKO7uxuRSAQAEAqFEAqFAACRSKTfC318Ph8pij09Pejt7QXQt5or56MkSfD5fOS9NsFgEOFwGEDfC5Hk/QZjsRh8Ph9isRiAvv0I5RclhcNhslo6nCabzYZ58+aR42SyJkEQcNNNN8Fms1HhE8dxmDt3Lmw2W8o+AaPnntFoRFFREWKxmOKaAKCoqAgcx1HhE8/zKCoqgs1mG7Mmm82G66+/nhxHyfGUiE+ZMp600mQwGHDdddfBZrNltKZoNIp58+bBZrNR4ZPJZMLs2bNhs9kU8UnLGjFQUzQaRVFREUwmkyK5J0kSioqKYDAYkvIpHA7ja1/7Gmw2W1afc/VQ98xmM2bPng2r1ZrxmkRRRFFREcxmMxU+hcNhfPWrX4XNZtMk92w2G77yla+Q4yipyWazYf78+QiHw1T4lOz3PZvNhptuuokch9WI4TXJccs1X9bE8zzhjkQi/dqNpEn+PRqNknhMJhPy8vLI5JUgCP3ayfHI40mOVRAE0g+iKA5qFx9rfLtkNMWPp/j8j0Qi/WIVRZFMTg2MNR2aotEoLr/8cphMpqQ1DWwnx+pwOJCTkwOgb29+t9uNcDiM2tpa8l0W6LsjXP4OZrVayZ728qTlaJokSYLX6wXP86ipqYHFYiHvAMjJyYHD4QDQl0der3dYTTK32WyG1WpFTU0NwuEwvF4vmUwURZF8RtYE9F3Lxscqz5XU1NRAkqRBmuRcdrlc5LwaP8cSiURw+PBh4m8kEiHHjUajw2qKb5eKT/GajEZjQj4NpSkajRJNRqMRXq8XHMcBANxuN/FppNzzeDwwm80AALvdDrvdTnyS9ckcsk8jaYpEIqOOp4GazGYz/vrXvyIcDsNms5HPjFQjRsq9kTTFvzQ8Pvfia0QyPkmSBFEUccUVV8BkMiVcI+J9UlqTw+EAx3GoqalBLBYjmtSqe0ajEdOmTUM0GiU+KXXONZlMKCoqQjQaVeSca7FYUFRUROZzAGWuCdOBjFgIMRqNMBqNKC8vhyAI6O3txbp16/DVr34V48aNI38f7YeGlScGdVBYWIhFixYBANrb21FZWUkG55YtW3DixAkAQG1tLaqrqwEAzc3NqKysJBxVVVVobGwEABw4cAAHDhwAADQ2NqKqqoq0q6ysRHNzMwCguroatbW1AIATJ05gy5YtAPoKR2VlJdrb2wEAe/fuRV1dHQCgoaEBu3btAtBXHCorK0kx2rVrFxoaGgAAdXV12Lt374iaeJ7Hs88+i/3792e8ps2bN6O6uho8z1Ph04cffohNmzaB5/mUfQJGz71Tp06hrq4Or7/+uuKa3nvvPdTV1eHDDz+kxqe6ujoS61g08TyPLVu24L333gOg7HhKxKdMGU9aaTpy5AiqqqrA83xGa9q/fz+effZZ8DxPhU9nzpzp107t3FOyRgzUtH//ftTV1RFNqfhUXV2Nt956C3V1dThy5EjSPtXW1oLn+aw+5+qh7p0/f75fu0zW9Pzzz6Ouro5oosGnv/zlL+B5XpPc43keBw4cUEUTz/N47733qPEp2e97PM+juroamzdv7ucTqxGDNclxh0Ih1NfXk0mehoYGwn327FmcPn2a8G3YsGFYTfLvXV1dOHToEIC+yan6+np0dXUBAE6fPo2zZ8+SvpTjiUajqK+vJ5NVJ06cIP3Q2tqKo0ePEu319fWk/48ePUr2qG9ubk5KU319PdF06NAhEmtjY+MgTc3NzUST3K/p1PTpp59CFMWUNMmor68nk3vFxcWYP38+AGDmzJkoLS2F1WrFzTffjIqKCjLJuWjRIhQWFgIA5syZg5KSEgB9E7AVFRVkYnM4TTzPo6KiAi6XC4WFhSgtLcXMmTMBAPPnz0dxcTEAID8/HxUVFcNqkr2dPn06ysvLUVhYCKvVioqKCuTn5wMA2tra0NHR0U8TANIuXtPNN9+MwsJC3HDDDYM0yRO+JSUlmDNnDoD+cyxTpkwhmgDg888/J/F1dHQMq6mpqUkRn+I15ebmJuTTUJq6urqIptzcXFRUVJBFknifRsq98vJyTJ8+HQCwYMECLFiwgPjU1NRE2p05c4b4NJKmM2fOjDqeBmpaunQpFi5cCKvVisLCQrS0tAAYuUaMlHsjaSovLyft4nMvvkYk45Ncc+SnLxKtEYmOp2Q0FRcX49Zbb0VhYSGuueYaokmtusfzPJqbm/v5pNQ598yZM6irq8P+/fsVOee2t7ejrq4OzzzzjKLXhOkAJ8nLNRTDYDCQVdqBGEv4HMeRwcOgDxw/fhwFBQWw2WwwmUyoq6vDjBkzEAgE4PF4wHEcuRvMYrGgt7cXsVgMDocDoigiGAySVePu7m7Y7XaYzWZS4Ox2OyKRCEKhEFk19vl8cDqdMJlM6OnpgcFgQE5ODgRBQDgchtvthiRJ6O7uhsvlgtFoRDAYhMlkgs1mA8/zEAQBLpcLsVgMfr8fbrcbBoMBgUAAFosFVquV3HnmdDoRjUaH1MTzPHbu3Im77roLkyZNymhNLS0t2LdvH5YtWwaTyZR2ny5duoTnnnsO9957LxwOR0o+JZJ70WgUzz//PO688044nU5FNfX29uLFF1/EokWLyF0Y6fTp4sWLqK6uRklJCbkrJ1FNoVAIO3bswD333IPc3FxFx5Mea4Tamjo6OvDss8/i3nvvhdPpzFhNbW1tePHFF7Fs2TISRzp96urqwu7du3HvvffC5XKpnntK1oiBmvx+P15++WV873vfI3eIpZJ7PT09eOmll3D33XfDbDaP2aeWlhZUV1dj6dKlAJC151w91D2fz4ddu3Zh2bJlcLvdGa3J5/Nh3759WLx4MQCk3afz58+TccJxnOq5F4vF8Mwzz6C4uJhMRiilieM4wj158uS0+5Ts9z1RFLFz504sXLgQU6ZMYTViBE3vvPMOLBYLYrEYBEGA1WoFx3HgeR4mkwlGoxGRSASSJJF2s2bNwqRJk4bUdPDgQZjNZkSjUUQiERLPkSNHcPXVVxMdHMeRdqIowmq1QpIk8DwPi8UCg8EAQRBgMBhgMpnInfzx7eJjlW/kFEURsVhszJrkJxmBvrt2zWYzaQeAxNrT04PTp0/j6quvJp+XY02HJr/fj08//RTXXHMNDAZDUppkn+R2nZ2dKCkpgcPhQCwWQ29vLywWC3kKpKSkBNXV1fjJT36CVatWwel0QhRFhMNhWK1WWCwWBAIBGAwGuN1urF+/HpMnTx5W04ULF/Dggw8iGo2ipKQE+/fvR0dHBwRBQE5ODgwGA3p6emAymeB0OlFVVYW8vLxBmtra2rBs2TKYzWbk5ubiO9/5Dnbt2kXGh1wXOI7D0qVLiSa/3w+O4+DxeLB69WqiyWazYdGiRXjhhRcgCEI/TX6/H7FYDC6XC4IggOd5MscSDAbh8XiwdOlS7NixA4FAADt27MCUKVNgNBpx/vx5lJWV9dMk3/Ed3y4Vn+I1BQIBcg05kk8DNW3btg3RaBQrVqxAMBiE0Wgk37MlSSJPCG3fvh0TJkwYlHs+nw9LliyBx+MhT4vJTxmEQiGYzWZs3rwZl19+OQDg3LlzKC0thSiKI2ravn07pk6dOux46urqQklJST9NeXl5+O53v4tnnnkGkUgEmzZtQn5+/rA1or29HaWlpYNyT/ZJ1rRmzRo89thj/TTZ7XbytIHX60UwGMTOnTsxfvx4cByHjo4OLF++fMw+7d69G3a7HadPn8Y111wDAKPWiLa2NpSVlZGn/4YaTwM1DeXTUJpkn+x2O+666y48//zzEEURGzduxKRJk1SpewBw7NgxfOlLX4LD4YDRaMS8efMUOedKkoTnnnsO3/3ud+F2u1M+53Ichz179uCOO+7A+PHjU74mPH/+PAoKCiDj2LFjmDVrFrRAxiyEKAG2EKI/yAshMrQcPAwMDAwMDAwMDAwMDAz0oKamZsyfufHGG8ld4UrwMdCF1tZWLFmyZNR2a9euxSOPPDJquz179iAvLy/l443GlwjPnj17AGDYdolqGiviYx4pztH6Kh5j7bexYrS+im+Xih+J9Esix0v2uMlyAMmNgWR9G0tuyFA7R4ZCMnGmgqKiIs2OlU6kcy43I7bGku8USvWHLYIw6A0D98jNZNCmRet41DyektxKcKXCQVueZDv04gdtOlj9UY+P1R/9QE9+0KaF1SD1uJLloC1Hsh0D94HPZNCmRet41HxZsZLcSnClwkHjS62zGXrxg7b6A2jbt2rq19M1mNLI7FHDwJDlGLhHbiaDNi1ax6Pm8ZTkVoIrFQ7a8iTboRc/aNPB6o96fKz+6Ad68oM2LawGqceVLAdtOZLtGLgPfCaDNi1axzPw3Qu0civBlQqHmv3EMHboxQ/a6g+gbd+qqV9P12BK4/9n7+2j46rOe//vvI/m3RjhF+Sg1jQ4tiE2JLVIems1tC55cXHABDuyY1CayKZtPNDeG3JZ5Qe5t42hvcFauWA7LsYGjEhiEoECISaXSAQHDTGRXNnCGOTIWLIly7LmXTNnzsz8/tA6uyNZGklz9j6z58z+rJW1RLzP9zzf8zznOXNed0nMHn777bcDGPuW4HPPPQeLxVLkiAQCPvB4PNi+fXvJHwAB/rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOzWbDqlWrpvycVinBmxet4wmHw9i5cyezG7G0tGloqdFguZ0Es0cv+eCt/wDabluW/vV0DkabkrgR0tzcDIPBgFtuuUXcBBEIclBe29MDvHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsodg8FAJnkudXjzonU8yudaeNemoaVGg+V2EsweveSDt/4DaLttWfrX0zkYbUri01hz5swBAFRXVxc3EIGAMyKRCHbv3o1IJFLsUFTDmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNxJJpM4evQoV59zKRTevGgdj9vtxtatW+F2u7nWpqGlRoPldhLMHr3kg7f+A2i7bVn619M5GG1K4kbIwoULAQDxeLzIkQgEfGG1WrFixQpYrdZih6Ia3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOyWTC/PnzYTKZih2KanjzonU8kiShs7MTkiRxrU1DS40Gy+0kmD16yQdv/QfQdtuy9K+nczDalMSnsW655RacOHEC77zzTrFDEQi4wmazoaampthhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWM2m1FVVVXsMKjAmxet40kmk2hvb+dem4aWGg2W20kwe/SSD976D6DttmXpX0/nYLQpiTdC6uvrYTKZ0NPTg5aWlmKHIxBwQyKRQGtrKxKJRLFDUQ1vXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRckeWZfT29kKW5WKHohrevGgdj91uR21tLZPv9NPUpqGlRoPldhLMHr3kg7f+A2i7bVn619M5GG1K4kbIDTfcgAcffBDZbBZbtmzBkSNHih2SQMAFPB44CoU3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuaNMppvJZIodimp486J1PGazGdXV1TCb6X8shaY2DS01Giy3k2D26CUfvPUfQNtty9K/ns7BaFMye83DDz8Ml8uF//k//ydqa2tx55134q677sJNN92EyspK2Gy2YocoEGiOy+XC3XffXewwqMCbF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3FG+da4HePOidTzRaBT79+/nXpuGlhoNlttJMHv0kg/e+g+g7bZl6V9P52C0KYk3QkwmE0wmE7797W8jnU4jnU7jRz/6EW6//XZcc801cDgcZEy+/5X63VKBYCLpdBoDAwNIp9PFDkU1vHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsqdTCaDaDTK1VPMhcKbF63jYTlZMU1tGlpqNHic1Lqc0Us+eOs/gLbblqV/PZ2D0aYkboRks9lx/20wGMb922z+JxDoiUgkgj179iASiRQ7FNXw5kXreFiuj6Y2DS01GrzVSbmjl3zw5kP0H3Z6ov/oBz3lgzcvogex0ypUg7caKXckScK7774LSZKKHYpqePOidTxutxtbt26F2+3mWpuGlhoNlttJMHv0kg/e+g+g7bZl6V9P52C0MWRL4O6A0Ujnfo3BYODi7pOAHidOnMDy5cvJfx8/fhzLli0rYkTaks1mkUwmYbPZxt0gLEV486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuN8Exra+usl7n55pun/NT2ZHrZbBbpdBomk6nk88GbFxbxDAwMYOPGjZP+m8FggM1mQzKZxPe//33cd9990+o1NTVh/vz5064vVzvfZbep9HLjnkqrqakJAKb09/jjjxNPM41nMiYumxtzvu073bbKJZ8ODabbVrnjpsvHTJadqZ+Z1lMu+fIxU43JyK2XmcZcaN6ampowb968We3vrGsEmP22VcNk/a62tpaaNs/nYMW8llsS34ri6TUpgYAnDAYD7HZ7scOgAm9etI6H5fpoatPQUqPBW52UO3rJB28+RP9hpyf6j37QUz548yJ6EDutQjV4q5Fyx2Aw6Oaz27x50TqebDaLRCLBvTYNLTUaLLeTYPboJR+89R9A223L0r+ezsFoUxKfxhIIBJMTDoexc+dOhMPhYoeiGt68aB0Py/XR1KahpUaDtzopd/SSD958iP7DTk/0H/2gp3zw5kX0IHZahWrwViPlTjKZRHt7O5LJZLFDUQ1vXrSOx+PxwO/3w+PxcK1NQ0uNBsvtJJg9eskHb/0H0HbbsvSvp3Mw2ogbIQJBCWO321FbW8vNnVU18OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3zGYzqquruXuSuRB486J1PIlEAq2trUyeAKepTUNLjQbL7SSYPXrJB2/9B9B227L0r6dzMNrwU20CgWDWWK1WrFixothhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWMymZh9M15rePOidTySJKGzs5N7bRpaajRYbifB7NFLPnjrP4C225alfz2dg9FGvBEiEJQwo6OjeO211zA6OlrsUFTDmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNxJpVL48MMPkUqlih2KanjzonU8FRUVuPXWW1FRUcG1Ng0tNRost5Ng9uglH7z1H0DbbcvSv57OwWjDzY2Qc+fOab7O8+fPa75OgYAmmUwGwWAQmUym2KGohjcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5o0ymm81mix2KanjzonU8RqMRPp8PRiP9S2M0tWloqdFguZ0Es0cv+eCt/wDabluW/vV0DkYbbj6N9fGPfxx+vx//+I//iDlz5jBd18jICP7t3/4NP/jBDxCJRJiuSyBgidPpxIYNG4odBhV486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDtWqxXLly8vdhhU4M2L1vHEYjG88MIL3GvT0FKjwXI7CWaPXvLBW/8BtN22LP3r6RyMNtzcPozH4/je976Ha665Bv/0T/+Enp4e6uvo6enB/fffj2uuuQaPPvoo4vE49XUIBFoiyzJ6e3shy3KxQ1ENb160jofl+mhq09BSo8FbnZQ7eskHbz5E/2GnJ/qPftBTPnjzInoQO61CNXirkXKHpydb1cKbF63jYTlZMU1tGlpqNHic1Lqc0Us+eOs/gLbblqV/PZ2D0YabGyHf+ta3YDKZEI1G8fjjj+O6667D5z73OezZsweDg4MF6w4ODmLPnj343Oc+h49//ONobGxENBqFyWTC9u3bKToQCLQnGo3iwIEDiEajxQ5FNbx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHUmScOzYMUiSVOxQVMObF63jcblcuPvuu+FyubjWpqGlRoPldhLMHr3kg7f+A2i7bVn619M5GG0MWY4+xnb8+HH8j//xP/Daa68BAAwGA/m3JUuW4L/9t/+GG264AUuWLEFVVRXmzp0Lh8OBbDaL0dFRXLx4EX19fXj//fdx7NgxvPXWWzh58iTRUKx+/vOfx2OPPYZly5Zpa1BAnRMnTox7lez48eMirwKBQCAQCAQCgUBQhrS2ts56mZtvvhk2m42anoAvBgYGsHHjxmnHPf7447jvvvumHdfU1IT58+erXt90ejPRaWpqAoApx83U02zJjTlfnNNtq1xmu91my3TbKnecmnzMZLvMZH2FrrdQDaCwfaDQvM2mNhRY18hkFBKnGmprazVbVzEp5rVcrt6jWr58OV599VUcOXIEO3bswKuvvkpuXpw8eXLcTY2ZoixvMBjwpS99Cd/5zndw8803U41bIBAIBAKBQCAQCAQCgUAgEAgEAgGfcPNprFw++9nPoqWlBe+//z4eeOABfOxjH0M2my3ofx/72Mfwne98B++//z5efvllcRNEp9jtdvLqWjqdRjAYJDfBwuEwedVsdHQUsVgMwNg36oLBINEIhUJIpVIAxuasUeaQSaVSCIVCZFwwGCTftYvFYhgdHQUw9lpbOBwGMHYDLhgMIp1OAxh7DSyRSAAAkskkIpEIgMu/CRiJRJBMJgEAiUSCvDY2ladQKITvfe97OH/+fMl76uvrw/e+9z2EQiEu8nThwgUSj9o8AdPX3sWLF7Fjxw4MDAxQ9zQ4OIgdO3bgwoULXOTp7Nmz2LFjB0Kh0Kw9KTWvfDKR5v40kzyVyv6klaehoSFSD6Xs6fz588QHD3kaHh4m8dDIk5Y9YqKn8+fPY8eOHRgeHqZSe0qsQ0NDBeXpo48+Itu2nI+5euh7ly5dwve+9z0Sbyl7OnfuHHbs2IFLly5xkafc/USL2lP2rY8++oi6p1xtHvJU6O89xUdfXx/Jk+gRk3tS4s5kMkgkEsRTMpkk2qlUaty4fJ6Uv9PpNIknkUjgN7/5DfErSdK4cUo82WwWiUSCxCpJEtkOsixfNi431txxhXhSYlXizR2XG2soFMJbb72FRCJxWazF8BQKhfCb3/wGiUSiYE8TxymxOp1OVFRUABibpNjj8cDr9eKBBx7AokWLSAwulwt2ux0AYLPZ4Ha7AQBGoxE+n29aT9lsFj6fj2hfffXVsFqtAICKigo4nU4AY3MR+Hy+KT0p2haLBVVVVXjggQfg9Xrh8/nI/AWyLJNlFE/A2IPAubG6XC5cddVVeOCBB1BZWXmZJ6Nx7NKg2+0mb0flXmOZM2cOvvOd78Dr9ZL4lPWm0+kpPeWOU5OnXE8mk2lGeZrMUzqdJp5MJhN8Ph/5Eo3H4yF5yld7Xq8XFosFAOBwOOBwOEieFH+KhpKnfJ5SqdS0+9NETwsXLiT1YLfbyTL5ekS+2svnSck5gHG1l9sjCslTNpsdt7/PtEfk5om2J6fTSfaTK6+8knhi1fdGR0fx1ltvIRQKkTzROuYODw9jx44dOH/+PJVj7sjICHbs2IH+/n6q54TFgMsbIQrXXnst/vVf/xW9vb04duwY/v3f/x133nknrrvuOrIj5WK327FkyRJ85Stfwb//+7/j2LFj6O3txb/8y7/g2muvLYIDgVbU1NRg/fr1AMYuzDU2NpKdc9++feju7gYAtLW1oaWlBcDYBd3GxkaisWvXLvT09AAADh8+jMOHDwMAenp6sGvXLjKusbGRnIS0tLSgra0NANDd3Y19+/YBGGscjY2NGBoaAgAcOnQI7e3tAICOjg4cPHgQwFhzaGxsJM3o4MGD6OjoAAC0t7fj0KFDeT05HA5cc8015JXtUvZ06NAhrFixAg6Hg4s8ffDBB+SAqTZPwPS1NzAwgHXr1uG3v/0tdU/Hjx/HunXr8MEHH3CRp4MHD2LdunVwOByz9uRwOOD1enH8+HEAdPenmeSpVPYnrTx99NFHMJvNcDgcJe2ptbUV11xzDRwOBxd5GhkZgSRJ5Ac769qj2SMmemptbcW6deswMjJCpfbeffddrFu3Dh999FFBeXr66aexZs0aOByOsj7m6qHvxeNxSJJETrRL2dMvf/lLrFu3DvF4nIs8Pf3006itrYXD4dCk9hwOBz772c/i6aefpu7J4XDgi1/8Ip5++mku8lTo7z2Hw4EVK1aQ7Sp6xNSelLjj8TgCgQC5yNPR0UG0z5w5g1OnThG93bt3T+lJ+XtkZARHjx4FMHYhLZPJkItLp06dwpkzZ8i2VOJJp9MIBALkYlV3dzfZDgMDA+jq6iLeA4EA2f5dXV0YGBgg27wQT4FAgHg6evQoRkZGSG5yPXV1dWHJkiWwWCwIBAJkuxbL03vvvYf58+fDYrEU7EnJEwAEAgFycW/t2rVYvXo1AGDp0qWor69HPB7HK6+8gq9//evkIuf69etRU1MDAFi5ciXq6uoAjF2A9fv95MLmVJ6SyST8fj/S6TSam5tx5513YunSpQCA1atXY+3atQCAqqoq+P3+KT0puV28eDE2bdqE5uZmxONx+P1+VFVVARibE3d4eHicJ2DsgrPf7x/nafny5Whubsaf/MmfXOZJueBbV1eHlStXAhh/jcXpdMJmsyGdTsNqtaK/v5/ENzw8PKWn3t5eKnnK9VRZWTmjPE3maWRkhHiqrKyE3+8nN0nq6+tJnvLV3rZt27B48WIAwJo1a7BmzRqSp97eXjLu9OnTJE/5PJ0+fXra/Wmip9tuuw3d3d2Ix+OoqanBuXPnAOTvEflqL5+nbdu2kXG5tZfbIwrJkyzL6OzsxOLFi2GxWGbcI3LzRNvT2rVr8alPfQrNzc245ppriCdWfc9oNGLJkiV47733SJ5oHXNHRkawbt06tLa2UjnmyrKMdevW4eWXX6Z6TlgMuJojZLaEQiFyp8zpdI67qycoD5TvytntdpjNZrS3t2PJkiWIRCLwer0wGAwIh8Ow2+2wWq0YHR1FJpOB0+mELMuIRqPkrnEoFILD4YDFYiENzuFwIJVKIR6Pk/oKBoNwuVwwm82IxWIwGo2oqKiAJElIJBLweDzk7rbb7YbJZEI0GoXZbIbdbkcymYQkSXC73chkMgiHw/B4PDAajYhEIrBarbDZbEgkEpBlGS6XC+l0WngSnoQn4Ul4Ep6EJ+FJeBKehCfhSXjK4+nNN9+E1WpFJpOBJEmw2WwwGAxIJpMwm80wmUxIpVLIZrNk3LJlyzBv3rxJPR05cgQWiwXpdBqpVIo8kJlIJGC1WmE0GiFJEgwGAxknyzJsNhuy2SySyeS4cUajEWazmTzJnzsuN1aTyUTGZTKZWXuSJGlcrBaLhYwDUFaeLl26hLq6OjidTnIDy2q1wm63IxwOw2AwwOv14qGHHsL9998Pl8sFWZaRSCRgs9lgtVoRiURgNBrh8Xjw5JNPYsGCBVN6On/+PO69917yxrTH4yFvK1VUVMBoNCIWi8FsNsPlcmHXrl2YP3/+ZZ4GBwexefNmWCwWOBwO8sS3z+dDNBqFLMt49tlnYTAYsGnTJlWewuEwMpkM3G43JElCMpkk11ii0ShMJhPcbjdCoRBqa2vx7W9/m+Spv78fDQ0N4zwpT3w/88wzWLhwIdU8RSIR8mbHbDzt378f6XQaW7duvcxTbp4OHDiAuXPnXlZ7wWAQGzduhNfrJW+LKQ8txeNxWCwWPPXUU1i0aBEA4OzZs6ivr4csy3k9HThwAFdfffWU+9PIyAjq6ury5mnv3r2oqqqacn8aGhpCfX39ZbWn5Enx9Nhjj+HBBx8c52my2nv22WdxxRVXwGAwYHh4GFu2bJl1np5//nnMmTNnVj1icHAQDQ0NefeniZ4my9NU+9NkedqzZw/mzZunWd9btWpVSR1zC/0d0d/fX7Q5Qkr6RohAUO6TpcfjcRw+fJg83VrK8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3GuEZLSZLT6VS6OnpIU8ylzK8eWERT74Jlh0OB9asWYPDhw/jX/7lX6hOlp6rrVy0nI1ebtxTac1msvSZxjMZyrJ/+MMfsGPHjnFfaBGTpU++LMvJ0ifmslQnS587d+6s9nctJkuf7bZVw2T9jtZk6byfgxXzWi7Xn8YSCAQCgUAgEAgEAoFAIBAIBMXln/7pnyb9TL1AIBCUCuZiByAQCArH4XBg3bp1xQ6DCrx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHYvFgiVLlhQ7DCrw5kXreOLxOJqbm7nXpqGlRkNZ9q677lIVg4AOLOtWS3jrP4C225alfz2dg9FGvBEiEJQwqVQKJ0+eJN/bLGV486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDvpdBoXL14kk/eWMrx50Toe5UIki8+C0dSmoaVGQ1lWmXxdUFxY1q2W8NZ/AG23LUv/ejoHo424ESIQlDDK3erZfuOTR3jzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UOzxd0FELb160jkd5SpnF3Ds0tWloqdFQluXpgnU5w7JutYS3/gNou21Z+tfTORhtxGTpgpKm3CdLFwgEAoFAIBAIBALBGFpMli4oLVhOFK1mfdPpzXRybmBmk6XTYLJYxWTpky/LcrJ0FhqA9pOlz3YSci0mS58Iy8nSJ4PWZOm8IyZLFwgEAoFAIBAIBAKBQCAQCAQCgUAgYIC4ESIQlDDBYBCPPPIIgsFgsUNRDW9etI6H5fpoatPQUqPBW52UO3rJB28+RP9hpyf6j37QUz548yJ6EDutQjV4q5FyJ5FIoK2tDYlEotihqIY3L1rH4/P58PDDD8Pn83GtTUNLjYayLE+fMCpnWNatlvDWfwBtty1L/3o6B6ONuBEiEJQwLpcLW7ZsgcvlKnYoquHNi9bxsFwfTW0aWmo0eKuTckcv+eDNh+g/7PRE/9EPesoHb15ED2KnVagGbzVS7litVnzyk5+E1Wotdiiq4c2L1vFEo1Hs378f0WiUa20aWmo0lGVNJlPB6xfQg2Xdaglv/QfQdtuy9K+nczDamIsdgEAgKByz2Yzq6upih0EF3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WO0Wgs+SexFXjzonU8siyjt7eXe20aWmo0lGWNRvEsNQ+wrFst4a3/ANpuW5b+9XQORhvRxQSCEiYWi+GFF15ALBYrdiiq4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuSJKE48ePQ5KkYoeiGt68aB2P0+nEhg0b4HQ6udamoaVGQ1lWluWC1y+gB8u61RLe+g+g7bZl6V9P52C0ETdCBIISRrmDrIcnM3jzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UOwaDAXa7HQaDodihqIY3L1rHk8lkEAwGkclkuNamoaVGQ1mWlzopd1jWrZbw1n8AbbctS/96Ogejjfg0lkBQwlRUVODWW28tdhhU4M2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNcIzPp+P+WSsFosF1157LdN1aAVvXrSOZ3R0FK+99hr32jS01Ggoy27ZskVVDAI6sKxbLeGt/wDabluW/vV0Dkab4t+KEQgEBSNJEjo7O7l6lbBQePOidTws10dTm4aWGg3e6qTc0Us+ePMh+g87PdF/9IOe8sGbF9GD2GkVqsFbjfDMggULmK8jnU5jYGAA6XSa+bpYw5sXreOxWq1YsWIFk8mKaWrT0FKjoSxb6m8g6AWWdaslvPUfQNtty9K/ns7BaCNuhAgEJUwikUBraysSiUSxQ1ENb160jofl+mhq09BSo8FbnZQ7eskHbz5E/2GnJ/qPftBTPnjzInoQO61CNXirEZ6ZO3cu3G4303Uok+nqYb4E3rxoHY/dbkdtbS3sdjvX2jS01Ggoy/J0wbqcYVm3WsJb/wG03bYs/evpHIw2hmw2my12EAJBoZw4cQLLly8n/338+HEsW7asiBEJBAKBQCAQCAQCgaBYyLKMc+fOIRQKwel0Ip1Oo7+/f8rxN998M2w226T/1trayihKgVYMDAxg48aN0457/PHHcd999007rqmpCfPnz1e9vun0ZqLT1NQEAFOOm6mnmTJZrPninG5bzVSHBtNtq9xxavKhLDtTPzTqiVZNFrIPFJq32dSGAusamYxC4lRDbW2tZusqJsW8liveCBEISphsNotEIgE93M/kzYvW8bBcH01tGlpqNHirk3JHL/ngzYfoP+z0RP/RD3rKB29eRA9ip1WoBm81wjtmsxkf+9jHcP311+OP//iPUVFRQVU/m81ClmVd5IM3L1rHw3KyYpraNLTUaCjL8lIn5Q6Pk4wXAm/9B9B227L0r6dzMNqIGyECQQkTCoXw6KOPIhQKFTsU1fDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopd5LJJI4cOYJkMlnsUFTDmxet4/F6vXjggQfg9Xq51qahpUZDWZanTxiVMyzrVkt46z+AttuWpX89nYPRRtwIEQhKGLfbjYaGBubfwdUC3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WO1WrFTTfdVPITFQP8edE6nkgkgt27dyMSiXCtTUNLjYayrNlsLnj9AnqwrFst4a3/ANpuW5b+9XQORhvRxQSCEsZkMmn6vUKW8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3jEYjXC5XscOgAm9etI4nnU5jYGCAe20aWmo0lGVL/VNMeoFl3WoJb/0H0HbbsvSvp3Mw2og3QgSCEiYajWL//v2IRqPFDkU1vHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsodSZLQ2dkJSZKKHYpqePOidTwulwt33303k4uRNLVpaKnRUJYVn8biA5Z1qyW89R9A223L0r+ezsFoI26ECAQljNlsRnV1tS5eUeXNi9bxsFwfTW0aWmo0eKuTckcv+eDNh+g/7PRE/9EPesoHb15ED2KnVagGbzVS7hiNRvh8PhiNpX85hTcvWscjyzJ6e3uZXOCnqU1DS42Gsqx4I4QPWNatlvDWfwBtty1L/3o6B6NN8SMQCAQFY7fbUVtbW+wwqMCbF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3FEu6OgB3rxoHU8ikUBrayv32jS01GgoyzY0NKiKQUAHlnWrJbz1H0DbbcvSv57OwWjDz203gUAwa5LJJNrb25FMJosdimp486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDuyLKOvr6/kn8YG+POidTw2mw01NTWw2Wxca9PQUqOhLJtOpwtev4AeLOtWS3jrP4C225alfz2dg9FG3AgRCEoYHr+pWCi8edE6Hpbro6lNQ0uNBm91Uu7oJR+8+RD9h52e6D/6QU/54M2L6EHstArV4K1Gyh1lMl09XBTmzYvW8VitVqxYsQJWq5VrbRpaajSUZbPZbMHrF9CDZd1qCW/9B9B227L0r6dzMNoYsqKTCUqYEydOYPny5eS/jx8/jmXLlhUxIoFAIBAIBAKBQCAQ8EJfXx8+/PDDKf/95ptvnvLpXz18fqbcGRgYwMaNG6cd9/jjj+O+++6bdlxTUxPmz5+ven3T6c1Ep6mpCQCmHDdTTzNlsljzxTndtpqpDg2m21a549TkQ1l2pn5o1BOtmixkHyg0b7OpDQXWNTIZhcSpBl4+H8WaYl7LFW+ECAQlTCaTQTAYRCaTKXYoquHNi9bxsFwfTW0aWmo0eKuTckcv+eDNh+g/7PRE/9EPesoHb15ED2KnVagGbzVS7mSzWSQSCV08Hc+bF63jYTlZMU1tGlpqNJRleamTcofHScYLgbf+A2i7bVn619M5GG1Ke68RCMqccDiMxsZGhMPhYoeiGt68aB0Py/XR1KahpUaDtzopd/SSD958iP7DTk/0H/2gp3zw5kX0IHZahWrwViPlTjKZRCAQ4OJb52rhzYvW8Xg8Hvj9fng8Hq61aWip0VCW5Wkuh3KGZd1qCW/9B9B227L0r6dzMNqIGyECQQnj8Xiwffv2kj8AAvx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHZvNhlWrVpX8RMUAf160jiccDmPnzp3MbsTS0qahpUZDWdZsNhe8fgE9WNatlvDWfwBtty1L/3o6B6ONuBEiYMbDDz8Mg8GQ938PPPBAscMsafTySiTAnxet4xGvZWu3fgE99JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOwWCA3W6HwWAodiiq4c2L1vGIT/PNblle6qTc4ekzQ2rgrf8A2m5blv71dA5Gm+JHINA9V111FT772c9O+r/q6upih1fSRCIR7N69G5FIpNihqIY3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuZNMJnH06FGuPudSKLx50Toet9uNrVu3wu12c61NQ0uNhrKs+DQWH7CsWy3hrf8A2m5blv71dA5GG/Fem4A5n//857F///5ih6FLrFYrVqxYAavVWuxQVMObF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3DGZTJg/fz5MJlOxQ1ENb160jkeSJHR2dkKSJK61aWip0VCW/bM/+7OC1y+gB8u61RLe+g+g7bZl6V9P52C0ETdCBIISxmazoaampthhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWM2m1FVVVXsMKjAmxet40kmk2hvb+dem4aWGg1l2e3bt6uKQUAHlnWrJbz1H0DbbcvSv57OwWgjPo0lEJQwiUQCra2tSCQSxQ5FNbx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHVmW0dvbq4vPBPHmRet47HY7amtrYbfbudamoaVGQ1k2nU4XvH4BPVjWrZbw1n8AbbctS/96OgejjbgRoiHpdBr/+Z//iaeeegrbtm3Dpz71KVitVjJxeG1tbcHakiTh2WefxRe+8AVcc801sNvtWLBgAT7zmc/g3//933Hx4kV6RmbJsWPHUFdXh8997nP4m7/5G3znO9/Bu+++W7R49ASPB45C4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLu6GWiYoA/L1rHYzabUV1dDbOZ/sdSaGrT0FKjoSybzWYLXr+AHizrVkt46z+AttuWpX89nYPRprT3mhKiubkZdXV1iMfj1LVPnjyJjRs3orOzc9z/PzAwgIGBAbz99tv4t3/7Nzz99NP4whe+QH3909HZ2TkutpaWFuzYsQNbtmzB7t27S/4udjFxuVy4++67ix0GFXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO8q3zvUAb160jicajTKbz5SmNg0tNRrKsn/913+tKgYBHVjWrZbw1n8AbbctS/96OgejjXgjRCOCwSCTmyB9fX245ZZbyI0Gg8GA1atXo76+HmvXrkVFRQUA4MKFC1i3bh3eeOMN6jFMxcKFC/Hwww/j7bffxuDgIJLJJN577z18+9vfhslkwoEDB/C3f/u3msWjR9LpNAYGBnTxiipvXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRcieTySAajXL1FHOh8OZF63hYTlZMU5uGlhoNZVnxRggfFHuSceWha7UTivPWfwBtty1L/3o6B6ONuBGiMfPmzcOXvvQlPPLII3j11VdVTzb11a9+FefOnQMAXHPNNejo6EBrayueeuopvPzyy/joo49wyy23AABSqRTuvPNOBINBtTZmxDe/+U38f//f/4eamhpcddVVsFqtWLJkCXbs2IHnnnsOAHDw4EG8/fbbmsSjRyKRCPbs2YNIJFLsUFTDmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNyRJAnvvvuu6ouAPMCbF63jcbvd2Lp1K9xuN9faNLTUaCjL8vBZGwHbup0J9913HzZu3Ii1a9fiu9/9bsE6vPUfQNtty9K/ns7BaGPIilu6mqDcLf3Yxz427v9/+OGH8cgjjwAAVq9ejdbW1hlrvvrqq/jiF78IYOyVqqNHj+L666+/bFwsFsMNN9yA06dPAwC+853v4F//9V8vG/fAAw/g0UcfnfH6c0mlUrP+ht6qVavwzjvv4P7778f/+T//p6D1njhxAsuXLyf/ffz4cSxbtqwgrVIkm80imUzCZrPBYDAUOxxV8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gik1+vr68OGHH0757zfffDNsNtuk/zbZ+Xk2m0U6nYbJZCr5fPDmhUU8AwMD2Lhx46T/ZjAYYLPZkEwm8f3vfx/33XfftHpNTU2YP3/+tOvL1c532W0qvdy4p9JqamoCgCn9Pf7448TTTOOZDGXZffv2YcGCBVPGOVNvk5FPhwbTbavccdPlYybLztTPTOspl4m5LERjMnLrhTVNTU2YN2/erPZ31jUCzH7bqmGyfqdm7uiJ2jyfgxXzWq6YI0QjWOw4TzzxBPl7y5Ytk94EAQCn04nvfve72LRpEwBgz549+O53v3vZjQun04m5c+cWFEshO8JnP/tZvPPOO/jggw8KWqdgbLvrZY4V3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOwWAo+UmKFXjzonU82WwWiUSCe20aWmo0lGV5uFkmYFu3WsJb/wG03bYs/evpHIw24tNYJUo0GsX/+3//j/z3Pffck3f8HXfcAZfLBQC4dOkS3nzzzcvG/PM//zMuXrxY0P8K+X6e1WoFMPY2iaAwwuEwdu7ciXA4XOxQVMObF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3Ekmk2hvb0cymSx2KKrhzYvW8Xg8Hvj9fng8Hq61aWip0VCWFddu+IBl3WoJb/0H0HbbsvSvp3Mw2ogbISXKb3/7W7KzOJ1OfPrTn8473m634+abbyb/reWk6VPR1dUFAFi0aFGRIyld7HY7amtrubmzqgbevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y7ZbEZ1dTV3TzIXAm9etI4nkUigtbWVyRPgNLVpaKnRUJYt1uTcgvGwrFst4a3/ANpuW5b+9XQORht+qk0wK9577z3y9/XXXz+jHefGG2/E66+/ftnyxaCzsxO//OUvAQB//dd/XdRYShmr1YoVK1YUOwwq8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3TCYTs2/Gaw1vXrSOR5IkdHZ2cq9NQ0uNhrKs0SiepeYBlnWrJbz1H0DbbcvSv57OwWgjuliJ8v7775O/r7nmmhktkztR+8mTJ6nHlMuJEyfwzW9+Ex0dHZf92yuvvILPf/7zSKfTuPHGG/HlL3+ZaSx6ZnR0FK+99hpGR0eLHYpqePOidTws10dTm4aWGg3e6qTc0Us+ePMh+g87PdF/9IOe8sGbF9GD2GkVqsFbjZQ7qVQKH374oS4+E8SbF63jqaiowK233oqKigqutWloqdFQlk2n0wWvX0APlnWrJbz1H0DbbcvSv57OwWgj3ggpUYaHh8nf8+bNm9EyuXcaL126RD2mXFKpFPbu3Yu9e/fC5/Phj/7oj2CxWPCHP/wBQ0NDAIAbbrgBL730kniqQAWZTAbBYBCZTKbYoaiGNy9ax8NyfTS1aWip0eCtTsodveSDNx+i/7DTE/1HP+gpH7x5ET2InVahGrzVSLmjTKabzWaLHYpqePOidTxGoxE+n4/JNQma2jS01Ggoy/JSJ+UOy7rVEt76D6DttmXpX0/nYLQp7b2mjIlGo+Tvmd6pzB2XuzwLqqur8b//9//Gl770JcydOxc9PT3k7ZC//Mu/xJ49e/DOO++gqqqKyvrsdjuZDD6dTiMYDJJmEg6HIUkSgLG7kLFYDAAgyzKCwSDRCIVC5E5sPB5HPB4HMHZTJxQKkXHBYBCyLAMAYrEYuaMpSRKZ+CebzSIYDJInJqLRKPnGYDKZRCQSAXB5M4hEImTul0QiQfI0lSen04nbbruNxFbKntLpNG6//XY4nU4u8mQ2m/HFL34RTqdTdZ6A6WvParViw4YNMBgM1D2ZTCZs2LABZrOZizzJsowNGzbA6XTO2pPT6cSXvvQl8n1amvvTTPJUKvuTVp4sFgu+8IUvwOl0lrQnALjtttvgdDq5yJPNZsOtt94Kp9NJJU9a9oiJngBgw4YNsNlsVGrPaDRiw4YNsFgsBeUplUrhK1/5CpxOZ1kfc/XQ9+x2O2699VY4HI6S95TNZrFhwwbY7XYu8pRKpXDnnXfC6XRqUntOpxPr168f90QkLU9OpxN33XUXUqkUF3kq9Pee0+nE7bffTjyIHjF7T8lkkminUiniT9GbypPydzqdJvFYrVZce+215PPUkiSNG6fEo1zkUmKVJIlsB1mWLxuXG2vuuNxYJ46bylPu9+0TicS4cbmxZjIZLF++HFar9bJYi+Epm83iE5/4BKxWa8GeJo5TYnU6neSaiNVqhcfjQSwWw49+9CNYLBYSg8vlIt+xt9lscLvdAC6/GTCVp2w2C5/Ph3g8jhdeeAEmkwlWqxXA2DUZ5fed2WyGz+eb0pOibbFYYDab8cILLyAWi8Hn85Hak2WZLKN4AgCDwTAuVpfLhXQ6jRdeeAGyLF/mSbno63a7YbPZAIy/xpJIJPDaa6+NOwdT1quco03mKbf3qslTriclhunyNJmndDpNPJlMJvh8PhgMBgBjk2QrecpXe16vFxaLBQDgcDjI7xCLxTLuOJZKpUie8nlKpVLT7k8TPRmNRvzsZz9DLBaD3W4ny+TrEflqL58nr9dLxuXWnto8ZbNZZDIZLFu2DFardcY9IjdPLDxlMhm88MILSKVSxBOrvmexWLB8+XJks1mSJ1rHXJvNhg0bNhBNJe5Cj7kVFRXYsGEDMpkM1XPCYiBuhJQouY1YaQLToTR/4L8KkRU+nw8PPvggWlpa8OGHHyIUCkGSJFy4cAGvv/46vvnNb46LRy01NTVYv349AGBoaAiNjY1k59y3bx+6u7sBAG1tbWhpaQEA9PX1obGxkWjs2rULPT09AIDDhw/j8OHDAICenh7s2rWLjGtsbERfXx8AoKWlBW1tbQCA7u5u7Nu3D8BY42hsbCRvvxw6dAjt7e0AgI6ODhw8eBDAWHNobGwkzejgwYPkhlF7ezsOHTqU15Msy2hpacHLL7+sC09vvvkmZFnmIk/vvvsunn76aciyrDpPwPS1d+rUKfT29uKXv/wldU+//e1v0dvbi3fffZebPPX29kKW5Vl7kmUZzz33HH77298CoLs/zSRPpbQ/aeGpq6sLP/zhD8kPwFL19PLLL6OlpQWyLHORpzNnzqCxsZH8cGZde7R7RK6nl19+Gb29vcSTmjy1tLTg17/+NXp7e9HV1VVwnpTjZ7kfc0u9750/fx6NjY3kZLGUPf3kJz9Bb28v8cRDno4dOwZZljWpPVmWcfToUSaeZFnGBx98wE2eCv29J8sy3nzzTdEjVHjq6Ogg2mfOnMGpU6eI3u7du6f0pPw9MjKCo0ePAhi7MBQIBMjFnFOnTuHMmTNkvUo86XQagUCAXKzq7u4m22FgYABdXV3EeyAQILF2dXVhYGCAbHMlF/F4HIFAgFy4yucpEAgQT0ePHsXIyAjJzURPyo2lQCBAtmsxPZ05cwaZTEaVJ4VAIECunaxduxarV68GACxduhT19fUwm834kz/5E/j9fnKRc/369aipqQEArFy5EnV1dQDGLsD6/X7y+2wqT8lkEn6/Hw6HA9XV1aivr8fSpUsBAKtXr8batWsBAFVVVfD7/VN6UnK7ePFibNu2jUyq7Pf7yQOlg4OD5Gshiidg7NrPRE+f+cxnUF1djZtuuukyT8oF37q6OqxcuRLA+Gss8+fPH+c9t/aGh4en9NTb20slT7meKisrZ5SnyTyNjIwQT5WVlfD7/eS6VG6e8tXetm3bsHjxYgDAmjVrsGbNGpKn3t5eMu706dMkT/k8nT59etr9aTJPt9xyC8xmM2pqanDu3DkA+XtEvtrL52nbtm1kXG7tqc2TLMsIBAIYGhpCJpOZcY+Y6f5UqKfa2lpUV1dj+fLlxBOrvpdKpRAMBsflidYx98yZM+jt7cXLL79M5Zh76dIl9Pb24rnnnqN6TlgMDFme3kEqQx5++GE88sgjAMZ24tbW1hkt98UvfhGvvvoqAODb3/42duzYMe0yv/jFL/CFL3wBwNhdWeUOXylz4sQJLF++HHa7HWazGe3t7ViyZAkikQi8Xi8MBgPC4TDsdjusVitGR0eRyWTgdDohyzKi0Si5axwKheBwOGCxWEiDczgcSKVSiMfj5K5xMBiEy+WC2WwmT6dWVFRAkiQkEgl4PB5ks1mEQiG43W6YTCZEo1GYzWbY7XYkk0lIkgS3241MJoNwOAyPxwOj0YhIJAKr1QqbzYZEIgFZlsnTG5N5isfjaGxsxDe+8Q0sXLiwpD2dPXsW+/btw/bt22Gz2Yqep8HBQezevRvbt2+Hx+NRlaeZ1J4kSXjyySfxzW9+E16vl6qnWCyG3bt3Y+vWrXA4HEXP0/nz5/H0009j+/btADArT5FIBI2Njdi6dSvmzZtHdX/SY49g7enChQvYtWsXtm/fDq/XW7Kezp07h71792L79u1wOBxFz9PFixfxxBNPYPv27fD5fMxrj2aPmOhpZGQEe/fuxd/93d+Ne1KrUE+RSAR79uzBtm3bYLfbZ52nvr4+0n+UJzTL8Zirh743PDyM//t//y++9a1vYc6cOSXtaXh4GP/xH/+Bv//7v4fJZCp6ns6ePUv2E7PZzLz2UqkUGhsbcc8995A5DWl5ymQyRPvqq68uep4K/b2nXLCor6/HokWLRI+Ypaf+/n6cOHECZrMZJpMJqVQK2WwWVquVPJGsfG56oqcjR47AYrEgnU4jlUrBbrcjkUggEAjg05/+NBwOByRJgsFgIONkWYbNZkM2m0UymYTVaoXRaIQkSTAajTCbzeRJ/txxNpsNBoMByWQSJpOJjMtkMiRWSZLGjZvKkyRJ5Cls5cljZRwAEms0GkVnZydWrVoFAONiLYanUChE4jGZTAV5UvKkjLt06RLq6urI096jo6OwWq2w2+0wGo3w+/3Yt28f/H4/7r//frhcLsiyjEQiAZvNBqvVikgkAqPRCI/HgyeffBILFiyY0tP58+dx7733Ahi7yPof//EfuHDhAiRJQkVFBYxGI2KxGMxmM1wuF3bt2oX58+df5mlwcBCbN2+GxWLB/Pnz8fWvfx07d+4EMPb0tizLePbZZ2EwGLBp0ybiKRwOw2AwwOv14qGHHiKenE4ntm3bhieffBKjo6PjPIXDYWQyGbjdbkiShGQySa6xRKNRXHHFFfjWt76FP/qjP8LHPvaxcbXX39+PhoaGcZ6Um4TPPPMMFi5cqDpPuZ4ikQh5syNfniZ62r9/P9LpNLZu3UreiHa73QiFQshms/B4PEgkEjhw4ADmzp17We0Fg0Fs3LgRXq+XvC2mvGUQj8dhsVjw1FNPYdGiRQCAs2fPor6+HrIs5/V04MABXH311VPuTyMjI6irqxvn6eqrr8Y3vvEN7Ny5E4lEAnv37kVVVdWUPWJoaAj19fWX1Z6SJ8XTY489hgcffHCcJ4fDQd428Pl8pPbU5un555+Hw+Eg+7vBYJi2RwwODqKhoQGJRGLK/Wmip8nylM+Ty+XCtm3b8MQTTyCZTGLPnj3kugPtvpfNZvHOO+9gxYoVcLlcMJlMWLVqFZVjrizLeOKJJ/CNb3wDc+bMUX3MzWQy+MEPfoCvf/3rqKysVH1O2N/fj+XLl0Ph+PHjWLZsGbRA3AgpMoXeCLnrrrvw4x//GADwrW99a0Z31H7605/ijjvuADB2R//8+fOFBc0Ryo0QBS13HoFAIBAIBAKBQCAQ8E1fXx8+/PDDKf/95ptvnvJrBTM9Pxfwy8DAADZu3DjtuMcffxz33XfftOOamprGzb9a6Pqm05uJTlNTEwBMOW6mnmbKZLHmi3O6bTVTHRpMt61yx6nJh7LsTP3QqCdaNUm7XvIxm9pQYF0jk1FInGqora3VbF3FpJjXcsWnsUqUuXPnkr8HBwdntIzyShYAXHHFFdRjEggEAoFAIBAIBAKBQCAQCAQCgYA3xI2QEuW6664jfyvf7pyOjz76iPy9ZMkS6jEJtCcUCmHHjh3jJkYqVXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO4lEAm+99da4eTtLFd68aB2P1+vFAw88MG7yZB61aWip0VCWzZ0MXFA8WNatlvDWfwBtty1L/3o6B6ONuBFSonziE58gf3d1dZFJq/Lx+9//ftLlBaWLw+HAunXryDcPSxnevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y7FYsGSJUtgsViKHYpqePOidTzxeBzNzc3ke/u8atPQUqOhLGsymQpev4AeLOtWS3jrP4C225alfz2dg9HGXOwABIXxmc98BjabDclkErFYDEePHkVNTc2U45PJJNrb28l/f+5zn9MiTAFjlMapB3jzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UOyaTCVdeeWWxw6ACb160jieVSuHkyZPca9PQUqOhLGs0imepeYBl3WoJb/0H0HbbsvSvp3Mw2oguVqK4XC7ccsst5L/379+fd/xPf/pTRCIRAGPzg/z5n/85y/A0x263w+VyAQDS6TSCwSCy2SwAIBwOQ5IkAMDo6ChisRgAQJZlBINBohEKhcirnvF4nNwBTqVS417fCgaD5A2cWCyG0dFRAIAkSQiHwwCAbDaLYDCIdDoNAIhGo+R1t2QySXKRyWQQDAaRyWQAAJFIBMlkEsDYa3LRaDSvp3g8jkOHDmFoaKjkPQ0ODuLFF19EPB7nIk8jIyP4yU9+gng8rjpPwPS1FwqF0NzcjIsXL1L3dOnSJTQ3N2NkZISLPA0MDJCnLGbrKR6P4yc/+QkuXboEgO7+NJM8lcr+pJWnYDCIH//4x4jH4yXtaWhoCIcOHUI8HuciT+FwmGxXGnnSskdM9DQ0NITm5maEw2EqtTc8PIzm5mYEg8GC8nT+/Hn87Gc/QzweL+tjrh76XiQSwY9//ONx+02perpw4QKam5sRiUS4yNP58+fx05/+FPF4XJPai8fj+OlPf4rz589T9xSPx/Gzn/0M58+f5yJPhf7ei8fjePHFF8nckKJHzN5TMpkk2qlUivhT9KbypPydTqdJPKlUCidOnCDrlSRp3Djl/89ms0gkEiRWSZLIdpBl+bJxubHmjsuNdeK4qTzlfmolkUiMG5cbazQaxcmTJ5FKpS6LtRieotEouru7SZyFeJo4TonV6XSioqICAGC1WuHxeMhTyvPnzycxuFwu2O12AIDNZoPb7QYAGI1G+Hy+aT1ls1n4fD6ifdVVV8FqtQIAKioq4HQ6AQBmsxk+n29KT4q2xWLBvHnzyNPUPp8PZrOZrFdZRvEEAAaDYVysLpcLc+bMwbp16+Dz+S7zpNzgcLvdsNlsAMZfY3G5XPjKV75CtnNu7aXT6Sk9pVIpKnnK9aS8lTJdnibzlE6niSeTyQSfzweDwQAA8Hg8JE/5as/r9ZIn+B0OB3nC3WKxjPt0WCqVInnK5ymVSk27P030dNVVV+H222+Hw+GA3W4ny+TrEflqL5+n3E9E5dae2jxls1lEIhG89957SKVSM+4RuXli4emKK67AunXr4PV6iSdWfU+SJJw8eRLRaJTkidYxNxwOo7m5GUNDQ1SOudFoFM3Nzbhw4QLVc8JiIG6ElDD33nsv+Xv//v04ceLEpOPi8Tgeeugh8t/f/OY3yY6uF2pqarB+/XoAYxe0Ghsbyc65b98+dHd3AwDa2trQ0tICAOjr60NjYyPR2LVrF3p6egAAhw8fxuHDhwEAPT092LVrFxnX2NiIvr4+AEBLSwva2toAAN3d3di3bx+AscbR2NhILpYcOnSIvJHT0dGBgwcPAhhrDo2NjaQZHTx4EB0dHQCA9vZ2HDp0aFpPg4ODJNZS9vT888+T5s1Dnrq6unD69GlqeZrOU29vLwCgtbWVuqd3332XeOIhT7k3bgvxdObMGeKJ9v7EQ+2VkqdTp07hww8/LHlPhw8fJheXeMjTuXPn8N5771HLk5Y9YqInJdZz585Rqb23334bwFjtFZKnH/7wh+QEopyPuXroexcvXsR7772nC08///nPiSce8vTDH/6QxKBV7cXjcfzwhz9k4imTyeCHP/whF3lS83svFArh+eefJ3kSPWJ2njo6Osb9ljx16hTR271795SelL9HRkZw9OhRMu7ixYvkQtGpU6fIvJ1DQ0MknnQ6jUAgQC5WdXd3k+0wMDCArq4u4j0QCJBYu7q6MDAwQLa5kot4PI5AIEAuXOXzFAgESKxHjx7FyMgIyU2up87OTjIuEAiQ7VosT8ePHyfLFOopN0+BQIBc3Fu7di1Wr14NAFi6dCnq6+sBjF0Q37p1K7nIuX79evK1jZUrV6Kurg7A2AVYv99PLmxO5SmZTMLv95OL73V1dVi6dCkAYPXq1Vi7di0AoKqqCn6/f0pPSm4XL16Me+65h4zz+/2oqqoCMPa7ZHh4+DJPNpsNfr9/nKdPfepTAIDrr7/+Mk/KBd+6ujqsXLkSwPhrLFdeeSWWLl1K9HJrb3h4eEpPvb291PKkeKqsrJxRnibzNDIyQjxVVlaOy1N9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPypPR4ADh9+jTJUz5Pp0+fnnZ/mujpjjvuwNy5c0mezp07ByB/j8hXe/k8bdu2jYzLrT21eZJlGb///e9JTc20R+TmiYWnz3zmMwDG5mVWPGnR95Q80TrmKjVx+PBhKsdc5Xh36NAhqueExcCQVW7XCIrCww8/jEceeQTA2E7c2to6q+X//M//HL/5zW8AANXV1XjppZdwww03kH8fHh7Gxo0b8frrrwMYexukp6dn3J3SUubEiRNYvnw57HY7zGYz2tvbsWTJEkQiEXi9XhgMBoTDYdjtdlitVoyOjiKTycDpdEKWZUSjUbItQqEQHA4HLBYLaXAOhwOpVArxeJzcNQ4Gg3C5XDCbzYjFYjAajaioqIAkSUgkEvB4PMhmswiFQnC73TCZTIhGozCbzbDb7Ugmk5AkCW63G5lMBuFwGB6PB0ajEZFIBFarFTabDYlEArIsw+VyIZ1OC0/Ck/AkPAlPwpPwJDwJT8KT8CQ8CU+z9NTf348TJ07AbDbDZDIhlUohm83CarUik8lg2bJlmDdv3qSejhw5AovFgnQ6jVQqRZ5sTiQSsFqtMBqNkCQJBoOBjJNlGTabDdlsFslkctw4o9EIs9lMnuTPHWez2WAwGJBMJmEymci4TCZDYpUkady4qTxJkjQuVovFQsYBKCtPly5dQl1dHZxOJzKZDEZHR2G1WmG32xEOh2EwGOD1evHQQw/h/vvvh8vlgizLSCQSsNlssFqtiEQiMBqN8Hg8ePLJJ7FgwYIpPZ0/fx733nsvQqEQstksPB4Pefq7oqICRqMRsVgMZrMZLpcLu3btwvz58y/zNDg4iM2bN8NiscDhcJCH0Xw+H6LRKGRZxrPPPguDwYBNmzap8hQOh5HJZOB2uyFJEpLJJLnGEo1GYTKZ4Ha7x3lX8tTf34+GhoZxnpQnvp955hksXLiQap4ikQh5s2M2nvbv3490Oo2tW7eO8zQxTwcOHMDcuXMvq71gMIiNGzfC6/WSt8WUtwzi8TgsFgueeuopLFq0CABw9uxZ1NfXQ5blvJ4OHDiAq6++esr9aWRkBHV1dXnztHfvXlRVVU25Pw0NDaG+vv6y2lPypHh67LHH8OCDD47zNFXtqc3T888/jzlz5syqRwwODqKhoSHv/jTR02R5mo2nPXv2YN68eZr1vVWrVpX8MXcmvyP6+/uxfPlyKBw/fhzLli2DFogbIRryhS98gdyVUxgYGCBPoTqdTlx77bWXLffqq69i4cKFk2r29fXhT//0T8mr5AaDAatXr8bixYsxNDSEX/3qV2QHMZvNeO2118Z9UqvUUW6EKGi58/BAKpVCT08PFi9ezNUEU4XAmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNTo6+sjb7BOxs0330yeCp/IZA8qKhcn58yZU/KTR/PmhUU8AwMD2Lhx46T/ZrFYsHjxYvT09OCxxx7DfffdN61eU1MT5s+fP+36crVzP5k0U73cuKfSampqAoAp/T3++OPE00zjmQxl2X/+53++7NpUvu073baaqQ4NpttWueOmy8dMlp2pn5nWUy4Tc1mIxmTk1gtrmpqaUFlZOav9nXWNALPftmqYrN/V1tZS0eb9HKyY13LFp7E0pLu7G8eOHRv3P+UmCDD2vdSJ/37s2DHyXbXJqKqqwhtvvIEVK1YAGPvOW2trK5566im8/PLL5CZIZWUlmpubdXUTRDB2R1uZa6HU4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuKJPpzvZiMo/w5kXreJR5PJQnxnnVpqGlRkNZVvmUj6C4sKxbLeGt/wDabluW/vV0DkYb8UaIhlRXV5PvbM6GP/zhD6iurs47RpIkvPDCC2hqasKJEycwODgIn8+HP/7jP8btt9+Oe+65B1deeWWBkfNLub8RIhAIBAKBQCAQCASCqaH9RoigtKD9NDytp++n05vpGwjAzN4IocFksYo3QiZfluUbISw0AO3fCJntmxZavBEyEZZvhEwGrTdCeKeY13L1NWM25+ROnEQbq9WKr33ta/ja177GbB0CgUAgEAgEAoFAIBAIBAKBQCAQlBri01gCQQkTDAbxyCOPkAmhShnevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5U4ikUBbWxsSiUSxQ1ENb160jsfn8+Hhhx8mkxHzqk1DS42GsixPnzAqZ1jWrZbw1n8AbbctS/96OgejjbgRItAFdrsdLpcLwNiEQ8FgEMpX38LhMJlnZXR0FLFYDAAgy/K4nTAUCpEDezweJ9+uS6VSCIVCZFwwGIQsywDG5nUZHR0FMPZ5snA4DGBsrpZgMEi+oRmNRklzSyaTiEQiAIBMJoNgMIhMJgMAiEQiSCaTAMaaYjQazevJ5XJhw4YNMBgMJe8pk8ngq1/9KlwuFxd5slgsuPPOO+FyuVTnCZi+9mw2G7Zs2QKj0Ujdk9lsxpYtW2CxWLjIUzqdxpYtW+ByuWbtyeVy4Stf+QrM5rEXGmnuTzPJU6nsT1p5slqtWL9+PVwuV0l7MhgM2LBhA1wuFxd5stvtuOOOO8hxjXXt0ewREz0ZDAZs2bIFdrudSu2ZTCZs2bIFVqu1oDzJsozNmzfD5XKV9TFXD32voqICd9xxB5xOZ8l7AoAtW7agoqKCizzJsoxNmzbB5XJpUnsulwubNm0isdH05HK58LWvfQ2yLHORp0J/77lcLnz1q18lsYkeMXtPyWSSaKdSKeJP0ZvKk/J3Op0m8VitVnziE58gv0clSRo3Toknm80ikUiQWCVJIttBluXLxuXGmjsuN9aJ46bylHthLZFIjBuXG2smk8EnP/lJWK3Wy2IthqdsNovly5fDarUW7GniOCVWp9OJiooKkkOPx4NoNIr9+/fDZDKRGFwuF+x2OwDAZrPB7XYDAIxGI3w+37SestksfD4f0TYYDLBarQDGjl3KcctsNo+72DrRk6JtsVhgNBqxf/9+RKNR+Hw+Unu5vU3xBIz9ts2N1eVyIZVKYf/+/ZAk6TJPRuPYpUG3200+E5d7jSUej+PQoUNkXG7tpdPpKT0p535q85TrSZlUero8TeZJOZ8EAJPJBJ/PR37XeTwekqd8tef1eslk0Q6Hg8wlYbFYxt0oSqVSJE/5PKVSqWn3p4meAODgwYOIRqOw2+1kmXw9Il/t5fPk9XrJuNzaU5unbDaLTCaDG264AVardcY9IjdPLDzJsoz9+/cjmUwST6z6nsViwSc/+Ulks1mSJ1rHXLvdji1btsBgMFA55jocDmzZsgXZbJbqOWExEDdCBLqgpqYG69evBwAMDQ2hsbGR7Jz79u1Dd3c3AKCtrQ0tLS0Axr4V29jYSDR27dqFnp4eAMDhw4dx+PBhAEBPTw927dpFxjU2NqKvrw8A0NLSgra2NgBAd3c39u3bB2CscTQ2NmJoaAgAcOjQIbS3twMAOjo6cPDgQQBjzaGxsZE0o4MHD6KjowMA0N7ejkOHDuX1ZDab8Yc//AG/+MUvSt7TM888g1gsBrPZzEWeurq68Oabb8JsNqvOEzB97Z05cwbV1dV44403qHs6evQoqqur0dXVxUWe9u7di+rqapjN5ll7MpvNCAQCOHr0KAC6+9NM8lQq+5NWnk6dOoXXX38dZrO5pD394he/wB/+8AeYzWYu8jQwMIAXX3yR/ChnXXs0e8RET7/4xS9QXV2NgYEBKrV35MgRVFdX49SpUwXl6YknnsAVV1wBs9lc1sdcPfS9kZERvPjii+QErpQ9NTc3o7q6GiMjI1zk6YknnoDT6YTZbNak9sxmM0wmE5544gnqnsxmMxYsWIAnnniCizwV+nvPbDYjFovhmWeeIXkSPWJ2njo6Ooj2mTNncOrUKaK3e/fuKT0pf4+MjJDfn0ajEe+99x65AHTq1CkyF+jQ0BCJJ51OIxAIkItV3d3dZDsMDAygq6uLeA8EAiTWrq4uDAwMkG2u5CIejyMQCJC+l89TIBAgno4ePYqRkRGSm1xPv//978kF1kAgQLZrsTwdO3YMqVQKRqOxYE9KngAgEAiQi3tr167F6tWrAQBLly5FfX09ZFnGwMAA/uEf/oFc5Fy/fj1qamoAACtXrkRdXR2AsQuwfr+fXNicylMymYTf74fZbEZvby+2bNmCpUuXAgBWr16NtWvXAgCqqqrg9/un9KTkdvHixfjmN7+J3t5eyLIMv9+PqqoqAMDg4CCGh4fHeQLGLjj7/f5xnj796U+jt7cXN9xww2WelAu+dXV1WLlyJYDx11iuuOIK8jcwvvaGh4en9NTb20slT7meKisrZ5SnyTyNjIwQH5WVlfD7/eQmSX19PclTvtrbtm0bFi9eDABYs2YN1qxZQ/KU+zn806dPkzzl83T69Olp96eJnjZs2IC5c+dClmXU1NTg3LlzAPL3iHy1l8/Ttm3byLjc2lObJ1mW8bvf/Q4VFRUwGo0z7hG5eWLh6c/+7M/Q29uL6667jnhi1feUm6bHjh0jeaJ1zB0YGEB1dTV+8YtfUDnmxuNxVFdX40c/+hHVc8JiICZLF5Q0ygQ7drsdZrMZ7e3tWLJkCSKRCLxeLwwGA8LhMOx2O6xWK0ZHR5HJZMidXuWJCmDs7qrD4YDFYiENzuFwIJVKIR6Pk7vGwWAQLpeLnJAYjUZUVFRAkiQkEgl4PB5ks1mEQiG43W6YTCbyxK3dbkcymSRPYWQyGYTDYXg8HhiNRkQiEVitVthsNiQSCciyDJfLhXQ6PamnVCqF5uZm/NVf/RWuuuqqkvY0MDCAN954A7fddhuMRmPR83Tp0iW8+uqr+PKXv4yKigpVeZpJ7WWzWbz22mu45ZZb4HQ6qXpKJpN4/fXXsWbNGlgslqLn6eLFi2hra8PatWuRSqVm5SmRSOBnP/sZPv/5z2Pu3LlU9yc99gjWnkZGRvDzn/8ct99+OxwOR8l6unDhAl5//XWsW7cOFoul6HkKhUJ4+eWXcfvtt5P/Zll7NHvERE+RSARvvPEGPv/5z5Mf+2pqb3R0FL/61a/w13/91zCZTLPO08DAANra2vA3f/M3yGQyZXvM1UPfC4fDeOmll/DlL3+Z/HepegqHw3jjjTfwhS98AZlMpuh5On/+PNlPstks89oDgJdeegm1tbVYuHAhVU8mkwkvv/wyVq9ejXnz5hU9T4X+3stkMnjppZfwuc99DvPnzxc9Ypae+vv7ceLECXLTLZVKIZvNwmq1IpPJYNmyZZg3b96kno4cOQKLxYJ0Oo1UKgW73Q5JkvDee+/huuuuI/9tMBjIOFmWYbPZyJOzVqsVRqMRkiTBaDTCbDaTJ/lzx9lsNhgMBiSTSZhMJjJOOV5lMhlIkjRu3FSeJEkiT2ErTx4r4wCQWOPxOM6cOYOPf/zjZD1KrMXwFIlEyEVIg8FQkCclT8q4S5cuoa6uDk6nE5lMBqOjo7BarbDb7Uin01i7di3a2trw3//7f8f9998Pl8sFWZaRSCRgs9lgtVoRiURgNBrh8Xjw5JNPYsGCBVN6On/+PO69916kUimsXbsWv/71rzEyMgJJkshFX+XBMpfLhV27dmH+/PmXeRocHMTmzZthsVgwd+5c1NbWoqWlBRaLBdFoFLIs49lnn4XBYMCmTZuIp3A4DIPBAK/Xi4ceeoh4slqtWLNmDX75y19CluVxnsLhMDKZDNxuNyRJQjKZJNdYotEo3G431q1bh7/6q7/CokWLxtVef38/GhoaxnlSnvh+5plnsHDhQtV5yvUUiUTImx358jTR0/79+5FOp7F161ZEo1GYTCa43W7Smz0eDxKJBA4cOIC5c+deVnvBYBAbN26E1+slb4spbxnE43FYLBY89dRTWLRoEQDg7Nmz5GZbPk8HDhzA1VdfPeX+NDIygrq6unGerrrqKvzlX/4lXnrpJaTTaezduxdVVVVT9oihoSHU19dfVntKnhRPjz32GB588MFxnpRzPADkTafpPM0kT88//zycTifOnDmD6667DtlsdtoeMTg4iIaGBiQSiSn3p4meJstTPk92ux1/9Vd/hddeew2ZTAZ79uzBvHnzmPQ9g8GADz74ANdccw0cDgdMJhNWrVpF5ZhrMBjwi1/8Ap/73OfgdrtVH3NNJhNeeeUV/MVf/AV8Pp/qc8L+/n4xWbpAoIbcVxWVVxwVlLvmAMire8Dkr84pKI0SmPzVOQXlNTxg7HVA5RU95XVABeX1S2DsDrny1IHyiqOC8pogAPKjIJ+ndDqNuXPnkuVK2ZPX68UVV1xBTowUiuWpoqICV155JYxGo+o8KXr5PI2OjsLn88HlcpGxtDwpcVVUVBDtYubJ5/ORJ89m68loNOLKK68kmjT3J0B/PYK1J7vdjsrKShiNxpL25Ha7MXfuXBiNRi7yZLVayXYt1FOxesRknnw+H6xW6ziPhXpS4rLb7URvNnmaM2cO5syZA6PReFktT+dJT8dcPfQ9i8WCyspK8umFUvak3CS0WCzjYi+Wp9z9JHe9rGpvdHQUV1xxBebMmUPd0+joKPGT+5mOQjzRyFOhv/eUbaSMEz1i9p6U5ZX4FCbqTfSkjDWZTKSGDAYDnE4n+W/Fw2TjcmPKHWc2m8mbnxPH5caqjFFinWrcRE+54yb2ztxY7XY77HZ73li19KQc35WbMIV4UmJVxim/p5TPzQBjn4hRLqQGg0Fy4RAAedMHGHtqWnnCWflEjDJuKk8GgwHBYJBoT/xEjMLEz95M9KRoKp+9UT4Jl7tM7noVT8B/ffYm15MSTyKRIHFM1FM+hwOMv8YiyzKGhobItsz1bjKZpvyUj3JjR/k7d5nZ5CnXk8J0eZrMk3LBF/ivT/koKG9DTYx1Yu3lfoJIuRgNjOUpdzmLxTLuk4BTeVI+fQZMvT9N5unSpUvkE0vKuHw9Il/t5fM08ZNLCmrzZDAYyLlH7ufjFO8KEz3l5omFJ2VbJ5NJos+q7yk3A+12O9kfaB1zld8byk0QJe5Cj7mKnsfjGff5PIXZnhP29/ejWIgbIQJBCVNRUYFbb7212GFQgTcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5Y7FYcO211xY7DCrw5kXreEZHR/Haa69xr01DS42GsuyWLVtUxSCgA8u61RLe+g+g7bZl6V9P52C0EXOECAQljCRJ6OzsJHffSxnevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5U46ncbAwAD5Zn0pw5sXreOxWq1YsWLFuCe8edSmoaVGQ1lW+ZyhoLiwrFst4a3/ANpuW5b+9XQORhtxI0QgKGESiQRaW1vHvbZaqvDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopd2RZJhNXlzq8edE6Hrvdjtra2nGfeOFRm4aWGg1lWZ4uWJczLOtWS3jrP4C225alfz2dg9FGTJYuKGmUydIVtJxgRyAQCAQCgUAgEAgEfNPX14cPP/xwyn+/+eabx33LPZfW1lZGUQm0YmBgABs3bpx23OOPP4777rtv2nFNTU2YP3++6vVNpzcTnaamJgCYctxMPc2UyWLNF+d022qmOjSYblvljlOTD2XZmfqhUU+0apJ2veRjNrWhwLpGJqOQONVQW1ur2bqKSTGv5Yo3QgSCEiabzSKRSEAP9zN586J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDvZbBayLOsiH7x50ToeZXJjZVJxXrVpaKnRUJblpU7KHZZ1qyW89R9A223L0r+ezsFoI26ECHSB3W6Hy+UCMPadvWAwSHawcDhMvkM3OjqKWCwGYOw1tGAwSDRCoRBSqRQAIB6PIx6PAwBSqRRCoRAZFwwGyatrsVgMo6OjAMa+eRcOhwGM7eTBYJC8OhqNRskrYMlkEpFIBACQyWQQDAbJtzYjkQiSySSAsVfHotFoXk+hUAiPPvoozp8/X/Ke+vr68OijjyIUCnGRpwsXLpB41OYJmL72Ll68iEcffRQDAwPUPSleLly4wEWezp49SzRm60mp+QsXLgCguz/NJE+lsj9p5WloaIjkspQ9nT9/nvjgIU/Dw8MkHhp50rJHTPSkbNvh4WEqtTc4OIhHH30UQ0NDBeUpt/+U8zFXD33v0qVLePTRR0m8pezp3LlzePTRR3Hp0iUu8pS7n2hRe8q+dfbsWeqecrV5yFOhv/cUH319fSRPokfMzlMymSTaqVSK+FP0pvKk/J1Op8fFc+TIkXE+cscp8SgXfpRYJUki20GW5cvG5caaOy431onjpvKU+/mRRCIxblxurOFwGEeOHEEymbws1mJ4yo2nUE8TxymxOp1OVFRUABibB8Dj8cDr9eKBBx7AokWLSAwul4t8Fsdms8HtdgMAjEYjfD7ftJ6y2Sx8Ph/Rvvrqq8l8AxUVFXA6nQAAs9kMn883pSdF22KxoKqqCg888AC8Xi98Ph/MZjNZr7KM4gkYu5ibG6vL5cJVV12FBx54AJWVlZd5MhrHLg263W7ydlTuNZY5c+bggQceINs5t/bS6fSUnlKpFJU85XoymUwzytNkntLpNPFkMpng8/nIBW+Px0PylK/2vF4vLBYLAMDhcMDhcJA8Kf4UDSVP+TylUqlp96eJnhYuXEjqwW63k2Xy9Yh8tZfPk9frJeNya09tnrLZ7Lj9faY9IjdPLDwp+8mVV15JPLHqe4lEAkeOHEE4HCZ5onXMVc4nz58/T+WYOzIygkcffRT9/f1UzwmLgbgRItAFNTU1WL9+PYCxC3ONjY1k59y3bx+6u7sBAG1tbWhpaQEwdkG3sbGRaOzatQs9PT0AgMOHD+Pw4cMAgJ6eHuzatYuMa2xsJCchLS0taGtrAwB0d3dj3759AMYaR2NjI4aGhgAAhw4dQnt7OwCgo6MDBw8eBDDWHBobG0kzOnjwIDo6OgAA7e3tOHToUF5Pbrcby5cvJzGUsqcXX3wRtbW1cLvdXOSpp6cHc+fOhdvtVp0nYPraGxoaQkNDA9rb26l7OnHiBBoaGtDT08NFnp5//nk0NDTA7XbP2pPb7caCBQtw4sQJAHT3p5nkqVT2J6089fX1weVywe12l7SntrY2LF++HG63m4s8KT9klRMF1rVHs0dM9NTW1oaGhgaEQiEqtdfR0YGGhgb09fUVlKenn34aX/3qV+F2u8v6mKuHvqecrCknw6Xs6fDhw2hoaEAikeAiT08//TTuuOMOuN1uTWrP7XZj7dq1ePrpp6l7crvduPvuu/H0009zkadCf++53W7U1tbixRdfJHkSPWJ2njo6Ooj2mTNncOrUKaK3e/fuKT0pf4+MjODo0aMA/qvvKH3o1KlTOHPmDFmvEk86nUYgECAXq7q7u8l2GBgYQFdXF/EeCARIrF1dXRgYGCDbXMlFPB5HIBAgF67yeQoEAsTT0aNHMTIyQnKT66mrqws33XQTrFYrAoEA2a7F8vTee+/hmmuugdVqLdiTkicACAQCJE9r167F6tWrAQBLly5FfX09IpEI9u3bh/r6enKRc/369aipqQEArFy5EnV1dQDGLsD6/X5yYXMqT8lkEn6/H5IkYffu3Vi/fj2WLl0KAFi9ejXWrl0LAKiqqoLf75/Sk5LbxYsXo66uDrt370YkEoHf70dVVRUAYHBwEMPDw+M8AWMXnP1+/zhPS5cuxe7du4leriflgm9dXR1WrlwJYPw1FuVCtnIhPrf2hoeHp/TU29tLJU+5niorK2eUp8k8jYyMEE+VlZXw+/3kJkl9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPy1NvbS8adPn2a5Cmfp9OnT0+7P030tHbtWhw5cgSRSAQ1NTU4d+4cgPw9Il/t5fO0bds2Mi639tTmSZZldHZ2Yvny5bBarTPuEbl5YuHpxhtvxO7du1FVVUU8sep7JpMJN910E9577z2SJ1rH3FAohIaGBnI+psRd6DE3m82ioaEBP//5z6meExYDMUeIoKRRvitnt9thNpvR3t6OJUuWIBKJwOv1wmAwIBwOw263w2q1YnR0FJlMBk6nE7IsIxqNkrvGoVAIDocDFouFNDiHw4FUKoV4PE7uGgeDQbhcLpjNZsRiMRiNRlRUVECSJCQSCXg8HmSzWYRCIbjdbphMJkSjUZjNZtjtdiSTSUiSBLfbjUwmg3A4DI/HA6PRiEgkAqvVCpvNhkQiAVmW4XK5kE6nhSfhSXgSnoQn4Ul4Ep6EJ+FJeBKehKdZeurv78eJEydgNpthMpmQSqWQzWZhtVqRyWSwbNkyzJs3b1JPR44cgcViQTqdRiqVIheEE4kErFYrjEYjJEmCwWAg42RZhs1mQzabRTKZHDfOaDTCbDaTJ/lzx9lsNhgMBiSTSZhMJjIuk8mQWCVJGjduKk+SJI2L1WKxkHEAysrTpUuXUFdXB6fTiUwmg9HRUVitVtjtdoTDYRgMBni9Xjz00EO4//774XK5IMsyEokEbDYbrFYrIpEIjEYjPB4PnnzySSxYsGBKT+fPn8e9995L3pj2eDxIJBKQJAkVFRUwGo2IxWIwm81wuVzYtWsX5s+ff5mnwcFBbN68GRaLBQ6Hgzwo4/P5EI1GIcsynn32WRgMBmzatEmVp3A4jEwmA7fbDUmSkEwmyTWWaDQKk8kEt9s9zruSp/7+fjQ0NIzzpDzx/cwzz2DhwoVU8xSJRMibHbPxtH//fqTTaWzdunWcp4l5OnDgAObOnXtZ7QWDQWzcuBFer5e8Laa8ZRCPx2GxWPDUU09h0aJFAICzZ8+ivr4esizn9XTgwAFcffXVU+5PIyMjqKury5unvXv3oqqqasr9aWhoCPX19ZfVnpInxdNjjz2GBx98cJynqWpPbZ6ef/55zJkzZ1Y9YnBwkDyQMNX+NNHTZHmajac9e/Zg3rx5mvW9VatWlfwxdya/I/r7+4s2R4i4ESIoacp9svRoNIpDhw5h/fr15BXPUoU3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIqUF7snRJktDd3Y2lS5eSt0NKFd68sIgn3wTLLpcL69evx6FDh/C//tf/ojpZeq628vmY2ejlxj2V1mwmS59pPJOhLHvLLbeQp+cni3Om3iZDTJY+OZPpTMxlqU6WfsUVV8xqf9disvTZbls1TNbvaE2Wzvs5mJgsXSAQFITZbEZ1dTX5pmEpw5sXreNhuT6a2jS01GjwVifljl7ywZsP0X/Y6Yn+ox/0lA/evIgexE6rUA3eaqTcmfi9/lKGNy9axyPLMnp7e8nnrnjVpqGlRkNZttQn59YLLOtWS3jrP4C225alfz2dg9Gm+BEIBIKCsdvt1O4YFxvevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y5yQUcP8OZF63gSicSkb/3wpk1DS42GsmxDQ4OqGAR0YFm3WsJb/wG03bYs/evpHIw2/Nx2EwgEsyaZTKK9vZ1MSFTK8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3ZFlGX19fyT+NDfDnRet4bDYbampqpvw0Gi/aNLTUaCjLKhNWC4oLy7rVEt76D6DttmXpX0/nYLQRN0IEghJGkiR0dnZCkqRih6Ia3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+VOOp3GwMCALi4K8+ZF63isVitWrFjBZH4Umto0tNRoKMuKKYb5gGXdaglv/QfQdtuy9K+nczDaiMnSBSVNuU+WLhAIBAKBQCAQCASCqaE9WbqgtKA9UTStiamn05vp5NzAzCZLp8FksYrJ0idfluVk6Sw0AO0nS5/tJORaTJY+EZaTpU8GL5+PYo2YLF0gEBREJpNBMBhEJpMpdiiq4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuZLNZJBIJXTwdz5sXreNhOVkxTW0aWmo0lGV5qZNyh8dJxguBt/4DaLttWfrX0zkYbUp7rxEIypxwOIzGxkaEw+Fih6Ia3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+VOMplEIBDg4lvnauHNi9bxeDwe+P1+eDwerrVpaKnRUJblaS6HcoZl3WoJb/0H0HbbsvSvp3Mw2ogbIQJdYLfb4XK5AIx9Zy8YDJK7quFwmHyHbnR0FLFYDMDYxETBYJBohEIhpFIpAEA8Hkc8HgcApFIphEIhMi4YDJIfALFYDKOjowDGvnmn7NTZbBbBYJB86y8ajSKRSAAYa3aRSATA5XdFI5EIaYKJRALRaDSvJ4/Hg4aGBphMppL3BADbtm2Dx+PhIk82mw1f//rX4fF4VOcJmL72KioqsH37dpjNZuqerFYrtm/fDpvNxkWestkstm/fDo/HM2tPHo8Hf/u3f0u+2Ulzf5pJnkplf9LKk91uR319PTweT0l7MplMaGhogMfj4SJPDocD99xzD/kBzrr2aPaIiZ5MJhO2b98Oh8NBpfYsFgu2b98Ou91eUJ4ymQz+4R/+AR6Pp6yPuXroe06nE/fccw/cbnfJezIajdi+fTucTicXecpkMvj7v/97eDweTWrP4/Hg7/7u78Y9JUjLk8fjwbe+9S1kMhku8lTo7z2Px4Nt27aRMaJHzN5TMpkk2qlUivhT9KbypPydTqfHnSesWLECFouF+Mgdp8SjPO2rxCpJEtkOsixfNi431txxubFOHDeVJyVWZbvkjsuNNZvNYtWqVbDZbJfFWgxPAPCpT30KNputYE8TxymxOp1OVFRUABibB8Dj8SAcDmPnzp0wGAwkBpfLBbvdTnKtHGcmvhUxladsNgufz0e0s9ksOXepqKiA0+kEAJjNZvh8vik9KdpKne3cuRPhcBg+nw9ms5msV1lG8QQABoNhXKwulwvJZBI7d+5EIpG4zJPy9Lvb7Saficu9xhKNRrFv3z7yGyi39tLp9JSeUqkUlTzlelJimC5Pk3lKp9PEk8lkgs/ng8FgADB2AVzJU77a83q9JCcOhwMOh4PkSfGnaCh5yucplUpNuz9N9JTJZPDkk08iHA7DbreTZfL1iHy1l8+T1+sl43JrT22estksstks/vRP/xQ2m23GPSI3Tyw8SZKEnTt3kmOvEiuLvme1WrFq1SoAIHmidcx1OBzYvn07TCYTlWOuy+XC9u3bYTAYqJ4TFgNxI0SgC2pqarB+/XoAwNDQEBobG8nOuW/fPnR3dwMA2tra0NLSAmDsW7GNjY1EY9euXejp6QEAHD58GIcPHwYA9PT0YNeuXWRcY2Mj+vr6AAAtLS1oa2sDAHR3d2Pfvn0AxhpHY2MjhoaGAACHDh1Ce3s7AKCjowMHDx4EcPld0YMHD6KjowMA0N7ejkOHDuX1ZDQa0dnZiVdeeaXkPe3fvx/nzp2D0WjkIk/Hjh3Dz3/+cxiNRtV5AqavvT/84Q/w+Xz41a9+Rd3TO++8A5/Ph2PHjnGRpz179pAfcrP1ZDQa8frrr+Odd94BQHd/mkmeSmV/0srTyZMn8eKLL8JoNJa0p1deeQWdnZ0wGo1c5OncuXN4+umnyckO69qj2SMmenrllVfg8/lw7tw5KrX3m9/8Bj6fDydPniwoTz/4wQ9gNBphNBrL+pirh743PDyMp59+mpwQlrKnn/70p/D5fBgeHuYiTz/4wQ+QSqVgNBo1qT2j0YhoNIof/OAH1D0ZjUZUVFTgBz/4ARd5KvT3ntFoxLlz57B//36SJ9EjZuepo6ODaJ85cwanTp0iert3757Sk/L3yMgIjh49CmDsQl9nZye5UHTq1CmcOXOGrFeJJ51OIxAIkItV3d3dZDsMDAygq6uLeM99KrirqwsDAwNkmyu5iMfjCAQC5MJVPk+BQIB4Onr0KEZGRkhucj29++67sNvtMBgMCAQCZLsWy5OyXQ0GQ8GelDwBQCAQIBf31q5di9WrVwMAli5divr6enJBcvv27eQi5/r161FTUwMAWLlyJerq6gBc/lbEVJ6SyST8fj+sViuCwSDuueceLF26FACwevVqrF27FgBQVVUFv98/pSclt4sXL8bWrVvJDUC/34+qqioAwODgIIaHh8d5AsYuOPv9/nGeVq1ahWAwiBUrVlzmSbngW1dXh5UrVwIYf43lyiuvRH19PbnImVt7w8PDU3rq7e2lkqdcT5WVlTPK02SeRkZGiKfKykr4/X5yk6S+vp7kKV/tbdu2DYsXLwYArFmzBmvWrCF56u3tJeNOnz5N8pTP0+nTp6fdnyZ6+upXv4o//uM/RiaTQU1NDc6dOwcgf4/IV3v5POXehM+tPbV5kmUZ77zzDgwGAwwGw4x7RG6eWHj68z//cwSDQXziE58gnlj1vUwmA7vdjs7OTpInWsfcc+fOwefz4ZVXXqFyzI1Go/D5fGhqaqJ6TlgMxGTpgpJGmWDHbrfDbDajvb0dS5YsQSQSgdfrhcFgIHfJrVYrRkdHkclk4HQ6Icsy2ZmBsburDocDFouFNDiHw4FUKoV4PE7uGit3Q81mM2KxGDnBkiQJiUSCPBkdCoXgdrthMpkQjUZhNptht9uRTCYhSRLcbjcymQx5Ws1oNCISicBqtZIncmRZhsvlQjqdntRTMpnEs88+izvuuAPz5s0raU/nzp1Dc3MzNm/eDLPZXPQ8Xbx4ET/60Y/wta99DU6nU1WeZlJ76XQaP/7xj3H77bfD5XJR9TQ6OooXX3wR69evJ09hFDNPFy5cQEtLC+rq6shTOTP1FI/H8cwzz+ArX/kKKisrqe5PeuwRrD0NDw/jhRdewNe+9jW4XK6S9TQ4OIgXX3wRmzdvJnEUM08jIyN4/vnn8bWvfQ1ut5t57dHsERM9hcNh/OxnP8Ndd91FnhBTU3uxWAw//elPceedd8Jiscw6T+fOnUNLSws2bdoEAGV7zNVD3wsGgzh48CA2b95MnuotVU/BYBDNzc3YsGEDABQ9T/39/WQ/MRgMzGsvk8ngueeew9q1a8nFCFqeDAYD0V6wYEHR81To7z1ZlvHss89i3bp1WLhwoegRs/TU39+PEydOwGw2w2QykTeUrVYrMpkMli1bhnnz5k3q6ciRI7BYLEin00ilUiSeY8eO4frrryc+DAYDGSfLMmw2G7LZLJLJJKxWK4xGIyRJgtFohNlsJk/y546z2WzkaVuTyUTGZTIZEqskSePGTeVJkiTyFHYikYDFYiHjAJBYY7EYTp06heuvv54sr8RaDE/hcBjvv/8+brjhBhiNxoI8KXlSxl26dAl1dXVwOp3IZDIYHR2F1WqF3W5HNptFXV0dWlpa8I//+I+4//774XK5IMsyEokEbDYbrFYrIpEIjEYjPB4PnnzySSxYsGBKT+fPn8e9996LdDqNuro6vPTSSxgeHoYkSaioqIDRaEQsFoPZbIbL5cKuXbswf/78yzwNDg5i8+bNsFgsqKysxN/8zd/g4MGDZP9Q+oLBYMCmTZuIp3A4DIPBAK/Xi4ceeoh4stvtWL9+PX7yk59AkqRxnsLhMDKZDNxuNyRJQjKZJNdYotEovF4vNm3ahFWrVmHRokXjaq+/vx8NDQ3jPClPfD/zzDNYuHCh6jzleopEIuQcMl+eJnrav38/0uk0tm7dimg0CpPJRH5nZ7NZeDweJBIJHDhwAHPnzr2s9oLBIDZu3Aiv10veFlPeMojH47BYLHjqqaewaNEiAMDZs2dRX18PWZbzejpw4ACuvvrqKfenkZER1NXVjfM0f/58fPnLX8Zzzz2HVCqFvXv3oqqqasoeMTQ0hPr6+stqT8mT4umxxx7Dgw8+OM6Tw+Egbxv4fD5Se2rz9Pzzz8PhcODUqVO44YYbAGDaHjE4OIiGhgYkEokp96eJnibLUz5PDocDd9xxB3784x9DlmXs2bMH8+bNY9L3gLFJwj/+8Y/D6XTCZDJh1apVVI652WwWP/rRj/DlL38ZHo9H9THXYDCgqakJt912G6644grV54T9/f1FmyzdrMlaBALG5L6qqLziqJD7bT/l1T1g8lfnFJRGCUz+6pyC8hoeMHYxRXlFL/diDwDy+iUwdodceepAecVRQXlNEAD5UZDPUzabxY033kj+rZQ9zZ07FzfeeCM5kVEolie3242bbrqJHOzU5AmYvvaSySRWrFgBr9dL/NPyZLFYsGLFinGvBRczT1deeSVWrFhxmcZMPFmtVtx0001k29LcnwD99QjWnlwuF9lPStmTz+cjdc1DnhwOB9muhXoqVo+Y6MloNGLFihVwOBzj9vdCPZnNZqxYsQIul4vozSZPlZWVWLly5WX9p9yOuXroexUVFbjpppvIcqXsac6cOVixYgUqKirG1WWxPE21n7CqvWQyiZUrV5KnR2l6ytXO/UxHIZ5o5KnQ33vJZBI33ngj5s6dC0D0iEI85eZM+VzKZHoTPSljTSYTqSGTyYSFCxeSf1M8TBxnMBjGxZQ7zmw2k8+xTBw38Td2bqxTjZvoKXdc7t+540wmExwOB+bPn08u1k0Wq5aeHA4HuWmZb1w+T0qsyjjlDVvlczPA2CdilIurnZ2duHjxIvlEkvKpF2Bs31OecFY+EaOMm8qTwWBAMBgk2pcuXRr3iRiFiZ+9mehJ0UylUhgeHkZnZye5STHZehVPwH999ibXUyqVQmdnJ6LR6GWeFJS3nIDx11gSiQTeffdd3HzzzZd5N5lMU37KR7mxo/ydu8xs8pTrSWG6PE3mSbngC/zXp3wUcucuyLc/5X6CSLkYDYzlKXc5i8Uy7pOAU3myWCzE+1T700RPIyMj6OjoIPWgjMvXI/LVXj5PEz+5pKA2TwaDAU6nc9L9Pd++n5snFp5kWUZnZydisdi4WFn0PVmWMX/+fDgcDrI/0DrmKr83fD4fiUPNMVfRU26CAOrOCfv7+1EsxI0QgaCEsdls5DXDUoc3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWM2m8nbS6UOb160jieZTJLPwfCsTUNLjYay7Pbt21XFIKADy7rVEt76D6DttmXpX0/nYLQRc4QIBCVMIpFAa2vruKc1ShXevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y4sy+jt7SVPe5cyvHnROh673Y7a2tpxTzbzqE1DS42GsqwyT4OguLCsWy3hrf8A2m5blv71dA5GG3EjRCAoYXg8cBQKb160jofl+mhq09BSo8FbnZQ7eskHbz5E/2GnJ/qPftBTPnjzInoQO61CNXirkXJH+UyNMhF1KcObF63jMZvNqK6uHvfZGh61aWip0VCWFVMM8wHLutUS3voPoO22ZelfT+dgtBGTpQtKGmWydAUtJ9gRCAQCgUAgEAgEAgHf9PX14cMPP5zy32+++eZx33LPpbW1lVFUAq0YGBjAxo0bpx33+OOP47777pt2XFNTE+bPn696fdPpzUSnqakJAKYcN1NPM2WyWPPFOd22mqkODabbVrnj1ORDWXamfmjUE62apF0v+ZhNbSiwrpHJKCRONdTW1mq2rmJSzGu54o0QgaCESafTGBgY0MUrqrx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKnUwmg2g0ytVTzIXCmxet4zGZTGSyeJ61aWip0VCWFc9R8wHLutUS3voPoO22ZelfT+dgtBE3QgSCEiYSiWDPnj2IRCLFDkU1vHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsodSZLw7rvvQpKkYoeiGt68aB2P2+3G1q1b4Xa7udamoaVGQ1mWh8/aCNjWrZbw1n8AbbctS/96Ogejjfg0lqCkKfdPY2WzWSSTSdhsNhgMhmKHowrevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYjpQbtT2Nls1mk02mYTKaSzwdvXljEk+9zOgaDATabDclkEt///vepfhorVzvfZbeZfIppKq3ZfBprpvFMhrLsvn37sGDBginjnKm3yRCfxpqcyXQm5rJUP401b968We3vWnwaa7bbVg2T9Ttan8bi/RysmNdyS3tmHYGgzDEYDLDb7cUOgwq8edE6Hpbro6lNQ0uNBm91Uu7oJR+8+RD9h52e6D/6QU/54M2L6EHstArV4K1Gyh2DwVDykxQr8OZF63iy2SwSiQT32jS01Ggoy/Jws0zAtm61hLf+A2i7bVn619M5GG3Ep7EEusBut8PlcgEY+/ZcMBgkTzmEw2Hyqtno6ChisRgAQJZlBINBohEKhZBKpQAA8Xgc8XgcAJBKpRAKhci4YDBIXgmNxWIYHR0FMPZaWzgcBjDWPIPBIPn+XTQaJc00mUyS18EymQyCwSD5JmAkEkEymQQAJBIJRKPRvJ7C4TC+//3vY2BgoOQ99ff34/HHH0c4HOYiT0NDQ/j+97+PcDisOk/A9LU3PDyMnTt3YnBwkLqnCxcuYOfOnRgaGuIiT319fdi5cyfC4fCsPSk1f+HCBQB096eZ5KlU9ietPF28eJHsJ6XsaWBggPjgIU+XLl0i8dDIk5Y9YqKngYEB7Ny5E5cuXaJSe0qsFy9eLChPZ8+eJT2snI+5euh7IyMj+P73v0/iKGVP58+fx86dOzEyMsJFnnL3Ey1qLxwO4/HHH8fZs2epe8rV5iFPhf7eU3z09/eTPIkeMTtPyWSSaKdSKeJP0ZvKk/J3Op0eF8/bb789zkfuOCUe5YKaEqskSWQ7yLJ82bjcWHPH5cY6cdxUnnIv5CUSiXHjcmMNh8Nob29HMpm8LNZieAqHw3j77beRTCYL9jRxnBKr0+lERUUFAMBqtcLj8cDj8cDv96OqqorE4HK5yAU7m81GPpFjNBrh8/mm9ZTNZuHz+Yj2woULYbVaAQAVFRVwOp0AALPZDJ/PN6UnRdtiseDqq6+G3++Hx+OBz+cjF09lWSbLKJ6AsYuOubG6XC5UVlbC7/fjyiuvvMyT0Th2adDtdpO3o3Kvsfh8Ptx///3EY27tpdPpKT2lUikqecr1pMzdMF2eJvOUTqeJJ5PJBJ/PR27ueDwekqd8tef1emGxWAAADocDDoeD5Enxp2goecrnKZVKTbs/TfS0YMECUg92u50sk69H5Ku9fJ68Xi8Zl1t7avOUzWYRCoXI/j7THpGbJxaerrrqKvj9fsydO5d4YtX3EokE2tvbEQ6HSZ5oHXMvXbqEnTt3YmBggMoxNxgMYufOnTh37hzVc8JiIG6ECHRBTU0N1q9fD2DsAnZjYyPZOfft24fu7m4AQFtbG1paWgCMvSLd2NhINHbt2oWenh4AwOHDh3H48GEAQE9PD3bt2kXGNTY2oq+vDwDQ0tKCtrY2AEB3dzf27dsHYKxxNDY2YmhoCABw6NAhtLe3AwA6Ojpw8OBBAGPNobGxkTSjgwcPoqOjAwDQ3t6OQ4cO5fVkt9tRWVmJN954o+Q9/eQnP8HixYtht9u5yNP7779P7lqrzRMwfe2dP38etbW1OHLkCHVPXV1dqK2txfvvv89Fnp577jnU1tbCbrfP2pPdbofVakVXVxcAuvvTTPJUKvuTVp56e3shyzLsdntJe3rjjTdQWVkJu93ORZ6Gh4cRiUTISQPr2qPZIyZ6euONN1BbW4vh4WEqtfe73/0OtbW16O3tLShP+/btw6pVq2C328v6mKuHvheNRhGJRMgFjFL29Nprr6G2thbRaJSLPO3btw833ngj7Ha7JrVnt9tx/fXXkxhoerLb7fizP/sz7Nu3j4s8Ffp7z263Y/HixfjJT35C8iR6xOw8dXR0EO0zZ87g1KlTRG/37t1TelL+HhkZwdGjRwGMXXCTJIlchDp16hTOnDlD1qvEk06nEQgEyLju7m6yHQYGBsjv2WQyiUAgQGLt6uoiN937+vpILuLxOAKBALlwlc9TIBAgno4ePYqRkRGSm1xP//mf/4nq6mqYzWYEAgGyXYvlqbu7G1dccQXMZnPBnpQ8AUAgECAX99auXYvVq1cDAJYuXYr6+nokEgkcOXIEf/u3f0sucq5fvx41NTUAgJUrV6Kurg4AyI0N5cLmVJ6SyST8fj+y2SxaW1vxla98BUuXLgUArF69GmvXrgUAVFVVwe/3T+lJye3ixYuxefNmtLa2IpFIkBs3ADA4OIjh4eFxnoCxC85+v3+cpxtuuAGtra247rrrLvOkXPCtq6vDypUrAYy/xuJyueDxeMgxN7f2hoeHp/TU29tLJU+5niorK2eUp8k8jYyMEE/KjSHlJkl9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPy1NvbS8adPn2a5Cmfp9OnT0+7P030tG7dOpw9exaJRAI1NTU4d+4cgPw9Il/t5fO0bds2Mi639tTmSZZldHZ2oqqqCmazecY9IjdPLDx96lOfQmtrK6qrq4knVn3PYDCguroa3d3dJE+0jrnDw8Oora3FG2+8QeWYK0kSamtr8dJLL1E9JywGYo4QQUmjfFfObrfDbDajvb0dS5YsQSQSgdfrhcFgQDgcJhdPR0dHkclk4HQ6IcsyotEouWscCoXgcDhgsVhIg3M4HEilUojH4+SucTAYhMvlgtlsRiwWg9FoREVFBSRJQiKRgMfjIXe33W43TCYTotEozGYzuVgoSRLcbjcymQzC4TA8Hg+MRiMikQisVitsNhsSiQRkWYbL5UI6nRaehCfhSXgSnoQn4Ul4Ep6EJ+FJeBKeZumpv78fJ06cgNlshslkQiqVQjabhdVqRSaTwbJlyzBv3rxJPR05cgQWiwXpdBqpVIo8pJBIJGC1WmE0GiFJEgwGAxknyzJsNhv5JnruOKPRCLPZTJ7kzx2nfDs9mUzCZDKRcZlMhsQqSdK4cVN5kiRpXKwWi4WMA1BWni5duoS6ujo4nU5kMhmMjo7CarWSB94MBgO8Xi8eeugh3H///XC5XJBlGYlEAjabDVarFZFIBEajER6PB08++SQWLFgwpafz58/j3nvvRSgUQjabhcfjQSKRgCRJqKiogNFoRCwWg9lshsvlwq5duzB//vzLPA0ODmLz5s2wWCxwOBzkiW+fz4doNApZlvHss8/CYDBg06ZNqjwpX0Fwu92QJAnJZJJcY4lGozCZTHC73eO8K3nq7+9HQ0PDOE/KE9/PPPMMFi5cSDVPkUiEvNkxG0/79+9HOp3G1q1bx3mamKcDBw5g7ty5l9VeMBjExo0b4fV6ydtiylsG8XgcFosFTz31FBYtWgQAOHv2LOrr6yHLcl5PBw4cwNVXXz3l/jQyMoK6urq8edq7dy+qqqqm3J+GhoZQX19/We0peVI8PfbYY3jwwQfHeZqq9tTm6fnnn8ecOXNm1SMGBwfR0NCQd3+a6GmyPM3G0549ezBv3jzN+t6qVatK/pg7k98R/f39RZsjRNwIEZQ05T5Z+ujoKNra2rB69WryWmKpwpsXreNhuT6a2jS01GjwVifljl7ywZsP0X/Y6Yn+ox/0lA/evIgexE6rUA3eaqTUoD1ZeiqVwpkzZ3DNNdeQT6+UKrx5YRFPvgmWKyoqsHr1arS1teFf//VfqU6WnqutfJpmNnq5cU+lNZvJ0mcaz2Qoy27atAlXX331lHHO1NtkiMnSJ2cynYm5LNXJ0ufOnTur/V2LydJnu23VMFm/ozVZOu/nYMW8lis+jSUQlDATv5FbyvDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopdyZ+B76U4c2L1vFMnHuBV20aWmo0Js6PIiguLOtWS3jrP4C225alfz2dg9GGzfT0AoFAE5xOJzZs2FDsMKjAmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNyxWq3jnmQtZXjzonU8sVgML7zwAvfaNLTUaCjL3nbbbapiENCBZd1qCW/9B9B227L0r6dzMNqU9u1DgaDMkWWZTFZc6vDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopd3h6slUtvHnROh6z2Uwmi+dZm4aWGg1lWV7qpNxhWbdawlv/AbTdtiz96+kcjDbiRohAUMJEo1EcOHAA0Wi02KGohjcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5I0kSjh07BkmSih2KanjzonU8LpcLd999N1wuF9faNLTUaCjLptPpgtcvoAfLutUS3voPoO22ZelfT+dgtBGTpQtKmnKfLF0gEAgEAoFAIBAIBFNDe7J0QWlBe6JoWhNTT6c308m5gZlNlk6DyWIVk6VPvizLydJZaADaT5Y+20nItZgsfSIsJ0ufDFqTpfOOmCxdIBAIBAKBQCAQCAQCgUAgEAgEAoGAAeJGiEBQwoRCIezYsQOhUKjYoaiGNy9ax8NyfTS1aWip0eCtTsodveSDNx+i/7DTE/1HP+gpH7x5ET2InVahGrzVSLmTSCTw1ltvIZFIFDsU1fDmRet4vF4vHnjgAXi9Xq61aWip0VCWTaVSBa9fQA+WdaslvPUfQNtty9K/ns7BaCNuhAgEJYzD4cC6devgcDiKHYpqePOidTws10dTm4aWGg3e6qTc0Us+ePMh+g87PdF/9IOe8sGbF9GD2GkVqsFbjZQ7FosFS5YsgcViKXYoquHNi9bxxONxNDc3Ix6Pc61NQ0uNhrKsyWQqeP0CerCsWy3hrf8A2m5blv71dA5GG3OxAxAIBIWjNE49wJsXreNhuT6a2jS01GjwVifljl7ywZsP0X/Y6Yn+ox/0lA/evIgexE6rUA3eaqTcMZlMuPLKK4sdBhV486J1PKlUCidPnuRem4aWGg1lWaNRPEvNAyzrVkt46z+AttuWpX89nYPRRnQxgaCE0cuTAAB/XrSORzyNpN36BfTQSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDvKhTI9fCaINy9axyPeSJvdsrIsF7x+AT14erpeDbz1H0DbbcvSv57OwWgjboQIBAKBQCAQCAQCgUAgEAgEAoFAINAt4tNYAkEJo9yt1gO8edE6Hpbro6lNQ0uNBm91Uu7oJR+8+RD9h52e6D/6QU/54M2L6EHstArV4K1Gyh2ePvGhFt68aB2P8pQy79o0tNRoKMveddddqmIQ0IFl3WoJb/0H0HbbsvSvp3Mw2og3QgS6wG63w+VyAQDS6TSCwSCy2SwAIBwOQ5IkAMDo6ChisRgAQJZlBINBohEKhcgrafF4nLyylUqlEAqFyLhgMEheCY3FYhgdHQUASJKEcDgMAMhmswgGg0in0wCAaDSKRCIBAEgmk4hEIgCATCaDYDCITCYDAIhEIkgmkwCARCKBaDSa11MqlcKxY8eIj1L2NDw8jK6uLqRSKS7yFI1G0dHRgVQqpTpPwPS1F4/HcfLkSfI3TU+RSAQnT54kfxc7TxcvXiSvgM6oT+IBAAEAAElEQVTWUyqVQkdHB/FBc3+aSZ5KZX/SylMsFsPvf/97pFKpkvYUDAZx7NgxpFIpLvI0OjqKd999l/hgXXs0e8RET8FgECdPniR/q8lTLBZDOBzGyZMnyd+zzdPQ0BC6u7uRSqXK+pirh76XSCTw7rvvEh+l7GlkZAQnT55EIpHgIk9DQ0M4ceIEUqmUJrWXSqVw4sQJDA0NUfeUSqXw3nvvYWhoiIs8Ffp7L5VKoaurC8PDwyRPokfMzlMymSTayvE+V28qT8rf6XSaxJNOp3Hu3Dnyb8oxQvk3JZ5sNotEIkFilSSJbAdZli8blxtr7rjcWCeOm8qTEquyXXLH5cYai8Vw8eJF4i831mJ4isfjGBwcJL/7C/E0cZwSq9PpREVFBQDAarXC4/GQC5FXXnklicHlcsFutwMAbDYb3G43AMBoNMLn803rKZvNwufzEe0rrrgCVqsVAFBRUQGn0wkAMJvN8Pl8U3pStC0WC+bOnUsmVfb5fDCbzWS9yjKKJwAwGAzjYnW5XHC5XFiyZAmcTudlnpS5P9xuN2w2G4Dx11hsNhtuuukmsq7c2kun01N6SqVSVPKU60mZsH26PE3mKZ1OE08mkwk+nw8GgwEA4PF4SJ7y1Z7X6yWTWzscDvIJJYvFMu4TR6lUiuQpnyflegMw9f400dOcOXOwfPlyWCwW2O12sky+HpGv9vJ58nq9ZFxu7anNUzabRSwWI8fnmfaI3Dyx8OR2u7FkyRI4HA7iiVXfk2UZFy9eRDweJ3midcwdHR3FyZMnyd9K3IUec5PJJE6ePIlLly5RPScsBuJGiEAX1NTUYP369QCAoaEhNDY2kp1z37596O7uBgC0tbWhpaUFANDX14fGxkaisWvXLvT09AAADh8+jMOHDwMAenp6sGvXLjKusbERfX19AICWlha0tbUBALq7u7Fv3z4AY42jsbGRnNAdOnQI7e3tAICOjg4cPHgQwFhzaGxsJM3o4MGD6OjoAAC0t7fj0KFDeT3F43G0tLTowtOBAwfw8ssvIx6Pc5Gn3/3ud2hpaUE8HledJ2D62nvvvffQ3NyMX/7yl9Q9HTlyBM3Nzfjd737HRZ727t1Lvg85W09KzR85cgQA3f1pJnkqlf1JK0/Hjh0j+0mpe1J88JCnnp4e/PznPyc/blnXHs0eMZmn5uZm9PT0UMnTr3/9azQ3N+PYsWMF5enJJ5/ESy+9hHg8XtbHXD30vbNnz+LnP/85RkZGSt7Tiy++iObmZpw9e5aLPOXuJ1rUXjwex0svvYQnn3ySuiflyc4nn3ySizwV+nsvHo/j5ZdfxoEDB0ieRI+YnaeOjg6ifebMGZw6dYro7d69e0pPyt8jIyM4evQogLGLTh988AHpP6dOncKZM2fIepV40uk0AoEAOZ53d3eT7TAwMICuri7iPRAIkFi7urowMDBAtrmSi3g8jkAgQC5c5fMUCASIp6NHj5JYe3p6xnnq6OggDygFAgGyXYvl6dixY3j//feRSqUK9qTkCQACgQC5uLd27VqsXr0aALB06VLU19eTp5T//u//nlzkXL9+PWpqagAAK1euRF1dHYCxC7B+v59c2JzKUzKZhN/vx5w5c7Bu3Tps2bIFS5cuBQCsXr0aa9euBQBUVVXB7/dP6UnJ7eLFi/GNb3yDzFvg9/tRVVUFABgcHCQ3SBVPwNgFZ7/fP87TZz/7Waxbtw6f/vSnL/OkXPCtq6vDypUrAYy/xrJo0SKsXbuWXITNrb3h4eEpPfX29lLJU66nysrKGeVpMk8jIyPEU2VlJfx+P7lJUl9fT/KUr/a2bduGxYsXAwDWrFmDNWvWkDz19vaScadPnyZ5yufp9OnT0+5PEz1t3LgRt912GxwOB2pqanDu3DkA+XtEvtrL52nbtm1kXG7tqc2TLMs4evQo6T8z7RG5eWLh6S/+4i+wbt06fPKTnySeWPW9RCKBkydP4tixYyRPtI65PT09aG5upnbMHRwcRHNzM5qamqieExYDQ1a5XSMQlCAnTpzA8uXLYbfbYTab0d7ejiVLliASicDr9cJgMCAcDsNut8NqtWJ0dBSZTAZOpxOyLCMajZK7xqFQCA6HAxaLhTQ4h8OBVCqFeDxO7hoHg0G4XC6YzWbEYjEYjUZUVFRAkiQkEgl4PB5ks1mEQiG43W6YTCZEo1GYzWbY7XYkk0lIkgS3241MJoNwOAyPxwOj0YhIJAKr1QqbzUbuELtcLqTTaeFJeBKehCfhSXgSnoQn4Ul4Ep6EJ+Fplp76+/tx4sQJmM1mmEwm8iar1WpFJpPBsmXLMG/evEk9HTlyBBaLhbyhoDzZnEgkYLVaYTQaIUkSDAYDGSfLMmw2G7LZLJLJ5LhxRqMRZrOZPMmfO85ms8FgMCCZTMJkMpFxmUyGxCpJ0rhxU3mSJGlcrBaLhYwDUFaeLl26hLq6OjidTmQyGYyOjsJqtcJutyMcDsNgMMDr9eKhhx7C/fffD5fLBVmWkUgkYLPZYLVaEYlEYDQa4fF48OSTT2LBggVTejp//jzuvfdehEIhZLNZeDweJBIJSJKEiooKGI1GxGIxmM1muFwu7Nq1C/Pnz7/M0+DgIDZv3gyLxQKHw0Ge+Pb5fIhGo5BlGc8++ywMBgM2bdqkylM4HEYmk4Hb7YYkSUgmk+QaSzQahclkgtvtHuddyVN/fz8aGhrGeVKe+H7mmWewcOFCqnmKRCLkzY7ZeNq/fz/S6TS2bt06ztPEPB04cABz5869rPaCwSA2btwIr9dL3hZT3jKIx+OwWCx46qmnsGjRIgBjD2zU19dDluW8ng4cOICrr756yv1pZGQEdXV1efO0d+9eVFVVTbk/DQ0Nob6+/rLaU/KkeHrsscfw4IMPjvM0Ve2pzdPzzz+POXPmzKpHDA4OoqGhIe/+NNHTZHmajac9e/Zg3rx5mvW9VatWlfwxdya/I/r7+7F8+XIoHD9+HMuWLYMWiBshgpJGuRGioOXOIxAIBAKBQCAQCAQCvunr68OHH3445b/ffPPN5KnwibS2tjKKSqAVAwMD2Lhx47TjHn/8cdx3333TjmtqasL8+fNVr286vZnoNDU1AcCU42bqaaZMFmu+OKfbVjPVocF02yp3nJp8KMvO1A+NeqJVk7TrJR+zqQ0F1jUyGYXEqYba2lrN1lVMinktV3waSyAoYYLBIB555JGif2OPBrx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKnUQigba2tnHzBpQqvHnROh6fz4eHH3543NwCPGrT0FKjoSybOweGoHiwrFst4a3/ANpuW5b+9XQORhtxI0QgKGFcLhe2bNlCJvwqZXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO1arFZ/85CfJhL2lDG9etI4nGo1i//79ZMJfXrVpaKnRUJZVJsAWFBeWdaslvPUfQNtty9K/ns7BaGMudgACgaBwzGYzqqurix0GFXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO0ajseSfxFbgzYvW8ciyPG6Ca161aWip0VCWNRrFs9Q8wLJutYS3/gNou21Z+tfTORhtRBcTCEqYWCyGF154AbFYrNihqIY3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuSNJEo4fPw5Jkoodimp486J1PE6nExs2bIDT6eRam4aWGg1lWVmWC16/gB4s61ZLeOs/gLbblqV/PZ2D0UbcCBEIShjlDrIenszgzYvW8bBcH01tGlpqNHirk3JHL/ngzYfoP+z0RP/RD3rKB29eRA9ip1WoBm81Uu4YDAbY7XYYDIZih6Ia3rxoHU8mk0EwGEQmk+Fam4aWGg1lWV7qpNxhWbdawlv/AbTdtiz96+kcjDbi01gCQQlTUVGBW2+9tdhhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWOxWHDttdcWOwwq8OZF63hGR0fx2muvca9NQ0uNhrLsli1bVMUgoAPLutUS3voPoO22ZelfT+dgtCn+rRiBQFAwkiShs7OTq1cJC4U3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuZNOpzEwMIB0Ol3sUFTDmxet47FarVixYgWTyYppatPQUqOhLFvqbyDoBZZ1qyW89R9A223L0r+ezsFoI26ECAQlTCKRQGtrKxKJRLFDUQ1vXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRckeZTFcP8yXw5kXreOx2O2pra2G327nWpqGlRkNZlqcL1uUMy7rVEt76D6DttmXpX0/nYLQxZLPZbLGDEAgK5cSJE1i+fDn57+PHj2PZsmVFjEggEAgEAoFAIBAIBLzQ19eHDz/8cMp/v/nmm2Gz2Sb9t9bWVkZRCbRiYGAAGzdunHbc448/jvvuu2/acU1NTZg/f77q9U2nNxOdpqYmAJhy3Ew9zZTJYs0X53TbaqY6NJhuW+WOU5MPZdmZ+qFRT7Rqkna95GM2taHAukYmo5A41VBbW6vZuopJMa/lijdCBIISJpvNIpFIQA/3M3nzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO9lsFrIs6yIfvHnROh6WkxXT1KahpUZDWZaXOil3eJxkvBB46z+AttuWpX89nYPRRtwIEQhKmFAohEcffRShUKjYoaiGNy9ax8NyfTS1aWip0eCtTsodveSDNx+i/7DTE/1HP+gpH7x5ET2InVahGrzVSLmTTCZx5MgRJJPJYoeiGt68aB2P1+vFAw88AK/Xy7U2DS01GsqyPH3CqJxhWbdawlv/AbTdtiz96+kcjDbiRohAUMK43W40NDTA7XYXOxTV8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3rFYrbrrpppKfqBjgz4vW8UQiEezevRuRSIRrbRpaajSUZc1mc8HrF9CDZd1qCW/9B9B227L0r6dzMNqILiYQlDAmk0nT7xWyhDcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5YzQa4XK5ih0GFXjzonU86XQaAwMD3GvT0FKjoSxb6p9i0gss61ZLeOs/gLbblqV/PZ2D0Ua8ESIQlDDRaBT79+9HNBotdiiq4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuSJKEzs5OSJJU7FBUw5sXreNxuVy4++67mVyMpKlNQ0uNhrKs+DQWH7CsWy3hrf8A2m5blv71dA5GG3EjRCAoYcxmM6qrq3XxiipvXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRcsdoNMLn88FoLP3LKbx50ToeWZbR29vL5AI/TW0aWmo0lGXFGyF8wLJutYS3/gNou21Z+tfTORhtih+BQCAoGLvdjtra2mKHQQXevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y5yQUcP8OZF63gSiQRaW1u516ahpUZDWbahoUFVDAI6sKxbLeGt/wDabluW/vV0DkYbfm67CQQqsNvt5NW1dDqNYDCIbDYLAAiHw+RVs9HRUcRiMQBjd3qDwSDRCIVCSKVSAIB4PI54PA4ASKVSCIVCZFwwGCR3h2OxGEZHRwGMvdYWDocBANlsFsFgEOl0GsDYa2CJRAIAkEwmycRLmUwGwWAQmUwGwNjETMlkEsBYA1ZeG5vKUzKZxJtvvolLly6VvKehoSG89dZbSCaTXOQpHA6jtbUVyWRSdZ6A6WsvGo2ivb0dIyMj1D2FQiG0t7cjHA5zkacLFy6gvb0dyWRy1p6SySTa2trIdqG5P80kT6WyP2nlKRKJkP2klD1dunQJb775JpLJJBd5isVi+PWvf000WNcezR4x0dOlS5fQ3t6OWCxGpfaCwSDa29sRiUQKytPg4CB++9vfkv+/XI+5euh78Xgcv/71r8cdt0vV0/DwMNrb2xGPx7nIU+5+okXtJZNJHDlyBIODg9Q9JZNJvP322xgcHOQiT4X+3ksmk3jrrbcwNDRE8iR6xOw8JZNJop1KpYg/RW8qT8rf6XSaxCPLMv7whz8QDUmSxo1T4slms0gkEiRWSZLIdpBl+bJxubHmjsuNdeK4qTwpsSrbJXdcbqyxWAx9fX2QZfmyWIvhKRaL4aOPPoIsywV7mjhOidXpdKKiogLA2CTFHo8HNpsNNTU1uOqqq0gMLpcLdrsdAGCz2cjkvsrT29N5ymaz8Pl8RPvKK68kkyFXVFTA6XQCGLsI6vP5pvSkaFssFlRWVqKmpgY2mw0+n488VS3LMllG8QQABoNhXKwulwsejwc1NTVwu92XeVKeSHe73bDZbADGX2OpqKjAX/zFX5CYcmsvnU5P6SmVSlHJU64nk8k0ozxN5imdThNPJpMJPp+PvOXi8XhInvLVntfrhcViAQA4HA44HA6SJ8WfoqHkKZ+nVCo17f400dPcuXPx2c9+FjabDXa7nSyTr0fkq718nrxeLxmXW3tq85TNZhGNRnH27FnidSY9IjdPLDx5vV7U1NSQfUaJlUXfS6VS6OvrQywWI3midcyNxWJob2/HpUuXqBxzR0dH0d7ejosXL1I9JywG4kaIQBfU1NRg/fr1AMYu1DY2NpKdc9++feju7gYAtLW1oaWlBQDQ19eHxsZGorFr1y709PQAAA4fPozDhw8DAHp6erBr1y4yrrGxEX19fQCAlpYWtLW1AQC6u7uxb98+AGONo7GxkZysHDp0CO3t7QCAjo4OHDx4EMBYc2hsbCTN6ODBg+jo6AAAtLe349ChQ3k9SZKEQCCAV199teQ9Pffcc/jd734HSZK4ydORI0fIwUJNnoDpa++DDz5AZ2cnfvWrXzHx1NnZyU2e9u3bR76FOVtPkiThyJEjTPanmeSpVPYnrTydOHECv/nNb8hF4lL19OqrryIQCECSJC7ydObMGbz55pvkx6MWtUerR0z09Oqrr6KzsxNnzpyhUntvvvkmOjs7ceLEiYLytHv3bnR0dECSpLI+5uqh750/fx5vvvkmOVErZU/Nzc3o7OzE+fPnucjT7t278e6770KSJE1qT5IkvPvuu9i9ezd1T5IkoaOjA7t37+YiT4X+3pMkCb/73e/w3HPPkTyJHjE7Tx0dHUT7zJkzOHXqFNHLV3vK3yMjIzh69CiAsQs+H330EbmYc+rUKZw5c4asV4knnU4jEAiQi1Xd3d1kOwwMDKCrq4t4DwQCJNauri4yWW9fXx/JRTweRyAQIBeu8nkKBALE09GjRzEyMkJyk+upo6MDAwMDJFZluxbL03/+53+iv78f6XS6YE9KngAgEAiQi3tr167F6tWrAQBLly5FfX09rFYrVq5ciXvvvZdc5Fy/fj1qamoAACtXrkRdXR2AsQuwfr+fXNicylMymYTf74fb7caKFSuwefNmLF26FACwevVqrF27FgBQVVUFv98/pSclt4sXL8bXv/51rFixAlarFX6/H1VVVQCAwcFBDA8Pj/MEjF1w9vv9l3lasWIFbrzxxss8KRd86+rqsHLlSgDjr7EsWLAAq1evnrT2hoeHp/TU29tLJU+5niorK2eUp8k8jYyMEE+VlZXw+/3kJkl9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPy1NvbS8adPn2a5Cmfp9OnT0+7P030dNddd2HVqlWwWq2oqanBuXPnAOTvEflqL5+nbdu2kXH/P3vvHhzFeeb7f2em56K5c5ERWPzMCdkNAexAnA0imxO08TG5siYxSUwExtZeBN7sWnh3T3nLta5kT9We2LUbrEqZS1hjZALy2tjBxokJybGlrEmkBEfCgIwxEGEkkCyE5q7unp6Z3x+qfndGaEbS9Ns97/S8n6pUyeHtbz/ffp5+evr2dnbtac2Toih4++23ce3aNaRSqWn3iOw86eHpc5/7HFasWIHly5cTT3r1PVmWMTg4iHfeeYfkidYx9/Lly+jp6cHPfvYzKsfckZER9PT04IUXXqB6TlgKLBn1dg2HU4acPXsWy5cvh8vlgiAI6OzsxJIlSxCNRhEIBGCxWBCJROByueBwODA2NoZ0Og2PxwNFURCLxchd43A4DLfbDbvdThqc2+1GMplEIpEgd41DoRC8Xi8EQUA8HofVakVVVRVkWYYoivD7/chkMgiHw/D5fLDZbIjFYhAEAS6Xizxx7PP5kE6nEYlE4Pf7YbVaEY1G4XA44HQ6IYoiFEWB1+tFKpXinrgn7ol74p64J+6Je+KeuCfuiXvinmboaWBgAGfPnoUgCLDZbEgmk8hkMnA4HEin01i2bBnmzZs3qacTJ07AbrcjlUohmUySJ5tFUYTD4YDVaoUsy7BYLGScoihwOp3IZDKQJClnnNVqhSAI5En+7HFOpxMWiwWSJMFms5Fx6XSaxCrLcs64fJ5kWc6J1W63k3EAKsrTjRs30NDQAI/Hg3Q6jbGxMTgcDrhcLkQiEVgsFgQCATz++ON45JFH4PV6yRsyTqcTDocD0WgUVqsVfr8fO3fuxPz58/N6unbtGh566CGEw2FkMhn4/X6IoghZllFVVQWr1Yp4PA5BEOD1erFr1y7U1NTc5GloaAibN2+G3W6H2+0mT3wHg0HEYjEoioIDBw7AYrFg06ZNmjxFIhGk02n4fD7ygJN6jSUWi8Fms8Hn8+V4V/M0MDCApqamHE/qTcLnnnsOCxYsoJqnaDRK3uyYiaf9+/cjlUph69atOZ4m5qm1tRVz5sy5qfZCoRA2btyIQCBA3hZT3zJIJBKw2+145plnsHDhQgDAlStX0NjYCEVRCnpqbW3Frbfemnd/Gh0dRUNDQ8E87d27F7W1tXn3p+HhYTQ2Nt5Ue2qeVE9PPvkkHnvssRxP+WpPa54OHTqEWbNmzahHDA0NoampqeD+NNHTZHmaiac9e/Zg3rx5hvW9VatWlf0xdzq/IwYGBrB8+XKonDlzBsuWLYMR8BshnLJGvRGiYuTOwwITm1I5w5oXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViPlRn9/Py5cuJD331evXk2eCp/IZHPFT7zYVc6w5kWPeAYHB7Fx48ZJ/y37ovm///u/Y/v27VPqtbW1oaamZsr1TbwgP1O97LjzabW1tQFAXn87duwgnqYbz2RMvAmUL87pepuMQjo0mGpbZY+bKh/TWXa6fqZbT9lMzGUxGpORXS9609bWRm4wTHd/17tGgJlvWy1M1u9ofUeD9XOwUl7L5b+iOJwyZuKr4eUMa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ6E6c/KWdY82J0PBOnHGJVm4aWFo2J04JxSouedWskrPUfwNhtq6d/M52D0Ya/EcIpa/gbIeZ5Oow1L/xpSP20+BPZ5sEs+WDNB+8/+unx/mMezJQP1rzwHqSfFn8jpDTwN0Lyw5oX/kbI5HHzN0K0w98I4W+ETAf+Rog+eiy9ESIYshYOh6MLVquVzBdY7rDmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpWOxWMi3Dcod1rwYHU86nSbfFGBZm4aWFg11WRZulnH0rVsjYa3/AMZuWz39m+kcjDb8cRIOp4yJRqPYvXs3otFoqUPRDGtejI5Hz/XR1KahpUWDtTqpdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppFavBWo1UOpIk4eTJk0xN51IsrHkxOh6fz4etW7fC5/MxrU1DS4uGuiyfGosN9KxbI2Gt/wDGbls9/ZvpHIw2/EYIh1PGOBwOrFixAg6Ho9ShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh2bzYaamhrYbLZSh6IZ1rwYHY8sy+jp6YEsy0xr09DSoqEuy98IYQM969ZIWOs/gLHbVk//ZjoHow2fGovDKWOcTifq6upKHQYVWPNidDx6ro+mNg0tLRqs1UmlY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k+rWA3WaqTSEQQBtbW1pQ6DCqx5MToeSZLQ2dnJvDYNLS0a6rIPP/ywphg4dNCzbo2Etf4DGLtt9fRvpnMw2vA3QjicMkYURbS3t0MUxVKHohnWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXQURUFfX58ppglizYvR8bhcLtTX1+syTz9NbRpaWjTUZVOpVNHr59BDz7o1Etb6D2DsttXTv5nOwWjDb4RwOGUMiweOYmHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSkf9mG46nS51KJphzYvR8QiCgEWLFkEQ6E+WQlObhpYWDXXZTCZT9Po59NCzbo2Etf4DGLtt9fRvpnMw2lgyvJNxypizZ89i+fLl5L/PnDmDZcuWlTAiDofD4XA4HA6Hw+GwQn9/Py5cuJD331evXg2n0znpv7W3t+sUFccoBgcHsXHjxinH7dixA9u3b59yXFtbG2pqajSvbyq96ei0tbUBQN5x0/U0XSaLtVCcU22r6erQYKptlT1OSz7UZafrh0Y90apJ2vVSiJnUhoreNTIZxcSphfr6esPWVUpKeS2XvxHC4ZQxqVQKg4ODpnhFlTUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqnXQ6jVgsxtRTzMXCmhej49HzY8U0tWloadFQl+XPUbMBix8ZLwbW+g9g7LbV07+ZzsFow2+EcDhlTDQaxZ49exCNRksdimZY82J0PHquj6Y2DS0tGqzVSaVjlnyw5oP3H/30eP8xD2bKB2teeA/ST6tYDdZqpNKRZRlvv/02ZFkudSiaYc2L0fH4fD5s3boVPp+PaW0aWlo01GVZmNaGo2/dGglr/Qcwdtvq6d9M52C04VNjccqaSp8aK5PJQJIkOJ1OWCyWUoejCda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRopN2hPjZXJZJBKpWCz2co+H6x50SOeQtPpWCwWOJ1OSJKEH/zgB1SnxsrWLnTZbTpTMeXTmsnUWNONZzLUZfft24f58+fnjXO63iaDT401OZPpTMxluU6NNW/evBnt70ZMjTXTbauFyfodramxWD8HK+W13PL+sg6HU+FYLBa4XK5Sh0EF1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0LBZL2X+kWIU1L0bHk8lkIIoi89o0tLRoqMuycLOMo2/dGglr/Qcwdtvq6d9M52C04VNjcThlTCQSwVNPPYVIJFLqUDTDmhej49FzfTS1aWhp0WCtTiods+SDNR+8/+inx/uPeTBTPljzwnuQflrFarBWI5WOJEno7OyEJEmlDkUzrHkxOh6/34/m5mb4/X6mtWloadFQl00mk0Wvn0MPPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxLpcL9fX1zNxZ1QJrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDqCIGDRokXMPclcDKx5MToeURTR3t6uyxPgNLVpaGnRUJct949zmwU969ZIWOs/gLHbVk//ZjoHow071cbhcGaMw+HAihUrSh0GFVjzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0rHZbLrNGW80rHkxOh5ZltHT08O8Ng0tLRrqslYrf5aaBfSsWyNhrf8Axm5bPf2b6RyMNryLcThlzNjYGI4dO4axsbFSh6IZ1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0kskkLly4YIppgljzYnQ8VVVV+OIXv4iqqiqmtWloadFQl02lUkWvn0MPPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQx6XQaoVAI6XS61KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHfVjuplMptShaIY1L0bHY7VaEQwGdXnTgaY2DS0tGuqyrNRJpaNn3RoJa/0HMHbb6unfTOdgtOFTY3E4ZYzH48F9991X6jCowJoXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjsPhwPLly0sdBhVY82J0PPF4HM8//zzz2jS0tGioy95zzz2aYuDQQc+6NRLW+g9g7LbV07+ZzsFoU963DzmcCkdRFPT19UFRlFKHohnWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXRYerJVK6x5MToePT9WTFObhpYWDXVZVuqk0mHxI+PFwFr/AYzdtnr6N9M5GG34jRAOp4yJxWJobW1FLBYrdSiaYc2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKR5ZlnDp1CrIslzoUzbDmxeh4vF4vHnjgAXi9Xqa1aWhp0VCX5d8IYQM969ZIWOs/gLHbVk//ZjoHo40lw9JkbBzODDl79mzOq2RnzpzBsmXLShgRh8PhcDgcDofD4XBYob+/HxcuXMj776tXr4bT6Zz039rb23WKimMUg4OD2Lhx45TjduzYge3bt085rq2tDTU1NZrXN5XedHTa2toAIO+46XqaLpPFWijOqbbVdHVoMNW2yh6nJR/qstP1Q6OeaNUk7XopxExqQ0XvGpmMYuLUQn19vWHrKiWlvJbL3wjhcDgcDofD4XA4HA6Hw+FwOBwOh2Na+I0QDqeMCYfD+P73v49wOFzqUDTDmhej49FzfTS1aWhp0WCtTiods+SDNR+8/+inx/uPeTBTPljzwnuQflrFarBWI5WOKIp46623IIpiqUPRDGtejI4nEAjg0UcfRSAQYFqbhpYWDXXZZDJZ9Po59NCzbo2Etf4DGLtt9fRvpnMw2vAbIRxT4HK5yBx+qVQKoVAI6qxvkUiEzLk3NjaGeDwOYPxjPaFQiGiEw2FyYE8kEkgkEgCAZDKZs7OGQiHygZ94PI6xsTEA4/P7RSIRAEAmk0EoFCJzaMZiMdLcJElCNBoFcPPHkaLRKCRJAjDeFNX58/J5crvd+NKXvkT+/3L2pCgKvvKVr8DtdjORJ5vNhi984Qtwu92a8wRMXXt2ux3r168nvmh6slqtWL9+PWw2GxN5SiaTWL9+Pdxu94w9ud1ufOELX4DVOn74ork/TSdP5bI/GeVJEASsXbsWbre7rD1lMhl86UtfgtvtZiJPDocDd999N9xuN5U8GdkjJnrKZDJYv349HA4HldqzWCxYv349BEEoKk+yLOPP//zP4Xa7K/qYa4a+53Q6cffdd6OqqqrsPaXTaaxfvx5Op5OJPMmyjHXr1sHtdhtSe263G+vWrcuZI5uWJ7fbjXvuuQeyLDORp2J/77ndbnzlK1/JOW7xHjEzT5IkEe1kMkn8qXr5PKl/p1IpEo/dbsdHPvIR2Gw24iN7nBpPJpMhtaOOU7eDoig3jcuONXtcdqwTx+XzlH1hTRTFnHHZsaZSKSxZsgR2u/2mWEvhKZ1O44/+6I9gt9uL9jRxnBqrx+MhxwyHwwG/349EIoEjR47AbreTGLxeL1wuF4DxY43P5wMAWK1WBIPBKT1lMhkEg0GibbPZ4HA4AABVVVXweDwAxn9HB4PBvJ5UbbvdDkEQcOTIESQSCQSDQfIhZ0VRyDKqJwCwWCw5sXq9XqRSKRw5cgSKotzkST238vl8ZJq47GssoijiF7/4Rc45mLreVCqV11MymaSSp2xP6n43VZ4m85RKpYgnm82GYDAIi8UCAPD7/SRPhWovEAjAbrcDANxuN/m9rtZstnc1T4U8JZPJKfeniZ6sVitee+01JBIJuFwuskyhHlGo9gp5yr4hkF17WvOUyWSQSqXwsY99DHa7fdo9IjtPenhKp9M4cuQIkskk8aRX3xMEAUuWLEE6nSZ5onXMdTgcWL9+PTKZDJVjrsvlwvr163OOBzTOCUsBvxHCMQV1dXXYsGEDAGB4eBgtLS1k59y3bx96e3sBAB0dHTh69CiA8bliW1paiMauXbtw8eJFAMDx48dx/PhxAMDFixexa9cuMq6lpQX9/f0AgKNHj6KjowMA0Nvbi3379gEYbxwtLS0YHh4GABw+fBidnZ0AgO7ubhw8eBDAeHNoaWkhzejgwYPo7u4GAHR2duLw4cMFPdntdly7dg3Hjh0re08HDhxAKpWC3W5nIk9nzpxBV1cX7Ha75jwBU9feBx98gCVLluDNN9+k7untt9/GkiVLcObMGSby9B//8R/khGumnux2O06dOoW3334bAN39aTp5Kpf9yShP77//Pn71q1+RH6/l6unYsWO4du0a7HY7E3kaGhrCa6+9Rn686117NHvERE/Hjh3DkiVLMDQ0RKX2fv3rX2PJkiV4//33i8rTzp07sWDBAtjt9oo+5pqh74VCIbz22mvkpLScPb3yyitYsmQJQqEQE3nauXMn5syZA7vdbkjt2e12eDwe7Ny5k7onu92O//E//gd27tzJRJ6K/b1nt9uRSqVw4MABkifeI2bmqbu7m2hfvnwZ58+fJ3q7d+/O60n9e3R0FCdPngQwfgH1/fffJxerzp8/j8uXL5P1qvGkUil0dXWRi1W9vb1kOwwODuL06dPEe1dXF4n19OnTGBwcJNtczUUikUBXVxe5cFXIU1dXF/F08uRJjI6Oktxke+ru7sbcuXNhs9nQ1dVFtmupPL3zzjvIZDKw2WxFe1LzBABdXV3k4t66deuwZs0aAMDSpUvR2NiIZDKJvr4+fOc73yHHkw0bNqCurg4AsHLlSjQ0NAAYvwDb3NxMLmzm8yRJEpqbm2Gz2XDu3Dncf//9WLp0KQBgzZo1WLduHQCgtrYWzc3NeT2puV28eDH+6q/+CufOnUMymURzczNqa2sBjP9mHBkZyfEEjF9wbm5uzvH0qU99CufOncPtt99+kyf1gm9DQwNWrlwJIPcay6xZs0jcQG7tjYyM5PXU19dHJU/Znqqrq6eVp8k8jY6OEk/V1dVobm4mN0kaGxtJngrV3rZt27B48WIAwNq1a7F27VqSp76+PjLu0qVLJE+FPF26dGnK/Wmip29961vwer1IJpOoq6vD1atXARTuEYVqr5Cnbdu2kXHZtac1T4qi4OTJk/D5fLDZbNPuEdl50sPTn/7pn+LcuXP44z/+Y+JJr74HAHPnzsU777xD8kTrmDs0NIQlS5bg2LFjVI65Y2NjWLJkCV544QWq54SlgH8snVPWqB/YcblcEAQBnZ2dWLJkCaLRKAKBACwWCyKRCFwuFxwOB8bGxpBOp+HxeKAoCmKxGLlrHA6H4Xa7YbfbSYNzu91IJpNIJBLkrnEoFILX64UgCIjH47BaraiqqoIsyxBFEX6/H5lMBuFwmDT1WCwGQRDgcrkgSRJkWYbP50M6nUYkEoHf74fVakU0GoXD4YDT6YQoilAUhTy9MZknRVHws5/9DGvWrEF1dXVZexoaGsJbb72FL33pS7BYLCXP0+joKH75y1/iK1/5Clwul6Y8Taf2AODNN9/EZz/7WfLEAi1PsizjV7/6FdasWQNBEEqep5GREXR2dmLt2rWQZXlGniRJwk9/+lPcddddmD17NtX9yYw9Qm9PoVAIx48fx1e/+lVUVVWVrafh4WF0dHTgy1/+MgRBKHmeIpEIjh07hq9+9atwu9261x7NHjHRUywWw4kTJ/D5z38e6XRac+2Jooj/+q//Qn19PaxW64zzNDQ0hM7OTnzhC19AKpWq2GOuGfpeNBrF66+/jq985StkvylXT5FIBL/+9a9x1113IZVKlTxPg4OD+M1vfoMvfvGLSKfTuteexWLBsWPHsHr1asyfP5+qJ0EQ8POf/xx1dXW45ZZbSp6nYn/vZTIZvP766/jsZz+LefPm8R4xQ08DAwM4e/YsBEGAzWZDMplEJpOBw+FAOp3GsmXLMG/evEk9nThxgtyISiaTcLlcSCaTOH/+PD760Y/C6XRClmVYLBYyTlEUOJ1OZDIZSJIEh8MBq9UKWZZhtVohCAJ5kj97nNPphMVigSRJsNlsZFw6nSaxyrKcMy6fJ1mWyVPYoijCbreTcQBIrGNjY+jv78fixYvJcVGNtRSeYrEYPvjgA/zRH/0RABTlSc2TOu7GjRtoaGggT3uPjY3B4XCQY/vatWvR2dmJ//2//zceeeQReL1eKIoCURThdDrhcDgQjUbJ746dO3di/vz5eT1du3YNDz30EGRZxtq1a/HrX/8aoVAIsiyjqqoKVqsV8XgcgiDA6/Vi165dqKmpucnT0NAQNm/eDLvdjtmzZ2P16tU4fvw4HA4HYrEYFEXBgQMHYLFYsGnTJuIpEonAYrEgEAjg8ccfJ57sdjvWrFmD9vZ2sn+oniKRCNLpNHw+H2RZhiRJ5BpLLBaD1+vFl7/8ZXz1q1/FwoULc2pvYGAATU1NOZ7UJ76fe+45LFiwQHOesj1Fo1HyZkehPE30tH//fqRSKWzduhWxWAw2mw0+nw/hcBiZTAZ+vx+iKKK1tRVz5sy5qfZCoRA2btyIQCBA3hZT3zJIJBKw2+145plnsHDhQgDAlStX0NjYCEVRCnpqbW3Frbfemnd/Gh0dRUNDQ46nW265BZ/97Gdx7NgxpNNp7N27F7W1tXl7xPDwMBobG2+qPTVPqqcnn3wSjz32WI4n9VwEGH97Qq09rXk6dOgQvF4v+vv78dGPfhTpdHrKHjE0NISmpiaIoph3f5roabI8FfLkdDrxuc99Dm+++SYymQz27NmDefPm6dL3rFYruWFWVVUFm82GVatWUTnmWq1WvPHGG/jTP/1TeL1ezcdcQRDwy1/+Ep/5zGcQCAQ0nxMODAyU7GPpgiFr4XB0JvtVRfUVRxX1rjkA8uoeMPmrcypqowQmf3VORX0NDxh/HVB9RU99HVBFff0SGL9Drj51oL7iqKK+JgiA/Cgo5ElRFAiCUPB1wHLxpDZggJ08qU9ja83TdDxlH8gKvbZZjCdV2+l0Eu1S5il7uxTjyW6357xeS2t/0uKJtf2Je5q5J/WVaFY8qTFo8aRiZI+Y6El93kYQhJzYi/WkTl/gcDjIcjPJk/rjvBhPZjrmmqVHOByOnCktytWT+sSuelFGpVSeAoEAmX7DiNpLJBJk/6TtKZFIEE/Z03QU44lGnor9vZdIJHLWy3vEzD2py6vxqUzUm+hJHWuz2UgNqf+t7ifZx+zscRaLJSem7HGCIJDfHhPHZceqjlFjzTduoqfscdl/Z4+z2Ww5GvliNdqTul2L9ZSdJ5fLRfTUN3iA8Sli1GkvAZALuADIVC/A+FPT6hPO6hQx6rh8niwWC0KhENFWHzoBQKaoAW6e9maiJ1UzmUySaWoA5CyTvV7VE/Df095ke1LjkWWZ9KKJU8Nlryf7Got64XYy7zabLe9UPuqNHfXv7GVmkqdsTypT5WkyT+oFX+C/p/JRUd+GmhjrxNrLnoJI3Y7AeJ6yl7Pb7TlTAubzZLfbJ+0l2fvTRE+xWIwck9Sb/pPFmp2nQrVXyNPEKZdUtOZJ7RFT7U8TPWXnSQ9P6rmLenMhO1YVWn1PvTnodDqpXwtTY584hVmxx1xVz+v15kyfpzLTc8KBgQGUCn4jhMMpY9xuN5lnuNxhzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHbrdjyZIlpQ6DCqx5MToe9TserGvT0NKioS77rW99S1MMHDroWbdGwlr/AYzdtnr6N9M5GG34N0I4nDImmUySuULLHda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdFKpFK5fv07mrC9nWPNidDzqhcjsJ/lZ1KahpUVDXVZ9C4FTWvSsWyNhrf8Axm5bPf2b6RyMNvxGCIdTxqh3q7Nf9StXWPNidDx6ro+mNg0tLRqs1UmlY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k+rWA3WaqTSYemCjlZY82J0POpTytnTzLCoTUNLi4a6LEsXrCsZPevWSFjrP4Cx21ZP/2Y6B6MN/1g6p6xRP5auYuQHdjgcDofD4XA4HA6Hwzb9/f24cOFC3n9fvXp1zlzu2bS3t+sUFccoBgcHsXHjxinH7dixA9u3b59yXFtbG2pqajSvbyq96ei0tbUBQN5x0/U0XSaLtVCcU22r6erQYKptlT1OSz7UZafrh0Y90apJ2vVSiJnUhoreNTIZxcSphfr6esPWVUpKeS2XvxHC4XA4HA6Hw+FwOBwOh8PhcDgcDse08BshHE4ZEwqF8L3vfQ+hUKjUoWiGNS9Gx6Pn+mhq09DSosFanVQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bSK1WCtRiodURTR0dEBURRLHYpmWPNidDzBYBDf/e53EQwGmdamoaVFQ12WpSmMKhk969ZIWOs/gLHbVk//ZjoHow2/EcLhlDFerxdbtmyB1+stdSiaYc2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKx+Fw4BOf+AQcDkepQ9EMa16MjicWi2H//v2IxWJMa9PQ0qKhLmuz2YpeP4ceetatkbDWfwBjt62e/s10DkYbodQBcDic4hEEAYsWLSp1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHarWW/ZPYKqx5MToeRVHQ19fHvDYNLS0a6rJWK3+WmgX0rFsjYa3/AMZuWz39m+kcjDa8i3E4ZUw8Hsfzzz+PeDxe6lA0w5oXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjizLOHPmDGRZLnUommHNi9HxeDwe3HffffB4PExr09DSoqEuqyhK0evn0EPPujUS1voPYOy21dO/mc7BaMNvhHA4ZYx6B9kMT2aw5sXoePRcH01tGlpaNFirk0rHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1axGqzVSKVjsVjgcrlgsVhKHYpmWPNidDzpdBqhUAjpdJppbRpaWjTUZVmpk0pHz7o1Etb6D2DsttXTv5nOwWjDp8bicMqYqqoqfPGLXyx1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHbrfjox/9aKnDoAJrXoyOZ2xsDMeOHWNem4aWFg112S1btmiKgUMHPevWSFjrP4Cx21ZP/2Y6B6NN6W/FcDicopFlGT09PUy9SlgsrHkxOh4910dTm4aWFg3W6qTSMUs+WPPB+49+erz/mAcz5YM1L7wH6adVrAZrNVLppFIpDA4OIpVKlToUzbDmxeh4HA4HVqxYocvHimlq09DSoqEuW+5vIJgFPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxoiiivb0doiiWOhTNsObF6Hj0XB9NbRpaWjRYq5NKxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9WsRqs1Uilo35M1wzfS2DNi9HxuFwu1NfXw+VyMa1NQ0uLhrosSxesKxk969ZIWOs/gLHbVk//ZjoHo40lk8lkSh0Eh1MsZ8+exfLly8l/nzlzBsuWLSthRBwOh8PhcDgcDofDYYX+/n5cuHAh77+vXr0aTqdz0n9rb2/XKSqOUQwODmLjxo1TjtuxYwe2b98+5bi2tjbU1NRoXt9UetPRaWtrA4C846brabpMFmuhOKfaVtPVocFU2yp7nJZ8qMtO1w+NeqJVk7TrpRAzqQ0VvWtkMoqJUwv19fWGrauUlPJaLn8jhMMpYzKZDERRhBnuZ7Lmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZPJZKAoiinywZoXo+PR82PFNLVpaGnRUJdlpU4qHRY/Ml4MrPUfwNhtq6d/M52D0YbfCOFwyphwOIwnnngC4XC41KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHUmScOLECUiSVOpQNMOaF6PjCQQCePTRRxEIBJjWpqGlRUNdlqUpjCoZPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxPp8PTU1N8Pl8pQ5FM6x5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6TgcDtx5551l/6FigD0vRscTjUaxe/duRKNRprVpaGnRUJcVBKHo9XPooWfdGglr/Qcwdtvq6d9M52C04V2MwyljbDabofMV6glrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDpWqxVer7fUYVCBNS9Gx5NKpTA4OMi8Ng0tLRrqsuU+FZNZ0LNujYS1/gMYu2319G+mczDa8DdCOJwyJhaLYf/+/YjFYqUORTOseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UunIsoyenh7IslzqUDTDmhej4/F6vXjggQd0uRhJU5uGlhYNdVk+NRYb6Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMEQQBixYtMsUrqqx5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6VitVgSDQVit5X85hTUvRsejKAr6+vp0ucBPU5uGlhYNdVn+Rggb6Fm3RsJa/wGM3bZ6+jfTORhtSh8Bh8MpGpfLhfr6+lKHQQXWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXTUCzpmgDUvRscjiiLa29uZ16ahpUVDXbapqUlTDBw66Fm3RsJa/wGM3bZ6+jfTORht2LntxuFwZowkSejs7IQkSaUORTOseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UukoioL+/v6yfxobYM+L0fE4nU7U1dXB6XQyrU1DS4uGumwqlSp6/Rx66Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMYXFOxWJhzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUpH/ZiuGS4Ks+bF6HgcDgdWrFgBh8PBtDYNLS0a6rKZTKbo9XPooWfdGglr/Qcwdtvq6d9M52C0sWR4J+OUMWfPnsXy5cvJf585cwbLli0rYUQcDofD4XA4HA6Hw2GF/v5+XLhwIe+/r169Ou/Tv2aYfqbSGRwcxMaNG6cct2PHDmzfvn3KcW1tbaipqdG8vqn0pqPT1tYGAHnHTdfTdJks1kJxTrWtpqtDg6m2VfY4LflQl52uHxr1RKsmaddLIWZSGyp618hkFBOnFliZPkpvSnktl78RwuGUMel0GqFQCOl0utShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKp1MJgNRFE3xdDxrXoyOR8+PFdPUpqGlRUNdlpU6qXRY/Mh4MbDWfwBjt62e/s10Dkab8t5rOJwKJxKJoKWlBZFIpNShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh1JktDV1cXEXOdaYc2L0fH4/X40NzfD7/czrU1DS4uGuixL33KoZPSsWyNhrf8Axm5bPf2b6RyMNnxqLE5ZU+lTY6XTaUQiEfj9/rJ/GoA1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1Gyg3aU2NlMhlIkgSn0wmLxUIrzJLAmhc94ik0nY7VaoXf70ckEsG///u/U50aK1u70FPQ05mKKZ/WTKbGmm48k6Euu3PnTsyfPz9vnNP1Nhl8aqzJmUxnYi7LdWqsefPmzWh/N2JqrJluWy1M1u9oTY3F+jkYnxqLY3p++ctf4pvf/CZqa2vhdDpxyy234NOf/jT+8R//EaOjo6UOr2wxyyuRAHtejI6Hv5Zt3Po59DBLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6VgsFrhcLiZuHGiFNS9Gx8On5pvZsqzUSaXD0jRDWmCt/wDGbls9/ZvpHIw2pY+AY2pSqRT+4i/+AnfffTdefPFFZDIZfOITn0AgEMDp06fxb//2bxgYGCh1mGVLNBrF7t27EY1GSx2KZljzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0pEkCSdPnmRqOpdiYc2L0fH4fD5s3boVPp+PaW0aWlo01GX51FhsoGfdGglr/Qcwdtvq6d9M52C04TdCOLryne98B/v27cOKFSvQ1dWFgYEB/Pa3v8X777+PcDiMn//85ze9WsmZPg6HAytWrIDD4Sh1KJphzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHZrOhpqYGNput1KFohjUvRscjyzJ6enogyzLT2jS0tGioy7L05H4lo2fdGglr/Qcwdtvq6d9M52C0EUodAMe8dHR0YPfu3aitrcWbb76JYDCY8+8OhwNr164tTXAmwel0oq6urtRhUIE1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh1BEFBbW1vqMKjAmhej45EkCZ2dncxr09DSoqEu+/DDD2uKgUMHPevWSFjrP4Cx21ZP/2Y6B6MNfyOEoxv//u//DgD4h3/4h5tugnDoIIoi2tvbIYpiqUPRDGtejI5Hz/XR1KahpUWDtTqpdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppFavBWo1UOoqioK+vzxTTBLHmxeh4XC4X6uvr4XK5mNamoaVFQ102lUoVvX4OPfSsWyNhrf8Axm5bPf2b6RyMNvxGiIGkUim88847eOaZZ7Bt2zZ86lOfgsPhgMVigcViQX19fdHasizjwIED+PKXv4zbbrsNLpcL8+fPx2c+8xn827/9G65fv07PyDQQRRHHjh0DANx99904d+4c/v7v/x5f+MIX8JWvfAX/9E//hHPnzhkakxlh8cBRLKx5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6ZjlQ8UAe16MjkcQBCxatAiCQH+yFJraNLS0aKjLZjKZotfPoYeedWskrPUfwNhtq6d/M52D0caS4Z3MEI4cOYKGhgYkEom8Y9asWYP29vYZa587dw4bN25ET09P3jG33HILnn32WXz5y1+esX4xdHV1kdee9u7di+985zs3fQDIZrPh3/7t39Dc3Fz0es6ePYvly5eT/z5z5gyWLVtWtB6Hw+FwOBwOh8PhcMxDf38/Lly4kPffV69eDafTOem/FXN+zmGLwcFBbNy4ccpxO3bswPbt26cc19bWhpqaGs3rm0pvOjptbW0AkHfcdD1Nl8liLRTnVNtqujo0mGpbZY/Tkg912en6oVFPtGqSdr0UYia1oaJ3jUxGMXFqQcsD8uVEKa/l8jdCDCIUChW8CVIs/f39uOuuu8hNEIvFgjVr1qCxsRHr1q1DVVUVAODDDz/E+vXr8cYbb1CPYTKuXbtG/n7ooYewbNky/PrXv4Yoiujr68O2bduQSqWwfft2vP7664bEZEZSqRQGBwdN8Yoqa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ66XQasViMqaeYi4U1L0bHo+fHimlq09DSoqEuy5+jZgMWPzJeDKz1H8DYbaunfzOdg9GG3wgxmHnz5uGrX/0qvve97+FnP/uZ5o9Nffvb38bVq1cBALfddhu6u7vR3t6OZ555Bq+++io++OAD3HXXXQCAZDKJb3zjGwiFQlptTEksFiN/O51OHDt2jDxpc9ttt2Hnzp34yle+AgB4/PHHdY/HrESjUezZswfRaLTUoWiGNS9Gx6Pn+mhq09DSosFanVQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bSK1WCtRiodWZbx9ttvQ5blUoeiGda8GB2Pz+fD1q1b4fP5mNamoaVFQ12WhWltOPrWrZGw1n8AY7etnv7NdA5GGz41lkEMDg5ClmX8f//f/5fz/3/3u9/F9773PQAznxrrZz/7GbmZ4HA4cPLkSdx+++03jYvH47jjjjtw6dIlAMA//dM/4V//9V9vGvfoo4/iiSeemPb6s0kmkzlz6B0+fBjf+MY3AIy/EfL000/ftExHRwd57Wt4eBhz586d8XorfWqsTCYDSZLgdDphsVhKHY4mWPNidDx6ro+mNg0tLRqs1UmlY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k+rWA3WaqTcoD01ViaTQSqVgs1mK/t8sOZFj3gKTadjsVjgdDohSRJ+8IMfUJ0aK1u70GW36UzFlE9rJlNjTTeeyVCX3bdvH+bPn583zul6mww+NdbkTKYzMZflOjXWvHnzZrS/GzE11ky3rRYm63e0psZi/RyslNdyy/vLOmWEHjtO9s2FLVu2THoTBAA8Hg/+5V/+BZs2bQIA7NmzB//yL/9y08d/PB4P5syZU1QsE3eE2bNnk78//vGPT7rM0qVLyd99fX1F3QipdCwWC1wuV6nDoAJrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDoWi6XsP1KswpoXo+PJZDIQRZF5bRpaWjTUZVm4WcbRt26NhLX+Axi7bfX0b6ZzMNrwqbHKlFgshv/3//4f+e8HH3yw4Ph7770XXq8XAHDjxg386le/umnMP//zP+P69etF/W/i/HlLliwhf+d7uib7/2dhnrhyJBKJ4KmnnkIkEil1KJphzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUpHkiR0dnZCkqRSh6IZ1rwYHY/f70dzczP8fj/T2jS0tGioyyaTyaLXz6GHnnVrJKz1H8DYbaunfzOdg9GG3wgpU37961+TncXj8eBP/uRPCo53uVxYvXo1+W+9P5q+YMECLFq0CADIlFwTuXjxIvm7trZW13jMisvlQn19PTN3VrXAmhej49FzfTS1aWhp0WCtTiods+SDNR+8/+inx/uPeTBTPljzwnuQflrFarBWI5WOIAhYtGgRc08yFwNrXoyORxRFtLe36/IEOE1tGlpaNNRly/3j3GZBz7o1Etb6D2DsttXTv5nOwWjDb4SUKe+++y75+/bbb5/WjvPJT35y0uX14r777gMAHDx4cNI7nP/xH/8BYPztkVtvvVX3eMyIw+HAihUr4HA4Sh2KZljzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0rHZbKipqTHFRWHWvBgdjyzL6Onp0eVjxTS1aWhp0VCXtVr5JUQW0LNujYS1/gMYu2319G+mczDa8C5Wprz33nvk79tuu21ay2R/qP3cuXPUY5rIP/zDP2DWrFm4cuUKtm7dikQiQf7t0KFD2Lt3LwDgscce0z0WszI2NoZjx45hbGys1KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqnWQyiQsXLphimiDWvBgdT1VVFb74xS+iqqqKaW0aWlo01GX5lOZsoGfdGglr/Qcwdtvq6d9M52C04TdCypSRkRHy97x586a1TPYH22/cuEE9ponMmTMHL7/8MjweD/bv34+amhp8+tOfxm233YaGhgYkk0ls376dfMSdM3PS6TRCoRDS6XSpQ9EMa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ66sd0M5lMqUPRDGtejI7HarUiGAzq8qYDTW0aWlo01GVZqZNKR8+6NRLW+g9g7LbV07+ZzsFow85EbJwZEYvFyN/TvVOZPS57eT2pr6/HO++8g//7f/8vjh8/jlOnTsHr9eILX/gCvvOd7+CrX/2qIXGYFY/HQ6YgK3dY82J0PHquj6Y2DS0tGqzVSaVjlnyw5oP3H/30eP8xD2bKB2teeA/ST6tYDdZqpNJxOBxYvnx5qcOgAmtejI4nHo/j+eefZ16bhpYWDXXZe+65R1MMHDroWbdGwlr/AYzdtnr6N9M5GG3K+/ZhBZP94Z7pzrHmdDrJ30a+jvSRj3wEe/fuxeXLlyFJEkZGRnDs2DGqN0FcLhe8Xi8AIJVKIRQKkbuqkUiEzO83NjaGeDwOAFAUBaFQiGiEw2HySloikSBTeSWTSYTDYTIuFApBURQA401S3ZayLCMSiQAYv7MbCoXIq6OxWIzkTJIkRKNRADffFY1Go+R7KqIokhtW+TwpioL33nuPxFfOnm7cuIH3338fiqIwkad4PI7e3l4oiqI5T8DUtTc2Noa+vj5EIhHqnmKxGPr6+hCPx5nI08jICPr6+sgyM/GkKAreffddEh/N/Wk6eSqX/ckoT4lEAmfPnoWiKGXtKRwO47333oOiKEzkSRRFnDlzJic+PWuPZo+Y6CkcDqOvrw+iKFKpvWg0ir6+PiQSiaLydP36dVy6dAmKolT0MdcMfU+SJJw5c4bEV86eQqEQ+vr6IEkSE3m6fv06Ll68CEVRDKk9RVFw8eJFXL9+nbonRVHwhz/8AdevX2ciT8X+3lMUBe+//z55q5/3iJl7kiSJaCeTSeJP1cvnSf07lUqReNLpND788EPiSZblnHFqPOrTvmqs6rFE3ZYTx2XHmj0uO9aJ4/J5yr5eIIpizrjsWBOJBNmeE2MthaexsTGMjIwgnU4X7WniODVWj8dDHg51OBzw+/3kY8Vz5swhMXi9XvJBX6fTCZ/PB+DmtyLyecpkMggGg0R71qxZ5JpNVVUVPB4PgPEPJQeDwbyeVG273Y7Zs2eTjyqr2up61WVUTwBgsVhyYvV6vfB4PFi0aBHcbvdNntSn330+H7lulH2NRb1gq64ru/ZSqVReT8lkkkqesj2p31OYKk+TeUqlUsSTzWZDMBiExWIBAPj9fpKnQrUXCARgt9sBAG63G263m+Qpe4qjZDJJ8lTIUzKZnHJ/mugpGAzij/7ojyAIAlwuF1mmUI8oVHuFPAUCATIuu/a05imTySCRSGB0dBTpdHraPSI7T3p48nq9WLRoEaqqqognvfqeepwaGxsjeaJ1zBVFEX19feS3hxp3scdcWZbR19eH0dFRqueEpYDfCClT1EYCYNof8cn+YHm5zyU4kbq6OmzYsAEAMDw8jJaWFuJ337596O3tBQB0dHTg6NGjAID+/n60tLQQjV27duHixYsAgOPHj+P48eMAgIsXL2LXrl1kXEtLC/r7+wEAR48eRUdHBwCgt7cX+/btAzC+rVtaWjA8PAwAOHz4MDo7OwEA3d3dOHjwIIDx5tDS0kKa0cGDB9Hd3Q0A6OzsxOHDhwt6isVieP755/Hqq6+Wvaf9+/fj0KFDiMViTOTpt7/9LV588UXEYjHNeQKmrr3e3l60trbi2LFj1D299dZbaG1txW9/+1sm8vSjH/0Ira2tiMViM/YUi8Xwwgsv4K233gJAd3+aTp7KZX8yylNPTw8OHz6MWCxW1p5effVVPP/884jFYkzk6cKFC3jppZfID0u9a49mj5jo6dVXX0VraysuXLhApfbeeOMNtLa2oqenp6g8Pf300zhw4ABisVhFH3PN0Pc++OADvPTSS+TCcLl7am1txQcffMBEnp5++mn8+Mc/RiwWM6T2YrEYfvzjH+Ppp5+m7ikWi+G5557D008/zUSeiv29F4vFcOjQIezfv5/kifeImXnq7u4m2pcvX8b58+eJ3u7du/N6Uv8eHR3FyZMnAYyff7/77ruk/5w/fx6XL18m61XjSaVS6OrqIherent7yXYYHBzE6dOnifeuri4S6+nTpzE4OEi2uZqLRCKBrq4ucuGqkKeuri7i6eTJkxgdHSW5yfb0+9//HqdOnYIsy+jq6iLbtVSeenp6cObMGciyXLQnNU8A0NXVRS7urVu3DmvWrAEALF26FI2NjfB6vXjggQfwt3/7t+Qi54YNG1BXVwcAWLlyJRoaGgCMX4Btbm4mFzbzeZIkCc3NzZgzZw4eeOABPPjgg1i6dCkAYM2aNVi3bh0AoLa2Fs3NzXk9qbldvHgxmpqa8MADD8Dr9aK5uRm1tbUAgKGhITJtuuoJGL/g3NzcnOPpf/7P/4kHHngAq1atusmTesG3oaEBK1euBJB7jeW2227Dhg0byEXY7NobGRnJ60m9cKo1T9meqqurp5WnyTyNjo4ST9XV1WhubiY3SRobG0meCtXetm3bsHjxYgDA2rVrsXbtWpKnvr4+Mu7SpUskT4U8Xbp0acr9aTJPDQ0N8Hq9qKurw9WrVwEU7hGFaq+Qp23btpFx2bWnNU+KouB3v/sd3nnnHciyPO0ekZ0nPTzdddddeOCBB7By5UriSa++NzY2hlOnTqGnp4fkidYx98KFC2htbcWrr75K5Zg7ODiI1tZWHDp0iOo5YSmwZFiajK0C+e53v4vvfe97AMZ34vb29mkt961vfQsvvPACAODv/u7vplVIL7/8Mu69914A498LuXbtWnFBM8TZs2exfPlyuFwuCIKAzs5OLFmyBNFoFIFAABaLBZFIBC6XCw6HA2NjY0in0/B4POQpN/WucTgchtvtht1uJw3O7XYjmUwikUiQu8ahUAherxeCICAej8NqtaKqqgqyLEMURfj9fmQyGYTDYfh8PthsNsRiMXK3XpIkyLIMn8+HdDqNSCQCv98Pq9WKaDQKh8MBp9MJURShKAq8Xi9SqRT3xD1xT9wT98Q9cU/cE/fEPXFP3BP3NENPAwMDOHv2LARBgM1mQzKZRCaTgcPhQDqdxrJly8h3Nyd6OnHiBOx2O1KpFJLJJHkgURRFOBwOWK1WyLIMi8VCximKAqfTiUwmA0mScsZZrVYIgkCe5M8e53Q6YbFYIEkSbDYbGZdOp0mssiznjMvnSZblnFjtdjsZB6CiPN24cQMNDQ3weDxIp9MYGxuDw+GAy+VCJBKBxWJBIBDA448/jkceeQRerxeKokAURTidTjgcDkSjUVitVvj9fuzcuRPz58/P6+natWt46KGHEA6Hkclk4Pf7IYoiZFlGVVUVrFYr4vE4BEGA1+vFrl27UFNTc5OnoaEhbN68GXa7HW63mzzxHQwGEYvFoCgKDhw4AIvFgk2bNmnyFIlEkE6n4fP5IMsyJEki11hisRhsNht8Pl+OdzVPAwMDaGpqyvGkPvH93HPPYcGCBVTzFI1GyZsdM/G0f/9+pFIpbN26NcfTxDy1traSN4Syay8UCmHjxo0IBALkbTH1LYNEIgG73Y5nnnkGCxcuBABcuXIFjY2NUBSloKfW1lbceuutefen0dFRNDQ0FMzT3r17UVtbm3d/Gh4eRmNj4021p+ZJ9fTkk0/isccey/GUr/a05unQoUOYNWvWjHrE0NAQmpqaCu5PEz1NlqeZeNqzZw/mzZtnWN9btWpV2R9zp/M7YmBgIGdasDNnzmDZsmUwAn4jpMQUeyPkoYceInf8vvWtb01rDrudO3fib/7mbwCM37E9e/ZscUEzhHojRMXInYfD4XA4HA6Hw+FwOGzT39+PCxcu5P331atX50wjnc10z8857DI4OIiNGzdOOW7Hjh3Yvn37lOPa2tpQU1OjeX1T6U1Hp62tDQDyjpuup+kyWayF4pxqW01XhwZTbavscVryoS47XT806olWTdKul0LMpDZU9K6RySgmTi3U19cbtq5SUspruXxqrDLlYx/7GPlbfWV1Kj744APy95IlS6jHxDGecDiM73//+znzAZYrrHkxOh4910dTm4aWFg3W6qTSMUs+WPPB+49+erz/mAcz5YM1L7wH6adVrAZrNVLpiKKIt956K+e7AeUKa16MjicQCODRRx/N+WYAi9o0tLRoqMtmfwODUzr0rFsjYa3/AMZuWz39m+kcjDb8RkiZ8vGPf5z8ffr0aTJPZSF+//vfT7o8p3xxu91Yv349edWvnGHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSsdut2PJkiXkQ7zlDGtejI4nkUjgyJEjZJoZVrVpaGnRUJdVP4DNKS161q2RsNZ/AGO3rZ7+zXQORhuh1AFwiuMzn/kMnE4nJElCPB7HyZMnyQeIJkOSJPLhGwD4/Oc/b0SYHJ1RG6cZYM2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKx2azYe7cuaUOgwqseTE6nmQyiXPnzjGvTUNLi4a6rNXKn6VmAT3r1khY6z+AsdtWT/9mOgejDe9iZYrX68Vdd91F/nv//v0Fx7/88suIRqMAgNmzZ+Nzn/ucnuEZjsvlgtfrBQCkUimEQiGon7+JRCKQZRkAMDY2hng8DgBQFIV8SAkYf1VLfdUzkUiQO8DJZDLn9a1QKETewInH4xgbGwMAyLKMSCQCAMhkMgiFQkilUgCAWCxGXneTJInkIp1OIxQKIZ1OAwCi0SgkSQIw/ppcLBYr6CmRSODw4cMYHh4ue09DQ0N46aWXkEgkmMjT6OgoXnzxRSQSCc15AqauvXA4jCNHjuD69evUPd24cQNHjhzB6OgoE3kaHBwkT1nM1FMikcCLL76IGzduAKC7P00nT+WyPxnlKRQK4YUXXkAikShrT8PDwzh8+DASiQQTeYpEImS70siTkT1ioqfh4WEcOXIEkUiESu2NjIzgyJEjCIVCReXp2rVr+MlPfoJEIlHRx1wz9L1oNIoXXnghZ78pV08ffvghjhw5gmg0ykSerl27hpdffhmJRMKQ2kskEnj55Zdx7do16p4SiQR+8pOf4Nq1a0zkqdjfe4lEAi+99BKGhoZInniPmJknSZKIdjKZJP5UvXye1L9TqRSJJ5lM4uzZs2S9siznjFP//0wmA1EUSayyLJPtoCjKTeOyY80elx3rxHH5PGVPtSKKYs647FhjsRjOnTuHZDJ5U6yl8BSLxdDb20viLMbTxHFqrB6PB1VVVQAAh8MBv99PnlKuqakhMXi9XvIRb6fTCZ/PBwCwWq0IBoNTespkMggGg0T7lltugcPhAABUVVXB4/EAAARBIB9BnsyTqm232zFv3jzyNHUwGIQgCGS96jKqJwCwWCw5sXq9XsyaNQvr169HMBi8yZN6g8Pn85Hv5WRfY/F6vfjmN79JtnN27aVSqbyekskklTxle1LfSpkqT5N5Uj/eDYxfhA4Gg7BYLAAAv99P8lSo9gKBAHmC3+12kyfc7XZ7ztRhyWSS5KmQp2QyOeX+NNHTLbfcgq9//etwu91wuVxkmUI9olDtFfKUPUVUdu1pzVMmk0E0GsW7776LZDI57R6RnSc9PM2ePRvr169HIBAgnvTqe7Is49y5c4jFYiRPtI65kUgER44cwfDwMJVjbiwWw5EjR/Dhhx9SPScsBfxGSBnz0EMPkb/379+f9+PniUQCjz/+OPnvv/7rvyY7ulmoq6vDhg0bAIxf0GppaSE75759+9Db2wsA6OjowNGjRwGMfzSvpaWFaOzatQsXL14EABw/fhzHjx8HAFy8eJF8mB4AWlpa0N/fDwA4evQoOjo6AAC9vb3Yt28fgPHG0dLSQi6WHD58mLyR093djYMHDwIYbw4tLS2kGR08eBDd3d0AgM7OThw+fHhKT0NDQyTWcvZ06NAh0rxZyNPp06dx6dIlanmaylNfXx+A8Q8y0vb09ttvE08s5Cn7xm0xni5fvkw80d6fWKi9cvJ0/vx58vHRcvZ0/PhxcnGJhTxdvXoV7777LrU8GdkjJnpSY7169SqV2vvNb34DYLz2isnTj370I3ICUcnHXDP0vevXr+Pdd981hafXXnuNeGIhTz/60Y9IDEbVXiKRwI9+9CNdPKXTafzoRz9iIk9afu+Fw2EcOnSI5In3iJl56u7uzvktef78eaK3e/fuvJ7Uv0dHR3Hy5Eky7vr16+RC0fnz58l3O4eHh0k8qVQKXV1d5GJVb28v2Q6Dg4M4ffo08d7V1UViPX36NAYHB8k2V3ORSCTQ1dVFLlwV8tTV1UViPXnyJEZHR0lusj319PSQcV1dXWS7lsrTmTNnyDLFesrOU1dXF7m4t27dOqxZswYAsHTpUjQ2NgIYvyC+detWcpFzw4YNZLaNlStXoqGhAcD4Bdjm5mZyYTOfJ0mS0NzcTC6+NzQ0YOnSpQCANWvWYN26dQCA2tpaNDc35/Wk5nbx4sV48MEHybjm5mbU1tYCGP9dMjIycpMnp9OJ5ubmHE+f+tSnAAC33377TZ7UC74NDQ1YuXIlgNxrLHPnzsXSpUuJXnbtjYyM5PXU19dHLU+qp+rq6mnlaTJPo6OjxFN1dXVOnhobG0meCtXetm3bsHjxYgDA2rVrsXbtWpIntccDwKVLl0ieCnm6dOnSlPvTRE/33nsv5syZQ/J09epVAIV7RKHaK+Rp27ZtZFx27WnNk6Io+P3vf09qaro9IjtPenj6zGc+A2D8u8yqJyP6nponWsdctSaOHz9O5ZirHu8OHz5M9ZywFFgy6u0aTkn47ne/i+9973sAxnfi9vb2GS3/uc99Dv/1X/8FAFi0aBFeeeUV3HHHHeTfR0ZGsHHjRvziF78AMP42yMWLF3PulJYzZ8+exfLly+FyuSAIAjo7O7FkyRJEo1EEAgFYLBZEIhG4XC44HA6MjY0hnU7D4/FAURTEYjGyLcLhMNxuN+x2O2lwbrcbyWQSiUSC3DUOhULwer0QBAHxeBxWqxVVVVWQZRmiKMLv9yOTySAcDsPn88FmsyEWi0EQBLhcLkiSBFmW4fP5kE6nEYlE4Pf7YbVaEY1G4XA44HQ6IYoiFEWB1+tFKpXinrgn7ol74p64J+6Je+KeuCfuiXvinmboaWBgAGfPnoUgCLDZbEgmk8hkMnA4HEin01i2bBnmzZs3qacTJ07AbrcjlUohmUySJ5tFUYTD4YDVaoUsy7BYLGScoihwOp3IZDKQJClnnNVqhSAI5En+7HFOpxMWiwWSJMFms5Fx6XSaxCrLcs64fJ5kWc6J1W63k3EAKsrTjRs30NDQAI/Hg3Q6jbGxMTgcDrhcLkQiEVgsFgQCATz++ON45JFH4PV6oSgKRFGE0+mEw+FANBqF1WqF3+/Hzp07MX/+/Lyerl27hoceegjhcBiZTAZ+v588/V1VVQWr1Yp4PA5BEOD1erFr1y7U1NTc5GloaAibN2+G3W6H2+0mD6MFg0HEYjEoioIDBw7AYrFg06ZNmjxFIhGk02n4fD7IsgxJksg1llgsBpvNBp/Pl+NdzdPAwACamppyPKlPfD/33HNYsGAB1TxFo1HyZsdMPO3fvx+pVApbt27N8TQxT62trZgzZ85NtRcKhbBx40YEAgHytpj6lkEikYDdbsczzzyDhQsXAgCuXLmCxsZGKIpS0FNraytuvfXWvPvT6OgoGhoaCuZp7969qK2tzbs/DQ8Po7Gx8abaU/OkenryySfx2GOP5XjKV3ta83To0CHMmjVrRj1iaGgITU1NBfeniZ4my9NMPO3Zswfz5s0zrO+tWrWq7I+50/kdMTAwgOXLl0PlzJkzWLZsGYyA3wgxkC9/+cvkrpzK4OAgeQrV4/Hgox/96E3L/exnP8OCBQsm1ezv78enP/1p8iq5xWLBmjVrsHjxYgwPD+OXv/wl2UEEQcCxY8dyptQqd9QbISpG7jwskEwmcfHiRSxevJipD0wVA2tejI5Hz/XR1KahpUWDtTqpdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppFavBWo2UG/39/eQN1slYvXo1eSp8IpM9qKhenJw1a1bZfzyaNS96xDM4OIiNGzdO+m92ux2LFy/GxYsX8eSTT2L79u1T6rW1taGmpmbK9WVrZ0+ZNF297LjzabW1tQFAXn87duwgnqYbz2Soy/7zP//zTdemCm3fqbbVdHVoMNW2yh43VT6ms+x0/Uy3nrKZmMtiNCYju170pq2tDdXV1TPa3/WuEWDm21YLk/W7+vp6Ktqsn4OV8lounxrLQHp7e3Hq1Kmc/6k3QYDx+VIn/vupU6fIvGqTUVtbizfeeAMrVqwAMD7PW3t7O5555hm8+uqr5CZIdXU1jhw5YqqbIJzxO9rqtxbKHda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdNSP6c70YjKLsObF6HjU73ioT4yzqk1DS4uGuqw6lQ+ntOhZt0bCWv8BjN22evo30zkYbfgbIQayaNEiMs/mTPjDH/6ARYsWFRwjyzKef/55tLW14ezZsxgaGkIwGMRHPvIRfP3rX8eDDz6IuXPnFhk5u1T6GyEcDofD4XA4HA6Hw8kP7TdCOOUF7afhaT19P5XedN9AAKb3RggNJouVvxEy+bJ6vhGihwZg/BshM33Twog3Qiai5xshk0HrjRDWKeW1XHN9MZtxsj+cRBuHw4H7778f999/v27r4HA4HA6Hw+FwOBwOh8PhcDgcDqfc4FNjcThlTCgUwve+9z3yQahyhjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHVEU0dHRAVEUSx2KZljzYnQ8wWAQ3/3ud8nHiFnVpqGlRUNdlqUpjCoZPevWSFjrP4Cx21ZP/2Y6B6MNvxHCMQUulwterxfA+AeHQqEQ1FnfIpEI+c7K2NgY4vE4AEBRlJydMBwOkwN7IpEgc9clk0mEw2EyLhQKQVEUAOPfdRkbGwMwPj1ZJBIBMP6tllAoRObQjMVipLlJkoRoNAoASKfTCIVCSKfTAIBoNApJkgCMN8VYLFbQk9frxX333QeLxVL2ntLpNL797W/D6/UykSe73Y5vfOMb8Hq9mvMETF17TqcTW7ZsgdVqpe5JEARs2bIFdrudiTylUils2bIFXq93xp68Xi+++c1vQhDGX2ikuT9NJ0/lsj8Z5cnhcGDDhg3wer1l7cliseC+++6D1+tlIk8ulwv33nsvOa7pXXs0e8RETxaLBVu2bIHL5aJSezabDVu2bIHD4SgqT4qiYPPmzfB6vRV9zDVD36uqqsK9994Lj8dT9p4AYMuWLaiqqmIiT4qiYNOmTfB6vYbUntfrxaZNm0hsND15vV7cf//9UBSFiTwV+3vP6/Xi29/+NomN94iZe5IkiWgnk0niT9XL50n9O5VKkXgcDgc+/vGPk9+jsiznjFPjyWQyEEWRxCrLMtkOiqLcNC471uxx2bFOHJfPU/aFNVEUc8Zlx5pOp/GJT3wCDofjplhL4SmTyWD58uVwOBxFe5o4To3V4/GgqqqK5NDv9yMWi2H//v2w2WwkBq/XC5fLBQBwOp3w+XwAAKvVimAwOKWnTCaDYDBItC0WCxwOB4DxY5d63BIEIedi60RPqrbdbofVasX+/fsRi8UQDAZJ7WX3NtUTMP7bNjtWr9eLZDKJ/fv3Q5blmzxZreOXBn0+H5kmLvsaSyKRwOHDh8m47NpLpVJ5PannflrzlO1J/aj0VHmazJN6PgkANpsNwWCQ/K7z+/0kT4VqLxAIkI9Fu91u8i0Ju92ec6MomUySPBXylEwmp9yfJnoCgIMHDyIWi8HlcpFlCvWIQrVXyFMgECDjsmtPa54ymQzS6TTuuOMOOByOafeI7Dzp4UlRFOzfvx+SJBFPevU9u92OT3ziE8hkMiRPtI65LpcLW7ZsgcVioXLMdbvd2LJlCzKZDNVzwlLAb4RwTEFdXR02bNgAABgeHkZLSwvZOfft24fe3l4AQEdHB44ePQpgfK7YlpYWorFr1y5cvHgRAHD8+HEcP34cAHDx4kXs2rWLjGtpaUF/fz8A4OjRo+jo6AAA9Pb2Yt++fQDGG0dLSwuGh4cBAIcPH0ZnZycAoLu7GwcPHgQw3hxaWlpIMzp48CC6u7sBAJ2dnTh8+HBBT4Ig4A9/+ANef/31svf03HPPIR6PQxAEJvJ0+vRp/OpXv4IgCJrzBExde5cvX8aiRYvwxhtvUPd08uRJLFq0CKdPn2YiT3v37sWiRYsgCMKMPQmCgK6uLpw8eRIA3f1pOnkql/3JKE/nz5/HL37xCwiCUNaeXn/9dfzhD3+AIAhM5GlwcBAvvfQS+VGud+3R7BETPb3++utYtGgRBgcHqdTeiRMnsGjRIpw/f76oPD399NOYPXs2BEGo6GOuGfre6OgoXnrpJXICV86ejhw5gkWLFmF0dJSJPD399NPweDwQBMGQ2hMEATabDU8//TR1T4IgYP78+Xj66aeZyFOxv/cEQUA8Hsdzzz1H8sR7xMw8dXd3E+3Lly/j/PnzRG/37t15Pal/j46Okt+fVqsV7777LrkAdP78efIt0OHhYRJPKpVCV1cXuVjV29tLtsPg4CBOnz5NvHd1dZFYT58+jcHBQbLN1VwkEgl0dXWRvlfIU1dXF/F08uRJjI6Oktxke/r9739PLrB2dXWR7VoqT6dOnUIymYTVai3ak5onAOjq6iIX99atW4c1a9YAAJYuXYrGxkYoioLBwUH87d/+LbnIuWHDBtTV1QEAVq5ciYaGBgDjF2Cbm5vJhc18niRJQnNzMwRBQF9fH7Zs2YKlS5cCANasWYN169YBAGpra9Hc3JzXk5rbxYsX46//+q/R19cHRVHQ3NyM2tpaAMDQ0BBGRkZyPAHjF5ybm5tzPP3Jn/wJ+vr6cMcdd9zkSb3g29DQgJUrVwLIvcYye/Zs8jeQW3sjIyN5PfX19VHJU7an6urqaeVpMk+jo6PER3V1NZqbm8lNksbGRpKnQrW3bds2LF68GACwdu1arF27luQpezr8S5cukTwV8nTp0qUp96eJnu677z7MmTMHiqKgrq4OV69eBVC4RxSqvUKetm3bRsZl157WPCmKgt/97neoqqqC1Wqddo/IzpMenj772c+ir68PH/vYx4gnvfqeetP01KlTJE+0jrmDg4NYtGgRXn/9dSrH3EQigUWLFuE///M/qZ4TlgL+sXROWaN+YMflckEQBHR2dmLJkiWIRqMIBAKwWCyIRCJwuVxwOBwYGxtDOp0md3rVJyqA8burbrcbdrudNDi3241kMolEIkHuGodCIXi9XnJCYrVaUVVVBVmWIYoi/H4/MpkMwuEwfD4fbDYbeeLW5XJBkiTyFEY6nUYkEoHf74fVakU0GoXD4YDT6YQoilAUBV6vF6lUalJPyWQSR44cwd13341bbrmlrD0NDg7ijTfewD333AOr1VryPN24cQM/+9nP8LWvfQ1VVVWa8jSd2stkMjh27BjuuusueDweqp4kScIvfvELrF27Fna7veR5un79Ojo6OrBu3Tokk8kZeRJFET/5yU/wpS99CXPmzKG6P5mxR+jtaXR0FK+99hq+/vWvw+12l62nDz/8EL/4xS+wfv162O32kucpHA7j1Vdfxde//nXy33rWHs0eMdFTNBrFG2+8gS996Uvkx76W2hsbG8Mvf/lLfOELX4DNZptxngYHB9HR0YE///M/Rzqdrthjrhn6XiQSwSuvvIKvfe1r5L/L1VMkEsEbb7yBL3/5y0in0yXP07Vr18h+kslkdK89AHjllVdQX1+PBQsWUPVks9nw6quvYs2aNZg3b17J81Ts7710Oo1XXnkFn//851FTU8N7xAw9DQwM4OzZs+SmWzKZRCaTgcPhQDqdxrJlyzBv3rxJPZ04cQJ2ux2pVArJZBIulwuyLOPdd9/Fxz72MfLfFouFjFMUBU6nkzw563A4YLVaIcsyrFYrBEEgT/Jnj3M6nbBYLJAkCTabjYxTj1fpdBqyLOeMy+dJlmXyFLb65LE6DgCJNZFI4PLly/jjP/5jsh411lJ4ikaj5CKkxWIpypOaJ3XcjRs30NDQAI/Hg3Q6jbGxMTgcDrhcLqRSKaxbtw4dHR34x3/8RzzyyCPwer1QFAWiKMLpdMLhcCAajcJqtcLv92Pnzp2YP39+Xk/Xrl3DQw89hGQyiXXr1uHNN9/E6OgoZFkmF33VB8u8Xi927dqFmpqamzwNDQ1h8+bNsNvtmDNnDurr63H06FHY7XbEYjEoioIDBw7AYrFg06ZNxFMkEoHFYkEgEMDjjz9OPDkcDqxduxY///nPoShKjqdIJIJ0Og2fzwdZliFJErnGEovF4PP5sH79etx9991YuHBhTu0NDAygqakpx5P6xPdzzz2HBQsWaM5TtqdoNEre7CiUp4me9u/fj1Qqha1btyIWi8Fms8Hn85He7Pf7IYoiWltbMWfOnJtqLxQKYePGjQgEAuRtMfUtg0QiAbvdjmeeeQYLFy4EAFy5coXcbCvkqbW1Fbfeemve/Wl0dBQNDQ05nm655Rb8r//1v/DKK68glUph7969qK2tzdsjhoeH0djYeFPtqXlSPT355JN47LHHcjyp53gAyJtOU3maTp4OHToEj8eDy5cv42Mf+xgymcyUPWJoaAhNTU0QRTHv/jTR02R5KuTJ5XLh7rvvxrFjx5BOp7Fnzx7MmzdPl75nsVjw/vvv47bbboPb7YbNZsOqVauoHHMtFgtef/11fP7zn4fP59N8zLXZbPjpT3+KP/uzP0MwGNR8TjgwMMA/ls7haCH7VUX1FUcV9a45APLqHjD5q3MqaqMEJn91TkV9DQ8Yfx1QfUVPfR1QRX39Ehi/Q64+daC+4qiiviYIgPwoKOQplUphzpw5ZLly9hQIBDB79mxyYqRSKk9VVVWYO3curFar5jypeoU8jY2NIRgMwuv1krG0PKlxVVVVEe1S5ikYDJInz2bqyWq1Yu7cuUST5v4EmK9H6O3J5XKhuroaVqu1rD35fD7MmTMHVquViTw5HA6yXYv1VKoeMZmnYDAIh8OR47FYT2pcLpeL6M0kT7NmzcKsWbNgtVpvquWpPJnpmGuGvme321FdXU2mXihnT+pNQrvdnhN7qTxl7yfZ69Wr9sbGxjB79mzMmjWLuqexsTHiJ3uajmI80chTsb/31G2kjuM9Yuae1OXV+FQm6k30pI612WykhiwWCzweD/lv1cNk47Jjyh4nCAJ583PiuOxY1TFqrPnGTfSUPW5i78yO1eVyweVyFYzVSE/q8V29CVOMJzVWdZz6e0qdbgYYnyJGvZAaCoXIhUMA5E0fYPypafUJZ3WKGHVcPk8WiwWhUIhoT5wiRmXitDcTPama6rQ36pRw2ctkr1f1BPz3tDfZntR4RFEkcUzUU6fDAXKvsSiKguHhYbIts73bbLa8U/moN3bUv7OXmUmesj2pTJWnyTypF3yB/57KR0V9G2pirBNrL3sKIvViNDCep+zl7HZ7zpSA+TypU58B+fenyTzduHGDTLGkjivUIwrVXiFPE6dcUtGaJ4vFQs49sqePU72rTPSUnSc9PKnbWpIkoq9X31NvBrpcLrI/0Drmqr831JsgatzFHnNVPb/fnzN9nspMzwkHBgZQKviNEA6njKmqqsIXv/jFUodBBda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdOx2Oz760Y+WOgwqsObF6HjGxsZw7Ngx5rVpaGnRUJfdsmWLphg4dNCzbo2Etf4DGLtt9fRvpnMw2vBvhHA4ZYwsy+jp6SF338sZ1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0UqkUBgcHyZz15QxrXoyOx+FwYMWKFTlPeLOoTUNLi4a6rDqdIae06Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMEUUR7e3tOa+tliuseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UukoikI+XF3usObF6HhcLhfq6+tzpnhhUZuGlhYNdVmWLlhXMnrWrZGw1n8AY7etnv7NdA5GG/6xdE5Zo34sXcXID+xwOBwOh8PhcDgcDodt+vv7ceHChbz/vnr16py53LNpb2/XKSqOUQwODmLjxo1TjtuxYwe2b98+5bi2tjbU1NRoXt9UetPRaWtrA4C846brabpMFmuhOKfaVtPVocFU2yp7nJZ8qMtO1w+NeqJVk7TrpRAzqQ0VvWtkMoqJUwv19fWGrauUlPJaLn8jhMMpYzKZDERRhBnuZ7Lmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZPJZKAoiinywZoXo+NRP26sflScVW0aWlo01GVZqZNKR8+6NRLW+g9g7LbV07+ZzsFow2+EcEyBy+WC1+sFMD7PXigUIjtYJBIh89CNjY0hHo8DGH8NLRQKEY1wOIxkMgkASCQSSCQSAIBkMolwOEzGhUIh8upaPB7H2NgYgPE57yKRCIDxnTwUCpFXR2OxGHkFTJIkRKNRAEA6nUYoFCJzbUajUUiSBGD81bFYLFbQUzgcxhNPPIFr166Vvaf+/n488cQTCIfDTOTpww8/JPFozRMwde1dv34dTzzxBAYHB6l7Ur18+OGHTOTpypUrRGOmntSa//DDDwHQ3Z+mk6dy2Z+M8jQ8PExyWc6erl27RnywkKeRkRESD408GdkjJnpSt+3IyAiV2hsaGsITTzyB4eHhovKU3X8q+Zhrhr5348YNPPHEEyTecvZ09epVPPHEE7hx4wYTecreT4yoPXXfunLlCnVP2dos5KnY33uqj/7+fpIn3iNm5kmSJKKdTCaJP1Uvnyf171QqlRPPiRMncnxkj1PjUS/8qLHKsky2g6IoN43LjjV7XHasE8fl85Q9/YgoijnjsmONRCI4ceIEJEm6KdZSeMqOp1hPE8epsXo8HlRVVQEY/w6A3+9HIBDAo48+ioULF5IYvF4vmRbH6XTC5/MBAKxWK4LB4JSeMpkMgsEg0b711lvJ9waqqqrg8XgAAIIgIBgM5vWkatvtdtTW1uLRRx9FIBBAMBiEIAhkveoyqidg/GJudqxerxe33HILHn30UVRXV9/kyWodvzTo8/nI21HZ11hmzZqFRx99lGzn7NpLpVJ5PSWTSSp5yvZks9mmlafJPKVSKeLJZrMhGAySC95+v5/kqVDtBQIB2O12AIDb7Ybb7SZ5Uv2pGmqeCnlKJpNT7k8TPS1YsIDUg8vlIssU6hGFaq+Qp0AgQMZl157WPGUymZz9fbo9IjtPenhS95O5c+cST3r1PVEUceLECUQiEZInWsdc9Xzy2rVrVI65o6OjeOKJJzAwMED1nLAU8BshHFNQV1eHDRs2ABi/MNfS0kJ2zn379qG3txcA0NHRgaNHjwIYv6Db0tJCNHbt2oWLFy8CAI4fP47jx48DAC5evIhdu3aRcS0tLeQk5OjRo+jo6AAA9Pb2Yt++fQDGG0dLSwuGh4cBAIcPH0ZnZycAoLu7GwcPHgQw3hxaWlpIMzp48CC6u7sBAJ2dnTh8+HBBTz6fD8uXLycxlLOnl156CfX19fD5fEzk6eLFi5gzZw58Pp/mPAFT197w8DCamprQ2dlJ3dPZs2fR1NSEixcvMpGnQ4cOoampCT6fb8aefD4f5s+fj7NnzwKguz9NJ0/lsj8Z5am/vx9erxc+n6+sPXV0dGD58uXw+XxM5En9IaueKOhdezR7xERPHR0daGpqQjgcplJ73d3daGpqQn9/f1F5evbZZ/Htb38bPp+voo+5Zuh76smaejJczp6OHz+OpqYmiKLIRJ6effZZ3HvvvfD5fIbUns/nw7p16/Dss89S9+Tz+fDAAw/g2WefZSJPxf7e8/l8qK+vx0svvUTyxHvEzDx1d3cT7cuXL+P8+fNEb/fu3Xk9qX+Pjo7i5MmTAP6776h96Pz587h8+TJZrxpPKpVCV1cXuVjV29tLtsPg4CBOnz5NvHd1dZFYT58+jcHBQbLN1VwkEgl0dXWRC1eFPHV1dRFPJ0+exOjoKMlNtqfTp0/jzjvvhMPhQFdXF9mupfL07rvv4rbbboPD4Sjak5onAOjq6iJ5WrduHdasWQMAWLp0KRobGxGNRrFv3z40NjaSi5wbNmxAXV0dAGDlypVoaGgAMH4Btrm5mVzYzOdJkiQ0NzdDlmXs3r0bGzZswNKlSwEAa9aswbp16wAAtbW1aG5uzutJze3ixYvR0NCA3bt3IxqNorm5GbW1tQCAoaEhjIyM5HgCxi84Nzc353haunQpdu/eTfSyPakXfBsaGrBy5UoAuddY1AvZ6oX47NobGRnJ66mvr49KnrI9VVdXTytPk3kaHR0lnqqrq9Hc3ExukjQ2NpI8Faq9bdu2YfHixQCAtWvXYu3atSRPfX19ZNylS5dIngp5unTp0pT700RP69atw4kTJxCNRlFXV4erV68CKNwjCtVeIU/btm0j47JrT2ueFEVBT08Pli9fDofDMe0ekZ0nPTx98pOfxO7du1FbW0s86dX3bDYb7rzzTrz77rskT7SOueFwGE1NTeR8TI272GNuJpNBU1MTXnvtNarnhKWAfyOEU9ao88q5XC4IgoDOzk4sWbIE0WgUgUAAFosFkUgELpcLDocDY2NjSKfT8Hg8UBQFsViM3DUOh8Nwu92w2+2kwbndbiSTSSQSCXLXOBQKwev1QhAExONxWK1WVFVVQZZliKIIv9+PTCaDcDgMn88Hm82GWCwGQRDgcrkgSRJkWYbP50M6nUYkEoHf74fVakU0GoXD4YDT6YQoilAUBV6vF6lUinvinrgn7ol74p64J+6Je+KeuCfuiXuaoaeBgQGcPXsWgiDAZrMhmUwik8nA4XAgnU5j2bJlmDdv3qSeTpw4AbvdjlQqhWQySS4Ii6IIh8MBq9UKWZZhsVjIOEVR4HQ6kclkIElSzjir1QpBEMiT/NnjnE4nLBYLJEmCzWYj49LpNIlVluWccfk8ybKcE6vdbifjAFSUpxs3bqChoQEejwfpdBpjY2NwOBxwuVyIRCKwWCwIBAJ4/PHH8cgjj8Dr9UJRFIiiCKfTCYfDgWg0CqvVCr/fj507d2L+/Pl5PV27dg0PPfQQeWPa7/dDFEXIsoyqqipYrVbE43EIggCv14tdu3ahpqbmJk9DQ0PYvHkz7HY73G43eVAmGAwiFotBURQcOHAAFosFmzZt0uQpEokgnU7D5/NBlmVIkkSuscRiMdhsNvh8vhzvap4GBgbQ1NSU40l94vu5557DggULqOYpGo2SNztm4mn//v1IpVLYunVrjqeJeWptbcWcOXNuqr1QKISNGzciEAiQt8XUtwwSiQTsdjueeeYZLFy4EABw5coVNDY2QlGUgp5aW1tx66235t2fRkdH0dDQUDBPe/fuRW1tbd79aXh4GI2NjTfVnpon1dOTTz6Jxx57LMdTvtrTmqdDhw5h1qxZM+oRQ0ND5IGEfPvTRE+T5Wkmnvbs2YN58+YZ1vdWrVpV9sfc6fyOGBgYKNk3QviNEE5ZU+kfS4/FYjh8+DA2bNhAXvEsV1jzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk3KD9sXRZltHb24ulS5eSt0PKFda86BFPoQ8se71ebNiwAYcPH8b/+T//h+rH0rO11eljZqKXHXc+rZl8LH268UyGuuxdd91Fnp6fLM7pepsM/rH0yZlMZ2Iuy/Vj6bNnz57R/m7Ex9Jnum21MFm/o/WxdNbPwfjH0jkcTlEIgoBFixaROQ3LGda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdCbO11/OsObF6HgURUFfXx+Z7opVbRpaWjTUZcv949xmQc+6NRLW+g9g7LbV07+ZzsFoU/oIOBxO0bhcLmp3jEsNa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ66gUdM8CaF6PjEUVx0rd+WNOmoaVFQ122qalJUwwcOuhZt0bCWv8BjN22evo30zkYbdi57cbhcGaMJEno7OwkHyQqZ1jzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0lEUBf39/WX/NDbAnhej43E6nairq8s7NRor2jS0tGioy6ofrOaUFj3r1khY6z+AsdtWT/9mOgejDb8RwuGUMbIso6enB7IslzoUzbDmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZNKpTA4OGiKi8KseTE6HofDgRUrVujyfRSa2jS0tGioy/JPDLOBnnVrJKz1H8DYbaunfzOdg9GGfyydU9ZU+sfSORwOh8PhcDgcDoeTH9ofS+eUF7Q/FE3rw9RT6U3349zA9D6WToPJYuUfS598WT0/lq6HBmD8x9Jn+hFyIz6WPhE9P5Y+GaxMH6U3/GPpHA6nKNLpNEKhENLpdKlD0QxrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDqZTAaiKJri6XjWvBgdj54fK6apTUNLi4a6LCt1Uumw+JHxYmCt/wDGbls9/ZvpHIw25b3XcDgVTiQSQUtLCyKRSKlD0QxrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDqSJKGrq4uJuc61wpoXo+Px+/1obm6G3+9nWpuGlhYNdVmWvuVQyehZt0bCWv8BjN22evo30zkYbfiNEI4pcLlc8Hq9AMbn2QuFQuSuaiQSIfPQjY2NIR6PAxj/MFEoFCIa4XAYyWQSAJBIJJBIJAAAyWQS4XCYjAuFQuQHQDwex9jYGIDxOe/UnTqTySAUCpG5/mKxGERRBDDe7KLRKICb74pGo1HSBEVRRCwWK+jJ7/ejqakJNput7D0BwLZt2+D3+5nIk9PpxF/8xV/A7/drzhMwde1VVVXh4YcfhiAI1D05HA48/PDDcDqdTOQpk8ng4Ycfht/vn7Env9+Pv/zLvyRzdtLcn6aTp3LZn4zy5HK50NjYCL/fX9aebDYbmpqa4Pf7mciT2+3Ggw8+SH6A6117NHvERE82mw0PP/ww3G43ldqz2+14+OGH4XK5ispTOp3G3/7t38Lv91f0MdcMfc/j8eDBBx+Ez+cre09WqxUPP/wwPB4PE3lKp9P4zne+A7/fb0jt+f1+/M3f/E3OU4K0PPn9fvzd3/0d0uk0E3kq9vee3+/Htm3byBjeI2buSZIkop1MJok/VS+fJ/XvVCqVc56wYsUK2O124iN7nBqP+rSvGqssy2Q7KIpy07jsWLPHZcc6cVw+T2qs6nbJHpcdayaTwapVq+B0Om+KtRSeAOBTn/oUnE5n0Z4mjlNj9Xg8qKqqAjD+HQC/349IJIKnnnoKFouFxOD1euFyuUiu1ePMxLci8nnKZDIIBoNEO5PJkHOXqqoqeDweAIAgCAgGg3k9qdpqnT311FOIRCIIBoMQBIGsV11G9QQAFoslJ1av1wtJkvDUU09BFMWbPKlPv/t8PjJNXPY1llgshn379pHfQNm1l0ql8npKJpNU8pTtSY1hqjxN5imVShFPNpsNwWAQFosFwPgFcDVPhWovEAiQnLjdbrjdbpIn1Z+qoeapkKdkMjnl/jTRUzqdxs6dOxGJROByucgyhXpEodor5CkQCJBx2bWnNU+ZTAaZTAaf/vSn4XQ6p90jsvOkhydZlvHUU0+RY68aqx59z+FwYNWqVQBA8kTrmOt2u/Hwww/DZrNROeZ6vV48/PDDsFgsVM8JSwG/EcIxBXV1ddiwYQMAYHh4GC0tLWTn3LdvH3p7ewEAHR0dOHr0KIDxuWJbWlqIxq5du3Dx4kUAwPHjx3H8+HEAwMWLF7Fr1y4yrqWlBf39/QCAo0ePoqOjAwDQ29uLffv2ARhvHC0tLRgeHgYAHD58GJ2dnQCA7u5uHDx4EMDNd0UPHjyI7u5uAEBnZycOHz5c0JPVakVPTw9++tOflr2n/fv34+rVq7BarUzk6dSpU3jttddgtVo15wmYuvb+8Ic/IBgM4pe//CV1T7/97W8RDAZx6tQpJvK0Z88e8kNupp6sVit+8Ytf4Le//S0AuvvTdPJULvuTUZ7OnTuHl156CVartaw9/fSnP0VPTw+sVisTebp69SqeffZZcrKjd+3R7BETPf30pz9FMBjE1atXqdTef/3XfyEYDOLcuXNF5emHP/whrFYrrFZrRR9zzdD3RkZG8Oyzz5ITwnL29PLLLyMYDGJkZISJPP3whz9EMpmE1Wo1pPasVitisRh++MMfUvdktVpRVVWFH/7wh0zkqdjfe1arFVevXsX+/ftJnniPmJmn7u5uon358mWcP3+e6O3evTuvJ/Xv0dFRnDx5EsD4hb6enh5yoej8+fO4fPkyWa8aTyqVQldXF7lY1dvbS7bD4OAgTp8+TbxnPxV8+vRpDA4Okm2u5iKRSKCrq4tcuCrkqauri3g6efIkRkdHSW6yPb399ttwuVywWCzo6uoi27VUntTtarFYivak5gkAurq6yMW9devWYc2aNQCApUuXorGxkVyQfPjhh8lFzg0bNqCurg4AsHLlSjQ0NAC4+a2IfJ4kSUJzczMcDgdCoRAefPBBLF26FACwZs0arFu3DgBQW1uL5ubmvJ7U3C5evBhbt24lNwCbm5tRW1sLABgaGsLIyEiOJ2D8gnNzc3OOp1WrViEUCmHFihU3eVIv+DY0NGDlypUAcq+xzJ07F42NjeQiZ3btjYyM5PXU19dHJU/Znqqrq6eVp8k8jY6OEk/V1dVobm4mN0kaGxtJngrV3rZt27B48WIAwNq1a7F27VqSp76+PjLu0qVLJE+FPF26dGnK/Wmip29/+9v4yEc+gnQ6jbq6Oly9ehVA4R5RqPYKecq+CZ9de1rzpCgKfvvb38JiscBisUy7R2TnSQ9Pn/vc5xAKhfDxj3+ceNKr76XTabhcLvT09JA80TrmXr16FcFgED/96U+pHHNjsRiCwSDa2tqonhOWAv6xdE5Zo35gx+VyQRAEdHZ2YsmSJYhGowgEArBYLOQuucPhwNjYGNLpNDweDxRFITszMH531e12w263kwbndruRTCaRSCTIXWP1bqggCIjH4+QES5ZliKJInowOh8Pw+Xyw2WyIxWIQBAEulwuSJEGWZfh8PqTTafK0mtVqRTQahcPhIE/kKIoCr9eLVCo1qSdJknDgwAHce++9mDdvXll7unr1Ko4cOYLNmzdDEISS5+n69ev4z//8T9x///3weDya8jSd2kulUnjhhRfw9a9/HV6vl6qnsbExvPTSS9iwYQN5CqOUefrwww9x9OhRNDQ0kKdypuspkUjgueeewze/+U1UV1dT3Z/M2CP09jQyMoLnn38e999/P7xeb9l6GhoawksvvYTNmzeTOEqZp9HRURw6dAj3338/fD6f7rVHs0dM9BSJRPCTn/wE3/rWt8gTYlpqLx6P4+WXX8Y3vvEN2O32Gefp6tWrOHr0KDZt2gQAFXvMNUPfC4VCOHjwIDZv3kye6i1XT6FQCEeOHMF9990HACXP08DAANlPLBaL7rWXTqfx4x//GOvWrSMXI2h5slgsRHv+/Pklz1Oxv/cURcGBAwewfv16LFiwgPeIGXoaGBjA2bNnIQgCbDYbeUPZ4XAgnU5j2bJlmDdv3qSeTpw4AbvdjlQqhWQySeI5deoUbr/9duLDYrGQcYqiwOl0IpPJQJIkOBwOWK1WyLIMq9UKQRDIk/zZ45xOJ3na1mazkXHpdJrEKstyzrh8nmRZJk9hi6IIu91OxgEgscbjcZw/fx633347WV6NtRSeIpEI3nvvPdxxxx2wWq1FeVLzpI67ceMGGhoa4PF4kE6nMTY2BofDAZfLhUwmg4aGBhw9ehR///d/j0ceeQRerxeKokAURTidTjgcDkSjUVitVvj9fuzcuRPz58/P6+natWt46KGHkEql0NDQgFdeeQUjIyOQZRlVVVWwWq2Ix+MQBAFerxe7du1CTU3NTZ6GhoawefNm2O12VFdX48///M9x8OBBsn+ofcFisWDTpk3EUyQSgcViQSAQwOOPP048uVwubNiwAS+++CJkWc7xFIlEkE6n4fP5IMsyJEki11hisRgCgQA2bdqEVatWYeHChTm1NzAwgKamphxP6hPfzz33HBYsWKA5T9meotEoOYcslKeJnvbv349UKoWtW7ciFovBZrOR39mZTAZ+vx+iKKK1tRVz5sy5qfZCoRA2btyIQCBA3hZT3zJIJBKw2+145plnsHDhQgDAlStX0NjYCEVRCnpqbW3Frbfemnd/Gh0dRUNDQ46nmpoafO1rX8OPf/xjJJNJ7N27F7W1tXl7xPDwMBobG2+qPTVPqqcnn3wSjz32WI4nt9tN3jYIBoOk9rTm6dChQ3C73Th//jzuuOMOAJiyRwwNDaGpqQmiKObdnyZ6mixPhTy53W7ce++9eOGFF6AoCvbs2YN58+bp0veA8Y+E//Ef/zE8Hg9sNhtWrVpF5ZibyWTwn//5n/ja174Gv9+v+ZhrsVjQ1taGe+65B7Nnz9Z8TjgwMFCyj6ULhqyFw9GZ7FcV1VccVbLn9lNf3QMmf3VORW2UwOSvzqmor+EB4xdT1Ff0si/2ACCvXwLjd8jVpw7UVxxV1NcEAZAfBYU8ZTIZfPKTnyT/Vs6e5syZg09+8pPkREalVJ58Ph/uvPNOcrDTkidg6tqTJAkrVqxAIBAg/ml5stvtWLFiRc5rwaXM09y5c7FixYqbNKbjyeFw4M477yTblub+BJivR+jtyev1kv2knD0Fg0FS1yzkye12k+1arKdS9YiJnqxWK1asWAG3252zvxfrSRAErFixAl6vl+jNJE/V1dVYuXLlTf2n0o65Zuh7VVVVuPPOO8ly5exp1qxZWLFiBaqqqnLqslSe8u0netWeJElYuXIleXqUpqds7expOorxRCNPxf7ekyQJn/zkJzFnzhwAvEcU4yk7Z+p0KZPpTfSkjrXZbKSGbDYbFixYQP5N9TBxnMViyYkpe5wgCGQ6lonjJv7Gzo4137iJnrLHZf+dPc5ms8HtdqOmpoZcrJssViM9ud1uctOy0LhCntRY1XHqG7bqdDPA+BQx6sXVnp4eXL9+nUyRpE71Aozve+oTzuoUMeq4fJ4sFgtCoRDRvnHjRs4UMSoTp72Z6EnVTCaTGBkZQU9PD7lJMdl6VU/Af097k+0pmUyip6cHsVjsJk8q6ltOQO41FlEU8fbbb2P16tU3ebfZbHmn8lFv7Kh/Zy8zkzxle1KZKk+TeVIv+AL/PZWPSva3CwrtT9lTEKkXo4HxPGUvZ7fbc6YEzOfJbrcT7/n2p4meRkdH0d3dTepBHVeoRxSqvUKeJk65pKI1TxaLBR6PZ9L9vdC+n50nPTwpioKenh7E4/GcWPXoe4qioKamBm63m+wPtI656u+NYDBI4tByzFX11JsggLZzwoGBAZQKfiOEwyljnE4nec2w3GHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSkcQBPL2UrnDmhej45EkiUwHw7I2DS0tGuqyDz/8sKYYOHTQs26NhLX+Axi7bfX0b6ZzMNrwb4RwOGWMKIpob2/PeVqjXGHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSkdRFPT19ZGnvcsZ1rwYHY/L5UJ9fX3Ok80satPQ0qKhLqt+p4FTWvSsWyNhrf8Axm5bPf2b6RyMNvxGCIdTxrB44CgW1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql01Glq1A9RlzOseTE6HkEQsGjRopxpa1jUpqGlRUNdln9imA30rFsjYa3/AMZuWz39m+kcjDb8Y+mcskb9WLqKkR/Y4XA4HA6Hw+FwOBwO2/T39+PChQt5/3316tU5c7ln097erlNUHKMYHBzExo0bpxy3Y8cObN++fcpxbW1tqKmp0by+qfSmo9PW1gYAecdN19N0mSzWQnFOta2mq0ODqbZV9jgt+VCXna4fGvVEqyZp10shZlIbKnrXyGQUE6cW6uvrDVtXKSnltVz+RgiHU8akUikMDg6a4hVV1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql00uk0YrEYU08xFwtrXoyOx2azkY/Fs6xNQ0uLhrosf46aDfSsWyNhrf8Axm5bPf2b6RyMNvxGCIdTxkSjUezZswfRaLTUoWiGNS9Gx6Pn+mhq09DSosFanVQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bSK1WCtRiodWZbx9ttvQ5blUoeiGda8GB2Pz+fD1q1b4fP5mNamoaVFQ12WhWltOPrWrZGw1n8AY7etnv7NdA5GGz41FqesqfSpsTKZDCRJgtPphMViKXU4mmDNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRcoP21FiZTAapVAo2m63s88GaFz3iKTSdjsVigdPphCRJ+MEPfkB1aqxs7UKX3aYzFVM+rZlMjTXdeCZDXXbfvn2YP39+3jin620y+NRYkzOZzsRcluvUWPPmzZvR/m7E1Fgz3bZamKzf0Zoai/VzsFJeyy3vL+twOBWOxWKBy+UqdRhUYM2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKx2KxlP1HilVY82J0PJlMBqIoMq9NQ0uLhrosCzfLOPrWrZGw1n8AY7etnv7NdA5GGz41FscUuFwueL1eAONzz4VCIfKUQyQSIa+ajY2NIR6PAwAURUEoFCIa4XAYyWQSAJBIJJBIJAAAyWQS4XCYjAuFQuSV0Hg8jrGxMQDjr7VFIhEA480zFAqR+e9isRhpppIkkdfB0uk0QqEQmRMwGo1CkiQAgCiKiMViBT1FIhH84Ac/wODgYNl7GhgYwI4dOxCJRJjI0/DwMH7wgx8gEolozhMwde2NjIzgqaeewtDQEHVPH374IZ566ikMDw8zkaf+/n489dRTiEQiM/ak1vyHH34IgO7+NJ08lcv+ZJSn69evk/2knD0NDg4SHyzk6caNGyQeGnkyskdM9DQ4OIinnnoKN27coFJ7aqzXr18vKk9XrlwhPaySj7lm6Hujo6P4wQ9+QOIoZ0/Xrl3DU089hdHRUSbylL2fGFF7kUgEO3bswJUrV6h7ytZmIU/F/t5TfQwMDJA88R4xM0+SJBHtZDJJ/Kl6+Typf6dSqZx4fvOb3+T4yB6nxqNeUFNjlWWZbAdFUW4alx1r9rjsWCeOy+cp+0KeKIo547JjjUQi6OzshCRJN8VaCk+RSAS/+c1vIElS0Z4mjlNj9Xg8qKqqAgA4HA74/X74/X40NzejtraWxOD1eskFO6fTSabIsVqtCAaDU3rKZDIIBoNEe8GCBXA4HACAqqoqeDweAIAgCAgGg3k9qdp2ux233normpub4ff7EQwGycVTRVHIMqonYPyiY3asXq8X1dXVaG5uxty5c2/yZLWOXxr0+Xzk7ajsayzBYBCPPPII8Zhde6lUKq+nZDJJJU/ZntRvN0yVp8k8pVIp4slmsyEYDJKbO36/n+SpUO0FAgHY7XYAgNvthtvtJnlS/akaap4KeUomk1PuTxM9zZ8/n9SDy+UiyxTqEYVqr5CnQCBAxmXXntY8ZTIZhMNhsr9Pt0dk50kPT7fccguam5sxZ84c4kmvvieKIjo7OxGJREieaB1zb9y4gaeeegqDg4NUjrmhUAhPPfUUrl69SvWcsBTwGyEcU1BXV4cNGzYAGL+A3dLSQnbOffv2obe3FwDQ0dGBo0ePAhh/RbqlpYVo7Nq1CxcvXgQAHD9+HMePHwcAXLx4Ebt27SLjWlpa0N/fDwA4evQoOjo6AAC9vb3Yt28fgPHG0dLSguHhYQDA4cOH0dnZCQDo7u7GwYMHAYw3h5aWFtKMDh48iO7ubgBAZ2cnDh8+XNCTy+VCdXU13njjjbL39OKLL2Lx4sVwuVxM5Om9994jd6215gmYuvauXbuG+vp6nDhxgrqn06dPo76+Hu+99x4Tefrxj3+M+vp6uFyuGXtyuVxwOBw4ffo0ALr703TyVC77k1Ge+vr6oCgKXC5XWXt64403UF1dDZfLxUSeRkZGEI1GyUmD3rVHs0dM9PTGG2+gvr4eIyMjVGrvd7/7Herr69HX11dUnvbt24dVq1bB5XJV9DHXDH0vFoshGo2SCxjl7OnYsWOor69HLBZjIk/79u3DJz/5SbhcLkNqz+Vy4fbbbycx0PTkcrnw2c9+Fvv27WMiT8X+3nO5XFi8eDFefPFFkifeI2bmqbu7m2hfvnwZ58+fJ3q7d+/O60n9e3R0FCdPngQwfsFNlmVyEer8+fO4fPkyWa8aTyqVQldXFxnX29tLtsPg4CD5PStJErq6ukisp0+fJjfd+/v7SS4SiQS6urrIhatCnrq6uoinkydPYnR0lOQm29M777yDRYsWQRAEdHV1ke1aKk+9vb2YPXs2BEEo2pOaJwDo6uoiF/fWrVuHNWvWAACWLl2KxsZGiKKIEydO4C//8i/JRc4NGzagrq4OALBy5Uo0NDQAALmxoV7YzOdJkiQ0Nzcjk8mgvb0d3/zmN7F06VIAwJo1a7Bu3ToAQG1tLZqbm/N6UnO7ePFibN68Ge3t7RBFkdy4AYChoSGMjIzkeALGLzg3NzfneLrjjjvQ3t6Oj33sYzd5Ui/4NjQ0YOXKlQByr7F4vV74/X5yzM2uvZGRkbye+vr6qOQp21N1dfW08jSZp9HRUeJJvTGk3iRpbGwkeSpUe9u2bcPixYsBAGvXrsXatWtJnvr6+si4S5cukTwV8nTp0qUp96eJntavX48rV65AFEXU1dXh6tWrAAr3iEK1V8jTtm3byLjs2tOaJ0VR0NPTg9raWgiCMO0ekZ0nPTx96lOfQnt7OxYtWkQ86dX3LBYLFi1ahN7eXpInWsfckZER1NfX44033qByzJVlGfX19XjllVeonhOWAv6NEE5Zo84r53K5IAgCOjs7sWTJEkSjUQQCAVgsFkQiEXLxdGxsDOl0Gh6PB4qiIBaLkbvG4XAYbrcbdrudNDi3241kMolEIkHuGodCIXi9XgiCgHg8DqvViqqqKsiyDFEU4ff7yd1tn88Hm82GWCwGQRDIxUJZluHz+ZBOpxGJROD3+2G1WhGNRuFwOOB0OiGKIhRFgdfrRSqV4p64J+6Je+KeuCfuiXvinrgn7ol74p5m6GlgYABnz56FIAiw2WxIJpPIZDJwOBxIp9NYtmwZ5s2bN6mnEydOwG63I5VKIZlMkocURFGEw+GA1WqFLMuwWCxknKIocDqdZE707HFWqxWCIJAn+bPHqXOnS5IEm81GxqXTaRKrLMs54/J5kmU5J1a73U7GAagoTzdu3EBDQwM8Hg/S6TTGxsbgcDjIA28WiwWBQACPP/44HnnkEXi9XiiKAlEU4XQ64XA4EI1GYbVa4ff7sXPnTsyfPz+vp2vXruGhhx5COBxGJpOB3++HKIqQZRlVVVWwWq2Ix+MQBAFerxe7du1CTU3NTZ6GhoawefNm2O12uN1u8sR3MBhELBaDoig4cOAALBYLNm3apMmTOguCz+eDLMuQJIlcY4nFYrDZbPD5fDne1TwNDAygqakpx5P6xPdzzz2HBQsWUM1TNBolb3bMxNP+/fuRSqWwdevWHE8T89Ta2oo5c+bcVHuhUAgbN25EIBAgb4upbxkkEgnY7XY888wzWLhwIQDgypUraGxshKIoBT21trbi1ltvzbs/jY6OoqGhoWCe9u7di9ra2rz70/DwMBobG2+qPTVPqqcnn3wSjz32WI6nfLWnNU+HDh3CrFmzZtQjhoaG0NTUVHB/muhpsjzNxNOePXswb948w/reqlWryv6YO53fEQMDAyX7Rgi/EcIpayr9Y+ljY2Po6OjAmjVryGuJ5QprXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNlBu0P5aeTCZx+fJl3HbbbWTqlXKFNS96xFPoA8tVVVVYs2YNOjo68K//+q9UP5aera1OTTMTvey482nN5GPp041nMtRlN23ahFtvvTVvnNP1Nhn8Y+mTM5nOxFyW68fS58yZM6P93YiPpc9022phsn5H62PprJ+DlfJaLp8ai8MpYybOkVvOsObF6Hj0XB9NbRpaWjRYq5NKxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9WsRqs1UilM3Ee+HKGNS9GxzPx2wusatPQ0qIx8fsonNKiZ90aCWv9BzB22+rp30znYLTR5/P0HA7HEDweD+67775Sh0EF1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0HA5HzpOs5QxrXoyOJx6P4/nnn2dem4aWFg112XvuuUdTDBw66Fm3RsJa/wGM3bZ6+jfTORhtyvv2IYdT4SiKQj5WXO6w5sXoePRcH01tGlpaNFirk0rHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1axGqzVSKXD0pOtWmHNi9HxCIJAPhbPsjYNLS0a6rKs1Emlo2fdGglr/Qcwdtvq6d9M52C04TdCOJwyJhaLobW1FbFYrNShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh1ZlnHq1CnIslzqUDTDmhej4/F6vXjggQfg9XqZ1qahpUVDXTaVShW9fg499KxbI2Gt/wDGbls9/ZvpHIw2/GPpnLKm0j+WzuFwOBwOh8PhcDic/ND+WDqnvKD9oWhaH6aeSm+6H+cGpvexdBpMFiv/WPrky+r5sXQ9NADjP5Y+04+QG/Gx9Ino+bH0yaD1sXTW4R9L53A4HA6Hw+FwOBwOh8PhcDgcDofD0QF+I4TDKWPC4TC+//3vIxwOlzoUzbDmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpSOKIt566y2IoljqUDTDmhej4wkEAnj00UcRCASY1qahpUVDXTaZTBa9fg499KxbI2Gt/wDGbls9/ZvpHIw2/EYIh1PGuN1urF+/Hm63u9ShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh273Y4lS5bAbreXOhTNsObF6HgSiQSOHDmCRCLBtDYNLS0a6rI2m63o9XPooWfdGglr/Qcwdtvq6d9M52C0EUodAIfDKR61cZoB1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0bDYb5s6dW+owqMCaF6PjSSaTOHfuHPPaNLS0aKjLWq38WWoW0LNujYS1/gMYu2319G+mczDa8C7G4ZQxZnkSAGDPi9Hx8KeRjFs/hx5myQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh31QpkZpglizYvR8fA30ma2rKIoRa+fQw+Wnq7XAmv9BzB22+rp30znYLThN0I4HA6Hw+FwOBwOh8PhcDgcDofD4ZgWPjUWh1PGqHerzQBrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDosTfGhFda8GB2P+pQy69o0tLRoqMt+61vf0hQDhw561q2RsNZ/AGO3rZ7+zXQORhv+RgjHFLhcLni9XgBAKpVCKBRCJpMBAEQiEciyDAAYGxtDPB4HACiKglAoRDTC4TB5JS2RSJBXtpLJJMLhMBkXCoXIK6HxeBxjY2MAAFmWEYlEAACZTAahUAipVAoAEIvFIIoiAECSJESjUQBAOp1GKBRCOp0GAESjUUiSBAAQRRGxWKygp2QyiVOnThEf5expZGQEp0+fRjKZZCJPsVgM3d3dSCaTmvMETF17iUQC586dI3/T9BSNRnHu3Dnyd6nzdP36dfIK6Ew9JZNJdHd3Ex8096fp5Klc9iejPMXjcfz+979HMpksa0+hUAinTp1CMplkIk9jY2N4++23iQ+9a49mj5joKRQK4dy5c+RvLXmKx+OIRCI4d+4c+XumeRoeHkZvby+SyWRFH3PN0PdEUcTbb79NfJSzp9HRUZw7dw6iKDKRp+HhYZw9exbJZNKQ2ksmkzh79iyGh4epe0omk3j33XcxPDzMRJ6K/b2XTCZx+vRpjIyMkDzxHjEzT5IkEW31eJ+tl8+T+ncqlSLxpFIpXL16lfybeoxQ/02NJ5PJQBRFEqssy2Q7KIpy07jsWLPHZcc6cVw+T2qs6nbJHpcdazwex/Xr14m/7FhL4SmRSGBoaIj87i/G08RxaqwejwdVVVUAAIfDAb/fTy5Ezp07l8Tg9XrhcrkAAE6nEz6fDwBgtVoRDAan9JTJZBAMBon27Nmz4XA4AABVVVXweDwAAEEQEAwG83pSte12O+bMmUM+qhwMBiEIAlmvuozqCQAsFktOrF6vF16vF0uWLIHH47nJk/rtD5/PB6fTCSD3GovT6cSdd95J1pVde6lUKq+nZDJJJU/ZntQPtk+Vp8k8pVIp4slmsyEYDMJisQAA/H4/yVOh2gsEAuTj1m63m0yhZLfbc6Y4SiaTJE+FPKnXG4D8+9NET7NmzcLy5ctht9vhcrnIMoV6RKHaK+QpEAiQcdm1pzVPmUwG8XicHJ+n2yOy86SHJ5/PhyVLlsDtdhNPevU9RVFw/fp1JBIJkidax9yxsTGcO3eO/K3GXewxV5IknDt3Djdu3KB6TlgK+I0Qjimoq6vDhg0bAADDw8NoaWkhO+e+ffvQ29sLAOjo6MDRo0cBAP39/WhpaSEau3btwsWLFwEAx48fx/HjxwEAFy9exK5du8i4lpYW9Pf3AwCOHj2Kjo4OAEBvby/27dsHYLxxtLS0kBO6w4cPo7OzEwDQ3d2NgwcPAhhvDi0tLaQZHTx4EN3d3QCAzs5OHD58uKCnRCKBo0ePmsJTa2srXn31VSQSCSby9Lvf/Q5Hjx5FIpHQnCdg6tp79913ceTIEfz85z+n7unEiRM4cuQIfve73zGRp71795L5IWfqSa35EydOAKC7P00nT+WyPxnl6dSpU2Q/KXdPqg8W8nTx4kW89tpr5Met3rVHs0dM5unIkSO4ePEilTy9+eabOHLkCE6dOlVUnnbu3IlXXnkFiUSioo+5Zuh7V65cwWuvvYbR0dGy9/TSSy/hyJEjuHLlChN5yt5PjKi9RCKBV155BTt37qTuSX2yc+fOnUzkqdjfe4lEAq+++ipaW1tJnniPmJmn7u5uon358mWcP3+e6O3evTuvJ/Xv0dFRnDx5EsD4Raf333+f9J/z58/j8uXLZL1qPKlUCl1dXeR43tvbS7bD4OAgTp8+Tbx3dXWRWE+fPo3BwUGyzdVcJBIJdHV1kQtXhTx1dXURTydPniSxXrx4McdTd3c3eUCpq6uLbNdSeTp16hTee+89JJPJoj2peQKArq4ucnFv3bp1WLNmDQBg6dKlaGxsJE8pf+c73yEXOTds2IC6ujoAwMqVK9HQ0ABg/AJsc3MzubCZz5MkSWhubsasWbOwfv16bNmyBUuXLgUArFmzBuvWrQMA1NbWorm5Oa8nNbeLFy/GX/3VX5HvFjQ3N6O2thYAMDQ0RG6Qqp6A8QvOzc3NOZ7+9E//FOvXr8ef/Mmf3ORJveDb0NCAlStXAsi9xrJw4UKsW7eOXITNrr2RkZG8nvr6+qjkKdtTdXX1tPI0mafR0VHiqbq6Gs3NzeQmSWNjI8lTodrbtm0bFi9eDABYu3Yt1q5dS/LU19dHxl26dInkqZCnS5cuTbk/TfS0ceNG3HPPPXC73airq8PVq1cBFO4RhWqvkKdt27aRcdm1pzVPiqLg5MmTpP9Mt0dk50kPT3/2Z3+G9evX4xOf+ATxpFffE0UR586dw6lTp0ieaB1zL168iCNHjlA75g4NDeHIkSNoa2ujek5YCiwZ9XYNh1OGnD17FsuXL4fL5YIgCOjs7MSSJUsQjUYRCARgsVgQiUTgcrngcDgwNjaGdDoNj8cDRVEQi8XIXeNwOAy32w273U4anNvtRjKZRCKRIHeNQ6EQvF4vBEFAPB6H1WpFVVUVZFmGKIrw+/3IZDIIh8Pw+Xyw2WyIxWIQBAEulwuSJEGWZfh8PqTTaUQiEfj9flitVkSjUTgcDjidTnKH2Ov1IpVKcU/cE/fEPXFP3BP3xD1xT9wT98Q9cU8z9DQwMICzZ89CEATYbDbyJqvD4UA6ncayZcswb968ST2dOHECdrudvKGgPtksiiIcDgesVitkWYbFYiHjFEWB0+lEJpOBJEk546xWKwRBIE/yZ49zOp2wWCyQJAk2m42MS6fTJFZZlnPG5fMky3JOrHa7nYwDUFGebty4gYaGBng8HqTTaYyNjcHhcMDlciESicBisSAQCODxxx/HI488Aq/XC0VRIIoinE4nHA4HotEorFYr/H4/du7cifnz5+f1dO3aNTz00EMIh8PIZDLw+/0QRRGyLKOqqgpWqxXxeByCIMDr9WLXrl2oqam5ydPQ0BA2b94Mu90Ot9tNnvgOBoOIxWJQFAUHDhyAxWLBpk2bNHmKRCJIp9Pw+XyQZRmSJJFrLLFYDDabDT6fL8e7mqeBgQE0NTXleFKf+H7uueewYMECqnmKRqPkzY6ZeNq/fz9SqRS2bt2a42linlpbWzFnzpybai8UCmHjxo0IBALkbTH1LYNEIgG73Y5nnnkGCxcuBDD+wEZjYyMURSnoqbW1Fbfeemve/Wl0dBQNDQ0F87R3717U1tbm3Z+Gh4fR2Nh4U+2peVI9Pfnkk3jsscdyPOWrPa15OnToEGbNmjWjHjE0NISmpqaC+9NET5PlaSae9uzZg3nz5hnW91atWlX2x9zp/I4YGBjA8uXLoXLmzBksW7YMRsBvhHDKGvVGiIqROw+Hw+FwOBwOh8PhcNimv78fFy5cyPvvq1evJk+FT6S9vV2nqDhGMTg4iI0bN045bseOHdi+ffuU49ra2lBTU6N5fVPpTUenra0NAPKOm66n6TJZrIXinGpbTVeHBlNtq+xxWvKhLjtdPzTqiVZN0q6XQsykNlT0rpHJKCZOLdTX1xu2rlJSymu5fGosDqeMCYVC+N73vlfyOfZowJoXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjiiK6OjoyPluQLnCmhej4wkGg/jud7+b820BFrVpaGnRUJfN/gYGp3ToWbdGwlr/AYzdtnr6N9M5GG34jRAOp4zxer3YsmUL+eBXOcOaF6Pj0XN9NLVpaGnRYK1OKh2z5IM1H7z/6KfH+495MFM+WPPCe5B+WsVqsFYjlY7D4cAnPvEJ8sHecoY1L0bHE4vFsH//fvLBX1a1aWhp0VCXVT+AzSktetatkbDWfwBjt62e/s10DkYbodQBcDic4hEEAYsWLSp1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHarWW/ZPYKqx5MToeRVFyPnDNqjYNLS0a6rJWK3+WmgX0rFsjYa3/AMZuWz39m+kcjDa8i3E4ZUw8Hsfzzz+PeDxe6lA0w5oXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjizLOHPmDGRZLnUommHNi9HxeDwe3HffffB4PExr09DSoqEuqyhK0evn0EPPujUS1voPYOy21dO/mc7BaMNvhHA4ZYx6B9kMT2aw5sXoePRcH01tGlpaNFirk0rHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1axGqzVSKVjsVjgcrlgsVhKHYpmWPNidDzpdBqhUAjpdJppbRpaWjTUZVmpk0pHz7o1Etb6D2DsttXTv5nOwWjDp8bicMqYqqoqfPGLXyx1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHbrfjox/9aKnDoAJrXoyOZ2xsDMeOHWNem4aWFg112S1btmiKgUMHPevWSFjrP4Cx21ZP/2Y6B6NN6W/FcDicopFlGT09PUy9SlgsrHkxOh4910dTm4aWFg3W6qTSMUs+WPPB+49+erz/mAcz5YM1L7wH6adVrAZrNVLppFIpDA4OIpVKlToUzbDmxeh4HA4HVqxYocvHimlq09DSoqEuW+5vIJgFPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxoiiivb0doiiWOhTNsObF6Hj0XB9NbRpaWjRYq5NKxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9WsRqs1Uilo35M1wzfS2DNi9HxuFwu1NfXw+VyMa1NQ0uLhrosSxesKxk969ZIWOs/gLHbVk//ZjoHo40lk8lkSh0Eh1MsZ8+exfLly8l/nzlzBsuWLSthRBwOh8PhcDgcDofDYYX+/n5cuHAh77+vXr0aTqdz0n9rb2/XKSqOUQwODmLjxo1TjtuxYwe2b98+5bi2tjbU1NRoXt9UetPRaWtrA4C846brabpMFmuhOKfaVtPVocFU2yp7nJZ8qMtO1w+NeqJVk7TrpRAzqQ0VvWtkMoqJUwv19fWGrauUlPJaLn8jhMMpYzKZDERRhBnuZ7Lmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZPJZKAoiinywZoXo+PR82PFNLVpaGnRUJdlpU4qHRY/Ml4MrPUfwNhtq6d/M52D0YbfCOFwyphwOIwnnngC4XC41KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHUmScOLECUiSVOpQNMOaF6PjCQQCePTRRxEIBJjWpqGlRUNdlqUpjCoZPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxPp8PTU1N8Pl8pQ5FM6x5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6TgcDtx5551l/6FigD0vRscTjUaxe/duRKNRprVpaGnRUJcVBKHo9XPooWfdGglr/Qcwdtvq6d9M52C04V2MwyljbDabofMV6glrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDpWqxVer7fUYVCBNS9Gx5NKpTA4OMi8Ng0tLRrqsuU+FZNZ0LNujYS1/gMYu2319G+mczDa8DdCOJwyJhaLYf/+/YjFYqUORTOseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UunIsoyenh7IslzqUDTDmhej4/F6vXjggQd0uRhJU5uGlhYNdVk+NRYb6Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMEQQBixYtMsUrqqx5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6VitVgSDQVit5X85hTUvRsejKAr6+vp0ucBPU5uGlhYNdVn+Rggb6Fm3RsJa/wGM3bZ6+jfTORhtSh8Bh8MpGpfLhfr6+lKHQQXWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXTUCzpmgDUvRscjiiLa29uZ16ahpUVDXbapqUlTDBw66Fm3RsJa/wGM3bZ6+jfTORht2LntxuFowOVykVfXUqkUQqEQMpkMACASiZBXzcbGxhCPxwGM3+kNhUJEIxwOI5lMAgASiQQSiQQAIJlMIhwOk3GhUIjcHY7H4xgbGwMw/lpbJBIBAGQyGYRCIaRSKQDjr4GJoggAkCSJfHgpnU4jFAohnU4DGP8wkyRJAMYbsPraWD5PkiThV7/6FW7cuFH2noaHh/HWW29BkiQm8hSJRNDe3g5JkjTnCZi69mKxGDo7OzE6OkrdUzgcRmdnJyKRCBN5+vDDD9HZ2QlJkmbsSZIkdHR0kO1Cc3+aTp7KZX8yylM0GiX7STl7unHjBn71q19BkiQm8hSPx/Hmm28SDb1rj2aPmOjpxo0b6OzsRDwep1J7oVAInZ2diEajReVpaGgIv/71r8n/X6nHXDP0vUQigTfffDPnuF2unkZGRtDZ2YlEIsFEnrL3EyNqT5IknDhxAkNDQ9Q9SZKE3/zmNxgaGmIiT8X+3pMkCW+99RaGh4dJnniPmJknSZKIdjKZJP5UvXye1L9TqRSJR1EU/OEPfyAasiznjFPjyWQyEEWRxCrLMtkOiqLcNC471uxx2bFOHJfPkxqrul2yx2XHGo/H0d/fD0VRboq1FJ7i8Tg++OADKIpStKeJ49RYPR4PqqqqAIx/pNjv98PpdKKurg633HILicHr9cLlcgEAnE4n+biv+vT2VJ4ymQyCwSDRnjt3LvkYclVVFTweD4Dxi6DBYDCvJ1XbbrejuroadXV1cDqdCAaD5KlqRVHIMqonALBYLDmxer1e+P1+1NXVwefz3eRJfSLd5/PB6XQCyL3GUlX1/7d37+FRlGf/wL973iS7SThEAqKgtEoRFbQqaFtQK7UqSiseKCoYWxF7Cm3f1mpfTz14aK3mZzmoFUFF1GKLYgHRIqhoomgi5yJggACBELLJbjZ73t8fueZ5NyGHze7M7LOz3891cV0bMnvPfc/z7L3ZmZ2ZPFx88cUip8S5F41Gu60pHA6rMk6JNVkslqTGqauaotGoqMlisaC4uFic5VJYWCjGqae5V1RUBJvNBgDIz89Hfn6+GCelPiWGMk491RQOh3t9PXWuacCAAbjooovgcDjgdDrFc3rqET3NvZ5qKioqEsslzr10xykej8Pn82H//v2i1mR6ROI4aVFTUVERxo0bJ14zSq5a9L1wOIy6ujq0traKcVLrPbe1tRWVlZU4duyYKu+5bW1tqKysxNGjR1X9TJgJPBBChjBu3DhMnToVQPuO2oqKCvHiXLhwIbZt2wYAWL9+PVasWAEAqKurQ0VFhYgxf/587N69GwCwZs0arFmzBgCwe/duzJ8/XyxXUVGBuro6AMCKFSuwfv16AMC2bduwcOFCAO2No6KiQnxYWbZsGSorKwEA1dXVWLJkCYD25lBRUSGa0ZIlS1BdXQ0AqKysxLJly3qsKRQKoaqqCitXrsz6ml588UV88sknCIVC0ozThg0bxJtFOuME9D73vvjiC9TU1OCdd97RpKaamhppxmnhwoXiWph9rSkUCmHDhg2avJ6SGadseT3pVdPWrVvx/vvvi53E2VrTypUrUVVVhVAoJMU47d27F++9957441GPuadWj+hc08qVK1FTU4O9e/eqMvfee+891NTUYOvWrSmN04IFC1BdXY1QKJTT77lG6HuHDh3Ce++9Jz6oZXNNy5cvR01NDQ4dOiTFOC1YsACffvopQqGQLnMvFArh008/xYIFC1SvKRQKobq6GgsWLJBinFL9ey8UCuGTTz7Biy++KMaJPaJvNVVXV4vYe/fuxc6dO0W8nuae8ripqQkbN24E0L7DZ9++fWJnzs6dO7F3716xXiWfaDSKqqoqsbNq27ZtYjvU19dj8+bNovaqqiqR6+bNm8XNeuvq6sRY+P1+VFVViR1XPdVUVVUlatq4cSOamprE2CTWVF1djfr6epGrsl0zVdOmTZtw4MABRKPRlGtSxgkAqqqqxM69yZMnY8KECQCAUaNGoaysDHa7HWPHjsWdd94pdnJOnToV48aNAwCMHTsW06dPB9C+A7a8vFzs2OyupmAwiPLycrjdbowZMwY333wzRo0aBQCYMGECJk+eDAAYOnQoysvLu61JGdsRI0bgtttuw5gxY2C321FeXo6hQ4cCAA4fPozGxsYONQHtO5zLy8uPq2nMmDE455xzjqtJ2eE7ffp0jB07FkDHfSyDBw/GhAkTupx7jY2N3dZUW1uryjgl1lRSUpLUOHVVU1NTk6ippKQE5eXl4iBJWVmZGKee5t7s2bMxYsQIAMCkSZMwadIkMU61tbViuT179ohx6qmmPXv29Pp66lzTDTfcgAsuuAB2ux3jxo3DwYMHAfTcI3qaez3VNHv2bLFc4txLd5wikQg+/fRTHDp0CNFoNOkekThOWtT0rW99C2PGjMHo0aNFTVr1vVAohPr6emzatEmMk1rvuXv37kVNTQ1WrlypyntuY2Mjampq8Oqrr6r6mTATTHHlcA1RFtq6dStGjx4Np9MJq9WKyspKjBw5El6vF0VFRTCZTGhpaYHT6YTdbkdbWxtisRgKCgoQiUTg8/nEUePm5mbk5+fDZrOJBpefn49wOAy/3y+OGns8HrhcLlitVrS2tsJsNiMvLw+hUAiBQACFhYWIx+Nobm6G2+2GxWKBz+eD1WqF0+kU3zh2u92IxWJoaWlBYWEhzGYzvF4v7HY7HA4HAoEAIpEIXC4XotEoa2JNrIk1sSbWxJpYE2tiTayJNbGmPtZ04MABbN26FVarFRaLBeFwGPF4HHa7HbFYDGeccQYGDRrUZU0bNmyAzWZDNBpFOBwW32wOBAKw2+0wm80IhUIwmUxiuUgkAofDgXg8jmAw2GE5s9kMq9UqvsmfuJzD4YDJZEIwGITFYhHLxWIxkWsoFOqwXHc1hUKhDrnabDaxHICcqunYsWOYPn06CgoKEIvF0NbWBrvdDqfTiZaWFphMJhQVFeHee+/FL37xC7hcLnGGjMPhgN1uh9frhdlsRmFhIebNm4fBgwd3W9OhQ4dw5513orm5GfF4HIWFhQgEAgiFQsjLy4PZbEZrayusVitcLhfmz5+P0tLS42o6fPgwbr75ZthsNuTn54tvfBcXF8Pn8yESieCFF16AyWTCTTfdlFZNLS0tiMVicLvd4gtOyj4Wn88Hi8UCt9vdoXZlnA4cOIBZs2Z1qEk5SPj8889jyJAhqo6T1+sVZ3b0paZFixYhGo3ijjvu6FBT53FavHgxBgwYcNzc83g8mDZtGoqKisTZYspZBn6/HzabDc8++yxOOukkAMD+/ftRVlaGSCTSY02LFy/GiSee2O3rqampCdOnT+9xnJ555hkMHTq029dTQ0MDysrKjpt7yjgpNT366KO45557OtTU3dxLd5xeeukl9OvXr0894vDhw5g1a1aPr6fONXU1Tn2p6amnnsKgQYN063sXXHBB1r/nJvN3xIEDBzB69GgotmzZgjPOOAN64IEQymrKgRCFni8eGXRuStlMtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkeyTV1dHXbt2tXt78ePHy++Fd5ZV9eK77yzK5vJVosW+dTX12PatGld/i5xp/ljjz2GOXPm9Bpv6dKlKC0t7XV9nXfI9zVeYt7dxVq6dCkAdFvf448/LmpKNp+udD4I1F2eydbWlZ7iqKG3bZW4XG/jkcxzk60n2fmUqPNYphKjK4nzRWtLly4VBxiSfb1rPUeAvm/bdHTV79S6j4bsn8EyuS+Xf0URZbHOp4ZnM9lq0TsfLdenZmw1YqUTQ7Z5kuuMMh6y1cH+o1089h/jMNJ4yFYLe5B2sVKNIdscyXWdL3+SzWSrRe98Ol9ySNbYasRKJ0bny4JRZmk5b/UkW/8B9N22WtZvpM9gauMZIZTVeEaIcb4dJlst/DakdrH4jWzjMMp4yFYH+4928dh/jMNI4yFbLexB2sXiGSGZwTNCuidbLTwjpOu8eUZI+nhGCM8ISQbPCNEmnkxnhFh1WQsRacJsNovrBWY72WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdSaTSdzbINvJVove+cRiMXFPAZljqxErnRjKc2U4WEbazls9ydZ/AH23rZb1G+kzmNr4dRKiLOb1erFgwQJ4vd5Mp5I22WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdcFgEBs3bpTqci6pkq0WvfNxu92444474Ha7pY6tRqx0YijP5aWx5KDlvNWTbP0H0Hfbalm/kT6DqY0HQoiymN1ux5gxY2C32zOdStpkq0XvfLRcn5qx1YiVTgzZ5kmuM8p4yFYH+4928dh/jMNI4yFbLexB2sVKNYZscyTXWSwWlJaWwmKxZDqVtMlWi975hEIh1NTUIBQKSR1bjVjpxFCeyzNC5KDlvNWTbP0H0Hfbalm/kT6DqY2XxiLKYg6HA+PGjct0GqqQrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFcZ7VaMXTo0EynoQrZatE7n2AwiMrKSuljqxErnRjKc3/+85+nlQOpQ8t5qyfZ+g+g77bVsn4jfQZTG88IIcpigUAA69atQyAQyHQqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXiURQW1triMsEyVaL3vk4nU5MnDhRk+v0qxlbjVjpxFCeG41GU14/qUfLeasn2foPoO+21bJ+I30GUxsPhBBlMRnfOFIlWy1656Pl+tSMrUasdGLINk9ynVHGQ7Y62H+0i8f+YxxGGg/ZamEP0i5WqjFkmyO5TrmZbiwWy3QqaZOtFr3zsVqtGD58OKxW9S+WomZsNWKlE0N5bjweT3n9pB4t562eZOs/gL7bVsv6jfQZTG2mODsZZbGtW7di9OjR4uctW7bgjDPOyGBGREREREREJIu6ujrs2rWr29+PHz8eDoejy9+tW7dOo6xIL/X19Zg2bVqvyz3++OOYM2dOr8stXboUpaWlaa+vt3jJxFm6dCkAdLtcsjUlq6tce8qzt22VbBw19LatEpdLZzyU5yZbjxrzSa05qfZ86Ulf5oZC6znSlVTyTMfEiRN1W1cmZXJfLs8IIcpi0WgU9fX1hjhFVbZa9M5Hy/WpGVuNWOnEkG2e5DqjjIdsdbD/aBeP/cc4jDQestXCHqRdrFRjyDZHcl0sFoPP55PqW8ypkq0WvfPR8mbFasZWI1Y6MZTn8nvUcpDxJuOpkK3/APpuWy3rN9JnMLXxQAhRFvN6vXjqqafg9XoznUraZKtF73y0XJ+asdWIlU4M2eZJrjPKeMhWB/uPdvHYf4zDSOMhWy3sQdrFSjWGbHMk14VCIXz66acIhUKZTiVtstWidz5utxt33HEH3G631LHViJVODOW5MlzWhrSdt3qSrf8A+m5bLes30mcwtfHSWJTVcv3SWPF4HMFgEA6HAyaTKdPppEW2WvTOR8v1qRlbjVjpxJBtnuQ6o4yHbHWw/2gXj/3HOIw0HrLVwh6kXaxUY8g2R7KN2pfGisfjiEajsFgsWT8estWiRT49XU7HZDLB4XAgGAzir3/9q6qXxkqM3dNut2QuxdRdrL5cGivZfLqiPHfhwoUYPHhwt3kmW1tXeGmsrnUVp/NYZuulsQYNGtSn17sel8bq67ZNR1f9Tq1LY8n+GSyT+3Kz+846RDnOZDLB6XRmOg1VyFaL3vlouT41Y6sRK50Yss2TXGeU8ZCtDvYf7eKx/xiHkcZDtlrYg7SLlWoM2eZIrjOZTFl/k2KFbLXonU88HkcgEJA+thqx0omhPFeGg2Wk7bzVk2z9B9B322pZv5E+g6mNl8YiymItLS144okn0NLSkulU0iZbLXrno+X61IytRqx0Ysg2T3KdUcZDtjrYf7SLx/5jHEYaD9lqYQ/SLlaqMWSbI7kuGAyisrISwWAw06mkTbZa9M6nsLAQ5eXlKCwslDq2GrHSiaE8NxwOp7x+Uo+W81ZPsvUfQN9tq2X9RvoMpjYeCCHKYk6nExMnTpTmyGo6ZKtF73y0XJ+asdWIlU4M2eZJrjPKeMhWB/uPdvHYf4zDSOMhWy3sQdrFSjWGbHMk11mtVgwfPly6bzKnQrZa9M4nEAhg3bp1mnwDXM3YasRKJ4by3Gy/ObdRaDlv9SRb/wH03bZa1m+kz2Bqk2e2EVGf2e12jBkzJtNpqEK2WvTOR8v1qRlbjVjpxJBtnuQ6o4yHbHWw/2gXj/3HOIw0HrLVwh6kXaxUY8g2R3KdxWLR7JrxepOtFr3zCYVCqKmpkT62GrHSiaE812zmd6lloOW81ZNs/QfQd9tqWb+RPoOpjV2MKIu1tbVh9erVaGtry3QqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXDoexa9cuQ1wmSLZa9M4nLy8Pl19+OfLy8qSOrUasdGIoz41Goymvn9Sj5bzVk2z9B9B322pZv5E+g6mNB0KIslgsFoPH40EsFst0KmmTrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFcp9xMNx6PZzqVtMlWi975mM1mFBcXa3Kmg5qx1YiVTgzlubLMk1yn5bzVk2z9B9B322pZv5E+g6mNl8YiymIFBQW48cYbM52GKmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNfZ7XaMHj0602moQrZa9M6ntbUVL7/8svSx1YiVTgzluddcc01aOZA6tJy3epKt/wD6blst6zfSZzC1ZffhQ6IcF4lEUFtbi0gkkulU0iZbLXrno+X61IytRqx0Ysg2T3KdUcZDtjrYf7SLx/5jHEYaD9lqYQ/SLlaqMWSbI7lOpm+2pku2WvTOR8ubFasZW41Y6cRQnivLPMl1Mt5kPBWy9R9A322rZf1G+gymNh4IIcpiPp8Pixcvhs/ny3QqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXCoXw+eefIxQKZTqVtMlWi975uFwuzJw5Ey6XS+rYasRKJ4byXN4jRA5azls9ydZ/AH23rZb1G+kzmNpMcZkuxkbUR1u3bu1wKtmWLVtwxhlnZDAjIiIiIiIikkVdXR127drV7e/Hjx8Ph8PR5e/WrVunUVakl/r6ekybNq3X5R5//HHMmTOn1+WWLl2K0tLStNfXW7xk4ixduhQAul0u2ZqS1VWuPeXZ27ZKNo4aettWiculMx7Kc5OtR435pNacVHu+9KQvc0Oh9RzpSip5pmPixIm6rSuTMrkvl2eEEBERERERERERERGRYfFACFEWa25uxsMPP4zm5uZMp5I22WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdYFAAB988AECgUCmU0mbbLXonU9RURHuuusuFBUVSR1bjVjpxFCeGw6HU14/qUfLeasn2foPoO+21bJ+I30GUxsPhJAhOJ1OcQ2/aDQKj8cD5apvLS0t4pp7bW1taG1tBdB+sx6PxyNiNDc3izd2v98Pv98PAAiHwx1erB6PR9zgp7W1FW1tbQDar+/X0tICAIjH4/B4POIamj6fTzS3YDAIr9cL4PibI3m9XgSDQQDtTVG5fl53NeXn5+O73/2u+P9srikSieDKK69Efn6+FONksVjwne98B/n5+WmPE9D73LPZbJgyZYqoS82azGYzpkyZAovFIsU4hcNhTJkyBfn5+X2uKT8/H9/5zndgNre/fan5ekpmnLLl9aRXTVarFZMmTUJ+fn5W1xSPx/Hd734X+fn5UoyT3W7HZZddhvz8fFXGSc8e0bmmeDyOKVOmwG63qzL3TCYTpkyZAqvVmtI4hUIhXH311cjPz8/p91wj9D2Hw4HLLrsMeXl5WV9TLBbDlClT4HA4pBinUCiEyZMnIz8/X5e5l5+fj8mTJ3e4RrZaNeXn5+Oaa65BKBSSYpxS/XsvPz8fV155ZYf3LfaIvtUUDAZF7HA4LOpT4nVXk/I4Go2KfGw2G0499VRYLBZRR+JySj7xeFzMHWU5ZTtEIpHjlkvMNXG5xFw7L9ddTYk71gKBQIflEnONRqMYOXIkbDbbcblmoqZYLIavfvWrsNlsKdfUeTkl14KCAvGeYbfbUVhYCL/fj+XLl8Nms4kcXC4XnE4ngPb3GrfbDQAwm80oLi7utaZ4PI7i4mIR22KxwG63AwDy8vJQUFAAoP3v6OLi4m5rUmLbbDZYrVYsX74cfr8fxcXF4kbOkUhEPEepCQBMJlOHXF0uF6LRKJYvX45IJHJcTcpnK7fbLS4Tl7iPJRAI4O233+7wGUxZbzQa7bamcDisyjgl1qS87nobp65qikajoiaLxYLi4mKYTCYAQGFhoRinnuZeUVERbDYbACA/P1/8va7M2cTalXHqqaZwONzr66lzTWazGW+++Sb8fj+cTqd4Tk89oqe511NNiQcEEudeuuMUj8cRjUZx+umnw2azJd0jEsdJi5pisRiWL1+OcDgsatKq71mtVowcORKxWEyMk1rvuXa7HVOmTEE8HlflPdfpdGLKlCkd3g/U+EyYCTwQQoYwbtw4TJ06FQDQ0NCAiooK8eJcuHAhtm3bBgBYv349VqxYAaD9WrEVFRUixvz587F7924AwJo1a7BmzRoAwO7duzF//nyxXEVFBerq6gAAK1aswPr16wEA27Ztw8KFCwG0N46Kigo0NDQAAJYtW4bKykoAQHV1NZYsWQKgvTlUVFSIZrRkyRJUV1cDACorK7Fs2bIea7LZbDh06BBWr16d9TW98MILiEajsNlsUozTli1bUFVVBZvNlvY4Ab3PvX379mHkyJF49913Va/p008/xciRI7FlyxYpxunvf/+7+MDV15psNhs+//xzfPrppwDUfT0lM07Z8nrSq6YvvvgC7733nvjjNVtrWr16NQ4dOgSbzSbFOB0+fBhvvvmm+ONd67mnZo/oXNPq1asxcuRIHD58WJW59+GHH2LkyJH44osvUhqnefPmYciQIbDZbDn9nmuEvufxePDmm2+KD6XZXNPrr7+OkSNHwuPxSDFO8+bNw4ABA2Cz2XSZezabDQUFBZg3b57qNdlsNpxyyimYN2+eFOOU6t97NpsN0WgUL7zwghgn9oi+1VRdXS1i7927Fzt37hTxFixY0G1NyuOmpiZs3LgRQPsO1C+++ELsrNq5cyf27t0r1qvkE41GUVVVJXZWbdu2TWyH+vp6bN68WdReVVUlct28eTPq6+vFNlfGwu/3o6qqSuy46qmmqqoqUdPGjRvR1NQkxiaxpurqagwcOBAWiwVVVVViu2aqpk2bNiEej8NisaRckzJOAFBVVSV27k2ePBkTJkwAAIwaNQplZWUIh8Oora3FT37yE/F+MnXqVIwbNw4AMHbsWEyfPh1A+w7Y8vJysWOzu5qCwSDKy8thsViwY8cO3HLLLRg1ahQAYMKECZg8eTIAYOjQoSgvL++2JmVsR4wYgR/96EfYsWMHwuEwysvLMXToUADtfzM2NjZ2qAlo3+FcXl7eoaavf/3r2LFjB84888zjalJ2+E6fPh1jx44F0HEfS79+/UTeQMe519jY2G1NtbW1qoxTYk0lJSVJjVNXNTU1NYmaSkpKUF5eLg6SlJWViXHqae7Nnj0bI0aMAABMmjQJkyZNEuNUW1srltuzZ48Yp55q2rNnT6+vp8413XDDDXC5XAiHwxg3bhwOHjwIoOce0dPc66mm2bNni+US51664xSJRLBx40a43W5YLJake0TiOGlR00UXXYQdO3bgtNNOEzVp1fcAYODAgdi0aZMYJ7Xecw8fPoyRI0di9erVqrzntrW1YeTIkXj11VdV/UyYCbxZOmU15QY7TqcTVqsVlZWVGDlyJLxeL4qKimAymdDS0gKn0wm73Y62tjbEYjEUFBQgEonA5/OJo8bNzc3Iz8+HzWYTDS4/Px/hcBh+v18cNfZ4PHC5XLBarWhtbYXZbEZeXh5CoRACgQAKCwsRj8fR3NwsmrrP54PVaoXT6UQwGEQoFILb7UYsFkNLSwsKCwthNpvh9Xpht9vhcDgQCAQQiUTEtze6qikSiWDlypWYMGECSkpKsrqmw4cP44MPPsB3v/tdmEymjI9TU1MT3nnnHVx55ZVwOp1pjVMycw8A3n33XXzjG98Q31hQq6ZQKIT33nsPEyZMgNVqzfg4NTY2orKyEpMmTUIoFOpTTcFgEP/+979x6aWXon///qq+nozYI7SuyePxYM2aNbjqqquQl5eXtTU1NDRg/fr1uOKKK2C1WjM+Ti0tLVi9ejWuuuoq5Ofnaz731OwRnWvy+XzYsGEDLrnkEsRisbTnXiAQwPvvv4+JEyfCbDb3eZwOHz6MyspKfOc730E0Gs3Z91wj9D2v14tVq1bhyiuvFK+bbK2ppaUFH374IS699FJEo9GMj1N9fT0++ugjXH755YjFYprPPZPJhNWrV2P8+PEYPHiwqjVZrVa89dZbGDduHE444YSMj1Oqf+/F43GsWrUK3/jGNzBo0CD2iD7WdODAAWzduhVWqxUWiwXhcBjxeBx2ux2xWAxnnHEGBg0a1GVNGzZsEAeiwuEwnE4nwuEwdu7cia985StwOBwIhUIwmUxiuUgkAofDgXg8jmAwCLvdDrPZjFAoBLPZDKvVKr7Jn7icw+GAyWRCMBiExWIRy8ViMZFrKBTqsFx3NYVCIfEt7EAgAJvNJpYDIHJta2tDXV0dRowYId4XlVwzUZPP58O+ffvw1a9+FQBSqkkZJ2W5Y8eOYfr06eLb3m1tbbDb7eK9fdKkSaisrMSvf/1r/OIXv4DL5UIkEkEgEIDD4YDdbofX6xV/d8ybNw+DBw/utqZDhw7hzjvvRCgUwqRJk/Dhhx/C4/EgFAohLy8PZrMZra2tsFqtcLlcmD9/PkpLS4+r6fDhw7j55pths9nQv39/jB8/HmvWrIHdbofP50MkEsELL7wAk8mEm266SdTU0tICk8mEoqIi3HvvvaImm82GCRMmYN26deL1odTU0tKCWCwGt9uNUCiEYDAo9rH4fD64XC5cccUVuOqqq3DSSSd1mHsHDhzArFmzOtSkfOP7+eefx5AhQ9Iep8SavF6vOLOjp3HqXNOiRYsQjUZxxx13wOfzwWKxwO12o7m5GfF4HIWFhQgEAli8eDEGDBhw3NzzeDyYNm0aioqKxNliylkGfr8fNpsNzz77LE466SQAwP79+1FWVoZIJNJjTYsXL8aJJ57Y7eupqakJ06dP71DTCSecgG984xtYvXo1YrEYnnnmGQwdOrTbHtHQ0ICysrLj5p4yTkpNjz76KO65554ONSmfRYD2syeUuZfuOL300ktwuVyoq6vDV77yFcRisV57xOHDhzFr1iwEAoFuX0+da+pqnHqqyeFw4Fvf+hbeffddxONxPPXUUxg0aJAmfc9sNosDZnl5ebBYLLjgggtUec81m81Yu3YtLrroIrhcrrTfc61WK9555x1ceOGFKCoqSvsz4YEDBzJ2s3SrLmsh0ljiqYrKKY4K5ag5AHHqHtD1qXMKpVECXZ86p1BOwwPaTwdUTtFTTgdUKKdfAu1HyJVvHSinOCqU0wQBiD8KeqopEonAarX2eDpgttSkNGBAnnFSvo2d7jglU1PiG1lPp22mUpMS2+FwiNiZHKfE7ZJKTTabrcPptWq9ntKpSbbXE2vqe03KKdGy1KTkkE5NCj17ROealO/bWK3WDrmnWpNy+QK73S6e15dxUv44T6UmI73nGqVH2O32Dpe0yNaalG/sKjtlFJmqqaioSFx+Q4+55/f7xetT7Zr8fr+oKfEyHanUpMY4pfr3nt/v77Be9oi+16Q8X8lP0Tle55qUZS0Wi5hDys/K6yTxPTtxOZPJ1CGnxOWsVqv426Pzcom5KssouXa3XOeaEpdLfJy4nMVi6RCju1z1rknZrqnWlDhOTqdTxFPO4AHaLxGjXPYSgNiBC0Bc6gVo/9a08g1n5RIxynLd1WQymeDxeERs5UsnAMQlaoDjL3vTuSYlZjgcFpepAdDhOYnrVWoC/u+yN4k1KfmEQiHRizpfGi5xPYn7WJQdt13VbrFYur2Uj3JgR3mc+Jy+jFNiTYrexqmrmpQdvsD/XcpHoZwN1TnXznMv8RJEynYE2scp8Xk2m63DJQG7q8lms3XZSxJfT51r8vl84j1JOejfVa6J49TT3Oupps6XXFKkO05Kj+jt9dS5psRx0qIm5bOLcnAhMVeFWn1POTjocDhU3xem5N75Emapvucq8VwuV4fL5yn6+pnwwIEDyBQeCCHKYvn5+eI6w9lOtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkdync1mw8iRIzOdhipkq0XvfJT7eMgeW41Y6cRQnnvDDTeklQOpQ8t5qyfZ+g+g77bVsn4jfQZTG+8RQpTFwuGwuFZotpOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXjUZx9OhRcc36bCZbLXrno+yITPwmv4yx1YiVTgzlucpZCJRZWs5bPcnWfwB9t62W9RvpM5jaeCCEKIspR6sTT/XLVrLVonc+Wq5PzdhqxEonhmzzJNcZZTxkq4P9R7t47D/GYaTxkK0W9iDtYqUaQ7Y5kutk2qGTLtlq0Tsf5VvKiZeZkTG2GrHSiaE8V6Yd1rlMy3mrJ9n6D6DvttWyfiN9BlMbb5ZOWU25WbpCzxvsEBERERERkdzq6uqwa9eubn8/fvz4DtdyT7Ru3TqNsiK91NfXY9q0ab0u9/jjj2POnDm9Lrd06VKUlpamvb7e4iUTZ+nSpQDQ7XLJ1pSsrnLtKc/etlWycdTQ27ZKXC6d8VCem2w9aswnteak2vOlJ32ZGwqt50hXUskzHRMnTtRtXZmUyX25PCOEiIiIiIiIiIiIiIgMiwdCiLKYx+PBAw88AI/Hk+lU0iZbLXrno+X61IytRqx0Ysg2T3KdUcZDtjrYf7SLx/5jHEYaD9lqYQ/SLlaqMWSbI7kuEAhg/fr1CAQCmU4lbbLVonc+xcXFuP/++1FcXCx1bDVipRNDea5MlzDKZVrOWz3J1n8AfbetlvUb6TOY2ngghCiLuVwuzJgxAy6XK9OppE22WvTOR8v1qRlbjVjpxJBtnuQ6o4yHbHWw/2gXj/3HOIw0HrLVwh6kXaxUY8g2R3Kd3W7H2WefDbvdnulU0iZbLXrn4/P5sGjRIvh8PqljqxErnRjKcy0WS8rrJ/VoOW/1JFv/AfTdtlrWb6TPYGqzZjoBIkqd1WrF8OHDM52GKmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNeZzeas/ya2QrZa9M4nEomgtrZW+thqxEonhvJcs5nfpZaBlvNWT7L1H0Dfbatl/Ub6DKY2djGiLNba2oqXX34Zra2tmU4lbbLVonc+Wq5PzdhqxEonhmzzJNcZZTxkq4P9R7t47D/GYaTxkK0W9iDtYqUaQ7Y5kutCoRC2bNmCUCiU6VTSJlsteudTUFCAG2+8EQUFBVLHViNWOjGU50YikZTXT+rRct7qSbb+A+i7bbWs30ifwdTGAyFEWUw5gmyEb2bIVove+Wi5PjVjqxErnRiyzZNcZ5TxkK0O9h/t4rH/GIeRxkO2WtiDtIuVagzZ5kiuM5lMcDqdMJlMmU4lbbLVonc+sVgMHo8HsVhM6thqxEonhvJcWeZJrtNy3upJtv4D6LtttazfSJ/B1MZLYxFlsby8PFx++eWZTkMVstWidz5ark/N2GrESieGbPMk1xllPGSrg/1Hu3jsP8ZhpPGQrRb2IO1ipRpDtjmS62w2G77yla9kOg1VyFaL3vm0tbVh9erV0sdWI1Y6MZTnzpgxI60cSB1azls9ydZ/AH23rZb1G+kzmNoyfyiGiFIWCoVQU1Mj1amEqZKtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXjUZRX1+PaDSa6VTSJlsteudjt9sxZswYTW5WrGZsNWKlE0N5brafgWAUWs5bPcnWfwB9t62W9RvpM5jaeCCEKIsFAgGsW7cOgUAg06mkTbZa9M5Hy/WpGVuNWOnEkG2e5DqjjIdsdbD/aBeP/cc4jDQestXCHqRdrFRjyDZHcp1yM10j3C9Btlr0zsfpdGLixIlwOp1Sx1YjVjoxlOfKtMM6l2k5b/UkW/8B9N22WtZvpM9gajPF4/F4ppMgStXWrVsxevRo8fOWLVtwxhlnZDAjIiIiIiIikkVdXR127drV7e/Hjx8Ph8PR5e/WrVunUVakl/r6ekybNq3X5R5//HHMmTOn1+WWLl2K0tLStNfXW7xk4ixduhQAul0u2ZqS1VWuPeXZ27ZKNo4aettWiculMx7Kc5OtR435pNacVHu+9KQvc0Oh9RzpSip5pmPixIm6rSuTMrkvl2eEEGWxeDyOQCAAIxzPlK0WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXBePxxGJRAwxHrLVonc+Wt6sWM3YasRKJ4byXFnmSa6T8SbjqZCt/wD6blst6zfSZzC18UAIURZrbm7GI488gubm5kynkjbZatE7Hy3Xp2ZsNWKlE0O2eZLrjDIestXB/qNdPPYf4zDSeMhWC3uQdrFSjSHbHMl1wWAQGzZsQDAYzHQqaZOtFr3zKSoqwl133YWioiKpY6sRK50YynNluoRRLtNy3upJtv4D6LtttazfSJ/B1MYDIURZzO12Y9asWXC73ZlOJW2y1aJ3PlquT83YasRKJ4Zs8yTXGWU8ZKuD/Ue7eOw/xmGk8ZCtFvYg7WKlGkO2OZLr7HY7zj333Ky/UTEgXy165+P1erFgwQJ4vV6pY6sRK50YynOtVmvK6yf1aDlv9SRb/wH03bZa1m+kz2BqYxcjymIWi0XX6xVqSbZa9M5Hy/WpGVuNWOnEkG2e5DqjjIdsdbD/aBeP/cc4jDQestXCHqRdrFRjyDZHcp3ZbIbL5cp0GqqQrRa984lGo6ivr5c+thqx0omhPDfbL8VkFFrOWz3J1n8AfbetlvUb6TOY2nhGCFEW8/l8WLRoEXw+X6ZTSZtsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuS6UCiEmpoahEKhTKeSNtlq0Tsfl8uFmTNnarIzUs3YasRKJ4byXF4aSw5azls9ydZ/AH23rZb1G+kzmNp4IIQoi1mtVgwfPtwQp6jKVove+Wi5PjVjqxErnRiyzZNcZ5TxkK0O9h/t4rH/GIeRxkO2WtiDtIuVagzZ5kiuM5vNKC4uhtmc/btTZKtF73wikQhqa2s12cGvZmw1YqUTQ3kuzwiRg5bzVk+y9R9A322rZf1G+gymtsxnQEQpczqdmDhxYqbTUIVsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuQ6ZYeOEchWi975BAIBrFu3TvrYasRKJ4by3FmzZqWVA6lDy3mrJ9n6D6DvttWyfiN9BlObPIfdiKjPgsEgKisrEQwGM51K2mSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNdFIhHU1dVl/bexAflq0Tsfh8OBcePGweFwSB1bjVjpxFCeG41GU14/qUfLeasn2foPoO+21bJ+I30GUxsPhBBlMRmvqZgq2WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdcrNdI2wU1i2WvTOx263Y8yYMbDb7VLHViNWOjGU58bj8ZTXT+rRct7qSbb+A+i7bbWs30ifwdRmirOTURbbunUrRo8eLX7esmULzjjjjAxmRERERERERLKoq6vDrl27uv39+PHju/32rxEuP5Pr6uvrMW3atF6Xe/zxxzFnzpxel1u6dClKS0vTXl9v8ZKJs3TpUgDodrlka0pWV7n2lGdv2yrZOGrobVslLpfOeCjPTbYeNeaTWnNS7fnSk77MDYXWc6QrqeSZDlkuH6W1TO7L5RkhRFksFovB4/EgFotlOpW0yVaL3vlouT41Y6sRK50Yss2TXGeU8ZCtDvYf7eKx/xiHkcZDtlrYg7SLlWoM2eZIrovH4wgEAob4drxsteidj5Y3K1Yzthqx0omhPFeWeZLrZLzJeCpk6z+AvttWy/qN9BlMbdn9qiHKcS0tLaioqEBLS0umU0mbbLXonY+W61Mzthqx0okh2zzJdUYZD9nqYP/RLh77j3EYaTxkq4U9SLtYqcaQbY7kumAwiKqqKimudZ4u2WrRO5/CwkKUl5ejsLBQ6thqxEonhvJcme7lkMu0nLd6kq3/APpuWy3rN9JnMLXx0liU1XL90lixWAwtLS0oLCzM+m8DyFaL3vlouT41Y6sRK50Yss2TXGeU8ZCtDvYf7eKx/xiHkcZDtlrYg7SLlWoM2eZItlH70ljxeBzBYBAOhwMmk0mtNDNCtlq0yKeny+mYzWYUFhaipaUFjz32mKqXxkqM3dO3oJO5FFN3sfpyaaxk8+mK8tx58+Zh8ODB3eaZbG1d4aWxutZVnM5jma2Xxho0aFCfXu96XBqrr9s2HV31O7UujSX7Z7BM7su16rIWItKEctqeEchWi975aLk+NWOrESudGLLNk1xnlPGQrQ72H+3isf8Yh5HGQ7Za2IO0i5VqDNnmSK4zmUxwOp2ZTkMVstWidz7K5VpkjN2/f3/Y7XaEQqEuY9ntdvTv3x/Hjh3TPB/luTIcLCNt562eZOs/gL7bVsv6jfQZTG38Oglpora2FiaTKal/F198cabTzVperxcLFiyA1+vNdCppk60WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXBcMBrFx40apLueSKtlq0Tsft9uNO+64A263W7rYdrsdF110UbexLrroItjtdl3yUZ7LS2PJQct5qyfZ+g+g77bVsn4jfQZTG88IIU04nU7xpt2VWCyGjz76CAB6XI56ZrfbMWbMmD79ASQr2WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdRaLBaWlpbBYLJlOJW2y1aJ3PqFQCDU1NQiFQlLG/vWvfw0A+OSTT0Qs5QCJ8js98lGe+41vfKPPzyX1aTlv9SRb/wH03bZa1m+kz2Bq44EQ0kRpaSk++OCDbn//1ltv4fLLLwcA3HrrrXqlZTgOhwPjxo3LdBqqkK0WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXGe1WjF06NBMp6EK2WrRO59gMIjKykppYzudTtx7770IhULiEljKJbP0zEd57s9//vOUnk/q0nLe6km2/gPou221rN9In8HUxktjUUYsXLgQAPCtb30LI0aMyHA22SsQCGDdunUIBAKZTiVtstWidz5ark/N2GrESieGbPMk1xllPGSrg/1Hu3jsP8ZhpPGQrRb2IO1ipRpDtjmS6yKRCGpraw1xmSDZatE7H6fTiYkTJ2pynX41Y5vNZgQCAQwcODDlb1Snk4/y3Gg0mtK6SV1azls9ydZ/AH23rZb1G+kzmNp4IIR019TUhNdffx0AUFZWluFsspuMbxypkq0WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXKfcTDcWi2U6lbTJVove+VitVgwfPhxWq/oXS1EzthrbJZ18lOfG4/GU10/q0XLe6km2/gPou221rN9In8HUZoqzk+kmGo1i69at+OSTT7Bx40Z88skn2LRpE8LhMABgwoQJWLduXUqxQ6EQXnnlFSxduhRbt27F4cOH0a9fP5xyyin4/ve/j5kzZ2LgwIEqVpO6uXPn4ic/+Qncbjfq6+uRn5+fcqytW7di9OjR4uctW7bgjDPOUCNNIiIiIiIiynJ1dXXYtWtXt78fP348HA5Hl79L9fM5yaO+vh7Tpk3rdbnHH38cc+bM6XW5pUuXorS0NO31JRuvNz2tL9maktVVrj2tvy+19XW79dXSpUsBoNd1dJdzMvklPjfZetSYT2rNSbXnS09Smfdaz5GupPv67KuJEyfqtq5MyuS+XJ4RopPly5ejsLAQZ599Nn74wx9iwYIF+PTTT8VBkHTs2LEDF1xwAW655RasWrUK+/btQzAYRH19PT766CP8z//8D8444wysXLlShUrS99xzzwEArr/++rQOglD7wbX6+npDnKIqWy1656Pl+tSMrUasdGLINk9ynVHGQ7Y62H+0i8f+YxxGGg/ZamEP0i5WqjFkmyO5LhaLwefzSfUt5lTJVove+Wh5s2I1Y6uxXdLJR3kuv0ctBxlvMp4K2foPoO+21bJ+I30GUxsPhOjE4/HA7/erHreurg6XXnopampqAAAmkwkTJkxAWVkZJk+ejLy8PADAkSNHMGXKFKxdu1b1HPpi8+bN+PTTTwHwslhq8Hq9eOqpp+D1ejOdStpkq0XvfLRcn5qx1YiVTgzZ5kmuM8p4yFYH+4928dh/jMNI4yFbLexB2sVKNYZscyTXhUIhfPrppwiFQplOJW2y1aJ3Pm63G3fccQfcbrfUsdXYLunkozxXhsvakLbzVk+y9R9A322rZf1G+gymNl4aSyeLFi3CrbfeikGDBuG8884T/9566y1UVFQASO3SWN/61rfw/vvvAwCGDRuG119/HWeffbb4/dGjR3HjjTfiP//5DwCgf//+2L17N4qLi1Wpq69+8Ytf4PHHH8fpp5+OHTt2pB0v1y+NFY/HEQwG4XA4YDKZMp1OWmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNuofWmseDyOaDQKi8WS9eMhWy1a5NPT5XRMJhMcDgeCwSD++te/qnpprMTYPe12S+bSOz1tl2QvjZVsPl1Rnrtw4UIMHjw46fXz0ljaXBqr81hm66WxBg0a1KfXux6Xxurrtk1HV69rtS6NJftnMF4aKwdcfvnl2Lt3L+rr67FixQrce++9+O53v5vWAYmVK1eKgyB2ux0rVqzocBAEAAYOHIjXX38dp556KgDg2LFjePTRR7uMd9ddd8FkMqX0L5lvBoTDYbz44osAgFtvvTXluun/mEwmOJ1OKf5oTZdsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuQ6k8kEq9VqiPGQrRa984nH4wgEAppc8knN2Gpsl3TyUZ4ryzzJdVrOWz3J1n8AfbetlvUb6TOY2nggRCelpaU4+eSTVY05d+5c8XjGjBk488wzu1yuoKAADz74oPj5qaee6vLARUFBAQYMGJDSv2Qm85tvvomGhgZYLBbccsstKVRMnbW0tOCJJ55AS0tLplNJm2y16J2PlutTM7YasdKJIds8yXVGGQ/Z6mD/0S4e+49xGGk8ZKuFPUi7WKnGkG2O5LpgMIjKykoEg8FMp5I22WrRO5/CwkKUl5ejsLBQ6thqbJd08lGeq8Y9bil9Ws5bPcnWfwB9t62W9RvpM5jaeCAkS/l8PnG5K6D3MyyuvfZauFwuAO1nhbz33nvHLfO///u/OHr0aEr/krmRkHKT9Msvv/y40ykpNU6nExMnToTT6cx0KmmTrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFcZ7VaMXz4cFit1kynkjbZatE7n0AggHXr1iEQCEgdW43tkk4+ynOz/ebcRqHlvNWTbP0H0Hfbalm/kT6DqU2e2UZ98uGHH4qjhgUFBTjvvPN6XN7pdGL8+PF4++23AQBr167FJZdconmeisOHD2PVqlUAeJN0NdntdowZMybTaahCtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkdyncVi0eya8XqTrRa98wmFQqipqZE+thrbJZ18lOeazfwutQy0nLd6kq3/APpuWy3rN9JnMLWxi2Wp7du3i8dnnnlmUkcQzznnnC6fr4cXXngBkUgEAwcOxOTJk3Vdt5G1tbVh9erVaGtry3QqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXDoexa9cuQ1wmSLZa9M4nLy8Pl19+OfLy8qSOrcZ2SScf5bnRaDTl9ZN6tJy3epKt/wD6blst6zfSZzC18UBIlvrvf/8rHg8bNiyp5yTeo2THjh2q59QT5bJYN910E2w2m67rNrJYLAaPx4NYLJbpVNImWy1656Pl+tSMrUasdGLINk9ynVHGQ7Y62H+0i8f+YxxGGg/ZamEP0i5WqjFkmyO5zig3Kgbkq0XvfMxmM4qLizU500HN2Gpsl3TyUZ4ryzzJdVrOWz3J1n8AfbetlvUb6TOY2nhprCzV2NgoHg8aNCip5ySecnXs2DHVc+rOxx9/jG3btgHo/V4m1DcFBQW48cYbM52GKmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNfZ7XaMHj0602moQrZa9M6ntbUVL7/8svSx1dgu6eSjPPeaa65JKwdSh5bzVk+y9R9A322rZf1G+gymtuw+fJjDfD6feJzsKVuJyyU+X2vK2SDnnnsuzjrrLE3W4XQ6xc3go9EoPB6POKra0tKCUCgEoP10rNbWVgBAJBKBx+MRMZqbm8UpaX6/H36/H0D76WrNzc1iOY/Hg0gkAqC9SSqndoVCIbS0tABoP7Lr8XjEqaM+n0/cbCkYDMLr9QI4/qio1+sV934JBAJinLqrKRKJ4L///a/IL5trOnbsGL744gtEIhEpxqm1tRXbtm1DJBJJe5yA3udeW1sbamtr0dLSonpNPp8PtbW1aG1tlWKcGhsbUVtbK57Tl5oikQi2b98u8lPz9ZTMOGXL60mvmvx+P7Zu3YpIJJLVNTU3N+O///0vIpGIFOMUCASwZcuWDvlpOffU7BGda2pubkZtbS0CgYAqc8/r9aK2thZ+vz+lcTp69Cj27NmDSCSS0++5Ruh7wWAQW7ZsEfllc00ejwe1tbUIBoNSjNPRo0exe/duRCIRXeZeJBLB7t27cfToUdVrikQi+PLLL3H06FEpxinVv/cikQi++OIL8WU29oi+1xQMBkXscDgs6lPidVeT8jgajYp8YrEYjhw5ImoKhUIdllPyUb7tq+SqvJco27Lzcom5Ji6XmGvn5bqrKfFGv4FAoMNyibn6/X6xPTvnmoma2tra0NjYiFgslnJNnZdTci0oKBD7ROx2OwoLC8XNigcMGCBycLlc4oa+DocDbrcbwPFnRXRXUzweR3FxsYjdr18/2O12AO37ZAoKCgC03yi5uLg47XFSnqPUBAAmk6lDri6XCwUFBRg+fDjy8/OPq0n59rvb7YbD4QDQcR+LssNWWVfi3ItGo93WFA6HVRmnxJqUG7b3Nk5d1RSNRkVNFosFxcXFMJlMAIDCwkIxTj3NvaKiInGVk/z8fOTn5wMAbDZbh0schcNhcQn7nmoKh8O9vp4611RcXIyvfvWrsFqtcDqd4jk99Yie5l5PNRUVFYnllHmtxjjF43H4/X40NTUhFosl3SMSx0mLmlwuF4YPH468vDxRk1Z9T3mfamtrE+Ok1ntuIBBAbW2t+NtDyTvV99xQKITa2lo0NTWp+pkwE3ggJEslNmKlCfRGaf4AdL0u2/z58xGPx7Fx40bN1jFu3DhMnToVANDQ0ICKigrx4ly4cKE4I2X9+vVYsWIFAKCurg4VFRUd8ty9ezcAYM2aNVizZg0AYPfu3Zg/f75YrqKiAnV1dQCAFStWYP369QCAbdu2YeHChQDaG0dFRQUaGhoAAMuWLUNlZSUAoLq6GkuWLAHQ3hwqKipEM1qyZAmqq6sBAJWVlVi2bFmPNfl8Prz88st44403sr6mRYsW4aWXXoLP55NinD7++GP84x//gM/nS3ucgN7n3rZt27B48WKsXr1a9Zo++OADLF68GB9//LEU4/T0009j8eLF8Pl8fa7J5/Ph1VdfxQcffABA3ddTMuOULa8nvWqqqanBsmXL4PP5srqmN954Ay+//DJ8Pp8U47Rr1y689tpr4g9Lreeemj2ic01vvPEGFi9ejF27dqky99auXYvFixejpqYmpXGaO3cuXnjhBfh8vpx+zzVC39u3bx9ee+01sWM422tavHgx9u3bJ8U4zZ07Fy+++CJ8Pp8uc8/n8+HFF1/E3LlzVa/J5/Ph+eefx9y5c6UYp1T/3vP5fHjppZewaNEiMU7sEX2rqbq6WsTeu3cvdu7cKeItWLCg25qUx01NTeLzbCgUwvbt20X/2blzJ/bu3SvWq+QTjUZRVVUldlZt27ZNbIf6+nps3rxZ1F5VVSVy3bx5M+rr68U2V8bC7/ejqqpK7LjqqaaqqipR08aNG9HU1CTGJrGmzz77DJ9//jlCoRCqqqrEds1UTTU1NdiyZQtCoVDKNSXud6iqqhL7TiZPnowJEyYAAEaNGoWysjK4XC7MnDkTP/3pT8VOzqlTp2LcuHEAgLFjx2L69OkA2nfAlpeXix2b3dUUDAZRXl6OAQMGYObMmbj11lsxatQoAMCECRPEPVOHDh2K8vLytMdJuVqIUhPQvu+nvLy8Q03f/OY3MXPmTFxwwQXH1aTs8J0+fTrGjh0LoOM+lmHDhmHq1KliJ2zi3GtsbOy2JmXHabrjlFhTSUlJUuPUVU1NTU2ippKSEpSXl4v9ZGVlZWKcepp7s2fPxogRIwAAkyZNwqRJkwAAI0aMQG1trVhuz549GDp0aK817dmzp9fXU1c1TZ8+HS6XC+PGjcPBgwcB9Nwjepp7PdU0e/ZssVx5eXlSNSUzTpFIBJ988gk2bdqEUCiUdI9IHCctarr00ksxc+ZMjB07VtSkVd9ra2vD559/jpqaGjFOar3n7tq1C4sXL8Ybb7yhyntufX09Fi9ejJdeeknVz4SZYIrLdDG2HHT//ffjgQceAND+Il63bl1Sz7vyyiuxcuVKAMBvfvMbPPzww70+Z9WqVbjiiisAtB+VVY7wZbOtW7di9OjRcDqdsFqtqKysxMiRI+H1elFUVASTyYSWlhY4nU7Y7Xa0tbUhFouhoKBAfMtNOWrc3NyM/Px82Gw20eDy8/MRDofh9/vFUWOPxwOXywWr1YrW1laYzWbk5eUhFAohEAigsLAQ8Xgczc3NcLvdsFgs8Pl84mh9MBhEKBSC2+1GLBZDS0sLCgsLYTab4fV6Ybfb4XA4EAgEEIlE4HK5EI1GWRNrYk2siTWxJtbEmlgTa2JNrIk19bGmAwcOYOvWrbBarbBYLAiHw4jH47Db7YjFYjjjjDPE5aY717RhwwbYbDZEo1GEw2HxzeZAIAC73Q6z2YxQKASTySSWi0QicDgciMfjCAaDHZYzm82wWq2IRCKIRqMdlnM4HDCZTAgGg7BYLGK5WCwmcg2FQh2W666mUCjUIVebzSaWA5BTNR07dgzTp09HQUEBYrEY2traYLfb4XQ60dLSApPJhKKiItx77734xS9+AZfLhUgkgkAgAIfDAbvdDq/XC7PZjMLCQsybNw+DBw/utqZDhw7hzjvvRHNzM+LxOAoLCxEIBBAKhZCXlwez2YzW1lZYrVa4XC7Mnz8fpaWlKY9TQ0MDbrrpprRqamlpQSwWg9vtRigUQjAYFPtYfD4fLBYL3G53h9qVcTpw4ABmzZrVoSblG9/PP/88hgwZouo4eb1ecWZHX2patGgRotEo7rjjjg41dR6nxYsXizOEEueex+PBtGnTUFRUJM4WU84y8Pv9sNlsePbZZ3HSSScBAPbv34+ysjJEIpEea1q8eDFOPPHEbl9PTU1NmD59eo/j9Mwzz2Do0KHdvp4aGhpQVlZ23NxTxkmp6dFHH8U999zToab8/HxxtkFxcTF8Pl+vNSUzTi+99BL69evXpx5x+PBhzJo1q8fXU+eauhqnvtT01FNPYdCgQbr1vQsuuCDr33OT+TviwIEDHS4LtmXLFpxxxhnQAw+EZFiqB0JuuOEGvPrqqwCAn/3sZ0kdUfvnP/+Ja6+9FkD7/UIOHTqUWtISUQ6EKPR88RAREREREZHc6urqsGvXrm5/P378+A5XT0iU7Odzkld9fT2mTZvW63KPP/445syZ0+tyS5cu7XD/1VTXl2y83vS0vmRrSlZXufa0/r7U1tftubWDywAATd5JREFU1ldLly4FgF7X0V3OyeSX+Nxk61FjPqk1J9WeLz1JZd5rPUe6ku7rs68mTpyo27oyKZP7cnlprCw1YMAA8fjw4cNJPUc5JQsA+vfvr3pOpL/m5mY8/PDDHa4HmK1kq0XvfLRcn5qx1YiVTgzZ5kmuM8p4yFYH+4928dh/jMNI4yFbLexB2sVKNYZscyTXBQIBfPDBBx0uV52tZKtF73yKiopw1113dbhngIyx1dgu6eSjPDfxHhiUOVrOWz3J1n8AfbetlvUb6TOY2nggJEudfvrp4rFy7c7e7Nu3TzweOXKk6jmR/vLz8zFlyhRxql82k60WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXGez2TBy5EhxI95sJlsteufj9/uxfPlycZkZWWOrsV3SyUd5rnIDbMosLeetnmTrP4C+21bL+o30GUxt1kwnQKn52te+Jh5v3rwZkUgEVmvPw/nZZ591+XzKXkrjNALZatE7Hy3Xp2ZsNWKlE0O2eZLrjDIestXB/qNdPPYf4zDSeMhWC3uQdrFSjSHbHMl1FosFAwcOzHQaqpCtFr3zCYfD2LFjh/Sx1dgu6eSjPNds5nepZaDlvNWTbP0H0Hfbalm/kT6DqY1dLEtdeOGF4jqmra2t2LhxY4/LB4NBVFZWip8vueQSTfPTm9PphMvlAgBEo1F4PB4ot79paWlBKBQCALS1taG1tRUAEIlExI2UgPZTtZRTPf1+vzgCHA6HO5y+5fF4EIlEALRv+7a2NgBAKBRCS0sLACAej8Pj8SAajQIAfD6fON0tGAyKG9XHYjF4PB7EYjEAgNfrRTAYBNB+mpzP5+uxJr/fj2XLlqGhoSHrazp8+DBee+01+P1+KcapqakJ//jHP+D3+9MeJ6D3udfc3Izly5fj6NGjqtd07NgxLF++HE1NTVKMU319vfiWRV9r8vv9+Mc//oFjx44BUPf1lMw4ZcvrSa+aPB4PXn31Vfj9/qyuqaGhAcuWLYPf75dinFpaWsR2VWOc9OwRnWtqaGjA8uXL0dLSosrca2xsxPLly+HxeFIap0OHDuFf//oX/H5/Tr/nGqHveb1evPrqqx1eN9la05EjR7B8+XJ4vV4pxunQoUP45z//Cb/fr8vc8/v9+Oc//9nh/oVq1eT3+/Gvf/0Lhw4dkmKcUv17z+/347XXXhOXRGaP6HtNwWBQxA6Hw6I+JV53NSmPo9GoyCccDmPr1q1ivaFQqMNyyv/H43EEAgGRaygUEtshEokct1xironLJebaebnuakq81EogEOiwXGKuPp8PO3bsQDgcPi7XTNTk8/mwbds2kWcqNXVeTsm1oKAAeXl5AAC73Y7CwkLxLeXS0lKRg8vlEjfxdjgccLvdAACz2Yzi4uJea4rH4yguLhaxTzjhBNjtdgBAXl4eCgoKAABWq1XcBDmdcVKeo9QEACaTqUOuLpcL/fr1w5QpU1BcXHxcTcoBDrfbLfYzJe5jcblcuP7660VOiXMvGo12W1M4HFZlnBJrUs5K6W2cuqpJuXk30L4Turi4GCaTCQBQWFgoxqmnuVdUVCS+wZ+fny++4W6z2TpcOiwcDosvK/dUUzgc7vX11LmmE044Ad///veRn58Pp9MpntNTj+hp7vVUU+IlooqLi5OqKZlxisfj8Hq92L59O8LhcNI9InGctKipf//+mDJlCoqKikRNWvW9UCiEHTt2wOfziXFS6z23paUFy5cvR0NDgyrvuT6fD8uXL8eRI0dU/UyYCTwQkqVcLhcuvfRS8fOiRYt6XP6f//ynmMj9+/fHt771LS3T0924ceMwdepUAO07tCoqKsSLc+HChdi2bRsAYP369VixYgWA9pvmJd5kfv78+di9ezcAYM2aNVizZg0AYPfu3Zg/f75YrqKiAnV1dQCAFStWYP369QCAbdu2YeHChQDaG0dFRYXYWbJs2TJxIKq6uhpLliwB0N4cKioqRDNasmQJqqurAQCVlZVYtmxZrzUdPnxY5JrNNb300kuiecswTps3b8aePXtUG6feaqqtrQXQfkNGtWv69NNPRU0yjFNiv0qlpr1794qa1H49yTD3sqmmnTt3ipuPZnNNa9asETuXZBingwcPYvv27aqNk549onNNSq4HDx5UZe599NFHANrnXirj9PTTT4sPELn8nmuEvnf06FFs377dEDW9+eaboiYZxunpp58WOeg19/x+P55++mlNaorFYnj66aelGKd0/t5rbm7GSy+9JMaJPaJvNVVXV3f4W3Lnzp0i3oIFC7qtSXnc1NTU4cuHR48eFZ+vd+7cKS5X3dDQIPKJRqOoqqoSO6u2bdsmtkN9fT02b94saq+qqhK5bt68Wdzfs66uToyF3+9HVVWV2HHVU01VVVUi140bN6KpqUmMTWJNNTU1YrmqqiqxXTNV05YtW8RzUq0pcZyqqqrEzr3JkydjwoQJAIBRo0ahrKwMQPsO8TvuuEPs5Jw6dSrGjRsHABg7diymT58OoH0HbHl5udix2V1NwWAQ5eXlYuf79OnTMWrUKADAhAkTMHnyZADA0KFDUV5envY4NTY2HleTw+FAeXl5h5q+/vWvAwDOPPPM42pSdvhOnz4dY8eOBdBxH8vAgQMxatQoES9x7jU2NnZbU21trWrjpNRUUlKS1Dh1VVNTU5OoqaSkpMM4lZWViXHqae7Nnj0bI0aMAABMmjQJkyZNAgCMGDFC9HgA2LNnD4YOHdprTXv27On19dS5pmuvvVbcN3jcuHE4ePAggJ57RE9zr6eaZs+eLZYrLy9PqqZkxikSieCzzz4TcyrZHpE4TlrUdOGFFwJovx2BUpMefU8ZJ7Xec5U5sWbNGlXec5X3u2XLlqn6mTATTHHlcA1lxP33348HHngAQPuLeN26dUk/99///jeuuuoqAO3N5tNPP8UZZ5xx3HJ+vx9nn3222Fl111134aGHHko/eQls3boVo0ePhtPphNVqRWVlJUaOHAmv14uioiKYTCa0tLTA6XTCbrejra0NsVgMBQUFiEQi8Pl84qhxc3Mz8vPzYbPZRIPLz89HOByG3+8XR409Hg9cLhesVitaW1thNpuRl5eHUCiEQCCAwsJCxONxNDc3w+12w2KxwOfzwWq1wul0IhgMIhQKwe12IxaLoaWlBYWFhTCbzfB6vbDb7XA4HAgEAohEInC5XIhGo6yJNbEm1sSaWBNrYk2siTWxJtbEmvpY04EDB7B161ZYrVZYLBaEw2HE43HY7XbEYjGcccYZGDRoUJc1bdiwATabDdFoFOFwWHyzORAIwG63w2w2IxQKwWQyieUikQgcDgfi8TiCwWCH5cxmM6xWKyKRCKLRaIflHA4HTCYTgsEgLBaLWC4Wi4lcQ6FQh+W6qykUCnXI1WazieUA5FRNx44dw/Tp01FQUIBYLIa2tjbY7XY4nU60tLTAZDKhqKgI9957L37xi1/A5XIhEokgEAjA4XDAbrfD6/XCbDajsLAQ8+bNw+DBg7ut6dChQ7jzzjvR3NyMeDyOwsJC8e3vvLw8mM1mtLa2wmq1wuVyYf78+SgtLU15nBoaGnDTTTelVVNLSwtisRjcbjdCoRCCwaDYx+Lz+WCxWOB2uzvUrozTgQMHMGvWrA41Kd/4fv755zFkyBBVx8nr9YozO/pS06JFixCNRnHHHXd0qKnzOC1evBgDBgw4bu55PB5MmzYNRUVF4mwx5SwDv98Pm82GZ599FieddBIAYP/+/SgrK0MkEumxpsWLF+PEE0/s9vXU1NSE6dOn9zhOzzzzDIYOHdrt66mhoQFlZWXHzT1lnJSaHn30Udxzzz0dasrPzxdfhCwuLobP5+u1pmTG6aWXXkK/fv361CMOHz6MWbNm9fh66lxTV+PUl5qeeuopDBo0SLe+d8EFF2T9e24yf0ccOHAAo0ePhmLLli1d7s/WAg+EZFg6B0IA4Fvf+hbef/99AMDw4cPx+uuv46yzzhK/b2xsxLRp0/D2228DaD8bZPfu3R1OGctmyoEQhZ4vHhmEw2Hs3r0bI0aMkOoGU6mQrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFsU1dXJ74U2JXx48eLb4V31tXnc2XnZL9+/bL+5tGy1aJFPvX19Zg2bVqXv7PZbBgxYgR2796NRx99FHPmzOk13tKlS1FaWtrr+hJjJ14yqa/xgJ63S0/1Pf7446KmZPPpivLc//3f/8WQIUOSXn8ytSUTRw1Lly4FgF7X0V3OyeSX+Nxk60l2PiXqPJapxOhK4nzR2tKlS1FSUtKn17vWcwTo+7ZNR1ev64kTJ6oSW/bPYJncl8tLY+noiiuuwJgxYzr8SzwNd+PGjcf9fsyYMeKUpq689NJLGDx4MID20w7HjBmDiy++GD/84Q9xzTXX4OSTTxYHQaxWK1599VXDHASh9iPayr0Wsp1steidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuQ65Wa6fd2ZLCPZatE7H+U+Hso3xmWNrcZ2SScf5bnKpXwos7Sct3qSrf8A+m5bLes30mcwtfGMEB0NHz5cXGezL7788ksMHz6829/v2LED06ZN63DdyM5KSkrw3HPP4corr+zz+mWW62eEEBERERERUffUPiOEsova34ZX69v3ycbrTbJnhKihq1x5RkjXz9XyjBAtYgD6nxHS13mvxxkhnWl5RkhX1DojRHaZ3Jdr1WUtpKmRI0eiqqoKL7/8MpYuXYqtW7fi8OHDKC4uxqmnnorvf//7uPXWWzFw4MBMp0pEREREREREREREpCteGktHtbW1iMfjff7X09kgCrvdjltuuQWrVq3Cvn37EAwGcfjwYXz00Uf4n//5Hx4EMSiPx4MHHnhA3BAqm8lWi975aLk+NWOrESudGLLNk1xnlPGQrQ72H+3isf8Yh5HGQ7Za2IO0i5VqDNnmSK4LBAJYv349AoFAplNJm2y16J1PcXEx7r//fk0uH65mbDW2Szr5KM+V6RJGuUzLeasn2foPoO+21bJ+I30GUxsPhJAhOJ1OuFwuAO03HPJ4PFCu+tbS0oJQKAQAaGtrQ2trKwAgEol0eBE2NzeLN3a/3y+uXRcOh9Hc3CyW83g8iEQiAIDW1la0tbUBAEKhEFpaWgAA8XgcHo9HXEPT5/OJ5hYMBuH1egEAsVgMHo8HsVgMAOD1ehEMBgG0N0Wfz9djTS6XCzfeeCNMJlPW1xSLxfCDH/wALpdLinGy2Wy47rrr4HK50h4noPe553A4MGPGDJjNZtVrslqtmDFjBmw2mxTjFI1GMWPGDLhcrj7X5HK5cP3118NqbT+hUc3XUzLjlC2vJ71qstvtmDp1KlwuV1bXZDKZcOONN8LlckkxTk6nE9dee614X9N67qnZIzrXZDKZMGPGDDidTlXmnsViwYwZM2C321Map0gkgptvvhkulyun33ON0Pfy8vJw7bXXoqCgIOtrAoAZM2YgLy9PinGKRCK46aab4HK5dJl7LpcLN910k8hNzZpcLhduueUWRCIRKcYp1b/3XC4XfvCDH4jc2CP6XlMwGBSxw+GwqE+J111NyuNoNCrysdvt+NrXvib+Hg2FQh2WU/KJx+MIBAIi11AoJLZDJBI5brnEXBOXS8y183Ld1ZS4Yy0QCHRYLjHXWCyGs88+G3a7/bhcM1FTPB7H6NGjYbfbU66p83JKrgUFBcjLyxNjWFhYCJ/Ph0WLFsFisYgcXC4XnE4nAMDhcMDtdgMAzGYziouLe60pHo+juLhYxDaZTLDb7QDa37uU9y2r1dphZ2uq46Q8R6kJaP/bNjFXl8uFcDiMRYsWIRQKHVeT2dy+a9DtdovLxCXuY/H7/Vi2bJlYLnHuRaPRbmtSPvulO06JNSk3le5tnLqqSfk8CQAWiwXFxcXi77rCwkIxTj3NvaKiInGz6Pz8fHEvCZvN1uFAUTgcFj2ip5rC4XCvr6fONQHAkiVL4PP54HQ6xXN66hE9zb2eaioqKhLLFRcXJ1VTMuMUj8cRi8Vw1llnwW63J90jEsdJi5oikQgWLVqEYDAoatKq79lsNpx99tmIx+NinNR6z3U6nZgxYwZMJpMq77n5+fmYMWMG4vG4qp8JM4EHQsgQxo0bh6lTpwIAGhoaUFFRIV6cCxcuxLZt2wAA69evx4oVKwC0Xyu2oqJCxJg/fz52794NAFizZg3WrFkDANi9ezfmz58vlquoqEBdXR0AYMWKFVi/fj0AYNu2bVi4cCGA9sZRUVGBhoYGAMCyZctQWVkJAKiursaSJUsAtDeHiooK0YyWLFmC6upqAEBlZSWWLVvWY01WqxVffvklVq1alfU1Pf/882htbYXVapVinDZv3oz33nsPVqs17XECep97e/fuxfDhw7F27VrVa9q4cSOGDx+OzZs3SzFOzzzzDIYPHw6r1drnmqxWK6qqqrBx40YA6r6ekhmnbHk96VXTzp078fbbb8NqtWZ1TatWrcKXX34Jq9UqxTjV19fjtddeE3+Uaz331OwRnWtatWoVhg8fjvr6elXm3oYNGzB8+HDs3LkzpXGaO3cu+vfvD6vVmtPvuUboe01NTXjttdfEB7hsrmn58uUYPnw4mpqapBinuXPnoqCgAFarVZe5Z7VaYbFYMHfuXNVrslqtGDx4MObOnSvFOKX6957VakVrayuef/55MU7sEX2rqbq6WsTeu3cvdu7cKeItWLCg25qUx01NTeLvT7PZjO3bt4sdQDt37hT3Am1oaBD5RKNRVFVViZ1V27ZtE9uhvr4emzdvFrVXVVWJXDdv3oz6+nqxzZWx8Pv9qKqqEn2vp5qqqqpETRs3bkRTU5MYm8SaPvvsM7GDtaqqSmzXTNX0+eefIxwOw2w2p1yTMk4AUFVVJXbuTZ48GRMmTAAAjBo1CmVlZYhEIqivr8dPf/pTsZNz6tSpGDduHABg7NixmD59OoD2HbDl5eVix2Z3NQWDQZSXl8NqtaK2thYzZszAqFGjAAATJkzA5MmTAQBDhw5FeXl52uPU2NjYoSagfYdzeXl5h5rOO+881NbW4qyzzjquJmWH7/Tp0zF27FgAHfex9O/fXzwGOs69xsbGbmuqra1VZZwSayopKUlqnLqqqampSdRRUlKC8vJycZCkrKxMjFNPc2/27NkYMWIEAGDSpEmYNGkSAGDEiBGora0Vy+3ZswdDhw7ttaY9e/b0+nrqXNONN96IAQMGIBKJYNy4cTh48CCAnntET3Ovp5pmz54tlisvL0+qpmTGKRKJ4JNPPkFeXh7MZnPSPSJxnLSo6Rvf+AZqa2tx+umni5q06nvKQdPPP/9cjJNa77n19fUYPnw4Vq1apcp7rt/vx/Dhw/HKK6+o+pkwE3izdMpqyg12nE4nrFYrKisrMXLkSHi9XhQVFcFkMqGlpQVOpxN2ux1tbW2IxWLiSK/P5xNHjZubm5Gfnw+bzSYaXH5+PsLhMPx+vzhq7PF44HK5xAcSs9mMvLw8hEIhBAIBFBYWIh6Po7m5GW63GxaLRXzj1ul0IhgMim9hxGIxtLS0oLCwEGazGV6vF3a7HQ6HA4FAAJFIBC6XC9FotMuawuEwli9fjssuuwwnnHBCVtdUX1+PtWvX4pprroHZbM74OB07dgwrV67E9773PeTl5aU1TsnMvXg8jtWrV+PSSy9FQUGBqjUFg0G8/fbbmDRpEmw2W8bH6ejRo1i/fj0mT56McDjcp5oCgQD+9a9/4bvf/S4GDBig6uvJiD1C65qamprw5ptv4vvf/z7y8/OztqYjR47g7bffxpQpU2Cz2TI+Ts3NzXjjjTfw/e9/X/ys5dxTs0d0rsnr9WLt2rX47ne/K/7YT2futbW14Z133sF3vvMdWCyWPo9TfX091q9fj6uvvhqxWCxn33ON0PdaWlrw+uuv43vf+574OVtramlpwdq1a3HFFVcgFotlfJwOHTokXifxeFzzuQcAr7/+OiZOnIghQ4aoWpPFYsEbb7yBCRMmYNCgQRkfp1T/3ovFYnj99ddxySWXoLS0lD2ijzUdOHAAW7duFQfdwuEw4vE47HY7YrEYzjjjDAwaNKjLmjZs2ACbzYZoNIpwOAyn04lQKITt27fj9NNPFz+bTCaxXCQSgcPhEN+ctdvtMJvNCIVCMJvNsFqt4iylxOUcDgdMJhOCwSAsFotYTnm/isViCIVCHZbrrqZQKCS+ha1881hZDoDI1e/3Y+/evTjttNPEepRcM1GT1+sVOyFNJlNKNSnjpCx37NgxTJ8+HQUFBYjFYmhra4PdbofT6UQ0GsXkyZOxfv16/M///A9+8YtfwOVyIRKJIBAIwOFwwG63w+v1wmw2o7CwEPPmzcPgwYO7renQoUO48847EQ6HMXnyZLz77rtoampCKBQSO32VL5a5XC7Mnz8fpaWlKY9TQ0MDbrrpJlFTS0sLTCYTioqKcO+994qa7HY7Jk2ahLfeeguRSKRDTS0tLYjFYnC73QiFQggGg2Ifi8/ng9vtxpQpU3DZZZfhpJNO6jD3Dhw4gFmzZnWoSfnG9/PPP48hQ4akPU6JNXm9XnFmR0/j1LmmRYsWIRqN4o477oDP54PFYoHb7Ra9ubCwEIFAAIsXL8aAAQOOm3sejwfTpk1DUVGROFtMOcvA7/fDZrPh2WefxUknnQQA2L9/vzjY1lNNixcvxoknntjt66mpqQnTp0/vUNMJJ5yAb3/723j99dcRjUbxzDPPYOjQod32iIaGBpSVlR0395RxUmp69NFHcc8993SoSfmMB0Cc6dRbTcmM00svvYSCggLs3bsXp59+OuLxeK894vDhw5g1axYCgUC3r6fONXU1Tj3V5HQ6cdlll2H16tWIxWJ46qmnMGjQIE36nslkwhdffIFhw4YhPz8fFosFF1xwgSrvuSaTCatWrcIll1wCt9ud9nuuxWLBv//9b1x88cUoLi5O+zPhgQMHeLN0onQknqqonOKoUI6aAxCn7gFdnzqnUBol0PWpcwrlNDyg/XRA5RQ95XRAhXL6JdB+hFz51oFyiqNCOU0QgPijoKeaotEoBgwYIJ6XzTUVFRWhf//+4oORIlM15eXlYeDAgTCbzWmPkxKvp5ra2tpQXFwMl8slllWrJiWvvLw8ETuT41RcXCy+0dTXmsxmMwYOHChiqvl6AozXI7Suyel0oqSkBGazOatrcrvdGDBgAMxmsxTjZLfbxXZNtaZM9YiuaiouLobdbu9QY6o1KXk5nU4Rry/j1K9fP/Tr1w9ms/m4udxbTUZ6zzVC37PZbCgpKRGXXsjmmpSDhDabrUPumaop8XWSuF6t5l5bWxv69++Pfv36qV5TW1ubqCfxMh2p1KTGOKX6956yjZTl2CP6XpPyfCU/Red4nWtSlrVYLGIOmUwmFBQUiJ+VGrpaLjGnxOWsVqs487Pzcom5KssouXa3XOeaEpfr3DsTc3U6nXA6nT3mqmdNyvu7chAmlZqUXJXllL+nlMvNAO2XiFF2pHo8HrHjEIA40wdo/9a08g1n5RIxynLd1WQymeDxeETszpeIUXS+7E2q46TUq9QE/N9lbxJrUvIJBAIij86XhlMuhwN03McSiUTQ0NAgtmVi7RaLpdtL+SgHdrqqqS/jlFiTordx6qomZYcv8H+X8lEoZ9l0zrXz3Eu8BJGyMxpovzxR4vNsNluHSwJ2V5PNZhO1d/d66qqmY8eOiUssKcv11CN6mns91dT5kkuKdMfJZDKJzx6Jl49Tald0rilxnLSoSdnWwWBQxNeq7ykHA51Op3g9qPWeq/y9oRwEUfJO9T1XiVdYWNjh8nmKvn4mPHDgADKFB0KIslheXh4uv/zyTKehCtlq0TsfLdenZmw1YqUTQ7Z5kuuMMh6y1cH+o1089h/jMNJ4yFYLe5B2sVKNIdscyXU2mw1f+cpXMp2GKmSrRe982trasHr1auljq7Fd0slHee6MGTPSyoHUoeW81ZNs/QfQd9tqWb+RPoOpjfcIIcpioVAINTU14uh7NpOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXjUZRX18vrlmfzWSrRe987HY7xowZ0+Eb3jLGVmO7pJOP8lzlcoaUWVrOWz3J1n8AfbetlvUb6TOY2ngghCiLBQIBrFu3rsNpq9lKtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkdyXSQSQW1trbjsTTaTrRa983E6nZg4cWKHS7zIGFuN7ZJOPspzZdphncu0nLd6kq3/APpuWy3rN9JnMLXxZumU1ZSbpSv0vMEOERERERERya2urg67du3q9vfjx4/vcC33ROvWrdMoK9JLfX09pk2b1utyjz/+OObMmdPrckuXLkVpaWna60s2Xm96Wl+yNSWrq1x7Wn9fauvrduurpUuXAkCv6+gu52TyS3xusvWoMZ/UmpNqz5eepDLvtZ4jXUn39dlXEydO1G1dmZTJfbk8I4Qoi8XjcQQCARjheKZsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuS6eDyOSCRiiPGQrRa981FubqzcVFzW2Gpsl3TyUZ4ryzzJdVrOWz3J1n8AfbetlvUb6TOY2ngghAzB6XTC5XIBaL/OnsfjES+wlpYWcR26trY2tLa2Amg/Dc3j8YgYzc3NCIfDAAC/3w+/3w8ACIfDaG5uFst5PB5x6lprayva2toAtF/zrqWlBUD7i9zj8YhTR30+nzgFLBgMwuv1AgBisRg8Ho+41qbX60UwGATQfuqYz+frsabm5mY88sgjOHToUNbXVFdXh0ceeQTNzc1SjNORI0dEPumOE9D73Dt69CgeeeQR1NfXq16TUsuRI0ekGKf9+/eLGH2tSZnzR44cAaDu6ymZccqW15NeNTU0NIixzOaaDh06JOqQYZwaGxtFPmqMk549onNNyrZtbGxUZe4dPnwYjzzyCBoaGlIap8T+k8vvuUboe8eOHcMjjzwi8s3mmg4ePIhHHnkEx44dk2KcEl8nesw95bW1f/9+1WtKjC3DOKX6955SR11dnRgn9oi+1RQMBkXscDgs6lPidVeT8jgajXbIZ8OGDR3qSFxOyUfZ8aPkGgqFxHaIRCLHLZeYa+Jyibl2Xq67mhIvPxIIBDosl5hrS0sLNmzYgGAweFyumagpMZ9Ua+q8nJJrQUEB8vLyALTfB6CwsBBFRUW46667cNJJJ4kcXC6XuCyOw+GA2+0GAJjNZhQXF/daUzweR3FxsYh94oknivsN5OXloaCgAABgtVpRXFyc9jgpz1FqAtp35ibm6nK5cMIJJ+Cuu+5CSUnJcTWZze27Bt1utzg7KnEfS79+/XDXXXeJnBLnXjQa7bamcDisyjgl1mSxWJIap65qikajoiaLxYLi4mKxw7uwsFCMU09zr6ioCDabDQCQn5+P/Px8AO03vlbqU2JYrdZeawqHw72+njrXNGTIENx1110oKiqC0+kUz+mpR/Q093qqqaioSCxXXFycVE3JjFM8Hu8wr5PtEYnjpEVNyutk4MCBoiat+l4gEMCGDRvQ0tIixkmt91zl8+ShQ4dUec9tamrCI488ggMHDqj6mTATeCCEDGHcuHGYOnUqgPYdcxUVFeLFuXDhQmzbtg0AsH79eqxYsQJA+w7diooKEWP+/PnYvXs3AGDNmjVYs2YNAGD37t2YP3++WK6iokJ8CFmxYgXWr18PANi2bRsWLlwIoL1xVFRUoKGhAQCwbNkyVFZWAgCqq6uxZMkSAO3NoaKiQjSjJUuWoLq6GgBQWVmJZcuW9ViT2+3G6NGjRQ7ZXNNrr72GiRMnwu12SzFOu3fvxoABA+B2u9MeJ6D3udfQ0IBZs2ahsrJS9Zq2bt2KWbNmYffu3VKM00svvYRZs2bB7Xb3uSa3243Bgwdj69atANR9PSUzTtnyetKrprq6OrhcLrjd7qyuaf369Rg9ejTcbrcU46T8Iat8UNB67qnZIzrXtH79esyaNQvNzc2qzL3q6mrMmjULdXV1KY3Tc889hx/84Adwu905/Z5rhL6nfFhTPgxnc01r1qzBrFmzEAgEpBin5557Dtdeey3cbrcuc8/tdmPy5Ml47rnnVK/J7XZj5syZeO6556QYp1T/3nO73Zg4cSJee+01MU7sEX2rqbq6WsTeu3cvdu7cKeItWLCg25qUx01NTdi4cSOA/+s7Sh/auXMn9u7dK9ar5BONRlFVVSV2Vm3btk1sh/r6emzevFnUXlVVJXLdvHkz6uvrxTZXxsLv96OqqkrsuOqppqqqKlHTxo0b0dTUJMYmsabNmzfj3HPPhd1uR1VVldiumapp+/btGDZsGOx2e8o1KeMEAFVVVWKcJk+ejAkTJgAARo0ahbKyMni9XixcuBBlZWViJ+fUqVMxbtw4AMDYsWMxffp0AO07YMvLy8WOze5qCgaDKC8vRygUwoIFCzB16lSMGjUKADBhwgRMnjwZADB06FCUl5enPU6NjY0dagLadziXl5d3qGnUqFFYsGABRowYcVxNyg7f6dOnY+zYsQA67mNRdmQrO+IT515jY2O3NdXW1qoyTok1lZSUJDVOXdXU1NQkaiopKUF5ebk4SFJWVibGqae5N3v2bIwYMQIAMGnSJEyaNAkAMGLECNTW1orl9uzZg6FDh/Za0549e3p9PXWuafLkydiwYQO8Xi/GjRuHgwcPAui5R/Q093qqafbs2WK58vLypGpKZpwikQhqamowevRo2O32pHtE4jhpUdM555yDBQsWYOjQoaImrfqexWLBueeei+3bt4txUus9t7m5GbNmzRKfx5S8U33PjcfjmDVrFt58801VPxNmAu8RQlnts88+w7nnngun0wmr1YoXX3wRp556Ktra2pCfnw+TyQS/3w+73Q6r1YpQKIRYLAan0ym+haAcQU5cTnnxOhwOceRWOYLc2toKp9MJi8WCQCAAs9kMu93eYbl4PA6/34+8vDyYzeYOy4XDYUQiEeTl5SEWi6GtrU0s19bWBqvVCpvN1iFXZTnWxJpYE2tiTayJNbEm1sSaWBNrYk3J13T48GHs2bMHZrMZZrNZ7FCzWCyIx+M4/fTTxTeJO9f02WefwWKxIBaLIRaLiW8ORyIRWCwWmEymDvESl4vH44hGox2WM5lMMJvNPS4XiURErrFYDPF4XOTa3XKda4pGox1y7Wq5XKmpqakJv/nNb1BQUCDmhd1uh9PpREtLC0wmE4qKinD77bfj0UcfhcvlQiQSQSAQgMPhgN1uh9frhdlsRmFhIX7729+ipKSk25oaGhrw0EMPiTOmCwsLEQgEEAqFxLxtbW2F1WqFy+XC3XffjYEDB6Y8TseOHcNvfvObtGpqaWlBLBaD2+1GKBRCMBgU+1h8Ph8sFgvcbneXtTc0NODBBx/sUJPyje+HH34YAwcOVHWcvF6vOLOjLzX9/ve/Rzwex+9///sONXUepz/84Q/o16/fcXPP4/Hg17/+NYqKisTZYkqP8/v9sNls+P3vf48TTjgBQPsVJn73u98hEon0WNNDDz2EkpKSbl9PHo8Hd911V4/j9MADD6CkpKTb19OxY8dw3333HTf3lHFSapozZw7+9re/dagpPz9ffEmruLgYPp+v15qSGadHHnkE/fr161OPaGxsxB/+8IceX0+da+pqnPpS0+9+9zsMGDBAt743ZsyYrH/PTebviEOHDmHKlClQfPrppzjnnHOgizhRFlu+fHkcQM7+c7lc8ZkzZ8ZdLlfGczFaLXrno+X61IytRqx0Ysg2T3L9n1HGQ7Y62H+0i8f+Y5x/RhoP2WphD9IuVqoxZJsjuf7PSOMhWy3sP9rF4t9AxvlnlPGQsQ49c8qW/qNGvN6ev3z5ct32I/OMEMpqr7/+eoejiEREREREREREREQkv+XLl+Oaa67RZV28RwgRERERERERERERERkWzwihrObxeMSNfwDgpJNOEje7IiIiIiIiIiIiIiI5BINB7N+/X/w8YcIEca8urfFACBERERERERERERERGRYvjUVERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFEREQqqa+vx4svvojy8nJ84xvfgMvlgslkwvDhwzOdGhFluY8++gjXXnstBg0aBKfTiVNOOQV33nknDhw4kOnUiMjA+LcNEWXKpk2b8OCDD+Lb3/42SktLYbPZUFxcjPHjx+Mvf/kL/H5/plMkoixjisfj8UwnQUREZARPPPEE5syZc9z/Dxs2DLW1tfonRESG8Pe//x2zZs1CLBZDaWkpTjzxROzcuRNerxf9+vXDu+++i7PPPjvTaRKRAfFvGyLKhN27d+MrX/mK+HnIkCEYMmQIDh06JL4Ectppp+Htt9/GySefnKk0iSjL8IwQIiIilRQWFuLSSy/Fb37zG7z66qt44oknMp0SEWW5zZs344477kAsFsNjjz2GAwcOYOPGjTh48CCuv/56NDU14Xvf+x6CwWCmUyUiA+LfNkSUCfF4HCUlJbj//vuxe/duHDhwAJ988gnq6urwwQcfYNiwYdi5cyduuOGGTKdKRFmEZ4QQERFpZNmyZbjuuuv4rUkiStnUqVPx2muv4frrr8crr7zS4XdtbW0YOXIk9u3bh/nz5+OOO+7IUJZElCv4tw0R6SEQCCAajaKgoKDL32/YsAHf+MY3AAA1NTU8M5aIksIzQoiIiIiIJNTa2op///vfAIAf//jHx/0+Ly8Pt956KwDg5Zdf1jU3IiIiIq04nc5uD4IAwEUXXYSioiIAwI4dO/RKi4iyHA+EEBGRZqLRKDZt2oRnn30Ws2fPxte//nXY7XaYTCaYTCZMnDgx5dihUAgvvPACrrjiCgwbNgxOpxODBw/GhRdeiL/85S84evSoeoUQkWHJ3Keqq6sRCARgt9sxbty4LpdR8quqqkIsFks5VyLKDJl7EBEZWzb3n0gkgnA4DADIz89PKxYR5Q5rphMgIiJjWr58OaZPnw6/36967B07dmDatGmoqanp8P/19fWor6/HRx99hD//+c947rnncMUVV6i+fiIyBtn71M6dOwEAJ598Mux2e5fLKDcSDQQC2Lt3L0455RT1iiAiTcneg4jIuLK9/yxfvhx+vx9WqxXjx49XIWsiygU8I4SIiDTh8Xg0+cO6rq4Ol156qfjD2mQyYcKECSgrK8PkyZORl5cHADhy5AimTJmCtWvXqp4DERmD7H3q2LFjAIABAwZ0u67+/fuLx01NTSpVQER6kL0HEZFxZXP/aWpqwi9/+UsAwI9+9CMMHDhQtfyJyNh4RggREWlq0KBBOO+888S/t956CxUVFSnH+8EPfoCDBw8CAIYNG4bXX3+9w83xjh49ihtvvBH/+c9/EA6Hcd1112H37t0oLi5OtxQiMihZ+1RbWxsAdHs2CNB+DW2FFjs0iEh7svYgIjK+bOs/4XAY119/Pfbt24dTTz0VDz/8cMq5ElHu4YEQIiLSxOWXX469e/fi5JNP7vD/VVVVKcdcuXIl3n//fQDtOwZXrFiBM888s8MyAwcOxOuvv46zzjoLe/bswbFjx/Doo4/iT3/603Hx7rrrLjzyyCMp5RIOh2G18m2UKJvJ3qeUb02GQqFu1xcIBMRjXiObKLvI3oOIyLiysf/EYjHccssteOedd1BSUoJ///vfKCwsTDlfIso9vDQWERFporS09Lg/rNM1d+5c8XjGjBnH/WGtKCgowIMPPih+fuqppxCJRLpcbsCAASn9M5lMqtZGRPqTvU/169cPANDY2Njt+pTLZyUuT0TZQfYeRETGlW39Jx6P47bbbsPLL7+M/v374+2338bIkSPVSZyIcgYPhBARUVbw+Xz4z3/+I36+9dZbe1z+2muvhcvlAtC+o/C99947bpn//d//xdGjR1P6Z7FY1C2QiLKe2n3q9NNPBwDs27ev27NCvvjiCwDtl8gaNmxYyrkTUfbT4m8lIqJkaNl/4vE4br/9dixatAiFhYV46623Olxui4goWTwQQkREWeHDDz9EMBgE0P4tovPOO6/H5Z1OJ8aPHy9+5o1AiUhravepsWPHwul0IhQKobKysssY69evBwCcf/75MJv5pz1RLuPfSkSUKVr2nx//+Mf4+9//DpfLhVWrVuHrX/+6OkkTUc7hpyUiIsoK27dvF4/PPPPMpO7Pcc4553T5fCIiLajdpwoKCnDFFVcA6Hi5CUVbWxuee+45AMANN9yQUs5EZBz8W4mIMkWr/vOzn/0M8+fPR35+Pt58801ceOGF6SdLRDmLB0KIiCgr/Pe//xWPk738S+J1b3fs2KF6TkREibToU/feey8sFgteffVV/PWvf0UsFgPQfgmKmTNnYt++fRg2bBhuu+22NLMnomzHv5WIKFO06D+//vWv8eSTT8LpdOKNN97AhAkT0k+UiHJa74doiYiIJJB4s+BBgwYl9ZzS0lLxOPGGwlrZv38/xo4dK35Wrum/f/9+DBw4UPz/tGnT8OSTT2qeDxHpS4s+dfbZZ2Pu3Lm488478ctf/hJ//vOfceKJJ2Lnzp3wer0oLi7Gv/71LzgcjvQLIKKspkUP4t82RJQMtfvPRx99hD//+c8AgMLCQtx333247777uoxTVlaGsrKyvqZMRDmIB0KIiCgr+Hw+8TgvLy+p5yQul/h8rUSj0Q4fAhSxWKzD/3u9Xs1zISL9adWnZs2ahTPPPBN//vOfsWHDBmzevBmlpaWYPn067rnnHgwdOjS9xInIELToQfzbhoiSoXb/Ue43AgBHjhzBkSNHuo3z7W9/O9k0iSjH8UAIERFlhUAgIB7b7faknpP4Dem2tjbVc+ps+PDhiMfjmq+HiOSkZZ+68MIL8a9//Sv15IjI8LToQfzbhoiSoXb/mThxInsPEamO9wghIqKs4HQ6xWPlsgy9SfwmUbLfTCIiShX7FBFlEnsQEWUK+w8RZQMeCCEioqzgcrnE42TP7khcLvH5RERaYJ8iokxiDyKiTGH/IaJswAMhRESUFQYMGCAeHz58OKnn1NfXi8f9+/dXPSciokTsU0SUSexBRJQp7D9ElA14IISIiLLC6aefLh7v3bs3qefs27dPPB45cqTqORERJWKfIqJMYg8iokxh/yGibMADIURElBW+9rWvicebN29GJBLp9TmfffZZl88nItIC+xQRZRJ7EBFlCvsPEWUDHgghIqKscOGFF8LhcAAAWltbsXHjxh6XDwaDqKysFD9fcsklmuZHRMQ+RUSZxB5ERJnC/kNE2YAHQoiIKCu4XC5ceuml4udFixb1uPw///lPeL1eAO3XnP3Wt76lZXpEROxTRJRR7EFElCnsP0SUDXgghIiIssadd94pHi9atAhbt27tcjm/3497771X/Hz77bfDarVqnh8REfsUEWUSexARZQr7DxHJjgdCiIgoa1x55ZX45je/CaD9dOqrrroKmzZt6rBMY2MjpkyZgl27dgFo/4bRb37zG91zJaLcxD5FRJnEHkREmcL+Q0SyM8Xj8XimkyAiImO64oorcPDgwQ7/V19fj8OHDwMACgoK8JWvfOW4561cuRJDhgzpMmZdXR3OP/98HDp0CABgMpkwYcIEjBgxAg0NDXjnnXfg9/sBAFarFatXr+5wmjYRUSL2KSLKJPYgIsoU9h8iyjU8EEJERJoZPnw49u7d2+fnffnllxg+fHi3v9+xYwemTZuGmpqabpcpKSnBc889hyuvvLLP6yei3ME+RUSZxB5ERJnC/kNEuYYX4SMioqwzcuRIVFVV4eWXX8bSpUuxdetWHD58GMXFxTj11FPx/e9/H7feeisGDhyY6VSJKEexTxFRJrEHEVGmsP8Qkax4RggRERERERERERERERkWb5ZORERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCREREREREUnriiSdgMplgNpuxcePGTKeTlrvuugsmkwlOpxO7d+/OdDpEREREOYUHQoiIiIiIsszEiRNhMpn6/G/dunWZTp0oaYcPH8Z9990HALjhhhvw9a9/vcvlZs6cKeb4zJkz+7SORYsWiecOHz48zYx7dtddd6Ffv34IBoOYM2eOpusiIiIioo54IISIiIiIiIik88ADD6ClpQUmkwn33ntvptNJW3FxMX76058CAFasWIH169dnOCMiIiKi3GHNdAJERERERJS68847D+eff35Sy5544okaZ0OkjtraWvz9738HAFxzzTX42te+luGM1PGzn/0Mf/nLX+D3+3HPPffggw8+yHRKRERERDmBB0KIiIiIiLLYFVdcgfvvvz/TaRCp6rHHHkM4HAYA/PjHP85wNuoZMGAArrvuOixevBgbNmzAhg0bcNFFF2U6LSIiIiLD46WxiIiIiIiISBrNzc147rnnAACnnHIKLr300gxnpK4f/vCH4vETTzyRuUSIiIiIcggPhBAREREREZE0XnnlFbS2tgIArrvuOphMpgxnpK6LLroIQ4YMAQC8/vrraGxszHBGRERERMbHAyFERERERDmmtrYWJpMJJpMJw4cPF///wQcf4Ic//CFGjhyJoqIimEwmlJeXdxlj//79+P3vf49vfvObGDJkCBwOB/r374+xY8fiV7/6FXbu3NmnnD777DP86Ec/wqmnnoq8vDyUlJTg/PPPx6OPPopjx44BABYtWiTynjlzZpdx7r//frFMMpcMW7dunVh+4sSJSeW6fft23H333Tj//PMxaNAg2O12lJSU4IILLsC9996LgwcP9hpj4sSJYr3r1q0DABw7dgyPPPIIzjvvPAwcOBB5eXk49dRTcdttt2HLli1J5ZZo1apVmDVrFkaPHo0BAwbAZrOhuLgY55xzDmbNmoU33ngDkUhELH/kyBHY7XaYTCZYLBYcOHAgqfXE43Gccsopop433nijz7kmWrJkiXg8ZcqUtGKlK/G10td/tbW1XcY0mUyirnA4jFdffVW/goiIiIhyFO8RQkRERESU40KhEH72s5/hqaee6nXZWCyG+++/H3/+858RCASOi9PU1ISamhpUVFTg17/+Nf7whz/0+o3+3/3ud3j44YcRjUbF/wUCARw9ehSffPIJnnzySfzjH/9IrTgVBYNB/PznP8ff//73DrkCwNGjR3H06FF8/PHH+Mtf/oJHH30UP/nJT5KOvWHDBtxwww3HHXz48ssv8eWXX2Lx4sWYP38+fvSjH/Uaa+vWrZg5cyY2btx43O+am5tRXV2N6upqPP3007jhhhvw8ssvAwBOOOEEXH311XjttdcQi8WwaNEi3HPPPb2u7z//+Y/Y6T948GBceeWVSVTctaamJmzYsAEA4Ha7cd5556UcS2aXXHIJ5s2bBwB48803MXv27AxnRERERGRsPBBCRERERJTj5syZIw6CnHnmmTj77LNhs9mwc+dOmM3/dxJ5NBrFDTfcgNdee03834knnojzzz8fJSUl8Pl8qKqqwu7duxGJRPCnP/0JDQ0NePrpp7td9913342HHnpI/Jyfn49LLrkEgwcPRn19PdauXYu6ujpcccUV3Z6doofW1lZ85zvfETvpAWDEiBE499xz0a9fPxw7dgwbNmzAwYMH0dbWhp/+9KdoaWnB3Xff3WvsLVu24Le//S18Ph9OOOEEfPOb38SAAQNw4MABrF27Fm1tbYhGo7jjjjtw5plnYty4cd3GWrduHa6++mp4vV7xfyeffDLOP/989O/fH62trfjvf/+Lzz//HOFw+LiDWbfffrsY34ULF+Luu+/u9UDWs88+Kx7PnDkTFoul15q7s3btWnGQady4cbBaM/uRtbCwMOmbtW/atAnvv/+++Lmn7fbNb35TPF63bh0ikUjGayUiIiIyMv6lRURERESUw+rq6jBv3jycdNJJWLJkSYcdtED7WRCKBx54QOwkLy0txdy5c/G9733vuB2+//jHP/CjH/0Izc3NeOaZZ/Dtb38b119//XHrfu+99/Dwww+Ln6dOnYqnn34a/fr1E//X3NyMO+64Ay+//DL++Mc/qlJzKu68805xEOS0007DU089ddyltKLRKJ5++mnMmTMHwWAQ9957Ly6++GKMHz++x9i/+tWvEIlE8Nhjj+FnP/tZhx3i+/fvxxVXXIEtW7YgFovh7rvvxtq1a7uMs3//flx33XXiIMgpp5yCefPm4fLLLz9u2aamJrz66qvYtWtXh/+/7LLLcMopp+DLL7/Enj17sG7dOlx88cXd5n7s2DH861//AtC+4/+2227rsdbeVFVVicdnnXVWWrHU0L9/f/ztb3/rdbn9+/fj/PPPFz9PmzYNw4YN63b5E044AYMHD8ahQ4fg9/uxZcsWjBkzRo2UiYiIiKgLPBBCRERERJTFVq5ciaNHj/a63G9/+1uceOKJx/1/NBpFfn4+3nnnHZx22mnH/d7hcABov1fCn/70JwDtO4c/+OADjBgxost1XXfddRg4cCAuueQSAO337ejqpte//e1vEY/HAQCXXnopXn755ePOJigqKsKSJUtw7NgxrFmzptc6tfD+++/j+eefB9B+FsiGDRswcODA45azWCyYPXs28vLycOuttyIajeLBBx/EqlWreowfDAbx1FNP4fbbbz/udyeddBKWLl2Ks846C/F4HOvWrcOhQ4cwePDg45b97W9/K+bCsGHD8NFHH2HQoEFdrrNfv36YNWvWcf9vMpnwwx/+UFwS69lnn+3xQMiSJUvEwbKJEyd2OyeStWnTJvF45MiRfX5+VVVVny5JtmPHjj6vo7PW1lZcffXVqK+vBwBccMEFWLhwYa/P+9rXvoZDhw4BAD7//HMeCCEiIiLSEA+EEBERERFlsU8++QSffPJJr8v98Ic/7PJACAD85Cc/6fIgSKKKigpxyaJ777231x3eF198Mb7zne/grbfewvbt21FdXY1zzjlH/H779u348MMPxc//7//9v24vqWQ2m/Hkk09i5MiR4sCJnv7617+Kx4899liXB0ESzZw5E4888gh27NiBt956C42NjRgwYEC3y5955pldHgRRjB49Gueddx4+/vhjxONxbNy4EZMnT+6wzIEDB/DKK6+InxcsWNDtQZDe3HrrrbjvvvsQiUTw2muv4W9/+xuKi4u7XDbxslg//OEPU1pfoi+//FI8Hjp0aJ+fv2PHDlUObiQrHo/j5ptvRk1NDYD2A1fLly+H0+ns9bmJr8fubqxOREREROow974IEREREREZ2Y033tjrMitXrhSPf/CDHyQVVzkjBAA++OCDDr979913xeNzzz0Xo0aN6jHWaaed1uO9MbQSiUTw9ttvA2i/X8RVV12V1POUsyji8XiH+4p05brrrus13tixY8Xjrnaav/POO4hEIgCAr371q11eDitZgwcPFnUGAgG89NJLXS736aef4vPPPwfQfobJ97///ZTXqTh8+LB43NPBI1ncc8894tJgBQUFeOONN1BaWprUcxMPqClnkxARERGRNnhGCBERERFRFrvvvvtw//33p/x8m82GM888s8dlGhsbsXPnTgCA3W7HAw88kFTsbdu2icf79+/v8Lvq6mrxuLd7aCQu99FHHyW1rFo2bdqE1tZWAO3b6uc//3lSz0s8S6dz7Z31tv2BjgcFWlpajvt9ZWWleNz53iWpuP3227F8+XIA7Wd93Hnnncctk3g2yE033ZTUWRC9UbY1AOTn5/f5+TNmzMCiRYuSXn7RokW49dZb+7weAHjxxRfx0EMPAWi/pNiLL77Yp8tbJdaXWDcRERERqY8HQoiIiIiIcli/fv063Jy7K8p9DAAgFAph7ty5fV5PU1NTh58bGhrE45NPPjmpGMkup6aDBw+Kx42NjarU3llRUVGvMWw2m3gcDoeP+33imRSnnnpqH7Lr2ne+8x0MGzYMe/fuxWeffYaampoOO/nb2to6nCmixmWxOsvEZdCSVVlZ2aHmP/3pT5gyZUqfYshcHxEREZHR8NJYREREREQ5LC8vr9dlmpub016Pctkmhc/nE4+T/eZ/QUFB2nn0lRa1d9b5JvKp8Hq94rHL5Uo7ntlsxm233SZ+Tjz7AwBee+01sW3OO+88nHXWWWmvE+g4xm1tbarEVNu+ffswZcoUcZP4W265BXfddVef4yTWl4m5TURERJRLeCCEiIiIiIh6lLiTtrCwEPF4vM//Ol+uKHFnvd/vTyoPLS4fFIvFevx9Yu1nnXVWSrWnc+myZLndbvE48SBTOsrKysQN7JcsWYJAICB+p/ZN0hWJ99c4evSoanHV0traiquvvlqcgXPRRRfh6aefTilW4llRyd5XhIiIiIhSwwMhRERERETUo0GDBonHLS0tSR+46ElJSYl4vG/fvqSe09u9NoCOl5Dq7UwMoPczPhJrl/mG1ol5fvnll6rEPPHEE3HFFVcAaL+8l3JT8N27d2P9+vUA2g8UTZs2TZX1AcApp5wiHtfV1akWVw3xeBw33XSTuEH8sGHD8M9//hMOhyOleAcOHBCPhw8frkaKRERERNQNHgghIiIiIqIeDR48GCeddJL4+cMPP0w75tixY8XjxBt99ySZG6UXFhaKx42Njb0uv3nz5h5/P2bMGLGj+8iRI9i1a1evMTNh3Lhx4vG7776rWtzbb79dPFbOAlm4cKG4v8V1113X4WyUdCVeYuu///2vanHVcPfdd4sbyLvdbqxYsQInnHBCyvG2b98uHp999tnppkdEREREPeCBECIiIiIi6tVVV10lHs+bNy/teBdffLF4vHHjRuzYsaPH5Xft2pXUgZDEb9bX1NT0uvyrr77a4+/z8vJwySWXiJ/VqF0Ll112mbjp/RdffIG33npLlbjf/e53xUGwtWvXYteuXR0uc6b2TdLPP/988Vg580IGL7zwAh5++GEA7fdPWbp0Kc4888yU4x05ckScYZSfn4/Ro0erkicRERERdY0HQoiIiIiIqFe//OUvxf0i/vWvfx13z4+edHVJqa997Wu48MILxc8///nPu71fRywWw89+9jNxFkJPzjvvPHHz8aqqqg7fuu9s3rx52Lp1a68xf/Ob34jHTz75JN55551en6PQ63JaQ4YMwQ033CB+njVrlriPRTosFgvKysoA/N+loQ4ePAigfQwvuuiitNeR6JJLLhHzrKqqKqnLm2ntww8/xI9+9CPx86OPPoorr7wyrZjvv/++eDxx4kRxEIuIiIiItMEDIURERERE1KsRI0bgd7/7nfi5rKwMv/rVr7q9oXUkEsGaNWtw8803d7gMVqI//vGP4qDFmjVr8IMf/AAej6fDMi0tLbj55puxatUq2O32XvMsLS0VZ3DE43FMmzbtuHtNRCIRPPbYY/jZz36W1P0dJkyYgBkzZojnXnnllXjooYe6vSl5IBDA8uXLcc011+Dqq6/uNb5aHnroIfTv3x8AsHfvXowfP77bM0M8Hg+efvpp/PrXv+417m233Qazuf2jY1VVVYf/V1u/fv3EwRWv14tPPvlE9XX0xb59+/C9730PwWAQQPu8/+Uvf5l23LVr14rHiWdbEREREZE2+LUTIiIiIiJKyn333Yfa2losXrwY8Xgcjz32GJ588kl8/etfx4gRI5Cfn4+WlhbU1tZi06ZNaG1tBQAMGDCgy3gTJ07Er371K/z5z38GALzyyit48803cckll6C0tBSHDx/G2rVr4fP50K9fP/z85z/H/fff32uef/zjH/Huu+8iFovh888/x2mnnYZLLrkEJ554Io4dO4b33nsPR44cgcvlwkMPPYSf/vSnvcZ86qmncOjQIaxZswahUAh33303/vCHP+CCCy7AySefDIfDAY/Hg927d2PLli1ix/m5556b5NZN30knnYRXX30VU6ZMgc/nw5dffonLL78cw4YNw/nnn4/+/fvD5/Nh586dqKmpQTgcxjXXXJNU3MsvvxwrV64U/2e323HLLbdoUsf06dPx3nvvAQCWL1+O8ePHa7KeZDz33HM4cuQIgPazY6xWK37yk58k9dwHH3xQHJhKFI/H8frrrwMAbDYbrr/+evUSJiIiIqIu8UAIERERERElxWQyYdGiRTj33HNx3333oampCaFQCB9++GG3N1A3mUw9Xj7p0UcfhcViwaOPPopYLIbW1lasWLGiwzJDhgzBsmXLkr559gUXXIBnnnkGt99+O6LRKNra2vDvf/+7wzKDBw/GK6+8gmg0mlRMh8OBlStX4oEHHsBjjz0Gv98Pv9/f443JbTZbh5uY6+HSSy/FBx98gBkzZoh7bOzduxd79+7tcnmXy5VU3Ntvv73DgZCrr74aJSUl6SfchRtuuAG/+MUv0Nrain/84x94+OGHxZlDeku8HFs0GsXTTz+d9HN/9atfdXkg5MMPP8SBAwcAtG/H7g4UEhEREZF6eGksIiIiIiLqk5/+9KfYu3cv5s6diylTpuCUU06By+WC1WpFv379cOaZZ+LGG2/EggULsHfvXvHt9+489NBD+Pjjj1FWVobhw4fD4XBgwIABOPfcc/HHP/4Rn3/+eZ/PCigrK8OmTZtw22234ZRTToHT6URxcTHGjh2LP/zhD9i0aRO++c1v9immxWLBgw8+iNraWvzlL3/B5ZdfjpNPPhn5+fmw2WwYMGAAzjnnHMyYMQOLFi3CgQMH8Le//a1P61DD2Wefjerqavzzn//ELbfcgq9+9asoLCyExWJBv379cO6552L27NlYuXIlnn/++aRiXnHFFR0uI6b2TdITFRUV4dZbbwUAfPnll326J0s2+Pvf/y4el5eXZy4RIiIiohxiiidzx0EiIiIiIqIMW7RokdhBrhxsIH2sX78eEydOBAAMGzYMe/bsEfcN0UJtbS1OO+00cfmu5cuXa7YuPTU2NuLkk0+G3+/HhRdeiA0bNmQ6JSIiIqKcwDNCiIiIiIiIqEfPPvuseFxWVqbpQRAAGD58uDjr5I033sD27ds1XZ9ennzySfj9fgDt97IhIiIiIn3wQAgRERERERF1q76+Hv/4xz8AAFarVdPLYiW67777UFhYiHg8jgcffFCXdWrJ4/HgySefBABcddVV4gwbIiIiItIeD4QQERERERFRl6LRKH7+858jEAgAAK6//noMGTJEl3UPGjQIDzzwAADglVdewaeffqrLerXyyCOP4NixY3A4HHjiiScynQ4RERFRTuE9QoiIiIiIKCvwHiH6eOmll/Dxxx/D5/Ph/fffx86dOwEADocDmzdvxle/+tUMZ0hERERE1DfWTCdARERERERE8lizZg0WL1583P//9a9/5UEQIiIiIspKPBBCREREREREXXK73Tj33HPxy1/+EldddVWm0yEiIiIiSgkvjUVERERERERERERERIbFm6UTEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWH9f0WagF2vn4qQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(cs.freq, cs.power * cs.freq, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.plot(cs_reb.freq, cs_reb.power * cs_reb.freq, drawstyle=\"steps-mid\", color=\"k\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n" + ] + }, + { + "cell_type": "markdown", + "id": "65989f28", + "metadata": {}, + "source": [ + "## Periodogram modeling\n", + "\n", + "This periodogram has a number of broad components, that can be approximated by Lorentzian curves.\n", + "Let us try to model it.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d3470baa", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "65it [00:00, 72.65it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(events, segment_size=segment_size, dt=dt, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "markdown", + "id": "9f39a4f5", + "metadata": {}, + "source": [ + "We will model the periodogram using the maximum likelihood estimation from [Barret & Vaughan 2012](https://ui.adsabs.harvard.edu/abs/2012ApJ...746..131B/abstract).\n", + "\n", + "For periodograms averaged over $L$ independent segments and $M$ independent neighbouring frequencies,\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2ML \\sum_{j=1}^{N/2} \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ML} - 1 \\right)\\ln{P_j} + c(2ML) }\\right\\} \\; ,\n", + "$$\n", + "where $\\theta$ are the model parameters, $P_j$ are the periodogram values, $S_j$ the model of the underlying signal, $c(2ML)$ is a factor independent of $P_j$ or $S_j$, and thus unimportant to the parameter estimation problem considered here (it only scales the likelihood, but does not change its shape). \n", + "\n", + "For non-uniformly binned periodograms, the factor $ML$ should go inside the sum:\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2\\sum_{j=1}^{N/2} M_j L_j \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ M_j L_j } - 1 \\right)\\ln{P_j} + c(2 M_j L_j ) }\\right\\} \n", + "$$\n", + "\n", + "This is the formula that we will apply here.\n", + "\n", + "Let us now create an initial model that more or less describes the periodogram" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "fd07a563", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0, 488.21599547079995)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAAR9CAYAAADx1a4fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXgT1foH8G+6pqUbO2iBIqDIJnLZFSkqiBvgjiCbouIOuFyu1wX0Jy4XFNwXZHMDRAW8KuBCAVEEgbKjgC1Q2Qp0pU3bJPP7IzS3IZM2TWbmnEy+n+fpY5tJ3vO+eafHkNOcsSiKooCIiIiIiIiIiIiIiEhiEaITICIiIiIiIiIiIiIiqgkXNIiIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulxQYOIiIiIiIiIiIiIiKTHBQ0iIiIiIiIiIiIiIpIeFzSIiIiIiIiIiIiIiEh6XNAgIiIiIiIiIiIiIiLpcUGDiIiIiIiIiIiIiIikxwUNIiIiIiIiIiIiIiKSHhc0iIiIiIiIiIiIiIhIelzQICIiIiIiIiIiIiIi6XFBg4iIiIiIiIiIiIiIpMcFDSIiIiIiIiIiIiIikh4XNIiIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulxQYOIiIiIiIiIiIiIiKTHBQ0iIiIiIiIiIiIiIpIeFzSIiIiIiIiIiIiIiEh6XNAgIiIiIiIiIiIiIiLpcUGDiIiIiIiIiIiIiIikxwUNIiIiIiIiIiIiIiKSHhc0iIiIiIiIiIiIiIhIelzQICIiIiIiIiIiIiIi6XFBg4iIiIiIiIiIiIiIpMcFDSIiIiIiIiIiIiIikh4XNIiIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulFiU6ACADy8/OxevVq98/NmjVDbGyswIyIiIiIiIiIiIiI6GxlZWU4dOiQ++e+ffsiJSXFkLG5oEFSWL16NYYMGSI6DSIiIiIiIiIiIiKqhSVLlmDw4MGGjMUtp4iIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulxyymSQrNmzQAA48ePx+zZszF//ny0bt1acFbaKikpQUZGBtLT0xEfHy86HQ8iczNibL3G0CpusHFkPrfIN7P3Tfb6ROXHOY9zXrgye99kr4+v9cTF1CKO7OcXqTNz32SvjXOeuJic88KX2fsmc32ictu3b5/H5QMq39s1Ahc0SAqVFwDPyMiAzWZD69at0b59e8FZaau8vBzR0dFo164dYmJiRKfjQWRuRoyt1xhaxQ02jsznFvlm9r7JXp+o/Djncc4LV2bvm+z18bWeuJhaxJH9/CJ1Zu6b7LVxzhMXk3Ne+DJ732SuT5bcKt/bNYJFURTFsNGIfNi5cyc6dOjg/nnHjh2mW9AgIiIiIiIiIiIiCnUi38vlNTRIKgMHDkRcXJzoNHRRWlqK5cuXo7S0VHQqXkTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+yV4b5zxxMTnnhS+z903m+mTOTS9c0CCppKSkICLCnKel0+lEfn4+nE6n6FS8iMzNiLH1GkOruMHGkfncIt/M3jfZ6xOVH+c8znnhyux9k70+vtYTF1OLOLKfX6TOzH2TvTbOeeJics4LX2bvm8z1yZybXrjlFEmBW04RERERERERERERyY9bThGdkZaWhqgoc16r3m63Izs7G3a7XXQqXkTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+yV4b5zxxMTnnhS+z903m+mTOTS9c0CCpjB49GgkJCaLT0EVxcTHmzZuH4uJi0al4EZmbEWPrNYZWcYONI/O5Rb6ZvW+y1ycqP855nPPCldn7Jnt9fK0nLqYWcWQ/v0idmfsme22c88TF5JwXvszeN5nrkzk3vXDLKZICt5wiIiIiIiIiIiIikh+3nCIiIiIiIiIiIiIiIqoGFzRIKpMmTUJycrLoNHRRUFCAl156CQUFBaJT8SIyNyPG1msMreIGG0fmc4t8M3vfZK9PVH6c8zjnhSuz9032+vhaT1xMLeLIfn6ROjP3TfbaOOeJi8k5L3yZvW8y1ydzbnrhllMkhcqPKbVt2xb79+/Hli1bTLflVEVFBfbv349WrVohOjpadDoeROZmxNh6jaFV3GDjyHxukW9m75vs9YnKj3Me57xwZfa+yV4fX+uJi6lFHNnPL1Jn5r7JXhvnPHExOeeFL7P3Teb6ROUmcsspLmiQFHgNDSIiIiIiIiJzUhQFTqcTfAuKiMh4FosFERERsFgsmsUU+V5ulCGjEPlpyJAhWLlypeg0dFFSUoKVK1diwIABiI+PF52OB5G5GTG2XmNoFTfYODKfW+Sb2fsme32i8uOcxzkvXJm9b7LXx9d64mJqEUf284vUmblv/tSmKApKSkpQXFyM06dPo6yszLD8nE4nCgsLkZSUhIgIY3daN2JsPcbQKqYWcUT2jwJn9r7JXF9tcouPj0dSUhISExMRFRW6ywKhmzkREREREREREUmloqICOTk5sNlsolMhIqIqSkpKUFJSgmPHjiE1NRUJCQmiUwoIt5wiKXDLKSIiIiIiIqLQZrPZcOjQIdjtdtGpEBFRNSwWS1CLGiLfy5XrMzIU9tq2bSvdxXW0UlFRgT179qCiokJ0Kl5E5mbE2HqNoVXcYOPIfG6Rb2bvm+z1icqPcx7nvHBl9r7JXh9f64mLqUUc2c8vUmfmvvmqTVEUHDx4UPhihsjrdRgxth5jaBVTizi83kpoMnvfZK4v0NwURUFOTo7wOTsQ3HKKpDJkyBC88847otPQRUlJCZYsWYL77rsPycnJotPxIDI3I8bWawyt4gYbR+Zzi3wze99kr09UfpzzOOeFK7P3Tfb6+FpPXEwt4sh+fpE6M/fNV23FxcVwOBwe942OjkZycjLq1KmD6OhoTS9I64vdbsfJkydRv359w/eIN2JsPcbQKqYWcUT2jwJn9r7JXJ8/uSmKgtLSUpw6dQqlpaUetxcVFaFu3bpGpasJbjlFUuCWU0RERERERESh69ChQyguLnb/HBsbi+bNm0v35h8RUbhSFAUHDhzwWNSIj49HixYtah2LW04REREREREREVFIUhQFp0+f9ritXr16XMwgIpKIxWJBvXr1PG4rKSmRciut6nBBg6QyefJkpKSkiE5DF/n5+ZgyZQry8/NFp+JFZG5GjK3XGFrFDTaOzOcW+Wb2vslen6j8OOdxzgtXZu+b7PXxtZ64mFrEkf38InVm7ptabWr7t8fHxxucmYvdbsfhw4eF7AtvxNh6jKFVTC3iiOwfBc7sfZO5vtrmZrVavW5zOp1ap6UrbjlFUqj8mFJaWhpycnKQmZlpui2n7HY7cnJykJqaKt1fqYjMzYix9RpDq7jBxpH53CLfzN432esTlR/nPM554crsfZO9Pr7WExdTiziyn1+kzsx9U6vNbrdj7969Hvdr06aNkNoVRUF5eTliYmIMuWaH0WPrMYZWMbWII7J/FDiz903m+mqbm1bztcgtp7igQVLgNTSIiIiIiIiIQpNMCxpEROSbGRY0uOUUSWXo0KGoU6eO6DR0cfr0aSxYsMBrX1EZiMzNiLH1GkOruMHGkfncIt/M3jfZ6xOVH+c8znnhyux9k70+vtYTF1OLOLKfX6TOzH2TvTaHw4FTp07B4XCYcmw9xtAqphZxRPaPAmf2vslcn8y56YULGiSV/Pz8kNu3zV8RERFISUlBRIR8v3YiczNibL3G0CpusHFkPrfIN7P3Tfb6ROXHOY9zXrgye99kr4+v9cTF1CKO7OcXqTNz32SvzWKxIDIyUsi2MEaMrccYWsXUIo7I/lHgzN43meuTOTe9cMspkgK3nCIiIiIiIiIKTdxyiogoNHDLKSKNde7cGTExMaLT0EV5eTkyMzNRXl4uOhUvInMzYmy9xtAqbrBxZD63yDez9032+kTlxzmPc164MnvfZK+Pr/XExdQijuznF6kzc99kr83pdKKkpETI7g9GjK3HGFrF1CKOyP5R4MzeN5nrkzk3vXBBg6SSnp4Oq9UqOg1d2Gw2ZGRkwGaziU7Fi8jcjBhbrzG0ihtsHJnPLfLN7H2TvT5R+XHO45wXrszeN9nr42s9cTG1iCP7+UXqzNw32WtTFAVFRUUQsSGJEWPrMYZWMbWII7J/FDiz903m+mTOTS/ccoqkwC2niIiIiIiIiEITt5wio6Snp2P16tUAgFWrViE9PT3omHPnzsWYMWMAAKNGjcLcuXODjhnOMjIy0K9fPwBA3759kZGRITYh8sAtp4g0ZrVaTXsRG0VRYLPZpFwxFZmbEWPrNYZWcYONI/O5Rb6ZvW+y1ycqP855nPPCldn7Jnt9fK0nLqYWcWQ/v0idmfsme22KosDpdAqb8/QeW48xFEVBeno6LBaLz6/ExEQ0b94cAwcOxNSpU/H333/rkpvI/lHg9Ozb3Llzqz03Y2Nj0bhxY1xyySV47LHHsGPHjmrjZWRk+IwVERGB5ORkNG/eHB07dsTNN9+MF198Ed9//z0qKioCrm/Pnj3497//jX79+uGcc85BXFwcYmJiUK9ePXTo0AGDBw/Gc889h++//77Wn34Lx98ZLmiQVCZNmoTk5GTRaeiioKAAL7/8MgoKCkSn4kVkbkaMrdcYWsUNNo7M5xb5Zva+yV6fqPw453HOC1dm75vs9fG1nriYWsSR/fwidWbum+y1ORwOHD16FA6Hw5Rj6zGGw+Go8ZooxcXFOHToEFasWIF///vfaNmyJaZMmeLxJqoWuYnsHwVOZN/Ky8tx/Phx/PLLL5g+fTo6duyIkSNHoqioqNaxFEVBYWEhDh06hB07duCLL77Ak08+iQEDBqB58+Z4+umncerUKb/j5efnY9SoUbjwwgsxdepUZGRk4MiRI7DZbKioqEBeXh527tyJZcuW4dlnn8WAAQNQr149HDp0yO8xwvF3hltOkRQqP6bUpEkT5ObmYuvWrabbcsrhcCA3NxcNGzZEZGSk6HQ8iMzNiLH1GkOruMHGkfncIt/M3jfZ6xOVH+c8znnhyux9k70+vtYTF1OLOLKfX6TOzH1Tq02mLacURYHdbkdUVJThO0AYMbYeY1R+QmPNmjUAgG7duqF79+4e9ykoKMDWrVuxfft2j9vHjx+P1157TbPcaorBLafkVLVvq1ev1nTLqar9SUxMxMiRIz2Ol5aWYt++ffj1119RUVHhvr1v375YuXIlYmJiPO5fdUssAHjggQc8jttsNuTl5eHIkSPIzMxEaWmpx/FzzjkHc+bMwYABA6rNOy8vD5dffjkyMzPdt9WpUwddu3ZFy5YtERsbi/z8fOzduxc7duzwWFTcu3cvWrduXW38SrX9vTPDllPczJCkcvToUdEp6CYyMhJNmjQRnYYqkbkZMbZeY2gVN9g4Mp9b5JvZ+yZ7faLy45zHOS9cmb1vstfH13riYmoRR/bzi9SZuW+y12axWBAdHW3asfUYo3K7nUrXXHMNJk+erHrfX375BbfffjsOHjwIAJgxYwaGDx+Orl27apKbiP6NHj0ao0ePNnRMszGqb/Xq1cObb76peuzAgQMYMWIE1q5dCwBYvXo1Zs6ciccff7zamL7iAUBFRQXWrVuHmTNnYunSpVAUBYcPH8bAgQOxcOFC3HLLLT4f++ijj7oXM2JiYjB16lTcd999iI+P97pvaWkpVqxYgYULF+KLL76oNt+ziZzzROGWUySV0aNHIyEhQXQauiguLsbcuXNRXFwsOhUvInMzYmy9xtAqbrBxZD63yDez9032+kTlxzmPc164MnvfZK+Pr/XExdQijuznF6kzc99kr83hcODEiRPCtpzSe2w9xnA4HB5/2V6d3r17Y+nSpR4LIO+//75muYnsHwVOhr61aNEC33zzDVq2bOm+rfLTQ4GKjo5Geno6Fi9ejE8//RT16tUD4PpUxKhRo7B582bVxx07dgzz5s1z//zhhx/i0UcfVV3MAIC4uDgMGTIEn332GQ4ePIimTZv6naMMz73RuKBBUsnOzobdbhedhi6ioqKQlpYm5CO3NRGZmxFj6zWGVnGDjSPzuUW+mb1vstcnKj/OeZzzwpXZ+yZ7fXytJy6mFnFkP79InZn7JnttlRcJNnq7KaPG1mOMyosh+6tz584eWz1VblWlRW4i+0eBk6VviYmJePjhh90/HzlyBLt27Qo6rsViwbXXXoulS5e6577S0lI89thjqvf/4Ycf4HQ6AQBNmzbF8OHD/R6rSZMmqFOnTq1yk+G5NxIXNEgqGRkZsNlsotPQhdVqRXp6OqxWq+hUvIjMzYix9RpDq7jBxpH53CLfzN432esTlR/nPM554crsfZO9Pr7WExdTiziyn1+kzsx9k722iIgIJCYm1uoN+lAaW48xIiIian2tl86dO7u/P3z4sF+57d69G08++SS6d++Oxo0bIyYmBg0bNkSPHj3wzDPP4PDhwwHVd+jQITz11FO46KKLUK9ePdSpUwdt27bFhAkTsG/fvhofP3fuXPe2W762nsrIyHDfp+pizk8//YShQ4fivPPOg9VqRf369XHZZZfhzTffrPFTL9nZ2e6YaWlp7tt///13jB07Fueffz7i4+NRt25ddO/eHVOnTsXp06f9eUrcTp48ienTp6N///5o1qwZrFYrUlJS0K5dOzzwwAP4/fffaxVv7969GD9+PNq2bYs6deqgXr166Ny5MyZPnoyCggIhv3dn6927t8fPf/31V9AxK8/LSy+9FE888YT79lWrVuHXX3/1uv/ff//t/r558+a6LjaInPNECZ9KKST07NkTsbGxotPQRVlZGdavX4+ysjLRqXgRmZsRY+s1hlZxg40j87lFvpm9b7LXJyo/znmc88KV2fsme318rScuphZxZD+/SJ2Z+yZ7bU6nE8XFxe6/jjbb2HqM4XQ6a71dTVxcnPv7yj9M9ZVbWVkZxo0bh44dO+LFF1/Exo0bcfz4cVRUVODEiRPYsGEDnn/+ebRu3RpvvPFGrepbtmwZOnbsiBdeeAHbtm1DXl4eSkpK8Mcff2DGjBno1KmTe0ssLZWXl+Oee+7BFVdcgYULFyIrKwtlZWU4deoU1q5di4ceegg9e/bEiRMn/I6pKAqeffZZ9OjRAx9++CH27t2L0tJS5OfnY+PGjfj3v/+Njh07+v0G/VtvvYVWrVrhscceww8//ICcnByUlZWhoKAAu3fvxttvv43u3bvjrrvu8rggtS9vv/02OnXqhJkzZ+KPP/5ASUkJ8vLysHXrVjz//PPo2LEjli5d6ne9eqlbt67Hz4WFhUHHrHpuP/TQQx4XGl+wYIHX/asuLmRlZQU9vr+5hQsuaJBUOnfu7DEpmEl5eTkyMzP9+p+E0UTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+yV6boigoKSmBoiimHFuPMRRFqfWboZWfygCAxo0b+8zt9OnTuOKKK/Dee++5F01atWqFW2+9Fffeey9uueUWnHPOOQBcW/g8/PDDmDp1ql/1/f7777jllltQUFCA+vXr46abbsLYsWNx5ZVXui+SXFpainvvvRcffvhhreqryT333IMPPvgAERER6NWrF8aMGYNRo0bhggsucN9n8+bNGDlypN8xp0yZgueeew5OpxOdO3fGiBEjcOedd6JLly7u+2RlZWHIkCE1btc+fvx4PPjggygoKAAANGjQANdffz3uvvtujBgxAh06dADg6tns2bMxePDgas+B9957Dw888IB78So6Ohr9+/fH2LFjceONN6JevXrIz8/Hrbfeik2bNvldsx7y8vI8fk5OTg46ZtVzu0mTJrj00kvdxyovQl5Vq1at3N8fP34cc+bMCToHf3ILFxYlnKolae3cudM9mQLAjh070L59e4EZEREREREREZE/7HY79u7d63FbmzZtqr3Oht1uR05Ojt6phbTU1FTDrlWSnp6O1atXAwCeffZZTJ482ed97XY7zjvvPBw6dAgAcPPNN+Pzzz9Xve+oUaMwf/58AMD555+P9957z2PLJsB1UeP3338fEyZMQFlZGSIjI7F27Vr06tWr2jxjYmJQXl6Oxx57DP/3f//nseNHTk4Ohg0b5n6zOT4+Htu2bfN4o7nS3LlzMWbMGHe+c+fO9bpPRkYG+vXrBwCIjY1FWVkZunXrhvnz56Nt27bu+ymKgtdffx3jx49337Z69WpcdtllXjGzs7PdF7COiYlBRUUFzjvvPHz66afo3r27x30///xzDB8+3L2N1bx583wulsyePRt33XUXACApKQnTp0/HqFGj3Is8lVatWoURI0a4t0d6+eWXPbZTqrR371506tTJvZjRt29ffPzxx0hNTXXfp6ysDJMmTcKMGTPcfam8b0ZGhmqe/qranxYtWiA7O7va+7/22muYOHGi++edO3eiXbt27p+r9hJAQAsBTz75JF588UUArk9jFBcXe3xqqbCwEKmpqSgqKgLguvbQfffdh7Fjx6JTp061Hk9LgczXakS+lyvnFZwobKWkpGjyUTAZOZ1OFBYWIikpSbp97UTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+aVVbTk6O+81cUpeVleVxbQXA9earw+FAZGSkZvvyK4pSqzd1X3rpJfdiBuD6tIJabmvXrnUvZrRq1Qrr1q1DgwYNvOJFRkbivvvuQ1xcHMaMGQOHw4HnnnsO3333XbV5lJeXY9y4cfjPf/7jdSw1NRXffvstunXrhj179qCkpARTpkxx5xOMsrIytGnTBj/99BMSEhI8jlksFjzyyCP4+eefsXjxYgDAZ599prqgcXYt9evXx5o1a9yfWKnqlltuwYYNGzBt2jR3TLUFjaKiIjz66KMAXIskK1euRI8ePVTH7NevH77//nt06dIFNpsNr7zyCh588EHEx8d73G/y5MnuxYz27dvj22+/9bpPTEwM/vOf/6CoqEjzT8PURnFxMd544w33z02bNvVYzAjU2ed21U/iOJ1OnDhxAs2aNXPflpSUhMmTJ7t7Ybfb8cYbb+CNN95A06ZN0aNHD3Tt2hXdu3dHr169vM6jYHILB+b6vyqFvPHjxyMpKUl0GrooLCzEzJkzpVywEZmbEWPrNYZWcYONI/O5Rb6ZvW+y1ycqP855nPPCldn7Jnt9fK0nLqYWcWQ/v0idmftm5tpCgcPhwPHjx2t9zYuaYtZ0AevCwkKsXbsWw4YNw9NPP+2+fcKECejfv79qbq+++qr7ftOnT1ddzKhq9OjR7k87rFixAidPnqz2/omJiXjppZd8Hk9ISMArr7zi/vnzzz93b8EUrJdeeqnaN6HvvPNO9/cbNmzwK+aTTz6pupihFnPjxo2q95k9ezby8/MBAPfff7/PxYxKF154IUaNGgXAdQHx5cuXexzPz8/HF1984f75lVde8VrMAP7X+xdffBF16tSpdky9HDhwANdee63HNSuqflImGGef22dvY3X2NlcAMHHiRDz33HNeC79HjhzBkiVL8NRTT2HAgAFISUlBv379MH/+/IB+r/WYE6SnEElgx44dCgAlJSVFiYiIUHbs2CE6Jc05HA4lLy9PcTgcolPxIjI3I8bWawyt4gYbR+Zzi3wze99kr09UfpzzOOeFK7P3Tfb6+FpPXEwt4sh+fpE6M/dNrbaKigpl165dHl8VFRXVxsnKylIA8Kuar6ysLK/nzel0KhUVFYrT6dSsp06nU7nssstqlVv9+vWVl156yWduFRUVSp06dRQASlJSkmK32/3KZdy4ce4xli5d6nW8b9++7uPDhw+vMZ7dblcaNmzofsx3333ndZ85c+a4j48aNUo1zqpVq9z3sVqtSnl5ebXjHjlyxH3/evXqqd7n7N+BgwcPVhvT6XQqcXFx7vsXFhZ63WfAgAHu4xs2bKg2XqWFCxe6HzNhwgSPY9988437WKNGjXzOaVV7f/vtt7sf07dvX79yqE7V/iQmJioPPPCAx9ddd92l9O3bV4mOjvZ4Pi+99FLFZrN5xavaS3/fGj/79+7777/3iPHzzz/7fOyOHTuUESNGuH8fqvu68MILlW3bttXq+antnBDIfO2rrqq5G/leLrecIqlUriKbUUREBFJSUkSnoUpkbkaMrdcYWsUNNo7M5xb5Zva+yV6fqPw453HOC1dm75vs9fG1nriYWsSR/fwidWbum5lrCwUWi0Xz62pYLJZabVUTGRmJl19+2X2dBrXctm3bhtOnTwNwXUD6kUce8Sv277//7v6+6rZWatSusaGWa7du3fDtt98CALZs2YKBAwf6lYsvF1xwgdf1KM5Wv3599/f+fJopOTnZY8siNRaLBXXr1kVpaak7bmJiosd9fv31V/f377//PubNm1fj2FWvZXP2c75lyxb39927d/e5zVzV3vfq1QufffZZjeMGoqioCG+99VaN9xs2bBjefvttj+uqBOPs37vKa2NUqm63mfbt22P+/Pl49913sW7dOqxduxa///47Nm/ejGPHjnncd/fu3ejduzfWrVvn97U29JgTZBde1ZL0xo0bh08++UR0GrooKirCJ598guHDh3v9D0c0kbkZMbZeY2gVN9g4Mp9b5JvZ+yZ7faLy45zHOS9cmb1vstfH13riYmoRR/bzi9SZuW9mri0UOBwOnDx5EvXr10dkZKRmMatuOdWtWzePi1IXFxfj4MGD+OWXX1BWVgaHw4GxY8fir7/+wgsvvKCa2+HDh923nzx50q83oc+mto1PVc2bN/crTtX75ebm1jqPs5293ZCaqgsedrtdk5hnxz17m7Di4mKPN9pnzZrlV8yqzn7Oqz5f1T3fVXvvb1+0EhMTg5SUFLRq1Qq9e/fGyJEjNb/w9tm/d2dvXVavXr0aY8THx6N///7uLdoA1wLGggUL8MYbb7if++LiYowYMQKZmZl+LTTqMSfIjgsaJJXMzEyUl5eLTkMXMTEx6Ny5M2JiYkSn4kVkbkaMrdcYlXGdTieys7MDjlNeXo7mzZvjyJEjNe4R6u/jmzRpAqvVGnBOpD+Z5wQtyF6fqPzMMOcFGzfYOLKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfTNzbaHAYrEgPj5e04v/WiwWj7+8v+aaazB58mSv+x09ehQTJ050//X91KlTcdFFF+HWW2/1yk2La1XUtBCgdi0HNVWv6XD2X9YHQo8LL2sRU4/nvLi42P19dc931d7reQ2NFi1aBPX+S6DO/r3bs2eP+1hkZGSN14fx5cILL8SUKVMwbtw49O/fHzt37gTg+oRTRkYG+vXrV+vcwgEXNEgq69evF52CbmJjY9GzZ0/RaagSmZsRY+s1hsPhwIwZM7B06VLYbDbN4wfDarVi8ODBmD17tt8v8shYMs8JWpC9PlH5hfKcp1XcYOPIfm6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dNq9pSU1M9Lt5L3lJTU71ui4iIqPZi1IGIiIjw6y+7mzRpgo8//hinTp3CihUrAAD33Xcf+vfvj7p163rkVvVN7U6dOmHr1q2a5gwAJSUlft2vcusrAKb+VNHZCwmnTp1C3bp1g4pZ9Vyr7vmu2vuqz7dZnP1799tvv7m/v/jii4Pe2qpp06b44IMP0Lt3b/dta9eu9WtBQ485QXZc0CCppKenm3ZRw2azYf369ejZs6d0fzkvMjcjxtZrjLFjx3rtdxgIq9WKnj17Yv369QEtjKg93mazYeHChQCABQsWBJ0jaU/mOUELstcnKr9QnvO0ihtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvmlVW1RUFNLS0rRL7Ayn04nTp0+jTp06Pvf714sRY+sxhtPphMPh8Ou+ERERmDVrFtq2bYvTp0/j1KlTmDp1Kv7zn/945Na4cWP3Y44ePVqrXPyt7+DBg37FrHpdiED/kj4UpKSkIDY2FmVlZQBcz3uwCxoNGzZ0f1/d8121bzVd+yQUVa3v2LFjWLdunfvYZZddpskYvXr1QnJysvuTNkeOHKl1bkbPeaKER5UUMtLS0kx7IRu73Y7s7Gy/9k40msjcjBhbjzFsNhtWrlypyTlb+UI+0DjVPV7GT4+Qi8xzghZkr09UfqE652kZN9g4sp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702RVFQVlYGRVFMObYeYyiKAqfT6ff9U1NTMX78ePfPb775Jo4ePeqRW+fOnd1/tX78+HHs27fP71z8rc+fP4h1OBzYuHGj++cuXbr4lUeoqnrtk6pvugfq4osvdn+/ceNGn+dJ1b5VvTC5WVSt74033vC4fsnQoUM1G6fqJz38/dSHyDlPGIVIAjt27FAAuL927NghOiWiamVlZXmcszJ/ZWVliX66iIiIiIjIxCoqKpRdu3Z5fFVUVIhOi2qhb9++7n9DPvvsszXe/9SpU0piYqL7MRMmTPC6z9VXX13t8WDzTEpKUgoKCqq9/3//+1/3/a1Wq5Kfn+91nzlz5rjvM2rUKNU4q1atct+nb9++fuVa9d/laqq+r9CiRQu/YrZo0aLaf+u//PLL7uNdunRRnE6nX3F9ycvLU2JjY90xv/vuu2rvn5+fryQkJNT6uapO1f74+zxVp2ova/vW+Lp165SoqCj3YwcMGBB0PpX+/vtvxWKxuGNPnz5ds9hVaTVfi3wvl5/QIKk0adLEr30bQ5HD4cDRo0f9/hinkUTmZsTYeo0RGRmpyTkbbByt8iBjyTwnaEH2+kTlF8pznlZxg40j+7lF6szeN9nr42s9cTG1iCP7+UXqzNw32WtTFAUVFRXCPqGh99h6jKEoSq3j1a1bFw899JD75/feew/Hjx/3yO2f//yn+/gbb7yBH374wa9cKioq/Npup7CwEE8++aTP46dPn8YTTzzh/vnmm29GcnJyjXFD2b333ouUlBQAwObNmzFlyhS/H3vixAmv3+uUlBTcdNNN7p+feOIJlJaWej22sm9PPPGEx4XEzUJRFPz3v//F9ddf7/50Wp06dfCf//xH9f5ff/01Zs2a5fFJjpo8/fTTHr+HAwcO9Ds3UXOeKFzQIKmMGzfOtBdoKioqwnvvvYeioiLRqXgRmZsRY+s1RmJioibnbLBxtMqDjCXznKAF2esTlV8oz3laxQ02juznFqkze99kr4+v9cTF1CKO7OcXqTNz32SvzeFwIDc3V9girt5j6zGGw+Go1RuvlSZOnOi+GHFJSQmmTZvmkVvfvn0xatQoAK6tyq699lq8+OKLPt/wttls+PLLL3Hddddh0KBBNY4fExODt956C5MmTUJ5ebnHsb///hvXXnstdu3aBQCIi4vDs88+W+saQ01ycjJee+01989TpkzBqFGjfF7/QlEUrFu3Dvfffz+aN2+uuljxzDPPuLc/2r59O6699lr8/fffHvcpKSnBQw89hPfffx8xMTEaViSW3W7H6tWrcdNNN2Hw4ME4deoUANe1ZD755BN06tRJ9XF///037r77brRu3RrPPPMM9uzZ43OMgwcPYvjw4Zg9e7b7tkGDBqFdu3Z+5ShyzhPFooTT8g1Ja+fOnejQoQOsVivKysqwfft2tG/fXnRamlLO7GkXGxsLi8UiOh0PInMzYmw9xsjOzsZ5553nvuBW1al07dq1SE1NrVV+FRUViI6ODig/RVGQnZ2NK664QnVFPisrS5eL7VFwZJ4TtCB7faLyC9U5T8u4wcaR/dwidWbvm+z18bWeuJhaxJH9/CJ1Zu6bWm12ux179+71uF+bNm2EXCOz8tMGFotFyJyn99h6jKEoCvr164fVq1cDAJ599llMnjzZr8dOmjQJL7/8MgAgISEBWVlZqF+/vju3srIyDBo0CCtXrnQ/Jj4+Hj169EDz5s0RGxuL/Px87N+/Hzt27HBf0Pof//gHfv/9d6/x0tPT3Xm+8sor+Pe//42Kigo0aNAA6enpqFu3Lg4cOICMjAyPRY733nsP99xzj2oNc+fOxZgxYwAAo0aNwty5c73uk5GRgX79+gFwLdRkZGTU+NxU7Y/av9Wzs7PRsmVLAECLFi2QnZ1dY8y0tDQcOHAAQPX/1n/mmWfw/PPPu3+OjIxE586d0bZtWyQkJKC4uBg5OTnIzMx0X4QacC1YVi5SVfX222/jgQcecP8cExOD9PR0tGjRAnl5eVi1ahVOnjyJmJgYvPDCC3j88ccB+P9cVadqf/x9nqpTtZcAPOoCXAtr+fn5OHr0KDZv3uy1yNOsWTPMnTsXl19+uc8x3n33Xdx3330etzVs2BBdunRBo0aNUKdOHRQUFGD37t3YunWrx/lx/vnnIyMjA02bNvWrntrOCVrN15Xv5VbasWOHYe/lmvPqyxSyzHzxYovFAqvVKjoNVSJzM2JsvcZQFEX1nE1NTfV/AWHjRuDLLwFFATp2BLp1A1q3BiJq9wE6i8USVh8vNAOZ5wQtyF6fqPxCec7TKm6wcWQ/t0id2fsme318rScuphZxZD+/SJ2Z+yZ7bSIWMowcW48xgon36KOP4s0338Tp06dRXFyMmTNneryRHhsbi2+//RZTpkzB9OnTUVJSgpKSEqxatcpnzOjoaPTs2bPGsbt164bPP/8cI0eOxIkTJ7B48WKv+1itVrz66qs+FzPM6rnnnkOHDh0wYcIEHD58GA6HA5s2bcKmTZt8PqZ79+6Ijo5WPXb//ffD4XDg8ccfR1lZGcrLyz0WqQDXp0Pmz5+PpKQkTWvR21tvveXX/VJTU3HXXXdh/Pjx7m29fOnUqRO6du3qsSiXm5uLFStWVPu44cOH47XXXkPDhg39ygkQO+eJwi2nSCrjx48PuYnPX4WFhZgxYwYKCwtFp+JFZG5GjK3XGElJScGds+++C3TvjsK338aMsjIU3n8/cMEFQL16wJVXApMmAV98ARw86Frw8KGwsBCLFy827e+OWck8J2hB9vpE5RfKc55WcYONI/u5RerM3jfZ6+NrPXExtYgj+/lF6szcN9lrczgcOHbsmLAtp/QeW48xHA6H15ZN/mrYsKHHX6K//vrrOHnypMd9IiMj8dxzzyE7OxvTpk3DwIED0bx5c8THxyM6Ohr169dHly5dMGrUKMyePRtbtmzBzJkz/Rp/8ODB2LZtGyZNmoSOHTsiOTkZcXFxOP/88/Hwww9j27ZtXn8pHy5uvfVW/PXXX5g7dy5uv/12tG7dGsnJyYiMjERSUhIuvPBC3HjjjXjttdfwxx9/4LfffnNvLaXmoYcewrZt2/DQQw+hTZs2iIuLQ0pKCjp27Ih//vOf+PHHH3HttdcaWKH2LBYLEhMTkZqaivbt2+PGG2/ECy+8gJUrV+K3337D008/XeNiBgD07t0bGzduRE5ODj766COMGzcOffr0wbnnnov4+HhERkYiOTkZ5513Hq677jq88MIL2L9/Pz7++ONaLWYAYuc8UbjlFEmh8mNKnTt3xq5du7B582bTbTlVXl6OXbt2oV27dtLtJygyNyPG1mOM7OxsXHDBBWjXrh127drl8eLPry2ejh0DWrYESktRHhODXe3aod2uXYjx9SKycWOga1fXJzgqv878T668vBxr1qzBtddeq/oilFtOyUnmOUELstcnKr9QnfO0jBtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvqnVJtOWU06nEzabDVarFRG1/OR7KIytxxhaxdQijsj+UeDM3jeZ66ttbmbYcooLGiQFkb8ERIGoutfl2fxaQHj5ZdcnMILRooV7ceNos2Y4f9gwqF2WjwsaRERERESkJ5kWNIiIyDczLGjItaREYW/gwIGIi4sTnYYuSktLsXz5cq+LCclAZG5GjK3XGHFxcYGds4oCzJr1v/zi4rB84ECU1jbOgQPA4sUonTwZmfPn40hcHHYBmAfgQQA9APj+sCiJJvOcoAXZ6xOVXyjPeVrFDTaO7OcWqTN732Svj6/1xMXUIo7s5xepM3PfZK/N6XSioKAATqfTlGPrMYZWMbWII7J/FDiz903m+mTOTS9cKieppKSkSPfRLa04nU7k5+dLOcGIzM2IsfUaIyIiIrBzds0aYN++/+UXEYH8lBQ4A/1I7pnHIyICFwK4EMDIM8cqADivuw645JL/bVXVvj3Av5QSTuY5QQuy1ycqv1Ce87SKG2wc2c8tUmf2vsleH1/riYupRRzZzy9SZ+a+yV6boihwOBwQsSGJEWPrMYZWMbWII7J/FDiz903m+mTOTS/ccoqkwC2nKNQEteXUHXcAn3yiT2L+sFqBiy/+3wLH5ZcD55wjLh8iIiIiIgpp3HKKiCg0cMspIo2lpaWZ9gWP3W5HdnY27Ha76FS8iMzNiLH1GiMqKqr252xeHrB4sWd+UVHITkuD/brrgLVrgVdfBW6/HWjd2q+Q7sf7m4fNBvz6K/D668CIEUBaGvDYY66tsMgwMs8JWpC9PlH5hfKcp1XcYOPIfm6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dN9toURUFZWZmwT2joPbYeY2gVU4s4IvtHgTN732SuT+bc9MIFDZLK6NGjkZCQIDoNXRQXF2PevHkoLi4WnYoXkbkZMbZeYyQkJNT+nP3kE6CszDO/hATMGz0axWPGAJdeCkyYAHz6KbB3L3DqFLByJfDCC8CQIcC553qFdD8+0N+digpg+nSP63qQ/mSeE7Qge32i8gvlOU+ruMHGkf3cInVm75vs9fG1nriYWsSR/fwidWbum+y1ORwOnDx5Eg6Hw5Rj6zGGVjG1iCOyfxQ4s/dN5vpkzk0v3HKKpMAtpyjUBLTllKIAnTsD27Z5Hzv3XCA7279rWxw5Amzc6Pl16lRt0lfXvDmwfz+vr0FERERERLXCLaeIiEIDt5wiIiL//f67+mIGANx5p/8LCU2bAoMGAc8/DyxfDpw4gZzVq3EbgGkAVgMI6G+lDh4EvvwykEcSERERERERERHpjgsaJJVJkyYhOTlZdBq6KCgowEsvvYSCggLRqXgRmZsRY+s1RnJycu3OWR9bOhUkJ+MlqzXg/AoKCzH/55+xIjkZjwNIB5AMoD2A0QAK77jDdfHvmJiag02fzmtpGETmOUELstcnKr9QnvO0ihtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvslem91ux5EjR4RdN0jvsfUYQ6uYWsQR2T8KnNn7JnN9MuemFy5okFSWLFmCkpIS0WnoIj4+HkOGDEF8fLzoVLyIzM2IsfUao6SkxP9ztrjYdV0Mtfx69sSQG28MOL/4+HhceumlHnk4AewCMA/AqeefBzZsAIqKXNtTvf020LOnerANG1wXDCfdyTwnaEH2+kTlF8pznlZxg40j+7lF6szeN9nr42s9cTG1iCP7+UXqzNw32WuLiIhASkoKIiKMf8vLiLH1GEOrmFrEEdk/CpzZ+yZzfTLnphdeQ4OkwGtoUKip9TU0Zs8G7rpLPdiiRcAttxibz/btQKdO6sFuuglYvDiofIiIiIiIKHzwGhpERKGB19Ag0pjMf+URrFr9Nb/BROZmxNh6jVGrv0zysd0UGjRAyZVXBpVfSUkJfv7559r97nTsCFx5pfqxr74CsrICyoX8J/OcoAXZ6xOVXyjPeVrFDTaO7OcWqTN732Svj6/1xMXUIo7s5xepM3PfZK/N4XAgLy8PDofDlGPrMYZWMbWII7J/FDiz903m+mTOTS9c0CAi0tvOnb63cRo5EoiNNTafShMnqt/udAKvv25sLkRERERERERERDXgllMkBW45RaGmVls8TZgAzJihHmjXLuDCC43Np5LTCXToAOze7X0sIQHIyQH8veA5ERERERGFLW45RUQUGrjlFJHG2rZti+joaNFp6KKiogJ79uxBRUWF6FS8iMzNiLH1GiM6Orrmc7asDJg/X/3YJZcAF14YdH4VFRU4ePBg7X93IiJciy1qiot9b5NFmpB5TtCC7PWJyi+U5zyt4mox58l8bpE6s/dN9vr4Wk9cTC3iyH5+kToz90322pxOJ0pLS+F0Ok05th5jaBVTizgi+0eBM3vfZK5P5tz0wgUNkgqvoSEG91UOjF/X0FiyBDh1Sv3Y2LGa5BfQNTQq3XEH0KCB+rHXXwfs9oByoprJPCdoQfb6eA0NcXF5DY3wZPa+yV4fX+uJi8lraIQvM/dN9tqcTify8/OFLWjoPbYeY2gVU4s4IvtHgTN732SuT+bc9MItp0gK3HKKQo3fWzxdeSXw44/ed0pKAg4fBurUMTYfNc88Azz/vPqxhQuBW28NPkEiIiIiIjItbjlFRBQauOUUERH59tdf6osZADBsmGaLGUG7/34gJkb92PTpANe9iYiIiIiIiIhIAlzQIKlMnjwZKSkpotPQRX5+PqZMmYL8/HzRqXgRmZsRY+s1RkpKSvXn7OzZvh98ZrspLfLLz8/HvHnzAv/dadIEGD5c/diGDcCvvwYWl6ol85ygBdnrE5VfKM95WsXVYs6T+dwidWbvm+z18bWeuJhaxJH9/CJ1Zu6b7LXZ7XYcPnwYdgHb5xoxth5jaBVTizgi+0eBM3vfZK5P5tz0wi2nSAqVH1NKS0tDTk4OMjMzTbfllN1uR05ODlJTU6X72K3I3IwYW48xsrOz0aZNG6SmpiInJ8fjfxxZWVlIS00FWrRwbSt1ts6dgc2bAYtFk/zsdjt+//139OnTR/V/YDVuOQUA27cDnTqpH7vpJmDx4lrnRdWTeU7Qguz1icovVOc8LeNqMefJfG6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dNrTaZtpxSFAXl5eWIiYmB5cy/ucw0th5jaBVTizgi+0eBM3vfZK6vtrmZYcspLmiQFHgNDQo1NV6zYvt2YNAg9Qe/9ZZrmycj86lpQQMABgwAvv/e+/aICGDfPsBHfCIiIiIiCm8yLWgQEZFvZljQ4JZTJJWhQ4eijizXFdDY6dOnsWDBApw+fVp0Kl5E5mbE2HqNUadOHd/n7KxZ6g+yWl3Xz9Awv9OnT+Onn34K/ndnwgT1251O4PXXg4tNXmSeE7Qge32i8gvlOU+ruFrMeTKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfZO9NofDgVOnTsHhcJhybD3G0CqmFnFE9o8CZ/a+yVyfzLnphQsaJJX8/Hw4nU7RaegiIiICKSkpiIiQ79dOZG5GjK3XGE6nU/WcjTx2DPjmG/UH3XILcNa1LoLNLyIiAgkJCcH/7lx1FXDhherHZs0CCgqCi08eZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702i8WCyMhIIdvCGDG2HmNoFVOLOCL7R4Eze99krk/m3PTCLadICtxyikJNdVs8nXrsMdSdNk39gWvWAH36GJqP31tOAcAHHwD33KN+bNo04NFHA0uQiIiIiIhMi1tOEQGTJ0/GlClTAADPPvssJk+eLDYh0lVaWhoOHDgAoJbvuwQhIyMD/fr1AwD07dsXGRkZtY7BLaeINNa5c2fExMSITkMX5eXlyMzMRHl5uehUvIjMzYix9RojJibG65y1AEhYtEj9AeefD1x6qeb5lZeXY9++fdr87txxB9Cggfqx118HVC46ToGReU7Qguz1icovlOc8reJqMefJfG6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dN9tqcTidKSkqE7P5gxNh6jHF2zIyMDNx///3o2rUrGjZsiJiYGMTFxaFRo0bo2rUrhg0bhtdeew2///47qv6dtBa5iewfBSY7OxsWi8Xjq1GjRrDX4v0Dh8OBpk2besXJzs7WL/FakPm8lDk3vXBBg6SSnp4Oq9UqOg1d2Gw2ZGRkwGaziU7Fi8jcjBhbrzGsVqvXOdsPQPTBg+oPGDsWUPkIYLD52Ww2ZGZmavO7Exfn+4LlBw8CX34Z/BgEQO45QQuy1ycqv1Ce87SKq8WcJ/O5RerM3jfZ6+NrPXExtYgj+/lF6szcN9lrUxQFRUVFELEhiRFj6zFGZcxdu3ahV69e6NevH9555x1s2rQJJ06cQEVFBWw2G3Jzc7Fp0yZ89tlnmDhxIrp164aOHTv6zG306NHuN6bnzp0rrL5ATJ482Z07P2lRe7m5ufjuu+/8vv+KFStw9OhRHTMKjiznpRqZc9MLt5wiKXDLKQo1vrZ4+hTA7WoPiIoC/v4baNTI0HyAAD76eOwY0Lw5oPYXV927A+vXqy7MEBERERFReOKWU6Fvy5YtuPzyy5Gfn+++rXHjxujatSuaNGkCi8WCkydPYseOHdi3b5/7zdNzzz0XOTk5qjFHjx6NefPmAQDmzJmD0aNH612GZgLZPipct5zy9X7EzTffjM8//9yvGEOHDsXChQu9bjdqK6dAcMspbjlFBMD1F+9mvYiNoiiw2WxSrpiKzM2IsfUaw2KxeJyz9QDc6OvOgwf7XMwINj9FUVBeXq7d707jxsDw4erHNmwAfv1Vm3HCnMxzghZkr09UfqE852kVV4s5T+Zzi9SZvW+y18fXeuJiahFH9vOL1Jm5b7LXpigKnE6nsDlP77H1GKO8vBzDhg1zL2acc845+Oqrr3D48GH897//xaxZs/DBBx/gyy+/xJ9//oljx47hgw8+wGWXXebx71AtchPZv2BNnjwZiqJAUZSwWcxQ065dOwDA119/7bFA5ktBQQGWLl3q8VjZyHxeypybXrigQVKZNGkSkpOTRaehi4KCArz88ssoKCgQnYoXkbkZMbZeYyQnJ3ucs3cAiPV157FjdcuvoKAAn332mba/OxMm+D726qvajRPGZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702h8OBo0ePwuFwmHJsPcb48ssvsWfPHgBAXFwcVq1ahSFDhiAiQv1tw4YNG2Ls2LFYvXq1x1+Ia5GbyP6RNkaMGAEAKCsrU/3UxdkWLVrk3sJu5MiRuuYWKJnPS5lz0wsXNEgq7777LoqKikSnoYvExETce++9SExMFJ2KF5G5GTG2XmMUFRV5nLN3+7pj8+ZA//665ZeYmIjrr79e29+djh195/zVV0BWlnZjhSmZ5wQtyF6fqPxCec7TKq4Wc57M5xapM3vfZK+Pr/XExdQijuznF6kzc99kry0yMhINGzZEZGSkKcfWY4wffvjB/f3gwYNx/vnn+/3YVq1aaZqbyP6RNoYNG+bevmj+/Pk13r/yPtHR0Rg2bJiuuQVK5vNS5tz0wgUNkoqZVxQjIyPRpEkTKScYkbkZMbZeY1RdBe8BoIOvO955J1DN2MHmFxkZiXr16mn/uzNxovrtTifw+uvajhWGZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702i8WC6OhoIdtZGzG2HmMcPnzY/X2LFi0CjlOZW8uWLWGxWNzXzwCAMWPGuC+yXfXr7K2ZLBYLSkpKsGDBAtx7773o0aMHGjRogJiYGCQlJaFVq1a4/fbbsWjRIjidzhpzmjt3rnusymt4OBwOLFiwAIMHD8Z5552HuLg4WCwWLFmyBOnp6bBYLO5rYQDAlClTVHM/+5og/lxIXC0fAPjqq69w/fXXo3nz5oiNjUWjRo0wYMAAfPzxx7XaSigvLw//93//h65du6Ju3bpISEjABRdcgLFjx2Ljxo0ez3Pll9YaNWqEgQMHAgB++eUX7N+/3+d9s7KysG7dOgDAwIED0bBhw1qPd+LECbz00kvo27cvmjZtitjYWDRo0AAXX3wxHn/8cezatatW8crKyvDGG2+gT58+aNiwIeLi4tC6dWuMGjUqoGtWVDp9+jTeeecdXH/99WjRogXi4+ORmJiINm3a4M4778RPP/0UUFyRc54oXNAgqYwePRoJCQmi09BFcXEx5s6di+LiYtGpeBGZmxFj6zVGQkKC+5z1uaGUxQKMGaNrfsXFxVi+fLn2vztXXQVceKH6sVmzAEk/Yh4qZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702h8OBEydOCNtySu+x9Rij6huhWUF8Gr8yt2AsXrwYjRs3xrBhw/D+++9jw4YNOHnyJCoqKlBUVIS//voLCxYswG233YYuXbrUOt/Dhw8jPT0dt99+O5YtW4asrCz3dkciFBQUYPDgwbjxxhvx3//+F4cOHUJ5eTlyc3Px/fffY8SIEbjmmmtQWlpaY6xVq1bhwgsvxNNPP41NmzYhPz8fp0+fxp9//okPP/wQPXv29Fio0VPVraOq+5TG/Pnz3Qs2gWw3NXv2bLRu3Rr/+te/sGbNGhw9ehTl5eU4efIkMjMzMW3aNHTq1AkTJkzw63dm9+7duOiii/Dwww/j559/xokTJ2Cz2fDXX3/hs88+w+WXX4777rsPFRUVtcrz888/R+vWrXH//ffjv//9Lw4ePIjS0lIUFxdj3759mDNnDq644gpcf/31td7OT+ScJ0rtLl9OpLPs7GzY7XbRaegiKioKaWlp7o/dyURkbkaMrdcYdrsd2dnZiLXbMdTXnQYOdG05pWN+UVFRaNKkifa/OxaL61oa99zjfay42LWo8eij2o4ZRmSeE7Qge32i8gvlOU+ruFrMeTKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfZO9NovFgtjYWGGf0NB7bD3GqLpt1Ndff41du3YFdHHmytxGjhyJU6dO4ccff3Rfm+OKK65A27ZtvR7TvXt3j5+PHz+OsrIyAEBqairatWuHJk2aID4+HsXFxdi9ezc2b94MRVGwdetWXHbZZcjMzET9+vVrzK+srAyDBg3Cpk2bEBUVhd69e6NVq1YoKyvD5s2bAQA33HADOnTogA0bNrg/0dCtWzevPAGgZ8+etXuCzmK323HTTTfhxx9/RExMjDsfm82GtWvX4uDBgwCA5cuXY+LEiXjnnXd8xlq/fj2uu+46lJSUAHD1olu3bmjfvj3Ky8uxYcMG7N27F5MnT0aDBg2CytsfgwYNQkpKCvLz8/Hxxx+7P71ytsrFjrp16+L666+v1adRpk2bhscff9z9c2xsLPr27YvmzZsjLy8Pq1atwqlTp+BwODBjxgwcPHgQixcv9vm7c+DAAVxxxRU4cuSI+7b27dujS5cuAIBNmzZh165dePfddxEfH+93nq+99hoeffRRd21JSUno1asXUlNT4XA4sHPnTvz+++9QFAX//e9/kZ6ejnXr1vk9hsg5TxiFSAI7duxQALi/duzYITolomplZWW5z9exgKL4+vriC8PzOfsrKysr8MAlJYrSoIF6bc2bK0pFhWY1EBERERFRaKqoqFB27drl8VVR078VKioUJSuLX9V9GfTvrZ9++snj35D169dXXnnlFSUnJyeouKNGjXLHnDNnjl+PWbZsmfLiiy8qe/fu9Xmfv/76S7nqqqvcse+66y6f950zZ477flFRUQoApW/fvqr/TrbZbO7vn332Wffjnn32Wb9y9+cxVfOJjY1VAChXX32113NdUVGhPPbYY+77WiwWn/+2Ly0tVdq0aeO+b8uWLZUNGzZ43W/hwoVKfHy8e9zKr2Cd/X5EaWmpoiiKcs8997hvW7Nmjdfj1q5d6z5+7733umvx5/2MdevWKZGRke77XX311crRo0c97mOz2ZTHH3/cI9706dN91nHFFVe475ecnKx8/fXXXvf59ttvlbp16yoAlOjo6Brz/OGHH5SIiAgFgBITE6O89NJLyunTp73ut2XLFqVdu3buePfdd59qvFWrVrnv07dvX5+1VCeg+VqFyPdyuaBBUqj8JejZs6cSGxtrygUNm82m/Prrrx7/g5SFyNyMGFuPMbKyspTY2FilZ8+eys+xsepv+DdqpChlZbrnZ7PZlG+++cbrRYkmCxqKoijPPON7wWbhwuBihzGZ5wQtyF6fqPxCdc7TMq4Wc57M5xapM3vfZK+Pr/XExdQijuznF6kzc9/UagvoDbKsLN//zuCX60vl33IOh0MpKipSHA6HZj11OBzK1Vdf7fVvSYvFolxwwQXKiBEjlJkzZyq//fZbtX09O7dAFjT8ra+8vFzp1KmTAkCxWq3KqVOnVO9XdQEBgNKxY0elpKSkxjyMWNAAoPTp08fnc+p0OpVu3bq57/vSSy+p3u+dd95x3yc+Pl7Zt2+fzxy//PJLrz4Hy9eCxrp169y3jR071utxd999t/v4L7/8oiiK/wsal112mfs+vXv3Vsqqee/l4Ycfdt83KSlJKSws9LrPypUrPc77n376yeN41fNyzZo1isViqTFPh8PhsdD05Zdf+sxRURTlyJEjSuPGjZXKxZJDhw553UdtQaO2c4IZFjR4DQ2SSufOnRETEyM6DV2Ul5cjMzMT5eXlolPxIjI3I8bWa4yYmBj07NwZnXyds6NHA36cz8HmV15ejn379un3u3P//b7rmD7d9VKbak3mOUELstcnKr9QnvO0iqvFnCfzuUXqzN432evjaz1xMbWII/v5RerM3Dcz1xYKFEVBSUlJrbbm8SfmW2+9hSFDhnjd/scff+Cjjz7CI488gh49eiAlJQVDhw7FqlWrdMnN3xjR0dEYPnw4AMBms+Hnn3/2K/7LL7+MuLi4gPPT2owZM3xu32axWDCmyjU5N2zYoHq/Dz/80P39+PHjPbYQO9sNN9yAfv36BZht7fTu3RutW7cG4LqGRNVrldhsNnz++ecAgDZt2qBXr15+x929ezfWrFnj/vnNN9+s9v2QqVOnurfZKiwsxKeffup1n1mzZrm/v/nmm72eo6rnZZ8+fXD77bfXmOfXX3+NvXv3AgCGDBmCG264odr7N2nSBOPHjwcAVFRUYNGiRTWOcXZuYcOwpROianDLKQo1lX+BMLO6v6b54w/D81H7CvoTGoqiKGPG+K5z3brg4xMRERERUcjiJzSM+4SG3r755hulf//+7m1yqvsaNGiQz09GKEpgn9CoKi8vT/nuu++UadOmKf/617+Uhx56SHnggQfcX1W3CHruuedUY1T9RETdunUVu93u19hGfELjvPPOqzHmr7/+6r5/ly5dvI4XFhZ69GrXrl01xvzwww89+hgsX5/QUBRFmTJlivv2BQsWuG9fsGCBau/8+YTGW2+95T7euXNnv3J86KGH3I+57bbbvI43bNjQfVxtq6mzrVixosY8q265tWjRIr/y/O2339yPueGGG7yOc8spFzmv4ERhKyUlBYWFhaLT0IXT6URhYSGSkpIQESHXh6NE5mbE2HqNERcRgcFJSXAWFiLC6fQ8eNllwPnnG5Kf0+lEcXExIiIi4Dw7D61MmADMmaN+7LXXgN699RnXxGSeE7Qge32i8gvlOU+ruFrMeTKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfTNzbaFAURQ4HA5ERkZqdhHgqjGvueYaXHPNNcjNzUVGRgZ++eUXbNq0CVu2bEFxcbHH45YtW4Y+ffrg119/RWJioia5KYqCAwcO4KmnnsLixYvdFwivyYkTJ2q8T+fOnREZGRlQXnro2LFjjfeperFztffLtm3b5n4fICkpSfXC62fr0aNHLbIMzogRIzB58mQoioL58+fjtttuA/C/i4FbLBaMGDGiVjG3bNni/r63n+9FXHLJJXjjjTcAwH0B+Ep///03cnNz3T+rXez97HO7Z8+esFgs1X4q4tdff3V//8UXX2D16tU15llQUOD+/tChQzXeXy23cMD/85BUxo8fj6SkJNFp6KKwsBAzZ86UcsFGZG5GjK3XGLckJWHu+PEoVDtnx471O06w+RUWFuKLL77Q93enY0egf3/1Y19+CWRl6Te2Sck8J2hB9vpE5RfKc55WcbWY82Q+t0id2fsme318rScuphZxZD+/SJ2Z+2bm2kKBw+HA8ePH4XA4dI3ZsGFD3HLLLXjttdewZs0a5OXlYe3atbjzzjs9tkjauXMn/v3vf2uW2++//46LL74Yn3zyid+LGQBQVFRU430aNmwYcF56SE5OrvE+0dHR7u8rKiq8jld9Iz41NdWvN7RTU1P9zDB4LVu2xKWXXgoAWLlyJY4dO4Zjx45h5cqVAIA+ffogLS2tVjGr1tyiRQu/HlN1jLMXv6rGi4+Pd29PVdXZ53ZSUlKN/Tt8+LD7+4ULF+Ktt96q8evjjz92PyYvL8+v2vSYE2THBQ2SyowZM0z7oigpKQmPPPKIlAs2InMzYmy9xhhVWIhHZsxA0lnnrDMxEbj5ZsPyS0pKwk033aT/787Eieq3O53A66/rO7YJyTwnaEH2+kTlF8pznlZxtZjzZD63SJ3Z+yZ7fXytJy6mFnFkP79InZn7ZubaQkFkZCQaNWqk6ScN/IkZFRWFSy+9FB9++CFWr16NhIQE97EPPvgApaWlQedWVlaG2267Dfn5+QBcCxBPPfUUVq1ahUOHDuH06dNwOp1QFAWKomBOlV0E/NmtQKZrZwDQ5K/pq35qJj4+3q/HVO2dEUaNGgUAsNvt+PTTT/Hpp5/Cbrd7HKuNqjXXqVPHr8dUvd/Zi1/+PIdq53ZNY1f9tEUgKp+jmugxJ8iOW06RVCr/p2VGERERSElJEZ2GKpG5GTG2HmNEZWXhcqcTUDlni4cMQVItXigFm19ERAQSEhL0226q0lVXARdeCOze7X1s1ixg8mTAj78wIReZ5wQtyF6fqPxCdc7TMq4Wc57M5xapM3vfZK+Pr/XExdQijuznF6kzc980qy01lZ/0ronKX9JbLBafF5EOVG1j9u7dG08++SSefPJJAK4LPG/cuBGXXXZZULl98cUXyDpzTpx77rnYuHEjmjZt6vP+/nwqw+yqLk6UlJT49ZjTp0/rlY6qW265BQ899BBKS0sxf/589zZNcXFxuOWWW2odr2rN/tZS9X6JiYk+4/l6DtV+R2oau06dOu5Fjc2bN+Piiy/2K9fa0mNOkB0/oUFSGTdunNfEYhZFRUV49913pfwfrsjcjBhbjzESFy1CUWIi3h03DkVnnbPFQ4caml9RURGWLVum/++OxeK6loaa4mLgww/1Hd9kZJ4TtCB7faLyC9U5T8u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx906y2qCggLU3zL0ezZjgeHw9Hs2a6xDd0bJU3KY3acqomAwcO9Pj5yJEjQef2448/ur9/+OGHq13MAIADBw4ENI6ZVN0e6e+///brMTk5OXqloyopKQmDBw8GAGRmZmLr1q0AgCFDhgT0PkbVrcMOHjzo12Oys7Pd35+9pVTVeCUlJTh58qTX488+t4uKimr8BEbjxo3d3x89etSvPAPBLaeIBMvMzER5ebnoNHQRExODzp07IyYmRnQqXkTmZsTYmo9RUYGExYsRU16OzpmZiKlyzm4EUN6unaH5xcTEoHXr1sb87txxB6CynyQAYOZMwM+PRJLcc4IWZK9PVH4hOedpHFeLOU/mc4vUmb1vstfH13riYmoRR/bzi9SZuW+y12axWBAfHy/k4rhGjK3HGIHEtFqtHj/HxsZ6xaltjlWvOeDPBbPXrFlTq/i1ESoXV+7UqRMiIlxv7xYUFGDPnj01PmbDhg16p+Vl5MiRft3mj6qfdPjll1/8ekzV+3Xp0sXj2LnnnuuxqLF+/Xqvx599bq9fv77aC4IDnhdfX7dunV95BkLknCcKFzRIKuvXr6/VRZ9CSWxsLHr27InY2FjRqXgRmZsRY2s+xjffIPLECcSWlaHn+vWIrXLOzhKQX2xsLNq1a2fM705cHHD//erHDh50XSCc/CLznKAF2esTlV9Iznkax9VizpP53CJ1Zu+b7PXxtZ64mFrEkf38InVm7pvstVVuyVv5Jq/ZxtZjjEBiVv6VfaXmzZt7xam66KF2QWu1PCrZbLZq77tp0yZs3LjR73xrq7a5i5KUlOTxBv8nn3xS42OqXnjaKAMGDECTJk3cPzdt2hT9+/cPKNbll1/u/n7Lli3Ytm1btfcvKSnBggULVB9fqV+/fu7vP/roI6/jZ5/b8+fPrzHP6667zv397NmzazynAyVyzhMlfCqlkJCenu61ym8WNpsNGRkZuk1gwRCZmxFjaz7GLNeyhc1qRUZ6OmxnztnTAD4TkJ/NZkNmZqZxvzv33w/4+mus6dOBGv5KgVxknhO0IHt9ovILyTlP47hazHkyn1ukzux9k70+vtYTF1OLOLKfX6TOzH2TvTan04mioiL9rzEoaGw9xpg+fTqWLVvmd8ySkhJMnTrV/XPjxo3RuXNnr9zq16/vvo8/2yGdd9557u+XLl1a7fj33HOPX7kGqra5i3TnnXe6v58xY4b7OiRqli1b5rG1l1EiIyOxdu1abNy4ERs3bsSaNWsCvoh127Ztcdlll7l/fvDBB6tddHrqqadw/PhxAK4FoGHDhnndZ+zYse7vFy1a5PXpn6rn9rp16/Dpp5/WmOdNN92E1q1bA3BtyXb//ffX+KmOSsXFxX5fH0TknCcKFzRIKmlpaaa9kI3dbkd2djbsEm7JIzI3I8bWdIycHOC771xxo6KQnZYG+5lzdiGAWu8iW1EB+44dyN69O+D87HY7jh49atzvTuPGwPDh6sc2bAB+/dWYPEKczHOCFmSvT1R+ITfn6RA32Diyn1ukzux9k70+vtYTF1OLOLKfX6TOzH2TvTZFUVBWVub3G4ehNrYeY2zYsAGDBw9Gjx498Pbbb+PYsWM+7/vbb7+hb9++2L59u/u2f/7zn4iIiPDKrUOHDu77LF26tMZtkq+//nr39/Pnz8f06dO9rguwb98+DBgwAJs3b0adOnVqVWdtVM195cqVNV4vQaQxY8a43zgvLi7GlVdeiU2bNnndb/HixRg2bJiwT1e1bt0aXbt2RdeuXd35BurFF190L4isXbsWN910k3vRolJ5eTn+9a9/4bXXXnPf9uyzz3pcBLxS//793Z/SUBQFQ4YMwbfffus+Xnlur1ixAoMGDYLT6UR0dHS1OUZGRuKdd95x5zlnzhxce+212L17t8/HZGZm4p///CeaNWtW7cJUVSLnPFEsSjhVS9LauXOnx/8sduzYgfbt2wvMiMiH558HnnlG9VBvAL8CyMrKQlpaWs2xtm0Dbr0V+OMP18/durmuQ9GrV63Tys7ORsuWLVWP+Z1PbWzfDnTqpH7s5puBzz/XdjwiIiIiIpKW3W7H3r17PW5r06aNaf9g0WyGDh2KhQsXetzWqlUrtG/fHg0aNEBUVBRyc3ORmZnp9SbrDTfcgEWLFqn2uqCgAE2bNkVpaSkA1ycw0tPTkZKS4t7vf8CAARgwYID7MX379vX46/iWLVuiS5cuSE5Oxt69e/HLL7/A4XDg3HPPxSOPPIInnngCADBq1CjMnTvXK4e5c+dizJgx1d5HjdPpRFpaGg4dOgQAaNKkCQYMGIAGDRq4c+/WrRtuu+0292MmT56MKVOmAHC9cT558uSg86n6b/0WLVp4XNy6qnXr1qF///7u59pisaBHjx5o164dysvLsWHDBvz5558AgDfffBMPPvig+37B/mX/2e9HlJaWBryDhM1mQ1xcnPvn6t7PmDZtGh5//HH3z7GxsejXrx+aNWuGvLw8rFq1yuMC3zfccAO++OILn9eayMrKQq9evTwW9Dp06IAuXbrAYrF4bG81ceJEfPHFF+4L01eX5wcffID77rvPvThnsVjQrl07dOrUCUlJSSgpKcGRI0ewdetW5Obmuh+3fft2j/dKASAjI8O98NK3b19kZGSojlkdreZrke/l8v8sJJUmTZp4/PKaicPhQG5uLho2bBjwx+r0IjI3I8bWbAynE/jww//FjYxEbsOGaJibiz8cDtTqcwnl5a43/vfu/V+czZsR2bs3cOedrq2bUlL8CuVwOHDq1ClERkZ6/fWKbjp2BPr3B77/3vvYl18CWVmAjwUWcpF5TtCC7PWJyi+k5jyd4gYbR/Zzi9SZvW+y18fXeuJiahFH9vOL1Jm5b7LXpigK7HY7oqKiDL9IrhFj6zHG5Zdfjg0bNngsVuzfvx/79+/3+Zi4uDj861//wr/+9S/3G6Fn55acnIxXX33VvdXOX3/9hb/++ssjTkJCgseCxsKFC3HNNddgy5YtAFxvFJ+9iNKuXTt8/vnnul7cOiIiAm+//TZuuukmlJeX4+jRo17XTRg1apTHgoZIl1xyCZYtW4Zhw4YhNzcXiqJg/fr1Hhe4joiIwDPPPIN77rnHvaCRlJQkKuWgPfbYY6hbty4mTpyIwsJClJWVYfny5V73i4yMxIMPPojp06dX+zvTsmVL/Pjjj7jhhhvcb/jv2LEDO3bs8Ljf3XffjZdeeglffPGFX3nefffdaN26Ne69917s3bsXiqJg586d2Llzp8/HtG/fHvXq1fMrvsg5TxRuOUVSGTduHBITE0WnoYuioiK89957KCqq9aZEuhOZmxFjazbGDz8AZ1bfAaAoMRHvjRuHosREfFDbWAsWAGf+B1k1DgDgxx99X6NCRVFREb7++mvjf3cmTlS/3ekEXn/d2FxCkMxzghZkr09UfiE15+kUN9g4sp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k722ygUXw/7Yy+Cx9RjjzjvvxM8//4wtW7bgzTffxB133IGuXbuiYcOGiImJQXR0NOrVq4d27dph6NCheO+99/D333/j6aef9virbrXcxo0bh7Vr12LEiBE4//zzUadOnWrfdG3QoAG++OILzJw5E5deeilSUlIQExOD1NRUXHHFFXj//fexceNGtGvXTrP6fbnuuuvw+++/495770X79u2RmJgo9RvGV155Jfbs2YMpU6bg4osvRnJyMuLj49GmTRvcddddWL9+PZ599lmcOnXK/ZgUP/+QUlZ33XUX9u/fj6lTp6JPnz5o3Lix+3y96KKL8Oijj2Lbtm2YMWOGXwuw7du3x7Zt2zBz5kz07t0b9erVg9VqRcuWLXH99dfju+++w/vvv1/jdlNn69evH3bv3o3FixdjzJgxuPDCC1G3bl1ERkYiMTERrVu3xnXXXYepU6diy5Yt2LFjB8455xy/Youc80ThllMkhcqPKVmtVpSVlWH79u2m23Kqck+72NhY6f4HKDI3I8bWbIxbb/XYSkmxWFAWGwtLWRnOVRRUfpCxxi2eFAW4+GJg61aPOLFlZbAoCrB0KTBokN9pKYqCvXv3om3btqp7Juqy5ZRrYKBDB2DXLu9jCQmu640kJ2s/rknIPCdoQfb6ROUXUnOeTnGDjSP7uUXqzN432evjaz1xMbWII/v5RerM3De12mTackpRFCiKAovFImTO03tsPcbQKqYWcUT2L1x8//337k/FDBw4EN+duU5oMMzeN5nrq21uZthyip/QIKnYbDbTXsTGYrHAarVKN/EBYnMzYmxNxsjNBZYs8YyrKLDabFhSZTHDLyUlwEUXAWdW9CvjWCrP/SoXQvOHxWJBTEyM8b87Fgswfrz6seJij+25yJvMc4IWZK9PVH4hM+fpGDfYOLKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfZO9NovFgoiICGFznt5j6zGGVjG1iCOyf+Gi6vVSunXrpklMs/dN5vpkzk0vXNAgqYwfPz6k9++rTmFhIWbMmIHCwkLRqXgRmZsRY2syxvz5QEWFZ9ykJMwYPx7zanvO1qkDzJsHZGcDffq44xQmJQHffedaKKiFwsJCLF68WMzvzh13AA0aqB+bOROw243NJ4TIPCdoQfb6ROUXMnOejnGDjSP7uUXqzN432evjaz1xMbWII/v5RerM3DfZa3M4HDh27JiwLaf0HluPMbSKqUUckf0LB7/99pvHtUCGDRumSVyz903m+mTOTS9c0CCpZGRkwGaziU5DF1arFenp6bBaraJT8SIyNyPGDnoMRQFmzfKOa7OhfUYGfgz0nD3nHGDNGlg//BDpGRmw2mzAwIG1DmO1WtG5c2cxvztxccD996sfO3jQdYFwUiXznKAF2esTlV9IzHk6xw02juznFqkze99kr4+v9cTF1CKO7OcXqTNz32SvzWKxCLvWgRFj6zGGVjG1iCOyf6Hs4MGDuOWWW/Dzzz+r7t7gcDjw8ccf46qrrkLFmT/WHDRoENq2bavJ+Gbvm8z1yZybXngNDZKCyH3XiGq0bh1w6aWqh54C8MJZtwV0zYqyMtd/Y2P9u39ODjB9OvDss0BKCrKzs9GyZUvVu+p2DY1Kx44BzZsD5eXex3r0ANav129sIiIiIiISTqZraBCFo6rvCTRq1Aj/+Mc/0LRpU0RGRuLYsWP49ddfkZub675/06ZNsWnTJjRt2lRUyiQIr6FBpLGBAwciLi5OdBq6KC0txfLly1FaWio6FS8iczNi7KDH+OAD1ZuL4+KwR4NztrS0FMtXrUKp0+n/gyZMAGbMAC64AKVz5mDDhg3ifncaN3ZtPaXmt9+AX381Np8QIfOcoAXZ6xOVX0jMeTrHDTaO7OcWqTN732Svj6/1xMXUIo7s5xepM3PfZK/N6XSioKAAztr8+yqExtZjDK1iahFHZP/M4vjx4/juu+8we/ZsfPDBB1i2bJnHYkbXrl3x66+/arqYYfa+yVyfzLnphQsaJJWUlBRERJjztHQ6ncjPz5dyghGZmxFjBzVGQQGwaJHqoZUREYjW4JytdX4rVwKLF7u+P34czocegn3VKrQT+bvj6+LgAPDqq4alEUpknhO0IHt9ovKTfs4zIG6wcWQ/t0id2fsme318rScuphZxZD+/SJ2Z+yZ7bYqiwOFwqG67Y4ax9RhDq5haxBHZv1CWlpaG3377DU899RSuvPJKtG3bFg0aNEBUVBRSUlJwwQUXYPTo0Vi2bBk2btyIFi1aaDq+2fsmc30y56YXbjlFUuCWUyStd98F7rtP9dBgAMtUbtd1i6eyMqBjR+CsjwcCgB1APwA/G5lPVQMGAN9/7317RASwbx/gY0ssIiIiIiIKbdxyiogoNHDLKSKNpaWlmfYFj91uR3Z2Nux2u+hUvIjMzYixgxrDx3ZT9oYNsSIqSpNztlb5TZ/utZhhj4pCdloatkZFQejmThMnqt/udAKvv25sLiFA5jlBC7LXJyo/6ec8A+IGG0f2c4vUmb1vstfH13riYmoRR/bzi9SZuW+y16YoCsrKyoR9QkPvsfUYQ6uYWsQR2T8KnNn7JnN9MuemFy5okFRGjx6NhIQE0Wnoori4GPPmzUNxcbHoVLyIzM2IsQMeY/Nm15dazFtuQVxCgibnrN/52e3ARx95Pz4hAfNGj8bjCQlwBJVJkK66CmjXTv3Yhx+6tu8iN5nnBC3IXp+o/KSe8wyKG2wc2c8tUmf2vsleH1/riYupRRzZzy9SZ+a+yV6bw+HAyZMn4XAY/68jI8bWYwytYmoRR2T/KHBm75vM9cmcm1645RRJgVtOkZQeeAB4+23VQzmrVqFZv36qx7y2eDpxAqhbF4iMDD6n06eBF14Apk0DKircNxfdcguSPv9c9SFr165Fampq8GPXoEmTJrB+/DFw993qd5g+3fenOIiIiIiIKGRxyykiotBghi2n+H8WIiI1JSXAJ5+oH+vXD/baXJNi5EjXNlETJgCjRgF16gSeV506wNSprpgPPgj8+CNQty7y/vlPwMeCRp8+fQIfrxasVituvvZazG/QAJYTJ7zvMHMm8PDDAP9RQ0REREREREREAeCWUySVSZMmITk5WXQauigoKMBLL72EAgm33RGZmxFjBzTG4sW+t0g68wmE5OTkms/ZXbuA775zXRT7gQeAZs2AJ58EDh8OLr+2bV0X4F64EAWvvoqPV6zw+3cnxf9RasVms+HjL77AF40bq9/h4EHgyy91Gj30yDwnaEH2+kTlJ+2cZ2DcYOPIfm6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dN9trsdjuOHDki7LpBeo+txxhaxdQijsj+UeDM3jeZ65M5N71wQYOksmTJEpSUlIhOQxfx8fEYMmQI4uPjRafiRWRuRowd0BizZqnfXrcucMMNAICSkpKaz9kZMzx/zssDXnwRSEsD/vwz8PwAwGIBbr0V8cOH49JLL/Xrd6c9gEMAngMQV7vR/Pbovn1QYmLUD77zjk6jhh6Z5wQtyF6fqPyknfMMjBtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvqnVZrFYvO4naofziIgIpKSkICLC+Le8jBhbjzG0iqlFHJH9o8CZvW8y11fb3NTmZrU5XGa8hgZJgdfQIKn88YfrExBqHn4YmDkT2dnZaNmypepd3NfQyM11fSKjrMz7Tl27Ahs2uBYlNGCz2VC3bl3YbLZq75cBoG9lngAeAfC1Jhl4Krz1ViQuWuR9ICICOH4cqF9fh1GJiIiIiEgERVGwZ88ej9uaN2+OOsFst0tERJorKSnBgQMHPG5r27ZtrRc1RL6XK9+yEoU1s/4FC+DnX/MLIjI3I8au9Ri+Pp0BAGPHur+t8a+u3nlHfTEDcF0c+8z/LIJ9DkpKSrB8+XLceOON1d5vOP63mAEALQEsO/PVLKCRfSsaNUr9gNMJfPutxqOFJpnnBC3IXp+o/KSc8wyOq8WcJ/O5RerM3jfZ6+NrPXExtYgj+/lF6szcN7XaLBYLrFarx/0KCwuNTg0A4HA4kJeXB4fDYcqx9RhDq5haxBHZPwqc2fsmc321ze306dMeP8fGxobcJzS4oEFEVFV5OTBvnvqxHj2Ajh39j3XqlPoFsFNTgZtvDiy/asycORO33Xab1z8kACAJwDQfj7sewEZou6hRfuGFgI9PsGDpUg1HIiIiIiIiGSQmJnr8XFhYaMoFHSKiUGW3272ufxSKn6TjllMkBW45RdL44gvfiw0ffOD+hIZfW04BwKFDwJtvAu+997+LjL/yCvD44xon/j82mw1Hjx71uK3elClImju32scV3H038p580u9xcnJy0KdPH9VjWVlZSJs50/saIgBQpw5w4gSgsvBCREREREShqby8HPv37/e4LSIiAklJSUhKSkJ0dLSU+88TEZmd0+lESUkJTp06hbKzdhIJdHtAke/lqvzpMJE4bdu29XoBZBYVFRXYv38/WrVqhejoaNHpeBCZmxFj12qMDz5Qvz0hARg61OOm6OhotGrVCvv370dFRYX645o1A15+GXj6aWDOHODDD4G77w48PxVnP95qtf5vQaVSv37AN9+4rutRVVIScOutwMiRSL7kEiRr+Q+MQYPUFzROnwZWrQKuvlq7sUKQzHOCFmSvT1R+0s15AuJqPedRaDB732Svj6/1xMXUIo7s5xepM3PffNUWExODxMREFBUVuW9zOp3Iz89Hfn6+YfkpigJFUWCxWAzfRsWIsfUYQ6uYWsQR2T8KnNn7JnN9weRmtVpDcut/Lo2TVHgNDTG4r/IZBw4AK1eqHxs61LWoUUWN19CoKiEBeOghIDMTSEkJLD8f/Hr8yJGui53fd5/r56uvBhYuBI4edS3i9OnjumC3li69FKhbV/0Yt52Sek7Qguz18Roa4uLyGhrhyex9k70+vtYTF5PX0AhfZu5bdbWdc845SDjr300iiNzn3oix9RhDq5haxJHxOgVUM7P3Teb6AsktKioKqamp0i3Q+INbTpEUuOUUSWHyZGDKFPVj69e7rqFxht9bTslo0ybg779dn6AIgl/PwR13AJ984n2Hpk2BnBztF1GIiIiIiEgop9OJw4cPe3xSg4iI5BEVFYVmzZqpXoPVXyLfy+U7SUREAOBwALNnqx/r2BHo3t3YfPT0j38A110HGLGePXiw+u1HjrgWVoiIiIiIyFQiIiKQmpqKVq1aoWHDhkG9YUZERNqwWCxISEhAamoqWrduHdJzM6+hQVKZPHkyZqjtuW8C+fn5mDlzJh555BGknLXlkGgiczNibL/GWLnSdQFvNWPHAiofwUtJScH48eMxY8aMoPaEDfY5COjxRn0yYuBAICYGKC/3PrZ0KdCtmzF5SEjmOUELstcnKj9p5jyBcYXMeSSc2fsme318rScuphZxZD+/SJ2Z++ZvbTExMWjQoAEaNGgARVHgdDphxCYhBQUFeO+993DvvfciOTlZ9/GMHluPMbSKqUUckf2jwJm9bzLX509uERERUl7/I1DccoqkUPkxpbS0NOTk5CAzM9N0W07Z7Xbk5OQgNTUVUVFyrSWKzM2Isf0a46abgC+/9L49NhY4fBioV8/j5uzsbLRp0wapqanIycmB3W53H6vtllPBPgei+uf3tlsDBwIrVnjfqWNHYNs2/RKUnMxzghZkr09UftLMeQLjhuqcR8Exe99kr4+v9cTF1CKO7OcXqTNz32SvjXOeuJic88KX2fsmc32ichO55RQXNEgKvIYGCXXsGJCaClRZlHAbNkz1GhAhfQ0Njfj9HLzzDnD//epB/voL8BGDiIiIiIiIiIjkw2toEJ0xdOhQ1KlTR3Qaujh9+jQWLFiA06dPi07Fi8jcjBi7xjHmzVNfzABc2035UKdOHfc5Gwkg0A/uBfscyHxuAQCuv973saVLjctDMtL3LUiy1ycqPynmPMFxTT/nkSqz9032+sL+tZ7AmFrEkf38InVm7pvstXHOExeTc174MnvfZK5P5tz0wgUNkkp+fj6cTqfoNHQRERGBlJQURBh17YJaEJmbEWNXO4aiALNmqT+wVSugb1+fcZ1Op/ucHQNgF4B7AFhKS7XLz4DH6y411XUhcjXLlhmbi0Sk71uQZK9PVH7C5zwJ4pp+ziNVZu+b7PWF9Ws9wTG1iCP7+UXqzNw32WvjnCcuJue88GX2vslcn8y56YVbTpEUuOUUCbN6NZCern5s6lTgX/9SPVR1uyULgB0A2p055qhbF5EPPAA88ADQpInWGevP6QR+/hmoW9d1nQsfarXt1vPPA888433HyEjg+HGva5QQEREREREREZGcuOUU0RmdO3dGTEyM6DR0UV5ejszMTJSXl4tOxYvI3IwYu9oxfH06IzISGD262rgxMTHo3LkzromJcS9mAEBkXh7wf/8HtGgBfPZZcPn5QbPn8M8/gaefBs47z/XJlJdfDi5eVYMGqd/ucADffqvdOCFE5jlBC7LXJyo/4XOeBHGlmfPIUGbvm+z1hfVrPcExtYgj+/lF6szcN9lr45wnLibnvPBl9r7JXJ/MuemFCxoklfT0dFitVtFp6MJmsyEjIwM2m010Kl5E5mbE2D7HyMsDFi9Wf9B11wFNm1Yb12q1Ij09Hff5OmftdqBnz8Dz81PQz+H337vyvOAC10LMgQOu27/8EigqCizm2Tp1ci3wqAnTbadknhO0IHt9ovITOudJElf4nEdCmL1vstcXtq/1JIipRRzZzy9SZ+a+yV4b5zxxMTnnhS+z903m+mTOTS/ccoqkwC2nSIi33gIefFD92NdfuxY1fKjcbqkTgK2+7nTLLcCiRcFmqb/vvgOuuUb92Ny5wKhRqodqteUUADzyCPD66953TkgATpwAYmP9z5mIiIiIiIiIiITgllNEZ1itVlgsFtFp6EJRFNhsNsi4higyNyPGVh1DUYAPPlB/wLnnAgMH1hjXYrHgEqsVFb7O2YkTA8+vFoJ+Dvv3Bxo3Vj82f35gMdX42naquBjIyNBunBAh85ygBdnrE5WfsDlPorjC5zwSwux9k72+sHytJ0lMLeLIfn6ROjP3TfbaOOeJi8k5L3yZvW8y1ydzbnrhggZJZdKkSUhOThadhi4KCgrw8ssvo6CgQHQqXkTmZsTYqmNs2gRs9fHZijFjgKioGuMmJyej8aRJ6JycjGkAPCro1cuv7aZ85lcLQT+HUVHAsGHqx1atAg4dCizu2S67DEhJUT+2dKk2Y4QQmecELchen6j8hM15EsUVPueREGbvm+z1heVrPUliahFH9vOL1Jm5b7LXxjlPXEzOeeHL7H2TuT6Zc9MLt5wiKVR+TKlJkybIzc3F1q1bTbfllMPhQG5uLho2bIjIyEjR6XgQmZsRY6uOMW4c8N576g/46y/Ax1ZKlbKzs9G6dWs0bNgQubm5cDgcSARwJ4Bp556LqBkzgJtvDjy/WtDkOczMBC6+2PO26Gjg2muBF18E2rb1ekitt5wCgOHDgU8/9b793HNdCycm/YSWGpnnBC3IXp+o/ITNeRLFlWLOI8OZvW+y1xeWr/UkialFHNnPL1Jn5r7JXhvnPHExOeeFL7P3Teb6ROUmcsspLmiQFHgNDTJUcTFwzjnqF7zu3x9YubLGENW+mb93L9JatgQk+59ctRTFdeHuHTuAHj2AkSOB224D6tf3+ZCAFjQWLgSGDlUP+PvvwD/+EUDyRERERERERERkFF5Dg+iM0aNHIyEhQXQauiguLsbcuXNRXFwsOhUvInMzYmyvMT7/XH0xAwDGjvU7bkJCgvo5GxVVq8WMYJ8DTZ5DiwV45x3gjz+A9euB+++vdjEjYAMHuj75oSbMtp2SeU7Qguz1icpPyJwnWVwp5jwynNn7Jnt9YfdaT6KYWsSR/fwidWbum+y1cc4TF5NzXvgye99krk/m3PTCBQ2SSnZ2Nux2u+g0dBEVFYW0tDRE+XFtBqOJzM2Isb3GmDVL/Y716wODB/sd1263a3LOBvscaPYcXnopcP75wcWoSXIykJ6ufizMFjRknhO0IHt9ovITMudJFleaOY8MZfa+yV5f2L3WkyimFnFkP79InZn7JnttnPPExeScF77M3jeZ65M5N71wyymSArecIsPs3AlUOdc8TJwITJ/uV5iAtlsymYCfg7feAh58UP1YVhYQBs8dEREREREREVGo4pZTRGf07NkTsbGxotPQRVlZGdavX4+ysjLRqXgRmZsRY3uM8eGHvu941121ihsbG6vJORvscyDzuaVq0CDfx5YtMy4PwUKub7Uke32i8jN8zpMwbtjNeQTA/H2Tvb6weq0nWUwt4sh+fpE6M/dN9to454mLyTkvfJm9bzLXJ3NueuGCBkmlc+fOiImJEZ2GLsrLy5GZmYny8nLRqXgRmVvl2IWFhcjOztbla//+/diwYQP2794Nx9y5qnnY/vEPZMfH+x0zJycHMTExmpyzwT7/Mp9bqpo1Ay6+WP1YGC1ohFzfakn2+kTlZ8S4eo2hVdywm/MIgPn7Jnt9MrzWC7V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wi2nSArccip8lZSU4M4778TSpUths9l0HetWAAt9HBsNYJ5G43DLKT+egylTgMmTvW+PigJyc4GUFC1SJCIiIiIiIiIijXHLKaIzUlJSEBFhztPS6XQiPz8fTqdTdCpeROZ25513YsWKFbquJEdERCAlJQV3+Ti3CgF87kecpgA2A7gLQGyVuMGes8E+/zKfWz752nbKbge+/dbYXAQJyb7Vguz1icrPiHH1GkOruGE555Hp+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0Ys53jilkjR8/HklJSaLT0EVhYSFmzpyJwsJC0al4EZWbzWZDRkaG7n1PSkrC+PHj0d3HGJ8CKPEjzoMALgYwC8BBAE+fiRts7sE+/zKfWz517gw0b65+LEy2nQrJvtWC7PWJys+IcfUaQ6u4YTnnken7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCLadICpUfU0pJSUFhYSG2bdtmui2nnE4nCgsLkZSUJN2nUETllp2djVatWiEpKQmFhYW6rSZHRERgclIS/l1YiAiVMf4B1ycvqhMP4BCAelVuc0ZEIDcpCe8WFmLymbhWqxV5eXmwWq1+5xfs829I/44dAz77DPj4Y+Dzz4GWLYPbcgoAHnoIePNN79uTklzbTpn0ejqVZJ4TtCB7faLyM2JcvcbQKm5IzHmkObP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ+o3LjlFNEZZv6IlFbbE+lBZG5GfDTO4nTizvx81cWMLah5MQMARsFzMQMAIpxONM7Px8kqcQcPHlyrxQwg+Odft/6VlgILFgDXXgucey4wYQKwaZNrUUMLvradKiwEMjK0GUNiMs8JWpC9PlH5GTGuXmNoFVfaOY90Zfa+yV6fyPxCdd6TZc7TMhcylpn7JnttnPPExeScF77M3jeZ65M5N72ET6UUEsaNG4fExETRaeiiqKgI7777LoqKikSn4kVkbomJibr3/frERHw9bhyKVMaY5cfjLQAmqNxelJiIt8aNw6LERFitVtx2222YPXt2rfML9vnXrX8DBwK33+66poXD8b/bP/oI0OLDfX37uj6NoSYMtp2SeU7Qguz1icrPiHH1GkOruNLOeaQrs/dN9vpE5heq854sc56WuZCxzNw32WvjnCcuJue88GX2vslcn8y56SVKdAJEVWVmZup6cWiRYmJi0LlzZ8RIuI2OyNzKy8tV+7527VqkpqZqMkbyfffhj8xMxJw1hjM2Fv/87Tc8npxc7eNjtm5F0xtvBM76hEdMeTnaxcVhze+/o3nz5rX+ZIY7TpDPv279u+EGYM0a79v37gV++w1o0iS4+DExwDXXuD4FcrZly4A33gAsluDGkJjMc4IWZK9PVH5GjKvXGFrFlXbOI12ZvW+y1ycyv1Cd92SZ87TMhYxl5r7JXhvnPHExOeeFL7P3Teb6ZM5NL7yGBklB5L5rJE7Q12Dwx5EjQLNmnp8wqDRiBDB/vn9xsrKA118HZs0Ciotdt0VGum5v1iz4PGV07Jhrqym15+7++5H9+OPB9++zz4Bhw9SPbd4MXHyx//kSEREREREREZHueA0NojPS09MD/it32dlsNmRkZMBms4lOxYvI3KxWq759nzsXtuhoZKSnw3b2GGPH+h+nZUvgtdeAnBxg2jSgWTPYhg5Fxv79QT9vwT7/uvWvcWPgqqvUjy1cCNjtwY9x9dVAlI8PCy5dGnx8ick8J2hB9vpE5WfEuHqNoVVcaec80pXZ+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wgUNkkpaWhqifL25GeLsdjuys7Nh1+JNYI2JzC0qKkq/vjudwIcfwh4Vhey0NNirjnH++UCfPrWPmZwMPPoosH8/7FOnavK8Bfv869q/ESM8f27dGnjuOWDjRt8LEbWRkuK6loYaky9oyDwnaEH2+kTlZ8S4eo2hVVyp5zzSjdn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCLadICtxyKjzpvuXUTz8BV1yhfuyVV4DHHw8ufjgoLQXat3d9kmLECKBHD/d1LTTr3xtvAA8/rH7swAGgefMAEiciIiIiIiIiIj1wyymiM5o0aYLIyEjRaejC4XDg6NGjcKhdj0AwkblFRkbq1/c5cwAAjshIHG3SBI7KMaKigJEjgw6v1fMWbBxd+xcXB+zbB7z1FtCzpz4X6R40yPexZcu0H08SMs8JWpC9PlH5GTGuXmOExZxHujF732SvT2R+oTrvyTLnaZkLGcvMfZO9Ns554mJyzgtfZu+bzPXJnJteuKBBUhk3bhwSExNFp6GLoqIivPfeeygqKhKdiheRuSUmJurTd0UBVqwAABQlJuK9ceNQVDnGoEGu60MESavnLdg4uvcvQuf/VbRoAVx0kfoxE287JfOcoAXZ6xOVnxHj6jVG2Mx5pAuz9032+kTmF6rznixznpa5kLHM3DfZa+OcJy4m57zwZfa+yVyfzLnphVtOkRQqP6ZktVpRVlaG7du3m27LKUVRUFZWhtjYWFj0+Cv3IIjKLTs7G+eddx5iY2NRVlaGqtNR0FtO/fkncMEFAADFYkFZbCxiy8pgURTXX/1ff32Q2Wv3vAUbR2T/NNsy7NlnXdfmOFtUFHDihOvaJSYj85ygBdnrE5WfEePqNUa4z3kUHLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ+o3LjlFNEZNpvN401tM7FYLLBardJNfIDY3BRF0afv69a5v7UoCqw2m2sxIyLC90Woa0mr5y3YODKfW34bPFj9drsd+O47Y3MxiCn6Vg3Z6xOVnxHj6jUG5zwKhtn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCBQ2Syvjx45GUlCQ6DV0UFhZixowZKCwsFJ2KF5G5JSUl6dP3n392f1uYlIQZ48ejMCnJtbWRRmNp9bwFG0fmc8tvF18MpKaqHzPpdTRM0bdqyF6fqPyMGFevMTjnUTDM3jfZ6xOZX6jOe7LMeVrmQsYyc99kr41znriYnPPCl9n7JnN9MuemFy5okFQyMjJgs9lEp6ELq9WK9PR0WK1W0al4EZmbzWbTp+9VFjSsNhvSMzJgtdmASy+t+bF33+26oHhZWbV30+p5CzaOzOeW3ywW3xcH//ZboKLC2HwMYIq+VUP2+kTlZ8S4eo3BOY+CYfa+yV6fyPxCdd6TZc7TMhcylpn7JnttnPPExeScF77M3jeZ65M5N73wGhokBZH7rpE4ml6DoarcXKBRI/VjCxYAt93m+7EbNwLdu7u+b9wYePBBYNw4oEGDwHIxMc37t2IFMHCg+rHvvweuvLJ28YiIiIiIiIiISHO8hgbRGQMHDkRcXJzoNHRRWlqK5cuXo7S0VHQqXkTmFhcXp33fq1w/AwBK4+KwfOBAlMbFAZdcUv1jX3vtf98fOwY8/TTQrJlrUeOsTwlo9bwFG0f0uRUPoLsWgdLTgcRE9WMm3HZKdN/0Jnt9ovIzYly9xuCcR8Ewe99kr09kfqE678ky52mZCxnLzH2TvTbOeeJics4LX2bvm8z1yZybXrigQVJJSUlBRIQ5T0un04n8/Hw4nU7RqXgRmVtERIT2fa+y3RQAOCMikJ+SAmeLFr6v0wAAhw4BixZ5326zAX/8AURHe8bV6HkLNo6Q/jkcsP78M+YCOAZgBYDYYGPGxgJXX61+bOlSwGQfKJR5TtCC7PWJys+IcfUaI6znPAqa2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MItp0gK3HIqPOm25VTPnsBvv3nfPnw48PHHvh/3xBPAf/6jfmzZMuD66wPLx0zy84GXXnI9j3//7XHoFgCLz3wfcP8++QS44w71Y1u2AJ071z4mERERERERERFphltOhbmJEyfCYrG4v2r7JuCPP/6IkSNH4vzzz0edOnVQr149dOrUCY8//jj27NkTUE67d+/G448/jk6dOqFevXqoU6cOzj//fIwaNQo//vhjQDH9kZaWhqioKN3ii2S325GdnQ273S46FS8ic4uKitK27yUlwObNHjfZo6KQnZYGe3XbTZWVAbNmqR9r0wa49lqvm7V63oKNY2j/4uKA997zWswAgJFaxL/mGiAyUv2YybadknlO0ILs9YnKz4hx9RojLOc80ozZ+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wgUNwTZs2ICZM2cG9NjCwkIMHToUV155JT766CPs3bsXJSUlyMvLw/bt2zFt2jR06tQJL774Yq3ivvDCC7joooswbdo0bN++HXl5eSgpKcHevXsxf/58XHnllRg2bBiKiooCyrs6o0ePRkJCguZxZVBcXIx58+ahuLhYdCpeROaWkJCgbd83bvS61kVxQgLmjR6N4i5dfD8uNhbYsAF46CGgTh3PYxMmACpbYmn1vAUbx9D+xcb6vKj6QAANg41fty7Qt6/6saVLg40uFZnnBC3IXp+o/IwYV68xwnLOI82YvW+y1ycyv1Cd92SZ87TMhYxl5r7JXhvnPHExOeeFL7P3Teb6ZM5NL9xySqCKigr84x//wPbt2z1ub9GiBbKzs2t87MCBA/HTTz+5b+vQoQO6dOkCm82GtWvX4siRI+5jU6ZMwTPPPFNjTs888wyef/55989NmzZFnz59YLVasWnTJuzcudN9bMCAAfjmm280+ct6bjkVnnTZcuqFF4CnnvK+PSUFOHlSdWHCS14e8P77wOuvu66fcfCg9yJHOPvlF58XV38YwBsIcsuwmTOB8ePVjx06VP11UIiIiIiIiIiISFfccipMvfzyy+7FjGHDhtXqsc8//7x7McNqteKzzz7D9u3bMW/ePCxcuBDZ2dl4/PHH3fefPHkyVq9eXW3MH3/80WMx4/HHH0d2djYWLlyIefPmYceOHfj0009htVoBACtXrsTUqVNrlTeR7tatU7+9d2//FjMA16cE/vlPICsL+OknLmacrVcvoFUrr5uPA7BoEX/QIN/HTLbtFBERERERERER+Y8LGoLs2bMH//d//wcAGD58OPr37+/3Y48fP45XX33V/fOMGTMwdOhQj/vExMTglVdewW1ntoZRFAX/+te/qo1b9fjQoUPxyiuvICYmxuM+t99+O1577TX3z9OmTcOJEyf8zr0mkyZNQnJysmbxZFJQUICXXnoJBQUFolPxIjK35ORk7frucLg+PXCWguRkvNS9e+3ri4kBLrrI52Gtnrdg4xjeP4sFGDECAGADsBDAdQDOBfC6FvFbtgQ6dlQ/ZqJtp2SeE7Qge32i8jNiXL3GCNs5jzRh9r7JXp/I/EJ13pNlztMyFzKWmfsme22c88TF5JwXvszeN5nrkzk3vXBBQwBFUTB27FiUlZWhbt26HosT/pg3bx5Onz4NADj//PNxzz33+LzvK6+8gogzf5X+66+/YsuWLar327hxIzZu3AgAiIiIwCuvvOIz5r333os2bdoAAIqKivDRRx/VKv/qLFmyBCUlJZrFk0l8fDyGDBmC+Ph40al4EZlbSUmJdn3fuRNQmcDjS0owpGNHzevT6nkLNo6Q/o0ejRNTp6IJgKEAvgGg6eWnBg9Wv33VKqCwUMuRhJF5TtCC7PWJys+IcfUaI6znPAqa2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MIFDQHeeecdrDuzLc5//vMfNGrUqFaPX7Jkifv70aNHw2LxvclL8+bNcfnll7t//uqrr2qMeeWVV6JZs2Y+Y1osFowaNarGmIHYs2cPKs66oLNZREdHo23btoiOjhadiheRuVVUVGjX959/Vr05GkDbq6/WvD6tnrdg4wjpX4sWKL79dui2/u9rQaOiAli+XK9RDSXznKAF2esTlZ8R4+o1RljPeRQ0s/dN9vpE5heq854sc56WuZCxzNw32WvjnCcuJue88GX2vslcn8y56YULGgY7dOgQJk2aBADo06cP7rzzzlo93mazYf369e6f09PTa3xMv3793N9XvYh4VatWrQo45i+//IKysrIaH+MPM68oavpJBI2JzE3TlWQf188o6dULS1as0Lw+rZ63YOPIfG4FrEsX4Jxz1I+ZZNspU/atCtnrE5WfEePqNQbnPAqG2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MIFDYPdf//9KCoqQkxMDN57771qP12h5o8//oDT6QTg+qTExRdfXONjunTp4v5+9+7dqvepenvV+/tSdVyHw4E///yzxscQ6c7HJzTQo4exeVDwIiJ8Xxz8229dn9QgIiIiIiIiIqKwYlEURRGdRLhYsGABbr/9dgDA008/jeeee859bO7cuRgzZgwAoEWLFsjOzlaNsWjRIveFvhs3boyjR4/WOO6uXbvQvn1798/Hjx9Hw4YNPX5u3Lix++fdu3ejbdu2NcZt1KgRcnNz3XndcsstNT7Gl507d6JDhw7un3fs2OGRM5lTdnY2WrZsqXosKysLaWlp/gc7dAho3lz92JIlvrcwooBp2j81330HXHON+rEffwSqbKdHRERERERERETGEPleLj+hYZCTJ0/i4YcfBuC6kPe///3vgONUqroIUZ0mTZp4/Hzq1CmfMQONe3bMQJl5zzdNrxWhMZG5abbXn4/tpgCgols37/oWLAA++ggoLw94SK2et2DjyHxuBeXyy4GEBPVjy5YZm4sOTNu3M2SvT1R+Royr1xic8ygYZu+b7PWJzC9U5z1Z5jwtcyFjmblvstfGOU9cTM554cvsfZO5Pplz0wsXNAwyYcIE96cZ3n33XcTGxgYUp7i42P19XFycX485+35VY6j9HEjcs2MEasiQIWjQoAEA11ZW+fn5qPwQUWFhIcrPvPlcWlqK06dPAwDsdjvy8/PdMQoKCty/xCUlJe495CoqKlBQ8L9LGOfn58NutwMATp8+jdLSUgBAeXk5CgsLAQCKoiA/Px8Oh8Ndp81mAwCUlZWhqKgIAOB0OpGfn+/eDqyoqMh9XRGbzYbi4mKUlJTgq6++wpEjR6Sr6dSpU1iyZAny8vJqVVOwfbLb7e5raNSrVw+Aa4EjOTm59jX98gsckZGumhISYLNaXX3q0AHHFQVLlixBcXGxq6bycmDSJBQ98ADK2rQBXnwRtiNHal1TYWEhvvrqK3c/Au1T5fOfn58f0Ll35MgRdx569MlXTVV/71NSUhAVFQUAqFOnjjuHoH6foqOBgQNRlJiIsjNzps1qRXFCArB0KRxncpXt98nfOSIvLw9LlizBqVOndO2TqHkvNzcXS5YsQVFRkZQ1iZr3CgoKsGTJEpw8eVK3PuXl5bnnBC1rqvr/sWD6dOLECXd+gZx7xcXF+Oqrr9y5GznviXwdEeo1HT9+3N13s9RUtU+nTp1y1ydjTbm5ue78jD73QnXeO3HiBJYsWYLCwsKg+lQ5d1b+ARjnPc57oVxTZZ8qz+vK9zhkq+ns3zsjz72jR4+6+65XnyrrO378uGY1Vf3/WDB9KiwsxJIlS3DixImAz72qrznNPEeYrabKvuXl5Zmmpqp9knneKyoqwpIlS5Cbmyvk3BOBCxoGWLlyJT766CMAwKhRozwuqF1blScmAMTExPj1mLMXTyp/CdRiBhr37JiBWr9+Pa666ioArn94zZw50/1LNnv2bOzatQsAsHr1anz99dcAgJycHMycOdMd45133sH+/fsBuJ77lStXAgD279+Pd955x32/mTNnIicnBwDw9ddfY/Xq1QBcW3TNnj0bgGsCmDlzpnvCWrx4sfui7Fu2bMEnn3wCwPVLPnPmTPek8sknn2DLli3umhYvXozk5GSMGTMGc+bMka6m3bt3Y9KkSfjrr79qVVOwfTp8+DAKCgqwZ88e9OrVCwDQqlUr3HfffbWvqX595J7ZSm3xzTdjfc+erj5deSW+/vprTJo0CRaLxVXT558DBw7gk+HDseWcc4Ann8T6UaOw+MUXgSNH/K6pqKgI5eXl7gWYQPu0ZcsWTJo0CX///XdA596cOXNw3333ITk5WZc++appWZVPSYwfPx6pqakAgOuvvx5bt25V71Ntf58GDXL16cx1e9b37InFN98MZGcj95dfQnqO+OuvvzBp0iTs3r1b1z6JmvdWrlyJSZMmoby8XMqaRM17J06cwKRJk9zPkR59+uuvv1C3bl0kJydrWlNycjJuv/12zJkzJ6g+rV69GhdffDGSk5MDOvcsFgvKy8vd1yEzct4T+Toi1Gv6+uuv0a9fPyQnJ5umpqp92r17N5o2bYrk5GQpa1q5ciV69eqF5ORkw8+9UJ33Vq9ejUmTJqGoqCioPiUnJ6Nly5buHDjvcd4L5Zoq+5ScnIxevXq5c5CtpuTkZDRt2tR9rVAjz71PPvkEN9xwA5KTk3XrU3JyMvr16+fOQYuatmzZgpYtWyI5OTmoPhUVFWHSpEnuedTfmqr2KTk5Gffddx/mzJlj6jnCbDUlJyejbt26+Ouvv0xTU9U+yTzvlZeXY9KkSVi5cqWQc08IhXRVXFyspKWlKQCU+vXrK7m5uar3mzNnjgJAAaC0aNHCZ7xXXnnFfb8ePXr4lUNJSYn7MQCU33//3eP4hg0bPI6Xlpb6Fbd79+7ux0ybNs2vx/iyY8cOBYBitVqVhIQEZceOHYrdblfy8vIUp9OpKIqiFBQUKGVlZe6aiouLFUVRlIqKCiUvL88dKz8/XykvL1cURVFOnz6tnD59WlEURSkvL1fy8/Pd98vLy1MqKioURXH1qaSkRFEURSkrK1MKCgoURVEUp9Op5OXlKXa7XVEURSkqKnI/PzabTSksLFQURVEcDoeSl5enOBwORVEUpbCwULHZbIqiKEppaalSVFSkKIrCms6qae/evQoAJT4+XomPj1cAKNHR0UpycrKSlZXlf015eUpeSopij4xUFEApSkhQSq1WRQEU24cfetfUq5eiAEphYqJii41VFEAptVqVorp1FeXIEfbJz5q2b9/ungNSUlKUqKgoBYBSp04dZf+SJYoyYYJS9v77wdV08qRSmJzs2aeEBEUBFPtzz7FPrIk1sSbWxJpYE2tiTayJNbEm1sSaWBNrYk0G11T5Xm7l144dOxSjcEFDZ4888oi7sXPnzvV5P38XNN5++233/Tp16uRXDidPnvQ4wfbs2eNxfNeuXR7HT5065Vfcjh07uh/z7rvv+vUYXyp/CSZPnqykpKQY+ktglLy8PGXy5MkeE5ksROWWlZWlpKSkuPte9TysXNDwy/LligKof+3d61nfunW+7zt6dK3y1+p5CzaOyP5V7dk5gPI4oGyr+pxedFHwA6Wnq/era9fgYwsk85ygBdnrE5WfEePqNUa4z3kUHLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ+o3EQuaFgU5czGWKS5zZs3o1u3bnA6nejXrx9++uknn/edO3cuxowZAwBo0aIFsrOzVe+3aNEi3HbbbQBcF+8+evRojXns2rXL4yrzx48fR8MzW/NU/lz1QuC7d+9G27Zta4zbqFEj90e1Fi1ahFtuuaXGx/iyc+dOdOjQAWlpacjJyUFmZqZHzmZgt9uRk5OD1NRU97UGZCEqt+zsbLRp0wapqanIyclx7w8IAFlZWUhLS/Mv0NNPA//3f963N24MHDkCu8Pxv/qGDgW++EI9ztatQKdOfuev1fMWbByR/WvZsiUAYBiAj+BjH8NaPq9eXnsNmDhR/VhODnDuuYHHFkjmOUELstcnKj8jxtVrjHCf8yg4Zu+b7PWJzC9U5z1Z5jwtcyFjmblvstfGOU9cTM554cvsfZO5PlG5Vb6XW2nHjh2GvZfLBQ0dVV2kaNWqlfti12pyc3Pd+8zFxMTg4jP7xQPA008/jWuvvRYAsHXrVnTu3BmAay/VkpISWM9c/NiX5cuX4+qrrwYA1KtXDydPnvS6T926dd0XdFm+fLn7Oha+2Gw2j4uCb9u2DR07dqz2MdUR+UtA4lR9Q/xstVrQ6NcPyMjwvv3GG70XL/74A5g5E5g7F6h67Zf+/YEzexeSf6r2rzmAA77u+NhjwH/+E/hA+/cDrVurH3vnHWDcuMBjExERERERERFRrYh8L5cXBTfI/v378dtvv/n8qlzMAFxXrK96rPJTEABwwQUXICLC1TZFUZCZmVnj2Js3b3Z/f+GFF6rep+rtlReG8TdmZGQkzj///Bof44+hQ4eiTp06msSSzenTp7FgwQKcPn1adCpeROZWp06d4PpeUQH89pv6sUsvBXBWfRdcALz9NnDoEPDCC0CTJq77+voEQDW0et6CjSPDuXUQwCpfBz/5BHA4Ag/eqhXg63+KS5cGHlcwGfqmJ9nrE5WfEePqNQbnPAqG2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MIFjRBjtVrRs2dP988Zan+VfpbVq1e7v7/88stV79OvX7+AY/bu3RuxsbE1PsYf+fn5cDqdmsSSTUREBFJSUtwLUjIRmZvT6Qyu71u2eH7SoqozCxqq9dWvDzz5JJCdDSxaBNTwqSQ1Wj1vwcaR5dya7+vAkSPAjz8GF3zwYPXbf/oJKCoKLrYgsvRNL7LXJyo/I8bVawzOeRQMs/dN9vpE5heq854sc56WuZCxzNw32WvjnCcuJue88GX2vslcn8y56YVbTknC32toAMB//vMfPPHEEwBcn9jYs2ePz/seOnQILVu2hOPMX0dv2rQJXbp08brfxo0b0b17dwCuT1xkZ2cjNTXVZ9wLLrgAf/75JwBg+vTpmBjAX7dXxS2nwpMmW069+irw6KPet8fHA/n5QHR0UDmSb2f3LxHAMQDuzegsFtd2YCNHurb/SkwMfLANG4AePdSPff45cPPNgccmIiIiIiIiIiK/ccspqpVRo0a5t+f5448/MGvWLJ/3/ec//+lezOjVq5fqYgYAdOvWDd26dQMAOBwOTJo0yWfM999/372YkZiYiJEjRwZUh5rOnTsjJiZGs3gyKS8vR2ZmJsrLy0Wn4kVkbjExMcH1/eef1W/v0cO9mKFXfVrFDTaOLOdWEYCvAOwEkPfEE8CBA65PZowaFdxiBgB07Qo0bap+LES3nZKlb3qRvT5R+RkxLuc8kpHZ+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wgWNENSoUSOPT0Q8/PDDWLRokcd9KioqMGnSJHz22Wfu21588cVq41Y9/sknn2DSpEmoqKjwuM+iRYswfvx498+PPfZYtRc7r6309PQaL3Ieqmw2GzIyMmCz2USn4kVkblarNfC+Kwqwbp36sTPbTQH61adV3GDjyHRu3Q2gA4CC++4DmjXTLnBEBHD99erHvvkGsNu1G8sgMvVND7LXJyo/I8blnEcyMnvfZK9PZH6hOu/JMudpmQsZy8x9k702znniYnLOC19m75vM9cmcm1645ZQkarPlFOBasBg4cCB++ukn920dO3ZEly5dYLPZsGbNGhw5csR9bMqUKXjmmWdqzOPpp5/G//3f/7l/Puecc9CnTx9YrVZs2rQJO3bscB/r378/vv32W0RFRflbpk/ccio8Bb3l1N69gK8L0q9YAQwYEFyCVC1NtgyrjW+/Ba69Vv3YunVA797ajkdERERERERERF645RTVWnR0NL788kvceuut7tu2b9+OefPmYeHChe7FjOjoaLzwwgt+LWYAwHPPPYfnn38e0We26jl8+DAWLlyIefPmeSxmDB06FIsXL9ZkMaMqq9UKi8WiaUxZKIoCm80GGdcQReZmsVgC77uv7aYiIoCePd0/6lWfVnGDjSPzuaWpyy93XRtFzfLlxuaiAbP3Tfb6ROVnxLic80hGZu+b7PWJzC9U5z1Z5jwtcyFjmblvstfGOU9cTM554cvsfZO5Pplz0wsXNEJYcnIyFi5ciO+//x533HEHWrVqhfj4eCQnJ6NDhw549NFHsXXrVjz55JN+x7RYLHjqqaewdetWTJw4ER06dEBycjLi4+PRqlUr3HHHHfj+++/x2WefISkpSfOaJk2ahOTkZM3jyqCgoAAvv/wyCgoKRKfiRWRuycnJgffd13ZTnToBVc5PverTKm6wcWQ+tzRltbouMq7mu++MzUUDZu+b7PWJys+IcTnnkYzM3jfZ6xOZX6jOe7LMeVrmQsYyc99kr41znriYnPPCl9n7JnN9MuemF245RVKo/JhSkyZNkJubi61bt5puyymHw4Hc3Fw0bNgQkZGRotPxICq37OxstG7dGg0bNkRubq77AvaAn1sWtW0L/PGH9+0PPgi88QaQlQX8+iscN96I3Px8zevT6nkLNo7I/hm65RQAvPkm8NBD6seOHQMaNdJ+TJ3IPCdoQfb6ROVnxLh6jRHucx4Fx+x9k70+kfmF6rwny5ynZS5kLDP3TfbaOOeJi8k5L3yZvW8y1ycqN5FbTnFBg6TAa2iEp6DeEM/N9f3m9YIFwG23AePHAzNnAqmprjfB774bqFs36LzJRciCxr59QJs26sc+/hgYPlz7MYmIiIiIiIiIyI3X0CA6Y/To0UhISBCdhi6Ki4sxd+5cFBcXi07Fi8jcEhISAuv7L7/4PnbJJa7/fvUVAKA4Px9zd+9Gcdu2wMMPuz65oQGtnrdg48h4buXk5CA7O1vTL5vNBrRu7fpSE2LX0ZCxb1qSvT5R+Rkxrl5jcM6jYJi9b7LXJzK/UJ33ZJnztMyFjGXmvsleG+c8cTE554Uvs/dN5vpkzk0v2l7RmShI2dnZsNvtotPQRVRUFNLS0jS/kLoWROZmt9sD67uvC4K3aOH6RMaBA8DBgwCAKLsdadnZiCosdG1FddFFwF13BZm5ds9bsHFkPLf69OmjeUyr1YrBgwfjoyuvRPS+fd53WLECcDpdF4UPATL2TUuy1ycqPyPG1WsMznkUDLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ/MuemFW06RFLjlVHgKasuiXr2A9eu9bx8+3LX10Pz5wKhR6o/NzQUaNKh9wuShuv6drS6AdABXAGgJ4Nogxn2pTx/8c+1a9YMbNwJduwYRnYiIiIiIiIiIqsMtp4jO6NmzJ2JjY0WnoYuysjKsX78eZWVlolPxIjK32NjY2ve9tBTYtEn9WOV2U6tXu28qi43F+p49URYbC3TooNlihlbPW7BxZD23mgB4GcBGACcAfAngAQDXAEgNIu4rGzZAiYlRPxhC207J2jetyF6fqPyMGFevMTjnUTDM3jfZ6xOZX6jOe7LMeVrmQsYyc99kr41znriYnPPCl9n7JnN9MuemFy5okFQ6d+6MGF9vVIa48vJyZGZmory8XHQqXkTmFhMTU/u+b9wIVFSoH7v0Utd/161z31QeE4PMzp1RHhMD9O0bRLaetHrego0jqn9NmjSB1Wr1eVwB8ASArvD+n83lQYx7qqwMtm7d1A+G0IKGzHOCFmSvT1R+Royr1xjhPudRcMzeN9nrE5lfqM57ssx5WuZCxjJz32SvjXOeuJic88KX2fsmc30y56YXbjlFUuCWU+Ep4C2npk4F/v1v79uTk4FTp1zXUCgqcl04fM0a16c1NmxwLYIsWgTccot2RYS5oUOHYuHChT6PbwfQQeX2+QB8bAjml5P//jfqvfCC94GICODECaBu3SCiExERERERERGRL9xyiuiMlJQURITIBX1ry+l0Ij8/H06nU3QqXkTmFhERUfu++7og+CWX/O+C0ImJwFVXAS+8AOeaNcg/cADOH34Arrwy+KTP0Op5CzaOyP7Nnj0bt912m89Pavzo43FXBDluqa9P2jidwA8/BBndGDLPCVqQvT5R+Rkxrl5jcM6jYJi9b7LXJzK/UJ33ZJnztMyFjGXmvsleG+c8cTE554Uvs/dN5vpkzk0v5nznmELW+PHjkZSUJDoNXRQWFmLmzJkoLCwUnYoXkbklJSXVru9Op+uTF2oqr59xlsLCQsx8/30U/uMfmv7lvlbPW7BxRPYvPj4eCxYsQF5eHrKysry+hr7/vurjzgWQ88MPqo+p/Frr68LfACpatwaaNVM/GCLbTsk8J2hB9vpE5WfEuHqNwTmPgmH2vslen8j8QnXek2XO0zIXMpaZ+yZ7bZzzxMXknBe+zN43meuTOTe9cMspkkLlx5RSUlJQWFiIbdu2mW7LKafTicLCQiQlJUn3KRRRuWVnZ6NVq1ZISkpCYWGhx2qyzy2ntm8HOnVSD7h6NXDZZV4361WfVnGDjSPzuYX8fKB+fddCFOBahLjiCtfX9de7tgnzocYtyaZOBT74wPvgOecAOTmAxaJBAfqRum8akL0+UfkZMS7nPJKR2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT1RuIrec4oIGSYHX0AhPAV1D4513gPvv9749OhooKADi4rRNkoL35JNAixauRYxWrfxeaKjx/Ni8GbjpJvUHb9sGdOwYaMZEREREREREROQDr6FBdMa4ceOQmJgoOg1dFBUV4d1330VRUZHoVLyIzC0xMbF2ffd1/Yx//MPnYoZe9WkVN9g4Mp9bAFwXcb/3XqB1a20/NXHFFUBUlPqxENh2Svq+BUn2+kTlZ8S4nPNIRmbvm+z1icwvVOc9WeY8LXMhY5m5b7LXxjlPXEzOeeHL7H2TuT6Zc9MLFzRIKpmZmSgvLxedhi5iYmLQuXNnxMTEiE7Fi8jcysvLa9f3devUb7/0Up8P0as+reIGG0fmc0tXyclA797qx777zthcAmD2vslen6j8jBiXcx7JyOx9k70+kfmF6rwny5ynZS5kLDP3TfbaOOeJi8k5L3yZvW8y1ydzbnrhllMkBW45FZ5qveXUoUNA8+bqwZYsAQYP1jQ/Esuv8+PFF11bWp0tOho4eRIw6Se+iIiIiIiIiIhE4ZZTRGekp6fDarWKTkMXNpsNGRkZsNlsolPxIjI3q9Xqf999fToD8P2X+tCvPq3iBhtH5nNLdwMHqt9eUQGsWmVsLrVk9r7JXp+o/IwYl3MeycjsfZO9PpH5heq8J8ucp2UuZCwz90322jjniYvJOS98mb1vMtcnc2564YIGSSUtLQ1RvvbED3F2ux3Z2dmw2+2iU/EiMreoqCj/++5rQeOCC4CGDQGHQ/WwXvVpFTfYODKfW7q76CKgcWP1Y5JfR8PsfZO9PlH5GTEu5zySkdn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCLadICtxyKjzVesupiy8GMjO973zXXcCsWcCECcC33wJ9+/7vKzVV87zJGH6fH6NHA/Pmed8pLQ346y9tL0RORERERERERBTmuOUU0RlNmjRBZGSk6DR04XA4cPToUTh8fIpAJJG5RUZG+tf3ggJg2zb1Y5UXBM/IAP78E/jgA+COO4BmzYBWreCYNUuX+rR63oKNI/O5ZQhf205lZ7vOB0mZvW+y1ycqPyPG1WsMznkUDLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ/MuemFCxoklXHjxiHRpBfxLSoqwnvvvYeioiLRqXgRmVtiYqJ/fV+/HnA61Y9dcgmQlwds3ep97K+/UOR06lKfVs9bsHFkPrcM0b+/709hSLztlNn7Jnt9ovIzYly9xuCcR8Ewe99kr09kfqE678ky52mZCxnLzH2TvTbOeeJics4LX2bvm8z1yZybXrjlFEmh8mNKVqsVZWVl2L59u+m2nFIUBWVlZYiNjYVFsi1wROWWnZ2N8847D7GxsSgrK0PV6chry6lnngGef947SKNGwNGjwH//CwwapDqOsncvylJTNa9Pq+ct2Dgyn1s+lZW5Fql+/NH1yZpvvwUSEjzuUqstyXr2BH77zfuOAwcC332nXd4aCsm+1YLs9YnKz4hx9RqDcx4Fw+x9k70+kfmF6rwny5ynZS5kLDP3TfbaOOeJi8k5L3yZvW8y1ycqN5FbTpnz6ssUsmw2m+gUdGOxWGC1WkWnoUpkboqi+Nf3n39Wv/3SS11/nb96tfrxc86BpVUrWHWY1LV63oKNI/O55aGsDJg507WIsXYtUFr6v2Nr1wJXXx147IED1Rc0MjJc48TFBR5bJyHTtwDJXp+o/IwYV68xOOdRMMzeN9nrE5lfqM57ssx5WuZCxjJz32SvjXOeuJic88KX2fsmc30y56YXbjlFUhk/fjySkpJEp6GLwsJCzJgxA4WFhaJT8SIyt6SkpJr7XlHh+mt+NZXXz1izRv14374oLCrSpT6tnrdg48h8bnmIjgamTQNWrvRczABcixzB8LUYYrP5XuwSLGT6FiDZ6xOVnxHj6jUG5zwKhtn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCBQ2SSkZGhmk/pWG1WpGeni7lqqnI3Gw2W819z8z0fgO80iWXuP67ZAnw6afAvfcCbdv+73jfvrrVp1XcYOPIfG55iIgALr9c/dhPPwUXu2tXoF499WOSXkcjZPoWINnrE5WfEeNyziMZmb1vstcnMr9QnfdkmfO0zIWMZea+yV4b5zxxMTnnhS+z903m+mTOTS+8hgZJQeS+aySO39dIeO01YOJE7zvFxQEFBa6//D/bsWOubYx69QLOPVe7pCk4H3wA3HOP9+0WC5CbC9Sv776pVtfQAIDbbwcWLPC+8wUXAHv2BJE0ERERERERERFVEvleLj+hQVIZOHAg4iTc614LpaWlWL58OUp9fdJAIJG5xcXF1dx3X9fP6NlTfTEDABo3Bm6+GTj3XN3q0ypusHFkPre8XHGF+u2KAqxaFVzsgQPVb//jDyArK7jYOgipvgVA9vpE5WfEuJzzSEZm75vs9YnML1TnPVnmPC1zIWOZuW+y18Y5T1xMznnhy+x9k7k+mXPTCxc0SCopKSmIiDDnael0OpGfnw+n0yk6FS8ic4uIiKi+74rie0GjcrupGuhVn1Zxg40j87nl5bzzgKqfrEhKAq6/HpgxA+jePbjYV13l+9iKFcHF1kFI9S0AstcnKj8jxuWcRzIye99kr09kfqE678ky52mZCxnLzH2TvTbOeeJics4LX2bvm8z1yZybXrjlFEmBW06FJ7+2FNq3D2jTRj3A8uXVv4lNcnr1VdfFuq+4AvjHP4CoKNW71XrLKQDo0gXYssX79kGDgKVLg0iaiIiIiIiIiIgAbjlF5JaWloao/2fvzMOjqLI2/nbSSRqys2jQqGFwAQGNqOwIruCOK3FHZlTUGWVUFHfQUcAdR0dQB8UVHBcYh09E0bCDG2EHAdNqhMiaPZ1Op+v7o0lM0tWd7q57656qPr/n6UdSt+rc99S5faqs23VuiIebVsfn88HtdsPn86mWEoRKbU6nM3zcQ72dkZAQWB8jAmT5J8quUTuUx5Yud90FPPAA0K9fyMmMmAlVdmrRIsDrFduXQSwXtyih7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMKUaPHo20tDTVMqRQVVWFWbNmoaqqSrWUIFRqS0tLCx/3UBMavXsHyhVFgCz/RNk1aofy2DKdUBMa1dXA8uXmamkDu8eNun+q9JnRL+c8hiJ2jxt1/1Tqs2reo5LzRGphzMXOcaPuG+c8dTY558Uvdo8bZf8oa5MFl5xiSMAlp+KTiEoK9egBbNkSvMPttwMvvSRXIKOUmEpO1dcDnToBFRXBbffeC0ydKlYkwzAMwzAMwzAMwzBMnMElpxiGYfTYs0d/MgMABg82VwtjDZKSgLPO0m9bsMBcLQzDMAzDMAzDMAzDMIxQeEKDIcWECROQmZmpWoYUysvLMWXKFJSXl6uWEoRKbZmZmaHjvmJF6AOjmNCQ5Z8ou0btUB5bSghVdmrdOuC338zVEga7x426f6r0mdEv5zyGInaPG3X/VOqzat6jkvNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrkwVPaDCkmDt3LmpqalTLkEL79u0xcuRItG/fXrWUIFRqq6mpCR33UGseHHkkkJsLTJkCDBwI3H9/4Nf3lZW6u8vyT5Rdo3Yojy0lDB8euu3zz83T0QZ2jxt1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgteQ4MhAa+hEZ+0uUbC1VcDK1cGN159NfDuu8CZZwJfffXH9sREoE8f4LbbgNGj5YhmTCOmNTQa6dkT2LQpePsVVwAffCBGIMMwDMMwDMMwDMMwTBzCa2gwzEHsPKMY9k0ExajUFmom2eHxAN99p3/Q4MGA1xs82dHQAHz7bWDtjWbI8k+UXaN2KI8tZYQqO/XFF4DPZ66WENg9btT9U6XPjH455zEUsXvcqPunUp9V8x6VnCdSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLHhCg2EYkiSvXQvU1+s3DhoUmLiordVvHzpUnjBGDpoGrF8PTJsGXHQRUFRkzN655+pvLysDVq82ZpthGIZhGIZhGIZhGIZRApecYkjAJafik3AlhfaPH4/sp58ObsjMBPbtA6ZOBR58MLg9LQ04cABwOgWrZaTw9tvA//1foHTY7t1/bJ86Fe4rr4y95JTHA3TsCOj9QuGhh4DHHzemm2EYhmEYhmEYhmEYJk7hklMMc5Du3bsjKSlJtQwp1NfXY8uWLagP9daBQlRqS0pK0o17SqhyUwMHBtbKWLxYv33QoKDJDFn+ibJr1A7lsdUmb74JzJ7dcjIDABYtMmbX5QJOP12/bcECY7YFYem4RQB1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgue0GBIwWtoqIHaGhoOACnff69/wODBgf8+9xzwz38Cl18OdO78R7tOuSmuJ0+YM8/U3750KVBXZ8x2qHU0vvsueAJFAZaOWwRQ94/X0FBnN65zXhxj97hR94/ryauzyfXk4xc7x426b5zz1NnknBe/2D1ulP2jrE0WXHKKIQGXnIpPQpWc6glgQ6iDCguDJy00DdiyBViyJNDWvbtgpYw0Vq0CBgzQbdo1ezYOKyjQbWuz5BQAbN8OHHOMfts77wDXXBOFUIZhGIZhGIZhGIZhGAbgklMMwzAtGByqISkJOPXU4O0OB9CjB3DLLTyZYTVOOQXIyNBtardihTHbRx8d+Ojx2WfGbDMMwzAMwzAMwzAMwzCmwxMaDCkmTpyIrKws1TKkUFZWhkmTJqGsrEy1lCBUasvKygqKe8gJjZNPBmIoSSbLP1F2jdqhPLbaxOls+caN0xlYB+Xhh1Fz9tnG7YcqO/X554Dfb9y+ASwdtwig7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBJacYEjS+ppSXl4eSkhIUFRXZruSUz+dDSUkJcnNz4Wy1aLVqVGlzu9045phjkJubi5KSEvh8PgBAMYA8vQPuvht45pmo+5Hlnyi7Ru1QHlsRMWcO8M03gfU0hgwB0tMBhC5JBkRYcgoA5s8HLrhAv+3bbwNviCjC8nFrA+r+qdJnRr+c8xiK2D1u1P1Tqc+qeY9KzhOphTEXO8eNum+c89TZ5JwXv9g9bpT9U6VNZckpntBgSMBraMQneg+sDwdQEuqATz4BRo6UrIqhgpAJjepqoEMHwOsNbnv8ceChh4yJZBiGYRiGYRiGYRiGiTN4DQ2GOUhBQQFSU1NVy5BCdXU1Zs+ejerqatVSglCpLTU1tUXcB4XbeVDY1pDI8k+UXaN2KI8t5aSmAqedpt+2YIG5Wlph97hR90+VPjP65ZzHUMTucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgCQ2GFGVlZfArrmsvi4SEBGRlZSEhgd7XTqU2v9/fIu4h18847jigc+eY+pDlnyi7Ru1QHlskOPdc/e0rVwIHDpirpRl2jxt1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgsuOcWQgEtOxSd6JYW+B9BHb+cxY4B//9sMWQwRhJScAoBNm4BQ+eSDD4ArrohNIMMwDMMwDMMwDMMwTBzCJacY5iD5+flITk5WLUMKXq8XRUVF8OrV8leMSm3JyclNcU8HcGKoHQeHfHejTWT5J8quUTuUxxYJevQAjjhCv01h2Sm7x426f6r0mdEv5zyGInaPG3X/VOqzat6jkvNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrkwVPaDCkGDZsGFwul2oZUvB4PCgsLITH41EtJQiV2lwuV1Pc+wNIDLXj4MHAG28AF14IPPMM8M03gM8XUR+y/BNl16gdymOLBA4HMGKEftuCBYCiFxXtHjfq/qnSZ0a/nPMYitg9btT9U6nPqnmPSs4TqYUxFzvHjbpvnPPU2eScF7/YPW6U/aOsTRZccoohAZecik9alxSaBOARvR07dwZ+/z1QGuijj/7YnpYWWCj8uuuAa66RLZcxGWElpwDg44+Byy7Tb1u3DujdO3qBDMMwDMMwDMMwDMMwcQiXnGKYg7hcLjgcDtUypKBpGjweDyjOIarU5nA4muI+KNROjeWmlixpub2qCvj8c2DjxrB9yPJPlF2jdiiPLTKceSbgdOq3ffaZuVoOYve4UfdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4AkNhhQTJkxAZmamahlSKC8vx9SpU1FeXq5aShAqtWVmZmLChAnokJmJ/qF2GjwY2LIF2LNHv33o0LB9yPJPlF2jdiiPLSMk/v47rgEwE8BIo8YyM4GBA/XbFK2jYde4NULdP1X6zOiXcx5DEbvHjbp/KvVZNe9RyXkitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJLTjEkaHxNKScnB3v27MHatWttV3KqoaEBe/bsQefOnZGYGHKlCCWo0uZ2u3H00Uejc+fOOGLPHnzT0KC/4+rVwA8/ALfeGtyWmAgcOACkp4fsR5Z/ouwatUN5bEXNV18FykMtWhSYxDrIWwBuaLZb1CWnAGDyZOCBB4K3JyUB+/aFHUMysFXcdKDunyp9ZvTLOY+hiN3jRt0/lfqsmveo5DyRWhhzsXPcqPvGOU+dTc558Yvd40bZP1XaVJac4gkNhgS8hkZ80nyNhDsBvKC3U7t2QHk5cP31wOzZwe19+wYmPBh7cOedwIsvBm3+DUBus79jmtBYswbo00e/bd484KKLorPHMAzDMAzDMAzDMAwTh/AaGgxzkNGjRyMtLU21DClUVVXhzTffRFVVlWopQajUlpaWhtGjR6NfqLj36xf4Bf24ccCkScAZZwQmORo57bQ2+5Dlnyi7Ru1QHltRc+aZupsPB3CcUdv5+UBOjn6bgnU0bBU3Haj7p0qfGf1yzmMoYve4UfdPpT6r5j0qOU+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2j7I2WYRYIZVh1OB2u+Hz+VTLkILT6UReXh6coRYmVohKbT6fD263GwNDxb1xQfB+/QIfAPB6ge++AxYvDkxwtIEs/0TZNWqH8tiKmqFDgYQEwO8PajoTwFYjth0OYPhwYNas4LYFCwBNC+xjEraKmw7U/VOlz4x+OecxFLF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyy45BRDAi45FZ80lpzqBmB7qJ0++wwYMcJEVYxy+vUDvvkmaPPHAC47+O+YSk4BgbJlV12l37ZlC3Cc4fdAGIZhGIZhGIZhGIZhbA2XnGKYg/Tv3x8pKSmqZUihrq4Oq1atQl1dnWopQajUlpKSgnP790edXtwdDmDAAMN9yPJPlF2jdiiPrZhoVXZqM4CXALwmwvbZZ4d+C2PBAhE9RIzt4tYK6v6p0mdGv5zzGIrYPW7U/VOpz6p5j0rOE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WPKHBkCI/Px/JycmqZUjB6/WiqKgIXq9XtZQgVGpLTk5GTn4+vHpxP+EEIDPTcB+y/BNl16gdymMrJi64ABg9GnuefRaHAzgewN8ACJlu6NgxsJC8HiZPaNgubq2g7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBJacYEnDJqfikseTUJgA99Ha4/XbgpZdMVsVQoXF86BFzySkgsLj8xInB210uYP/+lovOMwzDMAzDMAzDMAzDMC3gklMMc5CsrCwkJNhzWPr9fpSVlcGvs9ixalRq65SQgC5ZWfDrxX3QICF9yPJPlF2jdiiPLZKEWpPF4wEKC02TYfe4UfdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2ysOeTY8ayjBs3DhkZGaplSKGiogLTpk1DRUWFailBqNQ2NCMD08aNQ4Ve3AcPFtKHLP9E2TVqh/LYIskppwAdOui3mVh2yu5xo+6fKn1m9Ms5j6GI3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwSWnGBI0vqaUlZWFiooKrFu3znYlp/x+PyoqKpCRkUHuLRRV2txuN+Z064ZbMjKQUVGBhGazyb7DDoPzt9+E9CPLP1F2jdqhPLaMIK3kFABcdRUwe3bw9qOPBrZti91uFNg1bo1Q90+VPjP65ZzHUMTucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7J8qbSpLTvGEBkMCXkMjPnG73fita1foFZaquugipM2bZ7omhg5SJzTefhu4/nr9tq1bgWOPjd02wzAMwzAMwzAMwzCMjeE1NBjmIGPHjkV6erpqGVKorKzE9OnTUVlZqVpKEKq0OTwedE9Px/SxY1HZKu51p5wCfPopcMMNwMyZwI4dQIzzr7L8E2XXqB3KY4ssI0YADod+2//9nykS7B436v6p0mdGv5zzGIrYPW7U/VOpz6p5j0rOE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WPKHBkKKoqAher1e1DCkkJycjPz8fycnJqqUEoUpb8rp1SPN6kV9UhORWcfc0Tmi89Rbw5z8HSgEdcQRw9dXAhx9G148k/0TZNWqH8tgiS+fOQN+++m0mTWjYPW7U/VOW90zol3MeQxG7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+UtcmCS04xJOCSU/HJgXvvRfbTTwdtLwNQtn078s47D/jxx+ADb7kFmD5duj5GLVJLTgHAY48Bjz4avD05Gdi3D0hLM2afYRiGYRiGYRiGYRjGhnDJKYY5yLBhw+ByuVTLkILH40FhYSE8Ho9qKUGo0pby/ffwuFwoHDYMnmZxXwkgcd8+/ckMABg6NKp+ZPknyq5RO5THlkhSAYwA8DSA9DfeMG7wvPP0t3u9wFdfGbffBnaPG3X/VOkzo1/OeQxF7B436v6p1GfVvEcl54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC57QYEiRl5cHp9OpWoYUfD4f3G43fD6failBKNHm9yPlu+/gczrhzsuDr1nclwFI+eab0MdGOaEhyz9Rdo3aoTy2jNIDwEQASwEcAPAZgHsApP/nP8aN9+kDHHKIftv8+cbtt4Gd4wbQ90+VPjP65ZzHUMTucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgklMMCbjkVByyYQPQu7du01AAn157LTLeeSe48eijgW3b5GpjSOB2u/GPrl3xeqgd9uwBOnUy1sno0cCsWcHbc3OBX34JvXA4wzAMwzAMwzAMwzBMnMIlpxjmIDk5OUhMTFQtQwoNDQ0oLS1FQ0ODailBKNG2fHmg78RElObkoOFg3OsBfAugZsQI4I47gBNPbPlQOcq3MwB5/omya9QO5bFllEXhGr/+2ngH55+vv72kJDDpJhE7xw2g758qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMKcaOHYv09HTVMqRQWVmJGTNmoLKyUrWUIJRoW7Ys0Hd6OmaMHYvKg3H/HkAtAM+gQcC0aUBRUWCB5v/+F7j7buCyy6LuSpZ/ouwatUN5bBnFDeCnUI2Lwk53RMbZZwOhJlH/7/+M2w+DneMG0PdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4JJTDAkaX1NyuVyoq6vD+vXrbVdyStM01NXVISUlBQ5iZWyUaOvaFXC7oTkcqEtJQUpdHRyahmcAjAdQXFyMvLw8IV3J8k+UXaN2KI8tI7jdbnTt2hWvArhJbwdR5ceGDgWWLAneftppwOLFxu2HwK5xa4S6f6r0mdEv5zyGInaPG3X/VOqzat6jkvNEamHMxc5xo+4b5zx1NjnnxS92jxtl/1Rp45JTDHMQj8cDu86xORwOuFwucokPUKDtt98AtzvQt6bB5fHAcTDuyyR0J8s/UXaN2qE8tkTwVau/fwdQdeGFwL33An6/8Q7OO09/+/LlQFmZcfshsHvcqPunSp8Z/XLOYyhi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8IQGQ4px48YhIyNDtQwpVFRU4IUXXkBFRYVqKUGYru3g+hkAUJGRgRfGjUPFwbivkNCdLP9E2TVqh/LYEsFXAD4FMA5AbwA5APa++CJw001AgoDLWKgJjYYGYOFC4/ZDYPe4UfdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4AkNhhSFhYXweDyqZUjB5XJh2LBhcLlcqqUEYbq2ZX+8h+HyeDCssBAujwdbAeyR0J0s/0TZNWqH8tgSwW4AFwGYBkDKMt29egG5ufptEtfRsHvcqPunSp8Z/XLOYyhi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8BoaDAlU1l1jFNCnD7BmTdDmfwP4y8F/i1xDg7EmjWto6CF8fIwdC8yYEbz9kEOAXbvEvAnCMAzDMAzDMAzDMAxjA3gNDYY5yIgRI9CuXTvVMqRQW1uLBQsWoLa2VrWUIEzVVlkJrF37R9/t2mHBiBGobdcOy8McZgRZ/omya9QO5bFlGUKVndq9G/jhByld2j1u1P1Tpc+MfjnnMRSxe9yo+6dSn1XzHpWcJ1ILYy52jht13zjnqbPJOS9+sXvcKPtHWZsseEKDIUVWVhYSbPpLaL/fj7KyMvhFLGIsGFO1rVrVYiFnf0ICyrKy4E9IkLIgOCDPP1F2jdqhPLYswxlnAMnJ+m2Syk7ZPW7U/VOlz4x+OecxFLF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyy45BRDAi45FUc8+ijw2GNBm3cDOLTZ31xyijG15BQAnHMO8MUXwdv79gVWrxbbF8MwDMMwDMMwDMMwjEXhklMMc5C8vDw4nU7VMqTg8/ngdrvh8/lUSwnCVG3LWr6H4XM64c7Lw1KnEwMAPIvAAtAJZWXCupTlnyi7Ru1QHluWIlTZqW+/DZSeEozd40bdP1X6zOiXcx5DEbvHjbp/KvVZNe9RyXkitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNBhSjB49GmlpaaplSKGqqgqzZs1CVVWVailBmKatvj7ol+5VaWmYNXo0Vqal4SIAdwGYB+DIk04CTjgB+NvfgM8+M9StLP9E2TVqh/LYshTnn6+/XdOAzz8X3p3d40bdP1X6zOiXcx5DEbvHjbp/KvVZNe9RyXkitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJLTjEk4JJTccJ33wGnnqrb1A/ACwAG6DVeeSUwZ448XQxJTC85BQDHHANs3x68vaAAeP998f0xDMMwDMMwDMMwDMNYDC45xTBMfNCq3FQjNQC2Ajgl1HFDh0oSxFiahgZgzRrgxReB558XYzNU2anPPwfi6PVNhmEYhmEYhmEYhmEYivCEBkOKCRMmIDMzU7UMKZSXl2PKlCkoLy9XLSUI07QtXx7cd2YmnpswAYMzM5EU6jiDExqy/BNl16gdymNLNH8C8ACAQ0aPBjp0APr0Ae68E3j66UBpKKOEmtA4cED4wuB2jxt1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgsuOcWQoPE1pe7du2PHjh1Ys2aN7UpOVVZWYs2aNTjssMPILXzu8/mwc+dOudo0Dbn9+sG5Z0+LzfVJSZjSrRu0HTvwSH198HGdOgUWZHY4Yu66vr4eO3bsQLdu3ZCUFHLaRJldo3Zk+acavZJT5wGYH+qA7duBbt2MderxBCZKamuD2+6/H3jySWP2m2HXuDVC3T9V+szol3MeQxG7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+qtKksOcUTGgwJ7LyGRk1NDcaMGYN58+bB4/GolqOMPwHYEaJtBIBEAAUAhgI4snnjJZcAH38sVxxDEr0JjUwA+xHi9cI33gBGjzbe8YUXAv/7X/D2E08EioqM22cYhmEYhmEYhmEYhrEwvIYGwxxk5MiRaN++vWoZQhkzZgzmzJmDhIQEsv61b99eurbBIbZXtW+PjJEjUdi+Pa4HcBSAPAB7nnkGuPHGwISGQWpqajB37lzU1NQYtiXDrlE7svyjSDmA9aEaly4V08n55+tvX7sW+O03MX3A/nGj7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMIxGPx4N58+aplkGCQSG2bwLQutDUzwCqL7sMmDkTuO46ucIYyxFy2kLUhMa554Zu++wzMX0wDMMwDMMwDMMwDMMwUcMlpxgS2LXklF7JnHhlI4Djdba/DOCvrba5XC4cOHAALpdLvjCGLKG+P1cCmNN8Q0oK0LcvcNppwKRJQGJiRPY9Hg9KS0t12w4bPhzJP/4YtL16+HDsmT5d95icnBweswzDMAzDMAzDMAzD2B4uOcUwB+nevTu5xXVEkZSURNY/2do6QH8yAwCW6/R98cUXC30wXF9fjy1btqBeb9FxAnaN2pHlH1WWAqg5/XRg8uTAWxnl5cCSJcA//hHRZEZNTQ0KCgqQnZ2Nrl276n5e0JnMAAD/55/juBDHZGdno6CgIOLXPO0eN+r+qdJnRr+c8xiK2D1u1P1Tqc+qeY9KzhOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFjyhwZCC6hoTIjBjnYpYka1tYJi2Nc36drlcGDVqFGbOnCm0f64nby92Adg9cyYwYQIweHDgDY0oaFzXxuPxhNzn/0JsT0fo9WA8Hg/mzJmDMWPGRKTD7nGj7h+voaHOLue8+MTucaPuH9eTV2eT68nHL3aOG3XfOOeps8k5L36xe9wo+0dZmyy45BRDgngsObV06VLk5uaarEgN2VOmIHPGjKDtvsMOQ8ny5U1/c8kepjnhvj/FxcXIy8uL2qbH40F2dnbYyQwAcALYCyBTp+1ZAPeEOZZLpjEMwzAMwzAMwzAMY2dUPst1mtILwzBB5ObmxvRA1pKsX6+72Tl0aPycA4YEpaWlbU5mAIAPwEIAV+i0nYfwExqNa3Pw2GYYhmEYhmEYhmEYhhELl5xiSDFx4kRkZWWpliGFrKwssv6VlZVh0qRJKCsrE2/c4wG++06/bdAguX0fRFYfouwatWPGOYxHQpWd6gFA/72R6LB73Kj7p0of5zzOefGK3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwSWnGBI0vqaUl5eHkpISFBUV2a7klNPpRG5uLkpKSuDz+WIumSMDn8+HkpIS5ObmwukU/OLWsmXAkCH6bUVF8PXsKa/vg8jyT5Rdo3akxk8hMkpOhbPZmhwE1uvQ468AXg5zbCT67Bq3Rqj7p0qfGf1yzmMoYve4UfdPpT6r5j0qOU+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2T5U2lSWneEKDIUE8rqFBaUJDKlOmAPffH7w9IyMw2TFvHjB0KNC3b9SLOzP2xuwJDb11bbpceCFSNmwI2rdm2DD88PjjGBJisi5uvt8MwzAMwzAMwzAMw8QdKp/lcskphhQFBQVITU1VLUMKqampZP2rrq7G7NmzUV1dLd74smX62wcOBD77DNVTpmD2v/6F6sMOA04/HZg4EVi6VKgEWf6JsmvUjtT4xRGN69o0/6Rcconuvu1XrcIRHTsa6s/ucaPunyp9ZvTLOY+hiN3jRt0/lfqsmveo5DyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZMETGgwpysrK4Pf7VcuQgt/vJ+tfQkICsrKykJAgOCX4/cCKFfptgwYBixcjwe9HVlkZEmprgcJCYNIk4LHHhMqQ5Z8ou0btSIsfA5x3nv52jweuVasMmbZ73Kj7p0qfGf1yzmMoYve4UfdPpT6r5j0qOU+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2j7I2WXDJKYYEXHLKpmzcCDSLawu+/BK49FKgoiK47fHHgYcekquNIU9M35+ffw68FdSpEzB8uHGbDQ3AoYcC+/YF7V9x3XXIfPvt6PQxDMMwDMMwDMMwDMNYHC45xTAHyc/PR3JysmoZUkhOTibrn9frRVFREbxer1jDocpNOZ2AywVUVMCbnIyi/Hx4m5+XoUOFypDlnyi7Ru1Ii58V+OknYPp04JprgCOPBPLygGuvBf75TzH2ExOBESN0m9p9/bUh03aPG3X/VOkzo1/OeQxF7B436v6p1GfVvEcl54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC57QYEgxbNgwuFwu1TKk4HK5yPrn8XhQWFgIj8cj1vDy5frb+/QBVq8O9O1yoXDYMHgaz0tKSmCBcIHI8k+UXaN2pMXPCrz3HnDrrYH//vrrH9uXLw+UPBNBiLJTSSUl6G7ArN3jRt0/VfrM6JdzHkMRu8eNun8q9Vk171HJeSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgktOMSTgklM25U9/AoqLg7ffdRcweDDw+uuBtzial50aOjSwlgYT90T0/SksDCwmr8e6dUDv3tHbbM2+fcAhh+hOkNwN4LlobDEMwzAMwzAMwzAMw1gcLjnFMAdxuVxwOByqZUjB4XCQ9U/TNHg8Hgid3/ztN/3JDCAwmXHJJcD8+dD27oVn5UpozzwDXHQRcOGF4jQcRIp/Au0atSPLP0vQrx+QlKTftnSpmD46dgT699dtCrFkeETYPW7U/VOlz4x+OecxFLF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyx4QoMhxYQJE5CZmalahhQyMzPJ+ldeXo6pU6eivLxcnNFQ5aYAYNCgP/qursbUzz9H+Z//DMybB9x9tzgNjX3I8E+gXaN2ZPlnCdq1A045Rb9N1IQGELLs1BAA6TGatHvcqPunSp8Z/XLOYyhi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZcMkphgSNrynl5ORgz549WLt2re1KTiUmJqJz587Ys2cPGhoaSJWkaWhowJ49e9C5c2ckJiaKMXrnncCLLwZvP+YY4Mcf5fbdCll9iLJr1I4Z51AFEZeHuu8+4KmnWu7Qs2fgLaDHH4/NZmvWrAms/aLDJQDmRmPrIHaNWyPU/VOlj3Me57x4xe5xo+6fSn1WzXtUcp5ILYy52Dlu1H3jnKfOJue8+MXucaPsnyptKktOOU3phWEipLS0VLUEaTQ0NJD1LzExETk5OWKNLlumv33wYPl9t0JWH6LsGrVjxjkkzemnA4sXA0OGBD6DBgXKRIkkPx/o0gXYtSuo6XwET2hEgt3jRt0/Vfo453HOi1fsHjfq/qnUZ9W8RyXnidTCmIud40bdN8556mxyzotf7B43yv5R1iYLLjnFkGL06NFIS0tTLUMKaWlpZP2rqqrCm2++iaqqKjEGKyuBoiL9tlYTGsL71kFWH6LsGrVjxjkkzYgRwKpVwNNPB9ZhET2ZAQAOB3DuubpNsa6jYfe4UfdPlT7OeZzz4hW7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+UtcmCJzQYUrjdbvh8PtUypODz+cj653Q6kZeXB6dT0Etbq1cDfr9+W7P1M6T0rYOsPkTZNWrHjHPIADj/fN3NhwE4MQZzdo8bdf9U6eOcxzkvXrF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyx4DQ2GBCrrrskk5nr9VmfiRGDSpODtnToBu3cHfu3OMG0g4/tjyGZFReDtD51JyQcATBagj2EYhmEYhmEYhmEYhjoqn+XyGxoMKfr374+UlBTVMqSQkpJC1r+6ujqsWrUKdXV1YgyGWz+j1WSG8L51kNWHKLtG7ZhxDhkAGRmBNTp0iKXslN3jRt0/Vfo453HOi1fsHjfq/qnUZ9W8RyXnidTCmIud40bdN8556mxyzotf7B43yv5R1iYLntBgSJGfn4/k5GTVMqSQnJxM1j+v14uioiJ4vV7jxny+wHoGerRaP0N43yGQ1Ycou0btmHEOmYOcpz91MQBAdpSm7B436v6p0sc5j3NevGL3uFH3T6U+q+Y9KjlPpBbGXOwcN+q+cc5TZ5NzXvxi97hR9o+yNllwySmGBFxyykZ8/z1wyin6bXPnAjt3AkOHAj16cOkpJizkSk4BwKZNQIjcdBWA2Qb1MQzDMAzDMAzDMAzDUIdLTjHMQbKyspCQYM9hmZCQQNY/v9+PsrIy+EMt5B0NocpNuVyByYzbbgs8ED70UODyy+GfNg1lK1eK6TsEQv2TYNeoHVn+MTr06AEcdZRuU7Rlp+weN+r+qdJnRr+c8xiK2D1u1P1Tqc+qeY9KzhOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFvSerDJxzbhx45CRkaFahhQyMjLI+ldRUYFp06ahoqLCuLFQExr9+gHLl//x9549wEcfoWLiRExbuFBM3yEQ6p8Eu0btyPKP0cHhAM4/X7dpBKK7qNo9btT9U6XPjH455zEUsXvcqPunUp9V8x6VnCdSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLLjkFEOCxteUsrKyUFFRgXXr1tmu5FRCQgIyMjJQUVEBv99PqiSN3+9HRUUFMjIyjL1BomnA4YcDu3YFt91/P/D220BJScu+ExJQMW4cMp5+WtrbK8L8k2TXqB1Z/qlGSMmp8nJgxQqgWzfg2GPF2Jw/H7jgAt2mfgC+idCWXePWCHX/VOkzo1/OeQxF7B436v6p1GfVvEcl54nUwpiLneNG3TfOeepscs6LX+weN8r+qdKmsuSU05ReGCZCysrKVEuQRuMrYBRpLIdlmOJi/ckMADj66KDJDABI8PuRddppgMSkK8w/SXaN2pHlnyUpLQWWLv3js24d4PcDDz8MPPaYmD5OPx1ISQHq6oKazkdgQiMS7B436v6p0mdGv5zzGIrYPW7U/VOpz6p5j0rOE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WtKaUmLhn7NixSE9PVy1DCunp6WT9q6ysxPTp01FZWWnMUKhyUw4HUFur33d6OqaXlBjvOwzC/JNk16gdWf5ZkltvBa68EvjnP4GiosBkBhCY3BBF+/aBSQ0dLorCjN3jRt0/VfrM6JdzHkMRu8eNun8q9Vk171HJeSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgic0GFIUFRXB6/WqliEFr9dL1r/k5GTk5+cjOTnZmKFQExq9ewOHHBJYRyMxsWXfxxyD/JNPNt53GIT5J8muUTuy/LMkQ4bob1+9GhD53QuxjkY+gLwITdg9btT9U6XPjH455zEUsXvcqPunUp9V8x6VnCdSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLHgNDYYEKuuuyURIvX4r0bMnsGlT8PZbbwX+9a/Av6uqAmsaLF4MLFkC9O8PPP20uToZSxDT9+ebbwITZ3qsXAl3To6Y7+QvvwBHHaXb9HcAd9rx+80wDMMwDMMwDMMwDAO1z3L5DQ2GFMOGDYPL5VItQwoul4usfx6PB4WFhfB4PLEb2bdPfzIDAAYP/uPfaWnAOecATzwBLF0Kz+OPG++7DYT4J9GuUTuy/LMkJ50UKAmlh8iyU0ceibrevXWbLonQhN3jRt0/VfrM6JdzHkMRu8eNun8q9Vk171HJeSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgic0GFLk5eXB6bTnWvVOp5Osfz6fD263Gz6fL3YjK1aEbms+oSGj7zaQ1Ycou0btmHEOLUNSEjBgQPD2nBxA8AuJNWefrbt9EICEvXvbPN7ucaPunyp9nPM458Urdo8bdf9U6rNq3qOS80RqYczFznGj7hvnPHU2OefFL3aPG2X/KGuTBZecYkjAJadswIQJwNSpwdtzc4FffzVfD2N5Yv7+TJoEvPNOYD2Nxk+3boDDIfQ7+dvChTh8+HDdtr1TpqDTffdFbIthGIZhGIZhGIZhGMYqcMkphjlITk4OElstGm0XEhMTyfrX0NCA0tJSNDQ0xG4k1ILgYd7OENZ3G8jqQ5Rdo3bMOIeW4uGHgW3bgJkzgRtvBI4+GnA4hHdTf8wx2Bairf3ChW0eb/e4UfdPlT7OeZzz4hW7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+UtcmCJzQYUowdOxbp6emqZUghPT2drH+VlZWYMWMGKisrYzPg8QDffqvf1saEhuG+I0BWH6LsGrVjxjm0FAkmXdocDnwSoqndsmVAG/Gwe9yo+6dKH+c8znnxit3jRt0/lfqsmveo5DyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZMElpxgSNL6m5HK5UFdXh/Xr19uu5JTD4UBKSgrq6uqgaRqpklOapqGurg4pKSlwxPJL9uXLQ09crFkD5OfL6zsCZPUhyq5RO2acQxXIKNkm0qbb7cbVXbsi5Oox//kPcPnlIY+3a9waoe6fKn2c8zjnxSt2jxt1/1Tqs2reo5LzRGphzMXOcaPuG+c8dTY558Uvdo8bZf9UaeOSUwxzEI/HA7vOsWmaRtY/h8MBl8sVe+ILVW4qPR3o3Vtu3xEgqw9Rdo3aMeMcMvqsAlAaqvGTUO9vBLB73Kj7p0of5zzOefGK3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwRMaDCnGjRuHjIwM1TKkkJGRQda/iooKvPDCC6ioqIjNQKgJjYEDgTbWDDHcdwTI6kOUXaN2zDiHjD4agHmhGufPB7zekMfaPW7U/VOlj3Me57x4xe5xo+6fSn1WzXtUcp5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsuAJDYYUhYWF8Hg8qmVIwePxkPXP5XJh2LBhcLlc0R/s9wdKTunRpw8wZw5QGvI37Mb6jhBZfYiya9SOGeeQCU3I9zDKy4HCwpDH2T1u1P1TpY9zHue8eMXucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgNTQYEqisuyYTGWsAkGPTJiBUrCZODHwA4NhjgaFDA5/TTgOOOMIshYxFscIaGl27dkUygD0AdN+9uvVW4F//ilonwzAMwzAMwzAMwzAMVXgNDYY5yIgRI9CuXTvVMqTQrl07sv7V1tZiwYIFqK2tjf7gUOWmnM6Wb2b8+CPw2mvAtdcGJjVE9B0hsvoQZdeoHTPOIRMaL4D5oRrnzg28xaSD3eNG3T9V+jjncc6LV+weN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgue0GBIkZWVhYQEew7LhIQEsv75/X6UlZXBH+LBa1hCTWj06QOsWKHf1mxCw1DfESKrD1F2jdox4xzahvp6nAogTbDZuaEadu0Cvv1Wt8nucaPunyp9nPM458Urdo8bdf9U6rNq3qOS80RqYczFznGj7hvnPHU2OefFL3aPG2X/KGuTBZecYkjAJacsTLduwE8/BW+/9VZg+nRAL8W88QYwerR0aYy1EfL9qa4GVq0Cli4Fli2Df8UKJNTW4mIA/43Vpo6+dATKTqXo7XjffcCUKRHbZRiGYRiGYRiGYRiGoQyXnGKYg+Tl5cHpdKqWIQWn00nWP5/PB7fbDZ/PF92BO3fqT2YAQGam/mQG0OINjZj7jgJZfYiya9SOGefQspx4InDWWcCkScCiRUg4+ArmEMHdVAJYFKpx7lzdzXaPG3X/VOnjnMc5L16xe9yo+6dSn1XzHpWcJ1ILYy52jht13zjnqbPJOS9+sXvcKPtHWZsseEKDIcXo0aORlia6GAwN0tLSyPpXVVWFWbNmoaqqKroDly8P3da1K3DMMcHbc3OBZr+Cj7nvKJDVhyi7Ru2YcQ4tS//+upsHS+jqk1ANW7cCmzcHbbZ73Kj7p0of5zzOefGK3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwSWnGBJwySmLcuedwIsvBm8/5pjAIuBA4C2OxYuBJUsC/z35ZODtt83VyVgSId+f6dMD5c9aUQ8gC0BNLDZD6DsEwC6E+KXAk08C998fsW2GYRiGYRiGYRiGYRiqqHyWS6/2DcMw1iHUGxqDBv3x78MOA666KvABgDh6BY6RR0lJSUT7Jf3pTzhcbzuAfgC+FqhpN4AVCPH2xyef8IQGwzAMwzAMwzAMwzCMQbjkFEOKCRMmIDMzU7UMKWRmZpL1r7y8HFOmTEF5eXnkB1VWAmvW6LcNDlPQp9UaIjH1HSWy+hBl16gdM84hNYYMGYKuXbu2+Tli+HDs0zm+BsCREnTNDdXw7bdAq0kYu8eNun+q9HHO45wXr9g9btT9U6nPqnmPSs4TqYUxFzvHjbpvnPPU2eScF7/YPW6U/aOsTRY8ocGQYu7cuaipqWl7RwtSU1ND1r/27dtj5MiRaN++feQHrV4N+P36beEmNET0HSWy+hBl16gdM86hVdEALAOwD8A8AOMB9Eeg3NQsCf3NDdc4b16LP+0eN+r+qdLHOY9zXrxi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8BoaDAl4DQ0LMmkSMHFi8PZOnYDduwGHw3RJjL0I9/2JhkwAFQhMboTD6BoajawD0FvvgLPOAr74ImL7DMMwDMMwDMMwDMMwFFH5LJff0GBIYecZRcozpjG9PbJsmf72QYOimsww480VWX2IsmvUDuW3f4yQk5MDl8tl2E452p7McLlcyMnJMdwXAHwSqqGwEDhwoOlPu8atEer+qdLHOY9zXrxi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8IQGwzDR4/MBK1fqt0VRbophwuFyuXDxxReb0tfFF18sZPIECFN2yucD5s8X0gfDMAzDMAzDMAzDMEw8wiWnGBJwySmL8f33wCmn6LetXAn072+uHsa21NTUYMyYMZg3bx48Ho9w+42TJjNnzoz67alw3+/6ww6Dc+fO4IZLLwU++igWqQzDMAzDMAzDMAzDMCTgklMMc5Du3bsjKSlJtQwpJCUlkfWvvr4eW7ZsQX19fWQHLF+uv93lAvr0kdt3DMjqQ5Rdo3bMOIeqaN++PWbPno0DBw6guLhY+OfAgQOYPXu28FJwNeeco9+wYAFQWwvA3nED6PunSh/nPM558Yrd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMKaiuMSECW62hEWr9jJNPBpYsAaqr5fUdA1xP3vq4XC7k5eUJ/4gqM9WamuHDQzTUNC0Mbve4UfeP19BQZ5dzXnxi97hR94/ryauzyfXk4xc7x426b5zz1NnknBe/2D1ulP2jrE0WXHKKIQGXnLIQmgYcfjiwa1dw29VXA++9BzidwKmnAqedBgwdGlgoPCPDfK0MI5Gw3+9t25DXvz+wb19w4403AjNnSlbHMAzDMAzDMAzDMAwjB5XPcp2m9MIwjH1wu/UnM5rTuGj4ypXA1KlAp07A7t2Aw2GKRIZRjtMJXHgh8OabwW3//W/gO+LkSzBjXTweD0pLS3XbcnJypL39xDAMwzAMwzAMw8Q3XHKKIcXEiRORlZWlWoYUsrKyyPpXVlaGSZMmoaysrO2dQ5WbcjiAX37RbxswIORkRlR9x4isPkTZNWrHjHNoWzQNKC6WY/uSS/S379sHLF9u+7hR90+VPjvkvOuuuw7Z2dno2rWr7ic7OxsFBQUhX3nmnBef2D1u1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsuCSUwwJGl9TysvLQ0lJCYqKimxXcsrpdCI3NxclJSXw+XykSk75fD6UlJQgNzcXzrZ+NX7LLcCrrwZv79kT2LED8HiC2555Brj7buN9x4isPkTZNWrHjHNoGxoagPXrgaVLA59lywJvHP3yC3DEEVGZarOk3KGHBt5O0nuoe+ed8D3zjK3jRn1cqtJn9Zx388034+2334bP52tz/1GjRmH27NnC9VEfW4w+do8bdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7p0qbypJTPKHBkIDX0LAQPXsCmzYFb7/4YmDePP1jvv0WOOUUuboYpi2qqoDcXKC8PLjt3XcDa8BEQUTf78suAz7+OHiHo44KvBnCZdgYC+HxeJCdnQ2P3sS1Di6XCwcOHODyUwzDMAzDMAzDMDZD5bNcLjnFkKKgoACpqamqZUghNTWVrH/V1dWYPXs2qqurw++4f7/+ZAYAHHkk0LFj8Pb0dCA/33jfBpDVhyi7Ru2YcQ5tQVoa0KWLftvSpXL6HDlSf/vPP6N69Wpbx436uFSlz8o5r7i4GCNHjoz4OhZqnQ3OefGJ3eNG3T+V+qya96jc54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC57QYEhRVlYGv9+vWoYU/H4/Wf8SEhKQlZWFhIQ2UsKKFaHb7r47sPD3+vXASy8BV1wBHHooMHhw2MWPI+7bALL6EGXXqB0zzqFtGDJEf3uotWGMcsEFQGKiblPCZ5/ZOm7Ux6UqfVbPeSKuY5zz4hO7x426fyr1WTXvUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WXHKKIQGXnLIIEyYAU6cGb8/NDaxB0Lp8jqYBFRVAZqY5+himLd56C7jhBv22ffuADh0iNhXx9/uss4BFi4J36t0bWLcu4v4YRjXhxnwoLHmtYxiGYRiGYRiGYcLCJacY5iD5+flITk5WLUMKycnJZP3zer0oKiqC1+sNv+Py5frbBw3SXwvA4WhzMiPivg0gqw9Rdo3aMeMc2oZQb2g4HEBRkZw+L7lEd7N361YULVxo27hRH5eq9Fk559XX1wu5jnHOi0/sHjfq/qnUZ9W8R+U+T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8IQGQ4phw4bZdvFQl8tF1j+Px4PCwsLwC716PMA33+i3DR4st2+DyOpDlF2jdsw4h7YhLw84/HAgOTkwETdhAjB/fmB9mDPOkNPnxRfrbva4XChctcq2caM+LlXps3LO83q9Qq5jnPPiE7vHjbp/KvVZNe9Ruc8TqYUxFzvHjbpvnPPU2eScF7/YPW6U/aOsTRZccoohAZecsgDLl4eeuFizJuzC3wxDii1bAhMbBh/KRvX97tsX+Pbb4B0HD5a3IDnDCIZLTjEMwzAMwzAMwzAAl5ximCZcLhcceqWLbIDD4SDrn6Zp8Hg8CDu/GarcVHp6YC0AmX0bRFYfouwatWPGObQV3bsbnsyImpEjgzZpDgc8330HrbTUXC0mQX1cqtJn9Zwn4jrGOS8+sXvcqPunUp9V8x6V+zyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZMETGgwpJkyYgEybLiCdmZlJ1r/y8nJMnToV5eXloXdatkx/+4ABQGKi3L4NIqsPUXaN2jHjHDIG0VlHozwzE1MnTED53Lnm6zEB6uNSlT4r57zq6moh1zHOefGJ3eNG3T+V+qya96jc54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmCy45xZCg8TWlnJwc7NmzB2vXrrVdyanExER07twZe/bsQUNDA6kyHA0NDdizZw86d+6MRL3JCb8f6Nw5sM5Aax57DHj4YXl9C0BWH6LsGrVjxjlkgomq5JSmBd4M+fHHpk0NiYnY07kzOp98MhL/9z/Jas2H+rhUpc/KOW/Hjh0YPHhw03UsEvSudZzz4hO7x426fyr1WTXvUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP1TpU1lySme0GBIwGtoEGfTJiBUPL76Cjj9dHP1MAwBov5+T5gATJ0avHNyMrB3b6B8G8MQhtfQYBiGYRiGYRiGYQBeQ4Nhmhg9ejTS0tJUy5BCWloaWf+qqqrw5ptvoqqqSn+HUOtnJCQEHsZG+EvdmPoWgKw+RNk1aseMc8gIoNU6GlVpaXhz9GhUJScDn32mRpNEqI9LVfqsnPNqa2uFXMc458Undo8bdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLHhCgyGF2+2Gz+dTLUMKPp+PrH9OpxN5eXlwOp36O4RaP6NHD2DwYKBjR+CCC4CnngJWrwbq68X1LQBZfYiya9SOGeeQEUDfvkCXLk1/On0+5LndcPp8gA3X0aA+LlXps3LOS0xMFHId45wXn9g9btT9U6nPqnmPyn2eSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgklMMCbjkFHG6dQN++il4+9ChwOLFwds7dgR27QKSkuRrYxhFxPT9vvVWYPr04O0ZGcDu3UBKiliRDCMQLjnFMAzDMAzDMAzDAFxyimGa6N+/P1Js+kAvJSWFrH91dXVYtWoV6urqght37dKfzAAAj0d/e48eEU9mhO1bELL6EGXXqB0zzmFcUVsrz/YllzT9sy4lBav690ddSgpQUQEsXCivXwVQH5eq9Fk553m9XiHXMc558Ynd40bdP5X6rJr3qNznidTCmIud40bdN8556mxyzotf7B43yv5R1iYLntBgSJGfn4/k5GTVMqSQnJxM1j+v14uioiJ4vd7gxlDrZwDAtm3624cOFdO3IGT1IcquUTtmnENb8+uvwHvvBd6e6NUL6NoVkPXy4rBhQGYmAMCbnIyi/Hx4G3PCe+/J6VMR1MelKn1Wznk+n0/IdYxzXnxi97hR90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgktOMSTgklOEGTcOmDYtePsRRwQeBOuxcCFw9tlSZTGMYTZsAM4/H/jll+C2LVuA444Le3jM3+8bbwTefDN4e7t2gbJTBhdcZhhZcMkphmEYhmEYhmEYBuCSUwzTRFZWFhIS7DksExISyPrn9/tRVlYGv98f3BhqQfCjj9av9+90AgMHiulbELL6EGXXqB0zzqEtOeoooKREv23pUnn9Xn01AMCfkICyrCz4G3NCbS0wb568fk2G+rhUpc/qOU/EdYxzXnxi97hR90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgt6TVSauGTduHDIyMlTLkEJGRgZZ/yoqKjBt2jRUVFS0bKiqAoqK9A+6+mqgrCywKPhjjwFnnhn4hfkppwCpqcb7FoisPkTZNWrHjHNoS9LTgZNO0m8LNZEngtNPBw49FBUZGZg2bhwqmucEG5Wdoj4uVemzcs6rqakRch3jnBef2D1u1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsuCSUwwJGl9TysrKQkVFBdatW2e7klMJCQnIyMhARUUF/H4/qTIcfr8fFRUVyMjIaPnL20WLgLPO0j9o82age/eW27xe4PffA+WojPYtEFl9iLJr1I4Z59C2/P3vwAsvBG//05+AHTvCHmqopNydd8L/0kuoyMhARkUFEhp/SZGYCOzaBXTuHJl+wlAfl6r0WTnn/fTTTzj55JObrmORoPdd4JwXn9g9btT9U6nPqnmPyn2eSC2Mudg5btR945ynzibnvPjF7nGj7J8qbVxyimEOYudXpCi/AhayHFaoX6l37Ki/vkByclSTGWH7FoisPkTZNWqHcjkz8gwerL/9p5+AnTvl9Xv11Ujw+5FVVvbHZAYANDQA//mPvH5NhPq4VKXP6jlPxHWMc158Yve4UfdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1ySJ+PGUswdixY5Genq5ahhTS09PJ+ldZWYnp06ejsrKyZcPy5foHDB4MOBxy+xaIrD5E2TVqx4xzaFuaT2h07w7cdBPw1ltAcTHQpYu8fvv2RWWvXpg+diwqW+cEm5Sdoj4uVemzcs6rqakRch3jnBef2D1u1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsnCqFsAwzSkqKoLX61UtQwper5esf8nJycjPz0dycvIfG30+YOVK/QMGDZLbt2Bk9SHKrlE7ZpxD23LoocBnnwEnn2xumSeHA8mXXIL8L75AcuucsHw54HYDRErSxQr1calKn5VzntPpFHId45wXn9g9btT9U6nPqnmPyn2eSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgNTQYEqisuyYTQzX2VfPDD4GHvHqsWAEMGGCuHoYhhuHv9+bNwPHH67dNngxMmGBMIMMIJtyYDwX5ax3DMAzDMAzDMAwTNbyGBsMcZNiwYXC5XKplSMHlcpH1z+PxoLCwEB6P54+NodbPcLmAPn3k9i0YWX2IsmvUjhnnkBGPp2tXFBYUwKOXE2xQdor6uFSlz8o5z+v1CrmOcc6LT+weN+r+qdRn1bxH5T5PpBbGXOwcN+q+cc5TZ5NzXvxi97hR9o+yNlnwhAZDiry8PDid9qyE5nQ6yfrn8/ngdrvh8/n+2Bhq/YxTTwVSUuT2LRhZfYiya9SOGeeQEY/P54P7+OPh08sJ69cHPhaG+rhUpc/KOa+hoUHIdYxzXnxi97hR90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgktOMSTgklPE0DQgNxfYuTO47f77gSefNF8TwxBDyPe7pAQ48sjAd641/F1jiEG55JTH40FpaaluW05ODsm3IxmGYRiGYRiGYawKl5ximIPk5OQgMTFRtQwpJCYmkvWvoaEBpaWlaGhoCGxwu/UnMwDguOPk9i0BWX2IsmvUjhnnkBFPQ0MDSp1ONAwdqr/De+/pT3RYBOrjUpU+q+c8EdcxkTmvpqYGBQUFyM7ORteuXXU/2dnZKCgoQE1NjSHdjDGo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNExg7969mDdvHh588EFcdNFF6NmzJ7Kzs5GUlIT27dvj8MMPx/DhwzF58mT89ttvUdtftGgRrr/+ehx77LFITU1Fhw4dcMIJJ2D8+PHYsmVLTJo3b96M8ePH44QTTkCHDh2QmpqKY489FjfccAMWLVoUk81IGDt2LNLT06XZV0l6ejpZ/yorKzFjxgxUVlYGNoQqNwUAo0cDRx0FXH898O9/A9u3G3roGtS3BGT1IcquUTtmnENGPE1xu+IK/R1+/hlYudJcUQKhPi5V6bNyzqutrRVyHROZ88aMGYM5c+aErRfr8XgwZ84cjBkzJlbJjACo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJLTpnABRdcgPnz50e0b0pKCu6//348/PDDSEgIP99UUVGBm2++GXPmzAm5T1JSEiZNmoT7778/Yr1PPPEEJk2ahPr6+pD7XHXVVZgxY4awh/ONrym5XC7U1dVh/fr1tis55XA4kJKSgrq6OmiaRqrklKZpqKurQ0pKChwOBzB2LDBjRvCOhx8O6E265eYCW7cC7dsb71sCsvoQZdeoHTPOIROM0ZJTTXGrqoLjsMMAvZx7++3ASy8JUGs+1MelKn1WznnFxcU4/vjjm65jkR7T+rsgKudpmoYOHTpEvPidy+XCgQMHuPyUIqjnBKNQ90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/qrSpLDlFb3Vim9OpUyf06NEDRx11FNLS0lBTU4Pt27fjm2++gc/nQ11dHSZOnIiffvoJs2bNCmmnvr4el1xyCb766qumbb169UKfPn3g8XiwdOlS7Nq1C/X19XjggQdQX1+PRx55pE19jzzyCB5//PGmv7t06YIhQ4bA5XLh+++/x8aNGwEA77//Pvbt24f58+cLXeQ60ocSVkTTNLL+ORyOlg94li3T3zHUBFZmZkyTGbp9S0BWH6LsGrVjxjmMazQNkHBT0BQ3lwsYMQL49NPgnT74AHj+eSApSXj/sqE+LlXps3rOE3EdE5Xz3G53VHoa19mg8mOCeIN6TjAKdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLLjklAkMGzYM06dPx7Zt27Bnzx4sWbIEb7/9Nl555RXMmjULy5cvR0lJCa666qqmY9566y18+OGHIW0+/vjjTZMZLpcL77//PtavX49Zs2Zhzpw5cLvdGD9+fNP+EydOxOLFi8PqXLRoUYvJjPHjx8PtdmPOnDmYNWsWNmzYgPfee6/pS7Jw4UI8KXjB2nHjxiEjI0OoTSpkZGSQ9a+iogIvvPACKioqgP37gYMTV0GUlelvP+00MX1LQlYfouwatWPGOYwrKiqABQuAhx4Chg4FLr1UUjfN4nb11fo77dkDSCzzJxPq41KVPivnvOrqaiHXMVE5r7q62pAOxlyo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNEzgnnvuwS233IKjjz465D6HHnoo3n33XZxxxhlN22bolfwBsHv3bjz33HNNf7/wwgsoKChosU9ycjKeeuopjBo1CkDg7YC2yk41by8oKMBTTz2F5OTkFvtcddVVeP7555v+fuaZZ7B3796wdqOhsLCQ7FsMRvF4PGT9c7lcGDZsWGCyKlzN/tJS/e2hFjWOtm9JyOpDlF2jdsw4h3HBl18CffoA2dnAuecCTzwBLFkSmFCQsLhWi7hdeCGQmqq/43vvCe/bDKiPS1X6rJzzkpOThVzHROW81vcoDG2o5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYLX0CDGO++8g+uuuw4A0LFjR93Jgqeffhr33nsvAODYY4/Fli1bQtZI++WXX9C1a1f4/X4AwA8//ICTTjopaL9vv/0Wffv2BQAkJCTA7XbjiCOO0LWpaRqOO+44bNu2DQDw3HPP4e9//3uUnrZEZd01mRitsa+E++8HpkwJ3t6hQ+DtDT127QJycuTqYhjZLFsGDBmi3/b994HJjmYI/35fey3w7rvB29PSgN9/j7msG8OIItyYD4XMax01PQzDMAzDMAzDMPGCyme5/IYGMTp37tz071Cr08+dO7fp36NHjw674MuRRx7Z4q2PTz75pE2bZ511VsjJDCBQm+2GG25o02YsjBgxAu3atRNmjxLt2rUj619tbS0WLFiA2tra0OtnnH12oPzNxx8Dd94J5OcH1hU49lhDkxkt+paErD5E2TVqx4xzGBeceiqQkqLftnSp8O6C4haq7FRVlf76GsShPi5V6bNyzqurqxNyHROV8+rq6gzpYMyFek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyx4QoMYmzZtavq33i8IPR4PVq1a1fT3sGHD2rR5+umnN/27+SLizfn6669jtrlixQphDxWysrKQkGDPYZmQkEDWP7/fj7KyMvhra4Fvv9XfadAgoFMn4JJLgBdeANasAfbtA/7zHzF9H3yLSAay+hBl16gdM85hXJCSAhx8Uy2IUBN9BgiK29lnAx076u9swbJT1MelKn1Wz3kirmOc8+ITu8eNun8q9Vk171G5zxOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFlxyihA7d+7Eqaeeip07dwIAHnjgATzxxBMt9lm7di3y8/MBBN6UqKmpabNG2oIFC3DuuecCADp06IB9+/YF7ZOdnY2ygws+L1iwAMOHDw9rs7a2Fu2blT9Zt24devfuHfaYcHDJKSKsWBGYuNDjhx8AnXJlDGMrHngAmDw5ePuhhwZKqzV7I07K9/u224BXXgnenpQUWMOmQ4fobTKMIKiVeKKmh2EYhmEYhmEYJl7gklNxTE1NDTZt2oRnn30WJ510UtNkRo8ePTBhwoSg/bdu3dr070MOOSSiBV+OPPLIpn/v378fe/bsadG+e/fupskMADjqqKPatNmuXbsW5bG2bNnS5jGRkJeXB6fTKcQWNZxOJ1n/fD4f3G43fKHK6qSnAwYmrCLq2+eTYl9mH6LsGrVjxjmMG5qvoXHIIcCllwLPPw/Mny+8K924hSo7VV8PfPSRcA0yoT4uVemzcs5raGgQch0TlfMaGhoM6WDMhXpOMAp1/1Tqs2reo3KfJ1ILYy52jht13zjnqbPJOS9+sXvcKPtHWZsseELDZJYtWwaHw9H0SU1NRc+ePXHPPfdg9+7dAIDzzjsPK1asQHp6etDxzd+uOPTQQyPqM6fV+gb7Wy3s3PqNjVjstrYZK6NHj0ZaWpoQW9RIS0sj619VVRVmzZqFqu++099hwABA0kRMU99VVVLsy+xDlF2jdsw4h3HDoEHA668DW7cG3oj46CNg3Djg5JNbvJ0hAt24DRwIhJpUtljZKerjUpU+K+e82tpaIdcxUTkvnmrE2gHqOcEo1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2Vt0tAYU1m6dKkGQPeTnZ2tvf/++2GPf+qpp5r279evX0R91tTUtOjnu+++a9H+zTfftGivra2NyG7fvn2bjnnmmWciOiYUGzZs0ABoLpdLS0tL0zZs2KD5fD7twIEDmt/v1zRN08rLy7W6uromn6qqqjRN07T6+nrtwIEDTbbKyso0r9eraZqmVVdXa9XV1ZqmaZrX69XKysqa9jtw4IBWX1+vaZqmVVVVaTU1NZqmaVpdXZ1WXl6uaZqm+f1+7cCBA5rP59M0TdMqKyubzo/H49EqKio0TdO0hoYG7cCBA1pDQ4OmaZpWUVGheTwerbi4uMknAFpiYqKWlZWlORwOrbi4mJZPDQ2aJydHq0hP1zRAa0hI0A5kZWkNCQmaNmlSk0+apmm1tbVaZWWlpmmaLeLEPrFPsfhUXFysORwOLSsrS0tMTNQAaGlpaZrL5dKKi4tj9+n++zW/w6FpgFaekaHVJSdrGqDVtGunVf34I8eJfVLmU3FxseZ0OrWsrKym639mZqaWlJSkAdDat2+vtW/fXgOgJSUlaZmZmVpxcbE0n3bs2KEB0NLT07WUlJQW9xGtr7kAtIyMDO3Hg98hO8eJfWKf2Cf2iX1in9gn9ol9Yp/YJ/ZJtk+Nz3IbPxs2bNDMgt/QMJnDDjsMt99+O26//XbcdtttuO6669C3b184nU4cOHAAV111Fc444wz8+OOPusd7PJ6mfycnJ0fUZ0pKSou/W/+isbnNWO2K+pVk//79cfnllwMA9uzZg2nTpjUtOD5z5symRdMXL16MTz/9FABQUlKCadOmNdl45ZVXsGPHDgDAwoULsXDhQgDAjh078Eqz2vTTpk1DSUkJAODTTz/F4sWLAQQWZp85cyYAoK6uDtOmTWsq0/Xhhx82Lcq+Zs0avPvuuwCAiooKTJs2DRUVFQCAd999F2vWrAnyqXPnzhg3blzTuSPl09atWJOXh3evuSbgU0YGpo0bh4qMDGDw4BY+rVq1Ch9++KGt4sQ+sU+x+JSSkoJx48Y1leC7/PLL0b9/f2M+paSgrjFHjBmDTccfH/Bp6FB8OmeOUJ8WLVoEt9uNJUuW4NVXX4Xb7ca2bdswbdo0rF27Fm63G++88w4WLFgAt9uNRYsW4Y033oDH47FUnOw49lT5lJubi3HjxjVpvfXWW9GtWzcAwDnnnINzzjkHANCtWzfceuutUn2qqakBAFxzzTU46eAaT+GuuWPGjMHPP/8cF3Fin9gn9ol9Yp/YJ/aJfWKf2Cf2iX0ywyclmDZ1woTlt99+00aPHt3ibY21a9cG7Wf3NzQmTJigdenSxZZvaGRmZmoTJkzQjjjiCHJvaJSWlmqTJ03Sfu/cOfgNDadT06qqpM1Kl5WVaU8++aS2a9cuaXEqKSnRJk+erO3fv1/orPTevXu1J598sklvrHEqLS3VJk+erO3evTumsffzzz836eBfD1jnDY3ff/9dmzx5slZaWhrsU69e+m9o9O8vxKfq6mrt6quvbvqlfXJyspaRkaEBCOkTAC0lJUVLT0/XXC6XNmrUKG3nzp0h4/Tbb79pkydP1vbt20dy7DV+737//XdTx96ePXu0yZMna7t27ZL2ffr999+bcoJIn9avX990HWu8/sfyhsbOnTub9MWSI/bv3689+eST2tq1a4W+oVFbW6sVFxdr69ev17Zt26YVFxdrmzdv1vbt2yclTlbMe0Z8KikpaYq7XXxqHqfS0tIm/yj69NtvvzXpM3vsWTXv7dy5U5s8ebK2d+9eQ3FqvNctLS2Nyie9vLd//35pcaL0fbKLT3bOe43j+rfffiPpU+vvnZlj75dffmmKu6w4NfpXUlIizKfm1zEjcdq7d682efJkbefOnTGPvUb/fv75Z1vnCLv51Bi333//3TY+NY8T5by3b98+bfLkydpvv/0WN29o8IQGMe64446mgdCjR4+mL1oj//rXv5raTzjhhIhs7tu3r8UA27JlS4v2TZs2tWhvvFFui969ezcdM3369MgcDEHjl6B79+5aUlKSqV8CmRQXFzedo6SkpCb/ADQ95KGA1+vVNt96q+ZNStI0oOXnlFPk9715c1NCt1IfouwatWPGOWSCaf79bv2J5PsdNm5PPhn8XWz8bN5sWPuoUaNCao/mM2rUqNj8I4AqfVbOedu2bWtxHYvko/ddEJXztm3bFvWY1dNTXV2tjRo1qmnirvWncQKv8X82mNignhOMQt0/lfqsmveo3OeJ1MKYi53jRt03znnqbHLOi1/sHjfK/qnSpnJCw6FpmtbWWxyMedTU1KBLly5NrwF9+umnuOCCC5raP/jgA4waNQpAYPHu0tLSNm1u2rQJPXv2bPp79+7dTeVRGv9uvhD45s2b0b179zbtHnLIIU2vNX3wwQe44oor2jwmFBs3bkSvXr2a/t6wYUMLzVbF7Xaja9euum3FxcXIy8szV1A4jj4aOPjaWwtuvx146SXz9TAMcaR+v4uLgT/9Sb/tkUeASZNiNu3xeJCdnR1UbjAWXC4XDhw4AJfLZdgWQ59wYz4UMq91ovQUFBRgzsFybuEYNWoUZs+eHVV/DMMwDMMwDMMwdkTls1xeQ4MY7du3x8CBA5v+Xr58eYv24447runfu3fvjuiB1C+//NL07w4dOrSYzAACExNZWVlNfzfWlw6Hx+NpmswAENEESCSMHDkS7du3F2KLGu3btyfrX01xMeb29Ta8hAABAABJREFU7o0aPW0zZgB9+gB//zswdy6wb5/YvmtqMHfu3KZa6DKQ1Ycou0btmHEOGfGEjVvXrkCza0EL3nsv8K5GjJSWlgqZzAAC14JQE+vUx6UqfVbOeR6PR8h1TFTOEzGOPR4P5s2bF9G+8+bNE/bdiUeo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNAiSnZ3d9O99rR4eH3fccUhICIRN0zQUFRW1ae+HH35o+nePHj1092m+vXFhmEhtJiYm4thjj23zGIYw33wTus3nA9asAV54AbjkEqBTJ6B3b+ETGwzDtOLqq/W3b98OfPeduVoYxqZEM8EXbgKPYRiGYRiGYRiGMQcuOUWQ008/HYWFhQCA++67D1OmTGnRPmjQIKxYsQIAMHnyZEyYMCGsveHDh2PhwoUAgIcffhiPPfZY0D4PPvggnnzyyab9FyxYENbm5MmT8cADDwAAhgwZgiVLlrTtWBi45JRi/v73wIRFa7KygLKy4O1dugC//QY4HJKFMQxdpH+/d+8GDjsMaGgIbhs3Dnj++ZjMxlKmJxykchkjFTuWnIrWBo93hmEYhmEYhmEYLjnFNGPfvn1YuXJl0996b1SMHDmy6d9vvvlmWHu//vorFi1apHtsKJtffvklSkpKwtpt3m8om7HQvXt3JCUlCbNHiaSkJLL+1a9YgS3du6O+tTanU/+A004TNplRX1+PLVu2oL6+Xog9M/sQZdeoHTPOYVzj8wHffgs891zgLaWnnxZits24HXIIcPbZ+m2zZ+tPdBhk6dKlKC4uDvosXbo0alvUx6UqfVbOeT6fL+rrWElJCdxud9PH4/EIy3k+ny+m4xk1UM8JRqHun0p9Vs17VO7zRGphzMXOcaPuG+c8dTY558Uvdo8bZf8oa5MFT2hIZv/+/RHv6/f78de//hV1dXUAgJSUlBYLgjdyww03IDU1FQCwdetWvP766yFt3nfffWg4+NBrwIAB6NOnj+5+p556Kk499VQAQENDQ9i3Pl599VX8+OOPAID09HRcf/31EXgXGVTXmBAB2TU0qqpQs20b5o4cGbyGRqjxO3SosO6tWmNUpF1eQ4MoH30UmFDIygL69gXuvjuwjsynnwoxH1HcQpWdKi0Fvv5aiI7m5ObmIi8vL+iTm5sbtS3q45LX0IieWNbQGDJkCLp27dr0yc7Oxo033khmDQ3GPKjnBKNQ94/ryauzyfXk4xc7x426b5zz1NnknBe/2D1ulP2jrE0aGiOV559/XjvllFO0WbNmaeXl5SH3W7t2rTZ8+HANQNPnoYceCrn/ww8/3LRfu3bttDlz5rRo93q92n333dfCXmFhYVitX375ZYv977vvPs3r9bbYZ86cOVq7du2a9pk0aVIEZ6FtNmzY0KLvDRs2CLGrmuLi4hZ+Nf8UFxerlhdg0SJNCywxHPln40bVqhlGPtOm6Y//lBRN83jM+X5XVGiay6Wv48YbYzIZi25L5DJGOuHGQbSfUaNGKdHTerxGa4PHO8MwDMMwDMMwjNpnuSHqyZjL+vXrsWXLFrRv3x4DBgxAhw4dwu7/5ptv4pdffsEjjzxikkJjfPfdd7jhhhvgdDrRvXt3HHfcccjOzobD4cC+ffuwbt06bN++vcUxl112GR599NGQNh9++GEsX74cX331FWprazFq1Cj84x//QJ8+feDxeLBkyRLs2rWraf9JkyZhaBu/qj/zzDPx0EMP4R//+AcAYOrUqXj77bcxZMgQuFwufP/999iwYUPT/meffXbTOhqMhVm2TH97hw7AqlXAkiXA4sWBzy+/AJ07AyEWl2cYWzFkiP72urpACaoY3lqImvR04KKLgA8+CG776CPgX/8CXC75OhhGMPPmzYPH44GLxy/DMAzDMAzDMAwTBUpLTpWUlGDQoEHIz89HQUEBLrroInTp0gV/+9vfUFVVFfK4f//735g0aZKJSmMnJSWl6d8+nw8bNmzARx99hNdffx2vvfYaPv744xaTGenp6Xj22WcxZ84cOEOtX4DAegwff/wxrrzyyqZt69evx6xZszBnzpymyYykpCQ88cQTEU/+PPbYY3j88ceb6mPv3LkTc+bMwaxZs1pMZhQUFODDDz8MqzEWJk6ciKysLKE2qZCVlUXTv2XLUJaVhUkTJ6KsubbBg4FjjgH+/GfgrbeAn38GiouBOXOELgZeVlaGSZMmoUxv8XHifYiya9SOGecwLjnhBCAjQ78t1ERgFEQct1BlpyoqAiWwiEJ9XKrSZ+WcV1VVJeQ6lpWVhQkTJgT9mCNSGv0Ld6/I0IN6TjAKdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLByapmkqOq6trcVJJ52Ebdu2QdM0ZGZmor6+HjU1NXA4HOjWrRvmz5+PY445JujYIUOGYMWKFU1rQ1Dnxx9/xJdffonVq1dj48aN+OWXX5oGWUZGBrp06YL8/HycddZZuOyyy5CWlhaV/S+//BKzZs3CypUrsWvXLiQlJeGII47A8OHD8ec//1l3YfG22Lx5M15//XUsXLgQv/76K+rr69GlSxcMGDAAN9xwA84666yobYZj48aN6NWrF/Ly8lBSUoKioiL07NlTaB8qcLvd6Nq1KwDA6XQiNzcXJSUl8Pl8KC4uRl5enlqBPh+QnQ2fx4OS3FzklpTA2bjI6lNPAePHmyDBh5KSEuTm5gqfIJPdhyi7Ru2YcQ7jlnPPBRYsCN5+3nlwv/xy0/e7NZF8vyOOW10dkJMD6N2cnH468NVXYftpTfO81JpQumM5hvq4VKXPyjlvx44dOOuss5quY83p168fVq9eHZGdxuvhl19+iW7dukWto9G/hoYGHH300VEd23q8hhvbkRzPRA71nGAU6v6p1GfVvEflPk+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2T5W2xme5jWzYsMG0Z7nKJjSeffZZjB8/Hnl5eXjnnXcwcOBANDQ04JNPPsE999yDX375BYceeii++OKLFicHsN6EBtM2Kr8EMonlIaCprFkDhFgoHsuXAwMHmquHYajxxBPAQw8F/u1yAf37B0pRnXkm3EcdZd73+9ZbgenT9du2bgWOPTZiU2ZNaDD2I9w42LhxIx577LGmUlKRYHTsRDsZodcnT2gwDMMwDMMwDMNEj8pnucpKTn300UdwOBx49913MfDgQ9PExERcfvnlKCoqwplnnonff/8dZ5xxBtasWaNKJmMyBQUFSE1NVS1DCqmpqfT8O1g2pzo1FbMLClDdqC0lBTj5ZFMkVFdXY/bs2aiurrZcH6LsGrVjxjmMWy66CJg6FVixAigvB77+GnjsMaCNNYkiIaq43Xxz6LZXXzWsRQbUx6UqfVbOebW1tSGvY+3bt8fs2bNx4MABFBcXN32WLl0atG/j9bC2tjYmHY3+xXo8owbqOcEo1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtslA2obF582YcfvjhGDBgQFBbVlYWPvvsM4waNQp79+7FmWeeGXEZA8balJWVwe/3q5YhBb/fT8+/wkIAQILfj6yyMiQ0auvbNzCpYQIJCQnIyspCQoK8dCSrD1F2jdox4xzGLb17A/feCwwYACQnCzUdVdxOOgk45RT9tjffDJSlIgb1calKn9VzXlvXMZfLhby8vKZPbm5u0D6N10POefGF3eNG3T+V+qya96jc54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC2Ulp5KTk3HSSSeFnajQNA1jxozBrFmzkJ6ejvnz52Pw4MFccsqGcMkpBdTVAZ06AXqLqk6YAEyebL4mhrEQpn+/X38duOkm/bb33gOuuioiM1xyiokVamOHS04xDMMwDMMwDMOoIS5LTnXs2BE7d+4Mu4/D4cAbb7yBP//5z6isrMR5552Hr7/+2iSFjAry8/ORLPhX0FRITk6m5V9hYdNkhjc5GUX5+fA2ahs+3DQZXq8XRUVF8Hq9lutDlF2jdsw4h4x4oo5bQQGQnq7fNmOGOGGCoD4uVemzcs6rr68Xch1rvB7W19fHdHyjf7Eez6iBek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyyUTWj06tULO3fuhNvtbnPf1157DWPHjkVVVRUuuOACbNu2Tb5ARgnDhg2Dy+VSLUMKLpeLln///W/TPz0uFwqHDYPH5QKysoBBg0yT4fF4UFhYGPEispT6EGXXqB0zziEjnqjjlpYGXHutftvixcCWLeLECYD6uFSlz8o5z+v1CrmONV4PY73hbvQvnm7Y7QD1nGAU6v6p1GfVvEflPk+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2j7I2WSgrOfX4449j4sSJmDRpEh566KGIjrnjjjvw0ksvweFwAACXnLIRXHLKZDQNOOoo4Ndfg9uuuipQvoZhmLAo+X4XFQXW09DjrruAZ59t0wS1skGMdaA2drjkFMMwDMMwDMMwjBrisuTUyJEjoWkaXnrpJdTW1kZ0zIsvvoh77rkHiuZgGBNwuVxNE1Z2w+Fw0PFv7doWkxmawwGPywXN4QD+9z/grLOAxx8HliyRvtiwpmnweDxSv9ey+hBl16gdM84hI56Y4pafD/Ttq9/25psAoV9kUB+XqvRZPeeJuI41Xg8558UXdo8bdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLJRNaPTu3Rvbt2/H8uXLkZiYGPFxTz31FFasWIGvvvpKojpGFRMmTEBmZqZqGVLIzMyk41+zclMAUJ6ZiakTJqA8OxuorAQWLQIeeQQYOhTIzASGDQN27ZIipby8HFOnTkV5ebkU+zL7EGXXqB0zziEjnpjjdsst+tv37wc++si4MEFQH5eq9Fk551VXVwu5jjVeD6urq2M6vtG/WI9n1EA9JxiFun8q9Vk171G5zxOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFspKTjFMcxpfU8rJycGePXuwdu1a25WcSkxMROfOnbFnzx40NDSoLVtxyinA9983/dmQmIg9nTujc3o6EvXWqElNBQ4cAJKShEtpaGjAnj170Llz56gmNyn0IcquUTtmnEMmGKOldGKOW3U1cNhhQEVFcNuQIYE3q8JgVtkg6uNSlT4r57wdO3Zg8ODBTdex5kQzdhqvh8uWLUO3bt2i1tHoX3V1NY4++uiojuWSU+qgnhOMQt0/lfqsmveo3OeJ1MKYi53jRt03znnqbHLOi1/sHjfK/qnSFpclpxhGj9LSUtuujdLQ0EDDv99+azGZAQCJDQ3IKS0NnfgGDZIymQEEHmzl5ORITbqy+hBl16gdM84h0wxNA376CakffYTXAJwVo5mY45aaGnpx8KVLgc2bY1QkFurjUpU+q+c8Edexxush57z4wu5xo+6fSn1WzXtU7vNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrkwVPaDCkGD16NNLS0lTLkEJaWhoN//73v6BNVWlpeHP0aFTt369/zNCh0uRUVVXhzTffRFVVleX6EGXXqB0zziED4L33gFGjgNxcoFs3dL7nHvwFwPkxmjMUt1BlpwDg1VdjVCQW6uNSlT4r57za2loh17HG62Gka6i1ptG/WI+3BJoG+P2qVQiFek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyycqgXEiqZp2Lt3b1P95NTUVHTq1InGgstMzLjdbvh8PtUypODz+Wj412r9DABw+nzIKy+HU6+EDSB1QsPpdCIvLw9Op7x0JKsPUXaN2jHjHDIAPv8c+OCDoM1DYjRnKG4nnAD07w+sWhXcNmsW8OSTQLt2MSoTA/VxqUqflXNeYmKikOtY4/Uw1l8QNfoX6/EejwelpaUAgJKSkphsGMLjAdauBdavBzZuBIqLgV9+CZR2rK4GamoCH00DsrKA7GygQwegc2ege3egd+/Ap2dPoH178/XHCPWcYBTq/qnUZ9W8R+U+T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZWGYNje+//x5ffPEFvvnmG6xduxYlJSVB/0PtdDqRm5uLE088EX379sXZZ5+Nk08+WZFiJhpU1l2TidEa+8KprgY6dgTq6oLb7r0XuPRSYPHiwGfZskCN/nbtgLIyIDnZXK0MQ43XXwduuilocwOAbACVzbaZ8v1+803gxhv12956C7juOt0ms9bQYOwHtbET7foXANCvXz+sXbsWHo8npj5j0lxfD6xcCSxYABQWBso+er0x9d+ChASgXz9gxAjg3HOBk08ObGMYhmEYhmEYhpEMr6ERgk2bNmH8+PE4/PDD0bdvXzz44IOYN28e3G436uvroWlai099fT3cbjfmzZuHBx98EH379sXhhx+O8ePHY+PGjardYSKgf//+SElJUS1DCikpKer9++IL3cmMupQUrDrpJNTl5wcmNubPB/bvB777LvDQVOJkRl1dHVatWoU6vUkW4n2IsmvUjhnnkEFgwW0dEgEMiMGc4bhdeSWQmanfRqDsFPVxqUpfuH49Hg/cbnfYTyQP4mX55vV6hVzHGq+H3hgf6jf6F8vxq1evjnkyIyr8/sAPA265BTjkkMCbjpMnByY2RExmNPaxciXw6KNA375ATg5wxx3AunVi7AuGek4wCnX/VOqz6r0elfs8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mRBckLjq6++wvDhw9G7d28899xzKC0tDZq8CEXr/UpLS/Hcc8/hhBNOwPDhw/HVV1+Z6AkTLfn5+Ui26ZsAycnJ6v3TKTcFAN4uXVBUVtby4VBiYuDXnldeKVWS1+tFUVFRzA+2VPYhyq5RO2acQwbAsccGHkzqMDgGc4bj1r59yLcwsGxZoJSNQqiPS1X69PqtqalBQUEBsrOz0bVr17Cf7OxsFBQUoKamJqo+RODz+YRcxxqvh7GWrmr0T3kJRz1++gl4+GGgW7fAJOirrwbecjSDPXuAf/4TOPFE4NRTgRkzgBjWGdGbWBMxCUQ9JxiFun8q9Vn1Xo/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsiBVcuqHH37A+PHjUVhYCABNExcOhwM9e/bEkCFDkJ+fjx49euDwww9Hp06d0L59e2iahtraWuzZswe//fYbNm/ejLVr12Lp0qXYuHFjCzsAMGzYMDz99NPo06ePEj+ZYLjklAk0NABdugQeeLRmzBjg3/82TwvDWJXLLgM+/hgAoDkcWK9pWArgIwBfN9vNtO/3hg2BWvp63HEHMG1a0GZqZYMYoKCgAHPmzInqmFGjRmH27NmSFOlDbezEUnLKKCE1//ADMHUq8OGHtBbzPvRQYPx4YOxYIDU17K41NTUYM2YM5s2bFzSB4XK5cPHFF2PmzJlob6F1OxiGYRiGYRiGkQOXnAJwyy23oF+/figsLGyagDjzzDMxY8YMlJaWYt26dXj55Zdx0003YfDgwejatSvS09ORmJgIp9OJ9PR0/OlPf8KQIUNw88034+WXX8a6detQWlqKGTNm4KyzzgIQmCQpLCxEv379MHbsWJUuMzpkZWUhwab1nxMSEtT69803+pMZAPwXXoiysjL4FTyE8fv90vuW1Ycou0btmHEOmYMUFAD33Qd8+il+XbMGJwL4K1pOZkSKkLj16gUMHKjf9tZbMf06WxTUx6Uqfa379Xg8mDdvXtR29B46h+pDFH6/X8h1rPF6aPmcp2nAl18CZ58deKPxgw9oTWYAwO+/A/fcA+TlAU89pb+G1kHGjBmDOXPm6I4rj8eDOXPmYMyYMTFLIRM3SVD3T6U+q97rUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WZJ4cv/baa2hoaEB6ejruvfdebN++HV988QVuuukmdO7cOWa7nTt3xk033YSFCxdix44dGD9+PNLT09HQ0IDXXntNoAeMCMaNG4eMjAzVMqSQkZGh1r8Q5abgcqGib19MmzYNFRUV5moCUFFRIb1vWX2IsmvUjhnnkDnIFVcAU6YAF1wAf6j1KyJEWNxuvll/e1kZ8J//GLNtAOrjUpW+1v2WlpbGVM7H4/GgtLQ0oj5EUVNTI+Q61ng9DFc2KxyN/sV6fDhcLhf69evX9o7ffgucdlpgMuPLL2PrLDU1sKj3jTcCkyYBr70GvP9+4Hr95ZeBda8++ACYPh148snAfqecArRrF31fe/cGJmN79gysk9WKSCfWwk2ktQX1nGAU6v6p1GfVez0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJMyanMzEzcc889uPPOO6U/8K2oqMALL7yAZ599FuXl5VL7YiKj8TWlrKwsVFRUYN26dbYrOZWQkICMjAxUVFTA7/ebX6alVy/9mvrnnw//f/+LiooKZGRkmP4Gid/vl963rD5E2TVqx4xzyARjtJSOsLjV1gKHHaZfp3/gQGD58habzCobRH1cqtLXul8jZZPMPvc//fQTTj755KbrWCRa9PxrvB5+//33+NOf/hS1jkb/9u/fj27dukV9fGuWLl2K3NxcAEBOTg5KS0tDxuSXFStwxL/+BbzzTvQdpaYCZ54JnHMOMHhw4LqcmBi9nYYGYMsWYOFC4LPPgMWLo19o/PzzgRdfBA6e/2jGYaz3L9RzglGo+6dSn1Xv9ajc54nUwpiLneNG3TfOeepscs6LX+weN8r+qdKmsuSU05ReImDHjh3o1KmTKX1lZGTgkUcewW233WZKf0zklJm1cKYCGl8BU8JPP4VeIPiii5rKf6jAjL5l9SHKrlE7KuPHxI6wuLVrB1x/feDhZGtWrAiss9HsJsMsqI9LVfqsnvNEXMcar4dt3WyHewslJydH2M16bm5umw/o2wO4D8DhZ5wBRPOGgtMJnHcecN11wAUXAC6XEakBEhMDb1r07An8/e9AdTXwySfA668HJjciYf58oLAQeO454KabjGuKAOo5wSjU/eN7PXU2RdihPr4YfewcN+q+cc5TZ5NzXvxi97hR9o+yNlmQmVIyazJDdZ9MeMaOHYv09HTVMqSQnp6uzr9PPw3ddsEFqKysxPTp01FZWWmepoOY0besPkTZNWpHZfyY2BEat1BlpwBgxgzj9mOA+rhUpS+afpcuXYqlS5dK7SMaampqhFzHGq+HoUpG1dTUoKCgANnZ2ejatWvQ54QTTsBdd92FG264wZCOSDkdwHoAjwBIiHQyo3t34KWXgF27gHnzgMsvFzOZoUdqKnDttYEJim3bApMckZSlqq4GbrkFOP98JO7eLUdbM6jnBKNQ94/v9dTZFGGH+vhi9LFz3Kj7xjlPnU3OefGL3eNG2T/K2mRBZkKDYQCgqKgI3mjLJlgEr9erzr9Q62eccgpw2GFITk5Gfn4+kpOTzdUFmNK3rD5E2TVqR2X8mNgRGreePYFBg/Tb3n4bkLDWQFtQH5eq9EXTb25ublMpJFl9RIPT6RRyHWu8Hjqd+i8Kh1ucuvH4NWvWYPXq1YZ0tEU6gFcAfAUg4sJYAwYAc+cG3oq8/XbA7B/PHH104K0LtzuwZkZqatvHfPYZDhs+HMMlS6OeE4xC3T++11NnU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf8oa5MFmTU0mPhGZd01mRitsS+EsjKgc2fA5wtumzQpUKbi2GOBoUMDnx49AGL1ABmGIiS+3815++1A6Sk93ngDGD0agHlraDCR0da5BUDm3JsxdjweD7Kzs2NeeDoWWutwu924pWtXvAbgyEiNnHUW8MgjgbUxHA4JKmNkzx7ggQeAf/8baOOW3w/gUQBPAAi3J3/nGYZhGIZhGIZR+SyXn1oypBg2bBhcskoyKMblcqnxb8EC/ckMADjhBKCoCJ7//heF//kPPKecAhx6KHDppcAvv5giz+PxoLCwUOrDK1l9iLJr1I4Z55ARj/C4XX45kJ2t36ag7BT1calKn5VzntfrFXIda7we6r3pUVpa2qZuqdfT2lp0fPBBfI4IJzO6dw+sR7FwITBkCK3JDCDwg4bXXgNWrwb69Qu7awKAxwH8F0CWBCnUc4JRqPunUp9V8x6V+zyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZGHZCY2qqips3LgRK1euxJIlSyL+MLTJy8sLWYLC6jidTjX+hSo3dcQRwMHFVn1OJ9x5efA5ncDevYF63yYtKOTz+eB2u+ELNelCuA9Rdo3aMeMcMuIRHrd27YBQawqsWgWsWyemnwihPi5V6bNyzmtoaBByHWu8HjY0NBg6Xvj1dMsWoF8/pL/3Xtv7duwIvPxy4Ht13nn0JjJac+qpwIoVwAsvtLmWxwUAVgDIEyyBek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmywsVXKqsrIS06ZNw/vvv4+tW7ciWukOhyOugmsluOSUJOrrA7/OLC8Pbrv9dmD3buA//wluO+UU4Ntv5WpjGIvT/PudDeA0AMMAvAjgK1UlWTZvBo4/Xr/t9tuBl17iklPE4JJTeRHvL4vi4mLkLVsGjB0bWCi7LW6+GZg61bSJf+Fs3gxcdx3w/fdhd/sdwPkAWu/F33mGYRiGYRiGYbjkVAT88MMP6NGjBx599FFs2bIFfr8fmqZF/WFok5OTg8TERNUypJCYmGi+f8uW6U9mAMDw4cBnnwEAGhITUZqTg4ZGbUOHmiQw8Ivf0tLSmH+pq7IPUXaN2jHjHDLBtPviC7wAoAjAXgBzAYwDcFaEx0uJW48egbI3erz9dmQPawVBfVyq0mf1nCfiOtZ4PYxVn8jraTsAHe+7L/CAv43vRzGA0nfeCZRws+pkBhDIEytXAvfeG3a3QwEsRuCNDRFQzwlGoe6fSn1WzXtU7vNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrk4UlJjT27duH4cOHY+fOnU0TE06nE8cddxwGDhyIoUOHRvQ57bTTVLvCtMHYsWORnp6uWoYU0tPTzfcvVLmptDQgORmoqgIAVKanY8bYsahs1DZ8uEkCA29ezZgxA5WVlZbrQ5Rdo3bMOIdMMFkvvYQ7AZyIlhfTSKcDpcXtllv0t1dUADNniu0rDNTHpSp9Vs55tbW1Qq5jjdfD2tpaQ8cb1dEVwCoA6R980Oa+LwHoDcAzaJChPsmQlBR4y+TDDwP3BCFIBfAJgKsEdEk9JxiFun8q9Vk171G5zxOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFpYoOfXAAw9gypQpcDgcSE9Px5NPPonrr78eaWH+B4yxFo2vKblcLtTV1WH9+vW2KznlcDiQkpKCuro6aJomv2SDpgFHHw389FNw2+WXB0pN7dgBfPIJtE8+Qd0PPyClrg6OzMxAKaqkJHnaWsjUUFdXh5SUFDgk1SCX1Ycou0btmHEOmWDKb7oJma+/HrT9NwD1P/2EvDbK5kiLm8cDHH44sH9/cNtRR8H9xRfoeuyxuoeKLDlFfVyq0te6Xxklp0T55vF4UHpwrSUA+PXXX3HOOec0Xcci0aLnX+P1cNOmTUFtkZScan09jYXTAHwEoFMb+/0K4DoE3lQAbFpuacsWeC+4AMk7doTcxQ/gJgAzEfs5oJ4TjELdP5X6rHqvR+U+T6QWxlzsHDfqvnHOU2eTc178Yve4UfZPlTaVJacssfry//3f/wEI/A/s//73PwwePFixIkYWHo9HtQRpaJpmrn+bN+tPZgDAhRcG/tutG3DPPXDccw9cpaWBNzoqK02bzAAC32tXGwuUUu1DlF2jdsw4h0wwnv79dSc0DgdQ4nYDETyUlRI3lwv4y1+Ap54Kbvv5Z6TOny++Tx2oj0tV+qyQ82pqajBmzBjMmzdPynWr8Xpo5H9yjej6C4B/AWjrSjcfwA0A9sXck0Xo3h2lH32En/LzMSzELgkA/g2gvYFuqOcEo1D3T6U+K+Q9mTZF2KE+vhh97Bw36r5xzlNnk3Ne/GL3uFH2j7I2WVii5FRxcTEcDgcGDRrEkxk2Z9y4ccjIyFAtQwoZGRnm+heq3FRCAnDeeS02VVRU4IXZs1FRUADcfbcJ4lr1/cILqKiosFwfouwatWPGOWSCqTv1VISqUOlatarN46XG7c47A2XldMicMUN8fzpQH5eq9Fkh540ZMwZz5swJmjQQdR1rtFMd45ousepIBPACgNcQfjJDS0zEeAAXIg4mMw7iz8zEcADvtrHfPwGkv/VWTH1QzwlGoe6fSn1WyHsybYqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMSEht/vBwB0795dsRJGNoWFhbZ9S8Pj8ZjrX6gJjUGDgE4ti2y4XC4MGzZMyYyuGX3L6kOUXaN2VMYvnvFnZKCo1bZfALwFwNfG2xmA5LgddlhgkWMdkrdswQjxPQZBfVyq0kc953k8HsybNy9km4jrWKOd5BCTbpEeH42OTATeuLizrR2POAKlc+bgGQDka7IKxgvgWgBT2tiv46OPAm+8EbV96jnBKNT943s9dTZF2KE+vhh97Bw36r5xzlNnk3Ne/GL3uFH2j7I2WVhiDY3jjz8eW7duxTXXXIO3YvxVGEMblXXXZBJL3Xkh7N4N5OQE1tFozVNPAePHy+mXYeIIt9uNV7p2xfEACg9+3AfbSNTZ37oV6NFDNw8UAjhd5xCRa2gwkSFjDQ1ZekLhcrlw4MAB3RvoaMdOLP23xeEAFgDo1daOZ5wBfPAB3JWVcTfeW5/3BwA8Ee4AhwN47z2goEC2NIZhGIZhGIZhCKLyWa4l3tA455xzoGkavvvuO9VSGMmMGDEC7dq1Uy1DCu3atTPPv/nz9SczAOCii4I21dbWYsGCBaitrZUsLBgz+pbVhyi7Ru2ojF+88xSA0QDexB+TGZEiPW7HHQeMHKnbNAxAXzm9NkF9XKrSZ+WcF+o6dvHFF0f1a6BGO3V1dUJ16NEDwApEMJlx223AggVAx44xabIbTwK4K9wOmgZce23gfiNCqOcEo1D3j+/11NkUYYf6+GL0sXPcqPvGOU+dTc558Yvd40bZP8raZGGJCY3bbrsNKSkp2Lp1K7744gvVchiJZGVlISHBEsMyahISEszzL1S5qWOPDTzkbIXf70dZWVlTeTczMaNvWX2IsmvUjsr4MbFjStzuuy90k6AuSkpK4Ha7dT87d+6E2+0mWUpQ1ffGyjmv9XXM5XJh1KhRmDlzZkx2YtUX6fV0IIBlAI4Ms48PwL7HHwdefhlIamuZ8PjieQC3h9uhoQG48krgm28ismf3axV1//heT51NEXaojy9GHzvHjbpvnPPU2eScF7/YPW6U/aOsTRaWKDkFANOnT8dtt92GQw45BIsWLbJFOSLmD7jklEA8nsAvTGtqgtvuvht45hnxfTJMHGKZMkzDhgGLFwdt9iPw6/Ufm22LpeRUJLhcLlx88cWYOXMm2rdvH7MdO2KlklNLly5Fbm5u0985OTltvpmhquTURQBmAwj3Dsd+AJcDmNlKh8zvtsfjQWlpadD2ts5lrMdFSjif7wYQ9s6hUydg5Urg6KMN62AYhmEYhmEYxhpwyakIGDt2LN544w2Ul5fj1FNPxd///ncsX748rlZwjwfy8vLgdDpVy5CC0+k0x7+vvtKfzAB0y00BgM/ng9vths/nkyhMHzP6ltWHKLtG7aiMHxM7psUtxFsaCQBkrqbTPOd5PB7MmTMHY8aMkdhjdKj63lg553Xp0gUAkJubi7y8vJgfpDeOjYaGBkPHh7qe/gXAxwg/mbEVgbJrX8ekIHpqampQUFCA7OxsdO3aNeiTnZ2NgoIC1LS6fsd6nEieBfBouB327gWGDw+s3xUGu1+rqPvH93rqbIqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMSERmJiIhITEzFmzBh4vV54PB68+OKLOO2005Cdnd3U3tbHrg/K7cTo0aORlpamWoYU0tLSzPEvVLmpDh2AQw/VneyoqqrCrFmzUFVVJVebDmb0LasPUXaN2lEZPyZ2TIvbiBHACSfoNl0HoIukbvVy3rx588iUn2p+/j0eT8iyWc0/IrRbOefV1tYKsds4NmKt8RruejoewGsAEsMcvwrAIAA7Yuo9NsaMGYM5c+aEHEOhJv1iPU40jwF4OtwOP/0EXHop4PWG3MXu1yrq/vG9njqbIuxQH1+MPnaOG3XfOOeps8k5L36xe9wo+0dZmywsUXIqISEBDocDmqbB4XC0aItGvsPhiPnXgIxcuOSUIDQNyM0Fdu4Mbrv2WuDnn4Hvvgv8kvKSS4ALLghMdDAMEzWWKTkFAO++G8gBOjyFP9bTCKXb4/EgOztbyAN9SuempqYGY8aMiXiiRUbpLCuVnIqlPzNLTj0KYGIb+/wPwCgAzaf2W+sQfQ6i+f64XC4cOHAALpcr5uNiIZLz7gDwFgD9THKQP/8ZeO01oNX9OsMwDMMwDMMw9oJLTkVA48SFpmktPgzDNOOHH/QnMwBg6FBg2TKgthaYOxe44QbgkEOAM88Evv3WVJkMw5jMqFHAUUfpNo0FkNnG4Y0P8u1GW79+bw3F0llMgKloezJjJoBL0HIywwxKS0ujGmONa2XEepwsNABjANQOGhR6p3//G3jpJak6GIZhGIZhGIaJbywxoeH3+4V8+O0M+kyYMAGZmW09WrMmmZmZ8v379FP97UlJgYmM1pOADQ3AV1+hHMCUKVNQXl4uT1sIysvLpfctqw9Rdo3aMeMcMuIxNW5OJ3D33bpNGQhMarTFzJkzMWrUqIh/AW5KzjPA7t270bVr15j0GSmdZeWcV1VVJcRu49hofCW6ecmvkpKSiI/PzMyEA8A/AdzbxjFPAPgzgPipKiuHegC7X3kFOPHE0Dv9/e/Al18Gbbb7tYq6fyr1WTXvUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WvKgEQ4q5c+dKXdhSJTU1NfL9C7V+xrBhwOef67cdcwzan3giRqanCyuhEg3t27fHyJEjpfYtqw9Rdo3aMeMcMlFSVwcsXQoUFgKjRwNHHBG0i+lxGzMGmDQJ2LcvqGkcgBfaOLx9+/aYPXt2RL8ELykpwRlnnEE6p1dUVMSsr/EcxFLuyco5z+VyCbHbeD286qqrUFBQEPUEUePxtTU1eA2BiYpw3IHApAcjBi09PfADilNPBX7/PXiHhgbgyiuBb74Bjj66abPdr1XU/VOpz6p5j8p9nkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4AkNhhRbtmxRLUEa9fX1cv379VdgzRr9tnPOAR58UL/tkkuQlJyM7t27y9MWhqSkJOl9y+pDlF2jdsw4h0zbDAZwOoBhAI488cTApAYQWNfmxhuD9jc9bqmpwN/+BkycGNSUA+D6CM24XK6IHuRLz3kGcTqdSvRZOec5nU4c3ewBdaw0jo2bb74Zq1evjun4bVu24C0AV4fZrwHAXwC8GZtMJhxHHAF8/DFw+un6C4EfOABcfHFgUiM1FYD9r1XU/VOpz6p5j8p9nkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2ysETJKSZ+sPOMovQZ0//9L3TbcccBocqqXHKJOW+PhMCMvmX1IcquUTsq48f8wUsAHgNwBoCExskMAFi8WHd/JXH761/hb9dOt2k8EPhltSCo/0rE4/Eo0WflnOfxeITYbRwb69evj+n4tPbt8fTIkRgZJnY+ANeAJzOkMnAg8Morods3bQJuu62p3KXdr1XU/eN7PXU2RdihPr4YfewcN+q+cc5TZ5NzXvxi97hR9o+yNlnwhAbD2IVQ5aZOOAG48EJg167Ag9W//x1o/HV1ly5A376mSWQYO1MYsiFki/l07IiqUaN0m44B0D5Uabo4Y+nSpSguLsbSpUtVS2FakQDgZQBdw+xTB+AyAHNMURTnjBkDjBsXuv2tt4A33jBNDsMwDMMwDMMw9sehaa1XCWYY89m4cSN69erV9PeGDRvQs2dPhYrE4Ha70bWr/mOX4uLimOqv61JZCXTqpF/24aGHgMcfb7lN04C1a4GSEuCCC8RoYJg4o/X3eySAT0LtXFz8x0SiYn5dtgxdhgzRrTlZd8IJSCkqAhwOQ32YlvsMEIlGM/xoqw8App5L0T6HsxcN/fr1w7erV+NNANeF2a8Wge/iwihst/ZL9TmIZPyJ0tZINH0F9ePzAeedB3zxhf4BLleg9FTv3jFpYxiGYRiGYRiGHiqf5Vr2DY2qqiosX74c8+bNwzvvvIO33norog9Dm+7duyMpKUm1DCk01rST4t8XX+hPZgCBtzNa43AA+flNkxmN9czr6+vFa2sDM/qW1Ycou0btqIwf8wdLwjXqlJ1SFbeG3Fy8H6ItZd06YW+USM15AvD5fEr0WTnn+Xw+IXajGRsulwujRo3CzNdewxsITGbUJyVhS/fuqG91fBWAcxHdZAYjAKcTmD0bOOoo/XaPB7jiCtTv32/raxX1azHf66mzKcIO9fHF6GPnuFH3jXOeOpuc8+IXu8eNsn+UtcnCchMa7733HgYMGICsrCycdtppuPTSS3HDDTfgxhtvbPMzZswY1fKZNqBcb90oUuvJhyo3lZMDnHJKm4dzjVG1dnkNDXuwH8C61hszMoDzzwcOOSRof5Vxeypc49SpQvrgNTT0sXLOE72GRqhz31jyq7i4GAcOHMDsd9/FkZMmNS1cX9O+PeaOHImaZsdXAjgHgP6KNYx0OnQAPvgACDVJtXUrav7+d1tfq6hfi/leT51Nricfv9g5btR945ynzibnvPjF7nGj7B9lbbKwTMmp2tpaXHnllfi///s/AEA42Q6HQ7fd4XCgQeCCp4w4uOSUARoaAhMXe/cGt910E/Dqq8b7YBgmCL3v9z8AnABg0P33o8OllwbehHLqFXdSR6Pu/wE4P9ROa9YEtBvsQw8uORWdDiD+Sk616MfvB/7yl7DrMFQBGA5gRVS9hOgP6s+B5UpONWfatPBrasycCdx4Y9T6GIZhGIZhGIahhcpnubSesoThz3/+M+bPnw8gUH7g9NNPR3FxMbZs2QKHw4Hrr78elZWV+Pnnn7Fu3TrU19fD4XAgNTUVl156KRwG64EzDFlWrdKfzAD0y00xDCONhw7+t/jmm9GBwEP7cExFmAmNp54C3nvPRDUMo4OmAbff3uZkxrmIfTKDEcwddwBLlgAffxy6fehQ4E9/MlcXwzAMwzAMwzC2wRIlp1avXo3Zs2fD4XDgmGOOwebNmzF//nyceeaZTfu88cYb+PDDD/Htt99iz549ePrpp5GWlobq6mrs3r0bL774It4I8z/EDA0mTpyIrKws1TKkkJWVJce/UOWm2rUDmn1HwlFWVoZJkyahrKxMnK4IMaNvWX2IsmvUjsr4MbGjOm5LAawM1ThnDrBtmyH70nKeIKqqqpTos3LOq6qqEmI3orGhacD48cD06UFNZVlZmDRxInZmZeF8AMsMqWGE4nAA//43oPO2R1lWFibdcw/KbropsJC4zVCd09uC7/XU2RRhh/r4YvSxc9yo+8Y5T51Nznnxi93jRtk/ytqkoVmAW2+9VXM4HFpCQoK2bNmypu1//etfm7br8eOPP2qHH364lpCQoF122WVmyWViYMOGDRoALS8vT3M6ndqGDRtUSxJCcXGxBkADoDmdzib/AGjFxcViOuneXdMCj35afi66KGIT9fX1WnFxsVZfXy9GUxSY0besPkTZNWpHZfzimebf79afSL7fquLWXPfFermj8XP55Yb6aJ3zojk3ZrB9+3Zdfc01Go2xHq3j3lYfsWgwMrbC9bd9+/ao7erZCzU2Wvj16KMhx2a906ltzsvTTg9xfLSf1udRdNzD2QvXR6zHxUI0fUXUz3ffaVpSUlDcivPytHqnU9P+8Y+YtVKF+rWY7/XU2RRhh/r4YvSxc9yo+8Y5T51Nznnxi93jRtk/Vdoan+U2fsx8lmuJNzSWLQv89q5bt24YNGhQxMcdc8wxmDVrFjRNwyeffNJUsoqhi9vths+Gv9oDAJ/PJ96/bduALVv026IoN+V0OpGXlwenglr/ZvQtqw9Rdo3aURk/JnYoxO2/ADaHavzww0BJuxiRkvMEkpiYqESflXNeYmKiELttjY2MGTOASZNCHu/1+XCb242viY4tBsDJJwNPPtlik9PnQ57bDafPB0ycCHz7rRptkqCQ08PB93rqbIqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMSExs6dO+FwOHDSSSe12N58XQyv16t77Jlnntm0IMk777wjTyQjhIKCAqSmpqqWIYXU1FTx/n36aei2rCzgm28Cv4tsg+rqasyePRvV1dXitEWIGX3L6kOUXaN2VMaPiR0KcdMQWMg8JPfeG1EO0UNKzhNIbW2tEn1Wznm1tbVC7IYbG7cC6DBlSshjPQAuS03FoYTHFnOQu+4Chg1r+rM6NRWzCwpQnZoaKDl17bWAja5bFHJ6OPheT51NEXaojy9GHzvHjbpvnPPU2eScF7/YPW6U/aOsTRaWmNCoqKgAAHTs2LHF9nbt2gXto0efPn2gaRq+//57OQIZYZSVlcHv96uWIQW/3y/ev1DrZ/TrF/hlZL9+wBFHAH/9K7BoEVBfr7t7QkICsrKykJBgfkowo29ZfYiya9SOyvgxsUMlbu8DWBOqcenS8BOnYZCS8wSSkJCgRB/nvNBj43oA/wpzXD2AKwAsJj62mIMkJACzZgGZmYE//X5klZUhoTFuP/4I3H+/QoFioZLTQ8H3eupsirBDfXwx+tg5btR945ynzibnvPjF7nGj7B9lbbJwaFqMP700kaysLFRWVmLMmDF47bXXmrZPnjwZDz74IBwOB7755hucfPLJusdff/31eOedd5CamorKykqzZDNRsHHjRvTq1avp7w0bNjS9WWNl3G43uuosjAkAxcXFyMvLi934/v3AIYcADQ3BbXffDTz7bPD27GzgvfeAESNi75dhGACSv98S0dN9JoAvQx3QvTuwfj0QxeurVjg3kWg0w4+2+gBg6rkU7XM4e825AoHJtcQQ7VpCAkb5/fhPVL1HRmu/VJ2D5n3k5ORg1apVOP3006M6LtbxEI3GqPt5/33g6qtDty9ZAgwZErk9hmEYhmEYhmGUo/JZriWmbo444ggAwL59+1psP/bYY5v+vXLlypDHb9q0SY4wRjj5+flITk5WLUMKycnJYv377DP9yQwg8KtIPQ4cCDycbIXX60VRUVHI0m0yMaNvWX2IsmvUjsr4MbFDKW6LAHweqnHLFuCNN6K2KTznCaa+vl6JPivnvPr6eiF2W4+N8wG8i9CTGQCwb+rUpskM6mPLKAUFBcjOzo5qMoM0V10FXH01vMnJKMrPh7d13MaMAWpq1GgTCKWcrgff66mzKcIO9fHF6GPnuFH3jXOeOpuc8+IXu8eNsn+UtcnCEhMavXv3hqZp2Lp1a4vtffv2bVpH49VXX9VdXHLhwoX44Ycf4HA48Kc//ckUvUzsDBs2DC6XS7UMKbhcLrH+hSo3lZcHrF6t33bSSYH2Vng8HhQWFsLj8YjRFgVm9C2rD1F2jdpRGT8mQjQN2LgRePlloLQUAL243QdAa7Y2VQseeSTqWvfCc55gvF6vEn1Wznler1eI3eZj4wwAHwJICnfASy+h6vLLdY+3I6tXryaTF4Tx8svw5OWhcNgweFrHbft24KGH1OgSCLWc3hq+11NnU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf8oa5OGZgFeeeUVzeFwaImJidq+fftatJ122mmaw+HQEhIStPPOO0/74YcfNK/Xq5WVlWlvvfWW1qlTp6b2Bx98UJEHTFts2LBBQ2B9Wg2AtmHDBtWShFBcXNzCr+af4uLi2A3X1WlaRoamBR6Ttvz85S+alpCg3/bYY8J8Y5h4p83v9/r1mvbPf2raZZdpWqdOf3wP336brO7KSy7Rzx2Apj3+uJA+DOU+gUSi0Qw/2urD7HMpur9w9gYCWlWo8db4mTq1TTtGP639MvMcyPRDlsaY+/nss9Bxdjg0bfnymPUzDMMwDMMwDGMuKp/lWuINjfPOOw8OhwOapuF///tfi7YpU6Y0vaWxYMECnHLKKXC5XOjQoQNGjx6N/fv3AwA6deqEcePGmS2diRKXy9UUT7vhcDjE+bdkCVBRod82cCBw9tlAks7vXS+5RPcQTdPg8XigKVhSx4y+ZfUhyq5ROyrjx4Rh1Cjgb38DPvoI2Lv3j+2FhQBoxu3AXXcBKSn6jVOnArt3R2xLaM6TgKZpSvRxzguMjVNdLsx3OJAabsdHHgHuvVf3eMpji9FHGz4cnjFj9N8E07RA6anaWvOFCYJiTm8O3+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwhITGkceeSTuuusuXHnlldizZ0+LtgEDBuC1115DYmIiNE3T/XTu3Bnz5s1Dp06dFHnARMqECROQmZmpWoYUMjMzxfn36af62zMygGuuARYsAPbsCSwAfsUVQFoa0K0bEGJxnvLyckydOhXl5eXGtUWJGX3L6kOUXaN2VMaPCcPQofrbD05oUIxbQ24ucMcd+o1VVcDjj0dsS2jOk0B1dbUSfVbOedXV1ULs9snMxPkTJgDhzv1ddwETJ+o2UR9bjD7l5eWYeuSRKD/6aP0dtm6NKsdQg2JObw7f66mzKcIO9fHF6GPnuFH3jXOeOpuc8+IXu8eNsn+UtUnD+EseNNi0aZN20003ad26ddPatWunpaamar1799YeeOABbffu3arlMW3Q+JpSTk6OlpiYaMuSU4mJiU3+wUjJBr9f0/Ly9Es2XHml/jG1tZq2eXNIkz6fT9u1a5fm8/li02QAM/qW1Ycou0btqIxfPNNmWZo5c0KXV/n1V2Vxa1P3/v2alp2tr9vp1LQff4yoj9Y5r0UfBNi+fbuuvuYaZZR7ah13GSWnjIytcP1t3749arut7XUFtF8SE7VdOTmaLzFRd5yVX3NN4FoXwk6osRXrxyolp1wul9avXz/hYzJajYbH/ty5oXOj06lpFr0HpH4t5ns9dTZF2KE+vhh97Bw36r5xzlNnk3Ne/GL3uFH2T5U2lSWnnDpzHJakR48eePXVV1XLYAxSenCxXDvS0NAgxr8NGwC3W7/toov0t7tcQPfuIU0mJiYiJyfHuLYYMKNvWX2IsmvUjsr4MWE47bTQbYsXI/Gaa2jGLTsbePBB4J57gtt8PuCBB4D//KdNM8JyniQSExOV6IvnnHcYgEUAjmhoAEKc+7cAnPbYY8gIU06K+tiSwddff43+/fujtLQUXbt2VS0nJprGz8UXB94mfffd4J18PmDsWGDxYiDBEi+SN0H9Wsz3eupsirBDfXwx+tg5btR945ynzibnvPjF7nGj7B9lbbKw1v8pMLZn9OjRSEtLUy1DCmlpaWL8C1VuKjEROPfcmExWVVXhzTffRFVVlQFhsWFG37L6EGXXqB2V8WPCkJMTPJGYmAj07w+0a0c7brffDhx5pH7bhx8Cq1e3aUJYzpNEbW2tEn1Wznm1tbUx2+0E4EsAXQFUpaXhzdGjUdXq3H8EYAzQ5oNs6mNLBnl5eXC5XKplGKLFuJw2DTjkEP0dly0D3njDXHECIJ3Twfd6Km2KsEN9fDH62Dlu1H3jnKfOJue8+MXucaPsH2VtsuAJDYYUbrcbPp9PtQwp+Hw+Mf7997/62wcPBjp0iMmk0+lEXl4enE7zX9oyo29ZfYiya9SOyvgxbXD22cCAAcD99wOffw6UlQErVwKXXko7bi4X8MQTodvHjw8UiAmDsJwnicTERCX6rJzzEhMTY7KbCWAhgB6N+nw+5LndcDY7958BuBpAQwT2qI8tRp8W47JjR+C550LvfO+9gbXALATpnA6+11NpU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf8oa5OFQ9OstwS6x+PBggULsGzZMvz66684cOAAGhoasGjRohb7aZqG2tpaAEBSUhKSkpJUyGUiYOPGjejVq1fT3xs2bEDPEAtYWwm32x2yNERxcTHy8vKiM1haCnTpot/27LOBRVQZhjGFiL7fmgaEKZ2jgojzkt8PnHwyUFSkb+i//wUuvNBYHwqJRKMZfrTVBwBTz6Von3/euBG/9eqFgWH2WQJgBIDaMP2E02WU1v2JPgcitMsek9FoFDbuNA045xzgyy/126+/Hpg1y3g/DMMwDMMwDMMIR+WzXMu9ofHMM8/gyCOPxGWXXYbnn38eH374Ib788ksUFhYG7bt//3507twZ6enpGDp0qPlimajp378/UlJSVMuQQkpKinH/5s8P3RbiwWIk1NXVYdWqVairq4vZBuW+ZfUhyq5ROyrjx7RBmMkM8nFLSACeeip0+333Berdh0BIzpOI1+tVos/KOc/r9UZn1+PBIbfcEjSZUZeSglX9+6MuJQXfArgAf0xmRAL1saUKj8cDt9sd9PF4PKqlAdAZlw4H8K9/AaHi+NZbwNdfmyfQINRzOt/rqbMpwg718cXoY+e4UfeNc546m5zz4he7x42yf5S1ycIyExr19fU4//zzcd9992Hfvn3QNK3pE4qOHTvihhtugKZpWL16NbZv326iYiYW8vPzkZycrFqGFJKTk437F6rcVPfuwDHHxGzW6/WiqKgIXq83ZhuU+5bVhyi7Ru2ojB8TO5aI29lnB35BrcfmzWHr3AvJeRLx+XxK9Fk55/l8vsjt1tcDo0ah3fLlwfqSk1GUn491yckYAaAySh3Ux5YqevToga5duwZ9srOzUVBQgJqaGqX6dMflMccADzwQ+qBbbwUs8j9m1HM63+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwjIlp/7yl79g5syZAACXy4UbbrgBZ5xxBt577z3MmzcPDocDDQ3BlZdXrFiBwYMHw+Fw4Pnnn8cdd9xhtnQmArjkVATU1gZqTtfq/I713nuBqVNjE8kwTExYoaySHlHrLioC+vTRXzOjSxdg2zYgNdVYHwrgklOx6Ymov4aGQLmg994Luct2AEMAlEbYD5ecantMtsWoUaMwe/Zs3TYlJacaqasDTjwR2LpVv/2xx4CHHxbXH8MwDMMwDMMwhuGSU23w/fff44033oDD4UBubi5++OEHvPLKK7jiiiuQm5sb9tiBAwciMzMTALB06VIz5DIGyMrKQkKCJYZl1CQkJBjzb9Ei/ckMIFC24aWXgJKSmEz7/X6UlZXB7/fHps0AZvQtqw9Rdo3aURk/JnYsE7f8fODaa/Xbdu0CHn1Ut8lwzpOM3+9Xos/2OU/TgNtuCzuZ8XNCAkZmZWF3jOee+tgyGweAjAj2mzdvntLyUyHHT0oK8MoroQ988kng55/lihMA9ZzO93rqbIqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMT/Cb7xxhtNpaXefvttdO/eParj8/PzoWkaNm/eLEMeI5Bx48YhIyOS/y23HhkZGcb8C1VuqkMH4KOPgL/9DTjiCKBvX2DyZGDLlohNV1RUYNq0aaioqIhNmwHM6FtWH6LsGrWjMn5M7Fgqbo8/DoQq7/P888A33wRtNpzzJFNTU6NEn8i4l5SU6K6VIGts1dTUhLeracD48cCrr4a08TuASzIycIWBc099bMnEUVODIQDuAfAhgJ8A1AFYH8GxHo8HpaUH34lZvz7wJo2JhB2Xp58eeKtHD48nMK6IQz2n872eOpsi7FAfX4w+do4bdd8456mzyTkvfrF73Cj7R1mbNDQLcPzxx2sOh0M74YQTgtr++te/ag6HQ0tISAh5/LXXXqs5HA4tKytLpkzGABs2bNAAaFlZWVpCQoK2YcMG1ZKEUFxcrAHQAGgJCQlN/gHQiouLIzfU0KBpOTmaFnhc1PJz0UX62wFNe++9CM03aAcOHNAaGhpic9QAZvQtqw9Rdo3aURm/eKb597v1J5Lvt6q4xaz7nntC55pevTStrq5FH61zXjTnxgx27Nihq6+5RqMx1qN13NvqI1x764/L5dJGjRqlVVZWxjy2wvW3Y8eO8HYnTQo9RgBtP6CdoHM9jOTchrueGv207k903KOJYVv9enr31j23ddHYKSkJHJeRoWmXX65pH36ouTdvjvl8RUqbOW/3bk3r0CH0GPrqq5j6NQvq12K+11NnU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf9UaWt8ltv4MfNZriXe0Ni5cyccDgdOOumkmI5PS0sDAFRXV4uUxUjAzq9IGXoF7PvvgVK9SuMA2rfX356QAJx5ZkTmVZbvMKNvWX2IsmvUDpdfsSaWi9uDDwbWzNBjwwZgypQWm6i/9pqQkKBEn8y4ezwezJkzB3/5y1/Mz3nPPx+y/BgAVAE4F8A6cJm9aHG5XMjJyQEA1A4bprtPMoCOkRpsLMFaUQF8+CFw+eU44tRT8QaA4w1qDUebY79zZ+CJJ0IbuOMOwOeTI04A1HM63+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwhKeNpZQcLlcMR1fVVUF4I+JDYYuY8eORXp6umoZUkhPT4/dv1DlppKTQ5eWGjQIOOSQiMxXVlZi+vTpqKysjF6bQczoW1YfouwataMyfkzsVG7fjulTpqDSArXhAQBZWeHr3P/jH4GJjYMYynkmUFNTo0SfGd/XRYsW4ZVXXhHeR01Njb72118H7ror5HEeABcBWH3wb6Njg/rYEs3FF1/cdA9cc/bZIfcLMd0YzJIlQZsSqqowGsBhUauLnIjG/k03BRYI12PDBmDGDDniBED9Wsz3eupsirBDfXwx+tg5btR945ynzibnvPjF7nGj7B9lbbKwxIRG586dAeCPur9RsuXgA99GOwxdioqK4PV6VcuQgtfrjd2/UBMaAwYARUX6bZdcErH55ORk5OfnIzlUjXyJmNG3rD5E2TVqR2X8mCjYuRN4/33glluA445Dcq9eyJ83D8nLl6tWFjkXXwyMGqXfVl8P/PnPTXX5DeU8E3A6nUr0Rft9zcnJifoHHZWVlTjqqKOE5wSn0xms/Z13gJtvDnmM5nTicgBfN9tmdGxQH1vR0K9fv5DxdblcGDVqFGbOnNm0zdurF0pC2DIyoQEAawF8GamNGIho7CcmAv/8Z+j2hx8G9u4VL04A1K/FfK+nzqYIO9THF6OPneNG3TfOeepscs6LX+weN8r+UdYmC6dqAZHQvXt3lJSUYOXKlWhoaEBiYmLEx/76668oKiqCw+HAqaeeKlElI4JVq1apliCNurq62Pz7+Wdg3Tr9tuHDgaFDgU8+CSzw2ZyRIyPuIiUlBf37949emwDM6FtWH6LsGrWjMn6MPiUlwY8cDz/9dCS53U1/pwDov2oVKrp1w66BAwHE9vDadF58EfjiC2D//uC2b74JtF9ySew5zySSk5OV6Iv2++pyuXDxxRdjzpw5ER9TV1eH448/HikpKbFIDElycnJL7XPmADfcEFjhQA+HA3uefx7z//a3IH1Gzj31sRUNs2fPxmFbt6I0Jwf+zMwWbbr5wOHAfwHcpmMrkgmNhP37gY0bdduei0hx7EQ89ocMAa66KjAB3JoDBwKTGuHeFlME9Wsx3+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwhJvaIwYMQIAsHfvXrz11ltRHfvwww+j4eCvRYcPHy5cGyOWYcOG0X+YFyMulys2/z79NHTbtdcCkyYFJjy2bQOefhoYOBA46SSga9eIu/B4PCgsLGwq72YmZvQtqw9Rdo3aURk/Rp8hQ4aga9euLT5vNJvMAACPy4XCYcPw00cfNe2TnZ2NgoIC1NTUqBEeCYccAkybFrr9wQfh/OWX2HOeSXi9XiX6Yvm+zpw5E6NGjYpYq8vlQlFRkfCc4PV6/9D+0UfANdcA4daxeO011Fxwga4+I+ee+tiKlKMAdL71ViSPGIEjZ85EXl5ei08o//4LoAzAQgCPARgJ4GQAcyPoM2nbtkC5ylb4Dj0UOtMHQolq7D/1VOg1wmbMANasEStOANSvxXyvp86mCDvUxxejj53jRt03znnqbHLOi1/sHjfK/lHWJgtLTGiMHj0amQd/tXbXXXfhu+++i+i4xx57DG+99RYcDgcOO+wwFBQUyJTJCCAvLw9OpyVeHIoap9MZm3+hyk2ddBJwxBF//H300cA99wDLlwMrV0bVhc/ng9vthk/BYptm9C2rD1F2jdpRGT8mcha3+tvndMKdl4ejnU40rnbTuKjzmDFjzJYXHddcA5x7rn5bbS063n9/7DnPJBoaGpToi+X72r59e8yePRsHDhxAcXFx02dp4+LOrXA6nSgtLRWeExoaGgLa//c/oKCgqbyYLs8/HyhBFkKfkXNPfWxFwi0ANgFIXbAgsOHll1usQROOhQA6ABgO4FEA8wD8AKAigmPr+vUDysuBL78MrFeRnQ0A+OWii1AfpQ/N8Xg8cLvdLT6t/4cqqrGfmws88IB+m6YB48aFfjNIEdSvxXyvp86mCDvUxxejj53jRt03znnqbHLOi1/sHjfK/lHWJguHphH7v4EQvPzyy/jb3/4Gh8OB5ORk3H777bjqqqswY8YMvP7663A4HDhw4AB27dqF5cuX45VXXsEPP/wATdPgcDgwZ84cXH755ardYEKwceNG9OrVq+nvDRs2oGfPngoVicHtdqNriDcliouLkZeXF95ARQXQqVOgNn1rHnkk8HYGwzBKCPf91uNwIGTt+ysB/KfZ3y6XCwcOHJDyC3TDeamRX34BevYEqqp0m/8C4N9G+5BIJOch2nPl8XjaXO+rdRkhI/EId+zSpUuRm5sbtu9obRYXFyPv/9k78/AoqqwPv52EpAkhi4BGQQnighviuIA6KuKGKItr4ugoxgX0c0EdFR11ZBwddwR1BJe4okEHBVRk3EBxQdwQUXDBRI0aQMhK0tm6vj+KtFmqk16q+t6uPu/z9APpqvqdc/pUna7u2/fcr74y12iyel9q5ZZb4IYbutULhlXckehEas+2a8RCry/mdTHOasdRo8yBBo8nJK1IaOt/XV0dF5xzDk0LFvBGUxOVIWqUvfEG/RcsgDvuoA4oLCxkwYIFnQYwWtulFRUVkR5stkVX+Hyw555QUmK9/aWXwmqvKQiCIAiCIAiCfaj8LjcuZmgA/N///R+XXXYZhmHQ2NjI9OnTOeigg3jsMfPrEsMwyMnJYc899+SCCy4IDGaA2XZKBjPig9zc3LDWSIknkpOTw4/vf/8L/qXROMuvQyKipaWF8vLyQHu2WBIL207ZsEs3Wh2V+Utkwl3v4hfg+zZ/tyQnU56by9fJyZ0WtArli3Hl7LST2RYmCHcmJ7OPxjW9paXFtvecuro6CgoKyMnJ6dRqrOOjT58+nHPOOdTU1NgQhTXJycmcdtpp7LLLLu1sR9vSrMfSpZRPnkxLV22mbrwxMJjRlX/RvPbRHq+S/sDoYBvffhtefDFmvhQWFvLsf//LC2EMZniBfpdcAg88AAcdxE2nnMLcuXMtp7d3nHEW9nuV12vO9AnGNdeARgvD6/5eLPd66jTt0NH9/BKscXPedI9Nap46Tal5iYvb86ZzfDr75hRxM6ABcN999/Hoo4+SlZWFYRiBAQuPx4PH4wk81/rIzs7m8ccf5+abb1bruBAykydPpnfv3qrdcITevXuHH1+w9TN22AH+9Cd7HANqamqYPXu2o1+wqbTtlA27dKPVUZm/RKb118fhsBRYC8wCzu3dm9mTJ3No796O9653jEmTzAV8LUjq3ZtTNK7p9fX1tr3nFBYWBv1StyOpqansvPPOXHyx1bLO9hDs/SaalmajgJ7XXsvs88+nJthrNnVqSDMHI3o/tPF4lXwBBGmkZHLVVV3PfrEJn8/HggULwj7uHiD1m2/MP776ilsWL+acbo5pnb0R0XvVuHFw9NHW2777zlxPQxN0fy+Wez11mnbo6H5+Cda4OW+6xyY1T52m1LzExe150zk+nX1zirhpOdWW2tpaioqKWLRoER9++GG7hKWlpXHQQQdx4oknMmnSJDIzMxV6KoRK6zQlr9dLQ0MDX375petaTnk8HtLS0mhoaMAwjO7bVjQ3w3bbwebNnbdNmgSzZtnmp2EYNDQ0kJaWhqeLVhdOEAvbTtmwSzdaHZX5S3Tq6uqCtluxIgVo7WrZsSZ0xKnWTHa30+Hbb2HoUGhoaPe04fHQkJbGOQ0NPN8mPl1aTpWUlLDnnntavv7htJzy+Xzk5OSEvABba94BKioqKC8vt73lVHfnVlctzaw0jwAWAT235jStoQFPR92rroK77urULslKL5Jzv6v302iJZcspAA/wBnBUxx2HDYP774c//zlkrXAJ5dwOxsnAvCDb7gWuAYL9JqykpISBAwdG9l71xRfmumFWue7TB77/HrKzQ9dzCN3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk+VbypbTsXlaooZGRlcdtllXHbZZQBs2bKFqqoqevXqFVg8XIhPQv1CKB4xDCO8+D74wHowA2xtNwXml0NO9OrXxbZTNuzSjVZHZf4SndbFmiNtEVVWVsZhQWY4xA277Wb+Kn/q1HZPewwDr8/H/cBbwCYlzgXH4/HY8p5TXl4elk7b94Jo24q1tj3raL+795vW8zWUL+aPAhYC6aYwXivdyy+3HMwIRtjvhzYfrxoDOBv4EnNxb9LS4I474JJLQNM2WgOxXhOnlaMx21Ft6WKfiN+r9t0Xzj0Xioo6b9u0CW691Tz/FKP7e7Hc66nTtENH9/NLsMbNedM9Nql56jSl5iUubs+bzvHp7JtTxFXLqWD06tWLHXbYQQYzXMCUKVNcO6smMzMzvPiCtZtKTzcXDrWR6upq7rvvPqqrq23V1cW2Uzbs0o1WR2X+BBOv10teXl5Yj2222Ybly5e7o+ZddVWnNnjVmZncN2UK3sxMHlLkVlds2bJFyXtO2O8FXRCs7ZldNk4AXmHrYAZ/5LS6re7FF5vrHITxS6Bo/bPzNVTFr8AFQOOQIfDpp+agkKaDGQB9gGDvMBsxFznvajADonyvuuUW8/7Hipkzgy8cHkN0fy+Wez11mnbo6H5+Cda4OW+6xyY1T52m1LzExe150zk+nX1zClcMaAjuYenSpXH9q8uu8Pl84cW3cKH188ceay6UaSNer5eRI0cqGdGNhW2nbNilG62OyvwJkeP1ehk2bJg7al5Kivnr6ZQ/Jn56fT5GLl2K1+fjNOBKdd5ZkpqaquQ9p+17QVlZGWVlZVHpFRUVkZ+f3+76D/v9xoKTgRcxf3XfStucAnDBBWaLpDCnNUfrnx3x6cCLwK8vvwyatdhcsmQJa9asaffcZ8AwYH6HfZuAU4EfQ9CN6r1qhx3g6quttzU2wnXXha9pM7q/F8u9njpNO3R0P78Ea9ycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXK6hIbgPlX3XnCTiPtzffANDhlhvO+EE2GYbOOkkOO644L9YFARBe2xfz0K1zRtuMNu/WNAMHAM8blNc4bT5am3N1JZQXodo91m2bBlAxG3FwsmH1evRVUuzYNqlpaVcP2gQT9FNX9Jzz4VHH4Wkrn8bE8laDd2toWE3tq6h4fd3ek3svOZisYZGydbZDsG2b7rxRra59Vbw+5kEPByG3ajYsgV23RV++816+4cfwogR0dkQBEEQBEEQBCEkVH6XKzM0BK0YPXo0PXv2VO2GI/Ts2TP0+IK1mwKzNcXTT8PJJ0PfvubAxpNPQkVFxL7V19ezePFi6uvrI9bQ2bZTNuzSjVZHZf6EyKmvr2fFihXuqnk33BAYjK3v2ZPFo0dTvzW+FGAukPzrr1GZqKuro6CggJycHAYNGhTSIycnh4KCAurq6gI6DQ0NUb3nlJWVUVpa2uUMiwEDBjBgwIB2z4X1XhAGbduebbfddqxdu5Z+/fqFrZPx/PM8g/VgRiCnhYXwyCPdDmYEI9rXwKnXMGqefhqOOsr84t3FVBcWwuLFVF50UUiDGa1E/V7Vq5fZeioYV19tvXB4jND9vVju9dRp2qGj+/klWOPmvOkem9Q8dZpS8xIXt+dN5/h09s0p4m5R8Pr6el599VVWrFhBSUkJ1dXVNDU1hXSsx+PhrbfecthDIRqys7NJivALEt1JSkoKPb5g7ab23htWr/7j7/p6mD/ffDz3HBQUROSb3++nsrISv98f0fHREAvbTtmwSzdaHZX5EyLH7/dTW1vrrprn9UJxMf4RI/AnJVGZnY2/TXzbAg0XXwwffWQuhBwBhYWFzJ07N6xjfD5f4Jji4mLAfP2jec+JdNZFWO8FERJxTXjwQfpee21w3aQkKocNw3/99VGt9xDtaxCL1zBsHn4YJk82v1CfMMH8YYKbp3wfcwyVu+4KD4W+Qo4t71UTJ8KMGfDll523vfceLFpkzmRVgO7vxXKvp07TDh3dzy/BGjfnTffYpOap05Sal7i4PW86x6ezb04RNy2nDMPgrrvu4tZbb6W2tjai4z0eDy0tLQ54J0SLtJxqw6ZNsO22ZtuKjhxxBLzzTufnU1Nh40aI4wVSBSERcV3Lqa1snD6dfld2sWrGpEkwa1bYuj6fj5ycnIjXTvB6vVRUVOD1eqNuJxUKJSUl5ObmRuRzW18jJaxc33MP/O1vXepVnXceWY88EtaaGQnRcmrmTHNR77aceCLMmwepqa5rORXJ9WFrPXv9dbPlphX77AMrV0Y8e0gQBEEQBEEQhNCQllMhcNZZZ3HddddRU1ODYRhhP4T4IC8vj5SUuJs4FBIpKSmhxbdokfVgBsBPP1k/f9RRUQ1mNDc3U1paSnNzc8QaOtt2yoZdutHqqMyfEDnNzc2Ul5cHakIWMB7IU+mUTWw56SRmpqRQmpdHs1XNmz3bXEQ8TMrLy6NaCLrtOhMtLS0xec/xer2MHz8+8Heo7wXjx4+PeDCjtSaE9CMOwzDb+HQzmHEr8PvUqZT++GPUtSbk90OHjreVoqLOgxkAr7wCZ50FUpcB6PHNNzR/8IE971XHHgvHHGO97csvzRmrCtD9vVju9dRp2qGj+/klWOPmvOkem9Q8dZpS8xIXt+dN5/h09s0p4mJA49lnn+W5Nh9Odt99d2688Ubmzp3LG2+8wZIlS0J6vP322wqjEEJh4sSJZGRkqHbDETIyMkKLL1i7qQEDYOuvJjsxYUJUvtXW1vLkk09GNPspWmJh2ykbdulGq6Myf0Lk1G7axP/+9z9uysjgQ2ATMB84Xa1btnFLRgZPTpxIbbCad/HF8MknsXWqDfX19d3WZKvFxEPF6/WSm5sLQFFREfn5+Xi93m7fC7xeL/n5+RRFMODTSmtN6KqHallZGaU//ED1xIlw001d6t2w9VHv89lSa0J+P3To+Gjx+XyUlpby0yef4L/kkuA7vvBC8Pf0BOIgIDc/n9ozzrDvverf/w6+7cYbobExehthovt7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1PERcupUaNGsXTpUjweD1OmTOGuu+7Sq2+yEDXScmorDQ3mQt9WReiSS2D0aHjpJfMLko0bzec9HvjtN9huO3udFwTBWcaMgdde6/T0G8CxxHfLqVYbucBnwPbBdtxpJ/j0U7PuhaEbDaG23Gl9HQoKCsJeswMgPz8/sF5HK21niAQjmkGUjnQVYyrwJNDdyktXAfdu/X8k54fbWk4NHz6cL774IjBTaCSwEOhttfNtt8F11yV0y6mjMAdqA0NPubnmWheDB0fkfzvy8+H556233X+/ed8kCIIgCIIgCIIjqPwuV4O5+t2zatUqPB4PgwYN4u6778YTRu9mQYgr3nnHejAD4KSTYNQoc7HLlhZ4/31zMfDychnMEIR45PDDLQc0DgPcspRwOXAasAToYbXDTz/BGWfA4sVRLTINsGzZMgYMGACYsw8iXbS7I60zJRYsWBBSu6vWFlNWMyy8Xq8jg1ThkgG8CARp2hPg/4D/OO9OXPHRRx+1+3spcCTwGtCv7Yb77rNuRZVAnAQ8B6S1fbK83GwX9d57sMMO0Rm45RZznRKr1mq33GIuIO7SWb+CIAiCIAiCkMjExTSH1i8QDjvsMBnMcDlTp04lKytLtRuOkJWV1X18wVpTZGVB2y/nkpPNL0PvvReefTZq36qqqrj99tupqqqKWktH207ZsEs3Wh2V+RMip+rQQ7l96lSqOtQEL3CIGpdspbXmrc7KoovlweHNN+GGG6K2N2DAAPLy8sjLywsMbHRFbW1tSO856enpFBcXU1FRQUlJSbePiooKiouLSU9Pt9SLZc2zmnK8HeYAU1eDGX7gPDoPZtTW1trie0jvhw4ebzefYg5Etq5ydU1KCr5JkxR6pJ4jgBdoP5hRlZVl1rzNm81FvaurozOy225w/vnW2zZsgOnTo9MPE93fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35wiLgY0dtppJwBpM5UAzJ8/n7q6OtVuOEJdXV3X8RlG8AGNMWOgh+Xvm20hPT2dCRMmBP0CzkliYdspG3bpRqujMn9C5KQfeCDjXn+ddIuacLQCf+ymbc17AHimq51vvx3mzImRZyZerzes95zW2RXdPbprFxXLmjdw4MB2/uwFfAQc0MWxjcBfAKsVPLxery2+d/t+6PDxTvAN8GfgMuCu5uZuW4u5nfeBVzs8l15Xx4T5882al5oKduTvppsg2DV3113w++/R2wgR3d+L5V5PnaYdOrqfX4I1bs6b7rFJzVOnKTUvcXF73nSOT2ffnCIuRgiGDx+OYRisWbNGtSuCw6xdu5ampibVbjhCU1NT1/GtWgU//2y9bexY5xwDevTowZAhQ+jh4KCJSttO2bBLN1odlfkTIqeH18vAbbelR4eaUAZsUeOSrXSseRcCX3R1wDnnwH//GwvXAEhJSVHynhPLmte7d2/Gjx8PmDMy3gcGdnFcDTAGCLZiSEpKSti+W60J0tX7YdvF1IPpdPt+qoifgftVO6EJzUA+ZkuuVno0NTFk7Vp6nHACvPuuuZ5GtOywQ/DWXjU15jomMUL392K511OnaYeO7ueXYI2b86Z7bFLz1GlKzUtc3J43nePT2TeniIsBjUu2Lur38ccfs3r1asXeCE7i5hHFbkdMg83OSEkxFwN3EJW/do2Fbads2KXrxl8rC91TV1fHKwcfTHl6OvOBS4AhwI7ArUo9s4eONa8eOBloycy0PqClxVxPY8GCmPjn8/mUvOfEuuYVFRUx+4ADWAR01aBpA+ZaEG91sY/P5wvb99Y1RdrS1fvh+PHjLWe5tNXp7v10+PDhIfsnRIbP56O0tLTrfYBxmC25AOrS05l/ww3UPf009OplnzPXXgvZ2dbbHnwQfvzRPltdoPt7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1PExYDG/vvvz+TJk2lpaeGMM85g06ZNql0SBPsJNqBx+OGQkxNbXwRBiAlNAweyK+biuQ9itq1xMz8Av993HwRbD6u5GU47DRYtiqVb7qW5mfQbbuDCTz4hpYvdSoBD+eOLZ7spKioiPz+/y3ZcXq+X/Px8y8XUO+qkpaVZbm/VeO2117pt/dX2GKsZIUJwCgoKyMnJ4cgjj+x23xpgNNC4yy7mul/77w92t5DNyYGpU623NTbCv/5lrz1BEARBEARBEJTiMQzDUO1EKPj9fi666CIeeeQRtttuO/7+979zyimnsP3226t2TbCBr776ir333jvw9+rVq9lrr70UemQPpaWlDBo0yHJbSUkJeXl55h+//gr9+1uLTJ8OU6Y44p8gCGoJuUbEmc1ubRQXw3XXBRdIS4OXX4Zj2i9dHarvoeyn4rWPKZs2wemnw9tvd7nbx8BYYH0IktG+Lj6fL+jaElatqcLVaatRUFDA3LnBmmf9QX5+PsXFxe2ea3tujMRc7PuHkDz7g3DPx1DpSiscv7rzCYjKTifNb74hb7fdbNPrRF0d7LqreT/VkeRk+OYbGDzYOfuCIAiCIAiCkGCo/C43LmZogLkg+OzZs7n33ntZv349l19+OQMGDGCbbbZh0KBB7Lzzzt0+BssHGe1xc8+3LnvavfJK8AMdXj8D1PYjj4Vtp2zYpRutjq795IWuaWpq4qeffkrMmnfttXD99cEPbmiA8eNh6VLH/GtublbynhOTmvfZZ6w9+WSali3rcr/5mF/YhzKYAeZrFo3vrQur9+/fH5/PR//+/UNeTL0tycnJnY7vqNHdrJBQZoTsgfkarQCOCNk7wZLUVGfP/fR0+Mc/rLe1tMAtt9hvswO6vxfLvZ46TTt0dD+/BGvcnDfdY5Oap05Tal7i4va86Ryfzr45RdwMaDQ1NXHRRRdx7bXX4vF4MAwDwzCorKzkp59+4scff+zyUVpa2m2vX0E9CbuGxssvWx+0xx4x+UWh9BhVqytraCQmdXV1vPfee4lZ8zwesw3M3/4WXKC+Hk48Ed5/3xH/XLuGxty51I0Zw/xDDqGui9iqzjuPU4BwvIhkDQ0rYlHz0tPTKS4upqKigpKSkk6PiooKiouLg+Y/A3gJc92RPsAbwPkReasXrWtflJWVxdy24+f+uefCzjtbb3v6aXOWhoPo/l4s93rqNKWffOLi5rzpHpvUPHWaUvMSF7fnTef4dPbNKeKi5VRLSwtjx47lf//7HwCRuuzxeGhpabHTNcEmErrl1JYt0Lcv+Hydd9p7b7On/EknwYQJcOCBwXvPC4IQdyRsy6lWG4ZhttSbOTO4WO/e8MYbMHy4tJzqCp8PrrwSHnqo6/2SkmDmTEpPOCHslkJx+bpEQGlJCR/uvDNnWGy7D/gb0N3dpK4tp0LBkZZTsTp3nnwSJk603vaXv8CcOc77IAiCIAiCIAgJgMrvcrtaI1IbHn74YRYvXhyYmXH00UdzxhlnsM8++5CTk0NKSlyEIQjWvPmm9WAGwI8/Qk0N/Pvf5qN/f3Ng46KLwAUDPoIgJDgeD9x3n7lw76xZ1vvU1MBxx8Hrr8O228bUvbjh22/N9TK++KLr/XJy4Pnn4eijQWatBqX3nDmWgxkAU4AvgeCNqv6gda0PFbMh4hbDgLvvNhcPHzUq/OPPPBNuu828Jjry3HPw97/DnntG76cgCIIgCIIgCMqIi5ZTTz75ZOD/d999N6+//jrnnnsuBxxwAIMHD2bgwIEhPwS9ufnmm8nOzlbthiNkZ2dbxxes3VRWlvlFXlt++QUefND2L6IqKyuZNm0alZWVturqYtspG3bpRqujMn9C5FRWVvLkk08mXs3riMdj1rXCwuD7VFXB4YfTa9482/yrra1V8p5j+/U6Zw786U/tBjMqs7OZdvPNVLaNbZ994JNPzMGMCKmtrXV/zWtpIaPDIuFtWQg8EYJMQUEBOTk5DBo0iMMOO8wu77RlyZIlrFmzpst9us1bTY05MHfNNZCfb73Ad3ekpARfS8Mw4Oabw9cMEd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n3xzDiAMyMjKMpKQkY++991btiuAQq1evNgAjLy/PSElJMVavXq3aJVsoKSkxAAMwUlJSAvEBRklJiWG0tBjGttsahvkxu/1jjz2sn8/IMIz6elv9bGpqMkpKSoympiZbdXWx7ZQNu3Sj1VGZPyFympqajA8//DBQEzo+SkpKHLHbti45ZbOkpKRTzevWRnOzYZx1lnXda/OYDkZKN76HEuP3339v6Z+Tr71h2Hi9btpkGGeeafkaNaWkGCV5eUZTSor53KmnGkZNTbvDu3qNgj2+//77hKh5patXG09bvK7fgZEZ5mvW3SPccy2SvIXz8Hq9Rn19vVFfX294vd6wjunuuusyb2vWdL7vOfJIsy6ES3OzYey5Z/A68sUX4WuGgO7vxXKvp07TDh3dzy/BGjfnTffYpOap05Sal7i4PW86x6fKt9bvclsfsfwuNy5maLQyfPhw1S4IDlNaWkpzc7NqNxyhubm5c3wrVsCGDdYHBHv++OPB67XVt5SUFPLy8pS0b4uFbads2KUbrY7K/AmRk5KSQm5ubvCa19gIy5bBBx/E1jGbsKx5XZGcDI8/bv5CuwumAK8DfaP0Lzk5Wcl7ji3X66uvmmssBVkPIKW5mbzSUlL8frP9zvPPQ0ZG5Pa2kpycnBA1z+jVi78CFwCtDSF9wGlAtSMW9WH8+PF4vV68Xi/jx48P65juCJq3l16Cgw6CjjM8liwx222GS3Jy1zMxgs3giBLd34vlXk+dph06up9fgjVuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi4GNPr37w8gC3onAAUFBfTq1Uu1G47Qq1evzvEFazfVowds3my97aSTbPdty5YtFBcXs2XLFtu1dbDtlA27dKPVUZk/IXK2bNnC22+/3a4m7I35hf0rwE777QeHHw633KLIw+iwrHndkZICzzzTbZ07EvgE2C8K/+rr65W850R1vVZVma25TjwRfvstuI1evSieOJEtixfDddeZbb1soL6+PqFq3qPACOA74DJgpc36Xq+X3Nxcm1Ujw+v1kp+fT1HRH6uDFBUVkZ+fH3SwwuqYrgiat6VLO7fYbOUf/zAHdsPllFNg6FDrbfPnw6efhq/ZDbq/F8u9njpNO3R0P78Ea9ycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXAxojBo1CsMwWLlypWpXBIeprKzE7/erdsMR/H5/5/gWLrTe+ZhjzPUyZs0yF8Pt0cN8vkcPGDPGdt+SkpLIzs4mKSn2JSEWtp2yYZdutDoq8ydETlJSEhkZGYGacDXmYsPTgROApLo6c8d33zVna8QZljUvFHr0gOJiOOusLncbCLwP/CVC/5KSkpS850R0vRoGvPAC7LWXOYulOxsjR5I9bhxJf/5zFJ5a6CZgzfsC2Bd4xAHtUGc2OMmyZcsoKSmhoqKC4uJi0tPTA9vS09MpLi6moqKCkpKSTg+rY7oiaN7uvhuCzcJOSuo8cyM0YzBtWvDtDqyloft7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1N4DMMwVDvRHV988QUHHHAAfr+fpUuXJsTiionGV199xd577x34e/Xq1ey1114KPbKH0tJSBg0aZLnt53ffZcDhh1sfOGsWTJr0x99VVbBoEZSUwPXXO+CpIAgqaFsjRgAfBtvxnXfM2Ro22+xISUkJeXl5etgwDJg+Ha6+GroZdLgXOHntWvJ2371b+8uWLWPAgAGUlZUFvZ+w63WwhTVr4NJL4a23ut83OdlsMfW3v5lf6HZBV69RMLR6XRwkktcmHFrbORUVFYU8GNCK3b7ZmdOorvuSEhg2DKrbNPXKy4PnnoMRIyJzyDDggAPgs8+sty9fHnwgRRAEQRAEQRCELlH5XW5cDN3su+++3HrrrRiGQUFBAWvXrlXtkuAQw4YNIzU1VbUbjpCamtouvp5vvhl85xNPbP93VhaccYZjgxmNjY2sXLmSRgW/Ao+Fbads2KUbrY7K/AmR09jYyPfffx+oCR/TRX/+ruqFpnSseWHj8cCVV8Lrr0OfPl3ueiXQf/RoWLy4W9nDDjuMQYMGcdRRRyl5zwn5eq2pMQdzhg4NbTBj993h/ffhmmtobG52pCY0NTVJzYuCrmZDJAJd5m3QIHj00T/+PvVU+PzzyAczwKwh//xn8O02r6Wh+3kp93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFHExoAFwzTXXMGvWLDZv3sz+++/PVVddxQcffEB1ddCvf4Q4ZOTIkcrbLziF1+ttF196sC+o9t8ftq4bEyt8Ph9Lly7F5/N1v3Mc2nbKhl260eqozJ8QOT6fj5UrVwZqQguwJNi+r75KaWlplw/d8t+x5kXMUUfBJ5/Avvt2uVuP0lI4/ng4+WSSy8pi51+YdHu9+nwwYwbsuqvZiqe7RctbB34+/zzwa3OnakJjY6PUvCgYMGAAeXl5rr3P6Qqfz8d3333Hm2++yXfffWdds047DS67zJyl+vzzkJ0dveExY8wFx6343//gw6Dz4sJG9/NS7vXUadqho/v5JVjj5rzpHpvUPHWaUvMSF7fnTef4dPbNKeKi5VRycnK7vw3DwBPBApcej4fm7r4YEJSQaC2nMoHKlBQ8VufjtGlw003OOycIgnI61ohLgPs77FMDvAmcAnT1hh1qG5u4aTnVkbo6agsKyHj55W539Xu93OTzcTfQEL4lNa2VGhrMX6jfdhv8+mtoxwwebK6pEUErzoRvOdXU9Mf6VB1wquWUHa9fvLacsiKa1lth8b//wejR1tuOP95s6SkIgiAIgiAIQlhIy6lu6Djm0nYwwzCMsB6C3ni93ogGq+IBj8cTiG80WA9mAIwdG1O/wLyOfD6fkmskFradsmGXbrQ6KvMnRI5hGDQ2NrareW8CTcAy4B/AocA2wMl0PZgB5q8y5s6dS2FhoUMeh0fbmmcL6en8PmMGf8OczdIVST4f/wJWA8eH6Z/X6yU3Nzd6f4PQ6XrdsgUeesickXHJJaENZiQlweWXwxdfWA5mSM3rVsBcdP6cc8w1qoSY0PGai1nNOvZYOPRQ622vvQYff2yLGd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35wiLgY0IPjAheAupk6dSlZWlmo3HCErKysQ37hgOw0YYC6KGWOqqqq44447qFLwxU4sbDtlwy7daHVU5k+InKqqKp577rl2NW8t5gDG4cA/gQ+AcOcVLliwQIuppm1rnm14PNwDjAZ+D2H3XYBFmOuTnAv0DMG/8ePHO9oSKHC9fvKJudj3DjvAxRfDzz+HJnDYYWZ7qfvug169urZhc03YsmWLO2renDlmS6OnnjJbmS1bFpmOEBbBrjnHa5bH0/V6Gf/6ly1mdH8vlns9dZp26Oh+fgnWuDlvuscmNU+dptS8xMXtedM5Pp19c4q4aDkluJ/WaUq5ubls3LiRL774wnUtp5KTk+nXrx+bN26kvKWFHKsDLr4YHnwwpj4CtLS0sHHjRvr169epxZsbbDtlwy7daHVU5k+InJaWFsrKythzzz2pq6uzVburNjKxajm1yy670K9fPzZu3EhLyx9zKqKx0db3vsDtwHlhHF8BPAnMAr7fWpNb/YtJ+5vaWlpefpmNc+bQb/Fiklu6m2vShu23N9fUOOMM8wvaLgilJkTSuuj777+nV69e8V3zfv4Z9t4b2q7B5vHANdeYC0inpkrLqQjpzrfkDtecU35YYhhwyCGwfLn19s8/j/oHJbq/F8u9njpNO3R0P78Ea9ycN91jk5qnTlNqXuLi9rzpHJ8q31S2nEqJiRVBCJHy8nLVLjhGS0sL5eXlHAHWgxmgpN0UmF8yONliRbVtp2zYpRutjsr8CZGTnJzMwIEDGTt2LHPnzlXtju201jyn+B04H3gEeBDYP4RjcoApWx/1w4dTW1BA/SGH4O/Th9zcXGdmZvzyC7zyCixcCG+9RXJDA2FdrV6vuVDy3/8OmZkhHSI1LwiGAZMmtR/MaH3+jjvgxx/hueci9kvoGttrwpYtQWcpdcLjgRtvhBNOsN7+r3/Bf/8blTu6vxfLvZ46TTt0dD+/BGvcnDfdY5Oap05Tal7i4va86Ryfzr45hVYtp9z8ZbYQGhMnTiQjI0O1G46QkZHBxIkTOTFYfOnpZusLBdTW1vLEE09QW1vrSttO2bBLN1odlfkTIqc1bzNnziQ/P9/RNkcqaK15Ttf0j4CDgE3/+hfkBB0u7kTLqlW8+tlnbDNyJHljxuCdMsVsRRRq6ycrmprgyy/hmWfgb3+DAw80WwlOnmwuPNzQQG1GBk9MnEhtd69LWpq5TsYPP5hftoc4mAHO1YT6+vr4rnnPPGOumWBFSgpcfXVE/sQSxwbeYoBtNcEwzFwOHAiffRb6cccfD/sHGfqcNw9Wr47KLd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35xCqxkaAwYM4IADDmDs2LGMHTuWoUOHqnZJiDGlpaU0B1ssO85pbm6mtLSUq4PFl50NO+4II0fCSSfB+PHmF2ExICUlhby8PFJSYl8SYmHbKRt26UarozJ/QuS05i0zM5Pi4mJ8Pl9YA/tlZWUcZrEgtC601rxY1HQ/UHPmmfSZNAmuvx4efdT80rMLUpqbySstJaW5GdasMR+zZ5sbBw6EwYNh223/ePTrZz5aWsyFpKurzX+rqmDTJvjqK/ML0cbG0O1akZoKF1wA110H/ftH8Go4VxOSk5Pju+bl5EBuLlhdZ//8J/zpTxH5E0taW6PF46wuW2rC77+bA4Tz5pl/n3cerFgBPXp0f2zrLI0JE6y333prVDN0dH8vlns9dZp26Oh+fgnWuDlvuscmNU+dptS8xMXtedM5Pp19cwqt1tBISkrC06Yv9E477cSJJ57IuHHjGDlyJD1C+bAixCUq+645Scd+0kOANcF2Tk3t/EXYgQfCbbfB0Uc75aIgCHFKpGthxGoNDSdshKy7YgXccAO88UZEdpSwzTZQWGguFL7TTo6bi2QtBsfXOYgFFRVw1VXw+ON/PHfggfDBB+YsDexfp6IVu16/uro6CgsLLRfT9nq97Lvvvnz00Ucx9Qmie91C8uPVV80BjPXr2z9/223mAGAoGIa5VsaqVZ23eTzw9dcwZEhoWoIgCIIgCIKQwKj8LlerllPjx48nPT0dwzAwDIMff/yR//znP4wePZq+ffty+umn88wzz7B582bVrgoOMWLECNLS0lS74QhpaWmcPGIEDVbxeTzWv+r9+OPAFyxO0tDQwPLly2loaHDclgrbTtmwSzdaHZX5EyLH7XlLS0tTV9MPOghefx2++QauvNKyFVVDWhrLg9VkB+lkd8QIeOopc62Nu+6yZTDDqXOrsbEx/mteTg4UFcH//mfOxOnRw/w7jn7NlJ6eTnFxMRUVFZSUlLR7VFRUUFxcrNpFS8KpCT6fj9LS0sDj14UL4cQTOw9mAEybBmvXhuZE6ywNKwzDHByJEN1rutzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1NoNaDx0ksvsWnTJl599VUmT55M//79A4MbNTU1zJs3j3POOYfc3FyOOOII7r77br799lvVbgs2MmzYMFJTU1W74QipqalsM2wYjVbx9etnfVCfPvDnPzvrGOaXVCtXrqSxm1Yp8WrbKRt26UarozJ/QuS4PW+pqanqa/puu8E995iDBY8/bg50bKUxNZWVwWqygzSmprLygANoLCyEzz+HDz+Ev/7VXPzbLhshnFvhrsXg9XrJyclxT8079lizRdjChdDmV0XxhNfrJS8vr91D5/U1QqkJdXV1FBQUkJOTw6BBgwKP/uPHsyApyMeWhgazTZvfH5ojJ58Me+5pvW3OHPj++9B0OqB7TZd7PXWadujofn4J1rg5b7rHJjVPnabUvMTF7XnTOT6dfXMKrVpOWfH555/z8ssvs3DhQj5rs/Bf29ZUu+yyC+PGjWPcuHEceuihJAX7wCNoSyK0nOoLrCfIKGJ6OtTVdX5+4sT2bTEEQUhcDMNc5+H772HcOGk5Fanup5/CI4+Yv9AvLY3Ij4jYay8YN858HHQQaHCvUlBQEPJaDPn5+dr+8t9udG851R3h+K9by6muzsntga+B7I4bkpLg8svh3/+GUGdcPfcc/OUv1tsKC+Gxx0LTEQRBEARBEIQERVpOdcF+++3HTTfdxCeffEJZWRkPPfQQY8aMIS0tLTB74/vvv+fee+9l5MiRbLvttpx99tm88MIL1NTUqHZfCJPs7GzXDkidkJREdXY2fqv4srOtDzrpJEd9asXv91NZWYk/1F83xpltp2zYpRutjsr8CZETUt5++cVsR3T22eYC0XvtBWedBU1NsXM0QpKSkvSs6fvvD7Nm4V+3jsrVq/E//TRMmgR77GGfjZQU2HdfOOccmDnTHIRavRpuuw3/QQdRWV2tRc0rKioiPz+/y1/1e71e8vPzKSoqkponREV3NcHn87FgwYKgx/8GXNXxyb32Mtc/uffe0AczAE4/3ZzBZcVTT0U02Kn7eSn3euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUmn3L0DU77LADkyZN4pVXXuH333/npZdeorCwkG233TYwuLF582bmzJlDQUEB/fr149hjj+WBBx7gp59+Uu2+EAJTpkwhMzNTtRuOcFxmJjOmTKG6Y3y77AI//wyffWb2dd5nH/P5Xr3gmGNi4lt1dTUzZsyguro6JvZibdspG3bpRqujMn9C5HSbt48+ggEDzC/Fn34afvvNfL6mxlxfR3MyMzO1runV1dXM+O9/qT7xRJg1y1wMeMMGeOklcy2La64xZ8mNGQMHHGCut9CrlzkAvdNOZq0+9FBze0EBXHGFOaPu88+hthZWroQnnjAX+R48uL1dTWpeV2sxdFyTIT09XWqeEBXd1YTy8vJOi5x3pAh4CzB69ICbbzbvnYYPD9+Z5GT4+9+ttzU3w+23hy2p+3kp93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFNq3nAoFwzBYsWIFCxcu5OWXX2b16tWBbW1bU+29996MGzeOsWPHclCbPtqCelqnKWVnZ1NdXc2qVatc1XIqDdiQlIQ/M5PM6mqS2o6aXnml2eO9La2/5p0wISZ++v1+qquryczMjPmvqWNh2ykbdulGq6Myf0LkdJu3xkZzAWOrdnTTplF69tlat5waPHgwmZmZVHeYjaC85dRWVF03UvP0r3nScsoZu0lJSZY1odUPICS/84D3Fi+m/3HHReOuOXCx++7www+dt/XoAevWwY47hiyn+3ux3Oup07RDR/fzS7DGzXnTPTapeeo0peYlLm7Pm87xqfJNWk5FicfjYfjw4dx6662sWrWKH374gRkzZnD00UeTkpISmL2xevVqbrvtNg4++GD69++v2m3BArdOkToSyPT7ya6sbD+YAWY/9Y7sskvMBjNAbWuYWNh2yoZdutHqaNvaR+iSbvOWmgpHHGG97c03nXPMJnSf9qrqupGaF4Oa19IShXeCU3RVE0pLS7udnRHYF2jafffoHUpJgeuus97W1AR33hmWnO7vxXKvp07TDh3dzy/BGjfnTffYpOap05Sal7i4PW86x6ezb07hykjz8vK49NJLef311/n999+ZO3cuZ555Jjk5OYHBjfLyctVuChZMnjyZ3r17q3bDdsYCNb17M2vyZGraxpeTY7YsUUxNTQ2zZs1Ssu5MLGw7ZcMu3Wh1VOZPiJyQ8nb00dbPL1+OZ8sWZxyzid69e2td01VdN1LzHK55hmG2Abv0UqiqispPwV66qglHHnkke9i5jk2onH222ULOikcfNdvQhYju78Vyr6dO0w4d3c8vwRo350332KTmqdOUmpe4uD1vOsens29O4coBjbb07t2b0047jaeffpoNGzawdOlSrrzySnbddVfVrgkWrFy5ksbGRtVu2M44ILWxkWErV5LaNr4xY8xfCComNTWVYcOGkZqa6krbTtmwSzdaHZX5EyInpLxZDWgkJ8MBB5C8caNzztlAY2Oj1jVd1XUjNc/hmvfcc/D66/DAAzBkiPl3/HdXdQVa1oTUVJg61XqbzwczZoQhpfd7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1O4Yg0NIf5R2XfNSUpLSzl50CA+C7bD3Llw+umxdEkQhHjC74ftt4c+fczBjaOPNttQZWVFvJ5ErNbQcMJGLHwX4pjKSnMQY/369s8ffTQ8+CDstltIMrKGhvN2o8XW19Lng513ht9+67wtMxN++gmysuyxJQiCIAiCIAguQdbQsJEXX3yRiRMncvzxx3POOedQXFys2iUhDEaOHInX61Xthq2M3fqvz+tl6ciR+LbGZ6SkQLQLWtqEz+dj6dKlIfevjjfbTtmwSzdaHZX5EyInpLwlJcF338HXX8PMmeaaO3HyxZrX69W6pqu6bqTmOVjzbrih82AGmGvOXHJJRLYE+1BSE0JZw8frhSuvtN5WXQ0PPRSSKd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35wiLgY01q9fz+GHH87hhx/O9ddfb7mP3+/n5JNPDrSXev3113nmmWc488wzOfLII9miea9xwSQvL48UDVow2Unrkt/NKSmU5uXRvDU+3/Dh2nwx2dzcTGlpKc3Nza607ZQNu3Sj1VGZPyFyQs5bZmZsHLKZlJQUrWu6qutGap5DNe/TT+E//7E+ICUF7rsvIluCfcS0JhgGzJkD++wDobTnmzTJXNfMiunTob6+Wwnd34vlXk+dph06up9fgjVuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi5aTs2aNYuLL74Yj8fD888/zymnnNJpnzvuuIPrrrvO8niPx8Npp50mszU0xq0tp37+8EN2POQQy22b/vEP+tx8c2wdEgTBNUjLKft0BRewZAmccw78/HPnbVOnwr//HbKUtJxy3m60dOn3N9/AxRfD22+bf19wATz8cPeiN98M06ZZb3vgAfi//4vEVUEQBEEQBEFwJdJyqhuWLVsGmIucHH/88Z22NzY2cuedd+LxePB4PBxzzDHMnDmTq6++Gq/Xi2EYvPDCC3zyySexdl0Ik9zcXJKTk1W7YRvprR+mgZbkZMpzc2nZGp8/OxuamhR51p6WlhbKy8tpaWlxpW2nbNilG62OyvwJkeP2vCUnJ2td01W9/lLzHKp5Rx5ptma7+mpzRkYrAwearagE5bStCWvWrKGkpISvvvqK4cOH22Ogvh5uugmGDv1jMAPg0UfNGTzdceml0KuX9bY77+z2nk33mi73euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUcTGg8dVXXwGw9957k56e3mn7a6+9RkVFBQDjxo3jf//7H5dccgl33HEHjz/+eGC/Z555JjYOCxEzefJkevfurdoN2+j55puB/9f07s3syZOp6d2bGqDfFVfAdtuZvyh96SWoq1PmZ01NDbNnz6ampsaVtp2yYZdutDoq8ydEjtvz1rt3b61ruqrXX2qegzUvI8P84vnzz+Gww8znZs4M/iW1EFPa1gSv10teXh577rkny5cvp76+npKSknaPNWvWhGdg1iy45RZobGz/vGGYgxXdrafRp4/ZesqKn36CZ5/t8nDda7rc66nTtENH9/NLsMbNedM9Nql56jSl5iUubs+bzvHp7JtTxEXLqb59+1JRUUFBQQFz5szptP2SSy7hP//5Dx6Ph2XLlnFImxY/fr+fnXbaid9++40DDzyQ5cuXx9J1IURapyl5vV4aGhr48ssv47/lVG0tRp8+eLZ+sDY8HhrS0khraMBvGHT6zXLPnmZLhLPOirmrhmHQ0NBAWloaHo/HdbadsmGXbrQ6KvMnRE60edO95dTOO+9MWloaDQ0NtL3V0KXllKrrRmpejGqeYZiLgR9zTNj60nLKGbsejydQE3744Ydu7YZ9vTc0wF57wbp11oJPPQV//WuXNvnlF9h5586DIgBDhsBXX0GS9e/BdH8vlns9dZp26Oh+fgnWuDlvuscmNU+dptS8xMXtedM5PlW+ScupbmgdYcoKsoBya0uqvn37thvMAEhKSmL//ffHMAzWBfuAI2iDz+dr98VXXPPGG4HBDACPYeD1+fBYDWaA2SphyJCYudcWj8eD1+tVUpRjYdspG3bpRqujMn9C5Lg9b4ZhaF3TVb3+UvNiVPM8nogGMwTncLIm+Hw+Sn/7jfVB1tPD44Fvv+1eqH9/c+asFWvXwvz5QQ/VvabLvZ46TTt0dD+/BGvcnDfdY5Oap05Tal7i4va86Ryfzr45RVwMaLQmxGq19qqqKr766is8Hg9//vOfLY/fbrvtAKiurnbOScEWpkyZQmZmpmo37GHhwnZ/Vmdmct+UKWwIFt+OO8L++8fAsc5UV1dz3333KblGYmHbKRt26UarozJ/QuS4PW+ZmZla13RVr7/UPKl5iYoTNaGuro6CggJycnIYNGgQueefz6IO+7Qccoi5hsYtt4Qmes01QWdh8O9/m7N/LND9vJR7PXWadujofn4J1rg5b7rHJjVPnabUvMTF7XnTOT6dfXOKuBjQyM7OBqCsrKzTtnfffRf/1p64hx56qOXxrQMhui5MKvzB0qVL8fl8qt2InpYWeOWVdk95fT5GLl1Kr2DxTZhg/oJQAV6vl5EjR+L1el1p2ykbdulGq6Myf0Lk2JG3nYBJQB/bvLIPn8+ndU1Xdd1IzZOal6g4URMKCwuZO3duO80rgEbgF+AM4MwBA2C//UIX3WUXOP10622ffGK2MrNA9/NS7vXUadqho/v5JVjj5rzpHpvUPHWaUvMSF7fnTef4dPbNKeJiDY0jjjiCZcuWkZWVxW+//dYuQeeccw5PP/00Ho+H5cuXc+CBB3Y6fsyYMSxevJj+/fvz888/x9J1IURU9l1zhA8+gCADbO8Bw4CMjhveegtGjXLWL0EQ4puGBli2DF57jcaFC0n9/nsAzgLarjClwxoaTtiIhe+CIGto6GG3u+s9NzeXnJwcywGS0cAyYAvmB7yKiorwPuCtWgX77mu97cgj4e23Q9cSBEEQBEEQBBcia2h0w1FHHQWYU2imTp0aeP6DDz5g7ty5eDwetttuOw444ADL41euXInH42Hw4MEx8VeInNGjR9OzZ0/VbkRPh3ZTAPU9e/LK6NGM69mTvsD6Rx+FwkLo2xe22QYOPzz2frb6Vl/P4sWLqa+vd6Vtp2zYpRutjsr8CZETUd6GDzfXBbj33sBgBsDxDvgXLT179tS6pqu6bqTmSc1zmtzc3JC+vPd6veTm5sbAIxO7a0J5eXnQ2R6LMQczwJwZUl5eHp740KFw4onW25YsgeXLOz2t+3kp93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFHExoFFYWBj48HP//feTl5fH/vvvz5FHHknj1kWXL7jgAsvFT9asWRP4ELNfONPNBSVkZ2eTFKxvcTzx8sudnvInJfF9djaNSUk0APVHHQWPPQbl5fDhh5CSEns/W33z+6msrAy0b3Obbads2KUbrY7K/AmRE1HeDjvM8unj0O8NPSkpSeuaruq6kZoXpU5ZGf5rr6VywwapeUHwer2MHz++2/3Gjx9v67T07gZSWmtCz549YzqQEjHBFhgHcy2NDuj+Xiz3euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUcdFyCuDhhx9m8uTJ7QYtWl3fbbfd+OSTT8jI6NTEh2nTpjFt2jQ8Hg/PP/88p5xySsx8FkLHVS2nvv8edt3VctMFwKNb/y/tUQRBCJtFi+CEEyw3DQdWbP2/tJwSXMuZZ8Kzz0J2NkybBhddBD162Goi3ltOgblYdmFhIQsWLOg0i6F1wKOoqIj09HRb7RYUFDB37twu98nPz6e4uLhbre6ud8D51lojR8I771hvW7UK9tknfE1BEARBEARBcAHScioELrzwQl588UX23XdfDMPAMAy8Xi8FBQW88847loMZTU1NPPzwwwCkpKRw9NFHx9ptIUzy8vJIUThTwRYsZmcANKek8Jmm8TU3N1NaWkpzc7MrbTtlwy7daHVU5k+InIjyNnIkpKVZbtKt7VRKSorWNV3VdSM1LwqdDz6AZ5+lOSWF0uxsmq+6CoYNC7pIcyKTnp5OcXExFRUVlJSUtHtUVFRQXFxs+2AGQFFREfn5+ZYzNXr16sW5554buDePC66/Pvi2O+5o96fu78Vyr6dO0w4d3c8vwRo350332KTmqdOUmpe4uD1vOsens29OETcDGgATJkzgs88+o6amhl9++YWqqiqeffZZtttuO8v9GxoaePbZZ1myZElgUXFBbyZOnGg5OBVXBBnQeC8jg3GaxldbW8uTTz5JbW2tK207ZcMu3Wh1VOZPiJyI8paebg5qdGAlEGaHeMfJyMiwrOllZWWUlpYGfQTriW83qq4bqXkR6hgGXHGFeXxGBk9OnEhtRgZ8/bW5rozF2lWCORsjLy+v3cPONlMd6WogZd26dQwcODC+psIfcwz86U/W24qL4ccfA3/q/l4s93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFHHTckpwN65pOVVRAf36QUtLp003ALe2+VvaowiCEBEzZ8JNN7HlkEO49LXXWAz81mEXnVtOdUdX7XCk5VQCM3cuFBRYb9tzT1i50rbWU25oOeUGHG85ZRjw3//CfvvBLrsEP3jePDj1VOttl10GM2aE5IMgCIIgCIIguAlpOSUIbuG11ywHMwDkt6OCINjCBRfAxo1s/M9/eJzOgxnxjs/nY+7cuRQWFqp2RdCJrr40vu8+29fREPQm6tlcy5fDn/8Mp58O117b9b4TJgRdG41HH4VNmyL3QxAEQRAEQRCEsJEBDUErpk6dGt+twYK0m/oR+CkrS9v4qqqquP3226mqqnKlbads2KUbrY7K/AmRE3HeevaMiy9vs6KseVaLGduJqutGal6EOv/7H9x4I/TsSVVWFrdPnUpVVhaccILZFkjQHjvPyyOPPJI99tgj/ANLS82ZPgcfbK7JAvDii/Duu8GPSU6Gq6+23lZXBw8+COj/Xiz3euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUMqAhaMX8+fOpq6tT7UZkNDaaMzQsWAjU1dVpG196ejoTJkxwZIFQHWw7ZcMu3Wh1VOZPiBw35y03N5eWlpaoap7P56O83LmVQVS9/lLzItTp3Rv++U/47jvSTzmFCfPnk+7zwV13ReWLEDuU17zPPoMhQ8z2ZR256iroam2Pv/4VgqzZx/33Q12d+vi6Qe711GnaoaP7+SVY4+a86R6b1Dx1mlLzEhe3503n+HT2zSnibg2N+vp6Xn31VVasWEFJSQnV1dU0NTWFdKzH4+Gtt95y2EMhElyxhsZbb8HRR1tuehS4C/i2zXPSS1sQhGiIdD2JWK1DUVBQwFyrLw7DoKM/soaGEOCLL+C99+D//s92aVlDQw/szENJSQl5O+0EBx5oDmxY8cwzcOaZwUVuvx2uu8562wMPOHIuCoIgCIIgCIKuyBoaIWAYBnfeeSe5ubnk5+dzzz338OKLL/Lmm2/yzjvvdPtYunQpS5cuVR2G0A1xPaIYpN1UM3A+8Hl6Ok9MmMC/0tM5AMzFKDVB5eyRWNh2yoZdutHq6Dz7RwiO2/P2wAMPMGXKFHJyclS7Yomq119qnk01r6SEunPPjcoPIbaEm/fc3Fy8Xq99DiQlwT33BN9+ww1B10EDYPJkc6aQFffcQ111tdY1Xe711GnaoeP2ewa34ua86R6b1Dx1mlLzEhe3503n+HT2zSniZkDjrLPO4rrrrqOmpgbDMMJ+CIKjGAYstF72O7nN/7OAK4CPgcyiohg4JgiCoIb09HSOOOIIvv/+e0pKSoI+li1bptpVQRA0xOv1Mn78eHtFR44EK83jj4dXXjHXywhGdjZMmmS9raQk6H2gIAiCIAiCIAj2Ehctp5599lnOOussPB4PhmGw++67c/rpp7P33nuzzTbbkJKSErLWEUcc4aCnQqTEfcup1athn33COuSXN9+k/1FHOeSQIAhuR/eWU6ESjj+6+S64E2k5pQ91dXUUFhayYMECfD5fxDrtXvtvv4W99oLmZvPe7e674dhjQxP65RcYNAis2t0OG2a2s/J4IvZTEARBEARBEOIFaTnVDY8++mjg/1dccQVfffUV06ZN47TTTuOoo47iiCOOCPkh6M2QIUPo0aOHajfCJ0i7qbajhU09erB2yBCaevRgDdA0eHBMXAuFpqYm1q5dG/J6NPFm2ykbdulGq6Myf0LkuD1vusenyj+peVLzEpVI8paenk5xcTEVFRUsWbLEHkd22w1uugkeeQQ+/zz0wQyA/v3hrLMsNzV99RVr587V9ryUez11mnboSN2LT9ycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXAxorFq1Co/Hw6BBg7j77rtJSooLt4UIiNs1NIK1GWjzK7269HTmT5hAXXo6L8XIrVCRHqNqdWUNjcTEibxlAicDGc89Z5tmpOh+XsoaGup0peYlJtHkzev12ju75cYb4fzzu24xtRWfz0dpaWng0XDZZZb71aWnM/+rr7Q9L+VeT52m9JNPXNycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXLScysjIoL6+nrPPPpvHH39ctTuCA8R1y6n162H77S0X+a4bNYrP336bg2k/engQ8Ly0nhAEIQpa2+LsA4wBjgcOAXoALTk5JG/caPllnW5tm6TllNCOxkaor4esLGUuSMspPYkmL2vWrGm3wHgoC44Ha3fl9XpZts02HPDrr9YHfvIJ7L9/RH4KgiAIgiAIQrwgLae6YaeddgKQmRmCnrz6quVgBsDmv/+dPwM7AJOAxcAPwCex804QBBdzLLAKuB04AnMwAyC5osL8Uk0Q4o1HHoGdd4Z77oEo1kwQhLbsscceDBo0KPDIycmhoKCgy1+xFRYWMnfu3E5rd/h8Pi4LNpgBcOeddrktCIIgCIIgCIIFcTFCMHz4cAzDYM2aNapdERzm5ptvJjs7W7Ub4RGs3dTuu9O8884ArAeez87mo5tv5qDsbHSbFlVZWcm0adOorKx0pW2nbNilG62OyvwJkWNH3pYBQb/yfe21iHXtQPfzUpV/UvO60KmthX/+EzZvhr/9zVzr4PHHoaXFET+E2KJT3nw+H3PnzqWwsDDo9gULFgQ9/kPggw6Lf1dmZzPt5pupfOMNWLfOTndtQe711GnaoaPT9SOEjpvzpntsUvPUaUrNS1zcnjed49PZN6eIi5ZTn376KQceeCDJycl8/vnn7aazCO6gdZpSXl4eZWVlrFy5Mj5aTtXXQ58+5r8dufpqSi++ONAeISUlhQEDBlBWVkZzc7NWrSeam5spKytjwIABpKSkuM62Uzbs0o1WR2X+hMiJNm+t7VdeA0Zb7XDQQfDRR0GPs8LOuhRqfKpaTqm6bqTmdaFzyy3mYs0d2XNPePpp+NOfbPUjGD6fj5ycnE6/zI8Wnd73VWBXzbMTr9dLRUVFp/ZTodg6EXi5zd/NKSmUDRjAgLIyUi64AP7zH1t9jRa511OnaYeO3OvFJ27Om+6xSc1Tpyk1L3Fxe950jk+VbypbTsXFgAbAxRdfzKxZs9hrr71YunQpffr0Ue2SYCNxu4bGq6/CiSdab3v3XUp33FH6vQuC4AitX7hdBsyw2sHjMdf46dfP8jgrZA0NQRkbN5qtpmprO2/r2RO+/x522CFm7hQUFDB37lxbNeUcjQ6n1jZZsmQJI0aMaDeoEYotD+DbdVdSv/uu80avF378Ebbd1mZvBUEQBEEQBEEPZA2NEHjggQe44IILAi/WAw88wG+//abaLcFmCgoK6NWrl2o3QidYu6k+feDgg9s91atXL23j27JlC8XFxWzZssWVtp2yYZdutDoq8ydEjl15W2TxXPN220FhofXssRih+3mpyj+peUF0br3VejAD4PLL2w1mxOI1LCoqIj8/P+jC0V6vl+HDhztm343oWhOOPPJIyzU1DsdsLVUQ5DgDqL7wwsDfW3r1origgC29epnrv9x/v5Nuh43c66nTtENH1+tH6Bo350332KTmqdOUmpe4uD1vOsens29OodccmS5ISkpi9uzZ7LHHHlx55ZVcfvnlXH755WRlZZGVlYWnQx9bKzweD+s07Gkr/EFlZSV+v1+1G6Hh98Mrr1hvGzMGOkzz8vv92saXlJREdnY2SUmxH+OMhW2nbNilG62OyvwJkWNX3r4H1mCu1fPa1sfCDz8kz4FfMoeD7uelKv+k5gXR2XZb6NULOt6EZ2fDNdc44kdXpKenU1xcjM/no7y8vNP23NxcysvLHZkx4FZ0rgmta2oAFF9/PdtOmcI7W7dtC8wDmiyOqx03jr733Qe//EKS3092ZSVJrfd5Dz4I114LGRnOBxACcq+nTtMOHZ2vHyE4bs6b7rFJzVOnKTUvcXF73nSOT2ffnCJuWk41NTVx2WWXUVRURHNzM23dDmUwwzAMPB4PLR0WlhT0IC5bTn3yCRx4oPW2F16AU0+V9iiCIDhG2/qSDLR9d+uqvuhWl6TllBBg/XpzpsasWdC09evjO+7oNKChC+G2QJJzNDqcajnVyg7AHUlJnGkYeDp8PLoUeMDimJKSEvLmzTMXsbdi+nSYMsVmTwVBEARBEARBPdJyqhtaWloYP348Dz/8cKfBDDAHK7p7CPHBsGHDSE1NVe1GaARrN5WaCscdZ/F0qrbxNTY2snLlShobG11p2ykbdulGq6Myf0Lk2Jk3HYfqdT8vVfknNa8Lne22g5kzYe1aOPNM2HFHuPRSx/wQYovuecsACvz+ToMZADdu3W7JhRdCVhaNqamsHDaMxrb3effe+8fgnGLkXk+dph06ul8/gjVuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi4GNB5++GEWL14MmIMXRx99NI899hgrVqzgu+++o6SkJKTHDz/8oDgSoTtGjhwZtF+1drz8svXzI0dC796dnvZ6vdrG5/P5WLp0KT6fz5W2nbJhl260OirzJ0SO2/Ome3yq/JOaF4LOzjvDM8/AV1+ZC4I75IcQW3TP27fAY0G2bQtcFezA3r3h4ovxeb0sHTkSX9v7vJ9/huees9XPSJF7PXWadujofv0I1rg5b7rHJjVPnabUvMTF7XnTOT6dfXOKuGg5NWLECFasWIHH4+Guu+7iyiuvVO2SYDNx13Lqp59g4EDrbUOHwlVXwYknUlpdLe1RBEFwhEjbL+nWtklaTgnxirScii1Ot5wC2B4o83pJsvgwWAyc0eG5QE7LyyEvDxoaOovutRd8+SWE0CJXEARBEARBEOIFaTnVDV999RUej4c999xTBjNcjtfrDWlNFOUEm50BsGoVnHMObLst2511FhcDuZhrvegan2EY+Hw+Je3ZYmHbKRt26UarozJ/QuS4PW+6x6fKP6l5UvMSFV3y5vF4eO211yy3/QZUFxa2e+5D4HA6D2a0IzcX45xz8Hm9GB3v8776ChYtisJje5B7PXWadujocv0I4eHmvOkem9Q8dZpS8xIXt+dN5/h09s0p4mJAo5Xhw4erdkFwmKlTp5KVlaXaje7pakCjlZYWer7/Pg8CpwJZWVnaxldVVcUdd9xBVVWVK207ZcMu3Wh1VOZPiBy35033+FT5JzVPal6iokveTj/9dIYMGRJ0e/WkSbRkZbEGOAk4BFgWgm7V5MncMXUqVVb3eXfcEaG39iH3euo07dDR5foRwsPNedM9Nql56jSl5iUubs+bzvHp7JtTxEXLqSFDhvDdd99x9tln8/jjj6t2R3CA1mlKubm5bNy4kS+++ELfllPV1dC3b1iLPO4I/JacTL9+/di4cSMtLS1atZ5oaWlh48aN9OvXj+TkZNfZdsqGXbrR6qjMnxA50eZN95ZTocanquWUqutGap57ap60nAoPJ2teKHi9XsaPH09RUREbNmzospb0WLuWgccfT0s3mm1z2tLSwsaJE+n33HMkt1gc+eGHMGJExP5Hi9zrqdO0Q0eXuieEh5vzpntsUvPUaUrNS1zcnjed41Plm8qWUykxsRIlo0aN4ttvv2XlypWqXREcpry8XLUL3fP662ENZnwClAG0tGgbX3JyMrm5ua617ZQNu3Sj1VGZPyFy3J433eNT5Z/UPKl5iUos87ZmzRq8bRfnBnJzczs9F4ymIUO6HcwAcwHG0tLSwN+pp55K8jPPWO98110wb15I9p1A7vXUadqhI3UvPnFz3nSPTWqeOk2peYmL2/Omc3w6++YUcdFyatKkSSQnJ7Nq1SqWLQtl0rcQr0ycOJGMjAzVbnRNKO2m2vDS1n8zMjK0ja+2tpYnnniC2tpaV9p2yoZdutHqqMyfEDkxyVtTE7z7Llx3nbm+TwzR/bxU5V/C17zmZmoffpgnioqk5iUYscyb1+slLy+v3SPUwYxw2GOPPRg0aBCDBg1in3324e/z5/N6797WO7/0Enz3ne0+hIrc66nTtENH6l584ua86R6b1Dx1mlLzEhe3503n+HT2zSniYkBj33335dZbb8UwDAoKCli7dq1qlwSHKC0tpbm5WbUbwWluhldftd42dixMmQIDB7Z7unVAo7m5Wdv4UlJSyMvLIyUl9pO2YmHbKRt26UarozJ/QuQ4lbftgYznn4fTToN+/eCII+D22+HFF2210x26n5eq/Ev4mjdnDimXX07e/PmkPP00NDaq8UOIOW7PW+t93sxgs3gNA+65J7ZOtUHu9dRp2qHj9uvHrbg5b7rHJjVPnabUvMTF7XnTOT6dfXOKuFhDo5WHH36Yyy+/nKSkJCZPnswpp5zC3nvvTWZmpmrXhChR2XctLJYtg8MPt972yitwwgnmB9YvvoCXXqLuww/p9cYblrsnei9tQRCiI1g/+deA0VYHHHQQfPRRzNbQCBVVa2gICmhshCFDoKTkj+cGDYKbb4YzzwTNetF2h6yhEVt8Ph85OTn4fL4u9/N6vVRUVHQ5I6O7WgJEtV7HKmAfqw1pafDjj7DddhFrC4IgCIIgCIIOqPwuNy5maCQnJ5OcnMxFF11EY2Mj9fX13HfffRx22GHk5OQEtnf3SKSRqnhlxIgRpKWlqXYjOMHaTfXsCaNGmf/3eGDYMJg2jQ0PPxzYJS0tTdv4GhoaWL58OQ0NDa607ZQNu3Sj1VGZPyFynMrbomAbPv4YNm601VZX6H5eqvIvoWve449DSQkNaWksHzGChrQ0c3DjnHNg6tTY+SEoIdq8tS7q3R3jx493pL1Ud7S9z7sz2E4NDXD//bF0q41puddTpWmHjtS9+MTNedM9Nql56jSl5iUubs+bzvHp7JtTxMWARsdJJB6Pp922cB6C3gwbNozU1FTVbgRn4ULr54891hzU6ILU1FRt42tsbGTlypU0RtD6Ix5sO2XDLt1odVTmT4gcp/L2WrANhgGvBd1qO3bEV1ZWRmlpaeBRVlamlX+62tWy5vl8cMstpk5qKiuHDaOx9f0wORkmT46NH4Iy7MhbUVER+fn5lgMWXq+X/Px8ioqKonEzLNrOwmh7n1cM/BTsoAcfBAX9jeVeT52mHTpS9+ITN+dN99ik5qnTlJqXuLg9bzrHp7NvThEXLaeSkuwZd/F4PLS0tNiiJdhLXLSc+vZb2H13622PPQaFhZ2elvYogiA4RVf1pTEvjx6lpZ03nHwypffco1VdCrdtTzCkpmrOjBnmOlNWXHABtJnRGC9Iyyl1+Hw+ysvL2z2Xm5sb8syMaFtO/Qn4F3A8cCSw1GKfKcD0YALTpwe/HgRBEARBEAQhDpCWU93g9/ttechghv5kZ2fbNoBlO8HaTXk85toZ3ZCUlKRtfH6/n8rKSvx+vyttO2XDLt1odVTmT4gcJ/NW19oCr5XMTCgogLPOst1WMHQ/L1X5l7A17/TT4dJLITUVf1ISldnZ+JOSIDUVbrghdn4IyrAzb16vl7y8vHaPWLSZ2hP4L/Ap5mAGwK1b/+14n/co0BJsnb9774Vgi4c7hNzrqdO0Q0fqXnzi5rzpHpvUPHWaUvMSF7fnTef4dPbNKfT7ZtWllJaW8sgjj3DWWWex7777kpOTQ48ePdhmm20YOnQokyZN4p133olI++OPP+biiy9mzz33JDMzk8zMTPbcc08uvvhiPv7444g0f/rpJ26++Wb2339/+vXrR8+ePRk8eDCnnnoqL730kmPtu6ZMmaLvIu/B2k0NHx7S4o6ZmZnaxlddXc2MGTOorq52pW2nbNilG62OyvwJkeNk3uqPOQYGDICLL4bXXzfXznjuOTjpJNttBUP381KVfwlb87bfHmbOhO++o/rCC5kxZQrVmZkwaRLstFPs/BCUEe95uwb4Ejilw/OHAGPofJ9XC9QEG0T++WeYO9cxX62Qez11mnboxPv1k6i4OW+6xyY1T52m1LzExe150zk+nX1zirhoOXXyyScD0KNHD5555hl69Oih2KPQ+fzzz5k8eTIrVqwIaf+RI0fy5JNPslMIH+4bGxu5+uqruf/++4MOMHg8Hi6//HLuvPPOkF+3xx57jMsvv5wtW7YE3efoo4/m6aefJjc3NyTN7midppSdnU11dTWrVq3Sq+XUpk2w7bZgNdp5221w3XWWh7VtaZCUlERmZibV1dX4/X6tWk/4/X6qq6vJzMyM+QySWNh2yoZdutHqqMyfEDnR5q3Llinr1pE3aJA5gyyc42ysS6HG5/P5yMnJwefzRWzL6/VSUVER1i+0VV03UvO26qxaRebMmSTddhuEeS+hS82TllPhoUveILKWU38GlgXR+xw4oMN9HsBPK1aw45//DFb9jIcOhZUrLeu0E8i9njpNO3R0un6E0HFz3nSPTWqeOk2peYmL2/Omc3yqfFPZciolJlaiZP78+Xg8Ho466qi4GswA+OabbzoNZuy2227svffe9O3bl8rKSj744IPAQqdLly7l4IMPZtmyZey8885dal9wwQU89dRTgb933nlnRowYAcDy5cv54YcfMAyD++67j+rqah577LFu/S0qKuL8888P/J2dnc2oUaPIyspi9erVgRkfb775Jscddxzvv/8+GRkZob0YIVBZWWmblq289pr1YAbA2LEhSbROAdOR1jYJbrXtlA27dKPVUZk/IXIczVtSUsy+JAvuQmjxeb1exo8fz9wofq08fvz4sNvNqLpupOZt1Rk2DCJcvFlqXnwS73l7D1gMjLbYth9wst/Pfzvc57X06wfnnAOPPNL5oFWrzBl0xx1nv7MWyL2eOk07dOL9+klU3Jw33WOTmqdOU2pe4uL2vOkcn86+OYVeQ0pByMnJAYjrX7Xtsssu3H777ZSVlfHNN98wb948Zs+ezdy5c/nxxx957LHHSE9PB+DXX3/lzDPP7LKtU1FRUWAwIykpienTp/Pdd98xZ84c5syZw3fffcf06dMDI3Nt9w/GN998w+TJkwN/n3nmmZSVlTFv3jyKiopYsWIFb731ViAfq1at4rLLLovqdenI5MmT6d27t62athCs3VReHoQ4+ti7d29t46upqWHWrFnU1NS40rZTNuzSjVZHZf6EyHF73sKJr6ioiPz8/LAHJbxeL/n5+RRF8MW4qtdfap7UvETFDXkLttrL+8DGYPd5V10VdIC5/p//pLS0lNLS0qhmqYWC3Oup07RDxw3XTyLi5rzpHpvUPHWaUvMSF7fnTef4dPbNKeJiQGOHHXYAoK6uTrEn4bP99tvz+OOPs3btWq699lr69+/faZ+kpCQKCwt55plnAs8tX76c119/3VKzoaGBm2++OfD3Nddcw5QpU9pNK0pKSmLKlClcffXVgeduuukmGq2mvG/lxhtvpGnrAoWHHnooTz31FL169Wq3z6hRo5gzZ07g76eeeoo1a9YE1QyXlStXdumjEhobYfFi622//w6XXQZvvdXt4o6NjY16xgekpqYybNgwUlNTXWnbKRt26UarozJ/QuS4PW/hxJeenk5xcTEVFRWUlJSE/KioqKC4uDjwgwCn/LMTqXlS8xIVN+TtU+DFNn9/jrl+xp+B5cHu83bfHSZMsNTr+cEHnDpoEIMGDSInJ4eCggLHPu/IvZ46TTt03HD9JCJuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi7W0JgyZQozZ85kl1124dtvv1XtjqMMHz480KLq0ksvZebMmZ32eeGFFzj99NMByMrK4tdffw36ZU5dXR3bb799YGGYF198kZMsFoVdv349O+ywQ6Dn7/vvv88hhxwS1M9jjjmGN998E4DLLruMGTNmhBFlZ1T2XeuWN96AY4/tfr+cHLP91OTJcPDBQOx61QuCkHhEWl+kLgmCPcgaGvFLJGtotLIn8DxwMzAP6OqDVCDny5cH7g07MhcoaPN3fn4+xcXFXfovCIIgCIIgCKpR+V1uXMzQKCwsJDk5mXXr1vHyyy+rdsdRDj300MD/S0tLLfeZP39+4P/5+fld/jI1PT09MPgB8NJLL1nut3DhwsBgxm677dblYAbAxIkTLf2JlpEjR4bdcsRxgrWb6khFBTz1FHzzjeVmr9erZ3yYi/IuXbrU8XYHqmw7ZcMu3Wh1VOZPiBy35033+FT5JzVPal6i4pa8fQ3sDfyX9oMZXd7njRiBv809fltOBdqumrdgwQJHXiO511OnaYeOW66fRMPNedM9Nql56jSl5iUubs+bzvHp7JtTxMWAxtChQ/n73/+OYRicc845vP/++6pdcgxPmx67LS0tlvssWbIk8P+RI0d2q3nkkUcG/v/222/brvnTTz/x/fffd3tMKOTl5ZGSotFa9YYB4QyiJSXBiSdabkpJSdEvvq00NzdTWlpKc3OzK207ZcMu3Wh1VOZPiBy35033+FT5JzVPal6i4va8dXeft/Hccy2fTwaubPO3z+ejvLzcdv/kXk+dph06br9+3Iqb86Z7bFLz1GlKzUtc3J43nePT2TeniIuWU63cfffdXH/99RiGwWmnnUZ+fj77778//fr1Iy0tTbV7tnDsscfyxhtvADBp0iRmzZrVbntVVVW7levXrl3L7rvv3qXm2rVr2WOPPdppZGZmtttnv/32Y+XKlQDMmjWLSZMmdetrbm4u69evB8wZHmPHju32mGBo23Jq1SrYd9/Q9x85EtoMDklrF0EQnEJaTgnacuONsMMOcN554OI+rtJyKn6JpuVUOLTNeekPP1A3eDB7WuxXD+wE/G5xnCAIgiAIgiDoiLSc6obk5GSSk5O59tpraWlpoaWlhblz53LyySczcOBA0tPTA/t09dDxl/Ft+emnn9rNoDj66KM77fNNh3ZGO+20U7e6HffpqNHxuYEDB3ar2VF37dq1IR3THbm5uSQnJ9uiZQuhtptqxWJ9klaSk5P1i28rLS0tlJeXB50VFO+2nbJhl260OirzJ0SOkrwZBj3WruV64EOgr4OmdD8vVfnn+pq3bh3cfjtcfLG5GPITT0CHXwpJzUtM3J63bu/zkpK4K8ixPYH/c8qxrci9njpNO3Tcfv24FTfnTffYpOap05Sal7i4PW86x6ezb04RFwMaHSeRtG3LZBhGWA+dufLKKwMn30477WQ542HTpk2B/2dmZtKzZ89uddPT0+ndu3fg782bN7fbXl9fT319feDv7bbbLiR/c3Nzg2pGyuTJk9v5qpxg7aYOPRTmzIHTToNevf54fvz4oFK9e/fWL76t1NTUMHv2bGpqalxp2ykbdulGq6Myf0LkxCxvhgFLl8IVV8DgwfQ//nhuBUYA1g3y7EH381KVf66vedOm/TGAUVoK554Le+0FxcWwda0uqXmJSbzkrbS0NKL+w93d5/l8Pp4Ffgly/CVA8FXxokfu9dRp2qETL9eP0B4350332KTmqdOUmpe4uD1vOsens2+OYcQBHo/HlkdSUpLqUILyxBNPGJhrCxqAMWfOHMv9nn/++cA+2223Xcj62267beC4//73v+22bdiwoZ3tNWvWhKR5+umnB4655JJLQvbFitWrVxuAkZWVZWRkZBirV682mpubjYqKCsPv9xuGYRhVVVVGQ0ODYRiGUVdXZ9TW1hqGYRhNTU1GRUVFQKuystJobGw0DMMwtmzZYmzZssUwDMNobGw0KisrA/tVVFQYTU1NhmEYRm1trVFXV2cYhmE0NDQYVVVVhvHrr4bf4zEqsrON5uRkwwCjJiPDqPd6DePeew2fz2dUV1cbRn290bJwoVHxj38YLS0thmEYRnV1teHz+YySkhLD6/UaGRkZhsfjMdLT043s7GzD4/EYJSUlsY/JMAy/329UVFQYzc3NhmEYRk1NjVFXV2fU19cb9fX1ZkyGYbS0tBgVFRWdYjIMw6ivrzdqamoMwzCizpPf7zc2bdoU2M+umOrr6w3DMAyfz2dUVVUZ9fX1AV/tiqmxsdEoLy8P7BdpnrZs2WLU19cHfA0lprZ52rx5s7FlyxbD7/c7lqdwY4okT7E+91TH1HrN1dXVRRTTl19+GajBWVlZRo8ePQzASE9PD9TxxsZGo7KiwjB22cUwwKjIzjaaUlIMA4zaXr2MF3r2NAAjNTXVyMzMNEpKSmzLU2uMra+/bnlSVfcaGhqM+vr6wLVvZ0yteaqvrzc2bNhg+P1+W2Py+/1GTU2NsXnzZus8ffGFsaVXL8MAo7FHD6MyK8swzCE1o2LvvY2mrfG2avj9/oiup+bmZqO8vDywn6oa8eWXXxopKSkGYPTq1cvo2eF6AgyPx2NkZ2cbycnJRklJSULXvaqqKqOystLw+/3KYyopKQmaJ8DIyMgwvF6vARhpaWlG7969DcBISkoysrOzjaSkJAMwevfubaSlpRmA4fV6jT59+hgej8dITk42srOzjR9++MHYsmWLceaZZxqpqakGYPytZ0+jdut10pSSYlRkZweuk0u31vKSkhLb81RdXR14nWN97sVr3WvVb2xsjOrc8/v9xu+//x7YL57rntzvxW/dsztPrce3PUd1isnv9xsbN24M7BfLc6/1dfH7/Y7lye/3G5WVlYH97Ihpy5Ytxu+//274/f6o8tTY2BiwGem51/rabd682dU1wm0x+f1+Y8OGDe3em+M9prZ50rnuNTU1tfsMHmpM0eap9bvc1sfq1auNWBEXMzT8fr8tD12n3nzyySdMnjw58PcZZ5zBX/7yF8t92/5iLDWMvtRt1xhpOxujo2Y4ul1pRsp+++3HqaeeCsDGjRuZMWMGDQ0NABQVFfH1118D8M477/Dy1tkTZWVlzJgxI6Dx0EMPsW7dOgBef/11Xn/9dQDWrVvHQw89FNhvxowZlJWVAfDyyy/zzjvvAPD1119TVFQEr7xCQ1oaM6ZMYWO/fgD899RTWT5iBIwbx+eff86cOXPA66X6sMOY4fFQXV0NwJw5c/j8888BGDFiBKeeeiqGYZCZmcmUKVMCr13MYwIaGhqYMWMGGzduNGP673/56KOP8Hq9rFy50owJqK6uZsaMGZYxLV++nP/+97+25Mnj8fDuu+8G1o6xK6bly5cD8Pnnn/Pss8/i9XqpqamxNaZffvmFWbNmBWaNRZqnd999F6/Xy5o1a0KOqW2eZs6cSWNjIx6Px7E8hRtTJHmK9bmnOqaVK1fi9Xr56KOPIopp3rx5AV8vuugiBg8eDJhrMX3yySd/xDRrVmD22IwpUygbMMCMaexYvEccQU9gzz33pLCw0NY8zZs3D6/Xy++//65lnlTVvR9++AGv18sbb7zh2Lm3cuVK5s2bh2fr+5JdMXk8Hn7//Xdmzpxpnacnn+T1Y44xYxo8mIcuuuiPmE49lbINGwB45ZVX+Oijj/B4PBFdTzU1NcyaNSvwCyRVNWLevHkM2Ho9jR07liOOOAJofz2lpaUxZcoU+rXeRyRw3Xv22WdZs2YNHo9Hi5i6ytOpp57KiBEjAPPe9MwzzwQI3Me1rkV35plnst9++wHm/d7YsWMxDIN+/foxZcoUkpcsobCwkH79+rHnnubqGd8ecQQvbp2FXTZgADOmTAn4mnvRRey6tZbbnad58+axcuVKPB5PzM+9eK17r7zyCl6vl19++SWqc8/j8fDGG2/w7rvvhhWTjnVP7vfiu+7ZmSePxxO47nSMyePxBO43Qo0J7Dn3Zs2axS+//ILH43EsTx6PhzVr1vDss8/aFlPrZ3KPxxNVnn755Re8Xi+vvPJKxOeex+OhsbGRmTNnurpGuC0mj8cTuN9wS0xt86Rz3fv999/xer3MmzdPybmnhJgNnQiW/PDDD0Zubm5gNGvo0KGBkTYr3D5D44orrjByc3P1mKExdqz1DI2hQw3DCG20s+0MjczMTGPKlCnGgAEDtJuhsX79emP69OnGhg0bYv7rgaqqKuOee+4xysvLbY2p7aj0L7/8YkyfPt2oqKiwNaZNmzYZ99xzT8CPSPPU+vpv3Lgxol8P/PTTT8a9995rVFVVue5XHnbkSdeYNmzYYEyfPt1Yv369szM0KisN4913LWdo1PXsaYx1aIbGr7/+akyfPt3YvHmzlnlSVfd+//13Y/r06UZ5eblj596GDRsCtcnOmKqqqox7773X+OmnnzrnacMGY0t2trElPb3zDI3ddzcqNm4MxPTbb78F/IvkeqqoqDDuueeewGsrMzTUX0+hxPTLL78E3qtUx+TEDI1+/foZV1xxhXFgZqbxfHKyUZGdbTRsu62RlZZmZGZmBmZo9OzZ0/h3kBkalVlZRoFDMzR+/fXXwOsf63MvXuveb7/9ZkyfPt3YtGlTVOde673u+vXrw4pJx7on93vxW/fszlPrPcGvv/6qZUwdr7tYnns///xzIO9O5an19f/ll19si2n9+vWBOhpNnjZt2mRMnz7d+O233yI+99rec7q5RrgtptbrbsOGDa6JqW2edK57mzdvNqZPn278+uuvCTNDQwY0FPLrr78agwcPDiR+5513DlwYwVi0aFFg/8zMzJBttX4QA4zFixe321ZXV9fuBPzss89C0hw7dmzgmKlTp4bsixWtF8GwYcOM1NTUmF4ElmzZYhheb+ADZrvHtdeGLFNSUhJ4jVJTUwPxAUZJSYlz/odJQ0OD8fnnnwcKldtsO2XDLt1odVTmT4icaPPWtr50fHSqL83NhtGnj2VNe6Sr46JA9/NSlX+urnnr1hnGeecZxtYfAQQeHdpouqXmdXUNhnRdJhi65M0wzA9urQMWdj32SU01Zg0bZjSkprY7/y+12Hd7MBqs7jHB+BSMkh9+sD1muddTp2mHjk7XjxA6bs6b7rFJzVOnKTUvcXF73nSOT5VvKgc0PIah+UrZLmXTpk0cccQRfPXVVwBsv/32vP/++wwaNKjL41asWMHw4cMDf9fX1+P1ers8pq6ujl5tFq5esWIFBx54YLt90tPTA22jXnvtNUaPHt1tDAcddBAff/wxAHfeeSdXX311t8cE46uvvmLvvfcO/L169Wr22muviPWiZuHC4At8v/8+HHJISDKlpaVBc1pSUkJeXl6EDgqCkOiEXV8mToQnnwSgBXgPWADMB0q6Ok4QwuWHH+DWW83zbdddYfVqSE5W7ZXtdHUNWiHXl14UFBQwd+5cW7QygV+BXhbbfgN2BjouM/4ocF4QvfKnnyb3rLNs8U0QBEEQBEEQnEDld7lxsYaG26iurua4444LDGb07duXN998M6QPxbvvvnu7v3/88cduj/npp5+61Oj4XCiaHXWHDBkS0jHdMXr0aHr27GmLVlRs7QvXib59oc2AUjj07NlTn/g6UF9fz+LFi21bC0U3207ZsEs3Wh2V+RMiJ+Z5O/10OPlkNt59N9sBI4Hp/DGYYTe6n5eq/EuImrfzzvDYY/Dtt1BU1GkwQ2peYqJb3oqKisjPz+/2h0GhUA3M7tmTxaNHU9/hPm97YLLFMXd3oZc1e3bUPnVE7vXUadqho9v1I4SGm/Ome2xS89RpSs1LXNyeN53j09k3p9BmQOPXX3+Nuc3ffvst5ja3bNnCmDFj+PTTTwHIyspi8eLFgYUCuyMrK4vtt98+8HfrIi5d8dlnnwX+379//8BChm3ZY489wtL89ddfWb9+veXx0ZCdnU1SkuLT0u8PPqBx4okR/8o0KSlJj/gs8Pv9VFZW4vf7XWnbKRt26UarozJ/QuTEPG9jxsC8eWw55RQ2xcCc7uelKv8SqubtvDMcfLDt/ul+bgnW6Ja39PR0iouLqaioYM2aNVHr3Z+UxKbsbPwW93lTgY4/Z5n+2mssDKLV8733YOuCmnYh93rqNO3Q0e36EULDzXnTPTapeeo0peYlLm7Pm87x6eybU2jTciojI4MpU6Zw1VVXkZOT46itiooK7rrrLu6//35qamoctdUWn8/HCSecwNtvvw2YH6Ref/11Dj300LB0zjzzTJ599lkAJk2axKxZs7rcf9KkSTz88MMA/PWvf+Wpp57qtM8jjzzChRdeCJizNdauXdul5nPPPcdf/vIXAHbaaaeQZ3UEQ6uWUx99BCNGWG978UU46aSQpaTllCAIThFpfZG6JAj2IC2n3IUdLajuBq7q8NznwD+Ajj+VWbJkCTcceSTvBRP7y19gzpyo/BEEQRAEQRAEp5CWU5jrPPz73/9m4MCB/O1vf2PdunW221i3bh1XXnklAwcO5I477qCurs52G8FoamrilFNOCQxmpKWlsWDBgrAHMwAmTJgQ+P/cuXO7nFJUX1/P888/b3lsW8aNGxeYOfDNN9+wfPnyLn144oknAv8fH2ytiQjIy8sjJSXFNr2ICDY7o0cPOOaYiGVTUlL0iM+C5uZmSktLaW5udqVtp2zYpRutjsr8CZHj9rzpHp8q/6TmSc1LVHTPW7QtqFJSUngmL4+qrfd5q4DV//wn+9N5MKOV94EPggnOnQulpRH5YoXc66nTtENH9+tHsMbNedM9Nql56jSl5iUubs+bzvHp7JtTaDOgcdlll5GcnExtbS3Tp09n9913Z9SoUcyePbtda6NwWb9+PbNnz2bUqFHstttuzJgxg9raWpKTk7n88sttjCA4LS0t/OUvf2HRokWA+YHn+eef5+ijj45Ib9y4cQwYMACAyspKbr311qD73nLLLVRWVgIwcOBATjzxRMv9tttuO04++eTA39dccw3BJu+8/vrrvP766wAkJyczebJVZ+DImDhxIhkZGbbpRcTCIA0AmprgqKPg9tvhm2/Cls3IyNAjPgtqa2t58sknqa2tdaVtp2zYpRutjsr8CZHjZN7KysooLS21fJSVldluzwrdz0tV/knNk5qXqOiet7YtqEpKSgKPJUuWhHR8RkYGEyZO5KaMDE4DhgG/H3YY3U2FvzPYhpYWmD49ZP+7Q+711GnaoaP79SNY4+a86R6b1Dx1mlLzEhe3503n+HT2zSm0aTkF5tSUa665hsWLFwPg8XgC24YMGcJhhx3G0KFDGTJkCAMGDKBPnz6kp6djGAb19fX8/vvvlJWV8c033/DFF1/w3nvvtWud1Brq8ccfz5133hmTaTCGYXDuuefy5JNPAuY6CnPmzKGgoCAq3aKiIs4777yA5vTp07nkkksCsyz8fj8PPPAAV1xxRaCH2pNPPsnZZ58dVHPt2rUMHTqUpqYmwGxP9dBDD9GrV6/APkuWLOG0005j0yazA/u5555LUVFRVLGARi2nSksh1PYRQ4bAtGnmQrtB5aS1iyAIzhBuu5tQkLokCKEjLacSg2hq7ZIlSzjyyCO73OYB1gC7W+2Ung4//QR9+kRkXxAEQRAEQRCcQuV3uVr1vtl7771ZtGgR77//PrfffjuLFi0KDEKsXbu223UdrGg93uPxcOKJJ3LddddxsMUClU7x0EMPBQYzAAYPHsx7773He+8F7ZjbjgceeMDy+cLCQpYuXcrTTz+N3+/n8ssvZ+bMmYzYuvbD8uXL27XtOvfcc7sczABz0Oihhx7i/PPPB+Dpp5/mlVdeYdSoUWRmZvL111/z0UcfBfYfOnQoM2bMCCmOuCFYuykr1q6FNoNugiAIgpAwGIa8BwpCN5SG0DLKAO4CHrXaWFcH//kP3HijvY4JgiAIgiAIQjxjaMx3331nXHfddcbAgQMNj8cT0WPgwIHG9ddfb3z33XdKYvjHP/5hYH5WiejRFQ0NDcYll1xieDyeoMd7PB7jsssuMxobG0P2+ZFHHjF69erVpV9HHXWU8euvv0b78gRYvXq1ARhTp041srKyjNWrV9umHRZHH20Y5tc03T/S0gyjurpLuZKSksBrlpWVFYgPMEpKSmITUwhUVlYa//73v43KykpX2nbKhl260eqozJ8QOdHmrW19sethZ13S/bxU5Z8rat5HHxnG7rsbxlNPGUZTU8z90+XcCvca1Ol9XwW65C1cQs1zx/u87h5LliwJ/D8NjF+D3W/27WsYdXVRxyH3euo07dCJ1+sn0XFz3nSPTWqeOk2peYmL2/Omc3yqfGv9Lrf1EcvvcrUe0GjLqlWrjHvuucc4/fTTjSFDhhg9e/bsNHjRs2dPY4899jDy8/ONe+65x1i1apVqtx0d0Gjlo48+MiZNmmTsvvvuRkZGhpGRkWHsvvvuxqRJk4wVK1ZE5PePP/5o3HTTTcZ+++1n9OnTx0hLSzPy8vKMk08+2XjxxRcNv98fkW4wWi+CIUOGGD169FAzoFFZaRg9eoQ+oHHCCd1Ktv0Q3KNHj0B8un2x0djYaKxZsyasga94su2UDbt0o9VRmT8hcqLNW319veH1em0bzPB6vUZ9N4O0sYzPaVT554qal5//x3vhbrsZxtNPG0Zzc8z80+XckgGN8NAlb+ESap473ueFM6ABGFO7uuf8z3+ijkPu9dRp2qETr9dPouPmvOkem9Q8dZpS8xIXt+dN5/hU+aZyQEOrNTTCpaqqii1btgDQq1cvsrKyFHskRIoWa2g8/zzk54e+/6OPwtZ1TIIha2gIguAkBQUFzJ07NyqNfsBY4KIdduAAn8/s195m7SRBaMfq1TB0qPk1a1t2281cwHjMGDV+KUDW0EgMnFivCDqvr5EN/AT0ttp58GD45htITrbdD0EQBEEQBEGIBJXf5SbFxIpDZGVlscMOO7DDDjvIYIZLmDBhAunp6WqML1xo/Xz//vDtt3DXXXDIIWbP8KQkGDcuLPn09HS18XVBXV0d8+fPp66uzpW2nbJhl260OirzJ0SOHXkrKioiPz8fr9cb1nFe4GrgPaAceAw44NdfYfNmeOONiP1pi+7npSr/4r7mPfoodT17dt747bdmv/8Y+Kf7uSVY4/a8hXOf5/V6yc3NbfdcJfBwsAPWrYOXXorKP7nXU6dph47brx+34ua86R6b1Dx1mlLzEhe3503n+HT2zSm0WhRcEJTR3AyLFllvGzsWdt0V/vY381FeDh9+CP36xdZHQRCEDqSnp1NcXIzP56O8vDz0A1ta2HH4cJI3beq8bcECmDDBNh8FF/H11/Djj9bb9tkHTj45tv4IQpzyfyNHMuDvfycbcyCjlfuAy4AeVgfdeSeccor5wxpBEARBEARBSGDiuuWU4B6Ut5x65x0YOdJ626JFcPzxEclKyylBELTlvPOgqKjz8337mgO30tpE6Mh//gOXXgp+f+dt//2v+WVrAiEtpxIDO1tODUtN5cHttuPgsjI8hsE/gX902OcJ4JxgAkuWBL9fFQRBEARBEIQYIi2nBGErQ4YMoUcPy9+lOUuwdlO9ekGb/sbR0KNHD3XxdUNTUxNr166lqanJlbadsmGXbrQ6KvMnRI7yvI0fb/3877/DBx9ELa88vm5Q5V9c17wLLmDtG2/QdM45ZuvFVoYOhZNOipl/up9bgjVuz1tX93m7A+WjRvFZUxOH/Pwznq2/J5sC5HTY9+6ujNx5Z8T+yb2eOk07dNx+/bgVN+dN99ik5qnTlJqXuLg9bzrHp7NvTiEDGoJWKFljwjCCD2gceyyE2Zs+GLKGhjrbsoaGoCPK83b00WC1FgLA4sVRyyuPrxtkDY0IdVesoG7GDFizBv76V3Ng4x//aD/A4bB/up9bgjVuz1tX93mnAtu9/XZgIKOVTODKDvuuBuqC/Zjmtddg1aqI/JN7PXWa0k8+cXFz3nSPTWqeOk2peYmL2/Omc3w6++YU0nJK0AKlLafWroU99rDe9vjjMHFixNLSckoQBK2ZMMFcMwPMtYLGjzcfBx8sLaeE0Fi3DgYNCmtAwy1Iy6nEwI6WU72BiuxskisrO22rBgYBm9s899tzz5F7xhnWYn/9Kzz1VFT+CIIgCIIgCEK0SMspQVBJsNkZHg+ccEJsfREEQYglF14I//63udjzN9/AXXfBn/8sgxlC6AwenJCDGYIQDjVA9fnnW27LpPOaGb7hw+HAA63FnnsOfv7ZTvcEQRAEQRAEIa6QT6CCVtx8881kZ2fH1ujLL1s/f/DB0K+fbWays7PVxBcClZWVTJs2jUqLXw66wbZTNuzSjVZHZf6EyNEib2PGwNSp5iw1j8dWaS3i6wJV/knNk5qXqLg9b93d51WffTZss02751ZjtqO6r+POHg9cc421oeZmuK/TEd0i93rqNO3Qcfv141bcnDfdY5Oap05Tal7i4va86Ryfzr45hbScErSgdZpSXl4eZWVlrFy5MjbTlDZuhNxc8Ps7b7v9drj22qjk27YpSElJYcCAAZSVldHc3KxV64nm5mbKysoYMGAAKSkprrPtlA27dKPVUZk/IXLcnjfd41Pln9Q899Q8aTkVHrrkLVx8Ph85OTn4fL4u9+t4n9eRkpIS8p57Dq6/Hvbckw0XXUTupZdi9UGspKSEvB13hN13N9u6dSQjA376CXI6LikeHLnXU6dph068Xj+JjpvzpntsUvPUaUrNS1zcnjed41Plm8qWUzKgIWiBsovgySeDr5Hx6afwpz9FJS9raAiCIAiCO5EBjcShoKCAuXPnRqVRUlJCXp8+sGgRnHoqpT//3P094qxZcNFF1oK33QbXXReVT4IgCIIgCIIQKbKGhiBspaCggF69esXOYLB2U2D2kT/pJHPhxc2bg+8XIr169Yp9fCGyZcsWiouL2bJliyttO2XDLt1odVTmT4gct+dN9/hU+Sc1T2peohLPeSsqKiI/Px+v1xt0n5Du83r3hvz80NcpOuec4O1PZ8yAbmaNtEXu9dRp2qETz9dPIuPmvOkem9Q8dZpS8xIXt+dN5/h09s0pZEBD0IrKykr8Vu2fnMDng8WLg2+vr4f5880Pk9tuC/fcE5U5v98f2/jCICkpiezsbJIULOwaC9tO2bBLN1odlfkTIsftedM9PlX+xU3N27wZWlrs17VBR/dzS7AmnvOWnp5OcXExFRUVlJSUtHusWbMGcOg+r2dPuOwy623r18PTT4csJfd66jTt0Inn6yeRcXPedI9Nap46Tal5iYvb86ZzfDr75hTSckrQAiXTlBYvhuOPD33/RYvC2x9pOSUIgiDEKRMmwLffwk03wWmnhf6L8gRCWk4JEPp50DH/Id8jbt4MO+4IdXWd9msaNIiWL7/Eq+HsX0EQBEEQBMHdSMspQdjKsGHDSE1NjY2xrtpNdaR3bxg1KipzqampsY0vDBobG1m5ciWNjY2utO2UDbt0o9VRmT8hctyeN93jU+VfXNS8zz+HBQtgzRo44wwYOhTmzqXR55OaJ0SM2/Pm2H3eNtvQdM45lpt6lJRwRkYGI0aM4Ouvv+5y4XK511OnaYeO268ft+LmvOkem9Q8dZpS8xIXt+dN5/h09s0pZEBD0IqRI0d22Z/YNgwDFi4Mff8xYyAtLSqTXq83dvGFic/nY+nSpV1+EI5n207ZsEs3Wh2V+RMiJy7y1tQE774b0aG6x6fKv7ioedOmtf/766+hoADfn//M0rfekponRITb8+bkfd6VP/9Mc5Bt1wAfffQRe+21Fzk5ORQUFFBnMZtD7vXUadqh4/brx624OW+6xyY1T52m1LzExe150zk+nX1zCmk5JWhBzKcpff45/OlP1tt694aamvbPFRebiziGibScEgQh7mhqgrffhhdegJdeMtudrFkDQ4ao9kyIBZ99Bvvvb73tT3+CTz4Bjye2PmmKtJwSwMGWUwMHgseDz+cjJyeHR30+zgyi/Wfg/TZ/5+fnU1xcHHIMgiAIgiAIghAu0nJKELbi9XrxxOKLkmDtplJS4Icf4J13YMoUGDgQUlPDXjvDCo/HE7v4wsQwDHw+HyrGN2Nh2ykbdulGq6Myf0LkaJe3lha44ALIzYXRo+Gxx8zBDDAHN8JEu/g6oMo/7Wtex9kZbXX/8Q98DQ1S84SIcHve7LrP2w3oO2UKXHstAOXl5fh8Pu7q4phrOvy9YMGCTr/Qk3s9dZp26Lj9+nErbs6b7rFJzVOnKTUvcXF73nSOT2ffnEIGNAStmDp1KllZWc4bCtZu6ogjoG9fOPxwmD4dSkrMXyZnZkZtMisrK3bxhUlVVRV33HEHVVVVrrTtlA27dKPVUZk/IXK0y1tystlaqHUQoy0RDGhoF18HVPmndc1rboaMDOsZGPvvT9Vhh0nNEyLG7XmL9j5vV+Ap4GsgY8ECeOABKC8PbP8C+F+QY8cBe7T52+fzUd7mWJB7PZWadui4/fpxK27Om+6xSc1Tpyk1L3Fxe950jk9n35xCWk4JWtA6TSk3N5eNGzfyxRdfODdN6ZdfYMAA62333QeXX26bqbbtBJKTk+nXrx8bN26kpaVFq9YTLS0tbNy4kX79+pGcnOw6207ZsEs3Wh2V+RMiR8u83XcfXHGF9ba1a2H33UOW0jK+NqjyLy5q3po18K9/wXPPmWtOASxcSMuYMVLz2iAtp8JDl7zZTet50PE+ryPBWk71Ae4BzgI6vSpTplB6+eWB82wU8FYQP4qA87qwJ/d66jTt0HHr9eN23Jw33WOTmqdOU2pe4uL2vOkcnyrfVLackgENQQtiehHMng2TJ1tvW7cOdt7ZNlOyhoYgCHFFWRnsuKP1tltugRtuiK0/glpaBza+/x6WL5e1MzogAxoCRL+GRk/gByDX6iCvl5/feYedhg8PPPUJYLXKTSMwCPg1iD1BEARBEARBsBNZQ0MQtjJx4kQyMjKcNRKs3dTee9s6mNGRjIyM2MQXAbW1tTzxxBPU1ta60rZTNuzSjVZHZf6EyNEybwMGwCGHdH4+IwM69GPvDi3ja4Mq/+Kq5u2xB8yZA8uWgccjNU+ICrfnLdL7vHrg9mAbfT6yHnqo3VN3Btk1FehqjrHc66nTtEPH7dePW3Fz3nSPTWqeOk2peYmL2/Omc3w6++YUMqAhaEVpaSnNzc3OGdiyBd4KMll/7Fjn7ALNzc3OxxchKSkp5OXlkZKS4krbTtmwSzdaHZX5EyJH27yddpr5b0YGnHEGvPQSbNhg/lI/DLSNbyuq/IvLmpeaaquu1LzExO15i+Y+bzZ/zKzoSOpHH7X7wDYPKAmy72Qg2Kpvcq+nTtMOHbdfP27FzXnTPTapeeo0peYlLm7Pm87x6eybU0jLKUELYjZNaf58OOkk620ffggjRthqTlpOCYIQd5SXm+2FjjsOevZU7Y0gaIu0nBIg+pZTrVwKzGyzv3+33Xhwm22Ysnw5/g5a/wc8EMTONcBdFvYEQRAEQRAEwU6k5ZQgbGXEiBGkpaU5ZyBYu6ltt4WDDnLOLpCWluZ8fBHS0NDA8uXLaWhocKVtp2zYpRutjsr8CZGjbd5yc2HChKgHM7SNbyuq/JOaJzUvUXFr3nJzc/F6vV3e53m9XnJzLVfJCPAI5iyNb4CN06dz5r77cpnFYAbA48DvQXQux2w/1RG511OnaYeOW68ft+PmvOkem9Q8dZpS8xIXt+dN5/h09s0pZEBD0Iphw4aRmmr1McwGWlrglVest514IiQ5ezmkpqY6G18UNDY2snLlShobG11p2ykbdulGq6Myf0LkuD1vusenyj+peVLzEhW35s3r9TJ+/Pgu7/PGjx+P1+vtUscHjAT2AjaNHs38l18Oum8dwWdo9Af+YvG83Oup07RDx63Xj9txc950j01qnjpNqXmJi9vzpnN8OvvmFNJyStCCmExT+vBD68VuAe66C666CjweW01KyylBEARBcCfSckpopa6ujsLCQhYsWIDP5ws83zrYUVRURHp6ertjujp/lixZwpFHHtmlzQFpafzo8ZDUxl4rXwPp69aRt/POAPh8PsrLy9vt0zqzRBAEQRAEQRAiQVpOCcJWsrOzSXJqpkSwdlMAV18NO+0El14Kb78NTU22m09KSnI2vijw+/1UVlbi91s1Noh/207ZsEs3Wh2V+RMix+150z0+Vf5pVfPeew/C8ENqXnvC+UI4lJZDbkeXvDlBeno6zz77LKWlpaxbt46SkhJKSkqoqKiguLi402CGHRw6YQK1p51muW1PoOfbb1NXV0dBQQE5OTkMHjyY/fbbj8GDBzNo0CBycnIoKCigrq7Odt86olXdU6Bph46brx834+a86R6bfL5Vpyk1L3Fxe950jk9n35xCv29WhYRmypQpZGZmOiPexdR9AMrK4IEH4Kij4MYbbTefmZnpbHxRUF1dzYwZM6iurnalbads2KUbrY7K/AmR4/a86R6fKv+0qXmffQaHHQbDhsG8eSENbEjNa0/rr+9DIZSWQ25Hl7w5RXV1NbNmzWKbbbYhLy+PvLw8x3Ken59PUVER1eefT0uQfbJmz6awsJC5c+fi8/k63Yf6fD7mzp1LYWGhIz62RZu6p0jTDh23Xz9uxc150z02+XyrTlNqXuLi9rzpHJ/OvjmFtJwStKB1mlJ2djbV1dWsWrXK3mlK69bBLruEvv+775pf9ERJ23YCSUlJZGZmUl1djd/v16r1hN/vp7q6mszMzJjPIImFbads2KUbrY7K/AmR4/a86R6fKv+0qXnjx7efubjPPvCPf8BJJwVdU0pqXmeCtRpqpauWQ4mGTnlzgnDji7Tl1Jo1axgyZEhAY/mgQRQEsXFkaipLt/ZS7ngf2orX66WiosLRATdt6p4iTTt03H79uBU350332OTzrTpNqXmJi9vzpnN8qnxT2XIqJSZWBCFEKisrnRHubnZGW/r1C77WRhS0TgHTkdZ2WG617ZQNu3Sj1VGZPyFy3J433eNT5Z8WNe+zzzq3YfzySzj1VDjrLHj66ch07fLP4ePtJD09neLiYss1CkDWKWiLTnlzgljF1/F8uguCDmhc1tjI0q3/D3Yf2nruOvkjGy3qnkJNO3Tcfv24FTfnTffY5POtOk2peYmL2/Omc3w6++YUeg0pCQnP5MmT6d27t/3C4QxojBsHycm2u9C7d2/n4ouSmpoaZs2aRU1NjSttO2XDLt1odVTmT4icuM3bN9/Av/4F33/f5W66x6fKPy1q3rRpwQ8uCPbVqNS8rvB6vYE2Q20fMpjxBzrmzU5iGt/mzYH/fga8FWS38cBuW/+v8j5Ui7qnUNMOHbdfP27FzXnTPTb5fKtOU2pe4uL2vOkcn86+OYUMaAhasXLlShq3To23jYoKeOcd62277AI9erR/7qST7LW/lcbGRmfis4HU1FSGDRtGamqqK207ZcMu3Wh1VOZPiJy4ylvrIMbQoTBkiLnOUHFxl4foHp8q/5TXPKvZGa0ccACMGROZrl3+xeB4QQ1uz1ss4tsZ6HP11TBgAPz4Y+D5O4PsnwRctfX/Ku9Dldc9xZp26Lj9+nErbs6b7rHJ51t1mlLzEhe3503n+HT2zSlkDQ1BCxztu/bcc/CXv1hvW7kSBg6ERYtg/nx47z344Qew6ReVXfVH1mkNDUEQhKCccw489VTn54cOhS++iL0/QnR89x38/e/wwgudt73yCpxwQux9EoQEJJw1NAYBNwBn06Zf8IUXUnrddQGNlcC+FloNwEBgfRe+yD2pIAiCIAiCEC4q19CQGRqCVowcOdL+9gzB2k3tuKP5hVx2tjng8fzz8PPPtg1mdMTr9ToTnw34fD6WLl1quaCpG2w7ZcMu3Wh1VOZPiJy4yduwYdbPr1plztwIgu7xqfJPec3bdVfz/W7VKjjttD+e72Z2Rre6dvkXg+MFNbg9b07FNw34Biikw+KHRUWklJUF/gw2SyMNuAy196HK655iTTt03H79uBU350332OTzrTpNqXmJi9vzpnN8OvvmFDKgIWhFXl4eKSk2rlXf1GTOvrBi3DjweNo/58DaGa2kpKTYH59NNDc3U1paSnNzsyttO2XDLt1odVTmT4icuMnbqacG32b1K/+t6B6fKv+0qXn77NN+YOPmmzu/J0aia5d/MfBDiC1uz5tT8f0M9LDa0NxM1gMPBP58HvjRaj/gYiBL4X2oNnVPkaYdOm6/ftyKm/Ome2zy+VadptS8xMXtedM5Pp19cwppOSVogWPTlN5+G446ynrb4sVw3HHR2+gCaTklCIIrOOQQ+PDDzs9L2ylBEISI6Ooe8bXXXuP4448HzFkZ32K2neqIkZLCzs3NlG79+zJgRhB7VwN3B9km96SCIAiCIAhCuEjLKUHYSm5uLsl2zpII1m4qIwNGjrTPTggkJyfbH59NtLS0UF5eTktLiyttO2XDLt1odVTmT4icuMpb29ZErRx8MJx7Lvj9lofoHp8q/6TmSc1LVNyeNzvjax3MAGgG/hVkv+YBA9ihzd+PAZuD7DslOZkdFd2Hxmvd06Xm2emLEFvcnDfdY5PPt+o0peYlLm7Pm87x6eybU8iAhqAVkydPpnfv3vaIGQYsXGi9bfRoSEuzx06I9O7d2974bKSmpobZs2dTU1PjSttO2bBLN1odlfkTIieu8nbqqWY7ooMPhunT4aef4IMPYMoUSLK+ldA9PlX+Sc2TmpeouD1vTsb3FLCu7RODB8MTT/DLG2/wQZuntwD/CaLRq3dvzlN0HxqvdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hLacELWidpuT1emloaODLL7+MfprS119DMI0nn4Szz45OPwTathPweDykpaXR0NCAYRhaTe83DIOGhgbS0tLwdNNDPR5tO2XDLt1odVTmT4icuMvbhg2w7bYh7657fKr8k5onNS9RcXvewo2vq5ZTVkwEbgCy7rqLvlOmQEqKpUZfzLU00jv65/HwbVoaezU00NLh45/T96TxWvd0qXl2+iLEFjfnTffY5POtOk2peYmL2/Omc3yqfJOWU4KwFZ/Ph21jbMFmZyQlwZgx9tgIA8Mw7I3PRjweD16vV0lRjoVtp2zYpRutjsr8CZETd3kLYzAD9I9PlX9S86TmJSpuz1u48eXm5uL1ekPWfxoYAtSeeip0sbD378DDVv4ZBrv7fBQouA+N17qnS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSumTJlCZmamPWLBBjQOPRT69rXHRhhkZmbaG5+NVFdXc99991FdXe1K207ZsEs3Wh2V+RMix+150z0+Vf5JzZOal6i4PW/hxuf1ehk/fnzI+i2Y62mEwj2Av8OgR3VmJvdNmcLlmZnE+qNuvNY9XWqenb4IscXNedM9Nvl8q05Tal7i4va86Ryfzr45hQxoCFqxdOlSfD5f9EIbNsDy5dbb+vSBX36J3kaY+Hw+++KzGa/Xy8iRI8P6pWA82XbKhl260eqozJ8QOW7Pm+7xqfIvpjVv3TpYsMBcU8pOXal5QgS4PW+RxFdUVER+fr7tvpQB6489tt1zXp+PkUuXsq/Px7gQdXw+H6WlpYFHpPew8Xqvp0vNs9MXIba4OW+6xyafb9VpSs1LXNyeN53j09k3p5A1NAQtsL3v2uOPQ2Fh1/scdBBMmACnnQa77BK5rS7oqj+yTmtoCIIgCC5k/HhztuJ++8E//gHjxpmLuwuCoBVr165ljz32CGnftvePXd1nLn/6aQ74619Jtti2AhgeRBOgrq6OwsJCFixY0G4Qo3VWSVFREenpHVfpEARBEARBEBIJWUNDELYyevRoevbsGb1QsHZTbVmxAq6/Hp56Knp7IdCzZ0/74rOZ+vp6Fi9eTH19vSttO2XDLt1odVTmT4gct+dN9/hU+RezmvfUU9S/8Yb5xOefmwP4++8f1YwNqXlCNLg9b9HE58Sv6eoHDOCFtn/37Mni0aOp79mTg4Cjuji2sLCQuXPndpqR4fP5mDt3LoXd/Wiooy9xeq+nS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSuys7NJSorytPT54PXXQ99/woTo7IVIUlKSPfE5gN/vp7KyEr/f70rbTtmwSzdaHZX5EyLH7XnTPT5V/sWs5n3+Of6O7zetAxtvvx25rtQ8IULcnjcd4/t3m//7k5KozM4O1IXrgxzj8/lYsGBBl7odZ250R7ze6+lS8+z0RYgtbs6b7rHJ51t1mlLzEhe3503n+HT2zSmk5ZSgBbZOU1q0CE44IbR9Bw6EkhLHWnBIyylBEBKKpibo0UO1F8Jnn5mzMaw44ABzhqK0nhIEbejqfrEj3bWcysNcQPypJUs48sgjeRk4MYjWwcDyEDS780MQBEEQBEFIPKTllCBsJS8vj5SUlOhEQmk31cqECTH7UiclJcWe+BygubmZ0tJSmpubXWnbKRt26UarozJ/QuS4Jm+VlfDYY3Dkke1mvOkenyr/YlLz/vlPSvPyaLZ6v7n55ojf96TmCdHg9rypjm8g8DDwLe1nZty29d/mlJROdeG6GPkWr/d6utQ8O30RYoub86Z7bPL5Vp2m1LzExe150zk+nX1zChnQELRi4sSJZGRkRC5gGPDyy9bb9tkH2owcAnDSSZHbCpOMjIzo43OI2tpannzySWpra11p2ykbdulGq6Myf0LkxHXeGhpg/nw49VTIzYXzz4elS2HxYli/HtA/PlX+xaTmXXMNT06cSG3H95sDDoAxYyLXlZonRIHb86Yqvp2AWcB3wAVAD+AMIP3HHwH4EFgK1GZkdKoL44B9YuBjvN7r6VLz7PRFiC1uzpvuscnnW3WaUvMSF7fnTef4dPbNKaTllKAFtk1T+vRT8wsbK55/Hk47Db7/Hl56yewh/vLL4OCMCWk5JQiCK/n4YzjoIOtt990Hl18eU3eEIKxcCf/8p/meB/DKK6G3ZBQEIWZE2nLq1wUL6DthAqkW+60fNYrcrevlHAMEW13uWeAQaTklCIIgCIIghIm0nBIEuwjWbqpHDzjuOPP/u+wCV18Nr73m6GCGIAiCazngANhtN+ttzzwTW1+E4AwbBi++aC4GfvXVUc3OEARBPxr33pvvg2zbdskS9tj6/zeAT4Lslw+klJba7ZogCIIgCIIgOIYMaAhaMXXqVLKysiIXCNZuauRIyMyMXNcGsrKyoo/PIaqqqrj99tupqqpypW2nbNilG62OyvwJkRPXefN44KyzrLd98gmsXat9fKr8U1Lzhg2DO++Mes0oqXlCNLg9b9HEl5ubi9fr7XY/r9dLbm7uH08kJ/PPIPt6DIOb2vx9V1YWt0+dSlWH+9BkIGv27LB9Dod4vdfTpebZ6YsQW9ycN91jk8+36jSl5iUubs+bzvHp7JtTyICGoBXz58+nrq4usoN//tn8FaoV48ZF7pRN1NXVRRefg6SnpzNhwgTS09NdadspG3bpRqujMn9C5MR93s48M/i2xYu1j0+Vf1LzpOYlKm7PWzTxeb1exo8f3+1+48eP7zTw8QLwtcW+9bm5/K/N3y/V1XHA/PmkW9yHZsybB7/8Ep7TYRCvdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04ha2gIWmBL37X//Af+7/+st5WWwsCBkTsYIbKGhiAIrubQQ+GDD8z/9+9vDnKceSYMHarWL0EQhDijrq6OwsJCFixYgM/na7etdcCjqKio3QfV1vvM04G5rc8B/wL++sYbjDzmmHY6fwWeCmL/udxc9n3rLZKSkthjjz2C7PUHch8rCIIgCIKQ2MgaGoKwlahGFIO1mxo6VMlgRkd0HjFVOXskFradsmGXbrQ6Os/+EYLjirxdeCEUFsLbb8OPP8IddwQGM3SPT5V/UvOk5iUqbs9btPGlp6dTXFxMRUUFJSUl7R4VFRUUFxcHvYd8AXgVuBDYDXgMKCkr66RfO2ECa4NojCsv5/C99gppMCNc4rXu6VLz7PRFiC1uzpvuscnnW3WaUvMSF7fnTef4dPbNKWRFZMEd1NSYX6hZoUG7KUEQBFdyzjnmQxAEQbAFr9cb9swHAzixw3Pnnnuu5X73Aw9aaPQCLod2624IgiAIgiAIgo5IyylBC6KepjRvHpx6qvW2jz6Cgw6K0sPIkJZTgiAIgiAIghN0dZ8ZDC9QAuRabKsEBgLVIejIfawgCIIgCEJiIy2nBGErQ4YMoUePHuEfGKzdVG4uHHBAdE7ZRI8ePSKPz2GamppYu3YtTU1NrrTtlA27dKPVUZk/IXLcnjfd41Pln612DQMmTYIFC8z/O2GjDVLzhGhwe950j6/1PrSlRw+mB9knG7jUAdvxeq+nS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSsiWmOipQVefdV6W+/esHAhaNBHTtbQUGdb+skLOuL2vOkenyvW0HjzTXj4YZgwAQ48EBYtAsOQmidoidvzpiK+3NxcvF5vSPu2vQ99CKgIst8VQIZdDm4lXu/1dKl5dvoixBY350332OTzrTpNqXmJi9vzpnN8OvvmFNJyStCCqKYpvf8+/PnPXe/Tsyccd5z5S9bRo6PwNDyk5ZQgCILgCIYBBx9stlVsy4gR8M9/wjHHqPFLEISYUlBQwNy5c8M6Zs2aNfS5/376/ec/ltuvBe7sRkPuYwVBEARBEBIbaTklCNGwcGH3+9TXw/z5sGqV4+4IgiAIguO89lrnwQyA5cvhrrti748gCEooKioiPz8/5JkaYC483u9f/zJnMltwFaDffGJBEARBEARBMJEBDUErbr75ZrKzs8M7KJQBjVYmTAhP20ays7Mjiy8GVFZWMm3aNCorK11p2ykbdulGq6Myf0LkuD1vusenyj9b7BoG3HRTcBtTp0rNE7TD7XlTFV96ejrFxcVUVFSwZMmSoPu13of+X+t9aE4OXGq9Ysa2wCQbfYzXez1dap6dvgixxc150z02+XyrTlNqXuLi9rzpHJ/OvjmFtJwStKB1mlJeXh5lZWWsXLkytGlK330Hu+0WmpE994SvvorO0TBp23IqJSWFAQMGUFZWRnNzs1ZT9ZubmykrK2PAgAGkpKS4zrZTNuzSjVZHZf6EyHF73pqbmykrKWHA11+TMnw45Oaqdqkdql5/W+yuWAHDh1tvO/54mhculJonaIfb86ZDfD6fj5ycHHw+X7vn+wPXpaRw7IABDCoro2XZMtJGjIDff8c/cCBJFv2WfwN2BnydtpiEcx8br/d6utQ8O30RYoub86Z7bPL5Vp2m1LzExe150zk+Vb6pbDklAxqCFkR8Edx7L1x1VWhG/v53+Ne/IvQwMmQNDUEQEg7DgA8/hGeegeefh02b4M474eqrVXvmLlauhJtvhgUL2j//8cdwwAEqPBIEQQParqmxA3AdcAGQ1nanceMCtaNq0iSyHn7YUutS4IEgduQ+VhAEQRAEIbGRNTQEYSsFBQX06tUr9AOCtZvabTcoLIS+ff947qSTonMuSnr16hV+fDFiy5YtFBcXs2XLFlfadsqGXbrR6qjMnxA5rszb7Nmwyy5w6KFseeopio85hi29esHTT5sDHRqh6vW3ze6wYebaUB9/DGPGmM+NGwcHHCA1T9ASt+dNl/jarqnxPHAJ5mDGll69KC4oMGvywoXw6acAVJ1/Pp3nZ5hcC6Ta4FO83uvpUvPs9EWILW7Om+6xyedbdZpS8xIXt+dN5/h09s0pZEBD0IrKykr8fn9oO2/eDO+9Z73t7LPhscfgt9/gnXfghhvgT3+yz9EI8Pv94cUXQ5KSksjOziYpKfYlIRa2nbJhl260OirzJ0SOK/NWWQk//ABAkt9PdmUlSX4/fPklfPaZWt86oOr1t93uAQfAq6+as2LuuMMZG1uRmidEg9vzpkt8bdfU2OWRRwLPt6vJYM7wAvz9+jE7iNYAYKINPsXrvZ4uNc9OX4TY4ua86R6bfL5Vpyk1L3Fxe950jk9n35xCWk4JWhDRNKU5c+Css6y3rVoF++xjo4eRIS2nBEFIKH7+GQYOtJ6NcfHF8OCDsfdJEAQhUTEMOOgg+OQT6+0ff0xp374cMmgQPwBei11KgV2B5g7Py32sIAiCIAhCYiMtpwRhK8OGDSM1NcTJ7cHaTeXlQZsLShdSU1PDiy+GNDY2snLlShobG11p2ykbdulGq6Myf0LkuDJvO+4Io0YB0Jiaysphw2hsrXlz5kB9vULn2qPq9ZeaJzUvUXF73rSMz+MJzMRoV5N32slsETh0KGAuAP5oEIk84K9RuhGvdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hAxqCVowcORKv1+r3YR1obITFi623jR1rfoDTDK/XG3p8Mcbn87F06VJ8Pp8rbTtlwy7daHVU5k+IHNfm7bzzAPB5vSwdORKf1wvbbAMTJ0JdsE7tsUfV6y81T2peouL2vGkb35gxcOCBZk0+6ih8994L334LF14IbX5kcwcQ7CPw34HkKFyI17qnS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkJZTghaEPU3pzTfhmGOst73xBhx9tM0eRoa0nBIEIeHw+WD77aGqyqzT550H48dDWppqzwRBEBKTt9+GtWvNetyhFre9V50FTAoi8VfgmTZ/y32sIAiCIAhCYiMtpwRhK16vF08osyuCtZvKzITDD7fXKZvweDyhxxdjDMPA5/OhYnwzFradsmGXbrQ6KvMnRI5r8+b1wrPPYpSU4FuwAOO007QczFD1+kvNk5qXqLg9b1rHN2oUxkUX4TOMLv27nc5rZbTydyL/4BivdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hAxqCVkydOpWsrKyudzIMePll622jR7ebPq8TWVlZocWngKqqKu644w6qqqpcadspG3bpRqujMn9C5Lg6b8cfT1VWltbxqXr9w7bb1AR+v7M2YqwrNS8xcXvedI8vFP9KgaeCbBsCnOag7WhxwoYuNc9OX4TY4ua86R6bfL5Vpyk1L3Fxe950jk9n35xCWk4JWtA6TSk3N5eNGzfyxRdfBJ+m9OWXgUUMO/HMM3Dmmc45GiZtp/EnJyfTr18/Nm7cSEtLi1ZT9VtaWti4cSP9+vUjOTmaLsl62nbKhl260eqozJ8QOW7Pm+7xqfIvbLvTp8MTT8Ctt8IJJ4S0RpTUPEFH3J433eML5l/H9qiDgW+wXjNjNTAUMAiv5VS83uvpUvPs9EWILW7Om+6xyedbdZpS8xIXt+dN5/hU+aay5ZQMaAhaENZFcOutcMMNnZ9PToYNG8zFZzVB1tAQBEEQIqamBnbeGX7/3fx7xAi47TY48ki1fgmC4Bqs7lWfwlwzw4pTgBeR+1hBEARBEIRER9bQEIStTJw4kYyMjK53CtZuKi0N7rkHPv7YbEulGRkZGaHFp4Da2lqeeOIJamtrXWnbKRt26UarozJ/QuS4PW+6x6fKv7Dszpjxx2AGwPLlMGqUudj699/bYyMMpOYJ0eD2vOkeXzj+3QoEa3R3ExDuanDxeq+nS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQStKS0tpbg62HCFQXg4ffWS9ra7O/OXqQQfBTjvBQw8542SENDc3dx+fIlJSUsjLyyMlJcWVtp2yYZdutDoq8ydEjtvzpnt8qvwL2e7mzXDXXdbbPvgAeveO3kaYSM0TosHtedM9vnD8+wZ4Psi2fYGTHLQdKU7Y0KXm2emLEFvcnDfdY5PPt+o0peYlLm7Pm87x6eybU0jLKUELQp6m9OijcMEFoYk++CBcfLFNHkaGtJwSBEEQImLqVLjjDutt111nDuALgiBESeu96k7AP4AFwEJgL8w1M6z4Eui9bh15O+8cIy8FQRAEQRAE3ZCWU4KwlREjRpCWlhZ8h2DtpqwYPz56h2wkLS2t+/gU0dDQwPLly2loaHClbads2KUbrY7K/AmR4/a8dRtfU5PS9oCqXv+Q7ZaXWz+flQVXX22PjTCRmidEg9vzpnt8wfxL3riRGcB3QCFmu6kk4CvghSBa+wDpixZFbdtOnLChS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSuGDRtGamqq9cb6enjjjdCEDjoI+ve3zzEbSE1N7To+hTQ2NrJy5UoaGxtdadspG3bpRqujMn9C5Lg9b0HjW7vW/EJ+wABzzSNFqHr9Q7b7xBPw2WcwZkz756++GnJy7LERJlLzhGhwe950j6+Tf5WVcP319D/iCC4DWu9O9wbO2Pr/aQRfSyN7xgxoaYnMtgM4YUOXmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hLacELQhpmtIrr8DYsaEJ/vvfZrsOxUjLKUEQBKC2FubOhaIic/2HVi68EGbPVudXvPD++3D99bBmDfzwA2RkqPZIEIR4Z9Uq2Hdfy03rgD2AJuA5oCCYxrPPwhlnBNsqCIIgCIIguBhpOSUIW8nOziYpKchpuXCh9fM5OeZ6GccdBz16mM+dFO5yhc6TlJTUdXwK8fv9VFZW4vcH+x1efNt2yoZdutHqqMyfEDluz1u7+M46C84/v/1gBsBzz8GWLer9093uoYfC0qXmjI0QBjOk5gk64va86R5fJ/+GDg06GDEYOG/r/7uapcG0af/P3nmHR1Vmf/ybPgTSWNGoqImoC7oqroViAytWcC2JYkH0p9hxLYsdrKCuihVcN4KIJFawsjbABpaVCAiIGzMqahA1yaRNksnM74+bhISZm0zmlvfkne/nefJI5t57zvfkvJ7cm/e+541qlUZvvdeTUvPs1ELcRee8SY+Nz7fqbLLmxS+6501yfJK1OYW8v6ySuGby5MnIzMwMPxAMmu+fcfLJxubfixcDv/4KvPIK8Oc/Oys0BjIzM83jU4zP58PMmTPh8/m09O2UD7vsWrWjMn8kdnTPW6f4xo+PfFJNDfDSS+4Ka0XVzz9mvwkJRpsuJ324ZJc1Lz7RPW/S44uob9o0hJKSIp5f0Prf9TBWaUTkm2+MielYfNuMEz6k1Dw7tRB30Tlv0mPj8606m6x58YvueZMcn2RtTsGWU0QEbcuUsrOz4fP5sGrVqs7LlD7/3NgXIxIvvgiceqo7QntIx5ZTiYmJyMzMhM/nQzAYFNVyKhgMwufzITMz0/UVJG74dsqHXXat2lGZPxI7uuetU3zNzca+Rr//Hn7iYYcBy5ap1efiz581jzUvXtE9b9LjM9NXc+aZyCgubv/+RxirMuYCCLR+tgeAtQAiTn3svjuwdi2QnNxj33bihA8pNc9OLcRddM6b9Nj4fKvOJmte/KJ73iTHp0obW04R0orpEimzdlOpqcAxxzgryiYkLwFT2Q7LDd9O+bDLrlU7ktuZEXN0z1un+NLSgHPOiXzil18Cv/3mrjio+/mz5rHmxSu65016fGb6qq68En4AmwFMBrA7gH9jy2QGAGwAMN/M8LffAvNNj3bp206c8CGl5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtziviJlPQKJk2ahIyMjPADZhMaRxwBRDpfIBkZGebxKaampgazZs1CTU2Nlr6d8mGXXat2VOaPxI7ueQuL74ILOp8wYgTw1FPAzz8D22yjXp9GflnziER0z5v0+Mz0DdhvP5yakoJdAcwE0Ghy/R3oPMnR+eAdQHNzj33biRM+pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ9kbU7BCQ0iitLSUjQ1NXX+8PvvgVWrIl9w0knOi7KJpqamyPEJIDU1FUOHDkVqaqqWvp3yYZddq3ZU5o/Eju55C4vvL38BTjwRuOYa4OuvjQ3CL7hA2aS0qp8/ax5rXryie96kx2emz+PxIONvf0NtN9f/D8A8s4NlZcA806O9tu5JqXl2aiHuonPepMfG51t1Nlnz4hfd8yY5PsnanIJ7aBARdNl37dFHgSuuiHzhDz8AO+3kgsLY6LiHxtZI2kODEEKIIkIhYOlSYNQoY+NvQghxmfr6ekycOBGLFi2C3+83PW9XAN8AiLhbRn6+sUl4SopDKgkhhBBCiCS4hwYhrYwaNQoej6fzh2btpvbbT/RkxtZ4PJ7I8QnA7/dj6dKlXT7E9mbfTvmwy65VOyrzR2JH97xJj0+VvjC/b79ttE886CDj3za8Z8KaRySie96kx9eVvvT0dBQXF6OyshLl5eWdvsaNG9d+3ncA5pg5KC8H5s7tsW+7cMKHlJpnpxbiLjrnTXpsfL5VZ5M1L37RPW+S45OszSk4oUFEkZeXh+TkDu99+XzGm6uR6EXtpgAgOTk5PD4hBAIBeL1eBAKm3ZF7tW+nfNhl16odlfkjsaN73qTHp0pfJ7+hEHDzzcaBL74Ajj0WGD0a+Phj+3zYCGsesYLueZMeXzT6PB4P8vLyOn3Nnz8fBQUF7efcCcBst4zAbbfBu2FD2MN0b73Xk1Lz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFW04REZguU3rhBeCMMyJf9MUXwP77u6QwNthyihBCiCkvvgicfnrkY7fcAtx+u7t6CCHEhPXr12PIkCEAgFkALjY572IAz3g8GDt2LIqKipCenu6WREIIIYQQ4iJsOUVIK7m5uUhKStrygVm7KQCYMgV47DHgp5+cF2YDSUlJ4fEJoaWlBRUVFWhpadHSt1M+7LJr1Y7K/JHY0T1v0uNTpa/dr98P3Hij+YknnGDdB2seEYTueZMen1V9Ho8H27T++y4ATSbn3Qwg6PejpKQEEydOtMV3NDjhQ0rNs1MLcRed8yY9Nj7fqrPJmhe/6J43yfFJ1uYUnNAgopg0aRIyMjKMbwIB4M03zU9+913g8suBgQOB6693R6AFMjIyOscniJqaGsyePRs1NTVa+nbKh112rdpRmT8SO7rnTXp8qvS1+33qKeDbbyOfdPLJwLBh1n2w5hFB6J436fFZ0vfTT+h/883YCGA/AD8C+LfJqTthy+qNtk3Ge+u9npSaZ6cW4i465016bHy+VWeTNS9+0T1vkuOTrM0p2HKKiKBtmZLH40FjYyNWr16NvX7/HTj88OgMzJkDnHeeoxpjoWPLqYSEBKSlpaGxsRGhUEhUy6lQKITGxkakpaUhISFBO99O+bDLrlU7KvNHYkf3vEmPT5W+dr8//ICEW24Bnn++8wmJicCqVYCFpbqseUQiuudNenwx6fv9d2D6dODRR4HWfTHeBnAsgIEA/gcgLcJlmwAMAlAHo8XqLrvs0ivv9aTUPDu1EHfROW/SY+PzrTqbrHnxi+55kxyfKm1sOUVIK36/H+1zbF21m+pIUlKv2CA8FAp1jk8QCQkJ8Hg8SoqyG76d8mGXXat2VOaPxI7ueYspvg0bgKuvBtaudU5YK6p+/u1+99gDKCkBPvsMGDVqywkTJliazOjkgzWPCEL3vEmPr8f6/v1vID8fuP/+9skMADgGwFEANgJ40uTS7QBcacV3DDjhQ0rNs1MLcRed8yY9Nj7fqrPJmhe/6J43yfFJ1uYUnNAgopg8eTIyMzONb157LbqLDj8c6N/fOVE2kZmZ2Tk+Qfh8Pjz00EPw+Xxa+nbKh112rdpRmT8SO7rnLer4AgHglVeAo48G/vxn4KGHgCeekKPPab8HHgi8/77RYvGgg4CpU+33YROsecQKuudNenw91rfttoBJ24LpABJg7KVRb3L59QCyY/UdA074kFLz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFJzSIKJYuXQq/3w+Ulxtv6kbDuHGOarILv9+/JT5heDwejBo1Ch6PR0vfTvmwy65VOyrzR2JH97xFFd8zzwB5ecDf/mbsi9TG3LlAba16fW75TUgAjjsO+PRTYKednPFhA6x5xAq65016fD3Wd+KJwKGHRjy0P4AzYLSWetjk8mwA18bqOwac8CGl5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCu6hQUQQ1nft73/HXg88EPnkd98Fli0z3uhdswb44Qdb/gDkBB330NgaSXtoEEKIEubNA849N/KxWbOAiy+OfIwQQojzLF8OjBwZ9vG3MFpKLQaQA6AcQFaEy+sA/P7ZZ9j5wAMBGC/3VFRUtB/Pzc2NqwdvQgghhBCd4B4ahLQyZswY9OnTB1i6NPIJI0YARx4J3H47sHo18P33YicztqZPnz5b4hNGQ0MDFi9ejIaGBi19O+XDLrtW7ajMH4kd3fMWVXynnw786U+Rjz3+OODgOxeqfv6seax58YrueZMeX0z6RowATjml/dsKAJcA2BPGZAYAVAK4z+TyvgCyH38cv//+O6666ipsv/32yM/Pb//KyclBYWEh6uvNGldFjxM/fyk1z04txF10zpv02Ph8q84ma178onveJMcnWZtTcEKDiCI7OxuJiYnAypWRTzj55M7f77yz86JsIjExcUt8wggGg6iqqkIwGNTSt1M+7LJr1Y7K/JHY0T1vUcXn8QAXXBD52KpVwMcfOyMO6n7+rHmsefGK7nmTHl/M+u6+G8jORuXVV2M3ALMABLY6ZSaAX00uz3juOUy98EL8+uuvaG5u7nTM7/ejpKQEEydO7JmmCDjx85dS8+zUQtxF57xJj43Pt+pssubFL7rnTXJ8krU5BVtOERGELVMCEHGR0po1gEvLl+yALacIIaQbvvsO2G23zqsx9t8fuPRSoLAQSE9Xp40QQghQXw/vr7+a3tMCwFUAHjI5NicpCee3tJhe6/F4UFlZyfZThBBCCCG9CLacIqSVvLw8JCcnRz64667Annu6K8hGkpOTu45PIYFAAF6vF4HA1u/c6eHbKR922bVqR2X+SOzonreo49t1V2NDbI8HmDAB+Owz4IsvgIkTHZ3MUPXzZ81jzYtXdM+b9Pgs6YuiFs8C8KPJsTMTEnBIF/fAW++tEQtO/Pyl1Dw7tRB30Tlv0mPj8606m6x58YvueZMcn2RtTsEJDSKKCRMmoF+/fpEPnnwykJDgriAb6devX9fxKaS2thZz585FbW2tlr6d8mGXXat2VOaPxI7ueetRfDNnAhs3Ak8/DbRuHus0rv38g0GgoAB45RUgFGLNs8GO7v/v6IrueZMen9P6GgFMMznW0K8fjnL4HtiJ+KTUPDu1EHfROW/SY+PzrTqbrHnxi+55kxyfZG1OwZZTRARRtZx67z3giCPclGUZtpwihJA4Z/584OyzjX+PGAHcey9wyCFqNRFCSA/p6p62jWQAXwPYw+T4fgBKTY7xvpgQQgghpHfBllOEdEdWFnDooapVEEIIIdHT2AjcfPOW75cvN36XnXwysHatOl2EEOIAAQC3dXH8TreEEEIIIYQQreGEBhHFlClTkJWVFX7g+OOBlBT3BdlIVlaWeXyKqa6uxvTp01FdXa2lb1p9ruUAAPP+SURBVKd82GXXqh2V+SOxo3vepMfnir4nngC83s5+s7Iwfa+9UH3XXY65Zc0jEtE9b9Ljc0tfCYBVW/vOysL0KVNwSFYWRjrk14n4pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ9kbU7BllNEBG3LlAYPHoyysjKsbG7u3HJq3rwtLTt6ER2X56ekpGDQoEEoKytDc3OzqKX1zc3NKCsrw6BBg5Di8sSRG76d8mGXXat2VOaPxI7ueZMen+P6qquBQYOA33/v7DclBWW7745BL76IlCFD7PcL1jwiE93zJj0+q/q6azmVD2A8jFUYJwJ4raPvlBSUDRqEQWVl+KS5GaMiXG/1vtiJn7+UmmenFuIuOudNemx8vlVnkzUvftE9b5LjU6VNZcspTmgQEXS7h0ZODnDSScAppwDHHAOkp7stMSa4hwYhhMQpL74InHEGEOk265JLgMcfd18TIYTEiNk97QAANwOYBCAVwAkA3gTwCYARJrbazukI74sJIYQQQnoX3EODkFbGjRuH9EiTFZWVwDPPGBMal17qvjAbSE9PN49PMfX19Vi4cCHq6+u19O2UD7vsWrWjMn8kdnTPm/T4HNd32mlAaanRMrGj3z/9CQsPPZQ1jzUv7tA9b9Ljs1tfXxgTGWUAroQxmQEA9wJIAnBjR9/p6Vg4bhzqW++Bp8P+h1Anfv5Sap6dWoi76Jw36bHx+VadTda8+EX3vEmOT7I2p+CEBul9nHyyagWEEELcZvVq4MMPVavoGfvsA7zxBrBkCXDQQcZnl14K9OmjVhchhFjk3wDuAJCx1ed7AbgAwFIA75hcuzeAcxxTRgghhBBCdIctp4gIum051YbHA/z2G9C3r1vSLMGWU4QQYoFgEFi8GHjwQeDdd4G99jImNhISVCvrOaEQ8PLLwNFHA5mZqtUQQkiP2Pqe9q8A/mty7iYAu7d+mZ3zI4A9APhbv+d9MSGEEEJI74ItpwhpZfDgwV1vYHPMMb1mMmNrUlJSuo9PEc3NzVi/fj2am5u19O2UD7vsWrWjMn8kdnTPm6X46uuB2bONCYwTTjAmMwDg66+3/FulvlhISABOPRXNffqw5rHmxSW65016fHbr+xLAsybHtgNwbus5C2BsCr5+8GA0d7gH3gnA5bYoMXDi5y+l5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCk5oEFGE7TGx9R//TznFXUE2wj001PlmP3kiEd3zZim+X34xNs5evz782IMPWhcHdT9/1jzWvHhF97xJj88JfTcCaNjqMy+AMwE83vr9TQCqttpDo+P1OTZpYT95IhGd8yY9Nj7fqrPJmhe/6J43yfFJ1uYUbDlFRGDacmrJEqC2FnjlFeDNN4E1a4A//UmVzB7DllOEEBIjf/ubUfsjsXYtMGSIu3oIISSO8fv9yMnJgd/v7/T5XTAmJqpb//0wgMatrn0IwFUmdu8DcD14X0wIIYQQ0ttgyylCIjFgAHDoocCJJwL//jfw00+9ajKDEEKIBa6+2vzYQw+5JoMQQgjg8XgwduzYsM+nw5iU2K31v0OHDQs7504APhO7V8BoP+X1etu/tp40IYQQQgghpCOc0CCimDp1KrKzs41vTjwRSEracjCxdw/X7OzszvEJoqqqCtOmTUNVVZWWvp3yYZddq3ZU5o/Eju55sxzfIYcA++8f/vnw4cCYMZa0Aep+/qx5rHnxiu55kx6fHfqKiopQUFAAj8fT/lkNjBUWtR4PCgoKUFRUFHZdIDsbD06diqoI98AeALcDGD16NPLz85Gfn4+cnBwUFhb2qG2CEz9/KTXPTi3EXXTOm/TY+HyrziZrXvyie94kxydZm1Ow5RQRQdsypby8PGzcuBGlgQD2euUVYNw41dIs0bHlVHJyMgYOHIiNGzciEAiIWlofCASwceNGDBw4EMnJydr5dsqHXXat2lGZPxI7uufNlvjmzwfOPtuY0D71VGPVxogRcvS18d//AvvuC0RhhzWPNS9e0T1v0uOzU5/f70dFRUWnz3Jzc+HxeCK2W01OTsaggQPxzsaN2CkQCLMXBDAUwOqtPi8oKEBxcXFUmpz4+UupeXZqIe6ic96kx8bnW3U2WfPiF93zJjk+VdpUtpzihAYRQdj/BCkp2KuyEujbV6Eq63APDUIIsUBTE3DnncAFFwC77KJaTWR+/hnYfXcgLw+47z7guOOAhATVqgghRAld3fteBGC2yXVvADhxq888Hg8qKys7rQghhBBCCCEy4B4ahLRSWFiIvn37Gi1Fevlkxtb07dt3S3zCqKurQ3FxMerq6rT07ZQPu+xataMyfyR2dM+bLfGlpgK33+7IZIZtP/9bbgHq642Nyk84ATjmGGDVKuf9dgFrHpGI7nmTHp9KfW33wAv69sU3JuecAODwrT6LtBLEDCfik1Lz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFJzSIKKqqqhAMBoHRo1VLsZ1gMLglPmEkJiYiOzsbiQr2KXHDt1M+7LJr1Y7K/JHY0T1v0uOzRd9XXwFPP935s3ffBYYOBa67zjm/3cCaRySie96kx6dSX9s9cCAYxA1dnHevBR9OxCel5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCracIiLYepnSO/PnY7eRIxUqsoeNGzfi0EMPjXiMLacIIaQXEwoBRx8NvPde5OMzZwJXXumuJkIIUUxXLae2A7AJwMcAzO7yCwA83+F73i8TQgghhMhEZcspWbuYkLhn6NChWLt2LY4eP161FNtJTU3FnnvuibVr16KpqUm1nE40NTVh7dq12HPPPZGamqqdb6d82GXXqh2V+SOxo3vepMdnWd/rr5tPZuy+OzBpkjN+o4A1j0hE97xJj0+lvrzUVFy3554Yv3Yt9m1qwj8AfGhy7j0AFgFo7KEPJ+KTUvPs1ELcRee8SY+Nz7fqbLLmxS+6501yfJK1OUX8rEUhvYJRo0Zpu/Gfx+MRG5/f78fSpUvh9/u19O2UD7vsWrWjMn8kdnTPm/T4LOs74ADg/PMjbwB+773G/h9O+I0C1jwiEd3zJj0+FfoyANwJ4FOPB02jRiHB48EMAB8BeNXkml0BXBGDLyfik1Lz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFW04REWy9TGkRgDUwlpx/pUqUw3AJPSGEaMB//wtMngx89JHx/WGHAUuXRp7oIIQQzWlrOXUWgAdgtJnamsMA/AZgNYCkCMerAezWeg7vlwkhhBBCZKKy5RRXaBBReDweJCQkYBCAGwFcrFqQjSQkJLTH5/F4kJubq1pSO6FQCH6/HyrmN93w7ZQPu+xataMyfyR2dM+bq/GtXQtUVfXoEtv07b8/8MEHQEkJkJ8PPPhgl5MZrHmsefGK7nmTHp/b+tKxZTIjlJAAv8eDUGttnAngGwBPmlybBeC2HvpzIj4pNc9OLcRddM6b9Nj4fKvOJmte/KJ73iTHJ1mbU3BCg4hiypQpyMrKav9+oToptpOVldUe39ixY0W1nqqursaMGTNQXV2tpW+nfNhl16odlfkjsaN73hyPLxQC/vMfYMwYYK+9gCfN/jTmgr6EBOCMM4ANG4C//tU9vy77YM0jVtA9b9Ljc1tfEbassq7OysKMKVNQ3XqPvx+A8wHs8/LLCPbrF/H6SQAG98CfE/FJqXl2aiHuonPepMfG51t1Nlnz4hfd8yY5PsnanIItp4gI2pYp5ebmYvPmzfiqpQU7AtgWQLNqcTaRlJSEHXfcESNGjEBRURHS09NVS2qnpaUFmzdvxoABA5CUFGnxf+/27ZQPu+xataMyfyR2dM+bY/E1NADz5xsrIdau3fL5wIFAWZnp3hWu6RPglzWPSET3vEmPzy19bS2nAOBwAEsBtCQlYfOAARiweTOSWlpQCuByAM+WlyOvuBi44YaItl4DsHeULaeciE9KzbNTC3EXnfMmPTY+36qzyZoXv+ieN8nxqdKmsuUUJzSICML+JwCwy9ix+O2hh5RpcoLc3FxRKzMIIaTXMX266R+/8PTTwIQJrsohhBCyhY4TGgDwAoDTWv/9K4CbYKzeCKJ1f4zcXAR22w3JP/0U0V7Fs88id/x4Z0UTQgghhJAewz00CGllwoQJ6Ne69Lzf+PHIy8vT5mubbbZBcXExamtrFf+Uw6mtrcWcOXOUaHPDt1M+7LJr1Y7K/JHY0T1vjsV3wQVAWlrkYzNmAMFgVGZU/fxZ81jz4hXd8yY9PlX6rgPwS79+uGPCBOzbrx+egjGZ0Y7Hg8rrrze9vv9ddwEtLd36cSI+KTXPTi3EXXTOm/TY+HyrziZrXvyie94kxydZm1NwQoOIwuv1IhAIAIcdZvRF14jk5GTk5eUhOTlZtZQwVGpzw7dTPuyya9WO5LFFzNE9b47FN2CA+SqM9euBRYuiMqPq58+ax5oXr+ieN+nxqdLnBTA0EMD7Xi+qAoGI59SddBJWmFyfum4dMHdut36ciE9KzbNTC3EXnfMmPTY+36qzyZoXv+ieN8nxSdbmFGw5RUSgcpkSIYSQXkZZGbDHHuGrMUaPBu66Cxgxwl5/wSCQyHdACCGkO7ZuOdUV5a37Y3i9XpyVn49PzE7MzQW+/RYw2UCcEEIIIYS4D1tOEdLK8OHDkWbWSqSX09jYiBUrVqCxsVG1lDBUanPDt1M+7LJr1Y7ksUXM0T1vjsY3aBBwxhlbvh87Fli+HHj//agnM6LWV1EB7LUX8MwzUbezssWvQB+secQKuudNenwq9aWlpXV7j78cwPNmBysqgPvu69KHE/FJqXl2aiHuonPepMfG51t1Nlnz4hfd8yY5PsnanIITGkQUQ4cORWpqqmoZjtDU1ITS0lI0NTWplhKGSm1u+HbKh112rdqRPLaIObrnzfH4pkwBzj0X+PprYOFCYPhwZ/RNmWK0sjrvPGOyZPny2DX3xK9AH6x5xAq65016fCr1paamRnWPPwWA6WP4ffcBGzeaXutEfFJqnp1aiLvonDfpsfH5Vp1N1rz4Rfe8SY5PsjanYMspIgK2nCKEECKO5cuBkSPDPz/zTGMD8p12cl8TIYQIJtaWU23XzABgukX42WcD8+bZopMQQgghhFiDLacIaSU7OxuJmvYpDwaDqKqqQtCGliV2o1KbG76d8mGXXat2JI8tYo7ueZMeX7f6WlqAK66IfGzBAqCkxBm/NsCaRySie96kx6dSX2JiYtT3+HcD+M3s4LPPmq6ScyI+KTXPTi3EXXTOm/TY+HyrziZrXvyie94kxydZm1Po+Zdj0muZPHkyMjMzVctwBJ/Ph5kzZ8Ln86mWEoZKbW74dsqHXXat2pE8tog5uudNenzd6isqAv7738jH/vxn4MornfFrA6x5RCK65016fCr1ZWZmdnuP/1cAHwLIA3BbV8auvDLifkZOxCel5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCracIiJoW6aUnZ0Nn8+HVatWaddyKhgMwufzITMzU9wqFJXa3PDtlA+77Fq1I3lsEXN0z5v0+LrV989/AjfdBETaWG3xYuDYY53xawOseUQiuudNenxu6YvUcioxMRGZmZnw+Xyd3hwsLy9HXmYmfFdeiX7z5yMRwEcARgMoBWD6JPDvfwMTJ3b6yIn4pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ8qbSpbTnFCg4iAe2gQQggRx3ffAX//O7Bo0ZbPxo41NiEnhBASRrR7aCQA+PXuu7HNP/8J/P57p2PnAvgFwDtmF2+7LbBhA5CVZVEtIYQQQgiJFe6hQUgrkyZNQkZGhmoZjlBTU4NZs2ahpqZGtZQwVGpzw7dTPuyya9WO5LFFzNE9b9Lji0rfrrsakxdvvQXssQeQlgY88IDzfi3CmkckonvepMenUl9GRkbYPf5RALa58cawyQwAuBfAZwAWmhn89Vfgjjs6feREfFJqnp1aiLvonDfpsfH5Vp1N1rz4Rfe8SY5Psjan4IQGEUVpaSmamppUy3CE1NRUDB06FKmpqaqlhKFSmxu+nfJhl12rdiSPLWKO7nkTE9+nn0b8g1mP9I0ZA6xeDbz7rjHJYQHWPNa8eEX3vEmPT6W+pqamsHv8dwA0HHpoxPNzAUwDcA2AYEpKZKMzZwLffNP+rRPxSal5dmoh7qJz3qTHxudbdTZZ8+IX3fMmOT7J2pyCLaeICNhyihBCiG2EQsA77wDTpwNLlgC33gpMm6ZaFSGEaE+0LacA4Mf33sPAMWOA5uawY4sAnALgTgA3mhk47jjgzTdjVEoIIYQQQqzAllOEtDJq1Ch4PB7VMhzB7/dj6dKl8Pv9qqWEoVKbG76d8mGXXat2JI8tYo7ueVMSX0sL8MILwAEHGJt2L1lifP7II8BWy29V/fxZ81jz4hXd8yY9PpX6PB5PxHv8wK67Atdc0+mz7wCcBGAcgBCAuwH8ZGb4rbeAN94A4Ex8UmqenVqIu+icN+mx8flWnU3WvPhF97xJjk+yNqfghAYRRV5eHpKTk1XLcIRAIACv14tAIKBaShgqtbnh2ykfdtm1akfy2CLm6J43JfHNmgWccQbw5ZedP6+sNI6p1ueSX9Y8IhHd8yY9PpX6kpOTze/xb74Zge23RwOA2wDsBeD1DofrAPyjK+NXXw00NTkSn5SaZ6cW4i465016bHy+VWeTNS9+0T1vkuOTrM0p2HKKiIAtpwghhFimuhrYeWfA5ws/NmAAUF4O9O3rvi5CCIkT/H4/cnJyun1D0OPxoLKyEh6PB43vvot9TzgB33Sxj97HAEaaHbz3XuC662LWTAghhBBCeg5bThHSSm5uLpKSklTLcISWlhZUVFSgpaVFtZQwVGpzw7dTPuyya9WO5LFFzNE9b0riy8oCLrss8rHNm4Ennmj/VtXPnzWPNS9e0T1v0uNzS5/H48HYsWM7fZaUlBR2jz927Nj2FlRpRx2Foaec0qXdKwGEEhIiH7zjDrT89JPt8UmpeXZqIe6ic96kx8bnW3U2WfPiF93zJjk+ydqcghMaRBSTJk1CRkaGahmOUFNTg9mzZ6Nmqz7uElCpzQ3fTvmwy65VO5LHFjFH97wpi+/qq4H09PDPTzgBGD26/dt2fc89Z2wa3tDgijzWPNa8eEX3vEmPz019RUVFKCgoaJ+wyMjIaL/H93g8KCgoQFFRUcRrzPgvgNrTT498sKYGNbfeant8UmqenVqIu+icN+mx8flWnU3WvPhF97xJjk+yNqdgyykigrZlSh6PB42NjVi9erV2LadCoRAaGxuRlpaGBLM3zBShUpsbvp3yYZddq3Ykjy1iju55UxrfP/5htCABgOOPB6ZOBQ48MFzfr78ibd99kbBpE5CfDzz6qHG+g7DmsebFK7rnTXp8KvT5/X5UVFQgFAqhubkZKSkp2H777cM2B+/I+vXrMWTIkIjHvv/sM+x81FER2wqGEhLQ+N57SBs1yrb4pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ8qbSpbTnFCg4iAe2gQQgixjc2bgYsvBqZMAQ46yPy8K68EHnmk82fjxgEzZxp7cRBCCHEVr9eL/Pz8iMfKy8uR99JLwLXXRr54772BL78EIm0+TgghhBBCbIV7aBDSyuTJk5GZmalahiP4fD489NBD8EXarFYxKrW54dspH3bZtWpH8tgi5uieN6XxDRgAvPxyl5MZvo8/xkNJSfBt/Ttn4UJgn32MDcYdgDWPNS9e0T1v0uPT5l7viiuAP/853EdmJh468kj4Hn7Yuo82m0Jqnp1aiLvonDfpsWlT81z0wZpHrKJ73iTHJ1mbU/D1FSKKpUuXwu/3q5bhCB6PB6NGjepymb0qVGpzw7dTPuyya9WO5LFFzNE9b6LjCwbhue46jGpogCfS75xJk4wNxh2ANY81L17RPW/S49PhXi/97beBTZuM9oBHH93Zh9+PUUuXwvPDD0BhIbDDDpZ8AXJqnp1aiLvonDfpselQ89z2wZpHrKJ73iTHJ1mbU7DlFBEBW04RQghxjQ0bgEMOMVpTbc1OOwHr1gF9+7qvixBC4pxILad2BvAwgLEAkJAAfPopcP/9wPPPRzZy5pnAc885rJQQQgghJL5hyylCWhkzZgz69OmjWoYjNDQ0YPHixWhoaFAtJQyV2tzw7ZQPu+xatSN5bBFzdM+b6Pj22AMNpaVYfN11aNj6d87DDzs6mcGax5oXr+ieN+nx9cZ7vWQA1wBYi9bJDAAIhYw9ku69F+jXb4uPPn2weMwYo6YvWAC8/74y3U7YkT6+SGR0zpv02HpjzVPtgzWPWEX3vEmOT7I2p+CEBhFFdnY2EhP1HJbBYBBVVVUIBoOqpYShUpsbvp3yYZddq3Ykjy1iju55kx5fMCsLVX/9K4Jvvw3sv7/x4QknAGPHdn2hVb+seax5cYrueZMeX2+813sJwP0AwqaYV6409juaOnWLj8REVGVnI9j2HHHZZUBTU+yiIafm2amFuIvOeZMeW2+seap9sOYRq+ieN8nxSdbmFGw5RUTAllOEEEKU0dICzJ4NjBkD7LqrajWEEBK3dGw5dSKA18xO7NcPWLUKOOkk4OuvI58zfTrwj384IZMQQgghJO5hyylCWsnLy0Nysp571QcCAXi9XgQCAdVSwlCpzQ3fTvmwy65VO5LHFjFH97xJjy/Q3AzvSy8h8NxzQFIScOmlrkxmsOax5sUruudNeny98V7vdQAvmx2srwc++AB47DHDR3IyvHl5CHR8jrj9duDHH2PSDMipeXZqIe6ic96kx9Yba55qH6x5xCq6501yfJK1OQUnNIgoJkyYgH4d+uHqRG1tLebOnYva2lrVUsJQqc0N3075sMuuVTuSxxYxR/e8iY0vFALefRe1xx2HuWvWoPbmmwEXNbLmsebFK7rnTXp8vfVe7yoANVt9VpaTg4YPPgDOOw84/HDg7LNR268f5k6YgNqOzxH19cDVVyvRbbcd6eOLREbnvEmPrbfWPJU+WPOIVXTPm+T4JGtzCracIiJgyylCCCGOEgoZm8ROnQp89FHnY3ffDdxwgxJZhBBCttCx5VQbkwE8CMAH4EYATwA4vaAAxcXFxgkVFcCf/wz4fJGNvvWW0VKQEEIIIYTYBltOEUIIIYQ4SXU1MG5c+GQGANx7L1BZ6bokQggh3fMIgBkABgN4DEAQwKJFi+D3+40TcnOBO+80N3DppcZqDUIIIYQQogWc0CCimDJlCrKyslTLcITq6mpMnz4d1dXVqqWEoVKbG76d8mGXXat2JI8tYo7ueRMXX3Y2cMUV7d9WZ2Vh+pQpqM7KAqqqgBkzXJHBmseaF6/onjfp8fWWe73c3Fx4PJ5On7UAmALglw6f+f1+rFixAl6vF16vF7+eeiqm33STUdO3przc2E/DQd1O25E+vkhkdM6b9Nh6S82T5IM1j1hF97xJjk+yNqdgyykigrZlSoMHD0ZZWRlWrlypXcup5uZmlJWVYdCgQUhJSVEtpxMqtbnh2ykfdtm1akfy2CLm6J43EfFt2gTcdBNw113AdtsBv/9ubPzt86E5JQVlgwZhUFkZUpqbgb59gZ9+AhyeVGfNY82LV3TPm/T4etO9XmFhIUpKSnrko1+/fph8/PG49ZVXjJq+NUlJwJdfAvvsE7VNKTXPTi3EXXTOm/TYelPNk+KDNY9YRfe8SY5PlTaVLac4oUFEwD00CCGE2M5ZZwELFhirM+67D5g40dgv45ZbOp83dqzRrqTD7yFCCCFqqK+vx8SJEzu3lYqSd3bdFUd9913kg8OGAR9/bExuEEIIIYQQS3APDUJaGTduHNLT01XLcIT6+nosXLgQ9QJ7+KrU5oZvp3zYZdeqHclji5ije96Ux7d4sTGZARgtpf7v/4DRo4HjjgO23Rb16elYeNFFqF+yBFi40LXJDNY81rx4Rfe8SY+vN93rpaeno7i4GJWVlViyZEnU14wbNw7/98cfCG23XeSTPv0UmDUrWtliap6dWoi76Jw36bH1pponxQdrHrGK7nmTHJ9kbU7BCQ1CCCGE6EVdHXDJJeGff/ABMHIkcNllxmTHcccBBx3kvj5CCCHd4vF4kJeX16Nrfm1qwuabbzY/4YYbjPaChBBCCCGk18KWU0QEbDlFCCHENq67Drj//sjH9trL6KOemuquJkIIIT3G6/UiPz8/qnOTAFwF4B8PP4xt33oLeOutyCf+7W/ASy/ZppEQQgghJB5hyylCWhk8eLC4zXXsorm5GevXr0dzpI0KFaNSmxu+nfJhl12rdiSPLWKO7nlTFl8gAHzyifnxJ58EUlOV6WPNY82LV3TPm/T4dL/X2y8lBa8MHozpKSn40223AXfcAZi1sX35ZeDVV7u1KaXm2amFuIvOeZMem+41zwkfrHnEKrrnTXJ8krU5BSc0iCi4h4Ya2GNUrV32k49PdM+bsviSk4Fly4xNwD2ezscmTTJaTinUx5rHmhev6J436fHpeq+XBuAuAO+kp+PrceNQn56OpMpK4IEHgGnTzC+87DKgpqZL21Jqnp1aiLvonDfpsela85z0wZpHrKJ73iTHJ1mbU7DlFBEBW04RQgixnQ0bgAsuAD76CNh+e2DtWiA7W7UqQgghUdJVy6lkAF8C2Nvs4ldfBW69FSgtjXz8qquAhx6yrJEQQgghJB5hyylCCCGEELvZYw9jtcYjjwCPP87JDEII0YgAgJe7OuGyy4AHHwQSTR55H3kE+PxzB5QRQgghhBAn4YQGEcXUqVORrekfnKqqqjBt2jRUVVWplhKGSm1u+HbKh112rdqRPLaIObrnTUx8iYnA5ZcD48Z1+jgqfcEg0NJiqxzWPNa8eEX3vEmPT9d7vbsBrAVQlZ2NaVOnoqrjc0RVFZCUZPwOiEQwaKzia2qKeFhKzbNTC3EXnfMmPTZda56TPljziFV0z5vk+CRrcwq2nCIiaFumlJeXh40bN6K0tFS7llOBQAAbN27EwIEDkZycrFpOJ1Rqc8O3Uz7ssmvVjuSxRczRPW/S4+tSXygEvPUWcOONxh/CLrzQHb/CfbDmESvonjfp8fXWe72uWk61MQLA0uRk/DxwIAZu3IjkQAA46SRjZd7AgajftAkN+fn4U0NDxOubbroJqXfeaatuu+1IH18kMjrnTXpsvbXmqfTBmkesonveJMenSpvKllOc0CAi4B4ahBBCRPDxx8ANNwAffmh8v912wLffAhkZanURQkgcEs2EBgA8DOAKAL8CwCOPYNvLLgMSEgAAhYWFaCgpwSKTawOJiUguLQX2Nt2NgxBCCCGEbAX30CCklcLCQvTt21e1DEeoq6tDcXEx6urqVEsJQ6U2N3w75cMuu1btSB5bxBzd8yY9vjB9ZWXAyScDhxyyZTIDADZtAmbMcM6vA7DmEYnonjfp8el+r3dn3764q7AQf+3bF/Unntg+meH3+7Fo0SK8CuAFk2uTg0EEzjsPCAQc0W2HHenji0RG57xJj033mueED9Y8YhXd8yY5PsnanIITGkQUVVVVCAaDqmU4QmJiIrKzs5FotjGhQlRqc8O3Uz7ssmvVjuSxRczRPW/S4wvTl5QEvP125JP/+U/gxx+d8esArHlEIrrnTXp8ut/r1QSD+KiqCn9s9RxRUVEBv98PALgcwO8m1yevXIlnDzgA9fX17Z9JqXl2aiHuonPepMeme81zwgdrHrGK7nmTHJ9kbU7BllNEBGw5RQghpEeUlwPnnw888oh9bUKmTDFfjXH22cC8efb4IYQQEhXRtpzqyLp16zB48OCI148H8KzJdQ0Abjz+eDz4xhuxiSWEEEIIiSPYcoqQVoYOHYrU1FTVMhyhqakJpaWlaGpqUi0lDJXa3PDtlA+77Fq1I3lsEXN0z5uj8YVCxkbdy5YB++8PTJsG9NBPRH033ABss034yYmJQN++gA0rCFnzWPPiFd3zJj0+3e/1UlNT258jhgwZgsLCwk6rLdqYD8BsuqIPgNPeegv+1uuk1Dw7tRB30Tlv0mPTveY54YM1j1hF97xJjk+yNqfghAYRxahRo+DxeFTLcAS/34+lS5e2L3uXhEptbvh2yodddq3akTy2iDm6583R+J56Cnj/fePfzc3A1KnAgQcC//2vNX1ZWcDtt3c+8ZhjgK++AmbNMiY2LMKax5oXr+ieN+nx9dZ7vdzc3KieDTweT6fniJKSEkycODHiuRcDqDaxc3AohLr777esuyN22JE+vkhkdM6b9Nh6a81T6YM1j1hF97xJjk+yNqdgyykiAracIoQQEhXl5cA++wC1teHHkpKADz4ARo6M3X4gYNhPSDD2zhgzJnZbhBBCLFNYWIiSkpIeX+fxeLBy5UoMGTIk7Nj/AXjS5LpgejoSv/4ayMvrsU9CCCGEkHiBLacIacXj8SAhIUG1DEcIhULw+/2QOIeoUpsbvp3yYZddq3Ykjy1iju55cyS+YBCYMCHyZAYADB9ufFnRl5wMvPWWsSrDgckM1jzWvHhF97xJj6833+sVFRWhoKCgy5UaCQkJYc8Rfr8fFRUVnc7rB2AWgMEA3jOxlVhfD1x0EULBoIiaZ5cN4j465016bL255qnyIeU+z04txF10z5vk+CRrcwpOaBBRTJkyBVlZWaplOEJ1dTVmzJiB6mqzRe7qUKnNDd9O+bDLrlU7kscWMUf3vDkSX0MDsOOOkY95PEBRUdRtobrUt8suxsSGA7DmsebFK7rnTXp8vfleLz09HcXFxaisrER5eXn717hx49rPycrK6vY54kgAa2C0nJoMY4VGndnJ77yD6ieeEFHz7LJB3EfnvEmPrTfXPFU+pNzn2amFuIvueZMcn2RtTsGWUy7R0tKCr7/+Gp9//jm++OILfP7551i1ahWam5sBAIcffjiWLl0ak+333nsPc+fOxYoVK/DTTz8hLS0NAwcOxLHHHosLLrgAgwcP7rHNdevWoaioCP/5z3+wceNGNDY2Yscdd8SIESNw7rnn4sgjj4xJqxlty5Ryc3OxefNmfPXVV9q1nGppacHmzZsxYMAAJCUlqZbTCZXa3PDtlA+77Fq1I3lsEXN0z5uj8T3/PHDJJcAff2z57P77gWuukaFPsV/WPCIR3fMmPT4d7/Xq6+sxceJElJSUICkpCQMGDMDmzZvR0tLSfs6SJUtw0ujRuBfAJVtd/y2A2QDuN9OdkYHN77+PAfvtp7Tm2WWDuI/OeZMem441z2kfUu7z7NRC3EX3vEmOT5U2lS2nOKHhAgsXLsT48eNRX19vek4sExo+nw8XXXRRlz1lU1JSMG3aNNxwww1R273rrrswbdq09smWSJx55pmYPXs2MjIyeqTZDO6hQQghpEf88gvwf/8HvPEGcNhhxibhwm4sCSGEOM/69esj7pMBAE8XFWG3iRNxiMm1jwHYD4DpzkuHHgosXRr16j9CCCGEkHiBe2hoTlVVVZeTGbHQ3NyMU045pdNkxl/+8hece+65OOOMM7D99tu3n3fjjTfi9ttvj8rurbfeiptvvrl9MmP77bfHGWecgXPPPbfToFywYAFOO+00BAIBG6MCJkyYgH79+tlqUwq1tbWYM2cOas16vytEpTY3fDvlwy67Vu1IHlvEHN3z5nh8228PvPYa8O9/A3Pm9HgyQ9XPnzWPNS9e0T1v0uPT+V7P4/GgX79+EZ8jzp84EXd3ce1lAIoANEQ4VtuvH+YMGoTaBx6wpM+O+KWPLxIZnfMmPTada55TPqTc59mphbiL7nmTHJ9kbU7BCQ0X2W677XDiiSdi2rRpePPNN3HVVVfFbOuOO+7A+++/D8C4iV+wYAFWr16NuXPnoqSkBF6vF9ddd137+VOnTsWyZcu6tPnee+/hjjvuaP/+uuuug9frRUlJCebOnYs1a9bgueeea9+Q7+2338bdd3f1iNBzvF6v7ZMkUkhOTkZeXh6SHerLbgWV2tzw7ZQPu+xatSN5bBFzdM+bK/ElJAATJwL5+T2+VNXPnzWPNS9e0T1v0uPT/V4vEAiYPke8BeBpk+vWA1gJINJa9uRAAHleL5LvuANYty5mbXbEL318kcjonDfpsele85zwIeU+z04txF10z5vk+CRrcwq2nHKBiooKNDU1Yeedd+70+dSpUzFt2jQAPWs59euvv2LXXXdFXZ2xjd2sWbNw8cUXRzy3sLCwfRXHiBEj8Mknn5jaPeigg/D555+3X7dgwYKI582aNQuXXGJ0oc3IyMB3332HbbbZJirtZrDlFCGEkF5FUxPw8MPGBuKnn65aDSGExC1erxf53UxsZwFYDWCnDp89AuAfMFZnJAB4H8AoMwMHHAAsXw7E0R8KCCGEEEK6gi2nNCc3NzdsMsMKc+fObZ/M2GOPPXDRRReZnnvvvfcisbXn6/Lly7Fy5cqI533++eftkxmJiYm49957TW1efPHF2H333QEANTU1mDdvXkxxRGL48OFIS0uzzZ4kGhsbsWLFCjQ2NqqWEoZKbW74dsqHXXat2pE8tog5uudNenyW9L3zDrDvvsB11wFXXQXU1LjjV7EP1jxiBd3zJj0+3e/10tLSunyOqAZwfuu/fwZwLIArsaXVVKj1eMdq3piWhhXDh6MxLQ344gvgnnti0mZH/NLHF4mMznmTHpvuNc8JH1Lu8+zUQtxF97xJjk+yNqfghEYvZOHChe3/njBhAhISEkzP3XnnnXHEEUe0f//KK690a/Ooo47CTjvtFPE8AEhISMB5553Xrc1YGDp0KFJTU22zJ4mmpiaUlpaiqalJtZQwVGpzw7dTPuyya9WO5LFFzNE9b9Lji0nf998Dp50GHHMMsH698dkvvwAd2jU64reHsOYRieieN+nx6X6vl5qa2u1zxHsAzgWwN4DqYcPCjnsB/L3D902pqSgdOhRNbTZvvx0weTmsK+yIX/r4IpHROW/SY9O95jnhQ8p9np1aiLvonjfJ8UnW5hRsOaWQWFpO+f1+9O3bF8FgEADwySefYMSIEV1ec/fdd+Omm24CABx88MH46KOPws4ZOXIkli9f3n7+DTdE6iS7hU8++QQHH3wwACApKQl1dXWWVlaw5RQhhJB2amqA5magf3/VSrZQXQ3svDPg84UfS0kBVq0CBg92XxchhMQ50bScasPj8WDs2LF44oknsMMOO8Dv94ed8yaA48wM/OUvxmoNTVeUE0IIIYREC1tOkaj55ptv2iczEhISsN9++3V7zV//+tf2f68z2dCu4+cdzzejo9+WlhZs2LCh22uiITs7u71Flm4Eg0FUVVW1508SKrW54dspH3bZtWpH8tgi5uieN0vxXXGF8UejxYvtF9ZKj/VlZQFmLR6bm43WU1G8I8Kax5oXr+ieN+nx6X6vl5iY2O1zxJIlS1BZWYni4mLk5ORg7NixEc+7EEAlgGBiIqqysxHsaHPNGuDWW3ukzY74pY8vEhmd8yY9Nt1rnhM+pNzn2amFuIvueZMcn2RtTqHnX4415ptvvmn/97bbbguPx9PtNR337/jjjz+wefPmTsd//fVXVFVVtX+/yy67dGuzT58+GDBgQPv369tab1hk8uTJyMzMtMWWNHw+H2bOnAlfpLd7FaNSmxu+nfJhl12rdiSPLWKO7nmLOb4FC4C5c41WTscdB0yaBNTWytB3yy1Abm7kY8uXA+XlzvjtIax5RCK65016fLrf62VmZnb7HJGXl9fp2amoqAgFBQVh5/0M4DIAvsxMzJw8Gb6tbd53HxDFyvo27Ihf+vgikdE5b9Jj073mOeFDyn2enVqIu+ieN8nxSdbmFGw5pZBYWk498cQTuPTSSwEA++yzD7766qtur/njjz/wpz/9qf379evX489//nP79+vWrcOee+7Z6fycnJxu7e6zzz5YvXo1AGDWrFm4+OKLu73GjLZlStnZ2fD5fFi1apV2LaeCwSB8Ph8yMzPFrUJRqc0N3075sMuuVTuSxxYxR/e8xRSf12tstr31jdiuuxqTHIccolYfADz7LHDOOZ0/O+ccYMYMYPvtnfPbA1jziER0z5v0+HS+1/P7/ejfvz/S0tLg8/kivp3o8XhQWVkZ8WWw9evXY8iQIWGfP5+YiKMzM5Hp8yFxa5s77QR89RUQxTOTHfFLH18kMjrnTXpsOtc8p3xIuc+zUwtxF93zJjk+VdrYcopETW2Ht1T79OkT1TVbn1e71ZuuW38fi92tbcSK3+9Heno6AKOVVVVVFdrm3Hw+X/sGNw0NDairqwMABAKBTitMqqur0dzcDACor69HfX09AKC5uRnV1dXt51VVVSEQCAAA6urq0NDQAMDYTKdtVjMUCqGqqgotLS3tcbb12m1sbERNTQ2A8OVdNTU1aGxsbI+ptrYWiYmJyMjIgM/nExdTU1MTsrOz0dzc3KOY7MhTYmIiUlNT23+uTuSprq4O2dnZ7fbsiqnNTtsvjFjz1NjYiOzsbAQCgZjGXsdfXE7lqacxOf3/kw4xNTc3Izs7G01NTdrE1DFP9fX1yM7ObrfXbUx+P6ouuKB9MqM6KwvNKSlGTBUVqL/kEiAQUF/3xo9Hy6GHoio7G6GhQ4GPPoLv0UfR1PriQHd5amlpQXZ2dvvPyIk8NTc3IykpCYmJibb+/5SYmIh+/fp1evMnlrHX0NCAtLQ0JCYmxjT2tkbXGqFbTHV1dejTpw8SExO1ialjnpqampCcnIzExESRMdXX18Pj8SAxMdH1sed03fN4PBg3bhxaWloQDAbD2k9lZGTglFNOgcfjiRhT2z6AmZmZ7ZuK9+3TBy/16YOMpKT21lPtMWVlobmiApg0CfV1dd3GlJiYiJSUlE5jhXWPda+3xtSWp8TERHg8nnYN0mJKTExEcnJyuwY3x15NTQ369u2LxMREx/KUmJiIPn36dHoutRpTY2MjUlJSkJiYaClPwWAQ2dnZaGhoiHnsJSYmIjMzs9MktY41QreYEhMTkZSU1K5Bh5g65kly3QuFQsjOzkZ9fb2SsacCTmj0MjpuXNd2w90dW2/W3fY/QSSbsdrd2masXH755e1Lvzdv3oyZM2e2/09WVFSEtWvXAgCWLVuG1157DQCwceNGzJw5s93GE088gbKyMgDA22+/jbfffhsAUFZWhieeeKL9vJkzZ2Ljxo0AgNdeew3Lli0DAKxduxZFRUUAjAIwc+bM9jZdL774IlasWAEAWLlyJebPnw8gfHnX/PnzsXLlSgDAihUr8OKLL6KmpgaPP/64yJiWLVuGWbNmYcWKFT2KyY481dTU4JFHHsEbb7zhWJ7mzZuHWbNm4eeff7Y1pg0bNmDmzJntvyRizdM777yDWbNm4csvv4x57D3xxBOoqalxLE89jcnp/590iGnFihWYNWsWli1bpk1MHfNUUlKCWbNmwev1RhfTk09i5mGHbYnpkktQNmiQEdOxx+LtK68EkpPV172EBGy+4w7MnDwZjR99BBx8cI/ytGbNGsyaNQtvvPGGY3lasWIFHn74YdTU1Nj6/1PH32MdY+rp2HvllVfw6KOPoqamJqax11bLf/75Z8sxmeVJ2v9POsQ0b9689rzrElPHPC1btqz9/zuJMZWUlLT//N0ee27UvfPPPx9XX301ttlmm07tpzweDy677DJMmjTJNKa2PypMnDgRe+65J3YG8PDhh+PEU07BrEsvxYbdd8fMyZO3xNT2++n55/H2rFndxtR2r/vOO+/0KCbWvd4fk851r6amBo8++ihKSkpExlRTU4OHH364/Ty3x95jjz2Gmpoax/LU9vOfN2+ebTG98847eOSRR1BTU2MpTxs2bMCsWbPwyiuvxDz2ampq8MQTT2hfI3SLqe3/u47PJL09po55klz3vF4vZs2ahZKSEiVjTwkhoozbbrstBCAEIHT44YdHdc29997bfs2wYcOiuqa+vr79GgChL774otPxzz77rNPxhoaGqOwedNBB7dfcf//9UV1jxpo1a0IAQoccckiof//+oTVr1oQCgUCosrIyFAwGQ6FQKFRdXR1qbGxsj6m2tjYUCoVCzc3NocrKynZbVVVVoaamplAoFArV1dWF6urqQqFQKNTU1BSqqqpqP6+ysjLU3NwcCoVCodra2lB9fX0oFAqFGhsbQ9XV1aFQKBQKBoOhysrKUCAQCIVCoVBNTU37z8fv94d8Pl8oFAqFWlpaQpWVlaGWlpZQKBQK+Xy+kN/vD4VCoVBDQ0OopqYm5Pf7Qx9//HGooqJCXExVVVWh5cuXh6qrq3sUUygUspwnv98fWrZsWeiPP/5wLE+bN28OLV++PFRfX29rTLW1taH333+/3UaseaqsrAwtX7485PP5Yhp7FRUVoY8//rj9cyfy1NOYnP7/SYeYqqurQ8uXLw9VVVVpE1PHPP3222+h5cuXh+rq6qKLqb4+VHnLLaFQYmIoBISqsrJCTSkpoRAQqrvzTm3qXk1NTWj58uWhP/74w7E8VVdXh5YsWRLy+/22xuT3+0MfffRRqKKiolNMPR17v//+e2jZsmUhv98f09irr68Pvf/+++0/F11rhG4xbd68OfThhx+G/H6/NjF1zFNVVVVo6dKlIb/fLzKm3377LfTBBx+E/H6/62PPzbpXVVUVKisrC61evTpUVlYWamho6Dam7777LgQglJmZGTojNTVUCYTq+/QJ/Z6TE/r4yCNDteefH6rMzg6FgPDfTwMGhOrWrOkyJr/fH1q6dGn7z4V1j3WvN8fUlie/3x/64IMPQr/99pvImNr+v2uz4ebY27RpU+ijjz4K+f1+x/Lk9/tDH374YWjz5s22xVRZWdn+e8xKnmpra0PLly8P/f777zGPvY5/O9G5RugWk9/vDy1ZsqTdhg4xdcyT5LpXV1cXWr58eei3335zdey1/S237WtN6z2RG3APDYVwD40tqOy7RgghRBAffACMHw+0vo2Cww8H3nsPSEpSq4sQQoiWeL1e7JWfj4cA/F+kE445xtjjacOGyAZGjDB+dyUnO6aREEIIIUQa3EODRE3HiYlNmzZFdU1FRUWn7/v3729qM1a7W9uMlVGjRkXcrE8H/H4/li5dGtbiSwIqtbnh2ykfdtm1akfy2CLm6J63mOM77DBg1SrgtNOMzVbnzXNkMkPVz581jzUvXtE9b9Lj471e14xA+GSG3+PB0lGj4P/gA+Ckk4DWfZ3CWL4cuOsux7TZZYO4j855kx4ba546m6x58YvueZMcn2RtTsEJjV5Gx5UVv/76a1SD9Ycffmj/d//+/TFgwIBOx7fddtv2DZMB4Pvvv+/Wpt/vb+87BwCDBw/u9ppoyMvLQ7KmbzcFAgF4vd72TX0koVKbG76d8mGXXat2JI8tYo7uebMUX04O8PzzwMqVwE472S8O6n7+rHmsefGK7nmTHh/v9brmPQAPbm0zORnevDwEkpOBZ58Fbr3V3MDttwOffOKINrtsEPfROW/SY2PNU2eTNS9+0T1vkuOTrM0p2HJKIbG0nPL7/ejbt2/7zvTLly/H8OHDu7zm7rvvxk033QQAOPjgg/HRRx+FnTNy5EgsX74cAHDPPfdgypQpXdr85JNPcPDBBwMAkpKSUFdXF7b5eE9gyylCCCGEEEKI23i9XuTn5yMVwAoA+219wqGHGhMaAwcCRx0FLFkS2VB+PlBaCmRmOqqXEEIIIUQCbDlFosbj8XSawIhmEmTZsmXt/z7iiCMinjN69OiYbY4cOdLSZEZHcnNzkaRpn/SWlhZUVFSgpaVFtZQwVGpzw7dTPuyya9WO5LFFzNE9b9Ljc0XfH38AN98MNDa66pc1j0hE97xJj4/3et3TBOBMAHVt3yclYcM116DlnXeAnXcGEhOBuXOBDivbO1FeDlxyibF1uM3apI8vEhmd8yY9NtY8dTZZ8+IX3fMmOT7J2pyCExq9kHHjxrX/e86cOV2e++OPP+K9996LeK2ZzXfffRcb2zZjNaGjXzObsTBp0iRkZGTYZk8SNTU1mD17NmpqalRLCUOlNjd8O+XDLrtW7UgeW8Qc3fMmPT5H9YVCxtu8gwcbfdXvu88dvw77YM0jVtA9b9Lj471edHwD4EoA3wM4PiMDCzIyUNPQsOWEnXYCnnzS3MBzzwFPP227Nunji0RG57xJj401T51N1rz4Rfe8SY5PsjanYMsphcTScgow9s7YddddUVdnvD/0r3/9CxdeeGHEc8866ywsWLAAADBixAh8YtLbFQAOOuggfP755wCA8ePH49lnn4143pNPPomLL74YAJCRkYHvvvsO22yzTVTazWhbpuTxeNDY2IjVq1dr13IqFAqhsbERaWlpSEhIUC2nEyq1ueHbKR922bVqR/LYIubonjfT+EIhQEC8jv38v/3WeEO3w8sESEsDVq8Gdt+dNc8GO7r/v6MruudNeny81zOnreVUR/oCqE9IwPr167H77ruH25wwwVitEYk+fYDPPwdan2XsiF/6+CKR0Tlv0mNjzVNnkzUvftE9b5LjU6WNLadIj9h2223x97//vf37K6+8Es8//3ync5qbmzFlypT2yQzA2BujKzoenz9/PqZMmYLm5uZO5zz//POYPHly+/fXXnut5cmMjvj9fug6x5aQkACPxyOu8AFqtbnh2ykfdtm1akfy2CLm6J63iPF9/z0wfLix2bdiHPn5L1oE7L1358kMwGg5ddFFQDDImmeDHd3/39EV3fMmPT7e6/WMOhh/HEhNTY1s85FHgF13jXxxQwNQUADU19umTfr4IpHROW/SY2PNU2eTNS9+0T1vkuOTrM0pOKHhEscffzyGDh3a6WvWrFntx7/44ouw40OHDsXPP/8c0d4tt9zSvh9GQ0MDCgoKsM8++2DChAkoLCzELrvsghkzZrSfP23aNBx++OFdajzyyCNx8803t38/Y8YM5OXlobCwEBMmTMDee++NgoICNLQuuz766KNx4403xvwzicTkyZORqelGej6fDw899BB8Pp9qKWGo1OaGb6d82GXXqh3JY4uYo3vewuJrajL+wPPZZ8CIEcDs2WF9xpXqs4MRI4D09MjHli4FnnySNc8GO7r/v6MruudNeny81+s5mZmZKC4uxtdffw2v1wu/37/lYEYGUFICpKREvvjrr4GrrrJNm/TxRSKjc96kx8aap84ma178onveJMcnWZtjhIgr7LLLLiEAPf4qLy83tVlVVRU644wzurw+JSUldNddd0WtMxgMhu64445QSkpKl3YLCwtD1dXVNvxkDNasWRMCEBo6dGgoNTU1tGbNGttsS6GxsTG0cuXKUGNjo2opYajU5oZvp3zYZdeqHclji5ije97C4ps8ORQypjC2fJ11VihUUyNDn13861/hcbZ9HX54qNHvZ81jzYtLdM+b9Ph4r2dOeXl5xOed1NTU9mcTACGPxxMqKCgI1dXVbbn4wQfNaz4QCj33nC3xSx9fJDI65016bKx56myy5sUvuudNcnyqtLX9Lbfty82/5XIPDZfIy8vD999/3+PrysvLkZeX1+U57777LubOnYvly5fjl19+QUpKCnbaaScce+yxuOCCCzBkyJAe+123bh2eeuopvP322/jxxx/R3NyM7bffHiNGjMB5552Ho446qsc2u0Jl3zVCCCEO8/LLwKmnRj42eDDw7rvAjju6q8kpgkFg9Gjggw+2fJaaCkydClx7rfnbvIQQQpQQaQ+NrigoKEBxcbHxTSgEnHgi8OabkU/u1w/48ktg991tUEoIIYQQIgfuoREHeL1ehEKhHn91N5kBAEcddRTmzZuH//3vf6irq0NVVRVWr16N+++/P6bJDAAYMmQI/vnPf2L16tWoqqpCXV0d/ve//2HevHm2T2Z0ZMyYMejTp49j9lXS0NCAxYsXt7fskoRKbW74dsqHXXat2pE8tog5uuetPb5164Dzzzc/ccAAYLvt3BPWimM//8RE4KmnAI/H+H74cKC0FLjhBiAlhTXPBju6/7+jK7rnTXp8vNfrOX369In4bLJo0SKj/VR9PTBxIvDjj+aT8rW1aDjnHCx+4w1L2qSPLxIZnfMmPTbWPHU27bAjfXyRyOieN8nxSdbmFJzQIKLIzs5GYqKewzIYDKKqqgrBYFC1lDBUanPDt1M+7LJr1Y7ksUXM0T1v7fH17w8cf3zkkwYMAIqLgeRkd8XB4Z//7rsD990HPPAA8NFHQIeXC1jzWPPiFd3zJj0+3uv1nMTExIjPJn6/H79/9BFw0EHAnDnA6tXAAQcASUmRta1Zg6pPPrGkTfr4IpHROW/SY2PNU2fTDjvSxxeJjO55kxyfZG1OwZZTRARsOUUIIRoTCgGzZgGTJxubgwNAQgLw9tuAg6v+CCGEkO7oacup8QCe6dMHiVu/BVlQYGwUbsaLL5q3XySEEEII6WWw5RQhreTl5SFZwZu6bhAIBOD1ehEIBFRLCUOlNjd8O+XDLrtW7UgeW8Qc3fPWKb6EBOCSS4BPPgHa/mh0661KJzNU/fxZ81jz4hXd8yY9Pt7r9Zzk5OSwZ5PLADwLhE9mAMDrrwMjR4ZrS06GNy8PgQsvBL75JiYt0scXiYzOeZMeG2ueOpt22JE+vkhkdM+b5Pgka3MKTmgQUUyYMAH9+vVTLcMRamtrMXfuXNTW1qqWEoZKbW74dsqHXXat2pE8tog5uuctYnz7729sjnr77cAtt6gTB3U/f9Y81rx4Rfe8SY+P93o9p1+/fmHPJiUANppdUFeHYF1d2L5Qtf36Ye6ECagFjBUadXU91iJ9fJHI6Jw36bGx5qmzaYcd6eOLREb3vEmOT7I2p2DLKSICtpwihBBCCCGEuE1PW04dDGApgK3XlH8LoDA1FaeMHImbli1Dgtlj9tlnA888Y6xeJIQQQgjppbDlFCGEEEIIIYQQIpyPAdy01WevAjgQwJdNTbhl6VK80NXD/LPPGvtKEUIIIYSQmOCEBhHFlClTkJWVpVqGI1RXV2P69Omorq5WLSUMldrc8O2UD7vsWrUjeWwRc3TPm/T4VOkL87tyJXDIIcCPPzrnQ5hd1rz4RPe8SY+P93o9Jysry/TZ5D4ArwMIArgFwDgAHT1P+PZbtBx7rKEtKwvTp0xBdUc7V10FfPZZ1Fqkjy8SGZ3zJj021jx1Nu2wI318kcjonjfJ8UnW5hRsOUVE0LZMafDgwSgrK8PKlSu1aznV3NyMsrIyDBo0CCkpKarldEKlNjd8O+XDLrtW7UgeW8Qc3fMmPT5V+tr97rILUv75T2DaNCAQMDZI/89/gETr75qw5hGJ6J436fHxXs8cs5ZTKSkpGDRoEMrKytDc3Bx2PAfAAQDeMbH74cKFOPjKKxH45ReUDRqEQWVlSOloZ6edjH2lttmmW43SxxeJjM55kx4ba546m3bYkT6+SGR0z5vk+FRpU9lyihMaRATcQ4MQQnoxP/wAXHqp0UJj4EDVauTzzTfAueeGv5376KPAZZep0UQIIXFKT/fQ6AkjU1OxNBBASjAY+YRjjgHefBNISnLEPyGEEEKIU3APDUJaGTduHNLT01XLcIT6+nosXLgQ9fX1qqWEoVKbG76d8mGXXat2JI8tYo42eWtoAE45BXjjDeCAA4CPPgIgPz5V+uo/+QQLb7oJ9WvWhB+87jpgwwbrPljziEB0z5v0+Hiv13PS09MtP5t80tSEKzweLBw3DvWR7Lz9NjB1ard2pI8vEhmd8yY9NtY8dTbtsCN9fJHI6J43yfFJ1uYUnNAghBBCSGyEQsBFFxktMwBg0yZg9GjgiSeMYyScv/wF6N8/8rGGBmPlRiDgriZCCIljcnNz4fF4HLM/D0BZVyfceSfwyiuO+SeEEEII0Q22nCIiYMspQgjphTz4IPD3v0c+dsEFwGOPAWlp7mrqDXz7LTB0KBDpDZrTTgOKioCMDNdlEUJIvFJYWIiSkhLT48OGDcOnn34as/0+AKp23x2p334b+YR+/YAVKwA+/xBCCCGkl8CWU4S0MnjwYHGb69hFc3Mz1q9fH3FTQdWo1OaGb6d82GXXqh3JY4uY0+vztmSJ0SLJhOayMqz/9lux8an6+Tc3N2N9SwuaZ8zofCA7G5g/H3j+ecuTGax5RCK65016fLzX65qioiIUFBR0WqmRkpKCvffeG4WFhSgqKopZW0pKCm4aPBgttbXGxEUkamuBsWOBysqIh6WPLxIZnfMmPTbWPHU27bAjfXyRyOieN8nxSdbmFJzQIKLgHhpqYI9RtXbZTz4+6fV5GzIEGDYs8rGBA1H/1FNY+PrrYuNTtodGm9/x44GjjzY+POYYYM0a4KyzgIQE+3yw5hFB6J436fHxXq9r0tPTUVxcjMrKSpSXl6O8vBxffvklzjrrLMyaNSvm55MMAM+lpyNp3Dg01dcDO+xgfnJZGVBYCLS0hB2SPr5IZHTOm/TYWPPU2eQeGvGL7nmTHJ9kbU7BllNEBGw5RQghvZCmJuCqq4BZs7Z8lpZmbAx+wAHqdPUWNm40NlO/6CJbJjIIIYQ4g9/vR05ODvx+v+k5CQkJePPNN3HccccBAHYF8CqAsCeaffcFvvrK3Nn11wNbr+IjhBBCCBEGW04RQgghpPeRmmpsAD57NtDWLvDJJzmZES0DBwIXX8zJDEIIEY7H48HYsWO7POeMM87A4MGDAQB7A/gMESYzAGMyo6uH/XvvBRYsiFUqIYQQQoj2cEKDiGLq1KnIzs5WLcMRqqqqMG3aNFRVVamWEoZKbW74dsqHXXat2pE8tog5WuXtoouApUuBadOAc88FID8+VfpY81jz4hXd8yY9Pt7rWbcZaZ8NwJjsKCgo6LTPxrcAytrsZGdj2tSpqOr4jPPNN8Buu5k7v+ACYOVKUy2kd6Bz3qTHxpqnzqYddqSPLxIZ3fMmOT7J2pyCLaeICNqWKeXl5WHjxo0oLS3VruVUIBDAxo0bMXDgQCQnJ6uW0wmV2tzw7ZQPu+xatSN5bBFzdM+b9PhU6WPNY82LV3TPm/T4eK9nn02/34+Kior273Nzc9snObxeL/Lz8wEAOwD4HMC2ycnYOHAgBm7ciORAAMjMNFZg7LEHcOCBgNkfH3beGfj8c2DbbcWPLxIZnfMmPTbWPHU27bAjfXyRyOieN8nxqdKmsuUUJzSICLiHBiGEEEIIIaQ303FCAwAOBPABgPY1HbvtBrz6KjBkiPH94sXACScAwWBkgyNHAu+9B2y1KoQQQgghRDXcQ4OQVgoLC9G3b1/VMhyhrq4OxcXFqKurUy0lDJXa3PDtlA+77Fq1I3lsEXN0z5v0+FTpi9lvebmx2bqTPlyyy5oXn+ieN+nx8V5Pjc3PAVzcty+KCwvx2+jRwGefbZnMAIAxY4B77jE38MknwIUXoq62VvT4IpGRXhesID021jx1Nu2wI318kcjonjfJ8UnW5hSc0CCiqKqqQtDsDaVeTmJiIrKzs5GYKO9/O5Xa3PDtlA+77Fq1I3lsEXN6Rd4aGoCWlpgulR6fKn0x+X3lFWC//YBTTgF++skZH1HAmkesoHvepMfHez11Nl8IBvFBVRV+f+QRICcn/ITrrgMKC80NzJ+PxAcfFD2+SGSk1wUrSI+NNU+dTTvsSB9fJDK6501yfJK1OQVbThERsOUUIYQIo6UF+NvfjH/Pnw/066dWTzzS1ARcfz0wc+aWzw47zGg/IqxvKyGEkPCWUx0pLy9HXl5e5Avr64FDDum0EXgYzz8PnH66dZGEEEIIITbAllOEtDJ06FCkpqaqluEITU1NKC0tRVNTk2opYajU5oZvp3zYZdeqHclji5gjPm/XXWf0+X71VeOP6FGsDOiI9PhU6Yvab3m58cetjpMZAPDBB8DUqfb46CGsecQKuudNeny811NnMzU1FUOHDkVzc7P5Senpxu/b7bePrCU1FaX33Yem5cstaSHuIr0uWEF6bKx56mzaYUf6+CKR0T1vkuOTrM0pOKFBRDFq1Ch4NN30zu/3Y+nSpfD7/aqlhKFSmxu+nfJhl12rdiSPLWKO6Lw98QTw4INbvl+5Ehg2DCgtjdqE6PigTl/Ufp96Cvj888jH7r4b+M9/rPvoIax5xAq65016fLzXU2fT4/Fg1KhR3f+RYeBAY1KjT59wLR4Plh58MPznnAP8+KMlPcQ9pNcFK0iPjTVPnU077EgfXyQyuudNcnyStTkFW04REbDlFCGECGHxYuDEEyPvndG3L/Dyy8Axx7ivK95objZWxqxYEfn4GWcAJSXuaiKEENIlMbec6siddwK33GJ+fOhQ4MMP2QqSEEIIIUphyylCWvF4PEhISFAtwxFCoRD8fj8kziGq1OaGb6d82GXXqh3JY4uYIzJvjY3ARReZbwSelATsuGNUpkTG1wFV+qL2m5ICFBeHbyCbkADcdhvw3HPWffQQ1jxiBd3zJj0+3uups5mQkACPx4Py8nJ4vV54vV7zNygXLADuuAPYbrvOWhIS4Pd4EEpIMFZLnnkmEAhY0kWcR3pdsIL02Fjz1Nm0w4708UUio3veJMcnWZtTcEKDiGLKlCnIyspSLcMRqqurMWPGDFRXV6uWEoZKbW74dsqHXXat2pE8tog5IvOWlmas0Ij0BmlSEvDii0CUb1yIjK8DqvT1yO8uuwBz5mz5frvtgHfeMfbQSEqyx0cPYM0jVtA9b9Lj472eOptZWVmYMmUK/va3vyE/Px/5+fnIyclBYWEh6uvrjZNCIWNlxllnAU1NwKZNnfbTqM7KwowpU1Dd9pz0+uvAFVcY1xGxSK8LVpAeG2ueOpt22JE+vkhkdM+b5Pgka3MKtpwiImhbppSbm4vNmzfjq6++0q7lVEtLCzZv3owBAwYgqYs/RKlApTY3fDvlwy67Vu1IHlvEHNF527QJGDsW+PTTLZ/Nnm2s3ogS0fFBnb6Y/F5zjbGPyXPPAbm5zviIAtY8YgXd8yY9Pt7ruWMzUsuppKQkDBgwAJs3b0bLVisgCwoKUPzMM8bv17lzww1utx2waRNakpKwecAADNi8GUkdbdxzDzBlSo9jI+4gvS5YQXpsrHnqbNphR/r4IpHRPW+S41OlTWXLKU5oEBFwDw1CCBFGQwNw3nnACy8A114L3HefakXxS3MzkJjY5aoMQggh6ulqD41IeDwe1Fx8MZJnzjQ/KTsbqKoyP/7ss8D48VH7JIQQQgixA+6hQUgrEyZMQD9NN7irra3FnDlzUFtbq1pKGCq1ueHbKR922bVqR/LYIuaIz1ufPsYeDvPmATNm9Phy6fGp0heT35SUHk1msOYRieieN+nx8V5Pnc1+/fqZPuP4/X78fO65wKBB5gZOPRW1ubmYM2ECaiM9J51/PvD++5Y0EmeQXhesID021jx1Nu2wI318kcjonjfJ8UnW5hSc0CCi8Hq9CGi6wV1ycjLy8vKQnJysWkoYKrW54dspH3bZtWpH8tgi5vSKvCUmAmefbfy3h0iPT5U+1jzWvHhF97xJj4/3eupsBgKBLp9xgv37A2++CeTkdD6QkADMnAk89RSS581D3o8/IjmSjeZm4JRTgDVrLOkk9iO9LlhBemyseeps2mFH+vgikdE9b5Ljk6zNKdhyioiALacIIYQQQgghvRm/34+cnBz4/f6orykvL0deXh7wwQfA0Ucbm4KnphorJM84Y8uJCxYYm4abMXAgsGIFsOOOsQdACCGEEBIlbDlFSCvDhw9HWlqaahmO0NjYiBUrVqCxsVG1lDBUanPDt1M+7LJr1Y7ksUXM0T1v0uNTpc9xv5s2ofG991jziDh0z5v0+Hiv545Nj8eDsWPHdvosLS0tumecww4DnnnG2DNj8eJOkxmNjY1YkZ+PxunTza/fuBE4/nigujpqvcRZpNcFK0iPjTVPnU077EgfXyQyuudNcnyStTkFJzSIKIYOHYrU1FTVMhyhqakJpaWlaGpqUi0lDJXa3PDtlA+77Fq1I3lsEXOU5e2dd4wWFg4jfVyq0ueo3//+FzjgADSdfTZKV6xgzSOi0D1v0uPjvZ57NouKilBQUACPxwMASE1N7fIZx+v1tn/5x44FysqA0aMja7nkEuDSS82dr1oFjB0L9GCFCHEO6XXBCtJjY81TZ9MOO9LHF4mM7nmTHJ9kbU7BllNEBGw5RQghLvDpp8CRRwJ1dcANNwB33WX06Ca9nwULgIkTt/wRa9Ag4LPPgP791eoihJA4xe/3o6KiAoAxaTF6q0mKSLSt8CgqKkJ6enrkk1pagFNPBRYtMjc0dizw4otAHPXSJoQQQoi7sOUUIa1kZ2cjMYbNZ3sDwWAQVVVVCAaDqqWEoVKbG76d8mGXXat2JI8tYo7reVu3zmhFUVdnfH/PPcDFFxt/GHEA6eNSlT7b/ba0AFOmGH3VWyczgomJqPr9dwQLCwGTTWhjgTWPWEH3vEmPj/d67tv0eDzIy8vDzjvvjG222SaqZxy/34+SkhJMnDjRXEtSEvDcc8CwYeaGFi0C/u//AL67qBTpdcEK0mNjzVNn0w470scXiYzueZMcn2RtTqHnX45Jr2Xy5MnIzMxULcMRfD4fZs6cCZ/Pp1pKGCq1ueHbKR922bVqR/LYIua4mrcffgCOOQb444/On//rX0aPbgdaU0gfl6r02e53/nxgxozOPjIzMXPyZPg+/xy4/np7/IA1j1hD97xJj4/3eups+nw+vPTSSz16xlm0aFGnjcXDtKSnA6+9BuTlmRuZMwe47jpOaihEel2wgvTYWPPU2bTDjvTxRSKje94kxydZm1Ow5RQRQdsypezsbPh8PqxatUq7llPBYBA+nw+ZmZniVqGo1OaGb6d82GXXqh3JY4uY41reGhuB/fYzVmiY8eijwGWX2epW+rhUpc92v8EgcMopwKuvbvkoMRG+zExk+nxIPOQQ4O23ge42o43KFWseiR3d8yY9Pt7rqbMZDAaxdu1a7Lvvvj16c7K8vBx5rRMWEbWUlQGjRgG//db1iwnTpwP/+EfM+knsSK8LVpAeG2ueOpt22JE+vkhkdM+b5PhUaVPZcooTGkQE3EODEEIc5OmngQsvNP74vTVnnQXMmwcIuykjPcDnA0aMANau7fz5hAnA7NmAyUa0hBBC3MHr9SI/P79H13Sc0AhjzRrg6KOB1j06kJoKdLUR6JNPGi2oCCGEEEJsgntoENLKpEmTkJGRoVqGI9TU1GDWrFmoqalRLSUMldrc8O2UD7vsWrUjeWwRc1zN2/nnAy+/HP6W/pgxxmSHA5MZ0selKn2O+M3MNFZo5OQYPjIyMGvaNNTMnGnrZAZrHrGC7nmTHh/v9dTZrKmpwauvvmrpGaeTls8+Aw4/fMtkBmBMZiQlmRuYNAl46aWY/ZPYkF4XrCA9NtY8dTbtsCN9fJHI6J43yfFJ1uYUnNAgoigtLUVTV28X9WJSU1MxdOhQpAp8U1alNjd8O+XDLrtW7UgeW8Qc1/M2dizwn/8Yf/wGgOHDgRdfdOztfenjUpU+x/wOGgQ8/zyQkYHUp57C0GOOQaoNbaY6wppHrKB73qTHx3s9dTZTU1Ox2267WXrGadfy2WfAkUeG74kFAC0tQEJCZAPBoLEic/HimDWQniO9LlhBemyseeps2mFH+vgikdE9b5Ljk6zNKdhyioiALacIIcQlVq4Err0WeOEFoH9/1WqI3fzxB/NKCCHCsK3l1KefGhMadXWRL8rPB8rLzY16PMCbbwKjR/dICyGEEELI1rDlFCGtjBo1Ch6PR7UMR/D7/Vi6dCn8XW3apwiV2tzw7ZQPu+xatSN5bBFzlOVtv/2A995z/I/e0selKn2O++3fnzWPiET3vEmPj/d66mz6/X6UlpbG/Izj9/uxYcMGLFy4EBtyctD04ovhLSQB4LDDgNJSYObMrowBJ54IfPxxTFpIz5BeF6wgPTbWPHU27bAjfXyRyOieN8nxSdbmFJzQIKLIy8tDcnKyahmOEAgE4PV6EQgEVEsJQ6U2N3w75cMuu1btSB5bxBzd8yY9PlX6WPNY8+IV3fMmPT7e66mzGQgEUFFR0eNnnPr6ehQWFiInJwf7778/Fi1ahP333x9Zp5yC+w48EKGOe2Ycf7zRTiozE7jySuCWW7oyDBx3HPD55zFGRKJFel2wgvTYWPPU2bTDjvTxRSKje94kxydZm1Ow5RQRAVtOEUIIIYQQQnQklpZTw4YNw6effmp6/OHhw3HFp58CZ5wBPPNM5z2xQiHgiiuAxx4zd5CTAyxZAuy7b490EUIIIYQAbDlFSDu5ublI6vi2kUa0tLSgoqICLS0tqqWEoVKbG76d8mGXXat2JI8tYo5teQsGgWuuAT75xB5hNiF9XKrSJ6bm1dUBf/ub0UvdTrsu2JE+tkhkdM+b9Ph4r6fOZktLC/74448eP+N0nMxISkoKe066vrQUTYsXA/Pnd57MAIzNwR9+GLjgAnMHlZXAUUcBa9f2SBeJHul1wQrSY2PNU2fTDjvSxxeJjO55kxyfZG1OwQkNIopJkyYhIyNDtQxHqKmpwezZs1FTU6NaShgqtbnh2ykfdtm1akfy2CLm2JK3UAi4/HLggQeAY48V1RNb+rhUpU9Ezdu0ydgQ9pVXjDd7//tfe+zapc8lHcRddM+b9Ph4r6fOZk1NDV577TVLzzgZGRlhz0l+vx8/77EHYDZRkpgIzJ4NjB9vbvi334xNxr/9NmZtxBzpdcEK0mNjzVNn0w470scXiYzueZMcn2RtTsGWU0QEbcuUPB4PGhsbsXr1au1aToVCITQ2NiItLQ0JCQmq5XRCpTY3fDvlwy67Vu1IHlvEHMt5i9ROom9f4K23gEMPtU9ojEgfl6r0Ka95GzYAY8YA5eVbPtt2W+Cjj4Ddd4/drl36XLieqEH3vEmPj/d66myGQiF8++23GDx4MGJ99E5ISEBaWhoaGxs72SgvL0deXl7XFwcCwJlnAi++aH7Ojjsa7ae6+T1Aeob0umAF6bGx5qmzaYcd6eOLREb3vEmOT5U2tpwipBW/3x/zjb50EhIS4PF4xBU+QK02N3w75cMuu1btSB5bxBxLeQuFgKuuCu+NXVdnbPT5wQf2iLSA9HGpSp/SmvfJJ8DIkZ0nMwDg11+Bo48GfvopNrt26XPpeqIG3fMmPT7e66mzmZCQgNTUVEvPOKFQKPbnpORkoy3ViSean/PTT8DhhwPffBOzRhKO9LpgBemxseaps2mHHenji0RG97xJjk+yNqfghAYRxeTJk5GZmalahiP4fD489NBD8Pl8qqWEoVKbG76d8mGXXat2JI8tYo6lvM2bBzzySORjdXXAKacAipebSh+XqvQprXlvvAH8/nvki77/Hpg4MTa7dulz6XqiBt3zJj0+3uups+nz+fDiiy9aesbJzMy09pyUmAj062fsrWHGL78Ao0YB69bF5oOEIb0uWEF6bKx56mzaYUf6+CKR0T1vkuOTrM0pOKFBRLF06VL4/X7VMhzB4/Fg1KhR8Hg8qqWEoVKbG76d8mGXXat2JI8tYo6lvJ11FlBQEPlYaqrxJqbi/Yikj0tV+pTWvDvuAAoLI1+0++7Ak0/GZtcufS5dT9Sge96kx8d7PXU2PR4PDj/8cEsrNPx+f+zPSYEAcPbZQHGxscKzq0mNigpjjyVuFG4L0uuCFaTHxpqnzqYddqSPLxIZ3fMmOT7J2pyCe2gQEajsu0YIIb2SQAA45xzjDxRtpKYaGz0ff7w6XUQ2jY1GW7IlS7Z8NnQosHgxsN12ymQRQojuFBYWoqSkxFab3e6h0dxsvATR1f4ZkRgwAHj/faDD8xkhhBBCSEe4hwYhrYwZMwZ9+vRRLcMRGhoasHjxYjQ0NKiWEoZKbW74dsqHXXat2pE8tog5lvOWnGy0njrrLOP7lBTg5ZfFTGZIH5eq9CmveWlpwKJFwIEHGt8feiiwdGlUkxmsecQKuudNeny811Nns83OY489hoKCgpjenuzTp0/Pn5Oam43VnD2dzACAzZuNlRqrVvX8WtKO9LpgBemxseaps2mHHenji0RG97xJjk+yNqfghAYRRXZ2NhIT9RyWwWAQVVVVCAaDqqWEoVKbG76d8mGXXat2JI8tYo4teUtOBp55xtj74KWXgBNOsE+gRaSPS1X6RNS8jAzgzTeBK64wVmZkZdlj1y59Lukg7qJ73qTHx3s9dTbb7Hg8HhQXF6OyshLl5eUoLy/HunXrotrAMzExsefPScnJwA47mB/Pzgb239/8+G+/AUccAZSWRu+TdEJ6XbCC9NhY89TZtMOO9PFFIqN73iTHJ1mbU7DlFBEBW04RQgghhBBC4g0rrai6bTkVCgF//zvw0EOdP8/IAN57D9hrL+Ckk4z2UmZkZRmT4CNHxqSREEIIIXrCllOEtJKXl4fk5GTVMhwhEAjA6/UiEAiolhKGSm1u+HbKh112rdqRPLaIObrnTXp8qvSx5rHmxSu65016fLzXU2ezOztFRUUoKCjo0kZycnLE56RuNwlPSAAeeACYMmXLZ337GqvzDjwQSE8HXnsNOOoocxvV1cDRRwPvvtu1LxKG9LpgBemxseaps2mHHenji0RG97xJjk+yNqfghAYRxYQJE9CvXz/VMhyhtrYWc+fORW1trWopYajU5oZvp3zYZdeqHclji5jTZd6qqoBNm1zXZCfSx6Uqfax5rHnxiu55kx4f7/XU2ezOTnp6OoqLi7Fu3TpTG/369Yv4nDRkyBAUFhaivr7eXEBCAnD33cDUqUCfPsAbb3RebZGeDrz6KnDMMeY26uuNtpYLF5qfQ8KQXhesID021jx1Nu2wI318kcjonjfJ8UnW5hRsOUVEwJZThBDSyi+/AGPGGH+AWLrU6HFNiEpCIePt3p12Ai6/XLUaQgjREq/Xi/z8/JiuLSgoQHFxcTROALMWVX4/8Le/AW+9ZX59UhIwZw5w9tkxqCSEEEKITrDlFCGEEEKA774DDjkEWLUK+Ooro691V29dEuI0oRBw/fXAvfcam4g/9phqRYQQQrZi0aJF3befAswnMwDA4wFeeQUYO9b8nJYW4JxzgMcf77FGQgghhBC74IQGEcWUKVOQlZWlWoYjVFdXY/r06aiurlYtJQyV2tzw7ZQPu+xatSN5bBFzwvK2erUxmfHdd1tO+ugj4IwzgOZmNSItIH1cqtLXq2peKARcey1w//2G3awsTN+4EdWPPqpUn/SxRSKje96kx8d7PXU27bCTlZXV5XOS3++H1+uN2X47aWnACy8A48d3fd5llwHTp1v3pznS64IVpMfGmqfOph12pI8vEhnd8yY5PsnanIItp4gI2pYpDR48GGVlZVi5cqV2Laeam5tRVlaGQYMGISUlRbWcTqjU5oZvp3zYZdeqHclji5jTKW9ffWVsuFlVFfnk8eOBZ54BEnvPewjSx6Uqfb2m5oVCwN//Djz00Ba7KSkoGzQIg8rKkPLww8CkSUr0SR9bJDK65016fLzXU2czWjtdtZxKSUnBoEGDUFZWhuYuXnIoKChAUVER0tPTY9YLAAgGgSOOAJYt6/q8a64xVvD1ovsTN5FeF6wgPTbWPHU27bAjfXyRyOieN8nxqdKmsuUUJzSICLiHBiEkrtm0yVid8b//RT6+227AJ58AAwa4q4vELx9+CBx2mPnxlBRgw4au25cQQgiJGit7aHQk6v00uuLll4HTTzcmNrrjrLOAp58GUlOt+SSEEEJIr4J7aBDSyrhx46y/USSU+vp6LFy4EPUC++Gr1OaGb6d82GXXqh3JY4uY0ylv220HvPMOsMMO4ScOHWq0nuplkxnSx6Uqfb2m5h16KPDww53tpqdj4bhxqM/IABYsiHkygzUvPtE9b9Lj472eOpvR2snNzYXH44l4LD09PernpKj30zDj3XeBM8+MbjIDAJ57DjjhBKCmJnafmiK9LlhBemyseeps2mFH+vgikdE9b5Ljk6zNKTihQQghhEggLw/4z3+AnJwtnx12GLB0qTHhQYjbXHFFp5ZTAICEBODf/wZOPVWJJEII0RWPx4OxXW3IDeC4444znfRow+/3o6KiIjYRn30GjBsHNDX17Lp33wVGjTJWnBJCCCGEOAxbThERsOUUIYS0smIFcNRRRu/qkhKgTx/Viki88+CDxn4aycnGZrHjxqlWRAghWlJfX4+JEyeGrbJom+woKirCxIkTUVJS0qWd8vJy5OXlhU1udLUKBKEQ8Ne/AqWl5oYTEozzzNh1V2DxYmD33bvURwghhJDeD1tOEdLK4MGDxW2uYxfNzc1Yv359lxv5qUKlNjd8O+XDLrtW7UgeW8Qc07wNHw58/DHw0ku9ejJD+rhUpa9X1ryrrwYeeADNzz+P9YMHs+aRmNA9b9Lj472eOps9sZOeno7i4mJUVlaivLy8/evXX3/F1KlTkZKSgqKiIhQUFHRpp7KyEoWFhcjJyUF+fn77V05ODgoLCyO3pEhIABYtAvbYI7LRe+4BXn8d6Krt1XffASNHAp9/3m2s8YD0umAF6bGx5qmzaYcd6eOLREb3vEmOT7I2p+CEBhEF99BQA3uMqrXLfvLxSZd523dfY9PlXoz0cck9NHrI1Vej/ogjWPNIzOieN+nx8V5Pnc1Y7Hg8HuTl5bV/BYPBdhttkx7r1q0zvf6vf/0rSkpKwvbS8Pv9KCkpwcSJEyNfuPPOxr5d++/f+fNLLgH+8Q/g+OOBJUuAbbYxF//bb0b7qddeizJafZFeF6wgPTbWPHU2uYdG/KJ73iTHJ1mbU7DlFBEBW04RQrTmu++AHXcE0tJUKyGEEEKIBni9XuTn58d0rcfjQWVlZVj7qbYWVQl1dRhw2WVIX7YMOOkk4OWXjbaDbWzYABx7LOD1mjtJTAQeeAC48kpj9QchhBBCtIItpwghhBBdee89403HSZO67jtNiE6sXAkEAqpVEEIIiYDf78eKFSvg9Xrh9XrDWlTl/eUvyFq2DLckJ+O81FTUb71J+B57AMuXA0OHmjsJBoHJk4ErruDvA0IIIYTYCic0iCimTp2K7Oxs1TIcoaqqCtOmTUNVVZVqKWGo1OaGb6d82GXXqh3JYyvumT3beIOxqgqYMwe47772Q7rnTXp8qvTFRc1btszooX766UBjo+36pI8tEhnd8yY9Pt7rqbNph51INrrc4DsKRo8e3b63Rv/+/cNaVAUA3BkI4JmXXorcoio316j3Rx7ZtaPHHgNOPhnw+WLW2luRXhesID021jx1Np2qeUQ+uudNcnyStTkFW04REbQtU8rLy8PGjRtRWlqqXcupQCCAjRs3YuDAgUjuuGRbACq1ueHbKR922bVqR/LYilsCAeDaa4GZMzt/npBgtG0YN077vEmPT5U+7WveF18ARxwB1NQY3x91FLBwIdC3r236pI8tEhnd8yY9Pt7rqbNphx0zG4WFhSgpKYlZW7SYtagCADQ1ARMmAAsWdG1k772BN94AdtrJEY0SkV4XrCA9NtY8dTadrHlENrrnTXJ8qrSpbDnFCQ0iAu6hQQjRigkTgLlzIx9LTwc+/rjrNg2E9EbWrAEOPxz444/Onx94IPD668C226rRRQghmlJfX4+JEydi0aJFYRuA2015eTny8vIiHwwGgf/7P6CoqGsjubnGZuEHHGC7PkIIIYS4C/fQIKSVwsJC9O3wFqdO1NXVobi4GHV1daqlhKFSmxu+nfJhl12rdiSPrbhl0iTzDcDr64FHH9U+b9LjU6VP25r3v/8BRx8dPpkBAJ9/brSgqq62RZ/0sUUio3vepMfHez11Nu2wY2YjPT0dxcXFqKysxNdff41hw4ZZ0hozFRXAf/4T3XmHHQY8/7zzmgQgvS5YQXpsrHnqbDpZ84hsdM+b5Pgka3MKTmgQUVRVVSEYDKqW4QiJiYnIzs5GYqK8/+1UanPDt1M+7LJr1Y7ksRW3DB9u/pbi5MnArFna5016fKr0aVvzfv8daGgwv/i004CsLFv0SR9bJDK65016fLzXU2fTDjvd2fB4PNhzzz2xYsUKNDQ0oLy8HOXl5Vi3bh0SEhJi9hsV9fXA2LHATz9Fd35DA1BQANx8s7GyQ2Ok1wUrSI+NNU+dTTdqHpGJ7nmTHJ9kbU7BllNEBGw5RQjRkltvBe64w/h3cjLw6KPAxRer1USIU5SWAsccA2ze3Pnz8eOBZ54B4ugGmxBCpGDXPhsRW04Fg0BhIfDCC7EZPekk4NlngcxMy/oIIYQQ4i5sOUVIK0OHDkVqaqpqGY7Q1NSE0tJSNDU1qZYShkptbvh2yodddq3akTy24p6pU4HTTweys4HFiztNZuieN+nxqdKndc0bOhT44ANg5523fHbkkcZqpQ6TGax58YnueZMeH+/11Nm0w44VG0VFRSgoKIi8obdV3nuv68mM3Nyur3/tNWNV67ff2qtLCNLrghWkx8aap86m6ppH1KF73iTHJ1mbU3BCg4hi1KhRztxsC8Dv92Pp0qWOb9gXCyq1ueHbKR922bVqR/LYinsSE4E5c4w9BI48stMh3fMmPT5V+rSveYMHA8uXA/vsA+y7L/Dyy8BWLyqw5sUnuudNeny811Nn0w47Vmx03GfD9lZURx8NPP00kJISfmzkSGDDBmOVXlesWwccdFB0e3D0MqTXBStIj401T51N1TWPqEP3vEmOT7I2p2DLKSICtpwihBBCNMLnM/qqd/d2LiGEECX0tBVVxJZTbXz4IXDKKcZ+SgCw/fbAf/9r/DcUAqZPB266yfi3GYmJxnnXXgs4ve8HIYQQQizDllOEtOLxeJzfuE4RoVAIfr8fEucQVWpzw7dTPuyya9WO5LGlJfPnA//4h2UzuudNenyq9MVNzcvMNJ3MYM2LT3TPm/T4eK+nzqYddpyIz9ZWVIceCnz2GbDnnsZqjZdeMiYzAGNy4oYbgFdfBTIyzG0Eg8D11xsbhtfUWNckAOl1wQrSY2PNU2dTas0jzqN73iTHJ1mbU3BCg4hiypQpyMrKUi3DEaqrqzFjxgxUV1erlhKGSm1u+HbKh112rdqRPLa0oqEBuOgi4OyzgXvvjX0DzFZ0z5v0+FTpY80zsbNmjfHlog7iLrrnTXp8vNdTZ9MOO07EF6kV1ZIlS2I3uOuuRsvB118HRowIP37iicCnnwK77961nRdeAA48EPj669i1CEF6XbCC9NhY89TZlFrziPPonjfJ8UnW5hRsOUVE0LZMKTc3F5s3b8ZXX32lXcuplpYWbN68GQMGDEBSUpJqOZ1Qqc0N3075sMuuVTuSx5Y2bNhgbO69atWWzzIygC+/BHbbLSaTuudNenyq9LHmRbCzaZPRP72yEiguBo4/3hUdxF10z5v0+Hivp86mHXbcyp/X60V+fn7EY+vWrcPgwYOtO6mqAs48E1i8uOvz0tOBf/0LOOss6z4VIb0uWEF6bKx56mz2pppH7EX3vEmOT5U2lS2nOKFBRMA9NAghYnnlFeDcc4Ha2vBj++0HfPIJYEe7BkLiEb8fOOII461ewOih/s9/AlddxR7qhBDiMl1NaABAQUEBioqKkJ6ebs1RS4vRhuq++7o/9/LLjd8LqanWfBJCCCHEVriHBiGtTJgwAf369VMtwxFqa2sxZ84c1Eb6o6hiVGpzw7dTPuyya9WO5LGlBVlZxubGkVi5ErjmmpjM6p436fGp0sea18FOTQ1w4YVbJjMAo4f61VcDkyYBTU2O6iDuonvepMfHez11Nu2wI2V8lZSUYOLEidYNJSUB06YBO+/c/bmPPgocdhjw44/W/bqMlLw5gfTYWPPU2dSp5pGeoXveJMcnWZtTcEKDiMLr9SIQCKiW4QjJycnIy8tDcnKyailhqNTmhm+nfNhl16odyWNLC444ArjttsjHkpKAXXYBYljsqHvepMenSh9rXgc7M2cC8+dHPunJJ40/Yjmog7iL7nmTHh/v9dTZtMOOpPG1aNEi+P1+64auugr44Yfozv30U2NV7FtvWffrIpLyZjfSY2PNU2dTt5pHokf3vEmOT7I2p2DLKSICtpwihIimpQUYMwZ4990tn+24o9Hv/5BD1OkipLcSDAKnnWa0dIvEIYcA778PpKS4q4sQQuIYv9+PnJycbicsysvLkZeXF7ujefOMdp6xcM01wN13swUVIYQQohi2nCKkleHDhyMtLU21DEdobGzEihUr0NjYqFpKGCq1ueHbKR922bVqR/LY0oakJONN8u23N74fMwYoLbU0maF73qTHp0ofa16rnc8+Q+P8+cA//hF+wg47AC+8YDqZIX1skcjonjfp8fFeT51NO+y4lT+Px4OxY8d2e56lFRpr1xptBWPln/8EDj4YKCuL3YZLSK8LVpAeG2ueOpu9qeYRe9E9b5Ljk6zNKTihQUQxdOhQpGr6tk1TUxNKS0vRZNITXCUqtbnh2ykfdtm1akfy2NKKbbcFFiww3gp84w1gm20smdM9b9LjU6WPNa+DnUAAmD4dePrpLZMXKSnASy8BubmO6yDuonvepMfHez11Nu2w42b+ioqKUFBQ0OU5Q4YMQWFhIerN9hjriv79gYMOinxsxx2BhQuB7bbr2sYXXxgtqBYs6Ll/F5FeF6wgPTbWPHU2e1vNI/ahe94kxydZm1Ow5RQRAVtOEUIIIXHMRx8Bp54K3HEHcNFFqtUQQkjcs379egwZMqTLcwoKClBcXNxz44EAMHUqcNddWz5LTgaWLQNGjgR+/hkoKDB+N3THxInAww8Dffv2XAchhBBCYoYtpwhpJTs7G4mJeg7LYDCIqqoqBINB1VLCUKnNDd9O+bDLrlU7kseWaBobjQ0pn3lGiXvd8yY9PlX6WPNM7BxyCLB+fVSTGdLHFomM7nmTHh/v9dTZtMOOivx5PJ5uz4l5g/DkZODOO4E33wT+9Cfjs+nTjckMwGg9+P77wPXXd2+rqAg44ADgq696rsNhpNcFK0iPjTVPnc3eWvOIdXTPm+T4JGtzCj3/ckx6LZMnT0ZmZqZqGY7g8/kwc+ZM+Hw+1VLCUKnNDd9O+bDLrlU7kseWWFatAkaMMN7ou+QSo5+zy+ieN+nxqdLHmteFnZycnl2/YYPxli/pFUivCVaRHh/v9dTZtMOOivzl5uZ2O6nh9/uxYsUKeL1eeL3enk9uHHccsHIlcPPNwN//3vlYSgowYwaweDEwYEDXdtavBw48ELj3XqClpWcaHER6XbCC9NhY89TZ7K01j1hH97xJjk+yNqdgyykigrZlStnZ2fD5fFi1apV2LaeCwSB8Ph8yMzPFrUJRqc0N3075sMuuVTuSx5Y4mpuBe+4x3gpsbt7y+Z57Ap995mq7At3zJj0+VfpY82yqeb/8gsyjj0biNtsYPdR33DFmPcQdpNcEq0iPj/d66mzaYUdV/goLC1FSUtKja4YNG4aioiLsuuuuUa3yiIpffgHOOQd4773uzz30UGP1bV6ePb4tIL0uWEF6bKx56mz25ppHrKF73iTHp0qbypZTnNAgIuAeGoQQVzjxRGND70icey4wZw6QkOCqJEJIDwmFjP9fn33W+H7AAOPfxxyjVhchhGhGfX09Jk6c2ONJDcBoWTV27FgUFRUhPT3duphg0FixcfPNxr+7IiPDWIV73nm8ryOEEEIcgntoENLKpEmTkJGRoVqGI9TU1GDWrFmoqalRLSUMldrc8O2UD7vsWrUjeWyJ45JLzI898wzw9NOuSdE9b9LjU6WPNc+Gmvfkk5jVrx9q2u4XNm8GxowBbryx88orIgrpNcEq0uPjvZ46m3bYUZW/9PR0FBcXY926dT2+1u/3o6SkBBMnTrRHTGIiMGUKcNBB3Z9bUwOcfz5w6qnG7whFSK8LVpAeG2ueOpu9ueYRa+ieN8nxSdbmFJzQIKIoLS1FU1OTahmOkJqaiqFDhyI1NVW1lDBUanPDt1M+7LJr1Y7ksSWOE04w3uyOxLbbArvs4poU3fMmPT5V+ljzLNr56iukXncdhpaWIrXj/UIoZLSTu/9+S9qIc0ivCVaRHh/v9dTZtMOO6vFlpXVUSUkJqqur7RHy1FPAihXRn//KK8DeewOvv26P/x6iOm9OIj021jx1NnWoeSQ2dM+b5Pgka3MKtpwiImDLKUKIa1RWAnvtZfRjbuOkk4AnnwRyc9XpIoR0TSgEHHwwsHx55OODBwNffOHqXjiEEBIPeL1e5OfnW7JRUFDQ3n7K7/ejoqKi/Vg0G5CjvBzYZx+gtjY2AeecAzz0ENC/f2zXE0IIIaQTbDlFSCujRo2yb/M4Yfj9fixduhR+v1+1lDBUanPDt1M+7LJr1Y7ksSWSnBxg9uwt/372WWDRItcnM3TPm/T4VOljzbNgJyEBKC6G/9BDsXTUKPg73i+kpgLPPcfJDMFIrwlWkR4f7/XU2bTDjvTxFQ0lJSU488wzUVhYiJycHOTn57d/5eTkoLCwEPX19ZEvDoWAiRPNJzP69etewLx5xgstCxfGHENP0SFvZkiPjTVPnU3WvPhF97xJjk+yNqfghAYRRV5eHpKTk1XLcIRAIACv14tAIKBaShgqtbnh2ykfdtm1akfy2BLLSScZm0V+/TUwfrySDSN1z5v0+FTpY82zaGfnnRFYtAjeQw5BoOP9wvTpwH77WdJFnEV6TbCK9Ph4r6fOph12pI+vaHn11VdRUlIS9geXbvfbSEgAbrkF2Hnn8GNpacAnnwD33gukpHQtoKICOOUU4Mwzgd9+izGK6NElb5GQHhtrnjqbrHnxi+55kxyfZG1OwZZTRARsOUUIscSXXxpv3N1+u2olhBC3eO01Y9PXAw4A3nzT2DCWEEKI7djRcioaPB4PKisrzVfsV1cDV18NPP30ls/uvx+45hrj3199BZx9NrBmTffOBgwAHnsMOP1068IJIYSQOIQtpwhpJTc3F0lJSaplOEJLSwsqKirQ0tKiWkoYKrW54dspH3bZtWpH8thynMZG4429gw4C7rjD1TYCVtE9b9LjU6WPNc/Gmnf88cCqVcDcuZzM6AVIrwlWkR4f7/XU2bTDjvTx1cawYcMsXb/13hphZGUBRUVGq9DttgMOPRSYPHnL8X33BT7/3Jjg6G717ebNwBlnAKed1nlfNRvpLXmLBemxseapsxlPNY90Rve8SY5Psjan4NMfEcWkSZOQkZGhWoYj1NTUYPbs2aipqVEtJQyV2tzw7ZQPu+xatSN5bDnKf/9rvJl9551A2y/uSZOA339XqytKdM+b9PhU6WPNs7nm7bCD8UetaPnmG+Cmm4zJUOIq0muCVaTHx3s9dTbtsCN9fLVRVFSEgoIC5x2dfLKxCmP+fGDrl+E8HmPVxocfAnvs0b2tl14CBg8GnngCCAZtldlb8hYL0mNjzVNnM55qHumM7nmTHJ9kbU7BllNEBG3LlDweDxobG7F69WrtWk6FQiE0NjYiLS0NCQr69XeFSm1u+HbKh112rdqRPLYc4/HHgSuv3DKR0ZHx442NvoWje96kx6dKH2uewpoXCBhv865YAfzlL8Azz3DfDReRXhOsIj0+3uups2mHHdXjy+/3Iycnp8vNRju2i1q/fj2GDBkSk6/y8nLk5eXFqHQrGhqAW28FHnggusmK4cOB2bOBffaxxb3qvDmJ9NhY89TZ1KHmkdjQPW+S41OljS2nCGnF7/dD1zm2hIQEeDwecYUPUKvNDd9O+bDLrlU7kseWY+y/P2BWK+bPN1oRCEf3vEmPT5U+1jyFNe/++43JDMB4s/egg4x9d5qbY9JBeob0mmAV6fHxXk+dTTvsqB5fHo8HY8eO7fKcsWPHtu99kZeXZ74Phpv06QPcdx/wwQfG5uHdsWIF8Ne/AtdfD9TVWXavOm9OIj021jx1NnWoeSQ2dM+b5Pgka3MKTmgQUUyePBmZmZmqZTiCz+fDQw89BJ/Pp1pKGCq1ueHbKR922bVqR/LYcoxhw4BrrzU/vnixe1piRPe8SY9PlT7WPEU1b80a4LbbOn8WCBifHXQQEEfLs1UhvSZYRXp8vNdTZ9MOOxLGV1s7qa0nKjweDwoKClBUVNTps+4mQFxl6dLoWw22tBiTIHvtBbz5piW3EvLmFNJjY81TZ1OXmkd6ju55kxyfZG1OkaxaACEdWbp0aZdLmXszHo8Ho0aNkvG20lao1OaGb6d82GXXqh3JY8tRpk0DXn0VWL9+y2fbbAM89hhw+unqdEWJ7nmTHp8qfax5CmpeczNw7rlAU1Pk44MHA5ru3yUJ6TXBKtLj472eOpt22JEwvtLT01FcXBy2cXdubm5EXW0THCUlJa5pjMi6dcZqvJ7y/ffACScAp55qtKzaeecem5CQN6eQHhtrnjqbutQ80nN0z5vk+CRrcwruoUFEoLLvGiGkF7NiBXDwwUZf5NNOMyYztt1WtSpCiCTWrgVGjQI2bw4/lpNj/LGrJxuLE0IIiZqe7qdh6x4aLS3G3knLl0c+npQUeT+2renTB7jhBuC664xNxwkhhBDCPTQIaWPMmDHo06ePahmO0NDQgMWLF6OhoUG1lDBUanPDt1M+7LJr1Y7ksRUTVVXRnzt8OHDHHcDzzwMvvNCrJjO0y9tWSI9PlT7WPAU1b889ga+/Nt6y3Zr77+dkhktIrwlWkR4f7/XU2bTDjvTx1RVK3xZtaQEOOwxIjtCYIifHeDHmuOO6t9O2ufieexr7tEX5Tmhvzlt3SI+NNU+dzXivefGM7nmTHJ9kbU7BCQ0iiuzsbCQm6jksg8EgqqqqEAwGVUsJQ6U2N3w75cMuu1btSB5bPeLHH4GzzjJ6FtfWRn/djTf2ihZTW6NN3kyQHp8qfax5imregAHGpOdzzxl/xAKMVRvnnx+TBtJzpNcEq0iPj/d66mzaYUf6+BJLaiowfTpQWmpMbHRk+nTggAOAN94wXozJze3eXnk5MG6cMQnyzTfdnq5z3qTHxpqnziZrXvyie94kxydZm1Ow5RQRAVtOERLH1Ncbmy/OmGG8AQcAN90E3HmnWl2EED355Rfg73839uHZYw/VagghRGu8Xi/y8/OjPt/WllMdCYWAefOAa64BdtsN+PhjoOOLdNXVxksyTzwR3QqMlBRg8mTgllu4DxMhhJC4hC2nCGklLy8PyZGWBGtAIBCA1+tFIBBQLSUMldrc8O2UD7vsWrUjeWx1ywsvGBvyTp26ZTIDMNrAlJcrk+UGvTpvUSA9PlX6WPME1LzttwcWLOjZZMa//w1cfjlQWRmbTyK+JlhFeny811Nn0w470sdXV5htGm6G1+tt//L7/fYJSUgAzj3XWFkxf37nyQwAyMoy9mJbvhzYd9/u7TU3Gy/k7LYbMHs2ECE3vTlv3SE9NtY8dTbjvebFM7rnTXJ8krU5BSc0iCgmTJiAfv36qZbhCLW1tZg7dy5qe9JKxyVUanPDt1M+7LJr1Y7ksdUtK1YYraa2prERuP569/W4SK/OWxRIj0+VPta8Xljz/vgD+Mc/jD907bEH8NRTQBwt57YL6TXBKtLj472eOpt22JE+vrrC4/Fg7NixUZ8/evRo5OfnIz8/Hzk5OSgsLERlZaV9Ex39+wO77mp+fNgw4L//NWp+W4vCrvj1V2DSJGMS5K23Oq3u6M156w7psbHmqbMZ7zUvntE9b5Ljk6zNKdhyioiALacIiVOqqow/EG7eHPn40qXA4Ye7qYgQQjpzySXArFmdPzvwQOOPXQceqEYTIYT0Iurr6zFx4kQsWrTIllUXbZMkRUVFSE9Pt0GhCWVlwF/+AvRE81FHGSuNo1nlQQghhPRi2HKKEEJIfJKdbb5Xxl57Gf2JCSFEFV9+abQS2ZrPPzc2Ff/jD9clEUJIbyM9PR3FxcWorKxEeXk5lixZYsme3+9HSUkJJk6caJNCEx59tGeTGQDw7rvAfvsBF1wA/PyzM7oIIYSQOIcTGkQUU6ZMQVZWlmoZjlBdXY3p06ejurpatZQwVGpzw7dTPuyya9WO5LEVFRdc0Pkttv79jTefS0uBkSOVyXKaXp+3bpAenyp9rHm9qOYFg8Bll5lvDnv99Ua9IlEhvSZYRXp8vNdTZ9MOO9LHV7R4PB7k5eXZtul3SUmJcz+TdeuMCY1YCIWAoiJU//WvmD51Kqp/+MFebQKQPiZZ89TZZM2LX3TPm+T4JGtzCracIiJoW6Y0ePBglJWVYeXKldq1nGpubkZZWRkGDRqEFGFvnavU5oZvp3zYZdeqHbFjq7ERSEuL7txly4wl+pdeCtx2W1z8kVBs3mxCenyq9LHm9aKa98MPwGGHAd9/H34sPx/4+mugTx/n/GuG9JpgFenx8V5PnU077EgfXz3F6/UiPz/fNnsFBQWd2k/5/X5UVFS0H+/pxuQAjBduiooiHzv0UOCzz4x73S5oTklB2aBBGPT770i59lrg8ssBJ1tkuYj0Mcmap84ma178onveJMenSpvKllOc0CAi4B4ahGhCKGTse3HHHcBOOwFz50Z/7caNwMCBjkkjhJAeU18PzJhhfHX8w9WiRcDJJ6vTRQghvRi/34+cnBxb9tNoY9iwYXjrrbdwySWXhO3VEdOeG34/8MADwD33AB03Wc3NBf73P+C334CbbgLmz49e5PbbA7fcAlx4IduqEkII6fVwDw1CWhk3bpyzG7sppL6+HgsXLkR9fb1qKWGo1OaGb6d82GXXqh0RYysUAhYvNt5YO+IIYMkS4wHvu++itxFnkxki8uYg0uNTpY81r5fVvPR0YNo0YzXGSScZnx133JZ/k6iRXhOsIj0+3uups2mHHenjq6e0TTDYyaeffor+/fujpKQkbKIkpj03PB7gxhuNyYtLLwWSkozPb78d6NsX2GUX4NlnjZUahx4a0UR9ejoWjhuH+rbn219+MWwNHmzcJ7e0xBKqCKSPSdY8dTZZ8+IX3fMmOT7J2pyCExqEEEKs8dNPwEEHGX/k+/jjLZ+3tBhvtRFCSG9n0CDg1VeB118HHn4YSEiI7rpffgH+7/8it60ihJA4pqioCAUFBT1vBWWBrVduRMV22xl7u339NXDllcD553c+fuCBRuvUl18GdtstOpvffQecfbaxefjLLxt7NhFCCCEkathyioiALacI6cW0tABDhgDffht+LCXFeLNt553d10UIIaq59FLgiSeA1FRg0iSjPcm226pWRQghYui434XX68Xo0aMd9VdeXt7jTcmj3pOjqcmo+XfcAfz+e/QO9t7baEV16qlAIt85JYQQ0jtgyylCWhk8eLC4zXXsorm5GevXr0dzc7NqKWGo1OaGb6d82GXXqh3lYyspyViSH4nmZuDee93V00tQnjeHkR6fKn2seRrUvGgpKwP+9S/j301NxsqOXXcFbr4ZqKpSKk0FvSZvMSI9Pt7rqbNphx3p48sKHo8HeXl57V9S8Pv9WLt2LYYPH44+ffogPz+//SsnJweFhYXhrT1SU4GrrjJWYBx2GJpTUrB+8GA0d/d8u3o1cMYZwD77ACUlvaIVlfQxyZqnziZrXvyie94kxydZm1NwQoOIgntoqIE9RtXa7VX95M0YPx4wewj99lsupY+AiLw5iPT4uIeGOrta1LxomDoVCAQ6f1ZXB9x1l9F3Pc7oNXmLEenx8V5PnU32k48e05UPHUhISMDQoUNj9tFdy6n6+noUFhYiJycHe+21Fz799NOINrrck6OpCVi5MnwPje74+mugsNBYsbFggeiJDeljkjVPnU3WvPhF97xJjk+yNqdgyykiAracIkQDZs82Wqq0cfTRxpvIhx2mThMhhKhg9Wpg332BSLfZu+wCfPMNkJbmvi5CCBFOYWEhSkpKTI8XFBSgqKgIEydO7PK8rmizEelFuu78d8Tj8aCysjJ8EuYf/7BnhfKf/wzccANw1llGG1dCCCFEEGw5RQghRBb19cBDDxkPUdEyYQIwcCBw4onA8uXA229zMoMQEp888UTkyQzAWLnByQxCCImI2WbhHo+n00REcXEx1q1bF5MPs9UVfr8fixYtitrO1ntrADBWZyxYEPmC7Gzgb3+LXug33xj314MGATNnGqv8CCGEEMIJDSKLqVOnIjs7W7UMR6iqqsK0adNQJbBvtkptbvh2yodddq3asTW+mhrjjbL8fODqq4H77we83uiuTUsz3kp+7TVg+HDrWjRHck2wA+nxqdLHmies5jnFww8b+2cMHNj58yFDgHPOUaNJMb0ibxaQHh/v9dTZtMOO9PFlJ22TFZWVlSgvL2//qqysRHFxcadVFd21p+qKRYsWhbWfqqio6LYlVbekpgJr1gDTpqFq4EBMmzoVVW3Pt3//O/DSS8CqVcDppwMJCdHZ/PFHYPJkYOedgdtuA377zZpGG5A+Jlnz1NlkzYtfdM+b5Pgka3MKtpwiImhbppSXl4eNGzeitLRUu5ZTgUAAGzduxMCBA5GcnKxaTidUanPDt1M+7LJr1Y4tOhoajMmLhx4C/vij87FJk4y3jYmtSK4JdiA9PlX6WPOE1Dy38PuBxx8H7r4b+P134w9Z0b6dW1FhTBTn5Dir0SV6Vd5iQHp8vNdTZ9MOO9LHlyq8Xi/y8/Njvr68vLzTRuTr16/HkCFDLNnoSODXX7HxkUcw8LHHkNzSAnz/vbFKo42vvwbuuAN4/nnzVX2R6NMHuPBC4JprjDaGCpA+Jlnz1NlkzYtfdM+b5PhUaVPZcooTGkQE3EODEMUEAsDgwUBZWfix1FTgu++AHXd0XxchhOiAzwfMn29MEEf7Ru6ECcYEyMUXG2/mbr3agxBC4hy7JjTq6+tj3pOjqwmNtpZUiT4fUr/+GtmnnBJ5VcnatcCddwLFxT2b2EhKMjYRv/pqYP/9e6ydEEIIsQL30CCklcLCQvTt21e1DEeoq6tDcXEx6gT2PlWpzQ3fTvmwy65VO7boSE423y+jqcmejQ1JJyTXBDuQHp8qfax5Qmqe22RmApdcEv1kxnffAc8+C9TWAv/8p9EG8LzzjDYmvZRembceID0+3uups2mHHenjSxW5ubmW2k61YWWD8Ugtqurr61FYWIgdd9wRN9xwA/YcORLbn3UWcnJyUFhYiPr6+s4X7Lkn8NxzxsTG2WdH77ylxZgsP+AAY9+6l182PnMB6WOSNU+dTda8+EX3vEmOT7I2p+CEBhFFVVUVgsGgahmOkJiYiOzsbCQmyvvfTqU2N3w75cMuu1bt2BbfOecYvXkjMW+esVE4sQ3JNcEOpMenSh9rnqCaJ5l77un8R6lAAHjmGWDvvYEvvlCnywK65016fLzXU2fTDjvSx5cqPB4Pxo4d2+U5Q4cO7fJ4TzcC35ohQ4aETVK0TZA0NDR0er71+/2mG5IDMFZLP/44kJHRcyEffgiceiqw227AAw8A1dWxhBM10scka546m6x58YvueZMcn2RtTsGWU0QEbDlFiIPU1QHRrnx6/HHgssu2fN+3r/FW8TXXALm5zugjhBCyhe+/N/4gFQiEH9tnH6C0NPqVHoQQojlt7aK23uS7bbLj1ltvNX2u3G677VBUVIQTTjjBso6CggIUFxfD7/cjJyeny83FPR4PKisrI68uefBBY/Nwq/TrB5x/PnDFFcDuu1u3RwghhGwFW04R0srQoUORmpqqWoYjNDU1obS0FE1NTaqlhKFSmxu+nfJhl12rdiJe7/cbS9dHjQKGD4++H+/EicD22xvtUW66CfB6gfvu42SGA0iuCXYgPT5V+ljzHKp5OjF9euTJDAC4/vpeO5mhe96kx8d7PXU27bAjfXypJD09HcXFxaisrER5eXn7V2VlJYqLi5Genm567aZNm6KazBg2bFi35zz//PNYv349VqxY0T6ZkZqaGvH5tm1vjTACAeChhyI76NMH2HbbbnW0U1sLPPII8Oc/AyecALz+uq3tqKSPSdY8dTZZ8+IX3fMmOT7J2pyCExpEFKNGjbKlD6pE/H4/li5d2uXbOqpQqc0N3075sMuuVTudrl+71tgYcMcdgfHjgWXLjJ7rK1ZEZ8zjMfrvfv+9sTnhNtvEpIl0j+SaYAfS41OljzXP5pqnI/n5kWvvzjsDZ5zhvh6b0D1v0uPjvZ46m3bYkT6+JODxeJCXl9f+ZdczZUFBAd56661u7YVCIQwZMgSjR4/upKlHz7fJycYLSWPHhk9eX3aZcX/+5JPGKr5oCYWAN98ETjoJGDQIuPtuYNOm6K83QfqYZM1TZ5M1L37RPW+S45OszSnYcoqIgC2nCLGBTZuAHXYAIu1DM2EC8PTTrksihBASA/X1wJw5wP33A+XlxmcPPQRcdVV013/yifE74eSTgaQkp1QSQoh4omkBZca6deswePBgAEBhYWHMG4dHory8HHl5eeYnfPMN8M9/GvsnNTcDZWVA2/ktLcBrrxm/F5Yt67nzlBTgb38z2soedlivXflHCCFELWw5RUgrHo8HCZreUIVCIfj9fkicQ1SpzQ3fTvmwy65VO+3Xb7stcOyxkU8qKXF8c0DSMyTXBDuQHp8qfax5NtY8oWPLFtLTgUsvBTZsMOr3kUcCF1wQ/fVTpxp/rBo0CLj3XmDzZsekRovueZMeH+/11Nm0w4708SWZaDYO7+raNoqKilBQUNCj6xMSEmJ/vv3zn43VGN9/D8ybt2UyAzAmqseNA5YuBb78EjjvPKAnbZubm43fLaNGAX/5i9GaqqqqR/Kkj0nWPHU2WfPiF93zJjk+ydqcghMaRBRTpkxBVlaWahmOUF1djRkzZqBa4B+VVWpzw7dTPuyya9VOp+svuijySQ0NwPz5FlQSu5FcE+xAenyq9LHm2VzzdCc52Wgz9e67xgav0bB2LfDOO8a/v/8e+Mc/gIEDgTPPNN74VYTueZMeH+/11Nm0w4708SWdWCYjPB4PcjvsIde2V8e6deuitpGVlWX9+Xa77YCzzjI/vt9+xoq+778HbrvN2GujJ6xdC1x5pbGH3tlnA++/H3m191ZIH5OseepssubFL7rnTXJ8krU5BVtOERG0LVPKzc3F5s2b8dVXX2nXcqqlpQWbN2/GgAEDkCSs/YNKbW74dsqHXXajshMMAomR56A7XR8MArvsAvzyS/iJ551nPPAQEUiuCXYgPT5V+ljzrNuRPraUc8klwKxZkY+tWwe0tk9xG93zJj0+3uups2mHHenjq7dQWVmJ4447Dp9++mm35xYUFKC4uDjsc6/Xi/z8/Kj8JSUlYcCAAdi8eTNattqQu9uWU7HQ1ATstBPw66/W7OTnA+efbzw77LxzxFOkj0nWPHU2WfPiF93zJjk+VdpUtpzihAYRAffQICQCNTXAggXAv/4FTJoUfbuRm24yNvwDgMxM4JxzgP/7P2DffZ3TSgghRD2VlcZqjPr68GOHH260JyGEkDjH7/fju+++w8SJE8MmN9paVBUVFSE9PT3itbHuydERRyY0nn8e6OFKlC5JSACOPtp4Bhk7FkhLs882IYSQXg/30CCklQkTJqBftC0Vehm1tbWYM2cOamtrVUsJQ6U2N3w75cMuu53shELA558braO23x64+GLgiy+MHrrR6rjwQmDkSGMT8J9/Bh59lJMZApFcE+xAenyq9LHmWbcjfWwppago8mQGYN6S0CV0z5v0+Hivp86mHXakj6/ehsfjwZ577okVK1agoaEB5eXl7V+VlZUoLi6OOJnRdm20e3L069fP3efbzz6L/HnfvsDttxsrL3pCKAS8/bYxSbLDDsDllwPLlwOhkPgxyZqnziZrXvyie94kxydZm1NwQoOIwuv1IhAIqJbhCMnJycjLy0NycrJqKWGo1OaGb6d82GW3k51//hM46CBjVUZd3ZaTPvsM+Oqr6HTk5wMffwxMmGA8wBCRSK4JdiA9PlX6WPOs25E+tpRy1FHAueeGbw77pz8Bp54anY2qKuCZZzr/DrIB3fMmPT7e66mzaYcd6eOrN+PxeJCXl9f+1XEjcDPa9uTo7txAIODu8+399xt7YkyeDOTkbPl8/HjglluA//0PeOst4OSTTVvZmvLHH8BjjxkvTe2+O5Lvuw95GRlixyRrnjqbrHnxi+55kxyfZG1OwZZTRARsOUVIKxs2AH/+c+Rjl11mrLYghBBCumLTJuCpp4zJ8e+/B665xvhDVzQ8+aSxOrBfP+C004zJ8UMP7fkfvwghRHP8fj8qKirav2/bRLztM6/Xi9GjR0e8tq3lVCQb0UyqRCEOePFFYPZsYOZM4K9/7Xz8hx+M3xFPPw389FPsfg46yNhMvKAA2HZba5oJIYT0KthyipBWhg8fjjRNe3M2NjZixYoVaGxsVC0lDJXa3PDtlA+77Hays8ceRp/zSMybF7GViOSxRczRPW/S41OljzXPuh3pY0sE221n7KdUVma8jXv55dFfO2eO8d/aWuPfo0YBgwZ12fowGnTPm/T4eK+nzqYddqSPr3gl0uqOjp/tsMMOps+39fX1KCwsRE5ODvLz89u/cnJyUFhYiPoI9/x+vx9er7f9q8t9PDweY6Lhww/DJzMAY7PvO+4wJr3ffNOYwO7Bm72NaWlYMXw4Gr/6CrjySqMl1fHHA/PnG/sAKoY1T51N1rz4Rfe8SY5Psjan4IQGEcXQoUORunWbBE1oampCaWkpmpqaVEsJQ6U2N3w75SNquz/9BDz7bPR2zPqc+3zAkiWx6yCi0D1v0uNTpS8uap7DdqSPLVEkJQFjxgDRbjy7YYPRH31rvF7g998tSdE9b9Lj472eOpt22JE+vkhkAoGA6fPtxIkTUVJSEjYp4ff7UVJSgvHjx7dPXFRWVkac/OjTpw+GDx+OtWvXxr5JeVIScNxxwAsvANdfH/VlTampKB06FE1tsbW0GBPoZ58NDBgAnHIKsGCBsskN1jx1Nlnz4hfd8yY5PsnanIItp4gI2HKKaEUoBKxeDSxaBLz6qrGpNwB8842xAqM7/H5gxx2NXrWA8VBw/vnGZt+77+6cbkIIIfHNzTcDd90V+VhZGbDrru7qIYSQXozX60V+TzfijpG2zcqLiopMNzTvklDIeE753//sFmZMmJx+OnDiiUBGhr32CSGEKIMtpwhpJTs7G4ma9mgOBoOoqqpCMBhULSUMldrc8O2Uj4h2GxqA3XYD9t0XuPXWLZMZgDHBEY0dj8foWX700cDzzwMbNwIzZphOZkgeW8Qc3fMmPT5V+rSreQrsSB9bvZZg0NgMPBLDhkU/mWGSF93zJj0+3uups2mHHenji0QmGAy69nzbtrJj4sSJPbqmbRXIxo8+Qui33yKfeOaZwAknGKs5WgkmJqIqOxvB7mLz+4FXXgHOOsvYY+PUU4HiYsdXbrDmqbPJmhe/6J43yfFJ1uYUev7lmPRaJk+ejMzMTNUyHMHn82HmzJnw+XyqpYShUpsbvp3yEdFunz5G7/JImExoRLRz333A228bbzN104ZN8tgi5uieN+nxqdKnXc1TYEf62Oq11Ncbf2jaZpvwY2eeGb2dceOMCflZs4AOG93qnjfp8fFeT51NO+xIH18kMvX19a4/3y5atKjb9lOR9u/Y6bDDkNPQgAdHjkTg5JM7P3/ccw/w+uvAL78AjzwCDBsGX2YmZk6eDF9PYvP7gZdfNn6nDBhgTJL861+dflfYBWueOpusefGL7nmTHJ9kbU7BllNEBG3LlLKzs+Hz+bBq1SrtWk4Fg0H4fD5kZmaKW4WiUpsbvp3yYWp3+nTghhvCL0hIADZtMm7gbdQneWwRc3TPm/T4VOnTsua5bEf62Or1NDcbfdDnzDH+gBUIGCsFd9ih+2urqow3cJubje8TEoCRI4FTT0XwzDPh83i0zZv0ccl7PXU27bAjfXyRyHz33XfYf//94fP5XH1rtry8HHld7J1UWFiIkpIS0+MFBQUonjULePllBFauxMZrrgEA5ObmwuPxAACC33wDX3ExMufPR+K331oTnJAADB9uTIiPGxddi95uYM1TZ5M1L37RPW+S41OlTWXLKU5oEBFwDw0illAI+OorY3XFFVcA/ft3f83a/2/vzsObqNY/gH/TljbdW9rSsghtUQRk31GBAnpFRKgoFnChFERxV/gpwr1s14XN5V7UK6iAC1JQlEVREVlkraLsFivQQllattI9Xef3xyFD0iTNtNmG5Pt5nnmYJDPnvJMJJ+m8c875E7D0+V2yRMyHQUREpHYXLwLbtomeG0osXy4mhDUnLQ3o0cN+sRERqZwz59AwlJ6ejtatW0On0yHnau8HfTJCp9MhPDy81l4cWq0WZ8+excSJE416fJidp0OSgF9/Fe3/hx+KXhi2at36WnKje3dAZRcOiYhI4BwaRFc98cQTCHbTicIKCwvxwQcfoNDB44XWhytjc0bdda6jogLYtEkkMGJjgc6dgZkzgQ0blJXbpo2YR6Omdu0APz/b47Pz/uQa7n7e1H58ropPlW2ek8tlm3cdiYxUnswAgNWrzT/frBkKW7d26/Om9s8lf+u5rkx7lKP2zxeZV1JS4pK/b9u0aQONRgN/f395SKnw8HCMHDkSJ06csDoklU6nw913342VK1cabWs4T4f8mSwqEvMszZ0L+PjY5wCOHhU93nv1Aho3FnMLrloF5OUpLoJtnuvKZJvnudz9vKn5+NQcm6MwoUGqsn//fpSXl7s6DIfw9fVFp06d4GtlPgRXcGVszqi7znX06CHG/373XeDUqWvP15gDw2K5Gg0wdKiYOC8hAXj7beDYMeDQITEhnq3x2Xl/cg13P29qPz5XxafKNs/J5bLNc1PFxcAPP5h/bfhw+Pr5KTtvxcX2j80J1P655G8915Vpj3LU/vki83x8fBz2922nTp3qtH1dJw1PS0uz+NratWtRXV1t/JncuBEoKjK/Q1hYnWI1cv488MknQFKSGLa3b1+R7Dh4UPQOsYBtnuvKZJvnudz9vKn5+NQcm6NwyClSBQ45Rary3HPAf/9r+nxQkBh+w0wvCxM5OWIyPSVDVBEREV3v1q8XyXxztm4F+vWzXoZOJ+bgaNcOGDJELO3bixsFiIiuM0qGd6or/bBP06dPd+nfyybzdJw5A3zxBfDVV2IIKr2gIDGH4G+/iV4WX39tv0nAmzYF7r4bGDwYGDgQcOLk60RExCGniGQJCQnyRGPuRqfTYevWrXb9QWsvrozNGXXXuY5hw8w/X1QEbNmirNyYGMXJDFvfAzV/tsgydz9vaj8+V8WnyjbPyeWyzXNTQ4YAe/cCU6cCN9987fmoKOD225Wdt23bgMJCYPduYNo0oGNHoFkzMfeUpTt/VULtn0v+1nNdmfYoR+2fL7Js3Lhxtf5927NnT5SWlkKSJJSWliIzM1NeSktLTZ7Ly8tDamoq4uPjXfp3c3l5ufFnsmlT4P/+T8yXdPKk6KF+220i4RAQIJLa770nEh+7dwMvvyzmyrDFmTPARx8Bw4cDERFAnz7ArFnArl3QFRayzXNRmWzzPJe7nzc1H5+aY3MUJjRIVWJjY+Fjr7E3VaayshJZWVmorKx0dSgmXBmbw+vOz0flxo3I+uknVO7apWyfPn0sd402GHbKXrHbWo6aP1tkmbufN7Ufn6vic0a9jqqDbR7VSqMBunYFXntNjH9+5Ajw738DL7wAeHsrO2/r15s+d/asGMokMNBxsduB2j+Xbv1bz0F1qKXNs2cs5FyVlZXo0qULhg8fbpJ80Gq1SEpKwubNm+XXtFotYmNj5UWr1Zp9Tr/tMEs3YTlBVVWV5c9k8+bA888DO3YAK1YYv+blJebGmDMHSE8X3xdz5wK9e9sWUGWlqG/mTOC221B5003I+vZbVC5aJOpx4sAkbPPY5nkqdz9vaj4+NcfmKBxyilSBQ06RXW3aJLo879kjfiTrm7lnnjE/lJQ5Dz0kytDz9hZ3Fj36KDBmjP1jJiIi8mSSBMTFiTt7a0pOBpYudXpIRET2otPpkGMw1FJMTIzNPSxKSkqQkpKCtWvXOv2uXJMhp2wvEIiPt195NTVpAtxxh5gnccAA8ZiIiGzCIaeIroqJiYG3t7erw3CIqqoq5OTkoKqqytWhmHBlbA6pe/9+ceHj6t04Vd7eyImJQdX69crvzhk6FAgOBh58EPj8c+DCBeDnn42SGfaK3dZy1PzZIsvc/byp/fhcFZ8z6nVUHWzzyBZWz9uRI+aTGQDwj38oq6SoSNyQsHgxkJHh1Dty1f65dLvfek6oQy1tnj1jIecyPG+WelrYIiAgAKmpqcjLy8ORI0fQs2dPO0StjN0/kz/+aPm1pk3rXJz895/+2sLZs8CnnwKPPCLKu+kmYPx4lC9ZguydO5GVlYWsrCy7JIbY5rHN81Tuft7UfHxqjs1RmNAgVXniiScQHBzs6jAcorCwEIsWLUJhYaGrQzHhytgU111aqnz87F69jOsIDsaiJ55A4ZUrwMGDysq47z6RxFi5UlwcCQ+vf+xW2FqOmj9bZJm7nze1H5+r4nNGvY6qg20e2cLqedu61fLOd9yhrJKdO0XvyscfF/N4NGsmvsM//BCoqKhzzHWh9s/ldfFbT2V1qKXNs2cs5FzOOm9arRZt27bFnj175Dk3thjM++cIpaWl9j22xEQxH8YDDwChodee79IFyM4GDh8G5s0D+vcHFAxRLf/9Z+nawrFjwMcfw3fcONxw++2Q4uKwNS4OT/j7475OnZB3+XK9D4VtHts8T+Xu503Nx6fm2ByFQ06RKui7KWm1WpSVleHQoUNuN+SUJEkoKyuDn58fNBqNq8Mx4srYzNYtSeJH5p49YmK5PXuAAweAN98Enn3WeqElJUBICHA1Oy1pNCjz84NfWRk0M2cC06c7LnYXlKPmzxZZ5u7nTe3H56r4nFGvo+pgm0e2sHreJEn0qvj2W7Fs3y6+x7t0AX7/XVklr7wixmWvKTISOH9ezPPhIGr/XKrut951UIda2jx7xkLO5crzlpWVhbi4OIeVf+LECTRu3BiSJCE3N9fsNvUZVkun0yHn9Gn47d8P/23bEHjzzWjw9NPGGxUUiCGGN2wQy7lzJuUY/f1Xj0tepwCcbNECPSZPhl///kCbNmL+DwXY5rHN81Tuft7UfHyuis2VQ04xoUGqwDk0yMi994qLGTWNGmU8r0VtunYF/vjD/PN799oWHxERETlWfj6gv8M4MVHZPr17i5sganrgAeDLL+0WGhGR2jk6oXHkyBHMnj271vk79BOXL1myBAEBAbXOI2JpPpCaZZiQJDFk4bffAlOnOm6owdBQ8R1z661i6dFDDE9MROTBOIcG0VXPP/88QkJCXB2GQxQUFOCdd95BQUGBq0Mx4crYzNZtqQE0d5HCEoNhpwpCQvDOiy+i4KGHgMmT7fZD117vm63lqPmzRZa5+3lT+/G5Kj5n1OuoOtjmkS3qfN5CQ0UiQ2kyo6gI+O03868lJCgro7RUbPvyy8C6dcDFi8r2g/o/l6r7rXcd1KGWNs+esZBzXU/nLTExsU5zcDz55JNo3LgxfH19LW6j0+mwcuVKjBo1CiNHjkR4eDji4uLkJTw8HCNHjpSTGStXrjRJjujLSElJMV+JRgO0awd06GD0N15BSAjeef55FNjr2kJ+PvDDD6Kn/x13AGFhQOfOwFNPAcuXAydOyPWzzWOb56nc/byp+fjUHJujWB98kMiJtm7dapeJuNRIq9UiISHBLhPA2ZtDYztz5trQUU8/DTRvbr1uSz+mMzPFkBGNGlmv9957gQYNgF69oO3aFQlFRdDecgtQy4/uurLX+2ZrOWr+bJFl7n7e1H58rorPGfU6qg62eWQLh5+3nTvloSZN9O+vrIy9e4Ft28Sid/PN4m7c998Haold7Z9LV8Z3vbZ7amnz7BkLOZcrz5u+94O1v601Gg0efPBBLFmyBADM9pIwZ/fu3cjPz1f0t/u6devMPq9PVpSVleGHH36otQx9TBbfS19f0dbv3AmUl0Or0yFh61b4+vgg93//g/+uXQhKS4NXRobVeBWprgb27xfL+++L56KjgZ49oe3WDQlxcdDqh0F2ALZ5pEbuft7UfHxqjs1ROOQUqQKHnHIjkgS8/Tawa5dIYpw+fe21zz8Xk3Nac/Ys0LSp+dfWrRPJCiIiIiK99HTg44/F5OL79omLTQAQFQXk5iqbP2POHDEPR00xMeK3icrGSyYiqs3IkSOxcuVKi6/37NkTW7duNbkAph8aKisrC/2VJoSdIDMzEzExMbUOW/X4o4/i4rp16FNRgYEAzgG47+q2Wq0WY/7xD/yzb1+smzwZ/QA4/IpDy5ZA9+5i6dFD9OoIDHR0rURETsEhp4iuGjRoEPz9/V0dhkOUlpbihx9+QGlpqatDMWHX2DQaYMkSYPVq42QGIBIcSupu0sSkJ4esHvNfOOq9t1e5tpaj5s8WWebu503tx+eq+JxRL9s8UiOHn7c2bYAFC8TvhEuXxA0QL74IjB+vPBGxc6f553v0sFqGfHybNwMGF9vUwpX/b67Xdk8tbZ49YyHncvV5W7JkCZKSkkwSFlqtFklJSdi8ebPZu3m1Wi1iY2MRGxtrsWx/f3+n/+1+++23w9/fv9Zhqz5fvRo/VFTgVX9/zBw0CKMN4tPpdFi0bh26zZ+PpwC0AxAF4H4A/wVQaac4S/398cOgQSj19weOHwdSU4FJk4A+fUSPjQ4dgHHjgA8+EEMl1mOECrZ5pEbuft7UfHxqjs1ROOQUqUpYWBi8vNwzz1ZdXY0rV66gWn/HoIooii0/X4xnrUTPnmJytprMzIFhse6ePUVCpF07sd6rl1hat1YWg5I6bGSvcm0tR82fLbLM3c+b2o/PVfE5o162eaRGTj1vYWGiN2ddenRWV4vepeb06KFg92pcyctD9dNPA5cvA40biztx9cuddzps6BElXPn/5npt99TS5tkzFnIuV5+3gIAApKam1joZd315eXk5/W/3M2fOmDxnadiq2uLLzc2V1y8C+BpABoBn7RRntZcXroSFodrce1NdDRw6JJarw3zB21v8jdu5M9Cp07V/Gza0XAfbPFIhdz9vaj4+NcfmKBxyilSBQ06pTEUFcPCg6FGhn//i77/FH+hhYdb3//BDYMIE0+cbNAAKCmodg1p2+rRIoAQH1zl8IiIiojpJTwfatjX/2saNIiFhzb59QJcu5l87elTMx0FEdJ3IyspCXFycq8NwinYApgLoBcDwiKsBnF+yBDG5uSLpvWuX6AXoDM2bGyc4OncWz3H4QyJSCQ45RXRVbGwsfHzcs+NQZWUlsrKyUFlpr86s9mMUW06OuIOwWzfgqaeAzz4DMjLE3Bi//aasQEuTeldUiD/2LdVtqFkzuyUzHPXe26tcW8tR82eLLHP386b243NVfM6ol20eqZHqz1tkJLBwITBqlOmwl926Wd29srISWdu3o9Lc79jAQOCmm5TFcfSomPPDzlz5/l+v7Z5a2jx7xkLOdb2ft9p6cvj4+Kj6b/e6xncYwGgA8QAaA0gEMBfAZwB0/fsDU6aIoQwvXAD++gtYtgyYMAHVt9wCqUaCodLHB1mxsea/D+ri1ClR56xZwH33AbGxotdG376ofPJJZL3zDiq3bBE3HdoB2zyylbufNzUfn5pjcxQmNEhVkpOTERQU5OowHKKoqAiffPIJioqKnFtxebkYu3PHDoubGMUWHW15SAQzQ0aZdcstppOdtWwpJgSvMc6qM94XR9Vhr3JtLcdlny2yibufN7Ufn6viY5vHNs9Tqf68RUUBTz8NfPEFcPIkkJ0txj2fPRsID7e6e1FRET7Jy0ORud+xHTsCSodlSUkRk5A3agQMGAA895zo+XriRB0PyEx8Lnr/r9d2Ty1tnj1jIee63s+bVqvFsGHDzL4WFBRk8rd7YmKizUNZ2Yu5+JTKAbAWwBQAyTVf1GiAVq2QN3Qoeh04AO8jRxAuSbgLwNmrmxQFBeGT5GTz3we2unIF2L4dRStW4JP8fBQNHw5ERIg5KO+6S8zVsXSpuBGxuLhORbPNI1u5+3lT8/GpOTZH4ZBTpAoccsqO/voLeO01ICtLLGfOiLE6vb3FhGNK7hQZNkzcDVLT4MHAd98pi+Oll8TQUj17iiUysi5HQURERHR96dBBjIte01NPAe++a31/SRLDbRYWmr62aJH54TyJiBxIP9n22rVrobMwebU+8bFkyRKkpKRg5cqVTo7SsTIzM+UJ0vXvR81j9AVQBKCBuQLathV/k+fnOzhSM+LjxZyUbdqIeTr0i5JhpImIrHDltVx19g8komuqqsQPIB8fceeFNWVlYpgoS+W0aGG9jF69zCc00tLEH9tKxu2cN8/6NkRERETuoKLC8t2wnTsrK+PUKfPJDABo315ZGb/9Bvz6q7hg1aaNmJyc460TUT1ZmljckOHQVEuuTnRdMwGi1WrRsWNHpKWlOT7oGnr27Gm3ei0lbMoBNAPQFUA3AN29vDAkOhqac+eAVatEe3zsmGij9e30gQNASYld4rLoxAmx1PzbPjraOMGhX5o3V96jkIjIhdhSkapMmTIFoaGhrg7DIfLz8zFnzhzkW7szY/lyYPx44I47xDBNWq1IQrz5prKKaktYZGUpi83SHBiXLtk85IHVuh3AUXXYq1xby3HGe0j25+7nTe3H56r42OaxzfNU7n7e8ktKMOexx5B/7Bjwww/AG28ADz4o5s6wNFF4TeZ6d+gpvdtt7VoxdNYddwBNm4q7cHv2RP6MGS57/6/Xdk8tbZ49YyHncqfzptVqERsbKy/h4eFITU1FeHi40TBT+gRIXl4eMjMz5SUvLw+pqamK6kpPT4ckSSgtLTUqIzMzE+np6dAoSNKGhobK1xZSU1ORnp5e72PPyspCVlYWjh49ilWrVlnc7jyA7wH8NzQUu156CUc2bgTOnhWJAi8voFUrMQTzO++IycULCoD0dGDFCjG6QcuWimPKDw3FnClTkF/faye5ucC2baL33wsvAHffjfxOnTBn2jTk9+4NjBwJzJghrk2kpYnrAAoHd2Gb57nc/byp+fjUHJujcMgpUgV9N6XWrVvj+PHj2Ldvn/sMOSVJwPnzqAgLw/HMTLRs2RINGpjtjCqMHSsmGavpvvuAr79WVmfDhkBenunzS5cCyckmT1dUVOD48ePXYissFEMe+PkBXbuKHhu9eolER7Nmdr3Tz6RuB3BUHfYq19ZynPEekv25+3lT+/G5Kj62eWzzPJW7nze7HN8bbwBTp5o+36KFxZtSTNx/v9nfixWjRuH49OnW45Mk0dPEjmO/X6/tnlraPHvGQs7lzuetPseWlZWFuLg4q9sZDvFkzsiRI60Oa9WgQQO0bNkSx48fR0ZGBmJiYhAeHm5x2Cx70tf97rvvouXVJEVtE6zLLLTfCAgw6clR0aABjrdsiZbHj6NBRYVd4rZaZmgocOON5pfoaPkaAds8z+Xu503Nx+eq2Fw55BQTGqQKbjOHRn6+uMshM/PaHBZZWWLuilOngBtusF7GrFnAzJmmz3fuDPzxh7I4unY1v+2MGebLNufwYeDmmwGVNdREREREbunxx4HFi02fHzIEWL9eWRm33AL8+afp8zNnit+B1pw5I25eiYkRvUv0F6tathRzrKlkwl8iuv7odDqrSQWtVou8vLxaL/7r57FYtWoVrF3OMixPSSLEUQznGQkICDC/UUYGsHevGIpKv+TkAP/3f8C0acDBg+JvdP1y6JD5mxhdITDQOMHRsiUQFwfExophrHx9XR0hETmAK6/lcsgpUpXExETLX/CuIkliXgql2778MvDBB2K4gaNHRTIDQElGBtasWYMSa+NkWrprJTNTecyW7mi5cMHs0yUlJaaxtWvnlGSG2bqvkzrsVa6t5TjjPST7c/fzpvbjc1V8bPPY5nkqdz9vdjm+RYuA8+eBzZuB//xHDEGq7yGrRGUl8Pff5uO78UZl8R07Jv7NyQG2bxe9e6dNE8OP1PM+uOu13VNLm2fPWMi53Pm81efY9Bf1azNs2DCrPRn0w1qVlJSgp4X2MSAgAImJiRg+fLjR/B5JSUkm5Wu1Wovl1Ie+bsPrGjqdDitXrkRKSorlHVu1AkaPBubOFdcSzp0T3wmTJoneEX36ABMnAu+9h5Lvv8eaJUtQcvw48OOPYnhqK++tNSUBAViTmIiS+lyPKS4WCZjVq1GycCHWbNiAkmHDRGLcz08kyvv0AR55BPjXv4CPPxbfdSdOiDmoasbixv933Jm7nzc1H5+aY3MUTgpOZOj338Ufb/oeFvp///EP4KuvrO8fFiZ+bJgbty47W7xujaVkxJUrYlFSxrBhIjGivysiLk4MVxAYaH1fIiIiInKNqCigf3+x1JWFC0MAxIWyM2esl2EhIYLoaMDfX1kco0eLXiL636L6SWZPnxZxEJHHqm3ScH0PBqW0Wi02b96MlJQUk/L8/PwQGxuLadOmyc9ZmuA8JiYGOTk5iobDspU+TqvDT+lFRdX+ekwMEB8vrle0aCHmUTKnc2fRA6S4uG4B28uZM2LZscP0NS8vMeeT/tpFbKx4XFEB/PWX6PERHOzsiIlI5TjkFKmCw7spSZKyeR9mzABmzzZ9vmtX0f1TiU6dxN0JNc2aBUyfbn3/U6csT+y9fz/QsaOyOIiIiIjIcxw4ADz7rOghfP78tec1GnERS0lCYsoUcXdwTb16Abt3K4ujXTvgyBHT5996S0w+a011tYjZjnO2EZG6mEsqKL7I74DylM7vYQ9btmxBbGyszcds1oULKN+3DwV796LBiRMIOnsW3qWlwJYt4prImTPiO6LmoiTh7UpBQSI53ry56O1xww1i0a83a2bXuZ+ISBlXDjnFHhqkKvpJweuluhr4/vtr81YYzmOxbh1w663Wy7DUO0LpRIyAuLPATEKj4uRJHD961PokPU2bih4WLVoY36UQG6usd0Y9uHJyo+t1okh7lssJcj2Tu583tR8fJwV3Xbls8zyTu583VRxfx47Atm1i/fLlaxeqzp1DhY+Pst+h+iGnalJ6oU+STIZJlSeabdoUit6Z774TQ1wZXrRq0kTEMH682V04KTipkTufN1uPTavV1jrxt63lVVRU4KiSNs8BDCckrzDTa66/QQ+8nj17YsmSJYiPj69TcsPc+19SUoKUZ54x6q0i93wpKRFDYDVrJpY77jAusLAQFenpOD5pElqmpdk00bg9Jiw3KaOoSPT8MzdHlF5Y2LXkRrNmQOPGYmnS5Np6dDTnCHUgd27zAHUfn5pjcxTOoUGqYtMcGhoNMGoU8PTTwIIFwOrVYgipS5eUJyQs/bF26RJQWKisDAs/zErOnlU2pp23N7BmjRg7+fnngcRE0evDQckMwLXj7V2v4yrbs1yOJ++Z3P28qf34OIeG68plm+eZ3P28qe74GjYUN/OkpADTpimPz9KQU0ovPF68CNSoQx6XvVEjZWVkZ4syMjKAn38Gli0DXn8dmDfP4i4mx7dlC7BnD3DypPK58KyVWU+cQ8NzufN5U/uxuTI+c3NoWJKWloZbbrkF4eHhGDlypOJ4zR1fSkoKVq5caTT0lqK5OwAgOBglN9+MNXfcgZLRo0WvPMM2+5//BJYsEXMqJSWJESxCQszHZstcHLaUceWKmCj9+++BDz8UI29MnChuFu3RQyQ7fH1FUqNTJ2DwYGDcOHFs778PfPMNkJYmRswoL6937J5M7e2CrdR8fGqOzVE45BSpgkk3pfHjcUtxsbjDKyIC+PZbZQV16CC+xGp69VXx5WtNVpblpMbBg0D79tbLWL4c+Pzza3NX6P+NiwMiI63vT0RERETkCllZIqnx99+it4b+3ylTgDFjrO//66+WJzE/c0bcKWvNK68Ac+aYPt+vH7B1q/X9AXHh6vTpa48jIsRFrLffFmPNExEZcOaQU7Xp2bMnUlNT5ccxMTEAYDScliH9sFU6nQ7h4eFGyQxDWq0WeXl5dR/iqrBQzM/UrJloRw1Jkrjx89ixa8umTcDOnXWrQ61CQsQcJvreHTExIsmjX6Kjr60HBXGYRPJIHHKKqKaPPrq2bm0iLENxceYTGkp7aDRrJnpIVFWZvpaZqSyh8dBDYiEiIiIiup7ohzm988767W/pN7ePj7j4o0R2tvnnGzdWtn91NXDunPFzly6JRanVq4H5840vWEVHAy1bAvfco7wcInJbWq0WgwYNwpo1a+xWZlpaWp0SK/ohpaZPn24xmQFcm2Ok5jBfhnOPmJ3TIzjY8hyeGo24YTMyUvToAIAuXcQ8TCdPAmfPiqQHgMpGjVCcmIigixfhnZ0tvisuXFB8nC5RUCAWJUOia7XG3xc1kx769ykiQvwbGMgECJGNOOQUqcrMmTMRVnNopQsXxESGSljqDl9jLF+LfHyA228HBg4U3Q///W/R22LHDiAhQVkZFly5cgWzZs3ClStXbCrHEVwZmzPqdlQd9irX1nLU/Nkiy9z9vKn9+FwVH9s8tnmeyt3Pm9qPz2nx9eoFfPIJMGsWkJwMJCTgSvv2mPXPf+KK0uFbLSU0aundYXR8Fy6YvzkJUJ5UOXYMV/76C7O6dMGVr74SQ14995wYwkSpt94CFi7ElU8+EbFt3y4u4tVjCCy1f77IPHc+b2o/NkfFt2XLFmRmZiIzMxN5eXn45ptvkJSUZLRNWFiY+esadqSvQ6vVKhtSCjBKeJSUlGDkyJEIDw9HXFwc4uLiEBsbi1mzZuFczYRwXQwdiivffYdZjz2Gc1lZePaee3BXgwa4+/x5hC1ejKANGzAyPh4lWVmi98fhw2I0jnffBSZNAu6/H/D1xZWwMMyaORNXHPge2pVOJ5I4v/0m5oFaulQkdl58EXj4YWDQIKBbN3EDbnCwSIA0aSJGGOnfH3jgAeCJJ8SoIm+9BXz6qShnzx7R8yUvTyTrVU7t7YKt1Hx8ao7NUTjkFKmCvptSbGwsTp8+jf2VlbjFeAOgbVvrBb39tvjSqKllS8uTHDpJZWUlTp8+jWbNmsHHR12do1wZmzPqdlQd9irX1nLU/Nkiy9z9vKn9+FwVH9s8tnmeyt3Pm9qPz+W/9bKz0eyGG5TVHR9v/makBQvEBS9LdeiP7/BhoHNn82WfPausp8ekSaj8739xulkzNDt9Gj6VleL5u+8GNmywvj8ghiApLkalj49xOatXA8OHW9//xAkgPR0ID0dlcDBOl5ej2c03wycoSFn95HJqbxdsofZjq2t8SoecyszMNOnlUFJSgpSUFHkybh8fHzRr1gynT59Gpb7tsLP61qGfhHzatGkmPUv0Zfbq1QsrVqwAYNyDw5DZ3hxX6d/7V155xWj4LENJSUkWX8Po0ag8eRKnKyrQ7MAB+Ojns3j0UZEMOH1aJL6zs9Xfy8OeNBrxvRIeLkYWCQsT6+Hh1teDg53SI0Tt7YKt1Hx8rorNlUNOMaFBZpWXl2PlypVYsWIFjhw5gtzcXDl7P3z4cCQnJyPSjvNBmPwnAIwTGt99JyZtsmbdOjEpuL67vH4Oi5Ytgb597RYvERERERE5wK+/ip4M+gtWZ8+K5eWXgXvvtb7/hg2Wh4UqLwcaNLBexiOPiF7a5p7/9FPr++t0gL+/+de2bVP2d4mlG7U6dwb++MP6/gDwyy9iEtyQECA0VPwbGAh4caAGIkPW5qAArM9DUfPi/wsvvGDX4aicRavV4uzZs5g4caKcpDG3zbBhw7BkyRKzk5/bbU6PqiroTp7E5YMHURkXh+rQUONkik4n5mfKzr6W6Pj+e2D79joft9vz9xcJkeBgkRCJjjZNfoSEmC6hoWIfX19XHwGpkCsTGpCIakhPT5c6deokAbC4NGrUSPruu+/sVufhw4clANLIkSOlwMBA6bAYbfHa8u67dqvLVYqKiqQVK1ZIRUVFrg7FhCtjc0bdjqrDXuXaWo6aP1tkmbufN7Ufn6viY5vHNs9Tuft5U/vxedRvvdRUSdJqjf+WACQpIkJ5gXfeKRUFBkorRo6UigIDr5Xx/PPK9j99Wt7HpJzDh5WV8a9/mS/j9tuVH0dYmOn7oNFI0tdfK9v/+HFJWrVKkn78UZJ275akI0ck6dQpScrLUx6DB1N7u2ALtR9bfeJLSkqq9RpIUlJSneo+f/68lJSUJGm1WqNytFqtlJiYKHXo0KHW+mpbAgMD5Wsn9S2jtjKjo6MV7WPuPSkqKpI+/vhjq7FlZmbW+h5+/vnn0ujRo82+f0lJSVJxcbHZfUt27ZI+79BB+o+3t/QFIG0GpAxA2q3RSK/17SvpPvhAkl57TZKeflqS7r9fknr3lqTYWEny9TVtL7lcW7y9JSkwUJIiIyUpPl6SEhIkaehQSXr4YUl66ilJeuUVqej116UVr78uFS1dKklr10rSli2S9PvvkvT335J07pwkFRZKUlWVov9HaqTmds9Vsemv5eqXw0p/49iBuvrIkMudPn0aAwcOxNmzZwEAGo0Gffv2RcuWLXHhwgVs2rQJpaWlOH/+PBITE/HDDz9gwIABdqv/ypUrqK6uFmMJtm17rZdFv352q8NVvLy8EBYWBi8V3hHlyticUbej6rBXubaWo+bPFlnm7udN7cfnqvjY5rHN81Tuft7Ufnwe9VsvKQl48EEgP19MDn7mDJCbK3pnKHX+PLyqqxF25Qq8DMctV9pD3WACcpNylJZhMA62URnh4cr2lyQxoa255wMDlZWxaRPw+OOmz7duLYbDUmLOHDEfYnCwuDtYv3TrBjRvrqyM65Ta2wVbqP3Y6hPfkiVLAMCkV4Jhb4S61B0UFITU1FSTnhv6HgY1h6qqi+rq6mvXTuzEsMzc3FxF++hjN+xp4eXlhaCgIJti8/Lywq+//opvvvnG5L3R6XRYuXIlAJgMW6XT6dD/hReQdvCgaaGSBPzyCw42bmx+uCtJEnNVnDsnrj8ZtOOy+HigslJ8p9RjPqTrWlWVaMuLi4GLF8WwiDV4+fsjrF8/eG3bBpSWWi7Lx0f0/AgLE99Hht8NhktgIODnJ+YcadhQ7GP4muG2vr4OH1ZLze2emmNzFA45RUb69u2L7Ve757Vo0QJr165Fx44d5dcvXryIkSNH4ueffwYANGzYEMePH7d5wiuXdlMiIiIiIiLS++wzcbHm/Hmx5OaKf195BRgzxvr+W7YAlm76snXYq0cfFROvW1NcLC7ymLN7t5jA3ZoFC4D/+z/T57t1E5PfKtG8ufmJ3pctU/Zebtwo3veAgGuLvz/QqBHwzjvKYjh2TEyo6+9/rQyt1iljytP1x1ICwln1jRw5EmlpaWa3bdq0Kc6cOeOwWOrD3LwiSuYk0e9n7v0GYHUIMI1Ggz///BNarRahoaGYOHEiVq1aBWuXOBUNdyVJog29cEG0/RcuiKV/f3HTrSQBRUXXvhsMl9xc0cb+/nutcZCd+fiYfk/o1/PyxPeu/nFgoFiaNgWiooy3rblvzcdOSJxcT1x5LZc9NEi2YcMGOZnh6+uL9evXo3379kbbREZGYu3atejQoQNOnDiBy5cvY968eXj99dftEkOnTp3w559/2qUstSkvL8eff/6Jtm3bwldl4w+6MjZn1O2oOuxVrq3lqPmzRZa5+3lT+/G5Kj62eWzzPJW7nze1Hx9/69XRI4/YVqavL3DbbcDFiygvKMCf0dFo++ef8PX3V5bMAMQFmKvKfX3xZ9u2ogylPTTM9c7QCw1VVkZ+vvnn6zIxeVGR+eeV9hLJyTE/Z0jTpsoTGqNHm0/AzJ8PTJ5sff+jR0VyR6s1Xvz8xP4WLm4ZfYYKC0VSRb+vj891fVHMnds8rVZrcoHekXXXrG/z5s0mPTf0vUSmT5+OW265Bb6+vmjbti3+/PNPlNel91kt6ltmzaRDeXk5jh07Bl9f31rLKSkpwciRI832iOnSpQtat25dayySJKFNmzaK4zSMNycnp/ZzrJ+AOyhIjBhi7vXgYLHceKPp68eOATt2iCTI5cuit0durvh/P3myeHzxovjX0rqZydjVzui7yk6fS8UqK8X3Xm3ffTaSj+/oUfhKkvg+b9zY9LtB//1g+PjiRfG5MUyqBASI5HxEhPkyzJVn4btD7W2yIzChQbL33ntPXh8zZoxJMkMvMDAQs2fPxsMPPwwAWLRoEWbPng0fH9s/TgkJCThhpuuaO9DpdNi6dSvi4+NV18C4MjZn1O2oOuxVrq3lqPmzRZa5+3lT+/G5Kj62eWzzPJW7nze1Hx9/6zm5zNtuExezAOgKCrB1yRLE33cffKuqlJeh0YjESHk5dFottiYkIP7ECfskNEJCbCvDHgkNpWVYGrbEzETEFpWUmH/ez0/Z/tnZwMcfmz7v7W2+B8tVRp+h5GTg22+vvejlJer/v/8DZs2yHsOZM8Dzz4t9fH2vLX5+wL/+peycpqeLi6T6/fRlhIeLCYLrgG2e4+oOCAgwGapK30skKysLgLjor792Yi35EB0drWgIqbqUaahNmzbo2bMnlixZgvj4eJSXl2P//v3QarW1lpOSkmK2J4pOp8Phw4eRkpJS51gcpc69dm680Xyioy5efRX4+2/xf/biRZEYyc8HBg8GbrpJDEuYlyeWmuuW2l0HM/quUsF5szej4ysoEMOO/f238wPx8rq2eHsDTZpAFxqKrQMHIn7PHpFsqfk94et7bag0/XP652NigBtuMP/9YvhYn0zR91rx83Np4o1DThEAoKioCJGRkSi7Og7grl270Lt3b4vb63Q6REVFoehqQ/nzzz/bNJcGh5wiIiIiIiIyIEnigr7hxaqmTc3fMVzT778DPXqIXgE1FRSIO4utGTtWDA1V08iRwIoV1vcvL7ecNNi+Hbj9dutlvP028OKLps937Ajs3299f0CMe5+Zafr8Rx8B48ZZ33/9emDoUNPnAwOVXzi8804xJ0lN//wn8O9/W9//8GHAwg2HuHBB2dwsjz0mjrmmUaOAL76wvn9hofjs+fiIO5MbNLi2/uWXYg5Ma9atE4vhvg0aiIu/jz1mfX8AWLtWfK59fMTFPP2/HTsqex+Ki8X/AcN9fXzEojTJ5SJKhnKqKTMzEzqdrl69GepK35Pk5ZdfRpcuXRxeX32ZGybLHEvznBjOqxIQEGCS8DDk6CHLzKqoAH75BVi4UCRC8vLEZ76oSHyvPPaYaSJE37shPx+o45wu5LmOAGhn8JhDTpHT7dq1S05mBAYGonv37rVur9Vq0bt3b/z0008ARLdIe0wOrtVq5TjcjSRJKCsrg5+fHzQq617syticUbej6rBXubaWo+bPFlnm7udN7cfnqvjY5rHN81Tuft7Ufnz8ree6Mm0q5+qdkJK/P8oaNqxbGV27iiE4SkquXajSL0qHe/L1FZO2FhQYJ0aU9q6o7WK/0jIs9a7w91e2f21lKO3lYeninpWLlEbn3lIZSi+g13a3s9JeAJb+zla6f3m5PFGypNGgzM8PfmVl0EiSuICqxN695nu7JCQoT2iMHm3+nK5fDwwZIuKr7f/dihXm64qPB44fVxbDP/4hhhWqmRSZMgVSUpL1//P79wOzZ4v9DO+09vUFapl8XH9xvKysDMl+fogvK0O1JKEaQDWAKgC7AWypsZ+5C+rBABIN9qvWaAA/P1SUleF7SYLhJ7Znz55me1PEAWh0tQwJQLVOh4xVq5C0di00Go3V+Sw0AG4w3F+/rtGg2M8PJWVlVsvwulqOfn9bGSYnLM1nop+YvLS0FP7+/rVO7F4z+eEUDRoAAweKpT7Ky0UC8+23RTI1P198DxQWioRg9+5Au3Ym3y1SQQHKSkrgd+kSNAUFltve65RJu6ciao7NUTxn+nOqVXp6urzevn17RcNHGWbcDfe3xZQpUxCqdEzX60x+fj7mzp2LfEtj0bqQK2NzRt2OqsNe5dpajpo/W2SZu583tR+fq+Jjm8c2z1O5+3lT+/Hxt57ryrRHOfUuQ6MRyYvGjYGbbxYXoQYOFBdPlVi0SNy5W1kpkhNnzgAZGcDMmcr2lyTgnnuAfv1EguXmm4FmzUSSxNaERl0uDNo6bFU9ExpG581SGXVJJlhiaxlKkyqVlfJqfmgo5k6Zgnz93+5K54axlPhQuj8AWBq6zdv7Wny1/Z+xtH9dhtDOzha9fo4dE3OsHDkCHDgAXL6s7P9rTg7wzTfAV18Bq1YBqanA8uVWe8roL46HhoaixZQpeDo0FNMBzAQwG8BrAP6h8BCaAPgUwOcAVgBYFBqKtlOmYEloKMIMtktPT8fWrVvNJkWmANgD4FcAvwH4HcDm0FA8pPC6jhbASQDZAE4DOAsgB8BfoaH4P4VlvAygEiIpIxksO6zuaaBNG0hRUbii1SLP3x++cXHwiYtDlIXJ2fXWrVuHlStXor9OhwMA9gPYB+APiPdiA64lP1JSUmqPYfx4oE8foG9f0WYmJIhl5Uplx3DkiGhvhwwB7r1X9CobNgxITDT6v1urd94RCcOxY4HnngOyskRvvrFjRa+/jAzxPbBmjRgS67//Fb34vv4a2LQJ+V9+ibkjRiD//vuBMWOAhx8WPQU7dBA9+4YPF73VevcW+y1eDLz1lkjuvfQS8OST4juqVSvRG6xpU1X1mjJp91REzbE5jEQkSdLEiRPltj8pKUnRPu+99568T9u2bW2q//DhwxIAKSYmRvL29pYOHz5sU3lqVFlZKZ07d06qrKx0dSgmXBmbM+p2VB32KtfWctT82SLL3P28qf34XBUf2zy2eZ7K3c+b2o+Pv/VcV6Y9ylH758uhduyQpPnzJWnWLEl6+WVJeuYZSRo3TpLmzVNeho+PJIn0ivGycaOy/RcvNr9/y5a17mZ03tq1M1/G228ri2HrVvP7A5JUVaWsjPvuM7//008r2z87W96n0ttbOhcTI1V6e4vnMjKUlTFpkvkY7r5b2f6SpOh81vp/5t13ze/fpo3yGG66yXwZH3yg7P/rt9+a39/f32rVxcXFUlJSkvSN4ftvsLxmcF1fq9VKpaWlUmZmpuG1fgmA1KbGfobnNKrG/pIkSUlJSSZlfGjmGCq9vaWPr17Xqbl9zSXAwme60ttbGqCwjKkWythRyz6ZmZnGb2pkpNkyHrBSt355yEIM2QbbaDQaKT09XcrMzJTfUyNdupj/TMyfr+wz+csvltuIigplZQwfbn7/p55StHtlZqZxu2C4/P23shhefNF8DL16SdKGDZKUmipJH3wgSd98I0nHjknS/v2StHOnJP3wg3hu+XJJ0mjMllGh0UgVgFR99fEfgLRPo5HOBAdLVc2aSVJEhPg/WMvn0uLxuXhxVWyHa/xfcOa1XA45RQCAS1e7jgJi0iglYmJi5PXLly/bVL9+mCl9175jx47ZVJ6aGb7XauPK2JxRt6PqsFe5tpaj5s8WWebu503tx+eq+Njmsc3zVO5+3tR+fPyt57oy7VGO2j9fDhEWBtx9t/nXjhxRVsa2baKHhE4nemvodGL4pcBAZWV4eYmJeMvLxX7l5WKJilK0/6VLl8SQLeZcvKgshowM8897e4vJvpWw9PkpKFAWw+nT19arqoCcHMglZmbW3otEz9IEsqWlys+npbvNs7NNyjD7f8bwOGqWqzQGSz2HcnNFjw1LdetdndzbLAUx/Otf/0LViRM4aub9PGewnpCQgOPHj6OsrAy+vr5GE2xXQIx/LzM4p+U19geAyZMnIz8/H5s3b5bLOVuzjKvl5ObkwEI/GCOSuf2vlnFOYRmXLJRR2+BhGRkZuHz5Mi5evAgAiNHp4G1muysK6geAfAsxGJ4LSZLkeUx8fX0xYMAA/Pvf/4a/fvi82j5TSj6XJ05Yfu3PP416MJWVlcnHDgCRkZHw8/Oz3E5dvqwshnPnjNsFQ3//bXnYO0MXLph/3s8PaN7c+DmdTvSsCg0Vi54kmS0iRZLw69V1H4iePZAkoLAQg267DQsWLBAvfvYZMHeuaQGBgUDnzrhUWirarPBw0QNF/71QVnZtffVqZUNuhYSIf8vLbZu7pGab7CQ1r9w6dQoBp6VOSNUGDx4sZ9RefvllRfts2LBB3icoKMim+tesWSMBkFJSUqRGjRpJACRvb28pLCxM0mg0EgApJCRE8vX1lQBI/v7+UmBgoARA8vHxkcLCwuRYQkNDpQYNGkgApICAACkgIEACIDVo0EAKDQ2VtwsLC5N8fHwkAFJgYKDk7+8vAZB8fX2lkJAQOYseFhYm3xkQFBQkabVaCYDk5+cnBQcHSwAkLy8vKSwsTPLy8pIASMHBwZKfn58EiLsagoKCpKCgICk5OVlq0qSJ6o4pIiJCSk5Olho2bFinY7LHeQoKCpJSUlKkqKgoh52n6OhoKTk5WQoODrbrMYWGhkrjx4+X96vveYqMjJSSk5Ol8PDwen32mjRpIiUnJ0tBQUEOO09q+//kDsfUsGFDKTk5WYqIiHCbYzI8T40aNZKSk5OlkJAQVR6Tq9q9sLAwKTk5WYqKinLYeWrYsKE0btw4KSgoyK7HFBQUJI0dO1Zq0qSJTeepUaNGUkpKihQUFFSvz15wcLA0fvx4o8fu2Ea42zFFR0dLY8eOlbd3h2MyPE8RERHy/zs1HpPh/ztnf/au13ZP/z2mP4b6nif9b93IyMh6f/bY7l2fx+TO7Z7+c63Wv92DgoKkcePGSREREU7/7DVu3Fg+7446T/rfZNHR0XY7psjISPl7wpbzFBoaKiUnJ0uNGjWq92fP8NqJO7cR7nZM+v93DRs2dJtjul7avZCQEPn/nSs+e/plzZo1Nl0brguNJFlIXZFHGThwIDZv3gxAZPtnz55tdZ/Nmzdj4NVJhry9vVGpdFw+M9auXYvExMR6709EREREREREREREzrdmzRoMGzbMKXVxUnACAKMJnsqVdBWFcVciuZscEREREREREREREZEDcA4NAgAEBQXJ66WlpYr2MdzOcP/66NevH9asWSM/vuGGG8QYfkRERERERERERESkGmVlZcjOzpYf9+vXz2l1M6FBAICIiAh5PTc3V9E+OQYTUDVs2NCm+sPCwpzWLYmIiIiIiIiIiIiI6q9Lly4uqZdDThEA4Oabb5bXT548qWifU6dOyeutW7e2e0xERERERERERERERHpMaBAAoE2bNvL6oUOHFE3w/ccff5jdn4iIiIiIiIiIiIjI3pjQIADArbfeKs9ZUVxcjL1799a6fVlZGfbs2SM/HjBggEPjIyIiIiIiIiIiIiLPxoQGARCTeg8cOFB+vGzZslq3//rrr1FYWAhAzJ/Rt29fR4ZHRERERERERERERB6OCQ2SPfnkk/L6smXLcOTIEbPblZSUYPr06fLjCRMmwMeH88sTERERERERERERkeNoJEmSXB0EqUffvn2xfft2AEBsbCzWrl2LDh06yK9funQJo0aNwk8//QRA9M44fvw4wsLCXBEuEREREREREREREXkIJjTIyOnTp9GjRw+cO3cOAKDRaNCvXz+0bNkSFy5cwKZNm1BSUgIA8PHxwQ8//GA0VBURERERERERERERkSMwoUEmjh49ilGjRmH//v0Wt4mKisLSpUtxzz33OC8wIrqu5eTkYNOmTdi7dy/27t2L/fv3o7i4GC1atEBWVparwyMiqpPdu3djwYIF2LFjB/Lz89G4cWPcfffdmDZtGpo2berq8IiI7IK/34jI0xw8eBBr1qzBL7/8gsOHD+PSpUsIDAxEmzZtcP/99+PJJ59EQECAq8Mk8mhMaJBZ5eXlSE1NxYoVK3DkyBHk5uYiLCwM8fHxGD58OMaOHYvIyEhXh0lE15F33nkHL7zwgsnz/IOYiK43H330ER5//HFUV1cjJiYGTZs2RUZGBgoLCxEeHo4tW7agY8eOrg6TiMhm/P1GRJ7k+PHjuPHGG+XHTZo0QZMmTXDu3DmcOXMGANCqVSv89NNPaN68uavCJPJ4nMmZzPL19cWjjz6KRx991NWhEJGbCAkJwcCBA9GtWzd07doVZ8+exfPPP+/qsIiI6uTQoUN44oknUF1djTfffBPPP/88vLy8UFRUhHHjxmHVqlW47777kJ6eDj8/P1eHS0RkE/5+IyJPIkkSoqKi8NRTT+GRRx5BfHy8/NrOnTvx0EMPISMjA0lJSdi9e7cLIyXybOyhQURELvHVV19hxIgRvMOPiK4rDzzwAFavXo0HH3wQK1euNHqttLQUrVu3xqlTp/C///0PTzzxhIuiJCJyDP5+IyJ3ptPpUFVVhcDAQLOv79y5E7fffjsAYP/+/eyRS+QiXq4OgIiIiIjoelBcXIzvvvsOAPDUU0+ZvO7v74+xY8cCAFJTU50aGxERERHZRqvVWkxmAMBtt92G0NBQAGL+WSJyDSY0iIhcpKqqCgcPHsTHH3+MiRMnolu3bvD19YVGo4FGo0FCQkK9yy4vL8dnn32GwYMHo0WLFtBqtWjcuDFuvfVWLFiwABcvXrTfgRAR2ZGa28Z9+/ZBp9PB19cXvXr1MruNPr60tDRUV1fXO1Yi8gxqbvOIiBzhem73KisrUVFRAQCcGJzIhTiHBhGRC6xZswYPPfQQSkpK7F720aNHMWrUKOzfv9/o+ZycHOTk5GD37t2YP38+li5disGDB9u9fiKi+lJ725iRkQEAaN68OXx9fc1uo59IUqfT4eTJk4iLi7PfQRCRW1F7m0dEZG/Xe7u3Zs0alJSUwMfHB71797ZD1ERUH+yhQUTkAleuXHHIj7jTp09j4MCB8o84jUaDfv36ISUlBffeey/8/f0BAOfPn0diYiI2b95s9xiIiOpL7W3j5cuXAQAREREW62rYsKG8npeXZ6cjICJ3pPY2j4jI3q7ndi8vLw+TJk0CADz22GOIjIy0W/xEVDfsoUFE5ELR0dHo3r27vPz444/4z3/+U+/yRo8ejbNnzwIAWrRogbVr1xpNVHbx4kWMHDkSP//8MyoqKjBixAgcP34cYWFhth4KEZHdqLVtLC0tBQCLvTMAMfayniP+YCci96PWNo+IyFGut3avoqICDz74IE6dOoX4+HjMmTOn3rESke2Y0CAicoFBgwbh5MmTaN68udHzaWlp9S5zw4YN2L59OwBxsW39+vVo37690TaRkZFYu3YtOnTogBMnTuDy5cuYN28eXn/9dZPypkyZgrlz59YrloqKCvj48CuGiOpG7W2j/u6+8vJyi/XpdDp5nWMrE1Ft1N7mERHZ2/XY7lVXV+PRRx/Fpk2bEBUVhe+++w4hISH1jpeIbMchp4iIXCAmJsbkR5yt3nvvPXl9zJgxJj/i9AIDAzF79mz58aJFi1BZWWl2u4iIiHotGo3GrsdGRJ5B7W1jeHg4AODSpUsW69MPS2W4PRGROWpv84iI7O16a/ckScK4ceOQmpqKhg0b4qeffkLr1q3tEzgR1RsTGkREbqCoqAg///yz/Hjs2LG1bn///fcjKCgIgLj49ssvv5hs869//QsXL16s1+Lt7W3fAyQiqgd7t40333wzAODUqVMWe2n8/fffAMTQUy1atKh37EREdeWI34NERGrmyHZPkiRMmDABy5YtQ0hICH788UejYayIyHWY0CAicgO7du1CWVkZAHHnSffu3WvdXqvVonfv3vJjTgZJRO7I3m1j586dodVqUV5ejj179pgtY9u2bQCAHj16wMuLP7WJyHn4e5CIPI0j272nnnoKH330EYKCgvD999+jW7du9gmaiGzGv7KIiNxAenq6vN6+fXtF81d06dLF7P5ERO7C3m1jYGAgBg8eDMB4eAO90tJSLF26FACQlJRUr5iJiOqLvweJyNM4qt179tln8b///Q8BAQH49ttvceutt9oeLBHZDRMaRERu4K+//pLXlQ5xYjh26dGjR+0eExGRqzmibZw+fTq8vb2xatUqvPXWW6iurgYghjxITk7GqVOn0KJFC4wbN87G6ImI6oa/B4nI0zii3XvppZewcOFCaLVarFu3Dv369bM9UCKyK+upSyIiUj3DCWqjo6MV7RMTEyOvG05i6yjZ2dno3Lmz/Fg//nx2djYiIyPl50eNGoWFCxc6PB4icn+OaBs7duyI9957D08++SQmTZqE+fPno2nTpsjIyEBhYSHCwsLwzTffwM/Pz/YDICKqA0e0efz9RkRqZu92b/fu3Zg/fz4AICQkBDNmzMCMGTPMlpOSkoKUlJS6hkxEdsCEBhGRGygqKpLX/f39Fe1juJ3h/o5SVVVl9INTr7q62uj5wsJCh8dCRJ7BUW3j448/jvbt22P+/PnYuXMnDh06hJiYGDz00EOYNm0amjVrZlvgRET14Ig2j7/fiEjN7N3u6efjAIDz58/j/PnzFsu54447lIZJRHbGhAYRkRvQ6XTyuq+vr6J9DO8eLi0ttXtMNcXGxkKSJIfXQ0Sk58i28dZbb8U333xT/+CIiOzMEW0ef78RkZrZu91LSEhgm0d0HeAcGkREbkCr1crr+qEArDG8+0Tp3SxERNcTto1E5EnY5hGRp2G7R+SZmNAgInIDQUFB8rrS3haG2xnuT0TkLtg2EpEnYZtHRJ6G7R6RZ2JCg4jIDURERMjrubm5ivbJycmR1xs2bGj3mIiIXI1tIxF5ErZ5RORp2O4ReSYmNIiI3MDNN98sr588eVLRPqdOnZLXW7dubfeYiIhcjW0jEXkStnlE5GnY7hF5JiY0iIjcQJs2beT1Q4cOobKy0uo+f/zxh9n9iYjcBdtGIvIkbPOIyNOw3SPyTExoEBG5gVtvvRV+fn4AgOLiYuzdu7fW7cvKyrBnzx758YABAxwaHxGRK7BtJCJPwjaPiDwN2z0iz8SEBhGRGwgKCsLAgQPlx8uWLat1+6+//hqFhYUAxLihffv2dWR4REQuwbaRiDwJ2zwi8jRs94g8ExMaRERu4sknn5TXly1bhiNHjpjdrqSkBNOnT5cfT5gwAT4+Pg6Pj4jIFdg2EpEnYZtHRJ6G7R6R52FCg4jITdxzzz3o06cPANGVdsiQITh48KDRNpcuXUJiYiKOHTsGQNyV8vLLLzs9ViIiZ2HbSESehG0eEXkatntEnkcjSZLk6iCIiDzR4MGDcfbsWaPncnJykJubCwAIDAzEjTfeaLLfhg0b0KRJE7Nlnj59Gj169MC5c+cAABqNBv369UPLli1x4cIFbNq0CSUlJQAAHx8f/PDDD0ZddImIXI1tIxF5ErZ5RORp2O4Rka2Y0CAicpHY2FicPHmyzvtlZmYiNjbW4utHjx7FqFGjsH//fovbREVFYenSpbjnnnvqXD8RkSOxbSQiT8I2j4g8Dds9IrIVB4sjInIzrVu3RlpaGlJTU7FixQocOXIEubm5CAsLQ3x8PIYPH46xY8ciMjLS1aESETkN20Yi8iRs84jI07DdI/Ic7KFBRERERERERERERESqx0nBiYiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIyKHeeecdaDQaeHl5Ye/eva4OxyZTpkyBRqOBVqvF8ePHXR0OERERkUdhQoOIiIiIyEUSEhKg0WjqvGzdutXVoRMplpubixkzZgAAkpKS0K1bN7PbJScny5/x5OTkOtWxbNkyed/Y2FgbI67dlClTEB4ejrKyMrzwwgsOrYuIiIiIjDGhQURERERERA4za9YsFBQUQKPRYPr06a4Ox2ZhYWF45plnAADr16/Htm3bXBwRERERkefwcXUAREREREQEdO/eHT169FC0bdOmTR0cDZF9ZGVl4aOPPgIADBs2DG3atHFxRPbx7LPPYsGCBSgpKcG0adOwY8cOV4dERERE5BGY0CAiIiIiUoHBgwdj5syZrg6DyK7efPNNVFRUAACeeuopF0djPxERERgxYgQ++eQT7Ny5Ezt37sRtt93m6rCIiIiI3B6HnCIiIiIiIiK7y8/Px9KlSwEAcXFxGDhwoIsjsq/x48fL6++8847rAiEiIiLyIExoEBERERERkd2tXLkSxcXFAIARI0ZAo9G4OCL7uu2229CkSRMAwNq1a3Hp0iUXR0RERETk/pjQICIiIiK6TmVlZUGj0UCj0SA2NlZ+fseOHRg/fjxat26N0NBQaDQaPP/882bLyM7Oxr///W/06dMHTZo0gZ+fHxo2bIjOnTtj8uTJyMjIqFNMf/zxBx577DHEx8fD398fUVFR6NGjB+bNm4fLly8DAJYtWybHnZycbLacmTNnytsoGYpr69at8vYJCQmKYk1PT8fUqVPRo0cPREdHw9fXF1FRUejZsyemT5+Os2fPWi0jISFBrnfr1q0AgMuXL2Pu3Lno3r07IiMj4e/vj/j4eIwbNw6HDx9WFJuh77//Ho8//jjatWuHiIgINGjQAGFhYejSpQsef/xxrFu3DpWVlfL258+fh6+vLzQaDby9vXHmzBlF9UiShLi4OPl41q1bV+dYDS1fvlxeT0xMtKksWxn+X6nrkpWVZbZMjUYjH1dFRQVWrVrlvAMiIiIi8lCcQ4OIiIiIyE2Ul5fj2WefxaJFi6xuW11djZkzZ2L+/PnQ6XQm5eTl5WH//v34z3/+g5deegmvvvqq1Tvs//nPf2LOnDmoqqqSn9PpdLh48SJ+++03LFy4EF9++WX9Ds6OysrK8Nxzz+Gjjz4yihUALl68iIsXL+LXX3/FggULMG/ePDz99NOKy965cyeSkpJMkgiZmZnIzMzEJ598gv/973947LHHrJZ15MgRJCcnY+/evSav5efnY9++fdi3bx8WL16MpKQkpKamAgAaNWqEoUOHYvXq1aiursayZcswbdo0q/X9/PPP8sX7xo0b45577lFwxObl5eVh586dAIDg4GB079693mWp2YABA/D+++8DAL799ltMnDjRxRERERERuTcmNIiIiIiI3MQLL7wgJzPat2+Pjh07okGDBsjIyICX17XO2VVVVUhKSsLq1avl55o2bYoePXogKioKRUVFSEtLw/Hjx1FZWYnXX38dFy5cwOLFiy3WPXXqVLzxxhvy44CAAAwYMACNGzdGTk4ONm/ejNOnT2Pw4MEWe4s4Q3FxMe666y75YjsAtGzZEl27dkV4eDguX76MnTt34uzZsygtLcUzzzyDgoICTJ061WrZhw8fxiuvvIKioiI0atQIffr0QUREBM6cOYPNmzejtLQUVVVVeOKJJ9C+fXv06tXLYllbt27F0KFDUVhYKD/XvHlz9OjRAw0bNkRxcTH++usvHDhwABUVFSZJqQkTJsjnd8mSJZg6darVhNTHH38srycnJ8Pb29vqMVuyefNmOVnUq1cv+Pi49k/PkJAQxZOSHzx4ENu3b5cf1/a+9enTR17funUrKisrXX6sRERERO6Mv7SIiIiIiNzA6dOn8f777+OGG27A8uXLjS60AqJXgt6sWbPki90xMTF47733cN9995lcuP3yyy/x2GOPIT8/Hx9++CHuuOMOPPjggyZ1//LLL5gzZ478+IEHHsDixYsRHh4uP5efn48nnngCqampeO211+xyzPXx5JNPysmMVq1aYdGiRSZDVFVVVWHx4sV44YUXUFZWhunTp6N///7o3bt3rWVPnjwZlZWVePPNN/Hss88aXdjOzs7G4MGDcfjwYVRXV2Pq1KnYvHmz2XKys7MxYsQIOZkRFxeH999/H4MGDTLZNi8vD6tWrcKxY8eMnr/zzjsRFxeHzMxMnDhxAlu3bkX//v0txn758mV88803AMQF/HHjxtV6rNakpaXJ6x06dLCpLHto2LAh3n33XavbZWdno0ePHvLjUaNGoUWLFha3b9SoERo3boxz586hpKQEhw8fRqdOnewRMhERERGZwYQGEREREZEKbNiwARcvXrS63SuvvIKmTZuaPF9VVYWAgABs2rQJrVq1Mnndz88PgJhL4PXXXwcgLvLu2LEDLVu2NFvXiBEjEBkZiQEDBgAQ81qYm9z5lVdegSRJAICBAwciNTXV5O7+0NBQLF++HJcvX8bGjRutHqcjbN++HZ9++ikA0Stj586diIyMNNnO29sbEydOhL+/P8aOHYuqqirMnj0b33//fa3ll5WVYdGiRZgwYYLJazfccANWrFiBDh06QJIkbN26FefOnUPjxo1Ntn3llVfkz0KLFi2we/duREdHm60zPDwcjz/+uMnzGo0G48ePl4ea+vjjj2tNaCxfvlxOeiUkJFj8TCh18OBBeb1169Z13j8tLa1OQ30dPXq0znXUVFxcjKFDhyInJwcA0LNnTyxZssTqfm3atMG5c+cAAAcOHGBCg4iIiMiBmNAgIiIiIlKB3377Db/99pvV7caPH282oQEATz/9tNlkhqH//Oc/8lBA06dPt3rhun///rjrrrvw448/Ij09Hfv27UOXLl3k19PT07Fr1y758X//+1+LQxV5eXlh4cKFaN26tZwAcaa33npLXn/zzTfNJjMMJScnY+7cuTh69Ch+/PFHXLp0CRERERa3b9++vdlkhl67du3QvXt3/Prrr5AkCXv37sW9995rtM2ZM2ewcuVK+fEHH3xgMZlhzdixYzFjxgxUVlZi9erVePfddxEWFmZ2W8PhpsaPH1+v+gxlZmbK682aNavz/kePHrVLkkIpSZLwyCOPYP/+/QBEAmrNmjXQarVW9zX8/2hpAnEiIiIisg8v65sQEREREdH1YOTIkVa32bBhg7w+evRoReXqe2gAwI4dO4xe27Jli7zetWtXtG3bttayWrVqVevcEY5SWVmJn376CYCYT2HIkCGK9tP3apAkyWjeDXNGjBhhtbzOnTvL6+Yufm/atAmVlZUAgJtuusnsMFNKNW7cWD5OnU6HL774wux2v//+Ow4cOABA9PgYPnx4vevUy83NlddrSwKpxbRp0+QhtwIDA7Fu3TrExMQo2tcwMabv3UFEREREjsEeGkREREREKjBjxgzMnDmz3vs3aNAA7du3r3WbS5cuISMjAwDg6+uLWbNmKSr7zz//lNezs7ONXtu3b5+8bm2OCcPtdu/erWhbezl48CCKi4sBiPfqueeeU7SfYa+Zmsdek7X3HzC+uF9QUGDy+p49e+T1mnN71MeECROwZs0aAKIXxpNPPmmyjWHvjIcfflhRrwRr9O81ICaIr6sxY8Zg2bJlirdftmwZxo4dW+d6AODzzz+XJ7TXaDT4/PPP6zRslOHxGR43EREREdkfExpERERERG4gPDzcaBJqc/Tj/ANAeXk53nvvvTrXk5eXZ/T4woUL8nrz5s0VlaF0O3s6e/asvH7p0iW7HHtNoaGhVsto0KCBvF5RUWHyumHPhvj4+DpEZ95dd92FFi1a4OTJk/jjjz+wf/9+o4v1paWlRj037DHcVE2uGF5MqT179hgd8+uvv47ExMQ6laHm4yMiIiJyNxxyioiIiIjIDfj7+1vdJj8/3+Z69MMh6RUVFcnrSu/EDwwMtDmOunLEsddUc7L0+igsLJTXg4KCbC7Py8sL48aNkx8b9sYAgNWrV8vvTffu3dGhQweb6wSMz3FpaaldyrS3U6dOITExUZ4M/dFHH8WUKVPqXI7h8bnis01ERETkSZjQICIiIiLyEIYXW0NCQiBJUp2XmsMAGV50LykpURSHI4blqa6urvV1w2Pv0KFDvY7dliHBlAoODpbXDZNFtkhJSZEnal++fDl0Op38mr0nA9cznH/i4sWLdivXXoqLizF06FC5R8xtt92GxYsX16ssw15KSufdICIiIqL6YUKDiIiIiMhDREdHy+sFBQWKExC1iYqKktdPnTqlaB9rc1EAxkMzWesZAVjvgWF47GqeuNkwzszMTLuU2bRpUwwePBiAGDZLP/n18ePHsW3bNgAi4TNq1Ci71AcAcXFx8vrp06ftVq49SJKEhx9+WJ4IvUWLFvj666/h5+dXr/LOnDkjr8fGxtojRCIiIiKygAkNIiIiIiIP0bhxY9xwww3y4127dtlcZufOneV1wwmta6NkQvCQkBB5/dKlS1a3P3ToUK2vd+rUSb5gff78eRw7dsxqma7Qq1cveX3Lli12K3fChAnyur5XxpIlS+T5H0aMGGHUO8RWhkNX/fXXX3Yr1x6mTp0qT5QeHByM9evXo1GjRvUuLz09XV7v2LGjreERERERUS2Y0CAiIiIi8iBDhgyR199//32by+vfv7+8vnfvXhw9erTW7Y8dO6YooWF4p/v+/futbr9q1apaX/f398eAAQPkx/Y4dke488475cnd//77b/z44492Kffuu++Wk1mbN2/GsWPHjIYPs/dk4D169JDX9T0h1OCzzz7DnDlzAIj5RVasWIH27dvXu7zz58/LPX4CAgLQrl07u8RJREREROYxoUFERERE5EEmTZokz6fwzTffmMyJURtzQzW1adMGt956q/z4ueeeszifRXV1NZ599lm5V0BtunfvLk+ynZaWZnQXfE3vv/8+jhw5YrXMl19+WV5fuHAhNm3aZHUfPWcNU9WkSRMkJSXJjx9//HF5ngdbeHt7IyUlBcC1IZfOnj0LQJzD2267zeY6DA0YMED+nKWlpSkaNszRdu3ahccee0x+PG/ePNxzzz02lbl9+3Z5PSEhQU5GEREREZFjMKFBRERERORBWrZsiX/+85/y45SUFEyePNnixM2VlZXYuHEjHnnkEaPhpQy99tprcvJh48aNGD16NK5cuWK0TUFBAR555BF8//338PX1tRpnTEyM3KNCkiSMGjXKZC6GyspKvPnmm3j22WcVzX/Qr18/jBkzRt73nnvuwRtvvGFx8m2dToc1a9Zg2LBhGDp0qNXy7eWNN95Aw4YNAQAnT55E7969LfbUuHLlChYvXoyXXnrJarnjxo2Dl5f4EzAtLc3oeXsLDw+XkySFhYX47bff7F5HXZw6dQr33XcfysrKAIjP/aRJk2wud/PmzfK6Ye8nIiIiInIM3j5CRERERORhZsyYgaysLHzyySeQJAlvvvkmFi5ciG7duqFly5YICAhAQUEBsrKycPDgQRQXFwMAIiIizJaXkJCAyZMnY/78+QCAlStX4ttvv8WAAQMQExOD3NxcbN68GUVFRQgPD8dzzz2HmTNnWo3ztddew5YtW1BdXY0DBw6gVatWGDBgAJo2bYrLly/jl19+wfnz5xEUFIQ33ngDzzzzjNUyFy1ahHPnzmHjxo0oLy/H1KlT8eqrr6Jnz55o3rw5/Pz8cOXKFRw/fhyHDx+WL4B37dpV4btruxtuuAGrVq1CYmIiioqKkJmZiUGDBqFFixbo0aMHGjZsiKKiImRkZGD//v2oqKjAsGHDFJU7aNAgbNiwQX7O19cXjz76qEOO46GHHsIvv/wCAFizZg169+7tkHqUWLp0Kc6fPw9A9Fbx8fHB008/rWjf2bNnywkmQ5IkYe3atQDEJPYPPvig/QImIiIiIrOY0CAiIiIi8jAajQbLli1D165dMWPGDOTl5aG8vBy7du2yOFG4RqOpdViiefPmwdvbG/PmzUN1dTWKi4uxfv16o22aNGmCr776SvEk0T179sSHH36ICRMmoKqqCqWlpfjuu++MtmncuDFWrlyJqqoqRWX6+flhw4YNmDVrFt58802UlJSgpKSk1gm4GzRoYDRZtzMMHDgQO3bswJgxY+Q5KE6ePImTJ0+a3T4oKEhRuRMmTDBKaAwdOhRRUVG2B2xGUlISXnzxRRQXF+PLL7/EnDlz5J48zmY4zFlVVRUWL16seN/JkyebTWjs2rULZ86cASDeR0sJPyIiIiKyHw45RURERETkoZ555hmcPHkS7733HhITExEXF4egoCD4+PggPDwc7du3x8iRI/HBBx/g5MmT8t3olrzxxhv49ddfkZKSgtjYWPj5+SEiIgJdu3bFa6+9hgMHDtT5Lv2UlBQcPHgQ48aNQ1xcHLRaLcLCwtC5c2e8+uqrOHjwIPr06VOnMr29vTF79mxkZWVhwYIFGDRoEJo3b46AgAA0aNAAERER6NKlC8aMGYNly5bhzJkzePfdd+tUhz107NgR+/btw9dff41HH30UN910E0JCQuDt7Y3w8HB07doVEydOxIYNG/Dpp58qKnPw4MFGw3PZezJwQ6GhoRg7diwAIDMzs05zllwPPvroI3n9+eefd10gRERERB5EIymZkY+IiIiIiMhOli1bJl/o1icNyDm2bduGhIQEAECLFi1w4sQJeV4NR8jKykKrVq3kYbHWrFnjsLqc6dKlS2jevDlKSkpw6623YufOna4OiYiIiMgjsIcGERERERGRh/j444/l9ZSUFIcmMwAgNjZW7gWybt06pKenO7Q+Z1m4cCFKSkoAiLleiIiIiMg5mNAgIiIiIiLyADk5Ofjyyy8BAD4+Pg4dbsrQjBkzEBISAkmSMHv2bKfU6UhXrlzBwoULAQBDhgyRe7wQERERkeMxoUFEREREROTmqqqq8Nxzz0Gn0wEAHnzwQTRp0sQpdUdHR2PWrFkAgJUrV+L33393Sr2OMnfuXFy+fBl+fn545513XB0OERERkUfhHBpERERERORUnEPDOb744gv8+uuvKCoqwvbt25GRkQEA8PPzw6FDh3DTTTe5OEIiIiIiorrxcXUAREREREREZH8bN27EJ598YvL8W2+9xWQGEREREV2XmNAgIiIiIiJyc8HBwejatSsmTZqEIUOGuDocIiIiIqJ64ZBTRERERERERERERESkepwUnIiIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFTv/wGtkq6MpINZNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_model = models.Lorentz1D(x_0=0.04, fwhm=0.15, amplitude=7000) + \\\n", + " models.Lorentz1D(x_0=0.2, fwhm=3, amplitude=300)\n", + "\n", + "plt.figure()\n", + "plt.plot(pds_reb.freq, (pds_reb.power - 2) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.plot(pds.freq, fit_model(pds.freq) * pds.freq, color=\"r\", label=\"Starting Model\")\n", + "for mod in fit_model:\n", + " plt.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + " \n", + "plt.semilogx()\n", + "plt.xlim([pds.freq[0], pds.freq[-1]])\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "plt.legend();\n", + "plt.ylim([0, None])\n" + ] + }, + { + "cell_type": "markdown", + "id": "2438911a", + "metadata": {}, + "source": [ + "We will now add a constant at the Poisson noise level (2 in Leahy normalization) and fit using the Maximum Likelihood estimation in `stingray`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2003fbfb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.95227938e+00 6.97518942e+03 4.11961192e-02 1.42093997e-01\n", + " 2.98070633e+02 4.06300000e-01 2.65743398e+00]\n" + ] + } + ], + "source": [ + "from stingray.modeling import PSDParEst\n", + "fit_model = models.Const1D(amplitude=2) + fit_model\n", + "\n", + "parest = PSDParEst(pds_reb, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "loglike = PSDLogLikelihood(\n", + " pds_reb.freq, pds_reb.power, fit_model, m=pds_reb.m)\n", + "\n", + "res = parest.fit(loglike, fit_model.parameters)\n", + "\n", + "fitmod = res.model\n", + "\n", + "# The Poisson noise level was the first parameter.\n", + "poisson = fitmod.parameters[0]\n", + "print(res.p_opt)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "502706d3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAAR9CAYAAAAKglvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOydeXhTxdfHv0mXhO7sBQuUHWSxoCCLSnFFfwqovICogKiAOyooguyKoOC+gMimKOAGuKDiQhEUBGURZBGxBSoUWmi6p2mSef+IvTbtTZvkLjO5PZ/nyUOSO/ec78mZnF7uZGZMjDEGgiAIgiAIgiAIgiAIgiAIgiAIA2LmLYAgCIIgCIIgCIIgCIIgCIIgCEIraCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYFhoIIQiCIAiCIAiCIAiCIAiCIAjCsNBACEEQBEEQBEEQBEEQBEEQBEEQhoUGQgiCIAiCIAiCIAiCIAiCIAiCMCw0EEIQBEEQBEEQBEEQBEEQBEEQhGGhgRCCIAiCIAiCIAiCIAiCIAiCIAwLDYQQBEEQBEEQBEEQBEEQBEEQBGFYaCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYFhoIIQiCIAiCIAiCIAiCIAiCIAjCsNBACEEQBEEQBEEQBEEQBEEQBEEQhoUGQgiCIAiCIAiCIAiCIAiCIAiCMCw0EEIQBEEQBEEQBEEQBEEQBEEQhGGhgRCCIAiCIAiCIAiCIAiCIAiCIAwLDYQQBEEQBEEQBEEQBEEQBEEQBGFYaCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYFhoIIQiCIAiCIAiCIAiCIAiCIAjCsNBACEEQBEEQBEEQBEEQBEEQBEEQhoUGQgiCIAiCIAiCIAiCIAiCIAiCMCw0EEIQBEEQBEEQBEEQBEEQBEEQhGGhgRCCIAiCIAiCIAiCIAiCIAiCIAwLDYQQBEEQBEEQBEEQBEEQBEEQBGFYaCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYlnDeAggiWGw2G7Zs2SK9btasGSwWC0dFBEEQBEEQBEEQBEEQBEEQRGVKS0tx8uRJ6XW/fv2QkJCgm38aCCFCli1btmDw4MG8ZRAEQRAEQRAEQRAEQRAEQRABsH79egwaNEg3f7Q0FhHydOjQAREREbxlaEJERITQ8fHSp4dfrXyoZVepHdH7FiGP0fMmenxGrnla+aGaRyjB6HkTPT6e+kL1Wk+UmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4xNZm5bQQAgR8gwePBhRUVG8ZWhCVFSU0PHx0qeHX618qGVXqR3R+xYhj9HzJnp8Rq55Wvmhmkcoweh5Ez0+nvpC9VpPlJqnphZCX4ycN9Fjo5rH1yZd69VOjJ43keMTWZuWmBhjjLcIggiG3bt34+KLL5Zer1+/Hm3atOGoiCAIgiAIgiAIgiAIgiAIgqjMX3/95bXNwW+//Ybu3bvr5p/2CCFClsobo7dp0wadOnXipIYgCIIgCIIgCIIgCIIgCILwh8r3drWGlsYiQp6ZM2ciISGBtwxNsNlsmDVrFmw2G28psvDSp4dfrXyoZVepHdH7FiGP0fMmenxGrnla+aGaRyjB6HkTPT6e+kL1Wk+UmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4xNZm5bQ0lhEyPLHH3+gc+fOSE5ORmZmJvbu3Wu4GSFOpxOZmZlISkpCeLh4E7h46dPDr1Y+1LKr1I7ofYuQx+h5Ez0+I9c8rfxQzSOUYPS8iR4fT32heq0nSs1TUwuhL0bOm+ixUc3ja5Ou9WonRs+byPHx0lZ+L7ecAwcO6HovlwZCiJCF95eHIAiCIAiCIAiCIAiCIAiCqBne93JpaSwi5Bk+fDiio6N5y9CEoqIirFmzBkVFRbylyMJLnx5+tfKhll2ldkTvW4Q8Rs+b6PEZueZp5YdqHqEEo+dN9Ph46gvVaz1Rap6aWgh9MXLeRI+Nah5fm3StVzsxet5Ejk9kbVpCAyFEyGOz2eB2u3nL0ASz2YyEhASYzWJ+VXnp08OvVj7UsqvUjuh9i5DH6HkTPT4j1zyt/FDNI5Rg9LyJHh9PfaF6rSdKzVNTC6EvRs6b6LFRzeNrk671aidGz5vI8YmsTUtoaSwiZOE9nYogCIIgCIIgCIIgCIIgCIKoGd73cmvXsA9hSFJSUhAZGclbhiY4HA7s3bsXDoeDtxRZeOnTw69WPtSyq9SO6H2LkMfoeRM9PiPXPK38UM0jlGD0vIkeH099oXqtJ0rNU1MLoS9GzpvosVHN42uTrvVqJ0bPm8jxiaxNS2gghAh5UlNTYbVaecvQBLvdjrS0NNjtdt5SZOGlTw+/WvlQy65SO6L3LUIeo+dN9PiMXPO08kM1j1CC0fMmenw89YXqtZ4oNU9NLYS+GDlvosdGNY+vTbrWq50YPW8ixyeyNi2hpbGIkIX3dCqCIAiCIAiCIAiCIAiCIAiiZnjfy6UZIUTIY7VaYTKZeMvQBMYY7HY7RB2v5KVPD79a+VDLrlI7ovctQh6j5030+Ixc87TyQzWPUILR8yZ6fDz1heq1nig1T00thL4YOW+ix0Y1j69NutarnRg9byLHJ7I2LaGBECLkmTx5MuLj43nL0IS8vDzMnz8feXl5vKXIwkufHn618qGWXaV2RO9bhDxGz5vo8Rm55mnlh2oeoQSj5030+HjqC9VrPVFqnppaCH0xct60jI0xBpfLBafTGfTj/PnzePHFF3H+/HlFdkT1rYUPNW0qtcUzf/Tgl3fRHyLH5482l8tluIESWhqLCFnKp1MlJiYiOzsb+/btM9zSWC6XC9nZ2WjYsCHCwsJ4y6kCL316+NXKh1p2ldoRvW8R8hg9b6LHZ+Sap5UfqnmEEoyeN9Hj46kvVK/1RKl5amoh9MXIeVMzNsYYiouLUVhYiKKiIpSWlirWxxiD0+lEeHi47itO6OFbCx9q2lRqi2f+iOAxet5Eji8QbVFRUYiLi0NsbCzCw8MV+eW9NBYNhBAhC+8vD0EQBEEQBEEQBEEQ+lFWVobMzMxat8EvQRAEb0wmE5KSkhATExO0Dd73cmlpLCLkGT16tKIvocgUFhZixYoVKCws5C1FFl769PCrlQ+17Cq1I3rfIuQxet5Ej8/INU8rP1TzCCUYPW+ix8dTX6he64lS89TUQuiLkfOmRmx2ux0ZGRmaDIKU/zqa1x4hWvvWwoeaNpXa4pk/IniMnjeR4wtGG2MMmZmZIf03Stl8FoIQgIyMDDidTt4yNCE8PBzJycmKp55pBS99evjVyke5XafTiYyMjKDtOBwOJCQk4NSpU4iMjFTl/MTERFit1qA1Edojek1QiujxGbnmaeVHLZtK7Yjetwh5jJ430ePjqS9Ur/VEqXlqaiH0xch5UxobYwwnTpyAy+VSWdl/8Fy6Rg/fWvhQ06ZSW6ItPUT4h9HzJnJ8wS5Dl5mZiTZt2oTk3ypaGosIWXhPpyKIYCguLsaYMWOwYcMG4aZzW61WDBo0CMuWLUNUVBRvOQRBEARBEARBEACAgoICZGZmer0XERGB+Ph4REdHIyIiQugbjgRBEKEGYwwlJSU4f/48SkpKvI4lJiaibt26AdvkfS839IZuCKISvXr1wp49e3jL0ITS0lLs2bMH3bp1g8Vi4S2nCrz06eFXKx/33HMPjh8/rnhqpMViQbdu3bBnz56gNgeUO99ut2Pt2rUAgDVr1ijSR2iD6DVBKaLHZ+Sap5UftWwqtSN63yLkMXreRI+Pp75QvdYTpeapqYXQFyPnTWlsNpvN67XFYkHz5s1V+0Wy2+1GcXExoqKiYDbru4q8Hr618KGmTaW2eOaPCB6j503k+PzVFhERgdjYWBw/ftxrMCQ/Pz+ogRDeiJUFggiClJSUoJYGCgUcDgf27t0Lh8PBW4osvPTp4VcLH3a7Hd9++60qfTYyMlKRnerOF3G2CuFB9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzpiQ2xhiKioq83qtXr56qy7IwxlBcXMxtjxCtfWvhQ02bSm3xzB8RPEbPm8jxBaLNZDKhXr16Xu+JGldN0NJYRMjCezoVQQRKRkYGWrZsyVuGX6SnpyM5OZm3DIIgCIIgCIIgajkulwt//vmn13utW7c27A8iCYIgRMPhcODYsWNe77Vr1w5hYWEB2eF9L5dmhBAhT0JCgnBTzNTC7XbDZrPB7XbzliILL316+NXKh9lsVqXPKrWjlg5CX0SvCUoRPT4j1zyt/KhlU6kd0fsWIY/R8yZ6fDz1heq1nig1T00thL4YOW9KYpP7/a7a/49hjMHpdHKbEaK1by18qGlTqS2e+SOCx+h5Ezm+QLXJ1VwR46oJugNGhDwTJkxAXFwcbxmakJ+fj1deeQX5+fm8pcjCS58efrXyERcXp0qfVWpHLR2EvoheE5QienxGrnla+VHLplI7ovctQh6j5030+HjqC9VrPVFqnppaCH0xct5Ej83lcuHs2bNwuVyG9K2FDzVtKrXFM39E8Bg9byLHJ7I2LaGlsYiQpXw6VUJCAvLz8/H7778bbmkst9uN/Px8xMXFCfnLfV769PCrhY+MjAy0bt0acXFxyM/P9/o11NatW5GUlBSQPqWbyR07dgwDBgyQ/VUWLY0lJqLXBKWIHp+Ra55WftSyqdSO6H2LkMfoeRM9Pp76QvVaT5Sap6YWQl+MnDclsTmdThw9etTrvbZt26q+R4jL5UJYWBhMJpNqdkXxrYUPNW0qtcUzf0TwGD1vIscXqDa16jDvpbHU+6tBEJyw2Wy8JWhG+fJFosJLnx5+tfJRPiW8MklJSboPPJjNZkNOuzcyotcEpYgen5FrnlZ+1LKp1I7ofYuQx+h5Ez0+nvpC9VpPlJqnphZCX4ycN9FjM5lMqg6siOZbCx9q2lRqi2f+iOAxet5Ejk9kbVpirJ8YELWS8ePHIzY2lrcMTSgoKMCiRYtQUFDAW4osvPTp4VcrH7Gxsar0WaX6CgoK8Nlnnxn2u2NURK8JShE9PiPXPK38qGVTjZonct8i5DF63kSPj6e+UL3WE6XmqamF0Bcj50302GhpLL42aWms2onR8yZyfCJr0xIaCCFCnr1798LhcPCWoQmRkZFISUlBZGQkbymy8NKnh1+tfDgcDlX6rFJ9kZGRaNOmjWG/O0ZF9JqgFNHjM3LN08qPWjbVqHki9y1CHqPnTfT4eOoL1Ws9UWqemloIfTFy3kSPzWQyISoqisvyNXr41sKHmjaV2uKZPyJ4jJ43keMTWZuW0B4hRMjCe105ggiUjIwMtGzZUvYYjz05RNNDEARBEARBEARRGT32CCEIgiB8Y5Q9QmhGCBHypKamwmq18pahCXa7HWlpabDb7bylyMJLnx5+tfJhtVqV9VmnE5gzB/bOnZF2662wjx4NfPopUFQUkBm73Y69e/ca9rtjVESvCUoRPT4j1zyt/KhlU6kd0fsWIY/R8yZ6fDz1heq1nig1T00thL4YOW+ix+Z2u1FQUMBlD0U9fGvhQ02bSm2ppSU1NRUmkwkmkwlpaWmKbJWzYsUKyebo0aNVsWkUgslbWlqa9HmmpqZqJ04FeNaVmhBZm5bQQAgR8iQnJxv2lyBOpxMZGRlwOp28pcjCS58efrXyER4eHnyfdTqBYcOA6dPhPH4cGXFxcH7yCXDrrUCDBsDAgcCyZUB2th+mnMjKyjLsd8eoiF4TlCJ6fEaueVr5UcumUjui9y1CHqPnTfT4eOoL1Ws9UWqemloIfTFy3kSPjTGG0tJS8Fg0RQ/fWvgIxGbFAQa5R3x8PDp27Ijrr78ec+fOxT///KOZFkIcRMhbxYEquYfFYkHjxo3Rt29fTJw4EQcOHKjWXsWBmrCwMMTFxSEsLAwmkwlmsxnx8fFo3rw5unTpgiFDhuC5557Dd999p2ivjsOHD2Pq1Kno378/mjZtijp16iAyMhL16tVD586dMWjQIMyePRvffvutNBgtwmfPA1oaiwhZeE+nIohAUbQUldsN3HMPsHx5zY7MZqBvX2DwYM+jVSv19RAEQRAEQRAEQegALY0V+qSmpmLLli1+t4+IiMDUqVMxffp0XfcwqKhz8+bNqsw4WLFiBe666y4AwKhRo7BixQrFNmszaWlp6N+/PwCgX79+imfuVMyPv9x555144403EBsbW62+QGjatCnuvvtuTJgwAfXq1fPrHJvNhkceeQTvvvuu337q1KmDI0eOoFmzZgHpM8rSWPRXgwh5EhMTke3HL+BDEZfLhezsbDRs2BBhYWG85VSBlz49/GrlIywsDA0bNkR2drb/I/6MARMneg2CuMLCkN2wIRpmZyOssh23G9i61fN4/HGgS5f/BkW6dQNMJrhcLpw/fx5hYWGKfnlA6IvoNUEposdn5JqnlR+1bCq1I3rfIuQxet5Ej4+nvlC91hOl5qmphdAXI+dN9NgYY3A6nQgPD9d982A9fGvhI1ibPXr0QM+ePb3ey8vLw969e6Vf25eVlWHmzJmw2Wx46aWXNNNC8EW0vMXGxmLkyJFe75WUlOCvv/7C9u3bUVZWBgB47733cOLECWzatAmRkZHV2rzvvvukGSKAZ5nA3NxcnD59Gnv37kVJSQkA4NSpU5gzZw6WLl2K5cuX49prr63Wbm5uLq688krs3btXei86OhqXXHIJWrZsCYvFApvNhqNHj+LAgQNwOBxSPOUzQUT67PWClsYiQp7x48fLjsIagYKCAixevBgFBQW8pcjCS58efrXyERsbG3ifffZZoNLFX0FsLBaPH48Cf+zs3w/MmQNcfDGQnAw8/DAKvvkGn3/+uWG/O0ZF9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzJnps5QM1PH4kpodvLXwEa/OGG27A66+/7vVYvnw5vvnmG2zZsgXNmzeX2r788sv49ddfNdOiB6NHjwZjDIwxmg1SCdHyVq9evSp9c+nSpdiyZQuOHj2Kyy+/XGq7ZcsWvPLKKzXafPrpp/HKK69I9t555x188skn+Pnnn5GXl4fNmzdj8ODB0mDEqVOnMGDAAHz00UfV2n388celQZDIyEgsWLAAZ8+eRVpaGpYvX45FixZhzZo1+O2332Cz2bBu3ToMHz4cERERAMT77PWClsYiQpby6VRWqxWlpaXYv3+/4ZbGKl+zz2KxCDlCy0ufHn618JGRkYFWrVrBYrFUWYvR51JUr78OPPRQVX0mE0otFlhKS2EKoowzkwnFDRvi4+xsbGAM3wAornCclsYSE9FrglJEj8/INU8rP2rZVGpH9L5FyGP0vIkeH099oXqtJ0rNU1MLoS9GzpuS2PRYGqv8RnXFX27rhR6+tfARiM2KS07NmDEDM2fO9Glr37596N69u/T/5XvvvRdvv/22alr81anW0liEb4LJm5ZLY7Vo0QIZGRk+2xYUFOCiiy5Ceno6AKBJkyY4deqUT32AZ8DBn/i++uor3HHHHTh//jwAzxJW27ZtQ/fu3au0PXPmDJo2bSptdP7ee+/hjjvuqDlYAFlZWYiNjUVUVFRAn71RlsaiGSFEyGO32w27uY/JZILVahX2IpiXPj38auWDMeZ/n121SnYQBABMjMEKwNSwYVA6TIwh+uxZjGIMnwLIAbABwF0AGgRlkdAD0WuCUkSPz8g1Tys/atlUakf0vkXIY/S8iR4fT32heq0nSs1TUwuhL0bOm+ixlW9kzKvmae1bCx9q2qxoKyUlxWsA4scff9RVC6EfoZa32NhYPPzww9Lr06dP4+DBg9We4298119/PT7//HNpYKGkpAQTJ06Ubfvdd99JgyBNmjTB7bff7m8ISExMRHR0dMh99mpBAyFEyDNhwgTExcXxlqEJ+fn5ePnll5Gfn89biiy89OnhVysfcXFx/vXZzz8HRo/2ra9uXbw8fTryDx8Gtm0DJk0C2rTxW0d+XBxenjAB+f/qqANgIIBlALIAJA4dCrz4IvD3337bJLRH9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzJnpsLpcLZ86c4bY0lta+tfChps3KtlJSUqRjlX9x7+v8rVu3YvLkyejZsycaN26MyMhINGzYEJdeeimmT5/ulx05Tp48iaeffhoXXXQR6tWrh+joaHTo0AGPPvoo/vrrrxrPX7FihfSr+9E+/o+flpYmtak4CPTDDz9g+PDhaNWqFaxWK+rXr48rrrgCr7/+urRfhS8yMjIkmxVXe/j1119xzz33oF27doiKikLdunXRs2dPzJ07F0VFRf58JBLnzp3DwoULcc0116BZs2awWq1ISEjAhRdeiAceeKDGZc0q5/3o0aOYMGECOnTogOjoaNSrVw8pKSmYPn06MjMzA9KmFX369PF6/XcN90wC+Y706dMHTzzxhPR68+bN2L59e5V2//zzj/S8efPmQQ1m8Kx5PKHN0omQJy0tDXa7nbcMTbBarUhNTYXVauUtRRZe+vTwq5UPu91ec59NSwP+7/8AX3+QTCZY33gDqR07whodDfTt63nMnw8cOgSsX+957Nrl04XVbkdqWhqsMjrCAITt2uU538dm6wQfRK8JShE9PiPXPK38qGVTqR3R+xYhj9HzJnp8PPWF6rWeKDVPTS2Evhg5b6LHZjKZEBsby21GiNa+tfChps3KturUqSMdq+l+T2lpKR5++GEsXbq0yk3dnJwc5OTkYOfOnViwYAGef/55PPjgg37r+uyzzzBy5Ejk5eV5vX/kyBEcOXIEixcvxssvv4yxY8f6bdMfHA4HHnzwQSxZssTr/dLSUmzduhVbt26V9lVp0MC/NR0YY5g5cyaeeeYZaTYB4Jl5sGvXLuzatQvvvPMOvvvuO7Rq1apGe2+88QamTp1a5bMpLS1FXl4eDh06hLfeegt33XUX3nrrLdlNxSvm/c0338Tjjz/ule/i4mLk5uZi3759eO211/Duu+9y3+e0bt26Xq9rGtwN9Dvy0EMPYcGCBdLm5mvWrEHv3r292pjN/81rKF+mK1B41jye0EAIEfKUbw5kRCIjI71+CSEavPTp4VcrHw6Ho/o+++uvwE03AaWlvtu89RYib7sNKZXfN5mACy/0PKZMATIzgc8+8wyKbN4MOJ1S00iHAyn+fnf27/9vw/XmzYFBg4BbbgH69aNBEZ0RvSYoRfT4jFzztPKjlk2ldkTvW4Q8Rs+b6PHx1Beq13qi1Dw1tRD6YuS8iR6b2WxGVFSUYX1r4UNNm5VtVZy90bhxY5/nFRUV4brrrsNPP/0kvde6dWtcfPHFqFu3Ls6fP4+ffvoJp06dQklJCR566CHk5+djypQpNWr69ddfMXXqVDgcDtSvXx+pqamoW7cuMjIysGXLFpSVlaGkpATjxo1DWFgY7r777iCjr8rYsWOxcuVKmM1mXHrppejQoQPcbjd27NiBI0eOAAB2796NkSNHYuPGjX7ZnDVrFmbPng3AM+OmS5cuiIiIwN69e7F7924AnpvqgwcPxu7du6vd+2HChAleG4U3aNAAvXv3RmJiIux2O/bs2YMDBw6AMYZly5bh1KlT+PLLL71u4AP/5X3x4sV44IEHpPcjIiKQmpqKFi1a4Pz580hLS8P58+cxZMgQzJ07178PUSNyc3O9XsfHx1fbPtDvSGJiIi677DL88MMPAICtW7dWadO6dWvp+dmzZ7F8+XJpnxN/4VnzeEIDIUTIM2DAAGkzK6NRUlKCLVu2oF+/fl6/iBAFXvr08KuVjzp16qBfv37YsmULSkpKvA8ePAgMGAAUFvo28NxzwLhx/ulLSgLuv9/zsNmAjRs9gyIbN6LE7caWfv3Qb8sW1KmsozpOnABee83zuOIKj71Kv4ggtEP0mqAU0eMzcs3Tyo9aNpXaEb1vEfIYPW+ix8dTX6he64lS89TUQuiLkfOmZ2xOpzPgZXTcbjcKCwsRExNT5Wat1ujhW85HUlKSog3n3W43CgoKEBsbq1h3RVtutxvff/+9dKxXr14+z7v//vulQZA2bdpg8eLFuPLKK73auFwuvP3223j00UdRWlqK6dOno3///lV+ZV+Z8kGQiRMn4plnnoHFYpGOZWZmYsSIEdJN6ocffhipqaleN6iDZceOHdiyZQt69OiBd999Fx06dJCOMcbw6quvYsKECQA8G2z/+OOPuOKKK6q1efr0acyePRutW7fGBx98gJ49e3od/+ijj3D77bejrKwM+/fvxwcffICRI0fK2lq2bJk0CBIXF4eFCxdi1KhRiIiI8Gq3efNm3Hnnnfjnn3/w9ddfY8GCBV7LPgGevO/du1eKB/BsgL5q1SokJSVJ75WWlmLy5Ml4+eWX/RrE0pKKg24A0LJly2rb5+XlBfwdufTSS6WBkH379qGkpMSrbl511VWIjY1FQUEBAM/A2Z49e3DPPfega9eufvlQ8/sbStBACBHyJCQkGPZL63a7YbPZvKYtigQvfXr41cqH2WyW7bPhmZnA8OHAuXO+T37iCWDy5OD0JSQAI0Z4HnY73N98g5ytW3Fm61YkBxcK8OOPHs0bNwJhYcFaIQJA9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzpmdsmZmZNd6cJDy//q+4d0SgMMbgcrnAGFOspaKtefPm4eTJk9IxX8tObd26Fe+++y4Azy/kN27cKLukU1hYGO677z7UqVMHd911F1wuF2bPno2vvvqqWk0OhwPjx4/HCy+8UOVYUlISNm7ciB49euDw4cMoLi7GrFmzJD1KKC0tRdu2bfHDDz8gJibG65jJZMIjjzyCbdu24eOPPwYArF69usaBkPJZLT/++COaNm1a5fj//d//ScuHlduUGwgpKCjA448/DsAzy2vTpk249NJLZX32798f3377Lbp37w673S4tS1ZxFgJjDM8995y0HFanTp2wcePGKjMVLBYLXnrpJRQWFuKdd96pNlYtKSwsxGuvvSa9btKkCS688MJqzwnmO9K+fXvpudvtRk5ODpo1aya9FxcXh5kzZ0q5cDqdeO211/Daa6+hSZMmuPTSS3HJJZegZ8+e6N27d5V+BKj7/Q0pGEGEKAcOHGAApMeBAwd4SyKIaklPT/fqs+WPxgBzJCczBvh+3HsvY2636nrMAOsNsPkA+7M6/9U9nnhCVV0EQRAEQRAEQRDllJWVsYMHD3o9ysrKfLb39f8ueng/0tPTdcthv379JL8zZsyocjwvL4/9+OOP7LbbbvPS+Oijj/q0OXjwYKnd+vXr/dLRoUMHBoCZTCaWk5NTrc7Y2Fhms9mqtffZZ59J7a1Wq2z75cuXS21GjRola2fz5s1ecX/yySfV+t24caPUtnv37rJtKn8PFi5cWK3NgwcPSm3r168v2+bll1+W2kyYMKFae+WMGzfOZ1y5ubnMYrFIx7/88stqbZ0/f55FR0dL7fv16+eXhuqomJ8WLVr4bJeRkcGuuOIKr890/vz5VdpVzmUwrFu3zsvGvn37ZNvNnj2bmc3mar/nYWFhLDU1la1cuZI5nc6g9DAWeB32Be97ucb8GT1Rq0hOTlY0nVNknE4nMjIy4Kywt4NI8NKnh1+tfISHh3v12QQA3wCIyMjwfdLQocBbb3ntx6FUn9PpRFZWFszh4dgO4EkA7QBcCGAKgFI/p1MCAJ5/Hli7NigdRGCIXhOUInp8Rq55WvlRy6YaNU/kvkXIY/S8iR4fT32heq0nSs1TUwuhL0bOm5Fjq60wxlBaWhrwL8pnzZoFk8nk9YiPj8cVV1yB1atXAwDq16+PefPm4cUXX5S14XQ68e233wLw/Dr+f//7n19a+vfvL2mvvMRRZQYOHFjj/g833HADGjZsCMCzqfv27durbe8PVqsVN910U7VtunXrJj3PqO5eQgX+7//+r9rjHTp0kJZfOnfunLTsUkUq7kcyYsQIv/xWXKps27ZtXsd++uknlP67P2qjRo0wYMCAam3VrVsXAwcO9MtvMJw/fx4PPvig1+Oee+5Bamoq2rZtix9//FFqe9lll+GRRx6p0WYw35HKMzjkcgEA06ZNw++//44777wT0dHRsm1cLhfS0tIwatQodOnSBfv37wcQ/Pc31KGBECLkGT16tOw0LyNQWFiIlStXorC6PSM4wkufHn618hETEyP12SgAXwK4qLoTBgwA3nuvytJTSvUVFhbim2++qfLdOQTgOQCnN2wATp4E3ngDuOYaoKbBxjFjgH37gtJC+I/oNUEposdn5JqnlR+1bKpR80TuW4Q8Rs+b6PHx1Beq13qi1Dw1tRD6YuS8GTm22orL5cK5c+fgcrlUtRsWFob58+fjySef9Nnm999/R1FREQDPxtoPP/wwxo8fjwceeKDKjeyKj127dkk2Ki6/JUdNe4iUa+3Ro4f0es+ePTWeUxPt27evst9GZerXry89z8/Pr9FmfHy819JKcphMJtStsP+nnN2KAz1vv/12tZ91+eODDz6Qzqn8mZdv0g4APXv29GvZe3/yEiwFBQV44403vB5Lly7Fli1bUFZWJrUbMWIEvvjiC699Y3wRzHek8sBHXFycz7adOnXCu+++i7Nnz2LTpk2YNm0arr/+ejRu3LhK20OHDqFPnz74/fffNfv+Co+u808IQkV4T6ciiECpODU1EmBfo4Ylp/r2ZayoSBc9lR9Vpknn5jL23nuMJST41puczJjM9GKCIAiCIAiCIIhgoaWxjLU0Vo8ePdgDDzwgPUaNGsX69+/vtUQSADZlyhSf9j7//HPF8c+ZM6danZ999plfsY0fP146R24pr0CXxrriiiv88lsxFjkqfg+aN2/ul80WLVr47B8FBQWKP/OrrrrKy+YjjzwiHbv//vv90rh+/XrpHLWXxpJ7REZGskaNGrHevXuzxx9/3OcyVeWosTRWZU2ZmZlB2Tl48CCbPn06q1u3rpe9rl27MneAS68bZWksY64nRBAEITBmAO8BuK66RhddBHzxBVBpkzBuJCQAd9wBNGgA3HADIDd9MiPDs3n6V1/VPIOEIAiCIAiCIAiCqHXccMMNmDlzZpX3s7Ky8Nhjj0nLY82dOxcXXXQRhg4dWqVtXl6eYh01LdNWecNuX1RcksjXEkaBYKqwJLZaqGFTi8+84gyxYD5vtWnRooXfS41pyeHDh6XnYWFhaNCgQVB2OnbsiFmzZmH8+PG45ppr8McffwDwzKhKS0uTloqrTdDSWETIM3ny5BrXbQxV8vLyMG/ePFX+4GgBL316+NXKR3x8PGZMnozrquuzbdsC33zjGXzQSF9eXh4++OCDwL87AwYAc+f6Pv7dd8BTTwWliagZ0WuCUkSPz8g1Tys/atlUo+aJ3LcIeYyeN9Hj46kvVK/1RKl5amoh9MXIedMztqSkJKSnpwf0OHr0KH755RccPXo04HOVPvTwLecjKSlJ0efsdDpx+vRpVfZ9cTqdYIxhxYoVuO66/34yeN999yE3N7dK+4o3w7t27YqysjKcOnUKZWVlYIz59ZAbjKlIcXGxX9rLl+gCgNjYWL/OCUUqD0CcP3/e78+6/JGWluZlo+LgRzCfdygQzHfkl19+kZ5369bNryW4qqNJkyZYsmSJ13tbtmxR7fsbStBPdomQZ/369X4XzFAjKioKgwcP9ntkXG946dPDryY+GMOU4mIMXL8eUb76bFIS8O23gMx6jmrqi4qKwmWXXVbjxZ8sTz4J7N4NfPSR/PEFC4Du3YHbbgtKG+Eb0WuCUkSPz8g1Tys/atlUo+aJ3LcIeYyeN9Hj46kvVK/1RKl5amoh9MXIedMztvDwcCQnJwd0jtvtxgUXXACLxeLXPgVqoodvLXyYzWYkJCSoYq/cVnh4ON555x106NABRUVFOH/+PObOnYsXXnjBq33F/Q+ysrJU1VLOiRMn/GpXcd+LYH+5HwokJCTAYrFIm5tnZWV57SkSDI0aNZKeB/N5hwKB9svTp0/jp59+kl5fccUVqujo3bs34uPjpcHorKws1b8zoUDtipYwJIcPH/batMhIREREoEOHDjVulMULXvr08KuFj/i33sITZWXocPgwIuT6bIMGnkGQFi001xcREYHmzZsH990xmYBly4AuXXy3uftuYO/eoLQRvhG9JihF9PiMXPO08qOWTTVqnsh9i5DH6HkTPT6e+kL1Wk+UmqemFkJfjJw30WMzm82oU6cOl5uCevjWwoeaNivaSkpKwoQJE6Rjr7/+OrKysrzap6SkSL+SP3v2LP7++2/V49uxY0eNbVwul9cG7N27d1fNv4j07NlTel7xZn2wVPy8du3aBbfbXeM5FTdsDwUC7Zevvfaa132a4cOHq6al4swSq9XKrebxpHZFSxgSo/5iBvBMDRR5xgsvfXr4Vd3HW2+h7gsvoDgqCusHD0ZxpT7rjokBvv4a6NBBF33FxcXYtm1b8N+dmBhg3TrA1y9ASkqAm28Gzp0Lzj4hi+g1QSmix2fkmqeVH7VsqlHzRO5bhDxGz5vo8fHUF5LXeiraVMOO6P2LkMfIeRM9NpfLhdzcXLhcLkP61sKHmjYr23r88celZabsdjuef/55r/Z16tTBlVdeKb1+/fXXVY/vs88+Q35+frVtvv76a5w9exaA58Zy7969VfMvIjfeeKP0/K233gKT2zs0AC699FLp5vyZM2ewadOmatvn5eXhs88+U+RTbwLplz///LPX7Kdrr70WPXr0UEXHqVOnkJ2dLb1OSkriVvN4QgMhBEEQWrN6NfDAAz4PlwA4s2QJcPHF/tmz2YDPPgPS04GcHFUkBkXr1p7YfP2CICMDGDYMqGVrThIEQRAEQRAEQRDBU7duXTz00EPS68WLF3vdxAWAJ598Unr+xhtvVNl/ojoqzzCRIz8/H1OmTPF5vKioCE888YT0esiQIYbdv7accePGIeHfvUx3796NWbNm+X1uTk5OlZvuCQkJuOmmm6TXTzzxBEpKSnzaePLJJ702WDcSX3/9NW666SZpz47o6OgqS8KV8/nnn+Odd94JaIWPadOmeQ1cVdyLp1bBCCJEOXDgAAMgPQ4cOMBbEkFU5YsvGAsPZwyQfTgA9j+Apaen+2fvyBHGGjX6z4bFwthDDzF28mTA0tLT072+QxUfW7duZenp6X49zj35pM/4GMBsd9/t89ySkpKAdRMEQRAEQRAEUXsoKytjBw8e9HqUlZXxlkUEQL9+/aT/a86YMcOvc3JyclhMTIx03pNPPlmlzahRo6TjkZGRbO7cuaygoEDWXklJCVu3bh0bOHAg69GjR406IyMjJb+lpaVe7TIzM73a1qlThx09elTW5vLly6V2o0aNkm2zefNmqU2/fv18fygVqPj/dzkq/n+/RYsWftls0aKFdI6vexQV4wHARo4cyY4fPy7b1u12s23btrH77ruP1alTRzY3hw8fZhaLRbLXv39/lpmZ6dXGbrezxx9/3CsvgXxW1VExHn8/p+qomMuabruXlZWxtLQ0dssttzCz2SydYzab2fr1632e99ZbbzEArHnz5mzatGns0KFDPtseP36cjRgxwkvTwIEDA45LrTrM+14ubZZOhDwdOnTAsWPHeMvQhLKyMhw7dgytW7cWci1VXvr08KuKjx9/BIYM8ZoRURYRgWOtW6P1sWMIKyvDKABfAnjdX5tt2wIDB6Js5UrJTsRrrwGLF3v25Zg8GWjevEYzZWVlOHHiBCIiImR/RXD55Zf7qwgAsAbAMB/H4pcuxX1Ll2K1zDGr1YpBgwZh2bJlhl3iTk1ErwlKET0+I9c8rfyoZVOpHdH7FiGP0fMmenw89YXMtZ5GNtWwI3r/IuQxct5Ej83tdqO0tJTbZula+9bCh5o25WzVr18fDzzwAObPnw/AM+vjiSeeQL169aTzFi9ejNOnT2PTpk1wOByYMmUKnnnmGVx66aVo3rw5LBYLbDYbjh07hgMHDkgbfV/sx2oMzzzzDKZOnYr58+dj6dKlSE1NRd26dXH8+HGkpaXB4XBIbV9++WW0adNG0WcQKowePRp///035syZAwB499138f777yMlJQUdOnRATEwMCgsLkZmZib1790qbc8vhdrvRvHlzLFy4EA8++CAAYPPmzWjVqhVSU1PRokUL5ObmYvPmzTh37hwiIyPx7LPPYtKkSbrEqgbjx49HWFgYTCYTAM9SbzabDVlZWdi9e3eVGTDNmjXDihUrvJZ+88WJEycwZ84czJkzBw0bNkT37t3RqFEjREdHIy8vD4cOHcK+ffu8ZoK0a9cOixYt4lrzeFJ7IiUMC+0Rwg8jr5ev2Mfu3cBNNwF2u7fdCnuEPAjIDg5Ui8kELFqE4v/7P++9RhwO4K23gDZtgHfeqdGM4j1CKjEGwO/VHF8KIEXmfbvdjrVr12LMmDGq6DA6otcEpYgen5FrnlZ+RFkvX/S+Rchj9LyJHh/tEcLPJu0RUnsxct5Ej83tdsNms/m1WXMo+tbCh5o2fdl6/PHHER0dDQAoLCzESy+95HXcYrFg48aNmDp1KurUqQPA09c2b96MlStX4u2338aHH36I3377TRoEiYiIQK9evWrU1KNHD3z00UeIi4tDTk4OPv74YyxZskQadAE8P+x78803MXbsWMWfQSgxe/ZsrF27Fk2bNgXg2ePlt99+w/vvv4/Fixfj/fffx5YtW7wGQXr27FllELQ87+PGjcOrr74q7RficDiwadMmLFmyBB9//DHOnTuH+Ph4fPTRR7jkkkv0C1QFFi9ejDfffBNvvPEG3njjDSxduhSffPIJfvrpJ69BkKSkJMyYMQO///57jYMgXbt2rfI5ZGdn45tvvsF7772HRYsWYfXq1di7d6/XIMjtt9+Obdu2oUmTJlxrHk9MjCnc2YYgOPHHH3+gc+fO0usDBw6gU6dOHBURxL8cPgxcfnm1+3dMBTC3wuv09HQkJyf778PhAAYOBL75puqxffuArl1rNJGRkYGWLVv677MGWgL4FUA9H8czAFwCQG77dKvVitzcXFitVtX0EARBEARBEAQR+jidThw9etTrvbZt2yI8nBY5CRVSU1OxZcsWAMCMGTMwc+ZMv8+dNGkSFixYAACIj49HRkaGtE9FRbKzs/Huu+/iu+++w8GDB5GTk4OysjLExcWhRYsW6NKlC/r3748bbrgBDRs2rFHn5s2bkZqaiuPHj2PRokX48ssvceLECTgcDjRr1gwDBgzAgw8+iLZt21arf8WKFbjrrrsAAKNGjcKKFSuqtElLS0P//v0BAP369fNrv5PyGQYAZDctr/j//RYtWiAjI6NGm8nJyTh+/DgA/+5RlJaWYs2aNfjmm2+wa9cuZGdno7CwENHR0bjgggvQsWNHXH755bjhhhvQrl27Gv3/+eefeP311/H1118jMzMTFosFzZo1w4033ojx48ejefPmQX1W1VExP/5+TtVRUV9lTCYTYmJiEB8fj/j4eLRv3x4XX3wxevXqhX79+iEsLCwgX//88w82b96Mn376CX/88Qf+/vtv5ObmorS0FDExMahfvz4uvPBC9O7dG8OHD0erVq2CjkutOsz7Xi4NhBAhC+8vD0HIcuIE0LcvkJnps8kCAJUncgY8EAIARUXAddcBP/3033s33wx8+qlfp9vtdtStWxf2SrNWlHA1gK8B+Prz/T2A6wC4ZI4F9RkQBEEQBEEQBGFoaCCEIAiCL0YZCKGlsYiQZ+bMmbK/BjACNpsNs2bNgs1m4y1FFl769PAblI+zZ4Frrql2EGRxQgKKlPbZoiLYpkzBrAULYDtyxPvY9Ol+mbDZbJg/fz6GDBkSvA4ZvgMwuZrjVwF4XlWPtQvRa4JSRI/PyDVPKz9q2VRqR/S+Rchj9LyJHh9PfcJe6+lkUw07ovcvQh4j50302JxOJ06dOgVnhf0djeRbCx9q2lRqi2f+iOAxet5Ejk9kbVpCM0KIkKV8FDE5OVnahMloM0KcTicyMzORlJQk5K9deOnTw2/APmw2oH9/YO9en02KBgxA3e++wwVJScjMzPT6gxPobAhnYSEy33kHSS+/jPB/p65i4EBgwwb/zv83vnr16mHs2LHYsGGDqjNDPgBwWzXH7wDwfqX3aEZIzYheE5QienxGrnla+VHLplI7ovctQh6j5030+HjqE/JaT0ebatgRvX8R8hg5b0pi02NGCGMMDocDkZGRXksO6YEevrXwoaZNpbZ45o8IHqPnTeT4AtVmlBkhNBBChCy8vzwEIVFc7Fmiats2322uvRYZr76Klh06yB6WBgHsds/D3xkjpaXAypXAc88BH38MXHyxf+d98YXnvGnTgK5dYbfbkZWV5d+5fmAqLkaTW29F5OHDssdLAPQFsKfCezQQQhAEQRAEQRBEZWhpLIIgCL4YZSCElsYiQp7hw4cjOjqatwxNKCoqwpo1a1BUVMRbiiy89Onh128fDgcwZEj1gyC9e3v27bBYEB0d7bvPFhYCN94IXH+957k/+pxOYOxY4K+//B8EYQxFc+diTXg4ivr0AW65BdbDh5GcnKzao8WFFyJy40agnvzW6XUArAPQwD/FxL+IXhOUInp8Rq55WvlRy6ZSO6L3LUIeo+dN9Ph46hPqWo+DTTXsiN6/CHmMnDfRY3O5XDh//jxcLrndDEPftxY+1LSp1BbP/BHBY/S8iRyfyNq0hAZCiJDHZrPB7XbzlqEJZrMZCQkJMJvF/Kry0qeHX798uFzAyJHAV1/5btOlC/Dll8C/Ax9ut1u2z5ptNuDqq4Hvvwd27AAGD/bM9vBXX5iv7cll+OormPfuRYLNBrPbDaxbB3TrBgwaBBw65L+dmmjZEli7FvDxGbYA8CEA+h2X/4heE5QienxGrnla+VHLplI7ovctQh6j5030+HjqE+Zaj5NNNeyI3r8IeYycN9FjM5lMCAsL47J8jR6+tfChpk2ltnjmjwgeo+dN5PhE1qYltDQWEbLwnk5F1HIYA8aPB95+23eb1q09M0USEwEAGRkZaNmyZZVmiQCOt2+PyMobn998M/Dhh4CaU74Z88xQ+eUX+eO7d3sGRdRk4UJg4kSfh18G8ChoaSyCIAiCIAiCIKpCS2MRBEHwhZbGIghBSElJQWRkJG8ZmuBwOLB37144HA7eUmThpU8PvzX6mDKl+kGQpk2Bb7+VBkHKiYyM9OqzyQC2AVUHQQDPTI177wVkZjwF/Rls2gT88gsckZHYm5ICR8Xvzk03qT8IAgCPPQaMGOHz8AR4Nk8nakb0mqAU0eMzcs3Tyo9aNpXaEb1vEfIYPW+ix8dTnxDXehxtqmFH9P5FyGPkvIkem9vtRnFxMZfVJvTwrYUPNW0qtcUzf0TwGD1vIscnsjYtoYEQIuRJTU2F1WrlLUMT7HY70tLSYLfbeUuRhZc+PfxW6+P554F583yfXK+eZ8BBZvaH1Wr16rMuABHVCdm4Efjnn8D0VceaNZ7zrVakpabCXvG7M316YLb8xWQCliwBUlJ8NnkbQOT+/dr4NxCi1wSliB6fkWueVn7UsqnUjuh9i5DH6HkTPT6e+rhf63G2qYYd0fsXIY+R8yZ6bIwxFBQUgMeiKXr41sKHmjaV2uKZPyJ4jJ43keMTWZuW0NJYRMjCezoVwR+73Y6srCxdfcZ88AEaTJ3q87g7OhpZ778Px0UXVTmWmZmJyy+/vMr77QAcrF8fYefOeR9o3twzq6RdO6WyKwh0A+vXA7NnA/v2/ff+DTd49jLRkowMuLp3R1huruxhZ9OmCN+zB2jUSFsdBEEQBEEQBEGEDLQ0FkEQBF+MsjQW/dUgQh6r1YrSajaVDmUYYygtLYXFYhFyAyNe+oqKinDvvfdi3bp1mv2iyGQywWKxoLS0VBohHwpgdTXn2AFcX1SEtMGDA7L7J4AzK1ei6YgRQH6+p2H79p5BkGbNZO0E/dmbzcAtt4ANHozS9ethmTsXpt9+A6ZN89/Gzz8DxcXAVVd5Znv4S3Iysl97DQ3vuANyW7uHnzoF/N//Ad99B0RUO0+m1iJ6TVCK6PHx0qeXXy38qGVTqR3R+xYhj9HzJnp8PPXp4dvINU9NLYS+GDlvosfGGANjDCaTiUvN09q3Fj7UtKnUFs/8EcFj9LyJHJ/I2rSElsYiQp7JkycjPj6etwxNyMvLw/z585GXl8dbiiy89I0fPx7t27fXdEm0+Ph4r751HYBV8F00nQCGAUgL0G45jk6dgC++AOrUAbp3B7Zu9TkIAij/7PPy8zF//37kffutZ2CjVy//TmTMs+fHNdcAo0YBAa7xa+/bF763TQfw44/A448HZLM2IXpNUIro8fHSp5dfLfyoZVNxzRO8bxHyGD1vosfHU58evo1c89TUQuiLkfMmemwulwtZWVlwuVyG9K2FDzVtKrXFM39E8Bg9byLHJ7I2LaGlsYiQpXw6VWJiIrKzs7Fv3z7DLY3lcrmQnZ2Nhg0bIixM7jf0fOGhz263o379+oiLi0N2drZmRTssLAwNGzZEdnY2erlc2AQgqpr2IwG8F6DditrT09ORnJwMbNsGdOkC1DC4p/SzD/r8b74BBgz47/VddwHLlvl9ekZGBlq2bIn3UMMG6cuXA6NH+6+rliB6TVCK6PHx0qeXXy38qGWTW80juGL0vIkeH099evg2cs1TUwuhL0bOm5LY9FgaizEGp9OJ8PBwLjNCtPathQ81bSq1xTN/RPAYPW8ixxeoNqMsjUUDIUTIwvvLQ/Ch/Ea6XlwEzyyPhGraPATgdQU+rFYrcnNzNZ3hogqMAX37Atu3e7//+efAjTf6ZaI8f3UAbAPQ3VdDi8UzK6ZHDwWCCYIgCIIgCIIIdWiPEIIgCL4YZSCElsYiQp7Ro0cjJiaGtwxNKCwsxIoVK1BYWMhbiiy89MXExGie95iYGNw3ejTWx8RUOwgyHYENgshpHzRoUMCDIEo/+6DO/+GHqoMgAHDvvUDljd5roATAzQCyfTUoLQVuuQU4cyYgu0ZH9JqgFNHj46VPL79a+FHLJpeaR3DH6HkTPT6e+vTwbeSap6YWQl+MnDfRY3O5XMjJyeG2NJbWvrXwoaZNpbZ45o8IHqPnTeT4RNamJTQQEqI89thj0oY2JpPJs6ROAHz//fcYOXIk2rVrh+joaNSrVw9du3bFpEmTcPjw4aA0HTp0CJMmTULXrl1Rr149REdHo127dhg1ahS+//77oGz6Q0ZGBpxOp2b2eRIeHo7k5GRhf+nCS5/T6dQ8742cTlybkYHEany8DGBONTZMAF4E8EiF9ypqt1qtGDZsGJYFsLRUOUo/+6DOf+op+fezsoAHHwxYwwl4NqD3+QlnZgJDhwJlZQHbNiqi1wSliB4fL316+dXCj1o2udQ8gjtGz5vo8fHUp4dvI9c8NbUQ+mLkvIkem8lk4raRux6+tfChpk2ltnjmjwgeo+dN5PhE1qYltDRWCLJz50707t0bbrdbeq9FixbIyMio8dz8/HyMHTsWa9eu9dkmIiICs2bNwlO+bnrK8Oyzz2LWrFkoq+aG5W233YbFixcjNjbWb7vVwXs6FcGH6pbG2rp1K5KSkhT7MJ87hyZDhyLi7799tikYMgTn5s8HzD7Gk51O1H/qKcR+/DEAIOeFF1A4ZIhXk8TERPGXw6rI228D48ZVfb9uXeCNN4DbbqvRhFz+HoFnUMknTz4JzJsXiFKCIAiCIAiCIAwCLY1FEATBF1oai+BCWVkZ7rnnHq9BkEDOvfnmm70GQTp37oyRI0di6NChaNKkidRuypQpmD17tl92p0+fjqeffloaBGnSpAmGDh2KkSNHenXm1atXY8iQIar/ir9Xr16wWCyq2hSF0tJS7NixA6WlpbylyMJLn8Vikc17UlISkpOTlT0aN0bzcePg/ucf7OjVC6VyfevmmxG7ejWSW7WSt9GkCZKfeEIaBAGABk8+ieQ9e9CkSRNkZWWhSZMmigZBlH72QZ0/diwwcaL3e//7H3DggF+DIL54BTVsNL9woccHIXxNUIro8fHSp5dfLfyoZZNLzSO4Y/S8iR4fT316+DZyzVNTC6EvRs6b6LG53W4UFhYGda8lFHxr4UNNm0pt8cwfETxGz5vI8YmsTUtoICTEmD9/Pvbv3w8AGDFiREDnzpkzBz/88AMAz+bMq1evxv79+7Fy5UqsXbsWGRkZmDRpktR+5syZ2LJlS7U2v//+e8yZ89/iQJMmTUJGRgbWrl2LlStX4sCBA/jggw+kG76bNm3C3LlzA9JdEykpKYiMjFTVpig4HA7s3bsXDoeDtxRZeOmLjIzULu/PPQf89hsckZHYm5ICR2UfV10FfPAB4GvUu7DQMziwbp33+243MHw4HN99p8pnpvSzD/r8OXOAjh2B2Fhg6VLPRulNmwaloSJjAZRW+FWAF04n8MADns3aazmi1wSliB4fL316+dXCj1o2udU8gitGz5vo8fHUp4dvI9c8NbUQ+mLkvIkeG2MMxcXF4LFoih6+tfChpk2ltnjmjwgeo+dN5PhE1qYltDRWCHH48GGkpKSgtLQUt99+O66++mrcddddAGpeGuvs2bNo1aoVioqKAACLFi3COLklbgAMHz5cmjXSu3dv/Pzzzz7t9uzZE7t27ZLOW716tWy7RYsW4b777gMAxMbG4u+//0aDBg2qD7gGeE+nIvhQ3dJY6enpAe+X48X580ByMlBQIH+8Z0/gu+88gwC+WLfOs8m3L+rWBdLTgfj44HXy5sABz2fQokXAp1aXvxPbtqHZ4MFATo78ye++C9x5Z8A+CYIgCIIgCIIIXWhpLIIgCL7Q0liErjDGcM8996C0tBR169bFiy++GND5K1eulAZB2rVrh7Fjx/ps+/zzz8P8774H27dvx549e2Tb7dq1SxoEMZvNeP75533aHDduHNq2bQsAKCgowHvvVbsQTkAkJCRIeo2G2+2GzWYTdqoaL31ms1mbvL/8sjQI4jabYUtIgLvcR6dOwFdfVT8IAgA33wy88IL8sTp14F61CjbGFH9mSj97Red37hzUIEhNuC64AHj9dd8NJk4EbDbV/YYSotcEpYgeHy99evnVwo9aNrnWPIIbRs+b6PHx1KeHbyPXPDW1EPpi5LyJHhtjDE6nk9uMEK19a+FDTZtKbfHMHxE8Rs+byPGJrE1LjHn32IC89dZb+OmnnwAAL7zwAho1ahTQ+evXr5eejx49GiaTyWfb5s2b48orr5Rer6u8xI+MzauvvhrNmjXzadNkMmHUqFE12gyGCRMmIC4uTjV7IpGfn49XXnkF+fn5vKXIwktfXFyc+nnPzQVeeUV6mR8Xh1cmTEB+XBxQrx6waZPnX3+YOBGYMqWyaGDTJuT36aPKZ6b0sxe2bw0dClx9tfyxs2eBp5/WV49gCJs3lRA9Pl769PKrhR+1bBq25hHVYvS8iR4fT316+DZyzVNTC6EvRs6b6LG5XC6cPXsWLpfLkL618KGmTaW2eOaPCB6j503k+ETWpiW0NFYIcPLkSXTq1AkFBQW4/PLLsWXLFphMJqxYscKvpbHsdjuio6OlX178/PPP6N27d7U+586di6lTpwIA+vbti23btlVp06dPH2zfvl1q/9RTT1Vr8+eff0bfvn0BAGFhYSgqKlK0yXn5dKqEhATk5+fj999/N9zSWG63G/n5+YiLixNy1gsPfRkZGWjdujXi4uKQn5/v9YsiRUtjzZwJzJolvXSbzciPi0Ncfj7Ms2cD/34f/IYx4MEHgTffBBo2BL75BujWTbXPTKkdXn3Lr6XNjhwBunQBysqqNjKZgF27gIsv1laooIheE5Qieny89OnlVws/tb3mEcowet5Ej4+nPj18G7nmqamF0Bcj501JbHosjcUYg8vlQlhYWLU/HNUCPXxr4UNNm0pt8cwfETxGz5vI8QWqjZbGInTj/vvvR0FBASIjI7F48eKAvzxHjhyRbhabTCZ069atxnO6d+8uPT906JBsm4rvV2zvi4p+XS4X/vzzzxrP8QeRp9cqRbMloFSClz7Vp1Xn5XmWxaqA2e1Ggs0Gc3w88NBDgds0mYDXXgMeewzYuhX4t/+r9ZkptSN032rfHpg0Sf4YY8B99wG17FcL5QidNxUQPT5e+vTyq4UfqnmEEoyeN9Hj46lPD99GrnlqaiH0xch5Ez02k8mE8PBwLjcr9fCthQ81bSq1xTN/RPAYPW8ixyeyNi0R8y8QIbFmzRp88cUXAIAnn3wSHTt2DNjGkSNHpOeNGjWC1Wqt8ZzmzZtLz8+fP4/s7Gyv42fPnoWtwlr9LfzYL6BOnTpo2LCh9Prw4cM1nuMP48ePR2xN+zaEKAUFBVi0aBEKfG3ezRle+mJjY9XN+6uvegZDKlAQG4tF48ejYMIEz7JWwWA2AwsXem7sl9tV6TNTake33G3fHtygxdSpvvch2bULeOcdZbpCFNFrglJEj4+XPr38auGn1tU8QlWMnjfR4+OpTw/fRq55amoh9MXIeRM9Nloai69NWhqrdhJI3jIyMmAymWAymYJfCSQIZs6cKfmdOXNmQOeK3C9F1qYlNBAiMOfOncPDDz8MwLPB+dRAl+apYKecxo0b+3VOYmKi1+vz58/7tBms3co2g2Xv3r1wOByq2BKNyMhIpKSkIDIykrcUWXjpczgc6uU9Px946aUqb0c6HEg5fBiR48Yp91HRrkqfmVI7mueusBB44AGgT58qs238IirKM6PGF0895dkzpJYhek1Qiujx8dKnl18t/NSamkdogtHzJnp8PPXp4dvINU9NLYS+GDlvosdmMpkQFRXFbUaI1r618BGIzdTUVOlmstwjIiICrVu3Rps2bTB48GAsWbIkoEEznvnjwYoVK6p8hjfffHNANv74448qNvQcYACMnzeR4xNZm5bQQIjAPProo9JMjEWLFgW9n0ZhYaH0vE6dOn6dU7ldRRtyr4OxW9lGsOzduxcREREAPCOaNpsN5Vvf5OfnSzfLS0pKUFRUBMCztl3FGS15eXko+3c/guLiYhQXFwMAysrKkFdhpoDNZoPT6QQAFBUVoaSkBIDnxnz5pm+MMdhsNmlUtbCwEHa7HQBQWloq/TGvvLxTQUEBSktLAXj2dSksLITFYkGPHj1QUlIiZEwWiwXdunWT9PgTk9I8OZ1OlJaW4vfff0dYWBgAICIiAvHx8cHF9OqrQG4uCmNiYP93tlSpxQJHZCR69euHiIYNvWNatQqlBw8GHVNYWBg6dOggfZ+DzZPb7UavXr1gMpmC6nslJSXo2bMnLBaL+nn67juUXXwx8OabKI6KQvEzzwAHD6KsrMzre5+QkCCtJxkdHS1pkPJ0001gN90EW0ICXP/mWspTbi5KJ08O6PukKCZBagQA9OrVC4wxw8RUMU9lZWXo1asXwsPDhYyJMYZevXp55UOPvmc2m9GrVy+4XC5N8+RwONCrVy9ERESoFpPFYsEll1wi6Qk2T06nExdddBEsFktQfS8iIgIdOnSQrheMWiOMFpPD4UC3bt1gsVgME1PFPDHG0LlzZ1gsFiFjKisrQ0pKCiwWi+59T4+6BwCdOnWCxWJRLSan04levXohLCxMUZ4sFgu6dOni9V2gukd1L1RjKs+TxWJBSkqKpCeQmCpqZYxJ57hcLkmP2+2WYig/r2K7cj1ut1s6hzEmtTObzV73K3y189eeP+0q+oqKioLZbFY1portzGYzoqKipPfViAnw3OMxm81VYnI6nVI7l8slne+L8v/fZGRkYMOGDRg7dizatm2Lzz77zC+tZrNZ2htXqzxVjqm6PKWnp1cZXFC7T1Vm48aNyMnJ8TumlStX+syHmn2vunaBfu8qokae/NFa8fN2u926fu+0isnpdMJkMiEmJsYrxppiKn9esV2wf594QQMhgrJp0ya89957AIBRo0ahf//+QduqeLHv768vKg+6VLyBUdlmsHYr2wyW4cOHY+jQoQCA7OxsvPLKK9IF8bJly3Dw35vWW7Zsweeffw4AyMzMxCuvvCLZeOutt3Ds2DEAns9+06ZNAIBjx47hrbfektq98soryMzMBAB8/vnn2LJlCwDg4MGDWLZsGQDPReArr7wiDWJ9/PHH2LFjBwBgz549eP/99wF4isMrr7wiXVi+//772LNnDwBgx44d+Pjjj2G32/HVV18JG5PdbsdHH32EVatW+R2T0jydOnUKVqsVI0eOxPXXXw8AaN26Ne67777gYvr3e/bxkCHY8e8Nzj3dumHVqFFIu/RSSWt+fj7w+ut4/6efsGfiRCAzM6iY/v77b7zyyivSdyjYPH3//fdIS0vDvn37gu57mzZtgt1uVy9PdjswcSLe+v57HPt37d9N116LTampwKhROHbkCD777DMppgkTJiApKQkAcNNNN2Hfvn1V8/TCC3hlwgRk/7usnleeDh3C+2+/7RWTln1PhBqxc+dOpKWlYdu2bYaJqWKePvzwQ6SlpUlaRYtp27ZtSEtLw86dOwOq5UrzdOjQIaSlpeGrr77SNE+rVq1CWlqad91TGJPdbscXX3yhOE8bNmzA+++/D7vdHlTfK9da3s6oNcJoMa1atQofffQR7Ha7YWKqmKdt27bhnXfegd1uFzKmDz/8EGvWrIHdbte97+lR93bu3InFixfDbrerFtOGDRuQlpYmXe8Fmye73Y7ly5fj+++/DygmqnuhH5OR657dbseaNWvw4YcfBhzT4sWLJa0Vb8zl5+dLfkpLS72W9D579qx0My4vL08aqLHb7dLNYsYYzp49K91kzMnJkQafiouLpZUwKi8hc+7cOWlQqaioCLm5uZK2s2fPSvpycnKk//cVFBRIAzoOhwNnK8xuz87OlgaP1IwJAHJzc6Uf0uXm5qoaU35+Ps6dOwe32y0bU3lu8/PzvW5ip6Sk4IEHHsADDzyA0aNHY/z48Rg/fjxuvvlmdOjQQWp35swZ3HLLLfj8889lY6qYp/LPTus8VYzJnzwBkG4y+5OnijHVlKfKOBwOrFmzxq+Y3G639J2tSLlWNftedTG53W5kZ2dL7arLU8VVZdxut6p5qi6mcm3lxwLJk9vtxvnz57n0vZry5HA4UFBQ4Hffy83NlfpHxTwF+/eJG4wQjsLCQpacnMwAsPr167Ps7GzZdsuXL2cAGADWokULn/aef/55qd2ll17ql4bi4mLpHADs119/9Tq+c+dOr+MlJSV+2e3Zs6d0zoIFC/w6xxcHDhxgANiYMWNYo0aN2IEDB5jT6WS5ubnM7XYzxhjLy8tjpaWlUkyFhYWMMcbKyspYbm6uZMtmszGHw8EYY6yoqIgVFRUxxhhzOBzMZrNJ7XJzc1lZWRljzJOn4uJixhhjpaWlLC8vjzHGmNvtZrm5uczpdDLGGCsoKJA+H7vdzvLz8xljjLlcLpabm8tcLhdjjLH8/Hxmt9sZY4yVlJSwgoICVlBQwJYtW8YyMzOFjKmgoIAtXbqUnT592u+YGGOK8nT06FEWExPDxowZwxo2bMgAsIiICBYfH8/S09MDi+nZZ5kzLIwxgBXExLASq5UxgNktFnZ62jS2fPlylpeXx3LPn2eu2bMZA1h+bCyzWyyMdezISjIzA44pNzeXLVmyRDov2DydPXuWLV++nJ07dy6ovpeZmcmWLVvGCgoK1MtTRgZjMTHMFh/PHBERjAGsKCqKFUVFMQYwx6xZbP/+/VINSEhIYOHh4QwAi46OZocPH5bP05w5PvOU36MHY2VluvQ9EWpETk4OW758OcvOzjZMTBXzlJWVxZYvX85sNpuQMWVnZ7Ply5eznJycgGq50jydP3+eLV++nJ05c0bTPJ0+ffq/uqdSTBX/jinJ05kzZ9g777zDCgoKgup7eXl5bMmSJdJ5Rq0RRovp9OnTbOnSpV7XHaEeU8U8ZWdnS/1axJiysrKkz1/vvqdH3cvJyZGuydSK6cyZM2z58uUsNzdXUZ4KCgrYO++8w86ePRtQTFT3Qj8mI9e98v87ZmVlBRxTTk4OO3jwIDt48CD7448/2B9//MHKysqY0+mU9LhcLimG8vPKbTudTkmPy+WSznG73VI7p9PJzp49K31evtr5a8+fduWUlpay7OxsKR61YqrYzul0suzsbCk+NWJyOBzs7NmzzOl0Vomp7N//o5Wfc8UVV0j/D5w2bVqVmCp+/tu2bWNJSUlS+wsuuIAVFxdXq7U8vtLSUs3yVDmm6vL0999/V7lfp2afqng/sE2bNiwiIoIBYD179vTL3jfffCOdf+GFF8pqVavvVdeuPO/lvqqz99dff3npVCNP/midNm2aV9/V83unVUxlZWWsrKxM0uZPTHa7nf3xxx/s4MGD7MCBA2z//v1SHQ7k71P5vdzyx4EDB5ie0ECIgDzyyCNSh1ixYoXPdv4OhLz55ptSu65du/ql4dy5c14ds/wGZTkHDx70On7+/Hm/7Hbp0kU6Z9GiRX6d4wveXx6CD+np6V55r/goHwjxi4ICxurXZwyo+oiNZezcOU87t5uxRx+Vb3fxxYz9+x8D4l+WLJH/rADGIiLYie3bA8+f3c5Yu3a+7b74oq4hEgRBEARBEAShH2VlZdJASPmj4s0/Qnz69esn/b9vxowZNbbfXun/jZs2bdJepIpUvG9R3f26YKl4P/DSSy9lgwYN8nn/To4RI0ZI7efNm6epVrXQ+jP1xYwZMwLqu0ZFrTrM+14uLY0lGLt378Zr/24Q3L9/f4waNUqxzfr160vPz5w549c5WVlZXq/r1avn02awdivbDJbExERprwij4XK5kJWVVWUtRFHgpS8sLEx53t98E/h3yl8VHn4Yrvh4T2wvvii7mToA4LffgIEDgX/XufUHtT4zpXY0y93ddwP/LlnmRbNmwFdfwZWYGLhNiwV44w3fx6dPB/75J3C7IYjoNUEposfHS59efrXwY/iaR2iK0fMmenw89enh28g1T00thL4YOW+ix8YYQ1lZWY17WYSqby18qGmzsq1evXqhZcuW0vHypXb00BKKVLx3+O6771bbtqCgAOvXrwcAXHTRRbjooou0lFYtRs+byPGJrE1LaCBEMH7//XdpzbUTJ06gV69ePh9z5syRzjt9+rTXsS+//FI61r59e+n52bNnq+zvIceJEyek5/Xq1UPDf9fnL6dRo0ZISEiQXh8/frxGm+XrH5dTce1HJYwfPx6xsbGq2BKNgoICLF68WFrXTzR46YuNjVWW96IiYMEC+WMxMcCjj/4X27BhwCWX+LY1YADw7yaU/qDWZ6bUjma5M5mAd94B6tb977277gL27weuuip4u1dfDQwbJn+ssBB47LHgbYcQotcEpYgeHy99evnVwo/hax6hKUbPm+jx8dSnh28j1zw1tRD6YuS8iR6by+VCdnY2t8FfrX1r4UNNm3K2mjRpIj2vuE9DdednZGRgzpw5uPzyy9G0aVNYLBbUq1cP3bp1w8SJE/Hnn3/6paesrAyrVq3CLbfcglatWiEmJgbh4eGIjY1FmzZtcN1112H69OnYuXOn13krVqyAyWTyGsQ5fvy4tHF65Yda/O9//5N+sLxq1apqb25//PHH0j4jI0eODMrfH3/8gUmTJqFbt25o0KABLBYLmjZtitTUVMyfP1/aZ6ImyvOWmZmJqVOnomvXroiLi0NcXBw6deqERx99FEeOHAlKIwCcPHlSlf4QLDzrSk2IrE1TdJ1/QtRIxeltSh7Lly+XbJaUlDCz2Swd2759e406nn32Wal93759Zdv07t1bavPcc8/VaPOnn36S2oeFhUnruQZL+XQqq9XKTCaTIZfGcrvdrKSkRFprTzR46EtPT2cmk0nKe8V+7/fSWC+84HuZpcmTGWOVYsvOZuzCC73bmUyMBbG8m1qfmVI7mufu/fcZS0xk7PPPvd6ubmmzrVu3svT0dJ+PEzt2MFdMjM/cnX733Srn+Lt/Uaggek1Qiujx8dKnl18t/NSamkdogtHzJnp8PPXp4dvINU9NLYS+GDlvSmLTY2kst9vNXC4Xt5qntW8tfARis6alseRstWrVSjpn6dKl1dp3Op3s6aefZlartdp7ZeHh4WzKlCnVaj5y5Ajr2LGj3/ffjh49Kp0b6D29YKm8NBZjjN1///3Sez/88IPPc1NTU6X7cllZWeyrr77ye8mpsrIy9tBDD7GwsLBq40pISKh2qf9y3G43+/jjj1lCQoJPWxaLhS1ZsiSgpbFcLhebNm2aKv1BydJYPOtKTQSqzShLY4VXO0pCGAKr1YpevXrh559/BgCkpaWhV69e1Z6zZcsW6fmVV14p26Z///7Yvn27ZHPy5Ml+2+zTpw8sFotf+mvCnxkuoYrJZILVauUtwye89DHGgs97cTHwwgvyx6KjgccfB1AptgYNgE2bgMsuAzIygPBw4L33gOHDA3av1mem1I7mubvtNuDGG4G4OL9Pufzyy2tsMwHASz6O5Y8ciS4AHBXes1qtGDRoEJYtW4aoqCi/tYiK6DVBKaLHx0ufXn618FNrah6hCUbPm+jx8dSnh28j1zw1tRD6YuS8iR6b2r/QF823Fj7UtFnZ1q+//oq///5bel3d/xVdLheGDRuGTz75RHrvggsuQM+ePdGwYUMUFhbil19+wbFjx+B0OjF37lxkZ2fj7bffrmKroKAAV199NU6ePAkAMJvN6NatGzp27IiYmBgUFxfjn3/+wb59+5CTk1Pl/I4dO+KBBx5AQUGBtERVbGxs0DMvAmHkyJF48803AXiWx+rfv3+VNsePH5fuzV177bVo3Lix3/bdbjduvfVWfPbZZ9J79erVQ2pqKurVq4eTJ09i8+bNcDgcsNlsGD16NGw2Gx555BGfNjdu3Ijhw4fD6XQC8Hzeffv2Rbt27VBYWIgff/wRp0+fxr333otXX33VL51q9gel8KwrNSGyNk3RddiFUBV/N0tnjLHnn39eatu+fftq2544ccJrdPe3336Tbbdz506vGR4nT56s1m67du2k9gsXLqy2rT+UjyJOmDCBxcXFGXJGSF5eHnvppZdYnqAbcvPQl56ezuLi4qS8o8JIsl8zQhYu9D0b5IknpGaysf31F2OtWjH25ZdB61frM1Nqh1ffqm5GiD+PMIDt9ZU/gE3xcd6wYcN0jVMrRK8JShE9Pl769PKrhZ/aXvMIZRg9b6LHx1OfHr6NXPPU1ELoi5HzpiS2gH+JXFbGWHp6QA/nX3+xszt3MudffwV8rtKHHr5lfSicVeN0OllWVhZzOp01tq1pRkhFWzt37mTJyclS+5tvvrla29OmTZPaJiYmsk8++UT2V+4ffvghi4+Pl9quXbu2SpuXX35ZOn7hhRf63Hjc7XaznTt3svvuu4+dOHGiynG9N0svp3379gwAi42NZUVFRVXOmzNnjnTe6tWrGWPM7xkh8+fP9/o/9uTJk1lpaalXm9OnT7Nrr73Wa8bFjh07ZO3l5OSwRo0aSW27dOnCDh486NXG5XKx+fPnM5PJxCIjI/3SqWZ/YEzZjJBAviN6E6g2o8wIoYGQECaQgZAzZ86w6Ohoqf2SJUt8tr3tttukdr17967Wbo8ePaS2t99+u892ixcvltrFxsay7Ozsau36Q/mXJyUlhUVGRhpyIKS0tJTt2bOnyh8XUeChLz09nUVGRkp5D2ggpKiIscaN5W+iR0Uxdvas1NRnbApjVeszU2qHV99SOhACgPWpZiCkGGDJMudYrVZDLJMlek1Qiujx8dKnl18t/NT2mkcow+h5Ez0+nvr08G3kmqemFkJfjJw3JbEFfAMuPd33j9/o8d/D36WlfeByuVhRURFzuVw1tq04ENKjRw/2wAMPeD3Gjx/Phg4dyjp37uz1/7ibb75Z9ob+f6lOl37IW69ePfbnn39Wq+OHH36QbHfs2LHKDfJbb71VOv7tt9/690H40MVjIKTiMverVq2qcl75D5Tj4+Ol/x/7MxCSl5fHYmJipHYTJ070qc1ut3vdK+zfv79suylTpkhtGjduzM6cOePT5jPPPOPVL3zprNwf/vrrL582Gau5PzCmbCAkkO+I3gSqjQZCCO4EMhDCmPeoaJ06daqMdjocDvbkk096dci0tLRqbX733Xde7Z988knmcDi82qxdu5bVqVNHajNr1qyAY5WD95eH4EN1N9JrHAh5+WXfF4HV/CEn1KOkpKTGdTr9eSyt5oL+s2D7B0EQBEEQBEEQwkEDIWIOhARCxYEQfx5NmjRh69atq9HuhAkTpHNefvllv7Rcd9110jmVV0C55pprpGN79+4NJlTGGL+BkOPHj0t7qV577bVe52zfvl0655577pHe92cg5K233pLaNG7cmBUXF1er75dffvHKZ+WZNW63myUmJkrH33jjjWrtORwO1qJFixp1qt0fGFM2EGIkjDIQYgZRa5g2bZq030dJSQmGDRuGrl27YvTo0Rg+fDhatGiB+fPnS+1nzZqFfv36VWvzqquuwtNPPy29nj9/PpKTkzF8+HCMHj0aXbp0wbBhw1BSUgIAuOaaazBlyhRV4xowYADq1Kmjqk1RKCkpwddffy19fqLBS1+dOnUCz7vdDlTo35UMAhMner2lVWxq2VVqh1fuyvfsUMqTAM77OHbTvw8jInpNUIro8fHSp5dfLfzU9ppHKMPoeRM9Pp769PBt5JqnphZCX4ycNyPHVltxu93Iy8uD2+1W3fbp06dx66234s4770Rubq7Pdhs3bpSe33jjjX5pqbgP7rZt27yONWvWTHq+aNGiQCQLQfPmzZGamgoA+P7773H69Gnp2MqVK6Xnge5Z8sMPP0jPb7vtthrvxfTs2RNdunSRXm/evNnr+KFDh5CVlQUACA8Px/Aa9l+NiIjAiBEjatRZsT/40x6ovj8oRcvviFJE1qYltFl6LSIiIgKffvopxo4diw8//BAAsH//fuzfv79Ku5kzZ/o9YDF79mxYLBbMnj0bZWVlOHXqFNauXVul3fDhw7F48WKEh6vb7RISEmA2G3NMz+12w2azCVuYeOkzm82B533JEqDCRYAX990HVNokTKvY1LKr1A7PvrVs2TIAwIYNG2C32zECQDaAbwOwkQPgKQCLfRx/FcB3AIz23yzRa4JSRI+Plz69/Grhh2oeoQSj5030+Hjq08O3kWuemloIfTFy3owcW22FMQaXywXGWEDnzZgxAzNnzvR6z+Vy4dSpU8jNzcWmTZvw/PPPIzs7G6tWrcKePXuwdetW1K1b1+ucc+fO4c8//wQAREZG4rnnnoPFYqlxA+iDBw9Kz8s3RS9n6NCh0v9XFy1ahN9++w2jRo3CddddhzZt2gQUJy9GjhyJzZs3w+VyYdWqVZg0aRIcDod0n65ly5a47LLLArK5Z88e6XmfPn38Oqdv377S/cbdu3f7tNe2bVvEx8fXaK93797VHq/cH2bNmuWXzur6g1KC/Y7ogcjaNEXX+SeEqgS6NFZFvv32W3bHHXew1q1bs6ioKBYfH886d+7MHn/88SqbE/nLwYMH2WOPPcY6d+7M4uPjWVRUFGvdujW74447FK2t6Ave06kIPgS1NFZJCWNNm8pPB7ZaGfvjD08bQldKjh9nhQMGMAawskaN2PE9e1h6err/j7/+YvaLLvI51fsZf/sHQRAEQRAEQRDCQktjGWtpLH+WF8rMzGQXXHCBdM7o0aOrtNm/f7/PewP+Pu6+++4qdh966CHZto0bN2a33nore+2119jJkyer1c9raSzGGCsoKGBRUVEM8GxAzhhjH3/8sdR++vTpXu39WRqr4qbiv/zyi18a582bJ51TecP7l156STp2ww03+GVv79691erUqj/Q0lgeaGksgjujR48GYwyMMWRkZAR07tVXX4333nsPf/31F4qKimCz2bB//34sWLAAHTt2DEpPx44dsXDhQuzfvx82mw1FRUX466+/8N577+Hqq68OyqY/JCcnqz7LRBScTicyMjLgdDp5S5GFl77w8PDA8r50KXDqlPyxceOA554D2rb1zBopKwOgXWxq2VVqh3vf+vRTWC+5BNFffw0ACD97Fs0XLEBycrL/j9atYVm6FPDxi59JANrrGJIecM+bxogeHy99evnVwg/VPEIJRs+b6PHx1KeHbyPXPDW1EPpi5LwZObbaCmMMpaWlqvyivLKtCy64ADNmzJCOr1q1SlpKqZy8vDzFfuX646uvvopPP/0UPXv29Hr/zJkz+OSTT/DQQw+hefPmGDJkCE6cOKFYg9rExMTglltuAeBZBWbPnj149913peOBLosFAIWFhdLz6Ohov86p2K6goMCnPavV6lcfqsmvVv1BCWp+R9RGZG1aQgMhRMgzevRoxMTE8JahCYWFhVi5cqXXHwmR4KUvJibG/7yXlgLz5skfs1iAQYOA998HMjOBsWOBCy8EPvgAhfn5msSm1mem1A63vuV2AyNHArfeCmRnex97/33gk08Cs3fxxcD998seigTwRnAqhUX0mqAU0ePjpU8vv1r4qfU1j1CE0fMmenw89enh28g1T00thL4YOW+6xpaUBKSnB/RwHj2KMzt2wHn0aMDnKn3o4VvWR1KSoo/Z5XLh3LlzcLlcilMmZ+u6666TnjudTmzZssXrnIo3xuPi4vDPP/+grKxM+sGwP48VK1bI6rn55pvxyy+/4Pjx41i5ciXGjRuHCy+8UDrOGMMnn3yC7t27S8sxiUTFwY6FCxfiq6++AuBZrqp169YB26t476WoqMivcyq2i42N9WnPZrP51Ydq8lu5PwTSD2rqD8Gi5ndEbUTWpinaTjghCO3gPZ2K4EPAS2O9+abvqcAPPcTYLbfIH+vcmbHjx3WPr1YwYYLvnDRowNiZM4HZy81lrFEjnzaHVdc/CIIgCIIgCIIQGrWWZCH4EejSWIwx5nA4vP6/P3/+fK/jp06d8jpeVFSkgXJvTpw4wWbNmiUtPQWA/e9//6vSjufSWIwx5nK5vJYWK38sXry4Slt/lsZq06aN1Oajjz7yS+P48eOlc+69916vY6tWrZKOde7c2S97n3/+ebU6teoPtDSWB1oaiyAIQnQcDs+yV3JERgIDBgCffip/3OkELrhAO221mblzgfY+Fq2y2YCtWwOzl5AALFjg8/CLAGJ9HiUIgiAIgiAIgiBEo7i42Ou12ex9C7NJkyZo1qyZ9Prnn3/WXFOzZs0wffp0vP3229J7mzZtQmlpqVe7mjZs1xqz2Yzbb7/d6z2r1YqhQ4cGZa9bt27Sc38/54rtunfv7tPe4cOH/VrWavv27dUe59EfiNCDBkKIkGfy5MmIj4/nLUMT8vLyMG/ePFXWOtQCXvri4+P9y/uKFcDJk/LH7r0XePVVn6fmTZuGeS+8oHpsan1mSu1w7Vt16gArVwKVLmTRpQuwa5dn2axAueMO4IorZA81BTArcItCInpNUIro8fHSp5dfLfxQzSOUYPS8iR4fT316+DZyzVNTC6EvRs6b6LE5nU6cPn2a275IWvvWwoeaNuVs7d6926vNBTI/VLzxxhul5y+++KJu+Rs4cKD0vKysDOfPn/c6brVavY7zoPJeIDfddBMSEhKCsnXllVdKz9esWQO73V5t+19//RW///679Lp///5exzt06IDExEQAntyvWrWqWntOpxOrV6+uUWfF/vDmm2/W2F5reNaVmhBZm5bQQAgR8qxfv77KLwWMQlRUFAYPHoyoqCjeUmThpa+4uLjmvDscnpkHckRGAhMnejZIj4ioejwlBVG33qpJbGp9ZkrtcO9bl14KPPmk57nZDDz1lGcQJCUlOHsmE/Dmm2Dh4bKHHwYQefBgcLYFgnveNEb0+Hjp08uvFn6o5hFKMHreRI+Ppz49fBu55qmphdAXI+dN9NjMZjMSEhKqzDowim8tfKhpU87WSy+9JD03mUxeN+PLefzxxxEWFgYA+Oqrr7w2Ba+JypuvA0BOTo5f556s8INLs9mM+vXrex2vGEt2djaXwZBOnTph9+7d2LVrF3bt2oXXXnstaFsjRoyQ9vU4ffo0Zs3y/VNDh8OBhx56SHrdv39/tK+0IoTZbMaYMWOk18888wyyK+8hWoEFCxYgPT29Rp0V+8O6desC2vNDrj8ohWddqQmRtWlJ7YqWMCSHDx/mNsKuNREREejQoQMi5G7WCwAvfWVlZTXn/d13gePH5Y+NGQMkJwOvvQYcPep5XbH4P/ssIiwWTWJT6zNTakeIvjVjhmf2x08/eQatLBZl9jp1Qn6Fi6mKhAGoN22aZ7P2EEaIvGmI6PHx0qeXXy38UM0jlGD0vIkeH099evg2cs1TUwuhL0bOm+ixmc1m1KlTh9tAiNa+tfChps2Ktmw2G8aNG4fPP/9cOj5ixAg0bty4ynmtW7fG008/Lb2+5557MHHiRJ8DGk6nE5s2bcKdd97ptTxTOb1798aIESPw1VdfweFwyNr4888/MWrUKOn1VVddhcjISK82FosFbdu2BeC5f7F+/XrfwWtIt27dcMkll+CSSy6R/fz8JS4uDtOmTZNez5s3D9OmTavyGZ05cwaDBg3Cjh07AADh4eF4zsdy5Y8++igaNGgAwDMIcc011+Dw4cNebdxuNxYuXIipU6dW+YzlqNwfxowZo6g/KIVnXakJkbVpSe2KljAkIv+qRCl+zXzgCC99Nf6aqKwMePZZ+WMREZ7ZB+W0aAEsXQocOgQMHw5cdhlw/fWaxaaWXaV2hOhbFgvw8cdAr16qmbQ9/DB8LIYG6+7dnuXSQhgh8qYhosfHS59efrXwQzWPUILR8yZ6fDz16eHbyDVPTS2Evhg5b6LH5nK5kJubC5fLZUjfWvgI1ubGjRvx4IMPej0eeOAB3H777ejfvz+aNm3qtQdHu3bt8OKLL/q0N2PGDGkZKMYYFi5ciAsuuAB9+/bFyJEjMX78eIwYMQJ9+vRBQkICrrvuOqxatUr2h5VlZWVYvXo1brjhBiQkJKBXr14YMWIExo8fj2HDhqFHjx5o3749fv31VwBAnTp1sMDHfpW3Vljy+fbbb8f//vc/PPLII5g4caL0CCUmTpyIm266SXr9zDPPoGnTpvi///s/jB07Ftdffz1atGiBr7/+Wmrzwgsv4NJLL5W116BBAyxZskSawbFv3z506tQJ/fr1w7333ovbbrsNzZo1w8SJE+F2u/HCCy/4pXPGjBnSQJXS/qAUnnWlJkTWpiXya4gQBEGEMu+9B2RkyB+76y6gefOq77drB6xeDZSWepZZIkISFh2NCQA+8dXgiSeAQYOASlOXCYIgCIIgCIIgCO0pX6rJHwYOHIjFixejUaNGPtuYTCYsW7YMF154IebPn4/c3Fw4HA78/PPPPjfMNplM6Nu3b5X3Y2NjpeclJSX45Zdf8Msvv8jaaNmyJVatWoWuXbvKHn/iiSfw6aefSqtZbNy4sUobX4MoImI2m/Hpp5/i0UcfxVtvvQWXy4Vz587h448/rtI2Pj4eL7/8MkaPHl2tzZtuugnvvPMOJkyYgLy8PLjdbvz444/48ccfpTYWiwWvvvoqrr32WjzyyCM16jSZTFixYgUuvvhizJgxQ1F/IIyHiTHGeIsgiGD4448/0LlzZ+n1gQMH0KlTJ46KCD3IyMhAy5YtZY+lp6cj+YILgA4dgL//rtogPNyzFFZysrYiCW6U94+NAK731WjsWGDxYh1VEQRBEARBEAQRLE6nE0ePHvV6r23btgj3sT8gIR6pqanYsmVLtW0sFgvi4+PRpk0baSbGxRdfHJCfgoICvPfee/j222+xb98+ZGdnw263IzY2FklJSejUqRNSU1Nxww03oFmzZlXOd7lc2LFjBzZv3oydO3fiyJEjOHXqFIqLixEVFYXExESkpKRg4MCBGDp0KCw1LO9cWFiIN998E19++SUOHToEm83mNfMg2FuyK1aswF133QUAuPTSS6WlqILh66+/xvXXe/733KJFC2T4+lFpBf744w8sW7YM33//PU6ePImCggLUq1cP7dq1ww033IB77723yr4p1XHq1Cm89tpr+Pzzz3H8+HGYTCYkJSXh6quvxn333YeOHTt63QvyV6fS/gAAM2fOlPZEmTFjBmbOnOl3XEZCrTrM+14uDYQQIUv5l6dDhw44duwY9uzZY7iBkLKyMhw7dgytW7cWci1VHvoyMjLQrl07tG7dGseOHfO6iEhPT0fyli2Ar18d3HMPsGSJX360ik0tu0rtiN63gqX84qg1gAMArHKNTCbg559VXZJLL4yat3JEj4+XPr38auGHah6hBKPnTfT4eOrTw7eRa56aWgh9MXLelMSmx0CI2+1GaWkpLBaL7mvm6+FbCx9q2lRqi2f+iOAxet5Eji9QbUYZCBErCwQRBLRHCD+E2yPE6QSeeUb+pPBwYMoUv33QHiGhzTEA83wdZAy4/34gBNfCNHreRI+P9gjhZ5NqXu3E6HkTPT7aI4SfTdojpPZi5LyJHpvb7YbNZoPb7Takby18qGlTqS2e+SOCx+h5Ezk+kbVpCc0IIUIW3qOIBB+qWxrr7MKFaPj44/Injhnj2RSdCE0OHADsduCSS6ptVrF/WOGZFdLaV+PFiz3LZBEEQRAEQRAEISy0NBZBEARfaEYIQRCEQJgBJLz+uvzBsLCAZoMQAnHsGHDnnUDXrsC4cZ7ZHH5iB/BgdQ2mTAFyc5UqJAiCIAiCIAiCIAiCIASHBkKIkGfmzJlISEjgLUMTbDYbZs2aBZvNxluKLLz0JSQkVMn7cAAR6enyJwwfDqSlAQ6H3z60ik0tu0rtiN638M8/wH33eTa+X7XKMwCyezfw6acBmfkagM8zzp0DZsxQqlRXhM+bQkSPj5c+vfxq4YdqHqEEo+dN9Ph46tPDt5FrnppaCH0xct5Ej83pdOLUqVNwOp2G9K2FDzVtKrXFM39E8Bg9byLHJ7I2LaGlsYiQpXw6VXJyMjIzM7F3717DLY3ldDqRmZmJpKQkIaf98tCXkZGBtm3bIikpCZmZmXA6nTAD+ANAB7kTzGbgiSeAefOAli2BmTOB22/3zBKpBq1iU8uuUjtC961Tp4A2bYCSkqrHOnTwLJPlI39yS6e1AHAIQB25E8LCgL17gQpTM0VG6LypgOjx8dKnl18t/FDNI5Rg9LyJHh9PfXr4NnLNU1MLoS9GzpuS2PRYGosxBofDgcjISJhMJtXsiuJbCx9q2lRqi2f+iOAxet5Eji9QbUZZGosGQoiQhfeXh+CD3I3uYQDW+Dph+HDgu++AnJz/3rvwQmD2bOCWWwDB/hgR/3LzzcD69fLHVqwARo2SPeRrD5mZAHzO/bjySk8fob5AEARBEARBEMJBe4QQBEHwxSgDIbQ0FhHyDB8+HNHR0bxlaEJRURHWrFmDoqIi3lJk4aUvOjpayrsJwDRfDc1moHFj70EQADh4EBgyBHj+eZ8+tIpNLbtK7YjetzBnju+BiZkzA1rmDADmA3A2bSp/8IcfAl5yixfC500hosfHS59efrXwQzWPUILR8yZ6fDz16eHbyDVPTS2Evhg5b6LH5nK5cP78ebhcLkP61sKHmjaV2uKZPyJ4jJ43keMTWZuW0EAIEfLYbDa43W7eMjTBbDYjISEBZrOYX1Ve+txut5T3IQB8jh3fcotn9oAcUVHA6NE+fWgVm1p2ldoRvW+hc2dgxIiq73foACxYAEREBGSuBMD5KVN8N3jsMaC4ODCNHBA+bwoRPT5e+vTyq4UfqnmEEoyeN9Hj46lPD99GrnlqaiH0xch5Ez02k8mEsLAwLsvX6OFbCx9q2lRqi2f+iOAxet5Ejk9kbVpCS2MRIQvv6VQEHyoufWQC8DsA2d0dTCZg7Fhg8WJ5Q089Bcydq5FKQhX++gvo2BFwOoEWLYBZszz7u1Qz9dLX0lgAkP7330geMwZIS5M/eebMkNs8nSAIgiAIgiCMDi2NRRAEwRdaGosgBCElJQWRkZG8ZWiCw+HA3r174QhwGSC94KUvMjISKSkpGBIZKT8IAgDDhgFTpwL33lt1Y+34eGDSpGp9aBWbWnaV2hG9bwHwbJj+5JPA668DR4549gVR8p8dkwl49VXPkmlyzJsHHD8evH0dCIm8KUD0+Hjp08uvFn6o5hFKMHreRI+Ppz49fBu55qmphdAXI+dN9NjcbjeKi4u5rDahh28tfKhpU6ktnvkjgsfoeRM5PpG1aQkNhBAhT2pqKqxWK28ZmmC325GWlga73c5biiy89FmtVqSmpuJxX3k3mYBp04BmzYC33wYOH/bMJCif8jdpElC3brU+tIpNLbtK7YjetySeeQZ44AHAYlHHXpcuwP33yx+z24GJE9XxoxEhk7cgET0+Xvr08quFH6p5hBKMnjfR4+OpTw/fRq55amoh9MXIeRM9NsYYCgoKwGPRFD18a+FDTZtKbfHMHxE8Rs+byPGJrE1LaGksImThPZ2K4EP50kc3A/C5vfXQocDatVXfP3AAeOEF4I03gJgYDVUSvKh2aaz0dCQnJwPnzwPt2gHnzskb+eEHoH9/7UQSBEEQBEEQBOE3tDQWQRAEX2hpLIIQBKvVatjNfRhjsNvtwo7Q8tJnMpnwlNUK5ivv06bJv9+5M7BypV+DIFrFppZdpXZE71uaUq+eZ6aJLx5+2LMviYAYPW+ix8dLn15+tfBDNY9QgtHzJnp8PPXp4dvINU9NLYS+GDlvSmKT+/++Fv9Pc7vd3Gqe1r618KGmTaW2eOaPCB6j503k+ALVJtcuFO/F0kAIEfJMnjwZ8fHxvGVoQl5eHubPn4+8vDzeUmThpe/W+HhsnDwZeXJ5HzLEM+ChEK1iU8uuUjui9y3Nufde4KKL5I8dOAAsWqSvHj8xet5Ej4+XPr38auGHah6hBKPnTfT4eOrTw7eRa56aWgh9MXLelMRmltnjT+29RlwuF7KysuByuVS1K4pvLXyoaVOpLZ75I4LH6HkTOb5AtZWVlVV5T642iw4tjUWELOXTqRITE5GdnY19+/YZbmksl8uF7OxsNGzYEGGVN/wWAB76MtLTkdO2LZIaNkTD7GyEVS7av//u2QdCIVrFppZdpXZE71vB4tfSWOVs3QpccYW8oYQE4OhRoEED1TUqwah5K0f0+Hjp08uvFn6o5hFKMHreRI+Ppz49fBu55qmphdAXI+dNaWzp6ele+4skJCSgSZMmquljjMHpdCI8PFz3Xznr4VsLH2raVGqLZ/6I4DF63kSOL1Bt2dnZyMnJkV5bLBa0atUqYL+8l8aigRAiZOH95SH4cOadd9D43ntljxUNGIDor77SWREhEgENhADAiBHA6tXyxsaNE3ZmCEEQBEEQBEHUJnJycpCdnS29NpvNaNasGaKiojiqIgiCMD5OpxMZGRles0Lq1auHxo0bB2yL973c0JvDQhCVGD16NGIMuvF1YWEhVqxYgcLCQt5SZNFdH2NIePVVFMbEYMXo0SislPe8hx5SzZVWsallV6kd0ftWQBw9Ctx+u+ffQHn+ecDXf57efhvYs0eZNpUxVN5kED0+Xvr08quFH6p5hBKMnjfR4+OpTw/fRq55amoh9MXIeVMaW1xcnNdrt9uNkydP4vTp0ygqKoLD4YDT6Qz6UVpaijNnzqC0tFSRHVF9a+FDTZtKbfHMHz345V30h8jx+aPN4XDAZrPhxIkTVZbGCtX7sIFt7U4QApKRkQGnU8yNjZUSHh6O5ORkhIeL+VXVXd/GjbDs3w9mtSI5IwPhFfK+HkDKhReq5kqr2NSyq9SO6H3LL06eBGbPBpYvB8qXSHv22cBsJCUBU6d6HpVhzLNx+o8/AoJMYzVE3qpB9Ph46dPLrxZ+qOYRSjB63kSPj6c+PXwbueapqYXQFyPnTWlskZGRiI2NRUFBgfSe2+2GzWaDzWZTrK984+Bz585xWRpLa99a+FDTplJbPPNHBI/R8yZyfEq0Wa3WkJ2NR0tjESEL7+lUhM4wBlx6KbBrl+zh9QAue/55NHj0UcCA/3EgKnD2LPDcc8CbbwIVN0k0mfDPl18i6YYbZE+TXRoLAOx2oFMn4O+/5f198AFw223KdRMEQRAEQRAEETRutxv//POPIWfMEARBhALlg9oRERFBnc/7Xi4tjUWEPL169YLFYuEtQxNKS0uxY8cOlJaW8pYii676vvlGGgQptViwo1cvlP6b958ADAbQ4IkngM6dgbVrAbdbkTutYlPLrlI7ovetavnmG+Dll70HQQCAMdR98cXA7VmtQHXnTZoECPKfrZDOmx+IHh8vfXr51cIP1TxCCUbPm+jx8dSnh28j1zw1tRD6YuS8qRGb2WzGBRdcgNjYWBWVeXC73SgsLIRb4f8jRfWthQ81bSq1xTN/RPAYPW8ixxeMtvDwcDRr1izoQRARoIEQIuRJSUlBZGQkbxma4HA4sHfvXjgq3/AVBN30MQbMmvWf38hI7E1JgePfvHutTHjkCDB8ONC9O/DFF55zg0Cr2NSyq9SO6H2rWkaMAHwsgxb13XfoGYzNgQOBa6+VP/bPP54ZKAIQ0nnzA9Hj46VPL79a+KGaRyjB6HkTPT6e+vTwbeSap6YWQl+MnDe1YjObzUhKSkLr1q3RsGFDWK1WVfQxxlBSUgIei6bo4VsLH2raVGqLZ/6I4DF63kSOz19tJpMJMTExSEpKQps2bVSrubygpbGIkIX3dCo9sNvtyMrK4i2DO9Yff0TiqFGyx3YCvm98X345sGWLMPs7ECqybh1wyy2yh94GME7mfZ9LY5Vz6BDQtSsgt+dQZCRw8CDQunUwagmCIAiCIAiC0Ijyte7p9hZBEIR6mM1mmEwmVfc34X0vlxbSJ0KehIQE5Ofn85ahKsXFxRgzZgw+++wzWCwW5OfnCzmVzmw2Iy4uTnN92wAkVnjtNpuRHxeHuPx8xFfn99lngx4EcbvdyM/PR1xcHMxm9SbPqWVXqR2t4tONwYOBSy4Bfv31v/datUL2gw/ivsceC85mx46ezdHllslyOIDHHgM2bAjOtkqEfN5qQPT4eOnTy68WfqjmEUowet5Ej4+nPj18G7nmqamF0Bcj503L2EwmE8LCwhTZoJrH1yZd69VOjJ43keMTWZuW1J5ICcMyYcIExMXF8ZahKmPGjMHatWthsViEji8uLk5zfVcB6Fvpvfy4OLwyYQJ+iItDK18nDhjgmRESJPn5+XjllVdUH2RTy65SO1rFpxsmk2egCwCaNgUWLQIOH0bRzTdD0ZDc9OlAo0byxz77DI7PP0dGRoZqD7vdHpC8kM9bDYgeHy99evnVwg/VPEIJRs+b6PHx1KeHbyPXPDW1EPpi5LyJHhvVPL426VqvdmL0vIkcn8jatISWxiJClvLpVOUzQn7//XdDLI1lt9tRt25d2O123WZcBIse+n4EUHk4o3xGyPX5+TjjdmMGgDsAeP0G6NdfgYsvDtovzQgJARgDVq8Gbr4ZqFMHAJCRkYGWLVvKNq9xaaxyli8HxoyRPXTEZEIXxlAWrOZKWK1WDBo0CMuWLUNUVFSN7Q2Rt2oQPT6aEcLPJtW82onR8yZ6fPTraH42aUZI7cXIeRM9Nqp5fG3StV7txOh5Ezk+Xtp4L41FAyFEyML7y6MV1d3IrW2kAtjs49g3AAZUeH1RZCR++9//ELZuHXDrrcDHH2uujxAPVQZC3G6gVy9g1y7Zw48BeCl4ibIMGzYMa9asUdkqQRAEQRAEQRAEQRCEGPC+lyvWcBRBBMH48eMRGxvLW4YmxMbGCh2f1vpm+Hi/IDYWmyr57XDzzQj79FPgt9+AefMU+y4oKMCiRYtQUFCg2JYWdpXa0So+Q2A2A6++6vPwTACNVXa5YcMGv5bJMnreRI+Plz69/Grhh2oeoQSj5030+Hjq08O3kWuemloIfTFy3kSPjWoeX5t0rVc7MXreRI5PZG1aQgMhRMizd+9eOBwO3jI0weFwCB2flvqugGdGiBzbHA78/K9fq9WKYcOGYdmyZZ6D3bsDbdoo9h8ZGYmUlBRERkYqtqWFXaV2tIrPMPTqBYwaJXsoDsBcld3Z7XZkZWXV2M7oeRM9Pl769PKrhR+qeYQSjJ430ePjqU8P30aueWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aQktjUWELLynU2lFdUv7bN26FUlJSTor4kPjESNQZ/t22WOnP/wQpT16AAASExNhtVr1lEYIjCpLY5Vz+jTQvj3g4xcSPQHIL54VHAHrIwiCIAiCIAiCIAiCCBF438ulGSFEyJOammrYG+FWq9UrvqSkJCQnJwvzSExMREZGBhITE9W1ffKkz0EQXHkl6t50k+RXq9zb7XakpaX5tVwRD7tK7WgVn6Fo0gSYPt3n4dcAmPRTA8D4eRM9Pl769PKrhR+qeYQSjJ430ePjqU8P30aueWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aQkNhBAhT3JyMsLDw3nL0ITw8HCh43M6ncjIyIDT6VTX8KxZvo9Nn66d3wpo5UMtu0rt6PEZikR0sCc+/DDKfMwwuRTA4SlTkJ6e7vdj69atwSoBYPy8iR4fL316+dXCD9U8QglGz5vo8fHUF6rXeqLUPDW1EPpi5LyJHhvVPL426VqvdmL0vIkcn8jatISWxiJCFt7TqbRC1aV9QpGffgIuu0z+WL9+QFqarnKI0KLy96cFgBkABgBw7N+PFhVqhr+cWbkSjUePlj3matAAYceOAXFxQemrSK34fhMEQRAEQRAEQRAEUSvhfS+XZoQQIU9iYiLCwsJ4y9CEsLAwoeNzuVzIysqCy+VSz+js2b6PTZ2qnd9KaOVDLbtK7ejxGfKkMYBXAfwJ4C4ATQDELV8elK2Sfv3wuY9jYTk5wLRpQdkNBqPnTfT4eOnTy68WfqjmEUowet5Ej4+nvlC91hOl5qmphdAXI+dN9Nio5vG1Sdd6tROj503k+ETWpiU0EEKEPOPHj0dsbCxvGZoQGxsrdHwFBQVYvHgxCnxsJh0wO3YAmzbJH0tKAu6/H/jgAxTk5anrVwbVY1PZrlI7WsUnAk8D+BvAQwAiK7wfv2QJcP58UDYfBVDq6+DrrwO//RaU3UAxct4A8ePjpU8vv1r4oZpHKMHoeRM9Pp769PBt5JqnphZCX4ycN9Fjo5rH1yZd69VOjJ43keMTWZuW0NJYRMhSPp3KarWitLQU+/fvN9zSWCaTCRaLBaWlpWCMCbd0DmMMpaWlsFgsMJlU2Db6+uuBr7+WP2axAKWeW9GsSxeUzpgBy803w2TWZjxX9dhUtqvUjlbx8SYjIwMftGyJKb4aPPkkMG9ewDZbtmyJuQCe8tXo4ouBX34Bapi9pXRpLKPmrRzR4+OlTy+/Wvihmkcoweh5Ez0+nvr08G3kmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4+OljZbGIgiF2O12GHU8jzEmdHwmkwlWq1Wdorlzp+9BkMREaRAEAEz798M6ZAhMvXsDx44p9y2DqrFpYFepHa3iE4EXANh8HXz1VeD06aDsPgvghK+Dv/0GvPFGUHYDwch5A8SPj5c+vfxq4YdqHqEEo+dN9Ph46tPDt5FrnppaCH0xct5Ej41qHl+bdK1XOzF63kSOT2RtWkIDIUTIM2HCBMT5uVFxqBEXFyd0fPn5+Xj55ZeRn5+v3NisWb6P5eR4+42Lw8sTJiA/J8czSKIBqsamgV2ldrSKTwRsAJ73dTApCcjMDMpuETzLbfnk6aeDtu0vRs4bIH58vPTp5VcLP1TzCCUYPW+ix8dTnx6+jVzz1NRC6IuR8yZ6bFTz+Nqka73aidHzJnJ8ImvTEhoIIUKetLQ02O123jI0wW63Cx2f1WpFamoqrFarMkO7dgEbN8ofa9gQcDq9/drtSE1Lg/WRR4DoaGW+faBabBrZVWpHq/hE4VUAZyq8PgEgZ/584OBBoEePoO1+BmC9r4MFBcAjjwRt2x+MnjfR4+OlTy+/Wvihmkcoweh5Ez0+nvr08G3kmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4xNZm5aE7B4h+/fvx+HDhxEVFYXevXujXr161bZfsWIFTpw4genTp+ukkNAa3uvKaYXSPQRCkptuAr74Qv7YgAGeDdTdbu/3mzcH/vzTs3cIQfxLxe/PwwCmAngGwNsADgf5/an8nUwCcAhAjK8TPv8cuPFGv2xVxLDfb4IgCIIgCIIgCIIgaj287+WG3IyQzMxM9O3bFykpKRg+fDgGDhyIJk2a4KGHHkJhYaHP85YuXYpZ1S29Q4QsAwYMQJ06dXjL0IQ6deoIHV9JSQm+/vprlJSUBG9k927fgyA9e3pmihw8CAwb9p/fOnXw9cMPo6Ty4IiKqBKbhnaV2tEqPpFYBKAVgNcAlNbQNhAyAVQ7pP7AA0BRkYoe/8PoeRM9Pl769PKrhR+qeYQSjJ430ePjqU8P30aueWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aUlIDYSUlJTg6quvxo4dO8AYQ1xcHOrUqYOysjK8+eab6N69O44ePcpbJqEzCQkJMJtDqiv7jdlsFjo+t9sNm80Gt5IBidmzfR+bMQMwmYD27YE1a4A9e4Abb4S7TRvYmjZV5rcGVIlNQ7tK7WgVn0g44NnXQwteBbDH18ETJ6rf80YBRs+b6PHx0qeXXy38UM0jlGD0vIkeH099evg2cs1TUwuhL0bOm+ixUc3ja5Ou9WonRs+byPGJrE1LQmpprIULF2LSpElITk7GqlWr0KdPH7hcLqxbtw4TJ07EiRMn0LhxY3z77bde02wA4PLLL8fPP/8Ml8vFST2hNrynU2lFrVo6Z+9eoFs3+WOXXALs3OkZCKlMXh4QH6+pNCI00eL748tmDwC/mEwwyf0ZDQvzzHbq2lVzfQRBEARBEARBEARBEKLD+16umD8z98Enn3wCk8mE999/H3369AEAhIWFYciQIdi7dy+uuuoqnDlzBldeeSX27PH5W13CYCQnJyM8PJy3DE0IDw8XOj6n04mMjAw4K21m7jf+zAaR8xsdrcyvHyiOTWO7Su1oFV9tYheAgttvlz/ocgHjxlXd20YhRs+b6PHx0qeXXy38UM0jlGD0vIkeH099evg2cs1TUwuhL0bOm+ixUc3ja5Ou9WonRs+byPGJrE1LQmog5NChQ7jgggvQu3fvKscSEhLw1VdfYdiwYcjJycFVV12FX375hYNKQm9Gjx6NmBif2xaHNDExMULHV1hYiJUrV1a7P49Pfv8dWLdO/lj37sD//qeNXz/RyodadpXa0eMzrA3kTpoEJCbKH9yxA1iyRFV/Rs+b6PHx0qeXXy38UM0jlGD0vIkeH099oXqtJ0rNU1MLoS9GzpvosVHN42uTrvVqJ0bPm8jxiaxNS0JqaazIyEh069at2gEOxhjGjBmDlStXIjY2Fl9++SUuu+wyWhrLgPCeTqUVtWbpnCFDgE8+kT+2fj0waJCucghjoOfSWJLNX34Bhg+XPzkhATh8GGjcWDN9BEEQBEEQBEEQBEEQosP7Xq6Y6+34oH79+jh16lS1bUwmE5YvX47w8HAsXboUN9xwAzZs2KCTQoIg/OLAAd+DICkpwMCBusohageZmZmy74dlZwMAXA0bBnSexNChwPLlwDffVD1mswGPPQa8/34gUgmCIAiCIAiCIAiCIAgVCamlsTp37oxTp04hIyOjxrZLlizB+PHjUVhYiBtvvBFHjx7VXiDBhcmTJyPeoBtnx8fHCx1fXl4e5s2bh7y8vMBOnDPH97Hp033uDaLYbwBo5UMtu0rt6PEZisbll1+Oli1bSo8+LVtifcuWaNCzJzb27Ol1rOLj8ssvr96wyQS8+SZgtcof/+AD4NtvVYnB6HkTPT5e+vTyq4UfqnmEEoyeN9Hj46kvVK/1RKl5amoh9MXIeRM9Nqp5fG3StV7txOh5Ezk+kbVpSUgNhFxxxRUAgFWrVvnV/s0338SDDz6IkpISZP/7i1/CeKxfvx7FxcW8ZWhCcXGx0PFFRUVh8ODBiIqK8v+kgweBjz6SP9aiBXDjjdr4DRCtfKhlV6kdPT5DUbkAwKsA/gYwAUAdAHcBaKbEaKtWnkE8X9x/P2C3K/EAwPh5Ez0+Xvr08quFH6p5hBKMnjfR4+OpL1Sv9USpeWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aUlI7RGyf/9+XHTRRWjUqBHS09NRp04dv8574oknsGDBAphMJtojxEDwXldOKwy/h8BttwFr1vg+fuGFnhkjN99c48wQgqhMdd8fAOgNYDMAi8yxNwE8EKA/r++kwwF06+YZ7JNj2jRkjBlj7O83QRAEQRAEQRAEQRCEDLzv5YbUjJAuXbrgr7/+wk8//YSwsDC/z3v++efx888/44cfftBQHcELI49gij5CG/CMlUOHgLVr5Y9FRnr+PXgQuPVWoEcP4OuvAZmxWj1mymjlQy27Su2IPtsoWBITE2H1tUQVgF0ATvs4djc8s0X8xWq1IjEx8b83IiOBxYt9nzBvHiL++isAD1Uxat7KET0+Xvr08quFH6p5hBKMnjfR4+OpL1Sv9USpeWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aUlIDYQAQKtWrdC6dWtElt809ZNevXqhX79+GqkiCMIvnnlGdmADgOfX9BX57Tfg+uuBWbO010UYBqvVikGDBvk87gQw18cxC4DJAfgaNGhQ1UGXyy4D7r5b/oSyMtR/+ukAPBCEsbDb7cjIyPD5sKuwfBxBEARBEARBEARByBFSS2MRREV4T6fSCsMujXXkiGfZK7e76rHwcMDprPq+2Qz88QfQoYP2+gjDUFxcjDFjxmDDhg2yN1YjAPwFoHml908BmANgUQ32ywdbli1bJj9b69w5T5/NyZE9fzSAlTLvh/T3myCqoabvZDk1frcIgiAIgiAIgiCIkIX3vdyQmxFCEJXp0KEDIiIieMvQhIiICKHjKysrw+HDh1FWVlZz42eflR8EAeQHQQBg1CjZQZCA/AaJVj7UsqvUjh6fIS+ioqKwZs0a5ObmIj09vcrjz/R0RM+ZI7V3Jibi3MyZKDt8GE/KtK/8yM3NxZo1a3zfqK1fH1i40Ke+BQDqBxmbkfMGiB8fL316+dXCT1lZGR5++GF8+umnNc74sNvtWLt2LcaMGaO6NtH7FiGP0fMmenw89YXqtZ4o13lqaiH0xch5Ez02qnl8bdK1Xu3E6HkTOT6RtWlJrRoIYYwhOztbWoIhOzsbNCEm9BF5Dw2lGGaPkKNHgffflz/WqpVnA/XKG6NHRADTpyvzqwDaIyT0sVqtSE5Oln3UnzQJ6N0beOMNhKeno/6MGWjRvr3P9hUf1e1BInHnnUD//rKHGgB4PsiYjJ430eOjPUICJzc3Fw0bNgzo75jczBGqebUTo+dN9PhovXx+NmmPkNqLkfMmemxU8/japGu92onR8yZyfCJr0xJDL43122+/4dtvv8XOnTuxb98+ZGZmwlnpl+fh4eFISkrCRRddhJ49e+Kaa67BxRdfzEkxEQi8p1NphSGXxho9GlgptxgQPAMkI0YA+/d7Bj7Wr/e8/8ADwOuv66WQINTnyBGga9eq+9/8yxUAtlZ4HbLfb4Kohur+plUHfR8IgiAIgiAIgiCMBe97ueG6edKJgwcPYvny5fjggw+QlZXldUxuzKesrEyaIbJhwwZMnToViYmJGDFiBEaPHm2IG+sEwZVjx4BVq+SPtW8PDBvmed6lC7BuHbBzJzBnDjB1qn4aCUIL2rcHJk8GZs+WPbwIQAqA2jURlSAIgiAIgiAIgiAIQn8MszTWDz/8gOuuuw5dunTBiy++iKysLDDGvB6+qNwuKysLL774Irp27YrrrrsOP/zwg46REIEyc+ZMJCQk8JahCQkJCULHZ7PZMGvWLNhsNt+Nnn0WcLnkjz39NBAW5v1ez57A558DTZoo86sQrXyoZVepHT0+QwLAU08BbdvKHroQwKQAzRk9b6LHx0ufXn618FNYWKjK3zGqebUTo+dN9Ph46gvVaz1RrvPU1ELoi5HzJnpsVPP42qRrvdqJ0fMmcnwia9OSkF8aa/fu3Zg0aRLS0tIA/Dfrw2QyoVOnTrj88suRkpKCjh074oILLkCDBg0QFRUFxhhKSkqQnZ2Nf/75B4cOHcK+ffuwdetW/PHHH152ACA1NRUvvPACunfvziVOoirl06mSk5ORmZmJvXv3GmIGT8VlRMqXbitf1k20pUKcTicyMzORlJSE8HCZCWZ//w20ayc/ENK2LXDwICB3nlK/KqCVD7XsKrWjx2dI/Mt33wHXXCN7qARAFwDH4N9SQEbPm+jx8dKnl18t/Bw7dgxXX3217PKkq1evxm233SZ7XuXvA9W82onR8yZ6fDz1heq1nijXeWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5Pl7aeC+NFdIDIePGjcOyZcvgdrvBGIPJZMKVV16JoUOHYvDgwWjYsGFQdrOzs7F+/Xp89NFH+P777yXbZrMZd999NxYtWqRyJEQw8P7yaIWh9gi5917gnXfkj61YAYwapascguDGHXd49sOR4UcA/QEcC7XvN0H4QXV/0zZv3oz+/fvLHgu5v3cEQRAEQRAEQRBEtfC+lxvSS2MtWbIELpcLsbGxeOKJJ/DXX3/h22+/xb333hv0IAgANGzYEPfeey82bdqEY8eOYdKkSYiNjYXL5cKSJUtUjIBQg+HDhyM6Opq3DE2Ijo4WOr6ioiKsWbMGRUVFVQ9mZHgGO+Ro3Rq4/XZt/KqEVj7UsqvUjh6fIVGBhQsBH0sDXQHgMT/NGD1vosfHS59efrXwU1JSosrfMap5tROj5030+HjqC9VrPVGu89TUQuiLkfMmemxU8/japGu92onR8yZyfCJr05KQHgiJjY3FrFmzcOLECcybN8/nLw6VkJycjPnz5+PEiROYOXMmYmJiVPchR05OjrR5+8CBA9GpUyfUrVsXERERiIqKwgUXXIDrrrsOzz33HP7555+A7X///fcYOXIk2rVrh+joaNSrVw9du3bFpEmTcPjw4aA0Hzp0CJMmTULXrl1Rr149REdHo127dhg1ahS+//77oGz6g81mg9vt1sw+T9xut9Dxmc1mJCQkwGyWKSXPPQdUWgZFYurUoJbE8suvSmjlQy27Su3o8RkagrNnga++Um6ncWNg/nyfh58BEHHoUI1mjJ430ePjpU8vv1r4MZvNqvwdo5pXOzF63kSPj6e+UL3WE+U6T00thL4YOW+ix0Y1j69NutarnRg9byLHJ7I2LQnppbFycnLQoEEDQ/q88cYb8eWXX/rV1mKx4KmnnsK0adNq7MD5+fkYO3Ys1q5d67NNREQEZs2ahaeeespvvc8++yxmzZqFsrIyn21uu+02LF68GLGxsX7brQ7e06m0whBLY504AbRpA8j1h5YtgSNHgIgI/XURhL+cOQO88ALw1luAyeSZ4aS09rvdsPfuDevOnbKHHe3bI3LfPsBiUeaHIASClsYiCIIgCIIgCIIgAP73ckN62EfvQRCePi+//HLccccdGD9+PEaOHIk+ffpIm9mUlpZi5syZuOuuu6q1U1ZWhptvvtlrEKRz584YOXIkhg4diiZNmkjtpkyZgtmzZ/ulb/r06Xj66aelQZAmTZpg6NChGDlypFdnXr16NYYMGVJls1SlpKSkIDIyUlWbohAZGSl0fA6HA3v37oXD4fA+8Nxz8oMgAHDttUBYmDZ+VUQrH2rZVWpHj88wJDl9GnjsMc+A3cKFQHExUFQEvPSScttmM3IWLECBj8ORR44A06dXa8LoeRM9Pl769PKrhZ+ysjJV/o5RzaudGD1vosfHU1+oXuuJcp2nphZCX4ycN9Fjo5rH1yZd69VOjJ43keMTWZuWhPRAiJFJTU3FokWLcPToUWRnZ+PHH3/Ee++9h7feegsrV67ETz/9hMzMTNx2223SOe+++y4+/vhjnzbnzJmDH374AQBgtVqxevVq7N+/HytXrsTatWuRkZGBSZMmSe1nzpyJLVu2VKvz+++/x5w5c6TXkyZNQkZGBtauXYuVK1fiwIED+OCDD2C1WgEAmzZtwty5c4P6THyRmpoq2TcaVqtV6PjsdjvS0tJgt9v/e/PkSWDpUt8nLV4MXHwx8OWXQJAT0mT9qoxWPtSyq9SOHp9hyOFyAZde6hn0KCnxPvbaa8D584pdOJs1w8PVNXjhBWDrVp+HjZ430ePjpU8vv1r4cTgcqvwd06Lm2e12ZGRkyD5E7YO1DdFrglJEj4+nvlC91hPlOk9NLYS+GDlvosdGNY+vTfr/be3E6HkTOT6RtWlJSC+NRQCMMVx99dXSAMfVV1+Nb7/9tkq7s2fPolWrVtImOIsWLcK4ceNkbQ4fPlyaNdK7d2/8/PPPPv337NkTu3btks5bvXq1bLtFixbhvvvuA+DZ2+Xvv/9WPLuG93QqrQj5pbEeeAB4803/2vbuDTz7LOBjaRSC0J3584HJk+WPPf00UGHgNxjKv9/rAAz21ahlS2DfPkClZQQJgiciLo1VXFyMMWPGYMOGDT4v/K1WKwYNGoRly5YhKipKEx0EQRAEQRAEQRC1Cd73cmlGSIhjMpm8lsTas2ePbLuVK1dKgyDt2rXD2LFjfdp8/vnnpb1Gtm/f7tPmrl27pEEQs9mM559/3qfNcePGoW3btgCAgoICvPfee9VEFRhWqxUmk0k1eyJhMpmEjo8xBrvdDmk89Z9/gHfe8d/A9u3A/fd7fomvxK8GaOVDLbtK7ejxGYYk998P1Ksnf+zVV4HcXFXcjAVwxtfB9HTg0UdlDxk9b6LHx0ufXn618MMYU+XvmJo1b8yYMVi7dm21v36y2+1Yu3YtxowZE6xkQgVErwlKET0+nvpC9VpPlOs8NbUQ+mLkvIkeG9U8vjbp/7e1E6PnTeT4RNamJbVqIKSwsBB//PEHtm/fjh9//NHvh+g0bNhQel5QIL/6/Pr166Xno0ePrvaGRPPmzXHllVdKr9etW1ejzauvvhrNmjXzadNkMmHUqFE12gyGyZMnIz4+XjV7IhEfHy90fHl5eZg/fz7y8vI8b8yfDwS6vuDs2QHvGVLFrwZo5UMtu0rt6PEZhiSxscDjj1d9v1Ejz/4dKm1kng3g3uoaLF0KbNhQ5W2j5030+Hjp08uvFn6KiopU+TumVs07e/YsNsh8t3xR3awRQntErwlKET0+nvpC9VpPlOs8NbUQ+mLkvIkeG9U8vjbp/7e1E6PnTeT4RNamJYZfGqugoACvvPIKVq9ejSNHjgQ80mUymVTf3FttXnrpJTz22GMAPLM9jhw54nXcbrcjOjoabrcbAPDzzz+jd+/e1dqcO3cupk6dCgDo27cvtm3bVqVNnz59sH37dqn9U089Va3Nn3/+GX379gUAhIWFoaioCBYFNxXLp1MlJiYiOzsb+/btM9zSWGFhYWjYsCGys7PhcrmEWxrL5XIhOzsbDRs2RNiZM0CrVkBpqf8GUlKA334DzIGNyXr5Vbjxut4+1LKr1I4en2HIkp8PJCd7Zn8kJgJPPAGMGweosDxO5WWC3gFwt6/GDRsCBw54BmH+xeh5Ez0+Xvr08quFn2PHjuGyyy6T/o5VJJClsdSqeUVFRWjTpk1A54r2t7c2IXpNUIro8fHUF6rXeqJc56mphdAXI+dN9Nio5vG1Sf+/rZ0YPW8ix8dLG++lscJ188SB3bt3Y+DAgTh9+jQAGHK6z6lTp7BgwQLp9ZAhQ6q0OXLkiDQIYjKZ0K1btxrtdu/eXXp+6NAh2TYV36/Y3hcV/bpcLvz555/o0qVLjefVRFZWlmIbouJyuYSOLywsDImJiZ4Xzz/vexDk6aeBQ4eATz7xfv+ZZwIeBKniVyO08qGWXaV29PgMQ5a4OE/fdDqBe+8F6tTRzNUEAP0BtJI7mJ0NjB0LrFsH/DuLz+h5Ez0+Xvr08quFn7CwMFX+jqlV8zIyMhRrIfRD9JqgFNHj46kvVK/1RLnOU1MLoS9GzpvosVHN42uT/n9bOzF63kSOT2RtWmLYpbHOnTuH6667DqdOnQJjDIwxhIeHo3379ujTpw/69evn1+OKK67gHUoViouLcfDgQSxcuBDdunXDqVOnAAAdO3bEZJlNfivOEGnUqBGsVmuNPpo3by49P3/+PLKzs72Onz17FjabTXrdokWLGm3WqVPHaxmvw4cP13iOP4wePRoxMTGq2BKNmJgYoeMrLCzEihUrUHjsGLB4sXyjCy7wDIR8/DHw66/AgAGe9/v0AW64QZnfwsIglfPzoZZdpXb0+AxDmvvvBx5+WNNBEAAoBDAKgNtXgw0bgBUr/mtv8LyJHh8vfXr51cJPSUmJKn/H1Kp5JSUlinQQ+iJ6TVCK6PHx1Beq13qiXOepqYXQFyPnTfTYqObxtUn/v62dGD1vIscnsjYtMeyMkIULF+LcuXMwmUyIjY3F3LlzMXLkSGFvKFfHtm3bcPnll1fb5oYbbsD777+P2NjYKsfOnTsnPW/cuLFfPiuPCp4/f95rEKOizUDtlg+qnD9/3q9zaiIjI0P45cuCxel0Ch1feHg4kpOTEf7GG4CvNdQnT/5vX4WLLwa++grYtg2wWqVfuQftN1y7EqaVD7XsKrWjx2dI+Mc2AC8AeNJXg0ceAVJTgZYthcib3W4P6hf+iYmJNQ7EixBfdfDSp5dfLfyEhYWp8ndMrZqn9rRvX98Hf/o7UTOi1wSliB4fT32heq0nynWemloIfTFy3kSPjWoeX5v0/9vaidHzJnJ8ImvTEsPOCNm4cSMAz1JQX3zxBe6///6QHASpibp162L16tX48ssvkZCQINum4uheHT9/3Vy5XeURwsqvg7Gr1qjjjh07pC+uy+WCzWaTlkHLz8+H49/Nu0tKSlBUVATAM8BQcUZLXl4eysrKAHhm3BQXFwMAysrKvDYOstls0s2coqIi6ZelDocD+fn5ADxLsNlsNmkt9MLCQmmj1dLSUmlDe7fbDZvNJi1bVlBQgNJ/l5ayWq2IiYmB3W7H1q1bYbVapQ3uRYrJarWid+vWKFu1yhOT2QxbQgLc/y53VdC6NUrvvBOA52ZRec5dvXvD1qZN0HmyWq3o2bOn9NlpkaeysjKkpqYiMjLSZ568YvKz74WHhyMlJUW6QRZsnhhjSE1NhdlsDqrv2e12XHHFFbBarYpjEv37JFpMJpMJCQkJ0g3ZmJgYPGu1wtGhA0otFhT8O6AtfZ+KioBRo1Bgs8FkMiE1NVX6LPSMqbi4GLfffjuaNGmCli1bon379rjooovQsmVLtGrVCt26dUObNm3QsmVLdOnSBR07dkTLli3RoUMHdO3aFXXr1sXw4cNx+vRpn3lyOp1ITU1FREQE9zzJ9T0ASE1Nhclk0rXvhYWFITU1FW63W9PvkxZ1LzIyEtu2bfMaFIiPj0dERAQAICoqClH/7r8TERHhtal6xZhcLhcuvfRSWK3WoGpEZGQkUlJSpOuF2NhYaZ+y8r+5gGfgJiEhQfqbGxcXJ/WpinnKz8/HnXfeibp166Jly5ZISUlBu3bt0LJlS3Tq1AlNmzbF8OHDkZeXR3VPQUxlZWXo3bs3rFarYWKqmCcAuOSSS2C1WoWMyel0olevXrBarbr3PT3qnslkwsUXXwyr1apaTC6XC6mpqQj/f/bOOzyKqmvgv920TUgVkVDERKyAiq8FUBGwIFZQ1ARRwdhAUbGjfvrK66uC5QVsYAuioAmCiqigooCgUkRaEFBwIx0p6clu2v3+mGRN2d1smdmZndzf88wD2Zk595w5d8/cnTv3nMjIoPxks9k466yzXO0EE/eio6M185ORvk9mscnMcc9ms9G7d+9G93Yj2WSz2TjzzDNd54ey7zmdTs4991xsNpu2v9379HFdOzVsEkJw1llnYbPZgvZTsHHPZrNx/vnn43A4TB0jzGaTzWbjjDPOcI29zWBTQz8ZOe5FRUXRv39/qqurdel7emHaiRC73Y7FYuHcc8/lvPPO01udoOjYsSN33303d999N3fddRc33XQTZ599NpGRkRQUFDBs2DAuuOACfv/9d7fn13dowDUQbommRcybppJoKDNQuWqlp7j22mu57rrrADhw4ABTpkxxfTmzs7P57bffAFi6dCnz588HYNeuXUyZMsUlY+rUqWzfvh2Ab775hm+++QZQirxOnTrVddyUKVPYtWsXAPPnz2fp0qUA/Pbbb2RnZwNK4JgyZYpr5cucOXNYsWIFAGvXrmXWrFmAEhymTJniCkazZs1i7dq1APTu3Ztrr72WmJgYLrjgAsaOHeu6dkayyel08ulbbzGzrjZNcWIiU8aOpTgxUbFpxAjW1tWSWbFiBXPmzFHFT06nk1mzZrFgwQLN/DRz5kxWrFjh0tWdnwKx6c8//2x0XKB++v7771mxYgXr168PuO8tXbrUdS2Dscno3yej2RQTE8PYsWNdq+yuvfZazujdmwP/+x9rzzyTWcOHKzY1/D4tW8asV15h9erVrFixguXLl4fcpqysLGpra+nduzcA3bp1Iysry6NN9cedfvrpDB8+HIfDwddff81bb73l0U+zZ89mxYoV7N69W3c/uet7y5cvZ8WKFaxevTqkfW/Lli2sWLGCBQsWaPp90iLuVVZWMnDgQMaOHevSdfTo0XTt2hWAgQMHMnDgQAC6du3K6NGj3do0b948cnJycDqdAcWIel3rB9/Dhw931S6rv+cCtGvXrtE9Nysri7/++quZn8aOHctxxx3nGg81talfv37k5uby4IMPBucnIZjz8cesWLIE9u1j7Q8/MOuDD6C6OqziXqCxfObMmXz66ac4nU7T2NTQT8uXLyc7Oxun02lIm2bPns2cOXNwOp0hv+eGIu6tXr2at99+G6fTqZpN8+bNY8WKFa7xXqB+cjqdvP/++3z//fd+2eQu7tUfZ8YYYUabzBz3nE4nc+bMYfbs2Ya0yel0kp2dzfLly322CdTre1999RVOp1Pb3+6ffsrMupcY1bDp+++/5/3338fpdAbtp2DjntPpZOnSpaaPEWazyel08vbbb7N69WrT2NTQT0aOe7t37270G9xXm9Tyk24IkxIfHy+sVqu444479FZFM3bv3i1GjhwpAAGIlJQUsX79+mbHvfDCC65jevXq5ZPs8vJy1zmA+OWXXxrtX7VqVaP9FRUVPsk9++yzXee89NJLPp3jiby8PAGI0aNHi/bt24u8vDxRXV0tCgoKRG1trRBCiKKiIuF0Ol02lZaWCiGEqKqqEgUFBS5ZhYWForKyUgghRFlZmSgrKxNCCFFZWSkKCwtdxxUUFIiqqiohhBClpaWivLxcCCGE0+kURUVFQgghamtrRUFBgaiurhZCCFFSUuK6Pg6HQxQXFwshhKipqREFBQWipqZGCCFEcXGxcDgcwm63C5vNJuLj40VCQoIYNWqU6NSpk7BYLMJutxvKpuI//xSv33WX2JOaKgSIGqtVFCQnixqrVYjUVFG8f79wOBxCCCEqKipESUmJEEIE7afi4mLx+uuvi/3792vmpz179oipU6eKwsJCt34K1KbDhw+L1157zdUPAvXT/v37xdSpU8XBgwcD6ns7d+4Ub7zxhiguLg7aJiN/n4xmk91uFxaLRSQnJ4uIiAgBiPj4eGGz2YTdbheOiRNFcUJC8+8TiOIjjhAHli8XU6dOFX///XdIbSopKRE2m020adNGxMbGCkBER0eLxMREAXi0CRAxMTEiISFBAMJqtYr27du72mrqp71794qpU6eKgoICQ/a9v//+W0ydOlUcOHAgpH3v0KFDYurUqWL//v2afp+0iHubNm1y3cfq7/9JSUkiKipKLF68WMTFxYm4uDgBiKioKJGUlCQAsWzZMrFx40axbds2UVFRIfbt2ydef/11UVxcHFCMKCwsFK+99prYuHGjAERCQoKIiYkRgOueC4iIiAiRnJwsLBaLAERiYqL4/fffG9lUUVEh2rRpI5KTk5vZBDSyKT4+3nWvcuunvXuF+OEH4XztNVH06KNCDB8uavv1EwWnnSaqExOFsFpFSXy8qLDZhADhiIn5J0ZER4uCY44RNaecIsSgQaL4jjuE4+mnhZg9W1Rs2CBK6vqH3nHPHz81/T7t2bPH5XcjxfJgbGr4ffr7779dYwIj2rR3717X9Q/1PTcUce/AgQOu66+WTfv27RNTp04Vhw8fDspPTce6wcS9evlGHRv5Y1O4jPeCscnMca++X+/du9eQNhUXF4vXXntN/P333z7bJIQ6fW/Xrl2u32aa/Xavu/579uxRzab9+/e7+muwfgo27hUXF4s33nhD7Ny509Qxwmw21X/vDhw4YBqbGvrJyHGvoKBATJ06Vezduzekfa/+WW79lpeXJ0KJRYi6tSsmo1u3bmzdupXhw4fz/vvv662Optx333288sorgFIwfePGjY1yYE+dOpW77roLgFNPPZX169e3KPPw4cO0bdvW9feWLVs48cQTXX9v3ryZbt26NTo+JSWlRbmnnnoqGzduBGDatGnceeedLZ7jiU2bNtGjRw/X33l5eXTv3j1geUYhPz+f9PR0t/vsdjtpaWmhVcgbjz4KL7zgft///gf33x9afSQSg9Pi9/voo2HAAFi2zL2AU0+FVav+qbsTIrzpHQiGi2USzfDWdxYvXsyAAQNalGGz2Rg8eDDZ2dmuNFpa6OOJpv3VXxmu8x0OWLECli6FNWtgwwaoW22iCTYb9OgBvXtDv37K1qDem0QikUgkEolEIpGEEr2f5Zo2NdbAgQMRQvDLL7/orYrmPP/88yTWpSLavHmzK11QPQ0nNPbv3++TzKaFP4844giPMgOV21RmoCQnJ2O1mrMrW61W49p38CC1b7zRqCaIi/btIYhJrpZomqswnNpQS26wckJxDU3PwYMwfjzU5bxUhYgImDEDPNS0qs3Lo/Dpp03rN6P3S730C1W7WrRTW1sb9H3M4XDw8ccfc+edd4ZVzLMC5wDJkydD//6QnKxMdD79NMyfr+0kCCgTL7/8Aq+9BtddB0cdBd27w4MPwvLlUJfr2MgYPSYEi9Ht01O/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bTEgE9X1eGuu+4iJiaGrVu38u233+qtjqbExcVxzjnnuP7+8ccfG+1vuJLj77//blbfwx07duxw/f+II45w5X2v56ijjmpUnP0vH37MOxwOV149gJNOOqnFc3xh7Nixrokgs5GYmGhc+15+meLIyEY1QVw8/DAE+dauN5rmKgynNtSSG6ycUFxD03LgAIwbB2lpygPNN95QV356OnjInVmcmMgUm43i775Tt02DYPR+qZd+oWpXi3bKy8tVuY8lJiZy3HHHNRpH+EO9bfWFBbUiCrgEmAbsAX4EkqdMUVaBNCiQrRu//aas2OzbFzp2hDvugMWLwaA/gIweE4LF6PbpqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JumhLSRFwhZurUqcJisbjqR5iZYcOGufKr3X777Y32VVRUCKvV6tr/888/tyjv2WefdR1/7rnnuj2mT58+rmOef/75FmX++OOPruMjIiJcueUCpT6vXHJysrBarabxsd1ud10nq9Xqsg8Qdrtdb/UUDh4UIj6+WQ0DAUJERAiRmytEXX5ALWiaqzCc2lBLbrByQnENTcf+/UI89JAQcXH/9HcQ4sgjhajLo9kSDb/fTbdG3+/aWiGuuqpxOw3rhhx7rM9tqoE3vZctWybsdnuzbdmyZb7Z2gCj90u99AtVu1q0s3379kb3sYbb5s2bXbVkWtrq74fbt28Pyrbt27f71J63/tr0+2ABMQDEDBCFTb6zYbOlpwvx9NNC5Oer4HX1MHpMCBaj26enfuE61jPKOE9NXSShxcx+M7ptMubpK1P+vm2dmN1vRrZPL930rhFi2hUhAKNGjWL69OkUFRVx1llncf/99/Pjjz+acrZr7969rv83TTlls9no3bu36+8lS5a0KG/p0qWu/19wwQVuj2mY19tfmeeccw4xKuW4N/NSLsMuVZs0CUpLsdbWklxYiLWhfjU1kJGh5CRftEh5xKIyoUgZplUbaskNVo6h064ZlUmT4KWXoOkb5QcPKqln1MRigbffbpbP3/Wd+/NPGDtW3TYDpHPnzqSlpTXbOnfu7Lcso/dLvfQLVbtatGO1Wj3ex+prf/hC/f3QSDHvaOBJYDvwPXAzkKSa9BBjtysr3NLTYfBgWLJEk/u3vxg9JgSL0e3TU79wHesZZZynpi6S0GJmvxndNhnz9JUpf9+2TszuNyPbZ2TdtMS01kZERBAREUFWVhaVlZU4HA5eeeUVzj//fFJSUlz7W9oiIyP1NqVFDh06xM8//+z6++STT252zJAhQ1z/f++997zK27lzJ981SLvS8FxPMhctWsSuXbu8ym3YrieZgTBq1CgSEhJUk2ckEhISjGff4cPwyisAlCQkMG3UKErc6bdqFVx8MVxwAfz+u6oqlJSUMG3aNEpKSlSVG4o21JIbrJxQXEPT8cAD0KaN+30vvghqT7IfdRS8806jjxp957KzYfp0ddvUGaP3S730C1W7WrRTXl7u9T6WnZ1NRkYGNpvNq5z6+2Ggqa3qbQs6NVZtLbHffcdCIB/4D+Bf6XUPJCfDuefCsGFKesnJk+Hjj+Gbb2DZMqXWx6ZNkJen3F+XLoWvvoKZM2HCBBgzRpnAOOkkCObHjBDw+edKLZN//UuRX12thoUBYfSYECxGt09P/cJ1rGeUcZ6aukhCi5n9ZnTbZMzTV6b8fds6MbvfjGyfkXXTEuM/5Q8QIQQWi8X1r8ViabTPyBw+fNjnQuK1tbWMGTMGZ13e6ZiYGK644opmx40YMYLx48dTVlbG1q1beeedd7jtttvcynz00UepqSug2adPH/71r3+5Pe6ss87irLPOYvXq1dTU1DBu3Dhmzpzp9ti33nqL3+sehickJHDzzTf7ZJ8vrFu3jsrKStXkGYnKykrj2ffYY1AXKKMrK+m5bh3R3vRbtQqS1H1HNjo6mp49exIdHa2q3FC0oZbcYOWE4hqajnbt4N574fnnm+8rKICpU+HRR9Vt86qrICtLmfTAzXdu9Gg45RQ480x129UJo/dLvfQLVbtatBMZGen1PhYXF0dOTg4Oh4N9+/YBsGvXLvr27dvouPr7YaAvqNTbFvALLuXl8P77MGkS7X//nUsCk6KQlAT9+kGvXnDaaXDqqdC5s7ISTA0qKpRaIOvWwY8/KpMmf/7pv5x16+Cmm2D8eHjySbjhBgjxC0JGjwnBYnT79NQvXMd6RhnnqamLJLSY2W9Gt03GPH1lyt+3rROz+83I9hlZN00JaSKuEGKxWFTZrFZryHWfNGmSOPPMM8WMGTNEUVGRx+PWr18vLrnkkka51f7v//7P4/FPPvmk67jY2FiRm5vbaH9lZaV49NFHG8lbsmSJV10XLVrU6PhHH31UVFZWNjomNzdXxMbGuo4ZP368D1ehZfTOK6cVPtcQ0IMlS/zPO/7YY/rqLJGoycGDQiQkNO7jRx0lxP/+J0R5eYunB/T9LioSIi3N83fs6KOV+iUaEojeho5lkpBhtL7jTba7rT2IgrvvFuKIIwKuv1ETEyPE5ZcrceLXX4Worg7KhoD46y8hsrOV2kM2W2C2HH+8EB99pGkNMIlEIpFIJBKJRGJe9H6Wa9rUWLW1taps9SsjQs0vv/zCiBEjaNu2LaeccgrXXnstt99+O3fccQdDhw7l+OOP57TTTuPrr792nTN06FD+/e9/e5T55JNPuup9VFRUkJGRwamnnsrIkSPJzMzkmGOOYeLEia7jx48fT79+/bzqeeGFF/J///d/rr8nTpxIWloamZmZjBw5klNOOYWMjAwqKioAuPjii3n88ccDuiae6N+/f4spNcIVm81mHPscDrjjjsYf2Wws6d8fhyf9kpKUFB+qq+JgyZIlOBwO1WVr3YZacoOVE4praEratv2nNkfbtvDCC8qb1vffD7Gx2rSZmKikp4mMdP+d27lTqcujY/oatTB6v9RLv1C1q0U7lZWVqtzH6u+Hga6QrLfN1/NTgUmAHUh+/XUlLaQfFAGzgKHAzl9/hS++UOLE6adDRIR/yqtBly5wyy0wb55S12jOHLjmGoiK8l3GH38oqbt691ZWmoQAo8eEYDG6fXrqF65jPaOM89TURRJazOw3o9smY56+MuXv29aJ2f1mZPuMrJuWmHYiJJxpWES8urqavLw85s6dyzvvvMPbb7/NJ598wrZt21zHJCQk8PLLL5Obm+s15UNUVBSffPIJ119/veuzjRs3MmPGDHJzc10F16Oionj22Wd56qmnfNL3P//5D8888wxRdT+m9+zZQ25uLjNmzCAvL891XGZmJnPmzFG97kpaWlpY1HIJhMjISOPY99//Nqv1UR0ZSX5aGtXp6fDTT9A0LdvDD0NKiuqqVFdXk5+fT7WGD361akMtucHKCcU1NC0PPKCkx7LblT7uqW6Impx7Lrz88j/fuaYxYckS9dNy6YDR+6Ve+nlr1+FwkJ+f73XzdXCrhX01NTWq3Mfq74eBvqBSb1tL59dPgPwJjAX8md6sBOYAVwDtgBuBTwARFxeAxhrSpg0MHQpz58KePUo9klNO8f38VavgvPPguuuUiVjc90M1flQZPSYEi9Ht01O/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bTEIoTBC2a0Un7//XcWLVrEypUr2bRpEzt27KCwsBCAxMREOnToQM+ePbnooosYOnQo8fHxfslftGgRM2bM4Oeff2bv3r1ERUVx9NFHc8kll3Drrbe6LbjeEps3b+add97hm2++YefOnVRVVdGhQwf69OnDiBEjuOiii/yW6Y1NmzbRo0cP1995eXl0795d1Tb0ID8/n/R096VX7XY7aWlpoVUIYONGpWiqpwD5zTdKYXSAn3+Gxx9Xirr++Sf42TclEjMT1PdbCLj5ZmV1iCc+/FB5Y1tlAtHbkLHMRJSXl5OVlcW8efNafOBss9kYPHgw2dnZxIX4obzR+o4n2UcB44BR+Df5AbAReBdlBchBN/vDor8LAYsXw6RJyuoVX0+Lj+f9447j7s2bKaurV1ePnv1OIpFIJBKJRCKRGA+9n+Ua4DVziTtOOOEETjjhBO666y5N5F900UWqT0ycfPLJvPzyy6rK9IXU1FQOHDgQ8nZDQUREBO3atePAgQO6pWmjpgZuv93tJEhNRAQHbrmFdhdcgCvRR58+8P33ylumGk2C1NTUcODAAdq1a0eERilGtGpDLbnBygnFNZSojMVCzRtvcGDnTtotX06Eu5hw663QvbtSfDkMMXq/1Es/d+1mZWWRm5vr0/kOh8N1bE5Ojl/tBEtNTY3rPh3Mfaz+ftiSjIZF15vqERkZ2ez8OOBB4BHAnztWNcrqj8nASj/OMywWC1xwgbJt3QoTJsAHHyhjAG+nlZYyYt06egB3Amsa7PO133nD6DEhWIxun576hetYzyjjPDV1kYQWM/vN6LbJmKevTPn7tnVidr8Z2T4j66YlMjWWJOwZNWoUCQkJequhCQkJCfrb9/rrsNL9Y56SY47hzc6dKSkpabzDYoFOnTRTqaSkhDfffLN5u2HQhlpyg5UTimsoUZ+SmhreHDCAks6d3R9QUQFXX+13PQOjYPR+qZd+Tdt1OBzMmzfPbzktrR7Rwr6KigpV7mP198P6mmNNKS8vJzMzk5SUFNLT05ttZ555Ju+99x633XYbABHArcAfwH/wfRKkCHgJ6AoMwySTIE058USYPh22bIGRI32qaXIGyrWYjDK51BBfVi15wugxIViMbp+e+oXrWM8o4zw1dZGEFjP7zei2yZinr0z5+7Z1Yna/Gdk+I+umJTI1liRsqV9OZbPZcDqdbNy40XSpsSwWCzExMTidToQQoU+vsWMHdOsGZWVud4uZM3EOHUpMTAwWiyVkagkhcDqdmrarVRtqyQ1WTiiuoaQ5wab8cfnthx+wXHop1Na6P3DQICW9jUpvdoQqvZHR+6Ve+jVt19u1bQlv/UwL++x2O926dXPdx3zRxZ199ffD3377za3tmZmZXlfINLyfXioEE4EeHo9uzh7gRZQUWP7+VAiL1Fje2LxZqUE0f75Ph/+OUh9ldYPPAr0GRo8JwWJ0+/TUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPbppZtMjRVCSktLWb9+PQcPHqSkpIRaTw+QmnDzzTdrrJkkGNQoxmlUhBD62ScEjB7tcRKEQYOw3HADNh2CucViwWazhWUbaskNVk4orqFEfVx+GzgQnnsOxo1zf+DChfDvf8N//xtaBYPE6P1SL/1C1a4W7VgsFlXuY/X3Q3eDdF9WyAgh6OJw8ApwiR/t7gGeB94GnB6OsdlsnHbaaaz0sHoy7Dn5ZPj8cyXt5YMPwrp1Xg8/AfgJeAZ4DiWNWKAYPSYEi9Ht01O/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bSkVaTG+vDDD+nTpw/Jycmcf/75XHPNNYwYMYJbbrmlxS0rK0tv9SUtMHbsWBITE/VWQxMSExP1sy83F776yv2+Nm1g2jSKS0qYPHkyxcXFIVWtuLhY83a1akMtucHKCcU1lKhPI7898ghce63ng599Fj77LGS6qYHR+6Ve+oWqXS3aKSsrU+U+Vn8/LHMzOb9v3z6vky3xwITEREaPHUsfH/XYA9yLkgLrNZpPgixbtgy73Y7dbqegoCDgGhhhxQUXwOrVMHlyizXAIoHxwHLg+CCaNHpMCBaj26enfuE61jPKOE9NXSShxcx+M7ptMubpK1P+vm2dmN1vRrbPyLppiaknQioqKrjyyiu56aabWLVqFbW1tQgh3G6A130S47JkyRLTrgpxOBz62HfoENx7r+f9//0vHHMMNpuN/v37h3wWORTtatWGWnKDlaOX71oNBw8qqzUeeURVsY38ZrFAdraSvs4TN9+s5PkPE4zeL8Mh5i1btoxly5Zp3o43HA4H+fn55Ofnc+DAAVXuY/X3w+joaL/OuwHYCtzvcNB/yRJsLehxGKV4elfgVcDT0Z07dyYtLY20tDTD9ldNiIyE++6DzZspu6TltTW9gLVAmwBq2oDxY0KwGN0+PfUL17GeUcZ5auoiCS1m9pvRbZMxT1+Z8vdt68TsfjOyfUbWTUtMXSPkhhtucL2hZ7PZGDBgAHa7nS1btmCxWLj55pspKSnhr7/+YsOGDVRVVWGxWGjTpg3XXHONK/3C9OnT9TRD4gG988ppRbA1BFThllvgvffc72vfHtauhQ4dtNdDIgk3Dh+G//0PpkyB0lKIioJt26BLF0Cj7/fvv8NZZ4GnNzlOPBFWrYIg3sgPVY0QiW+0dG0BXa59eXk5WVlZPhfHVqvvuDv+FJSVHOf7qLsTeAUllVOhD8c31aM19vf8/HzuS0/nNeBoX04YPRomTYKYGI01k0gkEolEIpFIJEZE72e5pl0RsnLlSnJycrBYLBx//PFs3ryZL7/8kgsvvNB1zPTp05kzZw6rV6/mwIEDvPjii8THx1NWVsbff//NK6+8IidBwoBBgwYRGxurtxqaEBsbG3r7Fi3yPAliscD+/XDKKZCbS0V5OQsXLqSioiJ0+qGs9tK6Xa3aUEtusHJCcQ1bFeXlMH48pKcrKalKS5XPq6qUv1XCrd9OOAFmzfJ80tatMGKE58LqOrBr1y7XioGG29atW5k9ezZbt2415Eo/vb43oWo32HaysrLIzc1t5Du17mP1cpxOT5U6FOKACcCvNJ4EqYiNZeGgQVS40WMWcCLwCL5Ngkj+4XOUSaeZvhw8dSqcey7k5/ss3+z3KqPbp6d+4TrWM8o4T01dJKHFzH4zum0y5ukrU/6+bZ2Y3W9Gts/IummJaSdCZsyY4fp/dnY2xxxzjNfjExMTefDBB/nll1/o0KEDX3/9NbfccovWakpUIDk5GavVnF3ZarWG1r7ycrjzzpaPO3QIMjOpHTmSwv37qQ3xA9ba2loKCws1bVerNtSSG6ycUFzDVkVEBLz7rvtVGdnZUPeWfrB49NsVVyjF0T3x2Wfw/POq6KAGffv2JT09vdl2xhln8Omnn3LGGWeQkpJCZmYm5eXleqvrQq/vTajaDaYdTwXL1bqP1cvxptsgIA94FKVGRUNqrVYKk5OpbaDHcuBM4Ebgr6C005aGqcYabi1NFgZ6nr8UATcBGSipxbyyZg2cfjp8+aVPss1+rzK6fXrqF65jPaOM89TURRJazOw3o9smY56+MuXv29aJ2f1mZPuMrJuWmDY11qmnnkpeXh7HHXccv//+u+vze+65h9dffx2LxUJNTY3bc7/77jsuvvhiLBYLn3/+OZdffnmo1Jb4gd7LqbRC1/Qajz4KL7zgfl9UlPJ2e1OOOAI+/1x5y1Miac289ZbnicSsLHj3XW2/37W1MHgwfPGF+/0Wi/Lw8dJL/Ratdmosf8jIyDBkIWqHw8G+fftaPC41NVX1vKtGTI3lr79tNhsFBQVur42//W3nqlX81KsXGT62vRd4GGUlSKCEIjVWS6nGbDYbgwcPJjs7m7i4uKDP8xd3NncEpgMDWzrZYlEmZx95RPm/RCKRSCQSiUQiMT16P8s152v0wJ49e7BYLJx++umNPrc0+LFVWVnp9twLL7zQ5YSZM31a7C/RkbS0NCIjm777aQ4iIyNDZ9/atfDyy573u5kEqY6MJD8tjeoTTtBQseZUV1eTn59PdXV12LWhltxg5YTiGrY6Ro4ETw87Fy6EsrKgm/DqN6sVPvgAjj/e/clCwLBhsH590HpohbuY52u9iVBQXV3Nli1bGDZsGCkpKW5XtTTd1FjZEqrvqxbteLqPDR482K8Jono59S+xOBwO8v/8k0P//S8dLrigxUmQ6shItqWl8UJkJCcS3CRIqHCXaqwhDoeD3NxcsrKyVDlPDfagrMx5BPDai4SAcePgppvAy3J8s9+rjG6fnvqF61jPKOM8NXWRhBYz+83otsmYp69M+fu2dWJ2vxnZPiPrpiWmnQgprktP0rZt20afN8xRXeypsCzwr3/9CyEEa9as0UZBiWqMHDmS+Ph4vdXQhPj4+NDYV10Nt90GHlZJ0eR7VE9pfDwzrrqK0qgoDZVz025pKTNmzKC0vg5DGLWhltxg5YTiGrY6oqPhyScbf9a2LUycqBQ0b9Mm6CZa9FtyMnz6qee2iorgkkuUAu4aE8hKCHcxz9eVF6GgtLSU3NxcFi5c6PPkjBoPnUP1fdWinaY+tdlsZGRkkJ2dHZCcw4cPk5mZyZlJSezo2pW2Tz5JpA+TjAvi45k1ciTPx8dTEpAlocVTqjF3NJwsDPQ8NRHAi8AFKBMjXpk1C/r1gz3ujzT7vcro9umpX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtrUWMnJyZSUlJCVlcXbb7/t+vz555/niSeewGKxsGrVKs444wy35998883MnDmTNm3aUFISDj+ZWx96L6fSCl1SY738Mjz0kPt97dvDunXwxhtKGouGs8U33OC9SLNE0tqoqoKTT1bq6Dz0ENx7LyQkuHaH7Pv98cdw/fWe96elwfLl0KmTT+IC1TszM5Pc3Fyf2vCG5mkBfcThcJCSkhLQw2NvqaD8JdxSYy1btozOnTsDvk2QeZPV5+yzOWfVKp4BfCm/vhcYC8z24Vh/0Do1lr+pxurbCPS8QPClraOAj1AmRbzSsaOS1q/JSm6JRCKRSCQSiURiHvR+lmvaFSFHH300AIcOHWr0+QkNUvj8/PPPHs//7bfftFFMIjEaf/7Z/C32hrz6KqSmwn/+A6tWwWmnKZ8fdRS88kpodJRIwoWoKJgzB/Lz4YknGk2ChJTrrlNy73siP19ZGXK4xdLGQZGdnU1GRobqNTL0Yt++fQG/QW+klS2hpnPnzqSlpZGWlhZUX+gGTFq1ipdoeRKkFngDOBn1J0EkvvM3cDFQeNdd3g/cswfOPx+++SYUakkkEolEIpFIJJJWiGknQk455RSEEGzdurXR52effbarTshbb73lNhfaN998w6+//orFYuHYY48Nib6SwBk3bhxJSUl6q6EJSUlJ2tonBIwa5Tk/91VXwbXX/vP36acrkyHjx8O0aRRFRjJhwgSKioq00c8DRUVFmrerVRtqyQ1WTiiuYaulZ0/Q6Dvrl9+efRaGDPG8f9MmuOwy0HApbFxcHDk5ORQUFGC3271uy5Yt0z7mBUlpaaku+oXq+6pFO0lJSXz44YdByYwE/i8piZvGjeMkH679BuBc4G6gvlWj9y2t6F+39QLSgcBLowdOLVD48MPw0UfgbSKstBQuvxzef9/1kdnvVUa3T0/9wnWsZ5Rxnpq6SEKLmf1mdNtkzNNXpvx92zoxu9+MbJ+RddMS006EnH/++QBs3bqVww3eeD366KM577zzEEKwadMmBg8ezNq1a6mqqqKoqIgPPviA4cOHu46/8sorQ667xD8+++yzoIrQGpny8nJt7Zs5E7791v2+hAR4/XWomzh0ER0NTz0FV19NXFwcQ4YMIS4utI9WQtGuVm2oJTdYOXr5ThIcfvktMlJ58DhggOdjVq6Ea64Bp1M9Jd1gs9lcKwI8bZ07d9Y+5gWJzWbTRb9QfV+1aKe8vJzzzjsvYJmnA6uBp8rLGfLZZ8R5ufblKEW6zwBWAL169Wqkh5H7li/Eo0xq+LPObB6wGOV6/AmUAcXANLWV84XMTFi2zHtKvupqGDECnnsOhDD9vcro9umpX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtqJkMsuuwyLxYIQgi+++KLRvgkTJrhWhSxcuJAzzzwTm83GEUcc4SrECXDkkUcyduzYUKsu8ZMtW7ZQVVWltxqaUFVVpZ19Bw7A/fd73j9hAtTldPdEVFQUJ510ElEhLpYeina1akMtucHK0ct3kuDw2282G3z2GXiohwUok6E33QQ1NaroGAyaxjwViIyM9KjfsmXLXCtb1CZU31ct2qmqqqJLly5+y4wBngVWAT2BqKoqTtqyhSgPfeN7oAdKke5INwXZjd633HEEcAPwDrARZXXLYuA8P2S4u+oJQGGwygXKmWfC6tVw9tnej3viCbjrLqIsFlPfq4x+L9ZTv3Ad6xllnKemLpLQYma/Gd02GfP0lSl/37ZOzO43I9tnZN20xLQTIV26dOGBBx7g+uuv58CBA4329enTh7fffpuIiAiEEG63du3aMW/ePI488kidLJD4iplnMDWdob3/fqWgszvOOUdJmdUCer1hG4p2tWpDLbnByjHD29GtkYD8lpgICxbAiSd6Pubjj2H0aCVdno4Y/a0Uh8PhUb/6OhidW5hADoRQfV+1aCcuLo7ly5f7JTPm119ZCzyOkhYLoDwujs+GDKG8ybUvBu4Aon/4ge/r0qwVFBSQk5PTyE9G71tNsRYUsB+YBdyKMslTP2j3NIXgcDjIz89v9JmnnzV+VcL76isoKfHnDO906ABLlzZOvemOadMov/56Pps717T3KqPfi/XUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPYZWTctMe1ECMCLL77IRx99xIMPPthsX1ZWFuvXr+e2227j2GOPxWazERcXR48ePXjsscfIy8ujd+/eOmgtkYSABQtg1iz3+6Ki4O23wWrq8CCRtC7atVNWfhx9tOdj3n4bHn88dDpJJE0pL4cHHiD12ms52YfDvwK6A28DnY8+WpWC7EahNiWFDR729XLzWWZmJikpKQxokgov0s2x4MdEyO7dSt2O9u3hhhuUSRE39fX8xmaD3Fy47z7vx339NSxapGktI4lEIpFIJBKJRNI6sAih8+ufEkmAbNq0iR49erj+zsvLo3v37jpqpA75+fmkp6e73We320lLSwuugdJS6NED/vrL/f5//xuefjq4NiQSiVsafr/jgYaP9lT5frfE1q1w3nlw8KDnY158ER56qNFHmselELURLL7oaIRrBYT8WgZt9+LFcNtt8OefLbZ1GLgPmNlCG950Cpam7ant9/z8fD5IT+dJN/sOAb6sV44CKj3sS0CJPy3q9tZbcOedjT9r3x5uv50dV1/NMd7S7jXAazv/+x+4eWmpEb17K5MwKSk+tSeRSCQSiUQikUiMh97PcuUr35Kwx8w57TTJ2ffUU54nQdq0geuv91mUXjnXQ9GuVm2oJTdYOeGYL98sJAP/AXbj/s1ubwTttxNPhIULIcFLueWHH4YGtRVCidHzlFZXV+uiX6i+r1q0ExUVxY4dOzzLLC5W0rJdcIHXSZCqqCi2nHQSc6Ki6EbjSRBf9TBE36qt9fnQLzx83hbo6sP5kYC7q/4XjSdhvSvhRov9+2HCBCxq9ZMHHoCcHIiObrar3u9Va9bAgAHw99/qtGkQjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bREToRIwp5wyvntL6rnNF+9GqZM8by/rEwpZDp5sk+Fk2WNEP3kyhyqYUhREUmvvIIdeBJIBMb7KUIVv51xBnz+OcTEeD7m9tvhk08CbyNAjF7HwVuNEC0xbY2QhQuVFYrTprUoZ0dcHB8OGcJtcXHsD1APXfvWoUPwzDPKZGRhoU+nrAbcPfY/BHTx4fwKIBqwoKwAOQ6l0PrNPrUOVFQoaanccc011LRv76uklsnIUNJgJSU1+rhRbZj166FvX9i5U712dcbo92KZL18/mbJGSOvFzH4zum0y5ukrU/6+bZ2Y3W9Gts/IumlJq0mN5XA4WLhwIcuXL2fnzp0UFBRQU1PDd9991+g4IQQVFRWA8vag7m8OSjyi93IqrdAsrUpVlTLJscFT1vEmnHOO8la4twLLEonEN2bNgnvugYKCZrvOA35Eh/RP8+bB0KGeJz2jo5VUNBdeaIh0TzI1lu96gMFTYx0+rKwCmDHDJ9kzgbEoEwCeMGpqrDbAzvvvJ+Wdd/4pOD5xIjzyiFf59fKmA+cDC4CfgJXAdnVMABQ7UlNT2bdvX6PPU1NTsX33HVxxhfsTly4lv0sXn6+vz/1u40a4+GJl1YknjjkGvvsOuvqyLkYikUgkEolEIpEYBb2f5XqqoWgqXnrpJV544QUOHfrnJ7QQAovF0uzYw4cP06VLFxwOB7169eKnn34KpaoSiXa89JLvkyAAP/0EPXvC2rVw0kmaqSWRtAratXM7CQLwHNAvtNooDB4M774LI0e6319ZqTwEzc2FU08NqWoSEzNnDtx9t08pjnYDo/CcIsrojAb+DaRMmtR4x5QpMHas21RQTbkLZWVHoNhsNk477TRWrlzpdn9mZibr16/H4XA0O2/C6adzb/v2WJpOSpxyirIyw1OazWA45RRYtgwuvNDzyo+//oL+/WHJEjkZIpFIJBKJRCKRSHzG1KmxqqqquPzyy3n00Uc5dOgQQgjX5om2bdsyYsQIhBCsXLmSbdu2hVBjSSA8/fTTJCcn662GJiQnJ6tj3x9/wHh/k/CgvJXpZUVIYWEh48ePp9DHNB9qEYp2tWpDLbnBytHLd62Wiy+Gc891u+t84HIfxajutxEjlELFnnA44Oqric/NVae9FlAt5mlEaWmpLvqp6fddu3aRn5/faKt/CK5FXEhOTmbGjBkU/v47XHMNXHedT5Mg7wDd+WcSJNi+oUffOh9wmzxqzx746COfZAQzCbJ48WIKCgrIycnxeMzKlSubTYKAspJ67M8/M/z885WUVTfeCPVpxcaMATcvE7mjI9DZX8WPPx6WL4fjj6cwOZnxTz9NYVO/7dqlTIZsV3N9TOgx+r1YT/3CdaxnlHGemrpIQouZ/WZ022TM01em/H3bOjG734xsn5F10xRhYm699VZhsViExWIRsbGxYtSoUWL27NliyJAhwmKxCKvV6va8H3/80bV/ypQpIdZa4it5eXkCEGlpaSIyMlLk5eXprZIq2O12AQhAREZGuuwDhN1u919gba0Q/fsLAe63du3cf56cLMTu3V5FV1VVCbvdLqqqqgIzNkBC0a5WbaglN1g5evmuVfPdd26/aztBDPbx+62Z3554wnOMqNvG1cWlpltAcckNdru9WcxTu41g2bZtm1v9GurYMIarda2a+r2lNrztd7fZbDaRkZEhioqKAu5fntqMjIwU655/XlS1bdtiHxMgxDHHiL3vv+9Wjqdr7+naerufBrs1bc+d/V1BVHqys0cP5f7s5/UMRMdgZNlsNlFRUaEoVVgoxCuvCFFa6rPcmSBKQRwaN06Iykr/OtXevaLqtNOEPS1NVEVGur+ORx8txPbt/sk1EEa/F+upX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke3TS7f6Z7n1W6if5Zp2RciaNWuYPn06FouFzp078+uvvzJ16lSuu+46Onf2/m7aOeecQ1JdscZly5aFQl1JEOTn51NdXa23GppQXV0dvH3Z2Ur6CHckJSmpr954A9q0abxv0iTo2NGr6MjISNLS0oiMDG2WvVC0q1UbaskNVo5evmvVXHABFQ1WhRQC44ATgHk+itDMb888A6NGeT3keWASSuFlrVAl5mlIRESELvpp/X11OBzk5uZyxx13qNpOGvBVdTWnPfYYkYe8Vfio4557IC8PR9++zXYF2zf06Fvbgbc97bTb4fffQ6ZLoDgcjn/qhyQlKT5qOl7wwOnAcJQ6KUdMmAD/+pey0sNXUlOJ/P570o46ikhPftu5U1kZ8uefvss1EEa/F+upX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtqJkOnTp7tSYH3wwQec5GeNg549eyKEYPPmzVqoJ1GRzMxM2vj4ozzcaNOmTXD27dsHDz3kef+LL0KnTjB6NOTlwQUXKJ9feqmSMqcFysrKyMnJoaysLDD9AiQU7WrVhlpyg5Wjl+9aOwXjxlEBvAx0BSbyT+obdymLmm6bN28mOzubzZs3N0trFBQWC7z2GmRleT1sLErh6qjgW3RL0DFPYyoqKnTRL1Tf12+//ZYPP/ww6HaswL1AHnBOmzbkZGZS5u2aHX88/PADvPIKxMe7PSTYvqFX3/oPUBsb+88Hycnw7LPKA3wvqSeDxWazkZqaqpl8X5jQ9IO8PKW2SFYW+DIxBpTFxJBzzz2U9e/v+aCdO2HAAGVyKcww+r1YT/3CdaxnlHGemrpIQouZ/WZ022TM01em/H3bOjG734xsn5F10xLTTvssXrwYgB49etCvXz+/z69fNbJ7925V9ZKoT2FhIbW1tXqroQm1tbXB2XfvveAp39/558Ott/7zd1oaLFoE77yjTIT4kP/barWSnJyM1RraOdVQtKtVG2rJDVaOXr5r7VT26EFn4LCbfX3dvAXflNjYWPr168eYMWOoqFCmUGw2G4MHDyY7O5u4+hz+gRARoXz/27eH55/3eNgNwJHAUKA08NbcEnTM0xir1aq6fo3euPdAUlKSX9/X1NRUbDab35NkFRUVlJeXs2vXLmJiYhrJ8pWTUep7nFMvs7aW5MJCrO6uWUQEPPwwPPUUNJwscEOwfUOvvrUfKM7KIvndd+G+++DRRyElRfN2Bw8e7Jff/MXhcJCfn+9x/0XAQE87P/oIHnkER5s2zfp+0/5mtVpJPvJIrLm5cPXV8NNP7mXu2KFMhixZooxnwgSj34v11C9cx3pGGeepqYsktJjZb0a3TcY8fWXK37etE7P7zcj2GVk3TQlpIq4QkpycLKxWqxgxYkSzfWPGjPFaI0QIIUaNGiUsFouIiorSUEtJMOidV04rVMsv//nnnnOwx8QIsWWLZjZIJBL3qJH339OWkZGhnqKTJ7dYy2EViCP9jUte0KK2htr4oqOvdpSVlYmMjAxhs9l8qtOQkZEhysrKfG4jIyNDlX7VtG2P12brVvEECEcL/ca19ewpxJo1fl9nf/qIVt+380H89euvPreVv2GDELt2+dbJfJDXq1cvj/3Gnb+CvQ7+9lsLiDVefO+cONGjDK/9rahIiD59WqwxI/76y69rLZFIJBKJRCKRSEKD3s9yTTvtU/8WZKBvw5WWKu+5xntI0SAxDj179iQ6OlpvNTQhOjo6MPuKi+Guuzzvf/JJVVJyVFZWsm7dOiorK4OWZbR2tWpDLbnBytHLd5Lg8BYT5s2bp06aLFDeXJ81C7zkCz0LWA5E7tqlTpsEEfNCRFVVlWr6ZWVlkZub65PPamtr2bp1K7c2XMXXAtnZ2WRkZPg1DnJ3/evrh2R5S5u2dCkdL7+c/wIxTXZVRkezrmdPKutlxsTAc8/BqlVKzYggdPMHNfpWDEpau6VA2//7P+XRuw+IhAQlDaVK5OTkUFBQgN1ub7YVFBSQk5MT3OowL/jSby3AdKDI3c5+/RixZo1HGU37W6N7VWIiLFwIvXt7VvCvv+DCC5XUoGGA0e/FeuoXrmM9o4zz1NRFElrM7Dej2yZjnr4y5e/b1onZ/WZk+4ysm5aYdiKkXbt2AC2mm/DEli1bGsmRGJf+/ftrmv5BT2w2W2D2Pf44eHo4ecopSioSFXA4HCxZskS9h68GalerNtSSG6wcvXzX2vE3zVBTvMUEX1Is+cUNN8CXX3otjHwikDp0KGzYoEqTAce8EFFZWamKfg6Hg3nz5vl8fP11+eqrr9iyZQu7fJh8iouL8/jAvD59qKd23NnndqLt77+VelL9+xO9bZtbmQ6bjSX9++Ow2eCcc2DdOnjsMYjyr9JMsH0j2PNPA9YAD9T93earryAnJyBZamCz2UhLS2u2aZ0Oy5d+Wwu8BpwEfNRwR5s2OKdN47PPP29RRn1/a3avqp8M6dXL88nbtsHAgXDYXRJCY2H0e7Ge+oXrWM8o4zw1dZGEFjP7zei2yZinr0z5+7Z1Yna/Gdk+I+umJRYhfHydLcwYOHAgixYtol27duzZs4eIiAjXvnvuuYfXX38di8VCTU1Ns3N37tzJscceS21tLcOGDWPmzJmhVF3iI5s2baJHjx6uv/Py8ujevbuOGqlDfn4+6enpbvfZ7XbSWsp9/dNPcN557t9UtVjg55+9P0CQSCSakpmZSW5uriayfYoR/rJqFTWDBhFRUOD5mKQk+Owz8FbQuAWCjn0+4M9kkbtJK1909HbMsmXL6Ny5M/n5+QwYMMA/5X3El2vlcDhISUnxe9Drkl1bC+++q9S78NYv6qiNi8M6caKyUtGHHLTermGLugUpxx23Aa8CzaYYkpOVAuCdOqnef9WUF+x18KVve+Mi4Ku0NKIee4z8gQN9luHVzqIiuOQSWLnSs4CzzoLvvoOEBL91lkgkEolEIpFIJOqj97Nc064IGTRoEAAHDx7k/fff9+vcJ5980jVBcskll6ium0RdbDYbFh8Ke4cjFovFP/ucTrj9ds/pOu65R9VJECEEDoeDUM+nhqJdrdpQS26wcvTynSSwlEX1+B0T1ODss9n78cf85e2YoiK46CKlyHoQxai1sq+8vJzMzExSUlJIT0/3aUtJSSEzM5Py8nKXHCFEUPr17duX9PR0vydB1L4uNpuNwYMHB9bOhg3KZPsdd/g0CbLAYuHPL75A3H23T5Mgngj2GgR6fgrwLG4mQQAKC+HWW31OkdVaWQTsWbhQGZ/4icd7VVISfP01nH2255NXr4Yrr4SKCr/bDRVGvxfrqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JuWmLaiZCRI0eSlJQEwAMPPMAvv/zi03n/+c9/eP/997FYLHTs2JHMzEwt1ZSowLhx41y+NhtJSUn+2TdxIvz2m/t9UVFw9dXqKQcUFRUxceJEiorcZgLXjFC0q1UbaskNVo5evpN4T1lUv+1YsYKDTz3V7PMNGzboEvOqu3blHGCjt4NqapS0fJdfDgcPBtSO3zHPR/ypx1GPu9oYZWVlulx/La6Luwk5b+3EA5GPPYb417+UlYUtcBi4GbghKYlZP/wQdKwJ9hoEen4BcANKuie3fP01/PBDi3IcDgf5+fnNttayFF3ExCirUn1kBJDy3/9SdOiQ53tVUpKSJuvUUz0LWroUhg4Fg+Y+Nvq9WE/9wnWsZ5Rxnpq6SEKLmf1mdNtkzNNXpvx92zoxu9+MbJ+RddMUVUuvG4zXXntNWCwWYbVahc1mEw8++KD45ZdfxO233+76vKioSGzZskW8++674swzzxRWq9W17+OPP9bbBIkX8vLyBCBSU1NFRESEyMvL01slVbDb7QIQgIiIiHDZBwi73e75xN9+EyI6Wgjl3VT3m9UqxKOPClFRoYqu1dXVYu/evaK6uloVeUZqV6s21JIbrBy9fCdpgcJCIR5/XIjYWOU7u2hRo93V1dVizZo1rpjQdPMaI4KgPi4lg/jBW4yp3zp1EmLZMr/baBrz1LCroqJC2Gw2t9fLl81ms4mKupi5bds2t/o11LFhDA9kW7x4sdi8eXOjzzxdF2+6+nN97Ha7sNvtYtu2beKrr75q1I4FxAgQe3zxe902A8RRDXRfs2aNX7HG3TVs6Rq46yPe7qf+bk+5s7VDByG+/LJFv/fq1ctjH7TZbCIjI0OUlZW1eA0C/T4E2yd96dvu+m2g34+TQJTWXePqCy8Ue3/7zXv/2bdPiBNO8N4vr71WiKoqv65bKDD6vVhP/cJ1rGeUcZ6aukhCi5n9ZnTbZMzTV6b8fds6MbvfjGyfXrrVP8ut30L9LNe0K0IA7r77bu69916EEFRWVjJp0iTOPvts3n33XQCEEKSkpNCtWzduv/12fv31V9eSoCeffJJrr71WT/UlPrJv3z63tV7MQE1NjW/21dYqKSdaeuOxtlZZNXL66T690dsSERERpKamNqrBEwpC0a5WbaglN1g5evlO4gGnE6ZMga5d4bnn/knl8uijjVJNRUREcMQRR+gW8wqBgUCL5ZJ371bqhUyc6FeqLJ9jnh/s27cv6GKz9XVFIiIiWtTPXW0RX7HZbPTu3ZuTTjqJjIwM1+e+XpfBgwf73XbDottdu3bl5JNPdrVzLrAKeA/o4IOsLcAAlLf5/26g+xFHHBF0rAm2bwR7/n+Bbxv8XXbppbBxI1x2WYvnrly50mMfdLfyKBxRq1C7DZgNtKn7O+K770i99FIi1q/3fFL79rBoERxzjOdj5syBO+/EaGnMjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bTE1BMhAJMnT+add94hKSkJIYRrosNisWCxWFyf1W/JyclMnz6dp59+Wl/FJT4zcuRI4uPj9VZDE+Lj432z76234McffRe8ZQsMHKjkNw+C0tJS3nvvPUpLS4OSY8R2tWpDLbnBytHLdxIPjBwJY8fCoUONP1+zBmbPdv1ZWlrKwoULdY15DmAo8HpLB9bUwLhxcMUVPqfK8jnm6URFRUWL+nmqv+ELDScyGqauaum62Gw2MjIyyM7ODqjdeur710nx8eQAy4EzfTivAjhw332cBixpsi8+Pp6FCxcGHWuC7RvBnl8L3AjYgbuAA6+/Dm3bBiTLHfPmzTN9mqz69GDemASc0uDv0vh43hswgNKBA2HWLM8nHn20MhmSmur5mOxseOIJf1TWHKPfi/XUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPYZWTctMf1ECCi5wXfs2MHkyZMZOHAg8fHxjSZFYmJi6Nu3LxMnTiQ/P58RI0borLHEH/Lz86murtZbDU2orq5u2b7du5W3xv3l2WchOTlg3QAiIyNJS0sjMjIyKDlGbFerNtSSG6wcvXwn8cA993je98QTrtVekZGRpKam6h7zaoAxwDCgtk0b7wcvWKCsQvNhstanmKcjERERPunnrv6GN9xNZDSsJbNmzRoGDx7MmjVr3NaUKSgoICcnh7i4uKDsi3Q4OGHXLn6uriaj5cMBWAD0ADYNGYK7NYnV1dWkpqb6FWvcrarx1jdsNhup3h6At3C+r/wNnARMBb/qXfhCw5VHZiQzM5OUlBQGDBjg8ZjrgFFNPousriYtP5/IsjJlYtgbxx0H334LRxzh+Zjnn1dW3xkEo9+L9dQvXMd6RhnnqamLJLSY2W9Gt03GPH1lyt+3rROz+83I9hlZNy2xCGGwNeIhoqysjKKiItq0aWPaQttmZ9OmTfTo0cP1d15eHt27d9dRI3XIz88nPT3d7T673U5aWlrjD6++Gj77zL2w9u1h//7mn593nlJA1Noq5kIlkvDA23f5rbeU9HcEECNUwFubO7/7js733w8bNngXEhGhpP166CG3sUcru7zJXbZsGZ07dwZg165d9O3b12v7/uro68PtYNJpqUJtLXzwATz2GOzd69Mpu4GxwJy6vxcvXuzxIXcg/svMzCQ3N9enYzMyMsjJyWn2ucPhICUlxetKi47AHpSVwgC+DIttNhsFBQWNfOatb/iK3W4nNTWVffv2+dQffSVY3TZv3ozNZmtRJyCodi4EcgG362wuuEApTO/LD7VfflGOLynxfMysWXDDDYEpKpFIJBKJRCKRSAJC72e5rfYpaJs2bejYsaOcBDEBvXv3JiYmRm81NCEmJsa7fZ984vnBaWys8gb2J58oEyL12GxKeggVJkGcTicrVqzA6XQGLcto7WrVhlpyg5Wjl+8kXnj++ebfyyOPhFdegbqVik6nk99++81QMa/62GNhxQq44w7vB9bUKKvXLr4Ytm51e0iLMU9lOnfu7KqPUT8h4o3Kykq/9GtYf8Pb1tIkiGbfVyHgiy+gZ08YORLn4cOs6N0bpxf7nMBE4GT+mQTxRkxMDL/99pvfujddVeOub7SUEqxhmjJ3598D/AlcBFx//fVcf/31PukWSC0WX6hfNZGenu5xwkEPTj755JDo9B1KKraG1UCcMTGsuPRSnB984NskCMCZZyr92puPRoxQJlZ0xuj3Yj31C9exnlHGeWrqIgktZvab0W2TMU9fmfL3bevE7H4zsn1G1k1LWu1EiMQ89OzZk+joaL3V0ITo6GjP9hUWwt13ez55/Hil8PLVV8OmTTB8uPL5s8/C8cerol9lZSXr1q2jsqUi7SoTina1akMtucHK0ct3Ei+cdBLceqvy/7g4+L//g+3blbRZdTGgsrKSbdu2GS/mxcbCm28qb1m3VIPh++/hlFOUlF/l5Y12eY15BqC6uloX/TT5vv7wg7I68MorlaLfQGV0NOt69qTSg30Hzz+fbsA4wMu79o2Ijo5m27ZtfuveMDWY3W7n119/ZdiwYfz6669+pQSrn1BJSEhw+c4C/A94BYgBPo2KYvpjj7WY0kytWiye8FZUvbWQD5wDfFT3d2VCAusuvpjKhAT/BJ1/PuTmen7po7oahg6FVasCV1YFjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bSk1abGkoQ/ei+n0gqfU6/ceaeSLscdp5+u/Lhv+vbk4sXKw4GICPUUlkgk6rFnjzJZ+X//Bx06uD3EaKmxmrW5dStcf33LqbIAjjlGWfFy1VW6pMZqKNeX4/S49qqzYgU8/bR/b8OfeipMmkT+scd6tF/t1FhqU5+mzOJ0cuT999NmwYLGB5x4IqxcCUlJHlOaeUthpkZqLF8JdWosX1AjNVZTDj3+OEd06/bPixyB8O67cNttnve3bQvLlysT0RKJRCKRSCQSiURT9H6WK1eESMKe5ORkrCatdWG1Wt3b98MPnidBrFZ4+233KSQGDFB1EqS2tpbCwkJqa2tVk2mUdrVqQy25wcrRy3eSFujYEV5/3eMkSG1tLaWlpcaOeSee6FuqLIC//oLBg+HKK4ncudNzzNOZXbt2kZ+fz44dO3TRT5Xv648/wsCB0KePx0mQWquVwuRkauvta9dOWenz669KzYUAsFqtlJaW6h7zoqOjSY6K4ug77mg+CQLKBF5mJtTUeExppmsdlzp8KQwfaup1UrvWzd833cSfffqQl5fHn3/+SX5+vv8rZm69ValN5IlDh+CSS2DXruCUDRCj34v11C9cx3pGGeepqYsktJjZb0a3TcY8fWXK37etE7P7zcj2GVk3LTHWkwaNqKioYM6cOTzyyCNcd911XHLJJVxwwQU+bRdeeKHe6ktaYOzYsSQmJuqthiYkJiY2t8/hcBVNdssDD8AZZ2ivHFBcXMyUKVMoLi4OSXuhbFerNtSSG6wcvXwnCY7i4mLmzp3rMebVP7D3ddMsDU99qqyZM6FNm5aP/+ILOl58MY+7i3kGoG/fvqSnpzN48GBd9Av4+yqEshLwwguVNFjffuu9ncREpowdS/ERRyhF7f/4Q5nQCmICPTExkblz5xoj5r3zDsXeVlIsXAjuJkkMhFb1SYKhXqeGNVlaolevXtjtdjZv3uzxmJNPPpkzzjiDuXPncsYZZ5Cenk5KSgqZmZmUN0mrByjprtwtdB83Du67z7MyO3bApZcqKUdDjNHvxXrqF65jPaOM89TURRJazOw3o9smY56+MuXv29aJ2f1mZPuMrJumCBNTW1srJk6cKBITE4XVavV7s1gswmq16m2GxAN5eXkCEMnJycJqtYq8vDy9VVIFu90uAAEIq9Xqsg8QdrtdiP/7PyGUn/rNt/R0IcrKQqZrTU2NKCgoEDU1NSFrM1TtatWGWnKDlaOX7yTBUVNTIzZu3OiKCcFuNptNZGRkiLIW4kbDuNR0s9vt3pXeskWIvn09x60GW43VKtYkJ4tBTexrsQ0VdPd2nKeYrJaOLeH397WqSoiPPhLijDN8uu4Nr3/B8OGiZutWt2K9XaPFixd7vGYbN240TswrLxdiwIDm9kdGCpGdHbB+vvSfUHxXQ6mbO53KyspERkaGsNlsPp3Tkm6evnMZGRlNHSxERoYQY8Yo/29KTY0QN9zg/TswYIAQTqff1zcYjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj26eXbvXPcuu3UD/LdZM7xzzceOON5OTkIGQZFFNTqMMbfKGifqlaPVFbtsCECZ5PePNNpchyiKhPYxNqQtGuVm2oJTdYOXr5ThIcVquV+Ph41ZavOhwOcnNzAcjJyVFFZjNOPBGWLoUPPoCHH4a///Z4qLW2ln8VFrIAWAU8B3yujVYB0TQmhwqfv68lJZCdDZMmKWnH/GHQIKzPPkvyv/4VkI7uamqAcs3i4+ODTiemasz79FPo29dVJJ74eJg7V0kdZjCWLVtG586dVU87FQzedKovch9InRV3ePrOzZs3D4fDocgSAu69VymODnDwIMyYAdHR/5xgtcL06UoqLE/1cRYvhqwsJVZZLD7rGAxGvxfrqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JuWmLa1FgffvghH330kevvE088kSeffJLc3Fy+/fZbFi9e7NP2/fff62iFxBdGjRpFQkKC3mpoQkJCgss+K3DkY48pqR/ccfPNcPHFIdWvpKSEadOmUVJSYrp2tWpDLbnBytHLd5LgKCkp4fPPP1c95tU/VNQMi0WJUVu3wt13e3zIWJKQwLRRoyhJSOBs4DNgI9Dmk0+gqko7/fDtAW3DmNwQres2tPh93bgR7rpLqTEzdqx/kyB9+sCSJbBgASXHHx9wXBg2bJjbzxMSEvj888+NFfOSkuCrr6BTJ0hNhWXLDDkJAtC5c2fD1Cepxxed1Kqz4uk712ii5ZlnlNpK9eTkUHHRRfy1aVPjuBYdDXPmwNlne25w1ix44gm/dAwGo9+L9dQvXMd6RhnnqamLJLSY2W9Gt03GPH1lyt+3rROz+83I9hlZNy0x7YqQd955x/X/+++/nxdffNFwxVcl6rBu3ToqKyv1VkMTKisrXfbdBcSsW+f+QKtVKfYZYqKjo+nZsyfRDd+6NEm7WrWhltxg5ejlO0lwREdHc/rpp2OxWIgAalSSW/9QMc1b/QQ1SE6G116DW25RHtyvWtVod3RlJT3XrSO6QUzvDvDgg/Dqq8qKkltuUWqQqEx9fYP6FTLuaBiTG6J13Qa331enU3moO3WqUgjdX845B/79b2UCvW5iSou4UFlZyXHHHWe8mNe5s7IyoE0b0Lrf60z9JJ+mk50a4ek752LqVKUfNyF22TL29ejBuTExnDdkCNnZ2cTFxSmrf778Uun/f/zhXubzz0OXLjBqlIqWuMfo92I99QvXsZ5Rxnlq6iIJLWb2m9FtkzFPX5ny923rxOx+M7J9RtZNSyzCpHmjjjzySAoKCkhPT+ePP/7AEqIl7pLQsWnTJnr06OH6Oy8vj+7du+uokTrk5+eTnp7e6LOjgd+A+JZOHjFCSYmSkqKRdhKJRHcOHeLLc86h4++/cxbqTYbY7XaPEyHu4pIv53mlthbeeUcpZFxQ4Pt57dvD/ffDnXcqEyst4I/u5eXlZGVl+bxCpn7yxPWQVWuEUCY9Zs6E2bP9u271nH++8uB4wAC/0/94u5beCLiPhBGBXpuWUOvaZWZmep3k8wc1/RnMdduxYgVH9+8PHr6rJUA/YC2QkZHROP3f9u3KaqgDB9wLt1rhs8/gyisD0k0ikUgkEolEIpE0R+9nuaZdIlH/AKNv375yEsTk9O/f31ApI9TEZrPRv39/XrXZWp4EASUndvfu8Hlosuo7HA6WLFkS8rdMQ9GuVm2oJTdYOXr5ThIEFRU4nn+eJcOHc+GOHZwO3BsZxgs7rVa44w4lXVZWFgAOm40l/fvj8BbT9+9XJk9SU2HoUPjkE48PQv2lvr5BQUEBdru92bZ161Y+/fRTtm7dit1up6CggJycHM0nQRwbNrDk3//GcdJJSm2LN9/0fxLkssuUFFhLl8IFF7idBGkpLgRSpyIpKYlt27aFLubVuJ8abO0xLzs7m4yMjLAbL9WPg9zpvb2igtKcHNwt5q8ErkaZBAE36f+6doUvvvC8uqy2FjIzm61aUxuj90s99QvXsZ5Rxnlq6iIJLWb2m9FtkzFPX5ny923rxOx+M7J9RtZNS0w7EdKlSxcAmQ6rFZCWlkZkOD8M9EJkZCRnpaVxoT/27d2rvO3r4WGQmlRXV5Ofn0+1p7olYdyuVm2oJTdYOXr5ThIg06fD8cdT/dxz5HfoQHVdTHg5Pp6/fvnF7UN7d9uyZct0NsQN7drBu++y55NPWBgZSX5amss+rzidyiTI0KHKpMitt8L336sS+zzVN+jYsSOFhYV07NhR27oNNTXKyo9HH4WTTqL63HPJ37GD6j17/JMTHa1MMuXlKemA+vXzenhLcaF+BYw/XH755ezatUv7mCcEPPkkXH+921parT3mtTTJt3nzZr1VdEtkZKTHcd6AAQNIGDKEAUDDdR21wHDguwafuS3efvbZSoF1T78VysvhiiuU1SMaYfR+qad+4TrWM8o4T01dJKHFzH4zum0y5ukrU/6+bZ2Y3W9Gts/IummJaVNj3XLLLcyYMYPevXvz008/6a2ORAP0Xk6lFQ3TRKQAm4H2/giIjITVq6FnT/WVk0gk+nDTTUo6JHfccYeyQsAHAk1xpUlqLA9t9ATGAdcR4NsaHTsqb3IPHQpnnkn+nj2a664K+/crqzW+/hrmz/ecsscXjjwSbr8d7rkHOnRQT0d8Tx8W0rRhQsBDD8H//qf8PXIkvPuu5wfcGmD01Fgt4Y/+RkmN1ZDjgW+BY4DRwDQ3x3jUe9o0GD3ai/Dj4aeflO+VRCKRSCQSiUQiCRi9n+WadrnEmDFjAFi9ejV5eXk6ayPRktTUVCIiIvRWQxNejIhApKZS486+9u3d53d//PGQTYLU1NSwb98+akKw+iTU7WrVhlpyg5Wjl+8kAfL88xAXR01EBPuaxoS334Zff9VPNxWJqLNveEQEJwJvo6S48Ys9e5QH4ueeC8nJtL/xRp4EzgeCXb+h6vdmzx7IyVEKMp98srKqJSMDsrObTYK49bs7zjsPZs2CXbvguef8ngTxxb6WVhbUb/Vpw2JiYrSNeUIoNWPqJ0EA3ntP+azBuz4y5oUnERERPo3z/gDOAUbhfhLEK6NGwWOPeRH+B1x1FVRU+Cu5RYzeL/XUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPYZWTctMe1EyBlnnMGoUaOoqalh2LBhHDp0SG+VJBoxatQoEhIS9FZDdS4AhiYk8OaoUZQ0tS8yUnlreNky5U3Fek45BZ54ImQ6lpSU8Oabb1JS4i5Dd3i3q1UbaskNVo5evpMESOfO8MQTlLiLCSeeqKSJMgEJCQmumL4NuAM4FijKyoJAVhVUVBD744/8B1gKFAI/AP8FMoDojRuhuNhncQF9b6qqlNRUs2bBI4/AJZcoExSdOsGwYcpqni1bvLfr6V4AkJgId90FGzYo94QbboCYGN/1a9iOH/Z5Sh9Wv9WnDdM05gkB994LU6Y0P+GVV+DppwOyTWIcGsaEltgD+LY2zg3PPgvDh3ve//PPyv7a2kBbcIvR+6We+oXrWM8o4zw1dZGEFjP7zei2yZinr0z5+7Z1Yna/Gdk+I+umJaZNjQVQW1vL6NGjefvtt2nfvj1PPPEEQ4cOpYPKaSIk+lC/nMpms+F0Otm4caNpUmN1S09nA9DVYsEZE0OM04ml4Vf1sceUt31BeUPxqaeUhz4//QRnnBEyXYUQOJ1OYmJisLhbnRLG7WrVhlpyg5Wjl+8kQeBwILp3x7lnjxITEhKUB71jxkBUlE8ijJ4a69hjjyUmJgan00nD4YndbictPh5efVVJebR7d9DtNeKoo+C445SJ5eOPV1ZnJCQ03hITEW3a4HQ4iKmpweJwKEXaKyqUrbhYWYmxaxfs3PnPv7t3K5MhQSCa3gsiI5Xi5zfdpNQwUKlWiRZxQdOYt3kz/Otfih/cYbUqE0Tdu2se82RqLG3atVgsbmNCIDTVu1ndkMpKjr7jDiKWLvUs5MEH4aWXgtKjIUa/F+upX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke3TSze9U2OZs8J0HVarlTfffJOTTz6ZBx54gPvuu4/77ruPpKQkkpKSfHK0xWJhu4ZFEiXB4y1Hebjyb+A4ACGwNbXv+OOVgrD1xMbCiy8qaUA6dgyhlsr3Q7NiwTq3q1UbaskNVo5evpMEgc2GZfJkbFddpRTAfu45JUWeiRBCeI7pRx4J48crE78//AAffghz5kBhYfAN//23srVQU8xC8Om1AsEiBDanE/r0Ud5Kv/56TeoVaBEXNI15J58M8+YpaYuaroqKjISPPoK6QbWMeeGJ15gQIPV1brZ/+ilUVvJLg33tY2JYlZREl6Ii9ye//DJ07eq9pogfGL1f6qlfuI71jDLOU1MXSWgxs9+MbpuMefrKlL9vWydm95uR7TOyblpi2tRYAFVVVYwePZpHH30Ui8WCEAIhBIWFhezYsYO//vrL65afn09+fr7eZkhaYOzYsSQmJuqthmpEb9rEg3X/L05MZPLYsRQ3tO+tt5TJj6aEeBIEoLi4mMmTJ1PsR2qZcGlXqzbUkhusHL18JwmO4vPPZ/ILL1A8aZLpJkEAEhMTW47pEREwYIBSG2XfPvjkE7j22oDTQfmD25isJTYbXHEFxdOmMfnFFylesEBJg6VR0WYt4oLmMW/gQPj0U4iO/uezqChlkuzaa1XXQxJaGsaEzZs3Y7fb2bRpE7169QpYZlZWFptzc1lQWcm3QMN1tPudTs4tKuKQu3FWPWPGwIIFAbffEKP3Sz31C9exnlHGeWrqIgktZvab0W2TMU9fmfL3bevE7H4zsn1G1k1LTLsipKamhsGDB/P1118DNFtOb+KMYK2OJUuWmGdVSHU1bR97zPXFtDkc9F+yxLUqpOT660no31839Zpis9no379/yGeRQ9GuVm2oJTdYOXr5ThIctthY+l98sWn95nA4/IvpMTFw9dXKVlSkPBDPzVVqZZSVqa5f05isCV27Qv/+cPnlykP+Nm2wVVbS/7ffNPe7FnEhJDHv0kth7ly45hqwWJT/X3GFJnpIQkvDmFBflwZgxYoVzVNb1R1/8skne5Vn//RTvgPqpxO/BS4Cfq37excwqKaGVQkJWNzlTK6tVVZlLV8Op50WlH1G75d66heuYz2jjPPU1EUSWszsN6PbJmOevjLl79vWidn9ZmT7jKyblpi2RsjUqVO5++67XStBLrroIoYNG8Ypp5xCSkoKkZG+zwEdc8wxGmoqCRS988ppwssvw0MPud21D6hct44uQf7olkgkrRej1wjx1MayZcvo3Lmzx3NTU1MbD+CqqmDtWli6lPKFC6n8/nuSg9ZQI044Afr1UyY/+vVTiqhLAmPePGU1yGWXhbzpcK8R4nA4SElJaXES0mazUVBQoNoPJrVrk7QUq6I3bSLmiito22TfYZTJkLUNPtv73nuk3nor1NS4b6xzZ1i5UpcVuRKJRCKRSCQSSTii97Nc06bGmjFjhuv/L730Et988w233HILZ555Jl27duWYY47xeZMYm0GDBhHrLYVBuPDnn41rfwAVsbEsHDSIithY7gFqk5L00c0DFRUVLFy4kIqKCtO1q1UbaskNVo5evpMEh9n9Fhsb6zam9+3bl/T0dI9bSkoKmZmZlJeXKydERcHZZ8PDD/P3u+/SFugJ3AfMAX4DmlSU8ImGMdlvIiPhlFPgxhuVuk7ffAP798PWrUrKwxtu8DgJEiq/a9FOSGPe4MEeJ0HM/t0JFpvNxuDBg1s8bvDgwaq+NdZsErMJ9TEhOTmZ1NTUoNrav2wZ7YcPbzYJAnAEsAg4qcFnjn794PXXPQvctUtZeVRaGrBORu+XeuoXrmM9o4zz1NRFElrM7Dej2yZjnr4y5e/b1onZ/WZk+4ysm5aYNjXWpk2bsFgsdOvWjQceeEBvdSQakpycjNUa5nN6QsCoUdAkANVarRQmJ/Ol1coc4EV9tPNIbW0thYWF1NbWmq5drdpQS26wcvTynSQ4zO43q9UaUEx3OBzk5uYCkJOT02x/LbC+bnulvi0gf9kyjnY64Y8/lG3bNsjPV9JslZQoW1XVP3LqYnKtO/1iY6FDB+Ut8aOPbvxvWppS2LthHQs/CJXftWhHxrzwITs7G4B58+Y1WxlSP1FSf4xa1Mut//42pT4mXHbZZUFPwPS9+WZygas97F8J2Jt+eOedsH27MnnpjrVrlUnMTz9V6hf5idH7pZ76hetYzygxT01dJKHFzH4zum0y5ukrU471Widm95uR7TOyblpi2tRYCQkJlJeXc8stt/DOO+/orY5EA/ReTqUqH3wAN9/sdpcAHgZeJnQpMiQSiTkJ19RYvuIubU/Qujud/0yKlJQoKztiY5VC5vX/xsQotSkk6iKEsmomyJUAoSDcU2M1xF3tjZZWbgRDeXk5WVlZLU7AxMXFtSirJT9EAbOBIU0+/wq4hsYrxVzXvr4myNy5nhu+7z6YPLlF2GIKrAABAABJREFU/SQSiUQikUgkktaM3s9yw/w1es90qksvUeMpr6/ENKSlpflV88VwHDgA99/vdld1ZCR/paUxITKShUDE7t2h1a0Fqquryc/Pp7q62nTtatWGWnKDlaOX7yTB4bPffv8drrsO9u4NjWIqkJqaSps2bYKK6e4e4AZNTAwceSSkp1PdrRv5cXFUH320svojOVmZCNF4EiRU31ct2glK5jPPQPfusGaNjHkhpL4oecNNyyKKcXFx5OTkUFBQgN1ub7QdOHCACRMmEB3gaqqmVAHXA583+OwLlFUiHtPlWa3w/vtKuj1PTJkCr77q+tPhcJCfn+/aPNVeMXq/1FO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKcd6rROz+83I9hlZNy0x7UTIBRdcgBCCdevW6a2KRGNGjhxJfHy83moEzv33w6FDbneVxsczY+RISuPjuQTodMklSi55g1BaWsqMGTMoDSI/tlHb1aoNteQGK0cv30mCo0W/lZTAo49Cjx4wZ47y/zDBZrNx9dVXGzqmmznmadVOwDInToR//xsOH4YLL6R02TIZ80yOuwmY6upqv/zmy8qVKuA6YH7dNhSodHNco8mMv/9mx2uvIbp08Sx47Fgcc+eSmZlJSkqK9zpGdRi9X+qpX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtrUWOvXr+fMM8+ktraWJUuW0LdvX71VkqiM3supVGHhQrj0Uv/OkekXJBJJU2prYdYseOQRaLoi4scf4ZxzAGOnxgLvKXJ8pak+odJdoiJTpsDYsY0/i4+Hr74Cg47nzJQaK9zJzMz0WHOkIfVrTNxNgniiZ3Q0y4WgTYPaQQ1xREbSp7qadR7Oz8jIcFvHSCKRSCQSiUQiaQ3o/SzXtCtCTjvtNJ599lmEEGRmZrJlyxa9VZJIGlNaqhRI94OqY46BZ5/VSCGJRBK2fPihUmfIXVqoe++FMEkT6S1FTsNt2bJleqsq0Ypp05pPgoByzxw0CL7/PuQqScKL7OxsMjIyWlwZUol/kyAA6yorGVxVRbWHdHi26mq+ADp5OD+YSV6JRCKRSCQSiUQSHKadCAF45JFHmDZtGocPH+aMM87gwQcf5KeffqK4uFhv1SQqMm7cOJKSkvRWw3+eegr++svtrv2AAyhKSmLCuHEU1dl3cMIEaNMmdDq2QFFRERMmTKCoqMh07WrVhlpyg5Wjl+8kweHRbxkZcPLJ7k9aswamT9deORWot8/pdDZLkdNw69y5s676mTHmadWOXzKFUFZ9uJOTlMSEe++laNcu7fUIAC2LibdmAvFbwwnVxYsXq67Td8CdXhbUd0KpO+IuwV/TOkZGvxfrqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JuWmLaiZCIiAgiIiIYPXo0lZWVVFRUMHnyZPr27UtKSoprf0tbWBfhbiV89tlnzXIuG57Vq5XUHx4YCpwObCwvZ8hnnxFXXs5rgLN371Bp6BNxcXEMGTKEuLg407WrVRtqyQ1Wjl6+kwSHR79FRXmNKXz+ued9BsLo/dLMMU+rdvySabEotW2uvrq5nPJyhhx9NHHDhmmvRwDYbDYGDx6siezWTDB+q685ogYW4BEgse7vbOA5L8f3BHKAiBbkypinb9u6xzyN5Ri9f0ncY2a/Gd02GfP0lSl/37ZOzO43I9tnZN20xLQ1QqxWKxYPy9b9MdlisVATJilFWht655ULmKoqOPNM2LDB7e7iG28kaeZMQJmpHAtkAb2APJkrXCKReOPqq+Gzz/75OzUVXngBhg8Hq9XwNUJ8xR99jKa7xAeqqpRUbw1rKbz5Jtxxh346+UBLNW5sNhunnXYaK1eu9Fmm7KPBoUbtlgiUiY+bgR+BS4AylMmRD4FML+e+Doxp8pn0qUQikUgkEomktaL3s1zTrggBZcLD3SYxF2E3g/nyyx4nQejYkYKHH3b9aYuL488hQ+gdF0dZiNTzh/Lycl1W5ISiXa3aUEtusHL08p0kOFr028svQ0yMskLkkUfg99/hppvAGh63e6P3SzPHPK3aCUhmVBTMnKlMhgC88grlN95o+JjXUo2bgoICWSjbT/SOCVHARyiTIADnAp8DNkAAI1EmRzxxN8oLLQ1xOBzk5+eTn5/Pli1bmDlzJocPH1ZVb7XQ8/qH61jPKOM8NXWRhBYz+83otsmYp69M+fu2dWJ2vxnZPiPrpiWmzftUW1urtwpBk5+fz7fffsvSpUvZuHEjO3bsoLS0lISEBDp37kyfPn244YYb6Nevn9+yV69ezfTp01myZAm76vJtd+7cmf79+3PLLbdw1lln+S1zx44dZGdnM3/+fJeuHTt25PTTT2f48OEMGTLE4yqdVsMff8DTT3ve/8YbiMTEZh+Hf2+WSCQh4dhjITtbWXV2wgl6ayORBE5EhFLb5oYb4JJLIIwG6GqmZJLoRwwwB7iiyecXAHOBIYCz7t89XboQtWOHWzkvA3ZgXt3fJzeo5xQXF8fAgQO59957GThwINnZ2eH1co9EIpFIJBKJRBJGmDY1Vjizdu1aRo0axapVq3w6vn///syYMYMuXbq0eGxlZSUPP/wwr776qsfVMRaLhfvuu48XXniBqKgon3R49913ue+++ygr87xu4aKLLuKDDz4gNTXVJ5ktofdyKr8RAi68EDwV7hw6FObMkWlcJBKJZsjUWN6PlUi0xt9UTbKPBkcwqbHeBm7zsn8mcFPd/3cuWkSHoUOJ8FBsshzoB/zSQpsZGRly1ZBEIpFIJBKJxLTo/Sw3PHJleGHfvn16q6A6W7dubTYJcsIJJ3DNNddwxx13cP3119O5c2fXviVLltCnTx/+/PPPFmXffvvtvPLKK65JkGOPPZYbbriBG264gWOPPRZQUopNnjyZUaNG+aRvdnY2t912m2sSJDk5mWuuuabZypJFixZxySWXUFpa6pNcXznppJN8nrDRlenTPU+CJCXBq682+zgqKsrQ9lVVVbFlyxaqqqpM165WbaglN1g5evlOEhxm95sa9u3atcuVdiY/P9+16tEo+hm5XS3akTFPEgx6+u2/gKfoUYGSMque6q5dOTBtGpUejo8D5gPHNPm86TjPU30ZvdDz+ofrWM8oMU9NXSShxcx+M7ptMubpK1OO9VonZvebke0zsm5aEvYTIZ07d6Z37948++yzbPBUdyFMOe6445gwYQK7du1i69atzJ07lzfffJPc3Fz++usv3n33Xdfy+T179jB8+HCvNVCys7N5//33AaWY/KRJk/jjjz+YNWsWs2bN4o8//mDSpElY63LJNzzeE1u3bm00YTJ8+HB27drF3Llzyc7OZtWqVXz33XekpKQAsGHDBu69996grktTwqJGyL598OCDnve/+CJ06NDs47i4OEPbZ+Z8+bJGiMSImN1vatjXt29f0tPTXVvfvn0NpZ+R2w1J7uhDhyCA9KUy5rVOgvVbamoqNputxeNsNhuFhYWNarossdtpt2EDtG/f6NhilILpXzWR4ejd2+sKklTgSyCpwWdNx3kOh8NQL3nJfPn6yZQ1QlovZvab0W2TMU9fmXKs1zoxu9+MbJ+RddOSsE+NZbVaG9Wd6NKlC1dccQVXXXUV/fv3N+yb9N5YunQpdrudm266iYiICK/Hfvrpp1xzzTWuvxcuXMgll1zS7Din08nxxx/Pzp07ARg3bhzPP/+8W5njxo1j4sSJABxzzDH8/vvvREdHuz32+uuv5+OPPwbg3HPP5YcffnBNpDRkwYIFXHbZZQBERESwcePGRjmSA0Hv5VR+kZEBs2e733f++cpKkbrrJtO4SCQSrWgNqbH8QcbUEHPwoHLP+9e/lFWSYThGCxaZGiv0ZGZmkpub6/UYrymp8vKgf384dIgDwCDg1yaH2O12ANLT03ka+LeXthYBlwLVHvZLn0skEolEIpFIzIrez3LDfkXI4MGDiYuLQwiBEIK//vqLN954g0GDBnHkkUdy/fXXM3PmTA4fPqy3qj7Tr18/Ro4c2eIkCMDVV1/N2Wef7fr7yy+/dHvc559/7poESUpK4sknn/Qo86mnniKxrmD3X3/95VHm/v37mTt3ruvvF154we0kCMCll17KRRddBEBNTQ3Tpk3zYpXJmD/f8yQIKA+EampCp49EIpFIJKGmuBgGDYLNm2HWLKUuVkWF3lpJWgHZ2dlkZGS4XRlis9nIyMggOzvbs4AePWDhQiqPP56+NJ8EacrTwAde9l8EBDoKdjgcjVL/GSmNlkQikUgkEolEYnTCfiLk008/5dChQ3z55ZeMGjWKTp06uSZFSkpKmDt3LiNGjCA1NZV+/frx0ksv8fvvv+uttqqce+65rv/n5+e7Peazzz5z/T8jI8NrqqW4uDiuv/5619+ffvqp2+M+//xzauvSW5xwwgmcc845XvUcOXKkW32C5emnnyY5OVk1eapSXAx33eX9mMmToVcvcJPaLTk52dD2FRYWMn78eAoLC03XrlZtqCU3WDl6+U4SHGr67XLgoaClqIuv9vma7sYbNpuN1NRUv84xc8zTqh2XzOuvhzVr/tkxfz5ceqlynwyBbjLmhSdq+C0uLo6cnBwKCgoapb6y2+0UFBSQk5PTcgrSM89kz4IFbPWxzduApV723wo8hu/jvPLycjIzM0lJSWmU+i8lJYXMzEzNUhro+b0J17GeUcZ5auoiCS1m9pvRbZMxT1+ZcqzXOjG734xsn5F10xRhQn799Vcxfvx4ccYZZwiLxeLarFarazvhhBPEQw89JH744QdRU1Ojt8pB8cADDwhAAOKyyy5ze0yHDh1cx3z44Yctypw1a5br+E6dOrk9ZtiwYa5j7rjjjhZl7t6923U8IP74448Wz/FGXl6eAERaWpqIjIwUeXl5QcnThDFjhADftshIIaZMEXa73XWNIiMjXfYBwm63621RI6qqqoTdbhdVVVWma1erNtSSG6wcvXwnCY5g/Wa320V7EDl1cacKRM+6eOMtvjSMS003NeOSP/ZlZGR41MmXLSMjQ1P91CRU7WrRTlV5ubAPGyaqIiPd3/vOPFOIAwc0180oMc/bd0nr71c4YhS/CdFyHGy6PwXElhbGfsOajPM8+byleBdIPPMFPa9/uI71jDLOU1MXSWgxs9+MbpuMefrKNMtYT+IfZvebke3TS7f6Z7n1W6if5YZ9jZCW2LNnD/Pnz2f+/Pl8//33riXkDeuKpKSkcNlll3HllVcyaNAgEhIS9FI3IAYOHMi3334LwJ133tks7VRRUVGjN822bNnCiSee6FXmli1bGtXwKCoqcqXLquf0009n3bp1AEybNo0777yzRV1TU1PZv38/oKwoufLKK1s8xxN655VrkZ9/hnPPVX7q+soXX5DfvbuhcvFLJBKTIAQHX3iBiHHjSGnw8RqgF7AtjGqEgPKGdFZWFvPmzfMrPYzNZmPw4MFkZ2e3/Ba4JHjWr4dzzgFPb6x36wY//ABt24ZWL52QNULCF2++W7x4Mampqc3q3x0LrADaeZDpBC4EfmzwWUOf16fCaqmuns1mo6CgIOiVchKJRCKRSCQSiZbo/Sw37FNjtUTHjh258847+eKLLzh48CCffvopWVlZHHXUUa4UWocPH2bWrFlkZmbSrl07Bg4cyGuvvcaOHTv0Vr9FduzYwffff+/6u74OR0O2bm28kL9Lly4tym16TFMZTT875phjWpTZVO6WLVt8OqclMjMzadOmjSqyVKOyEm6/3b9JkJtugssvb/RRmzZtjGlfHWVlZeTk5FBWVma6drVqQy25wcrRy3eS4AjKb8OHc2STSRCAM4D71FBOBfyxz1u6G2+bz6lwgtRPTULVrhbtlB13HDkvvkhZhw7Nd6alwTff+DQJImNe6yRc/DZgwIBGkxVnosTWP4HBgKep2uo2bbgjM5PuTcZ5DVNhtTQJAsqEyb59+wJV3yN6Xv9wHesZZZynpi6S0GJmvxndNhnz9JUpx3qtE7P7zcj2GVk3LTH9REhD4uLiGDx4MO+88w579uzh559/5rHHHqNHjx6uSZHKykq+++477rvvPtLT0znttNN48sknWbVqld7qu+WBBx6gpq7QdpcuXdyusDh06JDr/4mJicTGxrYoNy4urtHKmKbF5isqKqhoUOS0ffv2PunbMB+7WgXsS0pKXDbV1NRQWFhI/UKn4uJiKisrXTrXf8Grq6sb5cErKiqiqqoKUH581udarqqqoqioyHVcYWEh1dXVgBI06q9BZWUlxXV5zoUQFE6YQE3dRE9pfDyOujf0nDExlBx9NCQnU2u1Ulj3L6mplPz3vzidTkB5sy8+Pp7a2lqKioqIj493rWLSzabCQldfKy0txeFwYLVaiY+Pd+lQW1tLYWGhq3ZMSUmJyyaHw0FpaakqfrJarbRp08b1FriaNgE4nU7KyspcK6nUtKm2tpbY2FisVmtQfnI6nSQnJ1NdXe2zTSUlJS4dSkpKSEpKwmq1auYnf20KxE8NbQpF39PbpqqqKpKTk6msrPTfpquvprDB6sCipCSqoqIAeCwujupt2zzaVK9rmzZtXPE2OjratVJQLT+Vl5eTnJzskueLnxwOB2lpaaSlpZGSkkKnTp1IS0vjqKOO4qijjiItLY1OnTqRkpJCWloaNpstYD9VVlaSnJxMVVVVSPteTU0NycnJrmvkyU9GjHtWq5XEtDRKcnKgbqxQlJREVefOsGgR5SkpPtlUUVFBfHw8Vqs1oO8T0Gj8o1eMKC0tJTIyEvD8fbJYLCQnJxMREeHVptYQ98rKylx+N4JN3vwUHx+PzWajP7AgJoa5CQmcDKy0Wrm1frwHlCQk4IyJUa5RVBTJZWV8VFvLkRERrviXlZXFggULXNchNjbW9VJMZGRko5XeSUlJRNXFcrX9VF5e7rr+oe57oYh7VVVVxMXFYbVaVbOpoqKC5ORkl7yGNvnT9+rHuvU6hHPck+O98I57avqp/rdjvQ5Gs8lqtRIXF+fSIZR9r7S0lISEBKxWa1j9dnc6nbRp0war1Rq0n4KNe1arlaSkJEpKSkwdI8xmU/33rl4HM9jU0E9GjntCCJKTkykvL9el7+lFq5oIaYjFYqFXr148++yzbNiwgT///JMpU6Zw0UUXERkZ6ZoYycvL47nnnqNPnz506tRJb7UbMWPGDObOnev6+/nnnyem7odVQ+o7J+DTJIi7YxvKcPe3r3K9yQyUsrIyrrjiCgAOHDjAlClTXF/O7OxsfvvtNwCWLl3K/PnzAdi1axdTpkxxyZg6dSrbt28H4JtvvuGbb74BYPv27UydOtV13JQpU9i1axcA8+fPZ+lSpRTmb7/9RnZ2NgDODRuYIgQH2imJEOZcey0revcGYO3ppzNrzBjYtIniq69mytixFCcmwrRpzPrqK9auXQtA7969ufbaa6moqGDt2rWMHj3a5VtdbHI6mTJlCgcOHFBsmjOHFStWEBsby5FHHsknn3wCKAFvypQprgA7a9Ysl00rVqxgzpw5qvgpNjaWmpoali1bprpNAGvXruWTTz5h0KBBVFVVqWrToUOHWLduneu7EKifVq1axaBBg7Db7T7bNGvWLJef3nzzTfr06UNsbKxmfvLXpkD81NCmUPQ9vW3asmULgwYNYv369f7bdOaZTBk79h+bRo9me9euACwbOJA1P/3k0aZ6Xa+88kr69esHQLdu3cjKylLVT19++SWDBg2itLTUkH5av349gwYNYsuWLSHte3v27GHQoEEsW7ZM076nRdyLjY2lW7duvLl4MSxfDsccw9S77mL7O+9A164++2nRokVERkYSGxsb0PepqqqKdevWuX5A6BUj5s6dS+fOnQHP36eYmBjGjh1Lu/pxRCuOe5988glHHnkksbGxhrDJm5+uvfZabu7dmwXAttNPZ8Hw4XwDnJyYyAljx/JE3QTKrOHDWXv66QCs79mTw23bckpFBTPatWPs2LGUlJQwb948srKy6NatGwD9+vVzvezUuXNnxjaI5aNHj6ZrXSxX209ffvkl8fHxxMbGhrzvhSLubdmyhT179hAbG6uaTYsWLWLQoEEcOnQoqL4XGxtLWVmZ62W8cI57crwX3nFPTT/FxsYSHx/Pl19+aUibYmNjOXz4MOvXr/fZJlCn702fPp2uXbsSGxsbVr/dV61aRVlZGbGxsUH7Kdi4FxsbS58+fXjzzTdNHSPMZlNsbCx79uxxZYwxg00N/WTkuFdaWsqgQYP48ssvdel7uqFOqRFzUVxcLGbPni1uvPFG0bZt20bF1o3C6tWrhc1mcxWXGTZsmMdj33//fddxRx99tM9tHH300a7zPvjgg0b7duzY0ai4zfbt232SedNNN7nOufXWW33WxR31BXbOOusskZKSIvLy8kR1dbUoKCgQtbW1QgghioqKhNPpFEIIUV5eLkpLS4UQSlGggoICl6zCwkJRWVkphBCirKxMlJWVCSGEqKysFIWFha7jCgoKXIWESktLRXl5uRBCCKfTKYqKioSoqRG1550nCpKTRXVEhBAgSuLjRYXNJgQIxw03iOLiYiGEEDXV1aJg+nRRc/fdQgil3zkcDmG324XNZhPx8fEiOjpanH766aJdu3bCYrEIu90eepuEELW1taKgoEBUV1cLIYQoKSkRFRUVwul0ilWrVomDBw8qNtXUiIKCAlFTU9PIJiGEqKioECUlJUIIEbSfnE6nWLFihWufmjYJIYTD4RAHDx4Ua9euFRUVFaraVFZWJn788UfXvkD9VFhYKNauXStKSkp8tsnV92pqxP79+8WaNWuE0+nUzE/+2hSInxraFIq+p7dNxcXFYu3ataKoqCggmzZ9/70oqivSW5iUJCqjosR6EOfGxYnNmzd7tGnbtm0CEG3atBGxsbECENHR0SIxMVHY7XbV/HTo0CGxdu1aUV5ebkg/FRUVibVr17p84YtNavS90tJSsXbtWlFQUKBp39Mi7jmdTvHLL7+I/fv3K4ru2iUKly7120+HDx8WK1euFE6nM6DvU0VFhfjxxx9d+/SKERs3bnQVxnb3fQKExWIRycnJIiIiQtjt9lYd9w4ePChWrVolnE6n7jZVVFSIhIQEt34CxM3x8aKkfrwXEyOKExKEALHVahXHJScLq9Uq3gJRnJAgHDExQoAoSkgQP/fqJZzR0aI6IkK8l5wsvl+0SAAiMTFRREdHC0DExsaKNm3aCEBERkaK5ORk13g6KSlJREVFCbvdrrqfDh065Lr+oe57oYh7xcXF4qeffhJOp1M1mw4fPizWrl0rysrKgup79WPd+n3hHPfkeC98457afqr/7Xjo0CFD2uR0OsXPP//s2hfKvvf333+L1atXC6fTGVa/3QsLC8WKFSuE0+kM2k/Bxj2n0ynWrFkj9u/fb+oYYTabnE6n+Omnnxrdu8LdpoZ+MnLcKy8vF2vXrhWHDh0Kad/Tu1i6nAhpgZqaGrF06VLx4IMPihNPPFFvdYQQQvz5558iNTXV1WlOPfVUV4d2x+zZs13Htm/f3ud2jjrqKNd5c+bMabTv77//btRx6x+gtcT111/vOmfMmDE+6+KO+i/P2LFjRWJiYsi/PG6ZOlWIuoeMzbYjjhCi/kGQF+x2u+saJSYmuuwDhN1u194GPygqKhKTJk3y2v/CtV2t2lBLbrBy9PKdJDiC9Zvdbhej62JSBYjHQETWxZtly5YJu93udlu2bFmjmN9wUzMuGb1fmjnmadWOjHmNaXiP92Uz2n0/1BjFb/VkZGS49dMlnsZ+ddt6EEl18XZhg8+LEhPFpLFjRVFiousze4OXhvTuK3pe/3Ad6xkl5qmpiyS0mNlvRrdNxjx9ZZplrCfxD7P7zcj26aWb3hMhFiH8qeYs0Zu9e/fSt29f15KoY489luXLl9PBXRHSOhYsWMBll10GKDVCGuaP80ZiYqIrN9zChQu55JJLXPsqKioaFZr99ddfOb1umb83rrrqKteyqHHjxvH888/7pIs7Nm3aRI8ePVx/5+Xl0b1794DlBc3u3dCtG9QtG2vG9OkwcmSLYvLz80lPT3e7z263k5aWFriOEomkVZOfn8+x6em8DEwF/lBBpoxLEonveLvHu0N+v4xFeXk5WVlZzJs3z5VLGSAKmAdc6uG8j4ARQBWQCCwHTvHSzi3Ae37qJvuKRCKRSCQSicTo6P0st9XWCGnIJ598wsiRI7n00ksZMWIEOTk5eqvklkOHDnHxxRe7JkE6dOjAokWLvE6CALRt29b1/+Li4kY/3DxRXl7eqNDeEUcc0Wh/bGxso3of+/fv98mGffv2eZQZKDabzVVIXFfuucfzJMiFF8KIEX6LtFgsxrHPDUIIHA4HoZ5PDUW7WrWhltxg5ejlO0lwqOE3ATyAOpMgamP0fmnmmBdUO17GFTLmSYLBaH6Li4sjJyeHgoIC7HY7mzZtolevXlQBQ4Flbs6ZBtyIMgkCUAxcDuwFhMWCw2ZDNBnnvQVc4EbW9OnT1TLFJ/S8/uE61jNKzFNTF0loMbPfjG6bjHn6ypRjvdaJ2f1mZPuMrJuWmHYiZP/+/Zx//vmcf/75PP74426Pqa2t5ZprruG6667jgw8+4JtvvmHmzJkMHz6cAQMGuCrbG4Hi4mIuueQSNm3aBMCRRx7JokWLfHqr8MQTT2z0919//dXiOTt27PAqo+lnvshsKvekk07y6ZyWGDduHElJSarICphPPoFPP3W/LzYW3nwTApjMSEpKMoZ9HigqKmLixIk+rzIKp3a1akMtucHK0ct3kuAwu9+Mbp+ZY17A7axbB127wsKF6snUQI7R+5bEPUb1m81mIy0tjW7durFixQoqKir4zW7nmPXrcdYVOAd4HhgN1DY5fydwBbA3KYmJ48ZR1GScFwXMBU5ucl6oV3zoef3DdaxnlJinpi6S0GJmvxndNhnz9JUpx3qtE7P7zcj2GVk3TQk2t5ZRmTp1qqvAedP6FvVMmDDBVQi96Wa1WkVGRkaItXZPaWmpOPfccxsVRfzll1/8ktGhQwfX+R999FGLx8+aNct1fKdOndweM2zYMNcxd955Z4syd+/e3SgP3B9//OGXDU2pzyuXmpoqIiIi9KsRUlAgRIcOnnNDT5zol7iG+cMjIiJc9mHAXOHV1dVi7969rsJRZmpXqzbUkhusHL18JwmOYP1WUVEhbDZbQPnn3W02m81VWM0I9mmNmWNeQO1s3SrEUUcp97qoKCFyc4OXqZZuGukRLLJGiH8YxW9+sX+/qDz2WPGID/69KiJC7E5NFdUREW7HkHYQ7Rscv3jx4pD2FT2vf7iO9YwS89TURRJazOw3o9smY56+Ms0y1pP4h9n9ZmT79NJN7xohpl0RsmyZsjg9OjqaSy9tnrG3srKSF154AYvFgsVi4eKLL+aVV17h4YcfxmazIYTg448/5pdffgm16o1wOBxcddVV/Pjjj4CyJP/LL7/kjDPO8EvOgAEDXP9fsmRJi8cvXbrU9f8LLnC3OD84mV26dOG4445r8Rxf2LdvHzU1NarICohHH4W9e93vO/10eOCBgEXX1NTob58XIiIiSE1NJSIiwnTtatWGWnKDlaOX7yTBEazfbDYbgwcPVk2fwYMHY7PZVJNn9H5p5pjndzs7d8LFF8Pffyt/V1VBZia8/XbgMtXSTYPzJfoQln476ij2fPEFL/hw6Oc1NUzYt48ID+O8NOBzIBYlfqempqqnpw/oef3DdaxnlJinpi6S0GJmvxndNhnz9JUpx3qtE7P7zcj2GVk3LTHtREh9CqkePXo0Kupdz4IFCygoKACUAt5ff/01Y8aMYeLEiY3y786cOTM0CruhqqqKoUOH8v333wMQExPDvHnzOPfcc/2WNWTIENf/c3Nzqaio8HhsRUUFs2fPdntuQ6666iqsVqULbd26lRUrVnjV4b333nP9X80HcSNHjiQ+Pl41eX7xww/w1lue9x9/vNfc6S0RHx+vr30tUFpaynvvvUdpaanp2tWqDbXkBitHL99JgkMNv2VnZ5ORkRHUBIbNZiMjI4Ps7OyAZbjD6P3SzDHPr3YOHFAmQZqk0UQIuOMOePFF/2WqpZtG50v0IVz9JhrU0fNGfHw8JSNHMsnLOO9sYCYw5MorVZ149gU9r3+4jvWMEvPU1EUSWszsN6PbJmOevjLlWK91Yna/Gdk+I+umJaadCNm1axcWi4UTTjjB7f5vv/3W9f+HH3640b7rrruOjh07ArT4cF8rampquOGGG/jqq68AiIyMZPbs2Vx00UUBybvqqqvo3LkzAIWFhTz77LMej33mmWcoLCwE4JhjjuGKK65we1z79u255pprXH8/8sgjHovsfPPNN3zzzTeAMus4atSoQMxwS35+PtXV1arJ8xmHQ3ng443Zs+HUU6FuMstfqqur9bPPByIjI0lLSyMyMtJ07WrVhlpyg5Wjl+8kwaGG35oW+/W4/f47Bffdx+H772+2r6CggJycHLcvGgSD0fulmWOeX+28+SZs3ep5/08/QW2tfzLV0k2j8yX6YHa/1Y/znqiu5nMvx10DvN++fajUcqHn9Q/XsZ5RYp6aukhCi5n9ZnTbZMzTV6Yc67VOzO43I9tnZN20xCI8PbkOc2JiYqiurubOO+/kjTfeaLb/tNNOY+PGjbRr1479+/c32z948GDmz59P27ZtOXDgQChUdiGE4JZbbmHGjBkAWK1WZs2aRWZmZlBys7OzufXWW10yJ02axJgxY1yrOmpra3nttde4//77qa17gDFjxgxuvvlmjzK3bNnCqaeeSlVVFQA33XQTU6dOpU2bNq5jFi9ezHXXXcehQ4cAuOWWW1R5i3jTpk306NHD9XdeXh7du3cPWq7PPPkk/Pe/vh//1ltw++0tHpafn096errbfXa7PeSFMiUSSStk61a48Ub45ReIiIDly6F3b721khiF2lol7eOUKc33XXABfPklhPjN9XDB2z3eHfK+H544HA5SUlJw+LAqOAY4D1gBLAW8Jb899NRTHPmf/7jd562vOBwO9u3b5/o7NTU15KtLJBKJRCKRSCQSvZ/lmnZFiMViAXD7Jn1RURGbNm3CYrFw3nnnuT2/fd1bV8XFxdop6YGpU6e6JkEAunbtyvLlyxkzZoxPmyeysrK46aabAGXS47777uOEE07gxhtv5MYbb+SEE07gvvvuc02C3HLLLV4nQQBOOukkpk6d6vr7gw8+4Oijj+baa68lKyuL3r17c8EFF7gmQU499VSmuHtwEgS9e/cmJiZGVZktsnEjTJjg+/EpKeBhZY03YmJi9LHPR5xOJytWrMDpdJquXa3aUEtusHL08p0kODT3mxDw+utKfaP6Glk1NXDTTVBWpk2bDTB6vzRzzPOrHasVJk2Cp59u/PnZZ8NnnzWaBJExTxIM4eo3X+sxHRETw1u9e/N5TAwXA1cAO7wd/8wzXOuHHuXl5WRmZpKSkkJ6erpri42NpXfv3vz222/k5+d7nLDR8/qH61jPKDFPTV0kocXMfjO6bTLm6StTjvVaJ2b3m5HtM7JuWmLaiZDk5GRASZHVlB9++MH1sN9TvY36CRQ9isb8XV94tI4//viD119/3efNG++88w5jxoxxTRRt376dWbNmMWvWLLZv3w4ok0j33nsvb775pk/63nrrrbz99tuuVSAFBQXMnTuX6dOns3LlStdxF154IQsXLiQhIcHna+ELPXv2JDo6WlWZXqmpUVZ2+JOuavJk6NDB76aio6NDb58fVFZWsm7dOiorK03XrlZtqCU3WDl6+U4SHJr77cYbYcwYaFpHats2eOghbdpsgNH7pZljnt/tWCzw738r9zeA7t1hwQJoco+XMU8SDOHst5bqMR0BfBIdTXnPntRER5MDdAcuBzy9hmURgplAXx91yMrKIjc31+1Ex8qVK+nevTvp6emkpKSQmZlJeXl5o2P0vP7hOtYzSsxTUxdJaDGz34xum4x5+sqUY73Widn9ZmT7jKyblpg2NVa/fv1YtmwZSUlJ7N27t9GPkBEjRvDBBx9gsVhYsWIFZ511VrPzL7vsMhYuXEinTp3YuXNnKFXn6aefZvz48QGf74tLV61aRXZ2NkuWLGH37t0AdOrUif79+3Prrbe6vSYtsWPHDt59913mz5/Pjh07KC0tpUOHDvzrX//ixhtvZMiQIa4JGDXQbTnVq6/Cvfe635eYCPHxsGfPP59dfjnMn688NPIBmRpLIpHoxpw5cN11nvd/9RVcemno9JGEB7m50Lcv1NVXk3hGpsZqfTRNSwVQvWMHjn796NHk2FLgIiAR+ArwlLG5ACWd1m8NPmvaV/xJz1VPRkYGOTk5Ph8vkUgkEolEIpH4g0yNpREXXnghoKS2GjdunOvzn376idzcXCwWC+3bt+fMM890e/66deuwWCx07do1JPo25Omnn0YIEfDmC2effTbTpk1jy5YtlJSUUFJSwpYtW5g2bVpAkyAAXbp0Yfz48fz6668cPHgQh8OB3W5n7ty5XH311apOgjQkOTnZVedEc3bsgMcf97x/6lTYvPmfIupJSUpR2QBtt1qtobXPT2prayksLHStsDJTu1q1oZbcYOXo5TtJcGjut2uvVdJguSMlBTR+W8To/dLMMS+odjIyPE6CyJgnCQYz+M1ms5GWlvbPlpLCMTfdRA+g1mqlMDmZ2rpxXjywANgH3OZFZkrdcd6mHvft2+fXJAjAvHnzGp2j5/UP17GeUWKemrpIQouZ/WZ022TM01emHOu1TszuNyPbZ2TdtMSYT1dVICsri9jYWABeffVV0tLSOOOMMxgwYIBr2c/tt9/u9uH85s2bXW9unX766aFTWhIQY8eOJTExUfuGhIC77oLSUvf7Bw2CYcOUVSFvvgnffgvvvAOdOgXcZGJiYujsC4Di4mKmTJkS8lo6oWhXqzbUkhusHL18JwmOkPjt1VehS5fGn11yCeTlgQ8574PB6P3SzDFPq3ZkzJMEgyn9lpREWV3duOLERKaMHUtxg3FefZbmGUDB/fd7FNMFZdWIuxGiw+EgPz/fb9Warl7R8/qH61jPKDFPTV0kocXMfjO6bTLm6StTjvVaJ2b3m5HtM7JuWmLa1FgAb731FqNGjWo02VFv7gknnMAvv/xCfHx8s/PGjx/P+PHjsVgszJ49m6FDh4ZMZ4nv1C+nSk5Opri4mA0bNmi7nCo3FzIz3e+Li4NNm0CF9BUN02ZYrVYSExMpLi6mtrbWcCkyamtrKS4uJjExMaSrVkLRrlZtqCU3WDl6+U4SHCHz2+LFcMEFEBsLL70Eo0cHvLLNH4zeL80c85q1IwSoUCdNxrzGyNRY/mEUv6lNvt3Ol8cey2irleLERBKLi7HW1pIPXAxsqzvO/uefpD3/PLz9tkdZi4DLgN/tdo466iiysrKarezwh/o+53A42LNnD+Xl5cTFxWG1WklNTfVY80RtwnWsZ5SYp6YuktBiZr8Z3TY99WvtMU8NWUbvXxL3mN1vRrZPL91kaiwNueOOO/jkk0847bTTXGmjbDYbmZmZLF261O0kSFVVFW+99RYAkZGRXHTRRaFWW+InIVnKdfiw57ogAM8+q8okSFOMvlRNr9RdoWhXqzbUkhusHKOnXZO4J2R+GzAAXnsN1q5VVsKFYBIEjN8vzRzzGrUzcyb06weFherJlDFPEgCm9ZvFwj3AR7W1JBcWYq2tZTNK3Y9tTY7jjTegbgWJOy4CsgFqa70WR/eV8vJyMjMzSUlJoWvXrpxyyil07drVa1F1LQjXsZ5RYp6aukhCi5n9ZnTb9NSvtcc8NWQZvX9J3GN2vxnZPiPrpiWmt3bIkCH8+uuvlJSUsHv3boqKivjwww9p37692+OdTicffvghixcvdhVblxibUaNGkZCQoG0jDz0Ef//tft9ZZ8E992jSbEJCQmjsC5CSkhKmTZtGSUmJ6drVqg215AYrRy/fSYIjpH67+2448UTt22mA0fulmWOeq52JEym55x748Ufo39/zvc8fmTLmSQLErH5LTU0lxmZjTEICL4waxY8JCZwP7G5wjM1mIzU1FSIjIScHzj7bo7wbgYTnn2fevHk+tT99+nSP+xpOpjQdhzocDnJzc8nKyvKpnWAI17GeUWKemrpIQouZ/WZ02/TUr7XHPDVkGb1/Sdxjdr8Z2T4j66Ylpp8IqadNmzZ06NCBqKgor8fFx8fTr18/+vXrx9lefnBIjMO6detcdV804bvvwNMPxshIJV2BCulD3FFZWam9fUEQHR1Nz549iY6ONl27WrWhltxg5ejlO0lwmN1vRrfPzDEPIHr5cnrOn0+0s65Kwfr10Lcv7NwZuEwZ8xrhT2oh14PwVoxR/KY2NpuNwYMHU1FZyfx16xhcWcnBJscMHjz4n77Spg3Mn0/VMcd4lNn2nXe41YeVIDabjd69e3vcv3LlStf/PY1Dg0m95SvhOtYzSsxTUxdJaDGz34xum576tfaYp4Yso/cviXvM7jcj22dk3bTE1DVCJOYmJHnlKirglFNg+3b3+x97DJ57TtUmveUPb+25wiUSiUSiET/+CAMHgruUN126wKJFcPzxodfLhGRmZpKbm9vicRkZGeTk5IRAI4kelJeXu63nUT9Jkp2dTVxcXKNzdi1ZQvSAARzlQWYtcC3wqZd2MzIymDBhgl+1atwhx6QSiUQikUgkEn+RNUIkkiDp37+/doUbx4/3PAly3HHw5JPatFuHzWbT1r4gcTgcLFmyRPO3AvVoV6s21JIbrBy9fCcJDrP7zej2mTbm1dbCqFE4amtZ0r8/jqb3nB07YOHCgETLmNec7OxsMjIyPN7bbTYbGRkZZGdnh1gz42Ekv6lNXFwc7733HvPnz2fr1q3Y7XbsdjsFBQXk5OQ0mwQBqE5L4wqgzINMK/AhcK6bfYH0Kz3HoeE61jNKzFNTF0loMbPfjG6bnvq19pinhiyj9y+Je8zuNyPbZ2TdtEROhEjCnrS0NCIjI9UXvHYtvPSS5/0dO0JxsfrtNiAyMlI7+1Sgurqa/Px8qqurTdeuVm2oJTdYOXr5ThIchvXbH3+oIsaw9tVh2phntcIXX1B93HHkp6VR3fSe8/jjAdfCkjGvOXFxceTk5FBQUOB6+N1w8/YgvLVhJL9pQXV1Nbt27aJjx46kpaWRlpbW4qRDNZAB1HjYbwPmAw3fq1u8eHFA/UrPcWi4jvWMEvPU1EUSWszsN6Pbpqd+rT3mqSHL6P1L4h6z+83I9hlZNy1pFamxKioq+PLLL1m1ahV2u53i4mKqqqp8OtdisfDdd99prKEkEDRdTlVdDb17w5o13o9r2xZefRUyM8FiUaVpmRpLIpGEDWVl8NBD8NZbsHQpnHee3hpJgmHfPrj4YsjL++ezMWPglVdUu8dJJJLAOfjCC6Q8+igTgHzgbS/H7kZZGfIXzceP3saaviLHpBKJRCKRSCQSf9E7NZYxXzNXCSEEL774Is8++yylpaUBnW+RP/wNT2pqKgcOHFBX6CuvtDwJAnDoENxwA8THw5VXqqsDEBERQbt27Thw4AA1NZ7e/dOPmpoaDhw4QLt27YjQqGC8Xu1q1YZacoOVo5fvJMFhKL+tXAk33fTPapCbb1ZW0iUlBSzSUPa5wcwxD6CmXTsOzJlDu5EjiVixQvHplClBTYLImCcJBrP7zS/7/vc/jnz0UQCeAB4G/gM85eHwTsC3uE+T5SuBjEMdDgf79u1z/Z2amhpQaq1wHesZJeapqYsktJjZb0a3TU/9WnvMU0OW0fuXxD1m95uR7TOyblpi6tRYN954I4899hglJSUIIfzeJOHBqFGjSEhIUE+g3e5f7Y/zz4fLL1ev/QYkJCSob5+KlJSU8Oabb1JSUmK6drVqQy25wcrRy3eS4DCE36qq4Kmn4NxzG6fEstvhttsgiPunIezzgpljnqudnBxKPv4YnnkG3n1XSZsVrEwZ8yQBYna/+WSfEMq49MEHG338IrAX8Fbx43hgAWAJ8Pr5Mw4tLy8nMzOTlJQU0tPTXVtKSgqZmZmUl5f71Xa4jvWMEvPU1EUSWszsN6Pbpqd+rT3mqSHL6P1L4h6z+83I9hlZNy0xbWqsDz/8kBtvvBGLxYIQghNPPJHrr7+eHj16cMQRR/iV67Zfv34aaioJlPrlVDabDafTycaNG4NfTiUEDBoE33zj2/GxsbBhg1I4XSUapiuwWCzExMTgdDoRQhguDYEQAqfTSUxMTEhXT4WiXa3aUEtusHL08p0kOAzht0WLlPRJnnj1VSWdUgAYwj4vmDnmadWOjHmSYDC733yy76GH4OWXPcq4FRgCeFuXXNGnD7Hffw91KzN8TY3VdBzakKZj0szMTHJzcz3KysjIICcnp8U26wnXsZ5RYp6aukhCi5n9ZnTb9NSvtcc8NWQZvX9J3GN2vxnZPr10k6mxNOKdd95x/f/+++/nxRdfxBrkW40SY+JwONQTNnOm50mQuDjo0gW2bPnns+eeU3USpClCCHXtUxmLxRJQuoNwaFerNtSSG6wcvXwnCQ5D+O2iiyArC7I9vIf8f/8HN94Iycl+izaEfV4wc8zTqh0Z8yTBYHa/+WTfuefCpElQW+t2dxJK8fSvgb4eRMT+/DMMHw6zZ4MfqQ98HYc6HA7mzZvn9Zh58+bhcDh89me4jvWMEvPU1EUSWszsN6Pbpqd+rT3mqSHL6P1L4h6z+83I9hlZNy0x7czAhg0bsFgspKen89JLL8lJEBMzduxYEhMTgxd04ADcf7/n/S+8AOvXKylhIiPhnHPgnnuCb9cLiYmJ6tmnAcXFxUyePJni4mLTtatVG2rJDVaOXr6TBIdh/DZ5MpxwQvPPTzwRli0LaBIEDGSfB8I65vmQ318L+2TMkwSD2f3mk31XX+1x4vn3++5jElCBsiJkg7fGPvkERo/2K32hr+PQffv2tThh0rR2SEuE61jPKDFPTV0kocXMfjO6bXrq19pjnhqyjN6/JO4xu9+MbJ+RddMS084O1A/G+/bta7jlRxJ1WbJkiTqrJh54QCl+7o4+fZQfj9HRMH48rF4N773n11t1geBwONSzTwNsNhv9+/cP+SxyKNrVqg215AYrRy/fSYLDMH5LSICPP3alWQHghhuU2HjKKQGLNYx9HgjbmFdZCUOGwIQJ2rajoUwZ81onZvebz/aNGAGvvPLP3xYLvPsu0WPHuj4qAi4B/vQm5+23lVV7PuJtHLpr1y7y8/PJz8/XZJwarmM9o8Q8NXWRhBYz+83otumpX2uPeWrIMnr/krjH7H4zsn1G1k1LTFsjpFu3bmzdupWRI0fy7rvv6q2ORANUzSv39ddKbRB3REXBunXQrVtgsv3EW95mo9UIkUgkrZx33lHqgbzyCtx+u/JwTmIsqqshI0N5Gxzg3/9WNukriST8eOEFePxx+OADGDYMh8NBSkpKo4mIrsCPQHsvYg4/+SRtn3lGa22bIcexEolEIpFIJK0bvWuEmHZFSK9evRBCsHnzZr1VkWjMoEGDiI2NDVxAaSnceafn/Y89FrJJkKbExsYGb5+GVFRUsHDhQioqKkzXrlZtqCU3WDl6+U4SHIbz2623KnWT7rhDlQfrhrOvCWEX82pq4Oab/5kEAWVV42OPuU2Po4V9MuZJgsHsfvPbvkcegbw8GDYMUN7kGzx4cKNDtgODUFaIeOKIZ57hRh+a03McGq5jPaPEPDV1kYQWM/vN6LbpqV9rj3lqyDJ6/5K4x+x+M7J9RtZNS0w7ETJmzBgAVq9eTV5ens7aSLQkOTk5uBowTz0Ff/3lft9JJylv3umE1WoN3j4Nqa2tpbCwkFoPBTzDuV2t2lBLbrBy9PKdJDgM5zeLBVR8u9dw9jUhrGJebS3cdht89FHzfRMnKjWxmkyGaGGfjHmSYDC73wKy76STGv2ZnZ1NRkZGo7QG64Bro6Op9DJ+nA5c1UJTeo5Dw3WsZ5SYp6YuktBiZr8Z3TY99WvtMU8NWUbvXxL3mN1vRrbPyLppiWlTYwHcddddTJs2je7du7NkyRLatm2rt0oSFVFlOdXq1dC7t/LAyB3LlsF55wWhpf/I1FgSiUQiCZply6BfP8+FkVNSlLSPXbqEVC2JRKINTYuRp6amYlu4EIYO9TjOdQJXAItCo6Icx0okEolEIpG0cmRqLA157bXXuP32210X+bXXXmPv3r16qyVRmbS0NCIjI/0/sapKyWnvaRJk9OiQT4I0JTIyMnD7QkB1dTX5+flUV1ebrl2t2lBLbrBy9PKdJDjM7jej2xdWMa9vX5g+Hdy9yZ2YCN9802wSRAv7ZMyTBIPZ/aamfTabjbS0NNdms9ngzDOVdHgeiAHmAed62K/nODRcx3pGiXlq6iIJLWb2m9Ft01O/1h7z1JBl9P4lcY/Z/WZk+4ysm5aYeiLEarXy5ptv8r///Y/9+/dz33330blzZ4444gjS09M59thjW9y6du2qtxmSFhg5ciTx8fH+n/jyy7B+vft9HTrA888Hp5gKxMfHB25fCCgtLWXGjBmUlpaarl2t2lBLbrBy9PKdJDjC3m8t5B81un1hF/NGjIAPP4SIiH8+a9MGFi5UHpCq1Y4XZMyTBIPZ/aapfXY7nH8+vP46PPSQx8PigC+Bf7nZp+c4NFzHekaJeWrqIgktZvab0W3TU7/WHvPUkGX0/iVxj9n9ZmT7jKyblpg6NVZVVRX33nsv2dnZVFdX09BUiw9FXYUQWCwWampqtFRTEiBBLaf64w849VRwONzv79YNPvsMjj8+eEX9RKbGkkgkpqO2FiZMgLffVlISHnmk3hq1Lj79FDIyIDISFixQUmZJJBLz8vvvcOGFsGuX8nenTnDZZUoM9sAhoB+wyc0+m83Gvn37KCgoAGDXrl307dvXb7XkOFYikUgkEomkdaN3aixj5ttRgZqaGgYPHszXX38NQNP5HhPP/0haQgi4807PkyAAv/0Gp50Gzz4L997b+G1aiUQikfjOwYNw003KKgSAm2+GL75wn7JJog1XX61M7kdGykkQicTs5OXBRRfB/v3/fLZ7tzIJOnw4zJrl9rS2wLfA+cC2JvsGDx5MUlISSUlJGiktkUgkEolEIpFoj2mfQrz11lssrHvoIoTgoosu4t1332XVqlX88ccf2O12n7Y///xTZ0skLTFu3Dj/fphNnw6LF7d8XEUFPPKIsnpEJ5KSkvy3L4QUFRUxYcIEioqKTNeuVm2oJTdYOXr5ThIcYee3H3+E00//ZxIElIdx//mP28ONbl9Yx7zLLoOBA7VvRyOZMua1TszuN9Xt27wZ+vdvPAlSz65d8MMPcM01Hk/vgFI4/ei6v4866iiefPJJJk+erI5+fhCuYz2jxDw1dZGEFjP7zei26alfa495asgyev+SuMfsfjOyfUbWTUtMmxqrd+/erFq1CovFwosvvsgDDzygt0oSlalfTnXSSSexfft21q5d2/Jyqn37lLRXdUv7W+Tpp+Hf/w5aV39omBorKiqKrl27sn37dqqqqgyXUqCqqort27fTtWtXoqKiTNWuVm2oJTdYOXr5ThIcYeW3r7+Gyy8HT+kl58yBoUMbfWR0+8wc87RqR8Y8STCY3W+q21deDpdeqkx4uOO88+Dzz+H222HuXM96paWxb/Zskk86id27dzfTz1saV2/4M44N17GeUWKemrpIQouZ/WZ02/TUr7XHPDVkGb1/Sdxjdr8Z2T69dNM7NZZpJ0ISEhIoLy+nW7dubNy4UW91JBoQ0JcnIwNmz/atgdNOg1WrIDo6CC39R9YIkUgkpqCiAnr1Ak/34KQkyM+H5ORQamUu/v4bjjpKby0kEomRKClRJkN+/LHx5+edB199BQkJUFkJQ4YoK/Q80aMHLFkCbds22xWKiRCJRCKRSCQSifnQeyLEtKmx6unVq5feKkg0ZsiQIcTFxbV84BdfeJ4EiY5WHtjVExmppNAK8SRIU+Li4ny3TwfKy8v57LPPKC8vN127WrWhltxg5ejlO0lwhJXfYmPh448hPr75vrZtlQLeTSZBjG6foWLe+PHKCscNG7RtxyAyZcxrnZjdb5rYl5CgTHCcc84/n/Xtq3yWkKD8HR2trAjp39+znLw8yq+4gs9mz9bl+ofrWM8oMU9NXSShxcx+M7pteurX2mOeGrKM3r8k7jG734xsn5F10xLTToR06tQJUIqmSySUlMDo0Z73P/UU/PQTTJ2qPLR77DElr71EIpFIAufEE2HmzMafnXIK/D975x0eVZU28N+kDpMOUkUMoFJUxAoWFKyg64IFEztmLehagi4u1hXXsnbQXcXyRXEXIYoKoqioCAoKivSqQiIiLUD6ZDKTzPn+uJlhktzJTDL3zr1zc37Pc58kt7xl3jNvzr3nnvf8+COMGGGMTVbgkUeUbf9+OPtsTQdDJBKJBfANhpx6Kpx5pjITpOmgdIcOSpmsll4aW7sWFiyAdlY7WiKRSCQSiURiTSxbGuu2225j2rRpHHfccaxatcpocyQ60KrpVHfcAf/+t/qxY46Bn346OPtj+3bo2hWSkzW2ODxkaSyJRGI5HnsMHnoILrkE3n5bfZaIJDweeUSZDRLIIYfAwoXKIJNEIpH4qKiA+HhISQl+TmmpMjC9Zk3wc045RRkQycgA2l4a6+uvv2bo0KHY7fZWXyuRSCQSiUQiiX1kaSyduOWWW4iPj2ft2rV8++23Rpsj0ZH+/fu3vLDP99/Df/6jfsxmgzfeaFwCq1cvwwZBmpKYmBjaPwPxeDxs3rwZj8djOb166dBKbqRyjIqdJDJiNm4PPACFhcoC6S0MgpjdP8NzntogCMC+fcrMkAjXRNPDP5nzJJFg9bjp7l96esuDIABZWcogR79+ze1LTGRz//54Vq2CkSOVgZUIGDFiBFlZWeTm5oYswxCrfT2z5DwtbZFEFyvHzey+GWlfe895Wsgye/uSqGP1uJnZPzPbpieWHQg57rjjePzxxxFCkJuby+bNm402SaITLa6h4XbDTTdBsIlPd9zRckkAg5FrhBinV64RIjEjMRs3mw2uuALiWu52mN0/w3Pe6tXBT9q/H9av10aPCWtHy5zXPrF63EzjX5cu8OWX0KdPo91Oh4M5Y8bgdDhg2TJlEfbKyohUuVwuCgsLufrqqykuLvZvLperse4Y7euZJedpaYskulg5bmb3Ta4RYqxM2ddrn1g9bmb2z8y26YllS2P5eO2117jrrruIi4tj/PjxXHbZZRxzzDGkp6cbbZokQsKaTvXPfyrrf6hx2GGwYcPBhSNNgiyNJZFIJBJVXC6lvNhnnzXeb7PB9Olw7bXG2CWRSGKfujrl5aEvv4QdO4Kfd8YZuD78kKzDDms2eBEJdrud0aNHU1BQYNoXgCQSiUQikUgkkSFLY+lEfHw88fHx3HrrrbjdbmpqapgyZQrDhg0jKyvLfzzUlpCQYLQrkrayebNSlz4Yr7xiukEQiUQikUiCYrfDhx8qJWp8xMUp667IQRCJRNJW6uvhhhvgrbegtha6dw9+7pIl2C+7jCsuukhTE3wzRfLy8jSVK5FIJBKJRCKR+LDsQEjTiS42m63RsdZsEnPzyCOPkJmZ2Xin16u81eZ2q1+Umwsa38DpQWZmprp/JqGsrIzJkydTVlZmOb166dBKbqRyjIqdJDKsHje/fytXBi9paCCmyHmBgyG+QZBrrtFej0bInCeJBKvHzRT+eb0wfjz873/K3yUlymBIt26UZWYy+ZFHKGvaD/3mGwpKSrj2sss0X/h87ty5uFyumO3rmSXnaWmLJLpYOW5m981I+9p7ztNCltnbl0Qdq8fNzP6Z2TY9sWxprLgQdcjDxWazUV9fr4ksibb4plNlZ2ezY8cOVq9efXA61auvKjd1amRlKbNFunSJnrGtILA0VkJCAj179mTHjh3U1dWZrjRWXV0dO3bsoGfPnlGdPRUNvXrp0EpupHKMip0kMqwet7q6Ona8+SY9J0wgYeJE+Mc/jDapEabKeS4XLFkC556rrx6TyJQ5r31i9bgZ7p8Qynp5//lP82MZGdQ5HOxITqbnjh0k1NU1P2f4cFzvvcfuqqoml2Zw6623+gc1WktRUZG//3vIIYewb98+/7Fu3bppNvhi5ZynpS2S6GLluJndNyPti9X7Wy1lyr5e+8TqcTOzf0bZZnRpLMsOhEisT9Avzx9/wMCBUFGhfmGPHsrbtKecEiVLW4dcI0QikbRL6uvh/vvh6acP7nvzTRg3zjCTJBKJxNL85z9w++3Bj3fvrqxBtHNn8HPOOAM++QRU1l90uVwsW7aMESNGtMqsoqIiunTpQl5eXrPBFLmWiEQikUgkEknsYvRAiGVLY0naD7m5uaSkpBzccccdwQdBQLmZO/VUuPde5Y1aE5OSktLcPxNRXV3NrFmzqK6utpxevXRoJTdSOUbFThIZlo1bWRlcfDHV//kPs3JzqfblvJtuggULDDUtECvnPL30yJwniQSrx81w/66/HoYPVz/mcFD9v/8x69FHqQ7ygg6gzEw77zwoLW12yG63t+kFHpfLxU033YTNZiM+Pr7ZMa3WErFyztPSFkl0sXLczO6bkfbF6v2tljJlX699YvW4mdk/M9umJ5YdCLn00ku59NJLycnJwePxGG2OREfKysrwer3KHx98oMz2CIXXq5znu86keL3exv6ZjLi4ODIzMzUrRWcmvXrp0EpupHKMip0kMiwZN69XKe/06afEeb1klpUR58t5dXVw2WWwerWhJvrQ9fOvrlZmxNTURFevznpkzpNEgtXjZrh/qanKbI7zz2+8326HefOIO/VUMg89lLg5c6Bbt+ByfvgBzjkH9u/XxKwBAwbw4YcfttgHbmvZrUCsnPO0tEUSXawcN7P7ZqR9sXp/q6VM2ddrn1g9bmb2z8y26YllS2PFxcVhs9k455xzWGCit0kl2tFsOtV333H0ZZfBrl2hL7bZYPFiGDZMRwvbhiyNJZFI2h0ffACXXx58gfTnn4cJE6JrUzQpL4c//Ul5s3rUKJgzB5KSjLZKIpG0F1wuGDsWPv5YyT0ffQQXXND4nM2bldkje/YEl3PssfDll43W4WupXxspsl8skUgkEolEElvI0lg6kZWVBSA7x+2AwYMHk5SUBC+8EN4gCCjls0w4CNKUpKSkg/6ZELfbzerVq3G73ZbTq5cOreRGKseo2Ekiw7Jxu/RSeO453ElJrB48GLcv58XHQ0GBaQZBdPn89+9X3qReskT5+9NP4eqrldkweupVQQ89MudJIsHqcTONf3Y7vP8+5ObC7Nn+QZBG9vXvD998A4ceGlzOunVw1lktrykSJtHoA1s552lpiyS6WDluZvfNSPti9f5WS5myr9c+sXrczOyfmW3TE8sOhPTo0QMAp9NpsCUSvRk+fDh2ux3ee0/9BJut8ZT/Pn3giSeiY1yE2O32g/6ZEJfLxaJFiyIuTWBGvXrp0EpupHKMip0kMiwdtwkTcP31rywaPhyX3X6wZMsNNxhtmR/NP/9du5SHhj/91Hj/7Nlw443+8o3RirseemTOk0SC1eNmKv+SkmDmTLj4Yv+uZvYddZQyo7pXr+ByNm9W8trvv0dkTjT6wFbOeVraIokuVo6b2X0z0r5Yvb/VUqbs67VPrB43M/tnZtv0xLKlsfLz83nxxRc54ogj+Pnnn402R6IDzaZTAaqTqe65B559VlkT5LbblJu8YAtDmgBZGksikbRbvF7IyYGlS5VBkOOPN9oi/RBCeVj47bfBz7nvvpgZuJdIJO2I336Ds8+GbduCn5OdDV99RXFcnCyNJZFIJBKJRCIBZGks3cjLyyM+Pp6tW7cyb948o82R6Ijdbsdms6kf7N0bJk9Wfr/kEuWGzcSDIE2x2Wwt+2cwQghcLhfRHk+Nhl69dGglN1I5RsVOEhlWj5uw2XC9/jpi2TJTDoJo+vnbbPDyy9Cxo/rxHj3guuu019sCeuiROU8SCVaPm9n9C2rf4YcrZbJamhlSXAxnnEHili1t0h1OH7i4uNi/teVtRivnPC1tkUQXK8fN7L4ZaV+s3t9qKVP29donVo+bmf0zs216YtmBkEGDBvHAAw8ghOD6669n6dKlRpsk0YlJkyaRkZGhfvDVVyEl5eDfHTpExyiNyMjIaNk/gykvL+epp56ivLzccnr10qGV3EjlGBU7SWRYPW7l5eU8NXUq5enpRpuiiuaf/zHHwOefQ1pa4/29eyszRfr310dvEPTQI3OeJBKsHjez+9eifStWwB9/QEt91F276JaTwylt0B1OH3jEiBH07t2b3r17k5WVRW5ubqvKIls552lpiyS6WDluZvfNSPti9f5WS5myr9c+sXrczOyfmW3TE8uWxvLx7LPPcv/99yOEYOzYseTk5HDiiSfSuXNnkpOTjTZPEgG+6VTdunWjpKSENfX1jUtjXXcdTJ9ulHltJrA0Vnx8PJ07d6akpIT6+nrTlQCor6+npKSEzp07Ex8fbym9eunQSm6kcoyKnSQyrB43s/unm33ffqssTlxTowx+fPllowWJo/W56KFH5jxJJFg9bmb3L6h9X38No0ZBba3yd3o6VFQElVMFjAG+aoXupn3gcMnJyWHWrFlhnWvlnKelLZLoYuW4md03I+2L1ftbLWXKvl77xOpxM7N/RtlmdGksyw6ENA2iEKJN5YVsNht1dXVamSXRkJbWCKnv2JE/vvgCb7CSIyZmx44dDBs2TPWY2QZCJBKJxHBqa8EKLzYsWAAPPwwffQRduhhtjUQikajz44/K+iBVVY33p6VBZWXQy2qBK4EPVY4NGTKE5cuXa2Ke3W6ntLRU10XWJRKJRCKRSCRtw+iBEMuWxmo6vhM4CCKEaNUmMTfjxo0jNTW10b7rDhzg8BNP9E+Xj6UtcBAkNTVV1T+zUFVVxVtvvUVV05thC+jVS4dWciOVY1TsJJFh9bi12r+VK+Goo5Ra9VFA18///PPhu+9UB0GiFXc99MicJ4kEq8fN7P41s2/jRhg5svkgCCiDIIHlaJuQDLwH3BCwz263k5OTQ0FBQbPz29oHdrlc7N69O6xzrZzztLRFEl2sHDez+2akfbF6f6ulTNnXa59YPW5m9s/MtumJZQdCIPiAh8RaFBcXN5q18ynwjnHmaEpdXV0z/8xEQkIC2dnZJCQkWE6vXjq0khupHKNiJ4kMq8etVf4tXQojRsD27fCnPylvKZvJvrYQp94ti1bc9dAjc54kEqweN7P718y+P/5QSvgF49574cILgx6OBwqA/fffT1FREaWlpcyaNQuHw9Hs3Gj0ga2c87S0RRJdrBw3s/tmpH2xen+rpUzZ12ufWD1uZvbPzLbpiWVLY0msj1pprGyU8li/GWST3sjSWBKJRIKyhsbo0RC4KG7HjrB4sbIAuRnweuGrr+C884y2RCKRSLRjyRK46KLma4Lcfju8+CLU1cH118PMmS3Luf9+eOwxsNkarY+nBbK/LJFIJBKJRGJOZGksiSRChg4d6l/43gOY5BGYJiQnJ/v9s9vtdOvWzWiTGlFbW8uyZcuo9S2WaSG9eunQSm6kcoyKnSQyrB63sPz76CPlIVzgIAjAgQNw7rnwyy/G2gfgcsGVVyrlrt54I3p6TahH5jxJJFg9bmb3T9W+M86ARYugc+eD+y67DKZMAZsNEhPhf/+D225rWfgTT8DNNysDJyoE9oH1wso5T0tbJNHFynEzu29G2her97daypR9vfaJ1eNmZv/MbJueyIEQScwzePBgkpKSAMgEPgamo0y/j3WSkpL8/o0ePdp0Cz+63W5Wr16N2+22nF69dGglN1I5RsVOEhlWj1tY/n38MQQ7vmcP/Otf+hhHmPYdOKAMgLz7rvL3LbfAnDn669UAPfTInCeJBKvHzez+BbXv+OOV8oR9+sCwYcrAR3xAzzsuDv79b3jwwZYVvPEGjBmDrenANo37wHph5ZynpS2S6GLluJndNyPti9X7Wy1lyr5e+8TqcTOzf2a2TU9kaSxJzKJWGss3mepNIM8Io3TAbrczevRoCgoKVGsoSyQSSbuivl6ZbfHee82PXXKJUo5FxzeIW6S4GEaNgs2bG+9PToYFC+DMMw0xSyKRSHRhzx5ISoKsrODnvPAC3H13i2JqBw3isLVrKQlD5ddff012djbFxcWMGDFC9RxZGksikUgkEonEnBhdGqt9rYgisSSZmZlUVFQo9diBui5dOGfBAooyMgy2LHK8Xi8pKSl07tyZuCCL6BqJ1+uloqKC9PT0qNoXDb166dBKbqRyjIqdJDKsHrew/IuPV94+djrhk08O7r/2WigoAB0Xe2vRPqdTeTN6x47mF9bWwp//DN98A4MGaatXQ/TQI3OeJBKsHjez+xfSvq5dQwuZMAEyM+HGG/199aYkr13Ld8BIYGvDvri4ONLT06moqMAbcF12drZmgxxWznla2iKJLlaOm9l9M9K+WL2/1VKm7Ou1T6weNzP7Z2bb9CSmPd25c2fUde7atSvqOiUtk5+fT3p6uv/vhDfeoNdxx/lvlGJ569ixI9OmTVMGekxIRUUFU6dOjbp90dCrlw6t5EYqx6jYSSLD6nEL27+kJGVGiO9t4PHj4a23dB0ECWmfwwGTJwe/uK4OSsJ537mVejVEDz0y50kiwepxM7t/mtl3ww0we7ayfkgQjgC+A05u+Ds9Pb1ZH19rrJzztLRFEl2sHDez+2akfbF6f6ulTNnXa59YPW5m9s/MtulJTJfGSk1NJT8/n3vuuYeslqZka0BpaSnPPPMML730EpWVlbrqkoSHbzqVb0bIWq+Xo6+5Bv77X6NN0wyzj9DKGSHGyZVvzLRPrB63VvtXWQnTp8Nf/6os0msG+/7xD3j00cb7unWD+fOVuvp66dUAM78pKHNe+8TqcTO7f5rat327kgPLyoLODAGoBq4APgsyI8RX9qq4uJjevXuryvj6668ZOnRoyLX1rJzztLRFEl2sHDez+yZnhBgrU/b12idWj5uZ/TPKNqNLY8X0QEhcXBw2m42UlBRuvvlmbr31Vvr27aupjq1bt/Kf//yHN954g+rqagDq6+s11SFpG82+PCedxNGffw4dOxpolUQikUjaNUJAXp4yQwVgwAD49FM4/HBDzZJIJBLDqKiAM86AdeuUv+PiWhwMqQNuBd5QORbOQAjINfYkEolEIpFIzIjRAyHmGo5qJXfeeSfx8fFUVVXxwgsv0K9fP84++2xeffVV9uzZ02a5e/bs4dVXX+Xss8/mqKOOYurUqVRVVREfH89dd92loQcSLRg/fjxpaWnKQyeLDYJUVlYybdo0085CMsq+aOjVS4dWciOVY/a2JVHH6nEzu39h2WezwWuvwXnnwVlnwdKlEQ+CROtz0UOPzHmSSLB63Mzunyb21dVBTs7BQRBQBkFamMWXADyflsbk8eNJT0trk1qXy0VhYSF5eXlBz7FyztPSFkl0sXLczO6bkfbF6v2tljJlX699YvW4mdk/M9umJzG9WPqUKVO48cYbuffee/nss88QQrB48WIWL17MbbfdRv/+/Rk2bBiDBg2if//+9OzZk06dOuFwOBBCUFNTw759+9ixYwdbtmxhzZo1LFmyhM2bN/t1+CbMjBo1iqeffjqqo1SS8Fi9ejVut9toM3QhKSmJwYMHk5SUZLQpqhhlXzT06qVDK7mRyjF725KoY/W46e5fZSVUVyulqtpA2PYlJsL77ytrmSQnt0lXm/SaUI/MeZJIsHrczO5fxPYJAXfdBZ99pn6sJd1uN+evXs3RbjfXAc62WcDcuXNxuVyqZbKsnPO0tEUSXawcN7P7ZqR9sXp/q6VM2ddrn1g9bmb2z8y26UlMl8YKZOnSpfzrX/9i/vz5/sELWxvrhQdef9FFF3Hfffdx6qmnamarRBuMnk4lkUgkkhiiuhpGjYI9e2DhQjj0UKMtkkgkEmtTWgonnwxbt6ofP+006NULZs1qUcxK4GLggN1OaWkpdrsdl8tFVlYWLpcrpBm+cloSiUQikUgkEmMx+lluTJfGCuT0009n3rx5bNmyhUmTJtGrVy+EEG3aevXqxX333ceWLVv46KOP5CCIyRk+fHjIxRBjFZfLxaJFi8K6yTMCo+yLhl69dGglN1I5Zm9bEnWsHjfd/HM64eKL4dtv4eeflZJVv//eOhkffohrwQLL5jy99MicJ4kEq8fN7P5FbF9WFixbBqef3vxY374wdy7MmAH33ttct93OouHDcdntnAD8ANw1bJi/z+9bAyQSrJzztLRFEl2sHDez+2akfbF6f6ulTNnXa59YPW5m9s/MtumJZQZCfBxxxBE88cQTFBcXs2bNGp599lnGjh1Lv379VB+W2+12+vfvzxVXXMGzzz7LmjVrKC4u5vHHH+eII44wwANJa8nOziYhIaarvAWlrq6O4uJi6urqjDZFFaPsi4ZevXRoJTdSOWZvWxJ1rB43XfyrqYHRo+Hrrw/u27pVGQz57bfQ1wsBTz4Jl15K3Q03ULxxoyVznl56ZM6TRILV42Z2/zSx75BD4Kuv4KqrDu7LyoJPPlGOxcXBU0/hfv55vAGz+esSEijOzqauoY9/KPDk0qXK4EkDBQUF5OTktPmFKCvnPC1tkUQXK8fN7L4ZaV+s3t9qKVP29donVo+bmf0zs216YpnSWOFSXl5OdXU1ACkpKWRkZBhskaStGD2dSiKRSCQmx+WCSy5Rr08P0LMnfPkl9OunftzphLw8KCw8uK9vX1i+HDp10t5eiUQisSpCwOTJ8MQTsGABDB/e/JxPP0Xk5GBradFOmw2efhruuce/4LrL5WLZsmWMGDFC9ZJNmzbRv39/DZyQSCQSiUQikUSC0c9yLTcjJBQZGRn06NGDHj16yEEQi9CtWzfi4+ONNkMX6uvr2b17N/X19UaboopR9kVDr146tJIbqRyzty2JOlaPm+b+VVfDzp3Bjzsc0LGj+rHt2+GMMxoNgtTHx7O7upr6yy4Dt1sbG8MgWnHXQ4/MeZJIsHrczO6fpvbZbPDII7Bli/ogCMCoUdi++w4OP1zJt926Ud+0jy8ETJwIN9ygDHajzPBvaQ2QAQMGkJubi9PZeMl1K+c8LW2RRBcrx83svhlpX6ze32opU/b12idWj5uZ/TOzbXrS7gZCJNZj/PjxpKWlGW2GLlRWVvLqq69S2dKbcQZilH3R0KuXDq3kRirH7G1Loo7V46a5f506KSVZBg9ufuzQQ5W3kjt3Vr925kxYtaqxfWlpvDp+PJVr1sAttygP5KJAtOKuhx6Z8ySRYPW4md0/Xezr3bvl48ccA8uXUzlsmJJvg/Xxp09XShz+8UdYagsLC7n66qspLi72b/v27bNsztPSFkl0sXLczO6bkfbF6v2tljJlX699YvW4mdk/M9umJ+2uNJbEOvimU9ntdmpra1m3bp3lSmMJIaitrSU5ORlbQN1ks2CUfdHQq5cOreRGKsfsbUuijtXjppt/Bw7A+efDTz8pf3fsqCycPnBg8Gu8Xrj8cvjww4P22WzUJieTXFuL7ZFH4KGH/KVZ9CRacddDj8x5kkiwetzM7p+R9gmnk9px40iePRtbS7er3brB++9T3KMHvUMNsjTBbrdzySWX8Prrr5OSkhKhxQpmyXla2iKJLlaOm9l9MzTnxej9rZYyZV+vfWL1uJnZP6Nsk6WxJJIIcblcWHU8z2azYbfbTZcwfRhlXzT06qVDK7mRyjF725KoY/W46eZfx47KWiCnngopKTB/fsuDIKAs4Dt9uvJ2ss8+IbDbbNhmzoSHH47KIAhEL+566JE5TxIJVo+b2f0z0j5bhw7Yvd6WB0EAdu+G4cM59NNPW71ousvlYubMmfzlL3+JwNLGmCXnaWmLJLpYOW5m983QnBej97daypR9vfaJ1eNmZv/MbJueyIEQScyTn59Penq60WboQkVFBVOmTKGiosJoU1Qxyr5o6NVLh1ZyI5Vj9rYlUcfqcdPVv8xM+OILWLgQhgwJ75q0NJg717+OSEX//kx55BEqRo3S3r4WiFbc9dAjc54kEqweN7P7Z6R9Ff/8J1MOO4yKcPr4Hg+Jt93GnJ49SWiFjvT0dPLz81m4cCGuhvVGIsUsOU9LWyTRxcpxM7tvhua8GL2/1VKm7Ou1T6weNzP7Z2bb9EQOhEhinkWLFml282I27HY7w4cPb/UbbtHCKPuioVcvHVrJjVSO2duWRB2rx013/1JS4JRTWndNnz7w7rtw9tnYv/yS4eefb8mcp5cemfMkkWD1uJndP8PsmzMH++OPM3zRIuyt6ONf8OuvrOncmSArPzXD5XKxaNEiysvL2b17d9tsbYJZcp6Wtkiii5XjZnbfjLQvVu9vtZQp+3rtE6vHzcz+mdk2PZFrhEhiFqPrykkkEonE4tTVgdsNDoeyMHo7mzYskUgkUWf9eqWMYVWV+vEOHaCmpkURnq5dOXPPHpa1Qm1RURHZ2dnN9rtcrkaDJN26dWt3DwwkEolEIpFItMLoZ7lyRoiJqa+vZ+3atfzf//0ft956KyeddBJJSUnYbDZsNhvDhw9vs+yvvvqK6667jqOOOoqUlBQ6duzIoEGDmDhxIps3b26TzE2bNjFx4kQGDRpEx44dSUlJ4aijjuL666/nq6++arOtoRg5ciQdOnTQTb6R1NTU8Nlnn1ET4obPKIyyLxp69dKhldxI5Zi9bUnUsXrcouZfeTls2NDyOULA7bfDiBGwZw/YbJbOeXrpkTlPEglWj5vZ/TPEvs6d4bjjqOnQgc9GjqQmsI+flgbLlkGINT0S9+zhG+COEKo6dOgQ9D7C6XSSm5tLVlYWvXv39m8dOnRg6NChbNy4UXVGullynpa2SKKLleNmdt+MtC9W72+1lCn7eu0Tq8fNzP6Z2TY9aU0ZVUkUmTNnDldffTVOp1NTuRUVFdx8880UFhY22u90OiktLWXdunVMnTqVyZMnc99994Ut9/HHH2fy5Ml4PJ5G+3/55Rd++eUX3n77ba688kpeffVV0tLSNPHFR2ZmJnFx1hzT83q9lJWV4fV6jTZFFaPsi4ZevXRoJTdSOWZvWxJ1rB63qPi3fj1ceqnyRvHKlcpDNzWefRZefVX5fehQmD8fb69els15eumROU8SCVaPm9n9M8S+rl1h4UK8d92l6A7s47/1FgwaBK+/DscfD/n5ysw9FRKBF4HTgRsBtfklcXFx/vuIpoMaeXl5ze6XfCxfvpyjjz4au93O6NGjKSgowOFwAObJeVraIokuVo6b2X0z0r5Yvb/VUqbs67VPrB43M/tnZtv0RJbGMilvvfUWN9xwQ4vnnHXWWSxatChsmR6Ph5EjR7Jw4UL/vmOOOYYTTjgBl8vFt99+y65du/zHJk+ezMMPPxxS7sMPP8w///lP/9/du3dn2LBh2O12fvrpJzYEvHV7/vnn88knn5CQEPkYnNHTqSQSiUQSY8yYATffDL6XDM49Fz77DOLjG583ezaMHdt4X2YmfPCBMkNEIpFIJPrz5ptw661QWwsTJ8LTTzc+vngxXH457NvXophNwGUNP1siJyeHgoIC4uLiyMrKCnsNwpycHGbNmhXWuRKJRCKRSCTtGaOf5VrzNXoL0bVrV/70pz8xefJk5s+fz1133dVmWf/85z/9gyB2u52ZM2eybt06pk+fTmFhIcXFxUycONF//iOPPMLixYtblPnVV181GgSZOHEixcXFFBYWMn36dNavX88777zjr6W7YMECnnjiiTb7oEZ2drYmAytmpK6ujuLiYuqCvO1mNEbZFw29eunQSm6kcszetiTqWD1uuvnndMJNN8E11xwcBAH48kv4xz8an7tsGVx7bXMZZWXUjRpF8RtvWDLn6aVH5jxJJFg9bmb3z0j76urqKB4xgrpvv4Xrrwe1+4ezzoIVK5TZIS0wAPgByG2yPyEhodF9RGFhIXl5eezevTvsQRCAuXPn+s83S87T0hZJdLFy3Mzum+E5Lwbvb7WUKft67ROrx83M/pnZNj2RAyEmZeTIkfz222/s3r2befPm8fDDDzNq1CgyMzPbJG/v3r08//zz/r+nTJlCbm7j24GkpCSefvppcnJyABBChCyPFXg8NzeXp59+mqSkpEbnXHnllbzwwgv+v5999ln2hXhzqzWMGzeO1NRUzeSZiaqqKqZPn05VsAUjDcYo+6KhVy8dWsmNVI7Z25ZEHavHTTf/Xn4Z3nhD/djjj8O8ecrvQsBf/wpBHoBVpacz/Y8/LJnz9NIjc54kEqweN7P7Z6R9ft1HHqmUxAr20tPhh8PSpSHXDUkFZgL/BpJ9+1JTm91HBA5qhEvggupmyXla2iKJLlaOm9l9M0XOi7H7Wy1lyr5e+8TqcTOzf2a2TU9kaawY45FHHmHy5MlA60pjPfPMM9x7770AHHXUUWzevBmbzaZ67vbt2+ndu7e/TtzKlSs5XuVNqx9//JFTTjkFUGrsFhcXc9hhh6nKFELQr18/fvnlFwCef/55JkyYEJbtwTB6OpVEIpFIYgSPB848U5ntocYppyjHbDbYuRP+9CdYtar5ef/7H1x9tb62SiQSiaRtBJbSaoE1QA6wJcjxTz/9lFGjRrVK9aZNm+jfv3+rrpFIJBKJRCJpbxj9LFfOCGknzJkzx//7uHHjgg6CAPTq1Yuzzz7b//eHH34YUua5554bdBAEwGazcf3114eUKZFIJBKJ5iQmwsyZyjofTbnkEvjiC2UQBKBHD/jmG7joosbnPfqoHASRSCQSM3PDDXDFFSFPOw74CRgX5HhrB0EABgwYQG5uLs7A8osSiUQikUgkElMhB0LaAS6Xi2UBb8EOHz485DUjAhaDDVxcPZCvv/66zTK/++47akO8rRUukyZNIiMjQxNZZqO8vJx//etflJeXG22KKkbZFw29eunQSm6kcszetiTqWD1uuvqXnQ3/938H/46PVxbeff99SE9vfG5qKsyZo5TJAhg3Dh580NI5Ty89MudJIsHqcTO7f0ba1ybdH38M//1vWKemAFMyMnh00iR6aHQfUVhYyM0332yKnKeVDEn0sXLczO5bzOU8E+jQUqbs67VPrB43M/tnZtv0RA6EtAO2bNniL3Nls9lUy1w15YQTTvD/vmnTJtVzAvcHnh+MQL319fX8/PPPIa8Jhzlz5lj27SuHw8GYMWNwOBxGm6KKUfZFQ69eOrSSG6kcs7ctiTpWj5vu/l16Kdx2G/Tqpcz6mDjx4EyQpiQkwEsvQWEhvPoq2GyWznl66ZE5TxIJVo+b2f0z0r5W6/79d2VR9dbocDoZO2cOC51OTmqDjWrMnTuXCy+80PCcp5UMSfSxctzM7ltM5TyT6NBSpuzrtU+sHjcz+2dm2/RErhESY7RljZB3333XvwB6165d/Yv5tcTGjRsb1Wjbu3cvnTt3bvR3165d/X+HWxe3S5culJSU+O0aO3ZsyGuCYXRdOYlEIpHEIC4XOJ3QsaPRlkgkEolEC+rqYPhwZdF0NeLjob6+RREe4D7geSDYzbGvtHCo2+eioiKys7NbPEcikUgkEomkPWL0s1w5I6QdsH//fv/vgYMXLdGtW7dGfx84cCCozLbKbSqzrVh5BNPpdJp6xotR9kVDr146tJIbqRyzty2JOlaPW5v8KyyElSvDP99ub/MgSFj2vfgibN/eJvkR6TWpHpnzJJFg9biZ3T8j7WuV7pZKOthsSgnECy9srsPhYM6YMTgdDhKBZ4EvgJ5BRF1xxRVcEWINEofDwZIlSwzPeVrJkEQfK8fN7L7FTM4zkQ4tZcq+XvvE6nEzs39mtk1P5EBIO6Cqqsr/e4cOHcK6pul5gTLU/m6L3KYy2kp8fDwpKSmAUnKrrKzM/6ZWRUUFbrcbgJqaGqqrqwGoq6ujrKzML6O8vByPxwMoycCXCDweT6N6eWVlZdTV1QFQXV1NTU0NAG63m4qKCkB5S6ysrIz6hjfPqqqqcLlcANTW1lJZWQmA1+ulrKzMX7assrLSv26Ky+Xyfz5er5fy8nLT+lRfX9/I1nB80iJOdXV1usZJT598+6MZp6ZtL7BN6Rkns32fpE8W8qmsjLprr6Vs/Hi45hqoqTHep8JCKh98kNohQ+Dzz2MuTnrlPV/OidQn3+9tjZPb7Zbfpxjzqaqqyn+NVXxqGiefPWb1yfe7qdtep05Uf/IJNffdp/iUlERFw9pP4u9/p+yss6ifOxeef56qzExcdrviU1ISnoQExae4OMoyMxkRF8c64Jq0NJKTkwGw2+1cddVVFBQU8Prrr3PNNdf4Z4ekp6eTlJQEKPc5vpeztIiTx+OJuO3JvBd7Plk97wXeO5rRJ4/HY0jbq6io8MuOtXv3wPtzo/OeEILy8nJL5wgr+uTxeCznUyzlPaPanlHIgZB2gK9BA/6Oeih8HX8fvi+Pmsy2ym0qs63s37+fiy66CICSkhKmTp3q/3IWFBSwceNGABYvXsy8efMA2LFjB1OnTvXLeOWVV9i6dSsACxYsYMGCBQBs3bqVV155xX/e1KlT2bFjBwDz5s1j8eLFgFJKrKCgAFASx9SpU/0lwGbPnu1frH7VqlXMmDEDUJLD1KlT/cloxowZrFq1CoBly5Yxe/ZsHA4Hp512Gq+99popfXI4HBx66KF88MEHYfukRZwcDgcJCQksWbJEtzh98MEHjBkzhrq6Ok19OnDgAJs2bfLfKLc1Tj/++CNjxoyhuLi4TW3vtddeY8SIETgcDt3i1Fqf9P4+WcGnLVu2MGbMGNauXWsZnwLjNH/+fMaMGUN1dXXLPr35JgwaxI4lS5ianw+bNsHf/667T2vXrmXMmDFs2bKluU+rVsGNNzLj6qtZlZ0No0ax7F//YvZ770Ucp127djFmzBiWLFmia5z0yHsOh4MTTjiB1157rZFPrY3TV199RWpqKg6Ho01tr66ujk2bNvlvDKyaI6zm0wcffMChhx6Kw+GwjE+BcVq7di3V1dU4HA5T+jR//nw6deqEw+GIettrdd779FMWn3kmfPYZG4cMoSAvD044gdr77lN82rcPJkxg9qOPsqxhdsiW/v3Zf8ghOJxOKtLTmZqfT0V6OpnA6VdfzfPHH895J57IvHnzOO+883A4HFRXV3PEEUewevVqAPLy8hg4cCCglC0+99xzOeOMMzhw4EBEcXI4HNTX1/Pjjz+GjJPMe9byycp5z+Fw0KlTJ+bPn29Kn3zf8bVr14btE2jT9t566y0GDhyIw+GIqXv3H3/8kfr6ehwOR8RxijTvORwORowYwWuvvWbpHGE1nxwOB/v372fLli2W8SkwTmbOe9XV1YwZM4b58+cb0vYMQ0hiin/84x8CpXStOOuss8K65umnn/ZfM2TIkLCucTqd/msAsWLFikbHf/jhh0bHa2pqwpJ7yimn+K959tlnw7omGOvXrxeAOPbYY0VmZqZYv369qKurE6WlpcLr9QohhCgvLxe1tbV+n6qqqoQQQng8HlFaWuqXVVZWJtxutxBCiOrqalFdXS2EEMLtdouysjL/eaWlpcLj8QghhKiqqhJOp1MIIURtba0oLy8XQgjh9XpFaWmpqKurE0IIUVlZ6f98XC6XqKioEEIIUV9fL0pLS0V9fb0QQoiKigrhcrmEEELU1NSIyspK4Xa7xfr168XevXtN6ZPb7RZr164V+/fvD9snIUTEcXK73WL16tV+P/SI0/79+8WmTZuEy+XS1Cen0ylWrFjhj01b41ReXi42bdrk/z0cnwLb3t69e8WGDRuE2+3WLU6t9Unv75MVfKqsrBSbNm3y/24FnwLjdODAAbFp0yZRU1Oj7lNdnXBOnCiqUlKEAOFJSBClmZlCgBAgyj76SFefKioqxKZNm/y/+3364w9Rf8wxQoCoSEsTruRkIUDU2O2i8sILhdi7N6I4VVdXi02bNvl/1ytOeuS9wP9jgT61Nk6lpaVi9erVwu12t6ntuVwusWLFCr8fVs0RVvNp//79Yu3atcLtdlvGp8A4VVRUiJUrVwq3221Knw4cOCDWrFkj3G531NteRHlv+3ZRnpMjxKZN6nHau1eIq68WlSkpYuXgwcKdmCjq4+JEaWamqI+La5TL63v0EDXz5zfzadu2bQIQ6enpIikpSQCiQ4cOIiMjQyxevFg4nc6I4uR2u8WqVav8sZF5T+a9WPbJFye32y3WrFkjDhw4YEqf3G63WLlyZaPvULTaXklJiVi3bp1wu90xde9eXl4uVq1aJdxud8RxijTvud1usWHDBrF3715L5wir+eT73vn8sIJPgXEyc96rqakRmzZtEgcOHIhq2/M9y/Vt69evF9FEDoTEGG0ZCHn55Zf91wwaNCisa/bv39+oYW7evLnR8Y0bNzY67vtSh+LYY4/1XzNt2rSwrgmG78szadIkkZGREfUvTzQoKysTTz75ZKPEZiaMsi8aevXSoZXcSOWYvW1J1LF63EL65/UKMXasf+Cj2da9uxD79kXXPq9XiKuvDm5TXJwQixZpr1cH9NAjc54kEqweN7P7Z6R9uuv2ekXZG2+IJydNEmUZGcFzuG+7804hGh4mCCFEUVFRo3sh35aRkSEef/xxw3OeVjIk0cfKcTO7b5bOeTrp0FKm7Ou1T6weNzP7Z5RtRg+E2IRoKOIliQkeeeQRJk+eDCjTrxctWhTymnfffZecnBxAWdR89+7dIa/ZuHEjRx99tP/vvXv30rlz50Z/By6QvmnTJvr37x9SbpcuXfxTyt59913Gjh0b8ppgbNiwgWOOOcb/9/r16xvZLJFIJBILcuAAHHss7NzZ/Fh8PMyaBZdfHj17qqth1Cj49lv14088AQ116yUSiURiMn79VVlnavny0OcedRS8+SacdhrFxcX07t1b9bSvv/6a7OxsALp164a9YU0SiUQikUgkkvaO0c9y5Roh7YB+/fr5f9+7d2+z9T3U2L59u//3jh07NhoEAWVAIzMz0//3b7/9FlKmy+XyD4IAYQ2cSCQSiUTSiI4dYfr05vuPPBKWLo3uIAhASgosXAgTJzY/dtFF8Pe/R9ceiUQikYTPEUcoAyHh8PPPcMYZMGECtoZFStUYMWIEvXv3pnfv3mRlZZGbm+tf1FQikUgkEolEYhxyIKQd0K9fP+LilFALIfyL+7XEypUr/b8PGDBA9ZzA/b4Fc8KVGR8fz1FHHRXymnB45JFHGg3KWImysjImT55MWVmZ0aaoYpR90dCrlw6t5EYqx+xtS6KO1eMWtn/nngt33XXw71tugVWrYMgQY+xLSICnn4YPP4T0dGVfdja8/TbERd7Vilbc9dAjc54kEqweN7P7Z6R9Ue3rPfFE+BcJAVOm0OPCCzlT5XBmZmajexOXy0VhYSFnn312WC+jNbMtAv/N3r4k6lg5bmb3rd3kPBP287SQZfb2JVHH6nEzs39mtk1XolqISxIxbVkjRAghTjvtNP91Tz75ZMjzzz//fP/5Dz30kOo5999/v/+cCy64IKTMJ554wn/+sGHDwrY9GL66ctnZ2SIhIcGSa4R4PB5RVFTkX+zIbBhlXzT06qVDK7mRyjF725KoY/W4tco/p1OIs88WYt48/Q1rICz7fvlFiFNOEeLHH6Or16R6ZM6TRILV42Z2/4y0Lyp9vdpaUTRmjPAkJIReIyTI9m8QKQF1rhMSEvz3JtB4/RCbzSZycnJEdXW1qKmpEUVFRf7Nt0iplv6bvX1J1LFy3Mzum+Vznon7eVrIMnv7kqhj9biZ2T+jbJNrhEhaRVvWCAF45plnuPfeewFlhsjmzZuDnvv777/Tu3dv6uvrAfjpp5844YQTmp33448/csoppwDKDI/i4mJ69uwZVG6/fv34+eefAXjuuee4++67w7I9GEbXlZNIJBKJhjidsGEDnHyy0ZZEjhBgsxlthUQikUha4tVXYfx49WPJyZCRAXv3hhRTDNwIfNUK1Xa7vdEMEbvdzujRoykoKMDhcLRCkkQikUgkEknsYPSzXFkaq51w/fXXk5KSAsCWLVt44403gp7797//3T8Icuqpp6oOggCcfPLJnNzwwKq+vp5JkyYFlfnaa6/5B0HS0tK47rrr2uSHGrm5uX7frEZ1dTWzZs2iurraaFNUMcq+aOjVS4dWciOVY/a2JVHHsnFbsAAGDaJ6zBhmvfWWaf0L+/Nv7SDIww/DCy+A1xuZ3gjRQ4/MeZJIsHrczO6fkfZFpa934YXMuuceqtXuI556CjZtgmuvDSknG/gSeBPomZIS1r1J0zJZTUtoaeG/2duXRB0rx83svlk+55m4n6eFLLO3L4k6Vo+bmf0zs216IgdC2gldunRpNAPjzjvv5N133210jsfjYdKkScycOdO/78knn2xRbuDxGTNmMGnSJDweT6Nz3n33XfLz8/1//+1vf+OQQw5pixuqlJWV4Q3y8CjWiYuLIzMz07/Gi9kwyr5o6NVLh1ZyI5Vj9rYlUcdycdu1C3Jz4YILYOtW4kpLyVyxgjiTzqbQ5fP/9lt47DG4+25l7ZPt26OjVwU99MicJ4kEq8fN7P4ZaV9U+nqHHELmuecSV1AAnTsfPDBsGNxxB3TsqKz1NG8e9OgRUt444Huvl+4R3JssX74ch8PBTTfdRGpqakT+m719SdSxctzM7pvlc56J+3layDJ7+5KoY/W4mdk/M9umJ7I0lom58MIL2blzZ6N9u3fvZs+ePQCkpKRwxBFHNLtu/vz59FDprHs8HkaOHMnChQv9+4499lhOOOEEXC4X33zzDbt27fIfmzx5Mg8//HBIOx966CEee+wx/989evRg2LBh2O12fvrpJ9avX+8/dt555zF//nwSEhJCyg2F0dOpJBKJRBIBb74J+flQUdH82MyZygCJ1amshOOOg6Kig/vS0+HFF+G662R5LYlEIokWJSVw++3w8cewZg00vccqK4N77oGCgrDELQLGA1siMCknJ4dZs2ZFIEEikUgkEonEXBj9LLd9DfvEGBs3bmTNmjWNNt8gCCjTmJoeX7NmDW63W1VeYmIiH3zwAVdccYV/37p165g+fTqFhYX+QZDExEQef/zxsAZBAB599FH++c9/kpiYCMDOnTspLCxk+vTpjQZBcnNzmT17tiaDIIEMHjyYpKQkTWWaBbfbzerVq4PG1GiMsi8aevXSoZXcSOWYvW1J1LFU3NzuZoMg7qQkVg8ejHvChLDqskcbzT//u+9uPAgCymcybhxMmKCf3iDooUfmPEkkWD1uZvfPSPui3tfr3BkKC2HduuaDIACZmfB//weffw69egWX2fB/7LSkJNYA/wCS22BbUlIS27Zto0LtZYEwMXv7kqhj5biZ3bd2lfNMKFP29donVo+bmf0zs216IgdC2hkZGRkUFhbyxRdfcM0119C3b18cDgcZGRkcc8wx3HPPPaxZs4b7778/bJk2m40HH3yQNWvWcPfdd3PMMceQkZGBw+Ggb9++XHPNNXzxxRfMnDmT9PR0zX0aPnw4drtdc7lmwOVysWjRomZ1hM2CUfZFQ69eOrSSG6kcs7ctiTqWittNN8HQoY12uex2Fg0fjsvpVNbNMBmafv7z5kEL63UxZow+eltADz0y50kiwepxM7t/RtpnWF+vT5+WLzr/fGWwJMgi6/7/Y3Y7ycAjwBrgnFbaZrfbOf300/n9999beWWALSZvXxJ1rBw3s/vWLnOeiWTKvl77xOpxM7N/ZrZNT2RpLEnMYvR0KolEIpFEyJo1cOKJUF/feP9f/gLPPANZWcbYFQ1mzIBbbgG1xeluvRVefjn6NkkkEokkbOouuYSEOXPCPn82cA/QfCWo4BQVFZGdnd06wyQSiUQikUhMitHPcuWMEEnMY7fbsVm0jroQApfLhVnHK42yLxp69dKhldxI5Zi9bUnUsVzcjjtOWSekAXHMMbi+/hrx+uumHATR9PO/+mplIOj00xvv79ULnnpKP70toIcemfMkkWD1uJndPyPtM31fb80aEj76qLlMmw2X3Y5QuTe5HNgEPASEmstus9mw2+0R+W/29iVRx8pxM7tvMucZK1P29donVo+bmf0zs216IgdCJDHPpEmTyMjIMNoMXSgvL+epp56ivLzcaFNUMcq+aOjVS4dWciOVY/a2JVHHknF75BHo3x+efpryhQt5avFi0/qn+effty8sXgz/+hc0rLPFa69BWpq+eoOghx6Z8ySRYPW4md0/I+0zdV9PCPjrX8HrbS4zI4OnJk2iPMi9iQN4FNgAXJ6YSM4VV7By5cpm52VkZDBp0iSq1WYNhonZ25dEHSvHzey+yZxnrEzZ12ufWD1uZvbPzLbpiSyNJYlZfNOpunXrRklJCWvWrLFcaaz6+npKSkro3Lkz8fHxRpvTDKPsi4ZevXRoJTdSOWZvWxJ1TB83j0cp6bRxI7z6avjX1dVBQoLp/dPVvjVr4OOP4YEHoqtXZz0y50kiwepxM7t/Rtpn6r7ef/8L112nLvOQQyjp2JHOW7cS37TsoxoXXMCOiRM57NxzG+2Oj4+nc+fOzJgxgz4N65Z069atVesimr19SdSxctzM7pvMecbKlH299onV42Zm/4yyzejSWHIgRBKzGP3lkUgkEkkAn30GEybA5s3K34sXw5lnGmuTlfF6Ydw4ZTv7bKOtkUgkkvbD3r3w97/DW281P/beezB8OEycqH5cBZGYyAseD48BpS2cZ7fbGT16NAUFBTgcjtbbLZFIJBKJRGIwRj/LlaWxJDHPuHHjSE1NNdoMXaiqquKtt96iqqrKaFNUMcq+aOjVS4dWciOVY/a2JVHHlHHbsgUuughGjTo4CAJw113NF0EPgSn9C8BUOe/115W3ks85R3kzec8effSYRKbMee0Tq8fN7P4ZaZ+p+3pdusCbb8KSJcpaVz7OO4+qCy7grY8/puqll5TjgweHFGfzeLgb+BW4C0gEUlNTm93juFwuCgsLycvLC8tMs7cviTpWjpvZfZM5z1iZsq/XPrF63Mzsn5lt0xM5ECKJeYqLi6mrqzPaDF1ISEggOzubhIQEo01RxSj7oqFXLx1ayY1UjtnblkQd08VNCLj2Wpg/v/mx1auVB0WtwHT+NcE0OW/3buVtZB///S8cdRRMnaqUGdNKjwbInCeJBKvHzez+GWlfTPT1Tj8dVqyAF1+Ezp3hpZdISEw8KNN3/JVXoGPHkOI6AlOAjcDIurqg9zhz587F5XKFlGf29iVRx8pxM7tvMucZK1P29donVo+bmf0zs216IktjSWIWo6dTSSQSiQRYtAhGjFA/1qUL/PILpKdH1STLc+WVMGuW+rF774WnnoquPRKJRNLecbmgpfU79u+HBx9U1s8K8/b7W+Ae4EeVY19//TXZ2dlA69cOkUgkEolEIjEKo5/lyhkhkphn6NChJCcnG22GLtTW1rJs2TJqa2uNNkUVo+yLhl69dGglN1I5Zm9bEnVMGbfhw+Gyy9SPVVfDj2qPcNQxpX8BmCLnffZZ8EGQ1FS4805t9GiEzHmSSLB63Mzun5H2xVxfr2EgIqjMTp2UmSE//QQnnBDatuRkEocO5dvkZN4B+jY5PmLECHr37k3v3r3JysoiNzcXp9PZWIbJ25dEHSvHzey+yZxnrEzZ12ufWD1uZvbPzLbpiRwIkcQ8gwcPJikpyWgzdMHtdrN69WrcbrfRpqhilH3R0KuXDq3kRirH7G1Loo5p4/bMM9B0QPraa5X1Q845J2wxpvWvAVPkvKVLg5/48MNw6KHa6NEImfMkkWD1uJndPyPti9W+XkiZxx+vlDIMJScpidWDB+NOSuJKYBPwCtBD5dxga4eYvX1J1LFy3Mzum8x5xsqUfb32idXjZmb/zGybnsjSWJKYxejpVBKJRCIJ4IEH4IknYMgQZa2KIUOMtsi6LFoE48crA00++veHNWvAoi8GSCQSiSX47jtl7ZA2UgP8G/gXcKDJMbvdTmlpqSyTJZFIJBKJxLQY/SxXzgiRxDyZmZnExVmzKXu9XsrKyvB6vUaboopR9kVDr146tJIbqRyzty2JOlGL24oVcN558OWX4V9z333wzjvKQ542DoKYvV2aJucNHw5r1yprgaSkKPteeiniQRA9/JM5TxIJVo+b2f0z0r5Y7eu1KNPrhfz84BfbbAdPjYujLDMTb5N7nA7ARGAb8CCQGnDM5XKxe/du/+/btm1j/fr1bNu2LazF1SXmwOx5IRLM7pvMecbKlH299onV42Zm/8xsm55Y8+mxpF2Rn59PukUX4q2oqGDq1KlUVFQYbYoqRtkXDb166dBKbqRyzN62JOroHreNG2HsWDj5ZGUQ5L77wl7UldRUZRHvCAamzd4uTZXzkpKUhdE3b4YpU+Dcc8MX+NFHsG5deHoiROY8SSRYPW5m989I+2K1r9eizAMHgi+ofuyxsHIlXHCBIic9nan5+VQEucfJAP4JbAXyAZ9Up9NJbm4uWVlZnHjiibz//vuceOKJQdcRkZgPs+eFSDC7bzLnGStT9vXaJ1aPm5n9M7NteiJLY0liFt90qszMTCoqKli7dq3lSmN5vV4qKipIT0835awXo+yLhl69dGglN1I5Zm9bEnV0i9vWrTBpErz/fvOBj9mzgy+GrjFmb5eWyHmlpXDEEVBWBnl58Oij0L279noakDlPEglWj5vZ/TPSvljt64WUKQTMn6/8z12//uD+jz+Giy5Sfv/8c7wTJ1Lx+++kV1QQF8abmruBp4GVJ53E4hUrAIiLiyM9PZ2Kigr/2545OTnMmjUrQi8lemL2vBAJZvdN5jxjZcq+XvvE6nEzs39G2WZ0aSw5ECKJWYz+8kgkEoll+OUXZY0JtYct/fopD2sSEqJvl0R7/vY3eO65g387HHD77crskk6djLNLIpFI2hP19TBjBjz0EBx+OCxe3Kg0FvX1lEydStU999C7FWL3AM8CLwNqcz/kOiISiUQikUiMxOhnueYajpJI2sD48eNJS0sz2gxdqKysZNq0aVRWVhptiipG2RcNvXrp0EpupHLM3rYk6ugWtyOPVMpaqbFlC7z1lrb6gmD2dhnzOW/bNmUtkUCcTnj6aTj1VCrLyzX3T+Y8SSRYPW5m989I+2K1rxe2zPh4uO46+PlnZX2twEEQoNLpZGZCAiempfFXlBkf4dAVeAYoBv6elsZtTe6TAtcRkZgTs+eFSDC7bzLnGStT9vXaJ1aPm5n9M7NteiIHQiQxz+rVq3G73UaboQtJSUkMHjyYpAgXwNULo+yLhl69dGglN1I5Zm9bEnV0jdsDDzR7EONn4ULt9alg9nYZ8zlv0iQI9v/y9ttJsts190/mPEkkWD1uZvfPSPtita/XapnJydCzp6qcI444AqfbzctAX+A+oDZMOzoDk91uLl29mtvdbjLCvE5iPGbPC5Fgdt9kzjNWpuzrtU+sHjcz+2dm2/RElsaSxCxGT6eSSCQSy3HFFfDeewf/HjwYnnxSWbw12CCJJDZYvRqOP179WM+eSnk0WSpFIpFITIPL5SIrKwuXywVAf2ADbXuTsQJ4FXgBWLhpE/3799fMTolEIpFIJJJwMfpZrpwRIol5hg8fbtk6ty6Xi0WLFvlvgMyGUfZFQ69eOrSSG6kcs7ctiTqtilt9PXzwASxYEL6CBx9Ufh57LBQWwk8/wciRURsEMXu7jOmcd9xxysL3ffs2P/bQQ2C36+KfzHmSSLB63Mzun5H2xWpfT8uct2zZMi655BL/vodp3c27y25n0fDhuOx20oGJKCWzlgwYwIQLL8TpVFtFRGI0Zs8LkWB232TOM1am7Ou1T6weNzP7Z2bb9EQOhEhinuzsbBIsuohvXV0dxcXF1NXVGW2KKkbZFw29eunQSm6kcszetiTqhBW3ykp48UVl3Y/LLoMJE9QXQVdj0CD47jtl9sAVV0BcdLsJZm+XMZ3zbDalPWzcCC+8AF26KPv79IEbbghfTytLUcqcJ4kEq8fN7P4ZaV+s9vW0znlTpkwhJyeH45OSyAlybglQrSYjIYHi7GzqAu6TkoAbgec+/ZQfevak9ptvIrJToj1mzwuRYHbfZM4zVqbs67VPrB43M/tnZtv0RJbGksQsRk+nkkgkElOxbx889RS8/jqUlzc+9t57cPnlxtglMSdVVfDvfyszRMaODe+abdtgyBC47Ta4807o1ElfGyUSiUQCgKu4GPcjj5A2cya2JgPSVwFfAPcAtwOprZS9sXNn+r78MsmXXhr1FyAkEolEIpG0L4x+lit7OpKYp1u3bsTHxxtthi7U19eze/du6uvrjTZFFaPsi4ZevXRoJTdSOWZvWxJ1Qsbt3/9uPggC8NhjEAPvPZi9XVoq56WmKounBwyChNTz1FPKgNujj8Lhh8M998DOnVGxXea89onV42Z2/4y0L1b7enrlPHt2NulvvYVt2za4+25ISQHAfdhhvAvsQ1lMPRt4AqgE6uPj2d2tG/Uh7pMGlpSQPHYsHHUUvPgirpISiouL/Vt7K5lhNGbPC5Fgdt9kzjNWpuzrtU+sHjcz+2dm2/REDoRIYp7x48eTlpZmtBm6UFlZyauvvkplZaXRpqhilH3R0KuXDq3kRirH7G1Lok6LcTvkELjuOvUL16yBefP0NU4DzN4urZzzQur54w94662Df1dXw/PPQ+/e8PjjbZOplW1RuF5iDFaPm9n9M9K+WO3r6Z7zDj0UnnsOfvsNHnkEJk8mMWCtxP3AA8DhwOS0NF4dP57KcO+Ttm6Fu+6itksXPujdmxG9e9O7d2+ysrLIzc2Va4pECbPnhUgwu28y5xkrU/b12idWj5uZ/TOzbXoiS2NJYhbfdCq73U5tbS3r1q2zXGksIQS1tbUkJydji9Jixa3BKPuioVcvHVrJjVSO2duWRJ2Qcdu0CQYOVL/45JNh+fKoLXzeFszeLq2c80LqueceZeBDjTffhHHjWi9TK9uicL3EGKweN7P7Z6R9sdrXMyLn5ebmUlhY2Gy/zWYjMzmZq2truUcIsltpQz3wETAF+AYYM2YML7zwgv94t27dsNvtuFwudu/e3Wy/pG2YPS9Egtl9kznPWJmyr9c+sXrczOyfUbYZXRpLDoRIYhajvzwSiUQSNerqIGCx0xa56CKYP//g34mJkJurLJp+/PH62CexNvv3Q69eoPY2cK9e8OuvSjuTSCQSSdRxOp3k5eUxd+7cRmWs7HY7o0eP5pVXXuGWs85i1rp1bS4HsQZ4BZgBVIU416e3oKAAh8PRRo0SiUQikUisiNHPcmVpLEnMk5+fT3p6utFm6EJFRQVTpkyhoqLCaFNUMcq+aOjVS4dWciOVY/a2JQFqauC//4UzzoB77wXCjNvddys/O3aE+++H4mJ4++2YGAQxe7u0cs5rUc/q1cEHOu69t8VBEJnzJJFg9biZ3T8j7YvVvp4ROc/hcDBr1ixKS0spKiryb7/99htDhw4lPj6eGaefHtGN/3HANGAn8DJwbAvnulwuCgsLycvLi0Bj+8XseSESzO6bzHnGypR9vfaJ1eNmZv/MbJueyIEQScyzaNEiyy7iZ7fbGT58uGmnlxtlXzT06qVDK7mRyjF722rXbNgAd90FPXooa34sXQrTp4PLFV7czj4b/vc/2L5dWbuhR4/o2R4hZm+XVs55Leo55xylHv2TT0Lnzgf3d+kCIR50+WUmJ8PGjdrbFqXrJcZg9biZ3T8j7YvVvp6R/Ty73U52drZ/y8zMVGTU1JD49tuq1xwAPK2wKw24FVgLLAWuBYJZ2HSGiiQ8zJ4XIsHsvsmcZ6xM2ddrn1g9bmb2z8y26YksjSWJWYyeTiWRSCSaM28e/PnP6sf+9z+4+uro2iORNMXphIICePpp+Otf4e9/D++6b7+FM8+E00+H226Dyy6D5GR9bZVIJBIJ7NsHTzwBb7wBTRZEvQmYD9wG3AIc0gbx+4G3gNeAn5scKyoqIjs7uw1SJRKJRCKRWBGjn+XKGSGSmGfkyJF06NDBaDN0oaamhs8++4yamhqjTVHFKPuioVcvHVrJjVSO2dtWu+WccyAjQ/3Yq69aPm5m98/KOS9sPQ4H3H67si7InXeGL3PaNGXH0qXKgF6vXvDAA8rMJa1s0/F6iTFYPW5m989I+2K1r2eWfl4jGSkp8Pzz8Pvv8NxzeHv1AqAMeAel3NWDwGHAjcD6VurpBNwDbAGWAHlAaputlpg9L0SC2X2TOc9YmbKv1z6xetzM7J+ZbdMTORAiiXkyMzOJi7NmU/Z6vZSVleH1eo02RRWj7IuGXr10aCU3Ujlmb1vtFocDrr1W/di33+LdtMnScTN7u7Ryzmu1nqQkCOMlBK/XS9mePXg/+aTxgb17lTeUb79de9t0uF5iDFaPm9n9M9K+WO3rmaWfpyojIwPuvpu4bdtg7lxS/vMfNgSsKbKpqIgHi4pI3baNf5x2Gh8DrdV+OvB/wG7gTcD27bcgC1C0CrPnhUgwu28y5xkrU/b12idWj5uZ/TOzbXoiS2NJYhajp1NJJBJJ2NTXQ1wc2Gyhz123DgYNUj/2/PMwYYK2tkkkevPYY/DQQ+rHPv0URo6Mrj0SiUQiaRGn00leXh5rPvyQ69xu7gbaWsxwV2oqne65h6Qbb4SePbU0UyKRSCQSSYxh9LNca75GL2lXZGdnk5CQYLQZulBXV0dxcTF1dXVGm6KKUfZFQ69eOrSSG6kcs7ctSyAErFoFf/ubUgbo++/Du+7YY2Ho0IN/Z2YqJYjWraPujjssHTezt0sr5zy99NS5XBR/9BF1av+n+/SB88+Pim1mb1sSdaweN7P7Z6R9sdrXM0s/L1IZDoeDWbNmsaq8nGuWLycpPr7NdnSvqiJp8mTE4YcrOX/6dKioaLM8q2P2vBAJZvdN5jxjZcq+XvvE6nEzs39mtk1P5ECIJOYZN24cqanWrERbVVXF9OnTqaqqMtoUVYyyLxp69dKhldxI5Zi9bcU0RUXw+ONw9NFwwgnw3HOwcyfMmBG+jFtugdNOUx4W/PEHTJ0Kxxxj+biZ3T8r5zy99FT99hvTL7qIKrX/07feqsyUCkfOzz/LnNcOsXrczO6fkfbFal/PLP08rWTY7XYOW7gQW319m2X4sHm98MUXMG4cdO0KV1wBc+eC2x2xbCth9rwQCWb3TeY8Y2XK+9v2idXjZmb/zGybnsjSWJKYxejpVBKJRKLKxRfDxx8333/IIcqASGJiaBlChFdGSyKJFdatg5dfhv/+F6qrwW6HHTugU6fQ19bVKeVUUlPhmmuU7Ygj9LdZIpFIJDB2LMye3Xz/kUfCvffiff114n74oc3i6zMycF54IVWjR5N18cXYHY4IjJVIJBKJRGJmjH6WK2eESCQSiUSiJVdfrb5/3z5YsCA8GXIQRGI1jj0WXnlFGQz8979h0qTwBkEAvvwS9uyBrVth8mTl4dtppykDK9XV+totkUgk7Z333oOffoLbblMWXPdx001w443ELV/O3aNG8TTKIumtJb68nLSZM+mem8velBQ+GjAA15IlcpF1iUQikUgkmiMHQiQxz6RJk8gI7JRbiPLycv71r39RXl5utCmqGGVfNPTqpUMruZHKMXvbimn+/GflzXU1WlMeSwWrx83s/lk55+mlp5nM9HT461/hH/8IX8h//0t5Rgb/mjSJct//+++/V9bf8XrbZockJrB63Mzun5H2xWpfzyz9PC1tAZRSn//5jzKY/fbbMGIEXHed//Bjs2ezMieHXsDFwIeApw1qegF/3rwZ+7BheHv3hokT4Ycf/IMiLpeL4uJiiouLcblckftlQsyeFyLB7L7JnGesTHl/2z6xetzM7J+ZbdMTWRpLErP4plP179+frVu3smrVKsuVxvJ4PGzdupW+ffuSGE45nShjlH3R0KuXDq3kRirH7G3LVJSXw6efKuV5rrkmvGuuu04pAdSUjh1h1y5ISmqTKVaPm9n9s3LO00tPxDIrK6FrVzx1dWzt25e+W7eS6Gl4vHbllfDOO9GxQ2IIVo+b2f0z0r5Y7euZpZ+npS2tweVyMXz4cJYvX05n4BrgDqB3hHK9hx3G/A4deKa4mG/dbgTK+iWjR4+moKAAh4XKaZk9L0SC2X2TOc9YmfL+tn1i9biZ2T+jbDO6NJYcCJHELEZ/eSQSiYX54w/46COYMwe+/ho8HujTB379NbyyVZ9/DiNHKr/bbHD22UrJrEsvbVxWQiKRtMzbb8P116sfmz8fRo2Krj0SiUQiaRGn00leXh6FhYUATANu0VD+78BslFkn3wGX5+Qwa9YsDTVIJBKJRCLRC6Of5crSWJKYZ8yYMZZ6CygQp9PJnDlzcDqdRpuiilH2RUOvXjq0khupHLO3LUP56CNlYebbblPW9PC9fb5tG6xfH56Mc86B88+H555TFoT+8ku44YaIB0GsHjez+2flnKeXnohl/vorxMfjdDiYM2YMTt//+65d4bzzwpOxdi3Oa69lzosv4jxwoG12SAzB7DkhUszun5H2xWpfzyz9PC1taS0Oh4NZs2axadMmEoDLgpznbqP8w4AJwDcoa5L86b33cM+aBVVVbZRoLsyeFyLB7L7JnGesTHl/2z6xetzM7J+ZbdMTORAikUgkEkkgp58OcUH+Pc6dG56MhARlVsjdd0OPHtrZJpG0Nx59VKlJ//jjjRdXv/JK5XsWDrNmwQcfKLO7+veHyy9XStfJQRGJRCLRDbvdThdgPaC2mtM44HKUmR21bdRxCHCN10vSlVfCIYfARRfBq68q/zckEolEIpFImiBLY0liFqOnU0kkEgszfDgsXtx8/4knwooVUTdHIpE0sHkzzJgBY8fCoEGhzxcCjjwStm5tfuzyy+G997S3USKRSCS4XC6ysrJwuVx0Qxn0yAHOAKqALkANMHjwYIpXr+YyYCxwDhDmMHfLnHwy/PnPyuDI4MHhlTaVSCQSiUSiK0Y/y5UzQiQxT//+/U236JBWeDweNm/ejMdXmsdkGGVfNPTqpUMruZHKMXvb0pRt2+C11+CBB8K/ZswY9f0//QS//66JWW3B6nEzu39Wznl66dE85/XtC//8Z3iDIACrV8PWrXgSE9ncvz+ewP7Cn/8ckU0S/TF7TogUs/tnpH2x2tczSz9PS1vaim8xc1BKWP0bGAb0BK5AGQTJyclh6dKlXJCTQ4HNxkigK5AHzAcisvzHH+Ghh+CEE5TZuePGQWGh6WcDGh03PTG7bzLnGStT3t+2T6weNzP7Z2bb9EQOhEhiHrlGiHFYuV6+XCMkhqmpgdmz4ZZboG9fZbvlFnjySdi7NzwZDTfujTj0UPjrX8GrVuAhOlg6bpjfPyvnPL30GJ7zGmZ8NFtjJD5eeUs4HOTkacMwe06IFLP7J+vlGyczltcICaSgoICcnBzsdrt/3x/A13Y7OTk5FBQU+NcUcTqdDBkyhAPAm8BFKLNGVObztZ7du2H6dMjNhc6d4bTTlEH1FSsM7depYYa46YXZfZM5z1iZ8v62fWL1uJnZPzPbpieyNJYkZjF6OpVEIjEppaVKnWi1G9s33oC//CU8Occdp8gYM0bZTjhBllWQSGKJlspijRgBCxeGJ+fBB+HLL2HUKGU78URlIEUikUgkYeFyudi9e7f/727dujUaHPHhdDrJy8ujsLAQgB4oAye60rkzXHABnH8+nHOOXNtNIpFIJBIdMfpZrhwIkcQsRn95JBKJiRkyBH74ofn+iy+Gjz4KT0ZlJaSlaWuXRCKJHl4vLFgA774Lc+Yog6Q+pkyBu+4KT87gwbBmzcG/DzlEeWB2881w1lkaGiyRSCQSgPLycjIzM7kAmA2kqpwzHjgRuBjopqFud9++uE47DftFF5F0/vmQlaWhdIlEIpFI2jdGP8uVpbEkMc8jjzxCZmam0WboQllZGZMnT6asrMxoU1Qxyr5o6NVLh1ZyI5Vj9rbVjO3b4f33wz//3HPV9y9YAFVV4ckw4SBIzMWtlZjdPyvnPL30GJrz4uJg5EgoKKBsyxYmP/IIZfn5cPjh6uXv1Ni5s/EgCMC+ffDOO8rC7RJdMXtOiBSz+2ekfbHa1zNLP09LW4wgIyODnJwcPgc6owx2FKCsNQJQBLwK3Iwya2Qo8ASwQQPdSVu3kv7f/5KUm4u3UyfqTzwRJk2CL76AKJQPieW4hcLsvsmcZ6zMdnd/KwGsHzcz+2dm2/REzgiRxCy+UcTs7Gx27NjB6tWrLTcjpK6ujh07dtCzZ08SEhKMNqcZRtkXDb166dBKbqRyzN62KCuDr79WytF88QX88ouyf88e6NIl9PWLFimlb9R4/3249FKtLI0qpo9bhJjdPyvnPL30mDLnxceHX+auoCB4Ob3iYmVQRaIbZs8JkWJ2/4y0L1b7embJeVraYhS+Mllz587F5XIBYANOQFk75NMg1/VFGTi5GDgDSNLSqKQkOPVUZTbgmWfC0KGQkuI/3LQEWCDByoE1Jdbj1hJm903mPGNlWv7+VqKK1eNmZv+Mss3oGSFyIEQSsxj95ZFIJDrhdkNGBjTc9DZi5kxloctQ1NZCx46N39wbPFiZKTJuHMhcIZFIwmHsWJg9u/n+AQNg48bwZEyfDjt2wLBhcMopEMaDMIlEIpEo+AYXXC4XAwYMaNW1GcAO1EtraUJCApx4Ip5TT+WFFSt44ccf2V1bq3qq3W5n9OjR/gXiJRKJRCJpjxj9LFeWxpLEPLm5uaQEvIljJaqrq5k1axbV1dVGm6KKUfZFQ69eOrSSG6kcU7etpCQ49lj1Y198EZ6M5GS48krlTe6ZM2HvXli1Cp55JqYHQUwdNw0wu39Wznl66YnpnFdXFzznjBoVvpxp05QF1886SxnkPeMMuO++5iW3JM0we06IFLP7Z6R9sdrXM0vO09IWo7Hb7WRnZ9O/f39ycnJadW1/gg+CuCO2DOX/xPLlJE6Zwr1LlvBHbS2rgZeAsTReu8TlclFYWEheXl6LIq0SNzXM7pvMecbKtPT9rSQoVo+bmf0zs216Yq55ORJJGygrK8Pr9Rpthi7ExcWRmZlJXJw5xyyNsi8aevXSoZXcSOVELXZCwG+/wfffK29P//Of4V132mnw44/N93/xhSIznLI2b7zROltjALPnhEgxu39Wznl66YnpnBcfD8uXw6efwmefKSX3fG/6hjsQUlHROJe53bB0qbL16wfHHRe+Pe0Qs+eESDG7f0baF6t9PbPkPC1tMRMFBQUAjcpltUQ18CZwPnBowH5nw9+nASOBc4CBGtgXBxzXsN3esK8I+B5Y1vBz/pw5uFyuoGWy3G43cXFx7Nixg+Tk5LBLasUCZm+TMucZKzNm7m8lmmL1uJnZPzPbpieyNJYkZjF6OpVEIgnC/v3w5pvK4Mf338OuXQeP7dwJ3buHllFYGLwE1s8/w5FHamOrRCKRhIvTqQyGLFgATz2lzDwLxccfw8UXqx/79Vfo21dTEyUSiaQ90HQtjgkTJjBnzpwWr+kPnNewuYArmhzvAZzdsJ0D9NLO3EbUAOKEE3Ccfbayxsipp0KPHqprooAsqSWRSCQSa2H0s9z2NewjsSSDBw8mKUnTZfBMg9vtZvXq1bjdmkze1hyj7IuGXr10aCU3Ujm6foYeD0ycCB980HgQBJSBkXA49VT1/YMGKWWu2ilmzwmRYnb/rJzz9NJjqZzncMCFF8KUKeENggB89ZX6/u7doU+f8GQ88IBSVuvee5W8unNneNdZALPnhEgxu39G2herfT2z5DwtbTEjvnJZvm3GjBnk5OQ0mzlht9vJycnhwIEDvL9hAz8MGcKfaT4IArAT+B+QBxwOHAmMByo1tr0D4Fi5Ep59Fi6/HA49lLpDD+W7ww6jR2EhQ71ehgTc34ZbUisWMHublDnPWJmm6OtJoo7V42Zm/8xsm57IgRBJzDN8+HDLTBduisvlYtGiRWFN/TYCo+yLhl69dGglN1I5bbq+pia887p1g9691Y+FOxBy2GFw6KHKNm4czJihDKqsWQOnnx6eDAti9pwQKWb3z8o5Ty89MZ3ztCDYQMiwYeGV+ANYuBC++UZZ4+iyy5S8eNhh8J//aGenSTF7TogUs/tnpH2x2tczS87T0pZYwOFwMGvWLEpLSykqKvJvpaWlzJo1i6ysLAYOHMiyZcsoKysLS+avwDwgTU/DG0jYuZNzDxzgeWCu3U7u8OF8Z7fzNnAncDrwRUNJrVjG7G1S5jxjZcZsX08SEVaPm5n9M7NteiJLY0liFqOnU0kklqW+Hn75BdauVbY1a5SfbnfzGR7BuOYaZfCiKaefDkuWhCdjzx7o0iX8h4USiURiJoRQBi8WLVLWBKmoOHjspZfg9tuDXuqnthbS05X825RXXoHx4zUzVyKRSNoLubm5FBYWhjzvaGAqyloiHZocOxdl1sgw4Eygp8Y2NqUeqD/qKJKGDoWTTlK2445TZitKJBKJRBIjGP0sVy6WLol57HY7tb7FSy2GEILa2lqSk5OxmfBhsFH2RUOvXjq0khupnBav/+oruOAC9Qv37lUGJ0Jx6qnqAyErVigP9MIpZ9e1a+hz2hlmzwmRYnb/rJzz9NITEzlPL2w2pZzVvfcqA8zr1sG33yrbiBHhyVizRn0QBJTa8uGwfLkyGHPiicqWlRXedSbA7DkhUszun5H2xWpfzyw5T0tbrEiwRdd963G88MIL9OjRgw0oAx5JwEkoAyKno5TO+qphm9ZwbW8ODooMA45qo23CZqM2OZnk2lpsAe+sxgPxP/+srJX39tvKzrg4Zd28445rvB16qClfJDJ7m5Q5z1iZMdnXk0SM1eNmZv/MbJueyNJYkphn0qRJZGRkGG2GLpSXl/PUU09RXl5utCmqGGVfNPTqpUMrua2WU1cHAaUAWrz+uOOCy1m3Ljx9amt8DBgAV18NlVpXW24/mD0nRIrZ/bNyztNLj2E5Tyc72kx8PAweDHfcAe++C+G+9bRsmfp+hwMC3qRqkY8+gkmT4LzzoGNHOPxwZQH3adNCX2swhsdNZ8zun5H2xWpfzyw5T0tbrEioUlrdu3cnJyfHf74b+A54FrgEOEFFZhHwNnCTzcbDOTk4t27l2dNPp7iVtpVnZPDUpEmUh3N/6/XCli3K/5UHHoA//UkpnXjIIXD22TBhAp7XX2fnJ59QvGULxcXFhpZAMXublDnPWJkx39eTtAmrx83M/pnZNj2RpbEkMYtvOlW3bt0oKSlhzZo1liuNVV9fT0lJCZ07dyY+Pt5oc5phlH3R0KuXDq3ktijnwAFYvfpgSau1a2HDBqVc1RtvhGdH167qi5I//zxMmBDawLo6GD1aefv41FNhyBDlAZwkIsyeEyLF7P5ZOefppScqOS+KdkSdq66CmTOb7z/zTFi8ODwZI0fC558333/DDdDwVrRZidm4hYnZ/TPSvljt65kl52lpS3vF6XSSl5fXbNZISwwZMoRFixb51690VlUhOnYkxeNpdu4+4BAVGfXx8ZR07kznkhLi6+sj8KAxHmAzsAEo79mTC//2N7oMH07y0UdDQnQKhZi9TcqcZ6zMdtvXa+dYPW5m9s8o24wujSUHQiQxi9FfHonEtEyYAFOmNN9/0knw44/hyTjvPPjyy+b7x42DN9+MxDqJRCKRhMvatcpC6cuWKdvWrcr+e++Fp54Kfb0QSjnDffuaH3vhBcjPDy1jxw547jllVt/AgcrPTp1a5YZEIpHEKi6Xi23btpGXl8fy5ctVz/GV1CooKMARuGaHxwMzZ1L33Xds+d//OKK6muSGQ2cAPwNDgFOBk1HKb0W7eKEnLo74AQOIO+YYZbbi0Ucruf6II1QHSFwuF7t37/b/3a1bN//Aj0QikUgkoTD6Wa4sjSWJecaNG0dqaqrRZuhCVVUVb731FlVVVUaboopR9kVDr146Wi23vh5++w0WLoTt28OTM2iQuqz16xV54dgRrDzWmjXh2S3RBbPnhEgxu39Wznl66dFKZqRyzN62gjJokLKo+v/+B7/+qszU+/hjuO668K7fsUN9EMQnOxxWrVIG12+5BYYNU0qudO2qlF3R8G1lNWI2bmFidv+MtC9W+3pmyXla2tLesdvtDBw4kGXLllFTU9OolFbTklqOpguXJybCddeRMG0avffuJe/yyzk9KYlbgVVACfAx8ABwPtARODo1lXvHjeOp1FQWAk6d/Uv0eonbsAEKC+Hhh+Gyy2DAAERKCu7+/akfOxYeeYTat97ivvPP57DMTHr37u3fsrKyyM3Nxek8aKnL5aK4uNi/+WbUmL1NypxnrMx229dr51g9bmb2z8y26YlcLF0S8xQXF1NXV2e0GbqQkJBAdnY2CVGartxajLIvGnr10hGW3EcfhR9+UB56FRUdXCj3pZeUB2Kh5AR7uOVyKTL79Qttx6BBygKMRx2lDIoMGqRsLa0fItEds+eESDG7f1bOeXrp0UpmpHLM3rbCpnNnuOii8M//6afgx449NjwZmzY137d3r7JOSbjT6D0e5YFgK7FM3IJgdv+MtC9W+3pmyXla2iI5iN1uJzs7u03XOhwOZrz3nn9Gxd8b9vtmVPj2//rrrzz++OMsq6vDBfwfkKeR/a3B5naTtGWLsgbJ7NkkA082bDuBLSgzWra4XPxcWMj9lZU88c475N1yS9BF6F9++WVTt0mZ84yVKft67ROrx83M/pnZNj2RpbEkMYvR06kkklZRUwMdOoR37llnKaVQmpKfr5QyCYXLBSkpygKKTSkshCuuCC2jpkb5Ga7NEolEIjEfX36plLX66ScoKTm4v3t32LkzPBnjxsH06c33X3ghfPJJeDIOP1wp03XkkcoA+5FHKttpp8kyWxKJRBJAcXExvXv39v/9N2AMcBwQWANhJvB+w37fdnjUrFSnzmbjVyGUARJga8O2DdgOXJaTw6xZs4w0USKRSCQGY/SzXFkaSxLzDB06lOTk5NAnxiC1tbUsW7aM2tpao01RxSj7oqG3zTr271cWtv3nP5WHR2ecoTxwysoCrzc8uUccob7/11/Ds89uh3791GU0lLYKaUeHDnIQxISYPSdEitn9s3LO00uPVjIjlWP2tqUb554Ln34Ke/Yo5RU//hieeALuuCN8GWozQkBZKyQcnE5F9++/K2Uep02De+6BP/9Zmf3YAlaPm9n9M9I+U/f1oiBTCzlmb18Sddxud6P722dR1hNJB44CcoB/ATNQBkIeBkYD2Sjri5wF3Ikyk2QFEN4y79qQIAT9gT8DE4FpwBcogyE1wOQ5c/juuuuoHT8enn4a3n9fKb9YURFFK4MT7nemaemvpiXA9NQdCWbOeVrIkjkvNrF63Mzsn5lt0xM5ECKJeQYPHkxSUpLRZuiC2+1m9erVuH2lkUyGUfZFQ2+bdRQXw1VXKTV2p0+HpUth926orYU//ghPbt++6vt9i+SGY9+gQUoJlXPPhbvvhrfegpUrFbsi8U9iKFaPm9n9s3LO00uPVjIjlWP2tqU7NhscdphSVuu++5QtHIQIPhAycGB4MgIG8Ztx5JEtXuqP29tvQ04OTJoEr70GX3yhyI3xeJq9XRppn6n7elGQqYUcs7cviTpZWVkcf/zxze5vBfAL8C5wH6A2H68M+AZ4CbgRZQH2sXoa2woSgB5JSaxNScH9zjvw97/D5ZfDCSdARgb1HTtSO3gw9VdcAQ88oOT6zz+nds0aftu0qcXBhmBrkrSWUN8Zp9NJbm4uWVlZjdZJaWm9FK10a4GZc54WsmTOi02sHjcz+2dm2/RElsaSxCxGT6eSWJQDB5TBjF27lDdYt25VHraMGAF33RX6+rIyZfaHGgsXKnJC8e67ygOfpiQnK2/WxoUxhu1yKTNDJBKJRCJpK04n3HknbNyoDIiUlR089t13cOqpoWW8/77ysKspCQlKGcZw6hLn5cGbbzbfP3o0zJkT+nqJRCKJIXJzcyksLNRE1onAbfHxDMvI4Ai3G1vDorglwLnA0cDAgJ9HAGGu/hRVSoDfgB1xcSQdcQTn/uUviF69+EdBAf/75hv+CHij2bcmSUFBQfMF7IPgW6OlKb41XCD8uOTIEmASiUQSFKOf5bavFVEkliQzM5MKk0yn1Rqv10tFRQXp6enEhfPwO8oYZV+r9bpcyoOWcB62PP00PPUU3rg4KtLTSa+oIM7rVa4NZyAkM1Opd75/f/NjW7fiPeus0LYHmxGSng779kGXLqE/gxCDIGZvWxJ1rB43s/sXMznPRHq0khmpHLO3LdPicMAbbyi/C6HMcNy0SRkYCbiBaZGff1bf36dPyP/L/rgVF6tPYw+oo98i+/YpgymHHQa9eimb7/eePcN7wUAHzN4ujbQvGrqtnPO0tEUSXbxeLy80rAnYdNFxgCFDhlBQUECfPn0aLbLuo+ni64H7EIKabdt49sYb2bh0KWs9HtY20Z8M9OPg4Eh/4EIgvOGEEL41vb9qBZ0btpO8XuX/yt+V5eb/1bBVoaxD8hvwu8vFH4WFTPnhB/7yj39Q17Ur9d264c3IAJut0eCG0+kkLy+PuXPn4na7SU9Pp6KiAm+AfUOGDOGVV17h3XffDctWX9zsrXgprb3nPC1kyZwXm1g9bnr7F+x/gBlsMyvtx1OJZcnPzyc9Pd1oM3ShoqKCqVOnmnagxyj7gup1u+Fvf4Orr4azz1bKdmRlKWtdrFoVnvBu3RQd6elMzc+nwte2AspShaSFNT7C+syOPBJuvBGefBLee08paVVeDnv3Qpcuin0RfvZmb1sSdaweN7P7Z7qcFwN6tJIpc54JsNmUNa/OPhtuvx3S0sK77pdf1PcfdVTIS/1x27tX/YQ+fcKzobgY5s2Dl19WymtddRUMG6Ys4h5MdhQwe7s00r5o6LZyztPSFkl0qaio4LXXXmPatGmUlpZSVFTk32pqali2bBkDBw70P+iy2+1kZ2f7N7X9/odiNhsd+vbloa+/5s2KCjZs2MCQIUMa6a8F1gKzgIdQSmtVB7F1A1AMhDuk0ez+SkNSUQZvRgE3A5OB+4uK6DpuHIeOGkWv44+nS58+eHr35geHgyWHH47n7rt594wz8BQWcpzLxZHp6arPFpYvX84JJ5xAuMVUgs0uaXpOYCmv9p7ztJAlc15sYvW46eVfsFJ9rSnRZ/XPPhiyNJYkZvFNp/LNCFm7dq3lSmOZfYRWF/u8XigpUUpT+bbMTLj00tB6hVDKR3k8zeXOnasszBqKwkLIzW3+xlJqqrKQn80WWsbVV8M77zTff/nleAsLTfGmoNnblkQdq8fN7P7JGSHGyZQ5L4bZvh3Wr1cGRH7+Wfn5yy9KuaxnnmnxUq/XS8X+/aR3705cfX3zE+bNgz/9KbQNH3wAl13WfH9SklKeK5w2cdVVyuLuPXo03oYNgyYPEsPF7O1SzggxTqacEdJ+MSJugQ/uXS4XAwcObPTQ/zCgL0rZrMDtr8BSwN7w91Eos0n6NfzdB+geoCeSGSHRwBsXR2l6OjUVFezxetkNLW5VLcgqKioiOzu70T6Xy8W2bdvIy8tj+fLl/v2+Ul4vvPACXbt2bZc5TwtZMufFJrEQt2jMumitjlCl+sIp0WfUZy9LY0kkEVIWWK/aYsTFxZGZmWm0GUHR3L4nn4SHHoKmDzuGDWs0EBJUr82mzOj4/ffmx3btCs+G7kp3Pc7rJTOwbVVVKQM0DTMyWuSYY5Stb19ldojvZ//+mn1mkcoxe9uSqGP1uJndP6Psi5ZePfTInCfxl6JqShjvYsXFxZFZUdG8X+Aj3Bkhav0CUMpjhXvjt3XrwS2Qf/wjvIGQkhJlrbCuXZW+RNeuxHXsaOp2aeT3Jhq6rZzztLRFEl2MiJtv9oiPK664otEDtt8btkUB548ePZp5r7zCrl27/A/216vIdqDMLJlE8/srAYTxilnUiPN66dRgX88wzncCe4E/aD5IUvnOO+wcOBBvp06kZGdz69/+xtyPPgq62Lvv89ZzbREz5zwtZMmcF5uYOW6BpfMCv7utWYcolH9t0eFyuZg7d26LesMp0Wfmz15PzDncJpG0gvHjx5MWbnmGGKOyspJp06ZRWVlptCmqNLKvvh5mzYIXXoB774Vrr4XzzlMGBH76KTyBqanqDzuaDGK0+Ll07958Hyh1zcOh4frKtDSmjR9PZWDb+vXX8GTcdx+sW6cs4Prss3DrrcpncdhhmsU0Ujlmb1sSdaweN7P7Z5R90dKrhx6Z8yRBCWOGZWVlJdPmz6fywQeV2ZannuovYQlAk7dtg7J9u/r+ww4L73qAnTvV9/foEd71a9ZAbi6MGAFHHw2HHEJlx45Mu/NOKsN9qSfKE/mN/N5EQ7eVc56WtkiiixniVlBQQE5OTrMHaEOGDGHDhg2UlpYya9YssrKyGDhwIMuWLaOmpsZfwmvTpk3YGnK8E6XM1j3A1LQ0nh4/nh/S0qgCvgJ6AcOBvwCPN5y7DAiScXVF9f6vBRxANnA6cBnKDJl/Aq8Dxz7wAD0uuYSeZ55JVq9evPnuu2xxuVgNfAa8DTwH3AfcCFyWlkbPrCzWzZ3L9jVrKC4qUh00icg/E+c8LWSZ4bsjaT1mjlteXh6FhYXNvou+wcu8vLyQMkL51xYdu3fvDpkfWirR5yvNt3HjRl588UVKSkpC+mEl5IwQScyzevVq3G630WboQlJSEoMHDyYpKUl/ZTt3KqUrysuVElC+n2lpcM89oe2Li4Nx46C2tvmJv/8OJ54Y2oZggxhNBkJa/FzClBGUhgcsSXV1DC4qIun445XFWPv2DS67FWgV00jlRLVtSTTD6nEzu39G2RctvXrokTlPEglJSUkMPvlk5X9xcvLBA06nMrgR4i08P8EGQtRmqqjh9QbvR4Q7ELJnT7NdSTU1DN6wgaQOHcKTcfbZsGEDHHLIwa1TJxg7Fs4/PzwZrcDI7000dFs552lpiyS6mCFuDoeDWbNmqS+4HoSWZpWsadiS3W6OX72ah91uaoEOwKAhQ3ABBQGlonwkoZTlOhz4tOFvPUlyuxm8ejVJOjxb6IAy6NMLOE7leK3bzarVqznqzTdJrq3FA+wD3BkZ9DjuONxpadRnZuI49FASunSBjh0Pbp06KT+zshr/r2zqXwttqzWxDldma5F9vfaJWeOm1ayLUN87LXSES9PZJ8nJyRx//PE89NBDjBo1KqwZLoG2t7VcmNHINUIkMYvRdeVMx4cfQmmpMnjh28rL4Y47YNCg0Ne/+iqMH998f9++4c+E6N1bWZC0KS+/rMyKCMWSJUoZLDV8gzKhuPVWmDat+f4//1lZJyQc9u5VHi6YtEalRCKRSCSSVjB9Onz/vTIg4tsqK+HBB+Gf/wx9/Z49jWeiBLJyJRx/fGgZzz+v/mLJwIHK4EY4DBwImzY13z9lCtx1V+jrV6yA++9XHpYFbp06wV/+Ep4NEolEEgbByr34CCz7ArR4bjyQh1Ku6rCAn4ehLOZeijLAcHjDdmjA1o12VgYlJcU/QFKfmYmrQwe8mZl0CBxA6dRJyf2ZmdQkJXH7gw8ya/58nA0vNIYq+xONB6BtHZjRUm+0dUvMRXFxMb179w55ntp6QHrraOt1WqwrokW5MKOf5coZIRLNcLvdFBYWMnPmTDZs2MCePXvIysqid+/eXHrppYwbN45DDjlEc73Dhw9n2bJlmsuNKitXKoMAgTMxKipw9e7NsvPPZ+jQoaH/AeflgVpphZEjwxsISU9X319REfQSl8vFsmXLDtrXvbv6QEgr1+dQZfdu/0BIM72BnHaa8nCje/fGW2v+OXXp0rKOCNBKbqRy9PJPoi9Wj5vZ/TPKvmjp1UOPzHmSSNAsbtdfr2yBlJcrMz3CIVhZLIhoRojLbmfZKacwNNw3/fbtU98fbv/6t9/giy+a709PVx0IUf38n3hCkZOermwZGcrPU05RBmo0IhrfWSvnPC1tkUQXq8RNbVaJ2+1m48aNDBw4kF69ejXyr+m5PnyLt78e4v3dD3buZMKECbzU5OHcaSefzJtPPsnGK69kjEr5FxfKWiUdaMjJQ4cydNky7BqXpQqFZrqrq5Xt99+JB1JC6OgA/F/DVgmUAWUuF+WFhaz8/HNOveAC4jt1gowM3A4H0+fM4Zu1aynxeCgDnHY7fU8/nYyOHXn5zTdxpKS0WJKnpYEFl8vFt99+y5tvvsmHH37oj2O4D1gDvztA2AMawRaxb41uSduxSs4Lhlb/z7Wwo+kgiN1uZ+jQoSxbtsw/OyXU7BNfKa+W5Ou51pEWyIEQiSZs3ryZK6+8ktWrVzfav3v3bnbv3s3333/PM888w5tvvsmFF16oqe7s7GxWrFihqcxW4fHAM880GsDw//7yy8oaGaH44guYNKnZ7rrTT6f4qKM46aSTQstIT1cfCCkvD30tKDeyarQwEFJXV0dxcfFB+4K9LdnWgZC4OGVB0e7dG5XcaqY3kGuvVbYIaVGHCeRGKkcv/yT6YvW4md0/o+yLll499MicJ4kEXeMWrN+jRnY2vP++MiDi2/74Q3lJo3Pn8GSoDITUJSRQ3LkzJ9XVhb7e64X9+9WPhTsQUlqqvj8rS3W36uc/Zw78+GPzk595JryBkA0blD6vbwAl8Octt0B8fHDdGmPlnKelLZLoYrW4BZbMqqqq4rvvvqNHjx6qD9qaltfy0XTx9qbk5OTQvXv3Fst59fzhBx6+8UZ++eYbOnk89AC6A8XAo0AW0DchgTOzs9lQV8dfR42C3bup++MPfvn2WxL27aOvELrNLqlLSKA4O5uTdHyuEUpHWsPmXz2rrAwCPvck4KaGzUdVQgKzDzuMy2fPJik1ldKEBErr6qgE1a0mPp5eRx/N2Lw8kjp1Ul50bNjqEhJY9PnnLJw3j9qAB79qD1jVZm7U1dWxbds2Xn/9dT744APVt9VfeeUVyhuej2RkZHDrrbcGnYkUTHe4hJpd0tYBI6PQa7ZMW3NerMze0SKnDxgwgJycnDYPyDmdTs4+++xm+xMSEho9T/V9psFmuES7lJduCIkkQn7//XfRo0cPgfIyhbDZbOKss84SeXl54uKLLxYdOnTwH0tMTBRfffWVJnrXr1/vlwuI9evXt03QnDlC3HabEFdfLcTFFwtx5plCDB4sxF//Gt719fVCKMtXNt++/DI8GS+/rH79UUeF78cxx6jLeOGF8K7/9tvgfrhc4cm47Tb16//0p/D9+PRTIVauFGLXLiHq6sK/TiKRSCQSicSs3HijEBkZzftId94Z3vX79wfvp/34Y3gynn5a/frBg8P344gj1GW8+mp413/2mfr18fFCeL3hybj+eiEGDBDi5JOFGDFC6b9feaUQ770X3vW1tUL88YcQpaXK7+HqlUgkhlBdXS1ycnKE3W5vdP9vt9tFTk6OqK6uDltWTU2N2LBhgxgyZEgjWaHk1VRXC+fQoaK2Tx9Rl57eKH+9DeJVEHNB/ABiOwh3sHwtt7C3ShA7QWwBsQLEYptN1F5wgVh62GFiVlyceAfENBD/AvFQfLx4ZdAgcd9hh4kxIM4DcTqIwSCOBNEDRAaIhCYxD3ez2+2ipqamxXZVVFQkioqKQravffv2qbZntXMPHDjgl9uSfj0J9f0LtDEadgazBxBDhgwRGzZsiNiG6upq1RiqbUVFRW3Ws2nTpla1wyFDhoiioiLx9ddft8q2nJycsHW05E9RUZEmn4lmz3LbiJwRIomYq666ip0NJQMOP/xw5s6dy3HHHec/vm/fPnJzc/nqq6/weDyMHTuWrVu3kpmZqYn+bt26UVJSAjfcAPX1B2dkfP+9sr5FKL7/Xpm50ZRw3/CLi1PeYqisbH6shdkUjQhSlqq+spKS3bvp3Lkz8Q1vyAWlDTM6wrHBL0Pl86ivr6ekpOSgfX37Qr9+zctShTMrxsfIkSFPaaZXB/TSoZXcSOVE4zOUaI/V42Z2/4yyL1p69dAjc54kEiwVt9dfVzaXS1mLbM8e6nfvpiQ9nc719aH9CzYbBHSbEaL6+QeTEe4Mm2D90vR0sNla1u1j61b1tVL69YPLLw9tw7p1cNJJ1MfHU9K5M5337yfebgeHA375Jbw16T7+WFlDz+GADh2Unw4H9b16UdKpk+E5TysZkuhj5bi11Te1MlvQtjfA7XY7AwcO9JeCCZTXuXNnKisrSVZZcNzucCjPDXx4PPy+ahV/GjKEbUCViq4MoHPAdhWQo3KeG3DHx1PVuTOdS0qIr69vlU/h4s95GurQUmZTWalAKsrMHUAZHvn8c05Tvbie+g0blOvj41u0xQ04UdaecQO1KCXSahq27UBJwN81QI3LRfW//oW9Z08l5zdsLpuNx557jgXffEOZ293oGhvKU14fvtklLc1uaulcvct0Bft+hSqFpHZsyJAhjexs6bva2rwQzB6A5cuXc/TRR7eqnJraDDK1MmltRc0/3zob4bSFQJYvXx7W2iCBlJWVBdUTHx9P586dKSkpoV6nvAPN21ZtQLUXI2hX60ZJtGf+/Pl8++23ACQlJTFv3rxGgyAAhxxyCHPnzqVPnz4AHDhwgKefflozG8aPH09aWpoyTX/lSuWmpKQk/JJQwQYAwr0egt/8RViWqtLr5dVXX6VSbZClKZH6kZGhlCPIyoLDD1fWFTnjDLjwwqA1tCsrKxvbd/fdsHkzfP01vPMOPPcc/O1vYQ1utIZmenVALx1ayY1UTjQ+Q4n2WD1uZvfPKPuipVcPPTLnSSLBknGz26FXLzj5ZCqHDePVRYvC8697d/jsM/jf/5TF0R98EMaPVx78h/vyTisHQpp9/l5vcBktvVATSLCBkCZ94RZjX6X2yBFITQ3PBqdT0ZGWxqvjx1OZkqK80LRnjxKfcPjvf2HCBKWc13XXKXG48EIqX3klvDa7a5dScq1/fxg8GIYOheHDlT7zzp3htf2fflLK1sydC59/DosXw/LlsG2b4p8Vvz/tACvHLVLffKWzfFukpVeayvN4POHbl5hI50GD+NluVx0EASgHfgW+Bz4CxgNDk5J47KyzeObEE7kNeAi4BzisIR8dl5bGycCFwPXA34CngNeB91Ee3LcVf84LZ7DXAJmRygr3+iQgE6UMWCegB9AHOBo4CbgUuAXIB+5DKZ32DNBp8mS46Sa45hq47DK48ELso0bx2Jdf8oPbzc/A78A+oBrwogywlAG7gG3ABmAF8C3wBbCq4e8lwJfAx8Bs4AXgAZT43wHcDOS4XNgKC3lpxAj2FBSwe8YMdr33HrVLlsDatbBli7Je665dcOCAslZMkNKbLpeL4uJiiouLKS0tJTc317++r2/LyspizJgxrX5YDwcHJAJl5ebm4mz4/xtIa/JCOKWZfOcVFhaSl5enetzpdDbz2WdjaWlpWDrUdPo+08BSa2r+tWUQpC34fAxGWlraweepTQjmTziEalunnnpqq33REpsQQoQ+TSJR56KLLmL+/PkA3HTTTbz22mtBz50xYwbXXHMNAB07dmTPnj0kJLR9UtKGDRs45phjsNvt1NbWsk4Ijg484euvlRuKUPz733DHHc339++v/raZGkcfDRs3Nt8/dSrceWfo67/5Bs46q9luYbNRW15OcmoqtoC35FS58UZYsOBgrWXfdtFFyg1aKHypIJSeRpcIamtrSU5ODm2fhkRDr146tJIbqRyjYieJDKvHzez+WTnn6aVH5jxJJFg9blH3b84cWLJEGcwI3C64AJ56KrR95eUQbEb30qVwmup7uo15/nm4557m+wcNgjVrgusO5MgjlRefmjJtmjIwEYrPP4eRI5V+dnIyybW12ISAhARl7b9w+NOf4JNPmu0Wd99N7eOPh47pr78qfqixfTuiZ8/QbePOO+Gll5rvHzMGPvwwdPuqq4OePSEpSdmSkw/+fO01JSahWLoUFi5sfG1SkjJwF+66kNu2KfcfiYmNtw4dlJi0M6yc98zuW1vsy83NbfGB5pgxY3jhhRf8f/veOve9Ee6rp2+z2UhOTqa2tpaWHtFdB3QBOqI8zO+EMttkOsqD9o4qW6eGn1k2G12Tk+nhy3ka0CyPGihLS1ushIiLw5acDMnJiKQk9lVVUVZTg0sIalHaRjzgAeoafnqAnQ2bB2UALthPUNqib2ZNLcqMGBfKzJrA88++4AKenToVkpJw1dezt6wMkZBARpcuZHTqRK3Xy+6ANdV83xffjILi4mJGjBjRKv83bdqE3W5vNOOjpe/t4MGDm6193BKffPIJjz76aLMZJL5ZMb179/Z/v202Gy6Xi6ysLE0WQI8UtbyzYcMGHn300WZr5wwZMoSHH36Yiy66SHM71q9fz9FHHx36RI1ofz0LiWZUVVXx1Vdf+f++4YYbWjz/sssuY/z48VRVVXHgwAG++eYb1QV7WkvQBBLpIuFazAgJtyxVp07KApNNFo20padjT0wMb3DijTfCt1eNNnRGbTabIYsgRUOvXjq0khupHKNiJ4kMq8fN7P5ZOefppUfmPEkkWD1uUfdvzBhlC5Nm9gmhvHhTXq70cX3laCsqgs4qaUaYM0Ja/Gw0mhFiEwJ74H1ESkp41wfIaIrN4Qgvpi09ALHbw2sbwWQ0XBdSRm2tMgumtfYFsngxPPxw8/1Dh4Y/EHLKKeql3959F8aODX39vHlw//2NB1ESEpTBmJkzw7Nh6lTls4iPV671/Tz3XAhngdt9+5SySU2vj4+H008P7z6rshLq6rAlJGCPj1cG5RISlDLMFsHsOb0t9hUUFAA0e2gYqjRPqHJfavsBtm3b1vayPUJwrMvFaJSH376SXR1RHl4/h/JAO0PlZ+Dv2Rx8kNgsj0ZApLK0tMVK2LxeqKmBmhpsHIx7KE7Qw5jPP1deOAbsQK8mh+3A4SizaQTKYMpOlAGaepQyaesb/g7cRMN19U22OmDtgAE4UQZiOnXpwrARIxhaWMiJTWQcgtLGPatXNxoQKgWKODhQ1HR75qKLSASGNsjwXedZvpwbjz4aEhMZes45PP7ss3RITaVk504yXa5mtjbdooEQotnz1LPPPps9Kn2D5cuX6zIIYgRyIETSZr777jt/bbeUlBROPvnkFs+32+2ceuqpfPHFFwAsXLhQk4GQ/Px8pQPS9MYq0rUxwr0elA58amrj2RgZGXDmmeFdf/TRsGGDigkVFEybRl5eHunhlhyIIhUVFRQUFETdvmjo1UuHVnIjlWNU7CSRYfW4md0/K+c8vfTInCeJBKvHzez+NbMvM1NZ5yQShgxRZjIEDqKUl8OAAS3rDkSjgZCK9HQK8vLIKyggvaJCWecjXIIMhFR06EDBlCmhYxpiICSsthFiICSkDHcLRXaSkoIfC0dGuNdD8Fk4iYnhXb9/P6xf33x/r6aP2Frg//5PWTumKQ5HeAMha9fCn/+sfixIieFmXHMNfPRR83aZnw8BMwqCUlysVEOIi1MGYOLiDv7+5ZfQ8CC9RV5+WVn/pqmM005Tn8nVlPp6mDixsW7fz7/8hYqsrNDtetUqpcSbzXZQjs0GXbooM7HCYcECpW36ZPh+DhrU4ufg/85ceinpJSXNr09M9D/E9RF0QCMxURnQqqxUShT5ZDgcjUrw+cpzBX5f7Xa7f39Tgq1vEoxu3bpRW1tLZmYm6enpnJOXx4sFBVSEeNbRtWtX1YehAFcCh6HMNMlMT2dfXh4nFhTwfUUFm1BKTqUBAw49lEvPP59vPvmEmr17/ft7AP1U5DZr+60k0uslxtA0bjaUGSqAf52YSDg28I+9e6GwkPwIZbaGig4dKOjfH89pp9GhooLDUEqlhUIE/PSizLIJNXhSD3RD+fxEwLUC+AM40OTcmvR0Nufl0aeggPiKCuqBtD176BtwrW/zAD80XOdtsjXd1x9ICdjv+7kdpXxcCTAj/I9Qc+RAiKTNbAooG3XssceGVebqhBNO8A+EbAq37FQIFi1apD4rJNx/focfDpde2ngAw/e7EOG9wTNlSqtsDhe73c7w4cNN++aMUfZFQ69eOrSSG6kcs7ctiTpWj5vZ/bNyztNLj8x5kkiwetzM7p8u9o0apWyR6P73v5WHi1VVjbeG9QhD0jCIYXe5GL5o0cE3iDUYCLF36BDeZxZiIMQuRGg5IQZCQsavpcVKVRaLViXYQEi410PkAyGRXg9B6+gT7oLewRaZjY8Pf9Z9g4xm7TLc8mBuN/z2m/qxcAdj1q+HTz9tvj/cWSn19cEHbUaOxN69e+h2/fnncN99zfcPGRL+QMh116nPdpo5E3Jzg17m/84sWQJXX938hC5dgs6iajZwMXSoMqDTlCeeUPWv2ff1++8Plhu02RpvlZVBB0oaccMN8MEH2G02KhMTqXK5+HXRInq4XNzbwmV2u53i4mLcO3ZQduSR/geqcPDh6nkopbiSXC4GLlrEZJfLXyZpyJAhLFq0SPHlhRcYs3w5v9fWUlZejkCZffIx8D8OPujuCKS5XCxYtIhZLhcODg6oPISyrkc8yiLHcSiDME2zjN3lYuiiRdS6XNQhH3bGCs1ynsVoq3+2gJ9xKN+FSOioss/tctF70SIGulyE8/rCiRHa4GMDciBEEqNs2bLF//vhhx8e1jW9At7M2bx5syZ2+Ov33Xwz9O17cDAjxAwVP4MHw/vva2KL1iQlJTF48GCjzQiKUfZFQ69eOrSSG6kcs7ctiTpWj5vZ/bNyztNLj8x5kkiwetzM7p+R9rWo+/rrIxOekwPDhpHkdDLY6VRKhjidrXtw3q+f8kDS6Wy0JaWkhPeZBXsgEhcHCQkk2Wyh5YQYCAkZPy1mhAQbTGnNjJBggxDRHAgJNpAR7iBEMB9as8ZJg4wkt5vBgfXpIx2MgfAHMoINmGhkQ1g5JZgNrSnj3EYZfvuCvbDZmjJlwdaoCCKj2WcTeL0Qjf8O97Oorva/HOobcOi2ejUqc58aMXr0aGVWisNBsHltvpbtdrv9z2MCy4H5B3R27SJu40YORyld5OMPoNkKDW43qKzNUACqD2kvR3lDPaXBtxS3m92rV+N7SrWzqIgHJ0yg58cfM1nlO1oD/IZSjim5YbPHxfGR14sN6BCwndRwnkR7muU8i2Fm/8xsm55Yp+CkJOrsD6jl2rVr17Cu6RYwFfXAgQOa2DFy5Eg6dOigTLO/914YPx6uvBKOOEIT+UZSU1PDZ599Rk1NjdGmqGKUfdHQq5cOreRGKsfsbUuijtXjZnb/rJzz9NIjc54kEqweN7P7Z6R9uupOT4f+/akZMIDPqqqoOeMMGD06/DUtAN57T1nc/Zdf4I8/lEXna2upueaa8OweMAAKCpRSRM8/r7wl/vDDMGkS2Gzh+Z+WBp07Kz8DH/o3PIAMKcMMpbGEsP6MkFbaUNOhA5+NHElNhw7K/nAHU1qa9RGpH5EOpDTICKtdt3IAQUsZfvuCtanW2NDKwZhmn01Li32HOxDSRIavbY2+8kqGDBnS7HS73U5OTo5/3ZOWbEhKSiInJ4edO3dSWFjI5s2bKS0tZdasWY3XRAki44xhw5rZ0KFDB0aOHMkZZ5zBihUrGDNmDHa7nWDeVqCU2dkMrAB+6NCB3g3PhnJycuienc3/ffghDz7zjOr124ABQG+gj93ObTk5FK9bx5VALjAaOB8Y1qBHjVeBPOAu4EHgX8DbgwfDsmXsmjmTkcAlwNNBrhdAfXq6UtrRbofERERcHLXHHIPz+OP5CWVNjF9QBm6sSLOcZzHM7J+ZbdMTORAiaTNVAfV5O4T5xQk8rypYfd9W0rFjR9LSlIli9fX1lJWVIRr+4VZUVOBu6KDX1NRQXV0NQF1dHWVlZX4Z5eXleBo6PE6nE2fDdHePx0N5wKLpZWVl1DV0Uqurq/0dFbfb7a+zKYSgrKyM+oaOZFVVlb90V21tLZWVlQB4vV7KysrwNnSSKisr/WuuuFwuqqqq8Hq9lJaWUlpaakqfvF4v+/fv958Xjk9axMnr9bJv3z6/PD3iVFFR4ZejpU9ut5uSkhK/vLbGqbq6mrKyMlwuV5vanq9deb1e3eLUWp/0/j5ZwaeamhrKyspwOp2W8SkwTpWVlZSVleHxeEzpk9PppKysjJqamqi2vdraWsrKyvw26BUnPfKe1+vlwIEDlJaWRhSnyspK9u/fj9frbVPbq6uro6SkpJE8K+YIq/lUUVHhj7tVfAqMk9PpZN++fXi9XlP6FPi9i3bbi0beq6mp8X/+WvlUWVVFWVkZbre75ThlZcENN+C58UbK8/KUUjmTJ1M2cSJ1dXX+vm5g/7GZT2+/DXv3UrVzJ66KCqiro/bAASonTPB/ri3mvZQUmDmT+rfeouzllxEvvQTPPUfFE0/gblg4PmTby86G00/HedppOE86Cfr3x3PkkZQfemh4cWr43yBsNsoyM6lveGBflZqKq+EzDtn2Gj5/l91OVcM6MfXx8ZSlp4ff9hraR3lGBp6GARSnw4Gz4YFzyLbX0KbcSUlUNKx9IWw2yjp2DD9HNJxXkZbG/o4d8cbFKT41fCYhv08N35O6hATKMjMPxikjA0+D7JA5ouG86pQU/4Mxd1ISFQ0DWyHznu+eMC6OssxMvA0DB5VpadQ2fM/279/v913Vp4bY1nToQHVDO6xLSKAs4DlCyLzXIKMsM5O6hoGk6pQUahrsDpYjfN87Z0Nsa5OTqWx4zuCNi6MsLa31OSI9HXfD51fToQPVDW2q6feprKyMAwcO4PV6FZ8aZHsSEynPyDh4XmbmwTiFynsN11SlpuKy2/HGxbG/Y0fiDzmEZcuWUV1dzbp169i6dStFRUVs376d6dOn43A4FJ8avif18fGUZWYiGmyvSE/nu+XLmTVrFomJibjdbnr27ElCQkLzHNHwOTgdDpwNAySexES8nTqxbNkyampqWLduHb/++is//fQTV155JR9++CEnnngihYWF/PbbbyTEx6vmiBnvvktOTg7p6emkpaURFxdHx44dGTt2LG+88YY/Tr522DRHdB48mG3btlFUVMRvv/3G22+/TZ8+fcjMzCSloe0lJCSQmZnpH4xpmiNWOhy8CbySmMjrXbqwOieHy5cupaxfP5wnn8znwBcpKSwN/D4F5IhdmZkUr1wJlZVUlZTgqqjAVl8PK1ZQv3gxz+TkcFxcHKdkZrIk8PvUUH7QZbdTmJrKOOCv8fFMzMzkYZuNe4Gz0tMZkZTEecDoDh2YEPh9apIjfk5MpBj41eGgyOGgBFiQmMjbGRm8D3wEzM3MZHvg9ymIT744iYC2Byrfp4Yc4Y2LY98hh1DTcF6zXN6k7TX6PrXgU6NcHtD2mn2fWuGTr+2F8ikwTr7vne88M/nkadBRmZbWKp+0ipNRyIEQSZsJXJcjKcy3fpID6sVq9YbXzp07ubDhDa6SkhKmTp3q75QUFBSwceNGABYvXsy8efMA2LFjB1OnTvXLeOWVV9i6dSsACxYsYMGCBQBs3bqVV155xX/e1KlT2bFjBwDz5s1j8eLFAGzcuNH/5kRtbS1Tp06lpKQEgNmzZ7Ns2TIAVq1axYwZSjW8iooKpk6d6u+wzJgxg1WrVgGwbNkyZs+eTUpKCiNGjOD11183pU8pKSn07duXDz/8MGyftIhTSkoKqampLF26VLc4ffjhh+Tm5lJfX6+pT6WlpWzbts3fuWprnFasWEFubi6//fZbm9re66+/zqhRo0hJSdEtTq31Se/vkxV8+vnnn8nNzWXdunWW8SkwTvPnzyc3Nxen02lKn9atW0dubi4///xzVNve7t27yc3NZenSpbrGSY+8l5KSwmmnncbrAQsstyVOCxcupFOnTqSkpLSp7dXX17Nt2zb/wxur5gir+fThhx/St29fUlJSLONTYJzWrVtHXV0dKSkppvRp/vz5HHrooaSkpES97UUj7/38889UVVWRkpKimU8LFy4kNzeX0tLSiOKUkpJCQkICK1asCN+n+HhWbdnCjA8+AMLIe59/Drm5lFxwAVP37qX2xhvh7rsp6NCBjdu3hxWnrRddBEuWsGDiRBY88ABs2sTWjz7ilYCBkBbj9PbbsGMHtZs3MzU/n5JvvoHVq5n9xBMsa3jQHbLt9e4NU6ey7KGHmD1xIjz6KCX338/U884Lv+0NGwbnnssrd9zB1j/9CU47jQVXXcWChvvVkG1v715ISWHjccdRkJenxCk5mak33hh+jmh4cPXhpZfSd9s2UqqrWTZ0KLMbHkCF/D6tXKn41LMnU/PzD8bp1lvZ+scf4bW9hnv6eRdfzOKzzlLiNHAgBT17ttz2fD41tL2K9HSm5uf7H7rNuPpqVjW060MPPZT58+cH96lhoGHxWWcx7+KLD/o0bNhBn0J9nxoevk/Nz2dHg+3zLr6Yxfv2KT4F+T6lpKRQV1fHuoaBmlXHH8+MhrVCKtLTmXrlleHniIa4FeTlsXHgwIM+NQxeNf0+TZ8+nRNOOIGUlBTFp19+UXzq25dXbr31YJzy89mxc6fiU6i81xDP2ZdfzrKhQ0mprqbvtm182PDQ1O128/7779OxY0eys7N5//33G/v09deKT507MzU/3/8AtCAvj60Na6WsWLGChIQEUlJS1HNEw8PjBeefz4Lzzz/o0zHHAMoslPfff5/4+HgGDBhAUlJSo7z3zjvvYBNC+T7l51PSubPfpw2VlcyaNYuPP/6Yxx57jPXr1/P888/Tp08f/0DljBkzWNXQvpYNHcrsyy/3+/TKmDF0796d7Oxs3nnnHTZu3Ijdbue6667j4oa217NnT/Kbfp/69vX7dPakSRQVFfHll18yYcIE/4yYqVOnUl9fj91u5+KLL6ZH4PcpIEe8np/vX2tXLUcUFBRw1VVXkZ+fT23g9+n44/0+bb78cqYDH3TuTGp+Ps8kJ/MMcEJeHmUDB/Il4D7rLKoDv09NfLqmb196A5NGjeLFm28m4cAB7F9+yY577+XEoiIGFRWxOj8fz403Km2vaY64/XbYuZPaLVuYmp/P+vffZyBwx+WXc+HQoTiAC44/ngcCv08NOSKlupqq1FT+268fzwNThw7lpcsv5y1gckPby0tO5i/ACzffzMpLLgFUckR+PrtSU9kG/OfWW1nety+7gJfPP5+Xzz+fGcD0vn158dZb8RV1bJojFp11FvXA+oY4CcCVlcXU/Hz29utHRXIysy6/nG+HDlXi1DRHNM17xx9PSnU1h+7cyXzfM0uV71OjHNFCnALbXqPvU9McEZj3grS9qfn5OFNSyJ01i/kXXsiyVvjka3uB36e2+GQYQiJpIxdeeKFvrSzx97//Paxr5s+f778mNTU1Iv3r168XgDjqqKNERkaGWL9+vairqxOlpaXC6/UKIYQoLy8XtbW1QgghnE6nqKqqEkII4fF4RGlpqV9WWVmZcLvdQgghqqurRXV1tRBCCLfbLcrKyvznlZaWCo/HI4QQoqqqSjidTiGEELW1taK8vFwIIYTX6xWlpaWirq5OCCFEZWWlqKmpEUII4XK5REVFhRBCiPr6elFaWirq6+uFEEJUVFQIl8slhBCipqZGVFZWCo/HI3799VdRUlJiSp88Ho/YsmWLOHDgQNg+CSEijpPH4xGbNm3y26dHnA4cOCCKiopEbW2tpj7V1NSIdevW+e1ra5wqKipEUVGRqK6ublPbKykpEVu3bhUej0e3OLXWJ72/T1bwqaqqShQVFYnKykrL+BQYp9LSUlFUVCRcLpcpfaqsrBRFRUX+72A4PmkRJ6fTKYqKikR5ebmucdIj7wX+H4skTmVlZWLz5s3C4/G0qe3V1taKdevW+e2zao6wmk8HDhwQW7ZsER6PxzI+BcapsrJSbNy4UXg8HlP6VFpa6v/8o932opH3qqqqxIYNG4TH49HMp7KyMlFUVOT/n9bWOHk8HrFx48ZGOUzmvRjLe3V1onTv3vB9+vlnIVatEgcWLRJbPvpIeBYvFjVffikqN24Mz6ft24V4803hef11Ufryy0K88ooQ//mPKJsyRbgbPpeQPr3zjhATJ4qqe+4RzgkThLjjDlH717+K8oKC8OK0c6cQF18s6i+6SJSOHi3qzz9fiHPOERUXXCBcDbluy5Yt/s9c1aeXXhKiXz/hPPpoUXX00UL06SM8ffuK0quvDj9OPXsKkZIiSrt2FZ6UFCGSkkRVRoZwvvdei23P972rfOMNIUC4kpNFRVqaECDq4+JE6cCB4be9444TAkR5erqoTUoSAoSzQwdR9eyzqm1v37594pdffhEej0fx6YsvhADhTkwUZRkZvlVCRGlmpvA06A35fbr0UiFAVKamihq7XXgSEsSWI48UB+68s3HbC+bTpk1CgKiLjxelmZnCa7Md9GnTJv81vv9jqt+nCROEAFHtcIhqh+OgT5de2rjttZT3bDbhtdlEaWamqIuPP+jTZ581+j55PB6xdetWUVJS0tinKVOEAFFjt4vK1NSDPp18sur3ad++feKqq64SdrtdJCQkiMzMTPFrg+9lGRnCnZh40Kdp04J/nzwekZOTI1JSUsSfO3QQAkRtUpIoT08XAoTXZhO7O3UKK0fs3r1bVJ1xhhAgKtLShCs52e/To6mpAhDx8fEiMzNT2Gw2AYj09HSRlJQkvv76a7F582bxy7x5QoDwJCSI0sxMf5sqy8gQW5cvF0VFRWL//v0t54i//EUIEFUpKcIZ6NP11zdqe7/++qv/mZ/dbheASE5OFl0Cv0+ZmaI+Lk54EhLEhgEDxKkOhwCE3W4XqampwmazifXr14t169aJbdu2iZqaGiVOjz568PuUknLQp3PO8bfddevWiV9++UXU1NSI6upqsWvXLgGIxMREkZGRIUoCv08JCX6ffn3+eX/fI9j/p5KSEvH7c8+p54i+fcX2uXPFKSDOTksT5yYniwsSEsRZRx0lBmRkiN4gjoqPFydkZoq1gd+nwBwxcqQovfVW8VRCgng2M1O8BOIxEJdmZIhLEhPFZSCudDjEH3fdFTRHfJaQIL4C8XlKiviqQwexBMRLSUniH+npovT224V74kTxdMeOYl1SkijKzhalGRmixm73+7QjLU0UgfD07ClKjjxSbI+LE9tA/C8tTcxKThbvg5htt4t5gd+npjkiPV0Ih0M4s7JERVaWqAHxa0KCWJKZKWY3PBP2bevXrxfRxCZES8UHJZLg5OTk8O677wJw5513Nhr9D8YHH3zAZZddBijrhezatavN+jds2MAxxxzDI488wpQpU1iyZAlHH310m+WZkbKyMqZOncpdd91FpgmmkDXFKPuioVcvHVrJjVSO2duWRB2rx83s/lk55+mlR+Y8SSRYPW5m989I+2K1r2eWnKelLZLoYuW4md03v3233Uam3a6U2BJC+en1KmtzdOoUnrDiYnC5Gl8vBHTvrqztE0y377MpK4NVq/AvlB64YPq554a3TsgPP8DOnf5ry2prmfrzz9x17rlknn566OurquD99w/qDbRj7FhITw8d02+/VfejTx8YM6blz8DHY481v14IuP56RU6o65csgTlzmn+O3brB3/8e1H2Xy8Xu3bsB6PnGGySUlTX+LACuvhpa+CydTid5eXls+/BDbnK7/SW2EuLjObxXL8445xwSA2ZNt8hTT8GGDY1sqK+v57r33+edIOva2O12SktLlcXrt2+HiROb+wDwf/+nrJ8Vin//G778srmMs86Ce+7xn1ZcXEzv3r2b2wN80PC777OozcxkdX4+c6ZMYXVAabWcnBxmzZrV3Ib//hfefLO5Dccco9gXhNzcXAoLCwH4BMhocvyQTp3o9957MGJEUBl+PvsMHnmk+f7OnXG99x5ZWVn+CjqZmZnk5+czZcqURqXjpqOsURNns3H88ccT51uD6M47KR42TPXzC+SPjz+mx0MP+f/2CsGaNWsQQnAK+EvjBRLYHnJzcznx889x5udz3pQppATYVghsa/j8XS5XI38C6fr/7J15fFTV3f/fk0ySIeugsiliEBfEWlEfK32sRavVtmqlbqHSp/LQzaXPU7SLdPm14tNFWpeOG7hFXFBiUVEUFVxYXIJa2UJYJCRigISEzJLMmpn5/v64mSGBSUgyy71zOe/X674IM3e+5/uZ77nfOXPPnO8B3gIsFgunnHIKOd3z0tKlMGYM0Ht/iFFTU5PRe7lqIkQxaG666ab4ctpek9QBPPTQQ9x8880ATJgwgU2bNg26/dhESIxMXzwKhUKhUCgUCoVCoVAoFApFb3SfVAHtR8G2rj0ZkqX7Df4D6e99ulRzqBvfMc455xzWr1/f4ya7zWbjiiuuoLKyksKufTBSQWxS6uWXX057e33F5EASxag/7199fT3l5eUDard7WwN5PwZiNxFGmwixZqwlhek4+eST439//vnn/XrNzq56swDjx49PuU8KhUKhUCgUCoVCoVAoFAqFEbDZbAfdtE4Vsb1hut/Q7n4z28gsXLiQkSNHpm2SqDuFhYXxFQ7pbi9RTA4kHTHqrd1EbQ3k/RiI3WxAbZauGDSnnHJK/O/YZo+H4tOuTdwOfH0yzJo1i7KyAxe2mQO3282dd96J2+3W25WE6OVfJtpNVxupspusHaP3LUVizB43o+szc85LVzsq5ymSwexxM7o+Pf3L1rGeUXJeKn1RZBYzx83o2lTO09emGusNjtgNbafTSX19PfX19TidzvjG7XrQn8kFm83GyJEjCQaDLFy4kKFDh1JeXp6WSZAD2y0vL48f6Zx0cTqdbNy4kb/85S9s3LgxHp9DxehQ71/sveur3f605Xa7+ec//xl/73t7PwZq1+io0liKQdPR0cFRRx1FMBgE4MMPP2TSpEm9nh8MBhk2bBjt7e0AvP3223zjG98YdPux0ljjx4+nrq6OtWvXmq40VmdnJ3V1dYwbN468vDy93TkIvfzLRLvpaiNVdpO1Y/S+pUiM2eNmdH1mznnpakflPEUymD1uRtenp3/ZOtYzSs5LpS+KzGLmuBldm8p5+tpUYz1z0d9ySmaP22D1ZaLkWabe+772GQG1R4giy7j00ktZunQpAD/72c+YN29er+c+99xzXHfddQAcccQRNDc3Y7UOvjqb2iNEoVAoFAqFQqFQKBQKhUKhMA6Z3JPDjCR6/7L5vetrYifT93JVaSxFUtx0003xv+fPn9/r5uc+n48//vGP8f//9Kc/TWoSpDtTpkzJuiTQX3w+H4sXL8bn8+ntSkL08i8T7aarjVTZTdaO0fuWIjFmj5vR9Zk556WrHZXzFMlg9rgZXZ+e/mXrWM8oOS+Vvigyi5njZnRtKufpa1ON9cxFf8spmT1ug9WXiZJnmXzvKysrqaioSHvps/6gJkIUSXHppZdy3nnnAVrpq8suu4wNGzb0OGffvn1MmTKF7du3A9pqkNtuuy3jvioUCoVCoVAoFAqFQqFQKBSK9JOJPTnMTPf3L5vfu+4TO2+++aauvqjSWIqkaWxs5Ctf+Qp79uwBwGKxMHnyZMaNG0dLSwtvvfVWfIbRarXyxhtvcOGFFybdriqNpVAoFAqFQqFQKBQKhUKhUCgUxkfve7lqRYgiaUaPHs0777zDxIkTARARVqxYweOPP84rr7wSnwQZNmwYixcvTskkSHfGjx9vyk2VQNu8aMuWLXR2durtSkL08i8T7aarjVTZTdaO0fuWIjFmj5vR9Zk556WrHZXzFMlg9rgZXZ+e/mXrWM8oOS+Vvigyi5njZnRtKufpa1ON9Q5PzB43I+szsm/pRE2EKFLC+PHjWbNmDU8++STf+ta3OPbYY8nPz2f48OFMmjSJv//979TW1nLppZemvG21R4h+mLlevtojRGFEzB43o+szc85LVzsq5ymSwexxM7o+VS9fP5tqj5DDFzPHzejaVM7T16Ya6x2emD1uRtZnZN/SiSqNpcha9F5OpVAoFAqFQqFQKBQKhUKhUCgUikOj971ctSJEoVAoFAqFQqFQKBQKhUKhUCgUCoVpURMhiqzn9ttvx2636+1GWnC5XMyePRuXy6W3KwnRy79MtJuuNlJlN1k7Ru9bisSYPW5G12fmnJeudlTOUySD2eNmdH16+petYz2j5LxU+qLILGaOm9G1qZynr0011js8MXvcjKzPyL6lE1UaS5G1xJZTlZeX09jYyLp160xXGiscDtPY2Mjo0aOxWq16u3MQevmXiXbT1Uaq7CZrx+h9S5EYs8fN6PrMnPPS1Y7KeYpkMHvcjK5PT/+ydaxnlJyXSl8UmcXMcTO6NpXz9LWpxnqHJ2aPm5H16eWb3qWx1ESIImvR++JRKBQKhUKhUCgUCoVCoVAoFArFodH7Xq4qjaXIeqZOnUpRUZHebqQFr9fLwoUL8Xq9eruSEL38y0S76WojVXaTtWP0vqVIjNnjZnR9Zs556WpH5TxFMpg9bkbXp6d/2TrWM0rOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzpREyGKrMflchGNRvV2Iy3k5ORgt9vJyTHmpaqXf5loN11tpMpusnaM3rcUiTF73Iyuz8w5L13tqJynSAazx83o+vT0L1vHekbJean0RZFZzBw3o2tTOU9fm2qsd3hi9rgZWZ+RfUsnqjSWImvRezmVQqFQKBQKhUKhUCgUCoVCoVAoDo3e93IPr2kfhSmZOHEi+fn5eruRFkKhEOvWrSMUCuntSkL08i8T7aarjVTZTdaO0fuWIjFmj5vR9Zk556WrHZXzFMlg9rgZXZ+e/mXrWM8oOS+Vvigyi5njZnRtKufpa1ON9Q5PzB43I+szsm/pRE2EKLKe888/H5vNprcbaSEQCLBixQoCgYDeriREL/8y0W662kiV3WTtGL1vKRJj9rgZXZ+Zc1662lE5T5EMZo+b0fXp6V+2jvWMkvNS6Ysis5g5bkbXpnKevjbVWO/wxOxxM7I+I/uWTlRpLEXWovdyKoVCoVAoFAqFQqFQKBQKhUKhUBwave/lqhUhiqzHZrNhsVj0diMtiAiBQACjzlfq5V8m2k1XG6mym6wdo/ctRWLMHjej6zNzzktXOyrnKZLB7HEzuj49/cvWsZ5Rcl4qfVFkFjPHzejaVM7T16Ya6x2emD1uRtZnZN/SiZoIUWQ9s2bNoqysTG830oLb7WbOnDm43W69XUmIXv5lot10tZEqu8naMXrfUiTG7HEzuj4z57x0taNyniIZzB43o+vT079sHesZJeel0hdFZjFz3IyuTeU8fW2qsd7hidnjZmR9RvYtnajSWIqsJbacauTIkbS0tLB+/XrTlcaKRCK0tLQwbNgwcnNz9XbnIPTyLxPtpquNVNlN1o7R+5YiMWaPm9H1mTnnpasdlfMUyWD2uBldn57+ZetYzyg5L5W+KDKLmeNmdG0q5+lrU431Dk/MHjcj69PLN71LY1kz1pJCkWJaWloAaGpqAuDNN99k+/bterqkUCgUCoVCoVAoFAqFQqFQKBSKA6irq+vx/9i93UyhJkIUWcuyZct6/P+Xv/ylTp4oFAqFQqFQKBQKhUKhUCgUCoWivyxbtozzzz8/Y+2pPUIUWc/48ePJy8vT2420kJeXZ2h9evmXiXbT1Uaq7CZrx+h9S5EYs8fN6PrMnPPS1Y7KeYpkMHvcjK5PT/+ydaxnlJyXSl8UmcXMcTO6NpXz9LWpxnqHJ2aPm5H1Gdm3dKImQhRZz5QpUygsLNTbjbRQWFhoaH16+ZeJdtPVRqrsJmvH6H1LkRizx83o+syc89LVjsp5imQwe9yMrk9P/7J1rGeUnJdKXxSZxcxxM7o2lfP0tanGeocnZo+bkfUZ2bd0ojZLV2QtK1as4IILLoj/f/HixZxwwgk6eqRQKBQKhUKhUCgUCoVCoVAoFIoD2b59O1OmTIn//913381oaSy1R4giaxk2bFiP/59wwgmceuqpOnmjUCgUCoVCoVAoFAqFQqFQKBSK/nDgvd10o0pjKbKe22+/naOPPhqASCSCy+UittDJ4/EQCoUA8Pv9eL1eAMLhMC6XK27D7XbT2dkJgM/nw+fzAdDZ2Ynb7Y6f53K5CIfDAHi9Xvx+PwChUAiPxwOAiOByuYhEIgB0dHQQCAQACAaDtLe3AxCNRnG5XESjUQDa29sJBoMABAIBOjo6cLlczJ49m507dxpSU8y/xsbGfmtKRZxi7e7ZsydtcWpsbGT27Nm0tbWlVFNrayuzZ8+O6xpsnJqampg9ezZ79+4dVN/buXNn3I90xWmgmtJ9PZlBU3NzM7Nnz6a5udk0mrrHadeuXcyePZt9+/YZUlP39z+Tfa+lpSWe89IZp3Tkve6fY8nEaffu3fGcNZi+19bWFteWrjgZ7Xoyg6ZYn3S5XKbR1D1OsZwSs2M0TbGc7HK5Mt73MpH3ur//qdIUy1Wtra1JxSmWO5uamgakSeW97Ndk5rwX69e7du0ypKaYf83Nzf3WBKnpe92/m2XTd/fYd9LuuWuwcUo278Vev3PnTlPnCLNpOvC6M4Om7nEyct7bt29f3Dc9+p5eqIkQRdazbt06LrnkEgBaWlpwOBzxi7OyspLa2loAVq5cyZIlSwBtgOlwOOI25s6dS11dHQDLli1j2bJlANTV1TF37tz4eQ6HIz5wWLJkCStXrgSgtraWyspKQEscDoeDlpYWABYtWkR1dTUAa9euZcGCBYCWHBwORzwZLViwgLVr1wJQXV3NokWLKC4u5vLLL+eJJ54wpKbi4mLOPvvsuA/90ZSKOBUXFzNu3Lj4+5qOOC1ZsoTrr7+eaDSaUk2xD6ni4uKk4vTpp59y/fXX88UXXwyq7z3xxBNcddVVFBcXpy1OA9WU7uvJDJrq6uq4/vrr2bRpk2k0dY/TsmXLuP766/H7/YbUtGnTJq6//nrq6uoy2vf27t3L9ddfH3+P0hWndOS94uJiLrnkEp544omk4rRy5UpOOeUUiouLB9X3YgP42L9mzRFm07RkyRLOPvtsiouLTaOpe5w2bdrEiBEjKC4uNqSmZcuWcfrpp1NcXJzxvpeJvFdXV8fQoUMpLi5OmaaVK1dy/fXX43a7k4pTcXExxx57LJ9++umANKm8l/2azJz3iouLOf300+M+GE1TcXExI0aMYNOmTf3WBKnpe88++ywXXHABxcXFWfXd/dNPP+XYY4+luLg46Tglm/eKi4u56qqreOKJJ0ydI8ymqbi4mKFDh8Z9MIOm7nEyct7z+/1cf/31LFu2TJe+pxuiUGQpNTU1AojNZpPi4mKpqamRcDgsTqdTotGoiIi43W4JBoMiIuLz+aSjo0NERDo7O8XpdMZtuVwuCYVCIiLi9XrF6/WKiEgoFBKXyxU/z+l0Smdnp4iIdHR0iM/nExGRYDAobrdbRESi0ag4nU4Jh8MiItLe3i5+v19ERAKBgHg8HhERiUQi4nQ6JRKJiIiIx+ORQCAgIiJ+v1/a29tFRJQmpUlpUpqUJqVJaVKalCalSWlSmpQmpUlpUpqUJqVJaVKaslpT7F5u7KipqZFMoiZCFFlL7OKZOnWqFBUVZfziyQQdHR3y3HPPxROH0dDLv0y0m642UmU3WTtG71uKxJg9bkbXZ+acl652VM5TJIPZ42Z0fXr6l61jPaPkvFT6osgsZo6b0bWpnKevTTXWOzwxe9yMrE8v3/SeCFGlsRRZT/eadWYjJycHu91OTo4xL1W9/MtEu+lqI1V2k7Vj9L6lSIzZ42Z0fWbOeelqR+U8RTKYPW5G16enf9k61jNKzkulL4rMYua4GV2bynn62lRjvcMTs8fNyPqM7Fs6sYh07WaiUGQZmzZt4ktf+lL8/zU1NZx66qk6eqRQKBQKhUKhUCgUCoVCoVAoFIoD0fte7uE17aMwJRMnTiQ/P19vN9JCKBRi3bp1hEIhvV1JiF7+ZaLddLWRKrvJ2jF631IkxuxxM7o+M+e8dLWjcp4iGcweN6Pr09O/bB3rGSXnpdIXRWYxc9yMrk3lPH1tqrHe4YnZ42ZkfUb2LZ2oiRBF1nP++edjs9n0diMtBAIBVqxYQSAQ0NuVhOjlXybaTVcbqbKbrB2j9y1FYsweN6PrM3POS1c7KucpksHscTO6Pj39y9axnlFyXip9UWQWM8fN6NpUztPXphrrHZ6YPW5G1mdk39KJKo2lyFr0Xk6lUCgUCoVCoVAoFAqFQqFQKBSKQ6P3vVy1IkSR9ZSVlVFcXAxAJBLB5XIRm9/zeDzxZV5+vx+v1wtAOBzG5XLFbbjdbjo7OwHw+Xz4fD4AOjs7cbvd8fNcLhfhcBgAr9eL3+8HtCVlHo8HABHB5XIRiUQA6OjoiM+wBoNB2tvbAYhGoz02em9vbycYDALazGxHRwcigtfrxel0GlKTiOB2u+Pn9UdTKuIkIrS1tcXPS0ecPB4PgUAg7muqNHV2dtLc3Bw/b7Bx8vl8BAKBuK/90dS97zmdTnw+HyKStjgNVFO6ryczaAoEAgQCAfx+v2k0dY9TTGPMV6Np8vv98Rhksu+FQiECgUD82k9XnNKR90SEjo4OnE5nUnGK2RCRQfW9SCRCc3Nz/Dyz5gizafJ4PLjdbkTENJq6x8nv99Pa2oqIGFJTe3t73KdM971M5L1AIEBLSwsikjJNMfudnZ1JxUlE2LdvX/w8lfdU3stmTbE4xV7fvY8aSZOI0NraGj8vk30v9r6ISFZ9d/f5fOzbtw8RSTpOyea92HvndDpNnSPMpklEaGlp6fHZnO2ausfJyHkvHA73+A7eX02pipNeqIkQRdZzyy23MHXqVABaWlpwOBzxi7OyspLa2loAVq5cyZIlSwBobGzE4XDEbcydO5e6ujoAli1bxrJlywCoq6tj7ty58fMcDgeNjY0ALFmyhJUrVwJQW1tLZWUloCUOh8NBS0sLAIsWLaK6uhqAtWvXsmDBAkBLDg6HI56MFixYwNq1awGorq5m0aJFuN1u7rrrLu677z5DanK73fzzn//k6aef7remVMTJ7XZz//3389prr6UtTk8//TRz5sxh165dKdW0detW5s2bF/+wGmycli9fzpw5c/j3v/89qL5333338Y9//AO32522OA1UU7qvJzNo+vDDD5kzZw4rV640jabucaqqqmLOnDnU19cbUtPKlSuZM2cOH374YUb73saNG5kzZw6vvfZaWuOUjrzndru5++67ue+++5KK00svvcR9992H2+0eVN/btWsX8+bNY9euXWmLk9GuJzNoevrpp/nnP/+J2+02jabucVq5ciUPPvggbrfbkJqqqqpwOBy43e6M971M5L0PP/yQhx56KH5jMBWaXnrpJebMmcPWrVuTipPb7eaBBx5g+fLlA9Kk8l72azJz3nO73TgcDqqqqgypye128+CDD8bPy3Tfu+eee3C73Vn13X358uU88MADuN3upOOUbN5zu9384x//4L777jN1jjCbJrfbzUMPPcSHH35oGk3d42TkvFdfX8+cOXOoqqrSpe/phigUWUpNTY0AMmbMGCktLZWamhoJh8PidDolGo2KiIjb7ZZgMCgiIj6fTzo6OkREpLOzU5xOZ9yWy+WSUCgkIiJer1e8Xq+IiIRCIXG5XPHznE6ndHZ2iohIR0eH+Hw+EREJBoPidrtFRCQajYrT6ZRwOCwiIu3t7eL3+0VEJBAIiMfjERGRSCQiTqdTIpGIiIh4PB4JBAIiIuL3+6W9vV3C4bA0NjZKa2urITWFw2H5/PPP4+32R5OIJB2ncDgsO3bsiL+X6YiT0+mUPXv2SCgUSqmmQCAg27Zti7c72Di1t7fLnj17xOfzDarvtba2yq5duyQcDqctTgPVlO7ryQyavF6v7NmzJ94HzKCpe5xcLpfs2bNHgsGgITV1dHTInj17xOv1ZrTv+f1+2bNnT7wPpCtO6ch74XBYvvjiC2ltbU0qTm63W+rr6yUcDg+q74VCIdm2bVu8XbPmCLNpcjqd8vnnn0s4HDaNpu5x6ujokLq6OgmHw4bU5HK5pKGhQcLhcMb7Xibyntfrle3bt0s4HE6ZJrfbLXv27Inn1MHGKTbWjbWr8p7Ke9msKRancDgsDQ0N8XaNpikcDktdXV2P722Z6nv79u2TnTt3Sjgczqrv7u3t7bJjxw4Jh8NJxynZvBcOh2XXrl3S2tpq6hxhNk3hcFi2b98eb9cMmrrHych5LxgMyp49e+Ljrv5qSjZOsXu5saOmpkYyidojRJG16F1XTqFQKBQKhUKhUCgUCoVCoVAoFIdG73u5qjSWIuuZPn16fI8Qs9HR0cH8+fPjtfeMhl7+ZaLddLWRKrvJ2jF631IkxuxxM7o+M+e8dLWjcp4iGcweN6Pr09O/bB3rGSXnpdIXRWYxc9yMrk3lPH1tqrHe4YnZ42ZkfUb2LZ2oiRBF1tPQ0BDfDMhsWK1WysvLsVqteruSEL38y0S76WojVXaTtWP0vqVIjNnjZnR9Zs556WpH5TxFMpg9bkbXp6d/2TrWM0rOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzpRpbEUWYvey6kUCoVCoVAoFAqFQqFQKBQKhUJxaPS+l6tWhCiynkmTJlFQUKC3G2khGAxSXV1NMBjU25WE6OVfJtpNVxupspusHaP3LUVizB43o+szc85LVzsq5ymSwexxM7o+Pf3L1rGeUXJeKn1RZBYzx83o2lTO09emGusdnpg9bkbWZ2Tf0omaCFFkPRMnTiQ/P19vN9JCKBRi3bp1hEIhvV1JiF7+ZaLddLWRKrvJ2jF631IkxuxxM7o+M+e8dLWjcp4iGcweN6Pr09O/bB3rGSXnpdIXRWYxc9yMrk3lPH1tqrHe4YnZ42ZkfUb2LZ2o0liKrEXv5VQKhUKhUCgUCoVCoVAoFAqFQqE4NHrfy1UrQhRZz4gRIygpKQEgEongcrmIze95PJ747Kbf78fr9QIQDodxuVxxG263m87OTgB8Ph8+nw+Azs5O3G53/DyXyxXfmN3r9eL3+wFtJtXj8QAgIrhcLiKRCAAdHR0EAgFAW3rW3t4OQDQaxeVyEY1GAWhvb48vSQsEAnR0dBCNRtm3bx9tbW2G1BSNRmlubo7b64+mVMQpGo2yZ8+euL10xMntdsftpFJTKBRi586dcXuDjZPX68XlchEIBAbV99ra2mhrayMajaYtTgPVlO7ryQya/H4/LpcLn89nGk3d4+TxeHC5XHR2dhpSk8/nw+Vy4ff7M9r3gsEgLpcr7kO64pSOvBeNRmltbaWtrS2pOLW3t9PU1EQ0Gh1U3wuHw+zcubOHPTPmCLNpcrvdNDc3E41GTaOpe5x8Ph+7du0iGo0aUpPH44m//5nue5nIe36/n8bGRqLRaMo0tbe343K5CIVCScUpGo2ye/fuHuNHlfdU3stWTbE4xb47xuwZTVM0GmXXrl1xe5nse06nk5aWFqLRaFZ9d/d6vezevZtoNJp0nJLNewd+x01HnIx0PZlFUzQapbGxMW7PDJq6x8nIeS/2ndvj8ejS9/RCTYQosp4bb7yRiooKAFpaWnA4HPGLs7KyktraWgBWrlzJkiVLAGhsbMThcMRtzJ07l7q6OgCWLVvGsmXLAKirq2Pu3Lnx8xwOB42NjQAsWbKElStXAlBbW0tlZSWgJQ6Hw0FLSwsAixYtorq6GoC1a9eyYMECQEsODocjnowWLFjA2rVrAaiurmbRokV4PB4eeOAB7r//fkNq8ng8zJs3j2eeeabfmlIRJ4/HwyOPPMLSpUvTFqdnnnkGh8PB7t27U6pp27ZtPPHEE7S0tNDQ0MCDDz7Ihx9+SENDAy+++CIvvvgiDQ0NfPjhhzz44IM0NDTQ0NCAw+Hgk08+oaGhgaqqKhYvXozD4eCtt97ikUceoaGhgc8++wyHw8H69etpaGjgmWee4Y033qChoYG3336bJ554goaGBmpra7n//vu5//77qa2t5YknnuDtt98mEAikNE7p7HuxOA3kejKDpurqahwOB6tWrTKNpu5xev7553E4HPE+bzRNq1atwuFwUF1dndG+V1NTg8PhYOnSpWmNUzrynsfj4cEHH+T+++9PKk6LFy/m4YcfxuPxDKrv7d69myeeeILdu3enLU5Gu57MoOmZZ55h3rx5eDwe02jqHqdVq1bx2GOP4fF4DKnp+eefj7//me57mch71dXVPP7443g8npRpio3Ptm3bllScPB4Pjz76KG+99daANKm8l/2azJz3Yt8dn3/+eUNq8ng8PPbYY6xatarfmiA1fW/evHk89NBDeDyerPru/tZbb/Hoo4/i8XiSjlOyec/j8cS/45o5R5hNk8fj4fHHH+/x2ZztmrrHych5L/ad+/nnn9el7+mGKBRZSk1NjQAyYsQIKSkpkZqaGgmHw+J0OiUajYqIiNvtlmAwKCIiPp9POjo6RESks7NTnE5n3JbL5ZJQKCQiIl6vV7xer4iIhEIhcblc8fOcTqd0dnaKiEhHR4f4fD4REQkGg+J2u0VEJBqNitPplHA4LCIi7e3t4vf7RUQkEAiIx+MREZFIJCJOp1MikYiIiHg8HgkEAiIi4vf7pb29XSKRiLS2tsq+ffsMqSkSiUhTU1PcXn80iUjScYpEIrJ79+64vXTEyeVyxe2kUpPT6ZTp06fLkCFDBJCysjLJy8sTQAoLC6WwsFAAycvLk7KyMgEEELvdLlarVQApKiqSwsJCsdvtUlBQIKWlpQKIxWIRu90uubm5AkhxcbHYbDYBpKCgQEpKSgSQnJwcGTp0qAwdOlRycnKkpKRECgoKxGazyfe//31pbm5OSZzS2fdicRrI9WQGTT6fT5xOp3i9XtNo6h4nt9stTqdTQqGQITV5vV5xOp3i8/ky2vcCgYA4nc64D+mKUzryXiQSkZaWFtm3b19ScfJ4PLJnzx6JRCKD6nudnZ3y+eef97BnxhxhNk0ul0uampokEomYRlP3OHm9XmlsbJRIJGJITW63O/7+Z7rvZSLv+Xw++eKLLyQSiaRMk8fjEafTKcFgMKk4RSIR2bVrV/w9UnlP5b1s1hSLU+y7Y8ye0TRFIhFpbGyM28tk32tra5O9e/dKJBLJqu/uHR0dsmvXLolEIknHKdm8F4lEZN++fbJv3z5T5wizaYpEIvLFF1/E7ZlBU/c4GTnvxb5zu93ujPa92L3c2FFTUyOZRO0Rosha9K4rp1AMhqlTp1JVVTWg1xwFnHjAMQ6wAT7A2/VvMn/H/g0DFRUVLFy4MAmVCoVCoVAoFAqFQqFQKBQKxX70vperSmMpsp4bbrghvkeI2Whvb2fevHnxGn1GQy//MtFuOtoIBAK8/fbbCfvsEcA5wA+A2cCzwMeAE2gBPgCeBP4AVAAnl5Tw3g03cEpJCRcAlwLXANOBm4BfAX8C5gD3A5XAQuAV4G1gWUkJN95wA2tLStgNuIFOIATMq6pCRo2CE06A00+Hr34VLrwQvvtdmDoVZsyA3/8enn0W1q+HriWQivRj9JyQLEbXZ+acl652UmUzWTtG71uKxJg9bkbXp6d/2TrWM0rOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzqx6u2AQpEs69ati2/EYzby8/OZOHEi+fn5eruSEL38y0S76Whj77ZtnNDeTs66ddwSCvVY4XHEQP0LhZi4bh35g+z7vb0+D7ADNDX125bk5hI+7jhCJ51E50knxf/tLC+HvLw+Xzty5EhsNttA3T9sMXpOSBaj6zNzzktXO15Y3HIAAQAASURBVKmymawdo/ctRWLMHjej69PTv2wd6xkl56XSF0VmMXPcjK5N5Tx9baqx3uGJ2eNmZH1G9i2dqNJYiqxF7+VUCkVC2tvhs88SH62tenuXUULAVmATUNP17yagDoh2nWOz2bjiiiuorKyksLBQH0cVCoVCoVAoFAqFQqFQKBRpRe97uao0liLrOf/88037i/JAIMCKFSsIBAJ6u5IQvfyLtetyuWhoaEjLsW3bNhYvXsy2bdsOeu7z2lp2LV3K3ocewvmb39B+7bUEzj6byLBhUFoKZ52llZD6f/8PnnoKPvwwPgkSsNlYcf75BJLss8naSZUffZEPnAZMBf4MvARsAzqAT4GngF8EAnirqrjt2mshGu3VlkLD6DkhWYyuT++cl+5209FOqmwma8fofUuRGLPHzej69PQvE22bOeel0hdFZjFz3IyuTeU8fW2qsd7hidnjZmR9RvYtnaiJEEXWU15ejtVqzipv4XCYhoYGwuGw3q4kRC//PB4PS5cu5YQTTmDs2LFpOc456yzeevllfn/WWTw0dizLx46lYexY8saO5bhTT+WYSy9l+M03M/Qf/6DkX//C9skn5PZjxUfYaqWhvJxwkn02WTup8mMwDAHOAP4LuBNYAtz/2mtIaSl85Svw3/8Nd90Fy5aBx5Nx/4yM0XNCshhdn17+ZarddLSTKpvJ2jF631IkxuxxM7o+Pf3LRNtmznmp9EWRWcwcN6NrUzlPX5tqrHd4Yva4GVmfkX1LJ6o0liJr0Xs5lUI/pk6dSlVVVcrt2oBvo21GfhlQlPIW0sBVV8Epp4DPpx1eb+K/W1th7169vR04OTlw5pnw9a9rx3nnwRED3VFFoVAoFAqFQqFQKBQKhUKhJ3rfyzXnz+gVhxUjR46kpaVFbzfSQiQSoaWlhWHDhpGbm6u3Owehh3+BQIAlS5bE4x6JRJKyVwBcgjb5cTlQ0vV4JDeXpmHDGNbSQm6SbXQnkptLS192CwvhhBPgxBN7HnfcAW+9dbCd664j98orD93ws8/CtGkHvd7mcjEpEKAIKOw6evv7emD04KUPjmgUPvlEO+65B4DQyScT+MpXCJxzDsGvfEUrSdYLZtuM3eg5IVmMrk8v/zLVbjraSZXNZO0YvW8pEmP2uBldn57+ZaJtM+e8VPqiyCxmjpvRtamcp69NNdY7PDF73Iysz8i+pRNVGkuR9dxwww2UlJQc+sQspL29nYcffpj29na9XUmIHv41NTWRn5+fVNzzgEuBJ4Fm4GXgOvZPggC0l5Tw8A030J7ivnWg3buAG61WgsuWQWMjdHTA+vWwaBH87W8wY4a2CmL8+MR2+rvBeFtbwtdHTzmFiRUV1NpsvAcsQ9vLYwHwKPBP4K/AH4CeFvbzLHA78C9gM5DuhZX5W7dS+vTTDP/5zzn2K18hOHYsy8aO5Q9jx/L1A0qcDR06lKlTp+Lz+dLsVWYwek5IFqPr08u/TLWbjnZSZTNZO0bvW4rEmD1uRtenp3+ZaNvMOS+Vvigyi5njZnRtKufpa1ON9Q5PzB43I+szsm9pRRSKLKWmpkYAKSsrk+LiYqmpqZFwOCxOp1Oi0aiIiLjdbgkGgyIi4vP5pKOjQ0REOjs7xel0xm25XC4JhUIiIuL1esXr9YqISCgUEpfLFT/P6XRKZ2eniIh0dHSIz+cTEZFgMChut1tERKLRqDidTgmHwyIi0t7eLn6/X0REAoGAeDweERGJRCLidDolEomIiIjH45FAICAiIn6/X9rb2yUajUpHR4e0tbUZUlM0GhWXyxU/rz+aRCSpOH322WdisVhk6NChUlhYKIDk5eVJWVmZAAKI3W4Xq9UqgBQVFcmQIUPECvLt/Hx5pLRU2kCiFos47XYJ5+aKgLQXF4vfZhMBCRQUiLukRPw2m4RzcsRpt0skJ0cExFNSIoGCAhEQv80m7cXFIiDh3Fxx2u0StVhEQPaWlsr6/HxZDPLIkCHSUVQkAhKyWqVpxIj4eWeUlcnUqVMPHafHHpPOb31L5MYbpePvfxfvc8+Jf+lSCTQ19a/vzZ4tnpISEZBITo602e3iHTJEopMmicfjEZfLJfX19bJ161apra2V+vp62b59u2zcuFF27Ngh9fX1sm/cOAnm54uA+Lpp+uKpp2Tjxo1SX18v9fX1svHf/5aGV1+VvQ6H7P75z6Xl29+WUHm5BPPyxFVWJgIiIE67XTqtVhGQjqIi8Q0ZIgISzM8Xd2mpSD/i1F1TLE71II+VlMiPCgrkBBCbzSbXXXdd0n3PCDnC7/eL3+8Xn8+XkuvJCJq654iYxpivRtPk8/niMRhILk82TsFgUPx+v3R0dKQ1Tm63W/x+f9zXVGiKRqPS3t4ubW1tScUpZiMajQ6q74XDYWlqaoqfl444Ge16MoMmt9stLpdLotGoaTR1j5PP55OWlhaJRqOG1OTxeOI+ZbrvZSLv+f1+2bt3r0Sj0ZRpitkPhUJJxSkajUpra2v8PJX3VN7LZk2xOMVe372PGklTNBqVlpaW+HmZ7Hux9yUajWbVd3ev1yutra0SjUaTjlOyeS/23rW1tZk6R5hNUzQalb179/b4bM52Td3jZOS819nZ2eM7eH81JRun2L3c2FFTUyOZRK0IUWQ9Z5xxBldffTUALS0tOBwOgsEgAJWVldTW1gKwcuVKlixZAkBjYyMOhyNuY+7cudTV1QGwbNkyli1bBkBdXR1z586Nn+dwOGhsbARgyZIlrFy5EoDa2loqKysBCAaDOByOeLmuRYsWUV1dDcDatWtZsGABoG347XA48HRtBr1gwQLWrl0LQHV1NYsWLcJisdDe3s59991nSE0Wi4XNmzfz7LPP9ltTsnHavXs3IsLkyZO5+OKLARg3bhw33nhj/LyZM2cyevRocoEZl1/OHZMn0wT8dcIEvDNmMBQIFhTgmDmTlq6ySouuvprqSZO0OJ1xBs9Om4YtEKC9tBTHzJl4Sks1TdOmsfaMMwD4YNIknrr6apYA9w4bhmPmTL5dUEA58NcZM7h+wgSmAIsnT+aVyy8HYNfo0cy78UYsXdszXfHznzNr1qxDx6mxkca5c+Ghh1hy7LGsstuxffvbbN6zp39976KLWPDXv8LWrXjeeov7Zs4kNHcult/9jgULFrB582bKy8vZvXs3a9asoby8nKKiIl544QVGjRpFeXk5T333u9ROmKDFafJkllx+OVgshM88kxdeeIHy8nLKy8t5ddky/OPGMex//5c1F17Iez/9KXn19ez461+Z2y1OjpkzaRytFdtacvnlrJw8Wet7EyZQOWOGpukQcVrQVe7L0y1O5UDntGn8+Iwz+Ax4ftIkJubn0+lw0FJdndU5Yt26ddhsNtasWZOS68kImrrniBdeeAGbzUZra6shNa1Zswabzca6desGlMuTjdOOHTuw2WwsX748rXF69tlnsdlstLe3p0yTxWKhtbWV++67L6k4vfrqq6xZswaLxTKovtfe3s68efPiv3hKR5yMdj2ZQdOzzz7L5s2bsVgsptHUPU5r1qzh1VdfxWKxGFLTCy+8wLp167BYLBnve5nIe+vWreOFF17AYrGkTNOrr76KzWZj165dScXJYrGwfPlyVq1aNSBNKu9lvyYz5z2LxRK/7oyoyWKxxMcb/dUEqel78+bNY9euXVgslqz67r5q1SqWL1+OxWJJOk7J5j2LxUIoFOK+++4zdY4wmyaLxRIfb5hFU/c4GTnvtba2YrPZeOGFF3Tpe7qR0WkXhSKFxGYRb7nlFhk5cqQpV4S43W655557ZOfOnYbUFPNv165d/dYkkvyKkNLSUrnllltk+PDhPVaErF69Wuq3b5dtTz4pbdOmSfiIIwa90mDXqFFy78yZ0jZ0qLQec0zCFSH7vvGNXldP1NTUyLZt26S+vl62bNkibaeeKsGTT5bGSy+Vu/7wB2n44x8l+MIL4tqxY1Bxam5ulnvvvVdaWloG1fd27twp99xzj7jd7v7H6eOPJbhihcjzz4vv17+WjgsvFDn77P73venTE64IqQY5t6hIfjRkiNwF8mp+vmxPYkXIIVfunHiiRH/4Q5EFC8S9Y4dhrqdEcTrwetq7d6/ce++90tzcbKpfysT63u7du+Xee++VtrY2Q2qKXXd79+7N6K+0Wltb5d5775Wmpqa0xmnXrl1y7733itPpTJmm7p9jycRpz549cvfdd8fbGGjfczqdcvfdd8ffW7P9ms6smnbt2hX/rDKLpu5xam5ujvdrI2ravXt3/P3PdN/LRN7bu3dv/P1PlaY9e/bIvffeK/v27UsqTm63W+6++25pbm4ekCaV97Jfk5nzXmxMsHv3bkNqOvC6y2Tf++KLL+Jxz6bv7t0/x5KNU7J5r/uY08w5wmyaYnHfu3evaTR1j5OR815bW5vce++9snv37sNqRYhFpOtnyQpFlrFp0ya+9KUvMXHiRGpra/n000859dRT9XYrpYRCIWpra5kwYQL5+fl6u3MQevjX0NDAySefzIQJE6itrSUUCmEBvga8+l//RemyZdDcnFwjRx5J6KqrqJ08mQlXXEH+gw/CbbcdfN5JJ8HWrQMynar3LFk7KYudCFgs/Tv3lFNgy5aDHr4XuDXB6ScBX+86JgNjBu1kH1gscOaZcMkl2vHVr0JeXjpaSglGzwnJYnR9evmXqXbT0Y7pcp4io5g9bkbXp6d/mWjbzDkvlb4oMouZ42Z0bSrn6WtTjfUOT8weNyPr08u32L3cGDU1NRm9l6smQhRZi94Xj0IfGhoaGDt2LBZgElABXAMcnaxhux2uvBKuvRa+8Y2eN8MXLYJrroGyMhg3DsaOheOPh5NPhh/9KNmWDw9cLhg6NOFTFcDz/TBxErAesKXOq4MpKdHiH5sYOf74dLamUCgUCoVCoVAoFAqFQnFYoPe9XGvGWlIo0sS3vvWteN07s+F0Olm+fDmnn346BQUFertzEMFgkPXr12fOPxFcy5Zx15AhjJk8mctWrmSI3z94e1YrTJumTX5cdBF0mwX3+/2sXLmSyZMnM+Q734G2tl5v5A+EHnaHDNHNTqr86Dd5efDss7BmjXZ8+imEQgDcvXo1c7r2CumLIe+8g62XiafO0aPJ66qFmRTt7fDyy9oBcMIJ+ydFLriAgNVKU1NT8u10MXLkSGy2/k/tZDxuGcbo+vTyL1PtpqOdwzbnKVKC2eNmdH16+peJts2c81LpiyKzmDluRtemcp6+NtVY7/DE7HEzsj4j+5ZO1ESIIuux2+3k5OTo7UZK8fl8zJgxg+XLl3PxxRczY8YMvF6v3m4dRFFREZdffnna/TsLuLbrmAicWFTEErudaLJxz8uDBx6A4uKDnopGo7hcLqLRKBQVQWFhcm0lsqujnVT50W+KiuD739cOgGAQ1q+HTz9l9Lnn9q+81ocfJn586FDy6uvB5WLvCy+w4IYb+DpaX8lN1u/t27XjwQcJ5+SwBng9GuVNtNUpyS6ptNlsXHHFFVRWVlLYjz6W8bhlGKPr08u/TLWbjnYO25ynSAlmj5vR9enpXybaNnPOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzpRpbEUWYvey6nSydSpU6mqqtLbDV05Ha1k0rXAuGSN2WwQCCR+7vnntbJXCmMTicDRR8PevQc/98MfwpNPAvtLpwGUAueyf5+Rr1qtWMLhlLnUBLwJvA4sA5xJ2KqoqGDhwoUp8UuhUCgUCoVCoVAoFAqFwmjofS/XXD+jVxyWlJeXY7WaZ3FTIBDg5a6yPFar1dD6Uu3fl4A7gK3AOuC3JJ4ECVutNJSXE+6r3SFD4Oqr4V//0jZPHz58/3PDhsHPfgZvvw3f+17Cl4fDYRoaGgin8MZ5Ku0maydd+tJGdXXiSRCAKVMSPuxBm6T4LdqEyM5PP9X2dTntNOhHKa5DMRK4HlgItADvA39AW8HUz+3j47z88ssEepus60bWxW2AGF2fXv5lqt10tKNyniIZzB43o+vT079MtG3mnJdKXxSZxcxxM7o2lfP0tanGeocnZo+bkfUZ2bd0oiZCFFnP9OnTKU5Q2ihbaWpqit8QLS4uNrS+VPg3HvgTsAnYCPw/tE2x+6KjuJgnp0+n44B2paBAm9h47jntpvm//qVNhpSWwk9+Aj/9Kbz1FuzeDfPmaZti9zKZ0tHRwZNPPklHR8egtaXTbrJ20qUvbUycqG1a/4MfaBvbx7DZ4OKL+2Wi7eOPYetW2LgRGhsJHX883ksuwXfeeUSLipJyLxf4T+D/gE+APcCTwFTgiH68PhAI9GvvkayL2wAxuj69/MtUu+loR+U8RTKYPW5G16enf5lo28w5L5W+KDKLmeNmdG0q5+lrU431Dk/MHjcj6zOyb+lElcZSZC16L6dKF91L+5iVE9FKXlUApyVpK4hWnujzc87hf5Yt0yY9FOamsxNWrYLFi7W/582LP9XX9XM72qTbgYTR+uFw4JKu46wUuhsBPkJbnfI68G8S7y1SX19PeXl5CltWKIzFoSb8Ro4cic1my6BHCoVCoVAoFAqFQqHIFHrfyzVmvR2FQmE6jmf/hudnpNDulLw8yq68ksrKypRtaK4wOHl5cOGF2jEApvTy+GZgS9exCvg9MAz4JtqkyMVoZbAGSy7w1a7jDmAv+/cWWQ60JmFbocgGfD4fM2bMOGQJOJvNxhVXXEFlZSWFKp8rFAqFQqFQKBQKhSKFqNJYiqxn1qxZlJWV6e1GWigrK+uhb/Xq1dTX1xvm2LhxI3/5y1/YuHFjwue/WL2afbfdRuC006gD/sbgJ0G6/4LeXVbGnbNm4S4rY8nNN7Nw4cKU3zRzu93ceeeduN1uQ9pN1k669BmVscDpvTz3ZILHWoBn0fYAORqYCNwGvAOEkvRlOPBfXfab0VaL/BkoWLNGW+HSB2aPm9H16eVfptpNRzsxm2+88cYh98EJBAJUVVUxY8aMlPuW6PWBQICGhoaER3/27FGkH6PnhGQxuj49/ctE2+nMeXqP81LpiyKzmDluRtemcp6+NtX328MTs8fNyPqM7Fs6UaWxFFlLbDnV+PHjqaurY+3ataYrjZWXl8e4ceOoq6ujs7PTcKVzOjs7qaurY9y4ceTl5WkPfvGFtjdHVRV89FFyDeTkwAUXQEWFZu/tt7V28/Ko+/KXGXf66eT98IcweXKSSg4moTYD2U3WTrr06U0gEGDo0KEH3cScCdyb4PwwcCxw6N05tF8O5KOt8LgAuDw3l58ccwyWnTuT8rkHJSXa3jWXXKIdxx/f42kjxK2/+5kcSH/KHhlBX1/o5V+m2k1HO+3t7Zx77rls2bKFzkNM9MWw2Ww4nc4e/SWVOa+zs/OQK1T6uzqlt+tBlflKDUbPCclidH16+peJttPRhlHGean0RZFZzBw3o2tTOU9fm+r77eGJ2eNmZH16+aZ3aSw1EaLIWvS+eNJFX3scGG0iJM7u3drkx/PPwwcfJGfLYtEmNq69Fq66CoYP1x5/4gm45RZtM/Rrr9XKIuXnJ++7wnRMnTqVqqqqHo8VA1egrfC4kP3LIV8DLuun3W+jreKoAuYDx117LQsXLoQtW+D117Vj1SoIJbtmpBsnnLB/UuSCC6C4OHW2B0h/yxv1hip7dHgy2H2v3n333fjnXaonFRLliN6oqKjQrvMDONT10Gd/F4FAQDuCwf3Hgf8PBg/tYE4OFBRoh822/+/YMWQIFBVp5ykUCoVCoVAoFAqFjuh+L1cUiiylpqZGAJkyZYoUFhZKTU2N3i6lhPr6ekGrBCWFhYVxfYDU19fr7d5+mprEe9998tJPfyrewkIR7dbO4I+vfU3k/vtFdu9O3J7fLxIMioiI1+uVl156Sbxeb9rkpauNVNlN1k4m3kO98Hq9UlFRITabLX4tdT9Gg/wWZCvI1Qme7+1YeECfjZx4osjdd4vs27e/8fZ2kVdeEbnxRpHy8uSvi+5HXp54v/lNeemOO8T7wQci4XBG39eKiop+v1d9HRUVFb22YfR+qZd/mWo3He1s3ry5x+fYYA6bzSbXXXed/Otf/0o65+3bt6/X3NBb236//yB7FddeK3aQE0HOBZkC8pOu3HInyEMgC0D+PWqU9vn25S+LHHecyNChIrm5qc0NhzosFpHSUpHRo0UmTBCZNEnkkktErrlG5Cc/Efnd70TuvVfkmWdE3nxT5NNPRb74QiQQSC74KcDoOSFZjK5PT/+ydaxnlHFeKn1RZBYzx83o2lTO09em+n57eGL2uBlZn16+xe7lxo5M38tVPw9TZD25ubkUFRUBEIlEcLlcSNdCJ4/HQ6jr19l+vx+v1wtAOBzG5XLFbbjd7njJDp/Ph8/nA7SlYt3r5blcLsLhMABerxe/3w9AKBTC4/EAICK4XC4ikQgAHR0d8V+LBoNB2tvbAYhGo7hcLqLRKKCVDwl2/frTZrNR3PXLb4vFQmlpKRaLxRiaPv2Ujh/+kMC4cTBrFpHWVjq6fI3m5OCy24l2/fK0vaSEYEEBAAGbLX5eJDcXl92OWCxw1VV4tm4l9Pbb8POf47fbE2uy2XD7/XFN4XA4rXHq6Og4ZJwCgUD8vIH0vVC3FQN69T232x33NRWajHQ9FRYW8uijj9LU1ER9fT1bt26ltraW+vp6tm/fzusbN/KTHTvI37GD29evZ9u2bdTX17Nly5Ye53Xf+2bTBx/wva5fdfsKC/EVFpLz2Wd0zpqFu9t+Bq5wmPC3vw0PPYR340b869bB3XcTuvhiPEceqWmyWHDZ7URyczVNxcUEun7tHiwooL2kRNN04PVksxH8+GP49FMCl15Kx5gx8L3vEbn/flwff4x09dF0xKmjo4OXX36ZoqIihgwZAkB+fj6lpaWAlqfsdju5XZqKi4vjv+AvKCigpEtTTk4OK1asiLdltr6nh6bYPhc1NTXU1dXR0NDA5s2b2bp1Kw0NDXz22Wfs3bu3X5rSlfdin2MxysrK4suvCwsL4ysm8vLyeuz5ZbfbsVqtBAIBli1bxgddKw77ilNrayvbtm2joaGBbdu2UVtbG9/3w+/309TURCAQoKSkhIKuz6fun7lDcnM5zW7nPIuFqcD/5OfTcfPNRK69lrbzz8c5cSLhYcN44sUXqbfb2Qa8B8wvK+PBvDz+CvxPYSHXFxZyHXBaayvujRthwwb4/HNcIoS7Ps+9RUX4u66nUH4+nq73aNA5orfP3JwcXDk5yK5dUFuLp7aW0Lvvwr/+hf+ZZ/A6HHDLLYSnT8dVUQFnngnHHot7xAg6R42CM87A973v4bvpJvjLX+h84gncr70GW7eCzxfPEQf2PY/Hk/T11NHREX+NWXNEzB+jaor9baS8l8o4xdoxoqbOzs6k+14oFDKUpmz/zM2EJrPnvUgkYmhNnZ2duvQ9j8cTt53OOHV//1Olqfv3c73znojgdrtNnSPMqKmzs9N0mrIp7+nV9/RCTYQosp59+/Zx6aWXAtDS0oLD4YhfnJWVldTW1gKwcuVKlixZAkBjYyMOhyNuY+7cudTV1QGwbNkyli1bBkBdXR1z586Nn+dwOGhsbARgyZIlrFy5EoDa2loqKysBLXE4HA5aWloAWLRoEdXV1QCsXbuWBQsWAFpycDgc8WS0YMEC1q5dC8CkSZO4+uqr8fl8fPjhh9xwww3xGza6aPL7NU1TpsBZZ7EoN5fqs8+m0OfjmN27efHKKzVNpaU4Zs6M38xZMG0aa8/QtkevnjSJRVdfrcVp2DAcM2dqN2xaW6lcunRAmgoLC7Farbz33ntpi9OLL77IlClTCIfDvcapurqaRYsWaZr62ffa2trYvHlz/MbfYOP08ccfM2XKFBoaGgbV9x555BEuuOACCgsLk9Zk1Otp8+bNlJeXs3v3btasWUN5eTlFRUW88MILjBo1ivKxY1n+zjt4vV7Ky8upr69n/fr1lJeXk5ubywsvvEB5eTnl5eW8snw5O8aM0TRdfDHLLr5Y0zRuHHPPOiuxpldfZeWePXDrrdTOmUPl739P86OP8mBBAY6ZM2kZNkzTdPXVVE+apGk64wwWTJumaUpwPW0dP54pixez4fTTWXTxxbB4MS1//SuOpUsJlpfDdddRed991Ha9l6mKU01NDYFAgMsvv5zJXXvyTJgwIb6pdUFBATNnzmRYl6arr76aSV2azjjjDKZ1aSotLeXGG29kx44d8Th173tLly5lypQpeL1eQ/a9DRs2MGXKFLZu3dqvXJ6q62nPnj1MmTKF9957L66ptraWu+++m6FDhzJ27FheeOEFLrroIsaOHcsdd9zBzJkzGTt2LNdeey133nknU6dOxel0ZiTvBQIBlixZQlVVFa2traxdu5YbbrghrunGG29k3LhxPP3001x88cVc3HU9jRs3jhtvvDF+3syZMxk9ejQAF110Edu2bSMnJydhnHbu3MnUqVO57bbb+NnPfsbYsWO5/vrruf/++xk7diznnnsu27Zt408/+QkXAP8zbRq3nXEG8wDHpEn87eqraQF2DBvGVTNnsqyggOeAo2fMoPHTT8n917/4aMgQ3jzlFKytrTSPHo1j5sz9cbrxRurGjdP63oE5opsmx8yZNHZpWnL55azsup5qJ0ygsut6CiaRIw75mQtUzphB7YQJWt+bPJkll1+u9b1Emux2WLeOZcCyPXvgD3+g7u9/Z+5778H48VBUhMPh4N3TTuPdsWNZeMcdPDRzJlePHct3L7yQOXPm4PP5Bp3LX3zxRY455hgKCwtN9fkUu542bNiA1+ulsLDQkJqWLl3KkUceSWFhYb81pTPvpTpOW7duZd++fRQWFqZM09tvv82UKVNoa2tLKk6FhYVEIhE+/vjjAWnqHqdwOMzmzZvjN0TMOt4zmyYz573CwkKOPPJIli5dakhNhYWFeL1eNmzY0G9NkJq+N3/+fCZMmEBhYWHa4lRYWMgxxxzDiy++mDJNH3/8MZFIhMLCwqTjlGzeKyws5IILLuCRRx4xdY4wm6bCwkL27dvH1q1bTaOpe5yMnPe8Xi9Tpkxh6dKluvQ93UjHMhOFIhPEllOddtppYrfbpaamRsLhsDidTolGoyIi4na7JdhVTsnn80lHR4eIiHR2dorT6YzbcrlcEgqFRERbHhZbGhYKhcTlcsXPczqd0tnZKSIiHR0d4vP5REQkGAyK2+0WEZFoNCpOp1PCXWVr2tvb42U1AoGAeDweERGJRCLidDolEomIiIjH45FAICD19fVis9mkuLhY8vLyZMKECXLUUUeJxWKR+vr6zGpqbhZ5+GGJnnyyOO12CXeV82gvLha/zSahvDzZ8KUvyb6hQ7VSQTk54rTbJZKTIwLiKSmRQEGByJlniv/ii6W9uFgEJJybK067XaIlJSI//KG429oGpCkUCsm6deviOtIRp3379snmzZslEAgkjJOIiN/vl/b2dhGRfvc9n88nn3zySTw2g42T2+2WzZs3x/8eaN/bu3evbNq0SUKhUNKajHw9pUzT5MkSyssTAfEWFsbLwYWOPVZcra391lRfXy8Wi0XsdruclJsrN4EsKi6WFptNBCRQUCCekpJer6f2oiLZPH68eIqLD76eLBYREHdpqQTz80XKy8X34x9Lx/z5Irt2JRWn7du3CyBFRUUyZMgQASQ/P19KS0sFiGvKzc0VQIqLi+PlhwoKCqSkpEQAycnJEbvdLitXrpT6+nrZtGmTbN26Verr62Xr1q2yYcMGWblypWzZskWampoM1/c8Ho9s3rxZ2tvbZe/evVJfXy91dXWyceNGqaurS6ippaUlub7nconX65XNmzfH/xYRmTp1qpSVlcWXFNvtdrFarX3GqaKiIq15r6mpSaZOnSo2m02GDBkiRUVFPT7HYr6WlZVJXl6ebN68WYYOHRovm5WXl9erprKyMvnyl78sn332WcI4xUq3lRUXy3ibTS4GubmgQO4qKZFXQNbm58sHZ50lgfz8np9PIH6b7dDXE4hvyBDpKCoSAem0WsVpt8fLT7nKyhLniLw8cZWVxc9z2u3SabWKgHQUFYlvyBARkGB+vrhLS0VAohZLws/c/uQIo2mqLy2V2mHDJPqzn4nz3nslvGyZyO7d0u7x9CuX79u3TzZs2CChUMiUn08ej0c+/fRTCYVChtTU1tYm69evl1AolNnP3F7yXqrj1N7eHn//U6XJ6XTK5s2b438PNk6hUEjWrl0b1zGYvhcIBOSTTz7p0d/UeM/4msyc90KhkKxfv17a2toMqSkUCsmnn37a4xrKVN9raWmRjRs3SigUSlucQqGQbNiwQfZ1lfVNhSa32y1r166VUCiUdJySzXuhUEg2bdoke/fuNXWOMJum2HUX02EGTd3jZOS85/f7ZfPmzdLW1pbRvqd3aSw1EaLIWmIXz6xZs6SsrMyUe4SUlZXF9UEG9whpbhb54x9Fjjqqz7rjrrIy+dusWT1uiMSP008X+ctfRD77TLO5caP2eHGxyLRpIosXa/t+DAKXyyV/+9vfeiT8VJOuNlJlN1k7mXgPTUNLi1bXP9F18Kc/DchU9+u7+5EHsue550RmzRI544zBXXOHOk46SWTGDJHKSpFt20S6BirJ+J3qo3vOs9lsUlFRYah6qrHrZtq0af3eZyIVOg68Xv1+/4D2uejuS6L9LnprZ6Ak2kfmwM+x7kd9fX2/956J2dm4caOI3y+BtWul6dFHZd8f/iBt3/++vA7yGUhnOq4ddaT+GDpU5NxzRW64QeThh0U++ijhmMDsn1VG16enf9k61jPKOC+Vvigyi5njZnRtKufpa1N9vz08MXvcjKxPL9/0ngixiIgcctmIQmFANm3axJe+9KX4/2tqajj11FN19Cg1NDQ0MHbs2ITP1dfXU15enr7GN2+Ge+6Bp5+GrmVtA+LUU6GiAq65RiuZ0R0RePNNmDwZumqiKxRZQzAIS5bA/PnwxhsQiUBuLnz+ORxzTP9sXHUVrpEjmfjQQ3ye4Oke13dzMyxfrl0zy5ZB1x4PKWX4cPja1/YfEydC174NB9JXXlq9enW8fFF3GhsbOe+885J2s6KigoULFyZtJ1VMnTqVqqqqAb8ulTr6isehSNfnSCAQYOjQofH6sv31Zfjw4cyYMYOXX365x2uLgHHACV1H7O/zRo4kt6nJ/LVdLRZCFgvhrpq8AFbAEnu6698cTFTnNjcXTjlFy0VnnKEdEyfC0KF6e6ZQKBQKhUKhUChSgN73cq0Za0mhUBgTEXj3Xbj7buiqWzggSkrgllvg2mu1iZDesFjgW98avJ8KhZ4UFMDVV2vH7t3w2GPa5ER/J0E2boQXX8QO7ACWAnOB19F+BnEQI0bAD36gHdEorF+/f1Lkgw8GN1F5IHv3wosvagdAYSFMmgTnnqtNjJxzDnTbuLo3Ro8endYJ2tgN8tjm63oSCAR4+eWXB/VaI+lIB7FNyPuLzWZjZEEBtk2bWHjFFXSOH0+wpgbr55+Ts2MH+W1tvTWUIo9Tiw/YC7QATsADuLv+/e9f/AK73Q7t7RAKgd8PHR3gdsOoUfCHP2g5JnbYbATCYYYecUSP9/QT4KyDm+Y3wMovf5ktGzZQANiAgq6jECjtOsqBe3rxv/OYY8jx+8lxOrHo9RupSARqarTjmWf2P37SSVpuih2nnQZW9RVGoVAoFAqFQqFQDAzT/IhMcfhy++23azcYTIjdbk+fvs5O7UbDWWfBhRcOahLEZbcz+5e/xHXTTX1PgqQYl8vF7NmzcblcWddGquwmaycT76FpOfpo+OMf4YEH+v+abhuY5QCXAa8B24DhXY83NjbS0NBw8LFzJw1Dh9IwdSo1993H7N/+ls/mz8d1880EzjwTyc1NjS6fD955B/7v/+CSS8Bu11Z2/eAHlDzxBF9Fu8HaX0aOHDngm/6Jcl4gEKDJIDe/t2/fzqxZswaVk3vTEQgEEse929Hc3Jyy6zVRP4vdbE9HXhjXFdP/ttuZDSwAqoG90Si2o4+Gr3wFrruOvNmzKX7hBWyffJJwEsRltzP79ttxDfLzcDCvdwGbgDeB+cDfgV8D04HvAGejTS4cWVDAN845h7HAV4BLgGuAHwO3Aq6ZMyEQ0FZcPvAAPP44VFVpq8s++QSOP16bVD3qKO3HBXl5NDU3HzSx5OvFTxvw0YYNeNAmYr4Atnf5/jHwNvAS8EofWifs2oW1rQ2rCMOAM/Lz+fP55xN8+GH485/hhhvgssu0iZsM4rLbmX3ddbheeQVuugnOPFOboJ08GW67DV56CfbsyahPqcTon8V6+petYz2jjPNS6Ysis5g5bkbXpnKevjbV99vDE7PHzcj6jOxbOlGlsRRZS2w5VXl5OY2Njaxbt850pbGsViujR4+msbGRcDicmpImLhc88gjcdx/s2pWUqbDVSuPxxzP66aexfuUryfk1kHbDYRobGxk9ejTWNP0qNF1tpMpusnYy8R4qumhv1yZPOjoOeupTEv/CuzcOzAkAwwoK+OVXvsKtEyeSt3o1rFuXErcTEQZq0G6uftL174vbtlF+4okJzx9oGalE+iB15ZwGMqmSaCKnrq6Oiy666CD/+kv3MmI+n48ZM2awZs2aQ77OarXyzW9+kzlz5lBSUtJn2bHVq1cDDLgs2TnnnMOjjz6K1+tl2LBh5HZNsB1yQisahd27aXrvPf7w/e/3KGN1AjDEaqVx9GhGNzZiHcR7FiOcpJ0DX98CfA7sAhp7+dd7gI0C4OSu4x8/+hFHtrbinDWLYRMn0tTU1HdZyzfegBtvPPjJYcMSlr5LVP7sDbRJlgO5E/htr8r3MwFtciQRI9BWtBzIgSXdOm++mbyHHjrovC+AtWixH8fAJk37ot9xLy+Hr39dmyCZPFmbXLJYej/fIBj9s1hP/7J1rGeUcV4qfVFkFjPHzejaVM7T16b6fnt4Yva4GVmfXr7pXRpLTYQosha9L550kbY9Qhoa4J//1H6JmuCGbJ8UF8OPf6yV0Fq/Xnvs6KPhf/8XfvpTVb9boeiLefMS3wAFrgeeSlEz8RuWra2wYoW2uuOdd2Dr1hS1kBjJz8dy2mlauZovf1n797TTYMSI+M3+A/d/GCjJToQMxg+bzcYVV1xBZWUlhYWFQHJ7c2SK+vp6gJT6ee7ZZzN/9myK9+4lb+dOrJ9/Tt7nn2PbtYuc+npttYMB2ZuXx+bOTrZD/KjrOjwDsHMEsBIYT4Kasm+8AZdccsjP7qM3bCD/iisSNxAKHbQ/TyJ7LwFTErz8PuAXhxIBnIE2+ZoIG5Co4J7NZsPpdMYnw94/7jjO3bnzoPOeQstnoO1fcjRwInAK2gTMjyZNwrZjB5Z07HeUiGOO2T8x8vWva6vbsmBiRKFQKBQKhUKhMDN638tVpbEUWc/UqVMpKirS2420UFRUlLy+NWu0/TvGjQOHY2CTIKNHwz/+AY2NcO+98LvfaTc4n3wS6uvx/vznLHzzTbzeA383m168Xi8LFy5Ma7vpaiNVdpO1k4n3UNHF008nfLgZGOjW2X3lhPhN/qOO0vYyeegh2LJFu34XLoSf/1zbeDjFNwMtoRD8+9/aRvK33grf/CaMHAkjRlD43e+ycNQoPA4Hu15+mYZNm6ivr094rF69OjU5LwEzZsygqqpqQJMxgUCAqqoqZsyYEX/M7/f36t/q1avjOlJNut6X7hwFfK2oiF9Oncrviop4DHgHaABWfvwxJ3znO4ycPp0j//hHyh5/nMK33iJn8+ZDToJ4i4pYOHUq3iR9T2QnAtQDy9H23Pkl2kTBWfn5/PCqq2hdt47z0UpU3V9UhHXqVLYVFQ1oEgS0PT/G0MvGev2YaJw6dSpfueaaXp+/6aqr8Pm0wlexUmmNjY0HnddbaazCQ3qgUdDL40EST4J096ehoYEtW7bgTzAJAtqKkBiCtqJmBVpc/gc48YsvyNm7l/H99DXGoPvPrl3w3HNaSa8JE7R9lyoq4NFHtR+GGASjfxbr6V+2jvWMMs5LpS+KzGLmuBldm8p5+tpU328PT8weNyPrM7Jv6cRY63IUikHgcrmIRqN6u5EWotHo4PRFIvDKK9oG6O+/P/CGzzwTfvlLuOaanr9Svfpq7bGuG6k5kQh2u52cnMzOqebk5KS93XS1kSq7ydrJxHuo6OL117X9eObO1TYB7mIeEOqniZMAP9DaR04IBAJUV1cnXjlxzjna8ctfYvF4KFi7Ftsnn1CycSO5H32kbd6cavbuhbffhrffJg/tF+KA9kvtk06CE0/s+e/w4YPPeX2QzAbnAFVVVdx+++3YbDaampp69S+dm8YP9H2JlbOKTfxYgGFoN/PHAMd2/TsWOL7rKAH80SgrXS4mR6MMSZHvOdEodpeLnEHGNIQ22bElGqXe5eJ30Sifoa3uaAA6u85bvXo13+4qOxbT39DthnfsPRwajTIZbX+PEPC3fvggwEbg3ERP9mMiZM2aNX2+nx8tWcL3v/99hgwZ0ueqpU+BMrRc4Os6/MCHfdi22WycfvrprFmzht3AX9i/kXpsU/VD5aFTTjkl/vf6Xs75opfHY+zqKsV5ZB/n3IS258oZXcdRJN9/4rS0wPPPawfACSdok7YXXQTf+Ia2J5IOGP2zWE//snWsZ5RxXip9UWQWM8fN6NpUztPXpvp+e3hi9rgZWZ+RfUsnqjSWImvRezlVukiqNJbXq/0q+5//hO3bB974ZZdpEyCTJ6sSEgpFqhGB99/n/WnTOH3nTk5AWxXSH14GLkUrjeMA3kuRSzabjSsvv5zHf/5zbJ98Au+9px0tLSlqof9ITg47um5yfw7s7Pbvs6tXM/qccw4qH9QfMlXOKpafA4EAQ4cOTaoU2EDIQ9vfYRQwJi+P5+65h7zmZlY+8wyRhob4xEdvqwEMwZAh2qrFE06AcePYN3QoFX/4A9vRbrD35xZ4os/HWOy/DtwITEK70R5jJ3BcP118EO1G/UFceCG89Va/+lkTkAvs7vp7T9fxCNpkT38555xzWL9+fa997JxzzomXdBs5cmSf+5cMlOvQ3sPhaP1uNNqk2k/RNpU/FD8EnkzwuBOtBFl3jgXOQYvbJLT9lFK190gPcnLg7LO1SZGLL4avfnVQuUahUCgUCoVCoVD0jd73ctWKEEXWM3HiRGpra/V2Iy3k5+czYcIEamtrCYX6+M3mnj3wwAPaXgRtbQNv6NhjYdkyrYb2AAiFQtTW1jJhwgTy8/MH3u4gyUS76WojVXaTtaNX7A5rLBb42tc4Y/Nmbv6v/8K9dGm/9lY4HrgMrZbld/PzOWHCBIK1tThCIf6FtoH5YAkEAjz7r38RycnR9he59VZtwqahAT7+GD75BD7+mOgnn5Az0L2FBoglGuXY/HzaJ0zgG7W15HfPeeedp92sPPpoGDNGK9s3YsT+Y/jwnv8fkqr1DD3pT06O7S0ykE3iu5MLDEW7KRw7jszPZ9SECRxRW8uoUIhRwEi0yY+jur+4sxP+538AmDyItkP5+dROmMCEA9//JIjb3LmT/PLy/RMesWPcOBg1SotvF0WBAO//+c89bvT39d7bbDZGjhx5UNuxlSGjAwGu7PIj1E3bGLT3sQmwdE3+9/b7oA29CRzAHjxj6P8qsL5YuHBhfILjQA65uX2SPJvk60/s5fGaBI99ATTn57N9wgR+V1uLhEKcjlZScFySfvQgGtXKiK5ZA3/5C5SVaRMil14K3/62ll/ShNE/i/X0L1vHekYZ56XSF0VmMXPcjK5N5Tx9barvt4cnZo+bkfUZ2bd0oiZCFFnP+eefz44dO/R2Iy3YbLa4voQ33TZuhHvugWef1TZbHSxffKHdCBgggUCAFStWcPzxx2c0cWai3XS1kSq7ydrRK3YKKCws5IkXXmBuIJDwRuaBHHHHHeQ88QQAAZuNFeefz4wdO3g2FMIJvJECn2LleGw2mzZhM3asdlx7LQA7d+zg2+PGcTZaSaH/QCtdk+rbrTF9x+/YcfCN+GhU2+8kwd4JB1FcDEOHgt3OSJuNlwFXt8PD/rJCif7tRNt/InaEu/612WxceP75eHfswB8KkYM2cZEDWOvqwOUCn4/5P/gBZ+7axcY1a7B2djIEbR+HQujxdxn7JztG5eczPD+f3AQTTh6bjcquuJemaIIiEX2+//2gFXpsTL4daLTZuPz73+f4n/2M/LKyftlJNJnU1+fhFVdckfDmf8zO6qqqXrWdDSwBru3q671NYHUvCRXOycF60klw8snaDwj6ubg6FZGLTfrYbLa0lWIbDJs3b2bUqFGMHDmyz9VQLwH72L+R+mlok3kbezm/e9w9oRCfoq1ESUQjWgm+pBf3u93wr39ph8UC//Ef2qTId74DZ53VY9IuWYz+Waynf9k61jPKOC+Vvigyi5njZnRtKufpa1N9vz08MXvcjKzPyL6lE1UaS5G16L2cKl0csjTWccfB8uXa/h/LlqWm0UmT4L77tNIQCoXCOHg82uqH9vaDntoMnIq2f0Eq6Kv0XqK8ZAW+BCz/+985as8ebWJ240Zo7m/BL0U2spv9kxx1B/zt7uU1hyzrmACfz8eMGTN67JlhAU4HLuo63rBa2XPVVfEyUH3Z+XtVFWMSPP+33FzWX301lZWVAAe1GaMQuCovj2EXXsj/LVxI4QGTOpkqwVZRUaGt3hoA6S7X1t2nqVOnDng11HC0fLK7H+eeAvS2BvgrwGfA14Cvo62KOpMU/+prxAhtlcill8Ill0BJSSqtKxQKhUKhUCgUpkbve7lqRYgi67HZbASDQb3dSAsWi4WCggKCwSB5IhQvWgRPPaXdbBwoF1yglb3505/g00+1XzlOmQK/+hX8538Oyj8RIRgMUlBQEC8rkgky0W662kiV3WTt6BU7xQCZP7/HJIhYLAQLCigIBrlHJGWTIIMhDKwDOq65hqO63+Teu3f/pMjGjbBhA2za1K8N2bvrsxjwdxp6+ZepdsViIWi3U3DMMViOP57wmDG4jzyS8JgxhMeMoeOooxh/xhkDsmmz2bDb7YjIgHJNYWEhCxcuJBAI4H72WYpefBHLJ59QuHdv/D246IILyD3EpEDMTthiIbB48UHv4W8OsBFrU4+yU30RW90Sm7AZzGsHW65tID7F/u5r0/fue5gEAoEem7EfSPdxkIhwVi/n+YC1aHnp1a4DoBhtk/vY5NnEAehLSHOzlpfnz4eCAm1fkSlT4Lvf7VFC68A+1FvfMfpnsZ7+ZetYzyjjvFT6osgsZo6b0bWpnKevTfX99vDE7HEzsj4j+5ZODq+t4RWmZNasWZT1s9xGtlFWVsasWbOYVVZGA3DUr389sEkQqxV+8ANt4uOdd7TN0H/3O7jpJq2u+YsvDnoSBMDtdjNnzhzc7t5+B5weMtFuutpIld1k7egVO8UAGTmyx9497rIy5syahWvsWAJXX63bTdk+GT5c20B65kx4/HFtr5H2dti+HV5/XVt99vOfazX4y8u1SdkuYvrcBs3pevmX0nYLCrS9Ob7xDZg+He64A555Bj74APfWrcz5xS9wr14NL7+M9f77OfL22xkxYwbHXHQRJ0+cSEVFxYCau/rqq3E4HIPONTabjRF79hB+/33uuvHGHu9B7nvvQT9/CNHxta/1fA9Hj4YrryT3iisStlleXn7Qocf1tnr1aurr63E6nSxcuLDXlS+HorKykoqKipRoePfdd3v1KTbx5HQ6qa+vP+jw+/1UV1czYcKEfr2nsXFQbJy3HJgK3AWsRJsAAfiYxPsldaBt4v5rtHJ+I4DqpNR3IxiE116Dn/xEy9XnnUfob3/jF5ddxtChQxk7dmz8GDp0KFOnTsXn8/UwYfTPYj39y9axnlHGean0RZFZzBw3o2tTOU9fm+r77eGJ2eNmZH1G9i2dqNJYiqwltpxq5MiRtLS0sH79elOVxhoHzMzN5dJhwxjT0kJuJNJ/I2Vl8LOfaZvmjh6dNl8jkQgtLS0MGzaM3NzctLWjR7vpaiNVdpO1o1fsFIMgGoW33gKHg8ibb9IybBjDbriB3D/9qddfrncnb/NmCtavx/u97/FFSwvnnXdewvMGWhqrP6/rF4EA7NjB3vfe466bbuKYYcMob2mhPBJhDNrG4UYhkpurvf8DzcmZajc/X7shO2qUtqn8scdq/3b/e9iwHpNPPdrpR15IVLIqEbHVAo8++iherze5XLNmDZFzz038Hrz7Lpx//iFNRLZto6WykmHnnEPupEnae5RC0lUaK+nr6wB6yxlDhw495P4eoMXV6XSmbFLoUGW7cnNzGTZsGC0tLUQS9H0rWrm0fODDfrRnAZqBYQmeC3XZSQUb0fZDWYy2UiVGRUUF8+fPj8cgEongdrs5+eSTKSoqSlHrqUPPsUK2jvWMMs5LpS+KzGLmuBldm8p5+tpU328PT8weNyPr08s3vUtjqYkQRdai98WTFkTYs2gR1ddeyxUMYslWebn2K+wZM1TdaoXCjGzeDA4H/PnPcNRR/XvNddfBc8/B8OE4p03jxHvvZV+C03SbCOmitxuiJcCxwJiu4zhgJNovu2PHcKAgaQ8MSn4+HHGEdowYod3Aj012HPjv0KG9TnKkmkNNwvVZRioUgvff1yZlun2O90o4rPX3RL9W+v3vtetBZ7JlIqQv+rO/x2D2KElFu6BNwiS7z8mX6H1j9kuBYNe/lwInJdXSfj4HFgHPAx+hlfs68OtX9zJjg131o1AoFAqFQqFQGB297+Wq0liKrGf69OkUFxfr7UZyhMPw/PMwaRKjrr2W76FdnB3FxcyfPp2O/ug76yz47DP4xS8yNgnS0dHB/Pnz6ejoyEh7mWw3XW2kym6ydvSKnSI5Oo49lvmTJtHR319j79yp5RaAvXsZeu+97AQeAtK/rfPAsNlsXHnllQfl9Ha0zZHfAB4Bfg/8CLgMOBttcsQG2IGT0TZJvgqYAdwK3AHcBzwFvAKsQvuF9hYgfPTR2g32wsJ+TSD0Oyfn5EBRkXaj/7jjtPJmZ54J554L3/ymtp/A1Knw4x/DbbfBnDnw6KPwwgvaCof167XYdXRAIEDHZ58x/9e/puOVV2DBArj7bm1/px/8QCtDduqp2kRJkpMgA8kLvZWPOrCMVNzmzp3w5JNw9dXae/6Nb8D99/fPMauVjm9+M/F7/9ZbKdc2GPTcPyRV9FU+y2azUVFRMag9SpJp98gjj+TXv/41zc3NvZbbOrD0Vl/l287s5XEf8HbXcStaLjkR+AWwDG2CZLAcB/wSWAM0AH8X4eyu54qLi5k+fTpWq5WqqipmzJjRp61AIEBDQ0P8SHZi6FDoOVbI1rGeUcZ5qfRFkVnMHDeja1M5T1+b6vvt4YnZ42ZkfUb2LZ2ozdIVWU9DQwPhcKLK0FlAe7tWQ9/hgIaGg562hsOUNzRg7Y++f/9bq8HfbT+BdGO1WikvL8dqzWwqyUS76WojVXaTtaNX7BTJMeC4ORxwQDmZQuBGtImF+lQ7mCT3338/f/zjHwe1NNfddWwbwGvq339//6/tRbSa/36/Njkdiew/uv5v9fsp37YN669+BUOGaBMe3Y/CQu3x/PyUrszI1PWajnasVivl9fVYTzkFDtgfgaVLtfe9H++V9etfp/zFF7XPw/x8bX+riy7SJpb660ca38N0bUieSbpvUH/gap90TvT01a7dbmfdunWUlpbGJ98ORV8btj+FlvvOBy4AvoG28mMFB092bEebRL0PKAIuRFspMq3r/4PhOOBXXUcDUBUOs6HbODbmc+y9jr0nsZJ0a9as6WEv3StJ9BwrZOtYzyjjvFT6osgsZo6b0bWpnKevTfX99vDE7HEzsj4j+5ZOVGksRdai93KqpGhs1DYMfuSRxKU++qKg4ODNYUtL4ac/hV/+UiuRolAoFG63ti9Ee/tBT20DxgPdBwCrV69mdC97CjU2Ng5qb5HBcqiySw0NDVxwwQVJt5PJskOHNU88oZVsTMT69fDlLx/aRl0dzJunTX587WvaihuDcaj9U2w2G6effvpBN7P7QvXRwRNbPXHKKaf0ed4xQCmwuZ9264Djk/TtQOrRSmc9D9z9zjsMHzEi4cRHb6SjZJlCoVAoFAqFQpFq9L6Xq0pjKbKer33taxxxxBGAttmPy+WK1172eDyEQiEA/H4/Xq8XgHA4jMvlittwu910dnYC2o0MX9evVjs7O3F3m6hwuVzxX+15vV78fj8AoVAIj8cDgIjgcrnim3p2dHTEb4gEP/qI9uuvh7Fjid59Ny6LhWiOdhm2l5QQLNCq3AdsNjqKiwkWFPDBV79K8/Dh7LZYcP7qV3i2biV0plbcwX/CCXj/8Q/44gvCf/sbrm6/1syEpmAwyHvvvUdraysA0WgUl8tFNBrVNLW3E+yatAkEAvEld8nGKRgMsmrVKpxOZ3riFAzS2tpKdXU1fr8/pZq8Xi/vvvtu3MZg4+Ryuaiurqa9vb3fmtq7bohHo1Gam5v54IMP4o+nI04D1TSYOHXXlIm+p7cmj8dDdXU1brf70JoefRR/OIy364Zx2GrFZbcDcA9QWlZGXl4eoP0i+5JLLmHs2LGcdNJJTJw4kbFjxzJ27FjOOOOM+KRDUVERQ4YMASA/P5/S0tKUxmnfvn1UV1cTjUax2+0cd9xxlJeXc8QRR3D00UdTXl7OiBEjOO2007DZbFitVuxdmgDKDtAU+4V0Xl4eZWVl8fPsdjtFRUWMHDlyQHFyu91UV1fj8Xgy2vc6Ojqorq7G6XSmte+lI+8Fg0HeHz2a5hEj9msqK6OzK06+V1/tl6a2oUNZdfnlBM8/n1Be3oCvJ7/fz7vvvht/X9IRp7y8PBYuXMiuXbvYvHkz9fX1fPbZZ2zcuJH6+nqcTiePPfZY/FdXvV1PFosFu90eXxl1OOe91tZW3nvvPYLB4IA12Ww2TjjhBH7wgx/EfU2UI3YB2/PyGD58ePw8u90ej9PZZ5/NWWedBcCX8/M5Kpb3LBZcdjuRrjhtKi4m0DUOCxYU0N5VpjSak4PLbk843nOXlrLy61/n6IICfpWby9t2O6MvvJCXTj2V8ObN5Odr27cPGTIkvpl6orz32muvEQgEUh6nffv2sXr1aoLBYMb7XibynsfjYcWKFQSDwZRpamtro7q6Oj5W665pINdTMBhk5cqVcRuDuZ4ykff0zhFm1JRM3jOqplicgsEgq1evZt++fYbUFLvuYjYy2ff27t3L+++/TzAYzKrv7i6Xi5UrVxIMBpOOU7J5LxgM8sEHH9Dc3GzqHGE2TcFgkBUrVsRtmEFT9zgZOe/5fD6qq6vZt2+fLn1PL9REiCLrmTRpEt/73vcAaGlpweFwxC/OyspKamtrAVi5ciVLliwBtF83OxyOuI25c+dSV1cHwLJly1i2bBkAdXV1zJ07N36ew+GgsbERgCVLlrBy5UoAamtr46UYgsEgDoeDlpYWABYtWkT1U0/BN77B2l/8ggWFhRAO4yktxTFzJp6uL9QLpk1j7RlnAFA9aRKLrr6aUH4+H551FvNuuonxBQW4b76ZypdeonbmTHj2WVY6HCwZPRpKSzOvqbqaUCjEmjVreL5rDwKPx4PD4Ygn2AULFrB27VpNU3U1ixYtSkmcQqEQH374IW911YZPpSaAtWvX8vzzz7Nu3Tr27duXUk2ff/45q1atin8wDDZOq1atYt26dWzatKnfmhYsWBCP07x581i7di2hUChtcRqopsHEqbumTPQ9I2hat25d/zRdfTUrf/ELlkyZomkaPRrHzJm0opWHufHGGxk3bhwAF198MRdffDEA48aN48Ybb4xrmjlzZnylyOWXX87kyZMBmDBhQryefaritHjxYtatW8eePXv6jNPy5cu54oorGD16NDNnzoz7OhBN1157LTabbcBxWrduXcb73meffca6det466230tr3BpT33n+flnfeOaSmUCjEvzdvZl6393/ujTdS1xWnZZ9/3i9NS5cuZc2aNYRCoUFdT/v27WPVqlXxLyHpzBGrVq1iy5YtlJeXEw6HefXVV+P7przwwguHvJ4KCgqYOXMmw4YN61PT4ZD3nn/++XjcB6vphBNOiO9BcmCO+Pa3v01FRQUff/wxt9xyS3yvkZkzZ7J69Wr8fj+33norf/7zn9m8eTOXT5hAZSzvFRTgmDmTlmHDiAD/vPpqKiZN4mag6owzeGbaNE3TIcZ773/ta4Ty82kZNgzHzJmMLijg98APZszgXxMm8Cvg0smTufzyywES5r3Ro0fT1NSU8jgtXrw4/v6bNe+9//778ZsDqdC0dOlS1q1bx+eff57U9RQb665atWrAmvTIe3qPjcykKRV5z2iaYnGKfXdcvHixITWFQiHef/99XfpeZWUlH3/8MaFQKKu+u69atYoPP/yQUCiUdJySzXuxz6p58+aZOkeYTVPsujOTpu5xMnLe27NnD+vWrWPx4sW69D3dEIUiS6mpqRFAbDabFBcXS01NjYTDYXE6nRKNRkVExO12SzAYFBERn88nHR0dIiLS2dkpTqczbsvlckkoFBIREa/XK16vV0REQqGQuFyu+HlOp1M6OztFRKSjo0N8Pp+IiASDQXG73SIiEo1Gxel0SrijQ+SRR6R94kTx22wiIIGCAvGUlIiARHJyxGm3SyQnRwTEU1IigYICERC/zSavFBfLN0Fyc3PFbreLxWKR+vp6fTWFwyIi0t7eLn6/X0REAoGAeDweERGJRCLidDolEomIiIjH45FAICAiIn6/X9rb20VEjBUnpUlpMrumxkaRO++UzmOPFafdLrdrFbGkrKxM8vLyBJDCwkIpLCwUQPLy8qSsrEwAOQXkIbtdxlutAkhRUZEMGTJEAMnPz5fS0lKpr6/XJU5er1emTp0qI0aMEAagyWazyQ9+8IN4PAwTJ6P3Pb9fZM0a8d96q7SfeKIISPg73+m/pnvuEdF2BBFXWZmE8vJESkrE+/3vi7frPcqK6ynJOG3cuFGsfVxPgFgsFrHb7ZKbmyv19fWG15QtcfL7/bJx40b57LPPpL6+XjZv3iz79u3rtya/3y//UVQkt5eWyqcgUYtFnHa7hHNzZQVIcXGx2Gw2AaSgoEBGl5TI9SCv5uTI3j7Ge+3Fxdr1lJsrTrtdohaLCIi7tFSC+fkiIB1DhsibRUXyY5CjrFax2+0H5b36+vpe4xTTvn37dqmvr5fa2lrZsmWL1NfXy7Zt26S5udkwcTJj31OalCalSWlSmpQmpUlpUpo0TbF7ubGjpqZGMonaI0SRtcTqytntdjweDxs2bDDGHiEtLfDQQ/Dgg9rfAyE3l/bvfY//XLSIGiAnJ4fS0lI8Hg/RaNRwtcKj0Sgej4fS0lJycjK3wCwT7aarjVTZTdaOXrFTJEdScQuFCD39NCfefDM7D9xnqBcqgf8GosBi4O9A94r1NpsNp9OZsk2UB6PvUPuJHEgymz6bOef12c5rr8H//A/U1/d8gdUKTU1w5JGHtulykTN2LJSXw5QpcPnl2l4fXaV/Bu1bstoyTENDA2PHju33+Ub73M80RolbjKlTp1JVVQXAscDlwHeB14D7+3jdUOAK4FrgEvYvyY/m5OApLaXU4yGnq+zAoQgBS4FngSVAbDea7n3lUJusH0hvm67r+f5n61jPKOO8VPqiyCxmjpvRtamcp69Ns4z1FAPD7HEzsj69fFN7hCgUSTJz5sx4XW1d2bIFfvYzGDMGbr994JMgAN/8Jvv+8Q9quv5bWlpqHH0JOHCpnJnaTVcbqbKbrB29YqdIjqTilp9P/o9+xFe7SmUdimOAaV1/5wBXAtXASuBrXY9fccUVKZsEgcHps9lslJeX9/tIxl8z57w+2xk27OBJEIBwGF56qX827XbYvBl27IB774VvfKPfkyB9+pah1yv0wWhxq6ysjJfZ+gJ4CPgWfU+CADiB+WgTy905sGxWf8gHpqBtrN7cZfebAJEIPp+PqVOnMnToUMaOHcupp57arw3XA4EAVVVV8fJsscdqa2txOBzU1tbS0NAQrx+dCbJ1rGeUcV4qfVFkFjPHzeja9PTvcM95qbBl9P6lSIzZ42ZkfUb2LZ2oFSGKrMUQK0JEYOVKuPtuePXV5O1ZLDS++y7Hnn8+oFaE6NmuWhGiMCKpiFvsF8Ivv/xynze1/g78upfnrs/LI3jllQf9ejhZjN4vzZzz+mxHBMaNSzwZctFFsHz5wG2myrcMvT5VqBUhA8MocTuQ/qxEu+WWW+L1oGPcAMzt9v/uK0Ki0SjWJHwKHnUUrw0dyh8++4zNg7Rhs9nYvXs3N954Iy+//DKhUKjHOLS3lSPpIFvHekbJean0RZFZzBw3o2tTK0L0tWmWsZ5iYJg9bkbWd7iuCFETIYqsRdeLp7MT/vUvbQLk008H/voJE6Br86A4550Hv/oVDV/6EmO7NvI8kMP9hohCoUgdfd3Iy/F4GH3uueR0dBz0XOfo0UQ2b8ZWXJxuFxXpJhiEgoL+nTtrFsyZc/DjOTmwZw8MH55a30yKmgg5fEg06fwWcGGCc2uA84GrgOuAyUm2/THwJPAc0DbA155zzjmHXEVSUVHBwoULEz534GdLMuUIFQqFQqFQKBTmQu+JEGNNRykUg+CGG26gpKQkM4253XDXXXD88TBt2sAmQXJy4JproLoaamrgtNO0xyoq4KOPYNUq+O53tce6KCkpyay+AdLe3s68efNob283XbvpaiNVdpO1o1fsFMmRyrj1VVJqzLvvJpwEAci77ba0TYIYvV+aIud5vbBgAXz72/ClL2mrPfrTTkXFwY/l5cGll4LLlXbfzZLzBnJT2GazMXLkyDR7ZGyMErfBUFhYyMKFC3E6ndTX11NfX88pixfj/tnPiHRNbrWXlDDvhhtYWFLCPuARtAmRMcAfrFaip502qLbPBh4A9gAvoO1jktfP13afBOltHJpoReGBZblix9ChQ5k6dSo+n29AGrJ1rGeUnJdKXxSZxcxxM7o2Pf073HNeKmwZvX8pEmP2uBlZn5F9SyfJrMBWKAzBunXrCIVC6W2koQEcDnjsMejl5mCvFBfDj34Ev/gFdP8V6GOPab+g7eOXnqFQKDP6Bkl+fj4TJ04kfwB13rOl3XS1kSq7ydrRK3aK5MhY3G66CY46Cv7+d9iwYf/jRx4J3WrIpxqj98uszXnhMLzzDjz9tLanh9e7/7kPPoBzzz10OxMnwgknaJ+H3/wmXHuttum53Z5e31Nkxyh9K1ZaKLbhdl+keg+ebMQocUuG2KQzoI35rrgCRLjtW9+iaOVKTl+3DscB47wvgO1XXUXOwoXaj2cWLIBnn4WdOwfUdj7a/k5XAi1oG6w/Cazt5+t7G4cGAgGqq6vjukaOHMmMGTMS9uvY/iNAr6tIEvqepWM9o+S8VPqiyCxmjpvRtenp3+Ge81Jhy+j9S5EYs8fNyPqM7Fs6UaWxFFlLRpZTffSRVv5q0SKIRgf22mOOgf/9X/jpTw95o6g7fZXNUCUyFApFRhGBN9/UJkTefRduvx3+9Kf+vXbrVvjDH+A3v4Gzz06rm4pD0NoKo0ZpEyIHcsMNMHfuwY8n4t//1m7kHnlkSt073DjUPj2Z3IdBoR/xfrB4MYFgMP54r/GPRun861/J+3//L+m2vccfz5927GAB0PdOJ/3DYrFwqK+UNpsNp9N52E/uKRQKhUKhUBzOqNJYCkWSnH/++an9UhWJwOLF2p4d55wDzz8/sEmQE0/UfnW7Y4d2A3AAkyAHYrPZUq8vhQQCAVasWNHnhsvZ2m662kiV3WTt6BU7RXJkPG4WC3zrW9pqgo8+gp//vP+vvesubRL5K1+BCy6AN97oUYYpEUbvl1mb8446SiuFlYiqKuj6tfch2znrrAFPgqicdzCJSiZ1P5xOJwsXLlSTIBgrbqmmsLCQ+fPns+TVV9m6deuh45+TQ97mwW6D3pOiHTu4C2gEXkPbmyRR6az+jkP787u6/mwwf+D52TjWM0rOS6Uvisxi5rgZXZue/h3uOS8VtozevxSJMXvcjKzPyL6lEzURosh6ysvLsVpTUOXN54OHHoLx4+F734P33hucndNPhx/8AFKwvMxqtaZOXxoIh8M0NDQQTvQr4yxvN11tpMpusnb0ip0iOXSN29ln9/8m+J498NRT+/+/YoV2I37iRHj99V5fZvR+mdU577/+K/HjTmc8JunQp3Je7/S2T49Rf/ygB0aMWyoJh8M0NjZy9NFHHzr+Ph+8/HLCp94HVg+i/VzgO8AiYBdwNzCh2/N6jkOzdaxnlJyXSl8UmcXMcTO6Nj39O9xzXipsGb1/KRJj9rgZWZ+RfUsnqjSWImtJ2XKqpiZ44AGtNEhbW/KO2WzQ2Djo0iGqNJZCoch6Zs2COXMSP/fMMzBtWmb9MSMi2oT96adDaemhz/f7YeRI8HgOfu7mm7XPQYVCYVx274Zf/1qbDOm+zw9wIfAOcDzww64j8Uiyf6wBHgcWAqncPlONYxUKhUKhUCgOb1RpLIUiSUaOHElubu7AX1hTo236e9xx8Je/DGwS5Kij4Lrrej42dCj87ndaSawU1U/Pzc0dvL4MEIlEaGpqIhKJmK7ddLWRKrvJ2tErdorkyIq4ud297zlx3HHaJtu9YHR9hsh5O3fCn/+slWH8+te10lb9YcgQuPrq/f8fNkzbx+qjj+D++w9uJx2+62jH6H1LkRizx21A+o4+Wts0vblZm1C+5BLIySF69NEMv+YabDYbO4DbgXHAN/PzeXfsWKS4eMB+nQM8AjTm5vLwyJGcl6JxaENDQ7/LL2TrWM8oOS+Vvigyi5njZnRtevp3uOe8VNgyev9SJMbscTOyPiP7lk7URIgi67nhhhsoKSnp38kisHy5VvP+tNPgiSfitdH7xcknw8MPazeinnkGJkyA44/XbiJ98YU2oTJq1OCEJKCkpGRg+jJMe3s7Dz/8MO3tqfy9oDHaTVcbqbKbrB29YqdIjqyI28KFiVcdANx6K+QlqkSvYXR9uue8K67QNiv/f/8P6uq0J+fP77+h6dPh+9+HpUth1y5wOLSSZxZLz3ZSqE/lPEUymD1ug9JXVKStqnvjDWhsJOe553ju+ed77Dmzo76eJW43F+zYgaWpSdu77qKLBuxftKSEPTfcwCslJWy1WPgNMHLAVvZzwQUXMHToUKZOnYrT6aShoSF+HDhBkq1jPaPkvFT6osgsZo6b0bXp6d/hnvNSYcvo/UuRGLPHzcj6jOxbOlGlsRRZS2w5lc1mIxgMsnHjxt6XU4VC8NxzcM89sGHDwBs7/3z45S/hO9+BnG7zhzt3wjHHQApXbHQvjWWxWCgoKCAYDCIihispICIEg0EKCgqwdN1IM0u76WojVXaTtaNX7BTJkRVxi0a1G+1//zus7la1/ogjtJxZVNTrS42uT9ecN2sWBf/4B5ZEw7YtW7SJ+lS0k2J9KucpksHsccuovmgUxo7V8nA/EYuFYEEBBcFgPPdIbi77zjmHH33wAUuBVFWVttlsXHHFFVRWVlJYWBh/b0SE5ubm+HkjR45M2T46Zs55qfRFkVnMHDeja9PTv2z9fptKm2qsd3hi9rgZWZ9evqnSWApFkgQCAXqdz2trg7/9TfsF7fTpA5sEyc3Vyl998gm8+y5cdlnPSRCAMWNSOglyICLStz6dsVgs2Gy2jCf0TLSbrjZSZTdZO3rFTpEcWRG3nBwtX65aBR98AFOmaCsOfv7zPidBoJu+7du1si9vvaWt5DMIuua86dMTT4LAwFaFHKqdFOtTOU+RDGaPW0b1rV49oEkQAIsItkCgR+6xRCIc9cEHvAx8AdwJnJgC9wKBAFVVVXzjG98gEAjg9/uZPn06RxxxBGPHjo0fsRUlPp8v6TbNnPNS6Ysis5g5bkbXpqd/2fr9NpU21Vjv8MTscTOyPiP7lk7URIgi65k5cyalB24UW1cH//M/cOyx2r4de/YMzOi0aVBfr9ViPuus1Dk7QEpLSxPrMwgej4d//vOfeHorg5PF7aarjVTZTdaOXrFTJEfWxe2rX4WXXoLaWm0/ikMQ13fPPbBsGXzzm/Af/6HtgxFO1e+OB4+uOe/NN/FMnpz4hKeeghTUdk2HPpXzFMlg9rhlVN8TTyR+3GrVyuR97WsHPeUpLeWfM2fi6WUcOhK4DdiGtln7VCA/STfXrFlDYWEho0aNYtSoUeTn97QYmzCZMWNGki2ZO+el0hdFZjFz3IyuTU//svX7bSptqrHe4YnZ42ZkfUb2LZ2oiRBF1rNixYr9dYU/+ACuukrbRPaBB2Cwvxbr7NQmUXQmEAj01GcwbDYb559/fspKFBip3XS1kSq7ydrRK3aK5MjauI0fD0ceecjTbDYb559xBrZnntn/4KefwtSpWumnRYvS6OShSfn7X1en1fnvb7sVFQc/mZurTRbt25e0O+noXyrnKZLB7HHLqL4//1nby+6EE3o+ftll2kT16tWwdSvcdhuM1HYCsQUCnL9iBbZ+jEMvAJ4DdgF3AckU64utiO5rDPzyyy8nPT42c85LpS+KzGLmuBldm57+Zev321TaVGO9wxOzx83I+ozsWzpRe4QospaD6sp9+cucOpj9PxLx5S/Dxx9DfrK/axs43fcIORCj7RGiUCgUKed3v9NKGibiySfhhz/MrD+pJhDQVsk8+qhWdnH4cGhs7HMT+Thut3aDMhCAL30J/vu/tRWMI0ak32+FQmEOROD996GyEp5/Hp59Fr773Z7ndHbC669r57z66qBXnK22WJgnwgtAMHnPD+Ldd9+Nj4tTuXeIQqFQKBQKhSI9qD1CFIok+da3vsWQIUMGtP+HWCz4vvlN2n7zmx6P+889l+b582lYvJiG3btpaGjI+NHY2Bj3Z8iQIfv1GRC/388bb7yB3+83XbvpaiNVdpO1o1fsFMlh9rj59+7ljU2b8CfKecceC9//fuad6kZS739rK8ycCccco+0/9e672uN798KSJf1rNz8f5s7VJuo3bIBbb03pJEg6+pfKeYpkMHvcdNFnsWhlsCoroakJvvOdg8/Jy4Pvfhf/c8/xRlUV/jvvhHHjBtzUeSIsQFslcjcwfgCv7c8Y+IILLkhq7xAz57xU+qLILGaOm9G16elftn6/TaVNNdY7PDF73Iysz8i+pROr3g4oFMlit9vJOXAT817wAfOBe0XYvnw5luXLWQesR/uCtv7997VfyRmEnJycAenLNNFoFJfLRTQaNV276WojVXaTtaNX7BTJYfa4RZcuxVVYSDRRzrvllv6tmkgjSb3/BQXw2GPg9R783GOPwZVX9q/d6dMH3nY/SUf/UjlPkQxmj5vu+oqL+3w6Go3i6uwk+vOfa6ukb711UM0cCdzadawCHgFeAPoqbDXQMXBs7xCAhQsX9us1Zs55qfRFkVnMHDeja9PTv2z9fptKm2qsd3hi9rgZWZ+RfUsnqjSWIms5aDkV0NtiqibgfmAe0HbAc1ZA/y14+4cqjaVQKExNrGTLnDlaOZYYQ4fCzp2HvGlneH78Y3j88YMft1igoQHGjMm4SwqFQnFIROC002DTppSZbAOeAh4FalNmVat37XQ6VZkshUKhUCgUCgOiSmMpTMmGDRu44447uOiiixg5ciR5eXnY7Xa++tWvctdddw1o2fqhKC8vx2pNvLipBvhv4Djgrxw8CQLGngSxWq196tObcDhMQ0MD4XBm38VMtJuuNlJlN1k7esVOkRxmj1s4EqFh9GjCL70ENTVw/fVgtcJNN/V/EmT7djjnHK32vdGu3x//OPHjIvDEE+lrt5+kox2V8xTJYPa4GV1f3L9//7v3SZAbbtBydGnpgGwfAcwENgGfFhXxX0D3qYvBjoEDgQBNTU39OtfMOS+Vvigyi5njZnRtevqXrd9vU2lTjfUOT8weNyPrM7Jv6URNhChSTl1dHaeffjp/+tOfePvtt8nNzWXixIkUFxdTXV3Nr3/9a8444wx27tyZkvamT59OcYIbZDcDp6GVwgqlpKXMU1xcHNdns9kYOXKk3i71oKOjgyeffJKOjg7TtZuuNlJlN1k7esVOkRxmj1sPfaeeCvPnw44dAyvHcs898NFHUFEBJ58MDz0EKZp8P+j9j61gaW3tn4FzztE2OT+QM8+Ek07qf7tpIh3tqJynSAazx83o+uL+nXAC/PvfcOONPSc8LBb47W/hwQdh925t35FJkwbczhleL08BuwEHMIGeY+CB0tDQQCDQV+EtDTPnvFT6osgsZo6b0bXp6V+2fr9NpU011js8MXvcjKzPyL6lE1UaS5Fytm/fzn/+539y880381//9V8cf/zx8efef/99pk2bxueff86kSZP48MMPB93OoUpjPQtMG7R141FRUdHvmscKhUJxWLJ3Lxx3HBx4A+yoo+Bvf+t9RcZAcbvh6afh4Ye1lSt33gm33da/1zoc2qbppaUwbZrm05lnpsYvhUKhSDdeL/zrX/Doo1BWBkuXHnzOhg3a808/reXLQbAKraTtCwzuB002m40rrriCyspKCgsLB+WDQqFQKBQKhSK16F0aS02EKFJOIBAgEolQVFSU8Pn333+fr33tawCsW7eO008/fVDt9DUR4gceB/5nUJaNhfoip1AoFP3kj3+E//u/xM898UTyG42vWwf33w8LF/ZcZXL88fDZZ9CfTX3b2uCVV+Caa6CXz0mFQqHICgIB6GsvDp9PmzR55BH44INBNbEXqETbYL0eePfddykvL6exsZHzzjvvkK9XPyRSKBQKhUKhMA56T4So0liKlGOz2XqdBAE499xzKSsrA2DLli1Jtzdr1qy4vcgRR+CcOZOWTz7hsvp66rP82LhxI3/60594+OGHDTkJ4na7ufPOO3EP8td+Rm43XW2kym6ydvSKnSI5zB63pPR1dMADDyR+7phj4LrrknMOcL/+OncOH447L6/nEzt2wFtv9c/IEUdoEzIDmATJVNzT0Y7KeYpkMHvcjK7vkP4dakPywkJtr6c33oAhQwbWdlkZd86aRUFZGbOA7cBS4JTPPqN89GhGjx7dLztVVVW9+m/mnJdKXxSZxcxxM7o2Pf3L1u+3qbSpxnqHJ2aPm5H1Gdm3dKJWhGQpkUiETZs28fHHH/PJJ5/w8ccfs2HDBjo7OwGYPHkyK1asGJTtUChEVVUVzz33HJs2baK5uZmhQ4cyduxYrrzySqZPn85RRx01aN/D4TBlZWX4fD5eeeUVLr/88kHZic0ijh8/nrq6Otb+7necetttA/6iZWQ6Ozupq6tj3Lhx5B14480A6OVfJtpNVxupspusHaP3LUVizB63pPQtXgzf+17i5+66C375y+T9a2yk7lvfYty2beR1fd7G+d734MUXk24jYbsZins62lE5T5EMZo+b0fWlzL/HHoOf/GRgbeflUTduHOPq6g7Ot6NH0zljBifNmUNDMNgvexUVFcydO7fHl/0jjzySXbt2mTLnpdIXRWYxc9yMrk1P/7L1+20qbaqx3uGJ2eNmZH16+ab3ihA1EZKFLF68mGnTpuHrY/PXwU6EbNmyhe9///usW7eu13OGDx/OE088wXe+850B2wdYtGgR11xzDVarlT179gx6UkXvi0ehUCgUBqOmRpv0WLAAwmHtsbIy2Lmz5wa/fSGibQDcGxUV8PzzBz+em6u1c/TRA/dboVAozMx//ick2hfwiCO01XoLFoDTOWCzYYuFxSLMBd4ZhFuq/KxCoVAoFApFZtH7Xq4qjZWFuFyuPidBBktjYyMXXnhhfBLEYrEwefJkZsyYweWXX86QrpUWe/fuZcqUKbzzzsC/cjidTn7Z9avcn/zkJ0mtLIkxZcoU03558fl8LF68OC3xTgV6+ZeJdtPVRqrsJmvH6H1LkRizxy1pfV/6Esyfr5WquvVWKC6GG2889CRIc7P2744dcPLJ8NBDPfcA6e7fBRfgO/Azx2KBb30LPJ7B+X0IMhX3dLSjcp4iGcweN6PrS5l/zz8Ps2fDscf2fPynP9X2Xdq1i+Cjj7Kl2/cCX2Ehi6dMOTjfdsMqwtXA28AW4BZg6ADcysnJIRgM8pMBrlbpC6PkvFT6osgsZo6b0bXp6V+2fr9NpU011js8MXvcjKzPyL6lEzURksWMGDGCyy67jNmzZ7N06VJ+8YtfJGXvuuuuY/fu3QAcd9xxrF27lhUrVvD444/zyiuvsHPnTi688EJAW0J1zTXX4HK5+m2/s7OTa6+9lp07d3L88cdz5513JuWvQqFQKBQJOfZYuPtubYXGb36T+JxAQPsV8te/DmPHar9GvucebdPzm2+G446DO+6Afft6vm7kSBg3bv/ff/gD1NfDq6/C+PHp1aVQKBTZyOjR8Mc/arlyyRK49FKwWveXyxoyhIIf/5jxLS0EP/oIzw9+QHSAP3I6GbgH2AU8AZwzgNe+/vrrBAKBhM8FAgEaGhoSHr29RqFQKBQKhUJhTFRprCykqamJUCjEmDFjejx+++23M3v2bGDgpbGWLl3KpZdeCkB+fj6ffPIJp5122kHneb1evvzlL7Njxw4Afvvb3/LXv/71kPaj0SjTpk1j4cKFDBs2jFWrVjE+yRtGei+nUigUCkUWsm0bPPKItnKk+yTHn/8Mf/kL+P09zy8shNtvh1//ev9jL72kldC6/HIwWK1XhUKhyApaWmDYsN6fb2+HZ5+FuXNh/fpBNbEWmAs8C3gPce7mzZt7fDfx+XzMmDGDl19+udcJD1VaS6FQKBQKhWJg6H0vV60IyUJGjhx50CRIsjz44IPxv6+//vqEkyAARUVF3HHHHfH/P/zww4Rjddh7QUT40Y9+xMKFCzniiCNYvnx50pMg3Rk/frzhNh1KFZ2dnWzZsoXOAzeJNAh6+ZeJdtPVRqrsJmvH6H1LkRizxy3t+sJhOO88bbXIgSs9/vnPgydBQCuRdeSRPf277DK48sqMTYJkKu7paEflPEUymD1uRteXVv/6mgQBOm02tkyeTOdHH8G11w6qiTOAR4DdwAPAgV+x8/Ly4t8jTjnlFKZOnRovDzFjxgyqqqr6XPURCASoqqpixowZ+/02SM5LpS+KzGLmuBldm57+Zev321TaVGO9wxOzx83I+ozsWzpREyEKOjo6ePvtt+P//+///u8+z7/qqqsoLi4GoK2tjVWrVvV6rojw05/+lPnz51NaWsqbb77J6aefnhrHu1B7hOiH2iNEP7uqhurhidnjlnZ9Viv86EeJn2ttTfz4qFEwbVpm/OsFtUeIynmHK2aPm9H1GaJeflsbLFuWlK1S4GagBlgNXAfkA4WFhT2+R8QmNVwuF1VVVf22X1VVhdvt7um32iNEMUjMHDejazNEzsuy77dqjxBFspg9bkbWZ2Tf0okqjWUiBlsaa9myZVxyySWAtuLD5XJhtVr7fM3FF1/M8uXLAfj973/Pn//854Tn3XTTTcydO5fi4mLefPNN/vM//7Ofag6N3supFAqFQpGF7Nyp7QkSjfbv/Dlzet9nRKFQKBTpZf586O1HWv/xH7B2LUQiAzbbAjwGPAx8noR73amoqFBlshQKhUKhUCj6QO97uWpFiILNmzfH/z7ttNMOOQkCcOaZZyZ8fXf+93//l7lz51JYWMirr76a0kkQhUKhUCgGxZgx2t4eiTj2WCgq2v//0lL42c/6b/sQpSIVCoVCMUDOPRdmzgS7vefjdjusWqVNbs+eDcccMyCzw4DfAjuAl4FLAEuSrh5YJkuhUCgUCoVCYSzURIiCrVu3xv8+7rjj+vWa7nuUbNmy5aDnf/Ob33D//fdjs9l45ZVXmDx5cvKO9sLtt9+O/cAvRybB5XIxe/ZsXC6X3q4kRC//MtFuutpIld1k7Ri9bykSY/a4DUrf9u1w663ahub95eab9/9dUgI33aRtxrtzJzQ2wt/+BiNGwA03QFlZ//xraNAmUmbP7r3M1iDJVNzT0Y7KeYpkMHvcjK5PT//ibQ8bBvfeC7t3a6tDvvpV7YTp02HIEDj6aPjjH7UcvHgxdK1y71cbdjv/d/vtfN1u5w1gK3ALMDQJv1esWGGInJcqG4rMY+a4GV2bIXJeln2/TaVNNdY7PDF73Iysz8i+pRNVGstEDLY0VkVFBc8//zygreJwOByHfM2LL77IVVddBWibt+/Zsyf+3Icffhhf/TF8+HBOPPHEXu3MmDFj0L+cii2nKi8vp7GxkXXr1pmuNFY4HKaxsZHRo0f3a6VOptHLv0y0m642UmU3WTtG71uKxJg9bv3WF4nA0qXw4IPw5pvaY2VlsGtXzxUdvRGNwtSpcPHF2r9d+171IBCAUEhbFdIf/37xC7jvPu3vwkJtL5Jbb4Xy8kP7cwgyFfd0tKNyniIZzB43o+vT078+296wQVsR0u2HWT2oq4NHHoHKyj4npsNWK42jRzO6sRFrtxV9fuBZ4CHg0wH6bbVaWb16Nf/xH/+ha85LlQ1F5jFz3IyuzbA5z8BtpNKmGusdnpg9bkbWp5dvqjSWQnc6Ojrifw8ZMqRfr+l+XvfXAwSDwfjfe/fu5f333+/12LlzZ5LeQ1NTEzabDYBIJILL5SI2v+fxeAiFQgD4/X68Xi+gXfDdZz3dbjednZ2AtmFQbLOgzs7O+OaHoM2Yhru+KHm9Xvx+PwChUAiPxwNoG8S7XC4iXfWKOzo6CAQC8femvb0dgGg0isvlItpVp769vT3+3gUCATo6OrBarRx77LF0dHQYUpPVamXUqFHx1/RHUyriZLVaGT58ePw16YiT3++nvLycnJyclGoCsNvt8Q+awcaps7OT8vJyotHooPpeR0cHY8aMwWq1pi1OA9WU7uvJDJoikQjl5eWEw2HTaOoep0AgQHl5ORaLpXdN//433i99Cb77XcJvv40rtiLQ7cb91FP90+TxEH72Wfjxj/FaLIk1FRTgikZ7aAqHw5SXlxOJRHpqqq8n+vjjmqaSEoKRCNx/P4FTT6Xjt79NOk4iQnl5OaFQKK1xSkfes1qtjB49usdYYTB9LxgMMmLECKxW66D6Xk5ODna7nZycnKQ19RYno11PZtDk9/sZNWoUVqvVNJq6xykcDnPUUUdhtVoNqSkQCDBy5EisVmvG+16fee/LX4YxY3rXdOyxeH7/e2hsRO66C5fdTiQ3V4tTcTGB2PeG3FyO3LcPazhMNCcHl91ONCeHIcC1JSV8UFDAh8D1NhtHFBdTUVFBRUUFdrsdi0UrpFVaWkp+fj6gfT8qKChg5MiR8fd8sHGyWq0MGzYs/hqV91Tey2ZNsThZrVZGjhwZf43RNFmtVo466qgeY49M9T2v18sxxxyD1WrNqu/unZ2dDBs2DKvVmnScks17VquVMWPG0NHRYeocYTZNVquVI488ssfYI9s1dY+TkfOexWKhvLw8/j28v5pSFSe9UBMhiniHB+ID+UNRUFAQ/zt2YcU4//zzEZF+HbcPpJRJL/z4xz/m2muvBaClpQWHwxG/OCsrK6mtrQVg5cqVLFmyBIDGxsYeK1/mzp1LXV0doG0ev2zZMgDq6uqYO3du/DyHw0FjYyMAS5YsYeXKlQDU1tZSWVkJaInD4XDQ0tICwKJFi6iurgZg7dq1LFiwANCSg8PhiCejBQsWsHbtWgCqq6tZtGgRXq+Xp59+2rCavF4vjz/+OE8//XS/NaUiTl6vl4cffpilS5emLU5PP/00CxcupKmpKaWaPvvsMxwOR/zDYLBxeuutt1i4cCFr164ddN9bsGABXq83bXEaqKZ0X09m0LRmzRoWLlzIqlWrTKOpe5yqqqpYuHAhO3fu7F3Tnj0sOftsTdPo0Thmztyvadcu6rZvT5umVatWsXDhQtasWdNT01NP4cnL0zRNm8baM87QNH3lKyzqWlGSTJw2bdrEwoULWbp0aVrjlI685/V6eeqpp5Lue4sXL+bRRx/F6/UOqu/FNDU1NSWtqbc4Ge16MoOmp59+mscffxyv12saTd3jtGrVKh566CG8Xq8hNVVVVfHYY4/h9Xoz3vdSkvcKCgg2N+OYOZOWYcO0OF19NdWTJgGw5pxzePDmm/EWFeEpLcUxcyaerpwdy+WTgOmTJvH3a67h6WOO4c7//V9mzpwZ/y40Y8YMJkyYAGgr8qdMmcKrr77K+++/j8PhiH/PGmicvF4v8+bN46233jpknFTeM5cmM+c9r9fLY489RlVVlSE1eb1eHnroIVatWtVvTZC6vjd//ny8Xm9WfXd/6623mDdvHl6vN+k4JZv3Yt9rzZ4jzKbJ6/Xy4IMPsmbNGtNo6h4nI+e9nTt3snDhQqqqqnTpe7ohCtPwpz/9SQABZPLkyf1+3Xe+853462677bZ+vWbp0qXx1xQXFw/S4+SoqakRQC699FI56qijpKamRsLhsDidTolGoyIi4na7JRgMioiIz+eTjo4OERHp7OwUp9MZt+VyuSQUComIiNfrFa/XKyIioVBIXC5X/Dyn0ymdnZ0iItLR0SE+n09ERILBoLjdbhERiUaj4nQ6JRwOi4hIe3u7+P1+EREJBALi8XhERCQSiYjT6ZRIJCIiIh6PRwKBgIiI+P1+aW9vF5/PJ6+99prs2bPHkJp8Pp8sWbJEmpub+61JRJKOk8/nk1deeUVaW1vTFqfm5mZ5/fXXpaOjI6WaPB6PLF68OO7TYOO0b98+ef3118Xlcg2q7+3Zs0eWLl0qPp8vbXEaqKZ0X09m0OR0OuX111+XtrY202jqHqe9e/fK66+/Lu3t7X1r+tWvREA6rVZx2u0iIALiKiuT0KpVadPU1tYmr7/+ujidzv2aOjrEOXasRHJyREA8JSUSKCgQAfEfe6y0t7QkHSe32y2vv/66tLa2pjVO6ch73T/HumsaaN9raWmRJUuWiM/nG1Tf6+jokMWLF/fIxWbMEWbT1NzcHI+7WTR1j1NbW5u8/PLL4vP5DKlp79698fc/030vJXnP55PoEUeI026XcG6uCEh7cbH4bTYRm02cZWXy8uWXi2/IEInk5IjTbk+cy222/8/emcdHVZ3//z2Tbcg6QVEElCCtWtSKXRRbFdQWl9ZiLZq4K3UBrW3an4r92iq0ta6tRoWAS3ABBcUFwQ3KEkQSRDYNAZWQAAECCcxkJstMZibP74/JjAkMMMks987Neb9e84Lc5TnPZ55znzn3nnvOEWdmpgiINylJbFdeKdumTRMTSHZ2tqSmpgogffr0kaOOOkouueQSyczMFKvVKoCcffbZsnr16uD3F06cAm3dffv29bjuqbyXmJqMnPcC94579+7VpaaWlhaZN2+e7N+/P2xNItGpe3V1dbJgwQJpaWlJqHv3ffv2yfvvvy8tLS0RxynSvNfS0iIffvih7N6929A5wmiaAtddwCcjaOocJz3nPafTKR999JHs3bs3rnUv8Cw38KmoqJB4otYIMRB6WSMkXmg9r5xCoVAoNKKqCr7/fX/3x4Hccot/Xvh4UVbmX5y3YwhxF/79b+iYGkuhUCgUcaa2Fu64Az766ODfi2nT4Ac/gClTkHfewdRpjZBwqQKKgRLAFsbxFouFMWPGUFJSgtlsDo7UAP/9VGCqX4VCoVAoFAqjovWzXDU1loKjjjoq+P89e/aEdU7nhnvfvn2j7lN3GD58eNhTeiUabW1trF+/Pji/nt7Qyr94lBurMqJlN1I7eq9bitAYNm7t7fDRR7Rt3RqevqFD4ZJLum4bPhxeeAGefTZmbob8/s85B7Zvh0cfhY554QH/Auzjx4dvfP/+7pUbA2JRjsp5ikgwetz0rk9L/6JS9qBB8MEHsGUL3HcfBO55srPhuutoGzGC9X/9K56qKpg8GQYM6Jb5ocCTwE78nSE/xj/N8KHuTVwuF3PmzCEjI4Pc3FyGDBkS/PTp04cRI0ZQWVmJy+WKin691y9FaIwcN71rS/icp0EZ0bSp2nq9E6PHTc/69OxbLFEdIQpOPvnk4P+3bdsW1jmdFzk/5ZRTou5Tdxg1apRh36ByuVwsW7asyzouekIr/+JRbqzKiJbdSO3ovW4pQmO4uO3fD//5D5x0Elx2Ga7nnw9f3113QUoKXHstfPYZrF0Lt94KGRkxc/eQ37/VChMnQk0NvPginHwy3H475OaGZ7i62v8A7rrr/DrCLTfKxKIclfMUkWD0uOldn5b+RbXsE0+Exx7zjxB59VX45z8hM/O7MqxWePBBfw6fOxcuuKBb5vsAtwBfAAstFn41ahQ5R7g3CaVr1apVnHrqqeTm5jJu3DiWLl0akX691y9FaIwcN71rM0zOi2MZ0bSp2nq9E6PHTc/69OxbTInrRFyKmNLTNUI++eST4HkZGRnB+eQOxy9/+cvgOQ888EAEXvecwLxyFotFMjMzDblGiIi+5hBUmpQmpUlpioqmDRtExo0TR79+XedgP/54kdbW8DR5veKprdWPps5xamkRaWoKP05/+pM0ZWR8t+7JpZeKfPihSHu7fjQZpe4pTUqT0qQ0haNpzRpx3X23SHLywWuEWK3SbjKJgDRmZ4s7NVUEpKVPn2Aur0tOlkesVhnScb+Uk5MjKSkpAkh6erqkp6cLICkpKZKTkxO8r7JarZKcnCyAXHvttSpOSpPSpDQpTUqT0qQ0GUqT1muEqBEhCn72s5+RlpYGQHNzM1988cVhj3e73ZSXlwf/vvDCC2Pq35E499xzGTt2LAD19fUUFRXhdrsBKCkpobKyEoDS0lLmz58PQG1tbZe1UIqLi6mqqgJg4cKFLFy4EICqqiqKi4uDxxUVFVFbWwvA/PnzKS0tBaCyspKSjjnp3W43RUVF1NfXAzB37tzg97Vu3TpmzZoFgMPhoKioCIfDAcCsWbNYt24dAOXl5cydOxcRCfqqR00iwueff94tTdGIk4jw0UcfxTxOLpeLxsbGqGrasWMHRUVFSMdc1ZHEyeVysXHjxh7Xvfr6ekQkZnHqiaaexKmzpljXPa01rV27FpfLRVlZWWJrWr4cSkqY9bvfse7MM/1xGjGCuRddhOuNN9i7d++RNSUlUevxxFVTWVkZLpeLtWvXHr7ubdgAGRnh1b39+ymtqmL+5Zf74zRoEEVnnw2XXQZXXklxcTFbtmzB5XLFJU7RznsiwtatW6MSp8WLFyMiPap7AU2NjY0RawKdXU8Gz3uff/45ImIoTYE4lZWV8eabbyIiutW0YsUKRCTudS8eeW/t2rXMnDkTETlY0+efs+6yy6C93f/7FLjX6NePosJC3B33TiXjxlE5bJhf08iRzL/8clwWCy2DBuEuLGQLsAC4e8IEvjd0KACjR49m9OjRAAwdOpQJEyYENRUWFjJo0CBMJhNms5nFixd3S5PKe8bQZNS8JyKsWLFCt5pEhDfffJOysrKwNUH06t6mTZsQkYS7d583b16X5xY9jZOIMG/evB7Xvc6/pUbPEUbSJCLMnDmTtR2j4o2gqXOc9Jz39u7di8vl0qzuaUZcu10UMaWnI0JERC677LLguXfcccdhj3399deDx/bt2zesESSxINCLOGnSJBkwYIAhR4TYbDaZNGmSbNu2TZeaAv7t2LEjbE0ikfeCB8rdtWtXzOK0Y8cOmTRpkuzbty+qmurr62XSpElBXT2N0+7du2XSpEmyZ8+eHtW9bdu2Bf1Qbyskjqa6ujqZNGmS1NXVJbYmu10kK0scWVldRoTUDhggkyZNkoaGBl1q6vz9R63u/fvfXd4i9iQni81qFQGR558Xu90ue/fuDea8WMYpFnmv8+9YJHHauXNnMGf1pO7t27cvqC1STSI6u54MnPcCddJmsxlGU+c4BXJKwI7eNNXW1gb9i3fdi0fe6/z9h9T0t799N2IxzBEhO487TiZNmiT1Rx31XS4HsefkyNcpKXIPyIAwRoRYrVaZNGmSrFmzpsd1T+W9xNRk5LwXaBPU1tbqUlPAv7q6urA1iUSn7nW+N0uke/fAPWnAr0jiFPBv9+7dYWvqHKfA+du2bTN0jjCapgOvOyNo6hwnPee9hoaGoG+9aUSISaTjtWRFwjNp0iQmT54MwMiRI1m2bFnY537wwQf8+te/BiAtLY01a9Zw6qmnHnRcS0sLZ5xxBlu2bAHg/vvv55FHHonc+R6wceNGTjvtNPr37099fT0bNmwI6XMi4/P5qK+vp1+/fiQlJWntzkFo5V88yo1VGdGyG6kdvdctRWgMFbe774bnnuuyyZeURH2/fvSbN4+ks87SyLFDE/Xv3+2GvDyoqzt43zHHwLZtYLHELe6xKEflPEUkGD1uetenpX+at/VE4Cc/CbluE9/7HtxwA+3Tp2PetaurzcDvWH09ST5fyHJdwGxgKrD6EL4lJSXRr18/VqxYwdCOkSTdRe/1SxEaI8dN79p6dc7TgU3V1uudGD1uetanlW+BZ7kBKioq4vosV02NpQDgV7/6Feeddx7gHyb161//mi+//LLLMfv27eOKK64IdoL07duXiRMnxt3XA6mrq8N3iBuNRCcpKYn+/fvrLmEG0Mq/eJQbqzKiZTdSO3qvW4rQ6D5u3Vlo7c47D9qUZDLRf+RIkjIzo+hU9Ij6979tG2Rnh953993QsdhuvOIei3JUzlNEgtHjpnd9WvqneVvPZILycnjrLThwGuA//hEefBDztm3w9tv4Oi2unuTz0b+u7pCdIAAW4Gbg847PzR3bOuPz+airq2P37t3U1NRQU1PT7cVM9V6/FKExctz0rq1X5zwd2FRtvd6J0eOmZ3169i2WqI6QBOWyyy5j+PDhXT7Tpk0L7v/iiy8O2j98+HB2HfDWUmdef/11jjvuOABqamoYPnw4F1xwAbfeeitjxozhhBNOYNGiRQAkJyfz5ptvYrVaY6ozHG6++WYydfrQLFKampp4+eWXaWpq0tqVkGjlXzzKjVUZ0bIbqR291y1FaHQbty+/hDvugP79oWNO0iPygx9893BpwACYPJmmzZt5+ZJLaDrhhNj5GgFR//5POgk2bYL33oNzz/1ue58+0GnO+COWu3YttLdH7E4s6pfKeYpIMHrc9K5PS/900dZLSYGxY2HxYqis9HeADBgAN97o35+cDFdeSdKSJf5c/sc/0tS/Py/ffDNNYd6b/BSYAdQCTwAndmzPzMzk5ptv5tJLL2XIkCEMGTKE3NxcCgoKaGlpiY4+hS4xctz0rq3X5zyNbaq2Xu/E6HHTsz49+xZLVEdIglJZWcmGDRu6fPbs2RPc39zcfND+DRs20NbWdkibgwYNYsmSJQwfPhwAEWHZsmW89NJLvP/++8FGd79+/Xjvvfe46KKLYqoxXGpra4OLvft8Pux2e3AhaofDEdTc2tpKc3MzAF6vF7vdHrTR2NiIx+MB/NN/BbR6PJ7gAoMAdrsdr9cL+L/j1tZWANra2oILCIkIdrs9OEqlqakp+AaX2+3G6XQC0N7ejt1up73j4ZXT6QwuLuRyuWhqaiI5OZkTTjiB5uZmXWpKTk5m0KBBwXPC0RSNOCUnJzNw4MDgObGIU2trK3l5eZjN5qhqAujfvz/JyckRxcnj8ZCXl0d7e3uP6l5zczODBw8mOTk5ZnHqrqZYX09G0OTz+cjLy8Pr9WqvqakJx2uvwXnnIcOHY3/zTXxNTfD88+Fruv9+3LNnQ00Nrvvuw5WTQ15eHiaTSZdx8nq95OXl4fP5olf3zGZaR4+m+eOPoawM71VXYb/jDjjqqKAmESEvL4+2traDNW3bBmedhf2ss/C+8AK4XLrKe51/xyKJk9vtZuDAgSQnJ/foejKbzfTv3x+z2RyxJtBvjjCaptbWVgYNGkRycrJhNHWOk9frZcCAASQnJ+tSk8vlCn7/8a57h817UYqTz+fjuOOOIzk5+ciajj8eiorwbd2KXeRgTaecQuujj+JetYq8U0+FU07B3umFscacHDwpKf44pafTkp7u15SSQmNODkcB9wCrrVbmJydzgdfLrp07g+3F1NRUUlNTmTNnDtdddx0VFRVUVVVRU1NDQ0ODynsG0mTkvBe4d+x8DepJU3JyMgMGDOjS9ohX3WtpaeH4448nOTk5oe7dPR5P8Hcs0jgFvv/AOd2te8nJyQwePJjm5mZD5wijaUpOTua4447r0vZIdE2d46TnvGcymcjLy8PlcmlS97RCdYQounDKKaewatUqXnnlFS655BKOP/54UlNTOeaYYxgxYgSPP/44lZWV/OpXv9La1SBer5fLL78cgPr6eoqKioIXZ0lJCZWVlQCUlpYyf/58wN95UlRUFLRRXFxMVVUVAAsXLmThwoUAVFVVUVxcHDyuqKiI2o63nefPn09paSng75gqKSkB/ImjqKiI+vp6AObOnUt5eTkA69atY9asWYA/ORQVFQWT0axZs1i3bh0A5eXlzJ07F4vFwrBhw5g2bZouNVksFjIzM3n77bfD1hSNOFksFpqbm1m+fHnM4vT2228zatQo2traoqqpoaGBVatWYemY8qancVq1ahWjRo1i69atPap706ZN48wzz8RiscQsTt3VFOvryQiaNm3axKhRo1i/fr32mn7/e0rWroUVK3CnpVFUWEh9v37w/PPMfeut8DRVVbFu8GBISaG8vJwFCxYwatQonE6nLuO0fv16Ro0axaZNm2JT90aMoPbxxynq9PCsuLiYnTt3MmrUKJYvX36wpqIi8Pkouvxyav/9bxg8mPlPPknpJ5+EpSnWec9isXDiiSd2GbXakzgtWrQIn8+HxWLp0fXU1tbGqlWrgo1yo+YIo2l6++23yczMxGKxGEZT5zitX7+eXbt2YbFYdKlpwYIFJCcnY7FY4l73Dpv3ohSnTZs2UV1djcViCV+TzXZYTYtWrmTUPffQ8OabFBUWfqdpwgSqOtb6WDh6NAtHj/ZrGjqU4k4jAJ8tLOS0QYN43+Xi6qOO4s4RI+gLDBs2jHHjxgHw8ccf8/bbb3PuuecyZMgQJk6cyD333ENLS4vKewbQZOS8Z7FYSE5OZsGCBbrUZLFY2LVrF+vXrw9bE0Sn7pWUlDBw4EAsFktC3buvWrWK/fv3Y7FYIo6TxWJh//79rFq1KmxNneNksVg488wzmTZtmqFzhNE0WSwWqqur2bRpk2E0dY6TnvOe0+lk1KhRLFiwQJO6pxnRW3ddoYgvFRUVAsi5554rffv2lYqKCvF6vWKz2aS9vV1ERBobG8XtdouISEtLizQ1NYmIiMfjEZvNFrRlt9ulra1NRESam5ulublZRETa2trEbrcHj7PZbOLxeEREpKmpSVpaWkRExO12S2Njo4iItLe3i81mE6/XKyIiTqdTWltbRUTE5XKJw+EQERGfzyc2m018Pp+IiDgcDnG5XCIi0traKk6nU1wul3z22WdSV1enS00ul0s+/fRTqa+vD1uTiEQcJ5fLJaWlpbJ///6Yxam+vl7KysqkpaUlqpqamppkyZIlQRs9jZPNZpOysjJxOBw9qnt1dXXy2WefBbfHIk7d1RTr68kImhobG6WsrEzsdrv2mv77X2nMzhYBaTeZxGa1ijcpSQTE+dprPYpTQ0ODlJWVSXNzsy7jZLfbpaysTBobG+Na95xOp5SVlcn+/fu7atq2TSQzUwTEZrWKJzlZBKQpI0NafvrTsDTFOu+5XC5ZsWKF1NXVRRSnffv2SWlpqbhcrh5dTy0tLbJkyZJgrI2aI4ymqb6+Xj799FNxuVyG0dQ5Tna7XZYtWyYul0uXmhoaGmT58uXicrniXvcOmfeiGKfGxkZZunSpuFyuqGnat2+flJWVSdOWLWI76igR/7LrYs/JkbaUFBGQ5vR0aU5PFwFpS0kRe05O8LhALnelpcmy888XW06OtIK8lJoq52ZnCyAmk0msVqskJSUJIJmZmWKxWCQ/P1/lPQNoMnLec7lcsnz5cmloaNClJpfLJcuWLQvaiGfd27Nnj6xYsUJcLldC3bvbbLbg71ikcQp8/wEb3a17nZ+dGDlHGE2Ty+WSpUuXBm0YQVPnOOk57zU3N0tZWZk0NDTEte4FnuUGPhUVFRJPVEeIImEJXDzjx4+XrKysuF888cDhcEhxcXEwEekNrfyLR7mxKiNadiO1o/e6pQiNruJms4l0PMg56HPuuT0yqSt9IdBdznvssdDfP4hMmxa9ciJA5TxFJBg9bnrXp6V/idrWC9p86KFD5+fhww+9r+PjyMqS4vHjxZGV1WX7KpAbQdI6PUAIfCwWS/BBRqz0KWKPkeOmd20q52lrU7X1eidGj5ue9Wnlm9YdISaRjkm8FIoEY+PGjZx22mnBvysqKjj11FM19EihUCh6GbffDi+8cPD2/v3hq6/g6KPj71Nvoa0NhgyBXbsO3nf00bB9u3/RdYVCoVDEn8pKeO45ePVV6LRGEkOHwjffwLffQnExvPwydJrbO1wagJeAaUBNp+3V1dXB+b7r6uqC2/v37x+cllWhUCgUCoVCK7R+lqvWCFEkPFarNbgIoNE4cHEivaGVf/EoN1ZlRMtupHb0XrcUoYlp3DweeOstePTR8M+5666uf597Lrzxhn8B7x50gui9Xuoq5zU2wnnnQajfvz/8oUedILHQp3KeIhKMHje969PSv0Rt6wVtnnIKTJ0KO3fCM8/AySf7D7jzTn/ePvlkePpp//7p0+GHP+xqx2zGbrXSfoh7nKOBiUAVMB+4BDDhX0C1oKCA3Nxchg4dyplnnsnQoUPJzc2loKAguLiqQr/oPS9Egt61qZynrU3V1uudGD1uetanZ99iiTGfHit6FYWFhWRnZ2vtRkw4cHEivaGVf/EoN1ZlRMtupHb0XrcUoYlJ3HbvhsmTIS8Prr4aHnwQ9uwJ79wzzoCLL/aPDNmwAT79FAoKIDW1R67ovV7qKuf16wezZ8OWLfCnP0FGhn+7xeJ/0BYuM2fCjh2HLicWvmtgR+91SxEao8dN7/q09C9R23oH2czJgbvvhk2bYNEiuOWWridkZPh/Q9evhxUr4JprICUFR3Y2RYWFOI5wj2MGfg18BHwD/O/SS1k4Zw4ul4vs7OzgfZLL5WLOnDnBBdcV+kXveSES9K5N5Txtbaq2Xu/E6HHTsz49+xZL1NRYioQlMJzKarXicDj48ssvDTc1Vnt7Ow6Hg+zsbF2OetHKv3iUG6syomU3Ujt6r1uK0EQ1bvv3w4QJ8M474PV23fevf8EDD4RnRwRMpsh86UDv9VLXOc9m879V3NIC//hHeIa3bfNP0wJw9dW0FxbiOOmkqOpTOU8RCUaPm971aelforb1omKzro72hx7C8eabZDscmLv5pmYr8Dow1Wxma3Y2Docj+LanxWLBZrOpabJ0jN7zQiToXZvKedraVG293onR46ZnfVr5pqbGUigixOVykZ6eDoDP58NutxPo33M4HLS1tQHQ2tpKc8ccvV6vF7vdHrTR2NiIx+MB/EPKA8PGPR4PjZ3m7bXb7Xg7Hhg2NzfT2toKQFtbW7AXVUSw2+34fD4AmpqacLlcALjdbpxOJ3DwMDSn04nb7Q5qampqwmw2k5WVhcPh0KUms9lMnz59gj6EoykacTKbzaSmpga/11jEqbm5GavVGrQXLU0BO4Efmp7Gye12Y7Va8Xq9Pap7nX/wYhWn7mqK9fVkBE0ejwer1UpbW1vkmgDPmjXg9dKSnk5LRx71pKTQ+Nprwc6RI2oymaIWp5aWFqxWa9Ce3uLU1taG1WrF4/HEte75fD6sVmvwOwqpyWTCe8898I9/hK/puedwpaSAz4f7nXdo/sUvsP7mN/D++9j374+KJrPZTGZmZpc3jXoSp9bWVtLS0jCbzT26ng7EqDnCaJqam5vp06cPZrPZMJo6x6mtrY3k5GTMZrMuNbW0tGCxWDCbzXGve2HlvQjj5PF4SEpKwmw2R01Ta2srVqs1aK9HcTr6aMytraR4PLjT0vyaUlODo0PEZMJuteJLSvJryszE1dGx4U5Lw5uVxe+B1cA7wLVAGpCVlYWIUFdXZ8jrySiajJz3zGYzFosl6IPeNJnNZpKTk4M+xLPuOZ1OMjIyMJvNCXXv7na7SUlJwWw2Rxwns9lMSkpKl9/I7tQ9s9lM9gGdv0bMEUbTZDabSUpKCvpgBE2d46TnvCciWK1WWlpaNKl7WqE6QhQJzx/+8Afy8/MBqK+vp6ioKHhxlpSUUFlZCUBpaSnz588HoLa2lqKioqCN4uJiqqqqAFi4cCELFy4EoKqqiuLi4uBxRUVF1NbWAjB//nxKS0sBqKyspKSkBPAnjqKiIurr6wGYO3cu5eXlAKxbt45Zs2YBBw9DmzVrFuvWrQOgvLycuXPn4nQ6mTp1qm41OZ1OnnvuOV577bWwNUUjTk6nk2effZYPPvggZnF67bXXmDZtGrt27Yqqpm+++YaioqLgj0tP47Ro0SKmTZvG2rVre1z3iouLcTqdMYtTdzXF+noygqby8nKmTZtGaWlp5Jqef56q3//er2n0aBaOHu3XNHQoxb/9LXScF884zZkzh2nTplFTU6PLOJWWljJt2jTKy8vjWvcqKiqYNm0aH3zwQfQ0ORzMtdkoHzHCH6czz+S1G25g2qmnsuvxxyl69tmoaOr8OxZJnN59912ee+45nE5nj+peIJfv6lhc3qg5wmiaXnvttWDcjaKpc5xKS0t55plncDqdutQ0Z86c4Pcf77oXk7x3QJzKy8uD33+0NL377rtMmzYt2N7rUZwqKnB+8AHP3n03i37xC7+mYcMoGTcOD/7OjqLCQur79fNrGju2Sy6fdd11AOw67jiWFxbyyHHHsQO457rruODMM3G5XIa8noyiych5L3DvOGfOHF1qcjqdPPPMM8Hj4l33pkyZgtPpTKh790WLFvHss8/idDojjlPgHn/RokVha+ocJ6fTSXFxseFzhNE0Ba67zr/Nia6pc5z0nPdqamqYNm0ac+bM0aTuaYYoFAlKRUWFAHLuuedK3759paKiQrxer9hsNmlvbxcRkcbGRnG73SIi0tLSIk1NTSIi4vF4xGazBW3Z7XZpa2sTEZHm5mZpbm4WEZG2tjax2+3B42w2m3g8HhERaWpqkpaWFhERcbvd0tjYKCIi7e3tYrPZxOv1ioiI0+mU1tZWERFxuVzicDhERMTn84nNZhOfzyciIg6HQ1wul4iItLa2itPpFJfLJZ999pnU1dXpUpPL5ZJPP/1U6uvrw9YkIhHHyeVySWlpqezfvz9mcaqvr5eysjJpaWmJqqampiZZsmRJ0EZP42Sz2aSsrEwcDkeP6l5dXZ189tlnwe2xiFN3NcX6ejKCpsbGRikrKxO73R4dTbt2iaSlSXN6ujSnp4uAtKWkiD0nR+Sii+Iep4aGBikrK5Pm5mZdxslut0tZWZk0NjbGte45nU4pKyuT/fv3R0/Tf/8rzsxMabVYREBcaWlSf9RRUjZihLQ891zUNLlcLlmxYoXU1dVFFKd9+/ZJaWmpuFyuHtW9lpYWWbJkSfB7MWqOMJqm+vp6+fTTT8XlchlGU+c42e12WbZsmbhcLl1qamhokOXLl4vL5Yp73YtJ3jsgTo2NjbJ06VJxuVxR07Rv3z4pKysLttV6FKfPPhPX978vy84/X2w5OSIg7tRUaczOlqtB7jCZpMxqFW9SkggclMsdWVkiIC0Wiyy54AJp6djnyMqS5rQ0eQ/kXxddJHs68rIe657Ke8bMey6XS5YvXy4NDQ261ORyuWTZsmVBG/Gse3v27JEVK1aIy+VKqHt3m80W/B2LNE6B7z9go7t1r/OzEyPnCKNpcrlcsnTp0qANI2jqHCc9573m5mYpKyuThoaGuNa9wLPcwKeiokLiiVojRJGwaD2vnEKhUOiSPXugrQ2OPz6842++GV555bu/LRa49lq46y740Y9i4qJCY7xe+N73/GuEHMhRR8H27dAxVZpCoVAoNMDng48+wvfMMyR1vB29DTgRCKwYch5wF3AlkNKDIrZbLBw3eTIpt90GubnR8FqhUCgUCoXisGj9LFdNjaVIeEaNGmXYBf9cLhfLli0LztenN7TyLx7lxqqMaNmN1I7e65YiNIeMmwh89hlcd52/A+TBB8M3etdd/n+HDoX//Ad27oSXXtKkE0Tv9dIwOa+9He67z98Z0rkci4Vld92FK4qL5amcp4gEo8dN7/q09C9R23pRy3keD8syM/G8/z588w3eu+8mc/Jkqqqrqa6u5oorruBToAA4AXgQ2HmgDYuFZaNGBdcPOZATXC5SJk7E3a8f3ltugfXrI/JZER30nhciQe/aVM7T1qZq6/VOjB43PevTs2+xRHWEKBKevLw8kpOTtXYjJni9XmpqaoKLHekNrfyLR7mxKiNadiO1o/e6pQjNQXFrboYXXvB3Wpx7Lrz+Ong8MHs27NsXntGf/hSWL4dvvoG//AX69o2dgCOg93ppmJyXmgp33glffw3z5sHIkf5y+vShZuDA8Mt54AGYNg06FusLhcp5ikgwetz0rk9L/xK1rReTnPf975P8zDMc9eCD5OXlkZeXx6xZs4JrJNYB/wTygLHA0oCN5GRq8vLwHuE+Kc3nI/nll+HMM+HnP6dtxgxqvv6ampoaampqet0DEq3Re16IBL1rUzlPW5uqrdc7MXrc9KxPz77FEjU1liJh0Xo4lUKhUGjOu+/ClVeG3vf443DvvfH1R5G4rFnj/9x+e3jH79gBJ57on2arb1+YMME/uui442Lrp0KhUCiCNDY2YrVau2wbDqyL0O4e4EVgOlBvsTBmzBhKSkpIDzFtosvloq6uLvh3//79DTtaX6FQKBQKRWRo/SxXjQhRJDz9+/cnKSlJazdigs/no66uDp/Pp7UrIdHKv3iUG6syomU3Ujt6r1uK0BwUt8svh0GDQh9cXOyfYzyB0Hu9NHLO48c/xvf734dfznPP+TtBAPbvh4cfhsGD/WvONDYGD1M5TxEJRo+b3vVp6V+itvXinfNycnKCI0MC3BWwkZREXf/++Hpwn3Qs8ABQDbzuctEwZw4XXnBBcJRITU0NNpuNgoICcnNzGTJkSPCTm5tLQUEBLYcZLag4NHrPC5Ggd20q52lrU7X1eidGj5ue9enZt1iiOkIUCc/48eM59thjAf+FbLfbCQx0cjgctLW1AdDa2kpzczPgHwJmt9uDNhobG/F4PAC0tLQEG+4ej4fGTg907HZ7cNhYc3Mzra2tALS1teFwOAAQEex2ezCZNDU1BYeUu91unE4nAO3t7djtdtrb/UseOp1O3G434H+zqqmpCafTyfTp09m5c6cuNQX82717d9iaohGnQLl79+6NWZx2797N9OnTaWxsjKomm83G9OnTg/Wgp3Gqr69n+vTp7Nu3r0d1b+fOnUE/YhWn7mqK9fVkBE0NDQ1Mnz6dhoYGv6bkZHy3347dakVMJr+m7GzaUlOhuprWBQt0r6lznOrq6pg+fTp2u12Xcer8/cez7u3fvz+Y82IZp7Dz3p49MH06vqSkrnWvTx/aVq2CzMygps6/Y5HEac+ePcGc1ZO619jYGNQWqzjp7XoygqZAnXQ6nYbR1DlOgZzidDp1qSmQkwM+Gy3vdf7+o6UpkKtsNltEcQrkzvr6+iNqeuaZZ7jmmmuwWCz0TUvjN1lZ/jKzs5k+fjyN2dkAlGVlMTstDS/+9UOaMjP9mg7M5YF2BNDWpw+jMzL4H/DS2rUUnXkmwzt1erzzzju4XC7S09ODo0V8Ph8ff/wx48aNi0qcVN5LfE2dc8j06dODI4j0pingX0NDQ9iaIDp1r/O9WSLduwfuSZ1OZ8Rx6k7eC1X3Orc5jZwjjKbpwOvOCJo6x0nPec9utwd906LuaYXqCFEkPCtWrGD06NGA/4e4qKgoeHGWlJRQWVkJQGlpKfPnzwegtraWoqKioI3i4mKqqqoAWLhwIQsXLgSgqqqK4uLi4HFFRUXU1tYCMH/+fEpLSwGorKykpKQE8CeOoqKi4A/43LlzKS8vB2DdunXMmjUL8CeHoqKiYDKaNWsW69b5B7KXl5czd+5ccnJyuPnmm5kxY4YuNeXk5HDhhReyYMGCsDVFI045OTmcdtpprFq1KmZxWrBgARMnTsRkMkVVU+BHJScnJ6I4rV+/nokTJ7Jz584e1b0ZM2Ywfvx4cnJyYhan7mqK9fVkBE1bt25l4sSJVFZWfqfpyispKizEnZbm1zRuHJXDhsGQIZTu2KF7TZ3jtGjRIiZOnEhbW5su41RZWcnEiRPZunVrXOteQ0MDEydOZNWqVTGNU9h578UXobGR+n79Dq57t94KSUlBTTk5OVxzzTXMmDEjojgtX76cH//4x+Tk5PSo7pk6HvAF/jVqjjCapgULFnDhhReSk5NjGE2d41RZWcnxxx9PTk6OLjUtWrSIn//85+Tk5MS97sUj723dupVjjjmGnJycqGlavnw5EydOxOl0RhSnnJwcvv/977O+YwHzw2n68MMPuf3227HZbLz2zjvM+fvfcVx/PfTpA4Cp48HE/267jaIzz2Qw8OiIEbw+dqxfU6hcPmyYX9PIkcy//HIAMgYNwlpYyE5gGnDXhAkMHToUgNGjRwfvx4YOHcqECROYN28eLpdL5T2V94JxysnJ4ec//zmLFi3SpaacnByOP/74oA/xrHuvv/46v/3tb8nJyUmoe/f169fz/e9/n5ycnIjj1J28F6ru5eTkMH78eGbMmGHoHGE0TTk5ORxzzDFs3brVMJo6x0nPea+trY2JEyeyaNEiTeqeZohCkaBUVFQIIBaLRTIzM6WiokK8Xq/YbDZpb28XEZHGxkZxu90iItLS0iJNTU0iIuLxeMRmswVt2e12aWtrExGR5uZmaW5uFhGRtrY2sdvtweNsNpt4PB4REWlqapKWlhYREXG73dLY2CgiIu3t7WKz2cTr9YqIiNPplNbWVhERcblc4nA4RETE5/OJzWYTn88nIiIOh0NcLpeIiLS2torT6RQRUZqUJqWpN2my2cTx/PMiP/mJ+NatC1/TDTdIu8kkAtI4Zoy4580T8Xr1ocmIcerNmlpaxPnDH4qAeJOSxGa1flf3jj9e3Pv3J54mI8ZJaVKalCalyWYT29NPi+8HPxAZMEAc+/aJ3W6Xs88+WywWi+RkZspVIEsOzOXZ2eJOTRUBaenTR5oyMkRAPMnJYrNaRUAExJ6TI0tTUiQfJDs9XdLT0wWQlJQUycnJEUCqq6tVnJQmpUlpUpqUJqVJaQpqCjzLDXwqKioknqiOEEXCErh4CgsLJTs7O+4XTzxobGyUp556Kpiw9IZW/sWj3FiVES27kdrRe93qdVRVidxzj0jfvsEHDHLHHQcddsi4lZeL/OUvIt9+GyeHY4Pe66WRc163ytm2zV9fs7O/q68g8te/hm+zoxEddd9idL5CG4weN73r09K/RG3r6aWd18WG3e7P2x00NzdLfn6+WCyW4EOI00Cmgjg75/RufHaD/ANkYKcHG4GOEEX30HteiAS9a1M5T1ubqq3XOzF63PSsTyvftO4IUVNjKRKeZcuWBeezMxoWi4VRo0ZhsVi0diUkWvkXj3JjVUa07EZqR+91q1fxf/8H3/sePPmkf9HpADNndll0Gg4Tt7PPhv/8x28ngdF7vTRyzutWOSecAE88AbW18NRTkJcHKSnwhz+Eb3PcODj3XHj77e8WXY+GbzE6X6ENRo+b3vVp6V+itvX00s7rYqNPH3/e7iA9PZ3Zs2djs9nYuHEjZ599NhXAncBA4JselNUf+DtQA8wFLuix1wq954VI0Ls2lfO0tanaer0To8dNz/r07FssMYl0TBqqIV999RWbN28mPT2dc845h759+x72+Jdffpnt27fz4IMPxslDhR7ZuHEjp512WvDviooKTj31VA09UigUih7wxhtw7bWh9xUVwR//GF9/FIru4vXC2rVw1lnhHb9zp7/zJNABMngw3H03/P73YLXGykuFQqFQHAKXy0VdXR0pX3/NwEsuiYrNSqDv3/5G/3vvhY4F2xUKhUKhUPRutH6Wq+mIkNraWn7+858zfPhwCgoK+M1vfsNxxx3H3XffHVx9PhQvvfQSkydPjqOnCj1zySWX0KdjMUCj0drayscff0xra6vWroREK//iUW6syoiW3Ujt6L1u9Sp+9zs49tjQ+6ZO9U860YHR46Z3fUbOeRGVk5x8yE6QkDanTOk6CmTbNrjnHhg0CCoqoutblM5XaIPR46Z3fVr6l6htPb2087prw2KxkJeXx8B58w55jK+bHdXDgP7/+heuo47Cc9tth8zviq7oPS9Egt61qZynrU3V1uudGD1uetanZ99iiWYdIa2trfziF7+gvLwcESE7O5s+ffrg8XiYOnUqP/rRj/j222+1ck+RQFitVsxmY87y1t7ejt1up729XWtXQqKVf/EoN1ZlRMtupHb0Xrd6FampcNttofd9/TWsWRP80+hx07s+I+e8WJVzkM2WFpg+PfTBxx0Hw4bFxDe91y1FaIweN73r09K/RG3r6aWd12Mbp50GJ5548PYRI0jaswf3yy+z+eiju+WHxesl5cUX4fTTYeRIePNN8Hi6ZaM3ofe8EAl616ZynrY2VVuvd2L0uOlZn559iyWaTY31n//8h3vvvZe8vDxmzpzJz372M3w+H++++y733HMP27dv59hjj2XRokVdhswAnHfeeaxcuRKfz6eF6wqdoPVwKoVCoTgk27bBwoWH7uA4kNpa/1RBgd+1nBy4+WaYMAFOPjlWXioU8ef55+GOO0Lve/bZkOuMKBQKhSKOtLfDxx/7R+999JF/ZOprr8H11wcPcX/+OW1PP03Ge+9h7smbpMcdB7ff7m8nDRwYRecVCoVCoVDoGa2f5Wr2Gv3bb7+NyWRi1qxZ/OxnPwMgKSmJsWPHsn79ei666CL27NnDhRdeyLp167RyU5EA5OXlkZycrLUbMcHr9VJTU4M3jIVktUAr/+JRbqzKiJbdSO3ovW4lJO3t/s6PMWP8b1Pefjts3hzeuYMG+c/74Q/9b8vv3AlPP31QJ4jR46Z3fUbOebEq5yCbq1eHPjDQ+Rcj3/RetxShMXrc9K5PS/8Sta2nl3ZeRDbMZrjsMvjgA/j2W/i//4OrrupySNpZZ5H1+uuYd+3C88QTfGMyda+M3bth8mT/GlFXXQXLlnWZCrQ3o/e8EAl616ZynrY2VVuvd2L0uOlZn559iyWadYRs2rSJgQMHcs455xy0z2q18tFHH5Gfn09DQwMXXXQRq1at0sBLRSJw8803c8wxxwDg8/mw2+0EBjo5HA7a2toA/3Rszc3NgP+Ct9vtQRuNjY14OoZot7S00NLSAoDH46GxsTF4nN1uDyaJ5ubm4Fx6bW1tOBwOAEQEu90eHLHU1NSEy+UCwO1243Q6gYOHoTmdTtxuN+BfsLCpqYmmpiZeeeUVdu3apUtNAf/q6urC1hSNOAXKra+vj1mc6urqeOWVV3A4HFHVZLfbeeWVV4Ln9TRODQ0NvPLKK+zfv79HdW/Xrl1BP2IVp+5qivX1FDNN+/f7Oy1OOQV7fj7eDz+E9naaMzJoLS4OX9PLL+NetQrnNddARkZITfv27eOVV15h3759hozTnj17eOWVV2hsbNSlps7ffzzrns1mC+a8WMYpFnmv8+8YAC+8QOOKFXhuvhlSU2lJT6clPR1uvRVPWtohNe3duzeYs9oqK3GsXBmWpkCcHA5HUFus4qS368kImgJ1snO7I9E1dY5TIKc0NTXpUlMgJzc1NcW97sUj73X+/qOlKZCr7HZ7RHEK5M6GhoZuaYp63hswgOb/+z9ISwtd9zIySLnnHv5RUMAl6emUAZ6UFBpzcr7TZLXi7XhprTkjg9aOtR3bUlNxZGTA3LnIhRey98c/xvX00+B0qrxn0LwXqNd79uzRpaaAf/v27QtbE0Sn7nW+N0uke/fAPWlTU1PEcYo073Vucxo5RxhN04HXnRE0dY6TnvNeY2Nj0Dct6p5WaNYR0tzczHHHHXfI/cnJybz++uvcdNNN2O12Ro8ezYoVK+LooSJRWLZsGaNHjwagvr6eoqKi4MVZUlJCZWUlAKWlpcyfPx+A2tpaioqKgjaKi4upqqoCYOHChSxcuBCAqqoqijseZAIUFRVRW1sLwPz58yktLQWgsrKSkpISwJ84ioqKgg/p586dS3l5OQDr1q1j1qxZgD85FBUVBZPRrFmzgqOfysvLmTt3LlarlTvuuIMZM2boUpPVauXiiy9mwYIFYWuKRpysVitnnHFGsIM0FnFasGABDz30EGazOaqaAj8W1o4FJ3sap/Xr1/PQQw+xa9euHtW9GTNm8Kc//Qmr1RqzOHVXU6yvp5hpev55eP11+PZbigoLqR00yK/p8sspramBpqbwNGVlsW79+sNqqq6u5qGHHmLTpk2GjNOiRYt46KGH8Hg8utS0adMmHnroIaqrq+Na9/bt28dDDz3EqlWrYhqnWOQ9q9XKTTfdxIwZM77T9OmnVE2cCNu2sfDee1k4Zgz84Q+H1bR8+XLOPvtsrFYrlVOmUPLWWzBqFO533gmr7gXWEgv8q/JeYmhasGABF198MVar1TCaOsdp06ZNDB48GKvVqktNixYtYuTIkVit1rjXvXjkverqao499lisVmvUNC1fvpyHHnqIpqamiOJktVo5+eSTWb9+fbc0aZX3rrjySn5w++04gKqhQymeMOE7TQe2jUaO9GsaNoySceP8mtLSKB4zBvtjj9HSty9v/fvflHeUq/Je4msKxMlqtTJy5EgWLVqkS01Wq5XBgwezadOmsDVBdOre66+/Tn5+PlarNaHu3devX8/JJ5+M1WqNOE6R5j2r1cqf/vQnZsyYYegcYTRNVquVY489lurqasNo6hwnPec9j8fDQw89xKJFizSpe5ohGtG/f38ZNGhQWMfeeuutYjKZJCsrS5YsWSLnnnuumM3mGHuo0DsVFRUCiMVikczMTKmoqBCv1ys2m03a29tFRKSxsVHcbreIiLS0tEhTU5OIiHg8HrHZbEFbdrtd2traRESkublZmpubRUSkra1N7HZ78DibzSYej0dERJqamqSlpUVERNxutzQ2NoqISHt7u9hsNvF6vSIi4nQ6pbW1VUREXC6XOBwOERHx+Xxis9nE5/OJiIjD4RCXyyUiIq2treJ0OkVElCalSWlKBE0vvywCYrNaxZOcLALSlJEhLX36iBQXJ6YmI8ZJadKnpg7/wtK0a5e409OlMTtbBKTdZBLbaaeJ97//FWls1I8mI8ZJaVKalCal6XCavvxSBKQtJUXsOTki/smuQreNQNypqV1zudUq3qQkERBnZqa0Wiwio0aJa/ZscezbFyznq6++kqqqKmltbVVxUpqUJqVJaVKalKYE0xR4lhv4VFRUSDzRrCPkF7/4hZjNZqmurg7r+AkTJojJZJL09HQ59thjVUeIInjx3H///ZKTkxP3iyce2O12eeSRR7okNj2hlX/xKDdWZUTLbqR29F63Eo7WVpGjjgre9Hf5nHaaSEejIFKMHje96zNyzotVOVHPeX//e+jrDETefjvmfijii9Hjpnd9WvqXqG09vbTzoulL2EyZcsj8fCPI8yDNh8rfR/j4jjtO5px2muSlpQUfnFgsFsnPzw8+DDIKes8LkaB3bSrnaWtT3d/2ToweNz3r08o3rTtCNJsa6/zzzwdg5syZYR0/depU/vCHP9Da2hockqRQALz33nvB+fGMRnp6OldccQXp6elauxISrfyLR7mxKiNadiO1o/e6pQtEwGYL71iLBX7/+4O3DxsGEyZAx5yikWL0uOldn5FzXqzKiWrOu+wy0l94IfQBeXkwZkzM/VDEF6PHTe/6tPQvUdt6emnnRdOXsLnzTti8Gf70J+i0Rsha4FXgdmAg8Gfg226aNu/ezdUVFXzjdvMGcB7++cnnzJnDuI7ptYyC3vNCJOhdm8p52tpU97e9E6PHTc/69OxbLDGJdKxmEme++uorzjjjDI455hiqq6vp07Fo2pG47777ePLJJzGZTMHFahS9k40bN3LaaacF/66oqODUU0/V0COFQmEIHA545RWYOhWGDIEPPwzvvOpqGDoUzGb47W/hrrtg5EgwmWLrr0LRW3jpJbj11tD7/vtf+POf4+uPQqFQKELT3ExDURG7HniAIqDkgN0m4BfAXcCvgaQeFPElMBWYm5ZGrd2OxWKJyGWFQqFQKBSxR+tnuZqNCDn99NPZsmULn332GUlJ4Td9Hn/8cVauXMmSJUti6J0ikTByD2ZLS4uuR7xo5V88yo1VGdGyG6kdvdctTaio8I/eGDAA/vhH/1uNH38MHYuSHZEhQ+DVV2HbNuhYyDnanSBGj5ve9Rk558WqnKjmvLY2Wi688OCdmZlwhDeC9V63FKExetz0rk9L/xK1raeXdl40fekRGRk0XXstZwAvh9gtwCLgCuBE4BGgu3M+/BCYBlS53bSNH+9vtxkAveeFSNC7NpXztLWp7m97J0aPm5716dm3WKJZRwjAiSeeyNChQ0lNTe3WeSNGjGDkyJEx8kqhUCgUvY4NG+D002HaNGhu/m67CBQXh2/n+uth4MDo+6dQKOC442D+fPjiC7jhBkhJ8W8fN67LNCyHZcMGuPlmWLs2Zm4qFAqF4jvaj7Dffeyx/B/Q0wmucoDsV16BH/wAfvELeOcd8Hp7aE2hUCgUCoWR0WxqLIUiUrQeTqVQKAyECAwfDl9+efC+3FyorQWDjjxTKBKW3bv9HZU33eSfli4cbrrJP3IL4Nxz/aO/fvtbSE6OnZ8KhULRC3G5XOTm5uJyuQ55jMViYdeuXUyYMIHr5szh8mgVPmgQ3HEH3HYbHHtstKwqFAqFQqGIEK2f5Wo6IkShiAannHIKKYG3Qg2Gx+Nh8+bNeDwerV0JiVb+xaPcWJURLbuR2tF73Yo7JpN/TY9Q2Gwwe3Z8/TkERo+b3vUZOefFqpyY5rzjjoN//COsThCPx8Pm8nI8c+d+t3HFCrj6av+0djq5xhVd0XtOiBS969PSv0Rt6+mlnRdNX3qKxWJhzJgxhz1mzJgx5ObmMvuRR/j1IaYTXQ9s6W7htbXw97/D8cfDtdfCZ5/5X3pJALSOWyzRuzaV87S1qe5veydGj5ue9enZt1iSsB0hIkJ9fT01NTXU1NRQX1+PGtzSO1FrhGiHkefLV2uE9EKuuy709DpmM3zzTfz9CYHR46Z3fUbOebEqR1c575NPaAn14kRtLaSlReSfIjboPSdEit71qfnytbOZ8GuEdFBSUkJ+fv5BC5lbLBby8/MpKelYRr1fP0zPPkv7KaccZONPwEnApcACjjzVVhc8HnjjDf8IwDPPhOef7zoFqg7RQ9xihd61qZynrU11f9s7MXrc9KxPz77FkoSZGmvNmjUsWrSIzz//nA0bNlBbW4v3gLk/k5OTGTRoEGeccQZnnXUWv/zlL/nxj3+skceKWKP1cCqFQqFzNm70T5vzu9/BBReEd05hIRQV+f9/zDH+KRVuvx1OOCFmbioUijjQ1gaDB0Nd3cH7Bg+GLVvU9FgKhUIRI1wuF3Wd8m///v0P6hwB/KM2li3D8eijpC9cyGbg9AMOyQPGA78Hju6JMzk5/rWi7rwTTjqpJxYUCoVCoVD0EK2f5ep6REhlZSX33nsvAwcO5KyzzuKBBx5g3rx51NTU4PF4EJEuH4/HQ01NDfPmzeOBBx7grLPOYuDAgdx7771s3LhRazmKGGGxWMjMzATA5/Nht9uDo4McDgdtbW0AtLa20tzxBpDX68VutwdtNDY2BoeDtbS0BHtEPR4PjY2NwePsdnuwA665uZnW1lYA2tracDgcgH+0kt1ux+fzAdDU1BScG9ftduN0OgFob2/HbrfT3u5/r8npdOJ2uwH/zUJTU5PSpDQpTd3V5HbDW2/hHD0a949/DFOm4HruufA1jRsHP/853tdew/7ll/Cvf8EJJ6g4KU1KU6Jrevdd7C4X7WZ/09eZlYW7YxSI6847aeo4J6E0GTFOSpPSpDQZUlNycjJ5eXn069ePY489FovFElpTeztccAE7n36akywWxgFpaWlkZWUBYDabsVut/J/ZzCBgXFYWnwVyucVCU+CeMCkJu9WKdEy35cjOpi011a+prY3mF1+Ek0/Ge/HF2N98M7i4em+Pk9KkNClNSpPSpDTFS5NW6LIjZMmSJVx88cWcfvrp/Pe//6Wuru6gTo9DceBxdXV1/Pe//+WHP/whF198MUuWLImjEkU8uP/++ykoKACgvr6eoqKi4MVZUlJCZWUlAKWlpcyfPx+A2tpaigJvfQPFxcVUVVUBsHDhQhYuXAhAVVUVxcXFweOKioqora0FYP78+ZSWlgL+TrvA0G63201RURH19fUAzJ07l/LycgDWrVvHrFmzAH9yKCoqCiajWbNmsW7dOgDKy8uZO3cudrudf/3rX7rVZLfbefTRR3m1Y+HZcDRFI052u50nnniCBQsWxCxOr776KpMnTw76EC1NmzdvpqioKPgD0NM4LVy4kMmTJ/PFF1/0uO7985//xG63xyxO3dUUlevp9NPh6quZNXQo684806/JZmNux3FH1FRZCStWUHvuuRRNm6YPTZ3q3sqVK5k8eTLLli1L7Dgd4nqaPXs2kydPZuvWrbrUtGzZMiZPnszKlSu7lcsjjdOXX37J5MmTWbBgQUzjFIu8Z7fbefjhhyOO0zvvvMPjjz+O3W7vUd2r/elPKSospPbXv/Zruu46f47o04fy008PX9OcOYeMk96uJyPkiFdffZVHH30Uu91uGE2d47Rs2TL+85//YLfbdalp9uzZPPbYY9jt9rjXvXjkvZUrV/Lf//4Xu90eNU3vvPMOkydPDrb3ehonu93Ok08+GTyuR3mv43sNfEeJlCPKysoYeu65rAbOPPNMrrvuOgCys7MpLCwkOzsbN5B23XXcc+aZ/BRYNmIEc8eO9Wvq14+iwsJgh3fJuHFUDhvm1zRyJPMv9y/LXvvNNxRt2uRfa+rf/6Z46lTNc4SR857dbuexxx5jdse6XHrTZLfb+c9//sOyZcvC1gTRuZ6mTp3Kv//9b+x2e0Lduy9cuJAnn3wSu90ecZwizXt2u51//vOfhm8bGU2T3W7nv//9LytXrjSMps5x0nPe27p1K5MnT2b27Nma1D3NEB2xZs0aufDCC8VsNovZbBaTySQmk0nMZrOcfvrpcuedd8rzzz8vn376qWzdulUcDod4vV7xeDzicDikqqpKli9fLtOnT5c777xTTj/99IPsmM1mufDCC2XNmjVay1VESEVFhQBy0kknSU5OjlRUVIjX6xWbzSbt7e0iItLY2Chut1tERFpaWqSpqUlERDwej9hstqAtu90ubW1tIiLS3Nwszc3NIiLS1tYmdrs9eJzNZhOPxyMiIk1NTdLS0iIiIm63WxobG0VEpL29XWw2m3i9XhERcTqd0traKiIiLpdLHA6HiIj4fD6x2Wzi8/lERMThcIjL5RIRkdbWVnE6neLxeGTLli1SX1+vS00ej0e+/vpr2b9/f9iaRCTiOHk8Htm0aVPQv1jEaf/+/VJdXS1utzuqmlpbW+Wrr74K+tfTODkcDqmurpbm5uYe1b36+nqpqqoK5s9YxKm7miK+nj78UHxmswiIIytLXGlpIiCtFos4H3ggMTUdUPeampqkurpanE5n4sbpMNeTzWaT6upqcblcutTkdDqluro6eA2GoykacWppaZHq6mppbGyMaZxikfc6/45FEie73S6bN28Wj8fTo7rndrvlq6++8vu3bp04brtNXFlZInfcEb6mzz+XpowMkV/+Ujzz5olt376INMWjHRFunET0mSP2798vX3/9tXg8HsNo6hwnp9MplZWV4vF4dKnJZrMFv/9417145L2mpibZuHGjeDyeqGmy2+1SXV0d/E3raZw8Ho9UVlZ2yWER5b0YxSmW19M111wjgKSlpUlWVpYAYjabxWq1itlsFkCysrIkLS1NRgXae5mZIiDepCSxWa3SbjKJgDRmZ4s7NVUEpKVPH38uB/EkJ4vNahXxT8ol9qOPlrbrrxdZuVKam5pU3ouSpkDdC9w7BvzTm6bAdRf4zuOZ9xoaGuTbb78Vj8eTUPfuDocj+DsWaZwizXsej0eqqqqkvr7e0G0jo2nyeDyycePGLs9LEl1T5zjpOe+5XC6prq4Wm80W17oXeJYb+FRUVEg80c0aIXfccQclJSW0t7cjIphMJi688EKuvvpqrrjiCvr169cju/X19bz33nu89dZbLF68OGjbbDbz+9//nmmd3vhVJBZazyunUCh0hgiceips2nTwvmOOgR07oGNaBIVCoaC+3r+Q7oAB4R1/663w0kvf/T10KNx9N9xyC2Rnx8ZHhUKh6KW0tLQwbtw45s2bF5yy41C8BYwNsT3wlKUn02C0Dx+O+a674NprIT29BxYUCoVCoVAciNbPcnUzNdYLL7yAz+cjKyuL++67jy1btrBo0SJuu+22HneCAPTr14/bbruNhQsXUlVVxb333ktWVhY+n48XXnghigoUWlFQUEBGRobWbsSE5uZmZs+eHZxTT29o5V88yo1VGdGyG6kdvdetHmEy+Re+DMXevfDuu/H1JwYYMm6d0Ls+I+e8WJWj65zXr1/4nSANDdAxTDxIVRUUFsLYUI/fFNFA7zkhUvSuT0v/ErWtp5ecF01ftCI9PZ3Zs2djs9morq5m6dKlIY8zdXzaQ+ybB3wfeALY383yzevXw223IQMHwl/+At9+200LPSPR43Y49K5N5Txtbar7296J0eOmZ3169i2W6KYjJCsri8mTJ7N9+3YeffRRhgwZEvUy8vLyeOyxx9i+fTuTJk0KLrCtSGw6L95jNMxmM1arFbNZN5dqF7TyLx7lxqqMaNmN1I7e61aQtjaYN88/2iMcbrgBDuwYPecceO01GDMm+v7FmYSJWw/Ruz4j57xYlWOYnPfCC3CoN5JvvbVnNhVHRO85IVL0rk9L/xK1raeXnBdNX7TGYrGQl5fHiBEjsFgsB+0X/KNBTgQeBRo67ZsCbAXuAwYCtwBfdLN8k90OTz0FJ50El1wC8+dDxwKzscAocQuF3rWpnKetTc3begpNMHrc9KxPz77FEt1MjdXQ0MDRRx9t+DIV0UPr4VQKhSKGbN8Ozz/vf/i4dy+UlsL554d37oQJ8MorcN11/v//6Eex9VWhUBgbjwdOPBE6Fh7swsCBUF0NKSnx90uhUCh6GQUFBcyZM+ewx6QBVwOXAdfi7yg5kLOAu4D8juO7zeDBMH48/P73/tGFIXC5XNTV1QX/7t+/f8iOHIVCoVAoehNaP8vVTbePFh0SqhPEGAwfPpxUg87739bWxvr162lra9PalZBo5V88yo1VGdGyG6kd3dat//0PrrgChgyBhx/2d4IATJkSvo2HHoKdO/2dKAbrBNFt3KKE3vUZOefFqhxD5Ly6OjjuuND77rpLdYLEEL3nhEjRuz4t/UvUtp5ecl40fdETJSUl5OfnH7ZDwQ28BlxD6E4QgM+Bm4BBwES6jiIJi23b4K9/heOPhxtvhFWrQASXy0VlZSUjRoygT58+DBkyJPjJzc2loKCAlpaWw5o2YtwC6F2bynna2jTs/a3isBg9bnrWp2ffYoluOkIUip4yatQow75d43K5WLZs2REXCNQKrfyLR7mxKiNadiO1o9u69cwz/qmwDpzu7p13YPfu8Gz07w+5udH3TQfoNm5RQu/6jJzzYlWOIXLe8cf7H3KVlcE110Bysn+7xQK33Ra+nUmTYPHi8Kf6U+g+J0SK3vVp6V+itvX0kvOi6YueOHDdkMOtHRIODcDjwI6eGnC7/dOvjhhB1VFH8cesLH586qmsWrXqoENdLhdz5sxh3LhxhzVpxLgF0Ls2lfO0tWnY+1vFYTF63PSsT8++xRLdTI2lUHQXrYdTKRSKGPDxx3DppaH3TZ4MDz4YX38UCoXiQHbuhGnT/GsYPfZYeOdUVkKgjXLqqfDHP8L110N6euz8VCgUil6Ay+UiNze3xw9yzgFWRtGf/UAJUIx/fZIDsVgs2Gw2w77Ip1AoFArF4dD6Wa4aEaJIeCwWCyaTSWs3YoJ0DLHWa3+lVv7Fo9xYlREtu5Ha0W3dGj0ahg4NvW/6dP9c/b0Y3cYtSuhdn5FzXqzKMWTOGzgQ/vnP8DtBAJ599rv/b9wId9wBgwbBPfeA1xu5TwZF7zkhUvSuT0v/ErWtp5ecF01f9I7FYmHMmDGHPeaKK65g48aNnH322Qft+/1hzvsrsLab/vQF7gG+BT7Av1ZJ54cuB64dciBGjpvetamcp61NXbX1FHHD6HHTsz49+xZLErYjpKmpiY0bN1JWVsby5cvD/iiMx/33309OTo7WbsSExsZGHnvsMRobG7V2JSRa+RePcmNVRrTsRmon7rFzu8M7zmz2L3B+IBkZ8JvfQHNzdP1KMPSeEyJF7/qMnPNiVU6vzXmdsdng1VdDb1+58rupthQHofecECl616elf4na1tNLzoumL4nAodYOsVgs5OfnM2vWLIYNG0Z5eTmbNm3qcszd+DtDDuzw+BB4FPgx/lEjM/GvPxIuZvydIB/g7xS5B38nyZHYu3cvjz32GBs3bqSmpsZQU5bovU6qnKetzYRu6yl6jNHjpmd9evYtliTU1FhOp5OioiLeeOMNvv766273WplMJrzqrTvDEBhO1b9/f+rr69mwYYPhpsby+XzU19fTr18/kpKStHbnILTyLx7lxqqMaNmN1E5cYtfe7p/qaupU2LMHPv8cwhm9tX+//41rlwt+8AP/YsQ33ADZ2bHxM4HQe06IFL3rM3LOi1U5vSrnHYonn4R77w297/XX/euOKEKi95wQKXrXp6V/idrW00vOi6YvicSBoy369+9/UOdITU0NQ4YMCXn+COAu4CrgSvydIZ3pB3x9773kzpkD27d33z9gNjD6vfcYcMAolpaWFsaNG8f8+fPJzs6mvr4en88XHPFSUlJCeoJPp6j3OqlynrY2E7qtp+gxRo+bnvVp5ZvWU2MlTEfI2rVr+c1vfsPujsVye+K2yWTC5/NF2zWFRmh98SgUikOwbx+UlEBxMVRXf7e9vBxCTEkQkmnT4JRTYOTI8DpPFAqFQo/4fP7p/rZtO3hf//7+7amp8fdLoVAoeimH6wgJ0A/YB7SH2FddXU3eoEE8ccEFnLFiBaN76shPf+p/2Sc/HywWCgoKmDNnziEPz8/PZ/bs2T0tTaFQKBQKXaD1s9yEmBpr3759XHzxxezatQsRQURITk7m5JNP5mc/+xkjR44M63P++edrLUURA26++WYyMzO1diMmNDU18fLLL9PU1KS1KyHRyr94lBurMqJlN1I7MfsOGxrg+OPhvvu6doIATJkSvp3x42HUKNUJcgB6zwmRond9Rs55sSrH8DnvSJjNMGMGXHHFwfnsjjvC7wSpr/d3qvQy9J4TIkXv+rT0L1HbenrJedH0xWiEGiVyIPWE7gQB/6gTl9fLg198wcXAIcb7HZnVq+Hmm2HQILx/+Qvr330XgMzMzJD3t/PmzUv4abL0XidVztPWZsK29RQRYfS46Vmfnn2LJQkxKfF//vMf9u3bh8lkIisri3//+9/ceOONhn34regeNTU1hp3yLDk5mby8PJJ1On+4Vv7Fo9xYlREtu5Haidl3ePTRcP758MknB++bMwf++1//MYoeofecECl612fknBercgyf846EyQQXXOD/VFf7O4RffNG/3tEdd4Rv57rroKoK7rwTxo2D3NzY+awj9J4TIkXv+rT0L1HbenrJedH0xWgEppo63OiL4cOHs379+pD7fvCDH3DssccGOyWujNShfftIfuopKvFPxfW818u2EPe3gWm/8vLyIi1RM/ReJ1XO09Zmwrb1FBFh9LjpWZ+efYspkgCcccYZYjKZJCkpST799FOt3VHohIqKCgHEYrFIZmamVFRUiNfrFZvNJu3t7SIi0tjYKG63W0REWlpapKmpSUREPB6P2Gy2oC273S5tbW0iItLc3CzNzc0iItLW1iZ2uz14nM1mE4/HIyIiTU1N0tLSIiIibrdbGhsbRUSkvb1dbDabeL1eERFxOp3S2toqIiIul0scDoeIiPh8PrHZbOLz+URExOFwiMvlEhGR1tZWcTqdIiJKk9KUeJreekvaUlJEQJrT06U5PV0EpC0lReyPPJKYmowYJ6VJaVKatNFkt4ssWhS+prVrpdViEQFxpaWJ45hjRG6/XXzr1+tHkxHjpDQpTUqTYTXt3btX8vPzJSMjQ6xWqwACyDHHHCMFBQWyceNGSU9Pl/T0dAEkJSVFcnJygsdZrVZJTk6WM0GaMjKkpU8fERB3aqo0ZmeLgFRbLLLHahVvUpIIiDMzs2suz8oSAfGZzWKzWsVnNouAOLKyZHNamtwHMqDjPheQpKQk+eqrr3pVnJQmpUlpUpqUJuNpCjzLDXwqKiokniTE1FjV1dWYTCZ+/vOfc+6552rtjkJnjB07lquuugqA+vp6ioqKcLvdAJSUlFBZWQlAaWkp8+fPB6C2tpaioqKgjeLiYqqqqgBYuHAhCxcuBKCqqori4uLgcUVFRdTW1gIwf/58SktLAaisrKSkpAQAt9tNUVER9fX1AMydO5fy8nIA1q1bx6xZswBwOBwUFRXhcDgAmDVrFuvWrQOgvLycuXPn4na7Wbx4sW41ud1u3n33XWbOnBm2pmjEye12M2vWLD766KOYxWnmzJmUl5cHfY2Wpq1bt3Y5rqdxWrJkCeXl5WzYsKHHda+0tDT4XUY1Tlu2UNWxFsjC0aNZONo/e3LV0KEUNzdHNU7duZ4i0qSTHLF69WrKy8tZsWKFYTR1jtObb75JeXk5O3fu1KWmFStWUF5ezurVq+Na9zZv3kx5eTkfffRRTOMUi7zndrtZuHBhxHGaN28es2fPxu1296juBXwNHKdpjrDZ4Be/CD9Ob79N+YgRfk1nnsmsK6+E55/HMWqU4fPezJkzeffdd3G73YbR1DlOK1asoKSkBLfbrUtNb775ZrA9Gu/f3HjkvdWrV/PCCy/gdrujpmnevHmUl5cH23s9jZPb7ebVV19lyZIl3dKk27yns/be4sWLmT17NmvXrqWwsJDq6mqqq6v585//zEMPPUR6ejqjR49mdEcbdujQoUyYMCGoqbCwkEGDBtECFF9+OUtGjvRrGjaMknHjAOjzyScUFxbyUL9+7ADmjh3bNZdfd51fU3Y2RYWFOLKzAZh5/fWsu+IK/pGWxisjRvC3sWP5GdCvXz/efvvthI6T2+1m7ty5vPnmm2HFKd6a3G43JSUlrFixImxNEL3r6cMPPwy2mxLl3n3JkiW8+uqruN3uiOMUad5zu92UlpYavm1kNE1ut5sXXniB1atXG0ZT5zjpOe/t3Lmzyz14uJqiFSfNiGu3Sw/JzMwUs9kst99+u9auKHREoBdxwoQJcuyxxxpyRIjD4ZCpU6fKjh07dKnJ4XDIlClTZNeuXWFrEom8FzxQ7p49e2IWp127dklxcbHY7faoatq/f78899xzwXrQ0zjt2bNHiouLpaGhoUd1b8eOHTJ16lRxOBxH1lRXJ/LII9L41lvhx+nhh78bEZKdLVJQIG3Llom903GJ8LZCF006yBH19fVSXFwse/fuNYymznHavXu3FBcXi81m06WmvXv3SnFxsdTX18e17u3bt0+Ki4tlz549MY1TLPJe59+xSOJUV1cnU6ZMEYfD0aO6Z7fb5bnnngvaT5gc0dgozmOOCf0W8U9+Irb9+w2d93bt2hWMu1E0dY7T3r17g20CPWravXt38PuP929uPPJefX198PuPlqa6ujopLi6W/fv3RxSnA9u6vSrvHUZTvNp7ra2tkpube8QRIYBkZGTIoD595H6QbwMjQkaNkvb2drn++uslKSlJkkDGZmbKR2GMCNnVv79MmTBBHFlZ0mqxiDMzUwRkbVKSbP3nP6W94ztLxDgF6vXu3bt1WfccDoc899xzsnfv3rjXvdra2uC9WSLdu+/Zsyf4OxFpnCLNe53bnEZuGxlNU+C6q6+vN4ymznHSc96z2WxSXFwsu3fv7lUjQkwiItp1w4THsGHD+Prrr7nuuut49dVXtXZHoRM2btzIaaedFvy7oqKCU089VUOPFAoDIQJlZTB1Krz1FrS1wTnnwMqV4Z2/d6//+FtugVtvhf79Y+uvQqFQGJHnnoO77w697+WX4aab4uqOQqFQ9BYKCgoOu45IKMzArhde4NiTToLzz6elpYVx48Z1sXMycCdwE5DTE8eysuCGG2DCBOh0L6xQKBQKRSKg9bPchJgaa/To0YgIX3zxhdauKHSI1WrFbE6Iqtxt2tvbsdvttLe3a+1KSLTyLx7lxqqMaNmN1M5hz//sM/jRj+DnP4dZs/ydIODvGOkYCnlEjjkGtmyBv/1NdYJEEb3nhEjRuz4j57xYlZMQOU/P7NoFoRYwPPpoyM+Pvz9xJmHjFiZ616elf4na1tNLzoumL72VkpIS8vPzsVgsYZ+TarGQc/31cP75AKSnpzN79mw2bdoUPOZr4E/AQOAuwHOAjXazGbvVSvuh7m+dTv+LSqef7i9n9uzv2uo6R+91UuU8bW322rZeL8focdOzPj37FksS4unxnXfeSVpaGl9//TWLFi3S2h2FzigsLCS7Y05Vo3HgnHx6Qyv/4lFurMqIlt1I7Rz2fKsV1q8PfeLUqeEXYjL1xDXFYdB7TogUveszcs6LVTkJkfP0zL//Ddu3w0MPde1Uvv12CPfhXGkpTJoEu3fHxMVYkrBxCxO969PSv0Rt6+kl50XTl95KoBPDZrOxceNGzu5Y/+5wjBkzJmTHSV5e3kHbm4F6IOWAYw9cM+SwfPopXHMNHH88PPAAbNt25HM0RO91UuU8bW322rZeL8focdOzPj37FksSYmosgGnTpnHnnXdyzDHHsHjxYjUFkiI4nMpqteJwOPjyyy8NVy/a29txOBxkZ2frctSLVv7Fo9xYlREtu5HaOeL5o0b5H54dSJ8+/jeUrdZul6mIHL3nhEjRuz4j57xYlZMwOS8RaGuDt9/2d0i//rr/wVc4/PrX8MEH/pElY8f6p9o655yE6Kw2RNwOg971aelforb19JLzoumL4jtsNhuXXnopq1at6rLdYrEwZswYSkpKSE9PD3luqKm2lgKjDjiu3WzGnp2N1eHA3N23dM1m+NWv/NNmXXyx/28dofc6qXKetjZVW693YvS46VmfVr5pPTVWwnSEALzyyiuMHz8ek8nEHXfcwdixYzn99NMNOxpAcXi0vngUCkPz1ltw9dWh9z31FBQWxtUdhUKhUPSAqir4/vf96z515kc/giefhAsu0MYvhUKhSGBcLhd1dXXBv/v373/EKbQC64XMmzcPl8tFFrAa/5ohB/I88D4wAbiUHk7jceKJcMcdMG6cfzpFhUKhUCh0gNbPcvXVHXUIkpKSSEpKYty4cbS1teFyuXjmmWc4//zzyc3NDe4/0ic51BzLioRn/PjxZGVlae1GTHA6nUybNg2n06m1KyHRyr94lBurMqJlt9t2RPzD5z2e8M6/4go47riu2wYPhkcfheuu67njiojQe06IFL3rM3LOi1U5muW8GPmRcEydenAnCMDataHXHtEZRo+b3vVp6V+itvX0kvOi6YviYCwWC3l5ecFPOOuIdJ5qq7q6mi+rq0mrqqLtgw/giiuQjrdxnVlZbBo/nuVZWfwaGAo8in8arW6xdStMnAiDBvkXVy8rC/17EEf0XidVztPWpmrr9U6MHjc969Ozb7EkITpCAoNWAv+aOg3lF5FufRTGY/369bQlyAJx3SU1NZXhw4eTmpqqtSsh0cq/eJQbqzKiZTdsO04nFBfDD3/oX1DxvffCOz8lxT8HvckEl14K8+f73yyeOBH69YvId0XP0XtOiBS96zNyzotVOXHPeTH2I6FoboaSktD7zjgDzj03vv70AKPHTe/6tPQvUdt6esl50fRFEV26dKKceCKpl10G776LqaYG/vY3POedR3mn+9sa4K/AIKD2scf4+qijuleg2w0zZ8LPfkbbqafimTIFmpqiKypM9F4nVc7T1qZq6/VOjB43PevTs2+xJCGmxorWXGUmkwmfzxcVWwrt0Xo4lUKhazZu9L8J/OqrXW92Ro2CpUvDs1FfDw4HDB0aExcVCoVCEUOmT4fx40Pve+EFuPXW+PqjUCgUiiNSU1PDkCFDQu47++yzWbVqFT/EP23WLUBaD8poNptxFxSQcc89pJ15ZgTeKhQKhULRPbR+lpsQI0La29uj8lGdIMZk1KhRYQ1HTkRcLhfLli3D5XJp7UpItPIvHuXGqoxo2T2inaee8neEHPjG17JlsHFjeH7066c6QXSG3nNCpOhdn5FzXqzKiVvOi5MfCcXVV8N//uOfJ74zublw7bXh2Whvhy1bou9bmBg9bnrXp6V/idrW00vOi6YvivjS1tZ2yPvbwCLtXwJ/APb2sIyM9nb6vv46aT/6EZXHHIP71VchDjMs6L1OqpynrU3V1uudGD1uetanZ99iSUJ0hCgUhyMvL8+w6794vV5qamrwer1auxISrfyLR7mxKiNado9o5847D31ycbHu65YiNEaPm971GTnnxaqcuOW8OPmRUOTmwl/+At9+CwsWwMUX+7f//veQnh6ejcWL/Yutjx4N8+ZBnF8qMnrc9K5PS/8Sta2nl5wXTV8U8cXn84V1f/sr4PgolDesvp60m26CE06Av/0Ntm+PgtXQ6L1OqpynrU3V1uudGD1uetanZ99iSUJMjaVQhELr4VQKhe455xwoLz94e1YW7Nzp/1ehUCgUvYdvvvHn/uOOC+/4K67wd4AEOOEE/3Rbt96q1otSKBSKGHC4qbE68wFwWYjtLuBJ4AZgcE8cMJvh17/2v1T1y1/6/+5s3+Wirq4u+Hf//v0NOzuDQqFQKKKP1s9y1YgQRcLTv39/kpKStHYjJvh8Purq6nQ7rZtW/sWj3FiVEbHdjvPCshNqVIjJBCNH4quv13XdUoRG7zkhUvSuz8g5L1blRMtmpHb0Xrfixkknhd8Jsn07zJ9/8Lb/+z/4wx+i71sIjB43vevT0r9EbevpJedF0xdFfPH5fGHd394C/B9w4PiNOcDfgROBy4GPgPbuONDeDu+/D5dc4v/NePJJ2LePlpYWCgoKyM3NZciQIcFPbm4uBQUFtLS0hKVNz3VS5Txtbaq2Xu/E6HHTsz49+xZLVEeIIuEZP348WQZ9s93pdDJ9+nScTqfWroREK//iUW6syuix3TVr/G/gnnoqeL3h2bnqKjj6aP//jz4a7r8ftm6F+fNx9u2r67qlCI3ec0Kk6F2fkXNerMqJls1I7ei9bumSadP8D8RCcahF2KOM0eOmd31a+peobT295Lxo+qKIL62trWHd3+4FHsHf4fEb4JOO7VM7/m0HFuAfNfJ94HGgobvOVFXBvffCwIF8MWwYNXPmHDSXvMvlYs6cOYwbN67LtpqamuAncI7e66TKedraVG293onR46ZnfXr2LZaoqbEUCUtgOJXFYsHtdvPVV18ZbmosEcHtdpOWlobJZNLanYPQyr94lBurMrplt6UF5syB4mJYvfq77e++i4wZE56d55/3zwU/dix0Grau97qlCI3R46Z3fUbOebEqJ1o2I7Wj97qlO1wuOP54aAjx2GzYMKio8I8wjDFGj5ve9WnpX6K29fSS86LpiyK+VFdXM2zYMNxuN919VDMY2HaY/WnAVcAE4Gc99G8tUAy8DnQeA2KxWNi1axcTJkxg3rx5XTpMLBYLY8aM4aWXXiIpKUm3dVLlPG1tqrZe78TocdOzPq1803pqrITtCGlqamLDhg00NDTgdDppP9Qbawdw4403xtgzRbzQ+uJRKGJKWxsMGQK7dh28b/Ro+OSTg7crFAqFQhENtm6Fq6/2j0Y8kClTQk+9qFAoFIqICXeNkEj5D/CXCM5vBF7B3ymyuWPb2WefzapVqw55Tn5+PrNnz46gVIVCoVAkOlo/y024qbFef/11zjnnHKxWK+effz5XXnklN910E7fccssRP52HayqMQ2FhIdnZ2Vq7ERMcDgdPP/00DodDa1dCopV/8Sg3VmWEbTc11b9AYSgWLsTx5ZcR+af3uqUIjdHjpnd9Rs55sSonWjYjtaP3uqU7TjzRPxKxvBxuuMH/mwT+hdZvuCE8GyL+xdafegpsth65YfS46V2flv4laltPLzkvmr4o4ktzc3PM7m/PPvtsAEzAmAht5QB/BDYBS4CxwJrDdIIALFmyhKeeekq3dVLlPG1tqrZe78TocdOzPj37FksSpiOktbWVyy+/nBtuuIHPP/+c9vZ2RCTkBzjsPoWxWLZs2UFzlRoFi8XCqFGjsHSa0khPaOVfPMqNVRndsjthwqHtvPZaRP7pvW4pQmP0uOldn5FzXqzKiZbNSO3ovW7pEpMJzj4bXn0VduyAf/8b7rvP3xkSDsuXw7x58Je/wKBBcPvtsGFDt1wwetz0rk9L/xK1raeXnBdNXxTx5fjjj+ezzz6L6v2txWIhPz+fkpISAEYDQw9x7JeAp5v2LwDewr9w+2Rg0CGOa2xs5PTTT9dtnVQ5T1ubqq3XOzF63PSsT8++xZKEmRrr2muvDQ6jtFgsXHDBBVRXV7N582ZMJhM33ngjTqeTbdu28eWXX+LxeDCZTGRkZHDllVcG5zubMWOGljIUUUTr4VQKRcwRgR//GNatO3jfaafBl1/GZY52hUKhUCi6zdVXw1tvHbz9/PPhf/+DlJT4+6RQKBQJQEFBAXPmzDnk/rPPPptly5ZhsVhwuVzU1dUF9/Xv3/+g7Z235ebmMszl4u/A5UBSJ7ttwAkd/78VuL3T393BB8zHv3D7/4DOD5yqq6vJy8vrgVWFQqFQGAGtn+UmxIiQVatWMXv2bEwmE9///vfZtGkTH3zwARdddFHwmBkzZjB37lxWr15NfX09TzzxBJmZmTQ3N7N3716eeeYZ1QliUC655BL69OmjtRsxobW1lY8//pjW1latXQmJVv7Fo9yYlNHQQOvjj/Pxf/8bnl2T6eBRIRdeCG+9Retnn/HxJ5/02D+91y1FaIweN73rM3LOi1U50bIZqR291y3DsWsXvPtu6H05OWF3ghg9bnrXp6V/idrW00vOi6YvivjS2trK9ddfzzXXXHPQW7qBkR1LliwJ7rNYLOTl5QU/obZ33jZmzBjWAr8FhgD/AvZ02H+74/97gIeBE/FPofVxNzUkAVcAC4Gv8a9F0hfo06cPn3/+uW7rpMp52tpUbb3eidHjpmd9evYtliRER8grr7wS/H9JSQmDBw8+7PHZ2dn8v//3//jiiy847rjj+OSTT7jlllti7aZCI6xWK2ZzQlTlbtPe3o7dbqe9vV1rV0KilX/xKDdqZYjAypX+OdUHDaL9H//AvnEj7V5veOdfey3k5UFhIWzeDIsXw9ixtCclReSf3uuWIjRGj5ve9Rk558WqnGjZjNSO3uuW4Xj+eTjU79xdd4Vtxuhx07s+Lf1LqLZeDGxGw47e65ciNO3t7TQ1NfHCCy9gs9morq4Ofmw2G7NnzyY9Pb3H9ktKSsjPz8dkMrED+DtwPFAAPHHAsT7gfeBS4Hsd+/d1s7zv41+YvRZ41mymZedO2n2+HvsfS1TO09amauv1ToweNz3r07NvMUUSgNNPP11MJpN8//vf77L9D3/4g5hMJjGbzYc893//+1/wmAULFsTaVUUcqaioEEAsFotkZmZKRUWFeL1esdls0t7eLiIijY2N4na7RUSkpaVFmpqaRETE4/GIzWYL2rLb7dLW1iYiIs3NzdLc3CwiIm1tbWK324PH2Ww28Xg8IiLS1NQkLS0tIiLidrulsbFRRETa29vFZrOJ1+sVERGn0ymtra0iIuJyucThcIiIiM/nE5vNJj6fT0REHA6HuFwuERFpbW0Vp9MpIqI0JbKmVatEfvhDaenTR5oyMkRAPMnJYrNaRT76KHxNHT7oQpMR46Q0KU1Kk9KkNEVPU1OTyPHHizs1VRqzs0VA2k0msVmt4j3pJBGfL/E0GTFOSpPSpDT1ak0Oh0NGjhwp+GeuEqvVKsnJyQJIRkaG9OnTRwBJTU2V7OxsAcRkMsmxVqvcnpQkXhBnZqa0WiwiIK60NHFkZYmA+MxmsVmt4jObRUAcWVniSksTAWm1WMR5zjkiL74oXodDxUlpUpqUJqWpl2kKPMsNfCoqKiSeJMRr9Lt27cJkMnHmmWd22W7qNDd+W1tbyHMvuuii4FxjM2fOjJ2TCs245JJLuOqqqwCor6+nqKgIt9sN+N94qaysBKC0tJT58+cDUFtbS1FRUdBGcXExVVVVACxcuJCFCxcCUFVVRXFxcfC4oqIiamtrAZg/fz6lpaUAVFZWBhefc7vdFBUVUV9fD8DcuXMpLy8HYN26dcyaNQsAh8NBUVERDocDgFmzZrGuYy2I8vJy5s6di9frZcOGDbrV5PV6Wbx4cfDaCkdTNOLk9Xp55513+OSTT2IWp5kzZ1JTU8P+/ft7rqm1FTZtonTkSOZffjkA2wYPpqiwEO+0aeHHyWw+SNPSpUupqanhq6++6nHdq6ysxOv1xixOh9UUpTh153oygqY1a9ZQU1PDypUrDaOpc5zeeustampq2L17ty41rVy5kpqaGtasWRPXuvfNN99QU1PDJ598EtM4RSXvHaDJ6/XyxRdfRByn999/P2ivJ3UvoGn//v0xi5PerifNNH36KZSXU/nXv1Jy221+TWlpFBUWUn/bbWA2h6eprIyZL73E4sWL8Xq9hozTypUrmTlzJl6vV5ea3nrrLT7++GO8Xm/c61488t6aNWuYMWMGXq83apref/99ampq2LZtW0Rx8nq9zJkzh6VLl3ZLk8p7ia9p5syZccl7O3fu5JJLLiE/Px+LxUJhYSGDBvmXOb/88ssZOXIkAMOGDWPcuHEApKWlMaGwkD79+pEEzB07lvIRI/yazjyTWddd59eUnU1RYSGO7Gx/nK67jnVnnok3OZmPL7mEt045BW69lfof/civ6auvdBEnr9fLzJkzWbly5WHj5HK5mDFjBosXL6ampoYVK1ZEJU5lZWV4vd6EundfunQpc+bMwev1RhynSPNeoI1o9BxhNE1er5cZM2awZs0aw2jqHCev18vHH3/MWx3r5ulJ0+7du6mpqeGtt97SpO5pRly7XXpISkqKmM1mmTBhQpft9913X3C0R319/SHPv/HGG0OOKFEkNoFexEmTJsmAAQMMOSLEZrPJpEmTZNu2bbrUFPBvx44dYWsSibwXPFDurl27YhanHTt2yKRJk2Tfvn2RacrP7zIipP6oo2TSpEliy80V2batx3HavXu3TJo0Sfbs2dOjurdt2za/HzabelshgTTV1dXJpEmTpK6uzjCaOseptrZWJk2aJA0NDbrU1Pn7j2fd27t3bzDnxTJOUct7nTR1/h2LJE47d+4M5qye1L19+/YFtcUqTnq7nnShqb5eZPZsaT/vPLH17y/ejvb6ETV5vSI/+pHsGDjQH/fZs6XV6dSHpijGKZBTAnb0pimQk202W9zrXjzyXufvP1qaArmqvr4+ojgFcufu3bu7pUnlvcTXFPgtttlscdPU2toqX331lWzZskWWLl162BEhVqtVvkpKEgkxImT/EUaE2KxWmTRpktQOGCAC4k1KEpvVKu0mk8gFF0jjrFni7tCrRZwC111dXV3IOO3atUvy8/PFYrFIVlaWpKWlBWeoOO+882T//v09jlPne7NEuncP3JN2zl09jVOkeS9w/rZt2wydI4ym6cDrzgiaOscpoK+2tlZ3mhoaGoK+9aYRISYREQ37YcLCarXidDoZN24cL7zwQnD7I488wgMPPIDJZOLzzz/nxz/+ccjzb7zxRmbOnElGRgZOpzNebitizMaNGznttNOCf1dUVARH/ygUuqG0FEaNCr3vb3+Df/4zru4oFAqFQqEJu3fDcceFd2x5OZxzTtdtxx8Pd9wB48fDUUdF3z+FQqFQUFNTw5AhQw65fwDwGZAXYt+/gMXABPyLsaf0xIFjj4Vbb4XbboMjrA0bbwoKCpgzZ85hj8nPz6ekpCSidVwUCoXCyGj9LDchpsY6/vjjAdi3r+vSXCeddFLw/2VlZYc8PzAkR6FQKCLG54P33we7Pbzjzz8fhg3ruu2EE+Bf/+rWgrEKhUKhUCQ04XaCAEyZcvC2HTv8LxDs6+5SvQqFQqGIFruAocCvgAVAYIldH/A8sAzIB07AvxB7bXcL2LMHHn4YTjwRLr8cPvzQf/91GFwuFzU1NcGPy+XqbqlHxOVyMW/evCMeN2fOnOBUYgqFQqHQHwnREXL66acjInz99dddtp911lnBdUKef/55vF7vQecuXLiQtWvXYjKZOPHEE+PiryK+3H///eTk5GjtRkxobGzk0UcfpbGxUWtXQqKVf/Eo96Ay6ur8nRdDhsCYMfDqq+EZMpn8b6+aTHDppTTOncujEybQ+Ic/QP/+0fMvzucrtMHocdO7PiPnvFiVEy2bKuf1IvbuhTffBKAxJ4dH77+fxkA7b/Ro6PQiVKKj93qppX+atPV0ZDMadvRevxShSYS4tQMfApcDJwL/Bl4GdnQ6pg7/CJE84ApgISFy+mELaYcFC+BXv4LvfQ8eecTfSdKJlpYWCgoKyM3NZciQIcFPbm4uBQUFtLS0dEvX4b77urq6sDtY5s2b1+3OmN6e86JhKxGuHcXBGD1uetanZ99iSlwn4uohxcXFYjKZJCkpKTjHaYDzzz8/uE7IZZddJmvXrg3Okfbqq6/K0UcfHdz/wAMPaKRAEQsC88qdcsopkpKSEvd55eJBW1ubbNq0KTgXoN7Qyr94lBssY/lykauuEklOFoHvPqecItIxB+IRcThEtm6Nqu+R2tF73VKExuhx07s+I+e8WJWjcp6i2zz8cPC3ti0lRTadcoq0paT4t82bp7V3UUXv9VJL/+La1jNgzoumL4r4onXcqquru8zdfrhPfn6+5Ofnh338ySkpMn3ECHEEcno3P+0pKeIdO1Zk2TKR9vYjlp2fn98t7Yf77rvzvQBSXV0dtbKjhZ5zXjRsaX3tKHqG0eOmZ31a+abWCAmD7du3B+epnDFjBjfeeGNwX1lZGeeee+5hzxcR+vXrx8aNGzn66KNj6qsifmg9r5yil/Dgg4dex2PJErjggvj6o1AoFAqFkXnvPf+bv59/3nX74MFQVQVJSUe24fGA2RzesQqFQqEIcqQ1QgIE1sIAGDduXNijIDKAnUCk8zn4TjqJ+7Zu5SWvl0O9y2yxWLDZbFgslghLC/97CVBdXU1eXl7E5SoUCoXR0PpZbkJMjXXCCSfwl7/8hauvvpr6+vou+8455xxeeOEFkpKSEJGQn379+jFv3jzVCWJQrrjiCsMuRtbS0sJ7773X7WG98UIr/+JRbrCMG27wP0wJRXFxz+1G6HukdvRetxShMXrc9K7PyDkvVuWonKfoNldcAatWweef03LLLbx35ZW0pKfDhAnhd2y88YZ/fvlHHvFPtaVT9F4vtfQvrm09A+a8aPqiiC9ax61///5H7Diw2+3Mnj2b9PR00tPTmT17Njabjerqaqqrq1m6dGnI89LT07nziitIicK9e9I33/Afr5ddwIvAj0Mc43K5qKurC9umynna2lRtvd6J0eOmZ3169i2WJERHCMATTzzBG2+8wf/7f//voH3jxo1jw4YN3HrrrZx44olYLBbS09M57bTT+Otf/0pFRQUjRozQwGuFQpHwDBzoX6gvFO++C7t3x9cfhUKhUCh6Az/9KTz3HFx9Nfz97/D734d/7tSpsH07/N//waBBcO21sGKFf3IVhUKhUBwSi8XCmDFjDrk/Pz8/5PqcFouFvLy84OdQfO8Q2/cDhUBFd5wF0oHfA18Aq4FxHdu6i8vlYvv27TQ1NbF9+/aYLryuUCgUCu1IiKmxFIpQaD2cSpHg7NsHRx0V3rGffAKXXNJ1W1qa/+HMP//pn65DoVAoFAqF9qxZAz/5Seh9//oXPPBAfP1RKBSKBKOlpeWg6a4CHSQlJSVHnI3hcNNI9QVuBsYD3++0/Qngvo7/n9uxfyyQ1gP/7cCrwDTgwyNMURVKa2cCuh988MFuPWtQU2MpFIp4cODIt3BG9WmN1s9yE2ZEiEJxKE455RRSUlK0diMmeDweNm/ejMfj0dqVkGjlX4/L9Xjgrbfgwgv9U2Y0NYVXxi9/CUOH+ncMHQpPPAG1tfDqq93uBInWdxapHb3XLUVojB43vetLuJyng3JUzlNEQo/idrhpK3/3u8idiiJ6r5da+hePso2c86LpiyK+6CFuoaa7stlswemwekpKSgrHnHIKz6akcDLwS+AdwANM73TcCuB64HhgIrC1m+VYgT8ClUD//HzaXn2Vmq+/DjnKY9y4ccyZMweXy0VKSspBzxZcLhdz5sxh3Lhx3RfcDXp7zouGLT1cO4ruY/S4xUpfS0sLBQUF5ObmMmTIkOAnNzeXgoKCsKa7Mvp3fyhUR4gi4VFrhGhHwsyXv2OHf1qNE07wj+JYuhQcDpg1K7wyzGb4z3/8I0O++QbuuQd6uOaQXuaO1nvdUoTG6HHTu76EyXk6KkflPEUkdDtuNhu8/nrofRdeCKecEj3nooDe66WaL187m2qNkN6LnuLWebqraLxhnJ6eHrx3F+B/wO+A/kBViOPrgcfxT6d1CTAP8HWzTMvnn5N6002kn3IKbwwZwgWdHhTabDbmzZsX0r8DWbVqVTdL7h69PedFw5aerh1F+Bg9brHS17kTtzPd6bw1+nd/KBJyaiyXy8XHH3/MihUr2LFjBzabDZ/Px+LFi7scJyK0trYC/rcPjDpqoLei9XAqRYLg8/nX+diz5+B9Z5wB69aByRR/vxQKhUKhUESXjz+GMWOgre3gfXPn6m5EiEKhUBiRw02NFSnF+KfN6intwMcddvaddRZln38eFb8ORE2NpVAoYoXL5SI3N/ewaxhZLBZsNpsup8nS+lluwo0IefLJJznhhBP43e9+x1NPPcXcuXP53//+x7Jlyw46dv/+/fTr14+srCxGjhwZf2cVCoX2JCXBjTeG3rdhA5SXx9cfhUKhUCgUseGSS/xTVz72GHR+ADVgAPzmN+HZaGuDm2+G//1PLa6uUCgUOiIN/7ohkWAGLgPmA7M//5wH8I9IUSgUikShrq7usJ0gcPDaIYrvSJiOEI/Hw69+9SsmTpzIvn37EJHg51AcddRR3HTTTYgIq1atYsuWLXH0WBEvJk2ahNVq1dqNmGC325k8eTJ2u11rV0KilX/dLveOOw697xBzicdKW7TsRmpH73VLERqjx03v+hIm5+moHJXzFJHQo7j16wf33QdbtsAHH8CvfgXjx0O4I8PffRdeecW/Ptgpp0BREcSo3ui9XmrpXzzKNnLOi6Yvivhi5LhZrdaI7t2vAg41OfFCYH837Z0A/AvYDrwJXBKhf5HQ23NeNGwZ+doxMkaPm5716dm3WJIwU2PdeuutlJSUAP4hPjfddBMXXnghr7/+OvPmzcNkMuHzHTxj5MqVKzn33HMxmUw89dRT/PGPf4y364oYERhOlZeXR21tLevXrzfc1Fher5fa2loGDRpEcnKy1u4chFb+9ajcSy7xr/FxIOef718zxNy1XzhW2qJlN1I7eq9bitAYPW5615dQOU8n5aicp4iEqMVNJPxpMEeOhOXLu27r0wduvx2efrrnPoRA7/VSS//iUbaRc140fVHEFyPE7VDTtiQnJzNo0CBqa2vxer3dtvsDoBC4DsjotL0RGIB/2qur8E+d9bMe+O1NTmbloEG8W1vLK14vth7YCHCkqbE6v63dv39/kpOTe3XOi4YtI1w7vRGjxy0W+sKdfvBIeUir717rqbESoiNkzZo1nHXWWQAMHDiQhQsXckrHYod33303U6ZMOWRHCEBubi4Oh4Mrr7ySt956K25+K2KL1hePQkO+/NI/kuOYY2Dy5PDOmTcPrrjC///0dLj2WpgwAX70o5i5qVAoFAqFIoGoqIDTTw+97/bbYfr0+PqjUCgUCUpBQQFz5sw54nFXXHEFH3/88RGneelMNnADMAE4FXgWOPB11x927L8eyAzb8ne0AnPwryXSk1VEDvUAsqWlhXHjxjFv3rygZovFwpgxYygpKQm5ULtCoVB0JlodIVqh9bPchJgaa8aMGcEpsF577bVgJ0i4DB8+HBFh06ZNsXBPoTEFBQVkZGQc+cAEpLm5mdmzZ9Pc3Ky1KyGJq38uF8ycCT//Oc0/+xmz7XaaX3wRWlvDO/9Xv/JPc/HMM7BzJ7zwwmE7QWKlLVp2I7Wj97qlCI3R46Z3fVr5F69yY1GOynmKSIh73A4xXSbgf3kiyui9XmrpXzzKNnLOi6YvivhilLiVlJSQn5/fZaHejIyM4L27xWIhPz+fWbNmMWbMmG7ZdgBTgNOA84GnQhzzJf6OkAEd/34Zht3mjAxmFxTQnJFBH+BmYBWwBriNrqNQeoLL5eLCCy9kzpw5XTp+XC4XCxYs4MEHH+y1OS8atoxy7fQ2jB63cPW5XC5qamqCn+50DsfaN6OREB0hS5cuBeC0007r0aLngwYNAmDnzp1R9UuhD+x2O+3t7Vq7ERPMZjNWqxWzWZ+Xatz8W70aBg2CG26AlSsxt7djtdsx22zw5pvh2UhOhoUL4e67IYx5X2OlLVp2I7Wj97qlCI3R46Z3fVr5F69yY1GOynmKSIhr3JxOePXV0Pt+9jMYPjzqReq9XmrpXzzKNnLOi6YvivhilLilp6cze/ZsbDYb1dXVVFdXs2bNGn7729+yZs0abDYbs2fPJj09PWSnCfhHSpx99tmHLedToBpYu3ZtSBvDzj6byz/4gDOA3+KfPutQBO8xD3i28CPgeWAX8Bz+Dpju0NLSQkFBAenp6axatSrkMe3t7WzevJm2trZuWg8fPee8aNgyyrXT2zB63I6kL5AfcnNzGTJkSPCTm5tLQUEBLS0tmvlmVBJiaqzA1FY33HADL7/8cpd94UyNNWHCBKZPn05ycnJMf1gU8UXr4VSKONLcDAMHQmPjwfvOPhvKy+Pvk0KhUCgUCuMg4l8zbOpUeO896HxfMXMmXHddeHbKyuB73/Mv2q5QKBSKsOm8bgb4186oq6vr1hQwB669YbFYgtPI/AP4e5R8XYF/2qy3Afdh/IHwpwk78DyFQmF8jpQf8vPzmT17dpdtamqsyEiIbp/Ocyf2hKamJgAyM3syO6RC7wwfPpzU1FSt3YgJbW1trF+/XrcdeHHzLyMDbrzxu3JTU1k/fDhtqamwahWsWxf1ImOlLVp2I7Wj97qlCI3R46Z3fVr5F69yY1GOynmKSIhr3EwmuPBCmDsXtm2DBx+E/v39HRpjx4Znw+uF/PzvRrGWlfk7WA6B3uullv7Fo2wj57xo+qKIL0aO25G0WSwW8vLygp+ePP/pbKPz+Sn4p7cKhQPwcsA95hE4F5gF7AAeA048xHEul4t58+Yd0V5qairDhw/H4/Ec8dieouecFw1bRr52jEwixC2SaasOpy+c/NB5PaFokwjffSxIiI6Qfh1vVHV+O6A7bN68uYsdReypq6tj5syZFBYWcu6555KZmYnJZIpJb+SoUaN63Emmd1wuF8uWLYvL/IA9Ia7+jR//XbkWC8tGjcIViPsBI8WiQay0RctupHb0XrcUoTF63PSuTyv/4lVuLMpROU8RCZrFbeBAmDwZtm+HJUsgLS288z74AHbsgLY2/yiSn/3Mvx7ZCy+EXNNM7/VSS//iUbaRc140fVHEFyPHTStt/fv3Z3BaGl8fYv8DwGDgYYuFxZ3vMcOgH3AfUAV8DIwBkjrtr6urC0uvxWJh1KhRMX0gqeecFw1bRr52jIye4xaNaasOpy+c/HDgSLlooufvPpYkxNRYo0eP5n//+x/9+vVj165dJCV999NypKmxduzYwYknnkh7ezvXXHMNM2fOjKfrvZann36aP//5zwdtHzx4MDU1NVEpQ+vhVIoIsdn8HRhXXgmDB4d3zqhRUFr63d/nnedfvPTKK8N/SKFQKBQKhUIRCy6+2L8e2YGkpcHOnXDUUfH3SaFQKBKYaE0BE5h+ZhgwHrgRyAGa8S+o7ug4Lgn4NfDG+efTZ/nyHvlcC2QUFpJ7zz3UeDxh+R+uDoVCET96Mm1Vd+hpflNTY0VGQowIueSSSwBoaGjg1UMtYngI/v73vwc7SC6++OKo+6YITXZ2NhdddBETJ07kzTff5Omnn45ZWRaLBZPJFDP7WiIiuFwu9Npf2SP/Vq+GW26BAQPgL3+B6dPDP3fCBMjKQu66C9eaNUhpKVxzTUw6QWL13UfLbqR29F63FKExetz0rk8r/+JVbizKUTlPEQkJFbdvvw3dCQJQUBCyE0Tv+rT0Lx5lGznnRdMXRXwxcty01BZYkL0S+CMwEP9UWf/ku04Qk8lEisXC+yYTe155BbZswVNYiKOb03APAnKffhoGD6bf+PH8AjjS0wqTyYTFYum1OS8atox87RgZvcYtWtNW6VUf6Nu3WJIQHSE333wzOTk5APzlL3/hiy++COu8f/zjH7z66quYTCYGDBhAQUFBLN1UdGLcuHH873//49FHH+Wqq65i4MCBMSvr/vvvD9YPo9HY2Mhjjz1GY6hFwnVAt/ybNw9+8hM46yz/SJDAD8ZLL/mnkAiHK6+EXbto/Ne/eGz+/Jh+L7H67qNlN1I7eq9bitAYPW5616eVf/EqNxblqJyniISEitu0aYfed+edITfrXZ+W/sWjbCPnvGj6oogvRo6bltrS09OZPXs2mzZtAvwjQV7Ev75HgJycnK7PFoYOJeWpp8hubKStpARfbm73CvX5yPjkExYBXwP/D+h7iEMDZTc3N3evjG6g55wXDVtGvnaMjF7jFq1pq/SqD/TtWyxJiKmxAKZMmcLdd9+NyWQiNTWVu+66i2uuuYbp06fz4osvYjKZsNls7N69m88++4zi4mLWrl2LiGAymZgzZw5jw13oUBF15s6dy1VXXRWTqbH69+9PfX09GzZsMNzUWD6fj/r6evr169dlSji90C3/pkyBP/wh9L433vC/LRmLcntIrMqIlt1I7ei9bilCY/S46V2fVv7Fq9xYlKNyniISEipuzz0HTzzhX1ekMz/+sX80bIjRywfpa2uDlJSQx2qBlt9/orb19JLzoumLIr4YOW490RbtKWBcLhe5ubkhH3AmJSXRr18/HA4H+/bt67oO6e7dcMIJ4PWG5fchywfeAoqBshBlr1ixgqFDh0ZUxqHQc86Lhi0jXztGRq9xi1buOZw+rafG0uq713pqrITpCAEoLCzkmWeeOWgapICEQ21/8MEHmTRpUlx8jBc+n4+NGzeyevVqvvjiC1avXs2XX36Jx+MBYOTIkSxbtqxHttva2pgzZw5vvPEGGzduZM+ePcHFga688kpuvvlmjj766G7ZjGVHSAC1RojOcTj802GFestl5EjoYX1VKBQKhUKh0AU+H3z4IUydCh9/7N/20kswblx45z/xBMyY4Z8K9MYbwaAjnhUKhSJcDtdxEcBisWCz2bp2XByGHs37//DD8Le/hWU/XL7E3yEyE2jq2LZ06dLgg8v+/fuHrUmhUESXeKzDoXVHiFZo/Sw3IabGCvD000/z4osvkpOTg4h06QAxmUzBbYGP1WplxowZhusEee+998jOzuaMM87g1ltvZdq0aaxZsybYCRIJmzdv5uyzz+bGG2/ko48+Yvv27bjdburq6igrK+Pee+/l1FNP5cMPP4yCkuhw8803k5mZqbUbMaGpqYmXX36ZpqamIx+sAd3yLzsbrrsu9L7SUqisjE25PSRWZUTLbqR29F63FKExetz0rk8r/+JVbizKUTlPEQkJF7ekJLj8cvjoI9iyBe6//7AjXrvoa2+H4mLYtAn++Ef/yyO33QZr18ZRwGH8M2DZRs550fRFEV+MHLeeaLNYLIwZM+awx4wZM6ZbHQaB9UIOPOeoo47i3nvv5Zlnnjn4pA8+CGmrChgBvAy0hu2Bnx/i7wjZBTyXmcldN9/M5ZdfzpAhQxgyZAi5ubkUFBTQ0tLSTcuh0XPOi4YtI187RsbocdOzPj37FksSqiME/GtPbN++naeffprRo0eTmZnZpVMkLS2N8847j8cee4yamhpuuukmjT2OPna7PWo/hp2pra3loosuYv369YC/g2nkyJGMGzeOyy+/nD59+gCwd+9errjiCpYsWRJ1H3pCTU0N3giHqOqV5ORk8vLySE5O1tqVkCSbTOSlpYXv34QJB28bMAAeegi6McooHt9LrMqIlt1I7ei9bilCY/S46V2fVv7Fq9xYlKNyniISEjpuQ4fCI49AevohD+mi75NPoLr6u50tLfDii/6ptV56KQ4OH8E/A5Zt5JwXTV8U8cXIceuptkN1XFgsFvLz8ykpKemWvcB6ITabjerq6uBny5YtXHbZZWRnZx980vLl8M47MHp0l83TgVXALfgXYP8z/vVAukMW8Huvl7E1NXzg9XIDYME/GmbOnDmMC3dU4RHQc86Lhi0jXztGxuhx07M+PfsWSxJqaqxD0dzcTGNjIxkZGYZdNLszL7/8MrfccgvHHnssP/3pT4OfTz75hKKiIqBnU2Odf/75fPrppwAMHjyYefPmccYZZwT3NzQ0UFBQwOLFiwHo27cvVVVVWK3WI9pWU2MZjL17/VM3TJ/unwt7+3Z/h0Y4nHMOlJfDL37h7xi5/HL/fNgKhUKhUCgUvZXLL4cFCw7enpICtbVwzDHx90mhUCh0xIELE2s2dVRVFTz/PN5XX+W4ujoaQhxyATAe+C3QkzvdffhHmUwDars59ZdCoYgcNTVW7ND6WW7CjQgJRUZGBgMGDOgVnSAAl1xyCdu2baOuro758+fz4IMPcumll4bVIXEoPvzww2AnSGpqKvPnz+/SCQJw9NFHM2/ePE488UQA9u/fz+OPP97jMqPFiBEjSEtL09qNmOB2uykvL8ftdmvtCoj434S55hoYNAjuvx/3rl2U//SnuF94IXw7zzwDX38NixbBlVf2qBMkHt9LrMqIlt1I7eiqbinCxuhx07s+rfyLV7mxKEflPEUkGD1uQX3ffHPIaVcYO1azThAtv/9EbevpJedF0xdFfDFy3CLVZrFYyMvLC36i3TEQtn9Dh8Jjj1G7YkXIThCApUA+cALwN6DuEMcFy05Lo3zECNwdzzWOAv4f8C0w3+XCUVICEU6FruecFw1bRr52jIzR46ZHfS6Xi5qaGr755hs+/PBDGhsbtXYprhiiI6S30b9/f0444YSo2pwyZUrw/zfddBOnn356yOMyMjL4xz/+Efx7+vTpmk9LNXz4cFJTUzX1IVa0tbWxfv162tratHbFz223wezZwUZYW2oq64cPp23WLAi3Hvz0p3DSSRG5EY/vJVZlRMtupHZ0V7cUYWH0uOldn1b+xavcWJSjcp4iEowet6C+FSvAZAp90Pjx8XWqE1p+/4na1tNLzoumL4r4YuS46V1bt/1LSjriIXXAw8DCI5UduK8O8VzjF8Axd90FJ5zgX7B927bw/DuwDB3nvGjY0nv9UoTG6HHTk76WlhYKCgrIzc1lyJAh/OQnP2H+/Pl873vfi+p6RHrHEFNjKfxMmjSJyZMnA92bGqupqYmjjz462EO5cuVKzjnnnEMe73K56NevX3BBncWLF3PhhRcetgw1NZZBeOop+MtfQu9791244oq4uqNQKBQKhUJhCLZvhxde8K8LEpj65dRT4auvDt1J0hmbDW6/HW69FX75SzCr990UCoUiloQ7PU0u/gXRozZ+xWSCyy7zd5RfemlYHTIKhaJ7GHFqrIKCAubMmXPI4/Pz85k9e/YR7UaK1s9yVQtZwcqVK4OdIBkZGfz0pz897PEWi6VLR4nWi6ZbrVbMBr3Za29vx263097errUrfm66CTpNQ9ZuNmO3Wmk3m2HatLi5EY/vJVZlRMtupHZ0V7cUYWH0uOldn1b+xavcWJSjcp4iEowety76TjgB/vlPf4fIm2/CBRf411ILpxME4JVXYO5cuOQS/8jbJ56AhkNN2tID/+JMorb19JLzoumLIr4YOW561xYr/27i0J0gTwDLOOC++kiI+KdTvPxyGDLE/9uxa9cRTzucvsBUOTU1NbhcriP7EIbN7qLaer0To8dNL/pcLhfz5s3rss1sNnd5njpv3rxuXf+JSsI9PW5tbWXu3Lncd999XHXVVVx88cVceOGFYX0uuugird3XJZs2bQr+//TTTyc5OfmI5/zoRz8Keb4WFBYWkp2drakPscLhcFBUVITD4YhtQeHOV9i3L+TnB/90ZGdTVFiIo29fOOqo8KfHipB4fC+xKiNadiO1E7e6pYgqRo+b3vVp5V+8yo1FOSrnKSLB6HELqS8lBa66CpYsgTvvDM+QSNcXUqqq4L77/Gu63XtvdP2LE4na1tNLzoumL4r4YuS46V1brPwrAf4AVBywfQfwV/wLq5/VcV9d293nGjt2wIMP+jvTf/c7/zqch3jgGkrfgVPlDBkyhNzc3LCnyYnmd6baer0To8dNL/rq6uoO6uTIzs7u8jzV5XJRV3ekFY0MgCQI7e3t8thjj0l2draYzeZuf0wmk5jNZq1lxJSHHnpIAAFk5MiRYZ83YcKE4Hn5+flhnTNlypTgOcOGDTvi8W+99ZYAMnjw4LD9OhIVFRUCiNVqFbPZLBUVFVGzrRd8Pp/YbDbx+XzRN97SIvLyyyIjRohcc034561cKeK/5RbfkCFie/hh8e3aFX3/DkNMv5cYlxEtu5Haicd3qIg+Ro+b3vVp5V+8yo1FOSrnKSLB6HGLmr7Fi4Nts4M+Dz2kvX86LdvIOS+avijii5Hjpndt3fWvuro6+Ewk3M/PQWaCuED+3mm72WwWq9UqGWazjANZfaicHs5n6FCRxx8X2bv3iPry8/MP6Ws4z4aiGVPV1uud6DVu4V7f1dXVh7VzOH09LaMn54U6J5B3zGZz2HoCtLa2SnV1dfDT2toa1nki3z3LDXzi/Sz3yK/+64Trr7+e2bNnI2pJk6izb9++4P+PPfbYsM7p379/8P/79+8/aP+OHTs488wzg38HFgbasWMHRx99dHD7Nddcw7PPPtttnztjt9sjOl/PBIaqRZXNm2H6dHj5ZQh8d2vWwNNPwzHHHPn8ESPgj3+ESy/FPHo0Vg2mJYvJ9xKnMqJlN1I78fgOFdHH6HHTuz6t/ItXubEoR+U8RSQYPW5R01dcHHp7UhLcdluPzWr5/SdqW08vOS+avijii5Hjpndt8fDvs45PIeDrtD0wfQ74R5CUAD8G7gCuBTK6U0hgVODf/uYfJTJ+PJx33kH6Qk2V05nANDkWy6FXN4nmd6baer0To8dNz/o6551waWlpYdy4cQdNo2WxWBgzZgwlJSWkp6dH2dPokhBTY73++uu88cYbwb9PPvlk/v73vzNnzhwWLVrE0qVLw/povZaFXgkseg7Qp0+fsM7pfFzn8wP4fD727dsX/DidTsB/oYXaHgkTJkwIduD4fD7sdnuww8zhcAQ7YVpbW2lubgbA6/V2ueAkIXuXAAEAAElEQVQbGxvxeDyA/8IODAP1eDw0NjYGj7Pb7Xg7pn9qbm6mtbUV8Hf0BIa6iQh2ux2fzxf8fgIJwu12d/kuOs8V6HQ6g2u1uFwumpqacDqdFBcXU1tbGx1NZWV4fvhDGmfMCHaC2K1WvCLw8svhaTKZaHr4YVyjRuFsbmbq1Kns3r07bE3RiJPT6WTq1Kns3bs3ZnHavXs306ZNo7GxMaqabDYbU6ZMCdaDnta9vXv3Mm3aNPbt29ejuldbW0txcTFOpzNmcequplhfT0bQ1NDQwLRp06ivrzeMps5xqqurY9q0adjtdl1qqq+vZ9q0aTQ0NMS17u3fv59p06axd+/emMYpFnmv8+9YJHHas2cPU6dOxel09qjuNTY2MmXKlKB9o+YIo2navXt3MO5G0dQ5TvX19cE2QY81ffstngUL/JrS02npuPn0pKTQ+LvfwcCBPdZUV1cX/P7jXffikfcaGhqC33+0NO3Zs4dp06Zhs9kiqnsHtnVV3lN5L5E1dc4hU6dODU69ojdNTqeTKVOmUF9fH5amgK8Wi4XMzEwAkpKSsFqtmDrWd8rOziY1NRXwP0PJyPB3adiTk5FOD0cHDBjA+PHjycrKIj09nfT0dNYAd6WkMCYn5ztNVivejqnMmzMyaO14LtOWmoqjY3obMZmwW63+OL3xBk2/+hWu4cNxPv00U599NnjvvmvXLiwWS3B9gKysLNI61gO1WCwkJydTV1d32Djt3bs3WF8jjVPnvOdyufj222/ZuHEjLpcrrLrXuc1p5BxhNE2B666hY10zvWgK2DaZTFitVpKSkgDIzMwMdg6mpaUFbfc07x0qRyQnJ3fpQOmsyeVyBTsbUlJSyOmUI6xWa3C5g9bW1qAmj8cTnAIroCknJ4fx48dz7LHHBjW1tbUdtu7deuutwQXXO+c9i8XCm2++ybhx48KOk1YkREfIiy++GPz/n//8ZzZu3MjkyZO56qqruOiiixg5cmTYH8XBdO7FC1yARyKt04LZgQurM3l5eYjIET8vv/xyxP47nU4uu+wywH9DWVRUFPxhKCkpobKyEoDS0lLmz58PQG1tLUVFRUEbxcXFVFVVAbBw4UIWLlwIQFVVFcWd3rIrKioKPsyZP38+paWlAFRWVlJSUgL4E3xRUVGwATV37lzKy8sBWLduHbNmzQIOnitw1qxZrFu3DoDy8nLmzp1LamoqQ4cO5aWXXoqOprPOouqccyieMOE7TYWF1A4aBNOnM//997ulKTU1lb59+/Lee++FrSkacUpNTSUlJYVPP/00ZnF67733GD58OC6XK6qa6uvraWhoCF5rPa17q1evZvjw4WzdurVHde+ll17ilFNOITU1NWZx6q6mWF9PRtC0efNmhg8fzoYNGwyjqXOcPvzwQ4YPHx48Tm+aNmzYwPDhw9m8eXNc697OnTsZPnw4n376aUzjFIu8l5qayuDBg3nppZciitPixYvp06cPqampPap7LpeLhoaGYJvHqDnCaJree+89+vbtS2pqqmE0dY7Thg0b8Pl8pKam9lzT229T9dprcNVVLLz4YhaOHu3XNHQoxaefHr6m997D/fXXXTR9+OGHwRv0eNe9eOS9zZs343a7SU1NjZqmxYsXM3z48OBxnTV1p+6lpqZiMplYvXp1tzSpvJf4moyc91JTU8nOzubDDz/UpabU1FR8Ph8bNmwIS9OWLVsAGDFiBGPHjgWgX79+FBYWBp+XjBs3jmHDhgEwcuRIxowZw9lnn82gQYMoLCwM+nrjjTeya9cu2traGD16NKM7cvnQoUM5P9S9OzD/8ssp7XjGVTlsGCXjxvk1paVRVFhIfb9+/jiNHUt5376k3n8/fcvLee+552DVKlqam7usD3DdddcFZ/XorOlwcVq9ejUmk4nU1NSI45SamoqI8PDDD5Obm8vVV/9/9s49PurqzP/vmdwm9wk1ihptKNUqtVWqXdO6LWpd1toirFITi1U3bRVat6a3re2vu8t266pbd2vUFvAS2yoKFS+ICiIKaBVQFDAh3BImQAiBAHPL3C/P74/JfA0wSSZz/WY479drXsrMd57zfOZ5zjPfnDPnnBt47LHHqKqqYtasWSPmXmFhIeeddx6PP/54TteIXNNUWFiIz+dj+/btutK0fPlyIDL22dTURPVAf5o5cyZ1dXUATJ48mVWrVg0bp5Hq3vE1Ytq0aQAn1IjBmjZu3HhMjZgzqEY0NTVRM1Aj1q1bp2nas2cPjQM1IqqpoqKCzZs3c80112iaOjo6hsy9p556in379gFD172lS5fy+OOPxxWnrJGiLbbSyic+8QkxGo0yceJECYfD2XZHtyR6Rsg111yjve8Xv/hFXO959dVXtfeUlZUl6HFyRPeVM5lMUlZWJm1tbRIMBsVqtWp5YrfbxefziYiI2+2W/v5+EREJBAJitVo1WzabTfx+v4iIuFwucblcIiLi9/vFZrNp11mtVgkEAiIi0t/fL263W0REfD6f2O12EYmcZ2O1WiUYDIqIiNPp1PbL83q94nA4ROTEvQIdDod4vV4Riey353Q6RURSr+nuu8VWWantIWo1myWQny8C0v/yy2NTUy7GSWlSmpQmpUlpUpqUJqVpNJp27xbXb34jctZZ4j/3XLEdPRqfpv37RcrKJGwwiHX6dAm+8IJIMKgPTbkYJ6VJaVKackLTjh07jhmPACQvL0/MZrMYDAYBpKKiQlatWiUWi0W2b98uhw8fFovFIvn5+WI2m7UxlcrKSikoKBBASkpKpKSkRACpKiiQ/UP87d5aWiq7TzlFBMRXWCj2igoRiNRys1mCeXkiIM6yMvGYTCIg3qIicZSXi4C4P/tZmWM2S/nA+QDl5eVSVFR0jCaLxZLROH3729+W4uJiAaSwsFAqKioEEIPBIDfddJPKPaUpY5qi440Gg0HMZrPk5eVp458mk0kAKSoqkq1btyasyWKxSEVFhRQWFgogxcXFUlpaKsAxNcJisRyjadu2bVqNKCgokMrKSq2WmM1myc/PF0Da29s1TTt37jymPw2laceOHUPGaevWrSfUiFh1r62tbdg4ZfuMkDExEVJaWipGo1FuvfXWbLuiaxKdCLnhhhu09/3oRz+K6z3PPfec9p7x48cn6HFyRDvP5ZdfLiaTKScPS/d4PLJ69epRHTw0Ir29IgM3Tyc8fv3r7Punk3bT1Uaq7CZrJ1uxUyRHrsdN7/pyuealqx1V8xTJkOtxS5u+QECkszP+6+fNO/Ge8KyzxPOb38jq117Lyuc/Vu/19FLzUumLIrPkctz0rm20/iV60LHH49EGHaMPk8mkjWsMfr4K5L9BDsb42/1bA9f85vLLRb71raH/xh94eEwmWX355dqkSPThAPkjyOfj8D3Zz2w4rFarXHXVVSd8BoM/o+HaSVXdTPQAaEVi6LUupOqw9OH0Zfuw9Fh1Zzg9qfpMsj0RMia2xjr77LMBtL0LFanlE5/4hPb/Bw8ejOs90f3tAMaNG5dyn0ZDbW2ttgderhEMBunq6tL2LTyBcBheew3+6Z9gYOn8iJx2Glx33cf/NpvhzjuhvR3+679S61+ayES76WojVXaTtZOt2CmSI9fjpnd9uVzz0tWOqnmKZMj1uKVNX34+fOpT8V0rEvuw9X37CD7+OF3d3Vn5/MfqvZ5eal4qfVFkllyOm961Zcq/6KHCg8nPz485rmEFfgWcBdQDqweePwi8OPD//71+Pd6//AX27YO774ZPfjJmu8H8fLpqa7UzRqKUA3OALcC7wM3A0MejR7bd6+rqoqurC4vFwu7du1PymR04cICampohx3ai5wkORTLxc7vdNDQ0UFVVxYQJE7RHVVUVDQ0N2jkQitSj97qQLHrWN1TdyXkyOu2SILfeeqsYDAb50pe+lG1XdE2iK0IeeOAB7X11dXVxvecXv/iF9p7rrrsuQY+TI9uziFnl4EGRe+8VmTDh419zNDbG//433xS59FKRJ54QGVgmqFAoFAqFQqE4yXjnnaF/QRznlrkKhUJxMpLMr6NdLpfU19cPufphuMd5IN8Ypg2XwyH3fPWr8pLRKMFhVogM9zgK8n8g3atWjeizyWSS+vp6bfuhdH6eI/3SPFHq6+uHbbe+vj4t7Sr0S6pWP6SjjVStCBmtHrUiJIPccccdQOQgpra2tix7k3ucf/752v+3trbGNVP54Ycfxnx/Njj77LO1A75CoRA2mw0RASKH+/j9fiByqLvL5QIis7I2m02zYbfbCQQCQOTXANEZ/0AggN1u166z2Wza5+NyubSD4v1+v3aAkIhgs9kIhUIA9Pf3a4cU+nw+nE4nAOFwGJvNRjgcBiKHvkcPTPJ6vfT39xMKhdi/fz9Hjhz5WNO99+KfMAHuugtPby+u0tKIpr/+FdvevfFpmjwZ1q+HW2/F5vcnrCkUCrF3717ts4xHUyriFAqFsFgs2meZjjjZbDZ6e3sJBAIp1eTz+di1a5fWbqK519/fT29vLx6PJ6HcO3LkCD09PYRCobTFabSa0t2fckGT2+2mt7dXy4Fc0DQ4Tna7nd7eXvx+vy41uVwuent7cbvdGc296C/gojmQrjilo+6FQiG6u7s5cuRIUnFyOBx0dXURCoUSyr1AIMCuXbu0dnO1RuSaJpvNxt69ewmFQjmjaXCcXC4Xu3fvJhQKZU/T/Pk4Bu6jxWDAZjYTyssDgwH7rFns2bOHUCiU8dzLRN1zu910dnYSCoVSpsnhcNDb26vV1ETjFL3Xjbar6p6qe2NZUzROoVCIPXv2aO3qTVMoFGL37t3H/N02nKaoryaTibKyMgDy8vIwm80YDAYAKioqNF8HayosLGT+/PlYrVYsFgtbtmzh7bffJi8vj5KSEkpKSgAoKCigsrJS02Q2m+nIz+cVoLS0lOLiYgC6urrYunUrXV1dzLr5Zu776CP+yWCgFthWVobXZCKUl8fes87CNmAvbDRiM5sJD+y84iwvxzdwyHuxycT3y8o486qrCF1xBbYnn+S2W25h8eLFFBYWUlhYCAM+jB8/niVLlvDd73436bpXW1tL6cD4RvSQaQCDwYDZbB4290KhED09PRw5cmRUNcLr9fLmm29qmoqLizUf8vPzMZvNLF26VPtbRS/9aThNkP3+FK+mUChEZ2en1q5eNEVtR3MvLy8PgLKyMkymyJqpoqIizXaida+iomLY3Iulyev1Dlsjois8PB6PpikQCJzQnwoKChg/fjwVFRWaJr/fP2Tuud1uigZqxHB1z+VyxRWnbDEmJkIuvvhiZs+eTSgU4sYbbzzmj2lF8nz5y1/WktnlcrFx48Zhr/f5fKxfv17795VXXplW/0aisbGRG264AYC+vj6am5u1L4aWlhba29sBWLt2LcuWLQOgu7ub5uZmzca8efPo7OwEYOXKlaxcuRKAzs5O5g3aLqC5uZnu7m4Ali1bxtq1awFob2+npaUFiHw+zc3N9PX1AbBkyRLt89q0aRMLFy4EIkW8ublZ+9JYuHAhmzZtAmD9+vUsWbIEp9PJY489xsMPP/yxpnCY9nPPjWiaMoVl06ZFNJ1yCs1PPBGfpvnzU6LJ6XTyxBNPjEpTKuLkdDr5y1/+wvLly9MapwULFnDgwIGUatq1axdPP/209uWSaO698cYbLFiwgE2bNiWUew8//DCPPvooTqczbXEaraZ096dc0LRhwwYWLFjA22+/nTOaBsfp2WefZcGCBezZs0eXmt5++20WLFjAhg0bMpp7W7duZcGCBSxfvjztcUp13XM6nTz++OM8/PDDScVp6dKl/PnPf8bpdCaUewcOHODpp5/mwIEDaYuT3vpTrmh64okncDqdOaUpGqe3336bJ598EqfTmT1NX/wiLbffHtFUVERzUxN91dVw9dU8u2EDf/rTn3A6ncNr+stf2LRhAzC26t6GDRt46qmncDqdKetPS5cuZcGCBezatSupOEXvdd94441RaVJ1Lzc05Wrdczqd/OlPf+LZZ5/VpSan08mTTz7J22+/HZemjo4OAOrq6pg5cyYA1dXVNDU1aeMrjY2N7NmzZ0hNJpOJ2tpaXnnlFd544w1uvPFGpk6dytSpUwGYOHEic+bM0TQ1NTVRU1MDwLRp05gyZQoAP/7xj3nssceYMGECK1asoKmpierqasqADTNnsr6uDmd5OU9897ssvOmmiKaKCpqbmrTJ8IWzZrFp8mQA1tfVsWRAU9/27TTv3s09L7/MPcBtjY1MmjQJgKuuuopbb72V8vJyPvzww6Ti5PF4uPXWW7nqqqsAmDRpEo2NjUBkwLmpqUkbTI6Ve06nk0cffZSHH36Yvr4+urq6eOKJJ3jjjTfwer1D9qfe3l5mzZqlaZoyZQrTBsZYampqaGpq0ibn9dSfIDfqntPp5KmnnmJDiu8jktUUHWuK5l51dTUAM2fOpK6uDoDJkyezatWqYeM0Ut1rHNSfYuVeLE0bN26Mq0asW7dO07Rnz54T+lNtbS2zZ8/mhhtu0DR1dHQMmXurVq1i8kCNGK7uLV++PK44ZY20rDNJA6FQSG677TYxGAwyfvx4eeihh6SnpyfbbumKRLfGEhG55pprtPfefvvtw1779NNPa9eOGzdOAoFAEl4nTnQ5VWVlpZSVlUlbW5sEg0GxWq0SDodFRMRut4vP5xMREbfbLf39/SIiEggExGq1arZsNpv4/X4RiSz5jC7r9Pv9YrPZtOusVqumt7+/X9xut4iI+Hw+sdvtIiISDofFarVKMBgUERGn06kdjOT1esXhcIhIJKetVquEQiEREXE4HOL1ekUkcqCS0+mUcDgs/f39cvTo0Y81HT4svrPOEgFxFxdLf2mpCEggP1+sl1wiMnBdJjSFw2Gx2WzadfFoEpGk4xQOh+XIkSPademIk91uF4/Ho/maKk1+v196e3u16xKNk8vlEo/Ho/kaj6bBuXf06FFxuVwSDofTFqfRakp3f8oFTR6PRzwej7jd7pzRNDhOUY1RX/Wmye12azHIZO75fD7xeDxa309XnNJR98LhsDidTjl69GhScYraCIfDCeVeMBiU3t5e7bpcrRG5pslut4vNZpNwOJwzmgbHye12S19fn4TD4exqstlE3n1Xwt/5jlhPPVWCeXkiL70kDodD82lYTT/5iXhPPVXkzjvFs2XLmKl7Ho9HDh06JOFwOGX9KWrf7/cnFadwOCyHDx/WrlN1T9W9sawpGqfo+wfnqJ40hcNh6evr064bSdOOHTu0raHKysoEkLy8PDGbzWIwGASQiooK2blz54iaop9Lf3+/fPvb35aqqioBpKCgQCorK8VkMslFF10kZrNZ8vPzBZDS0lIpLi4WQAoLC6WiokIAMRgMYjabJS8vTx4AcZaVicdkkrDBILaKCrGXl4uA9BmNYjWbJWQ0Rg5NLy8Xb1GRdrC6s6xMBCSYlydWs1nCBoMIiL2iQl4uLJTpIKXFxTJu3DgxGAySn58vra2tCcdp9+7dMm7cuGE1dXR0DJl70fjddNNNmo3y8nIpKioSk8kkN954oxw8ePCE3LNYLFJRUSGFhYUCSHFxsZSWlgog+fn5Yjabte1+9NSfRHKj7oXDYTl06NAx38160BQdbxzcnwApKyvTtocrKiqSrVu3Dhun4epeorm3bds2KSkpOaZGRMdoB9eI9vZ2TdPOnTtj1oho/Ypq2rFjx5C5t3XrVikqKhqx7rW1tQ0bp2xvjWUQGViPM0Z44IEH+MlPfqItuamsrKSyslL793AYDAZtBi0XmTt3Lv/5n/8JRGYS16xZE/d7X3nlFb75zW8CkdnBDz74gM9+9rMnXOd2u7nwwgu1Xz/cdddd3HPPPck7nwBbt27lggsu0P7d1tYW0+ec5N//feiDzd99F770pcz6o1AoFAqFQqEY+xw+DIsWwZw5MLANxLB4PHDmmWC1fvzcFVdE3j9jBhQUpM1VhUKhyCZdXV1MmDBhxOssFgu1tbWjsn38weDjx4+nt7c3rvYG0wzcxomHn68HpgD/BMwGLh+V1Y/ZDzw28OgmojXqayzGjx+vbcFzPPF8niN9lg0NDSxevHjI1+vr61m0aNGo242nbUVukYm8SLSNRN6XCj2p+kyyPZY7JrbGgsh+ZnPmzOEXv/gFBoMBEdH2n9u7dy979uwZ9tHV1UVXV1e2ZeiWb3zjG3zlK18BIsvZvvnNb/LRRx8dc82RI0eYMWOGNgkybtw4fvGLX2Tc1+NpamrS9robs2zeDPfdd8LTDoeDBx54QFuKpvG974FxUPctKID6eli9GgaWtGWCIf3LgXbT1Uaq7CZrJ1uxUyRHrsdN7/pyuealqx1V8xTJkOtx06W+U06BO+6AvLz4/Fu8+NhJEIjcj95wAzz9dMJujNV7Pb3UvFT6osgsuRw3vWvLpn/Htx3dMiv6MJlMw04iDMWdwJnAT4DNFRU8MLAV1jzADywGrgDOBx4ArEMZGoLyigoqm5r4qKKCF4Hmq6/mE2YzEyZMiPmoqqqioaFBO1dhMC6XK6mxnUOHDnHGGWcM+/7oWR8K/aD3upAsqdCXrpytqKjIjfHUUZKfbQfiIRQKMX36dF577TUAjl/EMsYWtaSEa665hp6enmOeGzzrvnHjRi666KIT3vfqq69yxhlnxLT59NNP83d/93ccOHCArq4uLrroIqZMmcLEiRPp6+tj1apV2hdWfn4+f/3rX485vCdbrFmzZmx+mbnd8Ne/wvz5MLAfItdcA5/7nHaJyWTi8ssvP/GG5+yz4RvfgLY2uP12+Od/hlNPzaDzI/iXA+2mq41U2U3WTrZip0iOXI+b3vXlcs1LVzuq5imSIdfjpnd9cfk3aK/tYzCb4VvfSm/bSZLLNS+VvigySy7HTe/asulfPG2bTCamT58+7IqHWBwFfg/8wevl+jVrMHu9/PW4a7YDPwZ+BXyLyCqRePaYMHm9XL5mDaVeL9OB6Tt28CPgEaAFOHTc9V6vV/P/+JUZhYWFSY3t2O12Vq9ePez7oyttBv9afUyOJeUQeq8LyZIKfeeffz719fW0tLRoh6SnAq/XO3bHU5NgTGyNNW/ePH74wx9qK0GuuuoqbrzxRj73uc9RVVVFfn788zmf/OQn0+hp5qitrdUO3RoNIy1R2r59OzfeeCObN28e8prq6mqeeOIJvvGNb4y6/VSS7eVUCRMMws9+Bn/+M9hsx772wx/CoANlh+XIEaiqOnZliEKhUCgUCoVCkQk+/BAuvjj2a3feCQ88kFF3FAqFIpN4vV6qqqqGHUQ0mUxYrdaUDfK63W4aGxszsrLhQuAe4OsJvj8AvADMB1Yf91qszyXZrbFGu21P9LOMd2JJbY11cqGnrbGiRLd2U1tjJceYGEH985//rP3//fffz8qVK/nnf/5nLrnkEiZOnMgnP/nJuB+K4TnvvPPYsGEDf/7zn7n66qs566yzKCws5NRTT6Wuro7/+Z//ob29PeuTIIP5xje+wSmnnAJEVg/ZbDZtlZDD4cDv9wPg8XhwuVwABINBbIMmIex2O4FAAIjcXERXvgQCAex2u3adzWYjGAwCkaWbHo8HAL/fry11i27ZFgqFAOjv79duUnw+H06PBz78kLDDgc1sJjwwkeEsL8e3aBEMXN/f34/H4+HVV1+lt7f3RE2f+AQeny+rmjweDy+//DKHDkV+6xEOh7HZbITD4YgmpxOfzwegaUpFnDweD8uWLePIkSNpi9OhQ4dYsWIFLpcrpZqcTidLly7VfEo0TkePHmXFihXY7fb4c8/p1OLU29vL8uXL8Xg8aYvTaDUl1J8GacpE7mVbk81mY8WKFVit1pzRNDhOfX19rFixgv7+fl1qslqtrFixApvNltHcczgcrFixgiNHjqQ1Tumoe4O/x5KJ0+HDh3n55ZfxeDwJ5Z7L5WLp0qXH1OJcrBG5punQoUNa3HNF0+A4Wa1WXnrpJTwejy419fX1aZ9/TE0dHVBVFbmHLSoCwGsy0V9WBrNn677u2Ww27fNPVX86fPgwK1as0L6zE41T9F736NGjo9Kk6t7Y15TLdS/6t2NfX58uNXk8Hl566SWsA9v9jaTJYDAwffp0TCYTZWVlAOTl5WE2m7UzbK+//nqMA3/vD6fp4MGDvPLKK3g8nmE1+f1+nnrqKaxWK+3t7Wzfvp23336bwsJCbXsbg8GA2Wwmb+Ccp7KyMkwmE8XFxXzjG9+guroaAKPRiNls1vwrLy+naKCWm0wmOsvKMAChvDxsZjMyoMlRUYG/sBCAo1VVLPvmN/EUFxPMz8c2aMcQd2Ul/1RQwJvAlpISflJSwjigoKCAoqIi7d4wGqfoFu1VVVUAMTUNl3s+n4+rr76a0047bUhN0TiFQiFuv/12/vrXyNqYiooKCgc0FRcXU1paCkR2Qhm8C4qe+hPkRt2L9ruoT3rRFLU9VH+CyPnKUduJ1r14c6+yspJXXnkFr9eL1+vVVoYUFBRQWVmpXWc2m7XFAh6PR6sps2bNOqE/lZaWcvXVV3PKKadomvx+/5C553a7Y/an4+uey+WKK07ZYkxMhGzduhWDwcCkSZP4yU9+km13dEFXV5d2TspoHvHMVBYWFnLzzTezfPly9u7di8/n4+DBg6xbt46f//zn2qSDXpgwYQLXXnstEPmDrbm5WftiaGlpob29HYC1a9eybNkyALq7u2lubtZszJs3j87OTgBWrlzJypUrAejs7GTeoCX/zc3NdHd3A7Bs2TLWrl0LQHt7Oy0tLUCkwDc3N2uFbsmSJaxfvx6ATZs2sXDhQpg9G0dFBc0De3QCLJw1i03nnAOLFrF+/XqWLFlCOBzm0KFDLFiwQJeawuEwe/fuZcmSJUDki6m5uVn7Ily4cCGbNm0C0DSlIk7hcJiOjg5Wr16dtjgtWbIEm82G3W5PuabNmzdrXyaJxumdd97BZrOxffv20eXeQJwWLFjA4cOHCYfDaYvTaDUl3J/IXO5lW9NHH32EzWbj/fffzxlNg+MUvQnWq6b3338fm83GRx99lNHc2717NzabjdWrV6c1Tumoe9GJ1wULFiQVp9dee43du3cTDocTyj273c7mzZu1P35ytUbkmqYlS5awd+9ewuFwzmgaHKf333+f7du3Ew6HdanppZdeoquri3A4HFvT1Kmwfz8L77qLTdOnA7C+ro4l3/senHdefJq6uui++uqIpoE/vDNV9z766CPa29sJh8Mp60+vvfYaNpst6TiFw2F27tzJO++8MypNqu6NfU25XPfC4TBdXV289NJLutQUDofZvn0777//ftyaWlpa+O53v8sNN9wARHbPiO65X19fz8UXXxyXpieeeIKenh7C4XBcmkwmE1u2bMFisVBTU8OkSZNobGwEIoOzTU1N2oTHzJkzqaurw2g0cvbZZ/OtgW0Ljz8fYNasWUyePBmAuro6bpo5k6uBvupqmpuatAnvlsZGWidNAuCdyy5j52c+Q9hopLumhuampo/jNGcOnRMnArB76lS+MnUq+4HmiRO5Y84cGBgIHlz3PvOZz3DZZZcBxNQUrWexci8cDlNdXc2cOXOG1DRz5kzt8//0pz+tDeo2NjYyaUDTlClTmDZtGgA1NTU0Ddako/4EuVH3ovf20TOK49X0xhtvsHjxYrq6uti4cWPKNS1fvhwYuj8BTJ48mVWrVg0bp5HqXry5N2fOHGpqaujt7WXjxo1MnToVgIkTJzJnzhztuqamJmpqagBYt24da9eupbGxUVsBNVjTqaeeitls5tprr9U0dXR0DJl7q1atitmfonUv2p+WL18eV+5lDRkDlJWVidFolO9+97vZdkWhI9ra2gQQk8kkZWVl0tbWJsFgUKxWq4TDYRERsdvt4vP5RETE7XZLf3+/iIgEAgGxWq2aLZvNJn6/X0REXC6XuFwuERHx+/1is9m066xWqwQCARER6e/vF7fbLSIiPp9P7Ha7iIiEw2GxWq0SDAZFRMTpdIrH4xEREa/XKw6HQ8TrlVB1tVjNZgkZjSIgjvJy8RYViVx8sXg8HnE6nSIiY0eTiIRCIbFarRIKhURExOFwiNfrFRFRmpQmpUlpUpqUJqVJaVKaclnTxo3i+f73xfnss/Fr+uUvJZCfL1azWaSsTOT228X2zjv60ZSLcVKalCalKeWa+vr6xGKxSEdHh7S2tmptZUKTxWKRwsJCqaioEEAMBoOYzWbJy8sTQMrKysRkMgkgRUVFUl5eLoAYjUYxm81iNBoFkPLycikqKtLGWGaXlYmABPPyxGo2S9hgEAGxV1TI1MJC+ReQTcXF0l9aKgIf1/LIFIfYKivFX1AgAuIqKRFXSYkIiL+gQGyVleL7zGdEHn5YrHv2SCAQEIvFIqWlpVJcXCxATE0dHR1DxslisYyoqaysTFavXi1vvPGGmM1mMRgMAkhFRYUUFhYKIMXFxVJaWiqA5Ofni9lsFkAsFosucy8X+9NwmqxWq9TX14vZbD4mTqeddprU19eLy+VKiaboeONI/Wnr1q0Ja7JYLHHlHiCVlZVSUFAgFotFtm3bJiUlJQJIQUGBVFZWateZzWbJz88XQNrb2+Xo0aNiMpnirhE7duwYMk5bt249oT8BkpeXd0x/amtrGzb3op9t9NHW1iaZZEycEXLeeeexa9cubr75Zp544olsu6PQCdF95Wpra7Vf2Wf1jJDu7siZH4P2uhuWn/8c7r//2OemTIHZs6G+HgwGgsEg3d3d1NTUjOosnEyRLf8y0W662kiV3WTt6D23FLHJ9bjpXV8u17x0taNqniIZcj1ueteXdv/8fjjrLDh0/HG6EPznf6b73/99zN3r6aXmpdIXRWbJ5bjpXVs2/Uum7XjOKoHIVjs1NTV0d3dr2wGNxLnA7cCtwLiB5zYBXxhk8+s1NdzQ3c0NwSCFo/J8gJIS+Pa32fvNbzKlqWlY/4Y7e6Czs5OrrrpqVPpGw8l+Rkj0oPko48ePT8nZN6PN/YaGhmHPdYmeo5EsqToPYzh9oz0jJNoeELdvw10bqyaoM0J0wpVXXomIDHuAt+Lk5dZbb9X2pss44TCsWAEzZsAnPwmDlq6NyG23Rf5rNkcOlGxvhzVroKEBBvbW6+/v589//rO2R6LeyJZ/mWg3XW2kym6ydvSeW4rY5Hrc9K4vl2teutpRNU+RDLkeN73rS7t/zz8fcxIEoP/ii8fkvZ5eal4qfVFkllyOm961ZdO/ZNo2mUxMH9iecDjKyspGPXayE/gpcCZwM/AukcPPB9u8+NZb+ZeyMmqAfwU6RuM8gNsNjz1Gxa23cuutt/LPZWWUjNYGkbMIsjo2NEq8Xi9dXV0xHyNNamUSt9tNQ0MDVVVVTJgwQXtUVVXR0NCgnZGRKKPJfa/Xy9KlS4e9ZunSpbr6/PRc9xKpCbnAmFgRsmXLFi655BLC4TBr1qzhK1/5SrZdUuiArM4iHj4Mjz0GjzwCA7OsGjt2wLnnxmdn+fLIKpCSRL7qFQqFQqFQKBSKMcqUKfDWWyc+X1YGPT1QXp55nxQKhWIMEt3///hBYJPJxIUXXsiGDRsy5osB+BowG7hu4N+jxQ78BVgAbB30fCp+rZ4oo10RMtQKiqFiNZjo5FZLS4t2KHa2yNQKjHhI1YqEkXC73Vx55ZVx9Ztk2sr2ipCh3qNWhOiACy+8kLvvvhsRoaGhge3bt2fbJcXJzp498MtfnjgJApHJkXj5+tfVJIhCoVAoFAqF4uRi3z74299ivzZrlpoEUSgUilFQUlLCokWLsFqtWCwW7WG1WjM2SB1FgFVEJjESmQQBqAT+BWgD3gZmAUUp8S79jLSC4sYbb2Tx4sXDrlrwer0sXrxYO9w6W4zFFRipoLGxMaOTh4rMMiYmQgD+9V//lfnz53P06FEuvvhifvrTn/Luu+9qp9crTl7uuusuTj/9dABCoRA2m43oQieHw4Hf7wciSyVdLhcQ2afPZrNpNux2O4FAAIh8cUWX9wUCAex2u3adzWaL7J138cW4vvxlPMXFAPgLC3FUVAAgTzyB7eBBQqEQEFkKF/1i8Pl8OJ1OAMLhMDabjXA4DIDT6cTn8wGRL5z+/n7sdjv33HMPe/fuTb8mwOVy4fF4Ipr8fq1/iQg2m+0ETVH/9u/fH7emVMQp2m70Fxap1BSN0/79+7n33nuxWq0p1XTkyBHuuecezd9E43Tw4EHuvfde+vr64tY0OPf27t2r+ZGuOI1WUyJxGk1/ygVNhw4d4t577+XgwYM5o2lwnHp6erj33ns5evSoLjVF+92hQ4cymnuHDx/m3nvvpbe3N61xSkfdG/w9lkycDhw4oNWsRHLParVyzz33YLVa0xYnvfWnXNC0f/9+Le65omlwnA4ePKjp06Omnp4ezb+U594pp+BqbYW77iI4fjw2s/ljTTffHH/d++1vYelSXHb7qON06NAhTV+q+tOBAwe49957OXLkSFJxitbOgwcPjkqTqntjX1Mu171oXvf09OhS0/H9LpO5t2/fPi3uyWgymUx88pOfxGw2c9ZZZ2EymfB4PJhMJiorK7nrrrs444wzADAajZjNZozGyLBgeXk5RUWR6YbLLrtM2y4nLy8Ps9mMYWD77oqKCgoLI6eBnHrqqdx1111UVlaSn5+PeVAtb6ysJFBQEIlTSQnugR+A+gsKsFdWfqzJbCaYn4+9spJ77rqLg6eeGrluYIzl74EnDQa2mc1U3H037NzJ4cOH2blzJ11dXezcuZO+vj76+/u56667OOuss2JqMplMcWkqLi6mtLQU4ARN8eReY2Mjr732mhan0tJSiouL8Xq9vPDCC6xZswYAg8GA2WwmLy8PiGxTFD1zo6ioiPLycpYuXYrb7c5a3evo6ND6uNls1s64iGqCSN/o7OwEEqsR0X53aGCrzOE0uVyuuOLU39+fcI3wer28+uqrVAyM740Up6jtROtevLlXWVlJwUB/8nq92kqhgoICKgf1p8Fx8ng8Wq4UFhaeoKmqqkobT41q8vv9Q9Y9t9sdV39yuVxx5V62GBMTIXl5eeTl5TFnzhz8fj8ej4cHHniAr3zlK1RVVWmvj/TQ44FciuTp6Ojg6quvBqCvr4/m5mats7e0tNDe3g7A2rVrWbZsGQDd3d00NzdrNubNm6cV75UrV7Jy5UogcuDWvHnztOuam5vp7u4GYNm117J2yhQA2idNomVgtt7ndtM8fz59fX0ALFmyhPXr1wOwadMmFi5cCES+mJqbm7WbsIULF7Jp0yYA1q9fz5IlSygpKeHyyy/niSeeyIymZctYu3ZtRFN7Oy0tLRFNPh/Nzc0naCopKWHSpEm89NJLcWtKRZxKSko444wzePfdd1OuKRqnl156iRkzZhAMBlOqyWq14vf7tS+uROP0wQcfMGPGDPbu3Ru3psG598QTTzB16lRKSkrSFqfRakokTqPpT7mgadeuXcyYMYO2trac0TQ4Tq+99hozZszA7XbrUlNbWxszZsxg165dGc293t5eZsyYwbvvvpvWOKWj7pWUlHDZZZfxxBNPJBWnNWvW8MlPfpKSkpKEci8YDOL3+7U/dnK1RuSappdeeolJkyZRUlKSM5oGx6mtrY3KykpKSkp0qem1117jnHPOoaSkJD2599FHcM89dL/1Fs1NTXD55VBXx7y33oq/7j3xBMyYwbKmJtb+z//A/v1xx2nXrl2UlJRQUlKSMk1r1qxhxowZWK3WpOJUUlJCdXU1H3zwwYhxUnUvtzTlct0rKSnhnHPO4bXXXtOlppKSEiorK2lra4tbE6Qm9xYuXMgXv/hFSkpKUh6ntWvXUldXh9vtpr29XTtPpKKigqamJm1wdNasWUyePBmAn/3sZ9x3330AVFdX09TUpA2ANjY2MmnSJAAuueQSDh8+jNvtpqamhqaBM1NPB7rmzKFz4sRInKZOZeXUqQD8deJEHpgzh9App0Q0NTXRXVNDidtN9eHDfHDJJRFNg8dYior4S1MT/pdfhs98hqd+/nOab7+dcydM4JZbbuE//uM/uO2223j99df57ne/G1NTXV0dM2fOHFHTlClTmDZtGsAxmmDk3IuuoGhqaqKmpgaAadOmMWVg3GjSpEnaKo+ioiKampqorq4GYObMmdTV1QEwefJkZs2ahdfrZffu3Vmre9FxHmBYTcuXL4/EKYEaEf0e3rVr14iali9fHlecXnrppYRrRG9vLxMnTow7TqtWrTpB0+A4jVT34s29OXPmMHGgP23cuJGpA/1p4sSJzJkzJ2ac1q1bx5YtW7Q4Ha+ptLSUF198kauvvlrT1NHRMWTdW7VqVVz9afny5XHlXtaQMYDBYBCj0RjzYTAY4n4YjcZsS1GkkLa2NgHEZDJJWVmZtLW1STAYFKvVKuFwWERE7Ha7+Hw+ERFxu93S398vIiKBQECsVqtmy2azid/vF3E4xOVwiMvlEhERv98vNptNu85qtUogEBARkf6DB8V96qkiIL7CQrFXVIiAhM87T6xPPy3BYFBERJxOp3g8HhER8Xq94nA4REQkFAqJ1WqVUCgkIiIOh0O8Xq+IiHg8HnE6nSIiyWsSEZfLFZ+m/n5xu90iIuLz+cRut4uISDgcFqvVqjQpTUqT0qQ0KU1Kk9KkNClN6dPkcsWvae5cCeTni4D0l5aKu7hYJC9PfNdfL/a9e/WjKRfjpDQpTUrTmNHU3t4uJpNJACkqKpLy8nIBxGg0itlsFqPRKICUl5dLUVGRALJjxw5pb28XQPLy8sRsNovBYBBAKioqpLCwUAApLi6W0tJSASQ/P1/MZrMQ2R1LplZWytMFBeIDcZWUiKukRATkyoICqaysFMvOnSLPPivWa645sZYfP8ZiMIjVbJZgXp4IiLOsTDwmkxwA+a+iIjkvDk3RcaNENVkslhHjZLFYBBCz2Sz5+fkCSGlpqRQXFwsghYWFUlFRIYAYDAYxm82Sl5cngJSVlcWMU2dnZ9Zyr7W1VYvncJra2toy0p/a2triyr3W1taE+5PFYhlVnLZu3ZqwJovFEnd/qqyslIKCArFYLLJt2zYpKSkRQAoG+lOsOLW3t8v27dtHlXs7duwYMk5bt26Nqz+1tbUNm3vRsdzoI5o/mWLMTISk4qEmQnKLaOeZMWOGlJSUJNd5Nm0Suf12kbIykWXL4n/fHXeIgEhBgUhDg8iaNSIDRToVuFwueeGFF7TCrTey5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d+IbQcCImeeGbkPP/5x7rlx3Y/ncs1LpS+KzJLLcdO7Nl3XvCSIDs6XlJRoYyeDByFjPSwWi/a+4R4j2bz00kvlVJBfgOwG2X5cGxo7dsiB226TRTNmaBMmo3mEQF4oKZE7ZsyQ0jj0JfI4xt8RPutMt5su4tWzevVqLWeiEx/xMprcj9efZD6z0cZwpLaG05dIvsTbN+O5Nlb/HU5Pqj7/bE+EjImtscLhcEoe0X3qFAoA3G7405+grg4mT4YFC6C/H+bPj9/GD34A994L3d3wzDMwZQoYEj0STKFQKBQKhUKhUIzIK6/AwBl1JzB7trofVygUiixTX19PS0sLh4D7gInAPwx18bnnYvvxj/krcDuRA9JHgxGYCnwN+BD4N+CMhLxWJMIVV1xxwqHw0bMzFAq9YRAZOKFFoRhjbN26lQsuuED7d1tbG5/97GfjN/C978Hjj5/4vMEAFgt88pMp8FKhUCgUCoVCoVCklK9/HVasOPF5kykyQTJuXOZ9UigUCh3S1dXFhAkTRvUei8UCMOr3Rdm2bRvnnXfesG1bLBZqa2uH9LODyORJogSBl4D5wCoiPz1PhuP9jUUin3Uq2k0Xyeipr69n0aJFWfEnmc9stJoz2Va0PYivbybSj4fTk6rPP+mx3CTR1YqQ3t7ebLugGIOcd955FBQUjP6Nt94a+3kRePTRpHxKFYFAgO3btxMIBLLtSkyy5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d+Ibf/Hf8Att0QmPgZTXx/3JEjgo4/YvmxZTta8VPqiyCy5HDe9a9N1zUsBBQUFiY+djNKm6fjaHAfBYFCz9RVGPwkSKChg+3nnERjwJR+4DlgJ7AJ+Dpwyaq9Gh9frTXMLY4elS5fG9XnovS4ki571paMmjAV0NRFSU1NDXV0dd999Nx999FG23VGMEWbMmEFJScno33jZZTDUrONjj4EOCpXb7ebFF1/U7bLCbPmXiXbT1Uaq7CZrR++5pYhNrsdN7/pyuealqx1V8xTJkOtx07u+bPo3Ytt1dZEtbvfvh9//Hj7zmcjzs2fH38b99/Piu+/ivvLKyL2/y5V+vzNoR+/5pYhNLsdN79p0XfNSQElJSeJjJxmw6fV6NVu3D3FNCFgIxKrW7pISXpwxA3cMXyYC/wPsB54Gvpq0t8ditVqpq6vj/PPPT7HlsYvX643rx+7pyH09TUjpue6loyaMCTJ6IskIRA80jz5qa2vljjvukJUrV4rf78+2ewqdET1gx2QySVlZmbS1tUkwGBSr1SrhgQMS7Xa7+Hw+ERFxu93S398vIiKBQECsVqvIQw+JgNgqK8VfUCAC4iopEddZZ4m0torf7xebzaa1abVaJRAIiIhIf3+/uN1uERHx+Xxit9tFRCQcDovVapVgMCgiIk6nUzswyuv1isPhEBGRUCgkVqtVQqGQiIg4HA7xer0iIuLxeMTpdIqIjF7TADabTes3LpdLO5xJaVKalCalSWlSmpQmpUlpUppySpPTKe41a0TC4fg0HTwo3tJScZSXRw7aNRrFWlMjoR/+UGTXLn1oysU4KU1Kk9KUcU3t7e1iMpkEkKKiIikvLxdAjEajmM1mMRqNAkh5ebkUFRUJIDt27JD29nYBJC8vT8xmsxgMBgGkoqJCCgsLBZDi4mIpLS0VQPLz88VsNmuHJdtsNtm1a5d2KHP0QOaCggKprKzUDlSOarJYLFJaWirFxcVyLcjywkKxV1SIgIQNBrGazfJ8Xp4AMr6sTH5gMslHIN6iomNrudksIaNRBMRRXi7eoiIREI/JJM6yMhGQYF6evG82y48MBjGPUtPgOPX19Ul9fb2miYHDn81ms+Tn5wugaQKksLBQKioqBBCDwSBms1nyBjSVlZXFjNObb74pra2tWk5kMvdaW1uT0tTe3p7S/tTW1jZinACprKyUhoYGTc9o+pPFYhlVnLZu3ZqwJovFElfuRTUVFBTI6tWrZeXKlSf0p1hxam9vl+3bt48q93bs2DFknLZu3arViOg4bKwa0dbWNmzuqcPSBzF9+nRKSkoQEUSEPXv28Mc//pGrr76aU045hRtuuIGnnnqKo0ePZttVhY6oq6tj5syZcOAAfb/5Dc3Nzfg8HgBaWlpob28HYO3atSxbtgyA7u5umpub4TvfgZIS5s2ZQ+fEiXD55az87W9Z+cADcMEFdHZ2Mm/ePK2t5uZmuru7AVi2bBlr164FoL29nZaWFgB8Ph/Nzc309fUBsGTJEtavXw/Apk2bWLhwIQAOh4Pm5mYcDgcACxcuZNOmTQCsX7+eJUuWANDX1xfR5PPFp2mAefPm0dnZCcDKlStZuXIlgNKkNClNSpPSpDQpTUqT0qQ05Zaml19mrccDBkN8mv70JzZ97nMsnDUroqmigubvfQ/HwoWwa5c+NOVinJQmpUlpyrimtWvXUldXB8DkyZOZNVD3KioqaGpqoqKiAoBZs2YxefJkzV7UdnV1NU1NTRQVFQHQ2NjIpEmTAJgyZQrTpk0DIju8NDU1HaOpp6cHgKlTpzJ16lQAJk6cyJw5c7QDtQdrmjZtGlOmTOEl4JeTJvFfjY2RlRxFRTQ3NbGwuhqAq2fOpL2ujs8Dt06ezMOzZuFloJY3NeEY0LRw1iw2DWhaX1fHkpkzI3GqruaVpibuKyqiB/h5YyPT4tQ0OE533303ixcv1jRFaWpqoqam5hhNAJMmTaKxsRGAoqIimpqaqB7QNHPmzJhxuu6663juuef41Kc+RUNDA08++WTGcu+ll15KStPatWtT2p+WL18eV+7NmTOHzZs309jYmFB/Gk2cVq1albAmr9cbd3+aM2cOEydO5IorruCPf/zjCf0pVpzWrVvHli1bRqWpo6NjyDitWrVKqxHaOCwn1ojly5fHlXtZI6PTLnHg8/nk1VdflTlz5khNTY0YDAbtEV0pUlBQIF/96lfld7/7nezYsSPbLiuyRHQWce7cuXLGGWdIm8Egwbw8sZrNEn79dRGJcxb8pz8V249/LP7WVhHR169KrFarzJ07V/bs2aOrX5VENUX927dvX9yaRJL/tUK03Z6enrTFad++fTJ37lw5cuRISjX19fXJ3LlzNV2JxunAgQMyd+5cOXjwYEK5t2fPHs2PsfSLplz8ldZoNPX29srcuXOlt7c3ZzQNjlN3d7fMnTtXDh8+rEtNgz//TObeoUOHtJqXzjilo+4N/h5LJk779+/XalYiuXfkyBFNW7ripLf+lAuaojlptVpzRtPgOEVrStSO3jRFa7LVas147qW17rlcIp/6lPSeempE38Cvh61ms4QmTBAJBhPWFK1VfX19ScUpWjsPHDgQnyZV93JGUy7XvWhed3d361JT1L/e3t64NYmkJvcG/22WrhUhZrNZ5s6dK2eeeWbKVoScdtppMnfuXO1X6KNZEQJIfX29pqm1tVXmzp0rp5122gm/YC80GKTBbJb8YVZPfHJA31tnnx3XihCr2Sxhg0EExF5RIb7CQtkM8oPiYjk1jhUhR44ckaqqqhF/lZ/sipDj4zRr1qycWhFyfL9L1YqQgoICMZlMcuTIkayuCIlV93p6eqS+vj7uFVaDNQ3Xn46P00grQsaNG6eNp55MK0IMIiKpmVJJD5s2bWLZsmW89NJLfPjhh9rzBoNB+/9Pf/rTXHvttVx77bVcdtllGI26WuiiSBNbt27lggsuoLa2lu7ubjYHg2gnfsycCc8+m033UkIwGKS7u5uamhry8/Oz7c4JZMu/TLSbrjZSZTdZO3rPLUVscj1ueteXyzUvXe2omqdIhlyPm971ZdO/tLb92mtw9dUE8/Pprqmhprub/GAw8tp//zf88pcJm9ZLzUulL4rMkstx07u2XK15XV1dTJgwgfz8fGpqauju7iYYrXlDYLFYAJgwYcKw1w1l02KxUFtbq7U9FCaTCavVislkorOzk6uuuiou/0by5Z5gkJ+N2sLH9APPAAuADwaei2qKMpK2dDH4M0s3yWo8/jOLxWhyPxF/hvNh8Dkm48ePx2QyjbqNkTTG0tfQ0MDixYvjbiNRRurHsfrvcHri/WxG+kyiY7lR2tra+OxQ5zenAd1PhAymp6eHZcuWsWzZMt58803tAJzBkyJVVVVcc801TJs2jauvvpry8vJsuatIMyd0Hvh4IiQ/H/buhdNPz4ZrCoVCoVAoFAqFQo+8+y78x3/AwHYWGgUFsG8fnHbayDZE4MABOOOM9PioUCgUKSLRwWMYeSJkuPfX1tbi9Xqpqqoa9vDqeCdNRsNG4OKUWIrYWgD8uq2NTw4arM3WRAjEN8GQCpLVuHr1ampra7VJhmz4E+uzcrvdNDY2snTpUi03TSYT06dP59///d9HNSg/2ljE0ydSRSL9+GSYCBlTSyfOOOMMbr/9dl5++WUOHz7MCy+8QGNjI6eeeqp2rsjRo0dZuHAhDQ0NVFdXM3XqVB5++GH27t2bbfcVaaKhoYHS0tJjnwwGYWCPzLGMy+Vi0aJFuFyubLsSk2z5l4l209VGquwma0fvuaWITa7HTe/6crnmpasdVfMUyZDrcdO7vmz6l9a2v/xleP11XB99xKJf/xrXwF7aXHddfJMgABs3wllnwbXXwquvQiiUUr9TYUfv+aWITS7HTe/acrbmDVBaWhp77CSNNqODy/Hg8XiS8i/qy5dKS4ecBNkFhEZp9xLgUeCsujr4wQ9g4MyF4TjttNN45ZVXRtlS7nHFFVcwYcIEqqqqtDNhjicb/a6xsZHFixcfMxnh9XpZvHixdo5GqjheX29vb0YmQeIhHTUhFl6vl66uLu0RPfMlW4ypiZDBlJSUMH36dB577DF6enpYt24dv/zlL7ngggu0SRG/388bb7zBnXfeyYQJE7jwwgv5t3/7N957771su69IITabjXA4fOILTz4Z+bXWGMZoNGI2m3W73Vu2/MtEu+lqI1V2k7Wj99xSxCbX46Z3fblc89LVjqp5imTI9bjpXV82/cvIvd6nP435ssswfvQRPPUU/GwUG6nMnw/hMCxbBt/4BkycCP/93xj7+nRR81JlQ5F5cjlueteW6zUvHA4PPXaSRpstLS1ceumlI9oyGo1J+Rf1xRQOa9tZHc/XgVpgLrB/lPaN/f0wbx5cdBHU1VH27LMUD3Ht+vXrtQOwFcNPMmS633m9XpYuXTrk6xs2bEhpe4noi6e/pIJ01ITBuN1uGhoaqKqqYsKECdrjS1/6Ulrai5cxtTVWvHR1dWlbaK1du5ZAIAAcu4XW+PHj2b9/tKVPoSeG3BrrvPNg9my4+WaoqsqWewqFQqFQKBQKhSLXsNkiW2J5PCe+9o//CCtWZNwlhUKhGIpsbo0Vjw/p2BoLIltj3Q58GygFXgemDno9D/gGMBv4RxL7lbgN+AuRrbPaBz2f7Oc3EmNla6zjSfZ8k1RsjZVqTaONxUjt19fXj3p7ruF8g+xtjRXvWShqa6wUUFtby7/8y7+wcuVKDh8+zOLFi5k1axZVVVXaapHogTiKsc9FF11EYWEhfP3rsGYNtLfDnXfmxCSI3+9n8+bN+P3+bLsSk2z5l4l209VGquwma0fvuaWITa7HTe/6crnmpasdVfMUyZDrcdO7vmz6p+t7vSefjD0JAvi/+11d1LxU2VBknlyOm9615WrNi57PUFhY+PHYSYpIhc3oNkGBQCApW8f78gFwG3AG8APgvuOuDwEvAdcAE4G7gdGOEpqBHwFbgbeAWUBRQt6fHAw+nDyK3utCsoxG37Zt21i0aBElJSUpa3+4bbjSURMGtzvcyptskpMTIYMpLy/nW9/6Fk8++SSHDh1izZo1/OQnP+Gcc87JtmuKFHH55ZdHZpR/9zuYMgUGrfwZ63i9XtasWaObPQSPJ1v+ZaLddLWRKrvJ2tF7bilik+tx07u+XK556WpH1TxFMuR63PSuL5v+6fZeTySyNUosTj8d75VX6qLmpcqGIvPkctz0ri1Xa170nA6TyfTx2EkKbSdr8/zzz6ehoQG73Z6UraF8cQDzgDeGeW8X8GvgbCIrSBIZkv8K8BSRLbeqfvtb8js7E7By8qH3upAso9GXyr4JkfOUzz///GHbS3VNiKKns1COJye3xlKcHJywNVaGl1MpFAqFQqFQKBSKk4iDB+HKKyMr0I/n3/4NfvOb+OyI5NSPtxQKhb5xu93aAdHxkMmtsaJcdNFFbN68OaH2YnHppZcmdN7DTcCTKfJhNTAfeAEIpMgmjN2tsSA533N9a6x0bRM3GlK1NRbEXz/U1lhJ8vzzz3Prrbfy9a9/nVtuuYVFixZl2yVFmqmsrKSsrAyAUCiEzWYjOr/ncDi0JWgejweXywVAMBjEZrNpNux2u3aWjNvtxu12A5HlmXa7XbvOZrMRDAYBcLlceAaWxfv9fhwOBwAigs1mIxQKAdDf36/NhPp8PpxOJ3DiwUROpxOfzwdEZo37+/sREVwuF1arVZeaRAS73a5dF4+mVMRJRDh69Kh2XTri5HA48Hq9mq+p0hQIBDh48KB2XaJxcrvdeL1ezdd4NA3OPavVitvtRkTSFqfRakp3f8oFTV6vF6/Xi8fjyRlNg+MU1Rj1VW+aPB6PFoNM5p7f78fr9Wp9P11xSkfdExH6+/uxWq1JxSlqQ0QSyr1QKMTBgwe163K1RuSaJofDgd1uR0RyRtPgOHk8Hg4fPoyI6FKT0+nUfMp07mWi7nm9Xvr6+hCR+DWdcgq2v/0NWbsWvv1tHJ/4BP7CQjAa8dx8s2Y/EAgMH6dp02D2bAIbN8bUJCIcOXJE067qnqp7Y1lTNE7R9w/OUT1pEhEOHz6sXZfJ3It+LiKSljgZjUaeeeYZNm7cSHl5OXDiIc7l5eUUFRVp9qK28/LyMJvN2pm7FRUV2lY6xcXFjBs3DoPBQH5+PmazOWacvF6vtt1PQUEBlZWV2nVms5n8/Hy2bNnCuHHjKC6OHEFeWFhIRUUFEDnv12w2k5eXB0BZWZn2K/aioiLKy8sxGAwUFxdrmlpaWpg1a5Zmw2QyaeNGw2n6bnExrtLSSJzy87ENaJK8POyVlQQKCgBwl5TgHtAUKCjAPkiTzWwmmJ/PFUBLaSkdxcXcA5w7Sk1DxSmaU+muEVHbg+MEUFpamnCc4Nj+JCL09fUd8908lCaXy3VM7pUOxOn43KusrKRgIE5erzetmqK2R1P3hso9n8+nxWk4TSUlJSP2p3g1RftFVJPf7x+y7rndbq1GDNefXC6XllPDxSlbjImJkIMHD/LVr36Vr371q/zqV7+KeU04HOa6667TtsFauXIlTz31FLNmzeKKK67QkkmRe/z4xz+moaEBgL6+Ppqbm7WbkpaWFtoHfrG1du1ali1bBkB3dzfNzc2ajXnz5tE5sHRx5cqVrFy5EoDOzk7mDVr+3tzcTHd3NwDLli1j7dq1ALS3t9PS0gJEildzczN9fX0ALFmyhPXr1wOwadMmFi5cCES+mJqbm7UbloULF7Jp0yYA1q9fz5IlS7Db7dx///08+OCDutRkt9t54IEHePLJJ+PWlIo42e12HnroIV555ZW0xenJJ5/kvvvuY//+/SnVtGPHDubPn6/d0CYap9dff5377ruPDz74IKHce/DBB/nd736H3W5PW5xGqynd/SkXNK1bt4777ruPtWvX5oymwXFavHgx9913HxaLRZea1q5dy3333ce6desymnutra3cd999vPLKK2mNUzrqnt1u53//93958MEHk4rTCy+8wIMPPojdbk8o9/bv38/8+fPZv39/2uKkt/6UC5qefPJJHnjgAex2e85oGhyntWvX8oc//AG73a5LTYsXL6a5uRm73Z7x3MtE3Vu3bh1//OMftR/1xK3pwQfx/d3fwcKFtPzqV7TPnQs/+AFrOzp44YUXuO+++9ixY8fQcVq8mJUFBbBgAZ3f+Q7zfvc7+NOfwO3WNNntdh5++GFef/31UWlSdW/sa8rlume322lubtZWJehNk91u5w9/+IN2XaZz7//+7/+w2+1p/dv95Zdf5uabbwYiA7BNTU3a4OisWbOYPHmyZi9qu7q6mqamJm0AtLGxkUmTJgEwdepUfvSjH1FZWUlNTQ1NTU2YTCbGjx9/TJy2bt3K17/+dQAmTpzInDlzNE1NTU3U1NRQWVnJj370I6ZOjRxpPmnSJBobG4HIgHNTUxPV1dUAzJw5k7q6OgAmT57MrFmzqKys5Be/+IWmqaSkhL//+7/n5ZdfxmKxMG/ePGbOnDmspkrg4JQpLJs2LRKnmhqam5oAcN50E/P+9V/pbGqCqipWTp3KygFfOydOZN4gTc1NTXTX1ETiNG0a7VOmcBeweNIkftnYyHVASRyahopTR0cHkP6699JLL50QJ4Bp06YxZcqUIeP04osvDqtpcH+y2+388Y9/ZN26dSNqWr58uZZ7U6ZMYdpAnKK5F2XOnDlMnDgRgI0bN6ZE01BxWrVq1QmaYOi6Z7fbh+xPW7Zs0eI0nKapU6dq/WSo/hSPpk996lPcddddNDQ0aJo6OjqGrHurVq3SakRdXd2Q/Wn58uXs2bNnxDhlDRkDzJs3TwwGgxiNRlmyZEnMa+69914xGAwxH0ajUerr6zPstSLdtLW1CSBnn322VFRUSFtbmwSDQbFarRIOh0VExG63i8/nExERt9st/f39IiISCATEarVqtmw2m/j9fhERcblc4nK5RETE7/eLzWbTrrNarRIIBEREpL+/X9xut4iI+Hw+sdvtIiISDofFarVKMBgUERGn0ykej0dERLxerzgcDhERCYVCYrVaJRQKiYiIw+EQr9crIiIej0ecTqcEg0Hp7u6Ww4cP61JTMBiUPXv2aO3Go0lEko5TMBiU3bt3a59lOuJktVrlwIED4vf7U6rJ6/XKzp07tXYTjZPT6ZQDBw6I2+1OKPcOHz4s+/fvl2AwmLY4jVZTuvtTLmhyuVxy4MABLQdyQdPgONlsNjlw4ID4fD5daurv75cDBw6Iy+XKaO55PB45cOCAlgPpilM66l4wGJR9+/bJ4cOHk4qT3W4Xi8UiwWAwodzz+/2yc+dOrd1crRG5pslqtcqePXskGAzmjKbBcerv75fOzk4JBoO61GSz2aSrq0uCwWDGcy8Tdc/lcklHR4cEg8GUabLb7XLgwAGtpsaM0w9/KK6SEhEQf0GB2CorRUCkqkqsHR0SCAS0e91ou6ruqbo3ljVF4xQMBqWrq0trV2+agsGgdHZ2HvN3W6Zy78iRI7J3714JBoNp/dt9/fr1UllZKYAYjUYxm81iNBoFkPLycikqKhJAduzYIe3t7QJIXl6emM1mMRgMAkhFRYUUFhYKIKWlpVJbWyt5eXmSn58vZrNZG3s7Pk7f/va3BZCCggLNB0DMZrPk5+dLXl6e1NbWSmlpqQBSWFgoFRUVAojBYBCz2Sx5eXkCSFlZmZhMJgGkqKhIysvLJS8vT04//XQZN26cGI1GsVgsx8Rpx44dUlZWNqKm4uJi+XppqSwB8eTni9VsFgHpfu21jzW53bLnd7+TN2PVchCr2SyB/HwRkP7SUnEXF4uA+AoLxV5RIQKy32CQ35jNUjug6Stf+coJmoaK044dO1KWe1FNHo9Htm3bJtu2bdM+u9bW1hPiFI17cXFxzDi1trZKR0fHkHGyWCzH9KdgMCgdHR1azg+nqa2t7Zg4RXMlmntRXysrK6WgoEAA2bZt2zH9KRFNw+Xe1q1bh60Rx9e9jo6OIXNv+/bt0t/fLxaLZVhNJSUlUlJSMmx/ikdTQUGBjB8/XioqKjRNO3bsGLLubd26VasRJpNpyP7U1tYmO3fuHDFO0UdbW5tkkjFxRsisWbN45plnKCoq4siRI9oSoCh+v5/TTz9dW9511VVXMW3aNPbt28dDDz2E1+vFYDCwYcMGLrnkkiwoUKQDdUaIQqFQKBQKhUKhGDP098MZZ8DAthPH8JWvwFtvZd4nhUJx0pCuPf7h40PZW1paThizg9GfU5IsqTgb4nSgEZgEfHkIexcAtwE3A5WxjIxAGFgOfO6hh7jrrbd4YdmyEQ+ZTuUZIdG4LF269Jh2TSYTF1544ajPWRkpd9QZIdk/I2S483PUGSE6YevWrQBccMEFMQvq8uXLtb2nr732Wl577TXuuOMO7rvvPp544gntuqeeeiozDisyyq233qrtTZdr9Pf386c//emYfQz1RLb8y0S76WojVXaTtaP33FLEJtfjpnd9uVzz0tWOqnmKZMj1uOldXzb9G6v3eiPafOaZ2JMgALNnp9Q3veeXIja5HDe9azsZat6KFStSOnZSVlbG73//e9rb27FarSxatCjmmB1EzjVYtGgR27ZtG9JWMmM7yb4/FgeAu4FZA//2er10dXVpD4A24EfAGUQmTfaPsg0j8A3g7H/5F55etw7Hz37G3nffZfXq1amQMCLRyanjJ1+8Xm9Ch82PFr3XhWTRm75t27ZpZ2mno8+MBcbEREh3dzcGg4Fzzz035uvRvVMBfv7znx/z2re+9S3OOOMMAG3/SkVu0dXVpR0Ylmvk5+dTW1urHXakN7LlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i91xvR5rPPxn7+lFPg+utT6pve80sRm1yOm961nQw1b/z48SkdOwkGg9TW1jJhwgTtsOWRGOq6YDCY1NhOsu8fiYaGBqqqqpgwYQITJkzgiiuuOOZ1N/AkkJdMI93dFPz2t5z193/P3919N1eT3kFbr9fL0qVL09jCyOi9LiSL3vQN7n/p7jN6ZUxsjVVUVEQwGOT222/nj3/84wmvX3jhhbS2tlJdXc3BgwdPeH369OksW7aMT3ziE9qBUYqxj9oaS6FQKBQKhUKhUIwZfD548UWYPx/WrPn4+X/9V7jvvvhsrFgB770H3/teZJsthUKhiJN0bG2Tyq2BUkm6t0SKxfXAkhTb7AIeBVqA3oHnUrU1Vjo+k5N1ayyv10tvbyRC48ePH3LCL9tbYyUTn3j9iq5mOn6ycCjU1lgxMBgMADFnqex2O1u3bsVgMPD3f//3Md9/2mmnAWgn3Styi7q6OoqKirLtRlrw+XysX78en8+XbVdiki3/MtFuutpIld1k7eg9txSxyfW46V1fLte8dLWjap4iGXI9bnrXl03/xuq93og2i4qgvh5Wr4b2dmhqgnHj4Lbb4rdz//3wH/8BZ58N110HK1dCODx6XxS6JJfjpndtJ0PNa29vT+nYSVFREe3t7Snxu6ioKKmxnWTfnwoahnjeBVwBPD7w/6Ohlsj2XHuBZ4GrIGbNH6vovS6MhNvtPmG1UFVVFQ0NDbjdbl3rS1efueKKK+KeBMkGY2IixGw2A5Etso7nrbfeIjxQBC677LKY749OoOTlJbVITaFTLrroIgoLC7PtRlrw+/1s3rwZv9+fbVdiki3/MtFuutpIld1k7eg9txSxyfW46V1fLte8dLWjap4iGXI9bnrXl03/xuq93qhsnn8+/P73cOAATJwYn52dO+GNNyL/HwrBCy/AP/4jnHNOZKVIor4odEMux03v2k6GmtfR0ZHSsZPCwkI6OjpS4ndhYWFSYzvJvj8VfBuoBzxf+tIxzz8NrAG+R+QskR8CraO0XQDMBF4HzrzySvif/4Ec2PFG73VhJGKdseL1elm8eDGNjY261qeHPpMNxsTWWFOmTOHtt9+msrKSAwcOHLPE6JZbbuHJJ5/EYDCwfv16vvjFL57w/muuuYYVK1Zw5plnsm/fvky6rkgjamsshUKhUCgUCoVCcdLws5/B//5v7Nc2boSLL86sPwqFYkzh9Xqpqqo64WDswZhMJqxWK729vVndGuvSSy9N6rDubGyNNbjt/M5OFl91FbcC/wh8EOO6LwErr7uOsldeiWydOEqkoIDwjBnk/eAHMGUKDOymEy9qa6z0Eu1Lg8ewT4atsUaL2horBl/72teAyNZWd911l/b8u+++y+LFizEYDJx22mlccsklMd+/efNmDAYDE4/7pY0iNzCbzRiNYyKVR004HMZms2mrnvRGtvzLRLvpaiNVdpO1o/fcUsQm1+Omd325XPPS1Y6qeYpkyPW46V1fNv0bq/d6aa15Hg888UTsN3zxiydMgug9vxSxyeW46V3byVDzvF4v06dPH/a66dOnYzKZhj3nIEpxcTHFxcUp8dtoNB4ztrNo0SK2bduW8PuPJx49qSQ4cSI/I7ICJNYkCMA64PD//i/09ERWCI5yzNIQCJD37LNwxRWEzzsvYuPo0SQ9zyx6rwvJ4PV66enpSYu+1atXY7FYtPM4EmGkPpOrjAm1jY2NFBcXA/DQQw9RW1vLxRdfzBVXXKEtL/r+97+vnSUymG3btmkH1kyePDlzTisyRlNTExUVFdl2Iy04HA6am5t1e75NtvzLRLvpaiNVdpO1o/fcUsQm1+Omd325XPPS1Y6qeYpkyPW46V1fNv0bq/d6aa15S5YMPcB1++1p80WRWXI5bnrXdrLUvN///vfU19efMClgMpmor6+npaVF+/dIkybXX3898+fPT4nfFRUVJ4ztjGbiItb7BxOPnksvvTTu9uIlrg2Rxo2LnBl1yy0Jt2PcuRN+8hM44wz4znfgnXdA/xsA6b4uJIvb7U6LvtraWu2RKCP1mZxFxggLFiwQg8EgRqNRexgMBjEYDPKZz3xGnE5nzPfNnTtXe9+SJUsy7LUinbS1tQkgp512mpSXl0tbW5sEg0GxWq0SDodFRMRut4vP5xMREbfbLf39/SIiEggExGq1arZsNpv4/X4REXG5XOJyuURExO/3i81m066zWq0SCARERKS/v1/cbreIiPh8PrHb7SIiEg6HxWq1SjAYFBERp9MpHo9HRES8Xq84HA4REQmFQmK1WiUUComIiMPhEK/XKyIiHo9HnE6nhEIhOXz4sBw5ckSXmkKhkPT29mr24tEkIknHKRQKSU9Pj2YvHXGy2WyanVRq8vl8smfPHs1eonHq7+8Xq9UqHo8nodw7cuSIHDlyREKhUNriNFpN6e5PuaDJ7XaL1WoVl8uVM5oGx8lut4vVahW/369LTS6XS6xWq7jd7ozmntfrFavVqvmQrjilo+6FQiHp6+uTI0eOJBUnh8MhBw4ckFAolFDuBQIB2bNnzzH2crFG5Jomm80mvb29EgqFckbT4Di5XC7p7u6WUCikS012u137/DOde5moe263W/bt2yehUChlmhwOh1itVvH5fEnFKRQKyf79+4+5f7Tv2SPyf/8n4XPPFavZLMG8PBEQ5/jx4jl8WETiqHv9/SILFointzfn+lOu1IhcrnvRvx2j9vSmKRQKSXd3t2Yvk7l39OhROXTokIRCoYz97e5yuaS1tVU6OzvFYrHIoUOHTtDkcrmkvr5eTjvtNDEYDAJIRUWFlJeXS319vRw6dEj2798voVAo7jjt2rVLKisrBRBAzGaz5Ofni9FolNNPP11KSkoEkJ07d2pjPgaDQcxms+Tl5QkgZWVlYjKZBJCioiIpLy8Xo9EoVVVVUlVVJUajUSwWywlxOnjwoNTX10tJSYmYzWZNU3V1tTQ0NMjWrVuluLhYSktLBZD8/Hwxm82ar5WVlVJQUCCAlJSUaL4WFBQco6m1tVU6OjoEkNLSUikuLhZACgsLpaKi4hhNHR0dkTjZbOKZOFEExFtUJI7ychGQkNEoVrNZQkajCIijvFy8RUUiIB6TSZxlZSIgwbw8sZrNEjYYREDsFRXi+/znRR58UNwHDsTMPYvFEremaJxG0jRYe6w4WSyWY/pTKBSSffv2abk8XH9qa2uTwsJCAeKO07Zt247pT62traPWNFLuAWI0GsVsNovRaBRAysvLpaioSDo7O4+pex0dHcfkXkVFhaZp+/bt0t/fLxaLZcTc27Zt27D9aShNFotFdu/erV1nNpulvLxc07Rjxw5xOBzi8Xiks7NTWltbtc9v69atUlRUJICYTCYpKysTQPLy8obUNFycoo+2tjbJJGNiRQjAbbfdxvPPP8+FF16IiCAimEwmGhoaWLt2LWVlZSe8JxAI8MgjjwCQn5/PVVddlWm3FRng/PPP5/rrrwegr6+P5uZmfAP7K7a0tNDe3g7A2rVrWbZsGQDd3d00NzdrNubNm0dnZycAK1euZOXKlQB0dnYyb9487brm5ma6u7sBWLZsGWvXrgWgvb1d++WEz+ejubmZvoGDq5YsWcL69esB2LRpEwsXLgROnPleuHAhmzZtAmD9+vUsWbIEo9FIIBDgoYce0qUmo9GIxWLhmWeeiVtTKuJkNBrZsGEDq1atSlucnnnmGcxmM/39/SnV1NPTwxNPPKEtP0w0Tm+//TZms5nt27cnlHsPPfQQRqMRo9GYtjiNVlO6+1MuaNqyZQtms5n33nsvZzQNjtPzzz+P2WzmyJEjutT03nvvYTab2bJlS0Zzz2KxYDabWbVqVVrjlI66ZzQa6e/v56GHHkoqTq+88gqbN2/GaDQmlHv9/f088cQT9Pf3py1OeutPuaDpmWeewWKxYDQac0bT4Di99957vP766xiNRl1qev7559m2bRtGozHjuZeJurdlyxZefvlljEZjyjS98sormM1menp6koqT0Wjkrbfe4u233/5Y0/PPw49/jG/zZpqbmuj79rehoIAljY2sb40cuzti3Vu0CG6/nfU33cSSu++G996j79Ah3eWeqnu5WfeMRiPbtm3j+eef16Umo9HI66+/znvvvRe3JkhN7i1YsIAjR45gNBoz9re73+/nueeeY9y4cdTW1vLcc8+doKmkpIQHHniAOXPmsH37diwWC//2b//GG2+8waJFi/jggw946623MBqNccepp6eHOXPmaNc1NTVRU1NDOBxmypQpfPWrXwVgz549LF++HICioiKampqorq4GYObMmdTV1QGRnV9mzZpFOBxGRLjzzju1X7gfH6dXX32VRYsW0d7eTlNTk6bpl7/8Jb/4xS8oKSlhypQpTJs2DYCamhqampo0X+fMmaNtuT916lSmTp0KwMSJE4/R9Nxzz2mf/7Rp05gyZQoAkyZNorGx8RhNdrs9EqfHHmP9WWcBsGnyZBbOmgWAo6KC5qYmnqmoIAAsnDWLTQO73ayvq2PJzJkA9FVX09zUhK+oCICWxkbajUb40Y9Y+/3vs+w3v4ENG+jet++YOMWrKRqnkTQ999xzmqZYcYJj+5PRaOTll19my5YtWpyG6k/Lly9n0qRJAHHHaePGjcf0p5deemnUmkbKPThxdcWsWbOYPHnyCXXPbrfT1NRE0UCcGhsbNU1btmzRasRIubdx40Zg6P40nKZAIEBTUxOnnHIKNpuN66+/XtPU3t7Of//3f1NVVcXFF1/Mc889x6c+9SkaGhpYuXKlttNSXV0dMwdyr7q6ekhNw8Upa2R02iVF9Pf3S09Pjza7PBROp1PWrFkja9askQ0bNmTIO0WmiP46YM6cOXLaaafl5IoQh8Mhf/zjH2Xfvn261ORwOOQPf/iD9PT0xK1JJPlf/0TbPXjwYNri1NPTI/PmzdN+IZ0qTUePHpWHH35Yy4NE43Tw4EGZN2+eHD58OKHc27dvn/zxj38Uh8ORk7+my1VNfX19Mm/ePDl06FDOaBocpwMHDsi8efPEarXqUtOhQ4dk3rx50tfXl9HcO3LkiMybN08OHjyY1jilo+4N/h5LJk69vb3yhz/8QRwOR0K5Z7PZ5OGHH9bs52qNyDVNPT09WtxzRdPgOB06dEi7J9CjpgMHDmiff6ZzLxN1r6+vT/v8U6Wpt7dX5s2bJ0ePHk0qTsff6w6pqbdXnLt2xV/3vvnNE39FPHmyWB95RFe5p+pebta9aF4fOHBAl5ocDoc8/PDDcujQobg1iaQm97q7u7W/zcbS3+4HDx7U8jXZFSHl5eXygx/8QKqrqxNaEVJeXi6zZ8+WM888c8gVISNpslgs2VsR0tMjnj/8QeTCC49ZEeIyGqV2YKXBaSB3lZfL9nhXhBQWioC4i4ulv7RUBCQwebJYH35YxOHQxYqQaL/r6+sbMU5jcUXI1q1bj6l7eloRUllZKbNnz5bTTjtN03TZZZcNqemrX/1qTqwIGZMTIQqFyMcTIXV1dVJUVJTxzpMJvF6vrFu3Tvvy1hvZ8i8T7aarjVTZTdaO3nNLEZtcj5ve9eVyzUtXO6rmKZIh1+Omd33Z9G+s3uvppebFtNHVJTIwQHbC4zvfScpfRerQe11IBr1rUzUvMzY9Ho826Dr4UVRUpI3tmEwm8Xg8YrFYTrhuqMfg9wNisVhGrWc07Q33sFgscds6wc9wWGTdOnHMnClukCdjvMcA8o8gz4MEYtX0eB6lpeK48UaZnAK9o9F+vN7R5FAi8Tm+vVTFON7Hjh07jtEXz2cTj4+juXao+BzfZ7L1yPRYrkFkDJyeo1DEYOvWrVxwwQXav9va2vjsZz+bRY8UCoVCoVAoFAqFQof8+tdw992xX/vb3+CyyzLrj0KhOGlpaGhg8eLFQ75eX1/PokWL8Hq9VFVV4fV6R92GxWIZ9UHSXV1dTJgwYdRtxWobiMvWUH52dXUxecIEyoDuYd5/BvBd4PvAWQn4CvA+sAB4BnAnaAMiB9JbrVZ6e3uH1J5IXKIkEp/j20tVjNPRfvTaeHwczbXHvw/iy81Mkemx3DFzRohCMRSXX345JpMp226kBa/Xy5o1axL64s8E2fIvE+2mq41U2U3Wjt5zSxGbXI+b3vXlcs1LVzuq5imSIdfjpnd92fRvrN7r6aXmnWAjEIDHH4994QUXwJe/nHA7itSi97qQDHrXpmpe5my2tLRQX19/zDiOyWTiqquu4sYbb9TOOzGZTEyfPj0umyaTKefGhmwMPwkC0AP8F3AJIPn5CbXzReCxAVsPA59LyApMnz591J+/3utCsvj9ft3qy8U+Ew9qIkQx5qmtrSU/wYKvd4LBIF1dXQSDwWy7EpNs+ZeJdtPVRqrsJmtH77mliE2ux03v+nK55qWrHVXzFMmQ63HTu75s+jdW7/X0UvNOsOHzwfe/D6effuKFt98OBkN8RrdtAx0O5uQSeq8LyaB3barmZc5mSUkJixYtwmq1YrFYsFgsfPjhh9x444088sgjlJSUaNfGmjSJRX5+fk6PDY3ETYAhydhWAj8EPgLeAW4G4hkiN5lM1NfXaxNYoyGeHPJ6vXR1ddHV1TVq+9kmFArptu6drH1mzG2N5fF4eOWVV3jvvfewWCw4HA4CgUBc7zUYDLzxxhtp9lCRKdTWWAqFQqFQKBQKhUIRJ4EAvPwyzJ8PK1dCSQn09EBl5cjvDYfh3HPBZoNbbolMoJx7btpdVigUCogMhvf29gKR7YWuuOKKYa/Pha2xRuPLDiBmRT7lFPjCFyI1PwGswJ+JbJ21fdDzq1ev1vweP378MRNV8Wz/FA9ut5vGxkaWLl2a8IoKtTXWie+Dk3trrDEz7SMi/O53v+Puu++mv78/ofcb4v2li2JMMX78ePr6+rLtRloIhUL09fVRXV1NXl5ett05gWz5l4l209VGquwma0fvuaWITa7HTe/6crnmpasdVfMUyZDrcdO7vmz6N1bv9fRS84a0UVAA//RPkUdnJ2zaFN8kCMCbb0beA/B//xd5XHFFZELkn/4JCgsT8lNxLHqvC8mgd22q5mXX5ki2TCbTsAPoeXl5VFdX09fXRygUSsqXsUYh8CfgN2eeSf7+/ce+eOed8Otf49u2jQc/9zluDoU4bRS2q4CmgcdbwHzgOSI7syR61sdghot7Y2PjsGfJjAVCoRC9vb26rHsna58ZM1tj3XTTTfzyl7/E6XQiIqN+KHKX2bNnU15enm030oLT6WTBggU4nc5suxKTbPmXiXbT1Uaq7CZrR++5pYhNrsdN7/pyuealqx1V8xTJkOtx07u+bPo3Vu/19FLz4rIxcSLMnBm/wfnzT3xu9Wq46SY4ejQxJxUnoPe6kAx616ZqXnZtJmurvLw8p8eGhsMP3AN0r10Lr74K114LRiPk5UFjIwAHiov511CIs4AbgET2yvkq8DSwH6i6+27YuTNp34eKu9frZenSpUnbzzYej0e3de9k7TNjYmusp59+mptuugmDwYCI8JnPfIYbbriBCy64gHHjxo1qP7MpU6ak0VNFJolujWUymfD5fLS2tubc1lgigs/no6ioSJcrmrLlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i919NLzUulLwAcOABnnw2x9jifOROefTY5+woNvdeFZNC7NlXzsmtzNLZibQdkMBgoKirC5/MhIifd1lgn2Nq3D/72N7jxxiHtnQPcBtwKnDKqlgZx5ZWRlYEzZmgrA0ezNdZQcU9lLLK5Ndbu3bs5/fTTNX162hrr+D6TLdTWWDF47LHHtP//8Y9/zO9+9zuMxjGzmEWRZhLdK3AsYDAYRjwULJtky79MtJuuNlJlN1k7es8tRWxyPW5615fLNS9d7aiap0iGXI+b3vVl07+xeq+nl5qXSl8AaGmJPQkCMHt2atpQAPqvC8mgd22q5mXXZrK2RCSnx4ZGzVlnaZMgQ7EL+Dnwa+BV4MpE2nnzzcjj1FMjq0++//3IapQRGHzmy/jx43U5OZoK9Fz3TtY+MyZmEz766CMMBgMTJkzg/vvvV5MgimNoamqioqIi226kBYfDwQMPPIDD4ci2KzHJln+ZaDddbaTKbrJ29J5bitjketz0ri+Xa1662lE1T5EMuR43vevLpn9j9V5PLzUvlb4AIAKx/t769Kcj54TEg88HJ9Ee5Imi97qQDHrXpmpedm0ma6uioiKnx4bixev10tXVpT3iGeguBP4u2YYPHYJ774VPf5rTbrmFGcT+5b3b7aahoYGqqiomTJjAhRdeyK9+9StuuukmrFbrMb7nAi6XS7d172TtM2NiRiHacb/yla/k7CyhInHWrFmTs7OYJpOJyy+/XLczyNnyLxPtpquNVNlN1o7ec0sRm1yPm9715XLNS1c7quYpkiHX46Z3fdn0b6ze6+ml5qXSFwB+/Wvo6YHHHoMvfvHj52+7La5f/gLw6KPwqU/Bb38b2WpLERO914Vk0Ls2VfOyazNZW16vN6fHhuJh8ARD9FFVVUVDQwNut3vI980CyoZ4bcdonRCh+K23eAHYA/wncNagl6MHoEfj5PV6Wb16Nc8++yzjxo3T/L4i3kn2ERjNhFA6KCws1G3dO1n7zJg4I2TSpEns2LGDW2+9lccffzzb7ih0QvSMkCiZ3ldOoVAoFAqFQqFQKE46PvwQHnkE/uu/oLp65OtF4HOfg61bI//Oy4Pp0yPban3ta/FPpigUCgXxnfNwMp4RMhyXXnopGzZsiPnaD4H/AI6v5r1EJjHOB24HvgMksnYgBCwH5g/8N5yAjWQxmUxMnz6df//3f8/ouOG2bds477zztH/r6YwQvZDpsdwxccdx6aWXIiJs27Yt264odMjVV19NcXFxtt1ICx6PhxUrVuDxeLLtSkyy5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d9YvdfTS81LpS8x+cIXYP78+CZBAN599+NJEIhskfX88zB1Ktx/f+r9G8PovS4kg961qZqXXZvJ2iouLs7psaFkGWoSBOAPQA1wI7Bm0PMtQBBoBe4AzgD+e8IEQl/4wqjazgO+CbwMWIB/G7AFmYub1+tl8eLFNDY2prWd4/nCF77AnXfeyZEjRzLabjycrH1mTEyE3HHHHQC8//77tLW1Zdkbhd4YN24c5eXlAIRCIWw2G9GFTg6HA7/fD0S+WF0uFwDBYBCbzabZsNvtBAIBILJnYXTZYCAQwG63a9fZbDaCAwcFulwu7Uva7/dre/6JCDabjdDAHrj9/f3aUjOfz4fT6QQgHA5js9kIhyPz4U6nE5/PB0SKdH9/P+FwGKvVitVq1aWmcDjMkSNHtOvi0ZSKOIXDYQ4fPqzZS0ecHA6HZieVmvx+P319fZq9ROPkcrmw2Wx4vd6Eci+aV+FwOG1xGq2mdPenXNDk8Xiw2Wy43e6c0TQ4Tk6nE5vNRiAQ0KUmt9uNzWbD4/FkNPd8Ph82m03zIV1xSkfdC4fDHD16FKvVmlScnE4nR44cIRwOJ5R7wWCQvr6+Y+zlYo3INU0Oh0OLe65oGhwnt9vN4cOHCYfDutQ0uN9lOvcyUfc8Ho/2+adKU/R7zO/3JxWn6L3u4PvHMV33FiyIxKm0FM/AgIu/sBBHZSU0NKi6d5LUvejfjtHr9KYp2u+i9jKZezabjaNHjxIOh8fU3+4ul0uro8nGaTR1z+PxaFsNFRUVUV5ejtFoxGw2YzabtXOFE9FUXFxMaWkpAPn5+ZjNZs3XyspKCgoKACgpKaGkpASAgoICKisrtev6+/s1X0tLS7WB5sLCQu08BoPBgNlsHrI/RT+vqK6opvLycoqKioDIKoeyssimVnl5eZjNZu04gYqKCgoLC+PW5AdeKinhGyUlnAf8b0EBTw/SZDab8eXn8+0338T71lt43n0Xvv99/GYzjgFNYjBgM5sJ5eVFNJWV4R2Ik6+oCGd5OWcDc41GtpjNPGc0cqXRyCmnnKLFM5WaYsVp+/btx2jKz8+PK055A5rKyspOyL3h4mQ0Gjl8+DA//vGPgUjuDaXJ5/Np+T+SpmiuBIPBY3IvHk0iol1nNpspLy8flaZUxSlbjImJkIsvvpjZs2cTCoW48cYbdTmTpsgePT09XHPNNQD09fXR3Nysfdm1tLTQ3t4OwNq1a1m2bBkA3d3dNDc3azbmzZtHZ2cnACtXrmTlypUAdHZ2Mm/ePO265uZmuru7AVi2bBlr164FoL29nZaWFiBSvJqbm+nr6wNgyZIlrF+/HoBNmzaxcOFCIPJl29zcrH25L1y4kE2bNgGwfv16lixZQmlpKVdccQWPPvqoLjWVlpYyceJEXnjhhbg1pSJOpaWllJWV8c4776QtTi+88AINDQ2EQqGUarJarezevVv7Mkg0Ths3bqShoYE9e/YklHuPPvooX//61yktLU1bnEarKd39KRc07dy5k4aGBlpbW3NG0+A4vfrqq9oetnrU1NraSkNDAzt37sxo7vX29tLQ0MA777yT1jilo+6Vlpby5S9/mUcffTSpOL355pt84hOfoLS0NKHcC4VC7N69W/tjM1drRK5peuGFF5g4cSKlpaU5o2lwnFpbWwkGg5SWlupS06uvvsqZZ55JaWlpxnMvE3Vv586d9Pf3U1pamjJNb775Jg0NDVit1qTiVFpaSn5+Phs3bhyVJt3WvQH/lk2bxtopUyKaJk2i5Qc/gLPPVnXvJKl7paWlnHnmmbz66qu61FRaWkowGKS1tTVuTZCa3Pvzn//MF77wBUpLS8fU3+4bN24kPz+f0tLSpOM0mrq3du1a6urqAJg8eTKzZs3C5XKxYsUKbr/9dm3ANxFNU6ZMYdq0aQDU1NTQ1NSk+TpnzhwmTpwIwNSpU5k6dSoAEydOZM6cOdp1zz33nObrtGnTmDJQ9yZNmqStSCgqKqKpqUmbFDq+P61atQo48UDrWbNmMXnyZADq6uqYOXMmANXV1TQ1NWkD1Y2NjUyaNCkhTTuAxyZOZNogTU1NTdTU1AADuWe3wyOP0P7qq7QMDPL7iopobmqib2C14JKZM1k/EKdNkyezcNYsABwVFfyhqYkrKyp42eXii2Vl/OAzn+HUBDX9wz/8Q0JxGqxppDhVD2iaOXPmCbk3XJxcLhc9PT0UFBTg9Xqx2+1DatqyZYtWI0aKU7Sf9PT0jFpTIBCgqamJ0tJSFi1axDXXXDMqTSQYp+M1ZQ0ZI4RCIbntttvEYDDI+PHj5aGHHpKenp5su6XIIm1tbQLIueeeK5WVldLW1ibBYFCsVquEw2EREbHb7eLz+URExO12S39/v4iIBAIBsVqtmi2bzSZ+v19ERFwul7hcLhER8fv9YrPZtOusVqsEAgEREenv7xe32y0iIj6fT+x2u4iIhMNhsVqtEgwGRUTE6XSKx+MRERGv1ysOh0NEIjlttVolFAqJiIjD4RCv1ysiIh6PR5xOpwQCAeno6JC+vj5dagoEArJjxw45evRo3JpEJOk4BQIB2bZtm+ZfOuJ09OhRsVgs4vP5UqrJ4/FIa2ur5l+icXI4HGKxWMTlciWUe319fdLZ2SmBQCBtcRqtpnT3p1zQ1N/fLxaLRZxOZ85oGhwnq9UqFotFvF6vLjU5nU6xWCxaH4xHUyri5Ha7xWKxiN1uT2uc0lH3Bn+PJRMnm80m27dvl0AgkFDu+Xw+aW1t1fzL1RqRa5qOHj0qO3bskEAgkDOaBsfJ6XRKe3u7BAIBXWqyWq3a55/p3MtE3evv75etW7dKIBBImSabzSYWi0X7Tks0ToFAQNrb24+pYWO27j3/vASKi0VA+ktLxT3w/77CQrEvWTIqTarujU1N0ThF/3aM+qc3TdF+F/3MM5l7hw8fll27dkkgEBhTf7s7HA7teyzZOI2m7rW3t4vJZBJAioqKpLy8XPLz82XChAnyiU98QoxGo1gsllFrslgsUlxcLKWlpQJIfn6+mM1mAQSQyspKKSgoEEBKSkqkpKREACkoKJDKykrtutbWVuno6BBASktLpbi4WAApLCyUiooKAcRgMIjZbJaOjo5j4hTNva1btwogRqNRzGazGI1GAaS8vFyKiooEEJPJJGVlZQJIXl6emM1mMRgMAkhFRYUUFhYKkBJNZrNZSktLxePxnJh7d94pAhI2GMRqNkswL08ExFlWJh6TSQTEW1QkjvJyEZCQ0ShWs1lCRqME8vNl6/nnS39JifhBnjaZ5B/LysQQh6Zx48ZJfX29fPTRRwlrys/PjytOeXl5AkhZWdkJuTdcnPLz87UxS4vFIh0dHUNq2r59u/b3/khx2rZtm4iI7Nq1a1SaLBaL7N69W8xmsxQWFkptba1UVlaOSlOqci/6aGtrk0wyZiZCovz+978Xg8EgRqNRjEajVFVVSW1trUyYMGHEx6c+9alsu69IIdGJkLlz54rZbM5458kEVqtV5s6de8wNhZ7Iln+ZaDddbaTKbrJ29J5bitjketz0ri+Xa1662lE1T5EMuR43vevLpn9j9V5PLzUvlb6khL4+kfvvFznnHJHI0ekiZ50lMjCoOSL9/SJf/rLIQw+JDBpAzUV0FbcUo3dtquZl1+ZobFkslhMGU81mszY2BIjFYhm1D7HsJvKwWCxx2xrKz1T5kspHfX39iY66XCKVlR/X9kGP/hjPHf+wDsTNajYf8/xOkJ+BnBLDj9WrV2s/OtDrZxUrL0fKi2guxKNnNNcOlZvH95lUP6JxWr169bDXZXos1yAysCmezgkEAvzoRz+ipaWFYDDIYLej+5ANh4hgMBi0pcGKsc/WrVu54IILtH+3tbXx2c9+NoseKRQKhUKhUCgUCoUiJiKwejUsWACTJ8Ndd8X3vscfh+99L/L/JSXQ0ACzZ8Mll0AcYwEKhSK36OrqYsKECcNeY7FYqK2tTbndeLBYLABx2RrKz1T5kgpMJhPTp0+npaVFO29DY/16mDoVBs7TGczNwG7gduBbgCmBtn3Ac8AC4K2B547/zPTyWV166aXDHko/Ul5EdY0mv0erfTS5mSzx+pjpsdz8jLWUBKFQiOnTp/Paa68BcPzczRiZy1EoFAqFQqFQKBQKheLkxGCAK6+MPEbD/Pkf/7/bDS0tkcfUqTAwRqBQKBR6wGQyMX78eHp7e7PtSlKsXr1am2wYP368dpj2CdTVQU8PLFoUmeQeOLviKPAs4AXeAZqAW4hMinxmFH4UAd8eeGwjMiFitNlGKycjLFq0CK/Xy/nnn59tVxTDMCYOS3/kkUdYsWIFEJn0uOqqq3j88cd577332LVrFxaLJa7H7t27s6xEkQ7uuusuKisrs+1GWrDb7dx7773aAVp6I1v+ZaLddLWRKrvJ2tF7bilik+tx07u+XK556WpH1TxFMuR63PSuL5v+jdV7Pb3UvFT6knU++EAbWDuBz30us75kgJyJWwz0rk3VvOzaTNZWZWVlRsaGLr300mFfnz59+tCTBmOI2tpa7TGinrKyyKq999+HDz7AeeON/IHIJEiUo8DvgfOAy4FFgB+wV1Zy7113YY8jbucDDwA1dXVwyy3w7ruRlYY64vjPKlN5mQh69i2djIkVIX/+85+1/7///vv5yU9+kkVvFHrjxRdfxO12Z9uNtFBSUsKMGTNOXH6oE7LlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i919NLzUulL1lnwYKhX7vttsz5kSFyJm4x0Ls2VfOyazNZW263OyNjQy0tLfzmN79h6dKleL0fD/UP3j7qpOYLX+DIf/83//7MM0NesnbgUQ3c6nYz68UXKRlF3Iw+H/zlL5HH5z5H+cyZVACOZH0fgpG2vBqOTOVlIujZt3QyJs4IKS8vx+12M2nSJFpbW7PtjkInqDNCFAqFQqFQKBQKhSJH8XrhtNPAEWN468or4Y03Mu+TQqHIOtk8IyRq1+v1HrP91fHbR8V7doNezwhJ5POLMhrfJwIdCbVyLC4iq0zmA0OsIUyIbdu2YTKZ4o4lDH8GyEivqzNC0s+Y2BorykhL0BQnJ3r+VUmy6H2GNlv+ZaLddLWRKrvJ2tF7bilik+tx07u+XK556WpH1TxFMuR63PSuL5v+jdV7Pb3UvFT6klVMJtiyBf7f/4tMiAxm9uz47TzyCCxcGJlY0Tk5Ebch0Ls2VfOyazNZW5le0WMymUa3fZQiJt8rKeHFGTNwJxm3UuC7wPvAB8BtQFny7iUdVz2vhNOzb+lkTEyEnHnmmUDk0HSFQqFQKBQKhUKhUCgUJwG1tfDb38K+fbBkCVx1FYwfD9Onx/d+rxd+9Su46SaoqYGf/xx27UqrywqFQqEYGQPwT0O89iFwDbAUGO1I8BeIHKreA8wDLkrQP0VuMia2xvrBD37A/PnzufDCC9m0aVO23VHoBLU1lkKhUCgUCoVCoVCcZNjtEO/hrk8/DbNmnfj8174WWSnyqU+l1jeFQpF2vF4vVVVVx5zRMRiTyYTVah31r/lTueWW2horPt/NwM3A7cCkQc/fDjwy8P9nElnt8X2gJiGPYAORyZHFwGjWHI1mKym1NdaJbamtsRLk9ttvJy8vj48++oi333472+4odMZ5551HQUFBtt1IC4FAgO3btxMIBLLtSkyy5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d9YvdfTS81LpS+6JN5JEID582M///77cOqpqfEnheRy3PSuTdW87Nocja3oweSDKSgo0MaGpk+frraqGiO4CgpYed55XFRQwFeAp4A+4OlB1+wHfgPUAtcC7ssvB4NhVO1cCrQQWSXyEHDB8JenjMF5qTf07Fs6GRMTIRdeeCF33303IkJDQwPbt2/PtksKHZHLe9qpfVSz1646I0ShR3I9bnrXl8s1L13tqJqnSIZcj5ve9an98rNnU50RkiLa22GoH1LedBOUpWIH+dSSy3HTuzZV87Jrc7S2WlpaqK+v1yY8oucd3HDDDbS0tCTtjyIzDD6n4m/Ad4CzgP4Y14aAZcChJ56A3bsj50eZzaNqrxK4A2gF3iGyGiWdU2Z6PodDz76lkzGxNVaURx55hDvvvBOj0cjs2bO5/vrrueCCC6ioqMi2a4osoLbGUigUCoVCoVAoFApFTO68Ex58MPZrW7bA5z+fWX8UCkXK8Xq99Pb2AjB+/PikVoKorbE+JlNbYyXCMb5985vwyitJ2bMCfyGydda2GG2B2horEfS6NVZ+xlpKgry8vGP+LSI88MADPPDAA6OyYzAYCAaDKfRMoVAoFAqFQqFQKBQKhe74/vchFIK//AWczo+f/9KX4p8E2b8/Mmnyj/8Ix41LKBSK7GMymRIesFeMcfbtg+XLkzZTBdw58HibyITIEsCXtGWFHhkTW2Mdv2jFMGgvOBEZ1UORe8ydOxfzKJfDjRVsNhv/+Z//ic1my7YrMcmWf5loN11tpMpusnb0nluK2OR63PSuL5drXrraUTVPkQy5Hje968umf2P1Xk8vNS+VvoxpLrgAHn4Yenrg0Ufhkksiz8+eHb+N+fPhG9+AiRPh7rvhwIH0+DpALsdN79pUzcuuTXWvd3JiNpsTH9N7/HEIh2O+NBdYnYA/0XNK9gP/CxR0diZg5WOS0pdm9OxbOhkTW2MZjamZrzEYDIRCoZTYUmSf6NZYtbW1dHd3s3nz5pzbGisYDNLd3U1NTQ35+fpbwJUt/zLRbrraSJXdZO3oPbcUscn1uOldXy7XvHS1o2qeIhlyPW5615dN/8bqvZ5eal4qfck5PvgAJk2C4uKRrw0E4JOfPHbyIz8fpk+Hn/40srIkxeRy3PSuTdW87NrUw72e2hrrYzK1NVZ+fj41NTV0d3fHvYOP5ltvL7S0RCa6u7q019uB6MjgucBtwK3AJ+JWcCzeSy/lnzds4HnAP4JfcOy2U4P17dq164TXj39/JrfGSuSzHw163RprTEyEKBSxUGeEKBQKhUKhUCgUCoUiLTz/PFx/fezXHnwQ/uVfMuuPQqFIK2oi5GPGzBkhAOEw3pde4qM77uAL+/fzU+D406GKgOuB24GvJthuH/An4BGgYwi/YOiJjq1bt9LY2MiGDRtivq7OCMkMY2JrLIViOBoaGigtLc22G2nB5XKxaNEiXC5Xtl2JSbb8y0S76WojVXaTtaP33FLEJtfjpnd9uVzz0tWOqnmKZMj1uOldXzb9G6v3enqpean05aRmwYLYzxcXw3e+k5Ymczluetemal52bap7vZOT0tLS5Mf0jEZMM2bwd93dBDs6+MlHH7F69bEbY/mAp4EpwCTgASKHpI+GauDnwC5gFfAtoGCE9wzWN9wkSDZIyWc/BCaTifHjx6fcbirQ33rEGFx33XUAFBQU8NRTT1FQMFKqKU4mbDYb4SH2BRzrGI1GzGZzyraHSzXZ8i8T7aarjVTZTdaO3nNLEZtcj5ve9eVyzUtXO6rmKZIh1+Omd33Z9G+s3uvppeal0peTlt27YeXK2K81NECa9lTP5bjpXZuqedm1qe71Tk7C4XBKx/RMEyfySUAGbZV1PNuAHwPLgdcSbOdrA4+DQAvw6BDXDdanp0kQSP1nP5jp06djMplSbjcVjImtsYxGIwaDga997WusHOpmRHHSobbGUigUCoVCoVAoFApFyunogP/4D1iyBPzH7Qq/YQP83d/FZ2fnTjjnHDAYUu+jQqFIKWprrI8ZU1tjJejDM0BD6tzC85Wv4Pz2tzlzzhxGe+KGyWTCarViMplGlYder5eqqiq8Xm9c7aR7ayyTycT06dNpaWmhpKQEGDkWamusGFRVVQEk3AkVuc0Xv/hFLUdCoRA2m43o/J7D4cA/cOPq8Xi0ZZLBYBCbzabZsNvtBAIBANxuN263G4BAIIDdbteus9ls2iFCLpcLj8cDgN/vx+FwACAi2Gw2QqEQAP39/VpR8vl8OJ1O4MTZV6fTic/nA8Dr9dLf34/f7+fDDz/k0KFDutTk9/t5//33OXLkSNyaUhEnv9/Phg0btNfSEacjR46wefNmvF5vSjW53W7effdd7bVE42S329m8eTP9/f0J5d6hQ4f48MMP8fv9aYvTaDWluz/lgian08nmzZtxOBw5o2lwnI4ePcrmzZvxeDy61ORwONi8ebMWi3g0pSJOLpeLzZs3Y7PZ0hqndNQ9v9/PBx98wKFDh5KKk9Vq5b333sPv9yeUe16vl3fffVd7LVdrRK5pOnLkCO+//z5+vz9nNA2Ok8PhYP369fj9fl1qOnr0qPb5Zzr3MlH3nE4n69atw+/3p0yT1Wpl8+bNuN3upOIUvdeNvqbqXhbq3hln4H70UejuJnDffdg///nIRRddhO2cc+LTtGsXoc99Di68kP4HH8R78OCImnK57kX/djx69KguNfn9ftavX6+9lsnc6+vrY+PGjfj9/jH1t7vdbmfDhg34/f6k45Rs3Rs8dpKMpuLiYm2roPz8fMyDVn9VVlZqn/9ImqK+lpaWUlxcDEBhYSEVFRUAGAwGzGbzkJqito9f6VJeXk5RUREQGXQuKysDIC8vD7PZjGFg0rWiooLCwsK4NEV33SkpKdEGr4PBYNK5V1ZWpq0KKCoqory8/ARNhYWF1NXVaTri1TRSjYj6OlhTQUEBlZWVQGSbqyvNZoL5kY2SXKWleAbitKGwkLUDcRKDAZvZTCgvLxKnsjK8A5p8RUU4BzSFjUZ8ra2c8sMfshf4TXk5E4uKKCwsPGbMcihN06dPR0Q0TSPFKZoreXl5XD/oLCuz2Uz+gKahck9EMJvNmEwmLrroIqqqqkaMEwyfe8uXL2f37t1YrVYeeeQRzQePx6PlyvGassWYmAg544wzALRCoFAM5mtf+5q2fVpfXx/Nzc3al11LSwvt7e0ArF27lmXLlgHQ3d1Nc3OzZmPevHl0dnYCsHLlSm3lUWdnJ/PmzdOua25upru7G4Bly5axdu1aANrb22lpaQEiX1rNzc309fUBsGTJEtavXw/Apk2bWLhwIRD5sm1ubta+NBYuXMimTZsAWL9+PUuWLMHr9bJ69WrmzZunS01er5c333yTxYsXx60pFXHyer288cYbvP7662mL0+LFi1mzZo3ma6o0WSwWXn/9de2LK5k4rVmzhtbW1oRyb968eaxZswav15u2OCWiabRxGk1/ygVNH3zwAWvWrGHdunU5o2lwnF544QXWrFnD/v37dalp3bp1rFmzhg8++CCjubdjxw7WrFnD66+/ntY4paPuDf4eSyZOr7zyCm+88QZerzeh3Ovr6+P111/XrsvVGpFrmhYvXsybb76J1+vNGU2D47Ru3TpWrVqF1+vVpaYXXnhB63eZzr1M1L0PPvhA+/xTpemVV15hzZo1WCyWpOLk9XpZtWpVUrmn6l6KNFVX03nttcy78UZYtQr+539ofvDB+DQ9/TR948ZBaytLNm1i/U03QWMjm1588aSse9G/4V544QVdaor2u3Xr1sWtCVKTe48//jirV6/G6/WOub/do3U02TglW/e8Xi9r1qxh3rx5SWmaMmUK06ZNA6CmpoampibN1zlz5tDT0xOXpqiv06ZNY8qUKQBMmjSJxsZGIDLg3NTUpE02HK9p1apVQGSgvKmpSRvEnjVrFpMnTwagrq6OmTNnAlBdXU1TU5M2UN3Y2MikSZPi0jRx4kQApk6dytSpUwHo6elJOPeimmbOnEldXR0AkydPZtasWSdoMplM/MM//AMXX3zxqDSNVCPcbjcmk+kYTRMnTmTOnDkAhIF5TU18VFMT0TRtGmsH4vTQpEm82NjIRUDfTTfR3NREX3V1JE4zZ7J+QNOmyZNZOKDJUVFBc1MTjooKTgeqZ83iycmTWWwy8Y9f+xrXD4xZxtL0zW9+k5aWlmM0jRSnjRs3ApHcu+CCC7j00ksBaGpqomZA01C5FwgEaGpq4swzz+Tyyy/nuuuuGzFOMHzubdiwgdNPPx2TyXRCjYjW1OM1ZQ0ZA9x5551iMBjknHPOybYrCh3R1tYmgJhMJikrK5O2tjYJBoNitVolHA6LiIjdbhefzyciIm63W/r7+0VEJBAIiNVq1WzZbDbx+/0iIuJyucTlcomIiN/vF5vNpl1ntVolEAiIiEh/f7+43W4REfH5fGK320VEJBwOi9VqlWAwKCIiTqdTPB6PiIh4vV5xOBwiIhIKhcRqtUooFBIREYfDIV6vV0REPB6POJ1OERGlSWlSmpQmpUlpUpqUJqVJaVKalCalaSxpCgbFesEFEszLEwFxlpWJx2QSAfGed544BuyNKU25GCelSWkapMlisUhxcbGUlpYKIPn5+WI2mwUQQCorK2XXrl1xaero6BBASktLpbi4WAApLCyUiooKAcRgMIjZbJaOjo6YmrZu3SqAGI1GMZvNYjQaBZDy8nIpKio6ZiwMkLy8PDGbzWIwGASQiooKKSwsFGBETQUFBQJISUmJlJSUCCC7du1KOE5R7WVlZWIymQSQoqIiKS8vT4kmi8USV+7V19cfo6mgoEAqKys17WazWYry8+U6kJdLS8VdXCydx8Vp9+7d0rphg3wvL0/eP76WFxWJo7xcBCRkNIrVbJaQ0SgC4igvF29RkQiIx2SSHWVlMhfk7Biadu7ceUx/slgsI8Zp27Ztx+SexWLRNOXn5w+ZexaLRXbv3i1ms1ny8vJSFqfW1tYha0R7e3vM3Is+2traJJOMiTNCPvroIy6++GLC4TAvvviiNpOpOLmJnhFiMpnw+Xy0trbm3BkhIoLP56OoqEhbOqcnsuVfJtpNVxupspusHb3nliI2uR43vevL5ZqXrnZUzVMkQ67HTe/6sunfWL3X00vNS6UvigRZsQK+/vXYr913H/zrv8Z8KZfjpndtquZl16Ye7vXUGSEfk6kzQgwGA0VFRfh8PuIZnh58lsZIuN1uGhsbtVVQIzEROAtYM+i548/U+AJwO/BtoCwOm2Iw4CsqosjnwyBCCHgFWACsILIy5fjPOpE8HE2+RfWM9rMfjT+DUWeEJMDnP/95/t//+3+ICLfccgvvvPNOtl1S6Ii77rpL2+cv17Db7dx3333H7M2oJ7LlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i919NLzUulL4oEWbAg9vMFBXDrrUO+LZfjpndtquZl16a61zs5qaysHNWY3vTp0+OaBIHIWRqLFi1i27ZtcV3fybGTILH4kMhEyBlAdxw27ZWV3HfXXdgH9OUB1xKZDNkN/BrIGzg/KtOM9rPPFcbEipAo999/P7/61a8QEb71rW9RX1/PxRdfTHV1tba/muLkIboiZPz48fT19bFly5acWxESCoXo6+ujurqavIHDmfREtvzLRLvpaiNVdpO1o/fcUsQm1+Omd325XPPS1Y6qeYpkyPW46V1fNv0bq/d6eql5qfRFkQChEFx3HSxbBscPtzQ0wDPPDPPWQXELBiGHxjn0npOq5mXXph7u9fS0IsTr9VJVVaWdLZppMrUiJC8vj+rqavr6+rRD1mNhMpmYPn06LS0t2uHn6fDneI5fERLlUmB9HO8P5eXRV11NdV8feUPok7w8DNOmwe23w9SpdO3dm5EVIfF89pdeeikbNmyIy+5YWREyJiZCji9iIpLQUjeDwUAwGEyVW4osE50IiZLpzqNQKBQKhUKhUCgUCkVMurrgscfg8cehtzfy3OrVcPnl8b3/O9+BXbsig2M33AClpenyVKFQoK+JEICGhoa4t3VKNZmaCBmO1atXaz6MHz8+7pUgqfRnqImQFuCfY1wvBgPbRTg/odaA2lqsM2dy/v33M9w6kVRMhIzEtm3bMJlMSeex3iZCxsTWWMfP1QyeBBGRUT0Uucett95KWVk8u/ONPfr7+/nTn/5Ef39/tl2JSbb8y0S76WojVXaTtaP33FLEJtfjpnd9uVzz0tWOqnmKZMj1uOldXzb9G6v3enqpean0RZEEtbXw29/C3r3w3HPQ2AhTpgz7Fi1ue/fCs8/Chg2R9515JtxxB7S2Zsb3NKD3nFQ1L7s21b3eibS0tFBfX5/wBMBYoKysbMgxvdraWu2ht8/gAGCN8bz3K19hEvBl4M9AX1kZf7r1VvrjHbPs6qLq/vvZBzwLXAWk68Si4T57QHefeaoYExMhMPSEh0LR1dWVsyt98vPzqa2tJT8/P9uuxCRb/mWi3XS1kSq7ydrRe24pYpPrcdO7vlyueelqR9U8RTLketz0ri+b/o3Vez291LxU+qJIAQUFka2yHn8cRtjZQovbkiXg8338gt0Of/gDfP7zsHZtmh1OD3rPSVXzsmtT3eudSPSMC6vVisViwWKxsHr16my7lVKCwaBux/RMJhPjx4+P+dr/I3JOyM3A4FOsnbNmAbAOuBX4XDDI9q4uOkaprwCYCbwO7AT+FagelYWR0fNnn07GxNZYCkUs1NZYCoVCoVAoFAqFQqHIKUTg/PNhx44TX6upAYsFcmiwV6HQC3rbGisWmTo7RA9bYyXjQyr8qa+vZ9GiRXG9/wLgb7NnY/3pT5lwzjkxr/l7IgetzwQSWWvhB14AFgAtu3dTO8indGyNNdpr1dZYCkWGqKuroyiHDpEbjM/nY/369fgG/xpIR2TLv0y0m642UmU3WTt6zy1FbHI9bnrXl8s1L13tqJqnSIZcj5ve9WXTv7F6r6eXmpdKXxSZxefzsX7hQnxdXbEv+N73xuwkiN5zUtW87NpU93rxET00PFcoKirS3ZieyWSivr6elpaWuN/TBlh/8YsT6vNgfX8DvgOcCTyTgF+FQD3wJnDmlVfC/ffD4cMJWDrRt5MJNRGiGPNcdNFFFBYWZtuNtOD3+9m8eTN+vz/brsQkW/5lot10tZEqu8na0XtuKWKT63HTu75crnnpakfVPEUy5Hrc9K4vm/6N1Xs9vdS8VPqiyCx+v5/NnZ34Y/19azTCd7+beadShN5zUtW87NpU93rxEz07JBcoLCzUzZje6tWrsVgsWK1WFi1aRElJSdI2Y+k7CiS7Xqagqwt+/vPI+VHf/jZF69enxLeTAbU1lmLMorbGUigUCoVCoVAoFApFzrF9OzzyCPzpT2AdOJL32mth6dL43v/BB5FBsttvh3/6JzjJBroUikQYC1tjDWb79u2cf/75Cb13JE7GrbGGai/V2059Htgy1IuVlZEzoRJgG5Fts/5C7IPcR+NjIteqrbEUigxhNpsxGnMzlcPhMDabjXA4nG1XYpIt/zLRbrraSJXdZO3oPbcUscn1uOldXy7XvHS1o2qeIhlyPW5615dN/8bqvZ5eal4qfVFkFi1u554L//d/sH8//OUvcNllkUmNeFmwAFavhoaGyLkiv/gFdHamz/E40HtOqpqXXZvqXm/0mEyJnDShL4xGY06P6cXS91mgf6g3vPMOvU89xV+BwCjbOh94AOgB/gx8OQHfTgZ0o7anpyfjbR44cCDjbSpST1NTExUVFdl2Iy04HA6am5txOBzZdiUm2fIvE+2mq41U2U3Wjt5zSxGbXI+b3vXlcs1LVzuq5imSIdfjpnd92fRvrN7r6aXmpdIXRWY5IW7FxfCd78Df/gbXXBOvEXj66Y//3dcH//M/8OlPw113pd7pONF7Tqqal12b6l7v5KSioiKnx/Ri6XsGOAOYDWwefPFXvwqf/Szeyy6jHqgB7gJ2j7JNE3Az8A7QCtwBVMbp28mAbrbGKisro6mpiZ/+9KdUVVWltS2r1crvfvc7HnroIZxOZ1rbUqSP6NZYZrMZh8PBRx99lHNbY4XDYRwOBxUVFbqcpc2Wf5loN11tpMpusnb0nluK2OR63PSuL5drXrraUTVPkQy5Hje968umf2P1Xk8vNS+VvigyS0riNn8+zJkT+7XFi+GGGxJ3MAn0npOq5mXXph7u9cba1lip2oIqFpnyy2g0UlFRgcPhOGE1Ty5sjTWcvij7n3+eM5Yti0x2z5x5QnsG4CrgdmA6kB/TyvC4gcXA1c8/j++ii5jwqU+N6Fuubo2VyOeXFtxuN/fccw8PPvggt/1/9v49PMrq3P/H33PMTDKHRw4aERWkVUSt0Oou2lao7k2pykdaUVR2FdCK2O+3jru7W/rb391i997d1HrKp7WIVUArFhEkFqUWDwWtghWbACEBTRjAAIEkzEzmfLx/f4R5dgITmMw8hzUP9+u6cpFknrnX/Z73mntW1uJZ6957MX/+fIwZM0bRNtra2vDUU0/h2WefRTQaVTQ2ox/BYFDvFFQjf6uaqOiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRlrJ9I+rdFqsQZ54JTJ9eeuwyEb1Pcs3TNyaP9U5P8luaGZVi9KUmTOg9y2kACMBbx77OBvB9AAvNZpgGsQ1cNYA5APDd7yI1dizmA1hh8Nd+IIRZhv/hD38Ii8WCSCSCJ554AhdddBGuvfZaLFmyBIcPHy457uHDh7FkyRJce+21uPDCC1FXV4dIJAKLxYIHHnhAQQWMXtx3331wu916p6EK4XAYTz/9tLB3LumVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRlrJ9a2oCGhsLPzZnjq6HpoveJ7nm6RuTx3qnJ263W/g5vdra2lOex+JwOFBbW3vC75XWdwjALmBQiyDHY9+1C78F8Knbjf++7z58TeDXXg2EuSPkySefxD333IN/+7d/w5tvvgkiwqZNm7Bp0ybcf//9GDt2LL7xjW/gS1/6EsaOHYuRI0di6NChqK6uBhEhHo+jq6sL7e3t2L17N7Zt24a//vWv2LVrl9xGfhewb3/723jkkUcMt43S6UpjYyNSqZTeaaiC3W7H+PHjYddxwHoy9MpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmhL2b5ddhnwySe9d4W89BIQ6XMk7/e/X3ycn/wEuPrq3q1aLJbScjkO0fsk1zx9Y/JY7/QklUoJP6fncDhw00034eWXXx7wmptuuqngYoka+uYN8PscBne3g5RK4drGRvwolcJOAEsAvISTHORuEIQ5I6QvH3zwARYtWoT169fLixcmk6mkWH2ff8MNN+AnP/kJrrrqKsVyZfQjf0ZIHq33lWMYhmEYhmEYhmEYIQmHgT/8oXdRZNgw4M9/Lu55zc1A/u/qkSOBe+4B7r6793uGMTB8Rsj/IkJeopwRAvQe5zB37ly89tprSCQS8u/ziyRLly5FdXV1SdqPb/dkMYYD2I/eA9GP5xkA69C7UHI9StsCKozexZAlAF416BkhwmyN1Zevfe1rWLduHXbv3o0FCxbgvPPOAxGV9HXeeefhJz/5CXbv3o0//vGPvAhiQCZPnnzK29QqlUQigY0bN/YrtCKhV35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRlsU9c3tBu69t/cOkdWri3/eM8/87/ft7cDChcD55wM33QTE4yWnI3qf5Jqnb0we652eOByOipjTq66uxsqVKxEIBOD3++WvQCCAlStXorq6uuDzlNbXCWAkgKM/+QnwxS/2e+xpAK8DmAZgFICfAzhwklgJhwMbJ09Gok9ubvQupPwdwNk33QTXypUorKxyEXIhJM8XvvAF/OIXv8DevXuxbds2PProo7jllltw0UUXFexEDocDY8eOxa233opHH30U27Ztw969e/Hf//3f+MIXvqCDAkYLRo0aBatVmF3eFCWTyWDv3r3IZDJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNqimm/F7gEfjwPPP3/i73M5oLMTcDpLTkH0Psk1T9+YPNY7PbFarRU1p+dwODBq1Cj561QLHGro6wbQc++9wO7dwDvvALfeisQVV6ChzzWfA/gZgPMBTAfwJ/RundWXjNWKvaNGITNAblXbt2PYT36CQwCeAvAlxRToi5BbYxVLKBRCNBoFANTU1MDr9eqcEaMlvDUWwzAMwzAMwzAMwyjECy8Ad91V+LHlywd+jGEMAG+N1YvD4UAgECj5LgYjbo2ldFsna7eUfri3rQ2jT3EDwCgADfffD8+yZTCXeHffZvRum7UKQN8IvDWWRni9XowYMQIjRozgRRAB2bx5M26++WacddZZcDgcGD16NO6//34cOHCym7MGT21tLSwKHeAmGtlsFh0dHchms3qnUhC98tOiXbXaUCpuuXFE71tMYYzum+j6jFzz1GqHax5TDkb3TXR9euZXqWM9UWqekrkw2qK7b0uWFP69JAG33lpWaN21nQKuefrG5LGeOAx08LcaWCwWQ8/paaaviPh7AQQffBA5jwcAkLVY0FFbi+wgcrsKwHL0brlVB2Dc4DPVnYpeCGHE5dlnn8XXv/51vPrqqzCbzbj00kvR3d2NxYsX47LLLsO2bdsUa+u+++6Du9hbfSuMcDiMJUuWIBwO651KQfTKT4t21WpDqbjlxhG9bzGFMbpvouszcs1Tqx2ueUw5GN030fXpmV+ljvVEqXlK5sJoi+6+/fKXwD//M1BV1f/3d95Z/LZYW7b0bteS678Ri+7aTgHXPH1j8lhPfRwOB2bOnImuri7MnDnzhMWO/ONLly7VLCe3223oOT3R9Dn/8hdYDx8GAITdbiy57z6ES8jtDAA/BLATwPsAal59tawzpLSkorfGYsRkx44dmDBhArLZLB577DH4fD6YzWZEIhHcfffdWLVqFUaPHo2WlhZUHT/AGgT5rbEcDgeSySR27NhhuK2xiAjJZBJVVVUwmUx6p3MCeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbRFGN+6u3u3yVqypHcf+p07gXFF/t/fb30L2LAB+MIXgHnzgNmzgWHDxNE2AFzz9I0pwljPiFtj/eUvf5Hj19bW9lv8SCQS6OjokH8+/vFSGcz2UCaTCVVVVUgmkzh+etoIW2OdTN9A7Za0NVaRGqPXXovqd98FAJDJhGRVFaqSSSSJcD+AfwZw7SmjDMAZZ/RunzhvHjB2bNG58dZYTMXz8MMPI5vN4tZbb8W//Mu/wGzu7WYulwvLly/HeeedB7/fj2XLlinSXiKRGLCgVDomkwkOh0PIgSKgX35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRluE8W3oUODBB4GWFmDr1uIXQfbs6V0EAYDWVuDHPwbOOQe44w6YWlrE0DYAXPP0jcljPXU42cHegz34Ww2IyNBzeqLp6/7v/0bgwQfxOQATERyJBExEWAVgGYDrAFwI4FEA2TPOGFzwQAB48kng4ouBSZOAl14CkkmFFZQPL4QwihKNRvHGG28AAH7wgx+c8LjT6cScOXMAACtXrlSkTZ/PB8+xPe6MRk9PD5588kn09PTonUpB9MpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmiLcL6ZTMBXvlL89b/73Ym/S6WAP/wBPZ2dYmk7Dq55+sbksd7picfjMfScnmj6srW1CP3whxgN4LseD/7H50PQ40Hf06E+A/BjAO2bN6PzySexqZSG3nsPmDULGDkSZ/ziFzj5Me7awgshFUg2m8X27dvx3HPPYf78+bjiiitgt9thMplgMpkwefLkkmOnUin8/ve/x/XXX4/zzz8fDocDZ599Nq6++mo8+uij6OrqOunzGxoakEgkYLfbMXHixILX5PP76KOPkDtu39BS2LhxIxKJRNlxRMThcGDy5Mm6rMwXg175adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtqWjfUilgoLMFLr8cjokThdbGNU/fmDzWOz1JJBKGntMTVV8WwBuJBFZt3IjxiQQ+LHANVVUhetNNmAzgYgBPAAgMtqGuLnh/9zt8BuBtALcAsJaRtxLwGSEVRn19PWbNmoVYLDbgNZMmTcLGjRsHHXvXrl24/fbb0djYOOA1Z555JpYtW4brr7++4ONLly7F3XffjS984Qv47LPPCl7T3t6Oc889FwCwZ8+eovcOPJ78GSF5tN5XjmEYhmEYhmEYhmEYAK+8Atx6a+HHFi8G7rtP23wYZpAY8YwQpc7ZGAyDOSPkZBjhjJBi0PKMEL/fDwAlX/vvAP7rlM88OZsATO7zM58RwpyUYDB40kWQUmlvb8d1110nL4KYTCZMmjQJc+fOxbRp0+B0OgEAR44cwfTp0/HuscN1jufo0aMAgKFDhw7Y1pAhQ+TvA4FBryeewNSpU+X8jEY8Hsebb76JeDyudyoF0Ss/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MtFe3bqFHAd78LWCz9f19TA9xxR3Hacjngb38DdPj/ulzz9I3JY73TE6fTaeg5PZH1DTY3E4A5CrQ7TIEY5cALIRXKWWedhRtvvBEPP/ww1q9fjwceeKCseHfccQcOHjwIADj//PPR0NCAjRs34rnnnsMf//hH7N+/H9dddx0AIJ1O45ZbbkEwGDwhTv5Dx263D9hW31sVlVjUkSRJPpDdaORyOQSDQUW2EFMDvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpS0b5deSWwZg3w+efAf/0XcP75vb+/4w7A4ylO24YNwFe/CowfD/z2t4CG5z1wzdM3Jo/1Tk/MZrOh5/RE1jfY3K4DMGaAx6Lf/jYwwPEIosFbY1UYHR0dSKVSOO+88/r9fuHChXj44YcBDH5rrPXr1+OGG24A0LuAsXXrVlx22WUnXBeNRvGlL30Je/bsAQD85Cc/wS9+8Yt+1zz66KP48Y9/jK9+9avYsmVLwfZisRhqamoAAJ988gm+/OUvF51rX3hrLIZhGIZhGIZhGIYRkGy2d2Fj9Ghg7NjinjN9OvDaa//7c3U1cPvtvdtqXXGFKmkyTB7eGksZeGssY26NdR6AH6D3rpDhfa5LA+j4299w7pVXAtu2Ac88A/z+90A4XDDuTgCX9vmZt8ZiTkptbe0JiyDl8tRTT8nf33XXXQUXQQCgpqYGP//5z+WflyxZgkwm0++aM844AwDQ3d09YHv57bP6Xl8Oo0aNgtWq93E76pDJZLB3794TXmdR0Cs/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MthvLNYgG+/W15EeSU2g4cAF5/vf/vYjHgueeAxx5TOVmueXrH5LHe6YnVajX0nJ7I+gab234ADwEYCeA2AH859vt6ANnhx5ZGLr8ceOop4NAh4Nlne+8UFAxeCDnNiUQieOedd+Sf58w5+Y5vN998M1wuF4DeBY333nuv3+MXXXQRAGD//v1IpVIFY+QPUXc4HDg/f7tsGcyePVvOyWhEIhE8//zziEQieqdSEL3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfTqntued67yIpxLx56iV2DK55+sbksd7picvlMvScnsj6Ss0tBeBlANcCuAjAfxS6qKYGuPtu4G9/w8F167AEQOH7Q7SHt8YyCKVujbVhwwZ861vfAtB7x0cwGDzlauCUKVPw1ltvAQD+/d//Hf/1X/8lPxaNRjFs2DAkEgls2rQJ11xzzYC5XnPNNdi0aVNReRaCt8ZiGIZhGIZhGIZhmAonm+3dQuvzz0987KKLgJYWwGTSPi/mtIK3xlIG3hrLmFtjDSafvuRzOwfAHgCfgbfGYnSkpaVF/v6yyy4r6paovmd69H0+0LuYcv311wPov+VWnng8jmXLlgEAZs6cWVLODMMwDMMwDMMwDMMYhO5u4JJLCi923Htv8YsgoZCyeTEMwzCK8B0Adr2TAC+EnPbs3r1b/r7Ybar6nlGya9euEx7/6U9/CovFglWrVuHxxx9HLpcD0Hur4uzZs7F//36cf/75uPvuu8vMvpcFCxbA6/UqEks0QqEQFi1ahJCgAzq98tOiXbXaUCpuuXFE71tMYYzum+j6jFzz1GqHax5TDkb3TXR9euZXqWM9UWqekrkw2mJk306q7cwzgT/9CWhrA37yE+Css3p/X1UF3HVXcQ0QARMnAldfDTz/PBCPK5efypzuNU+JWEZ+7xgZr9dr6Dk9kfVpnZv6GxwWBy+EnOb0PdT8rPxg4xTU1tbK3/c9+DzP5Zdfjqeeegpmsxk/+tGPcM455+CKK67AiBEjsGrVKkiShLVr16Kqqqp8AQDq6+sRi8UUiSUa1dXVmD59Oqqrq/VOpSB65adFu2q1oVTccuOI3reYwhjdN9H1GbnmqdUO1zymHIzum+j69MyvUsd6otQ8JXNhtMXIvhWlbfRo4Be/6N0i65VXgP/8T2Do0OIaeO89YNcuYPNmYPZsYMQI4IEHgOZm5fJTidO95ikRy8jvHSMTi8UMPacnsj4tc3MA2AhAhGVKXgg5zel7kJTT6SzqOX2vG+ggqnnz5uH999/H9OnTkc1msWPHDpxxxhm47777sGPHDkyYMKG8xPuwd+9eeVElm80iGAwif/RNT0+PfGh7PB5HNBoFAGQyGQSDQTlGKBRCOp0G0FsM8oUgnU73+x8FwWAQmUwGQO95KPFj/8sklUqhp6cHAEBECAaDyB476C0SiSCRSAAAkskkwuHeI4JyuRyCwaB8x0w4HEYymQQAJBIJRCIR2Gw2fPGLX0Q0GhVSk81mw+jRo2V9xWhSwiebzYbzzjtP1qeGT4lEAmPHjoXFYlFUk8lkQm1tLWw2W1k+ZTIZjB07FkRUUt+LRqO48MILYbPZVPNpsJrUfj8ZQVMul8PYsWORzWYNo6mvT8lkEmPHjoXZbBZSUzabxdixY5HL5TTtewAwduxYpNNpVX1So+7ZbDZ84QtfkPWV6lMqlcL5558Pm81WUt+zWCyora2FxWJRzSfR3k9G0JRIJDB69GjYbDbDaOrrUzabxciRI2Gz2YTUlEwmMWrUKNhsNs37HqB+3cvlcjjnnHNgs9kU05RKpTB27FiYTKayfLLZbDj33HP71UCue1z3KlVT3iebzYZRo0b1q4EDaspkEP32t4Ef/7h4Tc88g1Cf/9kcBJD57W+BL30J0X37TqnJZrNh5MiR/WqgVn0vFothzJgxsNlsFfW3eyaTwbnnngubzVZ23yu37tlsNlx44YWIRqNlaXI6naipqQEAWK1WSJIk5+r1euX8TqUpn2tNTY08h2a32+HxeAD0zgtIklRW3UulUvJB1xaLBZIkwXRsGzmPxwO7vXcjIr1qhMvlgsPhAABUVVXB7XYDAMxmMyRJgtlsRjqdxoEDB2A2905POxwOWZNSdS//utpstn53P0iSJB8PUFNT0+91Lbfuud1uVFVVIZ1O95uzLORTPte+mgr1vfwcUnV1tZzD8T4dr6lQ3yMiSJKEXC6HXbt2oaqqqqBPuVwOkUhE9iav6XifLBYLIpHIgD7F43EkADxotWKsJGEB9IUXQk5z8m8eAHKRPBV97+TIF79CXH311Vi7di2OHDmCZDKJffv2YfHixRg5cmTpCRdg9uzZuPXWWwEAnZ2dqKurkwvY0qVL0Xzsf4Bs2rQJ69atAwC0t7ejrq5OjrF48WK0tbUB6D1AfsOGDQCAtrY2LF68WL6urq4O7e3tAIB169bJh703Nzdj6dKlAHqLYV1dHTo7OwEAq1evxpYtWwAADQ0NWLFiBYDe4lBXVycX2BUrVqChoQEAsGXLFqxevRqxWAyrVq0SVlMsFsMLL7yA3//+90VrUsKnWCyGZ599FuvXr1fNp9///veor6/H4cOHFdXU2tqKuro6eYBRqk/vvPMO6uvr0djYWHLfy/cxtXwarCa1309G0PTRRx+hvr4e77//vmE09fVp1apVqK+vx/79+4XU9P7776O+vh4fffSRpn2vubkZ9fX1WL9+vao+qVH3YrEYVq5cWbZP9fX1WLp0KWKxWEl9L6/p8OHDqvkk2vvJCJp+//vf44UXXkAsFjOMpr4+vf/++3j66acRi8WE1LRq1SosX74csVhM876nRd376KOP8Nvf/haxWEwxTfX19aivr5fHe6X6FIvF8Mwzz+Cdd94ZlCaue5Wvych1LxaLYfny5Vi1apXymjo70bZtGxbPn/+/mnw+tI8cCdx4I9Zt3nxKTbFYDE8//TTef//9ojUByvW9l156CbFYrKL+dn/nnXfwzDPPIBaLld33yq17sVgMq1evLlvTpEmTMG3aNADAyJEj4fP55Fznz5+PgwcPFqUpn+u0adMwadIkAMC4ceMwd+5cAL3zaj6fT57ELqXuNTc3Y8aMGQCA4cOHw+fzyfN1c+fOxbhx4wBoXyPymmbMmIGJEycCACZMmIBZs2YB6J389/l88Hg8qK6uxv33349/+Id/AABMnDhR1hQKhRSpEVu3bgUAjBkzBvP71AifzyfPT06bNg3btm0bUFOxdS8/zzNr1ixMmDAB1dXV/eYsC/m0b9++EzQV6ntjxowBAEyZMkXWdLxPx2sq1PfS6TR8Ph/OPfdcTJ8+HbfeemtBn2KxGNasWSMvoOQ1He/T8OHDsWbNmgF92rx5s6zpPp8Pr0NniDEEP/vZzwgAAaBJkyYV/bzrr79eft5DDz1U1HPWr18vP8flcpWYcfk0NTURALr55ptp+PDh1NTURJlMhgKBAOVyOSIiCoVClEwmiYgoFotRJBIhIqJ0Ok2BQECOFQwGKZVKERFRNBqlaDRKRESpVIqCwaB8XSAQoHQ6TUREkUiEYrEYERElk0kKhUJERJTL5SgQCFAmkyEionA4TPF4nIiIEokE9fT0EBFRNpulQCBA2WyWiIh6enookUgQEVE8HqdwOEzRaJTWrFlDBw8eFFJTNBql1atX0+HDh4vWRERl+xSNRumVV16hzs5O1Xw6fPgwrV27lsLhsKKaQqEQvfzyy7IfpfrU1dVFa9eupUAgUFLfO3jwIL366qsUjUZV82mwmtR+PxlB09GjR2nt2rXU3d1tGE19fcq/73p6eoTU1N3dTWvXrqWjR49q2veCwSCtXbuWOjs7VfVJjbrX93OsHJ+OHDlCr7zyCkWj0ZL6XjgcppdfflnO3ag1wmiaDh8+TKtXr6ZoNGoYTX196u7uplWrVlE0GhVSU9/XX+u+p0XdO3r0qPz6K6XpyJEjtHbtWgqFQmX5FI1GadWqVdTV1TUoTVz3Kl+Tkeve8X87KqrpkUcoZbNR0Osl6j0thAKSRGmrlWj9+qI05d933d3dRWsiUqbvHTp0iNasWSPrqZS/3bu6uuQ6Wm7fK7fuRaNRevXVV+ngwYMla/L7/eR0OqmmpoYAkNVqJUmS5Pkvr9dLn332WVGaWltbCQDV1NSQ0+kkAGS328nj8RAAMplMJEkStba2DqjpVD7t3r2bXC4XASCLxUKSJJHJZCIA5PF4yG63k9/v17xG5LW7XC5yOBwEgKqqqsjtdhMAMpvNJEkSmc1mqq6uphkzZsivs8PhkDW1trYqUiNaWloIANlsNvJ6vbKfkiSR1WqVfdq1a1dJfa+vT21tbQSA3G43VVVVUXV1tTxnOZBPn376aT9Nfr+/YN+z2WwEgKqrq6mlpaWfT36/v6Cm4/ue3++nPXv2kCRJ5HK5aPr06TR8+PCCPrW1tdGOHTvIbDb303S8TxaLhXbs2DGgT83NzQXfT/mvpqYm0hIT0bF7V5iKZuHChXj44YcB9K5gb9y4sajnzZw5U/4fGT/84Q/7raIOxKuvvoqbb74ZQO95IYcOHSot6TLZuXMnLr30UvnnpqYmXHLJJbrkwjAMwzAMwzAMwzCMDsye3XtA+vGcf37vAezHtog7KUTAse1qmNOTvXv3YvTo0Se9xu/3Y9SoUYrEGky8UtsoJ36pFKv9VCiVuxZeDLatk7Vbiq+D0QhAlWsHeu1OlZvWc7m8NdZpztA+B4/lb5s+FR0dHfL3Q4YMUTynwTJ27Fh5rzyjkU6nsWvXLnnPQNHQKz8t2lWrDaXilhtH9L7FFMbovomuz8g1T612uOYx5WB030TXp2d+lTrWE6XmKZkLoy1G9k1VbcuXAzt39h6O3mdffXz/+8UtggBIL1mCXTNnIv3yy8Cx/e214nSveUrEMvJ7x8jYbDZDz+mJrE/k3NSEF0JOcy666CL5+/y+dKdi//798vdjx45VPKfBMn36dAwbNgyAMQ6RA/73IK9YLIa1a9fi0KFDQmrK53fkyJGiNSnhU77d7u5u1Xw6cuQI6uvrEYlEFNXU09ODtWvXyn6U6tPRo0dRX1+PYDBYUt87dOiQnIcRD5o0qqZAIID6+nocPXrUMJr6+tTZ2Yn6+nqEw2EhNeXfd4FAQNO+FwqFUF9fj+7ublV9UqPu9f0cK8enrq4uuWaV0vcikQjWrl0r527UGmE0TUeOHJF9N4qmvj4dPXpU1ieips7OTjk/rfueFnUvEAjI+pTS1NXVhfr6evT09JTlU752Hj16dFCauO5VviYj1718v87vta+4pi9+EaGHHwYOHgSWL0fwn/4JmTvvLE5TJoPYCy9g7QUX4OgPfwicey6SP/kJwk1NJ9UEKNP3Ojo6ZN8r6W/3vp9j5fa9cute3zEnH5ZeOYelV1dXY/r06fLrbLTD0vP68nOWIh2W7nK55NzUPiy9kCa94IWQ05yLL75Y/n7Hjh1yYTsZf//73ws+Xy+2bNmCb33rWwCMcYhcXtPq1avh9XoxZ84cLFu2TEhNXq8X3/zmN+UctDrA0Ov14uKLL5ZfVzV8WrduHRYsWACTyaSopnA4jFQqJX8Al+pTQ0MDFixYgAMHDpTU95YtW4b58+fD6/Ua8qBJo2ras2cPFixYgJaWFsNo6uvThg0bsGDBAqRSKSE1tbS0YMGCBdizZ4+mfa+rqwsLFiyQXyO1fFKj7nm9Xtx+++1YtmxZWT5t2rQJEyZMgNfrLanvmUwmpFIp+Y8Oo9YIo2lat24dvvnNb8Lr9RpGU1+fWlpacPbZZ8Pr9QqpacOGDbjqqqvg9Xo173ta1L09e/bgjDPOgNfrVUzTpk2bsGDBAoTD4bJ88nq9GD16dL8Dcbnucd2rVE15n7xeL6666io5B9U0OZ3AXXeh7mtfQ/uxyctTatq4Ed7Nm3F2Rwdaxo0DjhxBw8aNWPHUU8Czz6re91asWIHvfOc78Hq9FfW3e0NDA0aPHg2v11t23yu37nm9XsyfPx/Lli3jw9JROYelh0IhBINB+SBwox2WHgqF+s1ZinRYelVVFRYtWoRvfetbmh2W3leTbih75AijF6Uelh4Oh+XDbgDQ5s2bT3p9IpGQD84BQO+8806ZmZdO/rD0/CE9RjwsncgYB+OxJtbEmlgTa2JNrIk1sSbWxJpYE2tiTUJqmjuXCKCwy0Vxh4MIoERVFfW43URtbZWpyYg+qayJD0vX/rB0nOQQbiMcln68JpEOS7dYLCf1yaiHpfNCiEEodSGEiOj666+Xnztv3ryTXvvSSy/J1w4ZMkQuhHqQXwhZuHAhSZKk+ZtHCwKBAC1cuLBfURcJvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN+E1RYIEFVXU0CSevOTJKLeo9OJpkzRKIXTu+YpEUuJXPKTySf78vv9isUaTDy181WSYrXnJ+7zc3pq5a6FFwO1dTJ9A7Vbiq+D0dh30eRkufW9tpzX7lQxtJ7L5a2xGNx///3y98uXL8fOnTsLXheLxfDTn/5U/vnee++V957Tk+XLl8t7PRoNl8uFu+66S957TzT0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNW2/r1QCwGVySCu5Yvh6vv3MK8eZqkcLrXPCViCdu/mJMSiUQMPacnsj6Rc1MTXghhcMMNN+Ab3/gGgN7972688UZs37693zXd3d2YPn06WltbAQBDhgzBQw89pHmuhdi7d29RZ5tUIlarFaNGjRJiwakQeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL4Jq+2OO4CPP4Z19myM6uyENT+3UFsLHDsr4pTE48DttwNvvAEcO5dkMJzuNU+JWML2L+akZDIZQ8/piaxP5NzUhBdCKpDrr78e48eP7/f19NNPy49v3br1hMfHjx8vH+pUiJdeeglnn302gN6FhfHjx+Ob3/wm7rnnHtx0000477zz8NZbbwHo/YBZtWoVJElSVWex3HbbbaipqdE7DVWIRqNYuXIlotGo3qkURK/8tGhXrTaUiltuHNH7FlMYo/smuj4j1zy12uGax5SD0X0TXZ+e+VXqWE+UmqdkLoy2GNk3obVdcQWiTz6JlU8/jehvfgNcfjlw992AzVbc81etAlauBG68EbjgAuA//xM4yfzL8ZzuNU+JWEL3L2ZAampqDD2nJ7I+kXNTE14IqUCam5uxbdu2fl+HDx+WH49Goyc8vm3bNqRSqQFjjhw5Eu+++y7Gjx8PACAibNy4Ec899xz++Mc/IhaLAQCGDx+O+vp6XHfddapqHAzhcBhOpxMAkM1mEQwGQUQAgJ6eHll3PB6XPxQzmQyCwaAcIxQKIZ1OA+jdAiyvN51OIxQKydcFg0F5tTQajSIejwMAUqkUenp6APS+dsFgENlj/xMkEokgkUgA6L3jJhwOAwByuRyCwSByuZysI5lMAgASiQQikQjMZjM8Hg/C4bCQmsxmM1wul5xDMZqU8MlsNqOmpkZ+XdXwKRqNyot9SmrK5XJwOp0wm81l+ZRMJiFJEjKZTEl9LxwOw+v1wmw2q+bTYDWp/X4ygqZ0Og1JkpBKpQyjqa9PsVgMkiTJ8UTTlEqlIEkS0um0pn0vm81CkiT5NVLLJzXqXt/PsXJ8isfjcLlcMJvNJfU9APJYQS2fRHs/GUFTNBqVfTeKpr4+pVIpVFdXw2w2C6kpFovJr7/WfU+LupdOp+XXXylN8XgckiTJ8Ur1KT/W7dtXuO5x3atUTXmf8n875nMQTZPZbEa1x4PUHXcADQ1IPvRQ8X1v2bJeTRYLgj09oJ/9DDjvPPR8//tFaYpEInC73TCbzRX1t3symURNTQ3MZnPZPpVb98xmM7xeL8LhcFmanE6nPDFstVr7/Qdgr9crv/6n0pTPtaamRq7FdrsdHo8HAGAymSBJUtnjiPxWYBaLBZIkwWQyAQA8Hg/sdjsA/WqEy+WCw+EAAFRVVcHtdgMAzGYzJEmSP3+j0ah8J4/D4ZA1KVUj8q+rzWaD1+uVr5MkSW633M/c431yu92oqqqS517yfaCQT/lc+2oq1PdsxxZmq6urB5wLO15Tob5HRP3+5nM6nQV9yuVy8rxkX03H+2SxWBCJRE46NiqkSS94IYSRGTt2LD766CM8//zzmDp1Ks4991zY7XaceeaZmDhxIh555BE0Nzfjhhtu0DvVfkSjUdx4440AgM7OTtTV1ckFbOnSpWhubgYAbNq0CevWrQMAtLe3o66uTo6xePFitLW1AQA2bNiADRs2AADa2tqwePFi+bq6ujq0t7cDANatW4dNmzYB6F2cWrp0KYDeYlhXV4fOzk4AwOrVq7FlyxYAQENDA1asWAGgtzjU1dXJBXbFihVoaGgAAGzZsgWrV6+G0+nEl7/8ZSxZskRITU6nE8OGDcOrr75atCYlfHI6nchms3j//fdV8+nVV1/F1KlTkU6nFdXU3d2NxsZG+QOpVJ/+9re/YerUqfD7/SX1vSVLluCqq66C0+lUzafBalL7/WQETbt27cLUqVOxbds2w2jq69Mbb7yBqVOnIhKJCKlp27ZtmDp1Knbt2qVp3zt48CCmTp2K999/X1Wf1Kh7TqcT48aNw5IlS8ry6e2334bVaoXT6Syp76XTaTQ2Nsp/aBi1RhhN06uvvophw4bB6XQaRlNfn7Zt24ajR4/C6XQKqemNN96Ay+WC0+nUvO9pUfd27dqFgwcPwul0Kqbp7bffxtSpU9Hd3V2WT06nE9FoFH/7298GpYnrXuVrMnLdczqdcLlceOONN4TU5HQ6cfToUWzbtg0wmdCwc2dxfe+117B69OheTcOHo87nQ7KqCshmsfTss4vStGzZMowZMwZOp7Oi/nb/29/+hmg0CqfTWbZP5dY9p9OJq666CkuWLClL06RJkzDt2JZoI0eOhM/nk3OdP3++vNPKqTTlc502bRomTZoEABg3bhzmzp0LoHfC2efzyZPYpdS95uZmzJgxA0Dvf1r2+XzyRPXcuXMxbtw4ANq/n/KaZsyYgYkTJwIAJkyYgFmzZgHonfz3+XzweDyIx+M455xzcPHFFwMAJk6cKGsKhUKK1IitW7cCAMaMGYP58+fL1/l8PowcOVL2adu2bQNqKrbu5ReSZs2ahQkTJsiLG/k5y0I+7du37wRNhfremDFjAABTpkyRNR3v0/GaCvW9dDoNn88Ht9uNN998EzfeeGNBn2KxGNasWSMvoOQ1He/T8OHDsWbNmgF92rx5c0FNuqHw4esMoxlNTU0EgK688ko644wzqKmpiTKZDAUCAcrlckREFAqFKJlMEhFRLBajSCRCRETpdJoCgYAcKxgMUiqVIiKiaDRK0WiUiIhSqRQFg0H5ukAgQOl0moiIIpEIxWIxIiJKJpMUCoWIiCiXy1EgEKBMJkNEROFwmOLxOBERJRIJ6unpISKibDZLgUCAstksERH19PRQIpEgIqJ4PE7hcJiSySR98skndPjwYSE1JZNJ+tvf/kZdXV1FayKisn1KJpO0ZcsW+TE1fOrq6qKGhgaKx+OKaopGo/TBBx/Ij5XqUzAYpIaGBgqHwyX1vcOHD9Mnn3xCyWRSNZ8Gq0nt95MRNPX09FBDQwOFQiHDaOrrU3d3NzU0NFAsFhNSUygUooaGBtmLYjQp4VMkEqGGhgYKBAKq+qRG3Usmk7R161Y6fPhwWT4dPXqUPvroI0omkyX1vXg8Th988IH8mFFrhNE0dXV10d/+9jdKJpOG0dTXp1AoRJs3b6ZkMimkpu7ubvn117rvaVH3enp66MMPP6RkMqmYpqNHj1JDQwNFo9GyfMqPdfOPcd3julfJmvI+5f927O7uFlJTMpmkzZs3y48V3ff+n/+Hwi4XEUAZi4UCkkQ5k4kIoNDHHxel6ciRI/TxsWsr6W/3YDBIW7ZsoWQyWbZP5da9vnMnpWry+/3kdDqppqaGAJDVaiVJkggAASCv10ufffZZUZpaW1sJANXU1JDT6SQAZLfbyePxEAAymUwkSRK1trYOqOlUPu3evZtcLhcBIIvFQpIkkclkIgDk8XjIbreT3+/X/P2U1+5yucjhcBAAqqqqIrfbTQDIbDaTJElkNpvJbrfTxIkTZR0Oh0P+vrW1VZEa0dLSQgDIZrOR1+uV/ZQkiaxWq+zTrl27Sup7fX1qa2sjAOR2u6mqqorsdrs8ZzmQT59++mk/TX6/v2Dfs9lsBICqq6uppaWln09+v7+gpuP7nt/vpz179pAkSeRwOGj8+PF0xhlnFPSpra2NduzYQWazuZ+m432yWCy0Y8eOAX1qbm4u+H7KfzU1NZGW8EIIU7HkF0J8Ph95PB7N3zxaEAqF6IknnpCLsGjolZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlMyF0RYj+ya6tpLyi0SIPB4i4MSvb3xD3bYHicg1T4lYSuSSn0w+2Zff71cs1mDiqZ2vkhSrPb8QkJ/TUyt3LbwYqK2T6Ruo3VJ8HYzG/LWnyq3vteW8dqeKofVcrono2CZeDFNh7Ny5E5deeqn8c1NTEy655BIdM2IYhmEYhmEYhmEY5rSACHj/fWDJEmD1aqDvuawvvggc22LmlKxcCZx1FjB5MnDs7ABGe/bu3YvRx7Y5Gwi/349Ro0YpEmsw8Upto5z4pVKs9lOhVO5aeDHYtk7Wbim+DkYjAFWuHei1O1VuWs/l8hkhTMXjcDjkg4aMBhEhkUhA1PVKvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E11ZSfiYTcM01wIoVwIEDwKOPAhdeCAwdCtx8c3ExUinQAw8gcf31oLFjgccfB7q7SxNxEkSueUrEEr1/MYUxmUyGntMTWZ/IuakJL4QwFc+CBQvg9Xr1TkMVQqEQfvnLX8qHTYmGXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+iays7v2HDgB/9CNi1C/jb3wCHo7jn1dcjlErhlwsWIHTkSG+Mc84B/vmfexdXFELkmqdELNH7F1MYr9dr6Dk9kfWJnJua8EIIU/EsXboUuVwOAJDNZhEMBuX/BdDT04PUsdtT4/E4otEoACCTySAYDMoxQqEQ0uk0ACAWiyEWiwEA0ul0vw/SYDCITCYDAIhGo4jH4wCAVCqFnp4eAL3/EyEYDCKbzQIAIpEIEokEACCZTCIcDgMAcrkcgsGgnHs4HEYymQQAJBIJRCIRuN1u3HPPPchms0JqcrvdmDNnjhyrGE1K+OR2u3HnnXfCYrGo5hMAzJs3DzU1NYpqcjqduOOOO+B2u8vyyWq1Yt68eaiqqiqp72WzWXz/+9+H2+1WzafBalL7/WQETXa7HfPmzYPNZjOMpr4+mUwmzJs3D9XV1UJqstlsmDdvHux2u6Z9z+FwYN68ebBYLKr6BChf99xuN+6++265zVJ9MpvNuOuuu+B2u0vqezU1NbjjjjtQU1Ojmk+ivZ+MoAkA5syZA7fbbRhNfX2y2Wz43ve+B7fbLaQmk8mE2bNnw+12a973tKh7drsd//zP/wy3262YJrPZjHnz5sHpdJblU36sa7VaB6WJ617lawKMW/fcbjdmz54t/+9j0TS53W5873vfg81mK1oTUKDvhUKgY9vAFKVpyRLkTCbMffZZuMNhxKqrEbNYgPp6pB0Oof92t1qtuPPOO+F2u8v2qdy653a78f3vfx/ZbLYsTU6nU66bVqsVkiTJuXq9Xvn1P5WmfK41NTVwOp0Aej93PB4PgN7PWEmSyqp7qVQKLpcLAGCxWCBJkvz+8ng8sNvtAPSrES6XC45jC4JVVVXyHIjZbIYkSTCbzQiHw3jhhRdkTQ6HQ9akVI3Iv642m63fpL8kSXJ/q6mp6fe6llv33G43qqqqEA6H+81ZFvIpn2tfTYX6Xr42VVdXyzkc79Pxmgr1PSKCJEmIRqN4+umnkcvlCvqUy+UQiURgNpv7aTreJ4vFgkgkMqBP+b5yvCa94IUQpuK54IIL8N3vfhcA0NnZibq6OrmALV26FM3NzQCATZs2Yd26dQCA9vZ21NXVyTEWL16MtrY2AMCGDRuwYcMGAEBbWxsWL14sX1dXV4f29nYAwLp167Bp0yYAQHNzM5YuXQqgtxjW1dWhs7MTALB69Wps2bIFANDQ0IAVK1YA6C0OdXV1coFdsWIFGhoaAABbtmzB6tWrYbFYYLFY8Jvf/EZITRaLBQcPHsTKlSuL1qSETxaLBdu2bcM777yjmk8rV65EbW0totGoopoOHTqEl156SV7EKdWnv/71r6itrcXu3btL6nu/+c1vUF1dDYvFoppPg9Wk9vvJCJq2b9+O2tpafPzxx4bR1NentWvXora2FkePHhVS08cff4za2lps375d0763d+9e1NbW4p133lHVJzXqnsViQSaTwW9+85uyfFq/fj127doFi8VSUt+LRqN46aWX5D8ujFojjKZp5cqVOHjwICwWi2E09fXp448/xnvvvQeLxSKkprVr18Lv98NisWje97Soe9u3b8dbb70Fi8WimKb169ejtrYWhw4dKssni8WCjz76CH/9618HpYnrXuVrMnLds1gs8Pv9WLt2rZCaLBYL3nvvPXz88cdFawLK7HuffQa8+y6emTcPUZcLlmwWG6ZMwYYpU4A77kBbZ6fQf7v/9a9/xUcffQSLxVK2T+XWPYvFgurqavzmN78pS9OkSZMwbdo0AMDIkSPh8/nkXOfPn4+DBw8WpSmf67Rp0zBp0iQAwLhx4zB37lwAvRPOPp9PnsQupe41NzdjxowZAIDhw4fD5/PJE9Vz587FuHHjAGj/fsprmjFjBiZOnAgAmDBhAmYdOzPH4/HA5/PB4/Egm81iypQpuPzyywEAEydOlDWFQiFFasTWrVsBAGPGjMH8+fPl63w+H0aOHCn7tG3btgE1FVv38gtJs2bNwoQJE5DNZvvNWRbyad++fSdoKtT3xowZAwCYMmWKrOl4n47XVKjvpdNp+Hw+DB06FB0dHfjud79b0KdYLIY1a9bICyh5Tcf7NHz4cKxZs2ZAnzZv3lxQk24UOECdYSqCpqYmAkBz586lM888k5qamiiTyVAgEKBcLkdERKFQiJLJJBERxWIxikQiRESUTqcpEAjIsYLBIKVSKSIiikajFI1GiYgolUpRMBiUrwsEApROp4mIKBKJUCwWIyKiZDJJoVCIiIhyuRwFAgHKZDJERBQOhykejxMRUSKRoJ6eHiIiymazFAgEKJvNEhFRT08PJRIJIiKKx+MUDocpHA7T0qVLqb29XUhN4XCYnnvuOTp06FDRmoiobJ/C4TA9++yzdPjwYdV8OnToEC1btoxCoZCimgKBAP3ud7+Tn1eqT0eOHKFly5ZRd3d3SX2vvb2dli5dSuFwWDWfBqtJ7feTETR1dXXRsmXLqLOz0zCa+vrU0dFBy5Yto2AwKKSmzs5OWrZsGXV1dWna944ePUrLli2jw4cPq+qTGnWv7+dYOT4dPnyYnn32WQqHwyX1vVAoRL/73e/k5xm1RhhN06FDh+i5557rN+6odE19fers7JT7tYiaOjo65Ndf676nRd3r6uqSx2RKaTp8+DAtW7aMAoFAWT7lx7pHjhwZlCaue5Wvych1L/+3Y0dHh5Ca8u+7zs7OojURldn3/vVfiQA6cPbZ9NycORR2uShaXU3R6mqirVuF/9v9yJEj8udYuT6VW/f6jjlL1eT3+8npdFJNTQ0BIKvVSpIkEQACQF6vlz777LOiNLW2thIAqqmpIafTSQDIbreTx+MhAGQymUiSJGptbR1Q06l82r17N7lcLgJAFouFJEkik8lEAMjj8ZDdbie/36/5+ymv3eVykcPhIABUVVVFbrebAJDZbCZJkshsNpPL5aK7776bhgwZQgDI4XDImlpbWxWpES0tLQSAbDYbeb1e2U9Jkshqtco+7dq1q6S+19entrY2AkBut5uqqqrI5XLJc5YD+fTpp5/20+T3+wv2PZvNRgCourqaWlpa+vnk9/sLajq+7/n9ftqzZw9JkkQej4dmz55NZ555ZkGf2traaMeOHWQ2m/tpOt4ni8VCO3bsGNCn5ubmgu+n/FdTUxNpCS+EMBVLfiFk8uTJ5HA4NH/zaEE8Hqe//OUvcqEVDb3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfRNemS37vvks0fTrFq6vpL5MnU9zhIAKIrrii+BgdHUQffUR0bBJyIESueUrEUiKX/GTyyb78fr9isQYTT+18laRY7fkJ9fycnlq5a+HFQG2dTN9A7Zbi62A05q89VW59ry3ntTtVDK3nck1ExzbxYpgKY+fOnbj00kvln5uamnDJJZfomBHDMAzDMAzDMAzDMMwgOHAAeO454Nlngc8/B373O+Cee4p77s9/DvzsZ8D48cC8ecCsWcCxPf6ZwbF3716MPna+y0D4/X6MGjVKkViDiVdqG+XEL5VitZ8KpXLXwovBtnWydkvxdTAaAahy7UCv3aly03oul88IYSqeiRMnyvvrGY1kMoktW7bIe+2Jhl75adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtMbJvomvTteYNG4YtU6YguWsXsG4dcNttxT0xm+1dPAGAxkZg/nzg7LOBe+8Fduzo34bANU+JWKL3L6YwVVVVhp7TE1mfyLmpCS+EMBXP+PHjYbfb9U5DFVKpFBobG5FKpfROpSB65adFu2q1oVTccuOI3reYwhjdN9H1GbnmqdUO1zymHIzum+j69MyvUsd6otQ8JXNhtMXIvomuTYial80CN94IuFzFPfFPf+q9g6Qv0WjvHSVvv124DQFrnhKxRO9fTGHsdruh5/RE1idybmrCW2MxFQtvjcUwDMMwDMMwDMMwzGnJtGnA66+f+PuqKuDgQWDIEO1zqmB4ayxl4K2xeGusvvDWWAyjMJIkwWw2ZlfO5XIIBoPI5XJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E11ZxNW//fmD9+sKP3XLLCYsgItc8JWKJ3r+YwpjNZkPP6YmsT+Tc1OT0UssYEp/Ph9raWgBANptFMBhE/kannp4e+dbIeDyOaDQKAMhkMggGg3KMUCiEdDoNAIjFYojFYgCAdDqNUCgkXxcMBpHJZAAA0WgU8XgcQO9tmD09PQAAIkIwGEQ2mwUARCIRJBIJAL37VobDYQAnflCHw2F5P8tEIoFIJIKenh7U1dWhvb1dSE35/A4ePFi0JiV8yrd7+PBh1Xw6ePAg6urqEAwGFdV09OhR1NXVyXmU6tORI0dQV1eHrq6ukvpee3u7nIdaPg1Wk9rvJyNo6uzsRF1dHTo7Ow2jqa9Phw4dQl1dHQKBgJCa+r7+Wva97u5uueap6ZMada/v51g5PnV0dMg1q5S+FwwGZW1q+STa+8kImvJ9sqenxzCa+vqUryk9PT1CasrX5J6eHs37nhZ1r+/rr5SmfK06evRoWT7la+eRI0cGpYnrXuVrMnLdy/frQ4cOCakpn19nZ2fRmgBl+l7fv82K1nTkCOLf+lavJrsdPR5PryaTCcE77yz+b/f9+0vWlP+btKenp2yfyq17fcec5fjkdDpRU1MDALBarZAkSc7V6/XKr/+pNOVzrampgdPpBNC7FZHnmE8mkwmSJJVV91KpFFzHtlGzWCyQJAkmkwkA4PF45C2P9KoRLpcLDocDQO95FG63G0D/CXiPxwOfz4dhw4YBABwOh6xJqRqRf11tNhu8Xq98nSRJsFqtsk99X9dy657b7UZVVZWsLz9nWcinfK59NRXqezabDQBQXV0t53C8T8drKtT3iAiSJEGSJDm3Qj7lcjlEIhF5oSSv6XifLBYLIpHIgD7l+8rxmvSCF0KYimfLli2YMmUKgP/9gyZfwJYuXYrm5mYAwKZNm7Bu3ToA/zvQyLN48WK0tbUBADZs2IANGzYAANra2rB48WL5ur6TOevWrcOmTZsAAM3NzVi6dCmA3mLYdwC1evVqbNmyBQDQ0NCAFStWAID8QZ0vsCtWrEBDQ4OsafXq1fB4PLjjjjuwbNkyITV5PB5cc801eP3Y7bjFaFLCJ4/Hg4svvlh+XdXw6fXXX8cDDzwgx1NKUz5O/kOoVJ8aGhrwwAMP4MCBAyX1vWXLlmHOnDnweDyq+TRYTWq/n4ygac+ePXjggQfQ3NxsGE19fXrrrbfwwAMPyPFE09Tc3IwHHngAe/bs0bTvdXZ24oEHHsCWLVtU9UmNuufxeHDzzTdj2bJlZfm0adMmjB8/Hh6Pp6S+dzxGrRFG0/T666/jmmuugcfjMYymvj41NzfjnHPOgcfjEVLTW2+9ha9+9avweDya9z0t6t6ePXswbNgweDwexTRt2rQJDzzwgByvVJ88Hg8uuOCCfn2F6x7XvUrVlPfJ4/Hgq1/9Kt566y0hNXk8HpxzzjlyDlr2vZdeegk33ngjPB5P8ZpaW7Hphz8EWlvR/K//iqX33NOr6UtfQt2HHxb/t/tXvgJcdRVW/PrXaPjoo0FpamhowAUXXACPx1O2T+XWPY/Hgzlz5mDZsmVl+TRp0iRMmzYNADBy5Ej4fD451/nz58sLSafSlM912rRpmDRpEgBg3LhxmDt3LoDeCWefzydPYpc6jpgxYwYAYPjw4fD5fPJE9dy5czFu3DgA2r+f8ppmzJiBiRMnAgAmTJiAWbNmAYC8OJD//O3s7MSYMWMAABMnTpQ1hUIhRWrE1q1bAQBjxozB/Pnz5et8Ph9Gjhwp+7Rt27YBNRVb9/ILSbNmzcKECRPQ09PTb86ykE/79u07QVOhvpd/jaZMmSJrOt6n4zUV6nvpdFrO4cknn8SUKVMK+hSLxbBmzRp57iqv6Xifhg8fjjVr1gzo0+bNmwtq0g1imAqlqamJAJDD4SCXy0VNTU2UyWQoEAhQLpcjIqJQKETJZJKIiGKxGEUiESIiSqfTFAgE5FjBYJBSqRQREUWjUYpGo0RElEqlKBgMytcFAgFKp9NERBSJRCgWixERUTKZpFAoREREuVyOAoEAZTIZIiIKh8MUj8eJiCiRSFBPTw8REWWzWQoEApTNZomIqKenhxKJBBERxeNxCofDRESsiTWxJtbEmlgTa2JNrIk1sSbWxJpYE2tiTQNr6uwkevllyr36avGaFi2irNlMBFCP202JM88k+n//X4r//e9iaNLYJ7/fT06nk2pqaggAWa1WkiSJABAA8nq99NlnnxWlqbW1lQBQTU0NOZ1OAkB2u508Hg8BIJPJRJIkUWtra8madu/eTS6XiwCQxWIhSZLIZDIRAPJ4PGS328nv92vuU167y+Uih8NBAKiqqorcbjcBILPZTJIkkdlsJgDkdrupqqqq3/weAGptbVWk77W0tBAAstls5PV6ZT8lSSKr1Sr7tGvXrrL7Xltb20k1FfLp008/7afJ7/cX7Hs2m40AUHV1NbW0tPTzye/3F9R0fN/z+/20Z88ekiSJLBbLSX1qa2ujHTt2nNIni8VCO3bsGNCn5ubmgu+n/FdTUxNpCS+EMBVLfiHkvvvuI7fbrfmbRwt6enpo8eLFcnEVDb3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfRNd22tW8bJboC18gAk78GjWq93EN8xZhrJefTD7Zl9/vVyzWYOKpna+SFKs9P7men9NTK3ctvBiorZPpG6jdUnwdjMb8tafKre+15bx2p4qh9Vwub43FVDyNjY3y/nNGw263Y/z48fLejqKhV35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRluM7Jvo2k67mveXvwCtrYUvvuceoIgDlJXMm8d6pyepVMrQc3oi6xM5NzUxER07zYRhKoydO3fi0ksvlX9uamrCJZdcomNGDMMwDMMwDMMwDMMwgjNzJrBq1Ym/t1qB/fuBs8/WPied2bt3L0aPHn3Sa/x+P0aNGqVIrMHEK7WNcuKXSrHaT4VSuWvhxWDbOlm7pfg6GI0AVLl2oNfuVLlpPZfLd4QwFc/kyZPhcDj0TkMVEokENm7ciEQioXcqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtp1XNy+WA7u7CF/6f/1P0IkgiElEsbx7rnZ44HA5Dz+mJrE/k3NSEF0KYimfUqFGwWq16p6EKmUwGe/fuRSaT0TuVguiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRFiP7Jrq206rmmc3A228DO3cCPh9wxhn/e+G8ecXH9Pmwt74emVdeAZJJ5fLT4fmMPlitVkPP6YmsT+Tc1IS3xmIqFt4ai2EYhmEYhmEYhmEYpgzicWD1auCNN4CXXirqfBAEg8CIEb3PBYBhw4DZs4F77wW++EU1s1UN3hpLGXhrLN4aqy+8NRbDKExtbS0sFoveaahCNptFR0cHstms3qkURK/8tGhXrTaUiltuHNH7FlMYo/smuj4j1zy12uGax5SD0X0TXZ+e+VXqWE+UmqdkLoy2GNk30bWd1jXP6QS+9z1g5criFkEA4MUXkU2l0FFbi6zFAnR1AY8+Clx4IbBpk7L5afB8Rh8sFouh5/RE1idybmrCCyFMxXPffffhrLPOAtD74RcMBpG/0amnpwepVAoAEI/HEY1GAfTeNhkMBuUYoVAI6XQaABCLxRCLxQAA6XQaoVBIvi4YDMq3WkajUcSP/e+HVCqFnp4eAAARIRgMyh/AkUhE3qcymUwiHA4DAHK5HILBIHK5HAAgHA4jeex20kQigUgkgnA4jCVLluDAgQNCasrnd+jQoaI1KeFTvt0jR46o5tOhQ4ewZMkShEIhRTUFAgEsWbJE7gel+tTZ2YklS5agu7u7pL534MABOQ+1fBqsJrXfT0bQ1NXVhSVLlqCrq8swmvr61NHRgSVLliAYDAqpqe/rr2XfO3r0qFzz1PRJjbrX93OsHJ8OHz4s16xS+l4oFJK1qeWTaO8nI2jK98lwOGwYTX19yteUcDgspKZ8Tc7nbLS61/f1V0pTvlYFAoGyfMrXzs7OzkFp4rpX+ZqMXPfy/bqjo0NITfn8urq6itYEKNP3+v5tVhF/uyeTwJIl6Bw2DEvuuw9htxsZqxVBSQJqa4Grr9a87vUdc5bjk9PpRE1NDYDerYMkSZJz9Xq98ut/Kk35XGtqauB0OgEAdrsdHo8HAGAymSBJUll1L5VKweVyAeid1JYkCSaTCQDg8Xhgt9sB6FcjXC6XfP5EVVUV3G43AMBsNkOSJJjNZrjdbtx3330YOnQogN5zK/KalKoR+dfVZrPB6/XK10mSJG8LVVNT0+91Lbfuud1uWXPfOctCPuVz7aupUN+z2WwAgOrqajmH4306XlOhvkdEkCQJXq9Xzq2QT7lcDpFIBOZji6N5Tcf7ZLFYEIlEBvQp31eO16QXvBDCVDx//etfMWXKFABAZ2cn6urq5AK2dOlSNDc3AwA2bdqEdevWAQDa29tRV1cnx1i8eDHa2toAABs2bMCGDRsAAG1tbVi8eLF8XV1dHdrb2wEA69atw6Zj/9OhubkZS5cuBdBbDOvq6uQP8NWrV2PLli0AgIaGBqxYsQJAb3Goq6uTC+yKFSvQ0NAAANiyZQtWr14Nr9eL2bNnY9myZUJq8nq9uPbaa/H6668XrUkJn7xeLy699FJ89NFHqvn0+uuv46GHHoLJZFJUU/6DMv8BXKpPjY2NeOihh3DgwIGS+t6yZctw3333wev1qubTYDWp/X4ygqY9e/bgoYceQnNzs2E09fXprbfewkMPPYRUKiWkpubmZjz00EPYs2ePpn2vq6sLDz30ED766CNVfVKj7nm9Xtx+++1YtmxZWT699957+MpXvgKv11tS38v/sZH/16g1wmiaXn/9dVx77bXwer2G0dTXp+bmZpx77rnwer1Canrrrbfwta99DV6vV/O+p0Xd27NnD84880x4vV7FNL333nt46KGHEA6Hy/LJ6/Xii1/8IhobGweliete5Wsyct3zer342te+hrfeektITV6vF+eee66cg5Z976WXXsJ3vvMdeL3eyvjbfd06oKkJjRMm4IuffgpvKIT2kSNR5/MBd98N2Gya1738pO6yZcvK8mnSpEmYNm0aAGDkyJHw+XxyrvPnz8fBgweL0pTPddq0aZg0aRIAYNy4cZg7dy6A3glnn88nT2KXOo6YMWMGAGD48OHw+XzyRPXcuXMxbtw4ANq/n/KaZsyYgYkTJwIAJkyYgFmzZgHonfz3+XzweDwIhUI4fPgwLrjgAgDAxIkTZU2hUEiRGrF161YAwJgxYzB//nz5Op/Ph5EjR8o+bdu2bUBNxda9/ELSrFmzMGHCBIRCoX5zloV82rdv3wmaCvW9MWPGAACmTJkiazrep+M1Fep76XQaPp8PdrsdixYtwpQpUwr6FIvFsGbNGnkBJa/peJ+GDx+ONWvWDOjT5s2bC2rSDWKYCqWpqYkAkMPhIJfLRU1NTZTJZCgQCFAulyMiolAoRMlkkoiIYrEYRSIRIiJKp9MUCATkWMFgkFKpFBERRaNRikajRESUSqUoGAzK1wUCAUqn00REFIlEKBaLERFRMpmkUChERES5XI4CgQBlMhkiIgqHwxSPx4mIKJFIUE9PDxERZbNZCgQClM1miYiop6eHEokEERHF43EKh8NERKyJNbEm1sSaWBNrYk2siTWxJtbEmlgTa2JNYmhauJAIoJjTSZGaGiKA0lYrBSSJaO/eytSUTJLf7yen00k1NTUEgKxWK0mSRAAIAHm9Xvrss8+K0tTa2koAqKamhpxOJwEgu91OHo+HAJDJZCJJkqi1tbVkTbt37yaXy0UAyGKxkCRJZDKZCAB5PB6y2+3k9/s173t57S6XixwOBwGgqqoqcrvdBIDMZjNJkkRms5kAkNvtpqqqqn7zewCotbVVkfdTS0sLASCbzUZer1f2U5Ikslqtsk+7du0qu++1tbWdVFMhnz799NN+mvx+f8G+Z7PZCABVV1dTS0tLP5/8fn9BTcf3Pb/fT3v27CFJkshisZzUp7a2NtqxY8cpfbJYLLRjx44BfWpubi74fsp/NTU1kZbwQghTseQXQnw+H3k8Hs3fPFoQCoXoiSeekIuwaOiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRFiP7Jro2rnmDpKGBQj/4AT3x4IMU8niIAKJvf7v452/fTjRlCtGaNUSplBBjvfxk8sm+/H6/YrEGE0/tfJWkWO35hYD8nJ5auWvhxUBtnUzfQO2W4utgNOavPVVufa8t57U7VQyt53J7Nw5jmApm48aN8v54RsPhcGDy5Mnyfn2ioVd+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45g2S8ePhePxxTP773+EYOxZ49lng3nuLf/6SJcCGDb1fZ58Nx9y5PNY7DUkkEoae0xNZn8i5qYmJ6NhpJgxTYezcuROXXnqp/HNTUxMuueQSHTNiGIZhGIZhGIZhGIY5DSECjp1LdFKiUWDECODYuRcyJhPw0EPA//yPOvmdgr1792L06NEnvcbv92PUqFGKxBpMvFLbKCd+qRSr/VQolbsWXgy2rZO1W4qvg9EIQJVrB3rtTpWb1nO5fFg6U/FMnToVTqdT7zRUIR6P480330Q8Htc7lYLolZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlMyF0RYj+ya6Nq55CsQsZhEEAF5++YRFkLjTiTe/9S3EL75YmVyYisDpdBp6Tk9kfSLnpia8EMJUPJIkwWw2ZlfO5XIIBoPI5XJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E18Y1T8OYS5acGMtsRvDMM5G74QZtc2F0xWw2G3pOT2R9IuemJrw1FlOx8NZYDMMwDMMwDMMwDMMwFUJzMzDQvM2//Avw2GPa5tMH3hpLGXhrLN4aqy+8NRbDKMyoUaNgtVr1TkMVMpkM9u7di0wmo3cqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPM0innxxcCWLcCcOUCfLXkyViv23nRT8bF++lPgjTeAbLb0XBjdsVqthp7TE1mfyLmpCS+EMBXP7Nmz4XK59E5DFSKRCJ5//nlEIhG9UymIXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap1FMkwn46leBpUuBQ4eA3/wGuOwyRK67Ds//5S/FxfrsM+A//xO48UbggguA//xPRNrahO5fTGFcLpeh5/RE1idybmrCW2MxFQtvjcUwDMMwDMMwDMMwDFPBEAGhECBJxV3/4x8Djz7a/3cWCzBtGrBiBVBdXVIavDWWMvDWWLw1Vl94ayyGURiHwyGvYGazWQSDQeTX93p6epBKpQAA8Xgc0WgUQO9tk8FgUI4RCoWQTqcBALFYDLFYDACQTqcRCoXk64LBoHyrZTQaRTweBwCkUin09PQAAIgIwWAQ2WO3aEYiESQSCQBAMplEOBwGcOJhXuFwGMlkEgCQSCTk/8nAmlgTa2JNrIk1sSbWxJpYE2tiTayJNbEm1mRITdksIEnFaUomEVm1CgmHo1dTVRXCbjeQzSLX3o5gKlWWJqfTiZqaGgC9WwdJfRZnvF6v/PqfSlP+9a+pqYHz2BZgdrsdHo8HAGAymSBJUlk+pVIpeS7MYrFAkiSYTCYAgMfjgd1uV9anQfY9l8sFxzGfqqqq4Ha7AZx4SLfb7UZVVRUAdeb38q+rzWaD1+uVr5MkSd4Wqqampt/rWu77aSBNhXzK59pXU6G+Z7PZAADV1dVyDsf7dLymQn2PiCBJEiwWy0l9yuVyiEQip/TJYrEgEokM6FO+rxyvSS94IYSpeP71X/8VM2fOBAB0dnairq5OLmBLly5Fc3MzAGDTpk1Yt24dAKC9vR11dXVyjMWLF6OtrQ0AsGHDBmzYsAEA0NbWhsWLF8vX1dXVob29HQCwbt06bNq0CQDQ3NyMpUuXAugthnV1dejs7AQArF69Glu2bAEANDQ0YMWKFQB6i0NdXZ1cYFesWIGGhgYAwJYtW7B69WqEQiH88pe/FFZTKBTCr371K7zwwgtFa1LCp1AohMceewyvv/66aj698MILWLRokZyDUpp27dqFuro6+cOqVJ82bNiARYsWYevWrSX3vV/+8pcIhUKq+TRYTWq/n4yg6cMPP8SiRYuwceNGw2jq69PKlSuxaNEi7NmzR0hNGzduxKJFi/Dhhx9q2ve2b9+ORYsW4fXXX1fVJzXqXigUwiOPPFK2T6+++ioee+wxhEKhkvpeXlM+nlFrhNE0vfDCC/jVr36FUChkGE19fdq4cSMef/xxhEIhITWtXLkSjz76KEKhkOZ9T4u69+GHH+KJJ55AKBRSTNOrr76KRYsWyeO9Un0KhUJ4/PHH5eu47nHdq2RNeZ9CoRAeffRRrFy5UkhN+ffdxo0bi9YEKNP3fvvb3+KRRx5BKBSqqL/dN2zYIH+OletT0XXv1Vex+tprsWXixF6fJkzAilmzEPJ68csbbyxb06RJkzBt2jQAwMiRI+Hz+eRc58+fj4MHDxalKf/6T5s2DZMmTQIAjBs3DnPnzgXQO+Hs8/nkeYFS6l5zczNmzJgBABg+fDh8Pp88UT137lyMGzcOgPbvp7ymGTNmYOIxnyZMmIBZs2YB6J389/l88Hg88Hq9ePDBB3HVVVcBACZOnChrCoVCitSIrVu3AgDGjBmD+fPny9f5fD6MHDlS9mnbtm0Daiq27uUXkmbNmoUJEybA6/X2m7Ms5NO+fftO0FSo740ZMwYAMGXKFFnT8T4dr6lQ30un0/D5fBg9ejQWLFiAmTNnFvQpFothzZo18gJKXtPxPg0fPhxr1qwZ0KfNmzcX1KQbxDAVSlNTEwGgyy67jCRJoqamJspkMhQIBCiXyxERUSgUomQySUREsViMIpEIERGl02kKBAJyrGAwSKlUioiIotEoRaNRIiJKpVIUDAbl6wKBAKXTaSIiikQiFIvFiIgomUxSKBQiIqJcLkeBQIAymQwREYXDYYrH40RElEgkqKenh4iIstksBQIBymazRETU09NDiUSCiIji8TiFw2FKpVLU1NRER44cEVJTKpWi7du3U3d3d9GaiKhsn1KpFDU2Nso61PCpu7ubWlpaKJFIKKopFovR1q1bZW9K9SkUClFLS4v8fTGa+va9I0eO0M6dOymVSqnm02A1qf1+MoKmcDhMLS0t8vdG0NTXp6NHj1JLSwvF43EhNfX09FBLS4v8fTGalPApGo1SS0uL/L1aPqlR9/p+jpXjUyAQoMbGRkqlUiX1vUQiQVu3bpV1GLVGGE1Td3c3bd++nVKplGE09fWpp6eH/v73v1MqlRJS09GjR2nbtm2USqU073ta1L1wOCy//kppCgQC1NLSIn9fqk+pVIoaGhpkHVz3uO5Vsqa8T6lUirZt20ZHjx4VUlMqlaK///3v/d5DWvW9zs5O2rFjB6VSqYr62z0UClFDQwOlUqmyfSq67k2aRGGXi+IOBxFAiaoq6nG7KXXGGbRz61Y6cuRIyZri8ThJkkQ1NTUEgKxWK0mSRAAIAJ155plynziVptbWVgJANTU15HQ6CQDZ7XbyeDwEgEwmE0mSRK2trf18Gkzf2717N7lcLgJAFouFJEkik8lEAMjj8ZDdbie/36/5+ymv3eVykcPhIABUVVVFbrebAJDZbCZJkshsNpPNZqPx48fLr7nD4ZA1tba2KlIjWlpaCADZbDbyer2yn5IkkdVqlX3atWvXyfteET61tbURAHK73VRVVUU2m02esxzIp08//bSfJr/ff0Lf83q9ZLPZCABVV1dTS0tLP5/8fn9BTcf3Pb/fT3v27CFJkqiqqorGjh1LkiQV9KmtrY127NhBZrO5n6bjfbJYLLRjx44BfWpubi74fsp/NTU1kZbwGSFMxcJnhDAMwzAMwzAMwzAMw5wmvPcesGQJsHo1cGz7HQDAffcBff5n/En5+OPeM0muvRYw998o57bbbsPLL79c8GkzZ86U72g6FXxGCJ8RUix8RgifEcIwg2L69OmoLvEwLNGJxWKor6+Xb68TDb3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfRNfGNU/fmEXHuuaa3gPRDxzoPTD9wgt7nz97dvG5PPww8E//BFx0EfDII8CxbY+A3m19Zs6cKZ+ZAPSehzBz5kx5uyRGOaqrqw09pyeyPpFzUxNeCGEYhmEYhmEYhmEYhmEYpjIYNgz40Y+AXbuAjz4CLrusuOft3w/86U+937e2Ag89BJxzDnDbbcCOHaiursbKlSsRCATg9/vh9/sRCASwcuXK027CmGGMCG+NxVQsvDUWwzAMwzAMwzAMwzAMUxQ/+xnw858Xfuz994Gvf12RZnhrLN4aq1h4ayzeGothBsXYsWNhs9n0TkMV0uk0du3ahXQ6rXcqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0janJWC+TAZ59tvBj48YBX/taSW0zpWOz2Qw9pyeyPpFzUxNeCGEqHiPvacf7qOrXLp8RwoiI0X0TXZ+Ra55a7XDNY8rB6L6Jro/3y9cvJp8RcvpiZN9E18Y1T9+Ymoz13ngDOHiw8GPz5gEmU0ltM6Vj9HMqRNYncm5qwltjMRULb43FMAzDMAzDMAzDMAzDnJJPPgH+53+A117rvTskj8PRu0ByxhmnjpHL9Z5JMnHiSRdOeGss3hqrWHhrLN4ai2EYhmEYhmEYhmEYhmEYRhm+8hVg9Wrg88+B//5vID9xO3NmcYsgAPDuu8DVVwOXXgrU1QGBgGrpMgyjPLwQwlQ8CxcuhCRJeqehCsFgEA8//DCCwaDeqRREr/y0aFetNpSKW24c0fsWUxij+ya6PiPXPLXa4ZrHlIPRfRNdn575VepYT5Sap2QujLYY2TfRtXHN0zempmO92lrg//f/A9ragDffBH784+IbWrKk99/mZsDnA0aMAO66C9iypZS0T3skSTL0nJ7I+kTOTU14ayymYslvjTVq1Ci0t7ejsbHRcFtjZTIZtLe3Y+TIkbBarXqncwJ65adFu2q1oVTccuOI3reYwhjdN9H1GbnmqdUO1zymHIzum+j69MyvUsd6otQ8JXNhtMXIvomujWuevjErYqx3+DAwcmT/bbXy3Hxz790mx+CtsYrbHspqtWLkyJFob29H5rjX1QhbY51M30DtarU11qlyM+rWWOJ9+jDMINm7d6/eKaiG1WrV/ENrMOiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRFiP7Jro2rnn6xqyIsd6yZYUXQYDew9aZQZPJZAw9pyeyPpFzUxPeGoupeG677TbU1NTonYYqRKNRrFy5EtFoVO9UCqJXflq0q1YbSsUtN47ofYspjNF9E12fkWueWu1wzWPKwei+ia5Pz/wqdawnSs1TMhdGW4zsm+jauObpG1P4sV4uB/zud4Ufu+AC4Lrr1GnX4NTU1Bh6Tk9kfSLnpia8EMJUPMFgELlcTu80VMFsNkOSJJjNYr5V9cpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmiLkX0TXRvXPH1jCj/WCwSAceOAQvHvvbfw7wtQ5JHspw25XM7Qc3oi6xM5NzUR8xOIYQbBxo0bYbFYAADZbBbBYBD5o296enqQSqUAAPF4XP7fAZlMpt8hWqFQCOl0GgAQi8UQi8UAAOl0GqFQSL4uGAzKe+dFo1HE43EAQCqVQk9PDwCAiBAMBpHNZgEAkUgEiUQCAJBMJhEOhwGcWHTC4TCSySQAIJFIIBKJwOl04p/+6Z+QTCaF1OR0OvHNb35Tfn4xmpTwyel04pprrpGfr4ZPmUwGU6dORVVVlaKabDYbJk6cCKfTWZZPADB16lRYLJaS+l4ymcSUKVPgdDpV82mwmtR+PxlBk9lsxtSpU2EymQyjqa9P2WwWU6dOhd1uF1KTyWTC1KlTYTabNe17VqsVU6dOBRGp6pMadc/pdOIf//Ef5eeX6lMul8OkSZPgdDpL6ntVVVWYOHEiqqqqVPNJtPeTETRlMhl885vfhNPpNIymvj6ZTCZ8/etfh9PpFFJTNpvF5MmT4XQ6Ne97WtQ9s9mMr33ta3A6nYppyuVymDp1Kmw2W1k+OZ1OfOMb35B/z3WP614la8r75HQ6MXny5H41RiRNTqcTX//612EymYrWBCjT91KpFK677jo4nc6K+tsdAL7xjW/A6XSW7VO5dc/pdGLKlClIJpPq+DR0KEIvvoj0Z58BP/0pYqNHI1ZdDdhsSP/zP5+gKZ9rTU2N/Le/3W7Hnzwe/B3APJMJIySprLqXSqXgcrkAABaLBZIkyf3X4/HAbrefXFMJPgHF9z2XywWHwwGg9zPJ7XYD6L9oFY/H8cEHH8j6HA6HrEmpGpF/XW02G7xer3ydJEnyeTI1NTX9Xtdy657b7UZVVRXi8Xi/OctCPuVz7avJarX2O8Tc6/XCZrMBAKqrq+UcjvfpeE19+57H45E1SZKEVCqFN998ExaLpaBPuVwOkUhEXlzMazreJ4vFgkgkMqBP+b5yvCa94IUQpuKZPn06brnlFgBAZ2cn6urq5AK2dOlSNDc3AwA2bdqEdevWAQDa29tRV1cnx1i8eDHa2toAABs2bMCGDRsAAG1tbVi8eLF8XV1dHdrb2wEA69atw6ZNmwAAzc3NWLp0KYDeYlhXV4fOzk4AwOrVq7FlyxYAQENDA1asWAGgtzjU1dXJBXbFihVoaGgAAGzZsgWrV69GKpXCX//6V2E1pVIpvP7663jxxReL1qSET6lUCitXrsSbb76pmk8vvvgiGhsb0dXVpagmv9+Puro6+YOhVJ/effddNDY2Yvv27SX3vbyHavk0WE1qv5+MoOnjjz9GY2MjPvjgA8No6uvTK6+8gsbGRhw8eFBITR988AEaGxvx8ccfa9r3du/ejcbGRrz55puq+qRG3UulUti4cWPZPr322mvy52IpfS+vqaurSzWfRHs/GUHTiy++iNdffx2pVMowmvr69MEHH2D58uVIpVJCanrllVdQX1+PVCqled/Tou59/PHHePbZZ+UJDyU0vfbaa2hsbJTHe6X6lEql8OKLL+Ldd98dlCaue5Wvych1L5VKob6+Hq+88oqQmlKpFJYvX44PPvigaE2Acn3v7bffRiqVqqi/3d999128+OKLSKVSZftUbt3Lv2dUrxGpFPDww9jw2GPYsGgR8F//hbZw+ARN+VynTZuGSZMm9X4/bhw2z52LCQCerKrCvT4f8J//CXzySUl1r7m5GTNmzAAADB8+HD6fT56onjt3LsaNG1ecJoXfT/mJ+RkzZmDixIkAgAkTJmDWrFkAeif/fT6fvFhzzz334IorrgAATJw4UdYUCoUUqRFbt24FAIwZMwbz58+Xr/P5fBg5cqTs07Zt2wbUVGzdyy8kzZo1CxMmTIDdbu83Z1nIp3379p2gaeTIkfD5fHKu8+fPx5gxYwAAU6ZMkTUd79PxmvJ9b9y4cZg7dy6A3sUTn8+Hs88+G+PHj8ctt9xS0KdYLIY1a9bICyh5Tcf7NHz4cKxZs2ZAnzZv3lxQk24Qw1QoTU1NBIAefPBBqq2tpaamJspkMhQIBCiXyxERUSgUomQySUREsViMIpEIERGl02kKBAJyrGAwSKlUioiIotEoRaNRIiJKpVIUDAbl6wKBAKXTaSIiikQiFIvFiIgomUxSKBQiIqJcLkeBQIAymQwREYXDYYrH40RElEgkqKenh4iIstksBQIBymazRETU09NDiUSCiIji8TiFw2EKhUL0+OOP0/79+4XUlM/vwIEDRWsiorJ9CoVC9Nhjj1FHR4dqPh04cICeeOIJCgQCimrq7u6mxx57TM6jVJ8OHz5MTzzxBHV2dpbU9/bv30+PP/44hUIh1XwarCa1309G0HTkyBF64okn6PDhw4bR1NengwcP0hNPPEFHjx4VUlP+fXfkyBFN+15XVxc98cQT1NHRoapPatS9vp9j5fh06NAhuXaW0vcCgQA99thj8mtr1BphNE0HDhyQP6uMoqmvT4cPH5b7tYiaDh48KL/+Wvc9LerekSNH5NdfKU2HDh2iJ554grq7u8vyKT/WPXz48KA0cd2rfE1Grnv5McHBgweF1HT8+07Lvvf555/LvlfS3+59P8fK9ancutd3zClCjWhtbSUAVFNTQ06nkwDQUrudQh4PEUA5k4kCkkQZi4XIZKLwZ58Nuu7t3r2bXC4XASCLxUKSJJHJZCIA5PF4yG63k9/v1/z9lNfucrnI4XAQAKqqqiK3200AyGw2kyRJZDabyePx0IMPPkjDhg0jAORwOGRNra2tivjU0tJCAMhms5HX6yUABIAkSSKr1Sr7tGvXrpL6Xl+f2traCAC53W6qqqqS9dXW1g7o06efftpPk9/vJ6vVSpIkybl6vV6y2WwEgKqrq6mlpaWfT36/v6CmfN+z2+3k8XjI7/fTnj17SJIkkiSJfD4f1dbWFvSpra2NduzYQWazuZ+m432yWCy0Y8eOAX1qbm4mACdoyn81NTWRlpiIjt27wjAVxs6dO3HppZfKPzc1NeGSSy7RMSOGYRiGYRiGYRiGYRjmdGbv3r0YPXq0/LME4CAAZ6GLr78eeOONstsohN/vx6hRowYduxyKyasYlMq92HyUaK8U7ce3W4qvg9EIQJVrB3rtTpWb1nO5vDUWU/E4HA55fz2jQURIJBIQdb1Sr/y0aFetNpSKW24c0fsWUxij+ya6PiPXPLXa4ZrHlIPRfRNdn575VepYT5Sap2QujLYY2TfRtXHN0zem0cd6d2KARRCg97D10xSTyWToOT2R9Ymcm5rwQghT8SxYsKDfgUdGIhQK4Ze//GW/w49EQq/8tGhXrTaUiltuHNH7FlMYo/smuj4j1zy12uGax5SD0X0TXZ+e+VXqWE+UmqdkLoy2GNk30bVxzdM3ptHHehcN8PtMbS1www3FBRF0kaccvF6voef0RNYncm5qwltjMRVLfmus2tpadHZ2Ytu2bYbbGiubzaKzsxPDhw+HxWLRO50T0Cs/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MtRvZNdG1c8/SNabSxXqHtgC4A8H0AcwCcdex3wR/+EFKfg75PynPPAc8+C8ybB9x6K/YeOVLxW2NZLBYMHz4cnZ2dyGaz/R4zwtZYJ9M3ULtabY11qtyMujWWVbOWGEYlOjo69E5BNSwWC2pra/VOY0D0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWOeDmO9PQB+AuCnAG4CcC+AsTNnQio2wJIlwMcfA1u2AD4fhkyfjksA7FQlW23IZrOGntMTWZ/IuakJb43Fzp5LjAAAR35JREFUVDyzZ8+Gy+XSOw1ViEQiWL58OSKRiN6pFESv/LRoV602lIpbbhzR+xZTGKP7Jro+I9c8tdrhmseUg9F9E12fnvlV6lhPlJqnZC6MthjZN9G1cc3TN+bpNNZLA1gNYAqA7IgRxT2poaF3ESRPKATP88+jCcD/q3yKmuFyuQw9pyeyPpFzUxNeCGEqnr179yKTyeidhipYrVaMGjUKVquYN2/plZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlMyF0RYj+ya6Nq55+sbksd4pWLJkwIfe1DANpclkMoae0xNZn8i5qQmfEcJULPkzQvJova8cwzAMwzAMwzAMwzAMw/RF0XMpwmFgxAigwN0ufwFwbbnxFWYwZ4ScDCOcEVIMep0RovS1lXJGCN8RwlQ8EydORFVVld5pqEIymcSWLVuQTCb1TqUgeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xeax3Et55p+AiCAAMfJ9IZVBVVWXoOT2R9Ymcm5rwQghT8YwfPx52u13vNFQhlUqhsbERqVRK71QKold+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45ukbk8d6J2H6dKC5GfD5gDPOkH+dHTIEa4uNkUwCN90E/OEPvd8Lgt1uN/Scnsj6RM5NTXhrLKZi4a2xGIZhGIZhGIZhGIZhGJFQbTumeBxYvRp45hmExo2D9MwzxcV/6SVg1qzeXw4bBsyeDdx7L/DFLxbfdpHw1li8NVZfeGsshlEYSZJgNhuzK+dyOQSDQeRyOb1TKYhe+WnRrlptKBW33Dii9y2mMEb3TXR9Rq55arXDNY8pB6P7Jro+PfOr1LGeKDVPyVwYbTGyb6Jr45qnb0we6xWJ0wl873vA++8j8G//Vvzz+h623tUFPPoocOGFwHe+A+j4/+PNZrOh5/RE1idybmpyeqllDInP54PH49E7DVXo6elBXV0denp69E6lIHrlp0W7arWhVNxy44jet5jCGN030fUZueap1Q7XPKYcjO6b6Pr0zK9Sx3qi1Dwlc2G0xci+ia6Na56+MXmsVwIWS3HX7doFvPde4cfOPhswmZTLaZB4PB5Dz+mJrE/k3NSEt8ZiKpb81liSJKGnpwfbt2833NZYuVwOPT098Hg8Qq7S6pWfFu2q1YZSccuNI3rfYgpjdN9E12fkmqdWO1zzmHIwum+i69Mzv0od64lS85TMhdEWI/smujauefrGNNpYT4vtmIreQun//l/giScKX9DYCFx+eUntl5NXHrPZDI/Hg56enhPu5jHC1lgn0zdQu1ptjXWq3Iy6NZZVs5YYRiWCwaDeKahG/lY1UdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0jcljPZVIJoHnny/82Fe/qvgiyGDJb2lmVETWJ3JuaqL/MinDlMl9990Ht9utdxqqEA6H8fTTTyMcDuudSkH0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWE8lqqqAd94B5s8Hjp83mzev+Dgvvgi8+iqQTiuantvtNvScnsj6RM5NTXghhKl4GhsbkUql9E5DFex2O8aPHw+73a53KgXRKz8t2lWrDaXilhtH9L7FFMbovomuz8g1T612uOYx5WB030TXp2d+lTrWE6XmKZkLoy1G9k10bVzz9I3JYz0VGT8e+O1vgYMHgd/9DrjySsDrBWbOLO75mQzwb/8G3HwzcN55wP/3/wF79yqSWiqVMvScnsj6RM5NTfiMEKZiyZ8RkkfrfeUYhmEYhmEYhmEYhmEYpi9CnRFSKP7Bg8CIEcU1VF8PfOc7/X9nMgHf+hbwm98AY8YMOq9iMMIZIcWg1xkhSl9bKWeE8B0hTMUzefJkOBwOvdNQhUQigY0bNyKRSOidSkH0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWE9jil0EAYAlS078HRGwcSMwdGhZaTgcDkPP6YmsT+Tc1IQXQpiKZ9SoUbBarXqnoQqZTAZ79+5FJpPRO5WC6JWfFu2q1YZSccuNI3rfYgpjdN9E12fkmqdWO1zzmHIwum+i69Mzv0od64lS85TMhdEWI/smujauefrG5LGeoOzdC/z5z4UfmzkTKPOAeqvVaug5PZH1iZybqhDDVChNTU0EgBwOB7lcLmpqaqJMJkOBQIByuRwREYVCIUomk0REFIvFKBKJEBFROp2mQCAgxwoGg5RKpYiIKBqNUjQaJSKiVCpFwWBQvi4QCFA6nSYiokgkQrFYjIiIkskkhUIhIiLK5XIUCAQok8kQEVE4HKZ4PE5ERIlEgnp6eoiIKJvNUiAQoGw2S0REPT09lEgkiIgoHo9TOBwmImJNrIk1sSbWxJpYE2tiTayJNbEm1sSaWBNrYk0Voqm1tZUAUE1NDTmdTgJAdrudPB4PASCTyUSSJFFra2vJmnbv3k0ul4sAkMViIUmSyGQyEQDyeDxkt9vJ7/eXp+nf/50IoIAkUdpqJQIoUlNDMaeT6MMPC/qU1+5yucjhcBAAqqqqIrfbTQDIbDaTJElkNpsJALndbqqqquo3vweAWltbFfGppaWFAJDNZiOv10sACABJkkRWq1X2adeuXWX3vba2tpNqKuTTp59+2k+T3+8nq9VKkiTJuXq9XrLZbASAqqurqaWlpZ9Pfr+/oKbj+57f76c9e/aQJElksVhO6lNbWxvt2LHjlD5ZLBbasWPHgD41NzcTgBM05b+amppIS/iOEKbi+cd//EfMmDEDANDZ2Ym6ujokk0kAwNKlS9Hc3AwA2LRpE9atWwcAaG9vR11dnRxj8eLFaGtrAwBs2LABGzZsAAC0tbVh8eLF8nV1dXVob28HAKxbtw6bNm0CADQ3N2Pp0qUAgGQyibq6OnR2dgIAVq9ejS1btgAAGhoasGLFCgBAT08P6urq0NPTAwBYsWIFGhoaAABbtmzB6tWrkc1m0dLSIqymbDaLTZs2DUqTEj5ls1m89tpr+POx/5mglk8dHR0IBAKKatq3bx/q6uqQzWbL8mnjxo3o6OhAU1NTyX0v/1qq5dNgNan9fjKCpk8++QQdHR348MMPDaOpr0+vvPIKOjo60NHRIaSmDz/8EB0dHfjkk0807XufffYZOjo68Oc//1l1n5Sue9lsFtu3by/bpz/+8Y9Yv349stlsSX0vrykQCKjmk2jvJ6No2rRpE7LZrKE05X368MMP8dJLLyGbzQqp6ZVXXsHbb7+NbDared/Tou598skneP7555HNZhXT9Mc//hEdHR3yeK9Un7LZLFavXo2NGzcOShPXPWNoMmrdy2azePvtt/HKK68IqSmbzeKll17Chx9+WLQmQLm+t3XrVmSz2Yr6233jxo3yvEW5PpVb97LZLNra2oSpEflcp02bhkmTJgEAxo0bh7lz5wIAqqqq4PP5EAqFBtR0Kp+am5vlubDhw4fD5/OhqqoKADB37lyMGzeufE3f+Q4wdy7qfD60jxwJAFg3bRo2ffe7wMSJBX3Ka5oxYwYmTpyI4QDumDABs2bNAgB4PB74fD54PB5YLBbcdddd+PKXvwwAmDhxoqwpFAop4tPWrVsBAGPGjMH8+fPl63w+H0Ye0zRt2jRs27ZNfl1LrXuxWAwAMGvWLEyYMAEWi6XfnGUhn/bt23eCppEjR8Ln88m5zp8/H2OOncUyZcoUWdPxfe94TYX6Xjqdhs/nw1lnnYXa2lrZJwCY0MenWCyGNWvWwOPx9NN0vE/Dhw/HmjVrBvRp8+bNBTXphqbLLgyjIPk7QhYuXEgjRoww5B0hgUCAFi5cSPv27RNSUz6/zz//vGhNROX/D4x8uwcPHlTNp88//5wWLlxI3d3dimrq7OykhQsXyrpK9enQoUO0cOFCOnz4cEl9b9++fXIe/L9/KkdTR0cHLVy4kDo6Ogyjqa9P7e3ttHDhQurq6hJSU9/XX8u+d+TIEbnmqemTGnWv7+dYOT4dOHBArlml9L3u7m5Zm1o+ifZ+MoKmfJ8MBAKG0dTXp3xNyccRTVO+JgcCAc37nhZ1r+/rr5SmfK3q7Owsy6d87Tx06NCgNHHdq3xNRq57+X7d3t4upKZ8fh0dHUVrIlKm7/X926yS/nbP/03at3aV6lO5dS///H379glRIwxzR0he0759lP71r4kuu6z3jpD/+38H9On4O0IeAihRVUXNbjf9fwCN6HNHiCRJtHDhQjrzzDMNeUdIXt+IESOEuyNkyJAhcm6n0x0hJiIi9ZdbGEZ5du7ciUsvvRQOhwPJZBI7duzAJZdcondaikJESCaTqKqqgslk0judE9ArPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0jWm0sd7evXsxevToU17n9/sxatQo1dooJ35BiICPPgIuvhjwek+ZlwnAZwDG9Hk8A2AdgCcA/NVkQlVVFZLJJI6fnlYqdy28GKgt00n0DdRuKb4ORiMAjB49+pS59b22mLgDvXanyq2pqUnTudzT7EQUxogkEgm9U1ANk8kEh8OhdxoDold+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45ukbk8d6FYLJBBzbRqkY/hH9F0GA3ono7wDYAuB9IkPP6ZHA+kTOTU34jBCm4snvLWhEenp68OSTT8r7QYqGXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap29MHusZk3kD/D4FYBn6nxdiRETWJ3JuasJ3hDAVz8aNGw27iulwODB58mRh/2eDXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap29MHusZj1oANw3w2FoAnQDsiYSh5/QSAusTOTc14TNCmIolf0ZIHq33lWMYhmEYhmEYhmEYhmGYvhj2jJAiyOc1CsB/AZgBoOq4a64F8JdTxJFzb24Gxo4FzKVtaqTnGSHFoNcZIUpfWylnhPDWWEzFM3XqVDidTr3TUIV4PI4333wT8Xhc71QKold+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45ukbk8d6xmMvgH8GcA6AfwGw+9jvP8P/LoI4nc6Tz+kFAsBXvgJceCHwyCPAkSPqJq0wp9SnIyLnpia8EMJUPJIkwVziyrDo5HI5BINB5HI5vVMpiF75adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtMbJvomvjmqdvTB7rGZduAE8AGAtgEgBfn8fMZvPJ5/ReeAFIJIC2NuChh4CRI4HbbgP+8hegAjY4OqU+HRE5NzXhrbGYioW3xmIYhmEYhmEYhmEYhmFEgrfGGtz2UIXw79mDUTfcALS0nPjgOecAe/cC1lMffc1bY/V/HsBbYzFMRTNq1ChYiyh+lUgmk8HevXuRyWT0TqUgeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xeax3emK1Wgec06v6+OPCiyAAcM89RS2C6M3J9OmNyLmpCS+EMBXP7Nmz4XK59E5DFSKRCJ5//nlEIhG9UymIXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap29MHuudnrhcrgHn9NwvvVT4SWZz70JIBXAyfXojcm5qwltjMRULb43FMAzDMAzDMAzDMAzDiARvjVX+1ljhm26C6403gOPv8pk2DfjjH4sLEoth7+HDGH3BBae8lLfGKu9a3hqLYRiGYRiGYRiGYRiGYRiGYQZB15NPAp9/DvziF0DfSfZ584oP8i//ghHf+hZ+CEBSNj2mQuGFEKbiWbBgAbxer95pqEIoFMKiRYsQCoX0TqUgeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xeax3euL1ek8+p1dbC/zkJ0BbG/Dmm71bYk2dWlzwcBhYsQL2zz5DHYCDAJ4HcLVCuRfDKfXpiMi5qQkvhDAVT319PWKxmN5pqEJ1dTWmT5+O6upqvVMpiF75adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtMbJvomvjmqdvTB7rnZ7EYrHi5vTMZuBb3wJ+9zvAYiku+B/+APQ5M8YJ4E4AHwCYVmrCg6RofTogcm5qwmeEMBULnxHCMAzDMAzDMAzDMAzDiASfEVL+GSFl5/6VrwB///sJvz4CYCSAtNLtgc8IKQSfEcIwCmPkVX/RV2j1yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWO/0RLU7ebZuLbgIAgDLceIiiFqIfKeSyLmpCS+EMAzDMAzDMAzDMAzDMAzDMJXP5s2922kV4BmNU2HEgrfGYioW3hqLYRiGYRiGYRiGYRiGEQneGkuArbH27weeew6ZZ56BtaMDAPA2gH8qtr2WFmDWLODee4E77gA8nlM2yVtjnQhvjcUwCjN27FjYbDa901CFdDqNXbt2IZ3W6sa9waFXflq0q1YbSsUtN47ofYspjNF9E12fkWueWu1wzWPKwei+ia5Pz/wqdawnSs1TMhdGW4zsm+jauObpG5PHeqcnNptNvTm9884DHn4Y7e+/j/8D4A0Aiwfz/GeeARoagPnzgREjgO9/v3fLrUGgqr4yETk3NeGFEEYVOjo68OKLL8Ln8+HrX/86XC4XTCaTKivRRt7TTvR9Lo28Xz6fEcKIiNF9E12fkWueWu1wzWPKwei+ia6P98vXLyafEXL6YmTfRNfGNU/fmDzWOz3R5JwKqxXrANwI4NVinxOPA88//78/R6PAs88CV14J3H130U2LfA6HyLmpCW+NxajCk08+iQcffPCE359//vnYu3evIm3w1lgMwzAMwzAMwzAMwzCMSPDWWAJsjTXIfPq19/vfA3feWfjCpUuBOXPKamvAdouMwVtjlY5Vs5aY0wqPx4PrrrsOV1xxBb7yla/g4MGD8Pl8eqfFMAzDMAzDMAzDMAzDMAxTmGcGOFLd6wVmztQ2F0ZReGssRhXmzp2Lt99+G4sWLcItt9yCc845R7W2Fi5cCEmSVIuvJ8FgEA8//DCCwaDeqRREr/y0aFetNpSKW24c0fsWUxij+ya6PiPXPLXa4ZrHlIPRfRNdn575VepYT5Sap2QujLYY2TfRtXHN0zcmj/VOTyRJEm9Ob98+4IMPCj/2ve8Bg9hKSkh9xxA5NzXhrbEYTVi9ejVuueUWVbbGGjVqFNrb29HY2Gi4rbEymQza29sxcuRIWK3i3cClV35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRluM7Jvo2rjm6RvTaGM93hqruO2hrFYrRo4cifb2dmQymX6P6bo11p49wO9+17sN1pEj/3vRjh1Any36T9bWrwA0W634YORI7Cmgr2C7RearxNZYJ3vtj7+2mLi8NRbTj2w2i507d+Ljjz/G1q1b8fHHH2P79u1Ip9MAgEmTJmHjxo0lxU6lUnj55Zfxhz/8ATt37sThw4dxxhlnYPTo0fjud7+L2bNnY9iwYQqqEQulFlZExGq1av6hNRj0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWO/0JJPJiDmnd8EFwP/8D/Dww8BrrwFLlgCJxEkXQfoyCsC/ADBnMgju3YvfA3gGQJN6GQ8aYV97leGtsTSgvr4eHo8Hl19+Oe655x48/fTT+OSTT+RFkHLYtWsXvvrVr+LOO+/En/70J+zfvx/JZBIdHR3YvHkzfvzjH+OSSy7B+vXrFVAiJrfddhtqamr0TkMVotEoVq5ciWg0qncqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0jcljvdOTmpoasef07HbglluAt9/u/SqS76N3wj1aU4M3b7sNc2tqsAPABwAkdTIdNMK/9irBd4RoQDAYRCwWUzxue3s7rrvuOhw8eBAAYDKZcM0112DMmDHo7OzE22+/jXg8jiNHjmD69Ol48803ce211yqeh94Eg0Hkcjm901AFs9kMSZJgNou5ZqlXflq0q1YbSsUtN47ofYspjNF9E12fkWueWu1wzWPKwei+ia5Pz/wqdawnSs1TMhdGW4zsm+jauObpG5PHeqcnuVyucub0HI6iLrMCmHvse3MuBykYhPmYvhoAQTVyK4GKeu0VhM8I0YDly5djzpw5OOuss3DllVfKX3/+859RV1cHoLStsa655hq8//77AIDzzz8fr732Gi6//HL58a6uLtx222145513AABDhgxBW1ubLgfhqHlGSB6t95VjGIZhGIZhGIZhGIZhmL7wGSHFnRFyMnQ9I6SMtn40ejTWDPD4/QAWn6Jdrc4IUfraSjkjhJdKNWDq1KnYt28fOjo6sG7dOvz0pz/Ft7/97bIWJNavXy8vgtjtdqxbt67fIggADBs2DK+99houuOACAMDRo0fxyCOPFIy3YMECmEymkr4GOvBHK8aPHw+73a5rDmqRSqXQ2NiIVCqldyoF0Ss/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MtRvZNdG1c8/SNyWO90xO73W64Ob15fb5P2e1oHD8eKbsdUQAr9EqqAEZ87YuBF0I0oLa2Fuedd56iMZ966in5+7vuuguXXXZZwetqamrw85//XP55yZIlBRcuampqMHTo0JK+TCaTotoGy+TJk+Eo8ha1SiORSGDjxo1IJBJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E18Y1T9+YPNY7PXE4HIab0/shgMcBdANIOBzYOHkyEg4H/gCgp8gY/wDgdgBqLlEY8bUvBt4aS0cWLlyIhx9+GMDgtsaKRCIYNmwYkskkAODDDz/EVVddNeD1iUQCw4cPRyQSAQC88847mp8VwltjMQzDMAzDMAzDMAzDMEaHt8Y6fbfGyrdVBWAGeu8Q+QaAKwFsLaLdvXv34u+jR+O7ALoALAfwDIDPTvEc3hqrOPiOkArkww8/lBdBampqcOWVV570eofD0W+h5N1331U1P61xOBy635WiFkSERCIBUdcr9cpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmiLkX0TXRvXPH1j8ljv9MRkMhl2Ti8J4CWTCVMcDnzRZCq4CFIIy+HD+D/Hvh8G4F8BfArgXQBXK5ifkV/7k8ELIRVIS0uL/P1ll10Gq9V6yud8+ctfLvh8I7BgwQJ4vV6901CFUCiEX/7ylwiFQnqnUhC98tOiXbXaUCpuuXFE71tMYYzum+j6jFzz1GqHax5TDkb3TXR9euZXqWM9UWqekrkw2mJk30TXxjVP35g81js98Xq9hp7Ty+vrGoQ+16pVKDTL+00ou1WW0V/7geCtsXSk1K2x7r//fixevBgAMHPmTKxcufKUz/ntb3+LH/zgBwCAcePGYefOnaUlXSJqbo1VW1uLzs5ObNu2zXBbY2WzWXR2dmL48OGwWCx6p3MCeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xjTbW462xitsay2KxYPjw4ejs7EQ2m+33WKVvjQWcXF/BdrNZZM47D9aDB0+4bjeAsQPkWsrWWKfKzahbY536VgJGOLq7u+XvzzrrrKKeU1tbK39/9OhRxXM6ns8//xwTJkyQf06lUvLvhw0bJv/+9ttvx69//euS2shvD9bR0QEAaG1tLTVd4enruYjolZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlIrBaI+RfRNdG9c8fWMaZax34MCBoq779NNPEY1GVWujnPilUqx2oHcBKz+ndzxK5a6FFwO1dTJ9Bdt97z2gwCIIADwy0HMKtHuytorNre+1xcQd6LU7VW75uV3NIEY3fvaznxEAAkCTJk0q+nnXX3+9/LyHHnqoqOesX79efo7L5Sox4+Lx+/1yeyf7uuuuu0puo76+ngDQ3Llz6cwzzyQAZLFYSJIkMplMBIA8Hg/Z7XYCQE6nk2pqaggAWa1WkiRJzsPr9ZLNZiMAVF1dTdXV1QSAbDYbeb1e+TpJkshqtRIAqqmpIafTSQDIbreTx+MhAGQymUiSJLJYLPLr7XA4CABVVVWR2+0mAGQ2m0mSJDKbzQSA3G43VVVVEQByOBzkcrnI5XLR7NmzacSIEUJqcrlcNGfOHDrrrLOK1qSETy6Xi+bOnUvDhw9XzaezzjqLZs+eTW63W1FNXq+X7rnnHvl5pfo0bNgwmj17Np1xxhkl9b0RI0bQ7NmzyeVyqeaTaO8nI2gaMmQIzZ49m4YOHWoYTX19OvPMM2n27Nnk8XiE1DR06FCaPXs2DRkyRNO+J0kSzZ49m4YPH66qT2rUvfznxIgRI8ry6cwzz6S5c+eSy+Uqqe+53W665557+v1sxBphNE1nnXUWzZkzp9+4o9I19fVp6NChdPfdd5PL5RJSU9/3ndZ9T4u6N2TIEPn1V0pT/nMsr6FUn/Jj3WHDhpXc97juVaYmI9e9fL8W9W93l8tFd999Nw0dOlTzvnf22WfLvlfS3+7Dhg2TPyfK9ancutd37sTINcJomvLvuyFDhhhGU6XUPY/HQ7Nnz6YzzzxTl76X/6qvr1duMroIeGssHSl1a6zrrrtOPvD8P/7jP/Dzn//8lM959913cd111wHovTUrk8mUlrRAvPbaa5g+fbreaTAMwzAMwzAMwzAMwzAMwzCDoL6+HjfddJNm7fFh6RWIw+GQv89vOXUq+t5q5HQ6Fc+JYRiGYRiGYRiGYRiGYRiGYUSEzwipQFwul/x9PB4v6jl9r+v7/Epm0qRJqK+vl38+99xzUVVVpV9CDMMwDMMwDMMwDMMwDMMwzAkkk0l8/vnn8s+TJk3StH1eCKlAhg4dKn9/+PDhop7T9wCcIUOGKJ6THkiSpOntUwzDMAzDMAzDMAzDMAzDMExpfPnLX9atbd4aqwK56KKL5O/37dtX1HP2798vfz927FjFc2IYhmEYhmEYhmEYhmEYhmEYEeGFkArk4osvlr/fsWNHUQef//3vfy/4fIZhGIZhGIZhGIZhGIZhGIYxMrwQUoFcffXV8lkY0WgUW7duPen1yWQSW7ZskX++9tprVc2PYRiGYRiGYRiGYRiGYRiGYUSBF0IqEJfLheuuu07+efny5Se9/tVXX0U4HAbQez7INddco2Z6DMMwDMMwDMMwDMMwDMMwDCMMvBBSodx///3y98uXL8fOnTsLXheLxfDTn/5U/vnee++F1WpVPT+GYRiGYRiGYRiGYRiGYRiGEQFeCKlQbrjhBnzjG98A0Lv11Y033ojt27f3u6a7uxvTp09Ha2srgN67QR566CHNc2UYhmEYhmEYhmEYhmEYhmEYvTAREemdxOnA9ddfj4MHD/b7XUdHBw4fPgwAqKmpwRe+8IUTnrd+/XqMGDGiYMz29nb8wz/8Aw4dOgQAMJlMmDRpEsaMGYPOzk68/fbbiMViAACr1Yo333yz35ZaDMMwDMMwDMMwDMMwDMMwDGN0eCFEI0aNGoV9+/YN+nl+vx+jRo0a8PFdu3bh9ttvR2Nj44DXDB8+HMuWLcMNN9ww6PYZhmH0pKOjA2+//Ta2bt2KrVu3orGxEdFoFOeffz727t2rd3oMwzCDYvPmzXj00Ufx17/+FaFQCGeffTa+/e1v49///d9xzjnn6J0ewzCMIvD4jWGY043t27ejvr4e7733HpqamtDd3Y2amhpcfPHFuPnmm3H//fejurpa7zQZ5rSHF0I0Qq2FEABIpVJYuXIl/vCHP2Dnzp04fPgwJEnCBRdcgO9+97uYM2cOhg0bVmLmDMMw+vHkk0/iwQcfPOH3/Ic0wzCVxrPPPot58+Yhl8uhtrYW55xzDj799FOEw2GcccYZ+Mtf/oLLL79c7zQZhmHKhsdvDMOcTrS1tfXb4WXEiBEYMWIEDh06hAMHDgAALrzwQrz11ls477zz9EqTYRgAfGq2Rqg54LPb7bjzzjtx5513qtYGwzCMHng8Hlx33XW44oor8JWvfAUHDx6Ez+fTOy2GYZhBsWPHDtx3333I5XJ47LHH4PP5YDabEYlEcPfdd2PVqlX4zne+g5aWFlRVVemdLsMwTFnw+I1hmNMJIsLw4cPxgx/8AN/73vdwwQUXyI998MEHmDVrFj799FPMnDkTmzdv1jFThmH4jhCGYRimYli9ejVuueUW/h+FDMNUFDNmzMCaNWtw66234uWXX+73WDwex9ixY7F//34sXrwY9913n05ZMgzDqAOP3xiGMTKJRALZbBY1NTUFH//ggw/w9a9/HQDQ2NjIdwAzjI6Y9U6AYRiGYRiGYYxKNBrFG2+8AQD4wQ9+cMLjTqcTc+bMAQCsXLlS09wYhmEYhmGY8nA4HAMuggDA1772NXi9XgC95/wyDKMfvBDCMAxTQWSzWWzfvh3PPfcc5s+fjyuuuAJ2ux0mkwkmkwmTJ08uOXYqlcLvf/97XH/99Tj//PPhcDhw9tln4+qrr8ajjz6Krq4u5YQwDMMoiMi1saGhAYlEAna7HRMnTix4TT6/jz76CLlcruRcGYY5PRC55jEMw6hBJde9TCaDdDoNAHxgOsPoDJ8RwjAMUyHU19dj1qxZiMViisfetWsXbr/9djQ2Nvb7fUdHBzo6OrB582b86le/wrJly3D99dcr3j7DMEypiF4bP/30UwDAeeedB7vdXvCa/AGbiUQC+/btw+jRo5UTwTCMoRC95jEMwyhNpde9+vp6xGIxWK1WXHXVVQpkzTBMqfAdIQzDMBVCMBhUZfDX3t6O6667Th78mUwmTJo0CXPnzsW0adPgdDoBAEeOHMH06dPx7rvvKp4DwzBMqYheG48ePQoAGDp06IBtDRkyRP4+EAgopIBhGCMies1jGIZRmkque4FAAD/60Y8AAN///vcxbNgwxfJnGGbw8B0hDMMwFcZZZ52FK6+8Uv7685//jLq6upLj3XHHHTh48CAA4Pzzz8drr73W7wC3rq4u3HbbbXjnnXeQTqdxyy23oK2tDZIklSuFYRhGMUStjfF4HAAGvBsE6N1bOo8af+gzDGM8RK15DMMwalFpdS+dTuPWW2/F/v37ccEFF2DRokUl58owjDLwQgjDMEyFMHXqVOzbtw/nnXdev99/9NFHJcdcv3493n//fQC9k3Tr1q3DZZdd1u+aYcOG4bXXXsOXvvQl7NmzB0ePHsUjjzyCX/ziFyfEW7BgAX75y1+WlEs6nYbVyh9LDMMMDtFrY/5/E6ZSqQHbSyQS8ve8dzTDMCdD9JrHMAyjNJVY93K5HO688068/fbbGD58ON544w14PJ6S82UYRhl4ayyGYZgKoba29oTBX7k89dRT8vd33XXXCYO/PDU1Nfj5z38u/7xkyRJkMpmC1w0dOrSkL5PJpKg2hmFOD0SvjWeccQYAoLu7e8D28ttn9b2eYRimEKLXPIZhGKWptLpHRLj77ruxcuVKDBkyBG+99RbGjh2rTOIMw5QFL4QwDMOcpkQiEbzzzjvyz3PmzDnp9TfffDNcLheA3km7995774Rr/uM//gNdXV0lfVksFmUFMgzDlIDStfGiiy4CAOzfv3/Au0I+++wzAL1bZJ1//vkl584wDDNY1BgPMgzDiIyadY+IcO+992L58uXweDz485//3G+7LYZh9IUXQhiGYU5TPvzwQySTSQC9/9PlyiuvPOn1DocDV111lfwzH5LJMIwRUbo2TpgwAQ6HA6lUClu2bCkYY9OmTQCAf/iHf4DZzMNzhmG0g8eDDMOcbqhZ937wgx/g2Wefhcvlwp/+9CdcccUVyiTNMIwi8F9aDMMwpyktLS3y95dddllR53N8+ctfLvh8hmEYo6B0baypqcH1118PoP82DHni8TiWLVsGAJg5c2ZJOTMMw5QKjwcZhjndUKvu/fCHP8TixYtRXV2N119/HVdffXX5yTIMoyi8EMIwDHOasnv3bvn7Yrdi6bs3665duxTPiWEYRm/UqI0//elPYbFYsGrVKjz++OPI5XIAerdmmD17Nvbv34/zzz8fd999d5nZMwzDDA4eDzIMc7qhRt37t3/7N/z617+Gw+HAH//4R0yaNKn8RBmGUZxTL3syDMMwhqTvwb1nnXVWUc+pra2Vv+97uK9afP7555gwYYL8c35//c8//xzDhg2Tf3/77bfj17/+ter5MAxjfNSojZdffjmeeuop3H///fjRj36EX/3qVzjnnHPw6aefIhwOQ5IkrF27FlVVVeULYBiGGQRq1DwevzEMIzJK173NmzfjV7/6FQDA4/HgZz/7GX72s58VjDN37lzMnTt3sCkzDKMQvBDCMAxzmhKJROTvnU5nUc/pe13f56tFNpvtN1DNk8vl+v0+HA6rngvDMKcHatXGefPm4bLLLsOvfvUrfPDBB9ixYwdqa///7d15dI1nAsfx35VE7ERsoUgYhjmWkortmEa0h8FE2jOotnaijKWG0xI9trGXHh3LVGqJTtU2ltJhGBOxRAW1BEMNTWIXElsSQZI7f+TknRtZ7o3cCPd+P+fknOe993mf93mveA7v7z7PU0MffPCBJk2apNdee61wHQeA51AUYx7/fgPwMrP3uJe134gkxcfHKz4+Ps923nrrLVu7CaAIEIQAgJNKTU01yiVLlrTpHMtvKz969MjufXqWt7e3zGZzkV8HALIU5djYrl07bdmy5fk7BwB2VhRjHv9+A/Ays/e45+/vz5gHvCLYIwQAnFSpUqWMctaSBdZYftvF1m/PAMCrhLERgDNhzAPgbBj3AOdFEAIATqpcuXJG2dbZHZb1LM8HAEfB2AjAmTDmAXA2jHuA8yIIAQAn5enpaZRv3bpl0zk3b940ypUrV7Z7nwCguDE2AnAmjHkAnA3jHuC8CEIAwEn9+te/NspxcXE2nXP58mWj3KhRI7v3CQCKG2MjAGfCmAfA2TDuAc6LIAQAnFTjxo2N8unTp5WWlmb1nOPHj+d6PgA4CsZGAM6EMQ+As2HcA5wXQQgAOKl27drJ3d1dkpScnKxjx47lW//x48c6fPiwcRwQEFCk/QOA4sDYCMCZMOYBcDaMe4DzIggBACdVrlw5derUyTgOCwvLt/7mzZv18OFDSZnrov72t78tyu4BQLFgbATgTBjzADgbxj3AeRGEAIATGzFihFEOCwvT2bNnc62XkpKiyZMnG8fBwcFydXUt8v4BQHFgbATgTBjzADgbxj3AORGEAIAT69atmzp06CApc8pv9+7dFR0dna1OQkKCgoKCdPHiRUmZ34L59NNPX3hfAeBFYWwE4EwY8wA4G8Y9wDmZzGazubg7AQCwTdeuXXX9+vVsr928eVO3bt2SJJUtW1a/+tWvcpy3Y8cO1axZM9c2r169Kj8/P924cUOSZDKZ9Oabb6p+/fq6ffu29uzZo5SUFEmSq6ur/vnPf2abSgwAxY2xEYAzYcwD4GwY9wDYA0EIALxCvL29FRcXV+DzYmJi5O3tnef758+fV58+fXTy5Mk861StWlWrVq1St27dCnx9AChKjI0AnAljHgBnw7gHwB5Y2A4AoEaNGikqKkrr1q3T2rVrdfbsWd26dUuVKlVSvXr19O6772rgwIGqUqVKcXcVAF4YxkYAzoQxD4CzYdwDnAszQgAAAAAAAAAAgMNis3QAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAwEtn4cKFMplMKlGihI4dO1bc3SmUCRMmyGQyqVSpUrp06VJxdwcAAMDpEIQAAAAArxB/f3+ZTKYC/0RERBR31wGb3bp1S1OmTJEk9e7dW2+88Uau9QYMGGD8jg8YMKBA1wgLCzPO9fb2LmSP8zdhwgR5eHjo8ePHGjt2bJFeCwAAADkRhAAAAAAAXirTpk3TgwcPZDKZNHny5OLuTqFVqlRJo0aNkiRt375d+/btK+YeAQAAOBfX4u4AAAAAgOfTqlUr+fn52VS3Vq1aRdwbwD5iY2O1fPlySVKPHj3UuHHjYu6RfYwePVrz589XSkqKJk2apIMHDxZ3lwAAAJwGQQgAAADwiurataumTp1a3N0A7GrBggV6+vSpJOmPf/xjMffGfjw9PdWzZ0+tXr1akZGRioyMVPv27Yu7WwAAAE6BpbEAAAAAAC+F+/fva9WqVZIkHx8fderUqZh7ZF9DhgwxygsXLiy+jgAAADgZghAAAAAAwEth/fr1Sk5OliT17NlTJpOpmHtkX+3bt1fNmjUlSd9//70SEhKKuUcAAADOgSAEAAAAcCKxsbEymUwymUzy9vY2Xj948KCGDBmiRo0aqWLFijKZTPr4449zbePKlSv685//rA4dOqhmzZpyd3dX5cqV1aJFC40fP14XLlwoUJ+OHz+uoUOHql69eipdurSqVq0qPz8/zZs3T4mJiZKksLAwo98DBgzItZ2pU6cadWxZMiwiIsKo7+/vb1Nfz507p5CQEPn5+al69eoqWbKkqlatqtatW2vy5Mm6fv261Tb8/f2N60ZEREiSEhMTNXfuXLVq1UpVqlRR6dKlVa9ePQ0ePFhnzpyxqW+Wdu7cqWHDhqlJkyby9PSUm5ubKlWqpJYtW2rYsGHatm2b0tLSjPrx8fEqWbKkTCaTXFxcdO3aNZuuYzab5ePjY9zPtm3bCtxXS2vWrDHKQUFBhWqrsCz/rhT0JzY2Ntc2TSaTcV9Pnz7Vhg0bXtwNAQAAODH2CAEAAACc2JMnTzR69GgtW7bMat2MjAxNnTpVn3/+uVJTU3O0c/fuXZ08eVJffvmlPvnkE82YMcPqN/o/++wzzZkzR+np6cZrqampunPnjo4ePapFixZp48aNz3dzdvT48WONGTNGy5cvz9ZXSbpz547u3LmjI0eOaP78+Zo3b55Gjhxpc9uRkZHq3bt3jvAhJiZGMTExWr16tf76179q6NChVts6e/asBgwYoGPHjuV47/79+zpx4oROnDih0NBQ9e7dW+vWrZMkVatWTYGBgdq0aZMyMjIUFhamSZMmWb3ev//9b+Ohv5eXl7p162bDHefu7t27ioyMlCSVL19erVq1eu62XmYBAQFaunSpJOmHH37Q8OHDi7lHAAAAjo8gBAAAAHBiY8eONUKQpk2bqnnz5nJzc9OFCxdUosT/J5Cnp6erd+/e2rRpk/FarVq15Ofnp6pVqyopKUlRUVG6dOmS0tLSNGvWLN2+fVuhoaF5XjskJESzZ882jsuUKaOAgAB5eXnp5s2bCg8P19WrV9W1a9c8Z6e8CMnJyercubPxkF6S6tevL19fX3l4eCgxMVGRkZG6fv26Hj16pFGjRunBgwcKCQmx2vaZM2c0ceJEJSUlqVq1aurQoYM8PT117do1hYeH69GjR0pPT9dHH32kpk2bqk2bNnm2FRERocDAQD18+NB4rU6dOvLz81PlypWVnJysn3/+WadOndLTp09zhFnBwcHGn+/KlSsVEhJiNchasWKFUR4wYIBcXFys3nNewsPDjZCpTZs2cnUt3v+uVqhQwebN2qOjo3XgwAHjOL/PrUOHDkY5IiJCaWlpxX6vAAAAjo5/bQEAAABO6urVq1q6dKlq166tNWvWZHtAK2XOgsgybdo04yF5jRo1tGTJEr3zzjs5Hvhu3LhRQ4cO1f379/X111/rrbfeUq9evXJce//+/ZozZ45x/Ic//EGhoaHy8PAwXrt//74++ugjrVu3TjNnzrTLPT+PESNGGCFIw4YNtWzZshxLaaWnpys0NFRjx47V48ePNXnyZHXs2FFt27bNt+3x48crLS1NCxYs0OjRo7M9EL9y5Yq6du2qM2fOKCMjQyEhIQoPD8+1nStXrqhnz55GCOLj46OlS5eqS5cuOerevXtXGzZs0MWLF7O9/vbbb8vHx0cxMTH65ZdfFBERoY4dO+bZ98TERG3ZskVS5oP/wYMH53uv1kRFRRnlZs2aFaote6hcubIWL15std6VK1fk5+dnHPfp00d169bNs361atXk5eWlGzduKCUlRWfOnNHrr79ujy4DAAAgDwQhAAAAwCtqx44dunPnjtV6EydOVK1atXK8np6erjJlymjPnj1q2LBhjvfd3d0lZe6VMGvWLEmZD4cPHjyo+vXr53qtnj17qkqVKgoICJCUuW9HbpteT5w4UWazWZLUqVMnrVu3LsdsgooVK2rNmjVKTEzU7t27rd5nUThw4IC++eYbSZmzQCIjI1WlSpUc9VxcXDR8+HCVLl1aAwcOVHp6uqZPn66dO3fm2/7jx4+1bNkyBQcH53ivdu3aWrt2rZo1ayaz2ayIiAjduHFDXl5eOepOnDjR+F2oW7eufvzxR1WvXj3Xa3p4eGjYsGE5XjeZTBoyZIixJNaKFSvyDULWrFljhGX+/v55/k7YKjo62ig3atSowOdHRUUVaEmy8+fPF/gaz0pOTlZgYKBu3rwpSWrdurVWrlxp9bzGjRvrxo0bkqRTp04RhAAAABQxghAAAADgFXX06FEdPXrUar0hQ4bkGoRI0siRI3MNQSx9+eWXxpJFkydPtvrAu2PHjurcubN27dqlc+fO6cSJE2rZsqXx/rlz53To0CHj+C9/+UueSyqVKFFCixYtUqNGjYzg5EX64osvjPKCBQtyDUEsDRgwQHPnztX58+e1a9cuJSQkyNPTM8/6TZs2zTUEydKkSRO1atVKR44ckdls1rFjx/T73/8+W51r165p/fr1xvFXX32VZwhizcCBAzVlyhSlpaVp06ZNWrx4sSpVqpRrXctlsYYMGfJc17MUExNjlF977bUCn3/+/Hm7hBu2MpvN6tu3r06ePCkpM7jaunWrSpUqZfVcy7+PeW2sDgAAAPspYb0KAAAAAEf13nvvWa2zY8cOo/z+++/b1G7WjBBJOnjwYLb39u7da5R9fX31m9/8Jt+2GjZsmO/eGEUlLS1N//rXvyRl7hfRvXt3m87LmkVhNpuz7SuSm549e1ptr0WLFkY5t4fme/bsUVpamiSpQYMGuS6HZSsvLy/jPlNTU/Xdd9/lWu+nn37SqVOnJGXOMHn33Xef+5pZbt26ZZTzC49eFpMmTTKWBitbtqy2bdumGjVq2HSuZaCWNZsEAAAARYcZIQAAAMArasqUKZo6depzn+/m5qamTZvmWychIUEXLlyQJJUsWVLTpk2zqe3//Oc/RvnKlSvZ3jtx4oRRtraHhmW9H3/80aa69hIdHa3k5GRJmZ/VmDFjbDrPcpbOs/f+LGufv5Q9FHjw4EGO9w8fPmyUn9275HkEBwdr69atkjJnfYwYMSJHHcvZIB9++KFNsyCsyfqsJalMmTIFPr9///4KCwuzuX5YWJgGDhxY4OtI0rfffqvZs2dLylxS7Ntvvy3Q8laW92d53wAAACgaBCEAAACAk/Lw8Mi2OXdusvYxkKQnT55oyZIlBb7O3bt3sx3fvn3bKNepU8emNmytZ0/Xr183ygkJCXa592dVrFjRahtubm5G+enTpznet5xJUa9evQL0LnedO3dW3bp1FRcXp+PHj+vkyZPZHvI/evQo20wReyyL9aziWAbNVocPH852z7NmzVJQUFCB2niZ7w8AAMARsTQWAAAA4KRKly5ttc79+/cLfZ2sZZuyJCUlGWVbv/lftmzZQvejoIri3p/17Cbyz+Phw4dGuVy5coVur0SJEho8eLBxbDn7Q5I2bdpkfDatWrVSs2bNCn1NKfuf8aNHj+zSpr1dvnxZQUFBxibx/fr104QJEwrcjuX9FcfvNgAAgLMhCAEAAACQJ8uHtBUqVJDZbC7wz7PLFVk+rE9JSbGpH0WxfFBGRka+71vee7NmzZ7r3guzdJmtypcvb5QtQ6bCGDRokLGB/Zo1a5Sammq8Z+9N0rNY7q9x584du7VrL8nJyQoMDDRm4LRv316hoaHP1ZblrChb9xUBAADA8yMIAQAAAJCn6tWrG+UHDx7YHFzkp2rVqkb58uXLNp1jba8NKfsSUtZmYkjWZ3xY3vvLvKG1ZT9jYmLs0matWrXUtWtXSZnLe2VtCn7p0iXt27dPUmZQ1KdPH7tcT5J8fHyM8tWrV+3Wrj2YzWZ9+OGHxgbxdevW1ebNm+Xu7v5c7V27ds0oe3t726OLAAAAyAdBCAAAAIA8eXl5qXbt2sbxoUOHCt1mixYtjLLlRt/5sWWj9AoVKhjlhIQEq/VPnz6d7/uvv/668aA7Pj5eFy9etNpmcWjTpo1R3rt3r93aDQ4ONspZs0BWrlxp7G/Rs2fPbLNRCstyia2ff/7Zbu3aQ0hIiLGBfPny5bV9+3ZVq1btuds7d+6cUW7evHlhuwcAAAArCEIAAAAA5Kt79+5GeenSpYVur2PHjkb52LFjOn/+fL71L168aFMQYvnN+pMnT1qtv2HDhnzfL126tAICAoxje9x7UXj77beNTe//+9//ateuXXZp93e/+50RgoWHh+vixYvZljmz9ybpfn5+Rjlr5sXL4G9/+5vmzJkjKXP/lLVr16pp06bP3V58fLwxw6hMmTJq0qSJXfoJAACAvBGEAAAAAMjXuHHjjP0itmzZkmPPj/zktqRU48aN1a5dO+N4zJgxee7XkZGRodGjRxuzEPLTqlUrY/PxqKiobN+6f9bSpUt19uxZq21++umnRnnRokXas2eP1XOyvKjltGrWrKnevXsbx8OGDTP2sSgMFxcXDRo0SNL/l4a6fv26pMw/w/bt2xf6GpYCAgKM37OoqCibljcraocOHdLQoUON43nz5qlbt26FavPAgQNG2d/f3wixAAAAUHQIQgAAAADkq379+vrss8+M40GDBmn8+PF5bmidlpam3bt3q2/fvtmWwbI0c+ZMI7TYvXu33n//fd27dy9bnQcPHqhv377auXOnSpYsabWfNWrUMGZwmM1m9enTJ8deE2lpaVqwYIFGjx5t0/4Ob775pvr372+c261bN82ePTvPTclTU1O1detW9ejRQ4GBgVbbt5fZs2ercuXKkqS4uDi1bds2z5kh9+7dU2hoqD755BOr7Q4ePFglSmT+tzEqKirb6/bm4eFhhCsPHz7U0aNH7X6Ngrh8+bLeeecdPX78WFLm7/24ceMK3W54eLhRtpxtBQAAgKLDV08AAAAAWDVlyhTFxsZq9erVMpvNWrBggRYtWqQ33nhD9evXV5kyZfTgwQPFxsYqOjpaycnJkiRPT89c2/P399f48eP1+eefS5LWr1+vH374QQEBAapRo4Zu3bql8PBwJSUlycPDQ2PGjNHUqVOt9nPmzJnau3evMjIydOrUKTVs2FABAQGqVauWEhMTtX//fsXHx6tcuXKaPXu2Ro0aZbXNZcuW6caNG9q9e7eePHmikJAQzZgxQ61bt1adOnXk7u6ue/fu6dKlSzpz5ozx4NzX19fGT7fwateurQ0bNigoKEhJSUmKiYlRly5dVLduXfn5+aly5cpKSkrShQsXdPLkST19+lQ9evSwqd0uXbpox44dxmslS5ZUv379iuQ+PvjgA+3fv1+StHXrVrVt27ZIrmOLVatWKT4+XlLm7BhXV1eNHDnSpnOnT59uBFOWzGazvv/+e0mSm5ubevXqZb8OAwAAIE8EIQAAAACsMplMCgsLk6+vr6ZMmaK7d+/qyZMnOnToUJ4bqJtMpnyXT5o3b55cXFw0b948ZWRkKDk5Wdu3b89Wp2bNmvr73/9u8+bZrVu31tdff63g4GClp6fr0aNH+sc//pGtjpeXl9avX6/09HSb2nR3d9eOHTs0bdo0LViwQCkpKUpJScl3Y3I3N7dsm5i/CJ06ddLBgwfVv39/Y4+NuLg4xcXF5Vq/XLlyNrUbHBycLQgJDAxU1apVC9/hXPTu3Vt/+tOflJycrI0bN2rOnDnGzKEXzXI5tvT0dIWGhtp87vjx43MNQg4dOqRr165Jyvwc8woKAQAAYF8sjQUAAADAZqNGjVJcXJyWLFmioKAg+fj4qFy5cnJ1dZWHh4eaNm2q9957T1999ZXi4uKMb7/nZfbs2Tpy5IgGDRokb29vubu7y9PTU76+vpo5c6ZOnTpV4FkBgwYNUnR0tAYPHiwfHx+VKlVKlSpVUosWLTRjxgxFR0erQ4cOBWrTxcVF06dPV2xsrObPn68uXbqoTp06KlOmjNzc3OTp6amWLVuqf//+CgsL07Vr17R48eICXcMemjdvrhMnTmjz5s3q16+fGjRooAoVKsjFxUUeHh7y9fXV8OHDtWPHDn3zzTc2tdm1a9dsy4jZe5N0SxUrVtTAgQMlSTExMQXak+VVsHz5cqP88ccfF19HAAAAnIzJbMuugwAAAABQjMLCwowH5FlhA16Mffv2yd/fX5JUt25d/fLLL8a+IUUhNjZWDRs2NJbv2rp1a5Fd60VKSEhQnTp1lJKSonbt2ikyMrK4uwQAAOA0mBECAAAAAMjTihUrjPKgQYOKNASRJG9vb2PWybZt23Tu3Lkivd6LsmjRIqWkpEjK3MsGAAAALw5BCAAAAAAgVzdv3tTGjRslSa6urkW6LJalKVOmqEKFCjKbzZo+ffoLuWZRunfvnhYtWiRJ6t69uzHDBgAAAC8GQQgAAAAAIIf09HSNGTNGqampkqRevXqpZs2aL+Ta1atX17Rp0yRJ69ev108//fRCrltU5s6dq8TERLm7u2vhwoXF3R0AAACnwx4hAAAAAF567BHyYnz33Xc6cuSIkpKSdODAAV24cEGS5O7urtOnT6tBgwbF3EMAAACg4FyLuwMAAAAAgJfD7t27tXr16hyvf/HFF4QgAAAAeGURhAAAAAAAcihfvrx8fX01btw4de/evbi7AwAAADw3lsYCAAAAAAAAAAAOi83SAQAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMP6H9yIkt7R/ROaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "gs = plt.GridSpec(2, 1, hspace=0)\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "ax0.plot(pds_reb.freq, (pds_reb.power - poisson) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "ax0.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax0.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + " \n", + "ax0.set_xlabel(\"Frequency (Hz)\")\n", + "ax0.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "ax0.legend();\n", + "\n", + "ax1.plot(pds_reb.freq, (pds_reb.power - poisson) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "ax1.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax1.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + " \n", + "ax1.set_xlabel(\"Frequency (Hz)\")\n", + "ax1.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "ax1.loglog()\n", + "ax1.set_ylim([1e-1, None]);\n", + "ax1.set_xlim([pds.freq[0], pds.freq[-1]]);" + ] + }, + { + "cell_type": "markdown", + "id": "44fa3b88", + "metadata": {}, + "source": [ + "## Lags and coherence\n", + "\n", + "With the cross spectrum we can explore the time lags versus frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c4eda41b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2627it [00:00, 2906.20it/s]\n" + ] + } + ], + "source": [ + "# Use shorter segments, rebin a little more heavily\n", + "cs = AveragedCrossspectrum.from_events(events_sub, events_ref, segment_size=2, dt=0.01, norm=norm)\n", + "cs_reb = cs.rebin_log(0.4)\n", + "\n", + "lag, lag_e = cs_reb.time_lag()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "45ba99f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmsAAAR9CAYAAAC5ynPaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3xV1Z3///dJQi6QkISAClWL2larBlFbvLQGqtEi6MjX1ipxRq21VjujtfOdVodfa7UzVqHz7YjWUWvrpRZQp7VajaUiSsR6QUVM8DbVmlFEEEKSk/t1//44cppAQm77nP1Ze7+ejwePRy7n7P3+rJW1c9gra52Y53meAAAAAAAAAAAAEIiMoAMAAAAAAAAAAABEGZM1AAAAAAAAAAAAAWKyBgAAAAAAAAAAIEBM1gAAAAAAAAAAAASIyRoAAAAAAAAAAIAAMVkDAAAAAAAAAAAQICZrAAAAAAAAAAAAAsRkDQAAAAAAAAAAQICYrAEAAAAAAAAAAAgQkzUAAAAAAAAAAAABYrIGAAAAAAAAAAAgQEzWAAAAAAAAAAAABIjJGgAAAAAAAAAAgAAxWQMAAAAAAAAAABAgJmsAAAAAAAAAAAACxGQNAAAAAAAAAABAgJisAQAAAAAAAAAACBCTNQAAAAAAAAAAAAFisgYAAAAAAAAAACBATNYAAAAAAAAAAAAEiMkaAAAAAAAAAACAADFZAwAAAAAAAAAAECAmawAAAAAAAAAAAALEZA0AAAAAAAAAAECAmKwBAAAAAAAAAAAIEJM1AAAAAAAAAAAAAWKyBgAAAAAAAAAAIEBZQQcAwqyhoUFVVVXJz/fbbz/l5OQEmAgAAAAAAAAAsKuOjg69//77yc9nz56toqKitJ2fyRoghaqqqrRgwYKgYwAAAAAAAAAARuChhx7SGWeckbbzsQ0aAAAAAAAAAABAgJisAQAAAAAAAAAACBDboAEptN9++/X7/KGHHtKnPvWpgNIEo7W1VWvWrNGcOXM0fvz4oOOMmWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb8ex1P/222/3e0uLXe/tphqTNUAK5eTk9Pv8U5/6lA477LCA0gSjs7NT48aN06GHHqrs7Oyg44yZa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvRz/r3/XebqrFPM/z0npGIEJee+01HX744cnPN27cGLnJGgAAAAAAAACwLuh7ubxnDYCUamtr08qVK9XW1hZ0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+JmsApFRvb68aGhrU29sbdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5frZBA1Io6KVzAAAAAAAAAIChBX0vl5U1AFKqu7tbtbW16u7uDjqKL1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XD+TNQBSqrm5Wffcc4+am5uDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XzzZoQAoFvXQOAAAAAAAAADC0oO/lsrIGAAAAAAAAAAAgQEzWAEipxsZG3XDDDWpsbAw6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulw/kzUAUmr8+PFasGCBxo8fH3QUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX7eswZIoaD3OQQAAAAAAAAADC3oe7msrAGQUq2trXrooYfU2toadBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fiZrAAAAAAAAAAAAAsQ2aEAKBb10DgAAAAAAAAAwtKDv5bKyBkBKdXV16c0331RXV1fQUXzhWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6mawBkFIu7xM5ENfqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u1882aEAKBb10DgAAAAAAAAAwtKDv5bKyBgAAAAAAAAAAIEBM1gBIqYaGBl177bVqaGgIOoovXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcP9ugASkU9NI5C7q7u7Vp0ybtu+++ysrKCjrOmLlWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XYcS/1B38tlsgZIoaAHOAAAAAAAAABgaEHfy2UbNAAp1dLSovvuu08tLS1BR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvR5frZ7IGQEplZGSoqKhIGRnhuNy4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+tkEDUijopXMAAAAAAAAAgKEFfS/XveklAE7p7OzUhg0b1NnZGXQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX4mawCkVHt7u9asWaP29vago/jCtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1sw0akEJBL50DAAAAAAAAAAwt6Hu5rKwBkFKe56m9vV1hmRd2rR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9TNYASKnGxkYtXrxYjY2NQUfxhWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX62cbNCCFgl46Z0FPT4+2bdumKVOmKDMzM+g4Y+ZaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NtxLPUHfS+XyRoghYIe4AAAAAAAAACAoQV9L5dt0ACkVHNzs+6++241NzcHHcUXrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rZ6deZuamhSPx7V9+3bF4/HA93630o5WcgBgPIYN/emPqLejy/VnBR0AQLhlZWVp+vTpysoKx+XGtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/0u1VNTU6MVK1Zoy5Ytuuqqq7R169bk94qLi3XUUUdp1qxZqqio6PeXp+lgpR2t5ADAeAwb+tMfUW9Hl+tnGzQghYJeOgcAAAAAw1FZWanFixdr7dq1w37OCSecoKuuukrz5s1LYTIAAID0CPpeLtugAUipjo4OPf/88+ro6Ag6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1W+5nrq6OlVUVOi0005LTtTk5OTo2GOPVU5Ozh6fu3btWs2fP1/nnnuu6urqUp7VSjtayQGA8Rg29Kc/ot6OLtfPZA2AlOrs7NSGDRvU2dkZdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavfaj3V1dWaMWOGVqxY0e/r2dnZmjlzprKzs4d1nOXLl2vGjBmqqalJRcwkK+1oJQcAxmPY0J/+iHo7ulw/26ABKRT00jkAAAAAGEh1dbXmzJmj+vp6345ZXFysqqoqlZaW+nZMAACAdAn6Xi4rawCkVG9vrxoaGtTb2xt0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq99aPXV1dTr11FMHnajJyMhQUVGRMjJGdsugvr5ec+fOTdmWaFba0UoOAIzHsKE//RH1dnS5fiZrAKRUPB7X0qVLFY/Hg47iC9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1W6vnsssu0+bNmwf9/sSJE3XFFVdo4sSJIz725s2bdfnll48l3qCstKOVHAAYj2FDf/oj6u3ocv1sgwakUNBL5yzo7e1VPB7XxIkTR/yXeRa5Vo/VvBZyWcgAIIHxGC70pz+i3o5hq99SPZWVlTrttNP2+JiMjAxNnDhR8Xh81H+V+uijj2r+/Pmjeu5grLSjlRwAGI9hQ3/6I+rtOJb6g76XG73eApBWo91CwSrX6rGa10IuCxkAJDAew4X+9EfU2zFs9VuqZ/HixUM+xo/tQ5YsWTLq5w7GSjtayQGA8Rg29Kc/ot6OLtfvXmIATmlqatJtt92mpqamoKP4wrV6rOa1kMtCBgAJjMdwoT/9EYZ29DxP8Xhc27dvVzwe10g2dQhD/X1ZqaempkZr164d8nEFBQW65JJLVFBQMOpzPf3009q4ceOonz8QK+1oJQcAxmPY0J/+iHo7ulw/kzUAUio7O1szZ85UdnZ20FF84Vo9VvNayGUhA4AExmO40J/+cLUda2pqtGjRIpWXl6ukpESFhYWaMmWKCgsLVVJSovLyci1atGjIm/iu1j8YK/WsWLFiWI/r7OzUhg0b1NnZmZbzDZeVdrSSAwDjMWzoT39EvR1drp/3rAFSKOh9DgEAAIB0qKys1OLFi4e1amOnE044QVdddZXmzZuXwmToq7y8XKtXr07r+VatWpW28wEAAIxF0PdyWVkDIKXa29u1Zs0atbe3Bx3FF67VYzWvhVwWMgBIYDyGC/3pD1fasa6uThUVFTrttNNGNFEjSWvXrtX8+fN17rnnqq6urt/3XKl/uCzU43me1q9fP6zH5ubmas6cOcrNzR3TOV9++eURbX83FAvtaCkHAMZj2NCf/oh6O7pcP5M1AFKqu7tbtbW16u7uDjqKL1yrx2peC7ksZACQwHgMF/rTHy60Y3V1tWbMmDHmra6WL1+uGTNmqKamJvk1F+ofCQv1NDU1qb6+fliPzcrK0vTp05WVlTWmc9bX16u5uXlMx+jLQjtaygGA8Rg29Kc/ot6OLtfPNmhACgW9dA4AAABIherqas2ZM2fYN/+Ho7i4WFVVVSotLfXtmPib7du3a8qUKWk/77Zt2zR58uS0nxcAAGCkgr6Xy8oaACnV09OjLVu2qKenJ+govnCtHqt5LeSykAFAAuMxXOhPf1hux7q6Op166qm+TtRIiVUYc+fOVV1dnen6R8NCPSN5k93MzEzts88+yszMHPN5c3JyxnyMnSy0o6UcABiPYUN/+iPq7ehy/UzWAEippqYm3X777Wpqago6ii9cq8dqXgu5LGQAkMB4DBf60x+W2/Gyyy7T5s2bU3LszZs36/LLLzdd/2hYqKegoEDFxcXDfuwll1yigoKCMZ2zuLhY+fn5YzpGXxba0VIOAIzHsKE//RH1dnS5frZBA1Io6KVzFniep46ODuXk5CgWiwUdZ8xcq8dqXgu5LGQAkMB4DBf60x9W27GyslKnnXZays/zyCOPqLy83Fz9o2WlP8vLy7V69eohHxeLxZSTk6OOjg6N5ZZBeXm5Vq1aNern78pKO1rJAYDxGDb0pz+i3o5jqT/oe7msrAGQUrFYTLm5uaH55eBaPVbzWshlIQOABMZjuNCf/rDajosXL07LeX7605+arH+0rPTnrFmzhvU4z/PU3t4+pomakZxvuKy0o5UcABiPYUN/+iPq7ehy/UzWAEipeDyuG2+8UfF4POgovnCtHqt5LeSykAFAAuMxXOhPf1hsx5qaGq1duzYt59qwYYN++tOfmqp/LKz058KFC4f1uIkTJ+qKK67QxIkT03K+4bLSjlZyAGA8hg396Y+ot6PL9TNZAyClcnNzNWfOHOXm5gYdxReu1WM1r4VcFjIASGA8hgv96Q+L7bhixYq0nau9vV3xeNxU/WNhpT9LS0t1wgknDPm49vZ2rVmzRu3t7aM+V1lZWb9tRPxgpR2t5ADAeAwb+tMfUW9Hl+vnPWuAFAp6n0MAAADAL8N9vxM/z+fn+50gIV3vO1RZWal58+al/DwAAAB+CfpeLitrAKRUW1ubVq5cqba2tqCj+MK1eqzmtZDLQgYACYzHcKE//WGtHT3P0/r169N2vry8PE2YMEGtra1pO2cqWerP+fPnD7k9WV5enubOnau8vLxRnaOioiIlEzVW2tFKDgCMx7ChP/0R9XZ0uX4mawCkVG9vrxoaGtTb2xt0FF+4Vo/VvBZyWcgAIIHxGC70pz+stWNTU5Pq6+vTdr6MjAzl5eWpqakpbedMJWv9efPNN2vatGmDfj8jI0NFRUXKyBj5LYNp06bppptuGku8QVlpRys5ADAew4b+9EfU29Hl+tkGDUihoJfOAQAAAH7Yvn27pkyZkvbzbtu2TZMnT077eaOgpqZGs2fP9nUSrri4WFVVVSotLfXtmAAAAOkS9L1cVtYASKnu7m7V1taqu7s76Ci+cK0eq3kt5LKQAUAC4zFc6E9/WGvH7OzstJ4vKytL06dPV2ZmZlrPmyrW+lOSSktLVVVVNeAKm53tn5WVNezjTZs2LeUTNVba0UoOAIzHsKE//RH1dnS5fiZrAKRUc3Oz7rnnHjU3NwcdxReu1WM1r4VcFjIASGA8hgv96Q9r7VhQUKDi4uK0nS8/P18XXHBB2s6Xatb6c6fS0lJVV1eroqKi39d3tn9+fv6wjlNRUaHq6uqUr6ix0o5WcgBgPIYN/emPqLejy/WzDRqQQkEvnQMAAAD8Ul5ertWrV6f1fKtWrUrb+aKusrJSS5Ys0dNPPz3s55SVlenKK6/UvHnzUpgMAAAgPYK+lzv8Nc0AAAAAgMiaNWtWWidrZs2albZzQZo/f77mz5+vjRs3asWKFVq3bp1efvnlfu9pU1xcrKOPPlqzZs3SwoUL+93MAAAAwNiwDRqAlGpsbNQNN9ygxsbGoKP4wrV6rOa1kMtCBgAJjMdwoT/9YbEdFy5cmLZzFRYWasKECabqHwuL/TmYww8/XN///vd10kkn6a9//avi8bi2bdumeDyuuro6rVq1Stddd10gEzVW2tFKDgCMx7ChP/0R9XZ0uX4mawCk1Pjx47VgwQKNHz8+6Ci+cK0eq3kt5LKQAUAC4zFchtufnucpHo9r+/btisfjYnfm/iyOi9LSUp1wwglpOdeRRx6pM88801T9Y2GxP/dkZ94JEyaooKBAkydPVkFBgWKxmIlcQbejlRx9cU1FVFkcjxg9+tMfUW9Hl+vnPWuAFAp6n0MAAABLampqktsrrV+/frftlY466ijNmjVLFRUVbK9kVGVlpU477bS0nIf3QQH2jGsqAAD+CvpeLitrAKRUa2urHnroIbW2tgYdxReu1WM1r4VcFjIASGA8hstA/VlZWamysjLNmDFD119/vVavXt3vpqIk1dfXa/Xq1br++utVWlqqsrIyPfbYY+mOb4bVcTF//vyUb4dWUVGhOXPmmKx/tKz252Cs5rWSK+gcXFOBvwl6PMJf9Kc/ot6OLtfPZA0AAACAlKirq1NFRYVOO+00rV27dkTPXbt2rebPn69zzz1XdXV1KUqI0bj55ps1bdq0lBx72rRpuummm1JybMB1XFMBAAg3tkEDUijopXMAAABBqa6u1qmnnqrNmzeP+VjTpk3TypUrVVpa6kMy+KGmpkazZ8/e7a/5x6K4uFhVVVX0MzAArqkAAKRe0PdyWVkDIKW6urr05ptvqqurK+govnCtHqt5LeSykAFAAuMxXLq6urRy5UqVl5f7clNRkjZv3qzZs2erpqbGl+O5wPq4KC0tVVVVlW8rbKZNm9ZvosZ6/SPlWj1W81rJle4c1dXVmjNnDtdUYABWrgvwB/3pj6i3o8v1M1kDIKVc3idyIK7VYzWvhVwWMgBIYDyGywcffKCnn35anZ2dvh63vr5ec+fOjcz2PS6Mi9LSUlVXV6uiomJMx6moqFB1dXW/v/J3of6RcK0eq3mt5Epnjrq6Op166qm+rmKTondNRXhZuS7AH/SnP6Leji7XzzZoQAoFvXQOAAAg3SoqKrRixYqUHn/ZsmUpOz5Gp7KyUkuWLNHTTz897OeUlZXpyiuv1Lx581KYDHAb11QAANIn6Hu5rKwBAAAA4IvKysqU3lSUpOXLl6uysjKl58DIzZ8/X1VVVaqpqdGiRYtUXl6u4uLifo8pLi5WeXm5Fi1apJqaGlVVVTFRA+wB11QAAKKFyRoAKdXQ0KBrr71WDQ0NQUfxhWv1WM1rIZeFDAASGI/hsXjxYhUVFemaa65RUVFRys6zZMmSlB3bClfHxeGHH67rrrtOq1atUl1dneLxuLZt26Z4PK66ujqtWrVK1113Xb+/WByIq/UPxrV6rOa1kitdORYvXpzS4+8UhWsqwsvKdQH+oD/9EfV2dLl+tkEDUijopXMWdHd3a9OmTdp3332VlZUVdJwxc60eq3kt5LKQAUAC4zEcampqNGPGDGVlZWnffffVpk2b1N3dndLzDXXD32VRHxdhq9+1eqzmtZIrHTl2XlPTJezXVISXlesC/EF/+iPq7TiW+oO+l8vKGgAplZWVpenTp4fml4Nr9VjNayGXhQwAEhiP4bBzq57u7m7V1tamdKKm7/nCKurjImz1u1aP1bxWcqUjR7qvcWG/piK8rFwX4A/60x9Rb0eX62eyBkBKtbS06L777lNLS0vQUXzhWj1W81rIZSEDgATGYzisW7dOkjRhwgSdc845mjBhQlrOF1ZRHxdhq9+1eqzmtZIrHTnSfY0L+zUV4WXlugB/0J/+iHo7ulw/kzUAUiojI0NFRUXKyAjH5ca1eqzmtZDLQgYACYxH93mep/Xr10uSent71dDQoN7e3pSe8+WXX1aYd3SO+rgIW/2u1WM1r5Vcqc7R95qaLmG/piK8rFwX4A/60x9Rb0eX6+c9a4AUCnqfQwAAgHSIx+MqLCwM5LwFBQVpPy8ApBLXVAAAghH0vVz3ppcAOKWzs1MbNmxQZ2dn0FF84Vo9VvNayGUhA4AExqP7+vZddna2Zs6cqezs7JSft6OjI+XnCErUx0XY6netHqt5reRKdY6g6gvzNTVonucpHo9r+/btisfjrGLykZXrAvxBf/oj6u3ocv1M1gBIqfb2dq1Zs0bt7e1BR/GFa/VYzWshl4UMABIYj+7rOzGTm5urOXPmKDc3N+XnzcnJSfk5ghL1cRG2+l2rx2peK7lSnSMdk90DCfM1NQg1NTVatGiRysvLVVJSosLCQk2ZMkWFhYUqKSlReXm5Fi1apI0bNwYd1WlWrgvwB/3pj6i3o8v1sw0akEJBL50DAABIB8/zVFJSovr6+rSds7i4WHV1dYrFYmk7JwCkA9dUt1VWVmrx4sVau3btsJ9zwgkn6KqrrtK8efNSmAwAMJSg7+WysgZASnmep/b29tAs83atHqt5LeSykAFAAuPRfbFYTEcddVTy49zc3JTf8Dv66KNDfVMx6uMibPW7Vo/VvFZypTpH32tquoT9mpoOdXV1qqio0GmnnTaiiRpJWrt2rebPn69zzz1XdXV1KUoYTlauC/AH/emPqLejy/UzWQMgpRobG7V48WI1NjYGHcUXrtVjNa+FXBYyAFEwnD3aGY/hMGvWLElSYWGhrrrqqpS/OfbO84VV1MdF2Op3rR6rea3kSkeOdF/jwn5NTbXq6mrNmDFDK1asGNNxli9frhkzZqimpsanZOFn5boAf9Cf/oh6O7pcP9ugASkU9NI5C3p6erRt2zZNmTJFmZmZQccZM9fqsZrXQi4LGYCwqqmp0YoVK7Ru3TqtX7++3zYuxcXFOuqoozRr1ixVVFTo8MMPZzyGRE1NjWbMmKHMzExNmTJF27ZtU09PT0rP1/d1VthEfVyErX7X6rGa10qudOTYeU1Nl7BfU1Opurpac+bM8XXbuuLiYlVVVam0tNS3Y4aVlesC/EF/+iPq7TiW+oO+l8tkDZBCQQ9wAADSiT3aUVZWNuKtX0Z7nqqqqpSfBwCCxDXVvrq6Os2YMUObN2/2/djTpk1TdXW1SkpKfD82AGBgQd/LZRs0ACnV3Nysu+++W83NzUFH8YVr9VjNayGXhQxAWIx1j/azzz5bV155pd57770UJUS6XHnllcrPz9cFF1yg/Pz8lJ4n7KL+eyps9btWj9W8VnKlK0e6rnVRuKamymWXXZaSiRpJ2rx5sy6//PKUHDtMrFwX4A/60x9Rb0eX62eyBkBKZWVlafr06crKygo6ii9cq8dqXgu5LGQAwsCPPdq7u7u1bt06zZ49mz3aHTd//nydccYZqq2tVXd3d0rOUVFREYmVWFH/PRW2+l2rx2peK7nSlWP+/PlauHBhSs8RlWtqKlRWVo75PWqGsnz5clVWVqb0HK6zcl2AP+hPf0S9HV2un23QgBQKeukcAACpxB7tGAhbwgCAf7im2sU2dQAQPkHfy2VlDYCU6ujo0PPPP6+Ojo6go/jCtXqs5rWQy0IGwGV1dXU69dRTfZmoycnJ0bHHHqucnBzV19dr7ty5qqur8yElgpCfn6+f//zn2nvvvX09bnFxsVauXBmZm4pR/z0Vtvpdq8dqXiu50pmjpKREK1euVHFxsa/Hjdo11W81NTVpmaiRpKefflobN25My7lcZOW6AH/Qn/6Ieju6XD+TNQBSqrOzUxs2bFBnZ2fQUXzhWj1W81rIZSED4DI/92jPzs7WzJkzlZ2dLYk92l3X2dmprVu36g9/+IOmTZvmyzGnTZsWuRVXUf89Fbb6XavHal4rudKdo7S0VFVVVVxTDUn19mdBn88lVq4L8Af96Y+ot6PL9bMNGpBCQS+dAwAgFSorK3Xaaael/DyPPvqo5s+fn/LzIHXq6up0+eWXa/ny5aM+RkVFhW666Sb++htA5HFNtaO8vFyrV69O6/lWrVqVtvMBQFQFfS+XlTUAUqq3t1cNDQ3q7e0NOoovXKvHal4LuSxkAFy1ePFiX4+XkZGhoqIiZWT0f2m6ZMkSX8+D9Oh7fS0pKdGyZcv06KOPqqysbETHKSsrU2VlpZYtWxbJm4pR/z0Vtvpdq8dqXiu5gsrBNdUGz/O0fv36tJ7z5ZdfFn9rPTAr1wX4g/70R9Tb0eX6mawBkFLxeFxLly5VPB4POoovXKvHal4LuSxkAFyUij3aJ06cqCuuuEITJ07s93X2aHfTQNfX+fPnq6qqSjU1NVq0aJHKy8t3e/+F4uJilZeXa9GiRaqpqVFVVZXmzZuX7vhmRP33VNjqd60eq3mt5Ao6B9fUYDU1Nfnynn0jUV9fr+bm5rSe0xVBj0f4i/70R9Tb0eX62QYNSKGgl85Z0Nvbq3g8rokTJ+72F9Mucq0eq3kt5LKQAXDRokWLdP311/t6zIyMDE2cOFHxeHy3v35atGiRrrvuOl/Ph9Qa7vXV8zw1Nzero6NDOTk5ys/PVywWS2NS26L+eyps9btWj9W8VnJZydEX19T02b59u6ZMmZL2827btk2TJ09O+3mtszgeMXr0pz+i3o5jqT/oe7lZaTsTgEjaubVNWLhWj9W8FnJZyAC4aN26db4fc+cy9XSdD6k13OtrLBZTQUGBCgoKUh/KQVH/PRW2+l2rx2peK7ms5OiLa2r6ZGdnB3LenJycQM5rncXxiNGjP/0R9XZ0uf7oTa0BSKumpibddtttampqCjqKL1yrx2peC7ksZABck6o92gsKCnTJJZcMeIOJPdrdw/XVH1Fvx7DV71o9VvNayWUlB4JRUFCw27ZzqVZcXKz8/Py0ntMVjMdwoT/9EfV2dLl+JmsApFR2drZmzpwZ2F8f+c21eqzmtZDLQgbANanao72zs1MbNmxQZ2fnbt9jj3b3cH31R9TbMWz1u1aP1bxWclnJgWDEYjEdddRRaT3n0UcfzbZ2g2A8hgv96Y+ot6PL9fOeNUAKBb3PIQAAfmKPdgAAgNS8h99Q5+M9/AAg9YK+l8vKGgAp1d7erjVr1qi9vT3oKL5wrR6reS3kspABcE2q/jIpNzdXc+bMUW5u7oDfZ492t3B99UfU2zFs9btWj9W8VnJZyYHgLFy4MNTncwnjMVzoT39EvR1drp/JGgAp1d3drdraWnV3dwcdxReu1WM1r4VcFjIArknVHu1ZWVmaPn26srKydvsee7S7h+urP6LejmGr37V6rOa1kstKDgSntLRUJ5xwQlrOVVZW1u+vvNEf4zFc6E9/RL0dXa6fbdCAFAp66RwAAH4rLy/X6tWr03q+VatWpe18AAAAw1FZWanTTjstLeeZN29eys8DAAj+Xi4rawCkVE9Pj7Zs2aKenp6go/jCtXqs5rWQy0IGwEWzZs3y/ZiZmZnaZ599lJmZmZbzIbW4vvoj6u0Ytvpdq8dqXiu5rORAsObPn5/y7ckqKiqYqBkC4zFc6E9/RL0dXa6fyRoAKdXU1KTbb79dTU1NQUfxhWv1WM1rIZeFDICLUnFToqCgQJdccokKCgrScj6kFtdXf0S9HcNWv2v1WM1rJZeVHAjezTffrGnTpqXk2NOmTdNNN92UkmOHCeMxXOhPf0S9HV2un23QgBQKeumcBZ7nqaOjQzk5OYrFYkHHGTPX6rGa10IuCxkAV5WVlWnt2rW+HS8WiyknJ0cdHR3q+9K0rKxMVVVVvp0H6cH11R9Rb8ew1e9aPVbzWsllJQdsqKmp0ezZs1VfX+/bMYuLi1VVVaXS0lLfjhlWYxmPnuepqalJnZ2dys7OVkFBAWM6YFxf/RH1dhxL/UHfy2VlDYCUisViys3NDc0vB9fqsZrXQi4LGQBXXXnllb4ez/M8tbe3a9e/IfL7PEgPrq/+iHo7hq1+1+qxmtdKLis5YENpaamqqqp8W2Ezbdo0JmpGYKTjsaamRosWLVJ5eblKSkpUWFioKVOmqLCwUCUlJSovL9eiRYu0cePGFCfHQLi++iPq7ehy/UzWAEipeDyuG2+8UfF4POgovnCtHqt5LeSykAFwld97tE+cOFFXXHGFJk6cmPwae7S7i+urP6LejmGr37V6rOa1kstKDthRWlqq6upqVVRUjOk4FRUVqq6uZqJmBIY7HisrK1VWVqYZM2bo+uuv1+rVq3dbDVVfX6/Vq1fr+uuvV2lpqcrKyvTYY4+lMj52wfXVH1FvR5frZ7IGQErl5uZqzpw5ys3NDTqKL1yrx2peC7ksZABc5uce7e3t7VqzZo3a29slsUe767i++iPq7Ri2+l2rx2peK7ms5IAtJSUlWrZsmR599FGVlZWN6LllZWWqrKzUsmXLVFJSkqKE4TTUeKyrq1NFRYVOO+20EW/ju3btWs2fP1/nnnuu6urq/IiLIXB99UfU29Hl+nnPGiCFgt7nEACAVGKPdgAAgIFt3LhRK1as0Lp16/Tyyy/3e71UXFyso48+WrNmzdLChQv73TeAf6qrq3Xqqadq8+bNYz7WtGnTtHLlSl6jAiEX9L1cVtYASKm2tjatXLlSbW1tQUfxhWv1WM1rIZeFDIDr/NqjPS8vT3PnztUBBxzARE0IcH31R9TbMWz1u1aP1bxWclnJAdsOP/xwXXfddVq1apXq6uoUj8e1bds2xeNx1dXVadWqVbruuuuYqBmjwcZjdXW15syZ48tEjSRt3rxZs2fPVk1NjS/Hw8C4vvoj6u3ocv1M1gBIqd7eXjU0NKi3tzfoKL5wrR6reS3kspABCAM/9mjPyMjQ4YcfzkRNSHB99UfU2zFs9btWj9W8VnJZyQF3xGIxFRQUaPLkySooKHDyTa+tGmg81tXV6dRTT/V19beUeE+buXPnsiVaCnF99UfU29Hl+tkGDUihoJfOAQCQTpWVlVqyZImefvrpYT+nrKxMV155pebNm5fCZAAAAIiKiooKrVixIqXHX7ZsWcqODyA4Qd/LZWUNgJTq7u5WbW2turu7g47iC9fqsZrXQi4LGYCwmT9/vqqqqlRTU6NFixapvLxcxcXF/R5TXFys8vJyLVq0SDU1NaqqqtIpp5zCeAwRrq/+iHo7hq1+1+qxmtdKLis5AOw+HisrK1M6USNJy5cvV2VlZUrPEVVcX/0R9XZ0uX4mawCkVHNzs+655x41NzcHHcUXrtVjNa+FXBYyAGE10j3aGY/hQn/6I+rtGLb6XavHal4ruazkALD7eFy8eHFazrtkyZK0nCdquL76I+rt6HL9bIMGpFDQS+cAAAAAAACioKamRjNmzEjr+fre8wHgvqDv5bKyBgAAAAAAAIDTUr39WdDnA9LF8zzF43Ft375d8XhcrPVIHyZrAKRUY2OjbrjhBjU2NgYdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgNA//G4bt26tJ473eeLAq6v/hhNO/Z939GSkhIVFhZqypQpKiwsVElJSfJ9Rzdu3JjC5P5w+eeIbdCAFAp66ZwFXV1deuedd3TQQQdp3LhxQccZM9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAeBv4/HAAw/UPvvso/r6+rSdu7i4WHV1dYrFYmk7Z5h5nqcdO3Ykr6+TJk2ibUdpJL+nKisrtXjxYq1du3bYxz/hhBN01VVXad68eWONmhJj+T0d9L1cJmuAFAp6gAMAAAAAAIRdPB5XYWFhIOctKChI+3nDoqamRitWrNC6deu0fv36fpNtxcXFOuqoozRr1ixVVFTw/kA+q6ur02WXXTam7fwqKip00003qaSkxMdkwQr6Xq4T26B5nqdt27aptrZWtbW12rZtG3vlAY5obW3VQw89pNbW1qCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgD423gMarujjo6OQM7rusrKSpWVlWnGjBm6/vrrtXr1atXX12v8+PFasGCBxo8fr/r6eq1evVrXX3+9SktLVVZWpsceeyzo6E4Y6vdUdXW1ZsyYMeb3XVq+fLlmzJihmpqaMR3Hby7/ns4KOsBAXn75Za1atUrr1q3Tq6++qk2bNqm7u7vfY7KysrTvvvvqiCOO0KxZs3TyySfr6KOPDigxAAAAAAAAgCBkZ2cHct6cnJxAzuuqsazmWLt2rdauXRvK1RzpVF1drTlz5vi2ZeDmzZs1e/ZsVVVVqbS01JdjRpmZbdBef/113XXXXVq+fLm2bNnS73uDRdx138J99tlHFRUVuuCCCyK31VRnZ6fuv/9+rVixQq+99pq2bt2q4uJiHXDAATrzzDN1wQUXaPLkyU6de/Xq1brnnnv0/PPP64MPPlBOTo723XdfffnLX9Y3vvENHXLIISM+5htvvKE777xTf/rTn7Rp0yZ1dHToE5/4hI477jidd955Oumkk0Z8zD0JeukcAAAAAABA2Hmep5KSEt6zxrDq6mqdeuqp2rx585iPNW3aNK1cuZLJgRGqq6vTjBkzfOmDXU2bNk3V1dXOT6IFfi/XC9jq1au9U045xcvIyEj+i8Vio/rX9xinnHKKt3r16qDLS4s33njDmzlzpidp0H977bWXV1lZ6cS5GxsbvbPPPnuPxxw3bpz3k5/8ZERZ//3f/90bN27cHo+7cOFCLx6Pj7QZBrVx48Z+x9+4caNvx3ZFZ2en98Ybb3idnZ1BR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQA0H88nnTSSXu85+P3v/Ly8qDLd8arr77qFRcXD9mm48aN8w455JAh799J8oqLi73q6uqgSzNpsN9TCxcuTOmYqKioCKji/sbyezroe7mBvWfN+vXrddJJJ+nkk0/WE088Ic/zkitoDj/8cF166aW6/fbb9fTTT+udd95RY2Ojurq61NnZqcbGRr399tuqqqrSbbfdpksvvTQ547XzOE888YROPvlknXTSSVq/fn1QZabcpk2bdNJJJ2nDhg2SEquNZs+erQsvvFCnn3668vLyJEkfffSRFixYoCeffNL0ubu6uvR//s//0f3335/82uGHH67zzjtPX/va1zR16tTk4xYtWqQf//jHw8p69dVX6wc/+IG6urokSVOnTtXXvvY1nXfeef1mR1esWKGvfvWru227h9FzeZ/IgbhWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgD9x+OsWbPSeu50n89VdXV1OvXUU4e16qnve9YMpb6+XnPnzlVdXZ0fMUNloN9TlZWVY36PmqEsX75clZWVKT3HcDj9ezqtU0Mfu/jii72srKzkKpqMjAyvvLzc+8UvfuF99NFHoz7uRx995P3iF7/wTj755H7HzsrK8r71rW/5WIEdJ5xwQnKm75Of/KS3YcOGft/ftm1bv78smDRpkldfX2/23D/84Q+Tj8/NzfVWrFjR7/sdHR3e9773veRjYrGYt2bNmj0e84knnug3I/q9733P6+jo6PeY5cuXe7m5ucnHXHvttcNviD0IejYWAAAAAAAgCqqrq9O6sqampibokp0QldUc1vW9j5vKf2VlZUGXOiZB38sN5D1rMjISC3omTpyoSy65RN/61rd0wAEH+HqO2tpa3Xrrrbr99tsVj8cVi8XU09Pj6zmC9thjj2n+/PmSEm+k9tJLLw24V2NLS4tmzJihv/71r5Kkf/3Xf9VPfvITc+f+6KOPdOCBB6qlpUWSdNttt+lb3/rWgI8955xzkqtvjjvuOD377LODZp01a5ZefPHF5PMGm0XeuUpLkgoKCvTXv/51zO/zE/g+hwAAAAAAABFRVlamtWvXpuU8VVVVKT+P6yorK3Xaaael/DyPPvpo8j4ldldTU6MZM2ak9Xx974e6JOh7uYFsg1ZQUKBrr71W7733nm644QbfJ2okafr06Vq8eLHee+89XXPNNcrPz/f9HEG75ZZbkh+ff/75g76p1oQJE/ptF3b77bePeZuvVJz7nnvuSU7UfOYzn9HFF1886PmXLFmSnPR77rnn9Morrwz4uBdffDE5UZORkaElS5YMesxvfetb+vSnPy1Jampq0r333jvoYzF8DQ0Nuvbaa9XQ0BB0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4Au4/HK6+8Mi3nTdd5XLd48eIRPb6oqEjXXHONioqKRvS8Pd3vi6Jdx0Wqtz/bVbrPtyuXf08HMlnzzjvv6Ic//KEmTpyY8nNNnDhRV199td55552UnyudmpubtXr16uTnX//61/f4+K985SvJCasdO3bo6aefNnfuhx56KPnxBRdcoFgsNugx999/f5144onJz3//+98Peczy8nLtt99+gx4zFovp/PPPH/KYGJn8/Hydf/75oZkwda0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcAHYfj/Pnz9fChQtTes6KigrNmzcvpecIg5qamhGvcmpubtbdd9+t5ubmET3v6aef1saNG0f0nDDbdVysW7curedP9/l25fLv6UAma8a6tZQr50ylZ599Vh0dHZISq1c+//nP7/Hxubm5Ou6445KfP/nkk6bO3d7erueffz75+Zw5c4bM8aUvfWmPx5Skp556atTH7FsnRi8rK0vTp09XVlZW0FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5AAw8Hm+++WZNmzYtJeebNm2abrrpppQcO2xGs7qiu7tbtbW1o9oRKOjVHJb0HRee52n9+vVpPf/LL7+sAN55Jcnl39PuJYYk6Y033kh+XFpaOqwfvqOOOkqrVq3a7fkWzv3WW2+pt7dXUmKFy5FHHjmsYw6UabCsfR8/mL7n7enp0f/8z/8MusXbaHzY2KaJO1p9O54kTS3MVVbm0POuHza2qbsnNRfKKQU5yh2XOeD3Wlpa9Mgjj+j0009XS2+mOrp6U5Jh0oRsTcgZ+mdxR0unWjpGvw1gW2uL/vzk4/rCiacob/yEft+bmDdOhXnjhjxGY1uX4m1do86wJxNysjRpQnby877tP2HC3/K2dHRrR0tnSjLkjMvQXgW5e3xMS0uLHv7DH/S5E8p3a0c/ZGXGNLUwb8gMf/jDH3R0ijJI0n6Txg/rce/7fF3oy/o1oq+Pmtqdv0bsicVrxGDSfY0Y6FrV3tWjbU2p+aOJ4VwjJKm7p1cfNranJIMU3mvEnn5XDoRrRMKu14jBfodH5RoxWP07uXaNGOm4kIK9RuzMe+aCv1PhxIIhH5+u1xF7+rlI5zVisBy8jkgI+v8aknvXiNEI6+uIkRqf0a1VKx/rNx5LSkq0cuVKzZ49W/X19b6dq7CoWHff/3u1xvLU2qddLb6OGEw6rxGjWV0xYcIEnX766XrkkUeSb5UwXE//+Tl91NTONUKJ3+Prn1mt008/XT09Pb6Og+Gor6/Xm+99pE/vOyWQa0Tf11377z1pRP/X+LCxzbcco8FkjaPeeuut5Mef/OQnh/Wc/fffP/nxm2++aercfY+51157KTd36Atr32Pu2LFD27Zt05QpU5Jf++ijj/rtTTicrHl5eZoyZYq2bduWzOrnZM15v1qn7ClbfTueJK39/peG9SLtq7c+pw8aUnPBWfHNY3XcQSUDfi8jI0NFRUXKyMjQZb95RS+8uyMlGX761Rk663ODb3O303WVb+h36zeN+jzZ6tbMcXFd//qz6tzlEvqdkz6t7578mSGPcecz72rp6r+MOsOefOWoffX/vnZE8vO+7d/XYzUf6nu/rU5JhmMOmKT7v3XcHh+TkZGhjow8nfbz3dvRD58oytOfrzpxj4/JyMhQVl5ByjJIUu0Nw3uDwxOWPDX0g0bJ+jWir8uWu3+N2BOL14jBpPsaMdC16pX3GrTwjud3fbovhnONkKQPG9tTOj7Deo3Y0+/KgXCNSNj1GjHY7/CoXCMGq38n164RIx0XUrDXiJ15T2juVOEwdi9P1+uIPf1cpPMaMVgOXkckBP1/Dcm9a8RohPV1xEj9+ryZA47H0tJSVVVVae7cudq8efOYz5OZP0njz/yxvvnoNunR/m1q8XXEYNJ1jRjtao7e3l41NDQk/6B7JJ594UX907L1euCS44d8bNivEdnq1k1zEuOirS2YyYdT/t9qPXvNgkCuEX1fd93zzS+O6P8andv+17ccoxHINmh+6ejo0Jo1a3T//ffrqaeeitSWVXV1dcmP995772E9Z5999kl+vGPH6F/EpuLcYz3mQMfte8zRHncs7YSEvLw8zZ07V3l5Q/9VgQs6laV1Xfun7Oa+36y2f15eng753AmBtmNeXp6OLTvRmb4EwszqtQqj49rvSquiPi7CVr9r42Jn3pxcW+1v5efCSg4A0ric3EHHY2lpqaqrq1VRUTGmc4w/dLamXvhzZU+ZPqbjRElTU9OoVnO0tbVp5cqVo5pg6G1vVndH6laSuaRTWclxkZ099IrIVIhlDr3SK1Vce93Vl7nJmq6uLt1555268847VVlZOejjfve732n//ffXSSedpIqKCpWXl2ufffbRnXfemca0wen7RlvDfYHY93EjfaOuVJ97rMcc6Li7fp7uduorNzc3+aZWGepVfqxDUmJ533h1Kks9khIzv7lKLEfNTD4uYUKsQ5kfPy5HXcr5+HHdXV1qbGxMPq6hoSG5t2dLS0vyF1ym16Px2rkU3VN+rEMZSvylQp66lK3Ec8apR3kfPy728eNiH2fNU6fG9cma93GG3p4eNTQ0JPejjMfj6uxMHKOxsVEvvPCCOjs7FfN6hlVTpno0oc/j8mMdyvw4a26frFn6W02e56mhoUE9PYnjNTc3q709sZy0o6NDTU1NH5feO6yaBuunLPXokMytylf7gP3U2Niorq7EMVpbW9Xamnih0LVLPw2nptH2U1NTU3LyOh6P6/nnn1dnZ6d6dumnsf7s7amf+v7sdXZ2Kh6P9+untrY2ffDOG8pX+5h+9vY0ntra2pLLpru7u/uttGtsbFRLS4v+8sZGTVDHmH729tRPfX/2dv0Lob79NNyawniN6NtPYbhGDNVP1q4R7e3tyd91QV4jtm/frg0bNqijo6NfP431Z28s14id/TTWn70oXiMK1K5PZW7XOHVzjRjDNaKhoSH5GiqK14jGxkZt2LBBzc3Nu72OcPEaka92HZK5Nfl60vo1YoI69KnM7Wr7uC92Cvp1RGdnp5577rnkz2VQ14gdO3boxRdfVGdnJ68jDLyOCMM1gtcRo++nzva2fu85vOvriNzcXC1btkxl/7hEe312VjJrYWGhxo1L3EweP368xo9P/PX/uHHjVFhYmKh1v8N10MIfaZ/T/68y8yY69Toi6GtEZ2dnv3thmZmZKioqUiwWkyRNnDgxOYmQl5eX3MIuLy9Pxx9/fPJ7w+knSSoqKlJWVpZ6u7u4RqhbWerRiy++qLq6OhUUFGjSpEn9VqAVFBQoJycncexR9FNWVpaKioqSWXftpwnFUxTLzgvsGpGnDn02c4uy1DPq/2sExdxkzeOPP66LLrpI3/zmN1VdPfCy2WeeeUbnnHOOtm/fLs/zkv8aGxv1zW9+MxITNjsv+pKGPUO6cxBKGtMSuFSce6zHHOi4fY852uP6tVTw2GOP1Ve/+lVJUlGsXWfl1ij74wvIvJw3NT0z8dcGM8dt1vHZieV2UzKadVZuTfIYZ+S8rk9kJH7BfH7cJn1+XGLp7Afv1erWW29NPm7p0qXatCnxvUceeURVVVWSpL17t2teTmILumz16KzcGhXFEm00O/sdHZqV2J7t05nbdXJOYknshFinzsqt0YRY4iJ2cs5f9OnM7ZKkQ7O2anb2O5Kk5sYdWrp0afLF0Z133qnXX39dklRVVaUnnnhC7e3tyutsHFZNn8iI64yc15OPOyu3RlMyEv8JOD77fzVzXGIJ8/TM+mRNvd2dWrp0aXILu9/+9rd6/vnEktZXXnlFy5YtkyTFutqGVdNg/ZStHh097gMdl/3egP1066236p13Esd4/PHH9fjjj0uS3nnnnX79NJyaRttPy5Yt0yuvvCJJeu6555Ltv23btn79NNafvT31U9+fvddffz15Xe7o6NDSpUv1wQcf6J3qdZqd/e6Yfvb2NJ6qqqr0yCOPSJI2bdqkpUuX9uunt956S6+88Ocx/+ztqZ/6/uzF43EtXbo0+UKxbz8Nt6awXiN29lMYrhFD9ZO1a8Tzzz+v3/72t5IU6DXi3nvv1Zo1a9TY2Nivn8b6szeWa8TOfuIaMfJrxEk5b2tm1mYVfpyVa8TorhGrVq3S6tWr1d7eHtlrxJo1a1RTU7Pb6wgXrxHHZb+no8d9oGz1OHONmJm1We/VvmPqdUR7e7tWrVqlmpqa3fopndeI3//+98nxyeuI4F9HhOEaweuI0fdTvO4jrVq1KnlDeLDXEQd+5lB9++x5mnrhzzXxuK/p0m//kz51yGGSpFNOOUWnnHKKMnLzdcix5br0ny7X1At/rn0qbtA/HBxz8nVE0NeI7OzsfvfCpkyZoiuuuCJ5z+3CCy/UoYcemjj27Nk6/fTTJUkHHHCATjnllOTbI1x66aU66KCD+vWTJB100EG69NJLkzVdccUV2nfffZWRNY5rRNZWZatHTz75pO6//37FYjEde+yxuuKKKzRxYmJv03PPPTf5vt2j6ad9991XV1xxRTLrrv00d97pisVigV0jDs/aqs99/LprtP/XCErM2zmtZMR3v/tdLV26VLFYTO+8846mT5++22M+//nP6+WXX1YsFlN2drYOO+wwffjhh/rwww8lJWb93n77bU2ePDnN6dNn/vz5euyxxyRJV155pW644YYhn/PHP/5R8+bNkyTl5+f/bWbfwLl/+tOf6vvf/74k6Zhjjkn+UtuTtra25Iy6JL300ks6+uijk5+/+OKLmjVrVr/HD+e9cI455pjkm6D9x3/8h/7v//2/Qz5nMK+99poOP/xw5ebmKisrSwVfW6zcKftpfKxLzV62pJjGq1OdylS3MpWtbmXIU7vGKVO9yot1qdlLXCAnxDrU7mWpR5nJWfcOjdNT3/2iJuUq+RcFDQ0Nys/PV1ZWllpaWpSRkaG8vDyVXb9K2xub1apsJWapO9XqjVOvMpSnLvUopk5ladzHf+3XpmzF5GlCrFMtXrY8xZSnTnUrU10fZ82UpzaN07ILP6/D9spWYWGhYrGY4vG4cnNzlZ2drba2NvX29mrChAk657ZntPF/Pxqypkz1KDfWrZaPH5cf61CbN049ylCuutT7cdYs9ShbPWpVtpZ8pVSnfHqiCgoKlJmZqebmZmVlZSk3Nzf5Vx0FBQX6v/e/oj9teHfImjLUO+J++s5Jn9aFs/bW+PHjNW7cuORfsYwfP15dXV1qbW1VYWGh/nPV/+hXT24csqbR9NOZR+2na049UNnZ2crJyVF7e7u6u7uVn5+vnp4eNTU1qbCwUL99eZN+9NuXxvSzN1g/fe6Aybrz72ckf/Y6OzvV3t6uiRMnJifWCwoKtK62QRfesXZMP3uD9dPeRfl64jvHJX/2uru71dzcnPzLj8bGRo0fP15bmrpUvuTxMf3s7amf3rq2PPmz19vbq3g8rokTJyojI0NNTU3JfvrMVQ+P6WePawTXCK4RXCO4RnCN4BrBNYJrBNcIrhFcI7hGjOwa0dabpe7ODmX3tiuWmaXOcQXKivVyjfDhGpGdna2pU6eqpaVFzc3NyszMVEFBgRobG+V5niZOnKj29nZ1dnYqLy9PGRkZamlpUVZWlvLz85MrUQoLC9Xa2qqurq7kPcDW1laNGzdO48ePT07SFRUVqaXL04L/eEx3/cMRXCN2uUYsWrRIt956q+LxuHp7e1VQUJBcHbrznqWf/ZT/uTOUd9y5Tl4jdny0RR/e+Y/aaePGjTrssMOULuY2bnv55ZclSdOnTx9woubVV19NTtTsv//+Wr16tQ488ED19vbqoosu0t13362mpibde++9+u53v5vm9Omzc3maNPzVH30f1/f5Fs491mMOdNxdPx/uZI1f7dTXzlU+BZJ6lZF8cSDp4wtRQt+9FHt2eVxLn4879Ld9H7PGjVNh4d8mrfouQ9y5PFGSemKZfc4V63fstj7H6/r4wiZJ3m6PGzhrxsfLJHfaOVMvKfnixPM8ebHMYdXUo0y1eJnJz/s+p73P47o/frEiSbFYrF+Gvn2Xk5PztxVTsYxh1TR4P3kf58j6OGv/x/Vdhtt3MnHXJbrDqWm0/VRQUNCvdimx3Ddzl34a68/envqp78/ezhdq0t/6yfM8dXV2qE1ZkmJD1jTyfuq/peFAS3Q9z1NHR5M6+mQYzc/envqp78/ezjei3alvPw23pjBeI/r2UziuEXvuJ2vXiL6/F4O8RowbN07t7e3Kycnpl2GsP3tjuUbsPOtYf/aieY3IULa61alMrhEfG801Ii8vL/kaKorXCM/zkteFXV9HjLQmG9eIrI//8tZz5BrhJW50ZGWpsPBv14KgX0d4npf8vSEFd42YMGFCcnzyOiLB0v81RlqTjWsEryOk0fVTLCOj38/iiF5HxKSMnPHq1viPk4XndYSFa8Thhx+u1atXJ7J+vBXVTjtXgUn978P19PSovb1dsVgsObmSbIfWv70fza5buzU0NCj3kzMVi8W4Rnxched5yZ/FhQsX6vrrr08+ru8f0ffdmWi4/TTQ1m47tba2qvBTX0jUHtg1IjP5umu0/9cIirmVNfvtt582b96s008/XQ899NBu3//3f/93XX311YrFYrrrrrt03nnnJb+3Y8cOTZs2TV1dXTrllFP0xz/+MY3J0+vb3/52chnZ2Wefrfvuu2/I5/zXf/2X/vEfEzODhx56qF577TUz537ggQd09tlnS5L23ntvbdmyZchjvv766/1mNj/66CNNmTKl3+d777138vM33nhDhxxyyJDH3WuvvZJLIh944AGdddZZQz5nMDtX1uy06s8v6uBDDh318QYytTBXWZlD72j4YWObuntSM9ynFOQod1zmgN9raGjQ0qVL9Z3vfEedmbnq6OpNSYZJE7I1IWfo+ecdLZ1q6ege9Xma4o3673t+obPOv1gFEwv7fW9i3jgV5g39BmqNbV2Kt3WNOsOeTMjJ0qQJf/sF1bf9+/5yauno1o6WzgGOMHY54zK0V8GeJ0Z35hqoHf2QlRnT1MI9v09VqjNI0n6Txg/9IEnv72gd+kGjZP0a0ddHTe3OXyP2xOI1YjDpvkYMdK1q7+rRtqbU7Bk8nGuEJHX39OrDxvYhHzdaYb1G7Ol35UC4RiTseo0Y7Hd4VK4Rg9W/k2vXiJGOCynYa8TOvP/4T5dpcsmkIR+frtcRe/q5SOc1YrAcvI5ICPr/GpJ714jRCOvriJHK7mnTbf/180F/X+wUtdcRg0nnNWLRokX9JgiGo6ioSFdccYVuvPHGfpMBw/FP3/2efnjtj7lG6G+/x/uOi7KyMq1duzYl5+vrmOO/qP9+5E+SgrtG9H3ddeAn9hrR/zXeevN1nfyFzye/nu6VNeYmayZMmKD29nZdeOGFuuOOO3b7/sknn6zVq1crOztb27dv323lw0knnaSnnnpK++67r9577710xU67pUuXJvcGPPbYY/Xcc88N+ZyrrrpKixcvliSdeeaZ+t3vfmfm3K+++qpmzpwpKTHT3draOuQqmJUrV+rUU0+VJE2aNEl1dXW7Paa4uDh5cV+5cqW+/OUv7/GY7e3t/WZVq6urVVpausfn7MmukzXpHuAW9PT0aNu2bZoyZYoyM4e+OFrnWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB4tq6mp0YwZM0b0nMzMTE2ZMkXbtm1TT0/PiM/X9x5clA00LiorK3Xaaael/NyVlZXJt8IIyliuC0Hfyx16aivNOjsTf32xc1lzX729vXrhhRcUi8X0uc99bsAtqj7xiU9I0oA37sPks5/9bPLjmpoadXcPPTO/fv36AZ9v4dwHH3ywMjISP46e52nDhg1jPuauX9/55nrDPWZmZqY+85nPDPkc7FlmZqb22Wef0Lxocq0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPlpWWluqEE04Y0XN6enq0ZcuWEU/UlJWVMVHTx0DjYv78+Vq4cGFKz1tRURH4RI3k9nXB3GTNzgmYHTt27Pa9V155Rc3NzZKkL37xiwM+f+eqiOFMILjs+OOPT+552dLSopdeemmPj+/o6NDzzz+f/PzEE080de7c3Fwde+yxyc/XrFkzZI6qqqo9HlOSvvSlL436mH3rxOg1Nzfr7rvvTo5d17lWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMR+uuvPLKET0+Pz9fF1xwwYjfQ3qk5wm7wcbFzTffrGnTpqXknNOmTdNNN92UkmOPlMvXBXOTNfvtt588zxtwFURlZWXy48Ema+rr6yX1f0OrMMrPz9dJJ52U/Pzuu+/e4+MffPDB5JtHTZo0SWVlZebOvWDBgmEf8/3330++Sdmuzx3smE888YQ2bdq0x+P2Pe9gx8TIZGVlafr06crKGnr/Vhe4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjEfrRrqao7u7W7W1tSP6I3wrqzksGWxclJSUaOXKlSouLvb1fMXFxVq5cqVKSkp8Pe5ouXxdMPeeNRdddJHuvPNOxWIx/fGPf9Qpp5wiSWpra9Mhhxyi999/X9nZ2froo480ceLE3Z5fWlqq1157TTNnzuy3pVUY9d1rMCcnRy+//PKAe+i1trbqiCOO0Ntvvy0p8f4xI32Dr3Sc+6OPPtKBBx6olpYWSdIdd9yhiy66aMDHVlRUaMWKFZKk4447Ts8+++ygWWfNmqUXX3xRknTuuefqN7/5zYCP+8UvfqFvfetbkhKTfX/96181efLkQY87HEHvcwgAAAAAAAAEpa6uTjNmzNDmzZt9P/a0adNUXV1tZpLAFTU1NZo7d64vfTJt2jStXLlyTO/5bUnQ93LNraw599xzkx+fddZZuvrqq3XzzTerrKxM77//vmKxmE477bQBJ2oaGxv15ptvKhaLReKG+Pz585N7P3Z0dOi0005TdXV1v8fU1dVpwYIFycmSSZMmDbo0sLa2VrFYLPlvT6tb/D63JO21117653/+5+Tnl19+uR544IF+j+nq6tJVV12VnKiRNOTEU9/vL1u2TFdddZW6urr6PeaBBx7QFVdckfz8X/7lX8Y8UYOEndvgdXR0BB3FF67VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDj0QUjWc2Rk5OjY489dlhvS2BtNYclQ42L0tJSVVdXq6KiYkznqaioUHV1tbmJGpevC+Yma770pS/p9NNPl+d5am5u1nXXXacrrrgiuUpm3Lhxuvrqqwd87h/+8IfkG1D1ff+TMFu+fLmmTp0qKTHZMnPmTH3pS1/SRRddpDPOOEP777+/Vq1aJSmxBOyBBx5QUVGR2XP/8Ic/TL7/TFtbm84++2zNmDFDF1xwgc455xx98pOf1OLFi5OPv/baazV79uw9HvOkk07SD37wg+Tnixcv1vTp03XOOefoggsuUGlpqc4++2y1tbVJkk4++WQtWrRoxO2BgXV2dmrDhg3q7OwMOoovXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMajK0pLS1VVVTXk+6VkZ2dr5syZys7O3uPjpk2bpqqqKnOTBFYMZ1yUlJRo2bJlevTRR0f8dhllZWWqrKzUsmXLTE6WuXxdMLcNmpTYOuvcc8/Vww8/3O/rEyZM0C9/+UudffbZAz5v9uzZWrt2rWKxmF5//XUdfPDB6YgbuDfffFMLFy7Uhg0bBn3MlClTdNddd2n+/PmDPqa2tlYHHHBA8vO77rpLF1xwQVrO3VdjY6Muvvji3VbV9DVu3Dhdc801w55U8TxP1113nX784x/vtqqmr3POOUe33377gCu3RiPopXMAAAAAAACABXV1dbr88su1fPnyUR+joqJCN910k8lJApdt3LhRK1as0Lp16/Tyyy8n3xdeSqxiOvroozVr1iwtXLiw373OsAn6Xq7JyZqdqqurtXbtWsXjce23336aN2+eJk2aNOBj6+rq9L3vfU+e56mgoEA33XRTmtMGq7OzU/fdd59WrFih1157TVu3blVRUZEOPPBAnXnmmfr6178+5LZeo5ms8evcA3niiSd0zz336LnnntOHH36ocePGab/99tOXv/xlfeMb39BnP/vZER/zjTfe0C9/+Us9/vjjev/999XV1aWpU6fquOOO0/nnn6/y8vIRH3NPgh7gFvT29ioej2vixInKyDC3mG/EXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMajqyorK7VkyRI9/fTT/b6ekZGhiRMnKh6Pq7e3t9/3ysrKdOWVV2revHnpjOqksY6LnTtedXR0KCcnR/n5+YrFYilImhpjqT/oe7mmJ2sA1wU9wC1oaGjQ0qVL9Z3vfMe3LfiC5Fo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAeXbfrag7P83TFFVfoxhtvVCwWi8xqDr9FfVyMpf6g7+UyWQOkUNAD3IKw/ZWLa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgME8/zFI/HVVdXp5KSEk2cONGp1RyWRH1cuLyyJittZwIQSRkZGaGaxXetHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2ESi8VUWFiowsLCoKM4L+rjwuX6oze1BiCtmpqadNttt6mpqSnoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9gaysufDCC1N+jlgspl/96lcpPw+APcvOztbMmTOVnZ0ddBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5/kDesyYjIyMtew729PSk/BzAngS9zyEAAAAAAAAAYGhB38sNbBs0z/OG/W+oxw/0fQA2tLe3a82aNWpvbw86ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulx/INug3XXXXUM+5r333tN1112nzs5OSdJxxx2n4447Tvvvv78mTJiglpYWvf/++3ruuef03HPPSZJycnK0aNEi7b///inND2D4uru7VVtbq8997nNBR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvR5frD2QbtKG88MILmjdvnhoaGnTyySfr5ptv1qc//elBH//222/r8ssv18qVKzVp0iRVVlbqmGOOSWNiYGBBL50DAAAAAAAAAAwt6Hu5gW2DNpj6+nqdddZZamho0DnnnKM//vGPe5yokaRPfepTqqys1MKFC7Vjxw6dddZZ2rFjR5oSA9iTnp4ebdmyJTTvIeVaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNTdb88pe/1KZNmzRhwgTddtttisViw3peLBbTbbfdpvz8fH3wwQe64447UpwUwHA0NTXp9ttvV1NTU9BRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNbYN2zDHH6KWXXtLpp5+uhx56aMTPX7Bggf7whz/oc5/7nNatW+d/QGAEgl46Z4Hneero6FBOTs6wJ18tc60eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7TiW+oO+l5uVtjMN07vvvitJ2meffUb1/L333luSVFtb61ckAGMQi8WUm5sbdAzfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPboDU3N0uSPvzww1E9f8uWLf2OAyBY8XhcN954o+LxeNBRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNTdZMnTpVnufpySefVGNj44ie29jYqCeffFKxWExTp05NUUIAI5Gbm6s5c+Y4O6O9K9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u12/uPWsuvvhi/fKXv1QsFtNZZ52lFStWDHtvuYULF+r+++9XLBbThRdeqDvuuCPFaYE9C3qfQwAAAAAAAADA0IK+l2tuZc2ll16qzMxMSdJ///d/a+7cuXrrrbf2+Jz/+Z//0amnnqoHHnhAkpSRkaFvf/vbKc8KYGhtbW1auXKl2trago7iC9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u158VdIBdHXnkkbryyiv1k5/8RLFYTE888YQOPfRQHX300TruuOO0//77a/z48WptbdV7772n559/Xi+99JIkaecioe9///s68sgjgywDwMd6e3vV0NCg3t7eoKP4wrV6rOa1kMtCBgAJjMdwoT/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot6PL9ZvbBm2nRYsWafHixckJmD1thdb3Mf/yL/+ixYsXpyUjMJSgl84BAAAAAAAAAIYW9L1cc9ug7fSTn/xETz31lI477jhJiQmZwf5J0vHHH68nn3ySiRrAmO7ubtXW1qq7uzvoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9ZidrJKmsrEx//vOf9frrr+uWW27RRRddpDPOOEMnnXSSzjjjDF100UW65ZZb9Prrr+uZZ57R7Nmzg44MYBfNzc2655571NzcHHQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX6z26ABYRD00jkAAAAAAAAAwNCCvpdremUNAAAAAAAAAABA2DFZAyClGhsbdcMNN6ixsTHoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9TNYASKnx48drwYIFGj9+fNBRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNv2fN1q1b9dJLL6m2tlbxeFxdXV3Dfu7VV1+dwmTA0ILe5xAAAAAAAAAAMLSg7+Vmpe1MI7Ru3TotWrRIa9as0Wjnk5isAYLX2tqqxx9/XKeccoqTM9q7cq0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/SYna375y1/q0ksvVW9v76gnamKxmM+pAAAAAAAAAAAA/GduG7TXXntNM2fOVE9Pj6TEpMvnP/95HXnkkSopKdG4ceOGfawf/ehHqYoJDEvQS+cAAAAAAAAAAEML+l6uuZU1//mf/6menh7FYjEddthhWrFiBTe3AYd1dXXpnXfe0UEHHTSiyVarXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcf0bQAXb11FNPSZLy8vL0xz/+kYkawHGtra166KGH1NraGnQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX5z26CNHz9eHR0dmj9/vv7whz8EHQcYk6CXzgEAAAAAAAAAhhb0vVxzK2smTJggSfrEJz4RcBIAAAAAAAAAAIDUMzdZc8ABB0iS6urqAk4CwA8NDQ269tpr1dDQEHQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX5z26AtXrxY//qv/6q9995bH3zwgTIyzM0nAcMW9NI5C7q7u7Vp0ybtu+++ysrKCjrOmLlWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XYcS/1B38s1N1lTX1+v0tJSffjhh/rZz36m73znO0FHAkYt6AEOAAAAAAAAABha0PdyzS1bKS4u1v33368JEyboe9/7nn71q18FHQnAGLS0tOi+++5TS0tL0FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+s2tg3r66aclSddff73+5V/+RRdffLFuvvlmnXXWWSotLVVhYaFisdiwjlVWVpbKqACGISMjQ0VFRaHZ0tC1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/Wb2wYtIyOj32SM53nDnpzpKxaLqbu7289owIgFvXQOAAAAAAAAADC0oO/lmpxe8jwv+W/Xz0fyD0DwOjs7tWHDBnV2dgYdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa7f3DZoZWVlo1pJA8Cm9vZ2rVmzRgceeKCys7ODjjNmrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rR6rea3kspIDAOMxbOhPf0S9HV2u39w2aECYBL10DgAAAAAAAAAwtKDv5ZrcBg1AeHiep/b29tBsTehaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5fqZrAGQUo2NjVq8eLEaGxuDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XzzZoQAoFvXTOgp6eHm3btk1TpkxRZmZm0HHGzLV6rOa1kMtCBgAJjMdwoT/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot+NY6g/6Xq4zkzVtbW169dVXtX37djU1NamgoECTJ0/WEUccoby8vKDjAQMKeoADAAAAAAAAAIYW9L1c09ug9fT06De/+Y2+8IUvqLCwUF/4whd0xhln6O///u91xhlnJL/+xS9+UcuWLVNPT0/QkQHsorm5WXfffbeam5uDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb3ay5u2339axxx6r888/X88//7y6u7vled5u/7q7u/Xcc8/pvPPO03HHHad33nkn6OgA+sjKytL06dOVlZUVdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fpPboL377rv6whe+oK1bt0qSdkacMGGC9ttvP02YMEEtLS16//331dLSIkmKxWLyPE/77LOPnn32WU2fPj2o+EBS0EvnAAAAAAAAAABDC/persmVNV/72te0ZcsWSVJmZqYuvfRSvfzyy4rH43r99df14osv6vXXX1c8Htf69ev17W9/W5mZmYrFYtqyZYu+9rWvBVwBgJ06Ojr0/PPPq6OjI+govnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv3mJmt+97vf6eWXX1YsFtPkyZP17LPP6pZbbtGRRx6pWCzW77GxWEwzZ87Uz3/+cz333HOaPHmyJOnll1/Wgw8+GER8ALvo7OzUhg0b1NnZGXQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX5z26Cde+65WrFihWKxmP70pz+pvLx82M994okndMoppygWi+nss8/W8uXLU5gUGFrQS+cAAAAAAAAAAEML+l6uuZU1L7zwgmKxmEpLS0c0USNJ5eXlOuKII+R5nl544YUUJQQwEr29vWpoaFBvb2/QUXzhWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6zU3WbN26VZJ05JFHjur5M2fOlCR99NFHfkUCMAbxeFxLly5VPB4POoovXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcv7lt0AoKCtTa2qp/+Id/0N133z3i53/961/XPffcowkTJqipqcn/gMAIBL10zoLe3l7F43FNnDhRGRnm5odHzLV6rOa1kMtCBgAJjMdwoT/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot+NY6g/6Xm5W2s40THvvvbf++te/asOGDaN6/s7n7bXXXv6FAjBqGRkZKioqCjqGb1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XL+5qbVZs2ZJkmpqavTUU0+N6Llr1qzRq6++qlgsljwOgGA1NTXptttuC81KN9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u129usubMM89MflxRUaHq6uphPW/jxo2qqKhIfv6Vr3zF92wARi47O1szZ85UdnZ20FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+s29Z40kHXXUUXr11VfleZ6ys7P17W9/W1//+tdVWlq622M3btyou+++W7fccos6OzslSUceeaReeumldMcGdhP0PocAAAAAAAAAgKEFfS/X3MoaSbr//vs1efJkxWIxdXZ2aunSpZo5c6YKCwt1+OGH65hjjtHhhx+uoqIiHXHEEfrP//xPdXR0yPM8TZkyRffdd1/QJQD4WHt7u9asWaP29vago/jCtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1m5ys+fSnP601a9YkV9J4nifP89TU1KQ33nhDL730kt544w3F4/Hk9yTpiCOO0Jo1a/SpT30qyPgA+uju7lZtba26u7uDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb3IbtJ26urr0m9/8Rr/4xS/00ksvqaenZ7fHZGZm6nOf+5y+9a1v6dxzz9W4ceMCSAoMLOilcwAAAAAAAACAoQV9LzcrbWcahXHjxunrX/+6vv71r6u5uVnV1dXatm2bmpublZ+frylTpmjGjBnKz88POiqAQfT09Gjbtm2aMmWKMjMzg44zZq7VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR1drt/kNmgDyc/P1/HHH68zzjhD5557rs444wwdf/zxTNQAxjU1Nen2229XU1NT0FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+k1vgwa4LuilcxZ4nqeOjg7l5OQoFosFHWfMXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O46l/qDv5ZreBg2A+2KxmHJzc4OO4RvX6rGa10IuCxkAJDAew4X+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OLtdvbhu0np4eVVRU6Mwzz9SVV145oudeeeWVOvPMM3X++eenKB2AkYrH47rxxhsVj8eDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb26y5rHHHtN9992nhx9+WJ/61KdG9NxPfepTeuihh/Sb3/xGf/rTn1KUEMBI5Obmas6cOc7OaO/KtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1m3vPmksuuUS/+MUvlJ2dra1bt6qwsHDYz21sbNRee+2l7u5uXXrppfr5z3+ewqTA0ILe5xBANNXW1uqAAw4Y8Hvvvvuupk+fnt5AAAAAAAAAxgV9L9fcypoXX3xRknTEEUeMaKJGkgoLCzVz5kx5nqd169alIh6AEWpra9PKlSvV1tYWdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnOTNX/9618Vi8V08MEHj+r5n/nMZ5LHARC83t5eNTQ0qLe3N+govnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv3mtkHLzs5WT0+PLr74Yt16660jfv6ll16q22+/XVlZWers7ExBQmD4gl46ByCa2AYNAAAAAABgZIK+l2tuZc3EiRMlSTt27BjV83c+b8KECb5lAjB63d3dqq2tVXd3d9BRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNTdZMnTp1TO85s/N5e++9t5+xAIxSc3Oz7rnnHjU3NwcdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa7f3DZol1xyiX7xi18oFotp5cqVOvnkk4f93Mcff1xz585VLBbTeeedp7vuuiuFSYGhBb10DkA0sQ0aAAAAAADAyAR9L9fcypoFCxYkP7700ku1ffv2YT3vo48+0qWXXjrgcQAAAAAAAAAAAKwyN1kzd+5cHX300ZISf/07a9YsrVq1ao/PWbVqlY499li9++67isViOuKII3TGGWekIy6AITQ2NuqGG25QY2Nj0FF84Vo9VvNayGUhQyrU1NTopz/96aDf//u//3stWrRIGzduTGMqYM/COh6jiv70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u129uGzQpsdzo+OOPV3NzszzPUywW06c//WnNmTNHBx54oPLz89Xc3Kx3331XTz31lP7yl79IkjzPU0FBgZ555hmVlpYGXAUQ/NI5C7q6uvTOO+/ooIMO0rhx44KOM2au1WM1r4VcFjL4qbKyUosXL9batWuH/ZwTTjhBV111lebNm5fCZMDQwjYeo47+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OY6k/6Hu5JidrJGnNmjX62te+ltwGLRaLDfrYnSVMmjRJDzzwgE488cS0ZASGEvQABxB+dXV1uuyyy7RixYpRH6OiokI33XSTSkpKfEwGAAAAAADgjqDv5ZrbBm2nOXPmaP369aqoqFBWVpY8zxv0X1ZWls4991xt2LCBiRrAmNbWVj300ENqbW0NOoovXKvHal4LuSxkGKvq6mrNmDFjTBM1krR8+XLNmDFDNTU1PiUDRiYM4xF/Q3/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX688KOsCe7LvvvvrNb36jJUuW6IknntDzzz+vrVu3qqmpSQUFBdp777117LHH6uSTT9bUqVODjgsAQNpUV1drzpw5qq+v9+V4mzdv1uzZs1VVVcVWogAAAAAAAGlmdhs0IAyCXjoHIJzq6uo0Y8YMbd682fdjT5s2TdXV1WyJBgAAAAAAIiXoe7lmt0EDEA5dXV1688031dXVFXQUX7hWj9W8FnJZyDBal112WUomaqTECpvLL788JccGBuPyeMTu6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/UzWAEgpl/eJHIhr9VjNayGXhQyjUVlZOeb3qBnK8uXLVVlZmdJzAH25Oh4xMPrTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XL8T26Bt2LBBzzzzjN5//33V19erp6dHv/rVr4KOBQwp6KVzAMKnrKxMa9euTct5qqqqUn4eAAAAAAAAC4K+l5uVtjONwm9/+1tdc801euONN5Jf8zxPsVhst8marVu36sgjj1R3d7e++MUv6sEHH0x3XAAAUqqmpiYtEzWS9PTTT2vjxo39XqQAAAAAAAAgNcxug3bJJZfo7LPP1htvvCHP85L/BrP33nvrpJNO0vbt2/WHP/xBH3zwQRrTAhhMQ0ODrr32WjU0NAQdxReu1WM1r4VcFjKMVKq3Pwv6fIguF8cjBkd/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3uQ3aD37wA/3kJz9Jfv7lL39ZJ554olauXKmnnnpKsVhMPT09uz1v1apV+vKXv6xYLKbbbrtN3/zmN9MZG9hN0EvnLOju7tamTZu07777KivL9GK+YXGtHqt5LeSykGGkysvLtXr16rSeb9WqVWk7H6LLxfGIwdGf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NtxLPUHfS/X3GTNX/7yFx122GHq7u5WUVGRHnzwQc2ZM0eSdNlll+mWW24ZdLKmp6dHRUVFam1t1TnnnKNly5alOT3QX9ADHEB4eJ6nkpIS1dfXp+2cxcXFqqurUywWS9s5AQAAAAAAghD0vVxz26D94he/UHd3t2KxmO64447kRM1wZGZmasaMGfI8T6+99lrqQgIYtpaWFt13331qaWkJOoovXKvHal4LuSxkGImmpqa0TtRIUn19vZqbm9N6TkSTa+MRe0Z/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3N1mzc3uXgw46SF/5yldG/Pzp06dLkjZt2uRnLACjlJGRoaKiImVkmLvcjIpr9VjNayGXhQwj0dnZGch5Ozo6AjkvosW18Yg9oz/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot6PL9ZvbBq2kpEQNDQ2qqKjQvffe2+97Q22DJkmXXnqpbr/9do0bN44bTAhc0EvnAIRHPB5XYWFhIOctKChI+3kBAAAAAADSKeh7ueaml3YuT8rPzx/V81tbWyVJubm5vmUCMHqdnZ3asGFDYKsC/OZaPVbzWshlIcNIFBQUqLi4OK3nLC4uHvXvY2AkXBuP2DP60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7uly/ucmakpISSdK2bdtG9fx33nlHkjRlyhTfMgEYvfb2dq1Zs0bt7e1BR/GFa/VYzWshl4UMIxGLxXTUUUel9ZxHH320YrFYWs+JaHJtPGLP6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/ea2QSsrK9MzzzyjfffdV++9916/7w21DVpdXZ0+8YlPqKurSwsWLNDvfve7dMUGBhT00jkA4bJo0SJdf/31aT3fddddl7bzAQAAAAAABCXoe7nmVtaccsopkqQPPvhADz/88Iiee8MNNySXN5188sm+ZwMwcp7nqb29XcbmhUfNtXqs5rWQy0KGkVq4cGGoz4focnE8YnD0pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+c5M1F1xwQfL9Zr797W+rtrZ2WM+755579LOf/UyxWEzFxcX6h3/4hxSmBDBcjY2NWrx4sRobG4OO4gvX6rGa10IuCxlGqrS0VCeccEJazlVWVtbvr0mAVHJxPGJw9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPboEnS1VdfrX//939XLBbTpEmT9KMf/UgLFy7UNddc028btPb2dj377LP6r//6L/3+97+X53mKxWK66aab9I//+I9BlwEEvnTOgp6eHm3btk1TpkxRZmZm0HHGzLV6rOa1kMtChtGorKzUaaedlpbzzJs3L+XnASR3xyMGRn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb8ex1B/0vVyTkzWe5+mss87Sgw8+2O+NjbOzs9XR0aFYLKaJEycqHo/3e46UWJlz5513pj0zMJCgBziAcKqoqNCKFStSevxly5al7PgAAAAAAADWBH0v19w2aJIUi8X0wAMP6Ac/+IEyMjLkeZ48z1NnZ2dy8qaxsTH5dc/zlJmZqR/96EdM1ADGNDc36+6771Zzc3PQUXzhWj1W81rIZSHDaN18882aNm1aSo49bdo03XTTTSk5NjAYl8cjdkd/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3OVkjSRkZGfrxj3+st99+W9/5znf0mc98pt/kzE777befLr30Ur311lv60Y9+FGBiAAPJysrS9OnTlZWVFXQUX7hWj9W8FnJZyDBaJSUlWrlypYqLi309bnFxsVauXKmSkhJfjwsMxeXxiN3Rn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6TW6DNpgdO3boww8/VGNjoyZMmKC9995b++yzT9CxgEEFvXQOQLjV1NRo7ty52rx585iPNW3aNK1cuVKlpaU+JAMAAAAAAHBL0Pdyza6sGcikSZN02GGH6fjjj9cRRxzBRA3ggI6ODj3//PPq6OgIOoovXKvHal4LuSxkGKvS0lJVV1eroqJiTMepqKhQdXU1EzUITBjGI/6G/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7X79RkDQD3dHZ2asOGDers7Aw6ii9cq8dqXgu5LGTwQ0lJiZYtW6ZHH31UZWVlI3puWVmZKisrtWzZMrY+Q6DCMh6RQH/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX63dqG7SB1NbWauvWrdprr710wAEHBB0H6CfopXMAomfjxo269dZb9V//9V8Dfv8LX/iCZs+erYULF/a7PgEAAAAAAERZ0Pdyza2s8TxPTz75pJ588km99NJLgz7uueee04wZM3TQQQfp+OOP16c+9SkdeuihWrVqVRrTAhhKb2+vGhoa1NvbG3QUX7hWj9W8FnJZyJAKhx9+uL73ve8N+v3f/OY3uu6665iogSlhHY9RRX/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6zc3WVNVVaXy8nKdfPLJevDBBwd8zMaNG1VeXq7XXntNnucl/7355puaP3++Hn300TSnBjCYeDyupUuXKh6PBx3FF67VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR1drt/cNmhXXXWVlixZolgspo0bN+qzn/3sbo85+eSTtXr1asViMXmep0mTJqm5uTm5D93ee++tv/zlL8rPz093fKCfoJfOWdDb26t4PK6JEycqI8Pc/PCIuVaP1bwWclnIkCq1tbWDbg367rvvavr06ekNBAwhzOMxiuhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u04lvqDvpdrrrdefPFFSdLUqVMHnKj5y1/+kpyoKSkp0TPPPKPt27dry5Ytmjt3riTpo48+0vLly9OaG8DAMjIyVFRUFJpfDq7VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR1drt9c4r/+9a+KxWI64ogjBvz+ww8/nPz4hz/8oY4//nhJUlFRke64445kJzz22GOpDwtgSE1NTbrtttvU1NQUdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnOTNdu2bZMk7bPPPgN+v6qqSlJihqyioqLf9z7xiU/ouOOOk+d5qq6uTm1QAMOSnZ2tmTNnKjs7O+govnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv3m3rMmKytLnufpkksu0S233LLb90tKStTQ0KCjjjoquWVaX+eee65WrFihCRMmODl7hnAJep9DANHEe9YAAAAAAACMTND3cs2trJkwYYIkqaGhYbfvvfbaa6qvr5ckffGLXxzw+QUFBZKkjo6O1AQEMCLt7e1as2aN2tvbg47iC9fqsZrXQi4LGVJl+vTp8jxvwH9M1MCiMI/HKKI//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/Wbm6yZOnWqPM/Txo0bd/veH//4x+THX/jCFwZ8fmNjo6S/TfoACFZ3d7dqa2vV3d0ddBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPboO3cxiwWi+mFF17Q5z73OUlSb2+vDj/8cL355pvKyMjQhx9+qClTpuz2/KOPPlqvvPKKDjvsMNXU1KQ7PtBP0EvnAAAAAAAAAABDC/perrmVNV/72teSHy9YsEB33XWXHnnkES1YsEBvvvmmYrGYTjzxxAEnatra2vTaa68pFovps5/9bDpjAxhET0+PtmzZop6enqCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/Wbm6w544wzdOyxx8rzPH344Ye66KKLtGDBAlVWVkqSYrGYfvjDHw743Mcee0ydnZ2SpGOOOSZtmQEMrqmpSbfffruampqCjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb24bNEn66KOPNG/ePK1fv77f1zMyMrRkyRL98z//84DPO/3001VZWalYLKaXX35ZM2fOTENaYHBBL52zwPM8dXR0KCcnR7FYLOg4Y+ZaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NtxLPUHfS83K21nGoG99tpL69at06OPPqq1a9cqHo9rv/3201e/+lUdcsghAz6nrq5Ora2tmj17tgoKCpioAYyIxWLKzc0NOoZvXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcv7lt0HbKyMjQ3/3d3+mnP/2pbr/9dv3gBz8YdKJGkkpKSrR69Wo99dRT+sMf/pDGpAD2JB6P68Ybb1Q8Hg86ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7uly/2ckaAOGQm5urOXPmODujvSvX6rGa10IuCxkAJDAew4X+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OLtdv8j1rgLAIep9DAAAAAAAAAMDQgr6Xy8oaACnV1tamlStXqq2tLegovnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv1M1gBIqd7eXjU0NKi3tzfoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9bIMGpFDQS+cAAAAAAAAAAEML+l4uK2sApFR3d7dqa2vV3d0ddBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fiZrAKRUc3Oz7rnnHjU3NwcdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa6fbdCAFAp66RwAAAAAAAAAYGhB38tlZQ0AAAAAAAAAAECAmKwBkFKNjY264YYb1NjYGHQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX4mawCk1Pjx47VgwQKNHz8+6Ci+cK0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/bxnDZBCQe9zCAAAAAAAAAAYWtD3cllZEwKdnZ269957NW/ePH3yk59Ubm6upk6dquOPP17/8R//oe3btzt5/tWrV+u8887TZz7zGU2YMEGTJk3SjBkz9L3vfU9vvvnmsI8zffp0xWKxEf3btGnTqDJjd62trXrooYfU2toadBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5/qygA2Bs3nzzTS1cuFAbNmzo9/UtW7Zoy5Yteu655/TTn/5Ud911l+bNm+fE+ePxuC6++GLdf//9/b7e2tqq+vp61dTUaOnSpbr22mv1r//6r36VAgAAAAAAAABAIExvg/bMM89oxYoVWrdunWpraxWPx9Xd3T2s58ZisWE/1lWbNm3SMccco82bN0tK1FxWVqaDDjpI27Zt0xNPPKG2tjZJ0rhx47Ry5UqdeOKJps/f1dWluXPn6sknn0x+7fDDD9dRRx2l9vZ2rV27Vh9++GHye9dee62uvvrqPR5z+vTp+t///V9J0nnnnaeCgoIha/v3f/93FRUVDfm4oQS9dA4AAAAAAAAAMLSg7+WaXFmzY8cOnXfeefrjH/+Y/JrhOaXAVFRUJCdKPvnJT+rhhx/WEUcckfz+9u3bdc4552j16tXq6urSWWedpXfeeceXSYhUnf/f/u3fkhM1ubm5uuuuu3TOOeckv9/Z2akf/OAH+ulPfypJuuaaazR79mzNnj17WJmvvfZaTZ8+fYSVYiy6urr0zjvv6KCDDtK4ceOCjjNmrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rR6rea3kspIDAOMxbOhPf0S9HV2u39x71nR3d+uUU07RH//4R3mel/yH/h577DGtXbtWkpSdna1HHnmk30SJJE2ePFkPP/ywDjzwQEmJSbAlS5aYPf9HH32kn/3sZ8nPb7zxxn4TNTvPtWTJEp199tmSEpN4bIVmm8v7RA7EtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1m9sG7ZZbbtFll12mWCwmz/P01a9+VRdeeKGOPPJIlZSUKCvL5GKgtJs/f74ee+wxSdI3v/lN/eIXvxj0scuWLdPf//3fS5ImTZqkrVu3jrkdU3H+n/70p/r+978vSfrMZz6jN998U7FYbMBjvvfeezrggAPU29srSVq/fr2OPPLIAR/bdxu0d999N60ra4JeOgcAAAAAAAAAGFrQ93LNrax54IEHkh/feOONeuCBBzR37lztvffeTNR8rLm5WatXr05+/vWvf32Pj//KV76i/Px8SYnVLU8//bTJ8z/00EPJjy+44IJBJ2okaf/99+/3/je///3vhxMdAAAAAAAAAABzzE3WvPbaa4rFYjr44IN1+eWXBx3HpGeffVYdHR2SpAkTJujzn//8Hh+fm5ur4447Lvn5zveEsXT+9vZ2Pf/888nP58yZM2SOL33pS3s8JmxoaGjQtddeq4aGhqCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/WbW6rS0tIiSTr22GMDTmLXG2+8kfy4tLR0WCuOjjrqKK1atWq351s5/1tvvZXc0iwWiw26pdmuxxwo0568/PLLevjhh/XBBx9IkkpKSnTooYfqi1/8ooqLi4d1DIxMfn6+zj///OTqKte5Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+c5M106ZNU21trTIyzC36MeOtt95KfvzJT35yWM/Zf//9kx+/+eab5s7f95h77bWXcnNzR3TMHTt2aNu2bZoyZcoen/PVr351wK+PGzdO55xzjq655hodeOCBQ54bw5eVlZXW9wlKNdfqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u129uRmTWrFnyPG/MEwphVldXl/x47733HtZz9tlnn+THO3bsMHf+sR5zsOMOV1dXl+69914deeSReuSRR0Z9HOyupaVF9913X3LVnOtcq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7uly/ucmaiy++WJL0wgsv6C9/+UvAaWxqbm5OfpyXlzes5/R9XN/nWzn/WI852HGlxGzq/Pnzddttt2n9+vVqaGhQV1eXtm/frlWrVukb3/iGxo0bJ0mKx+M666yz9Oc//3lYGYYrNzc3ufSup6dHDQ0N8jwvec7Ozk5JUltbW/JC0t3d3W9vxcbGRnV1dUmSWltb1draKikx0dTY2Jh8XENDg7q7uyUlLk5tbW2SpM7OTsXjcUmS53lqaGhQT0+PpETbtbe3S5I6OjrU1NQkSert7VVDQ0Nyi7qmpqbk+xW1t7cn23xPNXV0dGjChAnKyMgIRU0ZGRnKz89PZrBeU2dnp8aPH6+MjAxTP3ue56moqEitra0p+9kbqqaenh4VFRWpvb098H7yqyZLP3vURE0jqamlpUVFRUWKxWKhqSmM/TTcmnb2587jhaGmIPqpvb09+RoqLDWNpJ86OjpUVFSk7u7uUNTU1tam/Px8ZWRkONFP7e3tKioqUk9Pj6mfvYyMDOXl5fVr1yCuEa2trcn+tP6zF9ZrBDVR086aPM9TXl6eYrFYaGoKYz8Nt6be3l7l5eUld1wKQ01B9NPOe1d929X1mkbST37cCwuKucmaL33pS7rooovU09Oj8847L9m5+JudP6CSlJ2dPazn5OTkJD/eORAsnX+sxxzsuFJi4u/RRx/Vt771LR155JEqLCxUVlaWSkpKVF5erl/+8pdau3atSkpKJCUG/je+8Y3kRcEPxx57bHILtm3btmnp0qXJC8idd96p119/XZJUVVWVXNmzadMmLV26NHmMW2+9Ve+8844k6fHHH9fjjz8uSXrnnXd06623Jh+3dOlSbdq0SZL0yCOPqKqqSpL0+uuv684770zWuHTpUm3btk2S9Nvf/lbPP/+8JOmVV17RsmXLJCUuYEuXLk1eMJctW6ZXXnlFkvT888/rt7/97ZA1rVu3Ti0tLcrLywtFTXl5ecrKytITTzzhRD+9+uqr2rFjh/Ly8kz97DU3N2vu3LmqrKxM2c/eUDVt3rxZc+fO1dq1awPvJ79qsvSzR03UNJKali9frrlz5yojIyM0NYWxn4Zb04MPPqi5c+eqq6srNDUF0U9r165VT0+P8vLyQlPTSPpp3bp1mjt3rt59991Q1PTEE08oKytLeXl5TvTT2rVrNXfuXG3evNnUz15eXp7effddvfvuuynpp+HWVFlZqfz8fOXl5Zn/2QvrNYKaqGlnTc3NzdqwYUPy5n4YagpjPw23prq6Om3YsCH5B9phqCmIfsrLy9PkyZP14IMPhqamkfSTH/fCAuMZ1NnZ6V1wwQVeLBbzDjnkEO+hhx7yuru7g441pJtvvtk7+OCDff333//937udZ968eZ4kT5J35ZVXDivbY489lnxOfn7+mOpMxfmXLFmS/P4xxxwzrGO2trYmnyPJe+mll0ZUx64ef/zxfsf77W9/O6bjeZ7nbdy40ZPk5ebmevn5+d7GjRu97u5ur76+3uvt7fU8z/MaGxu9jo6OZE3Nzc2e53leV1eXV19fnzxWQ0OD19nZ6Xme57W0tHgtLS2e5yXGS0NDQ/Jx9fX1XldXl+d5ntfc3Oy1trZ6nud5HR0dXmNjo+d5ntfb2+vV19cnx1VTU5PX1tbmeZ7ntbe3e/F43PM8z+vp6fHq6+u9np4ez/M8Lx6Pe+3t7Z7neV5bW5vX1NTkeZ63x5oaGhq8559/3uvo6AhFTR0dHd4LL7zg7dixw4l+amxs9J577jmvo6PD1M9ea2ur98orr3h1dXUp+9kbqqbm5mbvlVde8err6wPvJ79qsvSzR03UNJKatm3b5r3yyitee3t7aGoKYz8Nt6bt27d7r7zyitfW1haamoLop/r6+uRrqLDUNJJ+amho8F555RWvqakpFDXt2LHDe+GFF5KvJ63XVF9f773yyivJvhisn9L9s9fR0eE9++yzye8FdY2oq6vz1q1b53V0dJj/2QvrNYKaqKnvdeDPf/5zv/8Du15TGPtpuDW1tLR4f/7zn/vdU3K9piD6qaOjw1u3bp23ffv20NQ0kn4ay72wnfdyd/7buHGjl04xz/t4DZARJ554YvLj5557Th0dHYrFYsrNzdXBBx+swsLC5NLGPYnFYlq9enUqo+7mmmuu0bXXXuvrMe+44w5ddNFF/b529tln64EHHpAkXX755cOa9XvwwQf1la98RVLivV4+/PDDUWdKxflvvfVWffvb35YkzZgxQ6+++uqQx9yxY0dyNYwkvfnmmzr44IOHXcdATjjhBD3zzDOSpG984xv65S9/Oabjvfbaazr88MOTn2/cuFGHHXbYmI7pmng8rjvvvFMXXnihJk6cGHScMXOtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u04lvqDvpeblbYzDdOaNWv6TcbEYjF5nqe2trZh3cCXEnvbDWdCx1V9Jyi2bt06rOds2bIl+fGkSZPMnX+sxxzsuCNVXl6enKx54403xnw8SBMnTtQVV1wRdAzfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPvWSMlJlv6/hvs64P9C8o111wz7IzD/bfrqhpJ/VaP/O///u+wsr333nvJjw855JAx1ZmK8/c95kcffdTvPWyGc8xJkyZpypQpw8qyJ1OnTk1+vH379jEfD4lx297eHujY9JNr9VjNayGXhQwAEhiP4UJ/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3N1nz1FNP+fLvySefDLqUlPnsZz+b/Limpkbd3d1DPmf9+vUDPt/K+Q8++ODkm8F5nqcNGzaM+Zij0dLSkvx4woQJvhwz6hobG7V48WI1NjYGHcUXrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rR6rea3kspIDAOMxbOhPf0S9HV2u39x71mBozc3Nmjx5sjo6OiQl3tvn2GOPHfTxHR0dmjJlipqamiRJq1ev7vfeQFbO/4UvfEHPPvusJOn666/XVVddtcccX/7yl/X4449Lkn74wx/qxz/+8ajq6eu8887TvffeK0maP3++Hn300TEdL+h9Di3o6enRtm3bNGXKFGVmZgYdZ8xcq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7jqX+oO/lmltZg6Hl5+frpJNOSn5+99137/HxDz74YHKiZNKkSSorKzN5/gULFgz7mO+//75Wr1494HNHq66uTg8//HDy8zlz5oz5mJAyMzO1zz77hOaXg2v1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX62eyxlHf/va3kx/ffffdeu211wZ8XGtrq66++urk5xdffLGysrJMnv/8889Pbj321ltv6Ze//OWg57/yyivV09MjSTruuON01FFHDfi45ubmPRfysZ6eHl100UWKx+OSpOzsbJ111lnDei72rLm5WXffffew+8I61+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xz2SNo+bPn68TTjhBUmKbsdNOO03V1dX9HlNXV6cFCxbo7bfflpRY1XLllVcOesza2lrFYrHkvz2tbknF+ffaay/98z//c/Lzyy+/XA888EC/x3R1demqq67SihUrkl+7/vrrBz3mscceqyuuuEIvv/zyoI+pqalReXm5HnrooeTXvvvd7+qTn/zkoM/B8GVlZWn69Om+TBJa4Fo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+nnPGodt2rRJs2bN0ocffihJisVimj17tg466CBt27ZNTzzxhFpbWyUlfkhXrlzZb/uyXdXW1uqAAw5Ifn7XXXfpggsuSNv5pcRkzNy5c/Xkk08mv1ZaWqqjjjpK7e3tevrpp5Pnk6Rrr72238qdXU2fPl3/+7//K0maPHmyZs6cqalTp2r8+PGKx+N69dVX9frrr/d7zt/93d/pwQcf9GWpXND7HAIAAAAAAAAAhhb0vdxAppcuvPDC5MexWEy/+tWvBvzeWOx63DDad9999eSTT2rhwoXasGGDPM/TmjVrtGbNmn6PmzJliu66664hJ0osnH/cuHF68MEHdfHFFydX1dTU1Kimpma3x11zzTVatGjRsPNu375dTzzxxKDfHz9+vP6//+//01VXXaWMDBad+aWjo0OvvPKKjjzySOXk5AQdZ8xcq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulx/IJM1d999t2KxWPLzvpMqu35vLMI+WSNJhxxyiF544QXdd999WrFihV577TVt3bpVRUVFOvDAA3XmmWfq61//uiZPnuzM+QsLC3X//ffrm9/8pu655x4999xz+vDDDzVu3Djtt99++vKXv6xvfOMb+uxnPzvksdauXatnn31Wzz33nNavX6+tW7eqrq5OjY2NGj9+fHK1zZw5c/QP//APKioqGkNrYCCdnZ3asGGDDjvsMOcukANxrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9gWyD1nfVQiwWS75R/K7fG4tdjwsEIeilcwAAAAAAAACAoQV9LzeQlTV33XXXqL4HwD29vb2Kx+OaOHFiKLaXc60eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/YFM1px//vmj+h4A98TjcS1dulTf+c53QrHNnGv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w9kGzQgKoJeOmeBy7PZA3GtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u04lvqDvpcbyMoaANGRkZHh3Cz2nrhWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uf7oTa0BSKumpibddtttampqCjqKL1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XD+TNQBSKjs7WzNnzlR2dnbQUXzhWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6ec8aIIWC3ucQAAAAAAAAADC0oO/lsrIGQEq1t7drzZo1am9vDzqKL1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XD+TNQBSqru7W7W1teru7g46ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulw/26ABKRT00jkAAAAAAAAAwNCCvpfLyhoAKdXT06MtW7aop6cn6Ci+cK0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/UzWAEippqYm3X777Wpqago6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulw/26ABKRT00jkLPM9TR0eHcnJyFIvFgo4zZq7VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR3HUn/Q93Kz0nYmAJEUi8WUm5sbdAzfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5frZBA5BS8XhcN954o+LxeNBRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5fqZrAGQUrm5uZozZ46zM9q7cq0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/bxnDZBCQe9zCAAAAAAAAAAYWtD3ckO1subCCy/UhRdeqG9+85uqqqoKOg4ASW1tbVq5cqXa2tqCjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XnxV0AD/dfffdisVikqQ777xT5eXl+slPfqKjjz464GRAdPX29qqhoUG9vb1BR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvR5frD9U2aBkZGYrFYvI8LzlpI0kLFizQv/3bv+nQQw8NMB2iKOilcwAAAAAAAACAoQV9LzdU26Dtv//+yX87J208z9Pvf/97zZw5M+h4QCR1d3ertrZW3d3dQUfxhWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w/VZE1tba3effdd1dbWavv27XrwwQf1T//0T/rsZz/rZOcAYdDc3Kx77rlHzc3NQUfxhWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w/VNmh78tFHH2mvvfYKOgYiJuilcwAAAAAAAACAoQV9LzdUK2v2hIkaAAAAAAAAAABgUWQmawAEo7GxUTfccIMaGxuDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XH9hkzYknnqh7771Xra2tQUUAkAbjx4/XggULNH78+KCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/UH9p41GRkZisVimjBhgr7yla/ovPPO05e+9KUgogApE/Q+hwAAAAAAAACAoQV9LzfwbdCam5v161//WuXl5Zo+fbquvvpqvf3220HHAuCT1tZWPfTQQ6FZRedaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5foDm6z5yle+ouzsbEmS53nyPE/vvfeerrvuOh188MH6whe+oDvuuMPJveUAAAAAAAAAAACGK7Bt0CSpoaFB9913n+69914999xz/b4Xi8UkSTk5OTrjjDN03nnn6ctf/rIyMgJfDAQMW9BL5wAAAAAAAAAAQwv6Xm6gMx9FRUW65JJL9Oc//1l/+ctf9IMf/EAHHHCApL+ttmlvb9cDDzyg0047Tfvuu6++//3va+PGjUHGBjACXV1devPNN9XV1RV0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+M8tUDjroIP34xz/WO++8o6qqKl144YUqLCyU9LeJmy1btuj//b//pyOOOEJHH320br75Zm3fvj3g5AD2xOV9IgfiWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6A90GbSgdHR36/e9/r3vvvVePP/64enp6kt/buU1aVlaWTj31VJ1//vk6/fTTlZWVFVRcYDdBL50DAAAAAAAAAAwt6Hu5ZlbWDCQnJ0fnnHOOKisr9cEHH+g//uM/NGPGDEl/W23T1dWlRx55RF/96lc1depUXX755XrppZcCTg4AAAAAAAAAADA8pidr+tprr730z//8z9qwYYM2bNig7373u9pnn30k/W3ipq6uTrfccouOOeaYfjNgAILT0NCga6+9Vg0NDUFH8YVr9VjNayGXhQwAEhiP4UJ/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3vQ3aUHp7e/WnP/1J9957rx5++GG1t7drZzmxWKzftmlAEIJeOmdBd3e3Nm3apH333TcU2xS6Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2HEv9Qd/LdXqyZqcXX3xRP//5z3XvvfcqFovJ8zwma2BC0AMcAAAAAAAAADC0oO/lOrMN2q7ef/99XX/99Tr00EN17LHH6je/+Y1isVjQsQDsoqWlRffdd59aWlqCjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7X79Q6qJaWFv33f/+3fv3rX+vpp59ObnnWd3HQ+PHjdeaZZ+r8888PKiaAPjIyMlRUVKSMDGfnhvtxrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL95rdB8zxPjz/+uH7961/r4YcfVltbW/LrO8ViMZWVlen888/XV7/6VeXn5wcVF+gn6KVzAAAAAAAAAIChBX0v1+z0UnV1tb73ve9p33331bx583TfffeptbVVnuclJ2oOOuggXXvttfrrX/+qp556ShdccAETNYAxnZ2d2rBhgzo7O4OO4gvX6rGa10IuCxkAJDAew4X+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OLtdvarJm69at+tnPfqYjjzxSRx55pH72s5/pww8/7DdBM3HiRF100UVau3at/vKXv+iHP/yhPvnJTwacHMBg2tvbtWbNGrW3twcdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa4/8G3Q2tvb9fvf/16//vWvtXr1avX09Ejqv81ZRkaGTj75ZJ1//vlasGCBcnNzg4oLjEjQS+cAAAAAAAAAAEML+l5uVtrOtIs1a9bo17/+tX73u9+publZUv8JGkk69NBDdf755+vv//7vNXXq1CBiAhgjz/PU0dGhnJwcxWKxoOOMmWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w9sG7QTTzxR99xzj5qamiT9baKmpKRE//RP/6QXX3xRGzdu1Pe+9z0magCHNTY2avHixWpsbAw6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY/P/s3XmUVNW9/v/nNG13Ax1GEVQEFGeDoolzVHBMnMLXaCIOoMZcNblqosnVGKNijJHEGDAxQpw1KCoqTuDFiKiJYjSCijIoo6ggU/VcPZ7fH/WjLijQDb2b89n7vF9rsdJAVdfz7E9vzKq9zinm6Uba19Hn/ondBq2goEBRFCmOY22zzTY68cQTNXz4cJ100knaZpttkogEOJf0pXMWNDY2asWKFerRo4fatWuXdJxW862P1bwWclnIACCH/RgW5ulG2tcxtP6+9bGa10ouKzkAsB9DwzzdSPs6tqZ/0u/lJnpYc8ABB2j48OE666yz1L179yRiAG0q6Q0OAAAAAAAAAGhe0u/lJnYbtPfff19vv/22Lr30Ug5qgIBVVlbq/vvvz382le9862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/ssIarC4B0KCwsVL9+/VRYWJh0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/sNmibY+bMmfrnP/+pTz75RGvWrFFjY6PuueeepGMBzUr60jkAAAAAAAAAQPOSfi83sStrWmLChAn6+te/rm984xu6/PLLdeutt+ruu+/W/fff/5XHLl++XDvssIO22247nXbaaVs/LIANqq2t1fTp01VbW5t0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9zd7WHPxxRfrBz/4gWbPnq04jvO/NqZnz5465phjtHLlSj3zzDP69NNPt2JaABtTV1enmTNnqq6uLukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub/I2aNdee61uvvnm/O9POOEEHX300XrhhRf08ssvK4oiNTY2fuV5L774ok444QRFUaQxY8boRz/60daMDXxF0pfOAQAAAAAAAACal/R7ueaurPnoo4/0+9//XpLUpUsXTZ06VZMnT9YvfvEL7b333pt87tFHH62OHTtKkqZNm9bWUQG0QFNTkzKZjJqampKO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/uYOa/72t7+poaFBURTprrvu0qBBg1r83Hbt2mnfffdVHMf64IMP2i4kgBYrLy/X6NGjVV5ennQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtAMOOEAzZ87Urrvuqnnz5q33d5deeqnuuOOOjd4GTZLOPvtsPfLII+rWrZtWrly5NSIDG5X0pXMWNDU1qby8XJ06dVJBgbnz4c3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nVsTf+k38st3Gqv1EKLFy9WFEU6+OCDt+j5nTp1kiRVVFS4jAVgCxUUFKhLly5Jx3DGtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zR2tVVVWSpNLS0i16fnV1tSSppKTEWSYAW66iokJjxowJ5gDVtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zhzXdu3eXJK1YsWKLnj9//nxJUo8ePZxlArDlioqKNHDgQBUVFSUdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c19Zs2RRx6pf/7zn+rdu7eWLFmy3t8195k1q1at0o477qj6+noNGTJETzzxxNaKDWxQ0vc5BAAAAAAAAAA0L+n3cs1dWXP88cdLkj799FM9/fTTm/XcW265RXV1dZKk4447znk2AJsvm81q2rRpymazSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/c4c15513Xv7zZn784x9r0aJFLXreAw88oNtuu01RFKlr164699xz2zAlgJZqaGjQokWL1NDQkHQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbNEm67rrrdNNNNymKInXr1k3XX3+9hg4dqhtuuGG926Bls1m9/vrr+utf/6qnnnpKcRwriiLdfvvt+slPfpJ0DSDxS+cAAAAAAAAAAM1L+r1cc1fWSNKIESN02mmnKY5jrV69Wpdffrm222473X333fnHdO3aVR07dtRxxx2XP6iRpOHDh3NQAxjS2NioZcuWbfBzpnzkWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub/Jw5ooivTYY4/p2muvVUFBgeI4VhzHqqurUxRFkqSysrL8n8dxrHbt2un666/Xvffem3B6AOuqqKjQ2LFjVVFRkXQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3kbtHUtXrxYo0aN0uTJkzVv3ryv/P1OO+2kk08+WVdeeaV22WWXBBICG5f0pXMWxHGs2tpaFRcX5w9bfeZbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dWxN/6TfyzV/WLOu1atX6/PPP1dZWZk6duyonj17qlevXknHAjYq6Q0OAAAAAAAAAGhe0u/lmrsN2syZMzf6d926ddM+++yjww47TPvtt98mD2quvPLKNkgHYHOVl5dr1KhRKi8vTzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7mzus+fa3v60FCxa06ntcccUVGjVqlJtAAFqlpKREgwYNUklJSdJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Ovrc39xt0AoKCrTzzjvr9ddfV8+ePTf7+VdeeaX+9Kc/KYoiNTY2tkFCoOWSvnQOAAAAAAAAANC8pN/LNXdljSQtWrRIJ5xwgsrKyjbreeteUVNQYLIakDo1NTV64YUXVFNTk3QUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3ei8d3vfldxHOv999/XKaecomw226LnXXHFFRo9erTiOFa7du107733tnFSAC3R1NSkTCajpqampKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/udug1dbW6oQTTtCrr76qKIp04oknauLEiWrXrt1Gn7Ohg5pzzz13K6YGNizpS+cAAAAAAAAAAM1L+r1cc1fWFBcX65lnntF+++2nOI41adIkXXDBBRt9/M9+9jMOagDDGhoatGjRIjU0NCQdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0d1khSp06dNHnyZO28886K41h///vfdcUVV3zlcT/72c90++235w9q7rvvPg5qAGMqKyv1wAMPqLKyMukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub+42aOuaP3++jjjiCC1btkxRFOmmm27SL3/5S0nST3/6U/35z39e76DmnHPOSTgxsL6kL50DAAAAAAAAADQv6fdyC7faK22B/v37a/LkyRo0aJDKysp07bXXqnv37vrwww91++23S5LatWun+++/X2effXbCaQEAAAAAAAAAADafydugrWu//fbT008/rZKSEknSJZdcoj//+c+SOKgBfFBWVqZbbrlFZWVlSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/84c1knTkkUfqkUceUUFBLm4cxyooKNADDzzAQQ1gXIcOHTRkyBB16NAh6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe5v+jNrvuzee+/VhRdeqHbt2unBBx/U0KFDk44EbFLS9zkEAAAAAAAAADQv6fdyE7myZpdddtmiXzfddJMKCwtVWFioX/3qV5t8bP/+/ZOoBuBLqqurNXHiRFVXVycdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/QuTeNFFixYpiqItfn5jY6MWL1680b+P47hV3x8AAAAAAAAAAGBrSeQ2aGs/e6YtRVGkxsbGNn8dYFOSvnQOAAAAAAAAANC8pN/LTeTKmoULFybxsgASUF9fr/nz56t///7aZpttko7Tar71sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7J/KZNX379t0qvwAkz+f7RG6Ib32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/6J3AYNSIukL50DAAAAAAAAADQv6fdyE7myBgAAAAAAAAAAADkc1gBoU5lMRiNGjFAmk0k6ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+3MbNKANJX3pnAUNDQ1aunSpevfurcLCwqTjtJpvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba17E1/ZN+L5fDGqANJb3BAQAAAAAAAADNS/q9XG6DBqBNVVVVafz48aqqqko6ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+3NYA6BNFRQUqEuXLiooCOOfG9/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9uQ0a0IaSvnQOAAAAAAAAANC8pN/L9e94CYBX6urqNHPmTNXV1SUdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/TmsAdCmstmspk2bpmw2m3QUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj735zZoQBtK+tI5AAAAAAAAAEDzkn4vlytrALSpOI6VzWYVyrmwb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/4c1gBoU2VlZRo5cqTKysqSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7cBg1oQ0lfOmdBY2OjVqxYoR49eqhdu3ZJx2k13/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK9ja/on/V6ud4c1cRxr8uTJ+te//qVVq1apW7du2muvvXTyySera9euSccD1pP0BgcAAAAAAAAANC/p93JN3AbtySef1AknnKDttttO7du311577aXrrrtOVVVV6z1u1qxZGjBggE455RTdcsstuuuuuzRy5Eidd9552nHHHXXDDTeoqakpoRYANqSyslL333+/Kisrk47ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+iR7WxHGs888/X2eccYb+8Y9/aOXKlaqtrdW8efP029/+VocccojKy8slSR999JGOOuoozZ49W3Ecr/dLkrLZrH7zm99o6NChXn54EBCqwsJC9evXT4WFhUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/0Rvg3bjjTfqhhtuUBRFGzxgiaJIJ510kp555hkdc8wxevnllyVJnTp10mGHHaauXbvq888/1xtvvKHa2tr8c2677TZdfvnlW7ULsCFJXzoHAAAAAAAAAGhe0u/lJnZlzWeffabf/e53+YOao48+Wg899JBeeOEF/fGPf9QOO+ygOI71/PPP67HHHtPLL7+sKIp02WWX6fPPP9ekSZM0btw4TZ06VZ9++ql+8IMfSMpdrXP99deruro6qWoA1lFbW6vp06fnD1R951sfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/Yoc1Dz74YH7BzjrrLP3jH//Q2WefreOPP14/+9nP9O9//1vbbbedJOnHP/6xoijSeeedp1GjRql9+/brfa9u3brp4Ycf1vHHHy9Jqqio0BNPPLF1CwHYoLq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc//EboP27W9/W1OmTNE222yjpUuXqkePHl95zB//+Ef94he/kCRts802Wrx4sXr16rXR7/nee+9p4MCBiqJI55xzjh544IE2yw+0RNKXzgEAAAAAAAAAmpf0e7mJXVkza9YsRVGkgw46aIMHNZJ04oknSsp9Ds0BBxywyYMaSdp333216667Ko5jzZw503VkAFugqalJmUxGTU1NSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xA5r1qxZI0naddddN/qYfv365b/eY489WvR99913X0nS559/vuXhADhTXl6u0aNHq7y8POkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3un9ht0IqKitTY2KiLL75Yd9xxx0YfV1BQoCiK9OMf/1h//vOfm/2+F110ke666y4VFRUpm826jAxstqQvnbOgqalJ5eXl6tSpkwoKEjsfdsa3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt69ia/km/l1u41V7pS0pLS1VWVqbKysoWPT6KohY9LqGzJwAbUVBQoC5duiQdwxnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/RM7Wtthhx0kSYsXL272sZtzALP29mq+DgQITUVFhcaMGaOKioqkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9iV9b0799fH374oWbPnr3Jx7322muS/u9wpzlz586VJPXp06d1AQE4UVRUpIEDB6qoqCjpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197p/YZ9Zce+21uvnmmxVFkT766CPtsssurf6eFRUV6t69uxobGzVs2DDdd999DpICWy7p+xwCAAAAAAAAAJqX9Hu5id0G7aCDDsp//dJLLzn5nhMnTlRDQ4Mk6eCDD3byPQG0Tjab1bRp05TNZpOO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/okd1hx++OE68cQTdeKJJzq7f9yf//zn/NfHHnusk+8JoHUaGhq0aNGi/EGq73zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73T+w2aK6tWbNGDz74oCSpuLhYF198ccKJgOQvnQMAAAAAAAAANC/p93ITu7LGta5du+ryyy/X5ZdfzkENYEhjY6OWLVumxsbGpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/MIc1AGyqqKjQ2LFjnd3uMGm+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+wdzGzTAoqQvnbMgjmPV1taquLhYURQlHafVfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu5hVvtlRx56623NHv2bEnSsGHDEk4DoDlRFKmkpCTpGM741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/dbdAefPBBnXfeebrggguSjgKgBcrLyzVq1CiVl5cnHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/29O6xZi7u3AX4oKSnRoEGDvD3R/jLf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/b37zJpLL71Ud9xxh6IoUmNjY9JxgE1K+j6HAAAAAAAAAIDmJf1errdX1gDwQ01NjV544QXV1NQkHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/05rAHQppqampTJZNTU1JR0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9+c2aEAbSvrSOQAAAAAAAABA85J+L5crawC0qYaGBi1atEgNDQ1JR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc38OawC0qcrKSj3wwAOqrKxMOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/t7dxu0f//735o9e7Ykafjw4QmnATYt6UvnAAAAAAAAAADNS/q93MKt9kqOHHTQQTrooIOSjgEAAAAAAAAAAOAEt0ED0KbKysp0yy23qKysLOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz2FNAOrq6vTQQw/pxBNPVN++fVVSUqLtt99ehx12mG699VatXLnSq9dfuHChHnvsMf3P//yPBg8erE6dOimKovyv1pg9e7Z+8YtfaN9991W3bt3UsWNH7b777ho+fLheeumlVn1vbFiHDh00ZMgQdejQIekoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3u791n1khSQ0ODVq1apY4dO6q0tDTpOImaM2eOhg4dqpkzZ270Mdttt53uu+8+nXjiiaZf//PPP9eAAQO0atWqTT5uS39kf/vb32rEiBGqr6/f6GOGDh2qsWPH6mtf+9oWvcaXJX2fQwAAAAAAAABA85J+L9ebK2sWL16syy+/XLvvvruKi4u1ww47qHPnzurUqZNOPfVUPf7440lH3OqWLl2qY445Jn9QEkWRjjrqKF1wwQU65ZRT1L59e0nSF198oSFDhmjq1KmmX7+2trbZg5otdd111+naa6/NH9Rsv/32+v73v69hw4att+EeeeQRnX766WpoaGiTHGlUXV2tiRMnqrq6OukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uX5jUCz/88MOSpD322EPf+MY3NvnY2267Tddcc03+jfZ1r6yorKzU888/r+eff16jR4/WU089pR49erRdcEPOOussffbZZ5Kkvn376umnn9Z+++2X//uVK1fqzDPP1EsvvaT6+nqdccYZmj9/vrp06WL69UtLS3XAAQfooIMO0oEHHqhsNqvhw4dvcc6XXnpJv/nNb/K//8UvfqGbbrpJRUVF+T975JFHdMEFFyibzWrKlCm6+eabdd11123xawIAAAAAAAAA0FKJ3QatoKBAURTpJz/5iW6//faNPm7EiBG68cYbFcexoihq9hZYu+22m9566y116tTJdWRTJk2apJNOOkmSVFRUpLffflsDBgz4yuOqqqq07777asGCBZKkX/7yl7r55ptNvn5NTY0WLFigvfbaSwUF/3fR17Rp0zR48OD87zf3R/aggw7SW2+9JUk688wz9cgjj2zwcWPGjNEll1wiSfra176mBQsWaNttt92s1/qypC+dAwAAAAAAAAA0L+n3ck3fBu3VV19d74qILl266Nprr9W0adM0d+5cvfPOO7rnnnt0+OGHS8rdhuvjjz/WpZdemlTkreaOO+7Ifz18+PANHpRIUseOHXXjjTfmfz927Fgnt/hqi9dv37699tlnn/UOalrrrbfeyh/UFBQU6Pe///1GH3vRRRdpt912kyRVVFTooYcecpYjzerr6zVnzpxNflaQT3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N31Yc8MNN6ipqUmSdOCBB2rOnDm68cYbdeSRR2q33XbTwIEDdf755+u1117TrbfeqjiOFcexHn74YS1cuDDh9G2nsrJSL730Uv73559//iYf/73vfU+lpaWSpNWrV+vVV1/1+vU3x8SJE/NfH3vssdppp502+tgoita73dpTTz3VltFSw+f7RG6Ib32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/5mb4P2ySefqG/fvoqiSN27d9f777+vnj17bvJ7/vjHP9aYMWMURZGuv/76YD9zZMqUKTrhhBMk5a5cyWQyKizc9McPHX/88XrxxRclSb/61a900003efP6rbkN2mGHHaY33nhDknTzzTfrl7/85SYf//rrr+ev1GrXrp2qqqpUXFzc4tf7sqQvnQMAAAAAAAAANC/p93LNXlnz2muv5b/+7//+72YPaqTclTjbbLONJOlf//pXm2VL2uzZs/NfDxgwoNmDEkk64IADNvh8H19/c6z7Wutm2Jj9998//3VjY6PmzZvXJrkAAAAAAAAAAFjL7GHNurcxO/nkk1v0nO22204HHnig4jjeqgcCW9vcuXPzX/ft27dFz+nTp0/+6zlz5nj9+i31xRdfKJPJ5H/fkqzt27dXjx498r/fWllDlslkNGLEiPVm4TPf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0e1qxevTr/9doPfW+JXXfdVZK0Zs0a55msWLVqVf7rllxxJEm9evXKf73u2vr4+i21bk7JdtaQlZaWavjw4fnPLfKdb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/5mD2vat2+f/7pjx46b/byGhgbnmayorKzMf73uOm3Kuo9b9/k+vn5Lffl1ksxaUlKS/weisbFRmUwm/9k75eXlqqurkyTV1NSoqqpKUu5neN0T4LKyMtXX10vKfVDW2g/Jqq+vV1lZWf5xmUwm//NfVVWlmpoaSVJdXZ3Ky8sl5T73J5PJqLGxMd8zm81Kkmpra1VRUSFJampqUiaTUVNTkySpoqJCtbW1kqRsNptfn011qq+vV48ePVRYWBhEp8LCQvXs2TP/HOudGhoatO2226qwsNDUz14URerXr5+y2Wyb/ew11ymOY/Xr1091dXWJz8lVJ0s/e3Si0+Z0qq6uVr9+/dSuXbtgOoU4p5Z2qqmpUb9+/VRQUBBMpyTmVFdXp+22206FhYXBdNqcOdXX16tfv35qamoKolNtba169uypwsJCL+ZUV1enfv36KY5jUz97hYWF6tatW/45Sf0bkc1m1atXLxUWFpr/2Qv13wg60WltpyiK1KVLF7Vr1y6YTiHOqaWdJKlLly75j1wIoVMScyosLNT222+ff04InTZnTi7eC0uK2cOaXXbZJf/15izU2sF269bNdSQz1v6ASlJRUVGLnlNcXJz/eu1G8PX1W2rdnFKyWQ855BCdfvrpkqQVK1Zo9OjR+X9A7r33Xn344YeSpFdeeUXPPvusJGnp0qUaPXp0/nvceeedmj9/viRpypQpmjJliiRp/vz5uvPOO/OPGz16tJYuXSpJevbZZ/XKK69Ikj788EPde++9knL/uI0ePVorVqyQJE2YMEHTp0+XJM2YMUPjxo2TlNtPo0ePzu+rcePGacaMGZKk6dOna8KECc12+sc//qExY8aoqqoqiE5VVVW66667NHHiRC/m9Oqrr+qvf/2rqqqqTP3sLVmyROPHj9ejjz7aZj97zXX64IMPNH78eE2aNCnxObnqZOlnj0502pxO99xzj8aPH6/Vq1cH0ynEObW000MPPaTx48dr2bJlwXRKYk6TJk3S2LFjVVVVFUynzZnTP/7xD40fP14zZswIotPEiRN11113qaqqyos5TZo0SePHj9cHH3xg6mevqqpKf/7zn/OPS+rfiEcffVR33323qqqqzP/shfpvBJ3otLbTkiVLNHr06PydUULoFOKcWtrpo48+0ujRo/NvoIfQKYk5VVVV6Z577tFDDz0UTKfNmZOL98ISEyckiqK4oKAgPu644+IHHnjgK79uvPHG/GP+9a9/tfj7HnrooXEURfGAAQPaMP2G/fnPf4732GMPp78ef/zxr7zOiSeeGEuKJcVXXXVVi7JNmjQp/5zS0tJW9dzar//yyy/nn7s5P7L//ve/13teTU1Ni5530EEH5Z9z6623blbWL5s1a1YsKS4pKYlLS0vjWbNmxQ0NDfGaNWvipqamOI7juKysLK6trY3jOI6rq6vjysrKOI7juL6+Pl6zZk3+e2Uymbiuri6O4ziuqqqKq6qq4jiO47q6ujiTyeQft2bNmri+vj6O4ziurKyMq6ur4ziO49ra2risrCyO4zhuamqK16xZEzc0NMRxHMcVFRX59clms3F5eXkcx3Hc2NgYr1mzJm5sbIzjOI7Ly8vjbDYbx3Ec19TUxBUVFXEcx5vstGrVqviZZ56Jq6urg+hUXV0dP/vss/GKFSu8mNPq1avjp59+Oq6urjb1s1dRURFPnjw5/uKLL9rsZ6+5TmVlZfHkyZPjlStXJj4nV50s/ezRiU6b02n58uXx5MmT46qqqmA6hTinlnZaO8/KyspgOiUxp5UrV+b/P1QonTZnTqtWrYonT56c/2+2751WrFgRP/vss3F1dbUXc1q5cmU8efLkuKyszNTPXnV1dTxx4sR8pqT+jfjiiy/y87T+sxfqvxF0otPaThUVFfHEiRPzmULoFOKcWtqpvLw8njhxYj5TCJ2SmNPa966WL18eTKfNmVNr3gtb+17u2l+zZs2Kt6Yojv//a4C2soKCAkVRtMnHxHGsKIr029/+VldffXWz37OhoUFdu3ZVdXW1jj/+eE2ePNlV3Ba54YYbNGLECKff86677tKFF1643p/94Ac/0GOPPSZJuuyyy1p06vfkk0/qe9/7nqTcZ7J8/vnnW5xpa7/+tGnTNHjw4PzvW/ojO3v2bO299975369evVpdu3Zt9nn77ruv3n//fUnSmDFjdNFFF7U465d98MEH+vrXv57//axZs7TPPvts8fcDAAAAAAAAALiX9Hu5id4GLY7jTf5a+5innnqqRd/vpZdeyl8md/DBB7dZ7qR17949//Xy5ctb9Jxly5blv27tLeKSfv2WWjenZDtryOrq6jRz5sz8/SB951sfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/YVIvPHz48BY/NooirVmzptmrIu6+++7814ceeugWZ9tSN9xwg2644YY2f5099tgj//XixYtb9JwlS5bkv95zzz29fv2W2m677dSlS5f8Zx4tXry42dfOZrP5eyJKWy9ryLLZrKZNm6ZddtmlxZ8bZJlvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/ondBs21qqoqXXbZZWpqapKU+8CiTp06JZyqbUyZMkUnnHCCJKljx47KZDIqLNz0udvxxx+vF198UZL0q1/9SjfddJM3r7+lt0GTpMMOO0xvvPGGJOl3v/tds7fTe/3113X44YdLktq1a6eqqioVFxe3+PW+LOlL5wAAAAAAAAAAzUv6vdxEb4PmUseOHXXPPffovvvu03333RfsQY2UO4BYe4BQVVWlt99+e5OPr62t1fTp0/O/P/roo71+/c2x7iHPtGnTmn38K6+8kv963Z7YcnEcK5vNbtYhm2W+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+wdzWJMmpaWlOuaYY/K/v//++zf5+CeffFIVFRWScp/BcuSRR3r9+ptjyJAh+a//8Y9/aOnSpZt8/Lpd1n0utlxZWZlGjhypsrKypKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/MLdBS5vnn39eJ598siSpuLhY//nPfzZ4SVZ1dbX2228/ffzxx5Kkq6++Wr/73e+8ev3W3AZNkg466CC99dZbkqSzzz5bf//73zf4uL/97W+66KKLJElf+9rXtGDBAm277bab9VpflvSlcxY0NjZqxYoV6tGjh9q1a5d0nFbzrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zq2pn/S7+VyZY2nTjrpJB1xxBGScrcZO/nkk/Xee++t95hVq1ZpyJAh+YOSbt266aqrrtro91y0aJGiKMr/2tQVM23x+m1l3cOhcePG6eqrr1Z9ff16j3nsscf005/+NP/7n//8560+qEFOu3bt1KtXr2D+4+BbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1Hnv44Ye1/fbbS8odtAwcOFCDBw/WhRdeqO9+97vq06ePXnzxRUlSYWGhHnvsMXXp0sX061933XUaOHDger8uvPDC9R7z5b8fOHCgnnnmmY1+z2OOOUbXXntt/vcjR45Uv379dOaZZ+q8887TgAED9IMf/EA1NTWSpOOOO07XXHPNliwJNqCyslL333+/Kisrk47ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+hUkHcGnJkiXr/b5Pnz4JJdk6evfuralTp2ro0KGaOXOm4jjWtGnTNG3atPUe16NHD913333rfc6M1ddfsmSJ3n333U0+ZkN/v3r16k0+58Ybb1RxcbFuvPFG1dfX67PPPtOjjz76lcedeeaZGjt2rAoLg9oaiSosLFS/fv2CWVPf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/YP6zJqCggJFUSRJiqJIDQ0NCSfaOurq6jR+/Hg98sgj+uCDD7R8+XJ16dJFu+yyi0477TSdf/75Lbql16JFi7Tzzjvnf3/ffffpvPPO22qvL0nnnXeeHnjggRY9dl0tzTp79mzdfffdmjJlij755BPV19dr++2316GHHqrhw4fr2GOP3ezX3pSk73MIAAAAAAAAAGhe0u/lBnlYE8exoihSY2Nj0pGQcklvcAtqa2s1Y8YM7b///iouLk46Tqv51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR1b0z/p93KD+8yagM6egCDU1dVp5syZqqurSzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7B3VlzZdvnzV8+PCEkgA5SZ/GAgAAAAAAAACal/R7uf59ys4mcDgD2NPU1KTy8nJ16tRJBQX+X8znWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub9faQF4p7y8XKNHj1Z5eXnSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63D+o26AB1iR96ZwFPp9mb4hvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba17E1/ZN+Lzeo26ABsKegoEBdunRJOoYzvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/un72gNwFZVUVGhMWPGqKKiIukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz2ENgDZVVFSkgQMHqqioKOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uH9xn1px88sn68MMPFUWR5s+fn3QcpFzS9zkEAAAAAAAAADQv6fdyg7uy5tNPP9WiRYu0aNGipKMAkJTNZjVt2jRls9mkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9whzUAbGloaNCiRYvU0NCQdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvcP7jZo+++/v959911FUaTGxsak4yDlkr50DgAAAAAAAADQvKTfy+XKGgBtqrGxUcuWLQvm8NS3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/8KkXvjGG29sk++7bNmyNvm+ALZMRUWFxo4dq8svv1xdunRJOk6r+dbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe6f2G3QCgoKFEVRm3zvOI65DRpMSPrSOQviOFZtba2Ki4vbbM9vTb71sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfx9b0T/q93MSurFnL9VlRGn8AAcuiKFJJSUnSMZzxrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63D+xz6xZe6gSRZEOPfRQHXXUUU5+dejQIalKADagvLxco0aNUnl5edJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7OvrcP7Era3bbbTfNmzdPURTpD3/4gw477DAn33f//ffXu+++6+R7AWi9kpISDRo0yNsT7S/zrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63D+xz6w555xz9PDDDyuKIt122226/PLLnXzftYc1fGYNLEj6PocAAAAAAAAAgOYl/V5uYrdBO/DAA/Nfv/XWW0nFANDGampq9MILL6impibpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197s9hDYA21dTUpEwmo6ampqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2K3QaupqVGnTp3U2NioKIq0evVqde7cudXfd+DAgXrvvfe4DRpMSPrSOQAAAAAAAABA85J+LzexK2vat2+vK6+8UsOHD9ewYcO0cuVKJ9938uTJWrhwoRYsWODk+wFonYaGBi1atEgNDQ1JR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc//EDmsk6ZZbbtF9992n++67T/3793fyPbfffnv17dtXffv2dfL9ALROZWWlHnjgAVVWViYdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/RO7DRqQBklfOgcAAAAAAAAAaF7S7+UmemUNAAAAAAAAAABA2nFYA6BNlZWV6ZZbblFZWVnSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63J/DGgBtqkOHDhoyZIg6dOiQdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnM2uANpT0fQ4BAAAAAAAAAM1L+r1crqwB0Kaqq6s1ceJEVVdXJx3FCd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9OawBAAAAAAAAAABIELdBA9pQ0pfOAQAAAAAAAACal/R7uVxZA6BN1dfXa86cOaqvr086ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+3NYA6BN+XyfyA3xrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63J/boAFtKOlL5wAAAAAAAAAAzUv6vVyurAEAAAAAAAAAAEgQhzUA2lQmk9GIESOUyWSSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7cBg1oQ0lfOmdBQ0ODli5dqt69e6uwsDDpOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nVsTf+k38v1+rDm888/1//+7/9q+fLl2m677XT88cdrxx13TDoWkJf0BgcAAAAAAAAANC/p93LN3Qaturpa1113na677jrdd999G33cqFGjtMsuu+iHP/yhrrnmGl144YXaeeeddf3112/FtACaU1VVpfHjx6uqqirpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/uOqjnn39eN910k6Io0u23377Bxzz99NO64oorvvLnDQ0Nuummm1RUVKRf/epXbR0VQAsUFBSoS5cuKigwdza8RXzrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtB//+McaM2aMoijSZ599pp49e37lMXvuuafmzZunKIq03Xbb6fDDD9cnn3yit956S5JUXFysefPmaaeddtra8YH1JH3pHAAAAAAAAACgeUm/l2vueGnGjBmSpD322GODBzWvv/56/qBmwIAB+vDDDzVhwgS9+eab+uUvfylJqqur04MPPrhVcwPYsLq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zhzWLFy9WFEXae++9N/j3kyZNyn993XXXqWvXrvnfX3PNNSotLZUkTZ06tW2DAmiRbDaradOmKZvNJh3FCd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9zd0GrUOHDqqtrdWFF16osWPHfuXvjzzySP3zn/9Uhw4dtGrVKhUXF6/399/+9rc1ZcoU9erVS5999tnWig1sUNKXzgEAAAAAAAAAmpf0e7nmrqypr6+XpA1+AFB9fb3efvttRVGkQw455CsHNZK0/fbbS5IymUyb5gTQMnEcK5vNyti58BbzrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63N/cYc3XvvY1SdKKFSu+8ndvvvlm/vKlww8/fIPP32abbSRJTU1NbZQQwOYoKyvTyJEjVVZWlnQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtG984xuaMWOGevfurSVLlqz3d1dddZX+8Ic/KIoivfDCCzruuOO+8vzTTjtNEydO1Lbbbqsvvvhia8UGNijpS+csaGxs1IoVK9SjRw+1a9cu6Tit5lsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ1bE3/pN/LNXdlzWGHHSZJ+vTTT/X3v/89/+crVqzQfffdJ0lq3769vvWtb23w+bNmzVIURerXr1+bZwXQvHbt2qlXr17B/MfBtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zhzXDhw/Pf33BBRdo2LBhuvLKK3XQQQdp5cqViqJIZ5xxhtq3b/+V5y5fvlzz58+XJA0YMGCrZQawcZWVlbr//vtVWVmZdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvcvTDrAl33zm9/Uj370I911111qbGzUuHHj1vv70tJSXX/99Rt87lNPPaU4jhVFUf4KHQDJKiwsVL9+/VRYaO6fmy3iWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub+5z6yRcveV+/nPf6477rhDDQ0N+T/faaed9NBDD+nII4/c4PP2339/vfvuu4qiSAsXLlSfPn22VmRgg5K+zyEAAAAAAAAAoHlJv5dr7jZoUu6+cn/605+0bNkyPfvssxo3bpxeffVVzZ8/f6MHNatXr9aQIUN0/fXX6w9/+AMHNYARtbW1mj59umpra5OO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/iYPa9bq1q2bTjrpJA0dOlTf+ta3NnnpUrdu3XT99dfr+uuv1xVXXLEVUwLYlLq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc3+Tt0EDQpH0pXMAAAAAAAAAgOYl/V6uuStrLr30Uv373/9OOgYAR5qampTJZNTU1JR0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9zd3WHPHHXfo0EMP1R577KHf/OY3WrBgQdKRALRCeXm5Ro8erfLy8qSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v7nboBUUFCiKovX+7JBDDtG5556r73//++rWrVtCyYDNl/SlcxY0NTWpvLxcnTp1UkGBufPhzeZbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dWxN/6TfyzV3WPNf//VfeuKJJ7RmzZr8n609vNlmm2307W9/W+eee65OOeUUFRUVJRUTaJGkNzgAAAAAAAAAoHlJv5dr7mjtb3/7mz7//HM9+eSTOu2001RcXKw4jhXHserq6vTss8/q+9//vnr16qWLLrpIr776atKRAWxCRUWFxowZo4qKiqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v7nDGkkqKirSkCFDNGHCBC1fvlx33XWXBg0apCiK8gc3mUxGd999twYPHqx+/frp2muv1ezZs5OODuBLioqKNHDgwGCuhPOtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Ovrc39xt0Dbl008/1bhx4zRu3Di9//77+T9f9zNu9t9/f5177rk688wz1bNnzyRiAnlJXzoHAAAAAAAAAGhe0u/lmryyZmN23HFH/c///I/effddvffee/rFL36hnXbaKX+1TRzHmjFjhq644gr16dMn6bgAJGWzWU2bNk3ZbDbpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/VYc26vv71r2vkyJFavHixpk6dqgsvvFBdunSRJMVxrIaGhmQDApAkNTQ0aNGiRcHsSd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9vboN2sZks1k99dRTuueeezR16lRJuVujNTY2JpwMaZf0pXMAAAAAAAAAgOYl/V6ut1fWxHGsKVOmaPjw4erZs6fOOeccvfzyy+t9fg2A5DU2NmrZsmXBHJ761sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/dYc1//vMf/exnP9OOO+6o73znO/r73/+uioqK/GfWFBYW6uSTT9b48eOTjgpAUkVFhcaOHauKioqkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub8Xt0FbuHChxo0bp3HjxmnevHn5P183+iGHHKJzzjlHP/jBD9S9e/ckYgJfkfSlcxbEcaza2loVFxcHceWbb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2texNf2Tfi+3cKu90mZatWqVHn30UY0bN07Tp0/P//m6BzS77rqrzj77bJ1zzjnq379/EjEBNCOKIpWUlCQdwxnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c3dBu3RRx/VKaecoh122EGXXnqppk+fnr/FWRzH2nbbbfWTn/xEb7zxhubNm6frr7+egxrAsPLyco0aNUrl5eVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zV9YMHTpUURStdwVN+/btdcopp+icc87Rt7/9bRUWmosNYCNKSko0aNAgb0+0v8y3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzf3OfWVNQUJD/36OOOkrnnnuuvve97+lrX/tawsmAzZf0fQ4BAAAAAAAAAM1L+r1cc7dBGzBggEaOHKnFixfrpZde0nnnncdBDeCxmpoavfDCC6qpqUk6ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+5u7n9i7776bdAQADjU1NSmTyaipqSnpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/uNmhASJK+dA4AAAAAAAAA0Lyk38s1dxs0AGFpaGjQokWL1NDQkHQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj7357AGQJuqrKzUAw88oMrKyqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P7dBA9pQ0pfOAQAAAAAAAACal/R7uVxZAwAAAAAAAAAAkCAOawC0qbKyMt1yyy0qKytLOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/tzWAOgTXXo0EFDhgxRhw4dko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+fGYN0IaSvs8hAAAAAAAAAKB5Sb+Xy5U1ANpUdXW1Jk6cqOrq6qSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1AAAAAAAAAAAACeI2aEAbSvrSOQAAAAAAAABA85J+LzexK2t23XVX/eY3v9GiRYuSigBgK6ivr9ecOXNUX1+fdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvdP7LBmwYIFuuGGG7Trrrtq0KBBuv/++1VZWZlUHABtxOf7RG6Ib32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/6J3QatoKBAURQpjmNFUSRJat++vU477TQNGzZMxx57bBKxAKeSvnQOAAAAAAAAANC8pN/LTezKmiuvvFK9evWSJMVxrDiOVV1drXHjxumEE05Qnz599Ktf/Upz585NKiIAAAAAAAAAAECbS+yw5g9/+IM++eQTTZ48WUOHDlX79u0l/d/BzdKlS3XLLbdo77331iGHHKIxY8Yok8kkFRfAFspkMhoxYkQw+9e3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/8Rug/ZllZWVeuyxx/TQQw/p1Vdf1bqx1t4mraioSCeffLKGDx+u73znO2rXrl1ScYEWSfrSOQsaGhq0dOlS9e7dW4WFhUnHaTXf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r2Nr+if9Xq6Zw5p1LVmyRA8++KD+/ve/a968eev93dqDmx49eujss8/WsGHDtN9++yURE2hW0hscAAAAAAAAANC8pN/LTew2aJvSp08fXXvttZozZ47eeOMNXXzxxerWrZuk/7tN2hdffKFRo0bpgAMO0MCBAzVq1Ch98cUXCScH8GVVVVUaP368qqqqko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+Jg9r1nXwwQfrr3/9qz7//HM98cQTOvXUU7XNNttI+r+Dm/fff19XXnmlevfurVNOOUUTJkxQXV1dwskBSFJBQYG6dOmiggLz/9y0iG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+Jm+D1pxVq1bp4Ycf1kMPPaS33357vb9be5u0rl27auXKlUnEA/KSvnQOAAAAAAAAANC8pN/L9e94SVL37t116aWX6t///rc++OADXX311dppp53yBzVxHGvNmjUJpwQgSXV1dZo5c2YwV7v51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/lYc26+vfvr/33319f//rX5eFFQkDwstmspk2bpmw2m3QUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj739/I2aJL0r3/9Sw8++KAef/xxlZWVrfd3cRwriiI1NjYmlA7ISfrSOQAAAAAAAABA85J+L9erK2sWLFigG264QbvuuquOPPJI3X333cpkMorjOP+rT58+uvbaazVv3ryk4wJQ7vA0m80Gc+Wbb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7mD2vKyso0duxYHX744dptt930m9/8RgsWLMgfzkhSaWmphg8frqlTp2rhwoW68cYb1b9//4STA5Bye3jkyJFfuQLOV771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7m7wNWmNjo55//nk99NBDeu655/IfBrRu1CiKNHjwYA0fPlzf+9731KFDh6TiAhuV9KVzFjQ2NmrFihXq0aOH2rVrl3ScVvOtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Oramf9Lv5Zo6rHnrrbf00EMPafz48Vq1apUkfeVypd13313Dhg3Tueeeq5122imJmECLJb3BAQAAAAAAAADNS/q93MRvg/bJJ5/od7/7nfbee28dcsghuuOOO7Ry5cr1bnPWpUsXXXTRRXr99dc1Z84cXXPNNRzUAJ6orKzU/fffr8rKyqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2FSL3z//ffrwQcf1Kuvvpo/lFn3Kpp27drphBNO0PDhw3XqqaequLg4qagAWqGwsFD9+vVTYWFi/9w45Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/YrdBKygoUBRFX7nN2YABAzR8+HCdffbZ6tmzZxLRAGeSvnQOAAAAAAAAANC8pN/LTfQ2aGsPanr06KHLL79c77zzjt59911dccUVHNQAgaitrdX06dNVW1ubdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvdP7LCmqKhIp512mp5++ml9+umn+tOf/qSBAwcmFQdAG6mrq9PMmTNVV1eXdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvdP7DZoa9asUdeuXZN4aWCrSfrSOQAAAAAAAABA85J+LzexK2s4qAHSoampSZlMRk1NTUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/0Q/s6YlstmsJk6cqJ///Of6wQ9+oOOPP17HHHPMVx4Xx7Gqq6tVXV2t+vr6BJIC2JDy8nKNHj1a5eXlSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xG6D1hK33nqrfv/732vVqlX5P4vjWFEUqbGxcb3Hrlq1Sn369FE2m9XBBx+s119/fWvHBb4i6UvnLGhqalJ5ebk6deqkggLz58PN8q2P1bwWclnIACCH/RgW5ulG2tcxtP6+9bGa10ouKzkAsB9DwzzdSPs6tqZ/0u/lmpxWfX29TjrpJF111VVatWqV4jjO/9qY7t27a/jw4YrjWG+++aY+/vjjrZgYwMYUFBSoS5cuwfzHwbc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/k4kvueQSTZ48WXEcq7i4WBdddJEeffRRffe7393k884555z815MmTWrrmABaoKKiQmPGjFFFRUXSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63N/cYc1//vMf3XfffYqiSL1799Y777yjO++8U2eccYZ69+69yecedthh6ty5syTptdde2xpxATSjqKhIAwcOVFFRUdJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Ovrc39xn1vz3f/+3/vrXvyqKIk2dOlVHHXVU/u8uvfRS3XHHHRv8zJq1Bg8erFdeeUV77723Zs2atbViAxuU9H0OAQAAAAAAAADNS/q9XHNX1rz88suSpK9//evrHdS01Nqrbz799FOnuQBsmWw2q2nTpimbzSYdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0d1nz22WeKokj777//Fj2/tLRUklRVVeUyFoAt1NDQoEWLFqmhoSHpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/uNmjt27dXXV2dfvSjH2nMmDHr/V1LboN27rnnaty4cerSpYtWr169NSIDG5X0pXMAAAAAAAAAgOYl/V6uuStrevToIUlatmzZFj1/zpw5630fAMlqbGzUsmXLNnrA6hvf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0d1uy5556K41hvvPHGZi/oJ598opkzZyqKIh144IFtlBDA5qioqNDYsWNVUVGRdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvc3dxu02267TT//+c8VRZHuvvtunX/++fm/a+42aOedd54efPBBRVGk+++/X+eee+7WjA58RdKXzlkQx7Fqa2tVXFysKIqSjtNqvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV/H1vRP+r1cc1fWnHfeeercubMk6YorrtDbb7/doufdeOON+YOaHXbYQWeeeWZbxgTQQlEUqaSkJJj/OPjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub+6wplu3brrpppsUx7HKy8t1xBFH6Oc//7n+85//qLa2Nv+48vJyzZ07V/fee68OPPBAjRgxIv93f/rTn7TNNtskER/Al5SXl2vUqFEqLy9POooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sXJh1gQ37yk5/oo48+0u233666ujr96U9/0p/+9Kf838dxrK5du673nLV3c/v1r3+t008/favmBbBxJSUlGjRokEpKSpKO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/uY+s2Zd9957r37+858rk8lI0nqXLn05dpcuXfSnP/1Jw4cP35oRgU1K+j6HAAAAAAAAAIDmJf1errnboK3rggsu0JIlSzRq1Cgdf/zxKi0tVRzH+YOa4uJiHXHEERo5cqQWLVrEQQ1gUE1NjV544QXV1NQkHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/1N3gZtXaWlpbrssst02WWXSZKqqqpUVlamjh07qnPnzht9XlNTkwoKTJ9FAanQ1NSkTCajpqampKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/udugvfjiizruuONa9T0aGxt11lln6dFHH3WUCtgySV86BwAAAAAAAABoXtLv5Zq79OR73/ue3nrrrS1+flNTk4YOHaoJEyY4TAVgSzU0NGjRokVqaGhIOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/ubO6yprKzUSSedpLlz5272cxsbGzmoAYyprKzUAw88oMrKyqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v7nboBUUFCiKIvXu3Vuvv/66dtxxxxY9b+1BzRNPPKE4jtWhQwcvB7Il6urq9Oijj+qRRx7RBx98oOXLl6tr167aeeedddppp+m8887Ttttu683rL1y4UG+99ZbefvttvfXWW/rPf/6jioqK/N9v7o9sv379tHjx4s16zieffKLevXtv1nM2JOlL5wAAAAAAAAAAzUv6vdzCrfZKLXTJJZfozjvv1NKlS3X88cfr1VdfVffu3Tf5nC9fUdOhQwdNnDhxK6RN3pw5czR06FDNnDlzvT9ftmyZli1bpjfeeEN/+MMfdN999+nEE080/fqff/65BgwYoFWrVjnPCQAAAAAAAACAVeZug/aXv/xFZ5xxhuI41pw5c3TSSSepurp6o4/f2EHNscceu7UiJ2bp0qU65phj8gclURTpqKOO0gUXXKBTTjlF7du3lyR98cUXGjJkiKZOnWr69Wtra9v8oGbYsGH6yU9+0uyv0tLSNs2RJmVlZbrllltUVlaWdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvc3dxs0Saqvr9eJJ56ol156SVEU6dhjj9Xzzz+vwsL1LwRqbGzUmWeeqSeffDJ/67Onn35axxxzTELJt64jjzxSr732miSpb9++evrpp7Xffvvl/37lypU688wz9dJLL0mSunXrpvnz56tLly4mX3/RokXaeeedVVpaqgMOOEAHHXSQDjzwQGWzWQ0fPjz/uNbcBm3hwoXq16/fZj2/NZK+dM6C+vp6zZ8/X/3799c222yTdJxW862P1bwWclnIACCH/RgW5ulG2tcxtP6+9bGa10ouKzkAsB9DwzzdSPs6tqZ/0u/lmjyskaSqqioNHjxYb7/9tqIo0hlnnKHx48fn/76hoSH/GTWSUndQM2nSJJ100kmSpKKiIr399tsaMGDAVx5XVVWlfffdVwsWLJAk/fKXv9TNN99s8vVramq0YMEC7bXXXioo+L+LvqZNm6bBgwfnf89hDQAAAAAAAADApaTfyzV3G7S1OnbsqMmTJ2v33XdXHMd6/PHH9ZOf/ETShg9qnnnmmdQc1EjSHXfckf96+PDhGzwokXLreOONN+Z/P3bsWDU0NJh8/fbt22ufffZZ76AG/quurtbEiRM3eTtDn/jWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub/pd8e7du2vKlCnacccdFcexxowZo1/96lcbPKg5+uijE0679VRWVuZvLSZJ559//iYf/73vfS//GSyrV6/Wq6++6vXrAwAAAAAAAAAQErO3QVvXBx98oCOPPFKZTCb/Z2s/oyZtBzWSNGXKFJ1wwgmScleuZDKZr3yez5cdf/zxevHFFyVJv/rVr3TTTTd58/rcBg0AAAAAAAAA0JaSfi/X9JU1a+2zzz567rnn1L59e0m5N+vbt2+vZ599NnUHNZI0e/bs/NcDBgxo9qBEkg444IANPt/H12+N//znPxo9erT+53/+R//zP/+jkSNH6tlnn9WaNWsSyxS6+vp6zZkzR/X19UlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzfy8OayTp0EMP1eOPP6527dqpQ4cOev7559e72iJN5s6dm/+6b9++LXpOnz598l/PmTPH69dvjdNPP10//elP9Yc//EF/+MMfdPXVV+vUU09Vz549NWzYMC1YsCCxbKHy+T6RG+JbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5fyK3QWvXrl2bv0YURRv9IHvf/eAHP9Bjjz0mSbrssss0evToZp/z5JNP6nvf+54kqVevXvr888+9eX2Xt0FrTqdOnfT3v/9dp5xyyma9xsYkfekcAAAAAAAAAKB5Sb+Xm8iVNWvfbI/jeLN/rfs9WvrY0FRWVua/XntruOas+7h1n+/j62+uwsJCnXTSSRozZozeeecdZTIZ1dfXa+XKlXrxxRf1wx/+UNtss40kqby8XGeccYb+9a9/Oc1QUlKi0tJSSVJjY6MymUz+Z7S8vFx1dXWSpJqaGlVVVUmSGhoa1vucprKysvzle9XV1fnT4fr6epWVleUfl8lk8geVVVVVqqmpkSTV1dWpvLxcUm7/ZDIZNTY2SsrNJJvNSpJqa2tVUVEhSWpqalImk1FTU5MkqaKiQrW1tZKkbDabnyWd6EQnOtGJTnSiE53oRCc60YlOdKITnehEJzqF0Ckpid0GbUsPU0I/iGmJtT+gklRUVNSi5xQXF+e/XrsRfH39zfXmm2/queee00UXXaT9999fnTt3VmFhobp3765jjz1Wd999t1577TV1795dUm7j//CHP8z/o+DCIYccotNPP12StGLFCo0ePTr/D8i9996rDz/8UJL0yiuv6Nlnn5UkLV26dL2rlu68807Nnz9fkjRlyhRNmTJFkjR//nzdeeed+ceNHj1aS5culSQ9++yzeuWVVyRJH374oe699958x9GjR2vFihWSpAkTJmj69OmSpBkzZmjcuHGScv+AjR49Ov8P5rhx4zRjxgxJ0vTp0zVhwoRmO02ZMkW33nqrMplMEJ0ymYx+//vf68knn/RiTtOmTdMf//hHZTIZUz97CxYs0IgRIzR+/Pg2+9lrrtN7772nESNG6Lnnnkt8Tq46WfrZoxOdNqfT3XffrREjRuiLL74IplOIc2pppwcffFAjRozIZwihUxJzeu655/SHP/xBmUwmmE6bM6cpU6ZoxIgRevvtt4Po9OSTT+r3v/+9MpmMF3N67rnnNGLECL333numfvYymYz+9Kc/6e23326TObW00/jx4zVy5EhlMhnzP3uh/htBJzqt7bRgwQKNHj1aX3zxRTCdQpxTSzvNmTNHo0ePzr9pHkKnJOaUyWR0yy236MEHHwym0+bMycV7YYmJ4cyf//zneI899nD66/HHH//K65x44omxpFhSfNVVV7Uo26RJk/LPKS0tbVXPrf36L7/8cv65bfkjO2XKlPVeZ8KECa3+nrNmzYolxSUlJXFpaWk8a9asuKGhIV6zZk3c1NQUx3Ecl5WVxbW1tXEcx3F1dXVcWVkZx3Ec19fXx2vWrMl/r0wmE9fV1cVxHMdVVVVxVVVVHMdxXFdXF2cymfzj1qxZE9fX18dxHMeVlZVxdXV1HMdxXFtbG5eVlcVxHMdNTU3xmjVr4oaGhjiO47iioiKuqamJ4ziOs9lsXF5eHsdxHDc2NsZr1qyJGxsb4ziO4/Ly8jibzcZxHMc1NTVxRUVFHMfxJjuVl5fHH374YVxfXx9Ep/r6+njOnDn5fNY7VVRU5Nff0s9eNpuNFy5cGK9Zs6bNfvaa61RdXR0vXLgwLisrS3xOrjpZ+tmjE502p9OqVavihQsXxnV1dcF0CnFOLe20evXqeOHChXFtbW0wnZKYU1lZWTx79uy4vr4+mE6bM6fy8vJ44cKFcVVVVRCdMplMPGfOnLi+vt6LOZWVlcULFy6Mq6urTf3s1dfXx7NmzcqveVL/RqxZsyaeO3duXF9fb/5nL9R/I+hEp7Wdstls/P7776/330/fO4U4p5Z2qqmpid9///31/vvpe6ck5lRfXx/PnTs3Xr16dTCdNmdOrXkvbO17uWt/zZo1K96aEvnMmlDdcMMNGjFihNPvedddd+nCCy9c78/4zJq2+5E94ogj9M9//lOS9MMf/lB33313q75f0vc5BAAAAAAAAAA0L+n3chO7DRq23NrbdUnS8uXLW/ScZcuW5b/u1q2b16/flo499tj817Nnz04wSTiqqqo0fvz4/D0gfedbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1Dt1www35z9Rx9evLV9VI0h577JH/evHixS3KtmTJkvzXe+65Z6t6Jv36bWn77bfPf71y5coEk4SjoKBAXbp0UUFBGP/c+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe5fmHQAbL699tor//X777+vhoYGFRZuepTvvPPOBp/v4+u3pXVPXDt27JhgknC0b99e3/72t5OO4YxvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/v4dL0GHHXaYiouLJeUOF95+++1NPr62tlbTp0/P//7oo4/2+vXb0owZM/Jf77DDDgkmCUddXZ1mzpypurq6pKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lk/hzUeKi0t1THHHJP//f3337/Jxz/55JOqqKiQlPu8mCOPPNLr128rq1at0tNPP53//aBBg5ILE5BsNqtp06Ypm80mHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/2jOI7jpENg8z3//PM6+eSTJUnFxcX6z3/+o3322ecrj6uurtZ+++2njz/+WJJ09dVX63e/+51Xrz9t2jQNHjw4//vN+ZGtrKxUaWlps49rbGzU6aefrokTJ0qSioqKNG/ePPXt23ezsn7ZBx98oK9//ev538+aNWuD6wQAAAAAAAAASE7S7+VyZY2nTjrpJB1xxBGScrcZO/nkk/Xee++t95hVq1ZpyJAh+YOSbt266aqrrtro91y0aJGiKMr/2tQVM23x+m3hkEMO0U9/+lP95z//2ehj3n//fR177LH5gxpJ+tnPftbqgxrkxHGsbDa7WYdslvnWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz2GNxx5++GFtv/32knIHLQMHDtTgwYN14YUX6rvf/a769OmjF198UZJUWFioxx57TF26dDH9+tddd50GDhy43q8LL7xwvcd8+e8HDhyoZ555ZoPfr7KyUqNHj9Y3v/lN9ejRQ8cdd5yGDRumiy++WGeddZb22Wcf7bvvvpo2bVr+Oaeeeqp++9vfbvnCYD1lZWUaOXKkysrKihHdQAAAo1VJREFUko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+3AbNc3PmzNHQoUM1c+bMjT6mR48euu+++3TSSSdt8nstWrRIO++8c/739913n84777yt9vqSdN555+mBBx5o9nFftrGs/fr10+LFi1v0PTp06KBf/epXuvrqq1VQ4OYcM+lL5yxobGzUihUr1KNHD7Vr1y7pOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nVsTf+k38st3GqvhDax55576s0339T48eP1yCOP6IMPPtDy5cvVpUsX7bLLLjrttNN0/vnna9tttw3y9Zvz2muv6fXXX9cbb7yhd955R8uXL9eqVatUVlamDh06aNttt9XAgQM1aNAgnXvuuU6vPEJOu3bt1KtXr6RjOONbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P1fWAG0o6dNYCyorKzVhwgSdfvrpKi0tTTpOq/nWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HVvTP+n3cvnMGgBtqrCwUP369VNhYRgX8vnWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz5U1QBtK+jQWAAAAAAAAANC8pN/L5coaAG2qtrZW06dPV21tbdJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7OvrcP7jDmnfeeUevvvqqXn311aSjAJBUV1enmTNnqq6uLukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uH9xt0Pbff3+99957iqJIDQ0NScdByiV96RwAAAAAAAAAoHlJv5cb3JU1khTHsQI7gwK81dTUpEwmo6ampqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f5CHNQDsKC8v1+jRo1VeXp50FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9w/yNmjvvvuuoihSY2Nj0nGQcklfOmdBU1OTysvL1alTJxUU+H8+7Fsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ1bE3/pN/LLdxqrwQglQoKCtSlS5ekYzjjWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9iR2u77LJLm/yaPXt2UpUAbEBFRYXGjBmjioqKpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/YlfWLFq0SFEUae1d2KIoSioKgDZUVFSkgQMHqqioKOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3un9hn1hQUFOQPaNoiAp9ZAwuSvs8hAAAAAAAAAKB5Sb+Xm9iVNe3bt1c2m5Uk3XLLLerZs6eT73vdddfpk08+cfK9ALReNpvV9OnTdcghh6ikpCTpOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9ihzUDBw7UG2+8oSiKtOeee+rUU0918n1HjRrFYQ1gSENDgxYtWqRvfvObSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xG6D9tOf/lS33367oijSNddco9/85jdOvu/++++vd999l9ugwYSkL50DAAAAAAAAADQv6fdyC7baK33JgQcemP/6rbfeSioGgDbW2NioZcuWBXN46lsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/icOat99+O6kYANpYRUWFxo4dq4qKiqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2K3QZOkzp07q6KiQlEU6aOPPtIuu+zS6u/5ox/9SB9//LEk6eWXX2719wNaI+lL5yyI41i1tbUqLi5WFEVJx2k13/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK9ja/on/V5u4VZ7pQ2YOnWqKisrJUndu3d38j3vuusuJ98HgBtRFKmkpCTpGM741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197p/YbdAk6Rvf+IaOOuooHXXUUercuXOSUQC0kfLyco0aNUrl5eVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc/9ED2sAhK+kpESDBg3y9kT7y3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73T/Qza4DQJX2fQwAAAAAAAABA85J+L5crawC0qZqaGr3wwguqqalJOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sXJh1gc73wwgv697//LUm67rrrEk4DoDlNTU3KZDJqampKOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/t7dxu0Sy+9VHfccYeiKFJjY2PScYBNSvrSOQAAAAAAAABA85J+L5fboAFoUw0NDVq0aJEaGhqSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/4c1gBoU5WVlXrggQdUWVmZdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnNmhAG0r60jkAAAAAAAAAQPOSfi+XK2sAAAAAAAAAAAASxGENgDZVVlamW265RWVlZUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzfw5rALSpDh06aMiQIerQoUPSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63J/PrAHaUNL3OQQAAAAAAAAANC/p93K9u7Lm8ssv18svv6ypU6cmHQVAC1RXV2vixImqrq5OOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sXJh1gc+26667addddk44BAAAAAAAAAADghHe3QQN8kvSlcwAAAAAAAACA5iX9Xq53t0ED4Jf6+nrNmTNH9fX1SUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/7w5rGhoaNH/+fL355puaNWuWVq9enXQkAJvg830iN8S3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzf29ug/b6669r5MiRmjp16lcWep999tG5556ryy67TMXFxQklBL4q6UvnAAAAAAAAAADNS/q93MSurLn55pt1880368UXX9zk4+I41mWXXaYjjjhCzz33nKqqqhTH8Xq/PvjgA1199dX6+te/ro8++mgrNQAAAAAAAAAAAGi9xA5rrr32Wv3617/Ws88+u8nHXXTRRbrjjjvyBzMbsvbP58+fryOOOEKff/6587wAtkwmk9GIESOUyWSSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/6J3QatoKBAURTpJz/5iW6//fYNPubpp5/W//t//09RFCmOY+2222666qqrdOyxx2r77bdXVVWVZsyYoXvuuUePPPKIpNzBzYknnqjnnntua9YBNijpS+csaGho0NKlS9W7d28VFhYmHafVfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu5pg9rvvnNb+qdd95RFEX6zne+o8cff1zt27ff4GMnTJigoUOHqrGxUVEUaebMmRowYEBbVgCalfQGBwAAAAAAAAA0L+n3chO7DVpzPvroo/xBTe/evTV+/PiNHtRI0umnn65rrrkm//u1V9oASFZVVZXGjx+vqqqqpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/2cOaf/7zn/mvL7/8cpWWljb7nCuvvDJ/oPP666+3WTYALVdQUKAuXbqooMDsPzebxbc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/s7dB+81vfqPrr79eURTp/fff1957792i73v00Udr2rRp2n777fXpp5+6jg1slqQvnQMAAAAAAAAANC/p93LNHi9lMpn81/369Wvx89Y+dt3nA0hOXV2dZs6cqbq6uqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v9nDmnVve1ZcXNzi5xUVFUmSErpgCMCXZLNZTZs2TdlsNukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub/Y2aOPGjdO5556rKIr0+eefa7vttmvR9z3zzDP12GOPaccdd9Qnn3ziOjawWZK+dA4AAAAAAAAA0Lyk38st3GqvtBH//ve/deONN37lz5cvX57/+sMPP2zxYc3HH38sSerevbubgABaJY5j1dbWqri4WFEUJR2n1XzrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73T/w2aG+99ZZGjBjxlV9jxozJP2batGkt+l7ZbFYffPCBoihS37592ygxgM1RVlamkSNHqqysLOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3un+ht0Fpqr7320gcffNDs45588kmdfvrpiqJIN910k375y1+2JiLQaklfOmdBY2OjVqxYoR49eqhdu3ZJx2k13/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK9ja/on/V5uYrdBu/766zfr8WvWrFHXrl03+Zh1r8Y57LDDtigXALfatWunXr16JR3DGd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9vTmsaU5VVZW+9a1v6fDDD5ckHXTQQU6/P4AtU1lZqQkTJuj0009XaWlp0nFazbc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xA5rXOvYsaOuu+66pGMA+JLCwkL169dPhYVh/HPjWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9in1kDpEHS9zkEAAAAAAAAADQv6fdyC7baKwFIpdraWk2fPl21tbVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc38OawC0qbq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39ugwa0oaQvnQMAAAAAAAAANC/p93KDurLm1VdfXe8XgOQ1NTUpk8moqakp6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe4f1GHNoEGDNHjwYA0ePFhHH3100nEASCovL9fo0aNVXl6edBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvcP6jZoBQUFiqJIcRwriiI1NjYmHQkpl/SlcxY0NTWpvLxcnTp1UkGB/+fDvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV/H1vRP+r3cwq32SltJQGdPQBAKCgrUpUuXpGM441sfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/UEdrL7/8cv7X1KlTk44DQFJFRYXGjBmjioqKpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/UFfWHHXUUUlHAPAlRUVFGjhwoIqKipKO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/kF9Zg1gTdL3OQQAAAAAAAAANC/p93KDug0aAHuy2aymTZumbDabdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnsAZAm2poaNCiRYvU0NCQdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnNmhAG0r60jkAAAAAAAAAQPOSfi+3cKu9UgstWrRIU6dO1ezZszVnzhytXr1alZWVqqmpUfv27VVaWqpu3bppzz331F577aWjjz5a/fr1Szo2gI1obGzUihUr1KNHD7Vr1y7pOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub+J26A1NTXp7rvv1v7776/+/fvrRz/6kW677TZNmjRJ06dP16xZszR//nzNmjVL06dP16RJk3TbbbfpRz/6kfr376+BAwfq7rvvVlNTU9JVAHxJRUWFxo4dq4qKiqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f+K3Qfvwww/1ve99T/PmzZMkbUmcKIokSXvssYeeeOIJ7bXXXk4zAlsq6UvnLIjjWLW1tSouLs7vVZ/51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR1b0z/p93ITvQ3av//9b51wwgkqLy9f75Bmt9120wEHHKA+ffqoV69eat++vYqLi1VbW6uamhotW7ZMS5Ys0TvvvKOPPvoo/9w5c+bosMMO05QpU3TggQcmVQvAOqIoUklJSdIxnPGtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7OvrcP7HboFVVVemss85SWVmZ4jhW165dddNNN2np0qWaO3euHnnkEY0cOVI/+9nPdPHFF+v888/XxRdfrJ/97GcaOXKkHnnkEc2dO1effvqpfvvb36pbt26SpLKyMp199tmqrq5OqhqAdZSXl2vUqFEqLy9POooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sndljz97//XQsWLFAURRo4cKA++OADXXPNNdphhx026/tsv/32+uUvf6lZs2Zp4MCBkqT58+froYceaoPUADZXSUmJBg0a5O2J9pf51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197p/YZ9Ycc8wxevnll7XNNtvoo48+Up8+fVr9PRcvXqzdd99dDQ0NOuqoozR16lQHSYEtl/R9DgEAAAAAAAAAzUv6vdzErqyZN2+eoijS0Ucf7eSgRpL69u2ro48+WnEca968eU6+J4DWqamp0QsvvKCampqkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9ihzUrVqyQJO20005Ov2/v3r0lSatWrXL6fQFsmaamJmUyGTU1NSUdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/RO7DdpOO+2kzz77TCeccIImTZrk7PueeOKJeuGFF7TDDjto6dKlzr4vsCWSvnQOAAAAAAAAANC8pN/LTezKmt12201xHGvq1Kn65JNPnHzPJUuW6KWXXlIURdp9992dfE8ArdPQ0KBFixapoaEh6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe6f2GHNGWecIUmqr6/XkCFD8rdF21IrVqzQaaedpvr6eknS97///VZnBNB6lZWVeuCBB1RZWZl0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/sNmhVVVUaMGCAFi9eLEnq2rWrfvGLX2j48OHq1atXi7/P8uXL9cADD+jWW2/Nf07NzjvvrPfee08dOnRok+xASyV96RwAAAAAAAAAoHlJv5dbuNVe6Us6duyocePG6YQTTlBVVZVWr16ta665Rtdcc4123313HXDAAerbt6969uyp9u3bq6ioSHV1daqpqdHy5cu1ePFizZgxQ3PnzpUkrT1zKi0t1bhx4zioAQAAAAAAAAAAXkjsNmiSdOihh+q1117TzjvvLCl34BLHsebNm6fx48dr5MiRuuKKK3TJJZfohz/8oS655BJdccUVGjlypMaPH6+5c+fmnyNJ/fv31z//+U8dfPDBSdYCsI6ysjLdcsstKisrSzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7J3pYI0n77bef5syZo7/85S/ae++9Jf3foU1LfknS3nvvrb/85S+aPXu29t133yTrAPiSDh06aMiQIcFc7eZbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2KfWbMx8+fP19SpUzV79mzNnTtXq1atUmVlpbLZrEpKSlRaWqru3btrjz320F577aXBgwdr1113TTo2sEFJ3+cQAAAAAAAAANC8pN/LTfzKmi/r37+/fvSjH+m2227T888/r+nTp2vWrFn6+OOPNWvWLE2fPl3PP/+8brvtNv3oRz/ioAYwrrq6WhMnTlR1dXXSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63N/cYQ0AAAAAAAAAAECamLsNGhCSpC+dAwAAAAAAAAA0L+n3crmyBkCbqq+v15w5c1RfX590FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/ksKampiYVrwnA7/tEbohvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/oncBm3HHXfUiBEjdP7556tdu3Zt+lqNjY265557NGLECH366adt+lrAlyV96RwAAAAAAAAAoHlJv5ebyJU1n3/+uS666CL1799ff/nLX1RZWen8NSoqKnT77berf//+uuSSS7Rs2TLnrwEAAAAAAAAAANBaiRzWnHrqqYrjWEuWLNHll1+u7bffXhdccIH+93//Vw0NDVv8fRsaGvS///u/uuCCC7TDDjvoZz/7mZYsWaI4jvXd737XYQMALZXJZDRixAhlMpmkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX8it0GTpBdeeEE///nP9eGHH+aCRJEk6Wtf+5oOP/xwHXHEEdp333215557qnfv3ioqKlrv+bW1tVq6dKnmzp2rd999V//85z/1r3/9SxUVFZKktbX22Wcf3XrrrTrhhBO2YjsgJ+lL5yxoaGjQ0qVL1bt3bxUWFiYdp9V862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo6t6Z/0e7mJHdZIuQOVhx9+WL///e/1/vvv/1+o///gZl0dOnRQhw4dFMexampqNvgBQetWGTBggK6++mqdeeaZG/x+wNaQ9AYHAAAAAAAAADQv6fdyE7kN2lpRFOnss8/Wu+++q3/84x8aOnSo2rdvrziOv/KrqqpKK1as0MqVK1VVVbXBx7Rv315Dhw7VP/7xD7377rsaOnQoBzVAwqqqqjR+/HhVVVUlHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/3NXAd19NFH6+ijj1Z1dbVeeuklvfjii3rzzTf1/vvvK5vNbvA57du314ABA3TQQQfpuOOO0zHHHKMOHTps5eQANqWgoEBdunRRQUGiZ8PO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe6f6G3QWmrZsmVavnx5/jSsY8eO6tWrl3r27JlwMmDTkr50DgAAAAAAAADQvKTfy/XieKlXr17ab7/9dNhhh+mwww7Tfvvtx0EN4Im6ujrNnDlTdXV1SUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/Lw5rAPgrm81q2rRpG72doW9862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9/fiNmiAr5K+dA4AAAAAAAAA0Lyk38vlyhoAbSqOY2WzWYVyLuxbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1ANpUWVmZRo4cqbKysqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P7dBA9pQ0pfOWdDY2KgVK1aoR48eateuXdJxWs23PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt69ia/km/l8thDdCGkt7gAAAAAAAAAIDmJf1eLrdBA9CmKisrdf/996uysjLpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197s9hDYA2VVhYqH79+qmwsDDpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197s9t0IA2lPSlcwAAAAAAAACA5iX9Xi5X1gBoU7W1tZo+fbpqa2uTjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/4c1gBoU3V1dZo5c6bq6uqSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7cBg1oQ0lfOgcAAAAAAAAAaF7S7+VyZQ2ANtXU1KRMJqOmpqakozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uT+HNQDaVHl5uUaPHq3y8vKkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub+526C9+uqrrXp+QUGBOnXqpC5duqhPnz6OUgFbJulL5yxoampSeXm5OnXqpIIC/8+HfetjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu55g5rCgoKFEWRk+/VsWNHHXDAATr77LN11llnqWPHjk6+L9BSSW9wAAAAAAAAAEDzkn4v1+TRWhzHTn5VVlbqtdde08UXX6y9995bU6dOTboakDoVFRUaM2aMKioqko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+hUkH+LIjjzwyf2XN9OnTVVdXp7UX/2y77bbq3bu3SktLVVVVpaVLl2rFihWSpCiKVFxcrIMPPlj19fVavXq1Pv74YzU0NEiSPvnkE5144omaPHmyBg8enEw5IIWKioo0cOBAFRUVJR3FCd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9zd0GTZIqKyt1wQUXaMKECerUqZOuvPJKnXPOOdp5552/8tjFixfroYce0h//+EeVl5fr9NNP17333quOHTuqpqZGTzzxhH79619r8eLFkqQdd9xRH3/8sYqLi7d2LaRQ0pfOAQAAAAAAAACal/R7uSZvgzZs2DA98cQT2m233fTee+/p17/+9QYPaiSpb9++uvbaa/Xee+9p11131YQJEzRs2DBJUvv27XXOOefonXfe0V577SVJ+uyzz/Tggw9utS5A2mWzWU2bNk3ZbDbpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/usGbixImaOHGioijSY489pj59+rToeTvttJMee+yx9b7HWl27dtXf/va3/O9feOEFp5kBbFxDQ4MWLVqUvyWh73zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtCFDhuiZZ57RoYceqn/961+b/fxvfetbev3113Xqqaeud2AjSbvvvrs+/vhj9evXTwsWLHCUGNi4pC+dAwAAAAAAAAA0L+n3cs1dWfPuu+8qiqL8bcs215577pn/Pl92wAEHSJJWrly55QEBbJbGxkYtW7ZMjY2NSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/c4c1y5YtkyTV1tZu0fPr6urW+z7r6tq1qySpvr5+C9MB2FwVFRUaO3asKioqko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+5m6D1qtXL61YsUL9+/fXvHnzNvv5a291tt12233lwOa8887Tgw8+qB122EFLly51FRnYqKQvnbMgjmPV1taquLhYURQlHafVfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu55q6sGTBggOI41vz58zV+/PjNeu748eP18ccfK4qi9RZ1rYULF0qStt12WydZATQviiKVlJQE8x8H3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/3NHdaceeaZ+a9/+MMf6vHHH2/R85544gldeOGF+d8PHTp0vb+vra3VjBkzFEWR+vfv7yYsgGaVl5dr1KhRKi8vTzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7mzusOf/887X//vtLkmpqanTmmWfqiCOO0NixYzVz5kytWrVKNTU1WrVqld5991397W9/01FHHaXvf//7qq6uVhRFGjhwoM4///z1vu9zzz2nyspKSdIRRxyx1XsBaVVSUqJBgwappKQk6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe5v7jNrJOnTTz/V4MGD87c0a6k4jrXLLrto2rRp6t2793p/d+aZZ+rNN9+UJE2bNk19+/Z1mhnYkKTvcwgAAAAAAAAAaF7S7+Wau7JGknbccUdNnz5dZ599tuI4bvGvs846S2+++eZXDmqk3OfZLFy4UAsXLuSgBtiKampq9MILL6impibpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/ysEaSunXrpoceekgffvihfv7zn+ub3/ymioqK1nvMNttso2984xu68sor9cEHH+jvf/+7unfvnlBiABvS1NSkTCajpqampKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/ydugbUpZWZkqKytVWlqqzp07Jx0H2KSkL50DAAAAAAAAADQv6fdyzV5ZszGdO3fWjjvuyEHNOurq6vTQQw/pxBNPVN++fVVSUqLtt99ehx12mG699VatXLnSm9dfs2aNHn/8cf34xz/WYYcdpu22205FRUXq1KmT+vfvrzPPPFPjxo1TfX39FmVdsmSJbrjhBn3jG99Qjx491L59e/Xv31+nn366nnrqKXl2dumFhoYGLVq0SA0NDUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzf+8Oa7C+OXPm6OCDD9awYcM0efJkLVmyRLW1tVq2bJneeOMN/eIXv9A+++yjSZMmmX79yspKnXLKKerVq5e+//3v684779Qbb7yhFStWqL6+XhUVFVqwYIEeffRRnXPOOdp999316quvblbWe+65R3vvvbdGjBihd955RytXrlQ2m9WCBQv0xBNP6LTTTtPxxx+vZcuWtWZJ8CWVlZV64IEHVFlZmXQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj739+42aPg/S5cu1cEHH6zPPvtMkhRFkY488kj1799fK1as0D/+8Y/8Bylts802euGFF3T00UebfP1ly5Zp++23X+/PevbsqW9+85vq1auX6uvrNXPmTL333nv5vy8sLNRTTz2lk08+udms9957r374wx/mf9+lSxcdffTR6ty5s2bNmqW33nor/3f77ruv/vWvf6m0tLTli7ERSV86BwAAAAAAAABoXtLv5RZutVeCc2eddVb+oKRv3756+umntd9+++X/fuXKlTrzzDP10ksvqb6+XmeccYbmz5+vLl26mH39rl27atiwYTr//PPX+15r/fOf/9SwYcO0cOFCNTQ06Oyzz9a8efPUs2fPjX7PuXPn6uKLL87//uyzz9bYsWPVsWPH/J9NnTpVp59+utasWaP33ntPl112me69997NWQ4AAAAAAAAAALaI6dugVVdXa+zYsTrjjDO02267qWvXriosLFS7du2a/VVYGPY51KRJk/Taa69JkoqKivTss89+5XBj22231dNPP61ddtlFkrR69Wr9/ve/N/n6RUVFuu6667Ro0SKNGjVqgwc1kvStb31LU6dOVadOnSRJ5eXlGjVq1Caz/vrXv85/xs3hhx+uBx98cL2DGkk6+uijNW7cuPzvH3zwQc2ePXuT3xctU1ZWpltuuUVlZWVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc3+zhzWPP/64dtppJ/34xz/Wk08+qfnz56usrExNTU2K47hFv0J2xx135L8ePny4BgwYsMHHdezYUTfeeGP+92PHjnXy4UquX79bt24aMWJE/hBmU/r167felTLPP//8Rh+7fPlyPfHEE/nf//73v1dBwYZ/7L/zne/o2GOPlSQ1NjZqzJgxzWZB8zp06KAhQ4aoQ4cOSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/k59ZM27cOA0bNkyS1jt0iaLoK3+2sT+PokiNjY1tHTURlZWV2nbbbVVbWytJev3113XooYdu9PHZbFY9evTIf6jSSy+91KrPrkn69SXpmWee0Xe/+11J0te+9jWVl5dv8HF33XWX/uu//kuStPvuu2vu3Lmb/L7jxo3TOeecI0nq06ePFi9e3KqcSd/nEAAAAAAAAADQvKTfyzV3Zc2qVat08cUXK45jFRYWauTIkVq+fLl+8pOf5A9jmpqaVF5ervfff1933HGH9t13X8VxrNLSUj388MNqamoK9qBGyh2OrD0o6dixow488MBNPr6kpGS9w5SpU6d6/frS/x3QSdrkrF9++eX814MGDWr2+w4ePDj/9ZIlS/Txxx9vWUDkVVdXa+LEiaqurk46ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+5s7rBk7dqyqqqoURZFuvvlm/eIXv1CPHj2+8rjS0lLts88+uuSSS/TOO+/od7/7nSorK3X22Wfr7rvvTiD51rPuZ6kMGDCgRZ/Pc8ABB2zw+T6+viS9//77+a932mmnjT5u3ddaN8PG7LDDDurZs+cGnw8AAAAAAAAAQFswd1jz0ksvSZI6deqkyy67rEXPiaJIV111la699lrFcazLL79c8+fPb8uYiVr3Vl59+/Zt0XP69OmT/3rOnDlev35TU5Meeuih/O/Xfs7MhiSdFX7fJ3JDfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvc3d1gze/ZsRVGkQw45RNtss80GH7Ox215de+216tq1q7LZrO699962jJmoVatW5b9e9yqQTenVq1f+69WrV3v9+n/961/zhygFBQW65JJLNvi4mpoa1dTU5H+fRFZI9fX1mjNnjurr65OO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/uYOa9a+Od67d+/1/nzdg5t134BfV1FRkQYNGqQ4jjV58uS2C5mwysrK/Nft27dv0XPWfdy6z/ft9T/44AP98pe/zP/+hz/84UY/5OnLr5PEWq1VUlKi0tJSSbnDxkwmk/8MpvLyctXV1UnK/WxXVVVJkhoaGpTJZPLfo6ysLP+PTHV1df6+i/X19SorK8s/LpPJqKGhQZJUVVWV3y91dXUqLy+XJMVxrEwmkz/4rKysVDablSTV1taqoqJCUu4qpkwmo6amJklSRUVF/vOKstlsfn021Wn16tV66qmnVF1dHUSn6upqPfXUU1q5cqUXc1p3/S397FVUVGjixIlasWJFm/3sNdeprKxMEydO1KpVqxKfk6tOln726ESnzem0fPlyTZw4UVVVVcF0CnFOLe30xRdfaOLEiaqsrAymUxJzWrVqVf6/4aF02pw5rV69WhMnTlQmkwmi08qVK/Pz9GFOq1at0sSJE/P/n2ljc9raP3tr/7/42uxJ/RuxYsWK/Dyt/+yF+m8Enei0tlNFRYWeeuqpfPYQOoU4p5Z2Ki8vz//7GkqnJOa09r+XX3zxRTCdNmdOLt4LS4q5w5p27dpJ0leuqunUqVP+688++2yjz+/evbskaenSpW2Qzoa1P6BS7oCqJYqLi/Nfb+ywy/rrZzIZDRkyJP8PyG677abbbrutRTmlZNZqrUMOOUSnn366pNz/sR89enT+H5B7771XH374oSTplVde0bPPPisp9zM8evTo/Pe4884787f3mzJliqZMmSJJmj9/vu68887840aPHp3/+X/22Wf1yiuvSJI+/PDD/BVntbW1Gj16tFasWCFJmjBhgqZPny5JmjFjhsaNGycp9w/Y6NGj8/9gjhs3TjNmzJAkTZ8+XRMmTGi204wZM7Tzzjurc+fOQXTq3Lmz9t9//3wG651mz56t7bffXp07dzb1s1dXV6err75aU6ZMabOfveY6rVy5UldffbWmT5+e+JxcdbL0s0cnOm1OpwkTJujqq69WSUlJMJ1CnFNLOz377LO6+uqrFUVRMJ2SmNP06dO11157qXPnzsF02pw5zZgxQ1dffbU+/fTTIDq98sor2n///dW5c2cv5jR9+nRdffXVWrlypamfvc6dO6t9+/b69NNP22ROLe00ZcoUHXrooercubP5n71Q/42gE53Wdqqrq1NdXZ1KSkqC6RTinFraqaKiQnV1dercuXMwnZKYU+fOnTV48OB8hhA6bc6cXLwXlpjYmD59+sQFBQXx2Wefvd6f33XXXXEURXFBQUE8YcKEjT7/+OOPj6MoiktKSto66lf8+c9/jvfYYw+nvx5//PGvvM6JJ54YS4olxVdddVWLsk2aNCn/nNLS0lb1TOL1a2pq4iOPPDL/PTp16hS/++67m3zOF198kX+8pHj27Nkteq3vf//7+ef893//92ZnXdesWbNiSXFJSUlcWloaz5o1K25oaIjXrFkTNzU1xXEcx2VlZXFtbW0cx3FcXV0dV1ZWxnEcx/X19fGaNWvy3yuTycR1dXVxHMdxVVVVXFVVFcdxHNfV1cWZTCb/uDVr1sT19fVxHMdxZWVlXF1dHcdxHNfW1sZlZWVxHMdxU1NTvGbNmrihoSGO4ziuqKiIa2pq4jiO42w2G5eXl8dxHMeNjY3xmjVr4sbGxjiO47i8vDzOZrNxHOdmUlFREcdxTCc60YlOdKITnehEJzrRiU50ohOd6EQnOtGJTl53Wvte7tpfs2bNircmc4c1aw9bDj300PX+/K233sof1px11lkbfO5nn30Wl5aWxlEUxTvttNPWiLue66+/fr1huvh11113feV11j1MuOyyy1qU7Yknnsg/p1evXq3qubVfv76+Pj711FPzzy8pKYmnTZvW7POqq6vXW8t33nmnRa93yimn5J9z9dVXb1bWL0t6g1uwZs2a+IYbbljvH3Gf+dbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dW9M/6fdyzd0G7ZBDDpGU+2yStfemk6RvfOMb6t27t+I41qOPPpq/5GmtiooKnXfeeaqqqlIURfrWt761VXNvTWtv9SZJy5cvb9Fzli1blv+6W7du3rx+U1OTzjvvPD3zzDOSpMLCQj3++OM66qijmn1u+/bt1/v8mSTWClJpaamGDx+e/8we3/nWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub+6w5rjjjpOU+/Cg119/Pf/nURTppz/9qaTcBw0NGzZM++67r84++2z9v/+vvTsPj6q8/z7+mSQkIcSQgMjiAmi1aAV3tCgawVYFalN3tBXcd9GnPnXrT8VWUatWarXiBrhUxA03SqnVIC6gVpBF0aoERFYD2dfJnOePeZgfSCCT5EzO95zzfl1XrmsmmTnn872/3Gk8d+8zv/qV+vbtqzfffDPx+iuuuKJDc0vSrbfeKie+W8m1rwsuuGCb8/z4xz9OPF6xYkVS2VauXJl4PGDAgHbV2ZHnv+SSSxILc2lpaXryySc1atSopN/v9VghvsDWr18/ZWRkeB3FFX6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XL+5xZojjzxSffr0keM4mjp16lY/GzdunH72s5/JcRxJ8d0306ZN06uvvqry8vLE92+88UYNGTKkw7N3lH333TfxePHixYpGoy2+55NPPmn2/ZbPf8011+jRRx9NPJ80aZJGjx7diqRbn2vzh0ztyOrVq7fagdPesYJUXV2tadOmqbq62usorvBbPVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/rNLdZEIhGVlJSotrZWf/vb37b6WXp6ul577TVdf/316tKlyza7UHbddVc98cQT+sMf/uBR+o4xZMgQZWVlSYr/4/v44493+Pr6+nrNmzcv8XzYsGHmz3/TTTfp/vvvTzz/85//3Owuo5Yce+yxicfFxcUtvn7OnDmJx3vssYd+9KMftfqc2FpaWpry8/OVlmbu102b+K0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/RFn83YUn2loaNCHH36o1atXKy0tTXvuuacOOuggRSIRr6N1iJEjR2rmzJmSpIsvvlgPP/zwdl/77LPP6qyzzpIU/wyWdevWtXsbWCrPf/vtt+v3v/994vltt92m//mf/2lTznXr1qlPnz6KxWKSpA8++CDxuUjNOf744zV79mxJ0pVXXqm//OUvbTrvZkuXLtX++++feL5kyRL95Cc/adcxAQAAAAAAAADu8vparv+Wl/6/zMxMHXXUUTr99NN16qmn6uCDDw7NQo0kXXbZZYnHU6ZM0dKlS5t9XU1NjW6++ebE84suusiV+/Wl6vwTJ07caqHmd7/7XZsXaiSpZ8+eOvnkk7c63vbWJ2fPnp1YqElPT9cll1zS5vPifzU0NGjhwoVqaGjwOoor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5ft8u1oTdyJEjNXToUEnx24yNGjVKixYt2uo1paWlKioq0ldffSUpvqvluuuu2+4xS0pKFIlEEl9Tpkzp0PM/8cQTuuaaaxLPL7/8ct11113bfX2y/vCHP6hTp06SpLlz52rMmDHb3LPw7bffTuz+kaRzzjlH++23X7vPDamurk7FxcWqq6vzOoor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5ft/eBg3SqlWrNHjwYK1Zs0ZS/PN+jjnmGO21117asGGD3nzzTdXU1EiSMjIyNGvWLA0fPny7xyspKVH//v0TzydPnqyxY8d2yPkXL16sAw88MHG7si5dumjMmDFJ75YaN26c9t577+3+/PHHH9/qM28KCgo0bNgw5eXl6bPPPtP8+fMTPxs0aJDeffdd7bTTTkmde0e83joHAAAAAAAAAGiZ19dy238/LHhmt91201tvvaXRo0dr4cKFchxHxcXFKi4u3up1PXr00OTJk3e4UOP1+UtLSxMLNZJUXV2thx56KOksp5566g4Xa84//3w5jqOrr75a1dXV2rRpk1588cVtXjd8+HA99dRTrizUIM5xHNXX1ysrKysQtyr0Wz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6PVmsue222zrkPFt+VkpQDRgwQPPnz9e0adP07LPPaunSpVq3bp3y8/O155576uSTT9a5556rnXfeOZDnb40LLrhAP//5z/X444/rtdde08qVK1VVVaXevXvr4IMP1q9//WsVFRX5bhJbV15erokTJ2rcuHHKz8/3Ok67+a0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/Z7cBi0tLa1DLog3NTWl/BzAjni9dc6CpqYmbdiwQT169FB6errXcdrNb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPY3vq9/parmeLNakWiURYrIHnvJ7gAAAAAAAAAICWeX0t15PboN1yyy1enBaAB6qqqvTCCy/o1FNPVW5urtdx2s1v9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZASmVkZKhfv37KyPDk143r/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fk9ugwaEhddb5wAAAAAAAAAALfP6Wm7qPzwGQKjV19dr3rx5qq+v9zqKK/xWj9W8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX4WawCkVENDgxYuXKiGhgavo7jCb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/r5zZoQAp5vXUOAAAAAAAAANAyr6/lsrMGQErFYjGVlZUpFot5HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP4s1AFKqoqJCEydOVEVFhddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/VzGzQghbzeOmdBLBZTRUWF8vLylJbm//Vhv9VjNa+FXBYyAIhjPgYL/XRH2McxaPX7rR6rea3kspIDAPMxaOinO8I+ju2p3+truRkddiYAoZSWlqb8/HyvY7jGb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/rD9/SGoAOVVlZqYcffliVlZVeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz2INgJTKzMzUgQceqMzMTK+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnM2uAFPL6PocAAAAAAAAAgJZ5fS2XnTUAUqqurk7FxcWqq6vzOoor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fhZrAKRUNBpVSUmJotGo11Fc4bd6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNCCFvN46BwAAAAAAAABomdfXcs3vrPnoo4909dVX69BDD1XPnj2VmZmpjIyMbV5XVlammTNnaubMmVq0aJEHSQE0p6mpSWvXrlVTU5PXUVzht3qs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1m12s2bBhg0aNGqUjjjhCDzzwgBYsWKANGzYoGo2quc1AXbp00YUXXqhf/OIXOvnkkz1IDKA5lZWVmjRpkiorK72O4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq7f5G3QVq9erSFDhujbb79tdmEmEok0uzL2hz/8QbfccosikYjee+89HXHEER0RF9gur7fOWeA4jurr65WVlaVIJOJ1nHbzWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj2J76vb6Wa3JnzamnnqqVK1fKcRztt99+evbZZ7Vu3TpddtllO3zfmWeemXj8z3/+M9UxASQhEokoOzs7MP/j4Ld6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9ZtbrJkxY4bmzZunSCSioUOH6sMPP9QZZ5yhHj16tDjAe++9t3bddVdJ0vz58zsiLoAWVFRU6P7771dFRYXXUVzht3qs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1m1usmT59uiQpIyNDU6dOVU5OTqveP2jQIDmOoy+++CIV8QC0UnZ2tgoLC5Wdne11FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP95j6zZs8999SKFSs0dOhQFRcXb/WzK6+8Ug8++OB2P7NGks4991xNnTpVubm5vlw9Q7B4fZ9DAAAAAAAAAEDLvL6Wa25nzfr16yVJ++yzT5vev3nFrL6+3rVMANqutrZWs2bNUm1trddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/WbW6xJS4tHisVibXr/xo0bJUn5+fluRQLQDrFYTGVlZW2e09b4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP95m6Dttdee6mkpETHHnus3nzzza1+lsxt0Pbee299/fXXOuCAA7RgwYKOiAxsl9db5wAAAAAAAAAALfP6Wq65nTWHHnqoHMfRvHnzWv2ZMx9++KG+/vprRSIRHXnkkSlKCKA1otGoSkpKFI1GvY7iCr/VYzWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo5+rt/cYs0vfvELSfF7y91xxx1Jv6+xsVHjxo1LPC8qKnI7GoA2qKqq0tSpU1VVVeV1FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP95m6DFo1GNWDAAC1fvlyRSET33XefrrrqKknbvw3ahg0b9Jvf/EazZ89WJBLRIYccog8//NCrEoAEr7fOAQAAAAAAAABa5vW13IwOO1OSMjIy9Nhjj+n4449XNBrVNddco6eeekpnnnmmvvnmm8TrXn31Va1Zs0bvvfeeXnrpJdXW1kqScnJy9Pjjj3sVHwAAAAAAAAAAoFXM3QZNkgoLC/X0008rOztbjuPok08+0e9+9zvNmjVLkUhEkvSrX/1Kl112mZ555hnV1NTIcRzl5uZq2rRpGjhwoMcVANisvLxcd955p8rLy72O4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq7f5GKNJJ122mn68MMPdeyxx8pxnK2+JG3zvLCwUB988IFGjhzpZWwAP5CTk6OioiLl5OR4HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cv7nPrGnOokWLNHPmTH3wwQdavXq1ysvL1aVLF/Xs2VOHH364Ro0apcMOO8zrmMA2vL7PIQAAAAAAAACgZV5fyzW7s2ZLgwYN0vXXX69XXnlFH330kb788kstWLBAs2bN0vjx41moAQyrqanRjBkzVFNT43UUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/2+WKwBAAAAAAAAAAAIKl/cBg3wK6+3zgEAAAAAAAAAWub1tVx21gBIqcbGRi1btkyNjY1eR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xb36xJhaL6bPPPtMbb7yhZ599Vk8++WTSXwC85+f7RDbHb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/rN3sbtBUrVugPf/iDXnjhBVVWVrb6/ZFIRNFoNAXJgOR5vXUOAAAAAAAAANAyr6/lZnTYmVrhlVde0dlnn63a2loZXUsCAAAAAAAAAABwhbnboC1btkxnnHGGampqEgs1u+++u0488USdffbZGjNmTFJf55xzjseVAJCksrIyjR8/XmVlZV5HcYXf6rGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9dv7jZoY8eO1ZNPPqlIJKIBAwbo0Ucf1ZAhQ7yOBbSJ11vnLIhGo1q1apV22203ZWSY3MzXKn6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13LNLdb07dtX3377rbp06aIvvvhCffr08ToS0GZeT3AAAAAAAAAAQMu8vpZr7jZo69evVyQS0XHHHcdCDRAA1dXVmjZtmqqrq72O4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq7f3GJNjx49JEk9e/b0OAkAN6SlpSk/P19paeZ+3bSJ3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xb+42aMcdd5zefvttjRo1Sq+88orXcYB28XrrHAAAAAAAAACgZV5fyzW3vDRmzBg5jqN33nnHl1uVAGytoaFBCxcuVENDg9dRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/WbW6w588wzNWDAAFVUVOi6667zOg6Adqqrq1NxcbHq6uq8juIKv9VjNa+FXBYyAIhjPgYL/XRH2McxaPX7rR6rea3kspIDAPMxaOinO8I+jn6u39xt0CTpq6++0rBhw/Tdd99p7Nixuuuuu7Tzzjt7HQtoNa+3zgEAAAAAAAAAWub1tdyMDjtTK/zoRz/Sf/7zH1188cWaPHmynn32WQ0dOlQ/+clP1LVrV0UikaSOc/PNN6c4KYCWOI6j+vp6ZWVlJT13LfNbPVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/rN3QZts//+978qLy+XFN+69Oabb2rixIm67bbbNH78+KS+AHivvLxcd911V2I++53f6rGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9dv8jZoU6ZM0YUXXqhYLCYpvhrWWpFIRE1NTW5HA1rF661zFjQ1NWnDhg3q0aOH0tPTvY7Tbn6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13LNLdbMmzdPRx55ZGKBJj09XUOGDNHAgQNVUFCgjIzk79x2yy23pComkBSvJzgAAAAAAAAAoGVeX8s195k199xzjxzHUSQS0VFHHaWnnnpKe+yxh9exALRRVVWVXnjhBZ166qnKzc31Ok67+a0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/eYWa959911JUn5+vl599VV17drV40QA2iMjI0P9+vVr1a44y/xWj9W8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX5zt0HLzs5WY2OjTjnlFE2fPt3rOEC7eL11DgAAAAAAAADQMq+v5aZ12JmStMsuu0iSunXr5nESAG6or6/XvHnzVF9f73UUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/3mFms2r1ytXLnS4yQA3NDQ0KCFCxeqoaHB6yiu8Fs9VvNayGUhA4A45mOw0E93hH0cg1a/3+qxmtdKLis5ADAfg4Z+uiPs4+jn+s3dBu3vf/+7fv3rX6tz585asWKFdt55Z68jAW3m9dY5AAAAAAAAAEDLvL6Wa25nzejRo3XssceqtrZWF198sYytJQFopVgsprKyMsViMa+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+s3t1gTiUQ0ffp0DR06VDNmzNDPfvYzLV682OtYANqooqJCEydOVEVFhddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/Wbuw3aeeedJ0lqbGzUCy+8kLi33F577aX9999fXbt2VSQSafE4kUhEjz/+eEqzAi3xeuucBbFYTBUVFcrLy1Namrn14VbzWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj2J76vb6Wa26xJi0tbZvFGMdxklqg+aGmpia3YgFt4vUEBwAAAAAAAAC0zOtruSaX1hzH2eqrue+19AXAhsrKSj388MOqrKz0Ooor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5/gyvA/zQ5MmTvY4AwEWZmZk68MADlZmZ6XUUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/3mboMGBInXW+cAAAAAAAAAAC3z+lquydugAQiOuro6FRcXq66uzusorvBbPVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/pZrAGQUtFoVCUlJYpGo15HcYXf6rGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9fPbdCAFPJ66xwAAAAAAAAAoGVeX8tlZw2AlGpqatLatWvV1NTkdRRX+K0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/RlenPS2227b6vnNN9+83Z+1x5bHBeCNyspKTZo0SePGjVN+fr7XcdrNb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/r9+Q2aGlpaYpEIonnW65y/fBn7eHH1TMEi9db5yxwHEf19fXKyspybW57yW/1WM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj2N76vf6Wq4nO2uk+KBJanbA3Fg/CuM/RMCiSCSi7Oxsr2O4xm/1WM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of6/dkseaWW25p088A+E9FRYWeeOIJnXfeecrLy/M6Trv5rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9ni3WbP5smsGDB2/zMwDBkZ2drcLCQt+uaP+Q3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/X78ln1kj/+9k0l19+uf7yl794EQFIOa/vcwgAAAAAAAAAaJnX13LTOuxMAEKptrZWs2bNUm1trddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/WzWAMgpWKxmMrKyhSLxbyO4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq6f26ABKeT11jkAAAAAAAAAQMu8vpbLzhoAKRWNRlVSUqJoNOp1FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYASKmqqipNnTpVVVVVXkdxhd/qsZrXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/189t0IAU8nrrHAAAAAAAAACgZV5fy2VnDQDXlZSUKBKJNPtVUlLidTwAAAAAAAAAMMXzxZqXX35Zw4YNc/1r+PDhXpcGQFLXrl11/fXXq2vXrl5HcUV5ebnuvPNOlZeXex0lKVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/ozvA6wevVqrV692tVjOo6jSCTi6jEBtE1NTY1mzJihmpoar6O4IicnR0VFRcrJyfE6SlKs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1e/6ZNak6fSQSUVNTU0qODSTL6/sceqWkpET9+/dv9mfLly9Xv379OjYQAAAAAAAAAOyA19dyPd9ZM3jwYJ144olexwCQIjk5Ofr5z3+u2bNnB2J3TU1NjWbPnq2f//znvliht5rXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/129iseaWW27xOgYAAAAAAAAAAIAnPL8N2uWXX66//OUvXkQAUs7rrXNe4TZoAAAAAAAAAPzE62u5aR12JgCh1KlTJw0YMECdOnXyOoorGhsbtWzZMjU2NnodJSlW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6WawBkFI5OTkqKiry3T0it6empkYzZszwzefvWM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of6+c2aEAKeb11zivcBg0AAAAAAACAn3h9LZedNQAAAAAAAAAAAB5isQZASuXn5+vWW29Vfn6+11FcUVZWpvHjx6usrMzrKEmxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/X7+lt0CTpiiuu4DZoCCyvt855ZcvboGVkZGi33XbTqlWrFI1GfX8btGg0qlWrVmm33XZTRkaG13FaZDWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo7tqd/ra7meLdasWLFCkpSXl6eCggIvIgAp5/UE9wqfWQMAAAAAAADAT7y+luvZbdD69u2rvn37slADBFyXLl105plnqkuXLl5HcUV1dbWmTZum6upqr6MkxWpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+fWQMgpWKxmMrKyhSLxbyO4oq0tDTl5+cnbuVondW8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX7PboMGhIHXW+e8wm3QAAAAAAAAAPiJ19dy/be8BMBXMjMzdeCBByozM9PrKK5oaGjQwoUL1dDQ4HWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZASmVnZ6uwsFDZ2dleR3FFXV2diouLVVdX53WUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dc4r3AYNAAAAAAAAgJ94fS2XnTUAUioSiSg7O1uRSMTrKK5wHEd1dXXyyzq31bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fhZrAKRU165ddf3116tr165eR3FFeXm57rrrLpWXl3sdJSlW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6uQ0akEJeb53zypa3QUtPT1ePHj20YcMGNTU1+f42aE1NTdqwYYN69Oih9PR0r+O0yGpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13IzOuxMAEKpqalJa9eu9TqGa9LT09WrVy+vYyTNal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP7dBA5BSubm5Gjt2rHJzc72O4oqqqipNmTJFVVVVXkdJitW8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX4WawCkVDQaVUlJiaLRqNdRXJGRkaF+/fopI8MfGxOt5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/185k1QAp5fZ9Dr2z5mTU/5PfPrAEAAAAAAAAQPF5fy2VnDYCUysrK0hFHHKGsrCyvo7iivr5e8+bNU319vddRkmI1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq6fxRoAKZWZmakDDzxQmZmZXkdxRUNDgxYuXKiGhgavoyTFal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP7dBA1LI661zXli8eLEefvhhPfTQQ83+/Mgjj9TRRx+ts846a6uxAQAAAAAAAACveH0tl501AFzxxhtv6Oijj9agQYO2WqhJS0tTfn6+0tLiv27ee+89TZgwQQMHDtTRRx+tmTNnehW5TWKxmMrKyhSLxbyOkhSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYAaJfS0lKdddZZGjVqlObOnbvNz/Py8nT11VcrLy9vm5/NnTtXI0eO1Nlnn63S0tKOiNtuFRUVmjhxoioqKryOkhSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP93AYNSCGvt86l2qJFi3TiiSdq9erV231NWlqa8vLyVFFRscMV7T59+mjWrFkaOHBgKqK6JhaLqaKiQnl5eYndQpZZzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPY3vq9/paLos1QAp5PcFTadGiRSosLNSmTZtcO2ZBQYHmzJljfsEGAAAAAAAAQLB4fS03fEtrANqttLRUJ554YlILNTvttJMuueQS7bTTTi2+dtOmTTrhhBNM3xKtsrJSDz/8sCorK72OkhSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYAaLUrr7xyh7c+21JDQ4MWLlyohoaGpF6/evVqXXXVVe2Jl1KZmZk68MADlZmZ6XWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dS4V3njjDY0aNSrl53n99dc1cuTIlJ8HAAAAAAAAALy+lsvOGgCtctddd7Xq9dnZ2SosLFR2dnar3nf33Xe36vUdpa6uTsXFxaqrq/M6SlKs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1s1gDIGmLFy/W3LlzW/WejIwM9evXTxkZGa163zvvvKMlS5a06j0dIRqNqqSkRNFo1OsoSbGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9fPbdCAFPJ665zbbrzxRk2YMKFDz3f77bd32PkAAAAAAAAAhJPX13LZWQMgaR9++GGr35Oenq5evXopPT29Q86Xak1NTVq7dq2ampq8jpIUq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/SzWAEiK4zj65JNPWv2+nXbaSZdccol22mmnVr/3P//5j6xt/qusrNSkSZNUWVnpdZSkWM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of6+c2aEAKeb11zk0VFRXq2rVrq98XiUSUlZWl+vr6Ni28VFRUtGmhJ1Ucx1F9fb2ysrIUiUS8jtMiq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cWxP/V5fy23dJ34DCK2GhoY2vc9xHNXV1bX5vPX19aYWayKRiLKzs72OkTSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP93AYNQFIyMzPb9L68vDxdffXVysvLa9P7s7Ky2vS+VKmoqND999+viooKr6MkxWpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+LNQCSstNOO6mgoKDV76urq1NxcXGbdtcUFBQoNze31e9LpezsbBUWFvpmhd5qXgu5LGQAEMd8DBb66Y6wj2PQ6vdbPVbzWsllJQcA5mPQ0E93hH0c/Vw/n1kDpJDX9zl023HHHad///vfHXq+f/3rXx12PgAAAAAAAADh5PW1XHbWAEja4MGDW/2ezp0764QTTlDnzp075HypVltbq1mzZqm2ttbrKEmxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz2JNADQ0NOipp57SiBEj1LdvX2VnZ6t3794aMmSI7rnnHn3//fe+Of+mTZv0/PPP67LLLtOQIUO0yy67KDMzU3l5edprr7105pln6plnnlFjY2PSxywsLFQkEmnV17vvvtuWoQi80aNHt/o9aWlpys/PV1pa63/dtOV8qRaLxVRWVqZYLOZ1lKRYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/r5zZoPrds2TKNHj1aCxcu3O5rdtllF02ePFkjRowwe/6qqiqNHj1as2fPVkNDQ4vn7devn6ZOnaqjjz66xdcWFhZqzpw5Lb5uS3PnztVRRx3Vqvc0x+utc6lw9NFHa+7cuR1yntb2DQAAAAAAAADawutruRkddia4btWqVRo+fLhWr14tSYpEIjr66KO11157acOGDXrzzTdVW1ur9evXq6ioSLNmzdKwYcNMnr+qqkqvv/76Vt/r2bOnDj30UPXq1UuNjY1auHChFi1aJEkqKSnR8OHD9fLLL2vUqFFJZy4qKtKuu+7a4uv69OmT9DHD5rrrrmvVYk1GRoZ22203rVq1StFotFXnsSgajWrVqlXabbfdlJFh/1eo1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fm6D5mNnnXVWYqGkb9++WrBggYqLi/X444/r1Vdf1cqVKzV8+HBJUmNjo0477TSVlZWZPn9BQYHGjRunhQsXau3atXr99df12GOPaerUqfr00081d+5c9e/fX1J84p199tlat25d0pnHjRunv/71ry1+7bnnnm0blBAYOXJkq25Plpubq7Fjxyo3Nzfp95x11lkp2QnmhqqqKk2dOlVVVVVeR0mK1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fm6D5lMzZ87UyJEjJUmZmZn6+OOPNXDgwG1eV11drUGDBumbb76RJN1www264447zJ1/48aNmjhxon77298qLy9vh+cuKSnRAQccoIqKCknS9ddfrwkTJmz39VveBu3tt99WYWFhUjW6weutc6lSWlqqQYMGJRbr3NSnTx8tWrRI3bt3d/3YAAAAAAAAANAcr6/lsrPGpx588MHE4zFjxjS7UCJJXbp00W233ZZ4PmnSpFbdiqqjzt+tWzeNHz++xYUaKf55NZdcckni+RtvvNGa6HBB9+7dNWvWLBUUFLh63IKCAs2aNYuFGgAAAAAAAAChwmKND1VVVenf//534vm55567w9efcsopiVtQbdy4Ue+8846vzy9JRx55ZOJxSUlJu4+H1hs4cKDmzJnT4uf7dO3aVddff726du26w9f16dNHc+bM2e7CnxXl5eW68847VV5e7nWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnscaH3n//fdXX10uK71w57LDDdvj67Oxs/fSnP008f+utt3x9fkmKRCKJx01NTe0+Htpm4MCBWrRokc4666ztvqampkYzZsxQTU3Ndl9z1llnadGiReYXaiQpJydHRUVFysnJ8TpKUqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/VneB0Arff5558nHg8cOFAZGS238eCDD9a//vWvbd7vx/NL0uLFixOPd99996Tft2zZMn322Wf69ttv1djYqG7dummfffbR0KFD1bNnz3bnCqPu3bvrmWee0VlnnaW77757m51TjY2NWrZsWbPvPfroo3XddddpxIgRHRHVFZ06ddKAAQO8jpE0q3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/eys8aEvvvgi8bhv375JvWePPfZIPN7ehXO/nD8Wi+mpp55KPD/uuOOSfu+ll16qyy+/XHfeeafuvfde3XTTTTrttNPUu3dv/fKXv9Snn37armxhNnLkSM2ZM0eLFy/WZZddlvj+D1ezjzzySN14441avHix5syZ46uFGim5nUKWWM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of62exxodKS0sTj5PdDdKrV6/E440bN/r6/A899FBiwSctLU2XXnppu44nSY7j6NVXX9Xhhx+uRx99tN3HC7P9999f//f//t/t/vzpp5/W7bffrv33378DUwEAAAAAAACAXSzW+FBVVVXicefOnZN6z5av2/L9fjv/0qVLdcMNNySen3/++frJT36yw/dEIhEdc8wx+vOf/6x58+Zp48aNamxs1MaNGzV37lxdc8016tKliySpvr5eF198sZ5//vk2Z2xOdna2cnNzJcU/Y6esrEyO40iSKioq1NDQIEmqra1VdXW1JCkajaqsrCxxjPLycjU2NkqKrxBvXh1ubGzc6gOzysrKFI1GJUnV1dWqra2VJDU0NKiiokJSfHGqrKws8Xk/VVVVqqurS4xBZWWlpPguprKyMsViMUlSZWVl4vOK6urqEr38YU3V1dXKzMxMnOtf//qXampqlJGRsVX//VTT5j7l5OTo+OOPT3zfep/S0tJ03HHHKScnx9S/vaysLBUVFSkWi6WkT8nU1KlTJxUVFSXq8rJPbtVk6d8eNVFTa2qKRqMqKipS586dA1NTEPuUbE1NTU0qKipSdnZ2YGryok+S9POf/1w5OTmBqak1fYpEIioqKlJGRkYganIcR8cff7xycnJ80SdJKioqUqdOnUz928vJydGwYcMSt+L26ndELBbTCSecoJycHPP/9oL6O4KaqGlzTVlZWSosLExcdwpCTUHsU7I1ZWZmqrCwMHF3liDU5EWfcnJydOKJJ271v1t+r6k1fXLjWphXWKzxoc3/QCUlLoi3JCsrK/F480Tw2/nLyspUVFSU+AWy995767777mvxfS+88IKKi4t19dVX6/DDD1dBQYEyMjJUUFCgo446Svfdd5/+85//aM8995QU/6Vw6aWXbvXLpL2OOOIInXrqqZKkDRs2aOLEiYlfIE888YQ+++wzSdKcOXP02muvSZJWrVqliRMnJo7xt7/9TV9//bUkafbs2Zo9e7Yk6euvv9bf/va3xOsmTpyoVatWSZJee+01zZkzR5L02Wef6YknnpAU/+U2ceJEbdiwITFG8+bNkyQtWLBAzzzzjKT4L7CJEycmfmE+88wzWrBggSRp3rx5euGFF5qt6R//+If2228/SdKxxx6r0aNHq1OnTtptt9304osv+rKmzX1qbGzUyy+/rFdffdUXfXrvvff05JNPqrGx0dS/vTVr1mjZsmV6/vnnU9KnZGr64osvtGzZMs2aNcvzPrlVk6V/e9RETa2tadmyZaqqqgpUTUHsUzI1Pf3001q2bJlKS0sDU5MXfZo1a5aef/55NTY2Bqam1vTp7bff1rJly7R48eJA1PTqq6/q5ZdfVmNjoy/6NGvWLC1btkxffPGFqX97jY2NmjRpUuIzTL36HfH888/r9ddfV2Njo/l/e0H9HUFN1LS5pjVr1mjixImJa0VBqCmIfUq2ppKSEk2cODFx4T8INXnRp8bGRs2aNUtPP/10YGpqTZ/cuBbmGQeueeCBB5wf//jHrn49//zz25xnxIgRjiRHknPdddcllW3mzJmJ9+Tm5rarTi/OX1tb6xx99NGJY+Tl5Tmffvppq4+zI0uXLnUyMjIS57jnnnvafcwlS5Y4kpzs7GwnNzfXWbJkiRONRp1NmzY5sVjMcRzHKS8vd+rr6x3HcZyamhqnqqrKcRzHaWxsdDZt2pQ4VllZmdPQ0OA4juNUV1c71dXVjuM4TkNDg1NWVpZ43aZNm5zGxkbHcRynqqrKqampcRzHcerr653y8nLHcRwnFos5mzZtcqLRqOM4jlNZWenU1tY6juM4dXV1TkVFheM4jtPU1ORs2rTJaWpqchzHcSoqKpy6ujrHceI9qaysdBzH2aamJUuWOJmZmY4kZ5dddnGuv/56p2vXrk5GRoazePFiX9a0uU9lZWXOHXfc4axevdoXfVq7dq1zxx13OGVlZab+7ZWWljoTJkxwvvvuu5T0KZmaNmzY4EyYMMFZs2aN531yqyZL//aoiZpaU9O3337rTJgwwdm0aVNgagpin5KtadWqVc6ECROcjRs3BqYmL/q0Zs2axP+GB6Wm1vRp7dq1zoQJE5z169cHoqbVq1cn+umHPq1Zs8aZMGGCs2HDBlP/9jb/Lb5+/fqU9CnZmr777rtEP63/2wvq7whqoqbNNZWWljp33HFHIm8Qagpin5Kt6fvvv0/8fg1KTV70afP/Xq5atSowNbWmT+25Frb5Wu7mryVLljgdKeI4/38PENrt1ltv1fjx41095qOPPqoLLrhgq++dccYZmj59uiTpqquuSmrV76WXXtIpp5wiKf75MWvWrGlzpo4+fzQa1SmnnJLYyZCdna1Zs2bpmGOOaUP6HfvNb36TWHUePny43nzzzXYdb+nSpVt9NsuSJUtavG1bEJSUlKh///7N/mz58uXq169fxwYCAAAAAAAAgB3w+lout0Hzoe7duycer1u3Lqn3rF27NvG4W7duvjl/LBbT2LFjEws1GRkZev7551OyUCNJxx13XOLx559/npJzAAAAAAAAAACwJRZrXHTrrbfKcRxXv364q0aSfvzjHycer1ixIqlsK1euTDweMGBAu+rsyPNfcskliXsRpqWl6cknn9SoUaOSfn9r9e7dO/H4+++/T9l5wiQ/P1+33nqr8vPzvY7iirKyMo0fP97Eh44lw2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+LNT607777Jh4vXrxY0Wi0xfd88sknzb7f8vmvueYaPfroo4nnkyZN0ujRo1uRtPWqq6sTj7t06ZLSc4VFVVWVpkyZkviwP7/Lzc3VmDFjlJub63WUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnscaHhgwZoqysLEnxxYWPP/54h6+vr6/XvHnzEs+HDRtm/vw33XST7r///sTzP//5z83uMnLbggULEo/79OmT8vOFQTQaVUlJSVKLen6QkZGhfv36KSMjw+soSbGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9fPYo0P5ebmavjw4YnnU6ZM2eHrX3rpJVVWVkqKf17M0Ucfbfr8t99+u+64447E89tuu01XX311m/Mmq6GhQU8//XTieWFhYcrPGQZdunTRmWeeGZidStXV1Zo2bdpWu7Ass5rXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/189ijU9ddtllicdTpkzR0qVLm31dTU2Nbr755sTziy66yJVVxVSdf+LEifr973+feP673/1O//M//9PmnK259da1116r5cuXJ57/+te/bvN58b9isZjKysoUi8W8juKKtLQ05efnKy3NH78+rea1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9Uccx3G8DoG2OfroozV37lxJUr9+/fTKK69o0KBBiZ+XlpZq9OjR+te//iUpvqvl66+/3u4HvZeUlKh///6J55MnT9bYsWM77PxPPPGELrjgAm3+J3n55Zfrr3/9644HoQU///nPtfvuu2vMmDE66qijmp2k33zzja677jq98MILie+dccYZmjZtWrvOLUlLly7V/vvvn3i+ZMkS/eQnP2n3ca374b+lLS1fvlz9+vXr2EAAAAAAAAAAsANeX8v1343bkPD3v/9dgwcP1po1a1RSUqIDDzxQxxxzjPbaay9t2LBBb775pmpqaiTF79U3ffr07S6UeH3+xYsX68ILL0ws1HTp0kWO4+iKK65IKsu4ceO09957b/P9hoYGPfHEE3riiSfUtWtXHXDAAdp999210047qaqqSp999pkWLly41a6PwYMH6/HHH2/laGB7MjMztd9+++mzzz5TQ0OD13HaraGhQZ999pn2228/ZWZmeh2nRVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/pZrPGx3XbbTW+99ZZGjx6thQsXynEcFRcXq7i4eKvX9ejRQ5MnT97qc2asnb+0tHSrBZPq6mo99NBDSWc59dRTm12s2VJ5ebneeeed7f68U6dOuuyyy3TnnXcqOzs76XNjx7Kzs1VYWKhvvvkmEIs1dXV1Ki4u1p577umLX/hW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6uQ1aADQ0NGjatGl69tlntXTpUq1bt075+fnac889dfLJJ+vcc8/Vzjvv3OJxWnsbNDfPX1xcrGOPPbbFc23P22+/rcLCwm2+v379er3//vv64IMP9NFHH2nNmjUqLS3Vpk2blJ2drW7dumngwIEaOnSozjnnHPXu3bvNGZrj9dY5r3AbNAAAAAAAAAB+4vW1XBZrgBTyeoJ7ZcvFmkgkoqysLNXX18txHN8v1jiOo/r6emVlZSkSiXgdp0VW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj2J76vb6Wu+2nrQOAi7p27arrr79eXbt29TqKK8rLy3XXXXepvLzc6yhJsZrXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/18/OGiCFvF6N9cqWO2vS09PVo0cPbdiwQU1NTb7fWdPU1KQNGzaoR48eSk9P9zpOi6zmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MexPfV7fS03o8POBCCUmpqatHbtWq9juCY9PV29evXyOkbSrOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNAAplZubq7Fjxyo3N9frKK6oqqrSlClTVFVV5XWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZASkWjUZWUlCgajXodxRUZGRnq16+fMjL8sTHRal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP59ZA6SQ1/c59MqWn1nzQ37/zBoAAAAAAAAAweP1tVx21gBIqaysLB1xxBHKysryOoor6uvrNW/ePNXX13sdJSlW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6WawBkFKZmZk68MADlZmZ6XUUVzQ0NGjhwoVqaGjwOkpSrOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNCCFvN465xVugwYAAAAAAADAT7y+lsvOGgAplZaWpvz8fKWlBePXTSwWU1lZmWKxmNdRkmI1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq4/GFdPAZiVl5enq6++Wnl5eV5HcUVFRYUmTpyoiooKr6MkxWpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+3QQNSyOutc17Z8jZoaWlpysvLU0VFhWKxmO9vgxaLxVRRUaG8vDxf7BaymtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfx/bU7/W13IwOOxOA0OjXr5+Cug68+bZufmE1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq4/fEtrADpUZWWlHn74YVVWVnodxRV+q8dqXgu5LGQAEMd8DBb66Y6wj2PQ6vdbPVbzWsllJQcA5mPQ0E93hH0c/Vw/izUAUiozM1MHHnigMjMzvY7iCr/VYzWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo5+rp/PrAFSyOv7HAIAAAAAAAAAWub1tVx21gBIqbq6OhUXF6uurs7rKK7wWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6WawBkFLRaFQlJSWKRqNeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz23QgBTyeuscAAAAAAAAAKBlXl/LZWcNgJRqamrS2rVr1dTU5HUUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/0s1gBIqcrKSk2aNEmVlZVeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz23QgBTyeuucBY7jqL6+XllZWYpEIl7HaTe/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6O7anf62u5GR12JgChFIlElJ2d7XUM1/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/3cBg1ASlVUVOj+++9XRUWF11Fc4bd6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9bNYAyClsrOzVVhY6NsV7R/yWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6+cwaIIW8vs8hAAAAAAAAAKBlXl/LZWcNgJSqra3VrFmzVFtb63UUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/0s1gBIqVgsprKyMsViMa+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dQ4AAAAAAAAA0DKvr+WyswZASkWjUZWUlCgajXodxRV+q8dqXgu5LGQAEMd8DBb66Y6wj2PQ6vdbPVbzWsllJQcA5mPQ0E93hH0c/Vw/izUAUqqqqkpTp05VVVWV11Fc4bd6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNCCFvN46BwAAAAAAAABomdfXctlZAwAAAAAAAAAA4CEWawCkVHl5ue68806Vl5d7HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP4s1AFIqJydHRUVFysnJ8TqKK/xWj9W8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX4+swZIIa/vcwgAAAAAAAAAaJnX13LZWQMgpWpqajRjxgzV1NR4HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP4s1AAAAAAAAAAAAHuI2aEAKeb11DgAAAAAAAADQMq+v5bKzBkBKNTY2atmyZWpsbPQ6iiv8Vo/VvBZyWcgAII75GCz00x1hH8eg1e+3eqzmtZLLSg4AzMegoZ/uCPs4+rl+FmsApJSf7xPZHL/VYzWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo5+rp/boAEp5PXWOQAAAAAAAABAy7y+lsvOGgAAAAAAAAAAAA+xWAMgpcrKyjR+/HiVlZV5HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP7dBA1LI661zFkSjUa1atUq77babMjIyvI7Tbn6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13JZrAFSyOsJDgAAAAAAAABomdfXcrkNGoCUqq6u1rRp01RdXe11FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYASKm0tDTl5+crLS0Yv278Vo/VvBZyWcgAII75GCz00x1hH8eg1e+3eqzmtZLLSg4AzMegoZ/uCPs4+rl+boMGpJDXW+cAAAAAAAAAAC3z+lqu/5aXAPhKQ0ODFi5cqIaGBq+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZAStXV1am4uFh1dXVeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz23QgBTyeuscAAAAAAAAAKBlXl/LZWcNgJRyHEd1dXUKyrqw3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz2INgJQqLy/XXXfdpfLycq+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dc6CpqYmbdiwQT169FB6errXcdrNb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPY3vq9/pabkaHnQkIofr6+q2ef/XVVx4l8V5paanXEVzlt3qs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jHsS31//Da7Q+v7aacAyBlZsyY4UgK9Vdubq4zduxYJzc31/MsYazHal4LuSxk4IsvvuJfzMdgfdFPxpH6/V+P1bxWclnJwRdffDEfg/ZFPxlHa/XPmDGjQ68lcxs0IIVeeeUVFRUVeR0DAAAAAAAAANAKM2bM0C9/+csOO19ah50JAAAAAAAAAAAA22BnDZBCZWVlmjNnTuL57rvvrqysLA8TAQAAAAAAAAB+qL6+Xt9++23i+THHHKP8/PwOOz+LNQAAAAAAAAAAAB7iNmgAAAAAAAAAAAAeYrEGAAAAAAAAAADAQyzWAAAAAAAAAAAAeIjFGgAAAAAAAAAAAA+xWAMAAAAAAAAAAOAhFmsAAAAAAAAAAAA8xGINAAAAAAAAAACAh1isAQDApz744AOdcsop6tmzp7Kzs9W/f39ddtll+u6777yOBgAAAIPWrl2rp59+WldffbWOOuoo5ebmKhKJqF+/fl5HAwAg9CKO4zhehwAAAK3z2GOP6eKLL1YsFlOvXr2066676ssvv1RlZaUKCgr09ttv64ADDvA6JgAAAAy5//77dc0112zz/b59+6qkpKTjAwEAgAR21gAA4DOLFy/WJZdcolgspnvvvVffffedPv74Y61evVqnn366Nm3apF/96leqr6/3OioAAAAMycvL0/Dhw3Xddddp+vTpuv/++72OBAAA/j921gAA4DOnnnqqXnzxRZ1++ul67rnntvpZbW2tBgwYoJUrV+pvf/ubLrnkEo9SAgAAwLoXXnhBp512GjtrAAAwgJ01AAD4SHV1td544w1J0uWXX77Nzzt37qxzzz1XkjRt2rQOzQYAAAAAAIC2YbEGAIAfaGpq0qJFi/T444/r0ksv1aGHHqrMzExFIhFFIhEVFha2+dgNDQ166qmnNGLECPXt21fZ2dnq3bu3hgwZonvuuUfff//9Dt+/YMEC1dXVKTMzU0cccUSzr9mcb/78+YrFYm3OCgAAgNax/HckAACwLcPrAAAAWDJjxgydffbZqqmpcf3Yy5Yt0+jRo7Vw4cKtvr927VqtXbtWH3zwgf70pz9p8uTJGjFiRLPH+PLLLyVJe+yxhzIzM5t9zY9+9CNJUl1dnVasWKH+/fu7VwQAAACaZf3vSAAAYBs7awAA2EJZWVlK/gN71apVGj58eOI/sCORiI455hidd955+sUvfqHOnTtLktavX6+ioiK99dZbzR5n48aNkqTu3btv91zdunVLPN60aZNLFQAAAGBHrP8dCQAAbGNnDQAAzejZs6cOO+ywxNc///lPTZw4sc3HO+uss7R69WpJUt++ffXKK6/ogAMOSPz8+++/15lnnql///vfamxs1Gmnnaavv/5a+fn5Wx2ntrZWkra7q0aSsrOzE49TccEAAAAA22f170gAAGAbizUAAGzhhBNO0IoVK7THHnts9f358+e3+ZgzZ87U3LlzJcUXWV577TUNHDhwq9fsvPPOeuWVVzRo0CB988032rhxo+6++27dcccdW71u8/9zsqGhYbvnq6urSzzOyclpc24AAAAkz/rfkQAAwDZugwYAwBZ69eq1zX9gt9eDDz6YeDxmzJht/gN7sy5duui2225LPJ80aZKi0ehWrykoKJAklZaWbvd8m2+VtuXrAQAAkFrW/44EAAC2sVgDAEAKVVVV6d///nfi+bnnnrvD159yyinKzc2VFF90eeedd7b6+Y9//GNJ0sqVK7e7u+a///2vpPjt0Pr27dvm7AAAAPCO239HAgAA21isAQAghd5//33V19dLiv8/Hg877LAdvj47O1s//elPE89/+AGxBx10kLKzs9XQ0KB58+Y1e4w5c+ZIkgYPHqy0NP6nHgAAwI/c/jsSAADYxhUcAABS6PPPP088HjhwoDIyWv64uIMPPrjZ90vx/1AfMWKEpK1vi7FZbW2tJk+eLEk644wz2pQZAAAA3nP770gAAGAbizUAAKTQF198kXic7C3JtrzX+bJly7b5+c0336z09HRNnz5d9913n2KxmKT4rTLGjh2rlStXqm/fvjr//PPbmR4AAABeScXfkQAAwC4WawAASKHS0tLE4549eyb1nl69eiUeb9y4cZufH3DAAXrwwQeVlpam3/72t9p111116KGHqk+fPpo+fbry8/P18ssvKysrq/0FAAAAwBOp+Dvy22+/1c4775z4Ou+885r9/pVXXtnO9AAAoLVYrAEAIIWqqqoSjzt37pzUe7Z83Zbv39LFF1+suXPnqqioSE1NTVq8eLEKCgp0ySWXaPHixTrooIPaFxwAAACeSsXfkU1NTSotLU18VVZWSpJisViz3wcAAB2n5RueAgCANqurq0s8zszMTOo9W+6Iqa2t3e7rhgwZopdffrnt4QAAAGBWKv6O7NevnxzHaX84AADgOnbWAACQQtnZ2YnHDQ0NSb2nvr4+8TjZ/xclAAAAgoW/IwEACBcWawAASKHc3NzE4x3tktnSlq/b8v0AAAAID/6OBAAgXFisAQAghbp37554vG7duqTes3bt2sTjbt26uZ4JAAAA9vF3JAAA4cJiDQAAKfTjH/848XjFihVJvWflypWJxwMGDHA9EwAAAOzj70gAAMKFxRoAAFJo3333TTxevHixotFoi+/55JNPmn0/AAAAwoO/IwEACBcWawAASKEhQ4YoKytLklRdXa2PP/54h6+vr6/XvHnzEs+HDRuW0nwAAACwib8jAQAIFxZrAABIodzcXA0fPjzxfMqUKTt8/UsvvaTKykpJ8fuMH3300amMBwAAAKP4OxIAgHBhsQYAgBS77LLLEo+nTJmipUuXNvu6mpoa3XzzzYnnF110kTIyMlKeDwAAADbxdyQAAOHBYg0AACk2cuRIDR06VFL89hSjRo3SokWLtnpNaWmpioqK9NVXX0mK/78hr7vuug7PCgAAADv4OxIAgPCIOI7jeB0CAABLRowYodWrV2/1vbVr12rdunWSpC5duuhHP/rRNu+bOXOm+vTp0+wxV61apcGDB2vNmjWSpEgkomOOOUZ77bWXNmzYoDfffFM1NTWSpIyMDM2aNWur214AAADAPv6OBAAAbcViDQAAP9CvXz+tWLGi1e9bvny5+vXrt92fL1u2TKNHj9bChQu3+5oePXpo8uTJGjlyZKvPDwAAAG/xdyQAAGgrbmAKAEAHGTBggObPn69p06bp2Wef1dKlS7Vu3Trl5+drzz331Mknn6xzzz1XO++8s9dRAQAAYAh/RwIAEHzsrAEAAAAAAAAAAPBQmtcBAAAAAAAAAAAAwozFGgAAAAAAAAAAAA+xWAMAAAAAAAAAAOAhFmsAAAAAAAAAAAA8xGINAAAAAAAAAACAh1isAQAAAAAAAAAA8BCLNQAAAAAAAAAAAB5isQYAAAAAAAAAAMBDLNYAAAAAAAAAAAB4iMUaAAAAAAAAAAAAD7FYAwAAAAAAAAAA4CEWawAAAAAAAAAAADzEYg0AAAAAAAAAAICHWKwBAAAAAAAAAADwEIs1AAAAAAAAAAAAHmKxBgAAAAAAAAAAwEMs1gAAAAAAAAAAAHiIxRoAAAAAAAAAAAAPsVgDAAAAAAAAAADgIRZrAAAAAAAAAAAAPMRiDQAAAAAAAAAAgIdYrAEAAAAAAAAAAPAQizUAAAAAAAAAAAAeYrEGAAAAAAAAAADAQyzWAAAAAADQBvfff78ikYjS0tL08ccfex2nXa6//npFIhFlZ2fr66+/9joOAABA6LBYAwAAAMBVhYWFikQirf4qLi72OjqQtHXr1umWW26RJJ1xxhk69NBDm33d2LFjE//Gx44d26pzTJkyJfHefv36tTPxjl1//fUqKChQfX29rrnmmpSeCwAAANtisQYAAAAAgFYaP368KioqFIlEdPPNN3sdp93y8/N15ZVXSpJee+01zZkzx+NEAAAA4ZLhdQAAAAAAwXXYYYdp8ODBSb121113TXEawB0lJSV67LHHJEm//OUvte+++3qcyB1XXXWV7rnnHtXU1Oimm27Su+++63UkAACA0GCxBgAAAEDKjBgxQrfeeqvXMQBX3XvvvWpsbJQkXX755R6ncU/37t112mmnaerUqXrvvff03nvv6cgjj/Q6FgAAQChwGzQAAAAAAJJUXl6uyZMnS5L69++v4cOHe5zIXRdccEHi8f333+9dEAAAgJBhsQYAAAAAgCQ999xzqq6uliSddtppikQiHidy15FHHqk+ffpIkl555RWVlpZ6nAgAACAcWKwBAAAAYEpJSYkikYgikYj69euX+P67776rCy64QAMGDFDXrl0ViUR09dVXN3uMb7/9Vn/4wx80dOhQ9enTR1lZWerWrZsOOuggXXvttfryyy9blemTTz7RhRdeqD333FOdO3dWjx49NHjwYN19993auHGjJGnKlCmJ3GPHjm32OLfeemviNcncHq64uDjx+sLCwqSyfv7557rxxhs1ePBg9ezZU5mZmerRo4cOP/xw3XzzzVq9enWLxygsLEyct7i4WJK0ceNG3XXXXTrssMO08847q3Pnztpzzz11/vnna8mSJUll29I//vEPXXzxxdp///3VvXt3derUSfn5+Tr44IN18cUX69VXX1U0Gk28fv369crMzFQkElF6erq+++67pM7jOI769++fqOfVV19tddYtPfPMM4nHRUVF7TpWe205V1r7VVJS0uwxI5FIoq7GxkZNnz694woCAAAIMT6zBgAAAIBpDQ0NuuqqqzRp0qQWXxuLxXTrrbfqT3/6k+rq6rY5zqZNm7Rw4UJNnDhRv/vd7/THP/6xxZ0Rv//973XnnXeqqakp8b26ujp9//33+uijj/TAAw/o+eefb1txLqqvr9e4ceP02GOPbZVVkr7//nt9//33+vDDD3XPPffo7rvv1hVXXJH0sd977z2dccYZ2yyQLF++XMuXL9fUqVP1t7/9TRdeeGGLx1q6dKnGjh2rjz/+eJuflZeXa8GCBVqwYIEeeeQRnXHGGZo2bZokaZdddtFJJ52kF198UbFYTFOmTNFNN93U4vn+/e9/JxYmevfurZEjRyZRcfM2bdqk9957T5K000476bDDDmvzsSwbNmyYHnroIUnS66+/rksvvdTjRAAAAMHHYg0AAAAA06655prEQs3AgQN1wAEHqFOnTvryyy+Vlva/NwtoamrSGWecoRdffDHxvV133VWDBw9Wjx49VFVVpfnz5+vrr79WNBrVHXfcoQ0bNuiRRx7Z7rlvvPFGTZgwIfE8JydHw4YNU+/evbV27Vq99dZbWrVqlUaMGLHdXT4dobq6Wscff3xiIUGS9tprLx1yyCEqKCjQxo0b9d5772n16tWqra3VlVdeqYqKCt14440tHnvJkiW64YYbVFVVpV122UVDhw5V9+7d9d133+mtt95SbW2tmpqadMkll2jgwIE64ogjtnus4uJinXTSSaqsrEx8b4899tDgwYPVrVs3VVdX64svvtCnn36qxsbGbRbcLrrookR/n3jiCd14440tLrY9/vjjicdjx45Venp6izVvz1tvvZVYCDviiCOUkeHtf1Ln5eXp8ssvT+q1ixYt0ty5cxPPdzRuQ4cOTTwuLi5WNBr1vFYAAICg468tAAAAAGatWrVKDz30kHbffXc988wzW11EluK7STYbP3584kJ+r1699OCDD+pXv/rVNheln3/+eV144YUqLy/Xo48+quOOO06nn376Nud+5513dOeddyaen3rqqXrkkUdUUFCQ+F55ebkuueQSTZs2TbfffrsrNbfFZZddllio2WeffTRp0qRtbpvW1NSkRx55RNdcc43q6+t1880369hjj9VPf/rTHR772muvVTQa1b333qurrrpqq4v23377rUaMGKElS5YoFovpxhtv1FtvvdXscb799luddtppiYWa/v3766GHHtIJJ5ywzWs3bdqk6dOn66uvvtrq+z/72c/Uv39/LV++XN98842Ki4t17LHHbjf7xo0b9fLLL0uKL06cf/75O6y1JfPnz088HjRoULuO5YZu3brpr3/9a4uv+/bbbzV48ODE89GjR6tv377bff0uu+yi3r17a82aNaqpqdGSJUt04IEHuhEZAAAA28FiDQAAAICUmTlzpr7//vsWX3fDDTdo11133eb7TU1NysnJ0Ztvvql99tlnm59nZWVJin92xx133CEpfgH73Xff1V577dXsuU477TTtvPPOGjZsmKT458g090HxN9xwgxzHkSQNHz5c06ZN22ZXRteuXfXMM89o48aNmj17dot1psLcuXP15JNPSorvpnnvvfe08847b/O69PR0XXrppercubPOPfdcNTU16bbbbtM//vGPHR6/vr5ekyZN0kUXXbTNz3bffXc9++yzGjRokBzHUXFxsdasWaPevXtv89obbrgh8W+hb9+++uCDD9SzZ89mz1lQUKCLL754m+9HIhFdcMEFidufPf744ztcrHnmmWcSC3qFhYXb/TeRrEWLFiUeDxgwoNXvnz9/fqtuP7ds2bJWn+OHqqurddJJJ2nt2rWSpMMPP1xPPPFEi+/bd999tWbNGknSp59+ymINAABAirFYAwAAACBlPvroI3300Uctvu6CCy5odrFGkq644opmF2q2NHHixMTtqW6++eYWL8ofe+yxOv744/XPf/5Tn3/+uRYsWKCDDz448fPPP/9c77//fuL5X/7yl+3ePistLU0PPPCABgwYkFjc6Uj33Xdf4vG9997b7ELNlsaOHau77rpLy5Yt0z//+U+Vlpaqe/fu2339wIEDm12o2Wz//ffXYYcdpg8//FCO4+jjjz/WL37xi61e89133+m5555LPH/44Ye3u1DTknPPPVe33HKLotGoXnzxRf31r39Vfn5+s6/d8hZoF1xwQZvOt6Xly5cnHu+2226tfv+yZctcWYBJluM4+s1vfqOFCxdKii+uzZgxQ9nZ2S2+d8v5uPkzfwAAAJA6aS2/BAAAAAC8c+aZZ7b4mpkzZyYen3XWWUkdd/POGkl69913t/rZ22+/nXh8yCGHaL/99tvhsfbZZ58dflZLqkSjUf3rX/+SFP/8klGjRiX1vs27URzH2epzbppz2mmntXi8gw46KPG4uQv7b775pqLRqCRp7733bvbWZ8nq3bt3os66ujr9/e9/b/Z1//nPf/Tpp59Kiu/UOfnkk9t8zs3WrVuXeLyjBS4rbrrppsRt4Lp06aJXX31VvXr1Suq9Wy76bd6VAwAAgNRhZw0AAACAlLnlllt06623tvn9nTp10sCBA3f4mtLSUn355ZeSpMzMTI0fPz6pY3/22WeJx99+++1WP1uwYEHicUuf6bLl6z744IOkXuuWRYsWqbq6WlJ8rMaNG5fU+7bc7fTD2n+opfGXtl64qKio2Obn8+bNSzz+4WfptMVFF12kGTNmSIrvnrnsssu2ec2Wu2p+/etfJ7WbpCWbx1qScnJyWv3+MWPGaMqUKUm/fsqUKTr33HNbfR5JevrppzVhwgRJ8dvHPf300626ldmW9W1ZNwAAAFKDxRoAAAAAZhUUFGz1gfbN2fy5GpLU0NCgBx98sNXn2bRp01bPN2zYkHi8xx57JHWMZF/nptWrVycel5aWulL7D3Xt2rXFY3Tq1CnxuLGxcZufb7kjZc8992xFuuYdf/zx6tu3r1asWKFPPvlECxcu3Gohora2dqsdN27cAu2HvLjlXbLmzZu3Vc133HGHioqKWnUMy/UBAAAEEbdBAwAAAGBW586dW3xNeXl5u8+z+RZdm1VVVSUeJ7uDokuXLu3O0VqpqP2HIpFIu89RWVmZeJybm9vu46Wlpen8889PPN9yF40kvfjii4mxOeywwzRo0KB2n1Pause1tbWuHNNtK1euVFFRkerr6yVJ55xzjq6//vpWH2fL+rz4tw0AABA2LNYAAAAA8LUtLyTn5eXJcZxWf/3w1lRbLijU1NQklSMVt4qKxWI7/PmWtQ8aNKhNtbfnNnXJ2mmnnRKPt1wIa4/zzjtP6enpkqRnnnlGdXV1iZ9tuXjj5q6aLT/v5fvvv3ftuG6prq7WSSedlNjJdOSRR+qRRx5p07G23F2W7OfcAAAAoO1YrAEAAADgaz179kw8rqioSHpxZUd69OiReLxy5cqk3tPSZ79IW98urKUdLVLLO2e2rN3yh8BvmXP58uWuHHPXXXfViBEjJMVv5fbyyy9Lkr7++mvNmTNHUnwxa/To0a6cT5L69++feLxq1SrXjusGx3H061//Wp9++qkkqW/fvnrppZeUlZXVpuN99913icf9+vVzIyIAAAB2gMUaAAAAAL7Wu3dv7b777onn77//fruPedBBByUez5s3L6n3fPDBBy2+Ji8vL/G4tLS0xdcvXrx4hz8/8MADExfj169fr6+++qrFY3rhiCOOSDx+++23XTvuRRddlHi8eTfNE088kfi8ldNOO22rXT3tteXt1L744gvXjuuGG2+8UTNmzJAU38n02muvaZdddmnz8T7//PPE4wMOOKC98QAAANACFmsAAAAA+N6oUaMSjx966KF2H+/YY49NPP7444+1bNmyHb7+q6++SmqxZssdCgsXLmzx9dOnT9/hzzt37qxhw4YlnrtReyr87Gc/U0ZGhiTpv//9r/75z3+6ctwTTzwxsVD31ltv6auvvtrqlnZu3gJNkgYPHpx4vHkHiwVPPfWU7rzzTknxz/N59tlnNXDgwDYfb/369YmdWjk5Odp///1dyQkAAIDtY7EGAAAAgO/99re/TXx+ycsvv7zNZ9DsSHO3D9t33301ZMiQxPNx48Zt9/NjYrGYrrrqqsRujh057LDDFIlEJEnz58/favfCDz300ENaunRpi8e87rrrEo8feOABvfnmmy2+Z7OOunVanz59dMYZZySeX3zxxYnPVWmP9PR0nXfeeZL+9zZgq1evlhTv4ZFHHtnuc2xp2LBhiX9n8+fPT+pWdqn2/vvv68ILL0w8v/vuuzVy5Mh2HXPu3LmJx4WFhYmFNgAAAKQOizUAAAAAfG+vvfbS73//+8Tz8847T9dee+12PwQ+Go1q9uzZ+s1vfrPVLc+2dPvttycWVmbPnq2zzjpLZWVlW72moqJCv/nNb/SPf/xDmZmZLebs1atXYieM4zgaPXr0Np99Eo1Gde+99+qqq65K6vNGjjnmGI0ZMybx3pEjR2rChAmqqqpq9vV1dXWaMWOGfvnLX+qkk05q8fhumTBhgrp16yZJWrFihX76059ud4dNWVmZHnnkEf3ud79r8bjnn3++0tLi/2k7f/78rb7vtoKCgsQCUGVlpT766CPXz9EaK1eu1K9+9SvV19dLiv+7/+1vf9vu47711luJx1vuWgMAAEDq8H+PAQAAABAIt9xyi0pKSjR16lQ5jqN7771XDzzwgA499FDttddeysnJUUVFhUpKSrRo0SJVV1dLkrp3797s8QoLC3XttdfqT3/6kyTpueee0+uvv65hw4apV69eWrdund566y1VVVWpoKBA48aN06233tpizttvv11vv/22YrGYPv30U+2zzz4aNmyYdt11V23cuFHvvPOO1q9fr9zcXE2YMEFXXnlli8ecNGmS1qxZo9mzZ6uhoUE33nij/vjHP+rwww/XHnvsoaysLJWVlenrr7/WkiVLEhf3DznkkCRHt/123313TZ8+XUVFRaqqqtLy5ct1wgknqG/fvho8eLC6deumqqoqffnll1q4cKEaGxv1y1/+MqnjnnDCCZo5c2bie5mZmTrnnHNSUsfZZ5+td955R5I0Y8YM/fSnP03JeZIxefJkrV+/XlJ8l1FGRoauuOKKpN572223JRbPtuQ4jl555RVJUqdOnXT66ae7FxgAAADbxWINAAAAgECIRCKaMmWKDjnkEN1yyy3atGmTGhoa9P777+v999/f7nt2dKusu+++W+np6br77rsVi8VUXV2t1157bavX9OnTRy+88ELSHzh/+OGH69FHH9VFF12kpqYm1dbW6o033tjqNb1799Zzzz2npqampI6ZlZWlmTNnavz48br33ntVU1Ojmpoavf3229t9T6dOnXTEEUckdXy3DB8+XO+++67GjBmT+MyXFStWaMWKFc2+Pjc3N6njXnTRRVst1px00knq0aNH+wM344wzztD/+T//R9XV1Xr++ed15513JnZgdbQtb73X1NSkRx55JOn3Xnvttc0u1rz//vv67rvvJMXHcXuLmQAAAHAXt0EDAAAAEChXXnmlVqxYoQcffFBFRUXq37+/cnNzlZGRoYKCAg0cOFBnnnmmHn74Ya1YsSKxi2B7JkyYoA8//FDnnXee+vXrp6ysLHXv3l2HHHKIbr/9dn366aet3l1x3nnnadGiRTr//PPVv39/ZWdnKz8/XwcddJD++Mc/atGiRRo6dGirjpmenq7bbrtNJSUluueee3TCCSdojz32UE5Ojjp16qTu3bvr4IMP1pgxYzRlyhR99913+utf/9qqc7jhgAMO0IIFC/TSSy/pnHPO0d577628vDylp6eroKBAhxxyiC699FLNnDlTTz75ZFLHHDFixFa3jLvgggtSFV9du3bVueeeK0lavnx5qz4jyA8ee+yxxOOrr77auyAAAAAhE3GS+RRMAAAAAMAOTZkyJXERf/OCCDrGnDlzVFhYKEnq27evvvnmm8Tn2KRCSUmJ9tlnn8St2mbMmJGyc3Wk0tJS7bHHHqqpqdGQIUP03nvveR0JAAAgNNhZAwAAAADwtccffzzx+LzzzkvpQo0k9evXL7F759VXX9Xnn3+e0vN1lAceeEA1NTWS4p+tBAAAgI7DYg0AAAAAwLfWrl2r559/XpKUkZGR0lugbemWW25RXl6eHMfRbbfd1iHnTKWysjI98MADkqRRo0YldioBAACgY7BYAwAAAADwpaamJo0bN051dXWSpNNPP119+vTpkHP37NlT48ePlyQ999xz+s9//tMh502Vu+66Sxs3blRWVpbuv/9+r+MAAACEDp9ZAwAAAAAu4DNrOsbf//53ffjhh6qqqtLcuXP15ZdfSpKysrK0ePFi7b333h4nBAAAAFovw+sAAAAAAAAka/bs2Zo6deo237/vvvtYqAEAAIBvsVgDAAAAAPClnXbaSYcccoh++9vfatSoUV7HAQAAANqM26ABAAAAAAAAAAB4KM3rAAAAAAAAAAAAAGHGYg0AAAAAAAAAAICHWKwBAAAAAAAAAADwEIs1AAAAAAAAAAAAHmKxBgAAAAAAAAAAwEMs1gAAAAAAAAAAAHiIxRoAAAAAAAAAAAAPsVgDAAAAAAAAAADgIRZrAAAAAAAAAAAAPMRiDQAAAAAAAAAAgIdYrAEAAAAAAAAAAPAQizUAAAAAAAAAAAAeYrEGAAAAAAAAAADAQyzWAAAAAAAAAAAAeIjFGgAAAAAAAAAAAA+xWAMAAAAAAAAAAOAhFmsAAAAAAAAAAAA8xGINAAAAAAAAAACAh1isAQAAAAAAAAAA8BCLNQAAAAAAAAAAAB5isQYAAAAAAAAAAMBDLNYAAAAAAAAAAAB4iMUaAAAAAAAAAAAAD7FYAwAAAAAAAAAA4CEWawAAAAAAAAAAADzEYg0AAAAAAAAAAICHWKwBAAAAAAAAAADwEIs1AAAAAAAAAAAAHmKxBgAAAAAAAAAAwEP/D2WYFtcNAlv0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, lag, yerr=lag_e, fmt=\"o\", color=\"k\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(f\"Time lag ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV, in seconds)\")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.semilogx()\n", + "# plt.ylim([1e-4, None]);\n", + "# plt.xlim([None, 80])\n", + "# plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "9bcd9b20", + "metadata": {}, + "source": [ + "Another interesting thing to measure is the coherence at different frequencies" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a64e196a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjwAAAR9CAYAAADiAu7rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde5hU1Z0u/rf6Tl+rRUYkGE0wE0Ua8RKCSQTGECMXJ2Q0RtpEjfHEaI6GmTkZjfP8EpkziniSOZZR0UlEjQHMBEe0RRFEusXRDomA3Q2ikQxqAw1NU/f7Zf3+qNMV8QLV9Ora37X2+3kentGhuup917dWQfZ27/IopRSIiIiIiIiIiIiIiIgMVuZ0ACIiIiIiIiIiIiIiouHiCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxeMKDiIiIiIiIiIiIiIiMxxMeRERERERERERERERkPJ7wICIiIiIiIiIiIiIi4/GEBxERERERERERERERGY8nPIiIiIiIiIiIiIiIyHg84UFERERERERERERERMbjCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxeMKDiIiIiIiIiIiIiIiMxxMeRERERERERERERERkPJ7wICIiIiIiIiIiIiIi4/GEBxERERERERERERERGY8nPIiIiIiIiIiIiIiIyHg84UFERERERERERERERMbjCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxeMKDiIiIiIiIiIiIiIiMxxMeRERERERERERERERkPJ7wICIiIiIiIiIiIiIi4/GEBxERERERERERERERGY8nPIiIiIiIiIiIiIiIyHg84UFERERERERERERERMbjCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxKpwOQHQ0gUAAHR0dhX8/6aSTUF1d7WAiIiIiIiIiIiIiIvqgZDKJ9957r/DvM2bMgNfrLdnr84QHidfR0YH58+c7HYOIiIiIiIiIiIiIhmD16tX42te+VrLX4y2tiIiIiIiIiIiIiIjIeDzhQURERERERERERERExuMtrUi8k0466bB/X716NU499VSH0jgjFouhvb0dM2fORG1trdNxhs20PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6/jcPq//fbbh309wQeP7Y40nvAg8T74BeWnnnoqzjjjDIfSOCOVSqGyshITJ05EVVWV03GGzbQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PO/h88tjvSPEopVdJXJBqi7du3Y9KkSYV/7+npcd0JDyIiIiIiIiIiIiLpnD6Wy+/wIDJAPB7H2rVrEY/HnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OEB5EBcrkcAoEAcrmc01G0MK2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf97SisRz+jIoIiIiIiIiIiIiIjo6p4/l8goPIgNkMhns3r0bmUzG6ShamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5P094EBkgEong0UcfRSQScTqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s9bWpF4Tl8GRURERERERERERERH5/SxXF7hQURERERERERERERExuMJDyIDBINB3HnnnQgGg05H0cK0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15woO0ePXVV3HJJZfghBNOQE1NDT71qU/hhhtuwJ49e5yOZoXa2lrMnz8ftbW1TkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/fkdHjRsv/rVr3Ddddchl8th7Nix+MQnPoG33noL4XAYzc3N2LhxI84888xjfn6n7/tGREREREREREREREfn9LFcXuFBw9Ld3Y3vf//7yOVy+PnPf449e/bgj3/8I/bu3YvLLrsMfr8fX//615FMJp2OarRYLIbVq1cjFos5HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35wkPGpZFixYhm83isssuwz/8wz+grCz/lqqvr8cjjzyCT37yk/jv//5vPPzwww4nJSIiIiIiIiIiIiKb8ZZWdMyi0SiOP/54JBIJdHR0YPr06R96zG233YZFixZhxowZaG9vP6bXcfoyKCIiIiIiIiIiIiI6OqeP5fIKD+Gy2Sy6urrw0EMP4frrr8e5556LqqoqeDweeDwezJw585ifO5VK4bHHHsOcOXNw8skno6amBieeeCK+8IUv4Gc/+xkOHjx4xJ/funUrEokEqqqqMG3atI98zGC+3//+98jlcsec1e3S6TR27tyJdDrtdBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7Oprcnyc8BFu9ejUaGxtx5pln4tprr8UDDzyA1157TcsbbefOnfj85z+PK6+8Es899xzeffddJJNJ9PX14dVXX8WPfvQjnHHGGXj22Wc/9jneeustAMAnP/lJVFVVfeRjTj31VABAIpHAO++8M+zcbmXyffM+iml9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OWVoI98sgj+M53vnPExxzLraJ6e3vx+c9/Hnv37gUAeDweTJ8+HRMmTEB/fz9eeOEFxONxAEBlZSXWrl2LCy644EPP87Of/Qw/+tGP8PnPfx6dnZ0f+VqxWAx1dXUAgNdeew1nn332kLICzl8GRURERERERERERERH5/Sx3IqSvRIdsxNOOAGf+9znCr+ef/55+Hy+Y36+1tbWwsmOk08+GU899RTOPPPMwu8fPHgQl19+OTZs2IB0Oo1vfOMb2LVrF7xe72HPM3hS5OOu7gCAmpqawj+beEaQiIiIiIiIiIiIiMzAW1oJdtFFF+Gdd95BX18f2tra8JOf/ASzZ8/+0ImHoXj22WexadMmAPkTFW1tbYed7ACA448/Hk899RQ+/elPAwAOHTqEu+6660PPNWrUKAD57wL5OIlEovDPtbW1x5zb7QKBABYtWoRAIOB0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtyfJzwEGzt2LD75yU9qfc777ruv8M9XXXUVWlpaPvJxdXV1+Jd/+ZfCvz/44IPIZDKHPaa5uRkAMDAw8LGvd+jQoQ89noauvr4eV111Ferr652OooVpfaTmlZJLSg4i4n60CWepj5vX0rbupvWRnFdCNgkZiCiP+9EunKcebl9Hk/vzhIeLRCIRbNiwofDvR/t+kEsuuaTwpj506BBeeumlw37/s5/9LADg3Xff/dirPP70pz8ByN/a6uSTTz7m7G5XUVGBU045BRUVdtyFzrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XnCw0VeeeUVJJNJAPkrOD73uc8d8fE1NTU477zzCv/+4osvHvb7Z511FmpqapBKpT72S8s7OjoAAFOnTkVZGd9uxyoajeLxxx9HNBp1OooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uzyPQLvLGG28U/rmlpaWoM3Rnn332R/48kD9pMmfOHACH3yprUDwex8MPPwwA+OY3v3lMmSmvrKwMXq/XmpNGpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3u71FKKadD0NDcdtttWLRoEQBgxowZaG9vL+rnbrjhBixduhRA/gTE448/ftSfuf/++/GDH/wAADBx4kRs3779sN9//fXXcc455yCbzeLnP/85Fi5ciLKyMkQiEXz3u9/Ff/zHf+Dkk0/Gm2++ierq6iG0/Ivt27dj0qRJhX/v6enBGWeccUzPRUREREREREREREQjw+ljueadoqFj9v4vFz/hhBOK+pmxY8cW/vn9X0A+6Mwzz8R9992HsrIy/OM//iM+8YlP4Nxzz8W4cePwH//xH/B6vXjyySeP+WQH5aVSKWzbtu1jvyvFNKb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s8THi4SiUQK/zxq1Kiifub9j3v/z7/fddddh02bNmH+/PnIZrPo7u5Gc3Mzvv/976O7uxtnnXXW8IL/PzU1NYUvUc9mswgEAhi8QCkUChU2YDweL9xfLpPJIBAIFJ4jGAwinU4DAGKxGGKxGAAgnU4jGAwWHhcIBJDJZADk71kXj8cB5Dd7KBQCACilEAgEkM1mAeTXJ5FIAACSySTC4TAAIJfLIRAIIJfLAQDC4XDhu1QSiURhXY/UKRAI4MUXX0QikbCiUyKRwIsvvlg4iSa90/vXX9J7LxqNor29HQMDAyP23ium0+A8/X6/o3PS2UnnnNiJnUrZKZFIYOPGjdi/f781nWycUzGdDh48iPb2dsRiMWs6OTUnv9+P9vZ2hMNhazoVO6dAIID29naEQiErOh06dKjwdzIT5iT5vdff34+NGzcikUg49hkxMDBQyCD9vWfrZwQ7sdNgp2g0ihdffLHwWjZ0snFOxXaKRCKFPy9t6eTEnAb/t9XBgwet6TSUOQU0HAtzCk94uMjgGxsAqqqqivqZ91+ZMbiBPsoXvvAFPPnkkzhw4ACSySTeeecdLF26FOPHjz/2wB8wbdo0XHrppQDyf0H3+XyFTbhs2TLs2LEDQP6L0tva2gAAvb298Pl8hedYunQpdu3aBQBYt24d1q1bBwDYtWtX4XZfAODz+dDb2wsAaGtrK3z5+o4dO7Bs2TIA+Q8In8+H/v5+AMCqVasKX96+detWLF++HED+Q8Dn8xU+dJYvX46tW7cCADo7O7Fq1aojdlJKobOzE8cffzwA4L333jO+U2NjIyZOnFi4HZv0Oe3YsQPHHXccGhsbRb33kskkFi5ciOeff35E5lRsp8bGRnz605/Gq6++6uicdHbSOSd2YqdSdmpsbMT111+PZcuWWdPJxjkV0+npp5/GwoULC89nQyen5vTqq69i4cKF6O/vt6ZTsXPasmULFi5ciN7eXis6tbe3Y+LEiWhsbDRiTpLfe7/73e/wN3/zN2hsbHTsM+L555/HWWedhcbGRvHvPVs/I9iJnQY7DR4AHTwGZEMnG+dUbKdQKIRwOIzGxkZrOjkxp8bGRpx33nl4+umnrek0lDnpOBbmGEXG+elPf6oAKABqxowZRf/cnDlzCj938803F/Uzzz77bOFn6uvrjzHx8PT09CgAqqamRtXX16uenh6VyWSU3+9XuVxOKaVUMBhUyWRSKaVULBZTkUhEKaVUOp1Wfr+/8FyBQEClUimllFLRaFRFo1GllFKpVEoFAoHC4/x+v0qn00oppSKRiIrFYkoppZLJpAoGg0oppXK5nPL7/SqTySillAqHwyoejyullEokEioUCimllMpms8rv96tsNquUUioUCqlEIqGUUioej6twOKyUUod16urqUj/+8Y/VV77yFdXc3KxGjRqljjvuOOXxeNTxxx+v5syZo3784x+r7u5uYzq9f065XE4dOnSo8Djpc4rFYqq/v1/lcjlR7710Oq3i8bgKhUIjMqdiO+VyOTUwMFB4nOT3nhNzYid2KmWnXC6nYrGYOnTokDWdbJxTMZ2CwaCKx+OFrDZ0cmpOkUhExeNxlUwmrelU7Jyi0aiKx+OF95TpncLhsDp06JDK5XJGzEnyey8QCBz254YTnxGhUKiQSfp7z9bPCHZip/f/b/K+vr7C42zoZOOciu2USqVUX1/fYZ/5pndyYk65XK7w56UtnYYyp+EcCxs8ljv4q6enR5UST3gY6FhPeFx22WWFn7vpppuK+pknnnii8DNjx449xsTD4/QmKaVnnnlGnX/++Yf1BaC8Xq+67bbblNfr/dDvnX/++WrNmjVORx8Sv9+vbrvttsM+2CWTmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljuR6l/t/Nt8gYt912GxYtWgQAmDFjRuG2QEdzww03FC6B+uY3v4nHH3/8qD9z//334wc/+AEAYOLEidi+ffuxhR6G7du3Y9KkSYV/7+npwRlnnFHyHCNpYGAAN954I1auXPmRv19eXo4xY8agv7+/cP+9D2ptbcU999yD0aNHj2RULbLZLPr7+zFmzBiUl5c7HeeopOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX8fh9Hf6WG5FyV6JHPfZz3628M/vvPNOUT/z7rvvFv75tNNO056JgK6uLsyePRt79+792Mdks1n09fUd8XlWrFiB9vZ2rF27Fi0tLbpjalVeXo6xY8c6HaNoUvNKySUlx0hRSiEcDiOVSqGqqgoNDQ3weDxOxyL6SLbvRzfhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf35puYucfvrphX/u7u5GJpM56s9s2bLlI3+e9Ojq6sLMmTOPeLIDAOrr63H11Vejvr7+iI/bu3cvZsyYge7ubp0xtYtEInjkkUcQiUScjlIUqXml5JKSQ6fu7m7ceuutmDVrFkaPHo2mpiaMGTMGTU1NGD16NGbNmoVbb70VPT09TkclOoyN+9GtOEt93LyWtnU3rY/kvBKySchARHncj3bhPPVw+zqa3J8nPFzkC1/4AqqrqwEA0WgUf/zjH4/4+GQyic7OzsK/X3DBBSOaz20GBgYwe/Zs+P3+oz42k8lg9+7dRZ2k8vv9uOiiizAwMKAj5oioqKjAKaecgooKMy4yk5pXSi4pOXRYs2YNpk+fjsmTJ2Px4sXYsGHDh/ao3+/Hhg0bsHjxYrS0tGD69Ol49tlnHUpMdDib9qPbcZb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0uT+/w8NAx/odHgAwd+7cwoG56667Dg888MDHPnblypVobW0FABx33HHYv3+/I29yp+/7NlJaW1s/9js7dD3/8uXLR+z5iWxytO/RKYZJ36NDRERERERERDQSnD6Wyys8XOaGG24o/PMjjzzysV9CHovF8JOf/KTw79/73veMPKMn1Zo1a4Z0YLW6uhrTpk0rXKFTjBUrVmDNmjXHEm/EDV49lEwmnY5SFKl5peSSkuNYdXV1YfLkycM+AblixQpMnjxZ/C3lyG6m70f6C85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6OJvfnCQ+XmTt3Ls4//3wA+TfuvHnz0NXVddhjBgYGMH/+fLz99tsA8ld33HzzzSXParMlS5YM6fFVVVWYMmUKqqqqhvRzd91115AeXyqpVArbtm1DKpVyOkpRpOaVkktKjmNR7PfoFMuU79Ehe5m8H+lwnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s9bWgk3Z86cDx2I6+vrw/79+wEAdXV1OPXUUz/0c88++yzGjRv3kc/Z29uLqVOnYt++fQAAj8eDGTNmYMKECejv78cLL7yAWCwGIH+/trVr1+LLX/6yzlpD4vRlULp1d3dj8uTJJX29968fEeUNDAxg8uTJ2k52vN+4cePQ1dXF21sRERERERERkas4fSyXV3gIt2PHDrz++uuH/Ro82QHkv3z8g7//+uuvH/Hs2/jx4/Hiiy9iypQpAAClFNrb2/HQQw/h6aefLpzsGDNmDFavXu3oyQ4bHcttc8rKyuD1elFWNvQtO5LfE3KscrkcAoEAcrmc01GKIjWvlFxScgzVjTfeOCInO4D8lR433XTTiDw3uZNSCqFQCAcPHkQoFMLH/fcqpu5H+jDOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35wkPlzrttNPw+9//Ho8++iguuuginHTSSaiqqsJf/dVfYdq0abjrrruwY8cOzJ071+mo1tm8efOQf6axsRELFy5EY2NjSV5vpIVCIfh8PoRCIaejFEVqXim5pOQYiqF+j86xkPw9OmSG7u5u3HrrrZg1axZGjx6NpqYmjBkzBk1NTRg9ejRmzZqFW2+9FT09PYWfMXE/0kfjLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf97SisRz+jIonZRSGD16NPx+/5B+rqysDI2NjQiFQkM+s9rc3IyBgQF4PJ4h/dxIyuVyCIVCaGxsPKarVkpNal4puaTkGIrp06dj06ZNJXmdjo6OEX8dssuaNWuwZMmSIb1Hzz//fNxyyy246KKLjNuP9NFM/GyVys1raVt30/pIzishm4QMRJTH/WgXzlMPt6/jcPo7fSyXJzxIPKc3iU6hUAhNTU2OvG5DQ0PJX5dIIn6PDkk1MDCAG2+8cVhXH7W2tuKee+7h98cQERERERGRI5w+luu+01NEDjrSd6scSUNDA77//e8f80mLZDJ5TD83UsLhMB544AGEw2GnoxRFal4puaTkKFapv9dG4vfokDxdXV2YPHnysN8vbW1tuO2220TezpCGxrTPVsncvJa2dTetj+S8ErJJyEBEedyPduE89XD7Oprcnyc8yBg1NTWor68HAGSzWQQCgcKXtoZCocLJhHg8jmg0CgDIZDIIBAKF5wgGg0in0wCAWCxW+IL2dDqNYDBYeFwgEEAmkwGQ/2L4eDwOIH/CYvDedUopBAIBZLNZAEAkEkEikQCQP8Ew+IHw/i/5qaqqQkNDA6qrqz/Uqby8HF6vt3DrqcbGRlRVVQHI39Jqx44dSKVSqKiogNfrLWRtampCZWUlAKC2tha1tbUAgMrKysLVJNXV1SPWCch/CA6eVEkkEohEIkecU1VVFSZOnFiYhbQ5fbBTLpfD6aefjqqqKlHvvfLyckyZMgWpVGpE5lRsp8F5DuZ2ak7FdtqyZQvq6uoA4Jj2EwB4vV5UVFQAAOrq6jBq1CgAQFVVVeG7djweD7xeL/7whz+MeCfJn3vsdPROXV1duPjii9Hf3w9geO+9VCqFP/7xj7jiiivw+uuvc04Gd0omk5gyZQoqKiqs6eTUnDKZDKZMmQKPx2NNp2LnlM1mMWXKlMJrmd4pnU5j4sSJqKqqMmJOkt97iUQCkyZNQlVVlWOfEalUCmeccQaqqqrEv/ds/YxgJ3Ya7FReXo7Pfvazhf8tZEMnG+dUbKeysjJ89rOfLRxTsqGTE3OqqqrCpEmTDjs2ZHqnocxJx7Ewp/CEBxlj2rRpuPTSSwEA/f398Pl8hU24bNky7NixAwDQ0dGBtrY2AEBvby98Pl/hOZYuXYpdu3YBANatW4d169YBAHbt2oWlS5cWHufz+dDb2wsg/1/LDt6Df8eOHVi2bBmA/AeEz+crHKBatWoVOjs7AQBbt27F8uXLARz+JT8NDQ248sorcdZZZ32o05gxY7Bw4cLCyZBrrrkGEydOBACcd955GDduHJLJJMaPH4+FCxcWsl5//fWYMGECAODCCy/EhRdeCACYMGECrr/+ejQ3N6O+vn7EOgHA8uXLsXXrVgBAZ2cnVq1adcQ5VVdXIxaLFdZf2pw+2Gnr1q347//+b1RXV4t674VCIUybNg1tbW0jMqdiO1VXV+PQoUOFrE7NqZhOSinU1NTg4osvBoAh76dBCxcuxPjx4wEAF198MWbMmAEAmDhxIq655hoA+RONCxcuxO7du6GUGrFOxc4JkLGf2OnwTgMDA5g9ezZaW1u1vPeSySS2bduGb33rW/j2t7+NgYEBzsnQTqtWrcK0adMO+8w3vZNTc+ro6MC0adPQ29trTadi59TZ2Ylp06Zh165dVnRat24dYrEYqqurjZiT5Pfe8uXLUV9fj+rqasc+I9ra2pDNZlFdXS3+vWfrZwQ7sdNgp1AohJdeeqmQwYZONs6p2E79/f146aWXCseXbOjkxJyqq6tRUVFx2D4xvdNQ5qTjWJhjFJFwPT09CoCqqalR9fX1qqenR2UyGeX3+1Uul1NKKRUMBlUymVRKKRWLxVQkElFKKZVOp5Xf7y88VyAQUKlUSimlVDQaVdFoVCmlVCqVUoFAoPA4v9+v0um0UkqpSCSiYrGYUkqpZDKpgsGgUkqpXC6n/H6/ymQySimlwuGwisfjSimlEomECoVCSimlstms8vv9KpvNKqWUmj17tqqurj6sEwBVXl6uvF6v8ng8CoBqbGxUVVVVCoDyer3qK1/5iqqpqVEVFRXK6/UqAAqAampqUpWVlQqAqq2tVbW1tQqAqqysVE1NTWrWrFkj3ikUCqlEIqGUUioej6twOKyUUh87p3g8rtatW6cOHjwodk7v7+T3+9Xzzz+v4vG4qPdeJBJRGzduVP39/SMyp2I7Dc5zYGDA0TkV0ykYDKpRo0apuro6BWDI+2nwcV6vV1VUVCgAqq6uTo0aNUoBUFVVVaqxsVEBUB6PR3m9XlVeXq5CodCIdXLivTfSc3JTpwULFmh979XU1KiZM2eqE044QZWXl6vW1lbOydBOBw4cUBs3blTRaNSaTk7NaWBgQG3cuFGFQiFrOhU7p0OHDqmNGzeqYDBoRaeDBw+qdevWqXg8bsScJL/39u/fr1544QUVj8cd+4zo7+9X69evV/F4XPx7z9bPCHZip8FOkUhEPffcc4XXsqGTjXMqtlM4HFbPPfdc4bVs6OTEnOLxuFq/fr06cOCANZ2GMif/MI6FDR7LHfzV09OjSolfWk7iOf1FN7rdeuutWLx48ZB+pr6+HpdeeilWrVpVuERuKK93++23D+lnRlokEsGqVatw6aWXFm7pJZnUvFJySclRjIMHD2LMmDElf93+/n4cf/zxJX9dkm3NmjWYN2+e1uf8qD8vnnnmGcydO1fr69DIM+mzVTo3r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jsPp7/SxXJ7wIPGc3iS6dXd3Y/LkySV9vfevH5GbhUKhw74PoZSv29DQUPLXJdmmT5+OTZs2leR1Bi9zJiIiIiIiIhpJTh/L5Xd4EJVYS0sLzj///CH9THl5OcaOHYvy8vIh/dz06dNFnuzIZrPo6+srfHmSdFLzSsklJUcxGhoa0NzcXNLXHPweHaL36+7uHpGTHR/158VLL72Enp4e7a9FI8ukz1bp3LyWtnU3rY/kvBKySchARHncj3bhPPVw+zqa3J8nPIgccPPNNw/p8Q0NDfj+978/5P9CfKivUyrhcBgPPvggwuGw01GKIjWvlFxSchTD4/Hg7LPPLulrnnPOOfB4PCV9TZJv5cqVI/K8H/fnxUi9Ho0ckz5bpXPzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/3tKKxHP6MqiR0traWvQBKI/Hg+rqaiSTSRS7ZVtbW7F8+fLhRBwxSikkk0lUV1cbcSBYal4puaTkKNaxfI/OcF9P2vfokPNmzZqFDRs2aH/ej/vzYtasWVi/fr3216ORY9pnq2RuXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljubzCg8ghv/jFLzBu3LiiHquUQiKRKPpkx7hx43DPPfcMJ96I8ng8qKmpMeYPDKl5peSSkqNYCxYssPr1SD6lFLZs2TJiz/1Rf1689tprRf8ZQjKY9tkqmZvX0rbupvWRnFdCNgkZiCiP+9EunKcebl9Hk/vzhAeRQ0aPHo21a9cW9X0CjY2NWLhwIRobG4/62ObmZqxduxajR4/WEXNEhEIh3H333QiFQk5HKYrUvFJySclRrGP5Hp1jJfV7dMhZ4XAYfr9/RJ774/688Pv9iEQiI/KaNDJM+2yVzM1raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15woPIQS0tLejo6DjqlR6JRALt7e1IJBJHfNy4cePQ0dGBlpYWnTG1q6mpwcyZM1FTU+N0lKJIzSsll5QcQ1Gq77eR+j065KxUKjViz32kPy+SyeSIvS7pZ+Jnq1RuXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uz+/wIPGcvu9bKQwMDOCmm27CihUrjvk5Wltbcc8994i+soNIkqF8j86xPr/U79EhZ4VCITQ1NTnyuh/8MnMiIiIiIiIinZw+lssrPIgEGD16NJYvX45nnnkG06dP/9Dvjxo1ChdddBFGjRr1od+bPn061qxZg+XLlxtzsiMej2Pt2rWIx+NORymK1LxScknJMVRD+R6doZL+PTrkrIaGhqJuZ3gsPu7Pi+bmZtTX14/Ia9LIKPazVSmFUCiEgwcPIhQK8btaPoKpf07pYFt30/pIzishm4QMRJTH/WgXzlMPt6+jyf0rnA5ARH8xd+5czJ07Fz09PVi5ciU2b96M1157DalUCl6vF2VlZWhubsY555yDqVOnYsGCBUZ+P0Aul0MgEEAul3M6SlGk5pWSS0qOoRr8Hp0ZM2Zo/T4FE75Hh5zl8Xhw9tlnY8OGDdqfu6ysrPDnxfudc845Rn7ZnJsd6bO1u7u78PeELVu2HPYZ1tzcjLPPPhtTp05Fa2urkX9P0M3UP6d0sK27aX0k55WQTUIGIsrjfrQL56mH29fR5P68pRWJ5/RlUE5TSiESiSCZTKK6uhr19fU8aEWkUXd3Ny666CLs3bt32M81btw4rF27Vvz36JDzbr31VixevLikr3f77beX7PVoZKxZswZLlizBpk2biv6Z888/H7fccgvmzJkzgsmIiIiIiIjynD6Wy1taEQnn8XgwatQoRCIRjBo1yoqTHZlMBrt370Ymk3E6SlGk5pWSS0qOY9XS0oKuri60trYO63laW1vR1dXFkx1UlAULFozI81ZUVOCUU05BRcXhF/GO1OvRyHn/Z+vAwABaW1sxb968IZ3sAIBNmzZh7ty5uOKKKzAwMDBCaWUz/c+p4bCtu2l9JOeVkE1CBiLK4360C+eph9vX0eT+POFBZIBIJIJHH30UkUjE6ShamNZHal4puaTkGI6jfY/OkZj4PTrkvJaWFpx//vnan7e+vh5XX331Yd/XMX36dN7WyECDn61/+MMfMHnyZKxcuXJYz7dixQpMnjwZ3d3dmhKaw4Y/p46Vbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9+ctrUg8py+DIiL3+eD36Hzw/vimf48OybBmzRrMmzevJK/D2xmZqaurCzNnztT+PUMdHR28Go2IiIiIiEaE08dy+aXlREREHzBp0qTC9x3we3RopMydOxcLFiwY9n+5fyStra082WGogYEBzJ49W+vJDgDw+/246KKL0NXVxavSiIiIiIjIOrylFRmjpqamcIuObDaLQCCAwQuUQqEQUqkUACAejyMajQLI328uEAgUniMYDCKdTgMAYrEYYrEYACCdTiMYDBYeFwgECveoi0ajiMfjAIBUKoVQKAQgfxA0EAggm80CyF/qlUgkAADJZBLhcBgAkMvlEAgEkMvlAADhcBjJZBIAkEgkCpeGHanT/v37sXjxYgSDQSs6BYNBLF68GPv27TNiTu9ff0nvvUOHDuHOO+/E3r17R+y9V0ynwXn29fU5Oiednd4/J4/Hg5qaGlRWVqKhoQEej8f4TjbOydROv/jFLzBu3Dg0NTWhsrISAFBbW4va2loAQGVlJZqamgqdvF5v4fs56urqMGrUKABAVVUVGhsb0dTUhFtuuQUnnXQSxo8fj3vuuYdzMrTT//pf/wtXXnklvF4vvF4vysryf21vaGhAdXU1gMP/blReXg6v11s4IdvY2IiqqioAwKhRo1BXVwcg/z0vsVgMN910k2vm1NfXhzvvvBMHDx60plOxc9q/fz/uvPNO9Pf3W9Fp3759hb+TmTAnye+93t7ewlo69bm3d+/eQgbp7z1bPyPYiZ0GOx06dAiLFy8u5LWhk41zKrbTwMBA4fPVlk5OzGnwWMeePXus6TSUOek4FuYUnvAgY0ybNg2XXnopAKC/vx8+n6+wCZctW4YdO3YAADo6OtDW1gYg/xd5n89XeI6lS5di165dAIB169Zh3bp1AIBdu3Zh6dKlhcf5fD709vYCANra2tDR0QEA2LFjB5YtWwYg/wHh8/nQ398PAFi1ahU6OzsBAFu3bsXy5csB5D8EfD5f4UNn+fLl2Lp1KwCgs7MTq1atOmqn1157DWPGjEFtba0VnWpra3HyySejvb3diDn19PSgqakJtbW1ot57sVgM8+fPx/PPPz9i771iOtXW1mLcuHF45ZVXHJ2Tzk4658RO7HSkTqNHj8batWtxww03YMKECQCACy+8EBdeeCEAYMKECbj++usLnRYuXIjx48cDAC6++GLMmDEDADBx4kRcc801iMViWLNmDb773e9ixYoVGD16NOdkYKfly5dj1KhRWL16NSoqKrBw4UI0NjYCAK644gqcddZZAA7/u9GYMWOwcOHCwsmQa665BhMnTgQAzJgxAxdffDEAYPz48Vi4cCFWrFiBNWvWuGJOr7zyCubPn4++vj5rOhU7p9deew3z58/Hu+++a0Wn9vZ2nHzyyaitrTViTpLfe6tWrcKUKVNQW1vr2Ofe888/j8985jOora0V/96z9TOCndhpsFMsFkMqlUJ5ebk1nWycU7Gd/H4/UqlU4T+isqGTE3Oqra3FxIkT8fTTT1vTaShz0nEszDGKSLienh4FQNXU1Kj6+nrV09OjMpmM8vv9KpfLKaWUCgaDKplMKqWUisViKhKJKKWUSqfTyu/3F54rEAioVCqllFIqGo2qaDSqlFIqlUqpQCBQeJzf71fpdFoppVQkElGxWEwppVQymVTBYFAppVQul1N+v19lMhmllFLhcFjF43GllFKJREKFQiGllFLZbFb5/X6VzWaVUkqFQiGVSCSUUkrF43EVDoeVUoqd2Imd2ImdXNyps7NTnXTSSQqAqq2tVbW1tQqAqqysVE1NTQqAAqC8Xq+qqKhQAFRdXZ0aNWqUAqCqqqpUY2OjAqDGjRunXn31Vcc72TinUnWaOXOmamhoUABUWVmZ8nq9qqysTAFQDQ0Nqrq6+rC/GwFQ5eXlyuv1Ko/HowCoxsZGVVVVpQCoUaNGqbq6OgVAVVRUKK/XqwCo6dOnc07sxE7sxE7sxE7sxE7sxE7spLXT4LHcwV89PT2qlPil5SSe0190I0EsFsO6detw4YUXFs7Qm8y0PlLzSsklJQeR6QYGBnDTTTdhxYoVx/wc3/rWtzBv3jxcfPHF3I+G6u7uxuTJk1FbW4sLL7wQ69atK1zOPlKv9/6/Z9nIzX9O2dbdtD6S80rIJiEDEeVxP9qF89TD7es4nP5OH8vlLa2IiIiIBBg9ejSWL1+OZ555BtOnTx/Sz06fPh1r1qzBgw8+WLilEZlpJL/EXsLrERERERERjSRe4UHiOX1WkIiIyAk9PT1YuXIlNm/ejNdeew1+v7/we83NzTjnnHMwdepULFiwwPr/Qt9NZs2ahQ0bNpT09davX1+y1yMiIiIiIrs5fSyXV3gQGSCdTmPnzp1Ip9NOR9HCtD5S80rJJSUHkW0mTZqE22+/HevXr8fAwABCoRD6+/sRCoUwMDCA9evX4/bbbz/sL5Lcj2ZTSmHLli0AgMrKSpx22mmorKwc0dd87bXXYPt//+TmfWFbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9ecKDyACxWAyrV68e0Xt4l5JpfaTmlZJLSg4im3k8HjQ0NOD4449HQ0MDPB7PRz6O+9Fs4XC4cCVPbW0t5s+fP+L3C/b7/YhEIiP6Gk5z876wrbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/rylFYnn9GVQRERERKVw8OBBjBkzpuSv29/fj+OPP77kr0tERERERPZx+lgur/AgIiIiIhKgqqrKkdflF90TEREREZEteMKDyACBQACLFi1CIBBwOooWpvWRmldKLik5iIj70XQNDQ1obm4GAHi9Xtx2223wer0j+prNzc2or68f0ddwmpv3hW3dTesjOa+EbBIyEFEe96NdOE893L6OJvfnLa1IPKcvg5Igk8mgt7cX48ePR0VFhdNxhs20PlLzSsklJQcRcT/aYNasWdiwYQMqKiowfvx49Pb2IpPJjOjrrV+/fsSeXwI37wvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljue6bFpGBKioqcMoppzgdQxvT+kjNKyWXlBxExP1og6lTp2LDhg3IZDLYvXt3SV7Pdm7eF7Z1N62P5LwSsknIQER53I924Tz1cPs6mtyft7QiMkA0GsXjjz+OaDTqdBQtTOsjNa+UXFJyEBH3ow0WLFgAAKirq8Pll1+Ourq6kryezdy8L2zrblofyXklZJOQgYjyuB/twnnq4fZ1NLk/T3gQGaCsrAxerxdlZXZsWdP6SM0rJZeUHETE/WiDlpYWnH/++cjlcggEAsjlciP2WtOnTz/sUnNbuXlf2NbdtD6S80rIJiEDEeVxP9qF89TD7etocn9+hweJ5/R934iIiIhKac2aNZg3b15JXmfOnDkj/jpEREREROQeTh/LNe8UDZELpVIpbNu2DalUyukoWpjWR2peKbmk5CAi7kdbzJ07F62trZgyZQqqqqpG5DVaW1tdc7LDzfvCtu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OEB5EBEokE2tvbkUgknI6ihWl9pOaVkktKDiLifrTJHXfcgS9/+cuoqanR/tzjxo3DPffco/15pXLzvrCtu2l9JOeVkE1CBiLK4360C+eph9vX0eT+vKUVief0ZVBERERETuju7saMGTPg9/u1PWdzczM6OjrQ0tKi7TmJiIiIiIgGOX0sl1d4EBlAKYVEIgFbzk+a1kdqXim5pOQgIu5Hmyil8JnPfAbt7e0YN26cluccN26cK092uHlf2NbdtD6S80rIJiEDEeVxP9qF89TD7etocn+e8CAyQDAYxJIlSxAMBp2OooVpfaTmlZJLSg4i4n60yeAsP/nJT6Krqwutra3Der7W1lZ0dXW57mQH4O59YVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15woOMUVNTg/r6egBANptFIBAonGUMhUKFL9GJx+OIRqMAgEwmg0AgUHiOYDCIdDoNAIjFYojFYgCAdDp92AYOBALIZDIAgGg0ing8DiD/hT2hUAhA/kxnIBBANpsFAEQikcJ97ZLJJMLhMAAgl8shEAggl8sBAMLhMJLJJID8/fAikchRO1VUVODKK69EQ0ODFZ0aGhpw1VVXoayszIg5VVZW4tvf/jYaGhpEvfdqa2tx3XXXwePxjNh7r5hODQ0NuPLKK1FeXu7onHR20jkndmKnUnZqaGjA9773PWSzWWs62TinYjoBwHXXXYe6ujqUl5fjsccewzPPPINZs2ahuroawOF/NyovL4fX64XH4wEANDY2oqqqCtOnT8dTTz2Ff//3f8fo0aNdOafy8nJcd911qKmpsaZTsXOqqKjAddddh+rqais6lZWV4aqrrkJDQ4MRc5L83lNK4ZprrkFDQ4Njn3sejwdXX301GhoaxL/3bP2MYCd2GuxUW1uL1tbWwt8rbOhk45yK7TRq1Ci0traioaHBmk5OzKmhoQHf+c53Cs9lQ6ehzEnHsTCn8IQHGWPatGm49NJLAQD9/f3w+XyFTbhs2TLs2LEDANDR0YG2tjYAQG9vL3w+X+E5li5dil27dgEA1q1bh3Xr1gEAdu3ahaVLlxYe5/P50NvbCwBoa2tDR0cHAGDHjh1YtmwZgPwHhM/nQ39/PwBg1apV6OzsBABs3boVy5cvB5D/EPD5fIUPneXLl2Pr1q0AgM7OTqxateqonV5++WX8/ve/R3l5uRWdysvLsXPnTjz77LNGzOkPf/gDXnrpJZSXl4t67x06dAhjx47Fk08+OWLvvWI6lZeX4/XXX8eGDRscnZPOTjrnxE7sVMpO5eXlaG5uxr333mtNJxvnVEynxx9/HGPHjkU0Gi10mjt3Li655BKsXLkSt956K1pbW3H55ZcDAMaMGYOFCxfir/7qrzBr1iz8/d//PZ544gl0dHSgqqpKRCen5rRhwwaMHTsWu3fvtqZTsXN6+eWXMXbsWLz55ptWdHr22Wexc+dOlJeXGzEnye+9Rx99FAMDAygvL3fsc+/JJ5/Ef//3f6O8vFz8e8/Wzwh2YqfBTocOHcKKFSsKB1Ft6GTjnIrttG/fPqxYsaLwHyXa0MmJOZWXl2Pv3r14/PHHrek0lDnpOBbmGEUkXE9PjwKgampqVH19verp6VGZTEb5/X6Vy+WUUkoFg0GVTCaVUkrFYjEViUSUUkql02nl9/sLzxUIBFQqlVJKKRWNRlU0GlVKKZVKpVQgECg8zu/3q3Q6rZRSKhKJqFgsppRSKplMqmAwqJRSKpfLKb/frzKZjFJKqXA4rOLxuFJKqUQioUKhkFJKqWw2q/x+v8pms0oppUKhkEokEkoppeLxuAqHw0opdcROBw4cUL/61a9UOBy2olM4HFa/+tWv1P79+42YU39/f2H9Jb33AoGAevjhh1VfX9+IvfeK6fTBeUp+7zkxJ3Zip1J2CofDatmyZaq3t9eaTjbOqZhO+/btUw8//LAKBoNH7BQKhVQoFFJ9fX3qvffeKzxOYien5rR//3718MMPq0OHDlnTqdg5HThwQD388MNqYGDAik779+8v/J3MhDlJfu/t3btXPfTQQyocDjv2GdHX11fIIP29Z+tnBDux02CnQCCgfvnLXxZ+zoZONs6p2E5+v1/98pe/PGy+pndyYk7hcFg99NBDat++fdZ0GsqchnMsbPBY7uCvnp4eVUoepQz85hFyle3bt2PSpEmFf+/p6cEZZ5zhYKLSSyQS6OzsxLRp01BTU+N0nGEzrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3rOJz+Th/L5QkPEs/pTUJERERERERERERER+f0sVx+hweRAZLJJDo7Owv3yjOdaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQFSqRS2bduGVCrldBQtTOsjNa+UXFJyEBH3o004S31MX0ulFEKhEA4ePIhQKIShXKBvevcPMq2P5LwSsknIQER53I924Tz1cPs6mtyft7Qi8Zy+DIqIiIiIqJS6u7uxcuVKbN68GVu2bIHf7y/8XnNzM84++2xMnToVra2th/09mYiIiIjIaU4fy+UVHkQGyOVyCAQCyOVyTkfRwrQ+UvNKySUlBxFxP9qEs9THpLVcs2YNpk+fjsmTJ2Px4sXYsGHDYSc7AMDv92PDhg1YvHgxWlpaMH36dDz77LMf+XwmdS+GaX0k55WQTUIGIsrjfrQL56mH29fR5P484UFkgFAoBJ/Ph1Ao5HQULUzrIzWvlFxSchAR96NNOEt9TFjLgYEBtLa2Yt68edi0adOQfnbTpk2YO3currjiCgwMDBz2eyZ0HwrT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XlLKxLP6cugJMjlcgiFQmhsbERZmfnnKU3rIzWvlFxSchAR96NNOEt9pK9lV1cXZs+ejb179w77ucaNG4e1a9eipaUFgPzuQ2VaH8l5JWSTkIGI8rgf7cJ56uH2dRxOf6eP5fKEB4nn9CYhIiIiIhoJXV1dmDlz5oduWzUczc3N6OjoKJz0ICIiIiIqJaeP5brv9BSRgcLhMB544AGEw2Gno2hhWh+peaXkkpKDiLgfbcJZ6iN1LQcGBjB79mytJzuA/Hd8XHTRRRgYGBDb/ViZ1kdyXgnZJGQgojzuR7twnnq4fR1N7s8THkQGqKqqwpQpU1BVVeV0FC1M6yM1r5RcUnIQEfejTThLfaSu5Y033qjlNlYfZe/evbjpppvEdj9WpvWRnFdCNgkZiCiP+9EunKcebl9Hk/vzllYkntOXQRERERER6bRmzRrMmzdvxF/nmWeewdy5c0f8dYiIiIiIBjl9LJdXeBAZIJFIoL29HYlEwukoWpjWR2peKbmk5CAi7kebcJb6SFzLJUuWlOR1/u3f/k1c9+GQOMsjkZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQEymQx2796NTCbjdBQtTOsjNa+UXFJyEBH3o004S32krWV3dzc2bdpUktfavHkztm/fLqb7cEmb5dFIzishm4QMRJTH/WgXzlMPt6+jyf15SysSz+nLoIiIiIiIdLn11luxePHikr7e7bffXrLXIyIiIiJ3c/pYLq/wIDJANptFX18fstms01G0MK2P1LxScknJQUTcjzbhLPWRtpabN28u2WuVl5dj+/btYroPl7RZHo3kvBKySchARHncj3bhPPVw+zqa3J8nPIgMEA6H8eCDDyIcDjsdRQvT+kjNKyWXlBxExP1oE85SH0lrqZTCli1bSvZ6DQ0NOOussxAKhUr2miNJ0iyLITmvhGwSMhBRHvejXThPPdy+jib35y2tSDynL4OSQCmFZDKJ6upqeDwep+MMm2l9pOaVkktKDiLifrQJZ6mPpLUMhUJoamoq2et5PB5UV1dj//79aGxsLNnrjhRJsyyG5LwSsknIQER53I924Tz1cPs6Dqe/08dyK0r2SkR0zDweD2pqapyOoY1pfaTmlZJLSg4i4n60CWepj6S1TKVSJX09pRQSiUTJX3ekSJplMSTnlZBNQgYiyuN+tAvnqYfb19Hk/rylFZEBQqEQ7r77bmtuR2BaH6l5peSSkoOIuB9twlnqI2ktq6qqSvp6jY2NWLhwoTUnPCTNshiS80rIJiEDEeVxP9qF89TD7etocn+e8CAyQE1NDWbOnGnsmdUPMq2P1LxScknJQUTcjzbhLPWRtJYNDQ1obm4u2eslEgls3rwZo0ePLtlrjiRJsyyG5LwSsknIQER53I924Tz1cPs6mtyf3+FB4jl93zciIiIiIl1mzZqFDRs2lPT11q9fX7LXIyIiIiJ3c/pYLq/wIGPU1NSgvr4eAJDNZhEIBDB4vi4UChUu1Y/H44hGowCATCaDQCBQeI5gMIh0Og0AiMViiMViAIB0Oo1gMFh4XCAQQCaTAQBEo1HE43EA+fsuD17KpZRCIBBANpsFAEQiESQSCQBAMplEOBwGAORyOQQCAeRyOQBAOBxGMpkEkP+v7iKRyFE7HTp0CG1tbYjH41Z0isfjeOaZZ3Dw4EEj5uT3+/H0008jHo+Leu9FIhGsXbsW/f39I/beK6ZTPB5HW1sbBgYGHJ2Tzk4658RO7FTKTvF4HM899xz6+vqs6WTjnIrpdODAAaxduxbRaNSaTk7NaWBgAGvXrkUoFBLRaerUqYUvfmxsbCzc5mrUqFGoq6sDAFRUVMDr9RayNjU1obKyEgBQW1uL2tpaAEBlZeVhX4Lu9XpRUZH/msa6ujo0NzfjvPPOQzAYFD+nYt57Bw8exDPPPIN4PM733jA7HThwAGvWrEE8HnfsM6K/v78wT+nvPdM+99iJnYbaKRKJ4KmnnipksqGTjXMqtlM4HMZTTz1VyGRDJyfmNHjs6sCBA9Z0GsqcdBwLcwpPeJAxpk2bhksvvRRA/i/HPp+vsAmXLVuGHTt2AAA6OjrQ1tYGAOjt7YXP5ys8x9KlS7Fr1y4AwLp167Bu3ToAwK5du7B06dLC43w+H3p7ewEAbW1t6OjoAADs2LEDy5YtA5D/gPD5fOjv7wcArFq1Cp2dnQCArVu3Yvny5QDyHwI+n6/wobN8+XJs3boVANDZ2YlVq1YdtdN//dd/4a233kIul7OiUy6Xw5///Gc8//zzRszpD3/4A3bu3IlcLifuvRcIBPD000+P2HuvmE65XA5vv/02Nm7c6OicdHbSPSd2YqdSdcrlcjh06BAefPBBazrZOKdiOq1atQqBQADBYNCaTk7NaePGjQgEAvjzn/8solN1dTWqq6sBANdccw0mTpwIAJgxYwYuvvhiAMD48eOxcOHCQtbrr78eEyZMAABceOGFuPDCCwEAEyZMwPXXX1943MKFCzF+/HgAwMUXX4wvfvGLGD9+PHbu3Cl+TsW8955//nn8+c9/Ri6X43tvmJ2WL1+O3t5e5HI5xz4jnn76aezevRu5XE78e8+0zz12Yqdj6bRt27bCgVNbOtk4p2I7bdu2rXAQ25ZOpZ5TLpfDu+++W8hqQ6ehzEnHsTDHKCLhenp6FABVU1Oj6uvrVU9Pj8pkMsrv96tcLqeUUioYDKpkMqmUUioWi6lIJKKUUiqdTiu/3194rkAgoFKplFJKqWg0qqLRqFJKqVQqpQKBQOFxfr9fpdNppZRSkUhExWIxpZRSyWRSBYNBpZRSuVxO+f1+lclklFJKhcNhFY/HlVJKJRIJFQqFlFJKZbNZ5ff7VTabVUopFQqFVCKRUEopFY/HVTgcVkopdmIndmIndmIndmIndnJJp/PPP18BUI2NjaqqqkoBUKNGjVJ1dXUKgKqoqFBer1cBUABUU1OTqqysVABUbW2tqq2tVQBUZWWlampqKjzO6/WqiooKBUDV1dWpCy64gHNiJ3ZiJ3ZiJ3ZiJ3Zip5J2GjyWO/irp6dHlRK/w4PEc/q+bxJkMhn09vZi/PjxhdsUmMy0PlLzSsklJQcRcT/ahLPUR+JarlmzBvPmzRvx12lra8OkSZNEdR8OibM8Esl5JWSTkIGI8rgf7cJ56uH2dRxOf6eP5fKWVkQGiEQiePTRRwv3AzSdaX2k5pWSS0oOIuJ+tAlnqY/EtZw7dy4WLFgwoq/R2tqKL33pS+K6D4fEWR6J5LwSsknIQER53I924Tz1cPs6mtyfV3iQeE6fFSQiIiIi0m1gYACTJ0/G3r17tT/3uHHj0NXVhdGjR2t/biIiIiKiI3H6WC6v8CAiIiIiIiqx0aNHY+3atWhubtb6vM3NzVi7di1PdhARERGRK/GEB5EBgsEg7rzzTgSDQaejaGFaH6l5peSSkoOIuB9twlnqI3ktW1pa0NHRgXHjxml5vnHjxqGjowMtLS0AZHc/Fqb1kZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQFqa2sxf/581NbWOh1FC9P6SM0rJZeUHETE/WgTzlIf6WvZ0tKCrq4utLa2Dut5Wltb0dXVVTjZAcjvPlSm9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/M7PEg8p+/7RkRERERUCmvWrMFdd92Fl156qeifmT59Om6++WbMmTNnBJMRERERERXH6WO5vMKDyACxWAyrV69GLBZzOooWpvWRmldKLik5iIj70SacpT4mreXcuXPR0dGB7u5u3HrrrZg1a9aHvuOjubkZs2bNwq233oru7m50dHR87MkOk7oXw7Q+kvNKyCYhAxHlcT/ahfPUw+3raHL/CqcDEBERERER0V9MmjQJt99+OwBAKYVIJIJkMonq6mrU19fD4/E4nJCIiIiISCbe0orEc/oyKCIiIiIiIiIiIiI6OqeP5fKWVkQGSKfT2LlzJ9LptNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn+e8CAygMn3zfsopvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uz1takXhOXwZFREREREREREREREfn9LFcXuFBRERERERERERERETG4wkPIgMEAgEsWrQIgUDA6ShamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5P29pReI5fRmUBJlMBr29vRg/fjwqKiqcjjNspvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljuTzhQeI5vUmIiIiIiIiIiIiI6OicPpbLW1oRGSAajeLxxx9HNBp1OooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uzxMeRAYoKyuD1+tFWZkdW9a0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15SysSz+nLoIiIiIiIiIiIiIjo6Jw+lmveKRoiF0qlUti2bRtSqZTTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/nvAgMkAikUB7ezsSiYTTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/3tKKxHP6MigiIiIiIiIiIiIiOjqnj+XyCg8iAyilkEgkYMv5SdP6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9+cJDyIDBINBLFmyBMFg0OkoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0uT9vaUXiOX0ZlATZbBb9/f0YM2YMysvLnY4zbKb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR2H09/pY7m8woOMUVNTg/r6egD5TRcIBAqXVYVCIaRSKQBAPB5HNBoFAGQyGQQCgcJzBINBpNNpAEAsFkMsFgMApNPpw85YBgIBZDIZAEA0GkU8HgcApFIphEIhAPlLuwKBALLZLAAgEokUvsgnmUwiHA4DAHK5HAKBAHK5HAAgHA4jmUwCyH8BUCQSOWqnVCqFhoYGlJeXW9GpvLwcTU1NheeW3imdTqO+vh7l5eWi3nsAMHbsWMTj8RF77xXTqby8HI2NjYetl9T3nhNzYid2KmWn8vJynHDCCQiHw9Z0snFOxXSKxWIYO3YsPB6PNZ2cmlMymcTYsWORy+Ws6VTsnFKpFMaOHYtsNmtFp0QigaamJpSXlxsxJ8nvvWg0iuOOOw7l5eWOfUbE43F4vV6Ul5eLf+/Z+hnBTuw02AnIH3MpKyuzppONcyq2k1IKNTU1hYPUNnRyYk7l5eVobm4uPLcNnYYyJx3HwpzCEx5kjGnTpuHSSy8FAPT398Pn8xU24bJly7Bjxw4AQEdHB9ra2gAAvb298Pl8hedYunQpdu3aBQBYt24d1q1bBwDYtWsXli5dWnicz+dDb28vAKCtrQ0dHR0AgB07dmDZsmUA8h8QPp8P/f39AIBVq1ahs7MTALB161YsX74cQP5DwOfzFT50li9fjq1btwIAOjs7sWrVqqN2euGFF3DfffchEolY0SkSiWDp0qV48sknjZjTSy+9hHvvvReRSETUe++dd97BI488gt/+9rcj9t4rplMkEsH999+PZ5991tE56eykc07sxE6l7BSJRPDwww9b1cnGORXT6bHHHsMjjzyCffv2WdPJqTk9++yzeOSRR9DT02NNp2Ln9MILL+CRRx7Bli1brOj05JNPYunSpYhEIkbMSfJ776GHHsK///u/IxKJOPYZ8dvf/hYPPPAAIpGI+PeerZ8R7MROg53eeecd+Hw+DAwMWNPJxjkV2+lPf/oTfD5f4QC8DZ2cmFMkEsGDDz6Ixx57zJpOQ5mTjmNhjlFEwvX09CgAqqamRtXX16uenh6VyWSU3+9XuVxOKaVUMBhUyWRSKaVULBZTkUhEKaVUOp1Wfr+/8FyBQEClUimllFLRaFRFo1GllFKpVEoFAoHC4/x+v0qn00oppSKRiIrFYkoppZLJpAoGg0oppXK5nPL7/SqTySillAqHwyoejyullEokEioUCimllMpms8rv96tsNquUUioUCqlEIqGUUioej6twOKyUUkfsdOjQIfX888+reDxuRad4PK7WrVunDh48aMSc/H5/Yf0lvfcikYjauHGj6u/vH7H3XjGdBuc5MDDg6Jx0dtI5J3Zip1J2isfj6sUXX1R9fX3WdLJxTsV0OnDggNq4caOKRqPWdHJqTgMDA2rjxo0qFApZ06nYOR06dEht3LhRBYNBKzodPHhQrVu3TsXjcSPmJPm9t3//fvXCCy+oeDzu2GdEf3+/Wr9+vYrH4+Lfe7Z+RrATOw12ikQi6rnnniu8lg2dbJxTsZ3C4bB67rnnCq9lQycn5hSPx9X69evVgQMHrOk0lDn5h3EsbPBY7uCvnp4eVUr8Dg8Sz+n7vhERERERERERERHR0Tl9LJe3tCIyQDKZRGdnZ+HSMdOZ1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLk/T3gQGSCVSmHbtm2FLwQynWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OWViSe05dBEREREREREREREdHROX0sl1d4EBkgl8shEAggl8s5HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35wkPIgOEQiH4fD6EQiGno2hhWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+vKUVief0ZVAS5HI5hEIhNDY2oqzM/POUpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljuRUleyUiOmZlZWXwer1Ox9DGtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n93Xd6ishA4XAYDzzwAMLhsNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn+e8CAyQFVVFaZMmYKqqiqno2hhWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+/A4PEs/p+74RERERERERERER0dE5fSyXV3gQGSCRSKC9vR2JRMLpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLk/T3gQGSCTyWD37t3IZDJOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9eUsrEs/py6CIiIiIiIiIiIiI6OicPpbLKzyIDJDNZtHX14dsNut0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtyfJzyIDBAOh/Hggw8iHA47HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35y2tSDynL4OSQCmFZDKJ6upqeDwep+MMm2l9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX8fh9Hf6WG5FyV6JiI6Zx+NBTU2N0zG0Ma2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf97SisgAoVAId999N0KhkNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6DeYPBIEKhEA4ePIhQKAQJN1mQsJYSMhBRHvejXThPPdy+jib35wkPIgPU1NRg5syZxp5Z/SDT+kjNKyWXlBxExP1oE85SHzevpW3dTerT3d2NO++8E5s3b8Zf//Vfo6mpCWPGjEFTUxNGjx6NWbNm4dZbb0VPT48j+SSspYQMRJTH/WgXzlMPt6+jyf35HR4kntP3fSMiIiIiIirGmjVrsGTJEmzatKnonzn//PNxyy23YM6cOSOYjIiIiKg0nD6Wyys8iAwQj8exdu1axONxp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbvkPgMDA2htbcW8efMKJztGjRqFiy66CKNGjTriz27atAlz587FFVdcgYGBgVLEFbGWEjIQUR73o104Tz3cvo4m9+cJDyID5HI5BAIB5HI5p6NoYVofqXml5JKSg4i4H23CWerj5rW0rbvUPl1dXZg8eTJWrlx52P+/rKwMXq8XZWXF/c/uFStWYPLkyeju7h6JmIeRsJYSMhBRHvejXThPPdy+jib35y2tSDynL4MiIiIiIiL6KF1dXZg5cyb8fr+252xubkZHRwdaWlq0PScRERFRqTh9LJdXeBAZIJPJYPfu3chkMk5H0cK0PlLzSsklJQcRcT/ahLPUx81raVt3aX0GBgYwe/bsjz3ZUVFRgVNOOQUVFRVDel6/34+LLrpoRG9vJWEtJWQgojzuR7twnnq4fR1N7s8THkQGiEQiePTRRxGJRJyOooVpfaTmlZJLSg4i4n60CWepj5vX0rbu0vrceOON2Lt378f+fn19Pa6++mrU19cP+bn37t2Lm266aTjxjkjCWkrIQER53I924Tz1cPs6mtyft7Qi8Zy+DIqIiIiIiOj91qxZg3nz5o346zzzzDOYO3fuiL8OERERkS5OH8vlFR5EREREREREQ7BkyZKSvM5dd91VktchIiIisgVPeBAZIBgM4s4770QwGHQ6iham9ZGaV0ouKTmIiPvRJpylPm5eS9u6S+nT3d2NTZs2HfVxTU1NuOWWW9DU1HTMr/XSSy+hp6fnmH/+40hYSwkZiCiP+9EunKcebl9Hk/vzhAeRAWprazF//nzU1tY6HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3aX0WblyZVGPi8ViWL16NWKxWElebygkrKWEDESUx/1oF85TD7evo8n9+R0eJJ7T930jIiIiIiIaNGvWLGzYsKGkr7d+/fqSvR4RERHRcDh9LJdXeBAZQNd/HSaFaX2k5pWSS0oOIuJ+tAlnqY+b19K27hL6KKWwZcuWoh6r67+MfO2116D7v1OUsJYSMhBRHvejXThPPdy+jib35wkPIiIiIiIioiKEw2H4/f6Svqbf70ckEinpaxIRERGZiic8yBg1NTWor68HAGSzWQQCgcJ/6RQKhZBKpQAA8Xgc0WgUAJDJZBAIBArPEQwGkU6nAeTPVA6epUyn04d9CU8gEEAmkwEARKNRxONxAEAqlUIoFAKQ/6+7AoEAstksACASiSCRSAAAkskkwuEwACCXyyEQCCCXywHI/4+kZDIJAEgkEoX/8XKkTh6PB1/5yldQW1trRafa2lp89atfLfz/pXcqKyvDrFmzUFtbK+q9V11djfnz5yOXy43Ye6+YTrW1tbjwwgsL/3/J7z0n5sRO7FTKTrW1tfja176GVCplTScb51RMp2w2i/nz56OmpsaaTk7NCQDmz5+PyspKazoVOyePx4P58+ejoqLCik5KKXz1q19FbW2tY3MKhUKoq6sDAFRUVMDr9RayNjU1obKyEgAKV3WsXr0a6XT6sC8u93q9qKioAADU1dVh1KhRAICqqio0NjYCyP/93+v1ory8HABw6NAhrZ0ymQzmzJmD2tpaxz4jcrkcLrroItTW1op/79n6GcFO7DTYqbq6GjNnzix8HtnQycY5FdupqqoKM2fOLPxZZEMnJ+ZUW1uL2bNnH/bnlumdhjInHcfCnMITHmSMadOm4dJLLwUA9Pf3w+fzFTbhsmXLsGPHDgBAR0cH2traAAC9vb3w+XyF51i6dCl27doFAFi3bh3WrVsHANi1axeWLl1aeJzP50Nvby8AoK2tDR0dHQCAHTt2YNmyZQDyHxA+nw/9/f0AgFWrVqGzsxMAsHXrVixfvhxA/kPA5/MVPnSWL1+OrVu3AgA6OzuxatWqo3bauHEjVq5ciXQ6bUWndDqNJ598Ek8//bQRc/qv//ov/PrXv0Y6nRb13tu3bx927tyJ3/3udyP23iumUzqdxu9+9zusXbvW0Tnp7KRzTuzETqXslE6n0d3dbVUnG+dUTKff/OY32LlzJwYGBqzp5NSc1q5di507d+LNN9+0plOxc9q4cSN27tyJ7u5uKzo9/fTTePLJJ5FOpx2b05YtW3DxxRcDAMaPH4+FCxcWsl5//fWYMGECAODCCy/EV7/6VZx22mn467/+a1x//fWFxy1cuBDjx48HAFx88cWYMWMGAGDixIm45pprAOQPPi5cuBBjxowBALzwwgvaO23YsAHpdNqxz4jf/e53eOaZZ5BOp8W/92z9jGAndhrstG/fPvh8vsIBWxs62TinYjvt3r0bPp+vcPDchk5OzCmdTmPt2rX4zW9+Y02nocxJx7Ewxygi4Xp6ehQAVVNTo+rr61VPT4/KZDLK7/erXC6nlFIqGAyqZDKplFIqFoupSCSilFIqnU4rv99feK5AIKBSqZRSSqloNKqi0ahSSqlUKqUCgUDhcX6/X6XTaaWUUpFIRMViMaWUUslkUgWDQaWUUrlcTvn9fpXJZJRSSoXDYRWPx5VSSiUSCRUKhZRSSmWzWeX3+1U2m1VKKRUKhVQikVBKKRWPx1U4HFZKqSN26uvrU3fccYcKBAJWdAoEAuqOO+5Qe/fuNWJO719/Se+9gYEBtXjxYrVnz54Re+8V02lwnvv27XN0Tjo76ZwTO7FTKTsN7sd33nnHmk42zqmYTr29vWrx4sXq0KFD1nRyak779u1TixcvVv39/dZ0KnZOfX19avHixerAgQNWdNq7d2/h72ROzSkajapx48YpAKqiokJ5vV4FQAFQTU1NqrKyUgFQtbW16oQTTlC33HKLGj16tGpqaio8zuv1qoqKCgVA1dXVqVGjRikAqqqqSjU2NioAyuPxKK/Xq8rLy1Vzc7MKhUJaO7333nuFtXTqM2LPnj2FDNLfe7Z+RrATOw12GhgYUHfccUchrw2dbJxTsZ0OHjxY+Hy1pZMTcxr831a9vb3WdBrKnIZzLGzwWO7gr56eHlVKHqU0f/sZkWbbt2/HpEmTCv/e09ODM844w8FERERERETkVrNmzcKGDRtK+nrr168v2esRERERDYfTx3J5SysiIiIiIiKiIk2dOtXq1yMiIiIyGU94EBkgEAhg0aJFIr74RwfT+kjNKyWXlBxExP1oE85SHzevpW3dpfRZsGBBUY/zer247bbbDvti85F8vaGQsJYSMhBRHvejXThPPdy+jib35y2tSDynL4OSIJPJoLe3F+PHj0dFRYXTcYbNtD5S80rJJSUHEXE/2oSz1MfNa2lbd0l9pk+fjk2bNh3xMRUVFRg/fjx6e3uRyWSO+XUGv4xUJwlrKSEDEeVxP9qF89TD7es4nP5OH8vlCQ8Sz+lNQkRERERE9H5r1qzBvHnzSvI6c+bMGfHXISIiItLF6WO5vKUVkQGi0Sgef/xxRKNRp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbukPnPnzj3qrabq6upw+eWXo66u7pheo7W1dcROdkhYSwkZiCiP+9EunKcebl9Hk/vzhAeRAcrKyuD1elFWZseWNa2P1LxScknJQUTcjzbhLPVx81ra1l1an1/84hcYN27cx/5+LpdDIBBALpcb8nOPGzcO99xzz3DiHZGEtZSQgYjyuB/twnnq4fZ1NLk/b2lF4jl9GRQREREREdFH6e7uxowZM+D3+7U9Z3NzMzo6OtDS0qLtOYmIiIhKxeljueadoiFyoVQqhW3btiGVSjkdRQvT+kjNKyWXlBxExP1oE85SHzevpW3dJfZpaWlBR0fHR17pUVVVhSlTpqCqqqro5xs3blxJTnZIWEsJGYgoj/vRLpynHm5fR5P784QHkQESiQTa29uRSCScjqKFaX2k5pWSS0oOIuJ+tAlnqY+b19K27lL7tLS0oKurC62trYf9/2tqajBz5kzU1NQU9Tytra3o6uoqyZUdEtZSQgYiyuN+tAvnqYfb19Hk/rylFYnn9GVQRERERERExVizZg3uuusuvPTSS0X/zPTp03HzzTeP2BeUExEREZWS08dyK0r2SkR0zJRSSCaTqK6uhsfjcTrOsJnWR2peKbmk5CAi7kebcJb6uHktbetuQp+5c+di7ty56OnpwcqVK/Haa69h8+bNh33HR3NzM8455xxMnToVCxYsOOyAQKlIWEsJGYgoj/vRLpynHm5fR5P785ZWRAYIBoNYsmQJgsGg01G0MK2P1LxScknJQUTcjzbhLPVx81ra1t2kPpMmTcKPfvQjnHfeedi1axdCoRD6+/sRCoUwMDCA9evX4/bbb3fkZAcgYy0lZCCiPO5Hu3Ceerh9HU3uz1takXhOXwYlQTabRX9/P8aMGYPy8nKn4wybaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fx+H0d/pYLk94kHhObxIiIiIiIiIiIiIiOjqnj+XyllZEBohEInjkkUcQiUScjqKFaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQEqKipwyimnoKKiwukoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0uT9vaUXiOX0ZFBEREREREREREREdndPHcnmFB5EBkskkOjs7kUwmnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OEB5EBUqkUtm3bhlQq5XQULUzrIzWvlFxSchAR96NNOEt93LyWtnU3rY/kvBKySchARHncj3bhPPVw+zqa3J+3tCLxnL4MioiIiIiIiIiIiIiOzuljubzCg8gAuVwOgUAAuVzO6ShamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5P094EBkgFArB5/MhFAo5HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35y2tSDynL4OSIJfLIRQKobGxEWVl5p+nNK2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt6zic/k4fy60o2SsNwcGDB/HCCy9g8+bNeP3117F792709fUhkUgAAGpqajB27FiccsopOPPMMzF16lTMmjULxx9/vMPJiUZGWVkZvF6v0zG0Ma2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyfzGnpw4dOoT77rsP5513HsaOHYsrrrgCPp8P7e3t2L17N+LxOJRSUEohHo9j9+7daG9vh8/nwxVXXIGxY8fivPPOw3333YdDhw45XYdIq3A4jAceeADhcNjpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/4yc8/vSnP+G6667DSSedhJtuugmbN29GLpcrnNwY/PVBH/z9XC6HzZs346abbsJJJ52E6667Dm+99ZYDjYj0q6qqwpQpU1BVVeV0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfse/w2LNnD37yk5/gscceQzabPeykRlNTE77whS9gypQpOP300/GJT3wCxx9/PGprawtXePT392PPnj1444038Prrr+OVV15BMBj8SzGPB+Xl5fj2t7+NRYsWYfz48U7UJA2cvu8bERERERERERERER2d08dyHbnCY/HixTjttNPwyCOPIJPJQCmFU089FT/+8Y+xefNmHDp0CGvWrMHtt9+Ob33rW/ibv/kbtLS0YMKECTj11FPR0tKCCy64AN/+9rdxxx13YM2aNTh06BA2b96MH//4x/jMZz4DpRQymQweeeQRnH766bjzzjudqEqkRSKRQHt7e+F7bExnWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+jpzw+Od//mdEo1GUlZXhsssuw8aNG/HWW2/h9ttvx7nnnguPxzPk5/R4PDj33HNx++23480330R7ezu+8Y1voKysDNFoFP/8z/88Ak2ISiOTyWD37t3IZDJOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9HbmlVXl5Oa6++mrceuutmDBhwoi+1p///Gf867/+Kx577DGk0+kRfS0aGU5fBkVERERERERERERER+f0sVxHrvDo7u7GQw89NOInOwDg05/+NJYtW4aurq4Rfy2ikZLNZtHX14dsNut0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfkRMeEydOLPlrnn766SV/TSJdwuEwHnzwQYTDYaejaGFaH6l5peSSkoOIuB9twlnq4+a1tK27aX0k55WQTUIGIsrjfrQL56mH29fR5P6O3NKKaCicvgxKAqUUkskkqqurj+k7bqQxrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3rOJz+Th/LdeQKDwD49a9/jVgs5tTLExnF4/GgpqbGmg9Y0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib3d+yEx9VXX42xY8fimmuuQXt7u1MxiIwQCoVw9913IxQKOR1FC9P6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m93fshAcARKNRPProo/jyl7+MT33qU/jpT3+Kt99+28lIRCLV1NRg5syZqKmpcTqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7u/Yd3hUV1cjnU4fHub/XSJz3nnn4eqrr8Zll12GxsZGJ+KRIE7f942IiIiIiIiIiIiIjs7pY7mOXeHR19eHe++9F5///OcL/z+lFJRSePXVV3Hddddh7NixaG1txdq1a8HvVic3i8fjWLt2LeLxuNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn/HTng0NzfjhhtuwKuvvoo333wTt956K04++WQAfznxkUgk8Nvf/hZz587F+PHjcfPNN2P79u1ORSZyTC6XQyAQQC6XczqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7u/YLa0+TkdHBx599FE88cQTCIfDh/3e4C2vzjrrLFx99dVYsGABRo8e7URMKiGnL4MiIiIiIiIiIiIioqNz+liuo19a/lFmzJiBZcuWYf/+/fjNb36Dr371qygvLwfwlys/tm7dih/+8If4xCc+ga9//etYvXo1MpmMw8mJRk4mk8Hu3buteZ+b1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/uBMeg2pqatDa2ornnnsO7733Hu666y60tLQA+MuJj1QqhaeffhqXXHIJTjzxRPzwhz/Ea6+95nByIv0ikQgeffRRRCIRp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Ho/sowW7duVQsXLlRjx45VHo/nsF9lZWWqrKxMnXHGGer//J//43RU0qSnp0cBUDU1Naq+vl719PSoTCaj/H6/yuVySimlgsGgSiaTSimlYrGYikQiSiml0um08vv9hecKBAIqlUoppZSKRqMqGo0qpZRKpVIqEAgUHuf3+1U6nVZKKRWJRFQsFlNKKZVMJlUwGFRKKZXL5ZTf71eZTEYppVQ4HFbxeFwppVQikVChUEgppVQ2m1V+v19ls1mllFKhUEglEgmllFLxeFyFw2GllGIndmIndmIndmIndmIndmIndmIndmIndmIndmIndjK60+Cx3MFfPT09qpTEXuHxcaZMmYL/+3//L3p7e/HMM8/gG9/4BmpqagD85cqPHTt24Oabb3Y4Kek2bdo0XHrppQCA/v5++Hw+JJNJAMCyZcuwY8cOAPnvgWlrawMA9Pb2wufzFZ5j6dKl2LVrFwBg3bp1WLduHQBg165dWLp0aeFxPp8Pvb29AIC2tjZ0dHQAAHbs2IFly5YBAJLJJHw+H/r7+wEAq1atQmdnJwBg69atWL58OQAgFArB5/MhFAoBAJYvX46tW7cCADo7O7Fq1Sp2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2YidrOjmmpKdXRkgwGFTXXXdd4SqPwf9LduAVHkr19fWpO+64QwUCASs6BQIBdccdd6i9e/caMaf3r7+k997AwIBavHix2rNnj6P/9cHgPPft2+fonPhfVLATOwUL+/Gdd96xppONcyqmU29vr1q8eLE6dOiQNZ2cmtO+ffvU4sWLVX9/vzWdip1TX1+fWrx4sTpw4IAVnfbu3Vv4O5kJc5L83nvvvfcKa+nUZ8SePXsKGaS/92z9jGAndhrsNDAwoO64445CXhs62TinYjsdPHiw8PlqSycn5jT4v616e3ut6TSUOQ3nWJjTV3h4lFLK2VMux27Pnj34zW9+g8ceewxvvPFG4f+vlILH40E2m3UwHemyfft2TJo0qfDvPT09OOOMMxxMVHrpdBq7du3ChAkTUFlZ6XScYTOtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7es4nP5OH8s17oRHLBbDqlWr8Nhjj6G9vR25XK7we4NVamtr8fWvfx2PPfaYUzFJI6c3CREREREREREREREdndPHco34Dg+lFNavX48rr7wSJ5xwAr7zne/gxRdfRDabLXxvBwBMnz4dDz30EPr6+niyg6wSi8WwevVqxGIxp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/hVOBziS7du349e//jVWrFiBvXv3AvjLVRyDPv3pT+PKK6/ElVdeiVNOOcWBlERERERERERERERE5DRxt7Q6cOAAVqxYgV//+td4/fXXAXz4JEdjYyO+8Y1v4KqrrsKXvvQlJ2JSCTl9GRQRERERERERERERHZ3Tx3JF3NIqmUzit7/9LebOnYvx48fjH//xH/H6668fdruqsrIyXHjhhVi+fDn6+vrwy1/+kic7yDXS6TR27tyJdDrtdBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7Oprc39ETHi+99BKuvfZajB07Fq2trVi7di0ymcxhJzpOP/103HnnnXj33Xexdu1aLFiwADU1NU7GJio5k++b91FM6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfsVtaffrTn8Y777wDIH/LKo/HUzjJcdxxx2HBggW46qqrcO655zoRjwRx+jIoIiIiIiIiIiIiIjo6p4/lOval5bt37z7sJEdFRQVmz56Nq666CvPmzUNlZaVT0YiIiIiIiIiIiIiIyDCO3tJKKYWzzjoLd999N/bs2YPVq1fj61//Ok92EH1AIBDAokWLEAgEnI6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+zt2S6sf/ehHuOqqqw67vIXoozh9GZQEmUwGvb29GD9+PCoqHLswSxvT+kjNKyWXlBxExP1oE85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6Ow+nv9LFcx054EBXL6U1CREREREREREREREfn9LFcR29pNRThcBhvvPEGXnnlFbz00ktOxyEqqWg0iscffxzRaNTpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/6OtxwuEwHnjgASxfvhw9PT2FLzj3eDzIZDKHPfbAgQP42c9+BgBoaWnBt7/97ZLnJRopZWVl8Hq9KCsz5hzlEZnWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub/YW1p1dHTgiiuuwL59+wAA74/p8XiQzWY/9DPnnHMOtm3bBq/Xi3379qGqqqpkeWnkOH0ZFBEREREREREREREdndPHckWeonn55Zdx0UUXYd++fYUTHaeffjpOPPHEI/7cddddB6UUAoEA1q9fX4qoRCWRSqWwbds2pFIpp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/uJOeCQSCVx++eVIJpNQSuGqq65Cb28vtm/fjr/7u7874s9ecsklhctsXnjhhVLEJSqJRCKB9vZ2JBIJp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/uJuaXXffffhxhtvhMfjwfXXX49777238Hs33ngj7rvvvo+9pRWQvxLkrbfewpe+9CV0dHSUKjaNIKcvgyIiIiIiIiIiIiKio3P6WK64Kzza2toAAA0NDbjzzjuH/PMTJ06EUgpvv/227mhEjlFKIZFIQNj5yWNmWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+4k54dHd3w+PxYPr06aivrx/yzx933HEAgEAgoDkZkXOCwSCWLFmCYDDodBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7OprcX9wtrWpqapBOp/G9730PS5cuPez3irml1fe+9z386le/QnV1NeLxeCki0whz+jIoCbLZLPr7+zFmzBiUl5c7HWfYTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7Og6nv9PHcitK9kpFqqurQyAQOOaTFX19fQCA0aNH64xF5Kjy8nKMHTvW6RjamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5v7hbWp144olQSmHHjh1D/lmlFDo7O+HxePCpT31qBNIROSMSieCRRx5BJBJxOooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uL+6Ex/nnnw8A2LJlC3bv3j2kn33iiSdw8OBBAMDMmTM1JyNyTkVFBU455RRUVIi7KOuYmNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5v7jv8HjxxRcxa9YseDwezJkzB21tbYXfO9J3eOzduxfnnnsu+vr6UFZWhq6uLkycOLHU8WkEOH3fNyIiIiIiIiIiIiI6OqeP5Yq7wuOCCy7AjBkzoJTCs88+i2984xsYGBg44s8888wzmDZtGvr6+uDxeHDppZfyZAdZJZlMorOzE8lk0ukoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub+4Ex4A8NhjjxW+FOU///M/cdJJJ+Hiiy/Gyy+/XHjM3//932PBggU4+eST8bWvfQ179uwBAHzqU5/CAw884EhuopGSSqWwbds2pFIpp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/uJuaTXojTfewCWXXIKdO3cCADwez8c+drDCGWecgaeffppfWG4Zpy+DIiIiIiIiIiIiIqKjc/pYrsgrPADg9NNPxx//+EcsWrQIf/VXfwWl1Mf+8nq9uO2229DZ2cmTHWSlXC6HQCCAXC7ndBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7OprcX+wJDwCora3F//f//X/o7e3FK6+8gp///Of4x3/8R1x77bX44Q9/iDvuuAMbNmxAX18ffvKTn6Curs7pyEQjIhQKwefzIRQKOR1FC9P6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9xd3S6tkMonq6uphP88rr7yCL3zhCxoSkdOcvgxKglwuh1AohMbGRpSViT5PWRTT+kjNKyWXlBxExP1oE85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6Ow+nv9LFccdO67LLLhn2pzH/9139h9uzZmhIROa+srAxer9eaD1jT+kjNKyWXlBxExP1oE85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6OJvcXl7itrQ3XXnvtMf/8K6+8gtmzZyMSiWhMReSscDiMBx54AOFw2OkoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub+4Ex4A8Oijj+Kf/umfhvxzL7/8Mk92kJWqqqowZcoUVFVVOR1FC9P6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9xf3HR4nnngi9u/fD4/HgzvvvBM/+tGPivq5l19+GXPnzi2cdZo3bx6efvrpkYxKJeL0fd+IiIiIiIiIiIiI6OicPpYr7gqPtWvXoqmpCUop3HLLLXj44YeP+jMfdbJj1apVIx2VqGQSiQTa29uRSCScjqKFaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P7izvhceaZZ+Kpp55CTU0NlFK47rrrjnilxsed7DDxchuij5PJZLB7925kMhmno2hhWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+4m5pNeipp57CpZdeimw2i5qaGjz//PM4//zzD3vMyy+/jDlz5hS+s2PevHl44oknUFlZ6URkGiFOXwZFREREREREREREREfn9LFccVd4DPra176GBx54AED+Epq//du/xeuvv174/U2bNvFkB7lGNptFX18fstms01G0MK2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf7EnPADgu9/9Lu644w4AQDAYxOzZs/HnP/8ZmzZtwty5cwsnOy6++GKe7CCrhcNhPPjgg4Vbt5nOtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9xd7S6v3+4R/+AXfffTc8Hg9OOukkHDp06LCTHatWreLJDos5fRmUBEopJJNJVFdXw+PxOB1n2EzrIzWvlFxSchAR96NNOEt93LyWtnU3rY/kvBKySchARHncj3bhPPVw+zoOp7/Tx3IrSvZKw/Bv//ZvOHjwIH7zm9/gvffew+A5Gp7sILfweDyoqalxOoY2pvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uL/qWVu/38MMPY86cOVBKwePx4G//9m95GytyjVAohLvvvhuhUMjpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQ4aMopRAKhXDw4EGEQiEYcFMMomGTuh/p2HCeerh9HU3u78gVHv/yL/9yTD93xhlnYN26daiqqsKkSZMK3+/xcX7yk58c0+sQSVNTU4OZM2cae2b1g0zrIzWvlFxSchAR96NNOEt93LyWtnU3rY/kvBKyScgwqLu7GytXrsTmzZuxZcsW+P3+wu81Nzfj7LPPxtSpU9Ha2nrYLTqIbCFpP9LwcZ56uH0dTe7vyHd4lJWVleTeZyZ+izx9mNP3fSMiIiIiIiL7rFmzBkuWLMGmTZuK/pnzzz8ft9xyC+bMmTOCyYiIiMzl9LFcx25ppZQa0V9ENonH41i7di3i8bjTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyOZkhoGBAbS2tmLevHlDOtkBAJs2bcLcuXNxxRVXYGBgYIQSEpWWhM8E0ofz1MPt62hyf0duafXTn/7UiZclMlYul0MgEEAul3M6iham9ZGaV0ouKTmIiPvRJpylPm5eS9u6m9ZHcl4J2ZzK0NXVhdmzZ2Pv3r3Dep4VK1agvb0da9euRUtLi6Z0RM6Q8JlA+nCeerh9HU3u78gtrYiGwunLoIiIiIiIiMh8XV1dmDlz5mHf0TFczc3N6Ojo4EkPIiKi/8fpY7mO3dKKiIqXyWSwe/duZDIZp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZCt1BkGBgYwe/ZsrSc7AMDv9+Oiiy7i7a3IaBI+E0gfzlMPt6+jyf15woPIAJFIBI8++igikYjTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyFbqDDfeeOOwb2P1cfbu3YubbrppRJ6bqBQkfCaQPpynHm5fR5P785ZWJJ7Tl0ERERERERGRudasWYN58+aN+Os888wzmDt37oi/DhERkWROH8vlFR5EREREREREZK0lS5aU5HXuuuuukrwOERERfTye8CAyQDAYxJ133olgMOh0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSspUqQ3d3NzZt2jSirzHopZdeQk9PT0lei0gnCZ8JpA/nqYfb19Hk/jzhQWSA2tpazJ8/H7W1tU5H0cK0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishW6kyrFy5ckSf3+nXI9JBwmcC6cN56uH2dTS5P7/Dg8Rz+r5vREREREREZKZZs2Zhw4YNJX299evXl+z1iIiIpHH6WC6v8CAyQCwWw+rVqxGLxZyOooVpfaTmlZJLSg4i4n60CWepj5vX0rbupvWRnFdCtlJkUEphy5YtI/b8H+W1114D/7tSMo2EzwTSh/PUw+3raHJ/nvAgIiIiIiIiIuuEw2H4/f6Svqbf70ckEinpaxIREdFf8JZWJJ7Tl0ERERERERGReQ4ePIgxY8aU/HX7+/tx/PHHl/x1iYiIJHD6WC6v8CAyQDqdxs6dO5FOp52OooVpfaTmlZJLSg4i4n60CWepj5vX0rbupvWRnFdCtlJkqKqqGrHnPpLq6mpHXpfoWEn4TCB9OE893L6OJvfnCQ8iA5h837yPYlofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZCtFBkaGhrQ3Nw8Ys//UZqbm1FfX1/S1yQaLgmfCaQP56mH29fR5P68pRWJ5/RlUERERERERGSmWbNmYcOGDSV9vfXr15fs9YiIiKRx+lgur/AgIiIiIiIiIitNnTrV6tcjIiKiwxl7wuNPf/oTOjs78dZbbyGZTDodh0qgpqamcGlwNptFIBDA4AVKoVAIqVQKABCPxxGNRgEAmUwGgUCg8BzBYLBw77lYLFa4LCudTiMYDBYeFwgEkMlkAADRaBTxeBwAkEqlEAqFAABKKQQCAWSzWQBAJBJBIpEAACSTSYTDYQBALpdDIBBALpcDAITD4cJ7NpFIIBKJHLVTX18fFi1aVMhleqdAIIBFixZh7969Rsxp//79hfWX9N4bGBjAokWLsGfPnhF77xXTaXCe+/btc3ROOjvpnBM7sVMpOw3ux3fffdeaTjbOqZhOvb29WLRoEQ4dOmRNJ6fmtG/fPixatAj9/f3WdCp2ToN/hzxw4IAVnfbu3Vv4O5kJc5L83nvvvfcKa+nUZ8SePXsKGUZyTpdddhm8Xm8ha1NTEyorKwEAtbW1qK2tBQBUVlaiqamp8Div14uKigoAQF1dHUaNGgUg/70gjY2NAACPxwOv14vy8nIAQH19PS655BJtc+JnOTuVqtPg/7b0+/3WdLJxTsV2OnjwYOHz1ZZOTswp8P/+t1Vvb681nYYyJx3Hwpwi4oRHLBbDypUr8U//9E+4/vrrsWTJEvzpT3/60ONyuRyWLFmCsWPH4rTTTsMXv/hFnH766Rg9ejS++c1v4s0333QgPZXKtGnTcOmllwIA+vv74fP5Cptw2bJl2LFjBwCgo6MDbW1tAIDe3l74fL7CcyxduhS7du0CAKxbtw7r1q0DAOzatQtLly4tPM7n8xU+0Nra2tDR0QEA2LFjB5YtWwYg/wHh8/nQ398PAFi1ahU6OzsBAFu3bsXy5csB5D8EfD5f4UNn+fLl2Lp1KwCgs7MTq1atOmqnLVu24KSTTkJ9fb0Vnerr63H66acXMkjvtH37dpxwwgmor68X9d6Lx+O46qqrsG7duhF77xXTqb6+HhMmTChkkPzec2JO7MROpexUX1+PBQsW4OGHH7amk41zKqZTW1sbrrrqKuRyOWs6OTWnzs5OXHXVVThw4IA1nYqd05YtW3DVVVfhvffes6JTR0cHTj/9dNTX1xsxJ8nvvSeeeAJf/OIXUV9f79hnxLp163DmmWeivr5+ROfk9XqxcOHCQtbrr78eEyZMAABceOGFuPDCCwEAEyZMwPXXX1943MKFCzF+/HgAwMUXX4wZM2YAACZOnIhrrrkGQP7LyRcuXIgxY8YAAL773e8WckvfT7Z+7rHTsXUaPGA6eDLQhk42zqnYToMHxwf/o2EbOjkxp/r6enzuc58rZLCh01DmpONYmGOUw55//nk1btw4VVZWdtiv8vJy9ZOf/KTwuFQqpWbPnl34fY/Hc9ivsrIyVV1drZ544gkH29BI6OnpUQBUTU2Nqq+vVz09PSqTySi/369yuZxSSqlgMKiSyaRSSqlYLKYikYhSSql0Oq38fn/huQKBgEqlUkoppaLRqIpGo0qp/PsrEAgUHuf3+1U6nVZKKRWJRFQsFlNKKZVMJlUwGFRKKZXL5ZTf71eZTEYppVQ4HFbxeFwppVQikVChUEgppVQ2m1V+v19ls1mllFKhUEglEgmllFLxeFyFw2GllGIndmIndmIndmIndmIndmIndmKnEej0xBNPKAAKgGpqalKVlZUKgKqtrVW1tbUKgKqsrFRNTU2Fx3m9XlVRUaEAqLq6OjVq1CgFQFVVVanGxkYFQHk8HuX1elV5ebkCoFavXs05sRM7sRM7sZPrOw0eyx381dPTo0rJ0S8tf+mll3DhhRcinU7jo2J4PB74fD78z//5P3HrrbfizjvvhMfj+djHKqVQWVmJl19+GZ/73OdKUYFKwOkvupEgGo2ira0NF198Merq6pyOM2ym9ZGaV0ouKTmIiPvRJpylPm5eS9u6m9ZHcl4J2UqdobW1FStXrhzR5x/8L2aJTCPhM4H04Tz1cPs6Dqe/08dyHbulVTqdxne/+93C/b6qqqrw5S9/GZdffjkmT54MIH+/sVtuuQXvvPMOfD4fPB4PTjnlFDz22GPo6+tDMpnE7t278Ytf/AJjxoyBx+NBOp0+7DJUIhuUlZXB6/WirEzEXeiGzbQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyFbqTP84he/wLhx40bkuceNG4d77rlnRJ6bqBQkfCaQPpynHm5fR5P7O3aFx+9+9zt885vfhMfjwac+9SmsXbsWp556auH3H3nkEVx77bVQSuGLX/wiXn75ZZx22ml4+eWXcdxxx33o+Xbv3o0vfvGL2LdvHzweDzZt2oQvfOELpaxEI8Tps4JERERERERkvu7ubsyYMaPwxcw6NDc3o6OjAy0tLdqek4iIyGROH8t17BTN6tWrC//88MMPH3ayAwCuvvpqXHnllVBK4eWXX4bH48H999//kSc7AOCUU07Bz372s8K//+d//ueI5CZyQiqVwrZt2wpXRJnOtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZsTGVpaWtDR0aHtSo9x48bxZAdZQcJnAunDeerh9nU0ub9jJzy2bNkCAJgwYQLOP//8j3zMVVddBQCFW1nNnDnziM/5jW98A16vFwDwxz/+UVtWIqclEgm0t7cjkUg4HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGxOZWhpaUFXVxdaW1uH9Tytra3o6uriyQ6ygoTPBNKH89TD7etocn/HbmnV3NyMUCiESy+9FL/97W8/8jF+vx+jR4+Gx+PBJZdcgv/4j/846vN+5StfwYYNGzBu3Dj09vbqjk0OcPoyKCIiIiIiIrLPmjVrcNddd+Gll14q+memT5+Om2++GXPmzBnBZEREROZy+lhuRcle6QMikQgAYPTo0R/7mMGrNQDg+OOPL+p5TzrpJABAMBg89nBEwiilkEwmUV1dDY/H43ScYTOtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiHD3LlzMXfuXPT09GDlypXYvHkzXnvttcO+46O5uRnnnHMOpk6digULFhx2AIfIFhL2I+nDeerh9nU0ub9jt7SqqakBgCPeB+z9i1lRUdy5mcHnTSaTw0hHJEswGMSSJUusOZFnWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1ChkGTJk3C7bffjvXr12NgYAChUAj9/f0IhUIYGBjA+vXrcfvtt/NkB1lL0n6k4eM89XD7Oprc37FbWn3qU5/Cu+++i7lz5+Lpp5/+2MeVlZXB4/HgBz/4Ae65556jPu+3vvUtrFixAk1NTYf9VxlkLqcvg5Igm82iv78fY8aMQXl5udNxhs20PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6/jcPo7fSzXsVtanXLKKXjnnXfw1ltvHfFx11xzDTweD77whS8U9byD39tx4oknDjsjkRTl5eUYO3as0zG0Ma2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf8duaTVx4kQAwNtvv41QKPSxj/vVr36FX/7yl7j88suLet7XX38dHo8Hn/nMZ7TkJJIgEongkUceKXz3jelM6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfsRMeZ511FoD8F6C8/PLLWp7z5ZdfLtxX7Nxzz9XynEQSVFRU4JRTTin6u2ykM62P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf8e+w+ONN94o3LvrhhtuwL333jvs57z22muxbNkyeDwevPjii5gxY8awn5Oc5/R934iIiIiIiIiIiIjo6Jw+luvYFR6nn346+vv70d/fj8WLFw/7+Q4dOoSuri6ceeaZ+NznPocvfelLGlISyZBMJtHZ2YlkMul0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfsRMeADB69GiMHj0aDQ0Nw36u4447Dps3b8bWrVvR2dk55G+PJ5IslUph27ZtSKVSTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/R27pRVRsZy+DIqIiIiIiIiIiIiIjs7pY7mOXuFBRMXJ5XIIBALI5XJOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9ecKDyAChUAg+nw+hUMjpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/cbe0uvHGG3H//ffD4/Egk8k4HYdKwOnLoCTI5XIIhUJobGxEWZn55ylN6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6Dqe/08dyK0r2ShoZdo6GaNjKysrg9XqdjqGNaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P7u+/0FJGBwuEwHnjgAYTDYaejaGFaH6l5peSSkoOIuB9twlnq4+a1tK27aX0k55WQTUIGIsrjfrQL56mH29fR5P484UFkgKqqKkyZMgVVVVVOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9jfwOj/vuuw8ejwfZbNbpOFQCTt/3jYiIiIiIiIiIiIiOzuljubzCg8gAiUQC7e3tSCQSTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XnCg8gAmUwGu3fvRiaTcTqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s9bWpF4Tl8GRURERERERERERERH5/SxXOOu8PjMZz6DGTNmYPr06U5HISqZbDaLvr4+a07ymdZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5v3EnPG666SZs3LgRGzdudDoKUcmEw2E8+OCDCIfDTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/Y27pRW5j9OXQUmglEIymUR1dTU8Ho/TcYbNtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7ev43D6O30st6Jkr0REx8zj8aCmpsbpGNqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/cbe0InKjUCiEu+++G6FQyOkoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub9RV3hs3boVzz33HN544w0cPHgQdXV1GDduHGbOnImLLroItbW1TkckGhE1NTWYOXOmsWdWP8i0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf2N+A6Pt99+GzfccAM2bNjwsY85/vjj8a//+q/4H//jf5QwGZWC0/d9IyIiIiIiIiIiIqKjc/pYrmO3tKqsrERVVRX+/u///oiP+/3vf4/zzjsPGzZsgFLqI38BQH9/P77//e/jhz/8YSniE5VUPB7H2rVrEY/HnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+zt2S6tsNguPx4NsNvuxj+nv78ff/d3fYWBgoPBt8J/85CdxwQUX4MQTT0Q0GsXWrVvxyiuvIJfLQSmFe++9F1OmTMF3vvOdUlUhGnG5XA6BQAC5XM7pKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/Y7e0Kisrg8fjwQ9+8APcc889H/mYm266Cffeey88Hg+qq6txzz334Lvf/W7h5MegnTt34uqrr8bmzZsBAMcddxx6e3uNvMcYfZjTl0ERERERERERERER0dE5fSzXsVtaHU0sFsOyZcsAAB6PB6tWrcK11177oZMdAHDaaadh48aNaGlpAQD4/X48/vjjJc1LNJIymQx2796NTCbjdBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7OprcX+wJj1deeQWxWAwejweXXHIJ5syZc8THjxo1Cvfff3/h31944YWRjkhUMpFIBI8++igikYjTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/sbe0+vnPf44f/ehH8Hg8eOaZZzB79uyinvfUU0/Fn//8Z3z2s5/FG2+8oTs2OcDpy6CIiIiIiIiIiIiI6OicPpYr9gqPgwcPFv753HPPLfrnzjnnHADAgQMHtGciIiIiIiIiIiIiIiKZxJ7wyGazhX8+7rjjiv65wceaeLkN0ccJBoO48847EQwGnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+4s94XHCCScU/jmRSBT9c4OPra+v156JyCm1tbWYP38+amtrnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+1c4HeDjTJ06tfDP7777Lk4//fSifm7//v0AgOOPP35EchE5obKyEqeddprTMbQxrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/x6/wuO+++1BeXv6hXzNnziw85o9//GPRz9fV1QWPx4MxY8aMQFoiZ8RiMaxevRqxWMzpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/4yc8AEAp9ZG/PB4PAOC5554r6nnefPNN7N27FwBw5plnjlheIiIiIiIiIiIiIiKSxaOUUk68cFlZ8edaampqsGfPHjQ3Nx/xcT/96U/xv//3/4bH48Gjjz6Kb33rW8ONSQJs374dkyZNKvx7T08PzjjjDAcTEREREREREREREdEHOX0s17ErPHK5XNG/YrHYUU92RKNR3H///QDyV4ycd955pahBVBLpdBo7d+5EOp12OooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uL+KWVjrU1dWhv7+/cJJkwoQJTkci0sbk++Z9FNP6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m93fsllZExXL6MigiIiIiIiIiIiIiOjqnj+Vac4UHERERERERERERERG5F094EBkgEAhg0aJFCAQCTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XlLKxLP6cugJMhkMujt7cX48eNRUVHhdJxhM62P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt6zic/k4fy+UJDxLP6U1CREREREREREREREfn9LFcq25pdcEFFxR+ffnLX3Y6DpE20WgUjz/+OKLRqNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn+rrsdpb2+Hx+OB+v/Zu/P4qqp7beDPPmSCBBJEHFFRb+uIL6hVtBVweNVqrUOpRWpFOym316Htp7W1vU63V8XbWz1WBbUiKqkDUZCI0iCWSK1ctYIScaho1BACIZx5Htb7x7k5rzglyErWb639fD+ffC6Wc06eZ/3OOrV7372PUvA8z3QcIm0CgQAaGhoQCLhxjtK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2duqVVIBDY5oRHoVAwHYk0MH0ZFBERERERERERERH1zfSxXPtO0XyOSZMmYdKkSZg8eTImTZpkOg6RNtlsFmvWrEE2mzUdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvd36oTHihUr8Ne//rX8Q+SKdDqNFStWIJ1Om46ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+zt1Sytyk+nLoIiIiIiIiIiIiIiob6aP5Tp1hQeRq5RSSKfTcOX8pG19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+/OEB5EFIpEIZs2ahUgkYjqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7s9bWpF4pi+DkqBQKKC7uxujR4/GkCFDTMfZYbb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR13pL/pY7k84UHimd4kRERERERERERERNQ308dynbul1d13343rr78e119/vekoRNrE43HMmzcP8XjcdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Otrcv8J0AN1mz56N1157DQBw9dVXG05DpEdFRQXGjh2Ligo3tqxtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/s7d0urCRMm4NVXX4XneSgUCqbjkAamL4MiIiIiIiIiIiIior6ZPpbr3C2tiFyUyWSwatUqZDIZ01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf57wILJANpvFmjVrkM1mTUfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/Y3d0uqDDz4YkNf9+te/jjfeeIO3tHKI6cugiIiIiIiIiIiIiKhvpo/lGvvWkbFjx8LzPFO/nsgqxWIR0WgUI0aMQCBg/4VZtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3ubzStUkr7D5GLotEogsEgotGo6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7FbWgUCgfIVHgMRgbe0cofpy6AksPms6qexrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/ruCP9TR/LNXZLq5122glbt26F53loaWnBl770pR1+TaUUTj/9dLzxxhsaEhLJEQgE0NDQYDqGNrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7m/s9NRXvvKV8p83bdqEffbZZ4d/xo4di6qqKlOViAZMLBbDnDlzEIvFTEfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/Y2d8DjyyCPLf37ppZdMxSCyQlVVFcaPH+/MCT3b+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvc39h0eixcvxllnnQXP8zBx4kQ8//zzWl53woQJePXVV/kdHg4xfd83IiIiIiIiIiIiIuqb6WO5Im5ptWbNGhSLRVNRiMRLp9NYsWIF0um06Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7ETHrvvvjt22203KKWQSqWwdu1aLa97ySWX4JprrsHVV1+t5fWIJMjn82hvb0c+nzcdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvc3dksrov4yfRkUEREREREREREREfXN9LFcY1d4EFH/FQoFdHV1OfO9NLb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7s8THkQWiMViuOuuuxCLxUxH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf15SysSz/RlUBIopZDJZFBdXQ3P80zH2WG29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dd6S/6WO5FYP2m4joC/M8DzU1NaZjaGNbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v68pRWRBaLRKG699VZEo1HTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/nvAgskBNTQ2mTJli7ZnVj7Otj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39+hweJZ/q+b0RERERERERERETUN9PHcnmFB5EFUqkUli5dilQqZTqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7s8THkQWKBaLCIfDKBaLpqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/rylFYln+jIoIiIiIiIiIiIiIuqb6WO5vMKDyAL5fB7t7e3I5/Omo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+POFBZIF4PI77778f8XjcdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Otrcn7e0IvFMXwZFRERERERERERERH0zfSy3YtB+Ezmrq6sLzzzzDF5++WW8/PLLWLNmDRKJBPbZZx+0t7ebjkdEREREREREREREPmD9La1yuRw2bdpk5f3EXPHwww/je9/7HoLBIJ5//nkkEgnTkZwTiURw0003IRKJmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s84fHuu+/i3XffxYYNGz7zMe+88w6++c1vYvjw4dhjjz0wdOhQfP3rX8frr78+iEkJAEaMGIETTzwRV155JR599FHceuutpiM5Z9iwYTjrrLMwbNgw01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf3Hf4fHSSy9h4sSJAICZM2fi9ttv/8RjPvzwQxx++OHYunUrPh5/2LBhWL58OY4++uhByUuf1NTUhG9/+9vabmll+r5vRERERERERERERNQ308dyxV3h8eSTT5ZPYlx00UWf+pif/exn6Onp+dS/SyaTOP/885HL5QYsI9FgSyaTWLRoEZLJpOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0ub+4Ex7/8z//AwDYeeedccQRR3zi7zds2IDHH38cnudh2LBhmD9/PqLRKNra2nDkkUcCKN0S69FHHx3U3B9VKBTw2muv4d5778XMmTNx5JFHoqqqCp7nwfM8TJky5Qu/djabxYMPPojTTjsN++yzD2pqarD77rvj2GOPxe9//3ts2bJFXxEiIiIiIiIiIiIiIkuIu6XVl770Jbz77rs48cQT0dLS8om/v+OOO3DppZfC8zxcd911+O1vf1v+u7fffhsHHnggPM/D1KlT8cgjjwxmdADAokWL8N3vfvdzz35NnjwZK1as2O7XfvPNN3HeeedhzZo1n/mYXXbZBffddx9OO+207X59XXhLKyIiIiIiIiIiIiL/MX0sV9wVHps2bQIA7Lnnnp/69x89UfDxW159+ctfxpFHHgml1OeeFBhI4XB4QC716ejowIknnlju5XkeJk+ejO9///s444wzMHToUADA5s2bcdZZZ+HZZ5/VnoHMyeVyePPNN525VZttfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/uLO+GRSqUA4DO/Af5vf/sbPM/DwQcf/KknRfbbbz8AQFdX18CF7Iddd90V3/jGN3DdddfhqaeewuWXX75Drzd9+nR0dnYCAPbZZx+sXr0aK1aswL333ovFixfjgw8+wIknngig9Ib89re/jXA4vKM1SAib75v3aWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3F/cLa2GDx9e/uLx+++/f5u/W79+Pb70pS/B8zxcfPHFuPPOOz/x/JkzZ+Kuu+7CkCFDjJyB6urqQjabxd57773Nf37ttdfiuuuuA7D9t7R66qmncPrppwMAqqqq8PLLL2PcuHGfeFwikcBhhx2Gd999FwDw61//GjfccMMnHverX/0Ks2bN6vfv/6hcLoeKiorPfQxvaUVERERERERERETkP6aP5X7+kWsDdtllF7S3t+ONN974xN/95S9/Kf/52GOP/dTnR6NRAJ99hchA22233bS/5h133FH+84wZMz71ZAcA1NbW4vrrr8f5558PALjrrrtw/fXXf+IERW1tLUaNGvWFsnie94WeR0REREREREREREQ0kMTd0mr8+PFQSmH16tV45513tvm7j17xMWXKlE99fu/VDXvssceAZRxM8Xgcy5cvL//zx7+35OO+9a1voa6uDgCwdetWPPfcc594zL//+79jy5YtX+hnyJAhegtSv4TDYVx33XXO3KbMtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+vo839xZ3wOPvsswEAxWIRZ599Nv76179i7dq1+MlPfoKXXnoJnufhqKOOwpgxYz7x3Fwuh9deew2e5+GAAw4Y7OgD4u9//zsymQyA0pUZX/nKVz738TU1NTjmmGPK/8wvL3dDXV0dZsyYUT6ZZTvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIykH2UUohGo9iyZQui0SiE3aXdWtyPbuE89fD7OtrcX9wtraZNm4YbbrgBb731FtatW4eTTjrpE4/51a9+9anPXb58OVKpVPmkiAs+emuvcePG9fn9GQBw+OGHY9myZZ94PtmroqICY8eONR1DG9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjKQHdauXYuHHnoIL774Il555RWEQqHy340cORKHH344jjrqKEyfPn2be8ZT/3E/uoXz1MPv62hzf3FXeFRUVGDRokXYc889oZTa5gcALr30Upx55pmf+twHH3yw/Ofjjz9+UPIOtLfeeqv853322adfz/noF6a/+eab2jPR4EskEnj44YeRSCRMR9HCtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDCTbkiVLMGnSJBx22GG48cYbsXz58m1OdgBAKBTC8uXLceONN2LcuHGYNGkSnnrqKUOJ7cX96BbOUw+/r6PN/cVd4QEAX/7yl7Fu3TrMnTsXK1euRDQaxV577YVzzz0XJ5988qc+p6enBy+99BL22WcfDB8+HBMnThzk1AOjp6en/Oddd921X8/56Benb926VXumj/vwww8xYcKE8j9ns9nyf77zzjuX//PzzjsPf/zjHwc8j4sCgQAaGhoQCIg7R/mF2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIFk6unpwaWXXoqHHnpou5+7cuVKrFy5EtOnT8dtt92GUaNGDUBC93A/uoXz1MPv62hzf7GJ6+rqcNlll2HBggX4y1/+gj/96U+febIDAEaNGoW3334b7733Xvl7PFwQj8fLfx46dGi/nvPRx330+QOlUCigp6en/BOLxQCUvofl0/7zL6qmpqZ837hCoYBwOFy+8icajZZPtKRSqfLZx3w+v82X60QiEeRyOQBAMplEMpkEUPr+l0gkUn5cOBxGPp8HUDqjmUqlAJRO5kSjUQCle4eGw2EUCgUApbVOp9MAgEwms806hMNhFItFAEAsFit/L0s6nS7P6PM6AcBxxx2HoUOHOtFp6NChmDx5cvn50jt5noevfe1rGDp0qKj3XlVVFU499VQUCoUBe+/1p9PQoUMxadKk8vMlv/dMzImd2GkwOw0dOhSnnHIKMpmMM51cnFN/OuXzeZx66qmorq52ppOpOSmlcOqpp6KiosKZTv2dEwCceuqpGDJkiBOdisUiJk+ejKFDh1oxJ8nvvVwuhxNOOAFDhw419hlRKBQwZcoUDB06VPx7z9XPCImdXnvtNRx22GF46qmnUFlZCQAYNmwYhg0bBgCorKxEfX19uVNDQ0P51t+1tbXl4yFNTU045phjsHbtWuOdbJhTVVUVJk6ciJqaGmc6uTin/naqrKzExIkTy/vBhU4m5jR06FAcf/zx2/x7iO2dtmdOOo6FmSL2hAeV9L4ZgdJ/AfVHdXV1+c+9b/qBNHbs2E/cfuzTfubNm7dDv2fixImYOnUqAKC7uxvBYLC8CefOnYt169YBAFpbW9Hc3AwA6OjoQDAYLL/G7NmzsX79egBAS0sLWlpaAADr16/H7Nmzy48LBoPo6OgAADQ3N6O1tRUAylceAaUPiGAwiO7ubgClf6FatWoVAGD16tVobGwEUPoQCAaD5Q+dxsZGrF69GgCwatUqNDU19dnp2Wefxfz585HNZp3olM1m0dTUhCeeeMKKOT3//POYN28estmsqPdeZ2cn1qxZgwULFgzYe68/nbLZLB5++GEsXbrU6Jx0dtI5J3Zip8HslM1m8fLLLzvVycU59afT/PnzsWbNGmzZssWZTqbmtHTpUqxZswZvvfWWM536O6dnn30Wa9aswWuvveZEpyeeeAJNTU3IZrNWzEn6e2/p0qXIZrPGPiMWLFiARYsWIZvNin/vufoZIbHTlClT0NnZiZkzZ2L//fcHAJx88snl/wfY/fffHzNnzix3uuKKKzBmzBgAwBlnnIHJkycDAA4++GCcfvrpmDx5Ml555RXOqY9OnZ2dCAaD5YOgLnRycU797fTee+8hGAyWD0i70MnEnLLZLJ588knMnz/fmU7bMycdx8KMUcK8/PLLpiMMiGuuuUYBUADU5MmT+/280047rfy8K6+8sl/Peeqpp8rPqaur+4KJ5Whra1MAVE1Njaqrq1NtbW0qn8+rUCikisWiUkqpSCSiMpmMUkqpZDKp4vG4UkqpXC6nQqFQ+bXC4bDKZrNKKaUSiYRKJBJKKaWy2awKh8Plx4VCIZXL5ZRSSsXjcZVMJpVSSmUyGRWJRJRSShWLRRUKhVQ+n1dKKRWLxVQqlVJKKZVOp1U0GlVKKVUoFFQoFFKFQkEppVQ0GlXpdFoppVQqlVKxWEwppT6306ZNm9R///d/q0gk4kSnSCSi/vu//1tt3LjRijl9dP0lvfe2bt2qbrnlFtXZ2Tlg773+dOqdZ1dXl9E56eykc07sxE6D2SkSiag//OEP6oMPPnCmk4tz6k+nDRs2qFtuuUWFQiFnOpmaU1dXl7rlllvUli1bnOnU3zlt2rRJ3XLLLaq7u9uJThs3biz/O5kNc5L83uvo6FB/+MMfVCQSMfYZ0dnZWc4g/b3n6meEpE5dXV3qy1/+cvlYRn19vaqsrFQA1LBhw9SwYcMUAFVZWanq6+vLj2toaFAVFRUKgKqtrVVDhw5VAFRVVZUaMWKEAqD22GMP9e6773JOn9Np69at6r//+7/LOVzo5OKc+tupp6en/N+XrnQyMafe/221YcMGZzptz5x25FhY77Hc3p+2tjY1mDyl/vdaFCECgQAOOuggnH/++Zg+fXq/v6hbumuvvRbXXXcdAGDy5MlYsWJFv573ne98B48++igA4LLLLuvXWbLHH38c3/rWtwCUvs9j48aNXyy0EK+//joOPfTQ8j+3tbXhkEMOMZiIiIiIiIiIiHSZPn36F/rOju15/d7/j2YiIhpYpo/liryl1Ztvvonf/va32H///TF58mT86U9/2uZeZX7y0S/Y2rRpU7+e09XVVf7zTjvtpD0TDT6lFNLpNISdn/zCbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEAyLFmyZEBPdgDAn//8ZyxZsmRAf4fNuB/dwnnq4fd1tLm/uBMew4cPL3/nQ7FYxN/+9jdcfPHF2G233TB16lQsWrSo/AUufnDAAQeU//z+++/36zkffPBB+c8HHnig9kw0+CKRCGbNmuXMiT/b+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIykAyzZs0alN9z8803D8rvsRH3o1s4Tz38vo429xd3S6tMJoPFixejsbERTz/99DYnNzzPAwCMHDkS5557Ls4//3wce+yxpqJuly96S6uWlhaccsopAIDa2lqEw2FUVFR87nNOPvlkLFu2DADwm9/8Br/73e++eHABTF8GJUGhUEB3dzdGjx6NIUOGmI6zw2zrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchA5q1duxaHHXbYoP6+jx5foBLuR7dwnnr4fR13pL/pY7nirvCorq7Gt7/9bSxatAhdXV2488478dWvfhWe55Wv/Ni6dSvuuusuHHfccfiXf/kXXHPNNfjnP/9pOvqAOPbYY1FdXQ0ASCQSePnllz/38ZlMBqtWrSr/8wknnDCg+WhwDBkyBLvttpszH7C29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIPMG+lZWpn+fLbgf3cJ56uH3dbS5v7gTHh81cuRIXHLJJVi5ciXeffdd/Md//AcOOuggACif/Hjvvffwu9/9DgceeCCOPvpo3HHHHdiyZYvh5PrU1dXhxBNPLP/zvHnzPvfxjz/+OGKxGIDS93dMmjRpIOPRIInH45g3bx7i8bjpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgcx78cUXnf59tuB+dAvnqYff19Hm/qJPeHzUPvvsg9/85jd4/fXX8Y9//AM//elPsfvuu5dPfCil8PLLL+Oyyy7DnnvuiTPOOMN0ZG3+9V//tfznefPm4fXXX//UxyWTSVx99dXlf/7xj3/c5+2vyA4VFRUYO3asM/O0rY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhA5mllMIrr7wyqL/zH//4h5VfwDvQuB/dwnnq4fd1tLm/uO/w2B5KKTz77LN48MEHsXDhwvKVDUDp+z4KhYLBdNv6ot/h0WvSpElYuXIlAGDs2LF44okntrnPZU9PD84777zyd3fstNNOWL9+PRoaGrTkN8n0fd+IiIiIiIiISK9oNIr6+nojv3f48OGD/nuJiPzC9LFca67w+DSe5+HEE0/EvHnz8P777+Nb3/qW6UgAgNNOOw3jx4/f5mfOnDnlv3/55Zc/8ffjx49HZ2fnZ77mn//8Z+y+++4AgPb2dowfPx7HH388fvjDH+LMM8/E3nvvXT7ZUVFRgUcffdSJkx1U0vvdLJlMxnQULWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchAZmWzWSO/l++5T+J+dAvnqYff19Hm/laf8ACAv/71r/jBD36AfffdF48//jg8zzMdCevWrcOrr766zc+mTZvKf59IJD7x96+++urn/pf9mDFj8Oyzz2L8+PEASle3rFixAvfeey8WL16MZDIJABg9ejQWLVq0zfd+kP2y2SzWrFlj7F8IdbOtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDmVVVVWXk91ZXVxv5vZJxP7qF89TD7+toc38rb2n16quvorGxEQ899FD5qoiP1hgyZAhOOeUUPPnkk0byjR07Fu+///52P++9997D2LFjP/cx2WwWDz/8MB566CG8/vrr2LRpExoaGrDffvvhnHPOwUUXXYSdd975CyaXyfRlUERERERERESkl1IKo0aNQigUGrTfOXLkSPT09Ij4f5YlInKV6WO51nzryIcffojGxkY0NjZi3bp15f/8oyc6jjzySJx//vk477zzMHr0aBMxAZRuOTVQqqqqcMEFF+CCCy4YsN9B8hSLRUSjUYwYMQKBgPUXZlnXR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBzPI8D4cffjiWL18+aL/ziCOO4MmOT8H96BbOUw+/r6PN/UWnDYfDuOeeezB58mTsu++++M1vfoN169ZBKVX+6f3P33zzTbz44ou47LLLjJ7sIBoI0WgUwWAQ0WjUdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEDmHXXUUU7/PltwP7qF89TD7+toc39xt7TKZrNobm5GY2Mjnn766fJ9wj4ac6eddsK3v/1tnH/++fjqV79qKioNEtOXQUlg81nVT2NbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGMm/t2rU47LDDBvX3ffT4ApVwP7qF89TD7+u4I/1NH8sVN61dd90V5557Lp544glkMpnylRzV1dU455xz8Pjjj2Pjxo2YPXs2T3b4TE1NDerq6gAAhUIB4XC4fCIsGo2WT46lUikkEgkAQD6fRzgcLr9GJBJBLpcDACSTyfKXvedyOUQikfLjwuEw8vk8gNKXzKdSKQClE3K9ZzaVUgiHwygUCgCAeDyOdDoNAMhkMojFYgBKHxDhcBjFYhEAEIvFkMlkAADpdBrxeLzPTplMBpWVlQgEAk50CgQCqK6uLmeQ3imbzaKiogKBQEDUe08phYaGBiSTyQF77/WnUyAQQFVVVTmD5PeeiTmxEzsNZqdAIID6+npEo1FnOrk4p/50SiQSaGhoKL+eC51MzSmdTqOhoQGFQsGZTv2dUyaTQUNDA/L5vBOdUqkUqqurEQgErJiT5PdePB7HsGHDEAgEjH1GJJNJ1NTUIBAIiH/vufoZIaHTfvvth+OOOw4VFRXl/94DgPr6elRWVgIAhg0bhmHDhgEAKisrUV9fX35cQ0MDKipKd2uvra3F0KFDAZRuBz5ixAgApVtnNTQ0YPLkyTj00EM5p0/p1Nul93ZfLnRycU797dT7Or0HqV3oZGJOgUAAQ4cO3WZdbe+0PXPScSzMFHEnPHoHqJSC53mYNGkS7r77bnR1daGpqQlnnXVW+b/0yF8mTpyIqVOnAgC6u7sRDAbLm3Du3Lnl73ZpbW1Fc3MzAKCjowPBYLD8GrNnz8b69esBAC0tLWhpaQEArF+/HrNnzy4/LhgMoqOjAwDQ3NyM1tZWAMC6deswd+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXo1GhsbAXzyErDGxkasXr0aALBq1So0NTX12WnZsmX44x//iFgs5kSnWCyG22+/HQsXLrRiTq2trbjtttsQi8VEvffa29sxZ84cPPLIIwP23utPp1gshj/+8Y9YsmSJ0Tnp7KRzTuzEToPZKRaLYfbs2U51cnFO/en04IMPYs6cOejs7HSmk6k5LVmyBHPmzEFbW5sznfo7p2XLlmHOnDl45ZVXnOi0cOFC3H777YjFYlbMSfJ7795778Udd9yBWCxm7DPikUceKc9T+nvP1c8IKZ2uvPJKjBkzBldccUU568yZM7H//vsDAE4++WScfPLJAID9998fM2fOLD/uiiuuwJgxYwAAZ5xxBiZPngwAOPjgg/H9738fAFBdXY0rrrgC//Zv/8Y5fUan9vZ2BINBbNmyxZlOLs6pv53efvttBIPB8kFtFzqZmFPvsasHH3zQmU7bMycdx8KMUcJ4nqcOPvhgdcMNN6j333/fdBwSoK2tTQFQNTU1qq6uTrW1tal8Pq9CoZAqFotKKaUikYjKZDJKKaWSyaSKx+NKKaVyuZwKhULl1wqHwyqbzSqllEokEiqRSCillMpmsyocDpcfFwqFVC6XU0opFY/HVTKZVEoplclkVCQSUUopVSwWVSgUUvl8XimlVCwWU6lUSimlVDqdVtFoVCmlVKFQUKFQSBUKBaWUUtFoVKXTaaWUUqlUSsViMaWU+txOoVBIrVixQqXTaSc6pdNp1draqnp6eqyYUzgcLq+/pPdeIpFQL7zwgtqyZcuAvff606l3nlu3bjU6J52ddM6JndhpMDul02n197//XXV1dTnTycU59adTd3e3euGFF1QymXSmk6k5bd26Vb3wwgsqFos506m/cwqFQuqFF15Q0WjUiU49PT2qtbVVpdNpK+Yk+b23efNmtXLlSpVOp419RmzZskU999xzKp1Oi3/vufoZIanT9OnTVUNDgwKgAKj6+npVWVmpAKhhw4apYcOGKQCqsrJS1dfXlx/X0NCgKioqFABVW1urhg4dqgCoqqoqNWLECAVAeZ6nLrjgAs7pczolEgn17LPPll/DhU4uzqm/neLxuHr22We3OaZheycTc0qn02rlypWqu7vbmU7bM6cdORbWeyy396etrU0NJnHf4bF69WpMmDDBdAwSxPR934iIiIiIiIho4PT09OCwww5DZ2en9tfeY4898Nprr2HUqFHaX5uIiD7J9LFccbe04skOok9Kp9NYsWJF+X57trOtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDyTFq1CgsXboUI0eO1Pq6I0eOxNKlS3myow/cj27hPPXw+zra3F/cCQ8i+qR8Po/29vbylxLZzrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAwky7hx49Da2oo99thDy+vtscceaG1txbhx47S8nsu4H93Ceerh93W0ub+4W1oRfZzpy6CIiIiIiIiIaHD09PTgsssuw5///Ocv/BrTp0/Hbbfdxis7iIgMMH0sl1d4EFmgUCigq6sLhULBdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEAyjRo1Co2NjXjyyScxadKk7XrupEmTsGTJEjQ2NvJkx3bgfnQL56mH39fR5v484UFkgVgshrvuuguxWMx0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQLKdfvrpaG1txdq1a3HVVVfhpJNO+sR3fIwcORInnXQSrrrqKqxduxatra047bTTDCW2F/ejWzhPPfy+jjb35y2tSDzTl0FJoJRCJpNBdXU1PM8zHWeH2dZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIHso5RCPB4vv3fq6ur4/tGA+9EtnKcefl/HHelv+lhuxaD9JiL6wjzPQ01NjekY2tjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CB7ON5HoYPH47hw4ebjuIU7ke3cJ56+H0dbe7PW1oRWSAajeLWW29FNBo1HUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb35wkPIgvU1NRgypQp1p5Z/Tjb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvfnd3iQeKbv+0ZEREREREREREREfTN9LJdXeBBZIJVKYenSpUilUqajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v7GTnhcf/31eP/99039eiKrFItFhMNhFItF01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf2O3tAoEAggEAjjuuONw4YUXYurUqaitrTURhYQzfRkUEREREREREREREfXN9LFco7e0Ukrhueeew/e//33stttumDFjBpYvX24yEpFI+Xwe7e3tyOfzpqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/sZOeOy6665QSqH3ApNEIoH58+fj5JNPxt57743f/va3ePvtt03FIxIlHo/j/vvvRzweNx1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo5W91eGFAoF9dRTT6lp06apoUOHKs/ztvkJBAIqEAioiRMnqjlz5qhQKGQqKhnW1tamAKiamhpVV1en2traVD6fV6FQSBWLRaWUUpFIRGUyGaWUUslkUsXjcaWUUrlcbpv3TjgcVtlsVimlVCKRUIlEQimlVDabVeFwuPy4UCikcrmcUkqpeDyuksmkUkqpTCajIpGIUkqpYrGoQqGQyufzSimlYrGYSqVSSiml0um0ikajSqnSez0UCqlCoaCUUioajap0Oq2UUiqVSqlYLKaUUuzETuzETuzETuzETuzETuzETuzETuzETuzETuzETlZ36j2W2/vT1tamBpOxKzwCgQC+/vWv46GHHsKmTZtw991347jjjoPneb0nYqCUwosvvoh//dd/xe67745zzz0XS5YssfLLUmjHTZw4EVOnTgUAdHd3IxgMIpPJAADmzp2LdevWAQBaW1vR3NwMAOjo6EAwGCy/xuzZs7F+/XoAQEtLC1paWgAA69evx+zZs8uPCwaD6OjoAAA0NzejtbUVALBu3TrMnTsXAJDJZBAMBtHd3Q0AaGpqwqpVqwAAq1evRmNjIwAgGo0iGAwiGo0CABobG7F69WoAwKpVq9DU1MRO7MRO7MRO7MRO7MRO7MRO7MRO7MRO7MRO7MRO7ORMJ2MG9fRKP7z33nvquuuuU1/60pc+86qP3XbbTf385z9Xr776qum4NAh4hYdSXV1d6oYbblDhcNiJTuFwWN1www2qs7PTijl9dP0lvfd6enrUjTfeqDZs2GD0//ugd54bN240Oif+f1SwEztFyvvx/fffd6aTi3PqT6eOjg514403qq1btzrTydScNm7cqG688UbV3d3tTKf+zqmrq0vdeOONavPmzU506uzsLP87mQ1zkvze+/DDD8traeozYsOGDeUM0t97rn5GsBM79Xbq6elRN9xwQzmvC51cnFN/O23ZsqX8+epKJxNz6v3fVh0dHc502p457cixMNNXeHhK/e+XaAj0wgsv4P7778eCBQsQCoW2+bveK0EOO+wwXHjhhZg+fTpGjx5tIiYNsNdffx2HHnpo+Z/b2tpwyCGHGEw0+HK5HNavX4/9998flZWVpuPsMNv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo470t/0sVzRJzx6ZbNZNDc344EHHsDTTz+9zbfD9574qKiowCmnnIIZM2bgm9/8pi/fiK4yvUmIiIiIiIiIiIiIqG+mj+Ua+w6P7VFVVYVvfetbeOKJJ9DZ2YlbbrkFhx9+OID//10fuVwOS5Yswbnnnovdd98d//Zv/2Y4NZE+yWQSixYtQjKZNB1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo4297fihMdH7bzzzrj88svx8ssvo62tDb/4xS+w5557Avj/Jz+2bt26zZe5EBERERERERERERGR26y4pVVf0uk0rrjiCtx9993wPA9KKXieh0KhYDoaaWD6MigiIiIiIiIiIiIi6pvpY7nWXeHxUS+88AJmzpyJPffcE/fcc0/5+zyIXJPL5fDmm28il8uZjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7W3fCo729Hddffz2+/OUv42tf+xruvvtuhEIhAP//llZ77703rrrqKsNJifSx+b55n8a2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2tuKVVNBrFI488ggcffBDPP/98+T//aPTa2lp861vfwowZM3D88cebiEkDxPRlUERERERERERERETUN9PHcisG7Tdtp0KhgKVLl+KBBx5Ac3MzMpkMgG1PcniehylTpmDGjBn41re+hdraWlNxiYiIiIiIiIiIiIjIIHG3tHrllVdwxRVXYM8998Q3v/lNNDU1IZ1Ol29XBQBf+tKX8B//8R947733sHz5clxwwQU82UFOC4fDuO666xAOh01H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf1F3NJqw4YNmD9/Ph588EG88cYbALa9kgMA6uvr8Z3vfAczZszAMcccYyImGWL6MigJ8vk8Ojo6MGbMGFRUiL0wq99s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps67kh/08dyjZ3wSCaTaGpqwgMPPIAVK1aUT3B8NM6QIUNw8sknY8aMGTjzzDNRXV1tIioZZnqTEBEREREREREREVHfTB/LNXZLq1122QUXXXQR/vrXv6JYLG5zy6pDDz0U//Vf/4UPP/wQS5YswbnnnsuTHeRriUQCDz/8MBKJhOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0ub+x63GSySQ8zyuf5Nh5550xffp0zJgxAxMmTDAVi0ikQCCAhoYGBALivnbnC7Gtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39jt7QKBAKoqqrC6aefjhkzZuC0007z5f3QqG+mL4MiIiIiIiIiIiIior6ZPpZr7BTNH//4R3R2duKxxx7DN7/5TZ7sIPoc2WwWa9asQTabNR1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429zd2wuMnP/kJdtppJ1O/nsgq6XQaK1asQDqdNh1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429zd2S6vt1dbWhg8//BChUAj5fB4XXHCB6Ug0SExfBkVEREREREREREREfTN9LFf0t468//775StB/s//+T/4xje+ge9973u46KKLPvHYTZs24Tvf+Q7OPfdc3HzzzQbS0kCrqalBXV0dAKBQKCAcDpe/9D4ajZYvsUqlUkgkEgCAfD6PcDhcfo1IJIJcLgcASCaTSCaTAIBcLodIJFJ+XDgcRj6fBwAkEgmkUikApcu5otEoAEAphXA4jEKhAACIx+Pls56ZTAaxWAwAUCwWEQ6HUSwWAQCxWAyZTAZA6WxpPB7vs1MymURPTw+UUk50UkohFAqVHye9UyqVwpYtW6CUEvXey+fzSKfTiMViA/be608npRS2bt1afpzk956JObETOw1mJ6UUUqkUQqGQM51cnFN/OkWjUaTT6XJWFzqZmlMikUA6nUY2m3WmU3/nlEwmkU6ny+8p2zvF43GEQiEopayYk+T3XiQS2ea/N0x8RsRisXIm6e89Vz8j2ImdPvq/yTdt2lR+nAudXJxTfzvlcjls2rRpm8982zuZmJNSqvzfl6502p456TgWZorYEx4PPfQQxo0bhzlz5pQXtPfn0+y6667YvHkzmpqacP3115ffZOSOiRMnYurUqQCA7u5uBIPB8iacO3cu1q1bBwBobW1Fc3MzAKCjowPBYLD8GrNnz8b69esBAC0tLWhpaQEArF+/HrNnzy4/LhgMoqOjAwDQ3NyM1tZWAMC6deswd+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXo1GhsbAZQ+BILBYPlDp7GxEatXrwYArFq1Ck1NTX12WrZsGW6//XZEIhEnOkUiEdx2221YuHChFXNqbW3FHXfcgUgkIuq9995772HWrFl45JFHBuy9159OkUgEf/zjH7FkyRKjc9LZSeec2ImdBrNTJBLBzTffjNtuu82ZTi7OqT+dHnzwQcyaNQsbNmxwppOpOS1ZsgSzZs3C2rVrnenU3zktW7YMs2bNwj/+8Q8nOi1cuBC33XYbIpGIFXOS/N679957ccsttyASiRj7jHjkkUcQDAYRiUTEv/dc/YxgJ3bq7fTee+9hzpw55ddzoZOLc+pvp7feegtz5swpHyR3oZOJOUUiEdx666148MEHnem0PXPScSzMGCVQU1OTCgQCKhAIKM/z1MiRI9Vpp52mDjjgAOV5ngoEAp/6vPnz55f/fsGCBYOcmgZKW1ubAqBqampUXV2damtrU/l8XoVCIVUsFpVSSkUiEZXJZJRSSiWTSRWPx5VSSuVyORUKhcqvFQ6HVTabVUoplUgkVCKRUEoplc1mVTgcLj8uFAqpXC6nlFIqHo+rZDKplFIqk8moSCSilFKqWCyqUCik8vm8UkqpWCymUqmUUkqpdDqtotGoUkqpQqGgQqGQKhQKSimlotGoSqfTSimlUqmUisViSin1uZ1isZh69913VT6fd6JTPp9X7733Xvn3Su8Uj8fV+vXrVT6fF/Xey2QyauPGjSocDg/Ye68/nfL5vHr33XfLv1fye8/EnNiJnQazUz6fV52dnWrLli3OdHJxTv3pFAqF1MaNG1U2m3Wmk6k5RaNRtXHjRpVKpZzp1N85xWIxtXHjRpVMJp3oFIlE1Hvvvafy+bwVc5L83tu6dav64IMPVD6fN/YZEQ6HVXt7u8rn8+Lfe65+RrATO/V2ymQy6u23397m89b2Ti7Oqb+d0um0evvtt7f5vLW9k4k55fN59f7775d/rwudtmdOO3IsrPdYbu9PW1ubGkzivsMjHA5jv/32QzgcRiAQwL//+7/jV7/6Faqrq3HppZfijjvugOd55UtyPioWi2HUqFEoFAr48Y9/vM3ZL7KX6fu+EREREREREREREVHfTB/LFXdLq7vvvhvhcBie5+Gaa67BNddcg+rq6n49d/jw4TjooIOglMKrr746wEmJBk88Hse8efOcuVWbbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7izvh8dRTTwEARo0ahSuvvHK7n3/AAQcAAN59912tuYhMqqiowNixY1FRUWE6iha29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe4v7pZWu+++OzZv3oyzzjoLjz322DZ/19ctrQDg4osvxj333IPq6uryt9ST3UxfBkVEREREREREREREfTN9LFfcFR5bt24FAOyyyy5f6Pm9J0ICAXHViL6wTCaDVatWIZPJmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s7K1BfXw8AX/j+YBs2bABQuiUWkSuy2SzWrFmDbDZrOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3uL+6WVhMmTMCrr76KQw89FK+99to2f9fXLa1yuRxGjx6NWCyG448/Hs8888xgxaYBZPoyKCIiIiIiIiIiIiLqm+ljueKu8Dj++OMBlBbm4yc8+nLfffchGo0CAE444QTt2YhMKRaLCIfDKBaLpqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/uJOeEyfPr3850suuaTf9wlra2vDL3/5SwClb5E///zzByQfkQnRaBTBYLB8Qs92tvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3uL+6WVgAwdepUPP744/A8D8cccwzmzJmDQw899FNvaZVKpXDvvffit7/9LaLRKDzPwyWXXII77rjDcAvSxfRlUBIUi0VEo1GMGDECgYC485TbzbY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r+OO9Dd9LFfkCY9wOIxjjz0Wb775JjzPAwAcfPDBSKVSePfdd+F5Hr75zW+iq6ur/OUpvTUOP/xwPP/886iurjZZgTQyvUmIiIiIiIiIiIiIqG+mj+WKPD3V0NCAv/71r5gyZQqUUlBKYd26dXjvvffKJ0AWL16MF198EZlMpnyy44QTTkBLSwtPdpBzYrEY5syZg1gsZjqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/yhAcA7Lrrrli+fDnuv/9+jB8/vnzi4+M/AHDQQQdh3rx5aGlpwU477WQ4OZF+VVVVGD9+PKqqqkxH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf1F3tLq03R1deGFF15AZ2cnIpEIamtrseuuu+Loo4/GvvvuazoeDSDTl0ERERERERERERERUd9MH8sVd4VHKBT61P98t912w9lnn42f/OQnuOqqq3D55Zdj2rRpn3my4/HHHx/ImESDKp1OY8WKFUin06ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v7iTnicdtppSKVSO/Qajz32GM477zxNiYjMy+fzaG9vRz6fNx1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429xd3S6tAIIBTTjkFzc3NqKio2O7nP/7445g2bRoKhQIKhcIAJKTBZvoyKCIiIiIiIiIiIiLqm+ljueKu8ACAlpYWzJgxY7uf19TUhPPOO8/KM09En6dQKKCrq8uZk3i29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe4v7oTHl7/8ZSil8PDDD+Oyyy7r9/Oamprw3e9+F7lcDp7n4Uc/+tEApiQaXLFYDHfddRdisZjpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uFtaffDBB/jqV7+KDRs2wPM8XHPNNbj66qs/9zmfdrJjzpw5g5SYBprpy6AkUEohk8mguroanueZjrPDbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Ou5If9PHcsVd4bH33ntj6dKlGDlyJJRSuO666z735MWCBQt4soOc53keampqnPmAta2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf3EnPADgkEMOwZNPPolhw4ZBKYVLL70UCxYs+MTjFixYgPPPP798suPHP/4xT3aQk6LRKG699VZEo1HTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/kSc8AOCYY47Bo48+ioqKChQKBXzve9/DM888U/77TzvZMXv2bIOJaaDV1NSgrq4OQOmLc8LhMHrvyBaNRpHNZgEAqVQKiUQCAJDP5xEOh8uvEYlEkMvlAADJZBLJZBIAkMvlEIlEyo8Lh8PI5/MAgEQigVQqBQDIZrPlja6UQjgcLn95TzweRzqdBgBkMpnyPe6KxSLC4TCKxSKA0j3wMpkMACCdTiMej/fZSSmFY445BjU1NU50qqmpwbHHHlv+PdI7AcDEiRNRU1Mj6r1XWVmJKVOmIJ/PD9h7rz+dampqcMwxx5R/j+T3nok5sRM7DWanmpoaTJ48Gel02plOLs6pP51yuRymTJmCqqoqZzqZmlOxWMSUKVMwZMgQZzr1d05KKUyZMgWBQMCJToVCAcceeyxqamqsmJPk9142m8XXvvY11NTUGPuMyOfz+OpXv4qamhrx7z1XPyPYiZ16O1VWVuKoo45CdXW1M51cnFN/O1VUVOCoo45CTU2NM51MzKmmpgZf/epXy7/HhU7bMydgx4+FmSL2hAcAnHbaaZg7dy48z0M2m8U555yDl19+GU1NTZg+fXr5ZMfFF1/Mkx0+MHHiREydOhUA0N3djWAwWN6Ec+fOxbp16wAAra2taG5uBgB0dHQgGAyWX2P27NlYv349AKClpQUtLS0AgPXr12/zHgoGg+jo6AAANDc3o7W1FQCwbt06zJ07F0DpAyIYDKK7uxtA6btkVq1aBQBYvXo1GhsbAZQ+BILBYPlDp7GxEatXrwYArFq1Ck1NTX12euGFF/Dee++hqqrKiU5VVVXYunUr/vKXv1gxp1deeQVvvvkmqqqqRL33IpEIxo8fj8WLFw/Ye68/naqqqrBx40asWLHC6Jx0dtI5J3Zip8HsVFVVhYMOOgizZ892ppOLc+pPpwULFmD8+PFIp9POdDI1pxUrVmD8+PH48MMPnenU3zm98MILGD9+PN555x0nOv3lL3/B1q1bUVVVZcWcJL/35s+fj4qKClRVVRn7jFi8eDESiQSqqqrEv/dc/YxgJ3bq7RSJRLBs2bLywUwXOrk4p/522rx5M5YtW4aqqipnOpmYU1VVFQqFQvmuQy502p456TgWZoyywB/+8AfleZ4KBAJq5MiRqrKysvzPM2fONB2PBlhbW5sCoGpqalRdXZ1qa2tT+XxehUIhVSwWlVJKRSIRlclklFJKJZNJFY/HlVJK5XI5FQqFyq8VDodVNptVSimVSCRUIpFQSimVzWZVOBwuPy4UCqlcLqeUUioej6tkMqmUUiqTyahIJKKUUqpYLKpQKKTy+bxSSqlYLKZSqZRSSql0Oq2i0ahSSqlCoaBCoZAqFApKKaWi0ahKp9NKKaVSqZSKxWJKKfW5nXp6etTixYtVMpl0olMymVTNzc2qu7vbijlt3bpVPfHEEyqZTIp678ViMfX000+rzZs3D9h7rz+dksmkWrx4sdqyZYvROenspHNO7MROg9kpmUyqp556Sm3cuNGZTi7OqT+dNm3apJ5++mkVj8ed6WRqTlu2bFFPP/20ikQiznTq75x6enrU008/rcLhsBOduru7VXNzs0omk1bMSfJ7b9OmTerJJ59UyWTS2GfE5s2by/OU/t5z9TOCndipt1MsFlOLFi0qZ3Khk4tz6m+naDSqFi1aVM7kQicTc+o9drVp0yZnOm3PnHbkWFjvsdzen7a2NjWYPKX+9/StcL/+9a8xa9asbf6zSy65BHfeeaehRDRYXn/9dRx66KHlf25ra8MhhxxiMNHgSyQSaG5uxhlnnIHa2lrTcXaYbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fxx3pb/pYrjUnPADgRz/6Ee699154nodLLrkEd9xxh+lINAhMbxIiIiIiIiIiIiIi6pvpY7kVg/abPuL73//+F3peoVAo32c0mUx+7ut4nod77733i0YkEiWfz6OjowNjxoxBRYWRbauVbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7G0k7b948eJ73hZ+fSqXwwAMP9Pk4nvAgV8Tjcdx///24/PLL0dDQYDrODrOtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc38jt7QKBAID/js8z0OhUBjw30MDz/RlUERERERERERERETUN9PHco1c4XHfffeZ+LVEREREREREREREROQoIyc8ZsyYYeLXElkrEolg9uzZmDlzJurr603H2WG29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe4/8PeWIqIdNmzYMJx11lkYNmyY6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v5Hv8CDaHqbv+0ZEREREREREREREfTN9LJdXeBBZIJlMYtGiRUgmk6ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v484UFERERERERERERERNbjLa1IPNOXQRERERERERERERFR30wfy+UVHkQWyOVyePPNN5HL5UxH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf15woPIAjbfN+/T2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5P29pReKZvgyKiIiIiIiIiIiIiPpm+lgur/AgIiIiIiIiIiIiIiLr8YQHkQXC4TCuu+46hMNh01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf97SisQzfRmUBPl8Hh0dHRgzZgwqKipMx9lhtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HXekv+ljuTzhQeKZ3iRERERERERERERE1DfTx3J5SysiCyQSCTz88MNIJBKmo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+POFBZIFAIICGhgYEAm5sWdv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429+ctrUg805dBEREREREREREREVHfTB/Lte8UTR++8Y1vYL/99sP+++9vOgqRNtlsFmvWrEE2mzUdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvd37oTHhg0b0N7ejvb2dtNRiLRJp9NYsWIF0um06Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v3O3tJowYQJeffVVeJ6HQqFgOg5pYPoyKCIiIiIiIiIiIiLqm+ljuc5d4UHkIqUU0uk0XDk/aVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/jzhQdaoqalBXV0dAKBQKCAcDpc3XTQaLd9TLpVKIZFIAADy+TzC4XD5NSKRCHK5HAAgmUwimUwCAHK5HCKRSPlx4XAY+XweAJBIJJBKpQCU7l8XjUYBlDZ+OBwuX0kUj8fLl3llMhnEYjEAQLFYRDgcRrFYBADEYjFkMhkApcvD4vF4n502bdqEWbNmIRKJONEpEolg1qxZ2LhxoxVz2rx5c3n9Jb33tm7dilmzZqGzs3PA3nv96dQ7z66uLqNz0tlJ55zYiZ0Gs1Pvfvzwww+d6eTinPrTacOGDZg1axZCoZAznUzNqaurC7NmzcKWLVuc6dTfOfX+O2R3d7cTnTZu3Fj+dzIb5iT5vdfR0VFeS1OfEZ2dneUM0t97rn5GsBM79Xbq/d+WvXld6OTinPrbqaenp/z56konE3Pq/d9WGzZscKbT9sxJx7EwU4yd8Lj++usH5Kf3gBu5Z+LEiZg6dSoAoLu7G8FgsLwJ586di3Xr1gEAWltb0dzcDKD0L/LBYLD8GrNnz8b69esBAC0tLWhpaQEArF+/HrNnzy4/LhgMoqOjAwDQ3NyM1tZWAMC6deswd+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXo1GhsbAZQ+BILBYPlDp7GxEatXrwYArFq1Ck1NTX12Wr16NcaOHYvhw4c70Wn48OE49NBDyxmkd3r99dex++67Y/jw4aLee+l0GhdffDFaWloG7L3Xn07Dhw/Hl7/85XIGye89E3NiJ3YazE7Dhw/HhRdeiPvuu8+ZTi7OqT+dnnzySVx88cVQSjnTydScVq1ahYsvvhjd3d3OdOrvnFavXo2LL74YHR0dTnRqbW3FoYceiuHDh1sxJ8nvvcceewxTpkzB8OHDjX1GtLS04IgjjsDw4cPFv/dc/YxgJ3bq7dR7ILSqqsqZTi7Oqb+deg+ODx8+3JlOJuY0fPhwHHPMMXjyySed6bQ9c9JxLMwYZYjneSoQCAzIT+9rkxva2toUAFVTU6Pq6upUW1ubyufzKhQKqWKxqJRSKhKJqEwmo5RSKplMqng8rpRSKpfLqVAoVH6tcDisstmsUkqpRCKhEomEUkqpbDarwuFw+XGhUEjlcjmllFLxeFwlk0mllFKZTEZFIhGllFLFYlGFQiGVz+eVUkrFYjGVSqWUUkql02kVjUaVUkoVCgUVCoVUoVBQSikVjUZVOp1WSimVSqVULBZTSil2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2YierO/Uey+39aWtrU4PJ2JeWBwIBeJ6n/T5gva/JLy13h+kvupEgHo+jqakJU6dOLd/Wy2a29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dd6S/6WO5FYP2mz7G87zy/504cWL5srkd9fLLL5fvG0bkioqKCowdOxYVFca2rFa29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe5v7AqPAw88EG+//TY8z8PKlStx7LHHanndCRMm4NVXX+UVHg4xfVaQiIiIiIiIiIiIiPpm+liusS8tP/LII8t/fumll0zFILJCJpPBqlWryl8OZDvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvc3dsLjK1/5SvnPPOFB9Pmy2SzWrFmDbDZrOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3ub+yWVn//+9/xta99DZ7n4V/+5V/w1ltvaXld3tLKPaYvgyIiIiIiIiIiIiKivpk+lmvsCo8JEyZgyJAhUErhnXfeQSQS0fK6hs7fEA2oYrGIcDiMYrFoOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3ub+yEx9ChQ/Hzn/8cM2bMwAUXXIAtW7Zoed2nn34a7733Ht59910tr0ckQTQaRTAYRDQaNR1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429zd2Syui/jJ9GZQExWIR0WgUI0aMQCBg7DylNrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR13pL/pY7kVg/abiOgLCwQCaGhoMB1DG9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429/ff6SkiC8ViMcyZMwexWMx0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62tyfJzyILFBVVYXx48ejqqrKdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Otrc37rv8AiHw+UvS9l7770Np6HBYPq+b0RERERERERERETUN9PHcq27wuPf//3fse+++2K//fYzHYVo0KTTaaxYsQLpdNp0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62tzfuhMeAKCUgmUXphDtkHw+j/b2duTzedNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3/rbml16aWX4o477oDneSgUCqbj0CAwfRkUEREREREREREREfXN9LFcK6/wIPKbQqGArq4uZ07y2dZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5P094EFkgFovhrrvuQiwWMx1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429+ctrUg805dBSaCUQiaTQXV1NTzPMx1nh9nWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93Xckf6mj+VWDNpvIqIvzPM81NTUmI6hjW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+/OWVkQWiEajuPXWWxGNRk1H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2tu8Jj4sSJiMfjpmMQDaqamhpMmTLF2jOrH2dbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirZkf2olEIsFkM2m0VVVRWGDx/uy9v/SMLPVz38vo4297fuOzzIf0zf942IiIiIiIiIiErWrl2Lhx56CC+++CJeeeUVhEKh8t+NHDkShx9+OI466ihMnz59m+M5ROQPpo/l8pZWRBZIpVJYunQpUqmU6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISvq7H5csWYJJkybhsMMOw4033ojly5dvc7IDAEKhEJYvX44bb7wR48aNw6RJk/DUU08NZHz6GH6+6uH3dbS5P094EFmgWCwiHA6jWCyajqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiopK/92NPTg+nTp+Mb3/gGVq5cuV2vvXLlSpx++un47ne/i56eHh1xqQ/8fNXD7+toc3/e0orEM30ZFBERERERERGRH7322mv4+te/js7Ozh1+rT322ANLly7FuHHjNCQjIqlMH8u15goPpRQWLlyIH//4xzjuuONw0EEH4cgjj8Q3v/lN/OEPf8CHH35oOiLRgMnn82hvb0c+nzcdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFHJZ+3H1157DVOmTNFysgMAOjs7MXnyZKxdu1bL69Gn4+erHn5fR5v7Gzvh0dnZic7OTkSj0T4f+8ILL+CQQw7B1KlTce+99+Lvf/873n77baxevRpLlizBL37xC3z5y1/Gb37zG/CCFXJRPB7H/fffj3g8bjqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgopJP2489PT34+te//onv6NhRoVAIp556Km9vNYD4+aqH39fR5v7GbmkVCATgeR5+8pOf4LbbbvvMxz355JM499xzkclkPvNkhud5UErB8zyceeaZePzxxwcqNhlg+jIoIiIiIiIiIiI/mT59Oh566KEBff3GxsYBe30iMsf0sVzRt7R67733cP755yOdTpf/s6997Wu49tprcdddd+EPf/gDvve972H48OEASre9euKJJzBr1ixTkYmIiIiIiIiIiKy1ZMmSAT3ZAQB//vOfsWTJkgH9HUTkT6JPeFx77bWIRqPwPA877bQTWlpa8Nxzz+Hqq6/Gj370I1xxxRW4//778e677+LMM88EUDrp8bvf/a5ft8oiskUkEsFNN92ESCRiOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiko/vx8H6fyS++eabB+X3+A0/X/Xw+zra3F/sCY9wOIyHH34YnuehsrISTz31FE466aRPfexOO+2Exx57DJMnTwYAJJNJPPjgg4MZl2hADRs2DGeddRaGDRtmOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiko/ux7Vr12LlypWD8nufe+45tLW1Dcrv8hN+vurh93W0ub/YEx5/+9vfkMvlAAAXXHABvvKVr3zu4wOBwDbfBbJixYqBjEcG1NTUoK6uDgBQKBQQDofL3+sSjUaRzWYBAKlUColEAgCQz+cRDofLrxGJRMrvq2QyiWQyCQDI5XLbnLEMh8PI5/MAgEQigVQqBQDIZrPlq4eUUgiHwygUCgBKX+bTe/u1TCaDWCwGACgWiwiHwygWiwCAWCyGTCYDAEin0+Uv//m8Tvl8HnvttRcqKyud6FRZWYl99tlnm36SOxUKBYwZMwaVlZWi3nuBQAAHHnggMpnMgL33+tOpsrISe++9d7mf5PeeiTmxEzsNZqfKykoccMABSCQSznRycU796ZROp3HggQdiyJAhznQyNadcLocDDzyw/HcudOrvnPL5PA488EAopZzolM1msc8++6CystKKOUl+76VSKey3336orKw09hmRyWQwduxYVFZWin/vufoZwU7s1NspEAhgt912Q0VFBR566CGMGDECVVVVAIChQ4eitrYWAFBRUYGGhoZy1vr6elRWVgIoHRztPTBaWVmJ+vr68uMaGhpQUVEBAKitrcXQoUMBAFVVVeVbZ3FO+jp5nofddtutPBsXOpmYU2VlJfbdd99yPxc6bc+cdBwLM0XsCY9169aV/zxt2rR+PWfcuHE4+OCDoZTCmjVrBigZmTJx4kRMnToVANDd3Y1gMFjehHPnzi2/Z1pbW9Hc3AwA6OjoQDAYLL/G7NmzsX79egBAS0sLWlpaAADr16/H7Nmzy48LBoPo6OgAADQ3N6O1tRVA6X05d+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXp1+cu3otEogsFg+UOnsbERq1evBgCsWrUKTU1NfXZavnw57r77biSTSSc6JZNJzJ07F4sWLbJiTitXrsScOXOQTCZFvfc++OADLFq0CI8++uiAvff60ymZTOJPf/oTnnrqKaNz0tlJ55zYiZ0Gs1MymcTjjz/uVCcX59SfTg8++CAWLVqETZs2OdPJ1JyeeuopLFq0COvWrXOmU3/ntHz5cixatAhr1qxxotOiRYvKn3U2zEnye+/ee+/F/PnzkUwmjX1GPProo5g3bx6SyaT4956rnxHsxE69nT744AMEg0GEQiG8+OKL+P73v4+DDz4YADB58mScccYZAIAxY8bgiiuuKGedOXMm9t9/fwDAySefjJNPPhkAsP/++2PmzJnlx11xxRUYM2YMAOCMM84o36Hl4IMPLh9o5Zz0dXrnnXcQDAbLB8xd6GRiTslkEg888ED5LkIudNqeOek4FmaMMsTzPBUIBNSll176qX//y1/+svyYrVu39vt1p0+frjzPUw0NDbqikmFtbW0KgKqpqVF1dXWqra1N5fN5FQqFVLFYVEopFYlEVCaTUUoplUwmVTweV0oplcvlVCgUKr9WOBxW2WxWKaVUIpFQiURCKaVUNptV4XC4/LhQKKRyuZxSSql4PK6SyaRSSqlMJqMikYhSSqlisahCoZDK5/NKKaVisZhKpVJKKaXS6bSKRqNKKaUKhYIKhUKqUCgopZSKRqMqnU4rpZRKpVIqFosppdTndtqyZYt69NFHVSKRcKJTIpFQCxYsUJs3b7ZiTj09PeX1l/Tei0ajauHChWrTpk0D9t7rT6feeXZ3dxudk85OOufETuw0mJ0SiYR6/PHHVWdnpzOdXJxTfzpt2rRJLVy4UMViMWc6mZpTd3e3WrhwoQqHw8506u+ctmzZohYuXKhCoZATnTZv3qwWLFigEomEFXOS/N7r6upSTU1NKpFIGPuM2LRpUzmD9Peeq58R7MROvZ2i0ah65JFHVCwWUyNHjlQjRoxQVVVVCoAaOnSoqq2tVQBURUWFamhoUAAUAFVfX68qKysVADVs2DA1bNgwBUBVVlaq+vr68uMaGhpURUWFAqBqa2vV0KFDFQBVVVWl9tprL1UsFjknjZ0ikYh65JFHytld6GRiTolEQjU1NalNmzY502l75rQjx8J6j+X2/rS1tanB5Cn1v9eiDLJAIADP8/CTn/xkm1tR9bryyivxX//1X/A8D7lcDoFA/y5GmTlzJu66667yZbFkv9dffx2HHnpo+Z/b2tpwyCGHGExEREREREREROSWaDS6za2oBvP3Dh8+fNB/LxENDNPHcsXe0mrPPfcs/7n3PmD90Xu5lokPaKKBksvl8Oabb5bv5Wc72/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRSe9+3J7jbzrx/2FZL36+6uH3dbS5v/ETHrFYDB988MEnfnrv7QcA7777br9fb+PGjQCAUaNGac9KZEoymcSiRYvKJ/RsZ1sfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKundj71fcDzYqqurjfxeV/HzVQ+/r6PN/Y3f0urzKKXgeR7mzJmDH/3oR/163V122QU9PT047rjjsGLFCg1JyTTTl0EREREREREREblOKYVRo0YhFAoN2u8cOXIkenp6+jxGSET2MH0s1/gVHkqpz/zp/bDr/ab3vrzyyivYsmULAODwww8fsMxEREREREREREQu8Txv0I+nHXHEETzZQURaGTvhsffee2PvvffGPvvs85k/vY958803+3V2+cEHHyz/+ZhjjhnI+ESDKhwO47rrrkM4HDYdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFHJR/fjUUcdNai/e7B/nx/w81UPv6+jzf2N3dJKt0QigYkTJyIejwMA/va3v23zxedkL9OXQUmQz+fR0dGBMWPGoKKiwnScHWZbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIir56H584403cNhhhw3a7167du02x3xox/HzVQ+/r+OO9Dd9LNeZEx7kLtObhIiIiIiIiIjILyZNmoSVK1cOyu9pbW0d8N9DRIPL9LFc49/hQUR9SyQSePjhh5FIJExH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTy8f145ZVXDsrvHazf4zf8fNXD7+toc3+e8CCyQCAQQENDAwIBN7asbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYio5OP78fTTT8d55503oL9z+vTpOO200wb0d/gVP1/18Ps62tyft7Qi8UxfBkVERERERERE5Cc9PT047LDD0NnZqf2199hjD7z22msYNWqU9tcmIvNMH8u17xQNkQ9ls1msWbMG2WzWdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJZ+2H0eNGoWlS5di5MiRWn/XyJEjsXTpUp7sGED8fNXD7+toc3+e8CCyQDqdxooVK5BOp01H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTyWftx3LhxaG1txR577KHl9+yxxx5obW3FuHHjtLwefTp+vurh93W0ub9Tt7Tab7/9yn/2PA/r1683mIZ0MX0ZFBERERERERGRX/X09OCyyy7Dn//85y/8GtOnT8dtt93GKzuIfMD0sVynrvBob2/H+++/j/b2drS3t5uOQ6SNUgrpdBqunJ+0rY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGV9LUfR40ahcbGRjz55JOYNGnSdr32pEmTsGTJEjQ2NvJkxyDh56sefl9Hm/s7dcKDyFWRSASzZs1CJBIxHUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRSX/34+mnn47W1lasXbsWV111FU466aRPfMfHyJEjcdJJJ+Gqq67C2rVr0draitNOO20g49PH8PNVD7+vo839nbql1UUXXbTNP993332GkpBOpi+DkqBQKKC7uxujR4/GkCFDTMfZYbb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgopId2Y9KKcTjcWQyGVRXV6Ourg6e5w1QUuoPfr7q4fd13JH+po/lOnXCg9xkepMQERERERERERERUd9MH8vlLa2ILBCPxzFv3jzE43HTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/nvAgskBFRQXGjh2LiooK01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf97SisQzfRkUEREREREREREREfXN9LFcXuFBZIFMJoNVq1Yhk8mYjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7izzhkcvl8Prrr+Oxxx7DPffcg1tuuQU33HADbrnlFtxzzz147LHH8PrrryOXy5mOSjQostks1qxZg2w2azqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/mllZbt27Fgw8+iIULF+Lvf/87CoVCn88ZMmQIjj32WJx99tn43ve+h5122mkQktJgM30ZFBERERERERERERH1zfSxXONXeBSLRfzud7/Dfvvth5/97GdYuXIl8vk8lFJ9/uTzeaxcuRI/+9nPsN9+++E///M/USwWTVci0q5YLCIcDjvz/ratj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3+jJzzi8ThOP/10XHPNNYhGo+UTGb1Gjx6NcePG4aijjsJxxx2Ho446CuPGjcPo0aPLj+l9TjQaxdVXX43TTz8d8XjcRB2iARONRhEMBhGNRk1H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2N3tLqu9/9Lh566CF4ngelFL70pS9hxowZOP744zFhwgTU1NR85nMzmQxeeeUVtLa2Yt68eXj77bcBAJ7n4bzzzsP8+fMHqwYNMNOXQUlQLBYRjUYxYsQIBALGL8zaYbb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR13pL/pY7nGTng8++yzOOmkk+B5Hqqrq3HLLbfg4osv/sKvd/fdd+OnP/0pUqkUPM/DsmXLcMIJJ2hMTKaY3iRERERERERERERE1DfTx3KNnZ564IEHyn++7777duhkBwD8+Mc/xn333Vf+5/vvv3+HXo9Iklgshjlz5iAWi5mOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/sbO+HxwgsvAAAOOeQQfOc739Hymueeey4OPfRQKKXKr0/kgqqqKowfPx5VVVWmo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+xm5pVVdXh1QqhQsuuGCbKzN21EUXXYT7778ftbW1Vp6Bok8yfRkUEREREREREREREfXN9LFcY1d4VFdXAwDS6bTW1+19vcrKSq2vS2RSOp3GihUrtO8XU2zrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3N/YCY8xY8ZAKYWVK1cin89rec18Po+VK1fC8zzstddeWl6TSIJ8Po/29nZte8U02/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3N3ZLq1/+8pf4/e9/D8/z8Mtf/hI33njjDr/mVVddhZtuugme5+FnP/sZ/uu//ktDUjLN9GVQRERERERERERERNQ308dyjV3h8f3vf79826mbb74Z559/PjZs2PCFXquzsxMXXHABZs2aBaB0O6sf/vCH2rISmVYoFNDV1YVCoWA6iha29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe5v7ITHgQceiKuvvhq9F5g89NBDGDt2LL7+9a9j1qxZWLZsGd5++21EIhFks1kAQDabRSQSwdtvv41ly5bh5ptvxmmnnYaxY8eisbERSil4noerr74aBxxwgKlqRNrFYjHcddddiMVipqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/sZuadXr6quvxu9+97vyP3uet92v8dEKv/3tb3H99ddryUYymL4MSgKlFDKZDKqrq7/QHpHGtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+v4470N30s19gVHr2uv/56LFu2DEceeSSA0mJu7w8AfOUrX8EzzzzDkx3kJM/zUFNT20FGFwAAu0lJREFU48wHrG19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+xs/4QEAJ554Il588UW8+OKLuOqqq3DMMcegoaHhc5/T0NCAY445BldddRVefPFF/M///A9OOOGEwQlMNMii0ShuvfVWRKNR01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hz/wrTAT7qyCOPLF/pAQDd3d3o6elBPB5HOp1GTU0N6urqMGrUKIwePdpgUqLBVVNTgylTpqCmpsZ0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62tzf+Hd4EPXF9H3fiIiIiIiIiIiIiKhvpo/lirilFRF9vlQqhaVLlyKVSpmOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/vzhAeRBYrFIsLhMIrFoukoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0uT9PeJA1er/DBQAKhQLC4TB678gWjUaRzWYBlM5AJhIJAEA+n0c4HC6/RiQSQS6XAwAkk0kkk0kAQC6XQyQSKT8uHA4jn88DABKJRPlsZjabLX9Zj1IK4XAYhUIBAMrfNQMAmUwGsVgMwCc/IGKxGDKZDAAgnU4jHo/32SkQCOCMM85AbW2tE51qa2tx5plnlrNJ7zRkyBB84xvfQG1traj3Xk1NDaZNmwal1IC99/rTqba2Ft/85jfheZ7ROenspHNO7MROg9mptrYW3/nOd5DL5Zzp5OKc+tOpWCxi2rRpGDp0qDOdTM3J8zxMmzYNVVVVznTq75wCgQCmTZuGyspKJzoBwJlnnona2lor5iT5vVcoFHDOOeegtrbW2GeEUgpnnXUWamtrxb/3XP2MYCd26u1UU1ODU089FcOGDXOmk4tz6m+n6upqnHrqqaitrXWmk4k51dbW4uyzzy53cKHT9sxJx7EwU4yc8LjiiivQ09MzaL+vp6cHV1xxxaD9PhoYEydOxNSpUwGUvtA+GAyWN+HcuXOxbt06AEBrayuam5sBAB0dHQgGg+XXmD17NtavXw8AaGlpQUtLCwBg/fr1mD17dvlxwWAQHR0dAIDm5ma0trYCANatW4e5c+cCKH1ABINBdHd3AwCampqwatUqAMDq1avR2NgIoPQhEAwGyx86jY2NWL16NQBg1apVaGpq6rPTX//6VzzyyCPI5/NOdMrn82hubsbixYutmNPf//53zJ8/H/l8XtR7b+PGjWhvb8eCBQsG7L3Xn075fB6PP/44/vKXvxidk85OOufETuw0mJ3y+Tz++c9/OtXJxTn1p9P8+fPR3t6OrVu3OtPJ1Jz+8pe/oL29HW+//bYznfo7p7/+9a9ob2/H2rVrnei0ePFiNDc3I5/PWzEn6e+95557Dvl83thnxIIFC7B06VLk83nx7z1XPyPYiZ16O23cuBHBYLB80NKFTi7Oqb+d3n//fQSDwfJBcRc6mZhTPp/H8uXLMX/+fGc6bc+cdBwLM0YZ4Hmeqq+vV7/5zW/U5s2bB+z3bNq0Sf36179W9fX1KhAIDNjvoYHV1tamAKiamhpVV1en2traVD6fV6FQSBWLRaWUUpFIRGUyGaWUUslkUsXjcaWUUrlcToVCofJrhcNhlc1mlVJKJRIJlUgklFJKZbNZFQ6Hy48LhUIql8sppZSKx+MqmUwqpZTKZDIqEokopZQqFosqFAqpfD6vlFIqFoupVCqllFIqnU6raDSqlFKqUCioUCikCoWCUkqpaDSq0um0UkqpVCqlYrGYUkp9bqeNGzeqa6+9tpzL9k6hUEhde+21asOGDVbMqaurq7z+kt57W7ZsUddee63q6OgYsPdefzr1zrOzs9PonHR20jkndmKnwezUux/ff/99Zzq5OKf+dPrwww/Vtddeq3p6epzpZGpOnZ2d6tprr1WbN292plN/59T775CbNm1yotOGDRvK/05mw5wkv/c++OCD8lqa+ozo6OgoZ5D+3nP1M4Kd2Km3U+//tty6dasznVycU387dXd3lz9fXelkYk6h//3fVh9++KEznbZnTjtyLKz3WG7vT1tbmxpMnlL/ey3KIKqrqytf4ltdXY1vf/vb+MEPfoBJkyZpef3nnnsO99xzDx577DFkMhkopVBXV1c+W0V2ef3113HooYeW/7mtrQ2HHHKIwURERERERERERERE9HGmj+UauaXVW2+9hXPPPbd83/n58+fj+OOPx5577omZM2diwYIF6Orq6vfrbdy4EQsWLMDMmTOx55574vjjj8ef//xnpNNpKKXwne98B2+88cYANiIiIiIiIiIiIiIiIpOMnPDYc8898fDDD2PVqlU48cQToZSCUgpdXV24++67MW3aNOy5557YddddMWnSJEyfPh2XXnoprrzySvzyl7/EpZdeivPOOw/HHXccdtllF4wZMwbTpk3D3Xffja6urvLr/d//+3+xatUqPPTQQ9hzzz1NVCXSIhKJ4KabbtrmS4psZlsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/kZuafVxr7zyCm655RY89thj5W+M7+V53uc+9+Pxa2pqMHXqVFxxxRU4/PDDtWelwWf6MigJcrkc1q9fj/333x+VlZWm4+ww2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjvS3/SxXBEnPHpFo1E8/vjjaG5uxvLly/v9nRv19fU44YQTcMYZZ+Ccc87BiBEjBjgpDSbTm4SIiIiIiIiIiIiI+mb6WK6RW1p9lhEjRuDCCy/EY489hlAohNdffx0PPfQQbrjhBlx++eX44Q9/iB/+8Ie4/PLLceONN+Lhhx/GunXrsHXrVjz22GO48MILebKDnJRMJrFo0SIkk0nTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHP/CtMBPovneTjooINw0EEHmY5CRERERERERERERETCibqlFdGnMX0ZFBERERERERERERH1zfSxXFG3tCKiT5fL5fDmm28il8uZjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v784QHkQVsvm/ep7Gtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3/e0orEM30ZFBERERERERERERH1zfSxXF7hQURERERERERERERE1uMJDyILhMNhXHfddQiHw6ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v68pRWJZ/oyKAny+Tw6OjowZswYVFRUmI6zw2zrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zruSH/Tx3J5woPEM71JiIiIiIiIiIiIiKhvpo/l8pZWRBZIJBJ4+OGHkUgkTEfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/XnCg8gCgUAADQ0NCATc2LK29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe7PW1qReKYvgyIiIiIiIiIiIiKivpk+lmvfKRoiH8pms1izZg2y2azpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLk/T3gQWSCdTmPFihVIp9Omo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+Vt3SKpVKIRQKIZ/PY++99zYdhwaJ6cugiIiIiIiIiIiIiKhvpo/lir7CQymFBQsW4KyzzsLOO++Muro67LXXXthvv/0+8dgtW7bgzjvvxJ133olly5YZSEs0cJRSSKfTsOj85OeyrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/sSc83nrrLUyYMAHTpk1Dc3Mztm7dCqVU+efjRo0ahVtvvRWXXnopLrzwQhSLRQOpiQZGJBLBrFmzEIlETEfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/UXe0uqNN97AV7/6VUQikfLJjdraWgBAIpGA53koFAqfeN4tt9yCn//85/A8D8uWLcMJJ5wwqLlpYJi+DEqCQqGA7u5ujB49GkOGDDEdZ4fZ1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd13JH+po/lirvCo1Ao4JxzzkE4HIZSCieccAJeeOEFxGIxXHjhhZ/73HPPPbf855aWlgFOSjR4hgwZgt12282ZD1jb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvcXd8KjsbERb731FjzPwznnnIOWlhYcffTR/XrunnvuiX333RcA8PLLLw9kTKJBFY/HMW/ePMTjcdNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39xJzwWLlwIAKipqcHs2bMRCGxfxEMPPRRKKfzzn/8ciHhERlRUVGDs2LGoqKgwHUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3F/cdHnvvvTc2bNiAk046CX/5y1+2+btLL70Ud9xxx2d+hwcA/OAHP8B9992HYcOGWXkGij7J9H3fiIiIiIiIiIiIiKhvpo/lirvCo7u7GwAwduzYL/T8yspKAEA+n9cVici4TCaDVatWIZPJmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s74VFdXQ0AyOVyX+j5vSdMRo4cqS0TkWnZbBZr1qxBNps1HUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3F3dLqwMOOADvvPMOjj32WKxcuXKbv+vPLa322msvdHZ24ogjjsCLL744GJFpgJm+DIqIiIiIiIiIiIiI+mb6WK64KzyOOeYYKKXw0ksvYdOmTdv13GXLlmHDhg0AgEmTJg1EPCIjisUiwuEwisWi6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7gTHmeddRaA0i2tfv3rX/f7ebFYDJdddln5n7/97W/rjkZkTDQaRTAYRDQaNR1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429xd3SysAmDBhAl599VV4nofLL78cN910E6qqqj7zllZr167FBRdcUH7OiSeeiJaWFoMNSCfTl0FJUCwWEY1GMWLECAQC4s5Tbjfb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6OO9Lf9LFckSc8XnvtNUyaNAmxWAwAsNtuu+Gcc87Bq6++ir/97W/wPA9/+MMf0NXVheeffx5///vfoZSCUgqjR4/Gyy+/jL322stwC9LF9CYhIiIiIiIiIiIior6ZPpYr8vTUYYcdhsWLF2P06NFQSqGrqwt33nknnn/+eXieBwD42c9+hptvvhnPP/88isUilFLYfffdsWTJEp7sIOfEYjHMmTOnfBLQdrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/yhAdQ+tLxV199FRdddBEqKyvLV3B82k9FRQUuvPBCvPzyyzjyyCNNRyfSrqqqCuPHj0dVVZXpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/yFtafdyWLVvwzDPP4IUXXkBnZycikQhqa2ux66674uijj8Ypp5yCPfbYw3RMGiCmL4MiIiIiIiIiIiIior6ZPpYr9gqPj9p5550xbdo0BINBLFiwAC0tLVi4cCHmzJmDiy66iCc7yHnpdBorVqxAOp02HUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3t+KEB5Hf5fN5tLe3I5/Pm46ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+1txSyvyN9OXQRERERERERERERFR30wfyxV5hUdLSwsWL16MZ555Zrue98wzz3yh5xFJVygU0NXVhUKhYDqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/uhMe6detw6qmn4uyzz8aSJUu267lPPvkkzj77bJx66qlYv379ACUkGnyxWAx33XUXYrGY6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7hbWl1//fW49tpr4Xke1q5di4MPPrjfz3399dcxbtw4eJ6H//iP/8BVV101gElpsJi+DEoCpRQymQyqq6vheZ7pODvMtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+v4470N30sV9wVHs899xwAYOzYsdt1sgMADjnkEIwdOxYA0NraqjsakTGe56GmpsaZD1jb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvcXd8LjjTfegOd5GD9+/Bd6/oQJE6CUwhtvvKE3GJFB0WgUt956K6LRqOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0ub+4Ex49PT0AgNGjR3+h5/c+b8uWLdoyEZlWU1ODKVOmoKamxnQULWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3F/cd3gMHz4cyWQS3/ve9zBv3rztfv6FF16IBx54ADU1NUgmk/oD0qAzfd83IiIiIiIiIiIiIuqb6WO54q7w2HnnnQEA//znP7/Q899+++1tXofIBalUCkuXLkUqlTIdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvcXd8Jj3LhxUErhpZdewoYNG7bruRs2bMBLL70Ez/O2+wvPiSQrFosIh8MoFoumo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+4m5pdfvtt+Oyyy6D53n4zne+gz//+c/9fu60adPw6KOPwvM8/P73v8dPf/rTAUxKg8X0ZVBERERERERERERE1DfTx3LFXeExY8YMjBw5EgDwyCOP4N/+7d+Qy+U+9zm5XA4/+clP8OijjwIARowYgQsvvHCgoxINmnw+j/b2duTzedNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39xJzyGDx+O//zP/0TvhSezZ8/GAQccgBtvvBGrVq3C5s2bkUwmsXnzZvzP//wPbrzxRhxwwAGYM2cOAMDzPFx//fXlkyZELojH47j//vsRj8dNR9HCtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+vo839xd3Sqtdll12G22+/HZ7nQSkFz/M+9/G9Nf71X/8Vt99++2BEpEFi+jIoIiIiIiIiIiIiIuqb6WO54q7w6HXbbbfhzjvvRF1dHYDSCY3P+6mrq8Mdd9zBkx1ERERERERERERERD4k9oQHAFxyySV4//33cdNNN2HKlCkYOnToNn8/dOhQTJkyBbNmzcIHH3yAmTNnGkpKNLAikQhuuukmRCIR01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf7G3tPossVgMsVgMw4cPx/Dhw03HoUFg+jIoCXK5HNavX4/9998flZWVpuPsMNv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo470t/0sVzrTniQ/5jeJERERERERERERETUN9PHckXf0oqISpLJJBYtWoRkMmk6iha29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe7PEx5ERERERERERERERGQ9a25plUgkEI1Gkcvl+v2cvffeewAT0WAxfRkUEREREREREREREfXN9LFcsVd4FItFzJ8/H6effjp22WUXjBgxAmPGjMG+++7br5/99tvPdAUibXK5HN58883tOuEnmW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s84dHe3o7DDz8cM2bMwNKlS7FlyxYopbb7h9xSU1ODuro6AEChUEA4HC7PORqNIpvNAgBSqRQSiQQAIJ/PIxwOl18jEomUN2oymSzfhy6XyyESiZQfFw6Hkc/nAZSuLkqlUgCAbDaLaDQKAFBKIRwOo1AoAADi8TjS6TQAIJPJIBaLASidvAuHwygWiwCAWCyGTCYDAEin04jH43122rp1KxYuXIhkMulEp2QyiYULF2LLli1WzOmj6y/pvReLxbBo0SJ0d3cP2HuvP51659nT02N0Tjo76ZwTO7HTYHbq3Y8bN250ppOLc+pPp82bN2PRokWIx+POdDI1p56eHixatAiRSMSZTv2d09atW7Fo0SKEw2EnOm3ZsqX872Q2zEnye2/Tpk3ltTT1GdHd3V3OIP295+pnBDuxU2+nWCyGhQsXlrO70MnFOfW3UzQaLX++utLJxJx6/7fV5s2bnem0PXPScSzMFHEnPJLJJE488US89tpr25y4GDp0KPbYYw/ss88+/frh7azcM3HiREydOhVA6V+Og8FgeRPOnTsX69atAwC0traiubkZANDR0YFgMFh+jdmzZ2P9+vUAgJaWFrS0tAAA1q9fj9mzZ5cfFwwG0dHRAQBobm5Ga2srAGDdunWYO3cugNIHRDAYRHd3NwCgqakJq1atAgCsXr0ajY2NAEofAsFgsPyh09jYiNWrVwMAVq1ahaampj47rV69Gvvuuy/q6+ud6FRfX48JEyaUM0jv9MYbb2D33XdHfX29qPdeNpvFr371K7S0tAzYe68/nerr63HQQQeVM0h+75mYEzux02B2qq+vx09/+lPcd999znRycU796dTc3Ixf/epX8DzPmU6m5rRq1Sr86le/wpYtW5zp1N85rV69Gr/61a+wYcMGJzq1trZiwoQJqK+vt2JOkt97TU1N+PrXv476+npjnxEtLS045phjUF9fL/695+pnBDuxU2+nbDaLbDaLmpoaZzq5OKf+dorFYshms6ivr3emk4k51dfX4/jjjy9ncKHT9sxJx7EwY5QwN9xwg/I8TwUCAVVVVaV+8YtfqDfeeMN0LDKora1NAVA1NTWqrq5OtbW1qXw+r0KhkCoWi0oppSKRiMpkMkoppZLJpIrH40oppXK5nAqFQuXXCofDKpvNKqWUSiQSKpFIKKWUymazKhwOlx8XCoVULpdTSikVj8dVMplUSimVyWRUJBJRSilVLBZVKBRS+XxeKaVULBZTqVRKKaVUOp1W0WhUKaVUoVBQoVBIFQoFpZRS0WhUpdNppZRSqVRKxWIxpZRiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ayulPvsdzen7a2NjWYxH1p+dFHH42XXnoJnufh0Ucfxbe+9S3Tkcgw0190I0E4HEYwGMTll1+OhoYG03F2mG19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X8cd6W/6WK64Ex477bQTIpEIDj/8cLz00kum45AApjeJBPl8Hh0dHRgzZgwqKipMx9lhtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HXekv+ljueJOeNTW1iKdTuP73/8+7rnnHtNxSADTm4SIiIiIiIiIiIiI+mb6WK64Ly0fM2YMAJS/lZ6IgEQigYcffhiJRMJ0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62txf3AmPSZMmQSmFtWvXmo5CJEYgEEBDQwMCAXFb9guxrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/cbe0+sc//oGjjz4aSim8+OKLOOKII0xHIsNMXwZFRERERERERERERH0zfSxX3CmaI444Ar/5zW+glML06dOxadMm05GIjMtms1izZg2y2azpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uBMeAHDdddfhmmuuwTvvvINx48YhGAxiw4YNpmMRGZNOp7FixQqk02nTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/cbe02m+//cp/7uzsRDabhed5AID6+nrU19eX//nzeJ6H9evXD1hOGjymL4MiIiIiIiIiIiIior6ZPpZbMWi/qZ/a29u3OaHR+2elFMLhMCKRSJ+voZTq10kRIlsopZDJZFBdXe3Ee9u2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf1F3tJKKfWJn8/7u896LJErIpEIZs2a1a8TfjawrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/cbe0ev/997W91j777KPttcgc05dBSVAoFNDd3Y3Ro0djyJAhpuPsMNv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo470t/0sVxxJzyIPs70JiEiIiIiIiIiIiKivpk+livyllZEtK14PI558+YhHo+bjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v784QHkQUqKiowduxYVFRUmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+1t1S6tUKoVQKIR8Po+9997bdBwaJKYvgyIiIiIiIiIiIiKivpk+liv6Cg+lFBYsWICzzjoLO++8M+rq6rDXXnthv/32+8Rjt2zZgjvvvBN33nknli1bZiAt0cDJZDJYtWoVMpmM6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v9gTHm+99RYmTJiAadOmobm5GVu3boVSqvzzcaNGjcKtt96KSy+9FBdeeCGKxaKB1EQDI5vNYs2aNchms6ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v4ib2n1xhtv4Ktf/SoikUj55EZtbS0AIJFIwPM8FAqFTzzvlltuwc9//nN4nodly5bhhBNOGNTcNDBMXwZFRERERERERERERH0zfSxX3BUehUIB55xzDsLhMJRSOOGEE/DCCy8gFovhwgsv/NznnnvuueU/t7S0DHBSosFTLBYRDoeduXLJtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+vo839xZ3waGxsxFtvvQXP83DOOeegpaUFRx99dL+eu+eee2LfffcFALz88ssDGZNoUEWjUQSDQUSjUdNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39xt7Q6++yz8cQTT2Do0KFob2/H6NGjy3936aWX4o477vjMW1oBwJlnnonm5mbstddeeP/99wcrNg0g05dBSVAsFhGNRjFixAgEAuLOU2432/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjvS3/Sx3IpB+0399I9//AOe5+FrX/vaNic7+mvnnXcGAPT09OiORmRMIBBAQ0OD6Rja2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7jTU93d3QCAsWPHfqHnV1ZWAgDy+byuSETGxWIxzJkzB7FYzHQULWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3F/cCY/q6moAQC6X+0LP7z1hMnLkSG2ZiEyrqqrC+PHjUVVVZTqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/uOzwOOOAAvPPOOzj22GOxcuXKbf6uP9/hsddee6GzsxNHHHEEXnzxxcGITAPM9H3fiIiIiIiIiIiIiKhvpo/lirvC45hjjoFSCi+99BI2bdq0Xc9dtmwZNmzYAACYNGnSQMQjMiKdTmPFihVIp9Omo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+4k54nHXWWQBKt7T69a9/3e/nxWIxXHbZZeV//va3v607GpEx+Xwe7e3tznw3jW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4u7pRUATJgwAa+++io8z8Pll1+Om266CVVVVZ95S6u1a9figgsuKD/nxBNPREtLi8EGpJPpy6CIiIiIiIiIiIiIqG+mj+WKu8IDAO6//36MGDECABAMBrHvvvvi0ksvxauvvlp+TDAYxK9//WtMmjQJEyZMwGuvvQYA2HnnnXHvvfcayU00UAqFArq6uj7zu2tsY1sfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/iJPeBx22GFYvHgxRo8eDaUUurq6cOedd+L555+H53kAgJ/97Ge4+eab8fzzz6NYLEIphd133x1LlizBXnvtZbgBkV6xWAx33XUXYrGY6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v8hbWvXatGkTrrrqKjQ2NiKbzX7m4yoqKnD++efjP//zP7H77rsPYkIaDKYvg5JAKYVMJoPq6uryST+b2dZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3ddyR/qaP5Yo+4dFry5YteOaZZ/DCCy+gs7MTkUgEtbW12HXXXXH00UfjlFNOwR577GE6Jg0Q05uEiIiIiIiIiIiIiPpm+liuuFtaRaPR8k+vnXfeGdOmTUMwGMSCBQvQ0tKChQsXYs6cObjooot4soOcF41Gceutt26zL2xmWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+FaYDfFxDQwM8z8Ouu+6KDz/8EEOGDDEdici4mpoaTJkyBTU1NaajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v7ibmlVWVmJYrGIqVOn4pFHHjEdhwQwfRkUEREREREREREREfXN9LFccbe02nXXXQEAI0eONJyESI5UKoWlS5cilUqZjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7izvhsf/++wMAOjs7DSchkqNYLCIcDqNYLJqOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/uLu6VVMBjET3/6U4wYMQKdnZ0YNmyY6UhkmOnLoIiIiIiIiIiIiIiob6aP5Yq7wuPCCy/EmDFjEIvF8Otf/9p0HCIR8vk82tvbkc/nTUfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/cWd8Kivr8fDDz+MESNG4Pbbb8cll1yCSCRiOhaRUfF4HPfffz/i8bjpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uFtaPfDAAwCAf/7zn5g1axYKhQJqampw8skn44gjjsDo0aMxdOjQfr3WBRdcMJBRaZCYvgyKiIiIiIiIiIiIiPpm+lhuxaD9pn668MIL4Xle+Z+VUkilUli8eDEWL17c79fxPI8nPIiIiIiIiIiIiIiIfELcLa2A0kmO3p9P+8/6+0PkikgkgptuusmZ27vZ1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uCs8ZsyYYToCkTjDhg3DWWedhWHDhpmOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/uL+w4Poo8zfd83IiIiIiIiIiIiIuqb6WO5Im9pRUTbSiaTWLRoEZLJpOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0uT9PeBARERERERERERERkfV4SysSz/RlUERERERERERERETUN9PHcq24wmPNmjW4/fbbceWVV+LHP/4xfvCDH5iORDSocrkc3nzzTeRyOdNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3/RJzyamppw6KGH4ogjjsDll1+O3//+9/jTn/6EefPmfeKxmzZtwh577IFddtkF55xzzuCHJRpANt8379PY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/2FtaXXLJJbjnnnsAAB+P6HkeCoXCJ57zve99D42NjQgEAnj//fex5557DkpWGlimL4MiIiIiIiIiIiIior6ZPpYr8gqP3/72t7j77ruhlIJSCqeccgpmzZqF448//nOfd8EFFwAonSB56qmnBiMqEREREREREREREREJIO6Exz//+U/cfPPNAICGhgY8++yzePrpp/GLX/wCBx988Oc+94QTTkBtbS0AYMWKFQMdlWjQhMNhXHfddQiHw/+vvXsPj6o69P//mRBChHATUUQrqKfW9ojXaq2tStWqB7VS672nVbG1V29HT7W234qeWi+trdFa1CriqSgqVgRvgGLQiuANhIjUigYMEAjJ3Cczk5lZvz/mZH6gQALZyV5rz/v1PHmegUxmPp+1Zo1hL/cev6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0ub91l7T67//+b91+++0KhUJ6/PHH9Z3vfKf0vUsvvVR33333Vi9pJUlf+9rX9Prrr+vAAw/UkiVLeik1epLfp0HZIJfLqbGxUXvuuacqKyv9jtNtrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j2N3+vt9LNe62XrppZckSfvuu+9mmx1dNXr0aL3++utqbGz0Ohrgm8rKSo0ePdrvGJ5xrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3ub90lrVatWqVQKKSvfOUrO/TzgwYNkiTF43EvYwG+SiaTmjZtmpLJpN9RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4utzfug2PjkGsqanZoZ9PpVKSpOrqas8yAX6rqKjQkCFDVFFh3ZLdIa71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/2t+wyPPfbYQ01NTfr2t7+t6dOnb/a9rnyGx9e//nUtWLBA++yzjz788MPeiIwe5vd13wAAAAAAAAAAnfP7WK51WzT77ruvjDF64403tvtnW1pa9NZbbykUCumggw7qgXSAP7LZrJYsWaJsNut3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73t27D48QTT5QkrVmzRk8//fR2/ewtt9xSmoRvfvObnmcD/JJOp1VXV6d0Ou13FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73t+6SVo2Njdpvv/2UyWQ0YsQIvfbaa6VPhN/WJa0eeughTZgwQZI0dOhQrVq1SgMGDOjt+OgBfp8GBQAAAAAAAADonN/Hcq07w2PPPffU1VdfLWOMmpqadPjhh+vPf/6zWlpaPnPfdDqtefPm6cwzz9SECRPUsXdzww03sNmBQDHGKJ1Oy7L9yR3mWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEesxWJhPb5T7OLrc37oND6m4YXHGGWfIGKPW1lZdfvnl2nXXXXX//feX7jN06FANGDBA3/zmN/XUU0+VBv+CCy7Qz372M7+iAz0iGo3q1ltvVTQa9TuKJ1zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/tbd0mrDoVCQRMnTtTNN99cunxVKBQqff/Tsfv06aNf//rXuv7663s1J3qe36dB2SCfz6u5uVnDhw9Xnz59/I7Tba71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY9jd/r7fSzX2g2PDqtWrdIdd9yh559/Xh988MFnvv+5z31Op556qq666irts88+PiRET/N7kQAAAAAAAAAAOuf3sVwrL2m1qVGjRulPf/qTVqxYoY0bN2rZsmX6xz/+ocWLF2vt2rVatWqV7r77bjY7EGiJREJTpkxRIpHwO4onXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH0eX+1f6HWB77Lzzztp55539jgH0usrKSo0ePVqVlU4t2a1yrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3ub/0lrQC/T4MCAAAAAAAAAHTO72O51l/SCoCUyWS0cOFCZTIZv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADstmslixZomw263cUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLve3+pJW//jHP/Too4/qjTfeUENDg2KxmHK5XJd+NhQKdfm+sJvfp0EBAAAAAAAAADrn97FcK8/waG1t1amnnqpjjz1W99xzj9555x21tLSovb1dxpgufwFBUSgUFIlEVCgU/I7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MfR5f7WbXjkcjmdeOKJev7559m8AP5PLBZTbW2tYrGY31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63N+6S1rdfffduvTSSxUKhWSM0ZlnnqkJEybokEMO0bBhw1RZWel3RPQyv0+DskGhUFAsFtOgQYNUUWHdPuV2c62PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRy709/vY7nW7R48/vjjpdt33HGHLrvsMh/TAHaoqKjQkCFD/I7hGdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MfR5f7WbU+99957CoVC+sIXvsBmB/B/4vG47rnnHsXjcb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLm/dRseyWRSknTkkUf6nASwR1VVlQ4++GBVVVX5HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/a37DI99991XDQ0Nuuiii3T//ff7HQcW8Pu6bwAAAAAAAACAzvl9LNe6MzyOOOIIGWO0YsUKv6MA1kin06qrq1M6nfY7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7W7fhcckll0iSFi1apH/9618+pwHskMvl1NDQoFwu53cUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLve37pJWUnHT4/7779dXvvIVvfTSS+rfv7/fkeAjv0+DAgAAAAAAAAB0zu9judad4SFJd999ty644AItWrRIhx12mJ5++mnl83m/YwG+yefzampqCsw6cK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7u/Lhsdxxx23za+TTjpJq1atUr9+/fTPf/5TZ5xxhgYNGqRDDz1U3/jGNzr9+eOOO07HH3+8H9WAHhGPx3XvvfcqHo/7HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/X25pFVFRYVCoVCX798Rsas/Y4xRKBRycgcKn+X3aVA2MMYok8moX79+27V2bOVaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4dqe/38dyK3vtmT5lR/ZZLPy4EaBXhEIhVVdX+x3DM671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/192fB4+eWX/XhawFmxWEyTJ0/WhAkTNGjQIL/jdJtrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/XzY8jj32WD+eFnBWdXW1xo4d6+zO6qe51sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji739+UzPIDt4fd13wAAAAAAAAAAnfP7WG5Frz0TgB3W1tamF154QW1tbX5H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/NjwABxQKBUUiERUKBb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLm/E5e0mjt3rl5++WW988472rhxo+LxuAYOHKhddtlFhx56qI477jidcMIJfsdED/H7NCgAAAAAAAAAQOf8PpZr9RkeM2bM0H777aeTTz5Zt956q+bOnavFixfrww8/1OLFizV37lzdeuutOumkk/SFL3xBTz/9tN+Ry9LSpUt144036oQTTtCIESPUt29fDRkyRF/96lf1hz/8QalUyu+IzsvlcmpoaFAul/M7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7W7vhcdVVV+k73/mOVq5cKWNMp1//+te/dMYZZ+jqq6/2O3pZWblypQ466CBdf/31eumll9SnTx8dfPDBqqmp0cKFC/Xf//3fOuSQQ7R69Wq/ozotkUjooYceUiKR8DuKJ1zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/tbeUmr2267Tddee61CoZCMMerbt69OPvlkfe1rX9Po0aM1YMAAJZNJNTQ0aMGCBXr++efV3t4uSQqFQrr55pv1i1/8wucW5eHDDz/UUUcdpZ/97Gf63ve+p3322af0vddee03f/e53tWrVKh155JF6/fXXd+g5/D4NCgAAAAAAAADQOb+P5Vq34dHY2Kj99ttPmUxGxhidfvrpuvvuuzVy5Mit/sy6dev085//XE899ZQkaaeddtI///lP7bnnnr0Vu2yl02nl83kNGDBgi99/7bXX9PWvf12StGTJEh100EHb/Rx+LxIAAAAAAADAdsYYxeNxZbNZVVVVaeDAgQqFQn7HQpnx+1iudZe0uv/++5VOpyVJ3/ve9/TUU09tc7NDknbffXc9+eST+v73vy+peBD+gQce6PGskKqrq7e62SFJX/va1zR48GBJ0ooVK3orVuBEo1HdcsstikajfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsR7ctW7ZM1113nU444QQNGzZMe+21l26//XbttddeGjZsmE444QRdd911qq+v9zuqU8p9Xbjc37ozPL761a9q0aJFGjhwoNasWaOampou/2wikdDIkSOVTCZ1xBFH7PAllLorn8/rvffe05tvvqm33npLb775ppYuXVq67Naxxx6rurq6HXrsbDarxx57TI8++qjee+89rV+/XkOHDtXee++tM844QxdeeKF22WUXD9t0Ty6X0+DBg5VKpTRz5kyddtpp2/0Yfu8K2qC9vV0rV67Uvvvuq759+/odp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj266dlnn9Wtt96qV199dbO/79u3r/bdd1+tXLmydCyyw9FHH61rr71W48aN682oTir3ddGd/n4fy7Vuw2PEiBFqbm7WaaedphkzZmz3z3/729/W008/reHDh2v9+vXeB+zEjBkz9N3vflepVGqr99nRDY8VK1bovPPO05IlS7Z6n1133VUPPvigNW9c06dP11lnnaXKykqtW7duhzZj/F4kAAAAAAAAgA1aWlp06aWX6tFHH93hxzj//PN15513atiwYR4mA4r8PpZr3SWtwuGwpOLGx47YddddJUmRSMSrSNslEolsc7NjRzU2Nur4448vbXaEQiEde+yxmjBhgk477TTttNNOkqQNGzZo/PjxmjdvnucZtlc4HNZVV10lSfrhD39o1ZknrkmlUpoxY0aPvLb84FofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHr0R1Lly7VgQceuM3Njv79+2v8+PHq37//Vu/zyCOP6MADD9SyZct6ImYglPu6cLl/pd8BPm3o0KFqbm5WU1PTDv18x1kdQ4YM8TDV9tttt910+OGHl75mz56t2traHX68888/X2vXrpUkjRo1Sk8//fRmHwC+ceNGnXvuuXrppZfU3t6us846SytXrvRtHNrb23X22Wdr9erV2meffXTLLbf4kgMAAAAAAABw3dKlSzV27NjS/yzeXWvXrtWxxx6r+fPna8yYMZ48JmAD6y5p1Z3P8Egmkxo5cqQSiYQOP/xwLVy4sAeTbllTU5Oy2az22muvzf5+4sSJuuGGGyRt/yWtnnvuOZ1yyimSpKqqKr311ltbfCNKJpM68MAD9dFHH0mSfvnLX+p3v/vdZ+537bXX6tZbb+3y82+qvb1dlZXb3icrFAr67ne/q2nTpmn48OF65ZVXtP/+++/Q80n+nwYFAAAAAAAA+KWlpUUHHnhg6X+G9tLIkSO1dOlSLm8Fz/h9LNe6S1qdeOKJkoofQH7FFVds189eeeWVisfjkqSTTjrJ62hdMmLEiM9sdnTX3XffXbp9wQUXbHXXdcCAAbrxxhtLf7733nuVy+W2eL9hw4bt0FcoFNpmVmOMLr74Yk2bNk0777yz5s6d263NDhS1t7drxYoVn/mwKVe51sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHq036WXXtrlzY6+fftq//337/IHTa9du1aXXXZZd+IFUrmvC5f7W7fhcfHFF6u6ulqS9OCDD+q8887Thg0btvkzGzdu1H/+53/qgQcekCT169dPP/jBD3o8a29IJBJ66aWXSn++6KKLtnn/73znO6WzYlpbW/XKK6985j7/7//9P23cuHGHvvr06bPV5zbG6JJLLtGUKVM0aNAgzZ49e7PLbmHHuXzdvC1xrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPVot2effXa7PqC8K5/h8WmPPPKInn322R2JF1jlvi5c7m/dJa0k6aabbtL/+3//r3Q2QVVVlcaNG6ejjjpKo0aN0oABA5RMJrV69WotWLBAzz33nDKZjIwxCoVC+p//+R9dd911PrfY3I5e0mrOnDmls1UGDBigSCTS6SWlTjzxRM2dO1eS9Ktf/Uq//e1vdzz4dvjpT3+qSZMmqaamRrNnz9ZRRx3lyeP6fRoUAAAAAAAA4IdjjjlGr776aq88z/z583v8eRB8fh/Lte5Dy6XiQfp169bpL3/5i0KhkDKZjGbMmKEZM2Zs8f6b7tn87Gc/s26zozvef//90u0xY8Z0utkhSYceemhpw2PTn+9Jl112mSZNmqT+/fvrmWee8WyzAwAAAAAAAChHy5Yt65XNDkl65ZVXVF9fv9mBasBF1l3SqsOf//xnTZs2TaNHj5ZU3NTY2pck7b333nrsscd05513+pjae//85z9Lt0eNGtWln9n0M0RWrFjheaZP+8UvfqG77rpL1dXVmjlzpo499tgef85yE4lEdMMNNygSifgdxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR7ttT2XsuowZMgQTZw4UUOGDOmV5wuqcl8XLve38gyPDmeffbbOOusszZkzR/PmzdPixYvV3NysRCKhmpoaDR8+XIcccoiOO+44nXjiiZ1+oLaLWlpaSrd32223Lv3MiBEjSrdbW1s9z7Sp119/Xb///e8lSYMGDdL111+v66+/fov3nTBhgiZMmNCjeYKqpqZGF1xwQenzWVznWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEevRXm+88cZ2/0wikdCUKVOUSCR65fmCqtzXhcv9rT3Do0MoFNJJJ52kW2+9VXPmzNHixYv1r3/9S4sXL9acOXN066236qSTTgrkZoekzd6cdtpppy79zKb325E3t+2RyWRKtzds2KDXXnttq1+rV6/u1nNVV1eXFlk+n1ckEimd4ROLxZTNZiVJbW1tSiaTkqRcLrfZTmQ0GlV7e7uk4ofvdHzwTnt7u6LRaOl+kUhEuVxOkpRMJtXW1iZJymazisVikopnHUUiEeXzeUnFsU6n06VxicfjkqRCoaBIJKJCoSBJisfjpXFLp9OlOdpWp/b2dg0fPlyVlZWB6FRZWanddtut9DO2d8rlctpll11UWVlp1WsvFApp9OjRSqfTPfba60qnyspK7brrrpu9Xm197fkxT3SiU292qqys1KhRo5RIJALTKYjz1JVObW1tGj16tCoqKgLTya95ymazGj16tIwxgenU1Xlqb2/X6NGjVSgUAtEpk8lot912U2VlpRPzZPNrL5VKaeTIkaqsrPTtPSKdTmvEiBGqrKy0/rUX1PcIOtGpo1MoFNKQIUPUp0+fwHQKwjwZY1RfX186FtanTx8NGTKkdAx00KBBqqqqklQ8FjhgwIAt5hs8eLD69u0rqfiB5h0fZt63b18NHjy49DNDhgzRkiVLZIxhntJpVVZWavfddy/9TBA6bc88eXEszC/Wb3iUu44Xo6TSm1hn+vXrV7rd8aLvKWPHjt3m5cY2/Zo4cWK3nuvII4/UmWeeKUlqbm5WbW1taRFOnjxZy5cvlyTNnz9fs2bNkiQ1Njaqtra29BiTJk3SypUrJRU/EH7OnDmSpJUrV2rSpEml+9XW1qqxsVGSNGvWrNKHNi1fvlyTJ0+WVHyDqK2tVXNzsyRp+vTpWrhwoSRp8eLFmjp1qqTim0BtbW3pTWfq1KlavHixJGnhwoWaPn16p51efPFF3XPPPUomk4HolEwm9de//rX0uTy2d3rllVf0l7/8Rclk0qrX3urVqzVt2jQ99thjPfba60qnZDKpe++9V88995yv8+RlJy/niU506s1OyWRSjzzySKA6BXGeutLpb3/7m6ZNm6ampqbAdPJrnp577jlNmzZN7733XmA6dXWeXnzxRU2bNk2LFy8ORKcZM2bor3/9q5LJpBPzZPNr74EHHtCDDz6oZDLp23vEY489pvvvv1/JZNL6115Q3yPoRKeOTqtXr1ZtbW3pKiFB6BSEeYrH4/riF79YOhY2fPhwXXHFFaXjfhMmTNCXvvQlSdKxxx6r0047TZL0b//2b7riiitKGyA/+clPtO+++0qSTjzxRJ144omSpH333Vc/+clPSp2uuOIK1dTUKJFIME8LFyqZTOqBBx7Q3/72t8B02p558uJYmG8MesX1119vJBlJ5thjj+3yz40bN670c9dcc02Xfua5554r/UxNTc0OJrZHfX29kWSqq6tNTU2Nqa+vN7lczoTDYVMoFIwxxkSjUZPJZIwxxqRSKZNIJIwxxrS3t5twOFx6rEgkYrLZrDHGmGQyaZLJpDHGmGw2ayKRSOl+4XDYtLe3G2OMSSQSJpVKGWOMyWQyJhqNGmOMKRQKJhwOm1wuZ4wxJh6Pm7a2NmOMMel02sRiMWOMMfl83oTDYZPP540xxsRiMZNOp40xxrS1tZl4PG6MMdvs1NLSYmbOnGlSqVQgOqVSKTNr1izT3NzsxDy1traap59+2qRSKatee/F43Dz//PNmw4YNPfba60qnVCplZs6caTZu3OjrPHnZyct5ohOderNTKpUyzz33nFm3bl1gOgVxnrrSaf369eb55583iUQiMJ38mqeNGzea559/3kSj0cB06uo8tbS0mOeff95EIpFAdGpubjazZs0yqVTKiXmy+bW3fv1688wzz5hUKuXbe8SGDRtK82n7ay+o7xF0olNHp3g8bmbMmFHKFIROQZin5ubm0rEwSaZPnz5myJAhJhQKGUlm0KBBpqqqykgyO+20kxkwYEDpWODpp59udtppJyPJDB482PTt29dIMv379zf9+/c3kkzfvn3N4MGDS8cQhwwZYiorK01zczPz1NZWOna1fv36wHTannnqzrGwjmO5HV/19fWmN4WM+b9zUXzyhz/8oXSKzje/+U199atf3e7HeP311zV37lxJ0sCBA3XllVd6mtELEydO1A033CCpuOtaV1fXpZ8755xz9Pjjj0uSLrvssi7tkv3973/Xd77zHUnFz/NYt27djoW2xHvvvacDDjig9Of6+nr9+7//u4+JAAAAAAAAgJ4Ti8U2u+RUbz7vwIEDe/15ERx+H8v19ZJW06ZN0y9+8QvdcMMNevLJJ3XwwQfv0OMcdNBBmj59um644QZdffXVpdNogmDYsGGl2+vXr+/SzzQ1NZVu77zzzp5nQu/LZrNasmRJ6fp4rnOtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9WingQMHaujQodv9c1VVVTr44IO7fGn8TQ0dOtTJD6nuCeW+Llzu7+uGR8dnOlRUVOjRRx/t8odyf1r//v31yCOPKBQKefJZETb5whe+ULq9atWqLv3Mph8Ovv/++3ueCb0vnU6rrq5us890cZlrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrEc7hUIhHXroodv9c9XV1Ro7dqyqq6u3+2cPO+yw0oeil7tyXxcu9/ftklYLFy7UUUcdpVAopO9973uaMmVKtx/zggsu0N/+9jeFQiG9/fbbO3zGSE/Y0UtazZkzRyeddJIkacCAAYpEIqqsrNzmz5x44omlS3z96le/0m9/+9sdD24Bv0+DAgAAAAAAAHrbddddp5tvvrlXn++mm27qtedDMPl9LNe3MzxmzpxZun3ppZd68pibPs6MGTM8eUy/HXXUUerXr58kKZlM6q233trm/TOZjBYuXFj683HHHdej+dA7jDFKp9Py+SN3PONaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR69Fe55133nb/TCgUUnV19Q6dqbEjzxdU5b4uXO7v24bHm2++KUnabbfddNhhh3nymF/+8pe12267SZIWLVrkyWP6raamRscff3zpz52dCfP3v/9d8XhcUvHzO4455piejIdeEo1GdeuttyoajfodxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR7tNWbMGB199NHb9TODBw/Wtddeu90feH7MMcds9n/ll7tyXxcu9/ftklajRo1SY2OjTjzxRD3//POePe5//Md/aPbs2Ro1apQ+/vhjzx63u3b0klaS9Oyzz+rUU0+VJPXr109vv/32Fk8DSqVSOuigg/Thhx9Kkq699tpePe2tp/h9GpQN8vm8mpubNXz4cPXp08fvON3mWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEevRbpseF+yKPn36aPjw4WpublY+n9+u5xk3btyORAykcl8X3env97Fc387wCIfDkqQRI0Z4+rgdj9fa2urp4/rplFNOKe3mZjIZnXrqqVq6dOlm92lpadH48eNLmx0777yzrrnmml7Pip7Rp08fjRgxIjBvsK71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHu12yimnbNelpvL5vJqamrZrs+P8889ns+NTyn1duNzftw2PbDYrSZ4PWsfjdTy+H8aNG6eDDz54s6977rmn9P233nrrM98/+OCDtXbt2q0+5iOPPKLdd99dktTQ0KCDDz5Y3/jGN/SDH/xAp59+uvbaa6/SB5VXVlbq8ccf15AhQ3q0J3pPIpHQlClTlEgk/I7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj/a76667NHLkyC7dt6amRhdeeKFqamq6dP+RI0fqzjvv7E68QCr3deFy/0q/nniXXXbRunXr1Nzc7Onjbty4UVLxDAe/LF++XKtWrdrq95PJpN59993P/P22Nmn23HNPzZs3T+edd56WLFkiY4zq6uo+c2ms4cOH68EHH9zscz/gvsrKSo0ePVqVlb4tWU+51sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHq037Bhw/TCCy/o2GOPLV01Z2tyuZwaGhqUy+U6fdyhQ4fqhRde0LBhw7yKGhjlvi5c7u/bZ3gccsghevfddz3/rI199tlHq1at0oEHHqjFixd79rjbY/To0dvc8Niajz/+WKNHj97mfbLZrKZNm6ZHH31U7733ntavX68hQ4Zon3320RlnnKGLLrpIu+yyyw4mt5Pf130DAAAAAAAA/LZs2TKdfPLJ27xKTFeNHDlSL7zwgsaMGeNBMuD/5/exXN8uafXlL39ZkrR69Wq9//77njzmihUr1NDQIEk67LDDPHnMHdHQ0CBjzHZ/dbbZIUlVVVX6/ve/r+eff16rV69WJpPR+vXr9frrr+u///u/A7fZgaJMJqOFCxcqk8n4HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEe3TFmzBgtXbpU559//lbv069fPx155JHq16/fVu9z/vnna+nSpWx2bEO5rwuX+/u24fHNb36zdPvmm2/25DE3fZxNHx9wXTab1ZIlS3z9bBovudbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6dMuwYcM0depUPfPMMzrmmGM+8/2qqiodfPDBqqqq+sz3jjnmGD377LOaOnUql7HqRLmvC5f7+3ZJq3g8rtGjRyscDquiokJPPfWUTjvttB1+vGeeeUbjx49XoVDQ0KFD1dDQoIEDB3qYGH7x+zQoAAAAAAAAwEb19fV69NFH9cYbb+jtt9/e7DM+hg4dqsMOO0xHHHGEzjvvvM2OrwE9xe9jub6d4TFw4EBdddVVkqRCoaBzzz1XTz755A491lNPPaVzzz1XhUJBoVBI//Vf/8VmRwBVV1erpqZGkpTP5xWJRNSxXxeLxUo7jm1tbUomk5KKH9QUiURKjxGNRtXe3i5JSqVSSqVSkqT29nZFo9HS/SKRSOnDnZLJpNra2iQVdzdjsZgkyRijSCSifD4vSUokEkqn05KKp33F43FJxdd3JBJRoVCQVNzs6zgdLJ1OK5FIdNopmUxq7dq1KhQKgehUKBTU1NRUejzbO6VSKa1Zs0aFQsGq1157e7sikYhisViPvfa60qlQKGjdunWlx7P5tefHPNGJTr3ZqVAoKBwOq7W1NTCdgjhPXekUjUZLjxOUTn7NUyKRUCQSKY1rEDp1dZ6SyaQikYjS6XQgOsXjcTU1NalQKDgxTza/9iKRiDZs2KBCoeDbe0QsFtP69etVKBSsf+0F9T2CTnTa9N9wq1ev3mx9ut4piPO0tU4HHHCAfv3rX2vGjBlqaWnRxo0b9e677yoSiailpUXTp0/XxIkTdcABBzjTyYZ5KhQKWr9+fenxgtBpe+bJi2NhfvFtw0OSrrzySo0ZM0ahUEhtbW06++yzdfbZZ+v111/v0s8vXLhQZ599ts4880ylUimFQiEdcMABuvLKK3s4Ofxw5JFH6swzz5QkNTc3q7a2trQIJ0+erOXLl0uS5s+fr1mzZkmSGhsbVVtbW3qMSZMmaeXKlZKkOXPmaM6cOZKklStXatKkSaX71dbWqrGxUZI0a9YszZ8/X5K0fPlyTZ48WVLxDaK2tlbNzc2SpOnTp2vhwoWSpMWLF2vq1KmSim8CtbW1pTedqVOnavHixZKKr+Hp06d32unFF1/UX//6V8VisUB0isViuvfeezVjxgwn5umVV17R/fffr1gsZtVrr6GhQbW1tXr88cd77LXXlU6xWEz33XefnnvuOV/nyctOXs4TnejUm51isZjuvPNO3XXXXYHpFMR56kqnhx9+WLW1tVq7dm1gOvk1T88995xqa2tVX18fmE5dnacXX3xRtbW1eueddwLRacaMGbr33nsVi8WcmCfbX3uTJk1SLBbz7T3i8ccf1z333KNYLGb9ay+o7xF0olNHp4aGBj344IPauHFjYDoFcZ660ikUCmndunV66qmnZIxRKBRyvpNf8xSLxXTPPffo4YcfDkyn7ZknL46F+cb4bNWqVWbEiBGmoqLChEIhU1FRYSoqKszo0aPNOeecY2688UZz5513msmTJ5s777zT3Hjjjebcc881e++9d+m+oVDIhEIhM2LECLNq1Sq/K8Fj9fX1RpKprq42NTU1pr6+3uRyORMOh02hUDDGGBONRk0mkzHGGJNKpUwikTDGGNPe3m7C4XDpsSKRiMlms8YYY5LJpEkmk8YYY7LZrIlEIqX7hcNh097ebowxJpFImFQqZYwxJpPJmGg0aowxplAomHA4bHK5nDHGmHg8btra2owxxqTTaROLxYwxxuTzeRMOh00+nzfGGBOLxUw6nTbGGNPW1mbi8bgxxmyzUyKRMGvWrDH5fD4QnfL5vFm3bl3p8WzvlEwmTWNjo8nn81a99rLZrAmHwyYajfbYa68rnfL5vFm7dm3p8Wx+7fkxT3SiU292yufzprW11bS0tASmUxDnqSudIpFI6XGC0smveYrH4yYcDpfGNQidujpPiUTChMNh09bWFohOsVjMrFu3zuTzeSfmyebXXjgcNuvXrzf5fN6394hoNGqamppMPp+3/rUX1PcIOtFp03/DrVq1arP16XqnIM5TVztlMhmzatWq0uMFoZMf85TP501TU1Pp8YLQaXvmqTvHwjqO5XZ81dfXm97k22d4bKqhoUFnnXWW3n77bYVCodLpMaFQaKs/s+l9jDE69NBD9cQTT2jvvffulczoPX5f9w0AAAAAAAAA0Dm/j+X6ekmrDqNHj9aCBQt04403apdddin9/db2Yjb9+2HDhunGG2/UggUL2OxAYMXjcd1zzz2la+y5zrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uX+l3wE69O3bV7/+9a919dVXa/r06Zo3b55effVVrVq1qvRBLJJUWVmpUaNG6etf/7qOO+44nXXWWaqurvYxOdDzqqqqdPDBB6uqqsrvKJ5wrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3ub8UlrToTj8cVj8c1cOBADRw40O846GV+nwYFAAAAAAAAAOic38dyrbikVWcGDhyokSNHstmBspVOp1VXV6d0Ou13FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73d2LDAyh3uVxODQ0Nm13ezWWu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v9nbikFcqb36dBAQAAAAAAAAA65/exXM7wAByQz+fV1NSkfD7vdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u92fDA3BAPB7Xvffeq3g87ncUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvfnklawnt+nQdnAGKNMJqN+/fopFAr5HafbXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH8fu9Pf7WG5lrz0TgB0WCoVUXV3tdwzPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVoADYrGY7rjjDsViMb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/Gx6AA6qrqzV27Fhnd1Y/zbU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+f4QHr+X3dNwAAAAAAAABA5/w+lssZHoAD2tra9MILL6itrc3vKJ5wrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3uz4YH4IBCoaBIJKJCoeB3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDzqiurlZNTY0kKZ/PKxKJqOOKbLFYTNlsVlJxBzKZTEqScrmcIpFI6TGi0aja29slSalUSqlUSpLU3t6uaDRaul8kElEul5MkJZPJ0m5mNpstfViPMUaRSET5fF6SlEgklE6nJUmZTEbxeFzSZ98g4vG4MpmMJCmdTiuRSHTaqaKiQqeddpoGDBgQiE4DBgzQ6aefXspme6c+ffro1FNP1YABA6x67VVXV+vcc8+VMabHXntd6TRgwAB961vfUigU8nWevOzk5TzRiU692WnAgAE655xz1N7eHphOQZynrnQqFAo699xztdNOOwWmk1/zFAqFdO6556qqqiownbo6TxUVFTr33HPVt2/fQHSSpNNPP10DBgxwYp5sfu3l83mdccYZGjBggG/vEcYYjR8/XgMGDLD+tRfU9wg60amjU3V1tU4++WT1798/MJ2COE9d7dSvXz+dfPLJGjBgQGA6+TFPAwYM0Le//e1ShyB02p558uJYmF/Y8IAzjjzySJ155pmSpObmZtXW1pYW4eTJk7V8+XJJ0vz58zVr1ixJUmNjo2pra0uPMWnSJK1cuVKSNGfOHM2ZM0eStHLlSk2aNKl0v9raWjU2NkqSZs2apfnz50uSli9frsmTJ0sqvkHU1taqublZkjR9+nQtXLhQkrR48WJNnTpVUvFNoLa2tvSmM3XqVC1evFiStHDhQk2fPr3TTi+//LIee+wx5XK5QHTK5XKaNWuWZs6c6cQ8LViwQA8//LByuZxVr71169apoaFBTzzxRI+99rrSKZfL6e9//7tmz57t6zx52cnLeaITnXqzUy6X07/+9a9AdQriPHWl08MPP6yGhga1trYGppNf8zR79mw1NDTogw8+CEynrs7Tyy+/rIaGBi1btiwQnWbOnKlZs2Ypl8s5MU+2v/ZeeeUV5XI5394jnnjiCb3wwgvK5XLWv/aC+h5BJzp1dFq3bp1qa2tLBy2D0CmI89TVTqtWrVJtbW3poHgQOvkxT7lcTi+99JIefvjhwHTannny4liYbwxgufr6eiPJVFdXm5qaGlNfX29yuZwJh8OmUCgYY4yJRqMmk8kYY4xJpVImkUgYY4xpb2834XC49FiRSMRks1ljjDHJZNIkk0ljjDHZbNZEIpHS/cLhsGlvbzfGGJNIJEwqlTLGGJPJZEw0GjXGGFMoFEw4HDa5XM4YY0w8HjdtbW3GGGPS6bSJxWLGGGPy+bwJh8Mmn88bY4yJxWImnU4bY4xpa2sz8XjcGGO22WndunVm4sSJpVyudwqHw2bixIlmzZo1TsxTU1NTafxteu1t3LjRTJw40TQ2NvbYa68rnTrmc+3atb7Ok5edvJwnOtGpNzt1rMdVq1YFplMQ56krnT755BMzceJE09LSEphOfs3T2rVrzcSJE82GDRsC06mr89TxO+T69esD0WnNmjWl38lcmCebX3urV68ujaVf7xGNjY2lDLa/9oL6HkEnOnV06vi3ZWtra2A6BXGeutqpubm59P4alE5+zFP4//5t9cknnwSm0/bMU3eOhXUcy+34qq+vN70pZMz/nYsCWOq9997TAQccUPpzfX29/v3f/93HRAAAAAAAAACAT/P7WC6XtAIAAAAAAAAAAM5jwwNwQDQa1S233LLZhxS5zLU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoAD+vfvr/Hjx6t///5+R/GEa31szWtLLltyAGA9Bglz6Z1yHsugdXetj815bchmQwYARazHYGE+vVHu4+hyfz7DA9bz+7pvAAAAAAAAAIDO+X0slzM8AAekUinNmDFDqVTK7yiecK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7s+GBwAAAAAAAAAAcB6XtIL1/D4NCgAAAAAAAADQOb+P5XKGB+CA9vZ2rVixQu3t7X5H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/NjwAB7h83bwtca2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7s8lrWA9v0+DAgAAAAAAAAB0zu9juZzhAQAAAAAAAAAAnMeGB+CASCSiG264QZFIxO8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PJa1gPb9Pg7JBLpdTY2Oj9txzT1VWVvodp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfx+709/tYLhsesJ7fiwQAAAAAAAAA0Dm/j+VySSvAAclkUtOmTVMymfQ7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOKCiokJDhgxRRUUwlqxrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/LmkF6/l9GhQAAAAAAAAAoHN+H8t1b4sGZau6ulo1NTWSpHw+r0gkoo79ulgspmw2K0lqa2srnW6Vy+UUiURKjxGNRtXe3i5JSqVSSqVSkqT29nZFo9HS/SKRiHK5nKTiKVxtbW2SpGw2q1gsJkkyxigSiSifz0uSEomE0um0JCmTySgej0uSCoWCIpGICoWCJCkejyuTyUiS0um0EolEp52i0agWLVqkbDYbiE7ZbFZvvPGGwuGwE/MUi8W0cOFCZbNZq157bW1tWrJkiVpbW3vstdeVTtlsVosWLSp9z+bXnh/zRCc69WanbDarxYsXa8OGDYHpFMR56kqnlpYWLVmyROl0OjCd/JqnSCSiJUuWKJlMBqZTV+cpGo1qyZIlSiQSgegUDof1xhtvlH6ftL2Tza+9jRs36q233lI2m/XtPaK1tVVvvvmmstms9a+9oL5H0IlOHZ3a2tq0YMGCzf4N7HqnIM5TVzulUiktWLBgs2NKrnfyY56y2azefPNNtbS0BKbT9syTF8fC/MKGB5xx5JFH6swzz5QkNTc3q7a2trQIJ0+erOXLl0uS5s+fr1mzZkmSGhsbVVtbW3qMSZMmaeXKlZKkOXPmaM6cOZKklStXatKkSaX71dbWqrGxUZI0a9YszZ8/X5K0fPlyTZ48WVLxDaK2tlbNzc2SpOnTp2vhwoWSpMWLF2vq1KmSim8CtbW1pTedqVOnavHixZKkhQsXavr06V3q9OKLLyqdTgeiUzqd1ksvvaRnn33WiXl6/fXXS+Nv02tvzZo1qqur01NPPdWjr73OOnXM59y5c32dJy87eTlPdKJTb3ZKp9Oqq6vTpEmTAtMpiPPUlU6PPfaY6urqSlmD0MmveZo7d67q6ur0z3/+MzCdtmee6urqtGzZskB0evbZZ/XSSy8pnU47MU82v/b+9re/ad68eUqn0769Rzz11FOl+bT9tRfk9wg60UmS1qxZo7lz55YOqgahUxDnqaudPv74Y82dO7d0gDsInfyYp3Q6rXnz5umxxx4LTKftmScvjoX5xgCWq6+vN5JMdXW1qampMfX19SaXy5lwOGwKhYIxxphoNGoymYwxxphUKmUSiYQxxpj29nYTDodLjxWJREw2mzXGGJNMJk0ymTTGGJPNZk0kEindLxwOm/b2dmOMMYlEwqRSKWOMMZlMxkSjUWOMMYVCwYTDYZPL5YwxxsTjcdPW1maMMSadTptYLGaMMSafz5twOGzy+bwxxphYLGbS6bQxxpi2tjYTj8eNMYZOdKITnehEJzrRiU50ohOd6EQnOtGJTnSiE52c7tRxLLfjq76+3vQmPsMD1vP7um82MMYok8moX79+CoVCfsfpNtf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MexO/39PpbLJa0AB0SjUd16662bXbPPZa71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/05wwPW83tX0Ab5fF7Nzc0aPny4+vTp43ecbnOtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cu9Pf72O5bHjAen4vEgAAAAAAAABA5/w+lsslrQAHJBIJTZkyRYlEwu8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PhgfggMrKSo0ePVqVlZV+R/GEa31szWtLLltyAGA9Bglz6Z1yHsugdXetj815bchmQwYARazHYGE+vVHu4+hyfy5pBev5fRoUAAAAAAAAAKBzfh/L5QwPwAGZTEYLFy5UJpPxO4onXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH0eX+7PhATggm81qyZIlymazfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn8uaQXr+X0aFAAAAAAAAACgc34fy+UMD8ABhUJBkUhEhULB7yiecK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7s+GB+CAWCym2tpaxWIxv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+XtIL1/D4NygaFQkGxWEyDBg1SRYX7+5Su9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPY3f6+30st7LXngnADquoqNCQIUP8juEZ1/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8eqPcx9Hl/uW3PQU4KB6P65577lE8Hvc7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOKCqqkoHH3ywqqqq/I7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MfR5f58hges5/d13wAAAAAAAAAAnfP7WC5neAAOSKfTqqurUzqd9juKJ1zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/uz4QE4IJfLqaGhQblczu8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PJa1gPb9PgwIAAAAAAAAAdM7vY7mc4QE4IJ/Pq6mpSfl83u8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PhgfggHg8rnvvvVfxeNzvKJ5wrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3uz4YHnFFdXa2amhpJxV3GSCSijiuyxWIxZbNZSVJbW5uSyaSk4vXmIpFI6TGi0aja29slSalUSqlUSpLU3t6uaDRaul8kEildoy6ZTKqtrU2SlM1mFYvFJEnGGEUikdJOZyKRKH2QTyaTKb0hFAoFRSIRFQoFScU3jEwmI6n4AUCJRKLTTlVVVfr5z3+uwYMHB6LT4MGDddlll6mystKJeerXr59+9rOfafDgwVa99mpqanTNNdeoT58+Pfba60qnwYMH69JLL1Xfvn19nScvO3k5T3SiU292Gjx4sH7xi1/IGBOYTkGcp650qqio0DXXXKOBAwcGppNf89S3b19dc8016t+/f2A6dXWeqqqqdM0112innXYKRKfKykpddtllGjx4sBPzZPNrLxQK6corr9TgwYN9e4/o06ePLr/8cg0ePNj6115Q3yPoRKeOTjU1Nfrxj3+sQYMGBaZTEOepq50GDBigH//4xxo8eHBgOvkxT4MHD9YVV1yhioqKwHTannny4liYX9jwgDOOPPJInXnmmZKk5uZm1dbWlhbh5MmTtXz5cknS/PnzNWvWLElSY2OjamtrS48xadIkrVy5UpI0Z84czZkzR5K0cuVKTZo0qXS/2tpaNTY2SpJmzZql+fPnS5KWL1+uyZMnSyq+QdTW1qq5uVmSNH36dC1cuFCStHjxYk2dOlVS8U2gtra29KYzdepULV68WJK0cOFCTZ8+vdNOr7zyiubOnatQKBSITqFQSIsWLdIzzzzjxDx1ZA2FQla99jZu3Kjq6mo9+eSTPfba60qnUChUeo36OU9edvJynuhEp97sFAqFFAqFdOeddwamUxDnqSudHnnkEVVXVysejwemk1/zNHfuXFVXV+ujjz4KTKeuztMrr7yi6upqvf/++4Ho9Mwzz2jRokUKhUJOzJPNr70HH3xQH330kUKhkG/vEU8++aSWLFmiUChk/WsvqO8RdKJTR6eNGzfqnnvuKR3ADEKnIM5TVzutWbNG99xzj0KhUGA6+TFPoVBI77//vh555JHAdNqeefLiWJhvDGC5+vp6I8lUV1ebmpoaU19fb3K5nAmHw6ZQKBhjjIlGoyaTyRhjjEmlUiaRSBhjjGlvbzfhcLj0WJFIxGSzWWOMMclk0iSTSWOMMdls1kQikdL9wuGwaW9vN8YYk0gkTCqVMsYYk8lkTDQaNcYYUygUTDgcNrlczhhjTDweN21tbcYYY9LptInFYsYYY/L5vAmHwyafzxtjjInFYiadThtjjGlrazPxeNwYY7bZaf369eb222830Wg0EJ2i0ai5/fbbzbp165yYp03H36bXXmtrq/nTn/5k1q5d22Ovva506pjPpqYmX+fJy05ezhOd6NSbnaLRqPnjH/9oVq9eHZhOQZynrnRas2aN+dOf/mTC4XBgOvk1T01NTeZPf/qT2bhxY2A6dXWe1q9fb/70pz+Z5ubmQHRat25d6XcyF+bJ5tdeY2Oj+eMf/2ii0ahv7xFr164tZbD9tRfU9wg60amjU2trq7n99ttLOYLQKYjz1NVOLS0tpf9eBqWTH/PU8W+rNWvWBKbT9sxTd46FdRzL7fiqr683vSlkzP+diwJY6r333tMBBxxQ+nN9fb3+/d//3cdEvS+bzWr58uX60pe+pKqqKr/jdJtrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j2J3+fh/LZcMD1vN7kQAAAAAAAAAAOuf3sVw+wwNwQFtbm1544YXSBxG5zrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADCoWCIpGICoWC31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J9LWsF6fp8GBQAAAAAAAADonN/HcjnDA3BALpdTQ0ODcrmc31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J8ND8ABiURCDz30kBKJhN9RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4utyfS1rBen6fBgUAAAAAAAAA6Jzfx3I5wwMAAAAAAAAAADiPDQ/AAdFoVLfccoui0ajfUTzhWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEesxWJhPb5T7OLrcnw0PwAH9+/fX+PHj1b9/f7+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/n+EB6/l93TcAAAAAAAAAQOf8PpbLGR6AA1KplGbMmKFUKuV3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDAAAAAAAAAAA4j0tawXp+nwYFAAAAAAAAAOic38dyOcMDcEB7e7tWrFih9vZ2v6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADXL5u3pa41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWsJ7fp0EBAAAAAAAAADrn97FczvAAAAAAAAAAAADOY8MDcEAkEtENN9ygSCTidxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dB2SCXy6mxsVF77rmnKisr/Y7Tba71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY9jd/r7fSyXDQ9Yz+9FAgAAAAAAAADonN/HcrmkFeCAZDKpadOmKZlM+h3FE671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/3Z8AAcUFFRoSFDhqiiIhhL1rU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+XtIL1/D4NCgAAAAAAAADQOb+P5bq3RQOUoWw2qyVLliibzfodxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v92fCAM6qrq1VTUyNJyufzikQi6jhBKRaLlRZgW1tb6fpyuVxOkUik9BjRaFTt7e2SpFQqpVQqJUlqb29XNBot3S8SiSiXy0kqXrOura1NUnGxx2IxSZIxRpFIRPl8XpKUSCSUTqclSZlMRvF4XJJUKBQUiURUKBQkSfF4XJlMRpKUTqeVSCQ67RSJRDRv3jyl0+lAdEqn05o3b55aW1udmKdNx9+m114ymVRdXZ1aWlp67LXXlU4d8xkOh32dJy87eTlPdKJTb3ZKp9N6+eWXtX79+sB0CuI8daXTxo0bVVdXp1QqFZhOfs1TOBxWXV2d4vF4YDp1dZ4ikYjq6uoUi8UC0am1tbX0O5kL82Tza6+5uVkvv/yy0um0b+8RLS0tpQy2v/aC+h5BJzp1dEomk5o3b17puYLQKYjz1NVOiUSi9N/LoHTyY546/m21cePGwHTannmKeHAszC9seMAZRx55pM4880xJxV/Qa2trS4tw8uTJWr58uSRp/vz5mjVrliSpsbFRtbW1pceYNGmSVq5cKUmaM2eO5syZI0lauXKlJk2aVLpfbW2tGhsbJUmzZs3S/PnzJUnLly/X5MmTJRXfIGpra9Xc3CxJmj59uhYuXChJWrx4saZOnSqp+CZQW1tbetOZOnWqFi9eLElauHChpk+f3mmnd955RyNHjtSgQYMC0WnQoEH60pe+pLq6Oifmafny5dp55501aNAgq157mUxGV1xxhWbPnt1jr72udBo0aJD22Wcfvf76677Ok5edvJwnOtGpNzsNGjRIP/nJTzR58uTAdAriPHWl08yZM3XFFVeUHi8Infyap9dff11XXHGFmpubA9Opq/P0zjvv6IorrlBjY2MgOtXV1elLX/qSBg0a5MQ82fzae+KJJ/SNb3xDgwYN8u09Yvbs2TrkkEM0aNAg6197QX2PoBOdOjp1HADt169fYDoFcZ662ikWiykej2vQoEGB6eTHPA0aNEhf/epXNXPmzMB02p558uJYmG8MYLn6+nojyVRXV5uamhpTX19vcrmcCYfDplAoGGOMiUajJpPJGGOMSaVSJpFIGGOMaW9vN+FwuPRYkUjEZLNZY4wxyWTSJJNJY4wx2WzWRCKR0v3C4bBpb283xhiTSCRMKpUyxhiTyWRMNBo1xhhTKBRMOBw2uVzOGGNMPB43bW1txhhj0um0icVixhhj8vm8CYfDJp/PG2OMicViJp1OG2OMaWtrM/F43BhjttkpmUyajRs3mkKhEIhOhULBtLa2lu5ne6dUKmWam5tNoVCw6rXX3t5u2traTCwW67HXXlc6FQoF09LSUrqfza89P+aJTnTqzU6FQsGkUinT2toamE5BnKeudIpGo6atra2UNQid/JqnRCJh2traTCaTCUynrs5TMpk0bW1tpdeU653i8bhpbW01hULBiXmy+bUXiUQ2+++GH+8RsVislMn2115Q3yPoRKdN/03e1NRUul8QOgVxnrraKZvNmqamps3e813v5Mc8FQqF0n8vg9Jpe+apO8fCOo7ldnzV19eb3sSHlsN6fn/QjQ0ikYhqa2t1+eWXa8iQIX7H6TbX+tia15ZctuQAwHoMEubSO+U8lkHr7lofm/PakM2GDACKWI/Bwnx6o9zHsTv9/T6Wy4YHrOf3IrFBPp9Xc3Ozhg8frj59+vgdp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfx+709/tYLhsesJ7fiwQAAAAAAAAA0Dm/j+XyoeWAAxKJhKZMmaJEIuF3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDcEBlZaVGjx6tyspKv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+XtIL1/D4NCgAAAAAAAADQOb+P5XKGB+CATCajhQsXKpPJ+B3FE671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/3Z8AAckM1mtWTJEmWzWb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/l7SC9fw+DQoAAAAAAAAA0Dm/j+VyhgfggEKhoEgkokKh4HcUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvdnwwNwQCwWU21trWKxmN9RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4utyfS1rBen6fBmWDQqGgWCymQYMGqaLC/X1K1/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8eqPcx7E7/f0+llvZa88EYIdVVFRoyJAhfsfwjGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocv/y254CHBSPx3XPPfcoHo/7HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/dnwABxQVVWlgw8+WFVVVX5H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/PsMD1vP7um8AAAAAAAAAgM75fSyXMzwAB6TTadXV1SmdTvsdxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v92fAAHJDL5dTQ0KBcLud3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWsJ7fp0EBAAAAAAAAADrn97FczvAAHJDP59XU1KR8Pu93FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDcEA8Hte9996reDzudxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dB2cAYo0wmo379+ikUCvkdp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfx+709/tYbmWvPROAHRYKhVRdXe13DM+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWgANisZjuuOMOxWIxv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADqqurNXbsWGd3Vj/NtT625rUlly05ALAeg4S59E45j2XQurvWx+a8NmSzIQOAItZjsDCf3ij3cXS5P5/hAev5fd03AAAAAAAAAEDn/D6WyxkegAPa2tr0wgsvqK2tze8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PhgfggEKhoEgkokKh4HcUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvfnklawnt+nQQEAAAAAAAAAOuf3sVzO8AAckMvl1NDQoFwu53cUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvdnwwNwQCKR0EMPPaREIuF3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWsJ7fp0EBAAAAAAAAADrn97FczvAAAAAAAAAAAADOY8MDzqiurlZNTY0kKZ/PKxKJqOMEpVgspmw2K0lqa2tTMpmUVLzeXCQSKT1GNBpVe3u7JCmVSimVSkmS2tvbFY1GS/eLRCKla9Qlk0m1tbVJkrLZrGKxmCTJGKNIJKJ8Pi+peKpXOp2WJGUyGcXjcUlSoVBQJBJRoVCQJMXjcWUyGUlSOp0unRq2rU7r16/XzTffrGg0GohO0WhUN998s9atW+fEPG06/ja99lpbW3XLLbdo7dq1Pfba60qnjvlsamrydZ687OTlPNGJTr3ZqWM9rl69OjCdgjhPXem0Zs0a3XLLLQqHw4Hp5Nc8NTU16ZZbbtHGjRsD06mr87R+/Xrdcsstam5uDkSndevWlX4nc2GebH7tNTY2lsbSr/eItWvXljLY/toL6nsEnejU0am1tVU333xzKW8QOgVxnrraqaWlpfT+GpROfsxTx7+t1qxZE5hO2zNPXhwL8wsbHnDGkUceqTPPPFOS1NzcrNra2tIinDx5spYvXy5Jmj9/vmbNmiWp+It8bW1t6TEmTZqklStXSpLmzJmjOXPmSJJWrlypSZMmle5XW1urxsZGSdKsWbM0f/58SdLy5cs1efJkScU3iNraWjU3N0uSpk+froULF0qSFi9erKlTp0oqvgnU1taW3nSmTp2qxYsXS5IWLlyo6dOnd9rp7bff1vDhw9W/f/9AdOrfv79GjRqluro6J+apvr5egwcPVv/+/a167aVSKY0fP16zZ8/usddeVzr1799fI0eO1IIFC3ydJy87eTlPdKJTb3bq37+/TjnlFD344IOB6RTEeepKp5kzZ2r8+PHK5XKB6eTXPC1YsEDjx49XU1NTYDp1dZ7efvttjR8/XqtXrw5Ep7q6Oo0aNUr9+/d3Yp5sfu1Nnz5dBx98sPr37+/be8Ts2bP1+c9/Xv3797f+tRfU9wg60amjUyqVUjabVZ8+fQLTKYjz1NVO4XBY2WxW/fv3D0wnP+apf//++tKXvqSZM2cGptP2zJMXx8J8YwDL1dfXG0mmurra1NTUmPr6epPL5Uw4HDaFQsEYY0w0GjWZTMYYY0wqlTKJRMIYY0x7e7sJh8Olx4pEIiabzRpjjEkmkyaZTBpjjMlmsyYSiZTuFw6HTXt7uzHGmEQiYVKplDHGmEwmY6LRqDHGmEKhYMLhsMnlcsYYY+LxuGlrazPGGJNOp00sFjPGGJPP5004HDb5fN4YY0wsFjPpdNoYY0xbW5uJx+PGGEMnOtGJTnSiE53oRCc60YlOdKITnehEJzrRiU5Od+o4ltvxVV9fb3oTH1oO6/n9QTc2SKVSmjNnjk488cTSDr3LXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y3ujqMxRvF4XNlsVlVVVRo4cKBCoVAPJO0Z3env97Hcyl57JgAAAAAAAAAAAmjZsmV69NFH9cYbb+idd95ROBwufW/o0KE69NBDdcQRR+j888/fbEMA3uIMD1jP711BAAAAAAAAANiSZ599VrfeeqteffXVLv/M0UcfrWuvvVbjxo3rwWT+8PtYLh9aDjigvb1dK1asUHt7u99RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vdGUcW1padP755+vUU0/drs0OSXr11Vd1yimn6Lvf/a5aWlq6G9dzLr+O2PAAHJBKpTRjxgylUim/o3jCtT625rUlly05ALAeg4S59E45j2XQurvWx+a8NmSzIQOAItZjsDCf3uhsHJcuXaoDDzxQjz76aLee55FHHtGBBx6oZcuWdetxvOby64hLWsF6fp8GBQAAAAAAAABScbNj7Nixm31GR3cNHTpU8+fP15gxYzx7TL/4fSyXMzwAAAAAAAAAAOhES0uL/uM//sPTzQ5JCofDOvnkk628vJVr2PAAHBCJRHTDDTcoEon4HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59MbWxvHSSy/V2rVre+Q5165dq8suu6xHHnt7ufw64pJWsJ7fp0HZIJfLqbGxUXvuuacqKyv9jtNtrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59MaWxvHZZ5/Vqaee2uPP/cwzz+iUU07p8efZlu68jvw+lsuGB6zn9yIBAAAAAAAAUN6OOeYYvfrqq73yPPPnz+/x5+kpfh/L5ZJWgAOSyaSmTZumZDLpdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xufHsdly5b1ymaHJL3yyiuqr6/vlefaGpdfR2x4AA6oqKjQkCFDVFERjCXrWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEesxWJhPb3x6HB999NFeff7efr5Pc/l1xCWtYD2/T4MCAAAAAAAAUL5OOOEEvfTSS736fHPnzu215/OS38dy3duiAcpQNpvVkiVLlM1m/Y7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHpj03E0xuidd97p1ed/++235ed5Ci6/jtjwAByQTqdVV1endDrtdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xubjmM8Hlc4HO7V5w+Hw0okEr36nJty+XXEJa1gPb9PgwIAAAAAAABQnjZu3Kjhw4f3+vM2Nzdrl1126fXn7S6/j+VyhgfgAGOM0um0r6eyecm1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/e2HQcq6qqfMnQr18/X55Xcvt1xIYH4IBoNKpbb71V0WjU7yiecK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzc2HceBAwdq6NChvfr8Q4cOVU1NTa8+56Zcfh1xSStYz+/ToGyQz+fV3Nys4cOHq0+fPn7H6TbX+tia15ZctuQAwHoMEubSO+U8lkHr7lofm/PakM2GDACKWI/Bwnx649PjeMIJJ+ill17qtec/4YQTNHfu3F57vk/rzuvI72O5nOEBOKBPnz4aMWJEYP5D5VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT298ehyPOOKIXn3+3n6+T3P5dcSGB+CARCKhKVOmKJFI+B3FE671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fTGp8fxvPPO69Xn7+3n+zSXX0dseAAOqKys1OjRo1VZWel3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG58exzFjxujoo4/ulec+5phjNrsklB9cfh3xGR6wnt/XfQMAAAAAAABQ3p599lmdeuqpvfI848aN6/Hn6Sl+H8vlDA/AAZlMRgsXLlQmk/E7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjS2N4ymnnNLjl5o6//zzrdjscPl1xIYH4IBsNqslS5Yom836HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59MbWxvGuu+7SyJEje+Q5R44cqTvvvLNHHnt7ufw64pJWsJ7fp0EBAAAAAAAAgCQtW7ZMxx57rMLhsGePOXToUM2fP19jxozx7DH94vexXM7wABxQKBQUiURUKBT8juIJ1/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8emNb4zhmzBjNnz/fszM9Ro4cad1mh8uvIzY8AAfEYjHV1tYqFov5HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59EZn4zhmzBgtXbpU559/free5/zzz9fSpUut2uyQ3H4dcUkrWM/v06BsUCgUFIvFNGjQIFVUuL9P6VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT29szzg+++yzuu222/TKK690+fGPOeYYXXPNNVZ8QPmWdOd15PexXDY8YD2/FwkAAAAAAAAAbEt9fb0effRRvfHGG3r77bc3+4yPoUOH6rDDDtMRRxyh8847b7NjnUHj97FctvkAB8Tjcd1zzz2Kx+N+R/GEa31szWtLLltyAGA9Bglz6Z1yHsugdXetj815bchmQwYARazHYGE+vbEj43jAAQfopptu0ty5c9XS0qJYLKbm5mbFYjG1tLRo7ty5uummm5zY7HD5dVTpdwAAnauqqtLBBx+sqqoqv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn97o7jiGQiENHDhQAwcO9DhZ73D5dcQlrWA9v0+DAgAAAAAAAAB0zu9juVzSCnBAOp1WXV2d0um031E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J8ND8ABuVxODQ0NyuVyfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn8uaQXr+X0aFAAAAAAAAACgc34fy+UMD8AB+XxeTU1NyufzfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn82PAAHxONx3XvvvYrH435H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/LmkF6/l9GpQNjDHKZDLq16+fQqGQ33G6zbU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93HsTn+/j+VW9tozAdhhoVBI1dXVfsfwjGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn8uaQU4IBaL6Y477lAsFvM7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOKC6ulpjx451dmf101zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/vzGR6wnt/XfQMAAAAAAAAAdM7vY7mc4QFnVFdXq6amRpKUz+cViUTUsV8Xi8WUzWYlSW1tbUomk5KkXC6nSCRSeoxoNKr29nZJUiqVUiqVkiS1t7crGo2W7heJRJTL5SRJyWRSbW1tkqRsNls6lcsYo0gkonw+L0lKJBJKp9OSpEwmo3g8LkkqFAqKRCIqFAqSpHg8rkwmI0lKp9NKJBKddmptbdWsWbPU1tYWiE5tbW165plntHHjRifmKRwOa+bMmWpra7PqtZdIJPTCCy+oubm5x157XenU1tamWbNmqaWlxdd58rKTl/NEJzr1Zqe2tjY9//zzampqCkynIM5TVzpt2LBBL7zwgpLJZGA6+TVPLS0teuGFFxSLxQLTqavz1NraqhdeeEHRaDQQnTZu3KhnnnlGbW1tTsyTza+9DRs26Nlnn1VbW5tv7xHNzc2l+bT9tRfU9wg60amjUyKR0NNPP13KFIROQZynrnaKx+N6+umnS5mC0MmPeeo4drVhw4bAdNqeefLiWJhf2PCAM4488kideeaZkoq/HNfW1pYW4eTJk7V8+XJJ0vz58zVr1ixJUmNjo2pra0uPMWnSJK1cuVKSNGfOHM2ZM0eStHLlSk2aNKl0v9raWjU2NkqSZs2apfnz50uSli9frsmTJ0sqvkHU1taqublZkjR9+nQtXLhQkrR48WJNnTpVUvFNoLa2tvSmM3XqVC1evFiStHDhQk2fPr3TTq+99po++OADFQqFQHQqFAr66KOPNHv2bCfm6c0339SKFStUKBSse+1FIhHNnDmzx157XelUKBT04Ycf6uWXX/Z1nrzs5PU80YlOvdWpUCiotbVV9957b2A6BXGeutJp+vTpikQiikajgenk1zy9/PLLikQi+uijjwLTqavz9NprrykSiWjFihWB6DR79mx99NFHKhQKTsyTza+9qVOnqrGxUYVCwbf3iJkzZ6qhoUGFQsH6115Q3yPoRKdNOy1ZsqR04DQonYI4T13ttGTJktJB7KB06u15KhQKWr16dSlrEDptzzx5cSzMNwawXH19vZFkqqurTU1Njamvrze5XM6Ew2FTKBSMMcZEo1GTyWSMMcakUimTSCSMMca0t7ebcDhceqxIJGKy2awxxphkMmmSyaQxxphsNmsikUjpfuFw2LS3txtjjEkkEiaVShljjMlkMiYajRpjjCkUCiYcDptcLmeMMSYej5u2tjZjjDHpdNrEYjFjjDH5fN6Ew2GTz+eNMcbEYjGTTqeNMca0tbWZeDxujDF0ohOd6EQnOtGJTnSiE53oRCc60YlOdKITnejkdKeOY7kdX/X19aY38RkesJ7f132zQS6XU2Njo/bcc09VVlb6HafbXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH8fu9Pf7WC6XtAIckEgk9NBDD5WuB+g61/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8eqPcx9Hl/pzhAev5vSsIAAAAAAAAAOic38dyOcMDAAAAAAAAAAA4jw0PwAHRaFS33HKLotGo31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J8ND8AB/fv31/jx49W/f3+/o3jCtT625rUlly05ALAeg4S59E45j2XQurvWx+a8NmSzIQOAItZjsDCf3ij3cXS5P5/hAev5fd03AAAAAAAAAEDn/D6WyxkegANSqZRmzJihVCrldxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u92fDAwAAAAAAAAAAOI9LWsF6fp8GBQAAAAAAAADonN/HcjnDA3BAe3u7VqxYofb2dr+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/Gx6AA1y+bt6WuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dBAQAAAAAAAAA65/exXM7wAAAAAAAAAAAAzmPDA3BAJBLRDTfcoEgk4ncUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvfnklawnt+nQdkgl8upsbFRe+65pyorK/2O022u9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPY3f6+30slw0PWM/vRQIAAAAAAAAA6Jzfx3K5pBXggGQyqWnTpimZTPodxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v92fAAHFBRUaEhQ4aooiIYS9a1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/l7SC9fw+DQoAAAAAAAAA0Dm/j+W6t0UDlKFsNqslS5Yom836HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/dnwAByQTqdVV1endDrtdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dBAQAAAAAAAAA65/exXM7wABxgjFE6nVZQ9idd62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOCAajerWW29VNBr1O4onXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH0eX+3NJK1jP79OgbJDP59Xc3Kzhw4erT58+fsfpNtf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MexO/39PpZb2WvPBOygTCaz2Z8//PBDn5L4r6Wlxe8InnKtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cd6T/p4/dfvrYbo8zgOVmzJhhJJX1V01NjbnwwgtNTU2N71nKsY+teW3JZUsOvvjii/UYpC/mkrGku/t9bM5rQzYbMvDFF1/FL9ZjsL6YT8bRtv4zZszo1WPJXNIK1nv66ac1fvx4v2MAAAAAAAAAALbDjBkzdPrpp/fa8/Gh5QAAAAAAAAAAwHmc4QHrRSIRzZ8/v/Tnz33uc+rXr5+PiQAAAAAAAAAAn5bJZPTJJ5+U/nzsscdqyJAhvfb8bHgAAAAAAAAAAADncUkrAAAAAAAAAADgPDY8AAAAAAAAAACA89jwAAAAAAAAAAAAzmPDAwAAAAAAAAAAOI8NDwAAAAAAAAAA4Dw2PAAAAAAAAAAAgPPY8AAAAAAAAAAAAM5jwwMAUPZef/11fec739Fuu+2m6upq7b333vrpT3+qNWvW+B0NAAAAFmpqatLDDz+sK664Ql//+tdVU1OjUCik0aNH+x0NAICyFjLGGL9DAADgl/vvv18/+tGPVCgUNGLECO2xxx764IMPFI/HNXToUL388ss66KCD/I4JAAAAi9xxxx268sorP/P3o0aNUkNDQ+8HAgAAkjjDAwBQxpYtW6Yf//jHKhQKuv3227VmzRq99dZbWrt2rc4++2yFw2F9+9vfViaT8TsqAAAALDJo0CAdf/zxuuaaa/T444/rjjvu8DsSAAAQZ3gAAMrYmWeeqSeffFJnn322Hnvssc2+19bWpv3331+rV6/WpEmT9OMf/9inlAAAALDd9OnTddZZZ3GGBwAAPuMMDwBAWUomk3r22WclST/72c8+8/2ddtpJF110kSRp2rRpvZoNAAAAAAAA248NDwBAj8nn81q6dKkeeOAB/eQnP9GXv/xlVVVVKRQKKRQKaezYsTv82NlsVn/72980btw4jRo1StXV1dp999111FFH6Q9/+IM2bty4zZ9fvHix0um0qqqqdOSRR27xPh35Fi1apEKhsMNZAQAAsH1s/j0SAADYq9LvAACAYJoxY4a++93vKpVKef7YK1as0HnnnaclS5Zs9vdNTU1qamrS66+/rt///vd68MEHNW7cuC0+xgcffCBJ2muvvVRVVbXF+/zbv/2bJCmdTmvVqlXae++9vSsBAACALbL990gAAGAvzvAAAPSISCTSI/9IbWxs1PHHH1/6R2ooFNKxxx6rCRMm6LTTTtNOO+0kSdqwYYPGjx+vefPmbfFxWltbJUnDhg3b6nPtvPPOpdvhcNijBgAAANgW23+PBAAA9uIMDwBAj9ptt910+OGHl75mz56t2traHX68888/X2vXrpUkjRo1Sk8//bQOOuig0vc3btyoc889Vy+99JLa29t11llnaeXKlRoyZMhmj9PW1iZJWz27Q5Kqq6tLt3viH90AAADYOlt/jwQAAPZiwwMA0CNOPvlkrVq1Snvttddmf79o0aIdfsznnntOr776qqTiRsWsWbM0ZsyYze6zyy676Omnn9aBBx6ojz76SK2trbrtttv0u9/9brP7dfwffNlsdqvPl06nS7f79++/w7kBAADQdbb/HgkAAOzFJa0AAD1ixIgRn/lHanfdfffdpdsXXHDBZ/6R2mHAgAG68cYbS3++9957lcvlNrvP0KFDJUktLS1bfb6Oy15ten8AAAD0LNt/jwQAAPZiwwMA4IREIqGXXnqp9OeLLrpom/f/zne+o5qaGknFjYtXXnlls+9/4QtfkCStXr16q2d5/Otf/5JUvLTVqFGjdjg7AAAA/OP175EAAMBebHgAAJywYMECZTIZScX/8+7www/f5v2rq6v11a9+tfTnT3/o5CGHHKLq6mpls1ktXLhwi48xf/58SdIRRxyhigr+kwkAAOAir3+PBAAA9uLoDQDACe+//37p9pgxY1RZ2fnHUB166KFb/Hmp+I/dcePGSdr8Egcd2tra9OCDD0qSzjnnnB3KDAAAAP95/XskAACwFxseAAAn/POf/yzd7urlpTa99vOKFSs+8/3f/OY36tOnjx5//HH98Y9/VKFQkFS87MGFF16o1atXa9SoUbr44ou7mR4AAAB+6YnfIwEAgJ3Y8AAAOGHTDxffbbfduvQzI0aMKN3e9APIOxx00EG6++67VVFRoauuukp77LGHvvzlL2vkyJF6/PHHNWTIED311FPq169f9wsAAADAFz3xe+Qnn3yiXXbZpfQ1YcKELf79pZde2s30AABge7DhAQBwQiKRKN3eaaeduvQzm95v05/f1I9+9CO9+uqrGj9+vPL5vJYtW6ahQ4fqxz/+sZYtW6ZDDjmke8EBAADgq574PTKfz6ulpaX0FY/HJUmFQmGLfw8AAHpH5xeuBADAAul0unS7qqqqSz+z6ZkZbW1tW73fUUcdpaeeemrHwwEAAMBaPfF75OjRo2WM6X44AADgKc7wAAA4obq6unQ7m8126WcymUzpdlf/bz4AAAAEC79HAgBQPtjwAAA4oaampnR7W2drbGrT+2368wAAACgf/B4JAED5YMMDAOCEYcOGlW6vX7++Sz/T1NRUur3zzjt7ngkAAAD24/dIAADKBxseAAAnfOELXyjdXrVqVZd+ZvXq1aXb+++/v+eZAAAAYD9+jwQAoHyw4QEAcMIXv/jF0u1ly5Ypl8t1+jPvvPPOFn8eAAAA5YPfIwEAKB9seAAAnHDUUUepX79+kqRkMqm33nprm/fPZDJauHBh6c/HHXdcj+YDAACAnfg9EgCA8sGGBwDACTU1NTr++ONLf54yZco27//3v/9d8XhcUvG6y8ccc0xPxgMAAICl+D0SAIDywYYHAMAZP/3pT0u3p0yZovfee2+L90ulUvrNb35T+vMll1yiysrKHs8HAAAAO/F7JAAA5YENDwCAM0455RQdffTRkoqXGjj11FO1dOnSze7T0tKi8ePH68MPP5RU/L/yrrnmml7PCgAAAHvweyQAAOUhZIwxfocAAATTuHHjtHbt2s3+rqmpSevXr5ckDRgwQP/2b//2mZ977rnnNHLkyC0+ZmNjo4444gitW7dOkhQKhXTsscdq3333VXNzs1588UWlUilJUmVlpV544YXNLmEAAAAA+/F7JAAA2BFseAAAeszo0aO1atWq7f65jz/+WKNHj97q91esWKHzzjtPS5Ys2ep9hg8frgcffFCnnHLKdj8/AAAA/MXvkQAAYEdwIUoAgHP2339/LVq0SNOmTdOjjz6q9957T+vXr9eQIUO0zz776IwzztBFF12kXXbZxe+oAAAAsAi/RwIAEGyc4QEAAAAAAAAAAJzHh5YDAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAHxzxx13KBQKqaKiQm+99Zbfcbrl2muvVSgUUnV1tVauXOl3HAAAgLLDhgcAAABgobFjxyoUCm33V11dnd/RgS5bv369rr/+eknSOeecoy9/+ctbvN+FF15Yeo1feOGF2/UcU6ZMKf3s6NGju5l426699loNHTpUmUxGV155ZY8+FwAAAD6LDQ8AAAAAgC9uuOEGxWIxhUIh/eY3v/E7TrcNGTJEl156qSRp1qxZmj9/vs+JAAAAykul3wEAAAAAbNvhhx+uI444okv33WOPPXo4DeCNhoYG3X///ZKk008/XV/84hd9TuSNyy67TH/4wx+USqX0q1/9Sv/4xz/8jgQAAFA22PAAAAAALDdu3DhNnDjR7xiAp26//Xa1t7dLkn72s5/5nMY7w4YN01lnnaWHHnpIr732ml577TV97Wtf8zsWAABAWeCSVgAAAACAXhWNRvXggw9Kkvbee28df/zxPify1g9+8IPS7TvuuMO/IAAAAGWGDQ8AAAAAQK967LHHlEwmJUlnnXWWQqGQz4m89bWvfU0jR46UJD399NNqaWnxOREAAEB5YMMDAAAACKCGhgaFQiGFQiGNHj269Pf/+Mc/9IMf/ED777+/Bg8erFAopCuuuGKLj/HJJ5/of/7nf3T00Udr5MiR6tevn3beeWcdcsghuvrqq/XBBx9sV6Z33nlHP/zhD7XPPvtop5120vDhw3XEEUfotttuU2trqyRpypQppdwXXnjhFh9n4sSJpft05VJfdXV1pfuPHTu2S1nff/99XXfddTriiCO02267qaqqSsOHD9dXvvIV/eY3v9HatWs7fYyxY8eWnreurk6S1NraqltvvVWHH364dtllF+20007aZ599dPHFF6u+vr5L2Tb1/PPP60c/+pEOOOAADRs2TH379tWQIUN06KGH6kc/+pFmzpypXC5Xuv+GDRtUVVWlUCikPn36aM2aNV16HmOM9t5771KfmTNnbnfWTU2dOrV0e/z48d16rO7adK1s71dDQ8MWHzMUCpV6tbe36/HHH++9QgAAAGWMz/AAAAAAykA2m9Vll12me++9t9P7FgoFTZw4Ub///e+VTqc/8zjhcFhLlixRbW2tfvGLX+i3v/1tp/+H/q9//Wvdcsstyufzpb9Lp9PauHGj3nzzTd1111164okndqychzKZjC6//HLdf//9m2WVpI0bN2rjxo1644039Ic//EG33Xabfv7zn3f5sV977TWdc845n9lk+Pjjj/Xxxx/roYce0qRJk/TDH/6w08d67733dOGFF+qtt976zPei0agWL16sxYsX67777tM555yjadOmSZJ23XVXfetb39KTTz6pQqGgKVOm6Fe/+lWnz/fSSy+VDu7vvvvuOuWUU7rQeMvC4bBee+01SdLAgQN1+OGH7/Bj2ey4447TX/7yF0nSM888o5/85Cc+JwIAAAg+NjwAAACAMnDllVeWNjvGjBmjgw46SH379tUHH3ygior//8TvfD6vc845R08++WTp7/bYYw8dccQRGj58uBKJhBYtWqSVK1cql8vpd7/7nZqbm3Xfffdt9bmvu+463XzzzaU/9+/fX8cdd5x23313NTU1ad68eWpsbNS4ceO2erZJb0gmkzrppJNKB+Mlad9999Vhhx2moUOHqrW1Va+99prWrl2rtrY2XXrppYrFYrruuus6fez6+nr98pe/VCKR0K677qqjjz5aw4YN05o1azRv3jy1tbUpn8/rxz/+scaMGaMjjzxyq49VV1enb33rW4rH46W/22uvvXTEEUdo5513VjKZ1D//+U+9++67am9v/8ym1SWXXFKa38mTJ+u6667rdMPqgQceKN2+8MIL1adPn047b828efNKm0lHHnmkKiv9/WfpoEGDuvyh6UuXLtWrr75a+vO2xu3oo48u3a6rq1Mul/O9KwAAQNDx2xYAAAAQcI2NjfrLX/6iz33uc5o6depmB2Kl4lkNHW644YbSwfARI0bo7rvv1re//e3PHNh94okn9MMf/lDRaFR//etfdcIJJ+jss8/+zHO/8soruuWWW0p/PvPMM3Xfffdp6NChpb+LRqP68Y9/rGnTpummm27ypPOO+OlPf1ra7Nhvv/107733fuYSWPl8Xvfdd5+uvPJKZTIZ/eY3v9E3vvENffWrX93mY1999dXK5XK6/fbbddlll2124PuTTz7RuHHjVF9fr0KhoOuuu07z5s3b4uN88sknOuuss0qbHXvvvbf+8pe/6OSTT/7MfcPhsB5//HF9+OGHm/39N7/5Te299976+OOP9dFHH6murk7f+MY3tpq9tbVVTz31lKTiAf6LL754m107s2jRotLtAw88sFuP5YWdd95Zf/7znzu93yeffKIjjjii9OfzzjtPo0aN2ur9d911V+2+++5at26dUqmU6uvrdfDBB3sRGQAAAFvBhgcAAABgueeee04bN27s9H6//OUvtccee3zm7/P5vPr3768XX3xR++2332e+369fP0nFzzL43e9+J6l4EPgf//iH9t133y0+11lnnaVddtlFxx13nKTi52ps6cOnf/nLX8oYI0k6/vjjNW3atM+cHTB48GBNnTpVra2tmjNnTqc9e8Krr76q//3f/5VUPKvjtdde0y677PKZ+/Xp00c/+clPtNNOO+miiy5SPp/XjTfeqOeff36bj5/JZHTvvffqkksu+cz3Pve5z+nRRx/VgQceKGOM6urqtG7dOu2+++6fue8vf/nL0mth1KhRev3117Xbbrtt8TmHDh2qH/3oR5/5+1AopB/84AelS1k98MAD29zwmDp1amlTbOzYsVt9TXTV0qVLS7f333//7f75RYsWbdelxFasWLHdz/FpyWRS3/rWt9TU1CRJ+spXvqLJkyd3+nNf/OIXtW7dOknSu+++y4YHAABAD2PDAwAAALDcm2++qTfffLPT+/3gBz/Y4oaHJP385z/f4mbHpmpra0uXGvrNb37T6YHtb3zjGzrppJM0e/Zsvf/++1q8eLEOPfTQ0vfff/99LViwoPTnO++8c6uXQqqoqNBdd92l/fffv7RB0pv++Mc/lm7ffvvtW9zs2NSFF16oW2+9VStWrNDs2bPV0tKiYcOGbfX+Y8aM2eJmR4cDDjhAhx9+uN544w0ZY/TWW2/ptNNO2+w+a9as0WOPPVb68z333LPVzY7OXHTRRbr++uuVy+X05JNP6s9//rOGDBmyxftuejmrH/zgBzv0fJv6+OOPS7f33HPP7f75FStWeLKJ0VXGGH3ve9/TkiVLJBU3qGbMmKHq6upOf3bT9bi1DzgHAACAdyo6vwsAAAAA15177rmd3ue5554r3T7//PO79LgdZ3hI0j/+8Y/Nvvfyyy+Xbh922GH60pe+tM3H2m+//bb52RU9JZfLae7cuZKKn+dw6qmndunnOs6KMMZs9rkfW3LWWWd1+niHHHJI6faWDo6/+OKLyuVykqTPf/7zW7yMVVftvvvupZ7pdFqPPPLIFu/39ttv691335VUPGPkjDPO2OHn7LB+/frS7W1tEtniV7/6VemSXgMGDNDMmTM1YsSILv3sphtnHWeHAAAAoOdwhgcAAABgueuvv14TJ07c4Z/v27evxowZs837tLS06IMPPpAkVVVV6YYbbujSYy9fvrx0+5NPPtnse4sXLy7d7uwzLja93+uvv96l+3pl6dKlSiaTkopjdfnll3fp5zY96+bT3T+ts/GXNj/4H4vFPvP9hQsXlm5/+rNFdsQll1yiGTNmSCqexfHTn/70M/fZ9OyO//zP/+zSWQ2d6RhrqfgB9tvrggsu0JQpU7p8/ylTpuiiiy7a7ueRpIcfflg333yzpOKlwB5++OHtuizVpv027Q0AAICewYYHAAAAEHBDhw7d7EOyt6TjcwYkKZvN6u67797u5wmHw5v9ubm5uXR7r7326tJjdPV+Xlq7dm3pdktLiyfdP23w4MGdPkbfvn1Lt9vb2z/z/U3PjNhnn322I92WnXTSSRo1apRWrVqld955R0uWLNnsYH5bW9tmZ354cTmrT/Pj8mVdtXDhws06/+53v9P48eO36zFs7gcAABBEXNIKAAAACLiddtqp0/tEo9FuP0/H5ZY6JBKJ0u2u/p/8AwYM6HaO7dUT3T/t0x/mviPi8Xjpdk1NTbcfr6KiQhdffHHpz5uezSFJTz75ZGlsDj/8cB144IHdfk5p8zlua2vz5DG9tnr1ao0fP770Ye3f//73de21127342zaz4/XNgAAQLlhwwMAAADAZgdjBw0aJGPMdn99+jJDmx6UT6VSXcrRE5f9KRQK2/z+pt0PPPDAHerenUuOddXAgQNLtzfdTOqOCRMmlD5IfurUqUqn06Xvef1h5R02/fyLjRs3eva4Xkkmk/rWt75VOqPma1/7mu67774deqxNz3Lq6ud+AAAAYMex4QEAAABAu+22W+l2LBbr8gbFtgwfPrx0e/Xq1V36mc4+C0Pa/NJPnZ1ZIXV+Bsem3W3+YOlNc3788ceePOYee+yhcePGSSpelqvjw7lXrlyp+fPnSypuCJ133nmePJ8k7b333qXbjY2Nnj2uF4wx+s///M/SB7WPGjVKf//739WvX78derw1a9aUbo8ePdqLiAAAANgGNjwAAAAAaPfdd9fnPve50p8XLFjQ7cc85JBDSrc3/cDtbenKB5YPGjSodLulpaXT+y9btmyb3z/44INLB7Q3bNigDz/8sNPH9MORRx5Zuv3yyy979riXXHJJ6XbHWR2TJ08uff7EWWedtdnZJd216aWx/vnPf3r2uF647rrrSh/kPnDgQM2aNUu77rrrDj/e+++/X7p90EEHdTceAAAAOsGGBwAAAABJ0qmnnlq6/Ze//KXbj/eNb3yjdPutt97SihUrtnn/Dz/8sEsbHpv+n/JLlizp9P6PP/74Nr+/00476bjjjiv92YvuPeGb3/xm6cPn//Wvf2n27NmePO5//Md/lDa75s2bpw8//HCzy5N5/WHlRxxxROl2x5kUNvjb3/6mW265RVLx800effRRjRkzZocfb8OGDaUzhvr3768DDjjAk5wAAADYOjY8AAAAAEiSrrrqqtLnOTz11FOf+UyObdnSpaC++MUv6qijjir9+fLLL9/q52kUCgVddtllpbMKtuXwww8vfQj4okWLNvu/6D/tL3/5i957771OH/Oaa64p3b7rrrv04osvdvozHXrrMlgjR47UOeecU/rzj370o9LnTHRHnz59NGHCBEn//yWd1q5dK6k4h1/72te6/RybOu6440qvs0WLFnXpsmQ9bcGCBfrhD39Y+vNtt92mU045pVuP+eqrr5Zujx07trRZBQAAgJ7DhgcAAAAASdK+++6rX//616U/T5gwQVdfffVWP1g6l8tpzpw5+t73vrfZ5as2ddNNN5U2J+bMmaPzzz9fkUhks/vEYjF973vf0/PPP6+qqqpOc44YMaJ0RoYxRuedd95nPgsil8vp9ttv12WXXdalz1849thjdcEFF5R+9pRTTtHNN9+81Q8HT6fTmjFjhk4//XR961vf6vTxvXLzzTdr5513liStWrVKX/3qV7d6pkckEtF9992nX/ziF50+7sUXX6yKiuI/DxctWrTZ33tt6NChpU2UeDyuN9980/Pn2B6rV6/Wt7/9bWUyGUnF1/1VV13V7cedN29e6famZ08BAACg5/C/mAAAAAAouf7669XQ0KCHHnpIxhjdfvvtuuuuu/TlL39Z++67r/r3769YLKaGhgYtXbpUyWRSkjRs2LAtPt7YsWN19dVX6/e//70k6bHHHtMzzzyj4447TiNGjND69es1b948JRIJDR06VJdffrkmTpzYac6bbrpJL7/8sgqFgt59913tt99+Ou6447THHnuotbVVr7zyijZs2KCamhrdfPPNuvTSSzt9zHvvvVfr1q3TnDlzlM1mdd111+m3v/2tvvKVr2ivvfZSv379FIlEtHLlStXX15cOkB922GFdHN3u+9znPqfHH39c48ePVyKR0Mcff6yTTz5Zo0aN0hFHHKGdd95ZiURCH3zwgZYsWaL29nadfvrpXXrck08+Wc8991zp76qqqvT973+/R3p897vf1SuvvCJJmjFjhr761a/2yPN0xYMPPqgNGzZIKp7tUllZqZ///Odd+tkbb7yxtAG1KWOMnn76aUlS3759dfbZZ3sXGAAAAFvFhgcAAACAklAopClTpuiwww7T9ddfr3A4rGw2qwULFmz1g8xDodA2L3t02223qU+fPrrttttUKBSUTCY1a9asze4zcuRITZ8+vcsfYv2Vr3xFf/3rX3XJJZcon8+rra1Nzz777Gb32X333fXYY48pn8936TH79eun5557TjfccINuv/12pVIppVKpbX5AeN++fTf7MPHecPzxx+sf//iHLrjggtJnYKxatUqrVq3a4v1ramq69LiXXHLJZhse3/rWtzR8+PDuB96Cc845R//1X/+lZDKpJ554QrfcckvpTKDetull1PL5vO67774u/+zVV1+9xQ2PBQsWaM2aNZKK47i1DUEAAAB4i0taAQAAAPiMSy+9VKtWrdLdd9+t8ePHa++991ZNTY0qKys1dOhQjRkzRueee67uuecerVq1qvR/s2/NzTffrDfeeEMTJkzQ6NGj1a9fPw0bNkyHHXaYbrrpJr377rvb/X/5T5gwQUuXLtXFF1+svffeW9XV1RoyZIgOOeQQ/fa3v9XSpUt19NFHb9dj9unTRzfeeKMaGhr0hz/8QSeffLL22msv9e/fX3379tWwYcN06KGH6oILLtCUKVO0Zs0a/fnPf96u5/DCQQcdpMWLF+vvf/+7vv/97+vzn/+8Bg0apD59+mjo0KE67LDD9JOf/ETPPfec/vd//7dLjzlu3LjNLv/l9YeVb2rw4MG66KKLJEkff/zxdn1migvuv//+0u0rrrjCvyAAAABlJmS68qmAAAAAANALpkyZUjoQ3rGpgN4xf/58jR07VpI0atQoffTRR6XP9egJDQ0N2m+//UqX3ZoxY0aPPVdvamlp0V577aVUKqWjjjpKr732mt+RAAAAygZneAAAAAAA9MADD5RuT5gwoUc3OyRp9OjRpbNIZs6cqffff79Hn6+33HXXXUqlUpKKnzUDAACA3sOGBwAAAACUuaamJj3xxBOSpMrKyh69nNWmrr/+eg0aNEjGGN1444298pw9KRKJ6K677pIknXrqqaUzZgAAANA72PAAAAAAgDKWz+d1+eWXK51OS5LOPvtsjRw5sleee7fddtMNN9wgSXrsscf09ttv98rz9pRbb71Vra2t6tevn+644w6/4wAAAJQdPsMDAAAAgDX4DI/e8cgjj+iNN95QIpHQq6++qg8++ECS1K9fPy1btkyf//znfU4IAAAAbL9KvwMAAAAAAHrXnDlz9NBDD33m7//4xz+y2QEAAABnseEBAAAAAGVs4MCBOuyww3TVVVfp1FNP9TsOAAAAsMO4pBUAAAAAAAAAAHAeH1oOAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnPf/AVAbi7M1kMi8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "coh, coh_e = cs_reb.coherence()\n", + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, coh, yerr=coh_e, fmt=\"o\", color=\"k\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(f\"Coherence ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV)\")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.loglog()\n", + "# plt.ylim([1e-4, None]);\n", + "# plt.xlim([None, 80])\n", + "# plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "904811f2", + "metadata": { + "id": "904811f2" + }, + "source": [ + "# Spectral timing" + ] + }, + { + "cell_type": "markdown", + "id": "965a7273", + "metadata": { + "id": "965a7273" + }, + "source": [ + "Now let us explore the spectral timing properties of this observation, with no physical interpretation, just for the sake of data exploration." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "302ef79e", + "metadata": { + "id": "302ef79e" + }, + "outputs": [], + "source": [ + "from stingray.varenergyspectrum import CountSpectrum, CovarianceSpectrum, RmsSpectrum, LagSpectrum" + ] + }, + { + "cell_type": "markdown", + "id": "b53713b3", + "metadata": { + "id": "b53713b3" + }, + "source": [ + "Let us start with the lag spectrum with respect to energy, in different frequency bands.\n", + "This might be confusing for people coming from other wavelengths, so let us specify that\n", + "\n", + "+ \"frequency\" refers to the frequency of the variability.\n", + "\n", + "+ \"energy\" refers to the photon energy.\n", + "\n", + "The photons at 0.3-12 keV are modulated by oscillations and other stochastic noise up to ~100 Hz (see section above). As an example, we will now analyze the spectral timing properties using the variability up to 1 Hz and between 4 and 10 Hz." + ] + }, + { + "cell_type": "markdown", + "id": "0c530beb", + "metadata": {}, + "source": [ + "From Kara+2019, figure 3" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5eca6d3c", + "metadata": { + "id": "5eca6d3c", + "outputId": "07a6c11a-34fb-4893-bf7c-a51b2299da14" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:57<00:00, 1.44s/it]\n" + ] + } + ], + "source": [ + "energy_spec = np.geomspace(0.5, 10, 41)\n", + "segment_size = 10\n", + "bin_time = 0.001\n", + "freq_interval = [3, 30]\n", + "ref_band=[0.5, 10]\n", + "\n", + "# If not specified, the reference energy band is the whole band.\n", + "\n", + "lagspec_3_30 = LagSpectrum(events, freq_interval=freq_interval, \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, ref_band=ref_band)\n", + "energies = lagspec_3_30.energy\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "23efaaa4", + "metadata": { + "id": "23efaaa4", + "outputId": "ceb9952c-6ea2-4093-eb07-9bdde6492601" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlsAAAR9CAYAAADROfHiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdf3Rcd33n/9dII2ls/SYxKG5KZULBNJYrfjQNDZG1YIpje0vKltZROMVtdsHJboJ3v83G67MFud0ssdntxmGbOJw2cXYhSZcAhsSpSwiV7AIuxYksKT/oYjwkrnFQhEajX6PRaO73j6xUTO44snU199735/k4x+fY1ujez+v9eeuTZD65n0l4nucJAAAAAAAAAAAAF6Qi7AEAAAAAAAAAAADEGZstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCIkwx4AcD4ymYx6e3vn//yLv/iLqqmpCXFEAAAAAAAAAICfNz09rRdffHH+z+vWrVNTU1N4A1pibLYgVnp7e3XttdeGPQwAAAAAAAAAwHk4cOCAPvjBD4Y9jCXDMWIAAAAAAAAAAACLwGYLAAAAAAAAAADAInCMGGLlF3/xFyVJ27dv13333af/9b/+l9785jeHPKp4m5ycVE9Pjzo7O7V8+fKwhxM5rtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3k+sEPfnDWR0LMvbdrFZstiJWamhpJUk9Pj3K5nN785jfr8ssvD3lU8ZbP51VVVaVf+ZVfUXV1ddjDiRxX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsFnPNvbdrVcLzPC/sQQAL9cwzz2jNmjXzfx4cHGSzBQAAAAAAAAAixrX3cvnMFsTShg0btGzZsrCHYcLU1JQOHTqkqampsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUlNTkyoqaN8gFItFZTIZFYvFsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMY8QQK649egYAAAAAAAAAceTae7k8GoBYam1tVTKZDHsYJhQKBaXTaRUKhbCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxNLWrVtVV1cX9jBMGB8f1wMPPKDx8fGwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBArrj16BgAAAAAAAABx5Np7uTzZAgAAAAAAAAAAsAhstiCWduzYocbGxrCHYcLo6KjuuOMOjY6Ohj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLYglg4cOKDJycmwh2HC8uXLde2112r58uVhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmf2YJYce2cPwAAAAAAAACII9fey+XJFsQSu7rBmZyc5Emhc3C1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLYAAAAAAAAAAAAsAseIIVZce/QMAAAAAAAAAOLItfdyebIFsbR69WpVVVWFPQwTZmZm9Pzzz2tmZibsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbHEZ7YEh/Mfz83V+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsW1R88AAAAAAAAAII5cey+XJ1sAAAAAAAAAAAAWgc0WxFJ3d7eamprCHoYJmUxGu3btUiaTCXsokeRqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LOEYMsTL36Flra6tOnTqlvr4+04+elUOhUNCpU6d06aWXKplMhj2cyHG1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uIZdrx4ix2YJYce0HFAAAAAAAAADiyLX3cjlGDLG0ZcsW1dbWhj0MEyYmJvTwww9rYmIi7KFEkqv1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxjswWxlMlkVCwWwx6GCRUVFWpqalJFBcuBH1frYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGMWKIFdcePQMAAAAAAACAOHLtvVy2xRBL7e3tqq6uDnsYJuTzefX19Smfz4c9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJY6OzuVSqXCHoYJuVxOPT09yuVyYQ8lklytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZx4ghVlx79AwAAAAAAAAA4si193J5sgWxlEqllEgkwh6GCZ7nKZfLiX1Xf67Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbE0o4dO9TY2Bj2MEwYHR3V7t27NTo6GvZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYmXu0bOWlhYNDQ3p+PHjph89K4fZ2VkNDQ1pxYoVqqysDHs4keNqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdQi7XjhFLhj0A4EKcOXMm7CGYUVlZqZaWlrCHEVmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEEEtbt25VXV1d2MMwYXx8XPv379f4+HjYQ4kkV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmC2IpnU6rUCiEPQwTksmkWltblUzyoJsfV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZntiBWXDvnDwAAAAAAAADiyLX3cnmyBbF05ZVXqqamJuxhmDA9Pa2jR49qeno67KFEkqv1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxjswWx1N7erurq6rCHYUI+n1dfX5/y+XzYQ4kkV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogV1x49AwAAAAAAAIA4cu29XJ5sQSw1NTWpooL2DUKxWFQmk1GxWAx7KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy3i3GrG0fft2NTQ0hD0ME7LZrPbu3atsNhv2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGJl7tGzpqYmZbNZ9ff3m370rByKxaKy2awaGhp4WsiHq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdgu5XDtGLBn2AIALkclkwh6CGRUVFWpqagp7GJHlan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy+K5JQbnbdu2TfX19ef1Pel0WolEwvdXOp1emoHGwNjYmPbt26exsbGwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFsRSX1+f8vl82MMwobq6Wu3t7aqurg57KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy/jMFsTKYs75S6fTWrVqle/XTp48qdbW1iCGCAAAAAAAAADOc+0zW3iyBbHU2dmpVCoV9jBMyOVy6unpUS6XC3sokeRqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L2GxBLLW2tiqZTIY9DBMKhYLS6bQKhULYQ4kkV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogVjhEDAAAAAAAAgOjjGDEgBlpaWlRZWRn2MEyYnZ3VmTNnNDs7G/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCWNq2bZvq6+vDHoYJY2NjuvfeezU2Nhb2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGJl7tGzVCql6elpDQwMcIzYInmep+npadXU1CiRSIQ9nMhxtT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbiGXa8eI8QnjiKVcLhf2EMxIJBJKpVJhDyOyXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtm/froaGhrCHYUI2m9Wdd96pbDYb9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YJY6unp4emWgKRSKXV2drJTXoKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4zNbECuLOeePz2wBAAAAAAAAgPJw7TNbeLIFsbRhwwYtW7Ys7GGYMDU1pUOHDmlqairsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbHU1NSkigraNwjFYlGZTEbFYjHsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOMYMcQKx4gBAAAAAAAAQPRxjBgQA62trUomk2EPw4RCoaB0Oq1CoRD2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljaunWr6urqwh6GCePj43rggQc0Pj4e9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJZxjBhihWPEAAAAAAAAACD6OEYMAAAAAAAAAAAAC8ZmC2Jpx44damxsDHsYJoyOjuqOO+7Q6Oho2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGZgti6cCBA5qcnAx7GCYsX75c1157rZYvXx72UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYgVPrMFAAAAAAAAAKKPz2wBYoBd3eBMTk7ypNA5uFofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzI2WwAAAAAAAAAAABaBY8QQKxwjBgAAAAAAAADRxzFiQAysXr1aVVVVYQ/DhJmZGT3//POamZkJeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEs8ZktweH8x3NztT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhli50EfPBgYGtG/fPt19992+X7/qqqvU0dGhrq6us64PAAAAAAAAADh/HCMGGHLw4EF1dHRo7dq1JTdaJOlb3/qWPv3pT6utrU0dHR16/PHHyzhKAAAAAAAAAECcsdmCWOru7lZTU1PJrw8PD6urq0ubN2/WkSNHzuvaR44c0aZNm3T99ddreHh4kSONvkwmo127dimTyYQ9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SstbVVp06dUl9f36sePevv79c111yj06dPL/p+K1eu1KFDh9TW1rboa0VVoVDQqVOndOmllyqZTIY9nMhxtT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbiGXa8eIsdmCWHmtH9D+/n51dnZqZGQksHs2Nzert7fX9IYLAAAAAAAAAATJtc0WjhFDLG3ZskW1tbVn/d3w8LCuueaaQDdaJGlkZEQbNmwwe6TYxMSEHn74YU1MTIQ9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJYymYyKxeJZf3fzzTcHcnSYn9OnT+uWW25ZkmuHraKiQk1NTaqoYDnw42p9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4RgyxUurRs4MHD2rz5s1Lfv/HHntMmzZtWvL7AAAAAAAAAECccYwYEAPt7e2qrq6e//Pu3bvLct89e/aU5T7llM/n1dfXp3w+H/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCWOrs7FQqlZIkDQwM6MiRI2W57+HDhzU4OFiWe5VLLpdTT0+Pcrlc2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGMWKIFb9Hz77whS/o05/+dNnGsHPnTt1+++1lux8AAAAAAAAAxA3HiAExkEqllEgkJEnf/e53y3rvct9vqXmep1wuJ/Zd/blaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQSzt27FBjY6M8z9NTTz1V1nsfO3bM1CI3Ojqq3bt3a3R0NOyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgxxMrco2ctLS0aGhrSt771LV155ZVlH0c2m1V9fX3Z77sUZmdnNTQ0pBUrVqiysjLs4USOq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdgu5XDtGLBn2AIALcebMGUnSzMxMKPefnp42s9lSWVmplpaWsIcRWa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMY8QQS1u3blVdXZ2qqqpCuX9NTU0o910K4+Pj2r9/v8bHx8MeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMjZbEEvpdFqFQkG1tbVqbm4u672bm5tVV1dX1nsupWQyqdbWViWTPOjmx9X6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJbxmS2IFb9z/j7xiU/oySefLNsY1q9fryeeeKJs9wMAAAAAAACAuHHtM1t4sgWxdOWVV84f5XXFFVeU9d7lvt9Sm56e1tGjRzU9PR32UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZglhqb29XdXW1JOm6664r673Lfb+lls/n1dfXp3w+H/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYqXUo2cdHR06cuTIkt+/o6NDvb29S34fAAAAAAAAAIgzjhEDYqCpqUkVFf/cvrfddltZ7luu+5RTsVhUJpNRsVgMeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEsbd++XQ0NDfN/3rRp05If79XV1aWNGzcu6T3CkM1mtXfvXmWz2bCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEECtzj541NTUpm82qv79//tGz4eFhrV27VqdPnw78vitXrlR/f78uuuiiwK8dtmKxqGw2q4aGhrOeFsIrXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vIxTFiQAz4PUJ30UUX6dChQ2pubg70Xs3NzTp06JDJjRZJqqioeNWxbPhnrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoyZQixt27ZN9fX1r/r7trY29fb2auXKlYHcZ+XKlert7VVbW1sg14uisbEx7du3T2NjY2EPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZstiKW+vj7l83nfr7W1tam/v19dXV2LukdXV5f6+/tNb7RIUnV1tdrb21VdXR32UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYiV8z3n7+DBg9qzZ48OHz684Ht0dHTotttu08aNGxc1VgAAAAAAAABwFZ/ZAsRAZ2enUqnUa75u06ZN6u3t1cDAgG666aaSr7vqqqu0c+dODQwMqLe316mNllwup56eHuVyubCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WB8zOzqq/v19/+Zd/qRtvvFHvete7VF1drUQioUQioc7OzgVfK51Oz3/fQn+9+c1vDjxTa2urksnkgl+/Zs0a3XrrrSW//vnPf1633377WTutrigUCkqn0yoUCmEPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGceIGXfgwAFdf/31mpycLPmadevWqaenZ0HXS6fTWrVq1XmN4bLLLtMPfvCD8/qeUhbz6Nm5xn7y5Em1trYGMUQAAAAAAAAAcJ5rx4gt/NEAxFImkznnRsti1NfX6/d///df83UrVqwI/N4tLS0aGhoK/Loump2d1dDQkFasWKHKysqwhxM5rtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBzxhje8QZs3b9auXbv0+OOP6xOf+MSir/m6171O//N//s/X/PWpT30qgARn27Ztm+rr6wO/rovGxsZ07733amxsLOyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgx486cOaN8Pq83vvGNZ/19d3e3du3aJenCjxH7pV/6JaXT6SCH+5rmHj1LpVKanp7WwMAAx4gtkud5mp6eVk1NjRKJRNjDiRxX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsFnJxjBhMaWlpCXsISyKXy4U9BDMSiYRSqVTYw4gsV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYoil7du3q6GhIexhmJDNZnXnnXcqm82GPZRIcrU+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWenp6eLolIKlUSp2dneyUl+BqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LOEYMF6xQKOiJJ57Q9773Pb388stKpVK6+OKL9a53vUtXXHGFampqluzefX19S3Zt11RXV6u9vT3sYUSWq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOPJFlywf/qnf9Jv/uZvaufOnfqzP/sz/df/+l/1H/7Df1BHR4cuueQS/ef//J81Pj6+JPfesGGDli1btiTXds3U1JQOHTqkqampsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRYsiZGREd1+++1617vepX/8x38M/PpNTU2qqKB9g1AsFpXJZFQsFsMeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMt6txnmrr6/X1q1b9fDDD+v73/++xsfHNT09rRdffFFf/OIXtX79+vnXfv/739eGDRs0NDQU6BgOHDigRCIhSZqdnVUmk5HneZJe+fCofD4v6ZUd4ImJifnXNTU1zV+jsbFRVVVVkqRcLqfJyUlJ0szMjEZHR+dfl8lkVCgUJEkTExPzu8n5fH7+A6o8z1Mmk9Hs7KwkaXx8fP4zZaanpzU2Nibp1Yvk2NiYpqen58cw9yTQQjMVCgVlMpn5sY6OjmpmZkaSNDk5uaBMkvTBD35QtbW1ZjIFOU+1tbXatGmTksmkmUwLmafly5dry5Ytmp2dNZNpbp5mZ2f1oQ99SLW1tWYyWeo9MpGJTGRaaKaqqipt2bJFFRUVZjJZnCcyBZcplUppy5Yt8jzPTCaL81TuTDU1NdqwYYNqa2vNZLI0T5K0ZcsW1dTUmMkU9jwlk0lt2rRJtbW1ZjLx70aLn6fq6mpt2bJFiUTCTKaZmRnV1tbqt37rt+bfA41zJlew2YLzcskll+j06dO6//779Xu/93t6y1veotraWlVXV+vSSy/V7/zO7+iJJ57QvffeO78QnDx5Uv/pP/2nQMexYcMGffjDH5YkDQ0Nae/evfMLwH333adnn31WktTb26tHH310/nXbt2+fv8aNN96oyy67TJL0ve99T1//+tclSSdOnNA999wz/7q9e/fq1KlTkqRHH31Uvb29kqRnn31W9913n6RXFqe9e/fObyo98sgjOnr0qCTp6aef1he+8AVJryxAe/funV/wvvCFL+jpp5+WJB09elSPPPLIeWU6deqU9u7dOz/We+65RydOnJAkff3rX19Qpq997Wt69NFHVSgUzGQKcp4KhYLuv/9+HTt2zEymhczTxMSE0um0qUw/O0+HDx9WoVAwlcniPJGJTGQi07kyDQwMKJ1O62//9m/NZLI4T2QKLtOPf/xjpdNpffGLXzSTyeI8lTvTj370I+3du3f+zTYLmSzN09e+9jWl0+n5ebKQKex5OnbsmO6//34VCgUzmfh3o8XP0z/+4z8qnU7rb/7mb8xkOnHihAqFgr785S/rb/7mb2KfyRkenPSpT33Kk+RJ8tatW7ck99i5c+f8PSorK70zZ84s+pqDg4OeJK+7u9tbuXKlNzg46BUKBW9kZMQrFoue53ne6OioNz097Xme501OTnrj4+Oe53neD37wA6+pqWl+TI2NjV5VVZUnyXvuuee8iYkJz/M8L5/Pe5lMZv6eIyMj3szMjOd5njc+Pu5NTk56nud509PT3ujoqOd5nlcsFr2RkRGvUCh4nud5Y2Nj3tTUlOd5npfL5bxsNut5nufNzs56IyMj3uzsrOd5npfNZr1cLud5nudNTU15Y2Njnud5C840MzPjjYyMzI81k8l4+Xze8zzPm5iYWFCmf/qnf/K6u7u9kZERM5mCnKeRkRGvu7t7vn8tZFrIPP30pz/1uru7vRdeeMFMprl5euGFF+Z73komS71HJjKRiUwLzfTSSy953d3d3o9//GMzmSzOE5mCy/Tyyy973d3d3qlTp8xksjhP5c40NDQ0/++2VjJZmqe5/94eGhoykynseTpz5sx8z1vJxL8bLX6efvKTn3jd3d3e6dOnzWTK5/PeyP97T+r06dOxzTT3Xu7cr8HBQc+yhOf9v2d+4JTu7m7t2rVLkrRu3Tr19PQEfo/x8XG9/vWvn3+E7X//7/+tj3zkI4u65jPPPKM1a9bM/3lwcFCXX375gr43nU5r1apVvl87efKkWltbFzU2AAAAAAAAAMArFvNebhxxjBiWTF1dnX791399/s/PPfdciKMBAAAAAAAAAGBpsNmCJXXJJZfM//7ll18O7Lo7duxQY2NjYNdz2ejoqO64446zPmAL/8zV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCJTUxMTH/+9ra2sCue+DAAU1OTgZ2PZctX75c1157rZYvXx72UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VcliXDHgBse/rpp+d/v3LlysCu+/zzzwd2LddVVVVp9erVYQ8jslytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZT7ZgyXzjG9/Qiy++OP/nzs7OwK7Nrm5wJicneVLoHFytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZmy1YsHw+r3w+v6DXDg0Nadu2bfN/ftvb3qZ3vOMdSzU0AAAAAAAAAABCk/A8zwt7ECi/7u5u7dq1S5K0bt069fT0vOb3pNNpXX311br55pv1e7/3e/qlX/qlV73G8zw9/vjj+rf/9t/qRz/6kSQpkUjoscce08aNGxc97meeeUZr1qyZ//Pg4KAuv/zyBX1vOp3WqlWrfL928uRJtba2Lnp8AAAAAAAAAIDFvZcbR3xmiwM2btyo06dPn/V3Z86cmf/99773PbW3t7/q+x5//PFXfc7KqVOndNttt+m2225Ta2ur2tradPHFF6uqqkpDQ0P6+7//+1fda8+ePYFstPys1atX68SJE4Fe01UzMzM6ceKELrvsMlVVVYU9nMhxtT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwj5oBnn31Wx48fP+vXSy+9NP/1iYmJV339+PHjr3lkWDqd1qOPPqr7779fn/vc5/SVr3zlrI2WX/iFX9BXv/pV/dEf/VHgmfjMluBw/uO5uVofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEXNAa2vr/JFe5+Pnj9byPE/PPPOMvvOd7+jb3/62nnnmGb388ssaHh7W5OSkGhoadMkll+jXfu3XdM011+i3f/u3A9915RgxAAAAAAAAAIg+jhGDOel0OpDrJBIJrVmzRmvWrNG/+Tf/JpBrAgAAAAAAAAAQdxwjhljq7u5WU1NT2MMwIZPJaNeuXcpkMmEPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGceIIVbmHj1rbW3VqVOn1NfXZ/rRs3IoFAo6deqULr30UiWTPOz281ytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbyOXaMWJstiBWXPsBBQAAAAAAAIA4cu29XI4RQyxt2bJFtbW1YQ/DhImJCT388MOamJgIeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEsZTIZFYvFsIdhQkVFhZqamlRRwXLgx9X6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJZxjBhixbVHzwAAAAAAAAAgjlx7L5dtMcRSe3u7qqurwx6GCfl8Xn19fcrn82EPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZstiKXOzk6lUqmwh2FCLpdTT0+Pcrlc2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGMWKIFdcePQMAAAAAAACAOHLtvVyebEEspVIpJRKJsIdhgud5yuVyYt/Vn6v1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxjswWxtGPHDjU2NoY9DBNGR0e1e/dujY6Ohj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWJl79KylpUVDQ0M6fvy46UfPymF2dlZDQ0NasWKFKisrwx5O5LhaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3kMu1Y8SSYQ8AuBBnzpwJewhmVFZWqqWlJexhRJar9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgxxNLWrVtVV1cX9jBMGB8f1/79+zU+Ph72UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZglhKp9MqFAphD8OEZDKp1tZWJZM86ObH1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYgV1875AwAAAAAAAIA4cu29XJ5sQSxdeeWVqqmpCXsYJkxPT+vo0aOanp4OeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEstbe3q7q6OuxhmJDP59XX16d8Ph/2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGLFtUfPAAAAAAAAACCOXHsvlydbEEtNTU2qqKB9g1AsFpXJZFQsFsMeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMt6tRixt375dDQ0NYQ/DhGw2q7179yqbzYY9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SsqalJ2WxW/f39ph89K4disahsNquGhgaeFvLhan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3UIu144RS4Y9AOBCZDKZsIdgRkVFhZqamsIeRmS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLsnhuicF527ZtU319fdjDMGFsbEz79u3T2NhY2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGZgtiqa+vT/l8PuxhmFBdXa329nZVV1eHPZRIcrU+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2V8ZgtixbVz/gAAAAAAAAAgjlx7L5cnWxBLnZ2dSqVSYQ/DhFwup56eHuVyubCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxFJra6uSyWTYw7hg6XRaiUTC91c6nS7rWAqFgtLptAqFQlnvGxeu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEECtWHj1Lp9NatWqV79dOnjyp1tbW8g4IAAAAAAAAAAJk5b3cheLJFsRSS0uLKisrwx6GCbOzszpz5oxmZ2fDHkokuVofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzI2WxBL27ZtU319fdjDMGFsbEz33nuvxsbGwh5KJLlaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFDrMw9epZKpTQ9Pa2BgYFYPnoWpWPEPM/T9PS0ampqlEgkynbfuHC1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uIZdrx4jF9xPG4bRcLhf2EMxIJBJKpVJhDyOyXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtm/froaGhrCHYUI2m9Wdd96pbDYb9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YJY6unp4emWgKRSKXV2drJTXoKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4zNbECtWzvmL0me2AAAAAAAAAEDQrLyXu1A82YJY2rBhg5YtWxb2MEyYmprSoUOHNDU1FfZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCWGpqalJFBe0bhGKxqEwmo2KxGPZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsXKo2ccIwYAAAAAAADAMivv5S4UjwYgllpbW5VMJsMehgmFQkHpdFqFQiHsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbG0detW1dXVhT0ME55//nk98MADWrFihRKJxFm/0ul02MML3fj4uB544AGNj4+HPZSyspzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSzjGDHEipVHz6J0jFiUxgIAAAAAAADABivv5S4UT7YAAAAAAAAAAAAsApstiKUdO3aosbEx7GGYMD4+Tj3PYXR0VHfccYdGR0fDHkpZWc5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YJYOnDggCYnJ8MehgmpVIp6nsPy5ct17bXXavny5WEPpaws57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy5JhDwC4EM8//3zYQzAjmUxSz3OoqqrS6tWrwx5G2VnObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyW8WQLYold3eDkcjnqeQ6Tk5NOPvljObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmCwAAAAAAAAAAwCIkPM/zwh4EsFDPPPOM1qxZM//nwcFBXX755SGO6MKk02mtWrXK92snT55Ua2urk2MBAAAAAAAAYIOV93IXiidbEEurV69WVVVV2MMwoVAoUM9zmJmZ0fPPP6+ZmZmwh1JWlnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCW+IyR4PCZLefm6vmYlnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2UcI4ZYsfDo2cDAgPbt26e7777b9+tXXXWVOjo61NXVdVbWpcIxYgAAAAAAAACCZuG93PPBky1AmRw8eFAdHR1au3ZtyY0WSfrWt76lT3/602pra1NHR4cef/zxMo4SAAAAAAAAAHC+2GxBLHV3d6upqSnsYSzI8PCwurq6tHnzZh05cuS8vvfIkSPatGmTrr/+eg0PDy/J+MbHx2NVz3LLZDLatWuXMplM2EMpK8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFDrMw9etba2qpTp06pr68v0o+e9ff365prrtHp06cXfa2VK1fq0KFDamtrC2Bk/+zEiRNav369Tp06pUKhcNbXOEZMKhQKOnXqlC699FIlk8mwh1M2lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW4hl2vHiLHZgliJ0w9of3+/Ojs7NTIyEtg1m5ub1dvbG+iGC5/ZAgAAAAAAACBocXovNwgcI4ZY2rJli2pra8MeRknDw8O65pprAt1okaSRkRFt2LAh0CPFpqamIl/PME1MTOjhhx/WxMRE2EMpK8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQS5lMRsViMexhlHTzzTcHcnSYn9OnT+uWW24J7HoVFRWRr2eYKioq1NTUpIoKt5ZLy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEUOsxOHRs4MHD2rz5s1Lfp/HHntMmzZtWvR1OEYMAAAAAAAAQNDi8F5ukNgWQyy1t7eruro67GH42r17d1nus2fPnkCuMzMzE+l6hi2fz6uvr0/5fD7soZSV5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYilzs5OpVKpsIfxKgMDAzpy5EhZ7nX48GENDg4u+jr5fD6y9YyCXC6nnp4e5XK5sIdSVpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWIn6o2c7d+7Upz/96bLe7/bbb1/UNThGDAAAAAAAAEDQov5ebtB4sgWxlEqllEgkwh7Gq3z3u9+N3f08z4tsPaPA8zzlcjm5ti9tObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmC2Jpx44damxsDHsYZ/E8T0899VRZ73ns2LFFL7gTExORrGdUjI6Oavfu3RodHQ17KGVlObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYoiVuUfPWlpaNDQ0pOPHj0fm0bNsNhvKhkU2m1V9ff0Ff/+JEyf0nve8R0NDQ5qdnT3raxwjJs3OzmpoaEgrVqxQZWVl2MMpG8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3kMu1Y8SSYQ8AuBBnzpwJewivks/nQ7nv9PT0ojZbKisrI1nPqKisrFRLS0vYwyg7y7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEUMsbd26VXV1dWEP4yzV1dWh3LempmZR3z81NRXJekbF+Pi49u/fr/Hx8bCHUlaWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJbS6bQKhULYwzhLfX29mpuby3rP5ubmRW2SDAwM6M///M9L1vMjH/mIdu7cqcHBwcUMM9aSyaRaW1uVTLr1IKDl3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZ/ZgliJ+jl/69ev15NPPlnW+z3xxBPn/X0HDx7U7t27deTIkQV/z9VXX60dO3Zo48aN530/AAAAAAAAAG6J+nu5QePJFsTSlVdeuejjs5bCFVdcEen7DQ8Pq6urS5s3b57faKmpqVlQPY8cOaJNmzbp+uuv1/Dw8AWPOW6mp6d19OhRTU9Phz2UsrKc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsdTe3h7aZ6Scy3XXXRfZ+/X392vt2rV66KGHzvr76urq86rngw8+qLVr12pgYOC8xhpX+XxefX19yufzYQ+lrCzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LOEYMsRKHR886OjrO63iuxdynt7d3Qa/t7+9XZ2enRkZGArt/c3Ozent71dbWFtg1AQAAAAAAANgQh/dyg8STLYilpqYmVVREs31vu+22SN1neHhY11xzTcmNloqKiguq58jIiDZs2GD+SLFisahMJqNisRj2UMrKcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msiya71YDr2H79u1qaGgIexi+Nm3atOTHiXV1dS34g+pvvvlmnT59uuTXGxoaLriep0+f1i233HLe3xcn2WxWe/fuVTabDXsoZWU5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxjFiiJW5R8+ampqUzWbV398fyUfPhoeHtXbt2nNuclyolStXqr+/XxdddNFrvvbgwYPavHnzOV9TUVGhhoYGZbPZC94pf+yxx7Rp06YL+t6oKxaLymazamhoiOzTVEvBcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3k4hgxIAai/gjdRRddpEOHDqm5uTnQ6zY3N+vQoUML2miRpN27d7/ma4J4JHHPnj0X/L1Rd6HHrMWd5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRkzhVjatm2b6uvrwx7GObW1tam3t1crV64M5HorV648rw+kHxgY0JEjR17zdfX19Yuu5+HDhzU4OHjB3x9lY2Nj2rdvn8bGxsIeSllZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljq6+tTPp8Pexivqa2tTf39/erq6lrUdbq6utTf37/gjRZJeuihhxb0unw+H0g9F3q/uKmurlZ7e7uqq6vDHkpZWc5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJbxmS2IlTif83fw4EHt2bNHhw8fXvD3dHR06LbbbtPGjRvP+37r16/Xk08+ed7fd6HWr1+vJ554omz3AwAAAAAAABBdcX4v90LwZAtiqbOzU6lUKuxhnJdNmzapt7dXAwMDuummm0q+7qqrrtLOnTs1MDCg3t7eC9po8TxPTz311IJem0qlAqnnsWPHZHHvNpfLqaenR7lcLuyhlJXl3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZstiKXW1lYlk8mwh3FB1qxZo1tvvbXk1z//+c/r9ttvP2vX93yNjY1pZGRkQa9NJpOB1HNkZETj4+OLukYUFQoFpdNpFQqFsIdSVpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWLHy6Fk6ndaqVat8v3by5Em1trYu6vovv/yyVqxYsahrXIihoSFdfPHFZb8vAAAAAAAAgGix8l7uQvFkC2KppaVFlZWVYQ8jss7ng7MqKysDq2dNTc2irxE1s7OzOnPmjGZnZ8MeSllZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljatm2b6uvrwx5GZNXX16u5uXnBrw2ins3Nzaqrq1vUNaJobGxM9957r8bGxsIeSllZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGJl7tGzVCql6elpDQwMxPLRs6U+RkyS1q9fryeffPI1X5dIJFRTU6Pp6elFfcD9+vXr9cQTT1zw90eV53manp5WTU2NEolE2MMpG8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3kItjxIAYyOVyi9oYcMEVV1yxoNd5nhdIPRd6v7hJJBJKpVKx/YfahbKc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsbR9+3Y1NDSEPYxIu+666xb0uoaGhkDqudD7xU02m9Wdd96pbDYb9lDKynJuy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUk9Pj3K5XNjDiLS2tjZdffXVr/m6XC636Hp2dHSc9UigJalUSp2dnUqlUmEPpaws57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy/jMFsSKlXP+yvGZLZJ08OBBbd68OZBrvdZ9Nm7cuOT3AQAAAAAAABAPVt7LXSiebEEsbdiwQcuWLQt7GJG3adOm1zzea9myZYuqZ1dXl+mNlqmpKR06dEhTU1NhD6WsLOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEsNTU1qaKC9l2Iz372s1q5cmXJr1dUVFxwPVeuXKm77rprMcOLvGKxqEwmo2KxGPZQyspybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEECtWHj0r1zFicwYGBrRu3TqNjIwEds3m5mb19vaqra0tsGsCAAAAAAAAsMHKe7kLxaMBiKXW1lYlk8mwhxEbbW1t6u3t9X3CJZlMnnc9V65c6cxGS6FQUDqdVqFQCHsoZWU5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLYmnr1q2qq6sLexix0tbWpv7+fnV1dZ3193V1dedVz66uLvX39zux0SJJ4+PjeuCBBzQ+Ph72UMrKcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBArVh49K/cxYj/v4MGD2rNnjw4fPrzg7+no6NBtt92mjRs3LuHIAAAAAAAAAFhg5b3cheLJFsBBmzZtUm9vrwYGBnTTTTeVfN1VV12lnTt3amBgQL29vWy0AAAAAAAAAIAPNlsQSzt27FBjY2PYw4i9NWvW6MYbbyxZz89//vO6/fbbz9qBds3o6KjuuOMOjY6Ohj2UsrKc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsXTgwAFNTk6GPQwTUqkU9TyH5cuX69prr9Xy5cvDHkpZWc5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJYlwx4AcCGef/75sIdgRjKZpJ7nUFVVpdWrV4c9jLKznNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOPJFsQSu7rByeVy1PMcJicnnXzyx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRYAAAAAAAAAAIBFSHie54U9CGChnnnmmbM+rH1wcFCXX355iCO6MOl0WqtWrfL92smTJ9Xa2urkWAAAAAAAAADYYOW93IXiyRbE0urVq1VVVRX2MC5Ya2urPM/z/VXuzY1CoRD7ei6lmZkZPf/885qZmQl7KGVlObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmC2KJzxgJDp/Zcm6uno9pObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogV1x49KweOEQMAAAAAAAAQNNfey+XJFgAAAAAAAAAAgEVgswWx1N3draamprCHYcL4+Dj1PIdMJqNdu3Ypk8mEPZSyspzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSzjGDHEytyjZ62trTp16pT6+vpMP3pWDidOnND69et16tQpFQqFs77GMWJSoVDQqVOndOmllyqZTIY9nLKxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdgu5XDtGLJ6zBOel0+mwh2BGZWUl9TyHZDLp5IaT5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtmzZotra2rCHYcLU1BT1PIeJiQk9/PDDmpiYCHsoZWU5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLYimTyahYLIY9DBMqKiqo5zlUVFSoqalJFRVuLZeWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZXxmC2LFtXP+yiGdTmvVqlW+X+MzWwAAAAAAAABcCNfey2VbDLHU3t6u6urqsIdhwszMDPU8h3w+r76+PuXz+bCHUlaWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJY6OzuVSqXCHoYJ+Xyeep5DLpdTT0+Pcrlc2EMpK8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFDrLj26Fk5cIwYAAAAAAAAgKC59l4uT7YgllKplBKJRNjDMMHzPOp5Dp7nKZfLybV9acu5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQSzt27FBjY2PYwzBhYmKCep7D6Oiodu/erdHR0bCHUlaWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SspaVFQ0NDOn78uOlHz8rhxIkTes973qOhoSHNzs6e9TWOEZNmZ2c1NDSkFStWqLKyMuzhlI3l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW8jl2jFiybAHAFyIM2fOhD0EMyorK6nnOVRWVqqlpSXsYZSd5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtm7dqrq6urCHYcLU1BT1PIfx8XHt379f4+PjYQ+lrCzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L2GxBLKXTaRUKhbCHYUJlZSX1PIdkMqnW1lYlk249CGg5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxme2IFZcO+cPAAAAAAAAAOLItfdyebIFsXTllVeqpqYm7GGYMD09raNHj2p6ejrsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbHU3t6u6urqsIdhQj6fV19fn/L5fNhDiSRX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxjFiiBXXHj0DAAAAAAAAgDhy7b1cnmxBLDU1NamigvYNQrFYVCaTUbFYDHsokeRqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LeLcasbR9+3Y1NDSEPQwTstms9u7dq2w2G/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYmXu0bOmpiZls1n19/ebfvSsHIrForLZrBoaGnhayIer9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2C7lcO0YsGfYAgAuRyWTCHoIZFRUVampqCnsYkeVqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L4rklBudt27ZN9fX1YQ/DhLGxMe3bt09jY2NhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYilvr4+5fP5sIdhQnV1tdrb21VdXR32UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYgV1875AwAAAAAAAIA4cu29XJ5sQSx1dnYqlUqFPQwTcrmcenp6lMvlwh5KJLlaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlscMDs7q/7+fv3lX/6lbrzxRr3rXe9SdXW1EomEEomEOjs7L/jaTz75pH7/939fb3nLW1RbW6vXve51Wrt2rW699VY9//zzwYX4Oa2trUomk0t2fZcUCgWl02kVCoWwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxIw7cOCArr/+ek1OTpZ8zbp169TT03Ne181ms/rYxz6mv/qrvyr5mqqqKu3atUv/6T/9p/O69rm49ugZAAAAAAAAAMSRa+/l8mSLcZlM5pwbLRdiZmZGv/3bv33WRsuaNWv0+7//+/rd3/1dXXLJJfOv27lzp/7kT/4k0PtLUktLiyorKwO/rotmZ2d15swZzc7Ohj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLY44g1veIM2b96sXbt26fHHH9cnPvGJC77Wn/7pn+qb3/ymJCmVSumhhx7SwMCAHnjgAf3VX/2V0um0br311vnXd3d3q7e3d9EZfta2bdtUX18f6DVdNTY2pnvvvVdjY2NhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiBl35swZ5fN5vfGNbzzr77u7u7Vr1y5J53eM2E9+8hO96U1v0sTEhCRp3759+vjHP+772i1btsw//fLud79b3/72ty8wxT+be/QslUppenpaAwMDph89KwfP8zQ9Pa2amholEomwhxM5rtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3k4hgxmNLS0vKqjZbFeOCBB+Y3Wt7ylrfoYx/7WMnX7tmzRxUVr7TYd77zHT399NOBjSOXy4l9wmAkEgmlUqnYLtpLzdX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YLzcuDAgfnfb9269Zw/7G984xv13ve+d/7PX/nKVwIbx/bt29XQ0BDY9VyWzWZ15513KpvNhj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLZgwXK5nI4ePTr/587Oztf8nn/xL/7F/O/nPuclCD09PcrlcoFdz2WpVEqdnZ1KpVJhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVky7AEgPr7//e+rWCxKeuUxtre//e2v+T3veMc75n//3HPPBTaWvr6+wK7luurqarW3t4c9jMhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZTzZggX7/ve/P//717/+9QvaVf3Zz4v56U9/qqGhoUDGsmHDBi1btiyQa7luampKhw4d0tTUVNhDiSRX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLFmx4eHj+9294wxsW9D0tLS1n/fmnP/1pIGNpampSRQXtG4RisahMJjP/1BLO5mp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLst4txoLNj4+Pv/7hT5V8vOv+9lrLMaBAweUSCQkSbOzs8pkMvI8T9IrHx6Vz+clvbIDPDExIUkqFArKZDLz1xgdHdXMzIwkaXJyUpOTk5KkmZkZjY6Ozr8uk8moUChIkiYmJuZ3k/P5/PwHVHmep0wmo9nZ2fmcc58pMz09rbGxMUmvXiTHxsY0PT0t6ZXPxJmrTzkzSdIHP/hB1dbWmskU5DzV1tZq06ZNSiaTZjItZJ6WL1+uLVu2aHZ21kymuXmanZ3Vhz70IdXW1prJZKn3yEQmMpFpoZmqqqq0ZcsWVVRUmMlkcZ7IFFymVCqlLVu2yPM8M5kszlO5M9XU1GjDhg2qra01k8nSPEnSli1bVFNTYyZT2POUTCa1adMm1dbWmsnEvxstfp6qq6u1ZcsWJRIJM5lmZmZUW1ur3/qt35p/DzTOmVzBZgsW7Gc/kL66unpB31NTU3PWn4N67G3Dhg368Ic/LEkaGhrS3r175xeA++67T88++6wkqbe3V48++qgk6dSpU9q7d+/8Ne655x6dOHFCkvT1r39dX//61yVJJ06c0D333DP/ur179+rUqVOSpEcffVS9vb2SpGeffVb33XefpFcWp717984fk/bII4/o6NGjkqSnn35aX/jCFyS9sgDt3bt3fsH7whe+oKefflqSdPToUT3yyCNlz/S1r31Njz76qAqFgplMQc5ToVDQ/fffr2PHjpnJtJB5mpiYUDqdNpXpZ+fp8OHDKhQKpjJZnCcykYlMZDpXpoGBAaXTaf3t3/6tmUwW54lMwWX68Y9/rHQ6rS9+8YtmMlmcp3Jn+tGPfqS9e/fOv9lmIZOlefra176mdDo9P08WMoU9T8eOHdP999+vQqFgJhP/brT4efrHf/xHpdNp/c3f/I2ZTCdOnFChUNCXv/xl/c3f/E3sMznDg5M+9alPeZI8Sd66desW9D179uyZ/55f//VfX9D3TE5Ozn+PJO973/veIkbteYODg54kr7u721u5cqU3ODjoFQoFb2RkxCsWi57ned7o6Kg3PT09f//x8XHP8zxvZmbGGxkZmb9WJpPx8vm853meNzEx4U1MTHie53n5fN7LZDLzrxsZGfFmZmY8z/O88fFxb3Jy0vM8z5uenvZGR0c9z/O8YrHojYyMeIVCwfM8zxsbG/OmpqY8z/O8XC7nZbNZz/M8b3Z21hsZGfFmZ2c9z/O8bDbr5XI5z/M8b2pqyhsbG/M8zytrpn/6p3/yuru7vZGRETOZgpynkZERr7u72ztz5oyZTAuZp5/+9Kded3e398ILL5jJNDdPL7zwwnzPW8lkqffIRCYykWmhmV566SWvu7vb+/GPf2wmk8V5IlNwmV5++WWvu7vbO3XqlJlMFuep3JmGhobm/93WSiZL8zT339tDQ0NmMoU9T2fOnJnveSuZ+Hejxc/TT37yE6+7u9s7ffq0mUz5fN4b+X/vSZ0+fTq2mebey537NTg46FmW8Lz/98wPnNLd3a1du3ZJktatW6eenp7X/J577rlHN910kyRp7dq1On78+Gt+z09/+lNddNFF839+/vnn9da3vvXCBi3pmWee0Zo1a+b/PDg4qMsvv/yCrwcAAAAAAAAACJ5r7+VyjBgW7Gc3TV566aUFfc+ZM2fO+vPrXve6QMcEAAAAAAAAAEDY2GzBgv3sEyk/+clPzvoMl1JeeOGF+d+/7nWv04oVKwIZy44dO9TY2BjItVw3OjqqO+6446wP2MI/c7U+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstmDB3vrWt6qi4pWW8TxPfX19r/k9Tz311Pzv3/a2twU2lgMHDmhycjKw67ls+fLluvbaa7V8+fKwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFixYKpXSlVdeOf/nhXzOS29v7/zv3/ve9wY2lueff14zMzOBXc9lVVVVWr16taqqqsIeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMjZbcF6uvfba+d/v37//nK998cUX9eSTT/p+bxDjYFc3GJOTkzwpdA6u1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WnJePfvSjqq2tlSR9//vf11/8xV+UfO1tt92m2dlZSdK73/1uveMd7yjLGAEAAAAAAAAAKKeE53le2INA+XV3d2vXrl2SpHXr1i3oSLA5n/zkJ/Wnf/qnkqRly5Zp//79+t3f/d35r8/MzOiP//iPtXv37vm/6+np0bp16xY97meeeUZr1qyZ//Pg4KAuv/zyRV8XAAAAAAAAABAc197LTYY9ACy9jRs36vTp02f93ZkzZ+Z//73vfU/t7e2v+r7HH39cK1eufNXf//Ef/7G+9a1v6Zvf/Kampqb0e7/3e/ov/+W/6B3veIdyuZwOHz6sH//4x/Ov37VrVyAbLT9r9erVOnHiRKDXdNXMzIxOnDihyy67jDMgfbhaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFzwLPPPqvjx4+f9eull16a//rExMSrvn78+HHl83nf61VVVenLX/7yWU+zDAwM6IEHHtBf/dVfzW+0VFVV6fbbb9cnP/nJwDPxmS3B4fzHc3O1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCPmgNbWVv3oRz867+87efKkWltbz/mab3zjG3rggQf0ne98Rz/+8Y9VVVWlX/zFX9QHPvAB3XDDDXrb2952gaP259qjZwAAAAAAAAAQR669l8sxYg5Ip9NLdu3169dr/fr1S3Z9AAAAAAAAAACijmPEEEvd3d1qamoKexgmZDIZ7dq1S5lMJuyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgxxMrco2etra06deqU+vr6TD96Vg6FQkGnTp3SpZdeqmSSh91+nqv1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanYLuVw7RozNFsSKaz+gAAAAAAAAABBHrr2XyzFiiKUtW7aotrY27GGYMDExoYcfflgTExNhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYilTCajYrEY9jBMqKioUFNTkyoqWA78uFofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEUOsuPboGQAAAAAAAADEkWvv5bIthlhqb29XdXV12MMwIZ/Pq6+vT/l8PuyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsdTZ2alUKhX2MEzI5XLq6elRLpcLeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4Rgyx4tqjZwAAAAAAAAAQR669l8uTLYilVCqlRCIR9jBM8DxPuVxO7Lv6c7U+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWduzYocbGxrCHYcLo6Kh2796t0dHRsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMY8QQK3OPnrW0tGhoaEjHjx83/ehZOczOzmpoaEgrVqxQZWVl2MOJHFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1ewWcrl2jFgy7AEAF+LMmTNhD8GMyspKtbS0hD2MyHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWNq6davq6urCHoYJ4+Pj2r9/v8bHx8MeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMjZbEEvpdFqFQiHsYZiQTCbV2tqqZJIH3fy4Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMj6zBbHi2jl/AAAAAAAAABBHrr2Xy5MtiKUrr7xSNTU1YQ/DhOnpaR09elTT09NhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYil9vZ2VVdXhz0ME/L5vPr6+pTP58MeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMo4RQ6y49uiZa9LptFatWuX7tZMnT6q1tbW8AwIAAAAAAABwQVx7L5cnWxBLTU1NqqigfYNQLBaVyWRULBbDHkokuVofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzLerUYsbd++XQ0NDWEPw4RsNqu9e/cqm82GPZRIcrU+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2UcI4ZYmXv0rKmpSdlsVv39/aYfPSuHYrGobDarhoaG0J8WiuIxYlGqTzlZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u4Vcrh0jlgx7AMCFyGQyYQ/BjIqKCjU1NYU9jMhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZfHcEoPztm3bpvr6+rCHYcLY2Jj27dunsbGxsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUl9fn/L5fNjDMKG6ulrt7e2qrq4OeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsv4zBbEimvn/Lkmip/ZAgAAAAAAAOD8ufZeLk+2IJY6OzuVSqXCHoYJuVxOPT09yuVyYQ8lklytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZmy2IpdbWViWTybCHYUKhUFA6nVahUAh7KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3WouyzhGDLHi2qNnruEYMQAAAAAAAMAG197L5ckWxFJLS4sqKyvDHoYJs7OzOnPmjGZnZ8MeSqSk02klEgklk0ldcsklSiaTSiQSSiQSSqfTYQ9vyVnuC8vZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxNK2bdtUX18f9jBMGBsb07333quxsbGwhxJJ9fX1Tvab5b6wnA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4RgyxMvfoWSqV0vT0tAYGBkw/elYOnudpenpaNTU1SiQSoY4lSseIzY0lkUiopqZG09PTmlsuXTjSLEp9ETTL2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3kcu0YMT5hHLGUy+XCHoIZiURCqVQq7GFElud5Tvab5b6wnA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4RgyxtH37djU0NIQ9DBOy2azuvPNOZbPZsIcSSQ0NDU72m+W+sJwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L2GxBLPX09Dj5tMFSSKVS6uzsZKe8hFwu52S/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMz2xBrLh2zp9roviZLVEYCwAAAAAAABA3rr2Xy5MtiKUNGzZo2bJlYQ/DhKmpKR06dEhTU1NhDyWSli1b5mS/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUlNTkyoqaN8gFItFZTIZFYvFUMcxMDCgz3zmMyW//pGPfEQ7d+7U4OBgGUclVVRUONlvUemLpWA5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGLFtUfPXHDw4EHt3r1bR44cWfD3XH311dqxY4c2bty4ZOPiGDEAAAAAAAC4JOj3w1x7L9et/1UbZrS2tiqZTIY9DBMKhYLS6bQKhUJZ7zs8PKyuri5t3rz5vDZaJOnIkSPatGmTrr/+eg0PDy/RCF+RTCad7Lew+qIcLGcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQS1u3blVdXV3YwzBhfHxcDzzwgMbHx8t2z/7+fq1du1YPPfTQoq7z4IMPau3atRoYGAhoZK9WV1fnZL+F0RflYjkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsW1R88s6u/vV2dnp0ZGRgK7ZnNzs3p7e9XW1hbYNTlGDAAAAAAAAC7hGLHF4ckWAGUzPDysa665JtCNFkkaGRnRhg0blvxIMQAAAAAAAADww2YLYmnHjh1qbGwMexgmjI6O6o477tDo6OiS3+vmm2/W6dOnl+Tap0+f1i233BL4dRsbG53st3L2RblZzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWDhw4oMnJybCHYcLy5ct17bXXavny5Ut6n4MHDy76M1pey4MPPqiDBw8Ges3JyUkn+61cfREGy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMz2xBrLh2zp8lHR0dOnLkSFnu09vbu+jr8JktAAAAAAAAcAmf2bI4PNmCWGJXNzjleHJjYGCgLBstknT48GENDg4Gdj1X/y8Cy0/0WM4GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLYAWHJLfXxY0PcbGBjQZz7zmZJf/8hHPqKdO3cGuqkDAAAAAAAAIL44Rgyx4tqjZ1asX79eTz75ZFnv98QTT5z39x08eFC7d+8+r6dwrr76au3YsUMbN2487/sBAAAAAAAAUcExYovDky2IpdWrV6uqqirsYZgwMzOj559/XjMzM0tyfc/z9NRTTy3JtUs5duyYzmcfeXh4WF1dXdq8efOrNlqqqqrO2W9HjhzRpk2bdP3112t4eHhR446Spe6LMFnOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJZc/AyNpbLU5z+OjY1pZGRkSa5dysjIiMbHxxf02v7+fq1du7bk0WML/cyWBx98UGvXrtXAwMB5jzeKLJ8LajkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsW1R88sePnll7VixYqy33doaEgXX3zxOV/T39+vzs7OQDeDmpub1dvbq7a2tsCuCQAAAAAAACw1jhFbHJ5sAbCkqqurQ7lvTU3NOb8+PDysa665JvCnbkZGRrRhwwZTR4oBAAAAAAAAODc2WxBL3d3dampqCnsYJmQyGe3atUuZTGZJrl9fX6/m5uYluXYpzc3NqqurO+drbr75Zp0+ffo1r9XU1HTe/Xb69GndcsstC359FC11X4TJcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSzjGDHEytyjZ62trTp16pT6+vpMP3pWDoVCQadOndKll16qZDK5JPdYv369nnzyySW5dqn7PfHEEyW/fvDgQW3evHlB10omk7r00kt16tQpFQqF8xrHY489pk2bNp3X90RFOfoiLJazAYBLWM/hGnoefuiLaGN+gkdNS3O5Nlazh5GLY8QWhydbEEvpdPq83/iGv2QyqdbW1iVdtK+44oolu/aF3G/37t0LvlahULjgftuzZ895f09UlKMvwmI5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljasmWLamtrwx6GCRMTE3r44Yc1MTGxZPe47rrrluza53u/gYEBHTlyZMHXqq2tveB+O3z4sAYHB8/7+6KgHH0RFsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxFImk1GxWAx7GCZUVFSoqalJFRVLtxy0tbXp6quvXrLr/6yOjo6zHk/8eQ899NB5Xa9YLC6q3873flFRjr4Ii+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxme2IFZcO+fPkvP5nJTF3mfjxo0lvx61z48BAAAAAAAAooDPbFkctsUQS+3t7aqurg57GCbk83n19fUpn88v6X02bdq05MeJdXV1nXOjxfM8PfXUU+d1zerq6kX127FjxxTHPe1y9UUYLGcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQS52dnUqlUmEPw4RcLqeenh7lcrklv9dnP/tZrVy5ckmuvXLlSt11113nfM3Y2JhGRkbO67qpVGpR/TYyMqLx8fEL+t4wlbMvys1yNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOMYMcSKa4+eWTQwMKB169ad96bHuTQ3N6u3t1dtbW3nfN3LL7+sFStWBHbfhRoaGtLFF19c9vsCAAAAAAAAC8UxYosT6ydbPM/T0NCQ0um00um0hoaGYnlcD85fKpVSIpEIexgmeJ6nXC5Xtp+dtrY29fb2BvaEy8qVKxe00SLpgo4CSyQSi+63mpqaC/7esJS7L8rJcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSyL1WbLsWPHdMcdd+hDH/qQLrvsMqVSKbW0tOiyyy7TZZddppaWFqVSKV122WX60Ic+pDvuuEPHjh0Le9hYAjt27FBjY2PYwzBhdHRUu3fv1ujoaNnu2dbWpv7+fnV1dS3qOl1dXerv71/QRosk1dfXq7m5+bzu0djYuKh+a25uVl1d3QV9b5jC6ItysZwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LIn+M2LPPPqv7779fDz74oM6cOXPW10oN/ef/D/SWlhZ1dXVp69atph9TcsHco2ctLS0aGhrS8ePHmdNFmp2d1dDQkFasWKHKysqy3//gwYPas2ePDh8+vODv6ejo0G233aaNGzee9/3Wr1+vJ598csGvr6ys1IoVKzQ0NKTZ2dkLut8TTzxx3t8XtrD7YilZzgYALmE9h2voefihL6KN+QkeNS3N5dpYzR5GLo4RW5zIPtnyzW9+Ux/4wAfU1tamP/uzP9OZM2fked5Zv0r5+dedOXNGf/Znf6a1a9fqAx/4gL75zW+WMQmWwpkzZy7ojW+8WmVlpVpaWkL7h9GmTZvU29urgYEB3XTTTSVfd9VVV2nnzp0aGBhQb2/vBW20SNIVV1xxXq+fnZ1dVL+d7/2iIuy+WEqWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVnkNlueeuopve9979P73/9+feMb3zhrY2XNmjW68cYbde+99+rw4cM6ceKERkdHNTMzo3w+r9HRUf3gBz9Qb2+v9u3bpxtvvHF+52zuOt/4xjf0/ve/X+973/v01FNPhRkVi7B169ZYHs0URePj49q/f7/Gx8dDHceaNWt06623lvz65z//ed1+++1n7YZfiOuuu+68Xl9XV7eofjvf+0VFVPpiKVjOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZcmwB/CzPv7xj+u+++5TsViU53lKJBJ63/vep9/93d/VtddeqxUrVpzz++vr61VfX683velNuvrqq+f/fmhoSAcOHNAXv/hFPfnkk/I8Tz09Pfr1X/913XDDDdq3b99SR0PA0um0CoVC2MMwIZlMqrW1VclkpJaDJdPW1qarr75aR44cWdDrC4XCBfdbR0fHojeHwmK5LyxnAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLskh9ZktFxSsP2jQ0NGjbtm36+Mc/XvKMuAuVTqd1zz336N5771U2m1UikeA4qhhx7Zw/1wR9LmQpBw8e1ObNmwO51mvd50KPOwMAAAAAAADKic9sWZxIHSNWX1+vXbt26YUXXtAdd9wR+EaLJLW2tmr37t164YUX1N3dzVFUMXXllVeqpqYm7GGYMD09raNHj2p6ejrsoZTNpk2bFny8V01NzQX1W1dXV6w3Wiz3heVsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZFqnNlhMnTuiP//iP1dDQsOT3amho0Cc/+UmdOHFiye+F4LW3t6u6ujrsYZiQz+fV19enfD4f9lDK6rOf/axWrlz5mq+rrq4+735buXKl7rrrrsUML3SW+8JyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LIvUMWLAa3Ht0TPXlOsYsTkDAwNat26dRkZGArtmc3Ozent71dbWFtg1AQAAAAAAgKXGMWKLE6knW4CFampqmv+MHyxOsVhUJpNRsVgMeyhl19bWpt7e3nM+4VJRUbHgflu5cqWZjRbLfWE5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvFuNWJp+/btZTluzgXZbFZ79+5VNpsNeyihaGtrU39/v7q6uny/3tDQsKB+6+rqUn9/v4mNFsl2X1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZSaPEfvyl7+sr33ta3rppZf0+te/Xtdcc422bNkS9rAQgLlHz5qampTNZtXf32/60bNyKBaLymazamhoCP1poXIfI/bzDh48qD179ujw4cPzf1dRUaGGhgZls1nf/5Ogo6NDt912mzZu3LikYyu3KPVF0CxnAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmDyMXx4gtTjLsASzUSy+9pA9/+MOSpPe85z36r//1v77qNcViUb/zO7+jr371q2f9/ec//3nde++9euyxx1RbW1uW8WJpZTKZsIdgxtwxWZA2bdqkTZs2aXBwUPfcc4/uvvvu+Uc2f9ZVV12ldevW6brrrjvrHxiWWO4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIsNlt9X/nKV/R3f/d3+ta3vqV3vvOdvq/5zGc+owMHDsjzvFf9Onz4sG644YYyjxpLZdu2baqvrw97GCaMjY1p3759GhsbC3sokbFmzRrdeuutkqT6+vpX9dvnP/953X777WY3WiTbfWE5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclsVms+XIkSOSpOrqal1zzTWv+no+n9eePXuUSCSUSCT0/ve/X3fddZduvfVWpVIpeZ6nL37xi/re975X7qFjCfT19Smfz4c9DBOqq6vV3t6u6urqsIcSSfl83sl+s9wXlrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWVZbI4Re+aZZyS98n+cL1++/FVf/+u//muNjIwokUjot37rt/SVr3xl/mvveMc7dN1110l65f9If9e73lWeQWPJHD16NOwhmFFTU6Mrr7wy7GFE1vT0tJP9ZrkvLGcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3msuy2DzZcurUKSUSCb3lLW/x/foTTzwx//u543/mfPjDH9bKlSsl8Sa9FZ2dnUqlUmEPw4RcLqeenh7lcrmwhxJJqVTKyX6z3BeWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVlsNlvmzqZrbGz0/frcMWMXX3yxfuM3fuOsr1VUVOid73ynPM/TiRMnlnagKIvW1lYlk7F5MCvSCoWC0um0CoVC2EOJpGQy6WS/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIs4XmeF/YgFiKVSmlmZkY33HCDPve5z531tdHRUV100UXyPE/XXnutvvSlL73q+z/2sY/pL/7iL1RVVaXp6elyDRsBe+aZZ876UPLBwUFdfvnlIY4IQUqn01q1apXv106ePKnW1lYnxwIAAAAAAAAstaDfD3PtvdzYPNnS1NQk6ZXjxH7e4cOHVSwWJUlXXXWV7/fP7QBWVlYuzQBRVi0tLcxlQGZnZ3XmzBnNzs6GPZRIqqysdLLfLPeF5WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kWm82Wt771rfI8T9/5zndedU7dI488Mv/7q6++2vf7z5w5I0m66KKLlm6QKJtt27apvr4+7GGYMDY2pnvvvXf+qD6crb6+3sl+s9wXlrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWVZbI4R+5M/+RN1d3crkUjo5ptv1p133ilJ+va3v633vve9mpmZ0Rve8Ab90z/9kxKJxKu+f+XKlXrppZd09dVXq6enp7yDR2DmHj1LpVKanp7WwMCA6UfPysHzPE1PT6umpsb3Z6econR019xYEomEampqND09rbnl0oVjxKLUF0GznA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmj2MXBwjtjixebLlD//wD7Vs2TJJ0mc/+1m1trbqne98p/7Fv/gXyufzkqR/82/+jW/jPffcc/NPtrz97W8v36CxZHK5nGKyTxh5iURCqVQqEv8wam1tled5vr/C2tzwPM/JfotSXwTNcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSyLzWbLpZdeqv/xP/7H/BueL774ovr6+jQzMyNJ+uVf/mXdeuutvt/7f/7P/5n//Xve856lHyyW3Pbt29XQ0BD2MEzIZrO68847lc1mwx5KJDU0NDjZb5b7wnI2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksi81miyR97GMf05e//GX96q/+6vz/7Z5KpbRlyxb19vaqrq7uVd8zMzOjz33uc5KkZDKp9evXl3vYWAI9PT2v+uweXJhUKqXOzk6lUqmwhxJJuVzOyX6z3BeWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVlsPrPl501MTCibzeriiy9WVVVVydeNj4/r2LFjkqRly5bpiiuuKNcQsQRcO+cP4YnS58cAAAAAAAAAS43PbFmcWD3Z8rNqa2t1ySWXnHOjRZLq6uq0bt06rVu3jo0WQzZs2DD/GT5YnKmpKR06dEhTU1NhDyWSli1b5mS/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIstpstcFtTU5MqKmjfIBSLRWUyGRWLxbCHEkkVFRVO9pvlvrCcDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy2J7jBjc5NqjZwgPx4gBAAAAAADAJRwjtjhu/a/aMKO1tVXJZDLsYZhQKBSUTqdVKBTCHkokJZNJJ/vNcl9YzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWtm7dqrq6urCHYcL4+LgeeOABjY+Phz2USGltbZXneRoaGtLWrVs1NDQkz/PkeZ4TT7VY7gvL2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBArrj16BgAAAAAAAADlwDFii8OTLQAAAAAAAAAAAIvAZgtiaceOHWpsbAx7GCaMjo7qjjvu0OjoaNhDiSRX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLYunAgQOanJwMexgmLF++XNdee62WL18e9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJbxmS2IFdfO+QMAAAAAAACAcuAzWxaHJ1sQS+zqBmdycpInhc7B1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZAgAAAAAAAAAAsAgcI4ZYce3RMwAAAAAAAAAoB44RWxyebEEsrV69WlVVVWEPw4SZmRk9//zzmpmZCXsokRSF+qTTaSUSCd9f6XR6Se4ZhdxLxXI2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksi81my1/+5V/qrrvuCnsYiAg+syU4nP94bq7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIsNseIXXLJJfrJT36i2dnZsIeCELn26BkgBf8IJwAAAAAAAPDzOEZscWLzZAsAAAAAAAAAAEAUhbrZUllZueBfP/nJT171PclkMszhI0Td3d1qamoKexgmZDIZ7dq1S5lMJuyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksC/UYsYqKxe31JBIJjhVzzNyjZ62trTp16pT6+vpMP3pWDoVCQadOndKll17KBqaPKNQnjGPEopB7qVjOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNHkYujhFbnFC7r7KyUsViUb/927+tf/fv/p0SiUTJ137oQx9SJpPRN7/5zTKOEFGVTqfDHoIZyWSSz/w4B1frYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kW6jFi//AP/6Bf/dVf1Ze//GXt3LlTF198sdatW+f7q7q6WpJe9fdw05YtW1RbWxv2MEyYmJjQww8/rImJibCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayLNTNlvb2dv3DP/yDbr/9dj399NN6xzveof/8n/+zpqenwxwWYiCTyahYLIY9DBMqKirU1NS06GP9rHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdloX5my896/vnndcMNN+g73/mOfvmXf1n33nuvOjs7579+ySWX6Cc/+Qmf0eI41875A6RwPrMFAAAAAAAAbuEzWxYnMttiq1ev1t/93d/pzjvv1OnTp/W+971PN9xwgzKZTNhDQwS1t7fPHy2Hxcnn8+rr61M+nw97KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3WouyyKz2SJJiURCt9xyiwYGBvTe975X999/v972trfpwQcfDHtoiJjOzk6lUqmwh2FCLpdTT0+Pcrlc2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kWmWPE/PzlX/6l/uiP/kjZbFae5ymRSHCMmONce/QMkDhGDAAAAAAAAEuPY8QWJ1JPtvy8G264Qc8++6yuvfZa/dIv/ZLe+MY3hj0kREQqlVIikQh7GCZ4nqdcLqcI77uGytX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJZFerNFki655BJ96Utf0smTJ3Xy5Mmwh4OI2LFjhxobG8Mehgmjo6PavXu3RkdHwx5KJLlaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3msuySB8jBvy8uUfPWlpaNDQ0pOPHj5t+9KwcZmdnNTQ0pBUrVqiysjLs4URO2PUZGBjQvn37dPfdd/t+/aqrrlJHR4e6urrOeixzscLOvZQsZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZg8jF8eILU7kN1uKxaISiQRHRkGSez+gcNfBgwe1e/duHTlyZMHfc/XVV2vHjh3auHHjEo4MAAAAAAAAFrHZsjiRP0YsmUyqpaUl7GEgYrZu3aq6urqwh2HC+Pi49u/fr/Hx8bCHEknlrs/w8LC6urq0efPm89pokaQjR45o06ZNuv766zU8PLyocVjuC8vZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayLPKbLZL4ECC8SjqdVqFQCHsYJiSTSbW2tiqZTIY9lEgqZ336+/u1du1aPfTQQ4u6zoMPPqi1a9dqYGDggq9huS8sZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreay7LIHyNWUVGhiy++WD/5yU/CHgoiwLVHz+CO/v5+dXZ2amRkJLBrNjc3q7e3V21tbYFdEwAAAAAAADZxjNjixOLJFuDnXXnllaqpqQl7GCZMT0/r6NGjmp6eDnsokVSO+gwPD+uaa64JdKNFkkZGRrRhw4YLOlLMcl9YzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCW2tvbVV1dHfYwTMjn8+rr61M+nw97KJFUjvrcfPPNOn369JJc+/Tp07rlllvO+/ss94XlbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogV1x49g30HDx7U5s2bl/w+jz32mDZt2rTk9wEAAAAAAEA8cYzY4vBkC2KpqalJFRW0bxCKxaIymYyKxWLYQ4mkpa7P7t27l+S6P2/Pnj3n9XrLfWE5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvFuNWJp+/btamhoCHsYJmSzWe3du1fZbDbsoUTSUtZnYGBAR44cCfy6fg4fPqzBwcEFv95yX1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SsqalJ2WxW/f39ph89K4disahsNquGhgaeFvKxlPXZuXOnPv3pTwd6zde63+23376g11ruC8vZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZw8jFMWKLY6f74BQeoQtORUUFx7Kdw1LW57vf/W7g1wzqfpb7wnI2AHAJ6zlcQ8/DD30Rba7MTzqdViKR8P2VTqcDvZcrNb0QLtfGanaruSxjphBL27ZtU319fdjDMGFsbEz79u3T2NhY2EOJpKWqj+d5euqppwK95ms5duyYFvowY6nc5fyX6KVCzwOADazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFsRSX1+f8vl82MMwobq6Wu3t7aqurg57KJG0VPUZGxvTyMhIoNd8LSMjIxofH1/Qay33heVsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZlgx7AMCFOHr0aNhDMKOmpkZXXnll2MOIrKWqT1ibhdPT0wt6KsxyX1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZTzZgljq7OxUKpUKexgm5HI59fT0KJfLhT2USFqq+oT1fyXU1NQs6HWW+8JyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LIv8Zst//I//UbfcckvYw0DEtLa2KpnkwawgFAoFpdNpFQqFsIcSSUtVn/r6ejU3Nwd6zdfS3Nysurq6Bb3Wcl9YzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2UJb6Gflgz8P/v379cf/MEfnNf33HDDDfqLv/iLRd/7mWee0Zo1a+b/PDg4qMsvv3zR1wXCsH79ej355JNlvd8TTzyxqGuk02mtWrXK92snT55Ua2vroq4PAAAAAIgX/jsRsCPon2fX3suN/JMtgJ+WlhZVVlaGPQwTZmdndebMGc3OzoY9lEhayvpcccUVgV8zqPtZ7gvL2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFizK6tWr9W//7b99zV/vfe97A73vtm3bFvQh33htY2NjuvfeezU2Nhb2UCJpKetz3XXXBX7NoO5nuS8sZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEcN5+9ljxD760Y9q//79Zbv33KNnqVRK09PTGhgYMP3oWTl4nqfp6WnV1NQokUiEPZzIWer6dHR06MiRI4Ff1+8+vb29C359qdwWHg+n5wHABtZzuIaehx/6ItpcmZ9y/neiKzW9EC7Xxmr2MHJxjNji8GQLYimXy4l9wmAkEgmlUilT/zAK0lLX57bbbluS6y72Ppb7wnI2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksi8VmS7FYVE9Pjz75yU/qwx/+sNra2vQLv/ALamxsVHV1tRobG/ULv/ALamtr04c//GF98pOfVE9Pj4rFYthDxxLZvn27Ghoawh6GCdlsVnfeeaey2WzYQ4mkpa7Ppk2blvw4sa6uLm3cuPG8vsdyX1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZcmwB3Au2WxWe/bs0b333quf/vSnZ33tZ59qGBsb09jYmM6cOaNnn31WknT77bfrda97nT7+8Y/rP/7H/8gb88b09PQol8uFPQwTUqmUOjs7lUqlwh5KJJWjPp/97GfV29ur06dPB37tlStX6q677jrv77PcF5azAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lWWSfbOnp6dFll12mT3/60xoeHpbneWf98vPzrxkeHtanP/1pvfnNb1ZPT095A2BJ9fX1KZ/Phz0ME6qrq9Xe3q7q6uqwhxJJ5ajPRRddpEOHDqm5uTnQ6zY3N+vQoUO66KKLzvt7LfeF5WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kWySdb/vqv/1q//du/rZmZmfmNlbq6Or373e/WO97xDr3xjW9US0uLli1bppqaGk1PT2tqakpnzpzRCy+8oKeeekpHjx7V2NiYPM/Tyy+/rA984AP66le/qg0bNoSczpZMJqMvfvGLeuaZZzQ6OqqGhgatXLlS7373u9XW1rZkZwpu2LDhvD7sG6VNTU2pt7dX69at07Jly8IeTuSUqz5tbW3q7e3Vhg0bAnnCZeXKlTp06JDa2tou6Pst94XlbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWRa5zZbh4WH9wR/8wfxTC29605v0J3/yJ/pX/+pfqaamZsHXyefz+tKXvqRPfepT+sEPfqCZmRlt3bpVzz77rF73utct1fCd89WvflVf/epXfb/2y7/8y7rtttv0h3/4h4FvujQ1NamiIrIPZsVKsVhUJpPhM45KKGd92tra1N/fr1tuuUUPPvjgBV+nq6tLd9111wU90TLHL/fAwID27dtX8ns+8pGPqKOjQ11dXVqzZs0F33up0fMAYAPrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxLeKXO5ArJf//v/1233nqrEomE3ve+9+nAgQNavnz5BV9vampKH/zgB/WNb3xDiURCn/nMZ/Qf/sN/CHDE7tm/f7/+4A/+YMGv37x5sx5++GHV1tYu+t7PPPPMWW/iDg4O6vLLL1/0dYGoOXjwoPbs2aPDhw8v+Hs6Ojp02223aePGjYGPZffu3Tpy5MiCv+fqq6/Wjh07Ah8LAAAAACBa0um0Vq1a5fu1kydPqrW1tbwDAnDBgv55du293Mg9GvDlL39ZkrRs2TI9/PDDi9pombvOQw89NH+dL33pS4seI6Q3vvGN+v/+v/9Pjz/+uF588UXlcjlNTEzo+9//vu6++26tXr16/rWPPfaYurq6At2Ffctb3qLGxkZJ0uzsrDKZzPyRc9lsdv7JqKmpKU1MTEiSCoWCMpnM/DVGR0c1MzMjSZqcnNTk5KQkaWZmRqOjo/Ovy2QyKhQKkqSJiQlNTU1JeuXpqWw2K+mVzwvKZDKanZ2VJI2PjyuXy0mSpqenNTY2JunVO9JjY2Oanp6WJOVyOY2Pj5c90+joqL7//e+rUCiYyRTkPBUKBT377LPz4ytXpk2bNumrX/2q+vr6dNNNN6m2tnb+kdHq6mo1NDRIkq666irt3LlTx48fV29vrzo6OgKZp5mZGR0/flwf/ehH9aEPfUhHjhzRsmXL5jdNk8mkmpqa5jM1NjaqqqpKkrR8+XIdO3ZMmzZt0kc+8hGl0+kln6eFZJqbp5/+9Kf6v//3/6pQKES6984nU1x+nshEJjKRKchMk5OTSqfTGhsbM5PJ4jyRKbhM09PTSqfTymQyZjJZnKdyZ8rlchocHDzrv+/insnSPI2OjiqdTiuXy5nJVGqefv6/CefehysUCoFmmpiY0LPPPqtCoUDv8e9G85mmpqaUTqfn62Ah08zMjAqFgp5//vn58ZUzU319/fwpU6lUSnV1dYvK5IrIbbacPHlSiURC69evD+y4r4suukjr16+X53n64Q9/GMg1XXbttdfq5MmT+m//7b/pmmuu0aWXXqqamhotX75cb3nLW3TjjTfq+PHjZz398rWvfW1RxyL9vK6uLn34wx+WJA0NDWnv3r3zi9p9992nZ599VpLU29urRx99VJJ06tQp7d27d/4a99xzj06cOCFJ+vrXv66vf/3rkqQTJ07onnvumX/d3r17derUKUnSo48+Ov9ZMc8++6zuu+8+Sa8sTnv37tXQ0JAk6ZFHHtHRo0clSU8//bS+8IUvSHplAdq7d+/8gveFL3xBTz/9tCTp6NGjeuSRR8qe6Wtf+5oefvhhjY+Pm8kU5DyNj4/ri1/8or773e+GkqmxsVG33nqr/uW//Jdat26dJOlXfuVX9Id/+Ifz96yurtbrX//6QOfpO9/5jg4cOKCLL75Yv/IrvyJJWrdunf7lv/yXkqRLL71U27dvnx/rjTfeqMsuu0yS9Ju/+Zv6zd/8TUnSsWPH9LnPfU4DAwNLOk8LyTQ3T/v379eDDz6o8fHxSPfe+WSKy88TmchEJjIFmamvr08PPPCAvvnNb5rJZHGeyBRcphdeeEEPPPCAqUwW56ncmX7wgx/oS1/60vwbexYyWZqnr33ta3rggQf0gx/8wEymUvNU6r8JT58+HWim7373u/riF7+o8fFxeo9/N5rP9Oyzz+qBBx7QoUOHzGQ6ceKExsfH9Vd/9Vc6dOhQ2TLNbVZdf/31evvb3y5JuvLKK/U7v/M7i8rkDC9iUqmUV1FR4f3rf/2vA73uv/7X/9pLJBJeKpUK9LoobXZ21rv66qs9SZ4kb82aNYu+5uDgoCfJS6VSXl1dnTc4OOgVCgVvZGTEKxaLnud53ujoqDc9Pe15nudNTk564+Pjnud53szMjDcyMjJ/rUwm4+Xzec/zPG9iYsKbmJjwPM/z8vm8l8lk5l83MjLizczMeJ7neePj497k5KTneZ43PT3tjY6Oep7necVi0RsZGfEKhYLneZ43NjbmTU1NeZ7neblczstms/M1GRkZ8WZnZz3P87xsNuvlcjnP8zxvamrKGxsb8zzPIxOZzsp08uRJr7a21lu2bJknyauurvYaGho8Sd4Pf/jDwDN9+9vf9pqbmz1JXkNDg1ddXe1J8pYtW+bV1tZ6krxkMuk1NTXN/3w3NjZ6VVVVniRv+fLl3vLlyz1JXlVVldfY2Og1Nzd7/f39pueJTGQiE5nIRCYykYlMZCITmVzMdPLkyZL/Tfh//+//jWUmi/NEpmhnGhgYKPkey3PPPVe2TCdOnPAkefX19V5NTc1Z78OePHnyvOdp7r3cuV+Dg4OeZZH7zJbW1la9+OKLWrdunb75zW8Gdt33vve96unp0Rvf+MazjrTB0nryySe1fv36+T+/+OKLuvTSSy/4eq6d8wdI5T3/dnh4WGvXrtXp06cDu+aclStXqr+/XxdddFHg1wYAAAAAhIPPbAEWLyo/R3xmy+JE7hixyy+/XJ7n6fDhwxocHAzkmgMDA+rt7VUikTA9mVHU0dExf2anJD333HOBXHfHjh3zn9mCxRkdHdUdd9xx1pmP+Geu1efmm2/W6dOn1djYGPjP2enTp3XLLbcEdr0L5dqcAoBVrOdwDT0PP/RFtDE/waOmpblcG6vZ596bmTsqEtEXuc2WLVu2SHrlw3t+67d+a/7Mtwv13HPP6dprr53/0J7rrrtu0WPEwlVVVeniiy+e//PLL78cyHUPHDgwf4YgFmf58uW69tpr5z+8DmdzqT4HDx7UQw89JOmVD8pbip+zBx98UAcPHgz0mufLpTkFAMtYz+Eaeh5+6ItoY36CR01Lc7k2VrPPvTeTSqXCHgoWKJKbLb/6q78q6ZXHlt75znfqxhtv1N///d+rWCwu6BrFYlHf/e53ddNNN+md73yn0um0EomE2tvb5zdzUD4TExPzv6+trQ3kms8//7xmZmYCuZbrqqqqtHr16rOeQMI/c6k+u3fvnv/9zMzMkv2c7dmzZ9HXmFvX/X691lGRLs0pAFjGeg7X0PPwQ19EG/MTPGpamsu1sZp97r2ZZDIZ9lCwQJHbbKmqqtJDDz2klpYWSdL09LQ+97nP6Td+4zfU1NSkq666Sl1dXfr3//7fa+fOneru7tbOnTv17//9v1dXV5euuuoqNTU16d3vfrfuvfde5XI5eZ6nlpYWPfTQQzRnmf3whz9UNpud//PKlSsDua7F3eqwLNUTDFa4Up+BgQEdOXJk/s9L+X+FBHlM5IVwZU4BwDrWc7iGnocf+iLamJ/gUdPSXK6N1exz783kcrmwh4IFiuTOw+rVq/Xd735X1113nf7u7/5u/giw8fFxHT16VEePHj3n98+9fs7VV1+tBx98UL/wC7+wZGOGv/vuu2/+942NjWpvbw9vMABKmjs+rJz3u/3228t6TwAAAAAAAGCpJLyf35mImMcff1x33323nnzySU1PTy/4+2pqavS+971PN910kzZu3LiEI3TL+Pi46urqFvTab3/723rf+943v/v68Y9/XPv27VvU/Z955hmtWbNm/s+Dg4O6/PLLF3VNIOrS6bRWrVrl+7WTJ0+qtbV10fdYv369nnzyyUVf53zu98QTT1zw95ejJgAAAACA18Z/nwGLF5Wfo6DH4dp7uZF8suVnbdy4URs3btTExIS+/e1v67nnntP3v/99DQ8Pa3x8XLlcTqlUSnV1dbrooov01re+VW9729v0G7/xG4F9Pgj+2SOPPKK7775b/+7f/Tt98IMfVGNj46tek8vl9LnPfU47duyY32hpamrSpz71qcDGsXr1ap04cSKw67lsZmZGJ06c0GWXXWbubMsguFAfz/P01FNPnfV3VVVVuuyyy3TixIkl+dyWY8eOyfM8JRKJwK/9WlyYUwBwAes5XEPPww99EW3MT/CoaWku18Zq9rn3ZgqFQthDwQJF7jNbSqmtrdX73/9+3XLLLfrzP/9zPfzww3rsscf0jW98Q4899pgefvhh/fmf/7luueUWvf/972ejZQn9wz/8gz760Y/q4osvVltbmz784Q/rYx/7mG644QZt2LBBb3jDG/SJT3xCU1NTkqRly5bpq1/9qi655JLAxsBntgTH6rmWQXGhPmNjYxoZGTnr75byM1skaWRkROPj40ty7dfiwpwCgAtYz+Eaeh5+6ItoY36CR01Lc7k2VrPzmS3xE/ljxBAt+/fv1x/8wR8s+PVXXHGF9u/fr7e97W2B3N+1R88AaekfJX355Ze1YsWKRV3jQgwNDeniiy++oO+NyuO1AAAAAOA6/vsMWLyo/BxxjNjiRP4YMUTLddddp7e85S369re/raNHj+rEiRN6+eWXNTw8rGKxqMbGRq1atUpXXnmlfud3fkfvec97wh4ygNdQXV0dyn1rampCuS8AAAAAAAAQtNgcI4ZoqKmp0W/8xm/oj/7oj/TII4/o6aef1osvvqjJyUnlcjm99NJLOnr0qO68884l3Wjp7u5WU1PTkl3fJZlMRrt27VImkwl7KJEUhfq0trbK8zzfX0H8nw319fVqbm4+6++ampqW9OesublZdXV1S3Lt1xKFOQUALB7rOVxDz8MPfRFtzE/wqGlpLtfGava592bCOoYd58+ZzZYzZ87ohRde0AsvvBD2UBCA/fv3s9AEpK6uTh/96EdDe+M76lyoTyKR0Dve8Y6z/m58fHxJf87e+c53KpFILMm1X4sLcwoALmA9h2voefihL6KN+QkeNS3N5dpYzT733syyZcvCHgoWyJnNlmuuuUarVq3Sm970prCHggCk02kVCoWwh2FCMplUa2urkklOFfTjSn2uuOKKs/5cKBSW9Ofs5+9XTq7MKQBYx3oO19Dz8ENfRBvzEzxqWprLtbGafe69mcrKyrCHggVyZrNF0vyxO4i/LVu2qLa2NuxhmDAxMaGHH35YExMTYQ8lklypz3XXXXfWn2tra5f05+zn73c+BgYG9JnPfKbk1z/ykY9o586dGhwc9P26K3MKANaxnsM19Dz80BfRxvwEj5qW5nJtrGafe29mamoq7KFggZzabIEdmUxGxWIx7GGYUFFRoaamJlVUsBz4caU+bW1tuvrqq+f/XCwWl+znrKOjQ2vWrDnv7zt48KA6Ojq0du1a3X333SVf961vfUuf/vSn1dbWpo6ODj3++ONnfd2VOQUA61jP4Rp6Hn7oi2hjfoJHTUtzuTZWs8+9N2Mtl2UJz5FHPd7+9rfr+PHjSiQSmp2dDXs4uEDPPPPMWW/SDg4O6vLLLw9xRIAdBw8e1ObNm8tyn40bNy749cPDw7r55pv10EMPXfA9u7q6dNddd+miiy664GsAAAAAAF4tnU5r1apVvl87efKkWltbyzsgIIai8nMU9Dhcey+XbTHEUnt7u6qrq8Mehgn5fF59fX3K5/NhDyWSXKrPpk2b5o/3qq6uXpKfs66urvPaaOnv79fatWsXtdEiSQ8++KDWrl2rgYEBp+YUACxjPYdr6Hn4oS+ijfkJHjUtzeXaWM0+997MzMxM2EPBAkXuU4Pe+973Lsl1f/CDHyzJdRGOzs5O/fCHPwx7GCbkcjn19PToTW96ExtYPlyrz2c/+1n19vZqfHx8/ucsqH9ZWblype66664Fv76/v1+dnZ0aGRkJ5P6nT5/WunXr9Nd//df6zne+48ycAoBVrv0zGqDn4Ye+iDbmJ3jUtDSXa2M1eyqVUmdnp7lNJMsid4xYRUWFEonEklzb8zyOEYs51x49A8IwMDCgdevWBbbJIUnNzc3q7e1VW1vbgl4/PDystWvX6vTp04GNYc7KlSvV39/PkWIAAAAAEICoHH8ExFlUfo44RmxxInuMmOd5gf+CHalUask25VzjeZ5yuRw/IyW4WJ+2tjb19PSotbU1kJ+zlStXntdGiyTdfPPNS7LRIkk//vGPtX37dqfmFAAscvGf0XAbPQ8/9EW0MT/Bo6aluVwbq9kTiYRSqZS5XJZF7hixqqoqFQoFJRIJ3XLLLWpqagrkuvv27dNLL70UyLUQvh07dujOO+8MexgmjI6Oau/evfrEJz4R2M+bJa7W541vfKO2bt2qH/7wh/pf/+t/XfB1LuSD6Q8ePLjoz2g5l8bGRr35zW/WV77yFX3oQx9asvsAAJaWq/+MhrvoefihL6LNhfkZGBjQvn37Sn79Ix/5iDo6OtTV1XXW/91+oVyo6YVyuTZWszc2Nmr79u2amJgIeyhYoMgdI/Zrv/ZrOnbsmBKJhB5//HF94AMfCOS6b3/723X8+HGOEYu5uUfPWlpaNDQ0pOPHj5t+9KwcZmdnNTQ0pBUrVqiysjLs4USOq/X52dyHDh3Snj17dPjw4QV/f0dHh2677TZt3LjxvO/d0dGhI0eOnPf3LVRlZaVWrFiht771rerp6Vmy+wAAlpar/4yGu+h5+KEvos3y/Bw8eFC7d+8+r/92u/rqq7Vjx44L+u/EOZZrulgu18ZCdr/ju+bev/i7v/s7XXbZZaGNYw7HiL22yB0j9mu/9mvzv/+Hf/iHEEeCKDtz5gybZgGprKxUS0tLbP9htNRcrc/P5t60aZN6e3s1MDCgm266qeT3XHXVVdq5c6cGBgbU29t7Qf8CPTAwsKQbLdIr/xJ25swZ9fb2anBwcEnvBQBYOq7+Mxruoufhh76INovzMzw8rK6uLm3evPm8/9vtyJEj2rRpk66//noNDw9f0P0t1jQoLtfGava59y+s5bIscpst73rXu+Z/z2YLStm6davq6urCHoYJ4+Pj2r9/v8bHx8MeSiS5Wh+/3GvWrNGtt95a8ns+//nP6/bbb1/Uo+FLeXzYnLq6uvk1pBz3AwAsDVf/GQ130fPwQ19Em7X56e/v19q1axf931EPPvig1q5dq4GBgfP+Xms1DZLLtbGafe79i6mpqbCHggWK3GYLT7ZgIdLptAqFQtjDMCGZTKq1tVXJZOQ+wikSXK1PWLm/+93vLvk9CoXC/BpSjvsBAJaGq/+MhrvoefihL6LN0vz09/ers7NTp0+fDuR6p0+f1rp16857w8VSTYPmcm2sZp97/4InW+Ijcp/ZUiwW1dDQoMnJSSUSCf3oRz/SpZdeuujrbty4Uc8995ykV86XQzy5ds4fEDVBn935szzP00UXXaSRkZELvsb5am5u1vDwsBKJRNnuCQAAAABxMjw8rLVr1wa20fKzVq5cqf7+fl100UWBXxuIk6V8vyXMcbj2Xm7knmypqKjQF77wBd1///267777VF1dHch1H3/8cZ08eZKNFiOuvPJK1dTUhD0ME6anp3X06FFNT0+HPZRIcrU+YeQeGxsry0ZLTU3N/BoyMjJi7jFjAHCFq/+MhrvoefihL6LNyvzcfPPNS7LRIr3yhMstt9yy4NdbqelScLk2VrPPvX+Rz+fDHgoWKHKbLZL0wQ9+UB/96Ef10Y9+VK9//evDHg4iqL29PbCNONfl83n19fWxcJfgan3CyF2ue1VXV5+1hlj7lzEAcIWr/4yGu+h5+KEvos3C/Bw8eHDJP+vywQcf1MGDBxf0Wgs1XSou18Zq9rn3L/gohfiI3DFiwLm49ugZEDVL+VhrNptVY2PjBX//Yu5bX19f9vsCAAAAQNR1dHToyJEjZblPb2/vkt8HiKooHCM2MDCgffv26e677/b9+lVXXaWOjg51dXWd9f7subj2Xm4kn2wBXktTU5MqKmjfIBSLRWUyGRWLxbCHEkmu1ieM3PX19Wpubl7y+1RUVMyvIc3Nzf8/e3cf3dR15ov/K9vYAvymOmQYTZuIvpLaUh1oKVPGsqfNZAyiq7mddhoLpiFt55bQC2HacqFe965JuoahQOcOLzOEtF0pdLBJm2ZKUkQ9yaRj4aGltBBHkilpk7GaZFzSRJFt+UW2ZZ/fH/zs4iCBZB2ds8/e389aXgss6eznefb2ln22zj4oLy8veJtERKQ/Vd+jSV0c85QOx4XYrN4/4XDYkIUWADh9+jQikcgNn2f1mhaSyrWRNffp8xeFzisQCMDr9cLj8WRcaAGAM2fOYNeuXXC73fB6vTh16lRB47Iinq0mS9q6dSsqKyvNDkMKg4OD2L9/PwYHB80ORUiq1seMvG02G5YtW1bwdiorK2fmkOXLl8NmsxW8TSIi0p+q79GkLo55SofjQmxW759Cbx82l/asXtNCUrk2suY+ff5iZGSkIMePxWLw+/1Yu3ZtzgurXV1d8Pl8WLduHWKxWEHisyJuI0aWMn3pWXV1NQYHBxEKhaS+9MwIU1NTGBwcRGVlJa8WSkPV+mTKu9CXtba2tmLXrl15HeNGioqKUFlZicHBQezYsQM7d+4saHtERFQYqr5Hk7o45ikdjguxWb1/7rjjDjzzzDOGtvf0009f9zlWr2khqVwbGXJPd75l+vzF+fPn8fa3v13X9kKhEFavXo2+vr68j+V0OtHR0QG3233NY9xGzER6dG6ufvvb3xreJuVPxksDzXL1lkp0LVXrY1beLS0tBW/j6suLjWiPiIgKQ9X3aFIXxzylw3EhNiv3j6ZpuHDhgqFtnj9/Hjf6TLiVahqNRmGz2dJ+RaNR3duzUm30Jmvu0+cv9M4rFAqhqalJt3PxfX19aGxsRDgc1uV4VibUCHz3u9+N//N//g/i8XjB24rH42htbcW73/3ugrdF+tu4cSNvaK2TRCKBw4cPI5FImB2KkFStj1l5u91uNDQ0FLSNiooKbNy4EXfccUfWN3QjIiLxqPoeTerimKd0OC7EZuX+SSQShpyfu1o8HsfQ0NB1n2PlmhaayrWRNffp8xd6biMWi8WwevVq3X++4/E4mpubld9STKjFlpGREezatQu33norvvzlL+PFF1/UvY0XX3wRX/ziF3Hrrbdi9+7dBdvzjgqru7sb4+PjZochhdLSUtTX16O0tNTsUISkan3MzHv79u0FPf74+Di6u7uxZcuWgrZDRESFpep7NKmLY57S4bgQm5X7x6xzLmNjY9d93Mo1LTSVayNr7tPnL0pKSnQ75ubNmwu2u1RfX5/y51qEumfL1q1bcejQIaRSqZnL6rxeLz71qU/hrrvuwh/8wR/M6bivvvoqTpw4ge9+97sIBoMArlwOWVJSgv/1v/4X/t//+396pkEFpNo+f0Sq8vv9Bb0Zo9/vR1tbW8GOT0REREREZGWDg4OoqqoypV1ZdjIp9D1PSS5GjJdAIIC1a9fmfZwbOXnyJHw+HwD1zuUKdWXLvn37cOHCBTQ3N0PTNExNTSEYDGLTpk1wOp2ora3Fxo0bcejQIfz4xz/Gr371K8RiMYyOjmJkZASxWAzPP/88nnnmGRw6dAif//znUVtbC6fTiU2bNiEYDELTNGiahtWrV+PZZ5/lQotFNTU1wW63mx2GFJLJJDo7O5FMJs0ORUiq1sfsvA8ePAin01mQY7tcLqxbt065PiUiko3Z71VERuOYp3Q4LsRm5f6pqKiAw+EwtE2Hw4Hy8vLrPsfKNS00lWsja+52ux1NTU26XWm2e/duXY5zI3v27DGkHREJtdgCAHV1dTh16hS6urpmVsCmF0guXbqEb37zm9i8eTP+7M/+DLfddhtuvvlmlJeXo6KiAjfffDPe+9734s4778TmzZvxrW99C5cuXZp5PQCsXbsWZ86cQSAQkHoVTXYul0vXS+hUlkqlEI1GkUqlzA5FSKrWx+y8a2pq0NHRofsv9w6HA9/73vfwu9/9Trk+JSKSjdnvVURG45indDguxGbl/rHZbFi2bJmhbS5fvhw2m+26z7FyTQtN5drImntJSQlcLhcmJyfzPlY4HEZXV5cOUd3Y6dOnEYlEDGlLNEJtI5bOCy+8gEceeQTt7e146aWX5nSMW265BevWrcO9996Ld77znTpHSEZS7dIzItWFw2E0Nzfrsp+o0+lER0cH3G63DpERERERERHJrbW1Fbt27TK0vZ07dxrWXqFxGzHKRaHHi1k/z6qdyxXuypY3e+c734m///u/RzQaxXPPPYevf/3r+OQnP4n3vOc9abeRstvtWLp0Kf7yL/8SX//61/Hcc88hGo1i586dXGiRyOLFi1FcXGx2GFKYnJzE5cuXdVkll5Gq9RElb7fbjVAoBL/fn9dx/H4/QqEQ3G63MLkREVF+OJ+TajjmKR2OC7FZvX9aWlqEa8/qNS0klWsja+7FxcVYvHixLnmdO3dOh4jEbU8Uwi+2XM3tduOLX/wivvvd7+KXv/wlRkZGEI/H8corr+CVV15BPB7HyMgILl68iEcffRRf/OIX+QlmSW3cuFGaG6aZLZFI4OGHH0YikTA7FCGpWh+R8q6pqUFbWxtOnjwJr9eb02u9Xi8CgQDa2tpQU1MDQKzciIho7jifk2o45ikdjguxWb1/3G43GhoaDGnL6/XO+vR7JlavaSGpXBtZc6+oqMDGjRsxOjqa13E0TcOFCxd0iio758+fh+AbahWE8NuIEV1t+tIzu92OsbExhMNhqS89M4KmaRgbG0NZWdkN90ZVkar1ETnvSCSChx56CIcOHUr7+KpVq9DY2IiWlpa0v6yLnBsREWWP8zmphmOe0uG4EJsM/RMIBLB27VpD2lmzZs0Nn2elmhq9jZiVaqM3GXJPN15sNhvKyspw8eLFjGMpG4ODg6iqqso3xDm1+9JLL3EbMSLRJZNJJVdHC8Fms8Fut1v2zajQVK2PyHnX1dVh27ZtGR8/duwYdu7cmfFTUSLnRkRE2eN8TqrhmKd0OC7EJkP/+Hy+gm8n5vf7s1poAeSoaaGoXBtZc9c0DclkMu+8xsfHdYooN2NjY6a0ayYutpAlbd26FZWVlWaHIYXBwUHs27cPg4ODZociJFXrI3PeMudGRKQSzuekGo55SofjQmyy9M/BgwfhdDoLcmyn04kDBw5k/XxZaloIKtdG1twrKyuxdetWDA8P53Wc0tJSnSLKTVlZmSntmomLLWRJnZ2dSCaTZochBbvdjqamJtjtdrNDEZKq9ZE5b5lzIyJSCedzUg3HPKXDcSE2WfqnpqYGHR0dcDgcuh7X4XCgo6Nj5v6a2ZClpoWgcm1kzT2ZTKKzszPvxZKKigrdf35vxOFwoLy83NA2RcDFFrKk7u5u0y6Bk01paSnq6+tNW+UWnar1kTlvmXMjIlIJ53NSDcc8pcNxITaZ+sftdiMYDOp2hYvT6UQwGITb7c7pdTLVVG8q10bW3MfHx9Hd3Y158+bldRybzYZly5bpFFV2li9fLt22btngYgtZUnNzM+bPn292GFIYHR1FR0cHRkdHzQ5FSKrWR+a89c4tGo3CZrOl/YpGo7q0QURE15L5vYooHY55SofjQmyy9Y/b7UYoFILf78/rOH6/H6FQKOeFFkC+mupJ5drImvv8+fPR3Nysy71PVqxYoUNE4rYnCi62kCVVV1ejqIjDVw9TU1Po7+/H1NSU2aEISdX6yJy3zLkREamE8zmphmOe0uG4EJuM/VNTU4O2tjacPHkSXq83p9d6vV4EAgG0tbXltHXY1WSsqV5Uro2suRcVFaG6ulqXvFpaWnSISNz2RGHTNE0zOwiibPX09KCurm7m/5FIBLW1tSZGRERmiEajWLJkSdrHent74XK5GIvJsRARERERkfwikQgeeughHDp0KO3jq1atQmNjI1paWmadz1EB/z6jXBgxXrxeL7q6uvI+TjbtBINBAOqdy+WlAWRJLpcLJSUlZochhVQqhWg0ilQqZXYoQlK1PjLnLXNuREQq4XxOquGYp3Q4LsSmQv/U1dVh27ZtGR8/duwYdu7cqdtCiwo1nSuVayNr7iUlJXC5XJicnNTleNu3b9flOKK0IyIutpAlbdiwAeXl5WaHIYWhoSEcPXoUQ0NDZociJFXrI3PeMudGRKQSzuekGo55SofjQmzsH/2xppmpXBtZcy8vL8eGDRt0uxeNz+cr+PZefr8fa9asKWgbIuM2YmQpql16RkTpiXQ5NmMhIiIiIiKV8e+Q9FgXyoVR4yUWi8Hj8aCvr0+X413N6XQiFArNuieTaudyeWULERFZjsvlgqZpab/4CysRERERERER0bVqamrQ0dEBh8Oh63EdDgc6OjpmLbSoiIstZEk7duxAVVWV2WFIYWBgAF/72tcwMDBgdihCUrU+Muctc25ERCrhfE6q4ZindDguxMb+0R9rmpnKtZE196qqKuzYsUP37dHcbjeCwSCcTqcux3M6nQgGg3C73bocz8q42EKWdOLECYyMjJgdhhQWLFiAu+66CwsWLDA7FCGpWh+Z85Y5NyIilXA+J9VwzFM6HBdiY//ojzXNTOXayJr7yMgITpw4Abvdrvux3W43QqEQ/H5/Xsfx+/0IhUJcaPn/cbGFLOnSpUuYmJgwOwwpzJs3D0uXLsW8efPMDkVIqtZH5rxlzo2ISCWcz0k1HPOUDseF2Ng/+mNNM1O5NrLmPjExgUuXLqGkpKQgx6+pqUFbWxtOnjwJr9eb02u9Xi8CgQDa2tqU3zrsaoXpqQI4ffp0Xq8vKipCZWUlqqurccstt+gUFZnlrrvuwlNPPWV2GFIYGRnBU089hTvvvFO6TwDoQdX6yJy3zLkREamE8zmphmOe0uG4EBv7R3+saWYq10bW3BcsWIA777wTyWSyoO34fD74fD5EIhE89NBDOHToUNrnrVq1Co2NjWhpaZl103v6PcsstjQ1NcFms+lyrIULF2LZsmVYt24d/H4/Fi5cqMtxiYhILeFwGIcPH874+Pr16+H1euH3+/mLCBEREREREREJq66uDtu2bcu42HLs2DG4XC5jg7IYm6ZpmtlBZKOoSN8dz6YXbt761rfi29/+Nj784Q/renwqjJ6enlknLCORCGpra02MiIhUFAgEsHv3bnR1dWX9moaGBuzYsQNr1qwpSEzTCz/X+wQKF36IiIiIiEhv0WgUS5YsSftYb2+vsidnWRfKhSjjRe84VDuXa5l7tni9XjQ2NqKxsRFlZWWzrnK56aabUF9fjz/5kz/B7bffjkWLFs08ZrPZYLfb0djYiA996ENYunQpSkpKoGkaNE3Dyy+/jDVr1uA//uM/zEiL5kjGfRjNMr3/I++Bk56q9ZE573xyi8Vi8Pv9WLt2bU4LLQDQ1dUFn8+HdevWIRaL5dx2JoFAAF6vFx6PJ+NCCwCcOXMGu3btgtvthtfrxalTp3SLgYjIDDK/VxGlwzFP6XBciI39oz/WNDOVayNr7tP3okmlUmaHQlmyzGJLZ2cnfvjDH2LRokUYGxtDRUUFHnzwQbz44ov43e9+hwsXLuD06dM4f/48Xn31VfT29uKrX/0qKisrMTY2hptvvhn/9m//hosXL2JgYADf+c53cOuttwIAxsfH8elPfxpjY2MmZ0nZuuuuu6Tag9FMIyMjOHHiBEZGRswORUiq1kfmvOeaWygUgsfjwfHjx/Nqv729HR6PB+FwOK/jiLjwQ0RkJJnfq4jS4ZindDguxMb+0R9rmpnKtZE19wULFuCuu+4q+D1bSD+W2UYMAD7+8Y/jiSeewDvf+U48/fTTWd3o/uWXX8Ydd9yBF154AXfddRcef/zxmcfi8Tj+5E/+BL/85S9hs9lw+PBh/PVf/3UhU6A8qXbpGRGJIRQKoampCfF4XLdjOhwOBINBuN3uOcWzevVq9PX15R2H0+lER0fHnOIgIiIiIiISZfsj0bAulAtRxgu3EcuPZa5sOXHiBE6cOAGbzYbvfe97WS20AMDb3vY2fO9735t1jGkOhwPf+MY3Zv7f0dGha8xERGR9sVgMq1ev1nWhBbiy4N/c3JzzlSXTCz96LLQAQF9fHxobG/O+0oaIiIiIiIiISGWWWWw5cuQIAOCDH/wg3ve+9+X02ve973344z/+Y2iaNnOcaatWrcI73/lOaJqGZ599VqdoqdAeeOABVFdXmx2GFPr7+/Hggw+iv7/f7FCEpGp9ZM4719w2b96s28LGm/X19WHLli1ZP1+0hR8iIjPJ/F5FlA7HPKXDcSE29o/+WNPMVK6NrLlXV1fjgQcewNDQkNmhUJYss9jy3HPPwWaz4bbbbpvT65cuXTpznDdbtmwZAOD111+fe4BkqCNHjnCi0Ul5eTnuuecelJeXmx2KkFStj8x555JbIBDI+x4tN9Le3o5AIJDVc0Va+CEiMpvM71VE6XDMUzocF2Jj/+iPNc1M5drImvvQ0BCOHDmC+fPnmx0KZckyiy2XL18GgDnfxH58fHzWca7mcDgAABMTE3OMjowWjUaRSqXMDkMKJSUlcLlcKCkpMTsUIalaH5nzziW33bt3GxARsGfPnhs+R7SFHyIis8n8XkWUDsc8pcNxITb2j/5Y08xUro2suadSKUSjURQXF5sdCmXJMostVVVVAICf/exnc3r92bNnZx3naqOjowCAmpqaOUZHRrv77ruxcOFCs8OQwvDwMB599FEMDw+bHYqQVK2PzHlnm1s4HEZXV5chMZ0+fRqRSOS6zxFp4YeISAQyv1cRpcMxT+lwXIiN/aM/1jQzlWsja+4LFy7E3XffPXPumsRnmcUWt9sNTdPw4osv4tFHH83ptY8++iheeOEF2Gw21NXVXfN4b28vAOCmm27SJVYqvP7+fkxNTZkdhhSKiopQXV2NoiLLTAeGUrU+MuedbW6Fvookl/ZEW/ghIhKBzO9VROlwzFM6HBdiY//ojzXNTOXayJr71NQU+vv7pctLZpbpqbvvvnvm35/97Gfx2GOPZfW6xx9/HJ/73Odm/t/S0jLr8bGxMTz77LOw2Wx4xzveoU+wVHAdHR1c1dXJ/Pnz0dzczP0fM1C1PjLnnW1u586dMyiiG7cn0sIPEZEoZH6vIkqHY57S4bgQG/tHf6xpZirXRtbcR0dH0dHRgbKyMrNDoSxZZrHl3nvvxe233w7gykC7++670dDQgIcffhjd3d2IxWIYHR1FLBbDc889h2984xtobGzEX/7lX2JkZAQ2mw319fW49957Zx335MmTMzdab2hoMDwvmpv6+nqUlpaaHYYUxsfH0d3dPXNfI5pN1frInHc2uWmahgsXLhgYFXD+/Hlompb2MZEWfoiIRCHzexVROhzzlA7HhdjYP/pjTTNTuTay5l5aWor6+nreZ9xCLLPYUlRUhCeffHLW1Sc/+clPsGnTJixfvhw333wzysvLcfPNN2PZsmW477778J//+Z8zz12yZAmeeOKJay67euyxx3Drrbfilltuwf/4H//DsHwoP01NTbDb7WaHIYVkMonOzk4kk0mzQxGSqvWROe9sckskEojH4wZGBcTj8ZnF/6uJtvBDRCQKmd+riNLhmKd0OC7Exv7RH2uamcq1kTV3u92OpqYm6RaRZGbTLHY25Y033sD999+Ptra2rF/j9/uxf/9+1NTUFDAyMkJPT8+s++5EIhHU1taaGBERyej111/HokWLDG/3tddeu+b+YYODg6iqqjI8lsHBQVRUVBjeLhERERERWUs0GsWSJUvSPtbb2wuXy2VsQIJgXSgXoowXveNQ7VyuZa5smfaWt7wF//Iv/4KLFy/iy1/+Mt7//vdfs53UvHnzsHz5cnzpS19CT08Pjh07xoUWydjtdthsNrPDkIKmaUgmk/wUewaq1kfmvLPJzaxtCtPtw2rWJ1jGxsZMaZeIKFsyv1cRpcMxT+lwXIiN/aM/1jQzlWsja+42mw12u126vGRmucWWaUuXLsWePXtw7tw5JJNJxONxvPzyy4jH4xgbG8PPf/5z7N27F7fddpvZoVIB7Nixw5RPestoYGAAu3fvxsDAgNmhCEnV+sicdza5VVRUwOFwGBgV4HA4UF5efs33RVr4ISISiczvVUTpcMxTOhwXYmP/6I81zUzl2siae1VVFXbs2IHh4WGzQ6EsWXax5c2qqqrwR3/0RzwBr4jDhw8jkUiYHYYUKioq8PnPf57bBWWgan1kzjub3Gw2G5YtW2ZgVMDy5cvTXrEn0sIPEZFIZH6vIkqHY57S4bgQG/tHfzeqaTQahc1mS/sVjUaNDdZgKo83WXNPJBI4fPgw5s+fb3YolCVpFltILZcvX8bk5KTZYUihuLgYixcvRnFxsdmhCEnV+sicd7a5rVixwqCIrt+eSAs/REQikfm9iigdjnlKh+NCbOwf/bGmmalcG1lzn5ycxOXLl6XLS2ZcbCFL2rBhAz91rZOhoSEcOXIEQ0NDZociJFXrI3Pe2ebW0tJiUEQ3bk+UhR8iIpHI/F5FlA7HPKXDcSE29o/+WNPMVK6NrLmXl5djw4YNGB0dNTsUylKJ2QHkY2hoCM899xxef/11JBIJTE1NZfW6T3/60wWOjAotGo0ilUqZHYYUSkpK4HK5UFJi6emgYFStj8x5Z5ub2+1GQ0MDurq6Ch6T1+tFXV1dxsdbWlqwa9eugsdxdXtERKKT+b2KKB2OeUqH40Js7B/9saaZqVwbWXNPpVKIRqO8ssVCbJqmaWYHkav29nYcPHgQP//5z5Fr+DabjSfpLaynp2fWCclIJILa2loTIyIimQUCAaxdu9aQdtasWXPd53i9XsMWfoLBYMHbISIiIiIiOUSjUSxZsiTtY729vXC5XIzF5FhIfKKMF73jUO1crqW2ERsdHcVHP/pR/NVf/RXOnTuHqakpaJqW9gvAdR8ja1u5ciXKysrMDkMKY2NjOHv2LMbGxswORUiq1kfmvHPJzefzFfwqD7/ff8OFFgDYvn17QeMwuh0ionzJ/F5FlA7HPKXDcSE29o/+WNPMVK6NrLmXlZVh5cqVGB8fNzsUypKlFls++9nPIhAIQNM0lJWVYfXq1Vi6dCmAK1es3HPPPfj4xz+O5cuXz1w2ZrPZUF5ejk9/+tO45557uIWYJOrr61FaWmp2GFIYHx9Hd3c3J+4MVK2PzHnnmtvBgwfhdDoLEovT6cSBAweyeq5ICz9ERCKQ+b2KKB2OeUqH40Js7B/9saaZqVwbWXMvLS1FfX09d2myEMtsI/azn/0Mf/zHfwybzYZ3vvOdeOqpp3Drrbdi8+bN+Od//mfYbDZMTk7OPH9wcBDf/OY38dWvfhVDQ0P48z//c3z3u99FRUWFiVlQvlS79IyIxBAOh9HY2Ih4PK7bMR0OB4LBINxud9avicVi8Hg86Ovr0y2OaU6nE6FQCDU1Nbofm4iIiIiI5CXK9keMhaxMlPHCbcTyY5krW44ePTrz70ceeQS33nrrdZ9fWVmJL33pS/jFL36BP/zDP8S//du/4d577y10mGSQ6upqFBVZZvgKbWpqCv39/ZiamjI7FCGpWh+Z855Lbm63G8FgULcrXJxOZ84LLQBQU1ODjo4OOBwOXeKY5nA40NHRwYUWIrIUmd+riNLhmKd0OC7Exv7RH2uamcq1kTX3oqIiVFdXS5eXzCxztvo///M/AQDveMc7sGrVqqxf9653vQtHjx6Fpmn4wQ9+gEAgUKgQyUBbt25FZWWl2WFIYXBwEPv378fg4KDZoQhJ1frInPdcc3O73QiFQvD7/Xm17/f7EQqFcl5ouToOERZ+iIjMJvN7FVE6HPOUDseF2Ng/+mNNM1O5NrLmXllZia1bt2JkZMTsUChLllls6evrg81mw+233z7r+zabbebfmfbl+8hHPjJzedKxY8cKFyQZZt++fdJNoGaprKzE/fffz8WrDFStj8x555NbTU0N2tracPLkSXi93pxe6/V6EQgE0NbWlvcVJKIs/BARmUnm9yqidDjmKR2OC7Gxf/THmmamcm1kzX1wcBD79u3DggULzA6FsmSZxZbpE+tvPkE1f/78a56TzrJly6BpGs6fP1+YAMlQMl4aaJbpSxK5LVt6qtZH5rz1yM3n8yEYDCIcDmPTpk0Zn7dq1Sq0trYiHA4jGAzqevN5URZ+iIjMIvN7FVE6HPOUDseF2Ng/+rNKTcPhMPbu3Zvx8fXr16O1tRWRSES3Nq1Sm0KQNffp7dFky0tmlump6RW8iYmJWd+vrq6e+fdvfvObjK/XNA0A8Nvf/lb/4MhwGzduREVFhdlhSCGRSODw4cNIJBJmhyIkVesjc9565lZXV4dt27ZlfPzYsWPYuXPnrJvB6U2EhR8iIjPI/F5FlA7HPKXDcSE29o/+RK9pIBCA1+uFx+PBoUOHMj7vzJkz2LVrF9xuN7xeL06dOpV326LXZlo0GoXNZkv7FY1G53RMq+Seq4qKCmzcuJHbiFmIZRZb3va2twEAYrHYrO+/+93vnvn3T3/604yvv3jxYmECI1N0d3dn3DaOclNaWor6+nqUlpaaHYqQVK2PzHnLmpsICz9EREaSdT4nyoRjntLhuBAb+0d/otY0FovB7/dj7dq16Orqyum1XV1d8Pl8WLdu3TXnPXMham2MIGvu4+Pj6O7uRklJidmhUJYss9jidruhaRqef/75Wd9fsWLFzH1bvvGNbyCVSl3z2qeeegoXLlyAzWbD29/+dkPipcI6e/YsxsbGzA5DCmVlZVi5ciXKysrMDkVIqtZH5rxlzo2ISCWcz0k1HPOUDseF2Ng/+hOxpqFQCB6PB8ePH8/rOO3t7fB4PAiHw3N6vYi1MYqsuY+NjeHs2bPSLSLJzDKLLdP70T///PN44403Zr7/tre9DX/yJ38CTdPQ09ODj33sY3j22WcxMTGBgYEB/Mu//AvWrVs38/yPfvSjhsdO+mtqaoLdbjc7DCkkk0l0dnYimUyaHYqQVK2PzHnLnBsRkUo4n5NqOOYpHY4LsanSPy6XC5qmpf1yuVy6tiVaTUOhEJqamtDX16fL8fr6+tDY2DinBRfRamMkWXO32+1oamri7j4WYpnFljVr1sBms0HTNJw8eXLWY1/72tdmrm7p6OjA+9//ftjtdrzlLW/Bhg0bZhZnbrrpJmzdutXo0KkAXC4XL6HTSSqVQjQaTXtVGKlbH5nzljk3IiKVcD4n1XDMUzocF2Jj/+hPpJrGYjGsXr0a8Xhc1+PG43E0NzfnvKWYSLUxmqy5l5SUwOVyYXJy0uxQKEs2bfrO8Rawbds2vPLKK3j/+9+PL33pS7Mee+SRR7Bx48aMP1SLFi3CE088gZUrVxoRKhVIT0/PrPsNRCIR1NbWmhgREakuGo1iyZIlaR/r7e3V/ZNcVomFiIiIiIjIaEb+TeT3+/PeOuxGx29rayvY8c3Cv1vTE6Uueseh2rlcy1zZAgB79+7F8ePHr1loAYDPfOYzeO655/C5z30Ob3/722G327FgwQLU1dXhK1/5CiKRCBdaJLJ48WIUFxebHYYUJicncfnyZa6SZ6BqfWTOW+bciIhUwvmcVMMxT+lwXIiN/aM/UWoaCAQKutACXLmHSyAQyPr5otTGDLLmXlxcjMWLF0uXl8wstdhyI7fddhu+8Y1v4IUXXsDIyAiGhoYQCoWwc+dOLFq0yOzwSEcbN25ERUWF2WFIIZFI4OGHH0YikTA7FCGpWh+Z85Y5NyIilXA+J9VwzFM6HBdiY//oT5Sa7t6925B29uzZk/VzRamNGWTNvaKiAhs3bsTo6KjZoVCWLLWNGNH0pWd2ux1jY2MIh8NSX3pmBE3TMDY2hrKyspl7H9HvqVofmfPWOzdRLvUVLRYiokKT+b2KKB2OeUqH40Js7B/93aimRvxNFA6H4fF48j5OLu1dvQ1TJlYZb4XoI6vkfj3p6mKz2VBWVoaLFy9mrJkRcUzjNmI3JtWVLddz8uRJfOc738F3vvMds0MhHSSTSXCdUB82mw12u92yb0aFpmp9ZM5b5tyIiFTC+ZxUwzFP6XBciI39oz8Ralro7cPm2p4ItTGLrLlrmoZkMildXjJTZrHl//7f/4t7770X9957r9mhkA62bt2KyspKs8OQwuDgIPbt24fBwUGzQxGSqvWROW+9c3O5XNA0Le0XryQhIiocmd+riNLhmKd0OC7Exv7Rnwg1PXfunJDtiVAbs8iae2VlJbZu3Yrh4WGzQ6EsKbPYAoBXQkiks7MTyWTS7DCkYLfb0dTUBLvdbnYoQlK1PjLnLXNuXPghIpXIPJ8TpcMxT+lwXIiN/aM/s2uqaRouXLhgaJvnz5/P6pym2bUxk6y5J5NJdHZ2orS01OxQKEslZgdANBfd3d1mhyCN0tJS1NfXmx2GsFStj8x5y5wbEZFKOJ+TajjmKR2OC7Gxf/Rndk0TiQTi8bihbcbjcQwNDaGiouK6zzO7NmaSNffx8XF0d3dj3rx5ZodCWVLqyhaSR3NzM+bPn292GFIYHR1FR0cHRkdHzQ5FSKrWR+a8Zc6NiEglnM9JNRzzlA7HhdjYP/ozu6bj4+OmtDs2NnbD55hdGzPJmvv8+fPR3NycVf+TGLjYQpZUXV2NoiIOXz1MTU2hv78fU1NTZociJFXrI3PeMudGRKQSzuekGo55SofjQmzsH/2ZXVOztnMqKyu74XPMro2ZZM29qKgI1dXV0uUlM5umyI1Mbr/9djz33HOw2WyYnJw0Oxyao56eHtTV1c38PxKJoLa21sSIiIgonWg0iiVLlqR9rLe3l/eQISIiIiIi3RX67xBN01BTU2PoVmIOhwOxWAw2m82wNguJfyumJ0pd9I5DtXO5vDSALMnlcqGkhLcc0kMqlUI0GkUqlTI7FCGpWh+Z85Y5NyIilXA+J9VwzFM6HBdiY//oz+ya2mw2LFu2zNA2ly9fntVCi9m1MZOsuZeUlMDlcvHCAQvhYgtZ0oYNG1BeXm52GFIYGhrC0aNHMTQ0ZHYoQlK1PjLnLXNuREQq4XxOquGYp3Q4LsTG/tGfCDVdsWKFkO2JUBuzyJp7eXk5NmzYIN29aGTGbcTIUlS79IyIyKpEuQSaiIiIiIjUYcTfIeFwGB6PJ+/j5NLe1efCrI5/K6YnSl24jVh+eGULERERERERERERURbcbjcaGhoMacvr9Uq10EIkOy62kCXt2LEDVVVVZochhYGBAXzta1/DwMCA2aEISdX6yJy3zLkREamE8zmphmOe0uG4EBv7R3+i1HT79u3CtSNKbcxg9dzD4TD27t17zferqqqwY8cOfO5zn0NraysikYgJ0VEuhLvD+Fe/+tWCHPfy5csFOS6Z48SJExgZGTE7DCksWLAAd911FxYsWGB2KEJStT4y5y1zbkREKuF8TqrhmKd0OC7Exv7Rnyg19fl8aGlpwfHjxwvWht/vx5o1a7J+vii1MYNVcw8EAti9eze6urrSPj4yMoITJ07gxRdfxDPPPINdu3ahoaEBO3bsyGlskHGEu2dLUVERbDZbQY6taRrv2WJxqu3zR0RkVaLsN0tEREREROow8u+QWCwGj8eDvr4+3Y45zel0IhQKoaamRvdjm41/K14ZO5s3b85rsc7v9+PAgQO6jxHesyU/Qm4jpmlaQb5IHlZcrRbV9Co5rxRKT9X6yJy3zLkREamE8zmphmOe0uG4EBv7R38i1bSmpgYdHR1wOBy6HtfhcKCjoyPnk+gi1cZoVso9FArB4/FktdByvSt22tvb4fF4EA6HCxEmzZFw24h5vd6CXdlCREREhRcOh3H48OGMj69fvx5erxd+v583eyQiIiKiG+In4UlUbrcbwWAQzc3Nulzh4nQ60dHRAbfbrUN0JJpQKISmpibE43FdjtfX14fGxkYEg0GOGUEIt40Y0fWodukZEZGV3Gi/2XS43ywRERER3QgXWyhbZo2VWCyGLVu2oL29fc7HKNS2UKJR9efZKtvOcRux/Ai5jRjRjSxduhTz5s0zOwwpTExM4NKlS5iYmDA7FCGpWh+Z85Y5N7PEYjH4/X6sXbs2p4UWAOjq6oLP58O6desQi8UKFCERyYjzOamGY57S4bgQG/tHf6LWtKamBm1tbTh58iS8Xm9Or/V6vQgEAmhra8vrZLmotTGCFXLfvHlzzgst8+bNy+ocaF9fH7Zs2ZJPeKQTLraQJfGeLfqx0r6WZlC1PjLnLXNuZshlv9nr4X6zRJQrzuekGo55SofjQmzsH/2JXlOfz4dgMIhwOIxNmzZlfN6qVavQ2tqKcDiMYDCoy5X+otemkETPPRAIzOlv5uvds+XN2tvbEQgE5hIe6YjbiJGlqHbpGRGRyPTebxa4cjNI7jdLRERERFdTddshyp1IY0WkWESiYl28Xm/Ou0DMtZ1gMJjXMbiNWH54ZQsRERHlLBaLYfXq1boutABAPB5Hc3MztxQjIiIiIiIiywuHw4YstADA6dOnEYlEDGmL0uNiC1nSAw88gOrqarPDkEJ/fz8efPBB9Pf3mx2KkFStj8x5y5ybkeay32y2uN8sEWWD8zmphmOe0uG4EBv7R3+saWYq10bk3PPZcru6ujrnc6D5bvFN+eFiC1nSkSNHMDQ0ZHYYUigvL8c999yD8vJys0MRkqr1kTlvmXMzylz3m80F95slohvhfE6q4ZindDguxMb+0R9rmpnKtRE593Pnzs35tUNDQzmfA82nPcofF1vIkqLRKFKplNlhSKGkpAQulwslJSVmhyIkVesjc94y52aU3bt3G9LOnj17DGmHiKyJ8zmphmOe0uG4EBv7R3+saWYq10bU3DVNw4ULF+b8+lQqlfM50PPnz4O3aDcPF1vIku6++24sXLjQ7DCkMDw8jEcffRTDw8NmhyIkVesjc94y52YE7jdLRKLgfE6q4ZindDguxMb+0d/1ahoOh7F3796Mr12/fj1aW1ul/RtD5fEmau6JRCKv+5wuXLgw53Og8XicuwGZiIstZEn9/f2YmpoyOwwpFBUVobq6GkVFnA7SUbU+Muctc25GMHr/V+43S0SZcD4n1XDMUzocF2Jj/+gvXU0DgQC8Xi88Hg8OHTqU8bVnzpzBrl274Ha74fV6cerUKSNCNozK403U3MfHx/N6/dTU1JzOgY6NjeXVLs2dTeN1RWQhPT09qKurm/l/JBJBbW2tiREREanljjvuwDPPPGNoe08//bRh7RERERGReKLRKJYsWZL2sd7eXrhcLmMDIiHEYjFs3rw5rw9o+f1+HDhwADU1NTpGdgXHbXoq1WVwcBBVVVWmtFtRUTGn1+rdP6qdyxVruY8oS/X19SgtLTU7DCmMj4+ju7s779V2WalaH5nzljm3Qst3v9m54H6zRJQJ53NSDcc8pcNxITb2j/6ma3rhwgV4PJ68r4Rvb2+Hx+NBOBzWKULzqDzeRM29oqICDodjzq8vLS3N+Ryow+FAeXn5nNuk/HCxhSypqakJdrvd7DCkkEwm0dnZiWQyaXYoQlK1PjLnLXNuhZbvfrNzwf1miSgTzuekGo55SofjQmzsH/0lk0k8/fTTuOuuu9DX16fLMfv6+tDY2Gj5BReVx5uoudtsNixbtmzOr7fb7TmfA12+fDlsNtuc26T8cBsxshTVLj0jIhLJ66+/jkWLFhne7muvvYabbrrJ8HaJiIiISAwqbTtE1xeLxeDxeHRbaLma0+lEKBTSbUsxjtv0VKtLa2srdu3aZWh7O3funPPruY1YfnhlC1mS3W7nKq1ONE1DMpnkNj0ZqFofmfOWObdCM2v7xrKyMlPaJSKxcT4n1XDMUzocF2Jj/+hv8+bNeOONNwpyTqivrw9btmzR/bhGUXm8iZx7S0vLnF9rs9lyPgeaT3uUP8sutiSTSZw4cQJf/vKX8alPfQp33nknPvKRj1zzPE3TMDIygpGREUxMTJgQKRXCjh07TLnBlIwGBgawe/duDAwMmB2KkFStj8x5y5xboeW73+xccL9ZIsqE8zmphmOe0uG4EBv7R1+BQAA/+tGPCnpOqL29HYFAoCDHLjSVx5vIubvdbjQ0NMzptVVVVTmNd6/XO+sqEjKeJbcR+/rXv449e/YgFovNfE/TNNhsNkxOTs56biwWwy233IJkMokPfvCD+MlPfmJ0uKSj6UvPFi9ejNdeew3PPfec1JeeGWFychKvvfYaFi1ahOLiYrPDEY6q9ZE5b5lzM8Idd9yBZ555xtD2nn76acPaIyLr4HxOquGYp3RUGRdW3XZIlf4xitfrxU9+8hMsWrQIr7322jXnAPVsJxgM5n0co8etVcZbIeoieu6BQABr167N+XXFxcU5jfdAIIA1a9bMJcQZ3EYsP5a6smViYgI+nw/bt29HLBaDpmkzX5nU1NTgnnvugaZp+NnPfoYXXnjBwIipUC5fvlywN1XVFBcXY/HixUK+GYlA1frInLfMuRlhxYoVUrdHRNbB+ZxUwzFP6XBciI39o59wOIyuri5MTk4W/JzQ6dOnEYlECnb8QlF5vImeu8/nm9P2XrmMd7/fn/dCC+XPUost9913H370ox9B0zSUlZXh85//PL773e/iYx/72HVft379+pl/nzp1qtBhkgE2bNjAbWV0MjQ0hCNHjmBoaMjsUISkan1kzlvm3Ixg9P6v3G+WiDLhfE6q4ZindDguxMb+0c/x48cBAOXl5YacE5puz0pUHm9WyP3gwYNwOp05vSbb8e50OnHgwIF8wiOdWGax5fz58/j2t78Nm82Gt771rbhw4QIeeughfPKTn8Rb3/rW6772Qx/60Mzedl1dXUaESwUWjUaRSqXMDkMKJSUlcLlcKCkpMTsUIalaH5nzljk3I+Sz32yuuN8sEV0P53NSDcc8pcNxITb2j37OnTsHAEilUoacE5puz0pUHm9WyL2mpgYdHR053Qc1m/HucDjQ0dGBmpoaPcKkPFlmseXb3/72zHZh//Iv/4KlS5fm9Pr6+npomoZf/vKXhQiPDNbZ2YlkMml2GFKw2+1oamqC3W43OxQhqVofmfOWOTejbN++Xap2iMiaOJ+TajjmKR2OC7Gxf/ShaRouXLgAAEgmk4acEzp//vx1b1sgIpXHm1Vyd7vdCAaDWV/hcqPx7nQ6EQwG4Xa79QyT8mCZxZb/+I//AADU1dWhsbEx59dPX/3y3//937rGReZYuXIlysrKzA5DCmNjYzh79izGxsbMDkVIqtZH5rxlzs0oc91vNhfcb5aIboTzOamGY57S4bgQG/tHH4lEAvF4HABQVlZmyDmheDwu9JZU6ag83qyUu9vtRigUgt/vv+Fzrzfe/X4/QqEQF1oEY5nFlr6+PthsNtx+++1zev303nbDw8N6hkUmqa+vR2lpqdlhSGF8fBzd3d0YHx83OxQhqVofmfOWOTcjzWW/2Wxxv1kiygbnc1INxzylw3EhNvaPPq6uX2lpqWHnhKxw4v5qKo83q+VeU1ODtrY2nDx5El6vN+Pz0o13r9eLQCCAtrY2bh0mIJtmkWvi5s+fj/Hxcfz1X/81Dh8+POuxzZs345//+Z9hs9kwOTmZ9vV/9Vd/hba2NlRXV+ONN94wImQqgJ6enln790ciEdTW1poYERGRusLhMBobG2c+ZaYHh8PBy6CJiIiIaJZoNIolS5akfay3txcul8vYgMhQg4ODM/diNrrdioqKOb+e4zY91uVakUgEDz30EA4dOpT28VWrVqGxsREtLS0Fv6+p3v2j2rlcy1zZsmjRIgDA5cuX5/T6S5cuzToOWVt1dTWKiiwzfIU2NTWF/v5+TE1NmR2KkFStj8x5y5yb0XLdb/ZGuN8sEeWC8zmphmOe0uG4EBv7Rx8VFRUzNxUvKioy5JyQw+GY2SXHKlQeb1bPva6uDtu2bbvm+9Pj/Tvf+Q527txZ8IUWyp9lzlYvXboUmqbhpz/9acarVzJ5+eWX0d3dDZvNhg984AMFipCMtHXrVlRWVpodhhQGBwexf/9+DA4Omh2KkFStj8x5y5ybGXLZb/Z6uN8sEeWK8zmphmOe0uG4EBv7Rx82mw3Lli0DAFRWVhpyTmj58uWw2WwFbUNvKo83WXOfHu8jIyNmh0JZssxiS3NzMwDg9ddfx3e+852cXvt//+//nVmg+fM//3PdYyPj7du3T7oJ1CyVlZW4//77uXiVgar1kTlvmXMzS7b7zabD/WaJaK44n5NqOOYpHY4LsbF/9LNixQoAV06qG3FOaLo9K1F5vMma+/R4X7BggdmhUJYss9iyYcOGmf0Zv/jFL+IXv/hFVq/76le/iu985zuw2WxwOp24++67CxkmGcTKlwaKxqhLcK1K1frInLfMuZnN5/MhGAwiHA5j06ZNGZ+3atUqtLa2IhwOIxgMYs2aNQZGSUSy4HxOquGYp3Q4LsTG/tFPS0sLAOO2i5puz0pUHm+y5j493mXLS2aW6am3vOUt+Lu/+ztomobBwUE0NDTgy1/+Ms6fP4+xsbGZ5w0ODuL555/HI488gg984AN48MEHZx77x3/8R8ybN8+M8ElnGzduzOsmZfR7iUQChw8fRiKRMDsUIalaH5nzljk3UWTab3basWPHuN8sEeWN8zmphmOe0lFhXITDYezduzfj4+vXr0draysikYiBUWVHhf4xitvtRkNDAyoqKgp+Tsjr9VrybxWVx5usuU+Pd24jZh0lZgeQiy984Qv49a9/jQMHDmB8fBz/+I//iH/8x3+ceVzTtJkbZl39PeDKVmKf+MQnDI2XCqe7uxvj4+NmhyGF0tJS1NfXo7S01OxQhKRqfWTOW+bciIhUwvmcVMMxT+nIPC4CgQB2796Nrq6u6z7vzJkzOHPmDHbt2oWGhgbs2LFDmCunZe4fM2zfvh1/8Rd/UfBzQtu3by/YsQtJ5fEma+7j4+Po7u5GSYmlTuErzTJXtkzbt28fvvWtb6Gqqgqaps0spthsNthstpnvTX9VV1fj29/+Nh544AFzAyddnT17dtYVTTR3ZWVlWLlyJcrKyswORUiq1kfmvGXOjYhIJZzPSTUc85SOjOMiFovB7/dj7dq1N1xoebOuri74fD6sW7cOsVisQBFmT8b+MZPP58PHP/7xgp4T8vv9wizW5Url8SZr7mNjYzh79qx0i0gys9xiCwB85jOfwUsvvYR9+/bhzjvvRHl5+ayFl7KyMjQ0NGD37t2IRqO45557TI6Y9NbU1AS73W52GFJIJpPo7OxEMpk0OxQhqVofmfOWOTciIpVwPifVcMxTOrKNi1AoBI/Hg+PHj+d1nPb2dng8HoTDYZ0imxvZ+kcEX//61/HRj360IOeEnE4nDhw4oPtxjaLyeJM1d7vdjqamJu7uYyGWXGwBgPLycmzZsgUdHR0YGBhAIpHAK6+8gng8jtHRUQSDQWzbtg2VlZVmh0oF4HK5eAmdTlKpFKLRKFKplNmhCEnV+sict8y5ERGphPM5qYZjntKRaVyEQiE0NTWhr69Pl+P19fWhsbHR1AUXmfpHFJWVlfjzP/9z1NTU6Hpch8OBjo4O3Y9rJJXHm6y5l5SUwOVyYXJy0uxQKEs2bfpyEKI5GB8fx3e/+10cP34cPT09ePXVV+FwOLBkyRJ8/OMfx4YNG3DTTTfp1l5PT8+sm5RFIhHU1tbqdnwiItJHNBrFkiVL0j7W29sLl8tlbEBEREREJKxYLAaPx6PbQsvVnE4nQqGQpU+i07XC4TCam5t1GTNOpxMdHR1wu906RPZ7/JsoPdYlPVHqonccqp3LteyVLWS+S5cu4YMf/CA+/elP40c/+hFeeukljI2N4fLly/jpT3+Kbdu2oba2FqdOndK97cWLF6O4uFj346pocnISly9f5ip5BqrWR+a8Zc6NiEglnM9JNRzzlI4s42Lz5s0FWWgBrlzhsmXLloIc+0Zk6R+RTNf0ve99L0KhEPx+f17H8/v9CIVCui+0mEHl8SZr7sXFxVi8eLF0ecmMiy00J6+88go+8pGPoLu7GwBgs9nQ2NiIz3zmM/joRz+K+fPnAwB+97vf4a677sKPf/xjXdvfuHEjKioqdD2mqhKJBB5++GEkEgmzQxGSqvWROW+ZcyMiUgnnc1INxzylI8O4CAQCed+j5Uba29sRCAQK2kY6MvSPaK6uaU1NDdra2nDy5El4vd6cjuP1ehEIBNDW1ibNVU8qjzdZc6+oqMDGjRsxOjpqdiiUJW4jRnPi9XrR1dUFALj11lvxxBNP4H3ve9/M46+//jruvvtuPPPMMwCAt7zlLXjxxRdRXV2dV7vTl57Z7XaMjY0hHA5LfemZETRNw9jYGMrKymCz2cwORziq1kfmvGXOTSSiXAJNRPLifE6q4ZindGQYF1efXyh0O8FgsODtXE2G/hHN9WoaiUTw0EMP4dChQ2lfu2rVKjQ2NqKlpWXWtkaFYvTfRFYZb4Woi1Vyv550dbHZbCgrK8PFixcz1syIOKZxG7Ebs+QdxkdHRxEIBHDu3Dn09vZicHAQExMTWb3WZrPNLADQ3Jw6dWrmF6HS0lL88Ic/vOZyy5tuuglPPPEEPB4P/uu//gtvvPEG9uzZg7//+7/XJYZkMqnLcejKz4Tdbjc7DGGpWh+Z85Y5N5G4XC7w8xxEVEicz0k1HPOUjtXHRTgcNmShBQBOnz6NSCRiyEn2aVbvHxFdr6Z1dXXYtm1bxsWWY8eOSf2hL5XHm6y5a5qGZDJp2QUkFVlqGzFN07Bnzx4sXrwYn/rUp/AP//AP+Nd//Vf8+7//O4LB4A2/Ojs70dnZaXYalvfP//zPM/++5557Mu5ruXDhQnz1q1+d+f/DDz+MVCqlSwxbt25FZWWlLsdS3eDgIPbt24fBwUGzQxGSqvWROW+ZcyMiUgnnc1INxzylY/VxUejtw8xuz+r9IyLWNDOVayNr7pWVldi6dSuGh4fNDoWyZKnFlvXr1+MrX/kKEokENE3L+YvyNzQ0NOvKoHvvvfe6z/+Lv/gLlJeXAwDeeOMNnD59Wpc4Ojs7eXWLTux2O5qamqT8BIAeVK2PzHnLnBsRkUo4n5NqOOYpHauPi3PnzkndntX7R0SsaWYq10bW3JPJJDo7O1FaWmp2KJQly2wj1t7ejuPHj89cNvWe97wHf/mXf4m6ujq85S1vQUmJZVKxtJ/85CcYGxsDcOXKlQ984APXfb7dbscf//Ef4+mnnwYA/PjHP8aHP/zhvOPo7u7O+xh0RWlpKerr680OQ1iq1kfmvGXOjYhIJZzPSTUc85SOlceFpmm4cOGCoW2eP38emqYZtiWPlftHVKxpZirXRtbcx8fH0d3djXnz5pkdCmXJMisU3/rWt2b+/Td/8zfYu3cvioosdWGOFH75y1/O/Nvtdme1yLVs2bKZxZarX5+P5uZmw29sJ6vR0VEEg0E0NjZi/vz5ZocjHFXrI3PeMudGRKQSzuekGo55SsfK4yKRSCAejxvaZjwex9DQECoqKgxpz8r9IyrWNDOVayNr7vPnz0djY+PMB99JfJZZrQiFQrDZbFiyZAm+/vWvc6HFJM8///zMv2+99dasXnPLLbfM/PvSpUu6xFFdXc0xoJOpqSn09/djamrK7FCEpGp9ZM5b5tyIiFTC+ZxUwzFP6Vh5XIyPj5vSrpEnLa3cP6JiTTNTuTay5l5UVITq6mrp8pKZZa5smb4/R0NDg2GXe9K1YrHYzL//4A/+IKvXLF68eObfb7zxhi5xPProo7och65sB3f33XebHYawVK2PzHnLnBsRkUo4n5NqOOYpHSuPC7PuQVBWVmZYW1buH1GxppmpXBtZcx8eHsajjz6KXbt2mR0KZckylwZMXx3BqxnMNTQ0NPPvbC/Lu/p5V78+H+9+97tRVVUFAJicnER/fz80TQMADA4OznxCZnR0FMPDwwCAVCqF/v7+mWMMDAxgYmICADAyMoKRkREAwMTEBAYGBmae19/fj1QqBeDKJDc6OgrgyqdwBgcHAVzZa7a/vx+Tk5MzeU4vEI6NjSGRSAC4dqU9kUjMfKommUzO1MfInAYGBvD8888jlUpJk5Oe/ZRKpXDx4sWZ+GTIKZt+mpiYQDQaxRtvvCFNTtP99MYbb+DXv/41UqmUNDnJNPaYE3NiTswp25xGRkYQjUaRSCSkyUnGfmJO+uU0NjaGaDSK/v5+aXKSsZ+MzimZTCISicz6+84qOWmahptvvhnAlfMGCxcuBACUlJSgurp6JtaqqqqZ+xUsWLAACxYsAADMmzdv5rwAcGUHjOmtzhcuXDhzLqK0tBSVlZUAAIfDgVQqZVg/DQwMIBqNIplM6j72enp6YLPZUFRUBIfDgZKSEthsNlRUVOBXv/pVwXIy++dpeHgYFy9eRCqVSpvTdKx2ux3l5eUAgOLiYlRXVxue08TExMzYs9lsqK6uRnFx8Uy7qv5uNDIyMrPo+eZ+GhoamlM/jY6OIhqNztTB6Jz0+Hm6+pzp9LxXUlKC97znPTPPMzKnioqKtP001zlCFZZZufjgBz8ITdN0u+cHzc30DyOQ/adQrv7UyPQPfb78fj8++clPAgBee+017N+/f2ZSe+SRR3Dx4kUAQDAYxA9/+EMAwCuvvIL9+/fPHOOhhx7Ciy++CAB46qmn8NRTTwEAXnzxRTz00EMzz9u/fz9eeeUVAMAPf/jDmXvFXLx4EY888giAK5PT/v378dprrwEAvv/97+Ps2bMAgGeffRZtbW0ArkxA+/fvn5nw2tra8OyzzwIAzp49i+9///uG5/Tkk0/i0UcfxdDQkDQ56dlPQ0NDeOyxx3Du3Dlpcsqmn9544w0cPXoUR44ckSan6X46cuQI2tvbMTQ0JE1OMo095sScmBNzyjan7u5uHD16FD/+8Y+lyUnGfmJO+uX00ksv4ejRo1LlJGM/GZ3TCy+8gMcff3zmJJ2Vcvr2t7+Nj3zkIwCAxsZGfPSjHwUAvPWtb8XWrVtnYr3vvvvwjne8AwBw55134s477wQAvOMd78B9990387ytW7firW99KwDgox/9KBobGwEA733ve/GZz3wGALBixQocOHDAsH568skncfToUbzwwgu6j70f/ehHAK6cc9m6dSsWLVoEAPjEJz4xE4OMP0/nzp3DY489hqGhobQ5vfDCCwCAlStX4hOf+AQAYNGiRdi6devMIoNROf3mN7+ZGXtv7qdgMKjs70b//u//jttvvz1tPz3++ONzGnsXL17E0aNH0dHRIfS8d72cHn/88ZlYp+e98vJytLS04Oc//7lhOU0vVq1bty5tP811jlCGZhG/+MUvNJvNppWUlGjhcNjscJS1Zs0aDYAGQNu+fXtWrzl16tTMa8rLy/NqPxKJaAA0u92ulZeXa5FIREulUlo8HtempqY0TdO0gYEBbWxsTNM0TRsZGdGGhoY0TdO0iYkJLR6Pzxyrv79fGx8f1zRN04aHh7Xh4WFN0zRtfHxc6+/vn3lePB7XJiYmNE3TtKGhIW1kZETTNE0bGxvTBgYGNE3TtKmpKS0ej2upVErTNE1LJBLa6OiopmmalkwmtcHBQU3TNG1yclKLx+Pa5OSkpmmaNjg4qCWTSU3TNG10dFRLJBKapmnMiTkxJ+bEnJgTc2JOzIk5MSfmxJyYk/Q5feUrX9EAaPPnz9cWLlyoAdBKSkq06urqmfMIVVVV2rx58zQA2oIFC7QFCxZoALR58+ZpVVVVM8+rrq7WSkpKNADawoULtfnz52sAtNLSUq2yslIDoLW2tkrTT9PnR2w2m1ZdXa0VFxfPnHd5/vnnLZmTHmPv+eefn3XeCIBWXFysVVdXa//1X/9laE6/+tWvZsbem/vp4sWLlh17+fZTT0+PVlZWlrafwuGwJXPSo5/C4XDGee+Xv/ylYTm9+OKLGgCtoqLimn7q7e3NeexNz1XTX5FIRJOZTdP+/2t+LGDTpk04fPgwamtr0dnZiZqaGrNDUs6nPvUpfO973wMAbNmyJasVyn/913/FX/zFXwC4cv+W3/72t3Nuv6enB3V1dTP/j0QiqK2tnfPxiIiIiIiIiMgc4XAYHo/H0PauPqdgZdFoFEuWLEn7WG9vL1wul7EBCUKkuogUi0hYl/REqYvecah2Ltcy24gBwD/90z/hr//6r2c66Z/+6Z/yOnFPubt6gevVV1/N6jWXL1+e+fdb3vIWXeLYsWPHrL1Zae4GBgbwta99bdaej/R7qtZH5rxlzo2ISCWcz0k1HPOUjtXHhdvtRkNDgyFteb1ewxdarN4/ImJNM1O5NrLmXlVVhR07duh2D2wqvBKzA8hFUVERHn74Ydx222344he/iPvvvx/3338/qqqqUFVVBZvNdsNj2Gy2mb0JKXfvec97Zv79m9/8JqvXvPTSSzP/Xrp0qS5xnDhxYmYPQcrPggULcNddd83cZJBmU7U+Muctc25ERCrhfE6q4ZindGQYF9u3b0dXV5ch7RhNhv4RDWuamcq1kTX3kZERnDhxAp/97GfNDoWyZKnFlomJCWzZsgWPPPIIbDYbpndA6+/vz2rlUtO0rBZkKLPbbrtt5t/hcBipVAolJdcfRhcuXEj7+nxcunRJl+MQMG/ePN0WwWSkan1kzlvm3IiIVML5nFTDMU/pyDAufD4fWlpacPz48YK14ff7sWbNmoIdPxMZ+kc0rGlmKtdG1twnJiZw6dKlG557JXFYZhuxyclJfOxjH8M3vvENpFIpvPlWM5qm3fCL8vehD30IZWVlAIDh4WH84he/uO7zx8bGcPbs2Zn/f/jDH9YlDhlXq80yvUrOK4XSU7U+Muctc25ERCrhfE6q4ZindGQZFwcPHoTT6SzIsZ1OJw4cOFCQY9+ILP0jEtY0MyvUJhwOY+/evRkfX79+PVpbWxGJRHI6rhVyn4vpK3aSyaTZoVCWLLMs9o1vfAMdHR0zV7TccccdaGlpgdvthsPh4AqfQcrLy/GRj3wEp06dAgAcOXIEK1euzPj8f/3Xf0UikQBw5X4tXq/XkDiJiIiIiIiIyBpqamrQ0dGBxsZGxONx3Y7rcDjQ0dEx6/6zRGS8QCCA3bt333DLwDNnzuDMmTPYtWsXGhoasGPHDlOuSiOaK5tmkUs+Vq5ciXPnzsFms2Hv3r344he/aHZIygoEAli7di0AoKysDOfPn0dtbe01zxsZGcH73vc+vPDCCwCu3NR+165debXd09Mz64Z2kUgkbdtEREREREREZC3hcBjNzc3o6+vL+1hOpxMdHR1wu906RCaeaDSKJUuWpH2st7cXLpfL2IAEIVJdRIrFLLFYDJs3b85rm0C/348DBw5Iv2gqynjROw7VzuVaZhuxnp4e2Gw2vPe97+VCi8l8Ph8aGhoAXNkmbO3atQiFQrOeE4vFcNddd80stLzlLW/R9WZ0S5cuxbx583Q7nsqm93+cmJgwOxQhqVofmfOWOTciIpVwPifVcMxTOrKNC7fbjVAoBL/fn9dx/H4/QqGQ6QstsvWPCKxUU5fLlfFWB4U4cS5abUKhEDweT973Y2pvb4fH40E4HM74HNFy18v0vWhSqZTZoVCWLLPYMu2DH/yg2SEQrkx0f/iHfwjgyopnfX09/vRP/xSf+9zn8LGPfQy33HILnn76aQBASUkJvve976G6ulq39nnPFv3Iuq+lXlStj8x5y5wbEZFKOJ+TajjmKR0Zx0VNTQ3a2tpw8uTJnLci93q9CAQCaGtrE+JT8DL2j9lY08xEqk0oFEJTU5MuV6kBQF9fHxobGzMuuIiUu554zxbrscw2YkuXLsWvf/1rfPrTn8a3v/1ts8MhAJcuXUJLSwu6u7szPmfRokX49re/DZ/Pp0ubql16RkRE+RPlcmwiIiIiyl0kEsFDDz2EQ4cOpX181apVaGxsREtLy6zzBbLj77jpsS7mi8Vi8Hg8ui20XM3pdCIUCgmxmKo3UcYutxHLj2WubPnwhz8MTdOue2KfjLV06VL87Gc/w9GjR9Hc3Iy3ve1tKC0txc0334yVK1diz549uHjxom4LLURERERERESklrq6Omzbti3j48eOHcPOnTuVWmghEtnmzZsLstACXLnCZcuWLQU5NpEeLLPY8vnPfx7FxcUIhULo6uoyOxz6/5WWluLTn/40fvSjH+Gll17C2NgYXn31Vfz0pz/Ftm3bcNNNNxWk3QceeEDXbclU1t/fjwcffBD9/f1mhyIkVesjc94y50ZEpBLO56QajnlKh+NCbOwf/bGmmYlQm0AgkPc9Wm6kvb0dgUBg1vdEyL0Qqqur8cADD2BoaMjsUChLlllsed/73oedO3dC0zTcfffduHTpktkhkYmOHDnCiUYn5eXluOeee1BeXm52KEJStT4y5y1zbkREKuF8TqrhmKd0OC7Exv7RH2uamQi12b17tyHt7NmzZ9b/Rci9EIaGhnDkyBHMnz/f7FAoS5ZZbAGA//2//zcOHz6MN954A8uXL8eXvvQl/OQnP8Hg4KDZoZHBotEoUqmU2WFIoaSkBC6XCyUlJWaHIiRV6yNz3jLnRkSkEs7npBqOeUqH40Js7B/9saaZmV2bcDhs2G5Ep0+fRiQSmfm/2bkXSiqVQjQaRXFxsdmhUJYss9hSXFyM4uJi3HfffRgfH8fo6Cj27duHhoYGOByOmcdv9CXbD52q7r77bixcuNDsMKQwPDyMRx99FMPDw2aHIiRV6yNz3jLnRkSkEs7npBqOeUqH40Js7B/9saaZmV2bQm8fdr32zM69UBYuXIi7774bo6OjZodCWbLMyoOmabDZbDP/v/rfmqaZERKZqL+/H1NTU2aHIYWioiJUV1ejqMgya6+GUrU+Muctc25ERCrhfE6q4ZindDguxMb+0R9rmpnZtTl37pxp7Zmde6FMTU2hv79furxkZpnFFoCLKvR7HR0dZocgjfnz56O5udnsMISlan1kzlvm3IiIVML5nFTDMU/pcFwYLxqNYsmSJWkf6+3thcvlmvk/+0d/rGlmZtZG0zRcuHDB0DbPnz8/8+F8WcfF6OgoOjo6UFZWZnYolCXLLItNTU3p8jU5OWl2KqSD+vp6lJaWmh2GFMbHx9Hd3Y3x8XGzQxGSqvWROW+ZcyMiUgnnc1INxzylw3EhNvaP/ljTzMysTSKRQDweN7TNeDyOoaEhAPKOi9LSUtTX12NiYsLsUChLlllsIbpaU1MT7Ha72WFIIZlMorOzE8lk0uxQhKRqfWTOW+bc6FrhcBh79+7N+Pj69evR2to66+aKRGQNnM9JNRzzlA7HhdjYP/pjTTMzszZmLXKMjY0BkHdc2O12NDU1SbeIJDObxr25yEJ6enpQV1c38/9IJILa2loTIyIiIhEFAgHs3r0bXV1dWb+moaEBO3bswJo1awoYGRERERHlKpetu1SJRZQ4RMO6mGNwcBBVVVWmtFtRUWF4u4UgytjVOw7VzuXyyhayJLvdDpvNZnYYUtA0DclkkvdEykDV+sict8y5ERCLxeD3+7F27dqcFloAoKurCz6fD+vWrUMsFitQhESkF87npBqOeUqH40Js7B/9saaZmVmbiooKOBwOQ9t0OBwoLy8HIO+4sNlssNvt0uUlMy62kCXt2LHDlBVzGQ0MDGD37t0YGBgwOxQhqVofmfOWOTfVhUIheDweHD9+PK/jtLe3w+PxIBwO6xQZERUC53NSDcc8pcNxITb2j/5Y08zMrI3NZsOyZcsMbXP58uUzH8SWdVxUVVVhx44dGB4eNjsUylKJ2QFc7aWXXpr1/1tuuSXjY/m4+rhkTYcPH0YikTA7DClUVFTg85//vDSXXepN1frInLfMuaksFAqhqalJt5sy9vX1obGxEcFgEG63W5djEpG+OJ+TajjmKR2OC7Gxf/THmmZmdm1WrFiBZ555xtD2ppmde6EkEgkcPnwY69evNzsUypJQiy0ul2tmRdJmsyGVSqV9LB9vPi5Z0+XLl80OQRrFxcVYvHix2WEIS9X6yJy3zLmpKhaLYfXq1bottEyLx+Nobm5GKBRCTU2NrscmovxxPifVcMxTOhwXYmP/6I81zczs2rS0tGDXrl2GtjfN7NwLZXJyEpcvX0ZxcbHZoVCWhNxGTNO0jHvRTT+WzxdZ34YNG2b2ZaT8DA0N4ciRIxgaGjI7FCGpWh+Z85Y5N1Vt3rwZfX19BTl2X18ftmzZUpBjE1F+OJ+TajjmKR2OC7Gxf/THmmZmdm3cbjcaGhoMacvr9c666brZuRdKeXk5NmzYgNHRUbNDoSwJdWXLLbfckvHqles9RuqJRqO8QkknJSUlcLlcKCkRajoQhqr1kTlvmXNTUSAQyPseLTfS3t4Ov98Pn89X0HaIKDecz0k1HPNqiEajWLJkSdrHent74XK5Zn2P40Js7B/9saaZiVCb7du3o6ury5B2riZC7oWQSqUQjUZ5ZYuFCDUCo9HonB4j9XR2dpodgjTsdjuamprMDkNYqtZH5rxlzk1Fu3fvNqSdPXv2cLGFSDCcz0k1HPOUDseF2Ng/+mNNMxOhNj6fDy0tLQX9QJzf78eaNWtmfU+E3AshmUyis7MTpaWlZodCWRJyGzGiG1m5ciXKysrMDkMKY2NjOHv2LMbGxswORUiq1kfmvGXOTTXhcNiQT00BwOnTpxGJRAxpi4iyw/mcVMMxT+lwXIiN/aM/1jSz69UmGo3CZrOl/dL7A+4HDx6E0+nU9ZjTnE4nDhw4cM33ZR0XZWVlWLlyJcbHx80OhbIk3GLLV7/6VXz1q19FR0eH2aGQwOrr67mqq5Px8XF0d3dz4s5A1frInLfMuamm0NuHmd0eEV0f53NSDcc8pcNxITb2j/5Y08xEqU1NTQ06OjrgcDh0Pa7D4UBHRwdqamqueUyU3PVWWlqK+vp63krBQmyaYHeMLyoqgs1mwxe+8IW0K5Wktp6enlk3wIpEIqitrTUxIiIiMssdd9yBZ555xtD2nn76acPaIyIiIvXkes8WVYhUF1FiESUO0bAu6ZlRl3A4jObmZvT19eV9LKfTiY6ODrjdbh0iE5MoY1fvOFQ7lyvclS1E2aiurkZREYevHqamptDf34+pqSmzQxGSqvWROW+Zc1OJpmm4cOGCoW2eP38egn1GhUhpnM9JNRzzlA7HhdjYP/pjTTMTrTZutxuhUAh+vz+v4/j9foRCoesutIiWu16KiopQXV0tXV4y49lqsqStW7eisrLS7DCkMDg4iP3792NwcNDsUISkan1kzlvm3FSSSCQQj8cNbTMej2NoaMjQNokoM87npBqOeUqH40Js7B/9saaZiVibmpoatLW14eTJk/B6vTm91uv1IhAIoK2tLe3WYVcTMXc9VFZWYuvWrRgZGTE7FMoSF1vIkvbt2yfdBGqWyspK3H///Vy8ykDV+sict8y5qcSsvXhlu+EikZVxPifVcMxTOhwXYmP/6I81zUzk2vh8PgSDQYTDYWzatCnj81atWoXW1laEw2EEg0GsWbMmq+OLnHs+BgcHsW/fPixYsMDsUChLJWYHQDQX/f39ZocgjelLEik9Vesjc94y56aS0tJSU9otKyszpV0iuhbnc1INxzylw3EhtkL1TzgcxuHDhzM+vn79eni9Xvj9/ln3SpABx3xmVqhNXV0dtm3bhkOHDqV9/NixY3O6N4kVcp+L6e3ReCsF62BPkSVt3LgRFRUVZochhUQigcOHDyORSJgdipBUrY/Mecucm0oqKirgcDgMbdPhcKC8vNzQNokoM87npBqOeUqH40JsevdPIBCA1+uFx+PJeLIaAM6cOYNdu3bB7XbD6/Xi1KlTurQvghvV1OVyQdO0tF9G3WDcLCrPB7LmXlFRgY0bN3IbMQvhYgtZUnd3t2lbyMimtLQU9fX1pn1KXHSq1kfmvGXOTSU2mw3Lli0ztM3ly5fDZrMZ2iYRZcb5nFTDMU/pcFyITa/+icVi8Pv9WLt2Lbq6unJ6bVdXF3w+H9atW4dYLJZXHCLgmM9M5drImvv4+Di6u7tRUsLNqayCiy1kSWfPnuW++TopKyvDypUruTVOBqrWR+a8Zc5NNStWrJC6PSK6Ps7npBqOeUqH40JsevRPKBSCx+PB8ePH84qlvb0dHo8H4XA4r+OYjWM+M5VrI2vuY2NjOHv2rKGLSCpfHaYHYZfFfvCDHyASieh+XJvNhmeeeUb345KxmpqacPbsWbPDkEIymcTZs2excuVK2O12s8MRjqr1kTlvmXNTTUtLC3bt2mVoe0QkDs7npBqOeUqH40Js+fZPKBRCU1MT4vG4LvH09fWhsbERwWAQbrdbl2MajWM+M5VrI2vudrsdK1eu5O4+FiLsYktfXx/6+vp0Paamadz+QxIulwu/+MUvzA5DCqlUCtFoFO9///vNDkVIqtZH5rxlzk01brcbDQ0NOW+lMBder1e6m4sSWR3nc1INxzylo8q4mP6ktdXk0z+xWAyrV6/WbaFlWjweR3NzM0KhEGpqanQ9thFUGfNzoXJtZM29pKQELpcLk5OTZodCWbJpgr1bFRUVwWazFexN1GazcYBaWE9Pz6yTXZFIBLW1tSZGREREZgoEAli7dq0h7axZs6bg7RAREZHaotEolixZkvax3t5ebuEiAKP6yO/357112I2O39bWVrDjk1hEmltEikUkstZFtXO5wl7ZsmLFCqxevdrsMEhQixcvxmuvvWZ2GFKYnJzEa6+9hkWLFqG4uNjscISjan1kzlvm3FTk8/nQ0tJS8D9EudBCJB7O56QajnlKh+NCbHPtn0AgUNDfb4Er93Dx+/3w+XwFbUdvHPOZqVwbWXMvLi7GokWLeOGAhQi92PK3f/u3ZodBgtq4cSP27dtndhhSSCQSePjhh3H//fejurra7HCEo2p9ZM5b5txUdfDgQQSDQd23HwUAp9OJAwcO6H5cIsof53NSDcc8pcNxIba59s/u3bsLF9RV9uzZY7nFFo75zFSujay5V1RUYOPGjRgdHTU7FMqSsNuIfeELX+DJDbrG9KVndrsdY2NjCIfDUl96ZgRN0zA2NoaysjLe0ygNVesjc94y56aycDiMxsZGXfe0djgclr55KJHsOJ+Tajjm1ZDrNjIcF8bLpY/m0j/hcBgej0ePULNuz0r3JuSYz+x6tRFpi6pCxCLDuEhXF5vNhrKyMly8eDFjzUSn2jZiRWYHQDQXyWTSkjfHE5HNZoPdbrfsm1GhqVofmfOWOTeVud1uBINBOJ1OXY7ndDq50EIkOM7npBqOeUqH40Jsc+mfQm8fZnZ7+eKYz0zl2siau6ZpSCaT0uUlMy62kCVt3boVlZWVZochhcHBQezbtw+Dg4NmhyIkVesjc94y56Y6t9uNUCgEv9+f13H8fj9CoRAXWogEx/mcVMMxT+lwXIhtLv1z7ty5AkZkfnv54pjPTOXayJp7ZWUltm7diuHhYbNDoSxxsYUsqbOzE8lk0uwwpGC329HU1AS73W52KEJStT4y5y1zbgTU1NSgra0NJ0+ehNfrzem1Xq8XgUAAbW1tqKmpKVCERKQXzuekGo55SofjQmy59o+mabhw4UKBo5rt/Pnzlto5hGM+M5VrI2vuyWQSnZ2dKC0tNTsUylKJ2QEQzUV3d7fZIUijtLQU9fX1ZochLFXrI3PeMudGv+fz+eDz+RCJRPDQQw/h0KFDaZ+3atUqNDY2oqWlxVJ7VRMR53NSD8c8pcNxIbZc+yeRSOh6D8JsxONxDA0NoaKiwtB254pjPjOVayNr7uPj4+ju7sa8efPMDoWyxCtbyJKam5sxf/58s8OQwujoKDo6OjA6Omp2KEJStT4y5y1zbnSturo6bNu2LePjx44dw86dO7nQQmRBnM9JNRzzlA7Hhdhy7Z/x8fECR5Te2NiYKe3OBcd8ZirXRtbc58+fj+bmZkv9jKpOyMUWK12+SOaorq5GUZGQw9dypqam0N/fj6mpKbNDEZKq9ZE5b5lzIyJSCedzUg3HPKXDcSG2XPvHrK2CysrKTGl3LjjmM1O5NrLmXlRUhOrqaunykplNE2xl4ze/+Q2AKzcAcjgcJkdDounp6Zn16eNIJILa2loTIyIiItFFo1EsWbIk7WO9vb1wuVzGBkRERESUAX9vEVs4HMbhw4evu0Wt1+uF3++f05XTmqahpqbG0K3EHA4HYrEYbDabYW2S8USaW0SKRSSy1kW1c7nCXRpw66234tZbb+VCC12Xy+VCSQlvOaSHVCqFaDSKVCpldihCUrU+Muctc25ERCrhfE6q4ZiXXzgcxt69ezM+vn79erS2tiISicx8j+PCGIFAAF6vFx6PJ+NCCwCcOXMGu3btgtvthtfrxcmTJ3PqH5vNhmXLlukVdlaWL19uqYUWjvnMVK6NrLmXlJTA5XJhcnLS7FAoS8ItthBlY8OGDSgvLzc7DCkMDQ3h6NGjGBoaMjsUIalaH5nzljk3IiKVcD4n1XDMy2uuJ/JPnTrFcVFgsVgMfr8fa9euRVdXV06v7erqwl/91V/h6NGjePnll7N+3YoVK3INMy9Gt5cvjvnMVK6NrLmXl5djw4YN0t2LRmbCbSNGdD2qXXpGRET5k/VybCIiIrK2WCyGzZs34/jx43M+ht/vx4EDB1BTU6NjZAQAoVAIq1evRl9fX97Hcjqd6OjogNvtvuFzw+EwPB5P3m1mKxwOz2nLM7IWkf4mEikWkchaF9XO5fLKFiIiIiIiIiIiA4VCIXg8nrwWWgCgvb0dHo8H4XBYp8gIuNI/TU1Nuiy0AEBfXx8aGxuz6ie3242GhgZd2r0Rr9fLhRYiIh1xsYUsaceOHaiqqjI7DCkMDAzga1/7GgYGBswORUiq1kfmvGXOjYhIJZzPSTUc8/LQ80R+VVUVPv3pT2Pt2rVccNFJLBbD6tWrdblJfVVV1cz5i3g8jubmZsRisRu+bvv27Xm3nQ2j2tET58LMVK6NrLlPzyGybY8mMy62kCWdOHECIyMjZochhQULFuCuu+7CggULzA5FSKrWR+a8Zc6N0nO5XNA0Le2XVS/FJiLO56Qejnk56HkiHwBGRkZw4sQJ/Pa3v836RD5d3+bNm3W7omW6f6bPX/T19WHLli03fJ3P50NLS4suMWTi9/uxZs2agrZRCJwLM1O5NrLmPj2H2O12s0OhLHGxhSzp0qVLmJiYMDsMKcybNw9Lly7FvHnzzA5FSKrWR+a8Zc6NiEglnM9JNXqM+Wg0CpvNlvYrGo3qFyxlpOeJfACYmJiY+fs42xP52VJxvAQCgby3drva1f0zrb29HYFA4IavPXjwIJxOp26xXM3pdOLAgQMFOXah8f0/M5VrI2vu03NISUmJ2aFQlrjYQpYk42q1Wd78SRuaTdX6yJy3zLkREamE8zmphmPe+vQ+kQ9c+2nubE/kU3q7d+/W9XiZPm2/Z8+eG762pqYGHR0dcDgcusbkcDjQ0dGBmpoaXY9rFM6FmalcG1lzn55Dksmk2aFQlrjYQkRERERERERUYHqfyM8kmxP5dK1wOIyuri5D2jp9+jQikcgNn+d2uxEMBnW7wsXpdCIYDMLtdutyPCIimo2LLWRJMq5Wm0XWfS31omp9ZM5b5tyIiFTC+ZxUwzFvbYU6kZ/u09zZnsin2fS+6gi4/qfts23P7XYjFArB7/fnFYvf70coFLL8QgvnwsxUro2sufOeLdbDxRayJBn3YTRLuj1k6fdUrY/MecucGxGRSjifk2o45q2tECfygcz3KShUezI7d+6c7se83n0kcmmvpqYGbW1tOHnyJLxeb04xeL1eBAIBtLW1WXbrsKtxLsxM5drImvv0HJJKpcwOhbLExRayJBlXq80i676WelG1PjLnLXNuREQq4XxOquGYt7ZCnMgHMn+au1DtyUrTNFy4cEH3417v0/bnz5+Hpmk5Hc/n8yEYDCIcDmPTpk0Zn7dq1Sq0trYiHA4jGAxizZo1OccuKs6FmalcG1lz5z1brMem5TqzE5mop6cHdXV1M/+PRCKora01MSIiIiIiIiJriEajWLJkSdrHent74XK5jA1IEZqmoaamBvF43LA2HQ4HYrEYbDbbnI+h0ngZHBxEVVWVKe1WVFTM6bUq9Q/lT6TxIlIsIpG1Lqqdy+WVLUREREREREREBZJIJAxdaAGAeDyOoaEhQ9u0svHxcVPaHRsbM6VdIiIqDC62kCU98MADqK6uNjsMKfT39+PBBx9Ef3+/2aEISdX6yJy3zLkREamE8zmphmPeugp5Ir+6ujrj38c8kZ+90tLSghz3ev0DAGVlZQVpV2acCzNTuTay5j49h3Dx3Dq42EKWdOTIEU40OikvL8c999yD8vJys0MRkqr1kTlvmXMjIlIJ53NSDcd84USjUdhstrRf0Wg07+MX6kQ+AAwNDWX8+5gn8rNXUVEBh8Oh+3Gv1z8Oh4M/z3PAuTAzlWsja+7Tc8j8+fPNDoWyxMUWsqRoNIpUKmV2GFIoKSmBy+VCSUmJ2aEISdX6yJy3zLkREamE8zmphmPeugp1Ih8AUqlU2r+PeSI/NzabDcuWLdP9uJn6BwCWL1+e1z11VMW5MDOVayNr7tNzSHFxsdmhUJa42EKWdPfdd2PhwoVmhyGF4eFhPProoxgeHjY7FCGpWh+Z85Y5NyIilXA+J9VwzFtXoU7kA8DChQvT/n3ME/m5W7Fihe7HzNQ/hWpPBZwLM1O5NrLmPj2HjI6Omh0KZYmLLWRJ/f39mJqaMjsMKRQVFaG6uhpFRZwO0lG1PjLnLXNuREQq4XxOquGYt7ZCnVifmppK+/cxT+TnrqWlRfdjZuqfQrWnAs6FmalcG1lzn55DZMtLZuwpsqSOjg6u6upk/vz5aG5u5v6PGahaH5nzljk3IiKVcD4n1XDMW1uhTqyPjo6m/fuYJ/Jz53a70dDQoOsxM/WP1+tFXV2drm2pgnNhZirXRtbcp+cQ3oPLOrjYQpZUX19f0JsMqmR8fBzd3d0YHx83OxQhqVofmfOWOTciIpVwPifVcMxbWyFO5ANAaWnpNX8f80T+3G3fvl3X46Xrn0K0oxLOhZmpXBtZc5+eQyYmJswOhbLExRaypKamJtjtdrPDkEIymURnZyeSyaTZoQhJ1frInLfMuRERqYTzOamGY976CnGC3W63X/P3MU/kz53P59P1qqB0/eP3+7FmzRrd2lAN58LMVK6NrLlPzyGyLSLJzKZpmmZ2EETZ6unpmfUJnUgkgtraWhMjIiIiIiIisoZoNIolS5akfay3txcul8vYgARhZF38fj+OHz+u2/HSHb+trU2XY6k6XmKxGDweD/r6+nQ/ttPpRCgUQk1NTd7HUrV/aG5EGi8ixSISWeui2rlcXtlClmS322Gz2cwOQwqapiGZTILrrumpWh+Z85Y5NyIilXA+J9VwzMvh4MGDcDqduh3PZrPN/H3sdDpx4MAB3Y6tqpqaGnR0dMDhcOR9rKv7x+FwoKOjQ5eFFpVxLsxM5drImvv0HCJbXjLjYgtZ0o4dO1BVVWV2GFIYGBjA7t27MTAwYHYoQlK1PjLnLXNuJL5oNAqbzZb2KxqNmh0ekaVwPifVcMzLQc8T+QBQVVWFHTt24G1vextP5OvI7XYjGAzmvTA23T/vete7EAwG4Xa7dYpQXZwLM1O5NrLmPj2HDA8Pmx0KZYmLLWRJhw8fRiKRMDsMKVRUVODzn/88KioqzA5FSKrWR+a8Zc6NiEglnM9JNRzz8tDrRD4AJBIJPP7443jyySd5Il9nbrcboVAIfr9/zsdIJBL4zW9+g66uLvaPTjgXZqZybWTNPZFI4PDhw5g/f77ZoVCWuNhClnT58mVMTk6aHYYUiouLsXjxYhQXF5sdipBUrY/MecucGxGRSjifk2ryHfPhcBh79+7N+Pj69evR2tqKSCQy1xApB3qcyAeAT33qU/iP//gPvO9979MpMrpaTU0N2tracPLkSXi93pxe6/V68eSTT+KRRx7B+5eegQAAmhBJREFUzTffXKAI1cP3/8xUro2suU9OTuLy5cvS5SUzLraQJW3YsAHl5eVmhyGFoaEhHDlyBENDQ2aHIiRV6yNz3jLnRkSkEs7npJq5jvlAIACv1wuPx4NDhw5lfN6ZM2ewa9cuuN1ueL1enDp1Kt+Q6QbyPZEfCATw8MMP44c//CHnwgLz+XwIBoMIh8PYtGlTxuetWrUKra2tCIfDCAaD8Hq9fK/SGd//M1O5NrLmXl5ejg0bNmB0dNTsUChLXGwhS4pGo0ilUmaHIYWSkhK4XC6UlJSYHYqQVK2PzHnLnBsRkUo4n5Nqch3zsVgMfr8fa9euRVdXV05tdXV1wefzYd26dYjFYnMJl3Iw1xP5a9as4VxosLq6Omzbti3j48eOHcPOnTtRV1cHgO9VhcCaZqZybWTNPZVKIRqN8soWC5FrBJIyOjs7zQ5BGna7HU1NTWaHISxV6yNz3jLnRkSkEs7npJpcxnwoFMLq1avR19eXV5vt7e3o7OxER0cH7zdhgOkT+ZmuQDp27BhcLtes73EuFBv7R3+saWYq10bW3JPJJDo7O1FaWmp2KJQlXtlClrRy5UqUlZWZHYYUxsbGcPbsWYyNjZkdipBUrY/MecucGxGRSjifk2qyHfOhUAhNTU15L7RM6+vrQ2NjI8LhsC7HmxaNRmGz2dJ+RaNRXduSGedCsbF/9MeaZqZybWTNvaysDCtXrsT4+LjZoVCWuNhCllRfX89VXZ2Mj4+ju7ubE3cGqtZH5rxlzo2ISCWcz0k12Yz5WCyG1atXIx6P69p2PB5Hc3MztxQTEOdCsbF/9MeaZqZybWTNvbS0FPX19byVgoVwsYUs6fDhw0gkEmaHIYWKigps3LgRFRUVZociJFXrI3PeMudGYguHw9i7d2/Gx9evX4/W1lZEIhEDoyKyLs7npJpsxvzmzZt1u6Llzfr6+rBly5aCHJvmjnOh2Ng/+mNNM1O5NrLmnkgkcPjwYSxYsMDsUChLXGwhS6qurkZREYevHqamptDf34+pqSmzQxGSqvWROW+ZcyMxBQIBeL1eeDyejHuwA8CZM2ewa9cuuN1ueL1enDp1ysAoiayH8zmp5kZjPhAI4Pjx4wWNob29HYFAoKBtUG4KNRfyQyL64HuV/ljTzFSujay5FxUVobq6Wrq8ZMaz1WRJW7duRWVlpdlhSGFwcBD79+/H4OCg2aEISdX6yJy3zLmRWGKxGPx+P9auXYuurq6cXtvV1QWfz4d169ZxyxaiDDifk2puNOZ3795tSBx79uwxpB3Kjt5zIT8koi++V+mPNc1M5drImntlZSW2bt2KkZERs0OhLNk0TdPMDoIoWz09Pairq0N1dTUGBwcRCoVQW1trdliWNjU1hcHBQVRWVvJqoTRUrY/MecucG4kjFAph9erVumzl4nQ60dHRAbfbrUNkRPLgfE6qud6YD4fD8Hg8hsUSDodRV1eX1zGi0SiWLFmS9rHe3l64XK68jq9KLHrNhbFYDJs3b87r6ii/348DBw6gpqZmzsewglz6qJDvVSKNWyPx/T+z69VGpPFSiFhkHRcy5DV9LndaJBKR+lyuNXuJlCfjpYFmmb4k0aqTdqGpWh+Z85Y5NxJDKBRCU1OTbnvm9/X1obGxEeFwWJfjEcmC8zmp5npjvtDbh5ndHmWmx1wYCoXg8Xjy7tf29nZ4PB7+znIVvlfpjzXNTOXayJq7rHnJjD1FliTjTa/MMn2zrUQiYXYoQlK1PjLnLXNuZL5YLIbVq1cjHo/retx4PI7m5mZuKUZ0Fc7npJrrjflz584ZGovR7VFm+c6F/JBIYfG9Sn+saWYq10bW3GXNS2ZcbCFL6u7uxvj4uNlhSKG0tBT19fUoLS01OxQhqVofmfOWOTcy3+bNm3U7WfFmfX192LJlS0GOTWRFnM9JNZnGvKZpuHDhgqGxnD9/HrLsSG71G8HnMxfyQyKFx/cq/bGmmalcG1lzlzUvmXGxhSzp7NmzGBsbMzsMKZSVlWHlypUoKyszOxQhqVofmfOWOTcyVyAQKPi2Ku3t7QgEAgVtg8gqOJ+TajKN+UQiofvJ8huJx+MYGhoytE29yXIj+HzmQn5IpPD4XqU/1jSzTLWx+qJyNmQdF7LmJTMutpAlNTU1wW63mx2GFJLJJDo7O5FMJs0ORUiq1kfmvGXOjcy1e/duQ9rZs2ePIe0QiY7zOakm05g364p/q374LRaLwe/3Y+3atejq6srptV1dXfD5fFi3bp0wV23MdS7kh0SMwfcq/bGmmb25NrIsKmdD1nEha14y42ILWZLL5UJJSYnZYUghlUohGo0ilUqZHYqQVK2PzHnLnBuZJxwO53zCZq5Onz5t6U+dEemF8zmpJtOYN2trESt+ylbGG8HPdS7kh0SMwfcq/bGmmU3X5ne/+51Ui8rZkHVcyJqXzGyaLButkhJ6enpQV1c38/9IJILa2loTIyIiIgJaW1uxa9cuQ9vbuXOnYe0REZG4NE1DTU2NoVuJORwOxGIx2Gy2OR8jGo1iyZIlaR/r7e2Fy+Wa87HTmb4RvJ51cjgcCAaDcLvduh3TiLqEw2F4PJ68j5NLe1f/HW91Ro9d0eMgsYRCIaxevVqXLQKdTic6Ojp0neMAjl3VqHYul1e2kCUtXrwYxcXFZochhcnJSVy+fBmTk5NmhyIkVesjc94y50bmOXfunNTtEYmI8zmpJtOYt9lsWLZsmaGxLF++PK+FFqPJfCP4ucyFhd4+zOz2RML3Kv2xppl1d3fjE5/4BF599VVdjtfX14fGxkYhruK7EVnHhax5yYyLLWRJGzduREVFhdlhSCGRSODhhx9GIpEwOxQhqVofmfOWOTcyh6ZpuHDhgqFtnj9/Hrw4mVTH+ZxUc70xv2LFCkNjMbq9fMl8I/i5zIX8kIhx+F6lP9Y0vVgshk996lNYt26drufLRFhUzoas40LWvGTGbcTIUqYvPbPb7RgbG0M4HJb60jMjaJqGsbExlJWVWerTaUZRtT4y5y1zbmSOwcFBVFVVmdIuP3hAKuN8Tqq53pi34rZQRm0jEwgEsHbtWl2OdT0nT56Ez+fL+zi51iXXudCq286JJJc+KuR7lapbMfH9Pz2/349HH30UZWVlGBsb0/2DWX6/H21tbbocqxBjV9ZxIUNe3EaMyAKSySQ/0asTm80Gu91u2Um70FStj8x5y5wbmWN8fNyUdsfGxkxpl0gUnM9JNdcb8263Gw0NDYbE4fV6LXX/DdlvBJ/rXJhIJAxdaAGufDJ+aGjI0DZFUcj3KpfLBU3T0n7JutAC8P0/nUAggOPHj0PTtIKdL2tvb0cgEND9uHqRdVzImpfMuNhClrR161ZUVlaaHYYUBgcHsW/fPgwODpodipBUrY/MecucG5mjtLTUlHbLyspMaZdIFJzPSTU3GvPbt283JA6j2tFDOBxGV1eXIW2dPn0akUjEkLaulutcyA+JGIvvVfpjTa81vahcWVlZ0PNlZi0qZ0PWcSFrXjLjYgtZUmdnJ5LJpNlhSMFut6OpqQl2u93sUISkan1kzlvm3MgcFRUVcDgchrbpcDhQXl5uaJtEouF8Tqq50Zj3+XxoaWkpaAx+vx9r1qwpaBt6UuFG8LnOhfyQiLH4XqU/1nS2qxeVk8lkQc+XmbWonA1Zx4WsecmMiy1kSd3d3aZ9Ikc2paWlqK+vN+2XbtGpWh+Z85Y5NzKHzWbDsmXLDG1z+fLlvJSclMf5nFSTzZg/ePAgnE5nQdp3Op04cOBAQY5dKCrcCD7XuZAfEjEW36v0x5rOdvUi7/j4eMHPl5mxqJwNWceFrHnJjIstZEnNzc2YP3++2WFIYXR0FB0dHRgdHTU7FCGpWh+Z85Y5NzLPihUrpG6PSEScz0k12Yz5mpoadHR06H4y3eFwoKOjAzU1Nboet5A0TcOFCxcMbfP8+fOG31s017mQHxIxFt+r9Meaznb1Iu/8+fMLfr7MjEXlbMg6LmTNS2ZcbCFLqq6uRlERh68epqam0N/fj6mpKbNDEZKq9ZE5b5lzI/MUetsWs9sjEhHnc1JNtmPe7XYjGAzqdoWL0+lEMBiE2+3W5XjAlW1v9u7dm/Hx9evXo7W1Na/talS5Efxc5kJ+SMQ4fK/SH2v6e29eVC4qKir4+TIzFpWzIeu4kDUvmdk0EX9CiDLo6elBXV3dzP8jkQhqa2tNjIiIiOgKr9dryE14vV4vgsFgwdsxUjQaxZIlS9I+1tvbC5fLZWxAREQSiMVi2LJlC9rb2+d8DL/fjwMHDuh2RUsgEMDu3btzer9saGjAjh07cr5XzOuvv45FixblGmLeXnvtNdx0002Gt5uLcDgMj8djaHtX/x1vdfy9hUQxODiIqqoqU9qtqKiY8+v5M6QW1c7l8tIAsiSXy4WSkhKzw5BCKpVCNBpFKpUyOxQhqVofmfOWOTcy1/bt26Vqh0h0nM9JNbmO+ZqaGrS1teHkyZPwer05teX1ehEIBNDW1qbLQkssFoPf78fatWtz/mBCV1cXfD4f1q1bh1gslvXrVLkR/FzmQrfbjYaGhgJG9Xter1eqhZZc8b1Kf6zp77353iwlJSWGnC8bGxsr6PHnQtZxIWteMuNiC1nShg0blL3Bnt6GhoZw9OhRwy93twpV6yNz3jLnRuby+XwF397L7/fn/MleIllxPifVzHXM+3w+BINBhMNhbNq0KePzVq1ahdbWVoTDYQSDQd3eb0KhEDweT943VW5vb4fH40E4HM7q+arcCH6u44IfEjEG36v0x5r+3psXlcvLyw05X2b0onI2ZB0XsuYlM24jRpai2qVnRERkLbFYDB6PB319fbof2+l0IhQKWermxNniVgJERMYwer4NhUJoamrS9d4pDocj63vI3HHHHXjmmWd0azub9p5++mnD2suX3+/PexHsRsdva2sr2PHNwt9bSBSapqGmpsbQ+1M5HA7EYjHYbLY5H4M/Q2pR7Vwur2whIiIi0klNTQ06Ojp0/yStw+FAR0eHlAstREQkp1gshtWrV+t+EjAej6O5uTmrLcV4I/jrO3jwIJxOZ0GO7XQ6ceDAgYIcm4iusNlsWLZsmaFtLl++PK+FFiLZcbGFLGnHjh2m3ARMRgMDA/ja176GgYEBs0MRkqr1kTlvmXMjMbjdbgSDQd1OXjidzqw/wUukEs7npBqrjfnNmzcX5EpPAOjr68OWLVtu+LxCb+9pdntAfuOCHxIpPKv93FoBazrb1Yu8VVVVBT9fJuqisqzjQta8ZMbFFrKkEydOYGRkxOwwpLBgwQLcddddWLBggdmhCEnV+sict8y5kTjcbjdCoRD8fn9ex/H7/QiFQlxoIUqD8/nvRaNR2Gy2tF/RaNTs8EgnVhrzgUCgoNtTAVfu4RIIBK77HBVuBJ/vuOCHRArLSj+3VsGaznb1Iu/IyEjBz5fpsajscrmgaVrar7luISbruJA1L5lxsYUs6dKlS5iYmDA7DCnMmzcPS5cuxbx588wORUiq1kfmvGXOjcRSU1ODtrY2nDx5El6vN6fXer1eBAIBtLW18VOhBuIJa2vhfC4m/hwVjpXG/O7duw1pZ8+ePTd8juw3gtdjXPBDIrnJ5USxlX5urYI1ne3qReWJiYmCni8za1E5G7KOC1nzkhkXW8iSuKqrHyM++WBlqtZH5rxlzo3E5PP5EAwGEQ6HsWnTpozPW7VqFVpbWxEOhxEMBrFmzRoDoySyHs7nZBV6LUBZZcyHw2F0dXUZ0tbp06cRiUSu+xyfz1fw7b38fr9p79t6jQt+SKQwrPJzayWs6bWmF3sLfRWEWYvK2ZB1XMial8y42EJERERkgLq6Omzbti3j48eOHcPOnTuF/bRYoYTDYezduzfj4+vXr0dra+sNT6YREZEYCr192Fza443gs8cPiRBZj+yLykRWYtM0TTM7CKJs9fT0zDoJFYlEUFtba2JERERE2YtGo1iyZEnax3p7e+e8R7EVBQIB7N69O6dPPzc0NGDHjh0F+0OP/UNWJdLYFSkWUYhUEyNiueOOO/DMM8/kfZxc2nv66adv+LxwOIzGxkbE43Hd2nY4HFLfn0SksUtE1xeLxeDxeNDX16f7sZ1OJ0KhEK9cozlR7Vwur2whS+J+hfop9J6eVqdqfWTOW+bciKwgFovB7/dj7dq1OW8z09XVBZ/Ph3Xr1iEWixUoQrIKzuekGiuMeU3TcOHCBUPbPH/+PLL5DKmsN4K3wrhQGftHf6xpejU1NTh58iSWL1+u6/kyh8OBjo4O4RdaZB0XsuYlMy62kCXxni364f6P16dqfWTOW+bciEQXCoXg8Xjy3mKmvb0dHo8H4XBYp8jIijifk2qsMOYTiYSuV45kIx6PY2hoKKvnyngjeCuMC5Wxf/THmmb29re/HR//+Md1u+pMlEXlbMg6LmTNS2bcRowsRbVLz4iISC4qb8cRCoXQ1NQk9PYtKvcPWZtIY1ekWEQhUk0KHcvrr7+ORYsW5XWMuXjttddw00035fSaQCCAPXv24PTp01m/xuv1Yvv27crct0CksUtE2YvFYtiyZQva29vnfAy/348DBw4If0ULiU+1c7m8soWIiIiICioWi2H16tW6f9o5Ho+jubmZW4oREQmitLTUlHbLyspyfg1vBE9EsqqpqUFbWxtOnjwJr9eb02u9Xi8CgQDa2tq40EI0B1xsIUt64IEHUF1dbXYYUujv78eDDz6I/v5+s0MRkqr1kTlvmXMjEtXmzZsLcrNOAOjr68OWLVsKcmwSG+dzUo0VxnxFRQUcDoehbTocDpSXl8/59XV1ddi2bVvGx48dO4adO3fO+lSuSKwwLlTG/tEfa5rZm2uj0qKyrONC1rxkxsUWsqQjR45kvS8vXV95eTnuueeevP5AkZmq9ZE5b5lzIxJRIBDI+x4tN9Le3o5AIJDXMcLhMPbu3Zvx8fXr16O1tRWRSCSvdkg/nM9JNVYY8zabDcuWLTO0zeXLl8NmsxnapkisMC5Uxv7RH2uaWabaWH1RORuyjgtZ85IZF1vIkqLRKFKplNlhSKGkpAQulwslJSVmhyIkVesjc94y50bic7lc0DQt7Zes+57v3r3bkHb27Nkzp9cFAgF4vV54PB4cOnQo4/POnDmDXbt2we12w+v14tSpU3MNlXTC+ZxUY5Uxv2LFCqnbE41VxoWq2D/6Y00zU7k2suYua14y42ILWdLdd9+NhQsXmh2GFIaHh/Hoo49ieHjY7FCEpGp9ZM5b5tyIRBMOh9HV1WVIW6dPn87pqpNYLAa/34+1a9fmHGNXVxd8Ph/WrVvH+8WYyOz5PBqNwmazpf2KRqOmxERyM3vMZ6ulpUXq9kRjlXGhKvaP/ljTzFSujay5y5qXzLjYQpbU39+Pqakps8OQQlFREaqrq1FUxOkgHVXrI3PeMudGJJpCbx821/ZCoRA8Hk/e8bW3t8Pj8SAcDud1HJobzuekGquMebfbjYaGBkPa8nq9lt72Rg9WGReqYv/ojzXNTOXayJq7rHnJjNcgkSV1dHSYHYI05s+fj+bmZrPDEJaq9ZE5b5lzIxLNuXPnhGsvFAqhqakJ8Xhclzb7+vrQ2NiIYDAIt9utyzEpO5zPSTVWGvPbt2835MrG7du3F7wN0VlpXKiI/aM/1jQzlWsja+6y5iUzLouRJdXX16O0tNTsMKQwPj6O7u5ujI+Pmx2KkFStj8x5y5wbkUg0TcOFCxcMbfP8+fPQNC3j47FYDKtXr9ZtoWVaPB5Hc3MztxQzGOdzUo2VxrzP5yv49l5+vx9r1qwpaBtWYKVxoSL2j/5Y08xUro2sucual8y42EKW1NTUBLvdbnYYUkgmk+js7EQymTQ7FCGpWh+Z85Y5NyKRJBIJ3Rc1biQej2NoaCjj45s3b0ZfX19B2u7r68OWLVsKcmxKj/M5qUaPMe9yuaBpWtovl8ulX7AADh48CKfTqesxpzmdThw4cKAgx7YazoViY//ojzXNTOXayJq7rHnJzKZd7+N/RILp6emZtSdvJBJBbW2tiRERERFROq+//joWLVpkeLuvvfYabrrppmu+HwgEsHbt2oK3f/LkSfh8voK3Q+aLRqNYsmRJ2sd6e3t1P3HNWKxL5ZqEw2E0NjbquvjucDh037pR5T66HtaFSB78eSazqHYul1e2kCXZ7XbYbDazw5CCpmlIJpPX3XZFZarWR+a8Zc6NSCRmbfdZVlaW9vu7d+82pP09e/YY0g5xPp8WDoexd+/ejI+vX78era2tiEQiBkZFhWDFMe92uxEMBnW7wsXpdPIeWW9ixXGhEvaP/ljTzFSujay5y5qXzLjYQpa0Y8cOVFVVmR2GFAYGBrB7924MDAyYHYqQVK2PzHnLnBuRSCoqKuBwOAxt0+FwoLy8/Jrvh8NhQ27UDACnT5/mSW2DqD6fBwIBeL1eeDweHDp0KOPzzpw5g127dsHtdsPr9eLUqVMFi4kLP4Vl1THvdrsRCoXg9/vzOo7f70coFOJCy5tYdVyogv2jP9Y0M5VrI2vusuYlMy62kCUdPnwYiUTC7DCkUFFRgc9//vOoqKgwOxQhqVofmfOWOTcikdhsNixbtszQNpcvX572ytfjx48bGofR7alK1fk8FovB7/dj7dq1OS8idnV1wefzYd26dYjFYrrFJOLCj4ysPOZramrQ1taGkydPwuv15vRar9eLQCCAtrY21NTUFChC67LyuFAB+0d/rGlmKtdG1txlzUtmXGwhS7p8+TImJyfNDkMKxcXFWLx4MYqLi80ORUiq1kfmvGXOjUg0K1asEKK9c+fOGRqH0e2pSsX5PBQKwePx5L2g197eDo/Hg3A4nNdxRFz4EY2eV/vIMOZ9Ph+CwSDC4TA2bdqU8XmrVq1Ca2srwuEwgsEg1qxZY2CU1iLDuJAZ+0d/rGlmKtdG1txlzUtmXGwhS9qwYUPabUIod0NDQzhy5AiGhobMDkVIqtZH5rxlzo1INC0tLaa3p2kaLly4YGgc58+f577KBlBtPg+FQmhqakJfX58ux+vr60NjY+OcF1xEW/gRTSGu9pFpzNfV1WHbtm0ZHz927Bh27tw564a6lJ5M40JG7B/9saaZqVwbWXOXNS+ZcbGFLCkajSKVSpkdhhRKSkrgcrlQUlJidihCUrU+Muctc25EonG73WhoaDCkLa/Xm/akXCKRQDweNySGafF4nH8QGUCl+TwWi2H16tW6j+V4PI7m5uacrywRbeFHJIW82kelMU/Z47gQG/tHf6xpZirXRtbcZc1LZlxsIUvq7OxEMpk0Owwp2O12NDU1wW63mx2KkFStj8x5y5wbkYi2b99uajvj4+OGtP9mY2NjprSrEjPnc6NvBL9582bdFjberK+vD1u2bMn6+aIt/Iik0Ff78HcYSofjQmzsH/2xppmpXBtZc5c1L5lxsYUsaeXKlSgrKzM7DCmMjY3h7NmzPCmUgar1kTlvmXMjEpHP5yv4dmJ+vz/jfv6lpaUFbTsT/p5SeGbM52bcCD4QCOR98v5G2tvbEQgEsnquSAs/IjHiah/+DkPpcFyIjf2jP9Y0M5VrI2vusuYlMy62kCXV19ebdvJENuPj4+ju7jbtk7+iU7U+Muctc25Eojp48CCcTmdBju10OnHgwIGMj1dUVMDhcBSk7UwcDgfvLWcAI+dzM28Ev3v37pxfMxd79uy54XNEW/gRhVFX+/B3GEqH40Js7B/9saaZqVwbWXOXNS+Z2TTevZMspKenZ9Z+7JFIBLW1tSZGRERERNkIh8NobGzU9WSkw+FAMBiE2+2+7vPuuOMOPPPMM7q1eyN33HEHnn76acPao8IKhUJYvXq1LlcsOJ1OdHR03HDMTguHw/B4PHm3m61wOHzdG5J7vd6cF5vmwuv1IhgMFrwdvfj9/oIuQvn9frS1tRXs+GaJRqNYsmRJ2sd6e3vhcrmUjEUkrAuRPPjzTGZR7Vwur2whS6qurkZREYevHqamptDf34+pqSmzQxGSqvWROW+ZcyMSmdvtRjAY1O0KF6fTmdVCCwCsWLFClzazZXR7qjJiPjf7RvCFvookl/bC4bAhCy0AcPr0ad3ud1NoRl7tw99hKB2OC7Gxf/THmmamcm1kzV3WvGTGs9VkSVu3bkVlZaXZYUhhcHAQ+/fvx+DgoNmhCEnV+sict8y5EYnO7XYjFArB7/fndRy/349QKJT11QGFvmeM2e2pqtDzuQg3gj937pyubefTnkgLPyIxcps3/g5D6XBciI39oz/WNDOVayNr7rLmJTNuI0aWMn3pWXV1NQYHBxEKhaS+9MwIU1NTGBwcRGVlJa8WSkPV+sict8y5EVlJIBDAnj17cPr06axf4/V6sX37dqxZsybn9rj9kXwKPZ+bvTWUpmmoqanRfbHnehwOB2KxGGw22zWPcTu+axm9zdtzzz2HW265RZrfYbiljT74u63Y2D/6Y00zu15tZJ9zZR0XMuTFbcSILICX0OmnqKiI27Jdh6r1kTlvmXMjshKfz4dgMIhwOIxNmzZlfN6qVavQ2tqKcDiMYDA4p4UWANi+fftcQxWyHSrsfC7CjeATiYShCy3AlatuhoaGrvm+pmm4cOGCobGcP38eon8u0Oirb7773e/ydxi6Bn+3FRv7R3+saWYq10bW3GXNS2bsKbKkjRs3oqKiwuwwpJBIJHD48GEkEgmzQxGSqvWROW+ZcyOyorq6Omzbti3j48eOHcPOnTuve9PubPh8voJv7+X3++e8GES5K+R8buTWUJmMj48bEsObjY2NXfM9kRZ+RGL0Nm/d3d38HYauwd9txcb+0R9rmpnKtZE1d1nzkhkXW8iSuru7TfsDVDalpaWor69HaWmp2aEISdX6yJy3zLkR0fUdPHgQTqezIMd2Op04cOBAQY5ttmg0CpvNlvYrGo2aFleh5nNRbgRv1vtUWVnZNd8TaeFHFGZd7fO+972Pv8PQLPzdVmzsH/2xppmpXBtZc5c1L5lxsYUs6ezZs0L/8WUlZWVlWLlyZdo/rEnd+sict8y5EdH11dTUoKOjAw6HQ9fjOhwOdHR0oKamRtfj0vUVaj4X5UbwFRUVuo/VG3E4HCgvL7/m+yIt/IjCjKt9Xn31VdTV1QldFzIef7cVG/tHf6xpZirXRtbcZc1LZlxsIUtqamqC3W43OwwpJJNJdHZ2IplMmh2KkFStj8x5y5wbEd2Y2+1GMBjU7QoXp9OJYDAIt9uty/Eoe4Waz43eGipTezabDcuWLTM0luXLl8Nms13zfZEWfkRhxtU+drsdXV1d/B2GZuHvtmJj/+iPNc1M5drImrusecmMiy1kSS6XCyUlJWaHIYVUKoVoNIpUKmV2KEJStT4y5y1zbkSUHbfbjVAoBL/fn9dx/H4/QqEQF1pMUoj5XLQbwa9YscLQWDK1J9LCjyjMuNqnpKQEv/3tb/k7DM3C323Fxv7RH2uamcq1kTV3WfOSmU3L9Js9URpHjhzBvffem9NrPvvZz+Jb3/qWLu339PTMukFuJBJBbW2tLscmIiIic0SjUSxZsiTtY729vXC5XAVrOxAIYM+ePTh9+nTWr/F6vdi+fTvWrFlTsLhEYmb/GG1wcBBVVVWmtFtRUXHN98PhMDwej2FxhMPhWb9rX621tRW7du0yLJbW1lbs3LnTsPZypWkaampqDN1KzOFwIBaLCb0IlQuV5hYiIrNxziWzqHYul1e2kCUtXrwYxcXFZochhcnJSVy+fBmTk5NmhyIkVesjc94y50ZEufP5fAgGgwiHw9i0aVPG561atQqtra0Ih8MIBoPKLLSIrBDzuWg3gne73WhoaDAkBq/Xm3GhBQBaWloMicOs9nJlxtU+73//+/Hqq6/ydxiahb/bio39oz/WNDOVayNr7rLmJTMuttCcLV26FF/4whdu+PXhD39Y97Y3btyY9tN/lLtEIoGHH34YiUTC7FCEpGp9ZM5b5tyIaO7q6uqwbdu2jI8fO3YMO3fuvO7JaDJWIeZzEW8Ev337dkNiuFE7Ii38iMLobd4+8IEP8HcYugZ/txUb+0d/rGlmKtdG1txlzUtm3EaMcnL1NmL33HMPjhw5Ymj705ee2e12jI2NIRwOS33pmRE0TcPY2BjKysqk2ZJAT6rWR+a8Zc6NKBfcSuBarEl6otalEPO5qFtD+f1+HD9+vGAx+P1+tLW13fB5gUAAa9euLVgcV7djhavHjN7mLRQK4V3vepc0v8OIOrdYDX+3FRv7R3+saWbXq43sc66s40KGvLiNGJEFJJPJjDcSpdzYbDbY7XbLTtqFpmp9ZM5b5tyIiFRSiPlc1BvBHzx4EE6nsyDtO51OHDhwIKvn+ny+gm/v5ff7LbHQAhh/tY/b7ebvMHQN/m4rNvaP/ljTzFSujay5y5qXzLjYQpa0detWVFZWmh2GFAYHB7Fv3z4MDg6aHYqQVK2PzHnLnBsRkUoKNZ8bvTVUNu3V1NSgo6MDDodD17YdDgc6OjpQU1OT9WtEWfgRhZHbvPF3GEqH40Js7B/9saaZqVwbWXOXNS+ZcbGFLKmzsxPJZNLsMKRgt9vR1NQEu91udihCUrU+Muctc25ERHoLh8PYu3dvxsfXr1+P1tZWRCIRA6O6olDzuag3gne73QgGg7otdDidTgSDQbjd7pxeJ9LCjwiMvNpHtt9hXC4XNE1L+2X17WyMJNu4kA37R3+saWYq12auuUejUdhstrRf0Wi0MMHmQOU+tSoutpAldXd3Y3x83OwwpFBaWor6+nrTbggrOlXrI3PeMudGRKSXQCAAr9cLj8eDQ4cOZXzemTNnsGvXLrjdbni9Xpw6dcqwGAs1n4t8I3i3241QKAS/359Xu36/H6FQKOeFlqvjEGHhRxRGXe3D32EoHY4LsbF/9MeaZqZybWTNXda8ZMbFFpqz/v5+PPbYY3jggQfwN3/zN/jbv/1bPPzwwwiFQgW/n0pzczPmz59f0DZUMTo6io6ODoyOjpodipBUrY/MecucGxFRvmKxGPx+P9auXYuurq6cXtvV1QWfz4d169YhFosVKMLfK+R8buTWULmqqalBW1sbTp48Ca/Xm9NrvV4vAoEA2tra8r6CRJSFHxEYdbUPf4ehdDguxMb+0R9rmpnKtZE1d1nzklmJ2QGQdT3xxBN44okn0j72rne9C9u3b8dnPvOZgtzEqbq6GkVFXCvUw9TUFPr7+zE1NWV2KEJStT4y5y1zbkRE+QiFQli9ejX6+vryOk57ezs6OzvR0dFR0BPohZzPp7eGOn78uO7HnpbvjeB9Ph98Ph8ikQgeeuihjFcgrVq1Co2NjWhpacnpKppsTC/8+P1+7NmzB6dPn876tV6vF9u3b8+rBiKZvtqnubk5758h4MoVLW/+GeLvMJQOx4XY2D/6Y00zU7k2suYua14ys2mFvgSBpHLkyBHce++9WT9/7dq1ePTRR7Fw4UJd2u/p6Zn1R2IkEkFtba0uxyYiIlJJNBrFkiVL0j7W29vL/fIVEwqF0NTUhHg8rtsxHQ6HpbeGisVi8Hg8upw4fzOn04lQKKTb/UlE+Xk2c+FHFLFYDFu2bEF7e/ucj+H3+3HgwAHL3b+GiIjEJcrvCqJhXQpPtXO5vDSAcnbLLbfgS1/6Ek6dOoWXX34ZyWQSw8PDeP7553Ho0CEsXbp05rknT56E3+/XfQX23e9+N6qqqgAAk5OT6O/vn9m6bHBwcOZ+LqOjoxgeHgYApFIp9Pf3zxxjYGAAExMTAICRkRGMjIwAACYmJjAwMDDzvP7+fqRSKQDA8PDwzKV74+PjGBwcBABomob+/n5MTk4CAIaGhpBMJgEAY2NjSCQSAK5dkU4kEhgbGwMAJJNJDA0NGZ7TwMAAnn/+eaRSKWly0rOfUqkULl68OBOfDDll008TExOIRqN44403pMlpup/eeOMN/PrXv0YqlZImJ5nGHnMyLqfx8XFUVFQAAIqKimZdNToyMmLJnGTsJyNyisViWL16NaampjBv3jwAwIIFC7BgwQIAwLx582Z+7wKuXGFcUnLlAvmFCxfObO1aWlqKyspKAIDNZoOmaVizZg1isVhBchoZGUE0GkUikShIP9XU1ODkyZN429veNpNTdXU1iouLAQDl5eUzNystKyvL+PNUUVGBsrIyAFducvpHf/RH6OjoQHV1ta5j73r9ZNTYu+2223DffffNXNleWVk5s8f4/Pnz8c1vfhM7d+7E0qVLpf15mr7a5/HHH0dTUxOA7H+ePvKRj+CJJ55AW1sbKioqrslpbGwM0WgU/f39nPeY06y/TyKRyKy/76yek0z9NDAwgGg0imQyKU1OZvfT8PAwLl68iFQqJU1ORv5uVFVVlfb3PVFzyrafRkdHEY1GZ+qQS05v/h326t/3zP55SqVSuHTp0kzNrdxPquBiC+XkrrvuQm9vL77+9a9j9erVeOtb34qysjIsWLAA7373u3Hffffhueeem3X1y5NPPpnXJ7vS8fv9+OQnPwkAeO2117B///6ZCeCRRx7BxYsXAQDBYBA//OEPAQCvvPIK9u/fP3OMhx56CC+++CIA4KmnnsJTTz0FAHjxxRfx0EMPzTxv//79eOWVVwAAP/zhDxEMBgEAFy9exCOPPALgyuS0f/9+vPbaawCA73//+zh79iwA4Nlnn0VbWxuAKxPQ/v37Zya8trY2PPvsswCAs2fP4vvf/77hOT355JN49NFHMTQ0JE1OevbT0NAQHnvsMZw7d06anLLppzfeeANHjx7FkSNHpMlpup+OHDmC9vZ2DA0NSZOTTGOPORmTUzgcxje+8Q2sW7cOwJUTolu3bp35I+ORRx7B3/3d3yESiVgmJxn7yaicNm/ejL6+Ptx33314xzveAQC48847ceeddwIA3vGOd+C+++6byWnr1q1461vfCgD46Ec/isbGRgDAe9/7XnzmM58BcGXxYevWrUilUtiyZUtBcuru7sbRo0fx4x//uGD9ZLPZsHnzZjidzpmcFi1aBAD4xCc+gZUrVwIAbr/99ow/T+vWrcPtt98OAPizP/szfOUrX4Hb7dZ97F2vn4wce48//vjM4tJnPvMZvPe97wUANDY24qc//WlB+kmkn6dpv/rVr/DQQw8hHA5j8+bN1/152r59O8LhMD73uc/NLE6ly+mll17C0aNHOe8xp1k5vfDCC3j88cdnToLJkJNM/fTkk0/i6NGjeOGFF6TJyex+OnfuHB577DEMDQ1Jk5ORvxtl+n1P1Jyy7aeLFy/i6NGj6OjoyLmf0v0OO/37ntk/T0NDQ/jud7+Ljo4Oy/eTMjSyvIMHD2rvec97dP167LHH8oppcnJSa2ho0ABoALS6ujpdco1EIhoAzW63a+Xl5VokEtFSqZQWj8e1qakpTdM0bWBgQBsbG9M0TdNGRka0oaEhTdM0bWJiQovH4zPH6u/v18bHxzVN07Th4WFteHhY0zRNGx8f1/r7+2eeF4/HtYmJCU3TNG1oaEgbGRnRNE3TxsbGtIGBAU3TNG1qakqLx+NaKpXSNE3TEomENjo6qmmapiWTSW1wcHCmLvF4XJucnNQ0TdMGBwe1ZDKpaZqmjY6OaolEQtM0jTkxJ+bEnJgTcypITj/4wQ+0P/3TP9UAaGVlZVpFRYUGQCsqKtKqq6u1oqIiDYBWUVGhlZWVaQC0P/3TP9VOnDghbE4y9pOROT3++OMzv69VVVVp8+bN0wBoCxYs0BYsWKAB0ObNm6dVVVXNPK+6ulorKSnRAGgLFy7U5s+frwHQSktLtcrKSg2AZrPZtOrqaq24uFgDoP3gBz+wdD+9/vrrmt/vn5VTeXm5Zrfbs/558vv92n//938XJKfe3t6M/dTb22vo2AuHw5rNZtMAaJWVlVppaakGQJs/f7528eLFgvZToXLKt59++ctfZvx5CofDlsxJxn5iTsyJOTEnmXPq7e3N+Pteb2+vJXPSo596e3sz/g7b29tryZxE66fpc7nTX5FIRJMZ79kigQceeAAPPvigrsf85je/ic997nN5HeOZZ57BHXfcMfP/l19+eebTdXOl2j5/REREeojFYti8eXNeN/vmPQTk5PV60dXVZUg705+0s7JAICDkjeBF2m9cpFhEwZoQEZHZ+F6UHutSeKqdy+U2YlQwXq93Zh9IAPjlL3+p27F37Ngxa69jmruBgQF87Wtfm7XnI/2eqvWROW+ZcyNKJxQKwePx5LXQAgDt7e3weDwIh8M6RUZmC4fDhiy0AMDp06cRiUR0PaYZ87nP50MwGEQ4HMamTZsyPm/VqlVobW1FOBxGMBgs6EILqYO/w1A6HBdiY//ojzXNTOXayJq7rHnJjIstEnjggQegaZquX/le1QJcufnjTTfdNPP/119/Pe9jTjtx4sTMDa8oPwsWLMBdd901c1M0mk3V+sict8y5Eb1ZKBRCU1MT+vr6dDleX18fGhsbueAiiXwX4Mxuz8z5vK6uDtu2bcv4+LFjx7Bz585Zn+Ijyhd/h6F0OC7Exv7RH2uamcq1kTV3WfOSGRdbqKCGh4dn/r1w4ULdjnvp0iVMTEzodjyVzZs3D0uXLp11FRL9nqr1kTlvmXMjulosFsPq1asRj8d1PW48HkdzczNisZiux6XZotEobDZb2q9oNKpLG+fOndPlOGa1x/mcVMMxT+lwXIiN/aM/1jQzlWsja+6y5iUzLrZQwfzXf/0XBgcHZ/7vdDp1OzZXdfUzMjLCK4WuQ9X6yJy3zLkRXW3z5s26XdHyZn19fdiyZUtBjk3G0DQNFy5cMLTN8+fPQ8/bRXI+J9VwzFM6HBdiY//ojzXNTOXayJq7rHnJjIstVDCPPPLIzL+rqqpQX19vXjBEREQKCQQCBd8iqr29HYFAoKBtUOEkEgndr3q6kXg8jqGhIUPbJCIiIiIiMkqJ2QGQdQwNDaG8vDyr5/7kJz/BP/zDP8z8/+6770ZJiX7D7cSJE7odS3XT+z9SeqrWR+a8Zc6NaNru3bsNaWfPnj3w+XyGtEX6Gh8fN6XdsbExVFRU6HIszuekGo55SofjQmzsH/2xppmpXBtZc5c1L5nxyhbK2ve//32sWLEC3/nOdzAwMJD2OclkEgcOHMAdd9yBZDIJAKiursbf/u3f6hoL9yvUz8TEBO+Bcx2q1kfmvGXOjQgAwuEwurq6DGnr9OnTiEQihrRF+iotLTWl3bKyMt2OxfmcVMMxT+lwXIiN/aM/1jQzlWsja+6y5iUzLrZQTn7+85/jnnvuwU033QS3241PfvKT+J//83/is5/9LJqbm/EHf/AHuP/++zE6OgoAmD9/Pp544gn84R/+oa5x8J4t+uH+j9enan1kzlvm3IgAFHz7MLPbI31UVFTA4XAY2qbD4cj6KulscD4n1XDMUzocF2Jj/+iPNc1M5drImrusecnMpul5l0qS2pEjR3Dvvfdm/fwVK1bgyJEjuO2223SLoaenB3V1dTP/j0QiqK2t1e34REREVnfHHXfgmWeeMbS9p59+2rD2VBGNRrFkyZK0j/X29sLlcuXdBsdKfozoI8YiB9aEiIjMxvei9FiXwlPtXC7v2UJZa2lpwbvf/W785Cc/wdmzZ/Hiiy/i9ddfRywWw9TUFKqqqrBkyRKsXLkSn/jEJ/Anf/InZodMRESkFE3TcOHCBUPbPH/+PDRNg81mM7Rdyt+KFSsMXWxZsWKFYW0REREREREZjduIUdbKysrwoQ99CF/+8pfx/e9/H88++yxefvlljIyMIJlM4tVXX8XZs2exb9++gi+0PPDAA6iuri5oG6ro7+/Hgw8+iP7+frNDEZKq9ZE5b5lzI0okEojH44a2GY/HMTQ0ZGibsguHw9i7d2/Gx9evX4/W1ta875fT0tKS1+vNbo/zOamGY57S4bgQG/tHf6xpZirXRtbcZc1LZlxsIUs6cuQIT+zopLy8HPfcc4+ue6jLRNX6yJy3zLkRjY+Pm9Lu2NiYKe3KJhAIwOv1wuPx4NChQxmfd+bMGezatQtutxterxenTp2aU3tutxsNDQ1zDTcnXq931vYBeuB8TqrhmKd0OC7Exv7RH2uamcq1kTV3WfOSGRdbyJKi0ShSqZTZYUihpKQELpcLJSXcVTAdVesjc94y50ZUWlpqSrtlZWWmtCuLWCwGv9+PtWvXoqurK6fXdnV1wefzYd26dYjFYjm3vX379pxfMxeFaMfs+dzlckHTtLRfRu/vLVIsVDhmj3kSE8eF2Ng/+mNNM1O5NrLmLmteMuNiC1nS3XffjYULF5odhhSGh4fx6KOPYnh42OxQhKRqfWTOW+bciCoqKuBwOAxt0+Fw8JNWeQiFQvB4PDh+/Hhex2lvb4fH40E4HM7pdT6fr+Dbifn9fqxZs0b343I+FxMXfgqHY57S4bgQG/tHf6xpZirXRtbcZc1LZlxsIUvq7+/H1NSU2WFIoaioCNXV1Sgq4nSQjqr1kTlvmXMjstlsWLZsmaFtLl++HDabzdA2ZREKhdDU1IS+vj5djtfX14fGxsacF1wOHjwIp9OpSwxv5nQ6ceDAgYIcm/M5qYZjntLhuBAb+0d/rGlmKtdG1txlzUtmNk3TNLODIMpWT0/PrP2+I5EIamtrTYyIiIhILK2trdi1a5eh7e3cudOw9v6/9u48vqrq7vf49yQhOUASAoimqdVgB7ESRFstlhpSpZWpLdaqEK3i8Cj1efTF09YrpbcW20sd24q2Du2tgjKptKI1SqvYBFrFOSRRcSpBEVGGzMlJcpJ9/+BynkTOCUnOTvbea33er1derxPOHn6/31rd3e6VtbYp9u7dqwkTJrg20NJVXl6eKioqNHr06F7vU1lZqSlTpqimpsa1OEaOHKmysjIVFBS4dkwgiKqrqzV27Ni4323bto0ZPwCAAcf/F8VHXQaebc9yGRZDIE2cONGzdelN09bWpvLycs9equx3ttbH5LxNzg2QNOBLQnl9PlNcddVVAzLQIu2f4XL11Vf3aZ+CggKVlZW5NsMlLy9vwAdauJ7DNvR5xEO/8Dfax33UNDGba2Nq7qbmZTIGWxBIRUVFCofDXodhhEgkotLSUkUiEa9D8SVb62Ny3ibnBkj7H5qfdtppg3KuwsLCbn+lhN4pKSlJ+h0th7Jq1SqVlJT0aZ+CggJVVFSouLg4qXMXFxeroqJiwGe0cD1HULj1Hhv6POKhX/gb7eM+apqYzbUxNXdT8zIZy4ghUGybegYAQH+UlJRo1qxZg3KegXjxuekKCwu1adOmQTlPWVlZv/YtKSnRzTffrI0bN/bpfNdeey19AgAAwGdYLis+6jLwbHuWy8wWBFI4HOZlvC5xHEeRSESMu8Zna31Mztvk3IADZs6cOeDLexUXF/NQvR8qKysHZaBFkjZu3Kiqqqp+7Ttz5kyVlZWpsrJSV155ZcLtJk+erEWLFqmyslJlZWUD3ieqq6sVCoUUCoWUkpKioUOHKiUlRaFQSNXV1QN6bsBr3MMgHvqFv9E+7qOmidlcG1NzNzUvkzHYgkBauHChRowY4XUYRqirq9NNN92kuro6r0PxJVvrY3LeJucGdHXHHXe49v6NT8rLy9Ptt98+IMc23UAvH+b2+caPH69rrrkm4fcrVqzQkiVLPFlObsSIEdwTwircwyAe+oW/0T7uo6aJ9VQbt5a09CtT+4WpeZmMZcQQKAemnuXm5mr37t3asmWL0VPPBkNHR4d2796tMWPGKDU11etwfMfW+pict8m5AZ9UWVmpKVOmqKamxrVjjhw5csBffG6yqVOnasOGDYN6vqeeeiqpY/hpeYWusaSmpmrMmDHavXu3Ojo6WOoBxuMeBvHQL/yN9nEfNU3M5tr0N3c/3efGY0KbsowYEAC7du1SR0eH12EYITU1Vbm5uYG9aA80W+tjct4m5wZ8UkFBgcrKylyb4ZKXl8dASxIcx9Err7wyqOd8+eWXjV12oKOjg3tCWIV7GMRDv/A32sd91DQxm2tjau6m5mUyBlsQSPPmzVNmZqbXYRihsbFRy5YtU2Njo9eh+JKt9TE5b5NzA+IpKChQRUWFiouLkzpOcXGxKioqGGhJQkNDg6uzjHqjpqbG2OtdZmYm94SwCvcwiId+4W+0j/uoaWI218bU3E3Ny2QMtiCQqqurFY1GvQ7DCGlpacrPz1daWprXofiSrfUxOW+TcwMSGT16tFauXKnHH39chYWFfdq3sLBQJSUlWrlypUaPHj1AEdqhra3Nk/O2trZ6ct6BFo1GuSeEVbiHQTz0C3+jfdxHTROzuTam5m5qXibjnS0IFNvW+QMAYCBUVVXprrvu0p133hn3+8mTJ2vKlCmaO3euJy8+N1V9fb0nL3Ovr69XVlZWv/f301rWfooFAAAAwca95cCz7VkuM1sQSJMmTVJGRobXYRihtbVVmzdvNvavXpNla31Mztvk3IDeGj9+vK655pqE369YsUJLlixhoMVlWVlZGjly5KCec+TIkcYus5WRkcE9IazCPQzioV/4G+3jPmqamM21MTV3U/MyGYMtCKSJEycqPT3d6zCM0NbWpvLycs+WNvE7W+tjct4m5wbA30KhkE466aRBPeeXvvQlhUKhQT3nYElPT+eeEFbhHgbx0C/8jfZxHzVNzObamJq7qXmZjGXEECi2TT0DAGCgMGXeG4sWLdINN9wwqOdbsmRJUsfwU1/xUywAAAAINu4tB55tz3KZ2YJAysnJUUoK3dcNnZ2dqq2tVWdnp9eh+JKt9TE5b5NzA+B/c+fODdz58vPz5ThO3B8v/wM0JSWFe0JYhXsYxEO/8Dfax33UNDGba2Nq7qbmZTL+ywSBtGDBAmVnZ3sdhhHq6+u1dOlS1dfXex2KL9laH5PzNjk3AP5XUFCg0047bVDOVVhYaNR7dyorK3XLLbfEfs/Ozu52T3jBBRdo0aJFqqqq8ipEYEBxD4N46Bf+Rvu4j5omZnNtTM3d1LxMxjJiCJQDU89ycnJUX1+viooKo6eeDYbOzk7V19crOzubvwyNw9b6mJy3ybkBfcGUee+UlJRo1qxZg3KeGTNmDPh5BlpJSYluuukmbdq0qdu/p6SkKDs7W/X19Qf9td9pp52mhQsXGpE/cAD3MIiHfuFvtI/7qGliNtemv7n7/b+JTGhTlhEDAoApdO5hCY6e2Vofk/M2OTcAwTBz5swBX06suLg48AMNe/fuVXFxsWbNmnXQQIvU87IKmzZt0syZM3X++edr7969gxEuMOC4h0E89At/o33cR00Ts7k2puZual4mo6UQSPPnz1dWVpbXYRihoaFBd999txoaGrwOxZdsrY/JeZucG4DguOOOO5SXlzcgx87Ly9Ptt98+IMceLBUVFZowYYJWr16dcJusrKxD3hOuWrVKEyZMUGVl5UCECQwq7mEQD/3C32gf91HTxGyujam5m5qXyRhsQSCVl5erra3N6zCMkJ6erokTJyo9Pd3rUHzJ1vqYnLfJuQF94deXntti9OjRWr9+vUaOHOnqcUeOHKn169dr9OjRrh53MFVUVKioqEg7d+7scbu2trZe3RPu3LlTU6ZMYcAFgcc9DOKhX/gb7eM+apqYzbUxNXdT8zIZ72xBoNi2zh8AADBbZWWlpk2bdsiBhd7Iy8vT+vXrVVBQ4EJk3ti7d68mTJjgSj0+KS8vTxUVFYEeiAIAAIB7/P7OFhPY9iyXmS0IpKKiIoXDYa/DMEIkElFpaakikYjXofiSrfUxOW+TcwMQPAUFBaqoqFBxcXFSxykuLlZFRUWgB1ok6aqrrur1QEs4HO7TPeHOnTt19dVXJxMe4CnuYRAP/cLfaB/3UdPEbK6NqbmbmpfJGGxBIOXn5ystLc3rMIwQjUZVXV2taDTqdSi+ZGt9TM7b5NwABNPo0aO1cuVKPf744yosLOzTvoWFhSopKdHKlSsDP2OjpKSkx3e0fFJaWlqf7wlXrVqlkpKS/oQHeI57GMRDv/A32sd91DQxm2tjau6m5mUylhFDoNg29QwAANinqqpKd911l+68886430+ePFlTpkzR3Llzu90XBV1hYaE2bdo0KOcpKysb8PMAAADA31hGbODZ9iyXmS0IpNzcXKWmpnodhhE6Ojq0a9cudXR0eB2KL9laH5PzNjk3AGYYP368rrnmmoTfr1ixQkuWLDFqoKWysrLPAy2pqan9uifcuHGjqqqq+rQP4AfcwyAe+oW/0T7uo6aJ2VwbU3M3NS+TMdiCQJo/f76ysrK8DsMIDQ0Nuueee9TQ0OB1KL5ka31Mztvk3AAgqPqyfNgBWVlZ/b4n7M/5AK9xD4N46Bf+Rvu4j5omZnNtTM3d1LxMxjJiCJQDU8/C4bBaW1tVWVlp9NSzweA4jlpbW5WRkaFQKOR1OL5ja31Mztvk3ACYw7YlDaZOnaoNGzb0aZ9QKKSMjAy1traqr/9JM3XqVD311FN92gfwGvcwiId+4W+0j/uoaWI216a/ufv9ntuENrVtGTHeMI5AikQiXodgjFAopHA47HUYvmVrfUzO2+TcACCIHMfRK6+80q/9+ntP+PLLL8txnMD+RyvsxD0M4qFf+Bvt4z5qmpjNtTE1d1PzMhnLiCGQFixYoOzsbK/DMEJ9fb1uu+021dfXex2KL9laH5PzNjk3AAiihoYG1dTU9Hm/7Ozsft8T1tTUqLGxsc/7AV7iHgbx0C/8jfZxHzVNzObamJq7qXmZjMEWBFJpaSmzW1wSDodVVFTESHkCttbH5LxNzg0Agqitra1f+0UikaTuCVtbW/u1H+AV7mEQD/3C32gf91HTxGyujam5m5qXyXhnCwLFtnX+AACAnfy+frSb6uvrNWLECE/Om5WVNejnBQAAgD/YdM/tFdue5TKzBYE0bdo0DR061OswjNDS0qL169erpaXF61B8ydb6mJy3ybkBQBBlZWVp5MiRfd5v6NCh/b4nHDlypDIzM/u8H+Al7mEQD/3C32gf91HTxGyujam5m5qXyRhsQSDl5OQoJYXu64bOzk7V1taqs7PT61B8ydb6mJy3ybkBMEd+fr4cx4n7Y9pf2IVCIZ100kl93i8lJaXf94Rf+tKXFAqF+rwf4CXuYRAP/cLfaB/3UdPEbK6NqbmbmpfJWEYMgWLb1DMAAAAbLFq0SDfccMOgnm/JkiWDdj4AAAD4D8uIDTzbnuUyNQCBlJ+fr7S0NK/DMEI0GlV1dbWi0ajXofiSrfUxOW+TcwOAoJo7d26f90lLS+v3PWF/zgd4jXsYxEO/8Dfax33UNDGba2Nq7qbmZTIGWxBI8+bNY51tlzQ2Nmr58uVqbGz0OhRfsrU+Judtcm4AEFQFBQU67bTT+rRPZmZmv+4JCwsLu/11HcxVXV2tUCgU96e6utrr8PqMexjEQ7/wN9rHfdQ0MZtrY2rupuZlMpYRQ6DYNvUMAADAFiUlJZo1a9agnGfGjBkDfh54j6VBAABAT7hXGHi2PctlZgsAAAAAz82cOXPAl/cqLi5moAUAAADAgGCwBYG0cOFCjRgxwuswjFBXV6cbb7xRdXV1XofiS7bWx+S8Tc4NAILujjvuUF5eXq+2HTFiRJ/uCfPy8nT77bcnEx7gKe5hEA/9wt9oH/dR08Rsro2puZual8kYbEEgrVu3Ts3NzV6HYYRhw4Zp9uzZGjZsmNeh+JKt9TE5b5NzA4CgGz16tNavX6+RI0cectvm5uZe3xOOHDlS69ev1+jRo90IE/AE9zCIh37hb7SP+6hpYjbXxtTcTc3LZLyzBYFi2zp/AAAANqqsrNS0adO0c+fOpI+Vl5en9evXq6CgwIXIECSsww4AAHrCvcLAs+1ZLjNbEEiM6rqnL38VaiNb62Ny3ibnBgCmKCgoUEVFhYqLixNu05u/9CsuLlZFRQUDLTAC9zCIh37hb7SP+6hpYjbXxtTcTc3LZAy2AAAAAPCd0aNHa+XKlXr88cdVWFjYp30LCwtVUlKilStXsnQYAAAAgEHBMmIIFNumngEAAGC/qqoq3XXXXbrzzjvjfj958mRNmTJFc+fO7Xa/CHuxNAgAAOgJ9woDz7ZnucxsQSCNGzdOQ4YM8ToMI7S3t2vr1q1qb2/3OhRfsrU+Judtcm4AYLLx48frmmuuif0+ZMiQbveEK1as0JIlSxhogbG4h0E89At/o33cR00Ts7k2puZual4mY7AFgcQ7W9zD+o89s7U+Judtcm4AYJPevLMFMAn3MIiHfuFvtI/7qGliNtfG1NxNzctkLCOGQLFt6hkAAAD+B0s9oC/oLwAAoCfcKww8257lMrMFAAAAAAAAAAAgCQy2IJAWL16snJwcr8MwQm1tra6//nrV1tZ6HYov2Vofk/M2OTcAsElOTg73hLAK9zCIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJCWLVumxsZGr8MwQmZmpi666CJlZmZ6HYov2Vofk/M2OTcAsEljYyP3hLAK9zCIh37hb7SP+6hpYjbXxtTcTc3LZGleBwD0R3V1tdchGCMtLY01KHtga31Mztvk3ADAJtFolHtCWIV7GMRDv/A32sd91DQxm2tjau6m5mUyZrYgkObMmaPhw4d7HYYRmpqatGbNGjU1NXkdii/ZWh+T8zY5NwCwyfDhw7knhFW4h0E89At/o33cR00Ts7k2puZual4mY7AFgVRbW6vOzk6vwzBCSkqKcnJylJLC5SAeW+tjct4m5wYANuns7OSeEFbhHgbx0C/8jfZxHzVNzObamJq7qXmZLOQ4juN1EEBvvfbaaxo/fnzs96qqKh1//PEeRgQAAIDBUl1drbFjx8b9btu2bSyzgJjKykrdfffduvPOO+N+P3nyZBUWFqq4uLjbf18AAAB7cG858Gx7lsuwGAJp4sSJSk9P9zoMI7S1tam8vFxtbW1eh+JLttbH5LxNzg0ATJefny/HceQ4jlpbW/Xqq6+qtbVVjuPwH8OQJJWUlKiwsFATJkxIONAiSf/61790ww03qKCgQIWFhXriiScGMcr+4R4G8dAv/I32cR81Tczm2piau6l5mYzBFgRSUVGRwuGw12EYIRKJqLS0VJFIxOtQfMnW+pict8m5AYBNuJ6jq71796q4uFizZs3Spk2b+rTvpk2bNHPmTJ1//vnau3fvAEWYPPo84qFf+Bvt4z5qmpjNtTE1d1PzMhnLiCFQbJt6BgAAAKBnFRUVmj59unbu3Jn0sfLy8rR+/XoVFBS4EBkAAPAzlhEbeLY9y2VmCwIpHA4rFAp5HYYRHMdRJBIR467x2Vofk/M2OTcAsAnXc0j7B1qKiopcGWiRpJ07d2rKlCmqrKx05Xhuos8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgkBauHChRowY4XUYRqirq9NNN92kuro6r0PxJVvrY3LeJucGADbheo69e/dq+vTpqqmpcfW4NTU1mjZtmu+WFKPPIx76hb/RPu6jponZXBtTczc1L5OxjBgC5cDUs9zcXO3evVtbtmwxeurZYOjo6NDu3bs1ZswYpaameh2O79haH5PzNjk3ALAJ13MUFxdr9erVA3r8lStXDtjx+4o+j3joF/5G+7iPmiZmc236m7vflxEzoU1ZRgwIgF27dqmjo8PrMIyQmpqq3NzcwF60B5qt9TE5b5NzAwCbcD23W0lJyYAOtEjSqlWrVFJSMqDn6Av6POKhX/gb7eM+apqYzbUxNXdT8zIZgy0IpHnz5ikzM9PrMIzQ2NioZcuWqbGx0etQfMnW+pict8m5AYBNuJ7b7aabbhqU89x8882Dcp7eoM8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgkCqrq5WNBr1OgwjpKWlKT8/X2lpaV6H4ku21sfkvE3ODQBswvXcXpWVldq0adOgnGvjxo2qqqoalHMdCn0e8dAv/I32cR81Tczm2vQn98rKSt1yyy0Jv7/gggu0aNEiT+8DbG7ToOKdLQgU29b5AwAAANDdokWLdMMNNwzq+ZYsWTJo5wMAAAOnpKREN910U5/+cOO0007TwoULNWPGjAGMzEy2PctlZgsCadKkScrIyPA6DCO0trZq8+bNam1t9ToUX7K1PibnbXJuAGATruf2euGFF4w+XyL0ecRDv/A32sd91DQxm2vTm9z37t2r4uJizZo1q88zZDdt2qSZM2fq/PPP1969e5MNt9dsbtOgYrAFgTRx4kSlp6d7HYYR2traVF5erra2Nq9D8SVb62Ny3ibnBgA24XpuJ8dx9MorrwzqOV9++WX5YUEI+jzioV/4G+3jPmqamM21OVTuFRUVmjBhglavXp3UeVatWqUJEyaosrIyqeP0ls1tGlQsI4ZAsW3qGQAAAID/UV9frxEjRnhy3qysrEE/LwAASE5FRYWKiopUU1Pj2jFHjhypsrIyFRQUuHZMU9n2LJeZLQiknJwcpaTQfd3Q2dmp2tpadXZ2eh2KL9laH5PzNjk3ALAJ13M7efWXnX5YvoM+j3joF/5G+7iPmiZmc20S5b53715Nnz7d1YEWSaqpqdG0adMGfEkxm9s0qHhajUBasGCBsrOzvQ7DCPX19Vq6dKnq6+u9DsWXbK2PyXmbnBsA2ITruZ28WkrYD++LpM8jHvqFv9E+7qOmidlcm0S5X3XVVdq5c+eAnHPnzp26+uqrB+TYB9jcpkHFMmIIlANTz3JyclRfX6+Kigqjp54Nhs7OTtXX1ys7O5vZQnHYWh+T8zY5NwCwCddzOzmOo9GjR7v+F6o9GTlypPbu3atQKDRo54yHPo946Bf+Rvu4j5omZnNt4uVeUlKiWbNmDfi5H3/8cc2cOXNAjm1Cm7KMGBAATKFzT0pKCsuy9cDW+pict8m5AYBNuJ7bKRQK6aSTThrUc37pS1/yfKBFos8jPvqFv9E+7qOmidlcm3i533TTTYNy7ptvvnnAjm1zmwYVLYVAmj9/Pi+odElDQ4PuvvtuNTQ0eB2KL9laH5PzNjk3ALAJ13N7nXLKKUafLxH6POKhX/gb7eM+apqYzbX5ZO6VlZXatGnToJx748aNqqqqGpBj29ymQcVgCwKpvLzcs5djmiY9PV0TJ070bP1rv7O1PibnbXJuAGATruf2mjt3rtHnS4Q+j3joF/5G+7iPmiZmc20+mfvq1asH9fwDdT6b2zSoeGcLAsW2df4AAAAAHKywsHBQ/mK1sLBQZWVlA34eAADgnqlTp2rDhg2Der6nnnpq0M4XJLY9y2VmCwKpqKhI4XDY6zCMEIlEVFpaqkgk4nUovmRrfUzO2+TcAMAmXM/tdu211xp1nt6gzyMe+oW/0T7uo6aJ2Vybrrk7jqNXXnllUM//8ssvayDmM9jcpkHFYAsCKT8/X2lpaV6HYYRoNKrq6mpFo1GvQ/ElW+tjct4m5wYANuF6breZM2cO+PJexcXFmjFjxoCeoy/o84iHfuFvtI/7qGliNtema+4NDQ2qqakZ1PPX1NSosbHR9ePa3KZBxTJiCBTbpp4BAAAAiG/v3r2aMGGCdu7c6fqx8/LyVFFRodGjR7t+bAAAMHD27NmjMWPGDPp5d+/ercMOO2zQz+t3tj3LZWYLAik3N1epqaleh2GEjo4O7dq1Sx0dHV6H4ku21sfkvE3ODQBswvUco0eP1vr16zVy5EhXjzty5EitX7/edwMt9HnEQ7/wN9rHfdQ0MZtr0zV3r14mn5GR4foxbW7ToGKwBYE0f/58ZWVleR2GERoaGnTPPfeooaHB61B8ydb6mJy3ybkBgE24nkOSCgoKVFZWpry8PFeOl5eXp7KyMhUUFLhyPDfR5xEP/cLfaB/3UdPEbK5N19yzsrJc/0OMQxk5cqQyMzNdP67NbRpULCOGQDkw9SwcDqu1tVWVlZVGTz0bDI7jqLW1VRkZGQqFQl6H4zu21sfkvE3ODQBswvUcXe3du1dXX321Vq1a1e9jFBcX6/bbb/fdjJYD6POIh37hb7SP+6hpYjbX5pO5T506VRs2bBi080+dOlVPPfWU68c1oU1ZRgwIgEgkIsYJ3REKhRQOhwN70R5ottbH5LxNzg0AbML1HF2NHj1aK1eu1OOPP67CwsI+7VtYWKiSkhKtXLnStwMtEn0e8dEv/I32cR81Tczm2nwy91NOOWVQzz9Q57O5TYOKwRYE0oIFC5Sdne11GEaor6/Xbbfdpvr6eq9D8SVb62Ny3ibnBgA24XqOeGbOnKmysjJVVlbqyiuvTLjd5MmTtWjRIlVWVqqsrEwzZswYxCj7hz6PeOgX/kb7uI+aJmZzbT6Z+9y5cwf1/AN1PpvbNKgYbEEglZaWKhKJeB2GEcLhsIqKihQOh70OxZdsrY/JeZucGwDYhOs5ejJ+/Hhdc801Cb9fsWKFlixZ0m1ZC7+jzyMe+oW/0T7uo6aJ2VybT+ZeUFCg0047bVDOXVhYOGD3Eza3aVDxzhYEim3r/AEAAADon+rqao0dOzbud9u2bVN+fv7gBgQAAAZNSUmJZs2aNSjnCcIMWa/Y9iyXmS0IpGnTpmno0KFeh2GElpYWrV+/Xi0tLV6H4ku21sfkvE3ODQBswvUctqHPIx76hb/RPu6jponZXJt4uc+cOXPAlxMrLi4e0IEWm9s0qBhsQSDl5OQoJYXu64bOzk7V1taqs7PT61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrkyj3O+64Q3l5eQNyzry8PN1+++0DcuwDbG7ToGIZMQSKbVPPAAAAAPQPy4gBAIDKykpNmTJFNTU1rh1z5MiRKisrU0FBgWvHNJVtz3KZGoBAys/PV1pamtdhGCEajaq6ulrRaNTrUHzJ1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2vTU+4FBQUqKytzbYZLXl7eoA202NymQcVgCwJp3rx5yszM9DoMIzQ2Nmr58uVqbGz0OhRfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObaHCr3goICVVRUqLi4OKnzFBcXq6KiYtBmtNjcpkHFMmIIFNumngEAAADoH5YRAwAAn1RSUqKbb75ZGzdu7PU+hYWFuvbaazVjxowBjMxMtj3LZWYLAAAAAAAAAMB4M2fOVFlZmSorK3XllVcm3G7y5MlatGiRKisrVVZWxkALeoXBFgTSwoULNWLECK/DMEJdXZ1uvPFG1dXVeR2KL9laH5PzNjk3ALAJ13PYhj6PeOgX/kb7uI+aJmZzbfqT+/jx43XNNdck/H7FihVasmRJt1kZg83mNg0qBlsQSOvWrVNzc7PXYRhh2LBhmj17toYNG+Z1KL5ka31Mztvk3ADAJlzPYRv6POKhX/gb7eM+apqYzbUxNXdT8zJZmtcBAP2xdetWr0MwxpAhQzRu3Divw/AtW+tjct4m5wYANuF6DtvQ5xEP/cLfaB/3UdPEbK6NqbmbmpfJmNmCQGJU1z3Nzc3MFOqBrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkDLYAAAAAAAAAAAAkIeQ4juN1EEBvvfbaa91eTFVVVaXjjz/ew4gAAAAA+FF1dbXGjh0b97tt27YpPz9/cAMCAAC+wr3CwLPtWS4zWxBI48aN05AhQ7wOwwjt7e3aunWr2tvbvQ7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmOwBYHEO1vcw/qPPbO1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYxlxBAotk09AwAAANA/LA0CAAB6wr3CwLPtWW6a1wEAAAAAAOC2/Px88beFAAAAGCwsI4ZAWrx4sXJycrwOwwi1tbW6/vrrVVtb63UovmRrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1d1PzMhnLiCFQDkw9y8/P144dO1ReXm701LPBEI1GtWPHDh155JFKS2Oy2yfZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc236m7vflxEzoU1ZRgwIgOrqaq9DMEZaWprn/+fhZ7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvk7GMGAJpzpw5Gj58uNdhGKGpqUlr1qxRU1OT16H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJBqa2vV2dnpdRhGSElJUU5OjlJSuBzEY2t9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGe9sQaDYts4fAAAAAAAAAPf5/Z0tJrDtWS7DYgikiRMnKj093eswjNDW1qby8nK1tbV5HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxmALAqmoqEjhcNjrMIwQiURUWlqqSCTidSi+ZGt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGcuIIVBsm3oGAAAAAAAAwH0sIzbwbHuWy8wWBFI4HFYoFPI6DCM4jqNIJCLGXeOztT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMwRYE0sKFCzVixAivwzBCXV2dbrrpJtXV1Xkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGMmIIlANTz3Jzc7V7925t2bLF6Klng6Gjo0O7d+/WmDFjlJqa6nU4vmNrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtelv7n5fRsyENrVtGbE0rwMA+mPXrl1eh2CM1NRU5ebmeh2Gb9laH5PzNjk3ALAJ13PYhj6PeOgX/kb7uI+aJmZzbUzN3dS8TMYyYgikefPmKTMz0+swjNDY2Khly5apsbHR61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMgZbEEjV1dWKRqNeh2GEtLQ05efnKy2NiW7x2Fofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxjtbECi2rfMHAAAAAAAAwH1+f2eLCWx7lsvMFgTSpEmTlJGR4XUYRmhtbdXmzZvV2trqdSi+ZGt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGYMtCKSJEycqPT3d6zCM0NbWpvLycrW1tXkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGMmIIFNumngEAAAAAAABwH8uIDTzbnuUyswWBlJOTo5QUuq8bOjs7VVtbq87OTq9D8SVb62Ny3ibnBgA24XoO29DnEQ/9wt9oH/dR08Rsro2puZual8l4Wo1AWrBggbKzs70Owwj19fVaunSp6uvrvQ7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMQTKgalnOTk5qq+vV0VFhdFTzwZDZ2en6uvrlZ2dzWyhOGytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5Nv3N3e/LiJnQprYtI5bmdQBAf9TW1nodgjFSUlKUk5PjdRi+ZWt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyWTCHxGC9+fPnKysry+swjNDQ0KC7775bDQ0NXofiS7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgkAqLy9XW1ub12EYIT09XRMnTlR6errXofiSrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkvLMFgWLbOn8AAAAAAAAA3Of3d7aYwLZnucxsQSAVFRUpHA57HYYRIpGISktLFYlEvA7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmOwBYGUn5+vtLQ0r8MwQjQaVXV1taLRqNeh+JKt9TE5b5NzAwCbcD2HbejziId+4W+0j/uoaWI218bU3E3Ny2QsI2a4jo4Ovfbaa3rxxRf10ksv6cUXX1RFRYXa29slSVOmTFFpaWm/j79hwwYtX75cmzdv1gcffKCMjAwdeeSROvPMM3XppZdq3LhxLmWyn21TzwAAAAAAAAC4j2XEBp5tz3KZGmCwdevW6fzzz1dzc7Prx66vr9fll1+uBx98sNu/Nzc3q6amRpWVlVq6dKmuv/56/eQnP3H9/Lm5udq9e7frx7VRR0eHdu/erTFjxig1NdXrcHzH1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUylhEzWG1t7YAMtLS3t+uss87qNtAyfvx4XXjhhTr33HP1qU99KrbdokWL9Itf/ML1GObPn6+srCzXj2ujhoYG3XPPPWpoaPA6FF+ytT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMZcQMtmzZMl188cU64ogjdPLJJ8d+/va3v2np0qWS+reM2HXXXadf/vKXkqRwOKz77rtPc+bMiX3f1tam//2//7duueUWSVIoFNI//vEPTZkyJemcDkw9C4fDam1tVWVlpdFTzwaD4zhqbW1VRkaGQqGQ1+H4jq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXpr+5+30ZMRPalGXEYIxp06Zp+/btOuqoo7r9+/PPP9/vY3788cf6zW9+E/v9tttu6zbQIknp6em6+eab9d577+nBBx+U4zj6yU9+omeffbbf5/2kSCTi2rFsFwqFFA6HvQ7Dt2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMYPl5uYeNNCSrOXLl6upqUmS9IUvfEGXX355wm1vvvlmpaTs72LPPfecXn31VdfiWLBggbKzs107ns3q6+t12223qb6+3utQfMnW+pict8m5AYBNuJ7DNvR5xEO/8Dfax33UNDGba2Nq7qbmZTIGW9An69ati32eN29ej1PYjjrqKJ1++umx3x955BHX4igtLWV2i0vC4bCKiooYKU/A1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUyBlvQa5FIRJs3b479XlRUdMh9vv71r8c+P/PMM67FUl5erra2NteOZ7P09HRNnDhR6enpXofiS7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgl5788031dnZKWn/moEnnnjiIfc56aSTYp/feOMN12KZNm2ahg4d6trxbNbS0qL169erpaXF61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMgZb0Gtvvvlm7PPhhx/eqylsXd8Zs2/fPu3evduVWHJycmLvg0FyOjs7VVtbGxtIQ3e21sfkvE3ODQBswvUctqHPIx76hb/RPu6jponZXBtTczc1L5OFHMdxvA4Cg2vx4sW6/vrrJUlTpkxRaWlpr/a76667dOWVV0qSJkyYoC1bthxyn3379mn06NGx37du3apjjz2270H/f6+99prGjx8f+72qqkrHH398v48HAAAAAAAAwD7V1dUaO3Zs3O+2bdum/Pz8wQ3IQLY9y2VqAHqtsbEx9rm3S3h9cruux0jGF77wBY0YMUKS1NHRodraWh0YN6yvr4+9z6WlpUVNTU2SpGg0qtra2tgx6urq1N7eLklqbm5Wc3OzJKm9vV11dXWx7WpraxWNRiVJTU1Nsal7bW1tqq+vlyQ5jqPa2lp1dHTE8oxEIpKk1tZWNTQ0SDp4RLqhoUGtra2S9r8T50B9BjOnuro6vfnmm4pGo8bk5GY7RaNRvf7667H4TMipN+3U3t6u6upq7du3z5icDrTTvn379PbbbysajRqTk0l9j5zIiZzIqbc5NTc3q7q6Wg0NDcbkZGI7kZN7ObW2tqq6ulq1tbXG5GRiOw12TpFIRFVVVd3++y7oOZnUTnV1daqurlYkEjEmJ6/bqampSa+//rqi0agxOXFvlHw7tbS0qLq6OlaHvuSUnp6u7OxsSftfm5CTk6PU1FTPc2pvb1c0GtXWrVtjNQ9yO9mCwRb02oH/IUrq9YuZMjIyuv3u1hqDxcXFOueccyRJu3fv1tKlS2MXgHvvvVevv/66JKmsrEx//etfJUk7duzQ0qVLY8e466679O6770qS/v73v+vvf/+7JOndd9/VXXfdFdtu6dKl2rFjhyTpr3/9q8rKyiRJr7/+uu69915J+y9OS5cujS2TtnbtWm3evFmS9Oqrr2rlypWS9l+Ali5dGrvgrVy5Uq+++qokafPmzVq7du2g5/TYY49pzZo1amxsNCYnN9upsbFRDz/8sF544QVjcupNO+3bt0/Lly/XsmXLjMnpQDstW7ZMq1atUmNjozE5mdT3yImcyImceptTeXm5li9frmeeecaYnExsJ3JyL6f33ntPy5cvNyonE9tpsHN655139Oc//zn2EMyEnExqp8cee0zLly/XO++8Y0xOXrfTCy+8oIcffliNjY3G5MS9UfLt9Prrr2v58uVav359n3P64he/qEsuuUTS/ueYCxYs0JgxYzzP6d1331VjY6MefPBBrV+/PvDtZA0Hg+qOO+5wjj32WFd/Hn744T7F8POf/9yR5EhypkyZ0uv9br755th+X/nKV3q1T3Nzc2wfSc5LL73Up1g/qaqqypHkhMNhJzMz06mqqnKi0ahTU1PjdHZ2Oo7jOHV1dU5ra2vs/I2NjY7jOE57e7tTU1MTO1Ztba3T1tbmOI7jNDU1OU1NTY7jOE5bW5tTW1sb266mpsZpb293HMdxGhsbnebmZsdxHKe1tdWpq6tzHMdxOjs7nZqaGicajTqO4zgNDQ1OS0uL4ziOE4lEnPr6esdxHKejo8OpqalxOjo6HMdxnPr6eicSiTiO4zgtLS1OQ0OD4zgOOZETOZETOZETOZETOZETOZETOZETOZETOZETOQ1gTtu2bXPS09Od7OxsR5ITCoWcnJwcJzU11dm2bVsgc/JbOx14lnvgp6qqyjEZ72wZZF3fl+KWP/7xj7rsssv6FQPvbAEAAAAAAABgG97ZMvBse5bLMmLota6DJh999FGv9tm1a1e330eNGuVKLAsXLoy9swXJqaur04033thtzUf8D1vrY3LeJucGADbheg7b0OcRD/3C32gf91HTxGyujam5m5qXyRhsGWSLFy+W4ziu/vRlVksyus5I+fjjj7u9wyWR9957L/Z51KhRsTUPk7Vu3brYC6+QnGHDhmn27NkaNmyY16H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZGleB4DgOPbYY5WSkqLOzk45jqPy8nJNmjSpx31eeeWV2OfjjjvOtVi2bt3q2rFsN2TIEI0bN87rMHzL1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUyZrag18LhcLfBld6866WsrCz2+fTTT3ctFkZ13dPc3MxMoR7YWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGYAv6ZPbs2bHPy5Yt63Hb999/Xxs2bIi7LwAAAAAAAAAApgg5juN4HQQG1+LFi3X99ddLkqZMmdKrGSoHfPzxxzrmmGPU1NQkSfrjH/+Y8J0xxcXFWr16tSTp1FNP1bPPPptc4JJee+01jR8/PvZ7VVWVjj/++KSPCwAAAAAAAMAe1dXVGjt2bNzvtm3bpvz8/MENyEC2PctlZgv65PDDD9cPf/jD2O9XX321HnrooW7btLe3a+HChbGBFkm64YYbXI1j3LhxGjJkiKvHtFV7e7u2bt2q9vZ2r0PxJVvrY3LeJucGADbheg7b0OcRD/3C32gf91HTxGyujam5m5qXyRhsMdyMGTM0ceLEbj9333137PuXXnrpoO8nTpyonTt3Jjzmz372s9j7V1paWnTeeedpwoQJmjdvnubMmaOjjz5aN910U2z766+/XlOmTHE1L97Z4h7Wf+yZrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkLCNmuPz8fG3fvr3P+x1qqlxdXZ0uv/zyg2a1dDVkyBAtXrxYixYt6vP5E7Ft6hkAAAAAAAAA97GM2MCz7VlumtcBIJhGjBihBx98UP/xH/+h5cuX67nnntOHH36oIUOG6DOf+YzOPPNMXXrppTruuOO8DhUAAAAAAAAAgAHFMmKGq66uluM4ff7p7cjt1KlT9cADD+idd95RU1OTamtrVVlZqVtvvXVAB1oWL16snJycATu+TWpra3X99dertrbW61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMpYRQ6AcmHqWn5+vHTt2qLy83OipZ4MhGo1qx44dOvLII5WWxmS3T7K1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2vQ3d78vI2ZCm7KMGBAA1dXVXodgjLS0NM//z8PPbK2PyXmbnBsA2ITrOWxDn0c89At/o33cR00Ts7k2puZual4mYxkxBNKcOXM0fPhwr8MwQlNTk9asWaOmpiavQ/ElW+tjct4m5wYANuF6DtvQ5xEP/cLfaB/3UdPEbK6NqbmbmpfJGGxBINXW1qqzs9PrMIyQkpKinJwcpaRwOYjH1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUy3tmCQLFtnT8AAAAAAAAA7vP7O1tMYNuzXIbFEEgTJ05Uenq612EYoa2tTeXl5Wpra/M6FF+ytT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMwRYEUlFRkcLhsNdhGCESiai0tFSRSMTrUHzJ1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUylhFDoNg29QwAAAAAAACA+1hGbODZ9iyXmS0IpHA4rFAo5HUYRnAcR5FIRIy7xmdrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1d1PzMhmDLQikhQsXasSIEV6HYYS6ujrddNNNqqur8zoUX7K1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYxlxBAoB6ae5ebmavfu3dqyZYvRU88GQ0dHh3bv3q0xY8YoNTXV63B8x9b6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtr09/c/b6MmAltatsyYmleBwD0x65du7wOwRipqanKzc31OgzfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7qXmZjGXEEEjz5s1TZmam12EYobGxUcuWLVNjY6PXofiSrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkDLYgkKqrqxWNRr0OwwhpaWnKz89XWhoT3eKxtT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMd7YgUGxb5w8AAAAAAACA+/z+zhYT2PYsl5ktCKRJkyYpIyPD6zCM0Nraqs2bN6u1tdXrUHzJ1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUyBlsQSBMnTlR6errXYRihra1N5eXlamtr8zoUX7K1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYxlxBAotk09AwAAAAAAAOA+lhEbeLY9y2VmCwIpJydHKSl0Xzd0dnaqtrZWnZ2dXofiS7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvk/G0GoG0YMECZWdnex2GEerr67V06VLV19d7HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxjJiCJQDU89ycnJUX1+viooKo6eeDYbOzk7V19crOzub2UJx2Fofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNt+pu735cRM6FNbVtGLM3rAID+qK2t9ToEY6SkpCgnJ8frMHzL1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2vT39zz8/Pl53kINrdpUAVzSAzWmz9/vrKysrwOwwgNDQ26++671dDQ4HUovmRrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1d1PzMhmDLQik8vJytbW1eR2GEdLT0zVx4kSlp6d7HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxjtbECi2rfMHAAAAAAAAAEFk27NcZrYgkIqKihQOh70OwwiRSESlpaWKRCJeh+JLttbH5LxNzg0AbML1HLahzyMe+oW/0T7uo6aJ2VwbU3M3NS+TMdiCQMrPz1daWprXYRghGo2qurpa0WjU61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMpYRQ6DYNvUMAAAAAAAAAILItme5zGxBIOXm5io1NdXrMIzQ0dGhXbt2qaOjw+tQfMnW+pict8m5AYBNuJ7DNvR5xEO/8Dfax33UNDGba2Nq7qbmZTIGWxBI8+fPV1ZWltdhGKGhoUH33HOPGhoavA7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMQTKgaln4XBYra2tqqysNHrq2WBwHEetra3KyMhQKBTyOhzfsbU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7CXnZtowYbxhHIEUiEa9DMEYoFFI4HPY6DN+ytT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMZcQQSAsWLFB2drbXYRihvr5et912m+rr670OxZdsrY/JeZucGwDYhOs5bEOfRzz0C3+jfdxHTROzuTam5m5qXiZjsAWBVFpayuwWl4TDYRUVFTFSnoCt9TE5b5NzAwCbcD2HbejziId+4W+0j/uoaWI218bU3E3Ny2S8swWBYts6fwAAAAAAAAAQRLY9y2VmCwJp2rRpGjp0qNdhGKGlpUXr169XS0uL16H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJBycnKUkkL3dUNnZ6dqa2vV2dnpdSi+ZGt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGcuIIVBsm3oGAAAAAAAAAEFk27NcpgYgkPLz85WWluZ1GEaIRqOqrq5WNBr1OhRfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7qXmZjMEWBNK8efOUmZnpdRhGaGxs1PLly9XY2Oh1KL5ka31Mztvk3ADAJlzPYRv6POKhX/gb7eM+apqYzbUxNXdT8zIZy4ghUGybegYAAAAAAAAAQWTbs1xmtgAAAAAAAAAAACSBwRYE0sKFCzVixAivwzBCXV2dbrzxRtXV1Xkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGYAsCad26dWpubvY6DCMMGzZMs2fP1rBhw7wOxZdsrY/JeZucGwDYhOs5bEOfRzz0C3+jfdxHTROzuTam5m5qXibjnS0IFNvW+QMAAAAAAACAILLtWS4zWxBIjOq6p7m5mZlCPbC1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYzBFgAAAAAAAAAAgCSwjBgCxbapZwAAAAAAAAAQRLY9y2VmCwJp3LhxGjJkiNdhGKG9vV1bt25Ve3u716H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJB4Z4t7WP+xZ7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvk7GMGALFtqlnAAAAAAAAABBEtj3LZWYLAAAAAAAAAABAEhhsQSAtXrxYOTk5XodhhNraWl1//fWqra31OhRfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7qXmZjGXEECgHpp7l5+drx44dKi8vN3rq2WCIRqPasWOHjjzySKWlpXkdju/YWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd2EvGxbRozBFgSKbf8DBQAAAAAAAIAgsu1ZLsuIIZDmzJmj4cOHex2GEZqamrRmzRo1NTV5HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxmALAqm2tladnZ1eh2GElJQU5eTkKCWFy0E8ttbH5LxNzg0AbML1HLahzyMe+oW/0T7uo6aJ2VwbU3M3NS+TsYwYAsW2qWcAAAAAAAAAEES2PctlWAyBNHHiRKWnp3sdhhHa2tpUXl6utrY2r0PxJVvrY3LeJucGADbheg7b0OcRD/3C32gf91HTxGyujam5m5qXyRhsQSAVFRUpHA57HYYRIpGISktLFYlEvA7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMQSKbVPPAAAAAAAAACCIbHuWy8wWBFI4HFYoFPI6DCM4jqNIJCLGXeOztT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMwRYE0sKFCzVixAivwzBCXV2dbrrpJtXV1Xkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGMmIIlANTz3Jzc7V7925t2bLF6Klng6Gjo0O7d+/WmDFjlJqa6nU4vmNrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1dxPysm0ZsTSvAwD6orW1VZK0a9cuSdI777zjZThG2bt3r9ch+Jqt9TE5b5NzAwCbcD2HbejziId+4W+0j/uoaWI218bU3IOc1yef3R54tmssBwiQdevWOZKcefPmOZmZmY4kfpL8yczMpJ7Ux6q8Tc6NH3744cemH67n/Nj2Q5/nJ94P/cLfP7QPNaU25E5e3X/WrVvn9ePlAcUyYgiURx99VLNnz/Y6DAAAAAAAAABAH6xbt07f+c53vA5jwKR4HQAAAAAAAAAAAECQMbMFgVJbW6uysrLY75/5zGeUkZHhYUQAAAAAAAAAgE9qbW3V+++/H/t9ypQpysnJ8S6gAcZgCwAAAAAAAAAAQBJYRgwAAAAAAAAAACAJDLYAAAAAAAAAAAAkgcEWAAAAAAAAAACAJDDYAgAAAAAAAAAAkAQGWwAAAAAAAAAAAJLAYAsAAAAAAAAAAEASGGwBAAAAAAAAAABIAoMtAABY7LnnntPZZ5+tI444QuFwWGPHjtWVV16pDz74wOvQAAAAAAAAtGvXLq1YsUILFizQ1772NWVmZioUCik/P9/r0LoJOY7jeB0EAAAYfP/3//5fXXHFFers7FRubq4+/elP66233lJDQ4NGjhypf/zjHzrhhBO8DhMAAAAAAFjstttu03//938f9O9HH320qqurBz+gBJjZAgCAhSorKzV//nx1dnbq17/+tT744AO99NJL2rlzp84991zV1NTorLPOUmtrq9ehAgAAAAAAi2VnZ+uMM87Qtddeq4ceeki33Xab1yHFxcwWAAAs9L3vfU9//vOfde655+rBBx/s9l1LS4vGjRun9957T3fddZfmz5/vUZQAAAAAAADdrV27Vueccw4zWwAAgLeamppUUlIiSfrP//zPg74fOnSoLr74YknSmjVrBjU2AAAAAACAIGKwBQCAAdDR0aGKigr96U9/0g9+8AN9+ctfVnp6ukKhkEKhkIqKivp97La2Nj3wwAOaMWOGjj76aIXDYX3qU5/SV7/6Vd16663as2dPj/u/+uqrikQiSk9P16RJk+JucyC+559/Xp2dnf2OFQAAAAAA+Jufn2EESZrXAQAAYJp169bp/PPPV3Nzs+vH3rp1q+bOnavy8vJu/75r1y7t2rVLzz33nG655Rbdd999mjFjRtxjvPXWW5Kko446Sunp6XG3+dznPidJikQi2r59u8aOHeteEgAAAAAAwBf8/gwjSJjZAgCAy2prawfkJmXHjh0644wzYjcpoVBIU6ZM0SWXXKJvfetbGjp0qCTp448/1uzZs/XMM8/EPc6+ffskSaNHj054rlGjRsU+19TUuJQBAAAAAADwE78/wwgSZrYAADBAjjjiCJ188smxn7/97W9aunRpv49XXFysnTt3SpKOPvpoPfroozrhhBNi3+/Zs0dz5szRhg0b1N7ernPOOUfvvvuucnJyuh2npaVFkhLOapGkcDgc+zwQN10AAAAAAMA//PoMI0gYbAEAwGXTpk3T9u3bddRRR3X79+eff77fx3ziiSe0adMmSfsHSf7617+qoKCg2zaHHXaYHn30UU2YMEH//ve/tW/fPt1888361a9+1W27A3890tbWlvB8kUgk9nnYsGH9jhsAAAAAAPiX359hBAnLiAEA4LLc3NyDblKS9fvf/z72+aKLLjroJuWA4cOH6xe/+EXs93vuuUfRaLTbNiNHjpQk7d27N+H5Diw11nV7AAAAAABgFr8/wwgSBlsAAPC5xsZGbdiwIfb7xRdf3OP2Z599tjIzMyXtHzTZuHFjt++PPfZYSdJ7772XcHbL22+/LWn/cmJHH310v2MHAAAAAAD2cPsZRpAw2AIAgM89++yzam1tlbT/rz5OPvnkHrcPh8M69dRTY79/8iVzJ554osLhsNra2rR58+a4xygrK5MknXLKKUpJ4XYBAAAAAAAcmtvPMIKEpycAAPjcG2+8EftcUFCgtLRDv3LtpJNOiru/tP9mZ8aMGZK6T+09oKWlRffdd58k6bzzzutXzAAAAAAAwD5uP8MIEgZbAADwuTfffDP2ubdLenVdb3Xr1q0HfX/dddcpNTVVDz30kH7zm9+os7NT0v7pvvPmzdN7772no48+WpdeemmS0QMAAAAAAFsMxDOMoGCwBQAAn+v6IvsjjjiiV/vk5ubGPnd92f0BJ5xwgn7/+98rJSVFP/rRj/TpT39aX/7yl5WXl6eHHnpIOTk5euSRR5SRkZF8AgAAAAAAwAoD8Qzj/fff12GHHRb7ueSSS+L++1VXXZVk9MlhsAUAAJ9rbGyMfR46dGiv9um6Xdf9u7riiiu0adMmzZ49Wx0dHaqsrNTIkSM1f/58VVZW6sQTT0wucAAAAAAAYJWBeIbR0dGhvXv3xn4aGhokSZ2dnXH/3SuHXjANAAB4KhKJxD6np6f3ap+uM1JaWloSbvfVr35VjzzySP+DAwAAAAAA+P8G4hlGfn6+HMdJPrgBxswWAAB8LhwOxz63tbX1ap/W1tbY597+JQkAAAAAAEAybH6GwWALAAA+l5mZGfvc0yyVrrpu13V/AAAAAACAgWLzMwwGWwAA8LnRo0fHPn/00Ue92mfXrl2xz6NGjXI9JgAAAAAAgE+y+RkGgy0AAPjcscceG/u8ffv2Xu3z3nvvxT6PGzfO9ZgAAAAAAAA+yeZnGAy2AADgc8cdd1zsc2VlpaLR6CH3eeWVV+LuDwAAAAAAMFBsfobBYAsAAD731a9+VRkZGZKkpqYmvfTSSz1u39raqs2bN8d+P/300wc0PgAAAAAAAMnuZxgMtgAA4HOZmZk644wzYr8vW7asx+3/8pe/qKGhQdL+tU4LCwsHMjwAAAAAAABJdj/DYLAFAIAAuPLKK2Ofly1bptdeey3uds3Nzbruuutiv19++eVKS0sb8PgAAAAAAAAke59hMNgCAEAAzJw5U6eddpqk/VNsZ82apYqKim7b7N27V7Nnz9Y777wjaf9fhFx77bWDHisAAAAAALCXrc8wQo7jOF4HAQCAaWbMmKGdO3d2+7ddu3bpo48+kiQNHz5cn/vc5w7a74knnlBeXl7cY+7YsUOnnHKKPvzwQ0lSKBTSlClT9NnPfla7d+/W008/rebmZklSWlqa1q9f323qLgAAAAAAwCfxDMMdDLYAADAA8vPztX379j7vt23bNuXn5yf8fuvWrZo7d67Ky8sTbjNmzBjdd999mjlzZp/PDwAAAAAA7MIzDHcEdwE0AAAsNG7cOD3//PNas2aNVq9erddee00fffSRcnJydMwxx+i73/2uLr74Yh122GFehwoAAAAAACxm2zMMZrYAAAAAAAAAAAAkIcXrAAAAAAAAAAAAAIKMwRYAAAAAAAAAAIAkMNgCAAAAAAAAAACQBAZbAAAAAAAAAAAAksBgCwAAAAAAAAAAQBIYbAEAAAAAAAAAAEgCgy0AAAAAAAAAAABJYLAFAAAAAAAAAAAgCQy2AAAAAAAAAAAAJIHBFgAAAAAAAAAAgCQw2AIAAAAAAAAAAJAEBlsAAAAAAAAAAACSwGALAAAAAAAAAABAEhhsAQAAAAAAAAAASAKDLQAAAAAAAAAAAElgsAUAAAAAAAAAACAJDLYAAAAAAAAAAAAkgcEWAAAAAAAAAACAJDDYAgAAAAAAAAAAkAQGWwAAAAAAAAAAAJLAYAsAAAAAAAAAAEASGGwBAAAAAAAAAABIAoMtAAAAAAAAAAAASWCwBQAAAAAAAAAAIAkMtgAAAACAZXbs2KHMzEyFQiFdffXVcbdZvHixQqGQQqGQFi9ePLgBeuS1115TamqqQqGQlixZ4nU4AAAACBAGWwAAAABLFBUVxR6e9/Vn3rx5XocPF/34xz9WU1OTsrKy9LOf/czrcHrlxz/+caw/5ufny3Gcfh1n3759ysjIiB1r2bJlse+OP/54XXjhhZKkX/3qV3r//ffdCB0AAAAWYLAFAAAAACzywgsv6MEHH5Qk/ed//qfGjBnjcUS9c9FFF8U+b9++XWVlZf06zpo1a9TW1iZJGj58uL73ve91+/6nP/2pUlNT1dzcrOuuu67/AQMAAMAqaV4HAAAAAGDwnXzyyTrllFN6vf2kSZMGMBoMpp/+9KeSpIyMDC1YsMDbYPqgoKBAJ554ol599VVJ0v3336+ioqI+H+f++++PfT777LOVmZnZ7fvPfe5zOvvss/XQQw/pgQce0MKFC3XssccmFTsAAADMx2ALAAAAYKEZM2ZY8x4O/I+XX35ZTz/9tCTpe9/7no444giPI+qbiy66KDbY8uc//1m///3vNXTo0F7v/9Zbb+n555/vdrx4fvCDH+ihhx5SR0eHbr31Vv3xj39MLnAAAAAYj2XEAAAAAMASt912W+zzZZdd5l0g/VRcXKwhQ4ZIkurr67Vu3bo+7d91VstRRx2lr3/963G3Kyoq0uc+9zlJ0ooVK7Rnz57+BQwAAABrMNgCAAAAABaoq6vT2rVrJUm5ubkqLCz0OKK+GzNmjKZPnx77vevgyaE4jqMVK1bEfv/+97+vUCiUcPtzzjlHkhSJRLR69ep+RAsAAACbMNgCAAAAoN/y8/MVCoUUCoVUXV0tSdqxY4d+9rOf6YQTTlBOTo6GDx+ucePG6aqrrtL27dv7dPz29nY98MADOvfcc3XMMccoKytLw4cP19ixYzV37lw98sgjchynx2OUlpbGYuz6jo8nnnhCc+fO1ec//3llZmYqFAp1m/lxQEtLi377299q8uTJOuywwzR06FB99rOf1dy5c7Vhw4Yea3HAd77zndh3N9xwQ6/z//nPfx7b77vf/W6v94vnL3/5iyKRiCTp29/+tlJS3PvPwS1btuhTn/pULNZvfetbamlpibvthg0bNH/+fB1//PEaNWqUMjIylJeXpzPPPFO/+93vEu53QNelv5566int2rWrVzGWlZV1638XXnhhj9ufddZZsc9dB2kAAACAeHhnCwAAAADXrFu3TvPmzVNdXV23f3/zzTf15ptv6k9/+pMefvhhzZw585DHKi0t1WWXXaZ33333oO+qq6tVXV2tNWvWaNKkSVq7dq0+/elP9yrGuro6XXzxxXrkkUcOuW1lZaXOOuusg2L497//rX//+99as2aNrrjiCt1xxx09Huc//uM/9Nhjj0mS7rvvPv3kJz855Lk7Ozu1bNmy2O/JLvv117/+Nfb59NNPT+pYXW3cuFHf/va3Y21+4YUX6k9/+pPS0rr/5+b777+vCy+8UKWlpQcd48MPP9SHH36ov//977rhhhu0Zs0anXbaaXHPN2vWLI0aNUr79u1TR0eHVq1apR/+8IeHjLPrLJhTTz1VX/jCF3rc/ktf+pJGjBihuro6vfjii/r44491+OGHH/I8AAAAsBODLQAAAABc8fTTT2v+/Pnq6OjQUUcdpVNPPVXZ2dnatm2bSktLFY1G1dLSonPPPVdVVVUaO3ZswmM9/PDDOv/889Xe3i5JGjp0qCZNmqT8/HylpKTorbfe0nPPPadoNKrNmzfr1FNP1YsvvnjIF747jqMLLrhAjz/+uEKhkL785S/ri1/8ohzHUVVVVbdlpd555x2dccYZ2r17d+zfCgoKNHHiRKWkpKi8vFxbtmzRPffco6ysrB7PO336dH3mM5/R+++/r7ffflsbN2485DJeTz31lN577z1J0pFHHqlp06b1uH1POjs7u83CSTSQ0VePPvqo5syZE5sx88Mf/lC33nrrQctzvfHGGzrjjDP04YcfSpJCoZBOOukkffGLX9TQoUP1wQcfaOPGjWpoaNDOnTv1jW98Q08++WTcd6qkp6dr7ty5+v3vfy9p/yDKoQZbWlpaYkuoSd1nxySSkpKir371q3ryySflOI6efvppFRcXH3I/AAAA2InBFgAAAACu+K//+i+Fw2HdfffdOv/887s9cH/ttdd05pln6oMPPlBzc7N++ctf6t577417nNdee00XXXSR2tvbFQqF9KMf/Ug//elPlZOT0227f//737rooov0z3/+U++//74uvvhiPfHEEz3G+OyzzyoajaqgoEArV65UQUFBt+9bW1sl7R+UufTSS2MDLaNHj9bKlSt15plndtv+mWee0dy5c/XrX/869uL2eFJTU3XJJZfo+uuvlyT96U9/OuRgy5/+9KfY54svvjipZb+2bt2q+vp6SdJhhx2mvLy8fh+ra3xXXHGFOjo6JEk33HCDFi5ceNB2TU1NOvvss2MDLdOnT9cdd9yhz372s922q6+v18KFC3XXXXeptbVV559/vt544w2NGDHioGNedNFFscGWLVu2qLKy8qC27OqRRx5RQ0ODJCkjI0PnnXder3KcOHGinnzySUnSCy+8wGALAAAAEmKwBQAAALDQE088oT179vR6+1/84hcaNWpUj9u0tbVp3bp1cWdgHH/88brnnns0a9YsSftnrvzhD384aKkpSbr66qtj7+349a9/rf/+7/+Oe75jjjlG69ev1ymnnKLXX39dTz75pJ5//nl95StfSRhjNBpVbm6unnnmGR122GEHfZ+RkSFJ+tvf/qaNGzdK2j/D4dFHH9XkyZMP2v70009XSUmJJk2apLa2toTnlaRLL71Uv/zlL9XZ2am1a9fqjjvuUHZ2dtxt9+7dq0cffVTS/lkgl1xySY/HPpSKiorY52OPPTapY0nSjTfeGFsKLTU1VXfffXfCZc5+85vf6I033pC0/z0oa9eujTtwlJ2drTvvvFPNzc1avny5PvzwQ91999269tprD9r25JNP1nHHHRc77v33369bbrklYbxdlxD7zne+c9DAXSLHHXdc7POWLVt6tQ8AAADsxGALAAAAYKEXX3xRL774Yq+3//GPf3zIwZZZs2b1uNTVjBkzlJubq127dqmxsVFvvPHGQbMRtmzZomeeeUaSdOKJJ2rBggU9nnP48OH62c9+prlz50qSVq5c2eNgiyRdd911cQdauuo6q2TOnDlxB1oO+PKXv6wLL7xQ9913X4/H/MxnPqNp06bpiSeeUHNzs1avXq0rrrgi7rYPPPBAbPBm6tSpys/P7/HYh7Jt27bY5yOPPLLfx3EcRz/60Y/029/+VtL+wanVq1d3e5l8V+3t7frd734X2/buu+8+5AydX/3qV7r//vvlOI5WrlwZd7BF2j+75cBMmlWrVunGG29UamrqQdt9+OGHevrpp7vt11td3wNUXV3d6/0AAABgn/7PQwcAAACALs4555wevw+FQjrhhBNiv8d7eN11GbC5c+ce9O6PeLq+7P2f//znIbfvzRJSZWVlsc8XXHDBIbfvzTaSdPnll8c+dx3Q+aSu3yWaMdIXH330Uezz6NGj+3WMaDSqiy66KDbQkp2drfXr1yccaJGkl156SR9//LEk6YwzzujVC+bz8vI0btw4SVJVVZXq6uribnfBBRfEBm527tzZbUClq5UrV8aWOsvNzT1oKbiedB2U27VrV6/3AwAAgH2Y2QIAAABY6Oc//7kWL17s6jF7emfGAV0f9B94h0hXzz33XOzzP/7xD23fvv2Qx3QcJ/b5/fff73HbsWPHHnKGzgcffBB7V4ukQ86UkfYvaxUKhbrFEs+sWbOUl5ennTt36sUXX4z7rpEXXnhBVVVVkvY/7J89e/Yhz38oTU1Nsc/Dhg3r8/7Nzc36zne+ExsMO/zww/Xkk0/qpJNO6nG/ru25Y8cO/dd//VevzldbWytpf9vu2LEj7ntbPv3pT2vq1Kn6+9//Lmn/bKB4AyldlxA7//zz485+SaRrrSKRiDo7O5N6dw4AAADMxWALAAAAAFfEeyD+SV1fIt/e3n7Q9zt37ox9PvBi8r6oqanp8fsxY8Yc8hhdB1qGDRt2yMEZScrKytKIESNigwSJpKam6pJLLtH/+T//R9L+GSy33XZbt226zmr5/ve/r/T09EOevy8ONSAUz29/+1tFo1FJ+5dD27Bhgz7/+c8fcr+u7VlRUdHt3TG91VObXnTRRbHBlkceeUSNjY3KzMyMff/qq6+qsrKy2/Z90Z9aAQAAwE78SQ4AAAAAV/Rmya9DSbRkVG8dWC4qkaFDhx7yGI2NjbHPfZkF0vUhf08uu+yy2OyIFStWxN7NIu2fQbJmzZpu27ph+PDhsc8tLS193r/rINm+ffv04Ycf9mq/ZNtTUmyQJ56zzjpL2dnZkvbXbu3atd2+7zqr5cQTT+zV7KuuutYqHA4zqwUAAAAJcacIAAAAwDe6Dgr85S9/keM4ff5JVtdBk+bm5l7v13Wprp4cffTR+sY3viFJ2rt3r9atWxf77uGHH44tr3bqqafqi1/8Yq/P35Pc3NzY5z179vR5/wULFuhb3/qWpP15zpgxQxs3bjzkfl3b8+qrr+5XexYVFSU8/tChQ7u9K+iBBx6IfY5Go1q9enXs977OapG6z3LqWkMAAADgkxhsAQAAAOAbRxxxROyzVy8k7/pS9Obm5kMuTSbtnw1zqCXEurr88stjn7suG9b1s1uzWqT976o5YMeOHX3ePz09XWvXrj1owGXTpk097jcY7dl1EKW0tDT23p6//e1v+uijjyTtn5lTXFzc52N/8MEHsc/5+fnJBQoAAACjMdgCAAAAwDe6voz+X//6lycxHHnkkd0GXJ5//vlD7vPSSy/1aVbNt7/97dhMiaefflrvvfee3nrrrdjgRWZmps4999w+Rp7YhAkTYp/ffPPNfh3jwIDLrFmzJO0fcJk+fXqPAy5d2/PZZ58dkHegfO1rX9MxxxwjSers7NSKFSskdV9CbPr06b16X88nvfHGG7HPJ5xwQpKRAgAAwGQMtgAAAADwjQMP8qX9y4gdmJkw2KZMmRL7vHLlykNuf+ABf2+lpaXp4osvlrR/gOC+++7TvffeG/t+zpw5vX4HTG8ce+yxGjFihKT9S5d1nbHRF+np6frzn//cbcClpxkukydPVk5OjqT9M2r++te/9uu8PQmFQrrwwgtjvz/wwAOqq6vTY489Fvu3/iwhJklbtmyJfT7llFP6HyQAAACMx2ALAAAAAN845ZRTYu/oaGlp0fe///1uL5DvSVtbW6+W/OqNSy65JPZ51apV2rx5c8JtX3nlFS1fvrzP57jssssUCoUkSffdd1+3Y7i5hJgkpaSk6PTTT4/9/s9//rPfxzow4DJz5kxJ+5dQSzTgkpGRoQULFsR+v/LKK/s00NPbwbYLL7wwVss33nhD/+t//S9FIhFJ0qhRo7oN4vVWZ2ennn32WUn7B3SmTp3a52MAAADAHgy2AAAAAPCVO+64Izar46mnnlJhYWGPS3m99dZb+uUvf6n8/HzXlh6bPn26vva1r0na/9D9W9/6lp5++umDtistLdWMGTPU0dGh9PT0Pp3jmGOO0RlnnCFJ2r59e+ydJgUFBd2W33LLgfetSNIzzzyT1LHS09P1l7/8pVcDLj/60Y90/PHHS9r/DpQvf/nLevjhh9XZ2Rn32Hv27NEf/vAHnXTSSbrlllt6Fc/YsWN12mmnxX7/wx/+EPs8d+7cPreNJL388suqq6uTJJ188sk6/PDD+3wMAAAA2CPN6wAAAAAADL4nnnhCe/bs6fX2w4YN08033zyAEf2P8ePHa/Xq1TrvvPPU3Nys559/XpMmTdJnP/tZnXTSSRo1apQikYg+/vhjVVRU9HtJrJ6EQiHde++9OvXUU7V3717t2bNH3/jGN3TCCSdo4sSJkvYvMVVeXi5J+vGPf6yHH35Y27dvl7R/JklvXH755QcN4lx66aWu5dHVd7/7XV155ZWKRCJ67LHHdNddd/U6zngODLh897vfVUlJSWzA5cknn4wNVEn73z/z2GOPaerUqdq2bZt27dqlc889V4cddpgmTZqk3NxcOY6jffv26fXXX9fbb78dG4jpOhvnUC666CJt3Lgx7r/3xyOPPBL7fP755/frGAAAALAHgy0AAACAhV588UW9+OKLvd5+xIgRgzbYIu1/d8uzzz6rSy+9VC+//LIk6d1339W7776bcJ/8/HwdeeSRrsXw+c9/Xhs2bNBZZ52lbdu2Sdo/wNL1PR7S/gGTX/3qV1q1alXs37Kzs3t1jtmzZ+vwww/Xxx9/LGn/slvf//73XcqguxEjRuh73/ueVqxYoV27dmnjxo2xJdv668CSYmeffXZswGX69OkHDbgcc8wxeumllzR//nytXbtWjuNoz549evzxxxMeOycnRwUFBb2O5ZxzztFVV12l5ubm2L8dd9xxOvnkk/uV29q1ayVJ4XBYxcXF/ToGAAAA7MEyYgAAAAB86YQTTtBLL72kv/3tb/rBD36gCRMm6LDDDlNaWpqGDx+u/Px8nXnmmbruuuv0r3/9S//+979js07cjKGqqkq//vWvNWnSJI0aNUrhcFhjx47Veeedp6efflr33HOPhgwZEntfTEpKSq8HW4YMGdLtfSJnnXWWRo0a5WoOXXV9f8of//hHV46ZkZFx0Dtcpk+fftB7YUaNGqWHHnpIFRUVWrRokb761a/qU5/6lNLT0xUOh5Wbm6uvfe1ruvrqq/XYY4/pww8/7NOslKysLJ111lnd/q2/s1rKysr09ttvS9o/q+Wwww7r13EAAABgj5DjOI7XQQAAAABAkL399tv6whe+IEkaN26c3njjjV7t5ziOPvvZz8Zmzjz99NOx97gMlG9+85t66qmnlJGRoerqauXm5g7o+YLovPPO00MPPaTU1FRVVVVp3LhxXocEAAAAn2NmCwAAAAAk6cEHH4x97suyVf/4xz9iAy3HHHNMn95R0l+//OUvJUmtra267bbbBvx8QfPuu+/qz3/+syTpggsuYKAFAAAAvcJgCwAAAAAkYdu2bbr11ltjv/fl/R6333577PMVV1yhUCjkamzxfOUrX9F5550nSbrzzju1e/fuAT9nkCxZskQdHR0aNmyYfvGLX3gdDgAAAAKCwRYAAAAASOCb3/ym1q9fr2g0Gvf7kpISfe1rX1NdXZ0kaeLEifrmN7/Zq2M/9thjevTRRyXtf9/IZZdd5k7QvXDrrbdq+PDhamhoiM10gfT666/r/vvvlyQtWrRIRx11lMcRAQAAICh4ZwsAAAAAJHBgpsnIkSN10kkn6TOf+YzS09O1Z88evfDCC9qxY0ds26ysLP3rX/9SQUFB3GO98847+t3vfqeOjg699dZbeuqpp3TgP8d+8Ytf6Gc/+9nAJwQAAABgQDDYAgAAAAAJ9HZZr89//vN6+OGHdcIJJyTcprS0VF//+tcP+vfJkyfrmWeeUXp6er/jBAAAAOCtNK8DAAAAAAC/qqqq0rp16/Tss89q+/bt2rNnj/bt26dwOKwxY8bolFNO0axZszRnzhylpqb2+rjp6ekaO3aszjvvPC1cuJCBFgAAACDgmNkCAAAAAAAAAACQhBSvAwAAAAAAAAAAAAgyBlsAAAAAAAAAAACSwGALAAAAAAAAAABAEhhsAQAAAAAAAAAASAKDLQAAAAAAAAAAAElgsAUAAAAAAAAAACAJDLYAAAAAAAAAAAAkgcEWAAAAAAAAAACAJDDYAgAAAAAAAAAAkAQGWwAAAAAAAAAAAJLAYAsAAAAAAAAAAEASGGwBAAAAAAAAAABIAoMtAAAAAAAAAAAASWCwBQAAAAAAAAAAIAkMtgAAAAAAAAAAACSBwRYAAAAAAAAAAIAkMNgCAAAAAAAAAACQBAZbAAAAAAAAAAAAksBgCwAAAAAAAAAAQBIYbAEAAAAAAAAAAEgCgy0AAAAAAAAAAABJYLAFAAAAAAAAAAAgCQy2AAAAAAAAAAAAJIHBFgAAAAAAAAAAgCQw2AIAAAAAAAAAAJAEBlsAAAAAAAAAAACSwGALAAAAAAAAAABAEhhsAQAAAAAAAAAASAKDLQAAAAAAAAAAAEn4f54dxBE6o6xDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, lagspec_3_30.spectrum * 1e4, yerr=lagspec_3_30.spectrum_error * 1e4, fmt='o', label=\"3-30 Hz\", color=\"k\")\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time Lag ($10^{-4}$ s)\")\n", + "plt.xlim([0.5, 10])\n", + "plt.semilogx()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "30e4fea7", + "metadata": { + "id": "30e4fea7", + "outputId": "c7722841-f708-42a7-fef9-06e94b3eb031" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:54<00:00, 1.37s/it]\n" + ] + } + ], + "source": [ + "lagspec_01_1 = LagSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, ref_band=ref_band)\n", + "energies = lagspec_01_1.energy\n", + "energies_err = np.diff(lagspec_01_1.energy_intervals, axis=1).flatten() / 2\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e36acc05", + "metadata": { + "id": "e36acc05", + "outputId": "143c4c06-c8f2-4f82-8871-3da7415c6017" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Time lag (s)')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmsAAAR9CAYAAAC5ynPaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3xU1b3///fkTm6EiBBRJICXtKBGq4ieA4La1qMWaa0FbSvU9iv12G+xp/XSfvtVaL9tlXpa8zu9gKdVUCzisS1Ia6lWBGk1xVtUgrGIhEsh4ZLL5D6Zmf37I82UQBIyZHbW7LVfz8cjj0cmM7P3+rzXmlU7i712wHEcRwAAAAAAAAAAADAixXQDAAAAAAAAAAAA/IzFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADAozXQDAJs1NDRo06ZNscdjx45VZmamwRYBAAAAAAAAAI7W0dGhPXv2xB5fdtllKigoGLLzs1gDuGjTpk2aPXu26WYAAAAAAAAAAOKwZs0aXXfddUN2PrZBAwAAAAAAAAAAMIjFGgAAAAAAAAAAAIPYBg1w0dixY3s8XrNmjc444wxDrTGjtbVVGzdu1IwZM5SdnW26OZ5AZv7IwIYabagBAExiHoWXMF79gX42g9zjR2ZdbM/BlvpsqcMP3n///R63tDj6u123sVgDuCgzM7PH4zPOOEOTJk0y1BozQqGQ0tPT9eEPf1gZGRmmm+MJZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljr86Ojvdt0WcBzHGdIzAj5SWVmpyZMnxx5v3brVd4s1AAAAAAAAAJDsTH+Xyz1rALiqra1N69evV1tbm+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPxRoAropGo2poaFA0GjXdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3sQ0a4CLTl84BAAAAAAAAAI7P9He5XFkDwFXhcFjV1dUKh8Omm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPhZrALiqublZK1asUHNzs+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPbdAAF5m+dA4AAAAAAAAAcHymv8vlyhoAAAAAAAAAAACDWKwB4KrGxkbdf//9amxsNN0UzyAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6252BLfbbUAfexWAPAVdnZ2Zo9e7ays7NNN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfdyzBnCR6X0OAQAAAAAA/MpxHEWjUfH1J2CfQCCglJQUBQKBhB3T9He5aUN2JgC+1Nraqueee04f+9jH+BcEA0Rm/sjAhhptqAEATGIehZcwXv2BfjaD3OPXV2aO46i1tVXNzc1qaWlRR0eHwVa6LxqNKhgMKj8/Xykp9m2gZEt9ttSRrLKzs5Wfn6+8vDylpXl7ucPbrQcAAAAAAADge52dndq7d6/a29tNNwXAEGptbVVra6tqa2t12mmnKTc313STThjboAEuMn3pHAAAAAAAgO3a29u1Z88ehcNh000BYFAgEBjUgo3p73K57gqAqzo7O1VVVaXOzk7TTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQevyMzcxxHu3fv9uVCje335LGlPlvq8ALHcbR3717PzgdsgwbAVa2trVqzZo1uu+02DR8+3HRzPIHM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucfvyMxSUlIUiUR6PJ+enq7hw4crJydH6enpCb0BeTIJh8M6fPiwTjrpJM/fq6M3ttRnSx3JxnEctbW1qa6uTm1tbT3+3tTUpBEjRhhs3YlhGzTARaYvnQMAAAAAALDZnj171NzcHHucmZmp008/nS/FAZ9wHEe7du3qsWCTnZ2tcePGxX0s09/lsg0aAAAAAAAAAM9xHEctLS09/lZYWMhCDeAjgUBAhYWFPf7W2trqyW3nWKwB4KqGhgYtXrxYDQ0NppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX7dmdXX1x/zhWx2drahVg29cDisffv2efb+HMdjS3221JHMsrKyjvlbNBo10JLBYRs0wEWmL51LBuFwWHv37tVpp53Gv2wZIDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr/uzIqKirRz584ez5155pm+ydFxHIVCIWVkZFh5Xx5b6rOljmQWDoe1ffv2Hn87kbnA9He5/pi5ABiTlpam4uJi083wFDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr/uzPx+pUIgEFBmZqbpZrjGlvpsqQPuYxs0AK5qaWnRk08+ecwesugbmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPX3dmra2tpptiVCQSUV1dnSKRiOmmuMKW+mypA+5jsQaAq1JSUlRQUKCUFKabgSIzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6BQECpqanWbq1lS3221AH3cc8awEWm9zkEAAAAAACwVaLuUwHA22y5Z42/l58BuC4UCqmiokKhUMh0UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuzzs5O0005IXvqWlV8z+97/dlTN/Ct3aLRqFpbWxWNRl1srTm21GdLHXAfizUAXNXe3q6NGzeqvb3ddFM8g8z8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/MujiOo6amJtm6cZIt9dlSB9zHNmiAi0xfOgcAAAAAAGArL26DVlUT1MryXVpZvrvX5z8yboQuHl+o60pP1dlFeUPcOsCb2AYNAAbAcRy1t7fzrwfiQGb+yMCGGm2oAQBMYh6FlzBe/YF+NoPc4+fFzDZU1eozS1/RVQ9t7nOhRpJe31Wvn23coY8/9JI+s/QVvVh1oM/XOo6jaDTqqRz6EwqF9Pjjj+vqq6/WuHHjlJWVpVNOOUWXXnqpHnzwQR06dMiV80YiEb399tv65S9/qdtuu00XXnihMjIyFAgEFAgENGPGjEEdf6D9tHPnTj311FO66667NHPmTOXn58faEAgEBtWG/syfPz92jvnz58f13uXLl8feW1xc7Er7/ITFGgCuamxs1AMPPKDGxkbTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQev+7MgsGg6aYcV31LSF9d9aZuWf6atlTXxfXeLdV1+sLyV7XwyTdV33LsPY0ikYhqamoUiUQS1VxjqqqqdPHFF+vmm2/WH/7wB+3evVsdHR2qqanRK6+8ojvvvFOTJk3Ss88+m9DzrlmzRvn5+TrvvPP0pS99SUuXLtXrr7+e0PshHa+f9u/fr5EjR2rChAmaM2eOfvjDH2rjxo1qampKWBvgDSzWAHBVXl6eFixYoLw8Lt0dKDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr/uzHJzc003pV/v7g/qqrKX9Mxb+wZ1nLUV+3RV2Uuqqum5OJWamqqTTz5Zqampgzq+aXv37tUVV1yhiooKSVIgENBll12mL3zhC7rmmms0bNgwSdKBAwc0e/ZsbdiwIWHnbmhoUGtra8KO15vj9VNHR4cOHz7sahvgDcm7gSMAK6SmpqqoqMh0MzyFzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuzcDhsuil9end/UHMfLldjW2Ku0KgNdmjOsnKtXjBVJUX5kroWNdLT0xNyfJNuuukm7dvXtaA1btw4rV27Vuedd17s+UOHDmnu3Ll64YUX1NnZqRtuuEE7duxQQUFBwtowevRoXXTRRbGfP/7xjyorK0vIsQfaT7m5ubrgggs0ZcoUXXTRRWpvb9e8efMS0gZ4A1fWAHBVc3Ozli9frubmZtNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7sxaWlpMN6VX9S0hzX90S8IWaro1tnVq3iNbYluiRSIRHTp0yNPboD377LPavHmzJCkjI0Pr1q2LLdR01zdixAitXbtWEyZMkCTV1dVpyZIlCTn/VVddpV27dqmmpkbr1q3Tvffeq3/7t39L6ELQ8fpp9OjR2rp1qxobG7Vp0yb98Ic/1Gc+8xmdfvrpCWsDvIHFGgCuSktLU3FxsdLSuJBvoMjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/ySPbP7nqlUbbDDlWPXBju0aF2lpK4rNjIzM129+bzbfvrTn8Z+nzdvns4555zY4yPry8nJ0Xe+853Yc8uWLUvIlVVFRUWuL4ocr5+GDRumSZMmKSWFr+r9jhEAwFVZWVmaMWOGsrKyTDfFM8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/y6M8vMzDTdlGNsqKod9D1qjmdtxT5tqKpVSkqK8vLyPPslf3Nzs1544YXY4y984Qs9nj+6vuuvvz52n6K6ujq99NJLQ9fYQfB6Pw1GdXW1AoHACf1UV1ebbv6Q898IATCkOjo6VF5ero4Od/5FiY3IzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujMLhUKmm3KMpRs/GJrzbPpA0WhUzc3NikajQ3LORHv55Zdj4z4nJ0cXXXRRj+ePri8rK0uXXHJJ7PkNGzYMXWMHwev9hKGTnNcKArBGKBRSRUWFJk2alJT/4iUZkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVnVlJSYropPVTVBLWlum5IzrVlZ52qaoIamRbSsGHDhuScifbuu+/Gfj/nnHOO2dbOcRy1trb2qO+CCy7Q888/f8z7k1lvdfhFfn6+br/99gG99u23347dv0iSp7f3O1Es1gBwVV5enr785S+bboankJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVnloh7lgzWnrrW2O8ry3cN6blXbdmrW6dPUGpq6pCeN1Hee++92O/jxo075vnU1FSNGjWqx9+OvL9MVVWVe41LoN7q8IvCwkL95Cc/Oe7r9uzZoylTpsQe33jjjb2OCduxWAPAVdFoVMFgUPn5+b7cm/NEkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVnlp2dbbopmrbkRWPnfrx8lx4v36WdP7jak1chHD58OPb76NGjj3necRxFIhGlpqbG6isqKoo9X1c3NFcxDVZvdSSrv/71r/rKV74y4NcnYsGspaVFs2bNUk1NjSTp4osv1iOPPDLo43oRizUAXBUMBlVWVqaFCxeqoKDAdHM8gcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x687s3i+VLZZJBI5ZgsxL2hubo793tsWYZFIRAcOHNCoUaNi9R35uiPfn8x6qyNZVVVVDekVS47j6POf/7wqKiokSWPHjtWaNWuUlZU1ZG1IJizXA3BVfn6+Fi5cqPz8fNNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7szy8vJMNyUpeHUbtPb29tjvGRkZxzzfvX3YkfUdeV+ntrY2dxuYIL3VgS7/5//8H/32t7+VJOXk5OiZZ57pcfWU37BYA8BVKSkpKigo4FLuOJCZPzKwoUYbagAAk5hH4SWMV3+gn80g9/iRWU/JvrVWX468eiIUCh3zfCAQUFpaWo/6Ojo6Yr/3djVOMuqtjmQ1b948OY4z4J9HH330hM+1cuVK/eAHP5DUldHKlStVWlqaoEq8iRkNgKuampq0dOlSNTU1mW6KZ5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/h1Z+aVbbDcFolETDfhhOTm5sZ+7+0qme7tw46s78jXHfn+ZFBXV6evfOUrx/zcfvvt+uIXv6jbb79dK1eudO38oXBEb+9t6PUnFE6uMVJeXq4vfelLscff//73NXv2bHMNShLJvUkeAM/LyMhQaWlpr5ezondk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNaTF67Y6M1JJ50U+722tvaY5wOBgLKzs3vU130TekkqLCx0t4FxCgaD+ulPf9rva1paWvS5z31uiFqUnHbv3q3Zs2fHrpK6+eabdc899xhuVXJgsQaAqzIzMzV16lTTzfAUMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQev+7MwuGw6aZo810zY7/fsbpCr++qH7JzXzhuhH48p9Sz28GdffbZsd937dp1zPMpKSnHXD2ze/fu2O8lJSXuNQ6uaGlp0axZs2KLc//yL/+ihx9+2HCrkoc3P8kAPKO9vV0bN27scdM49I/M/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7Mj719iytjC7NjPxeOH9kqPKeMLVZAeUTQaHdLzJsqHPvSh2O/vvPPOMYtv0WhUTU1NPep74403en1/MiguLu71vi6RSETBYFCRSETLly833UxjHMfR5z73Ob311luSpHHjxuk3v/mNMjMzDbcsebBYA8BV4XBY1dXVSfGvXbyCzPyRgQ012lADAJjEPAovYbz6A/1sBrnHL1kzm1U6ZkjPd+25Rero6JDjOEN63kS59NJLY1/Ut7S06LXXXuvxvOM4Perr6OhQeXl57PnLL7986Bo7CEfX4Vff+ta3tGbNGklSXl6e1q1bp1GjRpltVJJhsQaAq3JzczV//vyku+lbMiMzf2RgQ4021AAAJjGPwksYr/5AP5tB7vHrziwnJ8d0U3ooKcrXlOKhubpmyvhCfXhMgUaOHKnU1NQhOWei5ebm6oorrog9Pvqqk9TU1B71/eY3v1FTU5OkrvvVTJ8+fcjaOhhH1+FHjz/+uO6//35JXdvbrVq1Suecc47hViUfFmsAuCoSiaimpkaRSMR0UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHL5kz+/KMCUNyntsumyjHcdTZ2enpKzb+/d//Pfb78uXLVVlZGXt8ZH2tra269957Y8/deuutSkvzxu3YbeinwXj55Zf1v/7X/4o9XrJkia655hqDLUpeLNYAcFVTU5OWLVsW+5cPOD4y80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7syam5tNN+UYl5eM1qzz3N0O7brSMZpZMkqRSEQHDx5MykWrgbrmmms0bdo0SV3bnF177bV6++23JSlW34EDBzR79my9//77krquqrn77rv7PGZ1dbUCgUDsx/R9YmzopxO1e/duffKTn4zdX+qWW27R17/+dcOtSl7eWH4E4FnDhw/X3Xffzc3C4kBm/sjAhhptqAEATGIehZcwXv2BfjaD3OPXnVlqaqoOHDhgujnHWDxrkv6687Bqgx0JP/bo/Ewt+sQkSV3baxUVFSkQCCT8PEPpV7/6laZMmaL9+/erurpapaWluuyyyzRhwgQdPHhQL7zwglpbWyVJaWlpeuqpp1RQUJCw81999dXat29fj7/V1NTEfn/ttddUWlp6zPueffZZjRlz/IW5gfTTvffeq2eeeabH345ejOytDd/5znc0a9as47bBlEcffTT2GU1NTVVaWpq+8pWvDOi93/nOd1RYODTbCiYLFmsAuCoQCCgrK8t0MzyFzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuzcDhsuim9GpGToRW3TNGcZeVqbOtM2HGHD0vXilumaEROhiTFrhzxutNOO00bNmzQjTfeqIqKCjmOo40bN2rjxo09XnfyySfr0Ucf7XGfm0TYtm2bdu3a1efzLS0teuutt475eygUGtDxB9JPu3fv7vUcR+rt+bq6ugG1wZQjt36LRCJ6+OGHB/zeb3zjG75brGEbNACuCgaDeuihhxQMBk03xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujNL5q3jSorytXrBVI3OT8wVU6PzM7V6wVSVFOXH/haJRFRbW2vF9lolJSX661//qhUrVuiqq67S2LFjlZGRoZEjR+riiy/WkiVLtG3bNk/e68SmfoK7Ao5f72wEDIHKykpNnjw59njr1q2aNGmSwRYNvVAopG3btunDH/6wMjIyTDfHE8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/y6Mzv77LNVXV3d47kzzzwzqW48X98S0qJ1lVpbse/4L+7DdaVjtOgTk2JX1HSLRqNqb29XVlaWUlLs+zf5ttQ3VHWEwhFV1fS+gFlSlKeMtFTXzm1aOBzW9u3be/ztROYC09/lslgDuMj0BxwAAAAAAMBWifqCdihsqKrV0k0faMvOgW9bNWV8oW67bKJmloxysWWwBYs13l+s8e6SJABPaGtr0/r169XW1ma6KZ5BZv7IwIYabagBAExiHoWXMF79gX42g9zj151Ze3u76aYM2OUlo/XUgkv0xzum6/NTx/X5ugvHjdDtMyfqj3dM11MLLul3oSYajaqxsVHRaNSNJhtnS3221AH3Jd8yMwCrRKNRNTQ08D9IcSAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vHzcmZnF+Xp1ukT9Hh57ze0//GcUo0tzB7QsRzHUSQSka0bJ9lSny11wH1sgwa4yPSlcwAAAAAAALby0jZoR9pT16ppS17s9bnNd80c8GINcCS2QfP+NmjJPXMB8LxwOKy9e/fqtNNOS/r/WEoWZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9ft2ZFRUVmW7KCRlbmK3q+68Z9HEcx1EoFFJGRoYCgUACWpZcbKnPljrgPu5ZA8BVzc3NWrFihZqbm003xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujNraWkx3RSjIpGIDh8+rEgkYroprrClPlvqgPvYBs0SoVBIq1ev1qpVq1RZWana2lqNGDFC48eP16c+9SnNnz9fI0eOTOg5I5GIKisr9eqrr+q1117Tq6++qrfffludnZ2SpMsuu0wbN2484eO/8MILWrFihcrLy/X3v/9dmZmZOu200/Txj39cX/ziF1VSUhL3Md9991098sgj+uMf/6i9e/eqo6NDp556qi655BLdfPPNuuKKK064vb0xfekcAAAAAACArby6DRrgBrZBYxs0JIGqqirdeOONqqio6PH3mpoa1dTU6JVXXtEPf/hDPfroo7r66qsTcs41a9bos5/9rFpbWxNyvCMFg0HdeuutWr16dY+/t7a2qr6+Xu+8847Kysq0ePFiffOb3xzwcb/3ve9p8eLFscWkbtu3b9f27dv12GOP6cYbb9SyZcuUl5eXkFoAAAAAAAAAADgetkHzuL179+qKK66ILdQEAgFddtlluuWWW/SJT3xCw4YNkyQdOHBAs2fP1oYNGxJy3oaGBlcWajo7O/XJT36yx0LN5MmTdfPNN+szn/mMTjnllNjrvvWtb+k73/nOgI5777336tvf/nZsoeaUU07RZz7zGd188809VkdXrVqlT3/60wqHwwmsyt8aGxt1//33q7Gx0XRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7NgMGi6KUaFw2Ht37/f2u+xbKnPljrgPhZrPO6mm27Svn37JEnjxo3Tm2++qY0bN+qXv/ylnnnmGe3evTu2tVdnZ6duuOEGNTQ0JOz8o0eP1rXXXqvFixfr2Wef1cKFCwd1vO9+97uxBaWsrCytWrVK77zzjlasWKHVq1erurpad955Z+z1ixYt0qZNm/o95gsvvKDvfve7scd33nmnqqurtXr1aq1YsUJbt27Vr371K2VlZUmSnnvuOX3/+98fVB34p+zsbM2ePVvZ2dmmm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9ft2Zdf8jZb9KSUlRQUGBUlLs/IrXlvpsqQPu4541Hvbss8/qmmuukSRlZGTotdde0znnnHPM61paWnTuuefqgw8+kCR985vfHPRiRE1NjUKhkE4//fQef1+0aJEWL14sKf571hw4cEATJkyI3Rxu6dKlWrBgQa+vnTt3buzqm0suuUQvv/xyn8edMmWKXn311dj7Vq1a1evrli5dqttuu02SlJeXpw8++GDQ9/kxvc8hAAAAAACArbhnDfBP3LPG+/esYTnPw37605/Gfp83b16vCzWSlJOT02O7sGXLlg36sruioqJjFmoGa8WKFbGFmrPOOku33nprn69dsmRJbDX6lVde0Ztvvtnr61599dXYQk1KSoqWLFnS5zEXLFigM888U5LU1NSkxx9//ITqQE+tra1as2aNK9vm2YrM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7O2tjbTTTEqEomovr5ekUjEdFNcYUt9ttQB97FY41HNzc164YUXYo+/8IUv9Pv666+/Xrm5uZKkuro6vfTSS66270SsWbMm9vv8+fMVCAT6fO3pp5+uyy+/PPb4t7/97XGPeeWVV2rs2LF9HjMQCGjevHnHPSYAAAAAAAAAAInEYo1Hvfzyy+ro6JDUdeXMRRdd1O/rs7KydMkll8Qed98XJlm0t7ervLw89njGjBnHfc/MmTNjv/dVz4svvnjCxzwyY5w49t6NH5n5IwMbarShBgAwiXkUXsJ49Qf62Qxyjx/3rOmSmpqqESNGKDXVzu2tbKnPljrgPhZrPOrdd9+N/X7OOecMaP+9Cy64oNf3J4P33ntP0WhUUtcVLueff/5x3zOQeo78+5Gv78uR541EIvrb3/523Pegf52dnaqqqlJnZ6fppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPH5l1iUajamtri32nZhtb6rOlDriPxRqPeu+992K/jxs3bkDvOfIeM1VVVQlv02AcWc+oUaOUlZV13PccWU9dXZ0OHjzY4/kDBw6ooaEh9nggOQ0bNkwnn3xy7HGy5eRF7L0bPzLzRwY21GhDDQBgEvMovITx6g/0sxnkHj/uWdMlGo2qoaHB2kUAW+qzpQ647/iXYyApHT58OPb76NGjB/SeoqKi2O91dXUJb9NgDLYeqaumIxdajjxmvMftXvhJtpy8aPjw4brnnntMN8NTyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/LozC4fDqq2tNd0cY9LS0nTKKaeYboZrbKnPljrgPq6s8ajm5ubY7wPdn/PI1x35/mQw2HqOPkZvj03mlJWVpdzcXEld26s1NDTIcRxJUjAYVCgUkiS1tbWppaVFkhQOh3tcGdTY2Bi7vLe1tTX2L246OzvV2NgYe11DQ4PC4bAkqaWlJfavTEKhkILBoCTJcRw1NDQoEonE6mxvb5ckdXR0qKmpSdKxK/9NTU2x+/i0t7fH8qEmaqImaqImaqImaqImaqImaqImaqImajJRU/exuo/f/Z5oNBp7znGcWNu6a+x+3ZHHiEajx7yuO69IJNLvsU29jpqoqft10WhUgX+8PyApRU7seJFIxJM1xfO6I3Poft2JznumsFjjUd3/QyZJGRkZA3pPZmZm7Pdku0x0sPVIx9Z05DFP9LiJymnq1Kn69Kc/LUk6ePCgysrKYv+R8cgjj2jbtm2SpE2bNmndunWSpL1796qsrCx2jJ///OfasWOHJOm5557Tc889J0nasWOHfv7zn8deV1ZWpr1790qS1q1bp02bNkmStm3bpkceeURS138AlZWVxa4gevrpp1VeXi5JevPNN/XEE09I6prAysrKYv9R9cQTT+jNN9+UJJWXl+vpp58+bk3PPfecHnzwQTU0NFhTk9v99Itf/EKLFy/WgQMHrKkp3n7qbkP38Wyo6eh+euyxx3T//feroaHBszX5oZ+oiZqoiZrcrKmqqkplZWWx/2NoQ0029hM1ddXU0NCgsrKy2FbRNtRkYz8NtqaGhgbdf//9euyxx6ypyQv99Jvf/EZLlixRQ0ODNTW53U9PPvmkFi9erF27dqm2tjb2ZW44HI7V19TUFFtMCoVCOnDgQKytBw8ejL0uGAzGztPR0dFjm/0DBw7EvthtbGyMLSa1t7fr0KFDkrq+ND5w4EDsS+n6+vrYF8Ctra2xnV8ikYgOHDgQ+xL58OHDsYWvlpYW1dfXx2o4cOBA7MvlQ4cOxb7j6q2mffv2KRwOW1XTkf1UU1OjcDjs+ZqGop+aGhs1LNC1sJoVCCs/0HWeVDmqP3zI1X4yPfbq6+tj88CRNZ3ovGeMA0+6+uqrHUmOJOfuu+8e0HueffbZ2Htyc3Ndadd9990XO8dll1024PctWbIk9r6LL754QO9pbW2NvUeS89prr/V4fsuWLT2eb2trG9Bxp0yZEnvPgw8+OOAaerN161ZHkpOVleXk5uY6W7dudcLhsFNfX+9Eo1HHcRynsbHR6ejoiNXU3NzsOI7jdHZ2OvX19bFjNTQ0OKFQyHEcx2lpaXFaWlocx3GcUCjkNDQ0xF5XX1/vdHZ2Oo7jOM3NzU5ra6vjOI7T0dHhNDY2Oo7jONFo1Kmvr3fC4bDjOI7T1NQUy6e9vd0JBoOO4zhOJBJx6uvrnUgk4jiO4wSDQae9vd1xHMdpa2tzmpqaHMdx+q0pGAw627Ztczo7O62pye1+Onz4sLNz504nFApZU1O8/dTR0eG88847PcaR12s6up/q6uqc9957z+ns7PRsTX7oJ2qiJmqiJjdramtrc955551Y+2yoycZ+oqaG2HveeeedWPtsqMnGfhpsTZ2dnc57773n1NXVWVOTF/qpoaHBqaqqcjo7O62pye1+qq+vd3bu3Om0tLQ477zzjrNt2zZn27ZtTmVlZaymSCQSO080Go21rbvG7mOHw+HY6yKRyDGv684rHA7H3tPbsU28LhQKOe3t7bH32FDT0W1ta2tzotGop2saqn5q6wg5b++pd97aU++8vafeeWdPnfPWPx63tne42k+mx157e7tTWVnpbNu2zdm6dWvsv7Hjnfe6v8vt/tm6daszlAKO4ziC58yZM0dPPfWUJOmrX/3qgFb+fvOb3+j666+X1HVflv379ye8XYsWLdLixYslSZdddpk2btw4oPf9/Oc/17//+79Lks4991y99dZbx31PXV2dTjrppNjjqqoqnX322bHH7777rj784Q/3eP2IESOOe9xzzz1X77zzjiRp6dKlWrBgwYBq6E1lZaUmT54ce7x161ZNmjTphI8HAAAAAACALuFwWNu3b+/xtzPPPFNpaUl+m+76XVLZub0/t/BtacS4oW0PrBAKR1RV09TrcyVFecpISx3iFg2dRM0Fpr/LZRs0jzpykWKgN1KrqamJ/V5YWJjwNg3GYOuRjq3pyGOe6HGTLScvamlp0ZNPPhm7ZBHHR2b+yMCGGm2oAQBMYh6FlzBe/YF+NoPc49edWfdWTn4ViURUV1fX4749NrGlPlvqgPtYrPGoI68g2bVr14Des3v37tjvJSUlCW/TYBxZz4EDB46530xvjqynsLBQJ598co/nR40apYKCgtjjgeTU3t7eYy/FZMvJi1JSUlRQUKCUFKabgSIzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6BQECpqakKBALHf7EH2VKfLXXAff6e0TzsQx/6UOz3d955J3bTpf688cYbvb4/GZx99tmx/4F1HEcVFRXHfc9A6jny7903ohvoMVNTU3XWWWcd9z3o37Bhw3TVVVdp2LBhppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX7dmWVlZZluSvxqK6W/9HM7g9/8L+lPi6Xabcc9VEpKioYPH27topUt9dlSB9zHCPGoSy+9VJmZmZK6Lv187bXX+n19R0eHysvLY48vv/xyV9sXr6ysLE2dOjX2eCD3utm0aVPs977qmTlz5gkf88iMceJCoZAqKioUCoVMN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Loz6+zsNN2UgfvbH6VH/k36+aXSa7/s+3V7/ir9+UfSzy/pev3fnuvzpdFoVK2trYpGoy40eGgcOnRIa9eu1f/5P/9Hs2bN0qRJkzRixAilp6crOztbY8aM0cc+9jH94Ac/0N///ndX2tDW1qaNGzfqBz/4gW666SZ95CMf0ahRo5SVlaXMzEyNGjVKl156qb7+9a8P6B+DHy0ajeqNN97QN77xDZ177rkqLCxUTk6OzjrrLM2bN08vvPBCwmta+9SvdN7YETpv7Aj92yV93B+pD9XV1QoEArGf6urqhLcPvWOxxqNyc3N1xRVXxB4vX76839f/5je/UVNT1w2mCgsLNX36dDebd0Jmz54d+/149ezZs6fHRHbke/s65p/+9Cft3bu33+Meed6+jon4tLe3a+PGjQPa2g5dyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/DyVWWud9PQXpV99Rtr9cnzv3f2y9KsbpF9/qes4R3EcR01NTXIcJ0GNHXrz58/X7Nmz9f3vf1/r1q3Ttm3b1NDQoHA4rLa2Nu3fv1/PP/+8vvWtb2nixIlavHhxwhenfvrTn2rmzJn61re+pVWrVumNN97QwYMH1dHRoVAopIMHD+qVV17Rj370I11wwQWaO3eu6uqO7Y++fO9739PUqVP1n//5n3rnnXdUX1+v1tZWbd++XY899piuvPJK3XTTTbHvbuFfAcfLn2af+/3vf69rr71WkpSZmanXX39dkyZNOuZ1ra2tOu+88/T+++9Lku655x794Ac/cKVNixYt0uLFiyVJl1122YCuZul24MABTZgwIXZDvf/+7//Wl770pV5fe9NNN2nVqlWSpEsuuUQvv9z3/9hNmTJFr776qiTps5/9rFauXNnr6x5++GEtWLBAkpSXl6cPPvhAI0eOHHD7e1NZWanJkyfHHm/durXXPgIAAAAAAEB8wuGwtm/f3uNvZ555ptLS0gy16Cg1W6UnPi017R/8sfJOkT73a2m0Xd8rXXvttfr9738vSRo5cqQ+9KEPady4ccrNzVVra6vef/99bdmypcctIG6++WatWLEiYW148MEHdeedd0qSsrOz9aEPfUgTJ05UQUGBwuGw9u7dq/LycgWDwdh7zjnnHP35z39Wfn5+v8e+99579d3vfjf2+JRTTtG0adOUlZWl119/XZWVlbHnPvaxj+n3v//9CY/fUDiiqpquBZ+1T/1K9379dknSmNPGaufOncpISx3QcaqrqzV+/PjY4507d6q4uPiE2jRUEjUXmP4ulytrPOyaa67RtGnTJHVtc3bttdfq7bff7vGaw4cPa/bs2bGFmsLCQt199929Hu/oS9yOd3VLoo0aNUr/8R//EXv81a9+VU899VSP13R2duqee+6JLdRIOu7C05HPP/HEE7rnnnuOuUz2qaee0h133BF7/I1vfGPQCzXo4jiO2tvbPf2vPIYamfkjAxtqtKEGADCJeRRewnj1B/rZDHKPnycyq9kqLb8mMQs1UtdxHr266543/+A4jqLRaHLncBwzZszQ0qVLtX37dh08eFAvvfSSHn/8cf385z/X8uXLtXnzZu3Zs0c33nhj7D2PPfaYnn766YS14cwzz9T3vvc9vfbaa2psbNRrr72m1atXa9myZfrlL3+pP/7xj6qtrdUPfvCD2H1n3nnnHX3rW9/q97gvvPBCj4Wab3zjG6qurtbq1au1YsUKbd26Vb/61a9i91567rnn9P3vfz9hdcF7WKzxuF/96lc65ZRTJHUttpSWlmrmzJn60pe+pOuuu06nn366nn/+eUlSWlqannrqKRUUFCTk3FdffbVKS0t7/CxdujT2/GuvvXbM86Wlpdq3b1+fx/y///f/xu4/09bWpjlz5ujcc8/V/PnzNXfuXI0bN04PPPBA7PWLFy/WZZdd1m87r7jiCn3729+OPX7ggQdUXFysuXPnav78+TrnnHM0Z84ctbW1SZI++tGPHneyxcA1NjbqgQceUGNjo+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco9fd2ZHXumQVFrruq6oaW9I7HHbG6SV18e2RItEIqqpqVEkEknseYbQN77xDS1YsEBnnHHGMc911zdy5Eg98cQTPe5ZvWzZsoS14brrrtO3vvUtfeQjH+nzSoysrCzdc889uu+++2J/e+yxx/rdiu+b3/xmj3P84Ac/UEZGRo/X3Hjjjfrxj38ce/zggw/q0KFDJ1oKPI5t0CxQVVWlG2+8URUVFX2+5uSTT9ajjz6qa665ps/XHH2J26OPPqr58+f3+fri4mLt2rUr7vYe79K5xsZG3XrrrcdcVXOk9PR0LVq0aMCLKo7j6Hvf+56+853v9Hvzublz52rZsmXHvYRxoExfOpcMIpGIDh48qJNPPlmpqQO73NLvyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/LozGzFihD744IMezyXFNmhPf1HamrgrP45xzg3S9b+Q4zgKh8NKS0tTIBBw73yGHF3fypUr9fnPf16SdNJJJxlZ1Ni7d6/Gjh0be/zOO+/0+O6v26uvvqopU6ZIklJSUrR9+3aNHz++135yHEdnn312bBuvH/3oR/ra174Wd9vYBo1t0JAESkpK9Ne//lUrVqzQVVddpbFjxyojI0OjRo3S1KlTtWTJEm3btq3fhZpkMnz4cK1evVrPP/+8Pve5z2nixInKzs7W8OHDNXnyZH3961/XW2+9FdfVL4FAQN/+9rf11ltv6T/+4z80efJkDR8+XNnZ2Zo4caI+97nP6fnnn9eqVasStlCDLqmpqSoqKuI/OONAZv7IwIYabagBAExiHoWXMF79gX42g9zjl9SZ/e2P7i7USNI7/yP97Y8KBAJKT0+3cqFG0jH1nXzyybHnmpqajLTpyDb01441a9bEfr/yyis1YcKEPvspEAho3rx5sce//e1vB99QlxUXF/e4ncZAf4b6thtekyR328JgZWRk6Oabb9bNN998wscoLi6Oa4/L6urqEz7XQFx55ZW68sorE3rMD33oQ/rP//zPhB4T/WtubtbTTz+tT3/608rNzTXdHE8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7x687sk5/8pOmmHOvPDw3Nef5SpsjEK1VfX68RI0Yk58LVIEUikR71bdu2LfacqSs9jmxDf+148cUXY79Pnz5dhw4d6refZs6cGfv95ZdfVkdHhzIzMwffYHgKizUAXJWWlqbi4mLzlyB7CJn5IwMbarShBgAwiXkUXsJ49Qf62Qxyj1/SZlZbKe1+eWjOtesvChx8V5k546y+siYzM1OBQED79u3Tgw8+GHvu05/+9JC3JxQK6Z577ok9vvTSS2P3Ej/au+++G/v9ggsuiNXRl/PPPz/2eyQS0d/+9jedc845CWi1O+bNm6fDhw8f93WHDx/Wk08+GXts61hNlCSb0QDYJisrSzNmzDDdDE8hM39kYEONNtQAACYxj8JLGK/+QD+bQe7x684sHA6bbopUf8T9nF/95ZCeOuX1R5V36VellLwhPe9QaW9v1549e/SHP/xBS5Ys0YEDByR17Zxz5KKJm0KhkPbv36/NmzfrP//zP2P3DM/Ly9N//dd/9fqeAwcOqKGhIfZ4/Pjxysvrv4+GDRumk08+WQcPHpTUdY/yZF6sWbx48XFf09nZqY997GOxxyUlJZo9e7aLrfI+FmsAuKqjo0Nvvvmmzj//fC7fHCAy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7szOPfdc002Rygy24dVfSK/+QtF765WS4v1bk//5z3/WtGnT+n3N1VdfrSeeeOK4ix+DkZaWpkgk0ufzZ511ln7961/3uBH9kY6+4uTkk09Wc3OzsrOz++2noqKi2GJNXV3dCbS8d40NDVr41a8qNWVgV7Uk6n5At99+uzZu3ChJKiws1Lp16zR8+PCEHNtWLNYAcFUoFFJFRYUmTZrEf3QOEJn5IwMbarShBgAwiXkUXsJ49Qf62Qxyj193ZiUlJaabkhTiuQe1V40YMUI/+9nPNHfuXGNtSE1N1d13363Fixf3uwVfc3Nzj8dZWVlqaWnRsGHD+j3+kc8ffYzBaGlu0tKf/yxhxxuIhx56SP/93/8tSUpPT9evf/1rnXHGGUPaBi8KOH74NAOGVFZW9lhl37p1qyZNmmSwRQAAAAAAAHYIh8Pavn17j7+deeaZQ3svm0VJcKXAokbTLUiIDz74QD/60Y8kdS1ANTU16b333tMbb7wR2/Ju5syZWrp0qc466yzX2rFw4cLYlTUtLS3as2ePtmzZErvi5IwzztB//dd/6aqrrur1/Zs3b9b06dNjjyORyICufJo+fbo2b94sSfrud7+rb3/723G1OxSOqKqmq41rn/qV7v367XG9vy87d+5UcXHxgF+/fv16XXvttbEM//u//1tf+tKXEtKWviRqLjD9XS5X1gBwVTQaVTAYVH5+vhWX5A4FMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQev+7MsrOzTTclKTiOY8WN2ydMmKCf/OQnsceO4ygSiai2tlbf/va3tXz5cr344ouaOnWqNm7c6No2eGVlZcf8raWlRT/96U9177336v3339c111yjRx55RPPmzTvmtVlZWT0ed3R0KD09Xampqf32U0dHR+z3412FE48xp43Vzp07lZGWOqDXV1dXa/z48Sd0rm3btmnOnDmxhZqvfe1rri/U2IT/BQDgqmAwqLKyMgWDQdNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7swSdW8Nr+vv/ipeFolEdODAAY0ePVqPPvqovvrVr0qS6uvrNXfu3GPqrqur01e+8pV+f1auXHlCbcnJydFdd92lVatWSepaMPzyl7+sDz744JjX5ubm9njc3NysAwcOHLef2tra+jyGFxw+fFif+MQnYnPZ1VdfrQcffNBwq7yFbdAAF5m+dC4Z8C+E4kdm/sjAhhptqAEATGIehZcwXv2BfjaD3ON35JU1O3bs6PGcH7dBc+5rsOLKmqN1X1nTfUVKa2urTjnllNhiwLp163TttdfGXj+QK0LmzZun5cuXD6pdV155pV544QVJ0te//vVjFiS6F5i6bdu2TWeeeeZxr6wZNWqUDh48KEl66qmndMMNN8TVrr62QRvslTUD2Qats7NTH/3oR7Vp0yZJ0qRJk/TKK68oLy8vrhpOlC3boPG/AABclZKSooKCAv6DMw5k5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+SZXZwrf/+TP24qE999ip0sK3rVyokaRAIKC0tLRYfdnZ2br00ktjz//lL38x0q6PfvSj/bZh1KhRKigoiD3evXt3jzp6097eHluokaSSkpLENHaI3HbbbbGFmpEjR2rdunVDtlBjkySY0QDYrKmpSUuXLuXS5DiQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4dWfW3NxsuinSiHH//Bn3L0N66ujpl+pA5zDrt0E7sr4RI0bEfj98+HCP1xcXF8txnH5/BntVzfHa0O1DH/pQ7PfXX3/9uNugvfHGG7HfU1NTddZZZw26nUPlRz/6kX75y19KkjIyMvTb3/72hO9543cs1gBwVUZGhkpLS5WRkWG6KZ5BZv7IwIYabagBAExiHoWXMF79gX42g9zjl7SZnfPpIT7f9crOzrb6ypqj69u/f3/s98LCQhPNGlAbZs6cGft906ZNx+2n7qtSJOnSSy9VZmZmAlrqvmeffVZ33nln7PHDDz+sf/3XfzXYIm9jsQaAqzIzMzV16lTP/I9MMiAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vHrzizpFmtGT5JOv/T4r0uEcf+ilKLJys3NTY7t4FyQkpLSo77Dhw/rlVdeiT1/5NUrQ+l3v/vdcdswe/bs2O8vvPCCGhoa+u2nI6/4OfK9yayyslI33nijotGoJOmuu+7SvHnzDLfK2+z8JANIGu3t7dq4caPa29tNN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Loz6+joMN2UY/3rHUNznn+5Q9FoVE1NTbEvy72mrq6u3+ePrC8ajeorX/lKrM8zMzN17bXXDroNLS0tcX32fv7zn+u1116LPb7++ut7fd1FF12kiy66SFLXdm5f//rX++ynhx9+WH/7298kSXl5ebr55psH3B5TDh06pE984hMKBoOSpOuuu04/+MEPDLfK+1isAeCqcDis6upqhcNh003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr+kzuysj0uTXd4O7ZwbpLM+Jsdx1NHRIcdx3D2fSx577DFddNFFeuyxx2Jf+h+pu7633npLV199tZ588snYc3feeadOOumkQbdh+/btOuOMM/TDH/5Qe/bs6fN1NTU1+trXvqbbb7899rdp06b1u2B05OLFU089pXvuuUednZ09XvPUU0/pjjvuiD3+xje+oZEjR55AJUMnFArpU5/6lHbu3ClJOvfcc7Vy5Uprr/AaSgHHq59mwAMqKys1efLk2OOtW7dq0qRJBlsEAAAAAABgh3A4rO3bt/f425lnnqm0tDRDLfqH1jrp55dKTfuP/9p45Z0i3faylG3mfi2J9NBDD+lrX/uaJCktLU0lJSU6++yzNWLECAUCAR0+fFhvv/223n///R7vu/766/Xkk08mpJ8rKip0/vnnxx4XFxdr8uTJGjlypDIzMxUMBlVVVaW3335bkUgk9rqzzz5bL774ok455ZR+j/9//+//1f/7f/8v9njMmDGaNm2asrKy9Prrr2vr1q2x5z760Y/q2WefPeG6QuGIqmqaJElrn/qV7v1618LSmNPGaufOncpISx3QcaqrqzV+/PjY4507d6q4uDj2eNOmTZoxY0bs8axZszR27NgBHfvzn/+8Lr744gG9Nh6JmgtMf5dreOYCYLtIJKKDBw/q5JNPVmrqwP5Hwe/IzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujMbMWKE6ab0LrtQ+tyvpUevltobEnfcrIKu4/5jocZxHIXDYaWlpfV78/pkdeR9msLhsLZu3dpj8eJoeXl5WrRokRYuXJiwz0p6erpSUlJiW5RVV1erurq6z9enpKToi1/8oh544IEBjb/vfOc7ysjI0He/+111dnZq3759Wr169TGvmzt3rpYtW2Z+oXEAjr7245lnnhnwey+88EJXFmtswbVJAFzV1NSkZcuWqampyXRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7Pm5mbTTenb6EnSF57tuhImEfJO6Tre6H/+K//uRasjr/jwkttuu03vvfeefvrTn+rmm2/WRz7yEZ188slKT09Xenq6TjrpJJWUlOimm27S8uXLtW/fPv3Hf/xHQhc1J02apJqaGj3xxBO6/fbbNW3aNJ166qnKyspSamqqCgoKNHHiRM2ePVs//OEPtXv3bj388MMDXigMBAL65je/qeeff1533HGHJk+erOHDhys7O1sTJ07U5z73OT3//PNatWqV8vPzE1YXvIlt0AAXmb50Lhl07y+amZnpyX/lYQKZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco9fd2apqanHbJGVFNugHam1TvrDXdI7/3PixzjnBunflhyz9ZnjOHIcR4FAwMqxY0t9Q1XHkdugHa2kKG/A26B5EdugAcAABAIBZWVlmW6Gp5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/h1ZxYOh0035fiyC6Xrf9G14PKXMmnXXwb+3nH/Iv3LHdJZH+v1aa8vYhyPLfXZUgfcxzZoAFwVDAb10EMPKRgMmm6KZ5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/h1Z+aprePO+njXNma3vSJd9KW+Xzd2qjTt612v+8KzfS7USF3boNXW1np2G7TjsaU+W+qA+7iyBoCrsrKyNGPGDP6VUBzIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8PJ3Z6A9Ll35VevUXvT//qYelEeMGdKhAIKC8vDxrr9qwpT5b6oD7WKwB4KqMjAyVlpaaboankJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVn5olt0FyUkpKi7Oxs081wjS312VIH3Mc2aABc1dbWpvXr16utrc10UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuz9vZ20005MSPGSYsae/8Z4FU1khSNRtXY2KhoNOpiY82xpT5b6oD7WKwB4KpoNKqGhgb+BykOZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxXEcRSIROY5juimusKU+W+qA+wIOowRwTWVlpSZPnhx7vHXrVk2aNMlgiwAAAAAAAOwQDoe1ffv2Hn8788wzlZbGnR/gP6FwRFU1Tb0+V1KUp4y01CFu0dBJ1Fxg+rtcrqwB4KpwOKzq6mrf7yMbDzLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y6+I4jjo6Oqy9YsOW+mypA+5jsQaAq5qbm7VixQo1NzebbopnkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVn1tLSYropRkUiER0+fFiRSMR0U1xhS3221AH3sQ0a4CLTl84BAAAAAADYim3QgH9iGzS2QQMAAAAAAAAAAMAgsFgDwFWNjY26//771djYaLopnkFm/sjAhhptqAEATGIehZcwXv2BfjaD3OPXnVkwGDTdFKPC4bD2799v7b17bKnPljrgPhZrALgqOztbs2fPVnZ2tummeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco9ff5n56Y4PKSkpKigoUEqKnV/x2lKfLXUks94+94FAwEBLBocNHAG4Kj09XSUlJaab4Slk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+3Zn19gVtKBRSenq6gVYNvZSUFA0bNsx0M1xjS3221JHMOjs7j/mbFxfHvNdiAJ7S2tqqNWvWqLW11XRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7O2tjZlZWX1eM5PW6NFIhHV19crEomYboorbKnPljqSWUtLS4/HmZmZnryyhsUaAAAAAAAAAJ6Ul5fX43EwGGThC/CRcDh8zD2/cnJyDLVmcAKOnzZyBIZYZWWlJk+eHHu8detWTZo0yWCLAAAAAAAA7BEKhbRjx44ef0tJSVF+fr7y8/OVnp7uye2QgHh1hiP624HmXp87a1Su0tNSh7hF7opGo2ptbVVdXZ06Ojp6PHf66aef0IKN6e9yuWcNAFd1dnZqx44dmjhxom/2jB0sMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQevyMzy8jIUF5enpqammLPR6NRNTQ0qKGhwVwjh4DjOHIcR4FAwJNbPh2PLfUNVR2O4yjSGe31uZ3NKZ7OMB5ZWVnKzs423YwTwrIyAFex9278yMwfGdhQow01AIBJzKPwEsarP9DPZpB7/I7ObMyYMcrNzTXcKjNsvw+KLfXZUkeyS0tL02mnnebZhSm2QQNcZPrSOQAAAAAAAD+IRqPat29fjytsAD8JhaOqqul9/JcU5Skjze7rNtLS0jR27FhlZWWd8DFMf5fLNmgAAAAAAAAAPC0lJUWnnXaaQqGQgsGgmpqa1N7ebrpZAFwUCASUk5OjgoIC5ebmevaKmm4s1gBwVUNDg8rKyrRw4UIVFBSYbo4nkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+PWXWUZGhkaOHKmRI0fKcRxFo1HZurFQY2Ojli1bpgULFmj48OGmm5NwttQ3VHX8vb5N33lqc6/PPfvVSTp1xDDXzm1CSkqK5+9ndDS2QQNcZPrSuWQQDoe1d+9enXbaaUpLY314IMjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrEtvOeypa9W0JS/2+vrNd83U2ELv3Hjdln4eqjps6ntTTH+X691RDsAT0tLSVFxcbLoZnkJm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+6z+65CAIxraWnRk08+qZaWFtNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/Mutiew621GdLHXAfizUAXJWSkqKCggKlpDDdDBSZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPe9YALjK9zyEAAAAAAAD8g/uW+Bd9P3imv8tlOQ+Aq0KhkCoqKhQKhUw3xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9LNYAcFV7e7s2btyo9vZ2003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB/boAEuMn3pHAAAAAAAAPyDrbD8i74fPNPf5XJlDQBXOY6j9vZ2sS48cGTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5k1sX2HGypz5Y64D4WawC4qrGxUQ888IAaGxtNN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfWyDBrjI9KVzySASiejgwYM6+eSTlZqaaro5nkBm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl16y8GmrbBs6eehqsOmvjfF9He5aUN2JgC+lJqaqqKiItPN8BQy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/Mutiew621GdLHXAf26ABcFVzc7OWL1+u5uZm003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB+LNQBclZaWpuLiYqWlcSHfQJGZPzKwoUYbagAAk5hH4SWMV3+gn80g9/iRWRfbc7ClPlvqgPu4Zw3gItP7HAIAAAAAAMA/TN+3xPT5/YzsB8/0d7lcWQPAVR0dHSovL1dHR4fppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPH5l1sT0HW+qzpQ64j8UaAK4KhUKqqKhQKBQy3RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8SOzLrbnYEt9ttQB97ENGuAi05fOAQAAAAAAwD9Mb4Vl+vx+RvaDZ/q7XK6sAeCqaDSqhoYGRaNR003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB+LNQBcFQwGVVZWpmAwaLopnkFm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+5jGzTARaYvnUsG0WhUwWBQ+fn5SklhfXggyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/MisS285mN4KK5Hnt6Wfh6oO031vA9Pf5aYN2ZkA+FJKSooKCgpMN8NTyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfd5dkgTgCU1NTVq6dKmamppMN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfSzWAHBVRkaGSktLlZGRYbopnkFm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+7jnjWAi0zvcwgAAAAAAAD/MH3fEtPn96uqmqBWlu/SyvLdvT7/kXEjdPH4Ql1XeqrOLsob4tZ5h+nvcrmyBoCr2tvbtXHjRrW3t5tuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT4369hQVavPLH1FVz20uc+FGkl6fVe9frZxhz7+0Ev6zNJX9GLVgYS3BYPHYg0AV4XDYVVXVyscDptuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT436qhvCemrq97ULctf05bqurjeu6W6Tl9Y/qoWPvmm6ltCCWsTBo9t0AAXmb50DgAAAAAAAP5hehsy0+f3g3f3BzX/0S2qDXYM+lij8zO14pYpKinKT0DLvM/0d7lcWQPAVZFIRDU1NYpEIqab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqS+Rdby7P6i5D5cnZKFGkmqDHZqzrFxVNcGEHA+Dw2INAFc1NTVp2bJlampqMt0UzyAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6252BLfYmqo74lpPmPblFjW2eCWtalsa1T8x7ZwpZoSYBt0AAXmb50Lhk4jqOOjg5lZmYqEAiYbo4nkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZl95yML0NWSLPb0s/J6qOr656U8+8tS+BLevputIxKpt7vmvH9wLT3+VyZQ0AVwUCAWVlZXn6f1SHGpn5IwMbarShBgAwiXkUXsJ49Qf62Qxyjx+ZdbE9B1vqS0QdG6pqXV2okaS1Ffu0oarW1XOgfyzWAHBVMBjUQw89pGCQvS8Hisz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy31JaKOpRs/SGCL+jnPpqE5D3rHYg0AV2VlZWnGjBnKysoy3RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8SOzLrbnYEt9g62jqiaoLdV1CW5V77bsrNN7Nd6+R5CXpZluAAC7ZWRkqLS01HQzPIXM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucePzLrYnoMt9Z1oHXvqWiVJK8t3JbhF/VtZvku3Tp/g+v2NcCyurAHgqra2Nq1fv15tbW2mm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fsfLbE9dq4rv+X2vP91fgNvA9rFjS30nWse0JS9q2pIXtbJ8t0st693j5bs0bcmLQ3pOdGGxBoCrotGoGhoaFI1GTTfFM8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrIvtOdhSny11wH0Bx3Ec040AbFVZWanJkyfHHm/dulWTJk0y2CIAAAAAAAC77alr7fPKgM13zbR6eyfTtZs+v02K7/m90fNX33+N0fObYPq7XK6sAeCqcDis6upqhcNh003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB+LNQBc1dzcrBUrVqi5udl0UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHj8y62J6DLfXZUgfcxzZogItMXzoHAAAAAADgN37eist07abPbxO2QRt6pr/L5coaAAAAAAAAAACSyOa7ZmrzXTP1kXEjhvS8F44boc13zRzSc6ILizUAXNXY2Kj7779fjY2NppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5k1sX2HGyp70TrGFuYrbGF2bp4fKFLLevdxRMKuQLKEBZrALgqOztbs2fPVnY2k/xAkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZF9tzsKW+wdYxq3RMglt0nPOdd+qQng//lGa6AQDslp6erpKSEtPN8BQy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/Mutiew621DfYOkqK8jWluFBbqusS2KreTRlfqLOL8lw/D3rHlTUAXNXa2qo1a9aotbXVdFM8g8z8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy31JaKOL8+YkMAW9e22yyYOyXnQO66sAQAAAAAAAJAwe+paNW3Ji70+t/mumdwPA4jT5SWjNeu8MXrmrX2uneO60jGaWTLKtePj+AKO4zimGwHYqrKyUpMnT4493rp1qyZNmmSwRQAAAAAAAO4yvVhj+vwmma7d9PltVt8S0lVlL6k22JHwY4/Oz9T6hdM1Iicj4cf2EtPf5bINGgBXdXZ2qqqqSp2dnaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqS9RdYzIydCKW6Zo+LD0BLWsy/Bh6VpxyxTfL9QkAxZrALjKlv1FhxKZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6ktkHSVF+Vq9YKpG52cmoGVdV9SsXjBVJUX5CTkeBodt0AAXmb50DgAAAAAAYKiZ3grL9PlNMl276fP7RX1LSIvWVWptxYnfw+a60jFa9IlJXFFzBNPf5aYN2ZkAAAAAAAAAAMCgjMjJUNnc83Vd6Rgt3fSBtuysG/B7p4wv1G2XTdTMklEuthAngm3QALiqoaFBixcvVkNDg+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6nOzjstLRuupBZfoj3dM1+enjuvzdReOG6HbZ07UH++YrqcWXMJCTZLiyhoArsrNzdW8efOUm5truimeQWb+yMCGGm2oAQBMYh6FlzBe/YF+NoPc40dmXWzPwZb6hqKOs4vydOv0CXq8fFevz/94Tilb0HkAizUAXJWWlqbi4mLTzfAUMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrYnsOttRnSx1wH9ugAXBVS0uLnnzySbW0tJhuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT5b6oD7WKwB4KqUlBQVFBQoJYXpZqDIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9bIMGwFXDhg3TVVddZboZnkJm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+5jOQ+Aq0KhkCoqKhQKhUw3xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9LNYAcFV7e7s2btyo9vZ2003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcF/AcRzHdCMAW1VWVmry5Mmxx1u3btWkSZMMtggAAAAAAMBde+paNW3Ji70+t/mumRpbmG31+U0yXbvp8/sZ2Q+e6e9yubIGgKscx1F7e7tYFx44MvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrYnsOttRnSx1wH4s1AFzV2NioBx54QI2Njaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+FmsAuCovL08LFixQXl6e6aZ4Bpn5IwMbarShBgAwiXkUXsJ49Qf62Qxyjx+ZdbE9B1vqs6UOuC/NdAMA2C01NVVFRUWmm+EpZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPq6sAeCq5uZmLV++XM3Nzaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+FmsAuCotLU3FxcVKS+NCvoEiM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3MUIAuCorK0szZsww3QxPITN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8SOzLrbnYEt9ttQB93FlDQBXdXR0qLy8XB0dHaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+FmssEQqF9Pjjj+vqq6/WuHHjlJWVpVNOOUWXXnqpHnzwQR06dCjpzx0IBE74Z/78+X0et7i4OO7j7d27N0HpIBQKqaKiQqFQyHRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucePzLrYnoMt9dlSB9wXcBzHMd0IDE5VVZVuvPFGVVRU9PmaUaNG6dFHH9XVV1+dtOcOBAIn3I67775b999/f6/PFRcXa9euXXEdb8+ePTrttNNOuD3dKisrNXny5NjjrVu3atKkSYM+LgAAAAAAQLLaU9eqaUte7PW5zXfN1NjCbKvPb5Lp2k2f38/IfvBMf5fLPWs8bu/evbriiiu0b98+SV0LHtOnT9fEiRN18OBB/elPf1JbW5sOHDig2bNna/369br88suT8ty33377gM9dWVmpjRs3xh5/7nOfG9D7br75ZuXl5R33dbm5uQNuC/oXjUYVDAaVn5+vlBQu5hsIMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrYnsOttRnSx1wH4s1HnfTTTfFFkvGjRuntWvX6rzzzos9f+jQIc2dO1cvvPCCOjs7dcMNN2jHjh0qKChIunP/5Cc/GfC5b7jhhtjvF1xwQY8Vz/4sXrxYxcXFAz4PBi8YDKqsrEwLFy5MyLjzAzLzRwY21GhDDQBgEvMovITx6l3x/Etr+tkMco8fmXWxPQdb6rOlDriPpTwPe/bZZ7V582ZJUkZGhtatW9djsUSSRo4cqbVr12rChAmSpLq6Oi1ZssTT566vr9e6detij+fNmzfoY8I9+fn5WrhwofLz8003xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9LNZ42E9/+tPY7/PmzdM555zT6+tycnL0ne98J/Z42bJlCofDnj33k08+qY6ODklSenq6brrppkEdD+5KSUlRQUEBl3nGgcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy312VIH3McI8ajm5ma98MILscdf+MIX+n399ddfH7sPS11dnV566SVPnluSVqxYEfv9mmuu0ciRIwd1PLirqalJS5cuVVNTk+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPe9Z41Msvvxy7uiQnJ0cXXXRRv6/PysrSJZdcoueff16StGHDBl1++eWeO/ff/vY3/fWvf409Zgu05JeRkaHS0lJlZGSYbopnkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZF9tzOJH64rlP11CxvZ+QOCzWeNS7774b+/2cc85RWtrxu/KCCy6ILZgc+X4vnfvIq2pGjhypa665Jq73v/7661q7dq3+/ve/S5JOOukkffjDH9a//uu/asSIESfcLvQtMzNTU6dONd0MTyEzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6252BLfbbUAfexDZpHvffee7Hfx40bN6D3nH766bHfq6qqPHfuaDSqxx9/PPb4pptuUnp6elzH+PSnP6077rhDP/zhD/XDH/5Q99xzj2bNmqXRo0fr5ptv1gcffHBCbUPf2tvbtXHjRrW3t5tuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT5b6oD7WKzxqMOHD8d+Hz169IDeU1RUFPu9rq7Oc+d+8cUXtWfPntjjRG6B1tnZqccff1znn3++1q1bl7DjQgqHw6qurlY4HDbdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3sVjjUc3NzbHfhw0bNqD3HPm6I9/vlXM/9thjsd/POeccXXDBBQN6X1pamq655hotXbpUb7zxhhoaGtTZ2alDhw7p+eef1xe/+MXYFTrBYFA33HCD/vKXv5xQG/uSlZWl3NxcSVIkElFDQ4Mcx4mdMxQKSZLa2trU0tIiqWsib2hoiB2jsbFRnZ2dkqTW1la1trZK6lpoamxsjL2uoaEhNvm3tLSora1NkhQKhRQMBiVJjuOooaFBkUhEUlefdK/ud3R0xG54Fo1G1dDQoGg0Kqnrhmjd9ytqb2+P9WV/NaWmpuqGG25Qbm6uNTW53U/RaFTz589XTk6ONTXF20/Z2dmaPXu2srOzranp6H5yHEc33nijcnNzPVuTH/qJmqiJmqjJzZqysrI0e/bs2H8n2lCTjf1ETV015ebmavbs2crKyrKmJhv7qbeaOtq7akpTRNkK/eNVjnIDHcfUlJubqxtvvDHWtmStybZ+CgQCmjNnjnJzc62pqa21RRnq+v3osdcUbBx0TZI0f/58DRs2rM+aMhRWlrranaqocgMdg6opGcdeOBzW/PnzlZub26OmTHUqM1Z7RDlH1O52TaFQRyz/Yf9oQ8o/8o937EUiEX32s59Vbm5u0oy9RPZTosdea0tzrPZ0RTTsH7UH/lF7Ms0Ryfh5OrImU1is8agjL5sb6M2pMjMzY793fxi8cu7m5mb9+te/jj2O56qav/71r/rd736nBQsW6Pzzz9fw4cOVlpamk046SVdeeaV+8YtfaPPmzTrppJMkdX3wv/jFL8YmhUSYOnWqPv3pT0uSDh48qLKystgE8sgjj2jbtm2SpE2bNsWu7Nm7d6/Kyspix/j5z3+uHTt2SJKee+45Pffcc5KkHTt26Oc//3nsdWVlZdq7d68kad26ddq0aZMkadu2bXrkkUdiNZaVlengwYOSpKefflrl5eWSpDfffFNPPPGEpK4JrKysLDZhPvHEE3rzzTclSeXl5Xr66aePW9PGjRv19NNPKxKJWFPTUPRTTU2NWltbraopnn6qr69XWVmZ6uvrrampt37atGmTIpGIZ2vySz9REzVREzW5VdOuXbtUVlYW++9OG2qysZ+oqaumSCSisrIy7dq1y5qabOyn3mp6c8srkqTi1Hpdndm1LXmGIroh6x011B3qUVMkEtGmTZuSvibb+umZZ57Rs88+q0gkYk1Nf9nwnErT90k6duz9z4qHB13T//zP/6impkY1NTV91lSavk+XZnTNWSenNOuGrHcGVVOyjr2amhpFIpEeNV2UvlcXpXe1+9SUoK7L3DZkNW3f1pXzh9NqdVlGV3sKAu26Ieud2EJOPGPvtddeUyQSSZqxl8h+SvTY2/jH3+nDabWSpDNTD+mjmdslSTmBkP5nxcNJNUck6+fJOAeedPXVVzuSHEnO3XffPaD3PPvss7H35Obmeurcy5cvj70/LS3N2b9/f9zHOJ7nnnsudg5JztNPPz3oY27dutWR5GRlZTm5ubnO1q1bnXA47NTX1zvRaNRxHMdpbGx0Ojo6HMdxnNbWVqe5udlxHMfp7Ox06uvrY8dqaGhwQqGQ4ziO09LS4rS0tDiO4zihUMhpaGiIva6+vt7p7Ox0HMdxmpubndbWVsdxHKejo8NpbGx0HMdxotGoU19f74TDYcdxHKepqclpa2tzHMdx2tvbnWAw6DiO40QiEae+vt6JRCKO4zhOMBh02tvbHcdxnLa2NqepqclxHKffmvbv3+8sWrQo1i4banK7n3bv3u0sWrTIqaurs6amePvp8OHDzqJFi5zDhw9bU9PR/bRnz57YZ8OrNfmhn6iJmqiJmtys6eDBg7H/LbClJhv7iZoaYvUsWrTIOXjwoDU12dhPvdW0/e+HnHF3/86ZePda50N3/8YZd/fvnHF3r3Mm3fNrZ+eBYI+auvt5z549SV2Tbf3097//Pfa/B7bU9N6eA86Zd6/pdexV7tw36Jr27t3rLFq0yDl06FCvNe0+3OKcefca5+y7f+uMu/t3zoS7n3Em3fNrZ9zdv3N2H25xfext33fYGXf375wz7l7rlPyj9uJ/fO6qDzYlrJ927doVGzvdNe0+3OKcdfdvnbNita91PnxE7W5/nt7fX+eMu/t3zpl3r3FK/tGG8f/If9eh5rjG3pH1JcvYS1Q/uTH2qnbXxmo/euxV7tyXVHNEss7l3d/ldv9s3brVGUoBx/nHNUDwlDlz5uipp56SJH31q18d0Mrfb37zG11//fWSuu4hs3//fs+c+4orrtCGDRskSddcc41+97vfxdnqgZk2bZr+/Oc/S5K++MUv6he/+MWgjldZWanJkyfHHm/dulWTJk0a1DG9xnEcdXR0KDMzU4FAwHRzPIHM/JGBDTXaUAMAmMQ8Ci9hvHrXnrpWTVvyYq/Pbb5rpsYWZsce089m2Jh7POPuRBwvM7fPfzxDdf7ecrCp9hP5bJiuvzdD9RlPxtq9xvR3uWlDdiYkVPeWXZJUW1s7oPfU1NTEfi8sLPTMuXfv3q0XX/znRBPPFmjxuvLKK2OLNe+++65r5/GTQCAQ29caA0Nm/sjAhhptqAEATGIehZcwXv2BfjbDrdxt/uKWsdrF9hxsqc+WOuA+7lnjUWeffXbs9+49g49n9+7dsd9LSko8c+7HH388dhOoESNGaNasWXG9Px6nnHJK7PdDhw65dh4/CQaDeuihh2J7SOL4yMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfSzWeNSHPvSh2O/vvPOOwuHwcd/zxhtv9Pr+ZD/3Y489Fvt97ty5yszMjOv98WhpaYn9npOT49p5/CQrK0szZszgXxDEgcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy312VIH3Mc2aB516aWXKjMzUx0dHWppadFrr72mqVOn9vn6jo4OlZeXxx5ffvnlnjh3eXm5/va3v8Ueu7kFmiS9+eabsd/HjBnj6rn8IiMjQ6Wlpaab4Slk5o8MbKjRhhoAwCTmUXgJ49UfEt3PNm/DlUh8vuJHZl1sz8GW+mypA+7jyhqPys3N1RVXXBF7vHz58n5f/5vf/EZNTU2Suu4ZM336dE+ce8WKFbHfS0pKdPHFF8fX2DgcPnxYa9eujT2eMWOGa+fyk7a2Nq1fv15tbW2mm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPhZrPOzf//3fY78vX75clZWVvb6utbVV9957b+zxrbfeqrS0wV1UNRTn7ujo0OrVq2OPT+Sqmubm5gG9LhKJ6Etf+lJs78iMjAzdcMMNcZ8Px4pGo2poaFA0GjXdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3sVjjYddcc42mTZsmqWth49prr9Xbb7/d4zWHDx/W7Nmz9f7770vqurLl7rvv7vV41dXVCgQCsZ/+rphJ9Ll788wzz6i+vl6SlJKSos997nMDfm+3qVOn6o477tDrr7/e52veeecdXXnllVqzZk3sb1/72tc0bty4uM+HY+Xk5Gju3LncAygOZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPu5Z43G/+tWvNGXKFO3fv1/V1dUqLS3VZZddpokTJ+rgwYP605/+pNbWVklSWlqannrqKRUUFHji3I899ljs9yuuuEKnnXZa3G1sbm5WWVmZysrKNHLkSJWWluqUU05Rdna2gsGg3nrrLW3btq3He2bNmqXvfe97cZ8LvQuHw9q7d69OO+20QV/R5Rdk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+rqzxuNNOO00bNmyI3aTKcRxt3LhRv/zlL/XMM8/EFktOPvlkrVmzpse9ZpL53AcOHND69etjj+fPnz/o9h46dEh/+tOf9Pjjj2vZsmVatWpVj4Wa7Oxsfe9739Nvf/tbpaamDvp86NLc3KwVK1YMeEs6kJnkjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5k1uXoHKpqglr20o4+X3/H6gotWV+l92qahqqJg2JLP9tSB9zHUp4FSkpK9Ne//lVPPvmkVq1apcrKStXW1qqgoEATJkzQpz71KX3hC1/QyJEjPXPuJ554QuFwWJKUn5+vT37ykyfUvs2bN+vll1/WK6+8ojfeeEO1tbU6fPiwGhsblZ2dHbvaZsaMGfr85z+fsKuO8E8FBQW67777TDfDU8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrEt3DhuqarX0yVe0pbqu39e/vqter++q18827tCU4kLdNmOiZpaMGqLWxs+WfralDriPxRpLZGRk6Oabb9bNN998wscoLi6W4zhGzn20r33ta/ra17426OOMHTtWc+bM0Zw5cxLQKgAAAAAAACA51LeEdN8zlXrmrX1xv3dLdZ22LK/TdaVjtOgTkzQiJ8OFFgKIB9ugAXBVY2Oj7r//fjU2NppuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kZn07v6gZj/0vHLf+71yAh0nfJy1Fft0VdlLqqoJJrB1iWFLP9tSB9zHYg0AV2VnZ2v27NnKzs423RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8fN7Zu/uD2ruw+Xa2xTRn0PFancGt3lSbbBDc5aVJ92CjS39bEsdcB+LNQBclZ6erpKSEqWnp5tuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4+Tmz+paQ5j+6RY1tnYooVbujIxRR6qCP29jWqXmPbFF9SygBrUwMW/rZljrgPhZrALiqtbVVa9asUWtrq+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+jmx9tS1qvie3/f6s6funxmTe/z8nNl9z1SqNti17VmmOvWv6TuVqc6EHLs22KFF6yoTcqxEsKWfbakD7mOxBgAAAAAAAACS3IaqWj3z1j5Xz7G2Yp82VNW6eg4AvRvchoYAcBzd+3Ji4MjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/z8mtnSjR/0eNyhdP25c3ziz7PpA11eMjrhx42XLf1sSx1wH1fWAHBVZ2enqqqq1NmZmEty/YDM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucfPj5lV1QS1pbqux99SFdHpKfVKVSSh59qys07v1TQl9JgnwpZ+tqUOuI/FGgCuYl/O+JGZPzKwoUYbagAAk5hH4SWMV3+gn80g9/j5KbM9da3aU9eqleW7jnkuKxDWv2ZUKysQTvh5V5bv6nFvJRNs6Wdb6oD72AYNgKuGDx+ue+65x3QzPIXM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucfPT5lNW/Jin8+1OJn6Vfv5rpz38fJderx8l6rvv8aV4w+ELf1sSx1wH4s1AAAAAAAAsM6eutY+v+jefNdMjS3MHuIWAQDQN7ZBA+CqhoYGLV68WA0NDaab4hlk5o8MbKjRhhoAwCTmUXgJ4/XE7alrVfE9v+/1x/QWQ0ejn80g9/iRWZfcQIe+MOw15QY6TDfFFbb0sy11wH0s1gBwVW5urubNm6fc3FzTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLr0uak6w8dZ6nNSTfdFFfY0s+21AH3sQ0aAFelpaWpuLjYdDM8hcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/MukSUoppovulmuMaWfralDriPK2sAuKqlpUVPPvmkWlpaTDfFM8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrEuWOnV5xvvKUqfpprjCln62pQ64j8UaAK5KSUlRQUGBUlKYbgaKzPyRgQ012lADAJjEPAovYbz6A/1sBrnHz0+Zbb5rpjbfNVMfGTfimOeiCqjZyVBUgYSf98JxI7T5rplxvaeqJqhlL+3o8/k7VldoyfoqvVfTNKDj2dLPttQB97ENGgBXDRs2TFdddZXpZngKmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPn58yG1uYLUm6eHyhXt9V3+O5kNK0pfN0V8578YTC2LmPZ0NVrZZu/EBbquv6fd3ru+r1+q56/WzjDk0pLtRtMyZqZsmoPl9vSz/bUgfcx3IeAFeFQiFVVFQoFAqZbopnkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+Pkxs1mlY475W5oiOiP1kNIUSfz5zjv1uK+pbwnpq6ve1C3LXzvuQs3RtlTX6QvLX9XCJ99UfUvv/WhLP9tSB9zHYg0AV7W3t2vjxo1qb2833RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8fNjZiVF+ZpSXNjjbxmKqDRtnzISvFgzZXyhzi7K6/c17+4P6qqyl/TMW/sGda61Fft0VdlLqqoJHvOcLf1sSx1wH9ugAXBVfn6+7rjjDtPN8BQy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/v2b25RkTtGX5P69gaVWGnu44N+Hnue2yif0+/+7+oOY+XK7Gts6EnK822KE5y8q1esFUlRTlx/5uSz/bUgfcx5U1AFzlOI7a29vlOI7ppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPn18zu7xktGadd+R2aI4yFJaUuByuKx3T731k6ltCmv/oloQt1HRrbOvUvEe29NgSzZZ+tqUOuI/FGgCuamxs1AMPPKDGxkbTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePz9ntnjWJI3Oz5Qk5QZC+uywCuUGEnMvlNH5mVr0iUn9vua+ZypVG+xIyPmOVhvs0KJ1lbHHtvSzLXXAfSzWAHBVXl6eFixYoLy8/vc6xT+RmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4+TmzETkZWnHLFA0flq5WJ11r2z+sVid90McdPixdK26ZohE5GX2+ZkNV7aDvUXM8ayv2aUNVrSR7+tmWOuA+FmsAuCo1NVVFRUVKTU013RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8fN7ZiVF+Vq9YKpOzh+mOidb0UF+xTs6P/OY+8X0ZunGDwZ1noFauqnrPLb0sy11wH0s1gBwVXNzs5YvX67m5mbTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrWrD59Zcu0OcKd2qYTvz+MdeVjtH6hdOPu1BTVRPUluq6Ez5PPLbsrNN7NU3W9LMtdcB9aaYbAMBuaWlpKi4uVloa081AkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZl5H52bpyymRNL5ygX7zyd23ZOfDFlCnjC3XbZRM1s2RUv6/bU9cqSVpZvmtQbY3XyvJdmnfxGCv6mfGKgWKEAHBVVlaWZsyYYboZnkJm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl2OzOFj556u92qatLJ8lx7vY2HlwnEjdPGEQs0671SdXTSw+6dMW/Jiopobl8f/UUf1/dcYOX8iMV4xUGyDBsBVHR0dKi8vV0dHh+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXU5Ooezi/J06/QJfb7+x3NKdefHSwa8UGNauiJW9DPjFQPFYg0AV4VCIVVUVCgUCpluimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23NIU8SK+mzvJyQO26ABcFVeXp6+/OUvm26Gp5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/iRWRfbc2hThhX12d5PSByurAHgqmg0qoaGBkWjUdNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6//jKrqglq2Us7+nzvHasrtGR9ld6raXKziUPC9rETkGNFfbb3ExKHxRoArgoGgyorK1MwGDTdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7x6y2zDVW1+szSV3TVQ5u1snx3n+99fVe9frZxhz7+0Ev6zNJX9GLVgaFositsHzs5gZAV9dneT0gctkED4Kr8/HwtXLhQ+fn5ppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5HZlbfEtJ9z1Tqmbf2xX2cLdV12rK8TteVjtGiT0zSiJwMF1rrnqEYO5vvmimp64qk13fVu3aeo104boT+84ZzNTztcs9/NviMY6BYrAHgqpSUFBUUFJhuhqeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4dWf27v6g5j+6RbXBjkEdb23FPpV/cFgrbpmikiLvfKE+FGNnbGG2JOni8YVDulhz8YRCjRuZO2TncxOfcQwU26ABcFVTU5OWLl2qpibv7wU7VMjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/yamppU9pOfaf7DLw16oaZbbbBDc5aVq6rGO1tVDeXYmVU6xvVz9Djfeada89mwpQ64j8UaAK7KyMhQaWmpMjK8dSmxSWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX4tndLL9bmqa0vsDdsb2zo175Etqm8JJfS4bhnKsVNSlK8pxYWun0eSpowv1NlFedZ8NmypA+5jGzQArsrMzNTUqVNNN8NTyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/L7/x/f115aTXDl2bbBDi9ZVqmzu+a4cP5GGeux8ecYEbVle5/p5brtsoiTvfTb21LVq2pIXe31u810zlZmZOcQtgtdwZQ0AV7W3t2vjxo1qb2833RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8dlQVav1b+1WadrflaGwK+dYW7FPG6pqXTl2Ig312Lm8ZLRmnefudmjXlY7RzJJRkuz5bGQorDf++hfP1wH3sVgDwFXhcFjV1dUKh935DygbkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+Czd+IFS5agopUmpctw7z6YPXDt2opgYO4tnTdLofHeuEBmdn6lFn5gUe2zLZyNVjmr+vsfzdcB9bIMGwFW5ubmaP3++6WZ4Cpn5IwMbarShBgAwiXkUXsJ49Qf62QxyH7iqmqC2VNdJStf6UImr59qys07v1TTp7KI8V88zGCbGzoicDK24ZYrmLCtXY1tnwo47fFi6VtwyRSNy/nlfF1s+G21K19Wfmqvc3GzTTUGS48oaAK6KRCKqqalRJBIx3RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hux7enrlV76lq1snyXJClFURUGWpWiqKvn7T5fsjI1dkqK8rV6wdSEXWEzOj9TqxdMVUlRfo+/2/LZSFFUhw/Wer4OuI/FGgCuampq0rJly9TU1GS6KZ5BZv7IwIYabagBAExiHoWXMF79gX42g9yPb9qSFzVtyYtaWb5bkpQd6NR1WduUHUjclR29eTzJF2tMjp2SonytXzhd15UO7h4215WO0fqF049ZqJHs+WxkBzq19snHPF8H3Mc2aABcNXz4cN19993KzHRnP1MbkZk/MrChRhtqAACTmEfhJYxXf6CfzbAt96qaYL9XpNyxukIXjy/UdaWnnvAWY81Ohp5oK1VIqSfazAFzHEeBQMD185wI02NnRE6Gyuaer+tKx2jppg+0ZWfdgN87ZXyhbrtsomaWjOrzNabrS5RmJ0OfvfV/a/jw4aabgiTHYg0AVwUCAWVlZZluhqeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NsCX3DVW1Wrrxg3/cU6Zvr++q1+u76vWzjTs0pbhQt83o/wv73gUUGqKvNVtCEeVmJudXqMkydi4vGa3LS0brvZomrSzf1ecVSReOG6GLJxRq1nkDW6hLlvoGL6DMzKykXfRD8mAbNACuCgaDeuihhxQMBk03xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9meD33+paQvrrqTd2y/LXjLtQcbUt1nb6w/FUtfPJN1beEBvy+bIX06cy3la2Bv+dEhcLu3hdnMJJt7JxdlKdbp0/o8/kfzynVnR8vGfAVVclW34nKVkhPLV/m+TrgPhZrALgqKytLM2bMsORfQgwNMvNHBjbUaEMNAGAS8yi8hPHqD/SzGV7O/d39QV1V9pKeeWvfoI6ztmKfrip7SVU1A/syO6RUVYTHDMk2aBlpyfv1qZfHzkDYUl9IqTr/4n/xfB1wX/LONgCskJGRodLSUmVkZJhuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/N8Gru7+4Pau7D5aoNdiTkeLXBDs1ZVj6gBZuwUvV+ZKTCQ7BYk5Ph/jlOlFfHzkDZUl9YqTrzQ5M9Xwfcx2INAFe1tbVp/fr1amtrM90UzyAzf2RgQ4021AAAJjGPwksYr/5AP5vhxdzrW0Ka/+gWNbZ1JvS4jW2dmvfIlmO2RNt810xtvmumPjJuhCQpQ2FNSd+tDIUTev6jXThuRFLfZ8SLYycettSXobDKX9rg+TrgPhZrALgqGo2qoaFB0Wjy7vGabMjMHxnYUKMNNQCAScyj8BLGqz/Qz2Z4Mff7nqlM2BU1R6sNdmjRusoefxtbmK2xhdm6eHyhJClFjnIDIaXIcaUN3S6eUOjq8QfLi2MnHrbUlyJHzcFGz9cB96WZbgAAu+Xk5Gju3Lmmm+EpZOaPDGyo0YYaAMAk5lF4CePVH+hnM7yW+4aq2kHfo+Z41lbs03WlY3R5yegef59VOkY/27hD7UrXhtAZrrZBkmadd6rr5xgMr42deNlSX7vSdeW1n1ROTrbppiDJcWUNAFeFw2FVV1crHHb30mSbkJk/MrChRhtqAACTmEfhJV4er3vqWlV8z+97/dlT12q6eUnFy/3sZV7LfenGD4bmPJuOPU9JUb6mFBcqVVEVpQSVKveuVJgyvlBnF+W5dvxE8NrYiZct9aUqqv17d3u+DriPxRoArmpubtaKFSvU3NxsuimeQWb+yMCGGm2oAQBMYh6FlzBe/YF+NsNLuVfVBLWlum5IzrVlZ53eq2k65u9fnjFBwwKd+rfMv2lYILH3zDnSbZdNdO3YieKlsXMibKlvWKBTf/jtas/XAfexDRoAVxUUFOi+++4z3QxPITN/ZGBDjTbUAAAmMY/CSxiv/kA/m+GF3LuvQltZvmtIz7uyfJdunT5BYwv/uX3U5SWjdfm54/XoW5munfe60jGaWTLKteMnihfGzmDYUl+zk6lb/vedKihgGzT0j8UaAAAAAAAAAH2atuRFI+d9vHyXHi/fper7r+nx98WzJumvOw+rNtiR8HOOzs/Uok9MSvhxAeB42AYNgKsaGxt1//33q7Gx0XRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGuccvJdym6wKvqWhYYu9ZM3xYulbcMkUjcjISely32D52bKkvJ9Chlcv+P8/XAfdxZQ0AV2VnZ2v27NnKzuZSz4EiM39kYEONNtQAACYxj8JLBjte99S19vkv8zffNbPHFkcwh3nJDHKPX3Z2tj71ydmalXOyvvj4mwm5wmZ0fqZW3DJFJUX5CWjh0LB97NhSX7uTpmlX/pvn64D7WKwB4Kr09HSVlJSYboankJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+B2Z2fqF07VoXaXWVuw74eNdVzpGiz4xyTNX1HSzfezYUl9EqRo38Uylp6ebbgqSHNugAXBVa2ur1qxZo9bWVtNN8Qwy80cGNtRoQw0AYBLzKIbSnrpWFd/z+15/um8c3h/Gqz/Qz2aQe/yOzGxETobK5p6vR+ZfqCnjC+M6zpTxhXp0/kUqm3u+5xZqJPvHji31ZapTLz3/rOfrgPu4sgYAAAAAAACAp11eMlqXl4zWezVNWlm+S4+X7+r1dReOG6GLJxRq1nmn6uyivCFuJQD0jcUaAK7q3l8UA0dm/sjAhhptqAEATGIehZcwXv2BfjbDC7lvvmumJOmO1RV6fVf9kJ33wnEj9OM5pcf8vb/Mzi7K063TJ/S5WPPjOaXW3CfLC2NnMGypr0Ppmv7Rj3HPGhwX26ABcFVnZ6eqqqrU2dlpuimeQWb+yMCGGm2oAQBMYh6FlzBe/YF+NsMLuY8tzNbYwmxdHOc2Y4N18YTCXhdWvJDZULA9B1vqS1VEu3Zs93wdcB+LNQBcZcv+okOJzPyRgQ012lADAJjEPAovYbz6A/1shpdyn1U6ZmjPd96pvf7dS5m5yfYcbKkvKxDW5j/9wfN1wH1sgwbAVcOHD9c999xjuhmeQmb+yMCGGm2oAQBMYh6FlzBe/YF+NsNLuZcU5WtKcaG2VNe5fq4p4wv7vKeMlzJzk+052FJfi5Opzy34qoYPZxs09I8rawAAAAAAAAAMyJdnTBiS89x22cQhOQ8AJAsWawC4qqGhQYsXL1ZDQ4PppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDK/lfnnJaM06z93t0K4rHaOZJaP6fN5rmbnF9hxsqS830KFH/uuHnq8D7mOxBoCrcnNzNW/ePOXm5ppuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/N8GLui2dN0uj8TFeOPTo/U4s+Manf13gxMzfYnoMt9bU56fq3T87xfB1wH4s1AFyVlpam4uJipaVxi6yBIjN/ZGBDjTbUAAAmMY/CSxiv3lRVE9Syl3b0+fwdqyu0ZH2V3qtpkkQ/m+LF3EfkZGjFLVM0fFh6Qo87fFi6VtwyRSNyMvp9nRczc4PtOdhSX0QpOuW00z1fB9zHYg0AV7W0tOjJJ59US0uL6aZ4Bpn5IwMbarShBgAwiXkUXsJ49ZYNVbX6zNJXdNVDm7WyfHefr3t9V71+tnGHPv7QS/rM0lf0x4pq+tkAr36+SorytXrB1IRdYTM6P1OrF0xVSVH+cV/r1cwSzfYcbKkvS5360+9+63odYwuzVX3/Nb3+jC3MdvXcSAyW8wC4KiUlRQUFBUpJYW14oMjMHxnYUKMNNQCAScyj8BLGqzfUt4R03zOVeuatfXG/d0t1nSqqD+j6MZ26rC2snBwXGoheefnzVVKUr/ULp2vRukqtrYh/3HW7rnSMFn1i0nGvqOnm5cwSyfYcbKkvqoBy84d7vg64j8UaAK4aNmyYrrrqKtPN8BQy80cGNtRoQw0AYBLzKLyE8Zr83t0f1PxHt6g22HHCxwgpTav2FWrDw69qxS1TBnSFAwbP65+vETkZKpt7vq4rHaOlmz7Qlp11A37vlPGFuu2yiZpZMiquc3o9s0SxPQdb6gspTVOnz9SwYcNMNwVJjuU8AK4KhUKqqKhQKBQy3RTPIDN/ZGBDjTbUAAAmMY/CSxivye3d/UHNfbh8UAs1kpSmiM5IPaTDwVbNWVauqppgglqI/tjy+bq8ZLSeWnCJ/njHdH1+6rg+X3fhuBG6feZE/fGO6XpqwSVxL9RI9mQ2WLbnYEt9aYpo+7tbPV8H3MdiDQBXtbe3a+PGjWpvbzfdFM8gM39kYEONNtQAACYxj8JLGK/Jq74lpPmPblFjW+egj5WhiErT9ilDETW2dWreI1tU38KXi26z7fN1dlGebp0+oc/nfzynVHd+vERnF+Wd8Dlsy+xE2Z6DLfVlKKI3//oXz9cB97ENGgBX5efn64477jDdDE8hM39kYEONNtQAACYxj8JLGK/J675nKgd9RU23VmXo6Y5zY49rgx1atK5SZXPPT8jx0Ts+X/Ejsy6252BLfa3K0GfmL1B+frbppiDJcWUNAFc5jqP29nY5jmO6KZ5BZv7IwIYabagBAExiHoWXMF6T04aqWj3z1onf1P1YjjIUlvTPfl5bsU8bqmoTeA4cjc9X/Misi+052FOfo44OG+qA21isAeCqxsZGPfDAA2psbDTdFM8gM39kYEONNtQAACYxj8JLGK/JaenGDxJ6vNxASJ8dVqHcQM+tz5ZuSux50BOfr/iRWRfbc7ClvtxASE88/F+erwPuY7EGgKvy8vK0YMEC5eWd+F60fkNm/sjAhhptqAEATGIehZcwXpNPVU1QW6rrEnrMVidda9s/rFYnvcfft+ys03s1TQk9F/6Jz1f8yKyL7TnYUl+rk67r5t7s+TrgPhZrALgqNTVVRUVFSk1NNd0UzyAzf2RgQ4021AAAJjGPwksYr8ljT12r9tS1amX5roQfO6oU1TnZivbydZEb50MXPl/xI7MutudgS31Rpeikk0d7vg64j8UaAK5qbm7W8uXL1dzcbLopnkFm/sjAhhptqAEATGIehZcwXpPHtCUvatqSF7WyfHfCjz1Mnboqo0rD1HnMc4+zWOMaPl/xI7MutucQb31VNUEte2lHn8/fsbpCS9ZXDfmVgsPUqWd/86S1/YTESTPdAAB2S0tLU3FxsdLSmG4Gisz8kYENNdpQAwCYxDwKL2G8+kNEAdVE8xRRoNfnHcdRIND7czhxfL7iR2ZdbM9hoPVtqKrV0o0fHHdryNd31ev1XfX62cYdmlJcqNtmTNTMklGJbHKvIgqo6NSx1vYTEocRAsBVWVlZmjFjhulmeAqZ+SMDG2q0oQYAMIl5FF7CePWHkNJUET61z+dbQhHlZvJVUqLx+YpfMmdWVRPsd9vAO1ZX6OLxhbqu9FSdXTS4e5gkcw6JcLz66ltCuu+ZSj3z1r64j72luk5bltfputIxWvSJSRqRkzGIlvYvpDRdcPG/KCsry7VzwA5sgwbAVR0dHSovL1dHR4fppngGmfkjAxtqtKEGADCJedRf9tS1qvie3/f6s6eu1XTzjovx6g/piujDqbVKV6TX50Ph6BC3yB/c+Hwl63ZQiZKMc9KGqlp9Zukruuqhzf1uU9h9ZcfHH3pJn1n6il6sOnDC50zGHBKpv/re3R/UVWUvndBCzZHWVuzTVWUvqaomOKjj9CddEVVWvGZtPyFxWKwB4KpQKKSKigqFQiHTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD2mK6Iy0Q0rrY7EmI42vkdyQyM+XiQUDE5JpTqpvCemrq97ULctfO+42XEfbUl2nLyx/VQuffFP1LfHXkkw5uKGv+t7dH9Tch8tVG0zM4kdtsENzlpW7tmCTpoi2v7vV2n5C4nDtKgBX5eXl6ctf/rLpZngKmfkjAxtqtKEGADCJeRRewnj1hzZl6JmOSX0+n5OROoSt8Y9EfL68sh1UoiTLnPTu/qDmP7pl0IsGayv2qfyDw1pxyxSVFOUP+H3JkoNbequvviWk+Y9uUWNbZ0LP1djWqXmPbNH6hdMT/hloU4Zm3zhfeXnZCT0u7MM/iQDgqmg0qoaGBkWjXC4/UGTmjwxsqNGGGgDAJOZReAnjNXlsvmumNt81Ux8ZNyLhxw7IUW6gQwE5xzx34bgRCgQCAz6W7dtwJdJgP19e2g4qUZJhTkqGqzuSIQc39Vbffc9UJizzo9UGO7RoXWXCjxuQo6Zgo7X9hMRhsQaAq4LBoMrKyhQMJv9/7CULMvNHBjbUaEMNAGAS8yi8hPGaPMYWZmtsYbYuHl+Y8GPnBEK6Iesd5QSO3arn4gkDO59ftuFKpMF8vpJhwcAE03OS21d3DHRLNNM5uO3o+jZU1Q56UfJ41lbs04aq2oQeMycQ0v+seNjafkLisFgDwFX5+flauHCh8vMHfhmv35GZPzKwoUYbagAAk5hH4SWM1+Qzq3RMwo/Z4mTof9rPUYtz7BZAs847td/3mrxvh9ed6OcrWRYMTDA9JyXL1R2mc3Db0fUt3fjBkJx36abEnqfFydAN8261tp+QOCzWAHBVSkqKCgoKlJLCdDNQZOaPDGyo0YYaAMAk5lF4CeM1+ZQU5WtKcWKvrnEUULOTKUc9tzubMr5QZxfl9fk+P27DlUgn+vlKlgUDE0zOScl0dYftc/OR9VXVBONeCD5RW3bWJXSLRkcB5eUPt7afkDiMEACuampq0tKlS9XUxD7EA0Vm/sjAhhptqAEATGIehZcwXpPTl2dMSOjxhimkWZmVGqaeV1TcdtnEPt/j1224EulEPl/JtGBggsk5KZmu7rB9bm5qatJ//fRnem/3Aa0s3zWk507k+YYppDWrllvbT0gcFmsAuCojI0OlpaXKyDj2Mnr0jsz8kYENNdpQAwCYxDwKL2G8JqfLS0Zr1nmJ2w4trFS9Hx6psFJjf7uudIxmlozq9fV+3oYrkU7k85VMCwYmmJqTku3qDtvn5oyMDP1hX5au/Vl5v/fAcsPjCVysCStVZ35osrX9hMRhsQaAqzIzMzV16lRlZmaabopnkJk/MrChRhtqAACTmEfhJYzX5LV41iSNzk9Mv3QqVdsio9X5j8Wa0fmZWvSJSX2+3s/bcCVSvJ+vZFswMGEo56Q9da2xn2S7usP2uTkzM7PHnDTUHMdJyHE6lapJpRda209IHBZrALiqvb1dGzduVHt7u+mmeAaZ+SMDG2q0oQYAMIl5FF7CeE1eI3IytOKWKRo+LH3Qx8pQWKVpf1eGwho+LF0rbpmiETm9/0twv2/DlUgD+Xwl84KBCUM5J01b8mLsJ9mu7rB9bm5vb4/NSSa0hCIJOU6Gwnrjr3+xtp+QOCzWAHBVOBxWdXW1wmEz/8PqRWTmjwxsqNGGGgDAJOZReAnjNbmVFOVr9YKpg77CJlWOilKaNDovXasXTFVJUX6fr/X7NlyJNJDPVzIvGJjgpzmpv6s7bM8hHA6rKKVJqUrMFS7xCoWjCTlOqhzV/H2Ptf2ExEkz3QAAdsvNzdX8+fNNN8NTyMwfGdhQow01AIBJzKPwEsZr8ispytf6hdO1aF2l1lac2BUvbUpX5ocv1zOfmNTnFTWSmW24zi7KG5LzmeCFz5fjOAoEAqabEeOFzBKlJRRRbmbvX+HankNubq7Wh0qMnT8jLTHXObQpXVd/aq5yc7MTcjzYiytrALgqEomopqZGkUhiLh31AzLzRwY21GhDDQBgEvMovITx6g0jcjJUNvd8PTL/Qk0ZXxjXe6eML9QvP3+BvjnjFOVn9X5/CJPbcO2pax3Scw5WVU1Qy17a0efzd6yu0JL1VXqvpskTn69EbQeVKF7ILFH6u7rD9hwikYgKA61KUWKucIlXTkZi7pWToqgOH6y1tp+QOCzWAHBVU1OTli1bpqam5LshYbIiM39kYEONNtQAACYxj8JLGK/ecnnJaD214BL98Y7p+vzUcX2+7sJxI3T7zIn64x3T9dSCS/SRU4f1288mt+GatuTFIT3nidpQVavPLH1FVz20ud+cXt9Vr59t3KGPP/SSbl66Kek/X4naDipR/DQn9Xd1h+05NDU16bqsbfrdly/UR8aNGNJzXzhuRMKuJssOdGrtk49Z209IHLZBA+Cq4cOH6+6771Zm5uD2TvYTMvNHBjbUaEMNAGAS8yi8hPHqTWcX5enW6RP6vOfIj+eUamzhP7floZ9PXH1LSPc9U6ln3op/C7q/7GnVqypV3R8+0KJZk/vdgs6URG0HlSh+Gqv9Xd1hew5H1nfx+Ea9vqt+yM598YT4rk7sT7OToc/e+r81fPjwhB0TdmKxBoCrAoGAsrKyTDfDU8jMHxnYUKMNNQCAScyj8BLGqz/Qzyfm3f1BzX90i2qDHSd4hIBCStPat/arfGedVtwyRSVF+Qlt42AlajuoRBnKsbr5rpmx3+9YXTGkCwbHu7rD9s/skfXNKh2jn23se2vBRJt13qkJPFpAmZlZSXXfJySn5FoWB2CdYDCohx56SMFg0HRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/Ry/d/cHNffh8kEs1EjZCunTmW8rWyHVBjs0Z1m5qmp69sHmu2bGfry8HVSiDOVYHVuYHfu5OM57QQ3W8a7usP0ze2R9JUX5mlI8NPlPGV+os4vyEna8bIX01PJl1vYTEofFGgCuysrK0owZM6z+lx6JRmb+yMCGGm2oAQBMYh6FlzBe/YF+jk99S0jzH92ixrbOQR0npFRVhMcopK6rVxrbOjXvkS2qbwnFXpPMCwYmmBqrs0rHDO35jnN1h+2f2aPr+/KMCUNy3tsum5jQ44WUqvMv/hdr+wmJwzZoAFyVkZGh0tJS083wFDLzRwY21GhDDQBgEvPo0NpT19rnDco33zWzx307cCzGqz/Y1M9VNUGt7ONePVLXdlYXjy/UdaWnnvC/oL/vmcpBXVHTLaxUvR8Z2eNvtcEOLVpXqbK55x/zem9vB5UYpsZq99UdW6rrXD/XQK7usOkz25uj67u8ZLRmnTfmhO4NNVDXlY7RzJJRCT1mWKk680OTlZGRfPejQnLhyhoArmpra9P69evV1tZmuimeQWb+yMCGGm2oAQBMYh6FlzBeT0xVTVDLXur7S/U7VldoyfoqvVfTNISt6tvx+tnkNlxH3jekPxuqavWZpa/oqoc2a2X57j5f9/quev1s4w59/KGX9Jmlr+jFqgNxtWlDVW3CvjDOUFhT0ncrQ+Eef19bsU8bqmqPeb2Xt4NKFJNzUjJd3WH73NxbfYtnTdLo/ExXzjc6P1OLPjEp4cfNUFjlL22wtp+QOCzWAHBVNBpVQ0ODotGo6aZ4Bpn5IwMbarShBgAwiXkUXsJ4jc9QLRgk2vH62eQ2XMe7+q2+JaSvrnpTtyx/Le6rHrZU1+kLy1/Vwiff7LH1WH+WbvwgrnP0J0WOcgMhpcg59jybej9PMi0YmGByTuq+usNNA726w/a5ubf6RuRkaMUtUzR8WHpCzzV8WLpW3DJFI3ISf/VLihw1Bxut7SckDos1AFyVk5OjuXPnKicnx3RTPIPM/JGBDTXaUAMAmMQ8Ci9hvA7MUC8YJNpA+znZ7tvx7v6grip7adBXuqyt2Keryl5SVU3/NwGvqgkmdBusdqVrQ+gMtevYL5+37Kzr9cqrZFowMMH0nJQsV3eYzsFtfdVXUpSv1QumJqwPRudnavWCqSopyk/I8Y7WrnRdee0nre0nJA6LNQBcFQ6HVV1drXA4fPwXQxKZSf7IwIYabagBAExiHoWXMF6Pb6gXDNww0H5Opm243t0f1NyHyxNy7xip614xc5aV95r/nrpW7alr7fdeOCciVVEVpQSVqt7/1X1f50uWBQMTTM9JyXJ1h+kc3NZffSVF+Vq/cLquG+Ti8XWlY7R+4XTXFmqkrs/4/r27re0nJA6LNQBc1dzcrBUrVqi5udl0UzyDzPyRgQ012lADAJjEPAovYbz2bygXDNwUTz8nwzZc9S0hzX90ixrbOhN6zsa2Ts17ZMsxVzhNW/Kipi15sd+t7U7EsECn/i3zbxoW6L2Ox/tYrEmWBQMTkmFOSoarO5IhBzcdr74RORkqm3u+Hpl/oabEuT3jlPGFenT+RSqbe77rY31YoFN/+O1qa/sJiZNmugEA7FZQUKD77rvPdDM8hcz8kYENNdpQAwCYxDwKL2G89s3tBYP1C6cP2Zfm8fRz9zZcg72SqD/H24brvmcqE7ZAdrTaYIcWratU2dzzXTn+kZqdTD3admG/r3EcR4FA4Ji/dy8YzHtkS0KyGJ2fqRW3THH1KoNESJY5qfvqjkXrKrW24sQ/C9eVjtGiT0yK+7OeLDm4ZaD1XV4yWpeXjNZ7NU1aWb6rzwXOC8eN0MUTCjXrvFP7vWIv0ZqdTN3yv+9UQUH/994CuLIGAAAAAADgBA3FgkGyMrkN14aqWlcXiqSuLek2VNW6eo6BaglF+nzOS9tB2cgrV3f4wdlFebp1et9X/f14Tqnu/HjJkC7UAPFgsQaAqxobG3X//fersbHRdFM8g8z8kYENNdpQAwCYxDwKL2G89s62BYN4+9nkNlxLN36Q0HP2eZ5N7p8nJ9Chm7LeVE6g70W/ULj3+9l089uCQTLOSZeXjNZTCy7RH++Yrs9PHdfn6y4cN0K3z5yoP94xXU8tuKTfq8eOJxlzSCRb6ssJdGjlsv/P83XAfWyDBsBV2dnZmj17trKzudRzoMjMHxnYUKMNNQCAScyj8BLGa++GcsHg8pLRrp/nRPrZxDZcVTVBbamuG/S5BmLLzjq9V9Pk6r/Eb3fS9OdQsdqdvr+my0gb2L+3TvbtoBIlmeek7qs7+sr+x3NKNbYwMe1O5hwSwZb62p00Tbvy3zxfB9zHlTUAXJWenq6SkhKlpyf2X1rZjMz8kYENNdpQAwCYxDwKL2G8HsvEgoHbTrSfh2obrj11rdpT16qVfXwJ7paV5bu0p67VteNHlKrd0RGKKLXP1+Rk9P1cb2zfDoo5qYvtOdhSX0SpGjfxTM/XAfexWGOJUCikxx9/XFdffbXGjRunrKwsnXLKKbr00kv14IMP6tChQ0l/7urqagUCgbh+zjjjjLja+u677+rOO+/Uueeeq8LCQuXk5Oiss87SvHnz9MILL5xI+TiO1tZWrVmzRq2t7v2HrW3IzB8Z2FCjDTUAgEnMo/ASxus/2bpgIA2un4diG65pS17UtCUvamX57rjbNxiPl+/StCUvavNdM7X5rpn6yLgRCT1+pjr1r+k7lanOXp+/cNwIBQKBhJ7T65iTutiegy31ZapTLz3/rOfrgPvYBs0CVVVVuvHGG1VRUdHj7zU1NaqpqdErr7yiH/7wh3r00Ud19dVXW3PueH3ve9/T4sWL1dnZ8z9+tm/fru3bt+uxxx7TjTfeqGXLlikvz5v/sgQAAAAA4K5pS140ct7H/7GlVfX91xg5/0DZvA1X99ZVF48v1Ou76ofsvBdPiG/xCwDgTSzWeNzevXt1xRVXaN++rhsaBgIBTZ8+XRMnTtTBgwf1pz/9SW1tbTpw4IBmz56t9evX6/LLL0/6c+fl5enmm28+7utOPvnkAR3v3nvv1Xe/+93Y41NOOUXTpk1TVlaWXn/9dVVWVkqSVq1apcOHD+v3v/+90tL4eCRC9/6iGDgy80cGNtRoQw0AYBLzKLyE8eoPieznobxvx1CbVTpGP9u4I2HH61C6/tw5vu/znXdqws5lC+akLrbnYEt9HUrX9I9+jHvW4Lj4Ntrjbrrppthiybhx47R27Vqdd955secPHTqkuXPn6oUXXlBnZ6duuOEG7dixQwUFBUl97sLCQv3kJz8ZdBsl6YUXXuixUHPnnXfq//2//6eMjH9eWr1q1Srdcsstam9v13PPPafvf//7uvfeexNyfr/r7OzUjh07NHHiRPbmHCAy80cGNtRoQw0AYBLzKLyE8eoP9PPAlBTla0pxYcLuWZSqiE5NCerv0fxj7lszZXyhZ648GkqM1S6252BLfamKaNeO7SrK+7Cn64D7uGeNhz377LPavHmzJCkjI0Pr1q3rsVgiSSNHjtTatWs1YULXTeXq6uq0ZMkST587Xt/85jdjv8/9/9m78/goygR94E/1lc7VORQSA8il0gpKcDAgCnLoiAfHHAqOs4A4I+DsDszODDLrrKCzM4usu5qZ3yi4I8eICuoqx4ziqBDBI0aRKAJBBRJQSARC0jn7Sv3+KNNy5OhKuvrteuv5fj58DKa7632et+hK8qaqpk/HsmXLzlioAYA77rgDjz76aOTvRt/nx0pkub5oPLEza3QgQ0YZMhARicT3UTIT7q/WwHmO3tyxA2L2Wm4lhGtd5XAroXM+N++6gTHbjky4r2pk70GWfG4lhB1vvGr6HGQ8LtaY2J///OfIxzNnzsTll1/e5uNSU1Px0EMPRf6+YsUKhELnfgFglm3r8cEHH+CDDz4AANhstg4Xi+bMmYOLL74YAFBXV4enn346LmOUXUZGBhYtWoSMjAzRQzENdmaNDmTIKEMGIiKR+D5KZsL91Ro4z9Eb783B5KF5MXmtBjUJzzYPQ4OadMb/n5Kfh3HenjHZhmy4r2pk70GWfA1qEn485+emz0HG42KNSdXX1+PNN9+M/P2uu+7q8PE/+MEPkJaWBkA7w2X79u2m3LZeGzZsiHx8/fXXo0+fPu0+VlEUzJw5M/L3l19+2cihEREREREREZEOOxaOw46F4/Cdvllx3e7wvlnYsXDcOf//wcmDkeNJauMZ3ZfjScKSSYMNeW0iIkpMXKwxqXfffRd+vx+AdvbKVVdd1eHj3W43rr766sjft27daspt67Vt27bIx2PHju308ePGffvF1+k5qetqamrw4IMPoqamRvRQTIOdWaMDGTLKkIGISCS+j5KZcH/9VqItGMRSos9zn+wU9MlOwYj+2XHd7ogB2eiTfe6NwbNSXVgzuwAZyd27B0Wa4sddyR8iTdF+BpGR7MSa2QXISnV18kzrSvR9NV5k70GWfGmKHyv/9F+mz0HG42KNSe3bty/y8eWXXw6Hw9Hpc6688so2n5+I2w6FQnj99dfxn//5n/jlL3+J+++/H48++ih27NihawHl9G2dPob2DBs2LPJxOBzGZ599FvW2qG1paWmYOXNm5Owq6hw7s0YHMmSUIQMRkUh8HyUz4f76rURbMIgls8zz5PzYXH4s6u0N7dXu57y5HqyfM7JbZ9g0qU686r8ETaoTOZ4krJ8zEt5cT5dfzwrMsq8aTfYeZMnXpDpx0/emmT4HGa/zn7JTQtq/f3/k4759+0b1nAsvvDDycVlZWUJv+6uvvsJ3v/vdNj+XlZWFe++9F4sWLerwTe7rr78+Y8U6mrEmJyejR48eOH78eGSs7d2Ph6LjcDjQr18/0cMwFXZmjQ5kyChDBiIikfg+SmbC/fVck/Pz8HjRgfhtr4MFg1gxyzx7cz0o6JeNkvJqw7dV0D8bg3LTOx3PlvljsGTzHmwsPap7G2HYUNniwZT8PCyZNJhn1ETBLPuq0drqoU92CsqX3iJmQDEmyzyHYcMFvS+M6hfeydp4Zo1JnTx5MvJxTk5OVM/Jzc2NfFxd3fUvaERuGwBOnTqF3//+9xg+fHiHZ76cPk5AzFgJaGhowLp169DQ0CB6KKbBzqzRgQwZZchARCQS30fJTLi/nqt1wSAeolkwiAUzzfPcsQPisp151w2M6nFZqS4UTh+GlbOGo0DnWVdXX5iKX110An+YdAkXaqJkpn3VSLL3IEs+N4J4428vmz4HGY+LNSZVX18f+Tg5OTmq55z+uNOfn0jbTk9Px6xZs7Bu3Trs378f9fX18Pv9OHLkCF544QVcf/31kcfu378fEydOjJwF09E4jRirHm63O3IWUDgcRk1NDVRVBQD4fD4EAgEAQFNTU+SNOxQKnXFmUG1tLYLBIACgsbERjY2NAIBgMIja2trI42pqahAKhQBoB7WmpiYAQCAQgM/nAwCoqoqamhqEw+FIzubmZgCA3+9HXV0dAKClpQU1NTVoaWkBANTV1UUuQ9fc3Bzpp6NMfr8fqampsNls0mQyep4aGhqQmZkJRVGkyaR3noAz/y3KkOnseWpoaEBaWhpsNptpM1lhnpiJmZiJmYzM1NLSguTkZNhsNmkyJfo8uRBCMrTx2NDyzf0h4pPJ36xlciCMFAS+eZSKNMUfn6/Lm5vg/ia7PZJdU1/n6zSTzWZDcnLyGV/L6J0nJ8JI/ia78k125Zv+jdz3mpsakRTJHkbqadnrfLXd2vd+ck3vdjMlIwAntOd0tO+lIADHaY9ra57mXTcwLvuezWZDWlraGe9T3d332st09jzpfY8Y783B5Mt7npPJhpZv+g/CBe05He17Hc3T9wZnYuygHudk6mjf+84FbjwzezheWzAG/zQ8t9197+rebtx7XT+8tmAM/nT7EPTLPQ82m02a972mxoZI/2fve3W+2m6/7zU2NiIzMzPSUTz3PaDz9wi/v/33vVgec+vq6pCZmQmbzZYwx9xAoP19T+97eX19PdLT02Gz2RJm3+tonoLt7HvJSgBpnoyEmieZv96LRSZRuFhjUq07KQC4XNH91kVS0rfXT239x5BI277gggtw9OhRrFq1CtOmTcMll1yC1NRUuFwu9O7dGz/84Q/x+uuvY8WKFVAUBQBw6NAh/OY3v+l0nLEeq14jR47ED3/4QwDA8ePHUVhYGHkDWblyJfbu3QsAeOutt7B582YAwJdffonCwsLIazzxxBM4cEA7xf4f//gH/vGPfwAADhw4gCeeeCLyuMLCQnz55ZcAgM2bN+Ott94CAOzduxcrV64EoL25FRYWRha6XnzxRRQXFwMAdu3ahWeeeQaA9gZWWFgYecN85plnsGvXLgBAcXExXnzxxU4zlZSUoKGhAcnJydJkMnqenn32WUycOBE2m02aTHrnKRgMorS0NHKwlyHT2fP00ksv4fzzz0dycrJpM1lhnpiJmZiJmYzMdPLkSZSWlkYWvmXIlOjzdJmjCte5tPFkKs24zb0brm9+SGt0pl0l7wEA+tlP4eYk7dLQLoRxm3s3aqpPGD5Pu0rewyhXBQCgh60et7l3R8a64dnVnWZKTk5GaWlp5AoGXZmni+0ncEPS5wCAVCWA29y7kaoEupwp2nkqebsIVzm1uehl82FK0t7I415Y82S39j1Pw1f4YWZ5m5luSPocF9u1ue1o37s5qQz97KcAAPnOo+fM05T8PIzz9ozLvpecnIzzzz8fL730EoDY7HttZWprnrryHjHtIgWTkvefkSlT0X4WcJ3rAC5zVAHoeN9rb54GpIeRefCNLu97g3LT4Q0fanff8558G7dfmopBuel444034HA4kJycLM373jtb/4F8p3ZJuLP3vRfWPNnt49Pf//53TJw4EfX19UL2vc7maU/pTgBt73sN9XVtZurK+96KFSswceJEJCcnJ8wx9/O9Ws9t7XutCznR7nurVq3CwIEDkZycnDD7XkfzVH5AuwLQ2fveVPc+jBwzPqHmSeav92KRSRRFbV1WIlO55ZZb8MorrwAA7rvvPixdurTT57z66qu4+eabAWg36Dr9N6PNsu1W999/P/7whz8AAOx2O7766qtzLnP2wQcfoKCgIPL3pqYmuN3uTl97xIgRKCkpAQA88sgj+OUvf9nlce7ZswdDhgyB2+2Gw+FAcXExvF4v6urqkJGRAUVR4PP54Ha74XK50NTUhJaWFqSmpiIUCqG+vh6ZmZkAtFXqlJQUOJ3OyAp1SkoKgsEgGhsbkZGRAUBbpU5LS4PD4UBDQ0PkN+ACgQCam5vh8Xigqipqa2uRnp4Ou92O+vp6OBwOuN1u+P1+BAIBpKeno6WlBT6fDx6PBzabDXV1dXC5XEhKSkJzczNCoRDS0tIQDofbzVRbW4uysjIMGzYMNptNikxGz5PP58OXX36JSy+9FE1NTVJk0jtPzc3N+Oijj3DllVfC7XZLkenseTp58iQOHjyIoUOHoqWlxZSZrDBPzMRMzMRMRmZqbGxEaWkphg8fHvm6yeyZEnmevm4IY8Ky12GHiiY4YUMLUpQg6lUXdiwcjwxHyNBMx2qbcf0fi+FAGC6E0QgXtDMBAvjbv96Afj3SDZ2nL46exK1/3IFmOL/5Ld8g6lXtF9VenfcdXJR3XoeZAoEAPvzwQ+Tn5yMlJUX3PB1vbMH4ZW/AgTCa4IICFalKAA2qC9sXjkemM2zYvvf5Vydw65/ehh9O2BGGWwmh4Zvsr8y9Epf07tGtfe/rmnr88Kld+NrXHMmkQkEyAgjBjiDscCHU5r4HKEhBAAHYEfrmcTaokXnqk67g5QXfRVZq198j9Ox7NpsNH3/8MQYMGIDzzjuv2/teVX0IE5a9fkam1n1vx8Jx8NiD3X6P+PTwcdz1zB7UNgWQpgTQqDrRAhuSEUQYCgJwwIlwm/tee/PkSk7Bsz+5Cr1Slbjse6dOncLnn3+O/Px8AJDife+zL4/j1v/3LgJwnLPvvTL3OxjUp2e3jk+NjY04fPgwBg0aBL/fL2Tf62ieKusCuL7wvTb3vb//8rvoe35aTI651dXVOHr0KC677DI0NTUlxDH364YQJjz2bpvve6/86kZceF5q1P+ejh8/joqKClxxxRWRMzJE73sdzdOJxhaMf+ydc97L05RmPHprX1x7VX7CzJOsX+91N9NXX32FIUOGoNWnn36KwYMHI154VyOTar2kFhD92R+nP+7055tp261+85vf4NFHH0VTUxPC4TBef/11/PjHP253nK1jiGaxJtZjBc48y8dut0fezADA4/FEPj79ckIOh+OMx7W+sQHaG14rp9N5xudOf05qamrkY5fLFTm7SFGUMx53es6kpKTI2UU2m+2Mx6Wnf3uN5NO77CiToih47733cOmll8Lj8UiRKR7zVFRUhAEDBkiVCYh+ngKBAEpKSiKLnTJkOnuenE4n3nnnHQwaNOiMcZspkxXmiZmYiZmYychMoVAo8j7qcrmkyJTQ89TQiMBp3wK3wBZZrIhHpiS/dnWA0Dc/lNcoqFeTYLfbu5YJ0c9TkjsZzXAC0G50fHr2tHQPnE5nh5mam5sj+2trplZRzVNjI4Lf/EAcANRvsncnU7Tz5E5OgT+S3Y4G1R75XLonI3LD567ue31ykrBmdgGmrShGbZMS+VwTvr26Q0f7XmM7j0tLTsLyu0dG7mESj33P5/NFvkYFYrHvhc7IdPa+F4v3iCsv6oX1c9Ixc2UJqnyn9++MfNzRvnf2POV4tPn05n67r52ZKfb7nt1ux7vvvguv1wuPxyPF+15ySmpk22fve+mejG6/7wUCgTa/b47nvtfRPCUFvrkMVBv7XuvlT2Pxvud2uyM9JMoxtyaoZW9r32u9Uk60+15SUhLefvttXHLJJWc8R+S+16qteaoNnZs9DBuCqgO73n8Hwy/3Jsw8RZuplWm+3utmpq+++goicbHGpM4777zIx1VVVVE9p7KyMvJxdnbXb4Ioctut0tLSMGLECBQVFQEA9u3bd85jTh8noI01Kyur09eO9VitzuPxYMGCBaKHYSrszBodyJBRhgxERCJZ8X30SHUjRi/b1ubndiwchz7ZKW1+jsSz4v6qhzfXg/VzRn6zYODv/AmdaG/BwGhmnWdvrgdb5o/Bks17sLH0aJdfZ0p+HpZMGhxZIIsXs/YuEjvTyN6DLPka4cLts+bA4+HXOdQx3rPGpFp/ywUAKioqonrO4cOHIx97vV5Tbvt0F1xwQeTjEydOnPP5nj17nrFyGs1Ym5ubI9dEBGI3VitTVRXNzc3gFRejx86s0YEMGWXIQEQkEt9HyUy4v3audcFgSn5et15nSn4etswfE/eFGsDc85yV6kLh9GFYOWs4Cvrr+8XLgv7ZWDXrKhROHxb3hRrA3L2Lws40svcgTz4Vfr8MOchoXKwxqUsvvTTy8e7duyPXbezIRx991ObzzbTt0zU0NEQ+Pv3UudOdvq3Wm0x15PRx2u12XHLJJd0YIQHadSsffvhh1NbWih6KabAza3QgQ0YZMhARicT3UTIT7q/RMfOCASDHPI/35uD5OVfjtQVj8E8j+7b7uOF9s/CzcQPx2oIxeH7O1Rjn7RnHUZ5Jht7jjZ1pZO9BlnxpSgDPPPkn0+cg43GxxqRGjRoVuUZfQ0MDPvzwww4f7/f7UVxcHPn7+PHjTbnt052++JKX1/ZvLo0bNy7ycesl0zry1ltvRT4+PSd1XXp6OubMmXPGtSOpY+zMGh3IkFGGDEREIvF9lMyE+6s+ZlwwAOSa50G56bhnzIB2P//otHz8+kYvBuWKzypT7/HCzjSy9yBLvkbViSnTZ5g+BxmPizUmlZaWhgkTJkT+vnr16g4f/9JLL6Gurg6Adh+WMWPGmHLbrd544w0cOXIk8vexY8e2+bipU6ee8Zwvv/yyw9c9Pcvpz6Wus9vtyM3NjdzAjTrHzqzRgQwZZchARCQS30fJTLi/do2ZFgwAzrMo7F0/dqaRvQdZ8rXAhvN65Jg+BxmPizUmdu+990Y+Xr16Nfbs2dPm4xobG/HAAw9E/n7PPffA4XAk1LYDgQACgUBU2z5+/Djmzp0b+full16KK6+8ss3HXnXVVbjqqqsAAOFwGIsWLWr3dZ988kl89tlnALSV+xkzZkQ1HupYfX09Vq9ejfr6etFDMQ12Zo0OZMgoQwYiIpH4Pkpmwv3VGjjPYrB3/diZRvYeZMmXjCBeeWmd6XOQ8bhYY2K33HILRo8eDUC71Nitt96KTz755IzHnDx5ElOnTsUXX3wBQDuz5b777mvz9crLy6EoSuRPR2fMxHrbR48excCBA7Fs2TJUVFS0+RhVVfH3v/8dV111FQ4cOAAAUBQFjzzyCGy29nfl//zP/4x8/Mwzz2DRokUIBoNnPOb555/HggULIn//1a9+hfPPP7/d16ToORwO9OvXr9sLhFbCzqzRgQwZZchARCQS30fJTLi/WgPnWQz2rh8708jegyz5wlCQ26uP6XOQ8biHmNyzzz6LgoICHDt2DOXl5cjPz8d1112HgQMH4vjx43jjjTfQ2NgIQHuDe/7555GZmZmQ2/7yyy9x33334b777kO/fv1w+eWX4/zzz4fT6cTx48fx/vvv4+jRo2c8Z9myZbj55ps7HOeECRPw29/+Fv/xH/8BAHj44Yfx9NNPY/To0XC73di5cyc+/fTTyONvuOEG/Nu//VsXW6Gzud3udi9TR21jZ9boQIaMMmQgIhKJ76NkJtxfrYHzLAZ714+daWTvQZZ8AThw5Yhr4Ha7RQ+FEhzPrDG53r17Y+vWrcjPzwegnX1SVFSEp556Cps2bYoslvTo0QMbNmw4414zibzt8vJybN68GatWrcKTTz6Jl19++YyFml69emHjxo341a9+FdXrPfTQQ/jd734Hp9MJQDuTZ/369VizZs0ZCzXTp0/Hiy++yJXuGPL7/SguLobf7xc9FNNgZ9boQIaMMmQgIhKJ76NkJtxfrYHzLAZ714+daWTvQZZ8ToSxp/RD0+cg43GxRgJerxfvv/8+1qxZg4kTJ6JPnz5wuVzo2bMnRo4ciWXLlmHv3r245ZZbEnbbffv2xe7du/Hkk09i1qxZuOqqq9C/f394PB44HA5kZ2dj8ODBmDVrFtavX49Dhw5h8uTJUY9TURT89re/xccff4x//dd/xZAhQ5CRkYGUlBQMHDgQP/7xj/H666/jueeeg8fj6W4tdJpAIIDS0tKo70lE7AywRgcyZJQhAxGRSCLeR49UN6Lfor+3+edIdWPcxkHmw+O+NXCexWDv+rEzjew9yJLPgTA+3/ep6XOQ8Xj6gCRcLhdmzJiBGTNmdPk1+vXrB1VVhWxbURQMGTIEQ4YMwU9/+tMuv05nLr30Uvz3f/+3Ya9P50pPT8fcuXNFD8NU2Jk1OpAhowwZiIhE4vsomQn3V2vgPIvB3vVjZxrZezBTvrJKH9YWt30f7ia4UGTLR9M7X2FKfi8Myk2P8+jILLhYQ0SGamlpgc/ng8fjgc3Gk/miwc6s0YEMGWXIQEQkEt9HyUy4v1oD51kM9q4fO9PI3oMZ8m0tq8LyooMoKa9u9zEKVOw/XImPKqrxeNEBFPTLxryxAzHO2zOOIyUzSMy9nIik4fP5UFhYCJ/PJ3oopsHOrNGBDBllyEBEJBLfR8lMuL9aA+dZDPauHzvTJGIPfbJTUL70ljb/9MlO0fVaiZiv1amGAH7+3C7MXv1hhws1AJCqBHCbezdSFe0yaCXl1bhr9QeYv24XTjXw0mj0LS7WEJGhPB4P5s+fz3sB6cDOrNGBDBllyEBEJBLfR8lMuL9aA+dZDPauHzvTyN5Doubbd8yHiYXbsenjo1E9vkF14YXmy9Ggus74/xtLj2Ji4XaUVSbeYhSJwcUaIjKUzWZDZmZmwp6umojYmTU6kCGjDBmIiETi+yiZiVn317JKH1ZsP9Du5xesL8WyLWXYX1kXx1ElLrPOs9mxd/3YmUb2HhIx375jPkx/shhVPn/Uz1GhoF5NggrlnM9V+fyYtqKYCzYEgIs1RGSwuro6LF++HHV1/OYnWuzMGh3IkFGGDEREIvF9lMzEbPvr1rIq3L78PUx8bAfWFh9u93E7K07h8aIDuPGx7bh9+XvYVvZ1HEeZeMw2z7Jg7/qxM43sPSRavlMNAcxaVYLapqCu5yUjgMlJe5CMti95VtsUxMyVJbwkGnGxhoiM5XK5kJ+fD5fL1fmDCQA7A6zRgQwZZchARCQS30fJTMyyv+q5h8DZeA8B88yzbNi7fuxMI3sPiZZv8aY9us6oaRWCHV+EzkcI9nYfU+XzY8nmPd0ZHknAIXoARCS3pKQkjBw5UvQwTIWdWaMDGTLKkIGISCS+j5KZmGF/3XfMh1mrSrr0g7TTbSw9iuKDJ7FmdgG8uYl1nwSjmWGeZcTe9WNnGtl7SKR8W8uqor5HzdmCsGNvOKfTx20sPYop+XkY7+38sSQnnllDRIZqbm5GUVERmpubRQ/FNNiZNTqQIaMMGYiIROL7KJlJd/bXeNw3piv3EOiIVe8hwPclMdi7fuxMI3sPiZRvedHBLj/XhRDyHV/BhVDn23mr69sh8+NiDREZKhQKoby8HKFQ5wck0rAza3QgQ0YZMhARicT3UTKTruyv8bpvTFfvIdAZK95DgO9LYrB3/diZRvYeEiVfWaVP96U1T2eHilxbHexQO31syaHqbv3yApkbL4NGRIZKS0vDrFmzRA/DVNiZNTqQIaMMGYiIROL7KJmJnv31VEMAizft6dLlYkrKq1GyuhpT8vOwZNJgZKV2fp+Crt5DIBqt9xAonD7MkNdPNHxfEoO968fONLL3IDrfkepGAMDa4opuvU4TnNgS8Eb9+LXFFbhnzAD0yU7p1nbJfHhmDREZKhwOo7KyEuFwWPRQTIOdWaMDGTLKkIGISCS+j1K8xOIyZNHur/uO+TCxcHuXr+vfamPpUUws3N7pZci6cw8BPWPZWlZl6DYSBd+XxGDv+rEzjew9iM43etk2jF62rcOzQ6NhQwuylUbY0BLV458ursDoZdu6tU0yJy7WEJGh6urqsGLFCtTV8RTOaLEza3QgQ0YZMhARicT3UTJaLC9DFs3+KuK+Md25h4AeVrmHAN+XxGDv+rEzjew9yJIvRQliinsvUpTYXq6T5MPLoBGRoTIyMnDfffchKSlJ9FBMg51ZowMZMsqQgYhIJL6PklGMuAxZZ/ur0feN2TJ/zDmXROvuPQT0aL2HwKDc9LhsTxS+L4nB3vXrrLM+2SkoX3pLnEcVf7LvO7Lkq1ddeKYpHwHYRQ+FEhzPrCEiQymKArfbDUVRRA/FNNiZNTqQIaMMGYiIROL7KBnBqMuQdba/xuO+Ma2OVDfiSHVjt+8hoNfa4orI/QtkxfclMdi7fuxMI3sP8uRTEIADgNlzkNG4WENEhvL5fHjsscfg83V8rWn6FjuzRgcyZJQhAxGRSHwfpVgz8jJkHe2v8b5vTKzuIaCXFe4hwPclMdi7fuxMI3sPsuRLQQA/TPoEKQiIHgolOC7WEJGh3G43xo4dC7fbLXoopsHOrNGBDBllyEBEJBLfRymWjL4MWVPY1u7+yvvGyIPvS2Kwd/3YmUb2HmTJF4AdpaE8XgaNOsV71hCRoVwuF/Lz80UPw1TYmTU6kCGjDBmIiETi+yjFktGXIfvDa5+jcPqwcz4n4r4xZBy+L4nB3vVjZxrZexCdb8fCcQCABetLsbPiVJdfJwQ7vgifH/Xjh/fNwqPT8ru8PTIvnllDRIZqamrCli1b0NTUJHoopsHOrNGBDBllyEBEJBLfRylW4nEZsldLD+N/n30JTU1NkXvGiLpvDBmH70tisHf92JlG9h5E5+uTnYI+2SkY0T+7W6/jQggFzsNwIRTV40cMyEaf7JRubZPMiWfWEJGhWlpaUFNTg5aWFtFDMQ12Zo0OZMgoQwYisqYj1Y3t3ndix8JxcfvmmO+jFCvxuAyZDSrKDleipaUFo5cVGb699jzNxRpD8X1JDPauHzvTyN5DouSbnJ+Hx4sOdPn5NqhIUwKwQY1ue0N7dXlbZG5crCEiQ6WmpmL69Omih2Eq7MwaHciQUYYMREQi8X2UYiFelyFrhhP/V9MX99TJ+QNB0vB9SQz2rh8708jeQ6Lk8+Z6UNAvu8vH22Y4sTVwUVSPLeifjUG56V3aDpkfL4NGRIYKhUIoLy9HKBTdqZ7EzgBrdCBDRhkyEBGJxPdR6o54X4bMjhbk2nxY+67xZ/F05rX5o7Fj4Th8p29WXLc7vG9W5P4FsuL7khjsXT92ppG9h0TKN3fsgC4/t/UYakfnv/Aw77qBXd4OmR8Xa4jIUPX19VizZg3q6+tFD8U02Jk1OpAhowwZiIhE4vsodcfoZdswetk2rC0+HJftJStB3JT0GV7+oOuXgYmVHh53TO4hoJcV7iHA9yUx2Lt+7Ewjew+JlG+8NweTh+Z16bmtx9BkJdjh46bk52Gct2eXtkFy4GXQiMhQmZmZWLx4sehhmAo7s0YHMmSUIQMRkUh8HyUzqVeTsKppuOhhAABcDu33Trt7DwG9rHAPAb4vicHe9WNnGtl7SLR8D04ejPcPnUSVz6/redEcQ3M8SVgyaXB3hkcS4Jk1RERERERERGQaqS47gG/vIRAPvIcAERFlpbqwZnYBMpKdMX3djGQn1swuQFaqK6avS+bDxRoiMlRtbS2WLl2K2tpa0UMxDXZmjQ5kyChDBiIikfg+SmaSqvjxI/cupCp+bP7na7Bj4Thh941RFCXy9+7cQ0APq9xDgO9LYsjYe5/sFJQvvaXNP7G4nKCMnXWF7D0kYj5vrgfr54xEjicp6uecfgw9W44nCevnjIQ31xPLYZJJ8TJoRGSolJQUTJ06FSkpcl/bOZbYmTU6kCGjDBmIiOLtSHUjRi/bBgCwI4xett743/98C2HYsWPhOOnvh0Hm1aw68HagH5pVB/r3SENakvbjhBH9s7Gz4lTcxjFiwJln0rTeQ2DTx0cN26aV7iHAr+/EYO/6sTON7D0kaj5vrgdb5o/Bks17sLG08+PP6cfQ003Jz8OSSYN5Rg1F8MwaIjKU0+mE1+uF0xnbU0Rlxs6s0YEMGWXIQEQkUhh2HG7JQhh20UMh6tTp+2vrZcgA7b4x8dTWfWMenDxY128462G1ewjw6zsx2Lt+7Ewjew+JnC8r1YXC6cOwctZwFPTv+JKcZ3/NV9A/G6tmXYXC6cO4UENn4GINERmqsbERGzZsQGNjo+ihmAY7s0YHMmSUIQMRkUhJCOJa5yEkISh6KGRC8b4MWev+OqJP6hmXIUuE+8bwHgKxw6/vxGDv+rEzjew9mCHfeG8Onp9zNV5bMAb/NLJvm49JQhBTs77Cvdf2xmsLxuD5OVdb5oxN0oeLNUREREREREQm0yc7BX2yUzCik9/mjbW2FocS4b4xXbmHQEd4DwEiItJjUG467hnT/vHwqn7Z+OfxF7f5SwdErbhYQ0SGStTriyYydmaNDmTIKEMGIiKR/HDi7WB/+JF4l/Yg84jXZcha99cpw8/9QVTrfWOMFM19Y1rvITClm51Myc/DlvljLLlQw6/vxGDv+rEzjew9yJLPDyfG3HCz6XOQ8bhYQ0SGCgaDKCsrQzDIy3tEi51ZowMZMsqQgYhIJDvCuNB2CnaERQ+FTCxelyGzI4wJF4Qw4Dx3m59PlPvG6LmHwNl4DwF+fScKe9ePnWlk70GWfHaEUXHgc9PnIONxsYaIDGWG64smGnZmjQ5kyChDBiIikdxKCNe6yuFWQqKHQiYXj8uQuZUQ+jfsbfe4n2j3jYnmHgIAMLxvFn42biDvIfANfn0nBnvXj51pZO9BlnxuJYQdb7xq+hxkPIfoARCR3DIyMrBo0SLRwzAVdmaNDmTIKEMGIiKRGtQkPNs8TPQwKA7KKn1YW1zR7ucXrC/FiP7ZmJLfq0vXsm+9DNmmj492Z5gdun5of/x2+vc7fEzrfWNmrixBlc/f7W3meJKwZnZBty5H1noPgafb6f/Rafnok83L0rTi13disHf92JlG9h5kydegJuHHc36OjAweb6hjXKwhIiIiIiIiMsDWsiosLzqIkvLqDh+3s+IUdlacwuNFB1DQLxvzxg7UfYbHg5MH4/1DJ2OySHI2PZcha71vzJLNe7CxtOuLR1Py87Bk0mDLXo6MiIiIrIeXQSMiQ9XU1ODBBx9ETU2N6KGYBjuzRgcyZJQhAxGRSGmKH3clf4g0JfY/XCexTjUE8PPndmH26g87Xag5W0l5Ne5a/QHmr9uFUw2BqJ9n9GXIlGBj1Md93jfGvPj1nRjsXT92ppG9B1nypSl+rPzTf5k+BxmPZ9YQkaHS0tIwc+ZMpKWliR6KabAza3QgQ0YZMhARidSkOvGq/xI0qbH94TqJte+YD7NWdf8yYBtLj6L44EldlwEz8jJkoVBI93F/vDcH47052F9Zh7XFFe1eimx43yyMGJCNyUO7dhk4ih1+fScGe9ePnWlk70GWfE2qEzd9b5rpc5DxeGYNERnK4XCgX79+cDi4NhwtdmaNDmTIKEMGIiKRwrChssWDML8tk8a+Yz5Mf7I4Zpciq/L5MW1FMcoqfVE/p/UyZFPy87q17Sn5edgyf0xkoag7x/3W+8a059Fp+fj1jV4u1CQAfn0nBnvXj51pZO9Blnxh2HBB7wtNn4OMx+8KiMhQDQ0NWLduHRoaGkQPxTTYmTU6kCGjDBmIiERyI4jxri/gRlD0UCgGTjUEMGtVCWqbYjuftU1BzFxZovuSaLG+DBmP+9bAeRaDvevHzjSy9yBLPjeCeONvL5s+BxmPy3lEZCibzYbMzEzYbFwbjhY7s0YHMmSUIQMRkUgtUFCvutACRfRQKAYWb9oTszNqzlbl82PJ5j0onD5M1/NieRkyHvetgfMsBnvXj51pZO9BlnwtUJDmyTB9DjIeF2uIyFDJycmYOHGi6GGYCjuzRgcyZJQhAxGRSAE4UBK8UPQwKAa2llVh08dHDd3GxtKjmJKfh/HeHN3Pbb0MWXuLNY9Oy0ef7JQOX4PHfWvgPIvB3vVjZxrZe5AlXwAOjBwzDsnJyaKHQgmOy3lEZKhAIIDS0lIEAtFftsHq2Jk1OpAhowwZiIhEciCMi+wn4EBY9FCom5YXHYzPdt6Kz3bawuO+NXCexWDv+rEzjew9yJLPgTA+3/ep6XOQ8RJ+sebIkSPYsWMHXnjhBaxevRqrV6/GCy+8gB07duDIkSOih0dEnWhubkZRURGam5tFD8U02Jk1OpAhowwZiIhEciGMfMdRuLhYY2pllT6UlFfHZVslh6qxv7IuLts6G4/71sB5FoO968fONLL3IEs+F8LY9f47ps9Bxku4y6Dt378ff/vb3/D666/jgw8+QE1NTYePz8zMxFVXXYUbbrgBt956KwYNGhSfgRJRVDweDxYsWCB6GKbCzqzRgQwZZchARCRSI1x40X+F6GFQFx2pbgQArG3n0mJGWVtcgXvGDOj0smWxxuO+NXCexWDv+rEzjew9yJKvES7cPmsOPJ74HrvJfBJisaapqQmrV6/GypUr8dFHH0X+v6qqnT731KlTeP311/H6669j4cKFGDZsGO6++27MnDkTKSn8B0Akmqqq8Pv9SEpKgqLw5rnRYGfW6ECGjDJkICISS4ULYQRgB8D3UbMZvWybkO0+XVyBp4srUL70lrhul8d9a+A8i8He9WNnGtl7kCefCr+/GaqabPIcZDShl0Hz+Xx44IEH0Lt3b/zzP/8zPvroI6iqGvkDAA6HA3369MGwYcNwzTXXYNSoURg2bBh69+4Nh0Nbazr9Obt27cI///M/o3fv3njggQfg8/lERiSyvNraWjz88MOora0VPRTTYGfW6ECGjDJkICISKU0J4M7kUqQpvH45JT4e962B8ywGe9ePnWlk70GWfGlKAM88+SfT5yDjCTmzJhwO409/+hN+97vfoaam5owzaC677DKMHz8eo0ePRn5+Pi666KJ2VxxVVcXnn3+Ojz/+GDt27MDWrVuxd+9eAEBNTQ1+//vf489//jP+/d//Hf/yL/8Cu90el3xE9K309HTMmTMH6enpoodiGuzMGh3IkFGGDEREIjWqTmxsvgyNqlP0UIg6xeO+NXCexWDv+rEzjew9yJKvUXViyvQZps9BxhOyWDN06FDs27cvskjTv39/zJ49G7fffjsuvvjiqF9HURRccskluOSSS3DbbbcBAL744gusX78eq1atwsGDB3Hq1Cn88pe/xFNPPYXdu3cbkoeI2me325Gbmyt6GKbCzqzRgQwZZchARCRSC2yoVnnpZjIHHvfNq092StSXzeM8i8He9WNnGtl7kCVfC2w4r0cOTySgTgm5DNrevXuhqirGjBmDV155BQcOHMD999+va6GmPRdddBHuv/9+fPHFF/j73/+O6667DqqqRs64IaL4qq+vx+rVq1FfXy96KKbBzqzRgQwZZchARCRSMoKY6CpDMoKih0LUKR73rYHzLAZ714+daWTvQZZ8yQjilZfWmT4HGU/IYs3IkSNRVFSEoqIiTJw40bDt3HTTTdi2bRuKioowcuRIw7ZDRO1zOBzo169f5B5T1Dl2Zo0OZMgoQwYiIpHCUFDZko4weKNZSnw87lsD51kM9q4fO9PI3oMs+cJQkNurj+lzkPGE7CHvvvtuXLc3ZswYvPPOO3HdJhFp3G43xo4dK3oYpsLOrNGBDBllyEBEJFIADpSGeokeBnXRjoXjAAAL1pdiZ8WpuG13eN8sPDotP27ba8XjvjVwnsVg7/qxM43sPciSLwAHrhxxDdxut+ihUIITcmYNEVmH3+9HcXEx/H6/6KGYBjuzRgcyZJQhAxGRSE6EcZm9Ck6ERQ+FuqBPdgr6ZKdgRP/suG53xIBs9MmO/72OeNy3Bs6zGOxdP3amkb0HWfI5Ecae0g9Nn4OMx8UaIjJUIBBAaWkpAoGA6KGYBjuzRgcyZJQhAxGRSA6EcZHjBBxcrDFcWaUPK7YfaPfzC9aXYtmWMuyvrNP92pPz87ozNP3bGyrmbCwe962B8ywGe9ePnWlk70GWfA6E8fm+T02fg4zHC+URkaHS09Mxd+5c0cMwFXZmjQ5kyChDBiIikZrgwib/YNHDkNrWsiosLzqIkvLqDh+3s+IUdlacwuNFB1DQLxvzxg7EOG/PqLbhzfWgoF92p9uIhYL+2RiUm274dtrC4741cJ7FYO/6sTON7D3Ikq8JLky9YxbS0+N/ZiyZi6kXa3bu3InNmzejqqoKPXv2xE033YSRI0eKHhYRnaalpQU+nw8ejwc2G0/miwY7s0YHMmSUIQMRkUgKVKQqATSoLqhQRA9HKqcaAli8aQ82fXxU93NLyqtRsroaU/LzsGTSYGSlujp9ztyxA1Cy2vjFmnnXDTR8G+3hcd8aOM9isHf92JlG9h5kyadARZ2vFi2ZblPnIOMl3N5RU1ODGTNmYMaMGXjkkUfafdyCBQtQUFCA3/3ud3jyySfxH//xH7jmmmswc+ZMhMO8jABRovD5fCgsLITP5xM9FNNgZ9boQIaMMmQgIhIpVQngNvdupCq8JEYs7Tvmw8TC7V1aqDndxtKjmFi4HWWVnR/nxntzMHmosZdDm5KfF/XZPkbgcd8aOM9isHf92JlG9h5kyZeqBPDCmidNn4OMl3CLNZs2bcLatWvxzDPPoEePHm0+5qmnnsIf//hHqKp6zp+1a9fiF7/4RZxHTUTt8Xg8mD9/Pjwej+ihmAY7s0YHMmSUIQMRkUgNqgsvNF+OBrXzMzcoOvuO+TD9yWJU+WJzA98qnx/TVhRHtWDz4OTByPEkxWS7Z8vxJGHJJLGXzONx3xo4z2Kwd/3YmUb2HmTJ16C6cNvMe0yfg4yXcIs1RUVFAAC73Y4pU6ac8/mWlhYsWbIEAKAoCoYMGYJ//dd/xW233QZFUaCqKp544gmUlZXFcdRE1B6bzYbMzEye5qkDO7NGBzJklCEDEZFIKhTUq0m8BFqMnGoIYNaqEtQ2BWP6urVNQcxcWYJTDR2fAZWV6sKa2QXISHbGdPsZyU6smV0Q1eXYjMTjvjVwnsVg7/qxM43sPciST4WCdE+G6XOQ8RJuD/nkk08AAJdeeikyMzPP+fybb76Jr776Coqi4Nprr8WHH36IRx55BOvXr0dhYSEAbUHnr3/9azyHTUTtqKurw/Lly1FXVyd6KKbBzqzRgQwZZchARCRSMgKYnLQHyeBl0GJh8aY9MTuj5mxVPj+WbN7T6eO8uR6snzMyZmfY5HiSsH7OSHhzxf8mLo/71sB5FoO968fONLL3IEu+ZASw4bnVps9Bxku4xZojR45AURR4vd42P//aa69FPr7//vvhcn3720X33HMPsrOzAQBvv/22sQMloqi4XC7k5+ef8W+VOsbOrNGBDBllyEBEJFIIdnwROh8h2EUPxfS2llV1+x41ndlYehRby6o6fZw314Mt88dgSn737mEzJT8PW+aPSYiFGoDHfavgPIvB3vVjZxrZe5AlXwh2XHzpENPnIOM5RA/gbK03WmpddDnb9u3bAWjXLJwwYcIZn3O5XBg5ciReeeUVfPbZZ8YOlIiikpSUhJEjR4oehqmwM2t0IENGGTIQkRhHqhsxetm2Nj+3Y+E49MlOifOIxAjCjr3hHNHDkMLyooPx2c5bBzHe2/mcZaW6UDh9GKbk52H5WwdRcqg66m0U9M/GvOsGYpy3Z3eGGnM87lsD51kM9q4fO9PI3oMs+YKwY3D+cCQlGXNvO5JHwp1Z09LSAgBQVfWczzU1NaG0tBSKouCaa66B3X7ub6Dl5uYCAGpra40dKBFFpbm5GUVFRWhubhY9FNNgZ9boQIaMMmQgIhLJhRDyHV/BhZDooZhaWaUPJeXRL4Z0R8mhauyvjP4SJuO9OXh+ztV4bcEY/NPIvu0+bnjfLPxs3EC8tmAMnp9zdcIt1AA87lsF51kM9q4fO9PI3oMs+VwI4aP33zF9DjJewi3WeDzaKd7Hjh0753PvvPMOQiHtG5lRo0bFdVxE1DWhUAjl5eWRf7vUOXZmjQ5kyChDBiIikexQkWurgx3n/qIade5IdSOOVDdibXFFXLe7trgCR6obdT1nUG467hkzoN3PPzotH7++0YtBuendHZ5heNy3Bs6zGEb13ic7BeVLb2nzj9nPYuW+qpG9B1ny2aGi8qsjps9Bxku4y6BddNFFeP/991FcXIxwOHzG2TMvv/xy5OPRo0e3+fyvv/4aAJCZmWnoOIkoOmlpaZg1a5boYZgKO7NGBzJklCEDEZFITXBiS6Dte3VS59q7lJ7Rni6uwNPFFShfeouQ7YvC4741cJ7FYO/6sTON7D3Ikq8JTtz8/elISzP3IikZL+HOrBkzZgwA4MSJE/if//mfyP///PPP8fTTTwMAMjIy2r1e4SeffAJFUTBgQPu/tURE8RMOh1FZWYlwOCx6KKbBzqzRgQwZZchARCSSDS3IVhphQ4vooRB1isd9a+A8i8He9Uv0zuJ1VlOi99BdsuSzoQUnj1eZPgcZL+EWa2bPnh05m2bRokUYM2YMfvCDH2DEiBGor6+HoiiYMWMGnE7nOc+tqKjA4cOHAQBDhw6N67iJqG11dXVYsWIF6uqiv7a31bEza3QgQ0YZMhARiZSiBDHFvRcpSlD0UIg6xeO+NcR6nmW+DFcs8d+XfuxMI3sPXcmXiO87KUoQG9f9Vdp5othJuMugDRo0CPfffz8eeughKIqCd95554zP5+Tk4P7772/zuS+++GLk42uuucbQcRJRdDIyMnDfffchKSlJ9FBMg51ZowMZMsqQgYhIpHrVhWea8hGAvfMHEwnG4741cJ7FYO/6sTON7D3Ikq9edeHOe/4FGRkZoodCCS7hzqwBgCVLluDRRx/FeeedB1VVI39GjhyJN998Ez169DjnOaqqYvny5QAARVHw3e9+N97DJqI2KIoCt9sNRVFED8U02Jk1OpAhowwZiIjEUhCAAwDfRynx8bhvDZxnMdi7fuxMI3sP8uRTkJQkQw4yWkIu1gDA/PnzcezYMezevRvvvPMODh8+jHfffReXXnppm4+vra3Fb3/7W6xatQrr169vc0GHiOLP5/Phscceg8/nEz0U02Bn1uhAhowyZCAiEikFAfww6ROkICB6KESd4nHfGjjPYrB3/diZRvYeZMmXggCeX73C9DnIeAl3GbTT2e12DB48OKrHZmZmYubMmQaPiIj0crvdGDt2LNxut+ihmAY7s0YHMmSUIQMRkUgB2FEayuNl0Lpox8JxAIAF60uxs+JU3LY7vG8WHp2WH7ftJQoe962B8ywGe9ePnWlk70GWfAHYMWzENabPQcZL6MUaIjI/l8uF/Px80cMwFXZmjQ5kyChDBiIikUKw44vw+aKHYVqtNwke0T87ros1IwZkW/LG6DzuWwPnWQz2rh8708jegyz5QrDj4kuHwOVyiR4KJbiEvQwaEcmhqakJW7ZsQVNTk+ihmAY7s0YHMmSUIQMRkUguhFDgPAwXQqKHYmqT8/Piu72hveK6vUTB4741cJ7FYO/6sTON7D3Iks+FEIq3bzV9DjKekMUaETsm/zEQidHS0oKamhq0tLSIHoppsDNrdCBDRhkyEBGJZIOKNCUAG1TRQzE1b64HBf2y47Ktgv7ZGJSbHpdtJRoe962B8ywGe9ePnWlk70GWfDaoqPfVmj4HGU/IYs1FF12Ev/zlLwiHw4ZvKxwO48knn8RFF11k+LaI6FypqamYPn06UlNTRQ/FNNiZNTqQIaMMGYiIRGqGE1sDF6EZTtFDMb25YwfEZTvzrhsYl+0kIh73rYHzLAZ714+daWTvQZZ8zXDi+lu/Z/ocZDwhizXHjh3DnDlzMHDgQPy///f/UF9fH/Nt1NXV4Y9//CMGDhyIefPmobKyMubbIKLOhUIhlJeXIxTi5T2ixc6s0YEMGWXIQEQkkh0tyLX5YAd/y7K7xntzMHmosZdDm5Kfh3HenoZuI5HxuG8NnOfY6pOdgvKlt7T55/R7X7F3/diZRvYeZMlnRwuOfXnY9DnIeEIWayZPngxVVXH48GHMnz8fF1xwAWbPno3XXnutWzttKBTCa6+9htmzZyMvLw+/+MUvcPjwYaiqiilTpsQwARFFq76+HmvWrDFkUVZW7MwaHciQUYYMREQiJStB3JT0GZKVoOihSOHByYOR40ky5LVzPElYMmmwIa9tFjzuWwPnWQz2rh8708jegyz5kpUgXn15velzkPEcIja6YcMGbNmyBb/61a+wd+9eNDQ0YM2aNVizZg3S09NxzTXXYPTo0bjiiivg9XrRu3dvuFyuM17D7/fjyy+/xP79+/Hxxx/j7bffxjvvvIO6ujoAgKpq130ePHgwHnnkEdx4441xz0lEQGZmJhYvXix6GKbCzqzRgQwZZchARCRSvZqEVU3DRQ9DGlmpLqyZXYBpK4pR2xS7BbCMZCfWzC5AVqqr8wdLjMd9a+A8i8He9WNnGtl7kCVfvZqE2f/ya2RmpnT+YLI0IYs1ADBx4kTceOONePbZZ7Fs2TLs3r0bAODz+bBlyxZs2bLljMenpKQgJSUFqqqiqakJjY2N57xm6wINAFx++eVYtGgRpk+fDkVRjA1DREREREREwnlzPVg/ZyRmrixBlc/f7dfL8SRhzewCeHM9MRgdEREREVH7hFwGrZWiKLjzzjvx8ccf44033sAdd9yB5ORkqKp6zp+GhgYcP34cJ06cQENDQ5uPSU5Oxh133IE33ngDH3/8Me644w4u1BAJVltbi6VLl6K2tlb0UEyDnVmjAxkyypCBiEikVMWPH7l3IVXp/qKCGZRV+rBi+4F2P79gfSmWbSnD/sq6bm3Hm+vBlvljMCW/e/ewmZKfhy3zx3Ch5hs87lsD51kM9q4fO9PI3oMs+VIVP9au+KPpc5DxhJ1Zc7bx48dj/PjxaGxsxJtvvonXX38d77//Pnbv3o3m5uY2n5OcnIzLL78cBQUFuOGGGzBhwgSkpPB0MqJEkpKSgqlTp/Lfpg7szBodyJBRhgxERCI1qw68HeiHZjVhvi0zxNayKiwvOoiS8uoOH7ez4hR2VpzC40UHUNAvG/PGDsQ4b88ubTMr1YXC6cMwJT8Py986iJJDHW/7dAX9szHvuq5vW1Y87lsD51kM9q4fO9PI3oMs+ZpVB0Zff5Ppc5DxEu67gpSUFEyaNAmTJk2K/L/KykpUVVWhoaEBAJCamorc3Fzk5OSIGiYRRcnpdMLr9YoehqmwM2t0IENGGTIQEYkUhh2HW7JED8MwpxoCWLxpDzZ9fFT3c0vKq1GyuhpT8vOwZNLgLt8vZrw3B+O9OdhfWYe1xRV4uriizccN75uFEQOyMXloLwzKTe/StmTH4741cJ7FYO/6sTON7D3Iki8MO/oOvBhOp1P0UCjBCb0MWrRyc3MxdOhQjBo1CqNGjcLQoUO5UENkEo2NjdiwYUOb95mitrEza3QgQ0YZMhARiZSEIK51HkISgqKHEnP7jvkwsXB7lxZqTrex9CgmFm5HWaWvW68zKDcd94wZ0O7nH52Wj1/f6OVCTQd43LcGzrMY7F0/dqaRvQdZ8iUhiO2vv2L6HGS8hDuzhoiIiIiIiMxr3zEfpj9ZjNqm2CxCVfn8mLaiGOvnjOT9Y8iU+mSnoHzpLaKHYUnsnoiIzISLNURkqNbri1L02Jk1OpAhowwZiIhE8sOJt4P9RQ8jpk41BDBrVUnMFmpa1TYFMXNlCbbMH9PlS6JR9/C4bw2cZzHYu37sTCN7D7Lk88OJMTd8l/esoU6Z4jJoRGRewWAQZWVlCAblu7yHUdiZNTqQIaMMGYiIRLIjjAttp2BHWPRQYmbxpj2o8vkNee0qnx9LNu8x5LWpczzuWwPnWQz2rh8708jegyz57Aij4sDnps9BxuNiDREZSpbri8YTO7NGBzJklCEDEZFIbiWEa13lcCsh0UOJia1lVd2+R01nNpYexdayKkO3QW3jcd8aOM9isHf92JlG9h5kyedWQtjxxqumz0HG42XQiMhQGRkZWLRokehhmAo7s0YHMmSUIQORVR2pbsToZdva/NyOhePQJ5uXaIiHBjUJzzYPEz2MmFledDA+23nrIMZ7c+KyLfoWj/vWwHkWg73rx840svcgS74GNQk/nvNzZGTwa2zqGM+sISIiIiIisoCySh9WbD/Q7ucXrC/Fsi1l2F9Z16XXLimv7s7wolZyqLpLYyQiIiIiSmRcrCEiQ9XU1ODBBx9ETU2N6KGYBjuzRgcyZJQhAxGRSGmKH3clf4g0xZh7vLTaWlaF25e/h4mP7cDa4sPtPm5nxSk8XnQANz62Hbcvfw/byr7u9LWPVDfiSHUj1hZXxHLInYr39ojHfavgPIvB3vVjZxrZe5AlX5rix8o//Zfpc5DxeBk0IjJUWloaZs6cibS0NNFDMQ12Zo0OZMgoQwYiIpGaVCde9V+CJtVpyOufaghg8aY9XbqPTEl5NUpWV2NKfh6WTBqMrFRXm49r73J6Rnu6uAK/mzpEyLatisd9a+A8i8He9WNnGtl7kCVfk+rETd+bZvocZDwu1hCRoRwOB/r16yd6GKbCzqzRgQwZZchARCRSGDZUtngMee19x3yYtaoEVb7unbWzsfQoig+exJrZBfDmGjPWrlJVFYqiiB6GZfC4bw2cZzHYu37sTCN7D7LkC8OGC3pfCIeDP4qnjvEyaERkqIaGBqxbtw4NDQ2ih2Ia7MwaHciQUYYMREQiuRHEeNcXcCMY09fdd8yH6U8Wd3uhplWVz49pK4pRVumLyevFSkMgLHoIlsLjvjVwnsVg7/qxM43sPciSz40g3vjby6bPQcbjYg0RGcpmsyEzMxM2G99uosXOrNGBDBllyEBEJFILFNSrLrQgdmeHnGoIYNaqEtQ2xXYBqLYpiJkrS3CqIRDT1+2OQKhF9BAshcd9a+A8i8He9WNnGtl7kCVfCxSkeTJMn4OMx3OviMhQycnJmDhxouhhmAo7s0YHMmSUIQMRkUgBOFASvDCmr7l4056YnVFztiqfH0s270Hh9GGGvL5eLgd/4BFPPO5bA+dZDPauHzvTyN6DLPkCcGDkmHFITk4WPRRKcPzqlogMFQgEUFpaikAgcX4LM9GxM2t0IENGGTIQEYnkQBgX2U/AgdhczmtrWRU2fXw0Jq/Vno2lR7G1rMrQbUQr1WUXPQRL4XHfGjjPYrB3/diZRvYeZMnnQBif7/vU9DnIeFysISJDNTc3o6ioCM3NzaKHYhrszBodyJBRhgxERCK5EEa+4yhcMVqsWV50MCav0+l23vp2OzsWjsOOhePwnb5Zcdl2q+F9s6Aosbt8HHWOx31r4DyLwd71Y2ca2XuQJZ8LYex6/x3T5yDjJdxl0LZv396t59tsNng8HmRmZuLCC2N7SQEi0s/j8WDBggWih2Eq7MwaHciQUYYMREQiNcKFF/1XxOS1yip9KCmvjslrdabkUDX2V9ZhUG46+mSnAABG9M/GzopTcdk+AIwYkB23bZGGx31r4DyLwd71Y2ca2XuQJV8jXLh91hx4PCmih0IJLuEWa8aOHRuz35BKTU3FlVdeiTvvvBM/+tGPkJqaGpPXJaLoqaoKv9+PpKQk/vZjlNiZNTqQIaMMGYhEOlLdiNHLtrX5uR0Lx0V+CE4yU+FCGAHYAXTtffRIdSMAYG1xRQzH1bm1xRW4Z8yAyH46OT8PjxcdiNv2Jw/tFbdtkYbHfWvgPIvB3vVjZxrZe5Annwq/vxmqmmzyHGS0hLwMmqqqMflTX1+PHTt2YO7cubjsssuwdetW0dGILKe2thYPP/wwamtrRQ/FNNiZNTqQIaMMGYiIREpTArgzuRRpStevXz562TaMXrYNa4sPx3BknXu6uOKMxUZvrgcF/eJztktB/2wMyk2Py7boWzzuWwPnWQz2rh8708jegyz50pQAnnnyT6bPQcZLuDNrxowZE1lhLC4uRiAQgKqqAIDzzz8fvXv3RlpaGhoaGvDll1/i+PHjAABFUZCUlIQRI0YgGAyiuroaX3zxBUKhEADgyJEjuPnmm/Hqq69i3LhxYsIRWVB6ejrmzJmD9HR+Qx0tdmaNDmTIKEMGIiKRGlUnNjZfhkbVKXooMTF37ACUrDb+Umzzrhto+DboXDzuWwPnWQz2rh8708jegyz5GlUnpkyfYfocZLyEO7OmqKgImzdvRo8ePeD3+5Geno4HH3wQBw4cwNdff42PPvoI27dvx86dO1FVVYVDhw7hoYcegsfjgd/vR8+ePfHaa69h7969qK2txV//+lf07dsXABAIBDBjxgz4/X7BKYmsw263Izc3F3a7XfRQTIOdWaMDGTLKkIGISKQW2FCtpqAl8b4t65Lx3hxMHppn6Dam5OdhnLenodugtvG4bw2cZzHYu37sTCN7D7Lka4EN5/XIMX0OMl5CflcwY8YM/N///R8uvvhifPLJJ/j3f/939O/fv83H9u3bF7/97W/xySef4KKLLsKLL76IGTNmAACSk5Px4x//GB999BEuvfRSAMDRo0fx17/+NW5ZiKyuvr4eq1evRn19veihmAY7s0YHMmSUIQMRkUjJCGKiqwzJCIoeSsw8OHkwcjxJhrx2jicJSyYNNuS1qXM87lsD51kM9q4fO9PI3oMs+ZIRxCsvrTN9DjJewi3WbNiwARs2bICiKHj++edx4YUXRvW8Pn364Pnnnz/jNVplZWXhySefjPx9y5YtMR0zEbXP4XCgX79+cDgS7qqLCYudWaMDGTLKkIGISKQwFFS2pCMMeW40m5XqwprZBchIju2l3TKSnVgzuwBZqa6Yvi5Fj8d9a+A8i8He9WNnGtl7kCVfGApye/UxfQ4yXsIt1qxevRoAMGLECAwdOlTXc4cOHYqrr74aqqpGXqfVNddcg4suugiqqmLXrl0xGi0RdcbtdmPs2LFwu92ih2Ia7MwaHciQUYYMREQiBeBAaagXAol3K9Fu8eZ6sH7OyJidYZPjScL6OSPhzfXE5PWoa3jctwbOsxjsXT92ppG9B1nyBeDAlSOuMX0OMl7CLdZ8/PHHUBQlctkyvbxeb+R1znbllVcCAE6cONH1ARKRLn6/H8XFxbxXlA7szBodyJBRhgxERCI5EcZl9io4Ee7ya+xYOA47Fo7Dd/pmxXBknRveNws7Fo5r9/PeXA+2zB+DKfndu4fNlPw8bJk/hgs1CYDHfWvgPIvB3vVjZxrZe5AlnxNh7Cn90PQ5yHgJt1hTWVkJAF3eeQOBwBmvc7qsLO0bmGBQnmtCEyW6QCCA0tLSyL9N6hw7s0YHMmSUIQMRkUgOhHGR4wQc3Vis6ZOdgj7ZKRjRPzuGI+vciAHZ6JOd0uFjslJdKJw+DCtnDUeBzvEV9M/GqllXoXD6MF76LEHwuG8NnGcx2Lt+7Ewjew+y5HMgjM/3fWr6HGS8hDvfPiMjA8ePH8f777/fpecXFxdHXudsTU1NAIDzzjuv6wMkIl3S09Mxd+5c0cMwFXZmjQ5kyChDBiIikZrgwib/4Ji81uT8PDxedCAmrxXV9ob2ivqx4705GO/Nwf7KOqwtrsDTxRVtPm543yyMGJCNyUN7YVBueqyGSjHC4741cJ7FYO/6sTON7D3Ikq8JLky9YxbS0zv+RReihDuz5vLLL4eqqjhw4ADWrVun67nr1q3DF198AUVRMGTIkHM+f+jQIQDA+eefH5OxElHnWlpaUFNTg5aWFtFDMQ12Zo0OZMgoQwYisp6ySh9WbG9/UWPB+lIs21KG/ZV1ho9FgYo0xQ8Fardfy5vrQUG/+JxdU9A/u0uLKYNy03HPmAHtfv7Rafn49Y1eLtQkKB73rYHzLAZ714+daWTvQZZ8ClTU+WpNn4OMl3CLNdOnT498fPfdd+OFF16I6nn/93//h5/85CeRv99xxx1nfN7v92PXrl1QFAUDBw6MzWCJqFM+nw+FhYXw+Xyih2Ia7MwaHciQUYYMRGQdW8uqcPvy9zDxsR1YW3y43cftrDiFx4sO4MbHtuP25e9hW9nXho0pVQngNvdupCqxuSTG3LHtL4TE0rzr+P2UFfG4bw2cZzHYu37sTCN7D7LkS1UCeGHNk6bPQcZLuMWau+66C8OGDQOgXbZs+vTpGD16NFasWIHS0lKcPHkSTU1NOHnyJD7++GM8+eSTuO6663D77bejsbERiqIgPz8fd9111xmv+7e//Q319fUAgNGjR8c9F5FVeTwezJ8/Hx4PbwobLXZmjQ5kyChDBiKS36mGAH7+3C7MXv0hSsqrdT23pLwad63+APPX7cKphthfY7xBdeGF5svRoMbmnizjvTmYPDQvJq/Vnin5eRjn7WnoNigx8bhvDZxnMdi7fuxMI3sPsuRrUF24beY9ps9Bxku4e9bYbDZs2rQJ48aNwxdffAEAePfdd/Huu+9G9fz+/ftj48aNsNnOXId64YUX0LdvXwDA9773vdgOmojaZbPZkJmZKXoYpsLOrNGBDBllyEBEctt3zIdZq0pQ5fN363U2lh5F8cGTWDO7AN7c2H2TrUJBvZoUs9cDgAcnD8b7h052O3NbcjxJWDIpNvfYIfPhcd8aOM9isHf92JlG9h5kyadCQbon45yfVxOdLSH3kF69eqG4uBh33nknVFWN+s+PfvQjvP/+++jdu/c5r7lu3TocOnQIhw4diizayCQQCODpp5/GzTffjL59+8LtduOCCy7AqFGj8Mgjj+DEiROm2PapU6fwwgsv4N5778WoUaPQs2dPuFwueDweDBw4ENOnT8czzzyDYDAY9WuOHTsWiqLo+vP22293pQpqQ11dHZYvX466OuOv+y4LdmaNDmTIKEMGIpLXvmM+TH+yOGaLFlU+P6atKEZZZewuX5GMACYn7UEyYnfWTlaqC2tmFyAj2Rmz1wSAjGQn1swuQFZqbM4CIvPhcd8aOM9isHf92JlG9h5kyZeMADY8t9r0Och4CblYAwDZ2dl4+umnsXfvXvzqV7/C8OHD4XKd+Y2B0+nEd77zHfzyl7/Enj17sHbtWpx33nmCRixOWVkZRowYgRkzZuDVV1/F4cOH4ff7UVlZiffeew+//vWvMXjwYLzyyisJu+36+npMmjQJubm5uP322/HEE0/gvffew/HjxxEMBlFXV4eDBw9i/fr1+PGPf4xLLrkE27dvj3keij2Xy4X8/Pxz/v1S+9iZNTqQIaMMGYhITqcaApi1qgS1TdH/gk80apuCmLmyJGaXRAvBji9C5yMEe0xer5U314P1c0YixxObs3ZyPElYP2dkTM8qIvPhcd8aOM9isHf92JlG9h5kyReCHRdfOsT0Och4CXcZtLN5vV4sW7Ys8vfa2lrU19cjLS0NGRkZAkeWGL788ktMmDABR48eBQAoioIxY8Zg4MCBOH78ON544w00NTXh66+/xtSpU7FlyxaMHz8+4bZdX1+Pv/3tb2f8v5ycHAwfPhy5ubkIBoMoLS3FJ598AgAoLy/HhAkT8PLLL+PWW2+NesxTp05Fr169On1cXp6x1/q2kqSkJIwcOVL0MEyFnVmjAxkyypCBiOS0eNMeQy4DBmhn2CzZvAeF04d1+7WCsGNvOCcGozqXN9eDLfPHYMnmPdhYerTLrzMlPw9LJg3mGTXE475FcJ7FYO/6sTON7D3Iki8IOwbnD0dSUmwvf0vySfjFmrNlZGRwkeY0P/rRjyKLJX379sXGjRsxdOjQyOdPnDiB6dOn480330QwGMRtt92GAwcOxOR6j0ZsOysrCzNmzMBdd911xmu1evvttzFjxgwcOnQIoVAId955Jz777DPk5ET3Te78+fMxduxYXTmpe5qbm1FcXIyRI0fC7XaLHo4psDNrdCBDRhkyEJF8tpZVYdPHXV+ciMbG0qOYkp+H8V59Cy1llT6sLa6I/N2FEC5zVGFvKAcBOLBgfSlG9M/GlPxeGJSb3u1xZqW6UDh9GKbk52H5WwdRcqg66ucW9M/GvOsGYpy3Z7fHQXLgcd8aOM9isHf92JlG9h5kyedCCB+9/w56jBtt6hxkvIS9DBp17pVXXsGOHTsAaKcFbt68+ZwFjvPPPx8bN27EgAEDAADV1dVnnKmUKNt2uVx44IEHUF5ejscee6zNhRoAuPbaa7F161Z4PNolGHw+Hx577LFu5yHjhEIhlJeXIxQKiR6KabAza3QgQ0YZMhCRfJYXHYzPdt6Kfjtby6pw+/L3MPGxHVhbfDjy/+1QkWurgx0qAGBnxSk8XnQANz62Hbcvfw/byr6OyVjHe3Pw/Jyr8dqCMfinke3fv3N43yz8bNxAvLZgDJ6fczUXaugMPO5bA+dZDPauHzvTyN6DLPnsUFH51RHT5yDjcbHGxP785z9HPp45cyYuv/zyNh+XmpqKhx56KPL3FStWdPvNIdbbzs7OxoMPPhhZhOlIv379MHfu3Mjf//73v+sZOsVZWloaZs2ahbS0NNFDMQ12Zo0OZMgoQwYikktZpQ8l5dGfPdIdJYeqsb+y45vEnmoI4OfP7cLs1R+2Oa4mOLEl4EUTnOe+fnk17lr9Aeav2xWze+QMyk3HPWMGtPv5R6fl49c3emNyVg/Jh8d9a+A8i8He9WNnGtl7kCVfE5y4+fvTTZ+DjMfFGpOqr6/Hm2++Gfn7XXfd1eHjf/CDH0TeEKqrq7F9+3ZTbrvVNddcE/m4vLy8269HxgmHw6isrEQ4HBY9FNNgZ9boQIaMMmQgIjkcqW7EkerGMy4xFg8dbW/fMR8mFm7v8JJsNrQgW2mEDS3tPmZj6VFMLNyOskpft8ZK1F087lsD51kM9q4fO9PI3oMs+WxowcnjVabPQcZL6MWaxsZGrFixArfddhsuvvhiZGVlweFwwG63d/rH4TDd7Xh0effdd+H3azdNTU1NxVVXXdXh491uN66++urI37du3WrKbbdSFCXyMd/oEltdXR1WrFiBurqOf/OUvsXOrNGBDBllyEBEchi9bBtGL9t2xiXG4uHpdhZr9h3zYfqTxajy+Tt8fooSxBT3XqQowQ4fV+XzY9qKYi7YkFA87lsD51kM9q4fO9PI3oMs+VKUIDau+6vpc5DxEnZF44UXXsDcuXNRU1MDAFBVVeyAEsy+ffsiH19++eVRLU5deeWVeP311895vpm23Wr37t2Rj/v06RP188rKyrB3714cOXIEwWAQ2dnZuOSSSzB69Gjk5Oi7QSxFJyMjA/fddx+SkpJED8U02Jk1OpAhowwZiIi6S1XVM36R6FRDALNWlaC2qeMFGACoV114pikfAdg7fWxtUxAzV5Zgy/wxyEp1dWvMRF3B4741cJ7FYO/6sTON7D3Ikq9edeHOe/4FGRkZoodCCS4hF2ueeeYZzJgxA8CZizSt3wSdvXDT3v+X2f79+yMf9+3b/k1CT3fhhRdGPi4rKzPltgGgpaUFTz/9dOTv119/fdTPnTdvXpv/X1EUTJo0CQ899BCGDh3arfHRmRRFgdvtFj0MU2Fn1uhAhowyZCAi6q6GQBhpSd9+W7V4055Oz6j5loKAjm/Jqnx+LNm8B4XTh+kcJVH38bhvDZxnMdi7fuxMI3sP8uRTkJTkPuMXfIjaknCXQTt58iTmzp0LVVXhcDjw8MMPo6qqCj/72c8iizEtLS3w+XzYvXs3/vznP+OKK66AqqpIS0vDs88+i5aWFukvjXXy5MnIx9GeEZKbmxv5uLq66zdeFbltAHj88ccjCz42m63dBRg9VFXFpk2bMGLECPzv//5vt1+PvuXz+fDYY4/B5+NlO6LFzqzRgQwZZchARNRdgdC395vZWlbV4T1qzpaCAH6Y9AlSEIj6ORtLj2JrWZWuMRLFgpmP+32yU1C+9JY2//TJThE9vIRi5nk2M/auHzvTyN6DLPlSEMDzq1eYPgcZL+EWa1asWIGGhgYoioI//OEP+PWvf40ePXqc87i0tDQMHjwY8+bNw0cffYT//M//RH19Pe6880785S9/ETDy+Kqvr498nJycHNVzTn/c6c8307b37NmD3/zmN5G/33333Rg8eHCHz1EUBddddx0effRRFBcXo7q6GsFgENXV1dixYwd+8YtfIDU1FQDg9/sxZ84cvPDCC10eY1vcbjfS0tIAaPfYqampiSw++nw+BALaN+hNTU1oaGgAAIRCochlAAGgtrYWwaB2OY3GxkY0NjYCAILBIGprayOPq6mpQSgUAgA0NDSgqakJABAIBCIHBVVVUVNTE1nUrK+vR3Nzc6SD1mtotrS0oKamBi0t2g8h6urqIvcram5ujsxlR5lUVcXVV18Nt9stTSaj5ykQCGDs2LFISkqSJpPeeXK5XCgoKIDL5ZIm09nzFAwGcc0118Dtdps2kxXmiZnkzvTZl8fRb9HfMXDRZgz5zUvot+jv6Lfo7xj8m5dwqKrW8EyBgB/J3/yQXoGKNMUPBdpYG+vrDZ2n5iYtkx1hpCrfngWSpvjjMk9+fzOSoY3HhhakKX7gm+wN9XW6MyUhiKRvXq+tTHZoY3AjCBe0fA6ET1sk0fq3ffO45NMe50S43XlKRgBqOBiZp7+8ua/NTCkIwAGtLxdCcH8z1hAU7Av1iFwGLVXxw/7N4zrK9NSbe7o1Tx1lMvo9QvS+50Ko3X3P6Pc9f7OWqa19Lx7ve/7mpsi+Z49k19TX+TrN5Ha7UVBQELkMttn2PTMdn0RmcrvduOaaayLbkSGTGeYpHA5j1KhRcLvd0mQyep5CoRDGjh0Lp9MpTaauzFNzczPGjh0Lt9stTabT58nv9+Paa6+F2+02RabgN5lO/3rPjhY4lRCGjbhG2nmSMZMoCbdY8+abbwIAPB4Pfv7zn0f1HEVRcN999+G3v/0tVFXF/PnzceDAASOHKVzrTgog8kOyzpx+fcfWfwxm2nZNTQ2mTp0a+cd28cUX43/+5386fd6LL76IoqIiLFiwACNGjEBWVhYcDgeysrJw7bXX4n/+53+wc+dODBgwAID2pjBv3rwz3ky6a+TIkfjhD38IADh+/DgKCwsjbyArV67E3r17AQBvvfUWNm/eDAD48ssvUVhYGHmNJ554IrJf/+Mf/8A//vEPAMCBAwfwxBNPRB5XWFiIL7/8EgCwefNmvPXWWwCAvXv3YuXKlQC0N7fCwkIcP3480lFxcTEAYNeuXXjmmWcAaG9ghYWFkTfMZ555Brt27QIAFBcX48UXX+w003vvvYdDhw7B5XJJk8noeVq7di3y8/Ohqqo0mfTOU3NzM15//fXI+40Mmc6epxdeeAHhcBgul8u0mawwT8wkd6Z3tmpj7WGrx23ub++HNyVpL746XG54ps/37sYNSZ8DAFKVAG5z70aqon3j8I/NLxo6TyVvFwEAetl8mJK0N/K429y7cbzyqOHztKd0J65zaePJVJpxm3s3XN8sUvz9xWd1Z7rK+SWucn7ZbqYeNu3rx1GuCuQ7tXz97Kdwc5J2trYLYdzm3o1MRXs/u851AJc5tLNXLrafaHeebkj6HJ/t+QQA8Lc33oKnamebmW5OKkM/+ykAQL7zKEa5KgAA2bYmFLi+QuibxZopSXvRy+brNNMlJ3bg3U8+6/I8dZTJ6PcI0fveZY6qdvc9o9/3dpW8B6Dtfa+m+kSXM0U7T7tK3ovse2e/7214dnWnmVwuF15//XV8/fXXXZ4nkfuemY5PIjO5XC6Ew+HILzDKkMkM8/Taa6+huroaLpdLmkxGz9OmTZuQn5+P2tpaaTJ1ZZ6eeOIJ5Ofnw+VySZPp9Hl66qmnkJaWBpfLZYpM5Qe0r89O/3qvh60e33fvxcWXDpF2nmTMJIqiJtiNXvLy8lBVVYXvfve7ePXVVyP//1/+5V/w5z//GYqiIBAIwG4/9yacgUAAF1xwAWpqarBo0SL8/ve/j+fQ4+qWW27BK6+8AgC47777sHTp0k6f8+qrr+Lmm28GoJ2Z1LoSaYZtNzc348Ybb8T27dsBaIt5O3bswBVXXKFz9O3bu3cvhg4dGlnhfeSRR/DLX/6yW6+5Z88eDBkyBG63Gw6HA8XFxfB6vairq0NGRgYURYHP54Pb7YbL5UJTUxNaWlqQmpqKUCiE+vp6ZGZmAtBWqVNSUuB0OiMr1CkpKQgGg2hsbIzcpKympgZpaWlwOBxoaGiAzWZDcnIyAoEAmpub4fF4oKoqamtrkZ6eDrvdjvr6ejgcDrjdbvj9fgQCAaSnp0cuOejxeGCz2VBXVweXy4WkpKTIb7KkpaUhHA63m6m6uhrvvPMOrr/+ejidTikyGT1PNTU1+OijjzBmzJjIuM2eSe88NTQ04I033sD111+P1NRUKTKdPU9ff/01SkpKMGHCBCiKYspMVpgnZpI705GT9fju/yuBHS1IVoKoV7VfLklV/Pjbggnon5NhaKYDladw62NFaIILClSkKgE0qC6oUPDavVehX06GYfP01alG3PCn92FHGG4lhIZvsqcpfmz+xfXo39Nj6Dx9cawakwq3owlO2NCCFCWIetUFQMGWe4djQG6Wrkyff6X9oHvRps9QWnHinExNqhNh2OBGEC3f3CfGgTBcCKMRLmhnNwTQqDrRAhuSEUT4m8c5EYYD4TbnaWTvZPz+h8PgciVhxbZ9+L8PjrSZKQUBBGBHCHa4EIINKprhhBsBfMf5FT4I9kEADqQqfjSrDoRhj5xV44ezzXn63lUDcc/Yi5GdpOqap+ONLRi/7I02M21fOB6ZzrCh7xEi972vG8KYsOx12KGeM087Fo5HhiNk6PvesdpmXP/H4jb3vb/96w3o1yPd0Pe9L46exK1/3IFmOM9533t13ndwUd55HWZqamrCP/7xD4wfPz7ydUAivJfLeHwSmUlVVbz55psoKChAz549pchkhnk6ceIEiouLMWHCBNjtdikyGT1PdXV12LlzJ6699lqEQiEpMnVlnk6cOIHS0lJcd911CAQCUmQ6fZ6qqqrw4YcfYvz48ZEzIxI504nGFox/7J0zvt6zowUepQn/NiIFt944Qcp5kuXfU319Pb766isMGTIErT799NNOr+oUSwm3WON2uxEMBjF79uwz7h3yr//6r3jsscegKApqa2sjl5Q62w9+8AO8/PLLyM/Px0cffRSvYcfdtGnT8PzzzwMAfv7zn0e18vfSSy/hBz/4AQDtHjLHjh0zxbZDoRB+8IMfYNOmTQC0fWTLli247rrrujD6jv3TP/0T1q5dCwCYMGEC3njjjW69XutiTat4/wNPBA0NDdi8eTMmTZoUudwcdYydWaMDGTLKkIGs7Uh1I0Yv29bm53YsHGf4fQxEbl/W7Mu2lOHxovidYf+zcQPx521d354bQYxyVeDdQF80w9ml1yhfeouux8s694m+bRm2z+O+NXCexWDv+rEzjew9mC1fe8daN4K477IG3P6DqabIYWWif5briNuWomS32xEMBuF0nvnNisfjiXx89OhRXHLJJW0+/7zzzgOAyClVsmrNCWirzNGorKyMfJydnW2Kbbe0tGDWrFmRhRqHw4EXXnjBkIUaALj++usjizX79u0zZBtWk5qaiunTp4sehqmwM2t0IENGGTIQkVwm5+fFdbFm8tBe3VqsaYYTWwMXxXBERMbhcd8aOM9isHf92JlG9h7Mlq9PdoruX6QhOl3C3bPm/PPPB4DI9eZa9e7dO/Lx7t270Z6KCu16gF29xJdZDBo0KPJxa+bOHD58OPKx1+s1xbbnzp0buRahzWbDX//6V9x6661RP1+vCy64IPLxiRMnDNuOlYRCIZSXl0cuL0edY2fW6ECGjDJkICK5eHM9KOjX9V9K0qOgfzYG5aZ36zXsaEGuzQc7WmI0KqL2tf4Aqa0/0ZzVw+O+NXCexWDv+rEzjew9yJJPlhxkvIRbrPF6vVBVFQcPHjzj/+fn50c+fumll9p87rFjx/Duu+8CAHr06GHYGBPBpZdeGvl49+7dUf1jP/2ycKc/P1G3/Ytf/OKMS+GtWLECd9xxh46R6tfQ0BD5mKclxkZ9fT3WrFmD+vp60UMxDXZmjQ5kyChDBiKSz9yxA+KynXnXDez2ayQrQdyU9BmSlWAMRkRkLB73rYHzLAZ714+daWTvQZZ8suQg4yXcYs3IkSMBaNeHC4fDkf//ne98B71794aqqli/fn3kbItWdXV1mDVrFhoaGqAoCq699tq4jjveRo0ahaQk7WaQDQ0N+PDDDzt8vN/vR3FxceTv48ePT+ht33///Xjssccif3/00Ufxk5/8pGsD1mHXrl2Rj/Py8gzfnhVkZmZi8eLFkZuOUefYmTU6kCGjDBmISD7jvTmYPNTYr+Om5OdhnLdnt1+nXk3CqqbhkZu8EyUyHvetgfMsBnvXj51pZO9Blnyy5CDjJdxizQ033ABAW3FsPUsGABRFwYIFCwAAqqpixowZuOKKK3DnnXfie9/7Hvr27XvGzeD/+Z//Oa7jjre0tDRMmDAh8vfVq1d3+PiXXnopcmm47OxsjBkzJmG3/fvf/x5/+MMfIn9/6KGHInNvpEAgELlfDQCMHTvW8G0SERERUew9OHkwcjzGLIDkeJKwZFL8bjJKRERERETWkHCLNddccw3y8vKgqirWrFlzxufmz5+PG264AaqqAtDOvlm3bh02bdqE2trayP//t3/7N4waNSruY4+3e++9N/Lx6tWrsWfPnjYf19jYiAceeCDy93vuuQcOhyMht11YWIjf/va3kb8vXLgQ//7v/97lceo5vfBXv/oVDh06FPn7j3/84y5vl75VW1uLpUuXora2VvRQTIOdWaMDGTLKkIGI5JSV6sKa2QXISHbG9HUzkp1YM7sAWamuyP/bsXAcdiwch+/0zdL9eqmKHz9y70Kq4tf93OF9s7Bj4TjdzyPqKh73rYHzLAZ714+daWTvQZZ8suQg4yXcYo2iKCgvL0dTUxOeeOKJMz5nt9uxefNmLFq0CKmpqVBV9Yw/vXr1wsqVK/G73/1O0Ojj65ZbbsHo0aMBaJcau/XWW/HJJ5+c8ZiTJ09i6tSp+OKLLwBoZ7bcd999bb5eeXk5FEWJ/OnojJlYbxsAVq5ciV/84heRv//sZz/Dww8/3O7jo/H9738fd999N7Zv346WlrZv3Hrw4EHcdttt+NOf/hT5f9OmTYtcko+6JyUlBVOnTkVKSuc3LSUNO7NGBzJklCEDEcnLm+vB+jkjY3aGTY4nCevnjIQ313PG/++TnYI+2SkY0T9b92s2qw68HeiHZlX/L1KNGJAd1U3hiWKFx31r4DyLwd71Y2ca2XuQJZ8sOch43Tu9wiAOh6Pdsy9cLhf+8Ic/YMmSJSgpKcHRo0dhs9kwYMAADBs2DIqixHm0Yj377LMoKCjAsWPHUF5ejvz8fFx33XUYOHAgjh8/jjfeeAONjY0AtF6ff/75mF0fMZbb3r17N376059Gzo5qXYyL9nJ28+fPx8UXX3zO/w8EAli5ciVWrlyJjIwMsAkD2gABAABJREFUDB06FH369EF6ejrq6+uxd+9elJaWnrGQU1BQgKeeekpnG9Qep9MJr9crehimws6s0YEMGWXIQERy8+Z6sGX+GCzZvAcbS492+XWm5OdhyaTBZ5xRc7bJ+Xl4vOiArtcNw47DLfrPyAGAyUN7del5RF3F4741cJ7FYO/6sTON7D3Ikk+WHGS8hFysiYbL5cK1114rehjC9e7dG1u3bsUdd9yB0tJSqKqKoqIiFBUVnfG4Hj16YNWqVWfcayaRtn3y5MkzFkwaGhrw+OOPRz2WH/7wh20u1pyutrYW27dvb/fzTqcT9957L5YuXQq32x31tqljjY2N+Mc//oHvfve7/A2CKLEza3QgQ0YZMhCR/LJSXSicPgxT8vOw/K2DKDlUHfVzC/pnY951AzHO27PTx3pzPSjol42S8uhfPwlBXOX8Eh8Ee8OP6C/ZVtA/G4Ny06N+PFEs8LhvDZxnMdi7fuxMI3sPsuSTJQcZz7SLNfQtr9eL999/H+vWrcNzzz2HPXv2oKqqCpmZmRgwYAC+//3v46677sL5558v1baj8fzzz+Pdd9/Fe++9hw8++ADHjh3DyZMncerUKbjdbmRnZ+Pyyy/H6NGjMWPGDFxwwQVCxklERERExhrvzcF4bw72V9ZhbXEFni6uaPNxw/tmYcSAbEwe2kv3gsjcsQNQsjr6xZqumnfdQMO3QURERERE8cXFGkm4XC7MmDEDM2bM6PJr9OvXL3IZsnhve+zYsV3admd69uyJqVOnYurUqTF/bYpO63U5KXrszBodyJBRhgxEZD2DctNxz5gB7S7WPDotv8v3ghnvzcHkoXnY9HF0l1zzw4m3g/11bWNKfl5UZ/oQxRqP+9bAeRaDvevHzjSy9yBLPllykPFsogdARHILBoMoKytDMBgUPRTTYGfW6ECGjDJkICKKtQcnD0aOJymqx9oRxoW2U7AjHNXjczxJWDJpcHeGR9RlPO5bA+dZDPauHzvTyN6DLPlkyUHGE3JmzUMPPRSX7TzwwANx2Q4Rta+xsREbNmzAvHnzkJGRIXo4psDOrNGBDBllyEBEFGtZqS6smV2AaSuKUdvU8TfkbiWEa13l2Oi/DA2qvcPHZiQ7sWZ2AbJSXbEcLlHUeNy3Bs6zGOxdP3amkb0HWfLJkoOMJ2SxZsmSJVAUxfDtcLGGSLyMjAwsWrRI9DBMhZ1ZowMZMsqQgYjICN5cD9bPGYmZK0tQ5fO3+7gGNQnPNg/r9PVyPElYM7sA3lxPLIdJpAuP+9bAeRaDvevHzjSy9yBLPllykPGEXQZNVVVD/xAREREREYnizfVgy/wxmJKf163XmZKfhy3zx3ChhoiIiIhIckLOrFm8eLGIzRKRADU1NSgsLMT8+fORmZkpejimwM6s0YEMGWXIQERkpKxUFwqnD8OU/Dwsf+sgSg5Vn/H5NMWP29y78ULz5ahXz7zPTUH/bMy7biDGeXvGc8hE7eJx3xo4z2Kwd/3YmUb2HmTJJ0sOMh4Xa4jIUGlpaZg5cybS0tJED8U02Jk1OpAhowwZiIjiYbw3B+O9OdhfWYe1xRV4urgCANCkOvGq/xI0qU4AwPC+WRgxIBuTh/bCoNx0kUMmOgeP+9bAeRaDvevHzjSy9yBLPllykPGELNYQkXU4HA7069dP9DBMhZ1ZowMZMsqQgYgongblpuOeMQMiizVh2FDZ8u3lzR6dlo8+2SmihkfUIR73rYHzLAZ714+daWTvQZZ8suQg4wm7Zw0RWUNDQwPWrVuHhoYG0UMxDXZmjQ5kyChDBiIikdwIYrzrC7gRFD0Uok7xuG8NnGcx2Lt+7Ewjew+y5JMlBxmPizVEZCibzYbMzEzYbHy7iRY7s0YHMmSUIQMRkUgtUFCvutACRfRQiDrF4741cJ7FYO/6sTON7D3Ikk+WHGQ8XgaNiAyVnJyMiRMnih6GqbAza3QgQ0YZMhARiRSAAyXBC0UPgygqPO5bA+dZDPauHzvTyN6DLPlkyUHG43IeERkqEAigtLQUgUBA9FBMg51ZowMZMsqQgYjir6zShxXbD7T7+QXrS7FsSxn2V9bFcVRiOBDGRfYTcCAseihEneJx3xo4z2Kwd/3YmUb2HmTJJ0sOMh4Xa4jIUM3NzSgqKkJzc7PooZgGO7NGBzJklCEDEcXP1rIq3L78PUx8bAfWFh9u93E7K07h8aIDuPGx7bh9+XvYVvZ1HEcZXy6Eke84ChcXa8gEeNy3Bs6zGOxdP3amkb0HWfLJkoOMx8ugEZGhPB4PFixYIHoYpsLOrNGBDBllyEBExjvVEMDiTXuw6eOjup9bUl6NktXVmJKfhyWTBiMr1WXACMVphAsv+q8QPQyKkz7ZKShfeovoYXQZj/vWwHkWg73rx840svcgSz5ZcpDxeGYNERlKVVU0NzdDVVXRQzENdmaNDmTIKEMGIjLWvmM+TCzc3qWFmtNtLD2KiYXbUVbpi9HIEoUKF0IA+D5KiY/HfWvgPIvB3vVjZxrZe5Alnyw5yHhcrCEiQ9XW1uLhhx9GbW2t6KGYBjuzRgcyZJQhAxEZZ98xH6Y/WYwqnz8mr1fl82PaimKpFmzSlADuTC5FmsLrl1Pi43HfGjjPYrB3/diZRvYeZMknSw4yHhdriMhQ6enpmDNnDtLT00UPxTTYmTU6kCGjDBmIyBinGgKYtaoEtU3BmL5ubVMQM1eW4FSDHIsbjaoTG5svQ6PqFD0Uok7xuG8NnGcx2Lt+7Ewjew+y5JMlBxmPizVEZCi73Y7c3FzY7XbRQzENdmaNDmTIKEMGIjLG4k17YnZGzdmqfH4s2bzHkNeOtxbYUK2moIXflpEJ8LhvDZxnMdi7fuxMI3sPsuSTJQcZj98VEJGh6uvrsXr1atTX14seimmwM2t0IENGGTIQUextLavq9j1qOrOx9Ci2llUZuo14SEYQE11lSEZsz0AiMgKP+9bAeRaDvevHzjSy9yBLPllykPG4WENEhnI4HOjXrx8cDofooZgGO7NGBzJklCEDEcXe8qKD8dnOW/HZjpHCUFDZko4wFNFDIeoUj/vWwHkWg73rx840svcgSz5ZcpDxuIcQkaHcbjfGjh0rehimws6s0YEMGWXIQESxVVbpQ0l5dVy2VXKoGvsr6zAo17zX/g7AgdJQL9HDIIoKj/vWwHkWg73rx840svcgSz5ZcpDxEv7Mmg8++AALFizA8OHDkZOTA5fL1eYqZE1NDV555RW88sor+OSTTwSMlIja4vf7UVxcDL/fmOvWy4idWaMDGTLKkIGIYuNIdSOOVDdibXFFXLe7trgCR6ob47rNWHIijMvsVXAiLHooRJ3icd8aOM9isHf92JlG9h5kySdLDjJewi7WHD9+HLfeeitGjhyJP/3pT9i1axeOHz+OUCgEVVXPeXxqaip++tOfYtKkSfj+978vYMRE1JZAIIDS0lIEAgHRQzENdmaNDmTIKEMGIoqN0cu2YfSybVhbfDiu2326uAKjl22L6zZjyYEwLnKcgIOLNWQCPO5bA+dZDPauHzvTyN6DLPlkyUHGS8jLoB09ehSjRo3CkSNH2lyYaYvT6cTcuXOxePFiHDp0CMXFxRg5cqTBIyWizqSnp2Pu3Lmih2Eq7MwaHciQUYYMREQiNcGFTf7BoodBFBUe962B8ywGe9ePnWlk70GWfLLkIOMl5Jk1P/zhD3H48GGoqorLLrsMzz33HKqqqnDvvfd2+Lzp06dHPn7ttdeMHiYRRaGlpQU1NTVoaWkRPRTTYGfW6ECGjDJkICISSYGKNMUPBdH9ghqRSDzuWwPnWQz2rh8708jegyz5ZMlBxku4xZoNGzaguLgYiqJg9OjRKCkpwbRp09CjRw8oitLhcy+++GL06qXdoPP999+Px3CJqBM+nw+FhYXw+Xyih2Ia7MwaHciQUYYMREQipSoB3ObejVSFl8SgxMfjvjVwnsVg7/qxM43sPciST5YcZLyEW6x5/vnnAQAOhwNr1qxBSkqKrudfccUVUFUV+/fvN2J4RKSTx+PB/Pnz4fF4RA/FNNiZNTqQIaMMGYiIRGpQXXih+XI0qC7RQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RLunjWtZ9VcffXV6Nevn+7n9+zZEwBw/PjxGI+MiLrCZrMhMzNT9DBMhZ1ZowMZMsqQgYhIJBUK6tUk0cMgigqP+9bAeRaDvevHzjSy9yBLPllykPES7syar7/+GgBwySWXdOn5brcbAOD3+2M2JiLqurq6Oixfvhx1dXWih2Ia7MwaHciQUYYMRBQbOxaOw46F4/Cdvllx3e7wvlnYsXBcXLcZS8kIYHLSHiSDl0GjxMfjvjVwnsVg7/qxM43sPciST5YcZLyEW6yx2bQhdfWGS9XV1QDA1UqiBOFyuZCfnw+Xi5f3iBY7s0YHMmSUIQMRxUaf7BT0yU7BiP7Zcd3uiAHZ6JOt77LJiSQEO74InY8Q7KKHQtQpHvetgfMsBnvXj51pZO9Blnyy5CDjJdxl0Hr06IGGhgaUl5d36fkfffQRACAvLy+GoyKirkpKSsLIkSNFD8NU2Jk1OpAhowwZiCi2Jufn4fGiA/Hb3tBecduWEYKwY284R/QwiKLC4741cJ7FYO/6sTON7D3Ikk+WHGS8hDuzZvjw4VBVFcXFxfD5fLqeW1JSggMHDkBRFFxzzTUGjZCI9GhubkZRURGam5tFD8U02Jk1OpAhowwZiCi2vLkeFPSLz9k1Bf2zMSg3PS7bMooLIeQ7voILIdFDIeoUj/vWwHkWg73rx840svcgSz5ZcpDxEm6xZtKkSQCApqYm/OEPf4j6ecFgEPPnz4/8ferUqbEeGhF1QSgUQnl5OUIh/hAiWuzMGh3IkFGGDEQUe3PHDojLduZdNzAu2zGSHSpybXWwQxU9FEvok52C8qW3tPnHzJfTixce962B8ywGe9ePnWlk70GWfLLkIOMl3GLN9OnTMWCA9g3eI488gj/+8Y+dPuf48eOYNGkS3n//fSiKgu985zu4/vrrjR4qEUUhLS0Ns2bNQlpamuihmAY7s0YHMmSUIQMRxd54bw4mDzX2ksRT8vMwztvT0G3EQxOc2BLwoglO0UMh6hSP+9bAeRaDvevHzjSy9yBLPllykPESbrHG4XDgL3/5CxwOB1RVxS9+8QtcddVV+O///m8cPHgw8rhNmzZhxYoVmDFjBvr374/XX38dAJCSkoKnnnpK1PCJ6CzhcBiVlZUIh8Oih2Ia7MwaHciQUYYMRGSMBycPRo4nyZDXzvEkYcmkwYa8drzZ0IJspRE2tIgeClGneNy3Bs6zGOxdP3amkb0HWfLJkoOMl3CLNQAwduxYrF27Fm63G6qq4qOPPsLChQuxZcsWKIoCAPje976He++9F8888wwaGxuhqirS0tKwbt06XH755YITEFGruro6rFixAnV1daKHYhrszBodyJBRhgxEZIysVBfWzC5ARnJszxjJSHZizewCZKW6Yvq6oqQoQUxx70WKEhQ9FKJO8bhvDZxnMdi7fuxMI3sPsuSTJQcZLyEXawDgtttuQ0lJCcaNGwdVVc/4A+Ccv48dOxbvvfcebrnlFpHDJqKzZGRk4L777kNGRobooZgGO7NGBzJklCEDERnHm+vB+jkjY3aGTY4nCevnjIQ31xOT10sE9aoLzzTlo16VY/GJ5MbjvjVwnsVg7/qxM43sPciST5YcZDyH6AF0ZPDgwXjzzTfxySef4JVXXsF7772Ho0ePora2FqmpqcjJycGIESNw66234qqrrhI9XCJqg6IocLvdoodhKuzMGh3IkFGGDERWVFbpw9riinY/v2B9KUb0z8aU/F4YlJverW15cz3YMn8Mlmzeg42lR7v8OlPy87Bk0mBpzqj5loJAYn9LRhTB4741cJ7FYO/6sTON7D3Ikk+WHGS8hD2z5nRXXHEFFi1ahI0bN+KDDz7AZ599hl27dmHLli148MEHuVBDlMB8Ph8ee+wx+Hw+0UMxDXZmjQ5kyChDBiIr2VpWhduXv4eJj+3A2uLD7T5uZ8UpPF50ADc+th23L38P28q+7tZ2s1JdKJw+DCtnDUdB/2xdzy3on41Vs65C4fRhEi7UACkI4IdJnyAFAdFDIeoUj/vWwHkWg73rx840svcgSz5ZcpDx+GtcRGQot9uNsWPH8jcIdGBn1uhAhowyZCCyglMNASzetAebPtZ/ZktJeTVKVlfH5MyW8d4cjPfmYH9lHdYWV+Dpds7uGd43CyMGZGPy0O6f2ZPoArCjNJSHAOyih0LUKR73rYHzLAZ714+daWTvQZZ8suQg43GxhogM5XK5kJ+fL3oYpsLOrNGBDBllyEAku33HfJi1qgRVPn+3Xmdj6VEUHzyJNbMLun3PmEG56bhnzIB2F2senZaPPtkp3dqGWYRgxxfh80UPgygqPO5bA+dZDPauHzvTyN6DLPlkyUHGM8Vl0IjIvJqamrBlyxY0NTWJHoppsDNrdCBDRhkyEMls3zEfpj9Z3O2FmlZVPj+mrShGWSUv3xArLoRQ4DwMF0Kih0LUKR73rYHzLAZ714+daWTvQZZ8suQg4yX8mTUtLS0oKyvDoUOH4PP5EAwGo37ujBkzDBwZEUWjpaUFNTU1aGlpET0U02Bn1uhAhowyZCCS1amGAGatKkFtU/RfO0ejtimImStLsGX+GCnvIRNvNqhIUwKwQRU9FKJO8bhvDZxnMdi7fuxMI3sPsuSTJQcZL2EXayoqKvC73/0OL774Iurq6nQ/X1EULtYQJYDU1FRMnz5d9DBMhZ1ZowMZMsqQgcQ6Ut2I0cu2tfm5HQvHWeZSWEZYvGlPzM6oOVuVz48lm/egcPowQ17fSprhxNbARaKHQRQVHvetgfMsBnvXj51pZO9Blnyy5CDjJeRl0DZu3IjBgwdj1apV8Pl8UFW1S3+ISLxQKITy8nKEQry8R7TYmTU6kCGjDBmIZLS1rAqbPj5q6DY2lh7F1rIqQ7dhBXa0INfmgx38LUtKfDzuWwPnWQz2rh8708jegyz5ZMlBxku4xZqysjJMmzYNjY2NkQWXPn364KabbsKdd96JmTNnRvWHZ9UQJYb6+nqsWbMG9fX1oodiGuzMGh3IkFGGDEQyWl50MD7beSs+25FZshLETUmfIVmJ7eXqiIzA4741cJ7FYO/6sTON7D3Ikk+WHGS8hLsM2tKlSxEIBKAoCrxeL/73f/8Xo0aNEj0sIuqizMxMLF68WPQwTIWdWaMDGTLKkIFINmWVPpSUV8dlWyWHqrG/sg6DctPjsj0Z1atJWNU0XPQwiKLC4741cJ7FYO/6sTON7D3Ikk+WHGS8hDuzZts27brlKSkpeP3117lQQ0RERETUiSPVjThS3Yi1xRVx3e7a4gocqW6M6zaJiIiIiIhklHCLNV9//TUURcH111+PvLw80cMhom6qra3F0qVLUVtbK3oopsHOrNGBDBllyEAki9HLtmH0sm1YW3w4rtt9urgCo5dti+s2ZZKq+PEj9y6kKn7RQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RJusaZHjx4AgJycHMEjIaJYSElJwdSpU5GSkiJ6KKbBzqzRgQwZZchAJEpZpQ8rth9o9/ML1pdi2ZYy7K+si+OoKN6aVQfeDvRDs5pwV6cmOgeP+9bAeRaDvevHzjSy9yBLPllykPES7ruCSy65BF999RWOHTsmeihEFANOpxNer1f0MEyFnVmjAxkyypCBKN62llVhedHBTu8rs7PiFHZWnMLjRQdQ0C8b88YOxDhvzziNkuIlDDsOt2SJHgZRVHjctwbOsxjsXT92ppG9B1nyyZKDjJdwZ9bMnDkTqqpi+/btaGhoED0cIuqmxsZGbNiwAY2NvJ59tNiZNTqQIaMMGYji5VRDAD9/bhdmr/6w04Was5WUV+Ou1R9g/rpdONUQMGiEJEISgrjWeQhJCIoeClGneNy3Bs6zGOxdP3amkb0HWfLJkoOMl3CLNdOnT4fX64XP58N9990nejhERERERN2y75gPEwu3Y9PHR7v1OhtLj2Ji4XaUVfpiNDIiIiIiIiJKFAm3WON0OrFp0yb06tULTzzxBO6++26cOHFC9LCIqIt4XU792Jk1OpAhowwZiIy275gP058sRpUvNjeQr/L5MW1FMRdsJOGHE28H+8MPp+ihEHWKx31r4DyLwd71Y2ca2XuQJZ8sOch4CXfPGgC46KKLsHPnTsyZMwerVq3Cc889h9GjR2Pw4MHIyMiAoihRvc4DDzxg8EiJqDPBYBAHDhzAwIED4XTyBxHRYGfW6ECGjDJkIDLSqYYAZq0qQW1TbC9xVdsUxMyVJdgyfwyyUl0AgB0LxwEAFqwvxc6KUzHdXkeG983Co9Py47Y92dgRRi+bD1+1eBCGXfRwiDrE4741cJ7FYO/6sTON7D3Ikk+WHGS8hDuzptXnn3+O2tpaAEBzczPeeOMNFBYW4qGHHsKDDz4Y1R8iEo/X5dSPnVmjAxkyypCByEiLN+2J2Rk1Z6vy+bFk857I3/tkp6BPdgpG9M82ZHvtGTEgG32y+RuCXeVWQrjWVQ63EhI9FKJO8bhvDZxnMdi7fuxMI3sPsuSTJQcZLyHPrFm9ejV++tOfoqWlBYqiQFVVqKqq6zWiPfuGiIyVkZGBRYsWiR6GqbAza3QgQ0YZMhAZZWtZVbfvUdOZjaVHMSU/D+O9OZH/Nzk/D48XHTB0u6ebPLRX3LYlowY1Cc82DxM9DKKo8LhvDZxnMdi7fuxMI3sPsuSTJQcZL+EWa4qLi3H33XdHFmfsdjtGjRqFyy+/HFlZWXA4Em7IRERERERnWF50MD7beevgGYs13lwPCvplo6S82vBtF/TPxqDcdMO3Q0REREREZAUJt/LxyCOPQFVVKIqCa6+9Fk8//TQuvPBC0cMioi6qqalBYWEh5s+fj8zMTNHDMQV2Zo0OZMgoQwYiI5RV+uKyWAIAJYeqsb+y7oxFk7ljB6BktfHbn3fdQMO3Ibs0xY/b3LvxQvPlqFeTRA8nLvpkp6B86S2ih0FdwOO+NXCexWDv+rEzjew9yJJPlhxkvIS7Z83bb78NAMjMzMSmTZu4UENkcmlpaZg5cybS0tJED8U02Jk1OpAhowwZiGLlSHVj5M/a4oq4bvvs7Y335mDy0DxDtzklPw/jvD0N3YYVNKlOvOq/BE0qbzRLiY/HfWvgPIvB3vVjZxrZe5Alnyw5yHgJd2ZNTU0NFEXBhAkTkJGRIXo4RNRNDocD/fr1Ez0MU2Fn1uhAhowyZCCKldHLtgnb9tPFFfjd1CFn/L8HJw/G+4dOosrnj/n2cjxJWDJpcMxf14rCsKGyxSN6GERR4XHfGjjPYrB3/diZRvYeZMknSw4yXsKdWdOzp/YbetnZ2YJHQkSx0NDQgHXr1qGhoUH0UEyDnVmjAxkyypCBSBat93tslZXqwprZBchIju0ZGxnJTqyZXYCsVFdMX9eq3AhivOsLuBEUPRSiTvG4bw2cZzHYu37sTCN7D7LkkyUHGS/hFmuGDNF+K/Dw4cOCR0JEsWCz2ZCZmQmbLeHebhIWO7NGBzJklCEDkSwaAuFz/p8314P1c0YixxObe6HkeJKwfs5IeHN5JkistEBBvepCCxTRQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RJuD/nxj38MVVXx1ltv4cSJE6KHQ0TdlJycjIkTJyI5OVn0UEyDnVmjAxkyypCBSBaBUEub/9+b68GW+WMwJb9797CZkp+HLfPHcKEmxgJwoCR4IQKJd3VqonPwuG8NnGcx2Lt+7Ewjew+y5JMlBxkv4RZr7rjjDowbNw5NTU2YM2fOOZd0ICJzCQQCKC0tRSAQED0U02Bn1uhAhowyZLC6I9WN6Lfo723+OVLdKHp4pIPL0f6X9VmpLhROH4aVs4ajoL++Sw0X9M/GqllXoXD6MF76zAAOhHGR/QQcOPfMKKJEw+O+NXCexWDv+rEzjew9yJJPlhxkvIRbrFEUBc8//zxGjx6NDRs24IYbbsDu3btFD4uIuqi5uRlFRUVobm4WPRTTYGfW6ECGjDJkIJJFqsve6WPGe3Pw/Jyr8dqCMfinkX3bfdzwvln42biBeG3BGDw/52qM8/aM5VDpNC6Eke84ChcXa8gEeNy3Bs6zGOxdP3amkb0HWfLJkoOMp6gJdurK7NmzAQDBYBAvvvhiZMVx4MCBGDJkCDIyMqAonV/TWVEUPPXUU4aOlagze/bsidyHCQA+/fRTDB48WOCIiIiIvnWkuhGjl21r83M7Fo5Dn+wUbl/Ha7VasL4UOytOdXt80RreNwsvzhul6zkydW+27YvOTkREREREbRP9s9yEuzjy6tWrz1mMUVUVBw4cwIEDB3S9FhdriMRTVRV+vx9JSUlRLbQSOwOs0YEMGWXIQBQrp/+AfUT/7Lgu1owYoO/SZpRIVLgQRgB2AHwfpcTG4741cJ7FYO/6sTON7D3Ikk+WHGS8hLsMGqDtwKf/aev/dfaHiBJDbW0tHn74YdTW1ooeimmwM2t0IENGGTIkAt43Rj6T8/Piu72hveK6PYqdNCWAO5NLkabw+uWU+HjctwbOsxjsXT92ppG9B1nyyZKDjJdwZ9asWrVK9BCIKIbS09MxZ84cpKenix6KabAza3QgQ0YZMhAZwZvrQUG/bJSUVxu+rYL+2RiUy3+DZtWoOrGx+TI0qk7RQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RJusWbmzJmih0BEMWS325Gbmyt6GKbCzqzRgQwZZchAZJS5YwegZLXxizXzrhto+DbIOC2woVrlPWrIHHjctwbOsxjsXT92ppG9B1nyyZKDjJeQl0EjInnU19dj9erVqK+vFz0U02Bn1uhAhowyZCAyynhvDiYPNfZyaFPy8zDO29PQbZCxkhHERFcZkhEUPRSiTvG4bw2cZzHYu37sTCN7D7LkkyUHGY+LNURkKIfDgX79+sHhSLgT+RIWO7NGBzJklCEDkZEenDwYOZ4kQ147x5OEJZMGG/LaFD9hKKhsSUcYvNEsJT4e962B8ywGe9ePnWlk70GWfLLkIONxDyEiQ7ndbowdO1b0MEyFnVmjAxkyypCByEhZqS6smV2AaSuKUdsUuzMnMpKdWDO7AFmprpi9JokRgAOloV6ih0EUFR73rYHzLAZ714+daWTvQZZ8suQg4/HMGiIylN/vR3FxMfx+v+ihmAY7s0YHMmSUIQNZV1mlDyu2H2j38wvWl2LZljLsr6zr1na8uR6snzMyZmfY5HiSsH7OSHhzPTF5PRLLiTAus1fBibDooRB1isd9a+A8i8He9WNnGtl7kCWfLDnIeELOrHnooYfO+PsDDzzQ7ue64/TXJSIxAoEASktLMXjwYCQlGXMpGNmwM2t0IENGGTKQ9Wwtq8LyooMoKa/u8HE7K05hZ8UpPF50AAX9sjFv7MAu3x/Gm+vBlvljsGTzHmwsPdql1wC0e9QsmTSYZ9RIxIEwLnKcwKFwFoKwix4OUYd43LcGzrMY7F0/dqaRvQdZ8smSg4ynqKqqxnujNpsNivLtdZnD4XC7n+uO01+XSIQ9e/ZgyJAhkb9/+umnGDyY15cnIqJvHaluxOhl29r83I6F49AnO0XKbcd7+6caAli8aQ82fSx2sWRrWRWWv3UQJYc6Xiw6XUH/bMy7ruuLRW2x0twn2vZFZyciIiIioraJ/lmusHvWtK4RtbUwE4v1o1gt+BBR97S0tMDn88Hj8cBm45UXo8HOrNGBDBllyEDWsO+YD7NWlaDK173LDmwsPYrigyexZnZBly9DNt6bg/HeHOyvrMPa4go8XVzR5uOG983CiAHZmDy0Fwblpndn2JTAFKhIVQJoUF1Qwe9fKLHxuG8NnGcx2Lt+7Ewjew+y5JMlBxlPyGLN4sWLu/Q5IjIfn8+HwsJCzJ8/H5mZmaKHYwrszBodyJBRhgwkv33HfJj+ZDFqm4Ixeb0qnx/TVhR3+74xg3LTcc+YAe0u1jw6LZ9nWFhAqhLAbe7deKH5ctSrvCQGJTYe962B8ywGe9ePnWlk70GWfLLkIOMJW6xpvTdNQUHBOZ8jInl4PB7Mnz8fHg9vhBwtdmaNDmTIKEMGktuphgBmrSqJ2UJNq9qmIGauLMGW+WN4/xjqlgbVhReaL0eDyv2IEh+P+9bAeRaDvevHzjSy9yBLPllykPGEnXe1ZMkSPPjgg3jllVdEDYGI4sBmsyEzM5OneerAzqzRgQwZZchAclu8aU+3L33WniqfH0s27zHktck6VCioV5N4CTQyBR73rYHzLAZ714+daWTvQZZ8suQg43EPISJD1dXVYfny5airqxM9FNNgZ9boQIaMMmQgeW0tq8Kmj48auo2NpUextazK0G2Q3JIRwOSkPUhGQPRQiDrF4741cJ7FYO/6sTON7D3Ikk+WHGQ8IZdBIyLrcLlcyM/Ph8vFy3tEi51ZowMZMsqQAQCOVDdi9LJtbX5ux8JxvG+ISS0vOhif7bx1EOO9OXHZFsknBDu+CJ2PEOyih0LUKVmO+9QxzrMY7F0/dqaRvQdZ8smSg4zHxRoiMlRSUhJGjhwpehimws6s0YEMGWXIQHIqq/ShpLw6LtsqOVSN/ZV1GJSbHpftkVyCsGNvmIt9ZA487lsD51kM9q4fO9PI3oMs+WTJQcbjZdCIyFDNzc0oKipCc3Oz6KGYBjuzRgcyZJQhA8nlSHUjjlQ3Ym1xRVy3G+/tkTxcCCHf8RVcCIkeClGneNy3Bs6zGOxdP3amkb0HWfLJkoOMx8UaIjJUKBRCeXk5QiH+ECJa7MwaHciQUYYMJJfRy7Zh9LJtWFt8OK7bfZqLNdRFdqjItdXBDlX0UIg6xeO+NXCexWDv+rEzjew9yJJPlhxkPF4GjYgMlZaWhlmzZokehqmwM2t0IENGGTIQxYqqqlAURfQwKEp9slNQvvQW0cNAE5zYEvCKHgZRVHjctwbOsxjsXT92ppG9B1nyyZKDjMcza4jIUOFwGJWVlQiHw6KHYhrszBodyJBRhgxEsdIQ4L8D0s+GFmQrjbChRfRQiDrF4741cJ7FYO/6sTON7D3Ikk+WHGQ84Ys1L7/8MsaPHx/zPxMmTBAdjYgA1NXVYcWKFairqxM9FNNgZ9boQIaMMmQgipVAiD9sJ/1SlCCmuPciRQmKHgpRp3jctwbOsxjsXT92ppG9B1nyyZKDjCf8MmhHjx7F0aNHY/qavAwFUeLIyMjAfffdh6SkJNFDMQ12Zo0OZMgoQwaiWHE5hP8OFJlQverCM035CMAueihEneJx3xo4z2Kwd/3YmUb2HmTJJ0sOMp7wxRpV5c00iWSmKArcbrfoYZgKO7NGBzJklCEDUaykuvjDduoKBQHx35IRRYXHfWvgPIvB3vVjZxrZe5Alnyw5yHjCvzMoKCjATTfdJHoYRGQQn8+HlStXYvbs2fB4PKKHYwrszBodyJBRhgwklx0LxwEAFqwvxc6KU3Hb7vC+WTyrm7okBQHcnFSGV/xeNMIlejhEHeJx3xo4z2Kwd/3YmUb2HmTJJ0sOMl5CLNYsXrxY9DCIyCButxtjx47lbxDowM6s0YEMGWXIQHLpk50CABjRPzuuizUjBmTHbVsklwDsKA3l8TJoZAo87lsD51kM9q4fO9PI3oMs+WTJQcYTvlhDRHJzuVzIz88XPQxTYWfW6ECGjDJkIDlNzs/D40UH4re9ob3iti2SSwh2fBE+X/QwiKLC4741cJ7FYO/6sTON7D3Ikk+WHGQ83gmViAzV1NSELVu2oKmpSfRQTIOdWaMDGTLKkIHk5M31oKBffM52KeifjUG56XHZFsmhT3YKypfegvKlt2Df4vFYPtaOfYvHo3zpLZGzw4gSEY/71sB5FoO968fONLL3IEs+WXKQ8XhmDREZqqWlBTU1NWhpaRE9FNNgZ9boQIaMscpwpLoRo5dta/NzOxaO4w8vqUvmjh2AktXVhm9n3nUDDd8GyUuGYwFZB/dXa+A8i8He9WNnGtl7kCWfLDnIeFysISJDpaamYvr06aKHYSrszBodyJBRhgwkr/HeHEwemodNHx81bBtT8vMwztvTsNcn+fF9lMyE+6s1cJ7FYO/6sTON7D3Ikk+WHGQ8XgaNiAwVCoVQXl6OUCgkeiimwc6s0YEMGWXIQHJ7cPJg5HiSDHntHE8SlkwabMhrk3XwfZTMhPurNXCexWDv+rEzjew9yJJPlhxkPC7WEJGh6uvrsWbNGtTX14seimmwM2t0IENGGTKQ3LJSXVgzuwAZyc6Yvm5GshNrZhcgK9UV09cl6+H7KJkJ91dr4DyLwd71Y2ca2XuQJZ8sOch4Qi+DpqqqyM0TURxkZmZi8eLFXXuyqgL+OiAcBOxOICkdUJTYDjABdaszSVihAxkyypCB5OfN9WD9nJGYubIEVT5/t18vx5OENbML4M31xGB0ZHV8HyUz4f5qDZxnMdi7fuxMI3sPsuSTJQcZT9hizaFDhwAAHg+/0SWi01TtAXa/CHy1Ezj2MdBc8+3n3JnABUOBXt8BLr8NyLlM1CiJiMhEvLkebJk/Bks278HG0q7fw2ZKfh6WTBrMM2qIiIiIiIgo5oRdBq1v377o27cvsrKyRA2BiOKgtrYWS5cuRW1tbccP/Ow1YOVNwBOjgLf/Bzj01pkLNYD290NvaZ9/4mrt8Z/9w5iBqyrQ7AMaTmr/jeOZgJHOvv5SyPYTQdT7jYnJkFGGDGQdWakuFE4fhpWzhqOgf7au5xb0z8aqWVehcPowLtRQTPF9lMyE+6s1cJ7FYO/6sTON7D3Ikk+WHGQ8oZdBIyL5paSkYOrUqUhJSWn7AY3VwCu/Bj59Uf+LH34XePZd7Sybm5YBKfp++HYO0Wf1fLP9lCMfYWq4GimP/xeAUPy2n0A63W8kIENGGTKQ9Yz35mC8Nwf7K+uwtrgCTxdXtPm44X2zMGJANiYP7YVBuelxHiVZBd9HyUy4v1oD51kM9q4fO9PI3oMs+WTJQcbjYg0RGcrpdMLr9bb9ycpPgWd+CNQd695Gdr8AlL8N/Pj/gJzB+p//2WvA249piz/taT2rp/XMngtHAdf+Arjku10ddbvbdwI4pzEjt98WwfcLcjoc8PbLAwI+ICzn/Yo6/LdhEjJkIOsalJuOe8YMaHex5tFp+eiTzW+myFh8HyUz4f5qDZxnMdi7fuxMI3sPsuSTJQcZT9hl0IjIGhobG7FhwwY0Njae+YnKT4HVt3R/oaZV3TFg1c3a2SlRD64aePFu4NnbO16oacvhd4FnbwP+7yfa63RFO9tvhBsbcCMa4TZ2+2er2gO88SCwZjLwcD9gaR/gvwZo/324n/b/33gQqNobm+11sP3GpYOwYelP0Phfl8Vv+63idAm8dv9tmIgMGYiIROL7KJkJ91dr4DyLwd71Y2ca2XuQJZ8sOch4PLOGiOKvsVo7o+bse9J0V3MNsPYHwLx3O78kmuizekRv/3QJdmaR5qyFKqPPLBJ9CbzTCT6rSfj2iYiIiIhIHvz+gij++O/OtLhYQ0SGar0u5xle+XXszqg5W90x4NWFwA/+0v5jWs/qidViUetZPXe9Et2CSSfbT0EzpuI147bfSvT9gjrYfqcdxOp+RQIXqs74tyF6saiL22/z33e3qEhDE5wIIQgH6pEcw9c2w/aJyGpi/z5KZBzur9bAeRZDut7j8P2NaToz+Ifmpumhi2TJF5ccon+uQDHBxRoiMlQwGMSBAwcwcOBAOJ1O7YfjXVkc0GP3C9rB55Ibz/2c6LN6oth+EA4cQF8MRAWcCMV2+61En9nTyfaj7qCr2xe9UIVv/m3seBEDD66F88u3239g3M9qin775/z77oqqPcj44DmsdW7FEFs5MpWGyKdq1FS4X74S6HuVoQtVQrd/Bi4WEVlNTN5HieKE+6s1SDvPCf5b5tL0Hsdfhou6MxFzH8cfmkuz77TDtPnO2u+CNjcOHDxoTA7RV0uhmOJiDREZqvW6nPPmzUNGRoZ2AImHdwrbXqwRfVZPFNtvRDI24EbMw9PIQF1stw8k/JlFgM4OurJ90Zega6xG44ZF2PDZeZiHj5Gh57kGn9WkZ/uN1/z7mf++9TjtC0oPgGvt5z4kU2kAjuzQ/hi4UCVk+60SZrGIC0VEIpzzdRJRAuP+KoEofmgt1Twn0m+Zd9K94b0bvWAh4JfhOuxM1NwL+KF5Qv+bjcF+l9D5ztbBfteY1Asbgj/AvO84kDE8RvtdAvwSKsWeoqoG3TmZiLBnzx4MGTIk8vdPP/0Ugwd38b4iMqjaAzwxKn7bm/femQfAz14Dnr3d+O3+6Pm2F4pEbx/QDuZPjDJmwSr9gujOLBK5/VgvVAHaF/t6LkEXq8UiQMss6n5JXd1+d76gbCVqoSoW228VzTdyZzPgXk2+D57DJ++3s1B04ZVwG7xQdKS6EaOXbUNbi0U7Fo5Hn+wUQ7Z77vbPtWPhOKm3b+XsRCSYyDMcRJ9dIflv+HcontkT4essQHz38dq+6O8vTidq7hPle4yzWfk9J55E7HeJ9O9OMqJ/lsvFGkkEAgGsX78ezz33HPbs2YOqqipkZWWhf//++P73v49Zs2bh/PPPN9W233zzTaxZswbFxcX46quvkJSUhN69e+PGG2/E3XffDa/Xq/s19+3bh5UrV+K1117Dl19+Cb/fj169euHqq6/GjBkzMGHCBN2v2RHR/8ATxqkK7b/vFAIfPhW/7V71E+CW//727ytv0nfw7Kq+12g/vD+b6O0DwIt3G3sZustv6/jMHpHbF71QBIhfLEqE7Vt5oQpIjG/kEugHGFwsErf9xMl+rrgu1oj+wa1IorNb+Qf2olnth3eif3CYyL/hfzYDfjEkrtkT4essQHz38dy+6O8vWomc+0T4HuN0Vn7PiTdR+12i/LuTlOif5XKxRgJlZWW44447UFpa2u5jevbsiVWrVuHmm29O+G37fD7cc889WL9+fbuPcTqdePDBB/Gb3/wm6rH+/ve/x4MPPohgMNjuY+644w6sWLEC6enpUb9uR0T/A08ENTU1KCwsxHz1L8iEL/4DWFKr/Vf0WT06tl8DDwqVn3Svs7O3D4g/s0fH9rvVQXvbF71QddZiUUzmuZWgs5oiGVI2IfNnryf2WU2it986Biuf1dQqUb6RE71YJHL7orND8GKR6B/ctlJV1Hz9JQqXr8T8ubOR2bO33D8wF7190dlFi0H+yNf18+cjMzMzuu2KfM8Xfbwx6W/4R76+u2cmMi/o17UxWPW3zLvRfaT3S44ic8p/muMMcsG/DBd5T/rRRGRumilm7hPge4xID5PykVm63HTvOQA63O+6dOyJB53vOR1+/69nv0uEX0KVnOif5XKxxuS+/P/s3X98VNWdP/7XJJOZya8hSZUEFAnQSjQo0UJAWxDQVioKbP0B/SVIuyL28xX20xXsblfBbT+rrJ9KPrtVsC0/FqyirhXwB1KFAFZjgBKFQHAFE0BIBPJjJpPMr8z9/nHJkMAkmZuZO2fuua/n48GDJDNzz3m/z7nnztwz596TJzFu3DicOnUKAGCxWDBx4kSMGDECZ86cwXvvvYf29nYA6gTH1q1bMWXKlKQtOxAIYOrUqdi+fXv4b6NGjcKNN94Ir9eL3bt34/TpCwPSsmXL8Pjjj/dZ18cffxz/+q//Gv590KBBmDBhAhwOB/bt24fq6urwY9/97nfx1ltvwWqN/ZZOonfwZBAMBnHy16NxJU7Dio7EV+CRT9QTHyJW9dz8yIXfNZQfRCpOYlBsOessP3fohb+JXtmjofyYchCpfNETVcAlk0VxaeeuBKxq6hbDdd9P3lVNossHxH+QM/gJjDAZJovMfOKyk6jJomSI/6IT5kGv+8I46siW99uu7PfdGfRyUMFgECdPnsSVV17Z92clkWO+6OONwb/hH35/l6XA+pNXjfHFENHvszrrEEPuu72vzh5ojBXkgr8MFwwGcfLT3bjy3Z/C6jsXv3Kjbftk+IwBIOj6Cif/vBRXfvFy/z9XJvGqIk3Hnovpdbztx5jT5+f/aPud6C+hmoDoc7mcrDG4iRMnYvfu3QCAoUOHYtOmTRg9enT48bNnz2L27Nl4//33AQB5eXk4evRoXGaj9Si766SKw+HAmjVrMHv27PDjfr8fv/rVr/Dv//7vANQJoh07duCWW27pcZvvv/8+brvttvDvjz76KH7961/DZrOF//bSSy9h3rx58Hq9AKKfBOqL6B08aSxN8pvAycyAK4t0KV/0RJXoySLR5Yt+Qym6fNEf5CQ4gdGNUSeLzHzispNBv2UOwLiXHxQdO/v9BWa6HJTIMV/08UZ07Gb8Yojo91lAcuQ+0eWL/nwBiG970Z8xAHOPOT3R+3grst8lw35nAqLP5aYkrCSKu7fffjs8WWKz2bBly5ZukyUAcNlll2HTpk0YPnw4AKCxsRHLly9PyrK/+uor/Pa3vw3/vmLFim4TNZ1lLV++HLNmzQIAKIrS56XQuj4+e/ZsLF++vNtEDaBe/uzZZ58N//7MM8/g7NmzvW6XouPxePAypsODdNFVMQwP0uOXs6Y69d+eBK4qAtRVRJ1l96P8mHPQdRVTQ3ViJmoAoO6vQMOhS//+wYpL/hTXdu7017LIf49QfjxcEkOk8j97V98PMQBw4FW1nEhElw+oJ8v0eDMPqNt9Z3HPj7c1qh/g4vkhClC3t+Fudft96fwgF68cuE8Da+5Q9+1o1R9UP1TF2hcOvKpuR0vZossXHTug9pPXfqp+uNQ6Hh//EPjTvcB//yy6/nYx0fH3EXuvxwKjx272ft/ps3fVL408fzPwwW+BL3ZeOiZ7m9W/f/Bb4Pmb1Od/tq3/ZeoUv8fjwcsvvwyPx9Pza0SO+aKPNyLLj+Pxvtu4FO3xXmTsIt9nAXHL/SXHg2hzL+q9nk6fLy7R0+cbAJ7NS/Cye6w+5xr6avtk+Ixxfr/zuJvj87lS0JjTTYR+F9WxB0jc8bafY05Un//76ndJsN+R/jhZY2C/+93vwj/PmTMH1113XcTnZWZm4sknnwz/vmrVKgSDwaQre926deHB9+qrr8aDDz7YY/nLly9HSorafT/66CPs378/4vP27NmDPXv2AABSUlJ6nSyaP38+vvGNbwAA3G431q9f3+NzKXopKSnIgQsp4CK+aKVAiV/Oyq5X/yXyEnAAsOcPF8ruR/kx52DPH8RPVHXqYbIoru3cKdJkkY6TVZfEEKl80W8oRZcv+oOcJCcwLmGkySIzn7jsrIPIE/ai276P2KM6Fhg1djP3e0DcJKWO8aekpCAnJyf8OewSIsd80ccb0eXH8Xh/ybiUzF8MEf0+C4hb7iMeD6J5ryXivV4yfBnus3eRUrNZ33MNvbW96M8YXfa7uH6uFDDmXOKifhfVsSdRx9sYxpyo26mnfpcM+x0lBCdrDKq1tTV8eTEAeOCBB3p9/t13342srCwA6gqXXbt2JV3Zb7zxRvjnuXPnwtLLdSSvuuqqbve/+fOf/9znNm+77TYMGTKkx21aLBbMmTOnz22SNunp6ZiKcqTDK7oqhpEOr+lzFpcciJ6o6mOySLd2jnFVkxYRY0imVU2iywfEfpCT6ARGREaYLDLziUtAmm+ZdxPnb5lHfSwwUuxm7/eAuElKneNPV9oxdepUpKf38K1gkWO+6OONyPLjfLyPOC4l6xdDRJ8wj2PuezweJNMK8mT5MhwAfLAiMZ+bI7V9MnzG6LLfxT0PSbaqKD09vedjT6KPtzGMOZraqWu/S6b9jhKCkzUG9eGHH8Ln8wFQV6+MHTu21+c7HA7cdNNN4d+3b9+eVGV7vV5UVFSEf580aVKf9Zg8eXKv2wSAHTt29HubXeOk/vP7/aj6zn/Dv2AfMGRcYgsfMj6x5cWJH2mowrXwI010VYSRIgd9TBbpFmOMq5q0iBhDMqxqEl1+J9Ef5CQ6gdGjZJ8sMvOJS9EnzQ1y+UFNxwIjxC66fNGxA1JfDsr/5hJUVVXB7/df+rjIMV/08UZ0+XE+3vc4LiXbF0NEv88C4pr7Xo8HybKCXPSX4Tqdb/uEfGbsbHvRnzG6umi/0yUPSbSqyO/3Rz72JPp4G+OYo6mduo45ybLfUcJwssagDh8+HP75uuuug9Vq7fM1N954Y8TXJ0PZR44cQSgUAqCucLnhhhti3ubFf+/6/J50LbejowOfffZZn6+h3nm9XpTvOQhv+kD15uuJVJjg8uLECzvKcRO8sIuuijBmyIEMMfYYg+g3lKLLT4YPcpKdwOhVsk4WmfnEJSDVt8wjitO3zDUfC5I9drP3e8kvB+U99DbK33sHXm+EbwWLHPNFH29Elq/D8b7HcSlZvhgi6Zdyej0eJOsK8kS7qO0T9nlq7x/Ff8bo6qL9Trc8JMmqIq/Xi/Ly8u7HnkQeb+M05mhuJ65sMS1O1hjUkSNHwj8PHTo0qtdcddVV4Z9ramqSquyu2xw4cCAcDoembTY2NuLMmTPdHv/qq6/Q3Nysqa7p6em4/PLLe60raeN0OrFo0SI4nU7gunsSW/ioe4CFn6r/RKzq6SxbY/lOtGIR/ggnWmMv36DikoMkJ0OMMsSgC5Ef5CQ9gdGrZJ0sMvOJS9EnzQ10+cF+jaPJGrvo8kXHDkh/OSgnWrHoa7vV9/VdiRzzRR9vRJWv4/G+13EpGb4YIumXcvo8HiTDCnLRLmr7hH0WuXiyRATl/H1OIux3uuUhQWNOr/b+Ec6OpgvnlDol8ngbpzFHcztxZYtpcbLGoM6dOxf+OT8/P6rXFBQUhH9ubNR4o0qdy451m5G223Wb/d1uLHkilaIo8Hq9UBQFyC8Grro5MQUP/RaQfy2QO1T9J2JVT2fZGstXoH7rIqbbA3aWb1BxyUGSkyFGGWKQjqQnMPqUbJNFZj5xCUj3LfMexeFb5v0eR5MxdrP3exNcDkoB4K3bC6W+WvxJ42QoW2T5Oh7vex2XkumLIaLolPs+jwfJsII8yZjqs8hXh3vc73TNQwLGnF7t+QOUsusvnFMCxH8pqJ9M1V8pJpysMajW1gszsT3e4PEiXZ/X9fXJUHas24y03Yt/T3SeunI4HMjKygKgXl6tubk5fKBxuVzha2+2t7fD4/EAAILBYLeVQS0tLQgEAgCAtrY2tLW1AQACgQBaWlrCz2tubkYwGAQAeDwetLe3A1Cv8+lyuQCoEyjNzc3o6OgIx9m5pNTn88HtdgMAQqEQmpubw5eoc7vd4fv4eL3ecH56i6mhoQFPP/00Wlpa1JhKHroQE7IRgHoZvTY40AZ1RVUAVrQg+0JMcCKIVDUmpKP9/PP8SIMLal6V88/rOD+std74cPeYhk9TY4IFzXAiBIsaEzLhg02NCXa0IkONCSlohjN8IHUhK3xt0XY44IHaT4JIRTMufMMjHNOoe7q3U9HMqGM6iQI8bfk5muHsHhMywktmfbDBjcyeY7p6hhrTQ3vQ+rMKYMi42GPS0k6DJ6B9/h5g4afwL9gH16AJkduph5iaMABPW36OJgzoXzsNGR//mKLte1G205fn27kFzvj2vQTGFHM7JWFMCRsjZI2prBRtZaXA3j8mNqY9L8FXNgZoqoO3/jO0frg6se2094/wfFmD9tOfAU118Ff8MbHt9LH6Qbr99GfwnI89YX1v7x/RevLwhWPuiSq4j38Se0zRtFPdpwicVFeRtp06grZTR4A9Ce57H66+8N7o+H60Hq/SFNM55IaPBZraqe4Agl8eUGPq7Ht7/pjYMeLD1fA3fC6+79WrsSd03PvragS+OqrG1Pl+74MViel7H6gTdW63G776/1HHvY/+mJDjUwuceNryc5z7YA1Qdj08ZePQfn7MT2jf2/My/GXfBMquR/veFxN7zN2zGii7Hq1l4+EtGwvsTXDf27MRgbIb4xvTRe3U2c5foiByTGU3qcfcvX9M7HujPa8gWHZDv2ICkv/93mkMDB8PZIlJ73Y6hXw8bfk5GpEjTUw9ttPz31HHvb1/vCSmExgc7jtxj2nPK+goK9Enpijb6QQGhc8ptbW1oW3nfyamnXY+f+FcWBxi0rWd9Ox7kp+z7C0mUThZY1Bdr9Vos9mieo3dfuG6iJ07Q7KUHes2I2334mspJzpPXY0fPx733KNeAuzMmTMoKysLDyCrV6/GoUPqt/N27tyJLVu2AABOnjyJsrIL35p8/vnncfSo+qFw27Zt2LZtGwDg6NGjeP7558PPKysrw8mTJwEAW7Zswc6dOwEAhw4dwurV6odon8+HsrKy8KXjXnvtNVRUVAAA9u/fjxdffBGAOoCVlZWFB8wXX3wR+/fvBwBUVFTgtdde6zOm/fv3o7CwENnZ2WpMW6rUy5MBeB4/wVGoqz+24RZswy1qTBiK5/GTCzFZfoaTGKTGhO9gJ8arMeEbWI1Zakywo8zyM5zB14Dr7sVr+892j2nbXuCqm+FCNsosP4Pr/AHwRfwd9qNYjQk34jWokzpn8DWUWX4G3/mD3GrMwiF8Q20njMcWfEdtJwxCmeVnF9oJP8HRy6cC+dd2b6dWO55PeSCqmP4bd2K+sh42BC7EBOA1TEMF1A9n+1GMF/F3ajtdHJPtx9j/pdp3K2pO4bX3PgaGfiu2mLS2k28sdn5yDMgdikOnW7G6aeyl7dRLTMr5NxCd/2tup8JvYecN/4EtI/4PMGRcfGKKpu8BeM3+A1SMe6HPdnoT38FNyh5kozV+fU+vmPRqpySMKSFjBGPSL6ay61Gx8hG89klLYmPa8wds+f1vsHPVo0DZ9Ti0/6PEttPfPgTKrsfOVY9iyydfJbad9vwBr/3h/6Jix1agqQ77t72c2L5X/iLQVIdtL/wLtr3wL8DePya2733Sjv1/fR9oqkPF1lc0x9T5gTz7/CUxNLXTrvVAU92Fvrf3j4kdIz4J4dDzPxHf91Y+Auz9Y2LHvU/TcPS5e9WYtm3Dtk2vAMc/TEzfO34AaDikvi9f+ffquFd1KCFjeWc/bTn4bnxjMsPxyUAxZaMVNyl78Ob5OsgQkxHaaSduwijlMLLRKk1MerfTNtyC+cp6eM9vT4aY+tNOayyzMV9Zj2y0ShNT13b6E76P7373u8jOzsa2Ta9g25fpiYnp1A1wHd3HdpL8nGVvMYliUcLryMhIpk2bhrfffhsAsGTJEjz11FN9vuadd97BHXfcAQDIysoKz0QmQ9n//u//jsWL1WtCjhs3LrwT9qa9vR0ZGRnh3/fu3YtvfvOb4d/37NmD0tLSbs+P5l4448aNQ2VlJQDgmWeewS9+8Ys+X9OT6upqjBo1Cg6HA1arFRUVFSgqKoLb7caAAQNgsVjgcrngcDhgs9nQ3t6OUCiEzMxMBINBtLa2IicnB4A6S52RkYG0tLTwDHVGRgYCgQDa2towYID6zfbm5mZkZWXBarXC4/EgJSUF6enp8Pv98Hq9cDqdUBQFLS0tyM7ORmpqKlpbW2G1WuFwOODz+eD3+5GdnY1QKASXywWn04mUlBS43W7YbDbY7XZ4vV4Eg0FkZWWho6NDW0y2EPD8zWhxtyID7UhDMPxNggx4EYAVbUjHAKj9pBlOZMEDKzrgQTpSoCAdXviRBi/scKIVCtRv+2VnZSP14Q/QGrJdGtPpDxH60yy4kA0n3EiBAjcyYUMAdvjhhR1BpCILbehACtzIwgC4YIH6DQkHfLAhgHY4EIIFmWhHEKloRSZyoB4cWpCNjPt+j7Rrv3dpOx18BwM2/UR7TGhFKkJoRQas6IADPvhggx9pyIYHIVi6xzTzRdiu+U73dvLUoeP5b/c/Jq3tNHcHUvKvudD3TnwC5/rb+h+T1nZasAvtzmFq3/voGQQ/KIs9pmjbadz/hnXyEjjaG+Dz+eHf/A/IPrU79piibachY9D2vf+nxpTuQOC1+Wj78mBsMWlppytKYP/yr/GNSY920qvvMSbGxJgYE2MyT0wL/4a2di9Q+QIyqv6QuJjG/hTu638G2x8nsp0YE2NiTImLad4bSMu+HG2vLgBO7UtcTFdei5S7X4C77Ca2k1ljengn0tKsaNv5/4CqDYmLacx9SNn7B7Ht9PNy9fzeqw8j5dTexLXTldfCcvcLcKXmmu6c5ZdffolRo0ah08GDB1FcXIxE4WSNQc2aNQuvvPIKAOCRRx6Jaubv9ddfx9133w1AvS/L6dP9uxmXHmU///zzePjhhwEA119/PT755JM+t9nY2Iivfe1r4d9ramowcuTI8O+HDx/Gtdde2+35ubm5fW73+uuvx4ED6mUlVq5cifnz5/f5mp50TtZ0SvQOngxaW1vx2muv4Z577glfCg6Aem3tNXcA3ub4FebIAR54W703Tk9e+6m+1ze97l7g7l6u5xtF+a3IwGuYhnvwFrLQFr/yV38vMddzH/ottR1iKD+mHFxcfkM18HyC7pUEAAs+Uu+X1Om9ZcAHv73kaTHF2JsJvwBufbzP8uMhYgwTfgHcOEf9+fW/B058rEvZEQ0ZD3z/hQu/iyqfN4Ikoijpdiwg0gH7qzmwncUwRN5/eRKwZ+v6+SKizs83Swd0+3NCc/bIJ4BFvZqAkM8YJ3r+QrMh+k4MZImv33EsPX8JMVH7nQmJPpfLy6AZVNdJioaGhqheU19fH/45Ly8vqcqOdZuRttt1m/3dbix5IpXVakVhYSGsVmv3B/KL1RPq2YPiU1D2oL4nagDgjn+PX5mR6vC95TGXb0UHCnESVnTEt/xvL9K2vf76Vg/laCi/3zmIVH5+MXBVgiZrhn6r+0QNAFx3T8SnxhRjb0ZdVF4P5cdDxBhG3QPkDlX/Df2WbmVHVPitC2WLLH/hp+q/IeMSW/6Q8Yktj4hiptuxgEgH7K/mkPTtLPJ91sJPddt80ucdAGznv3yp4+eLiDo/31zU9gnL2ZDxQF6h2M8YvTBE34mB8Pge+SQuY47mOC4ec0Ttd5RwnKwxqK4rSOrq6qJ6zfHjx8M/FxUVJVXZXbf51VdfXXK/mb62mZeXh8svv7zb4wMHDgwvx4u2rl6vN3xNxJ7qSto4HA5MmjQp8iXo8ouBBR+qq0Ficd296nb6mqgBgIw84Mf/ra7CiSdHjrrdjD4m+KIo3wEfJuEjOOCLb/lX367/Afe6e4Grvxtz+f3KQW/li5yo6mGyqN8x9ibSZJGOk1WXxHBx+aLfUIoqX+QHOUlPYBDJSpdjAZFO2F+TiI7H+17bORm+GCLpl3L63L8632uJfK/XubJE1JfhLmr7hI1JF0+WiP6Mc5GE5EFgv3Ms3CP22JP5tbiMOZrbqXPM6ST6S6iUMJysMahrrrkm/POBAwcQDAb7fM3f/va3iK9PhrJHjhyJlBS1OyqKgqqqqpi3efHfO28yFe02U1NTcfXVV/f5Guqdz+dDRUVF+EZel8jIUy/b9cNXtB/8hn4L+OGr6uv7miTpStSqnijL98GGCtwAH2zxL98AK4uAfuSgr/JFT1RFmCzqV4x9icOqJi0uiSHZVjWJLl/EBzlJT2D0iZNFZFC6HAuIdNKtv3Z+01jkmC+6bJHl63i873VcSqYvhkj2pZw+jwfJsIK8K5Ffhjvf9gk7hl78OVLEZ4xe9jtd85CAMadXhd+CL6NA7HuloF/9P8YxR3M7RTp/IfpqKZQQnKwxqJtvvhl2ux0A4PF4sHfv3l6f33nCvNOUKVOSqmyHw4Hx4y98S6e8vLzPeuzcubPXbQLA5MmT+73NrnFS//n9flRVVcHv9/f+xKtvVyccFnykXhtz+KRLV584ctS/T/iF+rwH3u755HhfRKzqibJ8P9JQhWL4kRb/8g2wsgjQmINoyxc5URVhskhzjH2J06omLbrFkIyrmkSXL3KySLITGH1KlsmiZChf9MkzUQx6+cG4HAtEt30ylM9+n5Diwv118DjxlwRKhrJFlt9Jh+N9r+NSMnwxpJNkX8rp83iQLCvIO4n8Mtz5to/756lIelphkOjPGL3sd7rmIQFjTq9G3aOeU9K7nXtjPT+5EuOYo6mdeup3or+ESgnByRqDysrKwq233hr+fe3atb0+//XXX4fb7QagXjJs4sSJSVf2zJkzo97miRMn8P7770d8bU/bfO+993Dy5Mlet9u13J62SdpkZ2fjoYceQnZ2dnQvyL9WvYnZ/ZuAJbXqTQwfPab+v6RW/futj8dnSaaIVT1RlJ8NDx7CBmTDo0/5Sb6yCIgyB1rLFz1RddFkkaYY+xLHVU2aiu2MIduZvKuaRJcvarJIshMYfUqWyaJkKN+sE2UGvfxgTMeCZIjd7P1etATHH+6vI0q7PyDypLHoE9aiy9fheN/juJQsXwzpSqIv5fR6PEjGFeSA2C/DfXtRfD9P9aSnL4SJ+owRYb/TNQ9JsKooOztb/3buTee9moCYxhxN7dTbyhbRV0sh3XGyxsAefvjh8M9r165FdXV1xOe1tbXh8ccfD//+4IMPXnqz9yQoe86cOcjMzAQAHDlyBH/4wx96LH/JkiXo6FBvynXTTTfhxhtvjPi8sWPHYuzYsQCAjo4OPPbYYz1u84UXXsBnn30GQJ1guP/++3t8LkUvFAqhubkZoVBI+4stFsCerV4j1J594Rq58ZboVT19lB8aNgnN9isRQpd4411+Eq8sAoAQLGiGs3sO4lG+yImqiyaLoo6xL3Fe1aRFCBa1r/7w1eRd1SS6fJGTRRKdwOhVMk0WJUP5Zp0o62Swyw/GdCxIhti7MmO/Fz1J2SlB8Yf767Xf7/6AyDFf9PFGdPlA3I/3PY5LyfbFEECqL+X0ejxIxhXkgNgvw119O0LF98Tn81RP+lphIOIzRoT9Lm6fKy+WJKuKQqEQmh/4K0L/X5XYezUBMY05ms5x9NbvRH8JlXTHyRoDmzZtGiZMmABAvdTYnXfeiU8/7b4c/9y5c5g5cyY+//xzAOrKliVLlkTcXm1tLSwWS/hfb6tb4l02AAwcOBD/+3//7/DvjzzyCF555ZVuzwkEAnjsscfw0ksvhf/2b//2bz1u8+LHX3zxRTz22GMIBALdnvPKK69g0aJF4d//8R//EZdddlmv26XouFwulJWVweVyia5K3xK5qqeX8l0z1qHMfx9cCw7qW36SriwCABeyUWb5GVzoYUVWrCuLRE1UdZks6jPGaOiwqkkLV+YIta+mD+n9iaLfUIouX9RkkUQnMHqVjJNFZj5xKXrCwGCXH4zpWJBMsYsuP0ludp0wgi4HFe6v6Vde+qDIMV/0CWvR5cf5eB9xXErGL4Z0kuRLOT0eD5J5BTkg9Mtwrm//S+yfp3qrR19fCBP1GeOi/S4unysjSZJVRS6XC2Vr/xuu1Fzx92oC+j3mRNVO0a5sEX21FNKVRVEURXQlqP9OnjyJ0tJSnD59GgBgsVhwyy23YMSIEThz5gzee+89tLW1AQCsViu2bt3a7RJmXdXW1mLYsGHh39esWYO5c+cmpOxOgUAAU6dOxfbt28N/u+6663DjjTfC6/Vi165d4fIAYNmyZd1W7vTkX/7lX/DrX/86/PvgwYMxYcIEOBwO7Nu3DwcPHgw/9p3vfAdvv/12zKuPAKC6uhqjRo0K/37w4EEUF5tr8AuFQnC5XHA6nUhJ4fxwNITlrOEQcPA14Mt9wKkqwNt84TFHDjC4BLjim+obMz0mrLqUH/ryE7h8HXDCjRQo+pX/2bvAX8uAur9G/5qh31LfuMaysqmtEaG3F8N18N0LMWp13b3qG7n+TJa1NQLvLAYOvKr9tV3KD93+FFxBa/R9taEa2HA34D7d93P7kj1I/RCj5Q2lyPIbqoE1d3Tfr2LlyOn7TXVbI/D8zfGJ+WLZg9QJy9764Gs/VfdrvVx3rzppG8ln7wJ/uk+/sjv98NXI44HI8kXHvvp7wPEP9S9/6LfUfeBiIuPXGHsIFriQrf1YkIyxiy5fZNkN1epYmygLPrr0vVAC4g/BAtf0/4Kz5M7Ix32RY77IspOh/Dge7y8Zl/o63ouOHRD3PguIW+4jHg+iea8l+r1e13rE4fOFls83oVAIrqN74XztPqT4mvpf7sWibftOIj5jdNnv+v1eojcJHHMucVG/63Z+5Mxh8cdboF9jTp/tpLXfAUL2OzMQfS6XkzUSqKmpwQ9+8ANUVVX1+JzLL78ca9aswbRp03p8jtbJmniW3VVLSwsefPDBS1bVdJWWloalS5fin/7pn6LapqIo+M1vfoMnn3zyklU1Xc2ePRurVq2C0+mMart9Eb2DE/WbogD+ViDoV2+oZ8vS7zJ0yVC+qIkqUZNFIssX/YZSZPmiJoskOIERUbJPFoku38wTZYC4+M0cezKUL7Js0ZOUgPi2Fznmiz7eiC4fMO8XQzqZ8Us5yVJ+VyI+X4j+QhiQ+M8YybDfiep3yXC8BZKj33USfV5BMqLP5XKyRhJ+vx8vv/wyXnrpJVRXV6OhoQE5OTkYPnw4vv/97+OBBx7o87Je/ZmsiVfZkbz33ntYt24dPvroI5w+fRppaWkYMmQIbr/9dvz0pz/FNddco3mbhw8fxh/+8Ads27YNJ06cQCAQwKBBg3DTTTdhzpw5uO222zRvszeid/Bk4Ha78eKLL+JHP/oRsrN1WJ4sIeZMcA4SNFHULca2E8JXNbn2vIRPPt6O61K+QI7lwk0Pm5VMOK76JhyFYy8pP6Z2Ev2GUuCqKiGTRQI/TBw7+DG+9trfYUAcbwragkw03vtnDCvu47rVoj/ImvnEpZlPGmuI3Y1MvIi/w4/w5+hvnJvMsYsuX2TZyTBRp3P87p9sw4uvv937cV/kSWPRJ6xFl99ZhxiP9+FxKfNDZN+/wTixA4b+Uk6340G201gryCPWR/8vw3X7LJIaSI4VBon8jHF+v3N7A9rfS/QkCVcVXfKZMxmOt500jDk9vueL58oW0VdLkYToc7mcrCHSkegdPBn4fD7s378fN9xwA+x2u+jqGAJzZo4c9BijoFVNJxrbMGH5DgAKMuGFDQH4kQYPHNi9eAqG5GVEH4MW/ZwoihtR5ZtkVVOTx4+pZbuQ4/4frLM9jQJL7JeoqFdyMce/BM3Z38DWhRORm2nr/QWiTyCZ9cSl6AkDwBDfMvfBhv0oxg2ohh3+vstP9tiToXyRZYuepAR0jd+X8/XojvuiVziY9ZKrnWI83vtgw/5BP8IN9z0Ge25B9C9Mhtg7GfBLOeHjwbXfgP3Op423grw3On2+ifhZRPQXwjol6qR5QzV862dhf+tl0b+X6EmSriqK2M7JcLztKop+d8l7Pr1Xtoi+WoqBiT6Xy8kaIh2J3sGJiKJ1YbLmUrsXT444WRP/sqOfKJKmfBGTRQn8EPvIS/ux+ZNTAIAcuLE0bR1mpvb/sgVvdNyMpYE5aD5/Y84ZJYNRNvuGvl8o+gSSWU9cip4w6KyD2S4/2LUO7PeJLTsZJikB8W0PiD1pLPqEtejyO5nkiyG94qWOxZSfDJJphYHeJ82TZb9LZL9LluPtxZKp31G/iT6Xy8kaIh2J3sGTgdfrRUVFBcaPHw+HwyG6OobAnJkjB8kWY38ma+IVg8iJouQqP8GTRTpPFG2vacC8tXsv+fvklP14yLoF41Jqot7Wx6EiPB+8C+WhSydmVs8dgylF+X1vRPQHWbOeuDTzSeMoYvfCjgrciPH4Gxzw9bwto8WeDOWLbHfRE3WALvH367gv8qSx6BPWosvvpPHkYVze3yVL7F2J+Ja5htx7BwyP/2cDyU8cR91XJV9hEM7DZR449vxO/H4X537XYzsny/G2Jxf1O2/IioqPP06az//UM9Hncq0JK4mITCkYDKK2thZjxowRXRXDYM7MkQMZYpQhhuRigQfp8CA9McXlX4uWm3+Jn3wwHhEniv4utomileXHIv59R+gG7PDfgKstJzA99UOMthyNOFl0IDQMnygjsLnjZnymDOm5nJ3HopusychTL2dw3b1iTiCJLF9k2fnF6rcTRU4YiIo/itiDSEUtrsQYfNLzdowYezKUL7LdH3hb/CSlDvH367h/9e3qPxEnjUWWnQzld8q/Fsh/XP05ipPWcXl/lyyxd2WxAPZsIJFXWNaQ+2Bra/zfV2tse6OJuq+KaPsEupCHe4BR08Tvd3Hudz22c7Icb3tyUb/TZR8nKXFlDZGORM/GEhFFKzkug5b4ss1evl5l19S7MHXFbg2vuHSyCIj+g9y7iyZiZEEPN7vuiVnvlySy7GT5prWIkxhmjj1Zyk902aJXNV1MdNt3JfKksegT1qLLF8nMsROJYob9LtmOt2R4os/lcmUNEemqo6MDZ86cweWXX47U1FTR1TEE5swcOZAhRhlioPg60dgGANhQUafxlbGtKtpQUYcHJw7XNrmk88qipC5fVNnJ8k1rEd807iH2Dq8LZ/A1XI5zSHU45Yw9WcpPdNmiVzVdLA7xx+24L/Jb7qK/YS+6/Cjo9v7OALGLxPfV2jFnql7zIMF+12c7J9vxtgfsrxStFNEVICK5ud1urFq1Cm63W3RVDIM5M0cOZIhRhhgoviYs34EJy3dgQ8XxhJa7vqKuxxVC0VEni5rgPD9hlOhvHIosX0DZ+dcCtz4O3L8JWFIL/PIk8Ogx9f8lterfb308MdfP7zyJkfk19f9ETFZ0id294ABWWX4C94ID8seeTOUnsuyrb1cv07LgI2DCL4Dhk9RJya4cOerfJ/xCfd4Db+t74qif8fO4bw5sZzGYd+2YM5XseYg6vmQ83nYheztR/HBlDRHpasCAAViyZAnsdgN/lSPBmDNz5ECGGGWIgYgEk+Abn/1msWDAwCsujKOyXZaEuhO9qikOeNw3B7azGMy7dsyZSvY8aI4vSY+3srcTxQ8na4hIVxaLBQ6HQ3Q1DIU5M0cOZIhRhhiIiETiOGpSBp2kZH81B7azGMy7dsyZSvY8xBRfEh1vZW8nih9eBo2IdOVyubBixQq4XC7RVTEM5swcOZAhRhliICISieMoGQn7qzmwncVg3rVjzlSy50GW+GSJg/THyRoi0pXD4cCkSZP4DQINmDNz5ECGGGWIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfL4NGRLqy2WwoKSkRXQ1DYc7MkQMZYpQhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/XFlDRLpqb2/H1q1b0d7eLroqhsGcmSMHF8d4orENhY+9FfHficY2wbWNzAztRNrsXjwZuxdPxjeH5ia03DFDc7F78eSElkkUDxxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka5CoRCam5sRCoVEV8UwmDNz5ECGGGWIgeJrSF4GhuRlYNywvISWO254HobkZSS0TKJ44DhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP3xMmhEpKvMzEzMnj1bdDUMhTkzRw5kiFGGGEgf00sG47nyo4krb/QVCSuLKJ44jpKRsL+aA9tZDOZdO+ZMJXseZIlPljhIf1xZQ0S6CgaDqK2tRTAYFF0Vw2DOzJEDGWKUIQbSR1GBE6WFiVldUzosDyMLshNSFlG8cRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WUNEumptbcW6devQ2toquiqGwZyZIwcyxChDDGZWU+/Cql09r35ZtLEKy7fW4Ei9u1/bf2jS8P5WTZMFt4xISDlEeuA4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9WRRFUURXgkhW1dXVGDVqVPj3gwcPori4WGCNiChZnWhsw4TlOyI+tnvxZN3vxyGyfDPHLqL87TUNWFl+DJW1jVG/prQwDwsmjcDkooGaynrkpf3Y/MkprVWM2oySwSibfUO/X2+2ticiIiIiIqKeiT6Xy3vWEBEREZlAk8ePJzZX92vypLK2EZVrGzGjZDCW3lWM3ExbVK9bNr0YH39xDg0un+Yy+5LvtGPpXfwCBBEREREREcmBl0EjIl21tLTgqaeeQktLi+iqGAZzZo4cyBCjDDGYxeHTLkwt2xXzKpdNVacwtWwXaupdUT0/N9OGdfNKMSA9LaZyLzYgPQ3r5pVGPWlElKw4jpKRsL+aA9tZDOZdO+ZMJXseZIlPljhIf5ysISJdZWRkYObMmcjI4KVcosWcmSMHMsQoQwyi6X3fGECdqJn9QkXcVrc0uHyYtaoi6gmbogInNs4fj3ynPS7l5zvt2Dh/PIoKnHHZHpFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9eBo2IdJWWloaioiLR1TAU5swcOZAhRhliECXa+8bsq2vCvromPFd+tF/3jWny+DF3TSVa2gOxVrmblvYA5qyuxNaFE6Na3VJU4MTWhROxdEs1NlX1f3WP1suwESU7jqNkJOyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrtra2vDGG2+gra1NdFUMgzkzRw5kiFGGGBKtyePHIy/tx7y1e/ucqLlYZW0jHli7Bwtf3o8mjz+q1zyxuVqX+8UA6gqbpVuqo35+bqYNZbNvwOq5Y1A6LE9TWaXD8rBm7liUzb6BEzUkFY6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfV9YQERERJcDh0y7MXVMZ8+TJpqpTqDh2DuvmlfZ6KbDtNQ0x36MmmrrMKBmMKUX5Ub9mSlE+phTl40i9Gxsq6rC+oi7i88YMzcW44XmYPvoKjCzIjleViYiIiIiIiJISJ2uISFed1+Wk6DFn5siBDDHKEEOidN43Jl6XI+u8b0xv925ZWX4sLmX1ZeXOY5omazqNLMjGgxOH9zhZ8+ysEgzJ4zWdSW4cR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0FQgEUFNTg0AgvvdLkBlzZo4cyBCjDDEkgt73jYl0SbSaepfmy6z1V+UXjThS705IWUSy4ThKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaIdMXrcmrHnJkjBzLEKEMMiZDI+8acaGzDicY2bOhhtYpeNlTU4UQj+wGRVhxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/i6IoiuhKEMmquroao0aNCv9+8OBBFBcXC6wRESWrE41tmLB8R8THdi+erPvloESWL3Ps22saMG/t3n6/Plqr547BlKJ8FD72lu5l9ab2qWmani9z2xuhfCIiIiIiIrpA9LlcrqwhIiIi0kki7xtDRERERERERMbFyRoi0lVzczOWLVuG5uZm0VUxDObMHDmQIUYZYtAT7xtDfRmSl4Hap6ZF/MdVNebAcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+rOKrgARyS0rKwtz5sxBVlaW6KoYBnNmjhzIEKMMMeih894tIu4bQ0TGwnGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6cpqtaKwsFB0NQyFOROTg0TfO0KGdpYhBj301I/0tp6TNUSGw3GUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFcejwcvv/wyPB6P6KoYBnNmjhzIEKMMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5SEnhcBMt5swcOZAhRhlikM27Cydg9+LJ+ObQ3ISWO2ZoLnYvnpzQMolkwHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFfp6emYOnWq6GoYCnNmjhzIEKMMMdTUu3q918uijVUYNywPM0quwMiC7ATWrH8udzqQl2nDuGF52FfXlLByxw3Pi/ulAonMQIZxlMyD/dUc2M5iMO/aMWcq2fMgS3yyxEH643QeEenK7/ejqqoKfr9fdFUMgzkzRw5kiNHIMWyvacB9Kz/C1BW7saHieI/P21fXhOfKj+L2Fbtw38qPsKPmqwTWUjubVX1rN71kcELLnT76ioSWRyQLI4+jZD7sr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2uISFderxfl5eXwer2iq2IYzJk5ciBDjEaMocnjxyMv7ce8tXtRWduo6bWVtY14YO0eLHx5P5o8yfkmO9OWCgAoKnCitDAvIWWWDsszxKojomRkxHGUzIv91RzYzmIw79oxZyrZ8yBLfLLEQfqzKIqiiK4Ekayqq6sxatSo8O8HDx5EcXGxwBoRUU9ONLZhwvIdER/bvXiy7pd4MnP5iSr78GkX5q6pRIPLF/O28p12rJtXiqIC5yWPnWhsA6BeQi2RlyIbMzQXry24Ofz79poGzFu7V/dy18wdi8lFA/v1WjP3eyIiIiIiIkouos/lcmUNEelKURR4vV5wXjh6zJk5ciBDjEaK4fBpF2a/UBGXiRoAaHD5MGtVBWrqXZc8NiQvA0PyMjBuWGJWtnQaN7x7eVOK8jF9tL6XQ5tRMrjfEzVEZKxxlIj91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6aqlpQVPP/00WlpaRFfFMJgzc+RAhhiNEkOTx4+5ayrR0h6I63Zb2gOYs7qyx0uiJcN9Y5ZNL0a+065LeflOO5bexdWiRLEwyjhKBLC/mgXbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXWVnZ2P+/PnIzub9DKLFnJkjBzLEaJQYnthcHbcVNRdrcPmwdEt1xMeS4b4xuZk2rJtXigHpaXEtb0B6GtbNK0Vupi2u2yUyG6OMo0QA+6tZsJ3FYN61Y85UsudBlvhkiYP0x8kaItJVamoqCgoKkJqaKroqhsGcmSMHMsRohBi21zRg8yendC1jU9UpbK9piPjYQ5OG61p2pwW3jOjxsaICJzbOHx+3FTb5Tjs2zh8f8X49RKSNEcZRok7sr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2uISFetra1Yu3YtWltbRVfFMJgzc+RAhhiNEMPK8mOJKWdn5HKS5b4xRQVObF04ETNivDTbjJLB2LpwIidqiOLECOMoUSf2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVEpCur1YrCwkJYrVbRVTEM5swcOZAhxmSPoabehcraxoSUVflFI47UuyM+liz3jcnNtKFs9g1YPXcMSodpuzxb6bA8rJk7FmWzb+Clz4jiKNnHUaKu2F/Nge0sBvOuHXOmkj0PssQnSxykP/YQItKVw+HApEmTRFfDUJgzc+RAhhiTNYYTjW0AgA0VdQktd0NFHR6cOBxD8jK6/b3zvjGzVlWgpT0Qt/L6e9+YKUX5mFKUjyP1bmyoqMP6HvI0Zmguxg3Pw/TRV0S8Hw4RxS5Zx1GiSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXfl8PlRUVMDn0+fm3jJizsyRAxliTNYYJizfgQnLd2BDxfGElru+og4Tlu+I+Fgy3jdmZEE2HpzY8z11np1VgkdvL+JEDZGOknUcJYqE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEenK7/ejqqoKfr9fdFUMw8w5O9HYhsLH3kLJE2/jT+/sQskTb6PwsbdQ+Nhb4dUSspChnWWIIZF43xgiuhjHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5dBIyJdZWdn46GHHhJdDUNhzoB22LDZF919OIxKhnaWIYZE67xvzIySwVi58xgqv4j+njqlw/Kw4JYRmFw0UMcaElEicRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WUNEugqFQnC5XHA6nUhJ4WK+aDBngAUKMi1+eBQbFFhEV0cXMrRzPGKoqXf1em+ZRRurMG5YHmaUyHXfFN43hogAOY4FZB7sr+bAdhaDedeOOVPJngdZ4pMlDtIfewcR6crlcqGsrAwul0t0VQyDOQMyLX7c6ziATIu8S4RlaOdYYthe04D7Vn6EqSt293pvmX11TXiu/ChuX7EL9638CDtqvoqlykmH940hMjcZjgVkHuyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrpxOJxYuXAink/dWiBZzBngUG171XgePYhNdFd3I0M79iaHJ48cTm6ux+ZNTmsurrG1E5dpGzCgZjKV3FSM3U97+QUTmIMOxgMyD/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5oqthKMwZoMCCVsUuuhq6kqGdtcZw+LQLc9dUosHli6ncTVWnUHHsHNbNK0VRwaVvdncvngxAvYTavrqmmMrSYszQXDw7qyRh5RGR8clwLCDzYH81B7azGMy7dsyZSvY8yBKfLHGQ/ngZNCLSldvtxsqVK+F2u0VXxTCYMyAdfky3VyMd8l4GTYZ21hLD4dMuzH6hIuaJmk4NLh9mrapATf2ly8iH5GVgSF4Gxg3Li0tZ0Ro3PA9D8jISWiYRGZsMxwIyD/ZXc2A7i8G8a8ecqWTPgyzxyRIH6Y+TNUSkK5vNhpKSEthsvFxRtJgzIIhUfB68DEGkiq6KbmRo52hjaPL4MXdNJVraA3Etv6U9gDmrK9HkiTypN71kcFzL68v00VcktDwiMj4ZjgVkHuyv5sB2FoN51445U8meB1nikyUO0h8vg0ZEurLb7Rg/frzoahgKcwYEkIpDHfmiq6ErGdo52hie2FwdtxU1F2tw+bB0SzXKZt9wyWNFBU6UFuahsrZRl7K7Kh2Wh5EF2bqXQ/E1JC8DtU9NE10NMjEZjgVkHuyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrrxeL8rLy+H1ekVXxTCYM8CGIEqsX8KGoOiq6EaGdo4mhu01Ddj8ySld67Gp6hS21zREfOyhScN1LbvTgltGJKQcIpKLDMcCMg/2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVEpKtgMIja2loEg/KedI835gxIhYKCFDdSoYiuim5kaOdoYlhZfiwhdVm5M3I5U4ryMX20vpdDm1EyGJOLBupaBhHJSYZjAZkH+6s5sJ3FYN61Y85UsudBlvhkiYP0x8ugEZGusrKyMHfuXNHVMBTmDGhHGrb6i0RXQ1cytHNfMdTUuxJyCTIAqPyiEUfq3REvRbZsejE+/uKcLpdiy3fasfSu4rhvl4jMQYZjAZkH+6s5sJ3FYN61Y85UsudBlvhkiYP0x5U1RKSrjo4O1NfXo6OjQ3RVDIM5A1IQQp6lDSkIia6KbmRo555iONHYhhONbdhQUZfQ+myoqMOJxrZL/p6bacO6eaUYkJ4W1/IGpKdh3bxS5GbyJpFE1D8yHAvIPNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrtxuN1atWgW32y26KobBnAEZlgBmOA4hwxIQXRXdyNDOPcUwYfkOTFi+Axsqjie0Pusr6jBh+Y6IjxUVOLFx/njkO+1xKSvfacfG+eNRVOCMy/aIyJxkOBaQebC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+8DBoR6WrAgAFYsmQJ7Pb4nCA1A+YMaFVseLG9BH6kiq6KbmRoZ6PFUFTgxNaFE7F0SzU2VZ3q93ZmlAzG0ruKuaKGiGJmtHGUzI391RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6cpiscDhcIiuhqEwZwBggV/yQ5QM7WzEGHIzbSibfQNmlAzGyp3HUPlF9PfUKR2WhwW3jMDkooE61pCIzMSI4yiZF/urObCdxWDetWPOVLLnQZb4ZImD9MfLoBGRrlwuF1asWAGXyyW6KobBnAEZ8OMe+6fIgF90VXQjQzsbOYYpRfl4Zf5NeHfRRPxk/NAenzdmaC5+PnkE3l00Ea/Mv4kTNUQUV0YeR8l82F/Nge0sBvOuHXOmkj0PssQnSxykP7m/tkxEwjkcDkyaNInfINCAOQP8SEVVcLDUl0FLpnauqXdhQ0Vdj48v2liFccPyMKPkCowsyA7/PZli6K+RBdl4cOJwrO8h/mdnlWBIXkaCa0VEZiHDOErmwf5qDmxnMZh37Zgzlex5kCU+WeIg/XGyhoh0ZbPZUFJSIroahsKcAUGk4vOOy0RXQ1fJ0M7baxqwsvwYKmt7vxTYvrom7KtrwnPlR1FamIcFk9RLgSVDDERERsZxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642XQiEhX7e3t2Lp1K9rb20VXxTBE5uxEYxsKH3sr4r8TjW0Jq4cNQZSmHYcNwYSVmWgi27nJ48cjL+3HvLV7+5youVhlbSMeWLsHC1/ej9NnWyLGsHvxZOxePBnfHJobz2r3aczQXOxePDmhZRIRxYLvk8hI2F/Nge0sBvOuHXOmkj0PssQnSxykP66sISJdhUIhNDc3IxQKia6KYTBnQAoUZFn8SIEiuiq6EdXOh0+7MHdNJRpcvpi2s6nqFP529DTmXNl4SQydlw0bNywP++qaYipHi3HD83jJMiIyFB7zyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka4yMzMxe/Zs0dUwFOYM8CIN2/1fF10NXYlo58OnXZj9QgVa2gNx2d4Jt4L/qB2Ib7s7UJR56ePTSwbjufKjcSkrGtNHX5GwsoiI4oHHfDIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5dBIyJdBYNB1NbWIhiU93JW8cacAakIoSDFhVTI+62TRLdzk8ePuWsq4zZRA6jtlO47hwf+WIEmj/+Sx4sKnCgtzItbeb0pHZaHkQXZCSmLiCheeMwnI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WUNEumptbcW6devQ2toquiqGwZwB6ZYAvmf/DOmW+E0sJJtEt/MTm6tjvvTZxTrbyd3aiqVbqiM+56FJw+NaZk8W3DIiIeUQEcUTj/lkJOyv5sB2FoN51445U8meB1nikyUO0h8vg0ZEusrJycETTzwhuhqGwpwBrYoda9rHiK6GrhLZzttrGrD5k1Nx327XdtpUdQozSgZjSlF+t+dMKcrH9NGDdSm/04ySwZhcNFC37RMR6YXHfDIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpjytriIiIJLey/FhiytkZuZxl04uR77TrUma+046ldxXrsm0iIiIiIiIiokThZA0R6aqlpQVPPfUUWlpaRFfFMJgzINPiww8d+5Fpie9lu5JJotq5pt6FytpGXbZ9cTtVftGII/XuS56Xm2nDunmlGJCeFtfyB6SnYd28UuRm2uK6XSKiROExn4yE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqIyMDM2fOREZGhuiqGAZzBngVKz7wF8KryHu1Tj3b+URjW/jfhoq6uG+/U6R26qm8ogInNs4fH7cVNvlOOzbOH4+iAmdctkdEJAKP+WQk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7Sn7xnwYgoKaSlpaGoqEh0NQyFOQM6kIrjoVzR1dCVnu08YfkOXbZ7sUjttL6iDv86c1TE5xcVOLF14UQs3VKNTVX9v4fNjJLBWHpXMVfUEJHh8ZhPRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xZQ0R6aqtrQ1vvPEG2traRFfFMJgzwI4Avp32BewIiK6KbmRo557aSVGUHl+Tm2lD2ewbsHruGJQOy9NUXumwPKyZOxZls2/gRA0RSUGGYwGZB/urObCdxWDetWPOVLLnQZb4ZImD9MeVNURERBRXHn8Hsuy9v8WYUpSPKUX5OFLvxoaKOqzv4fJpY4bmYtzwPEwffQVGFmTrUV0iIiIiIiIiIuE4WUNEuuq8LidFjzkDfEjDB4FhoquhKxnauad28gdDQJS3phlZkI0HJw7vcbLm2VklGJLH6/oSkZxkOBaQebC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+8DBoR6SoQCKCmpgaBgLyXs4qnE41tGPHYZkz8pw0Y8dhmFD72VvjfiUbzLJdNRQeuSmlCKjpEV0U3MuwbPbWTzcq3F0RE0ZDhWEDmwf5qDmxnMZh37Zgzlex5kCU+WeIg/fFsChHpitfl1M5hCeLbtlo4LEHRVRHGDDmQYd/oqZ0ybamCakREZCwyHAvIPNhfzYHtLAbzrh1zppI9D7LEJ0scpD9eBo2IdDVgwAA89thjoqthKB7Fjj95bxBdDaHMkAM9943diyeHf160sQr76pp0KSdSO40ZmguLxaJLeUREsuH7JDIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1REREkul6j5dxw/J0m6yJZNzwvISVRUREREREREQkC14GjYh01dzcjGXLlqG5uVl0VQwjy+LDA+l7kWXxia6KMGbIQaL2jeklg3XbdqR2mj76Ct3KIyKSDd8nkZGwv5oD21kM5l075kwlex5kiU+WOEh/XFlDRLrKysrCnDlzkJWVJboqUTnR2IYJy3dEfGz34sndVizopV1Jwzu+q9GupOleVrIyQw4StW8UFThRWpiHytrGuG/74nYqHZaHkQXZcS+HiEhWRnufRObG/moObGcxmHftmDOV7HmQJT5Z4iD9cWUNEenKarWisLAQVivnhqPVgRTUh5zoMPEQbYYcJHLfeGjScF22e3E7LbhlhC7lEBHJiu+TyEjYX82B7SwG864dc6aSPQ+yxCdLHKQ/ec+CEVFS8Hg8ePnll+HxeERXxTAcCGCK7XM4EBBdFWHMkINE7htTivIxfXT8L4fWtZ1mlAzG5KKBcS+DiEhmfJ9ERsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaIdJWSkoKcnBykpHC4iVYIFrQqNoRgEV0VYcyQg0TvG8umFyPfaY/rNjvb6bJsO5beVRzXbRMRmQHfJ5GRsL+aA9tZDOZdO+ZMJXseZIlPljhIf1x7RUS6Sk9Px9SpU0VXw1D8sKIycJXoaghlhhwket/IzbRh3bxSzFpVgZb2+KxY8sOKI9YR2PjT8cjNtMVlm0REZsL3SWQk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH6fziEhXfr8fVVVV8Pv9oqtiGFZ04OupZ2FFh+iqCGOGHIjYN4oKnNg4f3zcVtgMzrbiqUnZGJ7niMv2iIjMhu+TyEjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka68Xi/Ky8vh9XpFV8UwbOhAifUUbBJPVPTFDDkQtW8UFTixdeFEzCiJ7R42M0oG4+WffhNH9n/M/ZuIqJ/4PomMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNl0IhIV06nE4sWLRJdDUNpgw2v+a4XXQ2hzJADkftGbqYNZbNvwIySwVi58xgqv2iM+rWlw/Kw4JYRmFw0EAC4fxMRxYDvk8hI2F/Nge0sBvOuHXOmkj0PssQnSxykP07WEJGuFEWBz+eD3W6HxSLvzeLjS4ENHfAjFYBZcyZ/DpJh35hSlI8pRfk4Uu/Ghoo6rK+oi/i8MUNzMW54HqaPvgIjC7LDf0+GGIiIjIzjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8ugEZGuWlpa8PTTT6OlpUV0VQwjy+LHj9KrkGUx77VMzZCDZNo3RhZk48GJw3t8/NlZJXj09qJuEzVAcsVARGREHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrrKzszF//nxkZ2f3/WQCALQpadjkvRZtSproqghjhhzIsG/IEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0lZqaioKCAtHVMJQQUtCoZIiuhlBmyIEM+4YMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH648oaItJVa2sr1q5di9bWVtFVMYx0BDDVVoN0BERXRRgz5ECGfUOGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbKGiHRltVpRWFgIq5UL+aLVAQvqQ9nogHlvOmeGHMiwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/9hAi0pXD4cCkSZNEV8NQ/LCiKniF6GoIZYYcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXfl8PlRUVMDn84muimGkoQPXpjYgDR2iqyKMGXIgw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/jhZQ0S68vv9qKqqgt/vF10Vw7CiA1+3noVV4omKvpghBzLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPl0EjIl1lZ2fjoYceEl0NQ2mHDZt9xaKrIZQZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+uLKGiHQVCoXQ3NyMUCgkuiqGYYGCLIsPFiiiqyKMGXLQdd+oqXdh1a6jPT530cYqLN9agyP17gTWsG/cv4mIYsNxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEenK5XKhrKwMLpdLdFUMI9Pix72OA8i0mHd5rBly0Llv/OT5ckxdsRsbKo73+Nx9dU14rvwobl+xC/et/Ag7ar5KYE17xv2biCg2HEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrpxOJxYuXAin0ym6KobhUWx41XsdPIpNdFWEkT0HTR4/Hn/7KF71XocPT7Rpem1lbSMeWLsHC1/ejyaP2Mks7t9ERLHhOEpGwv5qDmxnMZh37Zgzlex5kCU+WeIg/fGeNUSkq5SUFOTk5IiuhqEosKBVsYuuhlAy5+DwaRfmrqlEg8sHoP8xbqo6hYpj57BuXimKCsS84eP+TUQUG46jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfV9YQka7cbjdWrlwJtzv6e22caGxD4WNvRfx3olHbKgQjSocf0+3VSIe8lwDri6w5OHzahdkvVKDB5YtLjA0uH2atqkBNvZil1P3Zv4mI6AKOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXNpsNJSUlsNnkvJyVHoJIxefByxBEquiqCCNjDpo8fsxdU4mW9gCA+MXY0h7AnNWVQi6Jxv2biCg2HEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrux2O8aPHw+7Xc5LWukhgFQc6shHQKKJCq1kzMETm6vPX/pMFc8YG1w+LN1SHfN2tOL+TUQUG46jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2uISFderxfl5eXwer2iq2IYNgRRYv0SNgRFV0UY2XKwvaYBmz851e1v8Y5xU9UpbK9piMu2osX9m4goNhxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka6CwSBqa2sRDMpx0j0RUqGgIMWNVCiiqyKMbDlYWX7skr/pEePKnZeWoyfu30REseE4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9WUVXgIjklpWVhblz54quhqG0Iw1b/UWiqyGUTDmoqXehsrbxkr/rEWPlF404Uu/GyILsuG63J9y/iYhiw3GUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjyhoJ+P1+rF+/HnfccQeGDh0Kh8OBQYMG4eabb8YzzzyDs2fPGqb8pqYmvPrqq3j44Ydx8803Y+DAgbDZbHA6nRgxYgRmz56NF198EYFAIOptTpo0CRaLRdO/Dz74oD+poAg6OjpQX1+Pjo4O0VUxjBSEkGdpQwpCoqsijAw5ONHYhhONbdhQURfxcb1i7Kk8PXD/plgNyctA7VPTIv4bkpchunpEuuM4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbLG4GpqajBu3Djcf//9eOedd3D8+HH4fD7U19fjo48+wqOPPori4mK8/fbbSV1+a2sr7rrrLhQUFOC+++7D888/j48++ghnzpxBIBCA2+3GsWPHsHHjRvz4xz/G1VdfjV27dukSE8WX2+3GqlWr4Ha7RVfFMDIsAcxwHEKGJfpJSdnIkIMJy3dgwvId2FBxPOLjesW4PoGTNdy/iYhiw3GUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdAM7OTJk7j11ltx6pR602qLxYKJEydixIgROHPmDN577z20t7fjq6++wsyZM7F161ZMmTIlKctvbW3Fm2++2e1v+fn5GDNmDAoKChAIBFBVVYVPP/0UAFBbW4tbb70Vf/7zn3HnnXdGXeeZM2fiiiuu6PN5gwcPjnqb1LsBAwZgyZIlsNvtoqtiGK2KDS+2l8CPVNFVEcYMOdAzRkVRYLFY4r7di3H/JiKKDcdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzUG9sMf/jA8UTJ06FBs2rQJo0ePDj9+9uxZzJ49G++//z4CgQDuvfdeHD16FDk5OUlbfm5uLu6//3488MAD3bbV6YMPPsD999+PL774AsFgED/60Y/w2WefIT8/P6o6L1y4EJMmTdIUJ8XGYrHA4XCIrobBWOA3/fBshhzoF6PH34Esu/754/5NRBQbjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8vg2ZQb7/9Nnbv3g0AsNls2LJlyyWTG5dddhk2bdqE4cOHAwAaGxuxfPnypCzfZrPh8ccfR21tLVasWBFxogYAvv3tb2P79u1wOp0AAJfLhRUrVsQlJtJHZxu5XC7RVTGMDPhxj/1TZMAvuirCmCEHesboDybmXj/cv4mIYsNxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642SNQf3ud78L/zxnzhxcd911EZ+XmZmJJ598Mvz7qlWrEAwGk678vLw8LFu2LDwJ05vCwkI89NBD4d/feustLVWnBHM4HJg0aRK/QaCBH6moCg6W+hJgfTFDDvSM0WZNzOGd+zcRUWw4jpKRsL+aA9tZDOZdO+ZMJXseZIlPljhIf5ysMaDW1la8//774d8feOCBXp9/9913IysrC4C6umXXrl2GLh8AvvWtb4V/rq2tjXl7pB+bzYaSkhLYbDbRVTGMIFLxecdlCEo8UdEXM+RAzxgzbYnJG/dvIqLYcBwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WWNAH374IXw+HwB15crYsWN7fb7D4cBNN90U/n379u2GLh9Atxtnd3R0xLw90k97ezu2bt2K9vZ20VUxDBuCKE07DhtiXwVnVDLkYPfiydi9eDK+OTQ34uN6xThmaG63MVJP3L+JiGLDcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+pP97s1SOnz4cPjn6667DlZr381444034i9/+cslrzdi+QBw4MCB8M9DhgyJ+nU1NTU4dOgQTpw4gUAggLy8PFx99dWYMGEC8vPzY64XXSoUCqG5uRmhUGLuoSGDFCjIsviRAkV0VYRJdA5q6l3YUFHX4+OLNlZh3LA8zCi5AiMLsqPa5pC8DADAuGF52FfXdMnjesU4bnheXLfXG+7fRESx4ThKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xssaAjhw5Ev556NChUb3mqquuCv9cU1Nj6PJDoRDWr18f/v22226L+rULFiyI+HeLxYK77roLTz75JEaPHh1T/ai7zMxMzJ49W3Q1DMWLNGz3f110NYRKVA621zRgZfkxVNY29vq8fXVN2FfXhOfKj6K0MA8LJo3A5KKBUZUxvWQwnis/esnf9Ypx+ugr4r7NnnD/JiKKDcdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPl0EzoHPnzoV/jnY1SEFBQfjnxsbeT0ome/nPPfdceMInJSWlxwkYLRRFwebNmzFu3Dj8/ve/j3l7dEEwGERtbS2CQeNezirRUhFCQYoLqTDvNy70zkGTx49HXtqPeWv39jlRc7HK2kY8sHYPFr68H00ef5/PLypworTw0tUuesRYOiwv6pU/8cD9m4goNhxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYYUGtra/jn9PT0qF7T9XldX2+08qurq/HLX/4y/PtPf/pTFBcX9/oai8WCW265Bc8++ywqKirQ2NiIQCCAxsZG7N69G//wD/+AzMxMAIDP58P8+fPx6quv9ruOkTgcDmRlZQFQ77HT3NwMRVEvfeRyueD3qyd829vb4fF4AKgDeXNzc3gbLS0tCAQCAIC2tja0tbUBAAKBAFpaWsLPa25uDg/+Ho8nfD1Mv98Pl8sFQJ2cam5uDt/vp7W1FV6vN5wDt9sN4NJlmm63O3y/Iq/XG27L3mI6e/Ys1q1bh9bW1qhjCgYCyLT4ws/LsvjCJ7Tb2/SNqc2jxpSCELIsPuD8Jaoy4EcgAe0U8PuRZ2nD9+yfId3iR5bFh5Tzsbd59GunrjGlhmNXZVp8SEVHv2PS0k5t5+uaYfHje/bPkGFR65cOP/z+/sfUtZ0On3Zh5oq/4K1PTgAA7AjAjsD52Dt67HsOBML3l7GiA3+pqsXUsl04fLqlz7730KThsEBBlsUHy/k+lRtuZ3W76efrEKnvWc/n34YgHOG6XtpOD37rqn63U8DvRwY6J5+UqPqey+XCunXrwu3b377X3tZz3wsmYNzz+31IPx/7xe3U1toa0/4U7RjRW9/Tcyz3+bw99j1Pq1vq4xNjYkzJEFNzc3P4fZIsMcnYToypJVy3devWhV8nQ0wytlOsMXW2c319vTQxGaGdvvrqq/DxQJaY9G6nhoYGrFu3Di0tLdLE1J92OnXqVLjvyBJT13bqGp+RY5K9nWSMSRRO1hhQZwcFAJvNFtVr7HZ7+OdYb2Ylqvzm5mbMnDkzvLN94xvfwG9/+9s+X/faa6+hvLwcixYtwrhx45Cbmwur1Yrc3Fx8+9vfxm9/+1vs27cPw4cPB6AOCgsWLOg2mMRq/PjxuOeeewAAZ86cQVlZWXgAWb16NQ4dOgQA2LlzJ7Zs2QIAOHnyJMrKysLbeP7553H0qHoppW3btmHbtm0AgKNHj+L5558PP6+srAwnT54EAGzZsgU7d+4EABw6dAirV68GoA5uZWVlOHPmTDhHFRUVAID9+/fjxRdfBKAOYGVlZeEB88UXX8T+/fsBABUVFXjttdf6jKmqqgojR45ETk5O1DF9ebwWM+yHws+713EAl6eo7f7X7dt0jan83TcBADkWL+51HIDt/EnyO+w1qD36me7tVHv0M9xiO4Y17WPgV6y413EAORZ1nyt/903d2qlrTJentOJex4X7Qs2wH8IVKa5+x6SlnbZtUeuqwNLt/+/Y/wf/c+hAv2PqbKfDp12Y/UIFvhXYH45pbNpJjE1T631FiqvHvnezrQ4laacAAIWpTbjDXoMGlw8/eeGvffa9KUX5mHFtLu51HEDm+Qmom211+Ng/BK2KHddaG3CLTe03kfpeYap6z5uStFO42VYXsZ3uyTiMK63ufrdT7dHPcIddXbVoQ0dUfS8lJaXb//3te3/dvi1iTDPsh/Dl8dp+xxRt3/ufQwfwHfv/AAAyLf5u7bRty2sx7U/RjhG99T09x/Lqqn099r23XvuT1McnxsSYkiGmzve1OTk50sQkYzsxJjWmzn7a2W9liEnGdoo1ppycHNx+++148803pYnJCO20a9cujBs3Djk5OdLEpHc7/eUvf8ETTzyBQCAgTUz9aac1a9bgiSeeQE5OjjQxdW2nP/3pT5g1axZycnIMHZPs7SRjTKJYlM5pJYrZf/7nf+I///M/47rNX//61+GT/J2mTZuGt99+GwCwZMkSPPXUU31u55133sEdd9wBAMjKygrPQvaHiPK9Xi9uv/127Nq1CwDgdDqxe/duXH/99Rpr37NDhw5h9OjR4RneZ555Br/4xS9i2mZ1dTVGjRoFh8MBq9WKiooKFBUVwe12Y8CAAbBYLHC5XHA4HLDZbGhvb0coFEJmZiaCwSBaW1vDH4paWlqQkZGBtLS08Ax1RkYGAoEA2traMGDAAADqpFZWVhasVis8Hg9SUlKQnp4Ov98Pr9cLp9MJRVHQ0tKC7OxspKamorW1FVarFQ6HAz6fD36/H9nZ2QiFQnC5XHA6nUhJSYHb7YbNZoPdbofX60UwGERWVhY6OjriGtMXDS24c8X78CjqJF+WxYd2JQ0dSMG2/1WKIV/L0i2mujMu3P67PUhBCBmWAFoVGwALMuDHm4smY3hBjq7tdKy+GXeu2IE22IDzN6BvU9IQQgre/flYDL3cqWs7NfosmLT8faRbAmg9n/9Miw9exYryxbfhaw7o2vdqG1pw+3N7YIGCTIsfHsUGBRakw483F03CiILcfve9L79qxH1rP0WDyxeOqQOp4VU1PqQhFR1wWIIR+54DAYRggR9WWNEBGzrC7VSYDbz2/92Ky5zpPfa9c24v7v5/76HOjXBMQaQigFTYEEQqFLQjLWLf8yMVwfPPS4ECL9KQilC4nfKddrz6wGgMuizHkH3vxLlWfPc/K7vF1Nn33lx0K4blD9B13Dta34Q7V5SjHbZL+t67D49FYf4AXce9c15g0vL3Iva98sW3Is+u6DaWf366EXeV7YrY97Y+PAbDC3J5fGJMjIkxMSbGxJgYE2NiTIyJMTEmxmSKmL788kuMGjUKnQ4ePNjnVZ3iiZM1cbR06VIsW7Ysrtv8/e9/j5/97Gfd/jZr1iy88sorAIBHHnkkqlm/119/HXfffTcA9f4xp0+f7nedEl1+MBjE3Xffjc2bNwNQLym2detW3HLLLf2ofe9+8pOfYMOGDQCAW2+9Fe+9915M2+ucrOmU6B08GbS0tOD555/HggULwoNzX040tmHC8h0RH9u9eDKG5GXEs4pJU3Zn+VP/fStm2A9hk+/a8InbRJYvOv4Jy3cg0+K7JAexlv/IS/ux+ZNT8arqJWaUDEbZ7Bt6fU5NvQuzVlWgpT0QMcb+GJCeho3zx6OowNnvbQD9a/v+7N/xKjuezFy+6NiJzC5e4yhRIrC/mgPbWQzmXTvmTCV7HmSJT5Y4zED0uVxeBs2Avva1r4V/bmhoiOo1ndebBYC8vEtvdJ2s5YdCIcydOzc8UWO1WvHqq6/qMlEDALfddlv458OHD+tShtlkZGRg5syZyMjgCb9oeRUrPvAXwqtYRVdFmHjnYHtNg64TNQCwqeoUttf0PiYWFTixcf545DvtcYkx32mPy0RNf3H/JiKKDcdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVxtHTpUiiKEtd/F6+qAYCRI0eGf66rq4uqbsePHw//XFRUFFOciSz/oYce6nZvhP/6r//CnXfeGfXrtRo0aFD457Nnz+pWjpmkpaWhqKgIaWlpoqtiGB1IxfFQLjqQKroqwsQ7ByvLj8VlO32Ws7PvcooKnNi6cCLuLBkSU4wzSgZj68KJwiZqAO7fRESx4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xssaArrnmmvDPBw4cCN9jpTd/+9vfIr4+mcv/h3/4B/z+978P/75q1Sr84Ac/0FBT7TweT/jnzMxMXcsyi7a2Nrzxxhvha1ZS3+wI4NtpX4TvpWJG8cxBTb0LlbWNcahV3yq/aMSR+r7vyZWbacO/TR+JJde4cNPQLE1llA7Lw5q5Y1E2+wbkZtr6W9W44P5NRBQbjqNkJOyv5sB2FoN51445U8meB1nikyUO0p95r7FjYDfffDPsdjt8Ph88Hg/27t2L8ePH9/h8n8+HioqK8O9TpkxJ+vL/+Z//GStWrAj//uyzz0ZcZRRv+/fvD/88ePBg3csjIv2caFTfBG2oiG4FYLxsqKjDgxOHR3Wvj0ED0vHHe8fihKsDGyrqsL6Huo4Zmotxw/MwffQVGFmQHe8qExERERERERGRYFxZY0BZWVm49dZbw7+vXbu21+e//vrrcLvVb3rn5eVh4sSJSV3+b37zG/yf//N/wr8/+eSTWLRoUb/rGy2/348NGzaEf580aZLuZZoBr8upnQ9p+CAwDD6Yd3lsPHIwYfkOTFi+Axsqjvf95DhaX1HX4w3bu+q6b4wsyMaDE4f3+NxnZ5Xg0duLkm6ihvs3EVFsOI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crDGohx9+OPzz2rVrUV1dHfF5bW1tePzxx8O/P/jgg7BaY19QpVf5ZWVl+NWvfhX+ffHixfiXf/mXfteztbU16uf+4z/+I7744ovw7z/+8Y/7XS5dEAgEUFNTg0DAvJf00ioVHbgqpQmp6BBdFWHMkAMZ9g0ZYjC7IXkZqH1qWsR/0awOI6LYcBwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WWNQ06ZNw4QJEwColxm788478emnn3Z7zrlz5zBz5kx8/vnnANRVLUuWLOlxm7W1tbBYLOF/va2Y0aP81atX4x/+4R/Cv//85z/H008/3ePzo/H9738fP/3pT7Fr1y6EQqGIzzl27Bjuvfde/Md//Ef4b7Nmzer10m4UPV6XUzuHJYhv22rhsPR9PyhZmSEHMuwbMsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y/3rDGwP/3pTygtLcXp06dRW1uLkpIS3HLLLRgxYgTOnDmD9957LzwIWK1WvPLKK8jJyUnK8g8cOIC///u/h6IoAIDMzEwoioL/9b/+V1R1WbhwIb7xjW9c8ne/34/Vq1dj9erVGDBgAEaPHo0hQ4YgOzsbra2tOHToEKqqqrpN5JSWluKPf/yjxmxQTwYMGIDHHntMdDUMxaPY8SfvDaKrIZQZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFljYFdeeSW2b9+OH/zgB6iqqoKiKCgvL0d5eXm3511++eVYs2ZNt/vMJFv5586d6zZh4vF48Nxzz0Vdl3vuuSfiZE1XLS0t2LVrV4+Pp6Wl4eGHH8ZTTz0Fh8MRddlERERERERERERERLHgZdAMrqioCB9//DHWrVuHqVOnYsiQIbDZbBg4cCDGjx+P5cuX49ChQ5g2bZqU5ffllVdewZ///GcsXrwYkydPRlFRES6//HJYrVZkZWXhqquuwrRp0/DUU0+hrq4OK1as4ERNnDU3N2PZsmVobm4WXRXDyLL48ED6XmRZfKKrIowZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+uLJGAjabDffffz/uv//+mLZTWFgYvgxZosufNGlSv8ruy8CBAzFz5kzMnDkz7tum6GRlZWHOnDnIysoSXRXDaFfS8I7varQraaKrklA19S5sqKgDEDkHizZWYdywPMwouQIjC7L73N7uxZPDr9tX16RPpSMYMzQXz84q6fN5MuwbMsSQDIbkZaD2KTFfaiAisTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwhIl1ZrVYUFhaKroahdCAF9SGn6GokzPaaBqwsP4bK2sbw3yLlYF9dE/bVNeG58qMoLczDgkkjMLloYI/bHZKXAQAYNywvoZM144bnhcvujQz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFcejwcvv/wyPB6P6KoYhgMBTLF9DgcCoquiqyaPH4+8tB/z1u7tNlED9J2DytpGPLB2Dxa+vB9NHn+v5UwvGRy3Okdj+ugronqeDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNkDRHpKiUlBTk5OUhJ4XATrRAsaFVsCMEiuiq6OXzahallu7D5k1MRH482B5uqTmFq2S7U1Lt6fE5RgROlhXkx1TdapcPyorpEGyDHviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+2EOISFfp6emYOnUq0tPTRVfFMPywojJwFfySXqny8GkXZr9QgQaXr8fnaMlBg8uHWasqep2weWjS8H7VVasFt4yI+rky7BsyxEBEJBLHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1RKQrv9+Pqqoq+P29X6qKLrCiA19PPQsrOkRXJe6aPH7MXVOJlvbeL/GmNQct7QHMWV3Z4yXRphTlY/pofS+HNqNkcK/30LmYDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNkDRHpyuv1ory8HF6vV3RVDMOGDpRYT8Em4WTNE5ure11R06k/OWhw+bB0S3WPjy+bXox8pz3q7WmR77Rj6V3Fml4jw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/uS8xg4RJQ2n04lFixaJroahtMGG13zXi65G3G2vaejxHjUX628ONlWdwoySwZhSlH/JY7mZNqybV4pZqyr6XNmjxYD0NKybV4rcTJum18mwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/rqwhIl0pigKv1wtFUURXxUAU2BAEIFfOVpYf0/Ds/udg5c6eyykqcGLj/PFxW2GT77Rj4/zxKCpwan6tDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNkDRHpqqWlBU8//TRaWlpEV8Uwsix+/Ci9ClkWea5lWlPvQmVtY9TPjyUHlV804ki9u8fHiwqc2LpwImaUxHYPmxklg7F14cR+TdQAcuwbMsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y+TNUSkq+zsbMyfPx/Z2dmiq2IYbUoaNnmvRZuSJroqMTnR2Bb+t6GiTtNrY81BX+XlZtpQNvsGrJ47BqXD8jRtu3RYHtbMHYuy2TdovvRZVzLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mP96whIl2lpqaioKBAdDUMJYQUNCoZoqsRswnLd/T7tbHmYH1FHf515qg+nzelKB9TivJxpN6NDRV1WN/DJM+YobkYNzwP00dfgZEF8XlzJcO+IUMMREQicRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP64soaIdNXa2oq1a9eitbVVdFUMIx0BTLXVIB0B0VURJh450HIt2JEF2Xhw4vAeH392Vgkevb0obhM1gBz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6cpqtaKwsBBWKxfyRasDFtSHstEBi+iqCBOPHHj8HXGsUfzJsG/IEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP/YQItKVw+HApEmTRFfDUPywoip4hehqCBWPHPiDIcAepwrpQIZ9Q4YYAGBIXgZqn5omuhpEZEKyjKNkDuyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrnw+HyoqKuDz+URXxTDS0IFrUxuQhuReGaKneOTAZk3uQ5wM+4YMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH6S+4zWURkeH6/H1VVVfD7/aKrYhhWdODr1rOwmniyJh45yLSlxrFG8SfDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+eBk0ItJVdnY2HnroIdHVMJR22LDZVyy6GjHbvXhy+OdFG6uwr64p6tfGmoMxQ3NhsST3PX9k2DdkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH1fWEJGuQqEQmpubEQqFRFfFMCxQkGXxwQJFdFViMiQvI/xv3LA8Ta+NNQfjhmsrTwQZ9g0ZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8kaItKVy+VCWVkZXC6X6KoYRqbFj3sdB5BpSezy2Jp6F1btOtrj44s2VmH51hocqXdr3vb0ksGanh9rDqaPvqJfr0skGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9MfLoBGRrpxOJxYuXAin0ym6KobhUWx41XsdPIotIeVtr2nAyvJjqKxt7PV5++qasK+uCc+VH0VpYR4WTBqByUUDoyqjqMCJ0sK8PsvoFEsOSoflYWRBtubXJZoM+4YMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5oqthKAosaFXsupfT5PHjic3V2PzJKc2vraxtROXaRswoGYyldxUjN7PvSZWHJg1H5droJmtiycGCW0b063WJJsO+IUMMREQicRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP54GTQi0pXb7cbKlSvhdmu/dJZZpcOP6fZqpEO/y6AdPu3C1LJd/Zqo6WpT1SlMLduFmvq+l/JOKcrH9NHRXQ6tvzmYUTI46tU+osmwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka5sNhtKSkpgsyXmkl4yCCIVnwcvQxCpumz/8GkXZr9QgQaXLy7ba3D5MGtVRVQTNsumFyPf2feKmf7kIN9px9K7iqN+vmgy7BsyxEBEJBLHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1RKQru92O8ePHw27X/7JesgggFYc68hHQYbKmyePH3DWVaGkPxHW7Le0BzFldiSZP7ythcjNtWDevFAPS03p9ntYcDEhPw7p5pVFdji1ZyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrrxeL8rLy+H1ekVXxTBsCKLE+iVsCMZ9209sro7bipqLNbh8WLqlus/nFRU4sXH++F5X2GjJQb7Tjo3zx6OowFg36pNh35AhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwhIl0Fg0HU1tYiGIz/xIOsUqGgIMWNVChx3e72moaY71HTl01Vp7C9pqHP5xUVOLF14UTMKIl8D5toczCjZDC2LpxouIkaQI59Q4YYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1ZRVeAiOSWlZWFuXPniq6GobQjDVv9RXHf7sryY3HfZsRydh7DlKL8Pp+Xm2lD2ewbMKNkMFbuPIbKLxrDj/WVg9JheVhwywhMLhoYlzqLIMO+Ea8YhuRloPapabFXiIjIYGQ4FpB5sL+aA9tZDOZdO+ZMJXseZIlPljhIf1xZQ0S66ujoQH19PTo6OkRXxTBSEEKepQ0pCMVtmzX1LlTWNvb9xDio/KIRR+rdUT9/SlE+Xpl/E95dNBE/GT8UQOQcjBmai59PHoF3F03EK/NvMvREDSDHviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFlDRLpyu91YtWoV3O7oT96bXYYlgBmOQ8iwBGLe1onGNpxobMOGiro41Cx6/SlvZEE2Hpw4HEDkHDw7qwSP3l6EkQXZcaunSDLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPl0EjIl0NGDAAS5Ysgd3e883kqbtWxYYX20vgR2rM25qwfEccaqTd+oo6/OvMUf1+fTxzkKxk2DdkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXFosFDodDdDUMxgK/BMOzoiiwWCz9fLUcOeiNDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNl0IhIVy6XCytWrIDL5RJdFcPIgB/32D9FBvyiqxITj7//12KVJQe9kWHfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXTkcDkyaNInfIIhCTb0Lq3YdhR+pqAoOvuQSYIs2VmH51hocqTfGNU79wVD/X9tDDmQiw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/uS+xgwRCWez2VBSUiK6Gklte00DVpYfQ2Vt4/m/pOLzjssued6+uibsq2vCc+VHUVqYhwWTRmBy0cDEVlYDm7X/3wcI9pADmciwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/rqwhIl21t7dj69ataG9vF12VpNPk8eORl/Zj3tq9XSZqABuCKE07DhuCPb62srYRD6zdg4Uv70eTJzkvFZZp6/+qmGhyYHQy7BsyxEBEJBLHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1RKSrUCiE5uZmhEL9vySWjA6fdmFq2S5s/uTUJY+lQEGWxY8UKH1uZ1PVKUwt24Wa+sjXPd29eDJ2L56Mbw7NjbnOWowZmguLxdLv12vJgVHJsG/IEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0lZmZidmzZ4uuRlI5fNqF2S9UoKU9EPFxL9Kw3f/1qLfX4PJh1qoKbJw/HkUFzm6PDcnLAACMG5aHfXVN/a+0RuOG58X0eq05MCIZ9g0ZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x5U1RKSrYDCI2tpaBIPJfzmrmnoXVu062uPjizZWYfnWGhypd/e7jCaPH3PXVPY4UQMAqQihIMWFVET/jYuW9gDmrK7s8ZJo00sGa65rLKaPviKm1/cnB0ZjpH2jJzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVEpKvW1lasW7cOra2toqvSo+01Dbhv5UeYumI3NlQc7/F5++qa8Fz5Udy+YhfuW/kRdtR8pbmsJzZXo8Hl6/U56ZYAvmf/DOmWnid0Imlw+bB0S3XEx4oKnCgtjG21S7RKh+VhZEF2TNvobw6MxAj7Rl9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7Sn0VRFHlvCEAkWHV1NUaNGhX+/eDBgyguLhZYI2M40diGCct3RHxs9+LJ4Ut7xarJ48cTm6sj3jcmWjNKBmPpXcXIzbT1+dztNQ2Yt3Zvv8uK1uq5YzClKF9Y+WvmjsXkooH9em2i2j7Zymb5RERERERERERiiT6Xy5U1RGRKh0+7MLVsV0wTNQCwqeoUppbtQk29q8/nriw/FlNZ0Vq5M3I5U4ryMX20vpdDm1EyuN8TNURERERERERERGbFyRoi0lVLSwueeuoptLS0iK5K2OHTLsx+oaLPy5FFq8Hlw6xVFb1O2NTUu1BZ2xjV9jItPvzQsR+Zlv7Vr/KLxh7vq7NsejHynfZ+bbcv+U47lt4Vn28bxJoDI0jGfUMrGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9GcVXQEikltGRgZmzpyJjIzkuIRSk8ePuWsq0dIe33uhtLQHMGd1JbYunNjtkmgnGtsAABsq6qLellex4gN/IbxK/4foDRV1eHDi8EsuXZWbacO6eaWYtaoirjkYkJ6GdfNKo7ocXDTikYNkl2z7xpC8DNQ+NU3Ta5ItBiIio+E4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cWUNEekqLS0NRUVFSEtLE10VAMATm6vjtqLmYg0uH5Zuqe72twnLd2DC8h3YUHE86u10IBXHQ7noQGq/67K+oq7H+48UFTixcf74uK2wyXfasXH+eBQVOOOyPSA+OUh2ybZv9IcMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEemqra0Nb7zxBtra2kRXBdtrGmK+R01fNlWdwvaahpi2YUcA3077AnbEd/VPV0UFTmxdOBEzSmK7h82MksHYunBiXCdqgMTkQLRk2jf6S4YYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaITGNl+bHElLMzMeXEKjfThrLZN2D13DEoHZan6bWlw/KwZu5YlM2+IW6XPiMiIiIiIiIiIjIreW8GQERJofO6nKLV1LtQWduYkLIqv2jEkXo3RhZk9+v1PqThg8CwONeqZ1OK8jGlKB9H6t3YUFGH9T3cX2fM0FyMG56H6aOv6Hds0Up0DkRIln0jFjLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPK2uISFeBQAA1NTUIBMRczupEYxtONLZhQw8TEHrZUFGHE439W96aig5cldKEVHTEuVa9G1mQjQcnDu/x8WdnleDR24t0n6gBxOUgkUTvG/EgQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/jhZQ0S6En1dzgnLd2DC8h3YUHE8oeWur6jDhOU7+vVahyWIb9tq4bAE41wr4zBDDkTvG/EgQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/iyKoiiiK0Ekq+rqaowaNSr8+8GDB1FcXCywRsZworGtx4mO3YsnY0heRtTbKnzsrXhVq192L54MAFi0sQr76poSVu6Yobl4dlaJplwB8c19f4gs38yxExERERERERGZnehzuVxZQ0SkoyF5GRiSl4Fxw/ISWu644Xk8uU9ERERERERERGQQnKwhIl01Nzdj2bJlaG5uFl0VoaaXDI76uVkWHx5I34ssi6//5Y2+ot+vTQbxyEGyk2HfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXWVlZWHOnDnIysoSXRWhigqcKC2MbnVNu5KGd3xXo11J61dZpcPyMLIgu1+vTRax5sAIZNg3ZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8na4hIV1arFYWFhbBaraKrItxDk4ZH9bwOpKA+5ERHP4foBbeM6NfrkkmsOTACGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9CfvWTAiSgoejwcvv/wyPB6PkPJ3L56M3Ysn45tDcxNa7pihudi9eHK3v00pysf00X1fDs2BAKbYPocDAc3lzigZjMlFAzW/LtnEkgOjEL1vxIMMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5SEkRM9wMycvAkLwMjBsW3SXI4mXc8DwMycu45O/Lphcj32nv9bUhWNCq2BCCRVOZ+U47lt5VrOk1yaq/OTAS0ftGPMgQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/9hAi0lV6ejqmTp2K9PR0ofWYXtL3ipa4ljf6ioh/z820Yd28UgxI7/leLH5YURm4Cn5Evzx2QHoa1s0rRW6mTXNdk1F/cmA0ybJvxEKGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbKGiHTl9/tRVVUFv98vtB5FBU6UFiZmdU3psDyMLMjutS4b54/vcYWNFR34eupZWNERVXn5Tjs2zh+PogJnv+qbjLTmwIiSZd+IhQwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6crr9aK8vBxer1d0VfDQpOEJKWfBLSP6fE5RgRNbF07EjAgrfmzoQIn1FGxRTFTMKBmMrQsnSjVRA2jLgVEl077RXzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+nPoiiKIroSRLKqrq7GqFGjwr8fPHgQxcVy3FNELzX1LmyoqMOGiuMRH//m0FyMG5aHGSVX9Lp6pSePvLQfmz85FWs1ezSjZDDKZt+g6TXbaxqwcucxVH7RGPVrSoflYcEtIzC5aKDWKvbqRGMbJizfEfGx3YsnR7wPjyzlmzl2IiIiIiIiIiKzE30uV96bARBRUlAUBT6fD3a7HRZLzzeL317TgJXlx1BZ2/uExb66Juyra8Jz5UdRWpiHBZO0TVgsm16Mj784hwaXL+rXRCvfacfSu7QP4FOK8jGlKB9H6t3YUFGH9RW1sKEDfqQCuJCzMUNzMW54HqaP7t9ElbEoEXMgk2j3jWQmQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/ngZNCLSVUtLC55++mm0tLREfLzJ48cjL+3HvLV7+5youVhlbSMeWLsHC1/ejyZPdNf9zM20Yd28UgxIT9NUVl8GpKdh3bxS5Gba+r2NkQXZeHDicGRZ/PhRehWyLN1jenZWCR69vcgEEzXoMQcy6WvfMAIZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8kaItJVdnY25s+fj+zsSycYDp92YWrZrpgvS7ap6hSmlu1CTb0rqucXFTixcf545DvtMZXbKd9px8b54+N235g2JQ2bvNeiTYnvhJKRmCEHve0bRiFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFlDRLpKTU1FQUEBUlNTu/398GkXZr9QEbfLkTW4fJi1qkLThM3WhRMxo2RwTOXOKBmMrQsnxm2iBgBCSEGjkoGQiYdoM+Sgp33DSGSIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtKfvGfBiCgptLa2Yu3atWhtbQ3/rcnjx9w1lWhpD8S1rJb2AOasrtR0SbSy2Tdg9dwxKB2Wp6ms0mF5WDN3LMpm3xDTpc8iSUcAU201SEd882MkZshBpH3DaGSIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtKfVXQFiEhuVqsVhYWFsFovDDdPbK6O24qaizW4fFi6pRpls2+I+jVTivIxpSgfR+rd2FBRh/UVdRGfN2ZoLsYNz8P00Vfoet+YDlhQH8pGB8x70zkz5CDSvmE0MsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y89hIh05XA4MGnSpPDv22saYr5HTV82VZ3CjJLBmFKUr+l1Iwuy8eDE4T1O1jw7qwRD8jLiUcVe+WFFVfAK3ctJZmbIwcX7hhHJEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh05fP5UFFRAZ9PXUmzsvxYQspduTMx5eghDR24NrUBaegQXRVhzJCDi/cNI5IhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwhIl35/X5UVVXB7/ejpt6FytrGhJRb+UUjjtS7E1JWvFnRga9bz8Iq8URFX8yQg677hlHJEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0lZ2djWn33Y/mALCh4mhCy95QUYd/nTkqoWXGQzts2OwrFl0NocyQg+zsbDz00EOiqxETGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9MeVNUSkq1AohO/9+1ZMXL4dGyqOJ7Tsnu49k+wsUJBl8cECRXRVhDFDDkKhEJqbmxEKhURXpd9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXLpcL9zoOINMiZqmnohjvZH+mxS80Z8nADDlwuVwoKyuDy+USXZV+kyEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXTmdTrzqvQ4exSakfI/fePc88Sg2oTlLBmbIgdPpxMKFC+F0OkVXpd9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH+9ZQ0S6SklJQatiF1a+PxgCxBXfLwosQnOWDMyQg5SUFOTk5IiuRkxkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH1fWEJGu3G43pturkQ4xl7OyWY03zKXDLzRnycAMOXC73Vi5ciXcbrfoqvSbDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+jPeWUwiMhSbzYbPg5chiFQh5WfaxJQbiyBSheYsGZghBzabDSUlJbDZjHupNxliICISieMoGQn7qzmwncVg3rVjzlSy50GW+GSJg/THy6ARka7sdjtW/WI2AGDRxirsq2tKWNljhubCYrEkrLx4CSAVhzryRVdDKDPkwG63Y/z48aKrERMZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x5U1RKQrr9eLo59W4vKMFIwblpfQsscNT2x58WJDECXWL2FDUHRVhDFDDrxeL8rLy+H1ekVXpd9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXwWAQtbW1CAaDmF4yOKFlTx99RULLi5dUKChIcSMViuiqCGOGHHTdN4xKhhiIiETiOEpGwv5qDmxnMZh37Zgzlex5kCU+WeIg/fEyaESkq6ysLMydOxcAUJQFlBbmobK2UfdyS4flYWRBtu7l6KEdadjqLxJdDaHMkIOu+4ZRyRADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXXV0dKC+vh4dHR0AgIcmDU9IuQtuGZGQcvSQghDyLG1IQUh0VYQxQw4u3jeMSIYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaIdOV2u7Fq1Sq43W4AwJSifEwfre/l0GaUDMbkooG6lqGnDEsAMxyHkGEJiK6KMGbIwcX7xpC8DNQ+NS3ivyF5GYJrG9nFMRARkTYcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP4uiKPLeEIBIsOrqaowaNSr8+8GDB1FcXCywRomnKAp8Ph/sdjssFgsAoMnjx9SyXWhw+eJeXr7Tjq0LJyI309av159obMOE5TsiPrZ78WTdT5qr5W+HDR3wIxWARUD5ouPfAUC5JAd6l5/o2CPtG0YjQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGYgehzuVxZQ0S6slgscDgc3Q5GuZk2rJtXigHpaXEta0B6GtbNK+33RE3ysMAPK7pO1JiP/DmItG8YjQwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6crlcmHFihVwuVzd/l5U4MTG+eOR77THpZx8px0b549HUYEzLtsTKQN+3GP/FBnwi66KMGbIQU/7hpHIEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP07WEJGuHA4HJk2aBIfDccljRQVObF04ETNKYruHzYySwdi6cKIUEzUA4EcqqoKDz18CzJzMkIPe9g2jkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH9W0RUgIrnZbDaUlJT0+Hhupg1ls2/AjJLBWLnzGCq/aIx626XD8rDglhGYXDQwDjVNHkGk4vOOy0RXQygz5KCvfcMIZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrtrb27F161a0t7f3+rwpRfl4Zf5NeHfRRPxk/NAenzdmaC5+PnkE3l00Ea/Mv0m6iRoAsCGI0rTjsCEouirCmCEH0e4byUyGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cWUNEekqFAqhubkZoVAoquePLMjGgxOHY31FXcTHn51VgiF5GfGsYtJJgYIsix8pUERXRRgz5EDrvpGMZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8na4hIV5mZmZg9e7boahiKF2nY7v+66GoIZYYcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9eBo2IdBUMBlFbW4tgUN7LWcVbKkIoSHEhFeb9xoUZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFlDRLpqbW3FunXr0NraKroqhpFuCeB79s+QbgmIroowZsiBDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+rMoiiLvDQGIBKuursaoUaPCvx88eBDFxcUCa2QMJxrbMGH5joiP7V48Wdd71ogsm+Wbu+2JiIiIiIiIiEgc0edyubKGiIiIiIiIiIiIiIhIIE7WEJGuWlpa8NRTT6GlpUV0VQwj0+LDDx37kWnxia6KMGbIgQz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6SojIwMzZ85ERgYvIRUtr2LFB/5CeBWr6KoIY4YcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD95z4IRUVJIS0tDUVGR6GoYSgdScTyUK7oaQpkhBzLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPK2uISFdtbW1444030NbWJroqhmFHAN9O+wJ2BERXRRgz5ECGfUOGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbKGiIiIiIiIiIiIiIhIIF4GjYh01XldToqeD2n4IDBMdDWEEpGDIXkZqH1qWsLKk2HfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH9cWUNEugoEAqipqUEgIO/lrOItFR24KqUJqegQXRVhzJADGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9MfJGiLSFa/LqZ3DEsS3bbVwWIKiqyKMGXIgw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/iyKoiiiK0Ekq+rqaowaNSr8+8GDB1FcXCywRsZworENE5bviPjY7sWTMSQvQ8qyWb748omIiIiIiIiIyJxEn8vlyhoiIiIiIiIiIiIiIiKBOFlDRLpqbm7GsmXL0NzcLLoqhpFl8eGB9L3IsvhEV0UYM+RAhn1DhhiIiETiOEpGwv5qDmxnMZh37Zgzlex5kCU+WeIg/XGyhoh0lZWVhTlz5iArK0t0VQyjXUnDO76r0a6kia6KMGbIgQz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfqziq4AEcnNarWisLBQdDUMpQMpqA85RVdDKDPkQIZ9Q4YYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xZQ0R6crj8eDll1+Gx+MRXRXDcCCAKbbP4UBAdFWEMUMOZNg3ZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8na4hIVykpKcjJyUFKCoebaIVgQatiQwgW0VURxgw5kGHfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH/sIRLw+/1Yv3497rjjDgwdOhQOhwODBg3CzTffjGeeeQZnz541RPm1tbWwWCya/n3961/XVNfDhw/j0UcfxfXXX4+8vDxkZmbi6quvxpw5c/D+++/3J3zqQ3p6OqZOnYr09HTRVTEMP6yoDFwFv4mvVGmGHMiwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYYXE1NDcaNG4f7778f77zzDo4fPw6fz4f6+np89NFHePTRR1FcXIy3335byvK1+M1vfoPRo0fjmWeewYEDB9DU1IS2tjb8z//8D/7rv/4Lt912G374wx/C7XaLrqpU/H4/qqqq4Pf7RVfFMKzowNdTz8KKDtFVEcYMOZBh35AhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/8n5l2QROnjyJW2+9FadOnQIAWCwWTJw4ESNGjMCZM2fw3nvvob29HV999RVmzpyJrVu3YsqUKYYoPzs7G/fff3+fz7v88suj2t7jjz+Of/3Xfw3/PmjQIEyYMAEOhwP79u1DdXU1AOCll17CuXPn8NZbb8Fq5e4RD16vF+Xl5Rg+fDhsNpvo6hiCDR0osZ7CqQ4ngkgVXR0hzJADGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9GdRFEURXQnqn4kTJ2L37t0AgKFDh2LTpk0YPXp0+PGzZ89i9uzZ4ct75eXl4ejRo8jJyUnK8mtrazFs2LDw9mpra+NSz/fffx+33XZb+PdHH30Uv/71r7sNji+99BLmzZsHr9cLAFi2bBkef/zxmMuurq7GqFGjwr8fPHgQxcXFMW9Xdica2zBh+Y6Ij+1ePBlD8jKkLJvliy+fiIiIiIiIiIjMSfS5XF4GzaDefvvt8ESJzWbDli1buk2UAMBll12GTZs2Yfjw4QCAxsZGLF++XIrytfjlL38Z/nn27NlYvnz5JbPYP/jBD/Dss8+Gf0/EvX7MQlEUeL1ecF5YCwU2BAGYOWfy50CGfUOGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbLGoH73u9+Ff54zZw6uu+66iM/LzMzEk08+Gf591apVCAaDhi8/Wnv27MGePXsAACkpKb1OFs2fPx/f+MY3AAButxvr169PSB1l19LSgqeffhotLS2iq2IYWRY/fpRehSyLea9laoYcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hhQa2tr+NJiAPDAAw/0+vy7774bWVlZANTVLbt27TJ0+Vq88cYb4Z9vu+02DBkypMfnWiwWzJkzJ/z7n//8Zz2rZhrZ2dmYP38+srOzRVfFMNqUNGzyXos2JU10VYQxQw5k2DdkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH++gbkAffvghfD4fAHXlytixY3t9vsPhwE033YS//OUvAIDt27djypQphi1fix07Ltz7YtKkSX0+f/LkyeGfO+O02+16VM00UlNTUVBQILoahhJCChoVc96bZUheBmqfmia6Ggkhw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/riyxoAOHz4c/vm6666D1dr3nNuNN94Y8fXJWn4wGMRf/vIX/Nu//Rt+8Ytf4J//+Z/x7LPPYvfu3eGJIq117VqHntxwww3hnzs6OvDZZ59FXRZF1trairVr16K1tVV0VQwjHQFMtdUgHQHRVRHGDP1GhhhliIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH1fWGNCRI0fCPw8dOjSq11x11VXhn2tqapK+/C+//BLf/e53Iz6Wm5uLhx9+GI899lj48mqRfPXVV2hubtZU1/T0dFx++eU4c+ZMuK493Y+HomO1WlFYWBjVpB6pOmBBfSgbHbCIroowZug3MsQoQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/riyxoDOnTsX/jk/Pz+q13RdatfY2Gjo8puamvCb3/wGY8aM6XXlS9d6AmLqSupl8CZNmgSHwyG6KobhhxVVwSvgN/F8uhn6jQwxyhADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hhQ1yVz6enpUb2m6/NiXXKnZ/nZ2dmYO3cuXn75ZRw5cgStra3w+Xw4ceIEXn31Vdx2223h5x45cgRTp04Nr4LprZ561FULh8MRXgXU0dGB5uZmKIoCAHC5XPD7/QCA9vZ2eDweAOql4LquDGppaUEgoF4Wq62tDW1tbQCAQCCAlpaW8POam5sRDAYBAB6PB+3t7QAAv98Pl8sFAFAUBc3Nzejo6AjH6fV6AQA+nw9utxsAEAqF0NzcjFAoBABwu93hy9B5vd5wfnqLqbm5GTt37oTP54s6pmAggEzLhcvdZVl8SIVah/Y2fWNq86gxpSCELIsPgBpTBvwIJKCdAn4/BqAd16Y2IA1BZFl8SDkfe5tHv3bqGlNqOHZVpsWHVHT0O6b+tFN7ezt27NgR3kasMSXj/nT27Fl88MEH8Pl8ho3JDO3EmBgTY2JMesbk8XiwY8eO8DZkiEnGdmJMLeH67Nixo1v/NXpMMrZTrDH5fD588MEHOHv2rDQxGaGdGhsbsWvXLvh8Pmli0rudzp07h4qKCrS1tUkTU3/aqaGhARUVFfD5fNLE1LWdvvrqK/z1r3+Fz+czdEyyt5OMMYnCyRoD6uygAGCz2aJ6jd1uD//cuSMkW/mDBg3CqVOnsGbNGsyaNQtXX301MjMzYbPZcOWVV+Kee+7BX/7yF6xatQoWi3p5qC+++AK//OUv+6xnvOuq1fjx43HPPfcAAM6cOYOysrLwALJ69WocOnQIALBz505s2bIFAHDy5EmUlZWFt/H888/j6NGjAIBt27Zh27ZtAICjR4/i+eefDz+vrKwMJ0+eBABs2bIFO3fuBAAcOnQIq1evBqAObmVlZeGJrtdeew0VFRUAgP379+PFF18EoA5gZWVl4QHzxRdfxP79+wEAFRUVeO211/qMadeuXfjoo4/g9/ujjunL47WYYT8Uft69jgO4PEUdZP+6fZuuMZW/+yYAIMfixb2OA7Cdn6S4w16D2qOf6d5OtUc/w+32z/B161mkI4B7HQeQY1H7cvm7b+rWTl1jujylFfc6DoTrOsN+CFekuPodU3/a6dy5c9i1a1d4hVysMSXj/vTKK6/g448/ht/vN2xMZmgnxsSYGBNj0jOmuro67Nq1K/yBUYaYZGwnxqTG5Pf7sWvXLtTV1UkTk4ztFGtMfr8fH3/8MV555RVpYjJCO7399tvhzwayxKR3O73xxhuoqqrC6dOnpYmpP+20cuVKVFVVwe/3SxNT13ZavXo19uzZA7/fb+iYZG8nGWMSRqG4+Y//+A9l5MiRcf336quvXlLOHXfcoUD9ur+yZMmSqOr29ttvh1+TlZUVU5yiy1cURfmnf/qn8PZSU1OV+vr6S55TWVkZfg4Apb29Paptl5aWhl/zzDPPxFTPgwcPKgAUh8OhZGVlKQcPHlSCwaDS1NSkhEIhRVEUpaWlRfH5fIqiKEpbW5vS2tqqKIqiBAIBpampKbyt5uZmxe/3K4qiKB6PR/F4PIqiKIrf71eam5vDz2tqalICgYCiKIrS2tqqtLW1KYqiKD6fT2lpaVEURVFCoZDS1NSkBINBRVEUxe12h/Pj9XoVl8ulKIqidHR0KE1NTUpHR4eiKIricrkUr9erKIqitLe3K263W1EUJe4xHatvVq597L+VoUveVIYueVMpfuy/leFLNitDl7ypHDnxla4x1RxvUIYueVMZtmSzUvzYfytDl2xRhi55U7lmyevK0dNNurfT0dNNyjVLXj8f+xal+LH/Voadj73meIPu7XT8nEcZHo5dzf+1j/23MnzJJuX4OY/0fY8xMSbGxJgYE2NiTIyJMTEmxsSYGBNjYkyMiTGZM6bOc7md/w4ePKgkkkVRzq8BopgtXboUy5Yti+s2f//73+NnP/tZt7/NmjUr/C2XRx55JKpZv9dffx133303APWeLKdPn+53nUSXD6hL4AYOHBhe+bJ+/Xr8+Mc/7vacw4cP49prrw3/3tjYiNzc3D63ff311+PAAXVVwcqVKzF//vx+17O6uhqjRo0K/37w4EEUFxf3e3tGFAqF4HK54HQ6kZIS3WK+E41tmLB8R8THdi+ejCF5GfGsYtKU3Vn+xOXbkWnxw6PYoMCS8PJFxt+pP/3GaGSIUYYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniMAPR53LZOwzoa1/7WvjnhoaGqF5TX18f/jkvL8/Q5QNAVlYWxo0bF/798OHDlzynaz0BcXU1u4uXJVLfMi1+3Os4gEyLX3RVhDFDv5EhRhliICISieMoGQn7qzmwncVg3rVjzlSy50GW+GSJg/THyZo4Wrp0KRRFieu/i1fVAMDIkSPDP3deL7gvx48fD/9cVFQUU5yiy+80aNCg8M+dNz/sauDAgcjJyQn/Hk1dvV5v+JqIQPzqamZOpxMLFy6E0+kUXRXD8Cg2vOq9Dh4luvssycgM/UaGGGWIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2sM6Jprrgn/fODAAQSDwT5f87e//S3i641YfiePxxP+OTMzM+JzupbVeZOp3nStZ2pqKq6++uoYakgAkJKSgpycHC7z1ECBBa2Kvdsl0MzGDP1GhhhliIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH3uIAd18882w2+0A1AmLvXv39vp8n8+HioqK8O9TpkwxdPmduk6+DB48OOJzJk+eHP65vLy8z23u3Lkz/HPXOKn/3G43Vq5cCbfbLboqhpEOP6bbq5EO814GzQz9RoYYZYiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8nawwoKysLt956a/j3tWvX9vr8119/PTwY5OXlYeLEiYYuHwDee+89nDhxIvz7pEmTIj5v5syZ3V5z8uTJXrfbNZaur6X+s9lsKCkpgc1m3kt6aRVEKj4PXoYgUkVXRRgz9BsZYpQhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwxqIcffjj889q1a1FdXR3xeW1tbXj88cfDvz/44IOwWq1JV77f74ffH90qgjNnzuChhx4K/37NNdfgxhtvjPjcsWPHYuzYsQCAjo4OPPbYYz1u94UXXsBnn30GAMjOzsb9998fVX2od3a7HePHj+cqJQ0CSMWhjnwETDxZY4Z+I0OMMsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y+TNQY1bdo0TJgwAYB6mbE777wTn376abfnnDt3DjNnzsTnn38OQF3VsmTJkh63WVtbC4vFEv7X24qZeJd/6tQpjBgxAsuXL0ddXV3E5yiKgrfeegtjx47F0aNHAQAWiwXPPPNMr9d8/Ld/+7fwzy+++CIee+wxBAKBbs955ZVXsGjRovDv//iP/4jLLrusx21S9LxeL8rLy+H1ekVXxTBsCKLE+iVs6Pt+ULIyQ7+RIUYZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8kaA/vTn/6EQYMGAVAnWkpKSjB58mT87Gc/w4wZM3DVVVfhL3/5CwDAarXilVdeQU5OTtKWf/LkSSxZsgSFhYUYNmwYpk+fjnnz5mH+/Pn4/ve/jyuvvBJ33nlnt8mc5cuX44477ui1nrfeeit+9atfhX9/+umnUVhYiNmzZ2Pu3Lm47rrrMGvWLLS3twMAvvOd7+Cf/umf+psWukgwGERtbS2CQfNOPGiVCgUFKW6kQhFdFWHM0G9kiFGGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9WRRFMe/ZQAnU1NTgBz/4Aaqqqnp8zuWXX441a9Zg2rRpvW6rtrYWw4YNC/++Zs0azJ07NyHlX1x2X6644go899xzmD59elTPVxQFv/nNb/Dkk09esqqmq9mzZ2PVqlVwOp1R16U31dXVGDVqVPj3gwcPori4OC7bltmJxjZMWL4j4mO7F0/GkLwMKctm+URERERERERERGKIPpcb+81LSKiioiJ8/PHHePnll/HSSy+huroaDQ0NyMnJwfDhw/H9738fDzzwgG6X9IpX+UOHDsWBAwfw0Ucf4cMPP0R1dTXOnj2Lc+fOoa2tDU6nE4MGDcLYsWPxve99D3/3d3+HtLS0qOtpsVjwq1/9CnfffTf+8Ic/YNu2bThx4gQCgQAGDRqEm266CXPmzMFtt90Wa0roIh0dHThz5gwuv/xypKaa9x4sWqQghByLF82KAyGTLoA0Q7+RIUYZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0Z86zgJKx2Wy4//778c477+D48ePw+XxoaGjARx99hEcffTTqiZrCwkIoihL+19eqmniWb7FYMGrUKPz93/891qxZg8rKShw7dgwtLS0IBAI4d+4cDh48iDVr1uC+++7TNFHT1TXXXIP/+3//Lw4cOIDm5mZ4PB58/vnnWL9+PSdqdOJ2u7Fq1Sq43W7RVTGMDEsAMxyHkGHpeRWY7MzQb2SIUYYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP3xMmhEOhK9dC4ZKIoCn88Hu90Oi8US1Wt4GbTtsKEDfqQCuJAzM10GrT/9xmhkiFGGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4jAD0edyeRk0ItKVxWKBw+EQXQ2DscAvaHgekpeB2qd6v79VIpih38gQowwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFculwsrVqyAy+USXRXDyIAf99g/RQb8oqsijBn6jQwxyhADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrhwOByZNmsRvEGjgRyqqgoPPXwbNnMzQb2SIUYYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP3xMmhEpCubzYaSkhLR1TCUIFLxecdloqshlBn6jQwxyhADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXbW3t2Pr1v+/vTuPjqJM9zj+6yQkAQLEyBKRJYCOKCLIFQRERXEDUUEUCCgIegWd0cOMntE7HhmXO+q4jMxVR3AuogKCgBJwBJRFQEURHFkFcWGHoAETCNmTvn/0oW5itu5A5U299f2c0+dUp6uq3+d5X+vQ9fi+tUS5ubmmm+IZsSpSj3p7FKsi000xxg/jxoYYbYgBAEziOgovYbz6A/1sBnmPHDkLsT0PtsRnSxxwH8UaAK4qKSlRZmamSkpKTDfFM6IUVEKgQFEKmm6KMX4YNzbEaEMMAGAS11F4CePVH+hnM8h75MhZiO15sCU+W+KA+wLBYNC/dwMBl23dulXnn3++837Lli3q1KmTwRZ5w94jObr02Y8r/OyTP16h1kkNrPzuuvD9AAAAAAAAgB+ZvpfLzBoArioqKtKuXbtUVOTfJb0iFa0SJUcdVbT8+39c+GHc2BCjDTEAgElcR+EljFd/oJ/NIO+RI2chtufBlvhsiQPuo1gDwFXZ2dl68803lZ2dbbopnlE/UKj+cTtUP1BouinG+GHc2BCjDTEAgElcR+EljFd/oJ/NIO+RI2chtufBlvhsiQPuYxk0wEWmp855FcugsQwaAAAAAAAAUJtM38tlZg0AAAAAAAAAAIBBFGsAuCorK0vPPPOMsrKyTDfFMxoG8jUi/ms1DOSbbooxfhg3NsRoQwwAYBLXUXgJ49Uf6GczyHvkyFmI7XmwJT5b4oD7KNYAcFWDBg00aNAgNWjA8l3hygvG6NOCFOUFY0w3xRg/jBsbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH3+vRMIoFbUq1dPHTt2NN0MTylWtPaUnGa6GUb5YdzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJA+5jZg0AV+Xk5CgtLU05OTmmm+IZcSpUn3o7FadC000xxg/jxoYYbYgBAEziOgovYbz6A/1sBnmPHDkLsT0PtsRnSxxwHzNrAKAOaZ3UQF9PvEYfffSRXrvmGqbIAgAAAAAAAD4QCAaDQdONAGy1detWnX/++c77LVu2qFOnTgZb5A17j+To0mc/rvCzT/54hVonuVfAMPndAAAAAAAAAMwwfS+XZdAAuKqwsFDbt29XYaF/l/SKFDnzRw5siNGGGADAJK6j8BLGqz/Qz2aQ98iRsxDb82BLfLbEAfdRrAHgKtbljBw580cObIjRhhgAwCSuo/ASxqs/0M9mkPfIkbMQ2/NgS3y2xAH3sQwa4CLTU+e8imXQAAAAAAAAANQm0/dyY2rtmwDAA1onNdCuZ6433QwAAAAAAAAAPsIyaABclZmZqccff1yZmZmmm+IZ5MwfObAhRhtiAACTuI7CSxiv/kA/m0HeI0fOQmzPgy3x2RIH3McyaICLTE+dqwuKioq0b98+tWrVSjEx4U3m8/tSZDXJmW38kAMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1x+IHpe7mMDgCuiomJUUpKiulmeAo580cObIjRhhgAwCSuo/ASxqs/0M9mkPfIkbMQ2/NgS3y2xAH3sQwaAFcdP35cs2fP1vHjx003xTPImT9yYEOMNsQAACZxHYWXMF79gX42g7xHjpyF2J4HW+KzJQ64j2INAFdFRUUpMTFRUVFcbsJFzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfTyzBnCR6XUOvcrvz6wBAAAAAAAAULtM38ulnAfAVQUFBdqwYYMKCgpMN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9iDQBX5eXlaeXKlcrLyzPdFM8gZ/7IgQ0x2hADAJjEdRRewnj1B/rZDPIeOXIWYnsebInPljjgPpZBA1xkeuqcV7EMGgAAAAAAAIDaZPpeLjNrALgqGAwqLy9P1IXDR878kQMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH0UawC4KisrS3/961+VlZVluimeQc78kQMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH0sgwa4yPTUubqguLhYP//8s5o1a6bo6OiwjvH7Mmg1yZlt/JADG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tcfiB6Xu5MbX2TQB8KTo6WsnJyaab4SnkzB85sCFGG2IAAJO4jsJLGK/+QD+bQd4jR85CbM+DLfHZEgfcxzJoAFyVnZ2tN954Q9nZ2aab4hnkzB85sCFGG2IAAJO4jsJLGK/+QD+bQd4jR85CbM+DLfHZEgfcR7EGgKtiYmKUkpKimBgm8oWLnPkjBzbEaEMMAGAS11F4CePVH+hnM8h75MhZiO15sCU+W+KA+3hmDeAi0+scepXfn1kDAAAAAAAAoHaZvpfLzBoArsrPz9cXX3yh/Px8003xDHLmjxzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJA+6jWAPAVQUFBdqwYYMKCgpMN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9l0AAXmZ4651UsgwYAAAAAAACgNpm+l8vMGgCuKikpUWZmpkpKSkw3xTPImT9yYEOMNsQAACZxHYWXMF79gX42g7xHjpyF2J4HW+KzJQ64j2INAFcdPXpUf//733X06FHTTfEMcuaPHNgQow0xAIBJXEfhJYxXf6CfzSDvkSNnIbbnwZb4bIkD7mMZNMBFpqfO1QUlJSU6evSoGjdurKio8OrDfl8GrSY5s40fcmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOPzB9Lzem1r4JgC9FRUUpMTExomNaJzXQrmeud6dBHlCTnNnGDzmwIUYbYgAAk7iOwksYr/5AP5tB3iNHzkJsz4Mt8dkSB9xHKQ+Aq44dO6bJkyfr2LFjppviGeTMHzmwIUYbYgAAk7iOwksYr/5AP5tB3iNHzkJsz4Mt8dkSB9xHsQaAq2JjY9W1a1fFxsaabopnkDN/5MCGGG2IAQBM4joKL2G8+gP9bAZ5jxw5C7E9D7bEZ0sccB/PrAFcZHqdQwAAAAAAAABA9Uzfy2VmDQBX5eXlaeXKlcrLyzPdFM8gZ/7IgQ0x2hADAJjEdRRewnj1B/rZDPIeOXIWYnsebInPljjgPoo1AFxVVFSkXbt2qaioyHRTPIOc+SMHNsRoQwwAYBLXUXgJ49Uf6GczyHvkyFmI7XmwJT5b4oD7WAYNcJHpqXMAAAAAAAAAgOqZvpfLzBoAriouLlZ6erqKi4tNN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9iDQBXHTt2TFOmTNGxY8dMN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9l0AAXmZ46VxcEg0Hl5+crLi5OgUDAdHM8gZz5Iwc2xGhDDABgEtdReAnj1R/oZzPIe+TIWYjtebAlPlvi8APT93Jjau2bAPhSIBBQfHy86WZ4CjnzRw5siNGGGADAJK6j8BLGqz/Qz2aQ98iRsxDb82BLfLbEAfexDBoAVx09elSTJk3S0aNHTTfFM8iZP3JgQ4w2xAAAJnEdhZcwXv2BfjaDvEeOnIXYngdb4rMlDriPYg0AV8XHx6tv3778HwQRIGf+yIENMdoQAwCYxHUUXsJ49Qf62QzyHjlyFmJ7HmyJz5Y44D6eWQO4yPQ6hwAAAAAAAACA6pm+l8vMGgCuys3N1ZIlS5Sbm2u6KZ5BzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfRRrALiqpKREmZmZKikpMd0UzyBn/siBDTHaEAMAmMR1FF7CePUH+tkM8h45chZiex5sic+WOOA+lkEDXGR66hwAAAAAAAAAoHqm7+UyswaAq4qKirRr1y4VFRWZbopnkDN/5MCGGG2IAQBM4joKL2G8+gP9bAZ5jxw5C7E9D7bEZ0sccB/FGgCuys7O1ptvvqns7GzTTfEMcuaPHNgQow0xAIBJXEfhJYxXf6CfzSDvkSNnIbbnwZb4bIkD7mMZNMBFpqfOAQAAAAAAAACqZ/peLjNrAAAAAAAAAAAADKJYA8BVWVlZeuaZZ5SVlWW6KZ5BzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfRRrALiqQYMGGjRokBo0aGC6KZ5BzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfTyzBnCR6XUOAQAAAAAAAADVM30vl5k1AFyVk5OjtLQ05eTkmG6KZ5Azf+TAhhhtiAEATOI6Ci9hvPoD/WwGeY8cOQuxPQ+2xGdLHHAfxRoAAAAAAAAAAACDWAYNcJHpqXMAAAAAAAAAgOqZvpfLzBoAriosLNT27dtVWFhouimeQc78kQMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH0UawC4inU5I0fO/JEDG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tccB9LIMGuMj01DkAAAAAAAAAQPVM38tlZg0AAAAAAAAAAIBBFGsAuCozM1OPP/64MjMzTTfFM8iZP3JgQ4w2xAAAJnEdhZcwXv2BfjaDvEeOnIXYngdb4rMlDriPZdAAF5meOlcXFBUVad++fWrVqpViYmJMN8cTyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOPzB9L5diDeAi0/+BAwAAAAAAAACqZ/peLsugAXDV8ePHNXv2bB0/ftx0UzyDnPkjBzbEaEMMAGAS11F4CePVH+hnM8h75MhZiO15sCU+W+KA+yjWAHBVVFSUEhMTFRXF5SZc5MwfObAhRhtiAACTuI7CSxiv/kA/m0HeI0fOQmzPgy3x2RIH3McyaICLTE+dAwAAAAAAAABUz/S9XMp5AFxVUFCgDRs2qKCgwHRTPIOc+SMHNsRoQwwAYBLXUXgJ49Uf6GczyHvkyFmI7XmwJT5b4oD7KNYAcFVeXp5WrlypvLw8003xDHLmjxzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJA+5jGTTARaanzgEAAAAAAAAAqmf6Xi4zawC4KhgMKi8vT9SFw0fO/JEDG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tccB9FGsAuCorK0t//etflZWVZbopnkHO/JEDG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tccB9LIMGuMj01Lm6oLi4WD///LOaNWum6Oho083xBHLmjxzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJww9M38uNqbVvAnwoPz+/zPvvv//eUEvMO3z4sOkmeA4580cObIjRhhgAwCSuo/ASxqs/0M9mkPfIkbMQ2/NgS3y2xGGzX9+7/fW9XdcFAbgmLS0tKMnXr4SEhOAdd9wRTEhIMN4Wr7zImT9yYEOMNsTAixcvXiZfXEd5eenFePXHi34m7155kTN/5MGW+GyJw4+vtLS0Wr2XzDJogIsWLFigQYMGmW4GAAAAAAAAACACaWlpuummm2rt+6Jq7ZsAAAAAAAAAAABQDjNrABdlZmZq1apVzvvWrVsrLi7OYIsAAAAAAAAAAL+Wn5+vvXv3Ou8vv/xyJSYm1tr3U6wBAAAAAAAAAAAwiGXQAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAAAAAAAAAIMo1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAABADXz++ecaMmSIWrRoofj4eLVr10733nuv9u/fb7ppAAAAAAAYlZ6erhkzZmjChAnq06ePEhISFAgElJKSYrppdVYgGAwGTTcCAADAS/73f/9X48aNU0lJiZKTk3XmmWdqx44dOnbsmE477TR9/PHH6tKli+lmAgAAAABgxKRJk/T73/++3N/btm2rXbt21X6DPICZNQAAABHYvHmzxo8fr5KSEr3wwgvav3+/1q9frwMHDmjo0KH65ZdfNHjwYOXn55tuKgAAAAAARjRu3Fj9+vXTQw89pDlz5mjSpEmmm1TnMbMGAAAgArfccoveffddDR06VO+8806Zz3Jzc9WxY0ft2bNHr776qsaPH2+olQAAAAAA1B3z5s3TrbfeysyaKjCzBgAAIEzHjx/XBx98IEn67W9/W+7z+vXra8yYMZKk2bNn12rbAAAAAACAd1GsAQAAdUpxcbE2bdqkqVOn6p577tFFF12k2NhYBQIBBQIB9e3bt8bnLigo0PTp0zVgwAC1bdtW8fHxOuOMM9S7d289//zzysjIqPL4r7/+Wnl5eYqNjVXPnj0r3OdE+9auXauSkpIatxUAAAAAgMrU5d/OqJkY0w0AAAA4IS0tTSNHjlROTs4pP/f27duVmpqqDRs2lPl7enq60tPT9fnnn+u5557TtGnTNGDAgArPsWPHDklSmzZtFBsbW+E+Z511liQpLy9Pu3fvVrt27U5dEAAAAAAA36vrv51RM8ysAQAAdUZmZqYr/9jct2+f+vXr5/xjMxAI6PLLL9fYsWN1ww03qH79+pKkn376SYMGDdKKFSsqPM+RI0ckSaeffnql35WUlORs//LLL6coAgAAAAAAQur6b2fUDDNrAABAndOiRQt1797deX344Yf6+9//XuPzjRgxQgcOHJAktW3bVgsWLFCXLl2czzMyMjR8+HAtX75chYWFuvXWW/XDDz8oMTGxzHlyc3MlqdJZNZIUHx/vbLvxj2cAAAAAAKS6+9sZNUOxBgAA1BnXXXeddu/erTZt2pT5+9q1a2t8zkWLFumTTz6RFCqyvP/+++rcuXOZfZo2baoFCxboggsu0I8//qgjR47o2Wef1VNPPVVmvxP/F1FBQUGl35eXl+dsN2jQoMbtBgAAAACgInX9tzNqhmXQAABAnZGcnFzuH5sn65VXXnG2R48eXe4fmyc0bNhQTzzxhPN+ypQpKioqKrPPaaedJkk6fPhwpd93Yqm00vsDAAAAAHCq1PXfzqgZijUAAMBa2dnZWr58ufN+zJgxVe4/ZMgQJSQkSAoVXVavXl3m83POOUeStGfPnkpn13z33XeSQsuhtW3btsZtBwAAAACgNpzq386oGYo1AADAWmvWrFF+fr6k0P/907179yr3j4+PV69evZz3v35Y4oUXXqj4+HgVFBToiy++qPAcq1atkiT16NFDUVH8UwsAAAAAULed6t/OqBnuIAAAAGtt27bN2e7cubNiYqp/XF+3bt0qPF4K/aN1wIABkspOET8hNzdX06ZNkyQNGzasRm0GAAAAAKA2nerfzqgZijUAAMBa3377rbMd7pJkpdf93b59e7nPJ06cqOjoaM2ZM0d/+9vfVFJSIik0bfyOO+7Qnj171LZtW915550n2XoAAAAAANznxm9nRI5iDQAAsNbhw4ed7RYtWoR1THJysrN95MiRcp936dJFr7zyiqKiovTAAw/ozDPP1EUXXaSWLVtqzpw5SkxM1Pz58xUXF3fyAQAAAAAA4DI3fjvv3btXTZs2dV5jx46t8O/33XffSbbeHhRrAACAtbKzs53t+vXrh3VM6f1KH1/auHHj9Mknn2jQoEEqLi7W5s2bddppp2n8+PHavHmzLrzwwpNrOAAAAAAAtcSN387FxcU6fPiw8zp27JgkqaSkpMK/Q6p+8TkAAACPysvLc7ZjY2PDOqb0jJjc3NxK9+vdu7fmz59f88YBAAAAAFAHuPHbOSUlRcFg8OQb5yPMrAEAANaKj493tgsKCsI6Jj8/39kO9/8oAgAAAADAq/jtXDdQrAEAANZKSEhwtquaJVNa6f1KHw8AAAAAgI347Vw3UKwBAADWOv30053tQ4cOhXVMenq6s52UlHTK2wQAAAAAQF3Cb+e6gWINAACw1jnnnONs7969O6xj9uzZ42x37NjxlLcJAAAAAIC6hN/OdQPFGgAAYK1zzz3X2d68ebOKioqqPebf//53hccDAAAAAGAjfjvXDRRrAACAtXr37q24uDhJ0vHjx7V+/foq98/Pz9cXX3zhvL/yyitdbR8AAAAAAKbx27luoFgDAACslZCQoH79+jnv33jjjSr3f++993Ts2DFJoTV3L7vsMjebBwAAAACAcfx2rhso1gAAAKvde++9zvYbb7yhrVu3VrhfTk6OJk6c6Ly/++67FRMT43r7AAAAAAAwjd/O5lGsAQAAVrv++ut16aWXSgpN1R44cKA2bdpUZp/Dhw9r0KBB+v777yWF/s+ghx56qNbbCgAAAACACfx2Ni8QDAaDphsBAABwwoABA3TgwIEyf0tPT9ehQ4ckSQ0bNtRZZ51V7rhFixapZcuWFZ5z37596tGjhw4ePChJCgQCuvzyy9WhQwf9/PPPWrZsmXJyciRJMTExWrJkSZkp4AAAAAAA1CX8drYPxRoAAFCnpKSkaPfu3REft3PnTqWkpFT6+fbt25WamqoNGzZUuk+zZs00bdo0XX/99RF/PwAAAAAAtYXfzvZhMTkAAOALHTt21Nq1azV79mzNmjVLW7du1aFDh5SYmKj27dvr5ptv1pgxY9S0aVPTTQUAAAAAwAh+O5vDzBoAAAAAAAAAAACDokw3AAAAAAAAAAAAwM8o1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAAAAAAAAAACAQRRrAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAAAAAAAAAIMo1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAAAAAAAAAACAQRRrAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAAAAAAAAAIMo1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAAAAAAAAAACAQRRrAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAABAnbZv3z4lJCQoEAjo/vvvr3Cfxx57TIFAQIFAQI899ljtNtCQrVu3Kjo6WoFAQH/5y19MNwcAAAAngWINAAAAgDqpb9++zs33SF933HGH6ebjFHrwwQd1/PhxNWrUSI8++qjp5oTlwQcfdMZjSkqKgsFgjc5z5MgRxcXFOed64403nM86deqkUaNGSZKeeuop7d2791Q0HQAAAAZQrAEAAAAA1Flffvml3nnnHUnSb3/7WzVr1sxwi8IzevRoZ3v37t1atWpVjc4ze/ZsFRQUSJIaNmyoW265pcznjzzyiKKjo5WTk6OJEyfWvMEAAAAwKsZ0AwAAAACgOt27d1ePHj3C3r9nz54utga16ZFHHpEkxcXFacKECWYbE4HOnTvrwgsv1Ndffy1Jeuutt9S3b9+Iz/PWW28520OGDFFCQkKZz8866ywNGTJEc+bM0fTp0/Xwww/rnHPOOam2AwAAoPZRrAEAAABQ5w0YMMA3zyHB//vqq6+0bNkySdItt9yiFi1aGG5RZEaPHu0Ua95991298sorql+/ftjH79ixQ2vXri1zvorcc889mjNnjoqLi/X888/rn//858k1HAAAALWOZdAAAAAAAHXSpEmTnO277rrLXENqaMSIEapXr54k6ejRo0pLS4vo+NKzatq0aaMrrriiwv369u2rs846S5I0Y8YMZWRk1KzBAAAAMIZiDQAAAACgzsnKytK8efMkScnJybrssssMtyhyzZo1U//+/Z33pYsv1QkGg5oxY4bz/vbbb1cgEKh0/1tvvVWSlJeXp1mzZtWgtQAAADCJYg0AAAAA30hJSVEgEFAgENCuXbskSfv27dOjjz6qLl26KDExUQ0bNlTHjh113333affu3RGdv7CwUNOnT9fQoUPVvn17NWrUSA0bNlS7du2Umpqq+fPnKxgMVnmOlStXOm0s/YyTRYsWKTU1VWeffbYSEhIUCATKzDw5ITc3Vy+++KIuueQSNW3aVPXr11eHDh2Umpqq5cuXV5mLE2666Sbns6effjrs+P/85z87x918881hH1eR9957T3l5eZKkG2+8UVFRp+7n68aNG3XGGWc4bb3hhhuUm5tb4b7Lly/X+PHj1alTJyUlJSkuLk4tW7bUtddeq5dffrnS404ovXTZ0qVLlZ6eHlYbV61aVWb8jRo1qsr9Bw8e7GyXLvIAAADAG3hmDQAAAADfSktL0x133KGsrKwyf//222/17bffaurUqZo7d66uv/76as+1cuVK3XXXXfrhhx/KfbZr1y7t2rVLs2fPVs+ePTVv3jydeeaZYbUxKytLY8aM0fz586vdd/PmzRo8eHC5Nvz444/68ccfNXv2bI0bN04vvfRSlef5z//8Ty1cuFCSNG3aNP3Xf/1Xtd9dUlKiN954w3l/ssuWvf/++872lVdeeVLnKm316tW68cYbnT4fNWqUpk6dqpiYsj+P9+7dq1GjRmnlypXlznHw4EEdPHhQH330kZ5++mnNnj1bl156aYXfN3DgQCUlJenIkSMqLi7W22+/rT/84Q/VtrP0LJxevXrpN7/5TZX7/8d//IeaNGmirKwsrVu3Tj/99JOaN29e7fcAAACgbqBYAwAAAMCXli1bpvHjx6u4uFht2rRRr1691LhxY+3cuVMrV65UUVGRcnNzNXToUG3ZskXt2rWr9Fxz587VyJEjVVhYKEmqX7++evbsqZSUFEVFRWnHjh36/PPPVVRUpC+++EK9evXSunXr1KJFiyrbGAwGddttt+lf//qXAoGALrroIp133nkKBoPasmVLmWWxvv/+e/Xr108///yz87fOnTura9euioqK0oYNG7Rx40ZNmTJFjRo1qvJ7+/fvr9atW2vv3r367rvvtHr16mqXIVu6dKn27NkjSWrVqpWuu+66KvevSklJSZlZQJUVQiK1YMECDR8+3Jmx84c//EHPP/98ueXFtm3bpn79+ungwYOSpEAgoG7duum8885T/fr1tX//fq1evVrHjh3TgQMHdPXVV2vx4sUVPlMmNjZWqampeuWVVySFijDVFWtyc3OdJeCksrNzKhMVFaXevXtr8eLFCgaDWrZsmUaMGFHtcQAAAKgbKNYAAAAA8KXf/e53io+P1+TJkzVy5MgyN+y3bt2qa6+9Vvv371dOTo6efPJJvf766xWeZ+vWrRo9erQKCwsVCAT0wAMP6JFHHlFiYmKZ/X788UeNHj1an376qfbu3asxY8Zo0aJFVbZxzZo1KioqUufOnTVz5kx17ty5zOf5+fmSQkWdO++80ynUnH766Zo5c6auvfbaMvuvWLFCqampeuGFF5wH31ckOjpaY8eO1eOPPy5Jmjp1arXFmqlTpzrbY8aMOally7Zv366jR49Kkpo2baqWLVvW+Fyl2zdu3DgVFxdLkp5++mk9/PDD5fY7fvy4hgwZ4hRq+vfvr5deekkdOnQos9/Ro0f18MMP69VXX1V+fr5Gjhypbdu2qUmTJuXOOXr0aKdYs3HjRm3evLlcX5Y2f/58HTt2TJIUFxenYcOGhRVj165dtXjxYknSl19+SbEGAADAQyjWAAAAAKjzFi1apIyMjLD3f+KJJ5SUlFTlPgUFBUpLS6twBkinTp00ZcoUDRw4UFJo5sxrr71WbqksSbr//vud55a88MIL+v3vf1/h97Vv315LlixRjx499M0332jx4sVau3atLr744krbWFRUpOTkZK1YsUJNmzYt93lcXJwk6cMPP9Tq1aslhWZYLFiwQJdcckm5/a+88kp98MEH6tmzpwoKCir9Xkm688479eSTT6qkpETz5s3TSy+9pMaNG1e47+HDh7VgwQJJoVkoY8eOrfLc1dm0aZOzfc4555zUuSTpmWeecZZyi46O1uTJkytdpu1vf/ubtm3bJin0HJh58+ZVWHhq3Lix/vGPfygnJ0dvvvmmDh48qMmTJ+uhhx4qt2/37t117rnnOud966239Nxzz1Xa3tJLoN10003lCn+VOffcc53tjRs3hnUMAAAA6gaKNQAAAADqvHXr1mndunVh7//ggw9WW6wZOHBglUt1DRgwQMnJyUpPT1d2dra2bdtWbjbExo0btWLFCknShRdeqAkTJlT5nQ0bNtSjjz6q1NRUSdLMmTOrLNZI0sSJEyss1JRWelbL8OHDKyzUnHDRRRdp1KhRmjZtWpXnbN26ta677jotWrRIOTk5mjVrlsaNG1fhvtOnT3eKP1dddZVSUlKqPHd1du7c6Wy3atWqxucJBoN64IEH9OKLL0oKFbdmzZqlwYMHV7h/YWGhXn75ZWffyZMnVztD6KmnntJbb72lYDComTNnVliskUKza07M5Hn77bf1zDPPKDo6utx+Bw8e1LJly8ocF67Sz0HatWtX2McBAADAvJrPSwcAAAAAD7v11lur/DwQCKhLly7O+4pufpdexiw1NbXcs08qcuWVVzrbn376abX7h7ME1qpVq5zt2267rdr9w9lHku6++25nu3RB6NdKf1bZjJVIHDp0yNk+/fTTa3SOoqIijR492inUNG7cWEuWLKm0UCNJ69ev108//SRJ6tevn5o3b17t97Rs2VIdO3aUJG3ZskVZWVkV7nfbbbc5hZ8DBw6UKciUNnPmTGeptuTk5HJL2VWldFEvPT097OMAAABgHjNrAAAAANR5f/7zn/XYY4+d0nNW9cyQE0oXCk48Q6W0zz//3Nn++OOPtXv37mrPGQwGne29e/dWuW+7du2qnSG0f/9+51k1kqqdqSOFluUKBAJl2lKRgQMHqmXLljpw4IDWrVtX4bNWvvzyS23ZskVSqFgwaNCgar+/OsePH3e2GzRoEPHxOTk5uummm5xiWvPmzbV48WJ169atyuNK9+e+ffv0u9/9Lqzvy8zMlBTq23379lX43JozzzxTV111lT766CNJodlIFRViSi+BNnLkyApn31SmdK7y8vJUUlJyUs8OAgAAQO2hWAMAAADAlyq6of5r9erVc7YLCwvLfX7gwAFn+8SD3SPxyy+/VPl5s2bNqj1H6UJNgwYNqi3uSFKjRo3UpEkTp8hQmejoaI0dO1b//d//LSk0g2bSpEll9ik9q+b2229XbGxstd8fieoKShV58cUXVVRUJCm0nNvy5ct19tlnV3tc6f7ctGlTmWfnhKuqPh09erRTrJk/f76ys7OVkJDgfP71119r8+bNZfaPRE1yBQAAgLqB/8UGAAAAgC+Fs2RZdSpb8ipcJ5a7qkz9+vWrPUd2drazHckslNJFgqrcddddzuyMGTNmOM+mkUIzWGbPnl1m31OhYcOGznZubm7Ex5cush05ckQHDx4M67iT7U9JTpGoIoMHD1bjxo0lhXI3b968Mp+XnlVz4YUXhjX7q7TSuYqPj2dWDQAAgIfwLzcAAAAAqKHSRYX33ntPwWAw4tfJKl10ycnJCfu40kuNVaVt27a6+uqrJUmHDx9WWlqa89ncuXOd5eF69eql8847L+zvr0pycrKznZGREfHxEyZM0A033CApFOeAAQO0evXqao8r3Z/3339/jfqzb9++lZ6/fv36ZZ6VNH36dGe7qKhIs2bNct5HOqtGKjvLqnQOAQAAUPdRrAEAAACAGmrRooWzbeqB7qUfKp+Tk1Pt0mpSaDZOdUuglXb33Xc726WXPSu9fapm1UihZ/WcsG/fvoiPj42N1bx588oVbD755JMqj6uN/ixdhFm5cqXz3KIPP/xQhw4dkhSaGTRixIiIz71//35nOyUl5eQaCgAAgFpFsQYAAAAAaujiiy92tj/77DMjbWjVqlWZgs3atWurPWb9+vURzeq58cYbnZkay5Yt0549e7Rjxw6n+JGQkKChQ4dG2PLKXXDBBc72t99+W6NznCjYDBw4UFKoYNO/f/8qCzal+3PNmjWuPAOmT58+at++vSSppKREM2bMkFR2CbT+/fuH9byiX9u2bZuz3aVLl5NsKQAAAGoTxRoAAAAAqKEThQAptAzaiZkRte3yyy93tmfOnFnt/icKBOGKiYnRmDFjJIUKDNOmTdPrr7/ufD58+PCwn4ETjnPOOUdNmjSRFFp6rfSMkUjExsbq3XffLVOwqWqGzSWXXKLExERJoRk977//fo2+tyqBQECjRo1y3k+fPl1ZWVlauHCh87eaLIEmSRs3bnS2e/ToUfNGAgAAoNZRrAEAAACAGurRo4fzjJLc3FzdfvvtKigoCOvYgoKCsJYsC8fYsWOd7bfffltffPFFpfv++9//1ptvvhnxd9x1110KBAKSpGnTppU5x6lcAk2SoqKidOWVVzrvP/300xqf60TB5vrrr5cUWgKusoJNXFycJkyY4Ly/9957IyoUhVusGzVqlJPLbdu26Y9//KPy8vIkSUlJSWWKgOEqKSnRmjVrJIUKQldddVXE5wAAAIA5FGsAAAAA4CS89NJLzqySpUuX6rLLLqtyKbIdO3boySefVEpKyilbOq1///7q06ePpNBN+xtuuEHLli0rt9/KlSs1YMAAFRcXKzY2NqLvaN++vfr16ydJ2r17t/NMl86dO5dZPuxUOfG8GUlasWLFSZ0rNjZW7733XlgFmwceeECdOnWSFHoGzEUXXaS5c+eqpKSkwnNnZGTotddeU7du3fTcc8+F1Z527drp0ksvdd6/9tprznZqamrEfSNJX331lbKysiRJ3bt3V/PmzSM+BwAAAMyJMd0AAAAAAKjOokWLlJGREfb+DRo00LPPPutii/7f+eefr1mzZmnYsGHKycnR2rVr1bNnT3Xo0EHdunVTUlKS8vLy9NNPP2nTpk01XtKrKoFAQK+//rp69eqlw4cPKyMjQ1dffbW6dOmirl27SgotkbVhwwZJ0oMPPqi5c+dq9+7dkkIzWcJx9913lysC3XnnnacsjtJuvvlm3XvvvcrLy9PChQv16quvht3Oipwo2Nx888364IMPnILN4sWLnUKXFHr+zsKFC3XVVVdp586dSk9P19ChQ9W0aVP17NlTycnJCgaDOnLkiL755ht99913TiGn9Gyg6owePVqrV6+u8O81MX/+fGd75MiRNToHAAAAzKFYAwAAAKDOW7dundatWxf2/k2aNKm1Yo0UenbNmjVrdOedd+qrr76SJP3www/64YcfKj0mJSVFrVq1OmVtOPvss7V8+XINHjxYO3fulBQq0JR+jokUKrg89dRTevvtt52/NW7cOKzvGDRokJo3b66ffvpJUmjZsNtvv/0URVBWkyZNdMstt2jGjBlKT0/X6tWrnSXnaurEkmhDhgxxCjb9+/cvV7Bp37691q9fr/Hjx2vevHkKBoPKyMjQv/71r2RsUiAAAATjSURBVErPnZiYqM6dO4fdlltvvVX33XefcnJynL+de+656t69e41imzdvniQpPj5eI0aMqNE5AAAAYA7LoAEAAADAKdClSxetX79eH374oe655x5dcMEFatq0qWJiYtSwYUOlpKTo2muv1cSJE/XZZ5/pxx9/dGa9nMo2bNmyRS+88IJ69uyppKQkxcfHq127dho2bJiWLVumKVOmqF69es7zcqKiosIu1tSrV6/M81QGDx6spKSkUxpDaaWfH/PPf/7zlJwzLi6u3DNs+vfvX+65OElJSZozZ442bdqkP/3pT+rdu7fOOOMMxcbGKj4+XsnJyerTp4/uv/9+LVy4UAcPHoxoVkyjRo00ePDgMn+r6ayaVatW6bvvvpMUmlXTtGnTGp0HAAAA5gSCwWDQdCMAAAAAALXnu+++029+8xtJUseOHbVt27awjgsGg+rQoYMzc2fZsmXOc2zccs0112jp0qWKi4vTrl27lJyc7Or3edGwYcM0Z84cRUdHa8uWLerYsaPpJgEAACBCzKwBAAAAAJ955513nO1Ilt36+OOPnUJN+/btI3pGS009+eSTkqT8/HxNmjTJ9e/zmh9++EHvvvuuJOm2226jUAMAAOBRFGsAAAAAwEd27typ559/3nkfyfNN/ud//sfZHjdunAKBwCltW0UuvvhiDRs2TJL0j3/8Qz///LPr3+klf/nLX1RcXKwGDRroiSeeMN0cAAAA1BDFGgAAAACwxDXXXKMlS5aoqKiows8/+OAD9enTR1lZWZKkrl276pprrgnr3AsXLtSCBQskhZ63ctddd52aRofh+eefV8OGDXXs2DFnpg2kb775Rm+99ZYk6U9/+pPatGljuEUAAACoKZ5ZAwAAAACWODHT5bTTTlO3bt3UunVrxcbGKiMjQ19++aX27dvn7NuoUSN99tln6ty5c4Xn+v777/Xyyy+ruLhYO3bs0NKlS3Xi5+MTTzyhRx991P2AAAAAAJ+gWAMAAAAAlgh3WbKzzz5bc+fOVZcuXSrdZ+XKlbriiivK/f2SSy7RihUrFBsbW+N2AgAAACgrxnQDAAAAAACnxpYtW5SWlqY1a9Zo9+7dysjI0JEjRxQfH69mzZqpR48eGjhwoIYPH67o6OiwzxsbG6t27dpp2LBhevjhhynUAAAAAKcYM2sAAAAAAAAAAAAMijLdAAAAAAAAAAAAAD+jWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAIIo1AAAAAAAAAAAABlGsAQAAAAAAAAAAMIhiDQAAAAAAAAAAgEEUawAAAAAAAAAAAAyiWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAIIo1AAAAAAAAAAAABlGsAQAAAAAAAAAAMIhiDQAAAAAAAAAAgEEUawAAAAAAAAAAAAyiWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAIIo1AAAAAAAAAAAABlGsAQAAAAAAAAAAMIhiDQAAAAAAAAAAgEEUawAAAAAAAAAAAAyiWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAoP8DnyhUxneI52kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, lagspec_01_1.spectrum, xerr=energies_err, yerr=lagspec_01_1.spectrum_error, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.errorbar(energies, lagspec_3_30.spectrum, xerr=energies_err, yerr=lagspec_3_30.spectrum_error, fmt='o', label=\"3-30 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time lag (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5d13b5e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Phase lag (rad)')" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAR9CAYAAAAOd4v9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdfXxU1Z0/8M9MJjOT5weBRBQTQCUa1KgYEAsC2kpRHrbWglYF2V3R2hW7reC2u4p22yp1t2RbFexPAUFFt7UgFamrEEAlTUWiEA1FJAkICZCHmWQm83x/f6RMCSQhN5k7Z865n/frxeuVyczce76fc+bUzsk916JpmgYiIiIiIiIiIiIiIiKFWEU3gIiIiIiIiIiIiIiIKNa4AEJERERERERERERERMrhAggRERERERERERERESmHCyBERERERERERERERKQcLoAQEREREREREREREZFyuABCRERERERERERERETK4QIIEREREREREREREREphwsgRERERERERERERESkHC6AEBERERERERERERGRcrgAQkREREREREREREREyuECCBERERERERERERERKYcLIEREREREREREREREpBwugBARERERERERERERkXK4AEJERERERERERERERMrhAggRERERERERERERESmHCyBERERERERERERERKQcLoAQEREREREREREREZFyuABCRERERERERERERETK4QIIEREREREREREREREphwsgRERERERERERERESkHC6AEBERERERERERERGRcrgAQkREREREREREREREyuECCBERERERERERERERKYcLIEREREREREREREREpBwugBARERERERERERERkXK4AEJERERERERERERERMrhAggRERERERERERERESnHJroBRP3R2tqKbdu2RR8PGzYMDodDYIuIiIiIiIiIiIiI6HR+vx+HDh2KPr7++uuRnZ0dl3NzAYSktG3bNsyaNUt0M4iIiIiIiIiIiIhIh/Xr12PmzJlxORe3wCIiIiIiIiIiIiIiIuVwAYSIiIiIiIiIiIiIiJTDLbBISsOGDevyeP369bjwwgsFtSb+vF4vysvLMWnSJKSmpopujhSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUqMqdZjBF1980eV2Bqd/t2skLoCQlE6/4fmFF16I4uJiQa2Jv0AggOTkZFx66aWw2+2imyMFZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmrx8zM0cGqtSoSh1mdPp3u0ayaJqmxe1sRDFSXV2N0aNHRx/v3bvXVAsgRERERERERERERDIQ+V0u7wFCJKGOjg5s3rwZHR0dopsiDWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq8fMzNHBqrUqEodZCwugBBJKBKJoLW1FZFIRHRTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGlWpg4zFLbBIStwCi4iIiIiIiIiIiCjxcQssItIlFAqhtrYWoVBIdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaVamDjMUFECIJtbe3Y/Xq1WhvbxfdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBjcQsskhK3wCIiIiIiIiIiIiJKfNwCi4iIiIiIiIiIiIiIKIa4AEIkIZfLhSeffBIul0t0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9WNm5shAlRpVqYOMxQUQIgmlpqZi1qxZSE1NFd0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGPxHiAkJd4DhIiIiIiIiIgo/jRNQyQSAb9SJFKPxWKB1WqFxWKJ6XFFfpdri8tZiCimvF4v3nnnHXzjG9/gKncfMTNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/26y0zTNHi9XrS3t8Pj8cDv9wtupbEikQjcbjcyMzNhtaq5eY4qNapSRyJyOBxIS0tDeno6UlNTY74gEk9cACEiIiIiIiIiIqIzBINBHD58GD6fT3RTiCiO/H4//H4/mpub4XQ6cf755yM5OVl0s/qFW2CRlLgFFhERERERERGRcXw+Hw4dOoRQKCS6KUQkmM1mw7Bhw+B0Ovv1fpHf5fLaICIJBYNB1NTUIBgMim6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+JzMLBAKor6835eKHGe5xokqNqtQhg1AohEOHDkmZNbfAIpKQ1+vF+vXrcf/99yMrK0t0c6TAzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9TuZ2dy5cxEOh7s8l5ycjKysLKSlpSE5OVnqewL0JhQKoampCeeccw5sNjW/OlWlRlXqSCSapiEYDMLj8cDlcnVZQA6FQmhvb0dGRobAFurHLbBIStwCi4iIiIiIiIjIGIcOHUJ7e3v0scPhwAUXXMAvmYlMJBQKob6+Hn6/P/q79PR0DBs2TPexuAUWERERERERERERCadpGjweT5ff5ebmcvGDyGRsNhtyc3O7/M7j8Ui3DRYXQIgk1Nraiscffxytra2imyINZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmr19rayt+9rOfnXHvj9TUVEEtir9QKIQjR44off8TVWpUpY5EdvpnX9M06RZAuAUWScnsW2CFQiEcPnwY559/Pv8Co4+YmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fie3vPH5fF3u8XHRRReZJkNN0xAIBGC325W9z4kqNapSRyILhULYv39/l9/1Zz4Q+V2uOWYuIsXYbDYUFhaKboZUmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX42mw0XXHDBGV94monFYoHD4RDdDEOpUqMqdZCxuAUWkYQ8Hg/WrVt3xp6c1DNmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn8fjwRtvvIFIJCK6KcKEw2E0NzcjHA6LbophVKlRlTrIWFwAIZKQ1WpFdnY2rFZ+hPuKmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ62e1WpGVlSW6GUJZLBYkJSUpvaWSKjWqUgcZi/cAISmZ/R4gRERERERERERGiNWe/0QkPxXuAcIlcCIJBQIBVFVVIRAIiG6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+gUAAe/bsgYx/L32o2YvCR97q9t+hZm+fjxOJROD1epXeBkyVGlWpg4zFBRAiCfl8PpSXl8Pn84luijSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fj6fDx988IGpv1DWNA1tbW1SLgL1lSo1qlIHGYtbYJGUuAUWEREREREREVHsybgFVk2DG2sr6rC2or7b568uyMHY4bmYWXIeRuVnxLl1RPLiFlhEJISmafD5fFzh1oGZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrp2ka/H6/6Gb02ZaaRnxn+U5MXbajx8UPANhV14Jnyw/gpmXb8Z3lO7G15liPr9U0DZFIRJlxEwgEsGbNGkybNg0FBQVwOp0499xzMX78ePzyl7/EiRMnDDlvOBzGp59+ihdeeAH3338/xowZA7vdDovFAovFgkmTJg34HH3pq4MHD+L111/HokWLMHnyZGRmZkbbYOTN0+fNmxc9x7x583S9d9WqVdH3FhYWGtI+M+ECCJGEXC4XnnrqKbhcLtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz+VyoaysDOFwWHRTetXiCeDBV3dj/qqPUFnbrOu9lbXNuGfVX7Bw3W60eM68P0w4HEZDQ0PCZ9AXNTU1GDt2LO6++268/fbbqK+vh9/vR0NDA3bu3IlFixahuLgYmzZtiul5169fj8zMTFxxxRX4p3/6Jyxfvhy7du1CMBiM6Xl666ujR49i0KBBGDFiBGbPno1f/vKXKC8vR1tbW0zbQImPCyBEEsrIyMCCBQuQkcHLNvuKmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ65eRkYF58+bBak3crww/P+rG1LLtePOTIwM6zoaqI5hath01De4uv09KSsLgwYORlJQ0oOOLdvjwYdxwww2oqqoCAFgsFlx//fWYP38+pk+fjpSUFADAsWPHMGvWLGzZsiVm525tbYXX2/cbz/dXb33l9/vR1NRkeBso8SXu5n1E1KOkpCTk5+eLboZUmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX5JSUkYMmRIwl418/lRN+Y8XwFXR2yuJGh0+zF7RQVeWzAORfmZADoXCpKTk2NyfJHuuOMOHDnSuUhUUFCADRs24Iorrog+f+LECcyZMwfvvfcegsEgbrvtNhw4cADZ2dkxa0NeXh6uueaa6L8//elPKCsri9nx+9JX6enpuOqqq1BaWoprrrkGPp8Pc+fOjVkbKPEl7nIuEfWovb0dq1atQnt7u+imSIOZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nr197ejldeeSUht39q8QQwb2VlzBY/TnJ1BDH3xcrodljhcBgnTpxIyAz6atOmTdixYwcAwG63Y+PGjV0WP07W9sYbb2DEiBEAgObmZixdujQm5586dSrq6urQ0NCAjRs34tFHH8U3v/nNmC6uAL33VV5eHvbu3QuXy4Vt27bhl7/8Jb7zne/gggsuiGkbKPFxAYRIQjabDYWFhbDZeBFXXzEzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9bDYbLrjgAkNvDt1fj71ZjUa3MTdob3T7sWRjNYDOqwocDkdCZtBXzzzzTPTnuXPn4rLLLuvy/Mka09PT8cQTT0R/v2LFCoRCoQGfPz8/Py4LDb31VUpKCoqLixN6OzeKD44AIgk5nU5MmjQJTqdTdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVzOp342te+lnBfGm+paRzwPT/OZkPVEWypaYTVakVGRkbCZdBX7e3teO+996KP77nnnjNec2qNt956K9LT0wF0XgWyffv2uLV1oGTvq/6qra2FxWLp17/a2lrRzY87c40OIkX4/X5UVFTA7zfmLx9UxMzMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PXz+/346KOPEIlERDeli+XlX8bnPNu+RCQSQXt7e8Jl0FcffvhhdMynpaXhmmuuOeM1p9bodDpx7bXXRp+L5c3QjSZ7X1F88BpAIgkFAgFUVVWhuLgYDodDdHOkwMzMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PULBALYs2dPly/ERatpcKOytjku56o82IyaBjcG2QJISUmJyzlj7fPPP4/+fNlll3W7BZymafB6vdEar7rqKvzf//3fGe9PdKfXYRaZmZl44IEH+vTaTz/9NHo/GABSb+3WX1wAIZJQRkYG7rvvPtHNkAozM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXLyMjA/fccw/2798vtB2Hmr3Rn9dW1MX13K9WHsa9E0fgiMuPYbmpcT13LOzbty/6c0FBQbevSUpKwpAhQ6KPT71fR01NjXGNi7HT6zCL3Nxc/OY3vznr6w4dOoTS0tLo49tvv73HMaEyLoAQSSgSicDtdiMzM9N0+xz2FzMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9cvEonA5XJB0zShfyk+YelWYedeU1GHNX9bdKl98mZh7eivpqam6M95eXndvkbTNITDYSQlJcFisSA/Pz/6XHNzfK62iYXT60hUf/7zn/H973+/z6+PxSKUx+PBjBkz0NDQAAAYO3YsXnzxxQEfV0ZcACGSkNvtRllZGRYuXIjs7GzRzZECMzNHBqrUqEodRESicB4lmXC8qo99LA6z18/tdmPFihWYMWMGkpKSRDeH+qG9vT36c09bQ4XDYRw7dgxDhgyBzWbr8rpT35/oTq8jUdXU1MT1yhpN03DXXXehqqoKADBs2DCsX78eTqczbm1IJFz+JpJQZmYmFi5ciMzMTNFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXLzMzEwsWLOAVMxLz+XzRn+12e7evObl11MlFrlPvkdPR0WFsA2Po9Dqo009+8hP84Q9/AACkpaXhzTff7HKVj9lwNiOSkNVqRXZ2Nv+DRAdmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn9VqRVZWVkJvJ0S9O/Wv/AOBQLevsVgssNls0X72+/3R52S6ofjpdSSquXPnQtO0Pv9buXJlv8+1du1a/OIXvwDQmc/atWtRUlISo0rklLjXBhFRj9ra2vDyyy/ju9/9LjIyMkQ3RwrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev7a2Nqxbtw7XXnst/6peUunp6dGfe7qaIxwOo6mpCeeccw6SkpK6vO7U9yeC5uZmPProo90+p2kafD4frr/+etx9992GtSEQCqOmoa3b54ryM2C3JcZnpaKiAv/0T/8Uffzzn/8cs2bNEtegBMEFECIJ2e12lJSU9HgpI52JmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ62e323HZZZcl/F/UU8/OOeec6M+NjY3dvsZisSA1NTXazydvlA0Aubm5xjZQJ7fbjWeeeabX14RCIUMXQGRQX1+PWbNmRa/mufvuu/HII48IblVi4AIIkYQcDgfGjRsnuhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vo5HA6MGTMG+/fvF9qOHYsmR39+6LUq7Kpridu5xxTk4FezS+J2vlgbNWpU9Oe6urpuX2O1Wrtc6VFfXx/9uaioyLjGGcTsC3YejwczZsyILnhdd911eP755wW3KnFwE0QiCfl8PpSXl3e5sRX1jpmZIwNValSlDiIiUTiPkkw4XtXHPhaH2evn8/nw/vvvIxKJCG3HsNzU6L+xw+N7RULp8FxkJ4dxXrbz7C9OQJdcckn05z179iAUCp3xmkgkgra2tmg/f/zxx92+PxEUFhb2eK+McDgMt9uNF198UXQzhdE0DXfeeSc++eQTAEBBQQHeeOONLje2NzsugBBJKBQKoba2ttv/EaPuMTNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/1CoRDq6+uhaZropkTNKBka1/Pdcnk+/H5/QmWgx/jx46Nffns8Hnz00UdnvEbTtGiNfr8fFRUV0eemTJkSt7YO1Kl1mNWPf/xjrF+/HgCQkZGBjRs3YsiQIWIblWC4AEIkofT0dMybNy/hbkyVyJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+6enpuOOOOxLqBuhF+ZkoLYzPVSClw3Nx6dBsDBo0KKEy0CM9PR033HBD9PGqVavOeE1SUlK0xjfeeANtbZ03+M7NzcXEiRPj1dQBO7UOM1qzZg2efPJJAJ3bmr366qu47LLLBLcq8XABhEhC4XAYDQ0NCIfDopsiDWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq9fOBzGsWPHEu4v6u+bNCIu57n/+pHQNA3BYDDhMtDje9/7XvTnVatWobq6usvzJ2v0eDx49NFHo7+/9957YbPJc8toFfqqvz788EP88z//c/Tx0qVLcfPNNwtsUeLiAgiRhNra2rBixYroCj2dHTMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9evra0Nq1atEn4PkNNNKcrDjCuM3QprZslQTC4agnA4jOPHj0u9cHbzzTdjwoQJAAC/349bbrkFn376afT5cDiMffv2YdasWfjiiy8AdF79sXjx4h6PWVtbC4vFEv3X3ZUl8aZCX/VHfX09/uEf/gF+vx8AMH/+fPzwhz8U3KrEJc+SHhFFZWVlYfHixbyhkQ7MzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev6ysLCxcuBD19fWim3KGx2cU488Hm9Do9sf82HmZDiyZXgygc1ul/Px8WCyWmJ8nnl555RWUlpbi6NGjqK2tRUlJCa6//nqMHDkSx48fx7vvvguv1wsAsNlseP3115GdnR2z80+bNg1Hjhzp8ruGhobozx999BFKSkrOeN+mTZswdGjfFrvO1lePPvoo3nzzzS6/a29v7/K4uzY88cQTmDFjRp/aIMLKlStx7NgxAJ0Z2Gw2fP/73+/Te5944gnk5sZnS7lEwQUQIglZLBY4nU7RzZAKMzNHBqrUqEodRESicB4lmXC8qo99LA6z189isSTsglFOmh2r55di9ooKuDqCMTtuVkoyVs8vRU6aHQCiVzjI7vzzz8eWLVtw++23o6qqCpqmoby8HOXl5V1eN3jwYKxcubLLfUNi4bPPPkNdXV2Pz3s8HnzyySdn/D4QCPT5HGfrq/r6+m7Pcarunm9ubu5zG0Q4dcuvcDiM559/vs/v/dGPfmS6BRBugUUkIbfbjWXLlsHtdotuijSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fm63G8uXL0/YLYWK8jPx2oJxyMuMzSJNXqYDry0Yh6L8zOjvwuEwGhsbEzYDPYqKivDnP/8Zq1evxtSpUzFs2DDY7XYMGTIEV199NZ588kl89tln0t47QqW+IuNYNDPeJYakV11djdGjR0cf7927F8XFxQJbFF+BQACfffYZLr30UtjtdtHNkQIzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXLxAIoLq6Gg6Ho8tf1l900UUJdXPsFk8ASzZWY0PVkbO/uAczS4ZiyfTi6JUfJ0UiEfh8PjidTlitav7tuCo1xquOQCiMmobu7yVUlJ8Buy3JsHOLFgqFsH///i6/6898IPK7XC6AkJTMvgBCRERERERERGSEWH3hGQ9bahqxfNuXqDzY9y2LSofn4v7rR2Jy0RADW0Yq4QKI3Asg8i7xEZlYR0cHNm/ejI6ODtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXr6OjA++99x4ikYjopvTJlKI8vL7gWvzpoYm4a1xBj68bU5CDByaPxJ8emojXF1zb6+JHJBKBy+WSJoP+UKVGVeogY3EBhEhCkUgEra2tnOB1YGbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vqd/EJZNqPyM3DvxBE9Pv+r2SV4+KYijMrPOOuxNE1DOByGypvmqFKjKnWQsbgFFkmJW2AREREREREREcWeTFtgnepQsxcTlm7t9rkdiyZjWG5qnFtEquAWWHJvgZXYMxcRdSsUCuHw4cM4//zzE/4/QBIFMzNHBqrUqEodRESicB4lmXC8qo99LA6z1y8UCqG+vh6apnW5CboMhuWmovbJmwd8HE3TEAgEYLfbpcugr1SpUZU6yFjcAotIQu3t7Vi9ejXa29tFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXr/29nasW7fO1NuGhcNhNDU1IRwOi26KYVSpUZU6yFjcAoukxC2wiIiIiIiIiIhiT9YtsIiMwi2w5N4Ci1eAEBERERERERERERGRcrgAQiQhl8uFJ598Ei6XS3RTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1c7lcWLZsmam3FAqFQjh69ChCoZDophhGlRpVqYOMxWvXiCSUmpqKWbNmITU1VXRTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1S01Nxc033wwz75hvtVqRnZ0Nq1XdvxtXpUZV6iBjcQGESELJyckoKioS3QypMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2Sk5Nx0UUXnbHnv5lYrVakpKSIboahVKlRlTrIWFweI5KQ1+vF+vXr4fV6RTdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/r9eLt956C5FIRHRThAmHw2hpaVF6GzBValSlDjIWF0CIiIiIiIiIiIiIiEg5Fs3Mm/qRtKqrqzF69Ojo471796K4uFhgi4iIiIiIiIiI5BcKhc7YAuuiiy6Czcad9MmcAqEwahraun2uKD8DdltSnFsUP7GaD0R+l8srQIgkFAwGUVNTg2AwKLop0mBm5shAlRpVqYOISBTOoyQTjlf1sY/FYfb6BYNB7N+/39Q3QY9EIujo6FB6GzBValSlDjIWF0CIJMR9TPVjZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+vEeIJ1fqre2tiqdgSo1qlIHGYtbYJGUuAUWEREREREREVHscQssoq64BRa3wCIiIiIiIiIiIiIiIkooXAAhklBraysef/xxtLa2im6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+ra2tWLp0KcLhsOimCBMKhXDkyBGEQiHRTTGMKjWqUgcZi1tgkZTMvgVWKBTC4cOHcf755/MS1D5iZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+oVCIdTX18Pn88FisUR/b6YtsDRNQyAQgN1u75KBSlSpMV51cAssubfAMsfMRaQYm82GwsJC0c2QCjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9fPZrPhggsuOOMLTym01AFll3f/3MJPgZyCPh3GYrHA4XDEsGGJR5UaVamDjMUtsIgk5PF4sG7dOng8HtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz+Px4I033kAkEhHdFGHC4TCam5uV3gZMlRpVqYOMxQUQIglZrVZkZ2fDauVHuK+YmTkyUKVGVeogIhKF8yjJhONVfexjcZi9flarFVlZWaKbIZTFYkFSUpLUW0OdjSo1qlIHGYv3ACEpmf0eIERERERERERERojVnv9x1VgN/OUF4KMXun9+2Fig4DrgstuAvEvj2zaSHu8BIvc9QLgETiShQCCAqqoqBAIB0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9cvEAhgz549kObvpf/6J+DFbwLPje958QMADv0ZeP+/geeu7Xz9X9/p8aWRSARer1fqbcBOnDiBDRs24Cc/+QlmzJiB4uJi5OTkIDk5GampqTjvvPNw44034uc//zm++uorQ9rQ0dGB8vJy/OIXv8Add9yBq6++GkOGDIHT6YTD4cCQIUMwfvx4/PCHP8Tu3bv7dY7q6mo89NBDuPzyy5Gbm4u0tDRcfPHFmDt3Lt57770YVwRseP0VXDEsB1cMy8E3r+3hfjM9qK2thcViif6rra2Nefuoewm8dEtEPfH5fCgvL8eIESNgt9tFN0cKzMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj+fz4cPPvgAkyZNQlJSAv9Vu7cZ2PQwsPd3+t9b/yHwyoedV4N8cymQmtvlaU3T0NbWJvXNtefNm4e33nqr2+dCoRA6Ojpw5MgRvPfee3jiiSfwb//2b/iP//iPmG4X98wzz+Dhhx/u8fnjx4/j+PHj2LlzJ/77v/8bs2fPxrPPPovc3Nwe33Oqn/3sZ3j88ccRDAa7/H7//v3Yv38/XnrpJdx+++1YsWIFMjIyBlQLyY1bYJGUuAUWEREREREREVHsJfwWWA17gZe/DbQdHfixMs4F7vw9kKfWd0q33HJLdAFk0KBBuOSSS1BQUID09HR4vV588cUXqKysRCgUir7n7rvvxurVq2PWhqeffjq6AJKamopLLrkEI0eORHZ2NkKhEA4fPoyKigq43e7oey677DK8//77yMzM7PXYjz76KH76059GH5977rmYMGECnE4ndu3aherq6uhz3/jGN/DWW28NaPye3AJrw+uv4NEfPgAAGHr+MLy989M+b4FVW1uL4cOHRx8fPHgQhYWF/W5TvKiwBVaCzFxEpIemafD7/XA4HLzRUx8xM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/U5mlrAa9gKrbgZ8rbE5XttRYOU04J5N0UUQTdOgaVp0qyIZTZo0CdOnT8cNN9yACy+88IznNU1DQ0MDfvjDH+LVV18FALz00kuYPn06vv3tb8ekDRdddBF+9rOf4aabbsIVV1zR7RfmPp8Py5Ytw09+8hNEIhHs2bMHP/7xj/Gb3/ymx+O+9957XRY/fvSjH+E///M/u1yx8+qrr2L+/Pnw+Xx455138POf/xyPPvpoTOoi+fAeIEQScrlceOqpp+ByuUQ3RRrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxeP5fLhbKyMoTDYdFNOZO3ufPKj1gtfpzkawXW3tp5fADhcBgNDQ2JmUEf/ehHP8KCBQu6XfwAOmvUNA2rV6/GlClTor9fsWJFzNowc+ZM/PjHP8bVV1/d49UCTqcTjzzyCB577LHo71566SX4fL4ej/tv//Zv0Z9nz56NH/zgB2ds13b77bfjV7/6VfTx008/jRMnTvS3FJIcF0CIJJSRkYEFCxZwD0MdmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX4ZGRmYN29eTO8FETObHo7NtlfdaTsKvL0IAJCUlITBgwcn9j1QBuhkjTabDffcc0/09/29GflAzZ8/P/pzW1sbvvjii25f95e//AV/+ctfAABWqxVLly7tsa8WLFiAiy66KHrMNWvWGNBykkECzmZEdDZJSUnIz89X+n+MY42ZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrl5SUhCFDhiTe1k9//VP/bniux57/Bf76J1gsFiQnJydeBjF0ao2DBw+O/r6trU1Ie05tQ2/tWL9+ffTnG2+8ERdccEGPfWWxWDB37tzo4z/84Q+xaayBCgsLo1uv6fm3atUq0U1PaFwAIZJQe3s7Vq1ahfb2dtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXr729Ha+88kribf/0/rL4nOeDzu2/Tpw4kXgZxNCpNX722WfR34u6KfepbeitHVu3bo3+PGnSpLP21eTJk6M/f/jhh4l9fxsyDG+CTiQhm82GwsLCHvdQpDMxM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/Ww2Gy644ILEuvqhsRqo/zA+56r7AJbjn8ORVpBYGcSYxWKBw+HA0aNH8fTTT0d/H6sboOsRCATwyCOPRB+PHz8e5557brev/fzzz6M/X3XVVdE6euqrK6+8MvpzOBzGX//6V1x22WUxannszZ07F01NTWd9XVNTE9atWxd9rPJYjQX+LwCRhJxOJyZNmiS6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jmdTnzta1/D/v37xTakpe7vP//lhbie2rprJTLGPwi4moGcgrieOx68Xi9qa2vx9ttvY+nSpTh27BgA4JJLLumyEGGkQCCAo0ePYseOHfiv//ovVFVVAei8B82vf/3rbt9z7NgxtLa2Rh8XFBTAarX2eo+flJQUDB48GMePHwcA1NTUJPQCyOOPP37W1wSDQXzjG9+IPi4qKsKsWbMMbJX8uABCJCG/34/du3fjyiuvhMPhEN0cKTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9TmaWkZEh9kboZZeLO/df/l/nPwBY4hLXjhh5//33MWHChF5fM23aNLz88su9LiYMlM1m63VbsYsvvhi///3vMXr06G6fP/3KiLy8PEQiEXi9XqSmpvY4XvPz86MLIM3Nzf1s/Zlcra34+b8/jJxUO5KsZ78CI1b3V3nggQdQXl4OAMjNzcXGjRuRlZUVk2OrigsgRBIKBAKoqqpCcXEx/yOuj5iZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+gUAAe/bswbXXXiu6KRQHOTk5ePbZZzFnzhxhbUhKSsLixYvx+OOP97pd3en38klJSYGmafB6vUhJSenxfac+F8v7AXna2/Da6v8Xs+P1xbJly/Db3/4WAJCcnIzf//73uPDCC+PaBhlZNE3TRDeCSK/q6uouK8J79+5FcXGxwBYREREREREREckvFAqdsQXWRRddFN97qSxJkL9oV+AKkC+//BL//d//DQDQNA1tbW3Yt28fPv74Y4RCIQCdNwtfvnw5Lr74YsPasXDhwugVIB6PB4cOHUJlZWX0yogLL7wQv/71rzF16tRu379jxw5MnDgx+jgcDvfpKqWJEydix44dAICf/vSn+Pd//3fdbQ+EwqhpaMOG11/Boz98QPf7u3Pw4EFdN53fvHkzbrnllmiGv/3tb/FP//RPMWlLb2I1H4j8LpdXgBBJKBKJwO12IzMzU+wlqRJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+kUiEbhcLmiaxhsrK2LEiBH4zW9+0+V3mqbh0KFDeOyxx7Bq1Sps3boV48aNQ3l5OS6/3Jjtx8rKys74ncfjwTPPPINHH30UX3zxBW6++Wa8+OKLmDt37hmvdTqdXR4HAgE4HA6Ew2EkJSX1OF79fn/0596uFNFr6PnD8PbOT1GUnwG7Lemsr6+trcXw4cP7da7PPvsMs2fPji5+/OAHP4jL4ocqOPsTScjtdqOsrAxut1t0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9XO73VixYgUikYjoppCBwuEwbDYbfvvb3+LBBx8EALS0tGDOnDln3KejubkZ3//+93v9t3bt2n61Iy0tDYsWLcKrr74KoHMB7r777sOXX355xmvT09O7PO7o6EA4HMaxY8d6vbdIR0dHj8eQQVNTE6ZPnx6dx6ZNm4ann35acKvkwi2wSEpm3wKLf8WiHzMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9cvEomgpaUFjY2NXf6inltgqUXTtOiVEx0dHTj33HOjX7Bv3LgRt9xyS/S1fblyYe7cuVi1atWA2nTjjTfivffeAwD88Ic/PONL/mPHjiEvLy/6+PPPP8eoUaPOegXIkCFDojdBf/3113Hbbbfpblt3W2AN9AqQvmyBFQwG8fWvfx3btm0DABQXF2Pnzp2G3qz+dCpsgcXZn0hCVqsV2dnZ/A84HZiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+VqsVWVlZ4re/Wvjp3/8NGxvfcw8b9/dzK8piscBms8FisSA1NRXjx4+PPvfBBx8IadPXv/71XtswZMgQZGdnRx/X1dV1qaM7Pp8vuvgBAEVFRbFrcBzcf//90cWPQYMGYePGjXFd/FAF/xeASEJtbW1Yvnx59EZRdHbMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev7a2NqxcubLXLYXiIqfg7/8KrovrqSMXjMexYArCmefH9bzxdPrWUTk5OdHnmpqaury2sLAQmqb1+m+gV3+crQ0nXXLJJdGfd+/efdYtsD7++OPoz0lJSYbe5D3W/vu//xsvvPACAMBut+MPf/hDv+8hYnZcACGSkN1uR0lJCex2u+imSIOZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrZ7fbcdlll4m/AuRUl307zue7FampqYmVQYydvPLjZI1Hjx6NPpebmyukTX1pw+TJk6M/l5eXn1HH6U5ePQEA48ePh8PhiFFrjbVp0yY8/PDD0cfPP/88vva1rwlskdy4AEIkIYfDgXHjxkkzcScCZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmr5/D4cCYMWMSa9uwvGLggvFnf10sFFwHa/5opKenJ1YGMWa1WqM1NjU1YefOndHnTr3KIp7++Mc/nrUNs2bNiv787rvv4siRI7321alXppz63kRWXV2N22+/HZFIBACwaNEizJ07V3Cr5KbuJ5lIYT6fD+Xl5fD5fKKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn8/nw/vvvx/98jVhfO2h+JznuocQiUTQ1taWeBn0UXNz81lfc7LGUCiE73//+/D7/QA6F8BOvQF6f3k8Hl2fu+eeew4fffRR9PGtt97a7euuueYaXHPNNQA6t/FavHhxj331/PPP469//SsAICMjA3fffbeeEoQ4ceIEpk+fHr0h/cyZM/GLX/xCcKvkxwUQIgmFQiHU1tYiFAqJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX6hUAj19fXQNE10U7q6+CZgtMFbYV12G3DxN6BpGvx+f+Jl0EcvvfQSrrnmGrz00kvRL9JPp2kaPv74Y9x8881Yt25d9PcPP/wwzjnnnAG3Yf/+/bjwwgvxy1/+EocOHerxdQ0NDfjBD36ABx54IPq7CRMm9LoIc+qCwCuvvIKf/OQnCAQCXV7z+uuv46GHHoo+/tGPfoRBgwb1o5L4CQQC+Na3voWDBw8CAC6//HKsXbtW6SuR4sWiyfppJlOrrq7G6NGjo4/37t2L4uJigS0iIiIiIiIiIpJfKBTC/v37u/zuoosugs1mE9Siv/E2A8+NB9qOnv21emWcC9z/IZAq5v4XsbRs2TL84Ac/AADYbDYUFRVh1KhRyMnJgcViQVNTEz799FN88cUXXd536623Yt26dTHp56qqKlx55ZXRx4WFhRg9ejQGDRoEh8MBt9uNmpoafPrpp11uYD5q1Chs3boV5557bq/H/4//+A/853/+Z/Tx0KFDMWHCBDidTuzatQt79+6NPvf1r38dmzZtGlBdgVAYNQ1t2PD6K3j0h52LNUPPH4a3d36KovwM2G1JZz1GbW1tl5uYHzx4EIWFhdHH27Ztw6RJk6KPZ8yYgWHDhvWpfXfddRfGjh3bt2J0itV8IPK7XMEzFxH1RzgcxvHjxzF48GAkJZ19kiVmBpgjA1VqVKUOIiJROI+STDhe1cc+FofZ6xcOh3Hs2DFompZ4NwFPzQXu/D2wchrga43dcZ3Zncf92+KHpmkIhUKw2WyJl0EfnHrPm1AohL1793ZZEDhdRkYGlixZgoULF8bsc5KcnAyr1Rrdmqq2tha1tbU9vt5qteIf//Ef8dRTTyEnJ+esx3/iiSfgcDjwxBNPIBgM4siRI3jttdfOeN2cOXOwYsUK8Yt3fXD6NQpvvvlmn987ZswYwxZAVMBraIgk1NbWhhUrVqCtrU10U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9Wtra8OqVasS9/4XecXAPZs6r9iIhYxzO4+X9/e/RD+5cHbqlQkyuf/++7Fv3z4888wzuPvuu3H11Vdj8ODBSE5ORnJyMs455xwUFxfjW9/6Fl544QUcOXIE//qv/xrTRcLi4mI0NDTg5ZdfxgMPPIAJEybgvPPOg9PpRFJSErKzszFy5EjMmjULv/zlL1FfX4/nn3++T4sfAGCxWPDv//7v2LVrF+69914UFxcjKysLqampGDlyJO6880783//9H1599VVkZmbGrC6SE7fAIimZfQusk/tROhwOKf8aQQRmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn6Zp8Hq9qK+v7/L7hNgC61TeZuDtRcCe/+3/MS67Dfjm0jO2vdI0LXoFjKrjRpUa41XHyS2wutPXLbBkxS2wiEgIi8UCp9MpuhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vpZLJYuWyglrNRc4Nb/17mI8UEZUPdB399bcB1w3UPAxd/o9mnZFwX6QpUaVamDjMUtsIgk5Ha7sWzZMrjdbtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz+12Y/ny5fJs/3TxTZ1bWN2/E7jmn3p+3bBxwIQfdr7unk09Ln4AnVtgNTY2ypNBP6hSoyp1kLF4BQiRhJxOJyZNmsS/ZNGBmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ6+d0OnHdddfBapXsb6bzLgXGPwj85f91//y3ngdyCvp0KIvFgoyMDKWvLFClRlXqIGNxAYRIQna7HSUlJaKbIRVmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn91ux2WXXXbGnv9mYrVakZqaKroZhlKlRlXqIGNJtpxLRADQ0dGBzZs3o6OjQ3RTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z16+jowHvvvYdIJCK6KfrlFABLXN3/6+PVHwAQiUTgcrnkzKCPVKlRlTrIWFwAIZJQJBJBa2srJ3gdmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX4nv1A2M03TEA6HoWma6KYYRpUaVamDjGXROEJIQtXV1Rg9enT08d69e1FcXCywRURERERERERE8guFQmdsgXXRRRfBZuNO+mROgVAYNQ1t3T5XlJ8Buy0pzi2Kn1jNByK/y+UVIEQSCoVCqK2tRSgUEt0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9QqEQ6uvrTf0X9Zqmwe/3K52BKjWqUgcZiwsgRBJqb2/H6tWr0d7eLrop0mBm5shAlRpVqYOISBTOoyQTjlf1sY/FYfb6tbe3Y926dabeNiwcDqOpqQnhcFh0UwyjSo2q1EHG4hZYJCVugUVEREREREREFHvcAouoK26BxS2wiIiIiIiIiIiIiIiIEgoXQIgk5HK58OSTT8LlcoluijSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fi6XC8uWLTP1lkKhUAhHjx5V+t4xqtSoSh1kLF67RiSh1NRUzJo1C6mpqaKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavX2pqKm6++eYzbiptph30rVYrsrOzYbWq+3fjqtSoSh2JrLv7AVksFgEt6T8ugBBJKDk5GUVFRaKbIRVmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGav38nMampquvw+EAggOTlZUKviy2q1IiUlRXQzDKVKjarUkciCweAZv5NtwUmu1hIRAMDr9WL9+vXwer2imyINZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmr5/X68WGDRvOuMGx2+0W1KL4C4fDaGlpUXobMFVqVKWORHb6Z9/pdEp3BQgXQIiIiIiIiIiIiCgqLS2ty2O3282FJCKT8Xq9ZyyAZGZmCmpN/1k0M23iR8qorq7G6NGjo4/37t2L4uJigS0iIiIiIiIiIlJDIBDAgQMHuvzOarUiMzMTmZmZSE5Olm4bHKL+CobC+Oux9m6fu3hIOpJtSXFukXEikQiCwSDcbjfcbvcZ9wAZOXIk7Ha77uOK/C6X9wAhklAwGMSBAwcwcuRI0+zBOVDMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev1Mzy8jIQFtbW/S5SCSC1tZWtLa2imtgHGiaBk3TYLFYpNvqp69UqTFedWiahnDwzJuBA8DBdqvUGeqRkZHRr8UP0bhUSyQh7mOqHzMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9fv1MyGDh2K9PR00U0Swgz3lFClRlXqSHTp6ekYOnSo6Gb0C7fAIilxCywiIiIiIiIiImNFIhEcOXKky5UgRGYTCEVQ09D9Z6AoPwN2m9rXGGRkZGDo0KED2vaOW2ARERERERERERFRQrFarTj//PMRCATgdrvR1tYGn88nullEZDCn04nMzExpt706FRdAiCTU2tqKsrIyLFy4ENnZ2aKbIwVmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavX0+Z2e12DBo0CIMGDYKmaYhEIlB1UxmXy4UVK1ZgwYIFyMrKEt0cQ6hSY7zq+KqlA0+8vqPb5zY9WIzzclIMO3e8WSwWWK1q3deEW2CRlMy+BVYoFMLhw4dx/vnnw2bjOmZfMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YWc8ZHGr2YsLSrd2+Z8eiyRiWmxqvJg6YKv0crzpU6ntRuAUWEelis9lQWFgouhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxlL7Di1EivJ4PFi3bh08Ho/opkiDmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ68fMzJGBKjWqUgcZiwsgRBKyWq3Izs6G1cqPcF8xM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBj8R4gJCWz3wOEiIiIiIiIiIjih/eBMC/2/cCJ/C6Xy2OKCAQCWLNmDaZNm4aCggI4nU6ce+65GD9+PJ5++mmcOHEipuc7ceIENmzYgJ/85CeYMWMGiouLkZOTg+TkZKSmpuK8887DTTfdhF/84hf46quvYnpu6uzvqqoqBAIB0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqVKUOMhYXQBRQU1ODsWPH4u6778bbb7+N+vp6+P1+NDQ0YOfOnXj44YdRXFyMTZs2xeyc8+bNw6xZs/Dzn/8cGzduxGeffYbW1laEQiF0dHTgyJEjeOedd/DjH/8YI0eOxOOPP45IJBKz85udz+dDeXk5fD6f6KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzMyRgSo1qlIHGYtbYEnu8OHDGDt2LI4cOQIAsFgsmDhxIkaOHInjx4/j3XffRUdHBwAgOTkZmzdvxpQpUwZ83ltuuQVvvfUWAGDQoEG45JJLUFBQgPT0dHi9XnzxxReorKxEKBSKvufuu+/G6tWrB3xugFtgERERERERERFR/HAbJPNi3w+cyO9ybXE5CxnmjjvuiC5+FBQUYMOGDbjiiiuiz584cQJz5szBe++9h2AwiNtuuw0HDhxAdnb2gM47adIkTJ8+HTfccAMuvPDCbl/T2NiIH/zgB3j11VcBAC+99BKmT5+Ob3/72wM6NwGapsHv98PhcMBisYhujhSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUqMqdZCxuAWWxDZt2oQdO3YAAOx2OzZu3Nhl8QPovDpjw4YNGDFiBACgubkZS5cuHfC5f/SjH2HBggU9Ln4AQF5eHl5++eUuV5ysWLFiwOcmwOVy4amnnoLL5RLdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBjcQssid18883R+3r88z//M55//vkeX/vyyy/jzjvvBADk5uaisbERNlt8LgBau3Yt7rrrLgDAOeecE5Mbspt9C6xwOIzjx49j8ODBSEpKEt0cKTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mFnPGai0DZIq/RyvOlTqe1FEfpfLK0Ak1d7ejvfeey/6+J577un19bfeeivS09MBdF4Fsn37dkPbd6rBgwdHf25ra4vbeVWWlJSE/Px8qf9HKt6YmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUqMqdZCxuAAiqQ8//BB+vx8AkJaWhmuuuabX1zudTlx77bXRx1u2bDG0faf67LPPoj8XFhbG7bwqa29vx6pVq9De3i66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHG4gKIpD7//PPoz5dddlmftrO66qqrun2/kY4cOYKnn346+pg3QI8Nm82GwsLCuG1jpgJmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMzRwaq1KhKHWQsjg5J7du3L/pzQUFBn95zwQUXRH+uqamJeZtO8nq9qK2txdtvv42lS5fi2LFjAIBLLrkEjzzyiGHnNROn04lJkyaJboZUmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MLHEziOV9KBK1Rr1UqYOMxStAJNXU1BT9OS8vr0/vyc/Pj/7c3Nwcs7a8//77sFgs0X9paWkoLi7Gj370o+jix7Rp0/Dhhx8iIyMjZuc1M7/fj4qKiug2aHR2zMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj9mZo4MVKlRlTrIWFwAkdSpe9ulpKT06T2nvi5ee+Pl5OTg1VdfxVtvvYXs7OyYH9/pdEZv7h4Oh9Ha2gpN0wAAbrcbgUAAANDR0QGPxwMACIVCaG1tjR7D5XIhGAwC6Lx6xev1AgCCwSBcLlf0da2trQiFQgAAj8eDjo4OAEAgEIDb7QYAaJqG1tZWhMNhAJ05+3w+AJ2T8smbwEciEbS2tiISiQDovDn8ycna5/NF+6enmgKBAD7++ONoHSrUZHQ/tbe3Y9euXQgEAsrUpLefAoEAdu/ejePHjytT0+n9FAgEsGvXruhzstbk8/mwa9eu6HOq9RNrYk2siTUZXZPX643+774qNanYT6zJFW33rl27os+pUJOK/TSQmtxuN6qqqtDW1qZMTbL0U2trKz7++OPo/49WoSaj+6mlpQVVVVXo6OhQpqZY/neEA0E40PlzEsJIs/z9i3ejawoEOs9lRwgpf2uDFRGkW/y6++nEiRPYvXs3AoGAtP0UCoVw/PhxVFVVIRAIGDr2vJ522NH5nmSEkYLO9ligoc3tMtUcMdCaROACiKRODlAAsNvtfXqPw+GI/nzygxALQ4cOxQMPPIAHHngA3/ve93DXXXehtLQUNpsNLS0tuP322zFlyhT89a9/jdk5Txo3blz0viLHjx9HWVlZ9EP54osvRm/Avm3bNmzcuBEAcPjwYZSVlUWP8dxzz+HAgQMAgHfeeQfvvPMOAODAgQN47rnnoq8rKyvD4cOHAQAbN27Etm3bAHTe5P3FF18E0DlhlJWV4fjx4wCA3/3ud6ioqAAA7N69Gy+//DKAzkmhrKwsOgm9/PLL2L17NwCgoqICv/vd73qtKSMjAyNGjMDWrVuVqcnofjp06BCCwSAyMjKUqUlvP2VkZOD222/HCy+8oExNp/dTRkYGkpKS8MUXX0hdk6ZpOHHiRPQ/JFTrJ9bEmlgTazK6JpfLhRMnTkSvPlahJhX7iTV11pSRkYETJ05Ev8hQoSYV+2kgNVVXV+O+++7DF198oUxNsvTT1q1bMWLECGRkZChTk9H9tHnzZtx3333w+XzK1BTL/464JvkwrknubPd5VjdmOj6LW037P9sDALjU1ojr7Z3tybb4cJtzT3RxpK/9tGbNGkyePBkZGRnS9tPhw4fxwgsv4L777kNGRoahY6/8T3/EpbZGAMBFSSfwdcd+AECaJYD/Xf28qeaIgdYkhEZSmjZtmgZAA6AtXry4T+/ZtGlT9D3p6ekGt1DTvvrqK23evHnRc+bk5GiffPJJTI69d+9eDYDmdDq19PR0be/evVooFNJaWlq0SCSiaZqmuVwuze/3a5qmaV6vV2tvb9c0TdOCwaDW0tISPVZra6sWCAQ0TdM0j8ejeTweTdM0LRAIaK2trdHXtbS0aMFgUNM0TWtvb9e8Xq+maZrm9/s1l8ulaZqmRSIRraWlRQuFQpqmaVpbW5vW0dGhaZqm+Xw+ze12a5qmaeFwWGtpadHC4bCmaZrmdrs1n8+naZqmdXR0aG1tbZqmaT3WFA6HtaNHj0aPp0JNRvdTR0eHVl9fr4XDYWVq0ttP4XBYa2pq0pqampSp6fR+CofD2qFDh7r0u4w1BYNBra6uLno81fqJNbEm1sSajK7J7/drdXV10eOpUJOK/cSaWqNtqKurix5PhZpU7KeB1OTxeLSWlhbN6/UqU5Ms/eR2u7WjR49q4XBYmZqM7ieXy6W1tLRogUBAmZpi9d8R9U0e7eLFf9AuXvwHrWDxH7URizdolz7ye61g8R+1+iaP4TV9cbRZK1j8R+2ixeu1or+1YfjiN7XiR36v1Z1o19VPzc3N2rFjx7RwOCxtPwWDQa2pqSl6TCPHXk19o3bR4vVaweI/ahcu3qAVLX5DK1j8R61w8Uat+uARU80R/a3p5He5J//t3btXixeLpv3tz0tJKrNnz8brr78OAHjwwQf7tJL2xhtv4NZbbwXQeT+Qo0ePGtrGkxYuXIj/+Z//AdB5I/Q9e/YgKSlpQMesrq7G6NGjo4/37t2L4uLiAR1TJq2trSgrK8PChQsN2VpMRczMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZtZzBrG8CXl/xPL8qvRzvOoQ3fcqEPldLrfAktQ555wT/bmxsbFP72loaIj+nJubG/M29eQXv/gFMjMzAQCff/453n777bidW1WZmZlYuHBhNFc6O2ZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq8fMzNHBqrUqEodZCwugEhq1KhR0Z/r6ur69J76+vroz0VFRTFvU09SU1Mxfvz46OMPPvggbudWldVqRXZ2NqxWfoT7ipmZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzMyRgSo1qlIHGYujQ1KXXHJJ9Oc9e/YgFAqd9T0ff/xxt++Ph5ycnOjPTU1NcT23itra2rB8+XK0tbWJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjKnWQsbgAIqnx48fD4XAAADweDz766KNeX+/3+1FRURF9PGXKFEPbd7pT7zcSz+23VGW321FSUgK73S66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHG4gKIpNLT03HDDTdEH69atarX17/xxhvR1dDc3FxMnDjRyOZ10dTUhJ07d0Yfx/vqExU5HA6MGzcuughGZ8fMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGuNRR02DGyu2H+jx+Ydeq8LSzTXY18CrUBIVF0Ak9r3vfS/686pVq1BdXd3t67xeLx599NHo43vvvRc2m63f521ubu7zayORCL7//e/D7/cD6JyYbrnlln6fmzr5fD6Ul5fD5/OJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjkXVsqWnEd5bvxNRlO7C2or7H1+2qa8Gz5Qdw07Lt+M7yndhacyzmbaGB4QKIxG6++WZMmDABQOcWV7fccgs+/fTTLq9pamrCrFmz8MUXXwDovPpj8eLF3R6vtrYWFosl+q+nq0peeuklXHPNNXjppZfgdrt7bN+nn36KadOmYd26ddHfPfzwwzjnnHP0lEndCIVCqK2t7dO9X6gTMzNHBqrUqEodRESicB4lmXC8qo99LA6z14+ZmSMDVWo0oo4WTwAPvrob81d9hMravv8ROABU1jbjnlV/wcJ1u9HiCcSsTTQwFk3TNNGNoP47fPgwSktLo/fYsFgsuP766zFy5EgcP34c7777LrxeLwDAZrNh8+bNXbbOOlVtbS2GDx8efbxy5UrMmzfvjNctW7YMP/jBD6LHLCoqwqhRo5CTkwOLxYKmpiZ8+umn0UWXk2699VasW7duQFefnFRdXY3Ro0dHH+/duxfFxcUDPi4REREREREREdHpDjV7MWHp1m6f27FoMoblpip9fjP4/Kgb81ZWotHtH/Cx8jIdWD2/FEX5mTFomfxEfpc78G+iSajzzz8fW7Zswe23346qqipomoby8nKUl5d3ed3gwYOxcuXKHhc/9Dh1X71QKIS9e/di7969Pb4+IyMDS5YswcKFC5GUlDTg8xMQDodx/PhxDB48mJn2ETMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqjGUdnx91Y87zFXB1BGPStka3H7NXVOC1BeO4CCIYt8BSQFFREf785z9j9erVmDp1KoYNGwa73Y4hQ4Zg3LhxWLp0KT777DPcfPPNMTnf/fffj3379uGZZ57B3XffjauvvhqDBw9GcnIykpOTcc4552D06NG48847sWrVKhw5cgT/+q//KvWEmmja2tqwYsWK6I3t6eyYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUmOs6mjxBDBvZWXMFj9OcnUEMffFSm6HJRi3wCIpmX0LLE3T4Pf74XA4YLFYRDdHCszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZtZzBqK3oIrl+VXp51jV8eCru/HmJ0di2LKuZpYMRdmcKw07vgxEfpfLK0CIJGSxWOB0OqX+H6l4Y2bmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNsahjS02joYsfALCh6gi21DQaeg7qGRdAiCTkdruxbNkyuN1u0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqjEUdy8u/jGGLejnPtvich87EBRAiCTmdTkyaNAlOp1N0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9WNm5shAlRoHWkdNgxuVtc0xblX3Kg82Y1+D3PdckZVNdAOISD+73Y6SkhLRzZAKMzNHBqrUqEodRESicB4lmXC8qo99LA6z14+ZmSMDVWrsbx2Hmr0AgLUVdTFuUe/WVtThp7NGn/2FFFO8AoRIQh0dHdi8eTM6OjpEN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXr/eMjvU7EXhI291++/kF8oqMMO4UaXG/tYxYelWTFi6FWsr6g1qWffWxHnBhTpxAYRIQpFIBK2trYhEIqKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMzRwaq1ChjHZqmiW6C6Vg0pk4Sqq6uxujRf79kbO/evSguLhbYIiIiIiIiIiIidR1q9mLC0q3dPrdj0WQMy02Nc4viS3T9os+vksJH3hJ27r2P34R0h/nuSiHyu1xeAUIkoVAohNraWoRCIdFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNVapSxjkBInqtVVMEFECIJtbe3Y/Xq1WhvbxfdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUYZ67Db+HV8vHELLJISt8AiIiIiIiIiIoofs2/BJLp+0edXicgtsA7+YhosFouw84vCLbCIiIiIiIiIiIiIiAy2Y9Fk7Fg0GVcX5MT1vGMKcky5+CEaF0CIJORyufDkk0/C5XKJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFJjf+sYlpuKYbmpGDs816CWdW/siPiejzpxAYRIQqmpqZg1axZSU3l5Y18xM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpcaB1jGjZGiMW3SW811xXlzPR51sohtARPolJyejqKhIdDOkwszMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaB1pHUX4mSgtzUVnbHMNWda90eC5G5WcYfh46E68AIZKQ1+vF+vXr4fV6RTdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZmaODFSpMRZ13DdpRAxb1LP7rx8Zl/PQmXgFCBERERERERERkQQONXsxYenWbp/bsWgyhuXKvaURUbxNKcrDjCuG4s1Pjhh2jpklQzG5aIhhx6feWTRN00Q3gkiv6upqjB49Ovp47969KC4uFtgiIiIiIiIiIiJjiVwAMfvii+j6RZ9fZS2eAKaWbUej2x/zY+dlOrB54UTkpNljfmyZiPwul1tgEUkoGAyipqYGwWBQdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaY1VHTpodq+eXIislOUYt65SVkozV80tNv/ghGhdAiCSkyl6N8cTMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGmNZR1F+Jl5bMA55mY4YtKzzyo/XFoxDUX5mTI5H/cctsEhK3AKLiIiIiIiIiMyGW2CJI7p+0ec3ixZPAEs2VmNDVf/vCTKzZCiWTC/mlR+nEPldLm+CTkRERERERERERESml5NmR9mcKzGzZCiWb/sSlQeb+/ze0uG5uP/6kbzheYLhFlhEEmptbcXjjz+O1tZW0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqNLKOKUV5eH3BtfjTQxNx17iCHl83piAHD0weiT89NBGvL7iWix8JiFeAEEkoPT0dc+fORXp6uuimSIOZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrx8zMkYEqNcajjlH5Gbh34gisqajr9vlfzS7h9mMJjgsgRBKy2WwoLCwU3QypMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3ELLCIJeTwerFu3Dh6PR3RTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGlWpg4zFBRAiCVmtVmRnZ8Nq5Ue4r5iZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+zMwcGahSoyp1kLG4BRaRhFJSUjB16lTRzZAKMzNHBqrUqEodRESicB4lmXC8qo99LA6z14+ZmSMDVWpUpQ4yFpfHiCQUCARQVVWFQCAguinSYGbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxuICCJGEfD4fysvL4fP5RDdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZmaODFSpUZU6yFgWTdM00Y0g0qu6uhqjR4+OPt67dy+Ki4sFtoiIiIiIiIiIyFiHmr2YsHRrt8/tWDQZw3JTlTx3IhBdv+jzmxmzHziR3+XyChAiCWmaBp/PB65f9h0zM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNValSlDjIWF0CIJORyufDUU0/B5XKJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjKnWQsbgAQiShjIwMLFiwABkZGaKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMzRwaq1KhKHWQsm+gGEJF+SUlJyM/PF90MqTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGPxChAiCbW3t2PVqlVob28X3RRpMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3EBhEhCNpsNhYWFsNl4EVdfMTNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3F0EEnI6XRi0qRJopshFWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq8fMzNHBqrUqEodZCxeAUIkIb/fj4qKCvj9ftFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNValSlDjIWF0CIJBQIBFBVVYVAICC6KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHGsmiapoluBJFe1dXVGD16dPTx3r17UVxcLLBFRERERERERETGOtTsxYSlW7t9bseiyRiWm6rkuROB6PpFn9/MmP3Aifwul1eAEEkoEomgtbUVkUhEdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaVamDjMUFECIJud1ulJWVwe12i26KNJiZOTJQpUZV6iAiEoXzKMmE41VOh5q9KHzkrW7/HWr2dnkt+1gcZq8fMzNHBqrUqEodZCwugBBJKDMzEwsXLkRmZqbopkiDmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ68fMzJGBKjWqUgcZyya6AUSkn9VqRXZ2tuhmSIWZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrx8zMkYEqNapSBxmLV4AQSaitrQ3Lly9HW1ub6KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzMyRgSo1qlIHGYtXgBBJyG63o6SkBHa7XXRTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyEBvjYeavZiwdGu3z+1YNBnDclNj2bw+M0Nf0cBxAYRIQg6HA+PGjRPdDKkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBjcQssIgn5fD6Ul5fD5/OJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjKnWQsbgAQiShUCiE2tpahEIh0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqVKUOMha3wCKSUHp6OubNmye6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHG4hUgRBIKh8NoaGhAOBwW3RRpMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3EBhEhCbW1tWLFiBdra2kQ3RRrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev0TO7FCzF4WPvNXtv0PN3pidJ5EziBVValSlDjIWt8AiklBWVhYWL14Mh8MhuinSYGbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxuICCJGELBYLnE6n6GZIhZmZIwNValSlDiIiUTiPkkw4XtXHPhbHiOwPNXsxYenWbp/bsWgyhuWmxvR88cbxao4MVKlRlTrIWNwCi0hCbrcby5Ytg9vtFt0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGNxAYRIQk6nE5MmTeIqtw7MzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxeP2ZmjgxUqVGVOshY3AKLSEJ2ux0lJSWimyEVZmaODFSpUZU6iIhE4TxKMuF4VZ8Rfaz6Nkyxws+XfszMHBmoUqMqdZCxeAUIkYQ6OjqwefNmdHR0iG6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+zMwcGahSoyp1kLG4AEIkoUgkgtbWVkQiEdFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNValSlDjIWt8AiklBaWhrmzJkjuhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxuIVIEQSCoVCqK2tRSgUEt0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGNxAYRIQu3t7Vi9ejXa29tFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj9m1n0GNQ1urNh+oMf3PPRaFZZursG+hrZ4NHHAVOlnVeogY3ELLCIJZWdn47HHHhPdDKkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZhZ1wy21DRiefmXqKxt7vU9u+pasKuuBc+WH0BpYS7unzQSk4uGxKO5/aJKP6tSBxmLCyBEREREREREREREf9PiCeCxN6vx5idHdL+3srYZlauaMbNkKJZML0ZOmt2AFhJRX3ELLCIJuVwuPPnkk3C5XKKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMDPtp/GP/19FK89+nBAR1nQ9URTC3bjpoGd4xaFjuq9LMqdZCxuABCJKHU1FTMmjULqampopsiDWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq+f2TP7/Kgb976yB9v9hfBpA984p9Htx+wVFQm3CKJKP6tSBxmLCyBEEkpOTkZRURGSk5NFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj8zZ9biCWDeyko0d0RQH8lBGEkxOa6rI4i5L1aixROIyfFiQZV+VqUOMhYXQIgk5PV6sX79eni9XtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30cW4eavSh85K1u/x1q7poxs9fPzJk99mY1Gt1+OBDE15IPwoFgzI7d6PZjycbqmB1voFTpZ1XqIGNxAYSIiIiIiIiIiIhMa0tNY79ueK7Hhqoj2FLTaOg5iOhMA9/Mjoji7uQeh9R3zMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj+zZra8/Mvoz34k4/3gcGPOs+1LTCnKM+TYeqjSz6rUQcbiFSBEEgoGg6ipqUEwGLvLMVXHzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9TNjZjUNblTWNkcfJyGMC6wtSEI45ueqPNiMfQ1tMT+uXqr0syp1kLG4AEIkIe5xqB8zM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz0yZHWr24lCzF2sr6rr83mkJ4Wv2WjgtIUPOe/r5RFCln1Wpg4zFLbCIJJSVlYVHHnlEdDOkwszMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PUzU2YTlm7t9vcezYFXfFcadt41FXX46azRhh2/L1TpZ1XqIGNxAYSIiIiIiIiIiPrsULO3xy+PdyyajGG5qXFuEZFcNE2DxWIR3QwiU+AWWEQSam1txeOPP47W1lbRTZEGMzNHBqrUqEodRESicB4lmXC89t+hZi8KH3mr23+HmhNnOxT2sTjMXj9mBqRb/Lgn5SOkW/yGncMTiP39RfRQpZ9VqYOMxQUQIgmlp6dj7ty5SE9PF90UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mBnQoSXjbf/F6NCSDTtHIBQx7Nh9oUo/q1IHGYtbYBFJyGazobCwUHQzpMLMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2ZAGFY0RDINPYfdJvZv0lXpZ1XqIGPxChAiCXk8Hqxbtw4ej0d0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9WNmgBNBTLF/ASeChp0jzZ5k2LH7QpV+VqUOMhYXQIgkZLVakZ2dDauVH+G+YmbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vqZKbMdiyZjx6LJuLogp8vvI7CgXbMjAmNuUj6mIEf3DdBrGtxYsf1Aj88/9FoVlm6uwb6Gtj4dT5V+VqUOMha3wCKSUEpKCqZOnSq6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+pkps2G5qQCAscNzsauuJfr7AGyoDF5g2HnHjsjt82u31DRiefmXqKxt7vV1u+pasKuuBc+WH0BpYS7unzQSk4uG9Ph6VfpZlTrIWFweI5JQIBBAVVUVAoGA6KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhaH2etnxsxmlAzt8tiGMC5MOgEbwsac74rzzvqaFk8AD766G/NXfXTWxY/TVdY2455Vf8HCdbvR4um+H1XpZ1XqIGNxAYRIQj6fD+Xl5fD5fKKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavnxkzK8rPRGnh36/KsCOMEtsR2A1YACkdnotR+Rm9vubzo25MLduONz85MqBzbag6gqll21HT4D7jOVX6WZU6yFjcAotIQpmZmXjooYdEN0MqzMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj+zZnbfpBGoXNV5pYUXdvzOf7kh57n/+pG9Pv/5UTfmPF8BV0dsbsDe6PZj9ooKvLZgHIryM6O/V6WfVamDjMUrQIgkpGkafD4fNE0T3RRpMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/3MmtmUojzMuOLkVlga7AgBiG0GM0uG9npfjhZPAPNWVsZs8eMkV0cQc1+s7LIdlir9rEodZCwugBBJyOVy4amnnoLL5RLdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/cyc2eMzipGX6UC6JYDvplQh3RK7+0rkZTqwZHpxr6957M1qNLr9MTvnqRrdfizZWB19rEo/q1IHGYsLIEQSysjIwIIFC5CR0fu+kfR3zMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj8zZ5aTZsfq+aWwOVOxwXcpvFpyTI6blZKM1fNLkZNm7/E1W2oaB3zPj7PZUHUEW2oaAajTz6rUQcbiAgiRhJKSkpCfn4+kpCTRTZEGMzNHBqrUqEodRESicB4lmXC8qo99LA6z18/smRXlZ2LdgvFIzshBJAZfm+ZlOs64/0Z3lpd/OeBz9cXybZ3nUaWfVamDjMUFECIJtbe3Y9WqVWhvbxfdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZgZcH66Ff+cdwizRucO6DgzS4Zi88KJZ138qGlwo7K2eUDn6qvKg83Y19CmTD+rUgcZyya6AUSkn81mQ2FhIWw2foT7ipmZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzDozuHDkcNw57krMGOPC8m1fovJg3xcoSofn4v7rR/Z6w/NDzd7oz2sr6gbUXr3WVtThJ1MvVKKfOV6pLzg6iCTkdDoxadIk0c2QCjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmXXNYEqRE1OK8rCvoQ1rK+qwpofFijEFORg7IhczrjgPo/LPfj+KCUu3xrLJuqypqMNPZ41Wop85XqkvuAUWkYT8fj8qKirg9/tFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj9m1n0Go/IzcO/EET2+51ezS/DwTUV9WvxIBD6fT4l+5nilvuACCJGEAoEAqqqqEAgERDdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZmaODFrbO5So0Qx9RQPHLbCIJJSRkYH77rtPdDOkwszMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIwJ6SpkSNZugrGjheAUIkoUgkgtbWVkQiEdFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXr6fMahrcWLH9QI/ve+i1KizdXIN9DW1GN9FwZhg3NiuUqNEMfUUDxwUQIgm53W6UlZXB7XaLboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX6nZ7alphHfWb4TU5ftwNqK+h7ft6uuBc+WH8BNy7bjO8t3YmvNsXg1OebMMG7CPo8SNZqhr2jguAUWkYQyMzOxcOFCZGZmim6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+JzMLJznx4Ku78eYnR3Qfo7K2GZWrmjGzZCiWTC9GTprdgJYaJx7jZseiydGfH3qtCrvqWgw71+nGFOQgKytLic8GP+PUF1wAIZKQ1WpFdna26GZIhZmZIwNValSlDiIiUTiPkkw4XtXHPhaH2etntVpxtMOKeSvfR6PbP6Bjbag6goovm7B6fimK8uX5gjoe42ZYbmr057HDc+O6ADJ2RK4ynw1V6iBjcQssIgm1tbVh+fLlaGuTf2/NeGFm5shAlRpVqYOISBTOoyQTjlf1sY/FYfb6ffzFETz//Aq43bHJrNHtx+wVFahpkGeLoniPmxklQ+Nynuj5rjhPmc+GKnWQsbgAQiQhu92OkpIS2O1yXUYqEjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9enxRPAv7z2KfYFzkEISTE7rqsjiLkvVqLFE4jZMY0U73FTlJ+J0sLcuJyrdHguRuVnKPPZUKUOMha3wCKSkMPhwLhx40Q3QyrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxen8ferMZXbWF8hbyYH7vR7ceSjdUom3NlzI8dayLGzX2TRqByVbPh57n/+pEA5PtsHGr2YsLSrd0+t2PRZDgcjji3iGTCK0CIJOTz+VBeXg6fzye6KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2fbelphFvfnIEdoRQYvsKdoRifo4NVUewpaYx5seNNRHjZkpRHmZcYexWWDNLhmJy0RAA6nw27Ajh4z9/IH0dZCwugBBJKBQKoba2FqFQ7P+DRFXMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMy+75aXfwkASIKGfGsbkqAZc55tXxpy3FgSNW4en1GMvExjrmTIy3RgyfTi6GNVPhtJ0NDw1SHp6yBjcQssIgmlp6dj3rx5opshFWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZt83NQ1uVNZ2br/UgWRsDhQZdq7Kg83Y19CGUfkZhp1joESNm5w0O1bPL8XsFRVwdQRjdtyslGSsnl+KnLS/3ydDlc9GB5Ix7VtzkJ6eKroplMB4BQiRhMLhMBoaGhAOh0U3RRrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMy+d4eavTjU7MXairro76yIINfihRURw867tqIOh5q9hh1/oESOm6L8TLy2YFzMrgTJy3TgtQXjUJSf2eX3qnw2rIig6Xij9HWQsbgAQiShtrY2rFixAm1tbaKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGbfuwlLt2LC0q1YW1Ef/V2qJYiZzs+QaondFQinW1NR1+MNrROB6HFTlJ+JzQsnYmbJwO4JMrNkKDYvnHjG4gcgvsZYSbUEsWHdS9LXQcbiFlhEEsrKysLixYvhcBizN6SKmJk5MlClRlXqICIShfMoyYTjVX3sY3FUy76mwd3lao3TPfRaFcYOz8XMkvP6vcVUu2bHyx0lCCCpv82UXiKMm5w0O8rmXImZJUOxfNuXqDzY3Of3lg7Pxf3Xj4ze8Lw7iVBjLLRrdnz33n9BVlaW6KZQAuMCCJGELBYLnE6n6GZIhZmZIwNValSlDiIiUTiPkkw4XtXHPhZHley31DRiefmX0ft09GRXXQt21bXg2fIDKC3Mxf2Tev8SvHsWBEz+dWEijZspRXmYUpSHfQ1tWFtRhzU9LICNKcjB2BG5mHFF3xa/EqnGgbHA4XDCYrGIbgglMG6BRSQht9uNZcuWwe12i26KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxZM++xRPAg6/uxvxVH5118eN0lbXNuGfVX7Bw3W60eAJ9fl8qAvi241Okou/vUU0ijptR+Rm4d+KIHp//1ewSPHxTUZ+v/EnEGvsjFQG8vmqF9HWQsbgAQiQhp9OJSZMmKbJaHx/MzBwZqFKjKnUQEYnCeZRkwvGqPvaxODJn//lRN6aWbcebnxwZ0HE2VB3B1LLtqGno2xfEASShKjTU1FtgyTxu+kqVGgNIwpVjr5O+DjIWF0CIJGS321FSUgK73S66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxZE1+8+PujHn+Qo0uv0xOV6j24/ZKyr6tAgSQhK+CA9CyMQLILKOGz1UqTGEJFx0yWjp6yBjcQGESEIdHR3YvHkzOjo6RDdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4Mmbf4glg3spKuDqCMT2uqyOIuS9WdtkOa8eiydixaDKuLsiJ/s6OEEqT62FHKKbnP9WYghzsWDTZsOMPlIzjRi9VarQjhIrtW6Svg4zFBRAiCUUiEbS2tiISiYhuijSYmTkyUKVGVeogIhKF8yjJhONVfexjcWTM/rE3q2N25cfpGt1+LNlYHX08LDcVw3JTMXZ4bvR3VmhItwRghWZIGwBg7IhcDMtNNez4AyXjuNFLlRqt0NDudklfBxnLJroBRKRfWloa5syZI7oZUmFm5shAlRpVqYOISBTOoyQTjlf1sY/FkS37LTWNA77nx9lsqDqCmSVDMaUoL/q7GSVD8Wz5AQCAD8nYErjQ0DbMuOI8Q48/ULKNm/5QpUYfknHjLf+AtLTEXVAj8XgFCJGEQqEQamtrEQoZd0mqapiZOTJQpUZV6iAiEoXzKMlE5vF6qNmLwkfe6vbfoWav6OYlDJn7WHayZb+8/Mv4nGdb1/MU5WeitLDzKpAkRJBvdSMJxvxFfenwXIzKzzDk2LEi27jpD1VqTEIERw/XS18HGYsLIEQSam9vx+rVq9He3i66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxZEp+5oGNyprm+NyrsqDzdjX0Nbld/dNGgEASLEE8U3HX5Fiie09SE66//qRhhw3lmQaN/2lSo0pliDe/sNr0tdBxuIWWEQSys7OxmOPPSa6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxZEh+5NXS62tqIvreddW1OGns0ZHH08pysOMK4bizU+OYGXHGEPOObNkKCYXDTHk2LEkw7gZKFVqbNccmP8vDyM7m1tgUc+4AEJERERERERERCTAhKVbhZx3zWkLIADw+Ixi/PlgkyE3Yc/LdGDJ9OKYH5eI6Gy4BRaRhFwuF5588km4XC7RTZEGMzNHBqrUqEodRESicB4lmXC8qo99LA6z752maV0e56TZ8extRfhuym6kWWK3CJKVkozV80uRk2aP2TGNZIZxo0qNaRY/1q74H+nrIGPxChAiCaWmpmLWrFlITeUlfn3FzMyRgSo1qlIHEZEonEdJJgMZr4eavT3+9fiORZMxLJefgUTAOUkcZt87TyCMdEfXrwYvL8xDyzemYcuW4/C0DfzG0nmZDqyeX4qi/MwBHytezDBuVKnRp9kw4cZvSl8HGYsLIEQSSk5ORlFRkehmSIWZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9n3LhCKAI6uv0tOTsaN116Fqy8PYMnGamyoOtLv488sGYol04ulufLjJDOMG1VqDCMJBSMvQnJysuimUALjFlhEEvJ6vVi/fj28Xq/opkiDmZkjA1VqVKUOIiJROI9SvBxq9qLwkbe6/XfyxsZnw/GqPvaxOMy+d3bbmV8LnszMYQmhbM6VeHHeGJQOz9V13NLhuVg57xqUzblSusUPwBzjRpUaHQhi+/9tkr4OMhavACEiIiIiIiIiIjKZNHvSWV8zpSgPU4rysK+hDWsr6rCmoq7b140pyMHYEbmYccV5GJWfEeumEhH1GxdAiCR0cq9G6jtmZo4MVKlRlTqIiEThPEoy4XhVH/tYHBmy37FoMgDgodeqsKuuJW7nHVOQA4vFcsbve8psVH4G7p04oscFkF/NLlHmvkMyjJuBUqVGP5Ix8evf4D1AqFfcAotIQsFgEDU1NQgGg6KbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHBmyH5abimG5qRirc5upgRo7ovvzyZCZ0cyQgSo1JiGMugP7pa+DjMUFECIJqbJXYzwxM3NkoEqNqtRBRCQK51GSCcer+tjH4siU/YySofE93xXndft7mTIzihkyUKVGpyWEHe++LX0dZCxugUUkoaysLDzyyCOimyEVZmaODFSpUZU6iIhE4TxKMuF4VR/7WByZsi/Kz0RpYS4qa5sNP1fp8Nwe79MhU2ZGMUMGqtTo0Ry4c8GDyMriFljUM14BQkREREREREREJNh9k0bE5Tz3Xz8yLuchIkoEXAAhklBraysef/xxtLa2im6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxZMt+SlEeZlxh7FZYM0uGYnLRkB6fly0zI5ghA1VqTLf48eKvfyl9HWQsLoAQSSg9PR1z585Fenq66KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhZHxuwfn1GMvEyHIcfOy3RgyfTiXl8jY2axZoYMVKmxQ0vGN/9htvR1kLG4AEIkIZvNhsLCQthsvI1PXzEzc2SgSo2q1EFEJArnUZIJx6t8ahrcWLH9QI/PP/RaFZZursG+hjYA7GORZMw+J82O1fNLkZWSHNPjZqUkY/X8UuSk2Xt9nYyZxZoZMlClxjCsOPf8C6Svg4zFBRAiCXk8Hqxbtw4ej0d0U6TBzMyRgSo1qlIHEZEonEdJJhyv8thS04jvLN+Jqct2YG1FfY+v21XXgmfLD+CmZdvxneU78aeqWvaxILJ+voryM/HagnExuxIkL9OB1xaMQ1F+5llfK2tmsWSGDFSp0Ykg3v3jHwyvY1huKmqfvLnbf8NyeQP2RMcFEEUEAgGsWbMG06ZNQ0FBAZxOJ84991yMHz8eTz/9NE6cOBHzc9bW1uK3v/0t7rzzTlxxxRXIyclBcnIycnNzcfnll2PBggXYtm1bzM9LgNVqRXZ2NqxWfoT7ipmZIwNValSlDiIiUTiPkkw4XhNfiyeAB1/djfmrPkJlbbOu91bWNuNf1n2CT44F4e4IGdRC6onMn6+i/ExsXjgRM0sGdk+QmSVDsXnhxD4tfgByZxYrZshAlRojsCA9M0v6OshYvD5IATU1Nbj99ttRVVXV5fcNDQ1oaGjAzp078ctf/hIrV67EtGnTBny+3bt347777kNlZWW3z7e0tKClpQV79uzB888/j0mTJmH16tW44IILBnxu6pSSkoKpU6eKboZUmJk5MlClRlXqICIShfMoyYTjNbF9ftSNeSsr0ej29/sYAdjw6pFcbHn+L1g9v7TPX0TTwMn++cpJs6NszpWYWTIUy7d9icqDfV+AKx2ei/uvH9nrDc+7I3tmsWCGDFSpMQAbxk2cjJSUFNFNoQTG5THJHT58GDfccEN08cNiseD666/H/PnzMX369OgEcOzYMcyaNQtbtmwZ8Dn37dt3xuLHxRdfjG9961u499578Z3vfAfnn39+9Lny8nJce+21+PLLLwd8buoUCARQVVWFQCAguinSYGbmyECVGlWpg4hIFM6jJBOO18T1+VE35jxfMaDFDwCwIYwLk06gye3F7BUVqGlwx6iFdDaqfL6mFOXh9QXX4k8PTcRd4wp6fN2Yghw8MHkk/vTQRLy+4Frdix+AOpkNhBkyUKVGG8LY//le6esgY3EBRHJ33HEHjhw5AgAoKCjA7t27UV5ejhdeeAFvvvkm6uvrccMNNwAAgsEgbrvtNrS2tsbk3BdeeCGefPJJHD58GPv27cPvf/97rFixAq+99hrq6urwwgsvIDW1cx+8I0eO4Lvf/S40TYvJuc3O5/OhvLwcPp9PdFOkwczMkYEqNapSBxGRKJxHSSYcr4mpxRPAvJWVcHUEB3wsO8IosR2BHWG4OoKY+2IlWjz8si4eVPt8jcrPwL0TR/T4/K9ml+Dhm4owKj+j3+dQLbP+MEMGqtRoRxi7//yB9HWQsbgAIrFNmzZhx44dAAC73Y6NGzfiiiuu6PKaQYMGYcOGDRgxovN/IJubm7F06dIBnffcc8/FypUrUVNTg8WLF+O888474zVWqxXz58/H2rVro7+rqKjAO++8M6BzU6fMzEw89NBDyMzkpdN9xczMkYEqNapSBxGRKJxHSSYcr4npsTerB3zlx0le2PE7/+Xwwg4AaHT7sWRjdUyOTb3j50s/ZmaODFSp0Qs7vjNvgfR1kLG4ACKxZ555Jvrz3Llzcdlll3X7urS0NDzxxBPRxytWrEAo1P+br11//fWYN28ekpKSzvraf/iHf0BpaWn08VtvvdXv89LfaZoGn8/HK2p0YGbmyECVGlWpg4hIFM6jJBOO18SzpaYRb35yJIZH1GBHCMDf+3hD1RFsqWmM4TmoO/x86cfMzJGBOjVq8PtVqIOMxAUQSbW3t+O9996LPr7nnnt6ff2tt96K9PR0AJ1XgWzfvt3Q9p3quuuui/5cW1sbt/OqzOVy4amnnoLL5RLdFGkwM3NkoEqNqtRBRCQK51GSCcdr4lleHtv7V6ZbAvhuShXSLV23vVq+jffJNBo/X/oxM3NkoEqN6ZYAXn7+19LXQcbiAoikPvzwQ/j9nZfjpqWl4Zprrun19U6nE9dee230cSxuht5XFosl+nM4HI7beVWWkZGBBQsWICOj//t6mg0zM0cGqtSoSh1ERKJwHiWZcLwmlpoGNyprm2N6TK+WjA2+S+HVkrv8vvJgM/Y1tMX0XNQVP1/6MTNzZKBKjV4tGTPn3C19HWQsLoBI6vPPP4/+fNlll8Fms531PVdddVW37zfanj17oj8PGzYsbudVWVJSEvLz8/u0DRl1YmbmyECVGlWpg4hIFM6jJBOO18RwqNmLQ81erK2oi/mxI7CiWUtFpJuvYNZW1OFQszfm56RO/Hzpx8zMkYEqNUZgxTmD86Svg4zFBRBJ7du3L/pzQUFBn95zwQUXRH+uqamJeZu6U19f3+VqkxtvvDEu51Vde3s7Vq1ahfb2dtFNkQYzM0cGqtSoSh1ERKJwHiWZcLwmhglLt2LC0q1YW1Ef82OnIIip9hqkIHjGc2sq6jBh6daYn5M68fOlHzMzRwZ6aqxpcGPF9gM9Pv/Qa1VYurlGyBVtKQhi0xvrlO4rGrizXzZACampqSn6c15eXp/ek5+fH/25uTm2l/T25F//9V+j215dcMEFmD59elzOqzqbzYbCwsI+XflDnZiZOTJQpUZV6iAiEoXzKMmE41V9YVjQEMlAGJazv5hiip8v/ZiZOTLoS41bahqxvPzLs24LuKuuBbvqWvBs+QGUFubi/kkjMbloSKyb3K0wLMg/b5jSfUUDxytAJHXqymZKSkqf3nPq6+KxMrp69Wr8/ve/jz7+xS9+AYfDEdNzOJ3O6M3dw+EwWltboWkaAMDtdiMQ6LzJXEdHBzweDwAgFAqhtbU1egyXy4VgsPMvcbxeL7zezsuPg8Fgl5sotba2IhQKAQA8Hg86OjoAAIFAAG63GwCgaRpaW1ujiz7t7e3w+XwAAL/fj7a2ztXwSCSC1tZWRCIRAEBbW1v0ni4+ny/aPz3V5HQ6MXbs2Oh5VKjJ6H6yWq246qqr4HQ6lalJbz85nU5MnDgRPp9PmZpO7yen04mrr746eu8hWWuy2+0oKSmB3W5Xsp9YE2tiTazJ6JpsNhtKSkrgdDqVqUnFflKlJjtCcP7tL/uTEEG6xa+rJqfTiZKSkuiXN3pq8vs7a0pGGCnobI8FGtIt/rj0k6/DC0e09jDSTqm9ze2KSz/ZEYpeWWGN5q+/piR0tsGBYI81pVv8SEJnG5wIwo7O+mwIIxUnb3Demb/1b6872baq0HnQYDmjnyx/a6uIsQf0//Mkeuz11k+n1hQOhzF27Fg4nc6Yjb1AoOexF495r8Pr6XHstbldA573QqEQJk2ahOTk5DP6KShw7NU0uLHivepo7aePvYdf2Ymn3v4M+xraDP3viL6OPSPmvViOPb/fj+uuuw5Op/OMfqo/ehwPvrob81d9hM/qjuqa9yprm/G9VR/ioZcr0eIJxOx/c3sae3ZLGFeN7axD1v+OUPG/jXqrSQQugEjq5AAFEP2C7GxOXXw4+UEwykcffYT77rsv+vj222/HHXfcEfPzjBs3Dt/+9rcBAMePH0dZWVn0Q/niiy/is88+AwBs27YNGzduBAAcPnwYZWVl0WM899xzOHCg81K+d955B++88w4A4MCBA3juueeirysrK8Phw4cBABs3bsS2bdsAAJ999hlefPFFAJ0TRllZGY4fPw4A+N3vfoeKigoAwO7du/Hyyy8D6JwUysrKopPQyy+/jN27dwMAKioq8Lvf/a7Xmvx+P9atW4cNGzYoU5PR/fTJJ5/gueeeg9/vV6Ymvf3k9/uxbds2pWo6vZ/8fj9++9vf4i9/+YvUNZ1s68nXqdZPrIk1sSbWZHRNX375ZZfXqVCTiv0Uq5r++Kf3UPjIW5j2+Kt44r+eQeEjb2HUv72JsrIy7Pmi3vCaSpKPYLy9874Rg63tuM3593sg9qWmk/l/+eWXuvupumoXAOCipBP4umM/ACDNEsBtzj3wtLcZ3k+V75fjmuTOvjjP6sZMx2fR1/3v6ufjMvYutTXientne7ItPtzm3AP73xYz9NR0nrXz2NckH+6xptucezDY2vnFz3h7HUqSjwAACpNaMM3Ruc20HWHc5tyDbEvn/2e/3n4Al9kacGlSI4qSjp3RT2mWQL/7aaBjD+j/HCF67PXWT6fWtGHDBqxbtw5+vz8mY+/F1WuwemM5gO7H3g/XfYSlm2uw4rcvGDbvfbDlnR7H3v+ufn7Ac/nrr7+OiooKfPXVV2f0U+2BvwKI/9i759l3MXXZDpzYsx2X2hoBnDn2Lml6H2u21+CmZdvxs//5LV7fvD1aUyz/O6KvY8+IeW//Z505dzf2Ti6O6Pk8bdq0CX6/v0s/bftoD55/fgXe/KRzjPV33qv9vApTy7Zj87adMfnf3N7GXnXVR/D7/fxvI0lqEsGinVymIancfPPN2LRpEwBg8eLFePLJJ8/6nrfffhvTpk0DAKSnp0dX9mLt4MGDGD9+PBoaGgAAl19+OXbs2IHMzMyYnaO6uhqjR4+G0+mEzWZDRUUFioqK0NbWhqysLFgsFrjdbjidTtjtdnR0dCASiSAtLQ2hUAjt7e3Izs4G0LmampqaiuTk5OhKampqKoLBILxeL7KysgB0rqamp6fDZrPB4/HAarUiJSUFgUAAPp8PmZmZ0DQNLpcLGRkZSEpKQnt7O2w2G5xOJ/x+PwKBADIyMhCJROB2u5GZmQmr1Yq2tjbY7XY4HI7oX1ykp6cjHA53W5Pf78eaNWtw6623Ii8vT4majO6npqYmrFu3DnfffTfS09OVqElvPwHA2rVrMX36dAwdOlSJmk7vJ4/Hg5deegmzZ8/GoEGDpK3J5XJh7dq1uPPOO5GVlaVcP6k49lgTa2JNiVVTS0sLXnnlFdx9993ReVX2mlTsp1jVdNTlw43/UwEbwrAjDC/s6Pxr1AD++K9fR+HgDMNqamwP4Yal/wcrNPiQjCREkGIJol1zYMeiychMCp61pra2Nrz00ku44447kJOTo6ufGtoCuLFsJ5IRhg1hdMAOCzSkWQJ464ffQMGgdEP7af9XJ3DLr9+HH8lIQhhOSwgerfMP7zbddxUuPn+woWPvmCeMG5b+H5KgoQPJsCKCVEsQ7ZodOxZNQZYt1OearvrFNoSRFP3L7u5qSrf40aElIwwrnAgiAgsCsHU79rxaMiKwIgVBJCOESY4vsdU/AiEkdeknj2aHBgv2/GRi3MfeQOYIkWOvoS2IG5e+020/7Vg0GRnWQLSmxsZG/P73v8ddd90VbUd/xt6uIx1Ysb0We2obEEISgkiCHaFuxx5gQSoCuPyCQVgwZRTGFWTEdN776+HjuOU3H3Y79jbddzVGDRsyoLm8tbUV69evx5w5cwCgSz+d8EYwZdkHsCN0xth7++GpGJabGrP/fQonOfHYhr3Ysqe2y+cp/LfPXXdj7+TnKQUBhJCEaSXD8G9fH4l0hzUm/x2hZ+wZMe8d84Rww7IPux17m350Ey44J63Pn6evvvoKb775Ju68887oDcTrXCF89/kP4Pd1DHjeO9lP56RY8P/uLMGVI4cO6H9zexp7ORYv5p7fhHl334VIJML/Nkrgmr766iuMHj0aJ+3duxfFxcWIBy6ASGr27Nl4/fXXAQAPPvhgn1bS3njjDdx6660AOu8HcvTo0Zi36+jRo5gwYUJ0dXLEiBF4//33ce6558b0PCcXQE6K54eGiIiIiIgSx6Fmb483kd6xaDKG5aYqeW6eP7bnL3zkrVg1q19qn7xZ1+tVyj6Rz93iCeCxN6ujfw3fHzNLhmLJ9GLkpPVt946zMUP2nx91Y97KSjS6/Wd/8VnkZTqwen4pivIH/ke5Kn/uWjwBTC3bHpPMT5eX6cDmhRMH9BkQnT0NnMjvcrkFlqTOOeec6M+NjY19es/JKzIAIDc3N+Ztampqwte//vXo4se5556Ld999N+aLH3Tmfnx0dszMHBmoUqMqdRARicJ5lGTC8ZoYdiyajB2LJuPqgpyYH/v0+32cakxBDnYsmqzreDUNbqzYfqDH5x96rQpLN9dgX4Mxuz7IZCCfr8+PujG1bPuAFj8AYEPVEUwt246aBveAjhMvouekz4+6Mef5iph9Ed/o9mP2igpd+YvOIB5Or/GxN6sNWfwAOvtgycZqQ45t+du9b1TuKxo4LoBIatSoUdGf6+rq+vSe+vr66M9FRUUxbY/b7cZNN92E6urOCW3QoEF49913MXz48Jiehzqdvh8fnR0zM0cGqtSoSh1ERKJwHiWZcLwmhmG5qRiWm4qxw2P/x4Kn3+/jVGNH5Pb5L5e31DTiO8t3YuqyHVhbUd/j63bVteDZ8gO4adl2fGf5TmytOdbvtsuuv5+vRPgSXhSRc1KLJ4B5Kyvh6gjG9LiujiDmvth5U+6+MMO8fGqNW2oaB7zQdzYbqo5gS03f/oBbjzRLAP+7+nml+4oGjgsgkrrkkkuiP+/ZswehUOis7/n444+7ff9AeTweTJs2Dbt2dd4ELSsrC5s3b8all14as3NQV5mZmVi4cGFM76uiOmZmjgxUqVGVOoiIROE8SjLheE0sM0qGxvyYHs2O//VdBo925vYvM64476zvb/EE8OCruzF/1UeorG3Wde7K2mbcs+ovWLhud5+//FVJfz5fifIlvCgi56REuQrBDPPyqTUuL/8yLudcvi325/Fodtw2916l+4oGjgsgkho/fjwcjs4bEnk8Hnz00Ue9vt7v96OioiL6eMqUKTFph8/nw4wZM/DBBx8A6LwRz1tvvYWrr746Jsen7lmtVmRnZ8Nq5Ue4r5iZOTJQpUZV6iAiEoXzKMmE4zWxFOVnorQwtleBaLCgXXNAg6XL70uH52JUfkav7zXrNkyx0p/PV6J8CS+KqDkpka5CMMO8fLLGvx5r172w2l+VB5tjvjWfBgsyMrOU7isaOI4OSaWnp+OGG26IPl61alWvr3/jjTfQ1tY5yeTm5mLixIkDbkMwGMStt96KLVu2AAAcDgc2bNiA6667bsDHpt61tbVh+fLl0T6ls2Nm5shAlRpVqYOISBTOoyQTjtfEc9+kETE9XgoCmOGoRgq6/uX//deP7PV9Zt6GKVb0fr4S6Ut4UUTNSYl0FYIZ5uV99cfw62eexdodNXE979qKOhxq9sbseCkIYP2rq5TuKxo4LoBI7Hvf+17051WrVkXvv3E6r9eLRx99NPr43nvvhc1mG9C5w+Ew7rjjDmzatAkAYLPZ8Prrr+PGG28c0HGpb+x2O0pKSmC3n3kJNXWPmZkjA1VqVKUOIiJROI+STDheE8+UojzMuCJ2W2GFkIQvQoMQQlL0dzNLhmJy0ZAe32P2bZhiRe/nK5G+hBdFxJxU0+BOqKsQzDAv3/JsBd4+4sRruxriet41FXWYsHRrzI4XQhIuumS00n1FA8cFEIndfPPNmDBhAoDOLa5uueUWfPrpp11e09TUhFmzZuGLL74A0Hn1x+LFi7s9Xm1tLSwWS/RfT1eVaJqGf/zHf8Tvfvc7AJ2Xza1ZswYzZsyIUWV0Ng6HA+PGjYtug0Znx8zMkYEqNapSBxGRKJxHSSYcr4np8RnFyMuMTZ8EkYTPwnkI/m0BJC/TgSXTi3t9j9m3YYoVPZ+vRPsSXpR4zkmHmr041OzF2oo6w891qrNdhWCGefn0eUlWQSShuGSM0n1FAzewywBIuFdeeQWlpaU4evQoamtrUVJSguuvvx4jR47E8ePH8e6778Lr7ZzUT16lkZ2dPaBzPvfcc1i9enX08ciRI/H+++/j/fff79P7f/Ob3wzo/NR575WKigqMGzcOTqdTdHOkwMzMkYEqNapSBxGRKJxHSSYcr4kpJ82O1fNLMXtFxYCvwrAjhEttjfgslIeUlBSsnl+KnLSe/1o5XtswzSwZiilFeYaeR7S+fL5OfhEu4kv4eyeOwLDc1Lie92ziOSfF8koAPdZU1GFNRR1qn7y52+fNMC+fOi8FJP562I4QPv7zBxg8eYKyfUUDJ+8IJwDA+eefjy1btuD2229HVVUVNE1DeXk5ysvLu7xu8ODBWLlyZZf7hvTXsWPHujzev38/9u/f3+f3cwFk4EKhEGprazFmzBjRTZEGMzNHBqrUqEodRESicB4lmXC8Jq6i/Ey8tmAc5r5YOaCrMZKgId/ahqaM8/HbfxyHovzMXl8fz22YVF8A6cvnK1G/hBeFc5I5Mjg5L+1Dz1vxySAJGhq+OoRQKCS6KZTAuACigKKiIvz5z3/GunXr8Oqrr6K6uhqNjY3Izs7GiBEj8K1vfQv33HMPBg0aJLqpFCPp6emYN2+e6GZIhZmZIwNValSlDiIiUTiPkkw4XhNbUX4mNi+ciCUbq7Ghqn9XZXQgGY5Lp+DN6cW9XvkBiNmGaVR+RlzOJwI/X/oxM3Nk0IFkbA4UiW7GgHUgGdO+NQfp6Yl1JRUlFt4DRBF2ux1333033n77bdTX18Pv96OxsRE7d+7Eww8/3KfFj8LCQmiaFv3X02S/ZMmSLq/T+48GLhwOo6GhAeFwWHRTpMHMzJGBKjWqUgcRkSicR0kmHK+JLyfNjrI5V+LFeWNQOjxX13tLh+fihbuuwr9NOheZzp732hd5LwSZ1DS4sWL7gR6ff+i1KizdXBO9vwY/X/oxM3NkYEUEuRYvrIiIbsqAWBFB0/FGpfuKBo4LIEQSamtrw4oVK9DWlpg3TUtEzMwcGahSoyp1EBGJwnmUZMLxKo8pRXl4fcG1+NNDE3HXuIIeXzemIAcPTB6JPz00Ea8vuBZXn5dy1j6esHQrJizdirUV9UY0vUdrJFkA2VLTiO8s34mpy3b0mtGuuhY8W34ANy3bju8s34l3qg7y86UT5yRzZPDH+8ZgpvMzlJ4f3ysnxhTkYMeiyTE7XqoliA3rXlK6r2jguAUWkYSysrKwePFiOBwO0U2RBjMzRwaq1KhKHUREonAeJZlwvMpnVH4G7p04osfFg1/NLulyY+tE72NN02CxWEQ3o1stngAee7O6XzeFr6xtRmVtE2Zd9k1EbCkGtE5NiT5e48EMGVxSkI/FixejbOtBVByOz32HAGDsiNwu8+NAtWt2fPfef0FWVlbMjknq4RUgRBKyWCxwOp0J+x+piYiZmSMDVWpUpQ4iIlE4j5JMOF7Vl+h97Akk5tYxnx91Y2rZ9n4tfvydBev3HMc3/2cHahrcMWubyuI5Xncsmowdiybj6oIcw891qrNdhZDon9lYOFnjzCvPi+t5Z1wR6/NZ4HCo3Vc0cFwAIZKQ2+3GsmXL4HbzP+D6ipmZIwNValSlDiIiUTiPkkw4XtWX6H0cCCXePQA+P+rGnOcr0Oj2D+g4qQjg245P0eZuw+wVFd0ugiTql/CixHO8DstNxbDcVIzVeW+dgTrbVQiJ/pmNhZM1Dk0FSgvjk3/p8FyMys+I6TFTEcDrq1Yo3Vc0cFwAIZKQ0+nEpEmT4HQ6RTdFGszMHBmoUqMqdRARicJ5lGTC8aq+RO9juy2xvhpq8QQwb2UlXB3BAR8rgCRUhYYigCS4OoKY+2IlWjyBLq9J1C/hRRExXmeUDI3buYCzX4WQ6J/ZWDi1xvsmjYjLOe+/fmTMjxlAEq4ce53SfUUDx3uAEEnIbrejpKREdDOkwszMkYEqNapSBxGRKJxH4+tQsxcTlm7t9rkdiyYn5Bd8iYTjVX2J3sdp9iRdr69pcGNtLzdPf+i1KowdnouZJef166+9H3uzesBXfpwUQhK+CA+KPm50+7FkYzXK5lx5xmtnlAzFs+UHYnLevoj9VkCxIWK8FuVnorQwF5W1zYafqy9XIST6ZzYWTq1xSlEeZlwxdIDbzfVuZslQTC4aEvPjhpCEiy4ZDbvdHvNjkzoSa5mfiPqko6MDmzdvRkdHh+imSIOZmSMDVWpUpQ4iIlE4j5JMOF77p6bBjRXbe/6y+qHXqrB0cw32NbTFsVXd60sfi9yGqa9752+pacR3lu/E1GU7sLaivsfX7aprwbPlB3DTsu34zvKd2FpzrM/t2VLTGNMvYe0IoTS5HnaEor/bUHUEW2oaz3jtyS/h48GIrYBiRdSclEhXIZhhXj69xsdnFCMv05ibvudlOrBkerEhx7YjhIrtW5TuKxo4LoAQSSgSiaC1tRWRSOLt1ZqomJk5MlClRlXqICIShfMoyYTjVZ94fAkfa33pY5HbMJ1NiyeAB1/djfmrPtL9F/qVtc24Z9VfsHDd7jO2nurO8vIvdR3/bKzQkG4JwAqt63m2dX+eRPoSXhRRc9LJqxCM1NerEMwwL59eY06aHavnlyIrJTmm58lKScbq+aXISTPmCg0rNLS7XUr3FQ0cF0CIJJSWloY5c+YgLS1NdFOkwczMkYEqNapSBxGRKJxHSSYcr30Tzy/hY01PHyfavRA+P+rG1LLtA74qY0PVEUwt297tTchPqmlwx3wLJB+SsSVwIXzo+qVu5cHmbq8OSqQv4UUROSclylUIZpiXu6uxKD8Try0YF7M+yMt04LUF41CUnxmT43XHh2TceMs/KN1XNHBcACGSUCgUQm1tLUKh0NlfTACYGWCODFSpUZU6iIhE4TxKMuF4Pbt4fglvBD19nEjbMH1+1I05z1fE7H4cjW4/Zq+oOCP/Q81eHGr29npfkf5KQgT5VjeScOZfh6+tqMOhZu8Zv0+UL+FFETknJcpVCGaYl3uqsSg/E5sXTsTMAS7GziwZis0LJxq6+AF0fsaPHq5Xuq9o4LgAQiSh9vZ2rF69Gu3t7aKbIg1mZo4MVKlRlTqIiEThPEoy4XjtXby+hDeS3j5OhG2YWjwBzFtZCVdHMKbndHUEMffFyi5X4kxYuhUTlm7tdUuz/kqxBPFNx1+RYjmzjjUVdZiwdOsZv0+UL+FFET0nJcJVCKIziIfeasxJs6NszpV4cd4YlOrclq90eC5WzrsGZXOujMtYT7EE8fYfXlO6r2jgbKIbQET6ZWdn47HHHhPdDKkwM3NkoEqNqtRBRCQK51GSCcdrz4z+En7zwolx+YJObx+f3IYpljcDP93ZtmF67M3qmC06na7R7ceSjdUom3OlIcc/VbvmwMqOMbrfd/JL+LkvVsYkh7xMB1bPLzX8r+FjIRHmpJNXISzZWI0NVf3/HMwsGYol04t1f84TIQOj9aXGKUV5mFKUh30NbVhbUYc1PVylNaYgB2NH5GLGFef1elWZEdo1B+b/y8PIzk6N63lJLrwChIiIiIiIiIgSTjy+hE9UIrdh2lLTaOjiC9C5HdmWmkZDzzFQsm0FpBqZrkJQ3aj8DNw7secr0341uwQP31QU98UPor7iAgiRhFwuF5588km4XC7RTZEGMzNHBqrUqEodRESicB4lmXC8dk+lL+H708cit2FaXv5lTM/Z43m2GX+eNIsfdzh3I83Sv4U0M34Jn2hz0pSiPLy+4Fr86aGJuGtcQY+vG1OQgwcmj8SfHpqI1xdcO6AbzSdaBkZQpcY0ix9rV/yP9HWQsbgFFpGEUlNTMWvWLKSm8hK/vmJm5shAlRpVqYOISBTOoyQTjtfuxfNL+ClFeYaeo799LGIbppoGNyprmwd8rr6oPNiMfQ1thp7Dp9nwfqAQPm1gX3/JsBVQrCTqnHTyKoSesv/V7BIMy41NmxM1g1hSpUafZsOEG78pfR1kLC6AEEkoOTkZRUVFopshFWZmjgxUqVGVOoiIROE8SjLheD2TiC/hjfyyeiB9HI97IRxq9kZ/XtvDl8tGMfp8YSShPpITs+PF80t4UTgnmSMDVWoMIwkFIy9CcnJsr5YjtXALLCIJeb1erF+/Hl6v9+wvJgDMDDBHBqrUqEodRESicB4lmXC8djrU7I3+U+1L+IH2sdHbME1YujX6b21Ffb/a2F9rKuqwY9Fk7Fg0GVcXxG6h4iQHgvha8kE4EDzjuTEFOdixaHLMzyk7zknmyECVGh0IYvv/bZK+DjIWrwAhIiIiIiIiIqEmLN0q7NxrKurw01mjhZ2/r1Tdhun8nBRYLBaMHZ6LXXUtcTvv2BG50l+tQUREZ8cFECIJndyrkfqOmZkjA1VqVKUOIiJROI+STDheE4OmabBYLIYcO9Z9rNo2TJ5AGOkOG2aUDMWz5Qdiemw/kvF+cHi3z8244ryYnksVnJPMkYEqNfqRjIlf/wbvAUK94hZYRBIKBoOoqalBMHjmZbzUPWZmjgxUqVGVOoiIROE8SjLheE0MnkDYsGOzj3sXCEUAdN7vpLRQ3xZfZ5OEMC6wtiAJXfu3dHiuFFfHiMDxao4MVKkxCWHUHdgvfR1kLC6AEEmoX3s1ttQBS7K6/9cS3z12RVBlf8uBMEMGqtSoSh1ERKJwHiWZcLwmhpNfwhuBfdw7u+3vX03dN2lETI/ttITwNXstnJZQl9/ff/3ImJ5HJRyv5shAlRqdlhB2vPu29HWQsbgFFpGEsrKy8Mgjj4huhlSYmTkyUKVGVeogIhKF8yjJhOM1MZz6JXyssY97l2ZPiv48pSgPM64Yijc/ORKTY3s0B17xXdnldzNLhmJy0ZCYHF9FHK/myECVGj2aA3cueBBZWdwCi3rGBRAiIiIiIiIiMrVTv4Q3mx2LJkd/fui1qrjeiHxMQc4Z9155fEYx/nywCY1uf8zPl5fpwJLpxTE/LhERJS5ugUUkodbWVjz++ONobW0V3RRpMDNzZKBKjarUQUQkCudRkgnHa6cdiyZH/11dkBPXc3f3JXwsJXofD8tNjf4bOzy29+A4m7EjzjxfTpodq+eXIislecDHT7f4cU/KR0i3+JGVkozV80uRk2Yf8HFVlujjNR7MkIEqNaZb/Hjx17+Uvg4yFhdAiCSUnp6OuXPnIj09XXRTpMHMzJGBKjWqUgcRkSicR0kmHK+dEu1L+FiSqY9nlAyN7/muOK/b3xflZ+K1BeOQl+kY0PE7tGS87b8YGenpeG3BOBTlZw7oeGYg03g1ihkyUKXGDi0Z3/yH2dLXQcbiFlhEErLZbCgsLBTdDKkwM3NkoEqNqtRBRCQK51GSCcfrmWaUDMWz5Qfid74evoSPFZn6uCg/E6WFuaisbTb8XKXDczEqP6PXtmxeOBFLNlZjQ1X/7gkShhVjLy/CkunFvPKjj2Qar0bpKYNhuamoffLm+DfIAKr0cxhWnHv+BbDZ+BU39YxXgBBJyOPxYN26dfB4PKKbIg1mZo4MVKlRlTqIiEThPEoy4Xg908kv4ePhbF/Cx4JsfXzfpBFxOc/9148862ty0uwom3MlXpw3BqU6rwwqHZ6LFXOKcS32wY5gf5tpOrKNVyOYIQNVanQiiHf/+Afp6yBjcXmMSEL/n70/j4+iyvfH/1clnc7eWUZMAGMCOBJZNCiGCLI6I4sjMAqIywgyKnBnrnDnXnE+nzszwnjv74fMfJTcuaPgwjIiiqBX4IrgKEQWjQE0AoHACCSsiWKWzt5Jur5/tIkGsnSlq/pUnXo9H488xHR1nfN+VaWrk9N1TkhICOLj4xESwjFMfzEze2QgS42y1EFEJApfR8lKeL62b96YvshbY/xdCP78ET5QVjvG49KTMPmmXtjyZffuuvDHlIxeGJt+taY+jUtPwvGSKqzLLcZrucXtbjc0NQHD+iZi8k290T85FnV1dfi4xDrZm4HVzlcj2CEDWWr0QkGMK87ydZCxOABCZEGRkZGYMGGC/08oLQD2v9rx4+88BqSOAAZPB5IGBN5BE9KcmYTskIEsNcpSBxGRKHwdJSvh+do+M/4RvruseIyXTB6Iz05/i1J3g+77TnKFY/HdA7v13P7JsXh8VN8OB0Cevy8DKYlRrf9vxexFY2b2yECWGj1wIGvUWERGRoruCpkYh8eILMjj8SA/Px8ej6fzDU/sAFZNBF4cDhzoZADk7GfA3ueAF2/zbX/iA307bAJ+ZyYxO2QgS42y1EFEJApfR8lKeL52bMnkgQEvgt2RQP4Ir5UVj3FCtBNr52QiLjJM1/3GRYZh7ZzMoK3HYcXsRWNm9shAlhodaMY/jh2xfB1kLA6AEFlQfX09cnJyUF9f3/4GtWXApl8C62cAZz7RtvMznwDrpwNvP+rbjyS6zMwG7JCBLDXKUgcRkSh8HSUr4fnaMVn+CG/VY5ye7MKGuVm6DUIlucKxYW4W0pNduuzPH1bNXiRmZo8MZKnRiWZ88dk+y9dBxuIUWEQW5HK5sHDhwvYfLDkCvD4NqLoYWCOHNwJFe4GH3gaSgvPJKCN1mplN2CEDWWqUpQ4iIlHs9jp6tqwWI5ftavexPYvGtpkOhszHbuerVi1/hJ+1Kk+X6ZiSXOFYOyczqH+Et/IxTk92YfuCUVi8tQCb87s/HdmUjF5YfPfAoA06tbBy9qIwM3tkIEuNtXBixuy5cLn4Xoc6xjtAiCxIVVXU19dDVdW2D5QcAdbcFfjgR4uqi8DqSb41RCyuw8xsxA4ZyFKjLHUQEYnC11GyEp6vXWv5I/yUjF4B7WdKRi9sXzAqqIMfgPWPcUK0E9kzh2DV7KHI7JOo6bmZfRKxevatyJ45JOiDH4D1sxeBmdkjA3lqVNHQIEMdZCQOgBBZUGVlJZ599llUVlZ+/83aMt+dH/UV+jZWXwGsu9fy02G1m5nN2CEDWWqUpQ4iIlH4OkpWwvPVP1b+I7wsx3hcehLemnsbdiwchV9kpXa43dDUBPxqbD/sWDgKb829LSgLzXdEluyDiZnZIwNZaoxRPHj9pb9Yvg4yFqfAIrKg2NhYzJ07F7Gxsd9/c9uT+t35cbmqi8D7i4B7XzFm/0HQbmY2Y4cMZKlRljqIiETh6yhZCc9XbcalJ2FcehKOl1RhXW4xXsstbne7oakJGNY3EZNv6o3+yWKzle0Y90+OxeOj+naY/fP3ZZhm6j3Zsg8GZmaPDGSpsVYNw5SZD1u+DjIWB0CILCg0NBTJycnff+PEDuDIJmMbPbwRGDwduH68se0Y5IrMbMgOGchSoyx1EBGJwtdRshKer91jpT/C8xiLw+y1Y2b2yECWGr0IwY96JCE0NFR0V8jEOAUWkQVVV1djzZo1qK6u9n1j7/LgNLwvOzjtGOCKzGzIDhnIUqMsdRARicLXUbISnq/y4zEWh9lrx8zskYEsNUaiEdveedPydZCxOABCZEEOhwNpaWlwOBy+BcrPfBKchov3AaVHg9OWztpkZlN2yECWGmWpg4hIFL6OkpXwfJUfj7E4zF47ZmaPDGSpsRkKknunWL4OMhbPDiILioiIwJib+gB1pcD+V4Pb+IFXgeFPAAkdL3pnRhERERgzZozobghlhwxkqVGWOoiIROHrKFkJz1f58RiLw+y1Y2b2yECWGj1w4OZhIxARESG6K2RivAOEyIIaGhqQmz0LDdlDfQMSwbT/FSD7xuC2qYOGhgbk5uaioaFBdFeEsUMGstQoSx1ERKLwdZSshOer/HiMxWH22jEze2QgS41haEZB/gHL10HG4gAIkQV5PB7kYyA8CBPdFcvweDzIz8+Hx+MR3RVh7JCBLDXKUgcRkSgiXkfPltUi7bfvtft1tqw2aP0g6+F1X348xuIwe+2YmT0ykKVGB5rxj2NHLF8HGYtTYBFZUGxsLOZhnehuWEpsbCzmzZsnuhtC2SEDWWqUpQ4iIlH4OkpWwvNVfjzG4jB77ZiZPTKwUo2FJW6syy1u97E6OJETkoG6fecxJaM3+ifHBrl3ZAUcACGyIK/XCzdccKEKIVBFd8cSvF4v3G43XC4XQkLsefObHTKQpUZZ6iAiEoWvo2QlPF/lx2MsDrPXjpnZIwMr1LizsBQrck4hr6isw20UqDh+pgSfF5fhhZyTyExLxPwx/TA2/eog9pTMzpxnOBF1yu12I1t5FG5wZNtfbrcb2dnZcLvdorsijB0ykKVGWeogIhKFr6NkJTxf5cdjLA6z146ZmTeDlMQoFC29q92vlMQoTfsya40AUF7jwRNvfIE5aw50OvgBANGKB9MjDiNa8U2BlVdUhkfW7MeCN79AeQ2nxSIfDoAQWZDL5cIC9RW4UCW6K5bhcrmwYMECuFwu0V0Rxg4ZyFKjLHUQEYnC11GyEp6v8uMxFofZa8fM7JGBWWs8dtGNCdm7seXLC35tX6M6sbF+MGpUZ5vvb86/gAnZu1FYYr4BHgo+DoAQWVBISAjiF+xFyIIvgZRhwW08JQtYcCi4beogJCQE8fHxpr21MxjskIEsNcpSBxGRKHwdJSux6vlaWOLGyt0nO3x84YZ8LNteiOMl/NCWVY+xDJi9dszMHhmYscZjF92Y+VIuSt0Nfj9HhYJqNRwqlCseK3U34L6VuRwEIQ6AEFlRVVUVVmx4H1WORCB1RHAbTxsBJKQGt00dVFVVYcWKFaiqsu8vYHbIQJYaZamDiEgUvo6SlVjtfN1ZWIoZKz7FhOV7sC73TIfbHSwuxws5JzF++W7MWPEpdhV+HcRemovVjrFMmL12zMweGZitxvIaD2avzkNlXaOm50XCg8nhBYhE+9NdVdY1YtaqPE6HZXMcACGyIKfTiYyMDDidTmDwtOA2PijI7emkTWY2ZYcMZKlRljqIiETh6yhZiVXOVy1zsl/O7nOyW+UYy4jZa8fM7JGB2Wp8ekuBpjs/WjQhFF81XYUmhHa4Tam7AYu3FgTSPbI4h+gOEJF24eHhyMrK8v1P0kDg2uHAmU+Mbzh1BJA0wPh2DNAmM5uyQway1ChLHUREovB1lKzECufrsYtuzF6d160/Tv3Q5vwLyD31LdbOyUR6srnmnTeSFY6xrJi9dszMHhmYqcadhaV+r/lxuUaE4mhzUpfbbc6/gCkZvTAuvettST68A4TIgurr65GTk4P6+nrfN25fGJyGRwSpHQNckZkN2SEDWWqUpQ4iIlH4OkpW0t3zNVhrcHRnTvbO2HFOdr4micPstWNm9sjATDWuyDnV7ec60YQMx3k40dR1Ox93vx2yNg6AEFlQU1MTioqK0NT03Qv89eONn5pq8HTg+juNbcNAV2RmQ3bIQJYaZamDiEgUvo6SlWg9X4O5Bkd352Tvit3mZOdrkjjMXjtmZo8MzFJjYYlb87SKPxQKFckhVQiF2uW2eafLAv5QAFkTp8AisqCYmBjMnj277Tcn/Qko3gdUXdS/wdiewMRl+u83iNrNzGbskIEsNcpSBxGRKHwdJSvx93wtr/Hg6S0F3ZomJK+oDHlryjAloxcW3z0QCdH+zfne3TnZ/dEyJ3v2zCGG7N9M+JokDrPXjpnZIwPRNZ4tqwUArMstDmg/dQjDdk+639uvyy3G46P6IiUxKqB2yVp4BwiRBTU3N6OkpATNzc3ffzMqEXjobSAiXt/GIuJ9+41K1He/QdZuZjZjhwxkqVGWOoiIROHrKAWDXlNQ+XO+HrvoxoTs3d2eI73F5vwLmJC926/ppwKZk11Lf3YWlhrahhnwNUkcZq8dM7NHBqJrHLlsF0Yu29XpnYz+CIEXiUotQuD1a/vXcosxctmugNok6+EACJEFVVVVYeXKlaiquuyXqaSBwCPbfHds6CG2p29/SQP12Z9AHWZmI3bIQJYaZamDiEgUvo6SkfSegqqr81XUGhyBzMmuhR3mZOdrkjjMXjtmZo8MZKkxSmnElIijiFL0naqR5MIpsIgsKC4uDk899RTCw8OvfDBpIDD/E+D9RcDhjd1vZPB037RXFr/zo0WnmdmEHTKQpUZZ6iAiEoWvo2QEo6ag6ux8NXoNju0LRrU7HVagc7Jr0TIne//k2KC0JwJfk8Rh9tp1lllKYhSKlt4loFfBZYfzRpYaq1UnXq/LgAehortCJmaJO0BUVcU333yDoqIiFBUV4ZtvvoGqdr24DZGsFEVBREQEFEVpf4OoRODeV4AH3gJSR2jbeeoI4IGNvudLMvgB+JGZDdghA1lqlKUOIiJR+DpKejNyCqrOztdgrMHxQ2fLanG2rDbgOdm1CnZ7wcbXJHGYvXbMzB4ZyFOjAg8cAKxeBxnJlAMgBw8exNKlS3HPPfegX79+iIiIQHJyMvr164d+/fohOTkZERER6NevH+655x4sXboUBw8eFN1toqBxu91Yvnw53O4u5u69frxvCqv5nwK3PtrxdilZwMh/9W33yDbg+jv17bAJ+J2ZxOyQgSw1ylIHEZEofB0lPRk9BVVH56uINTj0mpNdq9ckHwDha5I4zF47ZmaPDGSpMQoeTAs/hCh4RHeFTMw0U2AdPXoUq1evxvr161FSUtLmsfbu9mhsbGy9I2Tz5s3493//dyQnJ+OBBx7A7NmzMXCg9dcsIOpIREQExowZg4iICP+ekDQAGP4EsP+V9h+/5yUgIVW/DpqQ5swkZIcMZKlRljqIiETh6yjpJRhTUEV3cL4Gcw2OcelJQWmrM6qqSvBJ5PbxNUkcZq8dM7NHBrLU6EEo8pt6cQos6pTwO0B27tyJ8ePHY/DgwXjuuedQUlICVVXbfHXk8u1KSkrw3HPP4cYbb8T48eOxc+fOIFZCFDxOpxMZGRlwOq+cr5fax8zskYEsNcpSBxGRKHwdJb0EYwqq9s5XEWtwiFbjaRbdBcPwNUkcZq8dM7NHBqJr3LNoLPYsGotbUhMC2k8TQvFV81Vo8nMAZGhqAvYsGhtQm2Q9wgZAPv/8c9xxxx346U9/ig8//LDNYMegQYMwf/58rFy5Ert378bJkydRWVmJxsZGeDweVFZW4quvvsLHH3+MFStWYP78+Rg0aBCA7wdFPvzwQ/z0pz/FHXfcgc8//1xUmUSGqKurw/bt21FXVye6K5bBzOyRgSw1ylIHEZEofB0lPQRrCqodXxa3nq8i1+A4W1Yb1DYv52nyCm3fSHxNEofZa8fM7JGB6BpTEqOQkhiFYX0CW3vWiSZkhp2BE01+bT+sbyJSEqMCapOsR8gUWHPnzsWqVavg9Xpbb3O94447MGPGDEydOhU9evTo9PmxsbGIjY1F3759MXLkyNbvf/PNN3j33XexceNGfPTRR1BVFTk5ORg2bBh++ctfYsWKFUaXRhQUXq8XFRUV8Hrl/SVBb8zMHhnIUqMsdRCRvZwtq8XIZbvafWzPorFB/WWTr6Okh2BNQbVm32lMSfSdryOX5QSlzcu9llssfB0Op0P4BBWG4WuSOMxeO2ZmjwzMUuPkjF54Iedkt58fAhUxigch6HgGoTbt3dS7222RdQl5h/Hyyy+jubkZsbGxWLRoEb766iv8/e9/x2OPPdbl4EdnevTogcceewwffPABTp48iSeffBKxsbFobm7Gyy+/rGMFRGJFR0dj5syZiI6OFt0Vy2Bm9shAlhplqYOISBS+jlKggjkF1adnajBkzF22P1+jnfLO387XJHGYvXbMzB4ZmKXG9GQXMtO6fxdIPcKw03Md6hHW5baZfRLRPzm2222RdQkZAImNjcWSJUtw5swZLF26FH369NG9jbS0NDz77LM4c+YMFi9ejJiYGN3bIBKlqakJRUVFaGry7xY/YmaAPTKQpUZZ6iAiEoWvo9RdIqagCoUXr394AKe/dgetzY7oNSe7VkNTE6RdAB3ga5JIzF47ZmaPDMxU47wxfbv93FB4kRziRii6vpNl/uh+3W6HrE3IAMjJkyfx+9//Hi6Xy/C2XC4X/vCHP+Dkye7fTkVkNtXV1Vi7di2qq6v9f1JCKrC4sv2vhFTjOmsS3cpMMnbIQJYaZamDiEgUvo5Sd41ctgsjl+3CutwzQWszUmlE6MnduPv5D4PWZkf0mpNdq2F9g9tesPE1SRxmrx0zs0cGZqpxXHoSJt/Uq1vPjVQaMTH8BCKVxk63m5LRC2PTr+5WG2R9QtYAueqqq2zRJpFR4uPj8fTTT4vuhqUwM3tkIEuNstRBRCQKX0fJSqrVcKyuGyq6G20EOie75vYkn5Odr0niMHvtmJk9MjBbjUsmD8Rnp79FqbtB0/P8uYYmucKx+O6BgXSPLE7eVcaIiIiIiIiISLNA52TXgnOyExFRQrQTa+dkIi6y67U8tIiLDMPaOZlIiHbqul+yFg6AEFlQZWUlli5disrKStFdsQxmZo8MZKlRljqIiETh6yhZSbTSgAcivkC00iB0DY49i8a2+V4gc7JrYYc52fmaJI6M2ackRqFo6V3tfqUkRgW8fxkz08oOGZixxvRkFzbMzUKSK9zv5/zwGnq5JFc4NszNQnqy8UswkLkJmQKLiAITFRWFqVOnIioq8Dc3dsHM7JGBLDXKUgcRUTCdLavFyGW7AAChaEbvkGvw8v//YzQjFHsWjdXlj0JERqhXHdjrSUO96mg9T4f1ScTB4vKg9WFY38QrfkZa5mTf8uUFw9q1y5zsfG8nDrPXjpnZIwOz1pie7ML2BaOweGsBNud3ff354TX0h6Zk9MLiuwfyzg8CwDtAiCwpLCwM6enpCAvT99ZAmTEze2QgS42y1EFEJEozQnHGm4BmhIruClGX2jtfJ2d0bzHY7upoDY4lkwdq+iSuFnaak53v7cRh9toxM3tkYOYaE6KdyJ45BKtmD0Vmn86nY7z8GprZJxGrZ9+K7JlDOPhBrYQMgISGhhr+5XDw5haSV21tLd59913U1taK7oplMDN7ZCBLjbLUQUQkSjgacXvYaYSjUXRXyGJETEEVjkZMTTiPv//zsNbvmWUNDs7Jrg++txOH2WvHzOyRgRVqHJeehLfm3oYdC0fhF1mp7W7Tcg39p9uvwY6Fo/DW3NtscWchaSNkAERV1db/GvlFRERERERE5K+UxCikJEZhWBefONXbVTHh6J3QdhoSs6zB0Z052TvDOdmJiEiL/smxeHxUx9fEW9MS8etxP+5wMJ9I2BRY/gxQKIoCRVH82p+WbYmszqxzNZoZM7NHBrLUKEsdRESiNCAMexv7oAHmm9aBrCGYU1A1IAzT773niut+yxocRvJ3DY6WOdmnBJjLlIxe2L5glO0GP/jeThxmrx0zs0cGstTYgDCM+ukky9dBxhIyAOL1erv8+q//+i+EhYVBVVUMHz4cK1euxKFDh1BRUYHGxkZUVFTg8OHDeOmll3D77bdDVVU4nU785S9/gdfrRXNzs4jSiIKisbERhYWFaGzktA7+Ymb2yECWGmWpg4hIlFA049qQcoSCvxNQ9wRzCqphaXFQK863e9030xocWuZkv5zd52TneztxmL12zMweGchSYyiaUXzyH5avg4xlykXQ/+M//gMLFixASEgI1q1bh7179+Kxxx7DoEGD4HK5EBoaCpfLhYEDB+LRRx/F7t27sX79eiiKgieeeALPPPOM6BKIDGWFuRrNhpnZIwNZapSlDiIiUSKUJtzuLEKE0iS6K2RhwZqCavatPTu87ptxDQ5/5mQHgKGpCfjV2H6ckx18bycSs9eOmdkjA1lqjFCasOfD9y1fBxnLdCuFf/7551i8eDEA4KWXXsIDDzzg1/NmzpyJ5uZm/OIXv8Af//hHTJw4EUOHDjWwp0TixMXF4be//a3oblgKM7NHBrLUKEsdRESi1KjhWF8/RHQ3KAgKS9xYl1vc4eMLN+RjWJ9ETMnorXlu8JYpqLZ8eSHQbnZoSkYvTLylHybe0vF1v2UNjlmr8lDqbgi4zSRXONbOyQx4GqqWOdlf6yD/5+/LQEoipyQB+N5OJGavHTOzRway1FijhuOhuU8gLo7XG+qY6e4AWbFiBbxeL/r164eHHnpI03MffPBBXHfddfB6vXjppZcM6iERERERERGJtLOwFDNWfIoJy/dgXe6ZDrc7WFyOF3JOYvzy3Zix4lPsKvxaUztmmYKKa3AQERERdY/pBkB2794NRVGQlZXVrednZWVBVVV8/PHHOveMyDwqKiqwZMkSVFRUiO6K/8qLgcVx7X+Vd/ypPb1YMjOd2SEDWWqUpQ4iIlFilAY8EnkAMUrgn5Yncymv8eCJN77AnDUHkFdUpum5eUVleGTNfix48wuU13j8ek4wpqDy97rPNTisi+/txGH22jEze2QgS40xSgNW/eVPlq+DjGW6KbDOnz8PAHA6u/emrOV5Fy4Yd5sykWgxMTGYNWsWYmJiRHfFMpiZPTKQpUZZ6iAiEqVODcP7DdejTtX3j9Yk1rGLbsxeHfg0UJvzLyD31Ld+TwNl9BRUWq/749KTMC49CcdLqrAut7jDKaiGpiZgWN9ETL5J+/RfpC++txOH2WvHzOyRgSw11qlhmPjz+yxfBxnLdHeAhIX5fkk5fPhwt55/5MiRNvshkpHD4UBaWhocDtONYZoWM7NHBrLUKEsdRESiNCMEJV4Xms336w5107GLbsx8KVeXAQgAKHU34L6VuSgscfu1vZFTUHX3ut+yBkdHnr8vA0+OT+fghwnwvZ04zF47ZmaPDGSpsRkh6HnNtZavg4xlut8IrrvuOqiqigMHDiAvL0/Tc/Py8pCXlwdFUdCvXz+DekgkXk1NDd58803U1NSI7oplMDN7ZCBLjbLUQUQkSgQaMc75FSLQKLorpIPyGg9mr85DZZ2+x7OyrhGzVuVpmg7LiCmoeN2XH4+xOMxeO2ZmjwxkqTECjfjwf//H8nWQsUw3APLzn/8cAKCqKmbMmIF//OMffj3vq6++wowZM1r//5577jGkf0RmEBISgvj4eISEmO5H2LSYmT0ykKVGWeogIhLFCwXVqhNeKKK7Qjp4ekuBbnd+XK7U3YDFWws0PWdcehLemnsbdiwchV9kpXa43dDUBPxqbD/sWDgKb829DWPTr253O1735cdjLA6z146Z2SMDWWr0QkGMK87ydZCxTHd2/OpXv0LPnj2hKArOnDmDjIwM/J//839w9OjRdrc/duwY/u///b/IyMjA2bNnAQDJycn41a9+FcxuEwVVZGQkJkyYgMjISNFdsQxmZo8MZKlRljqIiETxwIG8xmvhMd+Sh6TRzsJSbPnS2PUdN+dfwM7CUs3P02sKKl735cdjLA6z146Z2SMDWWr0wIGsUeMsXwcZy3QDIC6XCxs2bEB0dDQURUFdXR2WLVuGwYMHIz4+HoMHD8awYcMwePBgJCQkYNCgQXj22WdRW1sLVVURHR2NDRs2wOXqejE7IqvyeDzIz8+Hx+Pf7frClRYA+7I7fvydx4APlwCl7Q906sFymRnADhnIUqMsdRARieJAM64LvQQHmkV3hQK0IudUcNr5ODjttIfXffnxGIvD7LVjZvbIQJYaHWjGP44dsXwdZCzTDYAAwO23345du3ahf//+AHzTYamqCrfbjaNHj+LAgQM4evQoKisrWx8DgP79+2PXrl24/fbbRXafyHD19fXIyclBfX296K507sQOYNVE4MXhwIFXO97u7GfA3ueAF2/zbX/iA927Ul/yFXLe/Rvq/399gMVxbb/Ki3Vvz4wsc94EQJYaZamDiEgUJ5qR4bgAJwdALK2wxI28orKgtJV3ugzHS6qC0tbleN2XH4+xOMxeO2ZmjwxkqdGJZnzx2T7L10HGMu094bfccgu+/PJLrFmzBq+++ioOHDgAr9fbOtjRIiQkBEOHDsWjjz6Khx9+GE6ns4M9EsnD5XJh4cKForvRsdoyYNuTwJFN2p975hNg/SfA4OnAxGVAlLYFJjviio3GQnQyCGMDpj9vdCBLjbLUQUQkSi2c2NRwo+huUDedLasFAKzLDe6HVNblFuOZqYOC2ibA674d8BiLw+y1Y2b2yECWGmvhxIzZc+FyRYnuCpmYaQdAACAsLAyPPfYYHnvsMVRXV+PQoUP45ptvUF1djZiYGPTo0QM33ngjYmJiRHeVKKhUVUVDQwPCw8OhKCZb3LPkCPD6NKDqYmD7ObwRKNoLPPQ2kDQw4G6pqooGhCMcDbZdDtXU541OZKlRljqIiMRR4UQzPAgFbHvlt66Ry3YJafc1QQMgvO7Lj8dYHGavHTOzRwby1KiioaEeqhpp8TrISKacAqs9MTExGD58OKZMmYIHH3wQU6ZMwfDhwzn4QbZUWVmJZ599FpWVlaK70lbJEWDNXYEPfrSougisnuRbQyRAlVXVeFb5FSph3/WBTHve6EiWGmWpg4hIlBjFgwcj8xGjcD5o0ubyGQeCgdd9+fEYi8PstWNm9shAlhpjFA9ef+kvlq+DjGWZARAi+l5sbCzmzp2L2NhY0V35Xm2Z786P+gp991tfAay717f/AMRGR2Gu+hpiUa1PvyzIlOeNzmSpUZY6iIhEqVXDsLl+AGrVMNFdIYup8QR/3Rhe9+XHYywOs9eOmdkjA1lqrFXDMGXmw5avg4xl6imwiKh9oaGhSE5OFt2NtrY9qd+dH5erugi8vwi495Vu7yI0NBTJ+EbHTlmPKc8bnclSoyx1EBGJ4kUIylTOBU3aeZq8QHhw2+R135pSEqNQtPQuv7blMRaH2WvHzOyRgSw1ehGCH/VIQmhoqOiukInxDhAiC6qursaaNWtQXW2SuxlO7OjegudaHN7oa6ebqmtqsQbTUQ37/jHEdOeNAWSpUZY6iIhEiUQjJjgLEYlG0V0hi3E6gv8rMq/78uMxFofZa8fM7JGBLDVGohHb3nnT8nWQsUx/B8jx48fx4YcfIj8/H5cuXUJVVRW8Xm+Xz1MUBR999FEQekgUfA6HA2lpaXA4TPIjvHd5cNrZlw1cP17780oL4DjwKtJwDg60M63BO48BqSOAwdOBpAGB99OkTHfeGECWGmWpg4hIlGYoKPHGopkLoJNG0c7gf4KU13358RiLw+y1Y2b2yECWGpuhILl3iuXrIGOZ9uw4deoU5s2b161BDFVVoSj8ZYfkFRERgTFjxojuhk9pAXDmk+C0VbwPKD3q/yDFiR2+wZkznyACwJiOtjv7me9r73PAtcOB2/8FuP5OXbpsJqY6bwwiS42y1EFEJIoHDuQ39RbdDeqmPYvGAgAWbsjHweLyoLU7NDVByO+RvO7Lj8dYHGavHTOzRway1OiBAzcPG4GIiAjRXSETM+UUWPn5+bj55pvx0UcfQVXVLr9aXP7/RLJqaGhAbm4uGhoaxHWivNj3tf/V4LZ7wI/2asuATb8E1s9oHZxpgBO5GIIGODt/7plPgPXTgbcfDXjhdbMxxXljMFlqlKUOIiJRwtCMAaGlCGvvzk8yvZTEKKQkRmFYn8Sgtjusb3Dba8Hrvvx4jMVh9toxM3tkIEuNYWhGQf4By9dBxjLdAEhjYyPuueceuN1uqKqKiRMnYsOGDZg6dSoA39RWu3btwpYtW/CXv/wF06dPR1hYGFRVRUxMDFauXIldu3Zh586dYgshMpDH40F+fj48Ho+4TmTf6PvyZ0BCT/u7WAi95Ajw4vAr1iTxIAz5GAgPwvxr5/BG335KC7rZUfMxxXljMFlqlKUOIiJRHGjGdY5L7U99SboqLHFj5e6THT6+cEM+lm0vxPGSKs37npzRK5CuaW/vJjF3DfG6Lz8eY3GYvXbMzB4ZyFKjA834x7Ejlq+DjGW6KbBee+01FBUVQVEU/OIXv8CaNWsAALt3727dZvTo0a3//tWvfoULFy7g8ccfx7Zt2/Dkk09i+/btyMrKCnbXiYImNjYW8+bNE90NcVQVaG96gpIjwJq7gPqKKx6KRQ3mYZ22dqouAqsnAY9sA5IGdq+vJmKH80aWGmWpg4hIlDo4saXB+tduM9tZWIoVOaeQV9T5HbMHi8txsLgcL+ScRGZaIuaP6Yex6Vf71UZ6sguZaYldtqGHzD6J6J8ca3g77eF1X348xuIwe+2YmT0ykKXGOjgx9f7ZiI2NEt0VMjHT3QHyv//7vwB8i/H8+c9/9us5vXr1wpYtWzB58mS43W7MnDkTlZWVRnaTSCiv14uKigp4vV7RXRHDU33l92rLgNentTv4AQBeKKiAC16ti6HWVwDr7pViOiw7nDey1ChLHUREoihQEaM0QAGnx9VbeY0HT7zxBeasOaB5YCKvqAyPrNmPBW9+gfIa/z6pOW9M3+50U7P5o/sFpZ328LovPx5jcZi9dszMHhnIUqMCFVXuSsvXQcYy3QDIF198AUVRkJmZiauuusrv54WEhGDlypVwOp04e/Ys1q5da2AvicRyu93Izs6G2+0W3RUxmtr5hXnbk747NjrgRiyylUfhRjc+2Vd1EXh/kfbnmYwdzhtZapSlDiIiUaIVD6ZHHEa0wukQ9HTsohsTsndjy5cXAtrP5vwLmJC9G4UlXV/nxqUnYfJNxk6FNSWjl993pRiB13358RiLw+y1Y2b2yECWGqMVDzaufcnydZCxTDcAcunSJQDAdddd1+b7oaGhrf+uq6tr97lJSUkYNWoUVFXFpk2b2t2GSAYulwsLFiyAy+US3RUxHJctZH5ixxVrflzOhSosUF+BC9rnnwbgWxPkxI7uPdck7HDeyFKjLHUQEYlSozqxsX4walRn1xuTX45ddGPmS7kodeuzyGipuwH3rcz1axBkyeSBSHKF69Lu5ZJc4Vh8t9jp0njdlx+PsTjMXjtmZo8MZKmxRnVi+qzHLV8HGct0AyAti9ZERbWduy029vtPbX/99dcdPj8tLQ0AcOrUKf07R2QSISEhiI+PR0iI6X6Eg8MZ0/b/9y7v8ikhUBEPN0ICmQpjX3b3n2sCdjhvZKlRljqIiERRoaBaDYeqdepLald5jQezV+ehsq5R1/1W1jVi1qq8LqfDSoh2Yu2cTMRFhunaflxkGNbOyURCtNiBMl735cdjLA6z146Z2SMDWWpUoSDWFWf5OshYpjs7EhISAAA1NTVtvt+jR4/Wf584caLD57cMjrTcSUIko6qqKqxYsQJVVd28m0EPCw75vlKGBbfdlKy2C6CXFgBnPunyaVWIxgo8hCpEd7/t4n1A6dHuP18wU5w3BpOlRlnqICISJRIeTA4vQCQ4BZYent5SoNudH5crdTdg8daCLrdLT3Zhw9ws3e4ESXKFY8PcLKQni//EKK/78uMxFofZa8fM7JGBLDVGwoN331hj+TrIWKYbAPnxj38MVVVx7ty5Nt8fPHhw678/+OCDdp9bX1+P/fv3AwBvfSKpOZ1OZGRkwOkU+Gm1hFTfV+qI4LabNgIoL/7+a/+rfj3NiUZkoABOBPjJxQP+tWdGpjhvDCZLjbLUQUQkShNC8VXTVWhCaNcbU6d2FpYGvOZHVzbnX8DOwtIut0tPdmH7glGYkhHYmiBTMnph+4JRphj8AHjdtwMeY3GYvXbMzB4ZyFJjE0Lx4xsGWb4OMpZDdAcud/PNN2Pfvn0oKGj7KaCsrCzExsaiuroaL7/8Mh599FH079+/zTa///3vcfHiRSiKgiFDhgSz20RBFR4ejqysLNHd8Bk8Ddj7XPDaGzQNyL5R89PC4UEWvgi8/f2vAHf9v8D3I4CpzhuDyFKjLHUQUXCdLavFyGW72n1sz6KxSEmMavcxGTUiFEebk0R3QworcoIztfCKj09hXHrXxywh2onsmUMwJaMXVnx8Cnmny/xuI7NPIuaP7id0wfP28LovPx5jcZi9dszMHhnIUmMjQjEwYyjCw41ZK4zkYLo7QMaNGwfAN5XV0aPfTzUTGRmJX/ziF1BVFVVVVcjMzMQTTzyBl19+GdnZ2bjjjjvw3HPf/xF21qxZQe87UbDU19cjJycH9fX1orsCJA0Erh0enLZSRwBJA7r11HqEIwe3oR46XBTVANYREchU541BZKlRljqIiERxogkZjvNwokl0VyytsMSNvCL/BxgCkXe6DMdL/J++Ylx6Et6aext2LByFX2Sldrjd0NQE/GpsP+xYOApvzb3NdIMfAK/7dsBjLA6z146Z2SMDWWp0ogmff7bP8nWQsUw3ADJ+/HhER0dDVVW88cYbbR575plnkJKSAlVVUV1djb/+9a+YN28efvOb3yAnJ6d1uzvvvBMPPPBAkHtOFDxNTU0oKipCU5NJfqm/fWFw2hnR/XaaEIoiXKPPVBie6sD3IYDpzhsDyFKjLHUQEYkSChXJIVUIhTU/tCDa2bJanC2rxbrc4qC2uy63GGfLajU9p39yLB4f1bfDx5+/LwNPjk9H/+TYQLtnGF735cdjLI4R2ackRqFo6V3tfslwtyXPV3tkIEuNoVBRcv6s5esgY5luCqyIiAh89NFHKC8vb10QvUVCQgL27NmD+++/H59++ukVz1UUBQ8//DBefPHFYHWXSIiYmBjMnj1bdDe+d/1439RURzYZ18bg6cD1d3b76TGoxWxs1KcvTR7ocSNJsJnuvDGALDXKUgcRkSh1CMN2T7roblhWR1OpGe213GK8lluMoqV3CWlfFF735cdjLA6z146Z2SMDWWqsQxgm3TMTMTHWH3wk45huAAQAMjMzO3zs2muvxb59+/Dpp5/io48+woULFxASEoK+ffvirrvuumJdECIZNTc345tvvkGPHj0QGmqSxT0n/Qko3gdUXdR/37E9gYnLAtpFM0LwDX6EHvgWofAG1h+HNRfXMuV5ozNZapSlDiIiUULgRbxSjwo1Al7z3fRO1Aav+/LjMRaH2Wtn5sxa7r4xmpkz0IssNYbAi2+/KUWvuGstXQcZy7K/Ddx222343e9+hxdeeAH//d//jd/85jcc/CDbqKqqwsqVK1FV5f88yYaLSgQeehuIiNd3vxHxvv1GJQa0myrEYKXyC1QhJvA+OXXYhwCmPG90JkuNstRBRCRKlNKIKRFHEaU0iu4KUZd43ZefEcdY9mmY9MKfL+2YmT0y0FqjWV9zopRGbH7zb1IfKwqc6e4A2bJlS+u/J06ciLCwMIG9ITKnuLg4PPXUUwgPN9k8TEkDgUe2Aevu1edOkNievsGPpIFtv7/g0Pf/fucx4OxnXe4qDm48pf4V4WgIrE8pWYCiBLYPQUx73uhIlhplqYOISJRq1YnX6zLg0WPtLyKD8bovPx5jcZi9dszMHhnIUmO16sSDj/8z4uLiRHeFTMx0AyBTp06FoihIT0/H5MmTRXeHyJQURUFERITobrQvaSAw/xPg/UXA4QDW3Bg83TftVXt3fiSkfv/v1BF+DYAoACICHfwAgLQRge9DEFOfNzqRpUZZ6iAiEkeBx3y/6hC1i9d9+fEYi8PstWNm9shAnhoVhIdHQLHoB1UpOEw3BVbLD9/NN98suCdE5uV2u7F8+XK43W7RXWlfVCJw7yvAA2/5Bii0SB0BPLDR93x/pr0aPM2v3boRg+X4JdyBToE1yL/2zMj0540OZKlRljqIiESJggfTwg8hCh7RXSHqEq/78uMxFofZa8fM7JGBLDVGwYO31qy0fB1kLNN9LKpnz54oKiqy/C1YREaKiIjAmDFjzD9af/1431fpUeDAq8D+V9rfLiXLd2fFoGlA0gBtbSQNBK4dDpz5pNPNItCAMfg0sLtAUkdo75+JWOa8CYAsNcpSBxGRKB6EIr+pF6fA6qY9i8YCABZuyMfB4vKgtTs0NQHP35cRtPbMgtd9+fEYi8PstWNm9shAlho9CMWQYSMsXwcZy3R3gAwePBiqquLkyZOiu0JkWk6nExkZGXA6naK74p+kAcDwJzp+/J6XgDv+0P3BhdsXdrmJE43IwFE4EcBiqCO6bsfMLHfedIMsNcpSBxGRKE0IxVfNV6GJAyDdkpIYhZTEKAzr48fduDoa1jfRlos387ovPx5jcZi9dszMHhnIUmMTQvHjGwZZvg4ylukGQO6//34AwCeffIKzZ88K7g2ROdXV1WH79u2oq6sT3RVzuH58l1NT1SEC2zEGdejmpwIGTweuv7N7zzUJO5w3stQoSx1ERKI40YTMsDNwokl0Vyxtckav4LZ3U++gtmcWvO7Lj8dYHGavHTOzRway1OhEE3J377R8HWQs0w2ATJ8+HSNGjEBjYyNmz56NhgYdFi0mkozX60VFRQW8Xq/orpjHpD8BsT07fNgLBRVwwYtuLIwV29O3ILvF2eG8kaVGWeogIhIlBCpiFA9CoIruiqWlJ7uQmRacu0Ay+ySif3JsUNoyG1735cdjLA6z146Z2SMDWWoMgYpqd6Xl6yBjmW4AJCQkBG+99RZuueUW5OTkICsrCx988AFUlb+8ELWIjo7GzJkzER0dLbor5hGVCDz0NhAR3+7D0ajDTGxBNDR+KiAi3rdffxZkNzk7nDey1ChLHUREotQjDDs916EeYaK7YnnzxvQNSjvzR/cLSjtmxOu+/HiMxWH22jEze2QgS431CMNPfvZzy9dBxjLdIuhz5swBAPz4xz/Gl19+iUOHDmHixIlISEhARkYGevTogcjIyC73oygKXn31VaO7SyREU1MTzp07h2uuuQYOh+l+jNuXkAosrjS2jaSBwCPbgHX3AlUX2zzUhFCcQ09cg4twoNm//cX29A1+JA00oLPBZ8nzRiNZapSlDiIiUULhRY+QanzjjUGz+T7zZSnj0pMw+aZe2PLlBcPamJLRC2PTrzZs/2bH6778eIz1lZIYhaKld/m1LbPXjpnZIwNZagyFFxfPnUFP13WWroOMZbrfBtasWYO1a9diw4YNaG72/ZFSVVWUlZVh165deOutt7B27douv9asWSO2ECIDVVdXY+3ataiurhbdFfNJGgjM/8S3ZscPVCMaa5UZqIafnwoYPN23H0kGPwB7nDey1ChLHUREokQqjZgYfgKRSqPorkhhyeSBSHKFG7LvJFc4Ft8tz/ut7uB1X348xuIwe+2YmT0ykKXGSKUR7//PBsvXQcYy5dBYR9NdaZkGS1G6Mc8/kUXEx8fj6aefFt0N84pKBO59xTeIsS8bKN6HeLjxtPpc189NHQGMWGj5Bc/bY4fzRpYaZamDiEiUajUcq+uGiu6GNBKinVg7JxP3rcxFZZ1+g0pxkWFYOycTCdFO3fZpRbzuy4/HWBxmrx0zs0cGstRYrYZjzj8/ifj4KNFdIRMz3QDI6tWrRXeBiGRx/XjfV+lR4MCrwP5X2t8uJQtIGwEMmgYkDQhuH4mIiIgsID3ZhQ1zszBrVR5K3Q0B7y/JFY61czKRnuzSoXdERERERO0z3QDIrFmzRHeByPQqKyvx4osvYv78+YiLixPdHfNLGoDKwXPw4n4n5uM1xKGq7eP3vORbo0RydjhvZKlRljqIiESJVhowJfwoNjcMQI1qzNRNZlFY4sa63OIOH1+4IR/D+iRiSkZv9E+ODait9GQXti8YhcVbC7A5v/trgkzJ6IXFdw+0/Z0fLXjdlx+PsTjMXjtmZo8MZKkxWmnAupX/hX/6J2vXQcYy3QAIEXUtKioKU6dORVQUb/HzV1REBKZiB6JQJ7orwtjhvJGlRlnqICISpV51YK8nDfWqvL/u7CwsxYqcU8grKut0u4PF5ThYXI4Xck4iMy0R88f0C2jB8YRoJ7JnDsGUjF5Y8fEp5J3uvP0fyuyTiPmjA2tfRrzuy4/HWBxmrx0zs0cGstRYrzow8icTLV8HGUve3wiIJBYWFob09HTR3bCUsDAH0nFSdDeEssN5I0uNstRBRCRKM0JxxpsguhuGKK/x4OktBdjypfY7MPKKypC3pkyXOzDGpSdhXHoSjpdUYV1uMV7r4C6UoakJGNY3EZNvCvwOFFnxui8/HmNxmL12zMweGchSYzNCkdrvxwgLCxPdFTKxENEdICLtamtr8e6776K2tlZ0Vyyjtq4e72I8ahEhuivC2OG8kaVGWeogIhIlHI24Pew0wqHfgt1mcOyiGxOyd3dr8OOHNudfwITs3SgscQfcp/7JsXh8VN8OH3/+vgw8OT6dgx+d4HVffjzG4jB77ZiZPTKQpcZwNGL337dZvg4yFu8AISIiIiIiMrljF92Y+VIuKuv0GdQpdTfgvpW52DA3iwuRk2WlJEahaOldorthS8yeiIisQsgAyNSpU7F06dKg3WpVWFiI3/72t3j33XeD0h6R0VrmaiT/RfXqj6mL3xLdDaHscN7IUqMsdRARidKAMOxt7CO6G7opr/Fg9uo83QY/WlTWNWLWqjxsXzCKC5ILxOu+/HiMxWH22jEze2QgS40NCMOon97JNUCoU0KmwNqyZQtuvPFGPPTQQzh06JBh7Xz55Zd44IEHcOONN2Lr1q2GtUMUbI2NjSgsLERjo1zTOhiJmdkjA1lqlKUOIiJRQtGMa0PKEYpm0V3RxdNbClDqbjBk36XuBizeWmDIvsk/vO7Lj8dYHGavHTOzRway1BiKZhSf/Ifl6yBjCRkA6dWrF5qamvDGG29gyJAhGDVqFF577TVUVVUFvO+qqir87W9/w8iRI3HzzTdjw4YNaGpqQu/evXXoOZE5yDJXYzAxM3tkIEuNstRBRCRKhNKE251FiFCaRHclYDsLSwNe86Mrm/MvYGdhqaFtUMd43Zcfj7E4zF47ZmaPDGSpMUJpwp4P37d8HWQsIVNgHT9+HM888wyys7PR0NCAffv2Yd++fXA6nRgzZgzGjRuHkSNHYvDgwYiOju50XzU1NTh06BD27t2LnTt3IicnBx6PBwCgqirCw8OxcOFC/O53vwtGaURBERcXh9/+9reiu2EpzMweGchSoyx1ENnR2bJajFy2q93H9iwai5RE3p4fDDVqONbXDxHdDV2syDkVnHY+PoVx6UlBaYva4nVffjzG4jB77ZiZPTKQpcYaNRwPzX0CcXF8j00dEzIAEh0djaVLl+LXv/41lixZgtdeew0ejwcNDQ344IMP8MEHHwAAFEVBr169cM011+BHP/oRoqKioKoq6urqcOnSJZw7dw4XL16Eqqqt+275t9PpxKxZs/D73/8e11xzjYgyiYiIiIjIBgpL3FiXW9zh4ws35GNYn0RMyeiN/smxmvabV1SmRxe7lHe6DMdLqjT1j4iIiIjI7IRMgdXimmuuwcsvv4yioiL8+7//O3r37g1VVVu/vF4vzp8/j88++wzbtm3Dpk2b8Pbbb2Pbtm3Iy8vDhQsX4PV62zynd+/e+N3vfoeioiKsXLmSgx8kpYqKCixZsgQVFRWiu2IZzMweGchSoyx1EBGJEqM04JHIA4hRjFk3o8XOwlLMWPEpJizfg3W5Zzrc7mBxOV7IOYnxy3djxopPsavw6073e7asFmfLajsdVDHCutxinC3jFBLBxuu+/HiMxWH22jEze2QgS40xSgNW/eVPlq+DjCXkDpDLJScn45lnnsEf//hHfPzxx9i6dSv+/ve/4+jRo/B6vZ0+NyQkBAMGDMBPf/pT3H333Rg9ejQURQlSz4nEiImJwaxZsxATEyO6K5bBzOyRgSw1ylIHEZEodWoY3m+4HnVqmCH7L6/x4OktBd1amyOvqAx5a8owJaMXFt89EAnRziu26WgaNaO9lluM13KLUbT0LiHt2xWv+/LjMRaH2WvHzOyRgSw11qlhmPjz+yxfBxnLFAMgLRRFwZgxYzBmzBgAvvU9jhw5gtOnT6O0tBQ1NTUAfFNoJScno0+fPhg4cGCX64TYgcfjwYYNG/DGG2+goKAApaWlSEhIQJ8+fXDPPfdg9uzZuOqqq3Rts7m5GQUFBdi/fz8OHDiA/fv349ChQ2hsbAQAjB49Gjk5Obq2ST4OhwNpaWmiu2EpzMweGchSoyx1EBGJ0owQlHhdhuz72EU3Zq/OQ6k7sLtLNudfQO6pb7F2TibSk43pK1kDr/vy4zEWh9lrx8zskYEsNTYjBD2vuRYOh6n+xE0mY+qzIzo6GsOGDcOwYcNEd8XUCgsLcf/99yM/P7/N90tKSlBSUoJPP/0Uf/rTn7B69WpMmjRJlzbfffddPPjgg6it5S3yItTU1GDr1q24++67OQDoJ2ZmjwxkqVGWOoiIRIlAI4Y7i/GJJxX10O8ukGMX3Zj5Ui4q6xp12V+puwH3rczFhrlZHASxMV735cdjLA6z146Z2SMDWWqMQCM+/N//wYx7p1q6DjKW0DVAKHDnzp3DHXfc0Tr4oSgKRo8ejTlz5uDuu+9GZGQkAODrr7/G1KlTsXPnTl3araio4OCHQCEhIYiPj0dICH+E/cXM7JGBLDXKUgcRkSheKKhWnfBCv6lxy2s8mL06T7fBjxaVdY2YtSoP5TUeXfdL1sHrvvx4jMVh9toxM3tkIEuNXiiIccVZvg4ylqnvAKGuPfDAA7hwwTf3cGpqKjZv3oybbrqp9fFLly5h5syZ+Oijj9DY2Ijp06fj5MmTiI+P16X9pKQk3Hrrra1fO3bsQHZ2ti77po5FRkZiwoQJorthKczMHhnIUqMsdRARieKBA3mN1+q6z6e3FAQ87VVHSt0NWLy1ANkzhxiyfzI3Xvflx2MsDrPXjpnZIwNZavTAgaxRY1s/AE7UHg6PWdi2bduwZ88eAIDT6cTWrVvbDH4AwFVXXYXNmzejb9++AICysjIsW7Ys4LYnTJiA4uJilJSUYOvWrfjDH/6AiRMn6jawQp3zeDzIz8+Hx8NPCvqLmdkjA1lqlKUOIiJRHGjGdaGX4ECzLvvbWVjarQXPtdicfwE7C0sNbYPMidd9+fEYi8PstWNm9shAlhodaMY/jh2xfB1kLA6AWNhf//rX1n/PmjULgwcPbne76Oho/PGPf2z9/5UrV6KpqSmgtpOTk3Httfp+qo78V19fj5ycHNTX14vuimUwM3tkIEuNstRBRCSKE83IcFyAU6cBkBU5p3TZT5ftfOxrZ8+isdizaCxuSU0ISrsthqYmYM+isUFtk3jdtwMeY3GYvXbMzB4ZyFKjE8344rN9lq+DjMUBEIuqrq7GRx991Pr/jzzySKfb33vvvYiJiQHguwtk9+7dhvaPjOVyubBw4UK4XFws01/MzB4ZyFKjLHUQEYlSCyc2NdyIWjgD3ldhiRt5RWU69KpreafLcLykCimJUUhJjMKwPolBabfFsL6JSEmMCmqbxOu+HfAYi8PstWNm9shAlhpr4cSM2XMtXwcZiwMgFvXJJ5+gocE3B3F0dDRuvfXWTrePiIjAbbfd1vr/ei2GTmKoqor6+nqoqiq6K5bBzOyRgSw1ylIHkQhny2qR9tv32v06W1YrunsUNCqcaALQvdfRs2W1rV/rcov17VoXftje5IxeQW178k29g9oe+fC6Lz8eY3GYvXbMzB4ZyFOjioYGGeogI3EAxKKOHTvW+u/BgwfD4eh6Pfubb7653eeT9VRWVuLZZ59FZWWl6K5YBjOzRway1ChLHUREosQoHjwYmY8YpXvzQY9ctqv1a13uGZ1717nXfjAAkp7sQmZacO4CyeyTiP7JsUFpi9ridV9+PMbiMHvtmJk9MpClxhjFg9df+ovl6yBjcQDEoo4fP97679TUVL+e88M1OwoLC3XvEwVPbGws5s6di9hY/pLqL2ZmjwxkqVGWOoiIRKlVw7C5fgBq1TDRXemWH36Kcd6YvkFpc/7ofkFph67E6778eIzFYfbaMTN7ZCBLjbVqGKbMfNjydZCxOABiUd9++23rv5OSkvx6TnJycuu/y8qCM48xGSM0NBTJyckIDQ0V3RXLYGb2yECWGmWpg4hIFC9CUKZGwWvRX3dqPN8v3j4uPQmTbzJ2KqwpGb0wNv1qQ9ugjvG6Lz8eY3GYvXbMzB4ZyFKjFyH4UY8ky9dBxrLmbwSE6urq1n9HRkb69ZwfbvfD51tZRERE6+Luzc3NqKioaP3EnNvthsfjm/agrq4ONTU1AICmpiZUVFS07qOyshKNjY0AgNraWtTW+uYHb2xsbHMLXUVFBZqamgAANTU1qKurAwB4PB643W4Avk/rVVRUoLnZ90trdXU16uvrAQANDQ2oqqoCAHi9XlRUVMDr9QIAqqqqWtd0qa+vbz0+HdVUXV2NV199FV9//bU0NRl9nMrKyvDKK6+gurpampq0Hqfq6mqsXr0a58+fl6amy49TdXU1XnnlldZBYqvW5Ha78corr7Q+T7bjxJpYk9E1haEZkfD1R4GKGKUByndrQRhdU32dr6ZQNCNaaWjdLkZpCMpxcqIJkfD1JwRexCgNaFkHw+jj1FDvq8mBZkShZeopX/7BOPca6usQ8V3t0WjAXc6jrVlUV7k11xSBxu/WEWm/phD4+hr5g+06O/ci4UEYmrs8TlHwoLq2vs1xWjJ5IHrGhn23nU+00oDQ7/YXjkaEf7e/9s690O/62l5NSa5wPP2zATz3Ajj3nGhqPfdCW2v3v6aW9y8tWWh5jWho6Ph1Lxiv5fV1tR2ee1XuSl6fvqvp0qVLWLNmDb799ltparLKcfr666/x6quvorq6WpqajD5OpaWlWLNmDSorK6WpSetxqqioaP37gSw1XX6cLly4gFWrVqG6utoSNTV2cM29SqnBtnfeRHV1tZTHScaaROAAiEW1nKAA4HQ6/XpOeHh4679bfhCsLisrC9OmTQMAfPPNN8jOzm79oVy1ahWOHj0KAPj444+xdetWAMC5c+eQnZ3duo8XX3wRJ0+eBAB88MEH+OCDDwAAJ0+exIsvvti6XXZ2Ns6dOwcA2Lp1Kz7++GMAwNGjR7Fq1SoAvheM7OxsfPPNNwCATZs2ITc3FwDwxRdf4PXXXwfge1HIzs5ufRF6/fXX8cUXXwAAcnNzsWnTpk5rcjgcUFUVH374oTQ1GX2cTp48iUuXLsHhcEhTk9bj5HA40LNnzzZ/WLd6TZcfJ4fDgYqKita+WrWmuro6nD9/vvW1WrbjxJpYk9E1/Tj0En4a/g8AQLTiwfSIw4j+bi0Io2vK25sDAOgd4saU8KOt202POIxvSi4YfpwGOEox2unrT7xSj+kRh+H87o/kRh+nL/I+BQCkhZZjUrhvulUnmjE94jAqyi51uyZ/j9MXeZ9iuNO3fkZCSC2uDq1FMxQAwLvr12iuabizGBlhFzqsKV7xvR8f7TyJAY5SAJ2fez8N/wd+HHqpy+M0KbwQRV8db3OcEqKdeHZib0yPONza1ynhR9E7xJfXrWHncGuYr9/tnXs9Qqrbrelnkcexdk4mohwqz70Azr2MsAut516PkOo2x8mfmhwOB86fP9/64SYtrxEF+QcBtH/u1VRXdbsmf49T3t6cDs+9jWtf4vXpu5ry8/ORlpaGo0ePSlOTVY7Thx9+CFVV4XA4pKnJ6OP03nvvIS0tDRUVFdLUpPU4ff311zh//nzrersy1HT5cfrb3/4Gl8sFh8NhiZqKTp4AcOU19+6IY0junQKHwyHlcZKxJhEU9YcTzJJl3HXXXdi2bRsA4KmnnsLSpUu7fM7777+PSZMmAQBiYmJaR/b0tHjxYixZsgQAMHr0aOTk5OjeBgAUFBRg0KBBiIiIgMPhQG5uLtLT01FVVYW4uDgoigK3242IiAg4nU7U1dXB6/UiOjoaTU1NqK6uRnx8PADfaGpUVBTCwsJaR1KjoqLQ2NiI2tpaxMXFAfCNpsbExMDhcKCmpgYhISGIjIyEx+NBfX09XC4XVFVFZWUlYmNjERoaiurqajgcDkRERKChoQEejwexsbHwer1wu91wuVwICQlBVVUVnE4nwsPDUV9fj6amJsTExKC5uZk1sSbWxJpYE2tiTRpq+qbWi3HLPoQDzaiDEwpURCse1KhO7F40DvFhzYbWdL68Fj/9y2cIRTMilCbUqL4PoMQoDdj6Lz9Bn6tdhh2nr2uacceyvyMUKuoQhhB4EaU0olp1Ys+icYhzNBl6nC5W1uMn/5ULB5rhRDNq4YTvU/ge/O9vfoq0HrGGnntfXfgWP/uvPahHGELhRaTSiOrv8n9//i24rteP/K7put/tQAQa4YUCDxzt1lSrhsGLEESiEc3fbReG5nbPPRUKIuFBE0LRiFA40dTucQIURMGDL5ZMQnh4+BXH6cvTF/FPG4+j1N2AaKUB9aoDzQht/QR+A8LaPffq1DA0I6RNTb1iHfjv+wbh5ut689wL4NwrrW7CHcv+jhCoV5x7exaNhSu00dDXvZIqD36S/Wm75957/3onUq+KMfS1/B/nL+Fnf9nb7rm3bd7NuP6aHrw+sSbWxJpYE2sKuKZLtV6MW74PTjRdcc19/8kJSEmMslxNMh6nzmo6f/48Bg0ahBZHjhzBwIEDEQwcALGo++67D2+99RYA4IknnvBrJO2dd97BvffeC8C3HsjFixd171ewB0BaBPOHxgwaGhrwxRdfYMiQIW3u7KGOMTN7ZCBLjbLUQSTC2bJajFy2q93H9iwai5TEKGnbt3Ptl7cfhmb8OPQS/tF8FRoRqrn9s2W1rf9euCEfB4vLde9vR4amJmDT/OEdPl5e48HirQXYnH+h221MyeiFxXcPREK0f3eSd8VMxz7Y7evRdiDXfTtnbyV8bycOs9eOmdkjA6vV2NH1JgzN+Mud8Rg7Ypgl6rAzkX/L5RRYFvWjH/2o9d+lpaV+PaekpKT134mJibr3iYLH4/EgPz+/dW496hozs0cGstQoSx1ERKI40IzrHJfgQHPXG7cjJTGq9WtYn+C+bx7Wt/P2EqKdyJ45BKtmD0Wmxr5l9knE6tm3InvmEN0GPyhwvO7Lj8dYHGavHTOzRway1OhAM/5x7Ijl6yBjOUR3gLqnf//+rf8uLi726zlnzpxp/Xd6errufaLgiY2Nxbx580R3w1KYmT0ykKVGWeogIhKlDk5sadDnE2WTM3rhhZyTuuzLr/Zu6u3XduPSkzAuPQnHS6qwLrcYr+W2/zvB0NQEDOubiMk39Ub/5Fg9u0o64XVffjzG4jB77ZiZPTKQpcY6ODH1/tmIjeUdh9Qx090BEhoaGtCXw+FAYmIi+vbti7vuuguLFy/GiRMnRJeluxtuuKH134cPH0ZTU1OXz/n888/bfT5Zj9frRUVFBbxer+iuWAYzs0cGstQoSx1EZB+FJW6s3N3xIMHCDflYtr0Qx0v0X4OuPQpUxCgNUBD4bL/pyS5kpgXnLpDMPomaByn6J8fi8VF9O3z8+fsy8OT4dA5+mBiv+/LjMRaH2WvHzOyRgSw1KlBR5a60fB1kLNMNgLQsSaKqare+Wn6Ai4uLsX37djzzzDO44YYbcM899/g9VZQVDB8+vHVuu5qaGhw4cKDT7RsaGpCbm9v6/+PGjTO0f2Qst9uN7OxsuN1u0V2xDGZmjwxkqVGWOohIfjsLSzFjxaeYsHwP1uWe6XC7g8XleCHnJMYv340ZKz7FrsKvDe1XtOLB9IjDiFb0mQ5h3piOBxj0NH90v6C0Q+bC6778eIzFYfbaMTN7ZCBLjdGKBxvXvmT5OshYphsAAb4fBFEUBYqi+PWcy7e9fGBk8+bNGDp0KM6dO2dIn4MtJiYGd9xxR+v/r1mzptPt33nnHVRV+T5xl5iYiFGjRhnZPTKYy+XCggUL4HK5RHfFMpiZPTKQpUZZ6iAieZXXePDEG19gzpoDyCsq0/TcvKIyPLJmPxa8+QXKa4yZr7lGdWJj/WDUqPqsczEuPQmTb+qly746MiWjF8amX21oG2ROvO7Lj8dYHGavHTOzRway1FijOjF91uOWr4OMZboBEK/XC6/Xi//+7/+G0+mEqqoYO3YsXn31VRw5cgQVFRVoampCZWUlCgoKsHr1atxxxx1QVRXh4eH461//Co/Hg5KSEnzwwQeYM2cOwsLCAADnz5/HtGnTBFeon3/6p39q/feaNWtQUFDQ7na1tbX4wx/+0Pr/jz/+OBwOLv9iZSEhIYiPj0dIiOl+hE2LmdkjA1lqlKUOIpLTsYtuTMjejS1fXghoP5vzL2BC9m4Uluj/iT0VCqrVcKjw78NU/lgyeSCSXOG67e+HklzhWHy3PmuWkPXwui8/HmNxmL12zMweGchSowoFsa44y9dBxjLl2fHMM8/gn//5n+FwOPDOO+/go48+wiOPPIIBAwbA5XIhJCQEsbGxuOGGGzBr1iz8/e9/x7vvvovQ0FD8+te/xtKlS3H11VfjJz/5CV555RXs3r27dSRw//79eO+99wRXqI+77roLI0eOBOCb4upnP/sZDh061Gabb7/9FlOnTsVXX30FwHf3x1NPPdXu/oqKilrvpFEUpcu7SkicqqoqrFixovWuHuoaM7NHBrLUKEsdRCSfYxfdmPlSLkrdDbrsr9TdgPtW5uo+CBIJDyaHFyAS+t1hkhDtxNo5mYiLDNNtnwAQFxmGtXMykRCtz90qZD287suPx1gcZq8dM7NHBrLUGAkP3n1jjeXrIGOZ7jaAAwcOYMmSJQCA1atXY+rUqX49b/LkyVi9ejVmzJiBJUuWYOLEibjlllsAAMOGDcNf/vIXPPzwwwB800HdddddhvQ/2NavX4/MzExcvHgRRUVFyMjIwOjRo9GvXz988803+PDDD1FbWwsAcDgceOuttxAfH69L25MmTcKFC20/+VdSUtL67wMHDiAjI+OK523btg29ehk7hYDsnE4nMjIy4HTyF2V/Cc2svBjIvrH9xxYcAhJSg9INO5w3stQoSx1EJJfyGg9mr85DZV2jrvutrGvErFV52L5glG6DAE0IxVdNV6EJobrsr0V6sgsb5mZh1qo8XQaBklzhWDsnE+nJnLbBznjdlx+PsTjMXjtmZo8MZKmxCaH48Q2DLF8HGct0AyArV66E1+vF9ddfr3m6qmnTpuH666/HP/7xD6xcuRIvvfRS62MPPPAA/vVf/xWXLl3Cp59+qne3hbnmmmuwc+dO3H///cjPz4eqqsjJyUFOTk6b7Xr06NE6XZhejh49iuLi4g4fr6mpwZdffnnF9z0eY+Z6tpPw8HBkZWWJ7oalMDN7ZCBLjbLUQURyeXpLgW53flyu1N2AxVsLkD1ziC77a0QojjYn6bKvy6Unu7B9wSgs3lqAzfndnwZsSkYvLL57IO/8IF73bYDHWBxmrx0zs0cGstTYiFAMzBiK8HBjpiklOZhuCqw9e/ZAURRkZmZ26/mZmZlQVRW7d+9u8/2QkBDcdtttUFUVpaWlenTVNNLT0/HZZ59h7dq1mDBhAlJSUuB0OnH11VcjKysLy5Ytw9GjR6W564WA+vp65OTkoL6+XnRXLIOZ2SMDWWqUpQ4iksfOwtKA1/zoyub8C9hZ2L336YUlbqzcfbL1/51oQobjPJxoAgAs3JCPZdsLcbxEn+kREqKdyJ45BKtmD0Vmn0RNz83sk4jVs29F9swhHPwgALzu2wGPsTjMXjtmZo8MZKnRiSZ8/tk+y9dBxjLdHSDnz58HgG7futTyvJb9/FBSku9TYNXV1d3snXk5nU48/PDDrdN8dUdaWhpUVfV7+6Kiom63RYFpampCUVERhg4dKrorliEss9ICYP+rHT/+zmNA6ghg8HQgaYChXbHDeSNLjbLUQUTyWJFzKjjtfHwK49L9v3NjZ2EpVuScQl5RWZvvh0JFckgVjuNqAMDB4nIcLC7HCzknkZmWiPlj+mFs+tUB93dcehLGpSfheEkV1uUW47Xc9u+OHpqagGF9EzH5pt7onxwbcLskF1735cdjLA6z146Z2SMDWWoMhYqS82fR1NQkuitkYqYbAAkL8y0qWFBQ0K3nHz16tM1+fqi5uRkAdFsDg0iUmJgYzJ49W3Q3LCXomZ3YAexdDpz5pPPtzn7m+9r7HHDtcOD2fwGuv9OQLtnhvJGlRlnqICI5FJa4rxhgMEre6TIcL6nqcpCgvMaDp7cUdHhXSh3CsN2T3n4bRWXIW1Om6xRU/ZNj8fiovh0OgDx/XwZSEqMCbofkxOu+/HiMxWH22jEze2QgS411CMOke2YiJobvs6hjppsCq1+/flBVFfv378fnn3+u6bmff/45PvvsMyiKgr59+17x+MWLFwEAV111lS59JRKlubkZJSUlrYN61LWgZVZbBmz6JbB+RteDH5c78wmwfjrw9qO+/eilvBhYHIfmxQkoWXwdmhcnAIvjfF/lHa/jY0Wy/GzIUgcRWdvZslqcLavFug7+qG+UdbnFOFtW2+Hjxy66MSF7d6dTcoXAi0SlFiHwdrjN5vwLmJC9G4Ul7oD6SxQoXvflx2MsDrPXjpnZIwNZagyBF99+U2r5OshYphsAmTJlCgBAVVXMmDHD72mWiouLMWPGjNYpnKZOnXrFNgcPHoSiKLjmmmv06i6REFVVVVi5ciWqqvSZx9oOgpJZyRHgxeHAkU2B7efwRt9+Srt3J1xHqhCDlcovUIUYXfdrJrL8bMhSBxFZ28hluzBy2S6syz0T1HZfyy3GyGW72n3s2EU3Zr6U2+Vi7FFKI6ZEHEWU0tjpdqXuBty3MpeDICQUr/vy4zEWh9lrx8zskYEsNUYpjdj85t8sXwcZy3QDIL/+9a9b1+o4deoUBg8ejD/84Q84fvx4u9ufOHECTz/9NG688UacPn0aANCjRw/8+te/brPdvn378PXXXwMAsrKyDKyAyHhxcXF46qmnEBcXJ7orlmF4ZiVHgDV3AVUX9dlf1UVg9SRdB0Hi4MZT6l8RB3n/yCPLz4YsdRAR6am8xoPZq/NQWdf5oAYAVKtOvF6XgWq16+mtKusaMWtVHsprPHp0k0gzXvflx2MsDrPXjpnZIwNZaqxWnXjw8X+2fB1kLNMNgMTHx2P9+vWIjIyEoiioqanBf/7nf2LAgAFISEjA4MGDMWzYMAwePBiJiYm44YYb8B//8R+oqqqCqqqIjIzE+vXrr1jnIzs7G4DvzpK7775bQGVE+lEUBREREVAURXRXLMPQzGrLgNenAfUV+u63vgJYd29g02GVFgD7fK9/CoAINKBNAu88Bny4BCg9GkBHzUOWnw1Z6iAi0tPTWwq6vPPjewo8cADw73W01N2AxVv1vfOSyF+87suPx1gcZq8dM7NHBvLUqCA8XIY6yEimGwABgLFjx+LDDz9Ev379APgGLVRVRWVlJY4ePYoDBw7g6NGjqKioaH0MAK677jr8/e9/x7hx467Y5//7f/8Pp0+fxunTpzF06NCg1kOkN7fbjeXLl8PtlveT/HozNLNtT+p358flqi4C7y/S/rwTO4BVE31TaR14FQDgRgyW45dw/3AKrJYF2F+8zbf9iQ906rgYsvxsyFIHEZFedhaWdrrmx+Wi4MG08EOIgv93dWzOv4CdhaXd6R5RQKx83U9JjELR0rva/UpJ5IK0Lax8jK2O2WvHzOyRgSw1RsGDt9astHwdZCyH6A50JCsrC4cPH8bq1auxatUqfP755/B6va2DHS1CQkIwZMgQzJkzB4888ggiIiLa3V9KSkowuk0UFBERERgzZkyH5ztdybDMTuwIfM2PrhzeCAyeDlw/vutta8t8AzLt9CkCDRiDTxGBDj49e+YTYP0nvrYmLgOiEgPsePDJ8rMhSx1kT2fLajtcv2HPorH8gxh1y4qcU5q29yAU+U294EGotnY+PoVx6UmankMUKF735cdjLA6z146Z2SMDWWr0IBRDho0wvo7yYiD7xvYfW3AISEg1tn0KiGkHQAAgPDwc8+bNw7x581BdXY1Dhw7hm2++QXV1NWJiYnDVVVfhxhtvRGxsrOiuEgWV0+lERkaG6G5YimGZ7V2u/z7bsy+76wGQkiO+qbg6uBvFiUZkwI+prg5vBIr2Ag+9DSQN7EZnxZHlZ0OWOoiI9FBY4kZekbbpIJsQiq+ar9LcVt7pMhwvqUL/ZP5+QcHD6778eIzFYfbaMTN7ZCBLjU0IxY9vGASns+t138i+TDkFVntiYmIwfPhwTJkyBQ8++CCmTJmCESNGcPCDbKmurg7bt29HXV2d6K5YhiGZlRb47poIhuJ9na/T4cci7HWIwHaMQR38+GSEAYuwB4MsPxuy1EFE1rZn0VjsWTQWt6QmBLXdoakJ2LNoLM6W1eJsWS3W5RZr3ocTTcgMOwMnmjQ/tzvtEQUikOs+p6CyBr63E4fZa8fM7JGBLDU60YTc3TstXwcZyzIDIET0Pa/Xi4qKCni9XtFdsQxdMysv9n3tfzXwfWlx4FVfu5fzcxF2LxRUwAWvnwvC6rIIe5DJ8rMhSx1EZG0piVFISYzCsD7BnRJxWN9EpCRGYeSyXRi5bBfW5Z7RvI8QqIhRPAiB2vXGl3mNAyAUZLzuy4/HWBxmrx0zs0cGstQYAhXV7krL10HGMvUUWETUvujoaMycOVN0NyxF18w6mvfRaPtf8X0trmz7fT8XYY9GHWZii7Y2WxZhv/cVbc8TRJafDVnqICI5TM7ohRdyTgavvZt6B7yPeoRhp+e6bj9fVVUoip8fGCAKEK/78uMxFofZa8fM7JGB1WpsueORqDs4AEJkQU1NTTh37hyuueYaOBz8MfaHtJlpWIS9CaE4h564BhfhQLP/bWhZhF0wWY6zLHUQkRzSk13ITEvUvA5Hd2T2SdRl/Y1QeNEjpBrfeGPQ3I2b3ms8zYgJ5+svdU2PP8jwui8/HmNxmL12zMweGchSoyx1kLFMPwXW8ePH8de//hWPPfYYfv7zn+MnP/kJxo0b1+XXHXfcIbrrRIaprq7G2rVrUV1dLborliFtZhoWYa9GNNYqM1CNaO3t7MvW/hwBZDnOstRBRPKYN6ZvUNqZP7qfLvuJVBoxMfwEIpXGbj3f08RpFCh4eN2XH4+xOMxeO2ZmjwxkqVGWOshYph0aO3XqFObNm4ePPvpI83N5yzrJLj4+Hk8//bTobliKlJlpXIQ9Hm48rT7XvbZaFmFPGtC95weJLMdZljqISB7j0pMw+aZe2PLlBcPamJLRC2PTr9ZlX9VqOFbXDe32850O039OjCTC6778eIzFYfbaMTN7ZCBLjbLUQcYy5Tv7/Px83Hzzzfjoo4+gqmqXXy0u/38iIimZbRF2IiKyhSWTByLJFW7IvpNc4Vh890BD9t0d0c5Q0V0gIiIiIiIdmG4ApLGxEffccw/cbjdUVcXEiROxYcMGTJ06FQCgKAp27dqFLVu24C9/+QumT5+OsLAwqKqKmJgYrFy5Ert27cLOnTvFFkJkoMrKSixduhSVlZVdb0wAJMss+0bf1wFtAyCViMVS/BMq0c251fe/Im4BeD/JcpxlqYOI5JIQ7cTaOZmIiwzTdb9xkWFYOycTCdHONt/fs2gs9iwai1tSEzTvM1ppwAMRXyBaadD83KGpCbybnIKK13358RiLw+y1Y2b2yECWGmWpg4xlugGQ1157DUVFRVAUBQ8//DDee+89TJ8+Hb17927dZvTo0fjZz36GX/3qV9iwYQNOnTqFSZMmobq6Gk8++STCw8MxevRogVUQGSsqKgpTp05FVFSU6K5Yhq6ZLTjk+0oZFvi+tEjJ8rXbTVGow1TsQBTqdOyUucjysyFLHUQkn/RkFzbMzdLtTpAkVzg2zM1CerLrisdSEqOQkhiFYX0SNe+3XnVgrycN9ar2GX+H9dXeHlEgeN2XH4+xOMxeO2ZmjwxkqVGWOshYphsA+d///V8AgMPhwJ///Ge/ntOrVy9s2bIFkydPhtvtxsyZMznyR1ILCwtDeno6wsL0/QSmzHTNLCHV95U6IvB9aZE2wtduN4WhCek4iTA06dgpc5HlZ0OWOohITunJLmxfMApTMnoFtJ8pGb2wfcGodgc/fmhyN9ppRijOeBPQDO1TWU2+qXfXGxHpiNd9+fEYi8PstWNm9shAlhplqYOMZboBkC+++AKKoiAzMxNXXXWV388LCQnBypUr4XQ6cfbsWaxdu9bAXhKJVVtbi3fffRe1tbWiu2IZhmQ2eJp++/LHoMDaq0UE3sV41CJCpw6Zjyw/G7LUQUTySoh2InvmEKyaPRSZGu/QyOyTiNWzb0X2zCFXTHvVnvRkFzLTtLURjkbcHnYa4WjU3Lf+yd2cKpKom3jdlx+PsTjMXjtmZo8MZKlRljrIWKYbALl06RIA4Lrrrmvz/dDQ7z+9VVfX/vQtSUlJGDVqFFRVxaZNm4zrJBERACQNBK4dHpy2UkcASQOC0xYREZGfxqUn4a25t2HHwlH4RVbHdykOTU3Ar8b2w46Fo/DW3NswNv1qTe3MG9M30K76Zf7ofkFph4iIiIiIgkP7pLgG83g8AHDF3G2xsd9/Euvrr79Gamr7v2ClpaUBAE6dOmVMB4lMoGWOQ/KfYZndvhBY/4n++73ciIUB7yIK9ZiKHYH3xcRk+dmQpQ4iso/+ybF4fFRfvJZb3O7jz9+XgZTE7s/NPC49CZNv6oUtX17wa/sGhGFvYx9NbUzJ6KV5YIZID7zuy4/HWBxmrx0zs0cGstQoSx1kLNPdAZKQkAAAqKmpafP9Hj16tP77xIkTHT7/66+/BvD9nSREMmpsbERhYSEaG7VN62BnhmV2/fiAp6bq0uDpwPV3fv//3VyEvREOFKIfGrs79h3gIuzBIMvPhix1EBHpacnkgX4vvh6KZlwbUo5QNPu1fZIrHIvvHhhI94i6jdd9+fEYi8PstWNm9shAlhplqYOMZboBkB//+MdQVRXnzp1r8/3Bgwe3/vuDDz5o97n19fXYv38/AMDl6nwxRSIr4xyH2hma2aQ/AbE99d8v4NvvxGVtv9fNRdhrEfndGiCR3etLgIuwB4MsPxuy1EFEpKeEaCfWzslEXGTXi1xGKE243VmECKWpy23jIsOwdk6mX+uREBmB13358RiLw+y1Y2b2yECWGmWpg4xlugGQm2++GQBQUFDQ5vtZWVmt02C9/PLLOH78+BXP/f3vf4+LFy9CURQMGTLE+M4SCRIXF4ff/va3iIuLE90VyzA0s6hE4KG3gYh4ffcbEe/bb1QHC79qXIQ9DlX4LV5AHKq61x+j73TRgSw/G7LUQUSkt/RkFzbMzeryTpAaNRzr64egRu18uyRXODbMzUJ6Mj88ReLwui8/HmNxmL12zMweGchSoyx1kLFMNwAybtw4AL6prI4ePdr6/cjISPziF7+AqqqoqqpCZmYmnnjiCbz88svIzs7GHXfcgeeee651+1mzZgW970RkY0kDgUe26XcnSGxP3/6SOpmOg4uwExGRDaUnu7B9wShMyegV0H6mZPTC9gWjOPhBRERERCQx0w2AjB8/HtHR0VBVFW+88Uabx5555hmkpKRAVVVUV1fjr3/9K+bNm4ff/OY3yMnJad3uzjvvxAMPPBDknhMFT0VFBZYsWYKKigrRXbGMoGSWNBCY/4lvzY5ADJ7u209ngx8tbl/o924r4MIS5TeoQDf+0KPDIuzBIMvPhix1EBEZJSHaieyZQ7Bq9lBk9rnyTskYpQGPRB5AjNJwxWOZfRKxevatyJ45hNNekSnwui8/HmNxmL12zMweGchSoyx1kLG6uRKucSIiIvDRRx+hvLy8dUH0FgkJCdizZw/uv/9+fPrpp1c8V1EUPPzww3jxxReD1V0iIWJiYjBr1izExMSI7oplBC2zqETg3ld8gxj7soHiff4/N3WEb6Dhhwued6VlEfYjm7rcNAY1mKW+hRjU+L9/4MpF2E1Mlp8NWeogIjLauPQkjEtPwvGSKqzLLcZrucUAgDo1DO83XI861bdeyNDUBAzrm4jJN/VG/+RYkV0mugKv+/LjMRaH2WvHzOyRgSw1ylIHGct0AyAAkJmZ2eFj1157Lfbt24dPP/0UH330ES5cuICQkBD07dsXd911F/r37x/EnhKJ4XA4kJaWJroblhL0zK4f7/sqPQoceBXY/0r726Vk+RYXHzSt+1NMTfqTb6Cl6mKnmznQjDSc07bv9hZhNzFZfjZkqYOIKFj6J8fi8VF9WwdAmhGCEu/3dzw+f18GUhKjRHWPqFO87suPx1gcZq8dM7NHBrLUKEsdZCzTTYHlr9tuuw2/+93v8MILL+C///u/8Zvf/IaDH2QbNTU1ePPNN1FTo/GT/DYmLLOkAcDwJzp+/J6XgDv+ENj6Gn4uwl6DSLyJyahBpH/77WoRdhOS5WdDljqIiESJQCPGOb9CBBpFd4WoS7zuy4/HWBxmrx0zs0cGstQoSx1kLMsOgBDZWUhICOLj4xESwh9hf0mfmR+LsIdARTzcCIHa9f78WYTdhGQ5zrLUQUQkihcKqlUnvFBEd4WoS7zuy4/HWBxmrx0zs0cGstQoSx1kLFNOgUVEnYuMjMSECRNEd8NShGaWkAosrjS+nZZF2N9fBBzeeMXDkajHBOR0vZ/B033TXlnozo8WsvxsyFIHEZEoHjiQ13it6G4Q+YXXffnxGIvD7LVjZvbIQJYaZamDjMXhMSIL8ng8yM/Ph8fjEd0Vy7BNZi2LsD/wlm9R9R/wIAz5GAAPwtp/buoI4IGNvudbcPADkOc4y1IHEQVPYYkbK3ef7PDxhRvysWx7IY6XVAWxV+I40IzrQi/BgWbRXSHqEq/78uMxFofZa8fM7JGBLDXKUgcZS8gdILt37w5KO6NGjQpKO0TBVl9fj5ycHPTt2xdOp1N0dyzBdpm1swh7PcKRg9vQF2fgbJkTXY9F2E1EluMsSx1EZLydhaVYkXMKeUVlnW53sLgcB4vL8ULOSWSmJWL+mH4Ym351kHoZfE40I8NxAReaXWhCqOjuEHWK13358RiLw+y1Y2b2yECWGmWpg4wlZABkzJgxUBRj5+NVFAVNTU2GtkEkisvlwsKFC0V3w1Jsm1nLIuz7X4EL1ViIV9s+fs9Lvim6JCHLcZalDiIyTnmNB09vKcCWLy9ofm5eURny1pRhSkYvLL57IBKi5ftlsRZObGq4UXQ3KEhSEqNQtPQu0d3oNl735cdjLA6z146Z2SMDWWqUpQ4ylrA1QFTVj0V4iahdqqqioaEB4eHh/rgc0AABAABJREFUhg8mysLWmX23BokdMpClRlnqICJjHLvoxuzVeSh1NwS0n835F5B76lusnZOJ9GSXTr0zCxVONMODUIALoZPJ8bovPx5jcZi9dszMHhnIUqMsdZCxhAyAjBo1iiclUQAqKyuRnZ2NBQsWID4+XnR3LIGZ2SMDWWqUpQ4i0t+xi27MfCkXlXWNuuyv1N2A+1bmYsPcLKkGQWIUD6ZHHMbG+sGoVsNFd4eoU7zuy4/HWBxmrx0zs0cGstQoSx1kLCEDIDk5OSKaJZJGbGws5s6di9jYWNFdsQxmZo8MZKlRljqISF/lNR7MXp2n2+BHi8q6RsxalYftC0ZJMx1WrRqGzfUDUKuGie4KUZd43Zcfj7E4zF47ZmaPDGSpUZY6yFghojtARNqFhoYiOTkZoaFc1NNfzMweGchSoyx1EJG+nt5SEPC0Vx0pdTdg8dYCQ/YtghchKFOj4OWvO2QBvO7Lj8dYHGavHTOzRway1ChLHWQs/kZAZEHV1dVYs2YNqqurRXfFMpiZPTKQpUZZ6iAi/ewsLO3WgudabM6/gJ2FpYa2ESyRaMQEZyEioe/dMkRG4HVffjzG4jB77ZiZPTKQpUZZ6iBjCVsEnYi6z+FwIC0tDQ4Hf4T9xcwEZlBeDGTf2P5jCw75FmnXiSzHWZY6iEg/K3JOBaedj09hXHpSUNoyUjMUlHhj0cwF0MkCeN2XH4+xOMxeO2ZmjwxkqVGWOshYPDuILCgiIgJjxowR3Q1LYWaCMigtAPa/2vHj7zwGpI4ABk8HkgYE3Jwsx1mWOohIH4UlbuQVlQWlrbzTZTheUoX+ydaeR9kDB/KbeovuBpFfeN2XH4+xOMxeO2ZmjwxkqVGWOshYnAKLyIIaGhqQm5uLhgZj5gGXETMLcgYndgCrJgIvDgcOdDIAcvYzYO9zwIu3+bY/8UFAzcpynGWpg4gCc7asFmfLarEutzio7a7LLcbZstqgtqm3MDRjQGgpwtAsuitEXeJ1X348xuIwe+2YmT0ykKVGWeogY3EAhMiCPB4P8vPz4fF4RHfFMphZkDKoLQM2/RJYPwM484m25575BFg/HXj7Ud9+ukGW4yxLHUQUmJHLdmHksl1Yl3smqO2+lluMkct2BbVNvTnQjOscl+DgAAhZAK/78uMxFofZa8fM7JGBLDXKUgcZi1NgEVlQbGws5s2bJ7oblsLMgpBByRHg9WlA1cXA9nN4I1C0F3jobSBpoKanynKcZamDiEiUOjixpUHbNYRIFF735cdjLA6z146Z2SMDWWqUpQ4yFu8AIbIgr9eLiooKeL1e0V2xDGZmcAYlR4A1dwU++NGi6iKwepJvDRENZDnOstRBRCSKAhUxSgMUqKK7QtQlXvflx2MsDrPXjpnZIwNZapSlDjIWB0CILMjtdiM7Oxtut1t0VyyDmRmYQW2Z786P+gp991tfAay7V9N0WLIcZ1nqICISJVrxYHrEYUQrnA6BzI/XffnxGIvD7LVjZvbIQJYaZamDjMUBECILcrlcWLBgAVwul+iuWAYzMzCDbU/qd+fH5aouAu8v8ntzWY6zLHUQEYlSozqxsX4walSn6K4QdYnXffnxGIvD7LVjZvbIQJYaZamDjMUBECILCgkJQXx8PEJC+CPsL2ZmUAYndgBHNum3v/Yc3uhrxw+yHGdZ6iAiEkWFgmo1HCoU0V0h6hKv+/LjMRaH2WvHzOyRgSw1ylIHGYtnB5EFVVVVYcWKFaiqqhLdFctgZgZlsHe5fvvqzL5svzaT5TjLUgcRBWbPorHYs2gsbklNCGq7Q1MTsGfR2KC2qbdIeDA5vACR4BRYZH687suPx1gcZq8dM7NHBrLUKEsdZCwOgBBZkNPpREZGBpxOTuvgL2ZmQAalBcCZT/TZV1eK9wGlR7vcTJbjLEsdRBSYlMQopCRGYVifxKC2O6xvIlISo4Lapt6aEIqvmq5CE0JFd4WoS7zuy4/HWBxmrx0zs0cGstQoSx1kLA6AEFlQeHg4srKyEB4eLrorlsHMdMygvNj3tf9VfTrmrwNdtyfLcZalDiLSx+SMXsFt76beQW3PCI0IxdHmJDRyAIQsgNd9+fEYi8PstWNm9shAlhplqYOMZfoBkPr6erz77rv4t3/7N9x333248847cccdd1yxnaqqqK2tRW1tLRobGwX0lCh46uvrkZOTg/r6etFdsQxmpmMG2Tf6vvwYkNDV/le63ESW4yxLHUSkj/RkFzLTgnMXSGafRPRPjg1KW0ZyogkZjvNwokl0V4i6xOu+/HiMxWH22jEze2QgS42y1EHGcojuQGf+/Oc/Y9myZfj2229bv6eqKhTlysUMy8rKcO2116K+vh7Dhg3DJ58EaVoWIgGamppQVFSEoUOHiu6KZTAzSTJQVaCda0CLDmtUVaChCmhuBELDgPDYTvcjmhTHioh0NW9MX+StKTO8nfmj+xneRjCEQkVySBWO42rRXbGFlMQoFC29S3Q3LIvXffnxGIsjZfblxb4PpLVnwSEgITWg3UuZmUZ2yECWGmWpg4xlygGQxsZGTJ06Fdu3bwfgG/Toyo9+9CPMmjULK1aswGeffYavvvoK1113ndFdJRIiJiYGs2fPFt0NS2FmkmTgqfYNXnSgTY2lBb5pujq6UyVlGJA6Ahg8HUgaoH9fAyDFsSIiXY1LT8Lkm3phy5cXDGtjSkYvjE2XY8CgDmHY7kkX3Q0iv/C6Lz8eY3GYvXbMzB4ZyFKjLHWQsUw5Bdb8+fPx/vvvQ1VVhIeHY+7cudiwYQOmTJnS6fMeeuih1n9v27bN6G4SCdPc3IySkhI0NzeL7oplMDNJMmjydPpwc3MzSj57B82vTgJeHN75NF1nPwP2Pge8eBuwaiJw4gOdO9t9UhwrItLdkskDkeQyZn7jJFc4Ft890JB9ixACLxKVWoTAK7orRF3idV9+PMbiMHvtmJk9MpClRlnqIGOZbgDk4MGDWL16NRRFwTXXXIPPP/8cL774IqZPn45rrrmm0+cOHz4ccXFxAIA9e/YEo7tEQlRVVWHlypWoqqoS3RXLYGaSZOBwdvxYbRmqNszHyu2HUXX2sLb9nvkEWD8dePtRoNb4KWa6IsWxIiLdJUQ7sXZOJuIiw3Tdb1xkGNbOyURCdCevsRYTpTRiSsRRRClcG5DMj9d9+fEYi8PstWNm9shAlhplqYOMZboBkNWrV7dOefXaa68hPV3bresZGRlQVRXHjh0zontEphAXF4ennnqqdcCPusbMJMnAGdP+90uOAC8OR9yJDXhK/Svi4O7e/g9v9N05UlrQ/T7qQIpjRUSGSE92YcPcLN3uBElyhWPD3CykJ7t02Z9ZVKtOvF6XgWpVnkEdkhev+/LjMRaH2WvHzOyRgSw1ylIHGct0AyC7du0CAAwaNAijR4/W/PyWu0TOnz+va7+IzERRFEREREAx8SLOZsPMdMxgwSHfV8owfTrmr5Ss9hcuLzkCrLkLqLoIBUAEGhBQhVUXgdWThA6C8HwlsqbCEjdW7j7Z4eMLN+Rj2fZCHC8J7BNq6ckubF8wClMyegW0nykZvbB9wSjpBj98FHjgAAK7IhAFBa/78uMxFofZa8fM7JGBLDXKUgcZy3QDIBcuXICiKBgyZEi3nh8T4/t0cE1NjZ7dIjIVt9uN5cuXw+3u5qfcbYiZ6ZhBQqrvK3WEPh3zV1o77dWWAa9PA+orAABuxGA5fgk3OrhTxF/1FcC6e4VNh8XzlchadhaWYsaKTzFh+R6syz3T4XYHi8vxQs5JjF++GzNWfIpdhV93u82EaCeyZw7BqtlDkdknUdNzM/skYvXsW5E9c4hU0179UBQ8mBZ+CFHofO0oIjPgdV9+PMbiMHvtmJk9MpClRlnqIGM5RHfgcvX19QCAiIiIbj2/uroawPcDIUQyioiIwJgxY7r9c2JHzMyADAZP8y0iHiyDpl35vW1P+u7Y+E4EGjAGnyICDYG3V3UReH8RcO8rge9LI56vRNZQXuPB01sKsOXLC5qfm1dUhrw1ZZiS0QuL7x7Y7YGIcelJGJeehOMlVViXW4zXcovb3W5oagKG9U3E5Jt6o39ybLfashIPQpHf1AsehIruClGXeN2XH4+xOMxeO2ZmjwxkqVGWOshYprsDpEePHgCAkpKSbj2/sLCwzX6IZOR0OpGRkQGnU85PbRqBmRmQQdJA4Nrh+uyrK6kjgKQBbb93YgdwZFObbznRiAwchRM6LXp7eKOvnSDj+UpkfscuujEhe3e3Bj9+aHP+BUzI3o3CksA+tdY/ORaPj+rb4ePP35eBJ8en22LwAwCaEIqvmq9CEwdAyAJ43Zcfj7E4zF47ZmaPDGSpUZY6yFimGwBJT0+Hqqr49NNP0dzcrOm5Z8+eRX5+PhRFwa233mpQD4nEq6urw/bt21FXVye6K5bBzAzK4PaF+u2rMyPaaWfv8iu+VYcIbMcY1EHHT3/sy9ZvX37i+UpkbscuujHzpVyUunW42wxAqbsB963MDXgQhL7nRBMyw87AiSbRXSHqEq/78uMxFofZa8fM7JGBLDXKUgcZy3QDIBMmTAAAXLp0CX/72980Pff3v/9966DJ+PHjde8bkVl4vV5UVFTA6/WK7oplMDODMrh+fPtTU+lp8HTg+jvbfq+0ADjzyRWbeqGgAi549Vz0tngfUHo0sH2oKlDvBmq+9f1XVTvdnOcrkXmV13gwe3UeKut0utPsO5V1jZi1Kg/lNVyzQg8hUBGjeBCCzl9vicyA13358RiLw+y1Y2b2yMByNZYXA4vjrvjyPtsHFd9csE4dJITp1gCZPXs2nnnmGbjdbvzmN7/B4MGDMXTo0C6f98c//hF/+9vfoCgKevXqhZkzZwaht0RiREdH8xzXiJkZmMGkP/kGCX6wFoduYnsCE5d9///l381tv//VdjePRh1mYov+/TjwKjD8Cd/i7/4qLQAObwLOHwQuftm6UDsAICIe6HkT0PsW3wDPZdN78XylQJ0tq8XIZbvafWzPorFISYwKco/k8fSWAt3u/LhcqbsBi7cWIHvmEEP2byf1CMNOz3Wiu0HkF1735cdjLA6z146Z2SMDWWqMRh1m/uwOIDpadFfIxEx3B0hiYiL+4z/+A6qqwu12Y+TIkfi3f/s3HDx4EA0N3/+y6Xa7cfz4caxatQq33norlixZ0vrY888/j7CwMBHdJwqKpqYmFBUVoamJ0zr4i5kZmEFUIvDQ274/6uspIt6336jE77+XfaPv60D7AyBNCEURrtF/zvf9r/ja9ceJHcCqicCLw32LxJ/+uO3gB+D7/9Mf+x5/8Tbf9ic+aH2Y5yuROe0sLA14zY+ubM6/gJ2FpYa2YQeh8CI5xI1Q8NOAZH687suPx1gcZq8dM7NHBrLU2IRQFJ27aPk6yFimGwABgF/96ld44oknoKoqPB4Pnn/+eWRmZuLVV31/8FJVFQkJCRgwYAAee+wxfP7551C/m07k97//PaZNM3g6FiLBqqursXbtWlRXV4vuimUwM4MzSBoIPLLNd8eGHmJ7+vaXNFDT06oRjbXKDFRDwKc/asuATb8E1s9od3quTp35BFg/HXj7UaC2jOcrkUmtyDkVnHY+Dk47MotUGjEx/AQiFX2nKiMyAq/78uMxFofZa8fM7JGBLDVWIxpr39lh+TrIWKabAqvF8uXLceONN+Lf/u3fUFFRAQBQFAWK4pvXXb1s/vT4+Hg8//zzmDVrVrC7ShR08fHxePrpp0V3w1KYWRAySBoIzP8EeH8RcHhj9/czeLpv2qsf3vnhp3i48bT6XPfb7q6SI8Dr0wKfBuzwRqBoL+Ifetv25yuR2RSWuJFXVBaUtvJOl+F4SRX6J8cGpT0ZVavhWF3X9TS6RGbA96ny4zEWR7rsSws6nA4YAPDOY0DqiHan2fWXdJl1gx0ykKXGeLjx9BOzgfh40V0hEzPlHSAt5syZgzNnzmD58uW48847ERMTA1VVWwc/wsPDMXLkSDz77LMoKiri4AcRkWhRicC9rwAPvOV7461F6gjggY2+53dj8EOYkiPAmrv0WwOl6iKwepLvlxsiEu5sWS3OltViXW5xUNsNdntERERkYj+cZreD6YABAGc/63CaXSIiuzL1AAgAxMTE4IknnsD27dtRWVmJqqoqnDt3DuXl5airq8PHH3+MJ598Ei6XS3RXiYKmsrISS5cuRWVlpeiuWAYzC3IG14/3TWE1/1Ng5L8CfcdcuUZIRLzv+yP/1bfdI9uA6+8MqNlKxGIp/gmVCNKnpmvLfHd+XL7GR4Aq65uxdMV6VJbwD6BEoo1ctgsjl+3CutwzQW33NQ6ABCRaacADEV8gWjFmwXoiPfF9qvx4jMWxfPY6TrPrL8tnpgM7ZCBLjZWIxdIVr1u+DjKWaafA6kh0dDSiowXM7U5kIlFRUZg6dSqioqJEd8UymJmgDJIGAEl/8P1bVQFPNdDkARxOwBkDfDetoV6iUIep2IEo1Om63w5te1K/Oz9+IAp1mKq+j6g9XwPTX9Z9/0SyKixxd3rnxMIN+RjWJxFTMnpbYnopVVVbp38lbepVB/Z60lCvWu7XHbIhvk+VH4+xOJbOXudpdvHQ236tsWjpzHRihwxkqTEKdZj609stXwcZi78REFlQWFgY0tPTRXfDUpiZCTJQFCA8FggPYB8LDvn++85jvtu7LxOGJqTjZAANdCAlC7jnpbbfO7EDOLJJ/7bwgzoKTgI3TfPdUUNEHdpZWIoVOae6XKPjYHE5DhaX44Wck8hMS8T8Mf0wNv3qIPVSuxpPM2LC+Xa9O5oRijPeBNHdIPKL8PdoZDgeY3Esm33LNLt63WneMs3uI9u6HASxbGY6skMGstQYhiak90sFwsKMayQIa++QsUw/BVZnGhoakJOTgw0bNmDXrl1oaOAt7mQPtbW1ePfdd1FbWyu6K5bBzCTJICHV99XB+iK1iMC7GI9aROjbbtoIX7s/tHe5vm38QJs69mUb1g6R1ZXXePDEG19gzpoDmhcozysqwyNr9mPBm1+gvMZjUA8D42nyiu6CZYWjEbeHnUY4GkV3hahLUrxHo07xGItjyewNmmYX9RXAunu7nA7LkpnpzA4ZyFJjLSLw7t/3GFMH196RhukGQBobG7Fq1SqsWrUK7733Xofbvf3227j22mtxxx134IEHHsBPfvITJCcnY9WqVUHsLRERCTF4WnDbG3RZe6UF2ufg7a7ifUDp0eC0RWQhxy66MSF7N7Z8eSGg/WzOv4AJ2btRWOLWqWf6cTpM91adiIiIjGbQNLsAfPt9f5Ex+yaShYC1d8hYpvut6oMPPsCjjz6Kxx57DIcOHWp3m71792LmzJm4dOkSVFVt/aqsrMRjjz3GQRCSnixzNQYTM5Msg6SBwLXDr/h2FOq/WwOkXr+2Ukd8fxtrebHvq7PbX3VwRR0HXvW1S0QAfIMfM1/KRalbn7t/S90NuG9lrukGQaKdoaK7YFkNCMPexj5ogIHTIRDpRKr3aNQuHmNxLJe9gdPstjq80ddOByyXmQHskIEsNUahHlN/OlK/OkqO+O74CPTn8PBG335KC/TpFwXEdAMgH374Yeu/77///na3+Zd/+Rc0NzcDAMLDw3HzzTejZ8+eAHyLRf7mN7/BpUuXjO8skSCNjY0oLCxEYyOndfAXM5Mwg9sXXvGtRjhQiH5o1HOJqxE/aCf7Rt9XZ7e/6uCKOva/4muXiFBe48Hs1XmorNP3tayyrhGzVuVdMR3WnkVjsWfRWNySGtz1JIamJnAB9ACEohnXhpQjFM2iu0LUJeneo9EVeIzFsVz2Bk6z20Yn0+xaLjMD2CEDWWpshAOFJ4v1qaNl7R297sBqWXuHgyDCmW4A5ODBgwCAtLQ0pKWlXfH4l19+iYMHD0JRFFx77bUoKCjAgQMHcPbsWcyePRsAUFVVhddeey2IvSYKLlnmagwmZiZhBtePv2JqqlpEfrd2RqQ+bQyeDlx/pz770kD3Oogk8vSWAt3u/LhcqbsBi7e2/QUlJTEKKYlRGNYn0ZA2OzKsb3Dbk02E0oTbnUWIUJpEd4WoS9K9R6Mr8BiLY6nsTTLNrqUyM4gdMpClxlpE4t2/7w28DsFr75CxTDcAcvr0aSiKgsGDB7f7+NatW1v/vWTJEvTt2xcAEBISgj//+c9wOp0AfFNpEckqLi4Ov/3tbxEXFye6K5bBzCTNYNKfgNierf8bhyr8Fi8gDlWB7zu2JzBxWeD76QZd6yCSyM7C0oDX/OjK5vwL2FlYesX3J2f0MrTdK9q7qXdQ25NNjRqO9fVDUKOGi+4KUZekfI9GbfAYi2OJ7IM0ze4VOrir3RKZGcwOGchSYxyq8Nt5DwZeB9fekZrpBkDKynwjYj169Gj38Y8//hgAEBYWhnvuuafNY4mJiRgxYgRUVUVBAW8vIiKSXlQi8NDbQES8vvuNiPftN4qfwCYykxU5p4LTzsdXtpOe7EJmWnBeEzL7JKJ/cmxQ2iIiIiLBgjTN7hX2vxLc9ojMygRr75CxTDcA4vH45l0OC7tywUKv14vPPvsMiqJg6NChiImJuWKb3r19n5b79ttvje0okUAVFRVYsmQJKioqRHfFMpiZxBkkDQQe2QbE9kQFXFii/AYVcHV/f7E9fftLGqhfHzXSpQ4iyRSWuJFXFJxbx/NOl+F4yZV3YM0b0zco7c8f3S8o7cgsRmnAI5EHEKMYM12a2aQkRqFo6V3tfqUkWntxUzuQ9j0ateIxFofZd0FVr/gWM7NHBrLUWAEXlvzXmsDqMMHaO2QsHVeJ1UdMTAzcbnfrnSA/9MUXX6C6uhqKouD2229v9/mRkb750puaON8vySsmJgazZs1qdxCQ2sfMJM8gaSAw/xPEvLcIswreQgxqurefwdN9014JvvMjBjWYpQZQB5FEzpb55vNdl1sc1HbX5Rbj8VF92/zxeFx6Eibf1MvQabimZPTC2PSrDdu/XdSpYXi/4XrUqVd+qIrIbKR+j0YAeIxFYvZd8FQD4W3vOjV1ZuXFvrtl2rPgEJCQqkszps5AJ7LUGIMazLpnfPfrELH2TtKA4LRHrUx3B0hKSgpUVcUXX3xxxWPvvfde6787GgApLy8HAMTGctoAkpfD4UBaWhocDtONYZoWM7NBBlGJcEx/BWkPPAdHapa256aOAB7YCNz7SueDHwsO+b5ShgXW1y440Iw0nIMDzb5vpGT52iWyoZHLdmHksl1Yl3smqO2+lluMkct2XfH9JZMHIsllzLoSSa5wLL5b3N1nMmlGCEq8LjSb79cdoitI/x6NeIwFYvZdaPJc8S1mZo8MZKnRgWakXdNTex0mW3uHjGW63wgyMzMBAF999VWbhczr6urw6qu+kyQsLAyjRo1q9/nHjh0DAFx77bUG95RInJqaGrz55puoqeGnw/3FzOyRQU1NDd78vBw1MzYC8z8FRv4r0HfMlWuERMT7vj/yX33bPbINuP7OrhtISPV9pY7Qv/M/UINIvInJqIHvrkakjdDt00xEFJiEaCfWzslEXKS+dxbERYZh7ZxMJEQ7dd2vXUWgEeOcXyECjaK7QtQlO7xHszseY3GYfRccV77vYGb2yECWGmsQiTf/9yPtdXDtHVsx3TDfgw8+iFWrVgEApk+fjgULFqBHjx7429/+hrNnz0JRFPzsZz+Dy3XlvOiVlZUoLCyEoigYOJCfniN5hYSEID4+HiEhphvDNC1mZo8M2tSYNABI+oPvAVX13d7d5PG9yXfGAIrS/YYGTwP2PqdPp9sRAhXxcCME383JO2iaYW0RkXbpyS5smJuFWavyUOoOfI2JJFc41s7JRHoy1/3RixcKqlUnvAjgtZ4oSOzwHs3ueIzFYfZdcF45bRAzs0cGstQYAhXxrhhr1aGqgf09gjQz3QDI2LFjcffdd2Pr1q2orq7Gf/7nf7Z5PCwsDH/4wx/afe6WLVvQ3NwMRVGQlaVx+hMiC4mMjMSECRNEd8NSmJk9MuiwRkXxzW2r16w1SQOBa4cbNldoJOoxATm+/0kdwTlCiUwoPdmF7QtGYfHWAmzO7/6aIFMyemHx3QN554fOPHAgr5F3hJM12OE9mt3xGItjiexbprp95zHg7GfBazclq90/wloiM4PZIQNZaoxEPSaMGgZ8tya0JbSz9g4Zy5TDY2+88QamTJkCVVXbfEVHR2Pt2rW48cb2Fzx65ZXvbyP6yU9+EqzuEgWdx+NBfn4+PJ4r5+uk9jEze2QQ1BpvX2jYrj0IQz4GwIMwYIQO7agqUO8Gar71/VdVA98ndepsWS3Sfvteu18ti3qT9SVEO5E9cwhWzR6KzD6drB/Ujsw+iVg9+1ZkzxzCwQ8DONCM60Ivfb+WEpGJ2eE9mt3xGItjieyDNM3uFdLab88SmRnMDhnIUqMHYcg/+g9r1dHO2jtkLNPdAQIAUVFR+J//+R8cOnQIe/bsgdvtRkpKCiZNmoTExPZ/ufz222/Rr18/9O3bF7Gxsejfv3+Qe00UPPX19cjJyUHfvn3hdPKPJv5gZvbIIKg1Xj/eNzXVkU2677oe4cjBbeibfiOc/qxN0p7SAuDwJuD8QeDil0B9xfePRcQDPW8Cet8CDJ5u/B0mqgo0VAHNjUBomO/TLrzllyQyLj0J49KTcLykCutyi/FabnG72w1NTcCwvomYfFNv9E/mp76M5EQzMhwXcKHZhSaEiu4OUafs8B7N7niMxbFU9gZPs3uFDqbZtVRmBrFDBrLUWI9w5HyWj76DM61TRztr75CxFFXlx0DJegoKCjBo0KDW/z9y5AjXfSGi4KstA14cDlRd1H/fsT2B+Z8AUdo+VY4TO4C9y7VNz3XtcOD2f/FvIXh/mWkARoCzZbUYuWxXu4/tWTQWKYlR0ravd9std8ws3JCPg8XlAffPX0NTE/D8fRnd6q8s2bN9IiKiIFs10bBpdttIHQE8ss34dvRWXuxbuLo9Cw757qQhOel97BfHBd6n7nq6wpYfCBT5t1xTToFFRJ1TVRX19fXg+KX/mJk9Mgh6jVGJwENv+/6gryM1PB7109+AGpng/5Nqy4BNvwTWz9D+S9OZT4D104G3H/XtJxAndvh+cXtxuO8TbKc/bjv4Afj+//THvsdfvM23/YkPAmuXpJWSGIWUxCgM0zjFVKCG9U3kH8wtTYUTTQDkveaRPOzwHs3ueIzFsVz2Bk6z20Yn0+xaLjMD2CEDWWpUAdQ3NGivY8Eh31fKMEP61aEO1t4hY3EAhMiCKisr8eyzz6KyslJ0VyyDmdkjAyE1Jg30fXoqtqc++4vticppG/Hs6i3+11FyxDfgEOh0XIc3+vZTWqD9uWYZgPkO1+CQz+SMXsFt76beQW2P9BWjePBgZD5iFM6xTOZnh/dodsdjLI7lsm+ZZtdIg6d3eue35TIzgB0ykKXGSrjw7Mo3tNdhsrV3yFgcACGyoNjYWMydOxexsZw/3F/MzB4ZCKsxaaBvuqrB0wPbz+DpwPxPENv3Fv/rKDkCrLlLv2m4qi4CqydpGwQxwwAMSS892YXMtODcBZLZJ5FrdFhcrRqGzfUDUKuGie4KUZfs8B7N7niMxbFk9pP+pN+Hqy4X2xOYuKzzTayYmc7skIEsNcaiGnPvv7v7dQw2eMDxckYPcFK7TLkI+g9VVlZi7969yM/Px6VLl1BVVQWv19vl8xRFwauvvhqEHhIFX2hoKJKTk0V3w1KYmT0yEFpjVCJw7yu+QYx92UDxPv+fmzrCdxv6d5/ECgX8q6O2DHh92pVTTAWqvgJYd69/a5C0DMDo1YeWAZhHtvkGloh+YN6Yvshbo89dQp2ZP7qf4W2QsbwIQZnKKczIGuzwHs3ueIzFsWT2LdPsrp6k7/v8iHjffrt4f2/JzHRmhwxkqTEUXiT3+BEQGtq9HSQN9K2JGay1dyRc/9IKTDsAUl5ejqeeegqvv/466uvru7UPDoCQrKqrq7Fp0yZMmzYNMTExortjCczMHhmYosbrx/u+So/67og4fxC4kH/lIuC9MnyLgA+adsWbIL/r2PakMQuwA779vr/IN6jTETMMwJCtjEtPwuSbemHLlxcMa2NKRi+MTb/asP1TcESiEaOdJ/Gxpx/qwLtAyNxM8f6FDMVjLI5ls2+ZZnfdvfq834/t6Rv88OMDRpbNTEd2yECWGqsRhU1vv49pMx/qfh23LwTWB2EApJO1d8hYphwAKSoqwujRo3Hu3Dm/FrFRFOWK7RQuKEMSczgcSEtLg8Nhyh9hU2Jm9sjAVDUmDQCS/uD7t6oCnmqgyQM4nIAzptOFz/yq48SOwKec6srhjd/NETy+/cdFD8CQLS2ZPBCfnf4Wpe4G3fed5ArH4rt555EMmqGgxBuLZvB3AjI/U71/IUPwGItj6exbptl9f5HvfXl3DZ7um/bKzw8WWTozndghA1lqdKAZab2TA6ujZe0dI3+/7mLtHTKW6c5yVVXx85//HGfPngUA3HjjjXjwwQfxwQcf4KOPPoKiKFi1ahWqqqpQXFyM3bt3Y//+/QCAmJgYPP3007jqqqtElkBkuIiICIwZM0Z0NyyFmdkjA9PWqChAeCwQ7t/mftWxd3mgvfLPvuz2B0DMMABDtpQQ7cTaOZm4b2UuKusaddtvXGQY1s7JREK0U7d9kjgeOJDfxIXsyRpM+/6FdMNjLI7ls9dxml1/WT4zHdghA1lqjEADxmQNASIiAtvRpD/5fr6M+ICfH2vvkLFMtwj6pk2b8OWXX0JRFEyYMAEHDhzAk08+ifT09NZtZs2ahV//+tf405/+hM8++wz79+/HkCFDUF1djezsbAwbNgyzZs0SWAWRsRoaGpCbm4uGBv0//SorZmaPDGSpscs6SguCM0cp4HsTWHr0yu8HcwCGLKOwxI2Vu092+PjCDflYtr0Qx0uqAmonPdmFDXOzkOTyc1SxC0mucGyYm4X0ZJcu+yPxwtCMAaGlCEOz6K4QdUmW9y/UMR5jcaTJ/vrxvimx5n8K3Ppox9ulZAEj/9W33SPbuvWJc2kyC4AdMpClxgY4kftFQeB1tKy9ExGvS79a+bn2DhnLdAMg//M//wPAN4XViy++6NctTLfccgv27t2L4cOH49y5c5gxY0a31w0hsgKPx4P8/Hx4PB7RXbEMZmaPDGSpscM6yot9X/uDvMbVgcvaM8MADJnKzsJSzFjxKSYs34N1uWc63O5gcTleyDmJ8ct3Y8aKT7Gr8Otut5me7ML2BaMwJaNXt/cB+Nb82L5gFAc/JONAM65zXIKDAyBkAbK8f6GO8RiLI132SQOA4U90/Pg9LwF3/CGghZaly6wb7JCBLDV6EIb8Y1/pU0fL2juxPQPfF+DbzyPb/Fp7h4xluimw8vLyoCgKbr75ZqSmpvr9vMjISKxZswY33HADCgoKsH79esyZM8fAnhKJExsbi3nz5onuhqUwM3tkIEuNHdaRfWPwOwMA+19p+4uWiAGYu/5fcNskv5TXePD0loJuLUqeV1SGvDVlmJLRC4vvHtitqacSop3InjkEUzJ6YcXHp5B3uszv52b2ScT80f244Lmk6uDElgb+sknWIMv7F+oYj7E4zF47ZmaPDGSpMRY1mPfAFCA2Vp8dClp7h4xlujtAvvnmGwDADTfc0Ob7ISHfd7Wjuzuuu+46DB8+HKqq4s033zSuk0SCeb1eVFRUwOv1iu6KZTAze2QgS42mrCP7xu+/Lr8jxGj7uRC6GR276MaE7N3dGvz4oc35FzAhezcKS9zd3se49CS8Nfc27Fg4Cr/I6vgDNENTE/Crsf2wY+EovDX3Ng5+SEyBihilAQpU0V0h6pIpr/ukKx5jcZi9dszMHhnIUqMXCircVfrW0bL2zgNv+dbS0SJ1BPDARt/zOfhhGqYbAGkZ3IiJiWnz/R/+f1lZx5/u+/GPfwwAOH78uAG9IzIHt9uN7OxsuN3d/2OR3TAze2QgS42y1KErlX/ENJNjF92Y+VIuSt36zBlc6m7AfStzAxoEAYD+ybF4fFTfDh9//r4MPDk+Hf2TdfqEGJlWtOLB9IjDiFasPa0D2QOv+/LjMRaH2WvHzOyRgSw1uhGL7DVvG1NHENfeIWOZbgDE5fLNv1xbW9vm+z/60Y9a//3VV191+PzKykoAwNdfd39OaSKzc7lcWLBgQevPC3WNmdkjA1lqlKUOXXmqRfeAvlNe48Hs1XmorGvUdb+VdY2YtSoP5TX8gzUFrkZ1YmP9YNSo2qdWIwo2Xvflx2MsDrPXzrSZlRYA+7I7fvydx4APl+iyfqBpM9CRLDW6UIUFs+81to4grL1DxjLdAEi/fv0AACUlJW2+P3Dg93P47ty5s93ner1efP755wCAqKgog3pIJF5ISAji4+PbTA1HnWNm9shAlhplqUNXTfyjuFk8vaVAtzs/LlfqbsDirQWG7JvsRYWCajUcKhTRXSHqEq/78uMxFofZa2e6zE7sAFZNBF4c3vlUvGc/A/Y+B7x4m2/7Ex90u0nTZWAAWWoMgYp4V6zl6yBjme7syMjIgKqqOHq07YhtVlYWwsPDAQArVqxo9w6P5cuX4/Tp01AUBYMGDQpKf4lEqKqqwooVK1BVVSW6K5bBzOyRgSw1ylKHrhz8FLcZ7CwsDXjNj65szr+AnYWlhrZB8ouEB5PDCxAJDp6S+fG6Lz8eY3GYvXadZlZeDCyOa/+rvFjfjtSWAZt+CayfAZz5RNtzz3wCrJ8OvP2obz8a2eG8kaXGKkRjxfrNlq+DjGW6AZAxY8YAAM6dO4dTp061fj8uLg733nsvVFXFN998g6FDh+K5557D3//+d2zevBm//OUvsWjRotbtZ86cGeyuEwWN0+lERkYGnE7+QdBfzMweGchSY4d1LDjk+0oZFtwOpWQFt732OGO63oYMtyLnVNcb6dHOx8Fph+TVhFB81XQVmhAquitEXZLl/Qt1jMdYHGavnSkyKzniu+PjyKbA9nN4o28/pdruMDZFBgaTpUYnGpFxw3WWr4OM5RDdgctNmjQJTqcTjY2N2LRpU5tBjWeffRbvv/8+KioqcP78eTz55JPt7uPmm2/Go492sjgNkcWFh4cjK8sEf5C0EGZmjwxkqbHDOhJSff9NHeG7xTtY0kb45jVt8c5jwW0/JQtQOI2NaIUlbuQVaf8EXXfknS7D8ZIqLlZO3daIUBxtThLdDSK/yPL+hTrGYywOs9dOeGYlR4A1dwH1Ffrsr+oisHqSb3HqpIFdbw8TZBAEstQYDg+yhgwEvps1iKg9prsDxOVy4Y033sALL7yAAQPaLh7Tu3dvfPjhh0hNTYWqqu1+jRo1Cu+99x7CwsIEVUBkvPr6euTk5KC+vl50VyyDmdkjA1lq7LKOwdOC26FB03yDLy1fqSOC235akNujNs6W1eJsWS3W5eo8rUEX1uUW42xZbVDbJHk40YQMx3k40SS6K0RdkuX9C3WMx1gcZq+d0Mxqy4DXp+k3+NGivgJYd6/f02HZ4byRpcZ6hCMn9wvL10HGMt0ACAD8/Oc/x9y5c/Gzn/3siseGDBmCwsJCvP7665gzZw4mTJiASZMm4de//jV27NiBnJwcXH311QJ6TRQ8TU1NKCoqQlMTf6n3FzOzRway1NhlHUkDgWuHB6czqSOApLYfSBAyAEPCjFy2CyOX7cK63DNBbfe13GKMXLYrqG2SPEKhIjmkCqFQRXeFqEuyvH+hjvEYi8PstROa2bYnfXdsGKHqIvD+oq63gz3OG1lqbEIois6XWL4OMpbppsDyh9PpxP3334/7779fdFeIhIiJicHs2bNFd8NSmJk9MpClRr/quH0hsF7jYoDdMWLhld9rGYDRuhhhd7Q3AENEppSSGIWipXeJ7gYAoA5h2O5JF90NIr/I8v6FOsZjLA6z105YZid2BL7mR1cObwQGTweuH9/pZnY4b2SpMQa1mH3vRCCGa0ZSx0x5BwgRda65uRklJSVobm4W3RXLYGb2yECWGv2q4/rxxt8ZMXg6cP2d7T92+0Jj227R3gAMEVEXQuBFolKLEHhFd4WoS7K8f6GO8RiLw+y1E5bZ3uXBaWdfdpebmPa8KS8GFse1/1Wubbpa09aoUTNCUPLNt5avg4zFARAiC6qqqsLKlStRVVUluiuWwczskYEsNfpdx6Q/AbE9jelEbE9g4rKOHxc9AENE1IkopRFTIo4iSmkU3RWiLsny/oU6xmMsjpTZJ6QCiyvb/0pIDXj3QjIrLQjO3eUAULwPKD3a6SZSnjeXkaXGKsRg5RtbLV8HGYsDIEQWFBcXh6eeegpxcXGiu2IZzMweGchSo991RCUCD70NRMTr24GIeN9+oxI7307kAAwRUSeqVSder8tAteoU3RWiLsny/oU6xmMsDrPXLqiZlRf7vva/anxbP3Tg1U7vmLDDeSNLjXFw46m591u+DjKW6dcA8Xq9OHbsGIqKiuB2u9HY6P+nuB5++GEDe0YkjqIoiIiIEN0NS2Fm9shAlho11ZE0EHhkG7DuXn0WDIzt6Rv8SBrY9bYtAzCrJwH1FYG33cLfARgiog4p8Jj/Vx0iAPK8f6GO8RiLw+y1C2pm2TcGp53L7X/F97W4st2H7XDeWKrG0oIOB8kUABHv/dq3duTg6Vw/ktpl2t8KiouL8cwzz2Djxo2orq7W/HxFUTgAQtJyu91YtWoV5syZA5fLJbo7lsDM7JGBLDVqriNpIDD/E+D9Rb6F/bpr8HTfXRdaBh5EDsD4RUUM6hCGJjTCgWpE6rRf+9izaCwAYOGGfBwsLg9au0NTE/D8fRlBa4/kEgUPJoUXYltDOmrBu0DI3GR5/0Id4zEWh9lrx8zskYElajyxw7c2TCfTo7kRg1VnB2HO2Zfg2vsccO1w4PZ/4VTK1IYpB0C2bduG++67D7W1tVBVVXR3iEwnIiICY8aMsc5ovQkwM3tkIEuN3aojKhG49xXfIMa+bN/ctv5KHeFbbLy7bxJFDsC0p7QAcfvfwLqwnRgUUoR4pab1oQo1GhH/czOQeis/IeSnlMQoAMCwPolBHQAZ1jextW0irTwIRX5TL3gQKrorRF2S5f0LdYzHWBxmrx0zs0cGpq6xtgzY9iRwZFOXm0agAWPwKSLQ4PvGmU+A9Z/o97slScF0AyBnzpzB9OnTUVdX1/q95ORk3HTTTfjRj36EsLAwgb0jMgen04mMjAzR3bAUZmaPDGSpMaA6rh/v+yo96nvDeP4gcCG/7RRVEfFArwyg9y2+hcz1GAQQOQDT4gefEHIBuL2dv3vGKzXA2T2+L35CSJPJGb3wQs7J4LV3U+//j71/D4+qyvPF/3flUlWpJJVL210RJiZAN6YJ0ditEIki4EyD0IKnhZbx9LRgtyLdZwx95hH7fJ/vT6HPPGcUZ2xyZroFR7mMiBfUr8o0gmNjuIgx4BCBYGREE1BIvORSuVVVKlW/PzaJXFJJ7aq9a9Va+/16nnqAVNVe6/NZa+8Ke9VaK2FlkXqCSMXHA5eJrgZRVFT5/YUiYxuLw9zrx5xZIwdJG2PLMeDZhVGvLmBHP8oxzKb2R7cBTfsNXl2AZJV0AyD/+I//iL6+PthsNowZMwbr16/H3LlzRVeLKKn09fVhz549uOmmm5CRweVcosGcWSMHqsRoSByeSYDnIe3v4TAQ6AaCASDNDtizAJvNuAqf77wBGO/B5/DBe7tRlvLppbMwrvghnMXXGTMAo+MbQpfgN4SiVlLgxpTifNQ1tZle1pRx+biyINv0ckgthfkuND0yD4A6nwdkDeyv6mMbi8Pc68ecWSMHSRljyzFg0zxd+0v2wYk9qMBNqEUGfBc+2XVW269y6Q4Oglhc0g2A/Md//AcAIC0tDW+++Sa+//3vC64RUfIJhULo6OhAKBQSXRVpMGfWyIEqMRoVx+m2Xty45u1hn9u3cqa5ywt5JqFz2v/C3+yvABBGJnywox8BpKMHTuz7b7OMKV/nN4Qi4jeEonLfjPGo22T+AMjymyaYXgapTZXPA7IG9lf1sY3FYe71Y86skYOki7G3Tft/nY7BDwAIwYYOuBFChC/4+Tq0/SqXH+CX3SwsRXQFLnb69GnYbDbMmDGDgx9EEWRmZmLx4sXIzMwUXRVpMGfWyIEqMaoSxzds6EEG2uFGDzKASL+c6jX4DSEjNl8HvvmGUGuDMcdT0KwSD+ZfPcbUMhaUj8HMku+YWgapT73rKKmM/VV9bGNxmHv9EpqzqiPao3Cq+WWdr7BCKzcCK/SbpItxxwMx/b8uE31YjNeRib7IL+o6q+1XSZaVdAMgg3t8jBs3TnBNiJJXMBhEU1MTgsGg6KpIgzmzRg5UiVGVOEwV4zeERjX4DaFe82c5yGr1/FJ43A5Tju1xO7DqVs7AofjxOkoyYX9VH9tYHOZev4g5a23Q9vqL5JV7gLdWa3sRRiuvSHsUVcZW2VgVV2rlRmCFfpNUMZ7YFdtyxtD2fWvCXyCIYTaAPN/RbVo5ZElJNwBSVKRdgLxer+CaECWv7u5ubN68Gd3d3aKrIg3mzBo5UCVGVeIwVYzfEIoKvyE0orxMOzbfPQU5GemGHjcnIx2b756CvEy7occla+J1lGTC/qo+trE4zL1+l+TsxC5gwy3AE9OAQ09HfuPp94D9jwNPXK+9/sSb0RdatjC+Sus1eeTyrNBvkirG/Wtjfms3MrHZ9lN0I4qZLCMN4JHSkm4PkFtvvRVHjhzBu+++K7oqREkrNzcXDz/8sOhqSIU5s0YOVIlRlThME8c3hKJ2dJu2MfrE2eaWI6mSAjdeWFaBuzbUodXrj/t4HrcDm++egpICtwG1I+J1lOTC/qo+Jdu4vRmovmr456qOjPjt+kRSMvcmG8pZbxvw0i9i+7371AFg6wHt9+lb1oy+94KnFLhimvY+sxVVAp5JI77ECv0maWJsbYir3XPhxcPhx6N7cfM72gylUdqf1JN0M0Duu+8+uN1unDp1Cs8995zo6hAREVGyieMbQrrwG0IjKilwY2fVdCwoj29PkAXlY7CzajoHP4iIiIiSRcsxbcZHvF86OrpNO040e+zdsCK+sqJVmaByaGTtzdrj4Aizisxw6GmtXLKUpBsAGTt2LDZt2oSUlBQsW7YM//Ef/yG6SkRJp7OzE4888gg6OztFV0UazJk1cqBKjKrEYYo4vyGky+A3hCiivEw7qhdfgw1LrsWUcaN8s+8iU8blY+OS61C9+Boue0WG43WUZML+qj62sTjMvX6d/1WHR9ZvRWeXQUsjdZ0FNs4dfRBk4uxRl6aKW9kiYOKPRn2ZFfqN8Birr9IeIy2rFoVOZOMR/AqdyI7uDQefijx7jZQlZAmsU6dOjfj8D37wA6xbtw7/43/8D9xyyy348Y9/jEWLFqGsrAw5OTmw2WxRlXPFFVcYUV2ipONyuXDbbbfB5XKJroo0mDNr5ECVGFWJw1CD39IR8Q2hafcnzTIOyWpWiQezSjz4qKULW2qb8Uzt8N+qurYoD1PH52P+1WNxZUGU/0khigGvoyQT9lf1sY3FYe516m2D67WluC3sgAt9xh3X1wFsuR1YfmDk5bDmPqZ9CcmMvf6yL9eW44qCFfqNKjG60IfbsMvY/krKETIAUlxcHPUgRjgcxvbt27F9+3ZdZdhsNgSDwViqR5T00tPTUVJSIroaUmHOrJEDVWJUJQ5DifqWzsGntMcqdb/9ZaQrC7Jx7/TxEQdAfn9HOQrz5f5PFsmB11GSCfur+tjG4jD3Ou14AOndn8GUjHWdBd5YCdz+VOTXuPKBn72szRjxdRhXtjNXO+5oe5GcY4V+o0qM6QiiBCdFV4OSnNAlsMLh8IgPAEMDJaO9NtL7iVTU29uLV199Fb29vaKrIg3mzBo5UCVGVeIgIhKF11GSCfur+tjG4jD3OpzYBRx7Cb1w4lXMRi+cxpdxdJtWzkg8pcDSHdqMDSNkX64dz1Ma9Vus0G9UidHU/krKEDID5Iorroh6BggRERERERERERGZaP/axJTzTrW238dIPKXacllvrNQGTWJVtkhb9irKmR9EpCYhAyBNTU0iiiVSxuBajRQ95swaOVAlRlXiICIShddRkgn7q/rYxuIw91FqbQBOHQAAuODDbRhllkY8mt8BWo8Dnkkjv86Vry2XVbZIGzRpfif6MooqgcoVUW14PmzRFug3qsRoen8lJQhdAouIYtPf34/Gxkb09/eLroo0mDNr5ECVGFWJg4hIFF5HSSbsr+pTro1bG7Qb0pG8cg/w1mrtJrdgyuXeaO3N2uPg00M/6kcaGjEB/WZ+Z/rQ01q50Zg4W1vCavm7wHW/jPy6wgrgxr/TXrd0R8yDH4A1+o3wGKuOaI/CqXEdRnd/LazQyiVL4QAIkYRUWasxkZgza+RAlRhViYOISBReR0km7K/qU6aNT+wCNtwCPDFNu4Edyen3gP2PA09cr73+xJuJq+NFlMm9Waqv0h7ntWcvMs7tqZBhXrkHn9LK1cMzCZh2f+Tnf/IkcPNDo88siYIV+o3wGPOKtEdRZVyH0d1fiyu1cslShCyBRUTxycnJwW9/+1vR1ZAKc2aNHKgSoypxGGrwWzqv3KP9pzpRCiu0/0wRkVR4HSWZsL+qT/o27m0DdjwAHHtJ/3tPHQC2HhC2F4P0uRcgB134Lf4ouhpCWaHfJE2MZQu1AdMY6e6vkxfGXBbJKykGQM6cOYM//vGPeOutt/DJJ5/A6/UiJycH48aNw1/+5V9i+fLlGDt2rOhqJrVAIIAXXngBzz33HBoaGtDa2oq8vDyMGzcOP/nJT7BkyRJcdtllypVNRJTMTrf14sY1bw/73L6VM1GY70pwjSQ2+C2dosrEDoDwG0JERERkZS3HgGcXAl1n4zvO0W1A037gZy9rG1wTEQHa9eCKaUN70JiqqNKQGUIkH+FLYD311FP47ne/i3/4h3/AwYMH8dVXXyEQCODLL7/EwYMH8Q//8A/43ve+h/Xr14uuatJqbGzE1KlT8fOf/xxvvPEGTp06Bb/fj5aWFrz77rt44IEHUFpaih07dihVtpV1dHRg9erV6OjoEF0VaTBn1siBKjGqEocpyhL8jR1+Q4hISryOkkzYX9UnbRu3HAM2zYt/8GNQ11lg41xtD5EEkTb3AnXAjdW2/4kOuEVXRRgr9JukivGGFTG/VVd/rYy9HJKb0AGQZ555Bvfeey98Ph8AIBwOX/D84L99Ph9+9atf4d/+7d8SXsdk99lnn+Hmm29GfX09AMBms+Gmm27C3XffjVtvvRUZGdoaeF988QVuu+027N69W4myrS4rKwt33XUXsrKyRFdFGsyZNXKgSoyqxGGKwW8IJQK/IUQkLV5HSSbsr+qTso1727SZH74OY4/r6wC23K4dPwGkzL1gWejBXeEXkYUe0VURxgr9JqlinDg75i+eRd1fyxYBE38UUxkkP2FLYHm9Xvzt3/4tAO3GeTgcxtVXX41p06YhLy8P7e3teOedd3DkyJGh5++//37cdtttcLutOwp9sTvvvBNnzpwBABQVFeG1117D1VdfPfT8V199hcWLF+PPf/4z+vv7sWjRIpw8eRK5ublSl211aWlpKC4uFl0NqTBn1siBKjGqEodpblihrSVtNn5DiEhavI6STNhf1SdlG+94wLiZHxfrOgu8sRK4/Slzjn8eKXMvWBoGUIzPRFdDKCv0m6SLce5jQPM7uq87UfXX7Mu1PYjIsoTNAPm3f/s3eL1e2Gw25OTk4N///d9x+PBh/OEPf8Df//3f4w9/+APq6+uxfft25OTkAAC6uro4C+Q8O3bswL59+wAAdrsd27dvv2AAAgAuu+wyvPbaaxg/fjwAoK2tDWvWxH/SiyybgJ6eHjz//PPo6bHuNzL0Ys6skQNVYlQlDtPE8Q2hqPEbQkRS43WUZML+qj7p2vjErtg2PNfj6DatHJNJl/tEqzqiPQqnDv2oBxl4HvPRgwzzyi2s0MpNUlboN0kXoytf2yPImavrbaP2V2eudlxXftxVJHkJGwB56623hv6+ceNGzJ07d9jXzZs3Dxs2bBj2fVb3hz/8Yejvd911F8rKyoZ9XWZmJn73u98N/Xv9+vUIBoPSlk1ASkoKcnNzkZIifBsfaTBn1siBKjGqEoep5j6mfZPHDPyGEJH0eB0lmbC/qk+6Nt6/NjHlvFNtehHS5T7R8oq0R1Hl0I9SEEYuvEhBeIQ3xqm4Uis3SVmh3yRljJ5SYOkOXf/PG7G/Zl+uHc9TamAlSUbCevkHH3wAAPje976HBQsWjPja2267Dd/73vcQDodx5EjyjhAnUnd3N/785z8P/Xvp0qUjvv72228fWtevra0Ne/fulbJs0mRkZGDOnDlD+6zQ6Jgza+RAlRhVicNUMX5DaFT8hhCREngdJZmwv6pPqjZubQBOJWCpUUBb7qb1uKlFSJV7kcq+mV2dAR/moAYZ8JlXntmzueNkhX6TtDF6SoHlB7QZ+VGI2F/LFmnH4eAHQeAAyNdffw2bzYbrrrsuqtdPmTJl6H0EHDhwAH6/H4A2y2K0PDqdTlx//fVD/45nQ3KRZZMmEAigvr4egUBAdFWkwZxZIweqxKhKHKaL4RtCI+I3hIiUwesoyYT9VX1J38btzd88Dj6d2LIPmVte0uc+WXhKgSumAQACSEc9JiGAdHPKKqoEPJPMObZBrNBvkjpGV762R9CdL14wO2k4l/TXokrgzm3a+/mlNjpH2ABId3c3AES9Ifbg6wbfZ3Uffvjh0N/LysqQljb6fvY/+MEPhn2/TGWTxufzoaamBj6fid/IUAxzZo0cqBKjKnEkhM5vCEXEbwgRKYXXUZIJ+6v6kr6Nq6/65mHygMQlDpq7EXrS5z6Z3LACAOCDAzW4Hj44zCmncoU5xzWQFfqNFDFOnK19QW35u8B1vxz2JT44UJM2A74pf6u9bukO7uVIlxj9zrXJbDab6CpI6aOPPhr6e1FRdOsmXnHFFUN/b2xslLJs0rjdbqxYsUJ0NaTCnFkjB6rEqEocCTP4DaGyRdpa0s3vRP/eokrtP2H8JZlIKbyOkkzYX9XHNh5FOAyYdG+Iuddh4mxg8kK4j72EFTBpIKxskRS/dydlv2ltGHmG1iv3aP+3KVsU1QybpIwxEs8kYNr9ww6YutGNFb++L6n3lCHxhA+AUGzOXwrM4/FE9Z6CgoKhv7e1tUlZNmnC4TD8fj8cDgcHEaPEnFkjB6rEqEocCTdxtvZoPQ7vwefwwXu7UZbyKXJtPUMv6QhnwnnFD+Esvk5bezjJp98TUWx4HSWZsL+qj208ikA34Mg25dDMvU5zH0O46R34u9vggB+GZiz7cuCWNUYe0TRJ1W9O7AL2rx19b57T72mP/Y9ry5nd8JsRB5uSKsY4hAEtjnBY6jjIXMKWwKL4nL8UWLQbFp3/uniWEhNZ9sWcTufQBusDAwPo6OhAOBwGAHi93qG1DPv6+tDTo90ACwaD6OjoGDpGZ2cn+vv7AQC9vb3o7e0FAPT396Ozs3PodR0dHQgGgwCAnp4e9PX1AdDWTfR6vQC0D5COjg4MDAwMxTo4ndDv96OrqwsAEAqF0NHRgVAoBADo6uoa2lfF5/MN5ShSTJ2dnXj00Udx9uxZZWIyu52+/PJLPProo+js7FQmJr3tNNhvTp8+rUxMF7fTYIxffPFF0sSUhgG4MLiuahhZNj9SEBoxpvb2djz66KNob2+Pq536erWYUhFCls0/VNdMmx/BBLRTIOBHxrnYbedit0Gra293t3l9L7sYrddU4W/6/x/80L8O1/mfwDW+dSj1PY0bAv+Ms7c+C9z8EHqyiky77vn9PmRAq0/KUP61mHq6u5K27xlx3fP7+uA8F/vFfa+7y5uQa0Q6BiL2PbOve76+3nOxDyDzvNizbP6EfObaEYzY92S5lhvRTl9//fXQ574qManYTozpm/756KOPDn3RTIWYVGyneGL64osvhn5HTcqYkKrFhAz0wanFhHR4of1fOwygA24MnLuF1A3X0PJIftjRhUwtJtjQATdC526bdyETfti1mOBAN1xaTEhBB9znPp0Ab3ubae109uzZoc8DK/Y93TGluHDmR/+KR22/RhtyL2wnZA3ts9AHJ3qg3ecJIhUdcH8TE7LRf+771r1wohdOwJmL/jteQGd/anwx9fRG7nveLrV+j+j+Ch1b70Vo6x3AqQPRn0/IQuDUQWDrIvS9cC96vvxMa6eL+t7p06eHYkyKvjdqO2n5v7jvncYYPLr+OXR2dprbTgnqe0l/jTAgJhGED4DU1dXhd7/73aiPurq6ofdE8/rf/e53AqMy3/lr9Nnt9qje43B8s37j4IkgW9kXq6iowMKFCwFoN7irq6uHTsoNGzbg+PHjAIA9e/Zg+/btAIDPPvsM1dXVQ8d44okncPLkSQDAm2++iTfffBMAcPLkSTzxxBNDr6uursZnn2kfHNu3b8eePXsAAMePH8eGDRsAaBeM6upqfPnllwCAl156CbW1tQCAw4cP49lnnwWgXRSqq6uHLkLPPvssDh8+DACora3FSy+9NGJM2dnZmDx58lAdVIjJ7Hb67LPPkJWVhezsbGVi0ttO2dnZuPPOO7Fx40ZlYrq4nbKzs/Gtb31rqA7JEFNxajvmOrSl/+wYwCLnUeTafCPGNPgLxOCfsbbTO7u1un47pRuLnEeH6rrAcRyfn2oyvZ3+6/hR/JXjvwAAmbYAFjmPItOm/UL05vaXTO17dftrAABjU7z4K8cnaIcbPcjAIucxfNlyJuaYor1GNNS/j5vsWn1ybT4sch6FHdovmn96aWvS9j0jrnuH697FNHszgEv73qtbNyXkGvG91K8i9j2zr3vn970FjuNDr1vkPJqQvjcprTVi35PlWm5EOw3+hzA7O1uZmFRsJ8akxTTYTwf7rQoxqdhO8cTU0NCAZcuW4eTJk8kZEy7XYsJfYQ8qtJjwPWzAHVpMcKDa9kt8iW9pMWEeaqHt83kYpXgW/02LCdmotv0SXmh9+ln8NxyGtr9aLX6AlzBPiwnfQrXtl/Cfu5m44blXTGunPXv2YPLkycjOzjau773zZ2BVDmofuQ0v/eMKYFUOvvzfV2rt1Ppf5rVTgs6nN9//GMsW/iV8GWMvbCfcgeP4nhYTKrAdf6XFhMtRbftmf4Yn8Dc4CW05ojdxE95MnwMs3YGT3Y74Y9q5J3Lf2/SyOr9HtByD94nZqP6vsfrPp/Pb6cNWbF+/GmhtuKTvbd26FT/60Y+QnZ2dNH1vxHb6uEmL6aK+t9G2GMv++lZkZ2eb204J6nsyXCPijUkEW3jw7kqCpaSkmD41aXBES0Xz5s3Djh07AAAPPvggHnnkkVHf88Ybb2Du3LkAgKysrKGRPZnKHtTQ0IDJkyfD6XQiLS0NtbW1KCkpQVdXF3JycmCz2eD1euF0OmG329HX14dQKITMzEwEg0F0d3cjNzcXgPbB5nK5kJ6ePjSS6nK50N/fj97eXuTk5ADQRlOzsrKQlpaGnp4epKSkICMjA4FAAD6fD263G+FwGJ2dncjOzkZqaiq6u7uRlpYGp9MJv9+PQCCA7OxshEIheL1euN1upKSkoKurC3a7HQ6HAz6fD8FgEFlZWRgYGGBMjIkxSRzTV31hzFzzFuwYQC/s0L6FH0BvOB17Vt6MPHvI1JhOf92NH/1LHVIRQoatH91h7ZfiTJsf/77iZozz5JjaTidb2vHjtTXogx02hJFpC6AnbEcYNuz61XUo9uSY1k6ft/fir/75PaRiAE5bED3nYs+y+bH9N3+Jcd9xm9r3Pj7bhlur96IP6UhBCC5bP7rDdgA27PzVtRhfkKds3/v4zNf48f/dBx/SL+l7byz/Ib475lumXiO+7A1h1pq3kIaBS/re3pWzkJs+YOo1QmTf+6JnADev+Q+kInxJ39u3chZy0oK8ljMmxsSYGBNjujSmteORhgH0IAMpCCMDPgSQDh8ccKMbYQCdcCMb3UhFCN1wIQ0DcMIPP+wIIB3Z6EEINniRDTe6kIIwupAJO/rhQAA+OBBEKrLQiwGkoAtZyIEXNgDe35yCMyNDnnbqaYFj3bXDx3T/Ptjyi9Xoe11fouvf/1/kfPS81k7IghN+2NGPPjgRgg2Z6EMQqehGJnKh3SztRDZc6EM6guj9/h3AzQ/DddlYY2L67EOkPXXT8H1v6X64CyeJP5/ibafPjiB720KEfJ2xnU/DtZPTgeDfbEd35hVy9L3h2qnvC9if+OHwfa9qP5BXZG5MVuh7Jn8+ff7555g8eTIGHTt2DKWlpUgE4QMgZhVvs9mUHgC544478OKLLwIA7r///qhG0l555RXcfvvtALQ9OQaXT5Kp7EGDAyCDEnnSJIPu7m689NJLWLhw4dASYDQy5swaOUi2GE+39eLGNW8P+9y+lTNRmO8a9jmj4oi1fKOILN/KsYsu38qxiy5fdOzJJNk+D4hGwv6qvqRv4/bmb/7+yj3aPgKJUlgB/GKXaYc3JfftzUD1VcM/V3VE+s2YL8nZiV3AO9VA8zvRH6SoEqhcYfyG5wnKvbBztrcNeGIa0BXfPbNhZV8OLD8AuPIBSHBduliEtu+GCy/9xcNYuPhn5sah+HmfCCLv5QrbBH369OncnCYO3/rWt4b+3traGtV7Wlpahv6en58vZdmkSUtLQ3FxMdLShJ3C0mHOrJEDVWJUJQ4CgDCyzn0Drh9p6EZ0e2cRUXx4HSWZsL+qL+nb+Pwbd0WViR0AKa409fBJn/skdEnOJs7WHq3HgUNPAwefGv6NhRVae05eCHgmJa7CJhDWb3Y8YM7gB6Ad942VwO1a+6lybqRhAMVjC6SPg8wlrHfU1NSIKloJV1555dDfm5ubR3jlN06dOjX095KSEinLJo3T6cSMGTNEV0MqzJk1cqBKjKrEYVmtDcg5+By2pO/G5JQm5Np6hp7qCGfC+f/9ACi6DihbJP1/DomSFa+jJBP2V/VJ1cZlC4H9jyeuvMkLTT28VLlPEhFz5pkETLs/8gDIT55U5lvwQvrNiV3AsZfMLePoNu3/IBNnK3NuOOHHjIprAKdTdFUoiXF4TFLf//73h/5+9OhRBIPBUUc7//M//3PY98tUNmn8fj8OHz6Ma6655oIN5iky5swaOVAlRlXisJwTu4D9a4FTB+AGcEPqpS/JtfUAp/dpj/2PA1dMA274jfHLA5AlFea70PTIPNHVSAq8jpJM2F/VJ1Ube0q1309OHTC/rKJK078MIlXuk0RS5yyvCFjVaXoxQnKwf21iynmnGpg4O7nbWQc/7Dh8uAHXVBZIHQeZK0V0BSg206ZNGzqxe3p6cOjQoRFf7/f7UVtbO/TvWbNmSVk2aQKBAOrr6xEIBERXRRrMmTVyoEqMqsRhGb1twEu/ALb+VP/NglMHgK2LgJd/qR2HiAzB6yjJhP1VfdK18Q0rElNOpfnlSJf7JMCcCchBa0NiBh0BbS+X1uPKtHMA6aj/8GPp4yBzcQBEUllZWbj55puH/r1p06YRX//KK6+gq6sLgLYHx/Tp06UsmzTZ2dm47777kJ2dLboq0mDOrJEDVWJUJQ5LaDmmbVQY73T1o9u047Q2GFMvIovjdZRkwv6qPunaeOJs05em0pbhMX8GrHS5TwLMWYJy0N78zePg0+aVM5xDTyvTztnowX13LpA+DjIXB0Ak9qtf/Wro75s2bUJDw/A3TXp7e/HQQw8N/fvee++Ne3MgkWUTEAqF0NHRgVAoJLoq0mDOrJEDVWJUJQ7ltRwDNs0zbqPCrrPAxrlxD4I0tnixfu/JiM+veKEea3Y24qOWrrjKIUpmvI6STNhf1SdlG899DMi+3JxjZ18O3LLGnGNfRMrcC8acJSgH1Vd98ziU4AGQg08p084h2NDh7ZI+DjIXB0AkNm/ePNx4440AtGWmfvzjH+PIkSMXvObrr7/Gbbfdho8//hiANgPjwQcfHPZ4TU1NsNlsQ4+RZnYYXTbp4/V6UV1dDa/XK7oq0mDOrJEDVWJUJQ6l9bYBzy4EfB3GHtfXAWy5PablsHY3tuKn697FnLX7sKX2VMTXvd/cjj/WnMTstXvx03Xv4u3GL+KoMFFy4nWUZML+qj4p29iVD/zsZcCZa+xxnbnacV35xh43AilzLxhzZo0ceDs7lYjRi2xUb3pZ+jjIXPwqvuS2bt2KKVOm4OzZs2hqakJ5eTluuukmTJgwAV9++SXeeust9Pb2AgDS0tLw4osvIjc3V/qyrc7tdqOqqgput1t0VaTBnFkjB6rEqEocStvxgHEzPy7WdRZ4YyVw+1NRvby9J4CHX2/A6x+c0V1UXVMb6ja1YUH5GKy6tRR5mXbdxyBKRryOkkzYX9UnbRt7SoGlO7QvZxjxe0/25drgh6c0vuO0N2vfmh9O1RFto+xzpM29QMyZNXLgdqYoEaMbXahacrv0cZC5OANEcn/xF3+B3bt3o7y8HAAQDodRU1ODp59+Gq+//vrQAMS3v/1tvPrqqxfs3SFz2VaXkpKC3NxcpKTwFI4Wc2aNHKgSoypxKOvErvj3/BjN0W1aOaP48KwXc6r3xjT4cb7X6s9gTvVeNLbwm1OkBl5HSSbsr+qTuo09pcDyA9qeHfEoW6QdJ97BD50Mz31rA/BOdeTnX7kHeGs10HrcmPIEkLq/GsQKOUgJBZWIMQVh5LqzpY+DzMXeoYCSkhK899572Lx5M+bMmYPCwkLY7XZ85zvfQUVFBdasWYPjx49j3rx5SpVtZV1dXVi3bt3Q5vI0OubMGjlQJUZV4lDW/rWJKWek/1xDG/xY/GQtWr1+Q4pr9fpxx/paDoKQEngdJZmwv6pP+jZ25WszU+98ESiq1Pfeokrgzm3a+xO07NX5DMv9iV3AhluAJ6aNvF/D6feA/Y8DT1yvvf7Em/GVK4D0/dUAVshBV19AiRi7kIl1W1+TPg4yF5fAUoTdbsfPf/5z/PznP4/5GMXFxQiHw0LKJn3sdjvKy8tht3OpkmgxZ9bIgSoxqhKHklobgFMHElNW8zvatwc9ky55qr0ngCUb69DZ129okZ19/bhrQx12Vk3nclgkNV5HSSbsr+pTpo0nztYerce1QYCDEZbrLKwAiiuByQuH/T0mkeLOfW+btvRpLLN/Tx0Atp6bPXPLGiEDQLFQpr/GwQo5sGflKRGjHf0o//53pY+DzMUBECIJORwOVFRUiK6GVJgza+RAlRhViUMp7c3anwdH+MafGQ49Dcz7p0t+/PDrDYbN/LhYq9ePVdsbUL34GlOOT5QIvI6STNhfJaVjHwrl2tgzCZh2f+QBkJ88eUH8IsWV+5ZjwLML49//5Og2oGm/MfufJIBy/TUGCclB1ZFv/v7KPdrsoUQprIDD6VSinR0IoOKaUsDhEF0VSmJcAotIQj6fDzU1NfD5fKKrIg3mzBo5UCVGVeJQSvVV2mOkJQ/MMMyNhd2NrXHv+TGa1+rPYHdjq6llEJmJ11GSCfur+tjG4sSc+5ZjwKZ5xmz+DmjH2ThXm02c5NhfR8hBezOwKmf4x+AXpqKVV/TNQ+/ScvEqrlSmnX1woKb2sPRxkLk4AEIkoWAwiKamJgSDQdFVkQZzZo0cqBKjKnGQQS5annJdzScJKXbdnsSUQ2QGXkdJJuyv6mMbixNT7nvbtJkfvg5jK+PrALbcrh0/ibG/CshB2cLElDNo8kJl2jmIVDR93iJ9HGQuLoFFJKGsrCwsWbJEdDWkwpxZIweqxKhKHGSQQDfgyAYANLZ4UdeUmP80133aho9aunBlQXZCyiMyEq+jJBP2V/WxjcWJKfc7HjBu5sfFus4Cb6zUNoVPUuyvAnLgKQWumJaYvQaLKgHPJGQBSrRzFnqx5PZbgKws0VWhJMYZIEQSGhgYQEtLCwYGBkRXRRrMmTVyoEqMqsRBxvj8qw6cbuvF6bZebKnVObU+Tokuj8govI6STNhf1cc2Fkd37k/sim3Dcz2ObtPKSVLsr4JycMOKxJRTqZWjSjsPIAUtX34tfRxkLg6AEEmoq6sL69evR1dXl+iqSIM5s0YOVIlRlTjIGD/65/dw45q3ceOat7Gl9lRCy36GAyAkKV5HSSbsr+pjGxuotQF4pzry86/cA7y1Gmg9DiCG3O9fG38dozFSDIKNmLO8ImBV5/CPJNn43ghCztmJs4HJJi+FVbYImPgjAOpcl7qQhfXPbZc+DjIXl8AiklBOTg4efPBBOBwO0VWRBnNmjRyoEqMqcZAxeuAUWn44HIbNZhNaByK9eB0lmbC/Sqi1ATj4dOTnX7lHW2ambBHgmcQ2NsKJXdrgxGhLBJ1+T3vsfxy4YhpyKldEn/vWhsQsQQQAze9ogzSeSYkpTwf2V4E5mPuY1jfMWIIt+3LgljVD/1SlnXPgxYPL/hqOnBxzCxoc/CMpcQCESEI2mw1Op9gbYrJhzqyRA1ViVCUOpVQd0f585R7tP9WJUlgB/JfYwYeewACyHPyVkeTC6yjJhP1VIjHehLfd8Bs4z33rWhmJuhnY26btyRHLslSnDsB26gCcZYu0G7+u/OFf135uxutIg1pmOPQ0MO3+pJs5wWuSwBy48oGfvQxsnAv4Oow7rjNXO+5554Aq7WwD4HQ4AH5hi0bAJbCIJOT1erF27Vp4vV7RVZEGc2aNHKgSoypxKCWvSHsUVSa23OIElzeMQDAkugpEuvE6SjJhf5VAbxvw0i+ArT/VP0Pg1AF4ty7F2v/z/4O3NbFLWUqv5RjwxLS49uTwIgtrj7rh/cPN2gyP4VRfpT0OJXgA5OBTWrlJhtckwTnwlAJLd2gzNoyQfbl2PE/pBT9WpZ29yMLajdukj4PMxQEQIgk5nU7MmDFDidH6RGHOrJEDVWJUJQ4llZm8Lu/FzF4HOAr2NP66SPLhdZRkwv6a5Ay4Ce+EHzMCb8H5zNzIN+HpQi3HgE3z4l4KyAk/ZuBdOHtOa9+qZ/5HxWtSEuTAUwosP6AtoxePskXacS4a/ACSIEaDOOHHjKnl0sdB5uL/aIkkZLfbUV5eDrvdLroq0mDOrJEDVWJUJQ4leUqBK6YlpqyiyqRYFzrTniq6CkS68TpKMmF/TWIG3YS3ox/lOA57N2/CR6W3DXh2oSFLAA3lHv3a8bbcrh2fIuI1KUly4MoHbn8KuPNF/bPQiyqBO7dp74+w9FtSxGgAO/pRPul70sdB5uIACJGE+vr6sHPnTvT19YmuijSYM2vk4OIYT7f1ovi3fxr2cbqtV3BtI7NCW0nthhWJKadSK2ffyplDjx8W5SWm7HOuLcrjBugkJV5HSSbsr0nKwJvwfXBiJ2agD07ehI/GjgcM2wT6gtwD2nHfWGnIsVXFa1KS5WDibG0Jq+XvAtf9MvLrCiuAG/9Oe93SHcAo+w4lVYxx6IMTO/e+J30cZC4OgBBJKBQKoaOjA6EQ12WPFnNmjRyoEqMqcShr4mzzl6YqWzT0n5bCfNfQY+q4CJt3mmTq+MSWR2QUXkdJJuyvScrAm/Ah2NABN0I496UC3oSP7MSuuJYbu9gluQeAo9u0cmhYvCYlaQ48k4Bp90d+/idPAjc/FPUM8qSMMQYh2NDh7ZY+DjIXB0CIJJSZmYnFixcjMzNTdFWkwZxZIweqxKhKHEqb+5hxGxNeLPty4JY1wz41v3yMOWVGMP/qsQktj8govI6STNhfk5DBN+Ez0YfFeB2ZOO8byrwJP7z9aw093LC5B4B3qg0tRyW8JlkjB6rEmIk+LP7xzdLHQebiAAiRhILBIJqamhAMBkVXRRrMmTVyoEqMqsShNFc+8LOXAWeuscd15mrHjbBWb0mBG1OKEzMrY8q4fFxZkJ2QsoiMxusoyYT9NQkZfBM+iFQ04S8QxEX7avEm/IVaG4BTBww9ZMTcN78DtB7X/l51RHsUTjW07FEVVmjlJhlek6yRA1ViDCIVTZ+dlT4OMhcHQIgk1N3djc2bN6O7u1t0VaTBnFkjB6rEqEocyvOUauvrGjUTJPty7Xie0hFfdt+M8caUN4rlN01ISDlEZuB1lGTC/ppkTLgJ341MbLb9FN246BvK59+Et7L2Zu1x8GnDDx0x9wBw6Gmt3Lwi7aF3o+l4FVdq5SYZXpOskQNVYuxGJja/skv6OMhcaaIrQET65ebm4uGHHxZdDakwZ9bIgSoxqhKHJXhKgeUHtHW8j26L/Thli7RlryLM/DjfrBIP5l89Bq9/cCb28kaxoHwMZpZ8x7Tjq6ww34WmR+aJrobl8TpKMomrv7Y3A9VXDf9c1ZGkvLmatNqbtT9NuAmfCy8eDj8+/JOHntbW9dfbViq1faQ4DDBi7g8+pT1WdWr/LlsI7I/wWjOYvadcjPgZao0cqBJjLrx4+P4lQG6u6KpQEuMMECIiIqI4tIezcH/g11gaeADvhUp0vfe9UAmWBB5AVf+v0R7Oivp9q+eXwuN26K1qVDxuB1bdOvIsFCIiIuVUX6U9Dhk/ADKig0+ZOgBAOnhKgSumJaasosqoN6smIqL4cACESEKdnZ145JFH0NnZKboq0mDOrJEDVWJUJQ4r+PCsF3Oq9+L1D87g7dA1uCPwEH7kfxT/ElyAfQOT0RG+cLmFjnAm9g1Mxr8EF+BH/kdxR+Ah1ISuwWv1ZzCnei8aW7xRlZuXacfmu6cgJyPd0HhyMtKx+e4pyMu0G3pcokTjdZRkwv6qvk5k4xH8Cp3g3lqJpjv3N6wwtT5DKhNUTgx4TbJGDlSJsRPZeGTds9LHQebiElhEEnK5XLjtttvgcrlEV0UazJk1cqBKjKrEIUpjixdbapsjPr/ihXpMHZePBeVj49rk+8OzXix+shadff0X/PxEuBD/GLzj3L/CyIQPdvQjgHT0wAnANuzxWr1+3LG+Fi8sq0BJgXvU8ksK3HhhWQXu2lCHVq8/5jgGedwObL57SlRlEyU7XkdJJjH319aGkZdreuUe7VvmZYv4TXPBXOjDbdgFF/pEV8VydOd+4mxtaapjL5lXqbJFwMQfmXf8OPEz1Bo5UCVGF/pw21/dIH0cZC4OgBBJKD09HSUl+pZZsTrmzBo5UCVGVeJItN2NrVhX8wnqmtpGfN37ze14v7kdf6w5iSnF+Vg+Y4Lu/S7aewJYsrHuksGPS9nQgwz0ICOq43b29eOuDXXYWTU9qlkYJQVu7KyajlXbG/Bafex7giwoH4NVt5Zy5gcpg9dRkonu/npiF7B/7egbdZ9+T3vsf1xb1ueG3yT1TVeVpSOIEpwUXQ1Liin3cx/TNqjvOmt8hbIv1/Z9S2L8DLVGDlSJMR1BlEwoAtKNnRlPauESWEQS6u3txauvvore3l7RVZEGc2aNHKgSoypxJEp7TwD3P3cYd286NOrgx8XqmtqwdNNBVD1/GO09gajf9/DrDYbMuhhOq9ePVdsbon59XqYd1YuvwYYl12LKuNE3UT/flHH52LjkOlQvvoaDH6QUXkdJJlH319424KVfAFt/Ovrgx8VOHQC2LgJe/qV2HFW0NwOrcoZ/tEeeDZpovXDiVcxGL5yiq2I5MeXelQ/87GXAmWtsZZy52nFd+n5fSzR+hlojB6rE2AsnXv2PfdLHQebiDBAiIiKS1odnvViyMf4loF6rP4PaT76Oagmo3Y2teP2D2GdbRFufBeVjMKvEE/V7ZpV4MKvEg49aurClthnP1DYDCCMLfUhHEP1IQzcycG1RPqaOz8f8q+NbAoyIiBKo5Rjw7ML4v5F+dBvQtF+7CespNaZuRPGqOqL9+co92qylRCmsAH7y5PDPeUqBpTuALbcbMxMk+3Ked0REgnAAhEhCg2s1UvSYM2vkQJUYVYnDbJH24IhVtHtwrKv5xJDyRrNuzye6BkAGXWk7hQfSnsfs9N2YnNKEXFvP0HMd4Uw47T+AM/U6wLYIANeEJzXxOkoyGbW/thwDNs0DfB3GFNh1Ftg4V7u5y5ux3zDxJrwLPtyGXcM/OdJN+EhU2/8lr0j7s6gysbkvrvym7OF4SoHlB4A3VmqDh7EqW6Qte5XkMz8G8TPUGjlQJUYXfLjtr24EuAcIjYBLYBFJqL+/H42NjejvN+amnxUwZ9bIgSoxqhKHmaLfg0OfwT04Ii2H1dji1b3MVqzqPm3DRy1d0b/hxC5gwy3AE9PgPvTPuCG14YLBDwDItfXAeXqfth78E9drrz/xpsE1JxKP11GSyYj9tbdNm/lh1ODHIF+H9s12lZbDildekfYoqjT80P1IQyMmoH+476COdhP+fOd91uPQCAMgg3u/yPZZX7bQ8EOOmPvJUZTnygdufwq480X9faOoErhzm/Z+SQY/AH6GAtbIgSox9iMNjSebpY+DzMUBECIJqbJWYyIxZ9bIgSoxqhKHmRK9B8fptl6cbuvFltrEriceVXlcE57oEryOkkxG7K87HjBnI2ZAO+4bK805diK0NgDvVEd+/pV7gLdWA63H9R3XhJvwvcg4tw9FxqVPRnMT3iqf9Z5S4Ipphh4yYu6LKvXNjpk4W5s1tfxd4LpfRn5dYQVw499pr1u6A5j4o9gqLhA/Q62RA1Vi7EUGXv2P/dLHQeayhcPhsOhKEOnV0NCAyZMnD/372LFjKC3l9G0iutDptl7cuObtYZ/bt3ImCvPNnSbL8s0pf3djK+7edCieqkVlw5Jrh5agKv7tn0wvL5KmR+ZFftKoNeEBw9amVrXfEREl3Ild2g1vs935onZzVxYndgH71+obCLhiGnDDb6K/Gb3hFv0DDbEoqtRuko8kCT/rTZWwfr8t9sGJ9mag+qrhn6s6Ev2MHpLL4NJzkWZfFU41f+k5K/c9K8euCJH3cjkDhIiIiKSSyD04kkHE76oMrglv1DeDB9eEb20Y/bVERGS+/WsTU85IsyiSSSJnQdywIqYq6lY5SjlW/KyfODu6WTHxKFsk5cwMEkT1peeILIADIEQS6ujowOrVq9HR0SG6KtJgzqyRA1ViVCUOMyT1Hhwm6QkMXPpDrgkfUWG+C02PzBv2wdkf1sHrKMlk2P7a2pCYGQgA0PyO/mWiBrU3A6tyhn+0G7hsZMsx7ebjsZfiO87RbdpxRhsAMPgmfAfcWG37n+iA+5sfjnYT3sqf9XMf02arGOCS3Gdfrm1IThHxM/S8HGy9V9ml51Rp5w64sfr/bpI+DjIXB0CIJJSVlYW77roLWVlZoqsiDebMGjlQJUZV4jCSyD04TreJXU82EAxd+kOuCU80Il5HSSYX9Nf2Zu1xcIRvGZvh0NPGDlgYSdQsCANvwmehB3eFX0QWerQfRHMT3sqf9a58bakuZ27ch7og985c7bgSbUguAj9DgazuZtzl/DOyTiRo0FUAVdo5Cz246yezpY+DzJUmugJEpF9aWhqKi4tFV0MqzJm4HCRyPX5V2lmVOIwUqQ+Z7ZnaZjyT4EGXi9nTLvq+yold8X8DdjRHt537ZqpEa8ITnYfXUZLJBf010vrmZjv4lPZY1Smm/EjMngWx/EDkm+GDN+E3zo27/DQMoBifaf+I5iY8P+u1fUqW7tDaKY6BoKHcy7D/SZKw/GdoyzGkbZmPYqOuO4ODrkt3JFX/U6Wd0zCA4r+4HEjjLW6KjDNAiCTU09OD559/Hj09PaKrIg3mzBo5UCVGVeIgY2TaUy/8AdeEJxoVr6MkE/bXEYieBTF4Ez7OmSA9yMDzmI+ezOLoboLys17jKdUGqcoWxXyIHmTgefd96Pn5W0l18zmZWfqadG7Qtcfn185ZZBhz3CRcek66ds4r0gbpL3r0PHAGz+96V544SAgOgBBJKCUlBbm5uUhJ4SkcLebMGjlQJUZV4lDJvpUzsW/lTPywKC+h5V5blAebzfbND2RZE55IMF5HSSbS9tfWhpFvoL9yD/DW6tg/SxI1C+LErpFfY8BN+BSEkXuZByl3vzH6TXh+1l/IlQ/c/hRw54tAUaW+9xZVIuX2p5E7aSZSsr5lTv0UJO01yQjnBl1TEEYuvEhB2LhjJ9nSc6q0sypxkLk4P4hIQhkZGZgzZ47oakiFObNGDlSJUYU4Glu8I+7XseKFekwdl48F5WNxZUF2AmsWm8Gl2qaOy8f7ze0JK3fq+PwL12QXsSb8vH9KbJlEBlDhOkrWIV1/PbFLm6Ew2k360+9pj/2PA1dMA274zcibfl8skbMgRlsGavAmfNki7fXN70R//KJKZFSuwJzRYh/8vOdn/fAmztYerce1Oh98avjXFVYAxZXaJvaeScgAMKcsoTWVnnTXJKOcN+iaAR/moMb4MpJo6TlV2lmVOMhcHB4jklAgEEB9fT0CgYDoqkiDObNGDlSJUeY4dje24qfr3sWctfuwpfZUxNe939yOP9acxOy1e/HTde/i7cYvEljL2M0vH5PY8q4eq60HP/g4lOCbIpFuLhAlOZmvo2Q90vTX3jbgpV8AW3+qf4bCqQPA1kXAy7+MbgmYZJ0FMXG2toTV8neB634Z+XWFFcCNf6e9bukOBIpnjN7G/KyPjmcSMO3+yM//5Eng5oe010Gi8yuJWDZn5w26BpCOekxCAOnGl5MkS8+p0s6qxEHm4gAIkYR8Ph9qamrg8/lEV0UazJk1cqBKjDLG0d4TwP3PHcbdmw6hrknf2rZ1TW1Yuukgqp4/jPae5P7FtaTAjSnFI2xaaqAp4/KTY3ZM2MCp/0QJIuN1lKxLiv7acgx4Ylr8S1Id3aYdp7Xh0ufam795iJgFoYfOm/BJ38YKf9Ynfe6TkCVzdtGgqw8O1OB6+OAwvqwkWXpOlXZWJQ4yF5fAIpKQ2+3GihUrRFdDKsyZNXKgSoyyxfHhWS+WbKxDq9cf13Feqz+D2k++xua7p6CkwH3Bc/tWzgSgLZ2VyCWori3Kw+/vKL/gZ/fNGI+6TeZvYLj8pgmmlxGVQDfgSIKBGL3CYcDfBQz0A6npWgzn76dCSpPtOkrWdkF/rTqi/fnKPdryUYlSWKHdtB9OyzFg0zxtE18jdJ0FNs69dDPw6quMOX4sDj5l6jJQSX9NkvWzPgpJn/skZKmcRVh6zo1urICJA7FJsPScKu2sShxkLg6AEEkoHA7D7/fD4XBcuDkuRcScWSMHqsQoUxwfnvVi8ZO16OzrN+R4rV4/7lhfixeWVVwwCCJyD47BsgfNKvFg/tVj8PoHZ0wrd0H5GMws+Y5px9clGIAZX34zRWsDcPQl4PP3gbMfXHizzpkLXH41MPaH2trL576VS2qS6TpKdEF/zSvSflhUmdgBkOJKYLDs8/W2Ac8uNG7wY5CvA9hyu7a5uCsxMytHFQ6bNlCe9NckmT7rdTIl93lFwKpOY46VhJK+vxopwsBrGIAfDjjghykZMHnQNRqqtLMqcZC5uAQWkYQ6Ozvx6KOPorNT3V+6jMacWSMHqsQoSxztPQEs2Vhn2ODHoM6+fty1oW7Y5bCE7MExjNXzS+Fxm3OnwON2YNWtpaO/MFHS7KJrMLoTu4ANt2jLqux/HPh0z6U363wd2s/3Pw48cb32+hNviqgtJYAs11EiIEJ/LVuY2EpMjlDejge0GRtm6DoLvLHSnGPHItBt2qGT/pokw2d9jJI+90mIOQM64cajtl+jE+7RXxwrwUvPqdLOqsRB5uIACJGEsrOzsWzZMmRnqzlN2QzMmTVyoEqMssTx8OsNcS97FUmr149V2y9dHzxZ9uDIy7Rj891TkJNh7MaIORnp2Hz3FORlJtGNCHuW6BpElsgNeUkqslxHiYAI/dVTClwxLTEVKKocflbciV3x7/kxmqPbtHKSQdC8fciS/pqUzJ/1cUr63Cch5gzIRjeWhZ9BNswbGDVz0DUaqrSzKnGQubgEFpGEUlNTUVBQILoaUmHOrJEDVWKUIY7dja2mLgEFaHuCLCgfg1klngt+nix7cJQUuPHCsgrctSH+/U8AbebHcPufDK0HD4hZEz5Zp5K3HNOWZYn3m8lHtwFN+4GfvXzhWvTx4h4kQslwHSUaFLG/3rAC2KpzcDcWlSuG//n+teaXDQDvVAMTZyemrJHonQWhYxmkqK5JIvd/UfjziZ8H+jFnQCpCKMCX5hYieOk5VdpZlTjIXJwBQiSh7u5ubNq0Cd3dYr8xIBPmzBo5UCVGGeJYV/NJYsrZc2k5g3twmCnaPThKCtzYWTUdC+JcmmtB+RjsrJp+6eAHoN1gGXwUVcZVjm7FCS4vWoMb8hq1LMvghrytl8460qW1AXhrNbB5PvBoMfBIIfDYeO3PR4u1n7+1Gmg9bkStaQQyXEeJBkXsrxNnR16ayihli4CJP7r0560N+mfWxar5neS4Lpo4CyKqaxI/603BzwP9mDOgGy5swiJ0wzX6i2MleOk5VdpZlTjIXJwBQiShtLQ0FBcXIy2Np3C0mDNr5ECVGJM9jsYWL+qaErNkUN2nbfiopeuSpahWzy/Fe59+bcoSXHr34MjLtKN68TVYUD4G6/Z8grpPo8/NlHH5WH7ThOg3PC9bqO1hkShm33iLRTJuyHtil/ZN6ZFuFg7uQTK4D8kV04AbfjP8jUeKW7JfR4nON2J/nfuYNkBgxj4c2ZcDt6y58GftzdqfB582vryRHHpa6RmPuq5J/Kw3FD8P9GPOgDQMoBifIQ0D5hUSy6Crjplno1GlnVWJg8zF3kEkIafTiRkzZoiuhlSYM2vkQJUYkzGO0229Q3/fUtuc0LK31Dbjf982+YKfDe7Bccf6WkM3YY9nD45ZJR7MKvHgo5YubKltxjMR8nRtUR6mjs/H/KvHRtxjJKLBNeET8a3cSGvCi5aIDXlvfyq61/e2afWJZY38Uwe0pW3KFmk3IPUOutCIkvE6aqr2ZqD6quGfqzqi3TBRuXzJjdhfXfnaEn0b5xo78OvM1Y578bUnUjua7eBTwLx/+ubfRZWJHQAxeRaErmsSP+tHp+MmsOU+DwxgqZxFWHrOCT9m4F3zyk2CpedUaWdV4iBzcQksIgn5/X7U1tbC7zdn82EVMWfWyIEqMSZjHDeueXvosaX2VELLjjSQMLgHh8dtzOK5HrcDLyyrGH4ZKh2uLMjGvdPHR3z+93eU44HZJfoHPwbdsCK29+kVaU14kZJpQ96WY8AT0+Kvz9Ft2nHiXX6LLpCM11FSVHszsCpn+Ed7dF8YGLW/ekqBpTu0GRtGyL5cO56R+x4ZIRz+5u9lCZ6VYPIsCN3XJCt/1huMnwf6WSpnEZae88OOWlwDP0xapioJlp5TpZ1ViYPMxQEQIgkFAgHU19cjEAiIroo0rJyz0229KP7tn1D+8A5sfWMvyh/egeLf/gnFv/3TBd/qV4Eq7axKHEYKn39T5DwJ2YMj2YhcE160RG7IO5Jk3YOEhljqOtraMHKffeUe7j2T5KLqr55SbYm+skXxFVa2SDtOsg1+AEDgvPXbB2dBJEICZkHoviZZ+bPeYJb6PDCIJXN20aBrAOmoRykCSDenvCRYek6VdlYlDjIXl8AiklB2djbuu+8+0dWQCnMG9MGO1/1J+J9dA6nSzqrEYaSewACyHMP/2pLQPTiSRaLXhE8GIjbkHe6GWDLuQUKXsMR1NJq9ZwBtSY/T75m390xrw8j7Rbxyj3aDuWyRnEvtJEDU/dWVry3RV7ZIG/Rqfif6QooqtW/7J/MN72AAOH9S5w0rtKUCzZaAWRAxXZOs+FlvAkt8HhjMkjm7aOm5bPTgPmwxp6wkWXpOlXZWJQ4yF2eAEEkoFAqho6MDoVBIdFWkwZwBNoSRZfPDhuG/Sa8CVdrZiDgaW7xYv/dkxOdXvFCPNTsb8VFLV8xlJFIgOHouZpV48OKy67FrxXT8TUXk9eavLcrDr2dOwK4V0/HisuvlG/wAvlkT3plr7HEjrQkvUnuz9hCxIe9wy9ckYg8SipvQz4NwGPB5gZ6vtT8jzGCLWW8b8NIvgK0/1T8oeOoAsHUR8PIvtePE48QuYMMt2hJuh0Y4PwcHX564Xnv9iTfjKzeZGDT7Rnd/nThbW8Jq+bvAdb+M/LrCCuDGv9Net3RHcg9+AEDaRUvNKDQLIqZrkpU+602kyv8PEsmyOTtv6bkQbOiAGyGYsE9Hkiw9p0o7qxIHmYsDIEQS8nq9qK6uhtfrFV0VaTBnQKYtgEXOo8i0qTs1VJV2jieO3Y2t+Om6dzFn7b4R9+p4v7kdf6w5idlr9+Kn697F241fxFNl09nTov+VxfQ9OJKFVdaEr75Ke4x0g9UMB5+6dDPgZNqDhEaU8M+D1gbtRvfm+cCjxcAjhcBj47U/Hy3Wfm7EMlTJsPdMsgzAiGTw4E/M/dUzCZh2f+Tnf/IkcPNDSfFN46jYsy792dzHjPucu1gCZ0HE3sYW+aw3kSr/P0gky+bsvEFXL7JRbfslvDD4/wtJtPScKu2sShxkLg6AEEnI7XajqqoKbrcEa9UnCeYM6Anbsc1Xhp6wSRu5JQFV2jmWONp7Arj/ucO4e9Mh1DXpu6lU19SGpZsOour5w2jvSc4Bskx7qugqJCcrrAmfTJJlDxIaVcI+D86/Eb7/ceDTPZcuj+br0H4e7yyIZNh7JhkGYEQyafAnqX5/qTqiPQqnJrbcwgrANsw3rRWZBRFXG/OzPi5JdX5JwtI5Ozfo6kYXqsJPwQ0DZ8sn2dJzqrSzKnGQuTgAQiShlJQU5ObmIiWFp3C0mDMgDBu6ww6EzZjGmyRUaWe9cXx41os51Xvx+gdn4ir3tfozmFO9F40tl357Zt/KmUOPHxblxVWOXtcW5cE23E0R0gyuCX/ni9qawnoUVQJ3btPeb5GlMGImYg8SipnpnweJngVh9t4z0dQjGQZgRDJx8Cepfn/JK9Ieej9P4lU8QnkKzIKIu435WR+zpDq/JGHpnJ0bdE1x5iAXXqQYtXx0Ei49p0o7qxIHmYu9g0hCXV1dWLduHbq65Fi7PxkwZ0AGApjvaEAGkvMb/kZQpZ31xPHhWS8WP1mLVq/fkLJbvX7csb72kkGQwnzX0GPquMT+4j51fPL8RyGpnbcmvPfa+7FvYDI6wpkXvKQjnAlf4XS51oQXTeQeJBQzUz8PRMyCEL33TDIMwIhk8uBPXP01rwhY1Tn8Iy/yflijKjN5742LjbbXh+SzIAy7Jqm6/4uJVPn/QSJZPmeeUnT99GWsS12KLmSO/vrRJOnSc6q0sypxkLk4AEIkIbvdjvLyctjt6i5lZDTmDAgiFR8HL0MQ6i4lpEo7RxtHe08ASzbWobOv39DyO/v6cdeGuojLYc0vH2NoeaOZf/XYhJYnPc8kdE77X/ib/v8H5f4nUep7Gtf41qHU9zTK/U/iy//2glxrwosmcg8SiplpnwciZkEkw94zogdgRErA4E9S/v7iKQWumJaYsooqo/tMkngWhOFtrNr+LyZKyvMryTFngH1sGcpvmg/7pHnxHSiJl55TpZ1ViYPMlSa6AkSkn8PhQEVFhehqSIU5A/qRiuMDHtHVMJUq7RxtHA+/3mDYzI+LtXr9WLW9AdWLr7nkuZICN6YU5+veayQWU8bly79ZuVA29CADPchIWImF+S40PRLnfxZJEw4PvyY+jcqUzwOzb4QvPzD8jdlE7j0zcfalP0/UAEzZouHLFy0Bgz+O259Kzt9fblgBbE3A0n+VK/S9fuJs7dF6XBucjjRgXFihLa01eaHwgQBVfkeVEXOvH3N2LgfTZwGYBZxYqH1GNr8T/QGKKrVrWxLPvlKlnVWJg8zFGSBEEvL5fKipqYHP5xNdFWkwZ4AdQZSnfQ47gqKrYhpV2jmaOHY3tsa958doXqs/g92NrcM+d9+M8aaWPWj5TRMSUg4lMZEb8lYdSWyZFwt0iy1fYqZ8HoiYBZEMe88kcgAm2SRo8Md37E/J+fvLxNmjL00Vr7JFsd8glGgWhCq/o8qIudePObsoB4ouPadKO6sSB5mLAyBEEgoGg2hqakIwqO6NbKMxZ0AqwihI6UKqURu5JSFV2jmaONbVfJKQuqzbM3w5s0o8mH+1uUthLSgfg5kl3zG1DJKAyA1541k/3whBdfdsMpvhnweJXoZK5N4z7c3f/DsZBmBEStDgT7D2yeT9/WXuY8ZtPn6x7MuBW9aYc+wko8rvqDJi7vVjziLkQKJB12io0s6qxEHm4gAIkYSysrKwZMkSZGVlia6KNJgzoA/p2BkoQR/SRVfFNKq082hxNLZ4E7L8FADUfdqGj1qG31Bu9fxSeNwOU8r1uB1YdWvyrZVLAiXbhryJkMa1jGNl+OdBomdBiNx7pvqq5BmAESmBgz9Zn9VgyS1TkvP3F1c+8LOXAWeuscd15mrHFbAfhwiq/I4qI+ZeP+bMGjlQJUZV4iBzcQCESEIDAwNoaWnBwMCA6KpIgzkDUhBCvq0XKQiJroppVGnnSHGcbuvF6bZebKlN7M2hSOXlZdqx+e4pyMkwdlAtJyMdm++egrxM3vyl8yTjhrxms0v6H7lwGPB5gZ6vtT/DiZ95aOjngRVnQYgegBFJwODPAFLQsncjBr5KzOxO3Tyl2nIuRs0Eyb5cO14SbgpsFlV+R5URc68fc2aNHKgSoypxkLk4AEIkoa6uLqxfvx5dXcN/K5suxZwBLls/FjiPw2XrF10V06jSzpHiuHHN27hxzdvYUnsqofV5ZoQBl5ICN15YVmHYTBCP24EXllWgpMBtyPFIMTesSEw552/IK3IPEpk2QG9tAN5aDWyeDzxaDDxSCDw2Xvvz0WLt52+tTtjN/bg/DwZvgouaBUHiCBj86UIW1h/PQte/3JSwMnXzlALLD2h7dsSjbJF2HKMGP/KKgFWdwz9EL2N4HlN+R5UkdtFU+f9BIjFn1siBKjGqEgeZK010BYhIv5ycHDz44INwOMxZekZFzBnQHbbj2b5yBJAquiqmUaWdkzGOcDgMW4SbsSUFbuysmo5V2xvwWn3sG7MvKB+DVbeWcuYHRTa4Ia+ZezFcvCHv4E2kokrg9HvmlXux4gTveRKrE7u05aFGmiHh6wA+3aM99j+uzeS54Tembg4a93VU5CyEg0+JK5uEyIEXD4b/AAf8oqsyMlc+cPtT2nXynWptxlK0iiq1weUk3xTYLMn4u51VMPf6MWfWyIEqMaoSB5mLAyBEErLZbHA6naKrIRXmDABsCCh+2VelnZMxjp7AALIckftPXqYd1YuvwYLyMVi35xPUfRr9HiVTxuVj+U0TuOG5asJhwN8FDPQDqemAI9uYGQ1zH9NuunWdjf9YFxtpQ96yhdrN+0RJhj1IRtLbBux4ILbBqFMHgK3nvkl+yxpT9gBIxusoUSQ2AM5kH/w438TZ2qP1uDZTJtKgXWGFNpg7eWFyLCsoEK9J4jD3+jFn1siBKjGqEgeZi0tgEUnI6/Vi7dq18Hq9oqsiDeYMcCGAhY4jcCEguiqmUaWdkzGOQDC6vWNmlXjw4rLrsWvFdPxNReTlF64tysOvZ07ArhXT8eKy6zn4oYpELIMkakNeK+5BEknLMeCJafHPxDm6TTtOa4Mx9TpPMl5HiSLxIgtr8Qt4Idm+P55JwLT7Iz//kyeBmx9K7utZgvCaJA5zrx9zZo0cqBKjKnGQuTgAQiQhp9OJGTNmcJRbB+YMCCAV9cExSi+BlUzt3Njixfq9JyM+v+KFeqzZ2YiPWi5dqzSZ4hhkT9P3K8OVBdm4d/r4iM///o5yPDC7BFcWZMdbNUoGJ3YBG27Rbmbvf1xb6sjXceFrBpdB2v848MT12utPvBlbeaI25BWxB0myaTkGbJpn3AycrrPAxrmGD4Ik43VUl3v3iNt7pupIYsskOOHHDLwr1ywQ0kX6a5LEmHv9mDNr5ECVGFWJg8yl9looRIqy2+0oLy8XXQ2pMGdAEKn4eOAy0dUwVTK08+7GVqyr+QR1TSMvAfV+czveb27HH2tOYkpxPpbP+GYJqGSI42KZdnUHzigOIpdBGtyQ942V2kyCWOkpX8QeJMmktw14duGlg1vx8nUAW27X2tOg5bCS8Tqqy7cmaMvGidh7Jq/om0GQV+5JbPmFFdqsAYuxox/liGNmHCU96a9JEmPu9WPOrJEDVWJUJQ4yF2eAEEmor68PO3fuRF9fn+iqSENkzk639aL4t38a9nG6rTdh9bAjiCnpp2BHMGFlJprIdm7vCeD+5w7j7k2HRh38uFhdUxuWbjqIqucPo70nEDGOfStnYt/KmfhhUZ6RVR/VtUV5ETdAJwtLhmWQBjfkvfNF7UaxHkWVwJ3btPfruek+9zHjZp5cbKQ9SJLBjgfM2XsF0I77xkrDDif970r2c0shlSV4L5jBvWfyirSH3vMqXoMDMCJVHUn47Js+OLEzezH6lh1MWJmUWNJfkyTG3OvHnFkjB6rEqEocZC7OACGSUCgUQkdHB0Kh6NbkJ+YMAFIQRpYtgBSERVfFNKLa+cOzXizZWIdWb3xLV7xWfwa1n3yN9X89edg4CvNdAICp4/LxfnN7XGXpMXW88RsUk+QGl0EyaibA4DJI0SxDNZzzN+Q99hLw+fvAmfoL6+fMBcaUA2N/GN+GvIN7kGyca+xMiNH2IBHtxC5zZ74A2mBY2SKtLeMU9+fB+ctAiZgFMTjoPLj3zKkD5pc73N4zZQu1ZesSZXKCB3yGMzgAk8DZNyHY0GEfg5B7bELKM1ReEbCqU3Qtkh7/LyIOc68fc2aNHOiOsb0ZqL5q+Oeqjgj7AoMV2orixwEQIgllZmZi8eLFoqshFeYM8CEduwPfFV0NU4lo5w/PerH4yVp09vUbcrxWrx93/dsRvLBsLjIzM4d9zfzyMfhjTeT9RYw2/2oJb8iQeZJ5GSTPJMDzkPb3cBgIdAPBAJBm175Rb9RMpsE9SLbcbsyMiOzLtcGPWAZ/EmX/2sSU8061IQMgcX8enP+feBHLUJ3vhhXacnFmG27vGdEDMCIlcPAnE31Y/NNFQITPfZIf/y8iDnOvH3NmjRyoEqMqcZC5uAQWkYSCwSCampoQDKq7lJHRmDMgFSEUpHiRCnW/GZHodm7vCWDJxjrDBj8Gdff58Zun/gNfdg6/RFpJgRtTihPzLfEp4/K5UTldSJZlkGw2bQ+FzG9pfxq9jNvgHiRli+I7Ttki7ThGDn6Ew4DPC/R8rf0ZjnPmX2tDYm6AA0DzO9pMnjgZ+nkgahmqQYN7z5hppL1nblhhbtmDhhuAEWlw8CcBglfcgKY+l6V/T1Ud/y8iDnOvH3NmjRyoEqMqcZC5OABCJKHu7m5s3rwZ3d3doqsiDeYMyLD14xbHCWTYjL1Zn0wS3c4Pv94Q97JXw8mw9aNi4Bj+z+uHI77mvhnjDS93OMtvmpCQckgSiVoG6cQuc8swiog9SCJpbQDeWg1sng88Wgw8Ugg8Nl7789Fi7edvrdY3uNDerD0OPh1//fQ49LRWbhwM/TxI4I3wiLMgRO49I3oARqQEDf50ly+z/O+pquP/RcRh7vVjzqyRA1ViVCUOMheXwCKSUG5uLh5++GHR1ZAKcwZ0hx3Y2Het6GqYKpHtvLuxFa9/cMaUYw+1VUMHbm1sxawSzyWvmVXiwfyrx5hWBwBYUD4GM0u+Y9rxSUKSLYOUMIncg+RiJ3Zp7TLSDA1fB/DpHu2x/3HtZv4Nvxn9hnOkdZ7NdvAp7RHHvgKGfx6IXIYKEL/3zNzHtNk5Zsz+Gm0ARqTBwR8zB37LFiH3B/Px8A/mm1cGCcf/i4jD3OvHnFkjB6rEqEocZC4OgBAREcVgXc0niSlnzyfDDoAAwOr5pXjv069NmYXicTuw6tYk3o+AEk/EMkjJtB9ANBK1Bwmg7cWy44HYbsyeOqDdzC9bpN14TtaN15NJgm6EjzgoJXLvGdEDMCJZdfCHiIiISBFcAotIQp2dnXjkkUfQ2Rn7NyOthjkDMm1+3Ok8jEyb8TfLk0Wi2rmxxYu6pjbTjn9+W9V92oaPWrqGfV1eph2b756CnIx0Q8vPyUjH5runIC/TbuhxSVISL4MklJl7kLQcA56YFv/N+KPbtOO0NhhTryRiyueByGWoBonce2ZwAMaoHGRfrh3PyP1vzDA4+OPMNfa45w3+8PdU9bGNxWHu9WPOrJEDVWJUJQ4yFwdAiCTkcrlw2223weVyia6KNJgzwBdOw/5AMXxhdSf/md3Op9t6cbqtF1tqzb0pe3Fbbaltxum2yBuiv7CsAh63w5CyPW4HXlhWgZICtyHHIwVUX6U9DiV4AOTgU+KWYEpmLceATfOM+zZ611ntW/2KDYKY8nmQgBvhUddD1N4zIgdgRDJ58Ie/p6qPbSwOc68fc2aNHKgSoypxkLnUvQtGpLD09HSUlJSIroZUmDNgAKk4FcoTXQ1Tmd3ON65527Rjn+/itnqmthnP1Daj6ZF5w76+pMCNnVXTsWp7A16rj31PkAXlY7Dq1lLO/CBKVr1twLMLjV2CCNCOt+V27YZ0Mi9FpINpnwcil6G62Pl7zxx6Whs0HE5hBVBcadzeM4MDMGWLtP16mt+J/r1Fldo+J8m44floBgd/3lipzZ6K1TBLz/H3VPWxjcVh7vVjzqyRA1ViVCUOMhdngBBJqLe3F6+++ip6e4f/RjhdijkDHOjHDemfwoF+0VUxjSrtHEtb5WXaUb34GmxYci2mjNN3A3PKuHxsXHIdqhdfw8EPomS24wFz9iEAtOO+sdKcYwtg6udBss2C8EwCpt0f+fmfPAnc/JDxe+pMnK0NBi1/F7jul5FfV1gB3Ph32uuW7pBz8GOQSbNvVPn9hSJjG4vD3OvHnFkjB6rEqEocZC7OACEiIlLIrBIPZpV48FFLF7acmzkynGuL8jB1fD7mXz0WVxZkJ7iWRKTbiV3mbsANaN9qL1uk3dgGgKoj2p+v3AOcfs/css9XWKHdtE9myTYLIq8IWCVo7evBAZhIM1B+8qRWP5WImn1DRERERLpxAIRIQoNrHFL0mDPAj3Ts7x8nuhqmUqWdjWirKwuyce/08REHQH5/RzkK87lOKpE09q9NTDnvVH8zADJ407qoMrEDIMWVcd8wT9jnwfk3wo+9BHz+PnCm/sJlypy5wJhyYOwP1b0RLnIARiSDBn9U+f2FImMbi8Pc68ecWSMHqsSoShxkLg6AEEmov78fJ0+exIQJE5Ceni66OlL4tLUTd1Vvx+chNwaQesFz+1bOtMSN4FQMYGyKd9gcqEKVc8MKbUVEOrQ2AKcOJKas5ne0m/nn36QvWwjsfzwx5QPaIEE8wmH0d7fh5MlPMGHCeKRn5QM2mzF1i8QzCfA8NFQ+At1AMACk2QF7lvnlk9RU+f2FImMbi8Pc68ecWSMHqsSoShxkLu4BQiQhrnGon8/XhxvsTXDagqKrIozTFlQ+B6qcG1ZoK5JI1RHtUTg1seUWVnyzBJNVtTdrj4NPJ7bcQ09r5Q7ylAJXTEtM2UWVsc2QaG0A3loNbJ4PPFqM3n+6Gq+++gp6/+lq4NFi7edvrdYGd8xmswGObCDzW9qfHPxQ2+Dsl+EeUc5kUuX3F4qMbSwOc68fc2aNHKgSoypxkLk4A4RIQjk5Ofjtb38ruhpSycp2Y6vvGtHVEKon7FA+B2afG/tWzgQArHihHu83t5tWzsVtdW1RHn5/R7lp5RGNSOJlkKRXfZWYcg8+pT3OX9LohhXA1gTMQqlcoe/1J3Zpy4NdNEMmB8Bv8UftHz4An+7RHvsf1wZzbviN3Jtxk1L4u7362MbiMPf6MWcj5EChJR9VaWdV4iBzcQYIERFRlArzXSjMd2HquPyEljt1fL4llmmjJFcW57JEesW7DBIZa+Js89ukbFH0gxK9bcBLvwC2/lT/8mCnDgBbFwEv/1I7DhERERERKYsDIEQS6ujowOrVq9HR0SG6KtLo8nZiacYhZNn8oqsiTJbNr3wOEnVuzC8fY+rxL26r+VePNbU8oqjIsAwSmWvuY0D25eYcO/ty4JY10b225RjwxDRt0/EIOuDGatv/RAfckY9zdJt2nNYGnZUlMhZ/t1cf21gc5l4/5swaOVAlRlXiIHNxCSwiCWVlZeGuu+5CVlaW6KpE7XRbL25c8/awzyViE/IMVybe8E9EX9i6m2L1hdOVz0Gizo2SAjemFOejrsmcbw6f31ZTxuXjyoJsU8oh0i1Zl0GixHDlAz97Gdg4F/B1GHdcZ652XFcUs+tajgGb5o1afhZ6cFf4RWShZ+TjdZ3V4lm6QxvkIxJAxt/tSR+2sTjMvX7MmTVyoEqMqsRB5uIMECIJpaWlobi4GGlpHMOMVlpaGlpCbgxY+LI3gBTlc5DIc+O+GeNNO/b5bbX8pgmmlUOkW7Itg0SJ5ynVBguMmgmSfXn0gw+9bcCzC6MafEnDAIrxGdIwMPpxfR3Altu5HBYJw9/t1cc2Foe51485s0YOVIlRlTjIXOreBSNSWE9PD55//nn09IzyrUYa0tfbg1n2j+FEv+iqCONEv/I5SOS5MavEg/lXm7MU1mBb3Tb5W5hZ8h1TyiCKWbIsg0TieEqB5Qe0wap4lC3SjhPtzIsdD2gzNqLQgww8j/noQUZ0x+46C7yxMrrXEhmMv9urj20sDnOvH3NmjRyoEqMqcZC5OABCJKGUlBTk5uYiJYWncLRSUlLQHbYjBJvoqggTgk35HCT63Fg9vxQet8Pw44ZgQyg9Aw/O+b7hxyaK2+AySM5cY4+rZxkkq6g6oj0Kpya23MIKrdyRuPKB258C7nxR27NFj6JK4M5t2vujbe8Tu0bc8+NiKQgjF16kIBx9vY5u08ohSjD+bq8+trE4zL1+zJk1cqBKjKrEQebi/CAiCWVkZGDOnDmiqyEVhzMDdf1XiK6GUAGkKZ+DRJ8beZl2bL57Cu5YX4vOPuNm1mRkZOC39yzG5ZeNsHkvkUiDyyBtuT3qb+SPKPtybfCDezBcKK9I+7OoEjj9XuLKLa78puzRTJytPVqPawMUn78PnKm/cJkqZy4wphwY+0NtCbVYNrjfv1bXyzPgwxzU6C/nnWotHqIE4u/26mMbi8Pc68ecWSMHqsSoShxkLg6PEUkoEAigvr4egUBAdFWk0R8I4LupX0W3Frii0jCgfA5EnBslBW68sKzCsJkgHrcDW+7+AXwtn/Acp+QmahkkKyozed+Vi8Wyz4tnEnDzQ8DPXwMebAL+12fAA59ofz7YpP385odiG/xobQBOHdD1lgDSUY9JCCBdX1nN72iDOUQJxN/t1cc2Foe51485s0YOVIlRlTjIXBwAIZKQz+dDTU0NfD6f6KpIIxDwozztDOwK3/wfjR0DyudA1LlRUuDGzqrpWFAe354gC8rHYGfVdBTl2HmOkxwSvQySVXlKgSumJaasosrYBinOZ7MBjmwg81van7YYl15sb9YeB5/W/VYfHKjB9fAhhsHpQ/rLI4oHf7dXH9tYHOZeP+bMGjlQJUZV4iBzcQksIgm53W6sWLFCdDWkkpmVjZf8V4muhlC9sCufA5HnRl6mHdWLr8GC8jFYt+cT1H3aFvV7p4zLx/KbJpy34bmd5zjJJVHLIFnZDSuArfpmQcSkcoX5ZUSrOvbPLDe6sQIxDmQcfAqY908xl02kF3+3Vx/bWBzmXj/mzBo5UCVGVeIgc3EAhEhC4XAYfr8fDocDtli/VWkx4XAYdgQRQCqg8CbgIwvDjgGlc5AM58asEg9mlXjwUUsXttQ245na5mFfd21RHqaOz8f8q8fiyoLsC55LhjiIYuKZBHge0v4eDgOBbiAYANLsgD0r9pkApA0wTV6oayNw3coWARN/ZN7xEygMwA8HHPDH9okXDrO/UsLwc199bGNxmHv9mDNr5ECVGFWJg8zFJbCIJNTZ2YlHH30UnZ2doqsije4uL/57Rj2ybNZdFzLLFlA+B8l0blxZkI17p4+P+Pzv7yjHA7NLLhn8AJIrDqKYGbUMEn1j7mPahvFmyL4cuGWNOccWoBNuPGr7NTrhju0AgW5jK0Q0An7uq49tLA5zrx9zZo0cqBKjKnGQuTgAQiSh7OxsLFu2DNnZl944peG5MrPwmm8SesM6N0NVSG84XfkcqHJuqBIHERnMlQ/87GVtOTEjOXO14yq0F0s2urEs/AyyEeNARlDdLwtQ8uHnvvrYxuIw9/oxZ9bIgSoxqhIHmYsDIEQSSk1NRUFBAVJTU0VXRRqpqaloC7sQsvBlL4QU5XOgyrmhShxEZAJPKbB0h3EzQbIv147nKTXmeEkiFSEU4EukIhTbAdLsxlaIaAT83Fcf21gc5l4/5swaOVAlRlXiIHOpexeMSGHd3d3YtGkTuru5PEO0enu6McfeiAz0i66KMBnoVz4HqpwbqsRBRCbxlALLD2h7dsSjbJF2HMUGPwCgGy5swiJ0wxXbAexZxlaIzNXeDKzKGf7RPvxeXMmEn/vqYxuLw9zrx5xZIweqxKhKHGQuDoAQSSgtLQ3FxcVIS0sTXRVppKaloSWUjQFFN/+OxgBsyudAlXNDlTiIyESufOD2p4A7XwSKKvW9t6gSuHOb9v5kXvaq6oj2KJyq+61pGEAxPkMaBvSXW1jBPWsoofi5rz62sTjMvX7MmTVyoEqMqsRB5mLvIJKQ0+nEjBkzRFdDKg6HE/XBsaKrIVQAacrnQJVzQ5U4iCgBJs7WHq3HgWMvAZ+/D5ypB3wd37zGmQuMKQfG/hCYvBDwTBJTV73yirQ/iyqB0+/peqsTfszAu7GVW6xzQIkoTvzcVx/bWBzmXj/mzBo5UCVGVeIgc3EGCJGE/H4/amtr4ff7RVdFGoGAH5NSW5EeyzdBFZGOAeVzoMq5oUocRJRAnknAzQ8BP38NeLAJ+F+fAQ98ov35YJP285sfkmfw43xlC3W/xQ87anEN/IhhL4/J+ssjgVobgHeqIz//yj3AW6u1QcIkxc999bGNxWHu9WPOrJEDVWJUJQ4yFwdAiCQUCARQX1+PQCAguirSCAb68d20r2JbCkMRaRhQPgeqnBuqxEFEgthsgCMbyPyW9qfsyzl5SoErpul6SwDpqEcpAkjXV1ZRpZyDRFZ0Yhew4RbgiWnAoacjv+70e8D+x4Enrtdef+LNxNUxSvzcVx/bWBzmXj/mzBo5UCVGVeIgc3EJLCIJZWdn47777hNdDam4srLwul+9TV716INd+Ryocm6oEgcRkWFuWAFsPRD1y7PRg/uwRX85lSv0v4cSq7cN2PGAtuSbXqcOaP2obBFwy5qk2QOHn/vqYxuLw9zrx5xZIweqxKhKHGQuzgAhklAoFEJHRwdCoZDoqkgjFAohy+aHDWHRVRHGhrDyOTj/3Ghs8WL93pMRX7vihXqs2dmIj1q6EljD6PAcJyK6yMTZupamCsGGDrgRgo7ZL2WLgIk/iqFylDAtx7QZH7EMfpzv6DbtOK0NxtQrTvzcVx/bWBzmXj/mzBo5UCVGVeIgc3EAhEhCXq8X1dXV8Hq9oqsijZ7uLixyHkWmzbrTIjNtAeVzMHhu/M0TNZizdh+21J6K+Nr3m9vxx5qTmL12L3667l283fhFAms6Mp7jRETDmPsYkH15VC/1IhvVtl/Ci+zojp19uTYjgJJXyzFg0zyg66wxx+s6C2ycmxSDIPzcVx/bWBzmXj/mzBo5UCVGVeIgc3EAhEhCbrcbVVVVcLvdoqsijcysbGzzlaEnHMNmqIroCduVzkF7TwAP7TiJbb4yHDjdq+u9dU1tWLrpIKqeP4z2HvEDRDzHiYiG4coHfvYy4Mwd9aVudKEq/BTciGKWnzNXO26SLIdEw+htA55dCPg6jD2urwPYcrt2fIH4ua8+trE4zL1+zJk1cqArxtYG4J3qyM+/cg/w1mqg9bhxFYySFdqK4scBECIJpaSkIDc3FykpPIWjlZKSgu6wA2E9S2EoJgybsjn48KwXc6r34vUjLXHF+Fr9Gcyp3ovGFrHfHuE5TkQUgacUWLpj1JkgKQgjF16kjLbsY/bl2vE8au+RJb0dDxg38+NiXWeBN1aac+wo8XNffWxjcZh7/Zgza+QgqhhP7AI23KItG3no6civO/0esP9x4InrtdefeNP4Ckdghbai+LF3EEmoq6sL69atQ1dX9HsXnG7rRfFv/zTs43Sbvm/Ly6i3uxvzHQ3IgPhv94uSgYCSOfjwrBeLn6xFq9dvSIytXj/uWF8rdBAklnOciMgyPKXA8nMbWUfQhUysw8/QhczIxylbpB2Hgx/J7cSu+Pf8GM3RbVo5gvBzX31sY3GYe/2YM2vkYMQYe9uAl34BbP0pcOqAvgOfOgBsXQS8/MuEzLC0QltR/DgAQiQhu92O8vJy2O1qLmVkhjR7Oj4OXoYgUkVXRZggUpXLQXtPAEs21qGzrx+AcTF29vXjrg11wpbD4jlORDQKVz5w+1PAnS8CRZWXPG1HP8rRADv6L31vUSVw5zbt/Vz2KvntX5uYckZa2sNk/NxXH9tYHOZeP+bMGjmIGGPLMW3GR7xfPji6TTuOyXttWaGtKH5poitARPo5HA5UVFSIroZU7HYHjg94RFdDqH6kKpeDh19vQKvXP/RvI2Ns9fqxansDqhdfY8jx9OA5TkQUpYmztUfrce0/6p+/D5yph8PXgQoc1l7jzAXGlANjfwhMXgh4JomsMenR2qD/m6exan5H60cC+gc/99XHNhaHudePObNGDoaNseUYsGmecXtudZ0FNs41dblRK7QVxY8zQIgk5PP5UFNTA5/PJ7oq0vD7fShP+xx2BEVXRRg7gkrlYHdjK17/4MwFPzM6xtfqz2B3Y6shx9KD5zgRkU6eScDNDwE/fw14sAm+33yMmmnPwfebj4EHm7Sf3/wQBz9k0d6sPQ6OsN64GUZa39xE/NxXH9tYHOZeP+bMGjm4JMbeNuDZhcYNfgwV1AFsud205bCs0FYUPw6AEEkoGAyiqakJwaAaN7ITYSAYREFKF1JH2wxVYakIK5WDdTWfXPIzM2Jct+fScszGc5yIKA42G4KpGWg68wWCqRmAzSa6RqRX9VXaI9EDEgefSmx55/BzX31sY3GYe/2YM2vk4JIYdzygzdgwQ9dZ4I2VphzaCm1F8eMSWEQSysrKwpIlS0RXQyquzCzsDJSIroZQfUhXJgeNLV7UNV36DRIzYqz7tA0ftXThyoJsQ487Ep7jRETx4XWUYhYOJ3zQjP1VfWxjcZh7/Zgza+TgghhP7Ip/z4/RHN0GlC3Sli41kBXaiuLHARAiCQ0MDODLL7/Et7/9baSmqrOhtZkGBgaQb+tFR9iJkEUnv6UghFybT+ocnG7rBQBsqW0e9nmzYtxS24x7p49HYb7LsGOOhOc4xasw34WmR+aJrgaRMLyOUswC3YAjcV96ANhfrYBtLA5zrx9zZo0cXBDj/rWJKfSdasMHQKzQVhQ/Oe+AEVlcV1cX1q9fj66uLtFVkUZvTzcWOI/DZesXXRVhXLZ+6XNw45q3ceOat7Gl9tSwz5sV4zO1zbhxzduGHnMkPMeJiOLD6yjFLBhIeJHsr+pjG4vD3OvHnFkjB0MxfvI+cOpAYgptfgdoPW7oIa3QVhQ/zgAhklBOTg4efPBBOBwO0VWRRla2G8/2lSMA634joDtsVz4HqsTIc5yIKD68jlLM0uwJL5L9VX1sY3GYe/2YM2vkICfUgQeX/TUcB9cltuBDTwPT7gfyigw5nBXaiuLHARAiCdlsNjidTtHVkIrNZkPA8pc8K+RAjRh5jhMRxYfXUYqZPSvhRbK/qo9tLA5zrx9zZo0c2P7v1RAS4cGntMeqTkMOZ4W2ovhxCSwiCXm9XqxduxZer1d0VaTR092FhY4jcCHxyxokCxcCyudAlRh5jhMRxYfXUclVHdEehVMTW25hRcI3QAfYX62AbSwOc68fc2aNHHiRhbX4BbxI/MC/kazQVhQ/DoAQScjpdGLGjBkc5dbBbnegPjhG+qWR4hFAqvI5UCVGnuNERPHhdVRyeUXao6gyseUWJ7i8c9hf1cc2Foe51485s0YOnPBjBt6FE37RVYmLFdqK4if/OiFEFmS321FeXi66GlJJt9vx8cBloqshVBCpyudAlRh5jhMRxYfXUUWULQT2P5648iYvTFxZ52F/VR/bWBzmXj/mzBo5sKMf5TB2Q3IRrNBWFD/OACGSUF9fH3bu3Im+vj7RVZGG39eHKemnYEdQdFWEsSMofQ72rZyJfStn4odFecM+b1aM1xblYd/KmYYecyQ8x4mI4sPrqCI8pcAV0xJTVlEl4JmUmLIuwv6qPraxOMy9fsyZNXLQByd2Ygb6xOwEYhgrtBXFjwMgRBIKhULo6OhAKBQSXRVphEIhZNkCSEFYdFWESUE44TlobPFi/d6TEZ9f8UI91uxsxEctXVEdrzDfhcJ8F6aOyx/2ebNinDo+H4X5LkOPORKe40RE8eF1VCE3rEhMOZUJKmcY7K/qYxuLw9zrx5xZIwch2NABN0JI/N5XRrJCW1H8uAQWkYQyMzOxePFi0dWQSoYrE7sD3xVdDaF8SE9YDnY3tmJdzSeoa2ob8XXvN7fj/eZ2/LHmJKYU52P5jAmYWfKdUY8/v3wM/lhz6cCKWTHOv3qs4cccCc9xIqL48DqqkImztaWpjr1kXhlli4CJPzLv+KNgf1Uf21gc5l4/5swaOciseg+LAeCVVuD0e4kruLAC+MmThh3OCm1F8eMMECIJBYNBNDU1IRiUdymjRAsGgyhI8SIV1v1WQCpCpuegvSeA+587jLs3HRp18ONidU1tWLrpIKqeP4z2nsCIry0pcGNK8aWzQMyIccq4fFxZkG3Y8aLBc5yIKD68jipm7mNA9uXmHDv7cuCWNeYcO0rsr+pjG4vD3OvHnFkjB8HssWjqDCNYWJnYgosrgbwiww5nhbai+HEAhEhC3d3d2Lx5M7q7u0VXRRp9vT24xXECGbZ+0VURJsPWb2oOPjzrxZzqvXj9gzNxHee1+jOYU70XjS3eEV9334zxl/zMjBiX3zTBsGNFi+c4EVF8eB1VjCsf+NnLgDPX2OM6c7XjuoZfWjNR2F/VxzYWh7nXjzmzRg6GYhx3S2ILnrzQ0MNZoa0ofhwAIZJQbm4uHn74YeTm5oquijSy3TnY2HctusMO0VURpjvsMC0HH571YvGTtWj1+g05XqvXjzvW1444CDKrxIP5V4+54GdGx7igfExUS3IZjec4EVF8eB1VkKcUWLrDuJkg2Zdrx/OUGnO8OLC/qo9tLA5zrx9zZo0cDMX4vSnAFdMSU2hRJeCZZOghrdBWFD8OgBARUVzaewJYsrEOnX3Gzizp7OvHXRvqRlwOa/X8Unjc5gxqedwOrLpV/E0RIiIiOsdTCiw/oO3ZEY+yRdpxkmDwg4iISLgbViSmnMoElUN0EQ6AEEmos7MTjzzyCDo7O0VXRRrdXV7c6TyMTJsxMxRklGnzm5KDh19vMGzmx8VavX6s2t4Q8fm8TDs23z0FORnpAIyLMScjHZvvnoK8THtcx4kVz3EiovjwOqowVz5w+1PAnS9q3yTVo6gSuHOb9n7By16dj/1VfWxjcZh7/Zgza+TgghgnzjZ8aapLlC0CJv7I8MNaoa0ofhwAIZKQy+XCbbfdBpfLJboq0nA6M7A/UAxfOE10VYTxhdMMz8Huxta49/wYzWv1Z7C7sTXi8yUFbrywrAIet8OQGD1uB15YVoGSAnfMx4gXz3EiovjwOmoBE2drS1gtfxe47peRX1dYAdz4d9rrlu4w5eZLvNhf1cc2Foe51485s0YOLolx7mPGLTN5sezLgVvWmHJoK7QVxY8DIEQSSk9PR0lJCdLT00VXRRpp6ek4FcrDAFJFV0WYAaQanoN1NZ8YdqwRy9kzcjklBW7srJqOH5cXxhXjgvIx2Fk1XejgB8BznIgoXryOWohnEjDt/sjP/+RJ4OaHDF9z3Ejsr+pjG4vD3OvHnFkjB5fE6MoHfvYy4Mw1tiBnrnZck2ZeWqGtKH4cACGSUG9vL1599VX09vaKroo0fH29uCH9Uzhg7D4VMnGg39AcNLZ4UdfUZsixRlP3aRs+auka8TV5mXb8w/wr8eD3vbi+KEvX8aeMy8fGJdehevE1wpa9Oh/PcSKi+PA6SjJhf1Uf21gc5l4/5swaORg2Rk+pNlvSqJkg2ZdrxzNxzy0rtBXFz7prwRARUUxOt2m/WGypbU5ouVtqm/G/b5s86usuz8nA04uuw2nvALbUNuOZCPW8tigPU8fnY/7VY3FlQbbR1SUiIqJEySsCVnHtbyIiorh5SoHlB4A3VgJHt8V+nLJF2rJXSbTnFlkXB0CIJDS4xiFFz5nhwv7+caKrIZQf6Ybk4MY1bxtQG/2eiWIA5Pxz40oXcO/08REHQH5/RzkK85NznVCe40RE8eF1lGTC/qo+trE4zL1+zJk1cjBijK584PantEGMd6qB5neiP3BRJVC5ImF7blmhrSh+HAAhklB/fz9OnjyJCRMmcJ3DKAX7+3FFSjs+D7ktuw9IKgYwNsUrdQ7C4TBsNlvE51U5N1SJw8oK811oemSe6GoQWRavoyQT9lf1sY3FYe71Y86skYOoYpw4W3u0HgcOPQ0cfGr41xVWAMWVwOSFCd9zywptRfHjHiAKCAQCeOaZZzB37lwUFRXB6XTi8ssvx7Rp0/CP//iP+Oqrr0wpd2BgAEeOHMHTTz+N5cuX49prr4XdbofNZoPNZsOMGTNMKZe4xmEsfL4+3GBvgtMWFF0VYZy2oPQ56AkMjPi8KueGKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAV4yeScC0+yM//5MngZsfSvjgB2CNtqL4cQaI5BobG/HXf/3XqK+vv+DnLS0taGlpwbvvvovHHnsMGzduxNy5cw0r99VXX8V//+//nRcYQXJycvDb3/5WdDWkkpXtxlbfNaKrIVRP2CF9DgLBEOCI/Lwq54YqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFARCJffbZZ7j55ptx5swZAIDNZsP06dMxYcIEfPnll3jrrbfQ19eHL774Arfddht27tyJWbNmGVJ2R0cHBz+IKOHsaZy4SERERERERERE0eGdJIndeeedQ4MfRUVFOHz4MGpqavD000/j9ddfx6lTp3DzzTcD0NbEW7RoETo6Ogytg8fjwY9//GOsXr0aO3bsQFVVlaHHp+F1dHRg9erVhrenyrq8nViacQhZNr/oqgiTZfNLn4NM+8h7l6hybqgSBxGRKLyOkkzYX9XHNhaHudePObNGDlSJUZU4yFycASKpHTt2YN++fQAAu92O7du3o6ys7ILXXHbZZXjttddw1VVX4ZNPPkFbWxvWrFmD//N//k/c5c+ZMwfNzc244oorLvj5e++9F/exaXRZWVm46667kJWVJboq0shwZeIN/0T0ha21KVZjixdbapsBAH3h9EtysOKFekwdl48F5WNxZUF2VMfct3Lm0Hvfb243vtIRXFuUN+IG6IA654YqcYjETciJrI3XUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLM0Ak9Yc//GHo73fdddclgx+DMjMz8bvf/W7o3+vXr0cwGP8GyAUFBZcMflDipKWlobi4GGlpHMOMVlpaGlpCbgxY5LK3u7EVP133Luas3YcttacAAANIuSQH7ze34481JzF77V78dN27eLvxi1GPXZjvQmG+C1PH5ZtW/+FMHT96eaqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMpc17gQqpru7G3/+85+H/r106dIRX3/77bcPjYS2tbVh7969ptaPzNfT04Pnn38ePT09oqsijb7eHsyyfwwn+kVXxVTtPQHc/9xh3L3pEOqa2i54zon+EXNQ19SGpZsOour5w2jvCYxa1vzyMYbUOVrzrx476mtUOTdUiYOISBReR0km7K/qYxuLw9zrx5xZIweqxKhKHGQuDoBI6MCBA/D7tTX8MzMzcd111434eqfTieuvv37o37t37za1fmS+lJQU5ObmIiWFp3C0UlJS0B22I4SRl1CS2YdnvZhTvRevf3Bm2OdDsEWVg9fqz2BO9V40tnhHfF1JgRtTihMzC2TKuPyoluhS5dxQJQ4iIlF4HSWZsL+qj20sDnOvH3NmjRyoEqMqcZC52Dsk9OGHHw79vaysLKppXj/4wQ+GfT/JKSMjA3PmzEFGRoboqkjD4cxAXf8VCCi69dGHZ71Y/GQtWr2RNzgPIC3qHLR6/bhjfe2ogyD3zRivu66xWH7ThKhep8q5oUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EAREIfffTR0N+Lioqies/5+3U0NjYaXidKrEAggPr6egQCoy9TRJr+QADfTf0KaRgQXRXDtfcEsGRjHTr7Rl7eKw0DunLQ2dePuzbUjbgc1qwSD+Zfbe5SWAvKx2BmyXeieq0q54YqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFARAJff3110N/93g8Ub2noKBg6O9tbW0jvJJk4PP5UFNTA5/PJ7oq0ggE/ChPOwO7ggMgD7/eMOLMj0F2DOjOQavXj1XbG0Z8zer5pfC4HVEfUw+P24FVt5ZG/XpVzg1V4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLAyAS6u7uHvp7tFO8zn/d+e+XndPpHNrgfWBgAB0dHQiHwwAAr9c7NALc19c3tCFSMBhER0fH0DE6OzvR3699c763txe9vb0AgP7+fnR2dg69rqOjA8FgEIC2yVJfXx8AbbTZ69WWCQqHw+jo6MDAgHaDubu7e+gi7Pf70dXVBQAIhULo6OhAKBQCAHR1dQ3t6+Lz+YbaKFJMbrcby5YtQ2pqqq6YUjGATNs3N8qzbH6kIpSQmHp7tJhSEEKWzQ9Ai8mFAPoT0E52uwM7/CXohR1AGFk2P1LOxd7bY047DcbU19tzLv+DsWsybX4E4+x7b/znyXN7flwYUwb6YYf2nnQMIAMB9MKOl/1lSLGFYTuX/wwEkH5uQMSOIDLObZB+fju9Vn8Gb/znyYjnk62/F5vvnoKcjHRk2vxIPXc8B/rhOHe8kfqe87y6pmEALmjl5GSk4Y+LroTbqfXzaPqe2+3GL37xCzgcjnOv8w0bEwD0dHcl5BpxfkwXt1OkmLKysrBkyZKh61sy9r1orhGBgB8Z52K3nYt9sO/1dnfHFJNK13LGxJgYk3kxuVwuLFmyBG63W5mYVGwnxqTF5Ha7sWTJErhcLmViUrGd4onJbrdjxYoVcDgcysQkSzulpqZi2bJlcLvdysRkdjulpKRgxYoVyMzMVCYm/h5xaTuFw2H8+te/htvtjj4mZKAPTi0mpMOLLOExhUIhrFixAm63W8l2UjEmETgAIqHzRzXtdntU7xm8GQhg6CRQQUVFBRYuXAgA+PLLL1FdXT10Um7YsAHHjx8HAOzZswfbt28HAHz22Weorq4eOsYTTzyBkydPAgDefPNNvPnmmwCAkydP4oknnhh6XXV1NT777DMAwPbt27Fnzx4AwPHjx7FhwwYA2gWjuroaX375JQDgpZdeQm1tLQDg8OHDePbZZwFoF4Xq6uqhi9Czzz6Lw4cPAwBqa2vx0ksvjRhTOBzGn//8Z90xjU3xYoHj+NDrFjmP4tsp3QmJqWbXvwMAcm0+LHIeHZqFMNfRiKaTJ0xvp08//gjzHB8CCMOOASxyHkWuTTuXanb9uyntNBjTO7u1un47pRuLnEeH6rrAcRyfn2qKOabjx49j/5+0Olwc0032k5iU1goA+F7qV/grx38BCCPX1otFzqPItGkfSn/l+C98L/UrAMCktFbcZD85bDvt/9NLI55PJQVuvLCsAv/NeRxjU7R8XZf+Ga5L1+o9Ut+bZm9Gebq2cXtxajvmOhrhcTvwzJJr8O9bN+jqe+FwGFu2bMF//ud/AgAa6t+PGNOfXtqakGvEYEzDtVOkmDo7O1FdXT30C00y9r1orhH/dfzoub4HZNoCF/S9N7e/FFNMKl3LGRNjYkzmxXT69GlUV1cP/YdMhZhUbCfGpMUUDodRXV2N06dPKxOTiu0UT0zvvvsufD4f/vM//1OZmGRqpz//+c8Ih8NKxWR2O/l8PnzxxRdKxaSnnazye8SHH36IcDgcfUz4K+xBhRYTvocNuEOLKRAQGpPP50M4HFa2nVSLSQRbePBsprj9y7/8C/7lX/7F0GP+/d///dAN/kHz5s3Djh07AAAPPvggHnnkkVGP88Ybb2Du3LkAtG8WD47qGW3VqlVYvXo1AOCmm25CTU2NKeU0NDRg8uTJcDqdSEtLQ21tLUpKStDV1YWcnBzYbDZ4vV44nU7Y7Xb09fUhFAohMzMTwWAQ3d3dyM3NBaDdaHS5XEhPTx8aSXW5XOjv70dvby9ycnIAaKOpWVlZSEtLQ09PD1JSUpCRkYFAIACfzwe3241wOIzOzk5kZ2cjNTUV3d3dSEtLg9PphN/vRyAQQHZ2NkKhELxeL9xuN1JSUtDV1QW73Q6HwwGfz4dgMIisrCwMDAwMG1Nvby+qq6txzz33YMyYMVHF9LUPmLHmLThtQfSEtQGxLJsffeF01Ky8GfmOsKkxNX/pxew/HEQKQnDZ+tEdtgOwwYUA/n3FTIwvyDW1nY781yn8f1s3YpuvDN1hO7JsAfSG0xFCCnb9+joUfdtteDsN9r3TX3fjR/9Sh1SEkGHrR/e5/Gfa/Pj3FTdjnCcnppiOnv4Kd/xh33mzWr6JKQP9GIANAaQhHQNIwwBSbWEsch7Fn/xX4stQFsKwIQMBBJGKfqTCjiBSEUYf0odtpxd/PR2TC781YjudOvsl/untJrx25Iuh2R9+pCMVA8P2vQGkwIl+hM7VNQ0D+HHpZXj4J9ci15Wuu+8NflDfd9998Hg8+PhsG26t3jtsTDt/dS3GF+SZeo34qi+MmWvegh0Dl7TTnpU3I88eGjamtrY2/PM//zP+9m//Fvn5+UnX96K9RpxsaceP19agD3bYEEamLYCesB1h2LDrV9eh2JOjOyaVruWMiTExJvNi+uqrr/CHP/wBVVVVyM3NVSImFduJMWkxdXR0oLq6Gr/+9a9x2WWXKRGTiu0UT0w9PT1Yt24d7rvvPrhcLiVikqWdzpw5g3/9139FVVUVXC6XEjGZ3U5ff/01nnrqKfyP//E/kJqaqkRM/D1imP+7nzqFjRs3oqqqaujL1SPG1PU5eqqnIgVhZMCHANLhgwNudCN8/wfoTMkVEtOZM2eG4rDZbMq1k0p97/PPP8fkyZMx6NixYygtjX7J83hwAMRA59/8N8q//uu/4pe//OUFP7vjjjvw4osvAgDuv//+qEbRXnnlFdx+++0AtP1Azp49a2g9ByV6AGRQIk+aZDAwMIAvv/wS3/72t4eWwRrN6bZe3Ljm7WGf27dyJgrzXUZWMenKb/qyCz95fCc6wk6ELpr8Znb5Rsd+uk370Fu/9yS21J6K+n0pCCHX5hs2B9H4m4oi3Dt9fFT13d3YinV7PkHdp9HvOTRlXD6W3zQh6g3Ph3PxuSG638VafiznuJHlG0V0+URkXUZdR4kSgf1VfWxjcZh7/Zgza+RAd4ztzUD1VcM/V3UEyCsytoJRskJbqULkvdy0hJRChvrWt7419PfW1tao3tPS0jL09/z8fMPrRImVmpp6wcb2NLrU1FS0hdW42RrphvJoQkiJKwfP1DbjmdpmND0yb9TXzirxYFaJBx+1dGHLufcN59qiPEwdn4/5V4/FlQXZMddtkCrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMU9QAy0atUqhMNhQx8Xz/4AgCuvvHLo783Nw99UvNipU998S7ykpCT+YEmo7u5ubNq0SakN7c3W29ONOfbGoQ2xrSgD/QnPwZUF2bh3+viIz//+jnI8MLvEkMEPQJ1zQ5U4iIhE4XWUZML+qj62sTjMvX7MmTVyoEqMqsRB5uIAiIS+//3vD/396NGjCAaDo75ncEPgi99PckpLS0NxcTHS0jiJK1qpaWloCWVjADbRVRFmADblc6DKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHOxd0ho2rRpcDgc8Pv96OnpwaFDh1BRURHx9X6/H7W1tUP/njVrViKqSSZyOp2YMWOG6GpIxeFwoj44VnQ1hAogTfkcqHJuqBJHYb4rqiXTiIiMpsp1lKyB/VV9bGNxmHv9mDNr5ECVGFWJg8zFGSASysrKws033zz0702bNo34+ldeeQVdXV0AtP0/pk+fbmb1KAEGB7X8fr/oqkgjEPBjUmor0jEguirCpGNA+Ryocm6oEgcRkSi8jpJM2F/VxzYWh7nXjzmzRg5UiVGVOMhcHACR1K9+9auhv2/atAkNDQ3Dvq63txcPPfTQ0L/vvfdeTgtTQCAQQH19PQKBgOiqSCMY6Md3075CmsI3/0eThgHlc6DKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHNxAERS8+bNw4033ghAG+388Y9/jCNHjlzwmq+//hq33XYbPv74YwDa7I8HH3ww4jGbmppgs9mGHqPNLCFxsrOzcd999yE725iNo63AlZWF1/2l6INddFXitm/lTOxbORM/LMrT9b4+2OPKwbVFedi3cmZM700UVc4NVeIgIhKF11GSCfur+tjG4jD3+jFn1siBKjGqEgeZi1MBJLZ161ZMmTIFZ8+eRVNTE8rLy3HTTTdhwoQJ+PLLL/HWW2+ht7cXgLYp0Isvvojc3FzDyp87dy7OnDlzwc9aWlqG/n7o0CGUl5df8r4dO3ZgzJgxhtXDikKhELxeL9xuN1JSOI4ZjVAohCybHz1hO8KSbwJemO8CAEwdl4/3m9ujfp8NYWTaAjHnYOr4/KGyk5Uq54YqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFniGxv/iLv8Du3buHBhnC4TBqamrw9NNP4/XXXx8a/Pj2t7+NV1999YJ9Q4xw/PhxfPDBBxc8Wltbh57v6em55PkPPviA09IM4PV6UV1dDa/XK7oq0ujp7sIi51Fk2hLb/xpbvFi/92TE51e8UI81OxvxUUuX7mPPL9c3kJhpC8SVg/lXJ/8G6qqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhdngEiupKQE7733Hp5//nk899xzaGhoQGtrK3JzczF+/Hj85Cc/wdKlS3HZZZeJrioZyO12o6qqCm63W3RVpJGZlY1tvjL0hBOzBNbuxlasq/kEdU1tI77u/eZ2vN/cjj/WnMSU4nwsnzEBM0u+E1UZJQVuTCnOH7WMQT1he8w5mDIuH1cWJP+UUlXODVXiICIShddRkgn7q/rYxuIw9/oxZ9bIgSoxqhIHmYsDIAqw2+34+c9/jp///OdxHae4uBjhcDjq1zc1NcVVHsUuJSXF0OXMrCAlJQXdYYfp5bT3BPDw6w14/YMzo7/4InVNbajb1IYF5WOw6tZS5GWOPlBx34zxqNsU3QBIGLaYc7D8pgkxvS/RVDk3VImDiEgUXkdJJuyv6mMbi8Pc68ecWSMHqsSoShxkLi6BRSShrq4urFu3Dl1d+pdNsqre7m7MdzQgA+YtgfXhWS/mVO+NafDjfK/Vn8Gc6r1obBl9CuesEg/mXx3dUlgZCMSUgwXlY6KelSKaKueGKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgnZ7XaUl5fDbk/Mck4qSLOn4+PgZQgi1ZTjf3jWi8VP1qLV6zfkeK1eP+5YXxvVIMjq+aXwuEef2RFEqu4ceNwOrLq1NOrXi6bKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHNxAIRIQg6HAxUVFXA4zF/SSRV2uwPHBzzoN2EApL0ngCUb69DZ12/ocTv7+nHXhjq094w8YyMv047Nd09BTkb6iK/rR6quHORkpGPz3VOiWoorWahybqgSBxGRKLyOkkzYX9XHNhaHudePObNGDlSJUZU4yFwcACGSkM/nQ01NDXw+n+iqSMPv96E87XPYETT82A+/3mDYzI+LtXr9WLW9YdTXlRS48cKyihFngtgRjDoHHrcDLyyrQEmBXBuJqXJuqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXBwAIZJQMBhEU1MTgkHjb+araiAYREFKF1IRNvS4uxtb497zYzSv1Z/B7sbWUV9XUuDGzqrpWFA+/J4gqQhHlYMF5WOws2q6dIMfgDrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzJUmugJEpF9WVhaWLFkiuhpScWVmYWegxPDjrqv5xPBjDlvOnk8wq8Qz6uvyMu2oXnwNFpSPwbo9n6Du07ah5/qQPmIOpozLx/KbJkiz4flwVDk3jIqjMN+FpkfmxV8hIiLJqPJ5QNbA/qo+trE4zL1+zJk1cqBKjKrEQebiDBAiCQ0MDKClpQUDAwOiqyKNgYEB5Nt6kYKQYcdsbPGirqlt9BcaoO7TNnzU0hX162eVePDisuuxa8V0/E1FEQAgBaFLcnBtUR5+PXMCdq2YjheXXS/14AegzrmhShxERKLwOkoyYX9VH9tYHOZeP+bMGjlQJUZV4iBzcQCESEJdXV1Yv349urqivyFudb093VjgPA6XLf6Nyk+39eJ0Wy+21DYbULPobaltxum2Xl3vubIgG/dOHw8AcNn6L8nB7+8oxwOzS3BlQbahdRVFlXNDlTiIiEThdZRkwv6qPraxOMy9fsyZNXKgSoyqxEHm4hJYRBLKycnBgw8+CIcj8obXdKGsbDee7StHAKlxH+vGNW8bUCP9nqltxjO1zTEvadQdthuWg2SlyrmhShxERKLwOkoyYX9VH9tYHOZeP+bMGjlQJUZV4iBzcQCESEI2mw1Op1N0NaRis9kQsPwlT/0cqHJuqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXFwCi0hCXq8Xa9euhdfrFV0VafR0d2Gh4whcCIiuijAuBJTPgSrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQHeMeUXAqs7hH3lF5lZ2BFZoK4ofB0CIJOR0OjFjxgyOckepscWLLQfPoD44Ztjln1a8UI81Oxt1bTIuowBSI+ZAFaqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMpfaa6EQKcput6O8vFx0NZLe7sZWrKv5BHVNbed+ctmwr3u/uR3vN7fjjzUnMaU4H8tnTMDMku8krqIJEkQqPh4YPgeqUOXcUCUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQuTgDhEhCfX192LlzJ/r6+kRXJSm19wRw/3OHcfemQ0ODH3YEMSX9FOwIjvjeuqY2LN10EFXPH0Z7j1pLRUWbA5mpcm6oEgcRkSi8jpJM2F/VxzYWh7nXjzmzRg5UiVGVOMhcHAAhklAoFEJHRwdCoZDoqiSdD896Mad6L17/4MwFP09BGFm2AFIQjuo4r9WfwZzqvWhsuXQdyX0rZ2Lfypn4YVGeIXWO1rVFedi3cmbM79ebAxmpcm6oEgcRkSi8jpJM2F/VxzYWh7nXjzmzRg5UiVGVOMhcXAKLSEKZmZlYvHix6GoknQ/PerH4yVp09vVf8pwP6dgd+K6u47V6/bhjfS1eWFaBkgL30M8L810AgKnj8vF+c3t8ldZh6vj8obJjEUsOZKPKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHNxBgiRhILBIJqamhAMyrGUUWOLF+v3noz4vBGbkLf3BLBkY92wgx8AkIoQClK8SIW+bwV09vXjrg11wy6HNb98TEx1jdX8q8fG9f5YcyAT2c6NSFSJg4hIFF5HSSbsr+pjG4vD3OvHnFkjB6rEqEocZC4OgBBJqLu7G5s3b0Z3d7foqoxod2MrfrruXcxZuw9bak9FfN3gBuSz1+7FT9e9i7cbv9Bd1sOvN6DV64/4fIatH7c4TiDDNvwAyUhavX6s2t5wyc9LCtyYUpyv+3ixmDIuH1cWZMd1jHhyIAtZzo3RqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXLZwOKzuYvCkrIaGBkyePHno38eOHUNpaanAGiW/0229uHHN28M+t2/lzLiWVrpYe08AD7/ecMk+HHosKB+DVbeWIi/TPuprdze24u5Nh2IuK1obllyLWSUeIWVvXHIdZpZ8J6b3JrLtk618K8dORERERERERJQMRN7L5QwQIjJUpE3I9RppE/KLrav5JK6yorVuz6XlzCrxYP7V5i6FtaB8TMyDH0RERERERERERFbFARAiCXV2duKRRx5BZ2en6KpcYHAT8pGWotJjcBPykQZBGlu8qGtqG/VYmTY/7nQeRqYt9rrVfdo27D4lq+eXwuN2xHzckXjcDqy61ZgRcSNykOyS9dzQS5U4iIhE4XWUZML+qj62sTjMvX7MmTVyoEqMqsRB5koTXQEi0s/lcuG2226Dy5U8y+eMtgl5rAY3Id9ZNX1oOazTbb1Dz2+pbY7qOL5wGvYHiuELx3fZ21LbjP992+QLfpaXacfmu6fgjvW1hsafk5GOzXdPiWoZsGgYlYNklmznRmG+C02PzNP9vmSLg4hINryOkkzYX9XHNhaHudePObNGDlSJUZU4yFzq3gUjUlh6ejpKSkpEV+MCo21CHo/BTcirF18DABH3VBjJAFJxKpQXd12eGWYABNA2RH9hWQXu2lBnSB48bgc23z0FJQXuuI81yKgcJLNkPDdioUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EJLCIJ9fb24tVXX0Vvb+/oL06A3Y2tce/5MZrX6s9gd2NrzO93oB83pH8KB+KfoREOh4f9eUmBGzurpmNBeXx7giwoH4OdVdMNHfwAjM1Bskq2cyNWqsRBRCQKr6MkE/ZX9bGNxWHu9WPOrJEDVWJUJQ4yFwdAiChuIjchF6EnMBDxubxMO6oXX4MNS67FlHH5uo47ZVw+Ni65DtWLrzFs2SsiIiIiIiIiIiKr4hJYRBIaXOMwGUS7CbkRIm1CHg0/0rG/f5wh9QgEQ8Aoe57PKvFgVokHH7V0YUttM56JsFfJtUV5mDo+H/OvHosrC7INqV8kRuYgWSXTuREPVeIgIhKF11GSCfur+tjG4jD3+jFn1siBKjGqEgeZizNAiCTU39+PxsZG9PeLW8rodFsvTrf1Rr0JuVFiLS8VA7gipR2piDx7I1r2tOgvnVcWZOPe6eMjPv/7O8rxwOwS0wc/AGNzkKyS4dwwgipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMUBECIJJcMahzeueRs3rnkbW2pPJbTcSDMpRuO0BXGDvQlOWzDuOmTaU+M+hghG5iBZJcO5YQRV4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5nLFo60my9REmtoaMDkyZOH/n3s2DGUlpYKrFHyO93WixvXvD3sc/tWzkRhvkvX8Yp/+ycjqhWTvQ/MgM1mAwCseKEe7ze3J6zsa4vy8NLyabreY3Tu9bJy+aJjJyIiIiIiIiKyOpH3cjkDhIikk5/lQGG+C4X5LkzVudF4vKaOT2x5REREREREREREFBsOgBBJqKOjA6tXr0ZHR4foqggRCIaG/j6/fExU78my+bE04xCybP64yp5/9di43i+SUTlIZqqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhcHQIgklJWVhbvuugtZWVmiqyLE+ZuQlxS4MaV49FkZfeF0vOGfiL5weszlThmXn5DNys1iRA6SnSrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMUBECIJpaWlobi4GGlpaaKrIsTFm5DfN2P8qO8ZQApaQm4MxHHZW37ThJjfmwyMyEGyU+XcUCUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQudS9C0aksJ6eHjz//PPo6ekRVod9K2di38qZ+GFRXkLLvbYob2gD9EGzSjyYf/XIS2E50Y9Z9o/hRH9M5S4oH4OZJd+J6b3JIt4cyCAZzg0jqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXBwAIZJQSkoKcnNzkZIi7hROtk3IV88vhcftiPi+EGzoDtsRgi3iayLxuB1YdWup7vclm3hyIItkODeMoEocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc7F3EEkoIyMDc+bMQUZGhuiqRL0JuWHlRdiEPC/Tjs13T0FOxvD7WwSQhrr+KxCAvmmRORnp2Hz3FORl2nXXNdnEmgOZJNO5EQ9V4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLAyBEEgoEAqivr0cgEBBdlag3ITfCaJuQlxS48cKyimFngqRhAN9N/QppGIi6PI/bgReWVaCkwB1TfZNNLDmQTTKdG/FQJQ4iIlF4HSWZsL+qj20sDnOvH3NmjRyoEqMqcZC5OABCJCGfz4eamhr4fD7RVQEQ3SbkRohmE/KSAjd2Vk3HgotmptgxgPK0M7BHefN/QfkY7KyarszgB6A/BzJKtnMjVqrEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMpctHA6HRVeCSK+GhgZMnjx56N/Hjh1Daan8ezSYpbHFiy21zdhSe2rY539YlIep4/KxoHzsiDMsRnL/c4fx+gdn4qnmiBaUj0H14mt0vWd3YyvW7fkEdZ+2Rf2eKePysfymCYZueH66rRc3rnl72Of2rZyJwnyXYWWx/OQpm4iIiIiIiIiIxN7LVXcheCKFhcNh+P1+OBwO2GyRN7Te3diKdTWfoK5p5AGA95vb8X5zO/5YcxJTivOxfIb+AYDV80vx3qdfo9Xr1/W+aMS6CfmsEg9mlXjwUUsXtrzbhBfe+wQBpAIXbQJ+bVEepo7Px/yrYx8AkkMYdgwMmwNVRHtuJDtV4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLS2ARSaizsxOPPvooOjs7h32+vSeA+587jLs3HRp18ONidU1tWLrpIKqeP4z2nujXUBxtE/JYGbEJ+ZUF2fjray7Df8+oR5bt0ph+f0c5HphdovjgB5BlC0TMgSpGOzdkoUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EAhEhC2dnZWLZsGbKzL71h/+FZL+ZU7417OarX6s9gTvVeNLZ4o37PSJuQx8LITchdmVl4zTcJvWFjB2hk0htOVz4HI50bMlElDiIiUXgdJZmwv6qPbSwOc68fc2aNHKgSoypxkLk4AEIkodTUVBQUFCA1NfWCn3941ovFT9YatgxVq9ePO9bX6h4EGW4Tcr2M3oQ8NTUVbWEXQha+7IWQonwOIp0bslElDiIiUXgdJZmwv6qPbSwOc68fc2aNHKgSoypxkLnUvQtGpLDu7m5s2rQJ3d3dQz9r7wlgycY6dPb1G1pWZ18/7tpQp3s5rOrF12DDkmsxZVy+rvKmjMvHxiXXoXrxNXEte3Wx3p5uzLE3IgPG5kcmGehXPgfDnRsyUiUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQubgJOpGE0tLSUFxcjLS0b07hh19vMGUDckCbCbJqewOqF1+j630XbEJe24xnapuHfV0iNiFPTUtDSygbA4pu/h2NAdiUz8Fw54aMVImDiEgUXkdJJuyv6mMbi8Pc68ecWSMHqsSoShxkLvYOIgk5nU7MmDFj6N+7G1vj3vNjNK/Vn8GC8jGYVeLR/d4rC7Jx7/TxEQdAfn9HOQrzXfFWcUQOhxP1wbGmlpHsAkhTPgcXnxuyUiUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQubgEFpGE/H4/amtr4fdrMz7W1XySkHLX7UlMOWYIBPyYlNqKdAyIroow6RhQPgcXnxuyUiUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQuTgAQiShQCCA+vp6BAIBNLZ4UdfUlpBy6z5tw0ctXQkpy2jBQD++m/YV0hS++T+aNAwon4Pzzw2ZqRIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXFwCi0hC2dnZmPfTn6OjH9hSezKhZW+pbca908ebvmSV0VxZWXjdXyq6GkL1wa58DrKzs3HfffeJrkbcVImDiEgUXkdJJuyv6mMbi8Pc68ecWSMHqsSoShxkLs4AIZJQKBTCLY/txPQ1u7Gl9lRCy36mthk3rnk7oWUaIRQKIcvmhw1h0VURxoaw8jkIhULo6OhAKBQSXZW4qBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXBwAIZKQ1+vFIudRZNo4xS9aPd1dls9Zpi2gfA68Xi+qq6vh9XpFVyUuqsRBRCQKr6MkE/ZX9bGNxWHu9WPOrJEDVWJUJQ4yFwdAiCTkdruxzVeGnrBddFWkkZmVbfmc9YTtyufA7XajqqoKbrdbdFXiokocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EPECIJpaSkoDvsEF0NqTBnQBg25XOQkpKC3Nxc0dWImypxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMUZIEQS6urqwnxHAzKg7lJGRuvt7rZ8zjIQUD4HXV1dWLduHbq6ukRXJS6qxEFEJAqvoyQT9lf1sY3FYe71Y86skQNVYlQlDjIXB0CIJGS32/Fx8DIEkSq6KtJIs6dbPmdBpCqfA7vdjvLyctjtci/zpUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EJLCIJORwOrP+7xQCAFS/U4/3m9oSVfW1RHn5/R3nCyjOK3e7A8QGP6GoI1Y9U5XPgcDhQUVEhuhpxUyUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQuTgDhEhCPp8PJ4/U4duuFEwdl5/QsqeOz0dhviuhZRrB7/ehPO1z2BEUXRVh7AgqnwOfz4eamhr4fD7RVYmLKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgkFg0E0NTUhGAxifvmYhJY9/+qxCS3PKAPBIApSupCKsOiqCJOKsPI5OP/ckJkqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFJbCIJJSVlYUlS5YAAEqygCnF+ahrajO93Cnj8nFlQbbp5ZjBlZmFnYES0dUQqg/pyufg/HNDZqrEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhdngBBJaGBgAC0tLRgYGAAA3DdjfELKXX7ThISUY4aBgQHk23qRgpDoqgiTgpDyObj43JCVKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgl1dXVh/fr16OrqAgDMKvFg/tXmLoW1oHwMZpZ8x9QyzNTb040FzuNw2fpFV0UYl61f+RxcfG4U5rvQ9Mi8YR/JvJfNxXEQEZE+vI6STNhf1cc2Foe51485s0YOVIlRlTjIXLZwOKzuYvCkrIaGBkyePHno38eOHUNpaanAGiVWOByG3++Hw+GAzWYDALT3BDCnei9avX7Dy/O4HdhZNR15mfaYj3G6rRc3rnl72Of2rZxp+s3oU1/34C8fewsBpAKwJbR80bF/U34YdgxckIPEln8po8sf7tyQkSpxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYnDCkTey+UMECIJ2Ww2OJ3OCy7ueZl2bL57CnIy0g0tKycjHZvvnhLX4EcysNlsCCANFw9+WIv6ORju3JCRKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgl5vV6sXbsWXq/3gp+XFLjxwrIKeNwOQ8rxuB14YVkFSgrchhxPpJ7uLix0HIELAdFVEcaFgPI5iHRuyEaVOIiIROF1lGTC/qo+trE4zL1+zJk1cqBKjKrEQebiAAiRhJxOJ2bMmAGn03nJcyUFbuysmo4F5fHtCbKgfAx2Vk1XYvADAOx2B+qDY84t/2RNAaQqn4ORzg2ZqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXGmiK0BE+tntdpSXl0d8Pi/TjurF12BB+Ris2/MJ6j5ti/rYU8blY/lNE6Te8Hw46XY7Ph64THQ1hAoiVfkcjHZuyEKVOIiIROF1lGTC/qo+trE4zL1+zJk1cqBKjKrEQebiDBAiCfX19WHnzp3o6+sb8XWzSjx4cdn12LViOv6moiji664tysOvZ07ArhXT8eKy65Ub/AAAv68PU9JPwY6g6KoIY0dQ+RxEe24kO1XiICIShddRkgn7q/rYxuIw9/oxZ9bIgSoxqhIHmYszQIgkFAqF0NHRgVAoFNXrryzIxr3Tx+OZ2uZhn//9HeUozHcZWcWkEwqFkGULIAVh0VURJgVh5XOg99xIVqrEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhcHQIgklJmZicWLF4uuhlQyXJnYHfiu6GoI5UO68jlQ5dxQJQ4iIlF4HSWZsL+qj20sDnOvH3NmjRyoEqMqcZC5uAQWkYT+/+3deXQUVd7/8U8nIRsBMYLGBQmoIwoIOorgBoqOsqgsKuICoj7qOKPHGZ3RZ+bouDzjNjojjzqo8yigoogooAOoLAZUFkVFCIILEBYFWbN2Op1O1++P/KhJJIRUSHNTt96vc3JOdbq6636+96ak+1q3YrGYCgoKFIvZu5RRU4vFYspJKlaygvt/BSQrbn0NbPnbsCUHAJjCeRR+wni1H31sDrX3jpoFowa2ZLQlBxKLCRDAh0pLSzVhwgSVlpaabopvlIfL1D/tW2WEKk03xZiMUKX1NbDlb8OWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxIrJDjOPYuBg9rrVy5Ul27dnUf5+fnq0uXLgZb1Pxt3BnW2Y9/WOdzH/3x3ITfAyTIxw9y9uZwfAAAAAAAAJhj8rtcrgABAAAAAAAAAADWYQIE8KGioiI9+uijKioqMt0U3ygtKdZV6V+qZajCdFOMaRmqsL4Gtvxt2JIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFBAjgQ5mZmRo8eLAyM1k6qKHS0zP0cTRXESfFdFOMiTgp1tfAlr8NW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILHs/RYMsFiLFi3UuXNn083wlZQWLbQhfrDpZhhVpWTra2DL34YtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWFwBAvhQOBzWtGnTFA6HTTfFNyLlYZ3VYp3SVGm6KcakqdL6Gtjyt2FLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFhMgAAAAAAAAAADAOiyBBfjQ7jUO0XDpGZn6uLKj6WYYVaEWRmrQPjtTBY8OPCDHsuVvw5YcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEgsrgABfKiyslKrV69WZaW9Sxk1tVhlpY5O2qVkVZluijHJqrK+Brb8bdiSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxQQI4EOscehdJFKus1ILlB6KmW6KMemhmPU1sOVvw5YcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEiskOM4julGAF6tXLlSXbt2dR/n5+erS5cuBlvU/G3cGdbZj39Y53Mf/fFctc/O5PgWHrs5HB8AAAAAAADBZfK7XK4AAQAAAAAAAAAA1mECBPChwsJCPfDAAyosLDTdFN8oKS7S6IylygpVmG6KMVmhCutrYMvfhi05AMAUzqPwE8ar/ehjc6i9d9QsGDWwJaMtOZBYTIAAPpSVlaVRo0YpKyvLdFN8IyOzpWZV/ELlTgvTTTGm3GlhfQ1s+duwJQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEivFdAMAeJeSkqLc3FzTzfCVlJQUbYm3Nt0Mo6qUZH0NbPnbsCUHAJjCeRR+wni1H31sDrX3jpoFowa2ZLQlBxKLK0AAHyorK9OkSZNUVlZmuim+UR4u03mp3ytdlaabYky6Kq2vgS1/G7bkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25EBiMQEC+FBSUpLatGmjpCT+hBsqKSlJpU6q4gqZbooxcYWsr4Etfxu25AAAUziPwk8Yr/ajj82h9t5Rs2DUwJaMtuRAYrEEFuBDGRkZuuiii0w3w1fS0jP0aeXRppthVFQp1tfAlr8NW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILGYHgN8KBqNatmyZYpGo6ab4huV0aiOTd6uFFWZbooxKaqyvga2/G3YkgMATOE8Cj9hvNqPPjaH2ntHzYJRA1sy2pIDicUECOBDkUhEeXl5ikQippviG9FohXqk/KhUi7/835dUVVlfA1v+NmzJAQCmcB6FnzBe7Ucfm0PtvaNmwaiBLRltyYHECjmO45huBODVypUr1bVrV/dxfn6+unTpYrBFzd/GnWGd/fiHdT730R/PVfvsTI5v4bGbw/EBAAAAAAAQXCa/y+UKEMCHHMdRJBIR85cN5ziOUhWTFOSa2V8DW/42bMkBAKZwHoWfMF7tRx+bQ+29o2bBqIEtGW3JgcRiAgTwoaKiIj322GMqKioy3RTfKC0p1tUZy5QVCu66kFmhqPU1sOVvw5YcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEgsJkAAH2rVqpVuvvlmtWrVynRTfCOzZZamR05U2GlhuinGhJ0W1tfAlr8NW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILFSTDcAgHfJycnKyckx3QxfSU5O1k4nmPe6aJ+dqYJHB5puxgFhy9+GLTkAwBTOo/ATxqv96GNzqL131CwYNbAloy05kFhcAQL4UGlpqcaPH6/S0lLTTfGNcFmpLkpdrQxVmm6KMUEYN7ZktCUHAJjCeRR+wni1H31sDrX3jpoFowa2ZLQlBxKLCRDAh1JSUpSbm6uUFC7iaqjklBRtibdSlUKmm2JMEMaNLRltyQEApnAehZ8wXu1HH5tD7b2jZsGogS0ZbcmBxGJ0AD6Unp6uvn37mm6Gr6SlpWtZ7EjTzTAqCOPGloy25AAAUziPwk8Yr/ajj82h9t5Rs2DUwJaMtuRAYnEFCOBDFRUVWrx4sSoqKkw3xTei0QqdmPyTWqjKdFOMCcK4sSWjLTkAwBTOo/ATxqv96GNzqL131CwYNbAloy05kFhMgAA+FI1GtWzZMkWjUdNN8Y1YtFLHpmxXSoAnQIIwbmzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiRWyHEcx3QjAK9Wrlyprl27uo/z8/PVpUsXgy1q/jbuDOvsxz+s87mP/niu2mdncnwLjw0AAAAAAACYZPK7XK4AAXwoHo+rsLBQ8XjcdFN8Ix6PKytUoZCCO+cbhHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXyouLhYY8aMUXFxsemm+EZZaYkuT1+hlqHgXhYZhHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsVgCC74U9CWw4vG4iouL1bp1ayUlNWwe0/QyTKaPv357qQY++YHKnFQ5Ch3Q45vOvltjxo3f2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcQWDyu9yUA3IUAE0qKSlJbdq0Md0MX0lKSlKpk2a6GUYFYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILKbGAB8qKSnRc889p5KSEtNN8Y1waakuSVupDAV3CawgjBtbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxQQI4EOpqanq0aOHUlNTTTfFN1JSW+j7WFvFlGy6KcYEYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILJbAAnwoLS1NvXr1Mt0MX0lNTdPXVYeZboZRQRg3tmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEosrQAAfikQiysvLUyQSMd0U36ioiKhHyg9KVcx0U4wJwrixJaMtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWEyAAD4Ui8VUUFCgWCy4X+Z7VRWLKSepRMlyTDfFmCCMG1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4kVchwnuN8GwrdWrlyprl27uo/z8/PVpUsXgy1q/jbuDOvsxz+s87mP/niu2mdncnwLjw0AAAAAAACYZPK7XK4AAXyoqqpKW7ZsUVVVlemm+EZVVZWyQ2ElKW66KcYEYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILCZAAB8qKSnR888/r5KSEtNN8Y1wWakuTf9amaFK000xJgjjxpaMtuQAAFM4j8JPGK/2o4/NofbeUbNg1MCWjLbkQGKxBBZ8KehLYDmOo4qKCqWlpSkUCjXoNaaXYTJ9/A07ynT+3+YoqmRJtWsWlCWwGjNu/MaWjLbkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25AgCk9/lphyQowBoUqFQSOnp6aab4SuhUEhRQ6e89tmZKnh0oJFj1xSEcWNLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxWAIL8KHi4mI99dRTKi4uNt0U3ygrLdFlacuVqajpphgThHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoPT1dffv2ZZbbg9TUNC2LHfH/l8AKpiCMG1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFEliAD6WmpqpHjx6mm+ErLVJT9X1VW9PNMCoI48aWjLbkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25EBicQUI4EPl5eV67733VF5ebropvlERKVfPFhuUqpjpphgThHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoHo+rsLBQ8XjcdFN8Ix6PKysUVZIc000xJgjjxpaMtuQAAFM4j8JPGK/2o4/NofbeUbNg1MCWjLbkQGKFHMcJ7reB8K2VK1eqa9eu7uP8/Hx16dLFYIuav407wzr78Q/rfO6jP56r9tmZHB8AAAAAAABAkzL5XS5XgAA+FIvFVFBQoFgsuMs5eRWLxZSTVKxkBff/CgjCuLEloy05AMAUzqPwE8ar/ehjc6i9d9QsGDWwJaMtOZBYTIAAPlRaWqoJEyaotLTUdFN8ozxcpv5p3yojVGm6KcYEYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILJbAgi+xBJZ3ppeACvrxAQAAAAAAgCBiCSwAAAAAAAAAAIAmxAQI4ENFRUV69NFHVVRUZLopvlFaUqyr0r9Uy1CF6aYYE4RxY0tGW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILGYAAF8KDMzU4MHD1ZmJss2NVR6eoY+juYq4qSYbooxQRg3tmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEiu43wQCPtaiRQt17tzZdDN8JaVFC22IH2y6GUYFYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILK4AAXwoHA5r2rRpCofDppviG5HysM5qsU5pqjTdFGOCMG5syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFleAAAiEIw/O1GW/PEov/OpXXBoJAAAAAAAABEDIcRzHdCOwf6LRqN544w29/vrrWrlypX766ScdfPDB6tixo4YOHarrrrtObdu2bfLjFhQUaPbs2Zo/f75WrFihDRs2qLS0VK1atdJRRx2l3r1766qrrlKfPn2a/NgrV65U165d3cf5+fnq0qVLkx/HJht3hnX24x/W+dxHfzxX7bMTOylg+vgAAAAAAAAADjyT3+WyBJbPrV69WqeffrpGjhypWbNmacOGDaqoqNCWLVu0aNEi/eEPf1CXLl00c+bMJjvml19+qdNPP10dO3bUTTfdpIkTJ2r58uUqLCxULBbTrl27tGLFCr3wwgvq27evzj33XG3YsKHJjg+psrJSq1evVmVlcJdz8oqaBaMGtmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEosJEB/btGmT+vXrp2XLlkmSQqGQ+vTpo+uvv14XX3yxMjIyJElbt27V4MGDNW/evCY57jfffKNPP/201u9+8YtfaOjQobrpppt0xRVX6KijjnKfy8vLU+/evbV27domOT5Y47AxqFkwamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxWALLx8455xx99NFHkqQOHTpo+vTp6t69u/v89u3bdeWVV2ru3LmSpOzsbK1Zs0Zt2rTZr+NOmjRJI0aM0LHHHqsbb7xR11xzjY488sha+8TjcY0fP1633XabexLq1auXFi5cqFAotF/Hl1gCqzFML0Fl+vgAAAAAAAAADjyT3+VyE3Sfmjlzpjv5kZqaqnfffVfdunWrtU/btm01ffp0nXTSSVq7dq127typxx9/XA8//PB+Hfvwww/XuHHjdO211yo5ObnOfZKSknT99dfr4IMP1tChQyVJixcv1gcffKALL7xwv44Pf2qfnamCRweabgYAAAAAAACAgGAJLJ969tln3e1Ro0btMfmxW8uWLfXggw+6j59//nnFYrH9OnafPn103XXX7XXyo6YhQ4aoZ8+e7uMZM2bs17FRrbCwUA888IAKCwtNN8U3qFkwamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxmADxodLSUndZK0kaPXp0vfsPGzZMWVlZkqSdO3dqwYIFCW3fz5155pnudkFBwQE9tq2ysrI0atQot1+xb9QsGDWwJaMtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWEyA+NDChQtVUVEhqfoKj9NOO63e/dPT09W7d2/3cVPdDL2hat7zo6qq6oAe21YpKSnKzc1VSgqr2DUUNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWEyA+tGrVKne7W7duDfojP+WUU+p8/YGwYsUKd7t9+/YH9Ni2Kisr06RJk1RWVma6Kb5BzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFBIgPffPNN+52hw4dGvSao48+2t1evXp1k7dpbzZs2FDripPzzz//gB3bZklJSWrTpo2SkvgTbihqFowa2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcSCyuD/KhHTt2uNuHHXZYg16Tk5Pjbu/cubPJ27Q3v//9791lr44++mhdfPHFB+zYNsvIyNBFF11kuhm+Qs2CUQNbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxfSYD5WWlrrbGRkZDXpNzf1qvj6RJkyYoLfeest9/MgjjygtLa1Jj5Genu7e6KiqqkqFhYVyHEeSVFxcrGg0KkkqLy93L4eLxWIqLCx036OoqEiVlZWSpHA4rHA4LEmqrKxUUVGRu19hYaFisZik6kvsysvLJUnRaFTFxcWSJMdxVFhY6E76lJaWKhKJSJIqKipUUlIiSYrH4yosLFQ8HpcklZSUuPd1iUQibh/tLVM0GtWnn36qXbt2ecqUrCq1DFW4+2WFKpSseLPIlOh+Ki0t1aJFixSNRq3J5LWfotGovvjiC23dutWaTD/vp2g0qkWLFrnP+TVTJBLRwoUL3eds6ycykYlMZEp0pnA4rIULF7rP2ZDJxn4iU5Hb7oULF7rP2ZDJxn7an0zFxcVatmyZSkpKrMnkl37atWuXPv30U/dztA2ZEt1PO3fu1LJly1ReXm5NJv4dsWc/bdu2TUuXLlU0GvV1pq1bt2rZsmWKRqNW9pONmUxgAsSHdg9OSUpNTW3Qa2pOPOz+I0ikpUuX6pZbbnEfjxgxQldddVWTH6dXr1667LLLJFWfvMeMGeP+Ub700kv6+uuvJUnz58/Xu+++K0natGmTxowZ477H2LFjtWbNGknSBx98oA8++ECStGbNGo0dO9bdb8yYMdq0aZMk6d1339X8+fMlSV9//bVeeuklSdUnjDFjxmjbtm2SpClTpmjx4sWSpC+//FITJ06UVH1SGDNmjHsSmjhxor788ktJ0uLFizVlypR6M0UiEc2dO1czZszwlOnIpGJdmva1u9/l6SvULqm0WWRKdD+tWLFCs2fPViQSsSaT136KRCLKy8vT2LFjrcn0836KRCKaM2eOPv/8c19n2rZtm2bPnu3uZ1s/kYlMZCJTojOtW7fO/e++LZls7CcyVWeKRCKaPXu21q1bZ00mG/tpfzItWrRIeXl5+vzzz63J5Jd+mjFjhubOnatIJGJNpkT309SpU5WXl6cffvjBmkz8O2LPfnrxxRf14YcfKhKJ+DrT2LFjlZeXp0gkYmU/2ZjJCAdN5umnn3aOP/74Jv1588039zjOgAEDHEmOJOfuu+9uUNtmzpzpviYrK6upo9eydu1aJycnxz3eSSed5BQVFTXpMfLz8x1JTnp6upOVleXk5+c7sVjM2bVrlxOPxx3HcZyioiKnoqLCcRzHCYfDTmlpqeM4jlNZWens2rXLfa/CwkInGo06juM4ZWVlTllZmeM4jhONRp3CwkJ3v127djmVlZWO4zhOaWmpEw6HHcdxnIqKCjdfPB53du3a5cRiMcdxHKekpMQpLy93HMdxIpGIU1xc7DiO41RVVTm7du1yqqqqHMdxnOLiYicSiTiO4zjl5eVOSUmJ4zhOk2basKPM6XT3dOfEe95yOtz9b6fD3f92utzzltPp7necDTvKfJnJxn4iE5nIRCYykYlMZCITmchEJjKRiUxkIhOZbMq0+7vc3T/5+fnOgRJynP9/nQr22/33368HHnigSd/zX//6l2688cZavxs+fLgmT54sSbr99tsbNIv29ttva9iwYZKq7weyefPmJm3nbps3b9bZZ5/tzk526tRJH3/8sQ4//PAmPc7KlSvVtWtX93F+fr66dOnSpMdozhzHUUVFhdLS0hQKhRr0mo07wzr78Q/rfO6jP56r9tmZTdnEZqcxNbNNEGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IEgcnvclkCy4cOOeQQd/unn35q0Gu2bNnibmdnZzd5m6Tqm7NfcMEF7uTH4Ycfrjlz5jT55Aeq1wB87LHHaq33h/pRs2DUwJaMtuQAAFM4j8JPGK/2o4/NofbeUbNg1MCWjLbkQGJxBYgPjRkzRnfccYek6ntgLFq0aJ+vueeee/TYY49JkoYOHVrr5uRNobi4WOedd5677n7btm01f/58nXjiiU16nN2CfgVIVVWVtm3bpnbt2ik5OblBrwn6FSCNqZltglADWzLakgMATOE8Cj9hvNqPPjaH2ntHzYJRA1sy2pIjCEx+l5tyQI6CJnXCCSe42ytWrFAsFlNKSv1d+cUXX9T5+qZQVlamAQMGuJMfBx10kN57772ETX5ASk5OVk5Ojulm+Ao1C0YNbMloSw4AMIXzKPyE8Wo/+tgcau8dNQtGDWzJaEsOJBZLYPnQGWecobS0NEnVkw9Lly6td/+KigotXrzYfXzeeec1WVsikYguueQSffLJJ5KkzMxMzZgxQ7/85S+b7BjYU2lpqcaPH6/S0lLTTfENahaMGtiS0ZYcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEgsJkB8KCsrS/369XMfjx8/vt793377bZWUlEiqvv/HOeec0yTtqKys1LBhwzRv3jxJUlpamqZPn64zzzyzSd4fe5eSkqLc3Nx9XvmD/6BmwaiBLRltyQEApnAehZ8wXu1HH5tD7b2jZsGogS0ZbcmBxOIeID41Y8YMDRo0SFL1xMPnn39e57pp4XBY3bt31/fffy+p+l4gjzzyyH4fv6qqSldeeaWmTJkiqfqE89Zbb+mSSy7Z7/duiKDfA6Qxgn4PEAAAAAAAAAAHnsnvcrkCxKcGDhyos88+W1L1EleDBg3S8uXLa+2zY8cODR482J38yM7O1t13373X9ywoKFAoFHJ/9nZlieM4uuGGG9zJj6SkJL3yyisHbPID/1nWrKKiwnRTfIOaBaMGtmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEovrg3zstddeU8+ePbV582YVFBSoR48e6tOnj4455hht27ZNc+bMUTgcllR9hcbkyZPVpk2b/T7u2LFjNWHCBPfxMccco48//lgff/xxg17/zDPP7Hcbgi4ajWrZsmXq0qWLez8Y1I+aBaMGtmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEoslsHxu9erVGjFihJYtW7bXfdq1a6dx48Zp4MCB9b5XQUGBOnbs6D4eN26crrvuuj32u//++/XAAw80tslqiiHHEljesQQWAAAAAAAAgAONJbDQaJ07d9aSJUs0YcIEXXTRRWrfvr1SU1N16KGHqlevXnr88cf19ddf73PyA/4Sj8dVWFioeDxuuim+Qc2CUQNbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxQSIBVJTUzVy5EjNmjVLGzZsUEVFhX766SctWrRIf/jDH9S2bdsGvU9ubq4cx3F/6rr6Q6q+AqTmfl5/sP+Ki4s1ZswYFRcXm26Kb1CzYNTAloy25AAAUziPwk8Yr/ajj82h9t5Rs2DUwJaMtuRAYrEEFnwp6EtgxeNxFRcXq3Xr1kpKatg8ZtCXwGpMzWwThBrYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxBYPK7XG6CDvhQUlKS5xvat8/OVMGjwV0KrTE1s00QamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxmBoDfKikpETPPfecSkpKTDfFN6hZMGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoNTVVPXr0UGpqqumm+AY1C0YNbMloSw4AMIXzKPyE8Wo/+tgcau8dNQtGDWzJaEsOJBb3AIEvBf0eIAAAAAAAAADgBya/y+UKEMCHIpGI8vLyFIlETDfFN6hZMGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoFoupoKBAsVjMdFN8g5oFowa2ZLQlBwCYwnkUfsJ4tR99bA61946aBaMGtmS0JQcSiyWw4EssgQUAAAAAAAAAzR9LYAHwpKqqSlu2bFFVVZXppvgGNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWEyCAD5WUlOj5559XSUmJ6ab4BjULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFktgwZeCvgSW4ziqqKhQWlqaQqGQ6eb4AjULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloS44gMPldbsoBOQqAJhUKhZSenm66Gb5CzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFEliADxUXF+upp55ScXGx6ab4BjULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFhMggA+lp6erb9++zHJ7QM2CUQNbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxT1A4EtBvwcIAAAAAAAAAPiBye9yuQIE8KHy8nK99957Ki8vN90U36BmwaiBLRltyQEApnAehZ8wXu1HH5tD7b2jZsGogS0ZbcmBxGICBPCheDyuwsJCxeNx003xDWoWjBrYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILJbAgi+xBBYAAAAAAAAANH8sgQXAk1gspoKCAsViMdNN8Q1qFowa2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcSCwmQAAfKi0t1YQJE1RaWmq6Kb5BzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFEljwJZbAAgAAAAAAAIDmjyWwAAAAAAAAAAAAmhATIIAPFRUV6dFHH1VRUZHppvgGNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWEyCAD2VmZmrw4MHKzMw03RTfoGbBqIEtGW3JAQCmcB6FnzBe7Ucfm0PtvaNmwaiBLRltyYHE4h4g8CXuAQIAAAAAAAAAzR/3AAHgSTgc1rRp0xQOh003xTeoWTBqYEtGW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILGYAAEAAAAAAAAAANZhCSz4EktgAQAAAAAAAEDzxxJYADyprKzU6tWrVVlZabopvkHNglEDWzLakgMATOE8Cj9hvNqPPjaH2ntHzYJRA1sy2pIDicUECOBDrHHoHTULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFktgwZdYAgsAAAAAAAAAmj+WwAIAAAAAAAAAAGhCTIAAPlRYWKgHHnhAhYWFppviG9QsGDWwJaMtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWCyBBV8K+hJYsVhMmzZt0lFHHaWUlBTTzfEFahaMGtiS0ZYcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEFg8rtcJkDgS0GfAAEAAAAAAAAAP+AeIAA8KSsr06RJk1RWVma6Kb5BzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFBAjgQ0lJSWrTpo2SkvgTbihqFowa2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcSCyWwIIvsQQWAAAAAAAAADR/LIEFwJNoNKply5YpGo2abopvULNg1MCWjLbkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25EBiMQEC+FAkElFeXp4ikYjppvgGNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWS2DBl1gCCwAAAAAAAACaP5bAAuCJ4ziKRCJi/rLhqFkwamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxmAABfKioqEiPPfaYioqKTDfFN6hZMGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsVgCC74U9CWwqqqqtG3bNrVr107Jycmmm+ML1CwYNbAloy05AMAUzqPwE8ar/ehjc6i9d9QsGDWwJaMtOYLA5He5KQfkKEATq6ioqPX4+++/N9QSs3bs2GG6Cb5DzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSw2Y//+7259/tJpQD+NC0adMcSYH9ycrKcq677jonKyvLeFv88kPNglEDWzLakoMffvjhx9QP51F+/PTDeLX/hz6m9n76oWbBqIEtGW3JEcSfadOmHbDvkVkCC740ffp0DR482HQzAAAAAAAAAAAeTJs2TZdeeukBORY3QQcAAAAAAAAAANbhChD4UmFhoebPn+8+bt++vdLS0gy2CAAAAAAAAADwcxUVFdq4caP7uE+fPmrTps0BOTYTIAAAAAAAAAAAwDosgQUAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6TIAAAAAAAAAAAADrMAECAAAAAAAAAACswwQIAAAAAAAAAACwDhMgAAAAAAAAAADAOkyAAACAZmPRokUaNmyYDjvsMKWnp6tjx4669dZb9cMPP5huGgAAAAAAxm3ZskWvvvqq7rjjDp111lnKyspSKBRSbm6u6aY1SyHHcRzTjQAAAPi///s/3XzzzYrH48rJydGRRx6pb7/9ViUlJTr44IP14Ycfqnv37qabCQAAAACAMU899ZR+97vf7fH7Dh06qKCg4MA3qJnjChAAAGDcihUrdMsttygej+vJJ5/UDz/8oKVLl+rHH3/UFVdcoV27dmnIkCGqqKgw3VQAAAAAAIxp3bq1+vXrp7vvvluTJ0/WU089ZbpJzRpXgAAAAOMuu+wyvfXWW7riiiv0xhtv1HquvLxcnTt31oYNGzR27FjdcssthloJAAAAAEDzMmXKFF1++eVcAbIXXAECAACMKisr04wZMyRJv/nNb/Z4PiMjQ6NHj5YkTZo06YC2DQAAAAAA+BcTIAAABEBVVZWWL1+uF198Ub/+9a916qmnKjU1VaFQSKFQSH379m30e0ejUb3yyisaMGCAOnTooPT0dB1++OE644wz9MQTT2j79u31vv7LL79UJBJRamqqevXqVec+u9u3ZMkSxePxRrcVAAAAAID6NOfPz/AuxXQDAABAYk2bNk1XX321wuFwk7/36tWrNWLECC1btqzW77ds2aItW7Zo0aJF+tvf/qZx48ZpwIABdb7Ht99+K0k6+uijlZqaWuc+xx57rCQpEolo/fr16tixY9OFAAAAAABAzf/zM7zjChAAACxXWFiYkH+8bdq0Sf369XP/8RYKhdSnTx9df/31uvjii5WRkSFJ2rp1qwYPHqx58+bV+T47d+6UJB1yyCF7PVZ2dra7vWvXriZKAAAAAADAfzT3z8/wjitAAAAIiMMOO0ynnXaa+/P+++9rzJgxjX6/q666Sj/++KMkqUOHDpo+fbq6d+/uPr99+3ZdeeWVmjt3riorK3X55ZdrzZo1atOmTa33KS8vl6S9Xv0hSenp6e52Iv4xCgAAAADAbs318zO8YwIEAADLXXTRRVq/fr2OPvroWr9fsmRJo99z5syZ+uijjyRVT1y8++676tatW6192rZtq+nTp+ukk07S2rVrtXPnTj3++ON6+OGHa+23+/90iUajez1eJBJxtzMzMxvdbgAAAAAA9qa5f36GdyyBBQCA5XJycvb4x9v+evbZZ93tUaNG7fGPt91atmypBx980H38/PPPKxaL1drn4IMPliTt2LFjr8fbvUxWzf0BAAAAAGhKzf3zM7xjAgQAAHhSWlqquXPnuo9Hjx5d7/7Dhg1TVlaWpOqJjAULFtR6/vjjj5ckbdiwYa9XgXz33XeSqpfC6tChQ6PbDgAAAADAgdLUn5/hHRMgAADAk4ULF6qiokJS9f+hctppp9W7f3p6unr37u0+/vnN3E4++WSlp6crGo1q8eLFdb7H/PnzJUk9e/ZUUhL/fAEAAAAANH9N/fkZ3vENAgAA8GTVqlXudrdu3ZSSsu9bip1yyil1vl6q/kfggAEDJNW+NHi38vJyjRs3TpI0fPjwRrUZAAAAAIADrak/P8M7JkAAAIAn33zzjbvd0OWoaq6hunr16j2ev++++5ScnKzJkyfr73//u+LxuKTqy4Wvu+46bdiwQR06dNANN9ywn60HAAAAAODASMTnZ3jDBAgAAPCk5s3KDzvssAa9Jicnx92ueUPz3bp3765nnzULSM4AABv+SURBVH1WSUlJuvPOO3XkkUfq1FNP1RFHHKHJkyerTZs2mjp1qtLS0vY/AAAAAAAAB0AiPj9v3LhRbdu2dX+uv/76On9/22237Wfr7cAECAAA8KS0tNTdzsjIaNBrau5X8/U13Xzzzfroo480ePBgVVVVacWKFTr44IN1yy23aMWKFTr55JP3r+EAAAAAABxAifj8XFVVpR07drg/JSUlkqR4PF7n74Nu34uOAQAA1BCJRNzt1NTUBr2m5pUb5eXle93vjDPO0NSpUxvfOAAAAAAAmolEfH7Ozc2V4zj737iA4AoQAADgSXp6ursdjUYb9JqKigp3u6H/1wsAAAAAAH7G52fzmAABAACeZGVludv1Xc1RU839ar4eAAAAAABb8fnZPCZAAACAJ4cccoi7/dNPPzXoNVu2bHG3s7Ozm7xNAAAAAAA0N3x+No8JEAAA4Mnxxx/vbq9fv75Br9mwYYO73blz5yZvEwAAAAAAzQ2fn81jAgQAAHhywgknuNsrVqxQLBbb52u++OKLOl8PAAAAAICt+PxsHhMgAADAkzPOOENpaWmSpLKyMi1durTe/SsqKrR48WL38XnnnZfQ9gEAAAAA0Bzw+dk8JkAAAIAnWVlZ6tevn/t4/Pjx9e7/9ttvq6SkRFL1+qXnnHNOIpsHAAAAAECzwOdn85gAAQAAnt16663u9vjx47Vy5co69wuHw7rvvvvcxzfddJNSUlIS3j4AAAAAAJoDPj+bxQQIAADwbODAgTr77LMlVV+iO2jQIC1fvrzWPjt27NDgwYP1/fffS6r+v1fuvvvuA95WAAAAAABM4fOzWSHHcRzTjQAAAIk1YMAA/fjjj7V+t2XLFv3000+SpJYtW+rYY4/d43UzZ87UEUccUed7btq0ST179tTmzZslSaFQSH369NExxxyjbdu2ac6cOQqHw5KklJQUvffee7Uu/QUAAAAAoLnh87NdmAABACAAcnNztX79es+vW7dunXJzc/f6/OrVqzVixAgtW7Zsr/u0a9dO48aN08CBAz0fHwAAAACAA4nPz3ZhETEAANBonTt31pIlSzRp0iS9/vrrWrlypX766Se1adNGnTp10tChQzV69Gi1bdvWdFMBAAAAADCGz89mcAUIAAAAAAAAAACwDjdBBwAAAAAAAAAA1mECBAAAAAAAAAAAWIcJEAAAAAAAAAAAYB0mQAAAAAAAAAAAgHWYAAEAAAAAAAAAANZhAgQAAAAAAAAAAFiHCRAAAAAAAAAAAGAdJkAAAAAAAAAAAIB1mAABAAAAAAAAAADWYQIEAAAAAAAAAABYhwkQAAAAAAAAAABgHSZAAAAAAAAAAACAdZgAAQAAAAAAAAAA1mECBAAAAAAAAAAAWIcJEAAAAAAAAAAAYB0mQAAAAAAAAAAAgHWYAAEAAAAAAAAAANZhAgQAAAAAAAAAAFiHCRAAAAAAAAAAAGAdJkAAAAAAAAAAAIB1mAABAAAAAAAAAADWYQIEAAAAAAAAAABYhwkQAAAAAAAAAABgHSZAAAAAAAAAAACAdZgAAQAAAICA2rRpk7KyshQKhXT77bfXuc/999+vUCikUCik+++//8A20JCVK1cqOTlZoVBIf/3rX003BwAAAI3EBAgAAAAQMH379nW/0Pb6c91115luPprQXXfdpbKyMrVq1Ur33nuv6eY0yF133eWOx9zcXDmO06j32blzp9LS0tz3Gj9+vPtcly5dNHLkSEnSww8/rI0bNzZF0wEAAHCAMQECAAAAAAH06aef6o033pAk/eY3v1G7du0Mt6hhRo0a5W6vX79e8+fPb9T7TJo0SdFoVJLUsmVLXXbZZbWe//Of/6zk5GSFw2Hdd999jW8wAAAAjEkx3QAAAAAA5px22mnq2bNng/fv1atXAluDA+nPf/6zJCktLU133HGH2cZ40K1bN5188sn68ssvJUkvv/yy+vbt6/l9Xn75ZXd72LBhysrKqvX8scceq2HDhmny5Ml65ZVXdM899+j444/fr7YDAADgwGICBAAAAAiwAQMGBOa+DviPzz//XHPmzJEkXXbZZTrssMMMt8ibUaNGuRMgb731lp599lllZGQ0+PXffvutlixZUuv96vLrX/9akydPVlVVlZ544gn961//2r+GAwAA4IBiCSwAAAAACJinnnrK3b7xxhvNNaSRrrrqKrVo0UKSVFxcrGnTpnl6fc2rP44++mide+65de7Xt29fHXvssZKkV199Vdu3b29cgwEAAGAEEyAAAAAAECBFRUWaMmWKJCknJ0fnnHOO4RZ5165dO/Xv3999XHNCY18cx9Grr77qPr722msVCoX2uv/ll18uSYpEInr99dcb0VoAAACYwgQIAAAAgP2Wm5urUCikUCikgoICSdKmTZt07733qnv37mrTpo1atmypzp0767bbbtP69es9vX9lZaVeeeUVXXHFFerUqZNatWqlli1bqmPHjhoxYoSmTp0qx3HqfY+8vDy3jTXvGTFz5kyNGDFCxx13nLKyshQKhWpdIbFbeXm5/vGPf+jMM89U27ZtlZGRoWOOOUYjRozQ3Llz663Fbpdeeqn73COPPNLg/H/5y1/c1w0dOrTBr6vL22+/rUgkIkm65JJLlJTUdB8Lv/rqKx1++OFuWy+++GKVl5fXue/cuXN1yy23qEuXLsrOzlZaWpqOOOIIXXjhhXrmmWf2+rrdai5bNXv2bG3ZsqVBbZw/f36t8Tdy5Mh69x8yZIi7XXPiBAAAAM0f9wABAAAA0OSmTZum6667TkVFRbV+/8033+ibb77Riy++qDfffFMDBw7c53vl5eXpxhtv1Jo1a/Z4rqCgQAUFBZo0aZJ69eqlKVOm6Mgjj2xQG4uKijR69GhNnTp1n/uuWLFCQ4YM2aMNa9eu1dq1azVp0iTdfPPNevrpp+t9n//6r//SO++8I0kaN26c/vu//3ufx47H4xo/frz7eH+XrHr33Xfd7fPOO2+/3qumBQsW6JJLLnH7fOTIkXrxxReVklL7Y+fGjRs1cuRI5eXl7fEemzdv1ubNm/XBBx/okUce0aRJk3T22WfXebxBgwYpOztbO3fuVFVVlV577TX9/ve/32c7a14t0rt3b/3iF7+od/9f/vKXOuigg1RUVKTPPvtMW7du1aGHHrrP4wAAAMA8JkAAAAAANKk5c+bolltuUVVVlY4++mj17t1brVu31rp165SXl6dYLKby8nJdccUVys/PV8eOHff6Xm+++aauvvpqVVZWSpIyMjLUq1cv5ebmKikpSd9++60WLVqkWCymxYsXq3fv3vrss8/2eVNvx3F0zTXX6N///rdCoZBOPfVUnXjiiXIcR/n5+bWWRPr+++/Vr18/bdu2zf1dt27d1KNHDyUlJWnZsmX66quv9Pzzz6tVq1b1Hrd///5q3769Nm7cqO+++04LFizY5xJUs2fP1oYNGyRJRx11lC666KJ6969PPB6vdbXK3iYXvJo+fbquvPJK98qS3//+93riiSf2WFpq1apV6tevnzZv3ixJCoVCOuWUU3TiiScqIyNDP/zwgxYsWKCSkhL9+OOPuuCCCzRr1qw679GRmpqqESNG6Nlnn5VUPbGxrwmQ8vJyd/kvae83P68pKSlJZ5xxhmbNmiXHcTRnzhxdddVV+3wdAAAAzGMCBAAAAECT+u1vf6v09HQ999xzuvrqq2t9Cb5y5UpdeOGF+uGHHxQOh/XQQw/ppZdeqvN9Vq5cqVGjRqmyslKhUEh33nmn/vznP6tNmza19lu7dq1GjRqljz/+WBs3btTo0aM1c+bMetu4cOFCxWIxdevWTRMnTlS3bt1qPV9RUSGpeqLkhhtucCc/DjnkEE2cOFEXXnhhrf3nzZunESNG6Mknn3Rvzl2X5ORkXX/99XrggQckSS+++OI+J0BefPFFd3v06NH7tWTV6tWrVVxcLElq27atjjjiiEa/V8323XzzzaqqqpIkPfLII7rnnnv22K+srEzDhg1zJz/69++vp59+Wsccc0yt/YqLi3XPPfdo7Nixqqio0NVXX61Vq1bpoIMO2uM9R40a5U6AfPXVV1qxYsUefVnT1KlTVVJSIklKS0vT8OHDG5SxR48emjVrliTp008/ZQIEAADAJ5gAAQAAAAJs5syZ2r59e4P3f/DBB5WdnV3vPtFoVNOmTavzSoUuXbro+eef16BBgyRVX+Hxwgsv7LFMkiTdfvvt7n0gnnzySf3ud7+r83idOnXSe++9p549e+rrr7/WrFmztGTJEp1++ul7bWMsFlNOTo7mzZuntm3b7vF8WlqaJOn999/XggULJFVfCTB9+nSdeeaZe+x/3nnnacaMGerVq5ei0ehejytJN9xwgx566CHF43FNmTJFTz/9tFq3bl3nvjt27ND06dMlVV8tcf3119f73vuyfPlyd/v444/fr/eSpEcffdRdxis5OVnPPffcXpfo+vvf/65Vq1ZJqr6vxpQpU+qczGndurX++c9/KhwOa8KECdq8ebOee+453X333Xvse9ppp+mEE05w3/fll1/W3/72t722t+byV5deeukek2l7c8IJJ7jbX331VYNeAwAAAPOYAAEAAAAC7LPPPtNnn33W4P3vuuuufU6ADBo0qN5lmgYMGKCcnBxt2bJFpaWlWrVq1R7/1/5XX32lefPmSZJOPvlk3XHHHfUes2XLlrr33ns1YsQISdLEiRPrnQCRpPvuu6/OyY+aal59ceWVV9Y5+bHbqaeeqpEjR2rcuHH1vmf79u110UUXaebMmQqHw3r99dd1880317nvK6+84k6onH/++crNza33vfdl3bp17vZRRx3V6PdxHEd33nmn/vGPf0iqnjB6/fXXa90wvKbKyko988wz7r7PPffcPq9kefjhh/Xyyy/LcRxNnDixzgkQqfoqkN1XnLz22mt69NFHlZycvMd+mzdv1pw5c2q9rqFq3lfm5ze2BwAAQPPV+GunAQAAAKAOl19+eb3Ph0Ihde/e3X1c1xfKNZewGjFixB73kqhLzRt6f/zxx/vcvyHLH82fP9/dvuaaa/a5f0P2kaSbbrrJ3a45yfJzNZ/b35ufS9JPP/3kbh9yyCGNeo9YLKZRo0a5kx+tW7fWe++9t9fJD0launSptm7dKknq169fg24ifsQRR6hz586SpPz8fPfm6j93zTXXuJMpP/74Y61JjpomTpzoLtOVk5OzxzJm9ak5UbZly5YGvw4AAABmcQUIAAAAEGB/+ctfdP/99zfpe9Z3D4bdan75vvueFDUtWrTI3f7www+1fv36fb6n4zju9saNG+vdt2PHjvu8kuWHH36odePzfV1RIlUvyRQKhWq1pS6DBg3SEUccoR9//FGfffZZnfeu+PTTT5Wfny+p+gv4wYMH7/P4+1JWVuZuZ2Zmen59OBzWpZde6k5QHXrooZo1a5ZOOeWUel9Xsz83bdqk3/72tw06XmFhoaTqvt20aVOd9wE58sgjdf755+uDDz6QVH3VTF2TGzWXv7r66qvrvEpkb2rWKhKJKB6P79e9WAAAAHBgMAECAAAAoEnV9SX1z9W8UXhlZeUez//444/u9u6bT3uxa9euep9v167dPt+j5uRHZmbmPidMJKlVq1Y66KCD3C/u92b3zdD/53/+R1L1lR5PPfVUrX1qXv1x7bXXKjU1dZ/H92JfkzR1+cc//qFYLCapeimvuXPn6rjjjtvn62r25/Lly2vdi6Sh6uvTUaNGuRMgU6dOVWlpqbKystznv/zyS61YsaLW/l40plYAAAAwj/9lBQAAAECTashyVfuyt+WOGmr3Ukd7k5GRsc/3KC0tdbe9XC1R84v3+tx4443uVQSvvvpqrZunh8NhTZo0qda+TaFly5bu9u4bzHtRc+Jq586d2rx5c4Net7/9KcmdeKnLkCFD3BvJh8NhTZkypdbzNa/+OPnkkxt0lVJNNWuVnp7O1R8AAAA+wb/aAAAAADQ7Nb+of/vtt+U4juef/VVzIiMcDjf4dTWXmapPhw4ddMEFF0iSduzYoWnTprnPvfnmm+7SYL1799aJJ57Y4OPXJycnx93evn2759ffcccduvjiiyVV5xwwYIAWLFiwz9fV7M/bb7+9Uf3Zt2/fvb5/RkZGrXvPvPLKK+52LBbT66+/7j72evWHVPtqoJo1BAAAQPPGBAgAAACAZuewww5zt03ddLrmja/D4fA+l9WSqq8a2dfyVzXt7WboTX3z8906duzobm/atMnz61NTUzVlypQ9JkE++uijel93IPqz5sRGXl6eex+Y999/3735e4sWLXTVVVd5fu8ffvjB3c7Nzd2/hgIAAOCAYQIEAAAAQLNT84bjn3zyiZE2HHXUUbUmQZYsWbLP1yxdutTT1SeXXHKJe0XBnDlztGHDBn377bfuhEJWVpauuOIKjy3fu5NOOsnd/uabbxr1HrsnQQYNGiSpehKkf//+9U6C1OzPhQsXJuSeGmeddZY6deokSYrH43r11Vcl1V7+qn///g26/8vPrVq1yt3u3r37frYUAAAABwoTIAAAAACand1frkvVS2Dt/j/4D7Q+ffq42xMnTtzn/ru/dG+olJQUjR49WlL1l/bjxo3TSy+95D5/5ZVXNvieIg1x/PHHuzep37FjR60rG7xITU3VW2+9VWsSpL4rQc4880y1adNGUvWVJ++++26jjlufUCikkSNHuo9feeUVFRUV6Z133nF/15jlryTpq6++crd79uzZ+EYCAADggGICBAAAAECz07NnT/eeD+Xl5br22mtr3SS8PtFotEHLVTXE9ddf726/9tprWrx48V73/eKLLzRhwgTPx7jxxhvdG8ePGzeu1ns05fJXkpSUlKTzzjvPffzxxx83+r12T4IMHDhQUvXyX3ubBElLS9Mdd9zhPr711ls9Tb40dAJs5MiRbi1XrVqlP/7xj4pEIpKk7OzsWhNrDRWPx7Vw4UJJ1ZMs559/vuf3AAAAgBlMgAAAAABolp5++mn36ofZs2frnHPOqXcZqm+//VYPPfSQcnNzm2zZrP79++uss86SVP1F+MUXX6w5c+bssV9eXp4GDBigqqoqpaamejpGp06d1K9fP0nS+vXr3XtkdOvWrdbSUU1l9/07JGnevHn79V6pqal6++23GzQJcuedd6pLly6Squ+pceqpp+rNN99UPB6v8723b9+uF154Qaeccor+9re/Nag9HTt21Nlnn+0+fuGFF9ztESNGeO4bSfr8889VVFQkSTrttNN06KGHen4PAAAAmJFiugEAAAAAzJk5c6a2b9/e4P0zMzP1+OOPJ7BF/9G1a1e9/vrrGj58uMLhsJYsWaJevXrpmGOO0SmnnKLs7GxFIhFt3bpVy5cvb/RyTvUJhUJ66aWX1Lt3b+3YsUPbt2/XBRdcoO7du6tHjx6SqpdHWrZsmSTprrvu0ptvvqn169dLqr7ioiFuuummPSZWbrjhhibLUdPQoUN16623KhKJ6J133tHYsWMb3M667J4EGTp0qGbMmOFOgsyaNcudPJKq72fyzjvv6Pzzz9e6deu0ZcsWXXHFFWrbtq169eqlnJwcOY6jnTt36uuvv9Z3333nTo7UvGplX0aNGqUFCxbU+fvGmDp1qrt99dVXN+o9AAAAYAYTIAAAAECAffbZZ/rss88avP9BBx10wCZApOp7gSxcuFA33HCDPv/8c0nSmjVrtGbNmr2+Jjc3V0cddVSTteG4447T3LlzNWTIEK1bt05S9aRHzftCSNWTGA8//LBee+0193etW7du0DEGDx6sQw89VFu3bpVUvWTUtdde20QJajvooIN02WWX6dVXX9WWLVu0YMECd7mxxtq9HNawYcPcSZD+/fvvMQnSqVMnLV26VLfccoumTJkix3G0fft2/fvf/97re7dp00bdunVrcFsuv/xy3XbbbQqHw+7vTjjhBJ122mmNyjZlyhRJUnp6uq666qpGvQcAAADMYAksAAAAAM1a9+7dtXTpUr3//vv69a9/rZNOOklt27ZVSkqKWrZsqdzcXF144YW677779Mknn2jt2rXu1RlN2Yb8/Hw9+eST6tWrl7Kzs5Wenq6OHTtq+PDhmjNnjp5//nm1aNHCvf9IUlJSgydAWrRoUev+FEOGDFF2dnaTZqip5v04/vWvfzXJe6alpe1xT5D+/fvvcZ+R7OxsTZ48WcuXL9ef/vQnnXHGGTr88MOVmpqq9PR05eTk6KyzztLtt9+ud955R5s3b/Z09UarVq00ZMiQWr9r7NUf8+fP13fffSep+uqPtm3bNup9AAAAYEbIcRzHdCMAAAAAwAbfffedfvGLX0iSOnfurFWrVjXodY7j6JhjjnGvMJkzZ457X5BE+dWvfqXZs2crLS1NBQUFysnJSejx/Gj48OGaPHmykpOTlZ+fr86dO5tuEgAAADzgChAAAAAAaCJvvPGGu+1lyaUPP/zQnfzo1KmTp3teNNZDDz0kSaqoqNBTTz2V8OP5zZo1a/TWW29Jkq655homPwAAAHyICRAAAAAAaALr1q3TE0884T72cr+I//3f/3W3b775ZoVCoSZtW11OP/10DR8+XJL0z3/+U9u2bUv4Mf3kr3/9q6qqqpSZmakHH3zQdHMAAADQCEyAAAAAAMA+/OpXv9J7772nWCxW5/MzZszQWWedpaKiIklSjx499Ktf/apB7/3OO+9o+vTpkqrvX3HjjTc2TaMb4IknnlDLli1VUlLiXhEC6euvv9bLL78sSfrTn/6ko48+2nCLAAAA0BjcAwQAAAAA9mH3FRkHH3ywTjnlFLVv316pqanavn27Pv30U23atMndt1WrVvrkk0/UrVu3Ot/r+++/1zPPPKOqqip9++23mj17tnZ/LHvwwQd17733Jj4QAAAAEABMgAAAAADAPjR0SarjjjtOb775prp3777XffLy8nTuuefu8fszzzxT8+bNU2pqaqPbCQAAAOA/Ukw3AAAAAACau/z8fE2bNk0LFy7U+vXrtX37du3cuVPp6elq166devbsqUGDBunKK69UcnJyg983NTVVHTt21PDhw3XPPfcw+QEAAAA0Ia4AAQAAAAAAAAAA1uEm6AAAAAAAAAAAwDpMgAAAAAAAAAAAAOswAQIAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6TIAAAAAAAAAAAADrMAECAAAAAAAAAACswwQIAAAAAAAAAACwDhMgAAAAAAAAAADAOkyAAAAAAAAAAAAA6zABAgAAAAAAAAAArMMECAAAAAAAAAAAsA4TIAAAAAAAAAAAwDpMgAAAAAAAAAAAAOswAQIAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6TIAAAAAAAAAAAADrMAECAAAAAAAAAACswwQIAAAAAAAAAACwDhMgAAAAAAAAAADAOkyAAAAAAAAAAAAA6zABAgAAAAAAAAAArMMECAAAAAAAAAAAsA4TIAAAAAAAAAAAwDpMgAAAAAAAAAAAAOswAQIAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6/w8j2xpmeM3LqAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "freq_01_1 = (1 + 0.1) / 2 * 2 * np.pi\n", + "freq_3_30 = (3 + 30) / 2 * 2 * np.pi\n", + "plt.figure()\n", + "plt.errorbar(energies, lagspec_01_1.spectrum * freq_01_1 , xerr=energies_err, yerr=lagspec_01_1.spectrum_error * freq_01_1, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.errorbar(energies, lagspec_3_30.spectrum * freq_3_30, xerr=energies_err, yerr=lagspec_3_30.spectrum_error * freq_3_30, fmt='o', label=\"3-30 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Phase lag (rad)\")" + ] + }, + { + "cell_type": "markdown", + "id": "ab201dc2", + "metadata": { + "id": "ab201dc2" + }, + "source": [ + "Interesting: the low-frequency variability has much longer time lags than the high-frequency variability, but the phase lags are on the same order of magnitude." + ] + }, + { + "cell_type": "markdown", + "id": "9e85f891", + "metadata": { + "id": "9e85f891" + }, + "source": [ + "## Covariance and RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "11a45edb", + "metadata": { + "id": "11a45edb", + "outputId": "d95b650d-03df-4e73-bafe-7813b0729935" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:55<00:00, 1.40s/it]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:55<00:00, 1.40s/it]\n" + ] + } + ], + "source": [ + "covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"abs\", ref_band=ref_band)\n", + "covspec_01_1 = CovarianceSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"abs\", ref_band=ref_band)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "a1d4d363", + "metadata": { + "id": "a1d4d363", + "outputId": "121ac01c-9046-44c6-9351-588a10cc3dc8" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABi8AAAR9CAYAAAAum9QAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXxU1f3/8fckIYmBQAA1oEBQFJFFsW4IteJSrVgtVfGr1IJrLW2/Vduv2hXFLq71C/22P8GqgHsVLUpFsFXhW0AUF5RVrBgWIQGB7OvM3N8f95uRSCCZZO49c899PR+PPMhkZu49n/c5XHROzrkRx3EcAQAAAAAAAAAApIkM0w0AAAAAAAAAAADYG5MXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0kqW6QYgXMrKyrR48eLE4759+yonJ8dgiwAAAAAAAAAAX1ZfX68tW7YkHp9xxhkqKCjw7fxMXsBXixcv1tixY003AwAAAAAAAACQhLlz5+pb3/qWb+dj2ygAAAAAAAAAAJBWmLwAAAAAAAAAAABphW2j4Ku+ffs2ezx37lwdddRRhlpjRk1NjRYtWqTRo0crLy/PdHMCgczCkYENNdpQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDP797383uwXAlz/b9RqTF/DVl2/OfdRRR2nIkCGGWmNGQ0ODOnXqpMGDBys7O9t0cwKBzMKRgQ012lADAJjEdRRBwngNB/rZDHJPHpm5bM/BlvpsqSOMvvzZrtcijuM4vp4RobZmzRoNHTo08Xj16tWhm7wAAAAAAAAAgHRn+rNc7nkB+Ky2tlYLFixQbW2t6aYEBpmFIwMbarShBgAwiesogoTxGg70sxnknjwyc9megy312VIHvMfkBeCzeDyusrIyxeNx000JDDILRwY21GhDDQBgEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeI9to+Ar00uNAAAAAAAAAACtM/1ZLisvAJ9Fo1EVFxcrGo2abkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe0xeAD6rqqrS7NmzVVVVZbopgUFm4cjAhhptqAEATOI6iiBhvIYD/WwGuSePzFy252BLfbbUAe+xbRR8ZXqpEQAAAAAAAACgdaY/y2XlBQAAAAAAAAAASCtMXgA+Ky8v1913363y8nLTTQkMMgtHBjbUaEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j8kLwGd5eXkaO3as8vLyTDclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64D3ueQFfmd4nDQAAAAAAIKwcx1E8HhcfBwL2iUQiysjIUCQSSdkxTX+Wm+XbmQBIkmpqavTqq6/q3HPPZYa5jcgsHBnYUKMNNQCASVxHESSM13Cgn80g9+TtLzPHcVRTU6OqqipVV1ervr7eYCu9F4/HVVFRoa5duyojw74NZ2ypz5Y60lVeXp66du2q/Px8ZWUF++P/YLceAAAAAAAAwD4aGxu1detW1dXVmW4KAB/V1NSopqZGpaWl6tOnj7p06WK6Se3GtlHwlemlRgAAAAAAALarq6vTli1bFI1GTTcFgEGRSKRDEximP8tlXQ7gs8bGRq1fv16NjY2mmxIYZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78vbOzHEcbd68OZQTF7bf08OW+mypIwgcx9HWrVsDez1g2yjAZzU1NZo7d64mTZqkbt26mW5OIJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7snbO7OMjAzFYrFmz3fq1EndunVT586d1alTp5Te0DedRKNR7dq1Sz179gz8Xv8tsaU+W+pIN47jqLa2Vrt371ZtbW2zn1dWVqp79+4GW9c+bBsFX5leagQAAAAAAGCzLVu2qKqqKvE4JydH/fr140NiICQcx9GmTZuaTWDk5eWpqKgo6WOZ/iyXbaMAAAAAAAAACziOo+rq6mY/69GjBxMXQIhEIhH16NGj2c9qamoCuU0XkxeAz8rKyjRlyhSVlZWZbkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuyWvKbM+ePft8QJmXl2eoVf6LRqPatm1bYPf3b40t9dlSRzrLzc3d52fxeNxASzqGbaPgK9NLjdJBNBrV1q1b1adPH37zoY3ILBwZ2FCjDTUAgElcRxEkjNdwoJ/NIPfkNWXWq1cvffrpp82eO/roo0OTo+M4amhoUHZ2tpX39bClPlvqSGfRaFQff/xxs5+151pg+rPccFy5gDSSlZWl/v37m25GoJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7slryizsv8keiUSUk5NjuhmesaU+W+qA99g2CvBZdXW1nnnmmX32oMT+kVk4MrChRhtqAACTuI4iSBiv4UA/m0HuyWvKrKamxnRTjIrFYtq9e7disZjppnjClvpsqQPeY/IC8FlGRoYKCgqUkcFfv7Yis3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2auSCSizMxMa7cisqU+W+qA97jnBXxlep80AAAAAAAAW6Vqn3sAwWbLPS/CPR0LGNDQ0KCVK1eqoaHBdFMCg8zCkYENNdpQAwCYxHUUQcJ4DQf62QxyT15TZo2Njaab0i5bdteo/89ebvFry+62b4UVj8dVU1OjeDzuYWvNsaU+W+qA95i8AHxWV1enRYsWqa6uznRTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8embkcx1FlZaVs3WjGlvpsqQPeY9so+Mr0UiMAAAAAAABbBXHbqPUlFXpi+SY9sXxzi8+fWNRdpx7RQ98afriO6ZXvc+uAYLJl26j0vXIBlnIcR/X19crJyeHGRG1EZuHIwIYabagBAEziOoogYbyGA/1sBrknrymzzMxM001ps9fXl2r6oo16u3j3AV/37qY9enfTHv2/RZ/olP49NGn0AJ056NAWX+s4jhzHUSQSCezY+fzzz7V06VK9/fbbWrVqlT755BNt27ZNVVVV6tSpk7p3766hQ4dq9OjRmjBhgg4//PCUt6G2tlZvvfWW3nzzTa1atUofffSRtmzZooqKCjmOo27duumoo47SaaedpiuvvFInnHBCUsd3HEdr167VzJkz9eqrr2rr1q2qr6/X4YcfrtNOO00TJkzQ2WefndKaZs2apauvvlqSVFRUpOLi4ja/t7i4WEcccUTi8aeffqr+/funtH1oGdtGAT4rLy/XPffco/LyctNNCQwyC0cGaVuj40h1FVL1LvfPAyxYTNsaACAguI4iSBiv4UA/m0HuyWvKrKKiwnRTWrWnukE/fvp9XTPrnVYnLr7s7eLdunrWCt34zPvaU73vPVFisZhKSkoUi8VS1VzfXXXVVRo7dqx+//vfa968eVq7dq3KysoUjUZVW1urbdu26dVXX9UvfvELDRgwQFOmTEn5vSP+/Oc/68wzz9QvfvELPf3003rvvfe0c+dO1dfXq6GhQTt37tSbb76pBx54QF/5yld0+eWXa/futvflb3/7W51wwgn6wx/+oFWrVmnPnj2qqanRxx9/rMcee0znnHOOxo8fr8rKypTWheBh5QXgs/z8fN1www3Kz2epY1uRWTgySKsaS9dIq+ZIn70rbf9Aqiv74rncAqn38dLhJ0rDxkmFgxNPpVUNABBAXEcRJIzXcKCfzSD35DVl1qVLF+3YscN0c/Zr3fYKXTXzbZVW1HfoOC+u3KblG3dp9jWnaFCvromfZ2Zm6pBDDgnUCpQDOfjgg3XssceqqKhIXbp0SXzAv2LFCkWjUdXX1+uOO+7Qxo0bNXv2bE/akJeXp2OPPVYDBgxQQUGBotGotm7dquXLlycmy/76179q7dq1WrJkibp27XrA402ePFm/+c1vEo979+6t008/Xbm5uXr33Xe1Zs0aSdLTTz+tXbt26eWXX07rbc/gLXoe8FlmZqZ69epluhmBQmbhyCAtatywUFoyVdq8bP+vqSuTPl3sfi15QOo3UvrqzdLAc9OjBgAIMK6jCBLGazjQz2aQe/KaMotGo6absl/rtlfo8oeWq7y2MSXHK62o13/MWK6/3jAiMYERiUTUqVOnlBzflNGjR+vCCy/U2WefraOOOqrF15SWlurmm2/W008/LUl67LHHdOGFF+rSSy9NSRuOPvpo/e53v9N5552n448/vsXJg7q6Ok2dOlW//OUvFY/HtWrVKv3iF7/Qn/70p/0e97XXXms2cXHLLbfot7/9rbKzsxM/e/rpp3XNNdeorq5Or776qn7/+99r8uTJKakLwcO2UYDPqqqqNGvWLFVVVZluSmCQWTgyMFpjzW5pzrXSU5cdeOKiJZuXSU+Nk56/TlU7tljfTwDgpTD8ewd7MF7DgX42g9yT15RZdXW16aa0aE91g66a+XbKJi6alNc2auKjbye2kIrFYvr8888DvW3Uf/3Xf+mGG25oceKiqb6DDz5YTz75pM4666zEczNmzEhZG771rW/pF7/4hU488cT9rnrIzc3Vz372M91+++2Jnz322GOqq6vb73F//vOfJ77/9re/rbvuuqvZxIUkXXHFFfrv//7vxOP7779fn3/+eXtLQcAxeQH4LCsrS/3792fJWxLILBwZGKuxZLX04Ehp9ZyOHWfVc8p6bIz6H5xndT8BgJfC8O8d7MF4DQf62QxyT166Z3b7S2s6vFXU/pRW1OuOee5WQ5FIxOobve9dXyQSSdyAWpLef/99I2265pprEt9XVlbq3//+d4uvW7FihVasWCFJysjI0O9+97v99tMNN9ygo48+OnHMxx9/PMWtRlAweQH4LDc3V6NHj1Zubq7ppgQGmYUjAyM1lqyWZl0gVW5PyeFyqzZr9OpblFv+SUqOBwBhE4Z/72APxms40M9mkHvymjLLyckx3ZR9vL6+VC99sM3Tc7y4cpteX1+qjIwM5efnKyPDzo88v1zfIYccknjO1M2t927Dgdoxd+7cxPfnnHOOjj322P32UyQS0cSJExOP//a3v3W8oR7r379/YlIpma9Zs2aZbnpas/NvMpDG6uvrtXz5ctXXe/MbBzYis3Bk4HuNNbulJy9tfjPuDqpXtpbXHaH6x//DPT4AIClh+PcO9mC8hgP9bAa5J68ps4aGBtNN2cf0RRv9Oc/ijYrH46qqqlI8HvflnH77cn1r165NPNe/f38jbdq7DQdqxxtvvJH4/owzzmi1n84888zE98uWLeN6EFLpuZYMsFhDQ4NWrlypIUOGpOVvRKQjMgtHBr7XOP+WlK24aNKgTlqpIRpS9TflvHKrdMnDKT0+ANguDP/ewR6M13Cgn80g9+Q1ZTZo0CDTTWlmfUmF3i725xe73v50t9aXVOjgrAYddNBBvpzTb47jqKamRgcddJC2bdum+++/P/Fcqm7WnYyGhgb97Gc/SzweOXKkevfu3eJr161bl/h++PDhiTr254QTTkh8H4vFtGHDBg0bNiwFrfbGxIkTtWvXrlZft2vXLj3zzDOJx7ZucZYqEcdxHNONQHisWbNGQ4cOTTxevXq1hgwZYrBFAEJpw0L35txeG/+sNPA8788DAAAAAJKi0ag+/vjjZj87+uijfb0XxpbdNYnvZ/zvJ3pi+Wbfzv3dEUX63teOVN8eeb6d0081NTUqLi7WK6+8onvvvVc7duyQJB177LF66623lJ+f73kbGhoatH37dv3rX//SH/7wB61cuVKSlJ+fr0WLFukrX/nKPu/ZsWOHCgsLE4/XrVvXpom2Qw89VDt37pQkPfvssxo3bly72z1r1qzEPUKKiopUXFzc5vcWFxfriCOOSDz+9NNP27XSpbGxUeeee64WLVokSRo0aJCWL1+ubt26JX2s1qTqWmD6s1xWXgA+i8fjqqioUNeuXa3dgzHVyCwcGfha45Kpnhw2rogqlK+uqlSGHGnpNCYvgspxpPpKKdYoZXaScvIlfiMG8FwY/r2DPRiv4UA/m0HuyWvKLC/P/If2p9/7Rusv8sjjyzfp8eWb9OldY6z4jfYlS5bo9NNPP+BrxowZoyeffNLTiYusrCzFYrH9Pj9w4EA9//zzzT7k3tuXVyQceuihikajyszMPGA/9erVKzF5sXt36lbw7N69Wz/60Y/a/PpU3U/khz/8YWLiokePHpo3b54nExc2YfIC8FlFRYWmTZumG2+8UQUFBaabEwhkFo4MfKuxdI20eZknh65QvqZFrtONzsMqUIW0aalUulYqHOzJ+azn9wRC6Rpp1Rzps3el7R80vx9KboHU+3jp8BOlYePoU8AjYfj3DvZgvIYD/WwGuSevKbNkPpC1WSwW83W1iQndu3fX//t//0+XX365sTZkZmbqtttu05QpUw6Yd1VVVbPH2dnZ2rFjhw499NADvm/vbaW+fIyOqKys1J///OeUHa8tpk6dqr/85S+SpE6dOun555/XUUcd5Wsbgohto+Ar00uN0gG/QZI8MgtHBp7WuGfTF98vnSa980hqj/9/9ll5IUknXydd8AdPzmclExMIGxa6q3GSmdTqN1L66s3SwHNT0wYAksLx7x3swXgNB/rZDHJP3t4rLz755JNmz/m9bVT/n73s27n2x5aVFxs3btQDDzwgyb3fRWVlpdavX6/3339f0WhUkntj6+nTp2vgwIGetePGG29MrLyorq7Wli1b9PbbbydWJBx11FH6n//5H33jG99o8f3/+te/9LWvfS3xOBqNynGcVldefO1rX9O//vUvSdJvfvMb/epXv2p3DXtvG9VRyW4btWDBAn3zm99MZPiXv/xF1113XUrasj9sGwWgXTIyMvjNkSSRWTgy8LTGacd5c9wvyZDjrrjY24qHmbxoi7ZMINSVSZ8udr+WPNDxCYSa3e6N21fPSf69m5dJTy1zJ1HOv1fK69G+NgBoJgz/3sEejNdwoJ/NIPfkNWXW9IF22NkwcSFJRx55pP70pz/t8/Nt27bpl7/8pWbNmqU33nhDI0aM0KJFi3Tccd78v++0adP2+Vl1dbX+/Oc/a/Lkyfr3v/+tCy64QI8++qgmTpy4z2tzc3ObPW5sbNznZy2pr69PfJ/Km7B39J4XyVi7dq3+4z/+IzFxcfPNN3s+cWETpq8Bn1VWVmr69Okp2y8vDMgsHBnYUGOlOmu6rlSlOjd/gkWO+1ezW5pzrXsD9WS389q8THpqnPT8de5xklGyWnpwZPsmLva26jn3OKVrOnYcAJLs+LcA4cF4DQf62QxyT15TZqncWifIDnR/hiCLxWKJm1/PnDlTP/7xjyVJe/bs0eWXX75P3U33djjQ1xNPPNGutnTu3Fm33nqrnn76aUnu6p/vf//72rhx4z6v7dKlS7PHVVVV2rFjR6v9VFtbu99jBMGuXbt04YUXqqLC/SXHMWPG6P777zfcqmBh5QXgs+zsbA0fPlzZ2dmmmxIYZBaODGyoMVuNGq41ylZj8ycaqtz7NaC5ktXSk5dKlds7dpxVz0nFS6Qrn5cK27B8tWS1NOuC5ltSdUTldmnmGOnq+W07P4D9suHfAoQH4zUc6GczyD15ZNacLSsvviwSiSgvLy9R31133aVZs2apoqJC69at0yuvvKJvfvObiddXVFS0em+HqqoqXXnlle1u07e//W2dffbZeu2111RXV6f/9//+3z4f0Pfs2bPZ4x07dqhfv36t9lNJSUni+x49grXavbGxUZdcckliMmfIkCF65pln2AovSaQF+CwnJ0cjRoxQTk6O6aYEBpmFIwMbasxRg0bofeWoofkT0YaW3xBmTRMIHZ24aNI0gdDaCoia3e6ESaomLprUlUlPXJL8ChAAzdjwbwHCg/EaDvSzGeSevKbM0mHy4l+3npn4OrGou6/nPqmou/5165nWfkCckZGhLl26JOrLy8vTyJEjE88vXbrUSLu+/vWvH7ANhx56aLOt4LZs2dKsjpbU1dVp586diceDBg1KTWN9MmnSJC1evFiSdPDBB2vevHnKz+eXGpNl599kII3V1dVp0aJFqqurM92UwCCzcGRgQ411ytEinaY6fel/srLM/w9EWjE5gTD/ltRNmHxZ5XbplVu9OTYQEjb8W4DwYLyGA/1sBrknrymzve8RYErfHnmJr1OP8Pe35U85oocKOsUUj8d9Pa9f4vG4Kisrm9XXvfsXE0S7du1q9vr+/fvLcZwDfs2aNavD7TpQG5oce+yxie/fe++9fer4svfeey/xfWZmpqc3JE+1Bx54QI888ogkd1XU3/72t3bfMyPsmLwAfBaNRlVcXMxNtJJAZuHIwIYao8pUsfooqszmT2S3c29Ox5HqKqTqXe6fttw7w9QEwoaFHb/HRWtWPeeeB0C72PBvAcKD8RoO9LMZ5J68dM3souGH+Xq+bx7XS/X19XJs+X+nL3EcZ5/6tm//4v+tTG2t1JY2nHnmmYnvmybaDtRPTasWJGnkyJGBWYk1f/583XLLLYnHDz30kL761a8abFGwcc8LwGddunTRVVddZboZgUJm4cjA0xpv/PCL71+4Xtrylien6aIaXaXnmv+w7wgpmf1WS9dIq+ZIn70rbf+g+eqE3AKp9/HS4SdKw8ZJhYNT0Wx/+TWBMGycNPC85j9fMtXb8zZZOm3fcwNokzD8ewd7MF7DgX42g9yT15RZuk1eDOrVVaf076G3i73fXvWUI3po8GEFnp/HpMzMTB188MGJx7t27dKbb76ZeLz36gY//f3vf2+1DWPHjtXvf/97SUrcHyMzM7PF10pqtiJk7NixKWmn19asWaMrrrgisaLk1ltv1cSJEw23KthYeQH4LBaLqaSkRLFYzHRTAoPMwpGBpzV2L/riq2hU6o//f2LKUIkOUWzvf177t/F8GxZKj54vPThSWvKA9OnifbdVqitzf77kAenB09zXb3g1Vc33h58TCHsrXSNtXubPuTctlUrX+nMuwDJh+PcO9mC8hgP9bAa5Jy+dM/v+6CN9Oc+kMwbIcRw1NjYGduXF7t0HnuTZu754PK4f/ehHia3CcnJymt2su72qq6uT2rLtwQcf1DvvvJN4fMkll7T4upNPPlknn3yyJHe83nrrrfvtp4ceekgbNmyQJOXn52vChAltbo8pn3/+uS688EJVVFRIkr71rW/prrvuMtyq4GPyAvBZZWWlZsyYocrKStNNCQwyC0cGvtU47FLPDl2pLpoR+a4qtdc2UUNbOV/NbmnOtdJTlyX/4frmZdJT46TnrwvGjaJNTCDs2eR+rXjEn/M2eecR97wAkhKGf+9gD8ZrONDPZpB78poyq6qqMt2UfZw1qFAXHe/t9lHfGn6Yzhx0qGKxmHbu3JmWkzht8dhjj+nkk0/WY489lvgQfG9N9b3//vsaM2aMnnnmmcRzt9xyi3r27NnhNnz88cc66qijdN9992nLli37fV1JSYluvvlm/fCHP0z87PTTTz/gBMreH+Y//fTTuu2229TY2NjsNc8++6xuuummxOP/+q//arbaJB01NDTo4osv1qeffipJOu644/TEE09Ye+N4P0WcoE5FIpDWrFmjoUOHJh6vXr1aQ4YMMdgi/zXtT5iTk6NIMlvJhBiZhSMDX2t89HxPPkR3JNUrRzmqV0RyV3lcPX//byhZ7d64OhX3f8jvLV35vFSYhtfUpg/xl05zP9T3y8nXSSse9u98Lbmj3Oz5gYAJw793sAfjNRzoZzPIPXlNmWVmZurf//53s+eOPvpoZWWZ3Tl+T3WDvjHtf1Vakfobihd2zdGCG7+m7p2zEzehjkQigRw7U6dO1c033yxJysrK0qBBg3TMMceoe/fuikQi2rVrlz788MN9+viSSy7RM888k5J+XrlypU444YTE4/79+2vo0KE6+OCDlZOTo4qKCq1fv14ffvhhs0miY445Rm+88YZ69+59wOP/+te/1m9/+9vE48MOO0ynn366cnNz9e6772r16tWJ577+9a9r/vz5Kalr1qxZuvrqqyVJRUVFKi4ubvN7i4uLm91w+9NPP1X//v0TjxcvXqzRo0cnHl900UXq27dvm4793e9+V6eeemqb29JW0WhUH3/8cbOftedaYPqzXO55AfgsEokoNzfXdDMChczCkYGvNX71Jump1E9eRCTlaq//GB910/5fXLJamnXBvltDtVfldmnmGHeyJN0mMKYdZ+a8picuACQtDP/ewR6M13Cgn80g9+Q1ZZZu97xo0r1ztmZfc4r+Y8Zyldc2tv6GNup2UCfNvuYUde+cLUmBnbRosvdNqaPRqFavXt3sw/wvy8/P1x133KEbb7zxgPePSEanTp2UkZGRuG9DcXHxAT/oz8jI0LXXXqt77rlH3bt3b/X4d955p3JycnTnnXeqsbFR27Zt01//+td9Xnf55ZdrxowZxife2uLLawNeeumlNr/3pJNO8mTywhasXQF8VlFRoalTp7a4/A8tI7NwZOBrjQPPa307p3aoUBdN1bWqUJf/u2H0uS2/sGa3u+IiVRMXTerKpCcuCcYWUgDQgjD8ewd7MF7DgX42g9yT15RZOm+1NahXV/31hhEq7JrT+ovboLBrjv56wwgN6tU18bNYLKbS0tLAbhs1adIkffTRR/rzn/+sCRMm6MQTT9QhhxyiTp06qVOnTurZs6cGDRqk73znO5o1a5a2bdumn/zkJymbuJCkIUOGqKSkRE8++aR++MMf6vTTT9fhhx+u3NxcZWZmqqCgQAMGDNDYsWN13333afPmzXrooYfaNHEhuRNMP//5z/Xaa6/ppptu0tChQ9WtWzfl5eVpwIABuvLKK/WPf/xDTz/9tLp27dr6AWE1to2Cr0wvNUoHDQ0NWrt2rQYPHqzs7GzTzQkEMgtHBr7XWLPbvTl2KrZs+j8N6qS1OlqDu1Qq+wf/K+X1aPmFc66VVs9J2Xn3MWycdEkarTq4o5vpFpjDtlFAUsLw7x3swXgNB/rZDHJPXlNmxxxzzD6/JZ8O20btbU91g+6Yt0YvrtzW7mN8a/hhuuPCIYkVF03i8bjq6uqUm5tr5f0GbKnPljrSmS3bRjF5AV+ZHvAA0EzpGnerpVSugMgtOPDWTRsWujfn9tr4Z90VJumAyQsAAADAF6n6wNIPr68v1fTFG/X2p21fOX7KET006YwBOnPQoR62DAg+WyYvmNoCfFZbW6sFCxaotrbWdFMCg8zCkYGRGguHuBMN+Qe+oVhb1XYp0oKBv1dt1yP3/6IlU1NyrlYtnebPeQAghcLw7x3swXgNB/rZDHJPXlNmdXV1ppvSZmcNKtSzN5ymhTd9Td8dUbTf151U1F0/PHOAFt70NT17w2kHnLiIx+MqLy9P3K/BNrbUZ0sd8B6TF4DP4vG4ysrKuEAngczCkYGxGguHSJOWuVstdcSwcYpPnK+yhsz911C6Rtqc+huFt2jTUql0rT/nSmc//kC68UOpr883QOs7wj0vgKSE4d872IPxGg70sxnknrwgZ3ZMr3x972v7/wWw//6P4brlvEE6pld+q8dyHEexWGyfGyjbwpb6bKkD3mPbKPjK9FIjADigDQvdFQublrb9PUWjpFE37f/m3JK0Z5P759Jp0juPdKiJSTn5Omnkj6Xu+/8tJl801f/C9dKWt/w7b98R0rUL3e//OUVa8oB/5z79p9LZk/07HwAAAKBgbRu1ty27a3T6vW+0+Ny/bj1TfXvk+dwiINhs2TYqva9cgIWi0ai2bt2qPn36pP1/PKQLMgtHBmlR48Dz3K/Ste4NtT97V9q2svk9MXILpMOGS4efKA29VCocnHhqvzVMO86nAr5kxcPul+n7LjRNnhSN8nfyov+oL74fdqm/kxdDL/XvXIBF0uLfAqCNGK/hQD+bQe7Ja8qsV69eppvSLn175Kn47gs6fBzHcdTQ0KDs7GxFIpEUtCy92FKfLXXAe2wbBfisqqpKs2fPVlVVlemmBAaZhSODtKqxcLD7W/MTXpRuK5Z+vlW6ZaP7523F7s/Pntxs4kJKsxrS0TCfP9DfewKhcIjUb6Q/5y0atc/YANA2XEcRJIzXcKCfzSD35DVlVl1dbbopRsViMe3atUuxWMx0UzxhS3221AHvsW0UfGV6qREAGHFHN8PnN7zyYm+Pnu/PfT+KRrk3Y9/bhoXSU5d5f+7xzx14GzEAAADAI0HdNgpAatmybRQrLwAAgH++epM/5xnVwnkGnuf9dk7DxjFxAQAAAABACjB5AfisvLxcd999t8rL0+g3odMcmYUjAxtqtKEGz5meQBhzn5Tf25vz5veWzr83NcdyHKmuQqre5f7JQlmEBNdRBAnjNRzoZzPIPXlNmVVUVJhuilHRaFTbt29XNBo13RRP2FKfLXXAe6wZA3yWl5ensWPHKi8vz3RTAoPMwpGBDTXaUIMvxtwnbVoqVW5P/bFbm0DI6yFd+bw0c0zzG7F3VG6Be9y8Hu0/RukaadX/3Sh++wf73ii+9/HujeKHjeOeGrAW11EECeM1HOhnM8g9eU2ZHXTQQaabYlRGRoYKCgqUkWHn72vbUp8tdcB73PMCvjK9TxoAGLFnk/vnC9dLW97y77x9R0gXPyR1L/LvnG1VusabCYSr57s3527L+Z+4JDUTKPm93YmLtpy3JRsWSkumJncvkH4jpa/ezBZVAAAAaIZ7XgCQuOcFgHaqqanR3LlzVVNTY7opgUFm4cjAhhr3W0P3IveraJS/Deo/Kj0nLiT3g/6r56duC6f83m2fuGg6/6Rl7iqGjhg2zj1OeyYuanZLc651byKe7E3MNy+TnhonPX+dexzAEjb8W4DwYLyGA/1sBrknrymz2tpa000xKhaLac+ePYrFYqab4glb6rOlDniPyQsAAPwyzON7PXyZ1/eW6CjTEwh5PaRLHpbGP5v8xFLRKGn8c+7727NVVMlq6cGR0uo5yb93b6uec49TuqZjxwEAAAAAIM2wbRR8ZXqpEQAY9+j5yf+WfXsUjXJXIgTFhoXS0mnuvTDaqmiUNOqm1G2dVLrWnUz47F1p28p97zlx2HD3nhNDL+3YPSdKVkuzLjC3ZRYAAACsxbZRACR7to3iygX4rLGxUZ988okGDBigTp06mW5OIJBZODKwocY21fDVm6SnfJi8GHWT9+dIpYHnuV9+TSC0pHCwVDjZ/d5xpIYqKdogZWVL2V2kSKTj56jZLT15aWonLiT3eE9c4q5A6chNwwHDbPi3AOHBeA0H+tkMck9eU2ZFRWm6baxP4vG46uvrlZOTY+XNoG2pz5Y64D1GB+Az9u5MHpmFIwMbamxTDQPP8347p2Hjgnsj58LB0tmTpQkvSrcVSz/fKt2y0f3ztmL352dPTv3ExZdFIlJOvtS5p/tnKiYuJGn+Lam5SXhLKrdLr9zqzbEBn9jwbwHCg/EaDvSzGeSePO554YrH4yorK1M8HjfdFE/YUp8tdcB7bBsFX5leagQAaaFmt3ufAi8+xM7vzW/fp6sNC92bc3tt/LPuJBkAAABCh22jAEj2bBvFygsAAPyW10O68nl3G6RUyi1wj8vERXpaMtWf8yyd5s95AAAAAADwEJMXgM/Kyso0ZcoUlZWVmW5KYJBZODKwocakaigc4t5gOb93ak6e35sbNqez0jX+3Khdcm96XrrWn3MBKWbDvwUID8ZrONDPZpB78poyKy8vN90Uo6LRqLZt26ZoNGq6KZ6wpT5b6oD3mLwAfNalSxdNnDhRXbp0Md2UwCCzcGRgQ41J11A4xN3iadi4jp142Dj3OExcpJ89m9yvFY/4e953HnHPCwSMDf8WIDwYr+FAP5tB7slryqxz586mm2JUZmamevbsqczMTNNN8YQt9dlSB7zHPS/gK9P7pAFA2tqw0N3uZ9PStr+naJQ06qbg3pw7DO7oZvj84f7NOwAAgLAJ7D0v9mySph3X8nM3fih1L/K3PUDAcc8LAO1SXV2tZ555RtXV1aabEhhkFo4MbKixQzUMPM/d9mnSm9LpP5WOHL3vPTFyC9yfn/5T93VXz2fiAoBVbPi3AOHBeA0H+tkMck9eU2Y1NTWmm2JULBbT7t27FYvFTDfFE7bUZ0sd8F6aT7sC9snIyFBBQYEyMpg7bCsyC0cGNtSYkhoKB0uFk93vHUdqqJKiDVJWtpTdRYpEUtNYAEhDNvxbgPBgvIYD/WwGuSePzFyRSESZmZmKWPr/TbbUZ0sd8B7bRsFXppcaAQDgK7aNAgAAgI8CuW1U6Rr3HnHv7Oc+cX1PdbfMHTbO/WUvAK1i2ygA7dLQ0KCVK1eqoaHBdFMCg8zCkYENNdpQAwCYxHUUQcJ4DQf62QxyT15TZo2Njaab0nYbFkqPni89OHL/ExeStOUtackD0oOnua/f8Op+XxqPx1VTU6N4PO5Bg/3X0NCgxx9/XGPGjFFRUZFyc3PVq1cvjRw5Uvfff78+//xzT84bi8X04Ycf6pFHHtGkSZN00kknKTs7W5FIRJFIRKNHj+7Q8dvaT59++qmeffZZ3XrrrTrzzDPVtWvXRBu8XLVx1VVXJc5x1VVXJfXeWbNmJd7bv39/T9oXJmk87QrYqa6uTosWLdKRRx6p7Oxs080JBDILRwY21GhDDQBgEtdRBAnjNRzoZzPIPXlNmRUVBeDG1jW7pfm3SKvnJP/ezcukp5a5qzDOv1fK69HsacdxVFlZqZycnBQ11pz169friiuu0MqVK5v9vLS0VKWlpXrzzTd13333aebMmRozZkzKzjt37lx95zvf8fT+Ka310/bt2zVs2DDt2rXLszYgGNg2Cr4yvdQIAJAEx5HqK6VYo5TZScrJ554bydqzyf3zhevd3xjzS98R0sUPSd0D8D+vAAAASJm03zaqZLX05KVS5faOHyu/t3Tl81KhfZ8rbd26Vaeeeqq2bdsmyb1HxNe+9jUNGDBAO3fu1D//+U/V1tZKkjp16qQFCxborLPOSsm5Z82apauvvvqArznjjDO0aNGilJyvJcXFxTriiCNafZ1XH2tfddVVmj17tiRp4sSJmjVrVpvfu3d+RUVFKi4u9qCFrbNl26g0uXIB4eE4jurr65WTk8ONidqIzMKRgQ012lCDStdIq+ZIn70rbf9Aqiv74rncAqn38dLhJ7LfbFs1TR4UjfJ38qL/KCYuEEhWXEcRGozXcKCfzSD35DVllpmZabop+1eyWpp1QfP/x+iIyu3SzDHS1fMTExiO48hxHM+3FfLa+PHjExMXRUVFevHFF3X88ccn6tu1a5euuOIKvfbaa2psbNS4ceP0ySefqKCgIGVtKCws1Mknn5z4WrhwoaZNm5aSY7e1n7p06aKvfOUrOuWUU3TyySerrq5OEydOTEkbEAzc8wLwWXl5ue655x6Vl3MT1bYis3BkYEONga5h7/1mlzwgfbp43/+pqCtzf97G/Waxl2GX+nu+oT6fD0iRQF9HETqM13Cgn80g9+Q1ZVZRUWG6KS2r2e2uuEjVxEWTujLpiUvc48u9V0NJSYlisVhqz+Oj+fPn61//+pckKTs7W/PmzdPxxx8v6Yv6unfvrhdffFFHHnmkJGn37t269957U3L+b3zjG9q0aZNKSko0b948TZ48Weeff35KJ0Za66fCwkKtXr1a5eXlWrx4se677z5ddtll6tevX8ragGBg8gLwWX5+vm644Qbl5+ebbkpgkFk4MrChxkDWULNbmnOt9NRl7v6xydi8THpqnPT8dYn/WcB+FA6R+o3051xFo1gVg8AK5HUUocV4DQf62QxyT15TZl26dDHdlJbNvyU1W0W1pHK79MqtkqTMzEwdcsgh6b0CpRV//vOfE99PnDhRw4YNSzzeu77OnTvrzjvvTDw3Y8YMRaPRDp+/V69enk8StNZPBx10kIYMGaKMDD66DjtGAOCzzMxM9erVK9D/kPqNzMKRgQ01Bq6GktXuSov23Chvb6uec49TuiY17bLVV2/y5zyjfDoP4IHAXUcRaozXcKCfzSD35KV1ZhsWdvz/OVqz6jlpw0JFIhF16tQpsFtGVVVV6bXXXks8/vK9J75c3yWXXJKYsNq9e7f+93//17/GdkDQ+6kjiouLE9tlJftl6v4ZJjF5AfisqqpKs2bNUlVVlemmBAaZhSMDG2oMVA1N+82m6refmvabZQJj/wae5/12TsPGSQPP9fYcgIcCdR1F6DFew4F+NoPck9eUWXV1temm7GvJVH/Os3SaYrGYPv/888BuG7Vs2TLV19dLkjp37qyTTz652fNfri83N1ennXZa4vnXX3/dv8Z2QND7Cf7hht2Az7KystS/f39lZfHXr63ILBwZ2FBjYGrwer/ZScukvB6pPbYtxtwnbVrqzZL5/N7S+anZ5xYwJTDXUUCM17Cgn80g9+SlbWala5Lfnra9Ni1VZOc65XQuCuxv9K9bty7x/bBhw/bpz0gkss+N7L/yla/oH//4xz7vT2ct1REWXbt21Q9/+MM2vfbDDz9M3P9EUijzSrMrGmC/3NxcjR492nQzAoXMwpGBDTUGpgY/9pu95GFvjh90eT2kK593V6mkcvIot8A9LpNGCLjAXEcBMV7Dgn42g9yT15RZKu550GF7Nn3x/YpHfD11xrszlT/yx1JGMO+X8tFHHyW+Lyoq2uf5jIyMfe4Fs/f9KdavX+9d41KopTrCokePHvrTn/7U6uu2bNmiU045JfH4iiuuaHFM2I7JC8Bn9fX1ev/993XCCScoJyfHdHMCgczCkYENNQaiBr/2mx02zt0mCfsqHCJdPd9dpZKKSaT83u7EReGQjh8LMCwQ11Hg/zBew4F+NoPck9eU2XHHHWe6KdI0g21Y8bC04mHFJ+8J5M2ed+3alfi+sLBwn+fj8bhqamqUl5eXqK9Xr16J53fv3u19I1OgpTrS1VtvvaUf/ehHbX59KiaQqqurddFFF6mkpESSdOqpp+rRRx/t8HGDiMkLwGcNDQ1auXKlhgwZwn+EtRGZhSMDG2oMRA0+7jfL5MUBFA5xt9d65VZ3sqe9ho1zt4pixQUsEYjrKPB/GK/hQD+bQe7Ja8ps0KBBppuSFhzHMd2Edtn7Pi8HHXTQPs87jqOamppmz+39fVDuE9NSHelq/fr1vq5ocRxH3/3ud7Vy5UpJUt++fTV37lzl5ub61oZ0wuQF4LP8/Hx9//vfN92MQCGzcGRgQ41pX4PP+82qdK1UONif8wVRXg93e61h49zJnk1L2/7eolHSqJu4OTesk/bXUWAvjNdwoJ/NIPfkNWWWFttGpYHMzEzTTWiXurq6xPfZ2dn7PJ+ZmalDDz202c/2nuCrra31rnEp1FIdcP3yl7/U3/72N0nuTdtfeumlZqtrwia91+UAForH4yorK1M8HjfdlMAgs3BkYEONaVvDnk3ul8/7zeqdR5rvd4uWDTzP3UZq0pvS6T+Vjhzt3sNib7kF7s9P/6n7uqvnM3EBK6XtdRRoAeM1HOhnM8g9eWTWXFBXXuz92/UNDQ37PO84jqLRaLP66uvrE98HYSWD1HId6WrixIlyHKfNXzNnzmz3uZ544gndddddktybcz/xxBMaPnx4iioJJlZeAD6rqKjQtGnTdOONN6qgoMB0cwKBzMKRgQ01pm0Npvac/b/9ZnVHuZnzB03hYKlwsvu940gNVVK0QcrKlrK7SJGI2fYBPkjb6yjQAsZrONDPZpB78poyS2ZvfpvFYjFlZQXvY88uXbokvm9pFUUsFtOOHTt06KGHJurb+3V7vz8d7N69W5MnT97n5/F4XLW1tTrooIM0cuRIXXnllQZal16WL1+u6667LvH497//vcaOHWuuQWkieH+LgYDr2rWrbrzxRnXt2tV0UwKDzMKRgQ012lAD0kQkIuXkS2zxjJDhOoogYbyGA/1sBrknrymzvLw87dixw3RzjAvqtlE9e/ZMfF9aWrrP803bLe1dX9NNnSWpR4/0uhdeRUWF/vznPx/wNTU1NaGfvNi8ebPGjh2bWEUzYcIE/exnPzPcqvTA5AXgs4yMDH5zJElkFo4MbKjRhhoAwCSuowgSxms40M9mkHvymjJLi3te3PjhF9+/cL205S3/zt13hHTxQ4oEdNXyMccck/h+06Z9t+CNRCL7rCjZvHlz4ntu2B481dXVuuiiixKTVaNGjdJDDz1kuFXpg3teAD6rrKzU9OnTVVlZabopgUFm4cjAhhptqAEATOI6iiBhvIYD/WwGuSevKbOqqirTTZG6F33xVTTK11PH+43UjsaDFIvFfD1vqhx77LGJ71etWrXPZFTTtlF71/fee++1+P500L9//xbvCxGNRlVaWqpoNKpZs2aZbqYxjuPoyiuv1AcffCBJKioq0gsvvNDsJuxhx+QF4LPs7GwNHz5c2dnZppsSGGQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LSNrNhl/p8vkuUl5cX2JUXI0eOTHxwXV1drXfeeafZ85FIpFl99fX1Wr58eeL5s846y7/GdsCX6wirX/ziF5o7d64kKT8/X/PmzdOhhx5qtlFphskLwGc5OTkaMWIEs6hJILNwZGBDjTbUAAAmcR1FkDBew4F+NoPck9eUWdpNXhQOkfqN9OdcRaOU0WuounTpooyMYH7k2aVLF5199tmJx19elZCRkdGsvhdeeCGxQqlHjx762te+5ltbO+LLdYTR448/rrvvvluSm8fTTz+tYcOGGW5V+gnvCAEMqaur06JFi1RXV2e6KYFBZuHIwIYa07aGGz90v/qe6u95+45ovt8tALQiba+jQAsYr+FAP5tB7slryqzphr9p5as3+XOeUTcpHo+rsrJS8Xjcn3N64Ac/+EHi+1mzZmnNmjWJx3vXV1NTo8mTJyee+973vrfP/TDSlQ391BHLli3T9ddfn3h877336oILLjDYovTF5AXgs2g0quLi4vS4iVZAkFk4MrChxrStwdB+s+o/yj0vALRR2l5HgRYwXsOBfjaD3JOX1pkNPE8a6vH2UcPGSQPPleM4qq+vl+M43p7PQxdccIFOP/10Se62UN/85jf14YfuL4U11ff5559r7Nix+ve//y3JXXVx22237feYxcXFikQiiS/T95mwoZ/aa/Pmzfr2t7+dmGi85ppr9NOf/tRwq9JXMKbjAIt06dJFV111lelmBAqZhSMDG2pM+xqGXSotecC/83n9PygArJP211FgL4zXcKCfzSD35DVllpaTF5I05j5p01Kpcnvqj53fWzr/XklSZmamDj744NSfw2dPPfWUTjnlFG3fvl3FxcUaPny4zjjjDA0YMEA7d+7UP//5T9XU1EiSsrKy9Oyzz6qgoCBl5x8zZoy2bdvW7GclJSWJ79955x0NHz58n/fNnz9fhx12WKvHb0s/TZ48WS+99FKzn335hvQtteHOO+/URRdd1GobTJk5c6Z27Nghyc0hKytLP/rRj9r03jvvvFM9evTwsnlph8kLwGexWEw7d+7UIYccoszMTNPNCQQyC0cGNtSY9jU07Te7eZn35yoaJRUO9v48AKyS9tdRYC+M13Cgn80g9+Q1Zda9e3fTTWlZXg/pyuelmWOkurLUHTe3wD1unvuBruM4ikajysrKCvTNoPv06aPXX39dV1xxhVauXCnHcbRo0SItWrSo2esOOeQQzZw5s9l9MlJh7dq12rRp036fr66u1gcffLDPzxsaGtp0/Lb00+bNm1s8x95aen737t1taoMpe682icVieuihh9r83v/6r/8K3eQF20YBPqusrNSMGTMSN1RC68gsHBnYUGMgavBxv1kASFYgrqPA/2G8hgP9bAa5J68psy//ZnpaKRwiXT3fXSmRCvm93eMVDkn8qGkSJxaLpeYcBg0aNEhvvfWWZs+erW984xvq27evsrOzdfDBB+vUU0/Vvffeq7Vr1wbyXgk29RO8FXHCuLkYjFmzZo2GDh2aeLx69WoNGTLkAO+wT9O+fjk5OYH+LQA/kVk4MrChxsDUMOdaafUc744/bJx0ycPeHR+AtQJzHQXEeA0L+tkMck9eU2aZmZmJ+yA0Ofroo9PrRs41u6VXbpVWPdf+Ywwb524Vldf8t9Adx5HjOIl7O9jGlvpsqSOdRaNRffzxx81+1p5rgenPcll5AfgsEokoNzeXi3MSyCwcGdhQY2BqGHNf6n7b6cv22m8WAJIVmOsoIMZrWNDPZpB78gKVWV4P95edxj/rbjebjKJR0vjn3Pfn7bt9TiQSUUZGRjByaAdb6rOlDniPyQvAZxUVFZo6daoqKipMNyUwyCwcGdhQY2BqaNpvNrcgtcf90n6zAJCswFxHATFew4J+NoPck9eUWaC22hp4nrvt06Q3pZOv2//r+o6QTv+p+7qr50sDz93vS2OxmEpLS63djsiW+mypA95j8gLwWW5urkaPHq3c3FzTTQkMMgtHBjbUGKgafNhvFgCSFajrKEKP8RoO9LMZ5J68QGdWOFga+eP9P3/xQ9LZk93XtSISiSg/P9/a3+i3pT5b6oD30mjDOyAcsrOzNXz4cNPNCBQyC0cGNtQYuBoKh0iTlnm23ywAJCtw11GEGuM1HOhnM8g9eU2ZRaNR000xKiMjQ3l5eaab4Rlb6rOlDniPlReAz2pra7VgwQLV1taabkpgkFk4MrChxkDW4OF+swCQrEBeRxFajNdwoJ/NIPfkNWVWV1dnuint071IuqO85a/uRW0+TDweV3l5ueLxuIeNNceW+mypA95j5QXgs3g8rrKyMi7QSSCzcGRgQ42BrmHgee5X6Vpp9Rzps3elbSulurIvXpNbIB02XDr8RGnopW1atg0AyQj0dRShw3gNB/rZDHJPHpm5HMdRLBaT4zimm+IJW+qzpQ54L+IwSuCjNWvWaOjQoYnHq1ev1pAh7I8OAGnJcaSGKinaIGVlS9ldJPYkBQAAANJWNBrVxx9/3OxnRx99tLKy+P1lIExSdS0w/Vku20YBPotGoyouLg79PpTJILNwZGBDjTbU0EwkIuXkS517un8ycQHAY9ZdR2E1xms40M9mkHvyyMzlOI7q6+ut/Y1+W+qzpQ54j8kLwGdVVVWaPXu2qqqqTDclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+Q1ZVZdXW26KUbFYjHt2rVLsVjMdFM8YUt9ttQB77FtFHxleqkRAAAAAACArdg2CoDEtlEAAAAAAAAAAACeYPIC8Fl5ebnuvvtulZeXm25KYJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7slryqyiosJ0U4yKRqPavn27tff+sKU+W+qA95i8AHyWl5ensWPHKi8vz3RTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck/egTIL047xGRkZKigoUEaGnR952lKfLXWks5b+3kciEQMt6Rg2vAN81qlTJw0aNMh0MwKFzMKRgQ012lADAJjEdRRBwngNB/rZDHJPXlNmLX1g2dDQoE6dOhlolf8yMjJ00EEHmW6GZ2ypz5Y60lljY+M+PwviZFHwWgwEXE1NjebOnauamhrTTQkMMgtHBjbUaEMNAGAS11EECeM1HOhnM8g9eU2Z1dbWKjc3t9lzYdpKKhaLac+ePYrFYqab4glb6rOljnRWXV3d7HFOTk4gV14weQEAAAAAAABYIj8/v9njiooKJoKAEIlGo/vcM6hz586GWtMxESdMG9/BuDVr1mjo0KGJx6tXr9aQIUMMtggAAAAAAMAeDQ0N+uSTT5r9LCMjQ127dlXXrl3VqVOnQG4fA+DA4vG4ampqtHv3btXX1zd7rl+/fu2awDD9WS73vAB81tjYqE8++UQDBgwIzZ6THUVm4cjAhhptqAEATOI6iiBhvIYD/WwGuSdv78yys7OVn5+vysrKxPPxeFxlZWUqKysz10gfOI4jx3EUiUQCuUVOa2ypz5Y6giI3N1d5eXmmm9EuTLMCPmPvzuSRWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7J+3Jmhx12mLp06WK4VWbYfh8FW+qzpY50l5WVpT59+gR2kohto+Ar00uNAAAAAAAAwiAej2vbtm3NVmAACI+srCz17dtXubm57T6G6c9y2TYKAAAAAAAAsExGRob69OmjhoYGVVRUqLKyUnV1daabBcBDkUhEnTt3VkFBgbp06RLYFRdNmLwAfFZWVqZp06bpxhtvVEFBgenmBAKZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J68A2WWnZ2tgw8+WAcffLAcx1E8HpetG7GUl5drxowZuuGGG9StWzfTzUk5W+qzpY50k5GRYd19RNg2Cr4yvdQoHUSjUW3dulV9+vRRVhbzh21BZuHIwIYabagBAEziOoogYbyGA/1sBrknj8xctudgS3221BEGpj/LZfICvjI94AEAAAAAAAAArTP9WW6Gb2cCIEmqrq7WM888o+rqatNNCQwyC0cGNtRoQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDniPyQvAZxkZGSooKFBGBn/92orMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95j2yj4yvRSIwAAAAAAAABA60x/lsv0FuCzhoYGrVy5Ug0NDaabEhhkFo4MbKjRhhoAwCSuowgSxms40M9mkHvyyMxlew621GdLHfAekxeAz+rq6rRo0SLV1dWZbkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2wbBV+ZXmoEAAAAAAAAAGid6c9yWXkB+MxxHNXV1Yl5w7Yjs3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3mLwAfFZeXq577rlH5eXlppsSGGQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B7bRsFXppcapYNYLKadO3fqkEMOUWZmpunmBAKZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J48MnPZnoMt9dlSRxiY/iyXyQv4yvSABwAAAAAAAAC0zvRnuWwbBfisqqpKs2bNUlVVlemmBAaZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7zH5AXgs6ysLPXv319ZWVmmmxIYZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wHttGwVemlxoBAAAAAAAAAFpn+rNcVl4APquvr9fy5ctVX19vuimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7zF5AfisoaFBK1euVENDg+mmBAaZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7zHtlHwlemlRgAAAAAAAACA1pn+LJeVF4DP4vG4ysrKFI/HTTclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64D0mLwCfVVRUaNq0aaqoqDDdlMAgs3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DYKvjK91CgdxONxVVRUqGvXrsrIYP6wLcgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y6wsD0Z7lZvp0JgCQpIyNDBQUFppsRKGQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B5TW4DPKisrNX36dFVWVppuSmCQWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7TF4APsvOztbw4cOVnZ1tuimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB73HPixQrLi7WP/7xDy1evFirVq3S5s2bVVVVpfz8fPXp00ennXaaxo8frzPOOCPpY69YsUIzZ87UokWLtHXrVklSnz59NHr0aF199dU6+eSTkz7m5s2b9eijj2revHmJth522GE64YQT9J3vfEdjx45VJBJJ+rj7Y3qfNAAAAAAAAABA60x/lsvKixR5//33deqpp+qII47Q9773PT355JP68MMPVVZWpmg0qj179mjVqlV66KGHNHr0aJ155pnavHlzm47d0NCgG2+8UaeeeqoefPBBrVu3TpWVlaqsrNS6dev04IMP6tRTT9XNN9+sxsbGNrf5kUce0eDBgzVlyhS99957+vzzz1VXV6eNGzfq+eef18UXX6xzzz1XJSUl7Y0FLairq9OiRYtUV1dnuimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7zF5kSIfffSR3n777WY/GzhwoC6++GJ973vf02WXXaY+ffoknlu0aJFOO+00bdy4sdVjX3/99frjH/+opkUyRx55pMaPH6/x48fryCOPlCQ5jqOpU6fq+9//fpva++ijj+q6665TdXW1JKmgoEAXX3zxPis4/vnPf+q8885TVVVVm46L1kWjURUXFysajZpuSmCQWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7bBuVIs8884yuuOIKHXXUUbruuut05ZVX6vDDD2/2mng8rlmzZuk///M/VVNTI0kaMWKEli1btt+tmR599FFde+21kqSMjAz94Q9/0I9//GNlZGQkjvnHP/5RP/3pTxWPxyVJs2fP1oQJE/bb1o8++kjDhg1LrNL4zne+oxkzZqhz586J17z++uu69NJLtWfPHknS1VdfrUcffbQ90TRjeqkRAAAAAAAAAKB1pj/LZeVFivTu3VszZ87U+vXrddttt+0zcSG5kw/XXHONnnjiicTPli9frldffbXFY9bX1+uOO+5IPL711lt10003JSYumo5500036ZZbbkn8bPLkyWpoaNhvW3/9618nJi5GjRqlxx57rNnEhSSdddZZevLJJxOPH3vsMa1bt26/x0TbxWIxlZSUKBaLmW5KYJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtMXqTIGWecoauuukqZmZmtvvbb3/62TjnllMTjl19+ucXXvfTSS9qyZYskqVu3bvr1r3+932NOnjxZXbt2lSRt2rRpv8csLS3V888/n3h87733NpsM2dv555+vc845R5J7UZk+ffoBqkJbVVZWasaMGaqsrDTdlMAgs3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DbKkJ/85Cf67//+b0nShRdeqJdeemmf13znO9/RU089JUn63ve+pxkzZhzwmNdff70efvhhSdJ3v/tdPfbYY/u85i9/+Yu+973vSXLvyfHRRx8d8JhPPvmkrrzySklSv379tGnTplYqOzDTS43SgeM4qq+vV05Ozn63C0NzZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx1hYPqzXFZeGLL3X8z9LZF64403Et+PHj261WOeeeaZie9ff/31lB9z8+bN+ve//93qe3BgkUhEubm5XJyTQGbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7zF5YciqVasS3/ft23ef58vLy7V9+/bE46985SutHnPv13z22WeqqKjY5zV737eiLcc87LDDVFhY2OL70T4VFRWaOnVqi/2DlpFZODLYb42OI9VVSNW73D/TeMFgGPoJALzEdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeyzLdgDDavHlzs5URTfeV2NuXt3Pq169fq8f98ms++ugjnXzyyfs9blFRUZva269fP5WWlkqS1q9frwsvvLBN70PLcnNzNXr0aOXm5ppuSmCQWTgyaFZj6Rpp1Rzps3el7R9IdWV7vbBA6n28dPiJ0rBxUuFgU03eRxj6CQC8xHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3mPywoCf/OQnia2i+vXr1+JkwK5duxLfd+3aVQcddFCrx83Ly1N+fn7iZje7d+9u9nxtba1qa2sTj/deUXEgvXr1Snz/5WMiednZ2Ro+fLjpZgQKmYUjg+zsbA3PK5We+Lm0edn+X1hXJn262P1a8oDUb6T01Zulgef61tb9CUM/AYCXuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2wb5bPZs2fr+eefTzy+6667lJOTs8/rqqqqEt+3ZeKipdfufYyWHrf1uAc6Znvl5uaqS5cuktx7fpSVlanp3vEVFRVqaGiQ5E64VFdXS5Ki0ajKysoSxygvL1djY6MkqaamRjU1NZKkxsZGlZeXJ15XVlamaDQqSaqurk5M4DQ0NCSWpzmOo7KyssSkUlVVlerq6iRJ9fX1iQmheDyusrIyxeNxSVJlZaXq6+slSXV1dYl8DlTT7t27NW/ePNXW1lpTk9f9tGPHDi1YsEA1NTXW1JRsP1VXV+vFF19MtMmGmpr1U81u7XjiBv39qemq3fye6pSjKuW5NSlDZeqqps2iKtRFDerk1qRcVW9+X3pqnKLPXaey7cX0k5f9RE3URE3U5HFNlZWVevHFFxNtsqEmG/uJmsoT73/xxReb/XdA0GuysZ86WlNtba3+/ve/a8eOHdbUFIR++vzzz/X3v/9dtbW11tTkdT/t3LlTCxYsUFVVlTU1taefSkpKtGDBAtXW1lpT0979VFpaqpdfflm1tbWBrsn2frKxJlOYvPDRO++8o+9///uJx1dccYXGjx/f4mubBqHkzka21d4TIXuvsvjyMZM57oGO2V4jRozQpZdeKknauXOnpk2blvgL9eijj2rt2rWSpMWLF2vevHmSpK1bt2ratGmJYzz44IP65JNPJEmvvvqqXn31VUnSJ598ogcffDDxumnTpmnr1q2SpHnz5mnx4sWSpLVr1+rRRx+V5P5lnzZtmnbu3ClJmjNnjpYvXy5Jev/99/Xkk09Kcv9CT5s2LXEBefLJJ/X+++9LkpYvX645c+a0WtPSpUu1YcMGxeNxa2ryup+efPJJlZWVqba21pqaku2n8vJyrVy5MvGPnA01JfrpkxXSgyM159/Z2qzDFVdEy/UVzdEFbk3qqWmR61Qv91r0qP5Da3W0W5NGaJ6+7ta05k1Ne2i2u+UU/RSqawQ1URM12VXTypUrE//TZUtNNvYTNbkfEqxcudKqmmzsp47WFI/HtXnz5kRbbagpCP20cOFCbdy4UfF43JqavO6nl156SWVlZVbV1J5+mjFjRuIDXFtq2rufZs6cqW3btikejwe6Jtv7ycaajHHgi40bNzq9evVyJDmSnOOOO84pLy/f7+ufffbZxGsLCwvbfJ5DDz008b45c+Y0e27Hjh2J5yQ569ata9MxL7vsssR7fvSjH7W5LS1ZvXq1I8nJzc11unTp4qxevdqJRqPOnj17nHg87jiO45SXlzv19fWO4zhOTU2NU1VV5TiO4zQ2Njp79uxJHKusrMxpaGhwHMdxqqurnerqasdxHKehocEpKytLvG7Pnj1OY2Oj4ziOU1VV5dTU1DiO4zj19fWJPojH486ePXucaDTqOI7jVFZWOrW1tY7jOE5dXZ1TUVHhOI7jxGIxZ8+ePU4sFnMcx3EqKiqcuro6x3Ecp7a21qmsrHQcx6EmaqKmtta0YbkT+32R49ze1am4vbdTd/vBjnN7V6f29kOcytt7Oc7tXZ3o7QXOntv7OPHbuzrO7V2d8tsPc+pv7+k4t3d1am4/1Km6vdBxbu/qNN7e3dlzex/Huauf45Sspp+oiZqoiZqoiZqoiZqoiZqoiZqoiZqoiZo6UFPTZ7lNX6tXr3b8FHEcx2lhTgMptH37dp1++umJGbcjjzxSS5YsUe/evff7nldeeUVjxoyR5N7zYu8lRQfStWvXxHKhBQsW6Lzzzks8V1tbq7y8vMTj9957TyeccEKrx7zooosSs24/+9nPdNddd7WpLS1Zs2aNhg4dmni8evVqDRkypN3HC6JoNKqtW7eqT58+ysritjNtQWaWZlCzW3pwpFS5XZIUVaa2qrf6aLuyFOvYsfN7S5OWSXk9UtDQtrOynwDAR1xHESSM13Cgn80g9+SRmcv2HGypz5Y6wsD0Z7lsG+WxXbt26etf/3pi4qJ379765z//ecCJC0nq2bNn4vuKiop9tnxqSU1NTWLiQpJ69Gj+od1BBx3U7P4VpaWlbaqhpKRkv8dE8qqqqjR79uyU3T8kDMjM0gzm35KYuJCkKnXW7MhlqlLnjh+7crv0yq0dP06SrOwnAPAR11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j5UXHqqoqNBZZ52ld999V5J08MEHa/HixRo8eHCr7y0vL1dBQUHi8fr163XMMccc8D3r16/Xscce2+wYXbt2bfaaE044QStXrpQkTZ8+XTfccEOrbenVq1diouOll17ShRde2Op79sf0bB2ANLFhofTUZd6fZ/yz0sDzWn8dAAAAAAAAmjH9WS4rLzxSXV2tMWPGJCYuunXrpgULFrRp4qLp9Xuvzmi6wcqBvPfee4nvDz/88H0mLiQ1m9xoyzG3bdvWbIXG3u8HgHZbMtWf8yxNg5tLAQAAAAAAIGlMXnigrq5OF110kZYuXSpJysvL08svv6wTTzwxqeOceeaZie8XLVrU6uub7kgvSWeddVbKj9mvXz8dddRRrb4HB1ZeXq677767zfcxAZlJlmVQukbavGyfH5crX3frBypXfurOtWmpVLo2dcdrhVX9BAAGcB1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8SLHGxkZdcsklev311yVJOTk5evHFFzVq1KikjzV27NjE93/9619VW1u739fW1tbq2WefbfG9e7vooouUkeF2+0cffaTly5cfsA2zZs1KfP+tb32r9UajVXl5eRo7dmyzm6fjwMjMkgz2bHK/VjzS4tN5qtVYLVSe9n+ta5d3Wj6fF6zoJ0CSHEeqq5Cqd7l/sssofMJ1FEHCeA0H+tkMck8emblsz8GW+mypA97jnhcpFIvFdPnll2vOnDmSpKysLD3//PO66KKL2nW8+vp6HXXUUdq6dask6Ze//KV++9vftvjaX/ziF7rrrrskSUVFRdqwYYOys7NbfO24ceMSbTz99NO1ePFiRSKRfV736quv6rzz3L3iMzMz9eGHH7Z526v9Mb1PGgCD7uhm8Nz8NgfQqtI10qo50mfvSts/kOrKvngut0Dqfbx0+InSsHFSYcf+ewAAAAAAkP5Mf5bLyosUcRxH1157bWJSICMjQ48//ni7Jy4kd9XGlClTEo/vuusu/fGPf1Q8Hk/8LB6P649//KPuueeexM/uvPPO/U5cSNJvfvMbderUSZL0r3/9SxMnTlR1dXWz17zxxhsaP3584vGECRM6PHEBV01NjebOnauamhrTTQkMMgtHBjXK1Vydpxrlpv7gPs3Th6GfYKENC6VHz5ceHCkteUD6dHHziQvJffzpYvf5B09zX7/hVROtheW4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7WaYbYIsHH3xQs2fPTjweMGCAlixZoiVLlrTp/X/6059a/Pk111yjRYsW6fHHH1c8HteNN96oP/7xjxoxYoQkafny5frkk08Sr7/66qs1YcKEA55r0KBBevDBB3XddddJkh5//HH9/e9/11lnnaWuXbtq7dq1euuttxKvP+644zRtGje9BRBgDVVSTgrvpQHYoGa3NP8WafWc5N+7eZn01DJ3Fcb590p5PVLfPgAAAABAqLFtVIrccccdzVZJJOtA3dDQ0KCf/vSn+vOf/7zf10UiEf3nf/6n7r///sSqitY8/PDDuummm/ZZdbG3s88+W48//rh69+7dpmO2xvRSIwAGmdw26paNUuee5s4PpJuS1dKTl0qV2zt+rPze0pXPS4X8ew4AAAAANjH9WS7bRgVAdna2/ud//kfLly/XDTfcoGOOOUZdunRRly5ddMwxx+iGG27QW2+9pWnTprV54kKSrrvuOq1du1aTJ0/WCSecoJ49eyonJ0f9+/fXxRdfrBdeeEH/+Mc/UjZxAVdjY6PWr1+vxsZG000JDDILRwaNytJ6DVCjF4sCs/a/lV4qhaGfYIGS1dKsC1IzcSG5x5k5xr1nBtBBXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPSYvUuSOO+6Q4zjt/mqLU045RdOnT9f69etVWVmpyspKrV+/XtOnT9fJJ5/crnb369dPU6ZM0XvvvafPP/9cdXV1+vTTT/X888/r29/+dos38kbHsK9f8sgsHBnU6KD/u+fFQak/eHaX1B+zBWHoJwRczW53xcWX72nRUXVl0hOXuMcHOoDrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7zHtlHwlemlRgAM2rPJ/fOF66Utbx34tanUd4R07UL/zgeksznXtu8eF201bJx0ycPeHR8AAAAA4BvTn+Wy8gIA4I/uRe5X0Sh/z9vf5/MB6WrDQm8nLiRp1XPueQAAAAAA6CAmLwCflZWVacqUKSorKzPdlMAgM8MZOI5UVyFV73L/7OiCvWGXtvjjMnXVlMhPVKauHTv+lw1t+XxeYKwirS2Z6s95lk7z5zywEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeI9to+Ar00uN0kE0GtXWrVvVp08fZWV5cGNiC5GZgQxK10ir5kifvStt/6D5/vi5BVLv46XDT3S3iCkcnPzxHz1f2rys2Y+iytRW9VYfbVeWYh1qfkLRKOnq+ak5VhswVpG2StdID47073yT3mzftQGhx3UUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDEx/lsvkBXxlesADaMWGhe5vZ39pYuGA+o2UvnqzNPDc5M7z1GVJNy9p459Lrl2AbZruNbN0mvTOI/6d9+TrpAv+4N/5AAAAAAApZ/qzXLaNAnxWXV2tZ555RtXV1aabEhhk5kMGNbvdG/k+dVlyExeS+/qnxknPX+cepy0GnrfPdk7VOkjP6CJV66Dkzr8/w8b5PnHBWEXamXac++XnxIUkreCm3WgfrqMIEsZrONDPZpB78sjMZXsOttRnSx3wHpMXgM8yMjJUUFCgjAz++rUVmXmcQclqdzuZjt7Id9Vz7nFK17Tt9WPuk/J7Jx5myFGBKpShFCwIzO8tnX9vx4+TJMYqsBcW96IduI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2wbBV+ZXmoE4EtKVkuzLmh+T4uOyi1w7zNR2Ia/26VrpJljzJ0fsN0d3cyd++dbpZx8c+cHAAAAAHSI6c9ymd4CfNbQ0KCVK1eqoaHBdFMCg8w8yqBmt/TkpamdOJDc4z1xSdu2kCoc4k405PdWgzpppQarQZ3af+783kYnLhirwF6i/D1A8riOIkgYr+FAP5tB7skjM5ftOdhSny11wHtMXgA+q6ur06JFi1RXV2e6KYFBZh5lMP8WqXJ76o63t8rt0iu3tu21hUOkSctUN+gSLdJpqlNO+845bJw0aZnRFReMVWAvWdmmW4AA4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB77FtFHxleqkRgP+zYaF7c26vjX/WvTl3W21YKC2dJm1a2vb3FI2SRt3k+825gUAwuW3U7WVSJGLu/AAAAACADjH9WW6Wb2cCIElyHEf19fXKyclRhA912oTMPMhgydSOH6Mtlk5r8+SF4ziq73eGco4+V5Ed69wbiH/2rrRtZfOtrXILpMOGS4efKA29VCoc7EHD24exirRz44funy9cL215y7/z9h3BxAXahesogoTxGg70sxnknjwyc9megy312VIHvMe2UYDPysvLdc8996i8vNx0UwKDzFKcQekaafOyjh+nLTYtlUrXtumlzWosHCydPVma8KJ0W7F7499bNrp/3lbs/vzsyWk1cSExVpGGuhe5X0Wj/D1vf5/PB2twHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DYKvjK91CgdxGIx7dy5U4cccogyMzNNNycQyCxFGezZ5P65dJr0ziOpa1xrTr5OGvlj9wPUA7Chn22oAZYqXSM9ONK/8016M+0mFxEMXEcRJIzXcKCfzSD35JGZy/YcbKnPljrCwPRnuUxewFemBzwQaib3vpekO/iNCsCoR8/3Z9VV0Sjp6vnenwcAAAAA4CnTn+WybRTgs6qqKs2aNUtVVVWmmxIYZBaODGyo0YYaYLGv3uTPeUb5dB5YiesogoTxGg70sxnknjwyc9megy312VIHvMfkBeCzrKws9e/fX1lZWaabEhhkFo4MbKjRhhpgsYHnuTe599KwcdLAc709B6zGdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeY9so+Mr0UiMg1Ng2CkDNbvfeF5XbU3/s/N7SpGVSXo/UHxsAAAAA4DvTn+Wy8gLwWX19vZYvX676+nrTTQkMMgtHBjbUaEMNsFxeD+nK56XcgtQeN7fAPS4TF+ggrqMIEsZrONDPZpB78sjMZXsOttRnSx3wHpMXgM8aGhq0cuVKNTQ0mG5KYJBZODKwoUYbakAIFA5xb6id3zs1x8vv7R6vkJWU6DiuowgSxms40M9mkHvyyMxlew621GdLHfAe20bBV6aXGgGhtmeT++cL10tb3vLvvH1HSBc/JHUv8u+cAFpXs1t65VZp1XPtP8awcdL597LiAgAAAAAsZPqzXFZeAD6Lx+MqKytTPB433ZTAILMUZdC9yP0qGpW6hrVF/1FtmriwoZ9tqAEhktdDuuRhafyzyV8XikZJ459z38/EBVKI6yiChPEaDvSzGeSePDJz2Z6DLfXZUge8x+QF4LOKigpNmzZNFRUVppsSGGSW4gyGXdrxYyRjaNvOZ0M/21ADQmjgee62T5PelE7/qXTk6H3viZFb4P789J+6r7t6vjTwXP/bCutxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DYKvjK91CgdxONxVVRUqGvXrsrIYP6wLcjMgwwePV/avKzjx2lN0Sj3Q842sKGfbagBkCQ5jtRQJUUbpKxsKbuLFImYbhVCgOsogoTxGg70sxnknjwyc9megy312VJHGJj+LJfRAfgsIyNDBQUFXJyTQGYeZPDVm1JznNaMavt5bOhnG2oAJLkTFTn5Uuee7p9MXMAnXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPUYI4LPKykpNnz5dlZWVppsSGGTmQQYDz2vzdk7tNmxcUtvK2NDPNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3mLwAfJadna3hw4crOzvbdFMCg8w8ymDMfVJ+79Qdb2/5vaXz703qLTb0sw01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPe55AV+Z3icNwJeUrpFmjpHqylJ3zNwC9z4XhfzdBtBOjiPVV0qxRimzE1tXAQAAAIABpj/LZeUF4LO6ujotWrRIdXV1ppsSGGTmYQaFQ9yJhlStwMjv3e6JCxv62YYaAGNK10j/nCLNvki6p790d1/pviPdP+/p7/78n1Ok0rWmWwoPcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHwWjUZVXFysaDRquimBQWYeZ1A4RJq0zL1HRUcMG+cep50rLmzoZxtqAHy3YaH06PnSgyOlJQ9Iny7edzVYXZn78yUPSA+e5r5+w6smWguPcR1FkDBew4F+NoPck0dmLttzsKU+W+qA99g2Cr4yvdQIQCs2LJSWTpM2LW37e4pGSaNuSurm3ACgmt3S/Fuk1XPaf4xh49z76+T1SF27AAAAAACSzH+Wy8oLwGexWEwlJSWKxWKmmxIYZOZjBgPPc7d9mvSmdPpPpSNHu/ew2Ftugfvz03/qvu7q+SmZuLChn22oAfBFyWp3pUVHJi4kadVz7nFK16SmXTCO6yiChPEaDvSzGeSePDJz2Z6DLfXZUge8x+QF4LPKykrNmDFDlZWVppsSGGRmIIPCwdLZk6UJL0q3FUs/3yrdstH987Zi9+dnT3ZflyI29LMNNQCeK1ktzbpAqtyemuNVbpdmjmECwxJcRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOuA9to2Cr0wvNUoHjuOovr5eOTk5ikQippsTCGQWjgxsqNGGGgBP1ex2V0qkauJib/m93fvusIVUoHEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqCAPTn+Wy8gLwWSQSUW5uLhfnJJBZODKwoUYbagA8Nf8WbyYuJPe4r9zqzbHhG66jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B6TF4DPKioqNHXqVFVUVJhuSmCQWTgysKFGG2oAPLNhYcfvcdGaVc+550FgcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHyWm5ur0aNHKzc313RTAoPMwpGBDTXaUAPgmSVT/TnP0mn+nAee4DqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB73HPC/jK9D5pAADAgNI17r0u/DLpTalwsH/nAwAAAAALmf4sl5UXgM9qa2u1YMEC1dbWmm5KYJBZODKwoUYbagBSZs+mL75WPOLvud/x+XxIGa6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8F6W6QYAYROPx1VWVqZ4PG66KYFBZuHIwIYabagBSJlpx5k794qHpQv+YO78aDeuowgSxms40M9mkHvyyMxlew621GdLHfAe20bBV6aXGgEAAJ/c0c3s+W8vkyIRs20AAAAAgAAz/Vku20YBPotGoyouLlY0GjXdlMAgs3BkYEONNtQAWKOhynQL0A5cRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOuA9Ji8An1VVVWn27NmqquJDlbYis3BkYEONNtQAWCPaYLoFaAeuowgSxms40M9mkHvyyMxlew621GdLHfAe20bBV6aXGgEAAJ+Y3jbq51ulnHyzbQAAAACAADP9WS4rLwAAAGCf7C6mWwAAAAAA6AAmLwCflZeX6+6771Z5ebnppgQGmYUjAxtqtKEGIGVu/PCLr76n+nvuviO4WXdAcR1FkDBew4F+NoPck0dmLttzsKU+W+qA97JMNwAIm7y8PI0dO1Z5eXmmmxIYZBaODGyo0YYagJTpXvTF90WjpC1v+Xfu/qP8OxdSiusogoTxGg70sxnknjwyc9megy312VIHvMc9L+Ar0/ukAQAAA0rXSA+O9O98k96UCgf7dz4AAAAAsJDpz3LZNgrwWU1NjebOnauamhrTTQkMMgtHBjbUaEMNgCcKh0j9fJq8KBrFxEWAcR1FkDBew4F+NoPck0dmLttzsKU+W+qA99Jy26h4PK63335bb7/9tj744AMVFxerpKRE1dXVkqTOnTurV69e6t+/v44//nidcsopOuWUU5SRwVwMAABAWvrqTdJTy7w/z6ibvD8HAAAAAMBzabNtVCwW04IFC/TEE09o4cKFSd+wpVu3bjrvvPP0ne98R+eff74yMzM9aik6wvRSIwAAYNCca6XVc7w7/rBx0iUPe3d8AAAAAAgR05/lGl+qUFZWprvuuktFRUW66KKL9Oyzz6qsrEyO4yT1VVZWpmeffVbf+ta31K9fP911113as2eP6fKAfTQ2Nmr9+vVqbGw03ZTAILNwZGBDjTbUAHhqzH1Sfm9vjp3fWzr/Xm+ODd9wHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3jE1e1NTU6De/+Y2OOOII/epXv9L27dsTExGRSETHHnusrrjiCt1555165JFH9OKLL+of//iHXn31Vb344ot6+OGHNWXKFF1++eU69thjFYlEEu/fvn27fvWrX+mII47Qb37zm8R2U0A6YF+/5JFZODKwoUYbagA8lddDuvJ5KbcgtcfNLXCPm9cjtceF77iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtGto16+umndeutt2rbtm1qOn1+fr6++c1v6tvf/rbOPPNM9ezZM6lj7tq1S2+88Yb+9re/6eWXX1ZFRYUkKRKJqHfv3rr//vt1+eWXp7wWJMf0UiMAAJAGStdIT1wiVW7v+LHye7sTF4X89wQAAAAApJLpz3KNTF7sfWPtU045RZMmTdJll12mgw46KCXHr6ur01//+lc9+OCDevvttxPnjEajKTk+2s/0gAcAAGmiZrf0yq3Squfaf4xh49ytolhxAQAAAAApZ/qzXGPbRo0ePVqvv/66li9frokTJ6Zs4kKScnNzNXHiRC1fvlyvv/66Ro8erTS5LzmgsrIyTZkyRWVlZaabEhhkFo4MbKjRhhoA3+T1cG+uPf5ZqWhUcu8tGiWNf859PxMXVuE6iiBhvIYD/WwGuSePzFy252BLfbbUAe8ZWXmxcOFCnXfeeb6e89VXX9W5557r6zmxL9OzdekgGo1q69at6tOnj7Kyskw3JxDILBwZ2FCjDTUAxpSulVbPkT57V9q2Uqor++K53ALpsOHS4SdKQy+VCgebaSM8x3UUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDEx/lmtk8gLhZXrAAwCAAHAcqaFKijZIWdlSdhcpEjHdKgAAAAAIFdOf5RrbNgoIq+rqaj3zzDOqrq423ZTAILNwZGBDjTbUAKSFSETKyZc693T/ZOIiNLiOIkgYr+FAP5tB7skjM5ftOdhSny11wHtMXgA+y8jIUEFBQbMb1+PAyCwcGdhQow01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgvcBvG9XY2Kjdu3erZ8+e7JEWAKaXGgEAAAAAAAAAWmf6s9y0nN7auHGjNm7cqM8++2y/r/n3v/+tiy66SPn5+TrssMN00EEH6fzzz9eaNWt8bCmQvIaGBq1cuVINDQ2mmxIYZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wXtpNXqxYsUJHH320jj76aN11110tvmbLli067bTT9PLLL6uhoUGO4ygWi2nhwoU69dRT9dZbb/ncaqDt6urqtGjRItXV1ZluSmCQWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7abdt1O23367f/OY3ikQievvtt3XiiSfu85px48bp+eefVyQSUUvNHzBggNauXatOnTr50WQkwfRSIwAAAAAAAABA60x/lpt2Ky+aVk0cfPDBLU5cfPbZZ3rhhRcUiUSUl5enJ554QhUVFVq9erVOOukkSe62U88++6yv7QbaynEc1dXVtTjxhpaRWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7aTd58cknnygSiej4449v8fm5c+cmBvZtt92m8ePHq0uXLho8eLCeeOKJxOteeuklX9oLJKu8vFz33HOPysvLTTclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64L202zaqa9euqq6u1oQJEzRz5sx9nt97y6jNmzfr8MMPb/b8KaeconfeeUdHH320PvroI7+ajTYyvdQoHcRiMe3cuVOHHHKIMjMzTTcnEMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y6wsD0Z7lpt/KitrZWkpSXl9fi80uWLFEkEtHgwYP3mbiQpCOPPFKSVFJS4l0jgQ7IzMxUr169uDgngczCkYENNdpQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3ku7yYvc3FxJUlVV1T7PffLJJyotLZUknX766S2+v3v37pKkmpoaj1oIdExVVZVmzZrV4hhHy8gsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64L20m7w49NBDJUnr1q3b57mFCxcmvh85cmSL76+oqJC0/5UbgGlZWVnq37+/srKyTDclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64L20u+fFJZdcor/97W/KzMzUunXrdNRRRyWeO/XUU7VixQpFIhFt2rRJffr02ef9p512mt566y0dc8wxLU6AwCzT+6QBAAAAAAAAAFpn+rPctFt58e1vf1uSFI/H9e1vf1tvvPGGVq1apR/+8IeJiYtTTjmlxYmLxsZGffjhh4pEIjrmmGP8bjrQJvX19Vq+fLnq6+tNNyUwyCwcGdhQow01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgvbSbvLj88ss1aNAgSdLatWt1zjnnaPjw4Zo+fXriNT/72c9afO9rr72WuOH3Kaec4n1jgXZoaGjQypUr1dDQYLopgUFm4cjAhhptqAEATOI6iiBhvIYD/WwGuSePzFy252BLfbbUAe+l3bZRkrRhwwadc8452rp16z7P/fjHP9bUqVNbfN93vvMdPf3004pEIlqyZIlOO+00j1uKZJleagQAAAAAAAAAaJ3pz3LT8q4oAwcO1Nq1a/Xoo4/qX//6lyoqKtS3b19ddtllOvfcc1t8z65du7RixQoVFRUpPz9fI0aM8LnVQNvE43FVVFSoa9euyshIu8VPaYnMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95L29HRpUsX/fjHP9Zzzz2nhQsX6uGHH97vxIUk9ezZUxs2bNCnn36auO8FkI4qKio0bdo0VVRUmG5KYJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtpuW0U7GV6qVE6YHY5eWQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sdYWD6s9y03DYKsFlGRoYKCgpMNyNQyCwcGdhQow01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPaa2AJ9VVlZq+vTpqqysNN2UwCCzcGRgQ4021AAAJnEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqgPeYvAB8lp2dreHDhys7O9t0UwKDzMKRgQ012lADAJjEdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPe454X8JXpfdIAAAAAAAAAAK0z/VkuKy8An9XV1WnRokWqq6sz3ZTAILNwZGBDjTbUAAAmcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHwWjUZVXFysaDRquimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB77FtFHxleqkRAAAAAAAAAKB1pj/LZeUF4LNYLKaSkhLFYjHTTQkMMgtHBjbUaEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j8kLwGeVlZWaMWOGKisrTTclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64D22jYKvTC81SgeO46i+vl45OTmKRCKmmxMIZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx1hYPqzXGMrLyZNmqQFCxaooaHBVBMAIyKRiHJzc7k4J4HMwpGBDTXaUAMQeo4j1VVI1bvcP/k9H19xHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3jE1ezJgxQxdccIF69uypiy++WLNmzdLOnTtNNQfwTUVFhaZOnaqKigrTTQkMMgtHBjbUaEMNQCiVrpH+OUWafZF0T3/p7r7SfUe6f97T3/35P6dIpWtNt9R6XEcRJIzXcKCfzSD35JGZy/YcbKnPljrgvSyTJ3ccR9XV1XrxxRf14osvKiMjQ6eccoouvPBCXXTRRRo8eLDJ5gGeyM3N1ejRo5Wbm2u6KYFBZuHIwIYabagBCJUNC6UlU6XNy/b/mroy6dPF7teSB6R+I6Wv3iwNPNevVoYK11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54z9g9Lz788EPNmzdPL730kt555x01NWPv5UJHHHFEYiLja1/7mjIzM000FSlkep80AAAA1eyW5t8irZ7T/mMMGyedf6+U1yN17QIAAACANGL6s1xj20Ydd9xx+uUvf6m33npL27Zt00MPPaQLL7xQubm5chxHjuNo48aN+uMf/6hzzjlHhxxyiMaPH6+nn35a5eXlppoNdFhtba0WLFig2tpa000JDDILRwY21GhDDYD1SlZLD47s2MSFJK16zj1O6ZrUtAuSuI4iWBiv4UA/m0HuySMzl+052FKfLXXAe8YmL/ZWWFio6667Ti+++KJ27dqll156Sddff7169+6dmMgoKyvTX//6V1155ZU69NBDdfbZZ2vq1KnauHGj6eYDSYnH4yorK1M8HjfdlMAgs3BkYEONNtQAWK1ktTTrAqlye2qOV7ldmjmGCYwU4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7xnbNqqt3nnnHb300kuaN2+ePvjgg8TP995eatCgQbrooot04YUXauTIkSaaiTYyvdQIAACEVM1ud6VEqiYu9pbfW5q0jC2kAAAAAFjF9Ge5abHy4kBOOukk3XnnnXr//fe1adMm/elPf9J5552n7OzsxKqM9evX695779Xpp5+uwsJCXXPNNfrb3/6mmpoa080H9hGNRlVcXKxoNGq6KYFBZuHIwIYabagBsNb8W7yZuJDc475yqzfHDhmuowgSxms40M9mkHvyyMxlew621GdLHfBe2k9e7K1v3776wQ9+oFdeeUWff/655syZowkTJqhnz56JiYydO3dq9uzZuvTSS3XwwQdrzJgxmjFjhummAwlVVVWaPXu2qqqqTDclMMgsHBnYUKMNNQBW2rCw4/e4aM2q59zzoEO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7ab9tVFs4jqM333wzsb3UunXrmj2fkZHBTF6aML3UCAAAhNCj50ubl3l/nqJR0tXzvT8PAAAAAPjA9Ge5gVp5sT+RSEQjR47U3XffrTVr1ujjjz/WAw88oNGjRysrK0sWzM8AAACgPUrX+DNxIUmblkqla/05FwAAAABYzorJiy8bMGCAbrrpJr3++uvauXOnnnzySdNNAhLKy8t19913q7y83HRTAoPMwpGBDTXaUANgjT2b3K8Vj/h73ncecc+LduE6iiBhvIYD/WwGuSePzFy252BLfbbUAe9ZsW0UgsP0UqN00NjYqE8++UQDBgxQp06dTDcnEMgsHBnYUKMNNQDWuKOb4fPzP2LtwXUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDEx/lsvkBXxlesADAICQYPICAAAAADrE9Ge5Vm4bBaSzmpoazZ07VzU1NaabEhhkFo4MbKjRhhoAwCSuowgSxms40M9mkHvyyMxlew621GdLHfAekxcAAAAAAAAAACCtsG0UfGV6qREAAAgJto0CAAAAgA4x/VkuKy8AnzU2Nmr9+vVqbGw03ZTAILNwZGBDjTbUAAAmcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHzGvn7JI7NwZGBDjTbUAFjjxg/dr76n+nveviPc87aX40h1FVL1LvfPkC2S5jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB77FtFHxleqkRAAAImX9OkZY84N/5Tv+pdPbk5N5TukZaNUf67F1p+wdSXdkXz+UWSL2Plw4/URo2TiocnMrWAgAAAMB+mf4sN8u3MwEAAAB+G3apv5MXQy9t+2s3LJSWTJU2L9v/a+rKpE8Xu19LHpD6jZS+erM08NyOthQAAAAA0hrbRgE+Kysr05QpU1RWVma6KYFBZuHIwIYabagBsE7hEPcDfz8UjWrbyoia3dKca6WnLjvwxEVLNi+TnhonPX+dexzLcB1FkDBew4F+NoPck0dmLttzsKU+W+qA99g2Cr4yvdQoHUSjUW3dulV9+vRRVhaLn9qCzMKRgQ012lADYKUNC92JAq+Nf671FRElq6UnL5Uqt3f8fPm9pSufdydoLMF1FEHCeA0H+tkMck8emblsz8GW+mypIwxMf5Yb+MmL4uJilZaW6tBDD9URRxxhujlohekBDwAAQmrOtdLqOd4df9g46ZKHD/yaktXSrAua39Oio3ILpKvnWzWBAQAAACA9mP4sN+22jXIcR6+//rpef/11vfPOO/t93ZtvvqnjjjtOAwYM0MiRI3XUUUdp8ODB+sc//uFja4HkVVdX65lnnlF1dbXppgQGmYUjAxtqtKEGwFpj7nNXKnghv7d0/r0Hfk3NbnfFRSonLiT3eE9cYs0WUlxHESSM13Cgn80g9+SRmcv2HGypz5Y64L20m7xYvHixzjnnHH3961/XCy+80OJrVq9erXPOOUdr1qyR4ziJr/Xr1+uCCy7Q3//+d59bDbRdRkaGCgoKlJGRdn/90haZhSMDG2q0oQbAWnk93C2WcgtSe9zcAve4eT0O/Lr5t6Rmq6iWVG6XXrnVm2P7jOsogoTxGg70sxnknjwyc9megy312VIHvJd220b97Gc/07333qtIJKLVq1fr2GOP3ec1X//61/Xaa68pEonIcRz16NFDVVVVamhokCQVFhbq448/VpcuXfxuPlpheqkRAAAIudI17koFP+854ds9N56VBp7n/XkAAAAAhILpz3LTbnprxYoVkqTevXu3OHHx8ccfJyYuevbsqSVLlujzzz9XSUmJvvGNb0iSduzYoaeeesrXdgNt1dDQoJUrVyYm29A6MgtHBjbUaEMNgPUKh0iTlrn3qOiIYePc47TlXhNLpnbsXG21dJo/5/EQ11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54L+0mLzZu3KhIJKLjjz++xedffPHFxPe//vWvNXLkSElSQUGB/vKXvySWG82fP9/7xgLtUFdXp0WLFqmurs50UwKDzMKRgQ012lADEAp5Pdyba49/Vioaldx7i0ZJ459z39/aVlGSu9Jj87L2tTNZm5ZKpWv9OZdHuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2m3bVSXLl1UW1urq666So888sg+z1944YV6+eWXlZmZqZKSEvXs2bPZ86effrqWLl2q/v37a+PGjX41G21keqkRAADAPkrXSqvnSJ+9K21b2fym2rkF0mHDpcNPlIZeKhUObtsx92xy/1w6TXpn3/+m9czJ10kjfyx1L/LvnAAAAACsZPqz3CzfztRGTTNuubm5LT6/bNkyRSIRDR8+fJ+JC0nq16+fli5dqp07d3raTqC9HMdRfX29cnJyFIlETDcnEMgsHBnYUKMNNQChVDhYKpzsfu84UkOVFG2QsrKl7C5Se/4+TzsutW1sqxUPu193lJs5fwdxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD30m7bqM6dO0uSysrK9nluzZo12rNnjyTpq1/9aovvz8/PlyTV19d700Cgg8rLy3XPPfeovDyYHyqYQGbhyMCGGm2oAQi9SETKyZc693T/5H+mfMV1FEHCeA0H+tkMck8emblsz8GW+mypA95Lu22jBg0apA0bNmjYsGH64IMPmj13//3369Zbb1UkEtFf//pXXXrppfu8/4orrtBf//pXdevWLTHRgfRheqlROojFYtq5c6cOOeQQZWZmmm5OIJBZODKwoUYbagCQInd0M3z+YP6PINdRBAnjNRzoZzPIPXlk5rI9B1vqs6WOMDD9WW7arbw48cQTJblBvPPOO4mfx+NxPfroo5KkSCSiM844o8X3b9iwQZLUp08fj1sKtE9mZqZ69erFxTkJZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wXtpNXlx22WWJ78eOHauZM2dq3rx5Gjt2rNavX69IJKKzzjpLhxxyyD7vra2t1Zo1axSJRHTsscf62WygzaqqqjRr1ixVVVWZbkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2l3w+5vfetbGjFihJYvX67t27fruuuua/Z8JBLRr3/96xbfO3/+fDU0NCgSiejUU0/1o7lA0rKystS/f39lZaXdX7+0RWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB76XdPS8kaceOHRozZozee++9Zj/PyMjQvffeq5/85Cctvu/CCy/Uyy+/rEgkonfffVfDhw/3obVIhul90gAAAHyxZ5P75wvXS1ve8u+8fUdIFz8kdS/y75wAAAAArGT6s9y02zZKkg499FC9/fbbmjt3rn7605/q+uuv15133qnVq1fvd+Ji165dqqmp0RlnnKELLriAiQukrfr6ei1fvlz19fWmmxIYZBaODGyo0YYaAKRI9yL3q2iUv+ftPyrQExdcRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOuC9tJy8kNxVFhdddJHuu+8+zZgxQ7/61a80aNCg/b6+Z8+eeu211/TGG2/opZde8rGlQHIaGhq0cuVKNTQ0mG5KYJBZODKwoUYbagCQYsMu9fd8Q30+X4pxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD30nLbKNjL9FIjAAAA3z16vrR5mffnKRolXT3f+/MAAAAACAXTn+Wm3cqLs846S2eddZb+53/+p13vnz59us466yydffbZKW4ZkBrxeFxlZWWKx+OmmxIYZBaODGyo0YYaAHjgqzf5c55RPp3HQ1xHESSM13Cgn80g9+SRmcv2HGypz5Y64L20m7xYtGiRFi9erI8//rhd7//kk0+0aNEiLVq0KLUNA1KkoqJC06ZNU0VFhemmBAaZhSMDG2q0oQYAHhh4nvfbOQ0bJw0819tz+IDrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7yXdttGZWRkKBKJ6Ic//KH++Mc/Jv3+W265RX/4wx8UiUQUi8U8aCE6wvRSo3QQj8dVUVGhrl27KiMj7eYP0xKZhSMDG2q0oQYAHqnZLT04Uqrcnvpj5/eWJi2T8nqk/tg+4zqKIGG8hgP9bAa5J4/MXLbnYEt9ttQRBqY/y7VudDQtN8rMzDTcEqBlGRkZKigo4OKcBDILRwY21GhDDQA8ktdDuvJ5KbcgtcfNLXCPa8HEhcR1FMHCeA0H+tkMck8emblsz8GW+mypA96zboRs3+7+NluXLl0MtwRoWWVlpaZPn67KykrTTQkMMgtHBjbUaEMNADxUOMS9oXZ+79QcL7+3e7xCe1axch1FkDBew4F+NoPck0dmLttzsKU+W+qA96yavNi6dasWLFigSCSiI4880nRzgBZlZ2dr+PDhys7ONt2UwCCzcGRgQ4021ADAY4VD3C2eho3r2HGGjXOPY9HEhcR1FMHCeA0H+tkMck8emblsz8GW+mypA94zes+La665Zp+fzZo1S5FIRIMGDdKpp57apuM0Njbqs88+01tvvaXa2lpFIhH95Cc/0X333ZfqJqODTO+TBgAAkDY2LJSWTpM2LW37e4pGSaNusuLm3AAAAADSm+nPcrN8O1MLmiYqvsxxHK1fv17r169v13Hz8/P1n//5nx1tHuCJuro6LV++XCNGjFBubq7p5gQCmYUjAxtqtKEGAD4aeJ77VbpWWj1H+uxdadtKqa7si9fkFkiHDZcOP1EaeqlUONhMW33CdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeM75tlOM4zb729/O2fo0cOVKvvfaa+vXrZ7AqYP+i0aiKi4sVjUZNNyUwyCwcGdhQow01ADCgcLB09mRpwovSbcXSz7dKt2x0/7yt2P352ZOtn7iQuI4iWBiv4UA/m0HuySMzl+052FKfLXXAe0a3jZo9e3azx47j6JprrlEkEtHZZ5+t73znO60eIxKJKDc3Vz179tTQoUNVWFjoVXORAqaXGgEAAAAAAAAAWmf6s1yj20ZNnDhxn5813Qdj0KBBLT4PBF0sFtPOnTt1yCGHKDMz03RzAoHMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA94zvm3Ul02YMEETJkzQiBEjTDcF8ERlZaVmzJihyspK000JDDILRwY21GhDDQBgEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeM/otlEIH9NLjdKB4ziqr69XTk5Oizesx77ILBwZ2FCjDTUAgElcRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOsLA9Ge5RreNAsKo6T4taDsyC0cGNtRoQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDngv7baNAmxXUVGhqVOnqqKiwnRTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95L+5UXK1as0Ntvv63i4mJVVFSosbGxTe+LRCJ65JFHPG4dkLzc3FyNHj2aGeYkkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2l7z4vnnntOv/jFL7Rx48Z2HyMWi6WwRUgF0/ukAQAAAAAAAABaZ/qz3LTcNmrKlCm6/PLLtXHjRjmO064vIF3V1tZqwYIFqq2tNd2UwCCzcGRgQ4021AAAJnEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqgPfSbtuoZcuWacqUKYpEInIcR507d9YFF1ygE044QT179lSnTp1MNxHokHg8rrKyMsXjcdNNCQwyC0cGNtRoQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDngv7baNGj9+vJ555hlFIhGdeeaZeuqpp3TooYeabhZSxPRSIwAAAAAAAABA60x/lpt220YtWbJEktStWzfNmTOHiQtYJxqNqri4WNFo1HRTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95Lu8mLHTt2KBKJ6KyzzlJBQYHp5gApV1VVpdmzZ6uqqsp0UwKDzMKRgQ012lADAJjEdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeS7tto3r16qWdO3fq+uuv1/Tp0003BylmeqkREFiOI9VXSrFGKbOTlJMvRSKmWwUAAAAAAABLmf4sN+1u2H300Udr586dKikpMd0UADCrdI20ao702bvS9g+kurIvnsstkHofLx1+ojRsnFQ42FQrAQAAAAAAgJRLu22jrrjiCjmOo3/961+qq6sz3Rwg5crLy3X33XervLzcdFMCI3SZbVgoPXq+9OBIackD0qeLVV4X0936gcqV776mrkz6dLH7/IOnua/f8KrRZneUDf1sQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDngv7SYvrr76ag0aNEhlZWX6zW9+Y7o5QMrl5eVp7NixysvLM92UwAhNZjW7pTnXSk9dJm1e1uypPNVqrBYqT7Utv3fzMumpcdLz17nHCSAb+tmGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8F7a3fNCktatW6dzzjlHJSUl+sUvfqFf//rXys7ONt0spIDpfdKAtFWyWnryUqlye8ePld9buvJ5qZC/WwAAAAAAAGgf05/lpt09Lx577DFJ0o9+9CPdeeed+v3vf6+//OUvuvDCCzVs2DB169ZNkTbepHbChAleNhVol5qaGr366qs699xzmWFuI+szK1ktzbqg+T0tvqRGuXpVZ+hcLVaeWtlSr3K7NHOMdPX8QE1g2NDPNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD30m7y4qqrrmo2OeE4jnbs2KFHH300qeNEIhEmLwCkv5rd7oqLA0xctEtdmfTEJdKkZVJej9QeGwAAAAAAAPBY2m0blZGRmttwRCIRxWKxlBwLqWN6qRGQduZcK62e493xh42TLnnYu+MDAAAAAADASqY/y027lRcTJ0403QTAU42Njfrkk080YMAAderUyXRzAsHazDYsbPPERaOy9ImKNECb1EnRtp9j1XPuBMbA89rZSP/Y0M821AAAJnEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqgPfSbvJi5syZppsAeKqmpkZz587VpEmT1K1bN9PNCQRrM1sytc0vrdFBmqvzNEmPq5sqkzvP0mmBmLywoZ9tqAEATOI6iiBhvIYD/WwGuSePzFy252BLfbbUAe+l3bZRsJvppUZA2ihdIz040r/zTXpTKhzs3/kAAAAAAAAQaKY/y03NDSYAAK3bs+mLrxWP+Hvud3w+HwAAAAAAANABTF4APisrK9OUKVNUVlZmuimBYU1m04774ivJyYQyddWUyE9Upq7tO/eK9L9ptw39bEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j22j4CvTS43SQTQa1datW9WnTx9lZaXdbWfSkjWZ3dH+fRyjytRW9VYfbVeWYu07yO1lUiTS7jZ4zYZ+tqEGADCJ6yiChPEaDvSzGeSePDJz2Z6DLfXZUkcYmP4sN+0mLx577LGUHWvChAkpOxZSw/SAB4zqwORFSvx8q5STb7YNAAAAAAAACATTn+Wm3dTWVVddpUgKfjM4EokweYG0VF1drXnz5unCCy9U586dTTcnEMhMqtZBmqev60L9Q51V276DRBuknNS2K5Vs6GcbagAAk7iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtpN3khSckuBolEIkm/BzAlIyNDBQUFysjgljNtRWZShhwVqEIZ6sC1Lis7dQ3ygA39bEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54L+22jbr66qvb9Lp4PK7y8nKtWrVKn376qSQpNzdX48aNSwz8mTNnetZOtI/ppUaAUaa3jUrze14AAAAAAAAgfZj+LDftVl60Z8LhnXfe0Y033qg333xTJSUleu6559S1a1cPWgd0XENDg9auXavBgwcrOzu9fxM+XViT2Y0ffvH9C9dLW95q81sb1ElrdbQG62NlqzH5c/cdkfYTFzb0sw01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPSvW5px00kn63//9X5177rn65z//yb0ukNbq6uq0aNEi1dXVmW5KYFiTWfeiL76KRiX11jrlaJFOU117b1rRP7nzmWBDP9tQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3ku7baM6YuvWrTrqqKPU2Nio5557ThdffLHpJuFLTC81AtJG6RrpwZH+nW/Sm1LhYP/OBwAAAAAAgEAz/VmuFSsvmvTp00ejRo2S4zjG7ncRi8X04Ycf6pFHHtGkSZN00kknKTs7W5FIRJFIRKNHj27zsYqLixPva+vXUUcdlVR7161bp1tuuUXHHXecevTooc6dO2vgwIGaOHGiXnvttSSrR1s4jqO6ujpuMp8EKzMrHCL1a/vkhSN39UW7EigaFYiJCxv62YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wnlWTF5I0YMAASdIHH3zg+7nnzp2rrl276vjjj9d1112n6dOn691331VjYzv2p/fB7373Ox1//PG6//77tWrVKu3Zs0c1NTX6+OOP9dhjj+mcc87R+PHjVVlZabqpVikvL9c999yj8vJy000JDGsz++pNbX5pubrqnsgPVa523M9nVNvPY5IN/WxDDQBgEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeM+qbaMkacKECXriiSeUnZ3t+75ps2bN0tVXX33A15xxxhlatGhRm45XXFysI444QpKUn5/fpnt5HHLIIbr99ttbfd3kyZP1m9/8JvG4d+/eOv3005Wbm6t3331Xa9asSTx37rnn6uWXX1ZWVsfv7256qVE6iMVi2rlzpw455BBlZmaabk4gWJ3ZnGul1XNafVlMGdqpnjpEu5SpeNuPP2ycdMnDHWigf2zoZxtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXWEgenPcjv+aXQaicfj+t///V9JUrdu3Yy1o7CwUCeffHLia+HChZo2bVqHjtmjRw/96U9/Skn7XnvttWYTF7fccot++9vfKjs7O/Gzp59+Wtdcc43q6ur06quv6ve//70mT56ckvOHXWZmpnr16mW6GYFidWZj7pM2LZUqtx/wZZmKq5d2Jnfs/N7S+fd2oHH+sqGfbagBAEziOoogYbyGA/1sBrknj8xctudgS3221AHvWbVt1K9+9Stt3rxZkUhEX/nKV3w//ze+8Q1t2rRJJSUlmjdvniZPnqzzzz9fBQUFvrflQH7+858nvr/88st17733Npu4kKQrrrhC//3f/514fP/99+vzzz/3rY02q6qq0qxZs1RVVWW6KYFhdWZ5PaQrn5dyCw74sirlaZbGqUp5bTtuboF73LweHW6iX2zoZxtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2m38mLz5s1tfm00GtWuXbu0cuVKzZ49W2+++WbiuYkTJ3rRvAMKwozhihUrtGLFCklSRkaG7r13/7+VfcMNN+iBBx7Qxx9/rMrKSj3++OO6+eab/WqqtbKystS/f/+UbMMVFtZnVjhEunq+9MQl+12BkaWY+murshRr/Xj5vd2Ji8JgbclmQz/bUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95LuxHSv39/RSKRDh1jzJgxuvzyy1PUIrvMnTs38f0555yjvn377ve1kUhEEydO1K9+9StJ0t/+9jcmL1IgNzdXo0ePNt2MQAlFZoVDpEnLpFdulVY9t8/TuarXaL3Zwhu/ZNg4d6uoAK24aGJDP9tQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3kvbbaMcx0n6KxKJ6Ac/+IHmzGn95rdh9cYbbyS+b8tF4swzz0x8v2zZMtXX13vRrFCpr6/X8uXLyTIJocksr4d7c+3xz0pFo5o9Va9sLdcJqld2y+8tGiWNf859fwAnLiQ7+tmGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8F7arbzo169fm1dedOrUSV27dlX//v116qmn6j/+4z/Ur18/j1toRjQa1T/+8Q+98847+vzzz5Wbm6uDDz5YJ510kk455RTl5OS06Tjr1q1LfN+W+4KccMIJie9jsZg2bNigYcOGJV8AEhoaGrRy5UoNGTKkzf0WdqHLbOB57lfpWmn1HOmzd9Xw2UdaWT9EQ7RBOWpw72lx2HDp8BOloZdKhYNNt7rDbOhnG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7EcdxHNONsN0dd9yhKVOmSJLOOOMMLVq0qE3vKy4u1hFHHNHq67p3764f/OAH+tnPfqYuXbrs93U7duxQYWFh4vG6des0aNCgVo9/6KGHaufOnZKkZ599VuPGjWtD61u2Zs0aDR06NPF49erVGjIkWPvyA0Y4jtRQJUUbpKxsKbuL1MEt9gAAAAAAAID9Mf1ZbtpuG4W227Nnj373u9/ppJNO0oYNG/b7ul27djV7vPdExoHsfSPy3bt3t6+RSIjH4yorK1M8HjfdlMAgMynuOCqrjSl+UHcpJ9/KiQsb+tmGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B6TF2kuPz9fV111lZ555hl99NFHqqqqUn19vbZs2aLnnntO55xzTuK1H330kb7xjW8kVkl8WVVVVbPHBx10UJvasPfrvnyM9srNzU2sEonFYiorK1PTIqCKigo1NDRIkmpra1VdXS3J3TqrrKwscYzy8nI1NjZKkmpqalRTUyNJamxsVHl5eeJ1ZWVlikajkqTq6mrV1tZKcpeoVVRUSHLvsVJWVqZYLJaos66uTpK7D19lZaWkfS+ulZWVif35/j97dx5fRXX3D/wzyc2+EoGETQIIRFkSBEIERcAF0AqWslVUlloR/SlWi9tTFfTpU0XbkrYKWMuiIItYUSpFVIyIEMKWyBa0QNhCApLl3qw3uXd+f0y5ElmSyb1zz9wzn/frxUtI7syc7+ccZmRO5kxNTY0nnyvVdObMGWRmZsJut0tTk9H9dOrUKWRmZqK8vFyamvT2U1lZGTIzMz3tkKGmn/ZTYWGh5+9GoNZkhX5iTayJNbEmI2sqKSnxXAtkqUnGfmJN5Z59ZWZmen7AS4aaZOwnb2s638+FhYXS1BQI/VRUVOS5HshSk9H9dPr0aWRmZqK0tFSamprTTydPnvSMHVlqurCfLqwvkGuSvZ9krEkUTl6YWJs2bVBYWIjFixdjwoQJ6NatG6KiohAaGor27dtj7Nix+Oyzz7Bw4ULPe0KOHj2KZ5999pL7Oz+wzwsNvcyLf3/iwrXnzv8l8lZGRgbGjh0LADh79iwyMzM9f6EWLVqEAwcOAAC++uorrFu3DsCPJ+jz5s+fj8OHDwMANm7ciI0bNwIADh8+jPnz53s+l5mZiZMnTwIA1q1bh6+++goAcODAASxatAiA9pc9MzPTM/GzZs0aZGdnAwD27NmD5cuXA/jxHyjnTyDLly/Hnj17AADZ2dmel8VfqaY9e/agc+fOiI2NlaYmo/vpgw8+wMyZMxEWFiZNTXr76adkqOmn/fSvf/0LgwcPRmxsbMDWZIV+Yk2siTWxJiNrOr+f2NhYaWqSsZ9Yk1bT+XF6vg0y1CRjP3lbU2xsLAYPHox//etf0tQUCP301VdfIS0tDbGxsdLUZHQ/ffbZZ5g5c6ZnfzLU1Jx+Wrx4MWbOnInY2Fhparqwn9577z387Gc/Q2xsbEDXJHs/yViTMGqAqKqqUrdt26auW7dOfe+999R169ap27ZtU6uqqkQ3rVEvvviiCkAFoN58882GHOO5557zHCM4OFgtKiq66DM5OTmezwBQq6urm7Tv9PR0zzavv/66V+3ct2+fCkANDw9Xo6Oj1X379qn19fVqaWmp6na7VVVV1fLycrW2tlZVVa3fKyoqVFVV1bq6OrW0tNSzr7KyMtXpdKqqqqqVlZVqZWWlqqqq6nQ61bKyMs/nSktL1bq6OlVVVbWiosIzZmpra9Xy8nJVVVXV7XarpaWlan19vaqqqupwODz51NTUqHa7XVVVVXW5XGppaanqcrlUVVVVu92u1tTUqKqqqtXV1arD4VBVVWVNrIk1sSbWxJpYE2tiTayJNbEm1sSaWBNrYk2siTWxpoCu6fy93PO/9u3bp/qTqV/Y7XK5sGLFCsyfPx87duzwPB5zoeDgYKSnp2PGjBmYOHEigoODBbT0ypr7wm49Kioq0Lp1a8+TEe+++y7uvffeBp85ePAgrrvuOs+fS0pK0KJFi0b33bt3b+zduxcAsGDBAkyfPr3Z7RT9khczcDgcWL58OSZNmoSYmBjRzQkIzMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqsALR93JNu2zUf/7zH2RkZGDy5MnIzs5GfX09VFW96Fd9fT22bduG+++/HzfccIPnkRyriY6OxoABAzx/Pnjw4EWfueqqqxr8ubi4uEn7Lioq8vw+ISGhmS2k80JDQ5GWltbkZbvIJJmpKlBjByrPaf/187yvKTIwmAw1ylADEVkcr3dETcbxag3sZzGYu37MTCN7DrLUJ0sdZDyb6AZcytGjRzF48GDPzfXzD4dERUWhQ4cOiIqKQmVlJU6cOIHKykqoqgpFUbBz507cdNNN2Lp1K5KTkwVWIEabNm08v//hhx8u+n7r1q0RHx/vednKsWPHkJKScsV91tTUNHgBeGOfp8aFhYUhIyNDdDMCirDMivcDe9cAp3YBp/OAmrIfvxceD7RJBdr1BXqNAxKvu9xefMIK40aGGmWogYgsiNc7ombheLUG9rMYzF0/ZqaRPQdZ6pOlDjKeKZ+8GD9+vOen/YODgzFjxgzs2rULdrsdBw4cwI4dO3DgwAHY7Xbs3r0bDz/8MIKDg6EoCoqKijB+/HjBFYhx/m3wgDbRcynXXnut5/fnX9pyJbt37/b8Pjg4GN26dfOihQRoE0JZWVkXvUCdLs/vmX33KbBoJDB/ILDlT8DRrxreyAG0Px/9Svv+/Bu0z3+30bAmWWHcyFCjDDUQkYXwekfkFY5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu8uKDDz7Arl27oCgKWrZsia1bt+KNN95Anz59oChKg88qioK0tDT87W9/w7Zt29CyZUsAwK5du/DPf/5TRPOFunAyom3btpf8zNChQz2/b8q7N86/5R4ABg4ciLCwsOY3kAAA9fX1KCgoQH19veimBAy/ZVZVAqz5FfDeeOD4Vn3bHt8KvDcO+OABbT8+ZoVxI0ONMtRARBbA6x2RT3C8WgP7WQzmrh8z08iegyz1yVIHGc90L+yeNGkSVqxYAUVR8Omnn+LWW29t8raff/45br/9diiKggkTJuC9994zsKVN548Xdn/++ee47bbbPH/esWMH+vXrd9HnduzYgfT0dADakxQFBQVo3779ZffbvXt3fPfddwCAP/7xj3jiiSe8aqfol7wQXVbRPmD5WMBx2vt9xbQB7v0ASOTYJiIik+H1joiIiIiImkj0vVzTPXmxfft2KIqCXr166Zq4AIBbb70VqampUFUV27dvN6iF/uF0OuF0Opv02bNnz+Khhx7y/Pnaa6/F9ddff8nP9u/fH/379wcAuFwuPPPMM5fd71tvveWZuIiJicH999/f1ObTFbhcLhQVFcHlcoluSsAwPLOifcCSO31zIwfQ9rP4Dm0NcR+xwriRoUYZaiAiifF6R+RTHK/WwH4Wg7nrx8w0sucgS32y1EHGM93kxfmXdPfp06dZ26elpQEAzpw546smCVFYWIguXbpg7ty5OHbs2CU/o6oqPvnkE/Tv3x+HDx8GoC2l9frrryMo6PJd+4c//MHz++XLl+OZZ55BXV1dg8+sXr0ajz/+uOfPv/3tbz3LcpF3HA4HFi5cCIfDIbopAcPQzKpKtJ9A/eka396qKQOW/cJnS2pYYdzIUKMMNRCRpHi9I/I5jldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7ZqJiYGFRVVeG+++7DkiVLdG8/depULF26FFFRUUL+Atxxxx0oLCxs8LWioiLPpExUVBSuueaai7Zbv359g/dUFBQUoFOnTp4/Jycno1evXmjZsiVCQkJw9uxZbN++/aJjvfbaa/jtb3/baDuff/55/O///q/nz23btsVNN92E8PBw7Nq1C/v27fN877bbbsP69eths9ka3W9jRD9qZAaqqqK2thZhYWEXvceFLs3QzNb8Cti3xrf7vFCvccAv3vZ6N1YYNzLUKEMNRCQpXu+IfI7j1RrYz2Iwd/2YmUb2HGSpT5Y6rED0vVzv70b7WGJiIo4cOYLc3NxmbX9+u9atW/uuUTocOHDgsk9KAEBlZSXy8vIu+npjS0QVFBSgoKDgst9v164d3nzzTYwaNapJ7XzppZcQFhaGl156CXV1dSgsLMSqVasu+tzEiROxcOFCn0xckEZRFISHh4tuRkAxLLPvPjX2Rg4A7H1fu6HTbbhXu7HCuJGhRhlqICIJ8XpHZAiOV2tgP4vB3PVjZhrZc5ClPlnqIOOZbtmo8y+T3rt3L7788ktd22ZlZSEvLw+Konj2E6g6duyIvXv34q233sKUKVPQv39/dOrUCbGxsbDZbEhISECPHj0wZcoUrFq1CkePHm3yxAWgnSR+97vfIS8vD0888QR69uyJuLg4REZGokuXLrj33nvx2WefYcWKFYiNjTWwUuux2+2YN28e7Ha76KYEDMMy2zLPt/u7nG8yvd6FFcaNDDXKUAMRSYjXOyJDcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3Q/Tj9mzBisXLkSAHDPPffg008/Re/evRvdbt++fbjnnns8f/7FL35hWBuv5EpPR+ihKAp69uyJnj174te//rVP9nkp1157Lf74xz8atn+6WHh4OIYMGcIZZh0Myax4P3B8q+/2dyXHvgGKDwCJ1zV7F1YYNzLUKEMNRCQZXu+IDMPxag3sZzGYu37MTCN7DrLUJ0sdZDzTvfMCAK6//nrk5eVBVVWEhobi4YcfxtSpU9GrV6+LPrtv3z4sWbIEb7zxhmfppT59+mDnzp3+bjY1geh10ohQ+t9l3b7JBHb+w3/H7f8AcCcnComIyE94vSMiIiIiIi+JvpdrumWjAGDVqlVo2bIlFEWB0+lEZmYm0tLSEBcXh549e2LAgAHo2bMn4uPjkZqaij//+c+ora2Fqqpo1aqV58kNIjOqrq7Ghg0bUF1dLbopAcOnmWX21n7580YOAOzw7iWmVhg3MtQoQw1EJAle74gMx/FqDexnMZi7fsxMI3sOstQnSx1kPFNOXnTt2hVZWVmeJy1UVYWqqnA4HDh48CB27tyJgwcPwm63e74HAKmpqcjKysI111wjsvlEV+R2u1FWVga32y26KQFDmsy8eNBNmgyuQIYaZaiBiMhrvN6RRXC8WgP7WQzmrh8z08iegyz1yVIHGc+Uy0adV1dXh2XLluGtt97Czp074XK5LvpMcHAw+vXrh+nTp2PSpEkICQkR0FJqKtGPGhFhdpy4Yz97EgiLEXd8IiKyDl7viIiIiIjIS6Lv5Zruhd0XCgkJwdSpUzF16lRUVFTg22+/xdmzZ1FRUYHo6Gi0atUKvXv3RnR0tOimEjVZfX09Tp48ifbt28NmM/VfQdOQJrN6JxDWzE1lyeAKZKhRhhqIiLzG6x1ZBMerNbCfxWDu+jEzjew5yFKfLHWQ8Uy5bNSlREdHY+DAgRg9ejQmTZqE0aNHY+DAgZy4oIBTUVGBpUuXoqKiQnRTAoY0mdlCm72pNBlcgQw1ylADEZHXeL0ji+B4tQb2sxjMXT9mppE9B1nqk6UOMp6pl40i+Yh+1IhI6DIaL5YBiiLu+EREZB283hERERERkZdE38sNmCcviIh8Yua32q8OA/x73A4ZvJFDRET+w+sdEREREREFONNNXrhcLtxzzz0YM2YMnn76aV3bPv300xgzZgwmT55sUOuIvFdeXo5XXnkF5eXlopsSMHyaWYuO2q+Og7zflx7J3h3PCuNGhhplqIGIJMHrHZHhOF6tgf0sBnPXj5lpZM9BlvpkqYOMZ7rJi/Xr12PlypX46KOPcM011+ja9pprrsHatWuxbNkyfPrppwa1kMg7kZGRuPvuuxEZGSm6KQHDkMx6jfXdvpqip3fHs8K4kaFGGWogIsnwekdkGI5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu8uKTTz4BAISEhGD8+PG6th0/fjxCQkIAAOvWrfN524h8ISQkBCkpKZ6xSo0zJLPEHsDVA323vyvpOAhIvM6rXVhh3MhQoww1EJFkeL0jMgzHqzWwn8Vg7voxM43sOchSnyx1kPFMN3mxY8cOAEBqairi4vS9aDAuLg5paWlQVRU5OTlGNI/Ia1VVVVi7di2qqqpENyVgGJbZjY/7dn+XM8j741hh3MhQoww1EJGEeL0jMgTHqzWwn8Vg7voxM43sOchSnyx1kPFMN3lx5MgRKIqC7t27N2v7bt26efZDRHRF3YZ7vbxFo3qNA7rdbuwxiIiIroTXOyIiIiIiCkCKqqqq6EZcKDQ0FC6XCw8++CDmz5+ve/sZM2Zg4cKFsNlscDqdBrSQvLF//3707NnT8+d9+/ahR48eAltElldVAswfCDhO+37fMW2AGVuByATf75uIiEgPXu+IiIiIiEgn0fdyTffkRWxsLACgpKSkWduf3y4qKspnbSLypbq6OuTn56Ourk50UwKGoZlFJgD3fgCEx/t2v+Hx2n59dCPHCuNGhhplqIGIJMXrHZHPcbxaA/tZDOauHzPTyJ6DLPXJUgcZz3STF23atPHqnRXnt0tMTPRls4h8huv66Wd4Zok9gKnrtZ8c9YWYNtr+En03E22FcSNDjTLUQEQS4/WOyKc4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnumWjHnroIbz11ltQFAUbNmzAbbfd1uRtN27ciBEjRkBRFNx///1YvHixgS2l5hD9qBHRFVWVAP9+Ctj7fvP30WscMHIul84gIiLz4vWOiIiIiIiaQPS9XNM9eXH33Xd7fj9jxgz88MMPTdruzJkzmDFjxiX3Q0TUJJEJwC/eBu5ZDXQcpG/bjoOAe97XtueNHCIiMjNe74iIiIiIKACYbvJixIgR6Nu3LwDg6NGjSE9Px2effXbFbT777DNkZGTg6NGjUBQFqampGD16tD+aS6RbWVkZ5syZg7KyMtFNCRh+z6zbcG0ZjBnbgJueBDoPuXiN8PB47es3Pal9bup6oNvthjXJCuNGhhplqIGILITXOyKvcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3TLRgHa4ygDBw5ERUUFVFWFoijo2rUrhgwZgs6dOyM6OhoVFRU4evQovvzyS3z//fcAAFVVERMTgy1btqBXr16Cq6BLEf2okRnU19fj5MmTaN++PWw2m+jmBARTZKaqgLMCqHcCtlAgNBpQFL8d3hQZGEyGGmWogYgsjtc7oibjeLUG9rMYzF0/ZqaRPQdZ6pOlDisQfS/XlJMXAJCVlYXx48d7lo1SrvCPpvMlJCQkYPXq1Rg2bJhf2kj6iR7wRERERERERERERNQ40fdyTbds1HlDhgzB7t27cc8998Bms0FV1cv+stlsmDRpEnJzczlxQaZXWVmJlStXorKyUnRTAgYzs0YGMtQoQw1ERCLxPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZ+Lqd9+/ZYtmwZ5s6di88//xzZ2dkoLi6Gw+FATEwMEhMTkZGRgdtuuw1t2rQR3VyiJgkKCkJ8fDyCgkw7d2g6zMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOOZdtkokpPoR42IiIiIiIiIiIiIqHGi7+VyeovIz5xOJ3Jzc+F0OkU3JWAwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjMfJCyI/q6mpQVZWFmpqakQ3JWAwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjMdlo8ivRD9qRERERERERERERESNE30vV8iTF/PmzUNdXZ3fjldXV4d58+b57XhEV6KqKmpqasB5w6ZjZtbIQIYaZaiBiEgknkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGU/I5MUTTzyBlJQUvP3224ZOYjidTrz11lvo3r07nnzyScOOQ6RHeXk5Xn31VZSXl4tuSsBgZtbIQIYaZaiBiEgknkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGU/IslHBwcGe3ycmJuLXv/41pk2bho4dO/pk/8eOHcPbb7+Nf/zjHyguLoaqqggODvbr0x50aaIfNTIDl8uFs2fPolWrVg3+LtDlMTNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpwwpE38sVMnmxa9cu/L//9/+wfft2rRGKAgBIT0/H3XffjWHDhqFv374ICmragyFutxu7du3Cpk2bsHbtWuzYsQOqqnoePcrIyMDf/vY3XH/99cYURE0mesATERERERERERERUeNE38sVsmxU3759sW3bNqxcuRIpKSmeiYacnBw899xzyMjIQGxsLNLT03H//ffjueeewx//+EfMnz8fb775Jv74xz/i2WefxX333Yf09HTExsYiIyMDzz33HHJycuB2u6GqKlJSUrBq1Sps3bqVExdkGhUVFViyZAkqKipENyVgMDNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnE3nw8ePHY+zYsfjwww+RmZmJLVu2eL5XVVWFXbt2YdeuXY3u56cPj9x44414/PHH8fOf/9zzVAeRWdhsNiQnJ8NmE/rXL6AwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjCdk2ajL+f7777F8+XKsW7cOubm5TX7jvKIoSEtLw1133YVJkyaha9euBreUmkv0o0ZERERERERERERE1DjR93JNNb3VtWtXzJ49G7Nnz8a5c+eQk5ODb7/9FkePHkVxcTEqKysBAFFRUUhKSkKnTp3Qu3dv9O/fH1dddZXg1hM1TW1tLfbs2YM+ffogLCxMdHMCAjOzRgYy1ChDDUREIvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4ppq8uNBVV12FkSNHYuTIkaKbQuRTTqcTubm56NGjB0/QTcTMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4ynqmWjSL5iX7UiIiIiIiIiIiIiIgaJ/pebpDfjkREAAC3242ysjK43W7RTQkYzMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIONx8oLIz+x2OzIzM2G320U3JWAwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjMdlo8ivRD9qZAZutxt2ux2xsbEICuL8YVMwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKnDCkTfyzXtC7uJZBUUFIT4+HjRzQgozMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIONxaovIzxwOBxYsWACHwyG6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDxOXhD5WWhoKNLS0hAaGiq6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDy+84L8SvQ6aURERERERERERETUONH3cvnkBZGf1dTUICsrCzU1NaKbEjCYmTUykKFGGWogIhKJ51EKJByv1sB+FoO568fMNLLnIEt9stRBxuPkBZGf1dfXo6CgAPX19aKbEjCYmTUykKFGGWogIhKJ51EKJByv1sB+FoO568fMNLLnIEt9stRBxuOyUeRXoh81IiIiIiIiIiIiIqLGib6XyycviPzM5XKhqKgILpdLdFMCBjOzRgYy1ChDDUREIvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4nLwg8jOHw4GFCxfC4XCIbkrAYGbWyECGGmWogYhIJJ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxmPy0aRX4l+1MgMVFVFbW0twsLCoCiK6OYEBGZmjQxkqFGGGoiIROJ5lAIJx6s1sJ/FYO76MTON7DnIUp8sdViB6Hu5Nr8dqZl27NiB5cuXY8uWLThx4gRKS0vhdrsveqFLWVkZtm7dCgBo3749evfuLaK5RI1SFAXh4eGimxFQmJk1MpChRhlqICISiedRCiQcr9bAfhaDuevHzDSy5yBLfbLUQcYz7bJRZ8+exc9+9jNkZGTgr3/9K/bs2YOzZ8+ivr4el3pYJCoqCr/+9a9x1113YcyYMQJaTNQ0drsd8+bNg91uF92UgMHMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4yniknLwoLC9G/f3/8+9//hqqqnl9XEhISgoceegiqquLo0aPIzs72U2uJ9AkPD8eQIUM4w6wDM7NGBjLUKEMNREQi8TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimfOfFwIEDPZMP1113HZ5//nkMGzYMc+bMwZtvvglFUS75Nvrvv/8e3bt3h6IoeOGFF/Diiy/6u+nUCNHrpBERERERERERERFR40TfyzXdkxdr165FdnY2FEXBTTfdhJycHEyYMAGtWrVq9AUuXbt2Rbt27QAA27dv90dziXSrrq7Ghg0bUF1dLbopAYOZWSMDGWqUoQYiIpF4HqVAwvFqDexnMZi7fsxMI3sOstQnSx1kPNNNXqxevRoAYLPZsHTpUkRGRuravnfv3lBVFYcOHTKieURec7vdKCsrg9vtFt2UgMHMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4ynumWjercuTOOHTuGm266CVlZWQ2+9+ijj+KNN9647LJRADB16lQsXboU0dHRfOmLCYl+1IiIiIiIiIiIiIiIGif6Xq7pnrw4c+YMAKBbt27N2v78i15qa2t91iYiX6qvr0dBQQHq6+tFNyVgMDNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnusmLoCCtSc19bKikpAQAEB8f76smEflURUUFli5dioqKCtFNCRjMzBoZyFCjDDUQEYnE8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu2aguXbqgoKAAQ4cOxeeff97ge01ZNqpr1644fPgwUlNTsWfPHn80mXQQ/agRERERERERERERETVO9L1c0z150a9fP6iqiuzsbN3vrMjJycHhw4ehKAoGDRpkUAuJiIiIiIiIiIiIiMhIppu8uOuuuwAA1dXV+L//+78mb1dXV4eZM2d6/nz33Xf7umlEPlFeXo5XXnkF5eXlopsSMJiZNTKQoUYZaiAiEonnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM93kxcSJE9G5c2cAwOuvv46//OUvjW5z9uxZ3HXXXdi+fTsURUHfvn1x6623Gt1UomaJjIzE3XffjcjISNFNCRjMzBoZyFCjDDUQEYnE8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45nunRcAkJWVheHDh3veOH/99ddj4sSJ2LRpE/79739DURR8+OGHOH36NL755hv885//RHV1NVRVRVRUFLZu3YpevXoJroIuRfQ6aURERERERERERETUONH3ck335AUADBkyBMuWLUN4eDhUVcXu3bvx1FNPYcOGDVAUBQDw85//HA8//DCWL1+OqqoqqKqK6OhorFy5khMXZGpVVVVYu3YtqqqqRDdFH1UFauxA5Tntv36c9wzYzHzIChnIUKMMNRARicTzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDj2UQ34HLGjRuH6667Do899hi+/PLLBt9TFAU/fWBkyJAh+Otf/8qf4ifypeL9wN41wKldwOk8oKbsx++FxwNtUoF2fYFe44DE60S1koiIiIiIiIiIiCRjymWjfurbb7/F+vXrsW3bNhQWFqK8vBxRUVFITEzEgAED8LOf/Qz9+/cX3UxqAtGPGlETffcpsGUecHxr07e5eiBw42+Abrcb1iwiIiIiIiIiIiLyD9H3ck375MWFevfujd69e4tuBpFP1NXV4fDhw+jSpQtCQkJEN6ehqhJg/Sxg3xr92x7fCry3VXsKY+RcIDLBZ80ydWZ+YoUMZKhRhhqIiETieZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8Uz5zgsimZl2Xb+ifcD8gc2buLjQ3ve1/RTv9027YOLM/MgKGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOMFxLJRJA/RjxrRZRTtA5bc2fCdFt4KjwemrgcS2b9ERERERERERESBRvS9XFMuG5Wfnw+n04mQkBBce+21Td7u4MGDqKurQ3h4OLp162ZgC4kkUlUCLB/r24kLQNvfsl8AM7b6dAkpIiIiIiIiIiIikp/plo06duwYevbsiT59+mDu3Lm6tp07dy769OmDXr164fTp0wa1kMg7ZWVlmDNnDsrKykQ3RbN+FuAw6O+L4zTw76e83o3pMhPAChnIUKMMNRARCaOqKCs+oZ1Hi08AfECcTI7XfWtgP4vB3PVjZhrZc5ClPlnqIOOZbtmo1157DU8//TQURcH27dvRr1+/Jm+bk5ODjIwMKIqCP/7xj3j88ceNayg1i+hHjcygvr4eJ0+eRPv27WGzCX746btPgffGG3+ce1YD3YY3e3NTZSaIFTKQoUYZaiAi8qvi/cDeNcCpXcDpPNTXOHASbdAep2ELjwHapALt+gK9xgGJ14luLVEDvO5bA/tZDOauHzPTyJ6DLPXJUocViL6Xa7rJizvuuAMbNmxA27ZtcfLkSd3bt2vXDkVFRbjjjjuwbt06A1pI3hA94OknFo0Ejm81/jgdB2nvvyAiIiICtB+g2DJP3/+HXD0QuPE3QLfbDWsWERERERH9SPS9XNMtG7V//34oioK+ffs2a/u+fftCVVXs37/fxy0j8o3KykqsXLkSlZWVYhtSvN8/ExcAcOwboPhAszc3TWYCWSEDGWqUoQYiIkNVlQBrfqU9+XmJ/w+pRARWYhQqEXHxtse3Au+NAz54QNsPkWC87lsD+1kM5q4fM9PInoMs9clSBxnPdJMXZ8+eBQAkJSU1a/vz2505c8ZnbSLypaCgIMTHxyMoSNBfv9Jj2q8d//DvcXf+QztuMwjPzASskIEMNcpQAxGRYYr2AfMHAvvWXPYjQVARDzuCcIWHw/e+r+2nmD+sRGLxum8N7GcxmLt+zEwjew6y1CdLHWQ80y0bFRkZidraWkyePBmLFi3Svf20adOwZMkShIaGoqamxoAWkjdEP2pEAGbHCT5+udjjExERkf8V7QOW3AnUlPlun+Hx2rKUifx/SSIiIiIiI4i+l2u66a1WrVoBAAoKCpq1/dGjRwEALVu29FWTiHzK6XQiNzcXTqdTdFMCBjOzRgYy1ChDDUREPldVAiwf26SJCydCkIvr4ERI4/utKQOW/YJLSJEwvO5bA/tZDOauHzPTyJ6DLPXJUgcZz3STF927d4eqqti2bRtKS0t1bVtaWopt27ZBURRcc801BrWQyDs1NTXIysrik0E6MDNrZCBDjTLUQETkc+tnAY7TTfpoDcKQhRtQg7Cm7dtxGvj3U140jqj5eN23BvazGMxdP2amkT0HWeqTpQ4ynumWjXrttdfw9NNPQ1EUPProo5g3b16Tt33sscfwt7/9DYqi4KWXXsL//M//GNdQahbRjxoRuGwUERER+c93n2ov5zbaPauBbsONPw4RERERkYWIvpdruicvJk+ejMjISADAX//6V7z22mtN2m7u3Ln429/+BgAICwvDlClTjGoikVdUVUVNTQ1MNm9oaszMGhnIUKMMNRAR+dSWebo+rkJ7+kL3WfSbTL1bEHmN131rYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7yonXr1njqqac8g/eZZ57BoEGDsGLFChQVFTX4bHFxMVasWIEbb7wRzz77LABAURQ8+eSTaNeund/bTtQU5eXlePXVV1FezicQmoqZWSMDGWqUoQYiIp8p3g8c36prk3LE4lXlEZQjVt+xjn0DFB/Qtw2Rl3jdtwb2sxjMXT9mppE9B1nqk6UOMp7plo0CtNm3X/ziF1i7di0URWnwvbCwMERHR6OiogK1tbUNtgGAUaNGYe3atf5sLukg+lEjM3C5XDh79ixatWqF4OBg/zeg9Jj233/+Gjix3X/H7ZABjHkLaNFR96bCMzMBK2QgQ40y1EBE5LXz/6/xTSaw8x+6NnUhCGdxFVrhHILh1nfc/g8AAx9r1v9rEDUHr/vWwH4Wg7nrx8w0sucgS32y1GEFou/lmnLyAgDcbjeee+45vP7663C7G/+HS1BQEJ588kn83//9Hwe9iYke8HSBz+cAW/7kv+Pd9CRwywv+Ox4RERGJwfdrERERERFJQfS9XNMtG3VeUFAQXnnlFRw8eBDTp09HcnLyJT+XnJyMGTNm4ODBg3j11Vc5cUGmV1FRgSVLlqCiokJsQ3qN9e/xejb/eKbJTCArZCBDjTLUQEQkUgUisQTjUIFI0U0hahSv+9bAfhaDuevHzDSy5yBLfbLUQcaziW5AY7p27Yr58+cDAM6cOYPi4mI4HA7ExMQgMTERrVu3FtxCIn1sNhuSk5Nhswn+65fYA7h6oO61qJul4yAg8bpmb26azASyQgYy1ChDDUREItngQjJOwgaX6KYQNYrXfWtgP4vB3PVjZhrZc5ClPlnqIOOZdtkokpPoR43oJ777FHhvvPHHued9oNvtxh+HiIiIxOOyUUREREREUhB9L9e0y0YRyaq2thbZ2dkNXjgvTLfhXi3n1CS9xnk9cWGqzASxQgYy1ChDDUREItUiFNnog1qEim4KUaN43bcG9rMYzF0/ZqaRPQdZ6pOlDjIeJy+I/MzpdCI3NxdOp1N0UzR3vAbEtDFm3zFtgJFzvd6N6TITwAoZyFCjDDUQEYnkRAhy0QNOhIhuClGjeN23BvazGMxdP2amkT0HWeqTpQ4yHpeNIr8S/agRXUbxfmDxHUBNme/2GR4PTF2vvVuDiIiIrKP0mPbff/4aOLHdf8ftkAGMeQto0dF/xyQiIiIikpjoe7mmfvJiy5YteOSRR9C/f3+0atUKYWFhCA4ObtIvvvCFzMrtdqOsrAxut1t0U36U2EObaPDVExgxbXw6cWHKzPzMChnIUKMMNRARea1FR+1Xx0G6N3VDQRli4Yai/7jJgzhxQX7F6741sJ/FYO76MTON7DnIUp8sdZDxTDl5UVJSgp/97Ge4+eabsWDBAuzevRvnzp1DXV0dVFVt8i8iM7Lb7cjMzITdbhfdlIYSewAztmrvqPBGr3Hafnz4xIVpM/MjK2QgQ40y1EBE5DO99L9Xy44YZCoPwI4Y/ccz+j1eRD/B6741sJ/FYO76MTON7DnIUp8sdZDxTLdsVH19PTIyMrBnzx6vJiAURYHL5fJhy8gXRD9qZAZutxt2ux2xsbEICjLl/CHw3afAN5nAsW+avk3HQcCgx71+OfelBERmBrNCBjLUKEMNREQ+tWgkcHxrkz/uhgI7YhALB4Kg498CHQdpT30S+RGv+9bAfhaDuevHzDSy5yBLfbLUYQWi7+Wabm2lhQsXYvfu3VAU7VHxsWPHYtq0aejTpw+uuuoqLgdFAS8oKAjx8fGim3Fl3YZrv4oPAPvWAKd2AYW5Dd+JER4PtE0D2vXVftIx8TrDmhMQmRnMChnIUKMMNRAR+dSNjwPvNX3yIggq4tGMn8Ab9Lj+bYi8xOu+NbCfxWDu+jEzjew5yFKfLHWQ8Uw3tbV69WrP7+fNm4fVq1djxIgRSExM5MQFScHhcGDBggVwOByim9K4xOuAW14A7v8IeLoAePYkMOuI9t+nC7Sv3/KCoRMXQIBlZhArZCBDjTLUQETkU92G61rOyYEoLMC9cCCq6cfoNc6QJz+JGsPrvjWwn8Vg7voxM43sOchSnyx1kPFMN3mxf/9+KIqC7t2747HHHhPdHCKfCw0NRVpaGkJDQ0U3RR9FAcJigKirtP8qzXiRZjMFbGY+ZIUMZKhRhhqIiHzujteAmDZN+mgo6pCG/QhFXdP2HdMGGDnXi8YRNR+v+9bAfhaDuevHzDSy5yBLfbLUQcYz3TsvIiIi4HQ6MXnyZCxatEh0c8jHRK+TRkREREQCFO8HFt/RcAlKb4XHa++5SOT/SxIRERERGUH0vVzTPXnRtm1bAODLWkhaNTU1yMrKQk1NjeimBAxmZo0MZKhRhhqIiAyR2EObaGjkCYwahCELN6AGYVfeX0wbTlyQcLzuWwP7WQzmrh8z08iegyz1yVIHGc90MwTp6elQVRX5+fmim0JkiPr6ehQUFKC+vl50UwIGM7NGBjLUKEMNRESGSewBzNiqvaPiMuoRjAK0Rz2CL7+fXuO0/XDiggTjdd8a2M9iMHf9mJlG9hxkqU+WOsh4pls26ssvv8Qtt9yC4OBgHDhwAF27dhXdJPIh0Y8aEREREZEJfPcp8E0mcOybpm/TcRAw6HG+nJuIiIiIyE9E38s13ZMXQ4cOxQMPPACXy4X7778fVVVVoptE5FMulwtFRUVwuVyimxIwmJk1MpChRhlqICLyi27DtWWfZmwDbnoS6DwECI+HC0EoQiu4EKS906LzEO37M7Zpn+fEBZkIr/vWwH4Wg7nrx8w0sucgS32y1EHGM93kBQC88cYbmDx5MrZv346+ffvio48+4mAmaTgcDixcuBAOh0N0UwIGM7NGBjLUKEMNRER+lXgdcMsLwP0fAU8XwDFjLxYq98ExYy/wdIH29Vte0D5HZDK87lsD+1kM5q4fM9PInoMs9clSBxnPdMtGDRs2zPP7bdu2oba2FoqiIDw8HN27d0dcXBwURWl0P4qi4IsvvjCyqdQMoh81MgNVVVFbW4uwsLAmjWViZoA1MpChRhlqICISiedRCiQcr9bAfhaDuevHzDSy5yBLfbLUYQWi7+Xa/HakJsrKymowaBVFgaqqqK6uRl5eXpP2oaoqBz6Z1vnJOGo6ZmaNDGSoUYYaiIhE4nmUAgnHqzWwn8Vg7voxM43sOchSnyx1kPFMuWyUqqoNfl3u65f7RWRmdrsd8+bNg91uF92UgMHMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4ynumevPjyyy9FN4HIUOHh4RgyZAhnmHVgZtbIQIYaZaiBiEgknkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGc9077wguYleJ42IiIiIiIiIiIiIGif6Xq4pl40ikll1dTU2bNiA6upq0U0JGMzMGhnIUKMMNRARicTzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjcfKCyM/cbjfKysrgdrtFNyVgMDNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4zHZaPIr0Q/akREREREREREREREjRN9L5dPXhD5WX19PQoKClBfXy+6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDzTT14cOnQIb7zxBn7961/j5z//OW699VYMGzas0V+33HKL6KYTXVJFRQWWLl2KiooK0U0JGMzMGhnIUKMMNRARicTzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmXbZqCNHjuChhx7CF198oXtbVVWhKApcLpcBLSNviH7UiIiIiIiIiIiIiIgaJ/pers1vR9IhNzcXQ4YMgcPhQFPmVhRFAYAmfZaIiIiIiIiIiIiIiMzNdMtG1dXVYcyYMbDb7VBVFSNHjsSqVatw9913A9AmKr788kt8/PHH+Otf/4px48YhJCQEqqoiOjoaCxcuxJdffolNmzaJLYToMsrLy/HKK6+gvLxcdFMCBjOzRgYy1ChDDUREIvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4pnvy4t1330VBQQEURcF9992HJUuWAAA2b97s+czNN9/s+f0jjzyCwsJCPPjgg1i/fj1mzZqFDRs2ICMjw99NJ2qSyMhI3H333YiMjBTdlIDBzKyRgQw1ylADEZFIPI9SIOF4tQb2sxjMXT9mppE9B1nqk6UOMp7p3nkxZswYrF27FiEhITh16hRatmwJAHj00UfxxhtvXPZdFm63G2PGjMHHH3+Mq6++Gnl5eYiLi/N386kRotdJIyIiIiIiIiIiIqLGib6Xa7plo/bs2QNFUZCenu6ZuGiKoKAgLFy4EKGhoThx4gSWLl1qYCuJmq+qqgpr165FVVWV6KYEDGZmjQxkqFGGGoiIROJ5lAIJx6s1sJ/FYO76MTON7DnIUp8sdZDxTDd58cMPPwAArrnmmgZfDw4O9vy+urr6ktsmJiZi8ODBUFUVa9asMa6RRERERERERERERERkGNMtGxUWFob6+no89NBDeOONNzxff/755/H73/8eiqLgyJEj6Nix4yW3f/DBB/H222+jbdu2OHnypL+aTU0k+lEjIiIiIiIiIiIiImqc6Hu5pnvyokWLFgCAysrKBl9v1aqV5/fffffdZbc/c+YMgB+f4CAym7q6OuTn56Ourk50UwIGM7NGBjLUKEMNREQi8TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimm7zo2rUrVFW96KmJXr16eX6/cePGS25bU1ODHTt2AABiY2ONaySRF7iun37MzBoZyFCjDDUQEYnE8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu2aiZM2fir3/9KxITE3H69GnP16urq5GUlISKigrExMRg+/bt6N69e4NtZ82ahT/+8Y9QFAW33norPv30U383nxoh+lEjIiIiIiIiIiIiImqc6Hu5pnvyYtiwYQC05Z8OHDjg+XpERATuu+8+qKoKh8OB9PR0PPbYY/j73/+OzMxM3HLLLfjTn/7k+fzkyZP93nYiIiIiIiIiIiIiIvKe6SYvhg8fjqioKKiqihUrVjT43ssvv4wOHTpAVVVUVFTgjTfewEMPPYQnnngCWVlZns/dfvvtuOeee/zccqKmKSsrw5w5c1BWVia6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDzTLRsFADk5OSgtLUWLFi2Qnp7e4HvHjx/HL3/5S2zbtu2i7RRFwX333Yf58+cjIiLCX80lHUQ/amQG9fX1OHnyJNq3bw+bzSa6OQGBmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdViD6Xq4pJy+aYtu2bfjiiy9QWFiIoKAgdO7cGXfeeedF78EgcxE94ImIiIiIiIiIiIiocaLv5Zpu2aimuuGGG/C73/0Ob775Jv72t7/hiSee4MQFBYTKykqsXLkSlZWVopsSMJiZNTKQoUYZaiAiEonnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGC9jJC6JAFRQUhPj4eAQF8a9fUzEza2QgQ40y1EBEJBLPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqYOMF7DLRlFgEv2oERERERERERERERE1TvS9XE5vEfmZ0+lEbm4unE6n/o1VFaixA5XntP9aZO7Rq8wkYYUMZKhRhhqIiETieZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8YS8zn3z5s0N/jx48ODLfs8bF+6XyCxqamqQlZWFzp07IzQ0tPENivcDe9cAp3YBp/OAmrIfvxceD7RJBdr1BXqNAxKvM6rZQunOTEJWyECGGmWogcxBVVVU1NajzqUiJFhBdJgNiqKIbhaR4XgepUDC8WoN7GcxmLt+zEwjew6y1CdLHWQ8IctGBQUFef4BrigK6uvrL/k9b/x0v2QOoh81CijffQpsmQcc39r0ba4eCNz4G6Db7YY1i4iIjJFfZMfHuYXIO1mGfafsKK+u83wvLiIEPdvFIrV9PEantUP3pBiBLSUiIiIiIiIrEH0vV8iTF4D2E4XN+R5RoFNVFbW1tQgLC7v0RF1VCbB+FrBvjf6dH98KvLdVewpj5FwgMsH7BptAo5lZgBUykKFGGWog/9uUX4wFWUeQU1By2c+UV9fhm/+cwzf/OYc3sw4jPTkBM4Z0wdCU1n5sKZHxeB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDwh77wYPHgwbr75Ztx8880XLe104fe8+cUlo8isysvL8eqrr6K8vPzibxbtA+YPbN7ExYX2vq/tp3i/d/sxiStmZhFWyECGGmWogfyntNKJx1bswbQlO684cXEpOQUlmLpkB2au3IPSSq4TS/LgeZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8YQsG0XWJfpRIzNwuVw4e/YsWrVqheDg4B+/UbQPWHJnw3daeCs8Hpi6HkgM7Iwvm5mFWCEDGWqUoQbyj4On7ZiyOAfF9lqv95UYG4al09KRkhTrg5YRicXzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6rAC0fdyOXlBfiV6wJtWVYn2pITjtO/3HdMGmLFVmiWkiIgC3cHTdkx8K7vBOy28FRcRglXTMziBQURERERERD4j+l6ukGWjrsRut3t+EcmooqICS5YsQUVFxY9fXD/LmIkLQNvvv58yZt9+csnMLMYKGchQoww1kLFKK52YsjjHpxMXgPZOjMmLcriEFAU8nkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGc90kxfx8fFo0aIFUlJS4HK5RDeHyOdsNhuSk5Nhs9m0L3z3qffvuGjM3ve14wSoizKzICtkIEONMtRAxnrx4/0+WSrqUorttZi9To53HZF18TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimWzYqJCQEbrcbY8eOxapVq0Q3h3xM9KNGprRoJHB8q/HH6ThIe/8FEREJsSm/GNOW7DT8OIum9MOwlETDj0NERERERERyE30v13RPXiQmav/YbtGiheCWEBmjtrYW2dnZqK2tBYr3+2fiAgCOfQMUH/DPsXysQWYWZYUMZKhRhhpIo6oqHDV1KKl0wlFTB1/8rMeCrCM+aFkTjvOVf45DZASeRymQcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3STF126dAEAFBYWCm4JkTGcTidyd+XAeeYIsOMf/j34Tj8fz0ecTidyc3PhdFp3LXcrZCBDjTLUYGX5RXbM3ZCPSW9nI+2lz9Br9kZc/7L237SXPsOkt7Mxd0M+DhU5mrXvnIISA1p9sZyjJc1qI5EZ8DxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimWzYqMzMTv/nNbxAbG4vCwkJERkaKbhL5kOhHjUxjdpzAY5eLOzYRkQltyi/GgqwjuiYX0pMTMGNIFwxNaX3Fz50oqQIALNx8GMuyj3vVTj3uy+iIBwd3RocE/n8UERERERERNY/oe7mme/JiypQpaN++PRwOB5599lnRzSHyObfbjTLEwg1FTAPMNV/ZJG63G2VlZXC73aKbIowVMpChRhlqsJLSSiceW7EH05bs1P1URE5BCaYu2YGZK/egtPLyPy1009wvcdPcL/06cQEA72Yfw01zv/TrMYl8gedRCiQcr9bAfhaDuevHzDSy5yBLfbLUQcYz3eRFXFwcVq5cidjYWPztb3/DQw89hPJy/qQ4ycNutyNTeQB2xIhpgLNCzHG9YLfbkZmZCbvdLropwlghAxlqlKEGqzh42o4RmZvxcZ53y1R+lFuIEZmbkV/EPifyBZ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxnPdMtGvfPOOwCA77//Hq+++ipcLhfCw8Nx++23o2/fvmjVqhUiIiKatK/777/fyKZSM4h+1MgM3G437C91RCwcCIKAv36zjgBRV/n/uF5wu92w2+2IjY1FUJDp5lz9wgoZyFCjDDVYwcHTdkx8Kxvl1XU+22dcRAhWTc9ASlJsg68nP/OJz47RHAWv3Cn0+ER68TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6rED0vVzTTV4EBQVBUX5cTud88y78WlMoioL6+nqfto28J3rAm4bId148exIIE/TUBxGRYKWVTozI3Ixie63P950YG4YNMwejRVSo52ucvCAiIiIiIqJAJfperimntlRV9fy61Nea+ovIjBwOBxbgXjgQJaYBodFijusFh8OBBQsWwOFwiG6KMFbIQIYaZahBdi9+vN+QiQsAKLbXYva6/Ybsm8gqeB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDyb6Ab81OTJk0U3gchQoaGhSBt8J0Kvexz45BHgxHb/HbxDBqDzKSYzCA0NRVpaGkJDQxv/sKSskIEMNcpQg8w25Rd7/Y6LxnyUW4jRaW0xLCXR0OMQyYrnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM92yUSQ30Y8amc7nc4Atf/Lf8W56ErjlBf8dj4jIRMYv2IacghLDj5PeKQGrp98AADhRUgUAeHxVLnYdKzX82Of169gCf56Qhg4JkX47JhEREREREclF9L1cUy4bRSSzmpoaZGVloaamBug11r8H7+nn4/lIg8wsygoZyFCjDDXIKr/I7peJCwDIOVqCQ0Xa488dEiLRISESAzol+OXY5w3onMCJCwpIPI9SIOF4tQb2sxjMXT9mppE9B1nqk6UOMh4nL4j8rL6+HgUFBdoL5RN7AFcP9M+BOw4CEq/zz7F8zJNZRSlQeQ6osQMWe2iswbiRlAw1ylCDbE6UVOFESRWWZR/z63GXZR/zPHUBAKPS2vr1+KNS2/n1eES+wvMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIONx2SjyK9GPGpnSd58C7403/jj3vA90u9344/hS8X5g7xrg1C7gdB5QU/bj98LjgTapQLu+QK9xATsxQ0TGSn7mE6HHL3jlTs/vRSxbRURERERERNRcou/l8skLIj9zuVwoKiqCy+XSvtBtuPHLOfUaF1gTF999CiwaCcwfCGz5E1xHv0ZRTQhcF56yasqAo19p7wyZf4P2+e82Cmuy0S4aNxKSoUYZaiDjPDSks1+OM+PmLn45DpEReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZLyAmLyoqKjAN998g48++gjLli3DO++806RfRGbkcDiwcOFCOByOH794x2tATBtjDhjTBhg515h9+1pVCbDmV9qTKMe3er7sQDQWKvfBgejLb3t8K/DeOOCDB7T9SOaS40YyMtQoQw1knGEpiRiVauzyUaPT2mJoSmtDj0FkJKHnUVXVlqa06BKVpB+v+9bAfhaDuevHzDSy5yBLfbLUQcYz9bJR7733Hv76179ix44d0NtMRVG4bpoJiX7UyAxUVUVtbS3CwsKgKMqP3yjeDyy+o+HSSN4KjwemrtferWF2RfuA5WMBx+mLvqUCqEUYwlAL5eItLxbTBrj3g8Cou4kuO24kIkONMtQgGzMtGwUApZVOjMjcjGJ7rc+PlRgbhg0zB6NFVKjP903kL34/j3KJSvICr/vWwH4Wg7nrx8w0sucgS32y1GEFou/l2vx2JB2qq6sxfvx4rF+/HgCuOHGhKIruiQ0ikRRFQXh4+MXfSOyhTTQs+8Ulb+DrFkg38Iv2AUvuvOzEjQIgHDpu9DlOaxNBgTJx0wSXHTcSkaFGGWogY7WICsXSaemYsDAb5dV1PttvXEQIlk5L58QFBTy/nUe/+xTYMq/Bk54XOb9E5fllKq8eCNz4m8BaipMMxeu+NbCfxWDu+jEzjew5yFKfLHWQ8Uy5bNSvfvUrfPLJJ1BVFWFhYRg5ciRSUlIAaIN78uTJGDNmDPr27Qubzeb5enR0NO6//35MnjwZ999/v8gSiC7Lbrdj3rx5sNvtF38zsQcwY6v2033e6DVO208g3LivKtGeuLjCEyd2RGMefgX7lZaN+qmaMm0iSJIlpK44biQhQ40y1EDGS0mKxarpGUiMDfPJ/hJjw7BqegZSkmJ9sj8ikQw/j15micomkXyJStKP131rYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7yYvv27Vi5ciUURUHXrl1x8OBBfPLJJ7jllls8n1m8eDHWrFmDHTt24OzZs3jttdcQHR2NyspKnDlzBn/5y1+wePFigVUQXV54eDiGDBly+RnmyATgF28D96wGOg7St/OOg4B73te2j0zwvrH+sH5Wo0+ahKMWQ7BN39MXgLbffz/lRePMo9FxIwEZapShBtl8/dRQfP3UUPTt2MKvx+3XsQW+fmroZb+fkhSLDTMHY3Sad+/AGJ3WFhtmDubEBUnD0PNo0T5g/kBg3xrv9rP3fW0/xft90y4KWLzuWwP7WQzmrh8z08iegyz1yVIHGc9077x4+OGHsWDBAiiKgs2bN2PQIO3m7aOPPoo33ngDiqJc8k3033//PYYOHYrTp0/j5z//Odas8fIfJWQI0eukBaTiA9o/sk/tAgpzL16LuW2athZzz7GBtxbzd59qP/lotHtWA92GG38cIjKtuRvy8WbWYb8d75GhXTBreEqTPrspvxgLvjqCnKNN/0nu9E4JmHFzF76cm6ipGlmislkC6d1iRERERETNIPperumevNiyZQsAoEuXLp6Ji6bo2rUrli5dClVV8eGHH+KTT8S+oJPocqqrq7FhwwZUV1c3bYPE64BbXgDu/wh4ugB49iQw64j236cLtK/f8kLgTVwA2lrTTVCNcGzAEFSjmTPy32Q2bzsT0T1uApAMNcpQg6xGefmEg+7jpbZr8meHpSRi9fQb8Onjg/HI0C648ZqWiIsIafCZuIgQ3HhNSzwytAs+fXwwVk+/gRMXJCVDzqNNWKKyWSRbopL043XfGtjPYjB3/ZiZRvYcZKlPljrIeKZ7YXdhYSEURUGfPn0afP3CN887nU6Ehl78QspbbrkFPXr0wIEDB7Bs2TLceeedhreXSC+3242ysjK43W79GysKEBYD+GaZdLGK9zd5rWk3FJQhFm4ojX/4Uo59oz3BEogTPP/l1bgJEDLUKEMNskpJikV6cgJyCoy/yZjeKQHdk2J0b9c9KQazkrSnNVRVRaXTBWe9G6G2IESFBjf4fyEiWRlyHm3CEpXNdn6Jyl+8bcz+ydR43bcG9rMYzF0/ZqaRPQdZ6pOlDjKe6ZaNCg0NhcvlwvTp0/Hmm296vv7000/jtddeg6IoKC4uRsuWLS+5/eTJk/Huu+/immuuwXfffeevZlMTiX7UiEyg9Jj2328ygZ3/8N9x+z8ADHwMaNHRf8ckIlPZlF+MaUt2Gn6cxVP686kIIrPgEpVERERERM0m+l6u6ZaNioyMBADU1dU1+Hp8fLzn98eOHbvs9ufnYk6fNuinq4i8VF9fj4KCAtTX14tuihiZvbVfOiYu6hGMArRHPYKbf9wdb2vHDVBWGDcy1ChDDWaiqiocNXUoqXTCUVMHb3/eYlhKIkalGrt81Oi0tpy4IPKCz8+jTVyi0msSLFFJ+vG6bw3sZzGYu37MTCN7DrLUJ0sdZDzTTV506NABAHDu3LkGX+/WrZvn99u2bbvs9gcOHDCmYUQ+UlFRgaVLl6KiokJ0UwJGBaKwVBmPCkSJboowVhg3MtQoQw2i5RfZMXdDPia9nY20lz5Dr9kbcf3L2n/TXvoMk97OxtwN+ThU5GjW/ueM6oHEWGPW3kuMDcPsu/g0IZE3fHoe1bFEpdfOL1FJlsLrvjWwn8Vg7voxM43sOchSnyx1kPFMt2zUPffcg5UrV+Laa6/F/v37PV8/ceIEkpOTAQA9evTA7t27YbM1fGXHxo0bMWLECCiKgp49eyIvL8+fTacmEP2oEZnA7DjBxy8Xe3wiuqRN+cVYkHVE1zsp0pMTMGNIF91POuQX2TFhYTbKq+sa/3ATxUWEYNX0DKQkxfpsn0TUTFyikoiIiIjIJ0TfyzXdkxeDBw8GABw6dAglJT/ewOjQoQNuvPFGqKqK/fv3Y/To0dizZw/q6upQXl6Od999F5MmTfJ8/q677vJ724mIiEif0konHluxB9OW7NT9Mu2cghJMXbIDM1fuQWmls8nbpSTFYtX0DJ89gZEYG8aJCyIzacYSlT4R4EtUEhERERGZjekmL+644w4oigJVVfGvf/2rwfdeeeUVKIoCANiwYQP69euH8PBwJCQkYMqUKZ7JjpYtW+Lxxx/3d9OJmqS8vByvvPIKysv5BEBTlSMGr+BhlCNGdFOEscK4kaFGGWrwp4On7RiRuRkf5xV6tZ+PcgsxInMz8ovsTd4mJSkWG2YOxug0796BMTqtLTbMHMyJCyIf4XmUAgnHqzWwn8Vg7voxM43sOchSnyx1kPFMN3lx9dVX44knnsD48eNx9uzZBt+74YYb8Pe//x3BwcFQVfWSv1q1aoWPPvoILVu2FFQB0ZVFRkbi7rvv9rycnhoXiWrcjU8RiWrRTRHGCuNGhhplqMFfDp62Y+Jb2Si21/pkf8X2WkxYmK1rAqNFVCgyJ/bBoin9kN4pQdfx0jslYPGU/sic2ActokL1NpeILoPnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM907L5ri4MGD+POf/4xNmzahsLAQQUFB6Ny5M+666y48/vjjaNWqlegm0mWIXieNTOD8OtT//DVwYrv/jtshAxjzFtehJjKB0konRmRu9tnExYUSY8OwYebgZk0oHCpy4OO8U8g7UY69p8obvBMjLiIEvdrFIbVDHEaltkP3JOs+CUZkeny/FhERERGRT4i+l2u6Jy+a4tprr8Vbb72F//znP6iqqkJFRQW+/fZb/P73vxc+ceFyufDtt9/iH//4B2bMmIF+/fohNDQUiqJAURQMGTKk2fv+4osvcP/996Nbt26IiopCQkICevfujVmzZiE/P79Z+zx48CBmzZqF3r17IyEhAVFRUejWrRsmT56ML774otltpcurqqrC2rVrUVVVJbopYrToqP3qOKjJm1QhHGsxHFUIb/5xkwcF9MSFFcaNDDXKUIM/vPjxfkMmLgDtCYzZ6/Y3a9vuSTGYNTwFyx4YgNwXbsO+OcOx+3ntv7kv3IZlDwzArOEplpi4UFUVjpo6lFQ64aipQwD+rAsFKJ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxnPJroBMlm7di0mTZrk8794drsdDz74IFatWtXg61VVVSgtLcXevXuRmZmJOXPm4Nlnn23yfn//+99jzpw5qKura/D177//Ht9//z3eeecd/PKXv8TChQsREyP/jRrys15jgS1/8t/xeo7137GI6LI25Rd7/Y6LxnyUW4jRaW0xLCWx2ftQFAXRYTbAN+/0Dgj5RXZ8nFuIvJNl2HfKftGTJz3bxSK1fTxGp/HJEyIiIiIiIjJeQC4bZVZLlizB1KlTr/iZm2++GVlZWU3eZ11dHUaMGIFNmzZ5vtazZ09cf/31qKmpwddff43Tp097vjdnzhy88MILje73hRdewMsvv+z5c5s2bXDTTTchPDwcu3btwv79P/7U6u23345PPvkENpv3c12iHzUik1k0Eji+1fjjdBwETF1v/HGIqFHjF2xDTkGJ4cdJ75SA1dNvMPw4MtiUX4wFWUd09Ut6cgJmDOmCoSmtDWwZUTNxiUoiIiIiIp8QfS/XdMtG9erVC3PnzsXJkydFN6XZEhMT8bOf/Qxz5szB+vXrMXPmzGbv6+WXX/ZMXISHh2PFihXYu3cvli5dilWrVqGgoACzZs3yfH727Nn46quvrrjPL774osHExaxZs1BQUIBVq1Zh6dKl2LdvH9577z2Eh2tL9GzcuBH/93//1+waqKG6ujrk5+df9MSLJd34eJM+Vgcb8tEFdc19WGxQ045jZlYYNzLUKEMNRsovsvtl4gIAco6W4FCRwy/HClSllU48tmIPpi3ZqbtfcgpKMHXJDsxcuQellU6ft43LVlmXT86jzVii0icCfIlK0o/XfWtgP4vB3PVjZhrZc5ClPlnqIOOZbvJi//79ePbZZ5GcnIxhw4ZhyZIlcDgC4+bDiBEjcOzYMRQVFWHdunV44YUXMHLkSMTHxzdrf2fOnMGf/vTjsjrz5s3DxIkTG3wmNDQUc+fOxYQJEwBo/9hvbOmoC78/ceJEzJ07F6GhDV9s+stf/hJ//vOfPX9+/fXX8cMPPzSrDmqI6/pdoNvwJi3nVIWI/77zIkL/MXqNA7rd3ozGmYsVxo0MNcpQgxFOlFThREkVlmUf8+tx/X28QHLwtB0jMjd7vYTXR7mFGJG5GflFdq/blF9kx9wN+Zj0djbSXvoMvWZvxPUva/9Ne+kzTHo7G3M35HNSSnI+PY/28vOSkVyi0nJ43bcG9rMYzF0/ZqaRPQdZ6pOlDjKe6ZaNCgr6cT5FURQA2hMHP/vZz3Dfffdh5MiRCA4OFtW8Zpk9ezbmzJkDQN+yUa+99hqeeuopAEC3bt2Qn5/vyeSnjh8/jk6dOsHtdgMAdu/ejT59+lz0uR07diA9PR2AlnVBQQE6dOhwyX2qqoru3bvj+++/BwD86U9/wm9+85smtf1yRD9qRCZUVQLMHwg4Tjf+Wb1i2gAztgKRCb7fNxE1WfIznwg7dsErdwo7tlkdPG3HxLeyG7zTwltxESFYNT0DKUmxurflslVkKC5RSURERETUbKLv5ZruyYtly5Zh5MiRsNlsUFUVqqqiuroaa9aswejRo9GmTRs89thj2L7dj+vXCrJ27VrP76dMmXLZiQsAuPrqqzFs2DDPnz/88MNG93nrrbdeduIC0CaPJk+e3Og+ibwSmQDc+wEQHu/b/YbHa/vlxAWRpZnsZzSEK610YsriHJ9OXABAeXUdJi/K0bWElJmXrSKJNHGJSq9JsEQlEREREZHZmG7y4p577sEnn3yCwsJCZGZmYsCAAQDgmcj44Ycf8MYbb2DgwIHo3r07Xn75ZRw5ckRwq32vpqYG2dnZnj8PGTKk0W2GDh3q+f2FL/i+0JdfftnsfW7duhW1tbWNbkNXVlZWhjlz5qCsrEx0U8wjsYf204oxbS757TLEYo7yBMrQxJ/ojWmj7S9Rnqd6rDBuZKhRhhpkU+l0iW6Cqbz48X4U2425lhfbazF73f4mfdaMy1aROfj8PNrEJSq9IskSlaQfr/vWwH4Wg7nrx8w0sucgS32y1EHGM93kxXktW7bEo48+im3btuH777/Hiy++iK5duwL4cSLjP//5D2bPno2uXbti0KBBWLBgAUpK/PMiUKMdOnTIswSUoiiXXALqp66//nrP7w8ePHjJz1z49Qs/fzkXHtflcuG7775rdBu6sujoaEyePBnR0dGim2IuiT20JZ56jbvoW9GoxGR1NaJR2fh+eo3T9iPRxAVgjXEjQ40y1CAbZ71bdBNMY1N+sdeTBY35KLcQm/KLr/iZ88tW+WoSpdheiwkLszmBIQlDzqN3vHbZH5DwWkwbYORcY/ZNpsfrvjWwn8Vg7voxM43sOchSnyx1kPFMO3lxoS5duuDFF1/EoUOHsH37dvy///f/0Lp1a88khqqqyM7OxiOPPIK2bdvi7rvvxgcffCC62V45dOiQ5/etW7dGeHh4o9tcffXVnt+XlJTg7NmzDb5/5syZBjOaHTt2bHSfERERaNWqlefP+fn5jW5DV2az2ZCcnAybzSa6KeYTmQD84m3gntXa2tH/ZYMLyTgJG67wE9QdBwH3vK9tL+FSUVYYNzLUKEMNsgm1BcT/6vjFgiz/PKm64KvLH8dMy1aRORlyHuUSlWQQXvetgf0sBnPXj5lpZM9BlvpkqYOMF3D/ou/fvz/+8pe/oLCwEOvXr8ekSZMQFRXlmcRwOp34+OOPMWHCBNFN9cq5c+c8v09MTGzSNklJSQ3+/NOnUC7cZ3P3K8uTLSJVVlZi5cqVqKxswlMEVtVtuLbs04xtwE1PorLjrVgZ/AtUIuLHz4THA52HADc9qX1u6nqpl2ywwriRoUYZapBNVGiw6CaYQn6RXfd7JZor52gJDhU5Lvk9syxbReZl2Hm0kSUqdZNwiUrSj9d9a2A/i8Hc9WNmGtlzkKU+Weog4wXc5MV5QUFBGDFiBN59910UFxdj2bJlDV5YHegv6KyoqPD8PiIi4gqf/NFPP3fhPi715+bs96f7aK7w8HDPo2EulwtlZWWePrPb7XA6tZ+crK6u9pzI6uvrGzw5Ul5ejro67Sc3q6qqUFVVBQCoq6tDeXm553NlZWWor68HoJ0cq6urAQBOpxN2u7bEhKqqKCsrg8vl8tRZU1MDAKitrYXDod2EcbvdKCsr8yzp5XA4PO8Bqamp8eRzpZpqa2sRFRWFoKAgaWoyrJ8Sr4PzpmdQeed8xPcfD2VmHsoezIXrqWPA0wWoGLMcNYOeAhKvC5yamtlPQMO/izLU9NN+qqysRHR0NIKCggK2Jiv0U3Nq+vyxDGz8f+no27EFguFGtPLjzesopRbB/32qKgx1CINWXzBciLrgc9FKLYKhtSEcdQiFVp8NLkTi/E/bq4hWahH0389ltI/0tFX2c8TlajpRUoX/nC7Bsq+1JzqDPPlrNUXC6XmqLRT1CPfk710/Lcs+dlFN/959+L/LVjXsp4gL+jMELkT8tz+V/35O+W9bI+BEyAVtjfhvGy6s6aPcQvx79+GA6ydAvrHX3JrcbjciIiIQFBTk+5paX4eyezbA1UNborICkahBmFYTQuFAlNYGKChDLNxQtJoQhVqEajUhDBUpE4AZW+FqmWLZfmJNWk1BQUGIiIho8P8ygV6TjP3kbU1BQUGIjo5ucJ4K9JoCoZ+qq6s9/zaQpSaj+6mqqgrx8fGe/clQU3P6yeFwID4+HkFBQdLUdGE/VVRUICYmBkFBQQFdk+z9JGNNogTs5MWFdu3ahc2bNyM3NxeKoohujk+cH4QAEBoa2qRtwsLCGvz5/IC/1D6bu9+f7rO5MjIyMHas9vLEs2fPIjMz0/MXatGiRThw4AAA4KuvvsK6desAACdPnkRmZqZnH/Pnz8fhw4cBABs3bsTGjRsBAIcPH8b8+fM9n8vMzMTJkycBAOvWrcNXX30FADhw4AAWLVoEQPvLnpmZ6Vlqa82aNZ4Xpu/ZswfLly8HoP2FzszM9JxAli9fjj179gAAsrOzsWbNmkZrysnJQWVlJSIiIqSpyeh+eu+99zBixAgERcQh8+/v4Ky9BlCUgK5Jbz/V1dUhNzfXc/GToaaf9tM///lPtGzZEhEREQFbkxX6qTk1/efbHdi95QsM6JSAVkEVGBe+19PW0WEH0C5I23f/kJPoH6K1u12QHaPDDng+Ny58L1oFaf+zNTD0GNJCtHc3JAeX4o4wbUnDULgwLnwv4hXtetfDedAy54jL1XTT3C/x2zfW4Ie9mwEA8UoNxoXvReh/JwHuCMtHcnApACAtpBADQ48BgNf99G72sYtq2vLJmkv2082hh3GdTXtPRtfgH3Bb2PcAgCjFiXHhexGlaP8jfVvY9+ga/AMA4DpbMW4OPXzJmrZ8sibg+gmQb+w1t6Zz584hNzfXMxHs85reWoqzN/0vcM9qrAm/B9nQ3gG3Bz2wHD/XakIMMpUHYEeMVhN+jj3oAXQchOxef8CamoFAZIKl+4k1aTVFREQgNzfX84S7DDXJ2E/e1hQREYGWLVvin//8pzQ1BUI/ff7557DZbIiIiJCmJqP76ZNPPsGIESNQUVEhTU3N6aeFCxdixIgRiIiIkKamC/tp8eLF6NKlCyIiIgK6Jtn7ScaaRFHUAH1E4cCBA1i2bBlWrFiB48ePN/ieqqqw2WyeWSPRZs+ejTlz5gAAbr75ZmRlZTW6zWuvvYannnoKADBgwADPoLyS6upqREZGev68c+dO9O3b1/PnHTt2ID09vcHnm/IujQEDBiAnJwcA8Prrr+PJJ59sdJvL2b9/P3r27Inw8HDYbDZkZ2cjJSUFDocDcXFxUBQFdrsd4eHhCA0NRXV1NdxuN6KiolBfX4+KigrEx8cD0GYxIyMjERIS4pnBjIyMRF1dHaqqqhAXFwdAm8WMjo6GzWZDZWWl5yeknE4nampqEBsbC1VVUV5ejpiYGAQHB6OiogI2mw3h4eGora2F0+lETEwM3G437HY7YmNjERQUBIfDgdDQUISFhaGmpgb19fWIjo6Gy+W6bE3l5eXIz89Hnz59EBQUJEVNRveT3W7HyZMnce2116K6ulqKmvT2U01NDXbv3o3rr78e4eHhUtT00346d+4cjhw5gtTUVLjd7oCsyQr95E1NJxwu3DnvK0QodahQtYnxKKUWNaoNLgR7fpq/FiEIhgvhSj0q//u5aKUW1WoIXAhCOOrghgInbLDBhVC4UIVQaD/R70SVGgI3grD2wb5IaRtviXPE5Wrq/uLnCEU9gqGiGiEIghuRSh0q1FAACiLhhBPBqEcwQlGPIKioQQiC4fa6n/b97mYEBwcjIiICe0/8gAlvfH3JfopAHVz/7c8QuGCDC9UIhQIVUYoTlWooVCiIgBP1CEbdf9t6pZpWPzIYPTtcFTD9JOPYa25NVVVVyM3NRb9+/Tz/32RoTSX/Qfj3H6P2xB44Tx9ETO1puKHAjhjEhgUjqF0qHC2vR2ivuxHWIZX9xJoa1OR0OrFz506kpaUhMjJSippk7CdvawoKCkJeXh46d+6Mq666SoqaAqGfSktL8f333yMtLQ0ApKjJ6H6qqqrC8ePH0b17d9TW1kpRU3P6qaSkBIWFhbjuuus898kCvaYL++ns2bM4duwYevfu7fmJ/UCsSfZ+kuXvU0VFBU6dOoWePXvivH379qFHD/8tnRpQkxeFhYVYsWIFli1bhm+//dbz9QtLSEtLw7333ot77rnnondAiNKcyYv58+fj4YcfBgD07t0beXl5jW5TUlKCq666yvPn/Px8dO/e3fPngwcP4rrrrmvw+RYtWjS63969e2PvXu2nLxcsWIDp06c3us3lnJ+8OM/fA94M7HY7Fi1ahGnTpiE2NlZ0cwICM7NGBjLUKEMNRhu/YJtf3r2Q3ikBq6ffYPhxzC75mU+EHfvTmTchMkx7Ad/CzYexLPt4I1v4zn0ZHfHy3T0b/yCZjtDzqKoCzgqg3gnYQoHQaECSp7rJGLzuWwP7WQzmrh8z08iegyz1yVKHFYi+l2v6yQuHw4E1a9Zg+fLl+Oqrrzzrdl3Y7A4dOmDSpEm49957G9ycN4vmTF6sXr3a89LxxMREFBUVNbrNgQMHGgyeM2fOoFWrVg3+fOFLug8ePIiUlJRG99u6dWvPo0mrV6/GuHHjGt3mckQPeCIiEmtTfjGmLdlp+HEWT+mPoSmtDT+O2YmcvBCt4JU7RTeBiIiIiIgooIm+l2vz25F0qK+vx/r167Fs2TL861//8qzBdeGERVxcHMaOHYt7770XN998s6imGubCJybOnDmDmpqaRpd4unD5rISEhAYTF4A2CREfH+952cqxY8canbyoqanxTFwAaNJkB12Zqqqora1FWFiYNO9oMRozs0YGMtQoQw1GG5aSiFGpbf/74mZjjE5ry4kLgqqq/HsYgHgepUDC8WoN7GcxmLt+zEwjew6y1CdLHWQ8072we8aMGUhKSsLPf/5zfPDBB6ipqYGqqlBVFSEhIRg1ahTef/99FBcX4+9//7uUExeANnkRFKR1j6qqyM3NbXSb3bt3e35/7bXXXvIzF379/EtbmrrP4OBgdOvWrdFt6MrKy8vx6quvory8XHRTAgYzs0YGMtQoQw3+MGdUDyTGhhmy78TYMMy+i0/0EVDpdIluQrOoqgpHTR1KKp1w1NTB5A9J+xzPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqYOMZ7onLxYuXAhFURr8Q23gwIG49957MX78eCQkJAhsnf+Eh4cjIyMDW7duBQBkZWUhIyPjitucfyM9AAwbNuySnxk6dCi2bdvm2eczzzzT5H0OHDgQYWHG3GyykpiYGEyfPh0xMTGimxIwmJk1MpChRhlq8IcWUaFYOi0dExZmo7y6zmf7jYsIwdJp6WgRFeqzfQa6r58aCgB4fFUudh0r9dtx+3VsgZ1+PN6lOOvdQID8b0t+kR0f5xYi72QZ9p2yN/h7ERcRgp7tYpHaPh6j09qhe5Lc5xeeRymQcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3RPXgDaT5x169YNc+bMweHDh7FlyxY89NBDlpm4OO/uu+/2/H7JkiVX/OyJEyfwxRdfXHLby+3z888/x8mTJ6+43wuPe7l9kj7BwcFISkpCcHCw6KYEDGZmjQxkqFGGGvwlJSkWq6Zn+OwJjMTYMKyanoGUJL7s7UIdEiLRISESAzr59/+hBnQW//9soTZT/m9uA5vyizF+wTaMmPc13sw6jG/+c+6iCb3y6jp8859zeDPrMIbP24zxC7bhy/wzglpsPJ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxnPdP+qe/TRR7F9+3bk5+fj+eefR6dOnUQ3SZjJkycjKioKAHDo0CG8/fbbl/3s008/DZdLWx7hhhtuwPXXX3/Jz/Xv3x/9+/cHALhcris+efHWW2/hu+++A6DNiN5///3NqoMaqqiowJIlS1BRUSG6KQGDmVkjAxlqlKEGf0pJisWGmYMxOq2tV/sZndYWG2YO5sTFFYzyMmPdx0tt59fjXUpUqHn/IVRa6cRjK/Zg2pKdyCko0bVtTkEJpi7ZgZkr96C00mlQC8XheZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8Uw3eZGZmem5uW51rVu3xhNPPOH582OPPYbVq1c3+ExdXR2eeeYZrFixwvO1P/zhD1fc74XfX758OZ555hnU1TX8Kb/Vq1fj8ccf9/z5t7/9LVq2bNmcMugnbDYbkpOTYbOZbtU202Jm1shAhhplqMHfWkSFInNiHyya0g/pOp8OSO+UgMVT+iNzYh8uFdWIlKRYpCf752mI9E4J6J4Ug6+fGur51bdjC78c+7x+HVs0+8V/Rr9z4uBpO0Zkbvb6pfUf5RZiROZm5BfZfdQyc+B5lAIJx6s1sJ/FYO76MTON7DnIUp8sdZDxFNVqbwE02B133IHCwob/GC0qKkJxcTEAICoqCtdcc81F261fvx5t2178U5F1dXUYMWIENm3a5Plar169cP3116OmpgabN2/G6dOnPd+bM2cOXnjhhUbb+fzzz+N///d/PX9u27YtbrrpJoSHh2PXrl3Yt2+f53u33XYb1q9f75MTyv79+9GzZ0/Pn/ft24cePfhiVSIi0hwqcuDjvFPIO1GOvafKL1r7v1e7OKR2iMOoVPnX/ve1TfnFmLZkp+HHWTylP4amtG7wtbkb8vFm1mHDj33eI0O7YNbwlCZ/3l/vnDh42o6Jb/n+XS9cMo2IiIiIiIwg+l5uwExeVFdXIy8vDz/88AMcDgdiYmLQsmVLpKamIiIiQnTzPJKTk3Hs2DHd2x09ehTJycmX/F55eTkefPDBi566uFBISAhmz56N5557rknHU1UVv//97/HSSy9d9NTFhSZOnIiFCxciNtY3/yAWPeDNoLa2Fnv27EGfPn34AvQmYmbWyECGGmWowUxUVUWl0wVnvRuhtiBEhQY3+6fpSfPYij1e/8T/lYxOa4vMiX0u+np+kR0j5n1t2HF/6tPHBzdpkmFTfjEWZB3RtXRTenICZgzpctEETWNKK50YkbkZxfZaXds1RWJsGDbMHCzFE0g8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4rEH0v13TLRl3I5XJh2bJlGDRoEOLi4jBo0CCMHj0a9957L0aPHu35+o033ojly5d73vkgm7i4OKxatQqfffYZ7r33XnTp0gWRkZGIi4tDz5498eSTTyIvL6/JExcAoCgKfve73yEvLw9PPPEEevbsibi4OERGRqJLly6499578dlnn2HFihU+m7ggjdPpRG5uLpxO+dapNgozs0YGMtQoQw1moigKosNsSIgKRXSYjRMXPjBnVA+fvST9pxJjwzD7rkv/T6yIZauuRMQ7J178eL8hExcAUGyvxex1+w3Zt7/xPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZ98uI///kPfvnLX2L37t0AcMX1hs/fzOjbty9WrFiBLl26+KWNpJ/o2ToiIiKryy+yY8JC/y9dJHLZqgsdPG3HlMU5PplISIwNw9Jp6Y0u2eSv2hdN6YdhKYmGH4eIiIiIiKxB9L1cUz55cfToUQwePPiiiYuoqCikpKSgb9++SElJQVRUVIPv79y5EzfddBMKCgqEtJuoKdxuN8rKyuB2u0U3JWAwM2tkIEONMtRA8ktJisWq6Rk+ewIjMTastADKFgABAABJREFUSe9cGJaSiFGpF7/fy5dGp7VtdOJi4lvZPnsCotheiwkLsxt9afaCrCM+OV5jFnzln+MYiedRCiQcr9bAfhaDuevHzDSy5yBLfbLUQcYz5eTF+PHjUVRUBAAIDg7GjBkzsGvXLtjtdhw4cAA7duzAgQMHYLfbsXv3bjz88MMIDtbWwS4qKsL48eMFV0B0eXa7HZmZmbDbr3yjg37EzKyRgQw1ylADWUNKUiw2zByM0WneTSaMTmuLDTMHN/ll0aKWrQK0paKmLM7x6RMnAFBeXYfJi3Iuu4RUfpFd99JUzZVztASHihx+OZZReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDzTLRv1wQcfYNy4cVAUBS1btsQnn3yCfv36Nbrdrl27cMcdd+Ds2bNQFAXvv/8+xowZ44cWkx6iHzUyA7fbDbvdjtjYWAQFmXL+0HSYmTUykKFGGWog69mUX4wFXx1BzlEdL63ulIAZN+t/aTUgbtkqf7+s/ERJFQBg4ebDWJZ93LDj/tR9GR3x4ODO6JAQ6bdj+hLPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqcMKRN/LNd3kxaRJk7BixQooioJPP/0Ut956a5O3/fzzz3H77bdDURRMmDAB7733noEtpeYQPeCJiIjo0g4VOfBx3inknSjH3lPlDSYX4iJC0KtdHFI7xGFUartGX4jdmPwiOyYv8t97J0S8cyL5mU8MP96VFLxyp9DjExERERFR4BN9L9d0U1vbt2+Hoijo1auXrokLALj11luRmpoKVVWxfft2g1pI5B2Hw4EFCxbA4QjsZR38iZlZIwMZapShBrKu7kkxmDU8BcseGIDcF27DvjnDsft57b+5L9yGZQ8MwKzhKV5PXAD+X7aK75wIHDyPUiDheLUG9rMYzF0/ZqaRPQdZ6pOlDjKe6SYviouLAQB9+vRp5JOXlpaWBgA4c+aMr5pE5FOhoaFIS0tDaGio6KYEDGZmjQxkqFGGGogAQFEURIfZkBAViugwGxRF8fkxWkSFInNiHyya0g/pnRJ0bZveKQGLp/RH5sQ+aBF15b9vfOdEYOF5lAIJx6s1sJ/FYO76MTON7DnIUp8sdZDxbKIbcDkmW82KyGfCwsKQkZEhuhkBhZlZIwMZapShBiJ/G5aSiGEpiT5ftur8OyeWZR8zrO2Xsiz7GB4c3Nmvx5QJz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjGe6yYvExEQcOXIEubm5zdr+/HatW+t/gSSRP9TU1CA7OxsZGRkIDw8X3ZyAwMyskYEMNcpQA5Eo3ZNiMCspBYD2QyyVThec9W6E2oIQFRqs++mPm+Z+aUQzG/Vu9jG86+cJE5nwPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZbNio9PR0AsHfvXnz5pb5/dGZlZSEvLw+Konj2Q2Q29fX1KCgoQH19veimBAxmZo0MZKjR1zWoqgpHTR1KKp1w1NT5/alE0ccn6/LHslVkTjJcC8g6OF6tgf0sBnPXj5lpZM9BlvpkqYOMp6gmuxOxZs0ajB8/HoqioHXr1vj000/Ru3fvRrfbt28fbr/9dhQVFUFRFKxatQpjx471Q4tJD9FvqCciMrv8Ijs+zi1E3sky7Dtlv2jpnJ7tYpHaPh6j05q2dE6gHZ/IV5Kf+UTo8b9+aigA4PFVudh1rNRvx+3XsQX+PCENHRIi/XZMIiIiIiKSk+h7uaZbNmrs2LFIS0tDXl4eiouLkZ6ejocffhhTp05Fr169Lvr8vn37sGTJErzxxhtwOp1QFAV9+vThxAWZlsvlwtmzZ9GqVSsEBweLbk5AYGbWyECGGr2pYVN+MRZkHbnii4XLq+vwzX/O4Zv/nMObWYeRnpyAGUO6YGiK90slij4+kWzOTx4M6JTg18mLAZ0TAnriQoZrAVkHx6s1sJ/FYO76MTON7DnIUp8sdZDxTLdsFACsWrUKLVu2hKIocDqdyMzMRFpaGuLi4tCzZ08MGDAAPXv2RHx8PFJTU/HnP/8ZtbW1UFUVrVq1wsqVK0WXQHRZDocDCxcuhMPhEN2UgMHMrJGBDDU2p4bSSiceW7EH05bsvOLEwaXkFJRg6pIdmLlyD0ornXqba4rjE8luVFpb/x4vtZ1fj+drMlwLyDo4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnumWjzjt48CB++ctf4ttvv23w9QvXPP5p01NTU7FixQqkpKT4pY2kn+hHjcxAVVXU1tYiLCyMa3g3ETOzRgYy1Ki3hoOn7ZiyOAfF9lqvj50YG4al09KRkhTb5G1EH5/ISKKXjSp45U7P78cv2KZ7crA50jslYPX0Gww/jpFkuBaQdXC8WgP7WQzmrh8z08iegyz1yVKHFYi+l2vKJy8A4Nprr8WOHTvwj3/8AwMGDPA8QqSqqucXAAQHB2PAgAFYtGgRcnJyOHFBpqcoCsLDw3ly1oGZWSMDGWrUU8PB03ZMfCvbJxMHAFBsr8WEhdnIL7I36fOij09ktK+fGoqvnxqKvh1b+PW4/Tq28Lzv4ryHhnT2y7Fn3NzFL8cxkgzXArIOjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmXbyAgBCQkIwdepUbNu2DaWlpdiyZQs+/PBDvPvuu/jwww+xZcsWlJaWYtu2bZgyZQpCQkJEN5moUXa7HfPmzYPdzht8TcXMrJGBDDU2tYbSSiemLM5p8DJsXyivrsPkRTmNLuEk+vhE/tAhIRIdEiIxoFOCX497qXdODEtJxKhUY5ePGp3WVor3z8hwLSDr4Hi1BvazGMxdP2amkT0HWeqTpQ4ynule2H050dHRGDhwoOhmEHktPDwcQ4YMQXh4uOimBAxmZo0MZKixqTW8+PF+nz3x8FPF9lrMXrcfmRP7mPb4RP40Kq0t3sw67L/jXeadE3NG9cD2o+cM+buXGBuG2XfJsQynDNcCsg6OV2tgP4vB3PVjZhrZc5ClPlnqIOOZ9p0XJCfR66QREYm2Kb8Y05bsNPw4i6b0w7CURNMdn0gEs7xzIr/IjgkLs3361FNcRAhWTc/g+2aIiIiIiMjnRN/LNfWyUUQyqq6uxoYNG1BdXS26KQGDmVkjA7PWqKoqHDV1KKl0wlFThyvN+TelhgVZR4xo5sXH+erSxxF9fCIRzPLOiZSkWKyanoHE2DCfHC8xNky6iQuzXguILoXj1RrYz2Iwd/2YmUb2HGSpT5Y6yHhCl406deoUunfvjurqagQFBeHf//43br31Vt37+eyzzzBy5EioqoqYmBh8//33aNWqlQEtJvKe2+1GWVkZ3G636KYEDGZmjQzMVGN+kR0f5xYi72QZ9p2yN/gp6biIEPRsF4vU9vEYndYO3ZNiPN9rrIb8IrtffvobAHKOluBQkaNB+0Qfn0iU8++c+Div0LBjNPWdEylJsdgwczBmr9uPj3Kb357RaW0x+64eaBEV2ux9mJGZrgVEjeF4tQb2sxjMXT9mppE9B1nqk6UOMp7QZaN+9atfYfHixVAUBS+99BL+53/+p9n7+v3vf4/nn38eiqLgkUcewV/+8hcftpR8RfSjRkREV7IpvxgLso7ousGfnpyAGUO6XPGm5YmSKgDAws2HsSz7uNftbKr7MjriwcE//sS5qOP/9OXFRCKUVjoxInOzYe+c2DBzsO6JhE35xVjw1RHkHNVxzumUgBk3X/mcQ0RERERE5Aui7+UKm7woKytDmzZt4HQ60alTJxw6dAjBwcHN3l99fT26d++Oo0ePIioqCsXFxYiM5M0SsxE94M2gvr4eJ0+eRPv27WGzCX34KWAwM2tkILLG0konXvx4v1c/lT06rS1+N7I7KkvPXFRD8jOf+KKZAavglTtFN4EIgHnfOXGoyIGP804h70Q59p4qv+hpr17t4pDaIQ6jUttJ/zSTFa53JA+OV2tgP4vB3PVjZhrZc5ClPlnqsALR93KFvfNizZo1qK3VfvLtueee82riAgBsNhueffZZAEBVVRX++c9/et1GIiNUVFRg6dKlqKioEN2UgMHMrJGBqBoPnrZjROZmr5eT+Si3EOP+tkn6fiIKZGZ950T3pBjMGp6CZQ8MQO4Lt2HfnOHY/bz239wXbsOyBwZg1vAU6ScuAGtc70geHK/WwH4Wg7nrx8w0sucgS32y1EHGE/bkxZQpU/DOO+/AZrOhuLgYLVq08HqfpaWlaN26NdxuN6ZOnYq3337bBy0lXxI9W0dEdKGDp+2Y+JbxP4XNJy/45AWZS2mlk++cICIiIiIiaoToe7nCnrzYvXs3AOD666/3ycQFALRo0QLXX389VFXFrl27fLJPIiKSU2mlE1MW5/h04gIAyqvrMHlRDkornT7dLxH5TouoUGRO7INFU/ohvVOCrm3TOyVg8ZT+yJzYhxMXREREREREBhI2eVFUVARFUdChQwef7vfqq68GABQWerf8B5FRysvL8corr6C8vFx0UwIGM7NGBv6u8cWP9/v8xb1RSi3uCd+DCocds9ft9+m+icj3hqUkYvX0G/Dp44PxyNAuuPGaloiLCGnwmbiIENx4TUs8MrQLPn18MFZPv4EvyzaQFa53JA+OV2tgP4vB3PVjZhrZc5ClPlnqIOMJeyPK+cHZsmVLn+73qquuarB/IrOJjIzE3XffzRfK68DMrJGBP2vclF/s9TsuLqVGtWGLMxk1qg0f5RZidFpbDEtJ9PlxiMi3uifFYFZSCgBAVVVUOl1w1rsRagtCVGgwFEUR3ELrsML1juTB8WoN7GcxmLt+zEwjew6y1CdLHWQ8YZMXUVFRKC8v9/kkg91uBwBERET4dL9EvhISEoKUlBTRzQgozMwaGfizxgVZRwzZrwvBOO7+cSnEBV8dwbCURHz91FAAwOOrcrHrWKkhx76Ufh1b4M8T0jx/Fn18okCgKAqiw2yAb97pTTpZ4XpH8uB4tQb2sxjMXT9mppE9B1nqk6UOMp6wZaPOP3Fx6tQpn+73/P58/UQHka9UVVVh7dq1qKqqEt2UgMHMrJGBv2rML7Ijp6DEkH2HoQ43hhxFGLT3aOQcLcGhIgc6JESiQ0IkBuhcW99bAzoneI4t8vhERE1lhesdyYPj1RrYz2Iwd/2YmUb2HGSpT5Y6yHjCJi86duwIVVWRk5OD6upqn+yzuroaOTk5UBQFHTt29Mk+iYgo8J0oqfL8WpZ9zK/HvvB4o9La+vXYo1LbNfyz4OMTERERERERETWVoqqqKuLAf/jDH/A///M/UBQFixcvxv333+/1Pt955x1MmTIFiqLg5ZdfxnPPPeeDlpIv7d+/Hz179vT8ed++fejRo4fAFhGRFSQ/84nQ4xe8cqfn9+MXbDPsyY8LpXdKwOrpN1z0ddHHJyIiIiIiIqLAIPperrAnL0aMGOH5/QsvvOD1Y0JVVVV48cUXPX8eOXKkV/sjMkpdXR3y8/NRV1cnuikBg5lZIwMZagyGC1cHlSIYrgZfv/DnBB4a0tkvbZlxc5dLfl308YnI3FRVhaOmDiWVTjhq6uDvn3OS4VpA1sHxag3sZzGYu37MTCN7DrLUJ0sdZDxhkxd9+vTBsGHDoKoqTpw4gTFjxqC+vr5Z+3K5XBg7diyOHTsGRVEwdOhQ9OnTx8ctJvINruunHzOzRgYy1Biu1OPG0AKEKw2vZ5XOHyczhqUkYlSqscs3jU5ri6EprS/5PdHHJyLzyS+yY+6GfEx6OxtpL32GXrM34vqXtf+mvfQZJr2djbkb8nGoyGF4W2S4FpB1cLxaA/tZDOauHzPTyJ6DLPXJUgcZT9iyUQCwfft2DBo0yPMTXX369MGSJUsaPIrSmP3792PKlCnYvXs3VFVFcHAwtmzZggEDBhjVbPKC6EeNiMiaRC8btfv525AQFer5c2mlEyMyN6PYXuvzYyXGhmHDzMFoccHxfkr08YnIHDblF2NB1hFdS8mlJydgxpAunKAkIiIiIrIA0fdyhT15AQADBgzA3LlzPZMXu3fvRlpaGoYPH46lS5ciPz//ktsdOnQI77zzDkaMGIHU1FTPxIWiKPjDH/7AiQsiIjKVUFvDy22LqFAsnZaOuIgQnx4nLiIES6elNzpxIPr4RCRWaaUTj63Yg2lLdup+B05OQQmmLtmBmSv3oLTSaVALiYiIiIiIBE9eAMATTzyBp556yjP54Ha78fnnn2PatGno0aMHQkJCcNVVV6Fjx4646qqrEBISguuuuw5Tp07FZ599Brfb7dnXk08+id/+9rcCqyFqXFlZGebMmYOysjLRTQkYzMwaGchQY7RSi6kROxGtNHyiISo0+KLPpiTFYtX0DCTGhvnk2ImxYVg1PQMpSbFN+rzo4xORGAdP2zEiczM+ziv0aj8f5RZiROZm5BfZfdQyjQzXArIOjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjCV026kL//Oc/8etf/xqlpaVQFAUArviCwAs/Ex8fj7feegtjx471S1up+UQ/amQG9fX1OHnyJNq3bw+bzSa6OQGBmVkjAyNrPFHy4zqaj6/Kxa5jpT7d/3nBcKNVUAXOuqPh+u/PB/Tr2AJrZgy87DallU7MXrcfH+U2/0bi6LS2mH1Xj2Y98SD6+ETkPwdP2zHxrWyUV/vuxYhxESE+nbi0wvWO5MHxag3sZzGYu37MTCN7DrLUJ0sdViD6Xq5pJi8AoKKiAgsWLMCCBQtw5MiRRj/fqVMnzJgxA9OnT0dMTIwfWkjeEj3giYjmbsjHm1mH/Xa8R4Z2wazhKY1+blN+MRZ8dQQ5R3WsPd8pATNu9s3a86KPT0TG4rtuiIiIiIhIL9H3ck01eXGh48eP4+uvv0ZBQQFKSkrgcDgQExODhIQEJCcn48Ybb0THjh1FN5N0Ej3gzaCyshLr1q3DXXfdhaioKNHNCQjMzBoZ+KvG/CI7Rsz72pB9h6MOA0OPYauzI2qgvU/i08cHo3tS0yfYDxU58HHeKeSdKMfeU+UNfkI6LiIEvdrFIbVDHEalttO130A5PhEZ47EVe7xeKupKRqe1RebEPl7vxwrXO5IHx6s1sJ/FYO76MTON7DnIUp8sdViB6Hu5pn0u5+qrr8akSZNEN4PI54KCghAfH4+gIOGvnAkYzMwaGfirxpSkWKQnJ+h+SW1TuKGgQg2FG9rShumdEnTf4O+eFINZSdqTGqqqotLpgrPejVBbEKJCgz3LJhpF9PGJyPc25RcbOnEBaO/AGJ3WFsNSEr3ajxWudyQPjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmfbJC5KT6Nk6IiJAu5E3bclOw4+zeEp/LqlERMKNX7DNkAnbn0rvlIDV028w/DhEREREROQfou/lcnqLyM+cTidyc3PhdDpFNyVgMDNrZODPGoelJGJUaluf79cGF64J/gE2uDA6rS0nLohIuPwiu18mLgAg52gJDhU5vNqHFa53JA+OV2tgP4vB3PVjZhrZc5ClPlnqIONx8oLIz2pqapCVlYWamhrRTQkYzMwaGfi7xjmjeiAxNsyn+wyFC2m2QrSLCcbsu/hUGRGJc6KkCidKqrAs+5hfj+vt8axwvSN5cLxaA/tZDOauHzPTyJ6DLPXJUgcZj8tGkV+JftSIiOhC+UV2TFiY3eCl1N6KiwjBqukZSEmK9dk+iYj0Sn7mE2HHLnjlTmHHJiIiIiIi3xF9L5dPXhD5maqqqKmpAecNm46ZWSMDETWmJMVi1fQMnz2BkRgTinenpKF7or6XdBMRycSb87gVrnckD45Xa2A/i8Hc9WNmGtlzkKU+Weog43HygsjPysvL8eqrr6K8vFx0UwIGM7NGBqJqTEmKxYaZgzE6zbt3YIxOa4vVU1Px4ZL5UvcTEVFjKp2uZm9rhesdyYPj1RrYz2Iwd/2YmUb2HGSpT5Y6yHhcNor8SvSjRmbgcrlw9uxZtGrVCsHBwaKbExCYmTUyMEONm/KLseCrI8g52vSX26Z3SsCMm7tgaEprU9RARASIXTZq9/O3ISEqtFnb8jxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6rED0vVyb345ERACA4OBgJCUliW5GQGFm1sjADDUOS0nEsJREHCpy4OO8U8g7UY69p8obvBMjLiIEvdrFIbVDHEaltkP3pB+XiDJDDUREooXamv9wN8+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4zHZaOI/KyiogJLlixBRUWF6KYEDGZmjQzMVGP3pBjMGp6CZQ8MQO4Lt2HfnOHY/bz239wXbsOyBwZg1vCUBhMXgLlqICISJSq0+T89x/MoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOPxyQsiP7PZbEhOTobNxr9+TcXMrJGBWWtUFAXRYTagCe/0NmsNRGQ9Xz81FADw+Kpc7DpW6rfj9uvYAoqiNHt7nkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGY/vvCC/Er1OGhEREZGVzN2QjzezDvvteI8M7YJZw1P8djwiIiIiIjKO6Hu5XDaKyM9qa2uRnZ2N2tpa0U0JGMzMGhnIUKMMNRCRXEaltfXv8VLbebU9z6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjBdQkxfV1dUoLCzE8ePHRTeFqNmcTidyc3PhdDpFNyVgMDNrZCBDjTLUQERySUmKRXpygl+Old4p4aJ3AenF8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45l62ShVVbFmzRosX74cW7ZsQWmptl6voiior69v8NkffvgBq1evBgB07doVt912m9/bS40T/agRERERkdVsyi/GtCU7DT/O4in9MTSlteHHISIiIiIi/xB9L9e0b0U5dOgQJkyYgL179wLQJjKu5KqrrsK8efNw+PBhJCUl4cSJEwgKCqgHS8gi3G437HY7YmNjOUabiJlZIwMZapShBiKSz7CURIxKbYuP8woNO8botLY+mbjgeZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8Uw5Og4ePIgbbrgBe/fuhaqqUFUVUVFRiIqKuuw2iqJgxowZUFUVRUVFyMrK8l+DiXSw2+3IzMyE3W4X3ZSAwcyskYEMNcpQAxHJac6oHkiMDTNk34mxYZh9l29++ornUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM92yUS6XCz179sShQ4cAAMOGDcPvf/97DBgwAI8++ijeeOMNKIoCl8t10banTp1Chw4doCgKZs2ahVdeecXfzadGiH7UyAw4u6wfM7NGBjLUKEMNRCSv/CI7JizMRnl1nc/2GRcRglXTM5CSFOuT/fE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOqxA9L1c042O5cuX49ChQ1AUBWPGjMHGjRsxYMCAJm3brl07dOrUCQCwc6fx6/oSNUdQUBDi4+N5ctaBmVkjAxlqlKEGIpJXSlIsVk3P8NkTGImxYT6duAB4HqXAwvFqDexnMZi7fsxMI3sOstQnSx1kPNONkA8//BAAEB4ejvnz5+sexD179oSqqvj++++NaB6R1xwOBxYsWACHwyG6KQGDmVkjAxlqlKEGIpJbSlIsNswcjNFpbb3az+i0ttgwc7BPJy4AnkcpsHC8WgP7WQzmrh8z08iegyz1yVIHGc90L+zetWsXFEXBjTfeiFatWunevmXLlgCAc+fO+bppRD4RGhqKtLQ0hIaGim5KwGBm1shAhhplqIGI5NciKhSZE/tgdFpbLPjqCHKOljR52/ROCZhxcxefvJz7UngepUDC8WoN7GcxmLt+zEwjew6y1CdLHWQ8001enD17FgCQnJzcrO1DQkIAAPX19b5qEpFPhYWFISMjQ3QzAgozs0YGMtQoQw1EZB3DUhIxLCURh4oc+DjvFPJOlGPvqfIG78SIiwhBr3ZxSO0Qh1Gp7dA9KcbQNvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4ppu8CAsLg9PpRF1d814keH7yo0WLFr5sFpHP1NTUIDs7GxkZGQgPDxfdnIDAzKyRgQw1ylADEVlP96QYzEpKAQCoqopKpwvOejdCbUGICg2Goih+awvPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqYOMZ7p3XiQmJgJAs99ZkZOTA0VR0KFDB182i8hn6uvrUVBQwKeDdGBm1shAhhplqIGIrE1RFESH2ZAQFYroMJtfJy4AnkcpsHC8WgP7WQzmrh8z08iegyz1yVIHGU9RVVUV3YgLTZkyBe+88w5CQ0Nx7Ngxz2QGADz66KN44403oCgKXC7XRdt+9tlnGD58OBRFwW9+8xu8/vrr/mw6NcH+/fvRs2dPz5/37duHHj16CGwREREREREREREREf2U6Hu5pnvy4u677wYA1NXV4dlnn23ydg6HA4899pjnz+PGjfN104h8wuVyoaio6JITcHRpzMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOOZcvIiNTUVqqpi6dKleOKJJ+B0Oq+4zd69ezF48GAcOnQIiqLglltuwYABA/zUYiJ9HA4HFi5cCIfDIbopAYOZWSMDGWqUoQYiIpF4HqVAwvFqDexnMZi7fsxMI3sOstQnSx1kPNMtGwUA3377LQYPHuwZwElJSRgzZgzy8vKwZcsWKIqCP/3pTygqKsI333yDrVu3QlVVqKqKVq1aYefOnXznhUmJftTIDFRVRW1tLcLCwvy+jnSgYmbWyECGGmWogYhIJJ5HKZBwvFoD+1kM5q4fM9PInoMs9clShxWIvpdryskLANi8eTPGjx+PM2fONDqIz5fQpk0bfPTRR+jXr58/mkjNIHrAExEREREREREREVHjRN/LNd2yUecNHjwYeXl5mDp1KkJCQjxPVlzql81mw5QpU7Bz505OXJDp2e12zJs3D3a7XXRTAgYzs0YGMtQoQw1ERKKoqorCM+fwpz/PQ+GZczDpz1gRefC6bw3sZzGYu37MTCN7DrLUJ0sdZDyb6AZcSWJiIv7xj3/g1Vdfxeeff45t27ahsLAQ5eXliIqKQmJiIgYMGIDhw4ejbdu2optL1CTh4eEYMmQIwsPDRTclYDAza2QgQ40y1EBE5E/5RXZ8nFuIvJNl2HfKjsrqGiQHt8Cbf/oGURHh6NkuFqnt4zE6rR26J8WIbi5RA7zuWwP7WQzmrh8z08iegyz1yVIHGc+0y0aRnEQ/akRERERE4m3KL8aCrCPIKShp8jbpyQmYMaQLhqa0NrBlRERERER0nuh7uaZdNopIVtXV1diwYQOqq6tFNyVgMDNrZCBDjTLUQERkpNJKJx5bsQfTluy85MRFKOqRHnIcoai/6Hs5BSWYumQHZq7cg9JKpz+aS3RFvO5bA/tZDOauHzPTyJ6DLPXJUgcZz3TLRk2bNg0AcOutt+Kee+7Rvf3q1auxYcMGKIqCf/zjH75uHpHX3G43ysrK4Ha7RTclYDAza2QgQ40y1EBEZJSDp+2YsjgHxfbay34mCCqiFSeCcPmHwz/KLUT2kXNYOi0dKUmxRjSVqEl43bcG9rMYzF0/ZqaRPQdZ6pOlDjKe6ZaNCgoKgqIoeOSRR/CXv/xF9/azZs3CH//4RyiKApfLZUALyRuiHzUiIiIiIv87eNqOiW9lo7y6zmf7jIsIwarpGZzAICIiIiIyiOh7uVw2isjP6uvrUVBQgPr6i5dDoEtjZtbIQIYaZaiBiMjXSiudmLI4p0kTF8FwIynIjmA0/lN45dV1mLwoh0tIkTC87lsD+1kM5q4fM9PInoMs9clSBxlPusmL8w+SKIoiuCVEl1ZRUYGlS5eioqJCdFMCBjOzRgYy1ChDDUREvvbix/uvuFTUhSKUOowM+w4RStOe0Ci212L2uv3eNI+o2Xjdtwb2sxjMXT9mppE9B1nqk6UOMp50y0ZNmTIF77zzDmJjY1FWVub7BpJXRD9qRERERET+sym/GNOW7DT8OIum9MOwlETDj0NEREREZCWi7+VK9eSF3W7Hxo0boSgKrr76atHNISIiIiKytAVZR/xznK/8cxwiIiIiIvIfm8iDv/TSS5f9Xk5OzhW/f6G6ujqcOnUKGzduRFFRERRFwY033uirZhL5VHl5OebPn48ZM2YgLi5OdHMCAjOzRgaXq1FVVVTU1qPOpSIkWEF0mM20SwNaoZ+IiJoqv8iOnIISXdtEKbUYHXYAH9Veh0o1rMnb5RwtwaEiB7onxehtJlGz8bpvDexnMZi7fsxMI3sOstQnSx1kPKHLRp1fIupC3r6zQlVVhIWFYefOnVyOyIREP2pkBnV1dTh8+DC6dOmCkJAQ0c0JCMzMGhlcWOPhc9X4OLcQeSfLsO+UvcFLXuMiQtCzXSxS28djdFo7U92oskI/ERE15kRJFQBg4ebDWJZ9XNe2wXChXZAdp9yxcCFY17b3ZXTEg4M7o0NCpK7tiJqL131rYD+Lwdz1Y2Ya2XOQpT5Z6rAC0fdyhU9e+FqHDh3w5ptv4s477/T5vsl7ogc8EZnbpvxiLMg6ousnddOTEzBjSBcMTWltYMuIiKipkp/5ROjxC17hvwOIiIiIiHxB9L1coctGvfjiixd9bc6cOVAUBf3798fIkSMb3YeiKAgPD8dVV12Fnj17Ij093bTLiRABQFVVFTZu3Ijbb78dkZH8ycCmYGbyZ1Ba6cTsD3fj3KGdyKtrD6DpP3mRU1CCnCUlGJ3WFrPv6oEWUaHGNbQRsvcTEZHRwlCH/iEnsaOuPWp1XAuIROB13xrYz2Iwd/2YmUb2HGSpT5Y6yHimnLwAgPT09Et+n4iI5HLwtB1TFuegzF6B/l7cp/ootxDZR85h6bR0pCTF+q6BRERERERERETkd0KXjbqUIUOGQFEUjBkzBo8++qjo5pCPiX7UiIjM5eBpOya+ld3gnRbeiosIwarpGZzAICIShMtGERERERHJQfS9XN+/dMJLWVlZ+PLLLzlxQdKqq6tDfn4+6up8d7NWdsxMzgxKK52YsjjHM3ERDBeuDipFMFxe7be8ug6TF+WgtNLpi2bqImM/ERH5k6+uBUT+wOu+NbCfxWDu+jEzjew5yFKfLHWQ8Uw3eUEku6qqKqxduxZVVVWimxIwmJmcGbz48X4U22s9fw5X6nFjaAHClXqv911sr8Xsdfu93o9eMvYTEZE/+fJaQGQ0Xvetgf0sBnPXj5lpZM9BlvpkqYOMZ7plo0huoh81IiJz2JRfjGlLdhp+nEVT+mFYSqLhxyEioh+dKNH+Efr4qlzsOlbqt+P269gCf56Qhg4JfOkjEREREZEviL6XK/SF3Zfyzjvv+Gxf999/v8/2RUREvrMg64h/jvPVEU5eEBH52fnJgwGdEvw6eTGgcwInLoiIiIiIJGK6yYspU6ZAURSv96MoCicvyJTKysqQmZmJmTNnIj4+XnRzAgIzkyuD/CI7cgpKLvp6tFKLceF78X5NL1SoYT45Vs7REhwqcqB7UoxP9tcYmfqJiMhbo9La4s2sw7q28eZaMCq1na7PE3mL131rYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7ZqKAg/a/hUBQFPy1DURS4XHzRn9mIftTIDOrr63Hy5Em0b98eNpvp5g9NiZnJkcH5ZUQWbj6MZdnHL/p+MNxoFVSBs+5ouHz4Sqb7Mjri5bt7Nv5BH5Chn4iIfGn8gm2XnLC+nOZeC9I7JWD19Bua00SiZuN13xrYz2Iwd/2YmUb2HGSpT5Y6rED0vVzTjY7Jkyc36XNutxvl5eXYu3cvjh49CgAIDw/HuHHjmjUBQuQvNpsNycnJopsRUJiZHBncNPfLK37fhSAUuWN9ftx3s4/5bfJChn4iIvKlh4Z0Rs6Spk9eNPdaMOPmLrq3IfIWr/vWwH4Wg7nrx8w0sucgS32y1EHGM93kxeLFi3Vvs3PnTsycORPbtm1DUVER3n//fcTG+v4GGJEvVFZWYt26dbjrrrsQFRUlujkBgZlZI4Nw1GFg6DFsdXZEDUJ8um9VVX2yJGFjrNBPRER6DEtJxKjUtvg4r7BJn2/OtWB0WlsMTWntTTOJmoXXfWtgP4vB3PVjZhrZc5ClPlnqIONJ8YhCv379sHnzZtx+++34/PPP+a4LMrWgoCDEx8fzCSEdmJk1MnBDQYUaCjd8P8lQ6fTPMoJW6CciIr3mjOqBxNimvb9C77UgMTYMs++y1hKkZB687lsD+1kM5q4fM9PInoMs9clSBxnPdO+88MbJkydxzTXXoK6uDu+//z7GjBkjukn0E6LXSSMicZKf+UTYsXc/fxsSokKFHZ+IyOryi+yYsDAb5dV1PttnXEQIVk3PQEoSn7gmIiIiIjKC6Hu5Uk1vtW/fHoMGDYKqqs1aforIH5xOJ3Jzc+F0OkU3JWAwM2tkYIML1wT/ABt8/5REqM0/lzsr9BMRUXOkJMVi1fSMRp/AaOq1IDE2jBMXJByv+9bAfhaDuevHzDSy5yBLfbLUQcaTavICALp00V7Wl5eXJ7glRJdWU1ODrKws1NTUiG5KwGBm1sggFC6k2QoRasDkRVRosM/3eSlW6CciouZKSYrFhpmDMTqt7WU/05Rrwei0ttgwczAnLkg4Xvetgf0sBnPXj5lpZM9BlvpkqYOMJ9WyUQBw//33Y9myZQgNDeVfABMS/agREYlzoqQKAPD4qlzsOlbqt+P269gCa2YM9NvxiIiocZvyi7HgqyPIOVrS5G3SOyVgxs1d+HJuIiIiIiI/EX0v1+a3I/mB2+3G5s2bAQBxcXGCW0N0aaqqora2FmFhYVAU37+YWEbMTI4MOiREAgAGdEq4zOSFilC44EQw4MOXdg/onOCzfTVGhn4iIvKHYSmJGJaSiENFDnycdwp5J8qx91Q5yqudnmtBXEQoerWLQ2qHOIxKbYfuSTGim03UAK/71sB+FoO568fMNLLnIEt9stRBxpNq2ajf/e53OH78OBRFwfXXXy+6OUSXVF5ejldffRXl5eWimxIwmJlcGYy6zHIh0YoTkyJyEa34ds3LUantfLq/K5Gpn4iI/KF7UgxmDU/BsgcGIPeF2/DNbzIwKSIX3/wmA7kv3IZlDwzArOEpnLggU+J13xrYz2Iwd/2YmUb2HGSpT5Y6yHimWzbq+PHjTf5sfX09zp07h9zcXCxduhTbtm2DqqpQFAXLly/HxIkTDWwpNYfoR43MwOVy4ezZs2jVqhWCg/2zDn+gY2byZTB+wTbkFDRcKiQIbsQrNShTw+H20dx6eqcErJ5+g0/21RSy9RMRkb/xPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljqsQPS9XNMtG5WcnOz140J33HEHJy7ItIKDg5GUlCS6GQGFmcmXwUNDOiNnScPJCzeCUKJG+vQ4M27u4tP9NUa2fiIi8jeeRymQcLxaA/tZDOauHzPTyJ6DLPXJUgcZz7TLRqmqqvuXoih4+OGHsWbNGtHNJ7qsiooKLFmyBBUVFaKbEjCYmdgMVFWFo6YOJZVOOGrq4IsH9oalJGJUasPloyJQhxGh+YhAndf7B4DRaW39/lJXjlUiIu/wPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZ78uLqq69u8pMXISEhiI2NRXJyMgYMGIAJEybg6quvNriFRN6x2WxITk6GzWa6v36mxcz8n0F+kR0f5xYi72QZ9p2yo7z6xwmFuIgQ9GwXi9T28Rid1vwXqM4Z1QPbj55Dsb0WAOCCgiJ3DFw+eFl3YmwYZt/l/yXpOFaJiLzD8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45nunRckN9HrpBHRlW3KL8aCrCMXvY/iStKTEzBjSJdmPeWQX2THhIXZDSZHvBUXEYJV0zOQkhTrs30SEREREREREVmN6Hu5pl02ikhWtbW1yM7ORm1treimBAxmZnwGpZVOPLZiD6Yt2alr4gIAcgpKMHXJDsxcuQellU5d26YkxWLV9AwkxoYhBC5cF1yMELh07eNCibFhQicuOFaJiLzD8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog43HygsjPnM7/z96dx0dd3fvjf00ymcm+VU0IhATwQipEQsWwCQKtAlLBlkWu2spWKfVeobcXantvFdrvvRexteT+WgGLQBQXFFvBqyXWssgWI5ZQEhkokLDPiGSZySSTyWTm98dHAiHbfGY+y8yZ1/PxyCNkls857/fnMydkzpzzdqO8vBxut7w3eSMZc6ZuDo5ftmNy0cfYcfRSUMfZXn4Jk4s+hsVql/W8vMxk7FwyDlOH3IrbjV/CGODkxfSCLOxcMk7XFRe8VomIgsNxlMIJr9fIwPOsD+ZdPuZMInoeRIlPlDhIfdw2ijSl91IjImrv+GU75rwUOts27bLYsG7vGZRVydi2ql86Ft8b2LZVRERERERERETUOb3fy2VVFCKNeb1e2O12JCcnIyqKi5/8wZypk4NapxtzN5UpOnEBAPVNLXh8Yxl2LhmHtAST38/zer34RqYZb/5gBP7xhRM7jl7E0fP1OHaxvkPB8PzeKRianYJpQwMvGK4GXqtERMHhOErhhNdrZOB51gfzLh9zJhE9D6LEJ0ocpD5dro5z585p8kUUiux2O4qKimC3y9taJ5IxZ+rk4NkdlbDZ1dlf0mZvxor3KmU958YYB2UmYdmkPGxZOALlz9yHipWT8LdfSN/Ln7kPWxaOwLJJeSE1cQHwWiUiChbHUQonvF4jA8+zPph3+Zgzieh5ECU+UeIg9emybVRUVBQMBoOqbRgMBng8HlXbIPn0XmoUCji7LB9zpnwOdllsmL/5sAI9697GucMxMS/Dr8eKcJ5FiIGISE8cRymc8HqNDDzP+mDe5WPOJKLnQZT4RIkjEuj9Xq6u20ax3AZFoqioKKSmpurdjbDCnCmfg3V7zih2rG7b2XvG78kLEc6zCDEQEemJ4yiFE16vkYHnWR/Mu3zMmUT0PIgSnyhxkPp0mdrq27cv+vbti5ycHNW++vbtq0doRD1yOBxYt24dHA6H3l0JG8yZsjmwWO0oq/a/IHYwyqpqcMLqX59FOM8ixEBEpCeOoxROeL1GBp5nfTDv8jFnEtHzIEp8osRB6tNl5UV1dbUezRKFBJPJhIKCAphM/hcyjnTMmTI5OF/TCADYUnpWqW75ZUvpWTwxrj+y0+O7fZwI51mEGIiI9KTnOOrz+dDQ7EFLqw8x0QYkmo2qb3UbMnw+oNkBtLYA0TGAOQmIlNiDwN/7kYHnWR/Mu3zMmUT0PIgSnyhxkPp0qXlBkUvvfdKIIlnu0+/r2n71qqm6tk9ERHQzi9WOHeWXcPRCHSou2lHf1NJ2X0pcDIb0TsbQPqmYXtAbgzKTdOypCmyVwLFtwMXPgMtHAVfd9ftiU4FeQ4HedwH5s4CMO/TqJRERERHpSO/3clkRhUhjLpcLe/bsgcvl0rsrYYM5i4wciBCjCDEQEelJq3F0l8WG2esOYfKafXhxz2kcOHW13cQFANQ3teDAqat4cc9pTFrzMWavO4Tdli9U7ZcmTpYAG6cAa0cD+18Aqva2n7gApJ+r9kr3rx0lPf7kh3r0NqTx935k4HnWB/MuH3MmET0PosQnShykPk5eEGnM4/GguroaHo9H766EDeYsMnIgQowixEBEpCe1x9FapxtPvXEE8zcfll3/qay6BvM2f4olbx5BrdOtSv9U1VgDbFsAvD4bOHdQ3nPPHQRenwW8s1A6DgHg7/1IwfOsD+ZdPuZMInoeRIlPlDhIfWG3bVRDQwMcDgeSkpKQmJiod3dIJr2XGhFFMm4bRUREkez4ZTvmbiqDzd4c9LEyks0onl+IvMxkBXr2FTXrTlgrgNdmAo7LwR8rqRfw2DtABv8PT0RERCQ6vd/LDfmVF2fPnsV//Md/YPTo0YiLi0NKSgr69OmDlJQUxMXFYfTo0fjP//xPnDt3Tu+uEvmltbUVVqsVra2tenclbDBnkZEDEWIUIQYiIj2pNY4ev2zHnJdKFZm4AACbvRkPry+FxWoP8kCVwEcrgeJpwHO5wKps4Pn+0vfncqXbP1oJ2D4PvA1rBbB5qjITF4B0nE0PSH2PcPy9Hxl4nvXBvMvHnElEz4Mo8YkSB6kvZCcv3G43li5dittvvx2rVq3CJ598gubmZvh8vrav5uZmfPLJJ/if//kfDBgwAD/+8Y/hdofhEm6KKA6HA+vXr4fD4dC7K2GDOYuMHIgQowgxEBHpSY1xtNbpxtxNZR1qWgSrvqkFj28sC2wLKa3qTjTWSCsubj52sFx1wJYZEb+FFH/vRwaeZ30w7/IxZxLR8yBKfKLEQeoLyW2jmpqacN999+HQoUOQ0z2DwYBRo0bho48+QmxsrIo9pEDpvdQoFFybeDObzTAotRWA4JgzZXJwvqYRALB0azk+O1urZPe6NTwnDb99uADZ6fHdPk6E8yxCDEREelJjHH3qjSPYcfSSIsfqzPSCLBTNGebfgxtrgA+WARXbAm8wfxYwZTUQn97zY7ctCK4tf/oyY4N6xw9x/L0fGXie9cG8y8ecSUTPgyjxiRJHJND7vdyQXHnxgx/8AAcPXi8iN3jwYPzmN79BaWkprFYrHA4HrFYrSktL8cILLyA/Px+AdOEfOnQIP/jBD/TqOlGPDAYDYmNjOTjLwJwpk4Ps9Hhkp8djRD8/3uxQ0Ij+6T1OXABinGcRYiAi0pPS4+gui03ViQsA2F5+Cbsstp4faK2QVloEO5lw7G3pOD1t23SyRN2Ji2t9OVmibhshjL/3IwPPsz6Yd/mYM4noeRAlPlHiIPWF3ORFWVkZXn/9dRgMBkRFReGFF17A3//+d/z4xz9GYWEhbrvtNiQkJOC2225DYWEhli5divLycqxZswbR0dHw+Xx4/fXX8emnn+odClGn7HY71qxZA7s9yD2SIwhzpmwOphVkKdAjGe0N7e3X40Q4zyLEQESkJ6XH0XV7zihynB7b2dtDO3rUndi/Rpm2enKgSJt2QhB/70cGnmd9MO/yMWcS0fMgSnyixEHqC7nJi1dffbXt388//zyWLl3a4yycwWDAU089hV//+tdtt73yyiuq9ZEoGLGxsRg/fjy3NpOBOVM2B3mZySjM1Wb1RWG/dAzKTPLrsSKcZxFiICLSk5LjqMVqR1m1NjUZyqpqcMLaxZ7NetSdsFUC5w52vF0NZw8EV1A8jPH3fmTgedYH8y4fcyYRPQ+ixCdKHKS+kKt5kZ+fj8rKSvTu3Rvnz5+X9Vyfz4e+ffvi0qVL+PrXv46KigqVekmB0nufNCKS7LLYMH/zYdXb2TT3bkzIu031doiIiK65VuNp/censaX0nGbtfm9kDp4Y17/jVola1p2oPSt9P1AEHH5ZvTZvdvdCYPRTQFqOdm0SERERker0fi835FZeXLx4EQaDAWPHjpX93GvP8/l8uHRJ3b1tiQLV1NSEnTt3oqmpSe+uhA3mTPkcTMzLwLSh6m4fNb0gS9bEhQjnWYQYiIj0pMQ4Onb1boxdvVvTiQsAeLX0LMau3t3+Rq3rThTdKX1pOXEBAJ9ukNqNMPy9Hxl4nvXBvMvHnElEz4Mo8YkSB6kv5CYvrl20iYmJAT3/2vN48VOo8nq9qKurg9fr1bsrYYM5UycHK6cNRkayWbHj3Sgj2YwVD8qbiRfhPIsQAxGRnoQbR1l3QmjCXa/UKZ5nfTDv8jFnEtHzIEp8osRB6gu5baOys7Nx6dIl3Hvvvdi1a5fs53/zm9/E7t27A9p2itSn91IjImrPYrXj4fWlqG9qUeyYKXEx2LpoJPIykxU7JhERkb9yn35f1/arV02V/mGrBNaO1q7hxYeAtaO0a68zK+r1bZ+IiIiIFKX3e7kht/Ji8ODB8Pl82L9/P6qqqmQ9t6qqCvv27YPBYOAb4hSyPB4Pqqur4fF49O5K2GDO1MtBXmYyti4aqdgKjIxkc8ATFyKcZxFiICLSkxDjaO1Z6etTjbdu0nqrKBLjeqUe8Tzrg3mXjzmTiJ4HUeITJQ5SX8hNXjzwwAMAgNbWVjz66KNwOBx+Pc/pdOKxxx5ru+i//e1vq9ZHomA0NDSguLgYDQ0NenclbDBn6uYgLzMZO5eMw/SC4GpgTC/Iws4l4wJecSHCeRYhBiIiPQkxjupZd4I0JcT1Sj3iedYH8y4fcyYRPQ+ixCdKHKS+kNs2yul04p/+6Z9gs9kAALfffjuef/55fPvb30ZUVMe5Fp/Ph/fffx/Lli3DyZMnAQAZGRk4deoU4uPjNe079UzvpUZE1L1dFhvW7T2Dsqoav59T2C8di+8dIKs4NxERkVp03zYq9hFd29cVt40iIiIiEore7+UaNWvJTwkJCXjppZfwne98B16vF//4xz/wne98B7fccgsKCwuRk5ODhIQEOJ1OnDt3DmVlZbhy5QoAaSLDaDRiw4YNnLggIgrAxLwMTMzLwAmrAzuOXsTR8/U4drG+XU2MlLgY5PdOwdDsFEwb2huDMpN07DEREVF7+5ZPAAAs3VqOz87Watbu8Jw0/PbhAuB/NWuyo8WHAFMC8McfAOc/0a7d7JHAd1/Srj0iIiIiigght20UIG35tGXLFiQkJACQJiWuXLmCDz74AGvXrsWvf/1rrF27Fu+//z6++OIL+Hw++Hw+JCYmYsuWLW1bTxGFovr6eqxatQr19fxkmr+YM+1zMCgzCcsm5WHLwhEof+Y+VKychL/9Qvpe/sx92LJwBJZNylN04kKE8yxCDEREelJiHM1Oj0d2ejxG9EtXsGc9G9E/HdnpOn+AKjEDSMsBcsZo227uGKndCMPf+5GB51kfzLt8zJlE9DyIEp8ocZD6QnLyAgAefvhhlJeX43vf+x7MZqmQ7LVJihu/AMBsNuP73/8+ysvLMXv2bD27TdSj+Ph4PPTQQ1wdJANzpm8ODAYDEs1GpCeYkGg2wmAwqNKOCOdZhBiIiPSk5Dg6LchaTrLbG9pb0/Y6ZTRJ3/NnatvukCDb8/kAlx1wXpW+h9bOxl3i7/3IwPOsD+ZdPuZMInoeRIlPlDhIfSFX86Iz9fX1OHjwII4cOYIrV66goaEBiYmJuPXWWzFs2DCMHj0aKSkpeneT/KD3PmlEREREFDlmrzuEsmr/6zgFqrBfOt5aNEr6YYWOf5c8Wwdc+5DBxinAuYPqt5kzBpj3gfzn2SqBY9uAi58Bl48Crrrr98WmAr2GAr3vAvJnARl3KNVbIiIiIpJB7/dyQ3blxY1SUlIwZcoU/PznP8dvf/tb/OEPf8Bvf/tb/PznP8eUKVM4cUFhpbGxEe+++y4aGxv17krYYM4iIwcixChCDEREelJ6HP3h+P6KHKcni+8dcP2HJX+XvrJHaNJ2m+yR1ycuAOCepdq0O0ZmOydLpImVtaOB/S8AVXvbT1wA0s9Ve6X7146SHn/yQ4U6rBz+3o8MPM/6YN7lY84koudBlPhEiYPUFxaTF0RERERERHJNzMvAtKHqbh81vSALE/Juu35DWo5+dSduNHBS8Ns59SR/FjDwfv8e21gDbFsAvD5b/oqQcweB12cB7yyUjkNEREREESEsto0icei91IiIiIiIIkut043JRR/DZm9W/NgZyWbsXDIOaQmmjnfaKqXVBVpZfKjj9kqNNVIfHJeVby+pF7D4IBDvR2F0awXw2kxl+pHUC3jsHSCDf0MQERERqU3v93LDduVFc3MzXnjhBYwfPx5f//rXce+99+K5555DU1OT3l0j6lZLSwssFgtaWlr07krYYM4iIwcixChCDEREelJjHE1LMKF4fiFS4mIUOyYApMTFoHh+YecTF4D05npfjSYvcsZ0XhciPl16oz82Vdn2YlOl4/o7cbF5qnITKI7LwKYHpMkhnfH3fmTgedYH8y4fcyYRPQ+ixCdKHKS+kJu8qK6uRt++fdG3b1/86Ec/6vQxLpcLEyZMwLJly7Bv3z6cPHkS+/fvx89//nPcdddd+OKLLzTuNZH/uK+ffMxZZORAhBhFiIGISE9qjaN5mcnYumgkMpLNihwvI9mMrYtGIi8zufsHhkLdiYzBUkHtpF7KtJXUSzqePysfGmukFRc317QIlqsO2DJD9y2k+Hs/MvA864N5l485k4ieB1HiEyUOUl/IbRv129/+Fj/5yU9gMBjw/vvvY/LkyR0e89Of/hTPP/88DAYDOuv+xIkT8dFHH2nRXZJJ76VGRERERBS5ap1urHivEtvLLwV8jOkFWVjx4OCuV1zcbNsCoGJbwO31KH8WMGNDz49rrAH+vBw49nZwbU1Z7d+KCyB0YiciIiKigOj9Xm7Irbw4eFAq3hYfH4+JEyd2uL+hoQG///3vYTAYAAALFy7Ejh078Lvf/Q633HILAGD37t3YtWuXdp0mIiIiIqKQl5ZgQtGcYdg4dzgK+/n5BvxXCvulY9Pcu1E0Z5j/ExcA8MDzyq16uFlSL2kywR/x6dIb/Y+8Jb+YeM4Y4JG3pef7O3FxskTdiQtAmog5WaJuG0RERESkm5CbvDh+/DgMBgPy8/NhMnX8o+C9995rW1I0b948vPTSS/j2t7+NH/3oR3jttdfaHrd161bN+kwkR11dHVauXIm6ujq9uxI2mLPIyIEIMYoQAxGRnrQaRyfmZeCtRaNQsnQcnpwwAPfcfkuHmhgpcTG45/Zb8OSEAShZOg5vLRqFCXm3yW8sFOpO3GjgJGnbp8WHgLE/AfqP79i32FTp9rE/kR437wNg4P3y2tm/Rt7jA3WgSJt2OsHf+5GB51kfzLt8zJlE9DyIEp8ocZD6Qm7bqLS0NNjtdjzyyCN49dVXO9y/cOFCbNy4EQaDAX/7298wdOjQdvfffvvtqKqqwtChQ/G3v/1Nq26Tn/ReahQKPB4PLly4gD59+sBoNOrdnbDAnEVGDkSIUYQYiIj0pOc46vP54HS3wu3xwmSMQoIpum21tyJslVKdBiUKVyf1kiYu/Kk74Q+fD3A3AB43YDQBpkQgmNhtlcBajYqVA9IES2cFy1XG3/uRgedZH8y7fMyZRPQ8iBKfKHFEAr3fyw25lRdOpxMAkJzcefG7ffv2AQB69+7dYeICAO688074fD6cPXtWvU4SBcFoNCI3N5eDswzMWWTkQIQYRYiBiEhPeo6jBoMBiWYj0hNMSDQblZ24AKSJhsUHpToNwcifJR1HqYkLQJqoMCcBCV+Tvgcae+1Z6evTl5Xrmz8Ovyy1qzH+3o8MPM/6YN7lY84koudBlPhEiYPUF3KTF9HR0QCA5ubmDvdduXIF//jHP2AwGDB27NhOn3/bbdJSbofDoV4niYLgdDrx5ptvtk3UUc+Ys8jIgQgxihADEZGehB9Hta47obWiO6WvwxpPXny6QWpXY8JfrwSA51kvzLt8zJlE9DyIEp8ocZD6Qm56Kz09HVarFdXV1R3u2717d9u/R4/ufBmyy+UCgE7rZRCFgqioKKSmpiIqKuTmDkMWcxYZORAhRhFiICLSU8SMowMnSV+2z6Wi1hc/Ay6VA66664+JTQWyCoDedwFDZuqyLVLE8PmAZgfQ2gJEx/i9+iRirtcIx/OsD+ZdPuZMInoeRIlPlDhIfSFX8+K+++7DX//6V8THx+PixYtISUlpu2/GjBn405/+BIPBgPLycuTn53f5/JycHFRVVWnZdfKD3vukERERERGFJKXrTuhhRUrPj1G1/Xr/H2urBI59NXF0+WjHiaNeQ6WJo/xZnDgiIiKiiKX3e7khN701efJkAEBTUxOeeOIJNDY2AgDeeustvPvuuzAYDMjNze104gIAjhw5AoPBgNtvv12zPhPJ4Xa7UV5eDrfbrXdXwgZzFhk5ECFGEWIgItJTRI+jStWdoO6dLAE2TpEKiu9/Aaja237iApB+rtor3b92lPT4kx92OFREX68RhOdZH8y7fMyZRPQ8iBKfKHGQ+kJu8mLu3LlIS0sDAGzbtg233HILbrnlFvzzP/8zri0SefLJJzt97meffYaamhoAwF133aVNh4lkcrlc2LNnT9sWZ9Qz5iwyciBCjCLEQESkJ46jpJrGGmDbAuD12cC5g/Kee+4g8Pos4J2F0nG+wus1MvA864N5l485k4ieB1HiEyUOUl/IbRsFANu3b8esWbPg8Xg63Ddq1Cjs3bu302r0y5Ytw29+8xsYDAbs2LEDU6dO1aK7JIPeS42IiIiIiEglobptlLUCeG0m4LgcfBtJvYDH3gEy+DcMERERiU/v93JDbuUFAEyfPh0HDx7E9OnT8bWvfQ0xMTHo378/nn76afzlL3/pdOLC6XTi5ZdfBgCYzWZMnDhR624T+cXn88HlciEE5w1DFnMWGTkQIUYRYiAi0hPH0TC35O/SV/YIbdvNHim12xlrBbB5qjITF4B0nE0PALZKXq8RgudZH8y7fMyZRPQ8iBKfKHGQ+kJy8gIAhg8fjj/96U+4cuUKmpubcerUKfz3f/834uPjO318TEwMjhw5gqqqKpw6dQpxcXEa95jIP/X19XjuuedQXy+joGCEY84iIwcixChCDEREeuI4GubScqSvnDHatps7Rmr3Zo010oqLm2taBMtVB2yZgXrrWV6vEYDjkj6Yd/mYM4noeRAlPlHiIPWF5LZRJC69lxqFgtbWVly5cgW33noroqOj9e5OWGDOIiMHIsQoQgxERHriOCoIW6VUEFsriw8BGXd0vH3bAqBim2rNtg6ehStj/x+vV8FxXNIH8y4fcyYRPQ+ixCdKHJFA7/dyQ3blBZGooqOjkZmZycFZBuYsMnIgQowixEBEpCeOo4LIGAz01WjyImdM5xMXJ0tUnbgAgOjKt5FpP8rrVXAcl/TBvMvHnElEz4Mo8YkSB6kvrCYvbDYbKioqcOjQIVRUVMBqterdJSLZGhoasHnzZjQ0NOjdlbDBnEVGDkSIUYQYiIj0xHFUIPcs1aadMV20s3+N6k03IB6b//ghr1fBcVzSB/MuH3MmET0PosQnShykvo6Vr0PMnj178Ic//AG7d++GzWbrcH9GRgYmTJiAhQsXYsKECTr0kEgeo9GI3NzcTgvPU+eYs8jIgQgxihADEZGeOI4KZOAkYMhMdVc/5M8CBt7f8XZbJXDuoHrtfsWIVuS6KmGsOQUkFqjeHumD45I+mHf5mDOJ6HkQJT5R4iD1hWzNi4sXL+IHP/gBSkpKAKDb6vMGgwEAcP/99+Oll15Cdna2Jn0k+fTeJ42IiIiIiDTSWCPVvnBcVv7YSb2AxQeB+PTrt9Welb4fKAIOv6x8m125eyEw9TfatUdERESkEb3fyw3JbaP+8Y9/YNSoUSgpKYHP52s3cREbG4uvfe1riI2Nbbvt2mNKSkowevRo/OMf/9Cj20R+aW5uRmlpKZqbm/XuSthgziIjByLEKEIMRER64jgqmPh04LF3gNhUZY8bmyod98aJCwAoulP60mjiohkmlGIYmj99RZP2SB8cl/TBvMvHnElEz4Mo8YkSB6kv5CYv3G43HnroIVy4cKFt0uK73/0utm/fji+++AKNjY24cuVK2/cdO3ZgxowZMBgMMBgMuHjxIh566CG0tLToHAlR59xuN8rLy+F2u/XuSthgziIjByLEKEIMRER64jgqoIzBwLwPpJUSSkjqJR0vQ//V227EoByD4UYMEJobGpACOC7pg3mXjzmTiJ4HUeITJQ5SX8htG/X73/8e//qv/wqDwYDk5GRs27YN3/zmN3t83u7du/Hd734X9fX1MBgM+P/+v/8PP/rRjzToMcmh91IjIiIiIiLSQWMN8OflwLG3Az9G/ixgyuqOKy6uWZES+LGD9bMLgDkpsOf6fECzA2htAaJjpON8tTUyERERkZ70fi835FZebN26te3fW7Zs8WviAgAmTJiALVu2tP385ptvKt43IiV4vV7U1dXB6/Xq3ZWwwZwBra2tuGC7gi8dLjhcLd3WAQpXIpxnEWIgItITx1GBxacDMzYAj7wF5IyR99ycMcAjb0vP72riQgdeGFCHZHhhADwyPzlqqwQ+WgkUTwOeywVWZQPP95e+P5cr3f7RSsD2uRpdJxk4LumDeZePOZOIngdR4hMlDlJfyE1eWCwWGAwG3HHHHZg6daqs506dOhWDBw+Gz+fD8ePHVeohUXDsdjuKiopgt9v17krYiNScWax2rN5pwaMbSnHP/3sfL697EeP/+wPkr/gQBb/8Cx7dUIrVOy04YXXo3VVFiHCeRYiBiEhPHEcjwMBJ0rZPiw8BY38C9B/fsSZGbKp0+9ifSI+b9wEw8H7t+9oDO5JQZFgIO5IAo8m/J50sATZOkQqZ738BqNoLuOraP8ZVJ92+/wVg7Sjp8Sc/VLr75CeOS/pg3uVjziSi50GU+ESJg9QXcttGxcfHo7m5Gd/73vewefNm2c+fO3cuXnnlFcTGxqKxsVH5DlJQ9F5qFAq8Xi/sdjuSk5MRFRVy84chKdJytstiw7o9Z1BWXdN2mwE+JBjccPpM8KHjNgKFuelYPH4AJuTdpmVXFSXCeRYhBiIiPXEcjVA+H+BukFYvGE2AKTGwbZM03jbKCwPsSEIyHIh6trb7PjfWAB8sAyq2Bd5gT9tmkSo4LumDeZePOZOIngdR4hMljkig93u5Rs1a8lNWVhaqqqpgCHCPz2vP69VLoYJwRAqLiopCamqq3t0IK5GSs1qnG8/uqMSOo5c63OeDAQ0+c5fPLauuQdnmGkwvyMKKBwcjLcHPT/+FEBHOswgxEBHpieNohDIYpDoPXf9Xxz9L/i59/+MPgPOfBN2tnkTBh1TYgeyR3U9cWCuA12YCjsvBNXjsbaB6P/DYOyFRsDxScFzSB/MuH3MmET0PosQnShykvpCb2iosLITP50N5eXlAzy8vL4fBYMDdd9+tbMeIFOJwOLBu3To4HGJs9aOFSMjZ8ct2TC76uNOJCwCIgxvTzJWIQ/f7KW8vv4TJRR/DYg2/pZcinGcRYiAi0hPHUQpKWo70JbemRoAcSMA6PAZHr9FdP8haAWyeGvzERVujl4FND0g1M0gTHJf0wbzLx5xJRM+DKPGJEgepL+QmLxYuXAgA+Pvf/46//vWvsp7717/+FUePHgUALFiwQPG+ESnBZDKhoKAAJlP4fTJeL6Ln7PhlO+a8VAqbvbnLx3gQjVOeW+BBdI/Hs9mb8fD60rCbwBDhPIsQAxGRnjiOkiLyZ2rSjAktKEAlTPkPdf6AxhppxcXNNS2C5aoDtsyQjk+q47ikD+ZdPuZMInoeRIlPlDhIfSFX8wIAFi1ahD/84Q+45ZZb8N5772HEiBE9PufTTz/F1KlT8eWXX2LBggX4wx/+oEFPSS6990kjCjW1TjcmF33c7cRFoDKSzdi5ZFxYbiFFREREFJSNU4BzB9VvJ2eMVFC8M9sWBFfjoif5s4AZG9Q7PhEREUU8vd/LDbmVFwDw+9//Hj/+8Y/x5Zdf4p577sG8efOwa9cuOJ3Odo9rbGzE7t27MX/+fIwZMwZXr17Fj3/8Y6xbt06nnhP1zOVyYc+ePXC5XHp3JWyInLNnd1T6NXFhggcFxoswweP3sW32Zqx4L3y2FBDhPIsQAxGRnjiOkmLuWap6Ey6YsSd5RufX68kSdScuAKkGxskSddsgjks6Yd7lY84koudBlPhEiYPUp8vkRf/+/bv9GjhwIP70pz8hJiYGra2teOWVV3DfffchJSUFt956K3JycnDrrbciOTkZ3/rWt1BcXAyPx4OYmBj86U9/wj/90z9hwIABeoRG1COPx4Pq6mp4PP6/CR3pRM3ZLoutyxoXN4uGD5lRDkRD3mK57eWXsMtiC6R7mhPhPIsQAxGRnjiOkmIGTgKGqLt9lCfvIVQ7oju/XvevUbXtNgeKtGkngnFc0gfzLh9zJhE9D6LEJ0ocpD5dto2KioqCwWCQ9Zwbu2kwGDr8fPNjDQYDWltbg+soKU7vpUZEoWT2ukMoq1Z/r+LCful4a9Eo1dshIiIiCimNNcDa0coVy75RUi9g8UEgPr3jfbZKqV2tLD4EZNyhXXtEREQUMfR+L1e3baN8Pp+sr5uf292xiEJZa2srrFYrJ9dkEDFnFqtd1sRFFLxINzQiCl7ZbZVV1eCE1SH7eVoT4TyLEAMRkZ44jpKi4tOBx94BYlOVPW5sKvDYO2g1p1y/XmvPXv/69GVl2+vJYY3bizAcl/TBvMvHnElEz4Mo8YkSB6lPl8mLqqoq1b/OnDmjR2hEPXI4HFi/fj0cjtB/MzlUiJKz8zWNbV9bSs/Kem68oQXTYz9HvKEloLbltqcHEc6zCDEQEemJ4ygpLmOwVFA7qZcyx0vqJR0vY3D767XozutfWk8mfMqi3WriuKQP5l0+5kwieh5EiU+UOEh9umwbRfJs3rwZ8+bNk/WcBQsWYMMG//4T+9e//hXFxcUoLS3FxYsXYTab0adPH0yaNAkLFixAXl5eIN3ulN5LjUKBz+dDc3MzzGaz7O3TIpUoOct9+v0gnu2DCa1wIxpAYDmoXjU1iPbVJ8J5FiEGIiI9cRwl1TTWAH9eLhW5DlT+LGDK6ratotpdrytTlelnoJ6tA/iaUQXHJX0w7/IxZxLR8yBKfKLEEQn0fi/XqFlLFHLsdjueeOIJbN26td3tjY2NqK2txbFjx1BUVISVK1fiZz/7mU69FI/BYEBsbKze3QgrzBkAGOAOcsi+Vg8oVIlwnkWIgYhITxxHSTXx6cCMDdIExIEi4OwB/5+bMwYYsxQYeH+7m0PqenU3AOYkvXshpJA6zxGEeZePOZOIngdR4hMlDlKfkJMXjY2N2LZtG77//e/r3RXF5eXl4Zvf/GaPjxs9uvsCcS0tLfjOd76DXbt2td02ZMgQfOMb34DL5cK+fftw+fJltLS04Oc//zlaWlrwzDPPBN1/kiaNNm7ciPnz5yM5OVnv7oQF5gyIhxsPmC34oDkPjTAFdAynuxWJ5tAd9kU4zyLEQESkJ46jpLqBk6Qv2+dAxTbg4mfApXLAVXf9MbGpQFYB0PsuYMjMLotht7teNeh6tzxuwKx3J8TEcUkfzLt8zJlE9DyIEp8ocZD6QvddrADs2bMHxcXFeOedd+B0OoWcvBgxYgR+97vfBX2cX/3qV20TF7Gxsdi0aRPmzJnTdr/b7cZ//ud/4vnnnwcArFixAvfeey/uvffeoNuOdLGxsRg/fjxnmGVgzgA3olHuyfpq26gAj+HxhvQftSKcZxFiICLSE8dR0kzGHUDGVx/O8vmklQseN2A0AaZEv7ZgCqnr1RjYh1uoZyF1niMI8y4fcyYRPQ+ixCdKHKS+sJ+8OHXqFF555RW8+uqrOHfuHIDQ3xpFb1988QVeeOGFtp/XrFnTbuICAEwmE1avXo1z585h69at8Pl8+NnPfoaDBw9q3V3hmEwmFBQU6N2NsMKcAR5E41TrLUEdw2SMUqg36hDhPIsQAxGRnjiOki4MBmnLJZkf8gip69WUqHcPhBVS5zmCMO/yMWcS0fMgSnyixEHqC+13srpgt9vxhz/8Affccw8GDRqE//qv/8LZs2fh8/lwrf642RzCHy/WWXFxMZxOJwBg4MCBeOKJJ7p87OrVqxEVJV0mhw4dwpEjRzTpo8iampqwc+dONDU16d2VsMGcASZ4UBhzDiZ4Aj5GginwVRtaEOE8ixADEZGeOI5SOGl3vS75+/Wv7BHadiR7JIt1q4jjkj6Yd/mYM4noeRAlPlHiIPWFzcoLn8+HkpISFBcXY8eOHXC5XG23X2MwGDB27Fg89thjmDlzpl5dDXnvvvtu27/nzp3b7SqVvn37YuLEifjoo48AAH/6058wbNgwtbsoNK/Xi7q6Oni9Xr27EjZEydm+5RPa/r10azk+O1vr93Oj4EOiwY0o+Hp+cCeG56SF/Io0Ec6zCDEQEemJ4yiFk3bXa1rO9TtyxgDnP9GuI7ljtGsrAnFc0gfzLh9zJhE9D6LEJ0ocpD6D78Z3/0NQZWUliouL8dprr8FqtQJoP2EBSIWmH3vsMfzzP/8zsrOz9eimqjZv3ox58+YBAB5//HFs3rw54GO5XC4kJCS0DQ4HDx7EqFGjun3Of//3f+M//uM/AABjxozB/v37A26/srISQ4YMafu5oqICgwcPDvh4ROFq9U4LXtxzWrP2npwwAMsm5WnWHhEREVHEslUCa0dr197iQ10WFSciIiIKht7v5YbkyourV6/i9ddfR3Fxcds2RTdPWFz7BPHdd9+N0tJSzfuol7q6Orz99tuorKxEfX09kpOTkZWVhVGjRiE/P7/HT1afOHGibeLCYDD4tYriG9/4Rtu/jx8/HlwABI/HgwsXLqBPnz4wGkPyJRhyRMzZtIIsWZMX0fDi1qgGXPEmojWAHf+mDe0t+zlaE+E8ixADEZGeOI5SOOnyes0YDPQdDZzToF5gzhhOXKiM45I+mHf5mDOJ6HkQJT5R4iD1hUzNC4/Hg3fffRff+c530Lt3byxduhRHjhxpV8ciNjYWDz/8MP7v//6v7bZr9Rgixfbt2zF79mysXLkSa9aswS9/+Uv88Ic/xNChQzFo0CC8/PLLHSZ6bnTixIm2f992222IjY3tsc2+ffu2/bumpgZXrlwJLogI19DQgOLiYjQ0NOjdlbAhYs7yMpNRmJvu9+PjDC2YYj6JOEOL7LYK+6VjUGaS7OdpTYTzLEIMRER64jhK4aTb6/Wepdp0YoxG7UQwjkv6YN7lY84koudBlPhEiYPUp/u2UZ999hmKi4vxxhtvoKamBkDHOhbjxo3D97//fcycORNJSdIbcFFRUTAYDBgxYgQOHtTgEy06unHbKH98+9vfxptvvomEhIQO961duxY/+tGPAAB33nknjh492uPxampq8LWvfa3tZ4vFgkGDBvndnxvpvdSIKFA+nw8NzR60tPoQE21AotkYdA2JXRYb5m8+rFAPu7Zp7t2YkHeb6u0QERER0Q22LQAqtql3/PxZwIwN6h2fiIiIIp7e7+Xqtmzh+eefx5AhQ1BYWIjf//73uHr1artVFnl5efiv//ovVFVVYffu3Zg3b17bxEUk6tu3L37yk5/ggw8+wPnz5+FyueB0OnHixAm8+OKLyMu7vpf9//3f/+GRRx7ptOjNjTOacXFxfrV98+OUmBWNjY1FYmIiAKC1tRV1dXVt595ut8PtdgMAmpqa4HQ6AUirc+rq6tqOUV9fj5YW6VPojY2NaGxsBAC0tLSgvr6+7XF1dXXweDwAAKfTiaamJgCA2+2G3W4HIL0xXVdXh9bW1rYYrxWFb25uhsPhANCxoJDD4UBzczMAqZ7ItdwwJjFiKq+yYvVOCx77wwGM/uV7yF/xIb7xq79g5Mr3cNcvd+LRDaV47r2j+HvVFwHFNDEvA9Pu7IVEQzOiIPU1Di0wQXpODFoRB6k/BviQaGiG4auC3XFwIwZSHkzwIA5SjqPgRaKhGfjqcQ8NTsOY/qlCnyfGxJgYE2NiTIyJMTGmkIxp7LNAUi/4ANQhuW3rzwbEwwWzFBNMcED60JkXBtQhGV5IH5BxIAHNMEkxwYwGxEsxIQp1CbfDN/k5nifGxJgYE2NiTIyJMWkSk150m7z46U9/iuPHj7ebsLj11lvxr//6rygrK8Pnn3+On/3sZ+22LIpUDz30EKqqqvDrX/8aU6ZMQZ8+fWA2mxEfH4+BAwdi8eLFOHr0aLvVGTt27MDrr7/e4VjXLm4AMJlMfrVvNpvb/XzthRSMkSNHYubMmQCAK1euoKioqO0FtXHjRnz++ecAgL179+K9994DAFy4cAFFRUVtx1i7di1On5ZqBnz44Yf48MMPAQCnT5/G2rVr2x5XVFSECxcuAADee+897N27FwDw+eefY+PGjQCkF3tRUVHblljbtm1rq6Vy5MgRvPbaawCkF3RRUVHbAPLaa6+11WUpLS3Ftm3beozpww8/xAsvvID6+nphYlL7PG3YsAGrVq3CF198oUlMuyw2/PR3b+J/N23Fi3tO41TVOUzGkba+Tjd/jsTmqzhw6iqOle3D6o1vYfa6Q3h3799kn6efT7ods2KPIdUgvTbvNZ3GHUYbAOCfor/EfeZ/AABuiWrArNhjuCVK+mVzn/kf+KfoLwEAdxhtuNck5TjV4MKs2GMwoRUZyWb0/bIsbF5Pr7zyCp5//nnU19eHzLUnN6Zrfbh2vFB8PYk4RjAmxsSYxInJYrGgqKio7Y86EWIS8TwxJimm+vp6FBUVwWKxdB7TG38EHnsHzebbUGRYiCuQVrNvw1SUQqoreASD8Rq+I8WEJBQZFsIO6UN7r+E7OALpk42l+Aa2YaoUkykXRY3T0BydwPOkQUz19fV4/vnn8corrwgTUzicpz/+8Y/4zW9+g/r6emFiUvs8vfnmm1i1ahXOnDkjTEyBnqdVq1ahvr5eqJiuefHFF7F69WrU19eHfUwinycRY9KLbttGXdv2yefzIT4+Hr/+9a/xxBNP+F3DIpK2jfKX1+vF+PHjsW/fPgDAkCFDcOzYsXaPef7557F8+XIAwIgRI/wqdt7U1IT4+Pi2nw8fPoy77roroD5eW2oUGxsLo9GI0tJS5OXlweFwICUlBQaDAXa7HbGxsTCZTGhqaoLX60VCQgI8Hg8aGhqQmpoKQPpjIT4+HjExMW0zmPHx8WhpaUFjYyNSUlIASLOYiYmJMBqNcDqdiIqKQlxcHNxuN1wuF5KTk+Hz+VBfX4+kpCRER0ejoaEBRqMRsbGxaG5uhtvtRlJSErxeL+x2O5KTkxEVFQWHwwGTyQSz2QyXywWPx4PExES0trZ2GZPdbseZM2cwePBgGAwGIWJS+zw5HA5cuXIF/fv3R2Njo2oxnbN+iV//tQo7jn0BEzyIgg8uxCAaXsQZWtDgkybyEgzNcPmMaEU0zF+teGhGDKLRimmDv4Znvns30hJMfp+nv526gAWvV6KuqRVxaEErDHDDiBi0wohWNMEEIzzoH1WDM950eGBEHNzwIBotiIYJHkTDhybEIApexBtaEB2bgK2LRiErHmHzeqqpqcHFixeRl5eH1tbWkLj25MbU3NyMiooKDBkyBGazOSRfTyKOEYyJMTEmcWJqamrC559/jjvvvBMxMTFCxCTieWJMUkwtLS34+9//jjvuuANxcXFdx2StQP2rjyPJeQbR8KIB8TCiFbFoRjNMcCMGSXDCCwPsSEIyHIiCDw4kwIQWmOGGC2Z4EI3EpBS0/vPbcMRnKxNTXBxaGmrQ2OBASlo6YE5CXX29UOcp2GsvOjoaFosFvXv3Rnp6uhAxhcN5qqurw9mzZ3HHHXfA5/MJEZPa56mpqQk2mw25ublwuVxCxBTIeaqtrcXVq1cxYMAANDY2ChHTjefpyy+/hNVqxaBBg9o+2R+OMYl+nkR5PTU0NODixYu6bhul++RFW0cMBowfPx7f+973MGPGjLYthXp6Picv2vvrX/+Kb33rW20/nz9/Hn369Gn7mTUviDp3/LIdczeVwWZvDvpYGclmFM8vRF5mst/PsVjteHyjfu0TERERkYoaa4A/LweOvR34MfJnAVNWA/HpwfXFVgkc2wZc/Ay4fBRw1V2/LzYV6DUU6H2X1F7GHcG1RURERGFN7/dydds26pFHHkFcXFzbtlFerxe7d+/G/PnzkZGRgUceeQR//vOfO63bQF0bN24cYmJi2n4+fvx4u/tvnISw2Wx+HdNqtbb7OT09yP8sR7jGxka8++67bTOv1DO1c3b8sh1zXipVZOIAAGz2Zjy8vhQWq93v5+RlJmPnknGYXpDV6f1mtOCemKq2lR5dmV6QhZ1LxoXlxIUIrw0RYiAi0hPHUQonsq7X+HSpuPYjbwE5Y+Q1lDMGeORt6fnBTFycLAE2TgHWjgb2vwBU7W0/cQFIP1ftle5fO0p6/MkPA29TAByX9MG8y8ecSUTPgyjxiRIHqU+3yYstW7bAarViw4YNGDduXNsWUj6fD01NTdi6dSu+/e1vIysrC//2b/+Gv/3tb3p1NazExMTglltuafv5yy+/bHf/jSsmvvjii3Y1MLpy7ty5tn+np6fj1ltvVaCnRKGh1unG3E1lqG/qflJArvqmFjy+sQy1Trffz0lLMKFozjBsnDschf3k/WFa2C8dm+bejaI5w5CW4F89GyIiIiLS2MBJwLwPgMWHgLE/AfqPl1Y73Cg2Vbp97E+kx837ABh4f+BtNtYA2xYAr88GzsncteDcQeD1WcA7C6XjEBEREWlIt22jblZdXY3i4mK8+uqrOHPmTLv7rm0vlZeXh+9///t45JFHkJOTw22jupCSktJWnGX79u2YNm1a230ulwsJCQltK1oOHTqEkSNHdnu8//7v/8Z//Md/AADGjBmD/fv3B9w3vZcaEd3sqTeOYMfRS6odf3pBFormDAvouSesDuw4ehFHz9fj2MX6dhMsKXExyO+dgqHZKZg2tDcGZSYp1WUiIiIi0pLPB7gbAI8bMJoAUyJwwxbLQbFWAK/NBByXgz9WUi/gsXeADP79RkREFCn0fi9Xt5UXN8vNzcWzzz6LU6dO4eOPP8b8+fORnCxte3JtRYbFYsHPf/5z9OvXT+fehq4zZ860TVwAQFZW+y1oYmNj201W7Nmzp8djXqt0DwATJ04MvpMRrqWlBRaLpa2wEvVMrZztsthUnbgAgO3ll7DL4t8WbTcblJmEZZPysGXhCHz6s/H406O5+OTp8ahYOQnlz9yHLQtHYNmkPGEmLkR4bYgQAxGRnjiOUjhR7Ho1GABzEpDwNem7khMXm6cqM3EBSMfZ9IBUMyOCcFzSB/MuH3MmET0PosQnShykvpCZvLjRPffcgw0bNsBqtWLLli24//77ERUV1a4+xrVtpj777DM89NBD2LZtG5qbldmvPpxt3Lix7d8pKSkoKCjo8JiHHnqo7d+bN2/u9njnz5/HX//6106fS4Hhvn7yqZWzdXvO9PwgJdrZG3w7TU1NKHn/PcQaPEg0G9tWpIlEhNeGCDEQEemJ4yiFk5C+XhtrpBUXN9e0CJarDtgyI6K2kArp8yww5l0+5kwieh5EiU+UOEh9IbNtVE8uXbqEV199Fa+88kpbEeqb37xLSkrCjBkz8OijjwqzQqChoQGJiYl+PfbgwYP45je/2VbHYtGiRVi3bl2Hx33xxRfo378/nE4nAOAPf/gDFi5c2OkxH3nkEbzxxhsAgFGjRgW9RZfeS42IrrFY7Zi8Zp9m7ZUsHSfMCgkiIiIiCnHbFgAV29Q7fv4sqYA4ERERCU3v93JDcuVFZ7KysvDTn/4UlZWVKCsrw49+9COkpaW1rcbw+Xyw2+3YvHkz7rvvPmRnZ+vdZUVs27YNhYWFeOWVV1BfX9/pY1wuF/73f/8X3/rWt9omLlJTU/Hss892+vjbbrsN//Zv/9b281NPPYW33nqr3WNaWlrw9NNPt01cAMD//M//BBsOke7O1zTifE0jtpSe1bRdrdsjIiIiogh1skTdiQsAOPa21A4RERGRisJm8uJGw4cPx+9+9ztcvnwZ77zzDqZNm4aYmBgA1+tjXLqk7j72Wvr000/x+OOP45ZbbkF+fj5mzZqFJ554AgsWLMDkyZORkZGBJUuWoKmpCQAQFxeH7du3o1evXl0e8xe/+EXb6pSmpiY8/PDDuPPOOzF37lzMmTMHOTk5eO6559oev3LlStx7773qBhoh6urqsHLlStTV1endlbChZM7Grt6Nsat3Y0vpueA7JsOrQU5eRMJ1I0KMIsRARKQnjqMUTkL2et2/Rpt2DhRp047OQvY8C455l485k4ieB1HiEyUOUl/YbBvVky+//BKvvfYaXnnlFRw5cgQGgwGtra16dytomzdvxrx58/x+fGFhITZv3oyvf/3rPT62vr4eTzzxRIdVFzeKiYnBihUr8POf/9zvPnRH76VGocDj8eDChQvo06cPjEaj3t0JC0rmLPfp9xXqlXxV//NAwLUqIuG6ESFGEWIgItITx1EKJyF5vdoqgbWjtWtv8SEg4w7t2tNBSJ7nCMC8y8ecSUTPgyjxiRJHJND7vVxhJi9udOzYMbzyyit4/vnn9e5K0Jqbm/HZZ5/h4MGDKC0txenTp/Hll1/i6tWr8Hq9SElJQb9+/TBy5EjMnDkT99xzj+w2PvroIxQXF+PQoUO4fPkyYmJikJ2djUmTJmHBggV+TYT4S+8LnkjPyYuKlZOQaOYvZSIiIiJSWO1Xq3wPFAGHX9au3bsXAqOfAtJytGuTiIiINKP3e7lhuW1UT/Lz84WYuAAAs9mM0aNH49///d+xbds2HDlyBOfPn0djYyNcLhdsNhtKS0uxZs2agCYuAOBb3/oWXn31VZw6dQpOpxN1dXU4duwYfv3rXys6cUESp9OJN998s61gOvVMlJy5Pd6AnytKDrojQowixEBEpCeOoxROQup6LbpT+tJy4gIAPt0gtSuwkDrPEYR5l485k4ieB1HiEyUOUp+QkxdEoSwqKgqpqamIiuLLz1+i5MxkDLz/ouSgOyLEKEIMRER64jhK4YTXa2TgedYH8y4fcyYRPQ+ixCdKHKQ+IbeNotCl91IjonCteUFERERE1KUVKTq3X69v+0RERKQKvd/L5fQWkcbcbjfKy8vhdrv17krYUDJn+5ZPwL7lE3BXTpoCPfPf8Jy0oCYuIuG6ESFGEWIgItITx1EKJ7xeIwPPsz6Yd/mYM4noeRAlPlHiIPVx8oJIYy6XC3v27IHL5dK7K2FDyZxlp8cjOz0eI/qlK9Az/43oH1x7kXDdiBCjCDEQEemJ4yiFE16vCvD5AJcdcF6VvofgxhA8z/pg3uVjziSi50GU+ESJg9THbaNIU3ovNSK6xmK1Y/KafZq1V7J0HAZlJmnWHhERERFFkHDaNspWCRzbBlz8DLh8FHDVXb8vNhXoNRTofReQPwvIuEPpnhIREZEMer+Xy5UXRBrz+XxwuVzgvKH/1MhZXmYyCnO1WX1R2C896ImLSLhuRIhRhBiIiPTEcVQfPp8PDlcLapxuOFwtzL+fQup6XfJ36St7hLbtZo+U2vXHyRJg4xRg7Whg/wtA1d72ExeA9HPVXun+taOkx5/8UOleyxJS5zmCMO/yMWcS0fMgSnyixEHq4+QFkcbq6+vx3HPPob6eRe38pVbOfji+v6LH68riewcEfYxIuG5EiFGEGIiI9MRxVDsWqx2rd1rw6IZSFPzyL8hf8SG+8Svpe8Ev/4JHN5Ri9U4LTlgdenc1ZIXU9ZqWI33ljNG23dwxUrvdaawBti0AXp8NnDso7/jnDgKvzwLeWSgdRwchdZ4jCPMuH3MmET0PosQnShykPm4bRZrSe6lRKGhtbcWVK1dw6623Ijo6Wu/uhAU1c/bUG0ew4+glRY95o+kFWSiaMyzo40TCdSNCjCLEQESkJ46j6ttlsWHdnjMoq/b/jeDC3HQsHj8AE/JuU7Fn4Sckr1dbpbSyQSuLD3W/tZO1AnhtJuC4HHxbSb2Ax94BMrT9+zEkz3MEYN7lY84koudBlPhEiSMS6P1eLicvSFN6X/BEN6t1ujG56GPY7M2KHzsj2YydS8YhLcGk+LGJiIiI5Kh1uvHsjsqgPrQxvSALKx4czP/bhLqNU+SvcAhEzhhg3gdd32+tADZP7bg1VDBiU6U2NZ7AICIiilR6v5fLbaOINNbQ0IDNmzejoaFB766EDTVzlpZgQvH8QqTExSh63JS4GBTPL1Tsj/tIuG5EiFGEGIiI9BTJ46iadSeOX7ZjctHHQa823V5+CZOLPobFaleoZ+EtZK/Xe5Zq086YbtpprJFWXCg5cQFIx9syQ9MtpEL2PAuOeZePOZOIngdR4hMlDlKfUe8OEEUao9GI3NxcGI18+flL7ZzlZSZj66KReHxjmSIrMDKSzSieX4i8zGQFeieJhOtGhBhFiIGISE+RNo5arHbsKL+EoxfqUHHRjvqmlrb7UuJiMKR3Mob2ScX0gt4YlJkUUBvHL9sx56XSdscOhs3ejIfXl2LropGK/l8nHIXs9TpwEjBkJlCxTb028mcBA+/v+v4PlimzVVRnHJeBPy8HZmxQ5/g3CdnzLDjmXT7mTCJ6HkSJT5Q4SH3cNoo0pfdSI6Lu1DrdWPFeJbaXczsFIiIiUo9WdSe4PWYEa6yRal+oMYGQ1AtYfBCIT+/8/pMlUnFutT3yljRRQ0RERKrR+71cbhtFpLHm5maUlpaiuVn5PyJFpVXO0hJMKJozDBvnDkdhvy7+GOtCYb90bJp7N4rmDFPlj/hIuG5EiFGEGIiI9CT6OFrrdOOpN45g/ubDsiYuAKCsugbzNn+KJW8eQa3T7ddznt1RqcrEBSCtwFjxXqUqxw4XIX29xqdLxa1jU5U9bmyqdNyuJi4AYP8aZdvsyoEiTZoJ6fMsMOZdPuZMInoeRIlPlDhIfZy8INKY2+1GeXk53G7//ugk7XM2MS8Dby0ahZKl4/DkhAG45/ZbOtTESImLwT2334InJwxAydJxeGvRKFmfhJQrEq4bEWIUIQYiIj2JPI5qXXdil8UWdFv+9GWXxaZqG6Es5K/XjMFSceukXsocL6lXz8WybZXaFAsHgLMHANvnqjcT8udZUMy7fMyZRPQ8iBKfKHGQ+rhtFGlK76VGRIHy+Xxwulvh9nhhMkYhwRQNg8Ggd7eIiIgoDChddwKQPkjRXd2J2esOyV7dEYjCful4a9Eo1duhIDTWSDUijr0d+DHyZwFTVne94qL2rPT9QBFw+OXA25Hr7oXA6KeAtBzt2iQiIooger+Xy5UXRBrzer2oq6uD1+vVuythIxRyZjAYkGg2Ij3BhESzUfOJi1DIgdpEiFGEGIiI9CTiOFrrdGPupjJFJy4AoL6pBY9vLOt0CymL1a7JxAUAlFXV4ITVoUlboSZsrtf4dKm49SNvATlj5D03ZwzwyNvS87vbKqroTulLy4kLAPh0g9RuoHw+wGUHnFel7518tjNszrNgmHf5mDOJ6HkQJT5R4iD1cfKCSGN2ux1FRUWw27tf6k/XMWeRkQMRYhQhBiIiPYk4jmpZd+J8TSPO1zRiS+lZVdrrypbSszhf06hpm6Eg7K7XgZOkbZ8WHwLG/gToP75jTYzYVOn2sT+RHjfvA2Dg/dr3VU22SuCjlUDxNOC5XGBVNvB8f+n7c7nS7R+tbNuSKuzOsyCYd/mYM4noeRAlPlHiIPVx2yjSlN5LjUKB1+uF3W5HcnIyoqI4f+gP5iwyciBCjCLEQESkJ9HG0V0WG+ZvPqx6OxvnDsfEvAzkPv2+6m11p3rVVF3b15oQ16vPB7gbAI8bMJoAUyIQyArjFSnK901W+/U9P+ZkiVRMXE5Njr6j4R29FPbMEeF9nsOQEK8vjTFnEtHzIEp8osQRCfR+L9eoWUtEBACIiopCamqq3t0IK8xZZORAhBhFiIGISE+ijaPr9pzRpp29ZzAxL0OTttTg8/nQ0OxBS6sPMdEGXbboDIQQ16vBAJiTALPeHVFRYw3wwTKgYpv85547iKhzB5HaU80PUpwQry+NMWcS0fMgSnyixEHq49QWkcYcDgfWrVsHhyMy9wYOBHMWGTkQIUYRYiAi0pNI4yjrTnTPYrVj9U4LHt1QioJf/gX5Kz7EN34lfS/45V/w6IZSrN5pCem4RLpehWWtANaODmzi4isOJGDdMTMcv/+mtOUUaYKvL/mYM4noeRAlPlHiIPVx5QWRxkwmEwoKCmAymfTuSthgziIjByLEKEIMRER6EmEcvVb7QY+6E+Fgl8WGdXvOdDuxU9/UggOnruLAqat4cc9pFOamY/H4AZiQd5uGPe2ZCNer0KwVwOapgKsuqMOY0IICVMLkvABsekCqA5IRWVsf64GvL/mYM4noeRAlPlHiIPWx5gVpSu990oiIiIiI1KR33Qk9dVfzotbpxrM7KrHj6KWAjz+9IAsrHhyMtAS+0RFyar+aPPvjD4Dzn2jXbvZI4LsvAWk57W9vrJFWXDguK99mUi9g8UFuIUVERBFB7/dyuW0UkcZcLhf27NkDl8uld1dk8fl8cLhaUON0w+FqgZbznuGaMyVFQg5EiFGEGIiI9MRxVEzHL9sxuejjoCYuAGB7+SVMLvoYFqtdoZ4Fh9frDdJypK+cMdq2mzum48QFINW4UGjiwgUz9mAUXNcKgzguA39ersixqWt8fcnHnElEz4Mo8YkSB6mPkxdEGvN4PKiurobH49G7Kz0Klb2IwylnaomEHIgQowgxEBHpieNocEqWjMW+5RNwV06apu0Oz0nDvuUTOr3v+GU75rxUCpu9WZG2bPZmPLy+NCQmMHi9diJ/prbtDemkvZMlQdW4uJkH0ahGH3gQff3GY29L7ZBq+PqSjzmTiJ4HUeITJQ5SH7eNIk3pvdSI/OPPXsQ3C9W9iImIiIi0pOe2UX/7xX1ITzBh9U4LXtxzWrN2n5wwAMsm5XW4vdbpxuSijxWbuLhRRrIZO5eM4xZSoWjjFODcQfXbyRkj1Z8ItfaJiIgEovd7uVx5QaSx1tZWWK1WtLa26t2VDmqdbjz1xhHM33xY1sQFAJRV12De5k+x5M0jqHW6Fe1XKOdMK5GQAxFiFCEGIiI9cRwNjsko/Xk3rSBL03anDe3d6e3P7qhUZeICkFZgrHivUpVj+4vXaxfuWapNO2M6acdWqfjERSuiYMWtaL357ZOzBwDb54q2Rdfx9SUfcyYRPQ+ixCdKHKQ+Tl4QaczhcGD9+vVwONTdakmuUN6LOFRzpqVIyIEIMYoQAxGRnjiOBifBJG1rk5eZjMJcbYoJF/ZLx6DMpA6377LYgv5/ZU+2l1/CLost6OMEWtuN12sXBk7qfDsnJeXPAgbef/3n2rPS16cvK96UA4lYb/geHEjseOdh5dsjCV9f8jFnEtHzIEp8osRB6uO2UaQpvZcahQKfz4fm5maYzWYYDAa9uwPg+l7E9U0tih0zJS4GWxeNRF5mctDHCsWcaS0SciBCjCLEQESkJxHG0fM1jQCApVvL8dnZWs3aHZ6Thm2LR7f9vMtiw/zNh1Vvd9PcuzvdNnT2ukOyV/IGorBfOt5aNEr28yxWO3aUX8LRC3WouGhv9//glLgYDOmdjKF9UjG9oHenkzOAGNerahprgLWjFSua3U5SL2DxQSD+hgm6FSnKt/MVH4BmmGFGMzo9yyvqVWs7kvH1JR9zJhE9D6LEJ0ockUDv93K58oJIYwaDAbGxsSEzONc63Zi7qUzRiQsAqG9qweMbyxTZQirUcqaHSMiBCDGKEAMRkZ5EGEez0+ORnR6PEf20WflwzYj+7dubmJeBaUPV3T5qekFWpxMXFqtdk4kLACirqsEJq/+f2txlsWH2ukOYvGYfXtxzGgdOXe3w/+D6phYcOHUVL+45jUlrPsbsdYew2/JFh2OJcL2qJj4deOwdIDZV2ePGpkrHjdfu9WUAENvVxAUA8POgquDrSz7mTCJ6HkSJT5Q4SH2cvCDSmN1ux5o1a2C3K7etUjDCYS/iUMuZHiIhByLEKEIMRER6EmkcDYW6EyunDUZGslmV9jKSzVjxYPtP3Z2vacT5mkZsKT2rSptd2VJ6tm3FS1fUqO0m0vWqiozBUkHrpF7KHC+pl3S8DG1X7tuRiDVYAHtn20YBgLtB0/5ECr6+5GPOJKLnQZT4RImD1MfJCyKNxcbGYvz48YiNjdW7K2GzF3Eo5UwvkZADEWIUIQYiIj2JNI6GQt2JtAQTiucXIiUuRtH2UuJiUDy/EGkJpna3j129G2NX78aW0nOKtteTV0vPYuzq3V3er1ZtN5GuV9VkDJa2eMqfFdxx8mdJx9F44gKQVl2MxyHEoosPfHmCX2lOHfH1JR9zJhE9D6LEJ0ocpD7WvCBN6b1PGrUX6nsRExEREYUzvetOXGOx2vH4xjJFVttmJJtRPL+w07pmuU+/H/Txg1G9amqH20K9thsg7fvd0OxBS6sPMdEGJJqNYm6jcbIEOFAEnD3g/3NyxgBjlrYvzt0ZFWte9OhnFwBz53VRiIiIwp3e7+Vy5QWRxpqamrBz5040NTXp2o9Q3ov4ZqGSMz1FQg5EiFGEGIiI9CTaOKpn3Ykb5WUmY+eScZge5FZW0wuysHPJOMXetFeb2rXdLn9ZH/D1arHasXqnBY9uKEXBL/+C/BUf4hu/kr4X/PIveHRDKVbvtAT1f+iQM3CStO3T4kPA2J8A/cd3rIkRmyrdPvYn0uPmfdDzxIXKmhCLnRiPJnTx6WBTF9tJUVBE+32gBeZMInoeRIlPlDhIfUa9O0AUabxeL+rq6uD1enVp/9p+wHrsRfzEuP7ITo+X/Vy9cxYKIiEHIsQoQgxERHoScRxdOW0wPqm6qkqNsc7qTnQlLcGEojnDML0gC+v2nkFZlf8fYinsl47F9w7ocZIk1Khd2+25nccx0ijvet1lsWHdnjPdfojoWsHwa0XDC3PTsXh8+OW/Sxl3ABnPSP/2+aSaER43YDRJEwGBrDpZ8nfp+x9/AJz/RLm+AvDCgDokw9tZye7skYH1l3ok4u8DtTFnEtHzIEp8osRB6uO2UaQpvZcaUWgu5yciIiISmcVqx8PrQ2vrohNWB3YcvYij5+tx7GJ9u76lxMUgv3cKhmanYNrQ3p3W0+hMKP0/U6stuzbOHY6JeRk9Pq7W6cazOyqDqrsxvSALKx4c3KHWCN3go5XA/he0a2/sT4BvPqNde0RERBrT+71crrwg0pjH48GFCxfQp08fGI18CfqDOYuMHIgQowgxEBHpSdRxNC8zGVsXjdSk7oS/BmUmYVlmHgCp5oLT3Qq3xwuTMQoJpuiwr7mwbs8Z1duIhhevfHgY426f1O31evyyHXM3BX/ut5dfQumZq0Gfe6Hlz1R88sKDaFxAL/TBZRjR2v7OITMVbYuuE/X3gZqYM4noeRAlPlHiIPWx5gWRxhoaGlBcXIyGhga9uxI2mLPIyIEIMYoQAxGRnkQeR0O57oTBIBWJTk8wBVUset/yCdi3fALuyklTrG/+GJ6Thn3LJ7T9rFVttzhDC/rVHsbRKmuXj7lWMFyp7ats9mY8vL4UFqtdkeMJJ2Mw0He0oodsQAKKDbPRgIT2d+SMkbbAIlWI/PtALcyZRPQ8iBKfKHGQ+rhtFGlK76VGFFrL+YmIiIgi0S6LTei6E6t3WvDintOatffkhAFYNimvrbbb+o9PY0vpOc3a/97IHPzqoSEdbq91ujG56GPV6p3sXDKOW0h15mQJ8Pps9dt55G3di4kTERGpTe/3crkuh4iIiIiISEMT8zIwMS9DlboToWBaQZamkxfThvYGAIxdvVuzNm/0aunZTicv1C4YvuK9ShTNGabK8cPawEnSdk4V29RrI38WJy6IiIg0wG2jiDRWX1+PVatWob6+Xu+uhA3mLDJyIEKMIsRARKSnSBtHB2UmYdmkPGxZOALlz9yHipWT8LdfSN/Ln7kPWxaOwLJJeWE1cQFIW2QV5qZr0lZhv3Td8pNgaMYjsUeQYGjGzRsa7LLYgirO7Y/t5Zewy2JTtY2w9cDzQFIvRQ5VjySswo9Qj6+us6RewJTVihybuhZpvw+UwJxJRM+DKPGJEgepj5MXRBqLj4/HQw89hPj4eF3aD5W9iOXQO2ehIBJyIEKMIsRARKSnSB5Hlao7ESp+OL6/Ju0svneAJu10xuUzYr87Fy6fEU53+0LOWhQMB4B1e7VpJ+zEpwOPvQPEpgZ/KDThIZQgHk3S8R57Rzp+sHw+wGUHnFel79zRu51I/n0QKOZMInoeRIlPlDhIfdw2ikhjMTExyMvL06397HTpF8OIfun47GytZu2O6J/e1rZcMTExGDRoEBqaPXC43YiJNgjxR70cel83WhAhRhFiICLSE8dRcUzMy8C0oVmqrj6YXpClaw2QVkTjnFf6QJDb4wXM0u1aFQwHgLKqGpywOsJudY4mMgYD8z4AtswAHJcDPkwMPMjDaWnFxWPvSMcNlK0SOLYNuPgZcPko4Kq7fl9sKtBrKND7LmlbqggvBs7fB/IxZxLR8yBKfKLEQerjygsijTU2NuLdd99FY2Ojrv2YVpClbXtf7UUsh8Vqx+qdFnxv/cdY8Mu1GL7ifXzjV39B/ooPUfDLv+DRDaVYvdOCE1aHCj0OLaFy3ahJhBhFiIGISE8cR8WyctpgZCSbVTl2RrIZKx7UrlhkZ8xowT0xVTCjBVfsLpyvacT5mkZsKT2raT+0bi+sZAwGFh+UJgMC1IhYvJu2CI2P/zXwiYuTJcDGKcDa0cD+F4Cqve0nLgDp56q90v1rR0mPP/lhwP0Od/x9IB9zJhE9D6LEJ0ocpD6uvCCKUNf2ItbiU2Fy9yLeZbFh3Z4zbX0zowV3x3jbPaa+qQUHTl3FgVNX8eKe0yjMTcfi8QN0/fQdEREREV2XlmBC8fxCPLy+tF0x8mClxMWgeH4h0hJMih0zWJOK9unWdlcFw+kr8enAjA3SBMaBIuDsAf+fmzMGGP4kcLoFiA9g293GGuCDZYEVDz93EHj9q4mXKauV2aqKiIgozBh8N1cWI1JRZWUlhgy5/h/riooKDB6s7yemItkuiw3zNx9WvZ1Nc+/2a1Kh1unGszsqg9peYHpBFlY8ODik/pglIiIiimQWqx2PbyyDzd4c9LEyks0onl+IvMzkDvedr5E+vbl0a7mm26MOz0nDYQ3b60zV/zwQUVuqBsX2uTSZcPEz4FJ5x62bsgqkrZuGzAxu6yZrBfDazKC2rGqjxJZVREREAdD7vVxuG0WksZaWFlgsFrS0KPfps0Bd24tYTf7uRXz8sh2Tiz7udOIiGq3oG1WLaLR28sz2tpdfwuSij2Gx2gPqb6gKpetGLSLEKEIMRER64jgqprzMZOxcMg7Tg9y2dHpBFnYuGdfpxAUg1XbLTo/HiH7afEL92v9RC3M674+Wbi4Y7i+fzweHqwU1TjccrhZExGcbM+4AvvkM8P3twE+rgZ9dAJadkb7/tFq6/ZvPtE1cBDQuWSuAzVOVmbgApONsekCqmREh+PtAPuZMInoeRIlPlDhIfZy8INJYqO3rFwp7ER+/bMecl0q7/DRerMGDe0zViDV4/GrXZm/Gw+tLhZrACLXrRg0ixChCDEREeuI4Kq60BBOK5gzDxrnDUShzcqGwXzo2zb0bRXOG+bW6Vqvabtf+j/qtfwpgOyGFuT3enh/0lWt15R7dUIqCX0r15CK1rhwMBsCcBCR8TfreyeoV2eNSY4204uLmmhbBctVJxccbtSkGrzf+PpCPOZOIngdR4hMlDlIft40iTem91Ig6Z7HaVdmLeOuikV1+Mu6aWqcbk4s+VmQbgZtlJJuxc8k4biFFREREFGJOWB3YcfQijp6vx7GL9e3+H5oSF4P83ikYmp2CaUN7y6qdds3sdYc0q+321qJRyH36fdXb6k7FyklINHdf0vLmunL+YF25AGxbEFiNC3/lz5JqeBAREWlA7/dyWbCbiJCXmYyti0ZqshfxzZ7dUanKxAUgrcBY8V4liuYMU+X4RERERBSYQZlJWJaZB0DausjpboXb44XJGIUEU3TQ9Rt+OL4/yjarP3mx+N4BqrfhjwRTdJf3BVNXrqy6BmWba1hXzl8nS9SduACAY29LExgDJ6nbDhERUQjgtlFEGqurq8PKlStRV1end1fa0Wov4hvtstj8+iMq0dCMeXGHkWiQP8mxvfwSdllssp8XakL1ulGSCDGKEAMRkZ44jkYmg8GARLMR6QkmJJqNihSe1qK223cGp+LjrWtRV1eHfcsntH3dlaPtNlLDc9K6zFl3deXkELWunD9kjUv716jdHcmBIm3a0RF/H8jHnElEz4Mo8YkSB6mP20aRpvReahQKPB4PLly4gD59+sBolLf4yefzoaHZg5ZWH2KiDYr9cXezXRYb1u09g7IqGUvK+6Vj8b3ylpT7u5w/Gl7cGtWAK95EtAYw53ptOX84C+a6CRcixChCDEREeuI4SkpSe3vS/3tyNJy1X3S4XlfvtODFPacVb7MrT04YgGWT8jrcfq2unB5bw4rE73HJVgmsHa1dxxYfaisqLiL+PpCPOZOIngdR4hMljkig93u5nLwgTel9wYcji9WOHeWXcPRCHSou2jvsBzykdzKG9knF9ILA9gPujpp7EVusdkxes0/R/nanZOk4xfNDRERERKFNj9puofD/XNaV01DtWen7gSLg8MvatXv3QmD0U0BajnZtEhFRxNH7vVxuG0WkMafTiTfffBNOp7Pbx+2y2DB73SFMXrMPL+45jQOnrnb4o6u+qQUHTl3Fi3tOY9KajzF73SHstnyhWF8HZSZh2aQ8bFk4AuXP3IeKlZPwt19I38ufuQ9bFo7Askl5siYFztc04nxNI7aUnvX7ObFowUTTKcQi8D86t5SexfmaxoCfrzd/r5twJkKMIsRARKQnjqOktGu13TKSzYocLyPZ3DZx0dX1mpeZjMLcdEXa60lhv/RO/y+uRV25SNHjuFR0p/Sl5cQFAHy6QWpXUPx9IB9zJhE9D6LEJ0ocpD5OXhBpLCoqCqmpqYiK6vzlV+t046k3jmD+5sN+bal0o7LqGszb/CmWvHkEtU63Et1to9RexGNX78bY1buxpfSc38/xwoAGnwleBL5F1qulZzF29e6An6+3nq4bEYgQowgxEBHpieMoqUGt2m7dXa8/HN8/qLb81VnBcH/rygVDlLpy/uC4pA/mXT7mTCJ6HkSJT5Q4SH3cNoo0pfdSo1B3/LIdczeVKfIpqYxkM4rnF4bcfrS5T7+va/vVq6bq2j4RERER6Uer2m4A8NQbR1SdRJhekIWiOcM63O5vXblgiVBXThErUnRuv17f9omISGh6v5fL6S0ijbndbpSXl8Ptbr8y4lpBPaWWd9vszXh4fSksVrsix9OTEa24PfpLGNGqd1d009V1IxIRYhQhBiIiPXEcJbVNzMvAW4tGoWTpODw5YQDuuf0WpMTFtHtMSlwM7rn9Fjw5YQBKlo7DW4tGdTpx0dP1unLaYMW2q7pZRrIZKx7s+MaBxWrXZOICAMqqanDC6gjqGD6fDw5XC2qcbjhcLQjFz1ZyXNIH8y4fcyYRPQ+ixCdKHKQ+lnMn0pjL5cKePXvQv39/mExSkbtapxtzN5UpWkgQkGpiPL6xLOwL6pnQigLjJVxqTYYH0Xp3RxedXTeiESFGEWIgItITx1HSyqDMJCzLzAMgvYHudLfC7fHCZIxCginary1Se7pe0xJMKJ5fqErB8OL5he3+f3+ttpucunJK2FJ6Fk+M64/s9Hi/n2Ox2rGj/BKOXqhDxUV7u9ykxMVgSO9kDO2TiukFvWXV1lOLsOOSzwc0O4DWFiA6BjAnAQFuDawGYfOuIuZMInoeRIlPlDhIfdw2ijSl91KjUKXXknI9cNsoIiIiIookFqsdj29Ud2vYcPg/9i6LDev2nJG1MqQwNx2Lx8vfsktT4bRtlK0SOLYNuPgZcPko4Kq7fl9sKtBrKND7LiB/FpBxh9I9JSKiMKT3e7ncNopIYz6fDy6Xq21JNAvq+cMHEzwAIneu9ebrRkQixChCDEREeuI4SuHE3+tVrYLh4aLW6cZTbxzB/M2HZW9pVVZdg3mbP8WSN4+g1qnP1iI9nuclf5e+skdo27HskVK7/jhZAmycAqwdDex/Aaja237iApB+rtor3b92lPT4kx8q3Wu/8feBfMyZRPQ8iBKfKHGQ+jh5QaSx+vp6PPfcc6ivlz4hs27PGU3aXbdXm3Z6sm/5BOxbPgF35aT5/ZxEgxuPxpUj0RD4HyzDc9Kwb/mEgJ+vt5uvGxGJEKMIMRAR6YnjKIUTOddrWoIJRXOGYePc4Sjsly6rncJ+6dg0924UzRkWdlvBHr9sx+Sij4P+sNb28kuYXPSxLvX8ejzPaTnSV84YbTuWO0ZqtzuNNcC2BcDrs4FzB+Ud/9xB4PVZwDsLpeNojL8P5GPOJKLnQZT4RImD1Mdto0hTei81CgWtra24cuUKbr31VvzjihOT1+zTrO2SpeNCYt9YAFi904IX95z267FR8CLV4EKdLxbeAOdcn5wwAMsm5QX03FBw43UTHS1m3Q8RYhQhBiIiPXEcpXASzPV6wurAjqMXcfR8PY5drO9Q9yG/dwqGZqdg2lD/6j6E4rZRxy/bMecl5et9bF00UtPVJ36fZ1ultLJBK4sPdb+1k7UCeG0m4LgcfFtJvYDH3gEytPvbnb8P5GPOJKLnQZT4RIkjEuj9Xi4LdhNpLDo6Gi2mZFyqb9aloN6vHhrS8wM1MK0gy+/JCy+iUOPzvwhgp+0N7R3U8/UWHR2NzMxMvbuhKhFiFCEGIiI9cRylcBLM9apEwfBQVut0Y+6mMkUnLgCgvqkFj28sw84l4zRbheL3ec4YDPQdLX+FQyByxvQ8cbF5asetoQLluAxsegCY94FmExj8fSAfcyYRPQ+ixCdKHKQ+bhtFpLGGhgb815q1uH/1h9hSek7Ttl/VeLKkO3mZySjM9W/JfBxaMNlkQRwC++OnsF96yKw4CVRDQwM2b96MhoYGvbuiGhFiFCEGIiI9cRylcKLU9WowGJBoNiI9wYREszHsJy4A4NkdlYoUKO+Mzd6MFe9VqnLszsg6z/csVb0/AIAx3bTTWCOtuFBq4uIaVx2wZYZmW0jx94F8zJlE9DyIEp8ocZD6OHlBpDGj0QirNwmt0OePklDaKe6H4/v79bhWGILK2eJ7BwT0vFBiNBqRm5sLo1HcBXMixChCDEREeuI4SuEklK7XQOrKKaGzunK7LLaga1z0ZHv5Jeyy2FRt4xpZ53ngJGDITHU7lD8LGHh/1/d/sEyZraI647gM/Hm5Ose+SSi9vsIFcyYRPQ+ixCdKHKQ+1rwgTem9T1qo0HNP2oqVk5BoDp1fDk+9cUTVP26mF2ShaM4w1Y5PRERERBQq5NSVU0JndeVmrzuEsmr1P51f2C8dby0aFdQxfD4fGpo9aGn1ISbaoMzKl8YaqfaFGhMISb2AxQeB+C5WsJ8skYpzq+2Rt6SJGiIiEp7e7+Vy5QWRxpqbm3FHtA0xaNWlfbfHq0u7XVk5bTAyks3dPiYGrQHlLCPZjBUPijE51tzcjNLSUjQ3q7P8PhSIEKMIMRAR6YnjKIWTULxepxVkadveTXXlLFa7JhMXAFBWVYMTVofs51msdqzeacGjG0pR8Mu/IH/Fh/jGr6TvBb/8Cx7dUIrVOy1tx5Z9nuPTpeLWsamy+9at2FTpuF1NXADA/jXKttmVA0WqNxGKr69Qx5xJRM+DKPGJEgepj5MXRBpzu9243fgljDpNXpiMofWyT0swoXh+IVLiYrp8jBGtsnOWEheD4vmFmhXyU5vb7UZ5eTncbrfeXVGNCDGKEAMRkZ44jlI4CcXrVU5duWDdWFfufE0jztc0YovGNfa2lJ7F+ZpGvx67y2LD7HWHMHnNPry45zQOnLraoaB4fVMLDpy6ihf3nMakNR9j9rpD2P35JfnnOWOwVNw6qZeccLqW1KvnYtm2Sm2KhQPA2QOA7XNVmwjF11eoY84koudBlPhEiYPUx22jSFN6LzUKFXpuG1X1Pw+EZBFAi9WOxzeWKVLYLyPZjOL5hcjLTFagZ0RERERE4WOXxYb5mw+r3s6muXdjQt5tAPT9+wYAqldN7fK+Wqcbz+6oDGqr2ukFWVjx4GD5H4xqrJFqRBx7O+C2kT8LmLK66xUXtV9NGB0oAg6/HHg7ct29EBj9FJCWo12bRESkOb3fyw2tj2ATRQCv14sPfvgN7P33e3UpqBeKExeA9CmxnUvGYXonS90N8CHR0AwDep5rnV6QhZ1Lxgk3ceH1elFXVwevN7S2/VKSCDGKEAMRkZ44jlI4CdXrdWJeBqYNVXf7qOkFWW0TF6Hs+GU7Jhd9HNTEhQE+/PVoFaas2QuL1S7vyfHpwIwNUo2InDHynpszBnjkben53W0VVXSn9KXlxAUAfLpBalclofr6CmXMmUT0PIgSnyhxkPo4eUGkMbvdjreLX0KK0YMR/bRZ0n3NiP7atidXWoIJRXOGYePc4Si8ITcJBjdmxR5DgqHr5YSF/dKxae7dKJozTJitom5kt9tRVFQEu13mH0xhRIQYRYiBiEhPHEcpnITy9epPXblAhUtdueOX7ZjzUmnQK7uv/S3S0ODAw+tL5U9gAFJx63kfAIsPAWN/AvQf37EmRmyqdPvYn0iPm/cBMPD+oPoezkL59RWqmDOJ6HkQJT5R4iD1cdso0pTeS41Cgdfrhd1uR3JyMk5+0YDJa/Zp1nbJ0nFt+9KGgxNWB3YcvYij52px+tIVWJui4IO0ciQlLgb5vVMwNDsF04b2Dqu4AnHjdRMVJea8swgxihADEZGeOI5SOAn169VitePh9aUd6joEIyUuBlsXjeywyjnUto2qdboxuehjRbakNcCHBIMbTp8JPhiQkWzGziXjgv/AlM8HuBsAjxswmgBTIhDIKvkVKcH1I1gr6lU5bKi/vkIRcyYRPQ+ixCdKHJFA7/dyjZq1REQAgKioKKSmpgK4XlCvrLpG9XZvLKgXLgZlJmFZZh4AwOfzweluhdvjhckYhQRTdMhugaWGG68bUYkQowgxEBHpieMohZNQv17zMpOxddHIiKwr9+yOSkViBgAfDGjwXV/FYrM3Y8V7lSiaMyy4AxsMgDkJUGeBTNgL9ddXKGLOJKLnQZT4RImD1MepLSKNORwOrFu3Dg6HAwDww/H9NWl38b0DNGlHDQ6HA+vXr4fP3YT0BBMSzcaImrgAOl43IhIhRhFiICLSE8dRCifhcL12V1dOjnCqK7fLYguqxsXN4uDGNHMl4nB9C9vt5Zewy2JTrI2I5PMBLjvgvCp9v2lTkHB4fYUa5kwieh5EiU+UOEh9XHlBpDGTyYSCggKYTNIy42sF9ZT8D/bNwqWgXlduzlkkioQciBCjCDEQEemJ4yiFk3C5Xq/VlZtekIV1e8+grMr/Vd+F/dKx+N4BPf4tsW/5BADA0q3l+OxsbVD9lWN4Thp++3BBu9vW7TmjaBseROOU5xZ4EN2+nb1nMDEvQ9G2hGerBI5tAy5+Blw+Crjqrt8Xmwr0Ggr0vgvInwVT6oCweH2FknAZk9Qmeh5EiU+UOEh9rHlBmtJ7n7RQpeSerDdTbE9WIiIiIiIKe2115c7X49jF+nY1MYKtK7d6pwUv7jmtdJe79OSEAVg2Ka/tZ4vVHnk1BWvPSt//+APg/CfatZs9EvjuS0BaTs+PPVkC7F8DnDvo//H7jgbu+XFEFy0nIgoFer+Xy22jiDTmcrmwZ88euFyuttvSEkwonl+IlLgYRdtKiYtB8fzCsJ+46CxnkSYSciBCjCLEQESkJ46jFE7C9XodlJmEZZPysGXhCJQ/cx8qVk7C334hfS9/5j5sWTgCyyblBfSm/LQgt6eS3d7Q3gCA8zWNOF/TiC2lZxVvwwQPCowXYYKnw31qtCdbWo70lTNG23Zzx/Q8cdFYA2xbALw+W97EBQDXuc+w5/UX4HrrB9JxqEfhOiYpTfQ8iBKfKHGQ+jh5QaQxj8eD6upqeDzt//N7raBeRrIyFdsyks3YumhkWOxL25OuchZJIiEHIsQoQgxERHriOErhRITr1WAwINFsVKyuXF5mMgpz0xXqXfcK+6W3TbCMXb0bY1fvxpbSc4q3Ew0fMqMciEbHTSteDYXJi2vyZ2rb3pAe2rNWAGtHAxXbAjq8B9GoRh94Pv8/6Ti2yoCOE0lEGJOUIHoeRIlPlDhIfdw2ijSl91KjcFDrdGPFe5XYXh54DYzpBVlY8eDgsF9xQURERERE4WWXxYb5mw+r3s6muXe31eLIffp91dvrStX/PBD0pI9iNk6RvcIhIDljgHkfdH2/tQLYPLV9TYtgxaZKbWbw/QMiIi3p/V4uV14Qaay1tRVWqxWtra2d3n+toN7GucNR2E/ep5YK+6Vj09y7UTRnmFATFz3lLBJEQg5EiFGEGIiI9MRxlMIJr9fOTczLwLSh6m4fNb0gq8ci4kqJghfphkZEwdvp/U53CJ3/e5Zq086YbtpprAFemxn0xEUromDFrWi99raVqw7YMoNbSHWDY5JE9DyIEp8ocZD6OHlBpDGHw4H169fD4XB0+7iJeRl4a9EolCwdhycnDMA9t9/SoSZGSlwM7rn9Fjw5YQBKlo7DW4tGafafeC35mzORRUIORIhRhBiIiPTEcZTCCa/Xrq2cNlix7XBvlpFsxooHtfvEZ7yhBdNjP0e8oaXT+92ezic1dDFwUs/bOQUrf1b3RbQ/WAY4LgfdjAOJWG/4HhxIvOHGy8Cflwd9bFFxTJKIngdR4hMlDlIft40iTem91CgU+Hw+NDc3w2w2y15e7PP54HS3wu3xwmSMQoIpOnSWKKsomJyJIhJyIEKMIsRARKQnjqMUTni9ds9itePh9aWob+r8Tf9ApMTFdFrXT91to3wwoRVuRAPoeJ4rVk5Cotko/6g+HxqaPWhp9SEm2qBIzREA0sqEtaMVmUDoIKkXsPggEN/FDgEnS6Ti3ArwAWiGGWY0d8z6I29JEzXUDsckieh5ECU+UeKIBHq/lyv/NywRBcVgMCA2Njbg5yaajYA6H2IKWcHkTBSRkAMRYhQhBiIiPXEcpXDC67V7eZnJ2LpoJB7fWAabvTno42Ukm1E8v7DDxIX6DHB389ZJgina7yNZrHbsKL+EoxfqUHHR3m5iJyUuBkN6J2Non1RML+jdVoxctvh04LF3gE0PKF9z4rF3up64AID9axRrzgAgFl1cNweKOHnRCY5JEtHzIEp8osRB6uO2UUQas9vtWLNmDex2u95dCRvMWWTkQIQYRYiBiEhPHEcpnPB67VleZjJ2LhmH6QXB1cCYXpCFnUvGdTlxsW/5BOxbPgF35aQF1U5n4uHGTPPfEQ93h/uG56T59YnhXRYbZq87hMlr9uHFPadx4NTVDitS6ptacODUVby45zQmrfkYs9cdwm7LF4F1OmOwVNw6qVdgz79ZUq+ei2XbKhUtFm5HItZgAew3bht1zdkDgO1zxdoSBcckieh5ECU+UeIg9XHygkhjsbGxGD9+PGeYZWDOIiMHIsQoQgxERHriOErhhNerf9ISTCiaMwwb5w5HYb9uPrXficJ+6dg0924UzRmGtARTl4/LTo9Hdno8Rsg8vj/ciEa5J+urbaPaG9G/+/ZqnW489cYRzN98GGXV8gpNl1XXYN7mT7HkzSOodXacOOlRxmBpi6f8WfKfe6P8WdJxupq4qD0rfX36cnDt3CQWzRiPQ12vvjisbHsi4JgkET0PosQnShykPta8IE3pvU8aERERERER6eeE1YEdRy/i6Pl6HLtY32HrpPzeKRianYJpQ+VvnWSx2jF5zT6lu9ylkqXjuuzj8ct2zN0UIltmnSyRtlo6e8D/5+SMAcYs7b44NwCsSAmsT0pYUa9f20REEULv93JZ84JIY01NTdi7dy/uvfdexMXF6d2dsMCcRUYORIhRhBiIiPTEcZTCCa/XwAzKTMKyzDwAUsFWp7sVbo8XJmMUEkzRQRVuzctMRmFuuuxVDt0xwYOCmEsob8lqV/uisF96txMXc15Srli5zd6Mh9eXdlqs3C8DJ0lfts+Bim3Axc+AS+Xta2LEpgJZBUDvu4AhM4GMOxTpe6CaEIu9GIl7UYo4uDp/kM8HsNBvG45JEtHzIEp8osRB6uPkBZHGvF4v6urq4PV69e5K2GDOIiMHIsQoQgxERHriOErhhNdr8AwGAxLNRsCs3DF/OL4/yjYrN3kRBR8SDW5Eof2mFYvvHdDp42udbszdVKbYxMU19U0teHxjGXYuGdftFlrdyrgDyHhG+rfPB7gbAI8bMJoAU2JITQR4YUAdkuFFN31yNwDmAAubC4hjkkT0PIgSnyhxkPq4bRRpSu+lRkRERERERCS2p944gh1HL6l2/OkFWSiaMyzk2taFnttGLTsDJHwtsOf6fECzA2htAaJjpEmQEJq8ISIKFXq/l8uC3UQa83g8qK6uhsfj0bsrYYM5i4wciBCjCDEQEemJ4yiFE16voWvltMHISFZmOUc0vMiMsiMa0qeDM5LNWPFg52/a7LLYVJ24AIDt5Zewy2JTtY1Q4EE0qtEHnk4KpbcxylyBYqsEPloJFE8DnssFVmUDz/eXvj+XK93+0Uppe60wxDFJInoeRIlPlDhIfZy8INJYQ0MDiouL0dDQoHdXwgZzFhk5ECFGEWIgItITx1EKJ7xeQ1daggnF8wuREhcT9LHiDC2YYj6JOEMLUuJiUDy/sMttm9btORN0e/5Yt1ebdvTUgAQUG2ajAQldP8iU6N/BTpYAG6cAa0cD+18Aqva2r/cBSD9X7ZXuXztKevzJDwPtvi44JklEz4Mo8YkSB6mP20aRpvReakRERERERESRwWK14/GNZbDZm4M+VkayGcXzC7ssmG2x2jF5zb6g2/FXydJxXRYM94fP50NDswctrT7EREu1RwIqll57Vvr+xx8A5z8JuD+yZY8EFpR0/5jGGuCDZVKR8kDlzwKmrAbi0wM/BhFRGNP7vVwW7CYiIiIiIiIi4eRlJmPnknFY8V4ltpcHvp3T9IIsrHhwcKcrLs7XNAIAtpSeDfj4gdhSehZPjOuP7PR4v59jsdqxo/wSjl6oQ8VFe7ui4ilxMRjSOxlD+6RiekFv/ydG0nKk7zljtJ28yB3T/f3WCuC1mYDjcnDtHHsbqN4PPPYOkMEPXhIRaY3bRhFprL6+HqtWrUJ9fb3eXQkbzFlk5ECEGEWIgYhITxxHKZzweg0PaQkmFM0Zho1zh6Own7xPzxf2S8faWXnoVV2CKE9Tp48Zu3o3xq7ejS2l55Tort9eLT2Lsat3+/XYXRYbZq87hMlr9uHFPadx4NTVdhMXAFDf1IIDp67ixT2nMWnNx5i97hB2W77wv0P5M+V0v0f1SMIq/Aj16GISZUg37VkrgM1Tg5+4uMZxGdj0gFQzI4RxTJKIngdR4hMlDlIfV14QaSw+Ph4PPfQQ4uP9/4RMpGPOIiMHIsQoQgxERHriOErhhNdreJmYl4GJeRk4YXVgx9GLOHq+Hscu1ndYfZDfOwVDs1Mwbai0+qClpQX9EsLzPNc63Xh2R2VARcTLqmtQtrmm21Un7WQMBvqOBs4dDLC37cWjCQ+hBPHoZNIoZwyQcUfnT2yskVZc3FzTIliuOmDLDGDxwZDdQopjkkT0PIgSnyhxkPpY84I0pfc+aURERERERESAVPfB6W6F2+OFyRiFBFO07LoPuU+/r1Lv/FO9amqntx+/bMfcTdrU+2hzsgR4fXbQ7fXokbeBgfd3ft+2BcHVuOhJ/ixgxgb1jk9EFGL0fi+X20YRaayxsRHvvvsuGhsb9e5K2GDOIiMHIsQoQgxERHriOErhhNdr+DMYpELV6QmmLgtWh+N5Pn7ZjjkvlSoycQEANnszHl5fCovV3v0DB07qfjsnGRoRi3cxCY2IbX9H/qyuJy5Olqg7cQFINTBO9lAoXCfheK2qQfQ8iBKfKHGQ+jh5QUREREREREQkgFqnG3M3lXWoaRGs+qYWPL6xDLVOd/cPfOB5IKmXom23SeoFTFnd9f3716jT7s0OFGnTDhERcdso0pbeS42IiIiIiIiIlBJq20Y99caRgGpc+Gt6QRaK5gzr/kG2SqnAtZJ1J2JTgXkfSLU1umpz7Wjl2uvJ4kNd190gIhKI3u/lcuUFkcZaWlpgsVjQ0qLsJ2FExpxFRg5EiFGEGIiI9MRxlMIJr9fI0NN53rd8AvYtn4C7ctI07dfwnDTsWz6h3W27LDZVJy4AYHv5Jeyy2Lp/UMZgaaIhiBUYLTDCggFogVE6TmcTF7Vnr399+nLAbQXksMbt+YFjkkT0PIgSnyhxkPo4eUGkMe7rJx9zFhk5ECFGEWIgItITx1EKJ7xeI0NP5zk7PR7Z6fEY0S9d036N6J+O7PT4dret23NGk7bX7fWjnYzBwOKDUo2KADQiTqp5MWimdJzOVlwU3Xn9S+vJhE9Dr2g3xySJ6HkQJT5R4iD1cdso0pTeS42IiIiIiIiIlGax2jF5zT7N2itZOg6DMpNCpv1unSyR6kScPeB/AzljgDFLuy7ODQArUvw/nhqerQM6KfJORCQSvd/LNWrWEhERERERERGRgPIyk1GYm46y6hrV2yrsl942cXC+RvrU8pbSs6q3e6MtpWfxxLj+HVZ/dGrgJOnL9jlQsQ24+Bl8l8phuKEmhi82FYasAqD3XcCQmeFRT8LdAJj9nMC5kc8HNDuA1hYgOkY6BidBiIg6xW2jiDRWV1eHlStXoq6uTu+uhA3mLDJyIEKMIsRARKQnjqMUTni9RgY55/mH4/ur3yEAi+8d0Pbvsat3Y+zq3dhSek6Ttq95tfQsxq7eLes5Fl8frG6ZjUfdP0OB6yUMdr2MYa51GOx6GQWul/Co+2dY3TIbJ3zZ4fH68rj9f6ytEvhoJVA8DXguF1iVDTzfX/r+XK50+0crpQmeAIVFzjQgeh5EiU+UOEh93DaKNKX3UqNQ4PF4cOHCBfTp0wdGIxc/+YM5i4wciBCjCDEQEemJ4yiFE16vkUHueX7qjSOqFs2eXpCFojnD2n7Offp91dryR/WqqT0+ZpfFhnV7zshalTIiJwVzBifgwdH5Xedd722jfnah55UXJ0uA/WuAcwf9P27f0cA9P+5+y6xOcEySiJ4HUeITJY5IoPd7ubw6iDRmNBqRm5urdzfCCnMWGTkQIUYRYiAi0hPHUQonvF4jg9zzvHLaYHxSdRU2e7PifclINmPFg+Hz4b9apxvP7qgMaDLnk7P1+ORsPfZcAlY8OBhpCSYVehgkU2LX9zXWAB8sk7bJkuvcQeD1r4qdT1kNxPtXDJ5jkkT0PIgSnyhxkPq4bRSRxpxOJ9588004nU69uxI2mLPIyIEIMYoQAxGRnjiOUjjh9RoZ5J7ntAQTiucXIiUuRtF+pMTFoHh+YWi+id+J45ftmFz0ccCrUGLRgommUygpP4vJRR/DYrV3fNCSv1//yh4RZI9lyh7ZdZ0KawWwdnRgExc3Ova2dBxbpV8P55gkET0PosQnShykPk5eEGksKioKqampiIriy89fzFlk5ECEGEWIgYhITxxHKZzweo0MgZznvMxkbF00EhnJZkX6kJFsxtZFI5GXmazI8dR2/LIdc14qDWr1iRcGNPhM8MIAm70ZD68v7TiBkZZz/StnTJC9lim3i/asFcDmqYDjsjLtOC4Dmx7wawKDY5JE9DyIEp8ocZD6WPOCNKX3PmlEREREREREWqh1urHivUpsLw+8Bsb0gqxut00KtZoXtU43Jhd9rNq2WTuXjOs8F7ZKaZWCVhYfAjLuaH9bY43UB6UmLm6U1AtYfNDvLaSIiJSi93u5nN4i0pjb7UZ5eTncbrfeXQkbzFlk5ECEGEWIgYhITxxHKZzweo0MwZzntAQTiuYMw8a5w1HYT96bzoX90rFp7t0omjOs262i9i2fgH3LJ+CunDTZ/QvG8Jw07Fs+ocPtz+6oVGTiwohW3B79JYxobbvNZm/Give6WIGQMVgqdK2FnDEdJy4AqcaFGhMXgHTcPy/v9iEckySi50GU+ESJg9THyQsijblcLuzZswcul0vvroQN5iwyciBCjCLEQESkJ46jFE54vUYGJc7zxLwMvLVoFEqWjsOTEwbgnttv6VATIyUuBvfcfguenDAAJUvH4a1FozAh77Yej52dHo/s9HiMkDk5EqwR/dORnR7f7rZdFlvANS5uZkIrCoyXYLph8gIAtpdfwi6LrfMn3bNUkbZ7NKaTdk6WBF/joifH3pba6QLHJInoeRAlPlHiIPVx2yjSlN5LjYiIiIiIiIj05vP54HS3wu3xwmSMQoIpGoauCkD7wWK1Y/KafQr2sHslS8dhUGZSu9tmrzuEsuoa1dsu7JeOtxaN6vzObQvUnUTInwXM2NDx9o1TgHMH1Wv3mpwxwLwP1G+HiOgrer+Xy5UXRBrz+XxwuVzgvKH/mLPIyIEIMYoQAxGRnjiOUjjh9RoZ1DrPBoMBiWYj0hNMSDQbg5q4AKQi4YW52qy+KOyX3mHiwmK1Kzxx4YMJHgAd815WVYMTVkfnT3vgeak+hBqSegFTVne83VapzcQFAJw9ANg+7/Quv69Vnw9w2QHnVem7YGOY6GOzKPGJEgepj5MXRBqrr6/Hc889h/r6er27EjaYs8jIgQgxihADEZGeOI5SOOH1GhnC6Tz/cHx/TdpZfO+Atn+fr2nE+ZpGbCk9q2gbiQY3Ho0rR6Kh8/3wu2wvPh147B0gNlXR/iA2VTrujQWza89KX5++rGxbPTn8stTuTbq9Vm2VwEcrgeJpwHO5wKps4Pn+0vfncqXbP1rZ5cRIOAmn12wgRIlPlDhIfdw2ijSl91KjUNDa2oorV67g1ltvRXR0tN7dCQvMWWTkQIQYRYiBiEhPHEcpnPB6jQzhdp6feuOIYnUnOjO9IAtFc4a1/Zz79PuqtBMFL1INLtT5YuHt4nO31aumdn0AWyWwZYYyBbSTekkTFxk3vXexIiX4YwdjRfs3fTu9Vk+WAPvXyFsZ0nc0cM+PgYH3K9dXDYXba1YuUeITJY5IoPd7uVx5QaSx6OhoZGZmcnCWgTmLjByIEKMIMRAR6YnjKIUTXq+RIdzO88ppg5GRbFbl2BnJZqx4UJs3rLyIQo0vvsuJCwDdbzeTMRh1j+/B4aRvBdWPw8nfQt3jezpOXISgdtdqY41U/+P12fK3tDp3EHh9FvDOQuk4YSbcXrNyiRKfKHGQ+jh5QaSxhoYGbN68GQ0NDXp3JWwwZ5GRAxFiFCEGIiI9cRylcMLrNTKE23lOSzCheH4hUuJiFD1uSlwMiucXIi3BpOhxuxKHFkw2WRCHli4f43S3dnnf8ct2THqpAjOvzMc89zJ84s2T1f4n3jzMdS/DzC/mY9JLFbBY7bKer4e2a/XMYWDt6OALlx97WzqOrVKZDmok3F6zcokSnyhxkPqMeneAKNIYjUbk5ubCaOTLz1/MWWTkQIQYRYiBiEhPHEcpnPB6jQzheJ7zMpOxddFIPL6xDDZ7c9DHy0g2o3h+IfIykxXonX9aYYDVm4RWdF3I3O3xAp0sMjl+2Y45L5Wivkma+NjtHYbd7mEYaDiPadEHMdRwGvlRVUg1ONueU+dLwDFvPxz1DcCO1tE46ctuu89mb8bD60uxddFITXMgl9FoRO4t8TBu/Weg+QtlDuq4DGx6AJj3QVisPgHC8zUrhyjxiRIHqY81L0hTeu+TRkRERERERBQJap1urHivEtvLA6+BMb0gCyseHNzligu1al74o2LlJCSa27/xWet0Y3LRx35M2viQABdMaIEbMXAiFuhmogSQJnF2Lhl3PRchVvMCjTXSSgkl6nzcLKkXsPhg+4LlRBQR9H4vl9tGEWmsubkZpaWlaG4O/hMwkYI5i4wciBCjCDEQEemJ4yiFE16vkSGcz3NagglFc4Zh49zhKOwn703nwn7p2DT3bhTNGabZVlE3ikEr7oi2IQZdbw2VYOq4V/6zOyr9XG1igBNxqEUynIhDTxMXgLQCY8V7obuFUvN7y1HqyEQzVDhfjsvAn5crf1wVhPNr1h+ixCdKHKQ+Tl4QacztdqO8vBxut1vvroQN5iwyciBCjCLEQESkJ46jFE54vUYGEc7zxLwMvLVoFEqWjsOTEwbgnttv6VATIyUuBvfcfguenDAAJUvH4a1FozAh77Yej71v+QTsWz4Bd+WkKdpnI1pxu/FLGLuYvBiekwaDof2Ewy6LDTuOBr7KxB/byy9hl8Um/bDk79JX9ghV2+wge6TU7o1OlsB9/AOUYzDcULbeSZtjbwMnS9Q5toJEeM12R5T4RImD1Mdto0hTei81IiIiIiIiIop0Pp8PTncr3B4vTMYoJJiiO0wGyLF6pwUv7jmtYA+79+SEAVg2qX0R7tnrDqGsukb1tgv7peOtRaOu3/DRSmD/C6q322bsT4BvPtP+to1TgHMH1W87Z4xU/4KIIobe7+Vy5QWRxrxeL+rq6uD1evXuSthgziIjByLEKEIMRER64jhK4YTXa2QQ9TwbDAYkmo1ITzAh0WwMauICAKYVZCnUM4kBPiQammFA55+3nTa0d7ufLVa7JhMXAFBWVYMTVsf1G/JnatJumyE3tWerBM4dhBcG1CEZXj+2wArY2QOA7XP1jq8AUV+z14gSnyhxkPo4eUGkMbvdjqKiItjtdr27EjaYs8jIgQgxihADEZGeOI5SOOH1Ghl4nv2Tl5mMwlzlijknGNyYFXsMCYaOW8oU9kvHoMwknK9pbPvaUnpWsbb90a69jMFA39HaNJwzBsi4Q/p37Vnp69OXAQB2JKHIsBB2JKnbh8Mvq3v8IIn+mhUlPlHiIPVx2yjSlN5LjUKB1+uF3W5HcnIyoqI4f+gP5iwyciBCjCLEQESkJ46jFE54vUYGnmf/7bLYMH/zYUWOZYAPCQY3nD4TfDetJNg0925MyLsNuU+/r0hbgapeNfX6DydLgNdnq9/oI28DA++X/r0ipd1dXhhgRxKS4UBUFytWFLOiPvDn+nxAswNobQGiYwBzEhDkyp8bif6aFSU+UeKIBHq/l2vUrCUiAgBERUUhNTVV726EFeYsMnIgQowixEBEpCeOoxROeL1GBp5n/03My8C0oVmKFM32wYAGn7nD7dMLsvwqJK4Fn893fbutgZOk7ZwqtqnXYP6s6xMXnYiCD6nQ6FPsPp+8CQdbJXBsG3DxM+DyUcBVd/2+2FSg11Cg911SjNdWlgRI9NesKPGJEgepj1NbRBpzOBxYt24dHA5Hzw8mAMwZEBk5ECFGEWIgItITx1EKJ7xeIwPPszwrpw1GRnLHSQe54uDGNHMl4nB926iMZDNWPBg6Ozc43a3tb3jgeSCplzqNJfUCpqzu9iEOJGAdHoMDCer04UbuBv8ed7JEKia+drRU1Lxqb/uJC0D6uWqvdP/aUdLjT34YcNdEf82KEp8ocZD6OHlBpDGTyYSCggKYTCa9uxI2mLPIyIEIMYoQAxGRnjiOUjjh9RoZeJ7lSUswoXh+IVLiYoI6jgfROOW5BR5EAwBS4mJQPL8QaQmhcx7cnpsKDcen48ykYtQrPHlQjwRUTS4G4ruvKWJCCwpQCRNaFG2/U56OtUjaaawBti2QttI6d1Desc8dBF6fBbyzUDqOTKK/ZkWJT5Q4SH2seUGa0nufNCIiIiIiIiJSl8Vqx+Mby2CzNwd9rIxkM4rnFyIvM7nd7XrXvKhYOQmJ5uu7sdc63Zhc9DFSHf9Asek5ZBpqg27D6kvD4+6foi7pn7Bzybj2kzc31bzQ1M8uSLUqOmOtAF6bCTguB99OUi/gsXekouhEpAu938vlygsijblcLuzZswcul0vvroQN5iwyciBCjCLEQESkJ46jFE54vUYGnufA5GUmY+eScZhekBXQ803woMB4EQ/l34qdS8Z1mLgIBQmm6HY/P7ujEjZ7M074+mJy8yq82zo6qOO/2zoak5tX4YSvL2z2Zqx4r7Lbx7tgxh6MggvBb9vVI1Ni57dbK4DNU5WZuACk42x6QKqZ4SfRX7OixCdKHKQ+Tl4Qaczj8aC6uhoej0fvroQN5iwyciBCjCLEQESkJ46jFE54vUYGnufApSWYUDRnGDbOHY7Cft1veXSz4X1TMD7LgP83/Y4ut4rat3xC29ddOWlKdNn//uWkXS/WDWCXxdauUHkdkrC05V8wz70Mn3jzZB37E28e5rqXYWnLv6AO11c3bC+/hF0W2/UHLvm79JU9AoC01VY1+rRttaWa7JGdF+turJFWXNxc0yJYrjpgywy/t5AS/TUrSnyixEHq47ZRpCm9lxoRERERERERkfZOWB3YcfQijp6vx7GL9ahvul6bISUuBvm9UzA0OwXThvbGoMwutiTqwuqdFry457TSXe7SkxMGYNmk65MSs9cdQll112+uDzScx7TogxhqOI38qCqkGpxt99X5EnDM2w9HfQOwo3U0TvqyuzxOYb90vLVoVPsbP1opFbvWytifAN98puPt2xYAFdvUazd/FjBjg3rHJ6JO6f1errHnhxCRklpbW3HlyhXceuutiI5W+RMRgmDOIiMHIsQoQgxERHriOErhhNdrZOB5Vs6gzCQsy5Te8Pf5fHC6W+H2eGEyRiHBFN1uJYPcvE8ryNJ08mLa0N5t/7ZY7d1OXADASV82fu15+KuffEiACya0wI0YOBELoJOVDJ0oq6rBCauj/eRO/kxg/wtoRRSu4Gu4FVcRDW/XBwnWkJkdbztZou7EBQAce1uawBg4qduHif6aFSU+UeIg9XHbKCKNORwOrF+/Hg6HQ++uhA3mLDJyIEKMIsRARKQnjqMUTni9RgaeZ3UYDAYkmo1ITzAh0WxsN3EByM97XmYyCnPlbU0VqMJ+6RiUmYTzNY04X9OILaVnZR7BACfiUItkOBEHfycurtlSehbnaxqv35AxGOg7Gg4kYr3he3Cgi3oUSsgZA2Tc0fH2/WvUa/NGB4p6fIjor1lR4hMlDlIft40iTem91CgU+Hw+NDc3w2w2d/gPGnWOOYuMHIgQowgxEBHpieMohRNer5GB51kfgeR9l8WG+ZsPq9wzYNPcuzEh7zbkPv2+6m11p3rV1Os/nCyB7/XZaIYZZjTLnA6R4ZG3gYH3t7/NVgmsDa44uSyLD3U+gfKVbq8dnw9odgCtLUB0DGBO6rx+RwgTZUwSJY5IoPd7udw2ikhjBoMBsbGxencjrDBnkZEDEWIUIQYiIj1xHKVwwus1MvA86yOQvE/My8C0oVntCmcrbXpBFibk3aba8QM2cBJavv5dxB7/o2pNNH99BszXJi5qb1ht8unLqrXZqcMvA1N/0+XdHa4dWyVwbBtw8TPg8tH2BcVjU4FeQ4Hed0lbUnUzKRIqRBmTRImD1Mdto4g0ZrfbsWbNGtjtdr27EjaYs8jIgQgxihADEZGeOI5SOOH1Ghl4nvURaN5XThuMjGSzKn3KSDZjxYOhu3PEM01z8Bv8AHYVto2y+tKwwvP96zcU3Xn967DGkxefdl+0u+3aKd8BbJwirQrZ/wJQtbf9xAUg/Vy1V7p/7Sjp8Sc/VK3rShBlTBIlDlIfJy+INBYbG4vx48dzhlkG5iwyciBCjCLEQESkJ46jFE54vUYGnmd9BJr3tAQTiucXIiUuRtH+pMTFoHh+IdISTIoeVym7LDZsszTjiCcLLp+yxY/rfAl43P1TvHHMiV0Wm6LHDlg3O+DHehsxPuEMYt+dD5w7KO+45w4Cr88C3lkINHZfhF0vooxJosRB6mPNC9KU3vukEREREREREZHYLFY7Ht9YBpu9OehjZSSbUTy/EHmZye1uD6WaF7PXHUJZtfRm+yDDORSbnkOmoTboNqy+NDzu/ilO+PoCkIqVv7VoFLAiJehjB+VnF6R6FTezVgCvzQQcl4NvI6kX8Ng7UkF0ogim93u5XHlBpLGmpibs3LkTTU1NenclbDBnkZEDEWIUIQYiIj1xHKVwwus1MvA86yPYvOdlJmPnknGYXpAVVD+mF2Rh55JxHSYuQonFakdZdQ1M8KAw5hyqfFmY3LwK77YGV0T73dbRmNy8qm3iAgDKqmpwwuoItsvB87g73matADZPRZOjFjsxHk0I8hP9jsvApgekmhkhRJQxSZQ4SH2cvCDSmNfrRV1dHbxer95dCRvMWWTkQIQYRYiBiEhPHEcpnPB6jQw8z/pQIu9pCSYUzRmGjXOHo7BfuqznFvZLx6a5d6NozrAut4rat3wC9i2fgLty0gLuYyCG56Rh3/IJOF/TiPM1jdhSKhXPjoIPiQY3ouBDHZKwtOVfMM+9DJ9482Qd/xNvHua6l2Fpy7+gDh1XN1xrT1fGm85JY4204sJVBy8MqEMyvDAE346rDtgyI6S2kBJlTBIlDlIft40iTem91IiIiIiIiIiIIs8JqwM7jl7E0fP1OHaxHvVNLW33pcTFIL93CoZmp2Da0N4YlNnJlkRdWL3Tghf3nFajy516csIALJuUJ2vbqoGG85gWfRBDDaeRH1WFVIOz7b46XwKOefvhqG8AdrSOxklfdo/Hq459JKC+K+bZOsBww+TEtgVAxTb12sufBczovlA4kaj0fi/XqFlLRAQA8Hg8uHDhAvr06QOjkS9BfzBnkZEDEWIUIQYiIj1xHKVwwus1MvA860ONvA/KTMKyTGkVgs/ng9PdCrfHC5MxCgmmaBgMgX1Sf1pBlqaTF9OG9u709mh4cWtUA654E9F600YrJ33Z+LXn4a9+8iEBLpjQAjdi4EQsIHOVgu+po9fz9ccfAOc/kRlFELJHtp+4OFnSbuLCg2hcQC/0wWUY0apMm8feliYwBk5S5nhBEGVMEiUOUh+3jSLSWENDA4qLi9HQ0KB3V8IGcxYZORAhRhFiICLSE8dRCie8XiMDz7M+1M67wWBAotmI9AQTEs3GgCcuAKm+RmGuvG2pAlXYL73LVSFxhhZMMZ9EnKGl0/uvM8CJONQiGU7EQe7EBQA4E/oAaTnSV84Y2c8PSu5N7e1f0+7HBiSg2DAbDUhQtt0DRcoeL0CijEmixEHq47ZRpCm9lxoRERERERERESlpl8WG+ZsPq97Oprl3Y0LebQAga9sopf3tF/ch/VotEFslsDa44uCyLD4EZNyhf9uB8PmAZgfQ2gJExwDmpParSIhCkN7v5XJdDhERERERERERUYAm5mVg2tAs7Dh6SbU2phdktU1c6M1kvGEjl4zBQN/RwLmD6jecM0aaPKj9qmj4py+r3+aNDr8MjH5KWnHiL1slcGwbcPEz4PJRqQj4NbGpQK+hQO+7pG2pgpkYIRIUt40i0lh9fT1WrVqF+vp6vbsSNpizyMiBCDGKEAMRkZ44jlI44fUaGXie9RGOeV85bTAyks2qHDsj2YwVD3b/SecEQzMeiT2CBEOzKn1o15Yput3PR3MfV71NADia81U7RXdKX4c7Tl7UIwmr8CPUw/+i6377dIPUrj9OlgAbp0grQ/a/AFTtbT9xAUg/V+2V7l87Snr8yQ+7PWw4vjY6I0ocpD5OXhBpLD4+Hg899BDi4+P17krYYM4iIwcixChCDEREeuI4SuGE12tk4HnWRzjmPS3BhOL5hUiJi1H0uClxMSieX4i0a9s0fWXf8gnYt3wC7spJAwC4fEbsd+fC5VN3k5XhOWkdaoT818kcbG9Vd/umd1tH47/+0bfHx8WjCQ+hBPFoUrU/XWqsAbYtAF6fLX81yrmDwOuzgHcWSsfpRDi+NjojShykPk5eEGksJiYGeXl5iIlR9j80ImPOIiMHIsQoQgxERHriOErhhNdrZOB51ke45j0vMxlbF41UbAVGRrIZWxeNRF5mcof7stPjkZ0ejxH9pGLhrYjGOW8aWhHd4bFKGtG/fXFyi9WOsuoaPNvyOKy+NFXatPrSsKLlcZRV1eCE1dHtY2PgQR5OIwYeVfrSLWuFtNKiYltwxzn2tnQcW2WHu8L1tXEzUeIg9XHygkhjjY2NePfdd9HY2Kh3V8IGcxYZORAhRhFiICLSE8dRCie8XiMDz7M+wjnveZnJ2LlkHKYXZAV1nOkFWdi5ZFynExc3mvZVO2a04J6YKpjRElS7PZk2tDfO1zS2fW0plepP1CEJj7t/ijpfgqLt1fkSpON+tQ3Utfa60ohYvItJaESsov3okbUC2DwVcFxW5niOy8CmBzpMYITza+NGosRB6mPBbiIiIiIiIiIiIoWkJZhQNGcYphdkYd3eMyir6nwLoM4U9kvH4nsH+F2cOy8zGYW56ThabQu0u34r7JeOQZlJyH36/U7vP+Hri4fdv0Cx6TlkGmqDbs/qS8Pj7p/ihO/6dlGvlp7FrzSel+hRYw3w2syONS2C5aoDtswAFh8E4tN7fDiRiAw+n8+ndycoclRWVmLIkCFtP1dUVGDw4O6LThERERERERERhasTVgd2HL2Io+frcexiPeqbrq+OSImLQX7vFAzNTsG0ob0xKFN+oeldFhvmbz6sZJc7tWnu3ZiQd1uXkxfXpMKBFTHFeChaZs2HG7zbOhorWh5vW3FxoyrzI7ip7Ia2VtxUZHrbguC3iupO/ixgxobgj+PzAc0OoLUFiI4BzEnQN5EUDvR+L5crL4g01tLSgtOnT2PAgAHc289PzFlk5ECEGEWIgYhITxxHKZzweo0MPM/6EC3vgzKTsCwzDwDg8/ngdLfC7fHCZIxCgim6QwFsuSbmZWBa/m0orzyBi95kVepeTC/I8ns1SB2SsLTlX7C9dQx+aHwPI6IsfrfziTcPaz0PYo93WJePcS4+gkRzNPDHHwDnP2l3XwuMOI0cDMBZ5eteZI8EvvtS+9tOlqg7cQFINTDyZwEDJ8l/bdgqgWPbgIufAZePtl8dEpsK9BoK9L5LOn7GHWpF0IFor3FSD2teEGmM+/rJx5xFRg5EiFGEGIiI9MRxlMIJr9fIwPOsD5HzbjAYkGg2Ij3BhESzMeiJi2v+fWIuxpmrEWtQvlB1RrIZKx6U/0nr3d5heNj9DO5vfg6/80zHvtYhHWpi1PkSsK91CH7nmY77m5/Dw+5nup24AAB3Uh8gLQfIGdPhvkbEfVXzIk52f3uUO0Zq90b71yjfTmcOFAGQ8do4WQJsnCIV/t7/AlC1t+O2Vq466fb9LwBrR0mPP/mhKt2/mcivcVIWt40iTem91IiIiIiIiIiISEQWqx0Pry9tty1VsFLiYrB10ch2hcN72jaqez4kwAUTWuBGDJyIBSBvAqdi5SQkmo3SqoK1o4Poi0yLD7VfnaB3+51prAE+WBbcapD8WcCU1ayzQQD0fy+XKy+IiIiIiIiIiIjCXF5mMrYuGomMZLMix8tINneYuAieAU7EoRbJcCIOcicuACDBJG2LZfFl4xNvnoJ969on3jyc8GVLP9Selb4+fVmTttscfllqtyvWCmkyJdhtrI69LR3HVhnccYgUwMkLIo3V1dVh5cqVqKur07srYYM5i4wciBCjCDEQEemJ4yiFE16vkYHnWR/Mu3zXcpYZ68XOJeMwvSArqONNL8jCziXjOp242Ld8QtvXXTlpQbUj1/CcNFyobcL5mkZsKT2LdZ4H291fh2SsNPwb6qDkhAuw1vMgtpSexfmaRqDoTunrsMaTF59uQF3RPZ2/NqwVwOapgOOyMm05LgObHlBtAoOvcfIXt40iTem91CgUeDweXLhwAX369IHRaNS7O2GBOYuMHIgQowgxEBHpieMohRNer5GB51kfzLt8neVsl8WGdXvPoKyqxu/jFPZLx+J7B/hdnHv1Tgte3HM6oD4H4skJA/D73e3bK4r5HaZHHwQAeBCNC+iFPrgMI1oVafPd1tFY2vIvbT9Xxz6iyHED4UE0Lsz9W/vXRmONtFJCqYmLGyX1AhYfDH4LKZ8PaHYArS1AdAw80XG4cPEiX+NhQO/3cjl5QZrS+4InIiIiIiIiIookJ6wO7Dh6EUfP1+PYxfp2NTFS4mKQ3zsFQ7NTMG1obwzKTJJ1bIvVjslr9ind5S6VLB2HSWs+bndbKhzYaX4amYZaxduz+tIwuXkV6nA9L3pOXgAAVtS3/3nbguC3iupO/ixgxgb5z7NVAse2ARc/Ay4fbV8wPDYV6DUU6H2XdPyeanmQbvR+L5fbRhFpzOl04s0334TT6dS7K2GDOYuMHIgQowgxEBHpieMohRNer5GB51kfzLt83eVsUGYSlk3Kw5aFI1D+zH2oWDkJf/uF9L38mfuwZeEILJuUJ3viApDqbBTmalPYubBfeqd9rEMSHnf/FHW+BDgRhzcx7at6GsGp8yVIx4X8vKjFibj25/lkiboTF4BUA+Nkif+PP1kCbJwirQbZ/wJQtbf9xAUAp6sZb1alwLl/LbB2lPT4kx8q228SAicviDQWFRWF1NRUREXx5ecv5iwyciBCjCLEQESkJ46jFE54vUYGnmd9MO/y+Zszg8GARLMR6QkmJJqNMBjkF8y+2Q/H9w/6GP5YfO+ALu874euLh92/wBVfMlJhRxSC22jG6kvDw+5f4ISvb1DHUVoUfO3P8/412jR8oKjnxzTWSKtAXp8NnDvY7UOj4Gt/ns4dBF6fBbyzUDoO0Ve4bRRp6v9v787DoyrP/49/JgmThCyEGCSCQAJaohQDVCKggoBV2UFUwIVNf8Wtlta17aV1+dbdVr5qxfYri4ogoAJWQAUMoCyCFWRHUXbCnj2TyWTm98eY08RsM9nOzJn367pyeWbmLM99n8Mxc+48z2N2VyMAAAAAAAA0rPvmfqMlW4822v5HdGujaWO7S5JSHvm42vUSlKfHm83WyPCaH57XZFFpHz1eMqHaHhdlw0aVesIUbnPX+Tj+KvXYFG7z/HfYqOM7vL0bmspd66sf3ilruzTnhoaZdyPuPOnW96XWDfi88GdzbigyTmqAwl0oMPtZLiVsoIk5nU5t2bJFTqfT7KYEDXIWGjmwQoxWiAEAzMR9FMGE6zU0cJ7NQd79Z3bOnhjeRa3jIxtl363jI/X4MN8eluaruV51j9Vk5wPa6E7z6zgb3Wma6HxQU0vurXGoqKMTv9LRiV9pf8wlfu2/vvbHdtOBW77Uli9XyHn8e2nTm016fG2u5nhZ26VZQ/wqXDjVTFt0sZxqVvnDvGPSzMHe4kx9HN8hrXhCmj1cei5Ferad9EJH73+fS/G+v+IJ6fjO+h0HjYriBdDEHA6HMjMz5XA4zG5K0CBnoZEDK8RohRgAwEzcRxFMuF5DA+fZHOTdf2bnrGWMXbMnZ6hFdBUPo+uhRXQzzZ6coZYxduO9tQ/119qH+utXHVpWWt+uUnWLOKoN7l9qjPMxXVP8nF51jdDa0l8q2xNTYd1sT4zWlv5Sr7pG6Jri5zTG+Zgy3d2rbculHVpq7UP91Wf69+oz/Xstz23aIaWW5bTXoDe/U+ZnS+V4vV/1xYTGsqmKSbsLz3h7XPxsTovaOBSpTPWWQ9UUvBzZ0juj6zaElA9zbsiR7X3/i78x50aAY9goNCmzuxoBAAAAAACgcezOytWEGV/peG5xvffVOj5SsydnKC05vsrPn1++W//I3OfHHj2KkUN2lcipZipQlCTfhw66p38nPXhtmjFsVWfbQX0S+Ygfx6+fa4qf015PO2PYKlP8JbvicEsLb2/cCcO73iiNrqJoUpXCM9LSB+vXnq43SoOel5o3zST0wcDsZ7n0vACamMfjkcPhEHVD35Gz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuv0DJWVpyvJb/rq9GdGtTr/2M6NZGy3/Xt9rChSQNr/IYHtnlkqqcsNumAkXrrOJVoGj5U7iQpOHpbSu83uNp7/fQVHW10Z2mvZ52kjxyKLKe05HXgzP/v8t7P6lzocAj+RbHtgXe49Qma7u3p0V9CynbFnj3U98hq9BgKF4ATSwnJ0fPPfeccnJyzG5K0CBnoZEDK8RohRgAwEzcRxFMuF5DA+fZHOTdf4GUs5Yxdk0b210zJl6qjFT//oI9IzVRMyf21LSx3SsMFVWVtOR4ZaRU3H+szalborco1tawc39kpCaqc3LleTCmu4Y16HGq8/pPx4m1OfWc7R7lqPqiTqNylcvrFy/XeTc5ivc9ji+n1fx5HebcqFFDzbmBBsGwUWhSZnc1CgSlpaU6efKkWrVqpfDwcLObExTIWWjkwAoxWiEGADAT91EEE67X0MB5Ngd5918g52xPVp6WbD2irYdytO1IjnKKSozPWkQ3U9e2LZTeroWGp7etskBQk1W7j2vyrM3G6zC5lWBzKNsTJXcD/s32zIk91T/tXEkyho0qM63ZqxoRvq7BjvVzi0r7aGrJvZK88a2L+r1a6bTC5W60Y1brj4elyDjvg/3X+9R5N6UK00md43scd62XWl9c+f3CM952NFThory486S71oX8EFJmP8uNaLIjAZAkhYeHKzk52exmBBVyFho5sEKMVogBAMzEfRTBhOs1NHCezUHe/RfIOeucHKcHk73DK3k8HhU4S+V0uWWPCFOMPVw2m3/DN5U3IK21hqe30ZKtRyVJboXpjKd5g7S7zIhubYzCRVX+UjJBl4XtUrLtbIMeV5KyPC31eMkE47VbYUrWSXk8Uo6aq4WtsMGPWZ0cT3PF55+SrfCMtKl+k4WHy61knfR9g81vSn3uk1p2qPj+0gcbp3Ahefe77CHf59xAo2DYKKCJ5efna9asWcrPz699ZUgiZ1Jo5MAKMVohBgAwE/dRBBOu19DAeTYHefdfsOTMZrMpNjJCiTF2xUZG1KtwUeaJ4V3UOj5SkhStEl1n361oldSylW9ax0fq8WEV/8p87UP9tfah/vpVh5aSpGzFaYLzYWV7YhrkmGWyPTHe/crbG+XSDi31yT099TvPH9W/+G/a5k5t0OPV5lt3RxX8by9p2iXeYkI95Ku5ZulG5cvHQtOm//Met7x6zLnhM1/n3ECjoXgBNLGIiAilpKQoIoKOT74iZ6GRAyvEaIUYAMBM3EcRTLheQwPn2Rzk3X+hnLOWMXbNnpyhFtHNVCqbstxxKvVzMu6qtIhuptmTMyrNvdEusbnaJTbXZeXm89jjaa8xzkeV5WlZ7+NK3h4XY5yPao+nvfHeZR0T1aFVvA6UJuqokrTV06lBjuWrrZ5OcqqZJKnUU79HyhEqVYoOK0KlPq1f6qnifNZjzg2/1DbnBhoVc15ATqdT7733nubOnasdO3bo+PHjatmypVJTU3X99ddr4sSJSkpKapBjmT1OGgAAAAAAAKxnd1auJsz4Ssdzi+u9r9bxkZo9OUNpydVPKL07K1fXvby2wnsJytPjzWZrZD3mwFhU2kePl0wwelyU+WRqX3VOjjPm3OhsO6hPIh+p83H8dU3xc/rA/hfF2hxNdsxKHv9pQvp6zrnht+rm3AgBZj/LpedFiNu9e7cuu+wyjR8/XsuWLdPBgwdVXFysrKwsrV+/Xg8++KC6dOmipUuXmt1UyyguLtaGDRtUXFz//5mGCnIWGjmwQoxWiAEAzMR9FMGE6zU0cJ7NQd79R86ktOR4Lb7zMt3UvkjNfPyL/qqM6NZGy3/Xt8bCRdnxMlIqTuacrThNLblXk5wPaqM7za/jbnSnaaLzQU0tubdS4SIjNVGdk+NUXFysi8OPq5lKtcfT3u9j1NVGd5r2etopRg1TuCiWXRvUXcWy175yeWcPeH/qOeeG3za/6T0umhzFixB2+PBhDRw4UFu2bJHkHXewX79+mjx5soYNG6bo6GhJ0okTJzRy5EitWrXKxNZah9Pp1JYtW+R0Os1uStAgZ6GRAyvEaIUYAMBM3EcRTLheQwPn2Rzk3X/kzCummdQx7JT+d8wvlZGaWPsG5WSkJmrmxJ6aNrZ7paGiqnPnVR2rfP9zd3eNcT6ma4qf06uuEVpb+stKc2Jke2K0tvSXetU1QtcUP6cxzseU6e5e5f7u6ucdIsrpdGpQG4f+fXcv/apDS013DfMjwrp73TVMl3ZoKZtNaogxfJxqpi3qYgxD5QuPR955L6ZdooJN79S/EX4o+OrtynNuoEkwbFQI69u3r9au9XZv69ChgxYvXqz09HTj81OnTmns2LFauXKlJCkxMVH79u1TQkJCnY9pdlcjAAAAAAAAhIY9WXlasvWIth7K0bYjOcop+u9E3i2im6lr2xZKb9dCw9PbqnNyXA17qt59c7/Rkq1HfVjToxg5ZFeJnGqmAkVJPszNMaJbG00bW7mo8fzy3fpH5j5Na/aqRtRjmKraLCrto6kl9+qe/p304PrLlOeJUqnClWAraLRj/ly2J0YRcinW5u1ZVOSxK9rWdIU643hlw1aFELOf5YbeLD6QJC1dutQoXNjtdn300Ufq2rVrhXWSkpK0ePFiXXLJJfrhhx905swZPf/883r66afNaLJluN1u5ebmKj4+XmFhdH7yBTkLjRxYIUYrxAAAZuI+imDC9RoaOM/mIO/+I2deP89D5+Q4PZjsHVrJ4/GowFkqp8ste0SYYuzhstnqP7H3E8O7aOOPp32Ya8OmAkWrQNE+77t1fKQeH/bfB8Xl4xverY3+kblPfymZoMvCdinZdraOEVQvy9NSj5dMkCQNT2+rKzKnqdRj0wvN3tAV4TvqvF+3bMpVnOKVpzDV/nf129ypeqjkN1ofdZ8kNWnhwozj4b9C924W4l577TVjecKECZUKF2ViYmL05JNPGq/feOMNuVyuRm+fleXm5mratGnKzc01uylBg5yFRg6sEKMVYgAAM3EfRTDheg0NnGdzkHf/kTOvmvJgs9kUGxmhxBi7YiMjGqRwIUktY+yaPTlDLaJ9HwLJFy2im2n25IwKQ1iVj69szo1sxWmC8+FKw1LVV7YnxrtfxRlzbhz2tNIxJWmrp1O99p2rOE2z3aFc+dbbZaunk44pSVLDDFtVF4xdZA6GjQpB+fn5SkpKMiZxWrdunXr37l3t+g6HQ61atVJ+fr4kaeXKlRowYECdjm12V6NAwF9D+I+chUYOrBCjFWIAADNxH0Uw4XoNDZxnc5B3/5EzLzPzsDsrVxNmfOVDD4zatY6P1OzJGZUmDf95fKt2H9fkWZslSZ1tBzXb/lyD9MDI8rTUBOfD2uNpL0maObGn+qedq5RHPjaO9UnkI3Xev789L64pfk57Pe20P+pm5XmiFGdrmInD/ZHviVTsEyea/LhmM/tZbujezULYunXrjMJFTEyMevbsWeP6UVFRFYobTNxdP2FhYUpISAjpXyb8Rc5CIwdWiNEKMQCAmbiPIphwvYYGzrM5yLv/yJmXmXlIS47X8t/11Yhubeq1nxHd2mj57/pWKlxIleMbkNZaw9O9x9vjaa/rip/VotI+9Tr+otI+uq74WaNwMaJbG/VPO1eStPah/lr7UH/Ftk/XRndanY8RJo8SlOtT4WKjO03x7S/R2of6S5JKFNHgvUxqk+2J8WtycTSc0L6jhahdu3YZy127dlVERO1Tn/To0aPK7eG/vLw8TZ8+XXl5eWY3JWiQs9DIgRVitEIMAGAm7qMIJlyvoYHzbA7y7j9y5mV2HlrG2DVtbHfNmHipMlIT/do2IzVRMyf21LSx3SsMFVVeVfE9MbyLWsdHSpKyFaepJfdqkvNBv4sLG91pmuh8UFNL7lX2T8M5/XzOjXaJzdUusbkuS03UdNcwv/ZfIQ7FaLpuVZ5qL0K87hqmyzomql1ic11RPE1Di5/WdndKnY9dF9vcqRpazBzAZmDC7hC0Z88eY7lDhw4+bdO+fXtjeffu3Q3eplBit9vVrVs32e1V/48IlZGz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuP3LmFSh5GJDWWgPSWmtPVp6WbD2irYdytO1IjnKKSox1WkQ3U9e2LZTeroWGp7dV5+Ta53+oKr6yOTfGvLHB2P/n7u763Nldv7Ad0vDwdUq37VPXsB+VYCswtsv2xGibO1VbPZ20pLSP9nraVThWVXNulPFOFt5di0v7aET4Or/zY1eJummH7Cqpcb1FpX2U6e6uP6a3lSQd9rSS5J0D4wrVfcJwf231dNLRn+bcQNNizosQNGbMGM2fP1+SdN9992natGm1bvPBBx9o9OjRkqTk5GQdO3asTsc2e5w0AAAAAAAAoKl5PB4VOEvldLlljwhTjD28wSYNl3yZc8OjGDlkV4mcaqYCRUmq+vjVzblR3k3T12vv/gNaHvlIg8yz8XNZnpa6rvhZ/SK1g+ZP8Q5nf+hMoSTpb+98qL+fubvBj1md35/zuv5wy0i1S2zeZMcMFGY/y2XYqBBUNvG2JEVHR/u0Tfn1ym9fV1FRUYqNjZUklZaWKjs7W2V1tNzcXDmdTklSUVGRCgq8VWGXy6Xs7GxjHzk5OSop8VZoCwsLVVjovYGVlJQoJyfHWC87O1sul0uSVFBQoKKiIkmS0+lUbm6uJO//QLKzs1VaWmrE6HB4J/8pLi42uuO53W5lZ2fL7XZL8nbXK5s/xOFwGLmpKaazZ8/q008/lcPhsExMjX2eTpw4oczMTBUVFVkmJn/PU2FhoZYvX24cywox/fw8nTx5UitWrJDD4QjamELhPBETMRETMTVmTPn5+Vq+fLlxLCvEZMXzREw5xnGWL19uHMsKMVnxPNU3JofDoRUrVujkyZOWiSkYztPp06f12WefyeFwWCamxj5Pp06dUmZmpgoKCiwTU13O0/Hjx5WZmSmHwxFwMRUXF0slDiXG2BUdYVNOTo7f5+nEiRNauXKlHA5HpZjOi/YYc27E2ooVLm8bolQiu1ySbCqWXcWKUoG8z/libcUK+2m96J/WG9GtjRbfeZnaxthqjOnOqzqqUNG6w/mAsj0xKlWYshVvzGKRq1hjnoiicsd0KVzHlaRM9ZZDkcpRnEp+GhyoUFEqVJSyPTGa5HxIJTa77urXyThP58Xb1S6xuZJTu2itu6v3PKmZcuV9xuiRlK14lf70yDtfzeWQd0itYtmNYarcsilb8XL/VLzJU4yK5e1h4lCk8uUtUpQqTJ+7u+u8C7urXWLzkPv3VD4ms1C8CEFlF7gkn7vRRUZGGstl/5Dqo1evXrrhhhskeR9YTps2zfgHNWPGDO3cuVOStHr1an300UeSpMOHD1foJfL6669r3759kqRPP/1Un376qSRp3759ev311431pk2bpsOHD0uSPvroI61evVqStHPnTs2YMUOS9x/7tGnTjF9IFy5cqA0bNkiSvvnmG82ZM0eS9x/0tGnTjBvInDlz9M0330iSNmzYoIULF9Ya0xdffKEtW7bI5XJZJqbGPk9z5szR/v37VVBQYJmY/D1PZ8+e1caNG3X27FnLxPTz87RgwQLt3LlTLpcraGMKhfNETMRETMTUmDEdOnRIGzduNL7EWSEmK54nYvLG5HK5tHHjRh06dMgyMVnxPNU3JpfLpZ07d2rBggWWiSkYztOyZcu0bds2I/9WiKmxz9PixYu1f/9+HT9+3DIx1eU8TZ8+Xfv375fL5bJMTOXP04wZM7Rnzx65XK4qYyqbc+PGqG26so33sW8f+wF1a3ZUkpQSflaDI73DwdtVqhujtinB5n1OOCz+oP54aYSmje2u/Xt31BrTgLTWGtW2UOc3K9YY56Pa5UnVNNsdKv6pWDBDY7RTF3pjUi99pF97Y9J5mm4br/06Xy6F63Xdpn3yDmv/qfppsX6tMc5HVWCL1w3NdxmThZc/T+ec2a5Fnmu850kXaobGeM+TIjXNdodO6hzvedIQbZB3Ht9v1EVzNMobk+I0zXaHcn+a22OORukbeXsTbFAPLdQQ73nSOVoT3l+DLkry6zxZ8dozC8NGhaAhQ4Zo6dKlkqSHH35Yzz77bK3bLFu2TIMHD5YkxcbG1nnio7KuRlFRUYqIiNCGDRuUlpamvLw8tWjRQjabTbm5uYqKipLdbldRUZHcbrdiYmLkcrmUn5+vhIQESd4qZvPmzdWsWTOjgtm8eXOVlJSosLBQLVq0kOStYsbGxioiIkIFBQUKCwtTdHS0nE6nHA6H4uPj5fF4lJOTo7i4OIWHhys/P18RERGKiopScXGxnE6n4uLi5Ha7lZubq/j4eIWFhSkvL092u12RkZFGT4rY2FiVlpYSEzEREzEREzEREzEREzEREzEREzEREzEREzGZFtO+U0VavHmfth/N09ZjRSoocsiuUhXKrhbREere2q6LO5yrEd3bq22sze+Ysk7n6sbpX+hQnkctlas/NntPN4Z/Lpu8PS+iVCy7SlSkKLllU4yK5FK48hWjBHkfsucoTs1VpGZyaWFpXz1fMkYn1FLnxUXovck91P68VlWepztmf62xx57RoPBNcihS8cqXR1KO4hWnfIXLrXw1V4RKFaViFcsup5opTgVyy6ZcxSleeQqTR3mKkV0lipRTDkXKpXDFqlAflF6u95Mf0Dt39w/Za+/IkSOmDhtF8SIEMeeFuUpLS3Xy5Em1atVK4eHhZjcnKJCz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuP3LmZfU81Ce+xppzY3dWboXJwvuHfaM7Iz7SZWG7q92mVGE6qXPUSqcVLrc2utP0umuYMt3dJXknC39vSq8a59xYtfu4/jDr80afc+PvEwcYvT9CkdnPchk2KgSdc845xvLx48d92iYrK8tYTkxMbPA2hZK8vDy98cYbde69EorIWWjkwAoxWiEGADAT91EEE67X0MB5Ngd59x8587J6HuoTn81mU2xkhBJj7IqNjGiwycLTkuP13pReah3vHS7qc3d3jXE+pmuKn9OrrhFaW/pLZXtiKmxzxNNKb9hu06uuUbqm+DmNcT5mFC5ax0fWWriQpAFprdU3vbMmOB+utP/6yvbEaILzYfXr1jmkCxeBgJ4XIWjatGmaOnWqJO/cE+vXr691m0ceeUTPPfecJOn666/X+++/X6djm12tCwQej0fFxcWKjIxssP9RWB05C40cWCFGK8QAAGbiPopgwvUaGjjP5iDv/iNnXlbPQyDHd7bAqcc/2qHFW45W8alHMXLIrhI51UwFipRdbjkVLum/cYzo1kaPD+uiljG+zdF7tsCp66atUULed5ptf65BemBkeVp6CyJxF2r57/r63BarMvtZLj0vQtBFF11kLJdNgFWb//znP1VuD//ZbDZFRUUF3P9kAhk5C40cWCFGK8QAAGbiPopgwvUaGjjP5iDv/iNnXlbPQyDHVzZZ+IyJlyoj9eejtthUoGidVbwKFC0pTE5FqKxwkZGaqJkTe2ra2O5+FQtaxtg1e3KGsqI66briZ7WotE+9YlhU2kfXFT+rrKhOmj05I+QLF4GA4kUI6tOnjyIjvV25CgoKtHnz5hrXLy4uNmaxl6QBAwY0avusLjc3Vy+//LJyc3PNbkrQIGehkQMrxGiFGADATNxHEUy4XkMD59kc5N1/5MzL6nkIhvgGpLXW/Cm99cnUvrqnfyddcUGSWkQ3q7BOcrRbt8Zu1119ztMnU/tq/pTedR6eqWzYqsj4JE0tuVeTnA9qozvNr31sdKdpovNBTS25V5HxST4NW4WmEWF2A9D0YmNjNXDgQC1dulSSNGvWLPXq1ava9T/44ANjLL3ExET17du3SdppVVFRUbrqqqsUFRVldlOCBjkLjRxYIUYrxAAAZuI+imDC9RoaOM/mIO/+I2deVs9DMMXXOTlODyZ7iwg/nyy8mUq1a1c7XXzxxbLb69+7IS05Xst/1/enYaukz53d9QvbIQ0PX6d02z51DftRCbYCY/1sT4y2uVO11dNJS0r7aK+nnST/h61C42POixD18ccfa+jQoZKkyMhIff3111WOV1ZYWKj09HR9//33krxzXzzzzDN1Pq7Z46QBAAAAAAAAsKZVu49r+uof9NWPZ8q9+/M5N6JUfq6NjNRE3dWvE5NzV8HsZ7kMGxWihgwZoiuvvFKSd1iooUOH6ttvv62wzunTpzVy5EijcJGYmKiHH364ydtqNUVFRVq+fLmKiorMbkrQIGehkQMrxGiFGADATNxHEUy4XkMD59kc5N1/5MzL6nmwSnyNGUfVw1bZK8y50SLarisuSNI9/TvVe9gqNC6GjQph7777rjIyMnTs2DHt379f3bp1U79+/dSpUyedPHlSK1asUGFhoSQpIiJC8+fPV0JCgrmNtgC3263s7Gy53W6zmxI0yFlo5MAKMVohBgAwE/dRBBOu19DAeTYHefcfOfOyeh6sEl9TxFHTsFUx9vCAnPQclTFsVIjbvXu3xo0bpy1btlS7TqtWrTRz5kwNGTKk3sczu6sRAAAAAAAAAKB2Zj/LZdioEJeWlqaNGzdq9uzZuu6669SuXTvZ7Xade+656tWrl55//nnt3LmzQQoX8HK5XNq/f79cLpfZTQka5Cw0cmCFGK0QAwCYifsoggnXa2jgPJuDvPuPnHlZPQ9Wic8qcaDxUbyA7Ha7xo8fr2XLlungwYMqLi7W8ePHtX79ej344INKSkoyu4mWkp+fr9mzZys/P9/spgQNchYaObBCjFaIAQDMxH0UwYTrNTRwns1B3v1HzrysngerxGeVOND4GDYKTcrsrkYAAAAAAAAAgNqZ/SyXnhcAAAAAAAAAACCgULwAmlhOTo6effZZ5eTkmN2UoEHOQiMHVojRCjEAgJm4jyKYcL2GBs6zOci7/8iZl9XzYJX4rBIHGh/FC6CJNW/eXCNHjlTz5s3NbkrQIGehkQMrxGiFGADATNxHEUy4XkMD59kc5N1/5MzL6nmwSnxWiQONjzkv0KTMHicNAAAAAAAAAFA7s5/l0vMCaGKFhYVatGiRCgsLzW5K0CBnoZEDK8RohRgAwEzcRxFMuF5DA+fZHOTdf+TMy+p5sEp8VokDjY/iBQAAAAAAAAAACCgMG4UmZXZXIwAAAAAAAABA7cx+lkvPC6CJlZSUaPfu3SopKTG7KUGDnIVGDqwQoxViAAAzcR9FMOF6DQ2cZ3OQd/+RMy+r58Eq8VklDjQ+ihdAE2NcP/+Rs9DIgRVitEIMAGAm7qMIJlyvoYHzbA7y7j9y5mX1PFglPqvEgcbHsFFoUmZ3NQIAAAAAAAAA1M7sZ7n0vAAAAAAAAAAAAAGF4gXQxLKzs/XEE08oOzvb7KYEDXIWGjmwQoxWiAEAzMR9FMGE6zU0cJ7NQd79R868rJ4Hq8RnlTjQ+Bg2Ck3K7K5GgcDlcunw4cM6//zzFRERYXZzggI5C40cWCFGK8QAAGbiPopgwvUaGjjP5iDv/iNnXlbPg1Xis0ococDsZ7kUL9CkzL7gAQAAAAAAAAC1M/tZLsNGAU2soKBA8+bNU0FBgdlNCRrkLDRyYIUYrRADAJiJ+yiCCddraOA8m4O8+4+ceVk9D1aJzypxoPFRvACaWFhYmBISEhQWxj8/X5Gz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuP3LmZfU8WCU+q8SBxsewUWhSZnc1AgAAAAAAAADUzuxnuZS3gCbmdDq1ZcsWOZ1Os5sSNMhZaOTACjFaIQYAMBP3UQQTrtfQwHk2B3n3HznzsnoerBKfVeJA46N4ATQxh8OhzMxMORwOs5sSNMhZaOTACjFaIQYAMBP3UQQTrtfQwHk2B3n3HznzsnoerBKfVeJA42PYKDQps7saAQAAAAAAAABqZ/azXHpeAE3M4/HI4XCIuqHvyFlo5MAKMVohBgAwE/dRBBOu19DAeTYHefcfOfOyeh6sEp9V4kDjo3gBNLGcnBw999xzysnJMbspQYOchUYOrBCjFWIAADNxH0Uw4XoNDZxnc5B3/5EzL6vnwSrxWSUOND6GjUKTMrurUSAoLS3VyZMn1apVK4WHh5vdnKBAzkIjB1aI0QoxAICZuI8imHC9hgbOsznIu//ImZfV82CV+KwSRygw+1luRJMdCZBUXFxc4fX3339vUkvMd/r0abObEHTIWWjkwAoxWiEGADAT91EEE67X0MB5Ngd59x8587J6HqwSn1XisLKfP7v9+bPdRucBmtCiRYs8kkL6JzY21jNx4kRPbGys6W0Jlh9yFho5sEKMVoiBH3744cfMH+6j/ATTD9draPxwnsl7sPyQs9DIg1Xis0ocofizaNGiJn2WzLBRaFKLFy/WyJEjzW4GAAAAAAAAAMAPixYt0ogRI5rseEzYDQAAAAAAAAAAAgo9L9CksrOztXr1auN1u3btFBkZaWKLAAAAAAAAAAA/V1xcrEOHDhmv+/Xrp4SEhCY7PsULAAAAAAAAAAAQUBg2CgAAAAAAAAAABBSKFwAAAAAAAAAAIKBQvAAAAAAAAAAAAAGF4gUAAAAAAAAAAAgoFC8AAAAAAAAAAEBAoXgBAAAAAAAAAAACCsULAAAAAAAAAAAQUCheAACABrF+/XqNHj1arVu3VlRUlFJTU3X33XfryJEjZjcNAAAAAABTZWVl6Z133tHUqVN1xRVXKDY2VjabTSkpKWY3LWDZPB6Px+xGAACA4PZ///d/mjJlitxut5KTk9W2bVvt3btXeXl5atmypT7//HOlp6eb3UwAAAAAAEzx8ssv6/e//32l9zt06KD9+/c3fYOCAD0vAABAvWzbtk133nmn3G63XnrpJR05ckSbN2/W0aNHddNNN+ns2bMaNWqUiouLzW4qAAAAAACmiI+P18CBA/Xwww9r/vz5evnll81uUsCj5wUAAKiXG264Qe+//75uuukmvffeexU+KyoqUlpamg4ePKjXX39dd955p0mtBAAAAAAgcCxcuFA33ngjPS9qQM8LAABQZwUFBfr4448lSffcc0+lz6OjozVp0iRJ0rx585q0bQAAAAAAIHhRvAAAIMCVlpbq22+/1Ztvvqm77rpLl156qex2u2w2m2w2m6666qo679vpdOrtt9/W4MGD1aFDB0VFRem8885Tnz599OKLL+rUqVM1bv/NN9/I4XDIbrerV69eVa5T1r6NGzfK7XbXua0AAAAAAFQnkL87o24izG4AAACo3qJFi3TLLbeosLCwwfe9e/dujRs3Tlu2bKnwflZWlrKysrR+/Xq98MILmjlzpgYPHlzlPvbu3StJat++vex2e5XrXHDBBZIkh8OhAwcOKDU1teGCAAAAAACEvED/7oy6oecFAAABLDs7u1F++Tp8+LAGDhxo/PJls9nUr18/TZ48WcOGDVN0dLQk6cSJExo5cqRWrVpV5X7OnDkjSTrnnHOqPVZiYqKxfPbs2QaKAAAAAAAAr0D/7oy6oecFAABBoHXr1urZs6fx88knn2jatGl13t/NN9+so0ePSpI6dOigxYsXKz093fj81KlTGjt2rFauXKmSkhLdeOON2rdvnxISEirsp6ioSJKq7XUhSVFRUcZyY/wyCQAAAACAFLjfnVE3FC8AAAhg1113nQ4cOKD27dtXeH/jxo113ufSpUu1du1aSd6iw0cffaSuXbtWWCcpKUmLFy/WJZdcoh9++EFnzpzR888/r6effrrCemV/ZeJ0Oqs9nsPhMJabN29e53YDAAAAAFCVQP/ujLph2CgAAAJYcnJypV++6uu1114zlidMmFDpl68yMTExevLJJ43Xb7zxhlwuV4V1WrZsKUk6ffp0tccrG1qq/PoAAAAAADSUQP/ujLqheAEAQAjJz8/XypUrjdeTJk2qcf3Ro0crNjZWkrcIsWbNmgqfd+7cWZJ08ODBantffPfdd5K8w0d16NChzm0HAAAAAKApNPR3Z9QNxQsAAELIunXrVFxcLMn71yE9e/ascf2oqCj17t3beP3zyce6d++uqKgoOZ1Obdiwocp9rF69WpKUkZGhsDB+9QAAAAAABLaG/u6MuuEJAgAAIWTXrl3GcteuXRURUfv0Vz169Khye8n7S9zgwYMlVexSW6aoqEgzZ86UJI0ZM6ZObQYAAAAAoCk19Hdn1A3FCwAAQsiePXuMZV+HcCo/buju3bsrff7YY48pPDxc8+fP19/+9je53W5J3m62EydO1MGDB9WhQwfdfvvt9Ww9AAAAAACNrzG+O8N/FC8AAAgh5SfWbt26tU/bJCcnG8vlJ98uk56ertdee01hYWG6//771bZtW1166aVq06aN5s+fr4SEBH344YeKjIysfwAAAAAAADSyxvjufOjQISUlJRk/kydPrvL93/72t/VsvXVQvAAAIITk5+cby9HR0T5tU3698tuXN2XKFK1du1YjR45UaWmptm3bppYtW+rOO+/Utm3b1L179/o1HAAAAACAJtIY351LS0t1+vRp4ycvL0+S5Ha7q3wfUu2DdQEAAMtwOBzGst1u92mb8j0mioqKql2vT58++vDDD+veOAAAAAAAAkBjfHdOSUmRx+Opf+NCCD0vAAAIIVFRUcay0+n0aZvi4mJj2de/OAEAAAAAIFjx3TkwULwAACCExMbGGss19aIor/x65bcHAAAAAMCK+O4cGCheAAAQQs455xxj+fjx4z5tk5WVZSwnJiY2eJsAAAAAAAgkfHcODBQvAAAIIZ07dzaWDxw44NM2Bw8eNJbT0tIavE0AAAAAAAQSvjsHBooXAACEkIsuushY3rZtm1wuV63b/Oc//6lyewAAAAAArIjvzoGB4gUAACGkT58+ioyMlCQVFBRo8+bNNa5fXFysDRs2GK8HDBjQqO0DAAAAAMBsfHcODBQvAAAIIbGxsRo4cKDxetasWTWu/8EHHygvL0+Sd8zOvn37NmbzAAAAAAAwHd+dAwPFCwAAQszdd99tLM+aNUs7duyocr3CwkI99thjxuvf/OY3ioiIaPT2AQAAAABgNr47m4/iBQAAIWbIkCG68sorJXm7tg4dOlTffvtthXVOnz6tkSNH6vvvv5fk/cuRhx9+uMnbCgAAAACAGfjubD6bx+PxmN0IAABQvcGDB+vo0aMV3svKytLx48clSTExMbrgggsqbbd06VK1adOmyn0ePnxYGRkZOnbsmCTJZrOpX79+6tSpk06ePKkVK1aosLBQkhQREaHly5dX6DILAAAAAEAg4buz9VC8AAAgwKWkpOjAgQN+b/fjjz8qJSWl2s93796tcePGacuWLdWu06pVK82cOVNDhgzx+/gAAAAAADQVvjtbD4NvAQAQotLS0rRx40bNmzdPc+fO1Y4dO3T8+HElJCSoY8eOuv766zVp0iQlJSWZ3VQAAAAAAEzBd2fz0PMCAAAAAAAAAAAEFCbsBgAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAIAgc/jwYcXGxspms+m+++6rcp3HH39cNptNNptNjz/+eNM20CQ7duxQeHi4bDab/vrXv5rdHAAAANQDxQsAAAAgSFx11VXGw2h/fyZOnGh289GAHnjgARUUFCguLk6PPvqo2c3xyQMPPGBcjykpKfJ4PHXaz5kzZxQZGWnsa9asWcZnXbp00fjx4yVJTz/9tA4dOtQQTQcAAIAJKF4AAAAAQBD56quv9N5770mS7rnnHrVq1crkFvlmwoQJxvKBAwe0evXqOu1n3rx5cjqdkqSYmBjdcMMNFT7/85//rPDwcBUWFuqxxx6re4MBAABgqgizGwAAAADAfz179lRGRobP6/fq1asRW4Om9Oc//1mSFBkZqalTp5rbGD907dpV3bt31zfffCNJeuutt3TVVVf5vZ+33nrLWB49erRiY2MrfH7BBRdo9OjRmj9/vt5++2098sgj6ty5c73aDgAAgKZH8QIAAAAIQoMHDw6ZeQzwX19//bVWrFghSbrhhhvUunVrk1vknwkTJhjFi/fff1+vvfaaoqOjfd5+79692rhxY4X9VeWuu+7S/PnzVVpaqhdffFH/+te/6tdwAAAANDmGjQIAAACAIPHyyy8by3fccYd5Damjm2++Wc2aNZMk5ebmatGiRX5tX77XRfv27dW/f/8q17vqqqt0wQUXSJLeeecdnTp1qm4NBgAAgGkoXgAAAABAEMjJydHChQslScnJyerbt6/JLfJfq1atNGjQION1+WJEbTwej9555x3j9W233SabzVbt+jfeeKMkyeFwaO7cuXVoLQAAAMxE8QIAAAAIYSkpKbLZbLLZbNq/f78k6fDhw3r00UeVnp6uhIQExcTEKC0tTb/97W914MABv/ZfUlKit99+WzfddJM6duyouLg4xcTEKDU1VePGjdOHH34oj8dT4z4yMzONNpafI2Hp0qUaN26cLrzwQsXGxspms1XomVCmqKhIf//733X55ZcrKSlJ0dHR6tSpk8aNG6eVK1fWmIsyI0aMMD575plnfI7/L3/5i7Hd9ddf7/N2Vfnggw/kcDgkScOHD1dYWMN9ndu6davOO+88o63Dhg1TUVFRleuuXLlSd955p7p06aLExERFRkaqTZs2uvbaa/Xqq69Wu12Z8kM9ffbZZ8rKyvKpjatXr65w/Y0fP77G9UeNGmUsly96AAAAIDgw5wUAAAAAw6JFizRx4kTl5ORUeH/Pnj3as2eP3nzzTS1YsEBDhgypdV+ZmZm64447tG/fvkqf7d+/X/v379e8efPUq1cvLVy4UG3btvWpjTk5OZo0aZI+/PDDWtfdtm2bRo0aVakNP/zwg3744QfNmzdPU6ZM0SuvvFLjfv7f//t/WrJkiSRp5syZ+uMf/1jrsd1ut2bNmmW8ru8wTx999JGxPGDAgHrtq7w1a9Zo+PDhxjkfP3683nzzTUVEVPy6eOjQIY0fP16ZmZmV9nHs2DEdO3ZMn376qZ555hnNmzdPV155ZZXHGzp0qBITE3XmzBmVlpbq3Xff1R/+8Ida21m+l0bv3r31i1/8osb1f/WrX6lFixbKycnRpk2bdOLECZ177rm1HgcAAACBgeIFAAAAAEnSihUrdOedd6q0tFTt27dX7969FR8frx9//FGZmZlyuVwqKirSTTfdpO3btys1NbXafS1YsEC33HKLSkpKJEnR0dHq1auXUlJSFBYWpr1792r9+vVyuVzasGGDevfurU2bNtU6AbXH49Gtt96qf//737LZbLr00kt18cUXy+PxaPv27RWGEfr+++81cOBAnTx50niva9eu6tatm8LCwrRlyxZt3bpVb7zxhuLi4mo87qBBg9SuXTsdOnRI3333ndasWVPrsE2fffaZDh48KEk6//zzdd1119W4fk3cbneFXiLVFQb8tXjxYo0dO9bo0fGHP/xBL774YqXhmHbt2qWBAwfq2LFjkiSbzaYePXro4osvVnR0tI4cOaI1a9YoLy9PR48e1a9//WstW7asyjkp7Ha7xo0bp9dee02StyhRW/GiqKjIGDJLqn6i7vLCwsLUp08fLVu2TB6PRytWrNDNN99c63YAAAAIDBQvAAAAAEiS7r33XkVFRWn69Om65ZZbKjzA3rFjh6699lodOXJEhYWFeuqppzRjxowq97Njxw5NmDBBJSUlstlsuv/++/XnP/9ZCQkJFdb74YcfNGHCBH3xxRc6dOiQJk2apKVLl9bYxnXr1snlcqlr166aM2eOunbtWuHz4uJiSd4ix+23324ULs455xzNmTNH1157bYX1V61apXHjxumll14yJpKuSnh4uCZPnqwnnnhCkvTmm2/WWrx48803jeVJkybVa5in3bt3Kzc3V5KUlJSkNm3a1Hlf5ds3ZcoUlZaWSpKeeeYZPfLII5XWKygo0OjRo43CxaBBg/TKK6+oU6dOFdbLzc3VI488otdff13FxcW65ZZbtGvXLrVo0aLSPidMmGAUL7Zu3apt27ZVOpflffjhh8rLy5MkRUZGasyYMT7F2K1bNy1btkyS9NVXX1G8AAAACCIULwAAAIAgtHTpUp06dcrn9Z988kklJibWuI7T6dSiRYuq7CHQpUsXvfHGGxo6dKgkb8+Kf/7zn5WGFpKk++67z5j34KWXXtLvf//7Ko/XsWNHLV++XBkZGdq5c6eWLVumjRs36rLLLqu2jS6XS8nJyVq1apWSkpIqfR4ZGSlJ+uSTT7RmzRpJ3r/AX7x4sS6//PJK6w8YMEAff/yxevXqJafTWe1xJen222/XU089JbfbrYULF+qVV15RfHx8leuePn1aixcvluTtpTB58uQa912bb7/91lju3LlzvfYlSc8++6wx9FV4eLimT59e7bBWf/vb37Rr1y5J3nkkFi5cWGUhJj4+Xv/4xz9UWFio2bNn69ixY5o+fboefvjhSuv27NlTF110kbHft956Sy+88EK17S0/ZNSIESMqFcKqc9FFFxnLW7du9WkbAAAABAaKFwAAAEAQ2rRpkzZt2uTz+g888ECtxYuhQ4fWOLTR4MGDlZycrKysLOXn52vXrl2V/lp+69atWrVqlSSpe/fumjp1ao3HjImJ0aOPPqpx48ZJkubMmVNj8UKSHnvssSoLF+WV7/UwduzYKgsXZS699FKNHz9eM2fOrHGf7dq103XXXaelS5eqsLBQc+fO1ZQpU6pc9+233zaKIVdffbVSUlJq3HdtfvzxR2P5/PPPr/N+PB6P7r//fv3973+X5C32zJ07t8Lk1uWVlJTo1VdfNdadPn16rT1Inn76ab311lvyeDyaM2dOlcULydv7oqynx7vvvqtnn31W4eHhldY7duyYVqxYUWE7X5WfR+Xnk7ADAAAgsNW93zIAAAAAS7nxxhtr/Nxmsyk9Pd14XdXD4PLDPo0bN67S3AlVKT/59BdffFHr+r4MGbR69Wpj+dZbb611fV/WkaTf/OY3xnL5AsnPlf+svhN1S9Lx48eN5XPOOadO+3C5XJowYYJRuIiPj9fy5curLVxI0ubNm3XixAlJ0sCBA32a8LpNmzZKS0uTJG3fvr3S5O9lbr31VqMQcvTo0QoFivLmzJljDG2VnJxcaeivmpQvcmVlZfm8HQAAAMxHzwsAAAAgCP3lL3/R448/3qD7rGnOgTLlH5yXzcFQ3vr1643lzz//XAcOHKh1nx6Px1g+dOhQjeumpqbW2oPkyJEjFSbprq0nh+Qdxshms1VoS1WGDh2qNm3a6OjRo9q0aVOVczV89dVX2r59uyTvw/ORI0fWevzaFBQUGMvNmzf3e/vCwkKNGDHCKC6de+65WrZsmXr06FHjduXP5+HDh3Xvvff6dLzs7GxJ3nN7+PDhKue9aNu2ra6++mp9+umnkry9VaoqTJQfMuqWW26psndGdcrnyuFwyO1212vuEQAAADQdihcAAAAAJKnKB8w/V35S65KSkkqfHz161FgumyjZH2fPnq3x81atWtW6j/KFi+bNm9da7JCkuLg4tWjRwnjoXp2yibv/53/+R5K3h8XLL79cYZ3yvS5uu+022e32Wo/vj9oKLFX5+9//LpfLJck7/NXKlSt14YUX1rpd+fP57bffVph7w1c1ndMJEyYYxYsPP/xQ+fn5io2NNT7/5ptvtG3btgrr+6MuuQIAAEBg4E9OAAAAAEiST0M81aa6IYJ8VTY8UHWio6Nr3Ud+fr6x7E8vhfIPzWtyxx13GH+9/84771SY6LuwsFDz5s2rsG5DiImJMZbLJkP3R/mi05kzZ3Ts2DGftqvv+ZRkFE2qMmrUKGPS88LCQi1cuLDC5+V7XXTv3t2n3kHllc9VVFQUvS4AAACCCL+5AQAAAGgw5R+yf/DBB/J4PH7/1Ff5IkRhYaHP25UfmqkmHTp00K9//WtJ0unTp7Vo0SLjswULFhjDafXu3VsXX3yxz8evSXJysrF86tQpv7efOnWqhg0bJskb5+DBg7VmzZpatyA8pAoAAAoASURBVCt/Pu+77746nc+rrrqq2v1HR0dXmGvl7bffNpZdLpfmzp1rvPa314VUsRdO+RwCAAAg8FG8AAAAANBgWrdubSybNUFy+UmaCwsLax2KSvL21qhtyKjyqpu4u6En6i6TmppqLB8+fNjv7e12uxYuXFipgLF27doat2uK81m+KJGZmWnMe/LJJ58YE5U3a9ZMN998s9/7PnLkiLGckpJSv4YCAACgSVG8AAAAANBgyk+O/eWXX5rShvPPP79CAWPjxo21brN582a/en0MHz7c+Ev+FStW6ODBg9q7d69RDIiNjdVNN93kZ8urd8kllxjLe/bsqdM+ygoYQ4cOleQtYAwaNKjGAkb587lu3bpGmUPiiiuuUMeOHSVJbrdb77zzjqSKQ0YNGjTIp/lOfm7Xrl3Gcnp6ej1bCgAAgKZE8QIAAABAgyl7MC55h40q+8v5ptavXz9jec6cObWuX/bA3FcRERGaNGmSJO8D95kzZ2rGjBnG52PHjvV5Dg1fdO7c2ZhQ/fTp0xV6FPjDbrfr/fffr1DAqKkHxuWXX66EhARJ3h4fH330UZ2OWxObzabx48cbr99++23l5ORoyZIlxnt1GTJKkrZu3WosZ2Rk1L2RAAAAaHIULwAAAAA0mIyMDGOOg6KiIt12220VJrSuidPp9GmIJ19MnjzZWH733Xe1YcOGatf9z3/+o9mzZ/t9jDvuuMOY5HzmzJkV9tGQQ0ZJUlhYmAYMGGC8/uKLL+q8r7ICxpAhQyR5h8yqroARGRmpqVOnGq/vvvtuvwonvhavxo8fb+Ry165deuihh+RwOCRJiYmJFYpivnK73Vq3bp0kb4Hk6quv9nsfAAAAMA/FCwAAAAAN6pVXXjF6HXz22Wfq27dvjUM37d27V0899ZRSUlIabKipQYMG6YorrpDkfYg9bNgwrVixotJ6mZmZGjx4sEpLS2W32/06RseOHTVw4EBJ0oEDB4w5Ibp27VphuKWGUjZfhSStWrWqXvuy2+364IMPfCpg3H///erSpYsk7xwSl156qRYsWCC3213lvk+dOqV//vOf6tGjh1544QWf2pOamqorr7zSeP3Pf/7TWB43bpzf50aSvv76a+Xk5EiSevbsqXPPPdfvfQAAAMA8EWY3AAAAAID/li5dqlOnTvm8fvPmzfX88883Yov+65e//KXmzp2rMWPGqLCwUBs3blSvXr3UqVMn9ejRQ4mJiXI4HDpx4oS+/fbbOg+BVBObzaYZM2aod+/eOn36tE6dOqVf//rXSk9PV7du3SR5hxTasmWLJOmBBx7QggULdODAAUneng6++M1vflOpKHL77bc3WBzlXX/99br77rvlcDi0ZMkSvf766z63syplBYzrr79eH3/8sVHAWLZsmVH4kbzzdyxZskRXX321fvzxR2VlZemmm25SUlKSevXqpeTkZHk8Hp05c0Y7d+7Ud999ZxQ2yvcWqc2ECRO0Zs2aKt+viw8//NBYvuWWW+q0DwAAAJiH4gUAAAAQhDZt2qRNmzb5vH6LFi2arHgheee+WLdunW6//XZ9/fXXkqR9+/Zp37591W6TkpKi888/v8HacOGFF2rlypUaNWqUfvzxR0negkX5eRAkbwHi6aef1rvvvmu8Fx8f79MxRo4cqXPPPVcnTpyQ5B1m6bbbbmugCCpq0aKFbrjhBr3zzjvKysrSmjVrjCG66qpsCKnRo0cbBYxBgwZVKmB07NhRmzdv1p133qmFCxfK4/Ho1KlT+ve//13tvhMSEtS1a1ef23LjjTfqt7/9rQoLC433LrroIvXs2bNOsS1cuFCSFBUVpZtvvrlO+wAAAIB5GDYKAAAAQKNIT0/X5s2b9cknn+iuu+7SJZdcoqSkJEVERCgmJkYpKSm69tpr9dhjj+nLL7/UDz/8YPSKaMg2bN++XS+99JJ69eqlxMRERUVFKTU1VWPGjNGKFSv0xhtvqFmzZsZ8G2FhYT4XL5o1a1ZhPoZRo0YpMTGxQWMor/z8E//6178aZJ+RkZGV5sAYNGhQpXk1EhMTNX/+fH377bf605/+pD59+ui8886T3W5XVFSUkpOTdcUVV+i+++7TkiVLdOzYMb96TcTFxWnUqFEV3qtrr4vVq1fru+++k+TtdZGUlFSn/QAAAMA8No/H4zG7EQAAAABgpu+++06/+MUvJElpaWnatWuXT9t5PB516tTJ6NmxYsUKYx6MxnLNNdfos88+U2RkpPbv36/k5ORGPV4wGjNmjObPn6/w8HBt375daWlpZjcJAAAAfqLnBQAAAICQ99577xnL/gxT9PnnnxuFi44dO/o1x0NdPfXUU5Kk4uJivfzyy41+vGCzb98+vf/++5KkW2+9lcIFAABAkKJ4AQAAACCk/fjjj3rxxReN1/7Mj/C///u/xvKUKVNks9katG1VueyyyzRmzBhJ0j/+8Q+dPHmy0Y8ZTP7617+qtLRUzZs315NPPml2cwAAAFBHFC8AAAAAWNY111yj5cuXy+VyVfn5xx9/rCuuuEI5OTmSpG7duumaa67xad9LlizR4sWLJXnna7jjjjsaptE+ePHFFxUTE6O8vDyjJwaknTt36q233pIk/elPf1L79u1NbhEAAADqijkvAAAAAFhWWU+Ili1bqkePHmrXrp3sdrtOnTqlr776SocPHzbWjYuL05dffqmuXbtWua/vv/9er776qkpLS7V371599tlnKvs69eSTT+rRRx9t/IAAAACAEEHxAgAAAIBl+TqM04UXXqgFCxYoPT292nUyMzPVv3//Su9ffvnlWrVqlex2e53bCQAAAKCiCLMbAAAAAACNZfv27Vq0aJHWrVunAwcO6NSpUzpz5oyioqLUqlUrZWRkaOjQoRo7dqzCw8N93q/dbldqaqrGjBmjRx55hMIFAAAA0MDoeQEAAAAAAAAAAAIKE3YDAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCj/Hz7yPmH/PEQsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label=\"3-30 Hz\")\n", + "plt.errorbar(energies, covspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Absolute Covariance (counts / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "b302af8b", + "metadata": { + "id": "b302af8b" + }, + "source": [ + "This covariance, plotted this way, mostly tracks the number of counts in each energy bin. To get an unfolded covariance, we need to use the response of the instrument. Another way is to plot the fractional covariance, normalizing by the number of counts in each bin." + ] + }, + { + "cell_type": "markdown", + "id": "d138219a", + "metadata": { + "id": "d138219a" + }, + "source": [ + "To do this, we calculate the Count Spectrum and divide by it." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "fe618f01", + "metadata": { + "id": "fe618f01", + "outputId": "10552705-f6a2-4189-c5c1-215971fde843" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:08, 4.47it/s]\n" + ] + } + ], + "source": [ + "countsp = CountSpectrum(events, energy_spec=energy_spec)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "104dc4d9", + "metadata": { + "id": "104dc4d9", + "outputId": "2fed28f3-64ed-40e3-d9b7-ebdcea7bbf7a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiQAAASjCAYAAAD+T1KoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3wU1f0//tcmIVlCEsM1oGCiKAVClNYbgiiKLRWs5VNAhaqA0o9F+xP9UC+tLZfeBLV+zadVxCKEongBLRaLYtHCR66CipAggkK4CAkhyW422exudnd+f4xZErJJdrIzc3bOvJ6PRx7Z3czOnPf7nMwmc+ac41AURQEREREREREREREREZGBkkQXgIiIiIiIiIiIiIiI5McOCSIiIiIiIiIiIiIiMhw7JIiIiIiIiIiIiIiIyHDskCAiIiIiIiIiIiIiIsOxQ4KIiIiIiIiIiIiIiAzHDgkiIiIiIiIiIiIiIjIcOySIiIiIiIiIiIiIiMhw7JAgIiIiIiIiIiIiIiLDsUOCiIiIiIiIiIiIiIgMxw4JIiIiIiIiIiIiIiIyHDskiIiIiIiIiIiIiIjIcOyQICIiIiIiIiIiIiIiw7FDgoiIiIiIiIiIiIiIDMcOCSIiIiIiIiIiIiIiMhw7JIiIiIiIiIiIiIiIyHDskCAiIiIiIiIiIiIiIsOxQ4KIiIiIiIiIiIiIiAzHDgkiIiIiIiIiIiIiIjIcOySIiIiIiIiIiIiIiMhw7JAgIiIiIiIiIiIiIiLDsUOCiIiIiIiIiIiIiIgMxw4JIiIiIiIiIiIiIiIyHDskiIiIiIiIiIiIiIjIcOyQICIiIiIiIiIiIiIiw7FDgoiIiIiIiIiIiIiIDMcOCSIiIiIiIiIiIiIiMhw7JIiIiIiIiIiIiIiIyHDskCAiIiIiIiIiIiIiIsOxQ4KIiIiIiIiIiIiIiAzHDgkiIiIiIiIiIiIiIjIcOyTIUKFQCHv27MFLL72EmTNn4vLLL0dqaiocDgccDgdGjRoluoimmjZtWiT2WL9efvll0cUmIiIiIiIiIiIiiluK6AKQvNasWYOf/vSn8Hq9ootCRERERERERERERIKxQ4IM43K52BnRhtGjR2PgwIHtbved73zHhNIQERERERERERERGYsdEmS4nJwcXHHFFZGv9evXo7CwUHSxhLvjjjswbdo00cUgIiIiIiIiIiIiMgU7JMgwP/zhD3HkyBGcf/75zV7fsWOHoBIRERERERERERERkSjskCDD9O7dW3QRiIiIiIiIiIiIiChBJIkuAFFHNDQ0YMWKFbj11ltx4YUXIjMzE126dMEFF1yAyZMn4x//+AcURRFdTCIiIiIiIiIiIiL6FkdIkOVs3LgRM2bMwNdff93iZ6WlpSgtLcVrr72GYcOGYfXq1TjvvPMElJKIiIiIiIiIiIiImmKHBFnKqlWr8NOf/hQNDQ0AgM6dO2PYsGHIy8tDUlISDhw4gG3btiEYDGL79u24+uqrsXPnTuTk5AgueUtHjhzBSy+9hEOHDqG+vh7dunXDBRdcgJEjR7ZYd4OIiIiIiIiIiIjI6tghQZZRUlKCqVOnoqGhAQ6HA7Nnz8bjjz+O7OzsZtsdOnQIU6dOxebNm3Hs2DFMnz4d69atE1PoNsybN6/Vn40aNQrz5s3DddddZ16BiIiIiIiIiIiIiAzENSTIMh544AHU19cDAP785z/jqaeeatEZAQAXXngh3nvvPQwePBgA8O6772LHjh1mFjVuGzduxA033NBmpwURERERERERERGRlbBDgizh888/x4cffggA+O53v4sHH3ywze27dOmC3/72t5Hnr7zyipHFi5nD4cDll1+OP/7xj/joo49QUVGBhoYGuFwu7Ny5E3PnzkX37t0BAOFwGPPnz8fTTz8tuNRERERERERERERE8eOUTWQJTadcmjx5MhwOR7vvueGGGyKPN2/ebEi5tHr66acjHQ5NnXPOObj88stx+eWX495778Utt9yCXbt2AQB+/etfY8KECbjgggvMLi4RERERERERERGRbtghQZawbdu2yOP//Oc/OHLkSLvvURQl8vjYsWNRt7nrrrvw8ccfx1/AJt5///1WF6WO1hlxtj59+uBf//oXBg4ciOrqajQ0NOCZZ57BX/7yF13LSURERERERERERGQmdkiQJZw4cSLy+N1339X8/urq6qivHz16FF9++WWHyxVNIBCIex+9evXC/fffjz/84Q8AOhYzERERERERERERUSLhGhJkCW63O673h0IhnUpinhtvvDHy+Ouvv9alo4OIiIiIiIiIiIhIFHZIkCV06dIl8vitt96Coiiav6LZuHFjh/bV1tdFF12kS8x9+vRp9ryyslKX/RIRERERERERERGJwA4JsoScnJzI47KyMoElMU9dXV2z5007ZYiIiIiIiIiIiIishh0SZAlXXXVV5PGWLVsElsQ8n332WeRxly5dkJWVJbA0RERERERERERERPFhhwRZws033xx5/NZbb6G8vFxgacyxdOnSyONRo0aJKwgRERERERERERGRDtghQZZw5ZVXRi7K19fX484774x5kedAIIDq6moDSxeb2tramLd95plnmo0EueOOO4woEhEREREREREREZFp2CFBlvGXv/wFGRkZAIB///vfuPbaa7Fjx45Wtz9w4AB+//vfIy8vLyGmeXrggQcwceJEvPfee2hoaIi6TXl5Oe677z7Mnj078tqwYcNw2223mVVMIiIiIiIiIiIiIkM4FEVRRBeC5DV27FicOHGi2WtlZWWRKZe6dOmCiy66qMX71q1bh3PPPbfF6++88w5uu+02eL3eyGv9+/fH9773PXTr1g0+nw+nTp3Cnj178M0330S2Wbt2bbNpn0SYNm0ali9fDkCNu6CgABdccAGysrJQX1+Pr776Cjt37mzWWdG/f39s2bKl2aLeRERERERERERERFaUIroAJLd9+/bhyJEjrf68rq4On3/+eYvXW5uO6eabb8bWrVtxzz334JNPPgEAfP311/j6669bPUZeXh769u2rseTGqqurw/bt27F9+/aoP09KSsLkyZPx17/+FdnZ2eYWjoiIiIiIiIiIiMgAHCFBhsrLy2uzQ6I1hw8fRl5eXpvbvP/++1izZg22bNmCEydOwOVyIS0tDT179sR3vvMdXHXVVRgzZgyuvvpqOByODkagH5fLhW3btmHbtm3YsWMHvvnmG1RWVqKqqgopKSno2rUrBg0ahBEjRuDOO+9E//79RReZiIiIiIiIiIiISDfskCAiIiIiIiIiIiIiIsNxUWsiIiIiIiIiIiIiIjIcOySIiIiIiIiIiIiIiMhw7JAgIiIiIiIiIiIiIiLDsUOCiIiIiIiIiIiIiIgMxw4JIiIiIiIiIiIiIiIyHDskiIiIiIiIiIiIiIjIcOyQICIiIiIiIiIiIiIiw7FDgoiIiIiIiIiIiIiIDMcOCSIiIiIiIiIiIiIiMlyK6AKQHFwuFzZt2hR53q9fP6SlpQksERERERERERERERGdze/349ixY5Hn1113HbKzs005NjskSBebNm3C+PHjRReDiIiIiIiIiIiIiDRYs2YNfvzjH5tyLE7ZREREREREREREREREhmOHBBERERERERERERERGY5TNpEu+vXr1+z5mjVrcNFFFwkqjfm8Xi82btyIUaNGIT09XXRxLIE5s0cOZIlRljiIiETheZSshO1VfqxjcZh77Zgze+RAlhhlicMOvvrqq2bT7599bddI7JAgXZy9gPVFF12E/Px8QaUxXyAQQKdOnTB48GCkpqaKLo4lMGf2yIEsMcoSBxGRKDyPkpWwvcqPdSwOc68dc2aPHMgSoyxx2NHZ13aN5FAURTHtaCStkpISDBkyJPK8uLjYVh0SRERERERERERERFYg8lou15Ag0kF9fT3ee+891NfXiy6KZTBn9siBLDHKEgcRkSg8j5KVsL3Kj3UsDnOvHXNmjxzIEqMscZCx2CFBpINwOAyXy4VwOCy6KJbBnNkjB7LEKEscRESi8DxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxuKUTaQLTtlERERERERERERElPg4ZRORxQWDQZSWliIYDIouimUwZ/bIgSwxyhIHEZEoPI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSD2tpaLF++HLW1taKLYhnMmT1yIEuMssRBRCQKz6NkJWyv8mMdi8Pca8ec2SMHssQoSxxkLE7ZRLrglE1EREREREREREREiY9TNhERERERERERERERkdTYIUGkA7fbjQULFsDtdosuimUwZ/bIgSwxyhIHEZEoPI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSD9PR0jB8/Hunp6aKLYhnMmT1yIEuMssRBRCQKz6NkJWyv8mMdi8Pca8ec2SMHssQoSxxkLK4hYaL/+Z//wf/7f/8v8jw3NxelpaW67LuoqAjTp0/X9J577rkHS5Ys0eX4Rs47pigKwuEw2FSJ5ONwOJCUlASHwyG6KEREREREREREtiByDYkUU45C+Pjjj1FYWCi6GJagKAq8Xi9qa2tRV1cHv98vukjtCofDqKmpQVZWFpKSOPAoFsyZPXIQa4xpaWno0qULMjIykJ6ennAdFF6vF++//z5+8IMf8E4PIqIO4HmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjMUOCRM0NDRgxowZCIfDphxv4MCBGD16dLvbDR8+3ITSaNPQ0IDjx4/D5/OJLgoRmcjv98Pv96OqqgpOpxN9+/ZFp06dRBeLiIiIiIiIiIh0xCmbTPCHP/wBv/3tbwEAU6ZMwcqVKwEYN2XT1KlTUVRUpMt+Y6XHMB+fz4djx44hGAzqXTwispiUlBT069cPTqdTdFGIiIiIiIiIiKQicsomOecISSD79+/HH/7wBwDAT3/6U3z/+98XXKLEpCgKjh49atnOCK5zoR1zZo8cdDTGYDCIY8eOJUxuGhoasH//fjQ0NIguChGRJfE8SlbC9io/1rE4zL12zJk9ciBLjLLEQcbilE0GUhQFM2bMgN/vR9euXfHMM89g3bp1oouVkGpraxEKhZq91qlTJ5xzzjno0qULOnXqlHBzyjcVDAZRWVmJ7t27IyWFv1axYM7skYP2YlQUBQ0NDairq4Pb7W72R0swGERtbS0yMzPNLHJUXq8Xa9aswcyZM3HOOeeILg4RkeXwPEpWwvYqP9axOMy9dsyZPXIgS4yyxEHG4pRNBnr++edx//33AwCWLFmCe+65p9nUSpyy6Yxjx46htrY28jwtLQ3nn3++tBdpiailYDCIo0ePNlvIPiMjA/369RNYKiIiIiIiIiIiuXDKJgkdO3YMjz32GABg5MiRuPvuuwWXKHEpioK6urpmr3Xr1o2dEUQ2k5KSgm7dujV7ra6uLmGmbSIiIiIiIiIioviwQ8Ig9913HzweD1JTU7F48WJTpxtyuVxYtWoV5s2bh4ceeghz587F4sWLsWfPnoS8sBdtfvn09HRBpemYYDCIEydOWHYNDBGYM3vkQGuMZ//uK4qSEOctl8uF+fPnw+VyiS4KEZEl8TxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxuIt6AZ47bXX8M477wAAHn30UQwaNMjU47/99tt4++23o/7s4osvxqOPPoq77747YdZkiHaxMSnJWn1lycnJ6N69O5KTk0UXxTKYM3vkQGuM0X73w+Gw8HNCRkYGpk6dioyMDKHlICKyKp5HyUrYXuXHOhaHudeOObNHDmSJUZY4yFjWuuprAZWVlXjggQcAAAMGDMDjjz8uuETNHTx4EDNmzMAtt9zSYpok6jiHw4G0tLSE6eSxAubMHjmQJcaUlBTk5eVxKjkiog7ieZSshO1VfqxjcZh77Zgze+RAlhhliYOMxQ4JnT300EOoqKgAALzwwgtIS0sz7djnn38+Zs+ejXXr1uHYsWPw+Xyoq6vDl19+ieeffx4DBw6MbPvOO+9gypQpCIfDupbB6XRGekFDoRBcLldkBERNTQ0CgQAAoL6+PtIhEgwGEQqFIvtQFCVSrlAoFPlZOBxuNu1LMBiM7DsUCkXeEw6HI+9RFMWU7UKhECorK9HQ0NBsu6ZltVpMrW2nV0zBYBCVlZUIhULSxKS1DI3tJhAISBPT2ds1xth4rFj31/Q8EAwGmw33dLvdkd81r9cLr9cLAGhoaIDb7Y5s53K5Isetq6tDfX09ACAQCKCmpiZyHJfLFSlTbW0tfD4fAMDv98Pj8QAAPB4PVqxY0ex54+LbPp8PtbW1kRhiPe+JjikcDsPlckXyzJgYE2NiTEbG5Ha7sWLFimbPrR6TjPXEmNyRGFasWNHsudVjkrGe4ompsrISr732GqqqqqSJySr1dOrUKbzyyiuoq6uTJiaj6+nUqVN47bXXUFNTI01M/DuiZT2dPHkSK1euRF1dnaVjOnHiBF577TXU1dVJWU8yxiQCOyR09P7772PFihUAgKlTp+L666837djjx4/H4cOH8fTTT+Omm25C3759kZaWhvT0dAwYMAAzZ87E559/junTp0fe889//hMrV67UtRzDhg3DxIkTAQAVFRUoLCyM/JIsXboU+/btAwBs2rQJa9euBQCcOHEC5eXlkX0Eg8HIL0xNTU3kF9Xv90c6ewD1D5nG7dxud+QX1efz4fTp0wDUX+5Tp05FTgLV1dWRX0Cv14vKykoA6i/tqVOnIieBysrKyEmlrq4O1dXVkbKdOnUq8st9+vRp+Hw+OBwOhMPhSFkDgQBOnToVKWtFRUUkD1aJCVBPco0nVL1j8vv9CAQCcDgc0sSktZ4cDgeSk5Nx+vRpaWI6u54cDgcaGhoiH77txdRY1sYPXEA9RxQWFkbKumjRInz99dcA1PPu+++/DwD4+uuvsWjRosh2hYWFOH78OABg7dq12LRpEwBg3759WLp0aSQPhYWFkVysXr0a27dvBwB89tlneOWVVyLlPnToUCTeV155BZ999hkAYPv27Vi9enUk37Gc944fPy48ppqaGhQWFkbaBGNiTIyJMRkZU1lZGQ4dOhSZgk+GmGSsJ8akxpSUlIRDhw6hrKxMmphkrKd4Yvr000+RnZ2NkpISaWKySj39+9//Rm1tLZKSkqSJyeh6euedd5CdnY2qqippYuLfES3rafny5QDUzyArx/S3v/0N2dnZSEpKkrKeZIxJCIV0UVtbq+Tl5SkAlO7duysVFRVRt1u2bJkCQAGg5ObmmltIRVFCoZAycuTISBmGDBmiy36Li4sVAIrT6VQyMjKU4uJiJRgMKtXV1Uo4HFYURVHcbrfi9/sVRVEUr9er1NbWKoqiKPX19crevXuVffv2Kfv27VNKSkoi2wWDQSUYDEbK3tDQEDlmQ0NDZN/BYFAJhUKR7RrfEw6HhW7XtKyN2zEmxsSYWt/O7/dHzgPFxcXKvn37lPr6eqW6ujpSVpfLpQQCAUVRFKWurk6pq6tTFEVRAoGA4nK5IttVV1dHYqytrVW8Xq+iKIri9/sVt9sdKUN1dXWkTB6PR6mvr1cURVF8Pp9SU1MTKXd1dXUkjpqaGsXn8ymKop7DPB5PJIZYznsNDQ2MiTExJsbEmBgTY2JMjIkxMSbGxJgYE2NiTEJiaryW2/hVXFysmMWhKFFWFCbNHnzwwUjvUlFREaZOnRp1u6KiosgohdzcXJSWlppVxIgPPvgAN954Y+T5sWPH0Ldv37j2WVJSgiFDhkSeFxcXIz8/P6b3BoNBHDx4sNlrF198ccLPN3esyouRT/4n6s8+euR69OuWbnKJrCUcDsPn88HpdApfsFgUO+RAa4yJej4IBALYt28fBg8ejNTUVKFlISKyIp5HyUrYXuXHOhaHudeOObNHDmSJUZY47CCea7nxkvMKmMk+/fRT/OUvfwEAXH/99a12RiSKa6+9Fp06dYo8/+KLLwSWhuxKURR4PB7YuU/UDjmQJUafz4eNGzdGpskiIiJteB4lK2F7lR/rWBzmXjvmzB45kCVGWeIgY3GEhA6ajnro378/evTo0eq2FRUVOHToEAAgNTUV3/3udyM/++1vf4tx48YZW9hvnXvuuTh58iQAYOXKlZg8eXJc+7PbCIn9ZTV4efsRvLz9aNSfX5bbFVdd0A0/HnoevtM70+TSEVmXFc8HRERERERERERWInKEBK/w6Ozrr7+OLG7SnkAggB07dkSeN11g1miNC7MCQJcuXUw7rtV9uL8cL2w8hI9Lq9rc7pMj1fjkSDWe3/g1rszrhpmj+uP6gb1MKqU1KIoCRVHgcDjgcDhEF0cIO+RAlhgVRYHf70daWpql4yAiEoXnUbIStlf5sY7FYe61Y87skQNZYpQlDjIWp2yyoUOHDkVWZgfU0RLUtuq6AB549TPcXbSr3c6Is31cWoXpRTsx67XPUF0XMKiEYp0+fRpvv/02Hn/8cdxyyy3Iz89H165d0alTJ6Snp+O8887DmDFj8MQTT+Cbb74BAIRCIZSVlSEUCulShvr6emzcuBFPPPEEpkyZgssuuwy9evWC0+lEWloaevXqheHDh2P27Nn47LPPOnSML774Ag8//DAuueQSdOvWDV26dMGAAQMwdepUfPDBB5r3114OioqKIhfy8/LyNO27tLQ08l6HwyFkvRpA/3oWxe12Y+HChXC73aKLQkRkSTyPkpWwvcqPdSwOc68dc2aPHMgSoyxxkLE4ZZPJEmFR69/85jf44x//CAA455xzcPr06binQ5F5yqYvTtZg2rKPUV7jj3tfOVlpWH73lRjYO0uHkiWOm2++Gf/6179i2jYtLQ2/+tWv8Jvf/AbhcBgpKSm69Jo//fTTePjhh2Pe/rbbbsPzzz+Pbt26xbT9H//4R8yfPx8NDQ2tbjN58mQsXrwYmZmxTdOlKAqCwWCrOYjnfFFaWooLLrgg8vzw4cOaOzX00F6MZ0vU80EoFEJFRQV69uyJ5ORkoWUhIrIinkfJSthe5cc6Foe51445s0cOZIlRljjsgFM2UVxqa2uRkZER07Zbt27Fn//858jz22+/XfiFvkT2xcka3P7idrjrW78IrUV5jR+3Ld6O1+8dJl2nRKMePXpg0KBByM3NRUZGBrxeL7766it8/PHHCAaD8Pv9mDdvHg4dOoTly5cbUob09HQMGjQI/fv3R3Z2NoLBII4fP47t27dHRge9/vrr2LdvHzZv3oysrLbrYs6cOfj9738fed6nTx+MHDkSTqcTn3zyCUpKSgAAr776KiorK/Gvf/0rpt8rh8PRbIF5GckSY3JyMnr37i26GERElsXzKFkJ26v8WMfiMPfaMWf2yIEsMcoSBxmLUzYlsLOnXCkqKoq63erVq3HllVfi73//e6tDonw+H/73f/8XN954Y2Sl++zsbMydO9eo4ltedV0A05Z9rFtnRCN3fQOmLv1YqumbRo0ahRdeeAEHDx5ERUUF/u///g8rVqzAokWLsHz5cmzZsgXHjx9vtnj63//+dyxdulS3qXwuvvhi/PGPf8SuXbvgdruxa9cuvP7661i8eDFeeuklrF+/HuXl5XjiiSeQlKSe+vbu3Ytf//rXbe73gw8+aNYZ8fDDD6O0tBSvv/46li9fjuLiYqxcuRJOpxMA8P777+NPf/pTTGUOhUI4ffq05aczaossMdbW1qKoqAi1tbWii0JEZEk8j9qUogC+GqCuUv1ukcH5bK/yYx2Lw9xrx5zZIweyxChLHGQs3hoviZ07d2Lq1KlISUnBwIEDMXDgQHTt2hWhUAjffPMNtm3b1mzdiM6dO+Ptt99Gnz59BJY6sc39Z4ku0zRFU17jx7y1JSi8/buG7N9sv/zlL9vdJicnB6+88grKy8vx4YcfAgBefvllTJs2TZcy/PjHP8aPf/zjNrdxOp147LHHEAgEIp1xf//73/H0009HOhTO9qtf/Sry+Pbbb8eTTz7ZYpvJkyfD7XZj5syZANTpo+677z706NGjzfI4HA7pF3qSJcaUlBTk5eVxRBkRUQfxPGoj5SXA3tXAN58AJz8HfK4zP3NmA30uBc67DCiYBOQMFlXKNrG9yo91LA5zrx1zZo8cyBKjLHGQsThCQjLBYBDFxcVYvXo1/va3v2Hp0qVYv359s86IK6+8Ep988gmuvfZagSVNbB/uL8c/Pz9h6DHe3n0CH+4vN/QYicbhcETWRACAPXv2REYrmOnuu++OPPZ4PPjqq6+ibrdz507s3LkTAJCUlBS1M6LRvffei4svvjiyzxUrVrRbjqSkJGRmZgrJgVlkidHpdGLUqFGtdlwREVHbeB61gQPrgaU3AYuGA5ufAQ5vat4ZAajPD29Sf77oanX7A++LKG2b2F7lxzoWh7nXjjmzRw5kiVGWOMhY1r5CRADUu7O3bNmCp556ChMmTMDQoUPRt29fdO7cGWlpaejVqxeuuuoqzJo1Cx999BF27NiBQYMGiS52Qnth4yFzjrPJnOMkkp49e0YeezwehMNhoWVoLEc0a9asiTy+8cYb0a9fv1b36XA4MHXq1Mjzf/zjH+2WIxwOo7a2VkgOACAvL6/ZtHCxfrU2fVw0omPUi9/vx/bt2+H3GzNqiohIdjyPSsxbBay+B1h5K3B0q7b3Ht0KrJwEvDlD3Y+e4pguiu1VfqxjcZh77Zgze+RAlhhliYOMxfEzJps2bVrMU9Tk5eVBieEP57S0NAwfPhzDhw+Ps3QEAPvLavBxqc7/ELXi48NV+LLMg+/0zjTleIlg3759kcf9+vWLqY0bWQZA/V2L5j//+U/k8ahRo9rd7/XXXx95vHXrVvj9fqSlpbW6vaIo8Hq96Ny5c7v7tipZYgwEAti9ezfy8/PbrFMiIoqO51FJlRUDr0wEPCfj28/eVUDpZuCON4Gc/I7vR6fpothe5cc6Foe51445s0cOZIlRljjIWOyQIAJwrMobefzy9iOmHvvl7Ufw39deCADo1y3d1GOb7cSJE3j66acjz2+77TYkJyebWoZAIIDHHnss8nz48OGtrqXyxRdfRB5/73vfa3ff3/3umTVBQqEQDhw4gIKCgla3T05ORq9evWIptiGmTp2KysrKdrerrKzEa6+9FnmuZT0I0THqJTMzEz//+c9FF4OIyLJ4HpVQWTFQNK7ltEwd5TkJLBsLTF+nvVPiwHpg87Ntj9BonC6qccqo84cD1zwEDPhBi03ZXuXHOhaHudeOObNHDmSJUZY4yFjskCACMPLJ/7S/kUFWbD+CFd92gpQuGCesHEbxer0oLS3Fu+++iyeffBKnTp0CAAwaNAi//OUvoSiK4QseBwIBnDx5Eh999BH+/Oc/Y/fu3QDUD8q//OUvUd9z6tQpuFyuyPPc3Nx2j9O5c2f07NkTFRUVAID9+/e32SGhKApCoRCSk5OFLPo8f/78drdpaGjAD35w5h/1gQMHYvz48TEfQ3SMegmHw6ipqUFWVpbl18MgIhKB51FBFAXwe4BQA5DcCUjLBPT4PPZWqSMj9OqMaORzAS9PAGZuBdK7xVaOdQ8Dxau1H+voVmDlVnW0xE1PNjse26v8WMfiMPfaMWf2yIEsMcoSBxmLHRJEpKvNmzdj5MiRbW4zduxYLF++HPX19cjMzERKiv6nopSUFIRCoVZ/PmDAALz55psYMmRI1J+fPXIgJycnpuP27t070iFRVdX21F+hUAinTp1Cr1692s1BVVUVfvGLX8RUBqD1dTG0uv/++7Fx40YAQLdu3bB27Vqcc845Mb9fS4yJrKamBoWFhZg1axays7NFF4eIyHJ4HjWRTtMWtWndw/FP09Qaz0ng3UeACUva3s7A6aLYXuXHOhaHudeOObNHDmSJUZY4yFjWvTpERJbTtWtXPP/887j99tub3TlvpuTkZDz66KOYP39+mxfIa2trmz2PdQ2EptudvY9oZenVq1dMOfB4PHjuuediKoNenn32Wfztb38DAHTq1AlvvvkmLrroIk370BJjIsvKysKsWbOQlZUluihERJbE86gJdJ62qM3jdGREghZ7V6kdJgPGRP+5wdNFsb3Kj3UsDnOvHXNmjxzIEqMscZCx2CFBRLo699xzcf/99wNQp+vxeDz48ssv8emnn6K6uhqTJ0/Giy++iBdeeAEDBgwwrBz3339/ZIREXV0djh07ho8//hgejwd/+tOf8MYbb+Avf/kLfvjDH0Z9v8/na/Y8NTU1puM2XbSpvr6+zW0dDkfCjhp477338Mtf/jLy/Pnnn49pYe+zJXKMWiQlJfHuDiKiOAg9jxo1bVGiMGjaolZtflb7cTpiS2H0DgkTpotKSu/Gz33J8W87cZh77Zgze+RAlhhliYOMxcm8iEhXF154If7617/ir3/9K5577jn8/e9/x44dO3DkyBFMmzYNAPCf//wHw4YNw3/+8582p1WKR2FhYaQcy5Ytw4YNG3Dy5EksXLgQaWlp+OqrrzBu3DgsX7486vudTmez54FAIKbj+v3+yOP2RlU0TmcUSw5yc3OhKErMX4cPH46pvNHs27cPt912W6RcDz30EGbMmNGhfWmJMZF5PB688MILuk2FRURkK4oCT8UJvPD8c/BUnFA7CIxWXgJsmA8svwVYmAcs6Ac8daH6fWGe+vqG+UD5PuPLYqSyYmDR8PhHLOxdpe6nvKTt7cpL2h6BoacjW6LXjwnTRenyua8ogK8GqKtUv5vR7ilm/NtOHKlzb9DvvdQ5i5EdciBLjLLEQcay/m2rRGQJ5557LpYtW4asrCz87//+L6qrqzFz5kzs3bu32XQ+VVVVmDNnTpv7GjZsGO644w7NZejSpQseeeQRXHzxxfjJT36CcDiMn//85xg5ciQuvPDCZttmZGQ0e15fX9+ikyKapqMizt7H2RwOB9LT0xNqsefKykr86Ec/Qk1NDQB1vY+nn366w/tLxBg7IjU1FUOHDo15pAwRke2dtY5Bqs+LochH6nPzAGe6PusYRGPWtEWJwOBpi5qpPqJ+3/mSPseK1a6XgHF/PvPcpOmiUgf+V8c+981Yv4N0wb/txJEu9yb83kuXsw6wQw5kiVGWOMhYDkXhrRoUv5KSkmaLAxcXFyM/P7+Nd5wRDAZx8ODBZq9dfPHFpk7zcqzKG3n84Ou78cmRatOOfXluV/y/24YCAPp1SzftuKJ4vV706dMncsF77dq1uPnmmyM/Ly0txQUXXNDmPqZOnYqioqK4ynHjjTfigw8+AADMnj27xUX3U6dONVvI+osvvsDAgQPb3W+vXr0ii1q/8cYbmDRpUofLWFRUhOnTpwNQR0iUlpbG/N6z83j48GHk5eW1+Z6GhgZ8//vfx6ZNmwAA+fn52LZtGzIzMzWXvaMS4XxARJKSfdqetpgZeywdAmfTo0MgnmmLGmmZtkg0b5U6osGIkQKZfYCZW5vnYd45+h8nVvPcZx4vvcmcERq5I9SOmViJavdEJA5/74nI4uK5lhsvTtlEBLUjoPHrqgvM/Sf0qgu7RY5tB+np6Rg+fHjk+ebNm4WU4/vf/37k8ZYtW1r8vFevXs3mPTxy5Ei7+/T5fJHOCADtdmCEw2F4PB6Ew+EYSmy8mTNnRjojevTogbVr18bdGZFoMXaUz+fDxo0bW6wtQkQJzi7T9kRjduzeKmD1PcDKW6NenPEhDRtxNXxIa/neo1uBlZOAN2eo+9HK7GmLEoEJ0xYljMb750ycLsp3ZBc2vrOq/c/9dtp9m+Jt9xQX/m0njuVzL+D33vI504EdciBLjLLEQcZihwTRWW4Zeq65x7v0PFOPlwi6du0aeVxZWdnsZ3l5ee2ujxDv6Ij2ytBo0KBBkcefffZZu/v89NNPI4+Tk5PbXbRbURT4/X4kwkC1Z555Bi+9pE7DkJqain/84x/tjlSJRSLFGI9gMIjS0lIEg0HRRSGiWBxYr95JvWi4OiXP4U0tp7VpnLZn8zPAoqvV7Q+8b0x5zJxLXkTsMXQIBJGMUvRFEMmtbtOhDoHGaYv0ujjfOG1RIndKmDRtEQ6sN/YYsTr1hTpllInTRQWRjNIv9yB4uo01uezYESYR/m0njqVzL+j33tI504kdciBLjLLEQcZihwTRWQb2zsKVeeaMkrjygm74Tm/zpsNJFCdPnrlo0L17d+Fl6NYten1ff/31kccbN25sd5+NowsAYPjw4UhLi3IXaBPJycno0aNHszU0RFi3bh0efvjhyPMXX3wR11xzjS77TpQY45WRkYFp06a1uy4IEQmWSHcrJ9gIhTbFE3uMHQIZ8GIaViED3ja309Qh4K0CXpmo3xoKjXwu4OUJ+rQDIzqjNj8b/z5isaXQnOO0Z9HVQOEl6noSJsmAF9M8/4uMJcOib2DHjjDJ8G87cSybe4G/95bNmY7skANZYpQlDjIWOySIovj5qAvb30gHM6/rb8pxEkllZSW2bdsWeR7LugxGeOeddyKPm46EaGr8+PGRxxs2bMDx48fb3GfTkRtN39saRVHQ0NAgdPRASUkJJk+eHJlS6ZFHHsHUqVN1238ixKiHUCiEsrIyhEIh0UUhotYkyt3KCTpCISZaY9fQIRBCEsrQE6FY/v2ItUMgUactMrIzysRpi3Bki5zTmcWgzfZqhY4wahf/thPHkrkX/HtvyZzprN0cmDka1SCy1LMscZCx2CFBFMUNA3Nwy6XGTt3046Hn4vqBvQw9hhmqqmL/pykcDuMXv/gF/H4/ACAtLQ033XRT3GWoq6vTND/hokWLsGvXrsjzCRMmRN3uiiuuwBVXXAFA/VB97LHHWt3niy++iAMHDgAAMjMzcdddd7VbjlAohIqKCmEf1KdPn8aPfvSjyALjP/7xj/HEE0/oegzRMerF4/Fg8eLF8Hg8ootCRNEkwt3KCT5CIWZaYtfQIeBBBhY77oQHMd4t116HQCJOW2RkZ1T1EdOnLQKgjkqobn8dLdm02V4TtSPsbBJcnOuwGGLn33biWDL3gn/vLZkznUXNgWRrhclSz7LEQcZyKFa/bZUSQjwrsweDQRw8eLDZaxdffDFSUlJ0LaNW1XUB/LDw/1Be49d93zlZaXhv1rXo2iVV932b7dlnn8Urr7yC/+//+/8wfvx4ZGVlRd1uz549eOSRR7B+/Zl/7B9//HH8/ve/h8PhiKsMu3fvxs0334xZs2bh9ttvR79+/aJuV1ZWhoULF6KwsDByx/7IkSPxf//3f63u+4MPPsCNN94Yef7oo4/i97//PTp16hR57Y033sC0adNQX18PAJg/fz7mzJnTbrkb18RwOBxRc1BUVITp06cDAHJzc1FaWtruPhuVlpY2WwPi8OHDyMvLizwPBAK48cYb8dFHHwEALrnkEmzZskX3YZXtxXi2RD0fNK6FkZaWFnd7JSKdeavUC8BGXCjI7APM3AqktzOVY1mxeuekHmXI7APc8SaQE8PfUSJjP7Be7XyJkQLAjzSkwQ9NZ9EpbwADxrR8felN5owUyB0BTF/X9jbeKvViVTwdJAWTgJuebD3f887p+L71MGuP+v2tnwHHdph33H7DgGPbzTvet5q113nuMz/Q2O47rLV2357yEmDvauCbT4CTnzfvEHNmA30uBc67TG1vOYP1Km10igL4PUCoAUjuBKRlAkb+DaUxdv5tJ47lcp8Av/eWy5kBmuXg4Pvq9IVa/g44fzhwzUPAgB8YVsZ4aa7n6iPqlIbRzNoDdM3Vt4AxYnu1jniu5cZL7BUeogTWtUsqlt99JW5bvB3u+gbd9ntO505YfveVUnRGNNq1axemTp2KlJQUDBw4EN/5znfQtWtXOBwOVFZWYs+ePfjqq6+avWfChAmYN2+ebh9Q33zzDR555BE88sgjyMvLw5AhQ9CjRw+kpaWhpqYG+/fvx549e5rdqf+d73wHr7/+epv7HT16NH7zm9/gD3/4AwBg4cKFWLFiBUaOHAmn04lPPvkExcXFke2///3v49e//nVMZY71Ir0Rtm3bFumMANTFxNsaAdLUnXfeiauuuiqmbUXGqCeHwwGn0ym6GEQUjRl3LU5Y0vo2jSMU9JrGoXGEwvR17XdKiIxd4zoGDgBOdOAmjy2FLS/QiJi2qLWLt3p1Ru1dBZRujr0zymyNFzVyR5jbIZE3QkiHRKvt1cz1O7R0SBxY3/7FucbROY0jdIy4OCeiQ6SDsTuueQjOBL4wKTPL/V2dAL/3lsuZARwOB5xhL/Dm/R27AeDoVmDl1vZvABBIUz2Xl7Q9avKtn6mf2WZ0QJ+F7ZViwQ4JojYM7J2F1+8dhqlLP9ZlpEROVhqW330lBvaOPorAipou3BwMBlFcXNzsAv3ZMjMzMW/ePPziF79AZWWlLgsed+rUCUlJSZF1EEpLS9scTZCUlIR77rkHCxcuRNeuXdvd/+9+9zukpaXhd7/7HRoaGnDixImoHRm33347Fi9eHPPd/KFQCKdPnxay6PPZg+P++c9/xvzeyy+/POYOCZEx6qmmpgZLly7F3Xff3eooICISwKxpewomRb9IYPSc0u2NUBAVewc6BGqQgaW4DXfjdWShNvY3NnYIpHY585qIaYvG/bnl6yI7o0QpmKhe0DXLkInAR1Fyb7Dm7fVbidQR1iie0Tl6XpwT0SESZ+w1K/dgaerduPuenyEr5/yOlaE1Zo8OsRhL/V2dIL/3lsqZQWq++hhLV67C3eH3EFcGEvgGgJjqOZbzLaDePHBsh3Ed0G1ge6VYsEOCqB0De2fhvVnXYt7aEry9+0SH9/Pjoedi3o/ypRoZAQAzZ87E6NGjsWHDBuzYsQMlJSU4evQoXC4XACArKwt9+vTB0KFDceONN2LChAnIyMhAOBxGZmamLnfP5+fno6ysDP/+97+xdetW7NmzB4cOHUJlZSUaGhqQmZmJ7t27o6CgACNGjMDkyZNx3nnnxbx/h8OB3/zmN5gwYQKWLFmC999/H8eOHUNDQwP69OmDq6++GlOnTm02tVOs+9UrB4lKlhidTidGjRrFOz2I4mHEBRrRdy1aaIRChzWNvXEtgQ50CDjhxyhs69goiV0vATvbGKVitJ1LWnZIiOyMEiknX72wYdZ0WTmDhUwX5YQfo7qdgvO2TXG1+7jsegkY/kDrU24kwugcUR0iOsTuhB+jAhvgXPEP4M7X478wmUjTZSU4S/xdLfL3PkoHuCVyZqSyYjhXTcaocK+O/R1xtgS9AaDNek6UDugY2L69Uky4hgTpQsY1JKL5cH85Xth0CB8fjn3BySsv6IaZ1/WXYgFrIqNZ6XxARDEw8gJNeYm6foJZZm5rXkaRc0qLil30OgYizXU170BbfY+xI1QKJjXvjBKdeyHrKKxqfjfnhvnmjs4YORsYPSexct9I79E5gHpO1nJxTtTaOYkQe1Ox3q3clNF3K3OERvxE/t5H+523AqPaXSKsFSaaqPMtSU/kGhJJphyFSBI3DMzBG/dejfUPXos7h7W+QNDluV1x//X9sf7Ba/HGvVezMyKKcDgMt9sdmWbJjuyQA1lirK+vx3vvvRdZuJyI2nFgvbro8KLh6gXEw5taXjxqnL5j8zPAoqvV7Q+83/6+q4+oXyLuWmzKzBEKjUTG3ni3aAfVw4n3MAr1sOjdcoEm00yZNV3WgfXGHqOjBoxRp1IyUsGklhdrCww+ZhP1cOI990WJ+blv9Ogcbww3XjV2Cuh1gbDxbuXykra30zH2ZuckLbE3Lcvqe9TOOa0jho5uBVZOAt6coe2YbSkvUTvtlt8CLMwDFvQDnrpQ/b4wT319w3x1SiDB+Hd1O6LcMxxTzhQF8NUAdZXqdzPuPTaj3X07GtWQvyMaR6MmiKj1LOp8Gwf+jlMseMspUQd8p3cm/vvaC7Fie/R/zv/fbUPRr1u6yaWyFkVREAqFWqxlYCd2yIEsMYbDYbhcLst3rBAZzozh5IWXxFfGjmo6bY+oOaVFxh7nlElhOOBCFsKw6F26wQDQuGyWiOmyBExbBADoNwz4yYstXx/7lNo2jbpj9aYnW75u4nRR4b5XwRVISszPfZFTxQFipyvTMfYW56RYYm+UCNNlNUqUBc014N/V7QjUqqMLmmg1Z6KmCjOr3TW5AcCwvyPaWivMZC3q2aLTQ/J3nGLBERJEJERycjK6detm6YWO42WHHMgSY5cuXXD77bejS5cu7W9MZFdlxeqIiHjvHN+7St2PgXdudVhVqWVHKIjWBfW4Hf9EF1j0brmUb9cAE9EZBajrCHTNVddVMFPeiOhrGKR3Uy+iOrP1PZ4zW91vaxdIrnlQ3+O1osu1v0jMz/1EGJ1jRodINDrHHvWcFMvIpES5WznRRmhowL+r2xEMtHipRc6MHInaFrPbXZMbAAz9O6LpaFSBWtSzqPNtnPg7TrFghwRRB/Xrlo7SBeNQumAcDj8xFl/OvxGHnxiL0gXjODoiBoqiwO/3W/7O+XjYIQeyxBgMBlFaWopgMCi6KESJKVEu0Bjtfy9VRymcPX2T0XYuETc6QidBJKMUfRGERTuo6yoTozPKxGmLALQ9NVNOvjrvfmYffY6V2af9efxNmi4qeOENifm5L2KquKZEdojoHHur56S2LkwmwnRZgOVvADD072oR0xbprbEDvIlIzmpOieuIMrvdnXUDgKF/RzS9AUCgZr8bidAB3UH835liwQ4JIh2EQiFUVlYiFAqJLoplMGf2yIEsMdbW1mL58uWora1tf2Miu0mUCzSU0GrRBcsdt6IWHbxb7oHP1WmLZu0B+l2lb+Ha029Y4nRGNU5bZIbcEe1P8ZGTr075UDApvmMVTFL3E8u0NWOf0q8T5GzfTheVkJ/7okbnNCWqQ8SA2Fs9J7V1YTIR7laW4AYA3X+/LLR+RkxSM1q8FMnZ4pvEdESZ2e5aWS8r7r8j2mP253sUzX43RHdAxyEhP0Mp4TgUq9+2SgkhnpXZg8EgDh482Oy1iy++GCkpXOKEyG54PiAykKIAfg8QagCSO6nzEzt0mId39T3G3sFVMKn5nN7zzjHuWNQ2kesY3NPkDr4N89UpKMwycjbw0Z/NO14089xnHh9Yr94da7Qpq7TP9b2lUL2gG6vcEcCIB7XPZV9eol7M0rMj1JkdfYRG4wgV0et3bCk094LZFTPOrJsDqDlfZFJnGADM3AakfnvhUUTswx9oPl2Zab93b7Q+l723Sq0Do9ZuMWg+ecPEso7B2WJdx0Dk7/09Ue5Yb+wQMOOcdzaz253Iv/OaftaKJOJ8q+caI2QZ8VzLjRev8BARERHJyujFDs0aTp4giw3aXuPFudwR5l6gyTtr3YSCieZ2SAyZKL5DoqnGaYuM7gjU2kkwYIz6Vb5PLds3nwAndrc875w7VD3vDJnY8QsgjdNFvTxBn4tkmX1aX1hYZLvvmivu4tzOJepF+chzAdOV7YxhgWkj7FyifjW9OCliMfuziV7QPFF4q9RcdOQceHQrsPLbUV03Pdl6B0yifN4B4hc2tlO7UxR9btbpqMaOMBHn27M7YYkMximbiHQQDAZx8uRJzpGnAXNmjxzIEqPb7caCBQvgdifIXTNE7TFrsUMRw8lFTtsjmsjYG0dHAB1ax8CNTCzAfXAjU/vxz14zINGmLRLBhGmLOixnMDB6DnDX28CjpcCvjgMPH1K/P1qqvj56Tvx5NXC6qKif+4m0fodZCi858yViujIDaTonJcJ0WRaeT/5scf1dbfY6Bonwe7/uYbg9tR3/DG1Le1OFJVC7i+vviFgFxE4x5C4cgQWFL8C96w1zD6zzWmX835liwQ4JIh0kJSUhOzsbSUn8lYoVc2aPHMgSY3p6OsaPH4/0dC5YTwnOW2XeYoeiLtB0zVW/cqPcRWikaHctmk1k7E3vmutAh0A66jEe65GOem3Hbq1D4JoHte2no0aYdByt0rupd/Q7s/XdrzNb3a9e07Y4HOr0cF266zdNXFPp3dQ7a6e8of33IneEOi3VhCUt4o36uc+OMKnEdE5qZS57w0Xr/LHKfPIxLCrd4b+rRayfIfr3/tsOgQ5/hsairQ6BBGp3huagUTBg3L5jYEqMJuD/zhQLa18hIkoQSUlJ6Ny5s+UvupqJObNHDmSJsVOnThg4cCA6deokuihErTPrrkGRF2gah7IDYu5atPAIhbhEu2NTY4dAJwQxEF+jEzSOmGutQ6Bx2iIjdWTaIjM1Tluk10iJzD6xzSeeiAaMUcs+c5u65seFo1p21jiz1ddHzla3m76u1fpt9XPf7h1hEonpnJQoo0MSYYRGWzQuKt2hv6uNnraorRsxRP7ef9sh0OHP0FhF6xBIsHZneA4AICXVuH3HwJQYTcD/nSkW1r5CRJQgQqEQqqurEQqFRBfFMpgze+RAlhi9Xi/WrFkDr9cruihE0Zl516DICzRNh5OLuGvRwiMUOqy1O7U1dgh44cQajIEXztiP3V6HgJnTFiVKZ9TZDJy2yJJ0mi6q1c99doRJo0PnJDNVlSbWCI1oOjg9pHfvv7T/XW3GOgatEfV736RDwPD22rRDIFFuPDmLKb+zqRnG7TsGCX9eihH/d6ZYsEOCiIiIyMpE3jUomqi7Fi04QqHD2rpTW/Q6BmZOW5QonVHRGDRtkeUZNV2U6HZP9vC/lybOCI2zxTs95Jt3A0e2At7q2N6TCOsYmPl7L7pDQPSNJyJvABC5oDWRzbBDgkgHycnJ6Nq1K5KTk0UXxTKYM3vkQJYYOQ8mJTSRdw2KJuquRQuOUOiQ9u7U1tAhkA7ft/Mi+9o/rpZ1DMyetigROqNao/O0RXbW5ue+2et3iLw4J9oDnxsWe5vnpPZGJtlBlLUfAOgyPWQ6fBhfvRjpy0e3v6g0kBjrGJj5ex+lQ0DTZ2hH6bywcYe1cgOA4TlIgLXCTKlnE/B/Z4oFOySIdBAOh1FfX49wOCy6KJbBnNkjB7LE2NDQgP3796OhoUF0UYiaS4S7BkUTdbcyRyioYuwQaEAK9qM/GpDS/nG1rmNg5rRFidAZ1R6dpi2ys3Y/983sCBM5OqexM0RUh0i3PMNib/OcFMvIJNkFalu+ptP0kJHceyraX1Q6kdYxELhuT8yfoTI56wYAw3Ng9E0eMWi471Psv3ktGs672twD69wJy/+dKRbskCDSQTgchsvlsvxFVzMxZ/bIgSwxch5MSliJcNegaGbfrdzIYiMUNNEyQgGIqUPAi87fzovcufX9xLOOgZnTFiVCZ1SsjJq2SHIxfe6bvX6HiNE5jZ0hojpEGhkQe5vnpAS4MClcMND8uY7TQzbLfWvTQ4qetqg1gtbtiekzVDZn3QBgaA46egOAzrxpPbBmw1Z4zzW5Q0LnTlj+70yxcChKa2PxiGJXUlKCIUOGRJ4XFxcjPz+2D9dgMIiDBw82e+3iiy9GSoqNev+JCADPB0SalJeo0yaYZeY29Z+1eeeYd8xo5rmjv15eol7U0GP6qsw+6gX59i4UeKvUOjBiyqzMPurFilgukIuIvTUH1qsdWEe2xP6e3BHqxXc9pw4q36eOHvrmE+DE7uYX0ZzZwLlDgfMuUy88duQixOp7jB2dVDBJ7SAhazCr3S+9yZy7xXNHqHduNyXqM6eRiNgbL0y/9TPg2A7jj92o3zDg2HbzjhfNr46rnZiNzD7nJerfGk0Z9XsvOnbRmub+wHp1rRKjTVmVWNMXij7fkm3Ecy03XrzCQ0RERGQljRdIRNw1OPyBM0O6RVyg+cmLrf+88a7Fdx9Rp5nqqIJJ6lRFsXQENI5QWDZW30XFOzpCwczYWzNgjPpldIdAe3IGAzlz1MeKok4/EgwAKalAakb8IwXGPqVehDKqM4oLG1uLWe3+mgeBlSZclI82OqfxbmWzOgXOzo+I2BvvGM4dYe7nXd4I8R0SqRlnHps1PWTBJPX3yCoS5fNOZo2jUY3uDEukzghA/PmWyATskCDSQTAYxKlTp9CrVy/eyR0j5sweOZAlRpfLhcLCQsyaNQvZ2dmii0N2J2rBwZ1L1K/GO9dEXKBpbzh547Q9BZPMu0u/cU5p0SMURMTelrM6BFynvkHhCy9h1s/vQXav88ydOqhx2qI0HfeZKJ1RZIgOf+4b3REm+uKcyA4RnWN3IQuFjhmYpSxBNmrUF1uLvWAisPkZXY4bkyETge9NPfNcxA0ATduqztNDRs09oH52WalDopHRv/doI2dGSLQbT769AcDlqdM/Bwl2A0Czzx6R59s48X9nigXXkCDSQXJyMrp3747k5GTRRbEM5sweOZAlxoyMDEydOhUZGRntb0zUFkUBfDVAXaX63cozZ4qYzzxWA8aonQQztwEjZwMXjmq5zoIzW3195Gx1u+nrOn5BXtCc0lGZHXssHA5kdO+tnke795ZnHQOBC5ySsXT53Ddq/Q6Ri9mLXjtHx9gzUIepyhvIQJ36Qluxi1jMPlHW7zBgUekWuW/U3qLSVqDH732UheRbzZmeGhc2Ftnuot148u0NABlpnfTNQQLeANDss0f0+TYO/N+ZYmHd21WJRKs+ErlL1YGzbrpr/CCnVjkcDqSl6XmrovXYIQeyxJiSkoK8vDzRxSCrKi8B9n47lP/k5y2H8ve5VB3KXzDJWkOmrTCc3IS7FiMSfISCobHHQNrzaCJNl0W6Sej2Knp0jsjpynSMPQUh5OG4+iSW2EXerSxihIaB00M2y/3ZGqeHtLMoU4W1mTO9nN0hIKLdtSYnHyl3r0XeyxMATyj+Y8W7XlY0igL4PUCoAUju1KEOqRafPRadHjKhP0MpYXCEBBEJEQqFUFVVhVBIhz8oLMoOOZAlxrq6Orz22muoqzPwriSSz4H16iKci4ar/9Ad3tTyAorPpb6++Rlg0dXq9gfeF1HajrnmQXOOo8dwcqPuVj5bgo5QMCX2Nkh9Hm3sjJryhvY7SnNHqItpTljCzogEkvDtVeTonMZOgbPPa/GKtUNEp9jr0Bmv4RbUdcmLLXaRdyuLGKFReIn6tUv/DolI7tG55Q93LhE3NWWiaTIStc2c6eXs9i2i3bWhLiMPr/X+NeoG3RbfsfQYjdqovATYMB9YfguwMA9Y0A946kL1+8I89fUN82Me+dPis0f0+baDEv4zlBICR0gQkRAOhwPJyclwyDJtQwfYIQeyxJiUlITs7GwkJbEfn2LgrQLWPdyxea6PblXvwLTK3dKi5zNPZAk2QkE0W5xHucCpNCzRXkWOzhG9do4OsSdBQXaPHCRNfhfofm5sbxJ5t7KF55M/WxIUZKMGSWhj2spEW8dAhCYjUWPKWTxa6xBIoHaXlJSE7O69kHRdIfDdCWJHox5Yr66t0tYo4cabjhpvPDp/OHDNQ20eP+pnj+jzbQdY4jOUhHMoipUnL6ZEUVJSgiFDhkSeFxcXIz8/thNcMBjEwYMHm7128cUXJ/YCuOUl6vDV1u4Y6XeV+oFntek3iASz5PmAqKmyYuCVicb+wzDvnPj3HY/GRa0beavUUSBGXaCZuTXxO2aIWsPOKDLDgfViLs55q8RPV2Z27OUlxkyXFcsojdX3GH8DwIQl6uNE+Vtjw3xzpw0aORsYPce847XnwHpg5a3GH2fKqtZ/H8xsd1qZfQNAPDcdNeroOS8RzrcknXiu5caLHRKkC9t0SMTSE362GHrCZRIIBPD666/j1VdfRUlJCcrLy9G1a1dccMEF+MlPfoJp06ahR48eCIfD8Pl8cDqduvSch0IhlJSUYOfOndi1axd27tyJPXv2oKGhAQBw3XXXYePGjXEfpz2HDx9uVoZPPvkEHo8n8vOmp1w9czBt2jQsX74cADB16lQUFRXF/N6ioiJMnz4dAJCbm4vS0tK4ytKU1hgT9XwQCASwb98+DB48GKmpqULLQgmsrBgoGmf8RYrGeZ1F3TUYbY0kkRdoyBJ4HiUrsWx7FTU6R1SHSFMaY4+rjstLxNytbOYNAAZ2SATQCftwMQbjIFLREH2jxg6J8hI1ZrPM3JZ4NxSuvgeB4rfbz1lHtdchkCA3nrT7O2v0DQAm3HQU03kpEc637bDsZ6gNieyQSMArvkQJyE7Tb8Rh//79mDx5Mnbv3t3s9bKyMpSVlWHbtm146qmnsGzZMowZMwYej0eXBY/XrFmDn/70p/B6vXHvq6NOnjyJgoICVFZWxvweRVF0y0GikiVGn8+HjRs34sILL+QfVRSdt0r9J0XPC/KAur+XJzT/Zy3KYoemOHuxw6YsOJyczMXzKFmJZdurqKniEmG6Mo2xx1XHoqbLEr2guU58SMNGXI0LcbT9i+tNpi0yXAzrGAgx9in4Dn+KjXUx5kyLWBY2TpB21+7vbON6WUb826n3TUeek2o+z7rxJqbzUtPz7a6X1HVXouk3TP3bXcD0kJb9DCVTcYQE6ULqERJmTL8hgePHj+Oqq67CiRMnAKhrB1x77bXo378/KioqsGHDBtTX1wMAOnXqhPfeew833HCDLsdueod/a4weIVFaWooLLrig3e2MOuUm6ggJrRL+fEDUGhHD2RPxrkEOJyciIsA+05WJuFvZjBEaiTJlE5AY0xaJlggjUUWNDBItQUaIRFV9pPVF4Gftaf1GIqJvcYQEUaIyqSdcBlOmTIl0RuTm5uLtt9/GpZdeGvn56dOncfvtt+ODDz5AQ0MDJk2ahIMHD6Jr1666LXick5ODK664IvK1fv16FBYW6rLvWGVkZOB73/serrzySlxxxRXw+XyYOnVq1G0VRYGiKHA4HJZf9Lk1ssSoKAr8fj/S0tIsHQcZ5MB6YzsjAPUCf8Ek9Y6oRol412B6N7XjpGBSwg8nJ3PxPEpWwvaqAyPvVtaBbnUsYnSIGSM0DFxUWgHgRxrS4EeLzEdbVHrAGDVvRt/4kcB/fyi9BsM/ZQ3S3pgMR62gDgFRI4O+Jey8vO5hYzojAHW/7z4SuelIc4xdc1uu7ZYA+BlKseCS50StMXr6DW+VvvsVaN26dfjoo48AAKmpqVi7dm2zzggA6NGjB95++21ceOGFAICqqirMnTsXoVAo7uP/8Ic/xJEjR1BWVoa1a9dizpw5uOmmm5CdnR33vmOVk5OD4uJiuN1ubNq0CU899RRuvfVWnH/++a2+JxQKoaysTJccJCpZYnS73Vi4cCHc7sT7g48SwOZnzTnOligdrNc8aM6xR2g8zoAxauf7zG3qApEXjlIvyDTlzFZfHzlb3W76uoS+GEDx4XmUrITtVX6613HOYHUx5LveBh4tBX51HHj4kPr90VL19dFz9Js6pfEGgClvqB36WuSOUEcDTFjS+kXhrrnql9Z9x8CNLCx03A83slr+sLXpIcc+pV5EN0Is0xYJ5na7sXDZP+H+6XvqBf14FExSOxY6coOk0e2uDULOy2bddHRgPQB5PntkiYOMxRESRK0xsSfc6p577rnI46lTp6KgoCDqdl26dMHvfvc73HHHHQCAlStX4plnnon7+L179457H/Hq3Lmz5qFtycnJ6NmzJ5KTkw0qlXiyxJiZmYl7770XmZmZootCiaa8xJwRCoA62qB8X/OLGYl+16Co+cwp4fA8SlbC9io/Q+vYzNEhRo/QKJgIbI7//7WmMlGLe5UVyERtyx8OmRj9TQmyjoEokfbas2dijEQVMDJIyHnZzJuOBoyR5rNHljjIWOyQIIpG1PQbFlRbW4sPPvgg8ry9tRwmTJiAn//856itrUVVVRU++ugj3daSsBqHw4FOnTqJLka7Yl0fI5rDhw8jLy9P3wIJkJycnBAdX5Qgqo+cebzzJXOPveslYNyfm7829in1H1Kj5rbV667BBJ++g4zF8yhZCdur/KSrY6NuADBgeshkhNEbFS1/0N70kDn56mhKG65j0KK9JsJC8oCpN56Y/jsr4Kaj5JzBUpyXpDu/kiE4ZRNRNCKn37CYrVu3wu/3A1BHQFxxxRVtbu90OnH11VdHnm/YsMHQ8iWyUCiE06dPW346o7bIEmNtbS2KiopQWxvlTi6yFkUBfDVAXaX6vSMLzRdecuZrl8kdEjujjKxrvGvw7CmR4mWRuwbJGngeJSthe5Wf1HXceANAl+7q93gvCus8PWQt0lGESahFevMfxDI9ZOM6BiKnLRKg1fZq9lRhbdG73Z3FlN/Z6iNnvgTcdCTLeUmWOMhYHCFBdDbR029YzBdffBF5XFBQgJSU9k8r3/ve9/Dvf/8bALB//37DypboHA6HJRZ6ysrKwv333x/Ttnv27ImsJwIASUlJloixPSkpKcjLy4upfVMCKi8B9n5799jJz1vePdbnUvXusYJJ1jgfK0rLf/JsfNcgWQPPo2QlbK/yYx1roPP0kCkIIQ/HkYImNyxpmR6ycR0D0dMWmSim9ir5SFRTfmcLLzFu3+3ZuQQpo/8oxXmJ51eKBVsHESB++o3hD6iPoy3gleC+/PLLyOPc3NjK33Sh56bvt5ukpCRLzKvYrVs3/PWvf213u2PHjuHKK6+MPJ88eXKHp3pKNE6nE6NGjRJdDNLqwHp1xFtbncw+F3B4k/q1+Rl1WoJrHkrsf1QDteo/nGdrvGvw3UfUaQE7qmCSOk0TR0aQjngeJSthe5Uf61gjHaeHdMKPUdh25oWOTg+ZKNMWmYDt1R45cKalSRGjHeqK4scOCSJAeE94ZAqOeW5x5eigysrKyOOcnJyY3tN0PsGqqirdy2QV4XAYXq8X6enpSErSbwa9HTt24Be/+EXM2+sxSqWurg633HILysrKAABXXXUVli5daliMZvP7/fjss8/w3e9+F2lpkt52JBNvFbDu4Y7dyXd0K7Bya2JflA8GWr/7zYZ3DZI18DxKVsL2Kj/WsUY6LirtRyo+Qz6+ixKkOdPjnx7SxHUMRGF7tUcO/J5KfLbvK8vHaIe6ovixQ4KI4tJ0XsDOnTvH9J6m29l5XkFFUeD1emPOW6z2799v6lRYiqLgzjvvxO7duwEA/fr1w5o1a+B0OhEKhQyJ0WyBQAC7d+9Gfn4+/6hKdGXFwCsT47+Db+8qoHRzYk5blJLa/jY2umuQrIHnUbIStlf5sY47QKfpIQPohN3IR34XN9Luelnfv7MknbaI7dUeOQjU10kRox3qiuLHDgkiiovP54s8Tk2N4SIZ0OxDqb6+XvcyWUVycjJ69eoluhhxe/zxx/GPf/wDgLqw+T//+c/IKBhZYszMzMTPf/5z0cWg9pQVA0Xj4r5zL8JzUr0TcPq6xOqUSM2IfVsb3DVI1sDzKFkJ26v8WMcdpMP0kJmow88L/MBNHyTmSNQExPZqjxxkZneTIkY71BXFz7rzZxBRQnA6nZHHgUAgpvf4/f7IY6vfOR8PRVEQDAahKIqu+506dSoURYn5a9myZR0+1ssvv4wnnngCgLpI98svv4yhQ4dGfm5UjGYLh8NwuVwIh8Oii0Kt8VapIyP06oxo5HOpdwJ6m0wvN2vPma9+V+l7vPb0G9bxToTGuwa7dFe/szOCTMTzKFkJ26v8WMdxaJwecsob6nSPWuSOQPj2N+Aa/TTCzmxDiicjtld75CCcki5FjHaoK4ofOySIKC4ZGWfu1I11tEPT7Zq+PxFUVVXhF7/4RZtfL7/8si7HCoVCOHXqFEKhkC77M9v27dsxY8aMyPM//elPGD9+fLNtrB5jo5qaGhQWFqKmpkZ0Uag16x7WZaHFqDwn1TsBG3XNPfOl9R/xeOWZfDwinfA8SlbC9io/1rEOBoxRR5HO3AaMnA1cOEqdDrIpZ7b6+sjZ6nbT16Gm91XMvUZsryblQPBNRzUejxT1zPZKseCUTUQUl+7du0cel5eXx/SexoWPAaBbt8QapltTU4PnnnuuzW1qa2txxx13xH2sxumMkpOT496X2Y4ePYrx48dHRrvcddddeOyxx1psZ+UYm8rKysKsWbOQlZUluigUzYH1HVvAWou9q9SFogeMaf56wURg8zPGHrupIRPNOxaRjngeJSthe5Uf61hHGqeHZO61Y85MykHX3DOPc0cAx3YYd6yz5Y2Qpp5liYOMxRESRIDwnvDIsS3oO9/5TuTxkSNHYnrP0aNHI48HDhyoe5mswuFwICUlBQ6LTZtSV1eHW265JdIBNWLECLz44otRt7VqjGdLSkpCdnY2kpL4sZmQNj9rznG2FLZ8LScfOH+4OcfPHcGFp8myeB4lK2F7lR/r2CAxTA/J3GvHnAnIQYHJNwENmShNPcsSBxmLrYMIED/9RuOxLWjQoEGRx3v37kUwGGz3PZ9++mnkcdMOjUSQl5fX7poLRUVFuhzLitMZKYqCO+64A59//jkAIDc3F2+99VazhcqbsmKM0Xg8HrzwwgvweDyii0JnKy8Bjm4151hHtgDl+1q+fs2D5hx/hEnHITIAz6NkJWyv8mMdi8Pca8ecCciBgJuOZKlnWeIgY7FDguhsAnrCrWz48OGRi9F1dXXYtWtXm9v7/X5s37498vyGG24wtHyJzOFwID093VKjB379619jzZo1AIDMzEysXbsWvXr1anV7K8YYTWpqKoYOHYrU1FTRRaFG1UfUr50vmXvcXVGON2CM8efygknAgB8YewwiA/E8SlbC9io/1rE4zL12zJmgHJh805Es9SxLHGQsdkgQnY3Tb2iSkZGB0aNHR563N3rgrbfeivSUd+vWDaNGjTKwdIktKSkJGRkZlhnKuGLFCixYsACAWvZXX30VBQUFbb7HajG2Ji0tDcOGDWt1JAgJUHiJ+hWtg8BIO5dEf33sU0BmH2OOmdkHuOlJY/ZNZBKeR8lK2F7lxzoWh7nXjjkTlAOTbzqSpZ5liYOMZe0rRERG4fQbmtx3332Rx0VFRSgpKYm6ndfrxZw5cyLPp02bZvkL1fEIh8PweDwIh8Oii9KurVu34mc/+1nk+ZNPPolx48a1+z4rxdgWn8+HjRs3wufziS4KJQJFaflaejfgjjcBZ7a+x3Jmq/tN76bvfolMxvMoWQnbq/xYx+Iw99oxZwJzYOJNR7LUsyxxkLHseyWQqC2cfkOTcePGYeTIkQDUKZluvvlm7NnTfJHuyspKjB8/Hl999RUAdXTEfffdByXahT0ApaWlcDgckS+91m1IJIqiwO/3t5qDRHH06FH813/9F/x+PwDg7rvvxuzZs2N6r1VibE8wGERpaWlMa6SQDQRqo7+ekw9MX6ffPy2ZfdT95eTrsz8igXgeJSthe5Uf61gc5l475kxgDky86UiWepYlDjJWiugCECWssU+pC5h6Tuq/bwmn31i5ciWuvPJKnDx5EqWlpRg6dCiuu+469O/fHxUVFdiwYQO8Xi8AICUlBW+88Qb69++v2/HHjh2LEydONHutrKws8njXrl0YOnRoi/etW7cO5557ri5lmDNnDv75z382e622tvmFy2hl+N3vfodbbrlFlzIYYdmyZTh16hQAIDk5GSkpKfjFL34R03t/97vfoUePHkYWzxQZGRmYNm2a6GJQoggGgNZGIOfkAzO3Au8+Auxd1fFjFExSPyc4MoIkwfMoWQnbq/xYx+Iw99oxZ4Jz0HjT0csT9Lk+lNlH7Yw466YjWepZljjIWOyQIGpNY0/4srGAz6XffiWdfqNv37748MMPMXnyZOzevRuKomDjxo3YuHFjs+169uyJZcuW4YYbbkBDQwNSUlJ0WfB43759OHLkSKs/r6urw+eff97i9UAgEPexGx09ejTqMZqK9vPKykrdymCEpqMbQqEQXnzxxZjfO3v2bGRmZupWz6KEQiFUVFSgZ8+eSE5OFl0cEi2lnQXa0rsBE5aonQpbCtXO7VjljlCn85NkBB1RI55HyUrYXuXHOhaHudeOOUuAHJhw05HwGHUiSxxkLE7ZRNQWTr+hycCBA7Fjxw4sX74cP/zhD9GvXz+kpqaiV69eGDZsGJ588kns27cP48aNi3xIhUIh0cUWzurrK7RFlnr2eDxYvHhxZEF2srnUjNi2GzBGPefP3AaMnA1cOKrlcG9ntvr6yNnqdtPXsTOCpMTzKFkJ26v8WMfiMPfaMWcJkoPGm46mvKHeRKRF7ghgyir1/a3cnJoQMepAljjIWA7F6hN7U0IoKSnBkCFDIs+Li4uRnx/bRfdgMIiDBw82e+3iiy9GSkoCDeDxVnH6DZ0pigJFUSJrRNiRHXKgNcZEPR80roWRlpYmbV1ZTvW3I6Le+hlwbId5x+03DLhnfcffryjqGhTBgDrSIjUDYJsiG+B5lKyE7VV+rGNxmHvtmLMEzUH5PqB4NfDNJ8CJ3c1n1nBmA+cOBc67TF2fNGdwu7tLyBg7QJY47CCea7nxSqArvkQJjNNv6E7mi/CxskMOZInR4XDA6XSKLoYcFAXwe4BQA5DcCUjL7NgF+a656vfcEeZ2SORpvBvqbA6HGnNra1AQSYrnUbIStlf5sY7FYe61Y84SNAc5g4GcOepjHW46SsgYO0CWOMhYnLKJSIum029cMaP17foN4/Qb7QiFQigvL7f8VD7xsEMOZImxpqYGzz77LGpqakQXxZrKS4AN84HltwAL84AF/YCnLlS/L8xTX98wX73LSKuCiXqXtm1DTD4ekSR4HiUrYXuVH+tYHOZeO+bMAjlovOmoS/cO33CV8DHGSJY4yFgcIUHUETmDgeEPADuXRP/5T148c/cuReVwOJCZmSnF3fMdZYccyBKj0+nEqFGjeKeHVgfWA5ufBY5ubX0bnws4vEn92vwMcP5w4JqHYu/IzclX39PWMfSSOyKm4dZE1BLPo2QlbK/yYx2Lw9xrx5zZIweyxChLHGQsdkgQkRBJSUlIT08XXQyh7JADWWJMTU3F0KFDRRfDOrxVwLqH1TlVtTq6FVi5Vdu6O9c8qL7HaCMeNP4YRJLieZSshO1VfqxjcZh77Zgze+RAlhhliYOMxSmbiDqqay4wzw3McyM8pxruh44iPKdafY2jI9oVDofhdrsRDodFF0UYO+RAlhjr6+vx3nvvob6+XnRREl9ZMbBoeMc6I5rau0rdT3lJ+9sOGGP8VEoFkzj9HlEceB4lK2F7lR/rWBzmXjvmzB45kCVG0+KoPgLMOyf6V/URY49NceMICSIdKIqCUCgERVFEF8UymDN75ECWGMPhMFwul+U7VgxXVgwUjVOnYdKD5ySwbKy6Fk9Oftvbjn0KOLJFfY/eMvuoozWIqMN4HiUrYXuVH+tYHOZeO+bMHjmwXIzVR4DCS1q8HEZnuPr/yTpxkBAOxepXiSghlJSUYMiQIZHnxcXFyM9v5+LRt4LBIA4ePNjstYsvvhgpKewvI7Ibng8szFuljmgwqkNg5tb2p28qL1E7MPTqEAEAZ3ZsHSJERERERER20UqHBABg1h7jZw4RfXwJxHMtN16csolIB4qiwO/3W/4ucDMxZ/bIgSwxBoNBlJaWIhgMii5K4lr3sDGdEYC633cfaX+7nHy18yCzjz7HzezDzgginfA8SlbC9io/1rE4zL12zJk9ciBLjEEko/T4ScvHQcZihwSRDkKhECorKxEKhUQXxTKYM3vkQJYYa2trsXz5ctTW1oouSmI6sD7+NSPas3eVepz25OSroykKJsV3vIJJ6n7YGUGkC55HyUrYXuXHOhaHudeOObNHDmSJsRZdsPyt9ZaPg4zFKZtIF5yyiYj0wPOBRS29CTi61fjj5I5QRyzE6sB6YEuhuraElmOMeJALWBMREREREbVG9JRJoo8vAZFTNvEKDxEREXVceYk5nRGA2rFQvg/IGRzb9gPGqF/l+9QRHN98ApzY3XyNCWc2cO5Q4LzLgCETY983ERERERGRHZWXADtfav3nb/1MvdGrYBL/v6KoOGUTkQ6CwSBOnuQceVowZ/bIgSwxut1uLFiwAG63W3RREkf1EfWrrT9EjbDrJfW4WuQMBkbPAe56G3i0FPjVceDhQ+r3R0vV10fP4R/LRAbieZSshO1VfqxjcZh77Zgze+TAEjEeWK+Ojl80XP2/LAo3MrHg2GVwb/4bsOhqdfsD75tcUEp0HCFBwjkcjhavWW0msaSkJGRnZyMpiX18sWLO7JEDrTGGw+EWr0U7R5gtPT0d48ePR3p6uuiiJI7WhscabecS9WteB/9QdziAtEwgTd9iEVHbeB4lK2F7lR/rWBzmXjvmzB45SOgYvVXAuodjWjcwHfUYj/VIR736wtGtwMpv1/i76UkgvZvBhSUrYIcECRftQmUgEECnTp0ElKZjkpKS0LlzZ9HFsBTmzB450BpjQ0ND1H2I1qlTJwwcOFB0MYiILIvnUbIStlf5sY7FYe61Y87skYOEjbGsGHhlIuA5GdPmnRDEQHzd8gd7VwGlm4E73gRy4lyngFNGWZ74qzxkew6HA06ns9lrNTU1gkrTMaFQCNXV1QiFQqKLYhnMmT1yoDXGs3/3nU5nQoyQ8Hq9WLNmDbxer+iiEBFZEs+jZCVsr/JjHYvD3GvHnNkjBwkZY1kxUDQu5s4IAPDCiTUYAy+cLX/oOQksG6t2KHREDFNGAQCO7QA2P8MpoxIYOyQoIWRmZjZ7XlNTk1gnYSIynNfrbdEhkZWVJag0RERERERERDblrVJHRvhc+u7X5wJenqDuX0tZVt8DrLxVnQJKi6NbgZWTgDdnaDsmGcqhWG2yfkpIJSUlGDJkSOR5cXEx8vNjH4IVCATw9dfNh3QlJSUhKysLWVlZ6NSpU0JM20JE+gqHw2hoaEBNTQ1qamparCHRv39/pKamCiodtWneOYKPn8CLvREREREREVnZ6ntiWjOiwwomAROWtL+dximj2pTZR58poyQR77XceHANCUoIqampyMzMhMfjibwWDofhcrngcrnEFSxGiqJAURQ4HI6EmF7GCpgze+QgnhgzMzMTpjOioaEBX3/9Nfr372+p9W2IiBIFz6NkJWyv8mMdi8Pca8ec2SMHCRXjgfUd7oxoQAq+Ri764wg6Idj6hntXqZ0SA8a0vk3jlFF6jdJonDJq+jp2SgjGW84pYZx77rnIyMgQXYwOk3kdAKMwZ/bIQUdizMjIwLnnnmtAaTomIefzFG3WHvWr31XmHrffMPW4RGQpPI+SlbC9yo91LA5zrx1zZo8cJFSMm5/t8Fu96PztGhKd2994S2EbO0qgKaNId5yyiXSh1zCfcDiMEydONBspQUT2kpmZiXPPPZfTtFnFhvnqgmFmGTkbGD3HvOMRERERERHZRXmJumi0WWZuA3IGt3w9UaaMkpjIKZt4tYcSSlJSEvr27Yv+/fujZ8+ecDqdootERCZwOp3o1asX+vfvj759+7IzwkoKJpp7vCEmH4+IiIiIiEh21UfUr50vmXvcXS+px20qjimjYrZ3lXocEoJrSFBCSk1NRY8ePdCjRw8oioJwOIxEHszjdruxePFi3HvvvTjnHMELvVoEc2aPHLQXo8PhQFJSUsKvoeFyuVBYWIhZs2YhOztbdHESS04+cP5w4OhW44+VOyL63TNElPB4HiUrYXuVH+tYHOZeO+bMHjkQHmPhJbrsxoUsFDpmYJayBNmoaf8NO5eoX/PcZ16LY8ooTbYUtr2GBRmGUzaRLkQO80kEwWAQx48fR9++fZGSwn6+WDBn9siBLDHKEodhDqwHVt5q/HGmrAIG/MD44xCR7ngeJSthe5Uf61gc5l475sweORAe4zx9bpIMIhnH0Qd9cRIp0LCeZGOHRKJMGWUDnLKJyOJSUlKQl5cn7QejEZgze+RAlhhlicMwA8YYP5VSwSR2RhBZGM+jZCVsr/JjHYvD3GvHnNkjB7LEmIIQ8nBcW2cEIHbKKDIdOySIdFBXV4fXXnsNdXV1ootiGcyZPXIgS4yyxGGosU8BmX2M2XdmH+CmJ43ZNxGZgudRshK2V/mxjsVh7rVjzuyRA1lirENnvIZbUIfO2t5YeIn6ZXYHwU57L2wtCjskiHSQlJSE7OxsLsSrAXNmjxzIEqMscRgqvRtwx5uAM1vf/Tqz1f2md9N3v0RkKp5HyUrYXuXHOhaHudeOObNHDmSJMQkKslGDJFhohQCuZmA6riFBurD7GhJERPSt8hLg5QmA52T8+8rso3ZG5PDzhIiIiIiIyDA6rSFhSb86DqRlii6F6biGBJHFBQIB7N69G4FAQHRRLIM5s0cOZIlRljhMkZMPzNyqrvkQj4JJ6n7YGUEkBZ5HyUrYXuXHOhaHudeOObNHDoTHOGuP+tXvqrh2E0An7MZgBNAptjf0G6YeV6SgvO0qUbFDgkgHPp8PGzduhM/nE10Uy2DO7JEDWWKUJY4IRQF8NUBdpfpd78GS6d2ACUuAKW8AuSO0vTd3BDBllfp+TtNEJA3pzqMkNbZX+bGOxWHutWPO7JED4TF2zVW/tP7/dhYf0rARV8OHtNjekDdCPa5IKalij29DnLKJdMEpm4iIElx5CbB3NfDNJ8DJzwGf68zPnNlAn0uB8y5TRybkDNb52PuA4m+PfWJ3y2OfO1Q99pCJ+h+biIiIiIiIYlNeAiwabt7xZm5T/wcUOWXUXBfgcIg7viAir+WmmHIUIskpigK/34+0tDQ4bHgS6wjmzB45kCVGS8dxYD2w+Vng6NbWt/G5gMOb1K/NzwDnDweueQgY8AN9ypAzGMiZoz5WFCBQqw6LTUkFUjNs+ccfkd1Y+jxKtsP2Kj/WsTjMvXbMmT1ykDAx5uSr/w+29f9jGxQAfqQhDX60G0XuiDM3pDVO2/TWz4BjOzp07A7pN4z/jwrAKZuIdOB2u7Fw4UK43W7RRbEM5sweOZAlRkvG4a0CVt8DrLxV+x+TR7cCKycBb85Q96Mnh0NdMKxLd/U7//gjsgVLnkfJtthe5cc6Foe51445s0cOEirGax7s8FvdyMJCx/1wI6v9jUc0OY5OU0Zplmfy8QgAp2windh9yqZQKISKigr07NkTycnJootjCcyZPXIgS4yWi6OsGHhlIuA5Gf++MvsAd7zJxaWJKC6WO4+SrbG9yo91LA5zrx1zZo8cJFyMq+9Rp93VKIQkVKA7eqISyQi3vmHBJHXdwLOJmjLKhkRey+UICRP9z//8DxwOR+QrLy/PkOMEAgGsWLECY8eORW5uLpxOJ/r06YPhw4fj6aefxunTpw05rp0lJyejd+/eifGhYRHMmT1yIEuMloqjrBgoGqdPZwSg7mfZWPUPQyKiDrLUeZRsj+1VfqxjcZh77Zgze+Qg4WIc+5R6c5pGyQijNyra7ozI7APc9GT0nzVOGWWGplNGkanYIWGSjz/+GIWFhYYfZ//+/bjqqqtw11134d1338XRo0fh9/tRVlaGbdu24eGHH0Z+fj7WrVtneFnspLa2FkVFRaitrRVdFMtgzuyRA1litEwc3ip1ZETTRaP14HMBL0/Qf/omIrINy5xHicD2agesY3GYe+2YM3vkIOFiTO+mjpR3Zmt6Wy3SUYRJqEV69A2c2ep+07u1vpM4pozSpOmUUWQqdkiYoKGhATNmzEA43EbvoA6OHz+O0aNHY/fu3QAAh8OB6667DnfffTd+9KMfoXPnzgCAU6dOYfz48fjwww8NLY+dpKSkIC8vDykpXCc+VsyZPXIgS4yWiWPdw/qNjDib5yTw7iPG7JuIpGeZ8ygR2F7tgHUsDnOvHXNmjxwkZIw5+cD0dZpGSqQghDwcRwpCLX+Y2UfdX3vTAQ8YAwyZqLGwGhVMAgb8wNhjUKu4hoQJ/vCHP+C3v/0tAGDKlClYuXIlACA3NxelpaW6Hefaa6/FRx99FNn322+/jUsvvTTy89OnT+P222/HBx98AADo1q0bvv76a2RnZ8d9bLuvIUFEJNyB9eoC1kab8ob6ByIRERERERHJz1ul3py2d1XH91EwSZ2mqa2REWcfc9FwY264y+wDzNwae1kkxTUkJLZ//3784Q9/AAD89Kc/xfe//31DjrNu3bpIZ0RqairWrl3brDMCAHr06IG3334bF154IQCgqqoKTz7ZypxtpInf78f27dvh9/tFF8UymDN75ECWGC0Rx+ZnzTnOFuOnHyQi+VjiPEr0LbZX+bGOxWHutWPO7JGDhI4xvZu6APWUN9R1F9rgRyq247vwI1V9IXcEMGWV+n4tHQAdnDKqXbFMGUWGY4eEgRRFwYwZM+D3+9G1a1c888wzhh3rueeeizyeOnUqCgoKom7XpUsX/O53v4s8X7x4MYLBoGHlsotAIIDdu3cjEAiILoplMGf2yIEsMSZ8HOUlwNGt5hzryBagfJ85xyIiaST8eZSoCbZX+bGOxWHutWPO7JEDS8Q4YIw65dLMbcAVM6JuEkAn7E69EoErf6FuN31dx6dG6sCUUW2KdcooMhynbDLQ888/j/vvvx8AsGTJEtxzzz0oKirC9OnTAeg3ZVNtbS169OgR6UXdunUrrr766la39/l86NmzZ2ShnA8++AA33HBDXGXglE1ERCarPnLm8ZZCYNdL5h37ihnAuD+bdzwiIiIiIiJKHNVHgMJLov9s1h6ga65+xxIxZZQNcMomCR07dgyPPfYYAGDkyJG4++67DTvW1q1bI50RXbp0wRVXXNHm9k6ns1mHBRe3jl84HIbL5TJ84XKZMGf2yIEsMSZkHIWXnPkyszMCAHYuMfd4RGR5CXkeJWoF26v8WMfiMPfaMWf2yIEsMYbhgKvGo28cGqaMaqGjU0aRodghYZD77rsPHo8HqampWLx4MRwOh2HH+uKLLyKPCwoKkJKS0u57vve970V9P3VMTU0NCgsLUVNTI7oolsGc2SMHssQoSxy64gBLItKA51GyErZX+bGOxWHutWPO7JEDWWKsQSYKi940Jo4YpowCAPQbBoycHf+UUWSY9q9ck2avvfYa3nnnHQDAo48+ikGDBhl6vC+//DLyODc3tiFR559/fuTx/v37dS+T3WRlZWHWrFnIysoSXRTLYM7skQNZYpQlDl0FaoG0TNGlICKL4HmUrITtVX6sY3GYe+2YM3vkQJYYs+DBrGkTjI0jZzAw/IHWR+7/5EV9p4wi3bFDQmeVlZV44IEHAAADBgzA448/bsoxG+Xk5MT0nt69e0ceV1VV6V4mu0lKSkJ2drboYlgKc2aPHMgSoyxx6CoYANJEF4KIrILnUbIStlf5sY7FYe61Y87skQPLxdg1F5jnbvFyEoBs0wtDVsMpm3T20EMPoaKiAgDwwgsvIC3N+Ks1jYtTA0Dnzp1jek/T7Zq+P15OpxMZGRkAgFAoBJfLhcZ102tqahAIBAAA9fX1qKurAwAEg0G4XK7IPtxuNxoaGgAAXq8XXq8XANDQ0AC3+8zJzuVyIRgMAgDq6upQX18PAAgEApGhYYqiwOVyIRQKRWL1+XwAAL/fD4/HA6DlXH0ejyeyLofP54vkqLWYPB4Pnn/+eZSXl0sTk9H1VFlZieeeew4ej0eamLTWk8fjwaJFi3D8+HFpYjq7njweD5577jmcPn3a0jG53W4899xzkf0nRD2hM+rhVGNCJ9RAPfcqAFzIQujbj/hapMP3bc+BH6nwoItaT3DAhSyEoU4p6EEX+JGqxoQ01CJdjQlJcCELjRM01SADAXQCUlITrp5kO0cwJsYkU0zV1dWRz31ZYpKxnhjTmc/55557DtXV1dLEJGM9xRNTRUUFXnjhBZw+fVqamKxST+Xl5Xj++efh8XikicnoeiorK8MLL7wAl8slTUz8O6JlPX3zzTdYtGgRPB6PpWM6fvw4XnjhBXg8HmPrqc7b+v+5TdawsMM5It6YRGCHhI7ef/99rFixAgAwdepUXH/99aYct7GxAkBqampM72naUdL4S6GHYcOGYeLEiQCAiooKFBYWRn5Jli5din379gEANm3ahLVr1wIAjh8/jsLCwsg+Fi1ahK+//hqAmtP3338fAPD1119j0aJFke0KCwtx/PhxAMDatWuxadMmAMC+ffuwdOlSAOovcGFhYaSTaPXq1di+fTsA4LPPPsMrr7wCoOVcfa+88go+++wzAMD27duxevXqNmNKTU1F586d8cEHH0gTk9H1dOjQIdTW1iI1NVWamLTWU2pqKgYOHIiXXnpJmpjOrqfG+m2cGs6qMfl8Ppw+fTpyvk2IesL3sQnD1JhwMZbiNjUmpKHQMQMV6K7GhHHYDnXdoM+Qj1fwX2o9IROFjhmogTrt0iv4L3yGfDUmfA+rMU6NCd1R6JgB/7d/7C3FbdiHi4HUjISrJ9nOEYyJMckUU0VFBU6fPh35W1WGmGSsJ8akxpSamorTp09HyipDTDLWUzwxff755xg6dCj2798vTUxWqacPPvgAnTt3RmpqqjQxGV1P69atw9ChQyPbyRAT/45oWU8rVqzAueeei9TUVEvH9NJLL2Ho0KFITU01tp7e29T6/7lN1rCwwzki3piEUEgXtbW1Sl5engJA6d69u1JRURF1u2XLlilQb2BVcnNzdTn22LFjI/t89NFHY3rPunXrIu/JyMiIuwzFxcUKAMXpdCoZGRlKcXGxEgwGlerqaiUcDiuKoihut1vx+/2KoiiK1+tVamtrFUVRlIaGBqW6ujqyL5fLpQQCAUVRFKWurk6pq6tTFEVRAoGA4nK5IttVV1crDQ0NiqKo+fd6vYqiKIrf71fcbreiKIoSDoeV6upqJRgMKoqiKB6PR6mvr1cURVF8Pp9SU1OjKIqihEIhpbq6WgmFQoqiKEpNTY3i8/kURVGU+vp6xePxKIqiMCbGxJgYU+LEdPwLxXviS0WpKlX8L45R3HPPVZS5WUp4bpZSPbevEpybrShzsxTP3N5K/dyeijI3S/HN7aHUzO2jKHOzlNDcc5TquX2V0NxzFGVullIzt4/im9tDUeZmKfVzeyqeub0VZW6WEpybrVTP7auE52YpytwsxT33XMX/4g9ZT4yJMTEmxsSYGBNjYkyMiTExJsbEmMTEdGxf6//nlu61Zkwm11PjtdzGr+LiYsUsDkVRlFb6KkiDBx98MNK7VFRUhKlTp0bdrqioCNOnTwegLkBdWloa97Fvu+02vPHGGwCABx54IKZerrfeegsTJkwAoK4ncfLkybjKUFJSgiFDhkSeFxcXIz8/P659WonP58P27dsxbNgwOJ1O0cWxBObMHjmQJcaEj2PDfGDzM+Ydb+RsYPQc845HRJaX8OdRoibYXuXHOhaHudeOObNHDmSJ0bQ4qo8AhZdE/9msPVzUOgYir+VyyiYdfPrpp/jLX/4CALj++utb7YwwSvfu3SOPG9cwaE9ZWVnkcbdu3XQvk90Eg0GUlpZG5oej9jFn9siBLDEmfBwFE8093hCTj0dElpfw51GiJthe5cc6Foe51445s0cOZIlRljjIWBwhoYOmox769++PHj16tLptRUUFDh06BECdm/S73/1u5Ge//e1vMW7cOM3HLywsxIMPPghAXcNh27Zt7b7nsccew8KFCwEAP/nJT/Dmm29qPm5Tdh8hQUQk3NKbgKNbjT9O7ghg+jrjj0NEREREREQUDUdIxE3ktdwUU45iI19//XVkcZP2BAIB7NixI/K8cRETrQYNGhR5vHfvXgSDQaSktF21n376adT3U8eEQiFUVFSgZ8+eSE5OFl0cS2DO7JEDWWK0RBzXPAisNKFDYsSDxh+DiKRjifMo0bfYXuXHOhaHudeOObNHDmSJUZY4yFicskkCw4cPR1paGgCgrq4Ou3btanN7v98fWbUdAG644QZDy2cHHo8HixcvhsfjEV0Uy2DO7JEDWWK0RBwDxhg/lVLBJGDAD4w9BhFJyRLnUaJvsb3Kj3UsDnOvHXNmjxzIEqNpcXTNBea5o39xdETC45RNJjNiUWsAGDduHNatU6fQuPfee/HCCy+0uu2rr76KKVOmAFDXjygvL293REV77D5lk6Io8Pv9SEtLg8PhEF0cS2DO7JEDWWK0TBzeKmDRcMBzUv99Z/YBZm4F0rnuEBFpZ5nzKBHYXu2AdSwOc68dc2aPHMgSoyxx2AEXtaa43XfffZHHRUVFKCkpibqd1+vFnDlzIs//+7//O+7OCAIcDgecTidPthowZ/bIgSwxWiaO9G7AHW8Czmx99+vMVvfLzggi6iDLnEeJwPZqB6xjcZh77Zgze+RAlhhliYOMxQ6JBFZaWgqHwxH5KioqanXbcePGYeTIkQDUKZluvvlm7Nmzp9k2lZWVGD9+PL766isA6uiIRx991LDy20lNTQ2effZZ1NTUiC6KZTBn9siBLDFaKo6cfHXR6cw++uwvs4+6vxz7jHojIv1Z6jxKtsf2Kj/WsTjMvXbMmT1yIEuMssRBxuKt8RJZuXIlrrzySpw8eRKlpaUYOnQorrvuOvTv3x8VFRXYsGEDvF4vACAlJQVvvPEGsrOzxRZaEk6nE6NGjYLT6RRdFMtgzuyRA1litFwcOfnq9ErvPgLsXdXx/RRMAm56kiMjiChuljuPkq2xvcqPdSwOc68dc2aPHMgSoyxxkLG4hoTJtKwhUVpaigsuuCDyfNmyZZg2bVqb+9+/fz8mT56M3bt3t7pNz549sWzZMowbN05L0dtk9zUkiIgS1oH1wJZC4MiW2N+TOwIY8SAXsCYiIiIiIiKSENeQIN0MHDgQO3bswPLly/HDH/4Q/fr1Q2pqKnr16oVhw4bhySefxL59+3TtjCCgvr4e7733Hurr60UXxTKYM3vkQJYYLR3HgDHqlEsztwEjZwMXjmq5xoQzW3195Gx1u+nr2BlBRLqy9HmUbIftVX6sY3GYe+2YM3vkQJYYZYmDjMUpm0w2bdq0dkc5NMrLy0NHBrCkpqbirrvuwl133aX5vdQx4XAYLpcL4XBYdFEsgzmzRw5kiVGKOHIGAzlz1MeKAgRqgWAASEkFUjMALjpGRAaS4jxKtsH2Kj/WsTjMvXbMmT1yIEuMssRBxuKUTaQLTtlERERERERERERElPg4ZRORxQWDQZSWliIYDIouimUwZ/bIgSwx6h6HogC+GqCuUv3OewOISHKyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSD2tpaLF++HLW1taKLYhnMmT1yIEuMusRRXgJsmA8svwVYmAcs6Ac8daH6fWGe+vqG+UD5Pr2KTUSUMGT5PCB7YHuVH+tYHOZeO+bMHjmQJUZZ4iBjccom0gWnbCIiasWB9cDmZ4GjW2N/z/nDgWse4sLSRERERERERKQ7kddyuag1ERGREbxVwLqHgeLV2t97dCuwcitQMAm46UkgvZv+5SMiIiIiIiIiMhmnbCLSgdvtxoIFC+B2u0UXxTKYM3vkQJYYNcdRVgwsGt6xzoim9q5S91NeEt9+iIgEk+XzgOyB7VV+rGNxmHvtmDN75ECWGGWJg4zFDgkiHaSnp2P8+PFIT08XXRTLYM7skQNZYtQUR1kxUDQO8JzU5+Cek8CyseyUICJLk+XzgOyB7VV+rGNxmHvtmDN75ECWGGWJg4zFNSRIF1xDgogI6jRNi4br1xnRVGYfYOZWTt9ERERERERERHEReS2XIySIdOD1erFmzRp4vV7RRbEM5sweOZAlxpjjWPewMZ0RgLrfdx8xZt9ERAaT5fOA7IHtVX6sY3GYe+2YM3vkQJYYZYmDjMUOCSIiIj0cWB//mhHt2btKPQ4RERERERERkQVxyibSBadsIiLbW3oTcHSr8cfJHQFMX2f8cYiIiIiIiIhISpyyicjiGhoasH//fjQ0NIguimUwZ/bIgSwxthtHeYk5nREAcGQLUL7PnGMREelEls8Dsge2V/mxjsVh7rVjzuyRA1lilCUOMhY7JIh0wDnytGPO7JEDWWJsNY7qI+rXzpfMLdAuk49HRBQnWT4PyB7YXuXHOhaHudeOObNHDmSJUZY4yFicsol0wSmbiMiW5p0j8NhucccmIiIiIiIiIsvilE1ERESkDe8nICIiIiIiIiKLYYcEkQ5cLhfmz58Pl8sluiiWwZzZIweyxJiQcQRqRZeAiChmCXkeJWoF26v8WMfiMPfaMWf2yIEsMcoSBxmLUzaRLuw+ZVMwGMTx48fRt29fpKSkiC6OJTBn9siBLDG2GofIKZsePgR06S7u+EREGsjyeUD2wPYqP9axOMy9dsyZPXIgS4yyxGEHIq/lskOCdGH3DgkisimRHRK/Og6kZYo7PhERERERERFZEteQILK4uro6vPbaa6irqxNdFMtgzuyRA1liTMg4UjNEl4CIKGYJeR4lagXbq/xYx+Iw99oxZ/bIgSwxyhIHGYsdEkQ6SEpKQnZ2NpKS+CsVK+bMHjmQJcZW45i1R/3qd5W5Beo3DHA4zD0mEVEcZPk8IHtge5Uf61gc5l475sweOZAlRlniIGNxyibSBadsIiJb2zAf2PyMeccbORsYPce84xERERERERGRNDhlE5HFBQIB7N69G4FAQHRRLIM5s0cOZImx3TgKJppboCEmH4+IKE6yfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaQDn8+HjRs3wufziS6KZTBn9siBLDG2G0dOPnD+cHMKkzsCyBlszrGIiHQiy+cB2QPbq/xYx+Iw99oxZ/bIgSwxyhIHGYtTNpEuOGUTEdnegfXAyluNP86UVcCAHxh/HCIiIiIiIiKSEqdsIrI4RVHg8/nA/r3YMWf2yIEsMcYUx4Axxk+lVDCJnRFEZEmyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaQDt9uNhQsXwu12iy6KZTBn9siBLDHGHMfYp4DMPsYUIrMPcNOTxuybiMhgsnwekD2wvcqPdSwOc68dc2aPHMgSoyxxkLE4ZRPpwu5TNoVCIVRUVKBnz55ITk4WXRxLYM7skQNZYtQUR3kJsGws4HPpVwBnNjB9nbpWBRGRBcnyeUD2wPYqP9axOMy9dsyZPXIgS4yyxGEHIq/lskOCdGH3DgkiombKS4CXJwCek/HvK7MPcMeb7IwgIiIiIiIiIl1wDQkii6utrUVRURFqa2tFF8UymDN75ECWGDXHkZMPzNyqrvkQj4JJ6n7YGUFEFifL5wHZA9ur/FjH4jD32jFn9siBLDHKEgcZix0SRDpISUlBXl4eUlJSRBfFMpgze+RAlhg7FEd6N2DCEmDKG0DuCG0HzB0BTFmlvj+9m7b3EhElIFk+D8ge2F7lxzoWh7nXjjmzRw5kiVGWOMhYnLKJdMEpm4iI2lG+DyheDXzzCXBid/M1JpzZwLlDgfMuA4ZMBHIGiykjEREREREREUmPUzYRWZzf78f27dvh9/tFF8UymDN75ECWGHWJI2cwMHoOcNfbwKOlwK+OAw8fUr8/Wqq+PnoOOyOISEqyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSDQCCA3bt3IxAIiC6KZTBn9siBLDHqHofDAaRlAl26q98dDn32S0SUoGT5PCB7YHuVH+tYHOZeO+bMHjmQJUZZ4iBjccom0gWnbCIiS1EUwO8BQg1Acid2ChARERERERGRbYi8lssVRoh0EA6HUVNTg6ysLCQlceBRLJgze+QgoWIsLwH2fruGw8nPW67h0OdSdQ2Hgkktpk1KqDiIiCyI51GyErZX+bGOxWHutWPO7JEDWWKUJQ4yFlsGkQ5qampQWFiImpoa0UWxDObMHjlIiBgPrAeW3gQsGg5sfgY4vKl5ZwSgPj+8Sf35oqvV7Q+8H/lxQsRBRGRhPI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsThlE+nC7lM2sQdYO+bMHjkQGqO3Clj3MFC8uuP7KJgE3PQkws5s6euKiMhIdvjMI3mwvcqPdSwOc68dc2aPHMgSoyxx2AGnbCKyuKSkJGRnZ4suhqUwZ/bIgbAYy4qBVyYCnpPx7WfvKqB0M5LueBPZOfbpZCUi0psdPvNIHmyv8mMdi8Pca8ec2SMHssQoSxxkLHZVEenA4/HghRdegMfjEV0Uy2DO7JEDITGWFQNF4+LvjGjkOQnP0gl44a/PSl1XRERGssNnHsmD7VV+rGNxmHvtmDN75ECWGGWJg4zFDgkiHaSmpmLo0KFITU0VXRTLYM7skQPTY/RWqSMjzl4jIk6p/koM9fwHqcE6XfdLRGQXdvjMI3mwvcqPdSwOc68dc2aPHMgSoyxxkLG4hgTpwu5rSBBRglh9T3xrRrSnYBIwYYlx+yciIiIiIiIiMpjIa7kcIUGkA5/Ph40bN8Ln84kuimUwZ/bIgakxHlhvWGeED2nYiKvh2/tP9ThERKSJHT7zSB5sr/JjHYvD3GvHnNkjB7LEKEscZCx2SBDpIBgMorS0FMFgUHRRLIM5s0cOTI1x87OG7TqIZJSiL4JIBrYUGnYcIiJZ2eEzj+TB9io/1rE4zL12zJk9ciBLjLLEQcbilE2kC07ZRERClZcAi4abd7yZ24CcweYdj4iIiIiIiIhIJ5yyicjiQqEQysrKEAqFRBfFMpgze+TA8Birj6hfO18yZv/fCiEJZeiJUOPH5q6X1OMSEVFM7PCZR/Jge5Uf61gc5l475sweOZAlRlniIGOxQ4JIBx6PB4sXL4bH4xFdFMtgzuyRA8NjLLxE/dplbIeEBxlY7LgTHmSoL+xcoh6XiIhiYofPPJIH26v8WMfiMPfaMWf2yIEsMcoSBxmLUzaRLuw+ZZOiKPD7/UhLS4PD4RBdHEtgzuyRA8NjnHeO/vuMQgHgRxrS4EezKOa5TTk+EZHV2eEzj+TB9io/1rE4zL12zJk9ciBLjLLEYQcir+WmmHIUIsk5HA44nU7RxbAU5sweOZAlRgcAJ/yii0FEZFmyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsThlE5EOampq8Oyzz6KmpkZ0USyDObNHDmSJsQYZeBb3oKZxyiYiItJEls8Dsge2V/mxjsVh7rVjzuyRA1lilCUOMhY7JIh04HQ6MWrUKPYCa8Cc2SMHssTohB+jsI2jJIiIOkiWzwOyB7ZX+bGOxWHutWPO7JEDWWKUJQ4yFteQIF3YfQ0JIhLEpDUkWj8+15AgIiIiIiIiImsReS2XIySIdFBfX4/33nsP9fX1ootiGcyZPXJgeIyz9qhf/a4yZv/fqocT72EU6vHtXR79hqnHJSKimNjhM4/kwfYqP9axOMy9dsyZPXIgS4yyxEHGYocEkQ7C4TBcLhfC4bDoolgGc2aPHBgeY9dc9St3hDH7/1YYDriQhTAc6gt5I9TjEhFRTOzwmUfyYHuVH+tYHOZeO+bMHjmQJUZZ4iBjccom0gWnbCIiocpLgEXDzTvezG1AzmDzjkdEREREREREpBNO2URkccFgEKWlpQgGg6KLYhnMmT1y0GqMigL4aoC6SvV7vH3jOfnA+cZ1SASRjFL0RRDJ6mgMdkYQEWlih888kgfbq/xYx+Iw99oxZ/bIgSwxyhIHGYsdEkQ6qK2txfLly1FbWyu6KJbBnNkjB81iLC8BNswHlt8CLMwDFvQDnrpQ/b4wT319w3ygfF/HDnbNgzqWvLladMFyx62oRRdghHHHISKSlR0+80gebK/yYx2Lw9xrx5zZIweyxChLHGQsTtlEuuCUTUTUqgPrgc3PAke3xv6e84cD1zwEDPiBtmOtvgcoXq3tPVoUTAImLDFu/0REREREREREBuOUTUREJB9vldpBsPJWbZ0RgLr9yknAmzPU/cRq7FNAZh9tx4pVZh/gpieN2TcRERERERERkQ2wQ4JIB263GwsWLIDb7RZdFMtgziTPQVkxsGg43MXrsQD3wY3Mju1n7yp1serykti2T+8G3PEm4Mzu2PFa4U47DwsCd8HdkKzrfomI7ELqzzySDtur/FjH4jD32jFn9siBLDHKEgcZix0SRDpIT0/H+PHjkZ6eLroolsGcSZyDsmKgaBzgOYl01GM81iMd9R3fn+cksGxs7J0SOfnA9HX6jZTI7IP0O1/F+P/6iXx1RURkEmk/80hKbK/yYx2Lw9xrx5zZIweyxChLHGQsriFBuuAaEkQEQJ1eadFwtRNBb5l9gJlb1VEQsZbl3UfUURYdVTBJnaYp1mMSERERERERESU4riFBZHFerxdr1qyB1+sVXRTLYM4kzcG6h5t1RnjhxBqMgRfO+PftOal2MMQqvZu6APWUN4DcEdqOlTsCmLJKfX96NznriojIRDyPkpWwvcqPdSwOc68dc2aPHMgSoyxxkLFSRBeAiIgkcWA9ULza2GPsXaWOWhgwJvb3DBijfpXvU8v3zSfAid2Az3VmG2c2cO5Q4LzLgCETgZzB+pabiIiIiIiIiIg4ZRPpg1M2ERGW3gQc3Wr8cXJHqGtExENRgEAtEAwAKalAagbgcOhTPiIiIiIiIiKiBMYpm4gsrqGhAfv370dDQ4PoolgGcyZZDspLonZGNCAF+9EfDXoOyDuyRR3tEA+HA0jLBLp0V7+30xkhVV0REQnA8yhZCdur/FjH4jD32jFn9siBLDHKEgcZix0SRDrgHHnaMWeS5KD6iPq186WoP/ai87drSHTW97i7XlKPaxIp6oqISCCeR8lK2F7lxzoWh7nXjjmzRw5kiVGWOMhYnLKJdMEpm4hsat45go/vFnt8IiIiIiIiIiKL4ZRNREREREREREREREQkNXZIEOnA5XJh/vz5cLlcootiGcyZPXLgQhbmO/4HLmSJLkpc7FBXRERG4nmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjMUpm0gXdp+yKRgM4vjx4+jbty9SUnRcvFdizFkC5EBRAL8HCDUAyZ1iWty5hXambAoiGcfRB31xEikIxVHY1o5vzpRNwuuKiMjieB4lK2F7lR/rWBzmXjvmzB45kCVGWeKwA5HXctkhQbqwe4cEkWWUlwB7VwPffAKc/Bzwuc78zJkN9LkUOO8yoGASkDO4/f1xDQkiIiIiIiIiIkvhGhJEFldXV4fXXnsNdXV1ootiGcyZyTk4sB5YehOwaDiw+Rng8KbmnRGA+vzwJvXni65Wtz/wflyHrUNnvIZbUIfOce1HNLZXIqL48DxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxmKHBJEOkpKSkJ2djaQk/krFijkzKQfeKmD1PcDKW4GjW7W99+hWYOUk4M0Z6n6imbVH/ep3VdQfJ0FBNmqQBJ0H4/Ubph7XJGyvRETx4XmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjMUpm0gXnLKJKAGVFQOvTAQ8J+PfV2Yf4I43gZxWfq83zFdHVphl5Gxg9BzzjkdEREREREREJAlO2URkcYFAALt370YgEBBdFMtgzgzOQVkxUDROn84IQN3PsrHqGhTRFEyM+nIAnbAbgxFAJ33K0WhI9OMZhe2ViCg+PI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaQDn8+HjRs3wufziS6KZTBnBubAW6WOjDh7jYh4+VzAyxOiT9+Ukw+cP7zlW5CGjbgaPqTpV47cEbEtuK0jtlciovjwPEpWwvYqP9axOMy9dsyZPXIgS4yyxEHG4pRNpAtO2USUQFbfAxSvNm7/BZOACUtavn5gvbpWhdGmrAIG/MD44xARERERERERSYhTNhFZnKIo8Pl8YP9e7Jgzg3JwYL2xnREAsHeVepyzDRjTYiolBeooCd0iLJgkpDOC7ZWIKD48j5KVsL3Kj3UsDnOvHXNmjxzIEqMscZCx2CFBpAO3242FCxfC7XaLLoplMGcG5WDzs/rtqy1bCqO/PvYpdQHsb7mRhYWO++FGVvzHzOwD3PRk/PvpALZXIqL48DxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxuKUTaQLu0/ZFAqFUFFRgZ49eyI5OVl0cSyBOTMgB+UlwKKW6zgYZua26Gs5lJeoC2D7XAghCRXojp6oRDLCHT+WMxuYvk5dq0IAtlciovjwPEpWwvYqP9axOMy9dsyZPXIgS4yyxGEHnLKJyOKSk5PRu3dvnmw1YM50zEH1EfVr50v6FCxWu1o5Xk6+2nmQ2QfJCKM3KuLrjMjsI7QzAmB7JSKKF8+jZCVsr/JjHYvD3GvHnNkjB7LEKEscZCx2SBDpoLa2FkVFRaitrRVdFMtgznTMQeEl6ldrHQRG2RllYetGOfnAzK2oHXgbijAJtUjv2DEKJgEztwrtjADYXomI4sXzKFkJ26v8WMfiMPfaMWf2yIEsMcoSBxmLHRJEOkhJSUFeXh5SUlJEF8UymDNJctDWrH/p3ZAy/n+RVzAMKf0u17bf3BHAlFXAhCVAerf4yqgDKeqKiEggnkfJSthe5cc6Foe51445s0cOZIlRljjIWFxDgnRh9zUkiISad464Y//qOJCWGdu25fuA4tXAN58AJ3YDPteZnzmzgXOHAuddBgyZGH1tCiIiIiIiIiIiihvXkCCyOL/fj+3bt8Pv94suimUwZ5LkIBho88fNYswZDIyeA9z1NvBoqdqZ8fAh9fujperro+ckZGeEFHVFRCQQz6NkJWyv8mMdi8Pca8ec2SMHssQoSxxkLHZIEOkgEAhg9+7dCATavjhLZzBnkuQgJbXNH7cao8Ohjqzo0l397nAYWMj4SVFXREQC8TxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxkrIKZtOnz6NDRs24OOPP8bnn3+O0tJSlJWVwefzAQCcTid69+6NvLw8XHrppbjyyitx4403okePHoJLbl+csolIIJFTNs11JXxnAhERERERERERnSHyWm7CrDBSVVWFV199FS+//DJ27tyJs/tJmj6vr69HaWkpSktLsXHjRgCAw+HAFVdcgTvuuAOTJ09Gt27iF0El+wiHw6ipqUFWVhaSkjjwKBbMmY45mLVH/f7Wz4BjO/QpXCz6DWu3M0KWepYlDiIiUXgeJSthe5Uf61gc5l475sweOZAlRlniIGMJbxkHDx7Evffei379+uGBBx7Axx9/jHA4DEVRmn2d7eyfh8NhfPzxx3jggQfQr18/3HvvvThw4ICAiMiOampqUFhYiJqaGtFFsQzmTMccdM1Vv3JH6FOwWOW1fzxZ6lmWOIiIROF5lKyE7VV+rGNxmHvtmDN75ECWGGWJg4wlbMqmb775BnPmzMGKFSsQCoWadTqcc845GD58OIYOHYpBgwbhvPPOQ48ePZCeng5FUVBfX4+Kigp88803+OKLL/D5559j69atcLvdZwJzOJCcnIw777wT8+fPR9++fUWEaRt2n7KJPcDaMWcG5KC8BFg0PP79xGrmtnYXoJalnmWJg4hIFJ5HyUrYXuXHOhaHudeOObNHDmSJUZY47EDktVwhHRJPPPEE/vSnP8Hr9UY6Ii666CJMmjQJ//Vf/4XLLrsMDo1zkiuKgk8++QT/+Mc/sHr1ahw8eBCA2jGRnp6Oxx9/HI899pjusZDK7h0SRAlj6U3A0a3GHyd3BDB9nfHHISIiIiIiIiIiXYm8liukq+rxxx9HXV0dkpKScOutt+I///kPDhw4gD/+8Y+4/PLLNXdGAGrHw+WXX44//vGP+PLLL7Fx40ZMmjQJSUlJqKurw+OPP25AJEQqj8eDF154AR6PR3RRLIM5MygH1zyo377aMiK248hSz7LEQUQkCs+jZCVsr/JjHYvD3GvHnNkjB7LEKEscZCwhHRIOhwPTp0/H/v378dprr+G6667T/RjXXnstXn/9dXz55ZeYNm0ahwmRoVJTUzF06FCkpqaKLoplMGdAaqdOGJo/EKkNtYCvBtBjwNqAMcCQifHvpy0Fk4ABP4hpU1nqWZY4iIhE4XmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjCVkyqZ9+/Zh8OC25x3X2xdffIFBgwaZekw74ZRNRDEqLwH2rga++QQ4+Tngc535mTMb6HMpcN5l6kX/dtZnaJW3Sl1LwnNSjxI3l9kHmLkVSO+m/76JiIiIiIiIiMhwtpuyyezOCADsjCBD+Xw+bNy4ET6fT3RRLMN2OTuwXl3fYdFwYPMzwOFN8PnqsRFXw4c0dRufCzi8Sf35oqvV7Q+8r/1Y6d2AO95UOzj05MxW96uhM0KWepYlDiIiUXgeJSthe5Uf61gc5l475sweOZAlRlniIGNxHiMiHQSDQZSWliIYDIouimXYJmfeKmD1PcDKW1ssNh1EMkrRF0EkR3/v0a3AyknAmzPU/WiRk68uOp3Zp4MFP0tmH3V/Odp6y2WpZ1niICIShedRshK2V/mxjsVh7rVjzuyRA1lilCUOMpaQKZtIPpyyiSiKsmLglYn6TJ2U2UcdnaCxQwDeKuDdR4C9qzp+7IJJwE1PcpomIiIiIiIiIiIJ2G7KJj2VlpZix44dOHz4sOiikI2FQiGUlZUhFAqJLoplSJ+zsmKgaFybnREhJKEMPRGK5VTsOQksG6uuQaFFejdgwhJgyhtA7ght780dAUxZpb6/g50RstSzLHEQEYnC8yhZCdur/FjH4jD32jFn9siBLDHKEgcZK+E6JBRFwYcffogPP/wQu3btanW7bdu24ZJLLkH//v0xfPhwXHTRRRg8eDD+/e9/m1haIpXH48HixYvh8XhEF8UypM6Zt0odGdF0weooPMjAYsed8CAjtv36XMDLE7RP3wQAA8aoUy7N3AaMnA1cOKrlGhPObPX1kbPV7aavAwb8QPuxmpClnmWJg4hIFJ5HyUrYXuXHOhaHudeOObNHDmSJUZY4yFgJN2XTxo0bccMNN8DhcODRRx/Fn/70pxbbFBcX46qrroLP58PZxU9JScFbb72Fm2++2awiEzhlk6Io8Pv9SEtLg8PhEF0cS5A6Z6vvAYpXt7uZAsCPNKTBD00ZKJikjlqIl6IAgVogGABSUoHUDEDnupClnmWJg4hIFJ5HyUrYXuXHOhaHudeOObNHDmSJUZY47IBTNjXx3nvvRR7feeedUbd56KGHUF9fH3nerVs3pKamAlAXT/nZz36G2tpaYwsaxenTp/H222/j8ccfxy233IL8/Hx07doVnTp1Qnp6Os477zyMGTMGTzzxBL755htdj11UVASHw6Hpa8aMGbqWwc4cDgecTidPthpIm7MD62PqjAAABwCn1s4IQF0P4sB6re+KUgAHkJYJdOmufjegLmSpZ1niICIShedRshK2V/mxjsVh7rVjzuyRA1lilCUOMlbCdUjs3LkTANCnTx8MGjSoxc8PHjyIDz74AA6HA927d8fmzZtx+vRplJWV4Yc//CEA4NSpU1i5cqWp5QaAadOmYfz48fjTn/6EtWvXYt++fXC5XAgGg6ivr8eJEyfw/vvv49e//jX69++P+fPnIxwOm15O0l9NTQ2effZZ1NTUiC6KZUibs83PxrxpDTLwLO5BTaxTNjW1pVD7ewSQpZ5liYOISBSeR8lK2F7lxzoWh7nXjjmzRw5kiVGWOMhYKaILcLZDhw7B4XDg0ksvjfrzt99+O/L4t7/9LYYPHw4AyM7Oxt/+9jfk5uZCURSsW7cO//3f/21KmaPp0aMHBg0ahNzcXGRkZMDr9eKrr77Cxx9/jGAwCL/fj3nz5uHQoUNYvny5rsceOHAgRo8e3e52jbmj+DmdTowaNQpOp1N0USxDypyVlwBHt8a8uRN+jMI2OOHXfqwjW4DyfUDOYO3vNZEs9SxLHEREovA8SlbC9io/1rE4zL12zJk9ciBLjLLEQcZKuA6JiooKAEDv3r2j/nzTpk0AgKSkJEyZMqXZz8477zxcffXV2LJlC/bs2WNsQaMYNWoUfvSjH2H06NG46KKLom5TXl6Ohx56CK+++ioA4O9//zt+9KMfYeLEibqV46qrrsJf//pX3fZH7UtNTcXQoUNFF8NSpMpZ9RH1+86XNL0tFQ0Yin0dP+6ul4DhDwBdczu+D4PJUs+yxEFEJArPo2QlbK/yYx2Lw9xrx5zZIweyxChLHGSshJuyyefzAUCrPWlbt26Fw+HA0KFD0b179xY/P//88wGc6dgw0y9/+Uvce++9rXZGAEBOTg5eeeUV3HDDDZHXFi9ebEbxyED19fV47733mq1tQm2TKmeFl6hfu7R1SNTDifcwCvXo4J0DO5eox01gstSzLHEQEYnC8yhZCdur/FjH4jD32jFn9siBLDHKEgcZK+E6JLp06QIAcLlcLX5WUlKC6upqAMA111wT9f2ZmZkAAL+/A1OgmMThcGD69OmR55999pnA0pAewuEwXC4X1wTRgDkDwnDAhSyEtS9rbRmy1LMscRARicLzKFkJ26v8WMfiMPfaMWf2yIEsMcoSBxkr4aZs6tOnDw4cOIDi4uIWP3v33Xcjj0eMGBH1/W63G8CZjo1E1bNnz8hjj8cjsCSkhy5duuD2228XXQxLYc6ALqjH7fin6GIYSpZ6liUOIiJReB4lK2F7lR/rWBzmXjvmzB45kCVGWeIgYyXcCInLLrsMAFBcXIxdu3ZFXg+Hw1i6dCkAdYTBddddF/X9Bw4cAAD07dvX4JLGZ9++M/PG5+XliSsI6SIYDKK0tBTBYFB0USyDOQOCSEYp+iKIZNFFMYws9SxLHEREovA8SlbC9io/1rE4zL12zJk9ciBLjLLEQcZKuA6JW2+9NfJ4/PjxWLZsGdauXYvx48dj//79cDgcuOGGG5qNMGhUX1+PkpISOBwODBo0yMxia3LixAk8/fTTked6LmgNqNNdrVq1CvPmzcNDDz2EuXPnYvHixdizZw8URdH1WKSqra3F8uXLUVtbK7oolsGcAbXoguWOW1GLxB7RFQ9Z6lmWOIiIROF5lKyE7VV+rGNxmHvtmDN75ECWGGWJg4zlUBLwCvXw4cOxfft2OBzN51VXFAVJSUn4z3/+g5EjR7Z435tvvolJkybB4XDgySefxOzZs80qcru8Xi9KS0vx7rvv4sknn8SpU6cAAIMGDcKOHTsia190VFFRUbN1KVpz8cUX49FHH8Xdd9/dIr/xKCkpwZAhQyLPi4uLkZ+fr9v+iRLavHMEH98t9vhERERERERERGQZIq/lJtwICQBYs2YNvve970FRlGZfSUlJePLJJ6N2RgDqRflGo0ePNqm00W3evBkOhyPy1aVLF+Tn5+OXv/xlpDNi7Nix2Lp1a9ydEVocPHgQM2bMwC233IK6ujrTjkuUkBQF8NUAdZXq9472z87ao371u0rf8rWn3zD1uERERERERERERBaQkB0SvXr1wscff4w1a9Zg9uzZ+NnPfobf/e53KC4uxv/8z/9EfU9lZSW8Xi+uu+46jBs3DkOHDjW30Bp07doVr776Kv71r38hOztbt/2ef/75mD17NtatW4djx47B5/Ohrq4OX375JZ5//nkMHDgwsu0777yDKVOm6L7qvdPpREZGBgAgFArB5XJFpomqqalBIBAAoE6v1dghEgwG4XK5Ivtwu91oaGgAoI4s8Xq9AICGhobIouWAOjVV45x0dXV1qK+vBwAEAgHU1NQAUEfVuFwuhEIhAOrQMZ/PBwDw+/2RBcXD4TBcLlckHx6PB36/HwDg8/kiQ81ai8ntduOJJ57AyZMnpYnJ6HqqqKjAE088AbfbbW5MRz5D3br5wPJbEFzQH64F+cBTFwIL+sG9IB8Ny34MbJgPb+lnscfk7AV0zUWg7wjUQG3/CgAXshD69jRbi3T4kKbGhFR40AVuZOIJ3Iej6IMw1BFLHnSBH6lqTEhDLdLVmJAEF7LQ2GVSgwwE+g0HuuYm9O9T4+9GY0dsIrS9jsRUXV2NJ554AtXV1Wo9Jdjvk4znCMbEmBiTXDFVVlZGPvdliUnGemJMZ9rnE088gcrKSmlikrGe4ompvLwcCxYswKlTp6SJySr1dPLkycjngSwxGV1PJ06cwIIFC1BVVSVNTPw7omU9HTt2LBKjlWM6evQoFixY8P+zd+fhURVp+/jv0+l0Z98EwioBHI0sEhXCoiLgggoEZhRBRUXGGUBexVlwnHecEfX7/kR0lDijBEchKCgoowKKgAoBRGJECbKFPWwhYcnSnbXX3x9t2gSydKf7dHXXuT/XxUWWc07V81R1NZzqU4WKigop20nGmEQIygkJANDpdMjIyMDLL7+MhQsX4plnnml0Q/1il112Gb7++mts2rQJq1evDmBNm9a5c2fMnDkTM2fOxGOPPYYHH3wQ6enp0Ov1KCsrw3333YeRI0e6N+H21fjx43Hs2DG88soruPPOO9G1a1cYjUZERUXhyiuvxIwZM7Br165GyzqtXr0a77//vl/Krzd48GD3nhjnzp1DZmam+0WyaNEi92bemzdvxpo1awAAp06dQmZmpvsaCxYswJEjRwAAGzZswIYNGwAAR44cwYIFC9zHZWZm4tSpUwCANWvWYPPmzQBcG4bXb4BeV1eHzMxMnDt3DgCwcuVK5ObmAgB27tyJZcuWAXC9SDMzM92DwrJly7Bz504AQG5uLlauXNliTFFRUejevTtycnKkiUntdjpx4gT0ej2ioqICE9PGFcCiO7F58RysyTsMHNuMU3WRyFQe/SWmunE4cvwk8M2r2JD9Ija88RRwcIPn7RQxAIsw0dVOMCJTeRTncJkrJoxGLq5zxYQ+WIZfIwo1uB1bsFi5Dya4npRahl9jJ1yPyOXiOqzEaFdMuAyZyqOo+3lSYxEmYp9xoOrt5Gvfi4qKQlRUFA4dOuRZOwXpGGGz2WCxWNz/oAi215OMYwRjYkyMSa6YysrKYLFYEBUVJU1MMrYTY3LFFBUVBYvF4v4gggwxydhOvsS0Z88ejB8/HocOHZImplBpp5ycHHTv3h1RUVHSxKR2O61fvx7jx49HdXW1NDHx3xGXttOyZcswcOBAREVFhXRMixcvxvjx4xEVFSVlO8kYkwhBuYeEzIqKivC3v/3NvbxUYmIicnJycM011wSkfIfDgeHDh2Pr1q0AgL59+2L37t0+X7d+3bGIiAjo9Xrk5uYiNTUVZrMZ8fHxUBQFJpMJERERMBgMqKmpgcPhQHR0NGw2GyorK91Pi1RUVCAqKgrh4eHumcaoqChYrVZUV1cjPt61Xn95eTliYmKg1+tRVVUFnU6HyMhIWCwW1NbWIi4uDk6nExUVFYiNjUVYWBgqKyuh1+sRERGBuro6WCwWxMbGwuFwwGQyIS4uDjqdDmazGQaDAUajEbW1tbDZbIiJiYHdbmdMoRZTTRlMq55GxIGPYYAVNYiAAwqiUQMbwlCJaCTANahXIBZRqEE4bKhGhCsm1MLa515U3/QM4jt2bz2m7AmIK8qBE0AF4hCLSoTBgUpEQQ87IlCHOhhgQThiUQUHFJgQiziYoYMTZkTDACuMsKAWRtgQhhhUww4dzIhBPExQAJi6jEDEwx/K004y9j3GxJgYE2NiTIyJMTEmxsSYGBNjYkyMiTExpiCM6fTp08L2kOCEhCCzZs3C66+/DsC1sfXu3bsRFhYWkLK//vpr3Hrrre7vT548ia5du/p0Ta1val1dXY0NGzbg9ttvd8/YU8sCkrPiPcCyewDzGd+vFdsJmPxfILmVfn1wPfD+vR5dshoR2ICbcTs2Iwq13tXn/o+AK2/37hwBZHltyBIHEZEoHEcplLC/yo9tLA5z7z3mTBs5kCVGWeLQAm5qrUEvvvgi4uLiAAD79+/HF198EbCyhw0bhvDwcPf3+/fvD1jZRAFTvAfIHu2fyQjAdZ3FdwEle1s+7spRQN97/FNmc/pNCInJCCIiIiIiIiIioob4hIRAd955J9atWwcAePrpp/Hiiy8GrOzOnTu7N2B+//33cd999/l0Pa0/IUFBproUWDDUf5MRDcV2AmZ8C0QlBW/5REREREREREREzeATEhqVmJjo/vrChQsBLbt+Z3UAiI6ODmjZMrJarSgoKIDVahVdlZChas7WzlZnMgBwXfeLp1o+JirJtbxTREKLh1mhRwF6wQq9Z2VHJLiuG0KTEbK8NmSJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxkLo4ISFQ/RMKAJCUFLgbjEePHnXvzA64npYg31RXV+PTTz91b2hDrVMtZwfXA3tW+veaF9v9kaucliT3AR5Z63qioRnViMSnGIVqRLZeZmwn1/Va28MiyMjy2pAlDiIiUTiOUihhf5Uf21gc5t57zJk2ciBLjLLEQerikk2CXLhwAV26dEFdXR0AIDs7Gw8//HBAyn7mmWfwf//3fwCA+Ph4nD9/Hnq9h5/QbgaXbKKgsehO4MS36pfT/QbXBEFrqktdT1Ts/qjtZfWbANw5L6SejCAiIiIiIiIiouDEJZskUFpa6vGxDocD//M//+OejDAajRgzZkyby66srPT42G+//Rb//Oc/3d9PmjTJ58kIoqBRsjcwkxEAcHwbULKv9eOikoC73wbu/9A1ieGN7jcA93/kOp+TEUREREREREREFOI4IeEn7777LgYOHIh333230XJIF/vpp59w1113Yfny5e6fzZ49G5dddtklxxYWFkJRFPef7OzsJq+5cuVKpKen491330VFRUWTx9TW1uL111/HrbfeitraWgBAQkICnn32WS+ipOaUl5fjueeeQ3l5ueiqhAy/5qzsuOvP9+/4fi1v7HjHVa4nrhzleqJixnbgpj8BPYej3NgVzyl/RDniXMdEJAA9h7t+P2O76/grb1er9gEhy2tDljiIiEThOEqhhP1VfmxjcZh77zFn2siBLDHKEgepi0s2+cn8+fPxhz/8AQCg1+uRmpqKq666ComJiVAUBRcuXMBPP/2Ew4cPNzrv7rvvxvLly5t8SqGwsBA9evRwf7948WJMmTLlkuOys7PxyCOPNCo7NTUViYmJsNvtOH36NLZv395ooiQyMhLr1q3DsGHD/BG+5pdsstlsOHXqFLp27conTjzk15zNifdPpdpcftMTga2xWa04dewQuiZfBn1EFGCIARTFz5UTS5bXhixxEBGJwnGUQgn7q/zYxuIw995jzrSRA1lilCUOLRB5L5c9w0+MRqP7a5vNhj179mDPnj3NHh8bG4s5c+Zg1qxZCAsL81s9PCk7PT0d2dnZuPrqq/1Wrtbp9XqkpKSIrkZIYc4AfXg4Uq7sLboaqpKlnWWJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxkLqELdl05513IisrC6dOnRJVBb+aMWMGDhw4gDfeeAMPPfQQrr/+erRv3x7h4eEIDw/HZZddhr59+2Ly5MnIzs5GUVER/vjHP/plMuK+++7Dtm3b8PLLL+Puu+9GWloaunbtisjISBiNRnTo0AGDBg3CrFmzsHXrVnz33XecjPCzqqoqLF++HFVVVaKrEjKYM23kQJYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuoQ9IbF+/Xps2LABM2fORP/+/ZGRkYGxY8fi+uuvF1Uln1155ZW48sor8dhjj/nleikpKfBkRS2j0YihQ4di6NChfimXvKfT6ZCQkACdjtuyeIo500YOZIlRljiIiEThOEqhhP1VfmxjcZh77zFn2siBLDHKEgepS9geEnq9Hg6Hw1WJBmumd+rUCWPGjEFGRgZuvfVWGAwGEdUjL2l9DwkSLET3kCAiIiIiIiIiIgo0kfdyhU1XnTt3Du+99x4mTJiA2NhYOJ1OOJ1OFBUV4T//+Q/Gjh2Lyy67DL/+9a+xePFinDt3TlRViVplsViQn58Pi8UiuiohgznTRg5kiVGWOIiIROE4SqGE/VV+bGNxmHvvMWfayIEsMcoSB6lL2IREYmIiHnjgAaxYsQLnz5/Hhg0b8Pjjj7uXKXI6naiqqsLq1avx6KOPolOnThg6dChefPFF7N27V1S1iZpUW1uLnJwc1NbWiq5KyHDnrKYGqDUBVRdcf7floa1ZP7n+dBvk/4q2pNtgV7ltpIV+I0uMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXcKWbGrJnj17sGbNGqxevRp5eXnufRQaLu2UkpKCsWPHIiMjAzfffLNfNoemtuOSTeSVkr3A7pXA6R+AM7uA2vJffheRAHTqD3S5Hug3AUju7fl1v3oO+OZVf9e2eTf9CbjlH4Erj4iIiIiIiIiIyEci7+UG5YREQ2fPnsVnn32GNWvW4Msvv0R1dbX7d/UTFHFxcbjjjjswduxY3HXXXUhISBBUW+3S+oSE0+lEXV0djEZjo4kzusjB9cA384ET38IJoA5GGFGHFjN2+VDgxj8AV97e+vVL9gILAri5+4zt3k2YXEQL/UaWGGWJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxaIEm95DwVIcOHTB16lR88sknuHDhAj777DNMmzYNXbp0cS/tVFFRgQ8//BAPPvggkpOTMXLkSLz22ms4cuSI6OqTRlRUVOCll15CRQU3N25SdSmw8rfA+/cCJ74FAFQgDi8pM1GBuJbPPfEt8P4E4L+Puq7TkuQ+rgmMQOh+g0+TEYA2+o0sMcoSBxGRKBxHKZSwv8qPbSwOc+895kwbOZAlRlniIHUF/RMSLfnxxx+xevVqrFmzBjt37nT/vOEM3FVXXYVx48bhxRdfFFFFzdD6ExJ2ux3nzp1D+/btuXzYxYr3AMvuAcxnGv3YDh3O4TK0xwWEweHZtWI7AZP/65p4aM7B9a6JD7Xd/5FnT220QAv9RpYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHFoAZds8oPTp09jzZo1WLNmDTZu3Ii6ujr37xRFgd1uF1g7+Wl9QoKaUbwHyB7deI8IX0UkAI+sbXlSYuVvgT0r/VfmxfpNAO5+W73rExERERERERERqYRLNvlBly5dMH36dHz++ee4cOECPv74Y0yZMgXt27cXXTXSgMrKSmRnZ6OyslJ0VYJHdanryYhmJiMqEYVsTEAlory7bm05sPTulpdvuutl19MUaojtBNw5zy+X0kK/kSVGWeIgIhKF4yiFEvZX+bGNxWHuvcecaSMHssQoSxykLmkmJBqKiorC+PHjsWjRIhQXF2Pbtm2iq0SS0+v1SElJgV6vF12V4LF29iXLNDWkhx0pOAU92vD0kvkM8MVTzf8+Ksm1tFNEgvfXbklEguu6UUl+uZwW+o0sMcoSBxGRKBxHKZSwv8qPbSwOc+895kwbOZAlRlniIHVJs2QTicUlm6iRgO3j8CFw5ajmf1+y1/U0RQsTIx7zZP8KIiIiIiIiIiKiIMclm4hCXF1dHXJzcxvtXaJp38xv9ZA6GJCLa1EHQ9vL2ZbZ8u+T+wAzvnXt+eCLfhNc1/HzZIQW+o0sMcoSBxGRKBxHKZSwv8qPbSwOc+895kwbOZAlRlniIHVxQoLIDywWC/Lz82GxWERXRbySvcCJb1s9zIJw5KMPLAhve1nHtwEl+1o+JirJtQH1/R8C3W/w7vrdbwDu/8h1vp+WaWpIC/1GlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6uGQT+QWXbNK4suO/fL0tE9jxTuDKHvgoMPqfnh9fsg/YsxI4/QNQlN940+2IBKBzGtDleqDvPUByb//WlYiIiIiIiIiISDCR93K5wwiRHzgcDphMJsTFxUGn0+CDR5nXeH2KAwpMiEUczNDBh3nR79/2bkIiuTeQ/A/X104nYKkEbBZAbwAMMYCitL0uXtJCv5ElRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC72DCI/MJlMyMzMhMlkEl2VkGFCLDKVR2FCrO8Xa+uDXooCGGOB6MtcfwdwMgLQRr+RJUZZ4iAiEoXjKIUS9lf5sY3FYe69x5xpIweyxChLHKQuLtlEfqH1JZs0PwM8J97rU/z2hAQA/PWUa0IhxGih38gSoyxxEBGJwnGUQgn7q/zYxuIw995jzrSRA1lilCUOLeCSTUQhTqfTISEhQXQ1QooOTiTATzPmNgtg9M+lAkkL/UaWGGWJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxkLo4VUXkB2azGVlZWTCbzaKrEjLMiEYWJsOMaN8vpjf4fg0BtNBvZIlRljiIiEThOEqhhP1VfmxjcZh77zFn2siBLDHKEgepixMSRH5gMBiQlpYGgyE0b4yLYIAVadgLA6x+uFiM79cQQAv9RpYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuriHBPmF1veQ0Lyy4798/fHvgJPfBa7sboOB364PXHlEREREREREREQhTOS9XD4hQeQHtbW1yMnJQW1treiqiJHY/Zc/3W/w6JRaGJGDIaj1dfOHFM/KC0Za6DeyxChLHEREonAcpVDC/io/trE4zL33mDNt5ECWGGWJg9TFCQkiP7DZbCgsLITNZhNdFfH63ePRYTaEoRBdYUOYb+X19ay8YKSFfiNLjLLEQUQkCsdRCiXsr/JjG4vD3HuPOdNGDmSJUZY4SF3SLdk0ZswY7Nu3D4qi4MiRI6KroxlcsokaWXQncOJb9cvpfgPwyFr1yyEiIiIiIiIiIpIEl2zyo9OnT6OwsBCFhYWiq0IaYrfbUVxcDLvdLroqweHGJ1s9xA4ditEedl+GoRtaLyeYaaHfyBKjLHEQEYnCcZRCCfur/NjG4jD33mPOtJEDWWKUJQ5Sl3QTEkQimM1mLFy4EGazWXRVgsOVo1pdSsmMGCxUHoQZMW0ro98E4Mrb23ZukNBCv5ElRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC7plmy69tprsWvXLiiKwtm4ANL6kk1OpxN1dXUwGo1QFEV0dYJDdSmwYChgPtPkr50A6mCEEXXwOmOxnYAZ3wJRSb7WUigt9BtZYpQlDiIiUTiOUihhf5Uf21gc5t57zJk2ciBLjLLEoQVcsokoxCmKgoiICA62DUUlAZP/C0QkNPlrBUBEWyYjIhJc1w3xyQhAG/1GlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC69KIKfv7551W5bnFxsSrXJWqJyWTCokWLMHXqVMTFxYmuTvBI7uPadHrp3Zc8KWFCDBZhIqZiBeJQ6dn1Yju5JiOS5Xj6Rgv9RpYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuoRNSMyZM4ezZSSNiIgIDB8+HBEREaKrEnyS+7iWV/riKWD3R+4fR6AOw7EdEajz7Dr9JgB3zpPiyYh6Wug3ssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUJWwPCZ1OB0VR4O/i66/JPSQCS+t7SJCHDq4HtmUCx7d5fk73G4Abngz5DayJiIiIiIiIiIiCgch7ucKekKh/OkJRFAwePBgGg8Ev192xYweqqqr8ci0iT9XU1GDz5s24+eabERkZKbo63nE6gTozYLcCYeGAMRZQ6+mlK0e5/pTsQ83Oj7B5/1ncXLsBkXVnfzkmIgHonAZ0uR7oew+Q3FudugSBkO43HpIlRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC5hExK/+tWvcPDgQSiKgpdffhlDhw71y3WvvfZa7Nq1yy/XIvKUw+FAeXk5HA6H6Kp4pmQvsHslcPoH4MwuoLb8l99FJACd+rsmBPpNUGdCILk3HDf9GeXla+AY8xIQ7gRsFkBvAAwx6k2IBJmQ6zdtIEuMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXcKWbJo8eTLef/99KIqCV199FbNmzfLLdesnJLhkU2BxyaYQcXA98M184MS3np9z+VDgxj9wySQiIiIiIiIiIiIJiLyXqwtIKU0YOHCg++vvv/9eVDWI/MJms6GwsBA2m010VZpWXQqs/C3w/r3eTUYAruPfnwD891HXdfwk6HMWAFrIgSwxyhIHEZEoHEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdXFCgsgPKisrsWTJElRWVoquyqWK9wALhgJ7Vvp2nd0fua5Tstcv1QrqnAWIFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdwpZsqqmpQVxcHOx2OxRFQWlpKeLj432+blpaGn766Scu2RRgXLIpSBXvAbJHN94jwlcRCcAja4Fkti8REREREREREVGoEXkvV9im1pGRkfjTn/6EkpISAMD58+f9MiHxxRdfwGKx+HwdopBXXQosu8e/kxGA63pL7wZmfAtEJfn32kRERERERERERCQtYUs2AcDcuXOxePFiLF68GL169fLLNTt16oTu3buje/fufrkekScqKiowd+5cVFRUiK7KL9bOBsxn1Lm2+QzwxVM+XSIocxZgWsiBLDHKEgcRkSgcRymUsL/Kj20sDnPvPeZMGzmQJUZZ4iB1CZ2QIJJFVFQUxo8fj6ioKNFVcTm43vc9I1qz+yNXOW0UdDkTQAs5kCVGWeIgIhKF4yiFEvZX+bGNxWHuvcecaSMHssQoSxykLmF7SJBcuIdEkFl0J3DiW/XL6X6Daz8JIiIiIiIiIiIiCgki7+XyCQkiP6iursann36K6upq0VUBSvYGZjICAI5vA0r2tenUoMqZIFrIgSwxyhIHEZEoHEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdXFCgkgWZcddf75/J7Dl7ghweURERERERERERBSSuGQT+QWXbAoCc+IFls3NioiIiIiIiIiIiEKB5pZsuu666/DVV18FrLwNGzbguuuuC1h5pD1WqxUFBQWwWq2iqyJGG+Y1NZ8zaCMHssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUJWRCIj8/H6NGjcKNN96Izz77TLVyVq9ejRtuuAF33nkndu3apVo5RJpfI89S6fUpms8ZtJEDWWKUJQ4iIlE4jlIoYX+VH9tYHObee8yZNnIgS4yyxEHqErJk0/XXX4+dO3dCURQAwOWXX46pU6fi3nvvxVVXXeXTtQ8cOIAVK1Zg0aJFOHnyJADA6XTi+uuvx/fff+9z3alpXLIpCIhcsmn2USD6MnHlExERERERERERkUc0t2TTjh078Oabb6Jdu3ZwOp04ceIE5syZg969e+Pqq6/GzJkzsXz5cuzbtw82m63Z69hsNuzbtw8ffPABZs6ciauvvhq9e/fGc889hxMnTsDpdKJdu3ZYsGAB8vLyAhghkcboDaJrQEREREREREREREFOyISEoiiYPn06jh49ihdeeME9MeF0OnHw4EFkZWXhgQceQL9+/RAREYHOnTujX79+GDRoENLT09GvXz906tQJERER6NevHyZPnoysrCwcPHjQfZ327dvj//7v/3D06FFMmzbN/TQGkRrKy8vx3HPPoby8XHRVxDDEeH2K5nMGbeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6hCzZdLG6ujosXboUixYtwvbt25s85uIJheaqPWTIEPz2t7/FAw88AKPR6Pe6UtO0vmSTzWbDqVOn0LVrV+j1ejGVKDvu+vvj3wEnvwtcud0GA79d7/VpQZEzwbSQA1lilCUOIiJROI5SKGF/lR/bWBzm3nvMmTZyIEuMssShBSLv5QbFhERDx44dw2effYYvv/wSeXl5OHv2bIvHd+jQAenp6bjtttswZswY9OjRI0A1pYa0PiERVL56Dvjm1cCVd9OfgFv+EbjyiIiIiIiIiIiIqM00t4dES3r06IHHH38cq1evRnFxMc6cOYNvv/0Wn3zyCZYuXYqlS5fik08+wfbt21FcXIzi4mKsXr0ajz/+OCcjSJiqqiosX74cVVVVoqsC9LsnsOX1bVt5QZUzQbSQA1lilCUOIiJROI5SKGF/lR/bWBzm3nvMmTZyIEuMssRB6gr6Z2eSk5ORnJwsuhpELdLpdEhISIBOFwRzfMl9gMuHAie+Vb+s7jcAyb3bdGpQ5UwQLeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6gm7JJgpNXLLJB04nUGcG7FYgLBwwxgK+bsJ+cD3w/r3+qV9L7v8IuPJ29cshIiIiIiIiIiIiv+CSTUQhzmKxID8/HxaLxbMTSva69npYkgG8lALM7Qa83NP190sprp9/9RxQsq9tFbpyVJuXUvJYvwk+TUZ4nTMJaSEHssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUxQkJIj+ora1FTk4OamtrWz7w4Hpg0Z3AgqGujaePbQZqyy+6WLnr59+8CiwY4jr+4AbvK3XXy0BsJ+/P80RsJ+DOeT5dwuOcSUwLOZAlRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC4u2UR+wSWbWlFdCqydDexZ2fZr9JvgmgSISvL8nJK9wOK7Lp308EVEAvDIWtdeFURERERERERERBRSuGQTUYhzOp2ora1Fk/N7xXtcT0T4MhkBALs/cl2nZK/n5yT3cU0e+OtJidhOfpuMaDFnGqGFHMgSoyxxEBGJwnGUQgn7q/zYxuIw995jzrSRA1lilCUOUhcnJIj8oKKiAi+99BIqKioa/6J4D5A9GjCf8U9B5jOuJx68nZSY8a3rCQtf9Jvguo6fnoxoNmcaooUcyBKjLHEQEYnCcZRCCfur/NjG4jD33mPOtJEDWWKUJQ5SF5dsIr/Q+pJNdrsd586dQ/v27REWFub6YXWp64kGf01GNBTbyTU54M3yTYBrD4ttmcDxbZ6f0/0G4IYnfdrAuilN5kxjtJADWWKUJQ4iIlE4jlIoYX+VH9tYHObee8yZNnIgS4yyxKEFIu/lckKC/ELrExJNWvlb35dpakm/CcDdb7ft3JJ9rrqd/gEoym+8x0REAtA5DehyPdD3HiC5t+91JSIiIiIiIiIioqDAPSSIQlxlZSWys7NRWVnp+sHB9epORgCuPSUOrm/bucm9gVv+ATy0CvhLIfDXU8Dso66//1Lo+vkt/1B1MuKSnGmQFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdnJAg8gO9Xo+UlBTo9XrXD76ZH5iCt2X6fg1FAYyxQPRlrr8VxfdreuCSnGmQFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdXLKJ/IJLNjVQste1d0SgzNjOZZWIiIiIiIiIiIjII1yyiSjE1dXVIXfjWtQVHwK+fyewhe94Byg7Htgy/aCurg65ubmoq6sTXRVhtJADWWKUJQ4iIlE4jlIoYX+VH9tYHObee8yZNnIgS4yyxEHq4oQEkR9YLBbkb/kclqybXRMEgfT920DmNYEt0w8sFgvy8/NhsVhEV0UYLeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6QmbJpj179uDkyZMoKyuDzWbDQw89JLpK1ACXbAIwJ15w+RViyyciIiIiIiIiIqKgxyWbmnH8+HHMnDkTSUlJ6N+/P8aMGYMHH3wQjzzyyCXHlpSUYOLEibj33nsxb948AbUlLXM4HChHHBwIzIbQMnA4HCgvL4fD4RBdFWG0kANZYpQlDiIiUTiOUihhf5Uf21gc5t57zJk2ciBLjLLEQeoK2gmJDz74AP369UNWVhbKy8vhdDrdf5qSnJyMs2fPYuXKlXj++edRWVkZ4BqTlplMJmQqj8KEWNFVCRkmkwmZmZkwmUyiqyKMFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQblk03//+1/ce++9AACn04mEhAQMGTIER44cwcGDB6EoCux2+yXnLVu2DA8++CAURcGKFStwzz33BLrqmqX1JZscDgdMz3dHHMzQQdBLKsSWbHI4HDCZTIiLi4NOF7Rzo6rSQg5kiVGWOIiIROE4SqGE/VV+bGNxmHvvMWfayIG3MZ4srcZN8zY1+butT41At6Qof1fRI1poK1lwyaYGysvL8bvf/Q5OpxOKouDZZ5/FmTNn8Pnnn+O2225r8dyMjAzo9XoAwNdffx2I6hIBAHQ6HRJgEjcZEYJ0Oh0SEhI0/QalhRzIEqMscRARicJxlEIJ+6v82MbiMPfeY860kQNZYpQlDlJX0PWOt956C+Xl5e7JiGeffRZGo9Gjc2NjY3H11VfD6XRi165dKteU6BdmsxlZ7V+A+be5QLdBgS2822Bg1k+BLdMPzGYzsrKyYDabRVdFGC3kQJYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuoJuQmLt2rUAgMsuuwx/+ctfvD7/qquuAgAcPXrUr/UiaonBYEDa9ekwdOgJdL8hsIWn3AAkdg9smX5gMBiQlpYGg8EguirCaCEHssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUpRddgYsdOHAAiqLgpptualPnTUxMBABUVITWevoU2oxGIwYPHuz6pt89wDevBq7wvqG5V0qjnGmUFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg68ibGg2ISluceb/f2TK/IxqEcSxqV1wVUdY/1VRY9ooa3Id0H3hERpaSkAoEOHDm06v36za65VRoFUW1uLnJwc1NbWAsl9gMuHBqbg7jcAyb0DU5afNcqZRmkhB7LEKEscRESicBylUML+Kj+2sTjMvfeYM23kwJMYNxaU4N6s7bhj/lYszT3R7HE/HC/DmzlHMGr+FtybtR2bCs6qUeUmaaGtyHdBd9c+Pj4eAFBZWdmm80+fPg3AteQTUaDYbDYUFhbCZrO5fnDjk4Ep+IYAlaOCS3KmQVrIgSwxyhIHEZEoHEcplLC/yo9tLA5z7z3mTBs5aCnGsioLnvhgJ6Zm70BeYalX180rLMUj2d9j1vKdKKuy+Ku6zdJCW5HvFKfT6RRdiYauvfZa7Nq1C3379sVPPzXeqPfxxx/HG2+8AUVR3E9CNGS1WtG+fXuYzWaMGDECX331VaCqrXl79+5F37593d/v2bMHffr0EVijILDyt8Celepdv98E4O631bs+EREREREREREJs/+MCVMW56HEVOfztZLjjFgyNR2pHeP8UDMKdSLv5QbdExIjRowA4ErKxRMSrVm8eDFMJhMAYOTIkX6vG1Fz7HY7iouLG0+U3fUyENtJnQJjOwF3zlPn2gHSZM40Rgs5kCVGWeIgIhKF4yiFEvZX+bGNxWHuvcecaSMHTcW4/4wJk97K9ctkBACUmOowcWEuCopNfrleU7TQVuS7oJuQuP/++91fT58+HXV1nr3o9uzZg6eeegoAoNfrMXnyZFXqR9QUs9mMhQsXwmw2//LDqCRg8n+BiAT/FhaR4LpuVJJ/rxtgTeZMY7SQA1lilCUOIiJROI5SKGF/lR/bWBzm3nvMmTZycHGMZVUWTFmch4oaq1/Lqaix4uFFeaot36SFtiLfBd2STQBwzz334OOPP4aiKBgyZAiysrLQt2/fJpdsqqmpwTvvvINnnnkGJpMJiqJg+vTpeOONNwRHoS1aX7LJ6XSirq4ORqMRiqI0/mXJXmDp3YD5jO8FxXZyTUYkh35uW8yZRmghB7LEKEscRESicBylUML+Kj+2sTjMvfeYM23k4OIYn/hgJ1bvKlKtvHFpnZE56Vq/X1cLbSULkfdyg3JCory8HEOHDkVBQYG78/bu3Rs1NTU4evQoFEVBRkYGiouLkZ+fD4vFgvowrrvuOmzbtg1Go1FkCJqj9QmJVlWXAl88Bez+qO3X6DfBtUxTiD8ZQURERERERERETdtYUIKp2TtUL2fRlAEYmZqsejkUnLiHxEUSEhKwadMmDB8+HE6nE06nE/v27cOxY8fcExSrV69GXl4e6urq3JMRI0eOxIYNGzgZQQFnMpkwf/589x4ml4hKcm1Aff+HQPcbvLt49xuA+z9ynS/RZESrOdMALeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRw0jDEr52hAysza7P9ytNBW5Du96Ao0Jzk5GV9//TWWLl2K1157Dfn5+c0ee/XVV+Mvf/kLJk+eDJ0uKOdYSHIREREYPnw4IiIiWj7wylGuPyX7gD0rgdM/AEX5QG15g4slAJ3TgC7XA33vAZJ7q1dxgTzOmcS0kANZYpQlDiIiUTiOUihhf5Uf21gc5t57zJk2clAf4/EKC/IKSwNSZt6xUhwoNuOqjrF+u6YW2op8F5RLNjWluLgY27dvR1FRESoqKhAdHY3k5GQMGjQIPXr0EF09zeOSTT5wOgFLJWCzAHoDYIgBuM4eEREREREREZEmnCytBgAs3HIES3NPBKzcBwd3x++H9US3pKiAlUnBgUs2eaBjx4749a9/jZkzZ+J///d/MWvWLEyaNImTERQUampqsG7dOtTU1Hh/sqIAxlgg+jLX3xqZjPApZ5LQQg5kiVGWOIiIROE4SqGE/VV+bGNxmHvvMWfayMEt877En15bgg9zA7NcU733co/jpnmb/HY9LbQV+S5ol2wiCiUOhwPl5eVwOByiqxIymDNt5ECWGGWJg4hIFI6jFErYX+XHNhZH5tw7nU5U1tlgtTsRHqYgxqh374PqC5lz5ikt5EAHJ2IUC3QIiYVsmqWFtiLfhcySTRTcuGQTEREREREREWlJQbEJq/OLsOtUOfacNqGixur+XXxkOPp2iUP/rgkYl9bFr+v0k3xSnv5caPmFc0cLLZ8CT+S93KB8QuJ///d/UVtbi86dO+PPf/6zx+e98sorKCoqQkxMDJ5//nkVa0jUmM1mw6lTp9C1a1fo9UH5sgo6zJk2ciBLjLLEQUQkCsdRCiXsr/JjG4sjS+43FpQgK+doi5sPV9RYse3wBWw7fAFv5hxBekoSZgzvhRGpHbwqS5ac+UILOQiDA+11lTjniIE9dFbYv4QW2op8F3Q9fOPGjZg7dy4yMzOh03lXPUVRMH/+fPzf//0ftm3bplINiS5VWVmJJUuWoLKyUnRVQgZzpo0cyBKjLHEQEYnCcZRCCfur/NjG4oR67suqLHjig52Ymr2jxcmIpuQVluKR7O8xa/lOlFVZPD4v1HPmD1rIQaRixZ3Gg4hUrK0fHMS00Fbku6BbsunJJ5/E66+/jrCwMJw+fRodOng+c1xSUoIuXbrA6XTiD3/4A1555RUVa0oNcckmIiIiIiIiIpLV/jMmTFmchxJTnc/XSo4zYsnUdKR2jPNDzUgGXLKJAk3kvdyge0IiNzcXANCnTx+vJiMAIDk52Z3I7du3+71uRERERERERESkLfvPmDDprVy/TEYAQImpDhMX5qKg2OSX61Ho2/rUCGx9agSu754Y0HIHdE/E1qdGBLRMoqCbkDh8+DAURWnzjEzv3r3hdDpx+PBhP9eMqHkVFRWYO3cuKioqRFclZDBn2siBLDHKEgcRkSgcRymUsL/Kj20sTijmvqzKgimL8xptWO0PFTVWPLwor9Xlm0IxZ/6mhRzEhVmx7K3XMbCzMaDlDuqZhG5JUX67nhbainwXdBMSJpNrdjgurm2PrcXHxwMAOz4FVFRUFMaPH4+oKP8N4rJjzrSRA1lilCUOIiJROI5SKGF/lR/bWJxQzP2zq/f67cmIi5WY6jBnzd4WjwnFnPmbFnJQH+OY61ICWm5G/y5+vZ4W2op8F3QTEjExMQDaPqFQf57RGNgZRdK28PBwpKamIjw8XHRVQgZzpo0cyBKjLHEQEYnCcZRCCfur/NjG4oRa7jcWlGD1riJVy1iVX4SNBSXN/j7UcqYGLeSgPsa+3S5DekpSQMpM75GEqzrG+vWaWmgr8l3QTUh06NABTqcTO3fubNP59ed5u/8EkS+qq6vx6aeforq6WnRVQgZzpo0cyBKjLHEQEYnCcZRCCfur/NjG4oRa7rNyjgamnM3NlxNqOVODFnLQMMbpw3sGpMwZN/fy+zW10Fbku6CbkBg0aBAA4ODBg9ixY4dX5+bl5eHAgQNQFAUDBgxQo3pERERERERERBRknE4nzLVWlFZZYK61wul0+nS9gmIT8gpL/VS7luUdK8WBYnNAyqLgNzI1GRn9O6taxri0zhiRyg9zkxiK09cR2s8++ugjTJw4EYqi4LrrrsPmzZs9WnesqqoKw4YNw86dO6EoCt5991088MADAagxAcDevXvRt29f9/d79uxp88bkREREREREREStKSg2YXV+EXadKsee06ZGG0/HR4ajb5c49O+agHFpXTxemuZkqeuT3Qu3HMHS3BOq1LspDw7ujhfG9239QNKEsioL7sjcosr+JclxRqybNQyJ0Qa/X5tCh8h7uUH3hMTdd9+NX/3qVwCAH3/8ESNHjsSBAwdaPOfAgQMYOXKkezKiR48emDRpUiCqSwQAsFqtKCgogNVqbf1gAsCcAdrIgSwxyhIHEZEoHEcplLC/yk/mNvb3UwL+Lttfud9YUIJ7s7bjjvlb8WbOEWw7fKHRZAQAVNRYse3wBbyZcwSj5m/BvVnbsangbKvXvmneJtw0b1NAJyMA4L3c403+XOb+6ikt5ODiGBOjDVgyNR3xkf7diyE+MhxLpqarNhmhhbYi3wXdhIROp8Pbb78NvV4PAPj+++/Rp08fjBo1CnPnzsWHH36ItWvX4sMPP8RLL72EUaNGoU+fPu7lnfR6Pd5++22EhYWJDIM0hmvkeY8500YOZIlRljiIiEThOEqhhP1VfrK1cUGxCfPWFeCBt3OR9vyX6DdnA657wfV32vNf4oG3czFvXYEqSwJ5W7avuS+rsuCJD3ZiavYOr5dTyissxSPZ32PW8p0oq7K0qXy1NTWJI1t/bQst5KCpGFM7xmHFtMFIjjP6pYzkOCNWTBuM1I5xfrleU7TQVuS7oFuyqd7y5csxdepU1NXVwel0QlGUZo+tD8FoNOKdd97B/fffH6hq0s+4ZBMRERERERFR4GwsKEFWzlGvbsynpyRhxvBePq8dL6Ls/WdMmLI4zy9L2CTHGbFkanqTN2ZTnv7c5+u31Z7nRiHGqBdWPgWnsioL5qzZi1X5RW2+xri0zpgztg+XaSI3LtnUhEmTJmHbtm0YMmQIANekQ3N/AOCGG27At99+K3Qy4vz581i1ahX+9re/ISMjA3369EFiYiLCw8MRFRWFLl26YNSoUXjxxRdx+vRp1ephsVjw3nvv4a677kL37t0RERGBTp06YejQoXjllVdw/vx51comIiIiIiIiIvWIfEpAVNn7z5gw6a1cv62nX2Kqw8SFuSgoNvnlev5isTnadJ7IpbpIfYnRBmROuhaLpgxAeo8kr85N75GExVMGInPStZyMoKARtE9INJSXl4d169YhNzcXJSUlMJvNiI2NRXJyMgYPHow777wTAwcOFF1NjBkzBp9/7tlMutFoxF//+lf8/e9/h07nv3mhgoIC3HfffcjPz2/2mA4dOmDx4sW46667/Fau1p+QKC8vR2ZmJmbNmoWEhATR1QkJzJk2ciBLjLLEQUQkCsdRCiXsr/IL5TYO1FMCapUdo9RhQsRubNJfj6zfDvOo7EBv7htsT0g011/V2NA7WIXya9ZT3sR4oNiMpbnHm913ZED3RAzqmYSM/oFvey20lSxE3ssNiQmJUNFwQqJdu3a4+uqr0b17d8TExKC6uhqHDx9GXl4ebDab+5yHHnoIS5Ys8Uv5p06dwqBBg1BU5HqES1EUDBs2DL169cK5c+fw1VdfoaamBgAQHh6OdevWYeTIkX4pW+sTEjabDadOnULXrl3d+59Qy5gzbeRAlhhliYOISBSOoxRK2F/lF6ptXP+UwMWbN/siPjLcozXl/VV2GBxor6vEOUcMYiI9W8/+iQ92YvWuti9V05pxaZ2ROela9/ciJySOvXjXJUuWX9xfRS7VJUqwv2adTicq62yw2p0ID1MQY9S3uPR8U7yN8WRpNW6at6nJ3219agS6JUV5Vb6/BHtb0S84ISGJV155BbGxsbjllltwxRVXNHlMSUkJ/vCHP+CDDz5w/+yjjz7CPffc43P5w4YNw9atWwEA3bt3x6pVq9C/f3/378+fP49Jkybh66+/BgAkJSXhyJEjfpmx1PqEBBEREREREZFaAv2UQLCUvbGgBFOzd/i93IstmjIAI1OTAbhu9ALAkyvy8cPxMtXLrjegeyJWzhja7O/Lqix4dvVenyZnuI+A/xQUm7A09ziW5p5o8vfXd0/EoB5Jqj2hEqwTEoGi9fj9gXtISOLPf/4zpk2b1uxkBAAkJydj2bJljZ5MWLhwoc9lr1271j0ZYTAYsGbNmkaTEYDrqY1Vq1ahZ8+eAIDS0lLMmzfP57IJqKqqwvLly1FVVSW6KiGDOdNGDmSJUZY4iIhE4ThKoYT9VX6h2MbPrt6ryoQA4NpPYc6avQEpOwJWjDQcRgSsHpWdlXPUL+W2JmvzL+V0S4pCt6QoDPJyrX5fDerZdHlVVVX4T/ZSZMz/yucnRVblF+GOzC1Bt3dGa4LpNbuxoAT3Zm3HHfO3NjsZAQA/HC/DmzlHMGr+FtybtR2bCs62eF1vY+yWFIXCuaOb/CPyZnwwtRUFL05ICKAoCh555BH39zt37vT5mm+88Yb764cffhj9+vVr8rjo6Gg8//zz7u8XLlzYaAkpahudToeEhAS/7gciO+ZMGzmQJUZZ4iAiEoXjKIUS9lf5hVobbywoUXXJIsB1o3pjQYnqZTugoNJpgAO/LGfTXNkFxSavN85uq7xjpThQbG70s4y0zgEp211e/y5N/vzQ2SpsOV6FErN/luoK1g29WxIMr1m1N3QPhhj9QZY4SF1Bv2STw+HA/v37UVhYCJPJBKvV8wH4oYceUrFmvlm/fj3uuOMOAK4nGurq2v5pg8rKSrRr1859jW+//RZDhgxp9vja2lq0b98elZWVAICvv/7a570kuGQTERERERERAf5ZT51+cW/W9oDcmE/vkYQPpzW+lyCi7PolkxZuOdLiJ9D97cHB3fH7YT0bfbpcZO4BsctlhRK1xxyRm8lT07hkk+9E3ssN2t1Fjh8/jhdeeAEfffSR+8a5NxRFCeoJiX379rm/TklJ8ela3377rXsyIjo6GgMHDmzx+IiICAwZMgRffvklAGDjxo1+29xaqywWC/bt24fevXvDYAj9N/NAYM60kQNZYpQlDiIiUTiOUihhf22bgmITVucXYdepcuw5bWq0+XF8ZDj6dolD/64Jqq2n7o1QamMRTwnUt48aZethR0pYGQrtibAhrMmym7vJqLb3co/jvdzjKJw72v2z6cN7Ii9b/fzPuLlXkz9/dvVeXDBV44omcuar+uWyGm7oHayaes0Gaszx92by9U+oXLyheyiNSy2RJQ5SV1A+P7N27Vr07dsXixcvhtlshtPpbNOfYFVUVIRXXnnF/b2vG1rv37/f/XW/fv082sX+uuuua/J8apva2lrk5OSgtrZWdFVCBnOmjRzIEqMscRARicJxlEIJ+6t3Gq6n/mbOEWw7fOGSG3cVNVZsO3zBq/XU1RTsbXyytNr9Z2nu8YCWvTT3uKplG2BHmr4IBtibLTuYjExNRkZ/dZduGpfWGSNSO1zy8/rlslrKma+aWy4r2DR8zQZyzCmrsmDK4jy/TUY0rN/Di/IaLd8U7OOSp2SJg9QVdEs2nThxAldffTVqamrcP+vYsSP69++Pyy67DOHh4R5fa/HixWpUsU2qq6tRWFiIL774AvPmzcPZs66B8Oqrr8Z3332H2Ni2z9Y+9thjWLBgAQBg4sSJWL58eavnvPnmm5g5cyYAoHfv3ti7t/lNpDzBJZuIiIiIiIi0o6zKgmdX7/Vpf4FxaZ0xZ2wfKZaM8aeUpz8XXQVNa/iEBCBu2STRy0V5IxDLtIkYc574YKeq+7eMS+scEk+oBCMu2eQ7kfdyg+4JiVdeeQU1NTVQFAVdunTBZ599hqKiInzxxRdYunQpFi9e7PEfkb755hsoiuL+Ex0djT59+uDPf/6zezLirrvuwrfffuvTZAQAXLhwwf11cnKyR+d07NjR/XVpqf/e4CIiIhATEwMAsNvtKC8vdz+tYjKZYLG4Zn9rampQVVUFALDZbCgvL3dfo6Kiwr1XSHV1NaqrXZ+QsFqtqKiocB9XXl7u3pC7qqrKPYllsVhgMrk2Z3I6nSgvL4fd7vokQWVlpXuWtq6uDmaza9Mqh8OB8vJyOBwOAIDZbHYvg1VbW+teNqy5mJxOJ8rKytzHyRCT2u1UV1eHs2fPup9okiEmb9vJ6XSiuroaZWVl0sR0cTs5nU6cO3fOfVyoxmS321FSUuI+TrZ2YkyMiTExJrVjslqtKCkpcR8nQ0wythNjqnDXtaSkxH2cDDH5u532ni7Hr+dvwJpdpwEAkbAg/OdPbxtgQyRc9dHBgRilDoArpihYoG9w3Pr847gjcwv2nir1W0xOpxMXTFU4UXwe5lqrO/8NY6qpqUFtbS1qa2v93k6VlZUw11pxtqIap0rOtWncC4OrDhGwwgBXfHrYEYX6T1M7EaPUQffzcZENjguHHZE/H6f8fJzyc/7b2k4RPx8X5j7OJVqpQ9jPxxlhhdF9nB3RDY6LUeoaxGRBDGoBOIM2povbKTHagHcevBYdIx3NxNS2dkqOdGLJ1HTER+ov6Xu7T5xDXmHpzzFZYIANOthVaaf65bK8HSMKik14afVOPPjWVqQ9/yWum/MFbnjhc/SbswHXPr8BD2dtwktf7MOBYrPP497uExdwz2tfYPXPY07b+p4VX+SfwB2ZW7D75PlWx72NBSX4YtdJVfve17uOuZ9QKS8vb3SfIFTfc8vKylBbWwun06nq+1N1VWWzY4TZVCHVe67a/44QIegmJOr3NdDr9diwYQPuuusuwTXyv8TERHzwwQf4/PPPkZCQ4PP1Gu6xERkZ6dE5DY9ryx4dzRk8eLB7Capz584hMzPT/SJZtGiRe++MzZs3Y82aNQCAU6dOITMz032NBQsW4MiRIwCADRs2YMOGDQCAI0eOuJ8EAYDMzEycOnUKALBmzRps3rwZgGt/jkWLFgFwvYAzMzNx7tw5AMDKlSuRm5sLANi5cyeWLVsGwPUizczMdA8Ky5Ytw86dOwEAubm5WLlyZYsxVVRU4PXXX8cnn3wiTUxqt9MPP/yABQsWoKKiQpqYvG2niooKvPzyy3j99delienidqqoqMCbb76J7du3h3RMp0+fRlZWFk6fPi1lOzEmxsSYGJPaMR04cABZWVnu/6jJEJOM7cSYXDFVVFQgKysLBw4ckCYmf7bT/jMmPPr2Foyw/YBoxXWj4zbjIfwq7DwAoLe+BDcbXPVJUGoxIWK3e6mZu4wFSAkrAwCkhRdhqOE4Skx1eOKdr32KqaDYhFff+QB/fWM50p7/EhNfWonXF/wH/eZsQPoL65CZmYmXP83DgWIzVq5cic2bN+Oll17C9u3b/dJOX2//AfPWFeCvbyzHn/65CP3mbEDGS6vwTtabSHv+Szzwdi7m/+sNbNmxx6OY2utc/0cfajiOtHDXp7NTwspwl7EAgGvZowkRu5GguG5c3Ww4gt56103NX4Wdx23GQwCAaMWCCRG7/dJOANBeV4kJEbvddR1n3IcuOle+BoafwsBwV//qojNhnPGXfTMnROx2xzTMUIgJkXsQo1iCNqam+p6+6hwyDHuRHGe8JKa2tNN10eW4/7ITSO0Y16jvnSytRva77+Gj9d+4YxppPIIHIvPRSWdWrZ2W5h73aox45M2vcMf8rTi2YyPMJ/ajosbaqJ1stVXoWbIF720pwKj5W/B/r/8HH67bAsD7cW//GROeXrwOw+z5iPm53dvS9+rbqcRUh/9dtA4L//NOo5guHveyco4GpO9lbT4KwDXuvfrqq6ioqAjp99zXX38dL730EioqKlR9f8pZ/1mzY8RHS96S5j1XrXZqGJMIQbdkU0xMDGpqanDrrbdi/fr1oqvTZkePHsWrr74KwDXjZTabceDAAfz444/uGbIRI0YgKysLV155pU9l3XLLLdi4cSMA4O9//zuef/75Vs/ZuHEjbrnlFgBAWFiYu05tVf+YT0REBPR6PXJzc5Gamgqz2Yz4+HgoigKTyYSIiAgYDAbU1NTA4XAgOjoaNpsNlZWV7smZiooKREVFITw83D3TGBUVBavViurqasTHxwNwzTbGxMRAr9ejqqoKOp0OkZGRsFgsqK2tRVxcnHtGNjY2FmFhYaisrIRer0dERATq6upgsVgQGxsLh8MBk8mEuLg46HQ6mM1mGAwGGI1G1NbWwmazISYmBna7vcmYwsLCcPLkSSQlJSEuLk6KmNRup5qaGpw+fRo9evSATqeTIiZv2ykqKgolJSUwGo1ITEyUIqaL28npdKKwsBCdOnVCVFRUyMZktVpRWFiIlJQUhIeHS9dOMvY9xsSYGFNwxVRXV4cTJ06gZ8+eCAsLkyImGduJMblistvtOHr0KC6//HIYjUYpYvJXO50tr8Q97+zEWVMtohULqpwGOKEgEhbYEAYrwmCADWFwogbh0MGBKMWKSqcBgIIoWGBBGGw/H6eDE7UIRxgc6Bar4JMnb0ditMHjmNb+cAhL8krw3fEKRMAKBxRYoIcedhhgRzUMcH1K3YJqZzgc0GFot2g8PDQF/TtFIC4uDna7vc3ttOnAWbz99T7knTQ3GVOkYkWl03UDO1qpQ61Tj+tT2uPRIZ1x46/aN9tO18/dCjt0HscUCSvsPx8XDjv0sKMGBihw+r2dmorJjjD3J9TrEI4w2BGh2FD183ExSh1qnOGwQ4co1CFWseCcMxo6OIMypvznxzbb9xz6SMxZsxdf7zrmjsnbdroz7XL89fYrEB2OS/pez//94pKY9LAjQrHD5DQgQrGr2k75L2Q0O0bYwyLw7Ko92Li7sM3tdFdaN/z1tl6IMeo8GvdKzbX4zds/4IKpCsm6SpxxxMEBXZv63sXt1CU2DJ8+eRsSosIvGfeOXqhGxoLvA9b31j85DO0NVlRVVaFz587uG8qh+J5b/wRB+/btUVlZqdr704GTZzH2je1N9r3Pp1+P1MuTQ/49V+1/R5w+fVrYkk1BNyGRmJgIk8mE3/3ud8jKyhJdHb8rKirC3/72N2RnZwNwxZuTk4NrrrmmzdccPXo01q5dCwD4y1/+grlz57Z6zhdffOF++iQmJsb9GFBbcQ8JIiIiIiIiuQXLeuqi969Qu3yt7yGx9akRAIAnV+Tjh+NlASt3QPdEvDYxzaO15zcWlCBr81HkHfN8Cez0HkmYcXOvJjewrie67S/eP6Pe/jMmTFmc55d9NJLjjFgyNR2pHeNaPTaQY07DDdUXbjmCpbknVCv3Yg8O7o4Xxvdt/cAgInoPB9Hly4B7SDTQvXt3AHA/hiKbzp07Y/HixXjiiScAAGVlZZg0aZJ7vbC2qN+zAUCjzcBb0vC4hudT21RWViI7O9uvy1/JjjnTRg5kiVGWOIiIROE4SqFEhv7qdDphrrWitMoCc60V/vgc4saCElVvDALAqvwi93rqzdl/xoQ7Mrf4VJdIWFG3byMy5n+FgmLv7j34o3zAFesdmVu8Lj/URcKKOwwF7vX2m9ItKQrdkqIwqEdSAGsGDOqZ5PFNzJGpyfhw2hCsf3IYZo7ohRuvaIf4yPBGx8RHhuPGK9ph5oheWP/kMHw4bUiLkxHN8SRnatp/xoRJb+X6bVPvElMdJi7MbbXvNxxz1MpBwzHnpnmb3H8CORkBAO/lHpfivQdwtdXaj5eHfBykLr3oClxs7Nix+Omnn9zrjcvqxRdfRHZ2NkwmE/bv348vvvgCY8aMadO1LrvsMvfXJSUt/+OtXnFxsfvrpKTAvsnLSK/XIyUlBXp90L2kghZzpo0cyBKjLHEQEYnCcZRCSaj214JiE1bnF2HXqXLsOW1CRc0vN+7iI8PRt0sc+ndNwLi0LriqY6zX18/KOerP6jZfzuajGJma3OTv6m+MNoytLexQUOyIRYnZiokLc7Fi2mCPPq3tr/Lr1d+Yvbj8+icEAHFPCahVdn3u7VBaLBsAMtI6482cI34tvyUZ/bt4fc5VHWMxu2MqANdEYJXFDovNAYNeh2hDGBTl0ji91VLO1FZWZcGUxXl+6/P1KmqseHhRHtbNGtbsU0oNxxw1c9DSmBNIYWFhIfneczE7FHTs0k3VOAqKTViae7zZ3z+5Ih+DeiS1+f2O1Bd0T0hMnz4dcXFxOHHiBD744APR1VFNVFQUhg4d6v5+27Ztbb7WVVdd5f76+PHmX5ANnTjxy2xvampqm8sml4iICAwfPhwRERGiqxIymDNt5ECWGGWJg4hIFI6jFEpCrb9uLCjBvVnbccf8rXgz5wi2Hb5wyc3Dihorth2+gDdzjmDU/C24N2s7NhWc9biMgmIT8go9X5rGF3nHSnGg+NIlhf15Y9QCPfJtXWCB3n1jtKzK0uI5at+YbVh+/RMCIp8SUKvshrlvrux6qR3jkJ4SmPjTeyT5fONSURTEGPVIijYgxqj3y2QE0HLO1Pbs6r1+ezLiYiWmOsxZs7fJ31085qiZg+bGnECz68JD6r2nORbocd2gG1SJo+H7XUtPsfxwvKzN73cUGEE3IdGlSxdkZ2dDp9Nh2rRp+PLLL0VXSTWJiYnury9cuNDm61x99dXur3fv3u3RBtU//vhjk+dT29TV1SE3N9e98RC1jjnTRg5kiVGWOIiIROE4SqEkVPprWZUFT3ywE1Ozd3g9WZBXWIpHsr/HrOU7m70Rf7K02v2npU+iqqGp8vx5YzQcdvQOK0E4XEsnt3RjVI3yL9ZS+RlpnVUpszkNnxJQo+yLc99c2fWmD+/p9zo0ZcbNvQJSTlu0lDM1iVimrbkxR+0cBHqMa0plVU1IvPe0Jhx27M3f4dc41H6/o8ALugmJEydO4LrrrkNWVhasVivuvPNOjB8/HsuWLcNPP/2E48eP48SJEx79CXZnzpxxf+3LsklDhw6F0WgEAFRVVWHHjh0tHl//D+x6I0eObHPZ5GKxWJCfnw+LhYObp5gzbeRAlhhliYOISBSOoxRKQqG/BmIfA9HrqTfk7xujethxhf489A1ubra0f4XI/TNEPiWgRtlN5b6psuuNTE1GRn91J2XGpXVu094Oatj61AhsfWoEru/+ywdYm8uZPw3onthoqTAgsMu01WtuzFE7BxePOUI4bEH/3uMJPew4tH+P3+Lgvj1yUpz+2N3Kj3Q6XaPH2pxOZ5sec1MUxaMnBUS5cOECunTp4p4xzM7OxsMPP9zm640ePRpr164FAEybNg1ZWVnNHvvBBx/g/vvvB+CaCCkpKfF5bTeRO7MTERERERFphb/3MQBce0xcvI9BytOf++36bXHsxbvc9wLuzdoekCWj0nsk4cNpQy75uejyNxaUYGp2yx889IfFUwZecmNeZNn1yqosuCNziypPqCTHGVvcx0CUeesKArp/xswRvTB71C/LeRcUm3DH/K0BK3/9k8NwVcdY4eOOSA3HvFBwsrQaN83b1OTvtj41wuMN4lsSqPc7rRJ5LzfonpCoVz9PUv9idDqdXv8JpNJSz/9x4nA48D//8z/uyQij0djmDa3rPfbYY+6vs7OzsXdv0497VldX4x//+If7+9///vchv2FOMHA4HCgvL4fD4RBdlZDBnGkjB7LEKEscRESicBylUBLM/TWQ+xiIVmVxfRJajf0rFDgRo9RBQeP7Bk2tJR8M+2eIfErA32U3lfvWnlBIjDZgydR0xEeG+60egOvG5JKp6UE3GQE0Xi6ruf7q1/J+Xi5L5DJtJ0urm/19IHKwftZNTT6hEggDuifC6XQG7XvPxQqKTVi4pekJMwVOzH5/O176Yp9Pe3No6f1Oi4JuQuLyyy/H5Zdfju7du7u/rv/emz+XX355QOv97rvvYuDAgXj33XdhMjX/+M9PP/2Eu+66C8uXL3f/bPbs2bjssssuObawsBCKorj/ZGdnN3vd0aNH46abbgLgWpJpzJgx+Omnnxodc+HCBYwfPx6HDx8G4Ho64i9/+Ys3YVIzTCYTMjMzW2x7aow500YOZIlRljiIiEThOEqhJJj7q6h9DEQ4dq5StRuj0YoFEyJ2I1q59IZU/Y3RYNo/AwCey+iD5DijKmUmxxkxZ2zzn4r1Z9kX5761suuldozDimmD/VaP5DhjUH9KuuFyWS31V39ouFyWyGXamvu0PaB+DgCgfVyE0M3kg/m9p54nm0pHKxZcfeEbvLelwKdNpbX0fqdFQbdkU6iaP38+/vCHPwAA9Ho9UlNTcdVVVyExMRGKouDChQv46aef3JMB9e6++24sX768yacUCgsL0aNHD/f3ixcvxpQpU5qtw6lTp5Cenu7em0JRFNx8883o1asXzp07h6+++grV1dXuOq5btw633HKLr6ED4JJNDocDJpMJcXFx0OmCbp4vKDFn2siBLDHKEgcRkSgcRymUBGt/DdTSOYumDMDI1GSpl05R4ES0YkGV0wAngm+JlMK5o5v8eUGxCRMXilm+xF9lN8x9XKTB60mBsioL5qzZi1X5bV9PflxaZ8wZ2ycon4xoqP41r3Z/bbhcVrC+7gPxmt3z3CjEGF335kQsWfWrDtFB+d4DuF53z67e69E+Ds21lTevu0C/32mVyHu5XKvHT+o3lQYAm82GPXv2YM+ePc0eHxsbizlz5mDWrFkICwvzSx26du2KjRs34r777kN+fj6cTidycnKQk5PT6Lj27dtj8eLFfpuMINfeJwkJCaKrEVKYM23kQJYYZYmDiEgUjqMUSoK1vwZyg1nZb9A4oaDSqc7TBv7Q3F6a9U8JPLwozy+fHE6OM2LJ1HSPJgT8VXZ97r0pu6HEaAMyJ12LcWmdkbX5KPKOeb6cVnqPJMy4uVfQbGDdmvrlslbvKlKtvwbTht4tCcRrNtrwy725+idUArV3TP0TKsH43rP/jAlTFnv+um+urVblFyH36AWPXvd8v5NfcE25hbAZM2bgwIEDeOONN/DQQw/h+uuvR/v27REeHo7w8HBcdtll6Nu3LyZPnozs7GwUFRXhj3/8o98mI+qlpqbiu+++w5IlS3DHHXegW7duMBgM6NChAwYPHox58+Zh3759GD266U9cUNuYzWZkZWXBbG77+nhaw5xpIweyxChLHEREonAcpVDij/7qdDphrrWitMoCc63V5z0ORexjUL+Wuqj11NUUCQsyjHsRieBcQ7x+/4ympHaMw7pZwzAuzbd9Hcaldca6WcO8mhDwR9mRsODBhINY+dtrfVouaWRqMj6cNgTrnxyGmSN64cYr2l2yx0R8ZDhuvKIdZo7ohfVPDsOH04aExM33hp7L6IPLY6FKf/V0uaxAam7MUfs1O6B74iWTgNOH91SlrIvNuLkXgOD8t1L9ptLeTEK21FYlpjpMXJiLguLml6UKhn17SH18QsKPrrzySlx55ZWNNpj2RUpKSpv+4WowGPDQQw/hoYce8ks9qHUGgwFpaWkwGIL7kc9gwpxpIweyxChLHEREonAcpVDS1v5aUGzC6vwi7DpVjj2nTY2WtomPDEffLnHo3zUB49K6uD8N25r6TV5F7GPwwvhflnEY1CMJPxwvC1j5g3omYYeK5dkQhsO2drDBvx8Q9BeLzQG08GFwkU8J+Fr274Z2Q2xVJ3RIiGlT+Re7qmMsZndMBeCaCKyy2GGxOWDQ6xBtCGvySZNQkhhtwBsPpuPZxef92l+DdUPvbklRAC4dc9R+zQ7qeemeEQ2fUFFLwydUgu3fSm3dVLq1tqrfVHrdrGGN+l+wvN9RYHAPCfILre8hQURERERE2rSxoARZOUe9+kRnekoSZgxv/aawyPXcG+5jIGI99VHztwSsvGDTcC17TxwoNmP1rtPYdbICu09XXDIZ1q9LPPp3i0dGf88nw0KhbC0pKDYFZKku0XtI1I87IsacpvpnWZUFd2RuUWVz5eQ44yU35YPJEx/sVH0yJnPSte7vg+X9Tku4h4SHKioqYDab4XA4PDr+8ssvV7lGRC61tbXIzc3F4MGDERERIbo6IYE500YOZIlRljiIiEThOEqhxNP+6s0mnxfLKyxFXnZpUG+u23AfA1HrqavFABt660uwz5YMSxDeFmm4lr0nRD4l4G3ZfD/wXm1tLYoLfsSqael48csjqm7ovfWpEQCAJ1fkB/SpqAHdE/HaxDT39xePOWq+ZlsacxKjDVgyNV2VzeQvfkIlmF4bGwtK2jwZ4Wlbrcovwri0zkGxh0Nz+/aQeoJ6D4njx4/jr3/9KwYOHIiIiAgkJSWhe/fu6NGjR6t/evYMzFpvRIBrI/PCwkLYbDbRVQkZzJk2ciBLjLLEQUQkCsdRCiWe9Nf9Z0y4I3OLz58eXZVfhDsyt7S4nrYoF+9jEOj11NXcvyIMTnTUmRGGSxeMGNA9Ufj+Gb7cGFMUBTFGPZKiDYgx6gN6k82Tsvl+4L36nMUYdcicdC0WTRmA9B6XLjHUkvQeSVg8ZSAyJ13b4gRot6QodEuKwiAvr++rQT2T3Ms11Ws45rT0mvVV/ZjTnPoN3ZPj/LOpdnKcESumDb7kCZVgem34sqm0N22VtTkwm1e3pqV9e0gdQbtk0yuvvIJnnnkGVqtrBtLbaiqKArudHSpQuGQTERERERFpQf0mn/7+tGxTN6hELmHx499vQ9JFNy4DvYQHAMxbV4A3c46oVubFZo7ohdmjUoOmfKLmqLlcVrAsmSRizGlOWZUFc9bsVfUJlWAgqu2D7f1OC7hk00Vefvll/OUvf3F/HxMTA0VRYDaboSgKLr/8cpjNZpSVlbknKhRFQUREBDp0aNvGTES+sNvtOHfuHNq3b4+wsODcGC3YMGfayIEsMcoSBxGRKBxHKZS01F/buslna5rb5FMkg/7SBRWey+iD745dUG099TljL70RkpHW2e8TAjo4kKDUotwZAcdFC0dk9O+ievktubh82fD9wHvN5UzNpbqCZZm2+jHnnKmm2ddsWzU35jRH7c3kRb82/LWpdEvja1OW5h7H74eJXeWmqfc7UlfQZfzkyZN45plnALgmIlasWIHy8nI89NBD7mOOHTuG8+fPo7y8HJ9//jlGjx4Np9MJq9WKadOm4dixYzh27JioEEiDzGYzFi5cCLPZLLoqIYM500YOZIlRljiIiEThOEqhpKX++uzqvarcjAeAElMd5qzZq8q126KpfQzq11OPjwz3a1lNrader/7GqD9FKVaMi9iHKKXxxFJTN0bVKL85gdg/QzS+H3jPk5ypsVRXoJdpa0r9mJMc6WzyNdtWLY05rRmZmowPpw3B+ieH4cHB3Zs9bkD3RMwc0QvrnxyGD6cNaXEyAhD/2rhp3ibcNG8Tluae8Ok6zY2vzXkv9zhumrfJpzJ95e2+PeS7oFuy6ZlnnsH/9//9f1AUBYsXL3ZPRDz++ON44403ml2KacWKFXjooYdgs9nw7LPP4h//+Eegq65pWl+yyel0oq6uDkajkRvheIg500YOZIlRljiIiEThOEqhpLn+urGgBFOzd6he/qIpA9ybfNZ/YlXEBrMrZwxt9vcFxSY8vCjPL5MzyXFGLJmafslyVQ35P/dOGGCHBWEAfmnjxVMGNnnTMFBt31z5MuH7gfdE5ixYlkzaf6YCjy7ajtNmGxq+ZtvCkzHHW/54QkX0a8N/SyY1Pb62RuSG6i2938lM5L3coHtCYtMm16xYu3bt8OCDD3p83sSJE/Hqq6/C6XTihRdewK5du9SqItEl6pcM4z+oPMecaSMHssQoSxxERKJwHKVQ0lx/9WWTT2803ORT5AazLUntGId1s4ZhXFpnn8oZl9YZ62YNa/XG4MjUZGT0962sxhRYoEfDm2Xj0jo3Oxng//Iv1VL5MuH7gfdE5uy5jD5+28z5Yt4smXR1p3h89uRIjEvzbUkzT8ccb/njCRV5XhuXjq+eCNb3O1JH0E1IHDlyBIqiYNCgQc2+CJvbcf6xxx5Dp06d4HA4sGjRIjWrSdSIyWTC/PnzYTKZRFclZDBn2siBLDHKEgcRkSgcRymUNNVfC4pNAVlLHQDyjpXiQHHjJTsyfLzx7y1P9jGoX0990ZQBSPfyBlJ6jyQsnjIQmZOu9XjJFH/eGI2CBfcYf0IULAA8uzEaLDdmQx3fD7wnMmcilmlrislkwpL/vIkX7uoVsDEn0GR5bVw8vnorGN/vyP+CblPrsjLXYzmdOnVq9HOj8Zc3/urqasTFXTqbqSgKbrrpJnz44YfYuHGjuhUlaiAiIgLDhw9HRESE6KqEDOZMGzmQJUZZ4iAiEoXjKIWShv3VX5t8eqt+k89uSVEAgmeD2aaMTE3GyNRkHCg2Y/Wu09h1sgK7T1c02vg7PjIc/brEo3+3eGT079KmfRLqb4xOXJjr86biFoQh39YZFoR5fGPUn+U35Mta9qGI7wfeE52z1I5xWDFtcECXabtYwxyMTI0LyJgTaKLb2V8ajq9tEczvd+Q/QTchYTAYYLPZLnk6ouEExKlTp9C7d+8mz4+JiQEAnD59Wr1KEl3EYDAgLS1NdDVCCnOmjRzIEqMscRARicJxlEJJw/5607wvhdThvdzjeC/3OArnjnb/bPrwnsjLVv8GTUsbzLbkqo6xmN0xFYB/1lNvir9ujNoQhsP2dl7fGA2GG7Ohju8H3guGnNUv0zZnzV6sym/7nhLj0jpjztg+Xk/ANZWDQIw5gRQM7ewP9eOrL4L9/Y58F3RLNnXo4FozsaKiotHPU1JS3F//+OOPzZ5/9Khrvc2amhr/V46oGTU1NVi3bh37nReYM23kQJYYZYmDiEgUjqMUSoK1v4bSPgb+WE+9Of7Yv8IAG+7rXIpPfz/Q68mAQO+fIZtgfX0Fs2DJWaCXaWuotRyoOeYEiuh23vrUCGx9agSu757o03UMsCE9/AQMaHq5/YsN6J7o3tC6Xii931HbBN0TEr1798axY8dw+PDhRj+/9tpr3V9/8MEHmDx58iXnHjx4ENu2bYOiKOjcObBrjpG2ORwOlJeXw+FwiK5KyGDOtJEDWWKUJQ4iIlE4jlIoCeb++lxGH3x37IJfPp1/sVDax6D+xui4tM7I2nwUecc8/yRteo8k/HZQJ5QV5CIusm23RHwtf8bNvTR7IyyYX1/BKthyFqhl2hoKthyoQXSM9UsEDuqRhB+Ol7X5Ojo4EaNYoIPTo+MH9Uxyl90Q3+/kpjidTs96SIDMnTsX//u//4uIiAiUlZU12jsiNTUVBw8ehKIoeP755/H0008jLMy1JllhYSHuuece/Pjjj1AUBY888gjefvttUWFozt69e9G3b1/393v27EGfPnxxExERERFR6Ep5+nOh5TdcsqleQbFJlX0MVkwbHLKf1he9lrzo8olEk2HJJHIpKDbhjvlbA1be+ieHNTsu8v1OXSLv5QbdhMSPP/6IAQMGQFEUrF27FqNGjXL/bsmSJXjkkUfcg1pCQgJSU1NRXV2NPXv2wOFwwOl0Ijw8HD/++CNviAeQ1ickbDYbTp06ha5du0KvD7oHj4ISc6aNHMgSoyxxEBGJwnGUQknD/nrFM+uF1qWpCQnAdZOG+xg0zZMbo2qOSbwx2zK+H3iPOdNGDoIpxnuztrd5U+kwONBeV4lzjhjYW9kpIL1HEj6cNqTFY/h+px6R93KDbg+J6667DgMGDECHDh2wZs2aRr97+OGHMWXKFDidTjidTpSVlSE3Nxc//fQT7HY7nE4ndDod/vWvf2nqZjiJV1lZiSVLlqCyslJ0VUIGc6aNHMgSoyxxEBGJwnFUm5xOJ8y1VpRWWWCutSKQn4XzpexQ6K/cx6B5nqwlr2Yby7CWvZpC4fUVbJgzbeQgmGKcPrxnm8+NVKy403gQkUrrTzV4sqk03+/kFHRPSHjirbfewj//+U8cOnTI/TNFUTB48GC88MILGDlypMDaaZPWn5AgIiIiIiLXJxlX5xdh16ly7DltumTpmr5d4tC/awLGpfl/6Ro1yj5ZWg0AeHJFvk9rantrQPdEvDYxrcl1tS+2saCE+xgQEZFfPfHBTqzeVaTa9celdUbmpGtbP7ABvt/5F5dsaqNTp06hqKgIOp0OPXr0wGWXXSa6SprFCQkiIiIiIu3aWFCCrJyjXi3xkJ6ShBnDfb9JEIiy560rwJs5R9paRa/NHNELs0elenUO9zEgIiJ/Kauy4I7MLaptKr1u1jAkRhvadP6BYjOW5h7He7nHm/z9gO6JGNQzie93reCSTW3UtWtXpKenY8CAAZyMIKEqKiowd+5cVFRUiK5KyGDOtJEDWWKUJQ4iIlE4jsqrrMqCJz7YianZO7xebzqvsBSPZH+PWct3oqzKEjRlN9VfM3xcKsJbGf27eH3OVR1jMXtUKpY+Ogj5/7gNe54bhR//7vo7/x+3YemjgzB7VCpvzoBjkkjMvfeYM23kINhiTIw2YMnUdMRHhnt1XrRSh/sjdiJaaXoiIz4yHEumprd5MgJwvd/9fljzy0q9NjGN73dBLqQnJIiCRVRUFMaPH4+oqNYfqSYX5kwbOZAlRlniICISheOoGGrv4bD/jAl3ZG7xeUmHVflFuCNzCwqKTUFRdlP9NbVjHNJTknwqy1PpPZJ8vonCfQxaxjFJHObee8yZNnIQjDGmdozDimmDkRxn9PicWqce31hSUOu8dGPu5DgjVkwbzH0cKLSXbKLgwSWbiIiIiIjEC9QeDvvPmDDprdxG1/dVfGS4RzcqRJW9saAEU7N3+K3M5iyeMpBrXRMRUdAoq7Jgzpq9WJXf9g8BjEvrjDlj+/j0ZERDJ0urcdO8TU3+butTIzzag0nruGQTUYirrq7Gp59+iurqatFVCRnMmTZyIEuMssRBRCQKx1H1bSwowb1Z23HH/K14M+cIth2+cMkN+4oaK7YdvoA3c45g1PwtuDdrOzYVnPW6rLIqC6YszvPrhEB9/R5elNfi8k2BKLu5/joyNRkZ/dVdumlcWmdORgQAxyRxmHvvMWfayEEwx5gYbUDmpGuxaMoApPdo+WlBI6y4MfwYjHC9T6f3SMLiKQOROelav01GUOi79PmZAJg6dar7a0VR8M477zT5O19cfF0iIiIiIiLZlFVZ8OzqvW1auiivsBR52aVef2rx2dV7VdnkEgBKTHWYs2YvMiddK6zsFzOuavaY5zL64LtjF1Tb5HPOWD5lTkREwWlkajJGpia3uql0uxgDftunB8YN6Ml9HKhJQpZs0ul0jdawtNvtzf7OFw2vS+rikk1ERERERIG1/4wJUxbn+eXmeHKcEUumpre6XFKgli1aNGUARqYmB03ZDRUUmzBxoZjlqoiIiIKB6CWTRJcvA00u2eR0OpvdVK3+d778IQokq9WKgoICWK3+fXRcZsyZNnIgS4yyxEFEJArHUf+r30fBX5/ULzHVYeLC3FY3ls7KOeqX8lqTtfnScgJV9sKcQy3217Zs8tkSbvIZeByTxGHuvcecaSMHssQYBjuOHzkU8nGQuoQs2bR48eI2/Y4oWNWv9TdjxgzEx8eLrk5IYM60kQNZYpQlDiIiUTiO+pfa+yismzWsyeWbCopNyCss9WuZzck7VooDxWb3Ug+BLHvP8bP4+JNvMPOx5vtrasc4rJs1LOg2+STPcEwSh7n3HnOmjRzIEmOEYsPWr75AvytTQjoOUpeQJZtIPlyyiYiIiIgoMJ74YGeb9ozw1Li0zo32cDhZ6tpgc+GWI1iae0K1ci/24ODu+P2wnkLL9mTJh40FJcjafBR5xzyfMEnvkYQZN/fiBtZERBSSRC+ZJLp8GYi8lyvkCQkiIiIiIiLy3saCElUnIwBgVX4RxqV1du+j0Nx/+NX2XgsbZgaq7MK5o1s9tuEmn6t3ncaukxXYfbqi0RMs8ZHh6NclHv27xSOjfxdu8klERESaJWwPiea8/vrreP311/Gvf/2L641RyCgvL8dzzz2H8vJy0VUJGcyZNnIgS4yyxEFEJArHUf8RuYeDfh/FZwAA/HNJREFUVsQodXgkcgdiFO/257iqYyxmj0rF0kcHIf8ft2HPc6Pw499df+f/4zYsfXQQZo9K5WREEOCYJA5z7z3mTBs5kCXGGKUOi/71csjHQeoKuiWbdDodFEXBddddh++//150dchDWl+yyWaz4dSpU+jatSv0ej545AnmTBs5kCVGWeIgIhKF46h/FBSbcMf8rQErb/2Tw3BVx1ikPP15wMoMBmFwoL2uEuccMTgyd6zo6pAKOCaJw9x7jznTRg5kiVGWOLSASzY1EB0djerq6kYJIQp2er0eKSkpoqsRUpgzbeRAlhhliYOISBSOo76p38NhaYCXL1qae9y9h4OW2KFDsSNOdDVIRRyTxGHuvcecaSMHssQoSxykrqBbsqlTp04AAEVRBNeEyHNVVVVYvnw5qqqqRFclZDBn2siBLDHKEgcRkShaHUedTifMtVaUVllgrrWirQ+n3zRvE26atymgmzoDrn0URO0fIVIErBhpOIwIcAlhWWl1TAoGzL33mDNt5ECWGGWJg9QVdE9IDBgwAIcPH8a+fftEV4XIYzqdDgkJCdDpgm6OL2gxZ9rIgSwxyhIHEZEoWhpHC4pNWJ1fhF2nyrHntOmSjY37dolD/64JGJfGjY2DlQMKKp0GOMAPyclKS2NSsGHuvcecaSMHssQoSxykrqDbQ+KLL77A6NGjodPp8NNPP6F3796iq0Qe0PoeEkRERESkbRsLSpCVcxR5haUen5OekoQZw3thRGqHFo8TvYfD1qdGAACeXJGPH46XBazcAd0T8drENKFld0uKCliZRERERIEi8l5u0E1X3XnnnRg/fjwcDgceeOABlJUF7h+dRG1lsViQn58Pi8UiuiohgznTRg5kiVGWOIiIRJF5HC2rsuCJD3ZiavYOryYjACCvsBSPZH+PWct3oqwqeHPTLSkK3ZKiMKhHUkDLHdQzSUjZethxfUwFkmOCbkEB8hOZx6Rgx9x7jznTRg5kiVGWOEhdQTchAQDZ2dkYM2YMdu3ahb59++Ktt95CeXm56GoRNau2thY5OTmora0VXZWQwZxpIweyxChLHEREosg6ju4/Y8IdmVuweleRT9dZlV+EOzK3oKDY5KeaqSMjrXNgy+vfRUjZBtihP1sgXX+lX8g6JoUC5t57zJk2ciBLjLLEQeoKuiWbRo4cCcC1Ady2bdtgs9ncG1z36NED7du3R2RkZKvXURQFX3/9tap1pV9wySYiIiIi0pL9Z0yY9FZuoz0ifBUfGY4V0wYjtWNco5+LXrKpcO5o99f3Zm33+kmQtkjvkYQPpw1p9DORZRMRERHJROS93KB7BjUnJ8c9AQHA/bXT6cSxY8dw7NixVq/hdDobXYNIbU6nE3V1dTAajex7HmLOtJEDWWKUJQ4iIlFkG0fLqiyYsjjPr5MRAFBRY8XDi/KwbtYwJEYb3D8Phj0c6k0f3hN52epPCsy4udclPwtU2dOH9URtba00/ZUuJduYFEqYe+8xZ9rIgSwxyhIHqSsol2xyOp2X/Gnu580dSxRIFRUVeOmll1BRUSG6KiGDOdNGDmSJUZY4iIhEkW0cfXb1XpSY6lS5dompDnPW7G30M9F7ODQ0MjUZGf3VXT5pXFrnJjf6DlTZ13UyStVf6VKyjUmhhLn3HnOmjRzIEqMscZC6gm7Jps2bN/vtWjfffLPfrkUt0/qSTXa7HefOnUP79u0RFhYmujohgTnTRg5kiVGWOIiIRJFpHN1YUIKp2TtUL2fRlAEYmZrc6GcFxSbcMX+r6mXXW//kMFzVMfaSn5dVWXBH5hZVJmWS44yXPCES6LLjIsKk6a/UNJnGpFDD3HuPOdNGDmSJUZY4tEDkvdygm5Cg0KT1CQkiIiIi0gbR+xiILr9eQbEJExcGZg+NYCqbiIiISAYi7+UG5ZJNRKGmsrIS2dnZqKysFF2VkMGcaSMHssQoSxxERKLIMo4WFJsCMhkAAHnHSnGg2HzJz6cP7xmQ8pvaw6Gh1I5xWDFtMJLjjH4pLznO6PGEgNply9JfqXlsY3GYe+8xZ9rIgSwxyhIHqYsTEkR+oNfrkZKSAr0+6PaJD1rMmTZyIEuMssRBRCSKyHHU6XTCXGtFaZUF5lprm/acO1lajZOl1Viae1yFGjZvae5xnCytbvQzkXs4XCy1YxzWzRqGcWm+1WdcWmesmzXMq6cT1Cyb7/vyYxuLw9x7jznTRg5kiVGWOEhdXLKJ/IJLNhERERFRsCgoNmF1fhF2nSrHntOmRkv7xEeGo2+XOPTvmoBxaV2a3CPhYilPf65mdVtVOHd0o+9F7uHQnI0FJcjafBR5xzx/giS9RxJm3NzLo8mPYC2biIiIKBSJvJfL6SoiP6irq8POnTtx7bXXwmj0z6PjsmPOtJEDWWKUJQ4iIlECNY5uLChBVs7RFpdVqqixYtvhC9h2+ALezDmC9JQkzBgeWjemE6MNWDI1XZV9FJZMTfd6MgJwPbkxMjUZB4rNWL3rNHadrMDu0xWXTAb16xKP/t3ikdHfs8kgEWXzfV9+bGNxmHvvMWfayIEsMcoSB6kr6CckDhw4gK+++gr5+fk4f/48zGYzHA5Hq+cpioKvv/46ADUkAiwWC/Lz89GnTx8OuB5izrSRA1lilCUOIiJR1B5Hy6oseHb1XqzeVeT1uXmFpcjLLsW4tM6YM7ZPm27Gi1C/j8LDi/L88qREcpwRS6am+7yp81UdYzG7YyoA13JZVRY7LDYHDHodog1hUBTF57qqXTbf9+XHNhaHufcec6aNHMgSoyxxkLqCdsmmo0ePYvr06W2aVHA6nVAUBXa7XYWaUVO4ZBMRERERibD/jAlTFqt7Uz7YlmxqqKzKgjlr9mJVvveTMfVCbTKGiIiIiHwj8l5uUG5qnZ+fj+uuuw5ff/01nE5nq3/qXfw9UaA4HA6Ul5d79PQOuTBn2siBLDHKEgcRkShqjaP7z5gw6a1cv+2lUGKqw8SFuSgoNvnleoGQGG1A5qRrsWjKAKT3SPLq3PQeSVg8ZSAyJ13LyYgG+L4vP7axOMy995gzbeRAlhhliYPUFXQTElarFb/5zW9gMpngdDpx5513YsWKFRg/fjwA11JMmzZtwurVq/Gvf/0LEyZMQHh4OJxOJ2JiYrBw4UJs2rQJGzduFBsIaYrJZEJmZiZMptD5z6tozJk2ciBLjLLEQUQkihrjaFmVBVMW5/l1DwXAtcfEw4vyUFZl8et11TYyNRkfThuC9U8Ow8wRvXDjFe0QHxne6Jj4yHDceEU7zBzRC+ufHIYPpw0Jqb0zAoXv+/JjG4vD3HuPOdNGDmSJUZY4SF1Bt2TTokWL8Oijj0JRFDz44IPIzs4GADz++ON44403mlyKqaioCL///e+xdu1axMXFYd26dRg8eLCA2muX1pdscjgcMJlMiIuLg04XdPN8QYk500YOZIlRljiIiERRYxx94oOdbdozwlPj0jojc9K1AICTpdUAgCdX5OOH42WqlXmxAd0T8drENHRLimrT+YHew0EWfN+XH9tYHObee8yZNnIgS4yyxKEFXLKpgc8++wwAoNfr8corr3h0TufOnbF69WpkZGTAZDJh0qRJqKioULOaRI3odDokJCRwsPUCc6aNHMgSoyxxEBGJ4u9xdGNBiaqTEQCwKr8IGwtKAADdkqLQLSkKg7xcEslXg3omtXkyAnA9XR5j1CMp2oAYo56TER7i+7782MbiMPfeY860kQNZYpQlDlJX0PWOnTt3QlEUpKeno127dh6fp9PpsHDhQhgMBpw8eRJLlixRsZZEjZnNZmRlZcFsNouuSshgzrSRA1lilCUOIiJR/D2OZuUc9ct1Wi1nc+NyMtI6B6Rcd3n9uwS0PHLh+7782MbiMPfeY860kQNZYpQlDlJX0E1InD9/HgBwxRVXNPp5WFiY++uampomz01OTsawYcPgdDqxcuVK9SpJdBGDwYC0tDQYDNwM0FPMmTZyIEuMssRBRCSKP8fRgmIT8gpL/VCr1uUdK8WB4l/+Q53aMQ7pKYF5SiK9RxKu6hgbkLKoMb7vy49tLA5z7z3mTBs5kCVGWeIgdQXdhITF4to8Liqq8aPJsbG//GP87NmzzZ6fkpICADh6NDCfmiICAKPRiMGDB8NoNIquSshgzrSRA1lilCUOIiJRfB1HT5ZWu/8szT3u59q17OLypg/vGZByZ9zcKyDl0KX4vi8/trE4zL33mDNt5ECWGGWJg9QVdBMSiYmJAICqqqpGP2/fvr3764MHDzZ7fv1kRf2TFkSBUFtbi5ycHNTW1oquSshgzrSRA1lilCUOIiJRfB1Hb5q3yf1nae4JP9euZe9dNCExMjUZGf3VXbppXFpnjEjtoGoZ1Dy+78uPbSwOc+895kwbOZAlRlniIHUF3YTEr371KzidTpw6darRz/v16+f+esOGDU2eW1tbi++//x4AEBcXp14liS5is9lQWFgIm80muiohgznTRg5kiVGWOIiIRAn1cdTpdDb6/rmMPkiOU+eTf8lxRswZ20eVa5NnQr2/UuvYxuIw995jzrSRA1lilCUOUpfivPhf14LNmjUL//rXv5CcnIwzZ864f15TU4OOHTuisrISsbGx+O6773DVVVc1Onf27Nn45z//CUVRcOutt2L9+vWBrr5m7d27F3379nV/v2fPHvTpw/9IEREREZHvUp7+XGj5e54bhRijvtHPCopNmLgwFxU1Vr+VEx8ZjhXTBiO1Iz9cRURERETqEXkvN+iekBg5ciQA19JL+/btc/88MjISDz74IJxOJ8xmM9LT0/HEE0/gP//5DzIzM3HLLbfg1VdfdR//8MMPB7zupF12ux3FxcWw2+2iqxIymDNt5ECWGGWJg4hIlFAfRy02xyU/S+0YhxXTBvvtSYnkOCMnI4JEqPdXah3bWBzm3nvMmTZyIEuMssRB6gq6CYlRo0YhOjoaTqcTH3zwQaPfvfDCC+jWrRucTicqKyvxxhtvYPr06fjjH/+InJwc93G333477r///gDXnLTMbDZj4cKFMJvNoqsSMpgzbeRAlhhliYOISJRQH0cN+qb/25TaMQ7rZg3DuDTf9pQYl9YZ62YN42REkAj1/kqtYxuLw9x7jznTRg5kiVGWOEhdQbdkEwDk5eWhrKwMiYmJSE9Pb/S7EydO4L777sP27dsvOU9RFDz44INYsGABIiMjA1VdApdscjqdqKurg9FohKIooqsTEpgzbeRAlhhliYOISBRfx1HRSzYde/GuVuu9saAEWZuPIu9YqcfXTe+RhBk39+IG1kGG7/vyYxuLw9x7jznTRg5kiVGWOLRA5L1cfeuHBN7FkxANXX755di2bRu2b9+Or7/+GkVFRdDpdOjZsydGjx59yb4SRIGgKAoiIiJEVyOkMGfayIEsMcoSBxGRCE6nE5V1NljtOljrbIgx6r3+D+rWp0a4v35yRT5+OF7m72o2a0D3RI/qOzI1GSNTk3Gg2IzVu05j18kK7D5d0WiPifjIcPTrEo/+3eKR0b8LruoYq2bVqY34vi8/trE4zL33mDNt5ECWGGWJg9QVlBMSnhgyZAiGDBkiuhpEAACTyYRFixZh6tSpiIvjo/aeYM60kQNZYpQlDiKiQCkoNmF1fhF2nSrHntMmWGuqcJexAGvrUhEeGY2+XeLQv2sCxqV5dlO+W1KU++tBPZICOiExqGeSV8df1TEWszumAnBNxlRZ7LDYHDDodYg2hPHTgiGA7/vyYxuLw9x7jznTRg5kiVGWOEhdITshQRRMIiIiMHz4cM4Ce4E500YOZIlRljiIiNS2saAEWTlHkVfYeNkiPcKQb+sMC8JQXWPFtsMXsO3wBbyZcwTpKUmYMdzzZYsy0jrjzZwjalS/6fL6d2nzuYqiIMaoB/yz7zUFCN/35cc2Foe59x5zpo0cyBKjLHGQuoJuD4kffvgB119/vehqkJe0vocEERERkZaVVVnw7Oq9WL2rqM3XGJfWGXPG9kFitKHVY+/N2n7JpIca0nsk4cNpfCqbiIiIiOQi8l6uLiCleGHgwIHo06cPXnzxRRw/flx0dYg8UlNTg3Xr1qGmpkZ0VUIGc6aNHMgSoyxxEBGpYf8ZE+7I3NLiZIQBNqSHn4ABtmaPWZVfhDsyt6Cg2NRqmdOH92xTXb014+ZeASmHggvf9+XHNhaHufcec6aNHMgSoyxxkLqCbkICAAoKCvDMM8+gV69euPnmm/H222+joqJCdLWImuVwOFBeXg6HwyG6KiGDOdNGDmSJUZY4iIj8bf8ZEya9lYsSU12Lx+ngRIxigQ4tP5xdYqrDxIW5rU5KjExNRkb/zl7X1xvj0jp7vIwUyYXv+/JjG4vD3HuPOdNGDmSJUZY4SF1Bt2RTfHw8zGaz+/v6Td8MBgNGjx6NyZMnY/To0QgPDxdVRWoCl2wiIiIi0payKgvuyNzS6mREWyTHGbFu1rAWl28SXT4RERERUajikk0NnD17FitWrEBGRgbCw8PhdDrhdDpRV1eHTz75BHfffTc6deqExx57DN9++63o6hIBAGw2GwoLC2GzNb8MATXGnGkjB7LEKEscRET+9OzqvR5PBoTBgY46E8Lg2aflSkx1mLNmb4vHJEYbsGRqOuIj/ftBpfjIcCyZms7JCA3j+7782MbiMPfeY860kQNZYpQlDlJX0E1IGI1GTJgwAZ9++imKi4vx5ptv4oYbboCiKO7JidLSUixcuBA33XQTrrjiCjz77LM4dOiQ6KqThlVWVmLJkiWorKwUXZWQwZxpIweyxChLHERE/rKxoMSrDawjFSvuNB5EpGL1+JxV+UXYWFDS4jGpHeOwYtpgJMcZPb5uS5LjjFgxbTBSO8b55XoUmvi+Lz+2sTjMvfeYM23kQJYYZYmD1BV0SzY15/jx41i6dCnef/997N+/3/3z+iWdAGDAgAF46KGHMHHiRLRr105ENTWLSzYRERERace9WduRV1iqejnpPZLw4bQhrR5XVmXBnDV7sSrf80mSi41L64w5Y/vwyQgiIiIikh6XbPJA9+7d8be//Q179+7FDz/8gD/84Q/o1KmT+6kJp9OJHTt24IknnkCXLl0wduxY0VUmIiIiIpJOQbEpIJMRAJB3rBQHis2tHpcYbUDmpGuxaMoApPdI8qqM9B5JWDxlIDInXcvJCCIiIiIilYXMhERD1157Lf75z3/i1KlT+PLLL/HQQw8hNjbWPTFhtVqxdu1a0dUkDamoqMDcuXNRUVEhuiohgznTRg5kiVGWOIiIfHGytBonS6uxNPe41+dGK3W4P2InohXvN6D2pryRqcn4cNoQrH9yGGaO6IUbr2h3yR4T8ZHhuPGKdpg5ohfWPzkMH04bghGpHbyuF8mL7/vyYxuLw9x7jznTRg5kiVGWOEhdIbNkU2vKy8vxu9/9Dv/9738BuJZystvtgmulHVpfsslqteLIkSPo1asXwsP9u7GirJgzbeRAlhhliYOIyBcpT3/e5nPDYEcXnQmnHXGwI8zr8wvnjm5z2U6nE1UWOyw2Bwx6HaINYY2WfSW6GN/35cc2Foe59x5zpo0cyBKjLHFogch7uSE/IbFp0yYsXboUH3/8MUwmEwDXfzo4IRFYWp+QICIiIpKdLxMSvjr24l2cRCAiIiIi8hPuIeGlXbt24amnnkK3bt1w6623Ijs7GxUVFe4lm8LCwnDnnXeKriZpSHV1NT799FNUV1eLrkrIYM60kQNZYpQlDiIiUYyw4sbwYzDC2qbzqyz8oBEFDt/35cc2Foe59x5zpo0cyBKjLHGQuvSiK+CpkydPYtmyZVi2bBn27dvn/nnDBzwGDBiAyZMn47777kP79u1FVJOIiIiIiPzMYnMARtG1ICIiIiIiXwX1kk3l5eX46KOPsHTpUmzbts09+dCwyj169MD999+PBx98EFdeeaWoqmoel2wiIiIikpvIJZv2PDcKMcaQ+SwVEREREVFQ45JNDVgsFvz3v//Fb37zG3Tq1AnTp0/HN998A4fD4V6SKSkpCdOmTcPWrVtx5MgRvPDCC5yMIKGsVisKCgpgtbZtGQItYs60kQNZYpQlDiIiUcJgx+W6MoShbUsvRRu83wibqK34vi8/trE4zL33mDNt5ECWGGWJg9QVdBMSycnJuPfee7Fq1SrU1dW5JyGMRiN+85vf4OOPP8aZM2ewYMEC3HDDDaKrSwSAa+S1BXOmjRzIEqMscRAR+WLrUyOw9akRuL57otfnRig23GgoRIRi8/rcAd0TuaE1BRTf9+XHNhaHufcec6aNHMgSoyxxkLqCbskmnU4HRVHgdDqhKApuuukmTJ48GRMmTEB8fLzo6lEzuGQTERERkTbMW1eAN3OOBKy8mSN6Yfao1ICVR0REREQkO5H3coNyIdbU1FRMnjwZDzzwAC6//HLR1SEiIiIiop9lpHUO6IRERv8uASuLiIiIiIjUFXRLNv3www/Yu3cv/vrXv3IygkJGeXk5nnvuOZSXl4uuSshgzrSRA1lilCUOIiJ/SO0Yh/SUJK/OiVHq8EjkDsQodV6dl94jCVd1jPXqHCJf8X1ffmxjcZh77zFn2siBLDHKEgepK+iWbKLQpPUlm2w2G06dOoWuXbtCrw/KB4+CDnOmjRzIEqMscRAR+cvGghJMzd7h8fFhcKC9rhLnHDGwe/GZqMVTBmJEaoe2VJGozfi+Lz+2sTjMvfeYM23kQJYYZYlDC0Tey+WEBPmF1ickiIiIiLTmiQ92YvWuItWuPy6tMzInXava9YmIiIiItErkvdygW7KpKYcOHcJbb72F6dOn45577sGoUaNwzz33YPr06Xjrrbdw6NAh0VUkjauqqsLy5ctRVVUluiohgznTRg5kiVGWOIhIm5xOJ8y1VpRWWWCutcJfn0d6LqMPkuOMHh0bAStGGg4jAlaPjk+OM2LOWH64hcTg+7782MbiMPfeY860kQNZYpQlDlJXUD878/333+Ovf/0rNm3a1OqxI0eOxIsvvogBAwYEoGZEjel0OiQkJECnC4k5vqDAnGkjB7LEKEscRKQdBcUmrM4vwq5T5dhz2oSKml8mAuIjw9G3Sxz6d03AuLQubd6jITHagCVT0zFxYW6j6zfFAQWVTgMcUFq9bnxkOJZMTUditKFN9SLyFd/35cc2Foe59x5zpo0cyBKjLHGQuoJ2yaZ//etf+POf/wybzebxp7jCw8Pxyiuv4PHHH1e5dnQxLtlEREREJN7GghJk5RxFXmGpx+ekpyRhxvBebd6roaDYhIcX5aHE5N2G1U1JjjNiydR0pHaM8/laRERERETUNC7ZdJF3330Xs2bNajQZ0a9fP0yfPh1z587Fv/71L8ydOxfTp0/HNddc4z7ParXiySefxHvvvSeq6qRRFosF+fn5sFgsoqsSMpgzbeRAlhhliYOI5FVWZcETH+zE1OwdXk1GAEBeYSkeyf4es5bvRFmV9+Ncasc4rJs1DOPSOjd7jB52XBF2HnrYmz1mXFpnrJs1jJMRJBzf9+XHNhaHufcec6aNHMgSoyxxkLqCbkKitLQUTz75JADXercDBw7Ed999h127duHNN9/EU089hZkzZ+Kpp57Cm2++ifz8fOTl5WHQoEHuc2bNmoWysjKBUZDW1NbWIicnB7W1taKrEjKYM23kQJYYZYmDiOS0/4wJd2Ru8XmD6VX5RbgjcwsKik1en5sYbUDmpGuxaMoApPdIuuT3BtiRpi+CoYkJifQeSVg8ZSAyJ13LZZooKPB9X35sY3GYe+8xZ9rIgSwxyhIHqSvolmyaN28enn76aSiKgttvvx2rVq2CwdD6f0ysVisyMjKwfv16KIqCuXPnYvbs2QGoMQFcsomIiIhIhP1nTJj0Vut7OHgjPjIcK6YN9ulJhQPFZqzedRq7TlZg9+mKS/aw6NclHv27xSOjf9v3sCAiIiIiorYReS836Da1/uKLLwAABoMBS5Ys8WgyAnDtH5GdnY2UlBRYLBZ8/vnnnJCggHE6nairq4PRaISitL5ZIzFngDZyIEuMssRBRHIpq7JgyuI8v05GAEBFjRUPL8rDulnD2vzEwlUdYzG7YyoA1xhaWWdDZVUNYqIjEWPUcyyloMb3ffmxjcVh7r3HnGkjB7LEKEscpK6gW7Lp4MGDUBQFI0aMQIcO3m2sl5ycjBEjRsDpdOLgwYMq1ZDoUhUVFXjppZdQUVEhuiohgznTRg5kiVGWOIhILs+u3uuXjaSbUmKqw5w1e/1yLUVRYK+twlv/fg322ir+55SCHt/35cc2Foe59x5zpo0cyBKjLHGQuoJuyaaIiAhYrVY8+uijWLhwodfnT5s2Df/5z39gMBi4XlkAaX3JJrvdjnPnzqF9+/YICwsTXZ2QwJxpIweyxChLHEQkj40FJZiavUP1chZNGYCRqck+X4fjKIUS9lf5sY3FYe69x5xpIweyxChLHFog8l5u0D0hERvrWkO2tLS0TefXb2Zdfx2iQAgLC0PHjh052HqBOdNGDmSJUZY4iEgeWTlHA1POZv+Uw3GUQgn7q/zYxuIw995jzrSRA1lilCUOUlfQTUh069YNTqcTOTk5sNlsXp1rtVqxadMmKIqCbt26qVRDoktVVlYiOzsblZWVoqsSMpgzbeRAlhhliYOI5FBQbEJeYds+vOOtvGOlOFBs9vk6HEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdQXdhMStt94KwPWExJw5c7w694UXXsCFCxcAALfccou/q0bULL1ej5SUFOj1QbdPfNBizrSRA1lilCUOIgptJ0urcbK0Gktzjwe03KW5x3GytNqna3AcpVDC/io/trE4zL33mDNt5ECWGGWJg9QVdHtI7Nu3D/3794fD4QAAzJ49G8899xyMRmOz51gsFjz33HOYO3cunE4n9Ho9du3ahauvvjpQ1dY8re8hQURERKS2lKc/F1p+4dzRQssnIiIiIiL/4B4SDfTu3RszZsxA/TzJyy+/jB49euBPf/oT/vvf/2LHjh3Yv38/duzYgY8//hh//vOf0bNnT/dkhKIomDFjBicjKKDq6uqQm5uLuro60VUJGcyZNnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQTchAQCvvfYaxo4d656UKC4uxvz583Hvvfdi0KBB6Nu3LwYNGoQJEybgtddeQ1FRkfvYsWPH4rXXXhNZfdIgi8WC/Px8WCwW0VUJGcyZNnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQbdkUz2n04mXX34Z/+///T+PNkKJiYnB3//+d/z5z3+GoigBqCE1xCWbiIiIiNTFJZuIiIiIiMgfuGRTExRFwVNPPYXTp09jwYIFmDBhAq644grEx8cjLCwM8fHxuOKKKzBhwgQsWLAAp0+fxuzZs4VPRhQWFuI///kPJk+ejP79+yMxMRHh4eFISkrCNddcg2nTpmHz5s1+LzcnJweKonj1p34DcfKdw+FAeXm5e+8Tah1zpo0cyBKjLHEQkRhOpxPmWitKqyww11oRpJ8HUhXHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQTshUS82NhbTpk3DihUrcPDgQZSVlcFqtaKsrAwHDx7EihUrMG3aNMTGxgqt586dOzFo0CD06NEDv//977Fs2TL89NNPKC8vh81mQ1lZGXbv3o233noLw4cPx4gRI3DixAmhdSb/MZlMyMzMhMlkEl2VkMGcaSMHssQoSxxEFDgFxSbMW1eAB97ORdrzX6LfnA247gXX32nPf4kH3s7FvHUFOFBsFl3VgOA4SqGE/VV+bGNxmHvvMWfayIEsMcoSB6kraJdsCjXLly/Hfffd1+hnV155Jfr27Yt27dqhvLwc3377LU6dOuX+fefOnbF161b07NnT5/JzcnIwYsQI93V//etft3pOamoq/ud//sfnsgEu2eRwOGAymRAXFwedLujn+YICc6aNHMgSoyxxEJH6NhaUICvnKPIKSz0+Jz0lCTOG98KI1A4tHneytBoA8OSKfPxwvMynenpjQPdEvDYxDd2Sotp8DY6jFErYX+XHNhaHufcec6aNHMgSoyxxaIHIe7n6gJSiIVdccQUeffRRTJ48GV26dGn0O4fDgezsbDz++OOorq5GUVERHnjgAXz77bd+XWrqV7/6Ff7973/77XrUOp1Oh4SEBNHVCCnMmTZyIEuMssRBROopq7Lg2dV7sXpXkdfn5hWWIi+7FOPSOmPO2D5IjDY0eVz9hMCgHkkBnZAY1DPJp8kIgOMohRb2V/mxjcVh7r3HnGkjB7LEKEscpC7hU1UrV67Eu+++i3fffRc//fRTm66xa9cu9zU++eQTP9fQM506dcLixYtRUFCAv/zlL5dMRgCuF+XUqVOxdOlS989yc3OxYcOGQFaVVGA2m5GVlQWzWRvLLvgDc6aNHMgSoyxxEJE69p8x4Y7MLW2ajGhoVX4R7sjcgoLilh9xz0jr7FM53srof+m/a73FcZRCCfur/NjG4jD33mPOtJEDWWKUJQ5Sl9AnJDZs2IB7770XiqKgW7du+OGHH9p0nS5duiAjI8O9HNKWLVtwww03+LOqrbr55ptx8803e3Tsr3/9a6SnpyMvLw8A8Pnnn2PUqFFqVo9UZjAYkJaWBoOh6U800qWYM23kQJYYZYmDiPxv/xkTJr2Vi4oaq1+uV2Kqw8SFuVgxbTBSO8Y1eUxqxzikpyR5tSxUW6X3SMJVHX3fq43jKIUS9lf5sY3FYe69x5xpIweyxChLHKQuoU9I/O1vf3N/vWzZMlx22WVtuk67du2wbNky1G+H0fC6warhhElhYaG4ipBfGI1GDB48GEajUXRVQgZzpo0cyBKjLHEQkX+VVVkwZXGe3yYj6lXUWPHwojyUVVmaPWb6cN/3IPPEjJt7+eU6HEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdQmbkNizZw9++OEHKIqCMWPG+PxEw4033ogxY8bA6XRi69atOHz4sJ9qqo6Ge0bY7XaBNSF/qK2tRU5ODmpra0VXJWQwZ9rIgSwxyhIHEfnXs6v3osRUp8q1S0x1mLNmb7O/H5majIz+6i7dNC6tc6sbbXuK4yiFEvZX+bGNxWHuvcecaSMHssQoSxykLmETEh9//LH76z/96U9+ueaf//xn99crV670yzXVsnv3bvfX3bp18+u1a2pqsGbNGvy///f/8Mc//hF///vf8e9//xvff/89bDabX8siF5vNhsLCQubXC8yZNnIgS4yyxEFE/rOxoMTnPSNasyq/CBsLSpr9/XMZfZAcp86nz5LjjJgzto/frsdxlEIJ+6v82MbiMPfeY860kQNZYpQlDlKX4qxf5yjAxowZg7Vr1yIxMRHnzp2DTuf73IjdbkeHDh1QXl6OMWPGYNWqVX6oqf+dOHECPXv2dD8Z8dFHH+Gee+7x6Zo5OTkYMWJEq8d17twZf/jDHzBr1iyEh4f7VGZDe/fuRd++fd3f79mzB336+O8/sURERETB5N6s7QHbw+HDaUOa/X1BsQkTF/pvDwsAiI8Mb3EPCyIiIiIiCm0i7+UKe0Ji3759UBQF119/vV8mIwAgLCwM119/PZxOJ/bubf4Rd9H++Mc/uicjLr/8cowdOzZgZRcVFWH27NkYNmwYSkqa/8RdW0VERCAmJgaAa4KovLzcvbeHyWSCxeJaC7mmpgZVVVUAXLOn5eXl7mtUVFTAanX9p7q6uhrV1dUAAKvVioqKCvdx5eXl7hnXqqoq1NTUAAAsFgtMJhMAwOl0ory83J3vyspK92NjdXV1MJvNAACHw4Hy8nI4HA4AgNlsRl2dawmG2tpaVFZWthiT3W5HYWGhu1wZYlK7nWpqanD48GHY7XZpYvK2nex2O4qKinDhwgVpYrq4nex2O44cOeIuN1RjslqtOHTokLtc2dqJMTEmxuRdTAXFJuwsPIdIuOqjwIkYpQ4KXHWNhAXhcJ1jgA2RcNVHBwdilDrg5+OiYIG+wXERPx8X5j4OyDtWih8PnW42pk6RTqyYNhjJcUbEKHUIgyuvEbDCAFd8etgRhfr9KFx11f18XGSD48Jhx+WxwIppg3Flhxi/tlNdXR0OHTrkziX7HmMK5pjsdjsOHTrkLleGmGRsJ19iqqqqQnFxMaqrq6WJKVTayWQyobCwEHa7XZqY1G6niooKFBcXw2KxSBMT/x1xaTuVlpbi5MmTsNvtIR3ThQsXUFxcDLvdLmU7yRiTCMImJEpLXZ8o69ixo1+vW3+9Cxcu+PW6/rJkyRL897//dX//4osv+m2jl/bt2+Oxxx7DJ598gqNHj6K6uhq1tbU4evQolixZgoEDB7qPzc3NxdixY90vCH8ZPHiw+2mPc+fOITMz0/0iWbRoEfbt2wcA2Lx5M9asWQMAOHXqFDIzM93XWLBgAY4cOQIA2LBhAzZs2AAAOHLkCBYsWOA+LjMzE6dOnQIArFmzBps3bwbgmuxatGgRANcLODMzE+fOnQPgWsorNzcXALBz504sW7YMgOtFmpmZ6R4Uli1bhp07dwJw5ap+CbDmYjKbzViyZIn7qRwZYlK7nerrWj+QyhCTt+1kNpvxn//8B//+97+lienidjKbzVi6dCm+++67kI7pzJkzeP/993HmzBkp24kxMSbG5FlMy5Z/iPWbtmJp7nH8Kuw8bjMeAgBEKxZMiNiNaMX1D/7bjIfwq7DzAIDe+hLcbHDVJ0GpxYSI3TD8PAlxl7EAKWFlAIC08CIMNRwHALTXVWJCxC/Le65evgTf5e9rNqbUjnFYN2sYJkTsRnud6z8kQw3HkRbuWlIqJawMdxkLAAAG2DEhYjcSFNd/dm42HEFvvetDKr++3IKJiSeQ2jHO7+106NAhvP/+++7/WLHvMaZgjslsNuP999/HoUOHpIlJxnbyJaatW7di4cKF+O6776SJKVTaadWqVViyZAnMZrM0MandTh999BEWLlyI48ePSxMT/x1xaTstXLgQixYtgtlsDumY/v3vf2PhwoUwm81StpOMMYkgbMkmo9EIm82GRx99FAsXLvTbdX//+9/j7bffRnh4uLsBgsWOHTtw0003uWe77rvvPrz//vt+uXZlZSUMBgMMBkOzxzidTjz77LN44YUX3D974YUX8Mwzz/hcfv1jPhEREdDr9cjNzUVqairMZjPi4+OhKApMJhMiIiJgMBhQU1MDh8OB6Oho2Gw2VFZWIiEhAYBrtjEqKgrh4eHumcaoqChYrVZUV1cjPj4egGu2MSYmBnq9HlVVVdDpdIiMjITFYkFtbS3i4uLgdDpRUVGB2NhYhIWFobKyEnq9HhEREairq4PFYkFsbCwcDgdMJhPi4uKg0+lgNpthMBhgNBpRW1sLm82GmJgY2O32JmMKDw9HeXk5wsPDERMTI0VMardTXV0dKioq0L59e/f1Qj0mb9spJiYGNTU1qKurQ3x8vBQxXdxOiqLg/PnziI2NRURERMjGZLfbcf78ebRr1w5hYWHStZOMfY8xMSY1Yrr66U9hhwIL9AiHHXrYUQMDFDgRrVhQ5TTACQWRsMCGMFgRBgNsCIMTNQiHDg5EKVZUOg0AFETBAgvCYPv5OB2cqEU4wuBApGJFpdP1oZVopQ61Tj2OzM1oNaYdp6vw1jcn8NOxEjh+rqsedhhgRzUMcD0hYUG1MxwO6BAJK/p3T8K0EakY2iNetXayWq0oLS1Fhw4doCgK+x5jCuqYnE4nzp49i6SkJISHh0sRk4zt5EtMYWFhUBQFgOtTrTLEFCrtVFlZCavVioSEBFitViliUrudrFYrwsPD3fmTISb+O+LSdiovL0dYWJj7PkGoxmQ2mxEZGQmj0QiTySRdO8nU906fPi1sySZhExKdOnXC2bNnMW7cuEYbXPvqN7/5DT799FMkJye7P8kaDI4dO4ahQ4eiuLgYAHDNNddg69atiIsL/Nq8DzzwgHsiJDExEWfPnoVer/fpmtxDgoiIiGSX8vTnQssvnDva42MPFJuxetdp7DpZgd2nKxrtMREfGY5+XeLRv1s8Mvp3wVUdY9WoLhERERERBSlN7iHRvn17OJ1OFBQU+PW69der/9R1MDhz5gxuu+0292REz549sW7dOiGTEQDw/PPPu78uKytzPw5EbWcymTB//nz341PUOuZMGzmQJUZZ4iAi7biqYyxmj0rF0kcHIf8ft2HPc6Pw499df+f/4zYsfXQQZo9KDdhkBMdRCiXsr/JjG4vD3HuPOdNGDmSJUZY4SF3CJiSuueYaAMCBAwdw4sQJv1zzxIkTKCgogKIo6Nevn1+u6asLFy7gtttuc68v1qlTJ3z11Vfo1KmTsDr16tULKSkp7u/3798vrC6yiIiIwPDhwxERESG6KiGDOdNGDmSJUZY4iEibFEVBjFGPpGgDYox69zIlgcRxlEIJ+6v82MbiMPfeY860kQNZYpQlDlKXsAmJ2267zf31P//5T79c89VXX23y+qKYTCaMGjUKe/fuBQC0a9cOX331FXr06CG4Zmg0IXL+/HmBNZGDwWBAWlpai3t4UGPMmTZyIEuMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXcImJO666y5ERkbC6XRi4cKF+O6773y6Xl5eHrKysgAAkZGRGDNmjD+q2WZVVVW466678MMPPwAA4uPjsW7dOvTu3VtovepVVVW5v46OjhZYEznU1NRg3bp17o2HqHXMmTZyIEuMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXUL3kJg5cyYAwGKxYPTo0cjLy2vTtb7//nuMGTMGFosFiqJgxowZaNeunT+r65Xa2lpkZGRg27ZtAFy7rX/++ee4/vrrhdWpoerqahw4cMD9fefOnQXWRg4OhwPl5eVwOByiqxIymDNt5ECWGGWJg4h8s/WpEdj61Ahc3z0xoOUO6J6IrU+NCGiZ/sZxlEIJ+6v82MbiMPfeY860kQNZYpQlDlKX4nQ6naIKLysrQ1paGk6dOgWn0wm9Xo8nn3wSTzzxBLp27drq+adPn0ZmZibmz58Pu90OAOjatSt27tyJpKQktavfJKvVivHjx2Pt2rUAAKPRiM8++wy33nqrkPo05e2338bvfvc7AK41hYuLi9GhQwefrilyZ3YiIiKiQJq3rgBv5hwJWHkzR/TC7FGpASuPiIiIiIjkJvJerj4gpTQjMTERa9aswY033oiqqirYbDb885//xGuvvYYbb7wRgwYNQp8+fZCQkICYmBhUVlaivLwc+/btw3fffYdvvvkGdrsd9XMqMTExWLNmjbDJCLvdjvvvv989GaHX6/Hhhx+qPhlRXV2NiIgI6HStP/By6NAhPP300+7vb7/9dp8nIwiw2Ww4deoUunbtCr1e6MsqZDBn2siBLDHKEgcR+UdGWueATkhk9O8SsLLUwnGUQgn7q/zYxuIw995jzrSRA1lilCUOUpewJZvqXXPNNfj666/RrVs398/sdju2bNmCl19+GVOmTMH48eNx6623Yvz48ZgyZQrmzZuHzZs3w2azuc/p1q0bvvrqK1xzzTUiwoDT6cRvf/tbrFy5EgCg0+nw3nvvISMjw6frKori/jNnzpwmj8nLy0OfPn2wYMECnD17tslj7HY7li5diiFDhuDChQsAXBvNvPTSSz7Vj1wqKyuxZMkSVFZWiq5KyGDOtJEDWWKUJQ4i8o/UjnFITwnMB2DSeyThqo6xASlLTRxHKZSwv8qPbSwOc+895kwbOZAlRlniIHUJXbKpobKyMsyePRtLly6FxWIB4LoZDwANq3jxzwwGAyZPnox58+YJezICAN588033nhgA8Ktf/Qq33367x+f/+9//bvLn9fECwLPPPtvkpEROTg5GjHCtK6zT6XDFFVegT58+SEpKgk6nQ3FxMbZv347z58+7zwkLC8OyZcswceJEj+vYEi7ZRERERMHM6XSiss4Gq92J8DAFMUZ9o39neWtjQQmmZu/wYw2btnjKQIxI5dOsRERERETkP5pdsqmhxMREvP3223jhhRfwzv/P3r/HR1Xd++P/ayeTyZUEUjAxiATQQyxYosWAHEGg9Yi2gr2oeOkRUYvWU+Wcfqo+fudUQc/nVOnpp8RvS4OtXOoNLW25KAVtIYBKjBeCcokVMNwTkSQzk0nmltm/P1KmIrfsZO9Zs9/r9Xw8eMhlZvZ6vdbODs5i1n7mGaxfvx41NTUIhUInPM40TWRlZWHMmDGYPHky7rzzzpS4KfMXP5nw8ccf4+OPP+7280+3IGFVPB7H3/72N/ztb3877WOGDx+ORYsWYdy4cbYck4iIiCgV1Tf6saruMLYdbMX2Q374OqKJPyvIzsDIgfkYdV5fTCsfaPlTCJPLijB1VAlWbTts97ATppWXcDGCiIiIiIhEUb5l0xede+65+K//+i+sX78efr8fBw4cwLZt2/DGG29g27ZtOHDgAPx+PzZs2ICf/OQnKbEYodr48ePx7rvv4v/7//4/3Hzzzbj00ksxePBg5OXlISMjA/3798cll1yCe+65B2vWrMGuXbu4GGEzn8+HJ554Aj6fT/VQXIOd6dGBlIxSchDpYn19E26s2oIp8zdjQfUevLn72AmLEQDg64jizd3HsKB6D66evwk3Vm3BhvpTb315OnOnjkBRfqadQ08oys/EnOvkfNqU11FyE56v8nGO1WH31rEzPTqQklFKDnJWymzZRO6m+5ZN0WgUe/bswbBhw5CRkaF6OK7AzvToQEpGKTmIpGsJRvDoqh29+tTCtPISzLluBPrlerv1+PpGP25aWHPSgkdvFGRn4KVZY1FWnG/ba6rG6yi5Cc9X+TjH6rB769iZHh1IySglhw5UvpfLBQmyhe4LEkRERKTWriN+zFhciyZ/uNevVZSfiaUzK7q9IFDf6Mfti9Qcm4iIiIiIyCqV7+Wm3JZNRG7U3t6OFStWoL29XfVQXIOd6dGBlIxSchBJteuIH9OfrrFlQQAAmvxh3LSwBvWN/m49vqw4H2sfmIBp5b3bSnRaeQnWPjBB5GIEr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkgQERERkWu1BCOYsbjW1i2TgK57TNy+qBYtwUi3Ht8v14vK6Zdg0YzRqBhSaOlYFUMKsXjGZaicfkm3t4oiIiIiIiJyI27ZRLbglk1ERESkwv0vbu3VPSPOZlp5CSqnX2L5eR81BrBq2yFsO+DDh4d8JyyYFGRn4OKBBRg1qABTRw3E8OI+dg6ZiIiIiIjojFS+l+tJylGIhONNe6xjZ3p0ICWjlBxE0qyvb3J0MQIAVtYdxrTyEkwuK7L0vOHFffDj4jIAgGmaCEY6EYnF4fWkIdebDsMwnBhuyuJ1lNyE56t8nGN12L117EyPDqRklJKDnMUtm4hswD3yrGNnenQgJaOUHETSVFXvTc5xNvbuOIZhIC/Tg8JcL/IyPdotRgC8jpK78HyVj3OsDru3jp3p0YGUjFJykLO4ZRPZgls2ERERUTLVN/oxZf7mpB1v3ewJ3FqJiIiIiIhEUPleLj8hQURERESucaC5HQea2/Fczb6kHjfZxyMiIiIiIpKICxJENmhtbcXcuXPR2tqqeiiuwc706EBKRik5iCQYP28Dxs/bgOdq9if1uM9yQaJXeB0lN+H5Kh/nWB12bx0706MDKRml5CBnccsmsoXuWzbFYjEcPHgQ5513Hjwe3iu+O9iZHh1IySglB5EEpQ+/quzYn/z0Wi3v/2AHXkfJTXi+ysc5VofdW8fO9OhASkYpOXSg8r1cnhlENvB4PCgtLVU9DFdhZ3p0ICWjlBxE1DvBSCfyMvnX557gdZTchOerfJxjddi9dexMjw6kZJSSg5zFLZuIbBAMBrFs2TIEg0HVQ3ENdqZHB1IySslBRL0TicVVD8G1eB0lN+H5Kh/nWB12bx0706MDKRml5CBncUGCyAZpaWno27cv0tL4JdVd7EyPDqRklJKDiHrH6+E1oKd4HSU34fkqH+dYHXZvHTvTowMpGaXkIGcpuYfEpk2bknKcCRMmJOU4xHtIEBERUXLwHhJERERERES9o909JCZOnOj4/8wZhoFYLOboMYiOi0Qi2LlzJ7785S/D6/WqHo4rsDM9OpCSUUoOIgk2PzgJADD7pTq8t68laccdPbgfFyN6gddRchOer/JxjtVh99axMz06kJJRSg5ylrLPz5im6fgPomQJhUKorq5GKBRSPRTXYGd6dCAlo5QcRBIMKszBoMIcjBlSmNTjjhma3ONJw+souQnPV/k4x+qwe+vYmR4dSMkoJQc5S8mWTd39hMSWLVsQjUYTiwuFhYU4//zzkZubi2AwiAMHDuDYsWMAuj4R4fV6MXbs2MTzN2zY4EwAOgm3bCIiIqJkqm/0Y8r8zUk73rrZEzC8uE/SjkdEREREROQU7bZsqq6uPuOft7W14Y477kAkEkFOTg5mz56N22+/HRdeeOFJj929ezeWLl2K+fPno729Hf3798eSJUuQm5vr0OiJTmaaJsLhMDIzM7mdQzexMz06kJJRSg4iScqK81FRWojahmbHj1UxpJCLEb3E6yi5Cc9X+TjH6rB769iZHh1IySglBzkrJW95PmPGDPzxj39EaWkptm7div/+7/8+5WIEAFxwwQV4/PHHsXXrVpx//vn44x//iO9973tJHjHpzufz4cknn4TP51M9FNdgZ3p0ICWjlBxE0twzcWhSjnPvlcOSchzJeB0lN+H5Kh/nWB12bx0706MDKRml5CBnKdmy6UxWrlyJb33rWzAMA2+//TZGjx7d7ee+++67GDNmDABg+fLl+Na3vuXUMOkLdN+yqbOzE0ePHsWAAQOQnp6uejiuwM706EBKRik5iCS6/8WtWLXtsGOvP628BJXTL3Hs9XXB6yi5Cc9X+TjH6rB769iZHh1IySglhw5Uvpebcp+QWLx4MQCgoqLC0mIEAIwePRoVFRUAgCVLltg9NKLTSk9PR3FxMS+2FrAzPTqQklFKDiKJ5k4dgaL8TEdeuyg/E3Ou0+cfWDiJ11FyE56v8nGO1WH31rEzPTqQklFKDnJWyi1IbNu2DYZh9HhFZsSIETBNE9u2bbN5ZESn19bWhiVLlqCtrU31UFyDnenRgZSMUnIQSdQv14ulMytQkJ1h6+sWZGdg6cwK9Mv12vq6uuJ1lNyE56t8nGN12L117EyPDqRklJKDnJVyCxKNjY0AgHA43KPnH39eU1OTbWMiOhuPx4PS0lJ4PEruE+9K7EyPDqRklJKDSCXTNBEIRdEcjCAQisLOXUPLivPx0qyxtn1Soig/Ey/NGouy4nxbXo94HSV34fkqH+dYHXZvHTvTowMpGaXkIGel3D0kzj33XDQ1NWHo0KHYvXu35edfcMEF2Lt3L84555zE4gY5T/d7SBAREdHJ6hv9WFV3GNsOtmL7IT98HdHEnxVkZ2DkwHyMOq8vppUPxPDiPr0+Xkswgjmrd2BlXc/vKTGtvARzrhvBT0YQEREREZFYvIfE51x88cUAgE8++QRLly619Nzf/e532Lt3LwzDwFe+8hUnhkd0SuFwGDU1NT3+ZI+O2JkeHUjJKCUHUbKsr2/CjVVbMGX+Ziyo3oM3dx87YTECAHwdUby5+xgWVO/B1fM34caqLdhQ/2mvjtsv14vK6Zdg0YzRqBhSaOm5FUMKsXjGZaicfgkXIxzA6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYkbr311sTP77nnHjz33HPdet4LL7yAe+6555SvQ+S0SCSCuro6RCIR1UNxDXamRwdSMkrJQeS0lmAE97+4FTOXvIvahmZLz61taMYdS97BA8u2oiXYu6+1yWVFeHnW5Vg3ewLumzQMV1zQ/6R7TBRkZ+CKC/rjvknDsG72BLw863JMKjunV8el0+N1lNyE56t8nGN12L117EyPDqRklJKDnJVyWzaZponLL78ctbW1AADDMFBRUYHvfe97uPzyy3H++ecjJycH7e3t2L9/P2pqavDcc8+hpqYGpmnCMAyMHj0aNTU1MAxDcRp9cMsmIiIive064seMxbVo8vf+X0MV5Wdi6cwKW+/hYJomgpFORGJxeD1pyPWm8++KRERERESkJZXv5abcHUYMw8DKlSsxadIk1NfXAwBqa2sTCxRn80//9E9YuXIl/weTkioej8Pv9yM/Px9paSn3waOUxM706EBKRik5iJyy64gf05+uOWlbpp5q8odx08IaW28sbRgG8jI9gD33vSaLeB0lN+H5Kh/nWB12bx0706MDKRml5CBnpeSZUVRUhC1btuCOO+4A0PUv2rrzY8aMGdiyZQuKi4sVJyDd+P1+VFZWwu/3qx6Ka7AzPTqQklFKDiIntAQjmLG41rbFiON8HVHcvqi219s3UWrgdZTchOerfJxjddi9dexMjw6kZJSSg5yVcls2fdHHH3+MZ555Bhs2bMC2bdtO2IPM6/Vi1KhRmDRpEu68805ceOGFCkeqN923bOIKsHXsTI8OpGSUkoPICfe/uBWrth127PWnlZegcvoljr0+JQevo+QmPF/l4xyrw+6tY2d6dCAlo5QcOlD5Xm7KL0h8kc/nQ1tbG/Ly8lBQUKB6OPR3ui9IEBER6Wh9fRNmLnnX8eMsmjEak8uKHD8OERERERGRDlS+l+u6paqCggIMHDiQixGUUgKBAKqqqhAIBFQPxTXYmR4dSMkoJQeR3aqq9ybnOBuTcxxyDq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLNctSBClIq/Xi/Lycni9XtVDcQ12pkcHUjJKyUFkp/pGP2obmpNyrNpPmvFRI/+nxs14HSU34fkqH+dYHXZvHTvTowMpGaXkIGe5ZsumQCCAgwcPoqWlBbFYDBMmTFA9JPocbtlERESkhwPN7QCAhZv24Lma/Uk77vfGDsb3JwzFoMKcpB2TiIiIiIhIIm7ZdBqBQAA/+9nPUF5ejn79+mHkyJEYP348Jk+efNJjP/30Uzz44IN48MEH8eyzzyoYLeksFAqhuroaoVBI9VBcg53p0YGUjFJyENlh/LwNGD9vQ1IXIwDg2Zp9GD9vQ1KPSfbhdZTchOerfJxjddi9dexMjw6kZJSSg5yVsgsSGzduxEUXXYSHH34YH374IeLxOEzTTPz4onPOOQd//etf8fOf/xyzZ89GJBJRMGrSVSwWQ0NDA2KxmOqhuAY706MDKRml5CAiUoXXUXITnq/ycY7VYffWsTM9OpCSUUoOclZKbtn0xhtv4KqrrkIkEoFpmjAMA2VlZWhtbcWRI0dgGAY6OztPet7TTz+Ne+65B4ZhYNWqVfjGN76hYPR64pZNREREeih9+FWlx294gn+/IyIiIiIi6g1u2fQ5oVAI06dPRzgchmmauP3223Hw4EHs2LED3/72t8/43O985ztIS+uK9Je//CUZwyUCAHR2dqKxsfGUC2V0auxMjw6kZJSSg4hIFV5HyU14vsrHOVaH3VvHzvToQEpGKTnIWSm3IPHMM8/g8OHDMAwDP/jBD7B48WKce+653Xrul770JVx44YUAgPfff9/JYRKdIBAIYOHChQgEAqqH4hrsTI8OpGSUkoOISBVeR8lNeL7KxzlWh91bx8706EBKRik5yFkpt2XTlClT8NprryE/Px8HDx5EXl5e4s9++MMf4le/+tVpt2wCuj4l8ac//QnnnnsuDh06lKxha0/3LZtM00Q4HEZmZiYMw1A9HFdgZ3p0ICWjlBxEduCWTdQTvI6Sm/B8lY9zrA67t46d6dGBlIxScuhA5Xu5nqQcxYIPP/wQhmFgwoQJJyxGdFdhYSEAoLW11eaREZ2eYRjIyspSPQxXYWd6dCAlo5QcRHbY/OAkAMDsl+rw3r6WpB139OB++MVN5Uk7HtmL11FyE56v8nGO1WH31rEzPTqQklFKDnJWym3ZdOzYMQDAwIEDe/T846tv8XjctjERnY3f78f8+fPh9/tVD8U12JkeHUjJKCUHkR0GFeZgUGEOxgwpTOpxxwwtxKDCnKQek+zD6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYkcnNzAQAdHR09en5jYyOArvtJECVLVlYWJk6cyFVgC9iZHh1IySglB5GdppaXJPd4o3r2j1UoNfA6Sm7C81U+zrE67N46dqZHB1IySslBzkq5LZvOPfdctLS0YOfOnZafa5omampqYBgGhgwZ4sDoiE7N6/WivLxc9TBchZ3p0YGUjFJyENmprDgfFaWFqG1odvxYFUMKMby4j+PHIefwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc5KuU9IjB8/HgDw/vvvo6GhwdJz//CHP+Czzz4DAEycONHmkRGdXkdHB9auXdvjT/boiJ3p0YGUjFJyENntnolDk3Kce68clpTjkHN4HSU34fkqH+dYHXZvHTvTowMpGaXkIGel3ILEDTfcAKDr0w4//OEPu/28w4cP4/777wfQdR+Jm2++2ZHxEZ1KPB5Ha2sr711iATvTowMpGaXkILLb5LIiTB3l7NZN08pLMKnsHEePQc7jdZTchOerfJxjddi9dexMjw6kZJSSg5xlmKZpqh7EF02aNAkbN26EYRj49re/jaqqKnzpS1/CD3/4Q/zqV7+CYRjo7OxMPP6VV17BD37wAxw8eBCGYeCGG27AsmXLFCbQz44dOzBy5MjEr7dv344RI0YoHBERERElQ0swgimVm9DkD9v+2kX5mVj7wAT0y/Xa/tpERERERES6Uvlebsp9QgIAnn32WRQXFwMA/vjHP2LQoEG47rrr8MYbbyQe8+///u+4+eabMXjwYEybNg2HDh0CAAwZMgRVVVVKxk36isViaGhoQCwWUz0U12BnenQgJaOUHKQ30zQRCEXRHIwgEIrCrn+T0i/Xi6UzK1CQnWHL6x1XkJ2BpTMruBghBK+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJRckDjvvPPw17/+FcOHD4dpmgiFQlizZg0++OADGIYBAHjqqafw8ssv4+DBgzBNE6ZpYsSIEXj99dfRt29ftQFIO21tbVi6dCna2tpUD8U12JkeHUjJKCUH6ae+0Y95a+tx629rUP7Y67h4zmu49PGu/5Y/9jpu/W0N5q2tx0eNgV4dp6w4Hy/NGoui/Exbxl2Un4mXZo1FWXG+La9H6vE6Sm7C81U+zrE67N46dqZHB1IySslBzkrJLZuOa29vx89//nP86le/wqeffnrax/Xt2xezZ8/Gj370I+Tm5iZxhHQct2wiIiJKHevrm1BVvRe1Dc3dfk5FaSHunTisV/draAlGMGf1DqysO9zj15hWXoI5143gJyOIiIiIiIgcovK93JRekDguFovh3XffxZYtW3D48GH4fD7k5uaiqKgIY8aMwT//8z/D6+X/tKrEBQkiIiL1WoIRPLpqB1ZtU7sgsL6+CVUb96L2EwsLIkMKce+VvVsQISIiIiIiorPjPSTOwuPxYOzYsfj3f/93/OxnP8PTTz+NX/ziF3j44YcxadIkLkaQcj6fD0888QR8Pp/qobgGO9OjAykZpeQg2XYd8WNK5aZeLUYAwMq6w5hSuQn1jf4ev8bksiK8POtyrJs9AfdNGoYrLuh/0j0mCrIzcMUF/XHfpGFYN3sCXp51ORcjBON1lNyE56t8nGN12L117EyPDqRklJKDnOWKT0hQ6tP9ExLRaBR79uzBsGHDkJFh7009pWJnenQgJaOUHCTXriN+TH+6Br6OqG2vWZCdYet9HEzTRDDSiUgsDq8nDbne9MS9wUg+XkfJTXi+ysc5VofdW8fO9OhASkYpOXTALZs+Z//+/QAAwzAwaNAgy89vbW2F39/1L/rOP/98W8dGp6f7ggQREZEqLcEIplRuQpM/bPtrF+VnYu0DE3g/ByIiIiIiIkG4ZdPnlJaWYsiQISgtLcX3vvc9RCIRS8//yU9+giFDhmDo0KEOjZDoZO3t7VixYgXa29tVD8U12JkeHUjJKCUHyfToqh2OLEYAQJM/jDmrdzjy2qQXXkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbcgAXR9pN80TbzwwguYNGkSPv300x49n4iIiEiy9fVNvb5nxNmsrDuM9fVNjh6DiIiIiIiI9JByWzalpaXBMAyYppn47+DBg7Fq1SpcfPHFZ33+D3/4Q/zqV7+CYRjo7OxMwogJ4JZNREREKtxYtQW1Dc2OH6diSCFennW548chIiIiIiIi53HLplMYP348ioqKAAD79u3DP//zP2P16tWKR0V0atFoFPX19YhG7buZqHTsTI8OpGSUkoNkqW/0J2UxAgBqP2nGR42BpByLZOJ1lNyE56t8nGN12L117EyPDqRklJKDnJWyCxKjRo1CbW0tRo0aBQBoa2vDt771LfzsZz9TPDKik3GPPOvYmR4dSMkoJQfJcKC5HQea2/Fczb6kHve5mn040MyvAeoZXkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbtl03333YennnoK7e3tuO2227BixQoAgGEYuP3227Fw4UJkZGSc9Hxu2aQGt2wiIiJKjtKHX1V6/IYnvqH0+ERERERERNQ73LLpDHJycvDHP/4RDz/8cOL3li5diq9//ev47LPPFI6MiIiIiIiIiIiIiIi6K+UXJI77n//5H/zud7+D1+sFALzxxhsYM2YMdu7cqXhkREBrayvmzp2L1tZW1UNxDXamRwdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLNcsSADAbbfdhg0bNuCcc84BAHzyyScYN24c1q5dq3hkpLu8vDzcfvvtyMvLUz0U12BnenQgJaOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBznLVggQAjB07Fm+//TYuvvhiAIDf78d1112H+fPnqx0Yac3j8aC0tBQej0f1UFyDnenRgZSMUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBznLdQsSAHD++efjrbfewrRp0wAAnZ2d+NGPfoS7774b0WhU8ehIR8FgEMuWLUMwGFQ9FNdgZ3p0ICWjlBxERKrwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc5y5YIE0HWz6z/96U946KGHEr+3aNEiLFq0SOGoSFdpaWno27cv0tJc+yWVdOxMjw6kZJSSg2TY/OAkbH5wEr46uF9Sjzt6cD9sfnBSUo9JcvA6Sm7C81U+zrE67N46dqZHB1IySslBzjJM0zRVD+Lz0tLSYBgG7rvvPjz11FPdes6zzz6L73//+4hEIgAA0zRhGAY6OzudHCp9zo4dOzBy5MjEr7dv344RI0YoHBEREZFs89bWY0H1nqQd775Jw/Djq8uSdjwiIiIiIiJyhsr3clNyucrqGsn3vvc9/PWvf8WAAQMsP5fIDpFIBHV1dYlFMTo7dqZHB1IySslBskwtL0nu8UYNTOrxSBZeR8lNeL7KxzlWh91bx8706EBKRik5yFkptyDxySef4JNPPsHcuXMtPW/cuHF45513MGfOHDz66KN45JFHHBoh0clCoRCqq6sRCoVUD8U12JkeHUjJKCUHyVJWnI+K0sKkHKtiSCGGF/dJyrFIJl5HyU14vsrHOVaH3VvHzvToQEpGKTnIWSm3ZRO5E7dsIiIiSr719U2YueRdx4+zeMZlmFR2juPHISIiIiIiIudxyyYilzNNE6FQiFuGWcDO9OhASkYpOUieyWVFmDrK2a2bppWXcDGCeo3XUXITnq/ycY7VYffWsTM9OpCSUUoOchYXJIhs4PP58OSTT8Ln86keimuwMz06kJJRSg6Sae7UESjKz3TktYvyMzHnOn7ikXqP11FyE56v8nGO1WH31rEzPTqQklFKDnIWt2wiW+i+ZVNnZyeOHj2KAQMGID09XfVwXIGd6dGBlIxScpBc9Y1+3LSwBr6OqG2vWZCdgZdmjUVZcb5tr0n64nWU3ITnq3ycY3XYvXXsTI8OpGSUkkMHKt/LVbIg8fkT0jAMxGKxU/5Zb3zxdclZui9IEBERdYdpmmgLxxDtNJGRbiAv0wPDMGx57fpGP25fVIsmf7jXr1WUn4mlMyu4GEFERERERCSQdveQOL4GYprmSXuKffHPevODKFna2tqwZMkStLW1qR6Ka7AzPTqQklFKDlKjvtGPeWvrcetva1D+2Ou4eM5ruPTxrv+WP/Y6bv1tDeatrcdHjYFeHaesOB9rH5iAaeW9u6fEtPISrH1gAhcjyFa8jpKb8HyVj3OsDru3jp3p0YGUjFJykLM8qg58pgUDLiaQ23g8HpSWlsLjUfYl5TrsTI8OpGSUkoOSa319E6qq96K2ofm0j/F1RPHm7mN4c/cxLKjeg4rSQtw7cViPbyLdL9eLyumXYFp5Cao27kXtJ6c/9hdVDCnEvVf2/NhEZ8LrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOYv3kCBbcMsmIiKiLi3BCB5dtQOrth3u8WtMKy/BnOtGoF+ut1dj+agxgFXbDmHbAR8+POQ74R4TBdkZuHhgAUYNKsDUUQMxvLhPr45FRERERERE7qDyvVwuVxHZIBwOY+vWrbjkkkuQmZmpejiuwM706EBKRik5yHm7jvgxY3Hv7+Owsu4wavYe6/V9HIYX98GPi8sAdH0CNRjpRCQWh9eThlxvum33ryA6G15HyU14vsrHOVaH3VvHzvToQEpGKTnIWUruIUEkTSQSQV1dHSKRiOqhuAY706MDKRml5CBn7Trix/Sna2y5qTQANPnDuGlhDeob/ba8nmF03US7MNdr6820ibqD11FyE56v8nGO1WH31rEzPTqQklFKDnIWt2wiW3DLJiIi0llLMIIplZtsW4z4vKL8TKx9YEKvt28iIiIiIiIiAtS+l8tPSBDZIB6Po7W1FfF4XPVQXIOd6dGBlIxScpBzHl21w5HFCKDrkxJzVu9w5LWJkoXXUXITnq/ycY7VYffWsTM9OpCSUUoOchYXJIhs4Pf7UVlZCb/fnm01dMDO9OhASkYpOcgZ6+ubenUD6+5YWXcY6+ubHD0GkZN4HSU34fkqH+dYHXZvHTvTowMpGaXkIGcp2bJp8uTJjh/DMAz89a9/dfw41EX3LZvi8Tj8fj/y8/ORlsZ1vu5gZ3p0ICWjlBzkjBurtqC2odnx41QMKcTLsy53/DhETuB1lNyE56t8nGN12L117EyPDqRklJJDByrfy/Uk5ShfUF1d7eiNFE3T5I0aKanS0tLQt29f1cNwFXamRwdSMkrJQfarb/QnZTECAGo/acZHjQEML+6TlOMR2YnXUXITnq/ycY7VYffWsTM9OpCSUUoOcpaypSrTNB37QZRsgUAAVVVVCAQCqofiGuxMjw6kZJSSg+xxoLk98eO5mn1JPXayj0dkF15HyU14vsrHOVaH3VvHzvToQEpGKTnIWUo+IbFhwwYVhyVyjNfrRXl5Obxer+qhuAY706MDKRml5CB7jJ+n7u8xz9bsw+PXjzz7A4lSDK+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLCX3kCB5dL+HBBER6aP04VeVHv+Tn17LrSmJiIiIiIiox1S+l8u7ixDZIBQKobq6GqFQSPVQXIOd6dGBlIxScpAMwUin6iEQWcbrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOYsLEkQ2iMViaGhoQCwWUz0U12BnenQgJaOUHCRDJBZXPQQiy3gdJTfh+Sof51gddm8dO9OjAykZpeQgZ3HLJrIFt2wiIiJdqN6yafvcq5GXqeQ2YERERERERCQAt2wicrnOzk40Njais5PbaHQXO9OjAykZpeQgGXK96aqHQGQZr6PkJjxf5eMcq8PurWNnenQgJaOUHOSslF+Q8Pl8ePXVV/F//+//xb//+7/jrrvuwsyZM8/6484771Q9dNJIIBDAwoULEQgEVA/FNdiZHh1IySglB9lj84OTEj++OrhfUo89enA/3tCaXInXUXITnq/ycY7VYffWsTM9OpCSUUoOclbKbtnU0tKChx56CM8//3yPb4TC1bjk0X3LJtM0EQ6HkZmZyTeKuomd6dGBlIxScpD95q2tx4LqPUk73n2ThuHHV5cl7XhEduF1lNyE56t8nGN12L117EyPDqRklJJDByrfy03JDYgbGhpw5ZVX4uDBg+jOeolhGCc9jic9JZNhGMjKylI9DFdhZ3p0ICWjlBxkv6nlJUldkJg6amDSjkVkJ15HyU14vsrHOVaH3VvHzvToQEpGKTnIWSm3ZZNpmvjWt76FAwcOwDRNfOUrX8GTTz6Jr33tawC6TuzFixfjqaeewo9+9CNcdtllicWIvLw8/OxnP8PixYuxaNEilTFIM36/H/Pnz4ff71c9FNdgZ3p0ICWjlBxkv7LifFSUFiblWBVDCjG8uE9SjkVkN15HyU14vsrHOVaH3VvHzvToQEpGKTnIWSn3CYnly5dj27ZtMAwDV199NVatWgWPx4P9+/fjr3/9KwDg9ttvP+E57733Hr7//e9j69atqKysxGuvvYayMm5nQMmTlZWFiRMnchXYAnamRwdSMkrJQc64Z+JQ1C5pdvw49145zPFjEDmF11FyE56v8nGO1WH31rEzPTqQklFKDnJWyt1D4pZbbsGyZcuQlpaGPXv2YPDgwQCAH/7wh/jVr34FwzBOeW+Ijo4OXHXVVXjrrbcwcuRI1NbW8uRPIt3vIUFERHq7/8WtWLXtsGOvP628BJXTL3Hs9YmIiIiIiEgfKt/LTbktm2pra2EYBi699NLEYkR3ZGdnY8mSJUhPT8eOHTvwwgsvODhKohN1dHRg7dq16OjoUD0U12BnenQgJaOUHOScuVNHoCg/05HXLsrPxJzruMhP7sbrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOSvlFiSOHj0KALjoootO+P20tH8MNRQKnfK5F1xwAcaNGwfTNLFs2TLnBkn0BfF4HK2trYjH46qH4hrsTI8OpGSUkoOc0y/Xi6UzK1CQnWHr6xZkZ2DpzAr0y/Xa+rpEycbrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOSvltmzKzMxELBbDPffcg1/96leJ3//P//xP/PSnP4VhGDhw4ABKSkpO+fy77roLixYtwqBBg7Bv375kDVt73LKJiIgIqG/04/ZFtWjyh3v9WkX5mVg6swJlxfk2jIyIiIiIiIioC7ds+pz8/K7/6W5vbz/h97/0pS8lfr579+7TPt/n8wEAPv30UwdGd3YNDQ34zW9+g9tuuw2jRo1Cv379kJGRgcLCQnzlK1/BrFmzsHHjRkfHYJom/vSnP+G73/0uhg0bhuzsbAwYMACjR4/G3LlzsX//fkePr6NYLIaGhgbEYjHVQ3ENdqZHB1IySslBzisrzsfaByZgWvmp/+FEd00rL8HaByZwMYLE4HWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXILEsOGDQMANDY2nvD7n1+hWb9+/SmfG4/H8f777wMAcnJyHBrhqW3duhVjxozBkCFD8P3vfx/PP/88PvjgA7S2tiIWi6GlpQUffvghnn76aUycOBGTJk1yZGHg8OHD+PrXv45vf/vb+MMf/oC9e/ciFArhs88+w3vvvYc5c+ZgxIgRWLJkie3H1llbWxuWLl2KtrY21UNxDXamRwdSMkrJQcnRL9eLyumXYNGM0agYUmjpuRVDCrF4xmWonH4Jt2kiUXgdJTfh+Sof51gddm8dO9OjAykZpeQgZ6Xclk333HMPnn766ZO2XPL5fCguLkYkEsGAAQPwwQcf4Jxzzjnhuf/v//0//J//839gGAauuOIKxz+J8HnLli3DzTfffMLv/dM//RNGjhyJ/v37o7W1FW+99RYOHjyY+POSkhJs3rwZQ4cOtWUMfr8f//zP/4zt27cnfq+iogIjRoyAz+fD+vXr0dramvizpUuX4l//9V9tOTa3bCIiIjq1jxoDWLXtELYd8OHDQz74OqKJPyvIzsDFAwswalABpo4aiOHFfRSOlIiIiIiIiHSg8r1cT1KOYsHEiRPx9NNP4+DBg9i7d2/izfqCggJ85zvfwQsvvICjR49i9OjRmD17Ni6++GK0t7dj1apVWLp0aeJ1pk+frmT8F1xwAe666y7cdtttGDhw4Al/Fo/HsWTJEvzwhz9Ee3s7Dh8+jFtvvRVvvfUWDMPo9bH/7d/+LbEYUVhYiN///veYPHly4s+DwSBmzZqF559/HgBw9913Y9y4cbjgggt6fWwiIiI6teHFffDj4jIAXdsqBiOdiMTi8HrSkOtNt+XvAERERERERERukHJbNl177bXweru2KFi+fPkJf/bkk0+iX79+AIBDhw7hxz/+MaZMmYJvf/vbWLJkCY5/2OPSSy/FXXfdldRxn3vuuVi8eDHq6+vx0EMPnbQYAQBpaWmYOXMmnnvuucTv1dTU4LXXXuv18bdv355YaACAF1544YTFCADIzc3F7373O4wbNw4AEIlE8Mgjj/T62NT1CZ4nnngicQ8TOjt2pkcHUjJKyUFdCwKBUBTNwQgCoSiS/UFRwzCQl+lBYa4XeZkeLkaQNngdJTfh+Sof51gddm8dO9OjAykZpeQgZ6Xclk0A8Kc//QmffvopBg4ciG9+85sn/NnWrVvxne98Bw0NDad87oQJE/Dyyy+ftJ1TqhkzZgxqa2sBAD/84Q/x1FNP9er17rvvPixYsAAAcNVVV51xkePNN9/EFVdcAQBIT09HY2Mj+vfv36vj675lUzQaxZ49ezBs2DBkZGSoHo4rsDM9OpCSUUoOXdU3+rGq7jC2HWzF9kP+k7ZMGjkwH6PO64tp5dwyicgpvI6Sm/B8lY9zrA67t46d6dGBlIxScuhA5Xu5KbkgcTaRSAR/+MMf8Ne//hWHDx9GWloahg4diuuuuw5XXXWV6uF1y3/8x3/gF7/4BQDguuuuw6pVq3r8WqZp4vzzz0/cn+KFF1446X4WX3ThhRdi9+7dAIBnnnkGM2fO7PHxAS5IEBFR6llf34Sq6r2obWju9nMqSgtx78RhmFSW2v+wgYiIiIiIiKinVL6Xm3JbNnWH1+vFzTffjN/+9rdYs2YNXnnlFTz11FOuWYwAcMIWDZ2dnb16rY8//viEm2VPnDjxrM+ZNGlS4ufr16/v1fEJaG9vx4oVK9De3q56KK7BzvToQEpGKTl00RKM4P4Xt2LmknctLUYAQG1DM+5Y8g4eWLYVLcGIQyMk0g+vo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CxXLkhI8OGHHyZ+PmjQoF691q5duxI/Ly4uxrnnnnvW51x66aWnfD4REZGb7Trix5TKTVi17XCvXmdl3WFMqdyE+ka/TSMjIiIiIiIiIldu2eR2+/fvx9ChQxOfjPj973+P7373uz1+vXnz5uGhhx4C0HVvipqamrM+Z82aNfjGN74BAMjJyUEwGOzx8QFu2UREROrtOuLH9KdrTrhHRG8VZGfgpVljUVacb9trEhEREREREanELZs08x//8R+JxYjzzz8f1113Xa9e79ixY4mfFxUVdes5xcXFiZ+3t7cjHA73agzHZWVlIS8vD0DXVlStra04vubl9/sRiXRtf9HR0ZFYBInFYmhtbU28hs/nQzQaTYzt+Me8otEofD5f4nGtra2IxWIAgGAwiI6ODgBd9xjx+7v+RatpmmhtbU303dbWhlAoBAAIh8MIBAIAgHg8jtbWVsTjcQBAIBBIdBIKhdDW1nbGTNFoFNu2bUvkkJDJ6XkKBoN4//33EY1GxWSyOk/RaBQ7d+7E0aNHxWT64jxFo1Fs3bo1kcOtmcLhMN57773E3EibJwmZWoIR3LHobXSG2mCga6zZiCADXc/xIoZsdI0nDXHkGWHg74/LQQSezz0u6++PS0ccnaE23L6oFi3BCOeJmZipF5k6Ojrw3nvvJXJIyCRxnpjJl/j5e++9d8LfW92eSeI89SZTIBBAfX194ucSMrllnlpbW7Ft2zZEo1ExmZyep5aWFtTX1yMUConJxL9HnDxPn332GbZv345oNOrqTEePHkV9fX1i3NLmSWImFVJ+QSIej2Pnzp149dVX8eKLL+J3v/tdt3+koqVLl+IPf/hD4tc//elPkZmZ2avXPH7iAUB2dna3nvPFx33+NXpj7NixiU97HD16FJWVlYkvkkWLFmHnzp0AgI0bN2L16tUAgIMHD6KysjLxGr/+9a+xZ88eAMBrr72G1157DQCwZ88e/PrXv048rrKyMnHvjNWrV2Pjxo0AgJ07d2LRokUAur6AKysrcfToUQDA8uXLE58g2bp1K55//nkAXV+klZWViYvC888/j61btwIAampqsHz58jNmam9vx+rVq0Vlcnqetm3bhtWrVycWxCRksjpP7e3tWLlyJRYsWCAm0xfn6fjXxjvvvOPqTE1NTXjllVfQ1NQkcp4kZHp01Q60tQVwQ9aHyDW6/tJ1VebHuDD9MwDAlz1NuNLbNZ6+Rgg3ZH0I798XIa7NrEdpegsAoDzjMMZ59wEABqS14YasD9HkD2PO6h2cJ2Zipl5k2rNnD1555ZXE/7RJyCRxnpipK1N7ezteeeWVxOMkZJI4T73J9Oabb2LFihV45513xGRy0zwd//9ASZmcnKc//OEPWLFiBQ4cOCAmE/8ecfI8/eY3v8HKlSvR3t7u6kwLFixI3ENC4jxJzKRCym7ZtG/fPjz++ONYvnx5YkXICsMwEitRqeLdd9/F+PHjE6tdN998M1544YVev+6dd96ZOJm/973vdWsxZu/evRg2bFji1wcOHMB5553X4zEc/5hPVlYWPB4PampqUFZWhkAggIKCAhiGAb/fj6ysLHi9XnR0dCAejyM3NxexWAxtbW3o27cvgK7VxpycHGRkZCS+2eTk5CRWiQsKCgB0rTbm5eXB4/EgGAwiLS0N2dnZiEQiCIVCyM/Ph2ma8Pl86NOnD9LT09HW1gaPx4OsrCyEw2FEIhH06dMH8Xgcfr8f+fn5SEtLQyAQgNfrRWZmJkKhEGKxGPLy8tDZ2clMzMRMzMRMKZZp/c5DuPelXTBgIteIIGh6YcJANiKIIR1RpMOLGNJhogMZSEMcOUYUbaYXgIEcRBBBOmJ/f1waTISQgXTEkW1E0WZ2/cOBBTcMx1VfGcx5YiZmYiZmYiZmYiZmYiZmYiZmYiZXZzp06JCyLZtSckFi5cqVuPXWW9HR0YGeDs8wjMRHXlLBJ598gnHjxqGxsREA8JWvfAWbN29Gfn7v96S+7777sGDBAgDATTfdhGXLlp31Obt27cKXv/zlxK8/++wzfOlLX+rxGHgPCSIiUuXGqi2obWh2/DgVQwrx8qzLHT8OERERERERkZN4D4nPqa+vx0033YT29vbEYsSgQYNwzTXX4NZbb8Xtt9/erR//+q//qjjJPxw5cgRXXXVVYjFi6NChWLt2rS2LEQAS92wAkNiT7Gy++LjPvwZZ19rairlz5yrfg81N2JkeHUjJKCWHRPWN/qQsRgBA7SfN+KjR+qc2iYjXUXIXnq/ycY7VYffWsTM9OpCSUUoOcpZH9QC+6IknnkAkEoFhGCgrK8NvfvMbjBs3TvWweuzYsWO46qqrEvuLnXvuufjLX/6Cc88917ZjfP6TDcf3Nz+b44sjQNdHi3p7Hwvd5eXl4fbbb+fCjgXsTI8OpGSUkkOSA81dH499rmZfUo/7XM0+PH79yLM/kIhOwOsouQnPV/k4x+qwe+vYmR4dSMkoJQc5K+UWJDZs2ACg603y119/HSUlJYpH1HN+vx9XX301duzYAQDo378//vKXv2DIkCG2Hmf48OGJn+/b1703Zvbv35/4eVlZma3j0ZHH40FpaanqYbgKO9OjAykZpeSQZPy8DUqO+ywXJIh6hNdRchOer/JxjtVh99axMz06kJJRSg5yVspt2fTpp5/CMAx8/etfd/ViRDAYxLXXXov33nsPAFBQUIC1a9eecN8Gu1x00UWJnzc2Np7w6YfTef/990/5fOqZYDCIZcuWIRgMqh6Ka7AzPTqQklFKDrJHCt5+iyjl8TpKbsLzVT7OsTrs3jp2pkcHUjJKyUHOSrkFiQEDBgAAioqKFI+k50KhEKZOnYo333wTQNenPV599VV89atfdeR4F154Ic4777zEr6urq8/6nI0bNyZ+PnnyZCeGpZW0tDT07dsXaWkp9yWVstiZHh1IySglB9kjGOlUPQQi1+F1lNyE56t8nGN12L117EyPDqRklJKDnGWYKfbP/L7+9a9jw4YN+OY3v4mVK1eqHo5l0WgU119/PdasWQMAyMzMxCuvvIKvf/3rjh73vvvuw4IFCwAAV199NdauXXvax27ZsiVxX4709HQcOXIksRDUUyrvzE5ERPopffhVZcd+/ydXoTDXq+z4RERERERERL2h8r3clFuuuv3222GaJjZt2uS6j/d0dnbilltuSSxGeDwevPzyy44vRgDAPffck1h9XLduHV5//fVTPi4ej+PBBx9M/PqGG27o9WIEAZFIBHV1dYhEIqqH4hrsTI8OpGSUkoPs4fWk3F+fiFIer6PkJjxf5eMcq8PurWNnenQgJaOUHOSslPs/6unTp6OsrAx+vx8PPfSQ6uF0m2mauPPOO7F8+XIAXR9RevbZZzF16tReva5hGIkfc+bMOe3jLr74Ytx6662JX998880nbd0UDAYxY8YMvPHGGwAAr9eLxx9/vFfjoy6hUAjV1dUIhUKqh+Ia7EyPDqRklJKD7JHrTVc9BCLX4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXJbNgHA7t27MXnyZBw6dAgzZszAk08+if79+6se1hktWLAA9913X+LXF154If7lX/6l28//5S9/ecrfNwwj8fNHH330jIsSfr8f48aNw44dOxK/N2bMGHz5y1+G3+/H+vXr0dLSkvizJUuW4Pbbb+/2GM+EWzYREVEyHWhuBwDMfqkO7+1rOcuj7TN6cD8sv3dc0o5HREREREREZDeV7+V6knIUiy644AK89957mDVrFhYvXowXX3wR48ePx4gRI1BQUHDCm/Rn8sgjjzg80n/49NNPT/j1xx9/jI8//rjbzz/dgoQV+fn5eO211/C9730P69evBwC8/fbbePvtt094XF5eHp566inbFiOo6xMy4XAYmZmZ3T4/dcfO9OhASkYpOSQZVJgDABgzpDCpCxJjhhYm7VhEkvA6Sm7C81U+zrE67N46dqZHB1IySslBzkq5LZuO+/jjj+Hz+QB0fdznL3/5CyorK/HYY49h7ty53fqho5KSEvzlL3/BH/7wB3z7299GaWkpMjMz8aUvfQmXXHIJHnnkEezYsQN33HGH6qGK4vP58OSTTybOWTo7dqZHB1IySskh0dTykuQeb9TApB6PSApeR8lNeL7KxzlWh91bx8706EBKRik5yFkpuWXTkiVLcPfddyMejwPoWl2zyjAMdHZ22j00Og3dt2zq7OzE0aNHMWDAAKSnc2/x7mBnenQgJaOUHFLdWLUFtQ3Njh+nYkghXp51uePHIZKI11FyE56v8nGO1WH31rEzPTqQklFKDh1wy6bPqampwZ133plYhEhPT8e4ceNw8cUXo1+/fvB4Um7IREhPT0dxcbHqYbgKO9OjAykZpeSQ6p6JQ1G7xPkFiXuvHOb4MYik4nWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXLv7v/v//4vTNOEYRi44oor8Oyzz+L8889XPSyiM2pra8Py5cvx3e9+F3l5eaqH4wrsTI8OpGSUkkOqyWVFmDqqBKu2HXbsGNPKSzCp7BzHXp9IOl5HyU14vsrHOVaH3VvHzvToQEpGKTnIWSl3D4k33ngDANC3b1+sWrWKixHkCh6PB6WlpfwEjwXsTI8OpGSUkkOyuVNHoCg/05HXLsrPxJzr9NmGkMgJvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzUu4eEllZWYhGo/jOd76Dl19+WfVwqJt0v4cEERGpV9/ox00La+DriNr2mgXZGXhp1liUFefb9ppEREREREREKql8LzflPiFxzjld2yEUFhYqHglR94XDYdTU1CAcDqseimuwMz06kJJRSg7pyorz8dKssbZ9UqIoP5OLEUQ24XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXILEsdXZvbv3694JETdF4lEUFdXh0gkonoorsHO9OhASkYpOXRQVpyPtQ9MwLTykl69zrTyEqx9YAIXI4hswusouQnPV/k4x+qwe+vYmR4dSMkoJQc5K+W2bHrhhRdw2223ITs7G/v27UP//v1VD4m6gVs2ERFRqllf34SqjXtR+0lzt59TMaQQ9145jDewJiIiIiIiIrG4ZdPn3HzzzZg0aRI6Ojowa9YspNh6CdEpxeNxtLa2Ih6Pqx6Ka7AzPTqQklFKDt1MLivCy7Mux7rZE3DfpGG44oL+KMjOOOExBdkZuOKC/rhv0jCsmz0BL8+6nIsRRA7gdZTchOerfJxjddi9dexMjw6kZJSSg5yVcgsShmHg5Zdfxvjx47FixQpcddVV+PDDD1UPi+iM/H4/Kisr4ff7VQ/FNdiZHh1IySglh66GF/fBj68uw3N3jUHdI1dh+9yr8f5Puv5b98hVeO6uMfjx1WUYXtxH9VCJxOJ1lNyE56t8nGN12L117EyPDqRklJKDnJVyWzbNnDkTABCNRrF8+fLEnmPDhg3DyJEjUVBQAMMwzvo6hmHgmWeecXSs9A+6b9kUj8fh9/uRn5+PtLSUW+dLSexMjw6kZJSSg4hIFV5HyU14vsrHOVaH3VvHzvToQEpGKTl0oPK93JRbkEhLSztpwcE0zW4tQnxRZ2enXcOis9B9QYKIiIiIiIiIiIjIDXgPiS8wTfOEH6f6vbP9IEqmQCCAqqoqBAIB1UNxDXamRwdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLI/qAXzR4sWLVQ+ByDKv14vy8nJ4vV7VQ3ENdqZHB1IySslBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOSslNuyidyJWzYREVF3mKaJtnAM0U4TGekG8jI9PdqWkYiIiIiIiIh6hls2fc4HH3yQ+MF7QJBbhEIhVFdXIxQKqR6Ka7AzPTqQklFKDlXqG/2Yt7Yet/62BuWPvY6L57yGSx/v+m/5Y6/j1t/WYN7aenzUyI/1EknF6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYkysvLcckll+D6669Henq66uEQdUssFkNDQwNisZjqobgGO9OjAykZpeRItvX1TbixagumzN+MBdV78ObuY/B1RE94jK8jijd3H8OC6j24ev4m3Fi1BRvqP1U0YiJyCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJTbsikzMxOxWAw33XQTXnjhBdXDoW7ilk1ERHRcSzCCR1ftwKpth3v8GtPKSzDnuhHol8u9R4mIiIiIiIjsxC2bPqe4uBgAkJeXp3gkRN3X2dmJxsZGbjNmATvTowMpGaXkSIZdR/yYUrmpV4sRALCy7jCmVG5CfaPfppERkUq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLNSbkGirKwMpmli3759qodC1G2BQAALFy5EIMD9z7uLnenRgZSMUnI4bdcRP6Y/XYMmf9iW12vyh3HTwhouShAJwOsouQnPV/k4x+qwe+vYmR4dSMkoJQc5K+W2bHrmmWdw9913Izs7G/v378eXvvQl1UOibtB9yybTNBEOh5GZmQnDMFQPxxXYmR4dSMkoJYeTWoIRTKncZNtixOcV5Wdi7QMTuH0TkYvxOkpuwvNVPs6xOuzeOnamRwdSMkrJoQNu2fQ5t956K7785S8jFArhvvvuUz0com4xDANZWVm82FrAzvToQEpGKTmc9OiqHY4sRgBdn5SYs3qHI69NRMnB6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYksrKysHz5cgwaNAi///3vce211+Jvf/ub6mERnZHf78f8+fPh93Nbke5iZ3p0ICWjlBxOWV/f1Ot7RpzNyrrDWF/f5OgxiMg5vI6Sm/B8lY9zrA67t46d6dGBlIxScpCzPKoH8EWPPfYYAGDq1KmoqqrCunXrcNFFF+ErX/kKvvrVr2LAgAHIzs7u1ms98sgjTg6VKCErKwsTJ05EVlaW6qG4BjvTowMpGaXkcEpV9d7kHGfjXkwuK0rKsYjIXryOkpvwfJWPc6wOu7eOnenRgZSMUnKQs1LuHhJpaWknfazHNM0efdSHd3RPHt3vIUFEpKv6Rj+mzN+ctOOtmz0Bw4v7JO14RERERERERNLwHhJfYJrmCT9O9Xtn+0GUTB0dHVi7di06OjpUD8U12JkeHUjJKCWHnQ40t+NAczueq9mX1OM+V7MPB5rbk3pMIuo9XkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbdl06OPPqp6CESWxeNxtLa2Ih6Pqx6Ka7AzPTqQklFKDjuNn7dByXGfrdmHZ2v2oeGJbyg5PhH1DK+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJTbsonciVs2ERHppfThV5UenwsSRERERERERD3DLZuIXC4Wi6GhoQGxWEz1UFyDnenRgZSMUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBzmLCxJENmhra8PSpUvR1tameiiuwc706EBKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxS2byBbcsomISC/csomIiIiIiIjInVS+l5tyN7U+lUAggC1btuD999/HZ599hkAggD59+qB///649NJLcfnll6NPnz6qh0lERERERERERERERKeR0ls27d+/H3fddReKiopwzTXX4D//8z/xi1/8Ar/97W/xi1/8Av/5n/+Ja665BsXFxbj77ruxf/9+1UMmTfl8PjzxxBPw+Xyqh+Ia7EyPDqRklJLDTpsfnITND07CVwf3S+pxRw/uh80PTkrqMYmo93gdJTfh+Sof51gddm8dO9OjAykZpeQgZ6XsgsQf//hHjBo1CosXL0YoFIJpmqf90dHRgUWLFmHUqFH405/+pHropKGcnBxcf/31yMnJUT0U12BnenQgJaOUHHYaVJiDQYU5GDOkMKnHHTO0EIMKOQ9EbsPrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOSsl7yGxdu1aTJ06FZ2dnTg+vMLCQlRUVKC0tBS5ubkIBoNoaGjAO++8g2PHjsEwDJimiYyMDKxevRr/8i//ojiFXngPCSIiPdU3+jFl/uakHW/d7AkYXsxtGomIiIiIiIh6SuV7uSn3CYn29nbceeediMViME0TpaWleOmll9DY2Ig1a9ZgwYIF+NnPfoYFCxZgzZo1aGxsxMsvv4zS0lIAQDQaxZ133omOjg61QUgr7e3tWLFiBdrb21UPxTXYmR4dSMkoJYcTyorzUVGanE9JVAwp5GIEkUvxOkpuwvNVPs6xOuzeOnamRwdSMkrJQc5KuQWJxYsX48iRIzAMA6NHj8b777+PG264AR7Pqe+/nZ6eju9+97t4//33MXr0aADA4cOHsXjx4mQOm4iISFv3TByalOPce+WwpByHiIiIiIiIiJyRcls2XXPNNVi3bh08Hg927dqFYcO6/+bD7t27cdFFFyEej+Nf/uVf8Oc//9nBkdLnccsmIiK93f/iVqzadtix159WXoLK6Zc49vpEREREREREuuCWTZ+zfft2GIaBK664wtJiBABccMEFmDBhAkzTxPbt2x0aIdHJotEo6uvrEY1GVQ/FNdiZHh1IySglh5PmTh2BovxMR167KD8Tc67jIjeRm/E6Sm7C81U+zrE67N46dqZHB1IySslBzkq5BYnPPvsMQNfiQk8cX8Q4/jpEycA98qxjZ3p0ICWjlBxO6pfrxdKZFSjIzrD1dQuyM7B0ZgX65XptfV0iSi5eR8lNeL7KxzlWh91bx8706EBKRik5yFkpt2VTYWEhfD4fbrrpJrzwwguWn3/LLbdg2bJl6Nu3L5qbmx0YIZ0Kt2wiIiIAqG/04/ZFtWjyh3v9WkX5mVg6swJlxfk2jIyIiIiIiIiIAG7ZdIKSkhKYponNmzdbfq5pmnjjjTdgGAZKSkocGB0RERGdSVlxPtY+MAHTynv3fXhaeQnWPjCBixFEREREREREgqTcgsSkSZMAAIcPH8Yvf/lLS8/99a9/jYMHDwIAJk6caPfQiE6rtbUVc+fORWtrq+qhuAY706MDKRml5EiWfrleVE6/BItmjEbFkEJLz60YUojFMy5D5fRLuE0TkSC8jpKb8HyVj3OsDru3jp3p0YGUjFJykLNSbsumt99+G5dffjkMw0B6ejqeeuop3HPPPWd93m9+8xv827/9G6LRKAzDwFtvvYUxY8YkYcQEcMumWCyGgwcP4rzzzoPH41E9HFdgZ3p0ICWjlByqfNQYwKpth7DtgA8fHvLB1/GPG5wVZGfg4oEFGDWoAFNHDcTw4j4KR0pETuF1lNyE56t8nGN12L117EyPDqRklJJDByrfy025BQkAmD59Ol5++WUAgGEYKC8vx4wZMzBu3DgMHjwYubm5CAaD2L9/P9566y0sXboU77//PkzThGEYuPHGG/Hiiy8qTqEX3RckiIioe0zTRDDSiUgsDq8nDbnedBiGoXpYRERERERERNrgPSS+YNGiRbjssssSv66rq8Ps2bNRUVGBoqIi5OXloaioCJdddhkeeOCBxGIEAFx22WV45plnVA2dNBUMBrFs2TIEg0HVQ3ENdqZHB1IySsmRCgzDQF6mB4W5XuRlergYQaQJXkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbkgkZOTg+rqatxzzz0wDAOmaZ71R1paGu69915s2LABOTk5qiOQZtLS0tC3b1+kpaXkl1RKYmd6dCAlo5QcRESq8DpKbsLzVT7OsTrs3jp2pkcHUjJKyUHOSsktmz5v7969+M1vfoP169ejrq4O0eg/9p3OyMhAeXk5Jk+ejLvvvhtDhw5VOFK9ccsmIiIiIiIiIiIiotTHLZvOYOjQofjpT3+Kt99+G+FwGC0tLThw4ABaWloQDofx9ttv46c//SkXI0ipSCSCuro6RCIR1UNxDXamRwdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJRfkPiigoICDBw4EAUFBaqHQpQQCoVQXV2NUCikeiiuwc706EBKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclfJbNpE7cMsmIiIiIiIiIiIiotTHLZuIXM40TYRCIXB9r/vYmR4dSMkoJQcRkSq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLO4IEFkA5/PhyeffBI+n0/1UFyDnenRgZSMUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBzlL2ZZNt9xyi6OvbxgGnn/+eUePQf+g+5ZNnZ2dOHr0KAYMGID09HTVw3EFdqZHB1IySslxnGmaaAvHEO00kZFuIC/TA8MwVA+LiASTdh0l2Xi+ysc5VofdW8fO9OhASkYpOXSg8r1cZQsSaWlpjr35YZomDMNAZ2enI69PJ9N9QYKIKNXVN/qxqu4wth1sxfZDfvg6ook/K8jOwMiB+Rh1Xl9MKx+I4cV9FI6UiIiIiIiIiJyk7T0kTNN05AdRsrW1tWHJkiVoa2tTPRTXYGd6dCAlo5tzrK9vwo1VWzBl/mYsqN6DN3cfO2ExAgB8HVG8ufsYFlTvwdXzN+HGqi3YUP+pohETkURuvo6Sfni+ysc5VofdW8fO9OhASkYpOchZHlUHfvTRR219vXXr1qGmpgaGYXBRgpLO4/GgtLQUHo+yLynXYWd6dCAloxtztAQjeHTVDqzadtjyc2sbmlG7pBnTyksw57oR6JfrdWCERKQTN15HSV88X+XjHKvD7q1jZ3p0ICWjlBzkLGVbNtll8+bN+K//+i+88cYbid8zTRN9+/ZFc3OzwpHphVs2ERGljl1H/JixuBZN/nCvX6soPxNLZ1agrDjfhpERERERERERkWrabtnUG++99x6uueYaTJw4MbEYYZomsrOz8fDDD2Pv3r2KR0g6CYfDqKmpQTjc+zf/dMHO9OhASkY35dh1xI/pT9fYshgBAE3+MG5aWIP6Rr8tr0dEenLTdZSI56t8nGN12L117EyPDqRklJKDnOW6BYkdO3bg29/+NioqKvDaa68l7hvh9Xpx//33Y+/evfif//kf9O3bV/VQSSORSAR1dXWIRCKqh+Ia7EyPDqRkdEuOlmAEMxbXnnSPiN7ydURx+6JatARTOz8RpS63XEeJAJ6vOuAcq8PurWNnenQgJaOUHOQs12zZtGfPHjz66KN46aWXEI/HE/eJ8Hg8uOOOO/CTn/wE5513nuJR6otbNhERqXf/i1t7dM+I7ppWXoLK6Zc49vpERERERERE5Dxu2XQGBw4cwN13342LLroIL774Ijo7O2GaJtLS0nDbbbehvr4eCxcu5GIEKRWPx9Ha2op4PK56KK7BzvToQEpGN+RYX9/k6GIEAKysO4z19U2OHoOIZHLDdZToOJ6v8nGO1WH31rEzPTqQklFKDnJWyi5INDU14f7778c//dM/YdGiRYjFYjBNE4Zh4Nvf/jY++OAD/O53v8PQoUNVD5UIfr8flZWV8Pu5x3p3sTM9OpCS0Q05qqqTc++kqo28RxMRWeeG6yjRcTxf5eMcq8PurWNnenQgJaOUHOSslNuyqaWlBU8++SR++ctfoqOjA58f3jXXXIP//u//xiWXcLuIVKP7lk3xeBx+vx/5+flIS0vZdb6Uws706EBKxlTPUd/ox5T5m5N2vHWzJ2B4cZ+kHY+I3C/Vr6NEn8fzVT7OsTrs3jp2pkcHUjJKyaEDle/lepJylG5oa2vDz3/+c/ziF79AIBA4YSFi4sSJ+O///m+MGzdO4QiJTi8tLY03UreInenRgZSMqZjjQHN74ufP1exL6rGfq9mHx68fefYHEhH9XSpeR4lOh+erfJxjddi9dexMjw6kZJSSg5ylfKkqFAph3rx5GDJkCB577DH4/f7EYsSYMWPw+uuvY/369VyMoJQWCARQVVWFQCCgeiiuwc706EBKxlTMMX7ehsSP52r2J/XYzyZ5AYSI3C8Vr6NEp8PzVT7OsTrs3jp2pkcHUjJKyUHOUvYJiWg0ioULF+J//ud/0NTUdMInIkaNGoXHH38c3/zmN1UNj8gSr9eL8vJyeL1e1UNxDXamRwdSMkrJYafj93UiIuoOXkfJTXi+ysc5VofdW8fO9OhASkYpOchZyu4hUVpaigMHDpywEDF8+HA89thjuOGGG1QMiXpB93tIEBElW+nDryo9/va5VyMvM2V2fiQiIiIiIiKibtLyHhL79+9P/MtKwzAwduxY3HbbbWhpacHTTz9tyzG+//3v2/I6RGcTCoVQU1ODsWPHIisrS/VwXIGd6dGBlIxSctgpEosDmapHQURuwesouQnPV/k4x+qwe+vYmR4dSMkoJQc5S/k/bTy+KFFTU4OamhpbX5sLEpQssVgMDQ0NGD16tOqhuAY706MDKRml5LCT16P8NlRE5CK8jpKb8HyVj3OsDru3jp3p0YGUjFJykLOUbdmUlpYGwzDg1OENw0BnZ6cjr00n45ZNRETJpXrLpk9+ei3vIUFERERERETkQlpu2TRhwgS+kUFidHZ24ujRoxgwYADS09NVD8cV2JkeHUjJmIo5Nj84KfHz2S/V4b19LUk79ujB/fg9nIgsScXrKNHp8HyVj3OsDru3jp3p0YGUjFJykLOULUhUV1erOjSR7QKBABYuXIgHHngAffv2VT0cV2BnenQgJWMq5hhUmJP4+ZghhUldkBgztDBpxyIiGVLxOkp0Ojxf5eMcq8PurWNnenQgJaOUHOQsZVs2kSy6b9lkmibC4TAyMzP5r4a7iZ3p0YGUjKmeo77RjynzNyfteOtmT8Dw4j5JOx4RuV+qX0eJPo/nq3ycY3XYvXXsTI8OpGSUkkMHKt/L5R0piWxgGAaysrJ4sbWAnenRgZSMqZ6jrDgfFaXJ+dRCxZBCLkYQkWWpfh0l+jyer/JxjtVh99axMz06kJJRSg5yFhckiGzg9/sxf/58+P1+1UNxDXamRwdSMrohxz0ThyblOPdeOSwpxyEiWdxwHSU6juerfJxjddi9dexMjw6kZJSSg5zFBQkiG2RlZWHixInIyspSPRTXYGd6dCAloxtyTC4rwtRRJY4eY1p5CSaVnePoMYhIJjdcR4mO4/kqH+dYHXZvHTvTowMpGaXkIGfxHhJkC93vIUFElApaghFMqdyEJn/Y9tcuys/E2gcmoF+u1/bXJiIiIiIiIqLk4T0kiFyuo6MDa9euRUdHh+qhuAY706MDKRndkqNfrhdLZ1agIDvD1tctyM7A0pkVXIwgoh5zy3WUCOD5qgPOsTrs3jp2pkcHUjJKyUHO4oIEkQ3i8ThaW1sRj8dVD8U12JkeHUjJ6KYcZcX5eGnWWBTlZ9ryekX5mXhp1liUFefb8npEpCc3XUeJeL7KxzlWh91bx8706EBKRik5yFncsolswS2biIhSS0swgjmrd2Bl3eEev8a08hLMuW4EPxlBREREREREJAi3bCJyuVgshoaGBsRiMdVDcQ12pkcHUjK6MUe/XC8qp1+CRTNGo2JIoaXnVgwpxOIZl6Fy+iVcjCAiW7jxOkr64vkqH+dYHXZvHTvTowMpGaXkIGdxQYLIBm1tbVi6dCna2tpUD8U12JkeHUjJ6OYck8uK8PKsy7Fu9gTcN2kYrrig/0n3mCjIzsAVF/THfZOGYd3sCXh51uWYVHaOohETkURuvo6Sfni+ysc5VofdW8fO9OhASkYpOchZ3LKJbMEtm4iIus80TbSFY4h2mshIN5CX6YFhGEk9fjDSiUgsDq8nDbne9KQen4iIiIiIiIjUUflericpRyEiItJcfaMfq+oOY9vBVmw/5IevI5r4s4LsDIwcmI9R5/XFtPKBGF7cx9GxGEbXIgjsue81EREREREREVG3cMsmIhv4fD488cQT8Pl8qofiGuxMjw6kZOxNjvX1TbixagumzN+MBdV78ObuYycsRgCAryOKN3cfw4LqPbh6/ibcWLUFG+o/tWv4RETKSfl+QHrg+Sof51gddm8dO9OjAykZpeQgZ3HLJrKF7ls2RaNR7NmzB8OGDUNGRsbZn0DsDHp0ICVjT3K0BCN4dNUOrNp2uMfHnVZegjnXjeCNpYnI9aR8PyA98HyVj3OsDru3jp3p0YGUjFJy6EDle7lckCBb6L4gQUT0ebuO+DFjcS2a/OFev1ZRfiaWzqxAWXG+DSMjIiIiIiIiIt2pfC+XWzYR2aC9vR0rVqxAe3u76qG4BjvTowMpGa3k2HXEj+lP19iyGAEATf4wblpYg/pGvy2vR0SkgpTvB6QHnq/ycY7VYffWsTM9OpCSUUoOchYXJIiIiGzSEoxgxuLak+4R0Vu+jihuX1SLlmDE1tclIiIiIiIiIkombtlEtuCWTUREwP0vbu3VPSPOZlp5CSqnX+LY6xMRERERERGRfNyyicjlotEo6uvrEY3a+6+iJWNnenQgJWN3cqyvb3J0MQIAVtYdxvr6JkePQUTkBCnfD0gPPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSBDZgHvkWcfO9OhASsbu5Kiq3puUsVRtTM5xiIjsJOX7AemB56t8nGN12L117EyPDqRklJKDnMUtm8gW3LKJiHRW3+jHlPmbk3a8dbMnYHhxn6Qdj4iIiIiIiIjk4JZNRERELnSguR0HmtvxXM2+pB432ccjIiIiIiIiIrIDFySIbNDa2oq5c+eitbVV9VBcg53p0YGUjKfLMX7eBoyftwHP1exP6nie5YIEEbmMlO8HpAeer/JxjtVh99axMz06kJJRSg5yFrdsIlvovmVTLBbDwYMHcd5558Hj8agejiuwMz06kJLxdDlKH35V2Zg++em1MAxD2fGJiKyQ8v2A9MDzVT7OsTrs3jp2pkcHUjJKyaEDle/l8swgsoHH40FpaanqYbgKO9OjAykZUzFHMNKJvEx+Gycid0jF6yjR6fB8lY9zrA67t46d6dGBlIxScpCzuGUTkQ2CwSCWLVuGYDCoeiiuwc706EBKxlTMEYnFVQ+BiKjbUvE6SnQ6PF/l4xyrw+6tY2d6dCAlo5Qc5CwuSBDZIC0tDX379kVaGr+kuoud6dGBlIypmMPrSZ2xEBGdTSpeR4lOh+erfJxjddi9dexMjw6kZJSSg5zFe0iQLXS/hwQR6Yn3kCAiIiIiIiIit1H5Xi6Xq2zW2dmJDz74AM888wzuvfdejB49Gl6vF4ZhwDAMTJw40ZHjLlmyJHGM7v646667HBmLjiKRCOrq6hCJRFQPxTXYmR4dSMl4uhybH5yEzQ9OwlcH90vqeEYP7sfFCCJyFSnfD0gPPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSNhoxYoVyM/Px6hRo3DXXXehqqoK7733HqLRqOqhkcNCoRCqq6sRCoVUD8U12JkeHUjJeLocgwpzMKgwB2OGFCZ1PGOGJvd4RES9JeX7AemB56t8nGN12L117EyPDqRklJKDnMUtm2y0ZMkS3HHHHWd8zJVXXonq6mpHj11WVoavfe1rZ33OuHHjcMstt9hyfG7ZREQ6q2/0Y8r8zUk73rrZEzC8uE/SjkdEREREREREcqh8L9eTlKNopqioCJdddlnix7p161BZWZm0448ZMwa//OUvk3Y8AkzTRDgcRmZmJrdR6SZ2pkcHUjKeLUdZcT4qSgtR29Ds+FgqhhRyMYKIXEfK9wPSA89X+TjH6rB769iZHh1IySglBzmLWzbZaMqUKdi3bx8aGxuxevVqPPLII7jmmmvQt29f1UMjh/l8Pjz55JPw+Xyqh+Ia7EyPDqRk7E6OeyYOTcpY7r1yWFKOQ0RkJynfD0gPPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSNiouLgY559/vuphkAJ9+vTBrFmz0KcP/9Vyd7EzPTqQkrE7OSaXFWHqqBJHxzGtvASTys5x9BhERE6Q8v2A9MDzVT7OsTrs3jp2pkcHUjJKyUHO4pZNRDZIT09HcXGx6mG4CjvTowMpGbubY+7UEXj7k2No8odtH0NRfibmXMd78xCRO0n5fkB64PkqH+dYHXZvHTvTowMpGaXkIGfxExJENmhra8OSJUvQ1tameiiuwc706EBKxu7m6JfrxdKZFSjIzrD1+AXZGVg6swL9cr22vi4RUbJI+X5AeuD5Kh/nWB12bx0706MDKRml5CBn8RMSArW2tuL3v/89duzYAZ/Ph/z8fJSUlODyyy/HxRdfzJvKOMDj8aC0tBQeD7+kuoud6dGBlIxWcpQV5+OlWWNx+6JaWz4pUZSfiaUzK1BWnN/r1yIiUkXK9wPSA89X+TjH6rB769iZHh1IySglBznLME3TVD0I6ebMmYO5c+cCAK688kpUV1fbfowlS5bgjjvuOOvjLrzwQjz00EOYOXOmrQsTO3bswMiRIxO/3r59O0aM4NYiRKSvlmAEc1bvwMq6wz1+jWnlJZhz3Qh+MoKIiIiIiIiIbKPyvVxu2aSZjz/+GHfddRemTp2KYDBo++tnZWUhLy8PANDZ2YnW1lYcX/Py+/2IRCIAgI6OjsTxY7EYWltbE6/h8/kQjUYBAO3t7WhvbwcARKNR+Hy+xONaW1sRi8UAAMFgEB0dHQCASCQCv98PADBNE62trejs7ATQ9dGxUCgEAAiHwwgEAgCAeDyO1tZWxONxAEAgEEA43PUvm0OhUOKjZqfLFA6HsWnTJjQ3N4vJ5PQ8BQIBVFdXIxwOi8lkdZ7C4TDeeustNDU1icn0xXkKh8Oorq5OvIZbM3V0dGDDhg0nnL9nm6d+uV48fu0w/ObWUagYUggvYshC17jTEUee8Y9PT+QaYaSjawyZiOLywXlYPOMy/O93RiIt1uH4PHU3U6rPEzMxEzOlbqZgMIgNGzYkXkNCJonzxEy+xHg2bNhwwvnr9kwS56k3mXw+H2pqauD3+8Vkcss8NTc3Y9OmTQiHw2IyOT1Px44dQ01NDdrb28Vk4t8jTp6nTz/9FG+++SbC4bCrMzU1NaGmpgbhcFjkPEnMpAIXJAQ5//zz8aMf/Qhr1qzBgQMHEAqFEAwG8dFHH2HBggUoKytLPPaVV17BLbfckjiZ7TJ27Fh897vfBQAcPXoUlZWViS+SRYsWYefOnQCAjRs3YvXq1QCAgwcPorKyMvEav/71r7Fnzx4AwGuvvYbXXnsNALBnzx78+te/TjyusrISBw8eBACsXr0aGzduBADs3LkTixYtAtD1BVxZWYmjR48CAJYvX46amhoAwNatW/H8888D6PoiraysTFwUnn/+eWzduhUAUFNTg+XLl58xUyQSwdtvv401a9aIyeT0PO3YsQObN29OLOhIyGR1niKRCLZu3Yqqqioxmb44T5FIBG+++WZKZgqEomhsDqCyshKffvrpGTMdO3YMmzZtwrFjxyzP04DOz/DyrMsx9zIDt5V8hisu6I/S7BBuyPowMdbrs3bi6wOB+yYNw/9vVBQ3nduCSWXnaH2NYCZmYiZZmfbt24dNmzYl/qdIQiaJ88RMXZkikQg2bdqEffv2ickkcZ56m6murk5cJjfM05o1a/D2228jEomIyeT0PK1YsQJ1dXU4cuSImEz8e8TJ87Ro0SK88847iEQirs5UVVWFuro6RCIRkfMkMZMSJjnu0UcfNQGYAMwrr7zSkWO0tLSYnZ2dZ3xMOBw277jjjsRYAJjPPvusLcffvn27CcDMysoy8/LyzO3bt5uxWMxsaWkx4/G4aZqm6fP5zHA4bJqmaba3t5ttbW2maZpmNBo1W1paEq/V2tpqRiIR0zRNMxgMmsFg0DRN04xEImZra+sJmaPRqGmaptnW1ma2t7cncvp8PtM0TTMej5stLS1mLBYzTdM0A4GA2dHRYZqmaYZCIdPv95umaZqdnZ0ndOj3+81QKGSapml2dHSYgUDANE2TmZiJmVycqe6TJvPJP+8yb1242RwzZ5U5+KFXzMEPrTZHPPwHc9ScP5u3/GaL+cTK980PGj51PFMkEjEPNh41j7WFzUCoKx/niZmYiZmYiZmYiZmYiZmYiZmYiZmYiZmSken4e7nHf2zfvt1MFt5DIgmScQ+J7orH45g4cSI2b94MABg5ciQ+/PDDszzr7HS/h0Q8Hoff70d+fj7S0vjBo+5gZ3p0kAoZ19c3oap6L2obmrv9nIrSQtw7cRgmlZ0DIDVyEBG5Ga+j5CY8X+XjHKvD7q1jZ3p0ICWjlBw64D0kKGnS0tLw6KOPJn69ffv2xEeIqOe++PEpOjt2pkcHKjO2BCO4/8WtmLnkXUuLEQBQ29CMO5a8gweWbUVLMKLFXBEROYnXUXITnq/ycY7VYffWsTM9OpCSUUoOchY/IZEEqfQJCaDrRiu5ubmJm7C89tpruOqqq3r1mvyEBFeArWJnenSgKuOuI37MWFyLJn/47A8+i6L8TCyeMRolORA9V0RETtLhex7JwfNVPs6xOuzeOnamRwdSMkrJoQN+QoKSKiMjA/3790/8+rPPPlM4GhnS0tLQt29fXmwtYGd6dKAi464jfkx/usaWxQgAaPKHcfNvatEYShM9V0RETtLhex7JwfNVPs6xOuzeOnamRwdSMkrJQc7i2aGpYDCY+Hlubq7CkcgQCARQVVWFQCCgeiiuwc706CDZGVuCEcxYXAtfR9TW1410BPGbhU/jQNMxW1+XiEgXOnzPIzl4vsrHOVaH3VvHzvToQEpGKTnIWVyQ0NDevXtP2MutpKRE4Whk8Hq9KC8vh9frVT0U12BnenSQ7IyPrtph2ycjPi+GdOyKFOJ//7LH9tcmItKBDt/zSA6er/JxjtVh99axMz06kJJRSg5ylkf1ACj5Fi1alPh5QUEBysvL1Q1GiMzMTIwdO1b1MFyFnenRQTIzrq9vwqpthx157SjSsbOzCDs/PIpp9U2YXFbkyHGIiKTS4XseycHzVT7OsTrs3jp2pkcHUjJKyUHO4ickBGhra+v2Y9966y38/Oc/T/x6+vTp8Hi4LtVboVAI1dXVCIVCqofiGuxMjw6SmbGqeq9jr+1FDOWeQ/AihqqNzh2HiEgqHb7nkRw8X+XjHKvD7q1jZ3p0ICWjlBzkLC5IpLCGhgYYhpH4sWTJklM+bvny5aioqMDvfvc7+Hy+Uz4mFArhqaeewte//vXERaFv37549NFHnRq+VmKxGBoaGhCLxVQPxTXYmR4dJCtjfaMftQ3Njr1+OkwUpwWQDhO1nzTjo0buh0lEZIUO3/NIDp6v8nGO1WH31rEzPTqQklFKDnKWYZqmqXoQklx77bU4fPjELUMaGxvR1NQEoOsG0hdccMFJz1uzZs1J93JoaGjAkCFDEr9evHgxZsyYcdJzlyxZgjvuuAMA4PF4UFZWhrKyMvTr1w+dnZ04dOgQtmzZcsJ9I7Kzs7F27VpMmDChx1k/b8eOHRg5cmTi19u3b8eIESNseW0iotM50NwOAFi4aQ+eq9mftON+b+xgfH/CUAwqzEnaMYmIiIiIiIiI7KDyvVzu1WOznTt3Yt++faf982AwiG3btp30+5FIxJbjx2IxbN++Hdu3bz/tYyoqKrBkyRJcdNFFthyTgM7OThw9ehQDBgxAenq66uG4AjvTowOnM46ft8H21zyVNMTR1wih1cxCHGl4tmYfnq3Zh4YnvpGU4xMRuZ0O3/NIDp6v8nGO1WH31rEzPTqQklFKDnIWt2wS4Oabb8abb76Jn/3sZ/jOd76D8vJynHfeecjOzkZmZibOOeccjBkzBg888AA2b96Mt99+m4sRNgsEAli4cCECAW7j0l3sTI8OpGTMMaKYlrUTOUZU9VCIiFxJyvcD0gPPV/k4x+qwe+vYmR4dSMkoJQc5i1s2kS1037LJNE2Ew2FkZmbCMAzVw3EFdqZHB05nLH34Vdtf89RMeNGJCNIB/CMHPyFBRNQ9OnzPIzl4vsrHOVaH3VvHzvToQEpGKTl0wC2biFzOMAxkZWWpHoarsDM9OpCT0UCE3zKJiHpMzvcD0gHPV/k4x+qwe+vYmR4dSMkoJQc5i1s2EdnA7/dj/vz5J9w4nM6MnenRgZSMOYjgu5kfIAf23O+HiEg3Ur4fkB54vsrHOVaH3VvHzvToQEpGKTnIWVyQILJBVlYWJk6cyFVgC9iZHh1IyRhBOupiJX/fsomIiKyS8v2A9MDzVT7OsTrs3jp2pkcHUjJKyUHO4j0kyBa630OCiNQ40NwOAJj9Uh3e29eStOOOHtwPv7ipHIMKc5J2TCIiIiIiIiIiO6h8L5efkCCyQUdHB9auXYuOjg7VQ3ENdqZHB05nHFSYg0GFORgzpNCR1z/OixgqMvbDixgAYMzQQi5GEBFZoMP3PJKD56t8nGN12L117EyPDqRklJKDnMUFCSIbxONxtLa2Ih6Pqx6Ka7AzPTo4XUbTNBEIRdEcjCAQiqK3H9abWl7Sq+efTRpM5BkRpKFrnFNHDXT0eERE0ujwPY/k4PkqH+dYHXZvHTvTowMpGaXkIGdxyyayBbdsIqKzqW/0Y1XdYWw72Irth/zwdUQTf1aQnYGRA/Mx6ry+mFY+EMOL+1h+/RurtqC2odnOIZ9SxZBCvDzrcsePQ0RERERERETkBG7ZRORysVgMDQ0NiMViqofiGuxMjw5isRj+uOl93PTrNzBl/mYsqN6DN3cfO2ExAgB8HVG8ufsYFlTvwdXzN+HGqi3YUP+ppWPdM3GonUM/QTriKE7zIx1x3HvlMMeOQ0QklQ7f80gOnq/ycY7VYffWsTM9OpCSUUoOchYXJIhs0NbWhqVLl6KtrU31UFyDncnvoCUYwf954W18uGE1duy3trhQ29CMO5a8gweWbUVLMNKt50wuK8LUUc5s3ZRtRHFN5t8wdUQhJpWd48gxiIgkk/49j2Th+Sof51gddm8dO9OjAykZpeQgZ3HLJrIFt2wios/bdcSPGYtr0eQP9/q1ivIzsXRmBcqK88/62JZgBFMqN9ly3FONY+0DE9Av12v7axMRERERERERJQu3bCIiIjF2HfFj+tM1ti0KNPnDuGlhDeob/Wd9bL9cL5bOrEBBdoYtxz6uIDsDS2dWcDGCiIiIiIiIiKgXuCBBZAOfz4cnnngCPp9P9VBcg53J7KAlGMGMxbWJe0TkGmHckrUVuUbvFid8HVHcvqi2W9s3lRXn46VZY1GUn9mrYx5XlJ+JRbd8GSuWLBA1V0REySTxex7JxfNVPs6xOuzeOnamRwdSMkrJQc7iggSRDXJycnD99dcjJydH9VBcg53J7ODRVTtO+GREyPTgjUgpQqan16/d5A9jzuod3XpsWXE+1j4wAdPKe3dPiWnlJVj7wAR8pbRI3FwRESWTxO95JBfPV/k4x+qwe+vYmR4dSMkoJQc5i/eQIFvwHhJEtL6+CTOXvOv4cRbNGI3JZUXdfvz6+iZUbdyL2k+au/2ciiGFuPfKYbyBNRERERERERGJw3tIELlce3s7VqxYgfb2dtVDcQ12Jq+Dquq9J/1eJqK4IuMTZCJq33E2nnycM5lcVoSXZ12OdbMn4L5Jw3DFBf1PusdEQXYGrrigP+6bNAzrZk/Ay7MuP2ExQtpcERElG6+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrN7voUFERNqrb/SjtqH7n0DojdpPmvFRYwDDi/tYet7w4j74cXEZAMA0TQQjnYjE4vB60pDrTYdhGE4Ml4iIiIiIiIiI/o5bNpEtuGUTkZ4ONHf9q4eFm/bguZr9STvu98YOxvcnDMWgQu5LSURERERERERkBbdsInK5aDSK+vp6RKP2bUsjHTuT0cH4eRswft6G0y5GpKMT56e1IB2dth732Zp9GD9vg62veSYS5oqISCVeR8lNeL7KxzlWh91bx8706EBKRik5yFlckCCyAffIs46d6dFBlhHDFd4GZBkx1UPpFR3miojISbyOkpvwfJWPc6wOu7eOnenRgZSMUnKQs7hlE9mCWzYR6an04VeVHr/hiW8oPT4RERERERERkdtwyyYiIiIiIiIiIiIiIhKNCxJENmhtbcXcuXPR2tqqeiiuwc706CDPCOOO7HeRZ4RVD6VXdJgrIiIn8TpKbsLzVT7OsTrs3jp2pkcHUjJKyUHO4pZNZAvdt2yKxWI4ePAgzjvvPHg8HtXDcQV2JqODs23ZlI44BqS14Wg8D50OrIEna8smCXNFRKQSr6PkJjxf5eMcq8PurWNnenQgJaOUHDpQ+V4uFyTIFrovSBDp6kBz142qZr9Uh/f2tSTtuKMH98MvbirHoMKcpB2TiIiIiIiIiEgC3kOCyOWCwSCWLVuGYDCoeiiuwc5kdDCoMAeDCnMwZkjhKf88C1FM9u5GFqK2HnfM0MKkLkZImCsiIpV4HSU34fkqH+dYHXZvHTvTowMpGaXkIGdxQYLIBmlpaejbty/S0vgl1V3sTFYHU8tLTvn7cRhoM72Iw7D3eKMG2vp6ZyNproiIVOB1lNyE56t8nGN12L117EyPDqRklJKDnMUtm8gW3LKJiG6s2oLahmbHj1MxpBAvz7rc8eMQEREREREREUnELZuIXC4SiaCurg6RSET1UFyDncnr4J6JQ0/6PQ86cUH6Z/Cg07bj3HvlMNteq7ukzRURUbLxOkpuwvNVPs6xOuzeOnamRwdSMkrJQc7iggSRDUKhEKqrqxEKhVQPxTXYmbwOJpcVYeqoE7du8qIT5Z7D8Nq0IDGtvASTys6x5bWskDZXRETJxusouQnPV/k4x+qwe+vYmR4dSMkoJQc5i1s2kS24ZROR+5imibZwDNFOExnpBvIyPTCM3t3roSUYwZTKTWjyh20a5T8U5Wdi7QMT0C/Xa/trExERERERERHpQuV7uZ6kHIVIONM0EQ6HkZmZ2es3dHXBztR0UN/ox6q6w9h2sBXbD/nh64gm/qwgOwMjB+Zj1Hl9Ma18IIYX97H8+v1yvVg6swI3Laz5+2ub8KITEaQDvbixdUF2BpbOrFC2GMHzlYiod3gdJTfh+Sof51gddm8dO9OjAykZpeQgZ3HLJiIb+Hw+PPnkk/D5fKqH4hrsLLkdrK9vwo1VWzBl/mYsqN6DN3cfO2ExAgB8HVG8ufsYFlTvwdXzN+HGqi3YUP+p5WOVFefjpVljUZSfiTwjgluz65Bn9Hz/yKL8TLw0ayzKivN7/Bq9xfOViKh3eB0lN+H5Kh/nWB12bx0706MDKRml5CBnccsmsoXuWzZ1dnbi6NGjGDBgANLT01UPxxXYWXI6aAlG8OiqHVi17XCPX2NaeQnmXDfC8qcTWoIRzFn1ITZ/sBetZhbiPVgD7+mx7cbzlYiod3gdJTfh+Sof51gddm8dO9OjAykZpeTQgcr3crkgQbbQfUGCKBXtOuLHjMW1ttzPoSg/E0tnVvToUwrr65tQtXEvaj9p7vZzKoYU4t4rhym5gTURERERERERkWQq38vllk1ENmhra8OSJUvQ1tameiiuwc6c7WDXET+mP11j282lm/xh3LSwBvWNfkvPa2trw/6aP2PRrRdj3ewJuG/SMFxxQX8UZGec8LiC7AxccUF/3DdpGNbNnoCXZ12eUosRPF+JiHqH11FyE56v8nGO1WH31rEzPTqQklFKDnIWb2pNZAOPx4PS0lJ4PPyS6i525lwHLcEIZiyuPekeEb3l64ji9kW1WPvAhG5vofT5jMOLs/Dj4jIAXTe6CkY6EYnF4fWkIdebntI3vOL5SkTUO7yOkpvwfJWPc6wOu7eOnenRgZSMUnKQs7hlE9mCWzYRpY77X9zaq3tGnM208hJUTr/EsdcnIiIiIiIiIiLncMsmIpcLh8OoqalBOGzP9jg6YGfOdLC+vsnRxQgAWFl3GOvrm7r1WCnzLCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzuCBBZINIJIK6ujpEIhHVQ3ENduZMB1XVe217rTMeZ2P3jiNlnqXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFrdsIltwyyYi9eob/Zgyf3PSjrdu9gQML+6TtOMREREREREREVHvccsmIpeLx+NobW1FPB5XPRTXYGf2dXCguR0HmtvxXM0+m0bWPd05npR5lpKDiEgVXkfJTXi+ysc5VofdW8fO9OhASkYpOchZXJAgsoHf70dlZSX8fr/qobgGO7Ovg/HzNmD8vA14rma/TSPrnme7sSAhZZ6l5CAiUoXXUXITnq/ycY7VYffWsTM9OpCSUUoOcha3bCJb6L5lUzweh9/vR35+PtLSuM7XHezMvg5KH37VxlFZ88lPr4VhGKf9cynzLCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScuhA5Xu5nqQchUi4tLQ09O3bV/UwXIWdyeggGOlEXubpv5VIyAjIyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CwuVRHZIBAIoKqqCoFAQPVQXIOdyeggEjvzvpASMgJychARqcLrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOYsLEkQ28Hq9KC8vh9frVT0U12BnMjrwes78bURCRkBODiIiVXgdJTfh+Sof51gddm8dO9OjAykZpeQgZ/EeEmQL3e8hQaRSKt9DgoiIiIiIiIiIUovK93L5CQkiG4RCIVRXVyMUCqkeimuwM/s62PzgJGx+cBK+OrifTSPrntGD+511MULKPEvJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLC5IENkgFouhoaEBsVhM9VBcg53Z18GgwhwMKszBmCGFNo2se8YMPfvxpMyzlBxERKrwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc7ilk1kC27ZRGSdaZpoC8cQ7TSRkW4gL9PTq+2P6hv9mDJ/s40jPLN1sydgeHGfpB2PiIiIiIiIiIh6T+V7uZ6kHIVIuM7OThw9ehQDBgxAenq66uG4gq6d1Tf6saruMLYdbMWOQ61ICwXQamYhjjQUZGdg5MB8jDqvL6aVD7T8Zn9ZcT4qSgtR29Ds0Oj/oWJIYbfGJ2WepeQgIlKF11FyE56v8nGO1WH31rEzPTqQklFKDnIWt2wiskEgEMDChQsRCARUD8U1dOtsfX0TbqzaginzN2NB9R68ufsYYqF2TMvaiRwjCgDwdUTx5u5jWFC9B1fP34Qbq7ZgQ/2nlo5zz8ShTgz/JPdeOaxbj5Myz1JyEBGpwusouQnPV/k4x+qwe+vYmR4dSMkoJQc5i1s2kS1037LJNE2Ew2FkZmb2assdnejSWUswgkdX7cCqbYdP8acmvOhEBOkATt/BtPISzLluBPrlert1zPtf3Hqa49ljWnkJKqdf0q3HSplnKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSQwcq38vlJySIbGAYBrKysnixtUCHznYd8WNK5aYzLA4YiMCDMy1GAMDKusOYUrkJ9Y3+bh137tQRKMrPtDbYbirKz8Sc67r/DUrKPEvJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLC5IENnA7/dj/vz58Pu794Yxye9s1xE/pj9dgyZ/+LSPyUEE3838ADmInPX1mvxh3LSwpluLEv1yvVg6swIF2RmWxnw2BdkZWDqzotuf1ADkzLOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBzuKCBJENsrKyMHHiRGRlZakeimtI7qwlGMGMxbXwdUTP+LgI0lEXK/n7lk1n5+uI4vZFtWgJnn0Bo6w4Hy/NGmvbJyWK8jPx0qyxKCvOt/Q8KfMsJQcRkSq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLN4Dwmyhe73kCD6vFS6h0NLMII5q3dgZV3Px2P1HhZERERERERERJS6eA8JIpfr6OjA2rVr0dHRoXooriG1s/X1Td1ejPAihoqM/fAiZukYK+sOY319U7ce2y/Xi8rpl2DRjNGoGFJo6TgVQwqxeMZlqJx+SY8XI6TMs5QcRESq8DpKbsLzVT7OsTrs3jp2pkcHUjJKyUHO8qgeAJEE8Xgcra2tiMfjqofiGlI7q6re2+3HpsFEnhFBGqx/UK1q415MLivq9uMnlxVhclkRPmoMYNW2Q9h2wIcPD/lO2FaqIDsDFw8swKhBBZg6aiCGF/exPK4vkjLPUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBzmLWzaRLbhlExFQ3+jHlPmbk3a8dbMn9GrRwDRNBCOdiMTi8HrSkOtNh2EYNo6QiIiIiIiIiIhSDbdsInK5WCyGhoYGxGLWtt7RmaTODjS340BzO56r2WfpeemIozjNj3T07F8OPFezDwea23v0XAAwDAN5mR4U5nqRl+lxZDFCyjxLyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSBDZoK2tDUuXLkVbW5vqobiGpM7Gz9uA8fM24Lma/Zael21EcU3m35BtRM/+4FN4tmYfxs/b0KPnJouUeZaSg4hIFV5HyU14vsrHOVaH3VvHzvToQEpGKTnIWdyyiWzBLZtIZ6UPv6r0+A1PfEPp8YmIiIiIiIiIyD24ZRMREREREREREREREYnGBQkiG/h8PjzxxBPw+Xyqh+Ia7AzINcK4JWsrco2w6qE4Rso8S8lBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkgQ2SAnJwfXX389cnJyVA/FNdgZEDI9eCNSipDpUT0Ux0iZZyk5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxXtIkC14DwnSGe8hQUREREREREREbsF7SBC5XHt7O1asWIH29nbVQ3ENSZ1tfnASNj84CV8d3M/S8zIRxRUZnyAT0R4dd/Tgftj84KQePTdZpMyzlBxERKrwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc7iggQRUS8NKszBoMIcjBlSmNTjjhlaiEGF/BgkERERERERERG5A7dsIltwyyYioL7RjynzNyfteOtmT8Dw4j5JOx4REREREREREbkft2wicrloNIr6+npEoz3bekdHqdCZaZoIhKJoDkYQCEXR2/XZsuJ8VJR2/1MS6ejE+WktSEen5WNVDCl0xWJEKsyzHaTkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFhckiGzAPfKsU9VZfaMf89bW49bf1qD8sddx8ZzXcOnjXf8tf+x13PrbGsxbW4+PGgM9ev17Jg7t9mOzjBiu8DYgy4hZPs69Vw6z/BwVpHxtSMlBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsbtlEtuCWTZTq1tc3oap6L2obmrv9nIrSQtw7cRgmlZ1j6Vj3v7gVq7YdtjrEbptWXoLK6Zc49vpERERERERERCSXyvdyPUk5ChGRIi3BCB5dtaNHCwS1Dc2oXdKMaeUlmHPdCPTL9XbreXOnjsDbnxxDkz9s+ZhnU5SfiTnXcbGPiIiIiIiIiIjch1s2EdmgtbUVc+fORWtrq+qhuEYyOtt1xI8plZt6/WmFlXWHMaVyE+ob/d16fL9cL5bOrEBBdsYZH5dnhHFH9rvIM7q3cFGQnYGlMyu6vTCSCqR8bUjJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLG7ZRLbQfcumWCyGgwcP4rzzzoPHww8edYfTne064sf0p2vg67DvRkoF2Rl4adZYlBXnd+vx9Y1+3L6o9rSflEhHHAPS2nA0nofOs6wPF+VnYunMim4fO1VI+dqQkoOISBVeR8lNeL7KxzlWh91bx8706EBKRik5dKDyvVwuSJAtdF+QoNTSEoxgSuUmx7ZMWvvAhG5/SqElGMGc1Tuwsq7nn9KwumUUERERERERERHR6ah8L5dbNhHZIBgMYtmyZQgGg6qH4hpOdvboqh2OLEYAQJM/jDmrd3T78f1yvaicfgkWzRiNiiGFJ/xZFqKY7N2NLJz6UxwVQwqxeMZlqJx+iWsXI6R8bUjJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLH52hsgGaWlp6Nu3L9LSuMbXXU51tr6+qdf3jDiblXWHMa28BJPLirr9nMllRZhcVoSPGgNYte0Qth3wof7QZ2iLeRGHAaBrS6iLBxZg1KACTB01EMOL+zgVIWmkfG1IyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5Cxu2US24JZNlCpurNqC2oZmx49TMaQQL8+6vFevYZomgpFORGJxeD1pyPWmwzAMm0ZIRERERERERER0Mm7ZRORykUgEdXV1iEQiqofiGk50Vt/oT8piBADUftKMjxoDvXqNaDSK3bu2Iy8DyMv0iFyMkPK1ISUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzuCBBZINQKITq6mqEQiHVQ3ENOzs70NyOA83teK5mnw0j677navbhQHN7j5+vw3kjJaOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBzuKWTWQLbtlEKpU+/KrS4zc88Q2lxyciIiIiIiIiIuoubtlE5HKmaSIUCoHre93HzvToQEpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSg5zFBQkiG/h8Pjz55JPw+Xyqh+Ia7EyPDqRklJKDiEgVXkfJTXi+ysc5VofdW8fO9OhASkYpOchZ3LKJbKH7lk2dnZ04evQoBgwYgPT0dNXDcQU7O3Prlk06nDdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBw6UPlericpRyESLj09HcXFxaqH4SrHOzNNE4FQFNFOExnpBvIyPTAMQ/XwkkKH80ZKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxS2biGzQ1taGJUuWoK2tTfVQXKG+0Y8nV23FQz99CmMeexUXz3kNlz7+Oi6e8xrKH3sdt/62BvPW1uOjxoDqoTpKh/NGSkYpOYiIVOF1lNyE56t8nGN12L117EyPDqRklJKDnMVPSBDZwOPxoLS0FB4Pv6TOZH19E6qq96K2oRlexPBlTxZaY534/KXI1xHFm7uP4c3dx7Cgeg8qSgtx78RhmFR2zmlfd/ODkwAAs1+qw3v7WpyOkTB6cD/84qbyHj9fh/NGSkYpOYiIVOF1lNyE56t8nGN12L117EyPDqRklJKDnMV7SJAtdL+HBJ1ZSzCCR1ftwKpth3v8GtPKSzDnuhHol+s97WPmra3Hguo9PT6GVfdNGoYfX12WtOMRERERERERERH1lsr3crllE5ENwuEwampqEA6HVQ8l5ew64seUyk0nLUZkoBNfTm9CBjq79Tor6w5jSuUm1Df6T/uYqeUlvRqrVVNHDezV83U4b6RklJKDiEgVXkfJTXi+ysc5VofdW8fO9OhASkYpOchZXJAgskEkEkFdXR0ikYjqoaSUXUf8mP50DZr8J38j8qATF3g+g6ebCxIA0OQP46aFNaddlCgrzkdFaWGPx2tFxZBCDC/u06vX0OG8kZJRSg4iIlV4HSU34fkqH+dYHXZvHTvTowMpGaXkIGdxyyayBbdsoi9qCUYwpXLTKRcjeqsoPxNrH5hwyu2b1tc3YeaSd20/5hctnnHZGe9rQURERERERERElIq4ZRORy8XjcbS2tiIej6seSsp4dNWOMy5GGDCRZ4RhwPqaaJM/jDmrd5zyzyaXFWHqKGe3bppWXmLLYoQO542UjFJyEBGpwusouQnPV/k4x+qwe+vYmR4dSMkoJQc5iwsSRDbw+/2orKyE33/6+xvoZH1901lvYJ1rRHBD1ofINXr2Mb6VdYexvr7plH82d+oIFOVn9uh1z6YoPxNzrrNnxViH80ZKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxS2byBa6b9kUj8fh9/uRn5+PtDSu891YtQW1Dc1nfIwBE7lGBEHTCxNGj45TMaQQL8+6/JR/Vt/ox00La+DriPbotU+lIDsDL80ai7LifFteT4fzRkpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSQwfcsonI5dLS0tC3b19ebNG1EHC2xQgAMGGgzczs8WIEANR+0oyPGgOn/LOy4ny8NGusbZ+UKMrPtHUxAtDjvJGSUUoOIiJVeB0lN+H5Kh/nWB12bx0706MDKRml5CBn8ewgskEgEEBVVRUCgVO/OS7dgeb2xI/navZ16znZiGBq5g5ko2dbNh13puOVFedj7QMTMK28d/eUmFZegrUPTLB1MQLQ47yRklFKDiIiVXgdJTfh+Sof51gddm8dO9OjAykZpeQgZ3lUD4BIAq/Xi/Lycni9XtVDUWL8vA2WnxNDOnbH+iOG9F4d+9mafXj8+pGn/fN+uV5UTr8E08pLULVxL2o/OfunN46rGFKIe68cZssNrE9Fh/NGSkYpOYiIVOF1lNyE56t8nGN12L117EyPDqRklJKDnMV7SJAtdL+HhO5KH35V6fE/+em1MIzubf30UWMAq7YdwrYDPnx4yHfCPSYKsjNw8cACjBpUgKmjBmJ4cR+nhkxERERERERERKQE7yEhSGdnJz744AM888wzuPfeezF69Gh4vV4YhgHDMDBx4kTHxxCJRPDss8/i2muvxeDBg5GVlYVzzz0X48aNw//+7//is88+c3wMugmFQqiurkYoFFI9FNfwIoZyzyF4Eev1awUjnd1+7PDiPvjx1WV47q4xqHvkKmyfezXe/0nXf+seuQrP3TUGP766LCmLETqcN1IySslBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkjYaMWKFcjPz8eoUaNw1113oaqqCu+99x6i0ejZn2yT+vp6jBkzBv/6r/+KP//5z9i/fz/C4TAaGxuxZcsW/PjHP8aIESOwZs2apI1JB7FYDA0NDYjFev/mui7SYaI4LYB09P5DWpFYvEfPMwwDeZkeFOZ6kZfp6fanLOyiw3kjJaOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBzuKWTTZasmQJ7rjjjjM+5sorr0R1dbUjxz948CDGjBmDw4cPA+h6s3XChAkYNmwYjh49ir/85S/o6OgAAGRkZGDt2rWYPHmyLcfmlk16U71l0/a5VyMvk7fEISIiIiIiIiIiOhtu2SRMUVERvvnNb2Lu3LlYs2YNHnjggaQc95ZbbkksRgwePBhbt25FdXU1nnnmGaxatQr79+/H1772NQBANBrFDTfcgNbW1qSMTbrOzk40Njais7P7WwfpLg1xFBrtSEPPPt3webne3t0YWxUdzhspGaXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFhckbDRlyhTs27cPjY2NWL16NR555BFcc8016Nu3r+PHXrNmDTZv3gyg6472q1evxqhRo054TP/+/bFy5UoMHToUANDc3Ix58+Y5PjYdBAIBLFy4EIFAQPVQlNj84KTEj68O7tet5+QYUUzL2okco3dbmo0e3C/pWy3ZRYfzRkpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSg5zFLZuSYM6cOZg7dy4A57Zs+sY3vpG4L8Tdd9+Np59++rSPff7553HbbbcBAAoLC9HU1ASPp3fb3ei+ZZNpmgiHw8jMzHTtm+N2mbe2Hguq93TjkSa86EQE6QB63tl9k4bhx1eX9fj5Kulw3kjJKCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScuiAWzZRr7S1teGvf/1r4tdnu4/Fd77zHeTl5QHo+pTEpk2bHB2fDgzDQFZWFi+2AKaWl3TzkQYi8KA3ixEAMHXUwF49XyUdzhspGaXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFhckBHjrrbcQDocBALm5ubjsssvO+PisrCxcfvnliV+vX7/e0fHpwO/3Y/78+fD7/aqHolxZcT4qSgvP+rgcRPDdzA+Qg0iPj1UxpBDDi/v0+Pmq6XDeSMkoJQcRkSq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLO4ICHArl27Ej+/+OKLu7X90qWXXnrK51PPZGVlYeLEicjKylI9FMtM00QgFEVzMIJAKAo7dnG7Z+LQsz4mgnTUxUr+vmVTz9x75bAePzcVuPm86S4pGaXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yVu9uHEAp4aOPPkr8fPDgwd16zvnnn5/4eX19ve1j0o3X60V5ebnqYXRbfaMfq+oOY9vBVmw/5Iev4x83li7IzsDIgfkYdV5fTCsf2KNPIEwuK8LUUSVYte3waR8TQzp2d/bv0fgBYFp5CSaVndPj56cCt503PSElo5QcRESq8DpKbsLzVT7OsTrs3jp2pkcHUjJKyUHO4ickBDh27Fji50VFRd16TnFxceLnzc3Nto0lKysrcX+Kzs5OtLa2Jv7Fvd/vRyTStT1PR0cHgsEgACAWi6G1tTXxGj6fD9Fo1xvk7e3taG9vBwBEo1H4fL7E41pbWxGLxQAAwWAQHR0dAIBIJJL4aJhpmmhtbUVnZyeArvtthEIhAEA4HEYgEAAAxONxtLa2Ih6PAwACgUBiG6xQKIS2trYzZuro6MArr7yCzz77LKUzvfbhAdxYtQVT52/A4up6vLn7GAIdYeQZYQBdmaIdQby9+1MsqN6D6+avx80LqrGh/lPLmeZOHYGi/EzkGWGko2sMWYjCi658OQhjXMYnf/+1iTwjjLS/Py77c4/LQCey/76tk/H3xxX38WLOdSMszxOQWudeR0cH/vznP6OxsbHH516qZQJOPPc6OjqwatWqxJjcmikYDGLlypWJMUmbJ2ZiJmZiJqczBQIBrFy5MjEmCZkkzhMz+RLPX7ly5Ql/D3B7Jonz1JtMLS0tWLt2LVpbW8Vkcss8ffbZZ3jllVfQ0dEhJpPT83T06FGsXbsWbW1tYjLx7xEnz1NTUxNeffVVdHR0uDpTY2Mj1q5di46ODpHzJDGTClyQEOD4iQcA2dnZ3XrO5x/3+ef31tixY/Hd734XAHD06FFUVlYmvkgWLVqEnTt3AgA2btyI1atXAwAOHjyIysrKxGv8+te/xp49ewAAr732Gl577TUAwJ49e/DrX/868bjKykocPHgQALB69Wps3LgRALBz504sWrQIQNcXcGVlJY4ePQoAWL58OWpqagAAW7duxfPPPw+g64u0srIycVF4/vnnsXXrVgBATU0Nli9ffsZM8Xgce/fuxbp161IyU0swgnm/+i3mL3sdtQ3N+LKnCVd6u8bT1wjhhqwP4UXXBfDazHqUprcAAMozDiO7cRvuWPIOHvrdBkuZ+uV6sXRmBW7I+hAD0rrOsXHefSjP6PrUxOD0VgxLb0YaTHjRiRuyPkRfo+vCe6V3D77saQIAXJj+Ga7K/BgAkGtEcEPWh/jVjWXol+u1PE9Aap178Xgcn332GRYuXNjjcy/VMgEnnnvxeBw7d+7EBx984OpMPp8PdXV1ib9gSJsnZmImZmKmZGSqq6tL/I+UlEwS54mZuv7Hv66uTlQmifPUm0zvvPMOWltb8cEHH4jJ5JZ5WrduHfbu3Zv4/wQJmZyep+P/wEtSJv494uR5Wrx4MQ4fPox4PO7qTAsXLky8eS5xniRmUsEw7dgwns5ozpw5mDt3LgDgyiuvRHV1ta2v/7WvfS1xY+qf/OQneOyxx876nPXr1+NrX/saACA9PT2xatdTO3bswMiRI5GVlQWPx4OamhqUlZUhEAigoKAAhmHA7/cjKysLXq8XHR0diMfjyM3NRSwWQ1tbG/r27Qug642/nJwcZGRkJFYac3JyEI1G0d7ejoKCAgBdq415eXnweDwIBoNIS0tDdnY2IpEIQqEQ8vPzYZomfD4f+vTpg/T0dLS1tcHj8SArKwvhcBiRSAR9+vRBPB6H3+9Hfn4+0tLSEAgE4PV6kZmZiVAohFgshry8PHR2drou06EgMHPpu/D7A4ghHVGkw4sY0mGiAxlIQxw5RhRtpheAgRxEEEE6Yn9/XBpMhJCBdMQxqI+BqjsnoKw4v9uZ3vv4AP7t5V04EogiC1HEYSACDzzohBedaIcXXZ+QiKDdzEAcachGFJ1/f1wGOuFBJzrgRXEfL351YxkuGTZQ3DxJPPeYiZmYiZmYiZmYiZmYiZmYiZmYiZmYiZmYKfUyHTp0CCNHjsRx27dvx4gRI5AMXJBIAqcXJL7xjW9gzZo1AICHHnoITzzxxFmf8+c//xnXXnstACAvLy/xMaCeOr4gcVwyT+JUEIvFcPDgQZx33nnduql4suw64sf0p2tOuEdEbxVkZ+ClWWNRVpzf7ee0BCOYs3oHVtb9454S6YhjQFobjsbz0NmND2tNKy/BnOtGoF+ut0fjTkWpet7YSUpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSQwcq38vllk0CHL9nA4DEnmRn8/nHff751DNtbW1YunSprdtf9VZLMIIZi2ttXYwAAF9HFLcvqkVLMNLt5/TL9aJy+iVYNGM0KoYUAgCyjSiuyfwbso0zj69iSCEWz7gMldMvEbUYAaTmeWM3KRml5CAiUoXXUXITnq/ycY7VYffWsTM9OpCSUUoOchY/IZEETn9C4gc/+EFin7KbbroJy5YtO+tzFixYgPvuuw8A8OUvfxk7duzo1Rh0/4REKrr/xa1Yte3w2R/YQ9PKS1A5/ZIePfejxgBWbTuEbQd8+PCQ74RFk4LsDFw8sACjBhVg6qiBGF7cx64hExERERERERERaU/le7n87IwAw4cPT/x837593XrO/v37Ez8vKyuzfUyk1vr6JkcXIwBgZd1hTCsvweSyIsvPHV7cBz8u7jrvTNNEMNKJSCwOrycNud50GIZh93CJiIiIiIiIiIhIMW7ZJMBFF12U+PmHH37YrRtUv//++6d8PvWMz+fDE088AZ/Pp3ooAICq6r3JOc7Gnh/neGd+vx95mR4U5nqRl+nRajEi1c4bJ0jJKCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzuCAhwLhx45CZmQkACAaDePfdd8/4+HA4jJqamsSvJ0+e7Oj4dJCTk4Prr78eOTk5qoeC+kY/ahuak3Ks2k+a8VFjz26InkqdqaJDB1IySslBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkgIkJeXh6997WuJXy9ZsuSMj//jH/+IQKDrTeTCwkJMmDDByeFpISMjA2VlZcjIyFA2hgPN7TjQ3I7narq3bZddenq8VOhMNR06kJJRSg4iIlV4HSU34fkqH+dYHXZvHTvTowMpGaXkIGdxQUKIH/zgB4mfL1my5LQ3qW5vb8cjjzyS+PX3v/99eDy8lUhvtbe3Y8WKFWhvb1c2hvHzNmD8vA14rmb/2R9so2d7uCCRCp2ppkMHUjJKyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSKSwhoYGGIaR+HGmTz584xvfwPjx4wF0bcn0zW9+Ex988MEJjzl27Biuv/567N69G0DXpyMeeughx8ZP+jBNU/UQiIiIiIiIiIiIKMUZJt9JtNW1116Lw4cPn/B7jY2NaGpqAgDk5ubiggsuOOl5a9asQUlJyQm/19DQgCFDhiR+vXjxYsyYMeO0xz548CAqKipw5MgRAIBhGLjyyisxbNgwHD16FH/5y18SK5Qejwdr1649Yaun3tixYwdGjhyZ+PX27dsxYsQIW16buqf04VeVHXv73KuRl8lP2hAREREREREREaU6le/l8hMSNtu5cye2bdt2wo/jixFA102nv/jn27ZtQyQS6fWxzzvvPKxfvx7l///27jw6ijLf//inQ8hCAoTIEhEkARyiDrJcQFBEBBc2BURZRNn0CuroZUZ/o3c8Oi531HEZ8bqBcxEQEASUgCPLCBhQkc2RVRBl34KGJQnZl/79kUNNYrbu0JVKP/V+ndPnVHfX8ny/VdSh+pvneTp2lFT8V+vJycmaPn26li5dahUjmjRpoqSkpIAVIyDl5+drz549ys/Pd7opjsgrKPJ7G7fnTHJHDkyJ0ZQ4AMAp3EcRTLhezcc5dg659x85c0cOTInRlDhgLwoShklMTNTGjRs1a9Ys9evXTy1btlRYWJiaNm2q7t276+WXX9b333+vgQMHOt1Uo7h9jLywUP9vJW7PmeSOHJgSoylxAIBTuI8imHC9mo9z7Bxy7z9y5o4cmBKjKXHAXgzZhIBgyCbnOTlk04EXB8jj8Th2fAAAAAAAAAC+YcgmABfsyz/eoC//eIP+o1WjGj1ul1aNKEYAAAAAAAAAqBIFCSAAzp49q2effVZnz551rA0tY+upZWw9XZ0QW6PHvbp19Y5XG3LmNDfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2YsgmBITbh2wqKCjQ0aNH1aJFC4WGhjralj0p6eo35csaO97Kyb3ULq6+39vVppw5xQ05MCVGU+IAAKdwH0Uw4Xo1H+fYOeTef+TMHTkwJUZT4nADJ3/LpSCBgHB7QaK2GT71G206eNr243RLiNWCiT1sPw4AAAAAAACAwGAOCSDIZWZmav78+crMzHS6KZKkSb1b18hxHri+TbW3rW05c4IbcmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsQBe1GQAAIgJCREMTExCgnx/5+U1+tVRk6+TmfmKSMnX4HotNQnsZlu69D8gvdTmcEdm+uGxKbV3v5CcmYKN+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/ZiyCYEBEM2+WdPSrqWbj2ubUfPauexdKVl51vfNYysq99e0kAdWsRocMdLqjU/gySdycxTvzfW6WR6bqCabWnWIFwr/quXGkWFBXzfAAAAAAAAAOzDkE1AkMvLy9PWrVuVl5dX6Xpr9pzU8KnfqN+UL/VO8j59/dOpUsUISUrLztfXP53SO8n7dMuUdRo+9Rt9sednv9vUKCpMsyZ0U8PIun5vW5mGkXU1a0K3Cy5G+Jozk7khB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywFwUJIABycnKUnJysnJyccr8/k5mnR+Z9pwkzt/g92fSmg6c1fuZm/df873Qm078bemJcA300sbuaNQj3a7uKNGsQro8mdldiXIML3ldVOXMDN+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/ZiyCYEBEM2VWz3iXSNm7EpIEMnNWsQrlkTuvldEDiTmadnPt2lJVuPV/vYgzs21zO3XskwTQAAAAAAAEAQY8gmIMh5vV7l5OSUmZB694l0jXxvQ8DmcTiZnqsR0zZoT0q6X9s1igrTGyM76f1xXdQtIdavbbslxGrGuK56Y2SngBYjKsqZm7ghB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywFwUJIADS0tL017/+VWlpadZnZzLzNG7GpjJzRFzwsbLzNfb9TX4P3yRJfRKbacHEHlo5uZceuqGNerZtXGaOiYaRddWzbWM9dEMbrZzcSwsm9tANiU0D1XxLeTlzGzfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2YsgmBITbh2wqLCzUL7/8oiZNmqhOnTqSpEfmfael26o/RFJVBndsrjdGdrrg/Xi9XmXmFSqvoEhhoSGKCqsjj8cTgBZWrrycuY0bcmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsThBk7+lktBAgHh9oLEr63Zc1ITZm6x/Tjvj+uiPonNbD8OAAAAAAAAADMwhwQQ5M6dO6eZM2fq3LlzkqSpyftr5LhT19bMcezw65y5kRtyYEqMpsQBAE7hPopgwvVqPs6xc8i9/8iZO3JgSoymxAF7UZAAAiA0NFTx8fEKDQ3VnpR0bTp4ukaOu+nAaf2QklEjxwq0kjlzKzfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2YsgmBARDNklHTmdJkqat26c5Gw7X2HHv6d5K9/dqrZax9WrsmAAAAAAAAACCE0M2AUEuNzdXE1+brz4vr6rRYoQkzd5wSNe9/EWNHjMQcnNztWHDBuXm5jrdFMe4IQemxGhKHADgFO6jCCZcr+bjHDuH3PuPnLkjB6bEaEocsBcFCSAA8vLy1DY0VaEqdLopQSMvL09bt25VXl6e001xjBtyYEqMpsQBAE7hPopgwvVqPs6xc8i9/8iZO3JgSoymxAF7MWQTAoIhm6T4Jz5z9PgHXxro6PEBAAAAAAAA1H4M2QQEuaKiIkV7cuUR9T1fFRUV6ezZsyoqKnK6KY5xQw5MidGUOADAKdxHEUy4Xs3HOXYOufcfOXNHDkyJ0ZQ4YC8KEkAApKen686IHYry0CXNV+np6XrjjTeUnp7udFMc44YcmBKjKXEAgFO4jyKYcL2aj3PsHHLvP3LmjhyYEqMpccBeDNmEgHD7kE1FRUW66skkZXrD5JXHkTYE25BNRUVFSk9PV4MGDRQS4s7aqBtyYEqMpsQBAE7hPopgwvVqPs6xc8i9/8iZO3JgSoymxOEGTv6WG1ojRwEMFxISouX/r58kafJHW/XtoTM1duwurRrp9REda+x4gRISEqKYmBinm+EoN+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/aiVAUEQEZGhj5b8IFi6hbq6oTYGj321a1j1TK2Xo0eMxAyMjI0depUZWRkON0Ux7ghB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywFwUJIADCwsLUsWNHhYWF6baOzWv02Ld1uKRGjxcoJXPmVm7IgSkxmhIHADiF+yiCCder+TjHziH3/iNn7siBKTGaEgfsxRwSCAi3zyHxa8OnfqNNB0/bfpxuCbFaMLGH7ccBAAAAAAAAYAYnf8ulhwQQADk5OUpOTlZOTo4kaVLv1jVy3Aeub1Mjx7HDr3PmRm7IgSkxmhIHADiF+yiCCder+TjHziH3/iNn7siBKTGaEgfsRUECCICCggIdPHhQBQUFkqQ+ic10Wwd7h24a3LG5bkhsausx7PTrnLmRG3JgSoymxAEATuE+imDC9Wo+zrFzyL3/yJk7cmBKjKbEAXsxZBMCgiGbyjqTmad+b6zTyfTcgO+7WYNwrfivXmoUxZh8AAAAAAAAAHzHkE1AkCssLFRKSooKCwutzxpFhWnWhG5qGFk3oMdqGFlXsyZ0C/piRHk5cxs35MCUGE2JAwCcwn0UwYTr1XycY+eQe/+RM3fkwJQYTYkD9qIgAQRARkaGpk2bpoyMjFKfJ8Y10EcTu6tZg/CAHKdZg3B9NLG7EuMaBGR/TqooZ27ihhyYEqMpcQCAU7iPIphwvZqPc+wccu8/cuaOHJgSoylxwF4M2YSAcPuQTV6vV7m5uQoPD5fH4ynz/ZnMPD3z6S4t2Xq82scY3LG5nrn1yqDvGXFeVTlzAzfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNicMNnPwtN7RGjgIYzuPxKCIiosLvG0WF6Y2RnTS4Y3NNXbtfmw6c9nnf3RJi9cD1bYJ6AuvyVJUzN3BDDkyJ0ZQ4AMAp3EcRTLhezcc5dg659x85c0cOTInRlDhgL4ZsAgIgPT1dU6ZMUXp6eqXr9UlspgUTe2jl5F566IY26tm2cZk5JhpG1lXPto310A1ttHJyLy2Y2MO4YoTke85M5oYcmBKjKXEAgFO4jyKYcL2aj3PsHHLvP3LmjhyYEqMpccBe9JAAAiAiIkK9e/f2uQrcLq6+/l9coqTi7myZeYXKKyhSWGiIosLquKJbm785M5EbcmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsQBezGHBALC7XNIAAAAAAAAAEAwcPK3XIZsAgIgOztbK1asUHZ2ttNNCRrkzB05MCVGU+IAAKdwH0Uw4Xo1H+fYOeTef+TMHTkwJUZT4oC9KEgAAVBUVKSzZ8+qqKjI6aYEDXLmjhyYEqMpcQCAU7iPIphwvZqPc+wccu8/cuaOHJgSoylxwF4M2YSAYMgmAAAAAAAAAKj9GLIJCHIFBQU6ePCgCgoKnG5K0CBn7siBKTGaEgcAOIX7KIIJ16v5OMfOIff+I2fuyIEpMZoSB+xFQQIIgHPnzmnWrFk6d+6c000JGuTMHTkwJUZT4gAAp3AfRTDhejUf59g55N5/5MwdOTAlRlPigL0YsgkBwZBNAAAAAAAAAFD7MWQTAAAAAAAAAAAwGgUJIADS0tL00ksvKS0tzemmBA1y5o4cmBKjKXEAgFO4jyKYcL2aj3PsHHLvP3LmjhyYEqMpccBeFCSAAKhXr56GDBmievXqOd2UoEHO3JEDU2I0JQ4AcAr3UQQTrlfzcY6dQ+79R87ckQNTYjQlDtiLOSQQEMwhAQAAAAAAAAC1H3NIAEEuKytLSUlJysrKcropQYOcuSMHpsRoShwA4BTuowgmXK/m4xw7h9z7j5y5IwemxGhKHLAXBQkAAAAAAAAAAGA7hmxCQDBkEwAAAAAAAADUfgzZBAS5/Px87dmzR/n5+U43JWiQM3fkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2oiABBABj5PmPnLkjB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywF0M2ISAYsgkAAAAAAAAAaj+GbAIAAAAAAAAAAEajIAEEwNmzZ/Xss8/q7NmzTjclaJAzd+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/ZiyCYEhNuHbCooKNDRo0fVokULhYaGOt2coEDO3JEDU2I0JQ4AcAr3UQQTrlfzcY6dQ+79R87ckQNTYjQlDjdw8rdcChIICLcXJAAAAAAAAAAgGDCHBBDkMjMzNX/+fGVmZjrdlKBBztyRA1NiNCUOAHAK91EEE65X83GOnUPu/UfO3JEDU2I0JQ7Yi4IEEAAhISGKiYlRSAj/pHxFztyRA1NiNCUOAHAK91EEE65X83GOnUPu/UfO3JEDU2I0JQ7YiyGbEBAM2QQAAAAAAAAAtR9DNgFBLi8vT1u3blVeXp7TTQka5MwdOTAlRlPiAACncB9FMOF6NR/n2Dnk3n/kzB05MCVGU+KAvShIAAGQk5Oj5ORk5eTkON2UoEHO3JEDU2I0JQ4AcAr3UQQTrlfzcY6dQ+79R87ckQNTYjQlDtiLIZsQEAzZBAAAAAAAAAC1H0M2AUHO6/UqJydH1Pd8R87ckQNTYjQlDgBwCvdRBBOuV/Nxjp1D7v1HztyRA1NiNCUO2IuCBBAAaWlp+utf/6q0tDSnmxI0yJk7cmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsQBezFkEwLC7UM2FRYW6pdfflGTJk1Up04dp5sTFMiZO3JgSoymxAEATuE+imDC9Wo+zrFzyL3/yJk7cmBKjKbE4QZO/pYbWiNHgfFyc3NLvf/pp58caomzTp065XQTgg45c0cOTInRlDgAwCncRxFMuF7Nxzl2Drn3HzlzRw5MidGUOEz2699uf/3brq28QAAkJSV5Jbn2FR0d7R03bpw3Ojra8bYEy4ucuSMHpsRoShy8ePHi5dSL+yivYHpxvZr/4hyT+2B6kTN35MCUGE2Jw42vpKSkGvsdmSGbEBBLlizRkCFDnG4GAAAAAAAAAMAPSUlJGjx4cI0ci0mtAQAAAAAAAACA7eghgYA4e/as1q5da71v2bKlwsPDHWwRAAAAAAAAAODXcnNzdeTIEev99ddfr5iYmBo5NgUJAAAAAAAAAABgO4ZsAgAAAAAAAAAAtqMgAQAAAAAAAAAAbEdBAgAAAAAAAAAA2I6CBAAAAAAAAAAAsB0FCQAAAAAAAAAAYDsKEgAAAAAAAAAAwHYUJAAAAAAAAAAAgO0oSAAAAAAAAAAAANtRkAAAABX65ptvNGzYMDVr1kwRERFKSEjQgw8+qGPHjjndNAAAAAAAHJeSkqI5c+Zo8uTJ6tmzp6Kjo+XxeBQfH+9002olj9fr9TrdCAAAUPv83//9nyZOnKiioiLFxcXpkksu0d69e5WRkaFGjRrpiy++UIcOHZxuJgAAAAAAjpkyZYp+//vfl/m8VatWOnjwYM03qJajhwQAAChjx44dmjRpkoqKivTaa6/p2LFj2rJli44fP67hw4frzJkzGjp0qHJzc51uKgAAAAAAjmnQoIH69u2rxx9/XAsWLNCUKVOcblKtRg8JAABQxh133KGPP/5Yw4cP10cffVTqu+zsbCUmJurw4cN69913NWnSJIdaCQAAAABA7bJo0SLdeeed9JCoAD0kAABAKZmZmfrss88kSQ899FCZ7yMjIzV+/HhJ0vz582u0bQAAAAAAIHhRkAAAwAGFhYXavn27pk+frgceeEBdunRRWFiYPB6PPB6PevfuXe195+Xlafbs2RowYIBatWqliIgIXXzxxbrmmmv06quvKjU1tdLtv/vuO+Xk5CgsLEzdu3cvd53z7du4caOKioqq3VYAAAAAACpTm5+f4b9QpxsAAIDbJCUlafTo0crKygr4vvfs2aNRo0Zp69atpT5PSUlRSkqKvvnmG73yyiuaMWOGBgwYUO4+9u7dK0m69NJLFRYWVu46bdu2lSTl5OTo0KFDSkhICFwQAAAAAACo9j8/w3/0kAAAoIadPXvWlv9MHT16VH379rX+M+XxeHT99ddrwoQJuvXWWxUZGSlJ+vnnnzVkyBCtWbOm3P2cPn1aknTRRRdVeKzY2Fhr+cyZMwGKAAAAAACAf6vtz8/wHz0kAABwSLNmzdS1a1frtXLlSr3xxhvV3t9dd92l48ePS5JatWqlJUuWqEOHDtb3qampGjlypFavXq38/Hzdeeed2rdvn2JiYkrtJzs7W5Iq7B0hSREREdayHf85BAAAAADgvNr6/Az/UZAAAKCG9evXT4cOHdKll15a6vONGzdWe5/Lli3Tl19+Kam4kPDpp5+qffv2pdZp3LixlixZoquuukr79+/X6dOn9fLLL+uFF14otd75vwTJy8ur8Hg5OTnWcr169ardbgAAAAAAKlLbn5/hP4ZsAgCghsXFxZX5z9SFevvtt63lsWPHlvnP1HlRUVF67rnnrPfTpk1TQUFBqXUaNWokSTp16lSFxzs/rFPJ9QEAAAAACKTa/vwM/1GQAAAgyJ07d06rV6+23o8fP77S9YcNG6bo6GhJxYWFdevWlfq+Xbt2kqTDhw9X2Evixx9/lFQ8dFOrVq2q3XYAAAAAAGpKoJ+f4T8KEgAABLn169crNzdXUvFfcHTt2rXS9SMiItSjRw/r/a8n5+rUqZMiIiKUl5enDRs2lLuPtWvXSpK6deumkBD+OwEAAAAAqP0C/fwM//ELAgAAQW737t3Wcvv27RUaWvUUUZ07dy53e6n4P2UDBgyQVLor63nZ2dmaMWOGJGnEiBHVajMAAAAAADUt0M/P8B8FCQAAgtwPP/xgLfs6fFLJMTj37NlT5vunn35aderU0YIFC/S3v/1NRUVFkoq7t44bN06HDx9Wq1atdO+9915g6wEAAAAAqBl2PD/DPxQkAAAIciUnn27WrJlP28TFxVnLJSeoPq9Dhw56++23FRISokcffVSXXHKJunTpoubNm2vBggWKiYnR4sWLFR4efuEBAAAAAABQA+x4fj5y5IgaN25svSZMmFDu5w8//PAFtt4MFCQAAAhy586ds5YjIyN92qbkeiW3L2nixIn68ssvNWTIEBUWFmrHjh1q1KiRJk2apB07dqhTp04X1nAAAAAAAGqQHc/PhYWFOnXqlPXKyMiQJBUVFZX7udtVPUgWAACo1XJycqzlsLAwn7Yp2bMhOzu7wvWuueYaLV68uPqNAwAAAACglrDj+Tk+Pl5er/fCG+cS9JAAACDIRUREWMt5eXk+bZObm2st+/pXIQAAAAAABDOen51HQQIAgCAXHR1tLVfW26GkkuuV3B4AAAAAAFPx/Ow8ChIAAAS5iy66yFo+efKkT9ukpKRYy7GxsQFvEwAAAAAAtQ3Pz86jIAEAQJBr166dtXzo0CGftjl8+LC1nJiYGPA2AQAAAABQ2/D87DwKEgAABLnLL7/cWt6xY4cKCgqq3OZf//pXudsDAAAAAGAqnp+dR0ECAIAgd8011yg8PFySlJmZqS1btlS6fm5urjZs2GC979Onj63tAwAAAACgNuD52XkUJAAACHLR0dHq27ev9X7mzJmVrv/JJ58oIyNDUvH4l7169bKzeQAAAAAA1Ao8PzuPggQAAAZ48MEHreWZM2dq165d5a6XlZWlp59+2np///33KzQ01Pb2AQAAAABQG/D87CwKEgAAGGDgwIG67rrrJBV3KR00aJC2b99eap1Tp05pyJAh+umnnyQV/3XH448/XuNtBQAAAADAKTw/O8vj9Xq9TjcCAAC3GTBggI4fP17qs5SUFJ08eVKSFBUVpbZt25bZbtmyZWrevHm5+zx69Ki6deumEydOSJI8Ho+uv/56tWnTRr/88otWrVqlrKwsSVJoaKhWrFhRqqsqAAAAAAC1Dc/PZqEgAQCAA+Lj43Xo0CG/tztw4IDi4+Mr/H7Pnj0aNWqUtm7dWuE6TZo00YwZMzRw4EC/jw8AAAAAQE3i+dksDHoFAIBBEhMTtXHjRs2fP1/z5s3Trl27dPLkScXExKh169a6/fbbNX78eDVu3NjppgIAAAAA4Bien51BDwkAAAAAAAAAAGA7JrUGAAAAAAAAAAC2oyABAAAAAAAAAABsR0ECAAAAAAAAAADYjoIEAAAAAAAAAACwHQUJAAAAAAAAAABgOwoSAAAAAAAAAADAdhQkAAAAAAAAAACA7ShIAAAAAAAAAAAA21GQAAAAAAAAAAAAtqMgAQAAAAAAAAAAbEdBAgAAAAAAAAAA2I6CBAAAAAAAAAAAsB0FCQAAAAAAAAAAYDsKEgAAAAAAAAAAwHYUJAAAAAAAAAAAgO0oSAAAAAAAAAAAANtRkAAAAAAAAAAAALajIAEAAAAAAAAAAGxHQQIAAAAAAAAAANiOggQAAAAAAAAAALAdBQkAAAAAAAAAAGA7ChIAAAAAAAAAAMB2FCQAAAAAAAAAAIDtKEgAAAAAAAAAAADbUZAAAAAAgFri6NGjio6Olsfj0SOPPFLuOs8884w8Ho88Ho+eeeaZmm2gQ3bt2qU6derI4/HoL3/5i9PNAQAAQDVRkAAAAAAc1rt3b+sHZn9f48aNc7r5CKDHHntMmZmZql+/vp566imnm+OTxx57zLoe4+Pj5fV6q7Wf06dPKzw83NrXzJkzre+uvPJKjRkzRpL0wgsv6MiRI4FoOgAAAGoYBQkAAAAAqAU2bdqkjz76SJL00EMPqUmTJg63yDdjx461lg8dOqS1a9dWaz/z589XXl6eJCkqKkp33HFHqe+ffPJJ1alTR1lZWXr66aer32AAAAA4JtTpBgAAAAD4t65du6pbt24+r9+9e3cbW4Oa9OSTT0qSwsPDNXnyZGcb44f27durU6dO+u677yRJH3zwgXr37u33fj744ANrediwYYqOji71fdu2bTVs2DAtWLBAs2fP1hNPPKF27dpdUNsBAABQsyhIAAAAALXIgAEDXDMvAP7t22+/1apVqyRJd9xxh5o1a+Zwi/wzduxYqyDx8ccf6+2331ZkZKTP2+/du1cbN24stb/yPPDAA1qwYIEKCwv16quv6u9///uFNRwAAAA1iiGbAAAAAMBhU6ZMsZbvu+8+5xpSTXfddZfq1q0rSUpPT1dSUpJf25fsHXHppZfqhhtuKHe93r17q23btpKkOXPmKDU1tXoNBgAAgCMoSAAAAACAg9LS0rRo0SJJUlxcnHr16uVwi/zXpEkT9e/f33pfssBQFa/Xqzlz5ljv77nnHnk8ngrXv/POOyVJOTk5mjdvXjVaCwAAAKdQkAAAAAAMFB8fL4/HI4/Ho4MHD0qSjh49qqeeekodOnRQTEyMoqKilJiYqIcffliHDh3ya//5+fmaPXu2hg8frtatW6t+/fqKiopSQkKCRo0apcWLF8vr9Va6j+TkZKuNJeccWLZsmUaNGqXLLrtM0dHR8ng8pXoQnJedna3XX39d1157rRo3bqzIyEi1adNGo0aN0urVqyvNxXmDBw+2vnvxxRd9jv/Pf/6ztd3tt9/u83bl+eSTT5STkyNJuu222xQSErjHtG3btuniiy+22nrrrbcqOzu73HVXr16tSZMm6corr1RsbKzCw8PVvHlz3XLLLXrrrbcq3O68ksMsff7550pJSfGpjWvXri11/Y0ZM6bS9YcOHWotlyxkAAAAoPZjDgkAAADABZKSkjRu3DilpaWV+vyHH37QDz/8oOnTp2vhwoUaOHBglftKTk7Wfffdp3379pX57uDBgzp48KDmz5+v7t27a9GiRbrkkkt8amNaWprGjx+vxYsXV7nujh07NHTo0DJt2L9/v/bv36/58+dr4sSJevPNNyvdz3/+539q6dKlkqQZM2bov//7v6s8dlFRkWbOnGm9v9Ahlj799FNruU+fPhe0r5LWrVun2267zTrnY8aM0fTp0xUaWvox8MiRIxozZoySk5PL7OPEiRM6ceKE/vnPf+rFF1/U/Pnzdd1115V7vEGDBik2NlanT59WYWGhPvzwQ/3hD3+osp0le1P06NFDv/nNbypd/z/+4z/UsGFDpaWlafPmzfr555/VtGnTKo8DAAAA51GQAAAAAAy3atUqTZo0SYWFhbr00kvVo0cPNWjQQAcOHFBycrIKCgqUnZ2t4cOHa+fOnUpISKhwXwsXLtTo0aOVn58vSYqMjFT37t0VHx+vkJAQ7d27V998840KCgq0YcMG9ejRQ5s3b65ykmav16u7775b//jHP+TxeNSlSxddccUV8nq92rlzZ6khfH766Sf17dtXv/zyi/VZ+/bt1bFjR4WEhGjr1q3atm2bpk2bpvr161d63P79+6tly5Y6cuSIfvzxR61bt67KIZM+//xzHT58WJLUokUL9evXr9L1K1NUVFSqN0dFP/b7a8mSJRo5cqTV8+IPf/iDXn311TJDIe3evVt9+/bViRMnJEkej0edO3fWFVdcocjISB07dkzr1q1TRkaGjh8/rptuuknLly8vd46HsLAwjRo1Sm+//bak4kJDVQWJ7Oxsa7gqqeLJrEsKCQnRNddco+XLl8vr9WrVqlW66667qtwOAAAAzqMgAQAAABjud7/7nSIiIjR16lSNHj261I/Su3bt0i233KJjx44pKytLzz//vN5///1y97Nr1y6NHTtW+fn58ng8evTRR/Xkk08qJiam1Hr79+/X2LFj9dVXX+nIkSMaP368li1bVmkb169fr4KCArVv315z585V+/btS32fm5srqbhwce+991rFiIsuukhz587VLbfcUmr9NWvWaNSoUXrttdesyZbLU6dOHU2YMEHPPvusJGn69OlVFiSmT59uLY8fP/6Chljas2eP0tPTJUmNGzdW8+bNq72vku2bOHGiCgsLJUkvvviinnjiiTLrZWZmatiwYVYxon///nrzzTfVpk2bUuulp6friSee0Lvvvqvc3FyNHj1au3fvVsOGDcvsc+zYsVZBYtu2bdqxY0eZc1nS4sWLlZGRIUkKDw/XiBEjfIqxY8eOWr58uSRp06ZNFCQAAACCBAUJAAAAoBZZtmyZUlNTfV7/ueeeU2xsbKXr5OXlKSkpqdy/5L/yyis1bdo0DRo0SFJxD4j33nuvzLA+kvTII49Y8wi89tpr+v3vf1/u8Vq3bq0VK1aoW7du+v7777V8+XJt3LhRV199dYVtLCgoUFxcnNasWaPGjRuX+T48PFyStHLlSq1bt05S8V/KL1myRNdee22Z9fv06aPPPvtM3bt3V15eXoXHlaR7771Xzz//vIqKirRo0SK9+eabatCgQbnrnjp1SkuWLJFU3JtgwoQJle67Ktu3b7eW27Vrd0H7kqSXXnrJGnaqTp06mjp1aoVDSv3tb3/T7t27JRXPy7Bo0aJyiysNGjTQO++8o6ysLM2aNUsnTpzQ1KlT9fjjj5dZt2vXrrr88sut/X7wwQd65ZVXKmxvyeGaBg8eXKa4VZHLL7/cWt62bZtP2wAAAMB5FCQAAACAWmTz5s3avHmzz+s/9thjVRYkBg0aVOmwQgMGDFBcXJxSUlJ07tw57d69u8xftW/btk1r1qyRJHXq1EmTJ0+u9JhRUVF66qmnNGrUKEnS3LlzKy1ISNLTTz9dbjGipJK9E0aOHFluMeK8Ll26aMyYMZoxY0al+2zZsqX69eunZcuWKSsrS/PmzdPEiRPLXXf27NlWgePGG29UfHx8pfuuyoEDB6zlFi1aVHs/Xq9Xjz76qF5//XVJxQWcefPmlZoAuqT8/Hy99dZb1rpTp06tsqfHCy+8oA8++EBer1dz584ttyAhFfeSON8j48MPP9RLL72kOnXqlFnvxIkTWrVqVantfFVyXpJfT1QOAACA2qv6fYsBAAAABIU777yz0u89Ho86dOhgvS/vB96SQy6NGjWqzFwE5Sk5QfNXX31V5fq+DNezdu1aa/nuu++ucn1f1pGk+++/31ouWfT4tZLfXehk1pJ08uRJa/miiy6q1j4KCgo0duxYqxjRoEEDrVixosJihCRt2bJFP//8sySpb9++Pk0K3bx5cyUmJkqSdu7cWWaC9PPuvvtuq7hx/PjxUkWHkubOnWsNKxUXF1dm2K3KlCxcpaSk+LwdAAAAnEUPCQAAAKAW+fOf/6xnnnkmoPusbAz/80r+GH5+ToOSvvnmG2v5iy++0KFDh6rcp9frtZaPHDlS6boJCQlV9vQ4duxYqYmsq+pxIRUPIeTxeEq1pTyDBg1S8+bNdfz4cW3evLncuQ82bdqknTt3Sir+QXzIkCFVHr8qmZmZ1nK9evX83j4rK0uDBw+2CkZNmzbV8uXL1blz50q3K3k+jx49qt/97nc+He/s2bOSis/t0aNHy51H4pJLLtGNN96of/7zn5KKe5WUV2woOVzT6NGjy+1FUZGSucrJyVFRUdEFzeUBAACAmkFBAgAAADBceT8a/1rJiZ/z8/PLfH/8+HFr+fxkwv44c+ZMpd83adKkyn2ULEbUq1evygKGJNWvX18NGza0fkivyPnJrf/nf/5HUnFPiClTppRap2TviHvuuUdhYWFVHt8fVRVNyvP666+roKBAUvHQU6tXr9Zll11W5XYlz+f27dtLzWXhq8rO6dixY62CxOLFi3Xu3DlFR0db33/33XfasWNHqfX9UZ1cAQAAwHn8CQkAAABgOF+GV6pKRcPz+Or80DwViYyMrHIf586ds5b96U1Q8ofwytx3333WX9nPmTOn1GTYWVlZmj9/fql1AyEqKspaPj9huD9KFpJOnz6tEydO+LTdhZ5PSVYhpDxDhw61JgbPysrSokWLSn1fsndEp06dfOrFU1LJXEVERNA7AgAAIEjwvzYAAAAAVSr5w/knn3wir9fr9+tClSwsZGVl+bxdyWGRKtOqVSvddNNNkqRTp04pKSnJ+m7hwoXWUFY9evTQFVdc4fPxKxMXF2ctp6am+r395MmTdeutt0oqjnPAgAFat25dlduVPJ+PPPJItc5n7969K9x/ZGRkqblLZs+ebS0XFBRo3rx51nt/e0dIpXvLlMwhAAAAajcKEgAAAACq1KxZM2vZqUmES05knJWVVeUwUFJxr4qqhmsqqaLJrQM9mfV5CQkJ1vLRo0f93j4sLEyLFi0qU5T48ssvK92uJs5nyUJDcnKyNY/IypUrrcm869atq7vuusvvfR87dsxajo+Pv7CGAgAAoMZQkAAAAABQpZITSH/99deOtKFFixalihIbN26scpstW7b41Tvjtttus/7iftWqVTp8+LD27t1r/cAfHR2t4cOH+9nyil111VXW8g8//FCtfZwvSgwaNEhScVGif//+lRYlSp7P9evX2zInQ8+ePdW6dWtJUlFRkebMmSOp9HBN/fv392n+kF/bvXu3tdyhQ4cLbCkAAABqCgUJAAAAAFU6/2O3VDxk0/m/cK9p119/vbU8d+7cKtc//yO4r0JDQzV+/HhJxT+iz5gxQ++//771/ciRI32ek8IX7dq1syYdP3XqVKm//PdHWFiYPv7441JFicp6Slx77bWKiYmRVNwz49NPP63WcSvj8Xg0ZswY6/3s2bOVlpampUuXWp9VZ7gmSdq2bZu13K1bt+o3EgAAADWKggQAAACAKnXr1s2aMyA7O1v33HNPqUmfK5OXl+fT8Eq+mDBhgrX84YcfasOGDRWu+69//UuzZs3y+xj33XefNRH4jBkzSu0jkMM1SVJISIj69Oljvf/qq6+qva/zRYmBAwdKKh6uqqKiRHh4uCZPnmy9f/DBB/0qhvhakBozZoyVy927d+uPf/yjcnJyJEmxsbGlCl2+Kioq0vr16yUVFz1uvPFGv/cBAAAAZ1CQAAAAAOCTN9980+od8Pnnn6tXr16VDpu0d+9ePf/884qPjw/YME/9+/dXz549JRX/MH3rrbdq1apVZdZLTk7WgAEDVFhYqLCwML+O0bp1a/Xt21eSdOjQIWuOhfbt25ca6ihQzs//IElr1qy5oH2FhYXpk08+8ako8eijj+rKK6+UVDwnQ5cuXbRw4UIVFRWVu+/U1FS999576ty5s1555RWf2pOQkKDrrrvOev/ee+9Zy6NGjfL73EjSt99+q7S0NElS165d1bRpU7/3AQAAAGeEOt0AAAAAAP+2bNkypaam+rx+vXr19PLLL9vYon/77W9/q3nz5mnEiBHKysrSxo0b1b17d7Vp00adO3dWbGyscnJy9PPPP2v79u3VHn6oMh6PR++//7569OihU6dOKTU1VTfddJM6dOigjh07Sioezmfr1q2SpMcee0wLFy7UoUOHJBX3SPDF/fffX6bQce+99wYsjpJuv/12Pfjgg8rJydHSpUv17rvv+tzO8pwvStx+++367LPPrKLE8uXLrWKOVDwfxtKlS3XjjTfqwIEDSklJ0fDhw9W4cWN1795dcXFx8nq9On36tL7//nv9+OOPVrGiZK+OqowdO1br1q0r9/PqWLx4sbU8evToau0DAAAAzqAgAQAAANQimzdv1ubNm31ev2HDhjVWkJCK55JYv3697r33Xn377beSpH379mnfvn0VbhMfH68WLVoErA2XXXaZVq9eraFDh+rAgQOSiosQJecVkIqLCi+88II+/PBD67MGDRr4dIwhQ4aoadOm+vnnnyUVD3F0zz33BCiC0ho2bKg77rhDc+bMUUpKitatW2cNj1Vd54dvGjZsmFWU6N+/f5miROvWrbVlyxZNmjRJixYtktfrVWpqqv7xj39UuO+YmBi1b9/e57bceeedevjhh5WVlWV9dvnll6tr167Vim3RokWSpIiICN11113V2gcAAACcwZBNAAAAAPzSoUMHbdmyRStXrtQDDzygq666So0bN1ZoaKiioqIUHx+vW265RU8//bS+/vpr7d+/3+q9EMg27Ny5U6+99pq6d++u2NhYRUREKCEhQSNGjNCqVas0bdo01a1b15q/IiQkxOeCRN26dUvNbzB06FDFxsYGNIaSSs7n8Pe//z0g+wwPDy8zp0T//v3LzFMRGxurBQsWaPv27frTn/6ka665RhdffLHCwsIUERGhuLg49ezZU4888oiWLl2qEydO+NW7oX79+ho6dGipz6rbO2Lt2rX68ccfJRX3jmjcuHG19gMAAABneLxer9fpRgAAAACAHX788Uf95je/kSQlJiZq9+7dPm3n9XrVpk0bqwfGqlWrrHkl7HLzzTfr888/V3h4uA4ePKi4uDhbjxeMRowYoQULFqhOnTrauXOnEhMTnW4SAAAA/EAPCQAAAADG+uijj6xlf4YI+uKLL6xiROvWrf2aM6G6nn/+eUlSbm6upkyZYvvxgs2+ffv08ccfS5LuvvtuihEAAABBiIIEAAAAACMdOHBAr776qvXen/kG/vd//9danjhxojweT0DbVp6rr75aI0aMkCS98847+uWXX2w/ZjD5y1/+osLCQtWrV0/PPfec080BAABANVCQAAAAABB0br75Zq1YsUIFBQXlfv/ZZ5+pZ8+eSktLkyR17NhRN998s0/7Xrp0qZYsWSKpeP6D++67LzCN9sGrr76qqKgoZWRkWD0mIH3//ff64IMPJEl/+tOfdOmllzrcIgAAAFQHc0gAAAAACDrneyw0atRInTt3VsuWLRUWFqbU1FRt2rRJR48etdatX7++vv76a7Vv377cff3000966623VFhYqL179+rzzz/X+cek5557Tk899ZT9AQEAAAAuQEECAAAAQNDxdQilyy67TAsXLlSHDh0qXCc5OVk33HBDmc+vvfZarVmzRmFhYdVuJwAAAIB/C3W6AQAAAADgr507dyopKUnr16/XoUOHlJqaqtOnTysiIkJNmjRRt27dNGjQII0cOVJ16tTxeb9hYWFKSEjQiBEj9MQTT1CMAAAAAAKIHhIAAAAAAAAAAMB2TGoNAAAAAAAAAABsR0ECAAAAAAAAAADYjoIEAAAAAAAAAACwHQUJAAAAAAAAAABgOwoSAAAAAAAAAADAdhQkAAAAAAAAAACA7ShIAAAAAAAAAAAA21GQAAAAAAAAAAAAtqMgAQAAAAAAAAAAbEdBAgAAAAAAAAAA2I6CBAAAAAAAAAAAsB0FCQAAAAAAAAAAYDsKEgAAAAAAAAAAwHYUJAAAAAAAAAAAgO0oSAAAAAAAAAAAANtRkAAAAAAAAAAAALajIAEAAAAAAAAAAGxHQQIAAAAAAAAAANiOggQAAAAAAAAAALAdBQkAAAAAAAAAAGA7ChIAAAAAAAAAAMB2FCQAAAAAAAAAAIDtKEgAAAAAAAAAAADbUZAAAAAAAAAAAAC2oyABAAAAAAAAAABsR0ECAAAAAAAAAADYjoIEAAAAAAAAAACwHQUJAAAAAAAAAABgu/8P+i/PqZ7lgDYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_3_30.spectrum / countsp.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error / countsp.spectrum, fmt='o', label=\"3-30 Hz\")\n", + "plt.errorbar(energies, covspec_01_1.spectrum / countsp.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error / countsp.spectrum, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Normalized Covariance (1 / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "40de3c8c", + "metadata": { + "id": "40de3c8c" + }, + "source": [ + "Alternatively, we can calculate the Covariance Spectrum in fractional rms normalization" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "ac4fc20b", + "metadata": { + "id": "ac4fc20b", + "outputId": "1d04917c-d24a-4988-9d89-4f47ef86c3c3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [01:00<00:00, 1.50s/it]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:59<00:00, 1.50s/it]\n" + ] + } + ], + "source": [ + "covspec_01_1 = CovarianceSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n", + "covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "5615406c", + "metadata": { + "id": "5615406c", + "outputId": "c74ddc36-c90c-4d32-d6d7-72820d5d2634" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk8AAAR9CAYAAAD/fNBwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXxTVd4/8E+SNum+CbYUsGVRqoAUxYIoq6MwOCzjCopDQR+Rh3mEmWdEZ1PQmUdl/M3Q17iACxTBcRk3wAVRoYBKp+pQhEoYtrKVFuiWNm2aJrm/P2pjC12y3Jube+7n/Xr5sinJPef7PSc36T33nGOQJEkCERERERERERERERERAQCMaleAiIiIiIiIiIiIiIgonHDwhIiIiIiIiIiIiIiIqA0OnhAREREREREREREREbXBwRMiIiIiIiIiIiIiIqI2OHhCRERERERERERERETUBgdPiIiIiIiIiIiIiIiI2uDgCRERERERERERERERURscPCEiIiIiIiIiIiIiImqDgydERERERERERERERERtcPCEiIiIiIiIiIiIiIioDQ6eEBERERERERERERERtcHBEyIiIiIiIiIiIiIiojY4eEJERERERERERERERNQGB0+IiIiIiIiIiIiIiIja4OAJERERERERERERERFRGxw8ISIiIiIiIiIiIiIiaoODJ0RERERERERERERERG1w8ISIiIiIiIiIiIiIiKgNDp4QERERERERERERERG1wcETIiIiIiIiIiIiIiKiNjh4QkRERERERERERERE1AYHT4iIiIiIiIiIiIiIiNrg4AkREREREREREREREVEbHDwhIiIiIiIiIiIiIiJqg4MnREREREREREREREREbXDwhIiIiIiIiIiIiIiIqA0OnhAREREREREREREREbURoXYFiEKppqYG27dv9z7u27cvLBaLijUiIiIiIiIiIiIiovM1NTXhxIkT3sfjxo1DUlJSyMrn4Anpyvbt2zFjxgy1q0FEREREREREREREfnj//fcxffr0kJXHZbuIiIiIiIiIiIiIiIja4OAJERERERERERERERFRG1y2i3Slb9++7R6///77GDhwoEq1UUdDQwMKCgowfvx4xMTEqF0dTWDO9JEDEWIUIQYiIrXxXEpawb6qD2xndTDvgWHexM+BKPGJEoceHDp0qN0WDOdf21UaB09IV87fHH7gwIEYPHiwSrVRh9PpRGRkJK644gqYzWa1q6MJzJk+ciBCjCLEQESkNp5LSSvYV/WB7awO5j0wzJv4ORAlPlHi0KPzr+0qzSBJkhTSEolUVFJSgiFDhngf79u3T3eDJ0REREREREREREThTu1rudzzhEhnGhsbsXnzZjQ2NqpdFc1gzvSRAxFiFCEGIiK18VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY+DJ0Q64/F4UFNTA4/Ho3ZVNIM500cORIhRhBiIiNTGcylpBfuqPrCd1cG8B4Z5Ez8HosQnShykPC7bRbqi9lQvIiIiIiIiIiIiIuqe2tdyOfOESGdcLhdKS0vhcrnUropmMGf6yIEIMYoQAxGR2nguJa1gX9UHtrM6mPfAMG/i50CU+ESJg5THwRMinamvr8fatWtRX1+vdlU0gznTRw5EiFGEGIiI1MZzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ8LttFuqL2VC8iIiIiIiIiIiIi6p7a13I584SIiIiIiIiIiIiIiKgNDp4Q6UxtbS2eeuop1NbWql0VzWDO9JEDEWIUIQYiIrXxXEpawb6qD2xndTDvgWHexM+BKPGJEgcpj4MnRDoTExODGTNmICYmRu2qaAZzpo8ciBCjCDEQEamN51LSCvZVfWA7q4N5DwzzJn4ORIlPlDhIedzzhHRF6XXyJEmCx+MB31ZE4jEYDDAajTAYDGpXhYiIiIiIiIhIeGrveRIRspKIBCRJEhoaGlBfXw+73Y6mpia1q9Qtj8cDm82GhIQEGI2cfOYL5kwfOfA1xpiYGCQkJCA+Ph4REeH1MdrQ0IAtW7bgpptu4h00REQB4rmUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUl54XfUh0pDm5macPHkSDodD7aoQUQg1NDSgoaEBFRUV6NOnD+Li4tSuEhERERERERERyYzLdpGuyDXVy+Fw4MSJE3C5XHJWj4g0xmAwcACFiIiIiIiIiEgBai/bJebaK0QKkiQJx48f1+zACfdl8R9zpo8cBBKjJEk4efJk2JwPmpubYbVa0dzcrHZViIg0i+dS0gr2VX1gO6uDeQ8M8yZ+DkSJT5Q4SHlctovIT/X19XC73e1+FxkZicTERMTGxiIyMjKsN5R2uVyorKzERRddFHb7NYQr5kwfOeguRkmS0NjYiKqqKjQ2Nrb7fV1dHZKTk0NZ3Q41NDTg/fffx4IFC5CYmKh2dYiINInnUtIK9lV9YDurg3kPDPMmfg5EiU+UOEh5XLaLdEWOqV4nTpxAfX2997HFYsEll1wi7AVlImpPkiQcO3as3QBKTEwMMjIyVKwVEREREREREZFYuGwXkYZIkgS73d7udykpKRw4IdIRg8GAlJSUdr9raGgQekkzIiIiIiIiIiK94eAJkR862g8hJiZGpdoExuVyoaysLGz2aNAC5kwfOfAnxqioqAt+5/F4lKiWX2pqarBs2TLU1NSoXRUiIs3iuZS0gn1VH9jO6mDeA8O8iZ8DUeITJQ5SHpftIl0JdqqXy+XCwYMH2/3u0ksv1dTME0mS4HQ6YTabw3pvlnDCnOkjB/7EGK7nApfLhZMnT6JPnz6q14WISKt4LiWtYF/VB7azOpj3wDBv4udAlPhEiUMP1F62i72DSGcMBgMsFova1dAU5kwfORAhxoiICGRmZqpdDSIiTeO5lLSCfVUf2M7qYN4Dw7yJnwNR4hMlDlIel+0i0hm3242qqiq43W61q6IZzJk+ciBCjHa7HW+88cYFezMREZHveC4lrWBf1Qe2szqY98Awb+LnQJT4RImDlMfBEyKdMRgMMJlMwi69pATmTB85ECFGo9GIpKQkGI38eCciChTPpaQV7Kv6wHZWB/MeGOZN/ByIEp8ocZDyuOcJ6Qr3PCEiOfBcQERERERERESkLLX3POHwGpEOnKhqQOYjH3b434mqBrWrF/Y8Hg8aGhrg8XjUropq9JADEWJ0Op0oLi6G0+lUuypERJrFcylpBfuqPrCd1cG8B4Z5Ez8HosQnShykPA6eEBF1Q5Ik1NXVQc8T9fSQAxFidDgcKCgogMPhULsqRESaxXMpaQX7qj6wndXBvAeGeRM/B6LEJ0ocpDwu20W6osdlu6zlNqwvPIb1hcc7/PerM5Ixsl8Kpmf3xqC0+BDXjkibtHguICIiIiIiIiLSEi7bJSin04l169ZhypQpyMjIQFRUFHr16oXRo0fjmWeewblz52Qvs7S0FC+99BJmz56NYcOGITk5GZGRkUhJScGVV16J+fPnY/v27X4d02Aw+PWfvxcOjx8/jqVLl+Lqq69Gz549ER0djQEDBuC2227De++9p+k7wNW21VqBO1buwuQVOzsdOAGAb49V4/mCw5i0YgfuWLkL26xnQlhLdfn6PpUkCR6PR7b+6Ha78d133+GVV17BggULMGLECJjNZu/7aPz48bKU052jR4/irbfewpIlSzBhwgQkJCS0ez+3JWcOcnNzvWXk5ub69dr8/HzvazMzM4OuS1tyt7MaJEmCw+HQdAxERGrjuZS0gn1VH9jO6mDeA8O8iZ8DUeITJQ5SHgdPFGC1WjFy5Ej84he/wMcff4zjx4+jqakJ5eXl2LVrFx566CEMHjwYH330kSzl7d69GyNHjkS/fv1w//3347XXXsN3332HmpoauFwuVFdXY+/evXjxxRcxfvx4TJgwAcePd34xPVReeeUVXHHFFVi2bBn+/e9/49y5c3A4HDhy5Ajeeecd3HLLLbjppptQXl6udlU1pdruxIOv78a8/G9QVFrl12uLSqswN/9rLHpjN6rtYq/76M/71O12o7y8HG63O+hy33//fSQkJGDYsGG47777sHLlSnz77bdobm6WISrfnD59Gj169ED//v1x55134i9/+QsKCgpQV1fX6WvkzEG4EiHG2tpaPP3006itrVW7KkREmsVzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ8ri8is5MnT+KGG25AWVkZgJaZG2PHjsWAAQNw9uxZfPbZZ2hsbMSZM2cwY8YMbN68GRMnTgyqzAMHDqCoqKjd7y677DIMGTIEPXr0QE1NDb766iucPHkSAFBQUIBrr70WO3fuRP/+/X0uZ+HChd0+x2Qy+XSs1atX47777vM+TkpKwsSJE5GYmIh9+/bh66+/BgB89tlnmDRpEr788kvExcX5XFe92n/ahtw1RaiwNQV1nA3FZSg8Uom183KQlZYgU+3Ch7/v048//hhjx471uX93paamBg0NDUEfJxhNTU2orKz06zUmkwk9e/aUJQfhSoQY4+PjMX/+fMTHcwk+IqJA8VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY+DJzK76667vBdkMzIysGHDBgwbNsz77+fOncPMmTPx+eefo7m5GbfffjsOHz6MpKSkoMseOHAg7rvvPsyePRu9e/du928ejwf5+fn4n//5HzQ0NKCsrAx33303vvrqqwuW5+nMs88+G3QdgZbBngceeMD7+O6778aqVasQGxvr/d3WrVtx2223obq6Gt999x0efPBBrF69WpbyRbX/tA0zXyxEbaM8MxgqbE24c1Uh3pw/SrgBFH/fp3fccYds79NWqampuOaaa7z/ffLJJ8jLy5Pt+L6Ii4vDVVddhZycHFxzzTVwOByYM2dOh881GAyIjIwMaf1CTYQYTSYT0tLS1K4GEZGm8VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/Ldsnoo48+ws6dOwEAZrMZmzZtandBFgB69OiBDRs2eGd8VFVVYfny5UGV26tXL6xZswZWqxUPP/zwBQMnAGA0GjFv3jysX7/e+7vCwkJs2bIlqLID8cc//tG7RNF1112HV199td3ACQBMnDgRr732mvfxq6++iv3794e0nlpSbXcid02RbAMnrWobmzFndZFQS3gF+j5dunSpLMs5TZ48GceOHUN5eTk2bdqERx99FD/96U9lHZjpTmpqKvbt24fa2lps374df/nLX3DHHXfgkksu6fQ1brcb586d0/SSVt0RIcb6+nrk5+ejvr5e7aoQEWkWz6X6I0kS6hzNqLI7Uedo1sz65+yr+sB2VgfzHhjmTfwciBKfKHGQ8jh4IqPnnnvO+/OcOXMwdOjQDp8XGxuLxx9/3Pt41apVcLlcAZc7btw45Obm+rTUzM9//nPk5OR4H3/44YcBlxuIiooKvPPOO97Hy5cvh9HYcTf86U9/ip/85CcAWi5qrly5MiR11KLHNpYEvVRXZypsTVi6qUSRY6sh0Pfpq6++KstF9bS0tC4HKUIhOjoagwcP7vS91xGDwQCLxeLzTDUtEiHGiIgIZGZmIiKCE0uJiALFc6k+WMttWL7ZirtfLkT2459i6NItuOqJlv9nP/4p7n65EMs3W3GgvPM94dTGvqoPbGd1MO+BYd7Ez4Eo8YkSBymPgycyqa+vx+eff+59PHfu3C6ff+utt3r38KiqqsKOHTsUrV9b1113nffn0tLSkJULABs3boTH4wHQsi/L6NGju3x+bm6u9+f3339fwZpp11ZrBTbuKVO0jA3FZdhqrVC0jFAI5n1aXV2NL774QtH6hTOj0Yj4+Hi/BlzUUFpaCoPBENB/x48f10SMXYmKisL48eMRFRWldlWIiDSL51KxbbVW4I6VuzB5xU48X3AYXx6qvGD2dm1jM748VInnCw5j0ooduGPlLmyznlGpxp1jX9UHtrM6mPfAMG/i50CU+ESJg5Sn3StEYearr75CU1PLnf+xsbG45pprunx+VFQUrr32Wu/jrVu3Klq/ttreVR3q5Wm2bdvm/Xn8+PHdPn/ChAnen48fP45Dhw4pUS1NW1lwJDTlbA9NOUoK9n3aduBFbzweD+rr672DnyISIcampiYUFhZ6+zkREfmP51IxVdudePD13ZiX/w2KSqv8em1RaRXm5n+NRW/sVmQ520CXDWNf1Qe2szqY98Awb+LnQJT4RImDlMe5STJpux/H0KFDfZr2ddVVV+HTTz+94PVK27t3r/fnvn37+vy6HTt2oKioCBUVFTCZTOjRoweGDRuG0aNHX7BnSWfaxnnVVVd1+/z09HSkpqaioqLC+/qBAwf6XGfRWcttfv/xF6iio1U4UF6HQWnxISlPCVp6n4YbSZLQ0NCA6OhotavSpYSEBCxcuNCn53733Xfe/W9aaSHGrjidThQXF2Pw4MGwWCxqV4eISJN4LhXP/tM25K4pCnqZ2w3FZSg8Uom183KQlZYQ1LGs5TZsLC7DnpM12HfK1m72S2J0JIb0TsCwPkmYnt270+/f7Kv6wHZWB/MeGOZN/ByIEp8ocZDyOHgikwMHDnh/zsjI8Ok1bfc9sFqtstepI8ePH283y6V1TxFfjBs3rsPfx8TEYN68efjjH/+Iiy++uMtjBJqn1sETq9WKqVOn+lhjMZ2oavD+vL7wWEjLXl94DPeP7Y++KTEhLVcuwb5P275eb0wmU7fv73CQkpKCZ599ttvnnThxot3+T7NmzUL//v2VrFpIxMfH44EHHlC7GkREmsZzqVj2n7Zh5ouFFyzNFagKWxPuXFWIN+ePCmgAZau1AisLjnR5A1TrsmGtS4flZKZgwfgBmJDV/rsY+6o+sJ3VwbwHhnkTPweixCdKHKQ8Dp7IpLKy0vtzamqqT69JS0vz/lxVFZrZA7/+9a+9S3VdcsklsgxENDQ04Nlnn8U777yDd999F6NGjerweY2NjWhsbPQ+Duc8hbMxy7d1/ySFrCs8hnWFx1D61M2q1SEYWnmfhiNJkuB2u2EymWTdUP1f//oXfvnLX/r8fDkGmu12O6ZNm4by8nIAwMiRI7F69WrFYgwlj8cDm82GhIQETe/dQkSkJp5L1SFJEuqbXGh2S4g0GRBniQj687ja7kTumiLZBk5a1TY2Y87qImxeNBbJsWaf6/LYxpKA9iosKq1CUX4VpmenY+nUwd4y2Vf1ge2sDuY9MMyb+DkQJT5R4iDlsXfIpL6+3vuzr0u+tH1e29crZe3atXjnnXe8j5988slup6ZZLBbccccdyM/Px759+2Cz2eB0OlFeXo4PPvgAt912m/ePmtOnT+Pmm2/Gf/7znw6PdX6MauYpKirKuxG42+1GTU2Nd23h1hiBlgEfu90OAHC5XKitrfUeQ5Ik72vcbrd3UMrj8cDlcnmf53K52j2vdT8Fj8fjfY0kST4/LxzIHZMSz2tb19bn1dXVeX8fFRXlUzu1fY/U19crGlNbvsYkd9/rrA5utxtnzpxp9ziY2FtZrVY899xzPv93/r4z/tbB7XZj9uzZKC4uBtCydOF7772HqKgoNDc3e2P09XiSJHl/drlcqKmp8dattrYWzc0tF2saGhrQ0NAya6y5ubnduaSmpsbbbna73TvI7HQ6YbPZvOXU1NR461RfXw+HwwGgZa3W1r5dU1ODvLw8bz3q6uq8a7g6HA7vOdSf857aMXk8HtTU1LR7HzMmxsSYGJOSMZ08eRJ5eXmw2Wwhjclms6HO0YxzdQ6crDjrfZ7I7WQtt+HpD77DL1ZtR/bjn2LY0s0Y+6cPMHTpJ8h+/FPMWVWApz/ciwPldQHF9Nj7e1BfZ/M+L87QBBNa6hCFZpjREl8E3IhB614mEuIMTTD+8LzoNs+LhBvRPzzvjM2Bx9/92qe+981/TmDyiu3YuKcMMXAiAi35MsOFKLTU2wQP4gw/LisWa2iC6YfnWdAMC5qxobgMU1Zsw7cHT3rbPC8vz3uDTzi+n8K172kpptZ2LisrEyYmLbRTeXm597NAlJhC0U6t/fXkyZPCxORvO6n1PSJUfa9tfFqOSfR2EjEmtXDwRCatnQYAzGbf7j5qe1G27YwMJXzzzTftpqPNmjULd911V7evO3XqFN58803MmTMHgwcPRnx8PCIjI5Gamoqbb74Z//znP7Fx40ZERUUBaLkz/7//+787PFbbHAHq5mnUqFG47bbbAABnz55FXl6e9w29evVqfP/99wCA7du3Y9OmTQBaPiBWrVrlPUbbi6k2m817UmlqasLZs2e9zztz5oz3JFBbW+s9qTgcDpw7dw5Ay4nozJkz3hNWdXW192TR0NDgnTFx/oVntcgdU9uL8pWVld6Tut1uR3V1NYCWfJ85c8ab83Pnznn7VF1dnffk73Q6cebMGW9dz549623b1vIBwGg0+tRObe94bGxsVDSmtnyNSe6+11bbmM4XbDvJwePx+N33Hn74Ybz//vsAgNjYWLz88svo2bMngJYvDXFxcTCZTN3G1Jr/1i8HAFBWVoa8vDxv/V544QUcPnwYALBlyxZs2bIFAHD48GG88MIL3ue1/nEBAJs2bcL27dsBAN9//z1Wr14NoKVt8/LyvO379ttvo7CwEACwe/duvPbaax3m6LXXXsPu3bsBAIWFhXj77bcB+HfeUzum1j/AWvs5Y2JMjIkxKR3TmjVrsGjRIiQkJCge0wefbcfyzVb8+oX38NjfVmHo0i0Y/38f4ZWVz+P6P32Iu18uxN9WrsYn2wuFaqdVq9di0bPvYfKKndhVWIiYU9+gtrEZSQYHbo/aCzPcqG1sRs+yXfj0q39j0oodePjZN7Dm9bd9jmmrtQLFJQcw3fK993m3R+1FT2PLH+6jzceQHdlyMTrTVI0plpbZrWa4cXvUXiQZWr6/jDMfxhURLUsIX2o6hxstBwEAsQYnko58hs27W8rtrO/96/uj+PD11aiua/neNMViRaap5TtGdmQZRptbluHtaazH7VE/7k053fI9ehtb8nVN5ElcE9nSFpH2s3j3H/mwlrfcLduaXyXaieeI8IgpISEBY8eOxQcffCBMTFpop+3btyM7OxsJCQnCxBSKdkpISMBdd92FNWvWCBOTv+0Uyu8RavS9f/zjH/jZz36GhIQETcckejuJGJNaDFK43MqucTfffDM++ugjAC0X55566qluX/Pxxx9jypQpAIC4uLh2d8XL6ejRoxg9erR3iZorr7wSO3fu9H7ZlsNLL72E+++/3/v4m2++wdVXX93uOWfPnm23Z8L+/fuRlZXV7bHvvPNOvPXWWwCAX/7yl/j73/8ecD1LSkowZMgQREVFISIiAoWFhcjKykJdXR0SExNhMBhgs9kQFRUFs9mMxsZGeDwexMbGemeetF7Ebn3rXHbZZd4L7CaTCR6PBx6Px7sZucvl8i4D5Ha7YTAYYDQa4fF4IEkSTCbTBcsFdfW8fr/9KOD45XLoT5NkjUmJ57XNv9FohNFoxJQpU/Dxxx8DAJYsWYI///nP3bbThx9+iJ/97GcAWt6n1dXVisS0bNkyLFu2DEDL/kJbt271KabWARo5+t727dsxYcIEbzu73W5F2unee+/F2rVrAQBz5sxBfn6+zzG98soruO+++wC07Ftz5MgRn+vwj3/8A/fccw+AlkGxd955B1OnTg0oJrfbjcOHD3tnoBmNRvTr1w8OhwNJSUkAWgasYmJiEBkZ6R1oiomJQXNzMxoaGpCYmAjgx0GbiIgI2O12GI1GREdHw+l0wuFwICEhAZIkoba2FvHx8TCZTKivr0dERASioqLQ1NQEp9OJ+Pj4C6Ye19XVwWw2w2KxwOFwwOVyIS4uDm632+fzXn19PWNiTIyJMTEmmWPafvAcXv58P745UQsnIhAJNyLgRiPMMEBCrMEJu2SGBAOi4YQLJgzP7In/Gt0H1/ZPDsuYfGkntykKyz7Yj0/3lMIFE5phghkumCChEZEwwoMYQzPqJTMAA2LghBMmuH54nhESJmVn4A8/HYRIydllTLmv7sG3pWcRZXDBLrXcjBVnaEKjFAk3jIhCMzwwwIkIRMANM9xogBktM0+caJAi4YER0WiG+4fnddROV2Sk4q0Hruuw7zUbzPjpigLU19d3GZMDkTDBg2hDM+p/qGusoQkOKQJumGD5YXZKEyJhghtRBhfi4hOwedFYGJobdP9+YkyMiTExJsbEmBiTuDGdOnUKQ4YMQat9+/Zh8ODBCBUOnsik7QX+Bx980KeRsXfffRe33norgJZ9FU6fPi17vU6fPo0xY8Z4Rxv79++PL774Ar169ZK1HI/Hg379+uH48eMAgCeeeAJ/+MMf2j2nsbERMTE/bjT+73//G8OHD+/22NOmTfOOOj7yyCN48sknA65n6+BJK3/fcC6XCwcPHmz3u0svvdR7YTcUMh/5MGRldUare56E6/sUAJYuXdpu8KSgoKDb11RVVeHRRx/t8jmjRo3C7NmzfapDQUFBu8GTth8PbrcblZWVuOiii2AymXw6Xmdyc3MvGDzxVX5+PubOnQugZfCktLTUp9cVFhZi/Pjx3jsbnnzySTzyyCPtnuNPjOFwLuhIXV0dXnvtNdx9992Ij49XtS5EFBhJkn/fBy1RM/7Wsqtrbfjg3bcw++67Zb3ZCAhu34tW5+97oRX7T9uQu6YIFbam7p/cjdQEC9bOy+l0w3ZruQ2TV+wMuhxffbJ4LAalXfi5++Dru4Nq6+7MGJKCrPo9/NwXHL/fqYN5DwzzJn4ORIlPlDj0INhrucHihvEyueiii7w/V1RU+PSa1pkgAJCSkiJ7nSorK3HjjTd6B0569eqFzz77TPaBE6BlCaSJEyd6L4Lu37//gudER0cjOjrau/RWuOSJ9CMc36fBsNlseO6557p8Tn19vc+DJ10xGAyIiYnR5AW848ePY8aMGd6Bk1/84hcXDJwA2o6xldlsRnZ2ts/LIhJReLCW27CxuAx7TtZg3ylbu82tE6MjMaR3Aob1ScL07N4dXqDVOjXj76jsSLhxqcmCV/72BbJ6p8hWtlyDBxuKy1B4pLLLwYNws/+0DTNfLJRt4/YKWxPuXFWIN+ePapeDE1Utd1auLzwmSzm+Wl94DPeP7Y++KT/eKLbVWqHowAkAfLjvLK6+dkDQn/t6H7QNd/x+pw6R867ke17kvPlK9ByIEp8ocZDyOHgik0GDBnl/PnbMty/rrbM0APi0fJU/bDYbJk2ahJKSEgBAjx498Nlnn6Ffv36yltNW20GZ1r0Hzjdo0CDvRs3hkCct2rnkx5kBi98sxrfHqkNW9oiMZPztzuyQlSe3cHufaonRaERcXJza1fCb3W7HtGnTvINl1113HV588cUOn6vVGNuyWCwYNWqU2tUgIh9ttVZgZcERFJVWdfqc2sZmfHmoEl8eqsTzBYeRk5mCBeMHYELWxZ2+RivUjL+rspthwvfuVKBRkq3sUA0ehKNquxO5a4pki71VbWMz5qwuwuZFY72zcMYs3yZrGb5aV3gM6wqPtZudvbLgiOLlNsOETeVxuKfNHpG+0vugrZbw+506RMt7qN7zouUtEKLnQJT4RImDlMfBE5lcfvnl3p/37t0Ll8vV7fIt//73vzt8fbDsdjumTJmCb7/9FgCQmJiIzZs344orrpCtjM7KbRUbG9vhcy6//HLv4EnrpkFdKSsrazdDQM48aVXbO9pG9ksJ6eDJyP4p7crXmmDfp+E2eJKZmdnhZvNK8Hg8sNvtiI2NhdFoDEmZwZIkCbNnz8aePXsAtCzz9e6778LSyQUGLcZ4PofDgcLCQowaNQpRUVFqV4eIOhHM0k1FpVUoyq9SbOmmUNyBrmb8vpRthgtXRFTge1cqnG3+XAq07FAOHoSjxzaWyLJUV0cqbE1YuqkEeTO7Xwo4lKzlti4HBeVihgvOE3ux99hADM3o6dNr9D5oq0X8fqcOUfIe6ve8KHkLhug5ECU+UeIg5Wnz6lAYGj16tPeCnN1uxzfffNPl85uamlBYWOh9PHHiRFnq4XA4MG3aNHz55ZcAWjYD+vDDDy/YvF0JbQdD0tPTO3xO2/0UfNnTYfv27d6fL7nkEgwcODDwCgpoWnbHeVasvGG9Q1qe3IJ9n44fP17J6oU1SZLQ1NQUssEaOfzud7/D+++/DwCIj4/Hpk2bcPHFnf8BoMUYz+dyuVBaWgqXy6V2VYioE/tP2zA5b0fQy/lsKC7D5LwdsJbbgq6TtdyG5ZutuPvlQmQ//imGLt2Cq55o+X/245/i7pcLsXyzFQfK64IuS834fS3bBAlpxjqY0PHngb9lh2LwQA6SJKHO0YwquxN1jmZZPg9DsXTVhuIybLX6thyr0k5UNeBEVUPIlg1r7atvFR3zLlnWmWq7Ew++vhvz8r/xe2CnqLQKc/O/xqI3dqPa7gymyhQAfr9Th9bzrtZ7Xut5k4PoORAlPlHiIOVx5olM4uLicMMNN+Cjjz4C0LKpcVfTv959913U1bX8AZqSkoKxY8cGXYfm5mbceuut2Lp1K4CWKWgbNmzAddddF/Sxu2O1WvHVV195H3d2kXnatGl44IEH4PF4cODAAe8ob2fabiQ9ffp0uaorjKy0BORkpoTkzracfiman7If7Pu07eCf3phMJvTo0UPtavhs3bp1eOqppwC0LMf1+uuvY+jQoV2+RmsxdiQuLg65ublqV4OIOhFuSzeF+m5UNeP3p+xGRGKzs+vZpr6WHarBg+nZ6ZiYler3a5VexiUUS1cBwMrtRwKKX26hXjbM21e/rcC6byvaLRvWlp732xEBv9+pQ8t5V/M9r+W8yUX0HIgSnyhxkPI480RG//3f/+39OT8/37vfyPkaGhrw6KOPeh/ff//93S4d1B2324277rrLe1E4IiICb731Fn7yk58EfMz6+nqfntfQ0IDc3Fy43W4ALfurTJ48ucPnpqam4pZbbvE+XrJkSad3tW3ZsgVbtmwB0HJR84EHHvCn+rrxwPj+ISlnwbgBISlHaYG+T++9916YTCbF6xeuJElCc7M8d6Eq7auvvsJ//dd/eR8vX74cN9/c8cWEtrQUY2fcbjfKy8u952MiCh9KL93kz52hatyNqmb8/pZthAcphgYY4Qm67FAOHvhjq7UCd6zchckrduL5gsP48lDlBflpHTh7vuAwJq3YgTtW7sI26xmfywjV0lUAUHS0SpaZUVrjS19tHTiUa/ZT68ChHLPeyDf8fqcOreZd7fe8VvMmJ9FzIEp8osRByuPgiYxuvvlmjBkzBkDLcj8/+9nP8N1337V7TmVlJWbMmIFDhw4BaLmb/eGHH+7weKWlpTAYDN7/2s7CaEuSJNx77714++23AbTcZb1u3TpMmzYtqHgyMzPx6KOPwmq1dvqcL7/8Etdeey3+9a9/eX/3xBNPdLnp8hNPPIHIyEgAwM6dOzFnzpx2+6UAwLZt23DXXXd5H//iF79QfM8WrZqYlYppw5Rdvmt6drowaxwH+j6dO3dupx+qvr5XtcztduPs2bNh/8Xi+PHj+PnPf46mppY/FubNm4f//d//9em1WomxK3V1dVi1apV3xhQRhY9wWbpJrWWz1Izf37JjDM2YHvU9YgzdD7Z0VXY4Dh4oPXDWumxVKJeuahXq8sJBd301nAZtKXD8fqcOLeY9HN7zWsyb3ETPgSjxiRIHKc8gafkW2zB08uRJ5OTk4PTp0wAAg8GAcePGYcCAATh79iw+++wzNDS0rEcbERGBzZs344YbbujwWKWlpejXr5/38Zo1azqcUvb8889j4cKF3seXXnopbrrpJp/r/Oyzz3b4+7abg6anp+PKK69EamoqoqKiUFVVhW+//RZHjrS/y23hwoWdHq+tV155Bffdd5/3cXJyMiZOnIiEhAR8//337QZjrrzySnzxxReIjw9+yaiSkhIMGTLE+3jfvn0YPHiwz693uVw4ePBgu99deumlQc8cCla13YnJeTsUuSiRmmAJ+41I/eXv+/Tjjz/GxIkTvYMj5/P1vdpqypQpKCtrf9GqvLwcFRUt63XHxsZ2uL/PRx991Ol+Qv569NFHsXHjxna/q6+vx+HDh72Phw0bdsHrli1bFvQSerm5uVi7di0AYM6cOX4NNuXn52Pu3LkAWjaALy0tvaB+S5cuBdAyY+3ee+/1DtZ2Z9myZUhOTu60ndsK13NB674tFotF9g2eiShwW60VmJff9T5bclidO6LLpYvkXjYLaFnayZelq9SKP7CyJZjhhhMmAL6dS9uW3br3xKodh7G+8LifZQfunlEZuH9sf/RNienw3+VaxgVo+X7Y0TIumY98GPSxg7FzScsSq4vfLMa3x6pDVu6IjGT87c7skC/bdX5fPX/Zrgdf363osnHTs9ORN3N4UMeQJAn1TS40uyVEmgyIs0To6juML/Hz+506tJj3cHjPazFvchM9B6LEJ0ocehDstdxgcc8TmfXp0wdbt27FrFmzUFxcDEmSUFBQcMHm6D179sSaNWs6HTjxx5kz7afPHzx48IKLel3xZbCjrKzsgou9bSUnJ2P58uXtBkS6cu+990KSJCxevBh2ux3V1dV45513LnjeDTfcgHXr1skycCKy5Fgz1s7LwZ2r5L8gsnZejlADJ4D/79Nglr/ryPfff49jxzq/O9Jut2PPnj0X/N7plO/uvuPHj3dYRlsd/Xt1deguRASi7f0AbrcbL774os+v/c1vfoOLLrpIiWqFjMFgQFRUlNrVINI8uS/mhcO+D0rfjdrVjRZqxh9Y2QY4/fwzqW3Zob+A3mJd4TGsKzzW4b4X4bbfjlL6JEfDYDBgZL+UkA6ejOyf0umglbI676vhvN+O0nvt+EONwRt/4+f3O3VoLe/h8p7XWt6U0FUORBgwFqWNRYmDlMfBEwVkZWXhX//6F9544w28/vrrKCkpQUVFBZKSktC/f3/ccsstmDt3bthvTPyf//wHu3btwq5du7Bnzx6cPXsW586dQ319PeLi4nDxxRfj6quvxk9+8hPMnDkTMTH+/cFw33334aabbsIrr7yCTZs24fjx46ivr0evXr1w1VVXYfbs2ZgxY4bmPkjUkpWWgDfnj8Kc1creUSgKf96nbrcb586dQ48ePXS97wkAeDxdr/+uZW63GxUVFZpuZ5vNhtWrV2PevHlISBDzvUukFKUu5qmxdFNH9QvFslkd3Y2qZvyBlh0DJ6ZYrPioKQsN8O0Gkq5yrzY1B85Cze50I84SgWnZ6Xi+4HD3L5DJtGG9Q1ZWW1311XAYtD3fVmsFVhYc6fJ92brXTut+OzmZKVgwfoCsSwirNXgTaPzzclJh3bGR3+9CTGvfq8PlPa+1vCnh/ByE04CxHERpY1HiIOVx2S7SFVGX7Wqr2u7E0k0l2FAc+F0n07PTsXTq4LD5Q1htHo8HDocDUVFRMBr1uVWUHnLgT4zhei5wOp34/vvvccUVV8Bs5vuXyBe+XMw6ny8X88Jp6SY1ls1SO/5gyo6AG5mmapS6k+GC74PprWWrNfOklZpLN6m9bNe//3gjUn74/nrHyl0hGbjL6ZeCt+ZfC+DHfh+qZcNa+2pKej/8v1kjvO97a7kNk1fsVLz8Vp8sHtvlBb9quxOPbSwJqh/K8feJUuf77gQbfwTc+Hk/Cb+54wakJne+t2ggRLgLXila+l4dTu95LeVNKa05OGvqgZe+PBHyc47SAmnjE1UNnX4/2rlkgiqzN9lXtYPLdhGRrJJjzcibORzTs9OxcvsRFB3144O6XwoWjAvvD2o1GI1Gv2dWiUYPORAhRrPZjOzsbLWrQaQJwVzMKiqtQlF+VZcX88Jp6SY17kZVO/5guGDCIbf/M8TlKFtu4bKMS6iYI368+eGB8f1RlK/84MmCcQO8P7de/AnVsmGtfXXhwIvRNyXGO3izPsT9cH3hMTwxY0iH/ybXXjsbistQeKQyoJnxSp/vuyJH/C6Y8M+jwI4XCmVZGUC0u+CVooXv1Wq+5zvbY0sLeVOavRlYvV/Cxm6Wye5IsOecUBCljUWJg5Qn5u3DRISJWal4a/61+GTxWNwzKqPT543ISMbCCQPwyeKxeGv+tRw46YDH40Ftba3QS1Z1Rw85ECHGxsZGbN68GY2NjWpXhSis7T9tw+S8HUFfVN5QXIbJeTtgLbfJVDP5qbFsltaZ4UJO5HGY4VK7KkEL5cBZOIg1/zhTaGJWKqYNS1e0vOnZ6R1+d56WrWy5rVr76qRBKQBaBi3HLN8W0tleADodNGzda0euJQNb99rx55yr5vlervhb27naZvc7/ra2Witwx8pdmLxiJ54vOIwvD1VesJxf67JhzxccxqQVO3DHyl3YZj3TyRHFpoXv1Wq+5zu7SUILeVPS/tM2TF3xOcq/Lwzqe0Q4f8f0t42t5Tas2tH5UpqL3yzG8s3WkH+H1HtfJd9x8IRIcIPS4r3LV3Tkb3dm46FJWbq+q6g7kiTB7XZDz6sc6iEHIsTo8XhQU1Oj6QEgIqWFw8W8UDhR1YATVQ2q3I3aeiesVhkhIc7ghBHa/TwA1Bk427lkgve/qzOSQ1J2qxEZyRcsN7Rs2mCkJlgUKS81wYKlUzteMiIrLQE5mSmKlNuWERL6xkoY0DNW8bK6c/73J6X32qm2O7t9rprneznjb3tO8if+tnV58PXdmJf/jd/nhKLSKszN/xqL3tjtV5m+kCQJdY5mVNmdqHM0h913cH6vDowW8qZU32s955yra5Lle0S4fsf0tY3bDth2NcD37bFqVQZstdBXKTxw2S4iom6YTCakpCj/B3A400MORIgxNjYWM2fOVLsaREFTag12PW2creVls9TmQCS2OgcG/PqdSyYACN2+F61GZCTjb3dmh83STaFauspbXv8LP8OTY81YOy8Hd64qlPV9nxgdibXzcrp8v4di2TAHIvGzGbchNlb9wRO70404y4+XFx7bWCLboMX5KmxNWLqpxLvXTkfUPt/LGf/55yRf4m8VDsumtaWlJcP4vTow4Zo3pfte+3NOcN8j2grH75jdtbGaSyX6I1z7KoUfDp4Q6UDflBjv2ueSJMHpdMJsNnMzQB8xZ/rIgQgxulwunDx5En369FF983oif4XigoraF/NIG0zwoKexHmc9cXAHMFE/1PtetBrZPwV9U2JU27R93XmDJ9Oy0/F8QefLdMht2rDeHf4+Ky0Bb84fhTmrg7+ADLTMOPHlAnLrsmFK7jkz/cpU9ItqgMvlUv1z3+nyAD9M8gmHvXbUPN/LHX9H5yRf9hpqvQtergGk1rvg35w/yu8BlK3WCqwsONLlzJfWJcNalw1Te+Nsfq8OjC95U+ommY6Equ+1PecE+z3ifOH2HbOrNg63Aduu8D1OvuKyXUQ643a7UVlZCbfbrXZVNIM500cORIixvr4ea9euRX19vdpVIfJZqNZgD9XFvK3WCkXLIOVFG5rxU8t/EG0I7oJjqPa98JbXyeBBKLVd+iRUS1cBQE6/lC4HVbPSErB50VhMD7JNpmenY/OisT5fyFF62bBfj78kbD73zRE/XlpQe68dtc/3csff2Tmpq72GwmHZtNZ6hOOSYb7g9+rAdJY3a7kNyzdbcffLhch+/FMMXboFVz3R8v/sxz/F3S8XyrrvRSj73vnnHLm+R7QVTt8xO2tjrS2Ny/c4+coghdvCkkQKKikpwZAhP94Rt2/fPgwe3PFaxR1xuVw4ePBgu99deumlHKUm0hmeC4iCF8yU/lb+TOm/Y+WukOz/kNMvBW/Nv9a7dJJaSzeptWxXK7WXrlKz7NaZJ0Do+x0A1WaeAMC+ZZPaLd201VqBefnfKF7umtxrfL5DeKu1Aiu3H0HRUd/bJadfChaMC+wOeGu5TZFlwzq6+1/Ntj/65BQYDAZYy22YvGJnyMr9ZPHYCwbO1HjftQqH+AHgwdd3KzvrKTu927vg5boDHfB9xpeWyDH7Qs33PADv6hZd8WXmx/mCnXUU6r6n5jknXFTbnZict0ORGX+pCZawWraMQi/Ya7nB4lUeIiIiIgqpUE/pV2Pj7NaLWWot3aQ2tZeuUrvsVqHY9wIAFowboHgZvmi7dBMQoqWrstP9usA2MSsVE7NScaC8Dhv3nMKeE7XYe6r2gqUCh/ZOxLC+iZg2LLi9F0K5bJiag5YnqxsBqLPXzv1j+3vfe2qd78NlryEgPJZNC6clw8KJ3EuUhsONCp1Ra9+LUPc9Nb9jhhMujUsi47JdRDrjcrlw+vRpuFwutauiGcyZPnIgQoy1tbV46qmnUFtbq3ZViDoVyin9J6oacKKqQZWLWa30uHRTW2rGH2jZsYYm3BW1G7EG//poR7lvHTxQkr+DB0pqu3RTK6WXrlo6NbA7DwelxeOhSVlYf99IFD96I/Ytm4R//7Hl/8WP3oj1943EQ5OyZLlIpdSyYed/7vdNiUHflBiM7Bea5dJajeyfgjHLt2HM8m1YX3g8pGWvKzyGMcu3qXq+P1HVoGj8XZ2T1nUQr9rLpoXLkmFBlyfj92qllihV8z3f2Y0atbW1+L8nn8KMFZ8GPYi3obgMk/N2+LxsUyj7XlfnnEC/R/ii9ZyjpvPfG2ovlRgo/u1MvuLgCZHOGI1GJCUlwWjk299XzJk+ciBCjDExMZgxYwZiYtS/65yoI6G+oKLmxbxWau37sHPJBOxcMgFXZySHpOxWIzKSvXfCAuruexFo2Q4pAl84M+GQfJ+k39WeG+E6eKCEWLPpgt8lx5qxdl4OEqMjZS0rMToSa+flyLKMh8HQsmROSqxZsY2Lk2PNyJs5HKtzRyDHzwudOf1SsCb3GuTNHN4u3s4+9/U4aKv24I2SujsntV2JXY274M8XijvQQ0GO79Wh2ncjnN7zx20u7HBm4mSdPPtI+rPvRSj7XlfnnEC+R/gqFOec7pz/3lB7wDZQ/NuZfKXdK0REFBCj0Yjo6GhNXyAONeZMHzkQIcbIyEhkZWUhMlLeC1REchHlgoov2l7MemB8/5CU2XbppnC6G1WN+IMp2w0TjnuS4caFAwH+lN0q1IMHag6cdTbo0Lp0lVyDSKkJFs0u3zMxKxVvzb8Wnywei4UTBuD6gT0u6BuJ0ZG4fmAPLJwwAJ8sHou35l/b4eyizj731Ry0JPl1d076T3ldWMy0BLR1B7okSahzNKPK7kSdoxnnbwcc7Pfq/adtmJy3IySzL8LlPV9td+K+dbthbYz36zO0O77MOgqnvhfI9wgtafveCIcB20Dxb2fyFfc8IdIZt9sNm82GhIQEmExifpjLjTnTRw5EiLGhoQFbtmzBTTfdxDtoKOyEwxrsoWR3ur0bZ6u578O07HQ8X3BYsXIvKK+LpavUiD+Qsi1oxjWRJ/F1cx80ofs/qH1ZNiuU+16ouedLV1qXrlq6qQQbigPvC4GsgR+OBqXF46G0LAAtF3HtTjecLg/MEUbEmk0+zX7p6nNfb/vtiKy7c9KkvNBtUH++deftuRLKO9AD+az3Z8+RvgmmgL9Xq7HnSzi85x/bWIIaWz2u9+Mz1Ffd7XsRTn3P3+8RWtPQ0ID3Nn2EnOvHY/3Xp0Nadkf7PAWKfzuTr7R7ey0RERERaYZWp/QHyunytHus1tJN4XI3qppLV4XLsllK7XvRmXBaxqWVEktXiUCJZcP0tt8Oqad1xkY434EeyJ4j9+Z/jfJah991U2vPF7Xf82rO/Ajnvieqj/eV42d//0LVpXGJQoWDJ0Q6YzKZkJycrNk769XAnOkjByLEyHVbKVzp8Y/a8zfOVnPfBzWXzWqlZvz+lt2ESHzR3K/bu0UD2XMjlIMH4TJw1hE5l67Ss+4+98Nl4JCC4+s5SS2ty4apsWRYdxtnB7PnyK7j9Xhqfzx+u/GAX5vUq7lEqZrv+dabZJTur21vkgmX5erOF+7v2WDFxMSoGt/5S+wFin87k6+4bBeRzng8HjQ1NcFisWh6b4dQYs70kQMRYmxubsbhw4cxYMAArt1KYaH1ooYaf9TePzY0Awad6Wjj7FAu3dSWmstmtaVW/P6WbYIbvY02nPIkdLpeuT9ld2RiViomZqXiQHkdNu45hT0narH3VO0FS8gM7Z2IYX0TMW1Y74D2lQiHZVy6IsfSVXrW3ed+68DhnavkWz4I6HjgcOeSCQCAxW8Wh3S5uBEZyfjbndmqb6CsZPxdnZNGZCTjmxDmuyNqLRu2rvAY1hUeQ+lTN3f47/tP25C7JvDPm9a8f1DsRuGRSp/O+WovURrK93xbbW+S8eUzNBitN8kMSotX7X3f3ewHpXOgtubmZlxirFYtvrZL4waDfzuTr7R5dYiIAubxeFBTUwOPx9P9kwkAcwboIwcixNjQ0ID3338fDQ1d34VHFCpjlm/DmOXbVJnSP2b5trDdODuUSze1Cpc70NWK35+yowwuXG8uRZTBJVvZnRmUFo+HJmVh/X0jUfzojdi3bBL+/ceW/xc/eiPW3zcSD03KCnhDbrWXcfGHEktXic6Xz/3WgUO53v+pCZYO913omxKDvikxGOnnjKpgjeyfgr4pMaqe73cumaBo/F2dk7rba0ivWvccCWagvm3eW/cc6WrTdiA8ligN1Xse6HjmR3efoXLwZdaR0nY8NL7Tc46SOWg956ipoaFB8TbuyvlL4waKfzuTrzh4QqQzERER6NWrFyIiOPHMV8yZPnIgQoyJiYl45JFHkJiYqHZViMKCmhfzuqLGvg9qLpvVUV3U2vfCl7LtkgX/cAyHXWp/4UnpPTeUGjwIl4Ezkp+vn/uhHLRUa68dtQdvvPVRIP7OzkmAb3sN6Y1ce46cn/fu9hwJpyVKQ/We7+gmma76q1xab5JRU0qcpdNzjpI5OP+co4bExETF27gr5y+NGyj+7Uy+0u4VIiIiIiJShCRJqG9yodktIdJk0Pxd4NOy0/F8weHQlefjxaxQLd3USs1lszoS6vjDpexQU2sZFwovrQOH07PTsXL7ERQd9f0ib06/FCwYN8CnGUate+2E4iJyR3vtqH2+VyP+tnehq7FsmtrLhp0vFHuO5M0c7v2dmkuUPjFjSKf/Hqr3vF45XR7Aov45R486WhqXSEkcPCHSGZfLhTNnzuDiiy/W9B32ocSc6SMHIsRYU1ODvLw8LFq0CElJSWpXhzTGWm7DxuIy7DlZg32nbBdcRB7SOwHD+iRherb2LiKrfTGvO6Hc96H1btSlm0qwoTjwddmnZ6dj6dTBslw4V3Pfi47KPldZhbUvvYAHH3wQycmhXQJIKeE2cEbyCORzPxQDh2rutRMO53u5448zNOH2qL34p2Mo6tvc6d0af9u70Ef2Swnp4MnI/ilhNXgi554jneX9/D1H1Nx3o6vBk1ahvlmgs7yJpnX2Q0fnHKVyEMh3TCXU1NRgbvQ3uH3O/fjjx0dDPmAr1/dC/u1MvtLm1SEiCpjJZMJFF10Ek4mj9b5izvSRAxFijIuLw5w5cxAXF6d2VUhDtlorsLLgSJcXmmobm/HloUp8eagSzxccRk5mChaM19YdieG+cXar1qWboOD1hnC+GzUU8XdXdtTFKZgzZw7i49W/QCGncBw4o+AE87mv5KBl6147Sm6c3dVeO2qf7+WOv1GKxMdNl6FR+nHZxc7iV+Mu+Oe2ha687si550hHefeWs/1Ihxu2h5okST6/V0N1o0JXeRNJ29kP559zlMpBsN8x5dL62dOnT0+M7Fcb8gFbufBvZ/IVB0+I9KD6GJB3JQDAgPOuRyz6DkjOUKNWmmEwGGCxiHvXjC/0kAMRYoyIiEBmZqba1SCNqLY78djGkoAu7hSVVqEov0pTF1HVvpgXjvS0dJU/RD6XhvPAGflPrr6qxKDlsmmD8a+jlYosn9TdXjvhcL6XM343jCj3/DjLq6v41Vw2TI0lw/52Z7b3sdx7jpyf97Za9xxR+zPR7nS3vHf9pOSNCl3lTW5q9r22g03nn3OUyEE4fcds+9mj5WXLRP6+R/Li4AkRUTfcbjdqa2uRmJio6VkJwdBDDkSI0W63Y9OmTZg6dSpiY2PVrg6Fsf2nbchdE/zyPRuKy1B4pLLT5XvC5YJKKzUv5oUzNZfNCkd6OJdy4EwM4dxX1d5rR+3zvZzxR6EZo83H8JUzA5bomG7jD/XMm9Zlw9RYMqxvSoxie460zbsDF84gWF94DPeP7S9rmf5q3XcjnHSXNzmp2ffO1/acI3cOwu07ZtvPnnBYKjFQ4fwZSuGFgydERN0wGAwwmfR38agtPeRAhBiNRiOSkpJgNBrVrgqFsf2nbZj5onwXsypsTbhzVSHenD/qggEUtS+onE/ti3laoOayWeFCT+dSDpxpW7j3VTX32gmH871c8XtgQL1kRo94C16+98LP2vOpNfNGrTvQldpzpDXvHnR8HlxXeAzrQrxJ/Pla991QS0c3yXSXNzmcf5NMOMx+aHvOaWx0yZaDcPyOef5nj9pLJQYq3D9DKXywhxCJrqIE+DKv839/97+Az5YBFd+Hrk4aYzQakZiYqOsPVT3kQIQYo6OjMXnyZERHR6tdFQpT1XYnctcUyXohCWjZE2XO6iJU250d/vu07HRZy+tOV1P6Wy9mpSbIMzqQmmDpcOCItEuv59LWgbOUWDPiLBEcONEALfTV1r12pgf5OTA9Ox2bF43161wbDud7OeJ3IgK9Bo/CpsU3+Fz2smmDZYv7fJ3dBd96B3oohGLjbCciUNR8CZxhfM9x23031NA3JQZ9U2Iwst+P7R6KvJ1/k0y49L3Wc05yQqwsOQjX75jnf/a0DtgqSYlly7TwGUrhQbtXiIioa//5BFj9U+CF0cA3r3T+vBP/Ar74K/DCtS3P/8+W0NVRBefOncOGDRvw+9//HtOmTcPgwYORnJyMyMhIxMTEoHfv3pg0aRKefPJJnDp1CgDg8XjQ0NAAj8cjSx0aGxtRUFCAJ598EnfddReuvvpqXHzxxYiKioLFYsHFF1+M0aNH43//93+xe/fugMrYv38/HnroIVx55ZVISUlBbGwsLrvsMsyZMweff/6538frLgf5+fkwGAwwGAx+rxtaWlrqfa3BYEBpaanf9ZOD3O2sBqfTieLiYjidHV/AJnpsY4kiS5gALTNQlm4q6fDfwuWP2rb1UetiHoU/nktJK7TSV1v32lmdOwI5/fz7LMjpl4I1udcgb+bwgO68DofzfbDxv3x3NuZmGRDrx+o/rXfBJ0bLu2xSd3fBPzA+NMtYhWLj7Ai4MdB0DhFwd/m8nUsmYOeSCbg6I1nxOrV1/r4bamp7k4yveQuqvA5ukgmXvpeVloCNC0bh9n6uoHKg1HdMSZJQ52hGld2JOkczJEny+xgdffaoMWAbLK18hpL6wncInYgC01AFfPQQsO9t/197/CvgH18BQ28HfrociAnNha5Qys3NxYcfftjhv7lcLjQ2NqKsrAxbtmzBsmXL8Nvf/ha/+93vUFdXJ9tm4s899xweeuihTv/97NmzOHv2LHbt2oW//vWvuPPOO/H8888jJcW39vjzn/+MZcuWobm5/Z3lBw8exMGDB/Hqq69i1qxZWLVqFeLjfbtjS5IkWXMQjkSI0eFwoKCgAP3794fZHD5Tuyk8bLVWKLqEB9CyB8r07HRMzEq94N/CbUo/N86mzvBcSlqhtb6q1l474XK+DzR+m82G1av/6Xc7q7FsmlpLhinBDDeyI8pQ5k6AC53P8AinfTfU0nbfC1/zFqjObpIJp74XbfKgd+NR/P2OqVjz9RnVv2Nay23YWFyGPSdrsO+U7YJzzpDeCRjWJwnTs30753b02RMOSyX6S2ufoaQegxTIMCORRpWUlGDIkCHex/v27cPgwb6PYLtcLhw8eLDd7y699FJERITJOGT5PuC124C608EfK74XMPsdIDV8NiaTw89+9jPv4EmPHj1w+eWXIyMjA3FxcWhoaMChQ4dQVFQEl8vlfc0vfvELrF27VrY6PPPMM97Bk5iYGFx++eUYMGAAkpKS4HK5cPLkSRQWFsJms3lfM3ToUHzxxRdISOj6zpNHH30UTzzxhPdxr169MGbMGERFReHbb79FScmPd4XfdNNN+PDDD2Xpv/n5+Zg7dy4AICMjw6/ZI6WlpejXr5/38dGjR/2evRJqYX8uIOrAHSt3hWwzx7fmX9vhvz34+m7F/6jNmzk8oNdy42wiotBTY6+dcDrfhyL+arsTSzeVYENx4J+/07PTsXTqYJ8uYFbbnZict0ORma6pCRZsXjS2XT0yH+n4xrhQKX3qZgAtF6gnr9gZsnI/WTw2rL6PbLVWYF7+N4qXsyb3mk4HFkLd93yl1jlnq7UCKwuO+PX9PyczBQvGBz54Yy23qbLPFYkt2Gu5weJVHiJRlO8D8m8GHDXyHK/uNLBmCjD3I6EGUMaPH4+pU6fihhtuwMCBAzt8TkVFBX71q1/h9ddfBwC8+uqruPnmm3H77bfL8sfMpZdeij//+c+YNGkShg0b1uEFd4fDgRUrVuD3v/89PB4P9u7di9/97nd49tlnOz3u559/3m7g5KGHHsKf/vSndndRvP7665g3bx4cDge2bNmC//u//8Ojjz7abZ0lSYIkSd6ltUQkQoySJKGpqQkWi0WzMZAyrOW2kAycAEDR0SocKK/r8I+/ZdMG419HKxX7ozaYKf3cOJta8VxKWiFCX23dawchnPgbTud7X+IPtp1DPfNGi3egd0yCGW44YQJ82Pi77ewLpYVizxd//Tjz45RfefNHdzM/wqXvnf+eDfU5p9ruxGMbSwK6YamotApF+VVdDph2dU5qXSoxlAO2gRLhM5RCg3ueEImgoaplxolcAyetHDXA+ltbji+I3/zmN5g/f36nAycAkJqaitdeew0TJ070/u7ZZ5+F2y3Puq3Tp0/H7373O1x99dWdzlSIiorCI488gscee8z7u1dffRUOh6PT4/72t7/1/jxz5kwsX778gumns2bNwt/+9jfv42eeeQbnzp3rts5utxvl5eWy5SAciRBjbW0tnn76adTW1qpdFQoTJ6oacKKqAesLj4W03PWFx3CiquGC36u1Bru/uHG2vvFcSlrBvho8LZzv5WrniVmpeGv+tfhk8VgsnDAA1w/sccHncWJ0JK4f2AMLJwzAJ4vH4q351wZ0B3rrkmFy7YHQ1cbZSu05Emdw4u7oYsQZOt4PYURGMnYumdDud+Gy74Zalk0bjMx4dJm3QPl6k0wo+15nunrPKn3O2X/ahsl5O4Ke6b2huAyT83bAWm674N+6Oyepuc+VP/gZSr7isl2kK8Iu2/X2vYHtceKrobcDt76s3PHD1Pr163HPPfcAAC666CKcPXs25H9QnTx5En379vU+3rt3b7s+3Orrr79GTk4OAMBoNKK0tLTd69qSJAmDBg3y9uW//vWv+NWvftVlPSRJgsvlQkREx1/wRFi2q7sY2wrXc4Hb7cbZs2fRs2dPmEzyrzFMoSVJEuqbXGh2S4g0GQL6AytclrI4H6f0UzjjuZS0gn1VH5RsZ6Xvgg/lkmHLN1vxfMHhgMs5nxEeJBkcqJGi4OngvuOFEwbgoUlZF/w+nJcoDYWSU9VY8HIBTjZGdJi3QCRGR/o9gBHq5eraUuvcvP+0DTNflH/Wzfm59ze+A+V1WF94DOs6uZlrREYyRvZPCfnSuPwM1Q4u20VEwfnPJ8oOnADA3n+2DKBcNknZcsJMz549vT/X1dWpcida2zq01qMj77//vvfnn/zkJ50OnAAtd7vMmTMHf/jDHwAA7733XreDJwaDAZGR8t4p7o/MzEwcO+b/nfNr1qxBbm6uT89VO0Y5mEwmpKWlqV0NCoLcGzqGKy1N6Sf94bmUtIJ9VR+UbGell00L5ZJh07LTZR088cCIKimm8/KG9e7w9+G8RGkoDO6djBfn36D6TTKhXq6uLTXOzdV2J3LXFMk6cAIAtY3NmLO6qN1+L/7GNygtHk/MGIInZgxRfanEtvgZSr7isl1EWvfFitCU82VeaMoJI99//7335759+6qynFPbOgDodEbGtm3bvD+PHz++2+NOmPDjFPOvvvoKTU1df7F1u904d+6cppe06o4IMdbX1yM/Px/19fVqV4X8tNVagTtW7sLkFTvxfMFhfHmo8oI/fmobm/HloUo8X3AYk1bswB0rd2Gb9YxKNQ6eVqb0k/7wXEpawb6qDyK0cyiWDGvdc0Qu0WjGZLMV0bjwYnRXe45oZYlSpdTX16Nw87t4576rMD07PahjTc9Ox+ZFY4OaXRzK5epaqfGefWxjiSIDdgBQYWvC0k0l3sfBxBdOSyWKcG6l0ODMEyItqygBjn8VmrKOfQlUfA+kXhGa8lRWVlaGZ555xvv45z//ecg/2J1OJx555BHv49GjR6NXr14dPnf//v3en6+66qpujz18+I9Tvd1uN/7zn/9g6NChnT7fYDCoupHanDlzUFlZ2e3zKisr8cYbb3gf+1NftWOUQ0REBDIzM1VfPox8p/SGjlowMSsVE7NScaC8Dhv3nMKeE7XYe6r2glk3Q3snYljfxJBP6Sf94bmUtIJ9VR9EamelN85+YHx/FOXLs1+nGwaUe+Lh7mDT8+72HGndd0Pt2RdqaO2vPRJiVJv50ZFQbtoe6vfsVmuFokvFAS17oEzPTsfErFRhzkmixEHKYw8h0prqNksXff1KaMv+5hVg9INAckZoyw2RhoYGlJaW4uOPP8by5ctx5kzLHd2XX345Hn30URiNyk/WczqdOH36NHbu3In/9//+H4qLiwEA8fHx+Pvf/97ha86cOYOamhrv44yM7tsnOjoaPXv2xNmzZwEAVqu1y8ETo9GI+Hj1LlYuW7as2+c0Nzfjpptu8j7OysrCjBkzfC5D7RjlEBUV5dPMIwoP+0/bkLsm+D+qNxSXofBIpWb+qO5MKP+oJeoKz6WkFeyr+iBqOyuxZNjErFRMG5Yuy4VkJyJQ7Lpwaa7p2ek+XdTX6xKl5/fXcLxJRunl6kL9nl1ZcCQ05Ww/golZqcKck0SJg5THwRMircm7Ur2yv3655b+lterVQUZffPEFxowZ0+VzpkyZgnXr1sFgMMDj8SgygBIREdHlUlGXXXYZ3nnnnQ43igdwwYyM1NRUn8pNS0vzDp5UVXV9J5DH40FDQwNiYmK6zUFVVRV++ctf+lQHoPN9XPy1cOFCFBQUAABSUlKwadMmJCYm+vx6f2IMV01NTdi9ezeGDx8Oi0WhvwZIFnJv6Fhha8Kdqwr93kwzXCn9Ry1RV3guJa1gX9UHtrN/5NpzJBJuXGo6h4PuHmhGy2bS/u45oua+G2rprL/q6SaZUL5nreU2FJXKM9uqO0VHq3CgvA6ZyWYhzkk8t5KvOHhCRNSB5ORkPP/885g5cybcbjcqKysRHR0d0jqYTCY8/PDDWLZsWZdTSc9fo9PXerZ9XnfrfEqShIaGBp+OXVdXh+eee86nOshlxYoVeOmllwAAkZGReOeddzBw4EC/juFPjOHK6XSiuLgYgwcP5hfAMBbKDR13LmnZ32jxm8X49li1rOV1ZURGMv52Z3bIyiOSE8+lpBXsq/rAdvZP654jd64K7iaVCLgxMOIcjrqT0QxTUHuOhOPsC6X40l9Fv0kmFO/ZE1UNAID1hce6eaa81hcew+yrLhbinMRzK/nKIEmSpHYliEKlpKSk3d37+/btw+DBvt854nK5cPDgwXa/u/TSS0O7RuJS3++kV64OYsw8OXLkCP76178CaLlwXldXhwMHDuDf//43XC4XgJaN1VeuXInLLrtMsXosWrTIO/PEbrfjxIkTKCoq8s7IGDhwIP7+979j8uTJHb5+586dGDt2rPex2+32aebE2LFjsXPnTgDAE088gT/84Q8Bx5Cfn4+5c+cG/Pq2jh49iszMTJ+fv3nzZvzsZz/z5vCll17CfffdJ0tdOhMW5wLSrAdf363ousTTs9ORN3N4u98t32zF8wWHFSvzfAsnDMBDk7JCVh4RERFRW9ZyW1jvOSL67AtSVuYjH6pafulTN6taPulLsNdyg8WrPESkW/3798ezzz57we/Lysrw+9//Hvn5+di2bRtGjRqFzz77DMOHD1fkC21eXt4Fv7Pb7Xjuuefw6KOP4tChQ7j55puxevVqzJkz54LnRkVFtXvsdDov+F1Hmpp+/EOiu9kWkiTB7XbDZOr+S31GRgZKS0u7Lb9VaWkp+vXr5/Pz2/r+++9x5513egdOfvWrXwU8cOJPjOHK4/HAZrMhISFBs0uPiS7UGzq2mpadHtLBk2nDLlwjnEgreC4lrWBf1Qe2c2CC3XPEAAmxBiduuDIDS6cNlX3PEVFnX7C/ip8DAyTU1NRoPj7R24nkw95BRHSe9PR0rFmzBg8++CAAoLq6GjNnzoTT6Wz3vNa9Pbr6b/369QHVITY2FkuWLMHrr78OoOWD/YEHHsCRIxduBhcXF9fucWNjo09ltH3e+cc4n9vtxpkzZ7rcmyXUKisrMXXqVNhsNgAt+9M888wzAR8vHGP0l81mQ15enjcnFH5CuaFjW1lpCcjJTAlJ2Tn9UjS71AQRwHMpaQf7qj6wnQPXuufI6twRyOnn3/eg0X1jcHvUXiz76QDNbNYeDthfxc9BrMEpRHyitxPJhzNPiIg68eSTTyI/Px82mw0HDx7Eli1bMHXqVO+/22y2bvf2qK+vx+zZswOuw89//nPccMMN+Pzzz+FwOPD8889fMEBw0UUXtXtcUVGB5OTkbo9dXl7u/Tklpes/JkwmEy6++GKYTCY/aq+c5uZm3Hrrrd7BpMGDB+ONN94I6o6RcIsxEAkJCVi0aBESErS/YbiI1NjQse0gxgPj+6MoX/nyF4wboHgZREriuZS0gn1VH9jOwQtkz5FLL46FzXYV8+4n9lfxc2CXzELEJ3o7kXw4eEKkNYu++/Hnd/8LOPGv0JXddxRwy4uhK09lMTExGD16NDZv3gwA+Oqrr9oNnoTKjTfeiM8//xwA8OWXX17w7xdffDGSkpJQU1MDADh27Biysrrea8DhcODs2bPex90932AwhNV+HgsWLMD27dsBAD169MCmTZsQHx/cne7hFmMgjEYjkpKS1K4GtdG6mSOgzoaOT8z4cW3YiVmpmDYsXfH9ViZkXazY8YlCgedS0gr2VX1gO8tnUFo8Hkpr+bvHlz1HmHf/sb+KnwMJBiHiE72dSD5ctotIa5Izfvwv47rQlp15XUu5OtJ2Bse5c+fa/VtmZiYkSeryv/z8fFnrUFlZ2eFzLr/8cu/Pu3fv7vaY//73v70/m0wmXHbZZV0+P5yWtPrrX/+KV155BQBgNpvx3nvvBbxnSlvhFGOg6urqsHLlStTV1aldFfrBmOXbvP+tLzwe0rLXdTBYs2zaYKQmKLO4dmqCBUunhm7jPiKl8FxKWsG+qg9sZ2W07jmSEmtGnCXigoET5j0wzJv4OYiGU4j4RG8nkg8HT4i0bOhtoS1vSIjLCwOnT5/2/tzd0lZq1mHChAnenwsKCro9ZuusDQAYPXo0LJauL6YaDAbExMSovpH6Rx99hIceesj7+MUXX8T1118vy7HDJcZgmM1mZGdnw2zmuszUQpKkdo+TY81YOy8HidGRspaTGB2JtfNyuCY4CYHnUtIK9lV9YDurg3kPDPMWmhzsXDIBO5dMwNUZ3S/XLacRGcn4YPF4IdqYfZV8xcETIi1LHQxcMjo0ZWVcB6ReEZqywkRlZSV27drlfXzFFerE/8EHH3h/bjvDpK0ZM2Z4f/7ss89w8uTJLo/ZdkZM29d2xmg0Ii4uLqg9RYJVUlKCWbNmwePxAACWLFmCOXPmyHb8cIgxWBaLBaNGjep2MIz0w+68cCZVVloC3pw/SrYZKKkJFrw5fxSy0rheMImB51LSCvZVfWA7q4N5DwzzFpoc9E2JQd+UGIzsF9obPEf2T8GAtGQh2ph9lXyl3StERNTi+sWhKee6EJWjoKoq3zdK9ng8+OUvf4mmpiYALR+sU6ZMCboOdrsdDofD5+e/8MIL+Oabb7yPb7311g6fd8011+Caa64B0LL81COPPNLpMV988UX85z//AQDEx8fjF7/4Rbf18Hg8qKur8w5chNq5c+cwdepU2Gw2AMD06dPx5JNPylqG2jHKweFwoKCgwK8+RmJzujruz1lpCdi8aCymZ6cHdfzp2enYvGgsB05IKDyXklawr+oD21kdzHtgmLfQ5mBakN/l/S5vWG9h2liUOEh5HDwh0rrLJim/nNbQ24HLblK2jBB49dVXcc011+DVV1/1XoTvyHfffYcpU6bgjTfe8P5u4cKFsizbdfDgQQwcOBB/+ctfcOLEiU6fV15ejl/96ldYuHCh93djxozBz372s05f03Yw4bXXXsMjjzyC5ubmds956623sHjxYu/j3/zmN+jRo0e39ZYkCU1NTRcsARQKTqcTt9xyC44ePQoAuPLKK7F+/XrZZ4ioGaNcXC4XSktL4XK51K4KhQlzROfvk+RYM/JmDsfq3BHI8fOutZx+KViTew3yZg7nUl0kHJ5LSSvYV/WB7awO5j0wzFtoc5CVloCczNDMPsnpl4JBafHCtLEocZDyDJKWrxIR+amkpARDhgzxPt63bx8GD/Z9c1uXy4WDBw+2+92ll16KiIgI2eoYkIYq4IXRQN3p7p/rr/hewIKvgBh19vuQ04oVK/CrX/0KABAREYGsrCwMGjQIycnJMBgMqKysxHfffYdDhw61e92tt96KN954Q5Z2Li4uxvDhw72PMzMzMWTIEPTo0QMWiwU2mw1WqxXfffddu43LBw0ahG3btqFXr15dHv+Pf/wj/vSnP3kfp6enY8yYMYiKisK3336Lffv2ef/txhtvxEcffSRLXPn5+Zg7dy4AICMjA6WlpT6/trS0tN2G70ePHkVmZqb38fbt2zF+/Hjv42nTpqFv374+Hfuee+7ByJEjfa6Lr8L2XEBhJ/ORD1Ut/+iTU3zex+dAeR027jmFPSdqsfdULWobfxx8TYyOxNDeiRjWNxHThvXGoLR4papMREREREQ+2mqtwLz8b7p/YpDW5F6DCVkXK14O0fmCvZYbLF7lIRJBTAow+x1gzRTAUSPfcaOSWo4rwMAJgHZrWbpcLuzbt6/dYML54uPjsXTpUjz44IOQJAmSJAW9mXhkZCSMRqN3aajS0tIuBxqMRiPuvfdePP3000hO7n4zuMcffxwWiwWPP/44mpubUVZWhjfffPOC582cOROrVq3y+WK/JElwuVyIiIgI+Ybq54/xb9y40efXjhgxwufBEzVjlIvb7cbZs2fRs2dPmEwmtatDaNnMsdXiN4vx7bHqkJU9IiPZr748KC0eD6VlAWh5P9idbjhdHpgjjIg1mzT7viDyF8+lpBXsq/rAdlYH8x4Y5i30OZiYlYppw9KxcU+ZYmVMz073DpyI0saixEHK47JdRKJIHQzM/ahlpogc4nu1HC81dKO5SluwYAEOHDiA5557Dr/4xS9w9dVXo2fPnoiMjERkZCQuuugiDBkyBLNnz0Z+fj7Kysrw61//GgBw9uzZdjNBAjV48GCUl5fjtddew8KFCzFmzBj07t0bUVFRMJlMSEpKwoABAzBjxgz85S9/wfHjx/Hiiy/6NHACAAaDAX/4wx+wZ88e/PrXv8aQIUOQmJiImJgYDBgwALNnz8ann36K119/HQkJvu9R0PrFQo4chCsRYqyrq8OqVatQV1endlWEIEkS6hzNqLI7UedoDmhJt9bNHNXa0DFQBoMBcZYIpMSaEWfR7oAiUSB4LiWtYF/VB7azOpj3wDBv6uRg2bTBSE1QZuPz1AQLlk798bqQKG0sShykPC7bRboi7LJdbTVUAR8vAfb+M/BjDL0d+OlyYWacBKvtrBO9XkDUQw78iTFczwWt+7ZYLBZh20lp1nIbNhaXYc/JGuw7Zbtg6aohvRMwrE8Spmf7v3SVtdyGySt2yl3lTn2yeCyX1yIKAM+lpBXsq/rAdlYH8x4Y5k29HFjLbbhzVWG7v1+ClRgdiTfnj0JW2o83XorSxqLEoQdctouI5BWTAtz6cssAyJd5wLEvfX9txnXAdYuF2BxeTiIPGPhKDzkQIUaDwYCoqCi1q6FJW60VWFlwBEWlVZ0+p7axGV8eqsSXhyrxfMFh5GSmYMH4AT6v/du6oWNXZcildUNHIvIfz6WkFeyr+sB2VgfzHhjmTb0cZKUl4M35ozBndREqbE1BHy81wYK183LaDZwA4rSxKHGQ8rhsF5GoLpvUsuzWgl3ANfd1/ry+o4Ax/9vyvLkfceCkA263GxUVFZpezilYesiBCDHabDasWLECNptN7apoRrXdiQdf3415+d/4PahRVFqFuflfY9Ebu1Ftd/r0mgfG9w+kmn5bMG5ASMohEhHPpaQV7Kv6wHZWB/MeGOZN3RxkpSVg86KxmJ6dHtRxpmenY/OisRcMnADitLEocZDyOHhCJLrUK4DRD3b+77e8CNzwaMvzqEMGgwHx8fGan5UQDD3kQIQYo6KiMH78eN5B46P9p22YnLcj6M0VNxSXYXLeDljLu//i3bqho5LabuhIRP7juZS0gn1VH9jO6mDeA8O8qZ+D5Fgz8mYOx+rcEcjxc8/FnH4pWJN7DfJmDkdyrLnD56gdn1xEiYOUxz1PSFd0sedJR6qPAXlXdvxvi74DkjNCWx8ijdPsuYC89p+2YeaLyq8J3JFquxOT83bIMp3+fKkJFmxeNLbTP3aIiIiIiEg/DpTXYeOeU9hzohZ7T9VesKfj0N6JGNY3EdOG+b+nI1EocM8TIlJecgawtBYA4PF4UFdXh/j4eBiNnHzmC+ZMHzkQIcbGxkZs374d48aNQ3R0tNrVCVvVdidy1xTJOnACtOyJMmd1UbeDF8mxZqydl6PIho5r5+Vw4IQoSDyXklawr+oD21kdzHtgmLfwy8GgtHg8lJYFoGWTdLvTDafLA3OEEbFmk98rL4RbfIESJQ5SHgdPiHRGkiS43W5w0pnvmDN95ECEGD0eD2pqauDxeNSuSlh7bGOJIrM+AKDC1oSlm0qQN3N4l88L1YaOROQ/nktJK9hX9YHtrA7mPTDMW3jnwGAwIM4SAVgCP0Y4x9eZE1UNGLN8W7vfRaEZo83H0H/I1bisDwdPqHNctot0RbfLdhGRrHgu0K6t1grMy/9G8XJW547AxKzUbp9XbXdi6aYSbCgOfN+V6dnpWDp1MGecEBERERERnaejwZNWO5dMQN+UmBDXiPyh9rJd2lyXhIgCJkkSmpqaNH13fagxZ/rIgQgxulwulJaWwuVyqV2VsLWy4EhoytnuWzlKb+hIRP7juZS0gn1VH9jO6mDeA8O8iZ8DUeIzwYM0o03zcZDyOHhCpDNutxuVlZVwu91qV0UzmDN95ECEGOvr67F27VrU19erXZWwZC23oai0KiRlFR2twoHyOp+fPzErFW/NvxafLB6LhRMG4PqBPZAYHdnuOYnRkbh+YA8snDAAnywei7fmX4sJWRfLXXUi3eO5lLSCfVUf2M7qYN4Dw7yJnwNR4os2NOOnlv+gscGudlUozHHZLtIVLttFRHLguUBbTlQ1AABW7TiM9YXHQ1buPaMy8MSMId0/sRNybOhIRERERESkZ1y2S9vUXraLV3mIiIhIaJ19UVbausJjQQ2eyLGhIxERERERkV5Zy21YX3is039f/GYxRvZLwfTs3hiUFi97+Ry40T4u20WkMy6XC6dPn+a6jn5gzvSRAxFirK2txVNPPYXa2lq1q0I/4ARfIu3huZS0gn1VH9jO6mDeA8O8iZ8DrcS31VqBO1buwuQVOztcfSDW0IS7onbDerwczxccxqQVO3DHyl3YZj2jQm0pnHHmCZEfOlouRWsXxoxGI5KSkmA0cuzUV8yZPnLgT4wdve/DYTmlmJgYzJgxAzExvHslXNid7pbZI0SkGTyXklawr+oD21kdzHtgmDfxcxDu8VXbnXhsYwk27inr8nkOKQJfODPhkH78W62otApF+VWYnp2OpVMHIznWrHR1SQP41zyRHzq6qOp0OhEZGdnBs8OT0WhEdHS02tXQFOZMHznwJ8bm5uYOX6+2yMhIZGVlqV0NasPp8nDZLSKN4bmUtIJ9VR/Yzupg3gPDvImfg3COb/9pG3LXFKHC1tTtc90w4bgnucN/21BchsIjlVg7LwdZaQlyV5M0Rv0rPUQaYjAYEBUV1e53NptNpdoExu12o7q6Gm63W+2qaAZzpo8c+BOj3W5v99hisYTFzJOGhga8//77aGhoULsq9ANzBL9qEWkNz6WkFeyr+sB2VgfzHhjmTfwchGt8+0/bMPPFQp8GTgDAgmZcH3kUFlx4YyQAVNiacOeqQljLtXXNj+THv+iJ/BQf334DKZvNFnYfGkSkHJfLdcH6rrGxsSrVhsJdrNmkdhWIiIiIiIiEVW13IndNEWobOx4ICVRtYzPmrC5Ctd0p63FJWwyS1jZsIApCSUkJhgwZ4n28b98+DB482K9jOJ1OHD58uN3vjEYjEhISkJCQgMjIyLBYvoeI5OXxeNDQ0ICqqio0NbW/m+WSSy7hAEoYO1HVMsC9+M1ifHusOmTljshIxtsLRoesPCIiIiIiIr158PXd3e5xEozp2enImzk8oNeeqGrAmOXbOvy3nUsmoG9KeO4dE07kuJYbDO55QuQns9mM+Ph41NXVeX/n8XhQU1ODmpoa9SrmI0mSIEkSDAZDWCwzpAXMmT5yEGiMUVFRYbNZXnNzMw4fPowBAwZoai8mpbV+IR3ZLyWkgycj+6eErCwikg/PpaQV7Kv6wHZWB/MeGOZN/ByEW3xbrRUBDZyY4EZvow2nPAlwo+vVAjYUl2F6djomZqUGWk3SMN4eTxSA9PR0xMXFqV2NgIm8b4VSmDN95MDfGCMiItCnT5+wGVAK1/Vnw8W07PTQljesd0jLIyJ58FxKWsG+qg9sZ3Uw74Fh3sTPQbjFt7LgSECvizK4cL25FFEGl2/lbA+sHNI+LttFuiLnVC+Px4OysrJ2M1CISD8iIiLQt29fREVFqV0V8sMdK3ehqLRK8XJy+qXgrfnXKl4OERERERGRHlnLbZi8YmfIyvtk8VgMSovv/oltcNmu4Km9bBdnnhAFyGg0ok+fPhgwYAB69uzJC6hEOmAwGBAXF4c+ffpg4MCBfN9r0APj+4eknAXjBoSkHCIiIiIiIr04UdXg/W994bGQlu1vedZyG1btONzpvy9+sxjLN1txoJw3ZYcz7nlCFCSz2YwePXqgR48ekCQJHo8H4Tyhq7a2FqtWrcL8+fORmJiodnU0gTnTRw66i9FoNIb9ni81NTXIy8vDokWLkJSUpHZ1wtLErFRMG5au+IaCE7IuVuz4RKQsnktJK9hX9YHtrA7mPTDMm/g5UDu+zmZx+CvO0ITbo/bin46hqJcsPr1mXeExPDFjSLfP22qtwMqCI92uePDtsWp8e6wazxccRk5mChaMH8C/I8MQl+0iXVF7qlc4cLlcOHnyJPr06YOICI6f+oI500cORIhRhBhCodruxOS8HaiwNcl+7NQECzYvGovkWLPsxyai0OC5lLSCfVUf2M7qYN4Dw7yJnwO148t85ENZjmOCBz2N9TjriYPbj4WZjj45pdMbKqvtTjy2sSSoG/WmZ6dj6dTB/HuyDbWv5XLwhHRF7TccERGFB2u5DXeuKkRtY7Nsx0yMjsSb80chKy1BtmMSERERERFRC7kGTwK1b9kkxFkuHDTaf9qG3DVFstygl5pgwdp5Ofy78gdqX8vlnidEOmO32/HGG2/AbrerXRXNYM70kQMRYhQhhlDJSkvAm/NHITXBtyna3UlNsHDghEgQPJeSVrCv6gPbWR3Me2CYN/FzIEp8UWjGRPMhRMG/m+mcLs8Fv9t/2oaZLxbKtrJBha0Jd64qhLXcJsvxKDgcPCHSGaPRiKSkJBiNfPv7ijnTRw5EiFGEGEIpKy0BmxeNxfTs9KCOMz07HZsXjeXACZEgeC4lrWBf1Qe2szqY98Awb+LnQJT4PDCgXjLDA//2NDVHtI+72u5E7poiWVc0AIDaxmbMWV2EartT1uOS/7hsF+mK2lO9iIgoPG21VmDl9iMoOtr1pn5t5fRLwYJx3NSPiIiIiIgoFNRetuv8PU8efH13UHucdGd6djryZg5X7PhaoPa1XG0PExKR35xOJ4qLi+F0cvTaV8yZPnIgQowixNCWJEmoczSjyu5EnaMZSt7vMTErFW/NvxafLB6LhRMG4PqBPZAYHdnuOYnRkbh+YA8snDAAnywei7fmX8uBEyIBiXYuJXGxr+oD21kdzHtgmDfxc6B2fDuXTPD+d3VGcsDHiYAbA03nEAG3z68ZkZHcbuBkq7VC0YETANhQXIat1gpFy6CuXbjDDREJzeFwoKCgAP3794fZbFa7OprAnOkjByLEKEIM1nIbNhaXYc/JGuw7ZWs3/TkxOhJDeidgWJ8kTM/ujUFp8bKXPygtHg+lZQFoGbyxO91wujwwRxgRaza1+7JMRGIS4VxK+sC+qg9sZ3Uw74Fh3sTPgdrx9U2J8f48sl8Kvj1WHdBxzHAjO6IMZe4EuGDy6TUj+6e0e7yy4EhAZftr5fYjmJiVGpKy6EJctot0Re2pXkRE1LGt1gqsLDiColI/ls3KTMGC8Vw2i4iIiIiISG+s5TZMXrEzZOV9snis9wY+NcvWG7Wv5XLZLiKdkSQJDodD0eVvRMOc6SMHIsSoxRiq7U48+PpuzMv/xq+BEwAoKq3C3PyvseiN3dxIj4hko8VzKekT+6o+sJ3VwbwHhnkTPwfhFF9WWgJyMlO6f2KHJJjhAuBbHDn9UjAoLR4nqhpwoqoB6wuPBVhuYNYXHsOJqoaQlkktOHhCpDO1tbV4+umnUVtbq3ZVNIM500cORIhRazHsP23D5LwdQa8Tu6G4DJPzdsBabpOpZkSkZ1o7l5J+sa/qA9tZHcx7YJg38XMQbvE9ML5/QK+LMzhxd3Qx4gy+3YS3YNwAAMCY5dswZvk2rC88HlC5gVpXeAxjlm8LaZnUgst2ka6oPdUrHLjdbpw9exY9e/aEyeTbuo56x5zpIwcixKilGPaftmHmi4Xt9jQJVmJ0JN6cPwpZaQmyHZOI9EdL51LSN/ZVfWA7q4N5DwzzJn4OwjG+B1/f7fcNeUZ4kGRwoEaKgqebuQXTs9ORN3M4ACDzkQ8DrqccSp+6WdXy1aD2tVzOPCHSGZPJhLS0tLD5kNMC5kwfORAhRq3EUG13IndNkawDJwBQ29iMOauLuIQXEQVFK+dSIvZVfWA7q4N5DwzzJn4OwjG+ZdMGIzXB4tdrPDCiSorpduAkNcGCpVP1ddM1tcfBEyKdqa+vR35+Purr69WuimYwZ/rIgQgxaiWGxzaWoMLWpMixK2xNWLqpRJFjE5E+aOVcSsS+qg9sZ3Uw74Fh3sTPQTjGlxxrxtp5OUiMjvT5NdFoxmSzFdHo/Ia+xOhIrJ2Xg+RYsxzVJI3i4IlCnE4n1q1bhylTpiAjIwNRUVHo1asXRo8ejWeeeQbnzp2TvczS0lK89NJLmD17NoYNG4bk5GRERkYiJSUFV155JebPn4/t27f7dUy73Y4PPvgAv/rVrzBu3Dj06tULFosFsbGxyMjIwIwZM7Bq1SrY7Xafj5mbmwuDweDXf+vXr/c3HdSJiIgIZGZmIiIiQu2qaAZzpo8ciBCjFmLYaq0Ieo+T7mwoLsNWa4WiZRCRuLRwLiUC2Ff1gu2sDuY9MMyb+DkI1/iy0hLw5vxRPs9AccOAck883DB0+O+pCRYuCU0AuOeJIqxWK2bNmoXi4uJOn3PxxRdjzZo1mDJlStDl7d69Gw888ACKiop8ev748eOxdu1aXHLJJV0+b/bs2XjvvffQ0NDQ7TF79OiBVatW4ZZbbun2ubm5uVi7dq1PdW21bt06zJ4926/XdETtdfKIiPTujpW7UFRapXg5Of1S8Nb8axUvh4iIiIiIiMJDtd2JpZtKsKE48Bv2pmenY+nUwR3OOOGeJ6Gn9rXc8BomFMDJkydxww03oKys5U1qMBgwduxYDBgwAGfPnsVnn32GxsZGnDlzBjNmzMDmzZsxceLEoMo8cODABQMnl112GYYMGYIePXqgpqYGX331FU6ePAkAKCgowLXXXoudO3eif//+nR737bffRlPTj8uqJCcnIycnB+np6ZAkCfv370dRUREkScK5c+dw66234oUXXsADDzzgc91vuOEGZGVldfu8QYMG+XxM6lpTUxN2796N4cOHw2Lxb01IvWLO9JEDEWIM9xis5baQDJwAQNHRKhwor8OgtPiQlEdE4gj3cylRK/ZVfWA7q4N5DwzzJn4Owj2+5Fgz8mYOx/TsdKzcfgRFRzv++zMSblxqOoeD7h5oRsv+LTn9UrBg3ABMyLq40+PvXDIBALD4zWJ8e6xa/gA6MSIjGX+7Mztk5dGPOHgis7vuuss7cJKRkYENGzZg2LBh3n8/d+4cZs6cic8//xzNzc24/fbbcfjwYSQlJQVd9sCBA3Hfffdh9uzZ6N27d7t/83g8yM/Px//8z/+goaEBZWVluPvuu/HVV1/BYOh4ihoAxMTEYNasWZg3bx5GjRoFo7H9Sm8lJSWYPXu2d5bNL3/5S1x33XUYOnSoT3WePXs2cnNz/YqTguN0OlFcXIzBgweH5QddOGLO9JEDEWIM1xhOVLXMYFxfeCyk5a4vPIb7x/ZH35SYkJZLRNoWrudSovOxr+oD21kdzHtgmDfxc6CV+CZmpWJiVioOlNdhfeExrDvvb9EIuDEw4hwSemXi6kvTMW1Yb59uvGv923Jkv5SQDp6M7J/Cv2tVwmW7ZPTRRx/h5ptbpk+ZzWZ88803HQ4i2O12XHnllThy5AgA4Le//S3+7//+L+Byt2/fjqNHj+Kee+6ByWTq8rnvvfdeu6W1Nm/ejEmTJnX43Iceegi/+c1vkJqa2uUxq6urMXz4cBw71nIimjlzJl5//fVOn9922a41a9aEdPBE7aleRER6xKnNREREREREpIYTVQ0Ys3xbh/+2c8mEgAYlrOU2TF6xM9iq+eyTxWN1u6qC2tdyuWG8jJ577jnvz3PmzOl09kVsbCwef/xx7+NVq1bB5XIFXO64ceOQm5vb7cAJAPz85z9HTk6O9/GHH3Z+Qesvf/lLtwMnQMtyXg8//LD38UcffdTta0g9Ho8HNTU18Hg8aldFM5gzfeRAhBhFiIGISG08l5JWsK/qA9tZHcx7YJg38XMgSnwGSIgzNAUcR1ZaAnIyU2SuVcdy+qXoduAkHHDwRCb19fX4/PPPvY/nzp3b5fNvvfVWxMXFAQCqqqqwY8cORevX1nXXXef9ubS0VPZj2mw2VFWFZk178p/NZkNeXh5sNpvaVdEM5kwfORAhRhFiICJSG8+lpBXsq/rAdlYH8x4Y5k38HIgSX6zBiduj9sJeXxfwMR4Y3/k+0nJaMG5ASMqhjnHwRCZfffWVd3P12NhYXHPNNV0+PyoqCtdee6338datWxWtX1tt9zhxu92yH1PO45L8EhISsGjRIiQkJKhdFc1gzvSRAxFiFCEGIiK18VxKWsG+qg9sZ3Uw74Fh3sTPgSjx2SUz/ukYiti4wGd0TMxKxbRh6TLW6kLTs9O73MCelMcN42Wyf/9+789Dhw5FRET3qb3qqqvw6aefXvB6pe3du9f7c9++fWU/ZnR0NHr06OHT644dO4ZXXnkFR44cQWNjI1JSUtCvXz+MGTMGl1xyiSx1o/aMRiOSkpLUroamMGf6yIEIMYoQAxGR2nguJa1gX9UHtrM6mPfAMG/i50CL8fVNiVFsH8xl0wbjX0crUWFrkv3YqQkWLJ3KfZrVxpknMjlw4ID354yMDJ9e03ZwwGq1yl6njhw/frzdLJef/OQnshw3Pz/f+/PEiRMvmInSmaVLl+K+++7D//3f/+Fvf/sb/vjHP2L27NnIyMjAhAkTsH37dlnqRz+qq6vDypUrUVcX+NREvWHO9JEDEWIUIQYiIrXxXEpawb6qD2xndTDvgWHexM+BKPHJFUdyrBlr5+UgMTpSppq1SIyOxNp5OUiONct6XPIfB09kUllZ6f3Zl03WASAtLc37c6j2CPn1r3/tXVLrkksuwdSpU4M+5gcffOCdQQMACxcuDPqYAFBQUICJEydi6dKlshyPWpjNZmRnZ8Ns5gnYV8yZPnIgQozhGsPOJROwc8kEXJ2RHNJyR2QkY+eSCSEtk4i0L1zPpUTnY1/VB7azOpj3wDBv4udAlPjkjCMrLQFvzh+F1ASLDDVrmXHy5vxRyErT9tJoouDgiUzq6+u9P0dHR/v0mrbPa/t6paxduxbvvPOO9/GTTz4JiyW4N/bp06dx//33ex/feOON+OlPf9rlawwGA0aMGIE///nP2LlzJ86ePYvm5mbU1NTg66+/xmOPPYaLLroIAODxeLBs2TI888wzQdXzfFFRUYiLiwPQsj9LTU0NJEkC0LL5ldPpBAA0NjbCbrcDAFwuF2pqarzHqK2tRXNzMwCgoaEBDQ0NAIDm5mbU1tZ6n1dTUwOXywUAsNvtaGxsBAA4nU7vBluSJKGmpsY7sFVfXw+HwwEAaGpq8o6Eezwe1NTUwOPxAGgZKW/da8fhcHj7UVcxeTweDB06FBaLRZiYlG6npqYmjBo1CmazWZiY/G2nyMhIZGVlITIyUpiYzm8np9OJ4cOHw2KxaDamcG2nHtEG9E2JQc4l8YiB84dnSYgzNMGIlvxHoxlmtLwmEm5E//A8ww/PM0D64XlORKIlD2a4EI2W+hjhQZyhCfjheTFwIicjHn1TYsKunUQ8RzAmxiRSTI2NjRg1ahQsFoswMYnYTowJsFgsyMrKgslkEiYmEdsp2JgsFguGDx/e7u85rcekhXZyuVwYNmwYLBaLMDGFop0sFguuueYaNDY2ChOTv+0k+vcIh8OBq6++GhaLRdMxyd1O6THA5kVjMX1Yr6D+zp2enY4N83PQJ84YVDuJ2PfUwsETmbR2GgA+j1q2Hbho7ZxK+eabb/DAAw94H8+aNQt33XVXUMd0Op247bbbcPr0aQDARRdd1G75rs4888wz+Prrr/G73/0O119/PXr06IGIiAgkJiZixIgRWLp0Kfbu3YsRI0Z4X/O73/0OR48eDaq+bY0aNQq33XYbAODs2bPIy8vzvqFXr16N77//HgCwfft2bNq0CQBw8uRJ5OXleY/xwgsv4PDhwwCALVu2YMuWLQCAw4cP44UXXvA+Ly8vDydPngQAbNq0ybsU2ffff4/Vq1cDaDnZ5OXl4ezZswCAt99+G4WFhQCA3bt347XXXgPQckLJy8vznsBee+017N69GwBQWFiIt99+u9uYPv/8c6xZswYOh0OYmJRup1deeQUFBQWora0VJiZ/26m1rq3PEyGm89tp/fr1+Oc//wmHw6HZmMK9na6Mq8cUS8sylWa4cXvUXiQZWj4/x5kP44qICgDApaZzuNFyEAAQa3Di9qi9iDW0fJm60XIQl5rOAQCuiKjAOHNLfZIMDtwetRfmHwZWplisGBprD8t2EvEcwZgYk2gxFRQUwOFwCBWTiO2k95gcDgfy8vJw5MgRYWISsZ2CjcnhcOCf//wn1q9fL0xMWminDRs24LXXXoPD4RAmplC0k8PhwMcffyxUTIG0k+jfIzZs2ACHw6H5mORup+RYM57++RW4PWovru/Tcm3Y179zp8cfxaPXRiNv5nBY9/5b2HNEMDGpRiJZTJkyRULL7a7Sww8/7NNrPvroI+9r4uLiFKvbkSNHpLS0NG9ZV155pVRbWxvUMT0ejzRz5kzvMSMjI6UtW7bIVOMWFRUVUnJysreMX/7yl0Efc9++fRIAKSoqSoqLi5P27dsnuVwuqbq6WvJ4PJIkSVJtba3U1NQkSZIkNTQ0SPX19ZIkSVJzc7NUXV3tPVZNTY3kdDolSZIku90u2e12SZIkyel0SjU1Nd7nVVdXS83NzZIkSVJ9fb3U0NAgSZIkNTU1edvB4/FI1dXVksvlkiRJkurq6qTGxkZJkiTJ4XBINptNkiRJcrvdUnV1teR2uyVJkiSbzSY5HA5JkiSpsbFRqqurkyRJ6jKmM2fOSC+//LJUV1cnTExKt1NZWZm0Zs0ayWazCROTv+1UW1srvfTSS97XiRDT+e10+vRp6ZVXXvE+X4sxaaGdZj27Vcp4+AMp4+FN0uBH3pH6PbxRynj4Aynr4fekSx9+X8p4+ANp4MMbpKyH35UyHv5AyvzheZkPb/rhee9KAx/eIGU8/IF06cPvS1kPvydlPPyB1O/hjdLgR96RMn543qzntoZtO4l4jmBMjEmkmE6ePCmtWbNGqqurEyYmEduJMbXU7aWXXvK+ToSYRGynYGOqq6uTXnnlFen06dPCxKSFdqqoqPD+3SxKTKFop7q6Omn16tXSyZMnhYnJ33YS/XvEqVOnvH83azmmULST9bRN+sNbX3f6d+7Mv38mPf1xiWQ9bdPNOSKQmFqv5bb+t2/fPimUDJL0wxwZCsqdd96Jt956CwDw4IMP+jQy9u677+LWW28F0LL/SesMDjmdPn0aY8aM8Y429u/fH1988QV69eoV1HEXLlyI559/HgBgNBqxfv16zJo1K+j6nu+Pf/wj/vSnPwEABgwYgEOHDgV1vJKSEgwZMsT7eN++fRg8eHBQxyQiIt9ttVZgXv43ipezJvcaTMi6WPFyiIiIiIiIiDpyoqoBY5Zv6/Dfdi6ZgL4pMSGukfaofS2Xy3bJpHWPDgCoqKjw6TXl5eXen1NSUmSvU2VlJW688UbvwEmvXr3w2WefBT1w8tvf/tY7cAIAzz33nCIDJwDwk5/8xPvz4cOHvWvgUeDcbjfKy8u9axVS95gzfeRAhBi1EMPErFRMG5auaBnTs9M5cEJEAdPCuZQIYF/VC7azOpj3wDBv4udAlPhEiYOUx8ETmQwaNMj787Fjx3x6zfHjx70/Z2VlyVofm82GSZMmoaSkBADQo0cPfPbZZ+jXr19Qx/3zn/+Mp556yvv46aefbreXitzOH+iprKxUrCy9qKurw6pVq7wbOlH3mDN95ECEGLUSw7Jpg5GaYOn+iQFITbBg6VTOKCSiwGnlXErEvqoPbGd1MO+BYd7Ez4Eo8YkSBymPy3bJZMuWLZg0aRIAIDY2FjU1NYiIiOjyNTfddBM+/fRTAMDvf/977/JUwbLb7Zg0aRK+/PJLAEBiYiI+//xzXH311UEdd8WKFfjVr37lffyHP/wBTzzxRFDH7M7u3btx1VVXeR/X1tYiISEh4OOpPdUrHEiShKamJlgsFhgMBrWrownMmT5yIEKMWorBWm7DnasKUdvYLNsxE6Mj8eb8UchKC/xzgohIS+dS0jf2VX1gO6uDeQ8M8yZ+DkSJL1RxcNmu4Kl9LZczT2QyevRoWCwtd9Ha7XZ8803X67k3NTWhsLDQ+3jixImy1MPhcGDatGnegZOYmBh8+OGHQQ+cvPjii+0GThYtWqT4wAnQMnjSKjY2NqiBE2phMBgQFRWl6Q+5UGPO9JEDEWLUUgxZaQl4c/4o2WagpCZYOHBCRLLQ0rmU9I19VR/Yzupg3gPDvImfA1HiEyUOUh4HT2QSFxeHG264wfs4Pz+/y+e/++673qlhKSkpGDt2bNB1aG5uxq233oqtW7cCACwWCzZs2IDrrrsuqOOuX7++3dJc9957L/72t78FdUxfrV692vvz+PHjQ1Km6Gw2G1asWAGbzaZ2VTSDOdNHDkSIUWsxZKUlYPOisZieHdweKNOz07F50VgOnBCRLLR2LiX9Yl/VB7azOpj3wDBv4udAlPhEiYOUx8ETGf33f/+39+f8/HzvfiPna2howKOPPup9fP/993e7xFd33G437rrrLnz00UcAgIiICLz11lvtNlwPxLvvvovc3Fy0ru42a9YsvPjiiwGPzNbX1/v83L/+9a/eGTQAMHv27IDKpPaioqIwfvx4REVFqV0VzWDO9JEDEWLUYgzJsWbkzRyO1bkjkNMvxa/X5vRLwZrca5A3cziSY80K1ZCI9EaL51LSJ/ZVfWA7q4N5DwzzJn4ORIlPlDhIedzzRGZjx47Fzp07AQCZmZnYsGEDrrzySu+/V1ZWYtasWd69TlJSUnD48GEkJSVdcKzS0tJ2G7yvWbMGubm5FzxPkiTMnTsXa9euBQAYjUa89tprmDlzZlCxbN68GdOnT4fT6QQATJ8+HW+//XZQAz3z5s2DzWbDfffdhxtuuAGRkZEXPKeiogLLli3DCy+84P3dqFGj8NVXXwU9nU7tdfKIiKhrB8rrsHHPKew5UYu9p2rb7YmSGB2Job0TMaxvIqYN641BafEq1pSIiIiIiIioc9zzJHhqX8sNbroDXeAf//gHcnJycPr0aZSWliI7Oxvjxo3DgAEDcPbsWXz22WdoaGgA8OPskI4GTvzxwgsveAdOAGDAgAH44osv8MUXX/j0+mefffaC3507dw633HKLd+DEZDKhZ8+eWLx4sU/HvOeeezBy5MgLfu/xePDOO+/gnXfeQWxsLIYOHYp+/fohISEBjY2NOHToEL7++ms0N/94sWzAgAF4//33uQ6hTBobG7F9+3aMGzcO0dHRaldHE5gzfeRAhBhFiGFQWjweSssC0HJzgN3phtPlgTnCiFiziZ8FRKQ4Ec6lpA/sq/rAdlYH8x4Y5k38HIgSnyhxkPI4eCKzPn36YOvWrZg1axaKi4shSRIKCgpQUFDQ7nk9e/bEmjVr2u2TEqgzZ860e3zw4EEcPHjQ59d3NHhSX1+PxsZG72O3242XX37Z52OOGDGiw8GTtux2OwoLC1FYWNjhvxuNRsyaNQvPPvts0ANM9COPx4Oamhp4PB61q6IZzJk+ciBCjCLE0JbBYECcJQKQZ095IiKfiHYuJXGxr+oD21kdzHtgmDfxcyBKfKGKo29KDEqfulnRMkhZXLZLIU6nE2+88QZef/11lJSUoKKiAklJSejfvz9uueUWzJ07Fz169OjyGL4u27V06VIsW7Ys4Lp21AXOL9tfndW1pqYGu3btwq5du/Cvf/0Lp06dQmVlJaqqqhAREYHk5GRcfvnluO6663DPPfdgwIABAdehI2pP9SIiIiIiIiIiIiKi7ql9LZeDJ6Qrar/hwoHL5cLJkyfRp0+foPav0RPmTB85ECFGuWOQJAn1TS40uyVEmlpmgXDZLCISnQifB6QP7Kv6wHZWB/MeGOZN/ByIEp8oceiB2tdyjSEriYjCQn19PdauXYv6+nq1q6IZzJk+ciBCjHLEYC23YflmK+5+uRDZj3+KoUu34KonWv6f/finuPvlQizfbMWB8joZa05EFD5E+DwgfWBf1Qe2szqY98Awb+LnQJT4RImDlMeZJ6Qrao9WEhGFq63WCqwsOIKi0iqfX5OTmYIF4wdgQtbFCtaMiIiIiIiIiPRI7Wu5nJdERESkY9V2Jx7bWIKNe8r8fm1RaRWK8qswPTsdS6cORnKsWYEaEhERERERERGFHpftItKZ2tpaPPXUU6itrVW7KprBnOkjByLE6G8M+0/bMDlvR0ADJ21tKC7D5LwdsJbbgjoOEVE4EOHzgPSBfVUf2M7qYN4Dw7yJnwNR4hMlDlIeB0+IdCYmJgYzZsxATEyM2lXRDOZMHzkQIUZ/Yth/2oaZLxaiwtYkS9kVtibcuaqQAyhEpHkifB6QPrCv6gPbWR3Me2CYN/FzIEp8osRByuOeJ6Qraq+TR0QUDqrtTkzO2yHbwElbqQkWbF40lkt4EREREREREVFQ1L6Wy5knRDrT0NCA999/Hw0NDWpXRTOYM33kQIQYfY3hsY0ligycAC0zUJZuKlHk2EREoSDC5wHpA/uqPrCd1cG8B4Z5Ez8HosQnShykPA6eEBER6chWa0XQe5x0Z0NxGbZaKxQtg4iIiIiIiIhISVy2i3RF7aleRERqu2PlLhSVVileTk6/FLw1/1rFyyEiIiIiIiIiMal9LZczT4h0prm5GVarFc3NzWpXRTOYM33kQIQYu4vBWm4LycAJABQdrcKB8rqQlEVEJCcRPg9IH9hX9YHtrA7mPTDMm/g5ECU+UeIg5XHwhEhnuK6j/5gzfeRAhBg7i+FEVQNOVDVgfeGxkNZnfeExnKjSbj6JSJ9E+DwgfWBf1Qe2szqY98Awb+LnQJT4RImDlMdlu0hX1J7qRUSkhsxHPlS1/NKnbla1fCIiIiIiIiLSHrWv5XLmCRERERERERERERERURscPCHSmZqaGixbtgw1NTVqV0UzmDN95ECEGEWIgYhIbTyXklawr+oD21kdzHtgmDfxcyBKfKLEQcrjsl2kK2pP9QoHLpcLJ0+eRJ8+fRAREaF2dTSBOdNHDkSIsbMYuGwXEZHvRPg8IH1gX9UHtrM6mPfAMG/i50CU+ESJQw/UvpbL3kGkMxEREcjMzFS7GprCnOkjByLEKEIMRERq47mUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUh6X7SLSGbvdjjfeeAN2u13tqmgGc6aPHIgQowgxEBGpjedS0gr2VX1gO6uDeQ8M8yZ+DkSJT5Q4SHkcPCHSGaPRiKSkJBiNfPv7ijnTRw5EiLGzGHYumYCdSybg6ozkkNZnREYydi6ZENIyiYiCJcLnAekD+6o+sJ3VwbwHhnkTPweixCdKHKQ87nlCuqL2OnlERGpavtmK5wsOh6y8hRMG4KFJWSErj4iIiIiIiIjEofa1XA6vEemM0+lEcXExnE6n2lXRDOZMHzkQIcbuYpiWnR7S+kwb1juk5RERyUGEzwPSB/ZVfWA7q4N5DwzzJn4ORIlPlDhIeRw8IdIZh8OBgoICOBwOtauiGcyZPnIgQozdxZCVloCczJSQ1CWnXwoGpcWHpCwiIjmJ8HlA+sC+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/LdpGuqD3Vi4hIbVutFZiX/43i5azJvQYTsi5WvBwiIiIiIiIiEpPa13I584RIZyRJgsPhAMdNfcec6SMHIsToSwwTs1IxbZiyy3dNz07nwAkRaZYInwekD+yr+sB2VgfzHhjmTfwciBKfKHGQ8jh4QqQztbW1ePrpp1FbW6t2VTSDOdNHDkSI0dcYlk0bjNQEiyJ1SE2wYOlUzugjIu0S4fOA9IF9VR/Yzupg3gPDvImfA1HiEyUOUh6X7SJdUXuqVzhwu904e/YsevbsCZPJpHZ1NIE500cORIjRnxis5TbcuaoQtY3NspWfGB2JN+ePQlZagmzHJCIKNRE+D0gf2Ff1ge2sDuY9MMyb+DkQJT5R4tADta/lcvCEdEXtNxwRUTixltswZ3URKmxNQR8rNcGCtfNyOHBCRERERERERLJQ+1oul+0i0pn6+nrk5+ejvr5e7apoBnOmjxyIEKO/MWSlJWDzorGYnh3cHijTs9OxedFYDpwQkRBE+DwgfWBf1Qe2szqY98Awb+LnQJT4RImDlBehdgWIKLQiIiKQmZmJiAi+/X3FnOkjByLEGEgMybFm5M0cjunZ6Vi5/QiKjlb5/NqcfilYMG4AN4cnIqGI8HlA+sC+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/LdpGuqD3Vi4go3B0or8PGPaew50Qt9p6qbbcnSmJ0JIb2TsSwvomYNqw3BqXFq1hTIiIiIiIiIhKZ2tdyObxGpDNNTU3YvXs3hg8fDovFonZ1NIE500cORIhRjhgGpcXjobQsAIAkSbA73XC6PDBHGBFrNsFgMMhZZSKisCPC5wHpA/uqPrCd1cG8B4Z5Ez8HosQnShykPO55QqQzTqcTxcXFcDqdaldFM5gzfeRAhBjljsFgMCDOEoGUWDPiLBEcOCEiXRDh84D0gX1VH9jO6mDeA8O8iZ8DUeITJQ5SHpftIl1Re6oXEZG/JElCfZMLzW4JkSYDBzGIiIiIiIiISBfUvpbLZbuIdMbj8cBmsyEhIQFGIyef+YI500cOwilGa7kNG4vLsOdkDfadsl2w78iQ3gkY1icJ07Pb7zsSTjEQEWkVz6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8tg7iHTGZrMhLy8PNptN7apoBnOmjxyEQ4xbrRW4Y+UuTF6xE88XHMaXhyrbDZwAQG1jM748VInnCw5j0ooduGPlLmyzngEQHjEQEWkdz6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8rhsF+mK2lO9wgFH1/3HnOkjB2rGWG134rGNJdi4pyzgY0zPTsejN18Ok9shdDsRESlND595JAb2VX1gO6uDeQ8M8yZ+DkSJT5Q49EDta7lctotIZ4xGI5KSktSuhqYwZ/rIgVox7j9tQ+6aIlTYmoI6zobiMhQeqcTaeTlISuKXPyKiQOnhM4/EwL6qD2xndTDvgWHexM+BKPGJEgcpj1dXiHSmrq4OK1euRF1dndpV0QzmTB85UCPG/adtmPliYdADJ61stjqsWrUKuw8HPoOFiEjv9PCZR2JgX9UHtrM6mPfAMG/i50CU+ESJg5THwRMinTGbzcjOzobZbFa7KprBnOkjB6GOsdruRO6aogv2NAmGCyYccF6EX77xHartTtmOS0SkJ3r4zCMxsK/qA9tZHcx7YJg38XMgSnyixEHK454npCtqr5NHRNTqwdd3B7XHSXemZ6cjb+ZwxY5PRERERERERKQkta/lcuYJkc44HA4UFBTA4XCoXRXNYM70kYNQxrjVWqHIwIkZLmRHnIIZLmwoLsNWa4XsZRARiU4Pn3kkBvZVfWA7q4N5DwzzJn4ORIlPlDhIeRw8IdIZl8uF0tJSuFwutauiGcyZPnIQyhhXFhxR5LgmSEgz1sGElkmlK7crUw4Rkcj08JlHYmBf1Qe2szqY98Awb+LnQJT4RImDlMdlu0hX1J7qRURkLbdh8oqdISvvk8VjMSgtPmTlERERERERERHJQe1ruZx5QqQzbrcb5eXlcLvdaldFM5gzfeRA6RhPVDXgRFUD1hceU+T4AGCEBymGBhjh8f5OyfKIiESkh888EgP7qj6wndXBvAeGeRM/B6LEJ0ocpDwOnhDpTF1dHVatWoW6ujq1q6IZzJk+cqB0jGOWb8OY5duwvvC4IscHgBhDM6ZHfY8YQ7P3d+s4eEJE5Bc9fOaRGNhX9YHtrA7mPTDMm/g5ECU+UeIg5XHZLtIVtad6hQNJktDU1ASLxQKDwaB2dTSBOdNHDpSOMfORD2U/5oUkmOGGEyYAP8Zw9MkpwrYbEZHc9PCZR2JgX9UHtrM6mPfAMG/i50CU+ESJQw/UvpYbEbKSiCgsGAwGREVFqV0NTWHO9JEDMWI0wNnBR7vd6UachR/5RES+EOPzgPSAfVUf2M7qYN4Dw7yJnwNR4hMlDlIel+0i0hmbzYYVK1bAZrOpXRXNYM70kQMRYoyBE7dZvkMMnO1+73R5OnkFERGdT4TPA9IH9lV9YDurg3kPDPMmfg5EiU+UOEh5HDwh0pmoqCiMHz+eI+x+YM70kQMRYnTChGJX+g/Ldv3IHMGPeyIiX4nweUD6wL6qD2xndTDvgWHexM+BKPGJEgcpj3uekK6ovU4eEelXaPY86Rj3PCEiIiIiIiIirVH7Wi5vRSXSmcbGRmzevBmNjY1qV0UzmDN95EDpGHcumYCdSybg6oxkRY4PAGa4kBN5HGa4vL8bkZHMgRMiIj/o4TOPxMC+qg9sZ3Uw74Fh3sTPgSjxiRIHKY+DJ0Q64/F4UFNTA4+HeyD4ijnTRw6UjrFvSgz6psRgZL8URY4PAEZIiDM4YcSPk0pH9leuPCIiEenhM4/EwL6qD2xndTDvgWHexM+BKPGJEgcpj8t2ka6oPdWLiMhabsPkFTtDVt4ni8diUFp8yMojIiIiIiIiIpKD2tdyOfOESGdcLhdKS0vhcrm6fzIBYM4AfeQgVDFmpSUgJ1OZ2SAmeJBmtMGElrtncvqlcOCEiMhPevjMIzGwr+oD21kdzHtgmDfxcyBKfKLEQcrj4AmRztTX12Pt2rWor69XuyqawZzpIwedxShJEuoczaiyO1HnaIYcEzYfGN8/6GN0JNrQjJ9a/oNoQzMAYMG4AYqUQ0QkMj185pEY2Ff1ge2sDuY9MMyb+DkQJT5R4iDlcdku0hW1p3oRkTZYy23YWFyGPSdrsO+UDbWNzd5/S4yOxJDeCRjWJwnTs3sHPLPjwdd3Y+OeMrmqfIHp2enImzlcseMTERERERERESlJ7Wu5ESEriYiIKMxttVZgZcERFJVWdfqc2sZmfHmoEl8eqsTzBYeRk5mCBeMHYELWxX6VtWzaYPzraCUqbE3BVvsCqQkWLJ3KgWEiIiIiIiIiokBx2S4inamtrcVTTz2F2tpatauiGcyZ+Dmotjux+NUv8dkbL6Hk2Gm/XltUWoW5+V9j0Ru7UW13+vy65Fgz1s7LQWJ0pL/V7VSsoQl3R+/G87dnITnWLNtxiYj0RPTPPBIH+6o+sJ3VwbwHhnkTPweixCdKHKQ8Dp4Q6UxMTAxmzJiBmJgYtauiGcyZ2DnYf9qGyXk7sOn7SnzhzIRDCmxS5obiMkzO2wFruc3n12SlJeDN+aOQmmAJqMzzJcTFYsJNU3BlZqosxyMi0iORP/NILOyr+sB2VgfzHhjmTfwciBKfKHGQ8rjnCemK2uvkEVF42X/ahpkvFrbb0yRYidGReHP+KGSlJfj8mmq7E0s3lWBDceB7oEzPTsfSqYM544SIiIiIiIiIhKD2tVzOPCHSmYaGBrz//vtoaGhQuyqawZyJmYNquxO5a4q8AycWNOP6yKOwILiBlNrGZsxZXeT3El55M4djde4I5PRL8au8nH4pWJN7DfJmDofF4BKunYiIQk3EzzwSE/uqPrCd1cG8B4Z5Ez8HosQnShykPG4YT0REuvTYxhJFNmsHgApbE5ZuKkHezOF+vW5iViomZqXiQHkdNu45hT0narH3VG27mTGJ0ZEY2jsRw/omYtqw3hiUFi939YmIiIiIiIiIdI/LdpGuqD3Vi4jCw1ZrBeblf6N4OatzR2BiVnD7j0iSBLvTDafLA3OEEbFmEwwGg0w1JCIiIiIiIiIKT2pfy+WyXUQ609zcDKvViuZm+fZ4EB1zJl4OVhYcueB3JrhxibEaJrjlK2f7heX4y2AwIM4SgZRYM+IsEV0OnIjWTkREauC5lLSCfVUf2M7qYN4Dw7yJnwNR4hMlDlIeB0+IdIbrOvqPORMrB9ZyG4pKqy74fZTBhevNpYgyuGQrq+hoFQ6U18l2vO6I1E5ERGrhuZS0gn1VH9jO6mDeA8O8iZ8DUeITJQ5SHpftIl1Re6oXEannRFXLl6JVOw5jfeHxkJV7z6gM3D+2P/qmxISsTCIiIiIiIiIirVP7Wi43jCciIl0Ys3ybKuWuKzyGdYXHUPrUzaqUT0RERERERERE/uOyXUQ6U1NTg2XLlqGmpkbtqmgGc6aPHMQZmjA3+hvEGZrUrkrA9NBORERK47mUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUh6X7SJdUXuqVzhwuVw4efIk+vTpg4gITj7zBXMmRg4yH/mwy383wYOexnqc9cTBrcC9BaGYeSJCOxERqY3nUtIK9lV9YDurg3kPDPMmfg5EiU+UOPRA7Wu57B1EOhMREYHMzEy1q6EpzJm6OZAkCfVNLjS7JUSaDIizRMBgMMhejhtGlHsSZD9uKLGvEhEFj+dS0gr2VX1gO6uDeQ8M8yZ+DkSJT5Q4SHlctotIZ+x2O9544w3Y7Xa1q6IZzFnoc2Att2H5ZivufrkQ2Y9/iqFLt+CqJ1r+n/34p7j75UIs32zFgfI62cqMQjMmmg8hCs2yHTPU2FeJiILHcylpBfuqPrCd1cG8B4Z5Ez8HosQnShykPM48IdIZo9GIpKQkGI0cO/UVcxa6HGy1VmBlwREUlVZ1+pzaxmZ8eagSXx6qxPMFh5GTmYIF4wdgQtbFQZXtgQH1khkeyD+rJVTYV4mIgsdzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ87nlCuqL2OnlE1LFquxOPbSzBxj1lAR9jenY6lk4djORYc4f/fqKqAQCw+M1ifHusOuBy/DUiIxl/uzMbfVNiQlYmEREREREREZHWqX0tl8NrRDrjdDpRXFwMp9OpdlU0gzlTNgf7T9swOW9HUAMnALChuAyT83bAWm7r8N/7psSgb0oMRvZL6fDfI+DGQNM5RMAdVD3ON7J/SsgGTthXiYiCx3MpaQX7qj6wndXBvAeGeRM/B6LEJ0ocpDwOnhDpjMPhQEFBARwOh9pV0QzmTLkc7D9tw8wXC1Fha5LleBW2Jty5qrDTARQAmJad3uHvzXAjO6IMZpkHT6YN6y3r8brCvkpEFDyeS0kr2Ff1ge2sDuY9MMyb+DkQJT5R4iDlcdku0hW1p3oR0Y+q7U5Mztsh28BJW6kJFmxeNLbTJbzuWLmry31V5JLTLwVvzb9W8XKIiIiIiIiIiESj9rVczjwh0hlJkuBwOMBxU98xZ8rk4LGNJYoMnAAtM1CWbirp9N8fGN+/g99KMMMFQL4YF4wbINuxfMG+SkQUPJ5LSSvYV/WB7awO5j0wzJv4ORAlPlHiIOVx8IRIZ2pra/H000+jtrZW7apoBnMmfw62WiuC3uOkOxuKy7DVWtHhv03MSsW0Ye2X74ozOHF3dDHiDPKseTo9Ox0Tsi6W5Vi+Yl8lIgoez6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8rhsF+mK2lO9woHb7cbZs2fRs2dPmEwmtaujCcyZ/DkIh2Wzzl82zAgPkgwO1EhR8AR5b0F3y4YphX2ViCh4PJeSVrCv6gPbWR3Me2CYN/FzIEp8osShB2pfy+XMEyKdMZlMSEtL44eDH5gzeXNgLbeFZOAEAIqOVuFAeV2H/5Yca8baeTlIjI4EAHhgRJUUE/TASWJ0JNbOywn5wAnAvkpEJAeeS0kr2Ff1ge2sDuY9MMyb+DkQJT5R4iDlcfCESGfq6+uRn5+P+vp6tauiGcyZPDk4UdWAE1UNWF94TMaadW994TGcqGro8N+y0hLw5vxRSE2wIBrNmGy2IhrNAZeVmmDBm/NHISstIeBjBIN9lYgoeDyXklawr+oD21kdzHtgmDfxcyBKfKLEQcqLULsCRBRaERERyMzMREQE3/6+Ys7kycGY5dtkrJHv1hUew7rCYyh96uYO/z0rLQGbF43FsveLUbr/DNwwBFTO9Ox0LJ06WJUZJ63YV4mIgsdzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ87nlCuqL2OnlEepb5yIeqlt/Z4ElbW60VWLn9CIqO+r6sWE6/FCwYNyDkm8MTEREREREREYlM7Wu5XLaLSGeamppQWFiIpqYmtauiGcyZPnLQ1NSEmJqjWJd7FT5ZPBYLJwzA9QN7ePdEaZUYHYnrB/bAwgkD8MnisXhr/rVhM3Cih3YiIlIaz6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8jg3iUhnnE4niouLMXjwYFgsFrWrownMmT5y0DbGQWnxeCgtCwAgSRLsTjecLg/MEUbEmk0wGAJb2ktpemgnIiKl8VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/LdpGuqD3Vi0jPtLBsFxERERERERERhQe1r+Vy2S4infF4PKipqYHH41G7KprBnOkjByLEKEIMRERq47mUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUh4HTxTidDqxbt06TJkyBRkZGYiKikKvXr0wevRoPPPMMzh37pzsZZaWluKl/8/enYdHVd3/A39PdrITwRC2BFCgrEEFQQRZVBQqUhZFVASkRaxFWoto+61A+2urWK3pBlhkUVlEsCzKJmiQLewBEggoGCBCwpJlJstkMsn9/XHNkJBtZjJ3zp1z36/nycNMcu895/M5d070npxz/vtfPPPMM+jZsyeaNm2KwMBAxMTEoEePHpg2bRp27drl9vUPHTqEF198EV26dEFkZCQiIyPRpUsXvPjiizh06JBb17x48SLmzp2Lu+++G82bN0eTJk3QoUMHjB07Fv/73//AiVGeZzabkZSUBLPZLLoqPoM580wOdr86GLtfHYy745t6sGYNuye+KXa/OrjB42RoZxliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4SHtctksDGRkZeOqpp5CamlrnMbfffjuWLl2K4cOHN7q8Y8eO4YUXXsDBgwedOn7QoEFYvnw52rZt69TxNpsNs2bNwj//+c86BzNMJhNefvllzJ8/H4GBgbUec6sPPvgAL7/8MoqKiuo85sEHH8RHH32EFi1aOHXNhoie6qUHFRUVMJvNiIyMhJ8fx0+dwZx5Ngfzt2bgP8nnPFSzhv1ycAfMGta5weNkaGcZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOIxA9LNcDp54WFZWFu69915cvnwZgDqoMHDgQHTo0AHXrl3Djh07UFJSAgAIDAzE1q1bMWTIkEaVuXr1ajz11FPVvtexY0d069YNzZo1Q35+Pvbt24esrCzHz1u2bIndu3ejffv2DV7/ueeew4cffuh43759e/Tt2xcAkJKSgvPnzzt+NmXKFHzwwQcNXnPJkiV4/vnnHe+jo6MxZMgQREVFIS0trdpMlh49emDv3r0IDw9v8LoNEf2BIyIgI9uMR97b7bXyts0ciE4tIrxWHhERERERERERNZ7oZ7kcWvOwCRMmOAZO4uPjcezYMSQnJ+ODDz7Axo0bcfHiRQwdOhQAUFZWhnHjxiE/P98jZd9xxx148803kZWVhTNnzmDdunVYtGgRPvnkE1y4cAEffPABQkNDAQCXL1/G008/3eCyWEuWLHEMnPj5+eHvf/87vv32W6xYsQIrVqzAt99+i7///e+OUdqqx9flzJkzeOGFFxzvn376aWRlZWHdunVYsmQJDh48iJ07d6JpU3VpnxMnTmDGjBlu54Wqs1gsWLhwISwWi+iq+AzmzLM56NwiEn0SYjxQq4b1aRfj9MCJDO0sQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj4MnHrR582bs3q3+NXVQUBA2bdqEnj17VjumWbNm2LBhg2PGR25uLubPn9+ocuPi4rB06VJkZGRg9uzZaNWqVY1j/Pz8MGXKFHz88ceO76WkpGD79u11Xre0tBRz5851vH/11Vcxc+bMatPZ/Pz8MHPmTMyaNcvxvTfeeAM2m63O6/7hD39AWVkZAKB///748MMPERYWVu2YIUOGYMWKFY73H374IU6fPl3nNcl5QUFBSExMRFBQkOiq+AzmzPM5eGFQw7PePGH6Ax2cPlaGdpYhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7THZbs8aMSIEdi8eTMA4Oc//znef//9Oo9dsWIFnnnmGQBATEwMcnJyEBAQ4JV63nvvvY79UX71q1/hH//4R63Hffrpp3jiiScAAFFRUbh8+bJj5sqtiouLERcX59ho6bPPPsPPfvazGsfl5OSgZcuWqKioAADs3bsX9913X511feihh7Bjxw4AwIwZM5CUlORklLUTPdWLyFcpioLCUjvKyhUE+psQHhwAk8nUqGvOWHUMG49f9lANa3o8sSWSxvfS7PpERERERERERKQd0c9yOfPEQwoLC7Fz507H+8mTJ9d7/JgxYxx7eOTm5uKbb77RtH5V9e/f3/E6MzOzzuPWr1/veP3kk0/WOXACAKGhoY6BFgD43//+V+txGzdudAycdOzYsd6BEwCYNGlSrfUh91mtViQnJ8NqtYquis8was4yss2YvzUDTy9OQe8/bsGz/28p+v5pC7rP3Y7EP36JpxenYP7WDJzJdm+a67yRXREbGezhWqtiI4Mx9zHXfpnK0M4yxEBEJBr7UvIVvFeNge0sBvPuHuZN/hzIEp8scZD2OHjiIfv27UNpaSkAICwsDL179673+JCQEPTr18/x/quvvtK0flVV/Wvx8vLyOo/7+uuvHa8HDRrU4HUHDx7seF1XPI255sWLF/Hdd981eA7Vz263IzMzE3a7XXRVfIbRcvZVRg6eWLgfj7y3G/9JPoe9391AUYkNLfws8Ic6WbGgpAx7v7uB/ySfw7D3vsETC/fj64yrLpXTNCwIy6f0QVSTQI/WP6pJIJZP6YOmYa5Nv5WhnWWIgYhINPal5Ct4rxoD21kM5t09zJv8OZAlPlniIO1x2S4PSUpKwsyZMwEAffv2xf79+xs857XXXsNbb70FABg9ejTWrVunZRUdHn74YXz55ZcAgGnTpmHhwoU1jikoKEB0dLTjfUZGBjp16lTvdTMyMvCTn/yk2jUiIyOrHdOrVy+kpqYCABYuXIhp06Y1WN8WLVogJycHgDpz5bHHHmvwnLqInupFpGd5RTbM2ZjeqKW0Hk9sibmPdXVp4CIj24znlhxEjrnU7XIrxUYGY/mUPujcIrLhg4mIiIiIiIiISLdEP8vlzBMPOXPmjON1fHy8U+e0bdvW8TojI8PjdarNxYsXq80KefDBB2s9rmo8QPW61uXWY269xq3f03OeZFZeXo7s7Ox6Zx1RdUbI2ekrZjyS9E2dAyd+qECMqRh+qKj3OhtSL+ORpG+QkW12uuzOLSKx9eWBeDyxpUt1vtXjiS2x9eWBbg+cyNDOMsRARCQa+1LyFbxXjYHtLAbz7h7mTf4cyBKfLHGQ9jh44iE3btxwvI6NjXXqnBYtWjhe5+bmerxOtfnNb37j6Bjatm1b5yyOqvFERkaiSZMmDV47NDQUERERjve3xlRSUoKSkhLHez3nSWYWiwWLFi2CxeLePhVGJHvOTl8xY/z7KfXO/Ag1leHxkFMINZU1eL0ccymeXJTi0gBK07AgJI3vhSWT7kGfdjFOnwcAfdrFYOmk3kga38vlpbqqkqGdZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7XHwxEMKCwsdr50ZaLj1uKrna2X58uXVlgb761//iuDg2jdrdieeW4+9NaZb34vMU0hICMLDwwGoo835+fmoXMHObDbDZrMBUAd8ioqKAKjrIebn5zuuUVBQgLIy9UFycXExiouLAQBlZWUoKChwHJefn+9YQ7GoqMgxgGSz2WA2qw+XFUVBfn6+Y2CrsLDQsWlVaWmpozOvqKhAfn4+KirUv/63WCyOvXasVqsjP/XFFBQUhJdeeglRUVHSxKR1O5lMJsyePRuRkZHSxFTZTrmFpZi+5BtYStT6NUEZgqCeE4hyNIFanyIlEOutP0GREvjjcTYEQs1DEOxoArU+fqhAuKkUBSU2PLfkIC5mX3cppiGdY7Hs2Z7YOK03fjm4Awa0b4oWTW7Odgk3laJpE3/cf0czvHh/K2x8oTfWTOuH/u2jG33v+fn5YebMmYiKitJdOzkbU0REBF544QXHQLae7z2Z+gjGxJgYk1wxKYqC2bNnIyoqSpqYZGwnxgRERUXhhRdeQFhYmDQxydhOjY0pKioKM2fOhJ+fnzQx+UI7BQQEYMaMGYiKipImJm+0U1RUFH77299CURRpYnK1nWT/7whA/cPsqKgon45J9naSMSZROHjiIZU3DaA+nHZG1YGLqjMytHD48GG88MILjvdPPfUUJkyYUOfx7sQD1B9T1Wu6cl0t8tS3b1+MHTsWAHDt2jUkJSU5PtBLlizBqVOnAAC7du3Cpk2bAABZWVlISkpyXGPBggU4d+4cAGD79u3Yvn07AODcuXNYsGCB47ikpCRkZWUBADZt2oRdu3YBAE6dOoUlS5YAUDubpKQkXLt2DQCwdu1apKSkAACOHTuGFStWAFA7lKSkJEcHtmLFChw7dgwAkJKSgrVr1zYY0zfffIMvv/wSJpNJmpi0bqelS5ciJCQENptNmpgq22ne+uMYbD+CaJP6+Xwg6By6BKh7DN3pfx0PBX8LAAgzlWFUyGmE/Tjz5KHgb3Gn/3UAQJeAHDwQpNYn2mTFuJCTCEI5csylWPyBezGdP74Ps4Z1xu8HxmBUcDrS5g3D0T88hHEhJ/HZxE74eOq9aFuYgcsZR2vE5O69t3LlSpw+fRomk0l37eRsTBaLBQsXLnT8x4ue7z2Z+gjGxJgYk1wx/eMf/0BISAhMJpM0McnYTowJMJlMWLhwIX744QdpYpKxnRobk8lkwunTp7Fy5UppYvKFdvr8889x4MABmEwmaWLyRjuZTCZYLBb84x//kCYmV9tJ9v+OqPy9YzKZfDom2dtJxpiEUcgjhg8frgBQACizZ8926pzNmzc7zgkPD9esbufPn1datGjhKKtHjx5KQUFBveesWbPGcXxsbKzTZd1+++2O89auXVvtZ1evXnX8DIBy+vRpp675xBNPOM556aWXnK5LbdLS0hQASkhIiBIeHq6kpaUpdrtdycvLUyoqKhRFUZSCggKltLRUURRFKS4uVgoLCxVFUZSysjIlLy/Pca38/HzFZrMpiqIoRUVFSlFRkaIoimKz2ZT8/HzHcXl5eUpZWZmiKIpSWFioFBcXK4qiKKWlpY52qKioUPLy8hS73a4oiqJYLBalpKREURRFsVqtitlsVhRFUcrLy5W8vDylvLxcURRFMZvNitVqVRRFUUpKShSLxaIoilJvTDk5Oco777yjFBQUSBOT1u2UlZWl/P3vf1fy8/OliamgoEDZeTpbiZ+9Sen62jql3eyNSvzsz5XOs/+n3Dl7vRI/+3PljtkblM6zP1PiZ3+udJm9TvntG39Wusxe9+Nxnyl3zN6gxM/+XLlz9nql8+z/KfGzP1fazd6odH1tnRI/e5MSP/tz5SezP1O2n7jktZgUxf1774cfflDeffddpaCgQFft5EpMeXl5yjvvvOOoh17vvca0E2NiTIyJMWkd08WLF5W///3vSkFBgTQxydhOjEm91jvvvKPcuHFDmphkbKfGxlRQUKC8++67yg8//CBNTL7QTleuXHH8f7MsMXmjnSrv14sXL0oTk6vtJPt/R1y6dMnx/82+HJPs7SRTTJXPciu/0tLSFG8yKcqPc2SoUZ588kmsWbMGADBjxgynRsY+++wzjBkzBoC6r8eVK1c8Xq8rV65gwIABjtHG9u3bY8+ePYiLi6v3vC1btmD48OEA1D1Pqk7pqk9kZKTjL563bt2KYcOGOX5WUlKC0NBQx/ujR4+iV69eDV5z5MiRjlHH1157DX/961+dqktt0tPT0a1bN8f7tLQ0dO3a1e3r+SKbzYZTp06hS5cuLs0qMjJZc/bEwv04mOncPkIBKEeCfx4yy5vCDn+XyunTLgZrpvVzp4peJUM7yxADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRhBKKf5QZ4rSTJ3XbbbY7XOTk5Tp2TnZ3teB0T49oGyc64ceMGHnroIcfASVxcHHbs2NHgwAlQPR6z2Qyr1YqQkJB6zykuLq620dKtMTVp0gRNmjRxLL2llzwZTVBQEBITE0VXw6fImLOMbLPTAycAYIc/vitv5lZZB7/PxZlsCzq1iHDrfG+RoZ1liIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDtcc8TD+nUqZPj9YULF5w65+LFi47XnTt39mh9zGYzhg0bhvT0dABAs2bNsGPHDrRr186p86vGAzgXU9V4arvGrd/TQ56MqKSkBFu3btV8nx2ZyJKzS7nFjq+PU5z7/FUKgh19Ai86NpN3lavliSBDO8sQAxGRaOxLyVfwXjUGtrMYzLt7mDf5cyBLfLLEQdrjzBMP+clPfuJ4ffLkSdjtdgQE1J/eo0eP1np+YxUVFWH48OE4cuQIACAqKgpbt25Fly5dnL5GVFQU4uLiHEuJHTt2rNbBkKqqxtOqVStERkbWOOYnP/kJUlNTHddsyOXLl6vNUPFknoyqoqIC+fn5qKioEF0VnyFLzgbM/9rtc/2gINxkgx/cW+nxo5QL+NOobg0fKJAM7SxDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPe554SGFhIZo1a4bS0lIAwP79+9G3b986jy8tLUXz5s0dy1zt3LkTQ4YMaXQ9rFYrRowYga+++goAEBoaiu3bt6N///4uX+vpp5/GypUrAQDTpk3DwoUL6z1+2rRpeP/99wEAzz77LD788MMax/z3v//FL37xCwDqLJSMjIx6r7lq1SpMmDABANC2bVunZ6vURfQ6eUQiJbz2hdDyv//rcJhMJqF1ICIiIiIiIiIi3yD6WS6X7fKQ8PBwDB061PF+2bJl9R7/2WefOQZOYmJiMHDgwEbXoaysDGPGjHEMnAQHB2PDhg1uDZwAwKhRoxyvP/nkk3qnspWUlGDNmjW1nlvVyJEj4een3nZnzpxBSkpKvXWomsfHH3+84UpTg+x2OzIzM2G3u7f8khExZ4A/KtDCzwx/uP9XGUW2cg/WyPNkaGcZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7HDzxoBdffNHxetmyZY79Rm5VXFyMN954w/H+F7/4RYNLfDWkvLwcEyZMwObNmwEAAQEBWLNmDR588EG3rzly5Ei0bt0aAJCfn48///nPdR77pz/9Cfn5+QCA+Ph4/PSnP631uNjYWIwePdrx/tVXX0Vdk5+2b9+O7du3AwD8/f3xwgsvuBMG3aKwsBDLly9HYWGh6Kr4DOYMaGIqw6PBZ9HEVOb2NWx2fU+HlaGdZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7XHZLg8bOHAgdu/eDQBISEjAhg0b0KNHD8fPb9y4gaeeegpffvklAHXWyblz5xAdHV3jWpmZmdU2eF+6dCkmTZpU4zhFUTB58mQsX74cAODn54cVK1Zg/PjxjY5nyZIleP755x3X/fvf/46XXnrJMXukoqIC//rXv/DrX//asU7g8uXLMXHixDqvmZGRgR49eqCsTH0I++yzz2LBggUICwtzHPP1119j3LhxuHHjBgBg8uTJWLJkSaPjET3Vi0gk0ct2pc0bhvBgbrVFREREREREREQNE/0sl0+xPGzlypXo06cPrly5gszMTCQmJuKBBx5Ahw4dcO3aNezYsQPFxcUAbs4OqW3gxBULFixwDJwAQIcOHbBnzx7s2bPHqfP/9a9/1fmzKVOmIDk5GR999BEqKirw8ssv4x//+IdjP5eUlBScO3fOcfzkyZPrHTgBgM6dO2PBggWYOnUqAOCjjz7C559/jiFDhiAyMhKnTp3CgQMHHMf36NEDSUlJTsVCRPoVFuQvugpERERERERERERO4eCJh7Vu3RpfffUVnnrqKaSmpkJRFCQnJyM5Obnacc2bN8fSpUur7ZPirqtXr1Z7/+233+Lbb791+vz6Bk8AYPHixYiKisK///1vKIqCc+fOVRswAQCTyYRf/epX+Nvf/uZUmc8//zwURcHMmTNRVFSEvLw8rFu3rsZxQ4cOxUcffYSIiAin46H6FRQUYMGCBZg+fTqioqJEV8cn6CFniqKgsNSOsnIFgf4mhAcHuLz5+u5XBztez/wkFUcu5Dl9bpipFI8Hn8KG0i4oUoJdKhcA7olvqvvN4vXQzo0lQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj4MnGujcuTMOHDiA1atXY9WqVUhPT0dOTg6io6PRvn17jB49GpMnT0azZs1EV9UpQUFB+Oc//4lnn30WS5YsQXJyMn744QcAQKtWrTBo0CA8//zz6N27t0vXnTp1Kh5++GF88MEH2LRpEy5evIjCwkLExcXhrrvuwjPPPINRo0bp/oGrrwkNDcWoUaMQGhoquio+Q1TOMrLN2Jh6Gcez8pH2gxkFJTf3G4lqEohurSLRs3U0Hk9shU4tGh5gbBNzs/73totxafDEqgRgjy0BVsW9Xxv3to9x6zxvkuGzIUMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRIHaY97npChiF4nj8gZX2XkYGHyeRzMzHX6nD4JMZg+qAMGd77dqeMzss145L3d7lbRZdtmDnRqgIeIiIiIiIiIiAgQ/yzXz2slEZEuFBcXY/369Y69d6hh3spZXpENM1Ydw5Rlh10aOAGAg5m5mLzsEF5efQx5RbYGj+/cIhJ9EpyfDRKMMtwf+D2CUdbwwbfo0y7GJwZOZPhsyBADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2uPgCRGRDpy+YsYjSd9g4/HLjbrOhtTLeCTpG2Rkmxs89oVB7RtVlrOmP9DBK+UQERERERERERF5CpftIkMRPdWLqDanr5gx/v2UanuaNFZUk0B8Mq0vOreIrPe4GauONXrApj6PJ7ZE0vheml2fiIiIiIiIiIjkJPpZLmeeEBlMWVkZMjIyUFbmuQf1stMyZ3lFNkxaetCjAycAUFBShueWHGxwCa95I7siNjK4wev5oxxt/fLgj3Kn6xAbGYy5j/nO4KQMnw0ZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7HDwhMhiu6+g6LXM2Z2M6csylHr8uAOSYSzF3U3q9xzQNC8LyKX0Q1SSw3uNCTHbcH5SJEJPdqbKjmgRi+ZQ+aBoW5HR9RZPhsyFDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPy3aRoYie6kVU1VcZOZiy7LDm5SyZdA+GdI6t95iMbDOeW3LQIwM5sZHBWD6lT4NLhhEREREREREREdVF9LNczjwhIhJkYfJ575Szq+FyOreIxNaXB+LxxJaNKuvxxJbY+vJADpwQEREREREREZFP4+AJkcHk5+dj3rx5yM/PF10Vn6FFzjKyzTiYmeux69Xn4Pe5OJNtafC4pmFBSBrfC0sm3YM+7WKq/SzcVIrJTQ4j3FT7zJQ+7WKwdFJvJI3v5VNLdVUlw2dDhhiIiERjX0q+gveqMbCdxWDe3cO8yZ8DWeKTJQ7SHpftIkMRPdVLD+x2O7KystC6dWsEBASIro5P8GTOLuWq62ku+uYcPk656InqOeXZvvH406huDR9YxZlsCzYe/wHHLxUg/Yc8BJfm4VpFOMrhh6gmgejeKgo920RhZM9W6NQiQqOae48Mnw0ZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOIxA9LNcDp6QoYj+wBElvPaFsLIz3xzh9rmKoqDIVg6bvQJBAX4IC/KHyWTyYO2IiIiIiIiIiIhuEv0sl8t2ERlMUVERVq9ejaKiItFV8Rmy5KwxY+XFxcX4/H9rEYwyhAcHSDlwIkM7yxADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2uPgCZHB+Pn5ITo6Gn5+/Pg7S5acFdnK3T5XlhzUR4YYZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7XHZLjIU0VO9iEQu23X0Dw8hxkc3cyciIiIiIiIiImMR/SyXw2tEBmOz2ZCamgqbzSa6Kj5DlpwFBbjf5cuSg/rIEKMMMRARica+lHwF71VjYDuLwby7h3mTPweyxCdLHKQ9Dp4QGYzVakVycjKsVqvoqvgMWXIWFuTv9rmy5KA+MsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj8t2kaGInupFvktRFBSW2lFWriDQ3+T2pumXcosBADM/ScWRC3mermad7olvirXT7/NaeURERERERERERI0h+llugNdKIiJdUBQFpaWlCA4Oduvhv5FkZJuxMfUyjl/Kw5nLebheUgFAzVlUk0B0axWJnq2j8XhiK3RqEeHUNdvEhAIA7m0X49XBk3vbxzTqfCPcNzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRIHaY/LdhEZTEFBAd566y0UFBSIropufZWRgycW7scj7+3Gf5LP4fj5K3gMhxBuurkWZkFJGfZ+dwP/ST6HYe99gycW7sfXGVedLmNkYkstql53eT1bNep8I9w3MsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj8t2kaGInuqlB+Xl5bh27RqaN28Of3/398CQUV6RDXM2pmPj8cvVvu+HCkSbrMhXQlDRwJjz44ktMfexrmgaFtRgeU8s3I+DmbmNqrMz+rSLwZpp/Rp1DSPcNzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRKHEYh+lsuZJ0QG4+/vjxYtWvCXwy1OXzHjkaRvagycAEAF/JCrhDY4cAIAG1Iv45Gkb5CRbW7w2BcGtXerrq6a/kCHRl/DCPeNDDHKEAMRkWjsS8lX8F41BrazGMy7e5g3+XMgS3yyxEHa4+AJkcEUFhZi2bJlKCwsFF0V3Th9xYzx76cgx1xa68+boAyPBGWgCcqcul6OuRRPLkppcABlSOdYjOyp7fJdjye2xODOtzf6Oka4b2SIUYYYiIhEY19KvoL3qjGwncVg3t3DvMmfA1nikyUO0h4HT4gMJiAgAAkJCQgICBBdFV3IK7Jh0tKDKCipe2CkHCZkV0SgHM5vIlZQUobnlhxEXpGt3uPmjeyK2Mhgp6/ritjIYMx9zDNTGY1w38gQowwxEBGJxr6UfAXvVWNgO4vBvLuHeZM/B7LEJ0scpD3ueUKGInqdPNKfGauO1bpUl6c8ntgSSeN71XtMRrYZTy5KqXcAx1VRTQLxybS+6Nwi0mPXJCIiIiIiIiIi8hbRz3I584TIYEpLS5GSkoLS0tqXqDKSrzJynBo4CUQ5uvjnIBDlLpexIfUyvsrIqfeYzi0i8cm0vh6bgRIbGezxgRMj3DcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPgydEBmOz2ZCamgqbrf7lpIxgYfJ5p44LQDnuCLiOADcGTwBg4a6Gy+ncIhJbXx6IxxMbtwfK44ktsfXlgR6fcWKE+0aGGGWIgYhINPal5Ct4rxoD21kM5t09zJv8OZAlPlniIO1x2S4yFNFTvUg/MrLNeOS93V4rb9vMgejUIsKpY7/KyMHCXedx8Ptcp6/fp10Mpj/QwSObwxMREREREREREYkm+lkud8UhMpiKigqYzWZERkbCz894k88u5RYDAD5OueD0OSYoCDPZUKQEQXFh0/iqPk65gF8MbI82MaENHjukcyyGdI7FmWwLNh7/AccvFeDkDwXV9kSJahKI7q2i0LNNFEb2bOX0wIy7jHDfyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd4dRAZjNpuRlJQEs9ksuipCDJj/NQbM/xofp1x0+pwwkw3jQk4izOT+dM6PUi5gwPyvXTqnU4sIzBrWGR9PvRepbzyEtHnDcPQP6r+pbzyEj6fei1nDOms+cAIY476RIUYZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7XLaLDEX0VC89MProesJrX7h8jidmnlTKfHNEo84XxQj3jQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRhBKKf5XLZLiKD8fPzQ3R0tOhq+BQFJhQqwaKrIZQR7hsZYpQhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7THoTUig7FYLFi4cCEsFovoqviMJrBhZHA6msD9Zbt8nRHuGxlilCEGIiLR2JeSr+C9agxsZzGYd/cwb/LnQJb4ZImDtMfBEyKDCQoKQmJiIoKCgkRXxWfY4Y/v7M1gh7/oqghjhPtGhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDtcc8TMhTR6+SReO7seeJJvrrnCRERERERERERkTeJfpbLmSdEBmO1WpGcnAyr1Sq6KkLsfnUwdr86GHfHN3X6nCDYkRjwA4Jgd7vce+KbYverg90+XzQj3DcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPgydEBmO325GZmQm73f2BAF/WJiYUbWJCcW+7GKfP8YeCFn4W+MP9iXr3to9Bm5hQt88XzQj3jQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2uOyXWQooqd6kX5kZJvxyHu7vVbetpkD0alFhNfKIyIiIiIiIiIi8mWin+Vy5gmRwZSXlyM7Oxvl5eWiqyJU5xaR6JPg3OwTP1QgxlQMP1S4VVafdjE+P3BihPtGhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt6X7w5NChQ5g5cybuuecexMbGIigoCAEBATWOy8/Px+bNm7F582acOHFCQE2JfIPFYsGiRYtgsVhEV0W4Fwa1d+q4UFMZHg85hVBTmVvlTH+gg1vn6YkR7hsZYpQhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7Sn22W7rl27hsmTJ2PLli2O71VW1WQy1RgZLCsrQ0JCArKzs9GuXTt89913Xq0v+QbRU730QFEUlJaWIjg4GCaTSXR1hJux6hg2Hr/cwFEKglAOG/wBuJazxxNbIml8L7frpxdGuG9kiFGGGIiIRGNfSr6C96oxsJ3FYN7dw7zJnwNZ4pMlDiMQ/SxXlzNPLl++jN69e2PLli1QFMXxVZ/AwEC88MILUBQF33//PVJSUrxUWyLfYjKZEBISwl8OP5o3sitiI4MbOMoEGwLg6sBJbGQw5j4mx+CcEe4bGWKUIQYiItHYl5Kv4L1qDGxnMZh39zBv8udAlvhkiYO0p8vBk7Fjx+LixYtQFAVdunTBqlWrkJOTgxdffLHe88aPH+94vW3bNq2rSeSTzGYz3nvvPZjNZtFV0YWmYUFYPqUPopoE1nlMKGwYG3wCobA5fd2oJoFYPqUPmoYFeaKawhnhvpEhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4SHu6GzxZv349UlJSYDKZMGDAABw8eBBPPvkkmjdv3uBo4J133olWrVoBAA4cOOCN6hL5nJCQEAwaNAghISGiq6IbnVtE4pNpfeucgWKDP1LtLX9ctqthsZHB+GRaX3RuEenJagplhPtGhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt6W7PkwkTJmD16tUIDAzEmTNnkJCQ4PjZr371K/z73/+udc+TSiNGjMCWLVvQrl07nDt3zku1Jl8hep080re8IhvmbkrHhtSG9kCp2+OJLTH3sa7SzDghIiIiIiIiIiISQfSzXN3NPKmcddKvX79qAyfOuv322wGoG84TUU0lJSXYunUrSkpKRFdFd5qGBSFpfC8smXQP+rSLcXw/CHb0CbyIINjrPLdPuxgsndQbSeN7STlwYoT7RoYYZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7QWIrsCtrl69CgDo2LGjW+dXTrcqLS31WJ2IZFJRUYH8/HxUVFSIrorLFEVBYakdZeUKAv1NCA8O0GRzryGdYzGkcyzOZFuw8fgPSMu8ipDsC/AruzlRL6pJILq3ikLPNlEY2bMVOrWI8Hg99MSX7xtnyRCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd0t2xUZGYmioiJMnjwZixcvrvYzZ5btevLJJ/Hpp5+iefPmyMnJ8UaVyYeInupFrsvINmNj6mUcz8pH2g9mFJSUOX4W1SQQ3VpFomfraDyeqO0AhqIoKLKVw2avQFCAH8KC/DUZuCEiIiIiIiIiIiLxz3J1t2xX8+bNAQCZmZlunX/06FEAQMuWLT1VJSKp2O12ZGZmwm6vewkqPfgqIwdPLNyPR97bjf8kn8Pe725UGzgBgIKSMuz97gb+k3wOw977Bk8s3I+vM656vC52ux0XLlxAiD8QExak2YwXPfOV+6YxZIhRhhiIiERjX0q+gveqMbCdxWDe3cO8yZ8DWeKTJQ7Snu4GT+655x4oioKUlBSYzWaXzj148CDOnTsHk8mE/v37a1RDIt9WWFiI5cuXo7CwUHRVapVXZMOMVccwZdlhHMzMdencg5m5mLzsEF5efQx5RTaP1UnvOfMGI+RAhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt6W7Zro8//hgTJ06EyWTCrFmz8Oabbzp+Vt+yXWVlZRg4cCAOHDgAk8mEbdu24cEHH/R29UnnRE/1ovqdvmLGpKUHkWNu/J5FsZHBWD6lDzq3iPRAzYiIiIiIiIiIiMibRD/L1d3Mk/Hjx6N9+/YAgL/97W/4xz/+0eA5165dw2OPPeYYOLn77rs5cELkY05fMWP8+ykeGTgBgBxzKZ5clIKMbNdmsBERERERERERERHpbvAkICAAixcvRkBAABRFwa9//Wv07t0b77zzDs6fP+84buPGjVi0aBEmTpyIdu3a4csvvwQAhIaG4oMPPhBVfSLdKygowJtvvomCggLRVXHIK7Jh0tKDNfY0aayCkjI8t+Rgo5fw0mPOvM0IOZAhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4SHu6W7ar0qeffopJkyahpKSkwY2ZK0MIDw/HqlWrMGLECG9UkXyQ6KleelBWVoZz586hQ4cOCAwMFF0dAMCMVcew8fhlza7/eGJLJI3v5fb5esyZtxkhBzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRKHEYh+lqvbwRNATc6MGTPw9ddfV/u+yWTCrdUeNGgQ/vnPfxruQTi5RvQHjmr6KiMHU5Yd1rycJZPuwZDOsZqXQ0RERERERERERI0n+lmu7pbtqqpr167YuXMnUlNT8Ze//AWPPfYY7r77bnTo0AE9e/bEww8/jD/84Q84cOAAvvrqKz4EJ3JCcXEx1q9fj+LiYtFVAQAsTD7f8EGeKGeX++XoLWciGCEHMsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpL0B0BZzRo0cP9OjRQ3Q1iMjDMrLNOJiZ65WyDn6fizPZFnRqEeGV8oiIiIiIiIiIiMh36XrZLiJPEz3Vi4BLuTdH9Rd9cw4fp1z0WtnP9o3Hn0Z1a/hAIiIiIiIiIiIiEkr0s1xdL9tFRJ5XVlaGjIwMlJWVCSl/wPyvHV/eHDgBgI9SLrh1nuic6YERciBDjDLEQEQkGvtS8hW8V42B7SwG8+4e5k3+HMgSnyxxkPZ0OXiSkZGBEydO4PTp0y6dd/r0aZw4cQJnz57VqGZEvs/o6zq6M9nO6DkDjJEDGWKUIQYiItHYl5Kv4L1qDGxnMZh39zBv8udAlvhkiYO0p7tluy5cuIAOHTpAURRMnDgRS5cudfrcyZMn48MPP0RAQAAyMzMRFxenYU3JF4me6kVAwmtfCC0/bd4whAf7xHZPREREREREREREhiX6Wa7uZp6sWbMGFRUVAIBf/vKXLp07ffp0KIoCu92OTz75RIvqEZGPs9krRFeBiIiIiIiIiIiIdE53gydff/01ACAuLg733HOPS+f26dPHMdtk586dHq8bkQzy8/Mxb9485Ofni66KEEEBrnd7Rs8ZYIwcyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd0NnqSnp8NkMuHuu+926/y7774biqIgPT3dwzUjkkN4eDiee+45hIeHi66KEGFB/i6fY/ScAcbIgQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2tPdwv/Xrl0DALRo0cKt8yvPu3r1qsfqRCSTgIAAJCQkCCt/96uDHa9nfpKKIxfyvFb2PfFNYTKZXD5PdM70wAg5kCFGGWIgIhKNfSn5Ct6rxsB2FoN5dw/zJn8OZIlPljhIe7qbeVKprKzMrfPsdnu1f4mouqKiIqxevRpFRUVCym8TE+r4urddjFfLvre9e+WJzpkeGCEHMsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpT3eDJ82bNwcAZGZmunX+999/DwBo1qyZp6pEJBU/Pz9ER0fDz0/8x39kYkvvltezlVvn6SlnohghBzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRIHac+kKIoiuhJVPfzww9ixYweCg4Nx+fJlNG3a1Olz8/LyEBcXh7KyMgwYMADJycnaVZR8Unp6Orp16+Z4n5aWhq5duwqsET2xcD8OZuZqXk6fdjFYM62f5uUQERERERERERFR44l+lqu74bWHHnoIAGCz2TBv3jyXzp0zZw5sNlu16xBRdTabDampqY7PimgvDGrvlXKmP9DB7XP1ljMRjJADGWKUIQYiItHYl5Kv4L1qDGxnMZh39zBv8udAlvhkiYO0p7vBk+eeew6hoaEAgH/+8594++23nTpv/vz5+Ne//gUACA4OxqRJk7SqIpFPs1qtSE5OhtVqdflcRVFgsZYht8gGi7UMnpi4NqRzLEb21Hb5rscTW2Jw59vdPr8xOZOFEXIgQ4wyxEBEJBr7UvIVvFeNge0sBvPuHuZN/hzIEp8scZD2dLdsFwD88Y9/xNy5c2EymQAAffv2xUsvvYTBgwejRYsWjuNycnLw1Vdf4d///jf2798PRVFgMpnwu9/9Dn/6059EVZ90TPRUL1+UkW3GxtTLOJ6Vj7QfzCgoKXP8LKpJILq1ikTP1tF4PLEVOrWIcKuMvCIbHkn6BjnmUk9V2yE2MhhbXx6IpmFBHr82ERERERERERERaUP0s1xdDp4oioIxY8Zg/fr1jgGUSsHBwQgPD0dhYSFKS0urnQMAI0eOxPr1671ZXfIhoj9weqAoCkpLSxEcHFzj81XVVxk5WJh83qX9SPokxGD6oA5uzfLIyDbjyUUp1QZnGiuqSSA+mdYXnVtENuo6zuZMZkbIgQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRhBKKf5epu2S4AMJlMWLt2LV599VWYTCYoiuL4slqtuH79OqxWa7Xv+/n5YdasWVi3bp3o6hPpWkFBAd566y0UFBTU+vO8IhtmrDqGKcsOu7yR+8HMXExedggvrz6GvCLX1o3s3CISn0zri9jIYJfOq0tsZLBHBk6AhnNmBEbIgQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2tPlzJOqvv32W7z77rvYtm0bMjMza/w8ISEBjz76KGbOnIk777zT+xUknyJ6tFIPysvLce3aNTRv3hz+/v7Vfnb6ihmTlh70yPJZsZHBWD6lj8uDF3lFNszdlI4NqZfdLvvxxJaY+1hXjy3VVV/OjMIIOZAhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4jED0s1zdD55UdfXqVeTk5MBisSAiIgKxsbG4/Xb3N4Em4xH9gdOz01fMGP++fpbN+iojBwt3ncfB711YNqxdDKY/4N6yYURERERERERERKQfop/l6nLZrrrcfvvt6N69O+677z50796dAydEbigsLMSyZctQWFjo+F5ekQ2Tlh706MAJABSUlOG5JQddXsILAIZ0jsWaaf2wbeZA/HJwB9x/RzNENQmsdkxUk0Dcf0cz/HJwB2ybORBrpvXTZOCktpwZjRFyIEOMMsRARCQa+1LyFbxXjYHtLAbz7h7mTf4cyBKfLHGQ9gJEV4CIvCsgIAAJCQkICLj58Z+zMd0jS3XVJsdcirmb0pE0vpdb53dqEYFZLToDUDf0KrKVw2avQFCAH8KC/L2ysVdtOTMaI+RAhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt+dSyXUSNJXqqlx59lZGDKcsOa17Okkn3YEjnWM3LISIiIiIiIiIiIt8n+lmuTy3bRUSNV1paipSUFJSWqjNNFiaf90q5C3d5pxwt3JozIzJCDmSIUYYYiIhEY19KvoL3qjGwncVg3t3DvMmfA1nikyUO0p6uB0/27NmDX/7yl+jduzeaN2+O4OBg+Pv7O/XFaVdEtbPZbEhNTYXNZkNGthkHM53fkL0xDn6fizPZFq+U5WlVc2ZURsiBDDHKEAMRkWjsS8lX8F41BrazGMy7e5g3+XMgS3yyxEHa0+WyXbm5uZg4cSK2bNni+J6r1TSZTCgvL/d01cjHiZ7qpReXcosBAIu+OYePUy56rdxn+8bjT6O6NXwgERERERERERERGZroZ7m6m3lit9vx8MMPY8uWLVAUxfFFRJ5RUVGBR9/eioHzv/LqwAkAfJRywavleUpFRQXy8/NRUVEhuirCGCEHMsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpT3eDJ4sWLcLRo0cd78eOHYvNmzfjypUrsNlsqKiocOqLs06Iamc2mzEu5CTCTGKmJvriYKjZbEZSUhLMZrPoqghjhBzIEKMMMRARica+lHwF71VjYDuLwby7h3mTPweyxCdLHKQ93S3b9cADD2D37t0wmUz4+9//jhkzZoiuEklE9FQvPaioqECP369HkRIEBSavl582bxjCg31rT6KKigqYzWZERkbCz093Y85eYYQcyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxxGIPpZru6eYKanp8NkMqFTp04cOCHSgJ+fHwqVYGHl2+wVgLji3eLn54fo6GjR1RDKCDmQIUYZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7uhtaKyoqAgD07dtXcE2I5GSxWDAyOB1NIGbZrqAA3XU7DbJYLFi4cCEsFovoqghjhBzIEKMMMRARica+lHwF71VjYDuLwby7h3mTPweyxCdLHKQ93T3FbNmyJQBwyhSRRoKCgvCdvRns8BdSfliQmHIbIygoCImJiQgKChJdFWGMkAMZYpQhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7Snuz1PnnrqKXzyySe47777sGfPHtHVcZvNZsMnn3yCVatWIT09HTk5OWjatCnatWuH0aNHY9KkSWjWrJlHyywvL0d6ejoOHTqEw4cP49ChQzhx4gTKysoAqPvJJCcnO309k8n9/TCee+45LFu2rNafJSQk4MKFCy5d79KlS2jdurXb9akkep08vbiUWwwAmPlJKo5cyPNauffEN8Xa6fd5rTwiIiIiIiIiIhIo7wKQ1KP2n718Amga7936kE8R/SxXd9M7fvGLXwAADhw4gG+//VZwbdyTkZGBe++9FxMnTsSWLVtw8eJFlJaWIjs7G/v378esWbPQtWtXbN682WNlrl+/HpGRkejZsyemTp2KhQsX4siRI46BE29r0aKFkHKpYVarFedOHETzUD/c2y7Gq2Xf29675XmK1WpFcnIyrFar6KoIY4QcyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd1tGD948GBMnToVixcvxsSJE7Fz506EhoaKrpbTsrKyMHToUFy+fBmAOntj4MCB6NChA65du4YdO3agpKQEV69exahRo7B161YMGTKk0eXm5+ejuLi40dep6pe//KXTx6anp1eb1fLMM884dd7EiRMRERHR4HHh4eFO14XqZ7fbkZmZiXvuuQcjE1viP8nnvFb2yJ6tvFaWJ1XNmVEZIQcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2lPd8t2AUBZWRl+8YtfYPny5ejUqRPefPNN/PSnP4W/v/73Shg4cCB2794NAIiPj8eGDRvQs2dPx8+vX7+O8ePHY+fOnQCAmJgYnDt3DtHR0Y0qd9myZZg8eTJiY2PRu3dvx9e2bduQlJQEwPVlu1wxbtw4rF27FgBw11134ciRI3UeW3XZru+//x4JCQma1Kk2oqd66dETC/fjYGau5uX0aReDNdP6aV4OERERERERERHpQE46cOgD4PAHtf+8zb1AfH+g+zggtot360Y+QfSzXN3NPKk6CyM4OBhnzpzB6NGjERISgk6dOiEqKsqpvThMJpNjgMJbNm/e7Bg4CQoKwqZNm9C9e/dqxzRr1gwbNmxAjx49cP78eeTm5mL+/Pn4y1/+0qiyH3nkEVy4cAFt27at9v0DBw406rrOyMvLw6ZNmxzvn3vuOc3LJPeVl5fj2rVraN68Ofz9/fHCoPY4uEz7wZPpD3TQvAyt3JozIzJCDmSIUYYYiIhEY19KvoL3qjGwncVg3t3DvMmfA6fjO7sN2PMecHFf/Re8dED92vMu0PY+4P5fAx0f9midayN7O5Hn6G7Pk+TkZOzatQu7du2CzWaDyWSCoigoKSnB8ePH8c033zh+XtdXcnKyZjMs6vPvf//b8fq5556rMXBSKSwsDH/84x8d7xctWgS73d6oslu0aFFj4MRbVq9ejdLSUgBAYGAgJkyYIKQe5ByLxYJFixbBYrEAAIZ0jsXIni01LfPxxJYY3Pl2TcvQ0q05MyIj5ECGGGWIgYhINPal5Ct4rxoD21kM5t09zJv8OWgwvuJcYO3zwMonGh44udXFfcDKccC6qep1NCR7O5Hn6G7ZLj8/z4znmEwmlJeXe+RazigsLESzZs0cgwj79u1Dv351L1FktVrRvHlzFBYWAgB27tzpkb1PbjV37lzMmzcPgHbLdvXt29cxw2XUqFH43//+V+/xXLZLLEVRUFpaiuDgYMcsrrwiGx5J+gY55lKPlxcbGYytLw9E07Agj1/bW2rLmdEYIQcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz0G98WWnASvGApYrjS8oIg54Zh0Qq80zO9nbSSain+Xqbtmur7/+WnQV3LJv3z7HwElYWBh69+5d7/EhISHo168fvvzySwDAV199pcngidbOnj1bbWkwLtmlfyaTCSEhIdW+1zQsCMun9MGTi1JQUFLmsbKimgRi+ZQ+Pj1wAtSeM6MxQg5kiFGGGIiIRGNfSr6C96oxsJ3FYN7dw7zJn4M648tOA5aNAKz5ninIcgVYOhyYvFmTARTZ24k8R3eDJw888IDoKrjl9OnTjtfdu3dHQEDDqb3rrrscgydVz/cly5cvd7xu1qwZRowY4dL5R44cwYYNG/DDDz8AAG677TZ06dIF999/P5o2berRupLKbDZjyZIlmDJlCiIjIx3f79wiEp9M64vnlhz0yAyU2MhgLJ/SB51bRDZ8sM7VlTMjMUIOZIhRhhiIiERjX0q+gveqMbCdxWDe3cO8yZ+DWuMrzlVnnHhq4KSSNR/4eAwwfR8QGuPRS8veTuQ5uhs88VVnzpxxvI6Pj3fqnKp7lGRkZHi8TlqrqKjARx995Hg/YcIEBAYGunSNsWPH1vr9wMBAjB8/HnPnzkX79u0bVU+qLiQkBIMGDap1hL1zi0hsfXkg5m5Kx4bUy26X8XhiS8x9rKvPzzipVF/OjMIIOZAhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmqNb/MszyzVVRvLFWDLq8CYxR69rOztRJ6juw3jfdWNGzccr2NjY506p0WLFo7XubnaboSkha+//hqXLl1yvPfkkl1lZWX46KOP0KtXL2zatMlj1yUgKCgIiYmJCAqqfWCjaVgQksb3wpJJ96BPO9dG9vu0i8HSSb2RNL6XNAMnQMM5MwIj5ECGGGWIgYhINPal5Ct4rxoD21kM5t09zJv8OagR39ltQNpabQs9+alajgfJ3k7kORw88ZDKjd8BoEmTJk6dU/W4quf7ig8//NDxunv37rjrrrucOi8gIAAjRozAwoULcfToUeTn56OsrAzXr1/Hl19+ieeff94xg8VsNmPcuHHYu3evR+seEhKC8PBwAEB5eTny8/OhKIqjTJvNBgAoKSlBUVERAMButyM/P99xjYKCApSVqfuDFBcXo7i4GIA68FNQUOA4Lj8/H3a7HQBQVFSEkpISAIDNZoPZbAagblSVn5+P8vJyAOr9YLVaAQClpaWwWCwA1Nk++fn5qKioAABYLBbHXjtWq9VxH9UXU25uLjZt2oSSkpJ6Y+rbNgLLnu2JbTMH4sWB8RiUEIaoJmq7hJtK4Y8KRDUJxAPtIvDigNbYNnMgPp58N+5uGeL1mLRup6tXr2Lr1q0oLi6WJiZX772ioiJs2LDBUScZYrq1na5evYrPP/8cJSUlPhuTEdqJMTEmxsSYtI4pOzsbW7duRUlJiTQxydhOjEk9f8OGDdX+O8DXY5KxnRobU0lJCT7//HNcvXpVmph8oZ2uX7/u+H8DWWLyRjuVlJRg8+bNyM7OliYmV9tJ9v+OyMnJwRdffIGSkhI1pl3/UmNCAAoQcTMmRMIOfzUmNEEJ1GdFNgTCDPV5nPLjceU/Pp4uRCisCFZjQhAsCFNjggn5uxawnVxoJxljEoWDJx5SedMAcHrUMjg42PG68ub0FYWFhVi3bp3jvSuzTg4cOIDPP/8c06ZNQ69evRAVFYWAgADcdtttePDBB7F48WLs3r0bt912GwD1g/j88887PqSe0LdvX8eSYdeuXUNSUpLjA71kyRKcOnUKALBr1y7HzJesrCwkJSU5rrFgwQKcO3cOALB9+3Zs374dAHDu3DksWLDAcVxSUhKysrIAAJs2bcKuXbsAAKdOncKSJUscMSYlJeHatWsAgLVr1yIlJQUAcOzYMaxYsQKA2qEkJSU5OrAVK1bg2LFjAICUlBSsXbu2wZj27t2Ls2fPoqKiwqmYOrWIwMj2Aeicn4LUNx5C2rxhGBdyEp9P6YLUNx7Co1GX0cP/Cjq1iBAWk9bttGLFCuTn56OkpESamFxtp4KCAqSmpjp+ycoQ063ttHbtWly8eBEVFRU+G5MR2okxMSbGxJi0jmnRokWO//GTJSYZ24kxqQ8pUlNTpYpJxnZqbEwVFRW4ePGio64yxOQL7bRt2zacP38eFRUV0sTkaCdFwanjR7Dkg8WA1YxSq9VjMVVUVODq1atYtGiRYe892f87YunSpbh8+TIqKiqwfcMabP9B/cPwc4jHAjx7MybTVGQhTo0JD2EX+qox4U4swZNqTAhGkmkqrkF9/rcWI5AC9Q+zj6ErVuBnakyIQNLlXjCfO8J2MtjnqWpMopiUymEenTpz5gx27NiB1NRUXL9+HRaLxTGCVR+TyYSdO3d6oYaqESNGYPPmzQCA2bNn480332zwnC1btmD48OEAgPDwcMdInSfNnTsX8+bNAwA88MADSE5O9sh1ly9fjkmTJgFQZ5JcunSp2jJknvDll1/i4Ycfdrxfu3YtxowZ06hrpqeno1u3bggJCUFAQABSUlLQuXNnWCwWREVFwWQywWw2IyQkBEFBQSgpKUFFRQXCwsJgt9tRWFiI6OhoAOpDytDQUAQGBjpGcENDQ1FWVobi4mJERUUBUEdxw8PDERAQgKKiIvj5+aFJkyaw2WywWq2IjIyEoigoKChAREQE/P39UVhYiICAAISEhKC0tBQ2mw0RERGoqKiA2WxGZGQk/Pz8YLFYEBQUhODgYFitVtjtdoSHh6O8vJwxMSbGxJgYE2NiTIyJMTEmxsSYGBNjYkyMCQE3zqDoyFr4ZaeiydWjsFmLYEUwIlEIJTgaBc17I6Jtd/j3HIfCsLa+EZOM7eQrMZVeR2BgAIp3/QNI/RihsKIMAShGE0RBfbaZj0iEowgBKEcRmsAPCprAChsCb957AAoQiQgUwh8VKEQoAlCOEJSiFEGwIRARKEIFTDAjApH3PAG/n77DdjJYTD/88AO6deuGSmlpaejatSu8RbeDJ+fPn8cLL7zg1gCIoigwmUwenanQkCeffBJr1qwBAMyYMcOpkbHPPvvMMRjQokULXLni+c2VtBo8GTp0KL766isA6sDR559/7pHr3mrAgAHYs2cPAOD555/H4sWN2yCqcvCkkrc/cHpgt9uRlZWF1q1bIyAgQHR1fAJzZowcyBCjDDEQEYnGvpR8Be9VY2A7iyFN3s9uA/a8B1zc5/w5be8D7v810PHhho+9hTR5awTZc2C325H1/3qiNa4gAN577uowt6DhY5wgezvJRPSzXF0u25Wamoq77roLO3fuhKIoDX5VuvW9N1UuMQWo6/85Izs72/E6Jsa1jblFunjxIr7++mvHe09uFH+rBx980PH69OnTmpVjJIWFhVi+fLlP7rMjCnNmjBzIEKMMMRARica+lHwF71VjYDuL4fN5L84F1j4PrHzCtYETQD1+5Thg3VT1Oi7w+bx5gOw5KCwsxHLTEyj8cT8Sr/PQc1/Z24k8R3czT8rKytCpUydkZmYCAB599FFMmjQJq1atwvr162EymfDVV1/BYrHgwoUL+Oabb7BhwwbYbDaEh4fjnXfeQceOHQGoMy28JSkpCTNnzgSg7qexf//+Bs957bXX8NZbbwEARo8eXW0PEU/RYubJn//8Z/zf//0fAKBp06a4cuVKtf1bPOn999/HtGnTAAAdO3bEmTNnGnU90aOVRERERERERESayU4DVowFLB5Y3SQiDnhmHRDL5yZUxdwocWW/ngUERzR8HElD9LNc3c08+eijj5CZmQmTyYSJEyfiiy++wLhx49CqVSvHMQ888AB++tOf4pe//CU++eQTnD9/HsOHD0dhYSFmzZqF4OBgrw6cAMBPfvITx+uTJ0/Cbrc3eM7Ro0drPV/vPvzwQ8fr8ePHazZwAgBFRUWO12Fhgka1iYiIiIiIiIj0LjsNWDbCMwMngHqdpcOBnHTPXI+osew20TUgg9Hd4Enl3hkBAQH429/+5tQ5LVu2xMaNGzFy5EiYzWaMHz8eBQWeWQPPWffdd59jEKGoqAiHDx+u9/jS0lKkpKQ43g8ZMkTT+nlKSkoKzp4963iv5ZJdAHDs2DHH65YtW2pallEUFBTgzTff9PpnxJcxZ8bIgQwxyhADEZFo7EvJV/BeNQa2sxg+mffiXHXGiTXfs9e15gMfj3FqCS+fzJuHyZ6DgoICvIkXUQBBsz8CgjxyGdnbiTxHd4Mnx44dg8lkQp8+fdCsWTOnz/Pz88OiRYsQFBSES5cuYfny5RrWsqbw8HAMHTrU8X7ZsmX1Hv/ZZ5/BYrEAUPc7GThwoJbV85iqee3cuTPuvfdezcq6ceMGNmzY4Hg/aNAgzcoyktDQUIwaNQqhoaGiq+IzmDNj5ECGGGWIgYhINPal5Ct4rxoD21kMn8z75lmem3FyK8sVYMurDR7mk3nzMNlzEBoailHYhlCUiKlAULhHLiN7O5Hn6G7w5Pr16wCAO+64o9r3/f39Ha9LSmr/gMbGxmLgwIFQFAVr167VrpJ1ePHFFx2vly1bhvT02qc1FhcX44033nC8/8UvfoGAgADN69dYpaWl+OSTTxzv3Zl14uxGTOXl5Zg6dSrMZjMAICgoCOPGjXO5PKopMDAQnTt3RmBgoOiq+AzmzBg5kCFGGWIgIhKNfSn5Ct6rxsB2FsPn8n52G5Cm8XOwk5+q5dTD5/KmAdlzEBgYiM4v/w+BLx8F2mj3B9W1atMXMJk8cinZ24k8R3eDJzabunbdrSN/ERE3p4NdvXq1zvMTEhIAAOfPn/d85RowYsQIDBgwAIA60PDTn/4UJ06cqHbMjRs3MGrUKHz33XcA1Fkns2fPrvV6lXu/VH41NJtFaxs3bkReXh4AdabPM8884/I1+vbti5kzZ+LIkSN1HnPy5Ek8+OCDWL9+veN7v/71rxEfH+9yeVRTcXEx1q9fj+LiYtFV8RnMmTFyIEOMMsRARCQa+1LyFbxXjYHtLIbP5X3Pe94pZ29SvT/2ubxpQPYcFBcXY/2uYygObg7E9/du4QmeK0/2diLP0d10h6ZNm+LatWvVNgoHgObNmztenz17ts4H6ZUDK5UzWLxt5cqV6NOnD65cuYLMzEwkJibigQceQIcOHXDt2jXs2LHD8cEMCAjAmjVrEB0d7ZGyhw8fjsuXL1f7XnZ2tuP14cOHkZiYWOO8zZs3O7WfSNWN4ocOHYrWrVu7XMfCwkIkJSUhKSkJzZo1Q2JiIuLi4hAaGgqz2Yzjx4/j1KlT1c4ZOXIk/vznP7tcFhERERERERGR1HLSgYv7vFPWhb1Azikgtot3yiN96z4W2POu98rrNtZ7ZRH9yKQoiiK6ElUNGDAAe/fuxZAhQ7Bjxw7H97/++msMHToUJpMJv/nNb/D222/XONdqtaJDhw64cuUKmjVrVu8MFS1lZGTgqaeeQmpqap3HNG/eHEuXLsWIESPqPCYzMxPt2rVzvF+6dCkmTZpU5/EJCQm4cOGCy/X9/vvvHTN26nL16lW0atUKdrsdALBixQpMmDDB5bJcqWNoaCh+//vf47XXXoOfn2cmSaWnp6Nbt26O92lpaejatatHrk1ERERERERE1CBFAUotQHkZ4B8IBEe4vhxR3o/PVvYmAYc/8Hwd69J7KnDfDKApVwchAEse9c7gXXx/YPJm7csh3RH9LFd3M0/uuusu7N27t8Z+IX379kVERAQKCwvx3//+F1OnTkWnTp2qHfOHP/wBV65cgclkQq9evbxZ7Wo6d+6MAwcOYPXq1Vi1ahXS09ORk5OD6OhotG/fHqNHj8bkyZPRrFkzYXV01YoVKxwDJ5GRkfjZz37m1nV2796Nffv2Yf/+/Th69ChycnJw48YNFBQUIDQ01DEbZdCgQXj22Wc9NiuHbiorK8O5c+fQoUMHru3oJObMGDmQIUYZYiAiEo19KfkK3qvGwHYWQ5O856QDJ9cCPxwBrhwHrPk3fxYSDcT1BFrdDXQf59zMjqQenqmXqw4tVr/mFtT4Ee9X+XNQI777ZwIrvTB40n+mRy8nezuR5+huz5MhQ4YAUGc6VF2+qUmTJnj22WehKAosFgv69OmDGTNm4L///S+SkpIwdOhQvPvuzali7mxm7klBQUGYOHEitmzZgosXL6K0tBQ5OTnYv38/Zs2a5dTASUJCAhRFcXzVN+sEUGeqVD3e2a+GZp0A6p4jlccXFBSgSZMmTmaiujZt2uDJJ5/Ee++9h2+++QZnzpzB9evXUVZWhoKCApw7dw7r1q3Dr371Kw6caITrOrqOOTNGDmSIUYYYiIhEY19KvoL3qjGwncXwaN7PblP/On/BfeoSR9/vqj5wAqjvv9+l/nxBP/X4s9sbX7aX8X6VPwc14us4TPvltLqPAzo+7NFLyt5O5Dm6W7bLarWiefPmKCoqwu9//3v86U9/cvwsLy8PiYmJuHTpEkx1TGdUFAXDhg3Dli1bvFVl8iGip3oRERERERERGZ4nlq3Se/nFucDmWUDaWvev0X0c8Oh8IDSm5s/mRrl/XU+oZeYJGVRxrjo4aLni+WtHxAHT99X+GSBDEP0sV3fLdoWEhGDnzp3Iy8tD06ZNq/2sadOm2L17N5566ins37+/xrkmkwkTJ07EggULvFVdIiIiIiIiIiJqiKeXrdJz+dlpwIqxjX+YfPJTIHMP8Mw6IJZ/+Ek6FRqj3qNLh9ecVdUYIdHqdTlwQgLpbtkuAOjTpw+GDRuGPn361PhZ27ZtsXfvXuzduxd//OMf8cILL+DFF1/E3/72N5w6dQrLli1ze0kpIiPIz8/HvHnzkJ+fL7oqPoM5M0YOZIhRhhiIiERjX0q+gveqMUjRzqKXrXKj/Pz3R7mf9+w0YNkIz/0VvuWK+lA6J73hYwVz6n5VFMBqBopuqP/qa0GcRpPiM1uPOuOL7apu6B4R55mCIuLU62k0aCh7O5Hn6G7ZLiItiZ7qpQd2ux1ZWVlo3bo1AgJ0N/lMl5gzY+RAhhhliIGISDT2peQreK8ag0+3s9bLVmlYvh3+yEIcWnfth4ARLpTvzeWLdLhsV533q+hZR17k059ZJzQYX3EusOVVddaUuxrzuXeS7O0kE9HPcjl4QoYi+gNHREREREREJD1PLVsFqIMGri5bJar8tc83brCoId3HAWMWq6/zLqj/fvZz4NIB7cq8VZu+wOj3gabxDR97dhuw5z3g4j7nr9/2PuD+X3t8g3DysrPbgL1JwIW9zp8T3x/oP5NtT9WIfpary2W7iEg7RUVFWL16NYqKikRXxWcwZ8bIgQwxyhADEZFo7EvJV/BeNQafbGfRy1Z5oPwiNMFqjEQRmjhf/tlt2g6cAOpf85/dpr5uGq9+xffXtsxbJfSvc+DEcb9ey1IHklY+4drACaAev3IcsG6qOovBx/jkZ9YFTsfXcZi67Nb0/UDvqXUf16YvMOAV9bjJm702cCJ7O5HncPCEyGD8/PwQHR0NPz9+/J3FnBkjBzLEKEMMRESisS8lX8F71Rh8rp2Lc9UZH57cNBpQr/fxmIYfpnuofD8oiIYZflCcL3/Pe40q02l7k6q/7z7WO+VW6lZ3eX5+fogOLIff8uGNH0g6+am6BJoP7PVSlc99Zl3kcnyxXYD7ZtT989HvA0Pf8PpybbK3E3mOkGW7vvnmm2rvBw4cWOfPGqPqdYkA8VO9iIiIiIiIiKTlzWWr9FR+Trr6oN9bpu+v/rB5yaOuz/BwR3x/dXZAXSpn/Xhy8CwkWtONww0h7wKQ1KP2n718wrkl2Hy5fPJpop/lCtkRZ9CgQTCZTAAAk8kEu91e688a49brEpHKZrPh1KlT6NKlC4KCgkRXxycwZ8bIgQwxyhADEZFo7EvJV/Be9QBFAUotQHkZ4B8IBEcAHnge4Uk+1c7eWraq+zh1SSANy7chEKdwJ7rgWwShrO7yK/cdOfSBR8p12uEPgBHv3Hx//0xgpRcGT/rPrPtnxbmwfTwep6wt0QVF1fPWGJWzfqbv03QDcU+p9zMros/JSa///vzs5+qgWPdxTs3+cKtPahoPzC1wssLe4bW+lQNHPk/I4AkA1DfhhXvYE2nHarUiOTkZ7du31/9/fOsEc2aMHMgQowwxEBGJxr6UfAXvVTflpAMn1wI/HAGuHK/+F/Ih0UBcT6DV3U4/SNSaT7WzN5etqm3wxIPlWxGMZPRDe1ysOQhQtfy6Hopq7dDi6oMnHYepy2lpPeumvv0oNs+CtTAPyXi49rw1huUKsOXV+mcd6USNz6yoPufsNvUz0dCMpEsH1K897wJt7wPu/3W97exTfVI9ZImDtCdk2a5bZ5d8/fXXdf6sMapelwgQP9WLiIiIiIiIBHD2QWJVTjxIpB+JXrZKVPlzo7xX5q3m5FeftVCcq+bAcsXzZUXE1T/z4+w2dXN4rU1YU/vAmR6J6nOKc4HNsxo3kNZ9HPDofJ+Y6aN7nHnSaKKf5QqZeZKcnOzWz4io8RRFQWlpKYKDgz02UCk75swYOZAhRhliICISjX0p+Qreq05qzIPEi/vUpZC0epDoxBI+um9nkctWVd2E2sPlKwBKEYxglKLWrN9avgi2QvWeqRQaAzyzDlg63PN7jjyzrv77/8dZPw3mrbHqmnWkI0rRDZR+PhvBpz91PQeN7XOy04AVYxs/gHbyUyBzj9rut+w1o/s+qTa1DGA47tUZB2GKSRBSLfINfqIrQETeVVBQgLfeegsFBfpab1LPmDNj5ECGGGWIgYhINPal5Ct4rzohO039S/zGLmV08lP1Ojnpja9TTjqwYx6wfCTwVgLwZhvg7fbqv28lqN/fMQ/IOQVA43ZWFMBqBopuqP+6szBJUg/167CXB08OLb5ZtgblFyASb5l+iQJE1l++SHZbze/FdlU3V4+I80wZEXENb9aek+6YXdFg3hrrwl7HZ0OXstNQ8J+H8VZGm8blwJ0+JzsNWDbCczOPLFfUgbhb6iDL7x7HvWopFF0V0jkhy3bVx2w2O15HRmrU2ZJhiZ7qpQfl5eW4du0amjdvDn9/f9HV8QnMmTFyIEOMMsRARCQa+1LyFbxXG1D5INHTf4Hf0IPkuri5hE95v5dxrWmi59rZ0/sviFy2SkPl8MM13IbmuAF/VIiuTu1ez6o+86Sq4lx1j5CTn7p//YZmP1TOOtqb5Bi88kreek9VZ/24u9yRVpu2/9jnlFvNnsuBs32OF5ds88nfPbXMPHHcqy9th3+z9l4t24HLdjlF9LNc3Q2e+Pn5wWQyITY2FpcuXfKdDyL5BNEfOCIiIiIiItKYyL0faquLHvYf0Gr/BUkHT3zCrXue1ObsNnVw48Je568b3x/oP7PhfTdEt/1cF2Y+aL1pu+g+Z+3zjZ9hV5/u44Axi7W7vtZEDmBw8KTRRD/L1d2yXZWDJQMGDODACZEGCgsLsWzZMhQWcmqis5gzY+RAhhhliIGISDT2peQreK/WY/MsbR5iAup1t7zq3LEeWDasEKFYdhIo/PcQ95YNK85VH6yufMK1gRPgx/0XxgHrpqrXMZBChGIZxqEQofUf+PIJ9avNvd6pWKU2fZ2bLdFxmDpzYfp+YMArQPtB6mBBVSHR6vcHvKIeN3mz2xuWO503bzm7DVjyqPo53PMu8P2umrPRrPnq9/e8Cyzopx5/drtr5VTpczyeg4b6nLPbtB04AdQZTGe3AZDnd4+jnYqKRVeFdE7IhvH1iY2NxZUrV9C0aVPRVSGSUkBAABISEhAQoLuPv24xZ8bIgQwxyhADEZFo7EvJV0hxr2qxfI63HiR2H1f/xtUeWjYsAOVIQBYCii6r+w+4smyYFzaPlpUj7yiv/8DKvxqP7w9cOqB9xSol9Hft+NguQOwb6mtFUTebt9uAgCAgKNwzy1bBhbxprTEzvlzdtP2WPkeTHNTX5+x5z3Pl1GdvEtBxmBy/e1ClnQL4h/tUP93d6R06dMCVK1dw+fJl0VUhklJISAgGDRokuho+hTkzRg5kiFGGGIiIRGNfSr7CZ+9VrZfP8fKDxFoV56qDFh7YbyUEpRiE/eobaynw8Rjnlg3z9J4vlZtHu7vni4+plndndB+rzlzwlm5j3T/XZFIHKoM9V51KLudNC94eNLylz9EsB7X1OTnprs8oc9eFvUDOKYTEdvHN3z23cLRTsAYfBJKK7pbtGj16NBRFwTfffIPiYk6dIvK00tJSpKSkoLS0VHRVfAZzZowcyBCjDDEQEYnGvpR8hc/dq95YPkfAg8RaeXDZsFIEIQW9UIog9RvOLBvmwcGbaqz56uBN1SW8RC5bVVm2BuXXyHtd5VeK7aruEeMN8f3dG1j0ggbzprXKQUNPLdtXOWhY15J5tfQ5muWgap+Td0H9OvSBZ8toyOEPUJr9rW/97slJVweebuFop7UvADvm1d2fk+HpbvBk0qRJaN26NSwWC15//XXR1SGSjs1mQ2pqKmw2m+iq+AzmzBg5kCFGGWIgIhKNfSn5Cp+5V72x54bAB4nIu1D9ex5eNsyGQKSiK2wIvPnNKvsP1Mqbe740jVe/4l1cRqqxEvrfLFuD8mvNe23lV3X/TI/WoU79vVSOGxrMm5a8OWhYT5+jaQ4q+5ykHurXYS/3eYcWw7bwAd/43VN1wL6WPDna6YfjjdvvhqRnUhRFEV2JW+3btw8jRoyA2WzGz3/+c7z11luIiooSXS2SQHp6Orp16+Z4n5aWhq5d5Z9yTERERERE5HWeWj4HACLi6l4+Z67g5wVzC26+XvKod2a/xPdXl9C61dlt6kCV1iasqb6EUE66+pDSW6bvrz77QnT5ldY+r+2eO93HAWMWa3d9V1QOHH72c+/u99KmLzD6/ZqDV97Mveg+R7SqfZ7eNGa/m0rO7nfTkJx0dYCtrkGuNveqfbm7y1QahOhnubrb8+TDDz8EALz00kt466238N///hcfffQRHn74Ydx9991o3rw5mjRp4tS1Jk6cqGVViXxSRUUFzGYzIiMj4eenu8lnusScGSMHMsQoQwxERKKxLyVfoft71Yh7bmiwbFgFTDAjApGwwA9V/va1cgmfWx+4idrzpXLZKm8NHN0at4fLrzPvdZVfafjbattoMfMnIk59oKsXlYMX8f0dgyf15s1Tapv14+EZX7Wqb9P2KrySA4EqYII5P1+fv3tcGLCvt52c3e+mLme3qX1xQ/3RpQPq15531f7r/l8DHR92vTzSlM7ucnXZrsmTJ+Mvf/kLysvLoSgKSkpKsHHjRsyZMwcvvvgiJk+e3ODXlClTRIdCpEtmsxlJSUkwm82iq+IzmDNj5ECGGGWIgYhINPal5Ct0fa96c/kcPdBw2TAzIpBkmgozImr+8Na/Zha954voZas8WH69ea9v2azQGPWBa0i0x+oCQL3eM+sa/5fwWuh+c/P6evPmKd3G1vyeNwcNG+CVHAhkRoQ+f/e4uN9Ng+3U0H43tfHGMpXkdbpbtstTo5Ymkwnl5eUeuRbJQ/RULz3Q/V+o6RBzZowcyBCjDDEQEYnGvpR8ha7vVW8vXSTxEjoN/hV71U3L9yZ5dw+E3lOBEe9U/57oZas8VH6deXd22aycdHWgT+sl6/Tix+XqNJ91UdtydSKWbFvQr84fG2LmycxMff3uKc5V7wEXPm9Ot1NEHDB9X8MDl95aptKARD/L1d2yXc8995zoKhBJzc/PD9HR0aKr4VOYM2PkQIYYZYiBiEg09qXkK3R7r+po+RwZ+EFBNOr5C++kHt6rzK0OLa45eCJ62SoPlV9r3l1ZNiu2q/rAdcur6v3qLk/tvaC1+2cCK/c1fL82VtVZP5V7rmgw46teDQxQap4Dwfyg6O93z+ZZLn/mnW4nyxX1c1zfoKkRl6k0EN0NnixdulR0FYikZrFYsGLFCjz99NOIiJBzGqmnMWfGyIEMMcoQAxGRaOxLyVfo9l4VteeGpCwIwwr8DE/jf4hAkejq1KQogMl0833lslVLh3t22TZnl63yUPk18u7OslmhMeoD1+7j1Pv1wl7nz43vrw4U+Mr+Bx2HAd3GwpK2Rbv7tfu46vkQNXB4qP6ZR175zFbOOPvs5479ZryiTV9YHn4PKxYu1M/vHjcH7F1qp/oG7LVeptKZWS+kKZ3MryIibwkKCkJiYiKCgoJEV8VnMGfGyIEMMcoQAxGRaOxLyVd47F5VFMBqBopuqP82ZmVvUXtuvHxC/Wpzr3fKrtSmb/VlszQQhDIkIh1BKNO0HLfZCmt+L7ar+hfTEXGeKSMizrW/wPZA+dXy7mr5t+o4TD1/+n5gwCtA+0E190QJiVa/P+AV9bjJm31n4KTS8LcRFB6jzf3qyqwfb5hxvM4+R9PPbGWf0zRe/Yrv7/ky6pPQH0G3t9fXfye5OWDvcjvVtd+NG7NenFY564WE0t2eJ0RaEr1OHhERERERkXA56cDJtcAPR4Arx6v/xWxINBDXE2h1t/qXtrFdGr5e5fI5IvbcuG+G+hARAHbMA/a8673yB7wCDH1D6j1XGjTrPBB2W+0/K84Vu2yV6PLroyjqwJPdBgQEAUHh1Wfw+KqcdG1mHdU2eCXyc/d6FhAcIa7PqSRivxdnfid4i+j4z25TN4fX2oQ1hphpWRfRz3I584TIYKxWK5KTk2G1WkVXxWcwZ8bIgQwxyhADEZFo7EvJV7h1r57dpm7svOA+9YHf97tqPuS05qvf3/OuuinykkeBs9vrv25SD/XLmwMngLp8TtWle7qP9W753bQvz4pgJKMfrAjWvCy3BNTz1+eVy1ZNWOP6X8jH9wcmfKqe7+7ARSPKt7YZiOTu78I64l/aLJljMqkP38NuU/+VYeAEgDWqA5K7vQ1reFvPXLCxs360Yrep/9bS52j6mb21z4ntCrT10uBBfH8gtov4/07Ku3DzqxH73bjVTrf+jvPmMpUkDAdPiAzGbrcjMzMTdrtddFV8BnNmjBzIEKMMMRARica+lHyFS/dqcS6w9nn1L2RdXVbr4j5g5Thg3VT1Onom4EEiAE2XDbPDH5loRSnnKwABAABJREFUDTv8a/6wTV+Pl+eyoPCGjxG9bJUb5dufXIVMiz9/F7jIbrcj83ox7BM3q7N2GqP7OHW/B70NnAA3Bw1r6XPq/cw2RtU+p6r7Z3q2nLr0V8sR/t9JlYP1jRywd6udqu53I2qZSvI6n1i2q7CwEMePH8f169dhsVhQUVHh1HkTJ07UuGbka0RP9SIiIiIiIvKq7DR1M1tPrMkeEadumq2n5XMAYG7BzddeW0bl05oP90Us4XPXczffC9g8Gs9vc+9c0ctWiS7fKM5uU/9q/sJe58+J768+qG9o8ExkvzMn/+b9IrLPqbT2ebc2TXda93HqLC49EP37ZsZxte1FL1NpIKKf5QZ4rSQ3rFy5Ev/85z9x6NAhuDrGYzKZOHhCVIvy8nJcu3YNzZs3h7+/h/8SQlLMmTFyIEOMMsRARCQa+1LyFU7dq9lpwLIRntt/wHJF3c9Aj8voVOo4TF3aRusHibU9xOw+1uODJ+XwwzXchua4AX/c8oek3cZWf5AW39+7gycJjdisunLZKlGrkTVQPn8XuKdG3joOU79yTqmfyR+OAJdTa+6z1DJR3Wep21jn99R4+YT6r4hBw6oDbbf0OfV+Zt1VV59Tafjb6gCVFhuXR8Sp+/78SJbPhtvt9I+e2lWqPocWq19V/1iAvEKXy3aVlJTgsccew7PPPouDBw+ioqICiqLU+gWg3p8RUXUWiwWLFi2CxWIRXRWfwZwZIwcyxChDDEREorEvJV/R4L1anKvOOPHkxs2Aer2Px+h7Ca/hb6sP/LRwy4PEajRYNsyCcCwyPQsLblkeq7YlfCTc80UU/i5wT515i+2ibnQ+cQMwO1PdcH3WefXf2Znq94e+4dpm5E3j1S9X99NprNoGDav0OXV+Zt1VX59TKTRGnRV463J0jRUSrV63yr4/snw2PN5OJC1dLts1YcIErF69GgAQEhKCwYMH4/vvv0dGRoZjRonFYsGFCxdw4sQJlJWVwWQyISwsDKNHj4bpxxHgpUuXigyDdEj0VC89UBQFpaWlCA4OdnxWqH7MmTFyIEOMMsRARCQa+1LyFQ3eq95cxkX0Miq1/SVuTro6S8aTg0ch0Q3PuvHwEj4KgFIEIxilqNbKdS3hs+RR76zDH99fzYWk+LvAPULylpMOLPDSXkeAundObYM8P/Y5ijW/9s+sO5zpc26tw8djNF2mUfhnw0O/b+rsW/XOgDNPRD/L1d3MkwMHDmD16tUwmUy48847cfr0aXzxxRcYOnSo45ilS5di7dq1OHToEK5du4a3334b4eHhKCoqwtWrV/GPf/yDAydEdTCZTAgJCeF/ALqAOTNGDmSIUYYYiIhEY19KvqLee/XsNm0HTgDg5KdqOYCmG6bXq03fm0v33Cq2q/rQ0VMzUCLinHuIWbmEj4eYAITc+nCvviV8vLx5tKz4u8A9QvKmwYyvOtW1aXtlPSZvhikiruZn1h3O9jm31mH6PrWPaIzu49Tr1FK2LJ+NWvtWolrobvBk+fLljtdLlixBfHz9G+FERkbilVdeweHDhxEXF4dt27Zh8uTJWleTyGeZzWa89957MJvNoqviM5gzY+RAhhhliIGISDT2peQr6r1X97znnUrsTVL/Fbl8Tn2b53rhQWKtPLhsmBnheA/Pw1y5tExDS/h4ePCmVg3tvyAB/i5wj7C86WXQMLYrzM9sx3tBM25+Zt3hap9TVWiMOitwwhrX++T4/uqstjGLqy3VVZXwz0blYH0jB+xr9K3OaNPX7fLId+lu8GTPnj0AgA4dOqB/f+c/5HfeeSeWL18ORVHwv//9D1988YVWVSTyaSEhIRg0aBBCQkJEV8VnMGfGyIEMMcoQAxGRaOxLyVfUea/mpHtn2SZA3aA459TN93rcc0PjB4l1lumh/QdCUIpB2I8QlNa6/0CtRO35IhH+LnCPsLzpaNAwpGkLDBo+BiHj/uu9Pqc2HYepM1em7wcGvAK0H1SzTwqJVr8/4BX1uMmbG4xR+GejcrC+kQP21fpWZ9W23w1JT3d7njRr1gx5eXkYO3YsPvnkE8f3Z8yYgX/9618wmUwoKSlBUFBQred3794dp06dwhNPPIFVq1Z5q9rkI0Svk0dERERERKSJvAvqv3uTgMMfeK/c3lOBEe/cfK/3PTdyTqlLmv1wBLicWn1PlJBooGUi0Opu9UGsK5tX11qW9vsP1Fu2iD1fiEQpzlX3PvHE5+1WEXHqTBB3BjS82ec0RFEAWyFgtwEBQUBQOODLy2+J2O8mKEx9/dnPgUsHvFd2m77A6Pfrn20pKdHPcnU386Ry2tdtt91W7ftNmjSpcUxt7rrrLiiKgiNHjmhTQSIfV1JSgq1bt6KkpER0VXwGc2aMHMgQowwxEBGJxr6UfEWNezWph/rlzYETADi0uPp7vSyfU5fYLsDQN4CJG4DZmcDrWcCs8+q/szPV7w99wzMPMT2wbFgJQrC12c9RMukr1/c+ELHniyT4u8A9QvPmwRlf1Tg74+tHNXLgzT6nISYTEBwBhN2m/uvGwImuPhuN2O+mBCHYikEogZMzaCr3u9HrMpWkGd0NnoSGhgIAysrKqn0/Ojra8frChQt1nl85kebKFQ1GmokkUFFRgfz8fFRUVIiuis9gzoyRAxlilCEGIiLR2JeSr9DVvVp1QQsdLZ/TIA88SGxQI5cNqxi9BPnN7kFFSJTrZYva80UCuvp8+RDhedPBoGG9OfBGn6Mx4W18KzcH7CtgQj4iUeHslvG3DtjrcZlK0oTulu2qXHbr8ccfx2effeb4/rp16zBu3DiYTCYkJSXhpZdeqvX8e+65B0ePHkVYWBgsFou3qk0+QvRULyIiIiIiIk3MdePhuqe8nqU+CKyk1+Vz9EDUEj5nt6lLul3Y6/w58f3VB4aSbw5PEirOBba8Cpz81P1rdB+n7u/jq32Nkax9Xu1XtdJ9nDoIfiu9L1MpCdHPcgO8VpKTunfvjvT0dJw5c6ba9/v06QPTjyOy77//Pl544QUEBFSv/vbt23H06FGYTCa0b9/ea3Um8iV2ux1ZWVlo3bp1jc8Q1Y45M0YOZIhRhhiIiERjX2pAigKUWoDyMsA/0Gf+GlhX96rdBgRXeV+5fI4We264sHyOLsV2AWLfUF87sf+Ax9q54zD1S0/7L+iYrj5fPkQ3eauc8dV9nNcHDXWTA43oMr7hb6tt7MKAvR3+yEIcWuMKAlBe94ERceogWm3unwms9MLgibvLVJJH6G7ZroEDBwIAzpw5g9zcXMf327Rpg/vvvx+KoiA9PR2PP/44jh07hrKyMhQUFOCjjz7C008/7Tj+scce83rdiXxBYWEhli9fjsLCQtFV8RnMmTFyIEOMMsRARCQa+1KDyEkHdswDlo8E3koA3mwDvN1e/fetBPX7O+apD5q1piiA1QwU3VD/dXJxCF3dqwFBNb+ng+VzdM+JJXw83s562n9Bx3T1+fIhustbx2FqvzF9PzDgFaD9oJp7ooREq98f8Ip63OTNjZptpbsceJgu43Njv5tChGG56QkUIqzugxoasPelZSrJbbpbtuvixYto164dAGDp0qWYOHGi42f79+/H/fffX+/5iqKgefPmSE9PR7NmzTStK/ke0VO9iIiIiIhIoLPbgD3vubbMRtv7gPt/7dmHFznpwMkf//r/yvGaf/0f11P96//u45x/iC1y2a45+XXP1uHyOUSkJ07M+CIflZMOfDzGM0tGRsSpAycNDdhzmUrNiX6Wq7uZJ23btsVvfvMbPPHEE7h27Vq1n/Xr1w///e9/4e/vD0VRav1q3rw5NmzYwIETIiIiIiIiUhXnqmuir3zC9fXJL+4DVo4D1k1Vr9MYZ7epa6QvuA/Y8y7w/a6ay1pZ89Xv73kXWNBPPf7s9oav/fIJ9avNvY2ro6va9K3/wWMjN0zHhE/V8w3+8IiIPESCTdupDrFd1cGG7uMad53u49TrODPT0Y1ZL06RYZlKSehu8AQA3n77baxatQqvvPJKjZ9NmTIFx48fx9SpU9G+fXuEhIQgNDQU3bp1w+uvv460tDT07dtXQK2JfENBQQHefPNNFBQUiK6Kz2DOjJEDGWKUIQYiItHYlwri5tJVTslOUwcrGruZ7MlP1evkpLt+rgaDNzXu1abx6perAxSNleBkeQKWz5EB+yQxmHf3MG/y50D38Tk5YF+ACLyJF1GAiJvfdHfAnstUSk13y3YRaUn0VC89KCsrw7lz59ChQwcEBgaKro5PYM6MkQMZYpQhBiIi0diXepEWS1fdKjsNWDbC85uWu/JQIzsNWDHW48uI1Hmv5qSrgzzeMn2/++3D5XMaxD5JDObdPcyb/DnwufhyTgGHPwAOLa727TIE4Bzi0aFVLALb91P3LmnsXk9cplITop/lcvCEDEX0B46IiIiIyPC8te+IHtYhFzV4s+RR12e4uCO+v1oXIiIivcq7ACT1qP1nL59QZ2160tltwN4k4MJe58+J7w/0n2n42Za1Ef0sV5fLdhGRdoqLi7F+/XoUFxeLrorPYM6MkQMZYpQhBiIi0diXasjb+45snqXNwAmgXnfLq/UfU5yrzjjx5MAJoF7v4zEovv5D3ffq/TM9W2Zd+nupHANjnyQG8+4e5k3+HMgSXzFCsB7DUFxi9fzFqy5T2Xtq3ce16ctlKn2A7gZPunfvjvnz5yMrK0t0VYiIiIiIiMgTvL3vyNltjS/Lmbqc3Vb3z7UevNk5r+6fdxymLkGipe7j+KCHiIioLrFdgPtm1P3z0e8DQ99o/HJhpCndLdvl5+cHk8kEk8mEgQMHYuLEiRgzZgwiIiIaPpmoAaKnehERERERGY6IpatEL1t1dps6w0ZrE9aoAyW10cOyZURERKJ5e9kuvZQtCdHPcnU38wQAFEVBRUUFdu3aheeffx4tWrTAk08+ic8//xzl5eWiq0fk08rKypCRkYGysjLRVfEZzJkxciBDjDLEQEQkGvtSD9N46apal/DKSffOwAmgrmeec6rm9/e8p3nRZQhAxpcf1n2vhsaom8uHRHu24JBo9bocOPEK9kliMO/uYd7kz4Es8ZUhABnogLIyu+iqkM7pbvDk448/xqOPPoqAgAAoigJFUVBSUoK1a9fi8ccfR1xcHGbMmIEDBw6IriqRT5JlfUpvYs6MkQMZYpQhBiIi0diXepg39x3Ju6B+HfpAm/LqcvgDtdxKXhq8KUYTrL/WFsUXjtd9UGxXdWZMRJxnCo2Ia3izevIo9kliMO/uYd7kz4Es8RWjibrniVWDPU9IKrpbtqvS9evXsWrVKqxcubLGQInJZAIA3HHHHXjmmWfw9NNPo3379iKqST5G9FQvIiIiIiLD8PbSVXOjtC+rPi+fUP/dm6QOqHhL76nqmur1Lf1RnKsONJ381P1yuo8DHp3PGSdERETO4rJdjSb6Wa7uZp5UatasGX71q19h//79+PbbbzFnzhzceeedAOCYkfLdd99h7ty5uPPOO9G/f38sXLgQubm1TNsmIiIiIiIi7/LC0lUA1MEKPUjqoX55c+AEAA4trvvBTKXQGGDMYnWgKb6/a9eP7w9M+FQ9nwMnREREZCC6HTypqkOHDpgzZw7OnDmDAwcO4KWXXsLtt9/uGERRFAUpKSn45S9/iZYtW2LUqFFYt26d6GoT6VJ+fj7mzZuH/Px80VXxGcyZMXIgQ4wyxEBEJBr7Ug/Rw74jkstHJOaZfoN8RDp/Usdh6rJb0/cDA14B2g+quSdKSLT6/QGvqMdN3gx0fNhzFSeXsE8Sg3l3D/Mmfw5kiU+WOEh7ul22qyEVFRXYvn07VqxYgfXr16OoqKjaz/38/GC3c9Mfqk70VC89sNvtyMrKQuvWrREQECC6Oj6BOTNGDmSIUYYYiIhEY1/aCFX3/RCxdNWhxd4rTwfs8EcW4tAaVxCAcmBugXsXUhTAVgjYbUBAEBAUDvy4VDaJxz5JDObdPcyb/DmQJT6vxcFluxpN9LNcnx08qapys6IlS5bgq6++AqDui1JeXi64ZqQ3oj9wRERERES6pChAqQUoLwP8A4HgCNcfoIvec8To3B08ISIiIm1w8KTRRD/L9Ylluxpy5MgRfPPNN0hNTXVsJk9EtSsqKsLq1atrzNaiujFnxsiBDDHKEAMRkWiG6ktz0oEd84DlI4G3EoA32wBvt1f/fStB/f6OeYZcEssXFKEJVmMkitBEdFVIQ4bqk3SEeXcP8yZ/DmSJT5Y4SHs+O7/q1KlT+Pjjj7Fq1SpcvHixxs/9/f0F1IpI//z8/BAdHQ0/PynGTr2COTNGDmSIUYYYiIhEM0Rfenabupl7fXuSWPOB73epX3veBdreB9z/a33vfTF9PxAUBnz2c+DSAe+V26YvMPr9hjdt9zA/KIiGGX7w+cUkqB6G6JN0iHl3D/Mmfw5kiU+WOEh7PrVs1+XLl7Fq1Sp8/PHHOHHihOP7VUNITEzEM888gwkTJqBFixYiqkk6JnqqFxERERGRMMW5wOZZQNpa96/RfRzw6HwgNKbmz0Qv2zXrPBB2mzpbZs+73it3wCvA0Ddu7vkiavCGS38QERGRZEQ/y9X98JrFYsHSpUvx4IMPIj4+Hq+++ipOnDgBRVEcX23atMFrr72GtLQ0HD16FL/5zW84cEJUB5vNhtTUVNhsNtFV8RnMmTFyIEOMMsRARCSatH1pdhqw4L7GDZwAwMlP1evkpHumXp4UEKT+232sd8vt9mN5TePVr/j+XinWhkCkogtsbe7jwInEpO2TdI55dw/zJn8OZIlPljhIe7ocPLHb7di4cSOeeOIJxMbGYurUqfj6669RXl7uGDCJiorC888/j6+//hoXLlzAX/7yF3Tp0kV01Yl0z2q1Ijk5GVarVXRVfAZzZowcyBCjDDEQEYkmZV+anQYsGwFYrnjmepYrwNLh+htACQpX/43tqi4z5g3x/YHYW/4/1EuDN1YEIxn9YO0wwivlkRhS9kk+gHl3D/Mmfw5kiU+WOEh7ulu2a/r06fj000+Rl5cHoPqSXIGBgXj00Ufx7LPP4rHHHkNQUJCoapKPEj3Vi4iIiIjIq4pz1Zkinho4qSoiDpi+7+YSXpXLVgFilq56ftvN92e3ASuf0L7cCZ/Wvg/Mkkfr31PGU+L7A5M3a18OERERkQCin+XqbubJokWLkJeX55hhAgD33Xcf/vOf/+DKlStYv349xowZw4ETIjcpigKr1QqdjZvqGnNmjBzIEKMMMRARiSZdX7p5ljYDJ4B63S2v3nxfuWyVF5eucki4pbyOw24up6WV7uNqHzgBgPtnals2AAWAtfdL8tyrVCvp+iQfwby7h3mTPweyxCdLHKQ93Q2eAOoN3LFjR8ybNw/nzp3Dnj178MILLyAmppZNCYnIJQUFBXjrrbdQUFAguio+gzkzRg5kiFGGGIiIRJOqLz27rfF7nDTk5KdqObcSte9IVcPfVmfHaCEiDnh0ft0/98LgTUGn8Xhr3SE57lWqk1R9kg9h3t3DvMmfA1nikyUO0p7ulu16+eWX8cwzz6B3796iq0ISEj3VSw/Ky8tx7do1NG/eHP7+/qKr4xOYM2PkQIYYZYiBiEg0qfpS0UtHiS4fUPdlWTocsOZ7rryQaLW82Ab+P0LjJdPKf7Eb14rK5bhXqU5S9Uk+hHl3D/Mmfw5kiU+WOIxA9LNc3Q2eEGlJ9AeOiIiIiMgrctLVB/feMn1/zY3TRe87UiknHfh4jGcGMSLigGfWNTxwUrVsUYM3RERERD5O9LNcXS7bRUTaKSwsxLJly1BYWCi6Kj6DOTNGDmSIUYYYiIhEE9aXKgpgNQNFN9R/3f0bt7wL6tehDzxbv4YcrqU80fuOVIrtqm5s331c48uavs+1QYvYrupAh6eWD4uIcwyc8Pe+MbCdxWDe3cO8yZ8DWeKTJQ7SXoDoCjirpKQEx48fx/Xr12GxWBAREYFmzZqhZ8+eaNKkiejqEfmMgIAAJCQkICDAZz7+wjFnxsiBDDHKEAMRkWhe7Utz0oGTa4EfjgBXjlefnRASDcT1BFrdrT60v3VWR12SemhR04YdWgyMeKfm94e/DVzYq9nSVfXuO1JVaAwwZrGay71Jap2cFd8f6D+z4UGaulQO3mx5Vd0jxl3dx6nxhqp7gfL3vjGwncVg3t3DvMmfA1nikyUO0p6ul+0qLy/HqlWrsGDBAhw6dAjl5eU1jvH390efPn0wffp0jB8/nuvUUb1ET/UiIiIiIsLZbcCe91zbD6TtfcD9v274Af7cqEZVrVHm5AMmU83v63HpqpxTQNqPA1eXU2sOXLVMVAeuuo11fuDKGWe3eX/whoiIiMhHiX6Wq9tlu7777jv07dsXzz33HFJSUmC326EoSo0vu92O/fv3Y+LEiejXrx/OnTsnuupEulZaWoqUlBSUlpaKrorPYM6MkQMZYpQhBiIi0TTtS4tzgbXPq/uAuLqR+sV9wMpxwLqp6nX0yFbH0hcaLl3lttguwNA3gIkbgNmZwOtZwKzz6r+zM9XvD33DswMngLqU2eTN6h4xA14B2g9SB2uqColWvz/gFfW4yZtrHTjh731jYDuLwby7h3mTPweyxCdLHKQ9XQ6efP/99xg4cCCOHj0KAKicHBMWFobOnTvj7rvvRufOnREWFlbt54cPH8aAAQOQmZkppN5EvsBmsyE1NRU2m010VXwGc2aMHMgQowwxEBGJpllfmp2mbuCetrZx1zn5qXqdnHTP1MuT7PXkTOS+Iw0xmYDgCCDsNvXf2mbPeJoHBm/4e98Y2M5iMO/uYd7kz4Es8ckSB2lPl8t29e7dG0eOHIHJZIK/vz9+/vOfY+rUqUhMTISpyn/IKoqC48ePY/HixXj//fdRXl4ORVFwzz334ODBgwIjIL0SPdWLiIiIiAwoOw1YNsI7y1aJXLbr9Sx18KEhXLqKiIiIiJwg+lmu7maerFu3zjFw0qxZM+zbtw///ve/0atXr2oDJwBgMpmQmJiIf/3rX9i/fz+aNWsGADhy5Ag+++wzEdUn0r2Kigrk5+ejoqJCdFV8BnNmjBzIEKMMMRARiebxvrQ4F1gx1rMDJ4B6vY/H6GsJr6Bw547z4NJVRsbf+8bAdhaDeXcP8yZ/DmSJT5Y4SHu6GzypOuixYsUK3HPPPU6dd/fdd2PFihWO92vXNnI6PJGkzGYzkpKSYDabRVfFZzBnxsiBDDHKEAMRkWge70s3zwIsVzxzrVtZrgBbXq3+vZdPqF9t7tWmzLq06ev6clei9h2RBH/vGwPbWQzm3T3Mm/w5kCU+WeIg7elu2a477rgD33//Pbp3747U1FSXz+/VqxeOHz+Odu3acfN4qkH0VC89qKiogNlsRmRkJPz8dDd+qkvMmTFyIEOMMsRARCSaR/vSs9vUzeG1NmGNOpujqh3zgD3val92pQGvqAMd5DX8vW8MbGcxmHf3MG/y50CW+GSJwwhEP8vV3d2Rk5MDQB0EcUdiYiIA4OrVq56qEpFU/Pz8EB0dzV8OLmDOjJEDGWKUIQYiItE82pfuea/x13DG3qSa3+s+1jtlV+rm5fKIv/cNgu0sBvPuHuZN/hzIEp8scZD2dHuH6GxCDJE0LBYLFi5cCIvFIroqPoM5M0YOZIhRhhiIiETzWF+akw5c3OeZSjXkwl4g51T178V2Bdre553y4/tzaS0B+HvfGNjOYjDv7mHe5M+BLPHJEgdpT3eDJ7GxsVAUxa0luwA4zrv99ts9VykiiQQFBSExMRFBQUGiq+IzmDNj5ECGGGWIgYhItEb3pXkX1K9DH3i2Yg05/IFablX3z/RO2f29VA5Vw9/7xsB2FoN5dw/zJn8OZIlPljhIe7rb82TChAlYvXo1TCYTduzYgcGDBzt9bnJyMoYMGQKTyYQnnngCq1at0rCm5ItEr5NHRERERJKbGyW4/ILq79c+D6St1a687uOAMYu1uz4RERERGZboZ7m6m3kyevRox+sJEybgxIkTTp2XlpaGCRMmON6PGTPG43UjkoHVakVycjKsVqvoqvgM5swYOZAhRhliICISTbq+dPjbQEScNteOiAMena/NtalB0t2rVCu2sxjMu3uYN/lzIEt8ssRB2tPd4MnYsWMdm77n5OSgT58++M1vfoOTJ0/WenxaWhp++9vfonfv3sjJyYHJZEKvXr0wdiw3LCSqjd1uR2ZmJux2u+iq+AzmzBg5kCFGGWIgIhJNur40NAZ4Zh0QEu3Z64ZEq9cNjfHsdclp0t2rVCu2sxjMu3uYN/lzIEt8ssRB2tPdsl0A8O233+L+++/H9evXoSgKTCYTACA8PBxt2rRBWFgYioqKkJWV5djYpzKM22+/HXv27MEdd9whrP6kX6KnehERERGR5PS2bFelnHTg4zGA5Urjy4iIUwdOYvnf0URERESkHdHPcnU38wQA7rzzTiQnJ6N79+4A1IERRVFgsVhw+vRpHD58GKdPn4bZbHb8DAB69uyJ5ORkDpwQ1aO8vBzZ2dkoLy8XXRWfwZwZIwcyxChDDEREoknbl8Z2BabvU/coaYzu49TrcOBEOGnvVaqG7SwG8+4e5k3+HMgSnyxxkPZ0OXgCAD/5yU9w6NAhfPDBB7j33nvh7+8P4OZASuWAib+/P+69914sWbIEBw8eROfOnUVWm0j3LBYLFi1a5Ji1RQ1jzoyRAxlilCEGIiLRpO5LQ2PUzd0nrAHi+7t2bnx/YMKn6vlcqksXpL5XyYHtLAbz7h7mTf4cyBKfLHGQ9nS5bFdtCgsLceLECVy7dg2FhYUIDw9H8+bN0aNHD4SHh4uuXg02mw2ffPIJVq1ahfT0dOTk5KBp06Zo164dRo8ejUmTJqFZs2YeLbO8vBzp6ek4dOgQDh8+jEOHDuHEiRMoKysDADzwwANITk52+nqZmZlo166dS3Xo0KEDvvvuO6ePP336NJYsWYJt27YhKysLpaWlaNWqFfr164eJEydi6NChLpXfENFTvfRAURSUlpYiODjYsSQe1Y85M0YOZIhRhhiIiIRRFKDUAsVuQ6m9AsGRzWDyc+NvzfIuqP9+9nPg0gHP1rE+bfoCo98HmsY7f07OKSBtLfDDEeByKmDNv/mzkGigZSLQ6m6g21ggtotn60uNxt/7xsB2FoN5dw/zJn8OZIlPljiMQPSz3ACvldRI4eHhuO+++0RXwykZGRl46qmnkJqaWu372dnZyM7Oxv79+/H2229j6dKlGD58uEfKXL9+PZ5++mkUFxd75Hre8Oc//xnz5s1zDO5U+vbbb/Htt9/iww8/xFNPPYVFixYhIiJCUC3lYzKZEBISIroaPoU5M0YOZIhRhhiIiLwqJx04+ePgwZXjgDUfJgAhgDp4ENdTHTzoPs75wYPKwYv4/t4dPEno79rACaDGFPuG+lpRAFshYLcBAUFAUDjAhwm6xt/7xsB2FoN5dw/zJn8OZIlPljhIez4zeOIrsrKyMHToUFy+fBmA+mEcOHAgOnTogGvXrmHHjh0oKSnB1atXMWrUKGzduhVDhgxpdLn5+fmaDpxERERg4sSJDR7XvHlzp673xhtv4E9/+pPjfVxcHAYMGICQkBAcOXIE6enpAIBVq1bhxo0b+OKLLxAQwNvVE8xmM5YsWYIpU6YgMjJSdHV8AnNmjBzIEKMMMRARecXZbcCe94CL+2r8yIxwLMGTmGL9BJHf7wK+3wXseRdoex9w/6+Bjg87V0b3sep53tJtbOPON5mA4Agg2DPVIe3x974xsJ3FYN7dw7zJnwNZ4pMlDtIen0Z72IQJExwDJ/Hx8diwYQN69uzp+Pn169cxfvx47Ny5E2VlZRg3bhzOnTuH6Ohoj5QfGxuL3r17O762bduGpKSkRl83JiYG//rXvzxQQ2Dnzp3VBk5mzZqF//f//h+CgoIc31u1ahWmTJkCq9WK7du34y9/+QveeOMNj5RvdCEhIRg0aBBH2F3AnBkjBzLEKEMMRESaKs4FNs9Sl6qqQwhKMQj7EYLS6j+4uA9Y+eOG64/Ob3jfj9iu6oBLLQM0Hhffn8tqGRB/7xsD21kM5t09zJv8OZAlPlniIO0J3fPkhx9+QKdOnVBSUgI/Pz9s2bIFDz74oMvX+fLLL/Hoo49CURRERETg22+/dXoGhCdt3rwZI0aMAAAEBQXh8OHD6N69e43jioqK0KNHD5w/fx4A8Prrr+Mvf/lLo8rOzs6GzWZD27Ztq31/7ty5mDdvHoDG7XkSHx+PzMzMRtWxUp8+fXDo0CEAwPjx47Fq1apaj1u4cCGmT58OQJ35cv78+UbvEyN6nTwiIiIiEiQ7DVgxFrBcafy1IuKAZ9apAyT1ObsNWPlE48tryIRPnZ8RQ0RERETkI0Q/y3VjB0TPeeONNxxLTc2dO9etgRMAeOihhzBv3jwoigKLxVJtVoM3/fvf/3a8fu6552odOAGAsLAw/PGPf3S8X7RoEex2e6PKbtGiRY2BEz06dOiQY+DEz88P8+fPr/PYadOm4c477wQAWCwWfPTRR16po+xKSkqwdetWlJSUiK6Kz2DOjJEDGWKUIQYiIk1kpwHLRjg1cFKCEGzFIJSgnr9EtFwBlg5X90ypT8dhjV9OqyHdx3HgxKD4e98Y2M5iMO/uYd7kz4Es8ckSB2lP2OBJfn4+Vq5cCZPJhHbt2uG1115r1PVmz56Ndu3aQVEULF261OsbpxcWFmLnzp2O95MnT673+DFjxiA8PBwAkJubi2+++UbT+unF+vXrHa8ffPBBtGnTps5jTSYTnnvuOcf7//3vf1pWzTAqKiqQn5+PiooK0VXxGcyZMXIgQ4wyxEBE5HHFueqME2u+U4dXwIR8RKICDWyWbs0HPh6jXr8+w99WZ6poISJOXUKMDIm/942B7SwG8+4e5k3+HMgSnyxxkPaEDZ6sXbsWpaXqOsK/+93v4O/v36jrBQQE4PXXXwcAFBcX47PPPmt0HV2xb98+RzxhYWHo3bt3vceHhISgX79+jvdfffWVpvXTi6+//trxetCgQQ0eP3jwYMfrqjkm94WFhWH8+PEICwsTXRWfwZwZIwcyxChDDEREHrd5lktLdYWhBOOxEWFw4i8RLVeALa/Wf0xojLrEV0i003VwSki0et2G9l4hafH3vjGwncVg3t3DvMmfA1nikyUO0p6wwZM9e/YAAPz9/fGzn/3MI9ccM2aMYxDGlb09POH06dOO1927d0dAQECD59x11121nq9HdrsdX375Jf7617/ilVdewe9//3v8/e9/x+7du10a0KgaZ9X469KrVy/H6/Lycpw9e9a1ilMNdrsdmZmZjV4qzkiYM2PkQIYYZYiBiMijzm6rd3P42tjhj0y0hh1O/nHXyU/VcuoT2xWYvNlzM1Ai4tTrNbTnCkmNv/eNge0sBvPuHuZN/hzIEp8scZD2hA2eHD16FID6AL1p06YeuWbTpk1x1113QVEUHDlyxCPXdNaZM2ccr+Pj4506p+oeJRkZGR6vkyf98MMPePjhh/G73/0O7777Lv7yl7/gN7/5DQYOHIi4uDj83//9HwoLC+u9xtWrV5Gfn+9470yemjRpgubNmzve6z1PvqCwsBDLly9vsL3oJubMGDmQIUYZYiAi8qg977l8SiHCsNz0BArhwl8i7k1q+JjYrsD0feoeJY3RfZx6HQ6cGB5/7xsD21kM5t09zJv8OZAlPlniIO2ZFEVRRBR8++2348aNGxg9ejQ+/fRTj1133LhxWLduHZo3b46cnByPXbchTz75JNasWQMAmDFjBpKSGv4fqM8++wxjxowBoG74fuWK88sJOGvu3LmYN28eAOCBBx5waUZOZmYm2rVr5/TxnTp1wsaNG9GxY8daf3769Gl06dLF8T43N9epgbMePXrg5MmTAICFCxdi2rRpTtfpVunp6ejWrZvjfVpaGrp25f94EhEREUknJx1YcJ/3ypu+H4jt0vBxgDpTZW8ScGGv89eP7w/0n8nN4YmIiIjIMEQ/yxU286SgoAAA0KxZM49e97bbbqt2fW+pOlLZpEkTp86pepxeRzojIiIwadIkrF69GmfOnEFhYSFKS0tx6dIlfPrpp3jwwQcdx545cwaPPPIIrl27Vuu1bo1RZJ5CQkIQHh4OQF0OLD8/H5XjiGazGTabDQBQUlKCoqIiAOqUvqozZwoKClBWVgZA3WenuLgYAFBWVlbt/svPz3dMAywqKkJJibp+ts1mg9lsBgAoioL8/HyUl5c74rRarQCA0tJSWCwWADU3tLJYLI5l06xWqyM/jIkxMSbGxJgYE2NiTIaNKftbIO8CrPs/QCFC1Zjgh3xEovKvxswIhw2BakwIQRHU/960wx/5iLwZEyJQBnU53mKEoBghakwIQAEibsaESNgPfgDkXXAupo7DUDhuDaxTdgEDXkFpwhBYgtUlvRwb1gc3BdoPgqXPb1D6/DfA5M2wth0oTzvJeO8xJsbEmBgTY2JMjIkxMSZNYhJF2OBJ5YY8nh7kqGxYZx/Me0rlTQMAQUFBTp0THBzseF15c+pJXFwcLl++jKVLl+LJJ59Ex44dERYWhqCgILRu3Rpjx47Fl19+iUWLFsFkMgEAvv/+e7z++uu1Xq9qjgCxeerbty/Gjh0LALh27RqSkpIcH+glS5bg1KlTAIBdu3Zh06ZNAICsrKxqM4oWLFiAc+fOAQC2b9+O7du3AwDOnTuHBQsWOI5LSkpCVlYWAGDTpk3YtWsXAODUqVNYsmQJALWzSUpKcgw8rV27FikpKQCAY8eOYcWKFQDU+zspKclxn69YsQLHjh0DAKSkpGDt2rUNxrR9+3a8++67KCgokCYmrdtp8eLFePPNN3H16lVpYnK1nSrrUHk9GWK6tZ0+/PBDvP322ygoKPDZmIzQToyJMTEmxtRgTAt/DiT1QErqKazFCDUm3IYk01SUQv3vyiV4EqdwpxoT+mITHlJjQhySTFPxJl5EASKwAM/iHNSlZrfjAWzHA2pMiMcCPHszJtNUZB3ZCiT1cC2m8/nA0DdwrPNsrGg6E3g9C+ZfHEOSaSrMLxwDJm7AiouxOPZDiXztJOO95+WYCgoKkJSU5FjaWIaYZGynxsZUUFCAt99+Gx9++KE0MflCO3322Wd45513UFBQIE1M3mingoICvPXWW1LF5E47vfnmmygoKJAqpkr/+c9/MH/+fBQUFPh8TDK3k4wxCaMIcueddyp+fn7KwIEDPXrdgQMHKiaTSbnjjjs8et2GDB8+XAGgAFBmz57t1DmbN292nBMeHq5JvebMmeMo44EHHtCkDEVRlN/97neOcvz9/ZXs7Owaxxw8eNBxDAClpKTEqWv36dPHcc7f/va3RtUzLS1NAaCEhIQo4eHhSlpammK325W8vDyloqJCURRFKSgoUEpLSxVFUZTi4mKlsLBQURRFKSsrU/Ly8hzXys/PV2w2m6IoilJUVKQUFRUpiqIoNptNyc/PdxyXl5enlJWVKYqiKIWFhUpxcbGiKIpSWlqqFBQUKIqiKBUVFUpeXp5it9sVRVEUi8XiyI/ValXMZrOiKIpSXl6u5OXlKeXl5YqiKIrZbFasVquiKIpSUlKiWCwWRVGUemMqKChQjh07pthsNmli0rqdrl+/rpw+fVopLS2VJiZX28lqtSqHDx92xCFDTLe2040bN5QTJ04oNpvNZ2MyQjsxJsbEmBhTgzHNaaYocyKVkjnNFcucFooyJ1Kxz4lW8ua0VirmRCrKnEilYE5LpXTObYoyJ1IpnnO7UjgnVlHmRCplc5oqV+fEK6fn9FJsc2KU/DmtFNucGEWZE6kUzbldKZpzu6LMiXT8TPnxenlzWitlc5oqypxIthNj8lpMNptNOXz4sCMOGWKSsZ0aG5PNZlNOnDih3LhxQ5qYfKGd8vLylNTUVMVms0kTkzfayWazKWlpacrVq1elicnVdrp69apy+vRpR71liKlqO127dk05efKkYrPZfDom2dtJppgqn+VWfqWlpSneJGzPk4ceegg7d+5EcHAwcnNzPTJTpKSkBDExMbDZbBg8eDB27NjhgZo6R8Y9T1xRWFiI22+/3TEz5KOPPsIzzzxT7RjueUJEREREmpsbJbh87y4fTEREREQkK9HPcoUt2zVkyBAA6hpqntow/tNPP3VM+am8vrdU7rUCwOmN6rOzsx2vY2JiPF4nbwoPD8e9997reH/69Okax1TNEWDMPOlBcXEx1q9f71jvkBrGnBkjBzLEKEMMRESiFSME6zHMsb8JkV7x974xsJ3FYN7dw7zJnwNZ4pMlDtKesMGTRx55xPH6jTfeaPTNWlxcjDlz5jjeP/roo426nqs6derkeH3hwgWnzrl48aLjdefOnT1eJ2+Li4tzvL5+/XqNn99+++2Ijo52vHcmT1artdoG9DLkiYiIiIiIiIiIiIj0TdjgSa9evTBkyBAoioJLly5h9OjRsNvtbl2rvLwcY8eOxYULF2AymTB48GD06tXLwzWu309+8hPH65MnTzoVy9GjR2s931cVFRU5XoeFhdV6TNU4KzcNqk/VHPn7+6Njx46NqCEBQGhoKEaNGoXQ0FDRVfEZzJkxciBDjDLEQEQkWiisGIVtCIVVdFWI6sXf+8bAdhaDeXcP8yZ/DmSJT5Y4SHvCBk8A4M9//jP8/NQqfPnll+jbty/S0tJcukZ6ejr69u2Lbdu2AQD8/Pzw5z//2eN1bch9992H4OBgAOogwuHDh+s9vrS0FCkpKY733l5mTAtVB0NatmxZ6zGDBw92vHZm/5Vdu3Y5XlfNMbmvrKwMGRkZKCsrE10Vn8GcGSMHMsQoQwxERI328gn1q829DR9bizIEIAMdUIYA105s01ctl8hL+HvfGNjOYjDv7mHe5M+BLPHJEgdpT+jgyb333ov58+ejcs/6o0ePIjExEcOGDcPy5cuRkZFR63lnzpzBhx9+iEceeQQ9e/bE0aNHoSgKTCYT/vrXv1bbe8NbwsPDMXToUMf7ZcuW1Xv8Z599BovFAkDdx2PgwIFaVk9zO3bswKVLlxzvBw0aVOtxo0aNqnZOVlZWvdetmseq55L7uK6j65gzY+RAhhhliIGIqNGaxqtf8f3dOr0YTX7c86SJaycm9FfLJfIS/t43BrazGMy7e5g3+XMgS3yyxEHaMymVIxcCvfbaa5g/fz5MJpNjEKSSn58fIiMjER4ejsLCQpjNZlRUVDh+Xnm8oij47W9/i/nz54sIAQDwxRdf4Kc//SkAIDg4GEeOHEHXrl1rHFdcXIyePXviu+++A6DG/9e//lWTOs2dOxfz5s0DADzwwANOzfYAAJvNBgAICgpq8Nhr166hX79+OHfuHAB1aa60tDTHrKJb9enTB4cOHQIAPP300/j4449rPe7999/HtGnTAAARERE4f/48mjVr5lT965Keno5u3bo53qelpdXaRkRERETk43LSgQX3ea+86fuB2C7eK4+IiIiISHKin+UKnXlS6c0338TatWurbSYOqAMj5eXlyMvLw6VLl5CXl4fy8nLcOt4TFRWFNWvWCB04AYARI0ZgwIABANRluX7605/ixInqU/dv3LiBUaNGOQZOYmJiMHv27Fqvl5mZCZPJ5PhqaDaLJ12+fBkdOnTA/Pnz69zYXVEUfPHFF+jdu7dj4MRkMuFvf/tbnQMnAKoNFK1YsQKvvfZajWlya9aswcyZMx3vf/vb3zZ64ISIiIiIDCS2K9DWS4Mn8f05cEJEREREJBldDJ4AwOjRo3HhwgXMnz8f7dq1qzFAcitFUZCQkOB4uD927Fgv1bR+K1euRFxcHAB18CMxMRGDBw/G1KlT8fjjj6Nt27b48ssvAQABAQFYs2ZNjUEjdw0fPhyJiYnVvhYuXOj4+eHDh2v8PDExEZcvX671ellZWZg9ezYSEhLQrl07jBw5ElOmTMG0adMwevRotG7dGj/96U+rDa7Mnz8fw4cPr7eeQ4cOxf/93/853r/11ltISEjA+PHjMWnSJHTv3h1PPvkkSkpKAAAPPfQQfve73zUmNVRFfn4+5s2bh/z8fNFV8RnMmTFyIEOMMsRARORR9890+ZR8RGKe6TfIR6TzJ/V3vRyixuLvfWNgO4vBvLuHeZM/B7LEJ0scpD1dLNtVm4sXL2L37t3IzMxEbm4uLBYLIiIiEBMTg4SEBNx///2Ij9fnmsIZGRl46qmnkJqaWucxzZs3x9KlSzFixIg6j8nMzES7du0c75cuXYpJkybVeXxCQkKds0Tq8/333yMhIaHeshvSqlUr/Oc//8HIkSOdOl5RFPz5z3/GH//4x3o3Zxo/fjwWLVqEyEgX/ue1HqKneumB3W5HVlYWWrdujYAAFzdCNSjmzBg5kCFGGWIgIvK4tc8DaWudPtwOf2QhDq1xBQEob/iE7uOAMYsbUUEi9/D3vjGwncVg3t3DvMmfA1nikyUOIxD9LFe3gye+zmazYfXq1Vi1ahXS09ORk5OD6OhotG/fHqNHj8bkyZMbXIZK5OCJoihIT0/H/v37sW/fPqSnp+P69eu4ceMGiouLERkZibi4OPTu3RuPPvoofvaznyEwMNDlsk+fPo3Fixdj+/btuHTpEsrKyhAXF4d+/frhueeew4MPPujyNesj+gNHRERERPVQFKDUApSXAf6BQHAEUGU/RLcU56p7n1iueKaOVUXEAdP3AaExnr82EREREZHBiX6Wy8ETMhTRHzg9KCoqwqZNm/DYY48hLCxMdHV8AnNmjBzIEKMMMRCRAeWkAyfXAj8cAa4cB6z5N38WEg3E9QRa3a3O8HB3X5GcdGDp8OrXrkMRmmATHsJj+BJhKKn7wJBoYPJmdW8VIgH4e98Y2M5iMO/uYd7kz4Es8ckShxGIfpbLeUlEBuPn54fo6Gj4+elmyyPdY86MkQMZYpQhBiIykLPbgD3vARf31X2MNR/4fpf6tedddQP4+38NdHzYtbJiu6oDHR+PaXAGih8URMMMP9TzN2YRccAz6zhwQkLx974xsJ3FYN7dw7zJnwNZ4pMlDtIeZ56Qofx/9u4/Pqrqzv/4e0IIISQYUYyImhS3VPkltbVSEKVqq4LbL61QFa0/VlvF7lZbF227WxG7bdV2W7PbinaVH1XQCrpWWhR/giJi8QdKAsjWGhAlASGTzCSZTH7c7x+3jKD8SCZz58w95/V8PPIgP+becz7vc7jROdxzTa9WAgAAOK95l7R0RreeQ/IJI6dK597R/e2ymndJT9worVuU/bYBAAAAdIvp93JZXgMck0wmtXbtWiWTSdNdCQ0ycyMDG2q0oQYAlqut8p8/0pOFE8lf/Jg91t+OqzuKBvgPd5/2sFQ+bp8vSaq31mqYkvrY8/zKx0nTFvnHs3CCHMDvfTcwzmaQe3rIzf4MbKnPljoQPBZPAMckEgktX75ciUTCdFdCg8zcyMCGGm2oAYDFaqukeZMy9+D22Db/OSbdXUCRpKFn+9t4TX9ZGn+DNGSC/wwTSQn10XJ9UYk+A/3vj7/Bf90VS7u/XRgQIH7vu4FxNoPc00Nu9mdgS3221IHgsW0XnGL6Vi8AAAAnNe/y7xTJ1MLJnkoGSdNX9fxuEM+TknGpPSnlF0gFxVIkkpk+AgAAAOg20+/lcucJ4BjP85RIJMS6adeRmRsZ2FCjDTUAsNTSGcEsnEj+eZ+4sefniUSkPiXyigYo4fU+0OPigZzA7303MM5mkHt6yM3+DGypz5Y6EDwWTwDHNDQ06Pbbb1dDQ4PproQGmbmRgQ012lADAAttWtbzZ5wczLpFfjsZwLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY9suOMX0rV65oKOjQzt27NDAgQPVq1cv090JBTJzIwMbarShBgAWmnOutGVV8O2Uj/OfS9JDXEsRFsxVNzDOZpB7esjN/gxsqc+WOlxg+r3c/Ky1BCAn9OrVS0ceeaTpboQKmbmRgQ012lADAMvUVWdn4USSNr8k1a2Xyob16DRcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDy27QIcE4/HNW/ePMXjcdNdCQ0ycyMDG2q0oQYAlqjf7H+suS+77b7a8/a4liIsmKtuYJzNIPf0kJv9GdhSny11IHjceQI4Jj8/XxUVFcrP569/V5GZGxnYUKMNNQCwROUoM+2uuVea9J89OgXXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI9nnsAppvfJAwAAcMIth5hre2ZUikTMtQ8AAAAgI0y/l8u2XYBjWltbtXr1arW2tpruSmiQmRsZ2FCjDTUAQI8le7b9AtdShAVz1Q2Msxnknh5ysz8DW+qzpQ4Ez8i9SWeccUbgbUQiET377LOBtwOETTKZ1Nq1azV8+HD16dPHdHdCgczcyMCGGm2oAYBhnie1xqSONqlXb6lPSfju4mhPSj24BHItRVgwV93AOJtB7ukhN/szsKU+W+pA8Ixs25WXl6dIgP8T5nmeIpGIOjo6AmsD4WT6Vi8AAICcU1ctrVssvf+atO1NKRH96GeFpdKgE6XBn5NGTpXKhnXtnCa37frhVn/RBwAAAEComX4v19i2XZ7nBfYBYP86OzsVjUbV2dlpuiuhQWZuZGBDjTbUACCLNi2T5pwrzR4rrfyV9O6KvRdOJP/rd1f4P5/9Rf/1m54y0duuKyju0eFcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDwj23Y9//zzJpoFIKmxsVGVlZW67rrrVFpaaro7oUBmbmRgQ4021AAgC5p3SUtnSFWLu3/sllXSwlX+XSjn3iEVDdj36657y//z0W9J772Sfl+765gxPd5mjGspwoK56gbG2QxyTw+52Z+BLfXZUgeCZ2TbLsAU07d65YLOzk41Njaqf//+ysszdvNZqJCZGxnYUKMNNQAIWG2VtGCKFNvW83OVDJIueUQqO8B/Sz0zy79rJVvG3yCdeXOPTsG1FGHBXHUD42wGuaeH3OzPwJb6bKnDBabfy2V2AI7Jy8tTaWkpvxy6gczcyMCGGm2oAUCAaqukeZMys3Ai+eeZO9F/Zsr+jJySmba6akTP2+NairBgrrqBcTaD3NNDbvZnYEt9ttSB4DFDAMfEYjHdfffdisViprsSGmTmRgY21GhDDQAC0rzLv+Pk48806alEVHrgfP/8+1I2XDp2bGbb3J/ycV1/oP0BcC1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwWDwBHFNQUKDRo0eroKDAdFdCg8zcyMCGGm2oAUBAls7I3B0nHxfbJj1x4/5/fur1wbT7ceMy0w7XUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI9nnsAppvfJAwAAyLpNy6SF3wi+nWkPS0PP3vfPFl+Z3gPqu2rkVOn8e4M7PwAAAICsM/1ebn7WWkpTQ0ODVq5cqbVr1+rDDz9ULBZTZ2fnQY+LRCK67777stBDIFwSiYRWr16tMWPGqLCw0HR3QoHM3MjAhhptqAFAAFbemZ12Xqrc/+LJxF9Im18K5u6XkkHSuXdk7HRcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELycXTypr6/XTTfdpAULFiiRSKR1DhZPgE9qb29XTU2NPv/5z5vuSmiQmRsZ2FCjDTUAyLC6amnLquy0tfklqW79vp87UjRAuuQR/wHzmXzuSmGpf96iARk7JddShAVz1Q2Msxnknh5ysz8DW+qzpQ4ELye37aqpqdHpp5+urVu3qivdi0Qin3hdJBJRR0dHUF1ESJm+1QsAACAr6jf7f75UKb2axX9QdPJV0tjvSoeW7/vnddX+A+YzcQdKySB/4aSM/5YDAAAAbGT6vdycu/PE8zx97Wtf03vvvSdJGjVqlC6++GI99dRTevbZZxWJRDRnzhzFYjFt3rxZL7zwgtasWSNJKi4u1syZM3X44YebLAHIaR0dHdqxY4cGDhyoXr16me5OKJCZGxnYUKMNNQDIkMpRZtpdc6//cUvDvn9eNlyavsp/wPy6Rem3M3Kqv1VXBu842Y1rKcKCueoGxtkMck8PudmfgS312VIHgpdnugMft3jxYr355puKRCI655xz9Oqrr2rGjBk6/vjjU6+57LLL9M///M/6xS9+oVdeeUVr1qzRZz/7WcXjcVVWVuqUU07RZZddZrAKIHfFYjHdc889isViprsSGmTmRgY21GhDDQAcUDTAf7j7tIel8nHdO7Z8nDRtkX98AAsnEtdShAdz1Q2Msxnknh5ysz8DW+qzpQ4EL+e27Zo2bZoeeugh5eXl6Z133lF5uX/L/7/8y7/ot7/97X6342ppadGXv/xlrVq1SiNGjNBf/vIXHviDTzB9q1cu8DxPra2t6tOnjyKRiOnuhAKZuZGBDTXaUAOADLnlEMPt7+fOk32pWy9VLZbef036YO3ez0QpLJWOGi0N/pw0Ysq+n6eSYVxLERbMVTcwzmaQe3rIzf4MbKnPljpcYPq93Jzbtusvf/mLIpGITjrppNTCSVf07dtX8+bN0wknnKDq6motXLhQ//RP/xRgT4FwikQiLCx2E5m5kYENNdpQAwAHlQ2Tym72P/c8KRmX2pNSfoFUUCxl+X9ouZYiLJirbmCczSD39JCb/RnYUp8tdSB4Obdt144dOyRJJ5xwwl7fz8v7qKuJRGKfx/7DP/yDxo4dK8/z9NBDDwXXSSDEGhsbdeedd6qxsdF0V0KDzNzIwIYabagBgOMiEalPidTvMP9PA/8SkGspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3OLJ7sXRoqLi/f6/p5f79q1a7/Hf/rTn5Ykvf322wH0Dgi/wsJCTZgwgRX2biAzNzKwoUYbagAA07iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDm3bVf//v21a9cuNTc37/X9ww47LPX5X//6Vx111FH7PL6hwd9fefv27cF1EgixgoICjR492nQ3QoXM3MjAhhptqAFAhlz3lv/no9+S3nsle+0eM0b6+u+y114AuJYiLJirbmCczSD39JCb/RnYUp8tdSB4OXfnyXHHHSdJqq2t3ev7ez4I5rnnntvnsZ2dnXr99dclSUVFRQH1EAi3lpYWPfnkk2ppaTHdldAgMzcysKFGG2oAkCGHlvsf5eOy227FOL/dEONairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4sno0aPleZ7Wr1+/1/fHjBmjPn36SJLuvvvufd5Zcuedd+rdd99VJBLRiBEjstJfIGw6OzsVjUbV2dlpuiuhQWZuZGBDjTbUACDDRk7JbnsjstxeALiWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeBHP8zzTndjTQw89pGnTpikSiej//u//NGTIkNTPLrnkEi1cuFCRSESDBw/W9ddfr5EjR6q5uVmPP/645s+fr87OTkUiEf3mN7/R9OnTDVaCXFRdXb3XwlpVVdVedzUBAABYZ8650pZVwbdTPk66Ymnw7QAAAABwgun3cnPuzpOJEyeqoKBAkrR48eK9fnb77bfr0EMPlSS9//77mjFjhs455xx9/etf17x587R7Heikk07SVVddld2OAyHR3t6umpoatbe3m+5KaJCZGxnYUKMNNQDO8zwp0Sg17fT/zMS/czr1+p6foyvGZamdgHEtRVgwV93AOJtB7ukhN/szsKU+W+pA8HJu8aR///568MEHddddd2nYsGF7/Wzw4MF65plnVF5eLs/z9vlx2mmn6c9//rN69+5tqAIgt8Xjcc2fP1/xeNx0V0KDzNzIwIYabagBcFJdtfTMLGn+V6XbK6TbjpF+McT/8/YK//vPzJLq1h/sTPs29Ozgt9MaOVUa+pVg28gSrqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezm3b1RXJZFKPPPKInn32WX3wwQfKy8vTkCFD9I//+I/68pe/bLp7yGGmb/UCAABI2bRMWnln97bUOnasdOr3ur9Q0bxLmj1Wim3r3nFdUTJImr5KKhqQ+XMDAAAAcJbp93Lzs9ZSBhUUFOiiiy7SRRddZLorAAAAQPc075KWzpCqFh/8tR+3ZZW0cJV/p8e5d3R9waJogHTJI9LciVIi2v1296ew1D8vCycAAAAALJNz23YBCFZDQ4Nuu+02NTQ0mO5KaJCZGxnYUKMNNQDWq63y7wBJZ+FkT+sW+eepq+76MWXD/Qe6lwzqWdu7lQzyz1dm1128XEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8Fk8AxxQVFWny5MkqKioy3ZXQIDM3MrChRhtqAKxWWyXNm5S5rbNi2/w7Sbq7gDL973eu9MTIqf55LFs4kbiWIjyYq25gnM0g9/SQm/0Z2FKfLXUgeKF85gmQLtP75AEAAEfl4jNHNi2TXqqUNr/U9WPKx0njrrfm4fAAAAAAcpfp93Jz/pknnZ2d2rBhg2pqatTY2Ki2trYuH3vppZcG2DMgnJqbm/XUU0/pK1/5CivsXURmbmRgQ4021ABYa+mMYBZOJP+8T9wonX9v944berb/Ubfe30bs/dekD9bu/UyUwlLpqNHS4M9JI6ZIZcMy1+8cxbUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBy9nFk82bN+snP/mJFi1apHg83u3jI5EIiycAAAAwb9Oynj/j5GDWLfK30hp6dvePLRsmld3sf+55UjIutSel/AKpoFiKRDLbVwAAAAAIgZzctmvp0qW64IIL1NzcrHS7F4lE1NHRkeGeIexM3+oFAAAcNOdcacuq4NspH+c/wB0AAAAALGD6vdycu/Nky5Ytmjp1qlpaWlLfO/LII3XiiSfqsMMOU+/evQ32Dgi/trY2vfPOOzruuOP4+9RFZOZGBjbUaEMNgHXqqrOzcCL5zy6pW+/E1lpB4lqKsGCuuoFxNoPc00Nu9mdgS3221IHg5ZnuwMf98pe/VEtLiyKRiAYPHqw//elP+uCDD/TEE0/ogQce0Ny5c7v8AeCTmpub9dhjj6m5udl0V0KDzNzIwIYabagBsEb9Zv9jzX3ZbffV+/x2kTaupQgL5qobGGczyD095GZ/BrbUZ0sdCF7Obdt1wgkn6O2331bv3r21du1anXDCCaa7BIuYvtULAAA44pZDDLffYLZ9AAAAAOgh0+/l5tydJ++9954ikYgmTJjAwgkAAAAAAAAAAMi6nFs82b3P3Kc+9SnDPQHsFI1GNWvWLEWjUdNdCQ0ycyMDG2q0oQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgpdz23aNHj1a69at0wUXXKCFCxea7g4sY/pWr1zQ3t6urVu36uijj1Z+fr7p7oQCmbmRgQ012lADYA227QotrqUIC+aqGxhnM8g9PeRmfwa21GdLHS4w/V5uzs2Of/zHf9Rbb72ll19+2XRXACvl5+eroqLCdDdChczcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHg5dy2Xddcc4369++vLVu26MEHHzTdHcA6TU1Neuihh9TU1GS6K6FBZm5kYEONNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBybvFk8ODBmjdvnvLy8nT11Vfr6aefNt0lwCp5eXkqLS1VXl7O/fXPWWTmRgY21GhDDYA1rnvL/zjmlOy2e8wYv12kjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3PPPNmyZYsk6emnn9Y///M/q62tTeedd56mTp2qkSNH6pBDDlEkEunSuY499tggu4oQMr1PHgAAcMwzs6SVv8pee+NvkM68OXvtAQAAAEBATL+Xm3PPPKmoqNhrccTzPC1ZskRLlizp1nkikYja29sz3T0g9JLJpNavX69hw4apoKDAdHdCgczcyMCGGm2oAbDOyCnZXTwZMSV7bVmKaynCgrnqBsbZDHJPD7nZn4Et9dlSB4KXs/cm7b4hZvdCiud53f4A8EmJRELLly9XIpEw3ZXQIDM3MrChRhtqAKxTNlw6dmx22iofJ5UNy05bFuNairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXctl0fv/OkJ959992MnAf2MH2rFwAAcNCmZdLCbwTfzrRF0tCvBN8OAAAAAGSB6fdyc27brpqaGtNdAKzmeZ5aW1vVp0+fjC1U2o7M3MjAhhptqAGw0tCz/e20qhYH18bIqSycZAjXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC9nt+0CEIyGhgbdfvvtamhoMN2V0CAzNzKwoUYbagCsNfEXUsmgYM5dMkg6945gzu0grqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezm3bBQTJ9K1euaCjo0M7duzQwIED1atXL9PdCQUycyMDG2q0oQbAanXV0tyJUiKauXMWlkpXLPWfrYKM4FqKsGCuuoFxNoPc00Nu9mdgS3221OEC0+/lsngCp5j+CwcAAELA86TWmNTRJvXqLfUpkTJ1O39dtfTA+VJsW8/PVTJIuuQRFk4AAAAAWMn0e7mh2rartrZWVVVVevnll1VVVaXa2lrTXQJCJx6Pa968eYrH46a7Ehpk5kYGNtRoQw2AMXXV0jOzpPlflW6vkG47RvrFEP/P2yv87z8zS6pb37N2yoZL01f5zyjpiZFT/fOwcJJxXEsRFsxVNzDOZpB7esjN/gxsqc+WOhC8nHtg/MetXLlSs2fP1vLly/e5WHLkkUfqS1/6kq655hqdeuqpBnoIhEt+fr4qKiqUn5/zf/1zBpm5kYENNdpQA5B1m5ZJK++Utqza/2sSUendFf7Hyl9Jx46VTv1e+g9oLxognX+vvwDyUqW0+aWuH1s+Thp3PQ+HDxDXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC9nt+3auXOnrrzySi1ZskSSdKBuRv6+jcJXv/pV3XvvvTrssMOy0keEj+lbvQAAQI5o3iUtnSFVLU7/HCOn+g9qLxrQs77Urff78f5r0gdr934mSmGpdNRoafDnpBFTpLJhPWsLAAAAAELC9Hu5Oblt186dO3XqqadqyZIl8jxvr4WTwsJCHXbYYSosLEx9b/drHn/8cZ166qnauXOniW4DodDa2qrVq1ertbXVdFdCg8zcyMCGGm2oAciK2ipp9tieLZxI0rpF/nnqqnt2nrJh0pk3S5f+UbqpRvrhVmnG3/w/b6rxv3/mzSycZAnXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC8nF0+mTZumt99+O/X1ueeeq0ceeUS1tbVqbm7Wjh071NzcrLq6Oj366KOaNGlS6rWbNm3SxRdfbKLbQCgkk0mtXbtWyWTSdFdCg8zcyMCGGm2oAQhcbZU0b1JmHtgu+eeZO7HnCyi7RSL+A+r7HZbZB9Wjy7iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDm3bdczzzyjr3zlK4pEIurbt68eeOABTZ48+aDHPf7445o2bZqam5sViUS0bNkynXXWWcF3GKFi+lYvAABgUPMu/06RTC2c7KlkkP8A955u4QUAAAAAkGT+vdycu/PkoYceSn3+P//zP11aOJE+et7Jbg8++GCmuwZYobOzU9FoVJ2dnaa7Ehpk5kYGNtRoQw1AoJbOCGbhRPLP+8SNwZwbWcW1FGHBXHUD42wGuaeH3OzPwJb6bKkDwcu5xZOVK1dKko477jhddNFF3Tr2wgsv1D/8wz/I87zUeQDsrbGxUZWVlWpsbDTdldAgMzcysKFGG2oAArNpWc+fcXIw6xb57SDUuJYiLJirbmCczSD39JCb/RnYUp8tdSB4Obdt1yGHHKJ4PK6LL75Yv//977t9/KWXXqoHHnhAJSUlamhoCKCHCDPTt3rlgs7OTjU2Nqp///7Ky8u59dOcRGZuZGBDjTbUAARmzrnSllXBt1M+TrpiafDtIDBcSxEWzFU3MM5mkHt6yM3+DGypz5Y6XGD6vdz8rLXURW1tbZKkgoKCtI7ffdzu8wDYW15enkpLS013I1TIzI0MbKjRhhqAQNRVZ2fhRJI2vyTVrZfKhmWnPWQc11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv55bWjjjiCEnS+vXr0zp+93G7zwNgb7FYTHfffbdisZjproQGmbmRgQ012lADkFH1m/2PNfdlt91Xs9weMoprKcKCueoGxtkMck8PudmfgS312VIHgpdziyef/exn5Xme/vKXv2jt2rXdOvbNN9/UK6+8okgkotGjRwfSPyDsCgoKNHr06LTv7nIRmbmRgQ012lADkFGVo/yPbC9mrLk3u+0ho7iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDn3zJO5c+fqyiuvVCQS0dChQ/Xss8/qqKOOOuhx27Zt0xlnnKG3335bkUhE9913ny6//PLgO4xQMb1PHgAAyKJbDjHX9syoFImYax8AAAAAQs70e7k5d+fJN7/5TQ0ZMkSS9Pbbb2vUqFH6r//6L9XX1+/z9dFoVL/5zW904oknatOmTYpEIhoyZIguueSSbHYbCI1EIqHly5crkUiY7kpokJkbGdhQow01ANZIxk33AGniWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDl3OJJfn6+FixYoL59+yoSiWjXrl363ve+p7KyMo0cOVLnnXeeLrjgAp133nkaNWqUjjjiCF133XX68MMP5XmeioqKtGDBAuXn55suBchJ7e3tqqmpUXt7u+muhAaZuZGBDTXaUANgjfak6R4gTVxLERbMVTcwzmaQe3rIzf4MbKnPljoQvJzbtmu3F154QRdffLHef//91Pci+9j6YM/uDx48WAsXLtT48eOz0keEj+lbvQAAQBaZ3Lbrh1ulPiXm2gcAAACAkDP9Xm7O3Xmy22mnnaZ169bpxz/+sY488khJ/kLJxz8k6cgjj9TNN9+sdevWsXACHERHR4dqa2vV0dFhuiuhQWZuZGBDjTbUAFijoNh0D5AmrqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezi6eSFJpaalmzZqlDz74QNXV1XrggQf061//Wj/5yU/061//Wg888ICqq6v1wQcf6JZbblFpaanpLgM5LxaL6Z577lEsFjPdldAgMzcysKFGG2oAMuq6t/yPY07JbrvHjOFh8SHGtRRhwVx1A+NsBrmnh9zsz8CW+mypA8HL2W27gCCYvtUrF3iep9bWVvXp02efW+Hhk8jMjQxsqNGGGoBAPDNLWvmr7LU3/gbpzJuz1x4yimspwoK56gbG2QxyTw+52Z+BLfXZUocLTL+Xm9N3ngDIvEgkosLCQn45dAOZuZGBDTXaUAMQiJFTstveiCy3h4ziWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeAI4prGxUXfeeacaGxtNdyU0yMyNDGyo0YYagECUDZeOHZudtsrHSWXDstMWAsG1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxBHBMYWGhJkyYoMLCQtNdCQ0ycyMDG2q0oQYgMKden512xmWpHQSGaynCgrnqBsbZDHJPD7nZn4Et9dlSB4Jn5Jknt956615f33zzzfv9WU/seV5AMr9PHgAAMGjxlVLV4uDOP3KqdP69wZ0fAAAAABxi+r1cI4sneXl5e+0p19HRsd+f9cSe5wUk83/hckFLS4tWrFih008/XX379jXdnVAgMzcysKFGG2oAAtW8S5o9Vopty/y5SwZJ01dJRQMyf25kFddShAVz1Q2Msxnknh5ysz8DW+qzpQ4XmH4v19i2XZ7naX/rNrt/1pMP05LJpO6//35NnDhR5eXlKiws1KBBgzR27Fj98pe/1IcffpjxNjs6OvTWW2/pvvvu0/Tp0/X5z39eBQUFikQiikQimjBhQrfPWV9fr0WLFunaa6/V2LFjdcQRR6igoED9+/fXcccdpwsvvFALFixQW1tbl885YcKEVJ+6+rFy5cpu9x371tnZqWg0qs7OTtNdCQ0ycyMDG2q0oQZAkuR5UqJRatrp/5mp/7YrGiBd8ohUWJqZ8+1WWOqfl4UTK3AtRVgwV93AOJtB7ukhN/szsKU+W+pA8IzceTJr1qy9vp45c+Z+f9YTe543mzZu3KiLLrpIa9eu3e9rjjjiCM2dO1cTJ07MSJuPPfaYLr74YjU3N+/3NaeffrqWL1/epfPF43FddNFFeuqpp5RMJg/6+oqKCs2fP1+nnXbaQV87YcIErVixokv92O3FF1/Uqaee2q1j9sX0aiUAANiPumpp3WLp/dekbW9KiehHPysslQadKA3+nL81Vk8fyF5XLT1wfmbuQCkZ5C+clPHfEwAAAACQSabfy83PWkt7ONCihqkFj0zZunWrzjzzTH3wwQeSpEgkotNOO03HHXecduzYoWeeeUYtLS3avn27Jk+erCeffFJnnHFGj9uNRqMHXDjprng8rj/96U97fa+srEyf//zndeSRR6qtrU1r167VW2+9JUmqqanRmWeeqf/93//Veeed1+V2Jk+erMGDBx/0dUcddVT3CsB+tbe3a+vWrTr66KOVn2/kEhA6ZOZGBjbUaEMNcNCmZdLKO6Utq/b/mkRUeneF/7HyV9KxY6VTvycN/Up6bZYN97fYeuJGad2i9M4h+Qs5597BHSeW4VqKsGCuuoFxNoPc00Nu9mdgS3221IHgGdu2y1bTpk1LLZyUl5frjTfe0PLly3Xffffp8ccf15YtW3TmmWdKktra2jR16lRFo9GMtV9WVqbzzjtPs2bN0tKlS3Xdddf16HyHHnqorrvuOq1du1a1tbX605/+pHvvvVfz58/Xm2++qRdffFGf+tSnJPkXnosvvlh1dXVdPv91112n3/zmNwf9GDJkSI/qwEfi8bjmz5+veDxuuiuhQWZuZGBDjTbUAIc07/If4L7wGwdeONmXLaukhVOlR67yz5OOogH+w92nPSyVj+veseXjpGmL/ONZOLEO11KEBXPVDYyzGeSeHnKzPwNb6rOlDgTPyLZdtlq6dKkmTZokSSooKNCrr76qkSNHfuJ1TU1NGjVqlP72t79Jkn74wx/qZz/7WY/arq2tVTKZ1LHHHrvX92+55ZbUVmjd2bZr165dqqys1A033KD+/fsf8LU1NTU68cQT1djYKEn6wQ9+oJ///Of7ff2e23Y9//zzaT2LJV2mb/UCAACSaqukBVNya9usuvVS1d+3Dftg7Se3DTtqtL9t2IgpPd82DAAAAABwUKbfy825+5L+6Z/+SZJ01llnadq0ad0+/uGHH9aTTz6pSCSi++67L9PdO6Df/va3qc8vu+yyfS6cSFK/fv1066236pJLLpEk3XPPPbr11lt7dJvYkUcemfax+zJgwIAuP3+moqJC11xzje644w5J0p///OcDLp4AAACH1VZJ8ybtvTjRE7Ft0tyJ0hVLe7aAUjZMKrvZ/9zzpGRcak9K+QVSQbEUiWSmvwAAAACAUMi5bbvmzZun+fPna/Xq1Wkdv2bNGs2bN0/z5s3LbMcOIh6P69lnn019fcUVVxzw9eeff76Ki4sl+Xd5vPDCC4H2L2jjxn203UVNTY25juCgGhoadNttt6mhocF0V0KDzNzIwIYabagBlmve5d9xkqmFk90SUf8B8Olu4fVxkYjUp0Tqd5j/JwsnTuFairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4klYrVq1Sq2trZL8O0tOPvnkA76+sLBQX/ziF1NfP/fcc4H2L2iRPd5U6OjoMNgTHExRUZEmT56soqIi010JDTJzIwMbarShBlhu6YzMbNW1L7Ft/gPggR7iWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDl3LZdPbX7ES6RLP8LwQ0bNqQ+HzlyZJe24DrppJP09NNPf+L4MFq3bl3q82OOOabLx23cuFHr16/Xe++9p7a2Ng0YMEBDhw7V+PHjVVZWFkRXnde7d28df/zxprsRKmTmRgY21GhDDbDYpmX+M0WCtG6RNHKqNPTsYNuB1biWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeNbdefLhhx9KUmpLrGx5++23U5+Xl5d36Zg9H+6+cePGjPcpWzo7O3X//fenvj7rrLO6fOz06dP1ne98R7fddpv+8z//U//2b/+mqVOnatCgQfp//+//6c033wyiy05rbm7WY489pubmZtNdCQ0ycyMDG2q0oQZYbOWd2WnnpcrstANrcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwrFo8aWxs1FNPPaVIJLLXwkQ27Ny5M/V5V++Y2PMh77t2ZWiPbgPuuuuu1OJPXl6epk+f3uNzep6nxx9/XKeccor+53/+p8fn+7jCwsLUAltHR4ei0WjqrqXGxkYlk0lJUktLi5qamiRJ7e3tikajqXM0NDSora1Nkn/R3X3BbWtr22vPxGg0qvb2dklSU1OTWlpaJEnJZFKNjY2peqPRaGrLs3g8rkQiIUlqbW1VLBaT5C9URaNRdXZ2SpJisVhqu7hEIqF4PN6lmnb326aaghyn3X21qaZ0ximZTFpX057jFI/HU8eEuSbbx4maQlrTu69JW1apQ3mKqr+8v/ehUcVKqrdfkwrVpL5+TeqlqPp/VJNK1Pb3G6abVahmFfo1KV8NKvmoJvVX++bVUt16xoma0q5pz77aUpON40RNSvXdtppsHKee1tTR0ZHqqy01hWGcdn9uU03ZGKfOzk41NDRYVRP/HfHRODU2NqbOHeaabB8nG2syxejiya233vqJj93+8pe/7PPn+/r48Y9/rH/6p3/SsGHDVFtbK0k69dRTs1rL7gkgSX379u3SMXu+bs/jw6S6ulo//OEPU19feeWVGj58+AGPiUQiOv300/XrX/9aq1ev1q5du9TW1qZdu3bpxRdf1Pe+9z3169dPkv+X8Oqrr9aiRYsy2u8xY8ZoypQpkqQdO3aosrIy9Rd6zpw5Wr9+vSRpxYoVWrJkiSRp69atqqz86F+zzp49W++8844k6amnntJTTz0lSXrnnXc0e/bs1OsqKyu1detWSdKSJUu0YsUKSdL69es1Z86cVJ2VlZXasWOHJGnx4sVavXq1JOmNN97QggULJPkXlMrKytQFbMGCBXrjjTckSatXr9bixYsPWtOaNWvU0dGhoqIia2oKepwefPBBTZ48Wb169bKmpu6OU3t7uzZs2JD6pWpDTR8fp0cffVSDBw9WUVFRaGtyYZyoKWQ11W/W6uef1OJHH/Nr0mGqjFylVvXxa9IFWq9P+zVpjJboy35NGqTKyFUf1aRv6h35d/Y+pdP1lE73a1K5ZuubH9UUuUpbNUh69T4tefQPjBM1pVXT7373u9Qe2LbUZOM4UZO/X/uGDRtS/xDPhppsHKee1lRUVKTBgwfr0UcftaamMIzTs88+q+LiYhUVFVlTUzbGqaioSGPHjtXvfvc7a2rq7jjZ/t8R8+bN07Bhw1RUVBTqmmwfJxtrMsYzKBKJeHl5eXt9RCKRfX6/qx+RSMQrLCz0qqqqslrLGWec4UnyJHk//vGPu3TMs88+mzqmV69egfRr5syZqTZOP/30jJ67vr7e+4d/+IfU+T/96U97sVjsoMd9+OGHB33Nxo0bvSFDhqTOfdhhh3nRaLTHfa6qqvIkeYWFhV5xcbFXVVXltbe3e/X19V5nZ6fneZ7X0NDgtba2ep7nec3NzV48Hvc8z/Pa2tq8+vr61Lmi0aiXTCY9z/O8pqYmr6mpyfM8z0smk3v1tb6+3mtra/M8z/Pi8bjX3NzseZ7ntba2eg0NDZ7neV5nZ6dXX1/vtbe3e57nebFYzGtpafE8z/MSiYTX2NjoeZ7ndXR0ePX19V5HR4fneZ7X2NjoJRIJz/M8r6WlJZX/gWpqaGjw3njjDS+ZTFpTU9Dj9OGHH3obNmzwWltbrampu+OUSCS8V199NVWHDTV9fJx27tzpvfXWW14ymQxtTS6MEzWFrKaZ/b2WmQO92MwjPW9mf699ZqlXP/Nor3Nmf8+b2d9rmHmU1zrzMM+b2d9rnnmEF59Z5nkz+3ttMw/16mce7Xl/f1105mAvOXOA583s7zXNPMJrmnmE583s7yVnDvCiMwenXlc/82ivbeahnjezvxefWcY4UVNaNW3fvt3bsGFDqt821GTjOFGT//mrr76aqsOGmmwcp57WlEwmvbfeesvbuXOnNTWFYZzq6+u9tWvXeslk0pqasjFOyWTSq6qq8rZv325NTd0dJ9v/O2LHjh3eunXrvGQyGeqabB8nm2ra/V7u7o9sv+cf8TzP29eiSjbk5WX+xpdjjjlGd911lyZNmpTxcx/IpEmTtHTpUknSTTfdpNtuu+2gxzzxxBOaOHGiJP8ZLbtvc8qkW265RbNmzZIknX766Vq+fHlGzptIJHT22WfrhRdekCT1799fL774okaNGpWR80v+KueJJ56Y+hfUv/zlL3XDDTf06JzV1dUaMWJE6uuqqqqD3iljm4aGBs2ePVvTp0/XIYccYro7oUBmbmRgQ4021ADL3GJ4Ht7ScPDXAB/DtRRhwVx1A+NsBrmnh9zsz8CW+mypwwWm38s1uniy+039j38vEono5JNP1rnnnnvQc0QiERUWFuqwww7TiBEj9IUvfEGRSCSI7h7QBRdcoIcffliS9N3vfrdLtxU9+uijOv/88yX5zz/Ztm1bxvsVxOJJe3u7zj//fD3++OOS/OeHPPnkkzr99NN7fO6P++Y3v6kHHnhAknTmmWfqmWee6dH5TP+FAwDAKSyeAAAAAADSZPq93PystbQPM2fO/MT3dr/R/4UvfGGfP89Vhx12WOrzurq6Lh2z+/kskjRgwICM9ykInZ2duvzyy1MLJ/n5+Vq0aFEgCyeSdNZZZ6UWTzZs2BBIGwAAAAAAAAAA7MnoA+P35bTTTtNpp52mT3/606a70i2f+cxnUp9v3ry5S8ds2bIl9fnxxx+f8T4F4Zprrkk9CCgvL0+///3vdd555wXW3qBBg1Kff/jhh4G145JoNKpZs2YpGo2a7kpokJkbGdhQow01AIBpXEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8o3ee7EumnsmRbSeccELq83Xr1qm9vV35+QeO9/XXX9/n8bnqe9/7nv7nf/4n9fU999yjiy66KNA2m5qaUp/369cv0LZcUVxcrMsuu0zFxcWmuxIaZOZGBjbUaEMNAGAa11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv5+48CauxY8eqT58+kvw3/F999dUDvr61tVWrV69OfX3GGWcE2r+e+rd/+zfdeeedqa9//etf66qrrgq83TfeeCP1+VFHHRV4ey7Iz89XRUXFQRf38BEycyMDG2q0oQZY5rq3/I9jTsluu8eM8dsF0sC1FGHBXHUD42wGuaeH3OzPwJb6bKkDwcvJxZOnnnpKjz/+eLcfDv7MM8+kdVwmFBcX68wzz0x9PW/evAO+/tFHH1UsFpPkP+/ktNNOC7J7PfLTn/5UP/vZz1Jf33rrrbr++usDbzeZTKaedyJJEyZMCLxNFzQ1Nemhhx7a664eHBiZuZGBDTXaUAMsc2i5/1E+LrvtVozz2wXSwLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBy7nFk/Xr1+ucc87R1772Nf35z3/u1rF/+tOf9LWvfU3nnHOO3nnnnYB6uH/XXntt6vN58+apurp6n69rbm7WzTffnPr629/+ds6udFZWVurf//3fU1/feOON+vGPf5z2+eLxeJdf+6//+q969913U19fcsklabeLj+Tl5am0tFR5eTn31z9nkZkbGdhQow01wFIjp2S3vRFZbg9W4VqKsGCuuoFxNoPc00Nu9mdgS3221IHg5dwMWbx4cerzb33rW9069lvf+pY8z5PnefrDH/6Q6a4d1KRJkzR+/HhJ/rZc5513nt56a+8tI3bu3KnJkyfrr3/9qyT/rpObbrppn+erqalRJBJJfRzsbpZMmzNnjr73ve+lvv7Od76j22+/vUfn/PrXv64rr7xSL7zwgjo7O/f5mr/97W+aOnWq/vu//zv1vQsuuEBjxozpUdvw9e3bV+ecc4769u1ruiuhQWZuZGBDjTbUAEuVDZeOHZudtsrHSWXDstMWrMS1FGHBXHUD42wGuaeH3OzPwJb6bKkDwcu52x1eeOEFSVJFRYWGDeve//gOHz5cFRUV2rx5s1asWKEf/ehHQXTxgBYuXKgvfOEL2rZtm2pqajR69GidfvrpOu6447Rjxw4988wzam5uluTvr/fwww+rtLQ0I21PnDhRH3zwwV7fq62tTX3+6quvavTo0Z84bunSpZ94nsi6detSi1GS/7B2z/P0z//8z13qy3XXXadPf/rTn/h+MpnUnDlzNGfOHB1yyCE68cQTdcwxx6ikpETxeFzr16/X2rVr91pY+cIXvqD77ruvS+3i4JLJpNavX69hw4apoKDAdHdCgczcyMCGGm2oARY79Xpp4arg2xl3ffBtwGpcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELycWzzZsGGDIpHIPt/k74rPfvazqqmp0YYNGzLbsS46+uij9dxzz+miiy7S2rVr5Xmeli9fruXLl+/1uoEDB2ru3Ll7PSelp9avX6/Nmzfv9+dNTU168803P/H9ZDL5ie/t3LlzrwWMpqYm3XXXXV3uy5QpU/a5eLKnhoaG1GLZvvTu3VvXXnutbrvtNhUWFna5bRxYIpHQ8uXLNWTIEH5BdBGZuZGBDTXaUAMsNvRsfzutqsUHf226Rk6Vhn4luPPDCVxLERbMVTcwzmaQe3rIzf4MbKnPljoQvIi3+9aCHFFYWKi2tjZ961vf0t13393t46+55hr97ne/U2FhYeoODxOSyaQeeughPfjgg6qurlZdXZ1KS0s1ZMgQff3rX9cVV1yhww8//IDnqKmp0ac+9anU13PnztXll1++39fvvuumu959911VVFTs9b3ly5frS1/6UrfPtdvzzz+/zwe8b9++XatWrdLLL7+sNWvWaNu2bdq5c6fq6+tVWFioAQMGaOTIkRo/frwuvfRSDRo0KO0+7Et1dbVGjBiR+rqqqkrDhw/PaBsAAGA/mndJs8dKsW2ZP3fJIGn6KqloQObPDQAAAADIOtPv5ebcnSe9e/dWW1ubEolEWsene1ymFRQU6NJLL9Wll16a9jkqKirUnbWtmpqatNv6uAkTJnSr7a464ogjNHnyZE2ePDnj50bXeJ6n1tZW9enTR5FIxHR3QoHM3MjAhhptqAGWKxogXfKINHeilIhm7ryFpf55WThBBnAtRVgwV93AOJtB7ukhN/szsKU+W+pA8HLugfG778b4v//7v7SO37Rp017nAbC3hoYG3X777WpoaDDdldAgMzcysKFGG2qAA8qGS1cs9e8UyYSSQf75yriTFJnBtRRhwVx1A+NsBrmnh9zsz8CW+mypA8HLuW27vvrVr+pPf/qT8vPz9e6772rw4MFdPvb9999XRUWFOjs79eUvf1lPPvlkgD1FGJm+1SsXdHR0aMeOHRo4cKB69eplujuhQGZuZGBDjTbUgBzheVJrTOpok3r1lvqUSJn+F1nNu6QnbpTWLUr/HCOnSufewR0nyCiupQgL5qobGGczyD095GZ/BrbUZ0sdLjD9Xm7Obdv1la98RX/605/U0dGhGTNmaOHChV0+9oYbblBHR4cikYjOPvvsAHsJhFevXr105JFHmu5GqJCZGxnYUKMNNcCgumpp3WLp/dekbW/uva1WYak06ERp8Of8BYuyYT1vr2iAdP69/vleqpQ2v9T1Y8vHSeOu5+HwCATXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/ntu267LLLdOihh0qS/vCHP+if//mf1dbWdsBj2tra9J3vfEcPP/ywJKl///4HfLA64LJ4PK558+YpHo+b7kpokJkbGdhQow01wIBNy6Q55/oPcl/5K+ndFZ98Hkki6n9/5a+k2V/0X7/pqcy0P/Rsf9ut6S9L42+QhkzwF2v2VFjqf3/8Df7rrljKwgkCw7UUYcFcdQPjbAa5p4fc7M/AlvpsqQPBy7k7T0pKSvTTn/5U1157rSKRiGbPnq2lS5fqW9/6lr70pS9pyJAhKi4uVjwe17vvvqvnnntO//M//6PNmzdLkiKRiG699dbUAgyAveXn56uiokL5+Tn31z9nkZkbGdhQow01IIuad0lLZ0hVi7t/7JZV0sJVmd02q2yYVHaz/7nnScm41J6U8gukguLMbxsG7AfXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/nnnmy23e/+1395je/USQSked5ihzkf5h3l3HttdfqN7/5TTa6iBAyvU8eAAA5obZKWjBFim3r+blKBkmXPMID2wEAAAAAGWX6vdyc27Zrt//6r//SXXfdpeLiYkn+4siBPoqLi/Xb3/6WhRPgIFpbW7V69Wq1traa7kpokJkbGdhQow01IAtqq6R5kzKzcCL555k70X9mCmABrqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezi6eSNI111yjzZs367bbbtOECRPUt2/fvX7et29fTZgwQbfffru2bNmi6dOnG+opEB7JZFJr165VMpk03ZXQIDM3MrChRhtqQMCad/l3nHz8mSY9lYhKD5zvnx8IOa6lCAvmqhsYZzPIPT3kZn8GttRnSx0IXs5u27U/sVhMsVhMJSUlKikpMd0dhIzpW70AADBq8ZXpPeOkq0ZOlc6/N7jzAwAAAACcYfq93Jy+82RfSkpKdNRRR7FwAqSps7NT0WhUnZ2dprsSGmTmRgY21GhDDQjQpmXBLpxI0rpFfjtAiHEtRVgwV93AOJtB7ukhN/szsKU+W+pA8EK3eAKgZxobG1VZWanGxkbTXQkNMnMjAxtqtKEGBGjlndlp56XK7LQDBIRrKcKCueoGxtkMck8PudmfgS312VIHghe6bbuAnjB9q1cu6OzsVGNjo/r376+8PNZPu4LM3MjAhhptqAEBqauWZo/NXnvTX5bKhmWvPSCDuJYiLJirbmCczSD39JCb/RnYUp8tdbjA9Hu5zA7AMXl5eSotLeWXQzeQmRsZ2FCjDTUgw+o3+x9r7stuu6/e57cLhBDXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC+nZ0hzc7PuueceTZ06VZ/+9Kd16KGHKj8/X7169TroR35+vunuAzkpFovp7rvvViwWM92V0CAzNzKwoUYbakCGVY7yP17N8uLJmnv9doEQ4lqKsGCuuoFxNoPc00Nu9mdgS3221IHg5ewKw6JFi3TNNdcoGo1KkthdDMiMgoICjR49WgUFBaa7Ehpk5kYGNtRoQw0AYBrXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC8nn3myYMECXXrppZL2XjSJRCKf+N7+vh+JRNTR0RF0VxEypvfJAwAgq245xHD7DWbbBwAAAACElun3cnNu266dO3fqmmuuked5ys/P1+233666ujp95zvfSS2O7H6oz7p16/Tb3/5Wo0aNkud5Ki4u1sKFC9XZ2cnCCbAfiURCy5cvVyKRMN2V0CAzNzKwoUYbagAA07iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDm3eHLPPfeoqalJkUhEP/vZzzRjxgwNHDjwE68rLi7W8OHDNX36dL3++uv6+c9/rng8rosvvlj33nuvgZ4D4dDe3q6amhq1t7eb7kpokJkbGdhQow01AIBpXEsRFsxVNzDOZpB7esjN/gxsqc+WOhC8nNu268wzz9Tzzz+vQw45RNu3b1fv3r0lSf/yL/+i3/72twfcjuvmm2/Wf/zHf6hv37566623dNxxx2Wz6wgB07d6AQCQVWzbBQAAAAAIKdPv5ebcnScbNmxQJBLRmDFjUgsnH7e/xZN///d/16GHHqpEIqE5c+YE2U0gtDo6OlRbW8vWdt1AZm5kYEONNtSADLvuLf/jmFOy2+4xY/x2gRDiWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDl3OLJrl27JElHH330Xt/fcyGlpaVln8cWFBRowoQJ8jxPTzzxRHCdBEIsFovpnnvuUSwWM92V0CAzNzKwoUYbakCGHVruf5SPy267FeP8doEQ4lqKsGCuuoFxNoPc00Nu9mdgS3221IHg5dy2Xf369VMikdDVV1+tu+66K/X9W265RbfeeqsikYg2bNigoUOH7vP4b3/727r33nt1+OGHa/v27dnqNkLC9K1eucDzPLW2tqpPnz6KRCKmuxMKZOZGBjbUaEMNCEhdtTR7bPbam/6yVDYse+0BGcS1FGHBXHUD42wGuaeH3OzPwJb6bKnDBabfy825O08OP/xwSVJjY+Ne39/zTpR169bt9/jNmzdLEiuHwH5EIhEVFhbyy6EbyMyNDGyo0YYaEJCy4dKxWVo8KR/HwglCjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3OLJ8cff7w8z9Pf/va3vb4/evTo1OePPvroPo/dtm2bVq1aJUkaOHBgYH0EwqyxsVF33nnnJxYosX9k5kYGNtRoQw0I0KnXZ6edcVlqBwgI11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv5xZPxowZI8m/JWfPh/Z87nOf09FHHy3P8/SHP/xBCxYs2Ou4WCymyy+/XE1NTYpEIjr11FOz2m8gLAoLCzVhwgQVFhaa7kpokJkbGdhQow01IEBDz5ZGTAm2jZFTpaFfCbYNIGBcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELyce+bJypUrddpppykSiWj58uUaP3586me/+tWv9K//+q+pW6qGDx+ukSNHqrm5WStWrFBDQ4M8z1MkEtGLL76osWOzuLc3QsH0PnkAABjVvMt/9klsW+bPXTJImr5KKhqQ+XMDAAAAAJxj+r3cnLvzZNy4cTrqqKPkeZ7mz5+/18+uu+46ffnLX9bu9Z7q6mo99NBDevzxx1MLJ5L0ox/9iIUTYD9aWlr05JNPqqWlxXRXQoPM3MjAhhptqAEBKxogXfKIVFia2fMWlvrnZeEEFuBairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4kkkElFNTY1aWlo0e/bsvX7Wq1cvLVmyRD/4wQ/Ur18/eZ6318fgwYM1Z84c/eQnPzHUeyD3dXZ2KhqNqrOz03RXQoPM3MjAhhptqAFZUDZcumKpf6dIJpQM8s9Xxp2csAPXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/ntu3qqmQyqb/85S/64IMPlJeXpyFDhuizn/1saksvYF9M3+oFAEDOaN4lPXGjtG5R+ucYOVU69w7uOAEAAAAAZJzp93Jz7s6TriooKNCpp56qb3zjG5oyZYpOOukkFk6ALmhvb1dNTY3a29tNdyU0yMyNDGyo0YYakEVFA6Tz75WmPSyVj+veseXjpGmL/ONZOIFluJYiLJirbmCczSD39JCb/RnYUp8tdSB4Obd48v3vf1/f//739a//+q9qa2sz3R3AOvF4XPPnz1c8HjfdldAgMzcysKFGG2qAAUPP9rfdmv6yNP4GaciETz4TpbDU//74G/zXXbFUGvqV7PcVyAKupQgL5qobGGczyD095GZ/BrbUZ0sdCF7ObduVl5enSCSicePG6YUXXjDdHVjG9K1eAAB0medJrTGpo03q1VvqUyJl6y5bz5OScak9KeUXSAXF2WsbAAAAAACZfy83P2stdVH//v0Vi8U0dOhQ010BAADIrrpqad1i6f3XpG1vSonoRz8rLJUGnSgN/pz/rJGyYcH1IxLxF2v6BNcEAAAAAAC5LOe27Ro0aJAksWUXEJCGhgbddtttamhoMN2V0CAzNzKwoUYbanDWpmXSnHOl2WOllb+S3l2x98KJ5H/97gr/57O/6L9+01MmegtYjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3OLJ6eeeqo8z9Obb75puiuAlYqKijR58mQVFRWZ7kpokJkbGdhQow01OKd5l7T4SmnhN6Qtq7p37JZV0sKp0iNX+ecBkBFcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELyce+bJSy+9pPHjxysSiejFF1/U2LFjTXcJFjG9Tx4AACm1VdKCKVJsW8/PVTJIuuQRqYzfaQAAAAAAO5h+Lzfn7jwZN26cvv3tb8vzPF188cV65513THcJsEpzc7Mee+wxNTc3m+5KaJCZGxnYUKMNNTijtkqaNykzCyeSf565E/1npgDoEa6lCAvmqhsYZzPIPT3kZn8GttRnSx0IXs4tnkjSf//3f+vaa6/V5s2bNXr0aP3oRz/Sm2++qc7OTtNdAwAA6JnmXf4dJx9/pklPJaLSA+ezhRcAAAAAABmQc9t2DRkyJPX5e++9p46ODkUiEUlS7969deihh6pv374HPU8kEuGuFXyC6Vu9AADQ4iulqsXBnX/kVOn8e4M7PwAAAAAAWWD6vdycu/OkpqZGmzdv1ubNm9XZ2ZlaOPE8T8lkUtu3b0/9fH8fNTU1qqmpMVsIkKPa2tq0ceNGtbW1me5KaJCZGxnYUKMNNVhv07JgF04kad0ivx0AaeFairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4onkL5R8/ONAP9vfawF8Evs6dh+ZuZGBDTXaUIP1Vt6ZnXZeqsxOO4CFuJYiLJirbmCczSD39JCb/RnYUp8tdSB4Obdt1+bNmzN2rvLy8oydC3YwfasXAMBhddXS7LHZa2/6y1LZsOy1BwAAAABABpl+Lzc/ay11EQseAADAGvV7/KOQNfdlt+1X75Mm/Wd22wQAAAAAwBLGtu164YUX9MILL/BQdyDLotGoZs2apWg0aroroUFmbmRgQ4021GCdylEffbya5cWTNTw0HkgH11KEBXPVDYyzGeSeHnKzPwNb6rOlDgTP2LZdeXl5ikQi+s53vqP/+q//2u/rtm3bph07dkiSRo0ala3uwVKmb/XKBe3t7dq6dauOPvpo5efn3M1nOYnM3MjAhhptqME6txxitv2ZUSkSMdsHIGS4liIsmKtuYJzNIPf0kJv9GdhSny11uMD0e7k5Pzt+9rOf6a677lIkElF7e7vp7gChl5+fr4qKCtPdCBUycyMDG2q0oQZkWDIu9Skx3QsgVLiWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeMa27eoOz/OUY8+1B0KrqalJDz30kJqamkx3JTTIzI0MbKjRhhqQYe1J0z0AQodrKcKCueoGxtkMck8PudmfgS312VIHgheKxRMAmZOXl6fS0lLl5fHXv6vIzI0MbKjRhhqQYfkFpnsAhA7XUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/nn3nyL//yL/rtb3+rSCSijo6OLPYQNjK9Tx4AwDE88wQAAAAAgLSYfi+X5TXAMclkUmvXrlUyyVYuXUVmbmRgQ4021GCd69766OOYU7Lb9jFjWDgB0sC1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxBHBMIpHQ8uXLlUgkTHclNMjMjQxsqNGGGqxzaPlHH+Xjstt2RZbbAyzBtRRhwVx1A+NsBrmnh9zsz8CW+mypA8Fj2y44xfStXgAAh9VVS7PHZq+96S9LZcOy1x4AAAAAABlk+r1c7jwBHON5nhKJhAytm4YSmbmRgQ012lCD1cqGS8dmafGkfBwLJ0CauJYiLJirbmCczSD39JCb/RnYUp8tdSB4LJ4AjmloaNDtt9+uhoYG010JDTJzIwMbarShBuuden122hmXpXYAC3EtRVgwV93AOJtB7ukhN/szsKU+W+pA8Ixv23XyySdr4sSJ+33dn//8Z61Zs0aRSEQzZ87sVhs333xzT7sJy5i+1SsXdHR0aMeOHRo4cKB69eplujuhQGZuZGBDjTbU4ITFV0pVi4M7/8ip0vn3Bnd+wHJcSxEWzFU3MM5mkHt6yM3+DGypz5Y6XGD6vVzjiydB4hkp+DjTf+EAAFDzLv/ZJ7FtmT93ySBp+iqpaEDmzw0AAAAAQBaZfi/X+LZdnucF8gFg3+LxuObNm6d4PG66K6FBZm5kYEONNtTghKIB0iWPSIWlmT1vYal/XhZOgB7hWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDlm2r4tNNOC/zOEwCflJ+fr4qKCuXnG/vrHzpk5kYGNtRoQw3OKBsuXbFUeuD8zNyBUjLIXzgp425KoKe4liIsmKtuYJzNIPf0kJv9GdhSny11IHjGtu0CTDB9qxcAAHtp3iU9caO0blH65xg5VTr3Du44AQAAAABYxfR7uca37QKQXa2trVq9erVaW1tNdyU0yMyNDGyo0YYanFM0wH+4+7SHpfJx3Tu2fJw0bZF/PAsnQMZwLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEck0wmtXbtWiWTSdNdCQ0ycyMDG2q0oQZnDT3b38Zr+svS+BukIRM++UyUwlL/++Nv8F93xVJp6Fey31fAclxLERbMVTcwzmaQe3rIzf4MbKnPljoQPLbtglNM3+oFAECXeZ6UjEvtSSm/QCoolnheHAAAAADAEabfy+XOE8AxnZ2dikaj6uzsNN2V0CAzNzKwoUYbasAeIhGpT4nU7zD/TxZOgKzgWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeAI4prGxUZWVlWpsbDTdldAgMzcysKFGG2oAANO4liIsmKtuYJzNIPf0kJv9GdhSny11IHhs2wWnmL7VKxd0dnaqsbFR/fv3V14e66ddQWZuZGBDjTbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6nCB6fdy87PWEoCckJeXp9LSUtPdCBUycyMDG2q0oQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgsfSGuCYWCymu+++W7FYzHRXQoPM3MjAhhptqCGneJ6UaJSadvp/crMu4ASupQgL5qobGGczyD095GZ/BrbUZ0sdCB53ngCOKSgo0OjRo1VQUGC6K6FBZm5kYEONNtRgXF21tG6x9P5r0rY3pUT0o58VlkqDTpQGf04aOVUqG2aqlwACxLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPB45kncIrpffIAADlq0zJp5Z3SllVdP+bYsdKp35OGfiWwbgEAAAAA4CrT7+WybRfgmEQioeXLlyuRSJjuSmiQmRsZ2FCjDTVkXfMuafGV0sJvdG/hRPJfv3Cq9MhV/nkAWIFrKcKCueoGxtkMck8PudmfgS312VIHgsfiCeCY9vZ21dTUqL293XRXQoPM3MjAhhptqCGraquk2WOlqsU9O8+6Rf556qoz0y8ARnEtRVgwV93AOJtB7ukhN/szsKU+W+pA8Ni2C04xfasXACBH1FZJ8ybt/UyTniosla5YKpXxewUAAAAAgJ4y/V4ud54Ajuno6FBtba06OjpMdyU0yMyNDGyo0YYasqJ5l7RgSmYXTiT/fA+czxZeQMhxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEcE4vFdM899ygWi5nuSmiQmRsZ2FCjDTVkxdIZUmxbMOeObZOeuDGYcwPICq6lCAvmqhsYZzPIPT3kZn8GttRnSx0IHtt2wSmmb/XKBZ7nqbW1VX369FEkEjHdnVAgMzcysKFGG2oI3KZl/sPhgzbtYWno2cG3AyDjuJYiLJirbmCczSD39JCb/RnYUp8tdbjA9Hu53HkCOCYSiaiwsJBfDt1AZm5kYEONNtQQuJV3Zqedlyqz0w6AjONairBgrrqBcTaD3NNDbvZnYEt9ttSB4LF4AjimsbFRd955pxobG013JTTIzI0MbKjRhhoCVVctbVmVnbY2vyTVrc9OWwAyimspwoK56gbG2QxyTw+52Z+BLfXZUgeCx+IJ4JjCwkJNmDBBhYWFprsSGmTmRgY21GhDDYGo3+x/rLkvu+2+muX2AGQE11KEBXPVDYyzGeSeHnKzPwNb6rOlDgSPZ57AKab3yQMAGHDLIQbbbjDXNgAAAAAAIWb6vVzuPAEc09LSoieffFItLS2muxIaZOZGBjbUaEMN1uHfqAChw7UUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY/EEcExnZ6ei0ag6OztNdyU0yMyNDGyo0YYarJOMm+4BgG7iWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxbRecYvpWLwCAASa37ZrxN6nfYebaBwAAAAAgpEy/l8udJ4Bj2tvbVVNTo/b2dtNdCQ0ycyMDG2q0oQbr5BeY7gGAbuJairBgrrqBcTaD3NNDbvZnYEt9ttSB4LF4AjgmHo9r/vz5isfZSqaryMyNDGyo0YYarFNQbLoHALqJaynCgrnqBsbZDHJPD7nZn4Et9dlSB4LHtl1wiulbvQAABtRv9v989FvSe69kr91jxkhXLsteewAAAAAAWMT0e7nceRKQZDKp+++/XxMnTlR5ebkKCws1aNAgjR07Vr/85S/14YcfZrzNjo4OvfXWW7rvvvs0ffp0ff7zn1dBQYEikYgikYgmTJjQo/M/++yzuvTSSzV06FD169dPAwYM0KhRozRjxgxt3LgxrXNu2LBBM2bM0KhRozRgwAD169dPQ4cO1WWXXaZnn322R/0FAECSdGi5/1E+LrvtVmS5PQAAAAAAkDEsngRg48aNOuWUU3TppZfqiSee0JYtW9Ta2qra2lq9/PLLmjFjhoYPH66lS5dmrM3HHntM/fv314knnqirrrpKd999t1577TW1tbX1+NyNjY268MILddZZZ+n+++/X//3f/6m5uVn19fVat26dfvnLX2rUqFH6+c9/3q3z/vSnP9WJJ56oX/7yl1q3bp3q6+vV3Nys//u//9Pvf/97nXXWWZo2bZpisViPa8BHGhoadNttt6mhocF0V0KDzNzIwIYabaghUCOnZLe9EVluD0BGcC1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDw8k13wDZbt27VmWeeqQ8++ECSFIlEdNppp+m4447Tjh079Mwzz6ilpUXbt2/X5MmT9eSTT+qMM87ocbvRaFTNzc09Ps/HtbW16Wtf+5qee+651PdGjBihk046SYlEQi+++KK2bdumtrY2/ehHP1JbW5tuvvnmg5735ptv1k9+8pPU14MGDdL48eNVWFio1157TdXV1ZKkBx98UDt37tSf//xn5eczXTOhqKhIkydPVlFRkemuhAaZuZGBDTXaUEOgyoZLx46VtqwKvq3ycVLZsODbAZBxXEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8nnmSYaeddppefPFFSVJ5ebn++Mc/6sQTT0z9/MMPP9SFF16Y2pJqwIABeuedd1RaWtqjdufNm6crrrhCZWVlOvnkk1Mfy5YtU2VlpSTp9NNP1/Lly7t13j0XOQoLCzV37lxdeOGFqZ8nk0n9+7//u37xi19I8heLnn/+eZ1++un7Peezzz6rs846K/X1jBkz9B//8R8qKChIfe/BBx/UP/3TPymRSEiSZs2a1aVFmYMxvU8eAMCwTcukhd8Ivp1pi6ShXwm+HQAAAAAALGX6vVy27cqgpUuXphZOCgoKtGTJkr0WTiTp8MMP1x//+EcNGTJEkrRr1y7dcccdPW77nHPO0ebNm1VbW6slS5bo5ptv1rnnntujRZnt27frV7/6VerrO++8c6+FE8mv84477tAFF1wgSfI8Tz/84Q8PeN49f37hhRfqjjvu2GvhRJIuuugi/frXv059HdRzYlzU3Nysxx57LJA7lWxFZm5kYEONNtQQuKFnB7+d1sipLJwAIca1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxJIN++9vfpj6/7LLLNHLkyH2+rl+/frr11ltTX99zzz1qb2/vUdtHHnmkjj322B6d4+Pmz5+vpqYmSdLQoUP17W9/e7+vveOOO5SX50+nl19+WW+88cY+X7dmzRqtWbNGkpSXl3fAhaOrr75an/70pyVJsVhM999/f1p1AACwl4m/kEoGBXPukkHSuT3/RxEAAAAAAMAsFk8yJB6Pp7bikqQrrrjigK8///zzVVxcLMm/++SFF14ItH/peOyxx1KfX3755YpEIvt97bHHHrvXs1v+93//96DnPOuss3TMMcfs95yRSESXXXbZQc+J7mFfx+4jMzcysKFGG2rIiqIB0iWPSIWlmT1vYal/3qIBmT0vgKziWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeJIhq1atUmtrqyT/zpKTTz75gK8vLCzUF7/4xdTXez6QPRckEgmtXr069fWECRMOesyXvvSl1Of7q+f5559P+5x7Zoz0tbW1aePGjWprazPdldAgMzcysKFGG2rImrLh0hVLM3cHSskg/3xlPEcLCDuupQgL5qobGGczyD095GZ/BrbUZ0sdCB6LJxmyYcOG1OcjR45Ufn7+QY856aST9nl8Lnj77bfV2dkpyb8D5LOf/exBj+lKPXt+f8/X78+e7XZ0dGjTpk0HPQYHxr6O3UdmbmRgQ4021JBVZcOl6av8Z5T0xMip/nlYOAGswLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBi3ie55nuhA2uvfZazZ49W5J0wQUX6KGHHjroMXfddZe+853vSJKGDRum6urqjPfrlltu0axZsyRJp59+upYvX96l4x5++OHUQ+DLyspUW1t70GPWr1+v4cM/euNo+/btGjhw4F5fl5WVpb7esGGDjj/++IOe94gjjtCOHTtS/Zo6Nf03uaqrqzVixIjU11VVVXv1GQDgqE3LpJcqpc0vdf2Y8nHSuOt5ODwAAAAAAAEw/V7uwW+PQJfs3Lkz9fmeCwQHcuSRR6Y+37VrV8b71BM9rUfya9pz8WTPc3b3vLsXT3ItJwCAJYae7X/UrZeqFkvvvyZ9sFZKRD96TWGpdNRoafDnpBFTpLJhZvoKAAAAAAACx7ZdGRKPx1Of9+3bt0vH7Pm6PY/PBT2t5+Pn2NfXJnMqLCxUcXGxJH87sGg0qt03YTU2NiqZTEqSWlpa1NTUJElqb29XNBpNnaOhoSG1N2Jzc3PqVr+2tjY1NDSkXheNRtXe3i5JampqUktLiyQpmUyqsbFRkuR5nqLRqDo6OlJ1JhIJSVJra6tisZgkqbOzU9FoNLWlWiwWSz0HJpFIpPI5UE21tbWaNWtWql821BT0OL333nuaNWuW6uvrrampu+O0a9cuzZo1K7WAaUNNHx+nrVu3pv5uhLUmF8Yp8JpKKqQzb1bbRYvVcM2b0g+3SjP+puj0arXf8Ffp0j+qacwNaun/qfDUZOM4URM1BVjTli1bUr8PbKnJxnGiJr+eWbNm6cMPP7SmJhvHqac17R7nrVu3WlNTGMbpgw8+SP0usKWmbIzT7vm6ZcsWa2rq7jjZ/t8Re9YX5ppsHycbazKFxZMM2T1pJKmgoKBLx/Tp0yf1+e7JmSt6Wo/0yZr2PGe6581UTmPGjNGUKVMkSTt27FBlZWXqL/ScOXO0fv16SdKKFSu0ZMkSSf4bq5WVlalzzJ49W++8844k6amnntJTTz0lSXrnnXdSW7hJUmVlZeo/dJcsWaIVK1ZI8rc5mzNnjiT/YlNZWZm6w2bx4sVavXq1JOmNN97QggULJPkXlMrKytQFbMGCBXrjjTckSatXr9bixYsPWtPrr7+uY445RsXFxdbUFPQ4PfLII7rsssvUu3dva2rq7jjt/uW3+08bavr4OC1ZskQnn3yyiouLQ1uTC+OU1ZruvlvqUyL1O0yVd9+nre+/H/6abBwnaqKmDNc0d+5cXXbZZSouLramJhvHiZqU+sdgu98EsaEmG8eppzUVFxfr5JNPTvXBhprCME4rVqzQCSecoOLiYmtqysY4FRcX6x//8R81d+5ca2rq7jjZ/t8RCxcu1Je+9CUVFxeHuibbx8nGmozxkBETJ070JHmSvJtuuqlLxyxdujR1THFxcSD9mjlzZqqN008/vcvH3XHHHanjTjnllC4d09zcnDpGkvfqq6/u9fO//OUve/28paWlS+f9whe+kDrml7/8ZZdr2JeqqipPkldYWOgVFxd7VVVVXnt7u1dfX+91dnZ6nud5DQ0NXmtra6qmeDzueZ7ntbW1efX19alzRaNRL5lMep7neU1NTV5TU5PneZ6XTCa9aDSael19fb3X1tbmeZ7nxeNxr7m52fM8z2ttbfUaGho8z/O8zs5Or76+3mtvb/c8z/NisVgqn0Qi4TU2Nnqe53kdHR1efX2919HR4Xme5zU2NnqJRMLzPM9raWnxYrGY53keNVETNVETNVETNVETNVETNVETNVETNVETNVETNVFTqGva/V7u7o+qqiovm3hgfIZccMEFevjhhyVJ3/3ud7u0Mvboo4/q/PPPl+Q/12Pbtm0Z71e6D4yfPXu2rr32WknSqFGj9Oabbx70mF27dumwww5Lfb1x40Z95jOfSX29YcMGDRs2bK/XH3rooQc976hRo7Ru3TpJ0t13362rr766SzXsi+mHDOWCpqYmLVmyRP/4j/+ofv36me5OKJCZGxnYUKMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljpcYPq9XLbtypA9Fw3q6uq6dExtbW3q8wEDBmS8Tz3R03qkT9a05znTPW+u5RRGeXl5Ki0tVV4ef/27iszcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHg5ZvugC32vMNi8+bNXTpmy5Ytqc+PP/74jPepJ/asZ/v27UokEiosLDzgMXvWM2DAAA0cOHCvnx9xxBEqLS1NPexn8+bNB607kUik9tSTci+nMOrbt6/OOecc090IFTJzIwMbarShBgAwjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCx/Jahpxwwgmpz9etW6f29vaDHvP666/v8/hc8JnPfCa1+up5ntauXXvQY7pSz57f3/3QoK6es1evXho6dOhBj8GBJZNJrV27Vslk0nRXQoPM3MjAhhptqAEATONairBgrrqBcTaD3NNDbvZnYEt9ttSB4LF4kiFjx45Vnz59JPn75r366qsHfH1ra6tWr16d+vqMM84ItH/dVVhYqDFjxqS+7sqzUlasWJH6fH/1fOlLX0r7nHtmjPQlEgktX75ciUTCdFdCg8zcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHg8cD4DJo0aZKWLl0qSbr66qt199137/e1Dz74oKZNmybJ3+Kqrq5O+fmZ30Ut3QfGS9IvfvEL3XjjjZL8O1E2bty439e+9957+tSnPqWOjg5J0muvvaaTTjrpE69bs2aNvvCFL0jy7ySpqanR0Ucfvd/zfuYzn9GmTZskSf/5n/+p73//+13u/76YfsgQAAAAAAAAAODgTL+Xy50nGXTttdemPp83b56qq6v3+brm5mbdfPPNqa+//e1vB7Jw0lOXXXaZ+vXrJ0l6++23de+99+73tTfddFNq4eSLX/ziPhdOJOnkk0/WySefLEnq6OjQD37wg/2e83e/+11q4aSkpESXXnppWnVgb57nKZFIiHXTriMzNzKwoUYbagAA07iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeCyeZNCkSZM0fvx4Sf62XOedd57eeuutvV6zc+dOTZ48WX/9618l+Xed3HTTTfs8X01NjSKRSOpj3rx5gfb/44444oi97vT47ne/q4cffniv17S1tekHP/iBHnzwwdT3fv7znx/wvHv+fMGCBfrBD36gtra2vV7z8MMP6/rrr099/a//+q86/PDD0ykDH9PQ0KDbb79dDQ0NprsSGmTmRgY21GhDDQBgGtdShAVz1Q2Msxnknh5ysz8DW+qzpQ4Ej227Mmzr1q36whe+oG3btkmSIpGITj/9dB133HHasWOHnnnmGTU3N0uS8vPz9eSTT+rMM8/c57lqamr0qU99KvX13Llzdfnll++37YkTJ+qDDz7Y63u1tbWqq6uTJPXr10//8A//8Injli5dqqOOOmqf52xra9M555yj5557LvW9kSNH6qSTTlIikdALL7yQqlWSZs2atdddNfvz4x//WP/xH/+R+vqoo47S+PHjVVhYqNdee01VVVWpn335y1/W0qVLM3J3julbvXJBR0eHduzYoYEDB6pXr16muxMKZOZGBjbUaEMNe/E8qTUmdbRJvXpLfUqkSMR0rwBYzrprKazFXHUD42wGuaeH3OzPwJb6bKnDBabfy2XxJAAbN27URRddpLVr1+73NQMHDtTcuXM1adKk/b6mu4snFRUV2rx5c7f7++6776qiomK/P29oaNC3v/3tT9x1sqfevXvrlltu0Y9+9KMutel5nn7605/q1ltv/cRdJ3u68MILdc8996h///5dOu/BmP4LBwA4iLpqad1i6f3XpG1vSonoRz8rLJUGnSgN/pw0cqpUNsxULwEAAAAAQMBMv5fLtl0BOP744/XKK69o/vz5Ouecc3TMMceooKBARxxxhMaMGaM77rhD69evP+DCSS455JBD9Ic//EFPP/20LrnkEh133HEqKirSIYccohEjRuiGG27Qm2++2eWFE8m/I+ff//3f9eabb+r73/++RowYoUMOOURFRUU67rjjdMkll+jpp5/Wgw8+mLGFE/ji8bjmzZuneDxuuiuhQWZuZGBDjaGuYdMyac650uyx0spfSe+u2HvhRPK/fneF//PZX/Rfv+kpE70FYLFQX0vhFOaqGxhnM8g9PeRmfwa21GdLHQhe7j2l3BIFBQW69NJLe/SQ84qKim49uKimpibttrrirLPO0llnnZXRc55wwgn6z//8z4yeEweWn5+vioqKjGyD5goycyMDG2oMZQ3Nu6SlM6Sqxd0/dssqaeEq/y6Uc++QigZkvn8AnBPKaymcxFx1A+NsBrmnh9zsz8CW+mypA8Fj2y44xfStXgCAPdRWSQumSLFtB3/twZQMki55RCrjmg4AAAAAgA1Mv5fLtl2AY1pbW7V69Wq1traa7kpokJkbGdhQY6hqqK2S5k3KzMKJ5J9n7kT/mSkA0AOhupbCacxVNzDOZpB7esjN/gxsqc+WOhA8Fk8AxySTSa1du1bJZNJ0V0KDzNzIwIYaQ1ND8y7/jpOPP9OkpxJR6YHz/fMDQJpCcy2F85irbmCczSD39JCb/RnYUp8tdSB4bNsFp5i+1QsAIGnxlek946SrRk6Vzr83uPMDAAAAAIDAmX4vlztPAMd0dnYqGo2qs7PTdFdCg8zcyMCGGkNRw6ZlwS6cSNK6RX47AJCGUFxLATFXXcE4m0Hu6SE3+zOwpT5b6kDwWDwBHNPY2KjKyko1Njaa7kpokJkbGdhQYyhqWHlndtp5qTI77QCwTiiupYCYq65gnM0g9/SQm/0Z2FKfLXUgeGzbBaeYvtUrF3R2dqqxsVH9+/dXXh7rp11BZm5kYEONOV9DXbU0e2z22pv+slQ2LHvtAbBCzl9Lgb9jrrqBcTaD3NNDbvZnYEt9ttThAtPv5TI7AMfk5eWptLSUXw7dQGZuZGBDjTlbQ/1m/2PNfdlt99X7/HYBoBty9loKfAxz1Q2Msxnknh5ysz8DW+qzpQ4EjxkCOCYWi+nuu+9WLBYz3ZXQIDM3MrChxpytoXKU//FqlhdP1tzrtwsA3ZCz11LgY5irbmCczSD39JCb/RnYUp8tdSB4LJ4AjikoKNDo0aNVUFBguiuhQWZuZGBDjTbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDweOYJnGJ6nzwAcNIthxhuv8Fs+wAAAAAAoNtMv5fLnSeAYxKJhJYvX65EImG6K6FBZm5kYEONNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEc097erpqaGrW3t5vuSmiQmRsZ2FCjDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDy27YJTTN/qBQBOYtsuAAAAAADQTabfy+XOE8AxHR0dqq2tVUdHh+muhAaZuZGBDTXmbA3XveV/HHNKdts9ZozfLgB0Q85eS4GPYa66gXE2g9zTQ272Z2BLfbbUgeCxeAI4JhaL6Z577lEsFjPdldAgMzcysKHGnK3h0HL/o3xcdtutGOe3CwDdkLPXUuBjmKtuYJzNIPf0kJv9GdhSny11IHhs2wWnmL7VKxd4nqfW1lb16dNHkUjEdHdCgczcyMCGGnO+hrpqafbY7LU3/WWpbFj22gNghZy/lgJ/x1x1A+NsBrmnh9zsz8CW+mypwwWm38vlzhPAMZFIRIWFhfxy6AYycyMDG2rM+RrKhkvHZmnxpHwcCycA0pLz11Lg75irbmCczSD39JCb/RnYUp8tdSB4LJ4AjmlsbNSdd96pxsZG010JDTJzIwMbagxFDaden512xmWpHQDWCcW1FBBz1RWMsxnknh5ysz8DW+qzpQ4Ej8UTwDGFhYWaMGGCCgsLTXclNMjMjQxsqDEUNQw9WxoxJdg2Rk6Vhn4l2DYAWCsU11JAzFVXMM5mkHt6yM3+DGypz5Y6EDyeeQKnmN4nDwAgqXmX/+yT2LbMn7tkkDR9lVQ0IPPnBgAAAAAAWWP6vVzuPAEc09LSoieffFItLS2muxIaZOZGBjbUGJoaigZIlzwiFZZm9ryFpf55WTgB0AOhuZbCecxVNzDOZpB7esjN/gxsqc+WOhA8Fk8Ax3R2dioajaqzs9N0V0KDzNzIwIYaQ1VD2XDpiqX+nSKZUDLIP18ZdxMC6JlQXUvhNOaqGxhnM8g9PeRmfwa21GdLHQge23bBKaZv9QIAfEzzLumJG6V1i9I/x8ip0rl3cMcJAAAAAAAWMf1eLneeAI5pb29XTU2N2tvbTXclNMjMjQxsqDGUNRQNkM6/V5r2sFQ+rnvHlo+Tpi3yj2fhBECGhPJaCicxV93AOJtB7ukhN/szsKU+W+pA8Fg8ARwTj8c1f/58xeNx010JDTJzIwMbasx4DZ4nJRqlpp3+n0HerDr0bH/brekvS+NvkIZM+OQzUQpL/e+Pv8F/3RVLpaFfCa5PAJxkw+8DuIG56gbG2QxyTw+52Z+BLfXZUgeCx7ZdcIrpW70AIOfVVUvrFkvvvyZte1NKRD/6WWGpNOhEafDn/K2yyoYF2xfPk5JxqT0p5RdIBcVSJBJsmwAAAAAAICeYfi83P2stAQCA3LVpmbTyTmnLqv2/JhGV3l3hf6z8lXTsWOnU7wV390ckIvUpkfoEc3oAAAAAAID9YdsuwDENDQ267bbb1NDQYLoroUFmbmRgQ41p1dC8S1p8pbTwGwdeONmXLaukhVOlR67yzwMAFrDh9wHcwFx1A+NsBrmnh9zsz8CW+mypA8Fj8QRwTFFRkSZPnqyioiLTXQkNMnMjAxtq7HYNtVXS7LFS1eKeNbxukX+euuqenQcAcoANvw/gBuaqGxhnM8g9PeRmfwa21GdLHQgezzyBU0zvkwcAOaO2Spo3ae9nmvRUYan/EPcyrqsAAAAAAKBnTL+Xy50ngGOam5v12GOPqbm52XRXQoPM3MjAhhq7XEPzLmnBlMwunEj++R44ny28AISaDb8P4AbmqhsYZzPIPT3kZn8GttRnSx0IHosnAAC4ZukMKbYtmHPHtklP3BjMuQEAAAAAALKEbbvgFNO3egGAcZuW+Q+HD9q0h6WhZwffDgAAAAAAsJLp93K58wRwTFtbmzZu3Ki2tjbTXQkNMnMjAxtq7FINK+/MTmdeqsxOOwCQYTb8PoAbmKtuYJzNIPf0kJv9GdhSny11IHgsngCOYV/H7iMzNzKwocaD1lBXLW1ZlZ3ObH5JqlufnbYAIINs+H0ANzBX3cA4m0Hu6SE3+zOwpT5b6kDw2LYLTjF9qxcAGFG/2f/zpUrp1fuy1+7JV0ljvysdWp69NgEAAAAAgBVMv5ebn7WWAACAGZWjzLS75l7/45YGM+0DAAAAAACkiW27AMdEo1HNmjVL0WjUdFdCg8zcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHgsW0XnGL6Vq9c0N7erq1bt+roo49Wfj43n3UFmbmRgQ017reGWw4x1ymJO08AhIoNvw/gBuaqGxhnM8g9PeRmfwa21GdLHS4w/V4uiydwium/cABgBIsnAAAAAAAgZEy/l8u2XYBjmpqa9NBDD6mpqcl0V0KDzNzIwIYabagBAEzjWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeAI4Ji8vT6WlpcrL469/V5GZGxnYUKMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljoQPLbtglNM3+oFAEbUb/b/fPRb0nuvZK/dY8ZIX/+ddGh59toEAAAAAABWMP1eLstrgGOSyaTWrl2rZDJpuiuhQWZuZGBDjfut4dBy/6N8XHY7VDGOhRMAoWPD7wO4gbnqBsbZDHJPD7nZn4Et9dlSB4LH4gngmEQioeXLlyuRSJjuSmiQmRsZ2FDjQWsYOSW7HRqR5fYAIANs+H0ANzBX3cA4m0Hu6SE3+zOwpT5b6kDw2LYLTjF9qxcAGDfnXGnLquDbKR8nXbE0+HYAAAAAAICVTL+Xy50ngGM8z1MikRDrpl1HZm5kYEONXarh1Ouz05lxWWoHADLMht8HcANz1Q2Msxnknh5ysz8DW+qzpQ4Ej8UTwDENDQ26/fbb1dDQYLoroUFmbmRgQ41dqmHo2cFvpzVyqjT0K8G2AQABseH3AdzAXHUD42wGuaeH3OzPwJb6bKkDwWPbLjjF9K1euaCjo0M7duzQwIED1atXL9PdCQUycyMDG2rscg3Nu6TZY6XYtsx3omSQNH2VVDQg8+cGgCyw4fcB3MBcdQPjbAa5p4fc7M/AlvpsqcMFpt/LZfEETjH9Fw4AckZdtTR3opSIZu6chaX+c07KuK4CAAAAAICeMf1eLtt2AY6Jx+OaN2+e4vG46a6EBpm5kYENNXarhrLh/kJHyaDMNF4yiIUTAFaw4fcB3MBcdQPjbAa5p4fc7M/AlvpsqQPBY/EEcEx+fr4qKiqUn59vuiuhQWZuZGBDjd2uoWy4v8XWyKk9a3jkVP88LJwAsIANvw/gBuaqGxhnM8g9PeRmfwa21GdLHQge23bBKaZv9QKAnLVpmfRSpbT5pa4fUz5OGnc9D4cHAAAAAAAZZ/q9XO48ARzT2tqq1atXq7W11XRXQoPM3MggZ2v0PCnRKDXt9P88wL956FENQ8/2t92a/rI0/gZpyAT/GSZ7Kiz1vz/+Bv91Vyxl4QSAdXL29wHwMcxVNzDOZpB7esjN/gxsqc+WOhA87k0CHJNMJrV27VoNHz5cffr0Md2dUCAzNzLIqRrrqqV1i6X3X5O2vbn3Q90LS6VBJ0qDP+dvl1U2LPWjjNRQNkwqu9n/3POkZFxqT0r5BVJBsRSJpF0WAIRBTv0+AA6AueoGxtkMck8PudmfgS312VIHgse2XXCK6Vu9AOCANi2TVt4pbVnV9WOOHSud+j3uAAEAAAAAAFYx/V4u23YBjuns7FQ0GlVnZ6fproQGmbmRgdEam3dJi6+UFn6jewsnkv/6hVOlR65SZ/xD68cJAILmwu882IG56gbG2QxyTw+52Z+BLfXZUgeCx+IJ4JjGxkZVVlaqsbHRdFdCg8zcyMBYjbVV0uyxUtXinp1n3SI1zj7b+nECgKC58DsPdmCuuoFxNoPc00Nu9mdgS3221IHgsW0XnGL6Vq9c0NnZqcbGRvXv3195eayfdgWZuZGBkRprq6R5k/Z+pkkPdCqixj6D1f/yh5Q3aGRGzgkArnHhdx7swFx1A+NsBrmnh9zsz8CW+mypwwWm38tldgCOycvLU2lpKb8cuoHM3Mgg6zU275IWTMnYwokk5clTaetW5S2c6p8fANBtLvzOgx2Yq25gnM0g9/SQm/0Z2FKfLXUgeMwQwDGxWEx33323YrGY6a6EBpm5kUHWa1w6Q4pty+gpY+qnu3WJYrFG6YkbM3puAHCFC7/zYAfmqhsYZzPIPT3kZn8GttRnSx0IHosngGMKCgo0evRoFRQUmO5KaJCZGxlktcZNy3r+jJN9KFCbRqtaBWqT1i3y2wEAdIsLv/NgB+aqGxhnM8g9PeRmfwa21GdLHQgezzyBU0zvkwcAkqQ550pbVgXfTvk46YqlwbcDAAAAAACQYabfy+XOE8AxiURCy5cvVyKRMN2V0CAzNzLIWo111YEtnCTUR8v1RSXUx//G5pekuvWBtAUAtnLhdx7swFx1A+NsBrmnh9zsz8CW+mypA8Fj8QRwTHt7u2pqatTe3m66K6FBZm5kEHiN9Zv9jzX3BXN+Se3qpRodrXb1+uibrwbXHgDYyIXfebADc9UNjLMZ5J4ecrM/A1vqs6UOBI9tu+AU07d6AXDYLYcYbLvBXNsAAAAAAABpMP1eLneeAI7p6OhQbW2tOjo6THclNMjMjQxsqLFDearVQHV8/Nc7/04CALrMht8HcANz1Q2Msxnknh5ysz8DW+qzpQ4Ej8UTwDGxWEz33HOPYrGY6a6EBpm5kYENNcZUrHsi31RMxXv/IBk30yEACCEbfh/ADcxVNzDOZpB7esjN/gxsqc+WOhA8tu2CU0zf6pULPM9Ta2ur+vTpo0gkYro7oUBmbmQQeI1Z2LbLk9SqPuqjVu1VwYy/Sf0OC7x9ALCBC7/zYAfmqhsYZzPIPT3kZn8GttRnSx0uMP1ebn7WWgKQEyKRiAoLC013I1TIzI0MbKgxIqlQrZ/8QX5B1vsCAGFlw+8DuIG56gbG2QxyTw+52Z+BLfXZUgeCx7ZdgGMaGxt15513qrGx0XRXQoPM3MjAhhobVaw7daUaP75tV0Hxvg8AAHyCDb8P4AbmqhsYZzPIPT3kZn8GttRnSx0IHosngGMKCws1YcIEVti7gczcyCDwGq97y/845pRgzi//rpMJennvu0+OGSNxGzIAdJkLv/NgB+aqGxhnM8g9PeRmfwa21GdLHQgezzyBU0zvkwcAemaWtPJX2Wtv/A3SmTdnrz0AAAAAAIAMMP1eLneeAI5paWnRk08+qZaWFtNdCQ0ycyOD/dboeVKiUWra6f/Z039zMHJKz44/gBYV6klNUIv2+NczI4JrDwBs5MLvPNiBueoGxtkMck8PudmfgS312VIHgscD4wHHdHZ2KhqNqrOz03RXQoPM3MhgrxrrqqV1i6X3X5O2vSkloh+9sLBUGnSiNPhz0sipUtmw7jVUNlw6dqy0ZVUmuy9J6lREUfVXp/6+TVf5uO73DwAc58LvPNiBueoGxtkMck8PudmfgS312VIHgse2XXCK6Vu9AOS4TcuklXd2b2Hj2LHSqd+Thn6le+0s/Ea3u9dt0xZ1r18AAAAAAAA5wvR7uWzbBTimvb1dNTU1am9vN92V0CAzBzJo3qX2h69UzcLvq33LK907dssqaeFU6ZGrpOZdXTtm6NmBbKfVrl6q0dFqVy//rhgWTgCg26z/nQdrMFfdwDibQe7pITf7M7ClPlvqQPBYPAEcE4/HNX/+fMXjcdNdCQ0yszyD2ipp9ljF1z+l+ZFvKK5+6Z1n3SJp9lh/y6+umPgLqWRQem3tR1z9/Br6fUo6946MnhsAXGH17zxYhbnqBsbZDHJPD7nZn4Et9dlSB4LHtl1wiulbvQDkmNoqad6kvZ9p0lOFpdIVS/1nmxxMXbU0d6K59gEAAAAAAHKU6fdyufMEAOCm5l3SgimZXbiQ/PM9cH7XtvAqG+4vdGTqDpSSQSycAAAAAAAAZACLJ4BjGhoadNttt6mhocF0V0KDzCzNYOkMKbYt9WWDSnSbrlWDSnp+7tg26Ykbu/basuHS9FX+M0p6YuRUNVy8TLfNXWLXOAFAlln5Ow9WYq66gXE2g9zTQ272Z2BLfbbUgeCxeAI4pqioSJMnT1ZRUZHproQGmVmYwaZlUtXivb5VpBZN1jIVqSUzbaxb5LfTFUUDpPPvlaY9LJWP61475eOkaYuk8+9V0WFH2TVOAGCAdb/zYC3mqhsYZzPIPT3kZn8GttRnSx0IHs88gVNM75MHIEfMOVfasir4dsrH+dtodVfden9x5/3XpA/W7r21WGGpdNRoafDnpBFTpLJhmekrAAAAAABADjH9Xi53ngCOaW5u1mOPPabm5mbTXQkNMrMsg7rqfS6cNKtQj+lsNaswc21tfslfCOmusmHSmTdLl/5RuqlG+uFWacbf/D9vqvG/f+bNn1g4sWqcAMAQrqUIC+aqGxhnM8g9PeRmfwa21GdLHQgeiycAADfUb/Y/1tyX3XZfvc9vN12RiNSnROp3mP9nJJK5vgEAAAAAAGCf2LYrIMlkUn/4wx/04IMPqrq6WnV1dTr00EP1qU99Sl//+td1+eWX6/DDD8/ptiM9eIPusssu07x58/b5s4qKCm3e3L03Et977z0dffTRafdnN9O3egEw6JZDDLfPg+gAAAAAAAC6yvR7udx5EoCNGzfqlFNO0aWXXqonnnhCW7ZsUWtrq2pra/Xyyy9rxowZGj58uJYuTWMf/Bxue09HHnlkoOdH+tra2rRx40a1tbWZ7kpokJkbGbQpXxt1nNqUb7oraXNhnAAgaFxLERbMVTcwzmaQe3rIzf4MbKnPljoQvPC+Q5Sjtm7dqjPPPFMffPCBJP/ujdNOO03HHXecduzYoWeeeUYtLS3avn27Jk+erCeffFJnnHFGTrb9ne98p8ttV1dXa/ny5amvL7nkki4dd+mll6qkpOSgrysuLu5yX3Bgu/d1nD59ug45xPC/xA8JMnMjg2b11WM6W9N1vw5RzHR30uLCOAFA0LiWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeGzblWGnnXaaXnzxRUlSeXm5/vjHP+rEE09M/fzDDz/UhRdeqGeffVaSNGDAAL3zzjsqLS0NddtTp07V4sWLJUknnXSSXnvttf2+ds9tu959911VVFT0uP2uMn2rFwCD2LYLAAAAAAAgNEy/l8u2XRm0dOnS1OJFQUGBlixZstfihSQdfvjh+uMf/6ghQ4ZIknbt2qU77rgj1G3X19dryZIlqa8vu+yyHp8TAAAAAAAAAABTWDzJoN/+9repzy+77DKNHDlyn6/r16+fbr311tTX99xzj9rb20Pb9kMPPaTW1lZJUu/evTVt2rQenQ/BikajmjVrlqLRqOmuhAaZuZFBVP01K/J9RdXfdFfS5sI4AUDQuJYiLJirbmCczSD39JCb/RnYUp8tdSB4bNuVIfF4XIcffnhqEWHVqlX64he/uN/XJxIJDRw4UPF4XJL07LPPpv3sE5NtS9KYMWP0yiuvSJImT56s//3f/z3g69m2y6z29nZt3bpVRx99tPLzeexRV5CZJRnU+9cdPfot6b1XPvHjdvXSVg3S0dqmfHVkrt1jxkhf/510aHnmzrkfVowTABjGtRRhwVx1A+NsBrmnh9zsz8CW+mypwwWm38vlzpMMWbVqVWrxol+/fjr55JMP+PrCwsK9Fjiee+65ULa9adOm1MKJxJZdYZCfn6+Kigp+OXQDmVmSwaHl/kf5uH3+OF8dqtDWzC6cSFLFuKwsnEiWjBMAGMa1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxJEM2bNiQ+nzkyJFd+st30kkn7fP4MLU9f/781OeHH364Jk2a1K3jX3vtNVVWVurGG2/UjTfeqNtvv11LlixRfX192n3CgTU1Nemhhx5SU1OT6a6EBplZlsHIKfv8dpP66iF9VU3qm9n2Ruy7vSBYNU4AYAjXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI/ltQx5++23U5+Xl3ftXxgfe+yxqc83btwYurY7Ozt1//33p76eNm2aevfu3a1zTJmy7zcVe/furQsvvFC33HJL6gH3yIy8vDyVlpYqL4+1064iM8syKBsuHTtW2rJqr2/nyVOpGpWnDO5mWT5OKhuWufMdhFXjBACGcC1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwmCEZsnPnztTnZWVlXTrmyCOPTH2+a9eu0LX9/PPP67333kt9ncktu9ra2nT//ffrs5/9rJYsWZKx80Lq27evzjnnHPXtm+F/XW8xMrMwg1Ov/8S3+iqhc7RcfZXIXDvjPtlOkKwbJwAwgGspwoK56gbG2QxyTw+52Z+BLfXZUgeCx+JJhux++LqkLv/F2/N1ex4flrZ///vfpz4fOXLkXluBHUh+fr4mTZqku+++W6+//rqi0aja2tr04Ycf6umnn9aVV16ZuoOlsbFRU6dO1UsvvZRWH/ensLBQxcXFkqSOjg5Fo1F5npdqM5lMSpJaWlpSt/C1t7crGo2mztHQ0KC2tjZJUnNzs5qbmyX5Cz8NDQ2p10WjUbW3t0vybwtsaWmRJCWTSTU2NkqSPM9TNBpVR4f/rIV4PK5Ewn8Dt7W1VbFYTJJ/t080GlVnZ6ckKRaLpZ53k0gkUmN5oJoaGhr0yiuvKJlMWlNT0OP04Ycfau3atWptbbWmpu6OUyKR0KpVq1I/C31NQ89W5/Apiqq/OhWRJO1UqdZopJLqrYT6KK4ivyblKar+qftRGlWspPxrVIsKU9t8tauXour/UU2fuVBtn/oS4+TANYKaqIma7Kpp+/btWrt2rZLJpDU12ThO1OT3e9WqVamf2VCTjePU05qSyaTWrFmT+keTNtQUhnGqr6/XX/7yFyWTSWtqysY4JZNJvf7669q+fbs1NXV3nGz/74gdO3bo1VdfVTKZDHVNto+TjTWZwuJJhuyeNJJUUFDQpWP69OmT+nz35AxL2/F4XI888kjq6+7cdfLKK6/oT3/6k66++mp99rOf1SGHHKL8/HwddthhOuuss3TvvffqxRdf1GGHHSbJ/4t45ZVXpv6SZsKYMWNSW4bt2LFDlZWVqb/Qc+bM0fr16yVJK1asSN35snXrVlVWVqbOMXv2bL3zzjuSpKeeekpPPfWUJOmdd97R7NmzU6+rrKzU1q1bJUlLlizRihUrJEnr16/XnDlzUjVWVlZqx44dkqTFixdr9erVkqQ33nhDCxYskORfUCorK1MXsAULFuiNN96QJK1evVqLFy/uUk3PPPOMEomEVTUFOU7333+/li9froaGBmtq6u447dixQ08//XTqdTbU1Hjqj1UZuUqNKpEk/UFf1XM6VQn10WqdpMXyn+G0Q4epMnKVWuVfN+foAq3Xp/2aNEZL9GW/Jg1SZeQqv6MlgzR7cwXjlIlxsvDvEzVREzXldk2zZ8/W8uXLlUgkrKnJxnGiJv//A59++mm9++671tRk4zj1tKZEIqHnnntOf/jDH6ypKQzj9Oc//1nPPvusEomENTVlY5wSiYSef/55zZ4925qaujtOtv93xH333afnn39eiUQi1DXZPk421mSMh4yYOHGiJ8mT5N10001dOmbp0qWpY4qLi0PV9rx581LH5+fne9u2bev2OQ7mqaeeSrUhyVu8eHGPz1lVVeVJ8goLC73i4mKvqqrKa29v9+rr673Ozk7P8zyvoaHBa21t9TzP85qbm714PO55nue1tbV59fX1qXNFo1EvmUx6nud5TU1NXlNTk+d5npdMJr1oNJp6XX19vdfW1uZ5nufF43GvubnZ8zzPa21t9RoaGjzP87zOzk6vvr7ea29v9zzP82KxmNfS0uJ5nuclEgmvsbHR8zzP6+jo8Orr672Ojg7P8zyvsbHRSyQSnud5XktLixeLxTzP86iJmuyqqb7e81oaPC/+oVdfu8Vr+/vrMlLTple8jp+Ve97M/l7jzEFeYubhnjezv9cyc6AXm3mk583s77XPLPXqZx7tdc7s73kz+3sNM4/yWmce5nkz+3vNM4/w4jPLPG9mf69t5qFe/cyjPe/nx3pebZV740RN1ERN1ERN1ERN1ERN1ERN1ERN1ERN1JTBmna/l7v7o6qqysumiOd5GXwyrrsuuOACPfzww5Kk7373u11aGXv00Ud1/vnnS/KfQbJt27bQtH3mmWfqueeekyRNmjRJf/rTn7rZ664ZP368Vq5cKUm68sorde+99/bofNXV1RoxYkTq66qqKg0fPrxH5wwbz/PU2tqqPn36KBKJmO5OKJCZgQzqqqV1i6X3X5O2vSkloh/9rLBUGnSiNPhz0sipPX8ge1219MD58mLb1Ko+6qNWpV1hySDpkkf8h9IbwFwFgJ7jWoqwYK66gXE2g9zTQ272Z2BLfbbU4QLT7+WybVeG7N5iSpLq6uq6dExtbW3q8wEDBoSm7S1btuj5559PfZ3JB8V/3FlnnZX6fMOGDYG145KGhgbdfvvte+1xiAMjsyxmsGmZNOdcafZYaeWvpHdX7L1wIvlfv7vC//nsL/qv3/RU+m2WDZemr1LDZy7U7ZHvqGGP55Z0y8ip0vRVxhZOJOYqAGQC11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv33QHbPGZz3wm9fnmzZu7dMyWLVtSnx9//PGhafv+++9PPdTn0EMP1Ve/+tVuHd8dgwYNSn3+4YcfBtaOS0pKSnT11VerpKTEdFdCg8yykEHzLmnpDKlqcfeP3bJKWrjKX7w49w6pKI3F6KIBKvnGXbr61T+qpHqUtGVl148tHyeNu14a+pXut5thzFUA6DmupQgL5qobGGczyD095GZ/BrbUZ0sdCB6LJxlywgknpD5ft26d2tvblZ9/4Hhff/31fR6f623//ve/T31+4YUX7vXw+UxrampKfd6vX7/A2nFJr169dOSRR5ruRqiQWcAZ1FZJC6ZIsfS2LkxZt0iqWZn2tlm9evXSkad8XTrl61Lden8h5/3XpA/WfnLbsKNG+9uGjZjS823DMoi5CgA9x7UUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY9uuDBk7dmxqEaGpqUmvvvrqAV/f2tqq1atXp74+44wzQtH26tWrtWnTptTXQW7ZJUlvvPFG6vOjjjoq0LZcEY/HNW/ePMXjcdNdCQ0yCzCD2ipp3qSeL5zsFtsmzZ3oP8ekm/aqsWyYdObN0qV/lG6qkX64VZrxN//Pm2r87595c04tnEjMVQDIBK6lCAvmqhsYZzPIPT3kZn8GttRnSx0IHosnGVJcXKwzzzwz9fW8efMO+PpHH31UsVhMkv/MkdNOOy0Ubc+fPz/1+fHHH69TTjmle53thp07d+qPf/xj6usJEyYE1pZL8vPzVVFRcdC7k/ARMgsog+Zd/h0nH3+mSU8lotID5/vn74b91hiJSH1KpH6H+X/m8MPkmKsA0HNcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELyIt/vhFeixP//5zzrvvPMkSX369NFrr72m4cM/uXVMc3OzTjzxRP31r3+VJP3gBz/Qz3/+85xvu7W1VYMGDVJ9fb0k6ec//7l+8IMfdKuf8XhcxcXFB31dR0eHpkyZoscee0ySVFBQoE2bNqm8vLxb7X1cdXW1RowYkfq6qqpqnzkByILFV6b3jJOuGjlVOv/e4M4PAAAAAACAwJh+L5c7TzJo0qRJGj9+vCR/oeG8887TW2+9tddrdu7cqcmTJ6cWLwYMGKCbbrppn+erqalRJBJJfRzojpJMt70vjz/+eGrhJC8vT5dcckmXj91tzJgxuv766/Xaa6/t9zXr1q3TWWedlVo4kaTvfe97PV44gW/3tm2tra2muxIaZBZABpuWBbtwIvnPQNm0rMsvt2GcbagBAEzjWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeJJhCxcu1KBBgyT5ix+jR4/Wl770JV111VX6f//v/+nYY4/V008/Lcm/Rezhhx9WaWlpKNre80HxZ555po4++uhu9zEej6uyslKf//znNXDgQH35y1/WpZdeqmuuuUbTpk3T8OHDNWrUKC1fvjx1zFe/+lX99Kc/7XZb2LdkMqm1a9cqmUya7kpokFkAGay8MzPnOZiXKrv8UhvG2YYaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQge23YFYOPGjbrooou0du3a/b5m4MCBmjt3riZNmrTf19TU1OhTn/pU6uu5c+fq8ssvz0rbH7d9+3YNHjxY7e3tkqQFCxZo2rRpXT5+t4qKCm3evLlLry0qKtK//du/6Qc/+IHy8jKzzmf6Vi8A8h/mPnts9tqb/nLOPdgdAAAAAAAAB2b6vVyeihOA448/Xq+88ooeeughPfjgg6qurlZdXZ1KS0s1ZMgQff3rX9cVV1yhww8/PDRtL1iwILVw0r9/f33ta19Lq38vvviiVq1apZdfflmvv/666urqtHPnTjU0NKioqEiHH364Ro8erQkTJuib3/xmxu7KwUc6OzvV2Nio/v37Z2xRynZklqEM6v++cLrmvsx1rCtevU8a+13p0ANv/WfDONtQAwCYxrUUYcFcdQPjbAa5p4fc7M/AlvpsqQPB484TOMX0amUuiEajqqys1HXXXcfiVBeRWYYyuOWQjPap++03HPDHNoyzDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6XGD6vVwWT+AU03/hcgGr691HZhnKIMcXT2wYZxtqAADTuJYiLJirbmCczSD39JCb/RnYUp8tdbjA9Hu5bNsFOCYvL49V9W4iMzcysKFGG2oAANO4liIsmKtuYJzNIPf0kJv9GdhSny11IHgsrQGOicViuvvuuxWLxUx3JTTIzI0MbKjRhhoAwDSupQgL5qobGGczyD095GZ/BrbUZ0sdCB6LJ4BjCgoKNHr0aBUUFJjuSmiQmRsZ2FCjDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDyeeQKnmN4nD3Bajj/zBAAAAAAAALnD9Hu53HkCOCaRSGj58uVKJBKmuxIaZJahDK57y/845pTMdawrjhnjt3sQNoyzDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDwWTwDHtLe3q6amRu3t7aa7EhpkJrW3tanmb++ovXG7lGiU0rlp8dBy/6N8XOY7eCAV4/x2D8KGcbahBgAwjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCx7ZdcIrpW72AUKmrltYtlt5/Tdr2ppSIfvSzwlJp0InS4M9JI6dKZcO6d97ZYzPd2/2b/nL3+gcAAAAAAADjTL+Xy50ngGM6OjpUW1urjo4O010JDecy27RMmnOuv8Cx8lfSuyvUkWhUrQaqY/evjURUeneF//PZX/Rfv+mprp2/bLh0bJYWT8rHdXnhxIZxtqEGADCNaynCgrnqBsbZDHJPD7nZn4Et9dlSB4LH4gngmFgspnvuuUexWMx0V0LDmcyad0mLr5QWfkPasmqvH8VUrHsi31RMxfs+dssqaeFU6ZGr/PMczKnX97y/XTGu6+3YMM421AAApnEtRVgwV93AOJtB7ukhN/szsKU+W+pA8Ni2C04xfatXLvA8T62trerTp48ikYjp7oSCE5nVVkkLpkixbfv8sSepVX3UR606aAIlg6RLHvHvMDmQxVdKVYvT6W3XjJwqnX9vl19uwzjbUAMAmMa1FGHBXHUD42wGuaeH3OzPwJb6bKnDBabfy+XOE8AxkUhEhYWF/HLoBuszq62S5k3a78KJJEUkFXZl4UTyzzN3ov9skwOZ+At/oSUIJYOkc+/o1iE2jLMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljoQPBZPAMc0NjbqzjvvVGNjo+muhIbVmTXv8u842fNh8PvQqGLdqSvVuL9tuz4uEZUeOP/AW3gVDfDvUCks7Wpvu6aw1D9v0YBuHWbDONtQAwCYxrUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY/EEcExhYaEmTJigwsJC010JDaszWzrjgHec7FaoVk3QyypUa9fPHdsmPXHjgV9TNly6Ymnm7kApGeSf72Bbhu2DDeNsQw0AYBrXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI9nnsAppvfJA3LKpmX+w+GDNu1haejZB35N8y5/oWXdovTbGTnV36qrm3ecAAAAAAAAIPeYfi+XO08Ax7S0tOjJJ59US0uL6a6EhrWZrbyzyy9tUaGe1AS1KI1/lfFS5cFfUzTAf7j7tIel8nHdO3/5OGnaIv/4Hiyc2DDONtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPDyTXcAQHZ1dnYqGo2qs7PTdFdCw8rM6qqlLau6/PJORRRVf3V27ZHxe9v8klS3XiobdvDXDj3b/6hbL1Utlt5/Tfpg7d7PZCkslY4aLQ3+nDRiStfO2wU2jLMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljoQPLbtglNM3+oFGFW/+aPPX6qUXr0ve22ffJU06T/TO9bzpGRcak9K+QVSQbEUSWMRBwAAAAAAAKFh+r1ctu0CHNPe3q6amhq1t7eb7kpoWJNZ5aiPPrq5cNKuXqrR0WpXr/TaXnNvesdJ/kJJnxKp32H+nwEtnNgwzjbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwWDwBHBOPxzV//nzF43HTXQkNMpPi6qf5kW8orn7pnyTHb3S0YZxtqAEATONairBgrrqBcTaD3NNDbvZnYEt9ttSB4LFtF5xi+lYvwKhbDjHb/g+3+neOAAAAAAAAAAdh+r1c7jwBAGRHe9J0DwAAAAAAAIAuYfEEcExDQ4Nuu+02NTQ0mO5KaJCZ1KAS3aZr1aAe3DmSX5C5DgXAhnG2oQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgsfiCeCYoqIiTZ48WUVFRaa7EhpkJhWpRZO1TEVqSf8kBcWZ61AAbBhnG2oAANO4liIsmKtuYJzNIPf0kJv9GdhSny11IHg88wROMb1PHmBU/eaPPn/0W9J7r2Sv7WPGSFcuy157AAAAAAAACDXT7+Vy5wngmObmZj322GNqbm423ZXQsCazQ8s/+igf161Dm1Wox3S2mlWYXtsV3WvPBBvG2YYaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQgeiycA4KKRU7Lb3ogstwcAAAAAAAD0ANt2wSmmb/UC0uZ5UmtM6miTevWW+pRIkUjPzjnnXGnLqsz070DKx0lXLA2+HQAAAAAAAFjD9Hu53HkCOKatrU0bN25UW1ub6a6EhrHM6qqlZ2ZJ878q3V4h3XaM9Ish/p+3V/jff2aWVLc+vfOfen2XX9qmfG3UcWpTfvfbGdf1dkyy4e+GDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDwWTwDHsK9j92U9s03L/LtCZo+VVv5KeneFlIju/ZpE1P/+yl9Js7/ov37TU91rZ+jZXd5Oq1l9//7Mk77da2PkVGnoV7p3jCE2/N2woQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgse2XXCK6Vu9gANq3iUtnSFVLU7/HCOnSufeIRUN6Hqbs8dKsW3pt7k/JYOk6au63hcAAAAAAADg70y/l8udJwCQC2qr/EWMniycSNK6Rf556qq79vqiAdIlj0iFpT1r9+MKS/3zsnACAAAAAACAEGLxBHBMNBrVrFmzFI1GTXclNALPrLZKmjcpc3d/xLZJcyd2fQGlbLj/QPeSQft9SVT9NSvyfUXV/+DnKxnkn68sXHd12fB3w4YaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQge23bBKaZv9coF7e3t2rp1q44++mjl56fx8G8HBZpZLm2b1bxLeuJG/+6Vj2lXL23VIB2tbcpXx/7P0d1tw3KIDX83bKgBAEzjWoqwYK66gXE2g9zTQ272Z2BLfbbU4QLT7+WyeAKnmP4LB3zC4it7vlXXgYycKp1/b/eO2bRMeqlS2vxS148pHyeNuz40D4cHAAAAAABAbjP9Xi7bdgGOaWpq0kMPPaSmpibTXQmNwDLbtCzYhRPJv4tk07LuHTP0bH/brekvS+NvkIZMUFOfI/WQvqom9fVfU1gqDZng/3z6y/7rQ75wYsPfDRtqAADTuJYiLJirbmCczSD39JCb/RnYUp8tdSB43JcEOCYvL0+lpaXKy2PttKsCy2zlnZk93/68VOkviHRX2TCp7GZJUl5zs0qff0Z5p9wmlfSXCoqlSCTDHTXLhr8bNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPDYtgtOMX2rF5BSV+0/6yRbpr/sL4YAAAAAAAAAIWD6vVyW1wDHJJNJrV27Vslk0nRXQiOjmdVv9j/W3Nfzc3XHqz1rz4V5Y0ONNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEck0gktHz5ciUSCdNdCY2MZlY5yv/o4WJGt63p5kPjP8aFeWNDjTbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDw2LYLTjF9qxegWw4x1/bMqHXPKQEAAAAAAICdTL+Xy50ngGM8z1MikRDrpl1nTWbJeNqHWpPBAdhQow01AIBpXEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8Fk8AxzQ0NOj2229XQ0OD6a6EhjWZtae/l6c1GRyADTXaUAMAmMa1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPbLjjF9K1euaCjo0M7duzQwIED1atXL9PdCYWOjg7t2L5dA/sXqpc6pV69pT4l6W2BZXLbrh9u9fudBhfmjQ012lADAJjGtRRhwVx1A+NsBrmnh9zsz8CW+mypwwWm38vNz1pLAHJCr169dOSRR5ruRjjUVUvrFqvX+6/pyG1vSonoRz8rLJUGnSgN/pw0cqpUNsxUL7uuoDjtQ12YNzbUaEMNAGAa11KEBXPVDYyzGeSeHnKzPwNb6rOlDgSPbbsAx8Tjcc2bN0/xePrPv7DepmXSnHOl2WOllb9S/N01mpf4suIq+ug1iaj07gpp5a+k2V/0X7/pqYOf+7q3/I9jTgms+/t0zJgePSzehXljQ4021AAApnEtRVgwV93AOJtB7ukhN/szsKU+W+pA8Fg8ARyTn5+viooK5edz49knNO+SFl8pLfyGtGVV6tv56lCFtipfHfs/dssqaeFU6ZGr/PPsz6Hl/kf5uAx2vAsqetaeC/PGhhptqAEATONairBgrrqBcTaD3NNDbvZnYEt9ttSB4PHMEzjF9D55yGG1VdKCKVJsW8/PVTJIuuQRqewAc6uu2r+zJVumvxyOrcUAAAAAAAAAmX8vlztPAMe0trZq9erVam1tNd2V3FFbJc2btN+Fk1YVaLU+q1YVdO18sW3S3In+Asn+lA2Xjs3S4kn5uB4vnLgwb2yo0YYaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQgeiyeAY5LJpNauXatkMmm6K7mheZd/x8meD4P/mKR6a62GK6neXT9vIio9cP6Bt/A69fqun68nxvW8HRfmjQ012lADAJjGtRRhwVx1A+NsBrmnh9zsz8CW+mypA8Fj2y44xfStXshBi6+UqhYHd/6RU6Xz/397dx4eVXn///81JCYDSTBEdtCwKOKCoBVkEaWiIqgVBGRRQZSK2urPVlutfgWXutQVPmoBFVERQUABqYAKCKgsghUFBFE0QIAgAbKRPXN+f0w5TiTLZJLJydzn+biuXJ7JnOV+v+/DkZk3932/VnevDwAAAAAAANRBTn+Xy8gTwGV8Pp8yMjLk8/mcborzdnwUVOHCJ48y1FA+eap+jc1z/dcpz4Bn/GukhENCC6n/0zVyKjfcNybEaEIMAOA0nqWIFNyr7kA/O4O8h4a8mZ8DU+IzJQ6EH8UTwGWysrI0adIkZWVlOd0U530+MajdspSgSZ6xylJCaNf5YlL57zVI8i8u700M7dzl8Sb6z9sgqUZO54b7xoQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ73qAp/Pp6ysLDVs2FD16rm4fnpgqzQ5uAXbffIoSwlqqGzVU4iPzNvXVrxo+4Gt/jVSylm0vkoSWvgLJ81q7t52w31jQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPicAOnv8vl7gBcpl69ekpMTHTv/xyO7PL/bJgW9CH1ZClRWaEXTiRp4zT/dcvT7Czp9jX+NUqqo9NQ/3lqsHAiueO+MSFGE2IAAKfxLEWk4F51B/rZGeQ9NOTN/ByYEp8pcSD8uEMAl8nOztaUKVOUnZ3tdFOcMekc/8/G4Isn2YrTFN2gbMWFft0Nr/mvW5EGSf7F3UfOkZJ7Ve38yb2kkXP9x9fQVF2B3HDfmBCjCTEAgNN4liJScK+6A/3sDPIeGvJmfg5Mic+UOBB+0U43AEDtiomJUZcuXRQTE+N0UyJGjIrURVsVo6LauWCHfv6fA9/5F7Tf+5W0b5OUn/HrPt5EqWUXqdXvpLOHVDwlWA1ww31jQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPix5glcxel58lAHPHyiw9fPDO04y5IKc6TiQik6RoqJlzyemm0bAAAAAAAAUEc4/V0u03YBLpOfn6+VK1cqPz/f6aZEjHzFaqV6KF+xzjXC45FiE6S4k/z/reXCiRvuGxNiNCEGAHAaz1JECu5Vd6CfnUHeQ0PezM+BKfGZEgfCj+IJ4DLFxcVKSUlRcXGx002JGMWKUopaq1hRTjfFMW64b0yI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btgqs4PdQLdUCkTtsFAAAAAAAAuIjT3+Uy8gRwmZKSEqWlpamkpMTppjjj//vW/3PyBUEfUqJ6SlMTlVTnkXlyd/91I5Qb7hsTYjQhBgBwGs9SRAruVXegn51B3kND3szPgSnxmRIHwo/iCeAy2dnZmjp1qrKzs51uijMaJft/knsFfUi24jXVc6OyFR/6ddv08l83QrnhvjEhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/Ji2C67i9FCvusCyLBUUFCg2NlaeWl50vE45sFWa3DOoXS1JBYpVrAoUcsZuXys1OzPUox3nhvvGhBhNiAEAnMazFJGCe9Ud6GdnkPfQkDfzc2BKfKbE4QZOf5fLyBPAZTwej7xeL/9zaHaWdEpwxROPJG91CifJvSK6cCK5474xIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPwongAuk5WVpYkTJyorK8vpplSdZUn5WdLRQ/7/Vnfg3IV3B7VbluI1UbcoK9Rpu3oFd526LKLvmyCZEKMJMQCA03iWIlJwr7oD/ewM8h4a8mZ+DkyJz5Q4EH7RTjcAQO3yer3q06ePvF6v000JzoGt0uZ50t6vpP3fSPkZv77nTZRadJZa/U7qNLTqozs69JPOHiJtmVfhbl4VqI/WyquCKjdfnYZKHS6v+nF1TMTdNyEwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPxY8wSu4vQ8eaiCHR9Jn0+Udq8J/phTekoX/qVqxYrcw/61T7L3V7mJlUpoId2+RmqQVPPnBgAAAAAAAAzm9He5TNsFuExeXp6WLl2qvLw8p5tSttzD0rxbpHeuq1rhRPLv/85Q6b2x/vMEo0GSdMN7/lEs5ciTV0vVR3mqwr9I8Cb6z2tI4aTO3zc1wIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwo3gCuIzP51NGRoZ8Pp/TTTle2hb/KJBKptGq1Oa5/vMc2Brc/s3OksYs9o8UKYNPHmWooXzBLhmf0MJ/vmbmjGqq0/dNDTEhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/Ji2C67i9FAvVCBti/TGlaXXNKkub2LVihi5h6Ulf/cXX0LVaajU/2ljRpwAAAAAAAAATnD6u1xGngAuU1xcrJSUFBUXFzvdlF/lHpZmDqnZwonkP9/bg6s2hdfg16SRc6TkXvavixWlFLVWsaLKPza5lzRyrv94AwsndfK+qWEmxGhCDADgNJ6liBTcq+5APzuDvIeGvJmfA1PiMyUOhB/FE8BlcnJy9OabbyonJ8fppvxq8d/Cs2C75D/vkr9X7ZgO/fwjVm5fK/W+Rzkn99WbnuuUo7hf9/EmSu36SL3v8e83ZnHVFqqPMHXyvqlhJsRoQgwA4DSepYgU3KvuQD87g7yHhryZnwNT4jMlDoQf03bBVZwe6oUy7PjIvzh8uI2c4y+KhMqypMIcqbhQio6RYuIlT5BroAAAAAAAAACoEqe/y2XkCQBnfT6xdq7zxaTqHe/xSLEJUtxJ/v9SOAEAAAAAAACMRfEEcJnMzEw99dRTyszMdLop0oGt0u41tXOtXV9IB74L6dA6lTOHuCEHJsRoQgwA4DSepYgU3KvuQD87g7yHhryZnwNT4jMlDoQfxRPAZRo0aKCBAweqQYMGzjTgyK5ffzZMq91rbwzteo7nrA5wQw5MiNGEGADAaTxLESm4V92BfnYGeQ8NeTM/B6bEZ0ocCD/WPIGrOD1PHiQ9fKLD1+dfFQAAAAAAAAB1ndPf5TLyBHCZ3NxcLViwQLm5uU43xRkh1ItdnzO5IwcmxGhCDADgNJ6liBTcq+5APzuDvIeGvJmfA1PiMyUOhB/FEwDuUpjjdAsAAAAAAAAA1HFM2wVXcXqoF+T8tF1/+0mKO8nZNgAAAAAAAACokNPf5TLyBHCZoqIibd++XUVFRU43xRnRMVU+xPU5kztyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4UTwBXMb18zrGxFf5ENfnTO7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMiQPhx7RdcBWnh3pB0pFdv26//0dpz/rau/bJ3aVbPqq96wEAAAAAAAAIidPf5UbX2pUAQJIaJf+6ndyrdosnbXrV3rUAAAAAAAAARCym7QqTwsJCzZgxQwMGDFBycrK8Xq9atGihnj176tlnn1V6enqdv3ZKSoo8Hk+Vfk499dQqtXXbtm3629/+pnPOOUdJSUmKi4tThw4dNHr0aC1fvjyU8FGJjIwMPfLII8rIyHC6KVKnIbV7vbNDu16dyplD3JADE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KPabvCYPv27RoxYoQ2bdpU7j5NmzbV9OnTNWDAgDp77ZSUFLVt27ZK12/fvr1+/PHHoPZ9/PHH9cgjj1S4ONOIESM0depUJSQkVKkd5XF6qFddUFxcrNTUVLVu3VrR0XVg8Nnr/aXda8J/neRe0pjFIR1a53LmADfkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxOEGTn+XS/GkhqWmpuqCCy7Qvn37JEkej0cXXXSR2rdvr4MHD2rZsmXKy8uTJJ1wwglaunSpLrnkkjp57cDiSUJCgkaNGlVpG5o0aaIJEyZUut/48eP12GOP2a9btGih3r17y+v16quvvtLWrVvt9y6//HJ9+OGHNfIwc/oPHMqw4yPpnevCf52Rc6UOl4f/OgAAAAAAAACqzenvcimt1bCRI0faxYvk5GQtXLhQnTt3tt9PT0/X8OHDtXz5chUVFWno0KHauXOnEhMT6/S1k5KS9NJLL1W7jZK0fPnyUoWTv/3tb/rnP/+pmJgY+3ezZs3SzTffrPz8fH388cd64oknNH78+Bq5vtsdPXpUixYt0tVXX624uDinmyN16OefTmvLvPBdo9PQahVO6lzOHOCGHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDgQfqx5UoMWL16szz77TJIUExOjRYsWlSpeSFLjxo21cOFCtWvXTpJ0+PBhPf300xF97ar6xz/+YW8PHz5cTz/9dKnCieSfruuFF16wX4d7nRg3qVevnhITE1WvXgh//C1Lys+Sjh7y/7emBq4NeEZKaFEz5/qthBZS/+rd59XKmSHckAMTYjQhBgBwGs9SRAruVXegn51B3kND3szPgSnxmRIHwo9pu2rQlVdeqcWL/Wsq/PGPf9Qrr7xS7r4zZ87UDTfcIMk/quPAgQPVmpYqHNcOnLYrOTlZKSkpIbfvmA0bNqhbt26S/A+qlJQUnXzyyWXua1mWTj/9dP3www+SpOeff15/+ctfqnV9p4d6RaQDW6XN86S9X0n7v5HyM359z5sotegstfqdf3RHszOrd53pA0qfv7q8if51TprRxwAAAAAAAEAkcfq7XMprNSQnJ0fLly+3X48ZM6bC/QcPHqz4+HhJ/hEgq1evjshrV9WCBQvs7UsvvbTcwonkX7Nl9OjR9uv58+eHs2muUVhYqE2bNqmwsLDiHXd85F/MfXJP6fPnpZ9XHV/YyM/w//7z56XJPfz77/g4tIY1O8tf6KipESgJLWqscBJ0zgzmhhyYEKMJMQCA03iWIlJwr7oD/ewM8h4a8mZ+DkyJz5Q4EH4UT2rImjVrVFBQIEmKi4tT165dK9zf6/WqR48e9usVK1ZE5LWr6tNPP7W3+/TpU+n+v//97+3twDgRuvz8fK1cuVL5+fll75B7WJp3i38R991rqnby3Wukd4ZK7431n6eqmp0l3b7GP4qlOjoN9Z+nhkacVJozF3BDDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btqiGTJk3S3XffLUnq3r271q5dW+kx999/v/71r39Jkq699lq99957deragdN2tWrVStOnT9fGjRuVnp4ur9erxo0b6/zzz1e3bt0UGxsbVFsbNWqkjIwMSdLSpUvVr1+/CvfPy8tTgwYN7NfffvutOnXqFNS1yuL0UK86L22LNHOIlL2/+udKaCHd8F7oBYwdH0lfTJJ2fRH8Mcm9pF53V2txeAAAAAAAAADOc/q73NAX2UAp33//vb2dnJwc1DGnnHKKvb19+/Y6fe29e/fq8svL/kK6UaNGuuOOO3T//ffb04GV5ZdffrELJ8G2tX79+mrSpIkOHjxot7U6xRP415IpKChQbGysPB7Pr2+kbZHeuLLm1hzJ3u9fwyTUqbM69PP/HPhO2vK/NVf2bTp+zZWWXfxrrpw9pHprrlSg3Jy5iBtyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4MW1XDTl06JC93axZs6COad68ub19+HAIUxzVgWtL0pEjR/T444/r/PPP144dO8rdL7CdkjNthZSZmal//etfyszM/PWXuYf9I05qcrF2yX++tweHNoXXMc3OlPqOl0YtlO5Lkf6RKv3tJ/9/70vx/77v+LAVTqRycuYybsiBCTGaEAMAOI1nKSIF96o70M/OIO+hIW/m58CU+EyJA+FH8aSG5OTk2Nv169cP6pjA/QKPr0vXTkhI0E033aTZs2fr+++/V05OjgoKCrRnzx7NnTtXl156qb3v999/ryuuuMIeJVJRO8PR1qrwer32KJmSkhJlZGTo2Ax2WVlZ9oJReXl5Onr0qCSpuLi41MiZzMxMFRUVSZJyc3OVm5srSSoqKir18M3IyFBxcbEk6ejRo8rLy5PkX5wqKytLkr/inZGRoZKSEjvOY/MuFhQUKDs7W5Lk8/mUkZEhn88nScrOzrbXgcnPz7fzU1FM0dHRGjVqlBISEn6NafHfpOz9ylSCiv43IC1XXuXK649J0cpUwq8xqaGKFeWPSfWV97/9CnWCsuTPq/W//UqyD0hL/l4zMWVmyoqJl+JOUlaBpcL/5T/c/WRZlsaNG6f4+Pha66e6du/FxcVp5MiRiouLMyam3/aTJI0ZM0YJCQkRG5Mb+omYiImYiCncMZWUlGjcuHFKSEgwJiYT+4mY/J/VRo4caX9eMiEmE/upujElJCRozJgx9rlMiCkS+qlevXoaPXq0EhISjImpNvopISFBY8eOVUlJiTExVbWfTP97hM/n080336yEhISIjsn0fjIxJqdQPKkhgQsMxcTEBHVM4Dohx27OunTtFi1aaN++fZo+fbqGDRumDh06KC4uTjExMWrdurWGDBmiTz75RFOnTrWHuP3888/6xz/+UWk7a7qtVdW9e3cNGTJEknTw4EFNmjTJ/gP9+uuv67vvvpMkrVq1SosWLZIkpaamatKkSfY5Jk+erJ07d0qSPv74Y3388ceSpJ07d2ry5Mn2fpMmTVJqaqokadGiRVq1apUk6bvvvtPrr78uyf+wmTRpkl14mjdvntatWydJ+vrrrzVz5kxJ/gfKpEmT7AfYzJkz9fXXX0uS1q1bp3nz5lUa0+eff67169crKirq15i2+I+brBu1U/7p1D7WxfpYF/tjUrIm68ZfY/KMVapa+GPSZVql7v6YdJpe1zB/TIrVJM9YHdRJ0ua5mjfjlbDFFO5+evPNN9W8eXMVFxfXWj/VtXvv6NGjeuedd+z/iZkQ02/7afbs2dq3b5+ioqIiNiY39BMxERMxEVO4Y3rppZfUvHlzRUVFGROTif1ETFJUVJTeeecd7d+/35iYTOyn6sYUFRWlffv2afbs2cbEFAn9tHjxYm3fvl1RUVHGxFQb/RQVFaWoqCi99NJLxsRU1X4y/e8Rr7zyio4ePaqoqKiIjsn0fjIxJsdYqBEDBgyw5P/H9tZ9990X1DGLFy+2j4mPj4/Iax/zwAMP2OeLioqy0tLSjtvnyy+/tPeRZOXl5QV17m7dutnHPPvss9Vq55YtWyxJltfrteLj460tW7ZYxcXF1pEjRyyfz2dZlmVlZmZaBQUFlmVZVm5urpWTk2NZlmUVFRVZR44csc+VkZFhFRYWWpZlWUePHrWOHj1qWZZlFRYWWhkZGfZ+R44csYqKiizLsqycnBwrNzfXsizLKigosDIzMy3Lsiyfz2cdOXLEKi4utizLsrKzs+385OfnW1lZWZZlWVZJSYl15MgRq6SkxLIsy8rKyrLy8/Mty7KsvLw8Kzs727Isq8KYfvnlF+u1116zsrOz/TFNvcayJjS0rAkNrYwJrazCCUmWNaGhdXRCU+vohKaWNaGhVTghycqY0Mre78iE1lbRhEaWNaGhlTOhmZX7v/0KJpxkZU5oaVkTGlq+/+1XPCHRsiY0tLJf/UPYYgp3P+3bt8+aPn26lZWVVWv9VNfuvczMTOvVV1+1jzMhpt/20/79+61p06bZ+0diTG7oJ2IiJmIipnDHlJqaak2fPt3Kzs42JiYT+4mY/G179dVX7eNMiMnEfqpuTNnZ2da0adOs/fv3GxNTJPTTgQMH7M/NpsRUG/2UnZ1tvf7661ZqaqoxMVW1n0z/e8TevXvtz82RHJPp/WRSTMe+yz32s2XLFqs2eSzrf2NkUC3Dhg3TnDlzJEl33XVXUJWx999/X4MHD5bkX9fj2L8YiqRrH5OTk6OmTZvaI0NmzJihG264odQ+27Zt05ln/rouxeHDh9WoUaNKz33OOedo8+bNkqQpU6Zo3LhxIbdz69atOvvss+3XW7Zs0VlnhbCYeQTLz8/XunXr1L17d3kzd0qTe9bexW9fG9a1ScKlVM68Xqeb4wg35MCEGE2IAQCcxrMUkYJ71R3oZ2eQ99CQN/NzYEp8psThBk5/l8u0XTXkpJNOsrcPHDgQ1DFpaWn2dlJSUkRe+5j4+HhdcMEF9utt27Ydt09gOyXn2up2Xq9XfTq3lTfvgLRhWu1efGMtX6+GeL1e9enTx9X/Q3VDDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP4onNeT000+3t3ft2hXUMbt377a3O3bsGJHXDtSiRQt7Oz09/bj3mzZtqsTERPt1MG3Nz88vtQB9TbXVzQoKCrRu0mgVTDq/9osZG16r3evVkIKCAq1bt86ej9GN3JADE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KP4kkNOeOMM+ztzZs3q7i4uNJj/vvf/5Z5fCRdO9CxBYolKS4ursx9Aq91bNGgigS2MyoqSh06dKhGCyFJhYWF2qSzVKgTnGlABM4UWFhYqE2bNqmwsNDppjjGDTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPxY86SG5OTkqHHjxnbFcu3aterevXu5+xcUFKhJkybKzs6WJC1fvlyXXHJJxF070CmnnKI9e/ZIkp555hnde++9x+3z4IMP6oknnpAk9evXT0uXLq3wnE8++aQeeOABSVLv3r21evXqarXR6Xny6oyHT3Tu2v9IlWITnLs+AAAAAAAAgDrP6e9yGXlSQ+Lj49W3b1/79RtvvFHh/u+//75dvEhKStJFF10Ukdc+ZtmyZXbhRJL69OlT5n4DBw4sdUxqamqF5w2MJfBYhM7n8ylDDeWTx5kGFEdeVd/n8ykjI0M+n8/ppjjGDTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPwontSgO+64w95+4403tHXr1jL3y83N1fjx4+3Xt956q6Kjo+vUtQsLC4Meunbw4EHddttt9uszzjhD5513Xpn7du3aVV27dpUklZSU6P777y/3vK+88op27NghSUpISNCoUaOCag8qlpWVpUmescqSQ6M/omOcuW41ZGVladKkScrKynK6KY5xQw5MiNGEGADAaTxLESm4V92BfnYGeQ8NeTM/B6bEZ0ocCD+m7aphF110kT777DNJUps2bbRw4UKdc8459vuHDh3SiBEj9Mknn0jyj/zYuXNnqYXUj0lJSVHbtm3t19OnT9dNN91Ua9fu3bu37rzzTg0bNkzJycnH7WNZlhYvXqw//elP9uLvHo9H//nPfzRgwIBy27l8+XJdeuml9uv77rtPjz32mE444dc1OObMmaObbrpJeXl5kqRHHnmkVNEnVE4P9aoLfD6fsh5NVkNlq54c+OM/IUPyODTqJUQ+n09ZWVlq2LCh6tVzZ83ZDTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxuIHT3+VSPKlhqamp6tatm/bv3y/JX0y4+OKL1b59ex08eFDLli1Tbm6uJCk6OlpLly4tNeVWoKoWT8J57TZt2qhTp05q3LixTjjhBB08eFDr16/Xvn37Sh1X3lonv/XQQw/pn//8p/26ZcuW6t27t7xer7766itt2bLFfu+yyy7T4sWLqz06R3L+D1ydccRf7NL7f5T2rK+9657cXbrlo9q7HgAAAAAAAICI5PR3uZTWaljr1q21YsUKdenSRZJ/dMbKlSs1bdo0ffDBB3bxokmTJlqwYEG5xYu6du2UlBQtWrRI06dP1yuvvKL58+eXKpy0atVKCxcuDKpwIkmPPvpoqdEm+/bt07vvvqs333yzVOFk+PDhmjdvXo0UTuCXnZ2tKe8uUXZ0kpTcq3Yv3qaWr1dDsrOzNWXKFHutIDdyQw5MiNGEGADAaTxLESm4V92BfnYGeQ8NeTM/B6bEZ0ocCD++kQ6Djh07av369Zo9e7ZmzZqlrVu36sCBA0pMTFS7du107bXXasyYMWrcuHGdvXZycrI2b96stWvXas2aNdq6davS09N16NAh5ebmqmHDhmrRooW6du2q/v37a9CgQaWm3aqMx+PR//t//0+DBw/Wa6+9po8//lh79uxRUVGRWrRooR49emj06NGlpvdCzYiJiVGXLl0UExMjdRoiff587V387CG1d60aVCpnLuWGHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDgQfkzbBVdxeqhXnfR6f2n3mvBfJ7mXNGZx+K8DAAAAAAAAIOI5/V0u03YBLpOfn6+VK1cqPz/f/4sL766dC/eqpeuEwXE5cyE35MCEGE2IAQCcxrMUkYJ71R3oZ2eQ99CQN/NzYEp8psSB8KN4ArhMcXGxUlJSVFxc7P9Fh37hn06r01Cpw+XhvUYYHZczF3JDDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btgqs4PdSrzso9LE3uKWXvr/lzJ7SQbl8jNUiq+XMDAAAAAAAAMJLT3+Uy8gRwmZKSEqWlpamkpOTXXzZIkm54T/Im1uzFvIn+80Z44aTMnLmMG3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPhRPAFcJjs7W1OnTlV2dnbpN5qd5V/QPaFFzVwooYX/fM0if2RPuTlzETfkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ73qAsuyVFBQoNjYWHk8nuN3yD0sLfm7tHlu6BfpNFTq/3TEjzg5ptKcuYAbcmBCjCbEAABO41mKSMG96g70szPIe2jIm/k5MCU+U+JwA6e/y42utSsBqBM8Ho+8Xm/5OzRIkga/5i+AfDFJ2vVF8CdP7iX1ujuiF4cvS6U5cwE35MCEGE2IAQCcxrMUkYJ71R3oZ2eQ99CQN/NzYEp8psSB8GPaLsBlsrKyNHHiRGVlZVW8Y4d+/mm3bl8r9b5Hatfn+DVRvIn+3/e+x7/fmMXGFU6kKuTMYG7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMiQPhx8gTwGW8Xq/69OkTfIW92ZlSs/H+bcuSCnOk4kIpOkaKiZdcMLyxyjkzkBtyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4seYJXMXpefIAAAAAAAAAAJVz+rtcpu0CXCYvL09Lly5VXl6e002JGOTMHTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPwongAu4/P5lJGRIZ/P53RTIgY5c0cOTIjRhBgAwGk8SxEpuFfdgX52BnkPDXkzPwemxGdKHAg/pu2Cqzg91AsAAAAAAAAAUDmnv8tl5AngMsXFxUpJSVFxcbHTTYkY5MwdOTAhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/CieAC6Tk5OjN998Uzk5OU43JWKQM3fkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ70AAAAAAAAAAJVz+rtcRp4AAAAAAAAAAAAEoHgCuExmZqaeeuopZWZmOt2UiEHO3JEDE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KP4gngMg0aNNDAgQPVoEEDp5sSMciZO3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPix5glcxel58gAAAAAAAAAAlXP6u1xGngAuk5ubqwULFig3N9fppkQMcuaOHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDgQfhRPAAAAAAAAAAAAAjBtF1zF6aFeAAAAAAAAAIDKOf1dLiNPAJcpKirS9u3bVVRU5HRTIgY5c0cOTIjRhBgAwGk8SxEpuFfdgX52BnkPDXkzPwemxGdKHAg/iieAyzCvY9WRM3fkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ70AAAAAAAAAAJVz+rtcRp4AAAAAAAAAAAAEoHgCuExGRoYeeeQRZWRkON2UiEHO3JEDE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KPabvgKk4P9aoLiouLlZqaqtatWys6Otrp5kQEcuaOHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDjcwOnvcimewFWc/gMHAAAAAAAAAKic09/lMm0X4DJHjx7V7NmzdfToUaebEjHImTtyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4UTwBXKZevXpKTExUvXr88Q8WOXNHDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btgqs4PdQLAAAAAAAAAFA5p7/LpbwGuExhYaE2bdqkwsJCp5sSMciZO3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPhRPAFcJj8/XytXrlR+fr7TTYkY5MwdOTAhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/Ji2C67i9FAvAAAAAAAAAEDlnP4ul5EngMtYlqX8/HxRNw0eOXNHDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP4ongMtkZmbqX//6lzIzM51uSsQgZ+7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMiQPhx7RdcBWnh3rVBSUlJTp48KCaNGmiqKgop5sTEciZO3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPicAOnv8uNrrUrAXVAQUFBqdc//vijQy1x3qFDh5xuQsQhZ+7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMicNkv/3u9rff7YadBbjIggULLEmu/omPj7duuukmKz4+3vG2RMoPOXNHDkyI0YQY+OGHH36c/uFZyk+k/HCvuuOHfibvkfRD3szPgSnxmRKHG38WLFhQq98lM20XXGXhwoUaOHCg080AAAAAAAAAAFTBggULdM0119Ta9VgwHgAAAAAAAAAAIAAjT+AqGRkZWrVqlf365JNPVmxsrIMtAgAAAAAAAAD8VkFBgfbs2WO/vvjii5WYmFhr16d4AgAAAAAAAAAAEIBpuwAAAAAAAAAAAAJQPAEAAAAAAAAAAAhA8QQAAAAAAAAAACAAxRMAAAAAAAAAAIAAFE8AAAAAAAAAAAACUDwBAAAAAAAAAAAIQPEEAAAAAAAAAAAgAMUTAABghLVr12rw4MFq1qyZvF6v2rZtqzvuuEN79+51umkAAAAAADgqLS1Nb7/9tu6++25deOGFio+Pl8fjUZs2bZxuWp3lsSzLcroRAAAA1fHaa69p3Lhx8vl8at68uVq1aqUdO3YoOztbjRo10qeffqrOnTs73UwAAAAAABwxceJE/eUvfznu98nJyUpJSan9BkUARp4AAICItnnzZt12223y+Xx67rnntHfvXm3cuFH79u3TddddpyNHjmjQoEEqKChwuqkAAAAAADiiYcOG6tu3r+677z7NmTNHEydOdLpJdR4jTwAAQEQbMmSI3nvvPV133XV69913S72Xl5enjh07avfu3Zo8ebJuu+02h1oJAAAAAEDdMW/ePA0dOpSRJxVg5AkAAIhYR48e1YcffihJ+tOf/nTc+/Xr19eYMWMkSbNnz67VtgEAAAAAgMhF8QQAAFSopKRE3377raZNm6bbb79d559/vmJiYuTxeOTxeNSnT5+Qz11YWKgZM2ZowIABSk5OltfrVYsWLdSzZ089++yzSk9Pr/D4r7/+Wvn5+YqJiVH37t3L3OdY+9avXy+fzxdyWwEAAAAAKE9d/uyM0EQ73QAAAFB3LViwQNdff71yc3Nr/Nzbt2/XiBEjtGnTplK/T0tLU1pamtauXatnnnlG06dP14ABA8o8x44dOyRJp5xyimJiYsrc59RTT5Uk5efna9euXWrbtm3NBQEAAAAAcL26/tkZoWHkCQAAKFdGRkZY/vKXmpqqvn372n/583g8uvjii3XzzTfr6quvVv369SVJv/zyiwYOHKgVK1aUeZ7Dhw9Lkk466aRyr5WUlGRvHzlypIYiAAAAAADAr65/dkZoGHkCAAAq1axZM3Xt2tX++eijjzRp0qSQzzdy5Ejt27dPkpScnKyFCxeqc+fO9vvp6ekaPny4li9frqKiIg0dOlQ7d+5UYmJiqfPk5eVJUrmjTiTJ6/Xa2+H4yywAAAAAAFLd/eyM0FA8AQAA5briiiu0a9cunXLKKaV+v379+pDPuXjxYn322WeS/EWPRYsWqVOnTqX2ady4sRYuXKhzzjlHP/30kw4fPqynn35aTzzxRKn9jv0rm8LCwnKvl5+fb283aNAg5HYDAAAAAFCWuv7ZGaFh2i4AAFCu5s2bH/eXv+p6+eWX7e3Ro0cf95e/Y+Li4vToo4/ar6dOnari4uJS+zRq1EiSdOjQoXKvd2xqr8D9AQAAAACoKXX9szNCQ/EEAADUmpycHC1fvtx+PWbMmAr3Hzx4sOLj4yX5iyCrV68u9f7pp58uSdq9e3e5o09++OEHSf7pu5KTk0NuOwAAAAAAtaGmPzsjNBRPAABArVmzZo0KCgok+f91TNeuXSvc3+v1qkePHvbr3y5+d+6558rr9aqwsFDr1q0r8xyrVq2SJHXr1k316vFXHwAAAABA3VbTn50RGr5BAAAAtWbbtm32dqdOnRQdXfnya+edd16Zx0v+v0QOGDBAUukhzcfk5eVp+vTpkqRhw4aF1GYAAAAAAGpTTX92RmgongAAgFrz/fff29vBTqEVOG/s9u3bj3t//PjxioqK0pw5c/T888/L5/NJ8g9zvummm7R7924lJyfrlltuqWbrAQAAAAAIv3B8dkbVUTwBAAC1JnBh92bNmgV1TPPmze3twMXfj+ncubNefvll1atXT/fcc49atWql888/Xy1bttScOXOUmJio+fPnKzY2tvoBAAAAAAAQZuH47Lxnzx41btzY/rn55pvL/P2dd95Zzdabg+IJAACoNTk5OfZ2/fr1gzomcL/A4wONGzdOn332mQYOHKiSkhJt3rxZjRo10m233abNmzfr3HPPrV7DAQAAAACoJeH47FxSUqJDhw7ZP9nZ2ZIkn89X5u8hVT5ZGgAAQA3Jz8+3t2NiYoI6JnDESF5eXrn79ezZU/Pnzw+9cQAAAAAA1AHh+Ozcpk0bWZZV/ca5CCNPAABArfF6vfZ2YWFhUMcUFBTY28H+ixsAAAAAACIVn53rBoonAACg1sTHx9vbFY0iCRS4X+DxAAAAAACYiM/OdQPFEwAAUGtOOukke/vAgQNBHZOWlmZvJyUl1XibAAAAAACoS/jsXDdQPAEAALXm9NNPt7d37doV1DG7d++2tzt27FjjbQIAAAAAoC7hs3PdQPEEAADUmjPOOMPe3rx5s4qLiys95r///W+ZxwMAAAAAYCI+O9cNFE8AAECt6dmzp2JjYyVJR48e1caNGyvcv6CgQOvWrbNfX3LJJWFtHwAAAAAATuOzc91A8QQAANSa+Ph49e3b1379xhtvVLj/+++/r+zsbEn+OVsvuuiicDYPAAAAAADH8dm5bqB4AgAAatUdd9xhb7/xxhvaunVrmfvl5uZq/Pjx9utbb71V0dHRYW8fAAAAAABO47Oz8yieAACAWnXllVeqd+/ekvxDi6+66ip9++23pfY5dOiQBg4cqB9//FGS/1/O3HfffbXeVgAAAAAAnMBnZ+d5LMuynG4EAACouwYMGKB9+/aV+l1aWpoOHDggSYqLi9Opp5563HGLFy9Wy5YtyzxnamqqunXrpv3790uSPB6PLr74YrVv314HDx7UsmXLlJubK0mKjo7W0qVLSw1ZBgAAAACgLuGzs3kongAAgAq1adNGu3btqvJxP//8s9q0aVPu+9u3b9eIESO0adOmcvdp0qSJpk+friuvvLLK1wcAAAAAoLbw2dk8TH4GAAAc0bFjR61fv16zZ8/WrFmztHXrVh04cECJiYlq166drr32Wo0ZM0aNGzd2uqkAAAAAADiCz87OYeQJAAAAAAAAAABAABaMBwAAAAAAAAAACEDxBAAAAAAAAAAAIADFEwAAANjVEycAABhISURBVAAAAAAAgAAUTwAAAAAAAAAAAAJQPAEAAAAAAAAAAAhA8QQAAAAAAAAAACAAxRMAAAAAAAAAAIAAFE8AAAAAAAAAAAACUDwBAAAAAAAAAAAIQPEEAAAAAAAAAAAgAMUTAAAAAAAAAACAABRPAAAAAAAAAAAAAlA8AQAAAAAAAAAACEDxBAAAAAAAAAAAIADFEwAAAAAAAAAAgAAUTwAAAAAAAAAAAAJQPAEAAAAAAAAAAAhA8QQAAAAAAAAAACAAxRMAAAAAAAAAAIAAFE8AAAAAAAAAAAACUDwBAAAAAAAAAAAIQPEEAAAAAAAAAAAgAMUTAAAAAAAAAACAABRPAAAAAAAAAAAAAlA8AQAAAABUSWpqquLj4+XxeHTXXXeVuc/DDz8sj8cjj8ejhx9+uHYb6JCtW7cqKipKHo9Hjz/+uNPNAQAAQDVQPAEAAAAQlD59+thfhlf156abbnK6+ahB9957r44ePaqEhAQ99NBDTjcnKPfee699P7Zp00aWZYV0nsOHDys2NtY+1xtvvGG/d9ZZZ2nUqFGSpCeeeEJ79uypiaYDAADAARRPAAAAAABB+/LLL/Xuu+9Kkv70pz+pSZMmDrcoOKNHj7a3d+3apVWrVoV0ntmzZ6uwsFCSFBcXpyFDhpR6/8EHH1RUVJRyc3M1fvz40BsMAAAAR0U73QAAAAAAkadr167q1q1b0Pt37949jK1BbXrwwQclSbGxsbr77rudbUwVdOrUSeeee66+/vprSdJbb72lPn36VPk8b731lr09ePBgxcfHl3r/1FNP1eDBgzVnzhzNmDFD999/v04//fRqtR0AAAC1j+IJAAAAgCobMGCAa9axwK+++uorLVu2TJI0ZMgQNWvWzOEWVc3o0aPt4sl7772nl19+WfXr1w/6+B07dmj9+vWlzleW22+/XXPmzFFJSYmeffZZvfrqq9VrOAAAAGod03YBAAAAAIIyceJEe3vs2LHONSREI0eO1AknnCBJysrK0oIFC6p0fOCok1NOOUW///3vy9yvT58+OvXUUyVJb7/9ttLT00NrMAAAABxD8QQAAAAAUKnMzEzNmzdPktS8eXNddNFFDreo6po0aaL+/fvbrwOLIZWxLEtvv/22/frGG2+Ux+Mpd/+hQ4dKkvLz8zVr1qwQWgsAAAAnUTwBAAAA4Jg2bdrI4/HI4/EoJSVFkpSamqqHHnpInTt3VmJiouLi4tSxY0fdeeed2rVrV5XOX1RUpBkzZui6665Tu3btlJCQoLi4OLVt21YjRozQ/PnzZVlWhedYuXKl3cbANTIWL16sESNG6LTTTlN8fLw8Hk+pkRnH5OXl6YUXXlCvXr3UuHFj1a9fX+3bt9eIESO0fPnyCnNxzDXXXGO/9+STTwYd/4QJE+zjrr322qCPK8v777+v/Px8SdIf/vAH1atXcx8nv/nmG7Vo0cJu69VXX628vLwy912+fLluu+02nXXWWUpKSlJsbKxatmypfv366aWXXir3uGMCp9r65JNPlJaWFlQbV61aVer+GzVqVIX7Dxo0yN4OLLoAAAAgMrDmCQAAAIA6Y8GCBbrpppuUmZlZ6vfff/+9vv/+e02bNk1z587VlVdeWem5Vq5cqbFjx2rnzp3HvZeSkqKUlBTNnj1b3bt317x589SqVaug2piZmakxY8Zo/vz5le67efNmDRo06Lg2/PTTT/rpp580e/ZsjRs3Ti+++GKF5/njH/+oDz74QJI0ffp0/eMf/6j02j6fT2+88Yb9urrTbC1atMjevuSSS6p1rkCrV6/WH/7wB7vPR40apWnTpik6uvTH1T179mjUqFFauXLlcefYv3+/9u/fr48//lhPPvmkZs+erd69e5d5vauuukpJSUk6fPiwSkpK9M477+ivf/1rpe0MHKXSo0cPdejQocL9f/e73+nEE09UZmamNmzYoF9++UVNmzat9DoAAACoGyieAAAAAKgTli1bpttuu00lJSU65ZRT1KNHDzVs2FA///yzVq5cqeLiYuXl5em6667Tli1b1LZt23LPNXfuXF1//fUqKiqSJNWvX1/du3dXmzZtVK9ePe3YsUNr165VcXGx1q1bpx49emjDhg2VLoBuWZZuuOEG/ec//5HH49H555+vM888U5ZlacuWLaWmcfrxxx/Vt29fHTx40P5dp06d1KVLF9WrV0+bNm3SN998o6lTpyohIaHC6/bv318nn3yy9uzZox9++EGrV6+udNqsTz75RLt375YktW7dWldccUWF+1fE5/OVGiVTXmGiqhYuXKjhw4fbI1r++te/6tlnnz1uOqxt27apb9++2r9/vyTJ4/HovPPO05lnnqn69etr7969Wr16tbKzs7Vv3z5ddtllWrJkSZlrksTExGjEiBF6+eWXJfmLIpUVT/Ly8uwpy6TyF4oPVK9ePfXs2VNLliyRZVlatmyZRo4cWelxAAAAqBsongAAAACoE/785z/L6/VqypQpuv7660t9gb5161b169dPe/fuVW5urh577DG9/vrrZZ5n69atGj16tIqKiuTxeHTPPffowQcfVGJiYqn9fvrpJ40ePVqff/659uzZozFjxmjx4sUVtnHNmjUqLi5Wp06dNHPmTHXq1KnU+wUFBZL8RZZbbrnFLpycdNJJmjlzpvr161dq/xUrVmjEiBF67rnn7IXMyxIVFaWbb75ZjzzyiCRp2rRplRZPpk2bZm+PGTOmWtNsbd++XVlZWZKkxo0bq2XLliGfK7B948aNU0lJiSTpySef1P3333/cfkePHtXgwYPtwkn//v314osvqn379qX2y8rK0v3336/JkyeroKBA119/vbZt26YTTzzxuHOOHj3aLp5888032rx583F9GWj+/PnKzs6WJMXGxmrYsGFBxdilSxctWbJEkvTll19SPAEAAIggFE8AAAAAVNnixYuVnp4e9P6PPvqokpKSKtynsLBQCxYsKHOExFlnnaWpU6fqqquukuQfWfLKK68cN7WTJN111132uhfPPfec/vKXv5R5vXbt2mnp0qXq1q2bvvvuOy1ZskTr16/XBRdcUG4bi4uL1bx5c61YsUKNGzc+7v3Y2FhJ0kcffaTVq1dL8o9AWLhwoXr16nXc/pdccok+/PBDde/eXYWFheVeV5JuueUWPfbYY/L5fJo3b55efPFFNWzYsMx9Dx06pIULF0ryj9K4+eabKzx3Zb799lt7+/TTT6/WuSTpqaeesqcei4qK0pQpU8qdVuz555/Xtm3bJPnXEZk3b16ZhaCGDRvq3//+t3Jzc/Xmm29q//79mjJliu67777j9u3atavOOOMM+7xvvfWWnnnmmXLbGzhl1zXXXHNcIa48Z5xxhr39zTffBHUMAAAA6gaKJwAAAACqbMOGDdqwYUPQ+997772VFk+uuuqqCqeWGjBggJo3b660tDTl5ORo27Ztx40W+Oabb7RixQpJ0rnnnqu77767wmvGxcXpoYce0ogRIyRJM2fOrLB4Iknjx48vs3ASKHDUx/Dhw8ssnBxz/vnna9SoUZo+fXqF5zz55JN1xRVXaPHixcrNzdWsWbM0bty4MvedMWOGXYy59NJL1aZNmwrPXZmff/7Z3m7dunXI57EsS/fcc49eeOEFSf5i06xZs0otrh6oqKhIL730kr3vlClTKh1B88QTT+itt96SZVmaOXNmmcUTyT/65NhIl3feeUdPPfWUoqKijttv//79WrZsWanjghW4jk5KSkrQxwEAAMB5oY/bBgAAAIAaNHTo0Arf93g86ty5s/26rC+jA6fdGjFixHFrZ5QlcPHzzz//vNL9g5myadWqVfb2DTfcUOn+wewjSbfeequ9HVig+a3A96q7ULwkHThwwN4+6aSTQjpHcXGxRo8ebRdOGjZsqKVLl5ZbOJGkjRs36pdffpEk9e3bN6gF11u2bKmOHTtKkrZs2WIvRP9bN9xwg12I2bdvX6kCSaCZM2faU4s1b978uKnXKhJYZEtLSwv6OAAAADiPkScAAAAAqmzChAl6+OGHa/ScFa05cUzgF/fH1uAItHbtWnv7008/1a5duyo9p2VZ9vaePXsq3Ldt27aVjqDZu3dvqUXiKxvJIvmnkfJ4PKXaUparrrpKLVu21L59+7Rhw4Yy1+r48ssvtWXLFkn+L+8HDhxY6fUrc/ToUXu7QYMGVT4+NzdX11xzjV3catq0qZYsWaLzzjuvwuMC+zM1NVV//vOfg7peRkaGJH/fpqamlrnuSatWrXTppZfq448/luQfrVNWYSRwyq7rr7++zNEp5QnMVX5+vnw+X7XWngEAAEDtoXgCAAAAoE4o6wvu3wpcVL2oqOi49/ft22dvH1uouyqOHDlS4ftNmjSp9ByBhZMGDRpUWmyRpISEBJ144on2l/7lObZw/D//+U9J/hEmEydOLLVP4KiTG2+8UTExMZVevyoqK/CU5YUXXlBxcbEk//Rjy5cv12mnnVbpcYH9+e2335ZaeyVYFfXp6NGj7eLJ/PnzlZOTo/j4ePv9r7/+Wps3by61f1WEkisAAADUDfyTFwAAAAB1QjBTbFWmvCmagnVseqby1K9fv9Jz5OTk2NtVGaUR+KV9RcaOHWuPXnj77bdLLTSfm5ur2bNnl9q3JsTFxdnbeXl5VT4+sOh1+PBh7d+/P6jjqtufkuyiTVkGDRqkhg0bSvLnbt68eaXeDxx1cu655wY1OipQYK68Xi+jTgAAACIIf3MDAAAAYIzAL/nff/99WZZV5Z/qCiyC5ObmBn1c4NRYFUlOTtZll10mSTp06JAWLFhgvzd37lx7OrMePXrozDPPDPr6FWnevLm9nZ6eXuXj7777bl199dWS/HEOGDBAq1evrvS4wP686667QurPPn36lHv++vXrl1prZ8aMGfZ2cXGxZs2aZb+u6qgTqfQopMAcAgAAoO6jeAIAAADAGM2aNbO3nVqgO3CR8Nzc3EqnApP8o1Uqm7IrUHkLx9f0QvHHtG3b1t5OTU2t8vExMTGaN2/ecQWUzz77rMLjaqM/A4siK1eutNe9+eijj3TgwAFJ/pEzI0eOrPK59+7da2+3adOmeg0FAABAraJ4AgAAAMAYgYuzf/HFF460oXXr1qUKKOvXr6/0mI0bN1Zp1Msf/vAHeyTDsmXLtHv3bu3YscMuRsTHx+u6666rYsvLd84559jb33//fUjnOFZAueqqqyT5Cyj9+/evsIAS2J9r1qwJyxoiF154odq1aydJ8vl8evvttyWVnrKrf//+Qa1381vbtm2ztzt37lzNlgIAAKA2UTwBAAAAYIxjX8xL/mm7jo0cqG0XX3yxvT1z5sxK9z/2hX2woqOjNWbMGEn+L/ynT5+u119/3X5/+PDhQa+hEozTTz9dJ554oiT/VGGBIyqqIiYmRu+9916pAkpFI1B69eqlxMRESf4RL4sWLQrpuhXxeDwaNWqU/XrGjBnKzMzUBx98YP8ulCm7JOmbb76xt7t16xZ6IwEAAFDrKJ4AAAAAMEa3bt3sNS7y8vJ04403llpQvSKFhYVBTbEVjJtvvtnefuedd7Ru3bpy9/3vf/+rN998s8rXGDt2rDwejyRp+vTppc5Rk1N2SVK9evV0ySWX2K8///zzkM91rIBy5ZVXSvJPWVZeASU2NlZ33323/fqOO+6oUuEm2OLZqFGj7Fxu27ZNf//735Wfny9JSkpKKlWUC5bP59OaNWsk+Qs0l156aZXPAQAAAOdQPAEAAABglBdffNEedfHJJ5/ooosuqnDqrB07duixxx5TmzZtamyqr/79++vCCy+U5P8S/eqrr9ayZcuO22/lypUaMGCASkpKFBMTU6VrtGvXTn379pUk7dq1y14TpFOnTqWmu6opx9YrkaQVK1ZU61wxMTF6//33gyqg3HPPPTrrrLMk+dcQOf/88zV37lz5fL4yz52enq5XXnlF5513np555pmg2tO2bVv17t3bfv3KK6/Y2yNGjKhy30jSV199pczMTElS165d1bRp0yqfAwAAAM6JdroBAAAAACLP4sWLlZ6eHvT+DRo00NNPPx3GFv3q7LPP1qxZszRs2DDl5uZq/fr16t69u9q3b6/zzjtPSUlJys/P1y+//KJvv/025CmoKuLxePT666+rR48eOnTokNLT03XZZZepc+fO6tKliyT/lE6bNm2SJN17772aO3eudu3aJck/0iMYt95663FFmVtuuaXG4gh07bXX6o477lB+fr4++OADTZ48Oeh2luVYAeXaa6/Vhx9+aBdQlixZYheeJP/6LR988IEuvfRS/fzzz0pLS9N1112nxo0bq3v37mrevLksy9Lhw4f13Xff6YcffrALK4GjZSozevRorV69uszfh2L+/Pn29vXXXx/SOQAAAOAciicAAAAAqmzDhg3asGFD0PufeOKJtVY8kfxrn6xZs0a33HKLvvrqK0nSzp07tXPnznKPadOmjVq3bl1jbTjttNO0fPlyDRo0SD///LMkf8EkcB0MyV8AeeKJJ/TOO+/Yv2vYsGFQ1xg4cKCaNm2qX375RZJ/mqsbb7yxhiIo7cQTT9SQIUP09ttvKy0tTatXr7anSAvVsSm8Bg8ebBdQ+vfvf1wBpV27dtq4caNuu+02zZs3T5ZlKT09Xf/5z3/KPXdiYqI6deoUdFuGDh2qO++8U7m5ufbvzjjjDHXt2jWk2ObNmydJ8nq9GjlyZEjnAAAAgHOYtgsAAACAkTp37qyNGzfqo48+0u23365zzjlHjRs3VnR0tOLi4tSmTRv169dP48eP1xdffKGffvrJHhVSk23YsmWLnnvuOXXv3l1JSUnyer1q27athg0bpmXLlmnq1Kk64YQT7PVW6tWrF3Tx5IQTTii1HsegQYOUlJRUozEEClx/5NVXX62Rc8bGxh63Bkr//v2PW1clKSlJc+bM0bfffqsHHnhAPXv2VIsWLRQTEyOv16vmzZvrwgsv1F133aUPPvhA+/fvr9KokYSEBA0aNKjU70IddbJq1Sr98MMPkvyjTho3bhzSeQAAAOAcj2VZltONAAAAAAA3++GHH9ShQwdJUseOHbVt27agjrMsS+3bt7dHtixbtsxeByVcLr/8cn3yySeKjY1VSkqKmjdvHtbrRaJhw4Zpzpw5ioqK0pYtW9SxY0enmwQAAIAqYuQJAAAAADjs3XfftberMk3Up59+ahdO2rVrV6U1PkL12GOPSZIKCgo0ceLEsF8v0uzcuVPvvfeeJOmGG26gcAIAABChKJ4AAAAAgIN+/vlnPfvss/brqqyP8X//93/29rhx4+TxeGq0bWW54IILNGzYMEnSv//9bx08eDDs14wkjz/+uEpKStSgQQM9+uijTjcHAAAAIaJ4AgAAAABhcvnll2vp0qUqLi4u8/0PP/xQF154oTIzMyVJXbp00eWXXx7UuT/44AMtXLhQkn+9jrFjx9ZMo4Pw7LPPKi4uTtnZ2fZIFEjfffed3nrrLUnSAw88oFNOOcXhFgEAACBUrHkCAAAAAGFybCRIo0aNdN555+nkk09WTEyM0tPT9eWXXyo1NdXeNyEhQV988YU6depU5rl+/PFHvfTSSyopKdGOHTv0ySef6NjHuUcffVQPPfRQ+AMCAAAAXILiCQAAAACESbDTaJ122mmaO3euOnfuXO4+K1eu1O9///vjft+rVy+tWLFCMTExIbcTAAAAQGnRTjcAAAAAAEy1ZcsWLViwQGvWrNGuXbuUnp6uw4cPy+v1qkmTJurWrZuuuuoqDR8+XFFRUUGfNyYmRm3bttWwYcN0//33UzgBAAAAahgjTwAAAAAAAAAAAAKwYDwAAAAAAAAAAEAAiicAAAAAAAAAAAABKJ4AAAAAAAAAAAAEoHgCAAAAAAAAAAAQgOIJAAAAAAAAAABAAIonAAAAAAAAAAAAASieAAAAAAAAAAAABKB4AgAAAAAAAAAAEIDiCQAAAAAAAAAAQACKJwAAAAAAAAAAAAEongAAAAAAAAAAAASgeAIAAAAAAAAAABCA4gkAAAAAAAAAAEAAiicAAAAAAAAAAAABKJ4AAAAAAAAAAAAEoHgCAAAAAAAAAAAQgOIJAAAAAAAAAABAAIonAAAAAAAAAAAAASieAAAAAAAAAAAABKB4AgAAAAAAAAAAEIDiCQAAAAAAAAAAQACKJwAAAAAAAAAAAAEongAAAAAAAAAAAASgeAIAAAAAAAAAABCA4gkAAAAAAAAAAEAAiicAAAAAAAAAAAABKJ4AAAAAAAAAAAAEoHgCAAAAAAAAAAAQgOIJAAAAAAAAAABAgP8fVrAZQU+eET8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.errorbar(energies, covspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label=\"3-30 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional Covariance\");" + ] + }, + { + "cell_type": "markdown", + "id": "5e8e484f", + "metadata": { + "id": "5e8e484f" + }, + "source": [ + "This should largely be equivalent to the RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "c85620f9", + "metadata": { + "id": "c85620f9", + "outputId": "f24abf3e-fc16-4b0a-91cd-9c3fa5e61be2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:13<00:00, 3.03it/s]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:13<00:00, 2.96it/s]\n" + ] + } + ], + "source": [ + "rmsspec_01_1 = RmsSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n", + "rmsspec_3_30 = RmsSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "658f5d53", + "metadata": { + "id": "658f5d53", + "outputId": "db261231-2c52-4840-ee73-1d17f8641d7c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjkAAAR9CAYAAAAEKyWvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3xTVf8H8E9G0zSdQBeWUTYKsgQFF0NQlOlABRmi4vYRB7gR3KgPio+IE0VluR6GgwdEivxkyZRZhhTaQmnpTtPs+/sj5JrQtE3aJDe5+bxfr77ITe843+89vQn33HOOQhAEAURERERERERERERERGFGKXUBiIiIiIiIiIiIiIiIGoKNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGFJLXUBiGpTVlaGDRs2iMstW7ZEdHS0hCUiIiIiIiIiIiIiovOZTCbk5uaKy/3790dSUlJQjs1GDgpZGzZswOjRo6UuBhERERERERERERH5YPny5Rg1alRQjsXhqoiIiIiIiIiIiIiIKCyxkYOIiIiIiIiIiIiIiMISh6uikNWyZUu35eXLl6N9+/YSlSb4DAYDsrKyMGDAAOh0OqmLExaYMwe550Eu8cklDiIiqfA6SuGE9TUy8DxLg3n3HXMWGTmQS4xyiSMSHD161G3qgfPv7QYSGzkoZJ0/yXj79u3RpUsXiUoTfGazGVFRUbjoooug0WikLk5YYM4c5J4HucQnlziIiKTC6yiFE9bXyMDzLA3m3XfMWWTkQC4xyiWOSHT+vd1AUgiCIATtaEQ+2L9/P7p27Sou79u3L6IaOYiIiIiIiIiIiIjCgZT3cjknB1GIqq6uxurVq1FdXS11UcIGc+Yg9zzIJT65xEFEJBVeRymcsL5GBp5naTDvvmPOIiMHcolRLnFQYLGRgyhE2e12lJWVwW63S12UsMGcOcg9D3KJTy5xEBFJhddRCiesr5GB51kazLvvmLPIyIFcYpRLHBRYHK6KQhaHqyIiIiIiIiIiIiIKfRyuiohqsFqtyMnJgdVqlbooYYM5c5B7HuQSn1ziICKSCq+jFE5YXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBFKL0ej0WLlwIvV4vdVHCBnPmIPc8yCU+ucRBRCQVXkcpnLC+RgaeZ2kw775jziIjB3KJUS5xUGBxuCoKWRyuioiIiIiIiIiIiCj0cbgqIiIiIiIiIiIiIiIiH7GRgyhElZeX44033kB5ebnURQkbzJmD3PMgl/jkEgcRkVR4HaVwwvoaGXiepcG8+445i4wcyCVGucRBgcVGDqIQpdPpMHr0aOh0OqmLEjaYMwe550Eu8cklDiIiqfA6SuGE9TUy8DxLg3n3HXMWGTmQS4xyiYMCi3NyUMgK5DhugiDAbreD1Z+IqG4KhQJKpRIKhULqohARERERERFRiJJyTg51UI5CFAKsVisqKytRUVEBg8EgdXHqZbfbUVFRgYSEBCiV7HTlDebMQe55kEt84RZHdHQ0YmNjERcXB51Ox0YPIpKcwWDAmjVrcO211/LJPgp5rK+RgedZGsy775izyMiBXGKUSxwUWGzkoIig1+uRl5fHnhtERA1kMplgMplQUlICrVaLFi1aICoqSupiEREREREREVGE43BVFLL81cWJDRxERP6nVqvRsmVLaLVaqYtCRERERERERBKTcriq0B8fg6gRrFZr2DZwcN4Q3zFnDnLPg1ziC/c4rFYrcnNzw7b8RBT+LBYLDh06BIvFInVRiOrF+hoZeJ6lwbz7jjmLjBzIJUa5xEGBxeGqSNYqKytr3ICLiYlB06ZNERMTE9JjylutVhQXF6NZs2ZQq/mn6g3mzEHueZBLfOEShyAIsFgsqKqqQnl5udsXS6vVCr1ej/j4eAlLSESRymAwYPny5XjggQeQmJgodXGI6sT6Ghl4nqXBvPuOOYuMHMglRrnEQYHF4aooZPmji9OJEyfcJhmPiYlB69atQ7pxg4goVFmtVpw8eRImk0l8Ly4uDi1btpSwVEREREREREQkNQ5XRRQAgiC4NXAAQNOmTdnAQUTUQGq1Gk2bNnV7r6qqikNWEREREREREZFk2MhBsmW322u8FxMTI0FJGsZqteLUqVOwWq1SFyVsMGcOcs+DXOIL1zh0Op3bsiAIbOQgIkmUlZVh1qxZKCsrk7ooRPVifY0MPM/SYN59x5xFRg7kEqNc4qDAYiMHyZanm27h1ItDpVKhWbNmUKlUUhclbDBnDnLPg1ziC9c4lMqaXx08NSoTEQVaXFwcJk2ahLi4OKmLQlQv1tfIwPMsDebdd8xZZORALjHKJQ4KrNCd6ZQowikUCkRHR0tdjLDCnDnIPQ9yiU8ucRARSUWtViMzM1PqYhB5hfU1MvA8S4N59x1zFhk5kEuMcomDAos9OYhClM1mQ0lJCWw2m9RFCRvMmYPc8yCX+OQSBxGRVKqqqrB06VJUVVVJXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGCxkYMoRCkUCqhUqrAaYktqzJmD3PMgl/jkEgcRkVSUSiWSkpI8DqNHFGpYXyMDz7M0mHffMWeRkQO5xCiXOCiwFAJnC6UQtX//fnTt2lVc3rdvH7p06eL19larFUeOHHF7r0OHDlCrOUobEVFD8dpKREREREREROdr7L3cxmATGFEIKa+24J21h/HO2sOYsyYbb/68H3PWZOOdtYdRXm2Runghz263w2AwRPwkyHLPg1zik0scRERSMZvN2L17N8xms9RFIaoX62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iEKQIAiw2u0wVBthtdvBDlfeEQQBlZWVEZ8vuedBLvHJJQ4iIqkYjUZkZWXBaDRKXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGBxuCoKWZE2XFVRpQm7Tpbiux15qDJZYbX/86epVipw/cXN0SY5Fp3S45EcFy1hSYkokoXbtZWIiIiIiIiIAk/K4ap4R4JIYn8X6bH9RCnyS6thstpchqUSIAiAQgFY7UBeqQFFlSZsO16CjCYx6JPZFG2SYyUte7BVVFTgl19+wdq1a7F9+3YUFRXh7Nmz0Gg0aNKkCTp27IjevXtj5MiRuPzyy6UurmQEQYAgCFAoFDAajdi6dSs2b96MvXv3Ijs7G7m5uaioqIAgCEhMTET79u3Rr18/jB8/Hj179vR7eex2O/bs2YM//vgDe/bswYEDB3DixAmUlJTAYrEgPj4eGRkZ6N27N8aMGYOhQ4fWOaGYa3zOSbvPnj2LL774Aj/88AOOHz+O0tJSpKWloUuXLhg7dixuv/12REVF+S2mnJwctGnTRlw+fvw4MjMzvd4+MzMTJ06cAAAsWLAAkydP9lvZiIgihSAIMJlMiI6OFj8PiEIV62tk4HmWBvPuO+YsMnIglxjlEgcFFoerIpJItdmGX/aexordp5BfWg1BEFBSZUZplRlnKozIK63GyWI98kqrcabCiJyzVSipMkEQBOSXVmP5rnz8svc0qs02qUMJOIPBgNdeew2ZmZm4/fbb8dlnn2HPnj04deoUzGYz9Ho9cnNzsW7dOsyePRtXXHEFOnXqhCVLlkTkUEA2mw0FBQWw2WyYN28eBg4ciGeffRZLlizBzp07UVRUBJPJBLPZjKKiImzevBlz5sxBr169cPvtt6OkpMSv5dm5cyd69eqFRx55BJ9++ik2bdqE/Px8VFdXw2q1orS0FPv27cMXX3yBYcOGoU+fPti7d69X8QHAjz/+iIsuugjTpk3D5s2bUVBQAJPJhJMnT+KXX37BxIkT0bdvXxw+fNivcfkL5+QgImqY8vJyzJ49G+Xl5VIXhaherK+RgedZGsy775izyMiBXGKUSxwUWOzJQSSBokoTlu/Kh95khSAIOF1uREG5EQaLFVVmq7ie82l2i82OIr0JpQYLNCol0hO1aJ6oxaGCSuSVVmN0zwykxMtzCKuTJ09ixIgR+Ouvv9zeb9WqFbp164aUlBTxpveePXtw5swZAMDhw4cxbtw45ObmYvr06VIUXTIqlQopKSlQqVRu7+t0Olx44YVo164dkpKSYLVakZeXhy1btqCiogIAsGzZMhw4cAD/93//h4SEhICUrVOnTujYsSOaNWsGlUqFwsJC/Pnnn8jPzwfgaBS5+uqr8dtvv3nsWeIa35o1a3DjjTfCarWKMV5zzTVISUnBsWPH8Pvvv0MQBOzcuRPXXHMNtm7digsuuMDvcTVGXb1WiIiodvHx8bjvvvsQHx8vdVGI6sX6Ghl4nqXBvPuOOYuMHMglRrnEQYHFRg6iICuqNOG7HXkwWmyoNltxtKgKVSbHDdoolRJx0VGIVisRpXIMxSMIAiw2AekJWpRXW2G22XGyxIDiKjPapziGq/puRx5uuaSF7Bo6cnJy0K9fPxQUFAAAFAoFxo4di2effdbjmH6CIGD79u34z3/+g0WLFsFut8NgMAS72JJTKBTi0EwdOnTAq6++iuuuuw7du3f3OG+C0WjEu+++i+eeew52ux179+7Fs88+i/fff98v5UlMTMQTTzyB66+/Hn379kVsbM1h1gRBwMqVK3H33XejuLgYZWVlmDRpEvbs2VOjO6ozvuLiYtx2221iA8c111yDpUuXIjk5WVx3z549GDlyJE6ePIm8vDxMmDAB69at80tc/sLutkREDaNSqZCeni51MYi8wvoaGXiepcG8+445i4wcyCVGucRBgcXHR4mCqNpsw/Jd+TBabKg0WrDvVAWqTFaolQq0TYlFtxaJSNJFIUajgkqpgN1mhUqpQIxGhZZNdejZKgltU2KhVipQZbJi36kKVBotMFoc+5XT0FVmsxljxowRGzi0Wi1++OEHLFq0qNZJi+x2O9q0aYPPP/8ce/bscZvsKJLYbDacPXsWNpsNo0aNwrPPPotLLrmk1omhtVotnn76abz44ovie19++SWMRqNfytOhQwe8/fbbuOaaazw2cACOG/2jRo3CDz/8IL63d+9ebNq0qca6zvhef/11lJWVAQDatWuHlStXujVwAED37t2xatUqsdHnt99+w5o1a/wSl79wuCoioobR6/X44osvoNfrpS4KUb1YXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBFERZ2YXQm6yoNltxqKASNruAeK0a3VokITVeC+V5T3QrlectKxRIjdeiW4skxGvVsNkFHCqoRLXZCr3JiqzswmCGE1Bvvvkmtm/fLi4vXLgQo0ePrnMbhUIhTkTVtWtXbNmyBUOGDAlwSUOPax58cdddd4mvKysrcfToUX8XrV5XX3012rVrJy7v2rWrxjoKhQJKpRKfffaZ+N5LL70EnU7ncZ/dunXDpEmTxOV58+b5scRERCQVtVqNzMzMWhvxiUIJ62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iILk7yI9DhVUQhAEHC2qEhs4OqcnQKOu+aeoUCigUqk93qjWqJXonJ4gNnQcLaqCIDgaPP4uCv+W7erqarz33nvi8k033YRbb7213u2USiXi4+PFOQ5iY2NxxRVX1LnNiRMnMGPGDPTt2xdpaWnQaDRIS0tD37598eKLLyI3N7fWbQsLCxEVFXXuXKnEOSW80alTJygUjiHJvv32W6+388b5efBWSkqK23JlZaU/i9Wgcngqg1KpxI4dO8ReHPHx8bj55pvr3Oedd94pvl6zZg2qqqr8UlZ/8HSe7rzzTrF++PLjGicRkdxptVoMGDAAWq1W6qIQ1Yv1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxEQbL9RCkA4HS5URyiqkNqPFRKz0/bC4IAm80GQRA8/l7lsn2VyYqCCqPbccLZd999h6KiInH58ccf92o7u90OvV7v9fA/r776Kjp37oyXX34ZW7duRWFhISwWCwoLC7F161a89NJL6NixI2bPnu1x+9TUVLGniN1ux+LFi7067rZt23D48GEAjvkqRowY4dV23vI1D04HDhxwW87MzPRjqbxjtVpx5MiROstgt9vxv//9T1zu168foqPrno/m0ksvFXt6GI1GbN682T8F9gMOV0VE1DAmkwlbtmyByWSSuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMBiPx+iICiqNCG/tBqCIKCg3NEY0aqZzmMPDlc2m63Op/E1aiVaN9Ph76IqnC4zIj1Bi/zSapzVm5AcF76TkP/222/i61atWtXbG8NJEAQYDAbExMTUu+7DDz/sNmxRXFwcBg4ciPT0dBQUFGD9+vXQ6/UwGo14+umnUVBQgHfeeafGfsaPH49ffvkFALBo0SJMmzat3mMvWrRIfH3LLbf4/WkEX/LgZDab8fTTT4vLl19+OZo3b+7XcnnjlVdeQXFxMQBHT5yhQ4fWWEcQBLcGmV69etW736ioKFx88cXYunUrAODgwYMYPHiwn0rtf4MHD0ZcXFy96wmCgM8//xzV1dUAOIk5EUUWs9mM3bt3o0uXLvU2dhNJjfU1MvA8S4N59x1zFhk5kEuMcomDAouNHEQBVF5tAQDsOlkKk9WGkiozDBYrolRKxGvVMFndJwo3We2wujzVrVSrYRMEQBBgsnp+2jteq4ZCARgsjt4cTWM12HmiFJe1bQYASIyJClB0gbNx40bx9WWXXeb1diqVCqmpqfWu980337g1cNx5552YO3cuEhISxPcqKirw0EMP4euvvwYAvPvuu7jqqqtw0003ue1r9OjRiIuLg16vx549e7B///5aJ0YHHA1XS5cuFZfHjx/vdXze8jYPZrMZp0+fxsaNG/Hvf/8bu3fvBuAY/uk///mP38vlic1mQ3FxMXbs2IGPP/4Yy5cvB+C4WT9nzhw0adKkxjYqlQo5OTnicuvWrb06VqtWrcRGjkOHDjW67P7iqSFz/PjxXtWN5557Tmzg0Ol0+Ne//uX38hERhar4+Hjcf//9UheDyCusr5GB51kazLvvmLPIyIFcYpRLHBRYbOQgCqAF/3ccAHDwdAXKqy0orTKjymxFXHQU9uSW11jfarOLw04BgCAA4oPZQhnUKs+9OsoMFuhNFlRWW9EkVoO/i6qw/1QFAOCxIR39G1QQnDhxQnxdV4PB+ZxDfKlUqlqfaLfb7W49FsaMGYMFCxbUWD8hIQFffvklKisrsWLFCgDA9OnTMXr0aLeb0jqdDjfddBO+/PJLAMDXX3+N119/vdYyrl27FoWFjgniW7Vqhf79+3sdn7fqyoNarYbNZqtlS6Bjx474/vvv0bVrV7+Xy2nw4MFYt25drb9PSkrCRx99VOs8LIIgiL09ACAtLc2r46anp4uvS0pKvCytd1588UXEx8d7vb7r8Wsbkq4+ixYtwmuvvQbA0Sj01VdfoWfPng3aFxFROLLb7aioqEBCQoLP81ARBRvra2TgeZYG8+475iwyciCXGOUSBwUWawZRgAmCgCqTFQBgtjl6Y0TXM0yVYzucm5Oj/mM49+fcf5XJ2uAbp1KrqKiA1WoVl5OSkrze1mazobCwsM6b+GvWrMHx447GJ41Gg/fee6/WBhGFQoF58+YhKsrRG+bYsWNYu3ZtjfVcn7hfvHhxnbl39gwBgHHjxgVkeCFv8nA+lUqFZ599Fvv37w9oA0d9Ro0ahcOHD9c50bzNZnObkNzbYblc19Pr9Q0vpAdffvkl5s2b5/WPa/kbMifHli1bcPfdd4vLL7/8co1eRkREcldRUYG5c+eioqJC6qIQ1Yv1NTLwPEuDefcdcxYZOZBLjHKJgwKLPTmIAswmCLDaHTe9rTbHv1Gq+m9sKxQ49yR+/cdw7s+5f6tdgE0QoA7D8fldb/4C8GpeAifnME0qlarWdVzn+7jhhhvcnu73JCMjA0OHDsWqVasAAOvXr8d1113nts4111yD5s2b4/Tp0zh58iQ2btyIq6++usa+qqqqxOGYgMAMVQXUnYeHHnpIbPyoqqpCbm4utm3bhsrKSrz22mv45ptv8J///MfjXBj+Mnr0aHTu3BmAY8isM2fO4M8//8Tp06exYsUKbNiwAc8//zwef/xxj41AKpXKbcIxjUbj1XFdx+50DvEUCnx9EiU3NxejR48Wc3DHHXfgueeeC0TRiIhCWkJCAh599FG34SaJQhXra2TgeZYG8+475iwyciCXGOUSBwUWGzmIAsz1oX4BjgVvn973to3CuT/n/s8/bjg5f8gfX564VygUUKvrvqzt2rVLfH355Zd7td8rrrhCbOTYuXNnjd8rlUqMHTsWc+bMAeDoreGpkWP58uWoqqoCAPTs2dOnobh8UVce5s6dW+O9qqoqzJs3DzNmzMDRo0cxbNgwLFiwAJMmTQpI+R5++OEa79ntdixfvhyPPPIITp06hSeffBIHDx7Ep59+WmNdhUIBrVYLg8EAwNFQ4g3XhhFfJmX3xvHjx5GZmen1+pmZmeKwbL705qmqqsLIkSNx5swZAEC/fv3w2Wef+VRWIiK5UCqVPvX4JJIS62tk4HmWBvPuO+YsMnIglxjlEgcFFoerIgow1/uXCpxrjPCiBcKX4aqc+3Pu//zjhpOEhAS3G/RlZWVeb+vNME1FRUXia28nrHa9eX327FmP67j2yvjuu+883nhftGiRx/X9zdfhqmJjYzF9+nQsWbIEgKPB4f7778fff/9dY90XX3wRDz/8cK0/L774YoPKrFQqcdNNN2Hjxo3il5fPPvtMLNP58el0OnHZ214Zruv50kMo0LwdrkoQBIwfP16cIL5Vq1b473//69ZDhYgoklRWVuLDDz+s0QuUKBSxvkYGnmdpMO++Y84iIwdyiTFYceTr83Hxwos9/uTr8wN6bGo89uQgCjCVQgG1UgGrXYBapYDFJsBiE6CufUQlkULhXTuk5dwwVepzw1aplQqowrWVA47Gh2PHjgEADhw44PV2CoUCOp2uzifjXXuGxMbGerVf1/Vq+1B19szYv38/SktL8dNPP+HGG28Uf19YWCjO56FSqTBu3Divjt0Q3uTBkxtvvBHXXHMN1q1bB6PRiA8++ABvv/222zoLFy50mxj+fK1bt8asWbMaVG4AaNu2LZ544gm88MILAIB///vfGDt2rNs6CoUCzZo1ExucnL0a6lNQUCC+btq0aYPLKJVnn31WHO4sLi4Oq1at8nrSdSIiOdJoNOjRo4fXwxYSSYn1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxEAXTXlW0AAKkJp5BXakDO2SoU6U1IT9CiZVNdjfVNVjuQV+ZxX91aJNU6YXluiQFRagVS4qKRmRyLFk10GNH9Ar/FEWxXXnml2MixdetWr7dTKpX1PqHv+nvn0FH1cV3v/OG0XI0fPx7PPPMMAEevDddGjmXLlokTql9zzTX1zgXSGN7koTZDhgzBunXrAAB//PGHP4vlUxmcjRy7du1CdXW12/BSSqUSF154IbKzswGgzkYXVydPnhRfO+cECQXezMnx9ddf44033hDXX7RoEbp16xboohERhbTo6Gj07dtX6mIQeYX1NTLwPEuDefcdcxYZOZBLjHKJgwKLw1URBVBiTBQSY6LQJjkW0WoVUuKjoVYqUV5tRZRKiWi16rwfJdRKx49KoYBCsJ/rCaJEtNrT+ipEqRz7UyuVSImPRrRahTbJseKxw9GgQYPE1ydOnMCmTZu82s5ut6OysrLO4X9SUlLE1643veuSk5Mjvk5OTq51vTvuuEPsPfHjjz+ivLxc/N3XX38tvp4wYYJXx20ob/JQmyZNmoivi4uLa/w+JycHgiDU+uOaq4ZyLYPdbkdpaanb7+12O9q1aycuu86zUhur1Yq9e/eKyxdeeGGjy+kv9Z2nzZs345577hGXX3/9dYwcOTLQxSIiCnlGoxFZWVkwGo1SF4WoXqyvkYHnWRrMu++Ys8jIgVxilEscFFhs5CAKgo5pjqf/m+g00KiUsNjsOKs31bMVYLfXPyHHWb0JFpsdGpUSTXSOrnud0mvvbRAOxowZ49aY4JzQuz6CIMBkMtU550nPnj3F1942nriu16tXr1rXa9mypTjhuMlkwnfffQcAOHr0KLZt2wbAMfSVaw+PQPAmD7U5ffq0+FqqIZ1cy+CpHIIguD3FsXnz5nonH//zzz/Ficq1Wi369evnp9IG1smTJ3HjjTeKk6bfeeedmD59usSlIiIKDVarFTk5OWJPSaJQxvoaGXiepcG8+445i4wcyCVGucRBgcVGDqIgSImPRkaTGCgUCqQnagEAJ4sNMFtrf4JboVAgKiqqznkVzFY7ThQ7btw2T9JCoVAgo0kMkuPCeyLimJgY/Otf/xKXv//+e3z//ff1bqdSqZCcnAyVyjHhSVVVVY2GDNdeIj///DMKCwvr3OepU6fwyy+/eNzeE9cJxZ29N1x7cYwePdrruUAa6vw8+OLHH38UX0vV28G1DJmZmdBqtW6/V6lUGDVqFBITEwEAFRUV+OGHH+rc5xdffCG+HjJkSMDPgS9qG65Kr9dj5MiR4pwjV111FT766KNgFo2IKKTFxcXhzjvvbPAQjUTBxPoaGXiepcG8+445i4wcyCVGucRBgcVGDqIg6d3aMQRP80QtYqPVsNoFHCmshK3W3hoCBMEOwPPvbS7bx0arkZ7guBHcJzP8JlT2ZPr06W69JiZMmIBVq1bVuY0gCLBYLBAEAfv27UPfvn2xZs0at3WuvfZatGnjmCvFZDJh6tSpde7vkUcegcViAQC0a9cOgwcPrrMMY8aMEW/K//7778jLy8OiRYvc4gg0Zx70er1P3Tnnz5+P7du3i8s333yzX8rjadir2uzcuRPvv/9+nWVw9lBxHcJpxowZqK6u9rjPffv2uTVyPPTQQ16XJxg89bix2+0YP3489uzZAwBo06YNfvjhB060RkTkwmazoaCgADabTeqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCi40cREHSNiUOndPjoVAo0D4lFiqlApVGKw4VVHjs0SEIgNlsgacRh8xWOw4VVKDSaIVK6difQqFA5/R4tEkOnSfUGyM6OhrffvstUlNTAQDV1dUYPXo0Jk6ciIMHD3rcxmq1Yu3atZg4cSK6d++Offv21VhHqVSKEzgDwJIlSzBlyhTo9Xq39SorKzF58mS3HgJvvvlmvZNEJyYmYvjw4QAcN6qnTp2Ko0ePAgDS09PrbCSZOXMmFAqF+NNQNpsNRUVFOHToENq3b4+33noLubm5ta5fUFCAxx57zO3m/1VXXSXG0VjdunXDY489hp07d9a6jsFgwAcffIBBgwaJDTNNmjTBU089VWNdZ3zTpk1DUlISAODIkSMYNWpUjQaVv/76CyNGjBCHsxo4cCCuu+46v8TlL57m5Hj22WexYsUKAEBCQgJWrVpV53wwRESRqLKyEh999BEqKyulLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLAUQkMGbScKgv3796Nr167i8r59+9ClSxevt7darThy5Ijbex06dIBarfZbGX1Vbbbh6y0noDdZUWm04FCBoyeGSqlA62Y6xGvV2JPrnKxagCAAjnvdCvRslYQolRJn9SacKDaI23VOj0e8Ngpx0WqM79saMRrfhygKZTk5ORgxYkSNBovMzEx069YNycnJYqv+7t27xaF9nN5++2088cQTNfb78MMPY968eeJyfHw8Bg4ciLS0NBQWFmLdunVuDR9Tp07FO++841WZV6xYgdGjR9d4/7HHHqtzfpGZM2di1qxZ4nJDL8/OScD37Nnj1hsmMzMTXbt2RXJyMqKjo1FRUYFDhw7hr7/+cnsiolOnTli/fj2aN2/eoOOfLykpSZyEPTk5Gd27d0fz5s0RFxcHg8GAnJwc7NixA1VVVeI2cXFx+Pnnn3HVVVfVGp9CocCaNWswfPhwcWxOnU6HwYMHIyUlBceOHcOGDRvEPGZkZGDbtm244IILGh1TTk6O2CMIAI4fP47MzEyvt8/MzMSJEycAAAsWLMDkyZPdfu/ayHXJJZe4zUFSl759+7oNmRYIoXhtJaLI5JyDKjo6ulEPBxAFA+trZOB5lgbz7jvmLDJyIJcYgxVHvj4fQ78f6vF3q29ejYy4jIAdWy4aey+3MXhHgiiIYjQqjO6Zge925AEAul6QgKNFVagyWfF3URUUCqDMYEG0WokoleNpfsEuwGKzI7fEgPJqKyw2x1PfsdFqtE+JRYxGDW2UY79ya+AAHDeDN2/ejHfeeQdz5sxBWVkZAMdN5pycnFq36969O2bOnOmxsQEA3n//faSnp+OVV16ByWRCZWUlVq5cWWM9rVaLGTNm4JlnnvG6zDfccAOaNm2KkpISt/cDffPZydkTRKPRQKlUij0F6suZUqnE3XffjdmzZ6NJkyZ+K0909D9zxJw9exbr1q2rc/0BAwZg/vz56Ny5s8ffu/Z0ue666/DDDz/grrvuwtmzZ2EwGDyex549e2LJkiV+aeDwt/q+pO3YsQM7duzwal96vT5o9YyISGoKhaLGvE1EoYr1NTLwPEuDefcdcxYZOZBLjHKJgwKLw1URBVlKfDRuuaQF4qLViNGo0fWCBLRupoNGpYTFZofeZEFxlQmny43IK9HjdLkRxVUmFFQYYbHZoVEp0bqZDl0vSECMRo24aDVuuaQFUuLDe7LxusTFxeGFF15ATk4OFi9ejMmTJ6Nbt25IT0+HRqNBXFwcWrVqhSFDhuCxxx7Dtm3bsHv37lobOJyef/55ZGdn4/nnn0efPn2QnJwMtVqN5ORkXHrppXjhhReQnZ3tUwMHAERFReG2225ze+/CCy9061URSDabDWfOnEHnzp1RUFCARYsW4aGHHsJVV12FjIwMaLVaqFQqJCUloV27dhg9ejTeeustnDx5Eh9//LFfGzgAR+PKzz//jGeeeQbXXnst2rZti7i4OCiVSsTFxaFFixYYPHgwnnnmGezatQvr16+vtYHDNT5n75MRI0bgwIEDmD17Nvr27YvU1FRoNBq0bNkSQ4cOxcKFC7F161Z06tTJr3H5i6fhqoiIqH4VFRV49913UVFRIXVRiOrF+hoZeJ6lwbz7jjmLjBzIJUa5xEGBxeGqKGTJcbgqV9VmG7KyC3GowDGmoCAIKKgwYvfJMphtdlhtdtgFAUqFAmqVEp3T45ESH40mOo345Hfn9HgM6JQqyx4cDWG322E0GqHVauudO0PO5J4HucQXrnGE+rWViCKH2WzGgQMHcNFFF0Gj0UhdHKI6sb5GBp5naTDvvmPOIiMHcokxWHFwuKrG43BVRBEoRqPC9Rc3R6f0eGw/UYr80mo0jdWgSaznC3Zmciyi1Y7GjIwmMeiT2VQ2k4z7i1KphE6nk7oYkpN7HuQSn1ziICKSikajQY8ePaQuBpFXWF8jA8+zNJh33zFnkZEDucQolzgosMLn0VEimWqbEodbe7fEhH6t0atVEyTGREGtVEAQBFitVgiCALVSgRZNdLi0TVNM6Ncat/ZuyQYOD+x2O8rLyyN++B+550Eu8cklDiIiqVRXV2P16tWorq6WuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMBiTw6iEJEcF43L2jbD/lMVjgYOux3GaiO0MVqolUqM6H4BEmOipC5mSBMEATabDZE+Cp/c8yCX+OQSBxGRVOx2O8rKythYTGGB9TUy8DxLg3n3HXMWGTmQS4xyiYMCi3NyUMiS+5wcnpRXW7Dg/457/N1dV7ZhIwcRSS4cr61EREREREREdeGcHI3HOTmICACQGBOFx4Z0BOB4yttsNkOj+Weicaobc+Yg9zzIJT65xEFEJBWr1Yq8vDy0aNGCDa0U8lhfIwPPszSYd98xZ5GRA7nEKJc4KLA4JwdRiLLZbCguLobNZpO6KGGDOXOQex7kEp9c4iAikoper8fChQuh1+ulLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLA4XBWFrEgcroqIKNTx2kpERERERERyw+GqGk/K4arYk4OIiIiIiIiIiIiIiMISGzmIQpTVasXp06dhtVqlLkrYYM4c5J4HucQnlziIiKRSXl6ON954A+Xl5VIXhaherK+RgedZGsy775izyMiBXGKUSxwUWGzkIApRSqUSSUlJUCr5Z+ot5sxB7nmQS3xyiYOISCo6nQ6jR4+GTqeTuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMDiANpEIUqpVCImJkbqYoQV5sxB7nmQS3xyiYOISCpRUVHo3Lmz1MUg8grra2TgeZYG8+475iwyciCXGOUSBwUWHx8lClE2mw2lpaWw2WxSFyVsMGcOcs+DXOKTSxxERFIxGAxYvnw5DAaD1EUhqhfra2TgeZYG8+475iwyciCXGOUSBwUWGzmIiIiIiIiIiIiIiCgsKQRBEKQuBJEn+/fvR9euXcXlffv2oUuXLl5vb7VaceTIEbf3OnToALWao7QRETUUr61EREREREQkN/n6fAz9fqjH362+eTUy4jKCXKLw09h7uY3BnhxEIcput6O6uhp2u13qooQN5sxB7nmQS3xyiYOISCoWiwWHDh2CxWKRuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdRiLLb7SgrK+MNUB8wZw5yz4Nc4pNLHEREUuH4zBROWF8jA8+zNJh33zFnkZEDucQolzgosDhcFYUsDldFRBR6eG0lIiIiIiIiueFwVY3H4aqIiIiIiIiIiIiIiIh8xEYOohBltVpx6tQpWK1WqYsSNpgzB7nnQS7xySUOIiKplJWVYdasWSgrK5O6KET1Yn2NDDzP0mDefcecRUYO5BKjXOKgwGIjB1GIUqlUaNasGVQqldRFCRvMmYPc8yCX+OQSBxGRVOLi4jBp0iTExcVJXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGBxAG2iUFJdBmyZDwBQAIh2/V3fB4CYpOCXKYwoFApER0fXv6LMyT0PcolPLnEQEUlFrVYjMzNT6mIQeYX1NTLwPEuDefcdcxYZOZBLjHKJgwKLPTmIQpRdsKO6uhp2wS51UcKGzWZDSUkJbDab1EWRlNzzIJf45BIHEZFUqqqqsHTpUlRVVUldFKJ6sb5GBp5naTDvvmPOIiMHcolRLnFQYLGRgygUCQIUdhsUghUKuw0QBKlLFBYUCgVUKhUUCoXURZGU3PMgl/jkEgcRkVSUSiWSkpKgVPK/NBT6WF8jA8+zNJh33zFnkZEDucQolzgosDhcFVGo0BcCuduAgr2AuQoKuwVa5++UUUB8GtCsHZDaBYhLkbKkIUupVCIxMVHqYkhO7nmQS3xyiYOISCoxMTEYOnSo1MUg8grra2TgeZYG8+475iwyciCXGOUSBwUWm8CIpHb2KLDra+DPz4C8PwFjGWC3QBAAm83u6MRhtwBlJ4ETm4E/P3WsX3xM6pIHXUVFBZYtW4Z77rkHPXr0QEZGBqKjoxEfH49WrVph8ODBePLJJ/HHH39IXVRJ2e12GAwG2O01hzpbt24dJk6ciI4dOyI2NhZNmzZFt27dMG3aNBw6dChgZTp+/Di++eYbTJ8+HQMHDkRCQgIUCoX444u64qvL2bNnsXr1arz88ssYOXIkLrjgArcyZGVl+bQ/b33xxRfiMVzHEfUmjpycHLcy5uTkBKSMREThyGw2Y/fu3TCbzVIXhaherK+RgedZGsy775izyMiBXGKUSxwUWOzJQSQVswE4uhY4c8CxLAiAoRgwlAA2M2CzQLBZAZUaUEU5GjXi0gBdM6As1/GTdhHQfgig0UkbS4AZDAa8++67ePvtt1FaWlrj92azGXq9Hrm5uVi3bh3+/e9/o2PHjpg5cyZuv/32iBsOSBAEVFZWuk1qXVFRgXvvvRfLli1zW9dgMKC0tBR79+7F3LlzMWvWLDzzzDN+K8vp06dx8cUXo7i42G/79BRffS6//HJs3rzZb2Xwh4bEQURE/zAajcjKykLbtm2h0WikLg5RnVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEEkBX0h8NcywKR3NG5U5Dt+LAbArAcAKACoVSoAgqPRo6oQqC4BVBogIcPxc+aAo4dHt9uAuFRJQwqUkydPYsSIEfjrr7/c3m/VqhW6deuGlJQU2Gw2FBQUYM+ePThz5gwA4PDhwxg3bhxyc3Mxffp0KYouGZVKhbS0NHHZYrHgxhtvxG+//Sa+17VrV/Tq1QtGoxEbN27E6dOnYbFY8Oyzz8JisWDGjBl+KYvJZPJrAwdQMz5vnDp1yq9l8IeGxEFERP9ISEjA1KlTpS4GkVdYXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBFGz6QmD3IsBidDRqFGWLDRtQaYDoeEAdDUEZBceIcnYo7BYg/gLHUFY2M1B6HKgqAlI6ObbbvQjocYfsGjpycnLQr18/FBQUAHBM1Dx27Fg8++yz6NKlS4317XY7/vzzT8ybNw+LFi0ShwOKNIIgQBAEcYijl19+WWzg0Gq1+Pzzz3H77beL65vNZjz//PN46623AAAzZ85E//790b9/f7+VKS4uDr169cKll16KPn36wGg0YtKkSQ3a1/nxeSsqKgpdu3ZFnz59xJ8ePXo0qAz+0NA4iIjIQRAEmEwmREdH8zpKIY/1NTLwPEuDefcdcxYZOZBLjHKJgwKLc3IQBZPZ4OjBYTECpgrg9B5HA4cyCmjWAbigJxDTBIjSAUo1zFYboFQ7lpu0Blr0caynjHJsd3qPYz8Wo2O/Zvnc0DebzRgzZozYwKHVavHDDz9g0aJFHhs4AEcjR8uWLbFgwQLs2bMHXbt2DWaRQ4azZ4vNZkNhYSHmzJkj/u7dd991a+AAAI1GgzfffBO33XYbAMcXCH8NWZWWloZ9+/ahvLwcGzZswFtvvYVbb70VrVq1avA+XePz1sqVK1FRUYGdO3fio48+wj333IPu3bs3uAz+0JA4iIjoH+Xl5Zg9ezbKy8ulLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEEUTEfXOoaoshiAM/sBuxWITnA0bsSnAwqXP0mFAlGaKMC1lVqhdKx3QU/HdnarYz8Wg2O/R9cGP6YAefPNN7F9+3ZxeeHChRg9enSd26hUKqSkpEClUqFr167YsmULhgwZEuCShh7XPCxcuBBVVVUAgI4dO+Lee++tdbs333wTSqWjDm7evBm7du1qdFliYmLQpUsXcb/+4Bqft7p16watVuu3MvhDQ+IgIqJ/xMfH47777kN8fLzURSGqF+trZOB5lgbz7jvmLDJyIJcY5RIHBRYbOYiC5exRxxwaguAYosrZwJHWFVDXnHhYAUCpUMBjRzx1tGM7Z0NHUbZjv2cOOI4T5qqrq/Hee++JyzfddBNuvfXWerdTKBSIiooSuy/GxsbiiiuuqHObEydOYMaMGejbty/S0tKg0WiQlpaGvn374sUXX0Rubm6t2xYWForHU6lUyM/P9zJCoFOnTuIwRd9++63X23nDNQ/Lly8X37/zzjvr7NrZqlUrDBo0SFz+73//69dy+cv55zlc+SuOzMxMsS758vPFF1/4JxAiIomoVCqkp6ezsZjCAutrZOB5lgbz7jvmLDJyIJcY5RIHBRYbOYiCJXeL49+K/H+GqErpDCg9X6QFQYDFYoEgCJ73p1Sd217t2F9Fvvtxwth3332HoqIicfnxxx/3ajubzYazZ896PfzPq6++is6dO+Pll1/G1q1bUVhYCIvFgsLCQmzduhUvvfQSOnbsiNmzZ3vcPjU1VewpYrfbsXjxYq+Ou23bNhw+fBgAkJiYiBEjRni1nbeceaiqqsKWLf/UhwEDBtS77cCBA8XXrhOVhxJfz3OokkscRERS0ev1+OKLL6DX66UuClG9WF8jA8+zNJh33zFnkZEDucQolzgosDjxOFEw6AuBslxHbwtnY0STTI89OP6hgEKpBDz35XBQRwNN2gDFRxz7TchwHEdfBMSl+DGA4HK9ud6qVat6e2M4KRQKryeievjhhzFv3jxxOS4uDgMHDkR6ejoKCgqwfv166PV6GI1GPP300ygoKMA777xTYz/jx4/HL7/8AgBYtGgRpk2bVu+xFy1aJL6+5ZZb/D6MkjMPhw8fht1uF9/r2bNnvdv26tVLfH3w4EG/lstffDnPocxfcUyaNAnFxcX1rldcXIylS5e6HZ+IKJyp1WpkZmZCreZ/aSj0sb5GBp5naTDvvmPOIiMHcolRLnFQYLF2EAVSdZnj39xtgNUIGIod82eoNIA2wfGeK6vRMfwUHE0bagUAwQoIqLmukzbBMVeHxQBUngJ0zYDcrUDmlY7fxyT5P64A27hxo/j6sssu83o7pVLp1RiN33zzjVsDx5133om5c+ciISFBfK+iogIPPfQQvv76awCOCbuvuuoq3HTTTW77Gj16NOLi4qDX67Fnzx7s37+/1onRAcfT+643msePH+91fN5y5uHIkSPie6mpqV41prhOCF5SUoKioiKkpIRWg5m35znU+SuOWbNm1buOxWLBtddeKy537ty53jluiIhCnVar9aqXIlEoYH2NDDzP0mDefcecRUYO5BKjXOKgwGIjB1EgbZnv+LdgL2AsAwwljqGlouOB/B0117dbgYpTABydPgTBDoVC+c/c48pa/mSrSwFTJWCsAHRNgbNHHMcEgIHP+DWkYDhx4oT4uq4Gg/PZ7XYYDAbodLpaJ7q22+14+umnxeUxY8ZgwYIFNZ5qT0hIwJdffonKykqsWLECADB9+nSMHj3abd86nQ433XQTvvzySwDA119/jddff73WMq5duxaFhYUAHA0K/fv39zo+bznz4DrkV1pamlfbpqenuy2XlJSEXCOHN+c5VJWUlODhhx8G4BiSzmq1Qq1W19qrorKy0i/Hfeihh5CVlQUAaNq0KVatWoXExES/7JuISComkwm7du1Cz549ER1dV+9YIumxvkYGnmdpMO++Y84iIwdyiVEucVBgsZGDKNAEATBXOV7bzI5/6xymStwQgiBAoRBQ55BVzv2ZKv/Zv7nKcdwwHI6moqICVqtVXE5KSvJ6W0EQYDAYEBMTU+s6a9aswfHjxwEAGo0G7733Xq03mBUKBebNm4eff/4ZFosFx44dw9q1a3Hddde5rTd+/HixkWPx4sV47bXXat2ns2cIAIwbNy4gQwY58+A6XmVdOXF1/nqhOOalN+c5VFVWVrr1IgqGd999F5988gkAICoqCt9//z3at28f1DIQEQWC2WzG7t270aVLF/6Hl0Ie62tk4HmWBvPuO+YsMnIglxjlEgcFVng9AksUjgQbYLc4XtvO/auMqnczhUIBlUrl3U1w5/6c+7dbHMcNQ+c/uR4XF+f1tiqVCqmpqVCpPE/mDrjP93HDDTfU6LlwvoyMDAwdOlRcXr9+fY11rrnmGjRv3hwAcPLkSbfhtlxVVVVh+fLl4nIghqoC/smD2WwW39NoNF5te/4Xhurqar+WzR+8Oc/ksHr1ajz55JPi8gcffMBuvkQkG/Hx8bj//vtlMYQhyR/ra2TgeZYG8+475iwyciCXGOUSBwUWGzmIAk0QXBcc/yjq/9MT4HhiXah3Tdf9uawteLVlyDn/Q8uXngTO4X+EOmLftWuX+Pryyy/3ar+uE5/v3Lmzxu+VSiXGjh0rLrv21nC1fPlyVFU5evX07NnTp6G4fOHMg2uDhWuDR11MJpPbcij2lvDmPIeq1q1bO/6uBQF2ux0WiwV2u1187/wfZ6+jhjhw4ABuu+022GyOBs/HHnsM99xzj79CISKSnN1uR1lZGex2u9RFIaoX62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iALNrSfGudeCFxdmQYDNZveusULcn8uxwnCoKsAxF4Za/c9IemVlZV5va7PZUFhYKN7U9cR1norWrVt7td/MzEzx9dmzZz2u49or47vvvvPYqLBo0SKP6/ubMw86nU58z9seGeev50tPmmB48cUX8dBDD2HKlCl46KGH8PDDD7v9vPjii1IX0Wve1NeGKi4uxogRI1BRUQHA0Wvp7bff9vtxiIikVFFRgblz54rXOqJQxvoaGXiepcG8+445i4wcyCVGucRBgcU5OYgCTaFyDCdltwCqKMe8Gc7XdW6ngEql9K6xwjkclnOfyijHccNU69atcezYMQCOp9G95c0wRq49Q2JjY73ar+t6tU0E7eyZsX//fpSWluKnn37CjTfeKP6+sLAQa9euFcs5btw4r47dEM48uE4YfubMGa+2LSgocFtu2rSpX8vWWAsXLnSbmP58rVu3xqxZs4JYooYL1LBbFosFN998M/7++28AQJcuXbB06dKwm6SdiKg+CQkJePTRR5GQkCB1UYjqxfoaGXiepcG8+445i4wcyCVGucRBgcVGDqJA6vuA49/4NKDsJFB8DKgqBOIvAJp46EVgNYovazRtXNATUGs9H6f0BKDSALGpQLN2QFIroOvNfglBCldeeaXYyLF161avt1MoFG69QDxx7ZngHDqqPq7r1TUG5Pjx4/HMM88AcPTacG3kWLZsmTih+jXXXFPvXCCN4cxD586dxfcKCwthNBqh1dZSh845efKk+Lpp06ZuDSXkX97U14Z44IEHsGHDBgBAcnIyVq1axbFLiUiWlEolkpKSpC4GkVdYXyMDz7M0mHffMWeRkQO5xCiXOCiw+FgnUSDFJDl+mrVzNFDEpQFKNWAsczRKqLU1f5RqQKmGoFDBbBUgKFSO9zytq9Y69mMsc6wTl+Z4r1m7f44dhgYNGiS+PnHiBDZt2uTVdt4M/+N60971hn5dcnJyxNfJycm1rnfHHXeIE8X/+OOPKC8vF3/nOk/HhAkTvDpuQznz0L59e/HpfUEQsHv37nq3dZ1z5MILLwxUERssJycHVqsVZ86cEeflcP1xPVehLhDDVc2ZMwefffYZAMdk8//973/Rpk0bv+2fiCiUVFZW4sMPP6y1lyVRKGF9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdRMKRe5PhX18zRKGEzA/rCejY6N1xVzT4d7vSFjv2pNI79A0BqYCa0DpYxY8a4NSbMmTPHq+0UCgV0Op3Y0OBJz549xdfeNp64rterV69a12vZsiWuvvpqAI4JvL/77jsAwNGjR7Ft2zYAjqGvXHt4BIIzDzExMejbt6/4flZWVr3bOnsAAO6NTaHEm/McDvwdx88//4xp06aJyx9//DGuvPJKv+ybiCgUaTQa9OjRAxqNRuqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCi40cRMEQlwoktXTMr5GQ4XivNAewmmrdRKFwjNlf5/1PqwkoPe54nZDh2CipJRAX3kMMxcTE4F//+pe4/P333+P777+vdzulUom4uDix90JVVVWNhgzXG/c///wzCgvrbmw6deoUfvnlF4/be+I6obiz94ZrL47Ro0d7PRdIQ7nmYfTo0eL7X3zxRZ3b5ebmYt26deKy67ah5PzzHK78Gcf+/fsxduxY2O12AMD06dMxadKkRu+XiCiURUdHo2/fvoiOjpa6KET1Yn2NDDzP0mDefcecRUYO5BKjXOKgwArvO0RE4aTluSfqEzIATZxjsvCiQ4Dd81A1ggBYbTYIQi37s9vObW917M/ZeNKqn//LLoHp06e79ZqYMGECVq1aVec2drsdlZWVsNvt2LdvH/r27Ys1a9a4rXPttdeKw/eYTCZMnTq11v0JgoBHHnkEFotjYvd27dph8ODBdZZhzJgx4rwXv//+O/Ly8rBo0SK3OALNNQ+TJk0SG1Wys7Px6aef1rrdU089JQ6d1K9fvzp7rUjJNb5w5q84zp49ixEjRqCiogIAMGrUKLz++uv+KCIRUUgzGo3IysqC0Wisf2UiibG+RgaeZ2kw775jziIjB3KJUS5xUGCxkYMoWJLbA2kXOXpbpHRyzKFhqgDO7KulR4cAwW4H4KGVw2pybGeqcOwnpZNjv2kXOebjkIHo6Gh8++23SE1NBQBUV1dj9OjRmDhxIg4ePOhxG7vdji1btuDOO+9E9+7dsW/fvhrrKJVKvPHGG+LykiVLMGXKFOj1erf1KisrMXnyZPzwww/ie2+++Wa9T90nJiZi+PDhYnmmTp2Ko0ePAgDS09PrbCSZOXMmFAqF+NNQgiDAZDJBEASkpqbi8ccfF3/3r3/9C998843b+haLBU8//TSWLFkivlffTfLMzEyxnHfeeWeDy9oQrvGFM3/EYTabcdNNN+H4cUePrm7duuHrr78O+14uRETesFqt4lxNRKGO9TUy8DxLg3n3HXMWGTmQS4xyiYMCSy11AYgiSvshQNm5ya7TugBn9jsaKk7tBJq0AbQJ4qoKhQJRUVHu2wt2xxwcpccdPTiUasd+onRAdJxj/zLStm1bbN26FSNGjMC+fftgt9vx1Vdf4auvvkJmZia6deuG5ORk2Gw2FBQUYPfu3Thz5ozbPuLj42vs99Zbb8Xvv/+OefPmAQA+/fRTLFu2DAMHDkRaWhoKCwuxbt06t4aPqVOn4qabbvKq3OPHjxfn43AdZmvs2LFQqVQ+58FXKpXKbU6TF154AX/88Qd+++03VFdX47bbbsMrr7yCXr16wWg04vfff8fp06fF9WfNmoX+/fv7rTwzZszAypUr3d47v1GpR48eNbZ76aWXMHLkyBrvnx+fN1auXIkZM2bUuc4999yDuLg4t/dGjhyJl156yadjeashcZxv8+bN2Lhxo7icmZmJp59+2qttJ0yYgMsuu6xRxyciklJcXFzQG9qJGor1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxEwaTRAd1uA3afG76oeXegKBsw64HiI4BCCVSXAupoCMooCFBAAQEKuwUoPQEYyxyTjAOOIapSOjkaOKK0jv1qdJKFFiiZmZnYvHkz3nnnHcyZMwdlZWUAgJycHOTk5NS6Xffu3TFz5sxa55V4//33kZ6ejldeeQUmkwmVlZU1bsQDgFarxYwZM/DMM894XeYbbrgBTZs2RUlJidv7rvN1BJIgCLBarVCr1WJj2Q8//IB7771X7MWxd+9e7N271227qKgozJw5E88++6xfy3Py5Ens2bOnznU8/f78/DmdH583SkpK6i3DsWPHarznqfHFXxoSh6d9uPJUh2vTu3dvNnIQUViz2WwoKipCSkpKUB4iIGoM1tfIwPMsDebdd8xZZORALjHKJQ4KLI5nQRRscalAjzscPS+idEDzHo5eHCqNowHDVAlUnQUqTsFemgtUnHIsV55y/F6lcazfvMc/PTh63OHYr0zFxcXhhRdeQE5ODhYvXozJkyejW7duSE9Ph0ajQVxcHFq1aoUhQ4Zg6tSp2Lp1K3bv3l3vxNnPP/88srOz8fzzz6NPnz5ITk6GWq1GcnIyLr30UrzwwgvIzs72qYEDcDQW3HbbbW7vXXjhhUGb48L5BcA5vwbgGEZr2bJlWLt2LcaPH4927dpBp9MhMTERXbt2xRNPPIE9e/b4vYEjEDzFF47kEgcRkVQqKyvx0UcfobKyUuqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCSyGE+6DmJFv79+9H165dxeV9+/ahS5cuXm9vtVpx5MgRt/c6dOgAtTpEOjCZDcDRtcCZA45lQXA0ZORtB2xmCDYLHPNxKKBQRQGpFwFxaYCumWP+DcAxB0f7IbLswdEQgiBAEIRGz2kR7uSeB7nEF65xhPy1lYgihnNuo+jo6LC6jlJkYn2NDDzP0mDefcecRUYO5BJjsOLI1+dj6PdDPf5u9c2rkRGXEbBjy0Vj7+U2Bu9IEElFowMuGgWkdgFytwBluY4GDF1TAECNy3azdoBa63id1BJo1U82k4z7S7jdLA4UuedBLvHJJQ4iIqkoFApotVqpi0HkFdbXyMDzLA3m3XfMWWTkQC4xyiUOCiwOV0UkteT2QM/xQJ97gBZ9AG0SoIyCIAgwm82OMfeVUUBSK6B1P8d6PcezgcMDm82GM2fORPzwP3LPg1zik0scRERSqaiowLvvvouKigqpi0JUL9bXyMDzLA3m3XfMWWTkQC4xyiUOCiz25CAKFXEpQOaVQMFex9BVdisUFgsQFQUo1UDXm4GYJKlLGdIUCgXi4+Mj/ul4uedBLvHJJQ4iIqlotVoMGDCAT/ZRWGB9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdRKFI45uGIUkVJXZKwolQqodNxfhK550Eu8cklDiIiqWg0GvTo0UPqYhB5hfU1MvA8S4N59x1zFhk5kEuMcomDAovDVRGFkpgkYOAzwMBnYO//FMp7PQh7/6cc77EXR73sdjvKy8tht9ulLoqk5J4HucQnlziIiKRSXV2N1atXo7q6WuqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCi40cRCFKEATYbDbHnBzkFebMQe55kEt8comDiEgqdrsdZWVlbCymsMD6Ghl4nqXBvPuOOYuMHMglRrnEQYGlEHh3hULU/v370bVrV3F537596NKli9fbW61WHDlyxO29Dh06QK3mKG1ERA3FaysRERERERHJTb4+H0O/H+rxd6tvXo2MuIwglyj8NPZebmOwJwdRiBIEASaTiU95+4A5c5B7HuQSn1ziICKSitVqRU5ODqxWq9RFIaoX62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iEKUzWZDcXExbDab1EUJG8yZg9zzIJf45BIHEZFU9Ho9Fi5cCL1eL3VRiOrF+hoZeJ6lwbz7jjmLjBzIJUa5xEGBxeGqKGRxuCoiotDDaysRERERERHJDYerajwOV0VEREREREREREREROQjNnIQhSir1YrTp09zzEEfMGcOcs+DXOKTSxxERFIpLy/HG2+8gfLycqmLQlQv1tfIwPMsDebdd8xZZORALjHKJQ4KLDZyEIUopVKJpKQkKJX8M/UWc+Yg9zzIJT65xEFEJBWdTofRo0dDp9NJXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGBxAG2iEKVUKhETEyN1McIKc+Yg9zzIJT65xEFEJJWoqCh07txZ6mIQeYX1NTLwPEuDefcdcxYZOZBLjHKJgwKLj48ShSibzYbS0lLYbDapixI2mDMHuedBLvHJJQ4iIqkYDAYsX74cBoNB6qIQ1Yv1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxERERERERERERERBSWFIIgCFIXgsiT/fv3o2vXruLyvn370KVLF6+3t1qtOHLkiNt7HTp0gFrNUdqIiBqK11YiIiIiIiKSm3x9PoZ+P9Tj71bfvBoZcRlBLlH4aey93MZgTw6iEGW321FdXQ273S51UcIGc+Yg9zzIJT65xEFEJBWLxYJDhw7BYrFIXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGCxkYMoRNntdpSVlfEGqA+YMwe550Eu8cklDiIiqXB8ZgonrK+RgedZGsy775izyMiBXGKUSxwUWByuikIWh6siIgo9vLYSERERERGR3HC4qsaTcrgq3pEgCiG8oBIRERERERERERF5j8NVEZFsWK1WnDp1ClarVeqiSErueZBLfHKJg4hIKmVlZZg1axbKysqkLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEFEsqFSqdCsWTOoVCqpiyIpuedBLvHJJQ4iIqnExcVh0qRJiIuLk7ooRPVifY0MPM/SYN59x5xFRg7kEqNc4qDAYiMHUYg4XHoYn+/7vNbfP/3705i7cy6OlB6pdR05GTBgABQKRa0/8fHxaNWqFYYOHYrXXnsN+fn5UCgUiI6OhkKhqHPfM2fOrLG/xx57zKfy/fTTTzX2MWDAAK+2zcrKwoMPPojevXsjJSUFGo0GMTExSE1NRe/evTFu3Di888472L59OxoybZKnPJw6dQrffPMNpk+fjuuvvx6dO3dGYmIi1Go14uLi0Lp1a4wYMQLvvfceiouLfT6mNyoqKrB69WrMmjULt9xyC7p3745mzZpBo9FAq9UiPT0dAwYMwPPPP19jzof64nP6888/8eCDD+Kiiy5CQkICEhIScNFFF+HBBx/En3/+6feYXOuSt+ffacOGDdBqtVAqlfXWWSIiqkmtViMzM5NzAlFYYH2NDDzP0mDefcecRUYO5BKjXOKgwGIjB5HEfs/7HZN+mYSbV96MZdnLal1vd9FufLr3U9y08iZM+mUSfs/7PYilDD16vR65ubn43//+h+eeew5t2rTBiy++iOLiYthsNp/3t2TJEp+GDVq4cKHPxzh48CD69euHgQMHYv78+dixYwfOnj0Li8UCo9GIoqIi7NixA0uWLMHjjz+OPn364OKLL/b5ODabDSUlJW55uPbaa3HbbbfhrbfewurVq5GdnY2KigrYbDZUVVXh5MmT+PHHH/Hoo4+ibdu2mD9/vs/Hrc+zzz6L66+/HjNnzsT333+Pv/76CyUlJbBYLDCZTDhz5gw2bNiAV199FZ07d8bDDz8Mo9HoVXxmsxmPPvooLrvsMsyfPx8HDx5EZWUlKisrcfDgQcyfPx+XXXYZHnvsMVgsFr/H1hANqadERPSPqqoqLF26FFVVVVIXhaherK+RgedZGsy775izyMiBXGKUSxwUWGwCI5JImbEMr217Db8c/8XnbXcW7sTOdTtxQ5sb8MylzyBJm+T/AoaQPn364NJLL3V7r7y8HHv27MHevXsBABaLBS+99BKKiorw/vvv+3yMM2fO4H//+x+GDRtW77plZWVYtWqVT/vftWsXBg0a5DaGZFpaGnr37o309HQoFAoUFxdj3759OHr0qNiDoyFjTioUCqhUqlp7BzRv3hwXXnghWrRoAZ1Oh8rKShw6dAg7d+6EIAioqKjAgw8+iIKCAsyaNcvn43sjMTERF154Idq0aYOEhASYzWYcP34cW7ZsgdFohN1ux7x583Do0CGsXr3a7YkNT/FNmTIFX375pbjctm1b9O3bFwCwZcsW/P333xAEAe+++y4qKirw2WefBSQuX7D3BhFR4yiVSiQlJUGp5HNbFPpYXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBJIHskmw8+OuDKKwubNR+fj7+M7YXbMf8IfPRsUlHP5Uu9Nxwww2YOXOmx99t2rQJY8eOxcmTJwEA8+fPx1133YXevXt7te+LLroIBw4cAAB8+eWXXjVyfPPNN2IPA9fta2OxWDBu3DixweKCCy7AvHnzMHLkSI8f0kVFRVixYgW++uor/P33317F4UqpVCIxMdHtvVGjRuGpp57CgAED0LJlS4/b/f3337jvvvvw66+/AgBeeeUVDBs2rEYDU0P16tULc+bMwbXXXouLLrrI403+iooKzJw5E++88w4AYN26dXj33Xfx5JNP1hrfggULxAYOpVKJf//73/jXv/4l5tZut+O9997DE088AbvdjgULFqB///6YOHGiX+JqKH5BIyJqnJiYGAwdOlTqYhB5hfU1MvA8S4N59x1zFhk5kEuMcomDAot3WIiCLLskG3f9765GN3A4FVYXYvLqyThcetgv+ws3l19+OVasWOF2w/yjjz7yevuLL74Y3bt3BwCsXLkS5eXl9W7jHKoqKioKY8eOrXf95cuX49ChQwAcH87r16/H6NGja73JnZKSgnvuuQcbNmxAVlaWl5H8w263w2AwwG63i++9+uqrmDBhQq0NHICj98NPP/2Ezp07i/v55JNPfD5+be666y489thj6NKlS629GBISEjBnzhxMnjxZfO/88+kan8lkcmsAmz59OqZOneqWW6VSialTp2LatGniezNmzIDZbPZTZA3jen6IiMh3ZrMZu3fvlvx6TuQN1tfIwPMsDebdd8xZZORALjHKJQ4KLDZyEAVRmbEMD/76ICrMFX7db4W5Ag+sfQBlxjK/7jdc9OjRw23S540bN/q0/aRJkwAARqMR33zzTZ3rHjt2DJs2bQLg6GGSnJxc7/7XrFkjvh41ahQ6dvS+1027du28XtdJEARUVlY2aNJyjUaDO+64Q1zetWuXz/vwh7vuukt8ffToUej1enHZNb6VK1ciNzcXgGMIrBdeeKHWfc6YMQMJCQkAgBMnTuCnn34KUOm905DzQ0RE/zAajcjKyvI4fxNRqGF9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdREL227TW/9eA4X2F1IV7f9npA9h0OevToIb4+deqUT9uOGzdOnPPBdV4HT1x/7+1wR/n5+eLr1q1b+1S2hlCpVEhLS4NKpWrQ9ikpKeLryspKfxWrwWU4vxyu8S1fvlx8/7bbboNOp6t1nzqdDrfeequ4/N///td/BW4Ab86PQqFo0E9DegAREYWbhIQETJ06VWzAJgplrK+RgedZGsy775izyMiBXGKUSxwUWGzkIAqS3/N+b9Ak4774+fjP+D3v94AeI1TFxMSIr31t3U9LS8O1114LAPjjjz9w/Phxj+sJgoCvvvoKANC0aVMMHz7cq/27Dp1U2779SRAE2O32BvcUcJ1jJDMz00+langZdDqdW6OHa3zr168X33ftzVObgQMHiq9/++03/xS2gdiTg4iocQRBgNFo5PWUwgLra2TgeZYG8+475iwyciCXGOUSBwUWGzmIguSzvZ8F5TgL9i0IynFCjWvvjbS0NJ+3d/bKEASh1t4cGzduFBspbrvtNmg0Gq/27Trk1KpVq+qdqLyxbDYbCgoKYLPZfN52//79+Oyzf+rqLbfc4s+iecU5+bjT6NGjxZ42wD/xlZSU4PTp0+L7vXr1qnffruvk5+ejosK/Q8f5wps5OR566CGvfoYNG+a2XW1znhARyUl5eTlmz57t1XxaRFJjfY0MPM/SYN59x5xFRg7kEqNc4qDAUte/ChE11uHSw9hZuDMox9pxZgeOlB5BhyYdgnK8UGC1WrFu3TpxuW/fvj7vY9SoUUhMTER5eTm++uorvPjiizXWachQVYDjJv17770HAKiursbVV1+Np556CuPGjUNGRobPZa2PSqVCSkqK18NV6fV6HDlyBMuXL8c777yDqqoqAED//v3dJgAPJJPJhNzcXKxbtw5vvvkm/v77bwBAeno63njjDbd1nfHt3On+N9WqVat6j3P+OtnZ2ejTp08jS98wtU087+r999+vd53y8nL069dPXL766qtx+eWXN6psREThID4+Hvfddx/i4+OlLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEEUQPl6x1wM32TXPZm1v32T/Q3u7HonACAjzv830UPNG2+8IU4+DQD33nuvz/vQarW49dZb8cknn+DYsWP4448/cMUVV4i/NxqN+O677wAAHTt29KkhZeDAgRgxYgRWrVoFACguLsb06dPx1FNPoWPHjrj00kvRu3dv9O3bF7169XLrtdAQCoUCUVFRtf7+66+/xoQJE+rcftKkSfjwww8bXZba5OXloWXLlnWuc9lll+Hbb7+tsZ4zvpKSEvG9hIQEtyHLaqPT6RAfHy/O8eG6j8Y6cuQIHn74Ya/Xd52rpaFsNhtuv/12HDx4EADQtm1b/PDDD3WefyIiuVCpVEhPT5e6GEReYX2NDDzP0mDefcecRUYO5BKjXOKgwGIjB1EADf1+qCTHXZq9FEuzlwIA9k7aK0kZAq2iogJ79uzB/PnzsWTJEvH9+++/H4MGDWrQPidOnIhPPvkEgKPXhmsjx/Lly8Wukb704nBavHgxJk6c6DbZtSAIyM7ORnZ2tjjXR2xsLIYPH4777rvPbf4IX9hsNpSWlqJJkyY+Tz7esmVLfP7557jmmmsadGx/iImJwRtvvIF//etfHn/vjM91qClvGjhc13U2cuj1+sYV1sWpU6cwb948v+3PG0888QRWr14NwNHQs2rVKjRr1iyoZSAikoper8d3332HW265BXFxcVIXh6hOrK+RgedZGsy775izyMiBXGKUSxwUWJyTg4hC3qxZs6BQKNx+EhMTcfXVV4sNHM2aNcPrr7+ON998s8HzEVx55ZVo27YtAOCbb76ByWQSf7dw4UIAjl4EdfWCqE1cXBx++OEH/PTTTxgyZEitQxVVVVVh2bJlGDRoEEaNGoXS0lKfj6VQKBAdHV1rHjp16iTO5fDAAw9g3Lhx6NGjBxQKBXJzczFkyBDcfPPNKCgo8PnY3oqLi3ObU2LixIm46qqroNVqUV1djUcffRS9evXCn3/+WWt8rhPMezs/CgBER0eLr6urqxsXiIQ+/vhjzJ07F4DjyZZly5bhoosukrhURETBo1arkZmZGbBeh0T+xPoaGXiepcG8+445i4wcyCVGucRBgcXaQURhT6VSYfbs2bj77rsbva8JEyZg1qxZKCsrw8qVKzFmzBgUFBRg7dq1ABzzVHgz90NtbrjhBtxwww0oKipCVlYWNm3ahB07dmDXrl01ehWsXLkSV111FTZv3uzT2JNKpbLO9fv06eNxHoojR45g6tSp+Pnnn/HDDz9gx44d+L//+z+0aNHC+wC9lJSU5HG+iZKSEsyePRtvvfUWdu3ahauvvhorV67EkCFDxHWc8el0OvE9s9ns9bFdG6986QFSn/79+yMrK8vr9bOyshrcWycrK8ttaKw5c+Zg6FBpeo4REUlFq9ViwIABUheDyCusr5GB51kazLvvmLPIyIFcYpRLHBRYbOQgopDXp08fXHrppeKyXq/HyZMnsWnTJphMJthsNtxzzz04duwYnn32Weh0Oq8mdfZk4sSJmDVrFgDHkFVjxozBokWLYLPZxN/7Q0pKCsaMGYMxY8YAcEyevmXLFnz++ef48ssvYbVaAQD79+/Hc889J05c7g273Q6DweBzHjp06IBVq1bh5ptvxvLly3HixAncfffd+N///ue23pEjR8QeBLVxNub4qmnTppg9ezbS09Px+OOPw2g04o477sDRo0eRkJBQIz4nX3pkuK4rZVdXu93eoO2OHj2Km2++GRaLBQBw33331Tq0FxGRnJlMJuzatQs9e/Z066VHFIpYXyMDz7M0mHffMWeRkQO5xCiXOCiwOFwVEYW8G264Ae+//77488UXX+C3335DTk4Oxo4dK673+uuvY8mSJRAEocHHatu2La688koAwOrVq1FUVIQvv/wSgGPS6ltuuaVxwdRCrVbjyiuvxGeffYYNGza43Xz/5JNPfLqJLwgCDAZDg/KgVCoxd+5ccairNWvWYN++fW7r5OfnY968eXX+bNu2zedju3r00UfRoUMHAHA7B8A/8TVt2lR8r6Kiwm34qtoYDAZxPg4AbvsItoacn/LycowYMUKcMH3QoEEee8QQEUUCs9mM3bt3+9Sbj0gqrK+RgedZGsy775izyMiBXGKUSxwUWGzkIKKwlZ6ejq+//hrXXXed+N7TTz/tNiF1Qzh7a1itVkyfPh1//fUXAODGG2/0adiohrr88svx7LPPistGo9Hj3BS1UalUSE1N9XnScadWrVqhU6dO4vIff/zRoP00hlKpdJv83LUMzvjOn3/ixIkT9e735MmTbsuucQabr+fHZrPhtttuw6FDhwA4et589913HJeUiCJWfHw87r///qB8NhM1FutrZOB5lgbz7jvmLDJyIJcY5RIHBRYbOYgCaPXNq7H65tXokdIjqMftmdpTPLbcKZVKfPrpp4iNjQXgmNPh1VdfbdQ+b731Vmi1WgDAF198Ib7vr6GqvHH+/AqnT5/2eltBEGC1WhvVo6VJkybi6+LiYrffDRgwAIIg1Pkzc+bMBh+7vjI440tISEDz5s3F93ft2lXvPnfu3Cm+zsjIEIfAkoKv5+exxx4Thw5LSkrCqlWr3HJERBRp7HY7ysrKGjz8H1Ewsb5GBp5naTDvvmPOIiMHcolRLnFQYLGRgyiAMuIykBGXgd7pvYN63N5pvcVjR4IWLVpg6tSp4vK8efNQUFDQ4P0lJiZi5MiRbu9dcMEFGDx4cIP36StnI4uTL+NO2mw2FBYWivOINIRro4pUQzrVVgbX+Fwn7vZm0u8NGzaIrwcNGuSfgjaQL1/QPvroI/znP/8B4Bja7Ntvv5W0FwoRUSioqKjA3LlzG92Dk8gXgiDAptfDWloKm17v9UMLrK+RgedZGsy775izyMiBXGKUSxwUWGzkIAqC69tcL+vjhYInnnhC7LpoNBrx5ptvNmp/5/fauOOOOxo8mXlD7Nmzx225VatWXm/b2OGq9u/fj5ycHHH5wgsvbNB+GsNsNmPNmjUey+Aa3+jRo8X3ly1bVufcJdXV1fjmm2/EZddtpeBtfVq/fj0eeeQRcfm9994LaoMbEVGoSkhIwKOPPipprzwKvoY2MjSGMfswCue8gxOTJ+Nw33443LsPjvS7HId798Hhvv1wYvJkFM55B8bDh2vdB+trZOB5lgbz7jvmLDJyIJcY5RIHBRYH8iYKgo5NOqJXai/sLNxZ/8qNdEnaJejQpEPAjxNqmjRpgkceeQSvvfYaAMeT78888wxSUlIatL+hQ4e6zYPRvn37Bpdtzpw56Natm9c3pg0GgxgHAKSlpaFHjx5eH0+hULjN01BcXIxmzZp5ta3RaMSDDz4oLqempooTsTdGeXk54uLivG54eeGFF3Dq1Clx+aabbhJfu8Y3cuRItGjRAnl5eSgrK8Orr76KV155xeM+X375ZZSVlQEAWrdujeHDhzcwGv9wTu5el6NHj+KWW26BxWIBADz88MN44IEHAl00IqKwoFQqkZSUJHUxKAiM2YdR8dNPqN77F4wHDsJeXi7+TpmYCO1FFyLm4m5IGD4M2o4d/XbcyqwsFH/6Kaq376h1HXt5OQybt8CweQuKP/4YMb0vQfKUKYjr399tPdbXyMDzLA3m3XfMWWTkQC4xyiUOCiz25CAKkrsvvjsox7mr611BOU4oevTRR8W5OQwGA/797383eF8qlQq9e/cWfxrzgbpt2zYMGTIEffr0wQcffIAzZ87Uuu7WrVvRv39/7N27V3zvqaee8qkXyfnDVb3yyisYMmQIvv/+exiNxlq3++OPP9C/f3/8/vvv4nuvvfZag3uEuFq/fj26dOmC+fPno6ioqNb1/v77b0yYMMGtJ8748eNx8cUXi8uu8UVHR2PWrFni715//XW89957bkNB2e12vPfee5g9e7b43ksvvQSNRtPouBqjvuHEysrKMHz4cJSUlAAArr32Wrz77rtBKBkRUXiorKzEhx9+iMrKSqmLQgFSmZWFnPHjcXzUKBR//DEMm7e4NXAA/zQyFH/8MY6PHIWc8eOhdxmesiGspaXIf+JJ5N3/QJ0NHJ5Ub9+B3PvuR/6T02AtLf0nFtbXiMDzLA3m3XfMWWTkQC4xyiUOCiz25CAKkqtbXI3r21yPX47/ErBj3NDmBlzd4uqA7T/UJScn495778U777wDwDE3x/Tp0yWbU+J827dvx/bt2/HQQw+hXbt26NKlC5KTk6FWq1FUVITdu3fj+PHjbtvceOONbkMVeUOhUECn04k9BQRBwK+//opff/0V0dHR6NKlC9q3b4+kpCTYbDYUFRVh586dyMvLc9vPo48+irvv9l/jXHZ2Nh588EE8/PDDaN++PS666CI0bdoUUVFRKC0txf79+7F//363ba644gp88MEHdcZ31113ISsrC1999RXsdjseffRRvPfee+jbty8AYMuWLTh27Ji4/eTJk4M6iXxt6uvJsWLFCmRnZ4vLqampePTRR73a96OPPooOHSKvRxcRRRaNRoMePXpI3mhN/mctLcWZV15FxU8/+bxt9fYdyN2+AwnDhyPtuWehbtLEp+2N2dnInXIvrIWFPh/bVcWPP8KwbRtafvIJtJ06sr5GCJ5naTDvvmPOIiMHcolRLnFQYLGRgyiInr30Wewo2IHC6sb9p8mT1JhUPHPpM37fbzhRKpV45pln8PHHH6Oqqgp6vR7vvPMOXn75ZUnLdc0112Dbtm1uDRjHjh1zu/F+vpiYGDzzzDN45pln3Iae8oZSqURcXJy47Dppuclkws6dO7FzZ+1Dp6WmpuKtt97ya0OAaxnsdjsOHz6Mw3WMW63RaPDEE0/ghRdeQExMjNvvzo8PAD799FMkJiZi3rx5EATBY34VCgUeeeQRvP32236IqPHq651z/hjjX3/9tdf7vuWWW9jIQUSyFx0dLTZok3wEqpHB22OfmDipRm+RhrIWFuLExIlo/eWX0HbqyPoaAXhdkoac8y4IAuxVVRAsFiiioqCMjfVq2Nv6yDln3oqEHMglRrnEQYHFRg6iIErSJmH+kPmYvHoyKswVfttvgiYB84fMR5I2yW/7DEd2ux1arRb333+/OFTVf/7zHzzxxBOSjt84ZcoUTJkyBfv27cOGDRuwZcsWHDp0CCdOnEB5eTkEQUB8fDzS09PRrVs3DBw4EGPGjEETH588dLLb7aiqqkJsbCyUSiVmz56NcePG4bfffsO2bdtw8OBB5ObmorKyEkqlEgkJCWjZsiV69uyJoUOHYsSIEW6NEv5w/fXXIzc3F2vWrMGWLVuwd+9eHD9+HGVlZbDZbIiPj0dqaiq6d++O/v3747bbbqt1HpHz4wMcjSL/+c9/MGHCBCxYsABZWVnIz88HAGRkZGDAgAG4++670adPH7/G1RiuQ2oREZHvjEYjtmzZgr59+0Kr1UpdHPKDQDcy1LluaSlyp9zrt2M72cvLkTtlCpp/swzbDx1ifZU5XpekIbe8B2MeIrnlrCEiIQeNiTFQDWwNEQnnihpPIZz/qChRiNi/fz+6du0qLu/btw9dunTxenur1YojR464vdehQwefn4oPhMOlh/HA2gf80qMjNSYV84fMR8cm/ptkMVzZbDaUlpaiSZMmfplHIlzJPQ9yiS9c4wjlaysRRRa9Xo/vvvsOt9xyS40efhR+rKWlOD5qdKN7cHiiTk1FmxXL6xy6Kv+JJxs0PJbXZRgxAn90uYj1VeZ4XZKGXPJemZWF4k8/9WkuoJjelyB5yhTE9e/v07HkkrPGiIQc+BqjMfswSpcuRdmSJR5/H9OzJ3R9+jSqga0hgnWu8vX5GPr9UI+/W33zamTEZQTs2HLR2Hu5jcFGDgpZcm7kAIAyYxle3/Y6fj7+c4P3cUObG/DMpc9EfA8OIgqeUL+2EhFReAp0I0PC8OHIePstj7+rzMpC3v0PBOzYTi0+nI/4AQMavH0oPVVLRP7TmHmInBo6DxHVLpKuucFsYAtlbORoPCkbOXhHgkgiSdokzL56Noa1HYYF+xZgxxnvP0wuSbsEd3W9K6InGfdEEARYrVao1WrZfvnwhtzzIJf45BIHEZFUbDYbioqKkJKSElY94sJdIG76VGZlBbSBA3DM0ZEwfJjHRobiTz8N6LEBwKZU4siXX6H7VVf5VF+DMWwN+Q+vS9II57xLNQ9ROOfMXzzlQG7X3PrOc2Ma2Kq370Du9h1BaWBjfSVvsJGDSGJXt7gaV7e4GkdKj+Cb7G+wNHupx/V6pvZE77TeuL7N9ejQhBMKe+L84EtNTY3op8rlnge5xCeXOIiIpFJZWYmPPvoIjz76qKRzb0WCQN/0CUYjAwCUfPpZjUYOY/Zhn55cbShjTAx+at0KGXv2IK1Xr3rX9+apWnt5OQybt8CweQuKP/5Ylk/Vhhtel6QRrnmXch6icM2ZP7nmQLV7tyyvuXWdZ6ka2BoiWPXVfqoA37xu9fy7fgVAR/bkCGUcropCltyHq/KEXeMaRxAECIIAhUIR0U/Gyz0PcokvXOMIx2srEcmTIAgwmUyIjo4Oq+toOAnG8BXG7MM4PmpUQ4voszYrV0CpixWXiz/7rNaxx/1JAGCJikLKLbfgghdn1Loeh60JTd72YArUdSmShs1piHD8PJB6HqJwzJm/CYKAqjNnUPbW26iU6TW3tvPs7wY2wPHQgzcNbA0RrPqae3gH9CPHe/xd3Mqv0bLjJQE7tlxwuCoiAgBkxGVg76S9UhcjbIXbzeJAkXse5BKfXOIgIpKKQqGAVquV5Nhyv+EYjOErzHn5AIDSpZ57MQdK6dJlKFu8OKjHBAAFAI3FgvIlS2pt5Aj1p2rlXu/P15AeTP68Lslt2JxAkvLzoKHOvPJqQBo4AEePjjOvvlbrPERAeObM30yHD+N0CF9z/cHTebaWliJ3yr1+beAAHD1dcqdMqbeBrSFYX8kbbOQgClE2mw1nz55FcnIyxxz0EnPmIPc8yCU+ucRBRCSViooKLFiwAHfddRcSEhICfrxIueEYrBvtxwYPbtT+G0qKBg4AMMTE4LfBgzHo11/FnpyupBy2pi6hVO+D1cjSmKHC7D17Nvq6xKHKfBfsz4PGknoeIiD8cuZvxuxsHLz3Pvx62WUY9Ouv0FVXN2p//rrm+pun8yx1A1tDRHp9Je+wkYMoRCkUCsTHx8v66Sh/Y84c5J4HucQnlziIiKSi1WoxYMCAgD/ZF0k3HEP1RrscRFks6LJvH6IsFtirDFDF/TNkVig+VRsq9T6YjSz+6MEUM3w4rrpxdIOuS+EyAXAoCtbngb9IOQ+RU7jlzJ+c11xVSYl4XfaHQPZkaKjzz3MoNLA1RCTXV/Ie5+SgkBWJc3IQEYU6XluJKFJE2twIwR4f/mDnC/1+nHDRYfMmt1zkP/FkQG86JQwf7vVTtaFS74MxH4wrf/VgAhz13ddha6Q+fn0ibaiyQJJiHqJw7l0YCKF0zQ22nPHjfbquNpSud2+0/vqrgB/H3zgnR+NJOSeHMihHISKf2e12lJeXw263S12UsMGcOcg9D3KJTy5xEBFJpbq6GqtXr0Z1I4eY8MSYnY3jo0Y3+iZIxY8/4vio0TBmH/ZTyQInGMNXRDKTRoNdvXrCpNFAEaUR3w/WU7WVWVn1rhcK9d5aWor8J55E3v0P+Hwjrnr7DuTedz/yn5wGa2mp19s5ezD5o/6bNBr82SIDh+++2+v4/Xl84J8eVI297hizD6Nwzjs4MXkyDvfth8O9++BIv8txuHcfHO7bDycmT0bhnHdgPCz99S2Qnwf+Ys7LhzkvX5J5iJxzILkKh5wFgus11/W67E/eXnODwfU8G7MPB6WBAwAM27f79doQqfWVfMNGDqIQJQgCbDYb2NnKe8yZg9zzIJf45BIHEZEUBEGApbISpUVFsFRW+vVaGqo3HAMplG60y5WgUKAqNhaCQgFlrE58P5jD1tQlFOq9FI0s/h4qzHmebZWVyJ0ypd7GlkAPVeZLY49TZVYWcsaPx/FRo1D88ccwbN5So3zOocqKP/4Yx0eOQs748dBv2OCv4vvMbrejrKwspB8eOjZ4MI4NHoyyJUuCetyyxYs9zoEUDjkLBNdrrut12d/qu+YGizEvHyWnC2CUqIHNXyK1vpJvOFwVhSwOV0VEFHp4bSUiqQRjbP5gD9nUUP4eOkaK4SukHK6q7dq1Yr5OTZuG6l27gnbsmF69kLl4EYDQGbYmFOq9v+eDARzXhfrmg5F62Bqpj+8qVIYqkyuph+i78NBBSY8fCkLlmhtMrHe+4XBVjcfhqoioBkEQYDKZ+JS3D5gzB7nnQS7xySUOIqJAq+2pYptSicLUVNiUSr89VRzKQzYFaugYqYavaPfrr2j366+I6dkzKMd2iunVC9EtW0DTIgOaFhnQ9ekTlOM666umd++QG7ZG6novVW+GQPRgcr0uAXX3YAqlHlShMFRZY1itVuTk5MBqtfp934IgwKbXw1paCpteL5vv7oHMWaip7Zp7/t+rv9V2zQ2mQMdYH3/9vURSfaWGYyMHUYiy2WwoLi6GzWaTuihhgzlzkHse5BKfXOIgIgqU+sbmN8bEIOuaQTDGxNT4XUPG5g+lG46uAjV0jNQ32oPdyOB0/vEShg0LynGd9VU1oH9IDVsTCvVeqkaWQAwV5um6VNuwNRyqzH/0ej0WLlwIvV7vl/2F03wkDeXvnIWy2q65dX2P8IfahgoLpkDHWB97lcEv+4mk+koNx+GqAsRsNmPZsmVYsmQJ9u/fjzNnzqBJkyZo06YNbrrpJtx5551ITk726zFzcnKwdu1abNiwAXv37sXJkyeh1+sRHx+PFi1aoF+/fhg3bhz69+/v9T597fauUqn81rLK4aqIiEIPr61EBPh/uKTzGbOzkTvlXr/cdFOnpqLlJ5/UOWQNIM2QTXUJ9NAxoTKERSgMHxLscx8quQekr/eVWVnIu/+BgB+/xYfzET9ggLgsdb2T+vhOoTBUmTcC/ZnjVJmVheJPP/XpbyKm9yVInjIFcfXcZwmlv/tIE8m5lzr2Dps3hdXwdRyuqvGkHK6KdyQC4NChQxg7dix2797t9n5BQQEKCgqwefNmvPXWW/j8889xww03NPp4u3btwv33349t27Z5/H1paSlKS0uxd+9efPzxxxgwYAAWLlyIVq1aNfrYRERERBQZgjEnhuM4/h2b3/lUcV1j80sxZFNdOfJXI0/Fjz/CsG2bV408UtF26oiY3pcE7Ua7p7w3u+ce5AXh+M2m3BPwY/giFOp9MHszxA8YIA4dI0UPpmZ33eWyLM3xNS0y3N4PRi8ab+cEOV+wPnOAxjUqV2/fgdztOzgfCZEHiiiN1EWgCMJGDj/Ly8vDNddcg1OnTgFw9IS4+uqr0a5dOxQVFeHXX39FdXU1CgsLMXr0aKxevRqDBg1q1DGzs7NrNHB07NgRXbt2RXJyMsrKyrBp0ybk5eUBALKystCvXz9s3LgRbdu29fo4Dz30UL3rqFQq3wpPtbJarSgqKkJKSgqfkPYSc+Yg9zzIJT65xEFE8ufNk63O4ZKcQyZ5+2Tr+XwZm79Kp8Oa64fi2l9WI9ZQ93AIzrH5z3+qWMobns1nvODxd1I08khN6kaG+AEDkDBsWECHbVKOGIH3N2/GAz16BOwY3pL6Rr/zRrsUjSzHRwa290Rt16WyxYtRtnhxQI9dF+fxXZ8oD9ZQZQnDh7n1oqlPQz5zbH0vw4/t2+OBRx5BYmKiT2UMVqNyu19/BQCcmjYN1bt2NepYvojp1QsXvPlmjffLy8sxf/58PPDAAz7nTC58+R4RrqSOURmr88t+WF/JG7yr4mfjxo0TGzhat26NFStWoHv37uLvz549i9tvvx3r1q2DxWLBmDFjcOzYMSQlJTX62O3bt8c999yD8ePHIyPD/QkNu92OL774Ao888ggMBgNOnTqFO+64A5s2bfK6m+f777/f6DKS95RKJZKSkqCUaIKocMScOcg9D3KJTy5xEEWyYA2fIdXxpXiy1ZeniqNNJly6ZSuiTSav1vf0VLFUY2WXLV7ssZEj0BMw+2voGH8LRiNDwvDhdTa6pT3/HAx//hmwYXtaTHsSo0tKoNP554ZPY0hZ78sWLxZv9krRyBJovl6XpBTsXjT1acxnjvDndvTOzUNZWTliffjMCWajsrNxT9enT1AbOXR9+tTowQMAOp0Oo0ePDolrUm0C/T0nnP5eG+rCH36ANi8Pbabci6Jnngl6A5u/zlc41FeSHhs5/Ojnn3/Gxo0bAQAajQarVq3CxRdf7LZOcnIyVqxYgW7duuHvv/9GSUkJ3nzzTbz2mufJ0LzRvHlzfP7555gwYUKtPSmUSiXuuusuNGnSBDfddBMAYMuWLVizZg2uu+66Bh+bAkepVCJGosmhwhVz5iD3PMglPrnEQRRpgjl8hpTHl2K4JF+fKlbbbMjIz/e5PL4+VRwogiDU+M9/KA8dE2iBbmRIe+7Zutdp0gQtP/kEJyZO9GsjkzIx0VH/U1PROTXVb/sNZ1I2sgRaQ65LUgiFocrcy9O4zxxn3g35+Tju5WeOVI3KCcOGofjjj/16zLokDPM8RHpUVBQ6d+4ctHJ4K5jfs8Ll77UxYjNbo2tmawBAlQQNbP4SjPpqzD4M01e1N4ZXv/A6Ci+7ImDf8anx+PioH82bN098PWnSpBoNHE6xsbF46aWXxOWPPvqoUZN19+/fH3feeadXQ0XdeOONuPTSS8XlnwLcPZUazmazobS0FDabTeqihA3mzEHueZBLfHKJgyhSVGZlIWf8eBwfNQrFH38Mw+YtNW6MOIfPKP74YxwfOQo548dDv2FD2B3f+WSrv242O59sNWYfrnM9X58qNmk02HbZZTBpfBvvueTTz3xaP1DsVe7DRgRr6JjKrKyAHqOhnI0MSj8PQ+FsZPDmyW5tp45o/eWXUPupMUKdmio+0W0wGLB8+XIYDAa0+/VXtPv1V8T07OmX43grplcvsRcFBUZDr0vBYs7LhzkvP6R60fjjM8c1795+5gSjUdkT5zxEwVDbPEQA3K5JdREEATa9HtbSUtj0egiCEIiiBvR7Tm3X3ED/vYbCNdf1PCcMGxbUY9fWwNYQ3tbXhnCte5bvVtW6nm3P/oB8xyf/YSOHn+j1eqxbt05cnjx5cp3r33zzzYiLiwMAlJSU4Pfffw9o+VxdccUV4uucnJygHZeIiIgo3FhLS5H/xJPIu/8Bn596rd6+A7n33Y/8J6fBWloaFscP9JOttZVDiqeKpSZYzG7LwRw6Bqj9pk+g1XXT559GhhS/HEudmuLzXCTaTh3RZsVyJAwf3qhjJwwfjjYrlns8tqZFBjQtMvz6lKs3ahu2hiLHscGDcWzwYJQtWRLU49bWi0aqzxypG5Wb3eN5fiB/q20eovoYsw+jcM47ODF5Mg737YfDvfvgSL/Lcbh3Hxzu2w8nJk9G4Zx3/PJZGozvObzmOoRKA1uokPo7PvkfGzn8ZNOmTTCdG8cvNjYWfeq5eGq1WvTr109c/u233wJaPleu3eL5BHHoUqlUaNKkCSdz9wFz5iD3PMglPrnEQSRnxuxsHB81utE3Qip+/BHHR42u96nSUDh+sJ9sbcxTxdFmMy7duhXRZnP9K5+ndOkycfJlqSii/nlyVIpGnlC96aPNSEKb50cgoU+bRh0noU8btHl+BLQZST5vq27SBBlvv4UWH86Hrndvn7bV9e6Nlh99iIy333LrPeJpPPFwfqqWPGvMdUnuPPUA8Ndnjqe819WbItiNyudzzkMUSPXNQ+TpmhTsXqvB/p5zfs4D/ffa2GuuP3rRnH+eQ72BrTb+npND6u/4FBhs5PCTgwcPiq8vvvhiqNX1T3fSq1cvj9sH2t69e8XXLVu29Hq733//HW+//TamTZuGp59+Gm+//TbWrl2LqqqqQBQzIpnz8nGw84Uef6T+j3g4sNvtqK6uht1ul7ookpJ7HuQSn1ziIJIrqYZskvL4UjzZ2piniq0qFfIzMmBtQGNx2eLFks0L4GQtLQ2JoWNC6ka7vhDYvQjqKCsyJlyCFre3hq6l1qf961pq0fL21siYcAnUUVZg9yLHfhsgvmsLtH7iOrR5fgSaDb0YsZ2bQ6lzH9ZEqdMgtnNzNBt6Mdo8PwKtn7gOcV1b1NiXxWLBoUOHYLFYxPf4VG3wtVm5MqA9mGq7Ljl7MIViD6pgCeQQfbXl3VNvilDpOZj2/HN+GxrvfN7MQ+R6TZLiiXYpvuecf81tzPeI+jT0muvvXjTnf/aEQgNbQ3j6DG0oqb/jU+CwkcNPsrOzxdetW7f2aptWrVqJrw8dOuT3Mnly8uRJt14jg334z13//v0xbdo0vP3225g9ezamTZuGa6+9FqmpqXjkkUdQGKCn/oi8ZbfbUVZWFvE3jeWeB7nEJ5c4iORIquEzpD6+1E+2+soUHY1tfS+DKTq6wfuQ8obj30OGhMTQMSFzo91sAP5aBliMgKkCOL0H8a2VaD2+Fdo83g/NrutadyPDdV3R5vF+aD2+FeJaK4HTexz7sRgd+zX7MI632QAcWAHs/RYoy4X2giSkDm6JVndkouPjHdHxsTbo8EhrdHysDTo+3hGt7shE6uCW0F6QBJTlAn9949je5Zi1jScuxVO1kXyjPbpD+4D2YKrtuuTswRSqPaiCIZBD9NX1eeD8zJGyUdnTA4tSz0PkvCaV7t0b9Cfapfye5XrN9cf3iFqP42NPhkD1ovH02SN1A1tD+GtODqm/41NgsZHDT4qLi8XXaWlpXm2Tnp4uvi4pKfF7mTx5/PHHxSGqWrVqhREjRjR6nwaDAe+//z569OiBLVu2NHp/kcqYfRjFn9X+n/5T06b5bdxLuVKr1WjevLlXPankTO55kEt8comDSI6kmoxUyuOHypOtvog1GHDj9z8gthH/4ZXyhqPUXIe9CInhK46uBUx6wGIAzuwH7FYgOgG4oCe0HTogdXQvtHp0CDq+fRs6vjMWHd66FR3fGYuOb9+GVo8OQeroXtB26ABc0NOxnd3q2I/F4Njv0bXeFVJfCGz/DDhzABAEoDwPyNsGFB0E9AVQWKqg0gBqnRIqDaCwVAH6Asfv87Y51hcEx/bbPxN7kSQmJuLpp59G4nk3NKV4qlbqG+1SNrI4h24OVM5ruy6d34MppHpQBUkgh+ir6/PA+ZkjZaNybT0H/5mHyD83nNWpqV7PQ5SYmIipN96I0gceDPoT7VJ+z3K95vrje4QnvvRkCHQvGk+fPVI3sDVEbZ+hvpL6Oz4FFhs5/ESv14uvY2JivNrGdT3X7QNl4cKF+P7778Xl119/HdH1tFhHR0fj1ltvxRdffIF9+/ahoqICZrMZBQUF+PHHH3HLLbeIXxRPnz6NYcOG4bCfb8JrtVpxknabzYaysjLxP2XO8gBAdXW1OHSW1WpFuUvLrCAI4jY2m01s6LHb7bBareJ6VqvVbT3nE9Z2u13cRhAEv65XuT4Lx++4A8dHjarzC1f1rl1uLfblv/0m7i/UYvJ1PdeyOtfr378/FApFrT/x8fFo1aoVrrvuOrz66qvIz8/3ugwvvvhijf1NnTrVp5hWrlxZYx8DBgyoMybnecrKysIDDzyASy65BCkpKdBoNIiJiUFqaip69+6NsWPHYs6cOdi+fbvbufVX/svLyzF//nwMHDgQLVq0QHR0NFq0aIGBAwfigw8+gF6v9/o8+VL3jEYj/vzzT8ybNw+TJ08Wh/Zz5u/OO+8MeN2zWq3Izs7GV199hUceeQSXX345dDqdWIbMzMyA/T0NGDBAPM7MmTN9imnGjBnitv379/f578nfMbleU+12u/gZdn7vlMrKSnG+KqPRKK7ny7W8rKxMLGt5ebnYRdlgMIhP8lgsFrdrfllZmRhjVVUVqqurAQBmsxkVFRViDGVlZWKMer0eRqMRAGAymVBZWcmYIjSmyqwslP7yC6piY8WyVul04lAGJo0GJo3jRo1VpUKVy9jAVbGxsCkdX6+N0dHieha1GoZz3/sEAKfXr0fZuZ6158d0+n//Q8VPP8GuUKAqNhb2c9+zqmO0sJxrFDVHRaFa6xjCx6ZUoio2Fs7b1YaYGHE9k0YD47nves71AMfTlvmrV8NiscCcl4+yo8dweumSRsXkul61VgtzVJS4XnWMo6yuMZUuXYbi7MN+i6mh58lZ9xKGDWt0TL6cJwwcELCYvD1PFYVFYt3T9OsH1bmJtgNV95w3fTxeI84eheXUfpRX24GibMBuRZmyGawpXQB1NKrMAqotjiNZ7ECVQg11nBbKaDXKTYDN7vid3izACA2Q1hUmdRIqzQqgKNtxjTixH/ZCx/9Tar1GlJ9G2eavIBgrAYsBFbn7YC4+AdjMqEYMqnStgJQLYW3eG2UplwEZvYGUC1GubQ2LIhqwmWE4mwtD3l7AYoDFUInyLV+JDR21XfeaTJ8G87lhhP1d9xRpaYh+5GGP172owYODWvdih17nKF9SIuzJzaDr08cvf0/eXiNsl1wi1j17yxZQXNqn0TF5c55sfftC0749gH/qnrZTR6gu7ROU656ud28YU1PFuufPa7kv56kkLw/64zkw5+Xj9NIlQa17Z5csDUhMvpyn2r4bmdLT0GbFciQMH96oupcwfDgu+GYZLBc0d8RUz3ejsrw85E65F5bKSr/WPbNej0MPPyzedD//ule4di0qfvopoHWv9Oefkbd6da3f9+Iefwzq1NSA1D1zy5ZIe+5Zr77DGrOzcWz0jTidldWoule0Zg0O3jIGxuzDXn8vV7Vtgybz54sNbI297gnNm6PpRx9C26ljyP5fIxTqnlz//+QpJimwkcNPnBUGADQaTR1r/sO1gcFZMQNl+/btuP/++8XlsWPHYty4cfVul5+fj2XLlmHSpEno0qUL4uPjERUVhbS0NAwbNgzffvstVq5cCe25P+iSkhI8+OCDfi173759ccsttwAAioqKMHfuXPEPb8GCBThw4AAAYMOGDVi1ahUAIC8vDx999JG4D9ebcxUVFeIfv8lkQlFRkbheYWGh+MdaXl4u/vEbjUacPXsWgOOCUVhYKF5YSktLxT9qg8Eg9uqx2WwoLCwULyzFxcXihaqqqgrFOTmOFvsHHoBxx06fclK9fQdOPfgQ8p54EtbS0pCJqfTcFxmr1YrCwkIx52fPnhX/RiorK8WLtNlsdhvmrKioSDy3zmPURq/XIzc3F2vWrMHzzz+PNm3a4IUXXkBBQYF4vmuLydM4jkuXLoXVavU6pk9r6V5dV0x//vkn+vbti4EDB+LDDz/Ezp07cfbsWVgsFhiNRhQVFWHHjh1YunQpnnjiCfTp0wcXX3yxz+fJWQbneXeN6bfffkP37t3x4IMPIisrC/n5+TCbzcjPz0dWVhYeeughdO/eHevXr/fqPHlb995++20kJibi0ksvxcMPPyw2nJ5/nr2pe1arFWfOnBE/dL2te7///juaNm2Kzp07Y+LEiXj//fexefPmGtffQP49uarrPJ0fk+v2zvoCeP/35O+YXBtDDAYDvv32W/E4c+fOFY+1aNEi7Nq1CwCwZcsWfPfdd2LZvL2Wz507Vyzr/PnzcezYMQDAmjVrsGbNGgDAsWPHMH/+fHG9uXPnIi8vDwCwatUqbDjXjfvAgQNYsGCBmIe5c+eKufjuu+/E3oi7du3CokWLGFOExlT86acoTk7GTyP/6e265vqhOHOuB+6enj2x59zTx2fS07Hm+qHiej+NHIHi5GQAwPZL++BA1y6OHLVsid/OPcVpiYrCTyNH4O+vF3mM6dtzeajW6fDTyBGoPvef6o39++N4u7YAgMOdOmHL5Zc7Yk9IwE8jR8By7j9kvw0ejLxzN0sPdO2C7edu4p0f08JNm3Ds2DEcGzwYK15+Gb//fbzRMVUkJDhyfvnlONypEwDgeLu22HjuaUbXmMoWL8bX8z9oVEz5LVrgp5EjxBsUDTlPzrqn7dQRhVdd2aiYvD1Put69sTgry6vzFIi654zph1Ur3ereujaZUKemBqzuOYev8HiNyN2CY6UC5u8wA2Y9oIzC3Jz2yNM7/ru66ogVG046vjMcKLJjwW7HdzmTDZi7zYIig+Nz/7uDVmzJswFKFXbZO2JRUWfArEdFcQHmbrOg4sgfAGq5RpgNKNqyFHM36WEyVAKn92BBbiYOVKcAzTpgg7U7VhVdAMQmI686GnN3AIiKAWKTMf9YOo7pegHNOmBNWSbWFDYDTu/BscIqzN+iB/5ahrLC05g7d644TLHrde/w6dP47dproUxM9GvdUyYmImb2bMz74guP172tp/Kx69ohQat7leee7nVe9xKGDWv035M3dc/pW5PRre7tPbc/f173qmJj8d8xt2DDwIFiTN+3yfT4+XR80KBGx+TNeWo25R7xM7fdr7/i4NSpODxwgNcxAY2/7sX06oUvPvsMvz/4II4NHozN2dl+ve5t7dcPK26+CVWxsR5jOvnLL36PydfzVNd3I3WTJsh4+y38NHIE9FdcAcD7urftuutw5onHkfH2W9ibk+P1d6PFH32MxdcMwpm0NL/XvZ8v7SM+0X7+972sc8NiBbrufbZ1a63f937ZuBEtP/kE+R07Nvp7hOt5yu/YEb9dey3UTZrU+x326wULcGLiJFTq9X6pe1vatsGJiRPx96bNbt/LP/jgA7z22msoKyurUfcWrPmf2MDWmOtewvDhKHvheXx/Lr5A/V9j1qxZKCsra/D/NUKh7sn1/0+eYpKCQnDtp0wNNmzYMPz8888AgKeeegpvvPFGvdv88ssvuOEGR7fRuLg48caSvx0/fhyXX345CgoKAADdunXDxo0bkXDuj9gfPvnkE9x7773i8vbt23HJJY0b23f//v3o2rUrtFot1Go1tmzZgs6dO6OyshKJiYlQKBSoqKiAVquFRqMRJ/CNjY0Ve3I4b/g5q3nHjh3FnicqlQp2ux12u10cLsZqtUKlUkGhUMBms0GhUECpVMJut0MQBKhUKgiCAJvN1qj1DAcPIu+++2HzQzc5dWoqMj76ENEdO0oaU2PWcy2rUqmEUqlE//798fvvvwMA+vTpg969e0N5rnXdbrejsrISe/bswd69e93y8fDDD+O9994DgFrL8OKLL+Kll16qkcsff/wRQ4cOrTem8vJyNG/e3K1xE3D0Plm/fr3HmPbs2YNBgwa5tWynpaWhd+/eSE9PhyAIKC0txb59+3D06FGxzmZkZODEiRM+5dVut8NkMiE6OhpKpVJcb+/evbjyyivFxoGoqCixN0deXh5+++038SZ2QkICfv/9d3Tv3r3O8+RspKiv7s2YMQMvv/xynXV50qRJ+Oyzz+rNP+C4Aa/RaMTjelP3fvvtN1xzzTV1lqF169bilwt//z0NGjRI/BLy4osvYsaMGR7Pk6f9vfjii2L+rr76aqxfv96nvydvz5M3MdlsNrHHnkKhgN1uR0ZGBpKSkmC321FRUYGEhAQolUpUVlZCo9EgOjoaRqMRVqsVcXFxsNlsXl/L9Xo9kpKSADgaYXQ6HaKiosQGId25J+MMBoPYfbmsrAxxcXFQq9WoqqqCUqlETEwMzGYzjEYjEhISIAgCysvLER8fD5VKBb1eD7VaDa1WC5PJBLPZjPj4eMYU4jGZTCbEKpWwmUyoNBqRlJ4OlUrV4JgMh4+g8LbbYFMqYYyJQey5BsYqnQ7RJhPUNpv4ZFu02QyrSgVTdLQ4zEFVbCy01dVQ2e0wRkdDIQiINpthUasdN7erqyEAMJxbr/3y/8J6wQViTOX79uPYhPGIqTbCrlCgWqdDjMEApSCgOkYLtcWKKKsV5qgo2FQqxBiNYll1VVVQwPFkX5TFgiirFSaNBoJCAa3J5DGmTl9/hbybbvZrTCq7HdVaLVQ2GzQWCyxqNaxR6oDEZFarcfqCC9AiLw8qu71B56nVju1i3Stetw45T04LeEytPvoQ9p49kXP5FV6dp0DUPZXdjgs2bEB0YoLbNSLq1GkcnzgBVVab386TkJSIZvM+QNolvTxfI/RF0O1fDIvVDkPubiQqqoBmHVAWlYY4DaBWKlBlFqBUADFRCphtAoxWICFa4bhGmIB4DaBSKqA3C1ArAa1aAZNVgLmiEPEVh2FXalCR0gcJWgWUl05BpaCteY04uQ620/tRWVWNxJI9UAhWVCibQpvWHproaFRbBNgFIFajgNUuQG8GkrSO/1eUGwXoooAolQKGahNQfAQ6ayksiIIhuRsS43SwJnfGIUUHtG/fHlqt1uN1T3O6ACenTEFFVVWj654iLQ0d581DVPt2dV73KjZuRMm/Hg143Ut89x2kDxlS41p+eOJE6PfuDfh1T9e7N5LmvV/j86n0hRkoWb3ab9c9lc2GM2lpSCgvR5zBgLjhwxH//HO1fubmPv8CrD/+2KhreV3nqfmgQch4+60an7nFH36Eqk8+Cdq1PPm++5D75Zd+icnTeaqKiUFZkyZILyiAXamU/PPJU0zdt27x+ruR9e+/UbDqR1gOHoB9716YqgxiTIrEBNi6dUPTCy9Ck+HD3L5HePt9r+jXX3Fi+lOoiotDk5ISmKOj/V73Yg0GtPhwPmw9eoh1r3jPX8idMCFo3yO6LF6EmE6dav0OW7Z3H/6cNQvNDxxo8PcI5zUiNikJaR98ALRqWe932KqCAhwdPwGavDy/1z1FejqSF36B5HNzBRcXF6O0tBSZmZnig22e6l7e6tUwLVoM859/en3dw2WXIWXCeCQPHhzw/2uUlZVBr9ejRYsWqKqq8vn/GqFW9+T8f8L8/Hx07doVTvv27UOXLl0QDGzk8JPbbrsN33zzDQDgX//6l1etVz/88ANuvvlmAI75OU6fPu33cp0+fRpXXXWVeNOubdu2+L//+z80b97cr8ex2+1o06YNTp48CQB4+eWX8fzzzzdqn85GDidf/zCsViuOHDni9l6HDh0kH//emJ2NExMn+XWiI2Viotdjb4aLAQMGuN0Qnjlzpsf1Nm3ahLFjx4p1D3D0mOjdu3et+545cyZmzZoFALjooovEVuhbb70Vy5Ytq7dsH3/8Me67774a2/fv3x9ZWVk11rdYLOjWrZv45N4FF1yAefPmYeTIkWLDjauioiKsWLECX331Ff7++2/k5ubWW6b6WCwWXHjhheK1oHv37li+fDkyMzPFdXJycjB69Gjs2bMHgKNRcP/+/X75m3HmvGXLlujTpw/69OmDSy+9FPPnzxefEJg0aRK++OKLRh+rNllZWRg4cCCaNGmC3r17i+XIzs7G008/DcDRyJGTkxOQ43tbpz1xrbO11bNgCdVrK0UOY/ZhVPz0E6r3/gXjgYNun6fKxERoL7oQMRd3Q8LwYbVPcHwe54SgxZ99FtSxupPGjUOzu+4Sl6U4vusE1FJwTkJ8ato0VJ97eiwYYnr1wgVvvlljIt78J55s9OSrdUkYPhwZb78FADjY+cKAHccbnQ8eEB/+EekLYfzxP8h95ydYyxvf01ydGIOWjw2DdvgjQNx5Y85Xlzn+zfk/IO9PwFAMnD0MqDSOeTUU531HshqBU7XUkQt6AmptzfcFu2MbmxlI7gjomgEt+gAXDndf7+xRxyTjggCc3u3oTRKdAKR1BZQq3wO324Az+xwTn2vigOY9AIUCuHgMkNy+zk2tpaU48+prqPjxR9+Pe07C8OFIe+5Zr8dFD2a9P19lVhby7n8gYMd2avnRhx7HyLeWluL4qNEBGaNdnZqKNiuW13kepDq+Mfswjo8a5fdj1qbNyhU4PjJ4xwtFFx466P3K+kKg8ABQcRpC5WnY9XoIVhsUahWUcXFQxDcHEpoDqV2AuBSfy5IzfnxQ5uHS9e6N1l9/Jfn3rPM/611F2jW3PsbDh1Hx088w7v0L1fsP1PieHdPlImgv7oaEYTd4/T1bSlLWveYzXgja8UJJY+/lNgbvSPhJs2bNxNdnzpzxahtnzwoAaNq0qd/LVFxcjCFDhog3NZs3b45ff/3V7w0cAKBUKjFo0CDxBuXBgz58gEcQa2kpcqfc69cGDgCwl5cjd8qUer9Ey9Hll1+OFStWoFevXmLvh48++qjORg5XF198MaKiorBnzx6sXLkS5eXl9U5mtXDhQgCOnhBjx47FCy/U/eG1fPlysYEjJiYG69evR8c6vhCkpKTgnnvuwT333CP+/frCZrOJcTh7PnzyySfivpo0aYLVq1cj/VxXXKfMzEz88ssv6NKlC0pLS3H48GEsWLDArZdWQ02ePBkPPPAA0tLS3N7/8ssvfd6Xp/i80b17dxw5cgTt27vfXAhkw0pdGhoHUaSqzMpC8aef1vmfcnt5OQybt8CweQuKP/4YMb0vQfKUKfVO/ljbhKCBVrZ4saSNDFI3cAAQbzzo+vTxuZHDGB2N7Zf2Qe9tf0J7rgu9t5wTIJ8v7fnnYNi2Fdaisz7tzxvqlGRxyCbgnwYeQJpGnhoNHGYD8NcyaNN0aDN9IM4s2oiKAw3vaZ5wUTzS7rgK6qY64K9lQO+7Ac0/Y5pjy7nhFwr2AsYywFByrnEhHsj38HdutwIVp2o/oLKW/9pWlwKmSsBYAeiaAmeP1GzkyHUM44CKfHG4LKR0blgDB+DYLqUzcGqnY38V+aiKycCq7/+LEeMfRKzLGPDnU8dGI+OuK5HQyoCStfthOOLd/y0BQNchDc2u7YK4a64EYuuee9FV2vPPwfDnnwG70e5a78/nnAQ40Df8avsccE7Ae2LiRL/8H815Xbr0UDbaeDEBr7+P71TfBMDaTh0R0/uSoN3oDvTN0MZ8HoSUs0cd16Oyfx5yUwBQaaMAOIYpgtUElOY4fk5sBpJaAq36Ac3aeXUI56TvwciZc9J3qRq4nN+zamtgqqqqwqr//Q8jZs1EwvBhKPn0Mxi2b/d6/7revdFsyj1eTzIOOL7PBvJ6BzjmXksYPgzxAwY4Yly1CiNGjKjzs8dJ27Gj+PcqCALsVQYIFjMUURooY3U1vzsEia9xOEn5HT9SGzmkxDk5/KTTuTHbAODEiRNebeP65Hnnzp39Wp6Kigpcd9112L9/PwAgOTkZv/76K9q0aePX47hybTxxjuNO7s688mpA/vMAANbCQnHcy0jTo0cPDBgwQFzeuHGjT9tPmjQJgGMIJGePrNocO3YMmzZtAgDccMMNSD43bmVdnOMpAsCoUaPqbOA4X7t23n1ZdaVQKMThh5zmzZsnvn7yySdrNHA4NW/eHE888YTH7RqjdevWNRo4GspTfN5o0qRJjQYOKTU0DqJIYy0tdcxhdf8DPt+Mqd6+A7n33Y/8J6eJE2BSaEoYNsznbRSCgNiqKiga0DE9YdgNHt9Xx0aj5SPXQKnzbo49byl1GrR85BqoXW48a1pkiD+6Pn38erz6eDze0bWASQ9YDFDrjyBjRDJa3N4Guva+PSWsa5+ClmPbIGNEMtT6I4DF4Njv0bU1VxYEwHxu3imbYxgNqL2/Oe8V5/6c+zdXOY7rpC903FAUBEcjBwA0yaxZDqsRyNno+cfqPoSpeNwm5/7vVZEPJQQkqYxQGkpqL6u+ENj+GXDmAOK7ZqD13V3Q5p5MNOuXiNjWWii17v99V2qViG2tRbN+iWhzTyZa390FcV0ygDMHHPvRe/f/DueNdmU9D/r4qr4b7U5pzz8nTn7rb/U1sgCOG/6tv/zSL2VQCALi7QJazZvndS97fx4fcMTsTS//Zvfc45fj1afZlMAfx5vPgzYrV6Ldr78i5tw8C8ES06uXW6O2R2YDcGCFo0eZ83pUddbRKHtqF3DiD0evtxN/OJbPHnH8XhAc6//1jWN7s6H2Q+Tlw5yXj9KljknYG/MZ6ovSpfWPlCAVpVKJpKQkKJVKxA8YgNb/z96dx0dR3/8Df82es5vdTUIuyEESjgBJQMBAwSrEGxFBxaMqonJ41uqvtlrb77et33pU7betbf2qiPdRtNoqFaXFarRaEEEQCJAAAiYBkhCSbDZ778zvj0822SS7m71nd/b9fDzySLLHfObzntnZ3XnP5/159RWUr38XObfcgowz5g47JioyM5Fxxlzk3HILyte/i9JXXwkrwQEAHQHm9oy1U2ufAzC4j+HiOA5KQwZU2dlQGjIk/d4aTT+kQoWTEo9GcsTIlCkDw813794Nt9s9YumOr74amGza9/nR6u3txcKFC7F9OzsRkJmZiY0bN6KysjJmbQRq1yuczGq6SHTGPt1Mnz4dH3/8MQDg2LEgV/n5ce211+Lee++F2+3Gyy+/jNWrVwd8rO/Ig+XLlw+a6DmQlpaW/r9L+2pjxpNCoRg0GuXgwYP9JbUA4MYbbwz6/BtvvLG/3NyuXbvwzTffYNy4cXFZ10gM7V+qimU/vKW4IkEfvkgyszc0oGn1zVFfIGB+7z1Yt25FybPPyqq0o5xEclWx1unEjK/CH/0Q9Krig5vA52lR+oP5aPrTR3BbPGEvfyiVQYmS788Hn6dlJ/orh1/Rarr4YnSsWRN1W6EaluQ5eZCdGBdFoL2BjZrQmmA8qxrG+UrYWzph3nYE9iMnYfu2A4LV2f9UhV4D3dgc8GW5MNWUgS/KHlyuqb2BlWtq3ctKq/iWaxI9gMAmEYen77dCHdvOepfnXb7gYif/vUmMpq0sSWHtYAkZpQbgTcMTF247i4s//pIcAFsOpwBcVujsx7GgNAc4+TWQVzL8sZY2YOdrgMvO1qO9AXBawOdw4M8eDWTkQ9QYIIhaiAIHTiFCwTnAOS1AbxtL4nQeBnrbgby+C/B2vgZMv254qTB/q9p3or1p9eqYXJSlys8P+Zgr1WgGX/ykCpS/+07UZWvyLrgA1WGUrYl1++GUzZF6FE0shfJ+oJ04ARzHRTRyMBqBRg72s7Sx0W4Oy0Cy1dwykJj1JYpsdJjTAlhOsOOVqYj9tO4Fur4Fpl3t9zU/9Ir2SN9Dw5UMo0YD0el0WLBgwaDb4jmSwTuKJhG8o2h0FRXD+piK/G2rZCf0WqE00LnRRKIkR4ycccYZ0Gq1cDgc6O3txbZt2zBnzpyAj3c4HP2z2wPAOeecE5P1sNvtWLx4MT7//HMAbKKaDRs2RD0JeCh2+HxQKCwsjHt7qSaRGft0THLodLr+v4dOCD6SgoICXHDBBXj//ffx+eef4/Dhw35HPYmiiFdeeQUAKzG3aNEiPP/88yMu3/dqg8OHD4e1bpEQBAF2ux08z/dPuO1VUVEx4uuzqKgIEydO7J934aOPPkqqJMfQ/qUqufSDkHiJ9RxW7rY2HF2+XHZzWEWr7O23oczMlGxODF85q1ahOYwv/y6VCs0lJShuaoLaHeDksx8Bryr2OdHPq0+gfEURWj8yw7ynK+RlD2WqzkLBOSao1CcAcbT/E/1IgtIxI5Rr4ouyWfICfSd9HO6B+vBa1fCTPn7KNSGzmLUzKMnhm2jv+3voXBzR6l+eT1tfPAMo+5IfCSqX5bT1Yq84HpVtB6EZWi6rr1QYXHaWGGqtZ+0p1GxUiSEf4BSsbM2wBvKA7FJ2orTzCOvD8a+Bgr761/5KhQUgxYl237alSrL0Pyc7G0W/eTyqsjWauXOxZ+9eVGZkQKMJb0RYLNoPN6GQyFJl8SzRN9L7gW+JPsmTyr4CJDcBsARGRj47Jmky2HFV8LDRaI6eqJObkb6HyonT6cTevXtRWVnp9/XqHckARHei2jsvhHcUTaJ0rnsDOT+5L2gfU8VI2yoZiS4not13SHgoyREjBoMB5557Lt5//30ArMZ7sCTHX//6V/T0sBq3o0aNwrx586JeB5fLhaVLl/af0NRqtXj33Xfx3e9+N+plj2T//v39JXwADCodRKTJ2KfCJFCx5Dt6I5KySMuXL8f7778PURTx8ssv4xe/+MWwx/z73//uT1JcffXVIb+5+pac+vvf/97/5hwvoiiip6cHWi27QtF3jpyZM2eGtIyZM2f2JzmSbY6dof1LVbHsR1FREe64446QHvv5559j586dUbdJSDzRHFaJoykthdKQkRRXthpra2E66zSY//11SMtwqdWor65GwYkTIZ+gMZ01PfBJwCEn+lUZPIpumQvTvvbI50aYnDfyif4+4SZ5IjUsyRNquaY+HMcNrg8fiLdcU8cBtlxTEWvH0j4wUe6g5AgHQGSThfs5lR8xUfBZvvfPvr8TVS7L0QO7W0SdpRjj9I3QiOLgvvuUCutPcGhNLFEUyvpwCsA4GtBlA+37BxIlY04bWL6fEUR+V1eCE+1eUiZZfBlra2GsrR0yAW89hG5z/2MUmSboqqqGTcBrNptRV1eHcePGRXwizn/78ZkAOJGjaHyP+bF+zxnp/cC3RJ/kSWWvEJObgygBqHVARm7Uyc1I3kPlxm63B3+9iiJ7bxA8LMmk1Ax53wqNlPNCZNx9V9THpGQw4rZKQpw6NdZTTijJEUO33377oCTHnXfe6XcGeavVip///Of9/998880jlrYaicfjwbXXXtvfvkqlwptvvonzojiYWiwWGAyGER9ntVpx4403wuNhw/lzc3NTbhhZvEiasV+xAgCCD42VCbfbjX/961/9/wdLMAayZMkSZGZmoru7G6+88orfJMfQUlWhuvTSS/GHP/wBAGCz2TBv3jzcd999uPbaa1FUFPvto1QqByV6Ghoa+v8OtVzW2LFj+//2TpqeLIb2L1XFsh8TJ07En/70pxEft3PnzkETrf/kJz+JSfskvbGh/L0QXS5wajUUGdHX7E3EHFZFv3k8LstPNYoMdgIkKa5sPXkQBYsnwbqrEe5u24jL0NtsWPT3v4fcpipTh4LFFWzExtAkQ5AT/capxTBOLQ6/ZJPXSCf6+yS8dIyti/0Op1zTsQAnJQtnACp++O0+5ZrQcwzQ5wBNXwBlZ7L7OSU7oSe42MgKj3Pg71jxlsPyLlOhZu0CCS2XZRJ7cHfRzr62nAPJiwClwlBQHf7E5yote14opcJG0H+ifecWmP/2Bux7G2A7dAyCdWCCYoVeC934QvCVk2C67Hvgp38nvPX11wUJkyxD8YVZ4JdMB84ugNhTDcFiGRjBZDCAM44BTGOA/IHXu8lkwt133x2b9hM0AbAUo2hi/Z4z0vvB0PccyZLKviRObob7HipHfl+vljagbS9gPs5Kgrl83gvVPGAY3fe6rxr2Pp6MjEZjzI5JUor22OrhAGUCqzR7uIHP2CRxKMkRQxdffDHOOuss/Pvf/4bD4cCiRYvw7rvvYtq0af2P6ejowDXXXIODBw8CYKM47rvvPr/LO3LkyKCSOS+88ILfWvqiKGLlypV46623ALDSOK+88goWL14cVX/Kyspw++2349prrw04Mfrnn3+O22+/Hbt27eq/7Ve/+lVIyZF0IGXG3lv7csr+5LoKPx5+/etfo6mpqf//YHNqBMLzPK666io8++yzOHToED7//PNBo6Dsdnv/a6yioiKsRMrZZ5+NSy65BH/v+xDZ0dGBe++9F/fddx8qKiowe/Zs1NTUYM6cOZg5c2bUSU9RFCGKIjiOA8dx6Ojo6L8v1JPqvhOTnzoVZIJMCQztXyp6//330d7e3v//SP3YunVr1G2eOHECixcv7p8/6dJLL8XDDz8c9XJJerI3NMK8YQNsu3fBvnffsKtL+cop0E2dBtOii8O+ulSKOay8JTSkLtkkRfve4w8/qQK6ySWw7W8a4VnR008e63+/aNoClYFHyU1TcfTpbRDswvDH+BDBrkRVu1wY6d1AwStQctNUqAz84JEUYZzo5wt04C8sB451QRTzIbhEiG4RnIqDQs2BK5o5cKLfN0EQ6ET/0JJFAAru+yGsn9fB3dU77L5oqbIyUHDv/xu4YctT7HeCyjXBbgb0o9iEuSd2A3NuY/cbC1gd+Y5DrPyKsZBdoTxUoHkvgMBJFgDoPDpQ9iVnPJA1dmBC7gSWyxJFEQ5BCS3nASf4zPUyQqmwsIVaKmwkJw8CTVvAdzWBr80HavODlyrr/AjYcQAYO5fFOUrG6mIY77kQ9voxoScXq6YBY4ujbtvbd3QNHA85YPAIJreDXUHfeQQ4uhnIKgHGzoU4ahwcDge0Wm1MP6ey9lWAhot83wgi0aNoYj2aItj7gb/RFJLPRxJKctNtB5q/9P/84lkDx7wIk5vhvIdGq3z9eij0esk/Zw0liuLA67Xj0LDX/TAuu9/XfSyOefHisfTCrVbF/JiUaIO2VRj9MKx/FQBw6Mf/DwUN7SM8OnZOVuSldLxTFSU5Yuz111/H7Nmzcfz4cRw5cgTTp0/H/PnzMX78eLS3t+PDDz+E1WoFMDDaIisrK6o2n3rqKbz00kv9/48fPx6fffYZPvvss5CeH+jq346ODvzqV7/Cr371KxQWFmLatGkoKCgAz/M4deoUtm/fjm+++WbQc+644w7ceuutkXeGkBCZzWZ8/fXXeOqpp/DnP/+5//bVq1dHPMfN8uXL8eyzzwJgozZ8kxzvvPMOuvtO4oUzisPr9ddfx/Lly/G3v/2t/zZRFNHQ0ICGhob+uT4yMjKwaNEi3HLLLRFPJO3xeNDW1ob8/HyoVCpYLJb++3znLgnG93G+z08GQ/uXir788kt8+WWALy1xYLfbcemll/YnA6dPn45XX32VPniRsPXU1aFj7dqgJyWE7m5YN2+BdfMWdKxZA13N6chdvTrkK2ulmMPKO+pRP70ysSWbTquKa/mOEdv3Kd8BSxtyzpmI5gQkOXLOnTB8JIPPSApe343Sa8eg6a2TcJsdAZdjzcjAhsWX4OL1f0dGb+CkgMqkRckVueD13eyEku9IighP9A+aG8ENwA42yiGcE/1+khyqk1+i5Pvn4OhvN0KwugL2KVwKvRol3z8HqpNfAvk+V/YmsFxT//KdvaxdXRb7P2c82/6GAsB2im0H5cThyQYVD4wL87ORKLDlKVRs+Sp+oD0goeWyusUMPNFcg7sKdyDLexIzzFJhIQulVFggTiu7Arx1b9/6iyz5Z+sE57RA6bKy2zgOUOsBjYFdSa7PYW10NQEFlcCE80OaB2Sk9vnCLPDnlQA2A0RHDhs56BbAqRRs5KDW2Nd+VvTtB+k7nH1X3I/Q927DeDzx/j7cddddUX/PT/QV5YkeRRPL0RTB3g8CjaZI5HwkwyRBcjPU99BYSNZJ37u7u/HEE0/groVTkGU5xG6M4HUf1TEvzrpOdeDJF1+M7JgUo3JdsdC/rcLsx8LNNwIArhnlwWXxWTW/Ps85idoEtkeY1Dw7lMSKi4vx0Ucf4ZprrsHOnTshiiLq6upQV1c36HF5eXl44YUXcO6550bdZtuQN+UDBw7019IPRSglTo4dOzZozoOhsrOz8dhjj2HVqiDDMQmJ0AMPPIAHHngg6GNycnLwox/9CPfccw+Uysg+HJ555pkYN24cvvnmG7z55pv4wx/+0D9fgjeRyHEcrr/++rCXbTAY8Ne//hXvv/8+fv/73+Nf//oXBGH4Faq9vb1444038MYbb2Dx4sV48cUXkR1mPWGlUom8vLz+OPhOxB5q/UrfeSJstpFLhiTS0P6Rka1cuRJffPEFADZKZ/369cjIoEnQSOjcnZ1offChiK54tG3bjqZt20O6ulOyOaz6ruY3nVaAjuBPiynTafms7b6TvZKUjPIZyWCckgvT9AKYd4Y+90TYbU4vgGFy7uCSRX3t+46k4PN5lN9/AVrf/hrmbd/6XRZvs+H8DzaCD/I+ZaoZi4Klp0HVvTdwySQpT/T7nizou7KXL8xC6bIyNL3+DdwWj//lhdO0QYmSa8vAF2YNv7I3geWa+pcvuFi7XvmV7IpYfQ47geJxspO7xtHDlxUuS9/EvEoNWz7A+n90M/s7geWyjCo3bhm9G0Y12Ml0l026UmHeBNNQljZWy99hGUi8mFsG9ltfoshOADot7AS8UsOSKaYitp91fQtMu3rEyY/DaZ8DawaavgSYq5f9xKL9GPXdaD6IW+aYYORsALJC77svPyNJhonjFeWJmhMklqMpAr0fBBtNkcj5SAaRKLk5dNRqKO+hsZC0k74DMHI29no1H2QHmEQf8xLAlJWNW265BUajMbQnJGm5LqPRGF4/hvisUoHLNkf/mSpUn1cq+qtPkMShJEccTJ48GV988QXWrVuHP//5z6ivr0drayuysrIwbtw4XH755bjpppuQm5sr9aoG1djYiM2bN2Pz5s34+uuv0d7ejpMnT/bP1ZGfn4/TTz8d5513Hr73ve9Br0++rDVJD0qlEo8++ihWrlwZ9bKuv/56PPDAA+jq6sL69etx5ZVX4sSJE9i0aRMAYP78+YPmqwjXwoULsXDhQrS3t6Ourg7/+c9/sH37duzYsWPYiIn169fjrLPOwubNm8N6M+c4Dmr1wJdznh/44ut0+vnA5ofDMXDlbKijPxJlaP9S0S9+8Qv88pe/DPnxv/zlL0dM9AXy4IMP4vW+8nU8z+Pdd99FSUlJRMsi6cne0ICm1TdHfaWj+b33YN261W+dbqnnsNIcYHMu8Z27oSvWwtYcePRArOhLePCdHwFb2oGz72ftF2VBNyEftoPxmY9kUPsTC8AXZg8byVBQY4W1EXBbY9+mSg8U1FhZ+Q1vySIvPyMpVOIeFJ2rhKmsAKe+6Ia1afCJX6UgILury3//SnjkfCcThvFKoGtP4JJJgHQn+n3nZQAGXdnLZ7tRvrIMrZ+7AiZ5QmGqGYuC76qg4t3+r+xNYLmm/uUPbdeQz07QdjWxk0Wdh9mJW112dCf93A62LIAtl+NYO4a8gVJZQMLKZSkz8jHaWy7ri6fZfVKVCus75gxiaQN2vsZOaLmsrOSNs++zqbfcl9YIaDLYFb2ChyXrHD0sbh4ni3dvO5A3iT1v52vA9OtCO+knZfsxbFuZNwmjNRywe13offeKwUiSWF5RPmhOEEGA0NMF0W4Dx+ugMGaBU0R/rIjVaAp/7wcjjqZAgucjiWQeJCHAhOCBjkdBkpv9o1b7RlMEew+NpaSc9B0ALG1Q7l6H0Ro7Szon+piXIGqTEaMzTSM/0De5OlKpNAnKdSmVykEltcPVlM9hbwlQGf8By9hbAjTlcbC6rchQ04WFiURJjjjRaDRYvnx5RGVtvMrKyiAO+uLh3y9/+cuwTpaFauLEiZg4cWJUfSAkFmbNmoXZs2f3/2+xWPDtt9/iP//5DxwOBzweD1atWoWDBw/innvuQXZ2dsRX+S9fvrz/ZPLLL7+MK6+8Eq+99ho8Hk///bGQl5eHK6+8EldeeSUANnn6li1b8MILL+Dll1+G280+0NbX1+NnP/tZ/8TlofB4POjs7OyPg+8cOaGOyvB9XLLNsbN//348/vjj4Hk+4JUR3mRSMhu6neLhr3/9K37+85/3///8888Pei0RMhJ7QwOOLr8hZlc4utvacHT5cpS+/PKgEwBSz2E15anl/Vfz58zJQvNb8RvJ4JXzncyBq/l9TnzknFuB5gQkOXLOrWAnPoBBIxlUGjdKFipw9O8iBEfsZmhUaDmULOSg0vSdsPEdyTDCSArjeD2M4/Wwtzth3muGvakHtpNAL8djyxlnYM5//oMM0Q7daC34Qh6mKQbweUNGLgYbSSHViX7feRn8XNmrKhqPopWjYZrdjFOb6mE9EPp+qZ9YgJwLqmCoLgZ6Tvi/shdIaLkm+FZ9H/r+XTJnIMnR285ONLXvj2zybYDFtn0/O0GoMbDlAuxkDDB4JEOCymVZtKPxVr0SV5xfAoOlTdoRREM5rWwUg8s+MHmx4GbJuewydsJuaDyUANQ6ICOXJYUsbezEl9MCHP8aKKhij9v1BlCzMvhJdynbj3HblqZ6vNU9FVdUiTCE0ncvqUfRBFqnviu6OcsJKONwRXesRlPY+IH3A53dPvJoCh8Jm49E6nmQ+pKb3tEUQ2MWL0k56Xvf697Sa8Nb9Q5ckVkPg8I+8LrnTf63CcBO8od5zJFy7rfe3l689dZbuOKKK/x/rw+UXLWeYscfjwvsswvHRjl2HGLvlwku12WxWIL3IwTvzlGgsin4fG+x8O4c9p7h9DgpyZFglOQghCS9hQsX+k3knThxAj/84Q/75+T49a9/jcmTJ0dUTspr3LhxOPPMM/HZZ59h48aNaG9vx8svsyt89Xo9rrjiioiXHYxKpcKZZ56JM888EytXrsSFF17YP7Lj2WefxaOPPhryiAqO4wZNyJWTk9N/X2traCdITpw40f/3qFGjQu1GQhw7dgzPP/980Mfk5uYmfZJj6HaKtR07duD666/vT5b/93//N6655pq4tEXkyd3ZiabVN8e0hAPA5uxoWr0a5e++E9LJh4Tpu5rfOF4P0wQO5oOxO8E/lGkCB8N4/UDZHp8TH8asLpgq1DA3xm4+hmHtV6hhyGwGdr4OjJ46bCQDn8Oh9Ht5aHr7ZOzKJS3NBc+fHF6yiFOFPJKCz9OAPysLMFshiiKsThFdrnZM+p4IvUYBLjM/8EmfQCWTOJV0J/p9Tz4HubLXOCUXxinzYT/WDfOX38B+4FvYWl2DJmZX8Aroxo4CX5YH0+ljwRdmsjvc9sBX9gIJLdfUv0yFmrXrK3cCO0nSupddEXv8674TzntYnflwTv67HSzB4TCz/SFvEtvGBZX+rzZNULksVUY2yjIFqAoqgbbtyVEqzOvgJnZy3WUdOMmvNYUee07B4qXLHoh9az0w5rSB5VcuCfx8KduPcdsqWy/KFCeg8uQDDm7kvgPSj6IZKsHlsmIxmkLp8SCvrQ1Kjyf4aIoAEjYfSRIkN72jKZxf7+qPWbwk5aTvQP/rXuWxoUzRBhVcg1/3wUbuAWEfc4aOokkU/axZUKlUKCsr8z+XZaDkqss6cAzq1zc/R28buyAgweW6gvYjRDsmKPBZpYgz98bvM/6/KznsmMCSHBplaKXCSexQkoOQOJIyY1/42GMJa08qo0ePxquvvopTp07hH//4BwDghz/8IRYvXhz2PBa+li9fjs8++wxutxv33nsvdu3aBQC47LLLIq4BGY4zzjgDP/3pT/HTn7Lh1Xa7HV9++SXmzZsX0vMVCsWg9Zw0aRI++OADAMDRo0dDWsa33w6Uxpg8eXKoq54QihgMjU8GQ7dTLJ04cQKLFy+G1crqzVx55ZURl7si6av1wYfiMhknwEZ0tD70MIp+83hclh8RnxMABd/lYD0mxq9k03d9TnR72/U58VFwphLWZlf82j+z7wSz98SHn5EMfL4W5SuK0PphB8x7I5+Q1FSZgYLzctg5HPPA8llT4uDfPu2PNJKC4zhkaN04R7vXe0vwFQlWMkmqE/1fPjeQYAnhyl4eAD/DDYx3QxQBwaVgeZq+1ecydYDCDgiNQPOQ9v1d2Xvp/7H7ElSuCRn57ARo1ligeunwx004n60HwK6Iba1nJ46OfcXqzPu7ot6XKPRdWXu470p8FVuOWg9oDWz5/iSoXBavVqB2eimQW9y3vklQKgzonwsGoshOrntP8kcyikalZc9r3cO2XXsDMGb68LlgkqX9OLTNt+5BraIJ6OwE+BH6Dkg/imboukhULiva0RQalwvVe/aENP9XMP7nI6mH0G3uf4wi0wRdVVVk85EkSXIzZ9Uq2G69DdV79sS27SGSctJ3n9c939mA2kxLwo45UsxJwvM8amtrh985UnJVa2T9U6jZMUgU2L5kLGSfVxJcritgP8L0/PkKVH7rwaihOZwYOGUAXjh/4HitV1FJ/0SjJAchcSRlxt7bttwpFAqsXbsWkydPRm9vL06dOoWHHnoIv/nNbyJe5lVXXYUf/OAHsNvtePHFF/tvT2TptgULFvQnOQDg+PHjIT9XEARYrVbo9XooFApMmTKl/74dIe6HX331Vf/fvs9PBvPmzUNPT09//1LV0O0UK3a7HUuWLEFzMzvDdfrpp+Oll16iSc9IWHrq6uJ6hR3A5ugwLboYxhh8YYkJn9eIilegZCFw9D0Rgj2GJZv4vpJNvM9r3tuuz4kPlbqvZFS82lf3lYzqH83gfySDSqdG0SX5MFVa/c6JEczAnBh9X/C8J1v8lSyKcCSFQ1Rhh7McMzSHoeUC1C33ClQyyTs3Q6gn+iPl70S/pe/kTgRX9nIch7AuEPR3ZS+fyWKQoHJNMBSwZeSM9z/xtUbPrgLd+Rr7f8xpAyddOg4AXUdDu6IdYCdf8yaxE7Fqni032EnXBJTLcrhF7DiVhRkOB7RA8pQK85kLBk4LO6GVNzmyfgPseXmTWXLKafE/F0yytB+Hth3Zk7HjQDNmZLRCO1LfAelH0XglQbmsaEZTqGbPwrELLsC4K6+EShv9yAi+MAv8kunA2QUQe6ohWCwQ3R5wKiUUBgM445i+Ul1hJlOSJLlprK0Ff/HF2HXwAMoPfQO1e4T30AiENOn79csgmHti1qbCZBy5TJnP695ht2FHbyFmjC6GNgHHHCnmJHE4HNixYwdmzJgBrfe1MVJy1W+5LiW7UCO7lH1GiFVyNUR++xGCjUs3AgB+8ulPsLN9Jyx6Dg9drcQDr3lgiGGVNgsPPHS1EhY9e4+dkT+Dvn9LIHXPDhGSQkwXX5zg9pK7TE+sFRcX4+677+7//8knnxxUbilcmZmZWLx48aDbCgsLcV4Ca8b7ThYOIKw3clEUYbVa+8sUnX32wAmJhoaGERMmx44dw4EDB/r/P+ecc0JuOxGG9i9VxasfK1aswNatWwGw/Xb9+vVJN3k8SX4da9cmpJ1Ta59LSDsh8V4ODwBKNSvZdGU2VIbYnHBUGZQovTIbfA7nv2zPkBMfrGRUQWzb/14Ba3/oiY8hfQcwcKUp2JwYpdeOQfmKIuTMMSKjCFAMeVtSaIGMUi1y5maifEURSq8dM5Dg8F2ev76P0H4gTlGFna4yOMUQrtsK1L4ui/3kjGcn4A0F7IS8vYuduFPx0f8oNf5P9HtJOfE5wMo1AcPLNcWCT7km6PvKZ+ZXBX68IZ9dBao1sATFmOlsFId3vczNQPs+oGUbK7nVso39b24eaCe7nD3PO4IjlKtKveWyOI4lRxSqgXJZbkd4fXY7Bq7q9SmX5RxVgZ0HmuF09sU9wv0+LCOVCvMzFwyyy4afXHfbgSP/9v/jb4SPSsu2A8CWK4qD54JJhvbj1LaT02CnfQycgiJ434HgI0nCHUXkvaJca2LLaW9gy23dy9oJxntFtzfZcnwnu0Lb+5oyFQN5U4CiGqDkO+x33hR2u/e12XmYPc9lZcvZ+VrExxFjbS1KX30F5evfRc4ttyDjjLlQZGYOeowiMxMZZ8xFzi23oHz9uxj95JPYZ7EMvL4idfIgsONVNtLu6Gag8wg4twNKXg2VgYeSV4NzOwbKdH25lj2+41Boyx+W3IRPMjJGQkluAsi6+y4cmTgRbnXsr30OadL3oiyU/vBCqDJj8z1FlalD6Q8vBF+UFfhBQ173TkHBXq9clGWFQj3mgY2iSQTvKBqn04mdO3cOfm0ESq4WzmBJ05ESb97kauGMgWNOa/3A6//gppj3x28/QlBkKEKRoQg1o2v6b2vK5/CL65Q4FaOpR08ZgF9cp0RT/sDrrKagJsgzSLzQSA5CEkCKjH26ueeee/CHP/wBPT09sNvteOyxx/Db3/424uUtX74cb775Zv//1113XUJHDXz99deD/h87dmzIz1UqlcjPH/gyP3HiRFRWVmLvXjb0/KWXXsJPfvKTgM9/6aWX+v+eOnUqxo0bF3LbiTC0f6kqHv341a9+1T9HjV6vx/r161FYWBjTNoj82RsaE/J+BQDWbdtgb2wcuIETATGBVz152wtwNT9fVIjy/xqN1rd2wLzt2+DLCsJUMxYFV8yAynmCzYkwtGzPlqf8XtXN56piWzJKIwA93uX3+c4t7Mt5CCMZ+GKAn8H+FkURgsMN0S2AUymg0KqCX7E2UsmiCEZSGAHcCgAI4WKSkdpP0LwMg070H93M/pZ64vMElWsCx7F2Rpqg2JDPrgL1ls3JLGbPD7Vsjnc/DLdsTpzLZRmnLsStp/etS7gjiGJdKszWxe4PMhfMsPaFAFd6B1q3QHPBlJ058Bgp249T20YlcOt0AMc8gMs5vG3fUUxSj6IBkqtc1hB8RUX/91pRFCH0WiG6nODUGigy9IPec3gAt956a0TtAEhcqa5kmQcJQHZJCW5ZthRHP/oQsUyzKPRalPzh18FHU/Ttd3yBHuX3no3W1/4N897IR3SYKo0ouO4sqEbp/e93AY55RrWGvV45B+D7Mo/1McfndZ/oOUmMRuPg14bUJQpH4GxuwaEAF5eu+PBDaCIs93xR+UVYu3vgIq6mfA4/WqnETZsEnBXFHB3/ruTwwvmK/hEcvu2RxKMkByEJkrNqFZoTcNIoUN1LucvOzsb3v/99PPLIIwCAZ555Bvfffz/y8kb4Ih3AggUL8OWXX/b/P2FC+G/QXr/97W8xbdq0kEeCWK1WPPzww/3/FxQUYPr06SG3J4oiPB4PlEpl/4f/22+/Hd///vcBAL/5zW9w0003oaCgYNhzT5w4MajU1x133BFyu4nir3+pKNb9eOutt/CLX/wCACtj8tJLL+H000+PerkkPTibW/r/7ly3LqFtd657A+MfvBwAcGzNP2D7NvKT+eHSlRhQePOFA18+/ZTtUeVORNHKWphmN+PUpnpYD7SGvHz9xALkXFAFQ3UxOwHavD9w2Z4AJz5UOn3sSka5+q5I9z3xYcgPr2RRHw5hnJMJpWRRmO0DgCCKMDsAkxZQBDuOhtK+lCf6pSpb5HsyIwHlmgCwiYlDodGzEjv5VQMTIGfksp+RRDoBcpzLZQkqHuauLphMJiiCHHMC7veKAF/dvSOGhgq233/MPi+HMhcMALYdzccCxy7QuvmbC+bE7oH7pWw/Tm0LImD2aGBynoLCaR7e9tn3sweGM5Kk+Uv4VTxr+Lb3XlHecYAt11Q0cEW5vwRjspTLGqkZAEpeBWg4v8ckQRBgNpvZ6yvcC9MSVapL6uTmEILdAnvHFyj5fxeg5U+b4O6OvnaPKpNHyZ3ng7duA5ynBU74+Ox3KssBFF2SC9O0XJzaZoH1oJ9RTwHoJ+QhZ5YBhrEALAcAo35g+b773Zan2O8hr3tBY4L56G6YlE4ofN+KY33M8b7u+yRyTpJhr41kSK5GQOA4dPX0IFcQIrr4tCK7AjPzZ+KrtoGy3BY9hz8uUeKzKgFLtgiobAp9eXtLgHfnKPonGfd1esHpmJg9Mex1JNGjJAchCZLojH06uuuuu/CHP/wBvb29sFqt+N///V/8+te/jmhZSqUSNTWxGWK4detW3HPPPaipqcFNN92EpUuX+k0wAMAXX3yB73//+9i9e+AL4H333RfWG7nH40FbWxvy8/OhUrHD/M0334zf/e53OHToEDo6OnDRRRfhb3/7G0pLBz5QHz16FJdddhlOnToFAKioqMDKlSsDtlNXVzeoFNbHH38ck8nARuKvf6kolv346quvcMMNN/SXvnrggQdwxRVXxGI1SZoIdMVUInS9/jrGPLUcEEXoi7QJTXLoi7XQjMoYuCHI1fzGqcUwTi2GvaUT5m1HYD9yErZvOyBYB06CKPQa6MbmgC/LhammDHyRz1WMwcr2hHDiw1gMGOcD9mPdMG//Fvajp2Br6hzefkk2+NJRMJ0+Fnzh4PIefk98eE+wSzGSwVcE7ZsdwBNbXbhrthpZAc71hNw+IN2Jfqmu7PWd1MNbrql1Lzs5f/zrgXJNoZ7s9HI7Bk52+pRrQkFl+ImH3Ansx9IOtNUD5uPsxKLL52ScmgcMo/vq41eNPFIkGG+5rF1vsP/HTB98wtM8dEb3IXxPeHIcK5fVd8LT3NWFJ554AnfddReysrLY40Pd71U8UHZWeH0Zab+PYC6YsPmbC8Z7NbyU7Xv/jkPbZo8GTxybgbvyNiML5uFtSz2Kxje5m+RXdMPSBrTtDel1b3arh7++Qm0j2OTLoSQ2Q518Werk5hDm3e/jic+6cdcMLcpvLETrptboR42eXwBVvnagZJG/BFeA/c54VjWM85Xsc9bWg7A3HIat1QnBPjDORMEroCvNA1+eP/A5S/CEtt/5OeaYORN7vRbuQJYqylJnQPBjju/DvHOSLF8Oobs7+nb7KDIzh81JYjabB14bKmdoydVwhZtcjYBNr8dTb74R/mvcx8qpK/HVv74advuOCSxZUdIu4rt7BUw4Bow7IQ6as8PCA9+M5nCwEPi8UoGmvMAX16yoXhHR+pHope7ZIUJSUCIz9ukoPz8ft99+Ox5//HEAbG6Oe++9F6NGjZJ4zZht27Zh27ZtuOOOOzB+/HhUVVUhNzcXKpUK7e3t2LlzJw4fPjzoOZdddhnuvPPOsNrxlkFSKge+nKjVarz99ts488wzYbFYsGPHDkycOBHnnnsuioqK0NzcjI8++gguFzsJYjKZ8Pbbb8c0ieBvNMq33w6Uf1m/fr3fx+zcuXPQ//76F6pVq1Zh25BJDL1JHYDNR+JvHdauXRuzpJdXNP0Y6o9//COsVisAwGAwoLW1tX/kzkj+9Kc/Rd0+kRYr4dAL0eUCp1ZDkZGRcqOcRFEEJ3pgmqJDx+bEtWuarGPzIXiFcDU/X5Tdn7wYKNnUNxlpoJJNI13NH8aJD34sD35sQXjtA4FPfITR94iEWrIogvZNWuCu2WqYgq1eOCWTEn2i35vcAqS5snfovhLnck2YcH7g547EkAcYavvaEfsSQR520lGp8VtvPvK24lMuy2Qy4a677oLJZBrcllSvO6nmghE9AKeStn3v33Fo26R04q7CHTDBAzj8tB3givKEjWLxvaI8lCu6wxlJEqsruk8eHBjBFYjLzl4rfXNjmEzFuGv5pYNfXyORqlSX1BcVAMDJgzD1HMRds1QwnaqHghdRdMUEmNqzcerDfeGPWj1vCgx5naEluEbY7/iibPCXTAVm2NnnHKcI0SOCU3JQaDhwJbMj2+/8HHNMag97vSpjkOAAgh9zhuAnVaD05ZfRtHp1TM4PqfLzUfLss+AnDS5dblILuOuWm2BSC8C3EiRXpyyKum8AoLNacdtVV4f3Gh9iXvE8XFR+ET44/IHf+5vyOKyb33f8E0XwTkDtAVxKwK5BSJ81FpYvxLzieRGvI4kOJTkISaBEZuzTEcdx+PGPf4z/+7//Q29vLywWC373u9/hV7/6laTrde6552Lr1q2DEhiHDh3CoUOBJ6jT6XS4//77cf/994edaOA4zu9zTjvtNPzzn//Eddddh8OHD8PlcmHjxo3DHjdu3Di89tprqK6uDqvdkQydZ2Sozs5OdHZ2jricQP0LxcGDB4Ouh8vl8nu/xWKJqL1gounHUL6Tl1ssFjz55JMhP5eSHKnJ3tAI84YNsO3eBfvefYPeUxSZmeArp0A3dRpMiy5OiXmaBIcbSjXA52mgK9bC1hzmRL8R0Jfw4PM0w6+wC+Nqfo7joOTVAIKcHAunbE+YJz5Cat8rlBMfUpcsCrN9BccFH8ERScmkRJ7oj6Rcl4oHxp2NsIyU4PKKc7mmSOvyD8Nxsb/if6g4lMtSKBT+rz6V6nUn1Vww3nalbj9ObSs4sKulhRH6LuUoFiD0clmRtBvpFd1RzIuhMDcjy9wM2I6EPhePVKW6pL6oAACatrD3UGcL4BpINBjHaGGcNjb80RQA4C4YOdEQ5n7HcRyU2hCS2KHsd36OOQqFAlmKGCU4gBCPOQP4SRUof/cdtD70MMzvvRdxs6ZFi1Dws5/6PR+k2PoMsrz/SJFcjVGSQyGKyDIao54n9aezf4rtJ7ajzTZCYonjYNcC4RRxy9fl4/7Z94/8QBI3lOQgJMESlbFPRx6PB6Io4pZbbumfdPyPf/wj7rnnnoiHNMbC6tWrsXr1auzZsweffPIJtmzZgv379+Po0aPo7u6GKIowGo0YPXo0pk2bhrPPPhtXXnklsiNMWnk8HnR0dCAnJ2fYKIG5c+di165dePnll/Hmm2+isbGx/7EVFRW46qqrsHz5chgMhlh0PS6C9S+VyKUfJLF66urQsXZt0InBhe5uWDdvgXXzFnSsWQNdzenIXb06qcsZim4PoGEfS3PmZKH5rdCvIIxUznf6SjkNvSpLyrI9Up/4kLpkUZjt9zhEvLbHjeuqVTAOPQkSackkqU70J8OVvUBcyzWlpBiWy+rp6cFrr72G6667DkbfiVOlet1JNReMt12p249T2z1uNV5rn4TrcuphDNS2lKNYpCyXFexkZ5TzYvToSvDa0VxcV10PY7B5MbykLtUVSnIznDJ14ST1+xINPXYBr+0z4LpcNYwFZYOONWGPpvDGIVCiwVsqUaoybYDfY06PW4XXOqpwXV4DjCqX/+WGI6RjzmCq7GwU/eZxmBZdjFNrn4N1SNWBYPQ1NchZvSroZ/z+z0pVShilLFEYAntDY8C5AW06Hk8/+SdckpOLMYsvifgiriw+C0+d/xRu2ngTzE5zRMvwx6Qx4anzn0IWnxWzZZLwcaIYJK1IiITq6+sHXUm+Z88eVFUF+ELmh9vtxoEDBwbdNnHixKSp4e/u7Ixrxj4dCYIAq9UKvV4fdYY/lck9DnLpX6r2I9mPrXLl7uxE64MPRTWvU7D3jH2Tp0SzelGr+N01UGpV7Muo4ELLX7+F+YD/4f2xYJqoRNHlY9lJoJLvAOcMKffotALbnmMnWwaVsFBFdzW/1sRO+gYqYQGwEy+7/8K+FB7f2XelXYQnXoDBtao1BnbiheOAaVf5P9kvZd/DbN/hFrHjhIAZoxXQqrjYtO8Vzgm3oSI90b/jVXZCqLuZrb9C3VeCKsoE17GvWCyyy9mVtVklwIxlwZ8XxRXVgco1yUaE5bIcDgd27NiBGTNmQKsdsk0T/br7+BHWj75jLnpOsD5l5LLtOVSwq3pNhYGv6nVZgd6TLEbG0QPHXO+cHFK1D8StbYegxA5LHmZoj0Jra/Xfd49roGSPd+SYqcj/MT7SvguegSvls8ay3yVzBk42+7uiW+fnO2Wk7Xuv6NYY2BXdfBZwzev+HxuDeTEcghI77EWYUZ4Hra4vsexvXgyvUI634U76Hu7xdu+77BjrsrLkZrgjSXzb9U1ujjmN7csFlYNHkngTXEc+A5q/hKPnFHZ8a8YMUye0xacNP8a47cCxHf7bDFQeURTYczxOILeCvScUz2L7GyDNfjd6at+6DT/mOHQF2OEoxQxDO7QKn8+dsT7mDP2cGYS9sRHmDe/DvnsXbPV7h43W1lVVgp86DaaLF4Z0ot+x6WH2WSlfgPaY97jTBEAEjGP8z/8Vaf89LqDnOIC+i2kA4Pq/jbg/h3IRl0ulwuHx41B+6Buo3e6oL+Jq7GzEbZtuG3lERwjydfl46vynUJFNFx4D0Z/LjQadkSBEIvHO2KcjhUKR1CMQEkXucZBL/+TSDxJ/9oYGNK2+OerRf+b33oN169YRR/9xChGikLg5PTiFCMX8O9mJn755CQouM8H6f3vgtsQ+0aEyKFFwWTVQPImd+KleOvxBUpbtkXo0hdQli8JoX6vJwJwxSkBwAr0xLpkUp3kZgpK6XJivOJRrko0Iy2VptVrMmTPH/52Jft1554ORYi4Y32OulO3HqW0tgDkA0CkAPcrhbW95SvpRLFJPOu8rRvNiaDuPYI7+W6D92MjzYiRLqa5Ez4M0ZD4YrfUU5ogWwJ6AkkWjp0q73829nf0/5HWvNRZiTnYJgJLBy4nXMS8EfEVFf/KCzbtnhehyglNroMjQhz3vnlbFYU6xEvAIPrcmsESgEPizfDgXcandblQ0NPb/b9u2HU3btkd84W9FdgXeXvw2Htn6CN4//H5Yz/W1sHwh7p99P43gSBKU5CBEYsbaWhhra2FvbETnujfQ9br/K1x0M2dCP2tWyBn7dCQIAnp7e5GRkZFSV8bHmtzjIJf+yaUfJL7sDQ04uvyGmM3j5G5rw9Hly1H68suDEh3jH7yc/SGKOLbmA9iawqlAGx2+SAdOl8VOfPTNS6DKL0LJVSdx9PXjg+pAR0vBK1By1Wio8osG5iXwnRfBl5Rle6SeAFrqkkUhtm8XlNhiHo05phPgfa/AjFXJpESf6Jc6wRVonWJUrind2e12bNmyBXPmzAHP+zlBlsjXnfe4J8VcMJHMRQMEPqGq4gNfUR6s/Ti1bXeL2NLsxhz0gA/UNqdkJ/EFF7uK2uMc+DtWvOWwvMtUqFm7gHTlsjzO4cexGM2LYVdnY8vBk5ijPwo+0LwYUpbqKjtz+OcNKS4q8Ek02F0CttgrMUd3CsGmtwpboESDlGXaArzu7b092NKrxJxiFXjVkORBrI85EeA4DkpDBoCMiJfBjkkezCmEz3ZOYHI1wEUa4V7E5VSr0ThpEioaGqBxDZQWC/UiLn+y+Cw8Ou9RXDzuYjy/53lsbw08kmSo0wtOx4rqFTTJeJKhJAchSYKvqEDOihUBkxyFjz0GTXFRgtcqtYiiCIfDAb1eZmURwiT3OMilf3LpB4kfd2cnmlbfHLMEh5fQ3Y2m1atR/u47/Vc9aXL6RhUJbuiLtAlNcuiLtQMnPnzmJeBHG1B67Rg0vXUSbnP0E5GrTFqUXJELfrRh5HkJvKS4mh+QfjSFlH0Po3233YkjDhNq0A5odPErmZTIE/1SJ7gCMeQBhtq+NiIr15Tu3G43jhw5gpqamsAPSvTrTuq5YEJtP5y5CUJtP05tuwXgyCknajLdgMZP21KPotnylHSTvg+9ojuG82K4FRocceehRt0JeDr9z4sxZCRDQidfPrEbONvPhMSJvqjAJ9Hg9gg44slDDWcJ3ka4AiUapNrvfNsd8rp3O9040u1ETWEMTo2GM/9VArkF4Ei3iJoxEiVXlZphD4vkIi6PUon2/HyMP3gQ8ElyAIEv4grVvOJ5mFc8Dwc6D+CN7c9j72fr8c1oDr26gc82GTYRE0dXY9bYM3BR+UWYmD0x7HZI/FGSgxAiG0qlErm5IVxdKXNyj4Nc+ieXfpD4aX3woahLVAXibmtD60MPo+g3jw++QxRhqjSgY0tsEyvBmKYYBk58DJl4m/ccRvlNxWj93AXztm8jb6NmLAq+q4KKF4NPvO2PVGV7pB5NAUhfsmiE9g0AbhwHAH7WJx4lkxJxoj8ZElwjibBcU7ozGAy48cYbR35gIl93Q4656DwMdB5hSZNo54LpPMz+DnbMlbL9OLVtUDhxY+4udoLcVD687TiPJAEw8hXlUpXLGpq48M5LYm5hxziFmo3g8H1ciPNiGDQcbpyuAdwTWVLYaWHLzSxm7Xgn/5ayZFIgiUxu+qyHQWHHjRmfAKoixHTbB0o0SF2mDRj2ujd0HsaNubsBxQywYnMRCvWYJwHDvNtxo3ewwZ7RiU+uDvlsFOlFXDq7HWd/9FHA+/1dxBWuidkTccPYK2BZ9w5EAHYN4FICag/AOwHj+h+jpOL0iJZNEoOSHIQkEU1xEabs3weAXeXtdruhUqnCrruYrihmjNzjIJf+yaUfJD566uqimmQ8FOb33oNp0cUw1tYO3Mhx4PM00BVrYWuOfvTESPQlPPg8zeATGkPmJVDBgqKF2TDNGodTH+6D9UBr6MufWICc86bAkNc5MPF2OPMS+JKibI/Uoymk7HsI7XscNrRbReTpOSi1usSWTIrnif5kSHCRmPN4PGhvb0deXh6UyhBO6iXqdSf1XDBSth+Htj1t+9Fu1yAvQwdlsLalHMUiVbks3yu6YzwvhkcQ+94PNFAGmhcDkLZkUjCJSm76fOfwiAq0C0bkCSKUsRxQESjRIHWZNi+f173HchLtvR7kte2HcrQE818lgEdjHHjvkSK5OkSkF3F5FAqYTSaYzGYoBf+lbANexBUBDoDOCeiiXhJJJEpyEJKkvF+E8vPzoVLRSzUUFDNG7nGQS//k0g8SHx1r1yaknVNrnxuS5GBfQHPmZKH5rdCTCZHK+U7m8BMfAeYlMOYBxh/Uwt5qhXnbEdiPnITt2w4IVmf/UxV6DXRjc8CX5cJUUwa+QB+beQl8Jbpsj9SjKXxJXbJoSPs9HW145smncdcdtyIrJ19eJZOSJcFFYqanpwfPPPMM7rrrLmRlZYX+xHi/7qSeC0bK9uPQdo/VjmdOzMBdM9zICta2VKNYpCyXZfe5cjvG82L02IFnvlLgrpkCsgLNiwEkR8mkYOKd3PRJNPRwRjzTewHu0m9GViy/ivhLNMz9PtsXpSrT5svndd9jqsAzh1S4q3AHsqSc/yqQGBzzB733SFyiMJqLuOw6HTZdtAAXr/87Mnp7Az7O70VcJG3QWRVCkpRSqcTo0aPpCu8wUMwYucdBLv2TSz9I7NkbGmHbFvrEd9GwbtsGe2MjeO9JDwAwFsBY+C1M+zfBvKczbm2bpo6CYf58v0PZg81LwGeXg198GsApIIoiBIcbotsDTqWEQts3Mso7L8Gx/bGdl2CoRJbtkXo0xVBSlyziOGTm5OO+++6DVquVV4LDK5kSXCRqmZmZA/trpOL1upN6Lhgp249x25lqFe473Q6t3jhy21KMYpGyXJZ3Tgwg5vNiZIrAfcVKaNs97BJsf/NijJ6aHCWTQhGP5OaQBFcmfwj3GbZAaxoNjIpzokHfVz5IyjJtvvpe95miiPtO74H2pDD4dc+bAvfd21Y85r8C2HLb9sbsc96g9x5v0lOiEoXRXMSl7+3FpW+9DfWQ+Tj8GXYRF0kblOQgJElxHEcnP8NEMWPkHge59E8u/SCx42xm5Ro6161LaLud697AmJ//98ANfV9AC648HdYjH8NtGaHEQgRUBiUKrpgZcCh7qPMScFojlJoMQK1kXzKt3Ymbl0AqUo+mSCIcx4HnA5xkkZNkS3CRiCT1/ir1XDBSth/jtrm8SeBDbVvKUSxSlMs6upn9HYd5MTgO4DmfzyuB5sVIlpJJ4YhVcnNIgoszFoC3nwIcXYkrWSTxSIJ+fa97budr4DkO0Ax53Ss1gKnY/+vefDw+nzNPHhy4oCEQl50lJTqPsDiGcEHDsPceiUoERnsRFwdAE0KCA/C5iKsi/EnISWqjJAchScrj8eDkyZPIzc0NrW4voZj1kXsc5NI/ufSDsPlVhN5eiC4XOLUaioyMiBJYh847Lw5rN7Ku118fnOTo+wKqyhuDku+V4Oir30Kw+699GwkFr0DJ90qgyhvT116AL6A0L8HIpB5NITGz2Yznn38eK1asgMk0wlWXckAJrpSW9Pur1MdcKduPYdtmJ/D8VjdWLF8CUyhtSzWKRcpJ3+MwL4bZrcHzrZVYUbAXJpXT/7wYs1ayviVDySQp9X3OMytH4flj07Eify9MiUo0SLnfDWXIh3n8Ejz/8mtYcZoOJqk+ZzqtA6UpAfb+Hmppyq4m9hOkNOWw954EJ1djdRGXVafDR+edh3M+/BB6m23Ex3euewM5K1ZAU1wUVbsktVCSg5AkxXEcjEYjXekdBooZI/c4yKV/culHurI3NMK8YQNsu3fBvncvhG5z/32KTBP4ykropk6DadHFEVxFJGJQiYO4EyGK4sC+6PMFlJ8wDqXXutD05omYjOhQGZQouWo0+AnjQv4CSvMSkEB4nkdtbW3yXh0fT2me4EpFKbG/Sn3MlbL9GLXNF05CbW4x+Jzi0NqVchSLVJO+x2FeDF7hRm1mM3iFe8jyfNrSGlk8kqVkklT6PufxHd+idowDvOhObKJBqv3ODz6nGLXnXghe0wx0NCT+mGdpY8lVh4W14U2yuKyBy7SZCtloTt8kS+telrjzk2Tx+94zUnI1huW6YnURl9rlQtWePSGVqwLYRVxdr7+OKfv3xaR9khooyUFIklIoFNDr6WRMOChmjNzjIJf+yaUf6aanrg4da9cGHW4tdJth3bwF1s1b0LFmDXQ1pyN39Wo2/0RIEp344iD0WqE0ZAzc5PMFlC9qR/kKJVo/MsO8pyviVkzVWSg4xwRVZmZYX0BpXgISiEajwfTp06VeDUJCkjL7q9THXCnbj0HbmpzxmB5uu1KNYpGqXFYc5sXQKARMN5wcuMHfvBjeE+jJUjJJSiVzoOlqwvSyHOC43n+iIZxSZeEkGkLZ70JtO8qJvzUaDabXzAYwe3C5qEQccyxtLLnpsrOkhje5CbD9R2tksVCoWQJOFNiIJGMhS6R5nCzJ0NvO+g2w5U2/btBr3+97z0jJVU7Bkjz+2u88OtA+kLCysGq3G+WHD8d8uUMpCkfjqvv9nyrfWBiDYwSJK0pyEJKkBEFAT08PjEYjFIrormxJFxQzRu5xkEv/5NKPdOHu7ETrgw/BvGFD2M+1bduOpm3bYVq0CAU/+ylU2dlxWMPoiC4nAJ8kx5AvoCr31yi6OBum6myc2maB9WB7yMvWT8hDziwDDGMR0RfQQetE8xIQHzabDZ988gnmz58PnU4n9eoQElTK7a9SH3OlbD+KtiPezlKNYpGiXFYc5sWweZT4xFyE+aYW6JQe//NiKDXs72QqmSSV3AmwZVfgk217MX/MJOhOJnA+GEC6Mm1DDHq9JvKY47SypKbL3hf3+r5+qIHsMjaSomXoBVVKtj9nl7KRR5Y2tt86LSxRVNCXTNv1BjuW9B0DAh6TgiVXXVY2UszRM3zdlRoW7wSXhXVoNNhbXYXKPfXQOp1xaYOkPkpyEJKkRFGEx+OBOGg4LwmGYsbIPQ5y6Z9c+pEO7A0NaFq9Gu620E/s+2N+7z1Yt36BkmfXgp8UqIRVoktVMZzaz4kFP19AjaVuGMuzYHdMgLm+B/ajHbB92wHBOvBlQ6HXQDc2B3xpDkxVRvDak1F9AR2G5iUgfQRBQFdXFwQhdnPGEBIvKbu/Sn3MlbL9CNqOajtLMYolkeWy5tw28HeM58UQnECXjYMwpgDQwP+8GL7bK5SSSfEayZAkhNJ56PpPAwSVLvGJBinLtPnGwN/rNRHHnIObWIkql3UgwaE1DSSYgu33ANsuxtEsMedNMLXWszh6l1+5JHAf+/saILnacwywm1nfPS70fz9Rqtl2MRQkvCysyHHozciASJ/zSRCcSGdXSJKqr69HdXV1//979uxBVVXoQz09Hg8aGxsH3TZhwgSo/Z3IIYQQEhKn04lDhw4Num3SpEmyHY1ib2jA0euvh2D2cyVThBQmI0pfeXVYomPf5CkAJ7IR4Z7EfYDnlCIm7dwJTu2ntvRIQ+kz8iFqDBBELUSBA6cQoeAc4JyW4F9AhwylJ4QQQsgQiRzFEmhuAI9z5OdGckX3N3WsZFTvSaB9H1tG8azhJ9XddqD5S//LKJ4VeF6M5i/ZuudNYUmi0rnAuNrBj9v7Ljux67KyK+GHnmgO1dCRDGNOY593Cir7TzQnrRA+50WUaAj1c16i97tkcPIgsPsvrL/Hd7J4a02DE2zh7PeCh43AcZjZdhgzncVj6pVsZEo46+VNroYqhOTqvslTQl9eHIQ7J0eLpQUL3l7g976NSzeiyEATmY8k2nO50aCRHES2/J1ws9lsKZPkEEURTqcTGo2GJiYOEcWMkXsc5NK/VO2H1Wod9D/HcSm1/uFwd3aiadWqmCY4AEAw96Bp1UqUr18/qHTV+AcvBwQXjq/5J6zNjpi2GYyukAcnBrjiNIQ64RyCVNFO1S+gJCW43W40NzejuLgYKhV9rSHJjfbX9BDT7ZzIUSyJLpcV43kx3IKIZrOIYhMHlffk+0jzYiRJySSpuN1uNJ+0orj6aqj2vs1uTNR8MF5SlWnzjUGij8tNW9hvcwvrn0LNEmuRTLoOsOflTWb7rdPClptZzNrJnRB6H6UuUTgCj0KBjtxc5Jw8CWWqjYgkCUOfrohscRwHvV4/6ITcqVOnYDQaU+KEnMfjQUdHB/Lz8+mLUIgoZozc4yCX/qViP9xuN06dOjXotoyMjJQ4pkai9X8egLv95MgPjIC7/SRaf/U/KPrt7/pv0+QYAMENXTGf2CRHMR/8i5XEX0AJCcRiseCll17CXXfdhaysLKlXh5CgaH9ND3HbzhwX3XwRoUhkuaxQ58UIsWSUxQm8tMuNu2aKyAp1XowkKZkklUH7qpSf86Qo09Yn4cdlSxvrn3fUCsDm4Ij2ta3SssRcxwG2XFMRa8fSDotbHV4fY5xcHf/hhwCAYz/+MWw7doTXLx92nQ51556Di9f/HRm9vSM+XjdzJgofeyzi9khqonJVJGnFYohTZ2cnTpw4Meg2nU6HUaNGged52ZZXIYSQWBFFES6XC729veju7obL5Rp0f3FxMYxGo0RrFz89dXVovvW2kR8YpeKnn4Kxtpb98/EjgCjCvv1THH7uaNzb9ipfVQr+ng9C+9ISp6HshBBCCEky8b6iO5SyPeEIVLZn2lXBP4OkY8mkQJLhc16SjiSIiq2L/T7yGStDZe0ATjay/adwhv8ybccCJAR85qIZRBTYczxOILeCJaCKZwFTFsW0K5Fq++3v0LFmTcLay7nlFuT/v7vDfh6Vq4oelasiJE6MRiNaW1sHTexrs9nQ0tIi4VoRQog8qFQqGAwGqVcjLjqe+lNC2jn19J8Gkhx9E3LyxgLo6l6E7VB8RpH40k/IAz//ytCvykryoeyEEEIIiZF4l8vKncCu/m/dy0ZBHP+6bwLlPdHPi5E3ia1fQeXIJ99pxOqAZPicl8gybYmy5Sn2+8RuwN4FWE/1JfWMQMv24Y8X3ID5WODlKQKcyrV1slFGdjOgHwWcPBBRkiMeJ/pNF1+c0CSH6eKFCWuLJA9KchBZU6lUKC4uRnNzM1Jt0JIoinC73VCpVLItBRNrFDNG7nGQS/9SvR8qlQolJSUpue4jsTc0wvZ1fULasu6sh72xEXxFBaDLYjfmjEfOhdPQ/H8fxb39nAunRnblnRy/gJKU093djaeeegq33XYbMjMzpV4dQoKi/TU9yHY7x6tcVozmxehub8ZTLZW4rWgvMsdUhD8vhoQlk6QSdF9Nls95cS7TltDXqyiyUmfAwCihWPdNpWVJDu/ynb3o7urCU08/LfkxiZ9UAV3N6bBt85PUCUGvXo9/XrQAF3ywERlD5ogcSl9Tw75bkbRDSQ4iewaDIWUTHR6PJ2Vq9ScLihkj9zjIpX+p2g+e51FcXAy1Wi31qsSUs5mN8ut85fmEttv5yovIueUOaIr7rorKr4RxajFMNWUwbzsSt3ZNs8pgqC72PxlnOBJRJ5wQP/R6PS699FLo9Sl81SxJG7S/pgfazmGK0bwYeihwacEx6AsrAW0U82Ikw0iGBAl5X5Xx57yEvl5FDyD0lf319P1WxPi7lHd53uULLui1qqQ5JuWsWoXmCJMcWocDs7d8Aa1j5HkLc1aviqgNkvpS78wKIREwGAyYMGECenp6YDabB01Gnqw4jgPP+6m1SAKimDFyj4Nc+pdq/dBqtcjIyIDBYIBer5flCI5D550HAFBoBACJm7PJ/O7b6PrL3zBl/z52Q99knAVXz4a18Rjc5hBqQodJZdKg4KrZgSfjJCQFqNVqTJ48WerVICQktL+mB9rOETDkA9OvY/NiAGwuDd95MczNwZ+v1ECdXYTJsZwXI1lGMsQR7asJjsGgC277/g42SikS/csbaEutVCTNdjbW1sJ08cUwb9gQ9nNVHg+KQig7b1q0CIb58yNZPSIDlOQgaUOlUiE7OxvZ2dkQRRGCICT1yA6bzYaPPvoI55xzDnQ6ndSrkxIoZozc4yCX/qVKPziOg0KhkGVSIxDRndi++m2vZA5UXU0oufMCHP3fDyDYPTFrT8ErUXLnBVAZeFZegZAUZbVa8c9//hMXXHBBUlyhSEgwtL+mB9rOEYpyXgyrG/hnowcXfKcS+qqLYjsvhkxHMtC+muAYDPouxQEQWbk1KGPXhij4LJ+x2h345/vJs50L/utnsH75JdxtbWE9z6HR4OsZM3Dajh3QOv1fAKbKz0fBz34ai9UkKYqSHCQtcRwHpTKGbyZxoFQqIYoilEplSpazkQLFjJF7HOTSP7n0Q35EiEKCkxxC3xcdX32TcfLYi9K7z0HTnz6C2xJ9okNlUKLk++eALx4V2mSchBBCCCGJEM28GKZCIFsBTIpxgoOQWOGUrJyU4AKU6r7RQX1/x4q3HJZ3mQo1G3mURFTZ2Sh59lkcXb4cQnd3zJaryMxEybPPQpWdHbNlktTDicl8KTtJa/X19aiuru7/f8+ePaiqirJuOCGEEBLAvslTAE4ERAlGrXAipuzbP/g2pxXY9hzgsMB96iRaX/s3zHt7Im7CVGlEwXVnQTUql5VyqFlJJwIIIYQQkpzSYF4MkiZsXez3nreBrm+BjkNsPhljIZBdOvzxbjtwbIf/ZRXOAFQBSh53HgV6jrF5bHLGA1ljgVkrw17dFksLFry9wO99G5duRJGhKOxlDmVvaETT6tVhj+jwR5Wfj5JnnwU/KfrJxhPRd7mT8lxu4gpOE0LC4nK5sH//frhcLqlXJWVQzBi5x0Eu/ZNLP2SHk+jaD3/teifjVPNQjcpF0a0Xovh7pdCXhDeXi76ER8n3SlF064UswRHpZJyEJBk6jpJUQvtreqDtHEOGPGBcLTD9GuC7dwNn/RD47l19v+9mt4+rBQx5FPcIUMwSGANdFvvJGc8SFIYCQKEC7F1spIWKH/6jUPn/8fdYFc+WY+9ijzEUsNtyxiftduYnVaD83XdgWrQopMe7lUq0FBXBPaQii2nRIpS/+05MEhwk9VGSg5AkZbVa8c4776TEJOnJgmLGyD0OcumfXPqRDERRhMdigbuzEx6LJbr5lkQOnDKxiQ5OGWT0iHcyTq0BUOthnDcPpXecgfJVZciZm4mMUh4KfvDHOQWvQEYpj5y5mShfVYbSO86AYd48Vr9aa2DLi2YyTkKSBB1HSSqh/TU90HaOE++8GBo9+z1krjiKe/goZhLEIL+S/dbnsKSExwlYoh/JAIAtx+Nky9Xn9LVXldTbWZWdjaLfPI7ip5+CvqYm6GMdWi22zvkOHFo2P46+pgYlzzyNot88TiWqSD8qV0WSFpWrIoQQEoi9oRHmDRtg270L9r17IXSb++9TZJrAV1ZCN3UaTIsuBl8R2pU9zrd+Bogijq35ALYm+8hPiBFdCY/Cmy+C5sqHg6ycdWAyToBNvNk3Gafo6IHQ2wvRLYBTKaDIyACnNfZPxtl/IqCgEphwPo3gIIQQQgghRAo7XmXzzXQ3A52H2bwZhTMGT27vtgPNX/p/fvGs4eWq3A7g2FeA4Aayy4HMYiCrBJixLKJVlKpkk72xEZ3r3kDX66/7vV83cyb0s2bBdPHCkL/fhYvKVUVPynO5NNMpIYQQQlJGT10dOtauhW3b9oCPEbrNsG7eAuvmLehYswa6mtORu3o1DPPnB1225uIfAwD0W4/B1vRFTNc7GP2M06BZdG/wBwWZjJMDoAz23KwSYOxcmmScEEIIIYQQKZXMYZ/jTUVAbzvgtADt+4GCakAR9BO9f4KHPV9wAxoDWy7APvunGL6iAjkrVgRMchQ+9hg0xZRkIIFRuSpCklRXVxceeOABdHV1Sb0qKYNixsg9DnLpn1z6kSjuzk603PMjNN96W9AEhz+2bdvRdMutaPnRj+Hu7Az8wL56uaYF50e3smEyLTiftR2K3AnsqqxZq4DSuUB2GZtjw5eaZ7eXzmWPm7GMEhxElug4SlIJ7a/pgbazNCju4aOYSRSD3AlsdDXHAXmT2BwaDjPQuoeNyAiH28Ge5zCz5eRNYsstqOz/7C+X7dybkYFHnlub8v0g8UUjOQhJUgaDATfccAMMBoPUq5IyKGaM3OMgl/7JpR+JYG9oQNPq1XC3tUe1HPN778G69QuUPLs26OR0/HfOh27CGtgOxqhGbhD6iQXgZ18Q/hMNeYChlv0tiqwGr+BhV4ApNcNqVRMiR3QcJamE9tf0QNtZGhT38FHMJIzBhPOBrm/Z3wVVQGs9S1Qc+4qVm+JNwZ8vCmwOjs7DbASHQsWW451/b8LABVty2c68zYZrFy5M+X6Q+KKRHIQkKZVKhbKyMqhUlIsMFcWMkXsc5NI/ufQj3uwNDTh6/fVRJzi83G3tOHr9MtgbGgM/yJCPnMtqY9LeSHIuq2UJi2iMMBknIXJFx1GSSmh/TQ+0naVBcQ8fxUzCGGj0wLSr2ehrrQkYcxorNSW4gY4DwLEdgK0TcFkBj4tdyORxsf87j7L5OjoODJSoGnMaW46aZ8v1mX9PLttZKQgoHVOY8v0g8UVJDkKSVG9vL9atW4fe3l6pVyVlUMwYucdBLv2TSz/iyd3ZiaZVqyCYe2K6XMHcg6ZVK4OWrjIuuR6mmrKYtjuUaVY5DEuuj2sbhMgZHUdJKqH9NT3QdpYGxT18FDOJY2DIB6Zfx0ZeqPXAmOlsFIdSw0Zq6LLZ7Up130htNfu/t42N4FZq2OPHTB8YwTH9OrbcZOljBDTFRZiyf9+wn7Hbt+Gvn/07ZfpBpEFJDkKSlEKhQFZWFhQKepmGimLGyD0OcumfXPoRT63/8wDc7Sfjsmx3+0m0/up/Aj8gdwIK7rweqkxdXNpXZepQ8H2aK4OQaNBxlKQS2l/TA21naVDcw0cxS4IYGPKBmpUDc3RkFgPFs4G8KYBhNBulwSkAcOy3xsBuz5vCHpdZPDAHR83KYQkOIAn6GCNy6QeJL04URVHqlSDEn/r6elRXV/f/v2fPHlRVVUm4RoQQQhKlp64OzbfeFvd2ip9+CsbaWv93Oq2wv/MYjv76bxCszpi1qdBrUPqTy8Bfeu+g4eSEEEIIIYSQNHTyINC0BehqCv05WSXA2Lkxv2iqxdKCBW8v8HvfxqUbUWQoiml7ySSd+x4rUp7LpRQYIUnK6XRi586dcDpjd2JN7ihmjNzjIJf+yaUf8dLx1J8S0s6pp4O0o9GDX3g7Su9dHLMRHapMHUrvXQx+4e2U4CAkSnQcJamE9tf0QNtZGhT38FHMkiwGuROAGcuAWauA0rlAdhmbY8OXmme3l85lj5sx8qjwpOpjKGxdwMePDPtxfvgwdm79T+r0g0iCZmwhJEnZ7XbU1dVh3Lhx0Gg0Uq9OSqCYMXKPg1z6J5d+xIO9oRG2r+sT0pZ1Zz3sjY3gKyr8P8CQD37RnSgfZULrKx/D/OXhiNsyzSpHwfVnQ3XGDX6HkxNCwkPHUZJKaH9ND7SdpUFxDx/FLEljYMgDDLXsb1Fk828Inr55OTSsPFUYkrKPoRBFQPSw3xwHu0uBus+3YNzk6tTqB0koKldFkhaVqyKEkPTibG4BAHQ8/Ud0vfVuwtrNuvIy5NxyBzTFQYYfO63AwU3o+fCfOLWpHtYDrSEvXz+xADkXVMFw7gXAhPNpBAchhBBCCCEkKUlWssnSBjRtBXa+Djh7AcE1cJ9CDVQuZiNX8qtYMigOqFxV9KQ8l0sjOQhJUqIowuFwQKvVggszW5+uKGaM3OMgl/7JpR+xdOi88wAACo2ARFbUNL/7Nrr+8jdM2b8v8IM0eqByCYz5VTCetQX2+l0wbzsC+5GTsH3bMWjODoVeA93YHPBluTDVlIGvmhaXermEpDs6jpJUQvtreqDtLA2Ke/goZukRg5Too+98JG47YO8a9hDR44Lj5LfQ9rSCO7o5bvORkNRGc3IQkqS6u7vx6KOPoru7W+pVSRkUM0bucZBL/+TSj3gQ3Yn9AB5We331cvlLf4z8H9yOsb9cjYonbkDF767BxMevQsXvrkHFEzdg7C9XI/8Ht4O/9Mch1cslhISPjqMkldD+mh5oO0uD4h4+ill6xCCp++i0AnvfBXb/hSU4RBGW7ia83/4VPmnbji9at2HriW34onUb/tHaiEe3KtDdeYqVsOpqAna9yZ7vtMZunezmyO4jSYHKVZGkle7lqjweD9rb25GXlwelUin16qQEihkj9zjIpX9y6Ucs7Zs8BYAIQIqrjERM2b8/wqdGXy+XEBI+Oo6SVEL7a3qg7SwNinv4KGbpEYNI+piQkk2WNmDXG4DDwr5LmVsAcwsc9i7s6hg+N6MgKjAmcxaKdCKUKjVgKmI/HAdoDcC0q2My52HLyX1YsOEqv/dtvPhNFOVOiboNuaNyVYSQYZRKJUaPHi31aqQUihkj9zjIpX9y6UfMcWB5Dinajfi5HKDSxmxVCCGhoeMoSSW0v6YH2s7SoLiHj2KWHjFIyj5a2oCdrwEuO+CyAu0NgNMCABAVapxQqWBRcLByCng4QCkCelFAdbYeSreTXVzWeRjobQfyJrFl7nwNmH5dTBIdJHVRuSpCkpTFYsGLL74Ii8Ui9aqkDIoZI/c4yKV/culHzHESDTCVql1CSMToOEpSCe2v6YG2szQo7uGjmKVHDJKuj04rG8HhsgMOM3D8a5bgUKiBnIlwjq5Ck1qFTqUSDgUHN8fBoeDQwRmw7vgkWPJrgJyJ7PFOC3u+w8yWt+uN2JauIimHkhyEJCmVSoWysjKoVDTgKlQUM0bucZBL/+TSj5gTOXDKxCYcOKUIiFReipBUQ8dRkkpof00PtJ2lQXEPH8UsPWKQdH08uImVqHJZgdZ6QHADWhNQOAMwjga4AKepOQ+KjW6olAr2uMIZ7HmCmy3HZWXLPbgpsf0hSSVJ9nJCyFA8z6O2tlbq1UgpFDNG7nGQS//k0o9YGv/g5YAo4tiaD2BrsiesXb5Qh8KbL0pYe4SQ2KDjKEkltL+mB9rO0qC4h49ilh4xSKo+njwItO5lc3C0NwwkOAqq2byGQSg4J+YWOcCrTOwGlZY9r3UPG8nR3gCMmc6Wn18F5E6Ibl1FEWoASlGEh+Pgim5pJEFoJAchScrhcGDLli1wOBxSr0rKoJgxco+DXPonl37EkubiH0Oz6F7op5+W0Hb1M06DZtG9CW2TEBI9Oo6SVEL7a3qg7SwNinv4KGbpEYOk6mPTFvbb3DJQoipv8ogJDgAQRDW+atXA4fYZ8a9Q9j1fxZZnbhncTrgsbdA2fYlLeixY0d2DVV3duKnbjFVd3VjR3QPd/veBb+oAS3tkyydxR0kOQpKU0+nEzp074XQ6pV6VlEExY+QeB7n0Ty79iCldFqDLgmnB+Qlt1rTgfNY2ISSl0HGUpBLaX9MDbWdpUNzDRzFLjxgkTR8tbUBXExvF4U1GZJexERkhEEU19p7UwOkZcodKC2SXs7/NLWz5XU3hJSJOHgR2vAp8+Rw0x3ai2O2GVhQGPUQrClB1twBHNwNfrmWP7zgUehskIThRFGmmTZKU6uvrUV1d3f//nj17UFVVJeEaEUIISQhLG45870rYDrbFvSn9xAKU/vkvgCEv7m0RQgghhBBCSDJrsbRgwdsL/N63celGFBmKQl+YrYv9PvIZ0PwlYO0ATjYCSg2bV2PIHBxmWwde/eZdv4taNm4JTLqc4XeIAnBsB+BxArkVgD4HKJ4FlJ0Z/EI2p5XN4dG6t285IiynDuLTb95HhiiCF0VwfVM32jkOs4rPhD6zjC2f65vPsaASmHA+oNGHHhOZk/JcLs3JQUiSEgQBZrMZJpMJCgUNugoFxYyRexzk0j+59CMuDPnIuawWzY+/Gfemci6rpQQHISmKjqMkldD+mh5oO0uD4h4+ill6xEDyPm55iv0+sRuwdwHWU6y0lNYItGwf/ni3ze9iRJFDd8shGLTfQMH5eYCtE3D0AHYzoB8FnDzA2jz7fv/rZWkDdr3BJiv3ji4xt0Bt70KeZ/BwEU4E9KIIZW8H4LSxBI2piP207gW6vgWmXQ0Y8kOPC4kLeb6KCZEBs9mMJ554AmazWepVSRkUM0bucZBL/+TSDy9RFOGxWODu7ITHYkG0A0WNS66HqaYsNisXgGlWOQxLro9rG4SQ+JHbcZTIG+2v6YG2szQo7uGjmKVHDJKij6IIOHvZ356+slkhlqnyEsQMPN82B2aPxv8DvMvzLt/Zy9r1x9IG7HyNJThcVuD4TqDzMOBxQlSocUKlwkGNGru0Wuzgtdil1eKgRg23IZ8lODxO9vjjO9nzHRa2PEv8qxCQ4KhcFUla6V6uSvKMewqimDFyj4Nc+ieHftgbGmHesAG23btg37sPQnd3/32KzEzwlVOgmzoNpkUXg6+oCHv57i9ex+Ef/Abubv9X9ERDlalD+R9+BNV3ro35sgkhiSGH4yhJH7S/pgfaztKguIePYpYeMYikjzEtV/XxI4DgBr7dzP7vagIgAsYxgFI97OFmtw2v9h4cdrsocljMV6FIy/kfyeFxAT3HAXBAVgm7bexc4Nz/Hvw4pxXY9hxLTDjMQGs9Wz+FGsgug1nB4dWDb/vtyrKJV7JyWZY2oPMIILjYpOcFVYDWBGgNQM3KtC9dReWqCCHDKBQKZGVlSb0aKYVixsg9DnLpXyr3o6euDh1r18K2zc8Q4z5Cdzesm7fAunkLOtasga7mdOSuXg3D/Pkht6OacSlK7mnE0V//DYI1dpPlKfQalNyzGKoZl8ZsmYSQxEvl4yhJP7S/pgfaztKguIePYpYeMUiKPg66tr7vby68pBLHichU2aHgdAEe4F2eT1v+ruk/uGlgBIc3waE1AXmT2WgQ6wgTlnMKwDga0GUD7fsHEiVjThtYfuWSsPpGYkeeqUpCZKCnpwdPP/00enp6pF6VlEExY+QeB7n0LxX74e7sRMs9P0LzrbcFTXD4Y9u2HU233IqWH/0Y7s7O0J6k0YNfeDtK710MVWaAD7RhUmXqUHrvYvALb0/7q2wISXWpeBwl6Yv21/RA21kaFPfwUczSIwZJ0UfOd+hF39+iENYiPIIer7bVoMc9fPTH4OX5tMUNGfJx8iCbQ0MUgfaGgQRHQXXY5bOg0rLnaU1sOe0NbLmte1k7RBKU5CAkSWk0GkyfPh0aTYCag2QYihkj9zjIpX+p1g97QwMOL7kU5g0bolqO+b33cHjJpbA3NIb2BEM++EV3ovxX18A0qzyqtk2zylH+q2vAL7qTJoYjRAZS7ThK0hvtr+mBtrM0KO7ho5ilRwySoo+ckpWDAgZKVAmu8BbBuVCpPwGNIkByxLs87/IVataur6Yt7Le5hU1+rlCzERyKIY8LlULZ93wVW565ZXA7JOFoTg6StNJ9Tg5CCEkW9oYGHF1+w6A5N6KlyMxE6csvg58U4lwdTitwcBN6PvwnTm2qh/VAa8ht6ScWIOeCKhjOvQCYcD6N4CCEEEIIIYQQP2I6J4eti/3e8zbQ9S3QcQjobQOMhUB26bCHm20dePWbd/0uatm4JWxODH86jwI9x4CMfCBnPJA1FqheCuiy2P2WNuDL59hoi+atbPLwnIms9JRv+9Z2vHrgL/7bn3glTPq84Xf0nAA6DrBJyYtnsxEks1YBBj+PTQNSnsulkRyEJCm73Y66ujrY7XapVyVlUMwYucdBLv1LlX64OzvRtPrmmCY4ADZnR9Pq1WGVrkLlEhiv/X8o/Z9VKP+vS5CzYCoyJo+BQj/4yiSFXoOMyWOQs2Aqyv/rEpT+zyoYrv0hq49KCQ5CZCNVjqOEALS/pgvaztKguIePYpYeMZC8j7os9pMzHlDxgKGAjXywd7GkgIof/KP0P+JEEDXYfMIIO7T+n2PvYss1FLDbcsazdm1d7KdpK+C2s0SIy8rm1uBN7DbfH0+QeSA9zuGPd9vZcjgFW27PMXZb0xexjiQJAU08TkiScrvdOHLkCGpqaqRelZRBMWPkHge59C9V+tH64ENwt7XFZdnutja0PvQwin7zeOhPyp0A5E4AP7Ed/Bn1gPk4xJ7jECwWiG4POJUSCoMBnHEMYBoD5Fel7VU0hMhdqhxHCQFof00XtJ2lQXEPH8UsPWKQNH3MrwSObgb0OSwp4XGy0RVDRlIEJCrR3KOC21+1KksbW55Sw5YPsO+AALDlKfb7xG6WCLGeYqWltEagxc8ck25b4HVorQdUAeaJtHUCjh7Abgb0o4CTB4Api0LrG4kZKldFkhaVqyKEEGn11NWh+dbb4t5O8dNPwVhbG/kCRJF9sBU8rDaqUjN8ojlCCCGEEEIIIUHFtFyVrx2vAl1NQHcz0HmYzYlROGPQpN9hl4tyO4BjX7HJv7PLgcxiIKsEmLGM3f/xI+y7YtMXbN6OnhPse2NGLqAePsLf7Lbh1V7/E4cvy5gAU6Akh8sK9J5k30ONo1nflr+Tlt9JqVwVIWQYj8eDEydOwOPxSL0qKYNixsg9DnLpXyr0o2Pt2oS0c2rtc9EtgOPYh2ONnv1Oww+ThKSjVDiOEuJF+2t6oO0sDYp7+Chm6RGDpOpjyRz221QEaAws6dC+n12oNgJRVKDNqoBH8LlOX/D0Pd/NlmfqS76MnTvkyZ6Bick9fb+9E6HHind53uULruClr0hcUJKDkCTV09ODZ555Bj09PVKvSsqgmDFyj4Nc+pfs/bA3NMK2zc8Q3jiwbtsGe2NjQtoihMhHsh9HCfFF+2t6oO0sDYp7+Chm6RGDpOpj7gSgoJJdkJY3ic2h4TADrXvYiIwgBFGP1/Ya0ePNG7gd7HkOM1tO3iS23IJKNh+Hr0EFjPr+5mJ8Orx/eUOSMCShqFwVSVrpXq5KFEU4HA5otVpwdFVySChmjNzjIJf+JWs/nM0tAICO555D15//nLB2s669FmN+/t8Ja48QkvqS9ThKiD+0v6YH2s7SoLiHj2KWHjGIpI9xK1cFAE4rsO05wGHpS3DUs5EYChWQXQ6zgsOrB9/20w/gynFXIs8wClxvOyt35X1eQRWgNQFaA1Czko3u9/r4Efa4bzez/7uaAIiAcQygHD6aI+JyVR4X0HMcAMfKZQHA9X8bVIorXUh5LpcmHickSXEcB57npV6NlEIxY+QeB7n0L1n7cei889gfnAggcR/2u/78GiU5CCFhSdbjKCH+0P6aHmg7S4PiHj6KWXrEIOn6qNED064Gdr7G/h9zGtDewCYD7zgAjceFEpcbFgUHK6eAhwOUIqAXBWT0NoPr/magDJTGwEZwqPWAmmfL1QyfZwOckpWTElwsseFxDvwdK95yWN5lKtRsfg6SUFSuipAkZTab8fvf/x5ms1nqVUkZFDNG7nGQS//k0o9YosGlhJBw0HGUpBLaX9MDbWdpUNzDRzFLjxgkZR8N+cD069jIC7UeGDOdTRqu1IATXBjtdmOC04VpDgdm2B2Y5nCgyKHBmm/GwewASx5kl7PnqfVsOdOvY8sdas5twNzbgcrFQPEsIL8SMBUCWWXs/6E/BUFGHBRU+X9O8Sy2PFMhW37xLNaeTEcHJTMayUFIkuJ5HrW1tcmVdU9yFDNG7nGQS/+Svh9igj+UiRyEXiuUhozEtksISVlJfxwlxAftr+mBtrM0KO7ho5ilRwySto+GfFZa6uAmoHUvkFkMmIrgOnUQ7V37kSGK4EURnMi+lro4F76bfRJ8/njAmDOQQCioBCac738EBwDostjvnPGApQ0wFAC2U4C9C1BOHD43R7DRF0oNoPITR1Fgy1Oo2PJV/PB5QUhCUJKDkCSl0Wgwffp0qVcjpVDMGLnHQS79S+5+JLZUVX+rTgcASnIQQkKT3MdRQgaj/TU90HaWBsU9fBSz9IhBUvdRowcqlwD5VUDTFqCrCYIuC0c0/stILRtrgkafy/7JKgHGzg09mZBfCRzdDOhzWLLC42RJD+Po6PthaWPLU2rY8gHWJ5JwVK6KkCRls9mwceNG2Gw2qVclZVDMGLnHQS79S+p+SDSyllNK0y4hJDUl9XGUkCFof00PtJ2lQXEPH8UsPWKQEn3MnQDMWAbMWgVn4XQ0q1RwDBlhYRd5fNSaC9voGmDWKvb4cEZLGPJZYoTjAFPfxOmdRwC3I7p1dzvYJOgAWy7XN/G4IS+65ZKI0EgOQpKUIAjo6uqCIAhSr0rKoJgxco+DXPqX1P3gRHAKQPQkLtvBKUUoeG3C2iOEpL6kPo4SMgTtr+mBtrM0KO7ho5ilRwxSqo+GPDhKZuHvRgMgilADUIoiPBwHhUeL76vyIIw9A8iIcOR/yRygq4klI3rb2WTn7fuBgmpAEcHVdoKHPV9ws0nQvcmTsXMjWz8SNU6kWT5Jkqqvr0d1dXX//3v27EFVFQ35IoSQeHK+9TNA8OD4mo2wNkd5ZUsY9CValH7wBaCiRAchhBBCCCGESKHF0oIFby/we9/GpRtRZChK3bb3vsvmQzFN1AABAABJREFUAHFZgeNfswSF1gTkTQZUWpit7Xj1wF/8PnXZxCth0veN0HA7WILDYWZzcYw5jU2CXlDJSnClMSnP5VK5KkKSlNvtxpEjR+B2u6VelZRBMWPkHge59C9Z+6HJMUCTa4KuJLFzY+hKMoJP9EYIIUMk63GUEH9of00PtJ2lQXEPH8UsPWIglz4qBAWONR2Lvh8Tzge0hr6ERBVLUDjMwLGvgJ4TbBLxYESBPe7YVwMJjoIqtjytgS2fSIaSHIQkKYvFgpdeegkWi0XqVUkZFDNG7nGQS/+Sth9zbgPm3g7TJZcktFnToktYDVNCCAlR0h5HCfGD9tf0QNtZGhT38FHM0iMGcukj7+Hx/pvvR98PjR6YdjWg5tkIjjGnsVJTghvoOADNiXqUuNzI9nigFUSoRBFaQUS2xwNldzPQ/CXQcWCgRNWY09hy1DxbrkYfmw6TiFC5KpK0qFwVIYRI6Js6HPnBL2A72Bb3pvQTC1D6xC+BcbVxb4sQQgghhBBCiH+yLlflZWkDdr0BOCyAKALmFsDcAoe9C7s66v0+ZVpOFbRqPas+YCoamGhca2AJDkN+bNYtxVG5KkIIIYQkl/xK5FxQPfLjYiDngiogn5LYhBBCCCGEEELizJAP1Kxkc2hwHJBZDBTPhmvUOLQrlbAqFBA4DiI4CBwHq0IBT0YOkDcFKJ7NHs9x7Pk1KynBkSQoyUFIkuru7savf/1rdHd3S70qKYNixsg9DnLpX9L3w5AP41lzYaopi2szplnlMJw5FzDkxbUdQoj8JP1xlBAftL+mB9rO0qC4h49ilh4xkEsfdW4dXv7Ty7Hth0bPJgmfeiWQVQJwHARdFo5o1KjXarCd12KbTovtvBb1Wg3cWaVARi5LbmSVANOuYs+nElVJQyX1ChBC/NPr9bj00kuh19MBM1QUM0bucZBL/1KiHyVzUHD1AVgPtMLdbYv54lWZOhRcNQsYOzfmyyaEyF9KHEcJ6UP7a3qg7SwNinv4KGbpEQO59NGpcGLehfPi04/cCezH0g7ngQ/QfPhvyPMI0PpMQu7gFHBnFgGFp7MKBHSBXlKiJAchSUqtVmPy5MlSr0ZKoZgxco+DXPqXEv3InQDV+JkoudOGo7/dCMHqitmiFXo1Su48D6rxM4Gc8TFbLiEkfaTEcZSQPrS/pgfaztKguIePYpYeMZBLHz0KD8omlkGtVsevEUMeHCWz8HejARBFqAEoRREejoMLwFWTFwK5U+LXPokalasiJElZrVa88847sFqtUq9KyqCYMXKPg1z6lzL9mHA++HElKP3hAqgy+ZgsUpXJo/SHC8CPKwEmnB+TZRJC0k/KHEcJAe2v6YK2szQo7uGjmKVHDMLtY2NnI17Y80LA+3/y6U/wxFdP4EDngVitYkg0Hg0+2fhJ4rYVx8HFcbArFHBxHCtRRZIejeQghBBCZEAURQi9vRBdLnBqNRQZGeBi8WFMowemXQ1eeA3l/7UYres2w7y9KeLFmU4vQcH35kKVnQVMu5pqmBJCCCGEEEKIhD5t/hTP7X4OX7V9FfRxO9t3Ymf7TqzdvRYz82di5dSVmFc8L0FrSUhwnCiKotQrQYg/9fX1qK6u7v9/z549qKqqknCNCCEkudgbGmHesAG23btg37sPgs9EbIrMTPCVU6CbOg2mRReDr6iIrjFLG7DrDcBhQc+uJpzauAPWw10hP11fnoWci2bCMLUY0BpYgsOQH906EUIIIYQQQgiJSJe9Cw9vfRgfHP4g4mUsLF+I+2ffjyw+K+r1abG0YMHbC/zet3HpRhQZiqJuI2j7J/dhwYar/Ld/8ZsoonJVI5LyXC6VqyIkSblcLuzfvx8uV+xq4MsdxYyRexzk0r9o+tFTV4cjy5bh8JIl6FizBtbNWwYlOABA6O6GdfMWdKxZg8OLl+DIsmWwfPJJ5CtsyAdqVgIFlTBOK0HpvYtR/l+LkHPueGSMz4SCVw56uIJXImN8JnLOHY/y/1qE0nsXswRHQSVbDiU4CCFRksv7AUkPtL+mB9rO0qC4h49ilh4xCNbHhlMNWLp+aVQJDgB4//D7WLp+KRo7G6NaTjBKQYkjB47IeluR6FGSg5AklQ71IWONYsbIPQ5y6V8k/XB3dqLlnh+h+dbbYNu2Paz2bNu2o+mWW9Hyox/D3dkZ7uoyGj1QuQSYeiWQVQK+aBTyr/guxv5oCSp+ey0qfncNJj5+FSp+dw0qfnstxv5oCfKv+C74olFAVgkw7Sr2fCpRRQiJAbm8H5D0QPtreqDtLA2Ke/goZukRg0B9bDjVgBX/WIE2W1tM2mmzteGmjTfFLdGhETT49B+fxn9b8abI7iNJgcpVkaRF5aoIIWSAvaEBTatvhrst+g+iqvx8lDz7LPhJ0Zawagfa6gHzccByAnDZB+5T84BhNGAaA+RXAYa86NoihBBCCCGEEBKVLnsXlq5fGrMEh698XT7eXvx2xKWrJC9XJXH7ciDluVyaeJwQQghJcvaGBhxdfsOwklSRcre14ejy5Sh9+eXoEh2GPMBQy/4WRcDjBAQPoFACSg0Qi4nPCSGEEEIIIYTExMNbH45LggNgIzoe2foIHp33aFyWT0gwVK6KkCTV1dWFBx54AF1dXVKvSsqgmDFyj4Nc+hdqP9ydnWhafXPMEhxeQnc3mlavjrx01VAcB6i0rBSVSksJDkJI3Mnl/YCkB9pf0wNtZ2lQ3MNHMUuPGAzt46fNn0Y9B8dI3j/8Pj5t/jSmy9S79Fj7v2tlva1I9CjJQUiSMhgMuOGGG2AwGKRelZRBMWPkHge59C/UfrQ++FBMSlT5425rQ+tDD8dl2YQQEm9yeT8g6YH21/RA21kaFPfwUczSIwZD+/jc7ucS0u7ze56P6fLsSjsWXrVQ1tuKRI+SHIQkKZVKhbKyMqhUVFUuVBQzRu5xkEv/QulHT10dzBs2xHU9zO+9h566uri2QQgh8SCX9wOSHmh/TQ+0naVBcQ8fxSw9YuDbx8bORnzV9lVC2t3euh0HOg/EbHmCQkBhSaGstxWJHiU5CElSvb29WLduHXp7e6VelZRBMWPkHge59C+UfnSsXZuQdTm1NjFX9BBCSCzJ5f2ApAfaX9MDbWdpUNzDRzFLjxgcbDuIF199EQfbDuLNhjcT2nYs29N6tNj0ziZZbysSPUpyEJKkFAoFsrKyoFDQyzRUFDNG7nGQS/9G6oe9oRG2bdsTsi7Wbdtgb2xMSFuEEBIrcnk/IOmB9tf0QNtZGhT38FHM0iMGV713FT5s+xBXvXcV3mh4I6Ftr2tYF7NlCRBgyDTIeluR6HGiKIpSrwQh/tTX16O6urr//z179qCqqkrCNSKEkPhzNrcAADqeew5df/5zwtrNuvZa5KxYAU1xUcLaJIQQQgghhBASH1Nfmipp+7uW7wLHcSE/vsXSggVvL/B738alG1FkiO93VanblwMpz+VSCoyQJOV0OrFz5044nU6pVyVlUMwYucdBLv0L1I9D552HQ+edl9AEBwB0vf46Dp13XkLbJISQaMjl/YCkB9pf0wNtZ2lQ3MNHMUuPGCgFJUp7SqEUlJK0b3VbY7IcpaBE455GWW8rEj1KchCSpOx2O+rq6mC326VelZRBMWPkHge59G/kfiR6oCUN7CSEpBa5vB+Q9ED7a3qg7SwNinv4KGbpEQONoEFlVyU0gkaS9p2e2CQlNIIGX23+StbbikSPylWRpEXlqggh6Wjf5CmStj9l/z5J2yeEEEIIIYQQEj2py1VtuXYLMtQZIT9e6nJRUrcvB1SuihAyjCiKsNvtoDxk6ChmjNzjIJf+yaUfhBAiFTqOklRC+2t6oO0sDYp7+ChmaRIDEVB71JIN2ter9LFZkAg47A55bysSNUpyEJKkuru78eijj6K7u1vqVUkZFDNG7nGQS/+C90OqD2/0oZEQkjrk8n5A0gPtr+mBtrM0KO7ho5ilRwz+cv5fsKRpCf5y/l8wPW96QtuekT8jrEnHg9G79XjlyVdkva1I9KhcFUla6V6uyuPxoL29HXl5eVAqpZkkKtVQzBi5x0Eu/QvUj32TpwCcCE4BiJ7YfCgMBacUIQrAlH37E9YmIYREQy7vByQ90P6aHmg7S4PiHj6KWXrEwLePf/r6T1i7e23C2l49dTV+MPMHYT0nULkoTuTw6rxXUVVaFddtReWqokflqgghwyiVSowePVq2b7bxQDFj5B4HufQvUD/GP3g5xj+wGLoxfELXR1fIY/wDixPaJiGEREMu7wckPdD+mh5oO0uD4h4+ill6xMC3jxeVX5TQtmPZnsiJyMnPkfW2ItGjJAchScpiseDFF1+ExWKRelVSBsWMkXsc5NK/QP3Q5BigyTFCV5zgJEcxD02OMaFtEkJINOTyfkDSA+2v6YG2szQo7uGjmKVHDHz7WJFdgZn5MxPS7ukFp2Ni9sSYLU/r1uK9N96T9bYi0aMkByFJSqVSoaysDCqVSupVSRkUM0bucZBL/4L2g1PCVJWV0PUxVWUBHF0ZQwhJHXJ5PyDpgfbX9EDbWRoU9/BRzNIjBkP7uHLqyoS0u6J6RUyXJ3ACxpSMkfW2ItGjOTlI0kr3OTkIIWnK1sV+73kbR375ImyHTsa9Sf2EPJT+4gageimgy4p7e4QQQgghhBBCEu/eT+/FB4c/iNvyF5YvxKPzHo3ouVLPiSF1+3JAc3IQQoZxOBzYsmULHA6H1KuSMihmjNzjIJf+BeyHLov95IxHzoXTErIuORdOBXLGU4KDEJJS5PJ+QNID7a/pgbazNCju4aOYpUcM/PXxp7N/inxdflzay9fl4/7Z98d8uSpBhT3b98h6W5HoUZKDkCTldDqxc+dOOJ1OqVclZVDMGLnHQS79G7Ef+ZUwTi2GqaYsruthmlUGQ3UxkE8j5QghqUUu7wckPdD+mh5oO0uD4h4+ill6xMBfH7P4LDx1/lMwaUwxbcukMeGp859CFp8V0+UCLMnRWN8o621FokflqkjSonJVhJC0t+NVuJsP4PCv3oHbHPsPdCqTBuX/fSlUxROBGctivnxCCCGEEEIIIcmnsbMRt226DW22tqiXla/Lx1PnP4WK7IqoliN1uSip25cDKldFCBlGEAR0dXVBEASpVyVlUMwYucdBLv0LqR8lc6Ay8Ci58wIo+NhOCq7glSi58wKoDDwwdm5Ml00IIYkgl/cDkh5of00PtJ2lQXEPH8UsPWIQrI8V2RV4e/HbWFi+MKo2FpYvxNuL3446wREMJ3Lo6e6R9bYi0aMkByFJymw244knnoDZbJZ6VVIGxYyRexzk0r+Q+pE7ASioBF88CqV3nwOVITaJDpVBidK7zwFfPAooqGTzcRBCSIqRy/sBSQ+0v6YH2s7SoLiHj2KWHjEYqY9ZfBYenfconjz3SZxecHpYyz694HQ8ee6TeHTeo3EpUeVL59bhjbVvyHpbkehRuSqStNK9XJUgCDCbzTCZTFAoKB8ZCooZI/c4JGv/RFGE0NsL0eUCp1ZDkZEBjuMCPj7kfjitwLbnAIcF7lMn0frav2He2xPxepoqjSi47iyoRuUCWgNQsxLQ6CNeHiGESCVZ3w8I8Yf21/RA21kaFPfwUczSIwbh9vFA5wG82fAm1jWs83v/jPwZqCmowUXlF2Fi9sRYr27AclGcyOHN899ExZiKuG4rKlcVPSnP5aoS0gohJGwKhQJZWVlSr0ZKoZgxco9DMvXP3tAI84YNsO3eBfvefRC6u/vvU2Rmgq+cAt3UaTAtuhh8xeDhuyH3Q6MHpl0N7HwNqlG5KLr1Qpj+8yVOfd4Ka5M95HXVl/DI+W4BDGfMAtR6QM2z5VKCgxCSopLp/YCQkdD+mh5oO0uD4h4+ill6xCDcPk7Mnogbq28MmOR45KxHJDnRL3IijJlG2SajSGzQ3kFIkurp6cHTTz+Nnp7Ir9hONxQzRu5xSIb+9dTV4ciyZTi8ZAk61qyBdfOWQQkOABC6u2HdvAUda9bg8OIlOLJsGSyffDKwjHD6YcgHpl/HRl6o9TDOm4fSO85A+aoy5MzNREYpDwU/+C1dwSuQUcojZ24myleVofSOM2CYN48lOLQGtjxDfkziQQghUkiG9wNCQkX7a3qg7SwNinv4KGbpEQO59JF38/jry39N+X6Q+KKRHIQkKY1Gg+nTp0Oj0Ui9KimDYsbIPQ5S9s/d2YnWBx+CecOGsJ9r27YdTdu2w7RoEQp+9lNo9Prw+mHIZ6WlDm4CWvcCmcXgZxaBn9wB2DohOnpYuSy3AE6lYOWytEZAlw3ocwBv6ayCSmDC+TSCgxCS8uT+fkfkhfbX9EDbWRoU9/BRzNIjBnLpo1vhRkVVRcr3g8QXJTkISVJarRZz5syRejVSCsWMkXscpOqfvaEBTatvhrutLarlmN97D9atW1Hy7LPh90OjByqXAPlVQNMWoKsJyMgFMnLBAQg6LXlWCTB2Lk0yTgiRDbm/3xF5of01PdB2lgbFPXwUs/SIgVz66Fa4UX16NbRardSrQpIYlasiJEnZ7XbU1dXBbg+95n66o5gxco+DFP2zNzTg6PIbok5weLnb2nBgxQp8+NbbkfUjdwIwYxkwaxVQOhfILmNzbPhS8+z20rnscTOWUYKDECIrcn+/I/JC+2t6oO0sDYp7+Chm6REDufRR7VFj+3+2p3w/SHxRkoOQJOV2u3HkyBG43W6pVyVlUMwYucch0f1zd3aiafXNw+bciJartxcHPvs37CdPRr4QQx4wrhaYfg3w3buBs34IfPeuvt93s9vH1bLHEUKIzMj9/Y7IC+2v6YG2szQo7uGjmKVHDOTSR4WowPGm4ynfDxJfnCiKotQrQYg/9fX1qK6u7v9/z549qKqqknCNCCHpqOWeH0U0B0eoTIsWoeg3j8dt+YQQQgghhBBCSChaLC1Y8PYCv/dtXLoRRYYiWbadDO3LgZTncmkkByFJyuPx4MSJE/B4PFKvSsqgmDFyj0Mi+9dTVxe3BIdHoUBnVhY6338fPXV1cWmDEELkTO7vd0ReaH9ND7SdpUFxDx/FLD1iIJc+ciKHjraOlO8HiS9KchCSpHp6evDMM8+gp6dH6lVJGRQzRu5xSGT/Otaujduy7TodNl20AHadDqfWPhe3dgghRK7k/n5H5IX21/RA21kaFPfwUczSIwZy6aPOrcPfXvlbyveDxBeVqyJJK93LVYmiCIfDAa1WC47jpF6dlEAxY+Qeh0T1z97QiMNLlsRt+SIAl1oNtcsFDkD5+nfBV1TErT1CCJEbub/fEXmh/TU90HaWBsU9fBSz9IhBJH1MynJVIvDuondRnlMe121F5aqiR+WqCCHDcBwHnudl+2YbDxQzRu5xiHf/nM0tcDa3oHPdurgs34sDoOlLcABA57o34GxuiWubhBAiJ3J/vyPyQvtreqDtLA2Ke/goZukRA9n0kQO0vHyTUSQ2KMlBSJIym834/e9/D7PZLPWqpAyKGSP3OMS7f4fOOw+HzjsPXX/+c1yW72XV6fDeJZfAqtMBALpefx2Hzjsvrm0SQoicyP39jsgL7a/pgbazNCju4aOYpUcM5NJHnVuHdc+uS/l+kPiiJAchSYrnedTW1oLnealXJWVQzBi5xyFx/YtvNUe1y4WqPXugdrkS0h4hhMiN3N/viLzQ/poeaDtLg+IePopZesRALn10KpyYOXdmyveDxJdK6hUghPin0Wgwffp0qVcjpVDMGLnHIXH9i+9QWLXbjfLDhxPWHiGEyI3c3++IvND+mh5oO0uD4h4+ill6xEAuffQoPKioroBGo5F6VUgSo5EchCQpm82GjRs3wmazSb0qKYNixsg9DnLpn0OjwY6ZM+CgD2qEEBIRubwfkPRA+2t6oO0sDYp7+Chm6REDufRR7VFj88ebU74fJL4oyUFIkhIEAV1dXRAEQepVSRkUM0bucUhM/+JfOkrkOPRmZEAcNHkalawihJBQyf39jsgL7a/pgbazNCju4aOYpUcM5NJHBRSwdFtSvh8kvjhRFOmMCklK9fX1qK6u7v9/z549qKqqknCNCCHJThRFCL29EF0ucGo1FBkZ4LjwykDtmzwF4ERwCkD0JK6EFKcUIQrAlH37E9YmIYQQQgghhBDi1WJpwYK3F/i9b+PSjSgyFMmy7WRoXw6kPJdLc3IQkqTcbjeam5tRXFwMlYpeqqGgmDFyj8PQ/tkbGmHesAG23btg37sPQnd3/2MVmZngK6dAN3UaTIsuBl9RMeLyxz94OSC4cHzNP2FtdsStHx6FAh25ucg5eRJKQYCukMeY1RfErT1CCJEbub/fEXmh/TU90HaWBsU9fBSz9IiBXPqoEBQ41nQMBRMLUrofJL6oXBUhScpiseCll16CxWKRelVSBsWMkXscvP078eGHOLJsGQ4vWYKONWtg3bxlUIIDAITublg3b0HHmjU4vHgJjixbBssnnwRdvibHAE2OEbpiPp7dgF2nQ92558Cu0wEAdMU8NDnGuLZJCCFyIvf3OyIvtL+mB9rO0qC4h49ilh4xkEsfeQ+P9998P+X7QeKLylWRpEXlqggh/rg7O9H64EMwb9gQ8TJMixah4Gc/hSo7e/idHz8CiCLs2z/F4eeORrGm4SlfVQp+5jzgnJ8mrE1CCCGEEEIIIcSLylVRuapoULkqQgghJAT2hgY0rb4Z7ra2qJZjfu89WLduRcmzz4KfNKSE1ZzbAAC8sQC6uhdhO3QyqrZCoZ+QB37+lUD10ri3RQghhBBCCCGEECInVK6KkCTV3d2NX//61+geUn6HBEYxY+QaB3tDA44uvwHdFgv+tvRy9Or1US3P3daGo8uXw97QOPgOXRb7yRmPnAunRdVGML16fX8/ci6cCuSMZ+0SQggJiVzf74g80f6aHmg7S4PiHj6KWXrEQC591Ll1ePlPL6d8P0h8UZKDkCSl1+tx6aWXQh/lidx0QjFj5BgHd2cnmlbfDKG7G1qHA7O3fAGtI/pJwYXubjStXg13Z+fwO/MrYZxaDFNNWdTt+OPtR171aBiqi4F8KsdHCCHhkOP7HZEv2l/TA21naVDcw0cxS48YyKWPToUT8y6cl/L9IPFFSQ5CkpRarcbkyZOhVqulXpWUQTFj5BiH1gcf6i9RpfJ4UNTSApXHE5Nlu9va0PrQw8PvMOQDWSUouHo2VCZNTNrypfJ4UNrTjqIra4CsEsCQF/M2CCFEzuT4fkfki/bX9EDbWRoU9/BRzNIjBnLpo0fhQdnEspTvB4kvSnIQkqSsViveeecdWK1WqVclZVDMGLnFoaeubtAk4w6NBlu/8x04NLFLPJjfew89dXXD7yiZA5WBR8mdF0DBK2PWHgC4TDrsuvoSOLVaYOzcmC6bEELSgdze74i80f6aHmg7S4PiHj6KWeAYtFhaMPWlqX5/WiwtEq1tZOSynTUeDT7Z+EnK94PEFyU5CCGEJLWOtWsT0s6ptc8NvzF3AlBQCb54FErvPgcqQ2wSHSqDEsW3nAVlhhbIm8Tm4yCEEEIIIYQQQgghYVNJvQKEEP+8tRNJ6ChmjJziYG9ohG3b9kG3aZ1OzP7ii5i3Zd22DfbGRvAVFYPvmHA+0PUt+NIxKL//QrS+9m+Y9/ZE3I6p0oiC686CalQuLtUagKqLolxzQghJT3J6vyPyR/treqDtLA2Ke/goZukRA7n00al0Yv6C+TQnBwmKRnIQkqRcLhf2798Pl8sl9aqkDIoZI2UcRFGEx2KBu7MTHosFoihGtBxncwuczS3oXLdu2H1upRItRUVwK2NbPgoAOte9MfxGjR6YdjWg5qEalYuiWy9E8fdKoS/hw1q2voRHyfdKUXTrhVCNyoVLocV+3Wy4OKorSgghkaD3fZJKaH9ND7SdpUFxDx/FLD1iIJc+KgUljhw4kvL9IPFFSQ5CkpRcaicmEsWMSXQc7A2NaPvt73D0ppvQOGcuGmtm4cDcM9BYMwuNc+bi6E03oe23v4O9sTHkZR467zwcOu88dP35z8Puc2i12DrnO3BotbHsBgCg6/XX/d9hyAemXwdoDYBaD+O8eSi94wyUrypDztxMZJTyUPCD31IVvAIZpTxy5maifFUZSu84A4Z58wC1HtAaYJ24BO/84+O0318JISRS9L5PUgntr+mBtrM0KO7ho5ilRwzk0keNoMGn//g05ftB4osTI73MlpA4q6+vR3V1df//e/bsQVVVlYRrRAjx1VNXh461a4eVkwpGV3M6clevhmH+/KCP2zd5SrSrF7HJ+/aC4zj/dzqtwMFNQOte9r8oAtYOwNYJ0dEDobcXolsAp1JAkZEBTmsEdNmAPgfwLrOgkpXA0tBQW0IIIYQQQghJJi2WFix4e4Hf+zYu3YgiQ1GC1yixpOy/1LGXun05kPJcLs3JQQghJCzuzk60PvgQzBs2hP1c27btaNq2HaZFi1Dws59ClZ0dhzWMjtBrhdKQ4f9OjR6oXALkVwFNW4CuJiAjF8jIBQcgaAGtrBJg7FyaZJwQQgghhBBCCCEkhqhcFSFJqqurCw888AC6urqkXpWUQTFj4hkHe0MDDi+5NKIEhy/ze+/h8JJLYW8IvYSVV29GBt685nvozQiQiIiS6HKO/KDcCcCMZcCsVUDpXCC7DFAPmaNDzbPbS+eyx81YNijBQfsrIYREh46jJJXQ/poeaDtLg+IePopZesRALn3Uu/RY+79rU74fJL5oJAchScpgMOCGG26AwWCQelVSBsWMiVcc7A0NOLr8Bgjd3TFZnrutDUeXL0fpyy+Dn1QR8vN4mw21//oIvM0Wk/UYilNrQn+wIQ8w1LK/RRHwOAHBAyiUgFIzUKLK31NpfyWEkKjQcZSkEtpf0wNtZ2lQ3MNHMUuPGMilj3alHQuvWpjy/SDxRSM5CElSKpUKZWVlUKkoFxkqihkTjzi4OzvRtPrmmCU4vITubjStXg13Z6efe0VwiuHTRikFAfltbVAKQkzXBQA4hQiFXhfhkzlApWUlrVTaoAkOgPZXQgiJFh1HSSqh/TU90HaWBsU9fBSz9IiBXPooKAQUlhSmfD9IfFGSg5Ak1dvbi3Xr1qG3t1fqVUkZFDMmHnFoffAhuNvaYrY8X+62NrQ+9PCg28Y/eDnG/8+l0BXywx5v12rx2Vlnwq7VxnxddEU8OMEV8+X6Q/srIYREh46jJJXQ/poeaDtLg+IePopZesRALn3UerTY9M6muPejyFCE3Tfs9vtDk44nP0pyEJKkFAoFsrKyoFDQyzRUFDMm1nHoqauLeg6OkZjfew89dXX9/2tyDNCM0kNXPDzJwYkiMnp7wYnDR3lES1fMs3JTCUD7KyGERIeOoySV0P6aHmg7S4PiHj6KWXrEIJX62NjZiBf2vOD3PgECvrZ8jTW71+BA54EErxlJFZwoxuEsESExUF9fj+rq6v7/9+zZg6qqKgnXiJD0dGTZMti2bY97O/qaGpS++gr75+NHAMEN+/ZPcPj5lri37VW+ogj8DzewclOEEEIIIYQQQtJKi6UFC95e4Pe+jUs3yv6K/kT3/9PmT/Hc7ufwVdtXIT9nZv5MrJy6EvOK58V0XUj0pDyXm/ypPELSlNPpxM6dO+F0OqVelZRBMWNiGQd7Q2NCEhwAYN22DfbGxoEbOCX4ggzoigcnHFwqFQ6Xl8MV43qc+hIefEEGmzA8AWh/JYSQ6NBxlKQS2l/TA21naVDcw0cxS48YJHMfu+xduPfTe3HHv+4YMcGhFJQo7SmFUlACAL5q+wp3/OsO3PfpfeiydyVgbUkqoCQHIUnKbrejrq4Odrtd6lVJGRQzJhZxcDa3wNncgs5162K4ZiPrXPcGnM0twJzbgLm3A5WLkXPxrEGPcanVqK+uhkutjmnbORfPAioXjzhheKzQ/koIIdGh4yhJJbS/pgfaztKguIePYpYeMUjWPjacasDS9UvxweEPQnq8RtCgsqsSGmHwBYnvH34fS9cvRWNnY4BnknRC5apI0qJyVYRIZ9/kKZK2P2X/PvbHN3XA0c1oWbMJ5h3H49aeaUYhim4+DyidC4yrjVs7hBBCCCGEEEKSF5Wrim//G041YMU/VsDsNEe1HF8mjQkvLHgBFdkVMVsmiQyVqyKEDCOKIux2OygPGTqKGSOrOORXAgAKrjkLKgMrTyUCcKrViFXvVAYVCq45s6+9xCVSZbWdCCFEAnQcJamE9tf0QNtZGhT38FHM0iMGydbHLnsXbv/w9vATHCKg9qgR6CSA2WnGbZtuo9JVaY6SHIQkqe7ubjz66KPo7u6WelVSBsWMkVUcDPlAVglURh4lq2ZCwStgzcjAO1cshTUjI+rFK3gFSlbNhMrIA1klgCEvBisdGlltJ0IIkQAdR0kqof01PdB2lgbFPXwUs/SIQbL18eGtD6PN1hb28/RuPZY0LYHerQ/4mDZbGx7Z+kg0q0dSHJWrIkkr3ctVeTwetLe3Iy8vD0qlUurVSQkUMyYWcUiaclUAcPIgsPsvgCjCvnMLjvz5ME4pDTCZzVAKQsRtqAxKlFw7Dvz0OWwejmlXATnjY7D2oaH9lRBCokPHUZJKaH9ND7SdpUFxDx/FLHAM5FSuKpLtHK/+f9r8Ke741x0RPZcTOZicJpg1Zohc8NPYT577JOYVz4uoHRI9KldFCBlGqVRi9OjRafuBIxIUM0Z2ccidABRUAhwHvvo0TFgxFqWFrqgSHKbKDJSvLAVffRpLcBRUJjTBAchwOxFCSILRcZSkEtpf0wNtZ2lQ3MNHMUuPGCRTH5/b/VzEzxU5Ed3a7hETHADw/J7nI26HpDZKchCSpCwWC1588UVYLBapVyVlUMyYmMYhhA8RMRWovQnnA1oDoNbDXjQNm2bXIvuKEuhLdGEtXl+iQ8kVBShaUghV+TRArWfLnXB+DFY+PLS/EkJIdOg4SlIJ7a/pgbazNCju4aOYpUcMkqWPjZ2N+Krtq4ifr3VrMf/4fGjd2hEfu711Ow50Hoi4LZK6VFKvACHEP5VKhbKyMqhU9DINFcWMTSzG2e0YW1AAzm6HmJEBjuPCXs74By8HABxb8w/Yvu2N9WoGpCsxoPDmC4ffodED064Gdr4GlU5EWZ4DWYWjwI9Xwd7uhHm/DfZWAbZjvRBsrv6nKXRq6AozwBcoYJqsA5+nATQGIG8SS3CoebZcTeDanvFC+yshhESHjqMkldD+mh5oO0uD4h4+ill6xEDqPrZYWgAAbza8GdVyBE5AO98OgQutmsObDW/ixuobU6q0GIkezclBkla6z8lBSKjsDY0wb9gA2+5dsO/dB8FnUjFFZib4yinQTZ0G06KLwVdUhLbQjx8BRBFtr2xAx+ZTcVrz4XLOGIX8ZRcD5/zU/wMsbcCuNwCHBRBFwNzCfjxOACzJIzhFiB4RnJKDQsMNJHmUGsBUxH44jo3gmHY1m9ycEEIIIYQQQkjak9OcHJGIZf+nvjQ1VqsVkd037Ja0/XREc3IQQoZxOBzYsmULHA6H1KuSMtItZj11dTiybBkOL1mCjjVrYN28BUJ3N1wqFRonVcClUkHo7oZ18xZ0rFmDw4uX4MiyZbB88kloDYgemKaEVw4qWqbJOkD0BH6AIR+OqcuwpTsXDg+AzGKgeDaQNwUwjAanNULJq6DSq6DkVeC0RsAwmt1fPJs93jsHR81KSRMc6ba/EkJIrNFxlKQS2l/TA21naVDcw0cxS48YyKWPKkGFCd0ToBLkO+qGRI+SHIQkKafTiZ07d8LpdEq9KikjXWLm7uxEyz0/QvOtt8G2bfvw+9UqHCkvh1s9/AOAbdt2NN1yK1p+9GO4OzuDNySK4PM00BWPXPcyFvQlPCsnNcIAQydU2HnCA2fFIiCrhCUtMnKB3IlA4Qyg9LtA2Znsd+EMdntGLntcVgkw7SqgcokkJaoG9SNN9ldCCIkXOo6SVEL7a3qg7SwNinv4KGbpEQO59FElqFBmKaMkBwmKylXFidPpxBtvvIE///nPqK+vR2trK7Kzs1FeXo7LL78cN954I3Jzc2Pa5pEjR7Bp0yZ88skn2L17N7799ltYLBYYjUYUFxdj7ty5uPbaazF//vyIlv/ll1/ihRdeQF1dHZqbmwEAxcXFqK2txU033YRZs2bFsjtUrooQP+wNDWhafTPcbW1RL0uVn4+SZ58FP8lPCauPHwEEN/DtZvQcsqL5rdao2xtJyRUFMIzXA2PnAuf+d+hPtLQDbfWA+ThgOQG47AP3qXk2ksM0BsivAgx5sV9xQgghhBBCCCGyQOWqqFwViZyU53IpBRYH+/fvxzXXXIOdO3cOuv3EiRM4ceIENm/ejMcffxwvvPACFi5cGHV7O3bswK233oqtW7f6vb+zsxOdnZ3YvXs31qxZg9raWrz00ksYO3ZsSMt3Op348Y9/jD/+8Y8YmhPbt28f9u3bh6effhp33XUXHnvsMajV6qj7RABBEGA2m2EymaBQ0KCrUMg9ZvaGBhxdfsOgOTf8ETgONr0eOqsViiB5bHdbG44uX47Sl1/2n+jglIBCDeN4PUwTlTAfCFJGKkqmiUqW4FCoWbtBDNvOhjzAUMvuFEU2P4fgARRKNg9HBBOvJ4Lc91dCCIk3Oo6SVEL7a3qg7SwNinv4KGb+Y9DY2Rh0kuyffPoT1IyuwcLyhZiYPTFRqxoxuWxnTuSgc+tgU9kgcnStPvEvdffwJNXc3Ixzzz23P8HBcRzmz5+PFStW4JJLLoFOx+rbt7W14dJLL8VHH30UdZsNDQ3DEhwVFRW4/PLLcfPNN+Oqq65CcXFx/311dXWYO3cuvvnmm5CWv3r1avzhD3/oT3CMGzcO1157La699lqMGzcOAJvs9/e//z1uvfXWqPtDGLPZjCeeeAJms1nqVUkZco6Zu7MTTatvHjHBAQA2vR4bFl8Cm37kckxCdzeaVq8eXrpqzm3A3NuBysVA8SwUXFYNlSF48iFSKoMSBZdVA8WzWHtzbw/6+KDbmeMAlZaVolJpkzbBAch7fyWEkESg4yhJJbS/pgfaztKguIePYjY4Bp82f4obPrgBS9cvxRsNbwR8zs72nVi7ey0uX385bvjgBnza/GkC1zh8ctnOOrcOC1sWQudO7JyhJLVQuaoYmzdvHv79738DAEpLS/Huu+/itNNO67//5MmT+N73vod//etfAIBRo0bh0KFDyMrKirjNdevW4ZprrsGECROwatUqLFu2DEVFg4ePCYKAF198EXfeeSesVisAYM6cOfjPf/4DLshJwOeffx4rV64EACgUCvzv//4vfvCDH/RngAVBwB/+8Afcc889EAQBAPDSSy9h+fLlEffHK93LVckl455Ico5Zyz0/gnnDhpAeG+pIDl+mRYtQ9JvHh9/xTR1wdDPQexL2vV/j6OvHIdiFMNY8OAWvQOm1Y8BXnsbmzSidC4yrDfocuWxnufSDEEKkQsdRkkpof00PtJ2lQXEPH8WMxaC5vRl/2vcnfHD0g4iXs7B8Ie6ffT+y+KzYrVyMRLKdY1muqsXSAoCNgNnZvjPk5w0V7kiOGfkz8MhZj8i+tFgykvJcbnoeyeLk/fff709waDQa/P3vfx+U4ACA3NxcvPvuu/0jIE6dOoXHHnssqnbHjBmDF154Afv378d99903LMEBsATFihUr8Oqrr/bftmXLFvzzn/8MuFyHw4Ff/vKX/f/fe++9uPvuuwcdGBUKBe6++278+Mc/7r/t5z//ecpPapQMFAoFsrKy0vYDRyTkGrOeurqQExwAoBBFZPT2hpzgAADze++hp65u+B35ley3Pgf8aANKrx0DlSk2E5GrTFqW4BhtAPQ5fe2N/OYnl+0sl34QQohU6DhKUgntr+mBtrM0KO7ho5gBB7oO4KZPbooqwQEA7x9+H0vXL0VjZ2OM1ix2pN7ORYYiFBmKUDO6JqrliJwIq9oacqmqmoIaSnCkofQ9msXBk08+2f/3DTfcgKlT/U+wk5GRgf/5n//p//+ZZ56B2+2OuN358+fjxhtvhFI5cimZyy67DLNnz+7/f0OQE6fr169HU1MTACAzMxP//d+BJwL++c9/DpPJBAA4evRo0OWS0PT09ODpp59GT0+P1KuSMuQas461a8N6vE3H458LLoRNx4f1vFNrnxt+oyEfyCphZZ9MReDzNCi/qRimmtDm9AnEVDMW5Tex5cFUxJafVRLSxOBy2c5y6QchhEiFjqMkldD+mh5oO0uD4h6+dI9Zw6kG3LbhNkw7OA28O7zvzf602dpw08abki7RkSzb+aLyi6J6Pu/mcV7LeSFvq2jbI6mJkhwxYrFY+ktQAcBNN90U9PFLly6FwWAAwEZzfPpp4ur4ffe73+3/+8iRIwEf98477/T/ffXVV0MfpL6/Xq/HVVdd1f//3/72t6jWkbDRQNOnT4dGo5F6VVKGHGNmb2iEbdv2sJ6jcrlRdvgwVK7wkqfWbdtgb/TzoaxkDvttKgI0Bqh4AUULs1F8Wy30EwvCakM/sQAlt9WiaGE2VLwIaAxsuQAwdm5Iy5DLdpZLPwghRCp0HCWphPbX9EDbWRoU9/Clc8y67F24/cPb0enuxBHDEbgVkV907MvsNOO2Tbehy94Vk+XFQrJs54rsCszMnxnx890Kd8jb6vSC01NiUngSe5TkiJH//Oc/cDgcANhIjVmzZgV9PM/zmDt34IReLCYgD5XvHBwejyfg4z7++OP+v2tra0dc7tlnn93/dyL7I1darRZz5syBVhub0kDpQE4xcza3wNncgs5168J+rtrtRkVDI9QRjBDrXPcGnM0tg2/MnQAUVLLRFnmTAIUKcJhhzOtE6Q9qUf5flyBnwVRkTB4DhX7whyeFXoOMyWOQs2Aqyv/rEpT+oBaGvE7AYWbLyZvElltQCeSMD2kd5bKd5dIPQgiRCh1HSSqh/TU90HaWBsU9fOkcs4e3Pow2WxvcCjcOZh6MWZIDYCM6Htn6SMyWF61k2s4rp66M+LnhbKsV1SsiboekNpXUKyAX+/bt6/976tSpUKlGDu3MmTOxadOmYc+Pt927d/f/XVJS4vcx3d3dOH78eP//M2eOnHH1fUxLS0v/5EYkMna7HVu2bMGcOXPA89EPn0wHcorZofPOi/i5TrUajZMmoaKhARqXK6zndr3+Orpefx1T9g85Jk04H+j6lv1dUAW01rNExbGvwGeXg198GsApIIoiBIcbovv/s/fn8W1Vd+L//7raJctbvCZ2FofsG9lIgZaQLrRZCqUNdKEQSihtoetMO0xp59fvdGYK5Tv9tKXz6Te0BQKdlgIllLIlZSkhZYaQZoMkEDtANjtx7MSWJVm7dH9/3FixY9mWbMlXun4/Hw8/bGs5555zj06c+77nvOMoFjMmu0ULrKoJ8LfBiYOQiGkBjpq5YHWB3a2VnyajnGejtEMIIfQi86goJDJexwY5z/qQfs/cWO2zbc3b2HxYy8FhjVuZ7p3OoZJDRM2Z/b95MM8dfo41U9ewvH551socruGc5zp3Hftu3Df0CzO0vH45qxpWJfs/E+meq9UNq/Oi34U+ZCVHljQ2NiZ/njx5clrvmTTp3J72Bw8ezPoxpXLs2LE+qyw+MsCF1N7tgb7HOpDzX3N+GSIzsViMI0eOjChfy1iTL32mqipxv59YZydxvx81gwTg2RA3m2mvriaeRp6etNlcsOAzYHWAvQTGX6htNZWIwZlD0Px36DiMEjiD2RzD4jRhNsdQAmeg47D2/JlD2uttbu399hKtvAWf0cpPU76c55EySjuEEEIvMo+KQiLjdWyQ86wP6ffMjdU+u3/fuTyUJtVEVagKk5r9S6MP7H8g62UOR76d5+8t+x7VzuqM35fOuap2VnPHsjtGcniiwCnqaF99M6jPfOYzPPbYYwB84xvf4J577hnyPU888QRr164FoLa2ts/KiVy55ppr2LRpE6AFJZqamlIuW9u8eTOrV68GoKSkhK6urrTKLykpSSY02rJlCx/72MeGfawHDhxg3rx5yd/379/P3Llzh12eELkUamzC++yzBPe9Seitt0n0+syYSktxzJmNc/4CSj6+BseMGUOW9/as2bk83CH1W8nRw98Gbz4KYT+oKnhbtK94ZOhCzWeTjPckGre7tQCHO/M/coQQQgghhBBCiHQ1dTax9qm1o1bfE1c9IbkhUmjqbOKmLTfhjXizVmaJrYSNKzcyo3zoay0it/S8lisrObLE7/cnf3Y6nWm9p/frer8/Vx566KFkgAPgrrvuGnBfvuG05/zXZqtNDocjmaQ9Ho/j8XiSd8Z7vV4iEe3iajAYpLu7G9Ci1R6PJ1lGV1cX0bPb9gQCAQKBAADRaLRPAMfj8SQj3N3d3QSDQQAikQherzYBq6qKx+NJ5jPx+/2EQiEAwuFwMsiTSCTweDwkEgkAfD5fMm9LKBRK9s9AbYrH4xw5ciRZrxHalOvzFAwGeeedd4jH46PWJt/WrTSuW8fbn/40Z379a3yv78DX6y6JbpeLiN9P4LXtnHjwQQ5ecy1Hrr+ezr/+ddA2hc8mBotaLATOfq5UoLuoiLhJm7qDDgcRqzX5uqBTW34aNZs5MX480bMrOYJOB9GzW+hFrFaCZ5epxk0muouK6Il0B5zO5OsGPE/uarqmX0u0YhYoCgFXHYGai6BqNlHXeLqUclBMgIIn7iBmKQZ3Ld1lcwjWXASl9UQS4C2eBktvRi2qyvg8xeNx3n333eT4yIexN5zPUzQa5dChQ8l68+3zZMQ5QtokbZI2GatN4XCYQ4cOJes1QpuMeJ6kTV3Jsg8dOpSs1whtMuJ5Gmmb4vE4x44dS9ZrhDYVwnnyer0cOXKEeDxumDbl+jx1dXXR2tpKJBIxTJsGOk9NJ5s40nGExxofwxq3Yo9r18HMCTM13TUoqpa31hlzYk5o/4e2xW3Y4rbk65yxc9e6XFEXpoT2f3J73I41bu3/OhUe3fsox7qO5aRN6Z6njo4Ojh8/Tjwez5vzNME6gY0rN1LjqMEVddFzQaJ3//c+T6aEiaJoEaXhUhRV6XeeesprcDfk3dgz4ucp3TbpQYIcWdIzYABsNtsgrzynd4ChZ2Dmys6dO/nKV76S/P1zn/sc11133YCvH057IDdtuvjii7nmmmsAaG9v55577kl+8B544AHeeustAF555RWefvppAJqbm/usptmwYQPvvvsuAM8//zzPP/88AO+++y4bNmxIvu6ee+6hubkZgKeffppXXnkFgLfeeosHHtCWG4bDYe655x7a29sBePzxx9m+fTsAe/bs4fe//z2gffDvueee5ETz+9//nj179gCwfft2Hn/88UHb5PP5eOihh/jzn/9smDbl+jz1HGvP5JzTNt13H//zgx/Q/JVb2RWLsXPZRQCcqazk2auuTB7r86tWcqq2FoA3Fi3ijUWLCO7cxa4f3cn/97OfEevsTNmmt+Zpke7miRP569lt5aJWK89edSXes7lutl96KU0zZwJw+IKp/O3yywHwlJfz6orL8ZSXA/C3yy/n8AVTAWiaOZPtl16qtb2khGevupLo2UDJXz/yEZrP5ukZ9Dzd/yDv2mbD/Gt5vtnB84cTUFTJu6apbGieAZPfD1M+wD0tF9LsXgCV03m6pYRXjiegbCJvOZbywKstYHMN6zz5fD5+97vf8frrrw99nvJ4jjh58iQPP/xwchVfvn2ejDhHSJukTdImY7Xp0KFDPPzww8n/rBmhTUY8T9ImrU0+n4+HH36YQ4cOGaZNRjxPI22Tz+dj48aNhmpTIZynP//5zzz00EP4fD7DtCnX5+mPf/wjv/rVrzh69Khh2jTQebrv/vv42sNf49HGR5njmcPi01o+2fGB8VzWflkyMHFFyxXUBGsAWNCxgAUdCwCoCdZwRcu5HJKrW1ZTEa4AYPHpxczxzAGgvrueFSdXAGBNWIlvi3Pdo9flpE3pnqdf/epXPPDAA/h8vrw6TzPKZ7Dh4g2sblmNNaFdj1hxcgX13fUAfc5TRbiCVS2ruOLkFThjzj7naXV0NTfbb2ZG+Qzd2zSS81RIn6d026QH2a4qS9asWcNzzz0HwD//8z/z4x//eMj39N4Syu12J/+Dlm2HDx/m0ksvpbW1FYAFCxbwt7/9bdCk4H/84x/59Kc/DUBNTU3yvUOpqamhra0N0D5IPdtxDUfPEieHw4HFYmH79u3MmjULn89HaWkpiqLg9XpxOBzYbDaCwSCJRIKioiJisRh+v5+ysjJAi4q6XC6sVmsyIupyuYhGowQCAUpLSwEtKup2u7FYLHR3d2MymXA6nUQiEUKhECUlJaiqSldXF8XFxZjNZvx+PxaLBYfDQTgcJhKJUFxcTCKRSCZfN5lM+Hw+bDYbdrudUChELBbD7XYTj8dTtslqteLxeLBarbjdbkO0KdfnKRwO09XVRVVVVbK8XLQp3NRE49e+jnLyJNZYjLDNhqooOMJh4iYTIaeTorPR7G6XC3s4jCUeT67OsEcixMxmwnY7pW43E3/zG0I11X3adOiSS7FHIkQtFqJWK65gEBUIFBXhCAYxJxIEHQ7M8Ti2aJSoxULMasEZDBFXFLwlJZR4vZhVlaDTgSUawxqLEbFaiZvNOEOh5LG6urtR0FZyWKNRrLEYU/bsTv88+U/j8r9HtKOFgKeVUrMW1feEVNwuB5bS8XRbKzBVz8ZZNXHEY09RFE6fPk1xcTEOhyMvxt5w2hSPxzl9+jSVlZWYzea8+zwZcY6QNkmbpE3GalM0GqWjo4Pq6moURTFEm4x4nqRNWptUVaWtrY1x48ZhtVoN0SYjnqeRtslut+P1elEUhZKSEkO0qRDOk9/vJxqNUlZWRjQaNUSbcn2eotEoVqs12X9GaNNA52nZ/cuImCLETXGscSsmTITNYUwJE+6oG6/NC4q2kqDndT2rOCLmCOaEGVvCRtCi3cjriroImUMkTAnscTsJEkTN0b6vU8EVcxG0BHnzC2/qNvY8Hg9msxm32528ETnfztMbvjfYeGAjb7W8NeB5csQdRE1RoqYozriTubVzuenCm1g6bmletsnIn6eh2tTS0qLbdlUS5MiSfM3JcfLkSS677LJkRHDq1Km8+uqrjB8/ftD3SU4OIVILNTZydN2NfXJujJSptJTJv/0tjpnn9o+MNLcAcOLb3yL4xv6s1TUU58L5TPjJz7DV1w2vAFXV8nMk4mAya3k4FCW7BymEEEIIIYQQQqRh/kPzda1/3437dK2/UBzqPMRjjY/xSOMjKZ9fVL2IpTVLWdWwSnKd5DHJyWEAFRUVyZ9PnTqV1nt6r44YN25c1o/pzJkzXHHFFckAx/jx43nxxReHDHBA3/Z4vd4+21cNJBAI9FmNkos2jSVer5ef//znyaVjYmi57rNYZyfHb/lSVgMcAImuLo7fckty6yoAW0URtooiXNMyT8odcDp55sork7k8MuG6oApbRVHG70tSFLDYwebSvucgwGGUz4ZR2iGEEHqReVQUEhmvY4OcZ31Iv2dO+kxbubHq+Ko++TaMppDO8/Ty6Xxh3hdSPueMObnw4IV8YdoXJMAhBlRwQY6TJ0/ywx/+kI985CPMnTuXxYsXc/XVV/OrX/0quaRHDzPP7osPcPTo0bTec+zYseTPs2bNyurxeL1ePvaxj3HgwAEAKisrefHFF2loaEjr/b3bA+m1qXd7UpUhMuNwOFixYgWOs0mixdBy3Wen/uNHxM5ux5ZtsbY2Tv3oznMPbN8A2zdQUnUi47Ks0Shz9+/HejZxVSZKqk9odecxo3w2jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnEDFFeKtM2yLJqIxyniOmCIsvWVzw7RC5ZdGz8scffzwZTVy9ejW1Z5PzDuTBBx/kq1/9anJVgaqqKIrCG2+8wdNPP82dd97Jww8/zPvf//6cH/v5Zs+enfx53759xGIxLJbBu3f37t0p3z9S3d3drF69ml27dgFQWlrKli1bmDNnTtpllJaWMn78+OQWWnv27BkyaNG7PXV1dYPm/BBDs9lsLFy4UO/DKCi57DPf1q14n302J2X38D7zDCUfX0PxihXaA6qKozyBs95OsDmcdjnWWIyGw4czrt810YGjLKFtOZXHjPLZMEo7hBBCLzKPikIi43VskPOsD+n3zEmfQdwU52hxejcpFyqjnOe4Kc6MeTOwnc1zKkQquq3k6Ozs5LOf/Sy33HILt99+O+Xl5YO+/o9//CPr168nGAzSO42IqqrJ348fP86qVavYv3/09q/vcemll2K32wEtyLBz585BXx8Oh5PZ7QE+9KEPZeU4QqEQV111Ff/zP/8DaIlqnn32WZYsWZJxWR/84AeTP2/dunXI17/yyivJn7PVnrEsGAyyZcuWZHIoMbRc9tmZ++7LepmpdNx3/7lf1DgkolRcXJZRGWGbjT2LFyUTnaer4n2lkIhq9eYxo3w2jNIOIYTQi8yjopDIeB0b5DzrQ/o9c2Opz7as3cKWtVtYWLWwz+PWuJULz1yINW7NSb2LqhexZe2WnJSdLqOcZ2vcymsvv1bw7RC5pVuQ46WXXiKRSABw4403JgMEqXR1dXHrrbcCoJzd3728vJyrrrqKT3/608ycOTO5qsPv9/PlL3859w04j9vt5sMf/nDy9wcffHDQ1z/xxBPJ/BXjxo1j+fLlIz6GaDTK2rVr+etf/wqA3W7nz3/+87BXtlx99dXJnx999NFBJ5NgMJhMvH7+e8XwJBIJPB5P8nMihparPgs1NhHcuSurZQ4ksHMnoaYm7ZezAdziC1yUTEs/t4WqKHQXFaFmkA+jZJqC+wJXn3rzlVE+G0ZphxBC6EXmUVFIZLyODXKe9SH9nrmx1Gd17jrq3HUsrV3a53ETJlwxF6YcXRpdWrOUOnddTspOl1HOswkT/i5/wbdD5JZuQY7XX389+fM111wz6Gs3bNhAR0dHMsDxuc99jmPHjvHkk0/yyCOP8Pbbb/PQQw9hNpsB2L59e5/yR8ttt92W/PnBBx9M5sM4XyAQ4Ac/+EHy9y996UtDbm01lHg8znXXXcdzzz0HgMVi4bHHHuMjH/nIsMu86qqrqK+vB8Dj8fCjH/1owNf++7//Ox6PB4DJkyfz8Y9/fNj1Ck1RURGf/exnKSoaQRLoMSabfRZpbkl+dT7ySBaOLn2djzyq/dArSFHzfhMWV3rvd4TDfOBvr+IIp7fFlcWllZ+Ug2Th2WSUz4ZR2iGEEHqReVQUEhmvY4OcZ31Iv2duLPbZqoZVfX4Pm8O8VvMaYXP6W0OPpD49GOU8h81hrrj6ioJvh8gt3YIcb7zxBgAlJSVccsklg77297//PYqioKoqM2bM4KGHHsLl6nu174YbbuBf//Vfk79v2rQp68c8lDVr1nDZZZcB2nZUH//4x3nzzTf7vObMmTNcffXVvPPOO4C2iuOf//mfU5Z35MgRFEVJfg20OkRVVW6++WYef/xxAEwmE//93//NVVddNaL22O12fvjDHyZ/v+uuu/jFL37RJ3KaSCT4xS9+wd1335187N/+7d9kn7wsiMViHDlyhFgspvehFIxs9tm7H/lI8svzhz9k4ejS53n4Ye0HxQwmbemspcjGxNUmTPahAxBxk4m26mripqGneJNdYeJqE5ais59Zk1WrN48Z5bNhlHYIIYReZB4VhUTG69gg51kf0u+ZG4t9NqN8BourFyd/NyVMVAWrMCWyf2l0Sc0SppdPz3q5mTLKeTYlTJw4fqLg2yFyS7cgx+HDh1EUhUWLFg36ulOnTiVXRCiKwj/+4z8OuOrhG9/4Bg6HAyCZdHu0Pfzww4wfPx7QghQLFy7kgx/8IF/84hf5xCc+waRJk3jhhReAc6stysrKRlTnhg0beOihh5K/X3DBBbz66qt87WtfS+trMOvXr+eGG24AtIDGN7/5TWbMmMH111/P9ddfz4wZM/jmN7+ZDHzcdNNNrFu3bkTtERq/389DDz2E3+/X+1AKRk+f+Xw+4n4/sc5O4n5/nzw+hUJ931fgkttgzlVQfxFUz8HRUMfkL87DUuoc9L0hp5OtH/4QIefgr7OUOpn8xXk4Guqgeo5Wz5yrtHrzmFE+G0ZphxBC6EXmUVFIZLyODXKe9SH9nrmx2mc3z785+bMj7uDyU5fjiDuyXs/6eeuzXuZwGOU8O+IOnnvsuYJvh8gtRdXp6l9paSl+v5/Pf/7z/Pa3vx3wdU888URyOytFUTh58iTV1dUDvv7yyy/nb3/7G/X19Rw7dizrx52OgwcP8rnPfY69e/cO+Jqqqio2btzImjVrBnzNkSNHaGhoSP6+ceNGvvCFL/R73b/+67/2WXGRqaGGQCQS4dvf/ja//OUvB3ytoih8/etf5yc/+QlWa3aSNh04cIB58+Ylf9+/fz9z587NStnCeEKNTXiffZbgvjcJvfU2ia6u5HOm0lIcc2bjnL+Ako+vwTFjxpDlvT1rdi4Pd0gzdu7E7C6C97bC0deg+zS0vw1mG7GyBZz64068fz887PJLLmqg5tqlWDxvQjwCVbOhqBImXwJTV2StHUIIIYQQQgghRL64fdvtbD68OWflr25Yzd3L7x76haKfFn8LKzetTPnclrVbdM9xIoam57XckSWCGIFAIABoCbsH8/e//x3QLqJPmzZt0AAHwNSpU/nb3/6WzA+hh1mzZvH666/zyCOP8Ic//IEDBw5w6tQpysrKmDp1Kp/61Ke46aabqKys1O0YM2Gz2fiv//ovbrjhBh544AG2bt1KS0sLAHV1daxYsYKbb76Ziy66SOcjFWORb+tWztx336CJwRNdXQRe207gte2c+fWvcS5dQuUtt+C+/PJRPNLMqNEIUKStsDj6GrgqwGyDeAQLXdStv4ySixroeOEAgUOn0i7XNb2Gio/OxT2vHnytWoDDbNPKB6iWQKIQQgghhBBCCGP63rLvsat1F23BtqyXXe2s5o5ld2S9XCHE0HTbrsp5dhsVn8836Ot27tyZ/Hnx4sWDvLJvuaFQaARHN3I2m41169axefNmjh07Rjgc5tSpU7z22mv80z/9U1oBjilTpqCqavIr1SoO0FZy9H5dpl/pWrZsGffeey8HDx7E5/Ph8/k4ePAg9957rwQ4cqCrq4sf//jHdPVakSDOiXV20vLt79D8lVuTAY5ul4s/rf0U3a7BM3QHd+7i+Je/Qst3/olYZ+doHG7GFOvZHBnuaiibqCUDLzl710LnEYiFKZ5fz+R//BgN/3IlFSvnUzRrPCaXrU8/mFw2imaNp2LlfBr+5Uom/+PHtABHLAydZ1eClNRp5ZdNBHeVLu3NhFE+G0ZphxBC6EXmUVFIZLyODXKe9SH9nrmx3GdljjI2XLGBaqWaq45ehTM2+DbP6SqxlbDhig2UOcqyUl42GOU8O2NOfvt/f1vw7RC5pdtKjoqKCrq7u2lqahrwNfF4nB07dqAoWqLdZcuWDVluzwqO8xOTC1FoXC4XV199tYzlFEKNjRy/5UvE2vreeWEPh1m2/XXs4XBa5XifeYbAjh1M/M1vcMwcegur0WQq6nXeJ14MnuNaMKK7HSJ+aD8INfPAZMZRV46jrhzQtp8LB6I4OxNccMlV2F3W5ByalIhr70/EwOY+FzyZdMkotW5kjPLZMEo7hBBCLzKPikIi43VskPOsD+n3zI31PptRPoP/Wvlf/OvT/0rEFBlxedXOajZcsYEZ5fl1XcEo5zliirD8Y8sLvh0it3RbybFgwQJUVWX37t2cOpV6q5VXXnkFn8+XXG2wfPnyIcvt2Uapqir/70YWYjBWq5VZs2ZlLceJUYQaGzm67sZ+AQ4ASzxOXUsLlng87fJibW0cXbeOUGPfgOsFL76Y/HIuWjTi486Ec/HivoGJymlQM0dbbVE1E0wWCHvh1H5tRUYviqLgKLIxt96Bo8jWP8ARC2vvC3u1cqpmauXWzIGKC0ahdSNnlM+GUdohhBB6kXlUFBIZr2ODnGd9SL9nTvoM5lTP4def/zUfu+BjIypndcNqNl21Ke8CHGCc8xw3xZkyfUrBt0Pklm5Bjg9+8IMAJBIJ/uVf/iXla372s58lf54wYQJLliwZtMx4PM7u3btRFIXp06dn72CF0EEgEODJJ59M5q8R2hZVx2/5Up+k4r2FbTZ2vO99hG22jMpNdHVx/JZb+mxdZauvS365Rnk7tpT1TbsC7G6wuqBm7rlAx4ndWm4NNZF8aSCq8mRjjEC013Z0akJ73Ynd5wIcNXO18uxurfwCYZTPhlHaIYQQepF5VBQSGa9jg5xnfUi/Z076TOuDrVu28v8s/X/45Yd/yZKawa85nm9JzRJ++eFfcvfyu/Nqi6rejHKebXEbr2x5peDbIXJLtyDHDTfcgMPhAOCBBx7gy1/+MocOHSISidDY2MhNN93Es88+C2h3Jq9bt27IMrdv3053dzcAF154Ye4OXgihi1P/8aOUKziyIdbWxqkf3ZnyuZIPXZyTOgdS8sEU20bZXLDgM2B1gL0Exl+obTWViMGZQ9D8d+g4DN2nIRrSghrRkPZ7x2Ht+TOHzm1RNf5CrRyrQyvXJss+hRBCCCGEEEKMPcvrl/Pgygd54qon+OzMzw74ukXVi7hl/i08cdUTPLjyQZbXD73jjBBidChqJpmns+zuu+/mjjvu6L+dSi+qqlJeXs6hQ4cYN27coOV9+ctf5je/+Q2KovDUU0+xZs2abB+yGEUHDhxg3rx5yd/379/P3LlzdTwioSff1q00f+XWnNdTf+8GilesgKDn3INHXuXId+4m+O7pnNfvmlbF5P+8HWZ/PPUL/G3w5qMQ9oOqgrdF+4qnsY+o2abl3+hJNG53awEOd3V2GyGEEEIIIYQQQhSgFn8LKzetTPnclrVbqHPXjfIRjR3S94VPz2u5uq3kALj99tu58cYbkzk3VFVNfvX8brPZ+N3vfjdkgKOzs5NHHnkERVGw2WxcfvnlOT9+IXIpGo1y8OBBotGo3oeSF87cd9+Qr4mZzbTU1REzm4ddT8d992s/bN9w7mvvw1QsGn6ZmahYaIK9Dw/8Anc1LL35XI6O0nqoXwZVs8FdCzY3UdXCwUA5UdWirdpw12rP1y/TXt+Tg2PpzQUZ4DDKZ8Mo7RBCCL3IPCoKiYzXsUHOsz6k3zMnfTY2+sAobTQnzBw5dKTg2yFyS9cgh6IobNy4kQcffJDZs2f3e3758uW88sorrFq1asiyfvrTnyaTlH/4wx/G7Xbn4pCFGDVG2TsxG0KNTQR37hrydWG7nR0Xv4+w3T7sugI7dxJq6pWEXFUh0k3xBS5Kpuc20FEy3Yz7AhdEurV6B2JzwZxPwPxroWyiFrQoqoTK6TBhEYHxF/Nk5wwC4y+GCYu0x4sqtdeVTYQFn9beX6BbVBnls2GUdgghhF5kHhWFRMbr2CDnWR/S75mTPhsbfWCUNtoSNrb9ZVvBt0Pklq7bVZ3vxIkTtLS0YDKZmDp1KuXl5Wm/9+jRo4RCIQAqKiqorKzM1WGKUSLbVYlIcwsAZ+6/H88f/jBq9ZZddx3jL7NovyRicOw1AGKtxzj8xzixHPy7anFBw7VmLLWTtAdu+BNY0gzW+Nuh7QB4T4K/VcvF0cPq0FZylIyH6rngrsr+wQshhBBCCCGEEAYgWybpR/q+8Ol5LdcyKrWkacKECUyYMGFY7508eXKWj0YIobd3P/IRXer1PPww4y9bp/3SKw5sccDE1SaOPgOJUCJr9ZkcJiau1spPSsTTL8BdBe4V2s+qquXnSMTBZNbycAyS90gIIYQQQgghhBBCiEKm63ZVQoiBeTwefvjDH+LxePQ+lILRXVTEY5/7LN1FRSMuK7nIrU+AQMFRoTD5M1VY3NnZusriNjP5M1U4KhSgV12mYZavKHj8QX5413/i8QcNGeAwymfDKO0QQgi9yDwqComM17FBzrM+pN8zJ302NvrAKG10RV3c93/uK/h2iNySIIcQecrtdnPjjTdKfpkMOIJBVrz0VxzB4IjLSoRj2g+KGUxW7Wez9t1RAQ3r6yiZM7JgSsmcIhrW1+GooE/5mKzaCoxhMvrYMUr7jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnY6MPjNLGkDnE6k+vLvh2iNzKq+2qhBDnWCwWpkyZovdhFBRzIkF1W1tWylIvXAflZdovxTXgOQZn3oXuNiiegKV8MnXToWT/CTpeaiTwTnvaZbumVVHxkVm4547XHug8qgU1iqqh4gIomzSiFRhGHztGaZ9R2iGEEHqReVQUEhmvY4OcZ31Iv2dO+mxs9IFR2pgwJZgwcQIWi1zGFgPTbXRs27Yt53UsX74853UIkSvd3d08/fTTXHnllRRlYfulsSBkt7Nz2UUs3fF3HOHwiMpSSqrAebbfKy4Afxu4ayDYASEPmKeDYqJ44VSKF04l1NKJd+cRQkdOEzx2hkQgkizL5LLhnFSBY0olJUun4KgrP1eRmtDKM1m08i0Orb4RMPrYMUr7jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnY6MPjNJGe9zOC0++wLWfvLag2yFyS7cgx4oVK1ByuFe8oijEYrGclS9ErplMJsrKyjCZZFe5dCmqSlF3N0qvZOHDZSpynfuleg4cfQ1cFdqKi3hEC3oU1yZf4qgrTwYvVFUlEY6hxuIoFjMmu2Xg+c7fppVntmnlA1TPHdmxG3zsGKV9RmmHEELoReZRUUhkvI4Ncp71If2eOemzsdEHRmljggTuUnfBt0PklqKqWbgaOAwmkwlFUchV9YqiEI/Hc1K2GB0HDhxg3rx5yd/379/P3Lkju/grCkukuQWAE//0TwT37Bm1ep2LFzPl4d/3fXDP78BzHLqaofOwljdjwiKw2IdfUSwMJ3ZDIgblDVBaD2UTYdH1I2uAEEIIIYQQQgghMtbib2HlppUpn9uydgt17rpRPqKxQ/q+8Ol5LVf3zcwURaGiogKz2az3oQiRVyKRCG+99RZz5szBZht+EupCZqvX/gFzXXRRWkGOqMVC88SJ1B8/jnUEK7lcF13U/8GJF2tBjpI66G6HiB/aD0LNPDANY/5KxLX3J2Jgc2vlAky6ZNjH3cPoY8co7TNKO4QQQi8yj4pCIuN1bJDzrA8j9nuuL/Yasc8yNRb6wChtNCfMNO1vompxVUG3Q+RWXqzzMZvNXHfddfzlL3/h5MmTWfsSopCFQiG2bt1KKBTS+1Aypqoqcb+fWGcncb9/xCu2StasSet1UauVA/PmEbVaR1jf6v4PVk6DmjlaQvCqmVoOjbAXTu3XVmRkIhbW3hf2auVUzdTKrZkz4nwcUNhjJx1GaZ9R2iGEEHqReVQUEhmvY4OcZ31Iv2dO+mxs9IFR2mhL2Nj92u6Cb4fILd22q7rooovYtWuXdhC99qpfsGAB69at47rrrqOmpkaPQxN5QrarKiyhxia8zz5LcN+bhN56m0RXV/I5U2kpjjmzcc5fQMnH1+CYMSPj8o9c/VGCB49n85BTcs2axOQn/5L6yUgAdt4PYf/ZAMcBbSWGyaJtN+WuBmWQ2LGa0HJwdB4+976auWAvAbsblt4MNtfA7xdCCCGEEEIIYXiybY9+pO/1I31f+PS8lqvbSo6///3vHDhwgNtvv526ujpUVUVVVd58802+853vMHHiRFavXs2jjz5KOJzhXdJCGICqqoRCoZzlrckW39atHLn+eg5/4hOc+fWvCby2vU+AAyDR1UXgte2c+fWvOXzVJzhy/fX4X3kl/Ur8bVR8aPqQL1OBiNXKSHqs4sPTwN+e+kmbCxZ8BqwOLTAx/kJtq6lEDM4cgua/Q8dh6D4N0aCWUDwa1H7vOKw9f+bQuS2qxl+olWN1aOVmKcBRKGNnuIzSPqO0Qwgh9CLzqCgkMl7HBjnP+pB+z5z02djoA8O0UYVwKFz47RA5pet2VbNnz+bHP/4xR48e5fnnn+f666/H5XKhqiqxWIy//OUvXHfdddTW1vKlL32Jv/3tb3oerhCjqquri7vvvpuu8wIG+SLW2UnLt79D81duJbhzV0bvDe7cxfEvf4WW7/wTsc7OQV7o0b6O76B4diUlCwdf3RUoKuLJa9YSKCrK6Hh6lCyswT2rEo6/PvCL3NWw8PPaygurC8Yv1FZxmG1aUMPbDO1vQ8tOrZyWndrv3mbtebNNe/34hdr77W6tPHf1sI45lXwfOyNllPYZpR1CCKEXmUdFIZHxOjbIedaH9HvmpM/GRh8YpY2umIv//uV/F3w7RG7ptl3VQLq7u9m0aRMPPfQQW7duTUbpera0mjJlCuvWreOGG25g6tSpeh6qyLGxvl1VPB6nvb2dqqoqzOZhJLbOoVBjI8dv+RKxtrYRl2Wprmbib36DY2aKLaxevkv73roPQh5iZ05z+GEfsUDqsuImE96SEkq8XsyJRGbH4YKG64qxVFSCoww+9/Dgb4gE4J0X4NRb2u+qCoEzEOzUkpJHA9pjiqIFM2xucJaDq0J7DLQcHNOuyPoWVfk8drLBKO0zSjuEEEIvMo+KQiLjdWyQ86wPI/Z7rrftMWKfZWqgPjDSlkmFdp4H6ntFVfjd8t8xd/LcgmjHWDYmt6saSFFREevWreOll17i6NGj/Md//AczZ85Mbmd15MgR/u3f/o3p06fzgQ98gN/85jcSyROGZDabqa2tzbsJPNTYyNF1N2YlwAEQa2vj6Lp1hBqbUr9AVSHSDYDFFmPiahMmu5LypeZEgnKPJ+MAh8muMHG1CYstpj0Q6dbqHYzNBXM+AfOvhbKJWuCiqBIqp8OERTD5/TDlA9r3CYu0x4sqtdeVTYQFn9ben4McHPk6drLFKO0zSjuEEEIvMo+KQiLjdWyQ86wP6ffMSZ+NjT4wShtVRaWiuqLg2yFyK++CHL3V19fzve99j7fffpvt27dz2223MW7cuGTA47XXXuMrX/kKEyZM4ODBg3ofrhBZ5ff7efDBB/H7/XofSlKss5Pjt3ypX86NkUp0dXH8lltSb12lxiER1X6OR3FUKEz+bDUWd/9/3IIOBy9/6EMEHY6067a4zUz+bDWOCgXiZ+tJRLWtpdJROQ0WXQ8XfREmXwLlU7QcG71ZHdrjky/RXrfoeqi4IO1jzFQ+jp1sMkr7jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnY6MPjNJGe8zOM48+U/DtELll0fsA0rVs2TKWLVvGz372M5599lnuv/9+nn32WQBCoRCBwAD71whRoCwWC1OmTMFiyZ+P6an/+FHWVnCcL9bWxqkf3UndT/6z7xN9VlRoPzuq7TSsr+PUi2fwvtWdfNYcj1PV1oY5Hk+rzpI5RdR8pAKLHfCeKx+ARHplJLmrwL3i3DHHI1oZJrOWh0NJvfokF/Jx7GSTUdpnlHYIIYReZB4VhUTG69gg51kf0u+Zkz4bG31glDYmlATj68cXfDtEbhXc6Ni/fz+vvPIKf//735N5OoQwIofDwYoVK/Q+jCTf1q14zwYWc8X7zDOUfHwNxb3b3edzrgAqqAksTit1V1ZTMidAx+tdBI6HsEWjzNu/f8h6XBMdVLyvFPcFZ7eK6lnBQa+6TCNYBqkoaJETfeTb2Mk2o7TPKO0QQgi9yDwqComM17FBzrM+jNbvTZ1NPNb42IDPf3fbd1lau5TVDauZXj59WHUYrc+GYyz0gVHaGDVHWXLpEhwZ7Nohxp683q6qx8mTJ/nP//xPFixYwNKlS/nFL35Be3t7ctuqJUuWUFNTo/dhCpFV4XCY7du3Ew6H9T4UAM7cd9+o1NNx3/19H1DMYLJqP5vPfu/ZvgoovsDF5OvG07C+juJLyjmybAbxor7xW5MdiibbqbiklIb1dUy+bvy5AEfv8nrKN1m11RcFKt/GTrYZpX1GaYcQQuhF5lFRSGS8jg1ynvVhlH7f1ryNGzffyNqn1vJo46MDvm5v+17u23cfn3rqU9y4+Ua2NW/LuC6j9NlIjIU+MEobLQkL+3ftL/h2iNzK25UcwWCQJ554gt/+9rf89a9/JXE2kbB6duuaiRMn8vnPf55169Yxa9YsPQ9ViJyIRCLs3buXuXPnYrfrtyoAINTYRHDnrlGpK7BzJ6GmJhwzZsDFt2oPFteA5xiceRe626B4ApRP7vM+Rz2UzoWjbym8/9MXUqTGUGMJFIsJk90y+MqvzqNaUKOoWsuVUTZpVLeXyrZ8Gju5YJT2GaUdQgihF5lHRSGR8To2yHnWR6H3uyfk4c4dd7L58OaM37u7bTe7X9rN6obV3LHsDsocZWm9r9D7LBvGQh8YpY2WhIWmA01cuvjSgm6HyC1FVftseK+7l19+md/+9rc88cQTyYQyPYdYVFTEpz71KW688UY++MEPynZVBnfgwAHmzZuX/H3//v3MnTtXxyMaeyLNLQCcuf9+PH/4w6jVW3bddVSsX4+tvk574L2tcPQ16D4N7W9rAYn6i0DJwmI0NQHNf9dyaFTNhqJKLUH41BUjL1sIIYQQQgghhBhAY0cjt714G23Bkee+rHZWs+GKDcwon5GFIxu7WvwtrNy0MuVzW9Zuoc5dN8pHNHZI3xc+Pa/l5sVKjsbGRn7729/y+9//nuPHjwPnAhsmk4kPfehDrFu3jrVr1+JyuQYrSgjDSCQSeL1eSkpKMJn02Vnu3Y98RJd6PQ8/jOfhh5l98G3tgeo5WpDDVaEFOOIR8LdBcW2f9yVUFW8YSuxgSjcI6m/TyjPbtPIBqgs7mJYPYyeXjNI+o7RDCCH0IvOoKCQyXscGOc/6KNR+b+xoZP1f1uONeLNSXluwjZu23MTGlRuHDHQUap9l01joA6O0UVEVfF0+Eq5EQbdD5JZuI6Ojo4Nf/vKXvO9972POnDn8+Mc/5tixY8k8G7Nnz+bOO+/k6NGjvPDCC9xwww0S4BBjitfr5Z577sHrzc4fPAXNXQ1lE7UtpErORu47j0Cs736M3jDcsyOKN91tGmNh6Dys/VxSp5VfNhHcVVk7dD0YfewYpX1GaYcQQuhF5lFRSGS8jg1ynvVRiP3uCXm47cXbshbg6OGNeLn1hVvxhDyDv64A+yzbxkIfGKWNzpiTR+97tODbIXJLt+2q7HY7sViM3tVXVlby2c9+lnXr1rF06VI9DkvkkbG+XVU+RNzfnjVbl3p7JFdyAJx+B/b9EVQVTu6FiB/sJVAzD0xmIMOVHIk4nNoPYS/Y3DB+oRbkWPBpLS9HAcuHsZNLRmmfUdohhBB6kXlUFBIZr2ODnGd9FGK/377t9mHl4EjX6obV3L387gGfL8Q+y7ax0AeF1saBtqtSVIXHrniMGeNnFEQ7xrIxuV1VNBpFURQURWHOnDnccMMNrFmzBqvVCkBTU9OI65gxQ/YhFIXLZDJRVlY2rPeqqkqiuxs1GkWxWjEVFRV+DpvKaVAzB069BVUz4eQbWoDi1H6omgUWOyZFocyRRlmxMLQf1N5vsmjlKYpWfoEHOGBkY6cQGKV9RmmHEELoReZRUUhkvI4Ncp71UWj9vq15W04DHADPHX6ONVPXsLx+ecrnC63PcmEs9IFR2qgqKsWlxRLgEIPKi9Hx1ltvcccdd7BgwQJmz56dla85c+bo3SwhRsTn83Hvvffi8/nSen2osYm2n/6MozfdRNPFl9C09CIOXXIpTUsvouniSzh60020/fRnhLIQQNTNtCvA7garC2rmagGKsBdO7AZfK75QnHt3RfGFB1igpibA16q9vifAUTNXK8/u1so3gEzHTqExSvuM0g4hhNCLzKOikMh4HRvkPOuj0Pr9/n33j0o9D+x/YMDnCq3PcmEs9IFR2uiIOXjit08UfDtEbuVF4vEe2dg5S1GUrJQjhN5sNhsLFy7EZrMN+jrf1q2cue8+gjt3DfiaRFcXgde2E3htO2d+/WucS5dQecstuC+/PNuHnVs2Fyz4DOz9vfb7+AuhvVHbuurMIWzKcRYWT8YWNoGpSNvGKhGHSDeEfdB9Nsk4aFtUVc3UAhxWh1auzRh5f9IdO4XKKO0zSjuEEEIvMo+KQiLjdWyQ86yPQur3ps4mdrftHpW6dp3axaHOQ0wvn97vuULqs1wZC31glDbGTDFmzJ1R8O0QuaVbTo5cLzFSFIV4PJ7TOkRujfWcHEOJdXZy6j9+hPfZZ4ddRsnHP07N97+Hpbw85fOR5hYATvzTPxHcs2fY9WTKuXgxE/7f/xdbfV3qF/jb4M1HIezXcnR4W7SvngDGYMw2Lcl4T6Jxu1sLcLirs9sIIYQQQgghhBACLdcAwMb9G3m08dFRq/ezMz/LF+Z9gTr3AP+3FiKPDJSTA2DL2i0yjguAntdydduuKpFI5PRLAhyi0IVCIbZu3UooFOr/XGMjhz9x9YgCHADeZ57h8CeuJtSYegsrW30dtvo6XBddNKJ6MuW66KKBAxygBSSW3qzl0FAUKK2H+mWEymezNTCTkLkEFBOgaN9tbnDXQtVsqF+mvb4nB8fSmw0X4Bhs7BiBUdpnlHYIIYReZB4VhUTG69gg51kfhdDvKzetZOWmlaMa4AB4pPGRlBeNC6HPcm0s9IFR2miNW9n1v7sKvh0it/IiJ4cQor9YLMaRI0eIxWJ9Hg81NnJ03Y3E2tqyU09bG0fXrRsw0AFQsmZNVupKV8ma1UO/yOaCOZ+A+ddC2URQFGLOCo5Ey4nVLIDJ74cpH9C+T1gEldOhqFILbpRNhAWf1t5vkC2qehto7BiFUdpnlHYIIYReZB4VhUTG69gg51kf0u+Zkz4bG31glDaaVBMnj58s+HaI3NJtuyohhiLbVfUX6+zk8CeuzlqAozdLdTUNf35ywK2rjlx//aB5P7LFtXQpk3/335m/0d8ObQfAexL8rRDtFeG3OrSVHCXjoXouuKuyd8BCCCGEEEIIIcQg5j80X9f69924T9f6hUiHbFdV+PS8lptXiceFEOfE43Ha29upqqrCbDYDcOo/fpSTAAdoKzpO/ehO6n7ynymfr/jiF2kehSBHxS1fHN4b3VXEnZdpfVZZiZm4lnTcZNbycChKdg80j6UaO0ZilPYZpR1CCKEXmUdFIZHxOjbIedaH9HvmpM/GRh8YpY2KqnCm7Qy1ztqCbofILUNuV9XV1cUPf/hDvQ9DiBHx+Xz86le/wufzab9v3TriHBxD8T7zDL6tW1M+V7xiBSWrPpbT+ktWr8R9+eXDfn+yz/x+sNi1rags9jEV4ID+Y8dojNI+o7RDCCH0IvOoKCQyXscGOc/6kH7PnPTZ2OgDo7TRGXPyp//+U8G3Q+SWobar6ujo4Kc//Sn/9//+X3w+nyQfL3BjfbsqVVUJh8PY7XYURcmL7aJirz/M4W/8hFhXMOv1WkqdNPziO1jed92wyzi/z8Yqo/eDUdpnlHYIIYReZB4VhUTG69gg51kfhdDv+bZdVSH0Wa6NhT4otDYOuF2VCn/++J9pqGgoiHaMZXpeyzXESo729nb++Z//mSlTpnDXXXfh9Xr1PiQhRkxRFBwOB4qiEGpsGpUAB0Bg505CTSmSkJ9+B0vgKBO/9mFMjuwuDzQ5zEz82oexBI7C6XeGXU7vPhvLjN4PRmmfUdohhBB6kXlUFBIZr2ODnGd9FEK/b1m7hS1rt7CwauGo1ruoehFb1m7p93gh9FmujYU+MEwbFbA7CiNQI/STN0GO1tZWHnvsMX7+85/z4x//mI0bN/L2228P+p729nb+8R//kYaGBn7yk5/g9/uTz7lcrlwfshA55fV6+fn/+T+cbmyi85FHRrXuzkceJdLc0vfB49sBcBQHmHxdLRZ3dgIdFreZydfV4igO9KlnOLxeLz//+c/HfKDT6P1glPYZpR1CCKEXmUdFIZHxOjbIedZHIfR7nbuOOncdS2uXjmq9S2uWpkzWXAh9lmtjoQ+M0kZnzMkjv3mk4Nshckv3xOOHDx/mW9/6Fs8880zK59///vdz//33M3369ORjsViMu+66KxnYUFU1Gc1zuVzcdtttfOc73xmV4xciVxwOBzNefIkTGx/EGouNat2ehx/G8/DDzD54NtDobwPPcVBV8LbgqLLR8O3LOPXcUbx/PzzsekouaqBm9WQsoaPgbYGSOq0efzu4qzIuz+FwsGLFChwOx7CPyQiM3g9GaZ9R2iGEEHqReVQUEhmvY4OcZ30UUr+valjFffvuG9X6UimkPsuVsdAHRmljxBRh8SWLC74dIrd0zcnx1ltv8aEPfYj29nZ6DqP30qOexyZMmMDLL7/M9OnTOXLkCJ/61Kd44403ksENVVUpLi7mq1/9Kt/+9repqKjQpT0iu8Z6Tg6At2fN1rX+2Xte03448io0/x0CZ+B0E5htMGERKCZ8+0/Q8VIjgXfa0y7XNa2Kio/Mwj13PKgJOLEH4hGonAGuCqi/CKZ8AJxluWmYEEIIIYQQQgihgxs338jutt05r2dJzRIeXPlgzusRIlsGzMmBtuVbqlVJIr+MyZwcqqry+c9/nra2tn6P93z1OHHiBF/72tdobW3l8ssv54033kg+V1xczPe//32OHDnCnXfeKQEOYRjBYJA9ixcRttn0O4jtG7SvvQ9rQY7mneA9oQU7WnZB898pLmth8lo3DevrqLiklKLJDkyOvlOLyWGiaLKDiktKaVhfx+S1btylzVqZLbu08rwntPKb/67Vt31DxocbDAbZsmULwWD2E6MXEqP3g1HaZ5R2CCGEXmQeFYVExuvYIOdZH4XW7zfPv3lU6lk/b/2AzxVan+XCWOgDo7TRGrfy2suvFXw7RG7ptl3V5s2beeONN5IrMT75yU/yrW99i4ULF+J0Ojlx4gRbtmzhP/7jP2hububFF1/k2muv5fjx4yiKgqIofP3rX+cHP/gB48aN06sZQuRMIpGgu6gIVe/ESqoKkW7t53hE+26x93uZo8qGo6IEvCdQVUhETahxUMxgsoJSWgWmAaYcix3CvnPlR7q1ejOUSCTweDwkEomM32skRu8Ho7TPKO0QQgi9yDwqComM17FBzrM+Cq3fl9cvZ1XDKjYf3pyzOlY3rGZ5/fIBny+0PsuFsdAHRmmjCRP+Ln/Bt0Pklm7bVd18881s3LgRRVH45je/yU9/+tOUr2ttbeWiiy7ixIkTgLbSY9y4cfzpT3/isssuG81DFqNMtqvKg+2qNqyDRAyOnd22ynMcUKF4PJit/d+QiGkrMlIpmTBwkCMeBd9JQIGyidpjky6BD///RtoEIYQQQgghhBAFyMhb13hCHtY+tZa2YNvQL85QtbOaTVdtosxRlvWyhcglI3/mx4oxuV3Vrl27ACgtLeVHP/rRgK+rra3l+9//fnILK0VR2LhxowQ4hOHFYjHaqquJm3T7mGr6xEHP/qxk+ZiS5fWqaxjx11gsxpEjR4iNcqL2fGP0fjBK+4zSDiGE0IvMo6KQyHgdG+Q8Z09TZxMb928c8Pnvbvsu9+y+h0Odhwqy38scZWy4YgMltpKslltiK2HDFRuGDHAUYp9l21joA6O00ZQwceL4iYJvh8gt3a6etrS0oCgK73//+3E6nYO+dtWqVYCWlHzatGlceeWVo3GIQujK7/ez9cMfonrTJpyLFo1q3c7Fi7ngxRe1X/psl3X2ZzXLSwST5fWqaxjbdPn9fh566CH8fn92jqtAGb0fjNI+o7RDCCH0IvOoKCQyXscGOc8jt615GzduvpG1T63l0cZHB3zd3va93LfvPj711Kf48jNfLsh+n1E+g40rN1LtrM5KedXOajau3MiM8hlDvlbG6tjoA6O00RF38NxjzxV8O0Ru6bZdlc1mIx6Pc8stt3DvvfcO+tpYLIbNZkNRFK6++mo2bdo0Skcp9CTbVZ3T9tOfcebXvx61+iq+/GWq/+Fb8PJd2oqK469DIgq+Vi1vRlElWF393zjc7aqiAeg+DWYbFNdqSTwmvg8+9L2stUkIIYQQQgghRH7yhDzcuePOEeWpWN2wmjuW3VFw2zR5Qh7u2nEXzx1+bthlFGrbhehNtqsqfHpey9Ut8XgsFkNRFGw225CvtVjOHeb48eNzeVhC5KWSNWtGNchRsma19sPFt2rfi2vAcwzOvAvdbVA8AconZ6/CzqNagKOoGiougLJJMG9t9soXQgghhBBCFDRVVemOdhNNRLGarBRZi1CGsfpb5J/GjkZue/G2EeeneO7wc+xs3cmGKzaktZohX5Q5yrh7+d2smbqGB/Y/wK5Tu9J+75KaJayft37QJONCCDEW6LzZf+ZMeucnEGKUdHV18eMf/5iuri4cM2fgXLpkVOp1LV2KY8bZPwidZdpXxQVgcYC7RluNEfJoQQmLY+RfZptWnsmilW9xaPU5yzI+9t59NpYZvR+M0j6jtEMIIfQi86goJDJeh6eps4l7dt/DF5//Ih945ANc8odLWP7oci75wyV84JEP8MXnv5jMy5AP5DxnrrGjkfV/WT+iAIcz5uSqo1fhjDlpC7Zx05abaOpsyuJRjo7l9ct5cOWDPHHVE3x25mcHfN2i6kXcMv8WnrjqCR5c+eCwAhxDjdUWfwvzH5qf8qvF35JxffloLHxejdJGZ8zJb//vbwu+HSK3dFvJIYQYnMvl4uqrr8bl0raFqvjiF2nemf4dHcNVccsX+z9YPQeOvgauCi0oEY+Av03bWmqk/G1aeWabVj5A9fCWsp3fZ2OV0fvBKO0zSjuEEEIvMo+KQiLjNTPbmrdx/7772d22e8DXeCNeXj/5Oq+ffJ379t3H4urF3Dz/Zl3vaJfznBlPyMNtL96GN+IdUTkRU4SdlTuJmCKANjZufeFWNl21qSC3b5pePp0vzPsCjzQ+kvL5uy67a8Tb9shYHRt9YJQ2RkwRln9secG3Q+SWLIsQIk9ZrVZmzZqF1WoFoHjFCkrWrMlpnSUf/zjuyy/v/4S7GsomasnAS87+MdV5BGLhkVUYC0Pn4bOV12nll00Ed9Wwiju/z8Yqo/eDUdpnlHYIIYReZB4VhUTGa3o8IQ+3b7udr7701UEDHKnsbtvNV1/6Kv+87Z/xhDy5OcAhyHnOzJ077hzxFlUAcVOcE0UniJviycfagm3cteOuEZdtVDJWx0YfGKWNcVOcKdOnFHw7RG7pHuT45S9/idlsHvILtD0403197zweQhSiQCDAk08+SSAQSD5W8y/fx1JdnZP6LNXV1Hx/kETfEy/WvpfUgc2tJSJvPwiJ+MDvGUwifvb9Ma28nuDJpEuGVx6p+2wsMno/GKV9RmmHEELoReZRUUhkvA6tsaORtU+tHVHiadDyMqx9aq0u2xXJeU7ftuZtIz7XPWxxG0vbl2KL9835+tzh59jWvC0rdRiNjNWx0QdGaaMtbuOVLa8UfDtEbuke5AAteDHUl6IoyaRi6bxeVVWdWyVE9lnKy5n4m99gKinOarmmkmIm/uY3WMrLB35R5TSomaOttqiaqeXQCHvh1P7MV3TEwtr7wl6tnKqZWrk1c7R8HEIIIYQQQogxIxt5GXor5LwMY8X9++4flXoe2P/AqNQjhBBCX4qqUzQg1wnEFUUhHh/mHeYiLxw4cIB58+Ylf9+/fz9z5w4vV4Oh+NsIPfNfHP/Zs8S6giMuzlLqZOI/rMHx8a9r21INJhKAnfdD2H82wHFAW4lhskB5g/Z+ZZDPtprQcnB0Hj73vpq5YC8BuxuW3gw22WNRCCGEEEKIscIT8rD2qbVZC3D0Vu2sLti8DEbW1NnE2qfWjlp9T1z1BNPLp49afdnQ4m9h5aaVKZ/bsnbLiHNy5HP9erdd6EfOfeHT81qubns6vfzyy3pVLURBiEajvPvuu1xwwQXn9h2MBODNR3HUuGi4/YOc+v3f8L7lG3YdJXOKqfn8ZVjGueDNR4cOMthcsOAzsPf32u/jL4T2Roj44cwh8ByFomqwF4OtCExmbVuqSDeEfdB9Nsk4aFtUVc0EqwusDq3cEQY4UvbZGGT0fjBK+4zSDiGE0IvMo6KQyHgdWLbyMqTSk5fh7uV356T888l5HliLvyX582ONj2W1bHPCTE2whlPOU33ycvSu7/sXfz+rdRY6Gatjow+M0kZzwsyRQ0eonldd0O0QuaVbkOPyVMmNhRBJPXsn3nrrrZSWlmoPvvOCtooiGsDiP0TdlZWULKikY6efwDvtaZftmlZFxUVu3JMA/yEodp0rf84nBn+zuxoWfl4LigCMXwjeFu0rHgFv8+DvN9u0/Bs9icbtbi3AMdQqkjSk7LMxyOj9YJT2GaUdQgihF5lHRSGR8ZpaNvMyDOS5w8+xZuoaltcvz2k9IOd5MAPdnZ0NtoSNpaeX8kLdCwRN/Xc7eKTxEQlynEfG6tjoA6O00Zawse0v25g3dV5Bt0Pklm7bVQkxFNmu6jyn34F9fwRVhZN7tdUT9hKomQcmM6GWTrw7jxA6cprgsTMkApHkW00uG85JFTimVFKydAqOunJthUVPXgybWwtWKArMv1bLvzGUSEALipx6S/tdVSFwBoKd2rFFA9pjiqKt1rC5wVkOrgrtMdBycEy7QraoEkIIIYQQYgy6cfON7G7bnfN6ltQs4cGVD+a8HjGw+Q/N17X+N9e9mczzKoYm21UJPci5L3xjcrsqIUSGjm/XvntbtCCCyQpVs7QtoQBHXbkWvABUVSURjqHG4igWMya7pf8fdCaz9v4Tu7XyvC1QWq/Vk06Qw+bSVn1Uz9Xe4zkORZXa11DKJsKkSyTJuBBCCCGEEGNUU2fTqAQ4AHad2sWhzkMFl5dBZE8gFqDIWqT3YQghhMiR3Gb/FkIMm8fj4Yc//CEej0dL1u05rq2M8J7dy7R8CljsKd+rKApmhxWL24HZYR34jhWLXUsYDlq5qqrV409/6ysqp8Gi6+GiL8LkS7Tjsjr6vsbq0B6ffIn2ukXX5yTA0afPxjCj94NR2meUdgghhF5kHhWFRMbrOS3+Flr8LVnPyzCU0ahPzrM+XFEX1xy5Bld04B0CIvHIgM+NRTJWx0YfGKWNrqiL+/7PfQXfDpFbspJDiDzldru58bNrcZtjcHwHxELadlDRgJbXwlGiPTZSjhJQTFq5vhPadlLHX4cpHwBnWQYHXAXuFdrPqqrl50jEtRUjZtu5LapyyO12c+ONN+J2u3NeVz4zej8YpX1GaYcQQuhF5lFRSGS8npPL3AyDGY28DHKe9REyh3il5hVC5oH/f2wz20bxiPKfjNWx0QdGaWPIHGL1p1cXfDtEbkmQQ4g8ZbFYmHLiaTgBtO6DkAcCHWdzcRRDy67+b0rEwHsidYElE8A0wEc+2AlhH4S84BoHpw9pdX7wjuEdvKIMuMoklywWC1OmTBn1evON0fvBKO0zSjuEEEIvMo+KQiLjNT+oqprTvAxynvWRMCVodw6+G4HLInkge5OxOjb6wChtTJgSTJg4AYtFLmOLgcl2VULkqe7ubh45EKU7nIBIt/ZgzxLbbAcQesrrKT/Sra3GKDDd3d088sgjdHd3630oujJ6PxilfUZphxBC6EXmUVFIZLzmh0AsMKz3qaqKP+KnM9SJP+JHHeD/SnKeB7Zl7Zbk18KqhVkt2x63c8mpS7DHU/8/eVH1Ikk6fh4Zq2OjD4zSRnvczgtPvlDw7RC5JSEwIfKUyWSizKFgIg6JqPZg/Ox3kzXLlVn7lp+IghrPbh2jwGQyUVZWhsk0tuO3Ru8Ho7TPKO0QQgi9yDwqComM1/wQiUfSTj7d1NnE5sOb2Xd6H2+feRtvxJt8rsRWwuyK2cyvnM/qhtXJhOZyngdW565L/ry0dil72/dmrewECQKWAAkSKZ9fWrM0a3UZxWBjtamzadAcNt/d9l2W1i7tM/YL0Vj4vBqljQkSuEvdBd8OkVuKOtAtCELo7MCBA8ybNy/5+/79+5k7d66OR6SDl+/SAg/Ht2u/e45p30vqtFwX5xvudlWJ+LmE5mWTtO8TL4aP/GD4xy6EEEIIIYQQ55n/0Hzd6t5+3fYhgxzbmrdx/7772d22O+1yF1cv5ub5N7O8fvlIDzEvqapKd7SbaCKK1WSlyFo0opURTZ1NrH1qbRaPcHBPXPVEQV+MHy35MvZb/C0D5u7ZsnZLn4CZMBY594VPz2u5spJDiDwViUR4qzXOnAo4lyJNAVRQE0CKIMdwqT13vPT6Q7UAl/NGIhHeeust5syZg802dhPLGb0fjNI+o7RDCCH0IvOoKCQyXvPDYHkZPCEPd+64k82HN2dc7u623ex+aTerJ67mE8WfYOmFSwv+PPfczf9o46Mpn19YtXDYd/PPKJ/B4urFGV1MH4w5Yaa+u57mombipr47EiypWSIBjhR6z0mBRGDkY79hNXcsu4MyR1n2DzZHxsK8bJQ2mhNmmvY3UbW4qqDbIXJL1vkIkadCoRBbj8YJxc3ntpMyn/3es31VtvSU11O+yQpKFoMooyQUCrF161ZCoZDeh6Iro/eDUdpnlHYIIYReZB4VhUTG6zm5ysswlMHyMjR2NLL2qbXDusjb28uHX+bpF57mrda3RlSOnrY1b+PGzTey9qm1AwY4APa27+W+fffxqac+xY2bb2Rb87aM6rl5/s0jPdQkW8LGHM8cbIn+Fz/Xz1uftXqMpGdOOtB6ICtj/7nDz7H2qbU0dTZl6QhzbyzMy0Zpoy1hY/druwu+HSK3ZLsqkbdkuyog6NG+79+kbVV15l3oboPiCVA+OXv1dB4F3wkoqoaKC7Qtq+atBWdZ9uoQQgghhBBCiLPu2X0P9+27b9Tqu2X+LXxj8Tf6Pd7Y0cj6v6zvk3NjpEpsJWxcuZEZ5TOyVmaujWQlS49M7+a/fdvtI764PtTx3L387pyVX+jydezLlkX66gpGeeDVw6iqSlxVUVVtow+zonDzZVMpdWY5R2wvcu4Ln57XcmUlhxB5SlVVQooD1VGqBR4sDnDXaHk1Qh4w27THRvpltmnlmSxa+RaHVl8BBjhUVSUUCjHWY7dG7wejtM8o7RBCCL3IPCoKiYzX/lY1rNK9Pk/Iw20v3pa9i7wqWONWvGEvt75wK56QJzvl5li2VrJkejf/95Z9j2pn9YjqBJL9Tq+PV7WzmjuW3THysg2qM9jJ1//ydbzh7AU4ALyRwhn7Y2FezrSN7b4wr793hrdPetl1tJOdRzr7fH/6jRP8zzunOe0P5/jIz6NCOBQ29LkSIydBDiHyVFdXF3fffTddXV1QPUd70FWhBSXiEfC3Zacif5tWntmmlQ9QXZgrZvr02Rhm9H4wSvuM0g4hhNCLzKOikMh47a8nL8NoGCgvw5077qQtmKX/VwGumItPHP8ErpiLtmAbd+24K2tl50rP3fzZ6oe2YBs3bbkprUBHmaOMDVdsoMRWMqI6e/c7aKsJNlyxoaDyQ4y2H2/7Me9ven+yz7KpUMb+WJiX023je+1+Htt5nN9tP8ruY510BaPEEn0DCrGESnNngB2HO/jv147y2M7jHD7dncvDT3LFXPz3L//b0OdKjJwEOYTIU8XFxXz5y1+muLgY3NVQNlFbI1hydnle5xGIjTB6HgtD52Ht55I6rfyyieCuGlm5OunTZ2OY0fvBKO0zSjuEEEIvMo+KQiLjNbVs5mUYTKq8DNuat2V9q6SgJcgL418gaAkC2sqGTHNVjKasr2Q5K5O7+WeUz2Djyo0jWtHRu9+rndUFt1XYaNvWvI3NJzf3GavZlu9jH8bGvDxUG4OROJv3neTPe0/Q0hlEVVU6uiN0dkc45Q3R0hmkuTNAS2eQU94QR05309Gtraho6Qzy5J4WNu87STASz2k7gpYgn7zhk4Y+V2LkJMghRJ4ym83U1tZiNp9NAD7xYu17SR3Y3Fqy8PaDkBjmPyaJ+Nn3x7TyeoInky4Z+cHrpF+fjVFG7wejtM8o7RBCCL3IPCoKiYzX1JbXL8/5tlWrG1azvH55v8fv33d/1utSFZUuexeqcu4O6Af2P5D1erIl2ytZesvkbv4Z5TPYdNUmVjesHlZdPf2+auoqNl21SQIcQ7h/3/0px2q25fPYh7ExLw/WxnZfmN9tP8rBVh+qqnLCE2TPMQ/vtvvpjsSIxhOoZ/eAU1GJxhO0+8M0nfKz55iHEx4tKHKw1cfvth+l3Ze7LaxURaWiusLQ50qMnEWPSj/0oQ/lvA5FUXjppZdyXo8QueL3+3n88ce55pprcLvdUDkNaubAqbegaiacfAPCXji1H6pmgcWefuGxsBbgCHu1XBxVM7VVHDVztHwcBapfn41RRu8Ho7TPKO0QQgi9yDwqComM14F9b9n32NW6KycX2wfKy9DU2cTutt1Zr88es3Nx+8Vsr9pO2KJd8Nt1aheHOg+l3C5LT7lYyXK+5w4/x5qpa1IGmc5X5ijj7uV3s2bqGh7Y/wC7Tu1Ku55l5ctYcHIBNy++GbdDPl+D6Rn7qcZqtuXr2O8xFublgdrY7gvz+K5mQtE4wUiMd9q76Q7HALCaTbjtVuwWE1azgqIoqKpKNK5SW+KgKxgjEk9wrCPAme4I06qKAHh8VzPXLKmnqjiDa1NpssfsPPPoM3z+M5837LkSI6dLkGPr1q0oipKz8lVVzWn5QowGi8XClClTsFh6fUynXQGeY9rPNXPh1AEtUHFiN5Q3aNtaKYMs0FITWg6OzsPaCg6TRSvH6gK7Wyu/gKXsszHI6P1glPYZpR1CCKEXmUdFITHCeFVVle5oN9FEFKvJSpG1KCv/7+7Jy3DTlpuyum1SqrwMLf4WAB5rfCxr9fSWUBK0O9pJKIk+jz/W+BhfmPcF6tx1Oal3OHKxkiWVB/Y/kFaQo8fy+uUsr1/Ooc5DPNb4GI80PpLydYuqF7G0ZimrGlYx0TmR7du3Z/Xz1eJvYeWmlSmf27J2S16dy3ScP/YHGqvZ9ljjY3z/4u/ntI7hMsK8PJRUbQxG4jy5p4VQNI4vFOVgq494QsViUphU4aLYYeGN4+fnvlCwmGHiOBdTzSZO+8McOxOgOxxj/wkvs2q1baSe3NPC9RdPxmnL7oqLhJJgfP14Q58rMXKKqkNqepMp97tkKYpCPJ7bPeFEbh04cIB58+Ylf9+/fz9z5xZmQuys8rfB3t9DNATRALQ3QsSvPWe2QVE12IvBVgQms7YtVaQbwj7oPptkHLQtqqpmagEOqwMWfl4LkgghhBBCCCEE2l3fmw9vZt/pfbx95u0+QYgSWwmzK2Yzv3I+qxtWj/hu7abOJm594dasrOiodlaz4YoN/bYtmv/Q/BGXPRL7btyna/09mjqbWPvU2lGr74mrnhjW+NAz0GC0IIeeYz/TcW+0vs83m/ed5GCrj2BEC1DEEyrFDgvTq4uxWUyEY3H2HPOkfO+iSWXYLVoAIxJLcKjNhy8Uw2xSmDehBKfNwqzaYlbNHz+sY5NzX/j0vJarSwjs5Zdf1qNaIQpKOBxmz549LFq0CLu913I/d7UWkHjzUe338QvB26J9xSPgbR68YLNNy7/Rk2jc7oYFnzFEgGPAPhtjjN4PRmmfUdohhBB6kXlUFJJCG6/bmrdx/777B93SyRvx8vrJ13n95Ovct+8+Flcv5ub5N2d0135vPXkZ7tpxF88dfm64h87qhtXcseyOPis4RoslYWGKbwpHio8QM8VGvf6h5Holy0CGezd/nbsurQvkhfb5yoSqqkTiCRIJMJnAZjZlZQXVaI7VTHZbaepsGnR8fnfbd1lauzQrgVUjj5se57fxvXZ/MgfHO+3dyQDHrNoSzKbMxpXNYmJWbQkHW734QtqWV/MmlHCw1cfM2mKmVmVvWylLwsL+XfupvLjSsOdKjJwuQY7LL79cj2qFKCiRSIS9e/cyd+7c/pO4uxqW3gzvvKDl6Cit14IWgTMQ7NRWdkQDoKpaIMPq0lZuOMvBVaE9BloOjmlXgM01+g3MgUH7bAwxej8YpX1GaYcQQuhF5lFRSAplvHpCHu7cceewcjXsbtvN7pd2jyjIMJK8DEtqlrB+3vphB1mywZKwMMU/heai5rwMcgx0h3SuPdL4SE63LCqUz1e62n1hmk75aO0K0eYLE4qe26XEYTVTXWynttTBzNpiKt3Da+9ojtVALECRtWjQ16QTWAXY276Xve17sxJYNdq4SeX8Nu482gnAya4Q3eEYFpPC9OrijAMcPcxn3/9Gs4fucIxWb4jxpU52Hu3MepCj6UATly6+1LDnSoycLttVCZEO2a4qTaffgePbwXM8/feUTYRJlxR0knEhhBBCCCFE9jR2NHLbi7fldLuoTB3qPJTcLuutM2/12y5rTsUc5lfOZ1XDqrTu6h7r21Xp2f43171ZULlT9dg25712PzuPdtLSGUz7PXXlTi6aMo6GysGDCHqe+22f2Ua5ozzlcyMJrPbQc/VWIWn3hfnd9qOoqsqeYx4i8QRTq4qoLnb0eV2621X11uYL8V57NzaziUWTylAUhRsumZxxEE62qyp8Y267KiHE0BKJBF6vl5KSksHz2FRO07787dB2ALwnwd+q5ezoYXWAuxZKxkP1XHBX5b4BOki7zwzO6P1glPYZpR1CCKEXmUdFIcn38drY0cj6v6zPWuLvtmAbN225iY0rN44o0DG9fHoyeKGqKoFYgEg8gs1sw2Vx5d1Fc0VVcMacBC1BVEXuJ+0tnbv5hyvfP19DCUbibG1s42CrD9DGemcggicQpTsSIxiJk1DBpIDTZqbIZqHMZaXcZaOlM0hLZwuzaotZMbM67YTPozlWbWZbysezFVh97vBz7GzdmXFgtdDHTTo6u8P4fF6Ki0vYc6yTcCxOR3eEQDSG1Wyi2GEhHOubzzgcSxBLpE5IH46lfrzYYUFRIBDVVnOMK7Kx+2gnH51bm5V2KKqCr8tHwpUw7LkSIycjQ4g85fV6ueeee/B60/yPhrsKpq6AhZ+D938LLvtHeP83z37/lvb41BWGDXDAMPrMoIzeD0Zpn1HaIYQQepF5VBSSfB6vnpCH2168LWsBjh7eiJdbX7gVT8iTlfIURaHIWkS5o5wia1HeBTgAnDEnq1tW44w59T6UvBOJR3JWdrY/X02dTWzcv3HA57+77bvcs/seDnUeGnFdPXfX9+RJOOEJsueYh6ZTftp8YbrDWoADIKFCdzhOmy9M0yk/e455OOEJoqoqB1t9/G77Udp94bTqHc2x6rL03x67J7CajZVjcC6w2tTZlPZ78nlezpYH/nqAjb/6/3jgrwd4fFcze4552HvMQ2tXiM7uKG8c72LPMU+frzePa8+n+nrzuKff6/cc8/DG8S46u6O0doXYe/axx3cNkS82A86Yk0fve9TQ50qMnGxXJfLWWN+uaizcVZBt0mcao/eDUdpnlHYIIYReZB4VhSSfx+vt224f0VYxQ1ndsJq7l9+ds/Iz0ZN4+7vbvsve9r1ZL3+gu+MXVS/irsvu0n2rFT23LNp+3fa8X8mRbl6I3kaSF6LdF+bxXc2EonGCES1xc3dYy49hNZuodNsodlhx2cyYFIWEqhKIxPGFopz2R4jGtbvqi+wWplUV4bRZcFjNXLOknqrivtsEnT/2R2slx6LqRfx21W/7POYJeVj71NqsBTh6q3ZWs+mqTWltXZXP83K2/PT5g6jhANic7D7WRSyhcsobIhpPUFFkT7nyJxZP0OoNpSgNakscWMyp+yoYiXOmO4zVbKKmxIHFpPC7L74vo4D0QNtVKarCY1c8xozxMwx7roxCtqsaRFdXF6+++ip79+7l9OnT+Hw+EgMsm+pNURTuv//+UThCIXLDZDJRVlam92EUFOkzjdH7wSjtM0o7hBBCLzKPikKSr+N1W/O2nAY4QNtKZs3UNbomBO/RE2RYWrs0J0EOVVEJWAP9Hl9as1T3AIfeUt3Nny0j/XyNJC/E7rbd7H5pd8Z5IYKROE/uaSEU1YIWB1t9xBMqFpPCpAoXlW47phQXhx1WM+OKbEwc5+K0P8yxMwG6wzH2n/Ayq7YYgCf3tHD9xZP7XMA+f+wPNFazbWnN0n6P3bnjzpwEOEBb0XHXjrvSCqzm67ycTYpiQnG4iSUSxM4uCYrFte9Wc3ZXw/WU11N+LKESiSdS5vDIlKqoFJcWS4BDDCpvR0dnZydf+tKXmDBhAldddRU/+MEP+MUvfsHGjRt56KGHhvx68MEH9W6CECPi8/m499578fl8eh9KwZA+0xi9H4zSPqO0Qwgh9CLzqCgk+Tpe7983OjcGPrD/gVGpJ12rGlblpFxHzMFHWj6CI9Y3kW+u6svUlrVb2LJ2CwurFo5qvYuqF+V0e7GRfL4aOxpZ+9TaEQf7njv8HGufWpv2dklbG9vwh2MEI7FkgKPYYWFBfRnVxY6UAY7eTIpCdbGDBfVlFDssxBPallXBSAx/OMbWxtRBhJ6xONBYzbbzx/5oBVa3NW8b8nX5Oi9nUyISwL93M4nwuWT2KloQItufyZ7yesoHSOMe9bQ4Yg6e+O0Thj5XYuTyMshx5MgRFi5cyP33308wqO0vONgXkPIxIQqZzWZj4cKF2Gypk3SJ/qTPNEbvB6O0zyjtEEIIvcg8KgpJPo7Xps6mjLblGYldp3ZlJX9Btswon8Hi6sVZLzdminHEfYSYKZZ8bEnNkmTydL3Vueuoc9extLb/3fW5lOpu/mwa7udLr7wQ77X7kzk43mnvTgY4ZtWWYLNol+nCsTjb3zuT8qt3omibxcSs2pJkoOOd9u5kjo732v396u4Z+6nGaralGvv5FFjNx3k52xSTFWt1A4r53EY+CmeDEVm+dtpTXk/5ANlaeBEzxZgxd4ahz5UYubwLcqiqyic/+UmOHz+OqqosWLCAu+++mw9/+MOAFhncuHEjv/jFL/j2t7/NRRddlPwgud1u/vM//5ONGzfywAP5daeIEJmy2+1cfPHF2O32oV8sAOmzHkbvB6O0zyjtEEIIvcg8KgpJPo3XFn8LLf4WHmt8bFTrfazxsWRegHxw8/ybs15mzBTjndJ3+lw4Xj9vfdbrGanRXlmS6/qG8/nyhDzc9uJteCPZTWTsjXi59YVb8YQ8A75m59FOAE52hegOx7CYFKZXF2M2De/OenOv93eHY8l8Cj31nO/m+TenHKvZdv7Yz7fAaj7Ny7miWKzYJ8zCYrVhOTu+LGe3lYrGsxvk6Cmvp3yLScE2QP6OTMVMMeYtmWfocyVGLu9ycjz++OO88cYbKIrCxz72MZ566iksFgvHjh3jpZdeAuDGG2/s855du3bxpS99iT179nDPPffw/PPPM2vWLD0OX4isCYVCbN++nYsvvhiHI7dLSI1C+kxj9H4wSvuM0g4hhNCLzKOikOTTeE2V1HU0PNL4CI80PsK+G/fpUv/5ltcvZ1XDqqxunWONW5nunc6hkkNEzVFWN6zOi1wk5+u5m380LjiPxkqW4Xy+9MoL0e4L09Kp7VjS2qUFIyZVuJIrOIbLZjExucLFe+3dnPSEqC1x0NIZ5LQ/TKW774Xh5fXLWVW/iqP7jibHarb1Hvs9wU09AqtfmPeFAfPh5NO8nCvXLR3Pnp07WHTRMqpLHDR3Bjhyupt2f5jaEgcTx/XPlROOJaDZk7K8BfVl2AcYq8c7AlgtClVuO1Mqi6gvd2W8JVaduy7lvxE956ri4grDnisxcnm3kuNPf/oToK3Y2LBhAxbL0HGYJUuW8Oqrr3LppZfS3NzMpz/9aUKhUK4PVYicisViHDlyhFgsd3dWGI30mcbo/WCU9hmlHUIIoReZR0UhkfGan7637HtUO6uzVp5JNVEVqsKkmqh2VnPHsjuyVna25WIlSyqjsZIl08+XHnkhuoJRuoJR9hzrJByL0+oNEYjGUBQodlgIx+LnfSXOJovu/xWOJVK8Pk6xw4KiQCCqreYIx+LsPtpJV7B/EOObF36TCdEJmNTsXxY8f+yv3LSSlZtW8mjjo1mvazCPND4yaFB3LMzLRVaF1pbjFFkVGiqLsFvMVBXbsZhMdAVjWM0m7BbzeV8mLKbUX3ZLqtebsZq18iwmE1XFduwWMw2VRVlrx1g4V2LkFDXPElhMmzaNw4cPs2TJEnbs2JF8/Otf/zq//OUvURSFeDye8r3vvPMOs2fPJpFI8Jvf/Ib16/NvWahI34EDB5g3b17y9/379zN37lwdj0gIIYQQQgghCtv8h+brWn++rOTo0dTZxE1bbsrqtkUlthI2rtzIjPIZWSszF27fdntOL/avblidcjVDplRVJRJPkEhoe/zbzKYRJU2+cfONo7aK5cGVDwLwsxe0PB1vn/TSFYzS2R2hOxLDbbdS5rL2e28snkhuO3W+2hIHlgG2AfIEovjDUYpsFsqLbJQ6rcweX8I/XNF/LI7W2Jc5Jz+0+8L8bvtRVFVlzzEPkXiCqVVFVBf3XRkRjsXZc8yTsoxFk8qwW8z9Hm/zhXivvRub2cSiSWUoisINl0zut4pIGJ+e13LzbiVHe3s7ALNnz+7zuKlXtpqBVmlMmzaNSy+9FFVVeeSRR3J3kEKMgng8Tmtr64BBPdGf9JnG6P1glPYZpR1CCKEXmUdFIZHxmr9mlM9g48qNWVnRoagKDUoD911xX94HOCD7K1l6G+lKlnZfmP955zSbdjVz7yvv8f+9/C73vvLu2e/vsWlXM//zzmlO+8MZfb70zAuhqirdYe1O9Eg8ATDg1j/D1VNeT/nd4VjKBNPxeJyScAn3XXFf1sZAtbO6IIJ7PcbCvNy7jVXFdurKnSiKQm2pFtg4diZAJJYYUR2RWIKjZwIAjC9zoCgKdeXOrAY4xsK5EiOXd0GOngCG2+3u83jv3zs6OgZ8//Tp2l6PjY2NOTg6IUaPz+fjV7/6FT6fT+9DKRjSZxqj94NR2meUdgghhF5kHhWFRMZrfptRPoNNV21idcPqEZWzevxqlhxewnjL+CwdWW6VOcrYcMUGSmwlWS23xFbChis2UOYoy/i977X7eWzncX63/Sg7DndwrCNAKNr3wmYoGudYR4Adhzv479eO8of/aRzy89Xib6HF36JLXoienBRxVSWW0AIOsbNJmq3m4a9ISaWnvJ7yYwmVeIogR8+cNN4yPjtjv2E1m67aVDABDhgb8/L5bVw6uRyA8aUOiuwWYgmVQ20+4onhbfIT7/X+IruF2hIteHLRlHHZacBZY+FciZHLu+2qqqqq6OjoYN26dWzcuDH5+E9/+lO+853voCgKL7/8MsuXp07ede2117Jp0ybsdjvBYHC0DlvkwFjfrkpVVcLhMHa7fURLcccS6TON0fvBKO0zSjuEEEIvMo+KQpJP41W2jhnctuZtPLD/AXad2pX2e5bULGH9vPVcVndZ3pznTDR1NvGVF75Ce7B9xGVVOau494p7M77YHYzE2drYxsFW7SKmqqp0BiJ4AlG6IzGCkTgJFUwKOG1mimwWylxWyl02rYB4lFl14/jgrBqctv7b6eg97tdP2EQ0nmDX0U4AmjvP3vle6sRs6j9WhrtdVTyhcrJLuxZWX64llV4yuZzbV87q87pUc9JIxn5PkvFU9O77geacfJqXcyVVGzfvO8nBVh/BSIz9J7zEEyrFDgvTq4uxWUxpb1cViSU41ObDF4phNinMm1CC02ZhVm0xq+ZnN9A7Fs6VUeh5LXforN6j7IILLqCjo4PW1tY+j/fukL/+9a8pgxyJRILdu7Vlhy6XK7cHKkSOKYqCw+EY+oUiSfpMY/R+MEr7jNIOIYTQi8yjopDk03jdsnYLAN/d9l32tu8dtXoXVS/irsvuGrX6hmt5/XKW1y/nUOchNh/ezL7T+3jrzFt98haU2EqYUzGH+ZXzWdWwiunl05PP5ct5zkS5ZTJXV/2Ul9p/zXvBvw27nKnOy/hw1Zcot0zO6H3tvjBP7mnBf3ZrpZNdIVq7Qsktl3pLqNAdjtMdjtPmC2Mzm6gtdTC+1EHjKT8tnhBXL6qjqjj/cgH0vjaroKCint1KKnsXbXvuY1Z6lZnqmnCqOanevpjVlQ1MSjTytv8l3ur6XxSLF8V0LtmzmrBQY59BrX0WFzgvY17lTCY6snvX/mjJp3k5V1K1ccXMapo7tUDYrNpiDrZqgYo3mj1MrnBR7Bj8UnFCVTntD3P0TIB4QsVsUphVW4zTZsFtt7BiZva3wBsL50qMXN5tV7Vw4UJUVeWtt97q8/jFF1+M3a79I3XvvffS1tbW770///nPOXz4MIqi9IkaCVGIvF4vP//5z/F6s5cEzOikzzRG7wejtM8o7RBCCL3IPCoKSTbGq6qq+CN+OkOd+CP+lPvsp6POXUedu46ltUuHfSzDsbRmKXXuulGtcySml0/nG4u/wW8++hte/eyrbL9uO9s+s43t123n1c++ym8++hu+sfgbfQIchTgvtfvCPL6rmXjMxfuKvsZ09Zu4EtOHfmMvrsR0pqvf4n1FXyMec/H4rmbafeGM6veHY8k7y491BIjEE1jNJsaXOphRU8zCiWUsnlTOwollzKgpZnypA6vZRCSe4ER7B507/kzA78UfjmVU/2gyKwqWs6s2LGe3lYrGs7u5Sk95PeVbTArmFFGO3mM1GImzed9J/rz3BC2dQcosE6lXPkG47aMEm6+j+9g6uo/dQPexdQSbr2NK7BtMNV9DmWUiLZ1BntzTwuZ9JwlGUudL2LJ2C1vWbmFh1cKstnUoi6oXJYO6qRTi5zVTqdrotJm5elEdDquZYoeVeRNKKLJbiCdU3mvv5s3mLjyBKMFInFg8QTyhEosnCEbiHO8IsOeYh/fau5NbVM2bUEKxw4rDqpWbaiVVLtohxPnybiXHihUr+PWvf01zczPvvfceU6dOBaC0tJS1a9fy8MMP097eztKlS/nWt77F/PnzCQQCPPXUUzz00EPJcj772c/q1QQhssLhcLBixQqJVmdA+kxj9H4wSvuM0g4hhNCLzKOikAx3vDZ1NiVXE7x95u1+qwlmV8xmfuV8Vjes7nOxPR2rGlZx3777MnrPSKxqWDWi96uqSiSeIJEAkwlsZtOobVuiKApF1iKKrEWDvi5X85KqqnRHu4kmolhNVoqsRVlpezAS58k9LYSicXyhKAdbfVgTc5lmmkdZ2Rk8yg5OR9/hdPQ9Iqo/+T6b4qbSOpVK6zTK1GV4PBXEEir7T3iZVVsMwJN7Wrj+4smDXvBMVX88oWIxKUyqcFHptmNK0U6H1cy4IhsTx7k47Q9zvD3OqaKpdLeFmGlxpl3/aFr/gQYAqktO0NwZ4Mjpbtr9YWpLHEwc138nknAsAc2elGUtqC8bMGH58Y4AVotCldvOlMoi6stdXHnhhH6v6xmr/qjCs3uP9ltF44uESMT652pRgTP+KP6gv88qmoOtPpo7gylX0fQEN5fWLh3V1WNDBVbz/e+IbMx5A7WxqtjONUvqeXKPli9m3oQSWr0hTnpCBKIx/OEo/hRxQqtFwWIyYTObGF/moLZESzTutltyuoIq38+VyA95l5PD6/VSXV1NNBrlrrvu4vbbb08+19LSwoIFC/B4PAO+X1VVlixZwv/+7/9itVpH4YhFroz1nBxCCCGEEEKIsWlb8zbu33c/u9t2p/2exdWLuXn+zYPujX++GzffmFEdw7WkZgkPrnww4/e1+8I0nfLR2hWizRfuk4DaYTVTXWynttTBzNpiKt35tz3RSOQywNVjqL35e6iqSkwNEVejmBUrFsXR52LrcPfmT7f+oaRTf77khfifd06z43AHHd1hmk75sZpNLJpU1i+Yk25ehN4SqsqeYx6i8QQzatyMK7KzrGEc759WmbKcnlU0oWicYCTGO+3ddIe1rakSRNhzZhuKKQSmCCgqqAokbHyofjXdIQvRs9uJFdktTKsqwmmz4LCauWZJfcqL3U2dTax9am3afTZST1z1xLA/G6BPYHW057xUuXBavSH2HvMQiSeIxVVUVBQULGZtW6qqYjvlLluyL2bVFrNiZnXeBBSFviQnRy8lJSX84Q9/oK2tjbq6vhHXuro6XnzxRdauXcuRI0dSvn/58uU89thjEuAQBS8YDPLKK69w+eWX43Q69T6cgiB9pjF6PxilfUZphxBC6EXmUVFI0h2vnpCHO3fcyebDmzOuY3fbbna/tJvVDau5Y9kdlDnKhnzPzfNvZvdLuQ9yrJ+3PqPXv9fuZ+fRTlrO7hufSiga51hHgGMdAXYc7qCu3MlFU8bRUDn4aotcysa8lE6Ayxvx8vrJ13n95Ovct+++YQW43mv3c7DVh6qqvHN265lih4VZtSX9EmErioJVcWIldZtsFhOzaks42OrFF9Iuls+bUMLBVh8za4uZWuUeUf1DsapRGkLvcNQ6ia6oadD6VdWEovTP9ZEr59c3o6aYHYc7KHfZsJ3dbuu0P0x18cjvUD/tDxONJ7CZTcmE7DPPrqw5X0eXn4cefxbT+Dn446Z+q2jsNgtv+Dr6vkkBTDHqyu0UWYs57Q9z7EyA7nAsrVU8M8pnsLh68agFVocKcKT6vOoVWO095w0V4MpkzhtqTnLazKyaP56ZtcXJ+scV2SgvsqUsb0plUTLANppzrvzNJ9KRd0EOgE9+8pMDPrdo0SIOHjzIpk2beOmllzhx4gQmk4mpU6dy5ZVXcsUVV4zikQqRO4lEAo/HQyIxen+AFTrpM43R+8Eo7TNKO4QQQi8yj4pCks54bexo5LYXb6Mt2D//ZCaeO/wcO1t3suGKDcwonzHoa5fXL2dVw6phBVXStbphddoX31PdVdwZiOAJROmOxAhG4iRUMCnaxbkim4Uyl5Vyl42WziAtnS05uas43Tu6RzIvjXaAa+fRTgBOdoXoDsewmBSmVxf3CTBksprAfPb9bzR76A7HaPWGGF/qZOfRzpRBjmzWr6oqRLqZOr6IN0+FUtZ/bfUGADaf+hl+mobsn2wpZhqrqv8h+XtVsZ26cictnUFqSx1aoO5MgDKnLaPVK+eLxBIcPRMAYHyZttKmrtw54IX4V5vaCAd8EIlysD3SbxXN6UBowLrCsQTFNoXqYgdlTltyFc3BVh/zJmhbXG1tbEu5iiefAqu9P696BVZTzXkd3RE6uyMpV1IcOd2dXEmRzpyX7pw0tcrN1Co3p/1hGlt9TK8uzqvVc6P1N19XMMoDrx5O+dz6DzRQ6pQb6vNZ3m1XJUQP2a5KCCGEEEIIMRY0djSy/i/r+2xJNFIlthI2rtw4ZKDDE/Kw9qm1Iw6upFLtrGbTVZvSuuje7gvz5J6WfrkBIvGhL2r1zg2Qrf3hR/OO7mwFuEDr86ECXO2+ML/bfhT17PZGkXiCqVVF/VYTDGfLpDZfiPfau7Gd3YZJURRuuGRynz7So/7/fk2r75nm+2k35y6od77q+GrW1K/nHz86M/nYe+1+/rz3BKqq5THpDsf6rWLJpO3xhJpcRdOTCFpRFK5eVJfyAnw69Z8OePjjoT+krP/a6Z+j0lU2ZP2fWDghZYDr9m235zywevfyu9N67UgCqyPdrmmgOS8QjdHalTrIVFvqSObEyPacdz498yDpRYIcIyfbVQkh+onFYjQ3N1NfX4/FIh/VdEifaYzeD0Zpn1HaIYQQepF5VBSSwcarJ+Ththdvy2qAA7QtjW594dYhgwxljjI2XLGBm7bclPUgy4YrNqQd4BgoN4DVbKLSbaPYYcVlM2NSFBKqSiCiJas+7dfueD7WEeBMd4RpVdpF3cd3NQ+YG2AwI7mje2KZPeN5KdsBrrZgGzdtuSllgKsrGAVgz7FOwrE4Hd0RAtEYVrOJYoeFcCze5/XhWILYAHdOh2OpHy92WFAUtAu13hDjimzsPtrJ+6ZWJF+T7frVRBzVfwbFXTFg/QBxVaU4dtGoBjncsYuIn3dv8dQqN7NqiznY6mNaVRH7T3jProTwJldS2C1mLu7VZwM5Px/JtCotKf2s2uIBVxjsPNqJmojTdrKFQMiBxWzpt4omE5mu4vnesu+xq3VXzgKrdyy7I63XnuzsZtO2N4g4ykExpR1kaPOF0066PpCh5jy33YrdYsJqVlAUBVVVicZVakscdAVjac95I/lbSVGUlIFEPcjffCIdMjKEyFN+v5+HHnqIb37zm5SVlel9OAVB+kxj9H4wSvuM0g4hhNCLzKOikAw2Xu/ccWdOLvaBdsH7rh13DXlX84zyGWxcuZFbX7h11FYT9AhG4jy5p4VQVAtanJ8boNJt75eUGbTVFOOKbEwc58o4N8BAxzHSrbIaiuGNv/wh7XlptANcPXcov33SS1cwSmd3hO5IDLfdyhvHu/qVE4snaPUOsG2R6sFiTr29kicQxR+O4gvGKC+y8V57NwdOnGtjtuu3xoJMP/03DlVeRtTiTFn/7PElqCo41HpciekETIdSl5tFrsR0HGodqfZPWTGzmuazgbSegIcvFOONZg+TBxn3PRKqyml/mKNnAsQTKmaTFthw2iy47RZWzKxO+b52X5iWziCJcADn0f/BUnkZE6tLRrRVFmh5WSZXuHivvZuTnhC1JQ5aOoOc9of7rXTKl8Dqptff4czeF7DMX827XnISZEhlqDmv2GFJ8XlQsJhh4jgXU82mtOe8QvtbaaCVFImQH//upwumHUIfsl2VyFuyXZUQQgghhBDCyLY1b+OrL3015/X88sO/TCsvhifk4a4dd/Hc4eeGXVcmeSEANu87ycFWH8GIdrHu/NwA6Tr/jvZ5E0pw2izMqi1OmRugN722yhrtbXt+9kITqqqy62gnsYTKKW+IaDxBRZE9ZSBosCBDbYljwCBHMBLnTHcYq9lETYkDi0lhyeTy5MViveqPqyo7j3TiM73Jcdv/TfnebJoY+TrFifksnVLOP31sVr/nR7qCKXp2fBbZLUyrKsJps+CwmlNeaO9ZxfP6e2fYfayTju4I77b7sZpNLKgv7RdQORPs4s/vPZqyXZ+Y+hkqnKX9Hk+oKm82dxGNJ7igys24IhuLJ5Xz0bm1Kctp6mzSLbD6u+1H8YdjGQQZNIsmlWHtFWSI9QowFTusuO2WIQOrQ8156W5VNpI5L1/pvV2U3vUbgWxXNYhEIsHbb7/NkSNH8Hq9RKPRtN+7bt26HB6ZEEIIIYQQQggxfPfvu39U6nlg/wNpBTnKHGXcvfxu1kxdwwP7H2DXqV1p17GkZgnr561PO8k4aFtDHWz1oaoq77R3Jy/29c4NkC6bxcSs2pJkboB32ruZN6GEg60+ZtYWp9w2B/TbKmtb87acBjhAS0K/ZuqaPuckrqrEEtq9rrG49t1qzu4++z3l9ZQfS6jEVRWLouhav1lRsJgUihMLsIWWEHGkP74zZQstoZj5WEwK5gFWZFQV27lmST1P7mkBYN6EElq9IU56tADbya4QJwfYNgm0ANv4Mge1JUMH2DJdxROI+Qas9+BJLy5L6vulU62iGSjIMaN8Br9b9Ri3v/xD9na+PGB9Q1lY/kH+3w/+P4wvHnp7L9CSovvDMYKRWDLAcX6QYTAmZXhJ1yE/5rxCoKraZ1ZVQVEY8DMkRG95G+Q4evQo//7v/84f//hH/H5/xu9XFEWCHKKgdXV1sWHDBm699VZKS/vfJSH6kz7TGL0fjNI+o7RDCCH0IvOoKCSpxmtTZxO723aPSv27Tu3iUOchppdPT+v19fbFrK5sYFKikXeDf+N05B1OR98jop77v7lNcVNpnUqlbRoXOC9jXuVMJjrGZXRcO8/mSjjZFaI7HMNydm//0coNkO2tsg4eO8UFZ14jsXDVkFtl6RXg6r2Xh4r2S7aTCfeU11N+73pzUb8lHuSC06/xbuUlxMzOlPXfcMkUnFYz1SUnaO4M4G7/Arvi7xA3pb5jfyTMiVIWOr/A9Koy6stdXHnhhAFfW1Vs5/qLJye3Shtf6qS2xJGT5NeqqiYDeEo0wAfDu3jbcTGQvbvT7RYT/jDJVVDdZ1dHpTrH7b4wz+zpYrHza1RyMbu6/kRn4mDadZWbZrGk9FNMci7hmT1dXL3IPeQKqt5BhsMnTzPt5N84VXcZ02vHjUqQYbTnvEL6W6ndF2bPsU7ePumlOxxLBkMBHIkQv/j7Ji79+Oe48IIJ/bZAEwLyNMjx3HPP8ZnPfIZAIIDspiXGKpfLxdVXX43L5dL7UAqG9JnG6P1glPYZpR1CCKEXmUdFIek9Xlv82l3bjzU+NqrH8FjjY3xh3heoc9cN+Jrz81KUWSYy1XwN49QoExJRuiMB4moUs2KlyObCrVopM1sps5zLS5HOxVY4lxtAVdVkkt9JFa5+W1Slu3VLj0xyAwx1R/dQzr+j2x+00lIyl8kJM6ZwbMA7uvUMcPW+1qygoKKeve6SvUBHz3UcpVeZPfXmov64ycaJ0nnETbYB6y93WbFbzDRUFtHuCzOhpILTbd/kqO0nxJXAsOs+n1l1MTn6TSaUVyTrG2qLG6fNzKr545lZW5xMej+uyM64oqEv5PYkvR8oyXhvvVfRBBMW9ltmYLHa0mtYmlKtoonEE/0+p+evoOrqmM748D9SrrTQZX6NttgbmGwdKKZzu7moCStlpguwx6fijl2EQ62jK24hWKUFbtJZQdU7yOCLmVDK5jG1JvMAR49MAqvpznmZGmzOKy2Av5Xea/cnx304Fk9urdZbWLFialjGGyeDvNl2NKNxPxyykqQw5V2Q49ixY1x77bUEg8HkY7W1tVx44YVUVFRgtcr+Z2JssFqtzJrVf99OMTDpM43R+8Eo7TNKO4QQQi8yj4pC0nu8rnx4pS7H8EjjIzzS+Aj7btyX8vl08lIoOLDgABUC4QSBcJg2X7hPXoqDrT6aO4MDbpvTcwFrz7FOwrE4Hd0RAtEYVrOJYoel31Yx4ViCWCJ1boxwLPXjxQ4LigKBqHbRcVyRjd1HO/tsm5OrbWO6lGre7Qgzb4K93x3dege4gOSWTbGEisWsEI1rCZUtQ+dmT1v07AVuy9kL3r23bMpF/apixuc4l2g7Vf22s/k7ZtQUs+NwB+UuGyWmSUyOfIcWx38RVjuHfwBn2ZVy6sJfp8Q0iXKXFjyYeTYhdDqmVrmZWuXmtD9MY6uP1q4Qbb4woei5z4TDaqa62E5tqYOZtcUZ3dHe+x7iuGKi3VzBeFPqy4I2pYiq2McHeM4xYB2pVtGc//EdbAXVnIoZYJrIpncSgApKHEgAJlDNXD79OsY5S9NOvN3b+UEGVTFTUd+A3T6yQM9QgVW957x8/Vvp/KC6qqp0dEfo7Na2AYzFVVRUFBQsZoWyojKqQnHKXeaMg+rpGGwlicWkUF1ygobKoow/d2L05F2Q4yc/+QnBYBBFUZgwYQK/+tWvWL16td6HJcSoCwQCPP/883z0ox/N66h7PpE+0xi9H4zSPqO0Qwgh9CLzqNCDqqp0R7uJJqJYTVaKrEVpbbXTe7zmo9HMS5FpboDBkk+jegZMPj1UboBcbBszrdxG28G9tBbPoNVr63dH98pN+ga4Xv20tnqkZ8umI6e7afeHqS1xMHFc/3k0HEtAsydlmQvqy7APcAf68Y4AVotCldvOlMqifls2Zbt+NRomdvwNLBMvRLHaU9bf8zmtKrZTV+6kpTNIbamDSEc9F4R/QKB4E0fCrw7Yh0OZYv8ATt9aFLWI8WVajoy6cuewLoZWuu1UTtPep6raSohEAkwmLQ/HcLf36v02mxpjeuw9PPFZYBo4aJGpVKtoTOcNk6FWUJ0O9HzeFVD7X7bMNCfGQEEGhxLDeaKR0KSFKNZz5ymbQYb3Ta3Qdc77QENJXv6tNFBQPRCN0R2J9XmtigqxCPYTh3i3ZCZmqyPtoHo60llJEkuoNHcGaPeF2XG4I+crScTw5F2Q44UXXgDAYrHw/PPPM3v2bJ2PSAghhBBCCCHEWNXU2cTmw5vZd3ofb595G2/Em3yuxFbC7IrZzK+cz+qG1WnnvMgn2c5Lkc5d1b1zA/SsFBnogvlwDZYbIFdbZVktJtx27TLLUFtl6aFn26SeLZuqiu10BqJ0BWNMNZtSnmfL+Veoz7JbTP3aD5BQVbqCMSwmE1XF9pRbNmW7/oRqRlUUbBYzmE0p6+9t6eRyWjqDjC91cKY7Qne4iJrwei4ou4wDgT/TGnlrgB7sr9Y2h7lFV+PvnIYvEaPIbqG2RAsaXDQlsxw1qSiKkrKfh+P8VTTEtFUvtixumDLYKhrQJ/H2QEGGMqtKZyzKqZau5FZnkN0gw4ET2r8Xes55+WaooLrbbsVuMWE1KyiKgqqqJKIKzrgZi8lEOIOg+mAyXUly5HQ3VcV2yl2Zb88oRkfeBTmOHz+OoiisWLFCAhxiTOvZt1ekT/pMY/R+MEr7jNIOIYTQi8yjIte2NW/j/n33D5o7wRvx8vrJ13n95Ovct+8+Flcv5ub5N/dJ9Az5PV6znZdiqLuqoW9ugJ69+3v28s+WVLkBTvsj2Cym3G0bo1hwTH8fieYuwinu6M4XvbdssplNROIJTvvDVBf3vaPfbjFzcYbHfdofJhpPYDObBtyyKd3602Wy2nFOvxiANl9oyPqnVrmZVVvMwVYf06qK2H9Cu0iOZzofqf4h3Wozb/tf4q2u/0WxeFFM5+4sVxMWauwzqLXP4gLnZRQp9clxbzYpTKvSVnfNqi3Oq7u813+gAei9isZKu7+ICaOwiqf3ypPRTrzdI1WQwWxzcMI9b1j1pjJYYFWvOc9id+TVvz1DBdWLHZYUq1sUMDspm3QpVWbTsLYqO1+mK0micZV2f5jOQDSj7RnF6Mq7IIfVaiUYDNLQ0KD3oQihq2g0yrvvvssFF1wguWjSJH2mMXo/GKV9RmmHEELoRebRsWm420VlwhPycOeOO9l8eHPG793dtpvdL+1mdcNq7lh2B2WOMqDveM0netxVDX1zA/Ts3Z/t85gqN8DG/zmM1WzK2bYxihrHHT5DV7wEbySR8o7ufHD+lk3HOgIcOxOgzGkbURLkSCzB0TNaEu/BtmxKt/50gyxqPEbM00rCXZ1W/QArZlbT3Knlgu0JePhCMd5o9jC5opq5rk/xxrEQKfNCzL6eImsxp/1h3jjjIZ5QMZu0wIbTZsFtt7BiZnW/OvXUbxVPkZlYx2m83VVYq9w5XcXTQ4/E2z3nPlWQwWZKUBw6g99egaqM/E78VEGGuKpiURTd5rxwOMrhdw7lzd9KQwXVzw8091DUOPHOFmzjJmQcVD/fcFaSROMqtSUOuoKxjLZnFKMru2ujsmDy5MkAeL358weAEHoIBAI8+eSTBAIBvQ+lYEifaYzeD0Zpn1HaIYQQepF5dOxo6mzint338MXnv8gHHvkAl/zhEpY/upxL/nAJH3jkA3zx+S9yz+57ONR5aMR1NXY0svaptcMKcPT23OHnWPvUWpo6m4D8Ha+5uqvabFKSd1X3rqdH72t7PXv3Z3tblVS5ARQlt9vGmBMRJnTtx2WK9yk/H7eNWTq5HIDxpQ6K7BZiCZVDbdpFx+GI93p/Ols2ZbN+NRYm+M52Dp/qSLt+p83M1YvqcFjNFDuszJtQQpHdQjyhakGplgCJyDjUWBFq3IGacGrfY0W0dIbZc8zDe2cDg0V2C/MmlFDssOKwauXm6/Y1M2q0u95LrSoTuvaTiIU47Q9npeyBVvF0BaN0BaPJFVStXu2OeUUhuYKq91fP5yaVSDzR7/XhWLxfToxwLM7uo53J/AqpggxWNcqErv2YE5GstD9VkKGnXr3mvFAof/7tGSyoPlSgy5yIEHtvB2pMG6s9QfVih/aZfae9G1VVOdjq4712/4DlnL+SZP8Jb/LfvqlVRSyoL6XMZcVpM2MxmzCbFCxmE06bmYnjXCyaVMbUqiIsZ/+N01aBRQlFtXKDkdRBGjE68m4lx5VXXsmbb77Ja6+9pvehCKGr0tJSvvvd7+p9GAVF+kxj9H4wSvuM0g4hhNCLzKPGl83totLR2NHI+r+s75NzYyTagm3ctOUmNq7cyIzyGcnxumXtFgC+u+277G3fm5W60rGoehF3XXZX8nc976o+PzdANK7dKZul1ANA6twA5hxvGxMzO2ms+RDEExAK9bujG85e9FQtfbZAyjU1YQGlb30Dbdl0sNWb9lZlPSKxRMZbNmWz/pjZyfGJV2S8ZVRVsZ1rltTz5J4WAOZNKKHVG+KkJ4QvopKIlqV83ylvFLvZhM1sYnyZg9oSbdWI227J+21rzq2igeDsjxMbhVU8P3tBC/amu4IqEPMNWM/Bk15cltTBgcFyYpwfZFBRiZgc2uc1SwYKrIJ+c17VuPK8+VtpJEH1mNmJfcknMfXqsHS3KuttuCtJegxne0YxevIuyPGVr3yF//qv/+LYsWP84Q9/4HOf+5zehySEEEIIIYQQYpTkYruodOq87cXbshbg6OGNeLn1hVvZdNWm5LHUuesAWFq7dFSDHEtrllLnrkve2ZxJXoo3M9yb//y7qnvnpeifG6Cbdn+Y2lHIDdDuC6P2WikwmtvGqCpcW72BeEJl86mfEWTkK4/S5VKnsqr6W/0eH3zLpoGTzvdIqCqn/WGOngkMa8smvesH7aL/9RdPTiYgHl/qpLbEwfEulf2dXtSEHVW1gqqAoqIoUSrcViaUuCl32ZLnupASEPdPvB7jUJuvzzZ1meRjSWcVj56JtxVF0TWwmumcdybYxb7AMynruLT2M1Q4S1M+N1Q+FD3pGVTvodf2jGL05F2Qo66ujgcffJBrr72WL3/5y1RWVnLFFVfofVhCjDqPx8M999zDN7/5TcrKyvQ+nIIgfaYxej8YpX1GaYcQQuhF5lF95DonRmNHI7e9eBttwbYRlfPc4efY2bqTDVdsYEb5jCFff+eOO0dc50Dagm38+JUf49zu7DNeVzWs4r599+WkzlRWNawC4IFXDwPp31WdaV6KHgPdVf0PV2jnI5kboNhOZyBKVzDGVLMpp7kB2n3hlHd0a3dgj3wcW2NBpp/+G2+Pe//Z0vve0V1sriYaT+BSp41qkKNIvYAic1W/x3u2bHp8VzOgrWTo2Z/+vfZujncEqXTbKHZYcdnMmBSFhKoSiGhbvZz2R4ievaBcZLcwraoIp82S9pZN2arfGgsy8/TfsMxfjWsYW0Y5bWZWzR/PzNpidh7tpKUzSLnLgsl+OuXrJ1fYKbZpF1Dryp1cNGVcXiUZH8rUKjcNxfDGXx7hgvmrOXBGyfkqHr0Sb8dVlS9dNhXoH2SY4ExQefR5bBeuQbGfO9ZsBlavvHBC/3woQ8x5tgHm1J7nMpnz9P5baThB9Vii/3Zl1niQ8I7nUc87VzB4UL2n70G/pPdi9ORdkOPYsWMsXryYe++9l6997WusWrWKj3/841x77bXMnz+f0tLStP+InjRpUo6PVojccbvd3HjjjbjdMjmmS/pMY/R+MEr7jNIOIYTQi8yjo6eps4nNhzez7/Q+3j7zdp/VDiW2EmZXzGZ+5XxWN6xmevn0YdeT6+2iBrKteduIc3AMZfOJzfzb6n/rM15nlM9gcfXiQbfjypYlNUv6nBs976ruMaOmmB2HOyh32bCZTUTiCU77w1QXO84rJ/07ynsMlBtgx+GOnN7RHTPbOFK+lKBqBWL97ugGLdhRGr+IM5bcjrneSuLLGOgyymBbNkXiCU52hTjZNUCQC0a8ZVNW6i8vw1n9QSxF7hFtGTW1ys3UKjen/WEaW33Mrf02bb4woei5C7EOq5nqYju1pQ5m1hanTGpeCD68YDLNp64g4nAzy5rI+SoavRJvq2qKpOtngwyeqEL9nA9idRahmPpOANkKrPa+yJ7unDccA815bodZ17+VshVUN6kqttLFRFpDqEq03/NDBdXzYSWJyL28C3JMmTKlz0SnqipPP/00Tz/9dEblKIpCLDZ6e1wKkW0Wi4UpU6bofRgFRfpMY/R+MEr7jNIOIYTQi8yjuTeaOTFGc7uo892/7/6s1plKwpTgT2f+xCcsn+jz+M3zb2b3S7kPcqyft77P73reVd3jXG6AILWlDo6NQm6A0dkqq4LjHQEs1lC/O7ofePUwZkXBrUzElZhOwJT71RyuxHTcSn0yyJLKQFs2dQYieAJRuiMxgpE4CRVMirbyochmocxlzcqWTdmp3521LaMq3XYqp2kXKFVVJRJPkEiAyaQFVfJlC6CRKHbZ+cyHlvD4rmYUUzznq3hyuYKqx2A5MSB1kMFjLqPaNPII50BBht70mPMA3f9WykZQPaGY6LaNw6IMHHxKFVTP1kqSnudSGWglyUfn1mbURjFyeRfk6NGzb14yEqumTiwkhFF1d3fz9NNPc+WVV1JUVDhLX/UkfaYxej8YpX1GaYcQQuhF5tHc0SMnRq63i7prx13cvfzufs81dTaNykoKe9yO7U0b++bvY37d/OTjy+uX89HJK3n+6Jac1f2xyav6BZ30vKu6t3RyA2RiqNwAmW4bA5nd0Z2IhAi+uwO/fQYWk7XfHd29gyyvt65la9ePM25jppaVr+V9teO58sIJg74u1ZZN44rsjCsa+m7kbGzZNJL6a1wQevfvLL/06qznxFAUJeWd+4Wuu7ubl559mtUf/CjPN3qA3K7i0TMnRo/zgwwt7Z3EDu0lPPsS7M7+Qc50DRVk6G2057x8+FspG0F1mxphclcjraVziJv79+tAQXU9t2eUIMfoy7sgx6RJkwwRFRdipEwmE2VlZZgG+KNa9Cd9pjF6PxilfUZphxBC6EXm0dzQIyfGaGwX9dzh51gzdQ3L65fT4m9JPv5Y42M5rbdHggQBS4A/v/vnPkEOgEtKv8irph0EEh1Zr9dlGsfFpTf3ezwf7qoGbXugnoTT06qK2H/Cm/PcAJC7rbIURSFschBJgM3a/47uvkGWi3gncCnN0f9Nu/xM1VsvZWrRRf22zRnM+Vs2tXaFRnXLpuHUX2RO8IrvPfn3IAM9/4ZWlzi5/uLSnK7iyTzxtkLje6mPe9b4kowSb58f3OsdZOj0Wgl3O3jvdDcz6pw5CTKcb7TnvHz4WykbQfUEChGzA3WAlRyDBdX1TnovRk/eBTmOHDmi9yEIkRecTicrV67U+zAKivSZxuj9YJT2GaUdQgihF5lHs0+vnBijsV0UwAP7H2B5/XJWbhr9cRM1R3mj4g3eOPwG/7L8X5KPv9fu5/hphSvGfZ9n2n9AXOnOWp1mtYgrxn2f46cV3mv390mEmg93VfdYMbOa5s4gQPLiXy5zA0Duto2JKlbetU8jkVAHvaO7J8hy2bhbeLz1LaKKZ9h1DsSqlnHZuFuA/tvmpEPvLZsyrV/+PcjM+f+G5nIVj56Jt88P7vUOMkytLWd/YjbxqJrzwGpvQ815mAbfySaTOS8f/lbKRlA9plg56Z454Mq6wYLqem3PGIknDLkKLJ/lXZBDCKGJRCK89dZbzJkzB5vNpvfhFATpM43R+8Eo7TNKO4QQQi8yj2aXXjkxRmu7KIBdp3ZxqDP3ORBSMSfM1HfX01zU3Ofuzp1HOwEIB2qYHPk2x2y/IJaFC94WtYxJkW8QCdaATaunJ8gxOnkp0rurGrQ7w69eVMfju5oBcp4boEcuto15p7UTt7+FeGndoHd0nwuywDLnP/Na8N9JKIGM6xyISXXxPtc/4zSXDLhtTib03rJpqPrl34PMpeqzXK/i0SPxdio9QQY1HmWm9QxN4VJ8IZJBhmLH4JdKhxNY7W2oOS+SCJOIjEMxhcAUAUUFVYGEjZOeCEfbPWnPefnw2chGUN2sxikPncDvrEU19T8/gwXV9dqecYDUHiKHJMghRJ4KhUJs3bqVqVOnyh9qaZI+0xi9H4zSPqO0Qwgh9CLzaHaNdk6Mni2jRmu7qB6jXV8PW8LGHM8c2pxtBGIBiqzaHc0tnUFUVaW1K4RDredDxT/mnfjveS/4t2HXNdV5GdPMn6f5tImTnhC1JQ5aOoOc9oepdNtznpcC0r+rukdVsZ1rltTz5B5tXOQyN0Cyn3KwbUwwGKKh+12cU6YMeUd3T5BlRvl0PMHv0qj+NGsBrpn8I9PLpgMDb5tjJPLvQeYG67NcreLRK/H2+XqCDI/+byNK69vMmbmCd7vUZJDBajYxvtSRMrDa2hUadmD1/L4YaM4LRFUS0bKU72v3RXFZzWnPeXp/NrIVVLfGQ0z0HcF2wVQUW//3DRRUf+DVw7ptzyi7540+RZWM3iJPHThwgHnz5iV/379/P3PnztXxiIQQQgghhDCebc3b+OpLX815Pb/88C+TCbDnPzR/iFcb1zOfeIkyezmvv3eG3cc66eiO8G67H6vZxIL6UkyKQkt4N28F/kxb9O20y622zmaO6xPU2ReTUFXebO4iGk9wQZWbcUU2Fk8q531TK5KBhnZfmN9tP4qqquw55iESTzC1qigrd1W3+UK8196NzWxi0aQyFEXhhksmD3nXdzAST+YGAO3CUTZzA6Sq73fbj+IPx/CFohxs9SXvzB7JVlnFDituu4XrL5486HFs3neSg60+gpEYe0+coMX8B7zmHUMe90BK4suoi3+OhRMm4LRZmFVbzKr544ddnhDZ9l67nz/vPYGqquw/4aU7HKPYYemzgup0wMMfD/0h5fuvnf45Kl1lyd/jCW2rKV8oRpHdwrwJJSiKwtWL6gbdMgq0OfDJPS34z+ZP6B1YHcpwAquppJrzjnd18nTTS6gJO6pq1VZxKCqKEmXF5EuYUFIy7DlPL//zzml2HO6goztM0ynt37tFk8r6za/hWJw9xzwpy1g0qWzAoPqeY9rqlhk1bsYV2VnWMI73T6vkZy80oaoqu452EkuonPKGiMYTVBTZU/bXYInHa0scAyYeD0binOkOYzWbqClxYDEp/O6L7xuTOTn0vJZbUCs5WltbOX36ND6fj+LiYiorK6mtlWz1wphUVSUcDmO328fkxDgc0mcao/eDUdpnlHYIIYReZB7NntHOiTEmqWBNWImaojz6+kmsJg9vn/TSFYzS2R2hOxLDbbfyxvGus2+YSiX/gFtpwaO8Tpf6HnFrM5h6bWmUcOFSJ+FSGyiJL8MRqqPNB214APAEovjDUXzBGOVFNt5r7+bACS//cIWWHyVf7qruzWkz5zQ3QKr6srlV1gWVLpxmFbvFlNYd3b335p9XOx5L6y144svosDxPt6kp7XYUJWYwLvYxyliQ0bY5RiH/HmROrz4b7cTbg6l027hmYQ2vHemi8ZQ/J0nXh5Jqzit3WTDZT6d8/eQKO8U2bT5MZ87Ll8/GiLcqU1XUWATV7OjXjsG2KtNze0aZi0Zf3gc5Xn31VTZs2MDWrVtpbW3t93xtbS0f/OAH+cpXvsIHPvABHY5QiNzo6vr/s3fv8VHU9/74X7O72Vt2cyEXEhJJCHchCHIRqwasWgO2FsWjtrVF0fZU+Nn29HjtOcdW24ranip+a9FzEPC0tkiFeqmAAi1Sq4DcFBASlZsJhFw3u5u978zvjzUrmADZZHdn5zOv5+PBwyS7M5/P+/UZZ5P97HymE4sXL8YPf/hD5OXlqd0dTWBmMaLnIEp9otRBRKQWnkeTQ417YozMH5mW9jKJPWLH7MbZWFu2FibJCkWJLY0CIP6p4d7ePLEqZSiMzEHEHYit9S0FoSACCSZAsaA0x3bGT5ZaTAZ4g5/vv+uzTyufKhX3pfioOXY1RLbFdNb7UpxNqu8NcKpkLpWlBLvg2f4avn779/v0ie7eJ1kuhDM4AQGpEV7Te4iYjsKDIwgrn9+UPkvKhhOVMEUq4IhMhVUp6/eyOSLg60Hi1MzsXDfetpjPfO6xmAwDvidGt87OTjz1WQZjSnPSMrF6Jqee8/55+DD++HE75IgTUE5Z4k8KY0i+BWOLB/X5nJcp/28MdFI9KxpAaNcGmC/8GiSrI/7zc02qq7k8I6Vfxi5X1dbWhttvvx2vvfYaAPT4ZexU3bNj1157LZYuXYqCgoK09JFSS+/LVUWjUbS0tKCoqAhGoz5+OR0oZhYjeg6i1CdKHUREauF5dGC674mxfN9yvFj3YtravXn0zbh1/K2oXV2btja/6MWvvohcSy4A4P4t92NPy56UtykpEnJCOagqq8Ik838iIsvYcSR20/HGDj8UKGdcCqO/y2d0bych9qYPAEypzMc9V4857XmnLpm077gbUVmB02oa8Keqxw/JSeqSScm8N0BvkrFU1qhiO8YNknDekJKEzkvnWjZHgQIZQSgIQ0IWDLDE135P1rI5WsbXg8SpnVmLJ4iXdjYgEI7CH4rEr6ACABkh7G7b0uuNt79cPhtdAdMZ74lxw+TyPh/7vWWQjonVc2n0NqJ2dW3shtmKEYABgAxIUbxxw3qUOcr6vC+1x/lUfVmq7IzLVSkyLiiUYHXmQzLE6khkqbK+Ls/Yn+Wy+rs8o6i4XNUXtLW14dJLL0V9fX2PyQ2r1Yrs7Gx0dXUhEIj9otf9nFdffRWXXnop3n77bU50kOYZjUYux5YgZhYjeg6i1CdKHUREauF5dGDUmmRYWbcSK+tWqtJ2t4qcCmRnxd4AmVIyJS2THIqkoNPSiSmlUxBtA079M1fBZzcsTfLSFt37694/cHq73c71qer+3pci2UsmSZLU6xtMyZLupbJOVeS04JbpFfFJlt6XzZEgK9aULZujZXw9SJzamZ3tCipP6Mw33j7pDsNiNCRlcq+3DFJ10/X+kCQAUhRA9FxPPSO1x/lUA1qqTDLAkJ0Xn+BIdKmyTFyekZIvI+/1/s1vfhN1dXXx72fNmoXVq1ejqakJPp8PLS0t8Pl8OHnyJNasWYNrrrkm/tz6+np861vfUqPbREnl9XqxYsUKeL1etbuiGcwsRvQcRKlPlDqIiNTC8yj1l930+Trcs4bNSkublogFM07MwMzimQA+e/PqM92fyE/2Igvd++ve/xfb7da9ZJI1ywinNQvjh+Qg22JCVFZwqKULu4+5cLStC+1dIQTCUYQiMgLhKNq7QjjaFnv8UEtXfImq8UNy4LRmaXbJpKoiB26cch6+fXEFpg0bhKGD7LBmnV6DNcuIoYPsmDZsEL59cQVunHIehhVmD+i81D3J8vWJQ1CWb4MkSRiUbUFVkQPVZXmYNqwA06sKMG1YAarL8lBVFLvBbvebanMmlWFWdanm8k4Gvh4kLhMy657cG1PihCRJKM21YdLQPFQPKcA1Iy/BzIqLcFHpFEwtmYKLSqdgZsVFOC8vB6MGOzBpaB5Kc23xN7ZvmV6R8NVL58qge2LVZjbCYjJq8h4LmTDOp5o5uhgOiyl+lZ/RIMUn1Zs9AchneB00RoMIHfg7IkEfmj0BvN/gik9w9HVSfUpFPgCgNNeKbIsJkVOWV+yPZC3PSMmTcVdybNy4ERs2bIAkSbDZbPjDH/6AOXPm9PrcoqIizJkzB3PmzMGrr76Kb37zm/D5fNiwYQM2btyIK6+8Mr2dJ0oik8mEyspKmEwZ979pxmJmMaLnIEp9otRBRKQWnke1bf3c9QDSt1xUt0nFk057o2pU/ihcWHxhyu9LIksyTIUmjCochU04BqMkwWSQEJEVmIwSwlEF4aiCZF6oEI7G3rgxGWP1mgwSjGd4ky6Z96UQZcmk/nyiOxnnpXTej0QUfD1IXKZkpuYVVJmSQSplWo2934cotlTZoZYuSBLg8oVhMRmQZZQgSVLs/BtW4DXl4ePjXgSV2AtlovchyqSb3lNqZMZRfoqVKz+/dPl///d/zzjB8UXd9+P45je/CQD405/+xEkO0jSr1YqZM2eq3Q1NYWYxoucgSn2i1EFEpBaeR7Wte03xdC0X1W3K4Ck9fnZ79e3YtSm1kxxhYxjXf+V6WK1WzL90GACgOOc4Gjp8ONLahRZvECU5Vpw3yN5j22BEBhpcve53QnlerzcsB4BP233IMkkoclhQWZiN8nw7vnbBkDP2sW9LJp37vhQiLpnU16WyknleyqRlczIdXw8Sl2mZqTG5l2kZpEIm1ni2SXVfOAJvMAxvsOd2htwKmJSBLVV2ruUZndazv02eruUZqX8ybpLj7bffBgAMHz4c3/jGNxLa9uabb8aDDz6Ijz/+OL4fIq0KBoPYvXs3Jk2aBItF35/M6StmFiN6DqLUJ0odRERq4XlUDLOGzcLSvUvT2t4X1ZTX4CsVtXjz6PqUtXt12SyYG8wIFgWRa4sdr8MKs9HiCaLIaUGHL4xOfwRVRkOP+19YTEZcOqIoofZkRUGnPwKTwYAipwUWkxHDCrORa8s663ZqfqpaBKk6L6X6fiRax9eDxGVqZumc3MvUDJIpU2s806R6kzsAjz+CUFRGJKpAgQIJEiyGKCqix5FdPBz5zux+T6r390qScFTBp+0+dPojZ7zpvRaXZxRNxt2T48SJE5AkCdOnT+/X9t3bNTU1JbNbRGkXCoWwZ88ehEIhtbuiGcwsRvQcRKlPlDqIiNTC86gYupeLSofJgydjZP7IXh+7OPcO2A2pWUfbbhiEydnf7HG8jhrsBADk280wGw0IR2W09vbx1X5o9QYRjsowGw3It5sBAKNLnH3efiD3pdAznpfUwdwTp4XMUn1PDC1kMFCZXGPv9yEyIz/bjME5VpTl21Ceb0dZvg0lDhPy/MeRZzUM+D5E3VeSdN8bZPyQHFQU2OOvw95gGG1dwdjVJZ1+NLkD8e+7X1crCuwYPyQnfgXHDZPLNb08oygkJdl3Nxsgu92OYDCI2267DUuXJv6JnjvuuAPLli2D1WqFz+dLQQ8pXfbv34/x48fHv9+3bx/GjRunYo+IiIiIiMTQ6I0tE6HGPTEWXbYovlwVAKza/wZ+vuPulLf9X1P+GzeO+0qPnx9q8eKVPcfRFjqCv7Y8iKjUlbQ2jUo2vlr0MArMlfj6xCGoKnKc9viqHZ+iscOP4y4/jrX7YDJImFCel9Da4F8Uish4v8GFqKygosCO0lwbyvJtuHHKeQOqhUsmERGlXqO3EbWra3t9bP3c9ae9foqk1RvErqMdeGlnA7qCEUROuSG4ySBhVnUphhVmJ+0+RP5QNH4lCRB7jWtyB7DnmKvHlSQmY2xZqiKnRfjlGQdKzfdyM+5KjuLi2PplH374Yb+2796uez9EWiXLMlwuF2RZVrsrmsHMYkTPQZT6RKmDiEgtPI8OTJmjDGWOMkwp6XmPilSaMnhKzzdo/OejynZpStutsl0G+Mf2+tiOox0AgKBvMCpC/w6TkpeUNk1KHipC/46QfzAURcY7B471OF6nVOQDAEpzrci2mBCRFXzU7EFU7t9nEaOnbJ9tMaEkxwoAmFo58KtUUv2pahHwvKQO5p44ZqaPDLRUY6HDgouqCjC2NAeTK/IxpTI//t8Lh+aiptKOi6sGJWWCA0jsSpLBOVZUFmZjULZlwFeSUOpk3CTHpEmToCgKtm/fjj179iS07fvvv49t27ZBkiRMnDgxJf0jShe3243FixfD7Xar3RXNYGYxoucgSn2i1EFEpBaeR5Ojt3tUpLO9Fk8QjR1+XJRzO7KSNLnwRVlKHi7KmY/GDn+P5aC621cUBU2dAViVcnzZ+WhsUmQAqmyX4cvOR2FVynHCFYAc6MInf/8zjpxoOf15RQ6MKXFCkiSMKMqG0SDBE4jgYJMboUhib0qFIjIONrnhCURgNMT2J0mxT5/qfRmpdOF5SR3MPXHMTB8ZaLVGSZJgMhiQZTTAZDAAIT+WP/u7lNRx6vKMFw7NR64tCybD6ZP4JoOE8nwuz5jpMm65quXLl+P222+HJEkYNWoUNm3ahCFDhpxzuxMnTuDLX/4y6urqIEkSnnvuOdx6662p7zCljN6Xq5JlGW63Gzk5OTAYMm4+MiMxsxjRcxClPlHqICJSi57Po4qioCvchbAcRpYhC9lZ2QP6VP01f74Zx3z7k9jD3g21j8fr//InAECnPwwA2HaoDbuOdaC9K4QPW+vQYP1vRKXkLTtsVOwoD/w7zi8cjUHZZlw4NB8XVRXEHz+1/U9avMgyGjChPBcGSUJjcBc+9L2C5vCBPrdXnDUW59u/jjLLhZAVBR80dCIclTG80I78rCguHD4EV1ef/vetPxTFH7YehTcYgScQxsGm2JUYRoOEigI7Ch2WHjcjP5WsKGj1BnG0zRffbkyJE05rFhwWE26ZXsFPmqaJns9LamLuiWNmmZtBMperytQaz6TTH8aytw/3+LmiyLhhQgHKiwtSWkd3+4qiIKooUBRAkgCjJOH2y6qQa8tKWduiUPO9XFNaWknAt7/9bfzyl7/E4cOHUVdXhwkTJuDBBx/Et7/9beTn5/d4vsvlwh/+8Ac8/PDDaGtrgyRJqKqqwi233KJC74mSx2AwIC8vT+1uaAozixE9B1HqE6UOIiK16O08Wt9Rj3WH12Fv614caDsAd+jzTzPmmHMwtmAsqgurMXvY7DPeXLs3LZ4gRlu/npZJjtHWa9HqDaLQYYm/iXHghBud/jA6ukLoChVgkP1H6Mj5HSKSa8DtmZQ85LsXoMNXgD0+F/KzzTjU0oX9xz/P7vT2I3BYsvD+p52fPVqFQvwbHFIjXNI2dCqHEM1qAAynTMLIdtiVobArw5ATnQZroAzNHqAZsf67fGF4g2F4/BHkZ5tx2H28xySHzWzEnElleGlnAwBg/JAcfNzSha5gBIdauvBpux+FDjOc1izYzUYYJAmyosAXisITCKPVG0I4GrvqI9tiwoiibNjMJlizYvvlBEf66O28lCmYe+KYmT4y0FqNubYs/NtVo9TuRuxKEi7JqDkZN41nMpnwwgsvwGaLrYfW3t6Of/u3f8PgwYNRXV2Nr371q7jpppvw1a9+FRMmTEBxcTF++MMforW1FYqiwG6344UXXoDJlHHzN0QJ8Xg8eOaZZ+DxeNTuimYwsxjRcxClPlHqICJSi17Oo1satmDeunmY++pcLN27FNtObDttggMA3CE3tp3YhqV7l+L6V6/HvHXzsKVhy1n32+kPo9Mfxu5jHSg2TUSp8eJUloFS45dQbJqIXUc74ldxKIqCrmAEABD67E16h3QeqoIPIic6bUDt5USnoSr4IBzSeaftvysYQfdiBr21b+nlht9WpQyF4TnIbl8A58lfwtn0KBxNv4Cz6VE4T/4S5YEfoThyHaxKz0/XxvcX9qOq9V0EfF70tphCkdOCGyaXw2ExwWY2YfyQHFQU2GE2GhCOyjjRGUD9SQ/2fOrCrmMd2POpC/UnPTjRGUA4KsNsNKCiwI7xQ3JgM5vgsJhww+RyFDmTs3Y59Y1ezkuZhrknjpnpIwNRahSlDkqtjJwJuOiii7B27Vp861vfQmNjIxRFQSQSwYcfftjjhuSn/oJYVlaGP/7xj5g2bWC/EBNlArPZjIkTJ8JsNqvdFc1gZjGi5yBKfaLUQUSkFtHPo66AC49sfwTrDq9LeNtdzbuwa9MuzB42Gw9MewB51rwez/nilRSy7+uQcj+EYuzs8dyBkqK5kNuvxe4u12lXUkQVBZHPbrAdicb+m2WUYIID5eE74IlOQ5vpDfgMH/W5Lbs8EgWRWjjl6tgPjPJp+4/IsSUoTJJ0xvbPWgskQLGir5/v7N5fUDbAZRuCsGJEKCrDYup5dUWR04Jbpldgc10zDjZ5UJprQ0mOFR2+EFy+MLpCEfhDUcgKYJBiV4Bkm03Is2ch326OL1k2psSJmaOLeQWHCkQ/L2Uq5p44ZqaPDESpUZQ6KLUycpIDAGpqarB371488cQT+N///V80NTX1+okXACgpKcH3vvc9/OhHP9LUZVhEZ2OxWDB9+nS1u6EpzCxG9BxEqU+UOoiI1CLyebSuvQ4LNi5As795QPtZe3gtdjTtwJKrlmBUfs/lH069kiESscPe/q/wF/4WchLviWFQ7LC1/ysiih3A51dSSJKEU/+8UxD75tR7izjlCXCGJiCQyHJRX7iaont/3fuP1X36f8/UfjJ07y8iGdGeXRHr8lnuJ24zGzGruhSjS5zYcbQDjR1+DMq2YFD2ua/IKMu3YWrlIN4MVUUin5cyGXNPHDPTRwai1ChKHZRaGTvJAQB5eXl46KGH8NBDD+HAgQPYvXs3Wlpa4PV64XA4UFRUhEmTJmHs2LFqd5Uo6QKBALZu3Yrp06fDarWq3R1NYGYxoucgSn2i1EFEpBZRz6N17XWY/8b8HktS9Vezvxm3rb8Ny2uX95jo+OKVDEYMwXn+f0ej7f8l7Z4YZf670BEpQAQ9r6Q4dT5BggQFymcfbDt9osGqlKEwMgcRdyA2GSEFoSACCSZAsaA0xwaTsfeVmLs/KCedss/udvva/kB0t5+lRFHk+Rht2RXoyz1Tq4ocqCpyoNUbRF2TB02dATR7ggiEo/HnWLOMKHZaUJJrxegSJwodXJpKbaKelzIdc08cM9NHBqLUKEodlFoZPclxqrFjx3Iyg3QlEongyJEjmDJlitpd0QxmFiN6DqLUJ0odRERqUfM8qigKusJdCMthZBmykJ2VnZQrAFwBFxZsXJC0CY5u7pAbd264E6uvXX3a0lW9XclgRTmqgg+iKWsl3Mbt/W4zJzoNJeGbISEbgL/XKymMkgSTQUJEVmAySghHFYSjCnpZySku0eWiwp8tQ2X6bNkok0GC8bOx6k/7iepu32xUYA91wO0YCvMZJmR6U+iwoHBEbPJCURSEojJkGTAYALPRkPQrT2hg+PudOph74piZPjIQpUZR6qDUkpQzrQFFpLL9+/dj/Pjx8e/37duHcePGqdgjIiIiItKr+o56rDu8Dntb9+JA24HTJiJyzDkYWzAW1YXVmD1sNkbmj+xXG/duubdf9+Doq9nDZuOxmscAAE9sqEdElrHjSAcAoLEjNhFRkmONXxXhMXww4HtiRKIymtwBSJBQlm8DAEypzMf3aoYDAF57/zgaOnw40tqFFm8QJTlWnDfI3mO/wYiMDxpcvbY5oTyv1xuGA8Cn7T40uQMoclhQWZiN8nw7vnbBkPjjarR/y/SKXp9LRETU6G1E7eraXh9bP3c9yhxlvT5GlAnUfC9XM1dyEOlNNBpFS0sLioqKYDTypoF9wcxiRM9BlPpEqYOISC3pOo9uadiC5/Y+h13Nu874HHfIjW0ntmHbiW1YuncpLiy+ELdX346a8pqE2knlBAcQu0fHNVXXxPt1risZknFPjDNdSZFrywIADCvMRosniCKnBR2+MDr9EVQZDTB84QoFi8mIS0cUJVSvrCjo9EdgMhhQ5LTAYjJiWGF2vO20tp+dBVPQjYr8QQntg7SFv9+pg7knjpnpIwNRahSlDkqtvl8nS0Rp5fF48Oyzz8Lj8ajdFc1gZjGi5yBKfaLUQUSkllSfR10BF+7dci8Wblp41gmO3uxq3oWFmxbivi33wRVw9Wmb5/Y+149eJm7ZvmUAgPmXDsPtl1VhVnUpJg3Nw5gSJ0pyrThvkA2Thuad9u/i88bhyyW3Ynj0xxgZ+G+M8D2J4b5fY4TvSYwM/DdmF/0MVw+5DRefN67HtucNsqEk14oxJU5MGpqHWdWluP2yqnh/Rg12AgDy7WaYjQaEozJavcGk1NrqDSIclWE2GpBvNwMARpc4T3tOutrPNUXQ9f56lDmSsmvKUPz9Th3MPXHMTB8ZiFKjKHVQaqmyXNXDDz982vcPPvjgGR8biFP3S9qj9+WqFEVBMBiExWLhWrt9xMxiRM9BlPpEqYOISC2pPI/WtddhwcYFaPY3D3hfxbZiLLlqSY+bfp+qvqMec1+dO+C2+mrNtWviS2r98+NWbD/cjvauIOpPepFlNGDS0LweVzL0h6wo2H3MhXBUxqjBDgzKtmDasEG4ZEThac9bteNTNHb4cdzlx7F2H0wGCRPK82A+wxJQfRGKyHi/wYWorKCiwI7SXBvK8m24ccp5PZ6bjvZLcqwodRpx8/ThfN0XGH+/UwdzTxwzy9wMkrlcVabWmChR6tAD3S1X9bOf/ey0g/LUyYgvPjYQnOQgLZMkCVarVe1uaAozixE9B1HqE6UOIiK1pOo8Wtdeh/lvzE/azb+b/c24bf1tWF67/LSJjkZvY/zrVXWrktJWX62qW4X/mP4fAGJXMmw/3B6/kiH02ZUMxc6BZ9uXKykAYEpFPho7/CjNtaKtK4SuYAQfNXswpiQHRkPifxtGZQUfNXsQlRVkW0woyYnVMrWy96Wi0tG+JEmYPrKUb84Ijr/fqYO5J46Z6SMDUWoUpQ5KLdWWq1IUBWe6iKT7sYH8I9I6t9uNJ598Em53cv7A1gNmFiN6DqLUJ0odRERqScV51BVwYcHGBUmb4OjmDrlx54Y7T1u6qnZ1bfzfygMvJbW9c/nTgc8nVYqcFpTl2yBJEkpyY28gHGvzIRSRB9RGKCLjaFvs3h2lebE3+cvybSh0WHo8t6rIgTElTkiShBFF2TAaJHgCERxscifcj1BExsEmNzyBCIyG2P4kScKYEieGFWb3uk062q/KkfDKH/6Xr/uC4+936mDuiWNm+shAlBpFqYNSS5UrOX7605/26zEiPbFarZg5cyZnqxPAzGJEz0GU+kSpg4hILak4jz6y/ZGkLFHVm2Z/MxZtX4THah7r+aCU5g9pSbEPlnVfVaD2lRQAMHN0MRo6/ACAMSVOHGzywBOI4P0GFyoK7Ch0WM66hJasKGj1BnG0zYeorMBoiE1s2MwmOCwmzBxdfNY+p7z9caWosPB1X3T8/U4dzD1xzEwfGYhSoyh1UGqpck8Oor7Q+z05iIiIiCh9tjRswcJNC1PeztNXPI2a8hpUP1+d8rbOZus3tyI76/MrG9btPYGDTR74QxHsO+5GVFbgtJowstiZ0L0pQhEZHzV74lcyjB+SA5vZhDElTsyqLj3rti2eIF7a2YBAOAp/KIKPW7rQFYwAALKMBhQ6zHBas2A3G2GQJMiKAl8oCk8gjFZvCOFo7KqLbIsJI4qyYTObYM0y4obJ5Shy9ryCJNPaJyIiSuY9OYjSTc33clVbroqIzs7v92P9+vXw+/1qd0UzmFmM6DmIUp8odRARqSXZ59Hn9j6XlP2cy7J9y077Xq2PnAUjwdO+nzm6GA6LKT4h0b1k0/sNLjR7ApDP0VFZUdDsCeD9Bld8giORKymA2NJZN0wuj/dj/JAcVBTYYTYaEI7KONEZQP1JD/Z86sKuYx3Y86kL9Sc9ONEZiN/7o6LAHp9YcVhMCU0wpLJ9vu7rA8dZHcw9ccxMHxmIUqModVBqqbJcFRGdmyzLcLlckOWBrYesJ8wsRvQcRKlPlDqIiNSSzPNofUc9djXvSkKvzm3nyZ34qOOjz3+gGABJjdeC0/8UtJmNmDOpDC/tbAAAjB+SE7+S4VBLFz5t9/f7SoY5k8pgMxv71KsipwW3TK/A5rpmHGzyoDTXhpIcKzp8Ibh8YXSFIvCHopAVwCDF+p1tNiHPnoV8uzm+BNeYEidmji7uc7upbp+v+/rAcVYHc08cM9NHBqLUKEodlFoZt1zV/PnzAQBXXnklvvnNbya8/apVq7B+/XpIkoTnnkvPp7EoNbhcFRERERGlUqO3EQCwfN9yvFj3YtravXn0zVhZtxIAoMixyQbJEElb+4pswvZvvge7pedn3lo8Qby8uxHeYASKoqDJHcAJVwCh6LnfWDAbDSjNs6IkJ3ajcYfFhDmTyvq9VNOhFi92HO1AY0ffP7lZlm/D1MpBZ7zJuJbaJyIi/eFyVaRlar6Xm3FXcqxYsSL2C7HD0a9Jjvfeey++D05ykJZFIhE0NDSgvLwcJlPG/a+akZhZjOg5iFKfKHUQEaklGefRM72JkGor61biX4qXAIjdpHvdySfgx0fn2Cp57EoVjMbeb6Kt9pUUp6oqcqCqyIFWbxB1TR40dQbQ7AkiEI7Gn2PNMqLYaUFJrhWjS5wodCTv3hfJbJ+v+/rAcVYHc08cM9NHBqLUKEodlFq8JwdRhvJ6vXj++efh9XrV7opmMLMY0XMQpT5R6iAiUovWz6MOYxGcpmLkZhXDgRFpbduJETAbz/ynoM1sxKzqUnx94hCU5dsgSRIGZVtQVeRAdVkepg0rwPSqAkwbVoDqsjxUFTkwKNsCSZJQlm/DnEllmFVdOqAJjlMVOiy4ZEQh5k4ux/dnVGHB5cPx/RnDP/tvFeZOLsclIwqTOsGR7Pa1frxS33Cc1cHcE8fM9JGBKDWKUgelVsYtV2UwGCBJEhYuXIinnnoq4e3vvvtu/OY3v4HBYEAkkr5Lvin5uFwVEREREaVS9fPVqrX95nX/gD0rtqTRsu3vYNmR/y9tbc+v/C3+bcaMPj9frSspiIiI9IbLVZGWcbmqJGptbQUAOBwOlXtCRERERETUO6tZQa41CwAwrWwcXj8+FidDB1Lebon5fEwrS+yPzUKHBYUjYpMXiqIgFJUhy4DBELsPR/cSVUREREREahBquSq3240333wTkiRh6NChaneHaEA6Ozvx6KOPorOzU+2uaAYzixE9B1HqE6UOIiI1KIqC4y3HsejRRTjechwZdnF6n5iN5vjXowY7McFxXVrarXbMwegSZ7+3lyQJFpMRNrMRFpORExx9xNd9feA4q4O5J46Z6SMDUWoUpQ5KLVWv5Hj44YfP+Nj27dvP+vipwuEwGhsb8eabb6KpqQmSJOHSSy9NVjeJVGG32zFnzhzY7Xa1u6IZzCxG9BxEqU+UOoiI0qW+ox7rDq/D3ta9ONB2AF2BLgzOGYwX//oisq3ZGFswFtWF1Zg9bDZG5o9MaN+KYoAkySnqee/t2U2fn/+LnBZML70Un/gvxSH/2ylrt8p2GaaXXsolpVTA13194Dirg7knjpnpIwNRahSlDkotVe/J0X3/jVN1d6e/nwhSFAUWiwU7duzg/Rs0jvfkICIiIqItDVvw3N7nsKt5V5+3ubD4QtxefTtqymvO+ryH18UmFNadfAJeqX5A/UyEQxmFd29dfdrPDrV48eKuOrzc/GP45Pakt2k3DMKc4t/g5sljMKwwO+n7JyIiooHjPTlIy9R8L1f15aoURTnt35l+3td/5513Hl566SW+GU6a5/P58PLLL8Pn86ndFc1gZjGi5yBKfaLUQUSUKq6AC/duuRcLNy3sdYLDHDVjSssUmKPmHo/tat6FhZsW4r4t98EVcJ2xDaepGA5jEWzy8GR2/Zzs8ogeS2xVFTkwccgQfKXgP2GWkjsJYZay8ZWC/8TEIUM4waESvu7rA8dZHcw9ccxMHxmIUqModVBqqbpc1U9/+tMeP3vooYcgSRKmTp2KWbNmnXMfkiTBarWioKAA48ePx7Rp07guLBERERGRhtW112HBxgVo9jcPaD9rD6/FjqYdWHLVEozKH9Xrc6KKAmdkKlqM6wbUViIckakIRWVYTMbTfj5zdDEaOoZjNn6O9a0/R0DpGHBbVikftYX/haGO4Zg5unjA+yMiIiIiyjSqLlfVm+4lrBYuXIinnnpK7e70WygUwosvvog//elP2L9/P06ePIn8/HwMGzYM119/PW699VYUFhYmtc1oNIr9+/fjvffew44dO/Dee+/hgw8+QDgcBgDMmDEDmzdv7vP+jhw5gmHDhiXUh+HDh+Pjjz9OaJsz4XJVRERERPpT116H+W/MhzvkTto+c8w5WF67vMdExxMb6hGOyth5tANHzL+Cz/BR0to8E7s8EpWhe7DitmmwmY09Hm/xBPHSzga4gi78s+N/cTT4z363VWG5BJfkfxd5ljzcMLkcRU7ei4OIiCiTcbkq0jJdL1f1RTU1NaipqcHIkYndLDCTHDx4EBdddBG+853vYN26dTh27BiCwSCamprw7rvv4p577sG4ceOwdu3apLX58ssvIycnBxdccAHuuOMOPPPMM9i5c2d8goO0JxwO4+DBgxzDBDCzGNFzEKU+UeogIkomV8CFBRsX9GmCwygbMaRrCIxyz4mCL3KH3Lhzw529Ll3VfRF4QeTqRLvbLwWR2BsXhjP8JVbktOCGyeUotOXjioIf48r8B5BvGJNQG/mGMbgy/ye4ouDHKLTlc4IjA/B1Xx84zupg7oljZvrIQJQaRamDUivjJjk2b96Mv//977jrrrvU7kq/NDQ04IorrsCePXsAxJbTmjFjBubPn4+vfe1rsNlsAIDm5mbMmTMHf/vb35LSrsvlSunadE6nEwsXLjznv29/+9sp64PecM3BxDGzGNFzEKU+UeogIkqmR7Y/0uclqsyyGVNap8As97wnR2+a/c1YtH1Rj58bJQkmgwSnPAHmwOSE+psoc2AynHI1TAYJZuOZ/xQrclpwy/QKjClxYqhtCq4r+SXmFP4GoyxfR740DkbFfnoNih350jiMsnwdcwp/g+tKfomhtskYU+LELdMrOMGRAfi6rw8cZ3Uw98QxM31kIEqNotRBqZVxy1VpXU1NDf7xj38AACoqKvDKK6/gggsuiD/e2tqKm2++GZs2bQIADBo0CJ988gny8vIG1O6KFStw2223YfDgwZg6dWr83xtvvIHFixcDGNhyVRUVFThy5MiA+pgoLldFREREpB9bGrZg4aaFKW/n6SueRk15DQCg0x/7ROBr7x9HQ4cPH7WcxM7ofyJq6Ex6u0Y5F5ONv8DIosEoz7fjlukVfdruUIsXO452oLHDH/+ZoiiIKAFElTCMUhZMkvW0+xKW5dswtXIQbzJORESkMVyuirRMzfdyVb3x+Jm8+eabCAQCsNvtuPLKK/u83caNG+Hz+RLeLlnWrl0bn+Awm8147bXXUF1dfdpzCgsL8corr2DChAk4dOgQ2tvb8fjjj+ORRx4ZUNu1tbU4evQohg4detrPt23bNqD9EhERERGlw3N7n0tLO8v2LYtPcuTasgAAwwqz0eIJYkhOAVqbf4ij5l8jKiXv04JGxY6K8A8xJL8AFpMxocmHqiIHqoocaPUGUdfkQVNnAM2eIAJhG7IQu0rcmmVEsdOCklwrRpc4UejglRtEREREpB8Zt1zVhx9+iNraWlx33XV4/fXXE9r2r3/9K6677jrU1tbik08+SVEPz+zpp5+Ofz1v3rweExzdsrOz8fDDD8e/f/bZZxGJRAbUdklJSY8JDtI2l8uFhx56CC6XS+2uaAYzixE9B1HqE6UOIqJkqO+ox67mXQltYw/bccORG2AP28/95FPsPLkTH3WcfoPxUYOdAIB8uxk5hqGoCN0Ni5Sf0H7PxCLloyJ0N3IMQ5Fvjy2tNbrEmfB+Ch0WXDKiEHMnl+P7M6qw4PLh+P6M4Z/9twpzJ5fjkhGFnODIUHzd1weOszqYe+KYmT4yEKVGUeqg1Mq4SY6XXnop/vV3v/vdhLb97ne/C0VRoCgKXnzxxWR37ay8Xm98CSoAuO222876/Llz58LhcAAA2tvbsWXLlpT2j7TH4XBg3rx58eOEzo2ZxYiegyj1iVIHEdFANHob0ehtxKq6VQlvGzAG8NbgtxAwBhLedlXdKjR6G+PfFzktKMu3QZIklORaYVXKMTz4ICotlya871NVWi5FVfBBWJVylObFlpQqy7cNeCJCkiRYTEbYzEZYTMbTlqqizMTXfX3gOKuDuSeOmekjA1FqFKUOSq2Mm+TofrO/srIS559/fkLbjhs3DpWVlQCAt956K9ldO6t33nkHwWAQQOxKjalTp571+VarFRdffHH8+2TdgJzEYTKZUFlZCZMpI1eVy0jMLEb0HESpT5Q6iIgGonZ1LWpX1+LFusQ/oCQbZLTYWiAb5IS3XVm3ssd611MqYldulOZakW0xAXI2Bgfn44q8B1BiTuzvkhLz+bgi/ycYHJwPSc5GtsWEkhwrAGBq5aCE+0vax9d9feA4q4O5J46Z6SMDUWoUpQ5KrYyb5Dhw4AAkScLEiRP7tf2kSZOgKAoOHDiQ3I6dw6ntVVdX9+l/vAsvvLDX7TNRJBLBhg0bsGjRIvz7v/87/uM//gNPPPEE/vGPf8Qndyi5urq6sHLlSnR1dandFc1gZjGi5yBKfaLUQUSkFkvUgotPXgxLNDnLM1UVOTCmxAlJkjCiKBtGgwRPIAKvaySuzHsI1xU9gQmO6zHEPAFm6fRPEpolB4aYJ2CC43pcV/QErsx7CN6OEfAEIjAaYvuTJAljSpy8GbhO8XVfHzjO6mDuiWNm+shAlBpFqYNSK+OmwNra2gAARUVF/dq+e7vW1tak9akv6urq4l9XVFT0aZtT76Fx8ODBpPcpmRobG/GVr3yl18fy8/OxYMEC3H///bx0LIkMBgPy8vJgMGTcXGTGYmYxoucgSn2i1EFEpBYZMnwmH2QkfiXHmcwcXYyGDj8AYEyJEwebPPAEIni/wYWKgmJc6PwmDJIERVEQUQKIKmEYpSyYpNhSVLKioNUbxPttLkRlBUZDbGLDZjbBYTFh5ujipPWVtIWv+/rAcVYHc08cM9NHBqLUKEodlFoZN8mRlZWFcDiMQCDxtXUB9Hu7geqenAGAwYMH92mbkpKS+Nft7e1J71O6dHR04Je//CVeeuklvPrqqxg1apTaXRKCzWZDbW3tuZ9IccwsRvQcRKlPlDqISJ8URUFXuAthOYwsQxays7LTfl+IsDGM9wveT+o+bWYj5kwqw0s7GwAA44fk4OOWLnQFIzjU0oVP2/0odJjhtGbBbjbDIFkQlRV4QmF4AmG0ekMIR2OTLtkWE0YUZcNmNsGaFduvzWxMan9JO/i6rw8cZ3Uw98QxM31kIEqNotRBqZVxU2CFhYUAgI8++qhf29fX15+2n3Txer3xr202W5+2OfV5p26fSZxOJ2699VasXLkSdXV18Hq9CAaD+PTTT/HnP/8ZV155Zfy5dXV1qK2tRUtLS1L7YLVa41eIRKNRuFwuKIoCAHC73QiFQgAAv98fv3QtEonA5XLF99HZ2YlwOAwA8Pl88Pl8AIBwOIzOzs7481wuFyKRCIDY5XB+f+yTfKFQCG63G0Dsj3qXy4VoNAogNnbdk2vBYBAejwcAIMsyXC4XZDn2h67H44kv7RUIBOJjfqaaQqEQtm/fjo6ODmFqSvU4eb1evPvuuwiFQsLU1J9xCgQCeOedd+KPiVDTqeMUCoXw7rvvnlavFmsSfZxYE2tiTeLV9EHjB3hi6xO44807MOOPM/Dl338ZNS/W4OI/Xowrf38l7lh/BxbvWowPGj7oc00mOfaZq6xoFiyR2LJTkiLBHrYDsZJgi9hglI2fP++z5amyolkY6RoZf+zU55mjZpijZgCAUTbCFvn892572A6DbDjjOBU5LZh7YRmscgBWk4TxQ3JQmWOAVYoiHJVxssOLQ8dbsOdTF3YdbcP+wydQ39SJE50BKCEfLJKMigI7xhVbYUEYDosJ100sRVbUz2NPxzWFQiG888478cdEqEnEcRpoTaFQCO+99178Q5Ai1KSFcero6MD27dvjf0eLUFOqx6m9vR179uyB3+8XpqZEx8nn8+Gdd96JP5YpNYWCsf709rtRouPU0tKCHTt2IBQKaXacIpEImpubsWfPHoRCoYwZJ9HPEQOtSQ0ZN8lRXV0NRVHw3nvvobGxMaFtGxsb8d5770GSpIRvWj5Qp15BYjab+7SNxfL5+sHdB2YmKS0txfHjx7F8+XLcdNNNGDVqFLKzs2E2m1FeXo4bbrgBGzZswLPPPhv/5N7hw4fxwAMPJLUf06dPxw033AAgdoJevHhx/H+8ZcuW4cMPPwQQu9n8a6+9BgBoaGjA4sWL4/tYsmQJPvnkEwDAm2++iTfffBMA8Mknn2DJkiXx5y1evBgNDbFP7r322mvxG9h/+OGHWLZsGYDYSWHx4sXxyZyXXnoJW7duBQDs3r0bL7zwAoDY//iLFy+On2heeOEF7N69GwCwdetWvPTSS2etKRAIYNOmTXj99deFqSnV47R3715s2LABgUBAmJr6M04tLS3YsGFD/Hki1HTqOAUCAWzcuBE7d+7UdE2ijxNrYk2sSZyaXt/9Ouatm4ffvvBb7HxnJ7ad2IacjhzMPDETAJAlZ6HmcA0OHjuIpXuX4n/+8D+4//f3Y0vDlnPWVOmpBACM6ByF6S3TAQA5oRzMbpyNLDkLADDzxEyUd5UDAM53nY8LW2P3tSv2F+MC1wUwy7Hfva9qvAqD/bErqie0T8CE9gkAgMH+wbiq8ap4TbMbZ2NQoOis45RjBpq3/gVD7RFIkgRn0y6MMTZh1GAHyuWTqHTthkECsqJBjGz9B3JMYRQ7LRjpeR/nW9pQmmtD6EQ9pCPbcMv0CiDg5rGn85oCgQA2bNiAw4cPC1OTiOM00JoCgQD+9re/4cUXXxSmJi2M0+uvv45NmzYhEAgIU1Oqx+kvf/kLNm/ejMbGRmFqSnScDh8+HH//IJNqqt8X+/D2SPfIHr8bdU+A9HWcnnvuOfz9739HIBDQ7Dg1NDRgyZIl2Lx5MwKBQMaMk+jniIHWpAZJ6Z6KyRC//e1v8YMf/ACSJOGmm27CH//4xz5ve/PNN2PVqlWQJAm//vWv8W//9m8p7OnprrnmGqxduxYAcN999+HRRx895zbr1q3D7NmzAQAOhyM+m5ZMP/vZz/DQQw8BAGbMmIHNmzcnvQ0A+I//+A888sgjAACj0YjGxsY+L9t1Jvv378f48eNhtVphMpmwdetWjBkzBh6PB7m5uZAkCW63G1arFWazGX6/H7IsIzs7G5FIBF6vF3l5eQBis6J2ux1ZWVnxGVG73Y5wOAyfz4fc3FwAsVlRh8MBk8mErq4uGAwG2Gw2hEIhBAIB5OTkQFEUdHZ2wul0wmg0wuv1wmQywWq1IhgMIhQKwel0QpZluN1u5OTkwGAwwOPxwGw2w2KxIBAIIBKJwOFwIBqNsibWxJpYE2tiTayJNWVcTa6AC4veWoT1x9dDNsiwRC2QISNsDMMoG2GWzfCb/IAC2CN2+E1+KJICS8QCWYo9b/Z5s3FX9V0oLyrvtabfvLUTMBjx5vGnEJQOI2gKQlIk2CI2+Ew+QIpdoREyhBA1RJEVzYIBBgSNQRhkA6xRK3xZsf6f+rzuqzhCxtDpfcVnV3JI56G29Ie4e8aF5xyno+1+bK1rRJMnDMlkhhIJQ5HDMJjtUBQZStAHyWKHJBkgh3yQDFkoL8rBBaV2lOVaeOyxJtbEmlgTa2JNrKnPNbWGWnHtX6+N/c6jGE773Wj1TatR7izXXE0ijhNr6r2mxsZGjB8/Ht327duHcePGIR0ybpLD4/GgsrIyfonLnXfeiSeeeAJZWVln3CYcDuNHP/pRfHYrNzcXhw4dQn5+fjq6DAC46aabsGrVKgDAD37wgz7NXq1ZswZz584FELs/x4kTJ5Ler3RNcni9XhQXF8evSPn973+PW265ZUD77J7k6JbO/zEygaIoCAaDsFgsaV/jWquYWYzoOYhSnyh1EJGY6trrsGDjAjT7mwe8r2JbMZZctQSj8nvet+2JDfWIyDJeb1iGNtO6xHasxK4iCRvCQIKn0cLILMwun497rh7T521avUHUNXnQ1BlAsyeIQDgaf8yaZUSx04KSXCtGlzhR6LCcZU+kR3zd1weOszqYe+KYWeZm0OhtRO3q3u8/sX7uepQ5yvq8r0ytMVGi1KEHar6Xm3HLVTmdTvzyl7+Mr/W1ZMkSjB49GosWLcLWrVvR3NwMn8+H5uZmbNu2DYsWLcLo0aPxzDPPAAAkScLDDz+c1gkOACgoKIh/ffLkyT5t09TUFP960KBBSe9TOjkcDlx00UXx7w8cOKBib8TQ2dmJxx577LT19+jsmFmM6DmIUp8odRCReOra6zD/jflJmeAAgGZ/M25bfxvqO+p7fVxRgNzo1IT3a4/Y8fVPvw57xJ7wtjnRaUj0o16FDgsuGVGIuZPL8f0ZVVhw+XB8f8bwz/5bhbmTy3HJiEJOcFCv+LqvDxxndTD3xDEzfWQgSo2i1EGpZVK7A735/ve/jw8//BC//e1vIUkSjhw5gv/8z/886zbdkyJ33nkn7rrrrnR08zSjR4+Of3306NE+bXPs2LH412PG9P1TZJmqtLQ0/nVra6uKPRGD0+nEv/7rv8LpdKrdFc1gZjGi5yBKfaLUQURicQVcWLBxAdwhd1L36w65ceeGO7H62tXIs+ad9pgkAValHHZ5JHyGj/q8T7/Jjw2lG+LLUPWVXR4Jq1KGgXwQUJIkWEzG/u+AdIev+/rAcVYHc08cM8vMDOo76rGqbtUZH79/y/2YUjIFs4fNxsj8kefcXybW2B+i1EGplXFXcnR76qmn8Lvf/Q4OhwNAbBLjbP8cDgeefvpp/Pa3v1Wlv2PHjo1/vXfv3vjd7s9m165dvW6vVV1dXfGvs7OzVeyJGIxGI0pKSmA08g/ovmJmMaLnIEp9otRBRGJ5ZPsjSbuC44ua/c1YtH1Rj58bJQkmg4SCyNUJ7U+RFHRaOqFIiV2SURCphckgwcjlDiiN+LqvDxxndTD3xDGzzMpgS8MWzFs3D3NfnYsX61484/P2tOzB0r1Lcf2r12PeunnY0rDlrPvNpBoHQpQ6KLUydpIDiF3RcfToUTz66KOYOXMmbDbbaY/bbDbMnDkTjz32GI4dO4Y777xTpZ4CX/rSl2CxxC5N7+rqwo4dO876/GAwGL+7PQB8+ctfTmn/0mH37t3xr4cMGaJiT8Tg9XqxYsUKeL1etbuiGcwsRvQcRKlPlDqISBxbGrZg3eEE74uRoLWH1572B/n8S4fh9suqMKu6FDXlNSjERWfZ+nSWiAUzTsyAJdL35aEKMR015ZdhVnUpbr+sKqG+Ew0EX/f1geOsDuaeOGaWGRm4Ai7cu+VeLNy0ELuad517g1Psat6FhZsW4r4t98EVcPX6nEyoMRlEqYNSK6MnOQAgLy8P9957L/72t7+hq6sLnZ2daGhoQGdnJ7q6uvC3v/0N99xzT/yO9GpxOBy44oor4t+vWLHirM9fs2YNPB4PgNj9OGpqalLZvZTbuHEjPv300/j3M2fOVK8zgjCZTKisrITJlJGrymUkZhYjeg6i1CdKHUQkjuf2PpeWdpbtWxb/OteWhVxbFoYVZsNiMmKacz5MSl6f9iNLMlqsLZAluU/PNyl5mOa8DRaTEcMKs5Fry+pP94n6ha/7+sBxVgdzTxwzUz+DuvY6zH117oA/YLL28FrMfXVur/c+U7vGZBGlDkotSVESveUencnrr7+Or371qwAAi8WCnTt39noHeZ/PhwsuuAAff/wxAOD+++/HokU9L91Php/97Gd46KGHAAAzZszA5s2b+7RdKBQCAJjN5nM+t6WlBRdffDE++eQTALGlt/bt2weDYWBzaPv378f48ePj3+/bt6/XPImIiIhoYOo76jH31blpa2/NtWtOW0u6xRPEH7YehaIoeOfYPnxkehyy5EtaewbFjpGRe/GloeMhSRK+fXEFbxBOREREqqhrr8P8N+Yn9R5oOeYcLK9djlH5o5K2T6JEqflebsZfyaEl11xzDS677DIAseWovvrVr+KDDz447TltbW2YM2dOfIJj0KBBuO+++3rd35EjRyBJUvzfua4OSabjx49j+PDhePzxx894I3VFUfD6669j6tSp8QkOSZLw61//esATHPT5kmbBYFDtrmgGM4sRPQdR6hOlDiLStkZvIxq9jWe9yWUqrKpbhUZvY/z7IqcFZfk2SJKEYbkjUBm6+5xXdJhkE0Z0joBJPvun+kxKHipDd6MqbwQkSUJZvo0THJR2fN3XB46zOph74piZehm4Ai4s2LggqRMcAOAOuXHnhjtPW7pKlHEWpQ5KLV7nk2R//OMfMW3aNJw4cQJHjhzBxIkTMWPGDAwfPhwtLS3YuHEjfL7Yp9JMJhNWrVqVtKW2Zs+ejePHj5/2s6ampvjXO3bswMSJE3tst3bt2l7voWsNmFgAAN9HSURBVNHQ0ID77rsP9913HyorK1FdXY3CwkJkZWWhpaUF27Zt69He448/jtmzZyelHr0LhULYs2cPxo0bF7/fC50dM4sRPQdR6hOlDiLSttrVtaq0u7JuJVbWrcTeeXvjP5tSkY/GDj9Kc61o66qEKfgg2qyr0Iatve7DJJtQ6a1EQ3YDIoZIr88pwHQUBG9EriUPJTlWAMDUykHJL4joHPi6rw8cZ3Uw98QxM/UyeGT7I2j2N6dk383+ZizavgiP1TwGQJxxFqUOSi0uV5UCBw8exDe+8Q3s2bPnjM8pKirC8uXLcc0115zxOUeOHMGwYcPi3y9fvhy33nrrGZ9fWVl5xqsuzubw4cOorKw8a9vnUlZWht/97ne49tprE27/TLhcFREREVFqVT9frWr7p05yAMC6vSdwsMkDfyiCfcfdiMoKItb9cGW9iebwgT7vtzhrLPLDV8MYOB9Gg4TxQ3JgM5swpsSJWdWlyS6DiIiI6Jy2NGzBwk0LU97O01c8jZpybd/7l7RJzfdyM/pKDp/Ph9///vfYuHEj9uzZg9bWVng8HvRlXkaSJEQivX+iK9XGjBmDbdu2YeXKlfjTn/6E/fv34+TJk8jLy0NVVRWuv/563HbbbSgsLFSlf31RUVGBvXv34t1338U777yD/fv3o7W1FW1tbfD5fMjJyUFpaSmmTp2KWbNm4brrrkNWFm/emEyyLMPtdiMnJ4fLf/URM4sRPQdR6hOlDiKiZJo5uhgNHX4AwJgSJw42eYDAOAwOjceYvDa4pO1oDX+M1vAhhOUu2CI2+E1+ZBmyUZhVhcKsEchTpqHDVYCorMBokDCmxAmb2QSHxYSZo4tVrpD0iq/7+sBxVgdzTxwzUyeD5/Y+l5Z2lu1bhpryGmHGWZQ6KLUy9sj485//jPPOOw8LFizAmjVr8Mknn6CzsxOyLENRlD79U5PZbMZ3vvMdrFu3DseOHUMwGMTJkyfx7rvv4p577unTBEdlZeVp9ZztKg4gdvVFX7M59d8Xr+IAYpNE48ePx3e/+10sX74c27dvx6FDh9DZ2YlwOIy2tjbs27cPy5cvx4033sgJjhRwu91YvHgx3O7krtMoMmYWI3oOotQnSh1ERMlkMxsxZ1IZrFlGOK1ZGD8kB9kWE6Kygtb2QZBcszFWuhuznP+Duc7fYXbjbMx1/g6znP+DsdLdkFyz0do+CFFZQbbFhPFDcuC0ZsGaFduvzWxUu0TSKb7u6wPHWR3MPXHMLP0Z1HfUY1fzrrS0tfPkTnzU8ZEw4yxKHZRaGblc1QsvvIDvfOc7AHDaZIUkST1+dqafS5KEaDSa6q5SCul9uSrOVCeOmcWInoMo9YlSBxFpW6YtV9WtxRPEy7sb4Q1GoCgKmtwBnHAFEIrKnz9JkZEVDSJstADS5+dRs9GA0jwrSnKskCQJDosJcyaVocjJNZxJPXzd1weOszqYe+KYWfoyaPQ2AgCW71uOF+teTFk7X3Tz6JvxwLQHhBhnHq/aoeZ7uRl3ZLS1teH73/8+FEWByWTCY489hpMnT2LhwoXxSYzug3vv3r14+umnMWHCBCiKAofDgT/+8Y+QZZkTHKR5BoMBeXl5PIEngJnFiJ6DKPWJUgcRUSoUOS24ZXoFxpQ4IUkSSnNtmDQ0D6MGO1DstCDbYoTBYEDYZIPBYEC2xYhipwWjBjswaWgeSnNtkKTYUlW3TK/gBAepjq/7+sBxVgdzTxwzS18GtatrUbu6Nq0THACwsm6lMOMsSh2UWhl3dDz77LPo6uqCJEl45JFHcM8996CoqKjH8xwOB8aNG4c777wTu3btwqJFi+D1evGtb30LS5cuVaHnRMnl8XjwzDPPwOPxqN0VzWBmMaLnIEp9otRBRNq2fu56rJ+7HhOLJqa13UnFk7B+7vqzPsdmNmJWdSm+PnEIyvJjkxaDsi2oKnKguiwPU8psGO/ejillNlSX5aGqyIFB2RZIkoSyfBvmTCrDrOpSLlFFGYGv+/rAcVYHc08cM9NHBm63W4ga9TBWNHAZd+PxTZs2AQBycnLwgx/8oE/bSJKE++67D11dXfjFL36BH/7wh7j88ssxfPjwVHaVKKXMZjMmTpwIs9msdlc0g5nFiJ6DKPWJUgcRaVuZowwAMKVkCva07Elbu1MGT4m3fS5VRQ5UFTnQ6g2irsmDps4Amj1B+CNZyCoeBskQu+dGsdOCklwrRpc4UejglRuUWfi6rw8cZ3Uw98QxM31kEDFEhKhRD2NFA5dx9+QYMmQITp48ia985StYt25d/Od33XUXnn76aUiShFAoBKOx5yeyQqEQSktL4XK5cP/99+OXv/xlOrtOSab3e3IQERERpcu2hv24Y9PNaWtv2ZUrMbWs/7/XKYqCUFSGLAMGQ+w+HN336SMiIiLKFGre/2zLTVuQb81XrX3SH96T4xTt7e0AgPLy8tN+npWVFf/a7/f3uq3ZbMbMmTOhKMppEyREWhQIBLB582YEAgG1u6IZzCxG9BxEqU+UOohI2zr94di/zgIUZY1NS5vFWWPR4SpApz/c731IkgQlEsa2d/4BJRLmBAdlPL7u6wPHWR3MPXHMTB8ZyGFZiBr1MFY0cBk3ydF9hcapkxpAbPmqbsePHz/j9gUFBQCAhoaGFPSOKH0ikQiOHDmCSCSidlc0g5nFiJ6DKPWJUgcRaduytw9j2duH8dLOBli7rkhLm5auK/HSzgYse/vwgPbD8yhpCY9XfeA4q4O5J46Z6SMDM8xC1KiHsaKBy7jlqioqKtDQ0IBvfOMb+MMf/hD/+dKlS/G9730PkiRh1apVmDt3bq/bX3311diwYQMsFssZr/ggbeByVURERERnlowlm57YUA9FUbDzaAcisoKP8SxC1p0p6jFgDkzGCPwrTAYJkyvy8eOvjE5ZW0RERERqa/Q2AgDu33J/Wu9/Nql4Ev5v1v+lrT0iQN33cjPuxuNjxozBp59+ikOHDp3284kTJ8a/XrNmTa+THCdOnMA777wDACgqKkppP4lSLRqNoqWlBUVFRb3eg4Z6YmYxoucgSn2i1EFE6dXiCaL+5Oc33w6Eo/HH+nvz7aiiICLHPvdkcc1FuOhjKMbOpPddiubC4poL5AERWUF0gJ+14nmUtITHqz5wnNXB3BPHzNKXQZmjDAAwpWRKWic5pgyeIsw4i1IHpVbGLVc1ffp0ALGZn2j08z/aJk+ejPLyciiKghdffBEvvPDCadt5PB7ceuut6OrqgiRJuPTSS9Pab6Jk83g8ePbZZ+HxeNTuimYwsxjRcxClPlHqIKL0ONTixaodn+IPW49i++F2HGv3wR+KICT7EIi6EZJj3x9r92H74Xb8/t2jWLXjUxxu7Trnvk+da5AUO+zt/wqDYk9q/w2f7Vc6Zb8DvZ6c51HSEh6v+sBxVgdzTxwzS38Gs4bNSks7p7YnyjiLUgelVsYtV/X222+jpqYGkiRh8+bNuOyyy+KP/eY3v8Hdd98dvwx/3LhxqK6uhs/nw1tvvYXOzk4oigJJkvCPf/wDX/rSl9Qqg5JA78tVKYqCYDAIi8XCm2n2ETOLET0HUeoTpQ4iSi1/KIrNdc042BT7o64tdAQHPG+hOfQxPPIRRCVf/LlGxQ6noRLF5hE43zkTg8wVAIAxJU7MHF0Mm7nnJ9+e2FCPiCxjx5EOAEBjhx8KFOTntqHR9v8QkVwDrsGk5KHMfxc6OgsgQUJZvg0AMKUyH/dcPabf++V5lLSEx6s+cJzVwdwTx8zUyWDeunnY1bwr5e1MHjwZK2pXCDPOotShB1yu6hSXXHIJhgwZguPHj+P5558/bZLjhz/8Id544w1s2LABkiRh//792L9/f/zx7vman/zkJ5zgIM2TJAlWq1XtbmgKM4sRPQdR6hOlDiJKnRZPEC/vboQ3GMEx/w7s7FyDDrnu8yd84W+8qOSDS/kQruCHqA++inzDaEzOnQs0TUZDhx9zJpWhyNlzCSujJMFkkBCRFZiMEsJRBYbIEFQFH0RT1kq4jdv7XUNOdBpKwjcjHLEBCMJkjHXaZJBgHOAfqTyPkpbweNUHjrM6mHvimJk6GdxefTt2bUr9JMf88fMBiDPOotRBqZVxy1VJkoQjR47A7/djyZIlpz1mNBrx2muv4f7770d2djYURTntX1lZGZYtW4af//znKvWeKHncbjeefPJJuN1utbuiGcwsRvQcRKlPlDqIKDVaPEG8tLMBrf4ObGr7DTZ2LDp9gqMPOuQ6bOx4BJvafoNWfwde2tmAFk/wtOfMv3QYbr+sCrOqSzFpaB7GlDhRkmvFeYNsmDq0HF8rvRszc+9HcdbYhNouzhqLmbn342uld2Pq0HKcN8iGklwrxpQ4MWloHmZVl+L2y6oS2ucX8TxKWsLjVR84zupg7oljZupkUFNek/Jlq2YPm42a8hoA4oyzKHVQamXclRwAYDKZYDL13jWz2YxHHnkEP/vZz7B9+3YcP34cBoMBVVVVmDRpEi9bImFYrVbMnDmTs9UJYGYxoucgSn2i1EFEyecPRfHy7kYc932C9a2/QEDpGND+jgb/iZMnP0Rt4X/h5d0SbpleEV+6KteWBQAYVpiNFk8QRU4LOnxhdPojqDIaYJAkVJmmoip7KjrCx/CJ/x9oDX2M1vAhhBRvvA2z5EBhVhUKzSMw3HYZ8rOGxh+TFQWd/ghMBgOKnBZYTEYMK8yOt91fPI+SlvB41QeOszqYe+KYmXoZ/GTaT7CzaSea/c1J33exrRgPTHsg/r0o4yxKHZRaGXdPDqJuer8nBxEREenTur0n8M6ne7G29UGElHPfOLyvzFI2Zhf+HF86bzxmVZee9liLJ4g/bD0KRVGw+5gLoaiMqqJsFDt7/2NSURRElACiShhGKQsmyXrGDxs1ewI41NIFs9GASUPzIEkSvn1xBQodPZfOIiIiIhJdfUc9blt/G9yh5F2ZkGPOwfLa5RiVPypp+yRKlJrv5WbcclU//vGP8eMf/xh33303wuGw2t0hUo3f78f69evh9/vV7opmMLMY0XMQpT5R6iCi5DrU4sWe48fxZtsvkzrBAQAhpQtvtv0Ce44fx6EW72mPFTktKMu3QZIklOTGJjaOtfkQisi97kuSJGQZbLAac5BlsJ1xgiMUkXG0LXZz9NK82ERIWb4tKRMcPI+SlvB41QeOszqYe+KYmboZjMofheW1y1FsK07K/optxb1OcIgyzqLUQamVcZMcTz75JBYvXozt27cjK2tgl7ATaZksy3C5XJDl3t9coJ6YWYzoOYhSnyh1EFFy7Tjaga2dS+GT21Oyf5/cjq2dz2HH0Z5LYE2pyAcAlOZakW0xISIr+KjZg6jcvwu/o6dsn20xoSQnNnkytXJQ/ws4Bc+jpCU8XvWB46wO5p44ZqZ+BqPyR2H1tasxe9jsAe1n9rDZWH3t6l6v4FC7xmQRpQ5KrYxbriovLw8ejwe33XYbli5dqnZ3SEVcroqIiIj0pMUTxKLNa7Ch/ZGUt3XVoJ/gJ5df3+OKinV7T+Bgkwf+UAT7jrsRlRU4rSaMLHbCbOr756NCERkfNXvgCURgNEgYPyQHNrMJY0qcPZbKIiIiItKzLQ1bsGzfMuw8ubPP20wePBnzx8+P32ScKBNwuapTlJbG/ujhUlWkd5FIBEeOHEEkElG7K5rBzGJEz0GU+kSpg4gGrtMfRqc/jN3HOrDH85e0tPm+5y/Y1cvVHDNHF8NhMcUnJIwGCZ5ABO83uNDsCUA+x+ejZEVBsyeA9xtc8QmOMSVO2MwmOCwmzBydnGUZAJ5HSVt4vOoDx1kdzD1xzCyzMqgpr8GK2hVYc+0a3Dz65jM+b1LxJHy3+rtYc+0arKhdcc4JjkyqcSBEqYNSK+MmOS699FIoioL3339f7a4Qqcrr9eL555+H1+s995MJADPrJnoOotQnSh1ENHDL3j6MZW8fxvM73kVL+EBa2mwOH8D/7dja4+c2sxFzJpXBmmWE05qF8UNykG0xISorONTShd3HXDja1oX2rhAC4ShCERmBcBTtXSEcbYs9fqilK75E1fghOXBas2DNiu3XZjYmrQaeR0lLeLzqA8dZHcw9ccwsMzMYmT8St46/9YyPL7psEX5w4Q8wMn9kn/aXiTX2hyh1UGpl3HJV//znP3HZZZdBkiT84x//wJe+9CW1u0Qq4XJVRERElMkURUFXuAthOYwsQxays7LPeAPus3l43dtQFAV/O7EG7aaNKehp7wZFrsLm+f/da59bPEG8vLsR3mAEiqKgyR3ACVcAoei510I2Gw0ozbOiJCd2o3GHxYQ5k8pQ5Bz4zcaJiIiIRNbobUTt6tpeH1s/dz3KHGVp7hFR36n5Xq4pLa0k4JJLLsH3vvc9/M///A++9a1vYePGjRg+fLja3SIiIiIiQn1HPdYdXoe9rXtxoO0A3CF3/LEccw7GFoxFdWE1Zg+b3edP2f25+U4oshGKnJvWy6xb5Z0IRWVYTD2vrihyWnDL9ApsrmvGwSYPSnNtKMmxosMXgssXRlcoAn8oClkBDFLsCpBsswl59izk283xiZMxJU7MHF2c1Cs4iIiIiIiITpVxy1UBwP/7f/8PCxYswNGjRzFx4kT85Cc/wfvvvw9ZPvcnx4hE0dnZiUcffRSdnZ1qd0UzmFmM6DmIUp8odRDpxZaGLZi3bh7mvjoXS/cuxbYT206b4AAAd8iNbSe2Yenepbj+1esxb908bGnY0scWJEgm97mflkSSyY1o9MwXddvMRsyqLsXXJw5BWb4NkiRhULYFVUUOVJflYdqwAkyvKsC0YQWoLstDVZEDg7ItkCQJZfk2zJlUhlnVpSmb4OB5lLSEx6s+cJzVwdwTx8z0kYEoNYpSB6VWxl3JUVVVFf/aaDSiq6sLjz32GB577DFkZWUhPz8fNpvtnPuRJAmffPJJKrtKlFJ2ux1z5syB3W5XuyuawcxiRM9BlPpEqYNIdK6AC49sfwTrDq9LeNtdzbuwa9MuzB42Gw9MewB51ryzPFuGZEjvB3okQwQB2Qc7cs76vKoiB6qKHGj1BlHX5EFTZwDNniAC4Wj8OdYsI4qdFpTkWjG6xIlCR+qXpuJ5lLSEx6s+cJzVwdwTx8z0kYEoNYpSB6VWxt2Tw2Aw9LoucHc3+7LOsaIokCQJ0Wj0nM+lzMV7chAREZGa6trrsGDjAjT7mwe8r2JbMZZctQSj8kf1eKz6+WooCtCP23kM2Fs3voVBtkEJb6coCkJRGbIMGAyx+3D0534kRERERPQ53pODtEzN93IzcrkqRVF6/DvbY2d6LpGW+Xw+vPzyy/D5fGp3RTOYWYzoOYhSnyh1EImqrr0O89+Yn5QJDgBo9jfjtvW3ob6jvtfH1ZofsJj6d8WFJEmwmIywmY2wmIyqTHDwPEpawuNVHzjO6mDuiWNm+shAlBpFqYNSK+OWqzp8+LDaXSAiIiIiHXMFXFiwcUGPe24MlDvkxp0b7sTqa1f3unSVohggSelbskpRDLCbeNk/ERERERFpW8YtV0XUjctVERERkRru3XJvv+7B0Vezh83GYzWPxb9v9DYCAP797/dhf/v7KWv3i8YXTMSfvvr7tLVHRERERGfH5apIy3S5XNWWLVuwZcsW3hyc6AzC4TAOHjyIcDisdlc0g5nFiJ6DKPWJUgeRaLY0bEnpBAcArD28FlsatsS/L3OUocxRhovLpqa03S+6eEh620s2nkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQaqk2yTFz5kxcfvnlWLx48Vmfd+LECXzwwQf44IMP0tQzoszANQcTx8xiRM9BlPpEqYNINM/tfS4t7Szbt6zHz2YNm5WWttVqL9l4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGppdpyVQaDAZIkYeHChXjqqafO+Ly77roLv/vd7yBJEiKRSBp7SGrjclVERESUTvUd9Zj76ty0tbfm2jUYmT/ytJ/NWzcPu5p3pbztyYMnY0XtipS3Q0RERER9x+WqSMt0uVxVIhRFAW8dQkRERESp0OhtRKO3EavqVqW13VV1q+L34+h2e/XtaWl7/vj5aWmHiIiIiIgo1TQxyUGkRy6XCw899BBcLpfaXdEMZhYjeg6i1CdKHUQiqF1di9rVtXix7sW0truybmWPT+rVlNekfBmp2cNmo6a8JqVtpAPPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKEcDgfmzZsHh8Ohdlc0g5nFiJ6DKPWJUgcRJd9Ppv0ExbbilOy72FaMB6Y9kJJ9pxvPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKFMJhMqKythMpnU7opmMLMY0XMQpT5R6iCi5Muz5mHJVUuQY85J6n5zzDlYctUS5FnzkrpftfA8SlrC41UfOM7qYO6JY2b6yECUGkWpg1KLkxxEGaqrqwsrV65EV1eX2l3RDGYWI3oOotQnSh1ElBqj8kdhee3ypF3RUWwrxvLa5RiVPyop+8sEPI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1OIkB1GGMhgMyMvLg8HA/037ipnFiJ6DKPWJUgcRpc6o/FFYfe1qzB42e0D7mT1sNlZfu1qoCQ6A51HSFh6v+sBxVgdzTxwz00cGotQoSh2UWpKiKIoaDRsMBkiShIULF+Kpp5464/PuuusuPP3005AkCdFoNI09JLXt378f48ePj3+/b98+jBs3TsUeERERkYiqn68GACiyEZIhfb9vdre3d97ecz53S8MWLNu3DDtP7uzz/icPnoz54+cLcZNxIiIiIj1o9DaidnVtr4+tn7seZY6yNPeIqO/UfC+XU2BEGSoUCmHPnj0IhUJqd0UzmFmM6DmIUp8odRCJ4F+Kl+CGot8hWxme1nazleG4oeh3fXpuTXkNVtSuwJpr1+C71d/F9NLpPe7ZkWPOwfTS6fhu9Xex5to1WFG7QugJDp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGqpfseW7du34+GHHz7r493O9rzePPjgg/3uF5HaAoEANm/ejKqqKpjNZrW7ownMLEb0HESpT5Q6iETgNBUjIsuwKcPhQ33a2rUrw2E3FiW0zcj8kRiZPxIAoCgKfBEfQtEQzEYz7CY7JElKRVczEs+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLVUX64qlbi8lbZxuSoiIiJKhyc21CMclfHPY3txyJLYh2oGoir4U1wydDzurR2TtjaJiIiIKHNxuSrSMl0vV6UoSkr+EWmdoigIBAI8nhPAzGJEz0GU+kSpg0gUkgRYlXLY5ZFpac8uj4RVKYOOLrxIOp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGqptlxVTU2Nri6nJ0pUZ2cnFi9ejB/+8IfIy8tTuzuawMxiRM9BlPpEqYNIFEZJgskgoSByNXzmj1LeXkGkFiaDBCN/H+43nkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQaqm2XBXRueh9uapoNIqWlhYUFRXBaDSq3R1NYGYxoucgSn2i1EEkgk5/GADw2vvH0dDhwxvN/41WbEtZe4WYjquLf4zyfDu+dsEQ5NqyUtaWyHgeJS3h8aoPHGd1MPfEMbPMzSCZy1Vlao2JEqUOPdD1clVE1Duj0YiSkhKewBPAzGJEz0GU+kSpg0gEubYs5NqyMKwwGxaTEdOc82FS8lLSlknJwzTnbbCYjBhWmM0JjgHgeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFic5iDKU1+vFihUr4PV61e6KZjCzGNFzEKU+UeogUpOiKPCGvOgIdMAb8g54nd5Rg50AgMGOAgyP/AgGxZ6MbsYZFDuGR36EwY4CAMDoEmdS9683PI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1FLtnhxEdHYmkwmVlZUwmfi/aV8xsxjRcxClPlHqIEq3+o56rDu8Dntb9+JA2wG4Q+74YznmHIwtGIvqwmrMHjYbI/MTu4l4kdOCsnwbGjv8GJY7AuGOu3HM/BQikmvA/TYpeRga+gGqBo2AJEkoy7eh0GEZ8H71jOdR0hIer/rAcVYHc08cM9NHBqLUKEodlFq8JwdlLL3fk4OIiIg+t6VhC57b+xx2Ne/q8zYXFl+I26tvR015TZ+3OdTixSt7jkNRFOw77kZn0IU26yq0YWt/ug0AKMB0FARuRK4lD+OH5ECSJMyZVIZhhdn93icRERERiSeZ9+QgSjfek4OIeggGg9i6dSuCwaDaXdEMZhYjeg6i1CdKHUSp5gq4cO+We7Fw08KEJjgAYFfzLizctBD3bbkProCrT9tUFTkwpsQJSZIwoigbFoMTgwPzMQo/RHHW2ITaL84ai9H4EQYH5sNicGJEUTYkScKYEicnOJKA51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWpzkIMpQoVAIe/bsQSgUUrsrmsHMYkTPQZT6RKmDKJXq2usw99W5WHd43YD2s/bwWsx9dS7qO+r79PyZo4vhsJhgM5swpsQJo0GCKTAOg7t+jBr7o5iQfT2GmCfALDlO284sOTDEPAETsq9Hjf1RDO76MYyB82E0xCY2bGYTHBYTZo4uHlA9FMPzKGkJj1d94Dirg7knjpnpIwNRahSlDkotLldFGYvLVREREelXXXsd5r8x/7R7bgxUjjkHy2uXY1T+qHM+t8UTxEs7GxAIR+EPRfBxSxe6ghEAQJbRgEKHGQ6LCeasMBQpAkkxIRTOgjcYQas3hHBUBgBkW0wYUZQNm9kEa5YRN0wuR5GT9+IgIiIiop64XBVpGZerIqIeZFmGy+WCLMtqd0UzmFmM6DmIUp8odRClgivgwoKNC5I6wQEA7pAbd264s09LVxU5Lbhhcnn8io7xQ3JQUWCH2WhAOCrjRGcAHzV7sb8xiA8botjfGMRHzV6c6AwgHJVhNhpQUWDH+CE58Ss4OMGRXDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiJAdRhnK73Vi8eDHc7uS+wSMyZhYjeg6i1CdKHUSp8Mj2R9Dsb07Jvpv9zVi0fVGfnlvktOCW6RXxe3SU5towaWgeRg12oNhpQbbFCIMUe65BArItRhQ7LRg12IFJQ/NQmmuL34PjlukVnOBIMp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGpxuSrKWHpfrkqWZbjdbuTk5MBg4HxkXzCzGNFzEKU+UeogSrYtDVuwcNPClLfz9BVPo6a8ps/PP9TixY6jHWjs8Pd5m7J8G6ZWDuJNxlOE51HSEh6v+sBxVgdzTxwzy9wMkrlcVabWmChR6tADNd/LNaWlFSJKmMFgQF5entrd0BRmFiN6DqLUJ0odRMn23N7n0tLOsn3LEprkqCpyoKrIgVZvEHVNHjR1BtDsCSIQjsafY82KXclRkmvF6BInCh28ciOVeB4lLeHxqg8cZ3Uw98QxM31kIEqNotRBqcXpL6IM5fF48Mwzz8Dj8ajdFc1gZjGi5yBKfaLUQZRM9R312NW8Ky1t7Ty5Ex91fJTwdoUOCy4ZUYi5k8vx/RlVWHD5cHx/xvDP/luFuZPLccmIQk5wpAHPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKHMZjMmTpwIs9msdlc0g5nFiJ6DKPWJUgdRMjR6G9HobcSqulVpbXdV3So0ehv7vb0kSbCYjLCZjbCYjJAkKYm9o3PheZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFu/JQRlL7/fkICIi0ovq56tVbX/vvL2qtk9EREREBCT3nhxE6abme7m8koMoQwUCAWzevBmBQEDtrmgGM4sRPQdR6hOlDqJkSvdHb/hRH23jeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFic5iDJUJBLBkSNHEIlE1O6KZjCzGNFzEKU+UeogSqZ0r/bE1aW0jedR0hIer/rAcVYHc08cM9NHBqLUKEodlFpcrooyFperIiIi0gcuV0VERERExOWqSNu4XBUR9RCNRtHU1IRoNKp2VzSDmcWInoMo9YlSB1GyqPWxG37cR7t4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGpxUkOogzl8Xjw7LPPwuPxqN0VzWBmMaLnIEp9otRBlDSKAYpsSm+TsglQ+OuwVvE8SlrC41UfOM7qYO6JY2b6yECUGkWpg1KLy1VRxtL7clWKoiAYDMJisUDiouF9wsxiRM9BlPpEqYMoGR5e9zYiUQXrm5+A3/hR2tq1RUehtvhHePirl6WtTUoenkdJS3i86gPHWR3MPXHMLHMzSOZyVZlaY6JEqUMP1HwvN70flyOiPpMkCVarVe1uaAozixE9B1HqE6UOomRwmooRMciwKyPgR/omObKV4XBmFaWtPUounkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQavH6fKIM5Xa78eSTT8LtdqvdFc1gZjGi5yBKfaLUQZQsRknCIGVaWtscpFwEIz8Nplk8j5KW8HjVB46zOph74piZPjIQpUZR6qDU4pUcRBnKarVi5syZnK1OADOLET0HUeoTpQ6iZJh/6TAAQPH7Viw7NBYt4QMpb7M4ayyuGz0FX7tgSMrbotTgeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFu/JQRlL7/fkICIi0pt/ftyK1Qc2YEP7Iylv66pBP8HcsVfhkhGFKW+LiIiIiKgvknlPDqJ0U/O9XC5XRZSh/H4/1q9fD7/fr3ZXNIOZxYiegyj1iVIHkaIoCEai8IeiCEaiGMjnZ0YNduI862RUWS9NYg97qrJeivOskzG6xJnSdii1eB4lLeHxqg8cZ3Uw98QxM31kIEqNotRBqcXlqogylCzLcLlckGVZ7a5oBjOLET0HUeoTpQ7SpxZPEPUnPWjqDKDZE0QgHI0/Zs0yothpQUmuFaNLnCh0WPq83yKnBWX5NkyX70Djyf0IKh1J77tFysf0vDtQlm9LqG+UeXgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanF5aooY3G5KiIiosxyqMWLHUc70Njx+aeoFEVBWPFDViIwSCZkSTZIp9zMuyzfhqmVgzCsMLvPbbyy5zjaQkfw15YHEZW6ktZ/o5KNrxY9jAJzJeZMKutzn4iIiIiI0oHLVZGWqfleLq/kIMpQkUgEDQ0NKC8vh8nE/1X7gpnFiJ6DKPWJUgfpgz8Uxea6Zhxs8gAA2kJHcMDzFppDH8MjH0FU8sWfa1TscBoqUWwegfOdM4GOCjR2NGJMiRMzRxfDZjaeta2qIgfGlDhxsKkSX8n/GTZ0/BIRyTXgGkxKHq7K/w8UmCsxpsTJCQ4B8DxKWsLjVR84zupg7oljZvrIQJQaRamDUov35CDKUF6vF88//zy8Xq/aXdEMZhYjeg6i1CdKHSS+Fk8Qf9h6FAebPDjm34G/NP0Er7T+O+qDr8KlfHjaBAcARCUfXMqHqA++ipdbf4y/NP0Ex/w7cbDJgz9sPYoWT/Ccbc4cXQyHxYRSexVm5/8KudFpA6ohNzoNs/N/hVJ7FRwWE2aOLh7Q/igz8DxKWsLjVR84zupg7oljZvrIQJQaRamDUovLVVHG4nJVRERE6mrxBPHSzga4gi78s+N/cTT4z37vq8JyCS7J/y7yLHm4YXI5ipxnvx9Gd9uBcBT+UAQ7Wt5Bo7IWPsNHfW7TLo9EmXQNphRdDJvZBGuWsU9tExERERGpgctVkZZxuSoiIiIiyij+UBQv727Ecd8nWN/6CwQGeBPwo8F/4uTJD1Fb+F94ebeEW6ZXnHXpqiKnBTdMLsfLuxsBAJcOuQxN7qk45PoEbdJW+KUj8BuOQj7lShKDYodNroBNqUSBMh1VecNRkmOFJElwWEyYM6mMExxERERERESC4XJVRBmqs7MTjz76KDo7O9XuimYwsxjRcxClPlHqIHFtrmvGMe/HWNv64IAnOLoFlA6sbf0vHPN+gs11zed8fpHTglumV2BMiROSJKE014YvDR2HSwu+janW+3EhnsLY4FMYFfhvjA0+hQvxFKZa78elBd/Gl4aOQ2lu7CboY0qcuGV6BSc4BMPzKGkJj1d94Dirg7knjpnpIwNRahSlDkotXslBlKHsdjvmzJkDu92udlc0g5nFiJ6DKPWJUgeJ6VCLF3uOH8ebbb9ESOlK6r5DShfebPsF7MbfYHSJE1VFjrM+32Y2YlZ1KUaXOLHjaAcaO/wYlG3BoOzuCYv8M25blm/D1MpBvMm4oHgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanFSQ6iDJWVlYUxY8ao3Q1NYWYxoucgSn2i1EFi2nG0A1s7l8Int6dk/z65HVs7n8Pwow+cc5KjW1WRA1VFDrR6g6hr8qCpM4BmTxCBcDT+HGuWEcVOC0pyrRhd4kShg1duiIznUdISHq/6wHFWB3NPHDPTRwai1ChKHZRaXK6KKEP5fD68/PLL8Pl8534yAWBm3UTPQZT6RKmDxNPiCWLribdxyP92Sts55P8Htp54G63eYELbFTosuGREIeZOLsf3Z1RhweXD8f0Zwz/7bxXmTi7HJSMKOcGhAzyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiJAcRERGRznX6w/F/u491YI/nL2lp933PX7DraP/v9yFJEiwmI2xmIywmIyRJSmLviIiIiIiISAskRVEUtTtB1Jv9+/dj/Pjx8e/37duHcePGqdgjIiIiMT2xoT7+9Y7j+/EBHkxb2xfg5/jDvDlpa4+IiIiIKFM1ehtRu7q218fWz12PMkdZmntE1HdqvpfLKzmIMlQ4HMbBgwcRDofV7opmMLMY0XMQpT5R6iAxeCLN8ESa4Q6fRENkS1rb/jSyBfzMDfUHz6OkJTxe9YHjrA7mnjhmpo8MRKlRlDootTjJQZShuOZg4phZjOg5iFKfKHWQGP7cfGfs38m70CrvSmvbrfJOhKJyWtskMfA8SlrC41UfOM7qYO6JY2aZm0GZowx75+3t9V+iV3Fkao2JEqUOSi0uV0UZi8tVERERpUf189UAAEU2AQAkQyRtbSuyCdu/+R7sFlPa2iQiIiIiIqLk4nJVRERERJQB5LROcACxCZWAzE9lERERERERUf9wkoMoQ7lcLjz00ENwuVxqd0UzmFmM6DmIUp8odZBgJLWWjUrvxAqJgedR0hIer/rAcVYHc08cM9NHBqLUKEodlFpcrooylt6Xq4pEImhoaEB5eTlMJi7h0RfMLEb0HESpT5Q6SAzdy1WpZes3tyI7K1vVPpD28DxKWsLjVR84zupg7oljZvrIQJQaRalDD9R8L5eTHJSx9D7JQURElC6nTnIoigFSGq/oUBQD9s7bA0mS0tYmERERERERJRfvyUFEPXR1dWHlypXo6upSuyuawcxiRM9BlPpEqYPEsH7u+vi/8QXpvaqjunACJzioX3geJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanFa3yIMpTBYEBeXh4MBs5F9hUzixE9B1HqE6UOEkOZoyz+9cVlU7G//f20tX3xkKlpa4vEwvMoaQmPV33gOKuDuSeOmekjA1FqFKUOSi0uV0UZi8tVERERpV99Rz3mvjo3be2tuXYNRuaPTFt7RERERERElHxcroqIegiFQtizZw9CoZDaXdEMZhYjeg6i1CdKHaQ+WZbR5u/ECU8r2vydkOWB3U9jVP4oXFh8YZJ6d3aTB0/mBAf1G8+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLU4yUGUoQKBADZv3oxAIKB2VzSDmcWInoMo9YlSB6ljW8N+3LNpEa596duY9sIlmLnqUnxlzeWYuepSTHvhElz70rdxz6ZFeK9xf7/2f3v17Unuce/mj5+flnZITDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiclWUsbhcFRER0elW7X8Dz3+4HMd8fZ+8GGofh1vH3Y5/Of+qhNq6d8u9WHd4XaJd7LPZw2bjsZrHUrZ/IiIiIiIiSh8uV0VEPSiKgkAgAM5D9h0zixE9B1HqE6UOSo8TnjZ8+9Uf4Oc77k5oggMAjvn24+H3foxvv/oDnPC09Xm7n0z7CYptxYl2tU+KbcV4YNoDKdk36QfPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKE6Ozvx2GOPobOzU+2uaAYzixE9B1HqE6UOSr2tDftw3SvXY0/H3we0nz0df8d1r1yPbQ19myTJs+ZhyVVLkGPOGVC7X5RjzsGSq5Ygz5qX1P2S/vA8SlrC41UfOM7qYO6JY2b6yECUGkWpg1KLy1VRxtL7clXRaBQtLS0oKiqC0WhUuzuawMxiRM9BlPpEqYNSa2vDPvx/f/8ugrI3afu0GBx4+vKluKi8b6+p9R31uHPDnWj2Nw+47WJbMZZctQSj8kcNeF9EPI+SlvB41QeOszqYe+KYmT4yEKVGUerQAzXfy+UkB2UsvU9yEBGRvp3wtOG6V65HV7Q96fvONg7CX76+BqXOgj493xVwYdH2RVh7eG2/25w9bDYemPYAr+AgIiIiIiISEO/JQUQ9eL1erFixAl5v8j69KzpmFiN6DqLUJ0odlDr3/v2hlExwAEBXtB33/v2hPj8/z5qHx2oew9NXPI3Jgycn1NbkwZPx9BVP47GaxzjBQUnF8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLZPaHSCi3plMJlRWVsJk4v+mfcXMYkTPQZT6RKmDUmPV/jcGfA+Oc9nT8Xes2v8Gbhx3dZ+3qSmvQU15DT7q+AjrDq/D3ta9+LDtQ7hD7vhzcsw5OL/gfFQXVmPWsFkYmT8yFd0n4nmUNIXHqz5wnNXB3BPHzPSRgSg1ilIHpRaXq6KMxeWqiIhIr67588045uvbDcIHYqh9PF7/lz8NaB+KosAX8SEUDcFsNMNuskOSpCT1kIiIiIiIiLSAy1URUQ/BYBBbt25FMBhUuyuawcxiRM9BlPpEqYOSb1vD/rRMcADAMd8+vNc4sLYkSUJ2VjbyrfnIzsrmBAelDc+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLU4yUGUoUKhEPbs2YNQKKR2VzSDmcWInoMo9YlSByXPwdajONh6FMveH9iVFYla+v7KtLZHlCw8j5KW8HjVB46zOph74piZPjIQpUZR6qDU4nJVlLG4XBUREelJ9fPVAAA57IQhy5O2duWwE/vveCdt7REREREREZF4uFwVEfUgyzJcLhdkWVa7K5rBzGJEz0GU+kSpg5JLUQDJ6E9rm5LRz+OQNInnUdISHq/6wHFWB3NPHDPTRwai1ChKHZRanOQgylButxuLFy+G2+1WuyuawcxiRM9BlPpEqYOSTDFAMkTS2qRkiMAV9Ka1TaJk4HmUtITHqz5wnNXB3BPHzPSRgSg1ilIHpRaXq6KMpfflqmRZhtvtRk5ODgwGzkf2BTOLET0HUeoTpQ5Knurnq6HIprRPcgDAm9f/HaXOwrS3SzQQPI+SlvB41QeOszqYe+KYmT4yEKVGUerQAzXfyzWlpRUiSpjBYEBeXp7a3dAUZhYjeg6i1CdKHZRs6lyCbTGZVWmXaCB4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGpxekvogzl8XjwzDPPwONJ381ntY6ZxYiegyj1iVIHJZkkQ5HT+xkURTYhz+JIa5tEycDzKGkJj1d94Dirg7knjpnpIwNRahSlDkotTnIQZSiz2YyJEyfCbOana/uKmcWInoMo9YlSByXPn6/5K1766l9Rbh+d1nbL7aN52TdpEs+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLV4Tw7KWHq/JwcREenTPZsWYX3DH9PWXm35t/CrK+5PW3tEREREREQkHjXfy+XH9ogyVCAQwObNmxEIBNTuimYwsxjRcxClPlHqoOS7YfS1aW3vxjFfS2t7RMnC8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLU5yEGWoSCSCI0eOIBKJqN0VzWBmMaLnIEp9otRBgKIo8Ia86Ah0wBvyYqAXyV5UPg5D7en5tMtQ+3hMLeNVkqRNPI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1OJyVZSxuFwVERFlqvqOeqw7vA57W/fiQNsBuEPu+GM55hyMLRiL6sJqzB42GyPzRya8/1X738DPd9ydzC736sGpv8G/nH9VytshIiIiIiIisXG5KiLqIRqNoqmpCdFoVO2uaAYzixE9B1HqE6UOvdnSsAXz1s3D3FfnYunepdh2YttpExwA4A65se3ENizduxTXv3o95q2bhy0NWxJq58ZxV2Ni/uXJ7HoPE/Mv5wQHaRrPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKE8Hg+effZZeDwetbuiGcwsRvQcRKlPlDr0whVw4d4t92LhpoXY1bwroW13Ne/Cwk0Lcd+W++AKuPq83eOX/xTZxkEJ9rRvso2D8PjlP03JvonShedR0hIer/rAcVYHc08cM9NHBqLUKEodlFpcrooylt6Xq1IUBcFgEBaLBZIkqd0dTWBmMaLnIEp9otShB3XtdViwcQGa/c0D3lexrRhLrlqCUfmj+vT8bQ37sfDvdyAoewfcdjeLwYGnL1+Ki8r185pKYuJ5lLSEx6s+cJzVwdwTx8z0kYEoNYpShx5wuSoi6kGSJFitVp7AE8DMYkTPQZT6RKlDdHXtdZj/xvykTHAAQLO/Gbetvw31HfV9ev5F5ePw9OVLk3ZFR7ZxECc4SBg8j5KW8HjVB46zOph74piZPjIQpUZR6qDU4iQHUYZyu9148skn4Xa7z/1kAsDMuomegyj1iVKHyFwBFxZsXNDjnhsD5Q65ceeGO/u8dNVF5ePwl6+vGfA9OibmX46/fH0NJzhIGDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiJAdRhrJarZg5cyasVqvaXdEMZhYjeg6i1CdKHSJ7ZPsjSbuC44ua/c1YtH1Rn59f6izA7699Cv815dcYah9/7g1OMdQ+Hg9O/Q1+f+1TKHUWJNpVoozF8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLd6TgzKW3u/JQURE6tnSsAULNy1MeTtPX/E0asprEt7uvcb9WHXwNdR3fIhG/0en3bPDYnCgzDYSo/LPx41jvoapZXztJCIiIiIiotTiPTmIqAe/34/169fD7/er3RXNYGYxoucgSn2i1CGq5/Y+l5Z2lu1b1q/tppaNw6+uuB+v3PB/2P6tf+KtG/+JN6//O9668Z/Y/q1/4pUb/g+/uuJ+TnCQ0HgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQallUrsDRNQ7WZbhcrkgy7LaXdEMZhYjeg6i1CdKHSKq76jHruZdaWlr58md+KjjI4zMH9nvfRgMBgyy5SSxV0TawPMoaQmPV33gOKuDuSeOmekjA1FqFKUOSi0uV0UZi8tVERFROjV6GwEAy/ctx4t1L6at3ZtH34xbx9+KMkdZ2tokIiIiIiIiSiYuV0VEPUQiERw5cgSRSETtrmgGM4sRPQdR6hOlDpHUrq5F7eratE5wAMDKupWoXV2b1jaJRMDzKGkJj1d94Dirg7knjpnpIwNRahSlDkotTnIQZSiv14vnn38eXq/33E8mAMysm+g5iFKfKHUQEamF51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuijIWl6siIqJ0qn6+WtX2987bq2r7RERERERERP3F5aqIiIiIiIiIiIiIiIgSxEkOogzV2dmJRx99FJ2dnWp3RTOYWYzoOYhSnyh1EBGphedR0hIer/rAcVYHc08cM9NHBqLUKEodlFqc5CDKUHa7HXPmzIHdble7K5rBzGJEz0GU+kSpQ0SKbBS6PSJR8DxKWsLjVR84zupg7oljZvrIQJQaRamDUov35KCMxXtyEBFROj287m0oioK1TU/CZ6xPW7v26CjMLvkRfjr7srS1SURERERERJRMvCcHEfXg8/nw8ssvw+fzqd0VzWBmMaLnIEp9otQhEqepGHZjEWzK8LS2a1eGw24sSmubRCLgeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFic5iIiIiD6jKEBudGpa28yJTgOvqyUiIiIiIiLqHy5XRRmLy1UREVE6PbGhHhFZxo4jHThi/hV8ho9S3qZdHonK0D2YUpmPe64ek/L2iIiIiIiIiFKBy1URUQ/hcBgHDx5EOBxWuyuawcxiRM9BlPpEqUM0RkmCySChIHJ1WtoriNTCZJBglKS0tEckEp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGpxkoMoQ3HNwcQxsxjRcxClPlHqEMn8S4fh9suqMKu6FDXlNSjERSltrxDTUVN+GWZVl+L2y6pS2haRiHgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanF5aooY3G5KiIiUsM/P27F9sPtaPK04k33fYhIrqS3YVLy8JWcx1DiLMS0YYNwyYjCpLdBRERERERElC5croqIiIgoQ4wa7AQADHYUYHjkRzAo9qTu36DYMTzyIwx2FAAARpc4k7p/IiIiIiIiIj3hJAdRhnK5XHjooYfgcrnU7opmMLMY0XMQpT5R6hBRkdOCsnwbJEnCsNwRqAzdDZOSl5R9m5Q8VIbuRlXeCEiShLJ8GwodlqTsm0hveB4lLeHxqg8cZ3Uw98QxM31kIEqNotRBqcXlqihj6X25qkgkgoaGBpSXl8NkMqndHU1gZjGi5yBKfaLUIapDLV68suc4FEXBvuNudAZdaLOuQhu29nufBZiOgsCNyLXkYfyQHEiShDmTyjCsMDuJPSfSD55HSUt4vOoDx1kdzD1xzEwfGYhSoyh16IGa7+VykoMylt4nOYiISF3r9p7AwSYP/KEI9h13IyoriFj3w5X1JprDB/q8n+KsscgPXw1j4HwYDRLGD8mBzWzCmBInZlWXprACIiIiIiIiovTgPTmIqIeuri6sXLkSXV1dandFM5hZjOg5iFKfKHWIbOboYjgspviEhNEgwRQYh8FdP0aN/VFMyL4eQ8wTYJYcp21nlhwYYp6ACdnXo8b+KAZ3/Tg+wTGmxAmb2QSHxYSZo4tVqoxIDDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiNT5EGcpgMCAvLw8GA+ci+4qZxYiegyj1iVKHyGxmI+ZMKsNLOxsAAOOH5ODjli50BSNobR+ELONsjHWY4XCaYM4KQ5EikBQTQuEseIMRtLpCaI3KABRkW0wYUZQNm9kEa1ZsvzazUd0CiTSO51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuijIWl6siIqJM0OIJ4uXdjfAGI1AUBU3uAE64AghF5XNuazYaUJpnRUmOFZIkwWExYc6kMhQ5ebNxIiIiIiIiEgeXqyKiHkKhEPbs2YNQKKR2VzSDmcWInoMo9YlShx4UOS24ZXoFxpQ4IUkSSnNtmDQ0D6MGO1DstCDbYoRBij3XIAHZFiOKnRaMGuzApKF5KM21QZJiS1XdMr2CExxEScLzKGkJj1d94Dirg7knjpnpIwNRahSlDkotTnIQZahAIIDNmzcjEAio3RXNYGYxoucgSn2i1JEJFEWBN+RFR6AD3pAXqbhI1WY2YlZ1Kb4+cQjK8mOTFoOyLagqcqC6LA/ThhVgelUBpg0rQHVZHqqKHBiUbYEkSSjLt2HOpDLMqi7lElVEScTzKGkJj1d94Dirg7knjpnpIwNRahSlDkotLldFGYvLVRER0ZnUd9Rj3eF12Nu6FwfaDsAdcscfyzHnYGzBWFQXVmP2sNkYmT8y6e23eoOoa/KgqTOAZk8QgXA0/pg1K3YlR0muFaNLnCh08MoNIiIiIiIiEpua7+XyxuNEGUpRFASDQVgssU8C07kxsxjRcxClPlHqSLctDVvw3N7nsKt51xmf4w65se3ENmw7sQ1L9y7FhcUX4vbq21FTXpO0fhQ6LCgcEZu8UBQFoagMWQYMhth9ODimRKnH8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLS5XRZShOjs78dhjj6Gzs1PtrmgGM4sRPQdR6hOljnRxBVy4d8u9WLhp4VknOHqzq3kXFm5aiPu23AdXwJX0vkmSBIvJCJvZCIvJyF+8idKE51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuijKW3perikajaGlpQVFREYxGruHeF8wsRvQcRKlPlDrSoa69DnduvBMt/pYB76vIVoRnrnoGo/JHJaFnRKQmnkdJS3i86gPHWR3MPXHMTB8ZiFKjKHXogZrv5XKSgzKW3ic5iIgoNsFx2/r58ITd535yHzmzcrBi1nJOdBAREREREREliZrv5XK5KqIM5fV6sWLFCni9XrW7ohnMLEb0HESpT5Q6UskVcOFfN9yZ1AkOAPCE3fjem99PydJVRJQ+PI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1OIkB1GGMplMqKyshMlkUrsrmsHMYkTPQZT6RKkjlX6+9ZdoCwx8iaretAVa8Iutj6Rk30SUHjyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiclWUsbhcFRGRfm1p2IKFmxamvJ2nr3gaNeU1KW+HiIiIiIiISGRcroqIeggGg9i6dSuCwaDaXdEMZhYjeg6i1CdKHany9K7/TUs7v9udnnaIKPl4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGpxUkOogwVCoWwZ88ehEIhtbuiGcwsRvQcRKlPlDpSob6jHh927ElLW/vb9+Cjjo/S0hYRJRfPo6QlPF71geOsDuaeOGamjwxEqVGUOii1uFwVZSwuV0VEpC+N3kYAwO92PYdXD/85be3OqfoXfH/S7ShzlKWtTSIiIiIiIiKRcLkqIupBlmW4XC7Isqx2VzSDmcWInoMo9YlSRzLVrq5F7epavPzxX9Pa7pqP/ora1bVpbZOIBo7nUdISHq/6wHFWB3NPHDPTRwai1ChKHZRanOQgylButxuLFy+G2+1WuyuawcxiRM9BlPpEqSMVJCm9lyGnuz0iSg6eR0lLeLzqA8dZHcw9ccxMHxmIUqModVBqcbkqylh6X65KlmW43W7k5OTAYOB8ZF8wsxjRcxClPlHqSKbq56uhKIAkpb9tRQH23bo3/Q0TUb/xPEpawuNVHzjO6mDuiWNm+shAlBpFqUMP1Hwv15SWVogoYQaDAXl5eWp3Q1OYWYzoOYhSnyh1JJ1iACQVLkNW+MsykdbwPEpawuNVHzjO6mDuiWNm+shAlBpFqYNSi3/RE2Uoj8eDZ555Bh6PR+2uaAYzixE9B1HqE6WO5FPrVxP+SkSkNTyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiX/REGcpsNmPixIkwm81qd0UzmFmM6DmIUp8odSSfDEVO74WmsfZ4EzsireF5lLSEx6s+cJzVwdwTx8z0kYEoNYpSB6UW78mRIqFQCC+++CL+9Kc/Yf/+/Th58iTy8/MxbNgwXH/99bj11ltRWFiY1Daj0Sj279+P9957Dzt27MB7772HDz74AOFwGAAwY8YMbN68ud/737RpE55//nls3boVjY2NsFgsKC8vx9VXX43bb78dY8aMSVIlMXq/JwcRkd48vO5tKIqCtU1PwmesT1u79ugozC75EX46+7K0tUlEREREREQkEjXfy+WVHClw8OBBXHTRRfjOd76DdevW4dixYwgGg2hqasK7776Le+65B+PGjcPatWuT1ubLL7+MnJwcXHDBBbjjjjvwzDPPYOfOnfEJjoFwu924+eabceWVV+L3v/89PvroI/h8PnR0dGDv3r349a9/jQkTJmDRokVJqIS6BQIBbN68GYFAQO2uaAYzixE9B1HqE6WOZPrhzIvwo8unY0LRBWlt94KiifjR5dPT2iYRDRzPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMmRZA0NDbjiiiuwZ88eAIAkSZgxYwbmz5+Pr33ta7DZbACA5uZmzJkzB3/729+S0q7L5YLP50vKvk4VDodx3XXX4cUXX4z/bPz48fjOd76DG2+8EaWlpfHn/eQnP8HDDz+c9D7oVSQSwZEjRxCJRNTuimYwsxjRcxClPlHqSKZcWxZybVm4amhtWtu9cmgtcm1ZaW2TiAaO51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuKslqamrwj3/8AwBQUVGBV155BRdc8PknUltbW3HzzTdj06ZNAIBBgwbhk08+QV5e3oDaXbFiBW677TYMHjwYU6dOjf974403sHjxYgD9W67qwQcfxM9//nMAgNVqxfLly3HzzTfHHw+FQvjP//xP/OpXvwIQm9T5+9//jhkzZgyoHoDLVRER6VWLJ4hv/PXbOBk6kPK2Sszn409f+z8UOiwpb4uIiIiIiIhIVFyuShBr166NT3CYzWa89tprp01wAEBhYSFeeeUVVFVVAQDa29vx+OOPD7jt2tpaHD16FE1NTXjttdfw4IMPYtasWQOaPGlubsZvfvOb+PdPPvnkaRMcQKzOxx9/HDfddBMAQFEUPPDAA/1ukz4XjUbR1NSEaDSqdlc0g5nFiJ6DKPWJUkcqFDktuLzkprS0NbPkJk5wEGkUz6OkJTxe9YHjrA7mnjhmpo8MRKlRlDootTjJkURPP/10/Ot58+ahurq61+dlZ2eftqzTs88+O+BLrkpKSjB06NAB7eOLnn/+eXR1dQEARo0ahe9973tnfO7jjz8OgyF2OL377rvYvXt3UvuiRx6PB88++yw8Ho/aXdEMZhYjeg6i1CdKHanyjfFXo8p2aUrbqLJdhm9WX53SNogodXgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanF5aqSxOv1orCwEMFgEADwzjvv4OKLLz7j8wOBAIqKiuD1egEAmzZtwpe//OWk9+tnP/sZHnroIQCJL1d1ySWX4J133gEAPPLII+e8QuOqq67Cxo0bAQD/9V//NeD7c+h9uSpFURAMBmGxWCBJktrd0QRmFiN6DqLUJ0odqfTS7jr8at/34JPbk75vu2EQ7hn/P7hh0uik75uI0oPnUdISHq/6wHFWB3NPHDPTRwai1ChKHXrA5aoE8M4778QnOLKzszF16tSzPt9qtZ42CZKsG5AnSyAQwNatW+Pfz5w585zbXH755fGvM60eLZIkCVarlSfwBDCzGNFzEKU+UepIpWvGjcCc0p/CLDmSul+z5MCc0p/imnEjkrpfIkovnkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQanGSI0kOHPj85qjV1dUwmUzn3ObCCy/sdftMUFdXB1mWAcROJpMmTTrnNplcjxa53W48+eSTcLvdandFM5hZjOg5iFKfKHWkks1sxB0XXYLrSn4Bu2FQUvZpNwzCdSW/wB0XXQKb2ZiUfRKROngeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanFSY4kqauri39dUVHRp21OvYfGwYMHk96ngTi1nuLiYlit1nNuc2o97e3taGlpSUnf9MJqtWLmzJl9yp5imFmM6DmIUp8odaRakdOCf734UnyrfDGqbJcNaF9VtsvwrfLF+NeLL0WRkzcbJ9I6nkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQap37cgPqk7a2tvjXgwcP7tM2JSUl8a/b25O/3vhADLQeIFZTUVFRUvulJ2azGRMnTlS7G5rCzGJEz0GU+kSpIx2KnBZ895JqjKz7L2w4shl7vS+jKfRhn7cvMZ+PasccXFU5EzNHF/MKDiJB8DxKWsLjVR84zupg7oljZvrIQJQaRamDUotXciRJ9w3EAcBms/Vpm1Ofd+r2mWCg9XxxHwNhtVrhcMTWY49Go3C5XFAUBUDskrVQKAQA8Pv96OrqAgBEIhG4XK74Pjo7OxEOhwEAPp8PPp8PABAOh9HZ2Rl/nsvlQiQSAQB0dXXB7/cDAEKhUPyyOEVR4HK5EI1G43UGAgEAQDAYhMfjAQDIsgyXyxVf9svj8cTv2xIIBOL5nKkmv9+Pv/71r2htbRWmplSPU2dnJ1555RX4/X5haurPOHV1deGVV16J90mEmk4dJ7/fj1dffTXeJ63WJPo4Jbsmm9mILw214/uTa/Hdkb/GdXmPY6L1egwxT4BNyYEt8vlrUG6kCGWmCzDBcT2uy3sM8yt+ibsuvhZXjC5AONCVMTWJOE6siTWlsyaPxxN/3RelJhHHiTV1xrd/5ZVXTvs9QOs1iThOA62p+2+45uZmYWrSwji1trbir3/9K/x+vzA1pXqcWlpasH79eni9XmFq4u8RPcfp5MmTeP311+H3+zVdU1NTE9avXw+/3y/kOIlYkxo4yZEk3QcMEJth7AuL5fOlMroPzEwx0HqA5NU0ffp03HDDDQCAlpYWLF68OP4/3rJly/Dhh7FP87711lt47bXXAAANDQ1YvHhxfB9LlizBJ598AgB488038eabbwIAPvnkEyxZsiT+vMWLF6OhoQEA8Nprr+Gtt94CAHz44YdYtmwZgNhJYfHixfHluF566aX4Tdp3796NF154AUDsf/zFixfHTzQvvPACdu/eDQDYunUrXnrppbPWJMsyDh06hDfeeEOYmlI9TgcPHsS+ffsgy7IwNfVnnDo7O7Fnz574i6EINZ06TrIs48MPP8QHH3yg6ZpEH6dU1SS7T+LGKedhXNiHy0Ln43ujHsM3sn+Ba058Hd8cvBzfLvkDrmqYgW8U/hALLrgLIzwu5Ls/xrDC7IytScRxYk2sKV017dmzJ/7HmSg1iThOrCn2ZsKePXuEqknEcRpoTbIs49ixY/G+ilCTFsbpjTfewKFDh+J/J4hQU6rHqftDYyLVxN8jeo7T8uXLcfz4cciyrOmann322fgb8iKOk4g1qUKhpJg9e7YCQAGg3HfffX3aZu3atfFtHA5HSvr105/+NN7GjBkz+rzd448/Ht/uoosu6tM2Pp8vvg0AZceOHf3sdcy+ffsUAIrValUcDoeyb98+JRKJKB0dHYosy4qiKEpnZ6cSDAbj7Xu9XkVRFCUcDisdHR3xfblcLiUUCimKoihdXV1KV1eXoiiKEgqFFJfLFX9eR0eHEg6HFUVRFK/Xq/h8PkVRFCUYDCqdnZ2KoiiKLMtKR0eHEolEFEVRFI/Ho/j9fkVRFCUQCChut1tRFEWJRqNKR0eHEo1GFUVRFLfbrQQCAUVRFMXv9ysej0dRFIU1sSbWxJpY0wBrCgaDysnWNsUXjCiBcERpb2/XfE0ijhNrYk2siTWxJtbEmlgTa2JNrIk1sSZxa+p+L7f73759+5R0kRTls+tNaEBuuukmrFq1CgDwgx/8oE+zV2vWrMHcuXMBxO5nceLEiaT362c/+xkeeughAMCMGTOwefPmPm23ZMkSLFiwAAAwYcIEvP/+++fcpr29HQUFBfHvDx48iNGjRyfe6c/s378f48ePj3+/b98+jBs3rt/705pIJIKGhgaUl5fDZOLtc/qCmcWInoMo9YlSBxGRWngeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUoQdqvpfL5aqS5NQ390+ePNmnbZqamuJfDxo0KOl9GoiB1gNkXk1a4/V68fzzz2fc/VoyGTOLET0HUeoTpY5uiqLAG/KiI9ABb8gLfoaCiFJNtPMoiY3Hqz5wnNXB3BPHzPSRgSg1ilIHpRav5EiSxYsX40c/+hGA2D0k3n333XNuc//99+Oxxx4DAFx//fVYvXp10vvV3ys53n//fUycOBEAIEkSfD4frFbrWbdZv349Zs2aBSA2wdHW1tbvfgO8koOIKNPVd9Rj3eF12Nu6FwfaDsAdcscfyzHnYGzBWFQXVmP2sNkYmT9SxZ4SERERERERUSqp+V4ur/FJkrFjx8a/3rt3LyKRyDkvodq1a1ev22eC0aNHw2AwQJZlKIqCPXv2YPr06WfdJpPrISKi5NnSsAXP7X0Ou5p3nfE57pAb205sw7YT27B071JcWHwhbq++HTXlNWnsKRERERERERGJjstVJcmXvvQlWCwWAEBXVxd27Nhx1ucHg8H43e0B4Mtf/nJK+5coq9V62qRGX64Aeeutt+JfZ1o9WtTZ2YlHH30UnZ2dandFM5hZjOg5iFKfFutwBVy4d8u9WLhp4VknOHqzq3kXFm5aiPu23AdXwJWaDhKRrmjxPEr6xeNVHzjO6mDuiWNm+shAlBpFqYNSi5McSeJwOHDFFVfEv1+xYsVZn79mzRp4PB4AsaWdamoy75Otc+bMiX99rno+/fRTbNq0qddtqX/sdjvmzJkDu92udlc0g5nFiJ6DKPVprY669jrMfXUu1h1eN6D9rD28FnNfnYv6jvok9YyI9Epr51HSNx6v+sBxVgdzTxwz00cGotQoSh2UWpzkSKIFCxbEv16xYgX279/f6/N8Ph8efPDB+Pff+973zrm0lRrmzZuH7OxsAEBdXR2WLl16xufed999iEajAICLL74YF154YVr6KLKsrCyMGTMGWVlZandFM5hZjOg5iFKfluqoa6/D/Dfmo9nfnJT9Nfubcdv62zjRQUQDoqXzKBGPV33gOKuDuSeOmekjA1FqFKUOSi1OciTRNddcg8suuwxAbDmqr371q/jggw9Oe05bWxvmzJmDjz/+GEDsKo777ruv1/0dOXIEkiTF/53raopkKy4uxo9//OP49z/4wQ+watWq054TDodx//33409/+lP8Z4sWLUpbH0Xm8/nw8ssvw+fzqd0VzWBmMaLnIEp9WqnDFXBhwcYFp91UPBncITfu3HAnl64ion7TynmUCODxqhccZ3Uw98QxM31kIEqNotRBqZV5lw9o3B//+EdMmzYNJ06cwJEjRzBx4kTMmDEDw4cPR0tLCzZu3Bj/n9JkMmHVqlXIy8tLStuzZ8/G8ePHT/tZU1NT/OsdO3Zg4sSJPbZbu3YthgwZ8v+zd+fxUZb3/v/fs2RmspKEJIRFSEAWlaggUNzQVm0BraJYl1bF7RytntNfTzdt++1ie6q1p63anlbtEXcr4q6nYCt6kLZWXBALyuLCYgIhAbInk8nM3L8/pkwTs06SyT1z3a/n45GHk8w993V9PteVe8x8uK+rx3N+73vf01//+le9/PLLamtr04UXXqj//M//1OzZsxUMBrVu3Trt3bs3fvxNN92kU045ZVjiAQDY7+bXbx62Ozg+qaatRre8fotuXXBrUs4PAAAAAADM57Isy7K7E6bZunWrLr74Ym3cuLHXY4qLi3XffffpzDPP7PWYnTt3qry8PP79fffdp8svv7zX48vKyrRr166E+7tjxw6VlZX1+nxDQ4P+9V//tdtdHJ1lZGTohz/8ob7zne8k3H5v3n33Xc2cOTP+/ebNm3XUUUcN2/kBAH1bV7lO1790fdLb+c1pv9GCCam3NxUAAAAAABgYOz/LZbmqJJgxY4bWr1+vBx54QAsXLtRhhx0mn8+nkpISzZ8/Xz/72c/03nvv9VngSCWjRo3SY489phdffFGXXHKJpkyZoqysLI0aNUozZ87U17/+db3zzjvDWuBAbCmwrVu3qqOjw+6upA1yFmN6HkyJLx3iWL5p+Yi0c+/me0ekHQBmSYfrKHAI89UZGGd7kPfEkTNn5MCUGE2JA8lFkSNJfD6fLrvsMq1evVq7d+9We3u79u3bp7/97W/65je/qaKion7PUVZWJsuy4l993cUhxe786Hz8QL/6uoujs9NPP10PPfSQPvjgA7W0tKi+vl6bNm3Sz3/+cx1xxBEDOgcGjjUHE0fOYkzPgynxpXoc2+u2a0PNhhFp6619b+n9uvdHpC0A5kj16yjQGfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFksVwUAI6+quUqSdN/m+/TYtsdGrN2Lpl+k787/7oi1BwAAAAAAho+dn+Wy8TgAAIhb+ORCW9pdsW0FRQ4AAAAAAJAwlqsCUlR9fb1uuukm1dfX292VtEHOYkzPgynxpXocI32fp2VJ3FwKIBGpfh0FOmO+OgPjbA/ynjhy5owcmBKjKXEguViuCinL6ctVhcNhVVZWasKECfJ6uelqIMhZjOl5MCW+VI2j4oEK29p+7YuvKTsj27b2AaSXVL2OAj1hvjoD42wP8p44cuaMHJgSoylxOAHLVQHoxuv1DnhTeMSQsxjT82BKfKbEMZxCkRBFDgADxnUU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GK5KiBFtbS0aMWKFWppabG7K2mDnMWYngdT4kvlOOy6xzPDnWFPwwDSUipfR4FPYr46A+NsD/KeOHLmjByYEqMpcSC5KHIAKcrtdis/P19uN7+mA0XOYkzPgynxpXQclltWdGRv9rSiXnldgRFtE0B6S+nrKPAJzFdnYJztQd4TR86ckQNTYjQlDiQXe3IgZTl9Tw4AsMOPVv9F4YilF2puU5vn/RFrNzMyTa9cslKZPs+ItQkAAAAAAIaHnZ/lUgIDUlQoFNLGjRsVCoXs7kraIGcxpufBlPhSNY5cb4lyM4qVZR0+ou1mW1PEP8wBkIhUvY4CPWG+OgPjbA/ynjhy5owcmBKjKXEgufg4AUhRwWBQa9euVTAYtLsraYOcxZieB1PiS+U4PC6XCq15I9pmofUp+Tz8bwmAgUvl6yjwScxXZ2Cc7UHeE0fOnJEDU2I0JQ4kF8tVIWWxXBUADJxlWWrpaFFHtEMZ7gxlZ2TL5XIlfJ6Gtg5J0vPv7NG9H31TtR1bhrur3ZRkHKErJv+XLpk/KeltAQAAAACA4WfnZ7kju6sogAGzLEvt7e3y+/2D+qDSichZjOl5MCW+4Yhje912rd6xWpv2b9KWA1vUGGqMP5fny9MRo49QRVGFFpcv1tSCqQM656jMDElSeVG2jq09Vy8eTH6R45jcc1VelJ30dgCYxZT3AzgD89UZGGd7kPfEkTNn5MCUGE2JA8nFuhBAimpoaNCtt96qhoYGu7uSNshZjOl5MCW+ocSxrnKdlq1epqXPLdU9m+7R+r3ruxQ4JKkx1Kj1e9frnk336LznztOy1cu0rnLdgNuYNiZXhwWO0+TASQn3LxGTAyfpsMBxml6am9R2AJjHlPcDOAPz1RkYZ3uQ98SRM2fkwJQYTYkDycVyVUhZTl+uKhKJqLa2VsXFxfJ4PHZ3Jy2QsxjT82BKfIOJoz5Yr5tfv1mrd6wedLuLyxfr2/O+rfxAfr/HrnzzY314oEZP7vsPtVt1g26zN35XgZaOuU1TRpfogjmHDfv5AZjNlPcDOAPz1RkYZ3uQ98SRM2fkwJQYTYnDCez8LJc7OYAU5fF4VFpaygU8AeQsxvQ8mBJfonFsO7hNS59bOqQChySt2rFKS59bqu112/s9ds6kAgXcuVo4+v/JYw3vclIeK1sLR/8/Bdy5mltWOKznBuAMprwfwBmYr87AONuDvCeOnDkjB6bEaEocSC6KHECKam5u1v3336/m5ma7u5I2yFmM6XkwJb5E4th2cJuu/OOVqmmrGZa2a9pqdMULV/Rb6JhcnKMZpbka7SvTZwt+KK+VPyzte618fbbghxrtK9OM0lz24wAwKKa8H8AZmK/OwDjbg7wnjpw5IwemxGhKHEguihxAivJ6vSorK5PX67W7K2mDnMWYngdT4htoHPXBel235rpue24MVWOoUV9+8cuqD9b3edyp00uU4/dqbNZkLS74L42KzBtSu6Mi87S44L80NmuycvxenTq9ZEjnA+BcprwfwBmYr87AONuDvCeOnDkjB6bEaEocSC725EDKcvqeHAAgSd9a960hL1HVl8Xli3Xrglv7PKa2qV1PvFWpYEdEbaGw3qx9VVXWKrW63x9wO1nRqRrvOlNzio9Xps+rQIZH5x83QcW5/qGGAAAAAAAAbMaeHAC6aW9v12uvvab29na7u5I2yFmM6XkwJb6BxLGucl1SCxxSbI+OdZXr+jymONev84+boBy/V5k+r04ad7JOyf2BpnfcpKLwImVHjpDbyuryGreVpezIESoKL9L0jpt0Su4PdNK4k5Tp8yrH76XAAWDITHk/gDMwX52BcbYHeU8cOXNGDkyJ0ZQ4kFwUOYAUFQqFtHHjRoVCIbu7kjbIWYzpeTAlvoHEsXzT8hHpy72b7+33mOJcvy6ZP0kzSnPlcrk0dlSmTph4lE4afanmBm7UbP1KR7T/StOCv9AR7b/SbP1KcwM36qTRl+qEiUdp7KhMuVwuzSjN1SXzJ1HgADBkprwfwBmYr87AONuDvCeOnDkjB6bEaEocSC6Wq0LKYrkqAE62vW67lj63dMTae+rspzS1YOqAjv2otllv7qpTVV3bgM8/viBTc8sK2WQcAAAAAAADsVwVgG6i0ajq6+sVjUbt7kraIGcxpufBlPh6i6OquUpVzVVauW3liPZn5baVqmquGtCxk4tzdMGcw3Tp8ZM0r7xQEwuzFMjwdDkmkOHRxMIszSsv1KXHT9IFcw6jwAFgWJnyfgBnYL46A+NsD/KeOHLmjByYEqMpcSC5KHIAKaqxsVF33HGHGhsb7e5K2iBnMabnwZT4eotj4ZMLtfDJhXps22Mj2p8V21Zo4ZMLE3pNUY5fJx5epKXHTdC1p0zWdZ+eomtPmfKP/07W0uMm6MTDi1SUw9JUAIafKe8HcAbmqzMwzvYg74kjZ87IgSkxmhIHkovlqpCynL5cVTQaVWNjo/Ly8uR2U48cCHIWY3oeTImvtzgqHqiwsVfSpmWbbG0fAAbKlPcDOAPz1RkYZ3uQ98SRM2fkwJQYTYnDCez8LNc7Iq0ASJjb7VZ+fr7d3Ugr5CzG9DyYEp8pcQCAXbiOIp0wX52BcbYHeU8cOXNGDkyJ0ZQ4kFyUv4AU1dTUpLvuuktNTU12dyVtkLMY0/NgSnymxAEAduE6inTCfHUGxtke5D1x5MwZOTAlRlPiQHJR5ABSlM/n07HHHiufz2d3V9IGOYsxPQ+mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBd7ciBlOX1PDgDOdGhPDsuSXK6Ra/dQe+zJAQAAAAAAEmXnZ7ncyQGkqGAwqLVr1yoYDNrdlbRBzmJMz4Mp8fUWx+Nn/q8eP/N/VZ4zs5dXJkd5ToUeP/N/R7RNABgKU94P4AzMV2dgnO1B3hNHzpyRA1NiNCUOJBdFDiBFhcNh7dy5U+Fw2O6upA1yFmN6HkyJr7c4Vr/drtVvt6ujZdKI9qejZZJWv90+om0CwFCY8n4AZ2C+OgPjbA/ynjhy5owcmBKjKXEguViuCimL5aoAONFtL26XZVn6y+5Nej/jphFrd1rHD3XixJn62menj1ibAAAAAADADCxXBaCbSCSi6upqRSIRu7uSNshZjOl5MCW+vuKIWJYyIuOVFZ06In3Jik6VNzJOEf7dA4A0Ysr7AZyB+eoMjLM9yHviyJkzcmBKjKbEgeSiyAGkqKamJt19991qamqyuytpg5zFmJ4HU+LrK45DtYbR4c+NSF9Ghxd2aRcA0oEp7wdwBuarMzDO9iDviSNnzsiBKTGaEgeSi+WqkLKcvlyVZVlqb2+X3++Xy+WyuztpgZzFmJ4HU+LrLY7bXtyucDSqN3fWSZLet+5SR+aGpPUjo+04TXVdI0maU1agb35uRtLaAoDhZMr7AZyB+eoMjLM9yHviyJkzcmBKjKbE4QQsVwWgG5fLpUAgwAU8AeQsxvQ8mBJfX3F4XC553bGf5zR/Qa7IqOT0ITJKOc3nS5K8bpc8aZ5TAM5iyvsBnIH56gyMsz3Ie+LImTNyYEqMpsSB5KLIAaSoxsZG3X777WpsbLS7K2mDnMWYngdT4ustjitPKtdVJ0/WooqxmjUxX0eOKdXE0FfkVfawtu9VtiaGvqIjx5Rq1sR8LaoYq6tOnjysbQBAMpnyfgBnYL46A+NsD/KeOHLmjByYEqMpcSC5KHIAKSoQCOjUU09VIBCwuytpg5zFmJ4HU+LrLY5RmRkalZmh8qJs+b0eFef6le06TJM7vqksd+GwtJ3lLtTkjm8q23WYinP98ns9Ki/K1qjMjGE5PwCMBFPeD+AMzFdnYJztQd4TR86ckQNTYjQlDiQXe3IgZTl9Tw4Azlbb1K6HX9sly7L09u56hSJRTSiK6oPII/qo7c+DPu/kzJN1uOdLqtzvls/j1qyJ+XK5XLr0+EkqyvEPYwQAAAAAAMAp2JMDQDdtbW164YUX1NbWZndX0gY5izE9D6bE118cxbl+jS/IlMvlUumo2L9YqT7o0Qm5X9EZhd9Rqe/IhNor9R2pMwq/oxNyv6K9Bz2SpLH5sXVNxxdkUuAAkHZMeT+AMzBfnYFxtgd5Txw5c0YOTInRlDiQXF67OwCgZ9FoVPX19YpGo3Z3JW2QsxjT85Cq8VmWpZaOFnVEO5ThzlB2RnafG6MNJI45kwpUVdemsaMCOtASUkt7WO/XNGlG6WwdVnSc6jp268O2P2t/6APt7/hIIas5/lqfK0dFGZNV5DtcUzJPVkHGREWilrZWNyoStZTt96o0L1Y8mVs2PMtgAcBIStX3A6AnzFdnYJztQd4TR86ckQNTYjQlDiQXy1UhZbFcFYBUt71uu1bvWK1N+zdpy4Etagz9cyO0PF+ejhh9hCqKKrS4fLGmFkwdVBurN+3V1uomtYXC2rwnVqDIDXg1tSRXPu8/b8i0LEthK6iI1SGPK0NeV6BLkSUUjur9miY1BcPyuF2aOS5PmT6vZpTmalHF2MEnAQAAAAAAOB7LVQHoJhwOa+fOnQqHw3Z3JW2QsxjT85AK8a2rXKdlq5dp6XNLdc+me7R+7/ouBQ5Jagw1av3e9bpn0z0677nztGz1Mq2rXBd/fqBxnDq9RDl+b7wg4XG71BQM653KetU0BRX9x79VcLlcynBnKuDJU4Y7M17giFqWapqCeqeyPl7gmFGaq0yfVzl+r06dXjLM2QGAkZEK7wfAQDFfnYFxtgd5Txw5c0YOTInRlDiQXBQ5gBTV3NysBx54QM3Nzf0fDEnk7BDT82BnfPXBen1r3bd0/UvXa0PNhoReu6Fmg65/6XrdsO4G1QfrBxxHps+jJbPGK5DhUW4gQzPH5Snb71Ukaumj2ha9vbteuw606GBLSMGOiELhqIIdER1sCWnXgdjzH9W2xJeomjkuT7mBDAUyYufN9HmGkhIAsI3p73cwC/PVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFksVwUglWw7uE3XrblONW01Qz5XSWaJ7jzjTk0rmDbg19Q2teuZt6vU3B6WZVmqbgxqb31QoUj/65L6PG6NzQ+oNC+2hFWO36sls8arOJfNxgEAAAAAwNCxXBUAACls28FtuvKPVw5LgUOSatpqdMULV2h73fYBv6Y4169L5k/SjNJcuVwujR2VqVkT8zVtTI5Kcv3K9nvk/scWHG6XlO33qCTXr2ljcjRrYr7GjootYTWjNFeXzJ9EgQMAAAAAABiBIgeQohoaGvTTn/5UDQ0NdnclbZCzGNPzMNLx1Qfrdd2a67rtuTFUHa0deui/H9Lumt0Dfk2mz6NFFWN1zrHjNL4gVrQozPZrcnGOKsbna175aM2fPFrzykerYny+JhfnqDDbL5fLpfEFmVoya7wWVYxliSoARjD9/Q5mYb46A+NsD/KeOHLmjByYEqMpcSC5vHZ3AEDPsrKytGTJEmVlZdndlbRBzmJMz8NIx3fz6zcP2x0cnYXcIb0++nWF3g3p1pJbE3rt5OIcTS7O0f7mdm2rblJ1Q1A1Te0KdkTixwQyYndylI4KaHppropyuHMDgFlMf7+DWZivzsA424O8J46cOSMHpsRoShxILvbkQMpiTw4AdltXuU7Xv3R90tv5zWm/0YIJC4Z0DsuyFIpEFY1KbndsHw6XyzVMPQQAAAAAAOgde3IA6Ka1tVXPPPOMWltb7e5K2iBnMabnYSTjW75pedLO7Yv4NKd2jnwRn+7dfO+Qz+dyueT3epTp88jv9VDgAGA809/vYBbmqzMwzvYg74kjZ87IgSkxmhIHkosiBwAAPdhet10bajaMSFtv7XtL79e9PyJtAQAAAAAAmITlqpCyWK4KgB2qmqskSfdtvk+PbXtsxNq9aPpFunzm5RqfM37E2gQAAAAAABgOLFcFoJuOjg5t3bpVHR0ddnclbZCzGNPzkOz4Fj65UAufXKgVW55IyvkP8UQ9GtcyTp6oR5L06JaVWvjkwqS2CQAmMf39DmZhvjoD42wP8p44cuaMHJgSoylxILkocgApijUHE0fOYkzPw4jF50rujY6+qE9z9s+RL+r7R3tJbQ4AjGP6+x3Mwnx1BsbZHuQ9ceTMGTkwJUZT4kBysVwVUhbLVQGwQ8UDFba2v2nZJlvbBwAAAAAASJSdn+V6R6QVAABGgGVZauloUUe0QxnuDGVnZMvlSvwWCcuSBvGyIeOfHQAAAAAAACSG5aqAFFVfX6+bbrpJ9fX1dnclbZCzGNPz8Mn4ttdt1x0b7tDVf7paJ604Scc/erwWPLZAxz96vE5acZKu/tPVumPDHXq/7v2BN2Il/+0xqyNL5+88X1kdWSPaLgCYwvT3O5iF+eoMjLM9yHviyJkzcmBKjKbEgeRiuSqkLKcvVxUOh1VZWakJEybI6+Wmq4EgZzGm5+FQfDu0Q/dvuV8bajYM+LWzS2brqoqrtGDCgl6PqXigQlY0ljeXOzzk/vbGHXVrdPtoHfAfUNQdjbe5+Yq3k9YmAJjE9Pc7mIX56gyMsz3Ie+LImTNyYEqMpsThBHZ+lkuRAynL6UUOAD2rD9br5tdv1uodqwd9jsXli/Xted9WfiC/23M/Wv0XRaKWVu+7TW2eBO7+GKLMyDQtGvNV3XTmySPWJgAAAAAAwHCw87Nc1sUAUlRLS4tWrFihlpYWu7uSNshZjMl52HZwmy566iLVv1Yvf8Q/6POs2rFKS59bqu1127s9l+st0aiMEuXo8KF0tV/+iF/H7zs+HkeuDteojJKktgkAJjH5/Q7mYb46A+NsD/KeOHLmjByYEqMpcSC5KHIAKcrtdis/P19uN7+mA0XOYkzNw7aD23TlH69UTbBGrd5WRRUd0vlq2mp0xQtXdCt0XHlSua46ebI+P+XMIZ2/P1FFu8Rx1pTFuurkyUltEwBMYur7HczEfHUGxtke5D1x5MwZOTAlRlPiQHKxXBVSFstVATikPlivpc8tVU1bzbCfuySzRE+e/WS3pav++sF+/eCN67QvtGXY2/ykUt+R+uHc3+jEw4uS3hYAAAAAAMBwY7kqAN2EQiFt3LhRoVDI7q6kDXIWY2Iebn795niBwxP1aFLTJHminmE5d01bjW55/ZZuP582JldH55w7LG30pHMcFTlLNL00N2ltAYCJTHy/g7mYr87AONuDvCeOnDkjB6bEaEocSC6KHECKCgaDWrt2rYLBoN1dSRvkLMa0PKyrXNdlk3Ff1Kcj64+UL+obtjZW7VildZXruvysONev+WNP0uTMk4atnc4OxXG47yTNH3uSinIGv8cIADiRae93MBvz1RkYZ3uQ98SRM2fkwJQYTYkDycVyVUhZLFcFQJKWrV6mDTUbkt7OcWOO0/0L7+/ys49qm/XYhm16puZrao0eHPY2s9yFWlLyS1103AyVF2UP+/kBAAAAAABGAstVAejGsiwFg0FRhxw4chZjUh62123vXuCwpIxIhjTM4b217y29X/d+l59NLs7RsePG6bOj/598ruEtQviUrc+OulHHjB1LgQMABsGk9zuYj/nqDIyzPch74siZM3JgSoymxIHkosgBpKiGhgbdeuutamhosLsraYOcxZiQh6rmKlU1V2nltpXdnssKZ+mcj89RVjhr2Nvtqb1Tp5doYs4ULS76sQKugmFpJ+Aq0OK878r79uuaXcoyVQAwGCa838E5mK/OwDjbg7wnjpw5IwemxGhKHEgulqtCynL6clWRSES1tbUqLi6WxzM8GyybjpzFmJCHigcqen3OZbmUF8pTo69Rlmv438I2LdvU7We1Te164q1K1bfX6691/6Nd7X8d9Pkn+U/UiQX/olEZufr0pICmlY1P23ECADuZ8H4H52C+OgPjbA/ynjhy5owcmBKjKXE4gZ2f5XpHpBUACfN4PCotLbW7G2mFnMWYngfLZanBn7x/wWFZllwuV5efFef6df5xE/TM2y6d5v6adrct0FsNT6suunXA5y1wz9Bxo87TxMzjlOP3asms8SrO5S4OABgs09/vYBbmqzMwzvYg74kjZ87IgSkxmhIHkovlqoAU1dzcrPvvv1/Nzc12dyVtkLMY0/PgD/t1yt5T5A8np0DQGm7t8efFuX5dMn+SZpTmamLmHJ1b+hMtKfqlpvnPUYHrKHmsrstneawsFbiO0jT/OVpS9EudW/oTTcw8TjNKc3XJ/EnKdHUYPU4AkGymv9/BLMxXZ2Cc7UHeE0fOnJEDU2I0JQ4kF3dyACnK6/WqrKxMXi+/pgNFzmJMz0PUFVVtoFZRVzQp5w9FQsrO6Hkj8EyfR4sqxmp6aa7e3FUn1U3SSaMvkxS7AyRsBRWxOuRxZcjrCnS5I2R8QabmlhXGNxkPRs0eJwBINtPf72AW5qszMM72IO+JI2fOyIEpMZoSB5KLPTmQspy+JwfgZH3tyZFsr33xtV6LHJ+0v7ld26qbVN0QVE1Tu4IdkfhzgQyPSnL9Kh0V0PTSXBXlsDQVAAAAAAAwk52f5bJcFZCi2tvb9dprr6m9vd3urqQNchZjSh4sS7Ki3f+lhjfq1eENh8vbw3NDbjPqVaYnc8DHF+X4deLhRVp63ARde8pkXffpKbr2lCn/+O9kLT1ugk48vKjHAocp4wQAduE6inTCfHUGxtke5D1x5MwZOTAlRlPiQHJR5ABSVCgU0saNGxUKhezuStogZzEm5OELJXdqafFvlWWVd3vOG/WqrLksKUWOLGuyOqKDu8HR5XLJ7/Uo0+eR3+vptnn5J5kwTgBgJ66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBfLVSFlsVwV4Fy3vbhdHZGoVlXdqwPe1SPWblF4kVZdeosyfZ4RaxMAAAAAACDdsVwVgG6i0ajq6+sVjSZnc2UTkbMYU/LgckmjInO7/9xyKasjSy6r7zslBiMvMk/uEXpnNGWcAMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILoocQIpqbGzUHXfcocbGRru7kjbIWYwpefC4XMpxHaas6NQuP88MZ2px1WJlhge+d8ZAZEWnKsc1QT7PyLw1mjJOAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kF8tVIWU5fbmqaDSqxsZG5eXlyT1S/7Q8zZGzGBPy0NDWIUl6/p09Wl/9F61t+Gn8OZflUmY4U23eNlmu4XsLO3XUjfpU6Um6ZP6kYTtnX0wYJwCwE9dRpBPmqzMwzvYg74kjZ87IgSkxmhKHE9j5We7w79oKYFi43W7l5+fb3Y20Qs5i7MyDZVlq6WhRR7RDGe4MZWdk97sBd09GZWZIksqLslXbNFcftJ6gyo5XY224LLVmtA5rvydknKDJ2XNVXpQ9rOftC/MVAIaG6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJRfkLSFFNTU2666671NTUZHdX0gY5ixnpPGyv2647Ntyhq/90tU5acZKOf/R4LXhsgY5/9HidtOIkXf2nq3XHhjv0ft37CZ972phcSdLJhf+iDCtfkhQIB3R61ekKhAPD0v8MK18nF/6LJGl6ae6wnHMgmK8AMDRcR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgu7uQAUpTP59Oxxx4rn89nd1fSBjmLGak8rKtcp+WblmtDzYZej2kMNWr93vVav3e97tl0j2aXzNZVFVdpwYQFA2qjONev8QWZqqqT5mXeoL+1/Vhhd0g7c3Yq7A4POQa3laVPZd2gTE+exhdkqijHP+RzDhTzFQCGhuso0gnz1RkYZ3uQ98SRM2fkwJQYTYkDycWeHEhZTt+TA0hV9cF63fz6zVq9Y/Wgz7G4fLG+Pe/byg/k93vsR7XNenbjHlmWpdf3vKdt+qXCrvpBt32I18rXdH1N88YdKZfLpSWzxo/oclUAAAAAAACmsPOzXJarAlJUMBjU2rVrFQwG7e5K2iBnMcnMw7aD27T0uaVDKnBI0qodq7T0uaXaXre932MnF+doRmmuXC6Xji6erunt39Wsg2coI5Ix6PbzIvM0teMHOrp4ulwul2aU5o54gYP5CgBDw3UU6YT56gyMsz3Ie+LImTNyYEqMpsSB5KLIAaSocDisnTt3Khwe+pI8TkHOYpKVh20Ht+nKP16pmraaYTlfTVuNrnjhigEVOk6dXqIcv1eZPq+OKC7W2GCZDgtdrezotITazI5O02Ghf9ekyL9oZulYZfq8yvF7der0ksGGMWjMVwAYGq6jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBfLVSFlsVwVkDrqg/Va+tzSYStwdFaSWaInz36y36Wrapva9cRblQp2RNQWCuuD2ha1tIcVdFWp2fuGwt5datJOdVgt8ddkuLKVqzJ5w5OUE56rgDVe2X6vDi/OVqbPq0CGR+cfN0HFuSO3FwcAAAAAAIBp7Pwsl43HgRQViURUW1ur4uJieTweu7uTFshZTDLycPPrNyelwCHF7ui45fVbdOuCW/s8rjjXr/OPm6Cn39qtSEuTjirN1b7mDu2tP0yBjvFShzRGlqJql6UOuZQht/xyySVJ8nncGpsfUGleQC6XSzl+r5bMGm9bgYP5CgBDw3UU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GK5KiBFNTU16e6771ZTU5PdXUkb5CxmuPOwrnLdkPfg6M+qHau0rnJdv8cV5/p19pGFannnBakjqLGjMjVrYr6mjclRSa5fOX6vMlwBeZWrDFdAOX6vSnL9mjYmR7Mm5mvsqMz4HhyXzJ9k6x0czFcAGBquo0gnzFdnYJztQd4TR86ckQNTYjQlDiQXy1UhZTl9uSrLstTe3i6/3y+Xy2V3d9ICOYsZ7jwsW71MG2o2DEPP+nbcmON0/8L7+z3uUHxVjR16a3e9quraBtzG+IJMzS0rHPFNxnvCfAWAoeE6inTCfHUGxtke5D1x5MwZOTAlRlPicAKWqwLQjcvlUiAQsLsbaYWcxQxnHrbXbR+RAockvbXvLb1f976mFkzt87hD8U0JBDSlJFf7m9u1rbpJ1Q1B1TS1K9gRiR8byPCoJNev0lEBTS/NVVFO6uy9wXwFgKHhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kBysVwVkKIaGxt1++23q7Gx0e6upA1yFjMceahqrlJVc5VWbls5jD3r38ptK1XVXNXnMZ+MryjHrxMPL9LS4ybo2lMm67pPT9G1p0z5x38na+lxE3Ti4UUpVeCQmK8AMFRcR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgu7uQAUlQgENCpp55KtToB5CxmOPKw8MmFkiQr6pFrBMvhj25ZqRXbVmjTsk29HtNXfC6XS35vemxExnwFgKHhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kBysScHUpbT9+QA7FTxQIUkybLccrmiI9buofb6KnIAAAAAAAAgtdj5WS7LVQEpqq2tTS+88ILa2ga+qbLTkbOY4czDSBY4BtqeKeNsShwAYBeuo0gnzFdnYJztQd4TR86ckQNTYjQlDiQXRQ4gRUWjUdXX1ysaHdkPmdMZOYsZrjzYdZ9ff+2aMs6mxAEAduE6inTCfHUGxtke5D1x5MwZOTAlRlPiQHKxXBVSFstVAYmzLEstHS3qiHYow52h7IxsuVyuhM9T8UCFrKhbLvfI/0+EFXVr8xXvjHi7AAAAAAAAGBw7P8tl43EgRYXDYVVWVmrChAnyevlVHQin5mx73Xat3rFam/Zv0pYDW9QcbNbo9tE64D+gnECOjhh9hCqKKrS4fLGmFkxN4MzufxQ6wknr+ydZ0f7HzZRxNiUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSi+WqgBTV3NysBx54QM3NzXZ3JW04LWfrKtdp2eplWvrcUt2z6R6t37tejaFGBSIBnbLvFAUiATWGGrV+73rds+kenffceVq2epnWVa7r99xfKLlTS0t+pSyrfAQi+acsa7KWlvyqz2NMGWdT4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrgopi+WqgJ7VB+t18+s3a/WO1YM+x+Lyxfr2vG8rP5Df4/O3vbhdlmXpfyuXq9Yz+HYSVRJZrDMnXKmvfXb6iLUJAAAAAACAobHzs1zu5ACANLLt4DYtfW7pkAockrRqxyotfW6pttdt7/H5K08q11UnT9bnp5w5pHYSddaUxbrq5Mkj2iYAAAAAAADSF0UOIEU1NDTopz/9qRoaGuzuStpIlZxZlqXmULPqgnVqDjVruG6Y23Zwm67845Wqaavp87jMcKbO3nW2MsOZfR5X01ajK164osdCx6jMDI3KzNC88UdpjO+IIfV7oEp9R2re+KM0KjOjz+NSZZyHypQ4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILnZrAVJUVlaWlixZoqysLLu7kjbszNknN/9uDDXGn8vz5Q1h8++Y+mC9rltzXZfz9ibkDunNojcVcof6PbYx1Kgvv/hlPXn2kz0uXTVtTK6OzjlXLx7cknCfE1WRs0TTS3P7Pc6U3w1T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILnYkwMpiz05kA7WVa7T8k3LtaFmw4BfM7tktq6quEoLJiwY8Gu+te5bQ16iqi+Lyxfr1gW39vjcyjc/1iMf3ayP2v6StPYnZ56sL03+ti6Yc1jS2gAAAAAAAEBysCcHgG5aW1v1zDPPqLW11e6upI2RzFl9sF7fWvctXf/S9QkVOCRpQ80GXf/S9bph3Q2qD9b3e/y6ynUJFTh8EZ/m1M6RL+Ib8GtW7VildZXrenxuzqQCzR91tbLchQM+XyKy3IWaP+oqzS0b2PlN+d0wJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KLIgcAJGikNv8+ZPmm5UNqZ6Du3Xxvjz+fXJyjY8eN02dH/z/5XNnD2qbPla3Pjv5/OnbcOJUXDe+5AQAAAAAAYD6Wq0LKYrkqpKJDm38PZG+Mgcrz5em+hfdpWsG0bs9tr9uupc8tHba2+vPU2U/1uGdIWyiih1/bpd3NH+qF/T9W0KobclsBV4EWFn1PE3Om6JL5k5Tp8wz5nAAAAAAAABh5LFcFoJuOjg5t3bpVHR0ddnclbSQ7Z4ls/p2IQ5t/d166qqq5SlXNVVq5bWXC5/NEPRrXMk6eaOJFg5XbVqqquarbzzN9Hi2ZNV7jsibrvDG3aZL/xITP3dkk/4k6b8xtGpc1WUtmjU+owGHK74YpcQCAXbiOIp0wX52BcbYHeU8cOXNGDkyJ0ZQ4kFwUOYAUxZqDiTuUs5aWFjWHmlUXrFNzqFnDdcPaza/frJq2mmE51yfVtNXoltdviX+/8MmFWvjkQq3Y8kTC5/JFfZqzf4580YHvyXHIo1tWauGTC3t8rjjXr/OPm6CizAKdNvprOr3g2ypwz0jo/AXuGTq94Ds6bfTXVJRZoPOPm6DiXH9C5zDld8OUOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6Wq0LKYrkqJGJ73Xat3rFam/Zv0pYDW7rcbZHny9MRo49QRVGFFpcv7nE5pv6sq1yn61+6fji73KPfnPYbLZiwQBUPVEiSLMstlyua9HYPOdTepmWbej2mLRTR2m012lrdJEk6GNql95peUW3oAzVGdyji+uf/eHisLOW5y1XsO1xH5p6iQt8kSdKM0lydOr2EJaoAAAAAAAAMYOdnud4RaQUAkmRd5Tot37RcG2o29HpMY6hR6/eu1/q963XPpns0u2S2rqq4SgsmLBhwOyO5+Xfnfo1kgWOg7WX6PFpUMVbTS3P15q46qW6SThp9mSTJsiyFraAiVoc8rgx5XQG5XK74a8cXZGpuWSGbjAMAAAAAAGBYsFwVkKLq6+t10003qb6+3u6upKT6YL2+te5buv6l6+MFjqyOLJ2/83xldWT1+doNNRt0/UvX64Z1N3TZB6M32+u291lEGU5v7XtL79e9L0ka7H12A81Dbwba7uTiHF0w5zBdevwkzSsv1MTCLGX6vMpwZyrgyVOGO1OZPq8mFmZpXnmhLj1+ki6Yc9iQCxym/G6YEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8nFclVIWU5friocDquyslITJkyQ18tNV51tO7hN1625rtv+GO6oW6PbR+uA/4Ci7oHdAVGSWaI7z7hT0wqmdfl5582379t8nx7b9tjQOz5AF02/SCu2rZAVdcs1wDg6G0weOrOibm2+4p2EXyfF7uQIRaKKRiW3W/J53F3u5BgOpvxumBIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNicMJ7PwslyIHUpbTixzo2baD23TlH6/ssufGUOX58nTfwvu6FDoO7YlhJysae/N2ucMj3ubmK94esTYBAAAAAACQ3uz8LJflqoAU1dLSohUrVqilpcXurqSM+mC9rltzXa8FDn/Er+P3HS9/xJ/QeRtDjfryi18e0NJVI+X84t9qacmvlGWVJ/zaweZBkrKsyVpa8quEXzeSTPndMCUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSiyIHkKLcbrfy8/PldvNresjNr9/cbYmqzqKKqtXbqqgSX6Kppq1Gt7x+y1C6N6wyPXkalVGiHB2e8GuHkodcHa5RGSUJv24kmfK7YUocAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kF8tVIWWxXBU6W1e5Tte/dH3S2/nNab/RggkLbF+u6n/PeUn5/gLd+/qrunfnv41Yu1eW/beunHeCRmVmjFibAAAAAAAASG8sVwWgm1AopI0bNyoUCtndlZSwfNPyfo/xRD2a1DRJnqhn0O3cu/neQb92OBVlZ2tUZobmjT9KY3xHJPTaweah1Hek5o0/KuULHKb8bpgSBwDYheso0gnz1RkYZ3uQ98SRM2fkwJQYTYkDyUWRA0hRwWBQa9euVTAYtLsrtttet10bajb0e5wv6tOR9UfKF/UNuq239r2l9+veH/Trh0uWN0uSNG1Mro7OOTeh1w42DxU5SzS9NDeh19jBlN8NU+IAALtwHUU6Yb46A+NsD/KeOHLmjByYEqMpcSC5WK4KKYvlqlDVXCVJum/zfXps22Mj1u5F0y/S5TMvj39/47obtbF244i1P6tklh5c9GD8+5VvfqxHPrpZH7X9JWltTs48WV+a/G1dMOewpLUBAAAAAAAAM7FcFYBuLMtSMBiUk+uQC59cqIVPLhx4gcOSMiIZ0hBTtmLbCo3PGR//mlM6Z2gnTNCcMV3bmzOpQPNHXa0sd+HATpBgHrLchZo/6irNLRvg+W1myu+GKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJBcFDmAFNXQ0KBbb71VDQ0NdnclbWSFs3TOx+coK5w15HN1fvNcVL5oyOdLxCfbm1yco2PHjdNnR/8/+VzZ/b4+kTz4XNn67Oj/p2PHjVN5Uf/nTgWm/G6YEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8nFclVIWU5frioSiai2tlbFxcXyeAa/kXY6q3igIqHjXZZLeaE8NfoaZbmGdml77YuvKTvjnx/6L1u9bED7ggzVcWOO0/0L7+/287ZQRA+/tku7mz/UC/t/rKBV1+s5BpqHgKtAC4u+p4k5U3TJ/EnK9KXHPDPld8OUOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocTsByVQC68Xg8Ki0t5QKeAMtlqcHfMOQChySFIqEu319VcdWQzzkQV868ssefZ/o8WjJrvMZlTdZ5Y27TJP+JvZ5jIHmY5D9R5425TeOyJmvJrPFpU+CQzPndMCUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSiyIHkKKam5t1//33q7m52e6upA1/2K9T9p4if9g/5HP5PL4u30/wz9bkzJOGfN6+TM48WRP8s3t9vjjXr/OPm6CizAKdNvprOr3g2ypwz+h2XF95KHDP0OkF39Fpo7+moswCnX/cBBXnDj1fI8mU3w1T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILm8dncAQM+8Xq/Kysrk9fJrOlBRV1S1gVpFXdEhnyvL23U/izd31Wn+qKtVFXxX7X0sFTVYfleB5o+6Sm/uqtPk4pxejyvO9euS+ZO0dluNVD1HEzPn6GBol95rekW1oQ/UGN2hqKsjngePlaU8d7mKfYfryNxTVOibJEmaUZqrU6eXpNUdHIeY8rthShwAYBeuo0gnzFdnYJztQd4TR86ckQNTYjQlDiQXe3IgZTl9T450ZlmWWjpa1BHtUIY7Q9kZ2XK5XAmfp6q5SpJ047obtbF24zD3snezSmbpwUUPxr+vbWrXw6/tkmVZenX3Zr3v/ZmirtZha89tZWlq+Fs6YeJMuVwuXXr8JBXl9H93xUe1zXpzV52q6triP7MsS2ErqIjVIY8rQ15XoEvuxxdkam5ZYdpsMg4AAAAAAIDUZ+dnuZTAgBTV3t6ut99+W7NmzZLfn/rLCW2v267VO1Zr0/5N2nJgixpDjfHn8nx5OmL0EaooqtDi8sWaWjB1QOccnzNekjSndM6AihzeqFdlTWXambtTYXd4UHFI0pwxc9TQ1hH//u3ddWoPR3SwJSSro1Tl1je0J/BrtUWHfkdHprtA44L/LitcqurGoAqzfdqwq06fPaq039dOLs7R5OIc7W9u17bqJlU3BFXT1K62Nq+iNbvkLZmizEyvSnL9Kh0V0PTS3AEVT1Jduv1u9MaUOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6KHECKCoVC2rhxo4466qiUvoivq1yn5ZuWa0PNhl6PaQw1av3e9Vq/d73u2XSPZpfM1lUVV2nBhAUDamNR+SLds+mefo/zRr0qay5TZXblkIoci8oX6d6/7Ih/v2VvoxraOlTXElJLKKwc/xgdFv2eqjNWqNHz+qDbyYvMU2nwIjW3+tXcHlRTW1gF2T59VNsyoCLHIUU5fhUdHpsjlmXpQH2DHl/xZ31h/gKNzh81qLtoUlm6/G70x5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILparQspiuarUVh+s182v36zVO1YP+hyLyxfr2/O+rfxAfr/HLlu9rM9CynA5bsxxun/h/brtxe2SYkWDt3bVKRy1tK8xqI5IVKOz/fG9LJrcf9cB7x/V6n5/wG1kRadqdHihcqMVkqS2UEQHWtqV4XFrTF5AXrdLD1/9KeOKEwAAAAAAADCTnZ/lukekFQAJi0ajqq+vVzQ69E20h9u2g9u09LmlQypwSNKqHau09Lml2l63vd9jr6q4qt9jXJZLWR1ZclmDLw5cOfPKLt9HLEvhaKwWHI7E/pvh+ef5c6NHqyz0TU1u/4EKQwvlaZ8mRbtuWq5olrIiM1QUXqTJ7T9QWeib8QJH5/MdOn84aikUGfy4p/LcGQ6mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBdFDiBFNTY26o477lBjY2P/B4+gbQe36co/XqmatpphOV9NW42ueOGKfgsdCyYs0KLyRX0ekxnO1OKqxcoMZw6qL4vLF3dbQqvzvW6WYt/0dIdFwBqvoo4lyj54nXL3/US51T9VTvV/Krf6p8rd9xNNCH5VJeFzFbDGd3vtofMdOr8kDeW9O1XnznAxJT5T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrgopy+nLVUWjUTU2NiovL09ud2rUI+uD9Vr63NJhK3B0VpJZoifPfrLPpav6a99luZQZzlSbt02WK7FL2yfbP7RcVTga1Zs7YxuMV9W1yZKl0ryAvJ7uYxKORFXdGOzx/L29pvPrXHJpfEGsQPPgVfPk93oSiuGQVJw7w8mU+EyJAwDswnUU6YT56gyMsz3Ie+LImTNyYEqMpsThBCxXBaAbt9ut/Pz8lLqA3/z6zUkpcEixOzpuef2WPo/JD+TrzjPuVJ4vr8fnLZel1ozWhAsceb483XnGnT0WWDwul7zu2J0W3n8sK9UR6fn8Xo9bEwqyevzqrcDR+XyHzu91u+Tr4/j+pOLcGU6mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBezA0hRTU1Nuuuuu9TU1GR3VyRJ6yrXDXkPjv6s2rFK6yrX9XnMtIJp+uXJv1O2p7Dbc4FwQKdXna5AODDgNrM9hfrlyb/TtIJpXX5+5UnluvKkcl118mQtqhirWRPzNaM0V6WjAjqsMFOzJuYP29dhhZkqHRXQjNJczZqYr0UVY4e06XiqzZ3hZkp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kByUeQAUpTP59Oxxx4rn89nd1ckScs3LR+Rdu7dfG+fz9c2tWvDBwGdU/xLTfKf2OW5sDusnTk7FXaHB9TWJP+JOqf4l9rwQUC1Te1dnhuVmRH/Ki/Klt/rUXGuX163Ww1tYWV43PJ7PUP+yvDEzud1u1Wc65ff61F5UXZiSfuEVJs7w82U+EyJAwDswnUU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GJPDqQsp+/JkUq2123X0ueWjlh7T539lKYWTO3287ZQRA+/tkvN7WE1BTu0tbpJ9XpHB71/Uou7743LO8uOTlNh+HPK19GaUZqr3ECGcvxeXTJ/kjJ93ffBqG1q18Ov7ZJlWXp7d71CkagmF2erJHfgd4z0pqYpqI9qW+TzuDVrYr5cLpcuPX6SinL8Qz43AAAAAAAAMBLYkwNAN8FgUGvXrlUw2PNG1iOhqrlKVc1VWrlt5Yi2u3LbSlU1V3X7+dptNWpuD6stFNbW6iZFopbG+Wbr3NKf6Nzi23Rs5nn6VOOnlRXN7/I6nytH43xH6+ic83Ru8W06t/QnGuebpUjU0tbqJrWFwmpuD2vttp73GynO9Wt8QaZcLpdKR8UKG7sPtCoUjg4pzlA4ql0HWiVJY/MDcrliG48PtcCRCnMnmUyJz5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILoocQIoKh8PauXOnwuGBLb2UDAufXKiFTy7UY9seG9F2V2xboYVPLuzys49qm7W1ukmWZemD2hZFopZyA17NKM2Tz+tWQcZEHZt9nsrCR+gLxb/WpaUP64tj7tOlpQ/rS6X3a2HRDzQn70sqyJgon9etGaV5yg14FYnGzmdZsYLHR7XNPfZpzqQCSdLYUQFl+70KRy29XxMrtAxGpNPrs/1elebFiidzy7rvNZKoVJg7yWRKfKbEAQB24TqKdMJ8dQbG2R7kPXHkzBk5MCVGU+JAcrFcFVIWy1XZr+KBClvb37RsU/zxyjc/VlVdm/bUt2n3wVZ53S4dPSFfPu/ga7WhcFTvVNYrErU0aXSWxo7K1PiCTF0w57Aej1+9aW/8zo/NexrjhZapJbkJ9SMUjur9miY1BcPyuF2aOS5PmT6vZpTmalHF2EHHAwAAAAAAANiB5aoAdBOJRFRdXa1IJGJ3V2xX29Suqro2WZal6obY7YkTR2d1KyxY0YgiLXWyogPLmc/r1qTRWZKkvfVBWZalqro27W9u7/H4U6eXKMfvjRckPG6XmoJhvVNZr5qmoKL91IyjlqWapqDeqayPFzhmlOYq0+dVjt+rU6eXDKjf/TF97pgSnylxAIBduI4inTBfnYFxtgd5Txw5c0YOTInRlDiQXBQ5gBTV1NSku+++W01NTXZ3xTYNbR1qaOvQ27vr1B6OqLoxqNaOsFwuKTfgVXs40vWrrUUt77yg9raW7s/18pUb8Mrlklo7wqpuDKo9HNGGXXU99ifT59GSWeMVyPAoN5ChmePylO2PLXn1UW2L3t5dr10HWnSwJaRgR0ShcFTBjogOtoS060Ds+Y/+sdRWtt+rmePylBvIUCAjdt6eNj0fDNPnjinxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFlOX67Ksiy1t7fL7/fL5XLZ0ge7l6u6ctyTkqQtexvV0NahupaQWkJh5fgzlJ+V0e34cDii/Y0tCssjfSJnpXkBeT0913XrWzvU3N6hbJ9XBdk+jcrM0O8um9Nrv2qb2vXM21Vqbg/H7i5pDGpvfVChSP8bkfs8bo3ND6g0L7bReI7fqyWzxqs4d2ibjXeWCnMnmUyJz5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxOYOdnud4RaQVAwlwulwKBgN3dsJ1lWWppj20udaiI4O9t/wuXS2FX4pc1v9et5vZ/nr/lH8WL3t48i3P9umT+JK3dVqOt1U0aOypTpXkB1bWGVN/aoZZQWG2hiKKW5HbF7gDJ9nmVn5Whgixf/LwzSnN16vSSYbuD4xDT544p8ZkSBwDYheso0gnz1RkYZ3uQ98SRM2fkwJQYTYkDycVyVUCKamxs1O23367Gxkbb+vDC0hf0wtIXdGzxsSPa7qySWXph6QuSpIhlKRyN3XAWjsT+m+HpufiQEQnq5PY35Ld63lOjN4fOd+j84ajV710ZmT6PFlWM1TnHjtP4gky5XC4VZvs1uThHFePzNa98tOZPHq155aNVMT5fk4tzVJgd+1cH4wsytWTWeC2qGDvsBQ4pNeZOMpkSnylxAIBduI4inTBfnYFxtgd5Txw5c0YOTInRlDiQXNzJAaSoQCCgU0891dZq9fic8ZKkOaVztLF244i1O2fMnH+0vV2dF9SzFPumtzssIm6vPvROVDjBS9uh8x06vyRF+195SpI0uThHk4tztL+5Xduqm1TdEFRNU7uCHf/cECuQ4VFJrl+lowKaXpqropzhW5qqJ6kwd5LJlPhMiQMA7MJ1FOmE+eoMjLM9yHviyJkzcmBKjKbEgeRiTw6kLKfvyZFKttdt19Lnlo5Ye0+d/ZSmFkzVbS9uVzga1Zs7YxuBV9W1yZLV6/4a4UhU1Y3BHs/Z154ch17nUuwuC0l68Kp58nsHd5eFZcXuBIlGJbc7tg8H60YCAAAAAADAVHZ+lstyVUCKamtr0wsvvKC2tja7u6JpBdM0u2T2iLR13JjjNLVgavx7j8slrztWIPD+Y1mpjkjPtVlPtEPTwx/Ja3Uk1Oah8x06v9ftkq+XgshAuFwu+b0eZfo88ns9I17gSKW5kwymxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBfLVQEpKhqNqr6+XtGBrpuUZFdVXKUNL21IejtXzrzyn49PKpckleTtUWVdq3bub1Ftc7tK8wI6rDCr22utjqDCEWlq+Ri5MgZ+G+PHB1uV4XWpOMevsqJsTSjISus7L1Jt7gw3U+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KL5aqQsliuKvV8a923tHrH6qSdf3H5Yt264NZuP//rB/v1+o6DOtjSru37mpXhcWvWxHy5h6EQEbUsvb27Xh2RqKaNiW0OPq+8UCceXjTkcwMAAAAAAABOwHJVALoJh8PauXOnwuGw3V2J+86876gksyQp5y7JLNG35327x+emjcmVJBVk+eTzuNURiWp/c3u346xoROGGfbKikW7P9WZ/c7s6IlH5PG4VZPkkSdNLcwcRQepIxbkznEyJz5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILoocQIpqbm7WAw88oObmZru7EpcfyNedZ9ypPF/esJ43z5enO8+4U/mB/B6fL871a3xBplwul0pHxZah2n2gVaFw11sVrVCbWt99WVZoYOs0hsJR7TrQKkkamx+QyxXbeLwoxz/4YFJAKs6d4WRKfKbEAQB24TqKdMJ8dQbG2R7kPXHkzBk5MCVGU+JAcrFcFVIWy1UNnmVZauloUUe0QxnuDGVnZA/rHhPrK9/V/7f2OrVEDg75XNmeQt1x6m/1qQl9j+1Htc16duMeWZalzXsa1dIeVm7AqxmlefK4E48tErW0tbpRTcGwsv1ezRyXJ5fLpSWzxqu8KHuw4QAAAAAAAACOY+dnuWw8Dhhie912rd6xWpv2b9KWA1vUGGqMP5fny9MRo49QRVGFFpcv1tSCqYNup7apXRs+COic4l/qr3X/o13tfx30uSb5T9SJBf+iDR8ENHlUu4pze7+DYnJxjmaU5mprdZMOL87W5j2xAsXW6kZNLcmVzzvwG9NC4ajer2lSUzAsj9ulw4tjRaAZpbkUOAAAAAAAAIA0wnJVQIpqaGjQT3/6UzU0NPR53LrKdVq2epmWPrdU92y6R+v3ru9S4JCkxlCj1u9dr3s23aPznjtPy1Yv07rKdQn3qS0U0TNvVynYEVFHKKC8pst1WOjflB2dltB5sqPTdFjo35XXdLk6QgEFO2LnbQv1vZfGqdNLlOP3KtPn1YzSXHncLjUFw3qnsl41TUGFg81qXP+Eou0tPb4+almqaQrqncr6eIFjRmmuMn1e5fi9OnV6cvYbGWkDnTvpypT4TIkDAOzCdRTphPnqDIyzPch74siZM3JgSoymxIHkYrkqpCynL1fV0dGhDz/8UFOmTFFGRka35+uD9br59Zu1esfqQbexuHyxvj3v273uhfFJqzft1dbqJrWFwtq8p1GRqKXcgFdTS3LVYlXqw7Y/a3/oA+3v+Egh659rJfpcOSrKmKwi3+Gaknmysl0TutxJMXNcXrxwsahibJ99qG1q1xNvVSrYEVFbKKwPalvU0h7+RzuWSl31Cowep6yAX26XS1HLUmsooqZgh/Y3h9QRie3jke336vDibGX6vApkeHT+cRP6vJMknfQ3d9KdKfGZEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2Jwwns/CyXIgdSltOLHH3ZdnCbrltznWraaoZ8rpLMEt15xp2aVtD33RiJ7IlhWZbCVlARq0MeV4a8rkC3PUF62xPjnGPHaXJxTp99qW1q1zNvV6m5PSzLslTdGNTe+qBCkWifr5Mkn8etsfkBlebF+pTj92rJrPHGFDgAAAAAAACAkWbnZ7ksVwWkqNbWVj3zzDNqbW3t8vNtB7fpyj9eOSwFDkmqaavRFS9coe112/s87s1ddZKkvQ1BtbSH5XW7NLUkt8dNv10ulzLcmQp48pThzuxx03NPp9e3tIdV3Rjs0k5finP9umT+JM0ozZXL5dLYUZmaNTFf00ZnaHLLe8r1RnSoW26XlO33qCTXr2ljcjRrYr7GjsqM78FxyfxJxhU4eps7pjAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEgudh4HEgj9cF6Xbfmum57bgxVY6hRX37xy3ry7Cd7XLqqtqldVXVtsbsmGmLFiImjsxLa7LsnPq9bk0Zn6aPaFu2tD6o0L6Cqujbtb25XUU7fhYdMn0eLKsZqemmu3txVp6q6NuVn+dUeyFDR2FFyZ/T++vEFmZpbVsgm4wAAAAAAAECaY7kqpCyWq+ruW+u+NaQ9OPqzuHyxbl1wa/z7hrYOSdL6jw5ow+46HWwJ6cPaZmV43Dp6wii5e7hDI1FRy9LfKxvUEYlqSnGOCrN9mj2xQJ+aPFqjMge+1uL+5nZtq25SdUNQNU3tCnb8cxPzQEbsTo7SUQFNL83tt4ACAAAAAAAAYODs/CyXOzmAFPXJjZXWVa5LaoFDklbtWKUzJ5+pBRMWSJLu/csOSdKWvY1qaOtQXUtILaGwcvwZeufjhmFrt761Q83tHWpqC6sg26ePalv07p5G/ccZfe8T0llRjl+jJrn14Yf79fmKybLcHkWjktsd24ejpyWzTGX6plymxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBd7cgAp6pNrDi7ftHxE2r13871dvrcsSy3tYUmKb+zt72WZqnAkqsq61h6/wn1sCn7ofIfO3/KPDcUTdShnbW1t8ns9yvR55Pd6HFXgkMxfr9KU+EyJAwDswnUU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GK5KqQslqv6p+1127X0uaUj1t5TZz+lqQVTdduL2xWORvXmzthm4FV1bbJkqTQvIK+ne6EjHInGNxD/pN5e0/l1Lrk0viBTkjSnrEDf/NyMYYoIAAAAAAAAQLLY+Vkud3IAKayquUpVzVVauW3liLa7cttKVTVXSZI6l0Etxb4Z7jsjDp3v0Pk/2S4AAAAAAAAA9IQiB5Ci6uvrdc8v7tF5K87TY9seG9G2V2xboYVPLpQkda5nuPSPYsQwVyAOne/Q+T/Z7kDV19frpptuUn19/TD1LD2ZngdT4jMlDgCwC9dRpBPmqzMwzvYg74kjZ87IgSkxmhIHkosiB5CicnJy9MqYVxT09Lz800jxuFzyumMVB68n9t+OyPAWOQ6d79D5vW6XPIOocuTk5GjZsmXKyckZ1v6lG9PzYEp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kByee3ugKlCoZAee+wxPfroo3r33Xe1b98+FRQUqLy8XOedd54uv/xyFRUVpXTbO3fuVHl5eUJtT5kyRR988MFgu45OvF6vajNrbe3DlSfFxr8kb48q61q1c3+LapvbVZoX0GGFWcPWzscHW5Xhdak4x6+yomxNKMjS548Zl/B5vF6vysrKhq1f6cr0PJgSnylxAIBduI4inTBfnYFxtgd5Txw5c0YOTInRlDiQXNzJkQRbt27Vpz71KV122WVavXq1du/erfb2dlVXV+tvf/ubvvnNb+qoo47SqlWrjGobw6ulpUXH7zte/ojftj6MyszQqMwMlRdly+/1qDjXL6/brYa2sDI8bvm9niF/ZXhi5/O63SrO9cvv9ai8KFujMjMS7m9LS4tWrFihlpaWJGQjfZieB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSizs5hlllZaVOO+007dmzR1JsQ+UFCxZoypQpqq2t1Zo1a9TW1qaamhotWbJEL7zwgj7zmc+kfNu5ubm67LLL+j2uuLh4SDHgn9xut1q9rYoqandXNG1Mrl7fcVAFWT75PG6FIlHtb25XSW5gyOfe39yujkhUPo9bBVk+SdL00txBncvtdis/P19ut7Prt6bnwZT4TIkDAOzCdRTphPnqDIyzPch74siZM3JgSoymxIHkclnDvYOwwy1YsEB//vOfJUmTJk3Ss88+q2OOOSb+/P79+3XRRRfppZdekiQVFhbqww8/VH5+fsq13Xm5qkmTJmnnzp1D7mMi3n33Xc2cOTP+/ebNm3XUUUeNaB/sVvFAha3tb1q2Kf545Zsfq6quTXvq27T7YKu8bpeOnpAvn3fwbzKhcFTvVNYrErU0aXSWxo7K1PiCTF0w57Dh6D4AAAAAAACAEWDnZ7mUwIbRqlWr4kUGn8+n559/vkuRQZKKior07LPPavLkyZKkgwcP6mc/+1lat43kCIVC+tX0X+n5zz+vY4uPHdG2Z5XM0gtLX+jyszmTCiRJY0cFlO33Khy19H5NkyLRwdVJI51en+33qjQvdlfI3LLCQfc7FApp48aNCoVCgz6HCUzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJRZFjGP3mN7+JP162bJkqKnr+V/jZ2dn60Y9+FP/+7rvvVjgcTtu2kRzBYFDvvPaOCr2FmlM6Z0TbnjNmjsbnjO/ys8nFOZpRmiuXy6XDi7PlcbvUFAxra3WjQuHEltQKhaPaWt2opmBYHnfsfC6XSzNKc1VelD3ofgeDQa1du1bBYHDQ5zCB6XkwJT5T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrmqYNDc3q6ioSO3t7ZKkV199Vccff3yvxweDQRUXF6u5uVmS9NJLLw16b45ktc1yValje912LX1u6Yi199TZT2lqwdRuP28LRfTwa7vU3B5WU7BDW6tjd2J43C5NGp2lohy/3C5Xr+eNWpb2N7dr14HW+OtmlOYqN5ChHL9Xl8yfpEyfJ5mhAQAAAAAAABhmLFdlgFdffTVeZMjOztbcuXP7PD4QCHQpRLz88stp2TaSx7IsBYNBWZalaQXTNLtk9oi0e9yY43oscEhSps+jJbPGK5DhUW4gQzPH5Snb71Ukaumj2ha9vbteuw606GBLSMGOiELhqIIdER1sCWnXgdjzH9W2xJeomjkuT7mBDAUyYucdaoGjc86czPQ8mBKfKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJBcFDmGyZYtW+KPKyoq5PV6+33N7Nn//NC68+tTse1wOKwXX3xRt9xyi77+9a/ru9/9rm677Tb9+c9/jhdYMLwaGhp06623qqGhQZJ0VcVVI9LulTOv7PP54ly/zj9ugnL8XmX6YoWKSaOz5PO41RGJam9DUNv3NWnjx/XasLtOGz+u1/Z9TdrbEFRHJCqfx61Jo7M0c1yeMn1e5fi9Ov+4CSrO9Q+575/MmVOZngdT4jMlDgCwC9dRpBPmqzMwzvYg74kjZ87IgSkxmhIHkqv/T8MxINu2bYs/njRp0oBeM3HixPjjrVu3pnTbVVVV+uxnP9vjcwUFBbruuut04403KicnZ0Dto3+5ubm65pprlJubK0laMGGBji34tDbW/V/S2jy24NNaMGFBv8cV5/p1yfxJWrutRlurmzR2VKZK8wKqaw2pvrVDLaGw2kIRRS3J7YrdAZLt8yo/K0MFWT65/rGk1YzSXJ06vWTYlqj6ZM6cyvQ8mBKfKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJBcFDmGyYEDB+KPx4wZM6DXlJaWxh8fPHgwLduWpLq6Ov3kJz/RE088oeeee07Tpk0b0vkQ4/F4uozTR7XNOtK/TNvd76g1OrQx60mWu1BH+pfpo9pmTS7uv1iV6fNoUcVYTS/N1Zu76lRV16bCbL8Ks/u/I2N8QabmlhUOaZPxnnwyZ05leh5Mic+UOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6WqxomhzbxlqTMzMwBvabzcZ1fn0pt5+bm6vLLL9eKFSu0bds2NTc3q729XR9//LEef/xxnX766fFjt23bpoULF6q2tnYQUfQuEAjE7xCJRCKqr6+Pr8PX2NioUCgkSWpra1NLS4uk2PJa9fX18XM0NDSoo6NDktTa2qrW1lZJUkdHR5fb3err6xUOhyVJLS0tamtrkySFQiE1NjZKiq0FWF9fr0gkIimWv2AwKElqb29XU1OTJCkajaq+vl7RaFSS1NTUFF/aKxgMxvPeW0zNzc1avny5ampqJEmvf1QrX8ilWb5vym1lKTOcKU80dgeEL+KTL+KTJHmiHmWG/zm+WR1Zckdjv+r+iF8ZkYxux7mjWZrr+or8ytKbu+oSiml8XoYumHOYLpg1RseU+jWxMEt+jxQNNsdjyogGNT4vQ/PKC/WFY0t05hGxAsdwj9PBgwd1zz33qLm5ecTGSUq9udfY2Kh77rkn/joTYuo8Ts3NzbrnnnviBd50jcn0cSImYiImYkp2TPX19fH3fVNiMnGciKkh3rd77rkn/joTYjJxnIYaU3Nzs+69915VV1cbE1M6jFNNTY2WL1+u5uZmY2JK9jjt27dP999/vxoaGoyJif+P6D5Oe/bs0b333qvm5ua0jqmqqkr333+/mpubjRwnE2OyA0WOYXJowkiSz+cb0Gv8/n/+i/dDEzOV2h47dqz27Nmj++67TxdeeKGmTZum7Oxs+Xw+TZgwQeeff75efPFF3X333fHlh3bs2KFvf/vbg46lJ/Pnz9f5558vSaqtrdUdd9wR/8W799579d5770mSXnnlFT3//POSpMrKSt1xxx3xc9x555368MMPJUl/+tOf9Kc//UmS9OGHH+rOO++MH3fHHXeosrJSkvT888/rlVdekSS99957uvfeeyXFLgp33HFHvJjzxBNP6LXXXpMkvf3223rkkUckxX7x77jjjviF5pFHHtHbb78tSXrttdf0xBNP9BmT1+uVZVlas2aNapva9fHHlWre8LxamopVFvqGPrvnsxrTFrtz5+iDR+vog0dLksa0jdEZVWfEY1pctVij20dLkmbvn60j64+UJE1omaBT954qv6tAU9r/Q8UfblaktUFVdW169LGVCcf0/ua3tfut/9PS4ybo3CNy1bzheV0xf4Ku+/QUhbe8rGn+Bp14eJE2v/Va0sbpww8/1P79++X1ekdsnKTUm3ttbW2qqqqK/26bEFPncfJ6vaqvr4/3NV1jMn2ciImYiImYkh1TTU2Nqqqq4vvRmRCTieNETLGYvF6vqqqq4v+AyYSYTBynocbk9Xrl8/n09NNPGxNTOozTmjVrZFmWvF6vMTEle5z+8Ic/qKysTPX19cbExP9HdB+nBx98UHl5efJ6vWkd0z333KOysjJ5vV4jx8nEmGxhYVgsXrzYkmRJsm644YYBvWbVqlXx1+Tk5KRl24d85zvfiZ/P4/FY1dXVQz7n5s2bLUlWIBCwcnJyrM2bN1vhcNiqq6uzotGoZVmW1dDQYLW3t1uWZVmtra1Wc3OzZVmW1dHRYdXV1cXPVV9fb4VCIcuyLKulpcVqaWmxLMuyQqGQVV9fHz+urq7O6ujosCzLspqbm63W1lbLsiyrvb3damhosCzLsqLRqFVXV2eFw2HLsiyrqanJamtrsyzLsoLBoNXY2GhZlmVFIhGrrq7OikQilmVZVmNjoxUMBi3Lsqy2tjarqanJsiyrz5iqDzRYe2rrrD9u3mvd/L+brG898lfrvN/+xbrw7let7z/5f9bZj1xrzbx/pjV7+Wxr9vLZ1sz7Z1rH3HuMNfeeudbM+2daM++fac37n3nW0fcebc28f6Z13PLjrFnLZ8WPO/fB66zvP/+adeFdf7Uu/PWL1jcf22Ddsuo96/k3P7SqDzYmJSYTx4mYiImYiImYiImYiImYiImYiImYiImYiImYiMnJMR36LPfQ1+bNm62R4rKsf9xvgiG58MILtXLlSknSV77ylQFVr5566iktXbpUUmyPjL1796Zd24c0NzerpKQk/i+SH3roIV1yySVDOue7776rmTNnxr/fvHmzjjrqqCGdM520t7frthV/lK9kirbWtqmhrUN1LSG1hMLK8WcoPyu27FST++864P2jWt3vD/jcWdGpGh1eqNxohSSpvrVDze0dyvZ5VZDt06jMDB0xNk//cUZ67a/S3t6ut99+W7Nmzepyt5LTmJ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoShxPY+Vkuy1UNk9GjR8cf79u3b0CvObROpyQVFhamZduH5OTk6FOf+lT8+y1btgz5nE4XCoXUUbND0UiHWtpja+6FIrG18vzef/7q5kaPVlnom5rc/gMVhhbK0z5NimZ1PVk0S1mRGSoKL9Lk9h+oLPTNeIGj8/kOnb+lPax0rH+GQiFt3Lgxvj6gU5meB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSy2t3B0wxffr0+ONdu3YN6DW7d++OP54xY0Zatt3Z2LFj44/3798/LOd0stzcXOUcu0jhaFThaOwOmXDkHxt5e1zdjg9Y41UUXqJwY1CWLMnVLkthueSVLL/G5mXK6+m5rnnofIfOH45aiqRhkSM3N1fXXnut3d2wnel5MCU+U+IAALtwHUU6Yb46A+NsD/KeOHLmjByYEqMpcSC5uJNjmBxxxBHxx5s2bYrvdt+XDRs29Pj6dGq7s5aWlvjj7OzsYTmnk0WjUUWDzYpGo/GfWYoVHg5t9N4bl1xyWQG5rRy5rIBc6uf4f5zv0PklKQ1rHIpGo6qvr++SMycyPQ+mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBdFjmFywgknxNeFa2lp0Ztvvtnn8e3t7fHd7SXpM5/5TFq23dnbb78dfzxu3LhhOaeTNTY2qnnD81KoLf6zQ8WK4V5K6tD5OhdD+qmjpKTGxkbdcccdamxstLsrtjI9D6bEZ0ocAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kFxuPD6MzzzxTq1atkiRdc801uuuuu3o99tFHH9UXv/hFSbE9Mfbt2yevd/Crh9nZtiStWbNGZ5xxRvz7N954Q3PmzBnSOZ2+8Xg0GtVtf9go+TK1YXeDwlFL+xqD6ohENTrbr0yfp9trwpGoqhuDPZ6vNC/Q63JVbaGIDrS0K8Pj1pi8gLxul46bVKCvfXZ6j8enqmg0qsbGRuXl5cntdm4N1/Q8mBKfKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJzAzs9yKXIMoz/84Q8666yzJEl+v19vvfVWjwPZ2tqqY445Rh988IEk6cYbb9Qtt9ySUm0f2szH5/P123Ztba2OP/54ffjhh5Jiy19t3rx5yBcepxc5JKmhrUOS9Pw7e1RZ16qd+1tU29yu0ryADivM6ufVA/fxwVZVNwZVnONXWVG2JhRk6fPHjNOozIxhawMAAAAAAACAmez8LJfy1zA688wzdfLJJ0uKLQl11lln6e9//3uXYw4cOKAlS5bEiwyFhYW64YYbejzfzp075XK54l/333//iLW9Z88eTZkyRT/72c963czcsiz94Q9/0Ny5c+MFDpfLpZ///OdUVodBU1OTHn1gudzhoMqLsuX3elSc65fX7VZDW1gZHrf8Xs+QvzI8sfN53W4V5/rl93pUXpSdlgWOpqYm3XXXXWpqarK7K7YyPQ+mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJNfQ1ihCN7///e81b9487d27Vzt37tSxxx6rU045RVOmTFFtba3WrFmj1tZWSZLX69XKlSuVn5+fkm1XVlbqhhtu0A033KCysjJVVFSoqKhIGRkZqq2t1fr167Vnz54ur/nZz36mxYsXD0s8Tufz+XTsscfK5/Np2hifXt9xUAVZPvk8boUiUe1vbldJbmDI7exvbldHJCqfx62CrNidO9NLc4d8Xjt0zpmTmZ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KL5aqSYOvWrbr44ou1cePGXo8pLi7WfffdpzPPPLPXY3bu3Kny8vL49/fdd58uv/xyW9ruz/jx4/Xb3/5WZ5999oBf0x+Wq+pq5Zsfq6quTXvq27T7YKu8bpeOnpAvn3fwd82EwlG9U1mvSNTSpNFZGjsqU+MLMnXBnMOGsecAAAAAAAAATMZyVYaZMWOG1q9frwceeEALFy7UYYcdJp/Pp5KSEs2fP18/+9nP9N577/VZZLC77UmTJmnTpk363e9+p8svv1xz585VeXm58vLy5PV6VVhYqKOOOkqXX365HnvsMe3YsWNYCxyQgsGg1q5dq2AwtpH4nEkFkqSxowLK9nsVjlp6v6ZJkejg6pSRTq/P9ntVmhe7K2RuWeHwBGCDT+bMqUzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSeLz+XTZZZfpsssuG/Q5ysrKNJgbbYajbZfLpZkzZ2rmzJn6l3/5l0GfB4MXDoe1c+dOzZkzR5I0uThHM0pztbW6SYcXZ2vznkY1BcPaWt2oqSW5Cd3REQpH9X5Nk5qCYXncLh1enC2Xy6UZpbkqL8pOVkhJ98mcOZXpeTAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEguViuCimL5aq6awtF9PBru9TcHlZTsENbq2N3YnjcLk0anaWiHL/cLlevr49alvY3t2vXgdb462aU5io3kKEcv1eXzJ+kTJ9nBCMCAAAAAAAAkO5YrgpAN5FIRNXV1YpEIvGfZfo8WjJrvAIZHuUGMjRzXJ6y/V5FopY+qm3R27vrtetAiw62hBTsiCgUjirYEdHBlpB2HYg9/1FtS3yJqpnj8pQbyFAgI3bedC9w9JQzJzI9D6bEZ0ocAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kF0UOIEU1NTXp7rvvVlNTU5efF+f6df5xE5Tj9yrTFytUTBqdJZ/HrY5IVHsbgtq+r0kbP67Xht112vhxvbbva9LehqA6IlH5PG5NGp2lmePylOnzKsfv1fnHTVBxrt+mSIdPbzlzGtPzYEp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kBysVwVUpbTl6uyLEvt7e3y+/1y9bAEVVsoorXbarS1uil+fF1rSPWtHWoJhdUWiihqSW5X7A6QbJ9X+VkZKsjyxc83ozRXp04vSfs7OA7pL2dOYXoeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHE5g52e5bDwOpCiXy6VAINDr85k+jxZVjNX00ly9uatOVXVtKsz2qzC7/zsyxhdkam5ZYVpvMt6T/nLmFKbnwZT4TIkDAOzCdRTphPnqDIyzPch74siZM3JgSoymxIHkYrkqIEU1Njbq9ttvV2NjY5/HTS7O0QVzDtOlx0/SvPJCTSzMUiCj650ZgQyPJhZmaV55oS49fpIumHOYcQUOaeA5M53peTAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEgubiTA0hRgUBAp5566oCr1UU5fhUdHruLw7IshSJRRaOS2y35PG5H3NKXaM5MZXoeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgu9uRAynL6nhwAAAAAAAAAkA7s/CyX5aqAFNXW1qYXXnhBbW1tdnclbZCzGNPzYEp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kByUeQAUlQ0GlV9fb2i0ajdXUkb5CzG9DyYEp8pcQCAXbiOIp0wX52BcbYHeU8cOXNGDkyJ0ZQ4kFwsV4WUxXJVAAAAAAAAAJD6WK4KQDfhcFg7d+5UOBy2uytpg5zFmJ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KLIgeQopqbm/XAAw+oubnZ7q6kDXIWY3oeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgulqtCymK5KgAAAAAAAABIfSxXBQAAAAAAAAAAkCCKHECKamho0E9/+lM1NDTY3ZW0Qc5iTM+DKfGZEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8lFkQNIUVlZWVqyZImysrLs7kraIGcxpufBlPhMiQMA7MJ1FOmE+eoMjLM9yHviyJkzcmBKjKbEgeRiTw6kLPbkAAAAAAAAAIDUx54cALppbW3VM888o9bWVru7kjbIWYzpeTAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEguShyAAAAAAAAAACAtMRyVUhZLFcFAAAAAAAAAKmP5aoAdNPR0aGtW7eqo6PD7q6kDXIWY3oeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEguihxAimLNwcSRsxjT82BKfKbEAQB24TqKdMJ8dQbG2R7kPXHkzBk5MCVGU+JAcrFcFVIWy1UBAAAAAAAAQOpjuSoAAAAAAAAAAIAEUeQAUlR9fb1uuukm1dfX292VtEHOYkzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFlOX64qHA6rsrJSEyZMkNfrtbs7aYGcxZieB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEocT2PlZLkUOpCynFzkAAAAAAAAAIB2wJweAblpaWrRixQq1tLTY3ZW0Qc5iTM+DKfGZEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8lFkQNIUW63W/n5+XK7+TUdKHIWY3oeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgulqtCymK5KgAAAAAAAABIfSxXBaCbUCikjRs3KhQK2d2VtEHOYkzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJRZEDSFHBYFBr165VMBi0uytpg5zFmJ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KL5aqQsliuCgAAAAAAAABSH8tVAejGsiwFg0FRhxw4chZjeh5Mic+UOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6KHECKamho0K233qqGhga7u5I2yFmM6XkwJT5T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrgopy+nLVUUiEdXW1qq4uFgej8fu7qQFchZjeh5Mic+UOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocTmDnZ7neEWkFGIT29vYu33/wwQc29cReBw4csLsLaYecxZieB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEofJPvnZ7Sc/200qC0hRzzzzjCXJsV85OTnW5ZdfbuXk5Njel3T5ImfOyIMp8ZkSB1988cWXXV9cR/lKpy/mqzO+GGfyni5f5MwZOTAlRlPicOLXM888M2KfI7NcFVLWs88+qyVLltjdDQAAAAAAAABAAp555hmdc845I9IWG48DAAAAAAAAAIC0xJ0cSFn19fV65ZVX4t8fdthh8vv9NvYIAAAAAAAAAPBJ7e3t+vjjj+Pfn3LKKcrPzx+RtilyAAAAAAAAAACAtMRyVQAAAAAAAAAAIC1R5AAAAAAAAAAAAGmJIgcAAAAAAAAAAEhLFDkAAAAAAAAAAEBaosgBAAAAAAAAAADSEkUOAAAAAAAAAACQlihyAAAAAAAAAACAtESRAwAAjLi//e1vWrp0qcaMGaNAIKDy8nJdd911qqqqsrtrAAAAAADYqrq6Wg8//LC++tWv6qSTTlJOTo5cLpfKysrs7lpKclmWZdndCQAA4Bz33HOPrrnmGkWjUZWWlmr8+PHavn27mpqaVFBQoP/7v//TMcccY3c3AQAAAACwxe23367/+I//6PbzSZMmaefOnSPfoRTHnRwAAGDEbNq0Sddee62i0ah+8YtfqKqqSm+++ab27NmjCy64QHV1dTr33HPV3t5ud1cBAAAAALBFXl6eTjvtNN1www1auXKlbr/9dru7lNK4kwMAAIyY888/X08++aQuuOACPfbYY12ea2tr04wZM7R7927deeeduvbaa23qJQAAAAAAqeOJJ57QF77wBe7k6AV3cgAAgBHR0tKiP/zhD5Kk66+/vtvzmZmZuuKKKyRJK1asGNG+AQAAAACA9ESRAwAAg0QiEf3973/X8uXL9eUvf1lz5syRz+eTy+WSy+XSqaeeOuhzh0IhPfTQQ1q8eLEmTZqkQCCgsWPH6oQTTtDPf/5z7d+/v8/Xv/322woGg/L5fJo/f36Pxxzq3/r16xWNRgfdVwAAAAAAepPKfzsjcV67OwAAAIbHM888oy996UtqbW0d9nNv3bpVF198sTZu3Njl59XV1aqurtbf/vY3/dd//Zfuu+8+LV68uMdzbN++XZI0ceJE+Xy+Ho85/PDDJUnBYFC7du1SeXn58AUBAAAAAHC8VP/bGYnjTg4AAAxRX1+flP9Jq6ys1GmnnRb/nzSXy6VTTjlFV155pT7/+c8rMzNTklRTU6MlS5bo5Zdf7vE8Bw8elCSNHj2617YKCwvjj+vq6oYpAgAAAAAAYlL9b2ckjjs5AAAwzJgxYzR37tz41x//+Efdcccdgz7fF7/4Re3Zs0eSNGnSJD377LM65phj4s/v379fF110kV566SV1dHToC1/4gj788EPl5+d3OU9bW5sk9XoXhyQFAoH442T8TycAAAAAAFLq/u2MxFHkAADAEAsXLtSuXbs0ceLELj9fv379oM+5atUq/fnPf5YUK048//zzqqio6HJMUVGRnn32WR199NH66KOPdPDgQf3sZz/TzTff3OW4Q/9qJRQK9dpeMBiMP87Kyhp0vwEAAAAA6Emq/+2MxLFcFQAAhigtLe32P2lD9Zvf/Cb+eNmyZd3+J+2Q7Oxs/ehHP4p/f/fddyscDnc5pqCgQJJ04MCBXts7tKRV5+MBAAAAABguqf63MxJHkQMAAPSoublZL730Uvz7K664os/jly5dqpycHEmxYsW6deu6PD99+nRJ0u7du3u9m+P999+XFFu2atKkSYPuOwAAAAAAI2G4/3ZG4ihyAACAHr366qtqb2+XFPvXJnPnzu3z+EAgoOOPPz7+/Sc3UZs1a5YCgYBCoZBee+21Hs/xyiuvSJLmzZsnt5v/TQEAAAAApLbh/tsZiePTAwAA0KMtW7bEH1dUVMjr7X8rr9mzZ/f4ein2P3uLFy+W1PVW3kPa2tp03333SZIuvPDCQfUZAAAAAICRNNx/OyNxFDkAAECPtm3bFn880KWjOq9runXr1m7Pf//735fH49HKlSv1y1/+UtFoVFLs9t7LL79cu3fv1qRJk3TVVVcNsfcAAAAAACRfMv52RmIocgAAgB513iB8zJgxA3pNaWlp/HHnTcQPOeaYY/Sb3/xGbrdbX//61zV+/HjNmTNH48aN08qVK5Wfn6+nn35afr9/6AEAAAAAAJBkyfjb+eOPP1ZRUVH868orr+zx5//+7/8+xN6bgSIHAADoUXNzc/xxZmbmgF7T+bjOr+/smmuu0Z///GctWbJEkUhEmzZtUkFBga699lpt2rRJs2bNGlrHAQAAAAAYIcn42zkSiejAgQPxr6amJklSNBrt8edO1/8CYQAAwJGCwWD8sc/nG9BrOt+B0dbW1utxJ5xwgp5++unBdw4AAAAAgBSQjL+dy8rKZFnW0DvnENzJAQAAehQIBOKPQ6HQgF7T3t4efzzQf8ECAAAAAEC64m9n+1HkAAAAPcrJyYk/7uuujM46H9f59QAAAAAAmIi/ne1HkQMAAPRo9OjR8cf79u0b0Guqq6vjjwsLC4e9TwAAAAAApBL+drYfRQ4AANCj6dOnxx/v2rVrQK/ZvXt3/PGMGTOGvU8AAAAAAKQS/na2H0UOAADQoyOOOCL+eNOmTQqHw/2+ZsOGDT2+HgAAAAAAE/G3s/0ocgAAgB6dcMIJ8vv9kqSWlha9+eabfR7f3t6u1157Lf79Zz7zmaT2DwAAAAAAu/G3s/0ocgAAgB7l5OTotNNOi39///3393n8U089paamJkmxNUUXLFiQzO4BAAAAAGA7/na2H0UOAADQq+uuuy7++P7779e7777b43Gtra36/ve/H//+X//1X+X1epPePwAAAAAA7MbfzvaiyAEAAHp15pln6uSTT5YUu6X2rLPO0t///vcuxxw4cEBLlizRBx98ICn2L1FuuOGGEe8rAAAAAAB24G9ne7ksy7Ls7gQAABgeixcv1p49e7r8rLq6Wvv27ZMkZWdn6/DDD+/2ulWrVmncuHE9nrOyslLz5s3T3r17JUkul0unnHKKpkyZotraWq1Zs0atra2SJK/XqxdeeKHLrboAAAAAAKQS/nY2C0UOAAAMUlZWpl27diX8uh07dqisrKzX57du3aqLL75YGzdu7PWY4uJi3XfffTrzzDMTbh8AAAAAgJHC385mYcEvAADQrxkzZmj9+vVasWKFHn30Ub377rvat2+f8vPzNXnyZJ133nm64oorVFRUZHdXAQAAAACwBX8724M7OQAAAAAAAAAAQFpi43EAAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAMFhlZaVycnLkcrn0la98pcdjfvjDH8rlcsnlcumHP/zhyHbQJu+++648Ho9cLpd+8pOf2N0dAAAADBJFDgAAAMBAp556avxD60S/Lr/8cru7j2H0jW98Qy0tLcrNzdX3vvc9u7szIN/4xjfi87GsrEyWZQ3qPAcPHpTf74+f6/77748/d9RRR+myyy6TJN188836+OOPh6PrAAAAGGEUOQAAAADAUK+//roee+wxSdL111+v4uJim3s0MMuWLYs/3rVrl1555ZVBnWfFihUKhUKSpOzsbJ1//vldnv/ud78rj8ej1tZWff/73x98hwEAAGAbr90dAAAAAJBcc+fO1bx58wZ8/Pz585PYG4yk7373u5Ikv9+vr371q/Z2JgEVFRWaNWuW3n77bUnSgw8+qFNPPTXh8zz44IPxx0uXLlVOTk6X5w8//HAtXbpUK1eu1EMPPaQbb7xR06dPH1LfAQAAMLIocgAAAACGW7x4sWP2WcA/vfXWW1qzZo0k6fzzz9eYMWNs7lFili1bFi9yPPnkk/rNb36jzMzMAb9++/btWr9+fZfz9eTLX/6yVq5cqUgkop///Of6n//5n6F1HAAAACOK5aoAAAAAwEC33357/PHVV19tX0cG6Ytf/KIyMjIkSY2NjXrmmWcSen3nuzgmTpyoT3/60z0ed+qpp+rwww+XJD388MPav3//4DoMAAAAW1DkAAAAAADDNDQ06IknnpAklZaWasGCBTb3KHHFxcVatGhR/PvORYv+WJalhx9+OP79pZdeKpfL1evxX/jCFyRJwWBQjz766CB6CwAAALtQ5AAAAAAwIGVlZXK5XHK5XNq5c6ckqbKyUt/73vd0zDHHKD8/X9nZ2ZoxY4b+/d//Xbt27Uro/B0dHXrooYd0wQUXaPLkycrNzVV2drbKy8t18cUX6+mnn5ZlWX2eY+3atfE+dt7DYdWqVbr44os1depU5eTkyOVydbnT4ZC2tjbddtttOvHEE1VUVKTMzExNmTJFF198sV566aU+c3HIOeecE3/ulltuGXD8P/jBD+KvO++88wb8up489dRTCgaDkqSzzz5bbvfw/en3zjvvaOzYsfG+fv7zn1dbW1uPx7700ku69tprddRRR6mwsFB+v1/jxo3T5z73Of33f/93r687pPMSUy+++KKqq6sH1MdXXnmly/y77LLL+jz+3HPPjT/uXBwBAABA6mNPDgAAAACD8swzz+jyyy9XQ0NDl59v27ZN27Zt0/Lly/X444/rzDPP7Pdca9eu1dVXX60PP/yw23M7d+7Uzp07tWLFCs2fP19PPPGExo8fP6A+NjQ06IorrtDTTz/d77GbNm3Sueee260PH330kT766COtWLFC11xzjX7961/3eZ5/+Zd/0XPPPSdJuu+++/Ttb3+737aj0ajuv//++PdDXV7q+eefjz/+zGc+M6RzdbZu3TqdffbZ8TG/7LLLtHz5cnm9Xf+0/Pjjj3XZZZdp7dq13c6xd+9e7d27V3/60590yy23aMWKFTr55JN7bO+ss85SYWGhDh48qEgkot///vf62te+1m8/O9/1cfzxx2vatGl9Hn/cccdp1KhRamho0BtvvKGamhqVlJT02w4AAADsR5EDAAAAQMLWrFmja6+9VpFIRBMnTtTxxx+vvLw87dixQ2vXrlU4HFZbW5suuOACbd68WeXl5b2e6/HHH9eXvvQldXR0SJIyMzM1f/58lZWVye12a/v27frb3/6mcDis1157Tccff7zeeOONfjfStixLl1xyif73f/9XLpdLc+bM0ZFHHinLsrR58+Yuyxd98MEHOu2001RbWxv/WUVFhY499li53W5t3LhR77zzju6++27l5ub22e6iRYt02GGH6eOPP9b777+vdevW9btc1Isvvqjdu3dLkiZMmKCFCxf2eXxfotFol7tOeisgJOrZZ5/VRRddFL9D5Gtf+5p+/vOfd1sGasuWLTrttNO0d+9eSZLL5dLs2bN15JFHKjMzU1VVVVq3bp2ampq0Z88enXHGGVq9enWPe2b4fD5dfPHF+s1vfiMpVrzor8jR1tYWX6pL6n3D8c7cbrdOOOEErV69WpZlac2aNfriF7/Y7+sAAABgP4ocAAAAABL2b//2bwoEArrrrrv0pS99qcsH3e+++64+97nPqaqqSq2trfrxj3+se++9t8fzvPvuu1q2bJk6Ojrkcrn09a9/Xd/97neVn5/f5biPPvpIy5Yt01/+8hd9/PHHuuKKK7Rq1ao++/jqq68qHA6roqJCjzzyiCoqKro8397eLilWDLnqqqviBY7Ro0frkUce0ec+97kux7/88su6+OKL9Ytf/CK+IXZPPB6PrrzySt10002SpOXLl/db5Fi+fHn88RVXXDGk5aW2bt2qxsZGSVJRUZHGjRs36HN17t8111yjSCQiSbrlllt04403djuupaVFS5cujRc4Fi1apF//+teaMmVKl+MaGxt144036s4771R7e7u+9KUvacuWLRo1alS3cy5btixe5HjnnXe0adOmbmPZ2dNPP62mpiZJkt/v14UXXjigGI899litXr1akvT6669T5AAAAEgTFDkAAAAAw61atUr79+8f8PE/+tGPVFhY2OcxoVBIzzzzTI93HBx11FG6++67ddZZZ0mK3anxu9/9rtuSRpL0la98Jb4vwy9+8Qv9x3/8R4/tTZ48WS+88ILmzZun9957T6tXr9b69ev1qU99qtc+hsNhlZaW6uWXX1ZRUVG35/1+vyTpj3/8o9atWycp9i/6n332WZ144ondjv/MZz6jP/zhD5o/f75CoVCv7UrSVVddpR//+MeKRqN64okn9Otf/1p5eXk9HnvgwAE9++yzkmJ3PVx55ZV9nrs/f//73+OPp0+fPqRzSdJPf/rT+JJbHo9Hd911V6/Laf3yl7/Uli1bJMX2uXjiiSd6LNjk5eXpt7/9rVpbW/XAAw9o7969uuuuu3TDDTd0O3bu3Lk64ogj4ud98MEH9V//9V+99rfzUlXnnHNOt4JZb4444oj443feeWdArwEAAID9KHIAAAAAhnvjjTf0xhtvDPj4b3zjG/0WOc4666w+l1RavHixSktLVV1drebmZm3ZsqXbv75/55139PLLL0uSZs2apa9+9at9tpmdna3vfe97uvjiiyVJjzzySJ9FDkn6/ve/32OBo7POd1FcdNFFPRY4DpkzZ44uu+wy3XfffX2e87DDDtPChQu1atUqtba26tFHH9U111zT47EPPfRQvGhy+umnq6ysrM9z92fHjh3xxxMmTBj0eSzL0te//nXddtttkmJFoUcffbTLJt2ddXR06L//+7/jx95111393pFy880368EHH5RlWXrkkUd6LHJIsbs5Dt058vvf/14//elP5fF4uh23d+9erVmzpsvrBqrzPi+f3EweAAAAqWvw90ADAAAAcKwvfOELfT7vcrl0zDHHxL/v6UPjzstNXXzxxd32duhJ5020//KXv/R7/ECWKnrllVfijy+55JJ+jx/IMZL0r//6r/HHnQspn9T5uaFuOC5J+/btiz8ePXr0oM4RDoe1bNmyeIEjLy9PL7zwQq8FDkl68803VVNTI0k67bTTBrRx97hx4zRjxgxJ0ubNm7ttYn/IJZdcEi+Y7Nmzp0sho7NHHnkkvqRWaWlptyXH+tK5GFZdXT3g1wEAAMBe3MkBAAAAGO4HP/iBfvjDHw7rOfvaE+GQzh+wH9ojorO//e1v8cf/93//p127dvV7Tsuy4o8//vjjPo8tLy/v946UqqqqLpuN93dniBRbPsnlcnXpS0/OOussjRs3Tnv27NEbb7zR414Sr7/+ujZv3iwp9iH7kiVL+m2/Py0tLfHHWVlZCb++tbVV55xzTrwIVVJSotWrV2v27Nl9vq7zeFZWVurf/u3fBtRefX29pNjYVlZW9rgvx/jx43X66afrT3/6k6TY3S89FTA6L1X1pS99qce7PXrTOVfBYFDRaHRIe6MAAABgZFDkAAAAAJCwnj6I/qTOm3N3dHR0e37Pnj3xx4c2fE5EXV1dn88XFxf3e47OBY6srKx+iyKSlJubq1GjRsU/nO/NoQ3I//M//1NS7I6N22+/vcsxne/iuPTSS+Xz+fptPxH9FWJ6cttttykcDkuKLbv10ksvaerUqf2+rvN4/v3vf++yN8hA9TWmy5Ytixc5nn76aTU3NysnJyf+/Ntvv61NmzZ1OT4Rg8kVAAAA7Mc/SwEAAACQsIEsLdWf3pYmGqhDyxL1JjMzs99zNDc3xx8nctdD5w/X+3L11VfH7wZ4+OGHu2xY3traqhUrVnQ5djhkZ2fHHx/a1D0RnYtTBw8e1N69ewf0uqGOp6R4caUn5557bnzz9tbWVj3xxBNdnu98F8esWbMGdLdRZ51zFQgEuIsDAAAgTfB/bQAAAABs0fnD+KeeekqWZSX8NVSdixWtra0Dfl3nJaH6MmnSJJ1xxhmSpAMHDuiZZ56JP/f444/Hl/E6/vjjdeSRRw64/b6UlpbGH+/fvz/h13/1q1/V5z//eUmxOBcvXqx169b1+7rO4/mVr3xlUON56qmn9nr+zMzMLnvBPPTQQ/HH4XBYjz76aPz7RO/ikLre1dM5hwAAAEhtFDkAAAAA2GLMmDHxx3Zt9Nx5s+nW1tZ+l8CSYnd/9LdUVWe9bUA+3BuOH1JeXh5/XFlZmfDrfT6fnnjiiW6Fjj//+c99vm4kxrNz8WLt2rXxfVn++Mc/xjdcz8jI0Be/+MWEz11VVRV/XFZWNrSOAgAAYMRQ5AAAAABgi86bfP/1r3+1pQ8TJkzoUuhYv359v6958803E7qL5Oyzz47fGbBmzRrt3r1b27dvjxcNcnJydMEFFyTY894dffTR8cfbtm0b1DkOFTrOOussSbFCx6JFi/osdHQez1dffTUpe1ycdNJJmjx5siQpGo3q4YcfltR1qapFixYNaD+WT9qyZUv88THHHDPEngIAAGCkUOQAAAAAYItDH6BLseWqDv1L/JF2yimnxB8/8sgj/R5/6IP1gfJ6vbriiiskxT6Yv++++3TvvffGn7/ooosGvMfHQEyfPj2+MfyBAwe63KGQCJ/PpyeffLJLoaOvOzpOPPFE5efnS4rdQfL8888Pqt2+uFwuXXbZZfHvH3roITU0NOi5556L/2wwS1VJ0jvvvBN/PG/evMF3EgAAACOKIgcAAAAAW8ybNy++B0NbW5suvfTSLhtz9yUUCg1oaamBuPLKK+OPf//73+u1117r9dgNGzbogQceSLiNq6++Or5Z+3333dflHMO5VJUkud1ufeYzn4l//5e//GXQ5zpU6DjzzDMlxZbq6q3Q4ff79dWvfjX+/XXXXZdQgWWgRa7LLrssnsstW7boW9/6loLBoCSpsLCwS/FsoKLRqF599VVJsULK6aefnvA5AAAAYA+KHAAAAABs8+tf/zp+F8OLL76oBQsW9Llk1Pbt2/XjH/9YZWVlw7bE1aJFi3TSSSdJin3Y/fnPf15r1qzpdtzatWu1ePFiRSIR+Xy+hNqYPHmyTjvtNEnSrl274ntWVFRUdFnmabgc2k9Dkl5++eUhncvn8+mpp54aUKHj61//uo466ihJsT0u5syZo8cff1zRaLTHc+/fv1+/+93vNHv2bP3Xf/3XgPpTXl6uk08+Of797373u/jjiy++OOGxkaS33npLDQ0NkqS5c+eqpKQk4XMAAADAHl67OwAAAAAguVatWqX9+/cP+PisrCz97Gc/S2KP/mnmzJl69NFHdeGFF6q1tVXr16/X/PnzNWXKFM2ePVuFhYUKBoOqqanR3//+90EvvdQXl8ule++9V8cff7wOHDig/fv364wzztAxxxyjY489VlJsKaONGzdKkr7xjW/o8ccf165duyTF7pwYiH/913/tVjy56qqrhi2Ozs477zxdd911CgaDeu6553TnnXcOuJ89OVToOO+88/SHP/whXuhYvXp1vEAkxfYXee6553T66adrx44dqq6u1gUXXKCioiLNnz9fpaWlsixLBw8e1Hvvvaf3338/XgDpfPdJf5YtW6Z169b1+PPBePrpp+OPv/SlLw3qHAAAALAHRQ4AAADAcG+88YbeeOONAR8/atSoEStySLG9OV599VVdddVVeuuttyRJH374oT788MNeX1NWVqYJEyYMWx+mTp2ql156Seeee6527NghKVbY6LxPgxQrVNx88836/e9/H/9ZXl7egNpYsmSJSkpKVFNTIym2vNOll146TBF0NWrUKJ1//vl6+OGHVV1drXXr1sWXBhusQ0tXLV26NF7oWLRoUbdCx+TJk/Xmm2/q2muv1RNPPCHLsrR//3797//+b6/nzs/PV0VFxYD78oUvfEH//u//rtbW1vjPjjjiCM2dO3dQsT3xxBOSpEAgoC9+8YuDOgcAAADswXJVAAAAAGx3zDHH6M0339Qf//hHffnLX9bRRx+toqIieb1eZWdnq6ysTJ/73Of0/e9/X3/961/10Ucfxe+yGM4+bN68Wb/4xS80f/58FRYWKhAIqLy8XBdeeKHWrFmju+++WxkZGfH9QNxu94CLHBkZGV32izj33HNVWFg4rDF01nl/jP/5n/8ZlnP6/f5ue3QsWrSo274fhYWFWrlypf7+97/rO9/5jk444QSNHTtWPp9PgUBApaWlOumkk/SVr3xFzz33nPbu3ZvQXRi5ubk699xzu/xssHdxvPLKK3r//fclxe7iKCoqGtR5AAAAYA+XZVmW3Z0AAAAAgHTx/vvva9q0aZKkGTNmaMuWLQN6nWVZmjJlSvxOkTVr1sT36UiWz372s3rxxRfl9/u1c+dOlZaWJrW9dHThhRdq5cqV8ng82rx5s2bMmGF3lwAAAJAA7uQAAAAAgAQ89thj8ceJLI/0f//3f/ECx+TJkxPag2KwfvzjH0uS2tvbdfvttye9vXTz4Ycf6sknn5QkXXLJJRQ4AAAA0hBFDgAAAAAYoB07dujnP/95/PtE9m/41a9+FX98zTXXyOVyDWvfevKpT31KF154oSTpt7/9rWpra5PeZjr5yU9+okgkoqysLP3oRz+yuzsAAAAYBIocAAAAAKDY0k4vvPCCwuFwj8//4Q9/0EknnaSGhgZJ0rHHHqvPfvazAzr3c889p2effVZSbD+Jq6++eng6PQA///nPlZ2draampvidHZDee+89Pfjgg5Kk73znO5o4caLNPQIAAMBgsCcHAAAAAEjxOysKCgo0e/ZsHXbYYfL5fNq/f79ef/11VVZWxo/Nzc3VX//6V1VUVPR4rg8++ED//d//rUgkou3bt+vFF1/UoT+9fvSjH+l73/te8gMCAAAAHIAiBwAAAABIA14+aurUqXr88cd1zDHH9HrM2rVr9elPf7rbz0888US9/PLL8vl8g+4nAAAAgH/y2t0BAAAAAEgFmzdv1jPPPKNXX31Vu3bt0v79+3Xw4EEFAgEVFxdr3rx5Ouuss3TRRRfJ4/EM+Lw+n0/l5eW68MILdeONN1LgAAAAAIYRd3IAAAAAAAAAAIC0xMbjAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAD8/+3ZAQkAAACAoP+v2xHoDYElyQEAAAAAACxJDgAAAAAAYElyAAAAAAAAS5IDAAAAAABYkhwAAAAAAMCS5AAAAAAAAJYkBwAAAAAAsCQ5AAAAAACAJckBAAAAAAAsSQ4AAAAAAGApLG/zEKmJ0S4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label=\"Cov. 3-30 Hz\", alpha=0.5)\n", + "plt.errorbar(energies, covspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label=\"Cov. 0.1-1 Hz\", alpha=0.5)\n", + "plt.errorbar(energies, rmsspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=rmsspec_3_30.spectrum_error, fmt='o', label=\"RMS 3-30 Hz\")\n", + "plt.errorbar(energies, rmsspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=rmsspec_01_1.spectrum_error, fmt='o', label=\"RMS 0.1-1 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional RMS\");" + ] + }, + { + "cell_type": "markdown", + "id": "e3f96dbf", + "metadata": { + "id": "e3f96dbf" + }, + "source": [ + "QED, except that the error bars in some points look underestimated. It is always recommended to test error bars with simulations, in any case, as analytic formulas are based on a series of assumptions (in particular, on the coherence) that might not be correct in real life." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "fa853e69", + "metadata": { + "id": "fa853e69" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:59<00:00, 1.49s/it]\n" + ] + } + ], + "source": [ + "from stingray.varenergyspectrum import LagSpectrum\n", + "covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "1842eadc", + "metadata": {}, + "outputs": [], + "source": [ + "def variable_for_value(value):\n", + " for n,v in globals().items():\n", + " if id(v) == id(value):\n", + " return n\n", + " return None\n", + "\n", + "for func in [lagspec_3_30, lagspec_01_1, covspec_01_1, covspec_3_30]:\n", + " name = variable_for_value(func)\n", + " func.write(name + \".csv\", fmt=\"ascii\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61dc1445", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "X-ray Variability of an accreting BH with Fourier methods.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Transfer Functions/Data Preparation.ipynb.txt b/_sources/notebooks/Transfer Functions/Data Preparation.ipynb.txt new file mode 100644 index 000000000..8533a974e --- /dev/null +++ b/_sources/notebooks/Transfer Functions/Data Preparation.ipynb.txt @@ -0,0 +1,160 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting Up Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use `Image` module from Python Imaging library to digitize 2-d plot from Uttley et al. (2014)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "im = Image.open('2d.png')\n", + "width, height = im.size" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize an intensity array." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "intensity = np.array([[1 for j in range(width)] for i in range(height)])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, we retrieve each pixel and then calculate darkness value. The perceived brightness is given by:\n", + "\n", + "_0.2126*R + 0.7152*G + 0.0722*B_\n", + "\n", + "To get darkness, the formula is corrected as follows:\n", + "\n", + "_0.2126*(255-R) + 0.7152*(255-G) + 0.0722*(255-B)_" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "for x in range(0, height):\n", + " for y in range(0, width):\n", + " RGB = im.getpixel((y, x))\n", + " intensity[x][y] = (0.2126 * (255-RGB[0]) + 0.7152 * (255-RGB[1]) + 0.0722 * (255-RGB[2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Invert along Y-axis to account for some conventions." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "intensity = intensity[::-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "np.savetxt('intensity.txt', intensity)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb.txt b/_sources/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb.txt new file mode 100644 index 000000000..4f5c6fe3a --- /dev/null +++ b/_sources/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb.txt @@ -0,0 +1,514 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating TransferFunction object, obtaining time and energy resolved responses, plotting them and using IO methods available. Finally, artificial responses are introduced which provide a way for quick testing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set up some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction\n", + "from stingray.simulator.transfer import simple_ir, relativistic_ir" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A transfer function can be initialized by passing a 2-d array containing time across the first dimension and energy across the second. For example, if the 2-d array is defined by `arr`, then `arr[1][5]` defines a time of 5 units and energy of 1 unit.\n", + "\n", + "For the purpose of this tutorial, we have stored a 2-d array in a text file named `intensity.txt`. The script to generate this file is explained in `Data Preparation` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "response = np.loadtxt('intensity.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize transfer function by passing the array defined above." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(524, 744)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer = TransferFunction(response)\n", + "transfer.data.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By default, time and energy spacing across both axes are set to 1. However, they can be changed by supplying additional parameters `dt` and `de`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Time-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The 2-d transfer function can be converted into a time-resolved/energy-averaged response." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.time_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `time` parameter which can be accessed by `transfer.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, energy interval over which to average, can be specified by specifying `e0` and `e1` parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Energy-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Energy-resolved/time-averaged response can be also be formed from 2-d transfer function." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.energy_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `energy` parameter which can be accessed by `transfer.energy`" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.energy[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plotting Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction() creates plots of `time-resolved`, `energy-resolved` and `2-d responses`. These plots can be saved by setting `save` parameter. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD5CAYAAAA+0W6bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeYJVd55/85VTd3DjPTkzSjNJJGSEISiCAUjAUWwYRd\nk9bYYLC9XgdwxGDv2rLXYJDX4Ih/uyaYh7iYZFhEELYGJEAiCUkohxlpRqOZ6Znp6Xxjnd8f7zlV\n1a0Ot3u6+94evZ/nqefeW7fCuaHe89b3fc97QFEURVEURVEURVEURVEURVEURVEURVEURVEURVEU\nRVEURZlNIcBC08vxtWybWcuTKYqirEPsdedkmtrwuvvrsIZ2NVirEynrhn8B/merG7EA/w04DIwB\nfS1uy0pwGjCOOlNtjTHNLWuNGvBTixzwQWAfYuBuB65d4jH8reBs/ggxNOPANFBPvb5rec1dMlng\nr4GfBrqBkRU45h7k84ynlmetwHHnYx/w/NTrx4Au5v7OlTYhaHJpRbuUU4cMYhCuRAzcfwc+DexY\n4nHm8iXehRiaLuDXgO+kXl8wa9/V8kWGgAJw7zL3n+v/boHfIPksXcBtyzx+M1jU2153qAeurAVT\nwJ8hRhzgy8Be4JIF9rkY+BHisX8KMZCLMdtI7wH+Avg2MAmcAfwScI877sPAr6a2vxo4APwuIocc\nBN6Yev/FwN1u3wPA7wFnA/e5908A33DPzwVuBI6591+VOs6/AP8E3ABMuPM2yx7gzanXbwRuTr2O\ngP8KPIDcCfzDrP1/heTz3418zx9FJJMvIZ7+7wM73bH8tbgF+KL7PA8Cv5w65nVIh/wRd9yfAJcu\n4TMpy8Q0uaw1asBPbTYBuxADMhc54AuIQegD/hX4zyzvdv71iLHpBB5FDPNLkDuBXwLehxixdNu6\nEYP1ZuAfgR733gcRg98NnA/8B2LMdrv3e4BrgA7EeH8M2AC8Fng/cF7qPK9DNP1OpIOZi7muvfmk\npDQvAZ4BXAi8GvgZt/5VwJ8Cv+A+w8sQg/wLSOf6UsTT/19zHPNTbpvNwM8hdz4/lXr/Z4FPIt/B\nF3lyx6GsAqFpbllr1ICfumSBjyNe6APzbPNsRHb5W6ABfBb4/jLOZd157kW8yTri9e51738L+Dpw\nRWqfGvDn7rxfQTzkc9x7VcRwdwOjiJYPTza0L3Xn+Ig774+BzzHTC/8C8F33vDJH2w3wd4gXPQL8\nYNFPm/BuxBPeD9wEXOTW/zLwHuCH7vXDJHdFC7EdeC7wh8h3cAfwAeAXU9vcDHwV+c4/ljqnsoqo\nhKKsJQFyu14GfjO1/iskgbr/gni/j8/a91GWdze4f9brFwG3Ip7nCCKLDKTeP4YYXc8U4iWD3AW8\nGAn47UE6mrnYgQQcR1LLf0G8exAjN7tds7HAbyF3IH2IR90sh+Zp/zbEaC+VLUge8WRq3WPA1tTr\nw7POWUCv41XnJCSU7Ujnfjcieb1l1vu/h1wH/al170DuOO8DXrhQu5pLblTWEwaRIDYgRrCReu9F\ns7a9ipnGAcQoPrSM86blhjzizb8e+DfXhs/TfMfwA+AVQIgY108j2vFsHgO+ySJ/8mUyiUg0nqEl\n7LsfOGue9xaSZQ4iF3InckcC8rkPLOHcyipwEt51Dfgd5O6wE7kruxG5W90OvABxmjy7gde4x61I\nrGcXM52dGO25Tz3+CQnsvYy5JYM030Hkjrcgkst/Ap65zPOm/+I5txxF/ngvonkjmwV+HtF4G8jd\nQmOebf8f8ud+vdsvi7T/3Dna1GzbPT9Gvo8iYozfPMc2s4/hj/MBJEB5iVt3FkkHdBg4c55j7Ed+\nk79EOsELgTchUonSQk7CAz+E/JdAOuV7kTstgPcCb5u1/cuRGEcNuQN9CLhsvnapAT+12IEE/y5C\n/jheLnndPNvXECP1RkTSeDXiOS/GXAG+9OtxpFP4NCIJvA7xxOfbfjavR7TtUeTz/Pw8+00gHcNr\nESnoCcT45RZo51zMtc37EB36MPBhxIjaBfZJn+szwDuBTyAa+edIBh39JZLeOYJk4cw+1uuQzJSD\nbr8/QYK4830ezR9fAwLT3LIIO5FA/m2IoT4A3Dlrmy3MvOM6wJPvkmM0H1VRFGVh7PsumFttfmgi\n4qHJpA/92hELc9vVTpJ0268juvgLkA5+LxJ7OQb8PRI7+rjb7wNIQsDn5jq/auCKoiiLMJ93vasr\nYFdX8vprR+pzbZZF7mw/hmRFXYB443e497ch2vizkDvJ7al9t/HkRIOkXc00XlEU5alMYGxTyxz4\npIJ7gL9x6+5CMqVOd8sBJF5yGMntfy0iA56ODGD73nztUg9cURRlEU5Ca74ciencSTKe4Y+QlF5P\n2vLfg8SO7kESDH6dBeIcqoEriqIsjP3Hi8KmNvyNOxqg5WTn56ILzl9KcXVddNHlKbxc9bznWlaA\ndh2Jue4klDvuuhs7OdzqZsRc987rue6PZ6dytg5tz8JoexbmVGuP6diwIu1oV6li3RlwRVGUtaaJ\nHO+WoAZcURRlEdrVgK+FBr6PJALr02H6kXoADyBJ7b2p7Zsu5NIOXH3F5a1uwgy0PQuj7VkYbc/c\ntGs98LU4516k6Hx6tubrkToZ1yOlM/uAtyMFXD6B1LOYr5CLbScNXFGU9sVp4Cdr5+yHLm0uC+VN\nPzw1s1Bmf6CXITWccY+vcM+XVMhFURRlLWhXD3wtDLhFPOkfINNMgYxC8nWND5PUb15SIRdFUZS1\n4KmcRng5UiVuA6J73zfrfZ+zOR8rksepKIqyXNo0hrkmBvwJ9ziMFPW/DPG6h5CSp5uBI26bpgq5\nXPfO6+PnV19xOVdf2R6BDkVRWsueb32bPTfPN/Xp8mmFd90Mq92sEjKryjgyu8nXkVnTr0FKJ74H\nCV72MjOIeRlJEPMsZnrhGsRUFKUpViqI+fHLmgti/vz31jaIudoe+CbE6/bn+jhixH+AFGx5MxKs\nfLXbZkmFXBRFUdaCNnXA27ZdC6EeuKIoTbFSHvinntWcB/7a204tD1xRFGXd066erhpwRVGURWjX\nofRqwBVFURahXetuqwFXFEVZhHZNI2zXjkVRFKVtCE1zyxxsR2agvxv4CfAWt/5Vbl0DmQ8zTdMF\n/dQDVxRFWYR5JixuhhrwO8CPgU5k9vkbkYmNXwn871nb7wZe4x7nK+iXtGu5rVIURXmqEDS5zMEh\nxHgDTAD3IjWf7kPKac9mSQX91IAriqIswgoVs9oJXAzctsA2SyropxKKoijKIqyAp9sJfAZ4K+KJ\nL4V59Rs14IqiKIswn3d9xwnLnaOL6uNZ4LPAx4AvLLJtUwX9PGrAFUVRFiEzjwG/tM9waV/y5sce\ne1Ks0QAfROo7/c08h08f/YtIQb/3ItLJ2SRTUT65XQu2WlEURTmZPPDLgdeTzAsM8EdAHvh7YBD4\nsnvvRSyxoF+bpqcviBazUhSlKVaqmNWeq5pTwa/+ZrQS52sa9cCVVcFOj0BtCjs5DPUyNCowfhh6\ntoKNIMhAkIWoLs/z3RDmMJkC5DogU8CE2VZ/DEUB2nckphrwUxxbm8Z+/FexkycAqI2e4GM3PMih\n6WSbjizkA6hFEAYSce/KQmShmLEM5KAaQW/O0rAw1GGo1S3bdm3iyN5hejd2Mj4yzYYztxBks4SF\nIo1KmVzfICZXoDE5Rti7ETtxHNPZL1dDLg/VijSgUIJMDoIQawKIGhA1sGEGsgXId0AYQiYPo4eh\n0OWOUYTyhDxm8nKMqREo9srr2jSEWSiPQf9pMD0m56tNgwnkvUKnnK88Ic+DUDqUqA6FbtmuMgGV\nSQgz7vWk7Bs15HVUl8dsHmoV6aBqZch3Qr0ibQ1z8hnqNdk2k5XHIJTjhFn5rNYmnVqYlf2D0LU3\nl6wHeS9blPdA3vfrM3kI89CoQlQDEzor5NvijmEjd76s7IORztbaxGqZQNZj5THIYHybrJVjhNnk\nuX/PGIgi2S/MJu00IdiGHMtGblvv4fpzGjnObNLbBSHGrE0mdLvmW6sBPwWwUQOmj2OP3s/fvPrn\nqDSgEhmMk87yIeQC6MhAZxaKGdjVY+nKQF/O0p+HRyYMl5zZQSYbkslliBoRWEv3eRfSmBynMT1F\nbtuZADSOHyI840KoTHH6Mwz0bKJv9DBs2AljwxBmyGw8SwzW8F5CZySNjWCDHINMHqqTMHFMLvz+\n7TMNWq4kj4H7i4Y5qE7A5t3QtRnGD4qBKvQ4Q1aC6eNQ6BWjYBtivMK8M3whsXEK8+79mhw7yEh7\nTOCMUR7KI3LMICv7mBCTLWEbVWlHmJX93N2EyXZga1OJ8Q1C+XzZkuyfKWCCLLY2CYDJdSYGUH7F\nuCOwtSkxckFGDJQ3zNjE4NlIPk/agAXuedRwK4w7pnGdUsMZVfdonIE0KUMahEBn8t3ERtedM2ok\nv5ExrlNzx/SGGus6ooY8+u++XnHrIteJZPwfWNrpjx9mxPDPSK42ybbx5w3dP9zI72ntjPdWUslo\n12qEbdqsBVEN3BHtv5XPvOHl3HvCYN1PGRpLdxYK7trszEJHRox1zcKWoqWjELDlgjMZP/AEXVuH\nCAtFrLVkN2yFfFG8xHwx8XB7NopB9d5urSwGtzoJHQNy0U2fkMeBHTMbOT0GHX3iKQJkConXOnVc\n9s93J4baG5/yCSgNwPSI7JspJB5lmBOjmOuE8qhILt4YRTVMoQ9bHpH3a1NgAjGw9emU9+cI85gg\nxEZ16WRcO22jir88TJBBjFMOrMXWpmS7tPG1VjzoWllWBWEiFXkPu16R12nP1nus3rAFoRgvGyWe\nuzFiUL2RzRTEq27UpI2ZvGtGIzG41s0VbiPphOL3UoYb3LHdnVCQS4xxVEt+EyyYjKzzx4sNu9ve\n1p2Xn+oU3O8h57eugzGJoU4fY7ZH779T30n6uwf/HcSf1//u9Zmfyf02Qd9O4h9y+djv/FRzPvhz\nb1INXFmE6Ja/47Z3/wU3HgyI3M1daCwdGTHc3TnxrMsN6MnCUMGycUsn0+MV+rf0cezxETKd3fSe\n3UGQyRL0D4lxLnWJDBFWEzmha1CMT60MG06HsSMwuFOM0eDpsj7MQs+QGJJ6RSSKriGYPArdm8QA\nN6rJhVfoEV3ce3xBRvYDyHfJxV3oFe+1NpV41QDFfjHu1opBz3U4D9V5YWEOWx2HbEdiJIIMNqpj\ncl3YRgVjctj6NCZTdAa2Jp5u1h0nqmFMSkrxxth1HsZLEN7oGv9+XYx4w+3jJYdMRoytN4jWyneV\nNt6QyBBhNjFCtgGEMw1/VBeDmnWeua07gzVLkvDSCYhxjretJ222uN8lcOuzKWPqjKLJJJ2Jl1bi\nuwDkP2Od5x2kPHDsTE84qss677lHkRh1L5vZWtKB+c+f7rjSQrQ/d+Q62iB9N0Py260Q8xSqajlq\nwNcR0dH7+duXXsVo1QAhobH0ZS0FJ292ZOCMzohyw9CRsYQGBnuybH3WxdTHx+isVshv3EzHWTnR\na7sHqD9yF8HGHXDkUSh2y4HOejYcexTGjsLQ2VAeh+6NzhsfkousbxtMDEPXpuTiqkyI19yoycWT\n7xRDmik4XTWS1wD5HrnIigNiaDBi6Cvj4pHnOp0XviGRLkyAMQab65R9ohom34OdPALZIiZbig2W\nbVQxYS4x3JVRiEIx2o0qJtvhDKqV9tUriVHId83sUHzn442RN9yZQur234ohazgjFISJnu31dmmY\nHCPtpPljZwqJ7GAj8AWUvIRio5RH69pq5L8Qyycg5/QSjyfuKMLkeL7d4OQMk3i1NhJjHnv/NnU+\nZp7fd0BB6Lz0lCGNDX5K247Pmf5O3PdgQpHejIF6NZF/0sdMyz/ehNlGopl7Tz5YOfPWrhKKGvB1\ngJ0+zo2vOI/vDMstqEGMc28e+nJQj6A7axkqWmoRXLK7l4mRafpP30r52FGqR49gMhlyAxswHb3Y\nyRMShIoaZC64Uk6ycQeMH5OL5vh+2HiWGOAwJ7JIJg+dGyQgWOgWr7g0AOOHnIddg+4tMDksF2a+\nB6rjzijVE23Za9PZkiyTR8Srzpbk4s91iLEPXNDSNpxHXcLkOqA2jcl3YaePgwmxUQ3TsVEkkJQm\nbHIdsSRiyyOYjo1yZxB7gM7TrFeBKLkTMIHcVWRy8l5tOjHMOK86CBNZAlzHVEqMiDfqGGZ48UEO\nbJjSrSMgcN5jJOfzRsg23Oe3yTlsAzJF9xmyiYSS6xA5y3cwmULq+HaW8Q1S+rbzXKOUtm2t6yQC\nOV+UClJ63TvW0/3ncN+Dl4hA/jdRLfUvNkknEzgZyzaSTCR/1+A7EK+FBxnXgZrUNu7z+P2CEKy/\n+/Aef5SKBZw8J1GNcFVRA97mRLf8He9667uo24BcIN52Tw6ygXgFOzsiqpHh7KE8R4+X2TFUpFap\n072xBxNm6Nh2GmFHFyZfEq87V8D0bpTn9VoilUwcgw07xBj3DMHUqDxCEuTL5OX96ROyz/QIFPsA\nC41ALsYgIwalXoae02DqmBzDpQnGt/pe9igNYDJFCe7lOlPebka869qk6NQmcMbWOOMdiJRhJFBn\nch3OU2xgGzVMvjM2hpILPEua8IYgk0tJIe5OIpMX45DJidGtTcqdQ3065Yl7/GdxkkHUSDqtwHmY\nJnDvAzjZIszK9x96zzgdwHOGDee5ei0dHzCMUp2FTe4WfMaH9+7DbPJ9xlJPPZEb4uwVpzN7+aZe\nTTznuP2prJB0IDF+7jqOdKcWyx42OY7viHznhp25ve8c/P9uRrB2VszBy0q+3V5y8t/XCmaotKkD\n3rbZMQpgJ47w7t9+F3UrXnc2gFIGGlZS/kBkk60lizGwcUORnq0bKfb1kO3tJ9vTS6Z/EyabTy7Y\nrgHRaHMlSWUDMdQ7LhHjXOx2J49gehw6BsUTDzISdGzUoHOjaNNY8Z5zndC5SV53bHQGvyAG3l+U\n3hOtTWI6N824yKyNMLkusFYkDhOIHBJkMPluaFSwcbpaDlMacMG9AFudSCQFF8w06Ys3Dox5A+5v\nzyvOwGRSGSpVMR4+UJoO/nmDGR/ba9SpoFps5LzMUE9u9+M0PhBjXU+kjDjNMOd09GKiDXsD5Y1a\n2ntu1JL1ftvYqEVP1t29tJJO1fMBxch9Dr+NlzPi7JN6qiOYtS5tYH3sAJt8b+nAqv89/B1K/LsE\nyT7+db0i2/iOF2be2XjSWTDpTmEFCUxzy1qjBrxNsWMH+evnX0g1MhRDMd49OcnF3lqyXL4h4hXP\n28zOM3qJLGTzGXKFDOXjI+QGN5E743xM7ybYfCa1kWHYuksOPD0OZ14mMsHg6ZK3XJ6A6pRIJaU+\nuThr02LYS4MwdkiyPUr9Ip1UxuUCy5bE2FUnZzY+1ynasd8mzMmtv0uJs5XxmR4XYKNafKtssh3Y\n+JjGpeBlsLaBrZedNFKSd4v9iRfoDEScQZLWlb2x89p1Jk+SgWEk+Bhm3XsFMUT1cpKHjUk8ap8l\nYcK4I5mRtgjOcGeS5z5gmc7iCEKXqhgmhi/MuM5R7ixo+EBcyouFpFPMermEVMZGIHcP3iB6+QES\nOcuYJNgahEmHMcPXTBnXMJto4dYmOekzPlvaa3ffmdeqfVDTG98wmwQZTTizE40DoOkURZP8BnGA\nmJnetu/oguyKyickZ190WWtUQmlDom+8i0+/82+ZqAf05Ww8qGYgb7lkS4ZHj9UIQ8OxR48wPl5j\n5/lbsPU6ma5u8lt2Ek2MEh15jGBwK5w4THbnbjnw4DZ5rFWg0wUbe7fIusqkaNv1ilxcWy+U9ROH\nxagXehIvKVuUCzjfLcbb52I3quKB24as91qsD26FeZe2lxFpxMkfSV6wk1UyObkYjMFWJ11qn5FR\nmiDtDnOSURIPcsmKxBGEmEJPEqAzjSRAV5tO5B0/aCU9iMSnGDZq0uF4A+KNuU/hazg5Iqq5QJvb\nP9fhDFxdtquMOwPtUvDqLgc9bWhtI5ENGtXEYHpN2pDSp1PShc/vTudrx0FJJ9Nk8k6rdgYv8kbR\nHSMwiRQRH9N7y5F0QD6oGncEYeKl28jJNul9nWTidX8skPqOAZ8tlBhZZ3jDHDQayXeSzmOPBwa5\nu4Ugk9wVRfWkE/ASzQoP8NEgptIUtjbNX7zt74gI6M6K8c6563h7hyUIA56+ux+CENuoky9WiGo1\ncn0DZLq6sdPjBMUOKHbJSMcN28VgRw2X7mUlW6RekcySYm9yQZbH3YhA5y1PHIGNu2HscTFgxX65\ncEobZNBMdUK87ckj0LNDBr9UJ1JerPOYyieg2CeGu17G1muYYj+2Mi7ZIMZga9MuH7uGaQTY6WOY\n0gZMpoCtTsjAF6c323oFE2YxtpEEzoIs2LJo1kRggyRfPK1TB5nUiMVyEnz0erM33lEt6WACFyhM\nB9Pi/GqT6N4+AGgyyXcTSw0pKaM+LefwHmu9Kp1MOuCbfu49dLzxSud6O3yAMnRBP+8R2yg5xuxM\nGP85alOuY6vIObPFxEufocO7/dM6dZgjHrzkZQxIjKmPe/i7Fm/o/SAtL/XEv0822W52Dns8iCjl\noftH76V7rT/dGa0A7ZpGqBJKm/G5a3cSuUyTDnfNZ4ylK2vZeVoXX3+4xme/d4K77h4m09lNR38X\npW07qRw9TJArUJ8Yh4IYRUpdcGgv7LhYDrRlt6wvdicXc+eQG3rtZIUwK4HJbEkurNq0M+ipW+KJ\nQ1AZg45NYgTzPTA1nEgq1g2IqZcT3TpTAAwmW3KyRzJIw9Yrsn2uM+Xt+RzxEFPoTd3GV102yhRk\nCljbgGwBO3WMeECI11i9ph3VE5mnOpkYlUxe2ghODvHDz8vu7sEFZutuaDmBHNN7ymEmkRNiT9Zr\n0c5DbVSSc3ivNfAZJM4QxWlxqSCdMdIZ+DuFGQbJJJJLHIz0unc10bnTBtQfo15J9k2PckwPkIq9\n4VpinMEZfptqd0oTB2akCPrgY1qzhyQQ6j+fCZJRsD4YCzPvDNLGOx3UbFSJg6/xCNNUfvoKFjBp\nVw1cPfA2IvryH3P3iKEnZ8kHIpmc223JZw1hRnKgX3ZhB52bN9GYnqKwaQuN6Ukqw09QGNpKbeQo\n2V2XQEevDGm3Fs68BA78BHo3izEu9YoXlytB3044eIdkpPiLGyAzDljJ8Y7qSU0RLFTGMD3bseUT\ncrE7D1q8+LwUyQRsZQxTGhQ9OtcpHnamgK2OizGPg43uQo4y2PqYGOd6GVPokwu27kf5OY3TG6ds\nCWwUZ5+YTH6W1+pusW2UjFQ0zsutThIPXsm4EaL16UTC8ZIJyHa5DuL8Zt+R+EEw2ZJ0Zpmi+/5S\n2zScbOTbHdWdRFOX7602lWjxxkA9nb9tkrYFoWQE+hon8QAf12F5Kcan+tWrrq5KkEgQcQDTY2el\nE2blriFbSqXnZVIeswu6eonNG1W/byyZRMn3BklnGq9zEou1SSzA/2b+bsgyMxhsAjlu3FmlMmbi\nlMKU8Q4yxOmPK0SbOuBr4oGHSK3bL7nX/ciszA8AXwd6U9u+A3gQmfDzhWvQtrbBWsvn/voDBAaK\nIfTlLb056OrK0tFTYMOOQaYnqgy84pfIP++V5PoHKR8+SFStUthyGpnObkwYJkO5swWRTLacLxfq\n4YdkOe1SuQXv3gQnHoPBM6FvhxiUriFZ8l2JVpvJi0eeKcjrjg1SqwNg6qgEE61NZAenU5t8t0gf\nac/SGBlU4/KKbVVmlhIZxWWe1MvO6KXS6tJeVdRIOpo4t9x5mJVxMQC+JgkmGdnph4JPHU887SAL\nUTXlqUby2mv93qCnJRATEnvi4IxqUTqZ2JimvMTYI20kAbZMQXLk4wE61nUCTo6oTycDi2rTiXGM\ndWGfZuiDhu4cDefRzk4T9AFPH0BMp97F79kk1dMbQ58v7z+3zwf337eXdvx34UdOxsbUJt/l7ACp\nl3bSwVnvUccjKNPG2adumqRTSEskqYD4nJkqJ4kxpqllrVkLA/5WpDi5vz98O2LAdwH/7l4D7AZe\n4x6vBd6/Ru1rC+yX/pD7Rg1DRTHgWQODeUvf5l6GnvNcTEYKTE1+41Mc+cQ/su87d2LrNcJiCdO3\nierxYTJDO6kfeAgmT8DW82H380XX3rIbLnwRnH+tXGBDT5NBOIXuxOOqTsigHK8LB6ELSLqfbXJY\nLpLyKER1TL4H07tTBtDUy+JVe2PqtdIwL4NwMJhMXgy2kWCkLZ/AdA5BPAQ+I+cOsmJofWCrVia+\nGL1R83VFvPce+OBqQfYv9BLXEKmMJ0FEb6iDUAy1r6cSF3NK5TmHeXdsZ6AarvKfbSTbe625NikG\nvl4mLt6UHmTiL+xcKTGA/rz+nJlioiuns12Ml4QaybF8xou1yfuQ8vKdxBFLPT4tMCXBpNMC486x\nPrP9fl067923Md6/kXw+fz4/+CaWS7yRn5V26QtQpTNjvMFPB09j6SSlpfs7gLSk44OZ6d9xhfA3\nSYsta81qn3Ib8C/AO4HfBX4W8a6vAg4DQ8Ae4FzE+46A97h9vwpcB9w665inZDGr9zxTBs0UQthc\nspzdZdnQXyDMBHRvHqT49OdJtT8gDvx0DFC76WNk+zcm3uqZl8CRfTA5CptOl9vp7kHYdlFSRjVb\ngNFD0L/DZUuMyUXnC051bHSGuiaGZnpELqKCBDxNaQN2ajjxcFwQ0QQZMdjeG3cZJ3EwzN86+yyD\neOCIN9x1rG3Eoyhjo5WuOxJXt3Pn9VqyDxg2KomxShd0Sq+Lsz+8Tu2MTVw9L0gMuHE6eMNVPPRp\nfd44pL1un2nj2+G3t/VEi06POgTiwUTpsrHpFDjfHq8JR/WUHOK+03jou0kCgiZIRpF6jXu2R+6P\nFWd0ZBL5aHawNq4JYxNLFd9pmJnP0wFKT9xJzsoJb1Rnesr+vxJv6/0+fx6bfFZI9PpYpkn91zAE\n3VvczieFffAl4eJbAWd/ubES52ua1dbA3wf8AdCdWrcJMd64x03u+RZmGusDyJxwpzzRx3+Z6YZh\nqChZJ88cCslkAzbsPouwWCLo3UT1vh8y+rV/o2Ogi2xPP/XJCYpnnEf2witkNOX4MfG8K1Ow6Qwx\nHMVu6OjyVsaoAAAgAElEQVSHww/C8MOSOljqg+lRl0ZYFUPde5o8es9p+rhcEIVeMcZ+Xb4nMcCx\n9+c9Ml8DJBlKbfyQaQIwocseSckSQVYq++W7oFGXAT2hBO1svYzJdWDLoxL0hNjA2coEpmPQedfO\n8Lr88Ph1QKoDKGCnjkp6odeDvRH12m6QAeMNp9dxM+KpB9nEq4szU9x3ZdPGLEgZEJN0OqELlnrD\nSsrgQapTscml74OK6ZGjvqOZK7AZnz+le/vOID4vKZ28nDq2Ec24UYMgSgUto+S8aWloRgfTSLb3\nHUgsm/g2puSPuCP3302qI7KR/G8z+cRux9+TdTZ51nfm/2Oxcbfy+5nmDG6znIR3/SHgJcAR4AK3\n7jLgH5DJjuvItGnfd++9A3gTUp/gLYjMPC+rKVG8FGn07czfI/n7n/lY6L1TgmhkHxO330I+kKyT\nS/ojNu3axqaLdhOVpznw3R9R2XcvuW1n0rlpgLDUSX1ijOOPHebxm26ifvd3KH/rc1TuvEWCk6c9\nXYx4sRuOPCLedueAaN49W2HyOGw4V6SJqC71S8YeT4Zdg3jk+W65eCYOiSdZ6BPdNgixlbG4Tkk6\nc8DWpmJv1ZhABt0A2Ajri1kZI8+dxmp8YMxGcSlXWS85zKbQk3xZrjaJCULRsr2X6dMIsyXA6fF+\nWL8JIKphir1J8SlvWGpTyfNYEvAyQoakRKrz2P0Qc0j0/vhzBXIH42UUE7o64PnEWPqJEvxdhU8H\nTA+Q8XcBvmRsHLjFGdM6cWaNlyV8emM8oMnlZ/taIvGdi79jIdXRBUnRKK9/+w4Aks+brgEee8Cu\nzd5ox4HFKDlPHHD1f/h6oml7o9uoJtvPlsfi/W3yO8XaeD2pVpgOlPo4if8/rwBBEDS1zMGHEUk4\nzfXA/wAuBv7EvYZlyMir6YE/F3gZ8GKggHjhHyWRTg4BmxEjD/A4sD21/za37klc987r4+dXX3E5\nV195+Qo3fQ350nW89z9G2VJytbo7c4w+foTaIwfZ9gu/xmnnHpLb4COPEuRyNKanqIxNEIYB1loy\n3X1knv7TcqzpMbh3j2SV2Ah6h6T8a+eAXBD+lnrsgOix2RJgZCCOz4/2+d5RA1Psw44/IUHMMCsy\nha8THeZF+/UFpjo3YX0ecaYogUqXemgbVSkq1ZgADKbQg61OYVLFp8Bixw5g+s+WWifTxzDd25Lv\nyY+qjPO68+Idp2+ffd3peIBQQzxknyNdnUhkAmMTY+SzVxpebw/jNEVZX4k7AvFmvYZeSxl460ZQ\nBonRCfOyLpYIDPhh9PEIwpRHbwxxnZOIJMjpUx9hpsftP68nLUn4Gik+iJzWtX0GTTqwaO3MmYq8\nUffUnTGMtfHUIJz0IKJYrjKpjik14Cctv8xOO2zMkmfS+eOkAqNpjzvdlqjGnlu+y55bbktUlJVi\n+a7uzcDOWeueALxn0kti514OfBKoAfuAhxBvfbaMHLNWWs1VwO8jGvj1wDFE63478gHejvQ6n0Aa\nvBX4BnAWT/4ZTikNfOq6y/irLz7G6V1SUfD5F/djo4j84CaiSpnC+ZeJIW7UZOBNdUqGvlemYHCH\nXDjHH8c+/gDm/CsTY+CnCKtMwq6rxAiUx6S2if/zZ4vJhZdxWRlBmHjgKaNhcl0ySUKYkwyTegUm\nD2O6t8sw+HolHt5uo7qUcq2MxsY+Dlz6ofVRPdbLjcsFthOHMF2bEyMWT1TgjbK77U4PUvHPZ9fu\n9sbJj5iMB6U4z9gHE70xDt0oT1sHgkQSAnmdnjxghqzhtWt/nkyyr8m4QTuFxDuO64WETvfOJjKE\n9y5TOfIzBt14ycob6LSmnB5A473SIJv63rzG7fV0P2ox1ZFhxCNvuHak66j47yU+T2bmvrOP6X8X\nIKknMysW4WUUY+S7sr5jc4N60tkos+Mf/nU6PzyWfBJvPtj0NDh5O2f3vjK3+FbA6Z+vznW+nUgW\nnpdQdgC3gB+mynOA/cgs9bcCH3fbfQD4CvDZ+c63lnng3hC/G/g08Gakl3m1W3+PW38PiS50ykso\n139xv5tBx7KtZCntOBMThJjOPpk3cnIUdv8UPHE/0Q9uoDY2QuX4MQobNnHwzo+x8y1/AuUJpg8+\nRunMCfGUOvtdCViXgXDkQfHK+06TSoKNmnjgtiH1uH0ec/mEGJt8T3JBZ/KYMI8dOyCeOWCPPwSd\nQ2K8qxNS3tXlQNvatHju0yNSTXD6WJKdEF+QQJgVbdtnlwCmNCjGI8zIkOq4NrbzsPzFb0Kouxzq\netWlCvrJALyRdy5YHEzzxscmKYPY5DYdxNiC3JnUy4msEtc78TIL8t14fTyqujkunYEM83KsbFae\new+VlNGnkOzrvfu03lubcvVj/ACqIDF43rCnA7K+4647+cNn3vgOKs7uwXUs1STYCIkhjUjWNxJ5\nTL4j/91mkjox6TuJWP9G/gv+jizdbiPykcm5eU19+p9xspGPkaRoRXrebFa4CR9E9O3PA69CdPIX\nzLPtgjZwrQz4N90CcBy4Zp7t3uWWpwS2OhmXiN2QhwuueBrBwBbqBx8hs+Us7BMPYy68Bh6+DepV\ngme/kvymcyn0n4WtjrPzoZtgeC90DVB65jWSfXLhC+GhW2Xi33wpmYShPA6jB6Wmd21ajF+hTy7S\neB5J59H67BNncEXzLiRGouc08aAnD0uqoLttt/WyaOTVSTFA+S5MaUNsvE2xD6yVYfJ+NKbPqJgr\nf9hrqSaIZZgZenPsfTVm3qb7GiAzhmRnEsNjvCF1Bs2XQfXHSw+Z9wFH70X6Cn8GVwzK68BO2nHf\ngdQ2qaQ6IDvT265OJKVsjQ8F+awSk2jw3tOE1HeSmoWmXk88YR/IjdMDGyJl+TZ4fbsyKsfzcQP/\n3QQZMZZ+2rsZFRQhHlzjgoeLTSjcerO7cszXiXx3OOLW4SWnK15GYgM/g3jasAQZ2aMjMVvIv734\nDLKBoT8vkzE0JifIjBwms2EbVKcxp18kF+vmc+HHX4Xn/YrUEKlNiiRxzs/A1KeSioI7LhDjvWEH\nM+pVHHtUZtABuSAL3c6LdR5nw02DVhoUw+snEDYh2MkkjzjMSuaHNzb5bslOsQ1MoRdbq0n516iO\ndQWobKMiNUt8fQrA5EX+s7VJkVQaPmcaOa4xkmlSSOq0mLRs4XLPZwTC0vnLtXSGRTTDoEmtE++B\nI/v4EYg+ja9RS/af0QFAPL3c7EEkXgPPFpLOw1o3otN70OWkjSaQqoyNqvyW3vv2QdH4GKlMkHTq\npf8egozUifGedK5T7q5MKINLVuev+9Rjni/yORsDnrMx+S/8zb2NuTecyUOIrPxN4PnIoEaALyIy\n8nsRGfls4HsLHUgNeAt5dMLQlYXeHGzfvZWoVqU2OkKuezApE3pkLwxsg5e+Q2p/VMZkirGoIRkc\nz/hF7Hf+D/RtFsPTNSD1uyeGxVBveRqMPSHrfOGn6qTIIROHpZiVCaF7q5uxBqfrOv3Ua45hVrYv\n9Mj5Rx6Bjo2Yzs3x7brJd4u3DtLW2pRo4Y0aJnSpga44FZmCGO+ojrVWPosvpNSoudopzmutl8UD\nL/ZJDMDkk5TEXCkJvtlaUqPEz76DRWZrSeUb+5lv/IhCiDMcrNPybW3KzZkZYitT0u56EgQ0GXfn\nAYnGbCMJ7HqpYGrYpWFWYOygTJIR1aWcQc9WKPTKHUq+M6m06NrTDrKBknASv8cnEWM9iOjcfwL8\nKvCPSOGJafcaliEjqwFvMbkANuQttYkJChs2ktt6BhQ7k6j/0NmwaVfivRb7XV0RGdloin2SZVKd\nhKP74bQL4dCDMq/liSfEkFWmXEEqI4a91C9eZ6mfeJDG6H7ZJtcl521UZXh9dcLVAkkCbXbiMHRu\nFkNXn5b63VPHkjodTjfH1LBWpATr9Gtbm0o861jzdWmGGIwfwGMCKSXrb+d94avquMQIvMRTr0rQ\n1LhslyCMjbeN6pi4IxLvNZ5b03vITie35RPyuU0owVonIdiG6Lh2akLa67Ju7LEnXFphlAQNOwZE\nfij2y+/SMSifz4Sw+RIJAKthXpcEy69U9bp51j9rnvVLkpHVgLeI6OCPKDegPw9dOSgObSG3YQt2\n/JhMeQbO6z0Gu05ztUhEWzVOHjGFXpEfTn8u3PF56OyDo4/ClvNENunyendWgpfZInRvToyOv2X3\nqXDeW/RTm/kAlJ9goNgnj9PHJXA5cRiyJck2Sde9tpF4216KcfNdmmwHtjImaYLZDnA5zCZTjA09\nxsjdhfdIrZXXQRZbHkuyNUI3G4/Ls7ZuIgVbnUzymF2HASQyBDi9vpIEACtjkqFz5EG5Iyn1QJjD\n+logQRZ6d8hMQH4y5E0XqDF+KtGmv7Ua8FZx9w2UGzJwp6uvJMagewAzuA2OHYTejWKA+7fLwJhi\nn6slEsSRfMHKpL5bz5ec79HDMHJA9i1PyLyLJZdy2unKv9amxUhPHRPpxBtCSGSG8SfE0HcNYTo2\niVfqBkeY7m3YyWHxKHPO+64ed7PJS0aICbPi7WZLcf61nTgknZAfJFSbhCAbe8WAHKvYhy9IZCtj\n4gFHdaluWB2XbXzgszaVZLj4zmL6uHwGE8DkUXn/2KNSPqA8CV2DcPplMLAL070lDlaac9vzIlVa\nT5vabzXgLWP8KAZ4fMpQGC8zmMuLcevZKAa3f7tkGRT7iGtdxNkIPsBWE628OglbL4Xhz8ht/eAO\nGUI/ckDSCX0ZUmNg8piUiQ3zMsGmz7f26W1hHqaOQv8Z+Ip3tjySpIjlOrCjj0rAExLNu7RBjGmj\nCrXJJCjn85jB5Zpn3AhIJ3VkXObL1LBkw5gAxg5go7pkyQShBE7DHHbkYXm/PCqB1sq46MpTx2Hv\nHdDZK9LR5gslUBrmYPtz5I5FUU6Cdr3b0n92q2jUyYdw9kDIwLY+onqNMJuH4Udh63kSrPM1LzIF\nkQYyfsKB1DyOdZfjG0aS693jJhUeOyzbH7xbSsp62aR3u3jeBZdt0aikRlZOJ0PjfZZFZTw1oMan\n8JVku1yHzMZTHEjymKN6UuHQz1RDI6kjXZ1MZBqfF10Zk/X1cmoWGydtjB2UAGx1Cg49IG08/gT0\nbICeTTB0LmbXC+CK3wZaU9JTOfVp17+VGvBWYSO6spDJBtQrVTp7B10Nky6pY3L8AGw6WyoD1iYl\neBk1sJVRV7o1m+Qtu4wU27dNhtNnsjJt2tQxkQr8tlEdpqdk6Hx5NBn04gJzdGxMDLqfPzKqQbUm\nRro6IfJEkIWcm3W+0Ct5xX4IfqMqMoXvFEDe87JH1JB9Jofl9fRIktI3ekgM+RMPQNTAHnkUky/B\nz/wOZudVcP5/WjT3WFFWhTa14GrAW4gBil15Spu3iOH2oyj9LX9WUu0kQ0IGeUjOsMU0JMPDuFlb\nbKMGg2fDvlvFeJcnknzhkQPQuzUZWTj6uKQY5ktJjnTnkBSr8p6zH7QzcQR6d7giTY1kMEw8Gq+c\nGObp49LObElGdTZGpLPIdsg5Jo/KdhNHxFgfeogTt3wNY6Dn6pfBc9+M6RqC5/SpJ620FSeRhbKq\nqAFvFUFILoRapQFRRO2JvWQveQEMni5SQd9W2HCezN5eGoxzp0UmQAZwBPl4FJ4Jc9hCn/OkByS1\nMJMXzTvnRjBOjUCxRzJR/DDoyjgMnOUmJJ50NcFdbZSxAzJMvXwiGZnYqCa1q2uTYpzLo8nozjAL\nww9JHZaxw9KZNBqw7w6m9z9CkM2SP/siuPrXMZf/Fv2vWtmyn4qyGrSrQ6EGvFVYy0DeMjk6TefY\nCTpe9EY4tl+CcpvPleHvtalYOjGFHmx5FEr9kh+drj3hh6qHWeyJQ1IbfPsFkhIXZ6SMieH2s48f\nfwz6TxMDPXU0mRghzCVTW/XukHKy4OSWWjLCszoJx/fD5vPdNGVZGBmWzmL4YSh0Yu+5hanH9jJ1\nYpIN176S0i98EHIdbXsxKMp8tOtfVg14C5moGzafs4XiaWeJdt01KLJG72bxtrOleMZ2O31cBq80\napJf3XAzljeqELl/V5CRqdSsleP5nOaoDuPDsP8OqUx4bB8MnpEMm/cjNH3t6vKYGORsSYKHhW45\n3/SobFvslQ6gUYOjD0nueTaPvftbPH7b7VTLNc54z/8luPw36cp10NXSb1lRVoA2teBqwFuFMWSM\npT41SVSZIvBTdWXdZARdW4hneo8arnY3xKVGw0BGZPocaO+J92yGvd+T14UukTrCAHq3SDna44+J\nvJItiRedLsFaGReD7XOsR/ZJR1CZSEaGlsclwDo1SuORO2hMTnBi3342/szLCd70EU77jf6WfJ2K\nspq0qf1WA94ySj1UI0O92sDWanDiMGw9R/K/p0ck/zvbIduGWai5+SKzyVyNxteZ9h55FEH/mXDw\nJ2LAq9MiacRV9/LyvOCKUE2fIJ4ct2+HnLfULx5654DztrvFez/2GEwcp7b3Hsb37+fQgXF2f+Bm\nMv1nMqR51sopTrvKfnrltYp6lUJo6bvk2dA9INJJtgiH7ofTny350C7n21ZlujHrZ1h3Iwd9cai4\ndkh9GjCSgdK7JfHKa9MSSOzZKh51kIHRR10N60CKPx25T+bLnDwmXvmJgzKM/+hjbtLdKj/65BcI\nDVz0v7/BwIbzxPtXlKcAbWq/1YC3jHwH1chQfuxBCmcVYPA0WT+wI5lZ3E/lBaKFx4NfTBy0jCvu\nYTC+JnfvFjlGdUr09Nq0eNRjT8DATvG8bSQdxomDct5sEQ4/ANWyDAgaPQzD+6kdfYJHv38PZ73+\nF7j08wfcpMSK8tTCzD3fZctRA94qejdL4b7OLhg6U9L7goxUsHOV9ky2JPnd8TB3Nw1YmJrqKj3B\nq6vSZ/MdYpgLXXD/t2DjmeJF0ynyiK/uF4SS9dLhhqwffQymJ6juf5BDdz1Iox5x+vtu4Oy3Xdy2\nt5CKsha0699fDXir2P4MxmtQPvQ4+R/dSJDLEz79GslE6d4alz81QSj1tP0Q83jGmBBws+j4vG0/\ndP3EQfGgM3nIdzgDnYHuDXLuyePioR9+QLJUjh+AE4epHXyEg7ffx+OjdS7/13ul+p6iKG3rwLTn\nfcFTANN/JoGBbG8/2Z27Cc+/Qt6YdtNdRQ1sbQpro2QSBKd/W5ezbX3Z1CAjZVP9zPMDO1w+9l4Z\n8n7iIGDg/htFPpk4KoN6psdl2Prj91N55G4+d8PddPQWuPzfHlPjrShpTJPLGqMeeIswhR46s1Af\nGyU/flwmLp4ckcE2fgJaN3O5RaoJ2npZaoFENWwjwBg/q0wkEw9XxmSy2J6t8JMbZVi+n2vy4E8k\n++TYfgleTooObg/v4/s3fJdN3Rlee+OjqZlhFEXxqAauPInQWGyjDiU31GVqRApCWZnQwNamXODS\nyEw0uS5sVJPsFBsl1QpdlUCT63Lri1CrSnEsEEM+etjVIzlB/fGHCYslDv/wdr56f4U3/vW7CC77\n5VZ9DYrS/qiEoszm4j7L+PEpmByT1L+OAZloOKpLNgnGBTGNzB/p5BQT5tysPG7GHIBGFVsdd380\nC/miaN4Dp8msPbWynGP8OJnObvZ981aeODLNL33lDjXeirIYxjS3PJkPAYeBu1LrrgMOALe75UWp\n994BPAjcB7xwsWapAW8h2WxAsSuPLU/A3h9Iip+b1MC4kZcmzGJrLr/bT/yLlQkTgowYeBuJkc8U\nZaqwbEkCl9NjMgBn3M1KMz5CbWSYh2+8mZGpiIt/8zcxnZta+RUoyrrABGFTyxx8GLh21jqLzDx/\nsVu+4tbvBl7jHq8F3s8iNloNeAs5/S/+heNPjMnoyg074cCPpW62tZJ5ku+Sx6yUjCVy+eEY0cHr\nZRngU5uUgCYWE2Qw2Q6ivXdI6mC+Q3Ty6jTkChy7/2F+eBQu/fzjBC/8kxZ+ekVZRyzfA78ZGJnr\niHOsezkyi30N2Ac8BFy2ULNUA28hwdnXSnpSmJVl41nQs10Mro0kKJnviSc8kNnXJQtFZn0PZLi7\nn+QgzIm3HtUIzrtccrxH9kGjTnnvvUwcGubo0Wlec8N9OopSUZbAKqQR/hbwi8APgN8DTgBbgFtT\n2xwAti50EDXgLSYIAxn5OD4Mm3a5wlSh1Pc2AbZRkWyTbAFTr7oaKPlkNh4bJEFPNx2ayXdjs3nx\nuvNFanvv5oEf7eV7xwJ+5RsPYgo9Lf7UirLOmGcmqG/tL3Pz/vJSj/ZPwJ+75/8T+GvgzfNsaxc6\nkBrwFjM5VWfizlvpfE6P5HBPHoGuLa6uCTJgJ1fATg6LN+4nVbARECa3bUEogU1jZAaf44+7eSWn\nqR4b5oFxw5tefanMCK8oypIw88zIc9WOIlftKMav//LWsWYOdyT1/APAl9zzx4Htqfe2uXXzspoa\neAG4DfgxcA/wl259P3Aj8ADwdaA3tc+SIrCnAjuftpVMZ7ek+nUMytyTDT9RcU6CmW6iYFubTEZh\n+ronjZrkhter2OljMku8CaB3CCrTUJ3myN5hfu5NLyX81Y+37YgyRWlrlq+Bz8Xm1PNXkmSofBF4\nLZADTgfOBr630IFW0wMvAz8FTLnz3AI8D3gZYsCvB/4QeLtb0hHYrcA3gF1AtIptbDmliy7n6H/c\nQGFsWPTsqO4mE65LBcEgi40aUC9jCn3yJ3HlYU2Yi0dsEmRd+VkrnnejDlOjTO17gPFyhPm596p0\noijLZfmTaX8SuAoYBPYDfwpcDTwdkUf2Av/VbXsP8Gn3WAd+nRZLKG4kCTkgRKKxL0M+EMBHgD2I\nAZ8vApsW9U89Nu+i0HUT9G2RgTl+ooVMAbCSaZLrgFzJGetyMglDvZLkgbssFJwOzuhh6OrnG987\nzEtecrEab0U5CU5iJObr5lj3oQW2f5dbmqKZVr0XOL/ZA85x/B8jiew3AXcDm9xr3KNPRN6CRF09\ni0ZgTwmGziXb0yulX8cPi44dhIDFFPpkLszatHjU1kqVwozMVk+Yw+S7MaVBMfiBy2apTUGhkydu\n/CqTdUPmLf+v1Z9SUdY3KyuhrBjNGPB7gf+DaDG/BizFlYuQW4VtwJWIpJImVQ91Tha8fTglyHWQ\n37xDJiIe3CUatk8RdTPAy6Aemxp56Qy5q81tyydEB7cNyRPPd8PhfUSNiJ99pisVqyjKsjEmaGpZ\na5qRUP7ZLecCb0QE91vcupuaPM8o8GXgUsTrHgIOIWK+j8g2HYG97p3Xx8+vvuJyrr7y8iab0X4E\np11OtOuHcOQRmDiE2XCevBHmUrPpVAELQRaT705qgod57PQIJtshAU5rwboKhX2bGBursvV//G1L\n/liK0gr2fOvb7Ln52yt/4DYN/jergYeIAT8PGAbuAH4X8chfM88+g4gQfwIoAi8A/gyJtL4BeI97\n/ILb/ovAJxDJZisLRGCv++O3NdnsdcTwfghCySwJcxgbYSvjmCCLtXUpahXVXfqgEUmlIV64rYyJ\nhNKoyHvTI3B4H6EBM3RRqz+ZoqwZV18506H7s3f91Yocd740wlbTjAF/H/CzwH8A7yQxqu8B7l9g\nv81IkDJwy0eBf0eKt3waSVzfB7zabb/kCOwpw/aL4f7vQr5bvOnI1TexUvPbBNlkYuIgI4WrooZI\nKLYhOrnPYLEWalNElTLd/UWtdaIoK0Gb3sU2Y8DvBP47MDnHe89aYL+7gEvmWH8cuGaefZYUgT1l\n6NjI9KMPUqyXsY2qSCb5HCbfJSmBtoFtVJNZ6DGpuSmNGO/6tFQrzHdjGxWiaplMTrVvRVkR1rGE\ncidwzqx1o8CjiDyinCRm4GxJU6qMSwaJqwEeSyaZgisf20jqgDsPXQpYhdhMQTz2mmRu1icn6Nq6\necHzKorSHOt5Qod/RIKPd7rXFyDpgD3AfwO+tjpNe+pgTEDhgueITJLJA0gNlEyBOCPFTdoAiIce\nNdw8mDIvpjEhtiG1xJkeYeLwMIN//pW5T6goytJoUwmlmVYdRFIBL3XL04FHkKDk9QvspyyFZ7wK\nHvw2JsxjwqwYbxPIrZv3xI1x2Sc5Ga1pIzesPgtY2acyBtki3du3YfrPbPWnUpRTAmNMU8ta04wB\nPwfxuD33IBkpD/NUCTKuAWbDebD1fGx13AUkG7M2cLPRW5sENKMGhFlsoxLXTiFThGOPyPB7RVFW\nhsA0t6wxzUgodyPlDz+F3M+/GjHieWTYu7ICmNIAtjwupWQDKVYVyyahy0LJFp3MkkvklrorN4tN\nZuPp30n+0mtoyTTZinIK0q5jKZpp1RsQb/u3gbci8skbEOP9/NVr2lOQM56HKfaJt22TGl62PCYG\n21qZtKEyDoGTVzI5KT0b1aE8CrVJqE7IrPOKoqwMbTqUfjEPPAPcgAyB/19zvD++4i16KhPVsccf\nxnRvc3q3ZJuYQo8Mk3cGXF7bJKWw2AdRA9OxEVsZlf2e8aq2DbwoynqjXbNQFmtVHaln0rvIdspK\nUJ2A0oCTTdwISxvJXJhRQ9ZXxmWG+RlZKfVEM48aMsHxwC6t/a0oK4UJmlvWmGY08ElkUM6NJIN5\nLPCW1WrUU5ae7WKgsyVsdTIZyIPLPoka8ugNdmDlPffHsbWppBxtQWfeUZQVo02doWYM+Ofc4jNO\nDJp9siqY0gbssQexxX5MriRSSGNCHo0B4+qggAQ0a1PExr3uRmpisc6DVxRlZWjXu9lmDPi/ACXg\nNGSqM2WVMIVubL5L/izWuqnVMon+jZHXGfe+v2WzVgx8kJUAZ9/pbRs1V5R1yTrVwEFm0Lkd+Kp7\nfTFSOVBZDcKcGOl6hbhcepCRzBSspBRmnEduo3jyB0CmXQtzaPqgoqwwy89C+RBSQvuu1Lq/QuZZ\nuANRN9JzLCxpXuBmDPh1SNGqEff6duCMJvZTloHp3ekmMS466SSEepnYSNtIhs+DDNoxYZydAmBr\nk1qBUFFWmuUHMT8MXDtr3deRWc4uQiZ3f4dbn54X+Frg/Sxio5sx4DWeXLTqlJ5ouJWYjg3yJKq7\nGWceSt0AAA7uSURBVOjdQB6TkaVRn1HISmQVV3UwzGHyPap/K8pKE4TNLU/mZhLn13MjiQ29DZm8\nBuafF3j+ZjXR9LuBn0f08rOBvwe+08R+ynLJdYqRzpacdGKSgTveGzfGed8NVwsFJ7U4g68oysqx\negN53oSMtYFlzAvcjAH/LcTdryC9wxgyKlNZLbyObQJolJ2MUpEePlsU7zyencc6o46TXbJSelZR\nlJVjdfLA/xioIjORzceCGX/N5oH/kVuUNcDkOuRXq02Lzh013Ew8NTHmuY5ESjGhpBHahhhyo8Zb\nUVacebzrPQ8c55sPHl/OEd8IvBj46dS6pucF9jRztZ8D/D6wM7W9ReugrCom14EtnwAbuImKcyk9\n3N+uuZno/XMkFVFRlBVmHu/66nMGufqcwfj1n9/wcDNHuxb4A+AqoJxa3/S8wJ5mDPi/ItUIPwD4\nGqU6kGctCLIyMjPXKfKJjaA6Ll45OMMdymTGJhDNXFGUlWf5A3k+iRjqQWA/8KdI1kkOCWYCfBeZ\nA3jJ8wI306ofIhM5tAvWTg63ug1rhq1OJnVQ/AAfV0Y2/m1NINv4QUCKogBxVtfJXhS28f+9pKkN\nw1/78kqcr2maUd2/BPwGMst8f2pR1gCT63Dedz0ZtGMb8hi4DJWoDrmSGm9FWS2Wn0a4qjQjobwR\ncfV+f9b601e8NcqcmFwH4LxxXPqgaUggU71uRVl92rQ0RTMGfOdqN0JpDm/IAc31VpS1pE2dpIW6\nlbelnr9q1nvvWoW2KIqitCdtWg98oTO+LvV8dg74i1ahLYqiKO3JOp1STVEURVnHGriiKMpTm3Wo\ngV+ITFo8DlyQeu5fN8N24CakINZPSKZh60eS2B9ASium59xcUj1cRVGUVadN0wgXMuAh0OWWTOq5\nf90MNeB3kGJYz0byyc8D3o4Y8F3Av7vXsIx6uIqiKKvOOgxirgSHgB+75xPILBRbkVl+PuLWfwR4\nhXu+5Hq4iqIoq06bBjHXssvYiUzHdhuwCZlmCPfop5BZcj1cRVGUVadNPfC1CmJ2Ap8F3opo6Gn8\n1DLzoYWzFEVpLW0axFwLA55FjPdHgS+4dYeBIURi2Qwcceubqod73Tuvj59ffcXlXH3l5SveaEVR\n1h97vvVt9tz87ZU/cJumEa52t2IQjfsYEsz0XO/WvQcJYPa6x91IPdzLEOnkG8BZzPTCn1LVCBVF\nWT4rVo3wU29uasPwtR9cifM1zWp74JcDrwfuRGazB0kTfDdS9/bNSLDy1e69JdfDVRRFWXXCtU8R\nbIbVNuC3MH+g9Jp51r8LrbWiKEo78RTWwBVFUdY3baqBt2erFEVR2omTywN/K3AXMhr9rW7dQqPR\nm0YNuKIoymIsPw/8acAvA88ELgJeCpzJ/KPRl4QacEVRlMVYvgE/Fxm8WEYmhf8m8J+ZfzT6klAD\nriiKshjLL2b1E+AKRDIpAS9GxrfMNxp9SWgQU1EUZTGWH8S8Dxnv8nVgEqkN1Zi1zWKj0edFDbii\nKMpizGPA99z5GN+8a/9ie3/ILQDvRGo8zTcafWnNWs5OLUZHYiqK0hQrNhLzy29bfCsgfMn1c51v\nI2KgTwO+hpTW/mPmHo2+JNQDVxRFWYyTywP/DDCAlMn+dWCU+UejLwk14IqiKItxcgb8yjnWHWf+\n0ehNowZcURRlMdp0JKYacEVRlMVowXyXzaAGXFEUZTHUA1cURVmnBGrAFUVR1idaTlZRFGWdohKK\noijKOkUNuKIoyjpFJRRFUZR1StCeprI9W6UoitJOqISiKIqyTlEJRVEUZZ2iHriiKMo6RQ24oijK\nOkUlFEVRlHWKeuCKoijrFE0jVBRFWacE7SmhrPZ9wYeQyTvvSq3rB24EHkBmau5NvfcO4EFkJucX\nrnLbFEVRmsMEzS1rzGqf8cPAtbPWvR0x4LuAfyeZyHM38Br3eC3w/jVon6IoyuKcnAHvRebFvBe4\nB3gWCzuyTbPaBvJmYGTWupcBH3HPPwK8wj1/OfBJZOLPfcBDwGWr3D5FUZTFOTkD/rfADcB5wIWI\nwjCfI7skWuHhbkJkFdzjJvd8C3Agtd0BYOsatktRFGVujGlueTI9wBWInAxQR2aln8+RXRKtliis\nWxZ6X1EUpcWYJpcncTowjMjJPwL+Gehgfkd2SbQiC+UwMAQcAjYDR9z6x4Htqe22uXVP4rp3Xh8/\nv/qKy7n6ystXpaGKoqwv9nzr2+y5+dsrf+B5JjXe8/17+Ob371lozwxwCfCbwPeBv+HJcslijuy8\nrEVuzE7gS8AF7vX1wDHgPcgH6XWPu4FPILr3VuAbwFk8+YNZOzm86o1WFGX9Yzo2wMnbOdu46/82\ntWF4wWtmn28I+C7iiQM8D8m2OwP4KRJH9ibg3KU2bLUllE8C3wHOAfYDvwS8G3gBEn19vnsNEp39\ntHv8CvDrqISiKEo7sHwN/BBi+3a519cAdyNO7RvcujcAX1hWs5azU4tRD1xRlKZYMQ/87n9tasPw\n/FfNdb6LgA8AOeBhxJENEYf1NCTr7tXAiaU2TEdiKoqiLMpJiRV3AM+cY/01J3NQUAOuKIqyOFqN\nUFEUZZ1i5s5CaTVqwBVFURZDPXBFUZR1itYDVxRFWa+oB64oirI+UQlFURRlnaISiqIoyvrEqAeu\nKIqyTtE0QkVRlHWKeuCKoijrFdXAFUVR1ifqgSuKoqxT1IAriqKsV1RCURRFWZ+oB64oirJO0TRC\nRVGUdUqbeuDtKewoiqK0EyZobnkyBeA24MfIfL9/6db3AzcicwN/HZncfcmoAVcURVmM5U9qXEZm\nn386cKF7/jzg7YgB3wX8u3u9ZNSAK4qiLIppcpmTKfeYQyYzHgFeBnzErf8I8IrltEoNuKIoymIs\nX0IBsbM/Bg4DNwF3A5vca9zjpuU0S4OYiqIoi3JSQcwIkVB6gK8hMkoa65YlowZcURRlMebxrvd8\n5/vs+c4Pmj3KKPBl4FLE6x4CDgGbgSPLatZydmox1k4Ot7oNiqKsA0zHBjh5O2ejQ3c2tWEwdOHs\n8w0CdeAEUEQ88D8DfgY4BrwHCWD2soxApnrgiqIoq8dmJEgZuOWjSNbJ7cCngTcD+4BXL+fgasAV\nRVEWY/kDee4CLplj/XHgmmW3x9GOWSjXAvcBDwJ/2OK2KIqicJJphKtGuxnwEPgHxIjvBl4HnNfS\nFi3Cnm99u9VNmIG2Z2G0PQuj7ZmH5Q/kWVXazYBfBjyEaEI14FPAy1vZoMXYc3Ob/MEc2p6F0fYs\njLZnPtQDb4atwP7U6wNunaIoSus4uYE8q0a7BTGXlcyuKIqyqrRpNcJ2a9WzgesQDRzgHcgopvek\ntnkIOHNtm6UoyjrlDmQU5Mlgo6MPNLVhMLgL1tCutpsH/gPgbGAncBB4DRLITHPWGrdJUZSnOm3q\ngbebAa8Dv4mMVgqBDwL3trRFiqIobSdWCO3ZKkVRlPbBRsceamrDYOAsWEO72m5ZKIvRikE+H0IK\nz9yVWrfQbBrvcO27D3jhKrRnO0lJyp8Ab2lhm5Yz28hqfz8gd2+3A19qk/bsA+50bfpeG7SpF/gM\ncnd7D/CsFrbnHOR78cso8p9u9W82A2OCphZlfkIkgLkTyCJGYy0G+VwBXMxMA3498Db3/A+Bd7vn\nu127sq6dD7HyneQQSVCmE7gf+R5a1aaSe8wAtyKzjbTy+wH4XeDjwBfd61a3Zy9ikNK0sk0fAd7k\nnmeQMqet/o5wx30CcVLaoT0ea0f2NrWgmXTz8hzgq6nXb2eZ0xAtg53MNOD3kRRgH3KvQTyD9J3B\nV5HMmtXkC0hNhVa3qQR8Hzi/xW3ZBnwDqbnsPfBWfzd7gYFZ61rVph7gkTnWt/o7AvGmb26j9nis\nHdnX1MIaG/D15PO30yCf+WbT2IK0y7PabdyJ3B3c1sI2LWW2kbX4ft4H/AGSfupp9e9lkU7lB8Cv\ntLhNpwPDwIeBHwH/DHS0sD1pXgt80j1vh/Yk6FD6k6Zdb00W63VXq92dwGeBtwLjLWyTn21kG3Al\nS59tZCXb8lKkMP7tzB9IasXvdTnS0b4I+A1ElmtVmzJIdbz3u8dJnnwn24rvKAf8LPCv85yvFddY\nCh1Kf7I8jmhjnu3M7InXEj+bBsycTWN2G7e5dStNFjHeH0UklHZo01yzjax1W56LTBa7F/Hkno98\nR63+bp5wj8PA55GaP61q0wG3fN+9/gxiyA+1qD2eFwE/RL4jaP1vNhP1wE+a9CCfHDLI54sL7bCK\n/P/t3T9rFFEUhvEnGgUJqfxTWJlCG1ELbQRBC4WIYKE2FhL8EDZptLGzELS0FOwsYqGFiPgFjIii\noG20sNJCCOhYvLPcmASzWbO5O+H5wbKzYWEPw+bunXvPOTMHzLTHM5RBdI5cBu4kl6oHKVkHG2WM\n5Me/B+5WjmkPJTtgF3COzH5rnZ9Z8s891X7OC+BaxXggewOT7fEEWed9WzGmr2Qp8lD7+ixZ9npS\nKZ6eq5Tlk97n1oxnmdGcgXfNeZJ18YlsZmyGR6QqdJF88a+TjILnrJ7iNNvG94HcNmmjnSLLFvOU\n1KvpSjEdIeuo8yRN7kb795rnp+c05Qe+ZjxT5PzMk7TP3ve2ZkzHyAz8DfCYbGzWjGcC+Eb5oaNy\nPMs1zfeFvh5s8lKvPxmS9G9N82OhrzeOTe6HlePqNLla3g484O/eTv+lS0soklTJwEsoQ71JjQO4\nJK1l8E3Mod6kxgFcktY08Ax8qPUro9aNUJJGz+ApgkPd1HQAl6Q1jE3s6/ety4vqRql+RZK0DuPA\nZ0r9ymY14ZOq2k3Jc/9CZi2vyQznfsW4pPWqUb8ijYybpEWspCXMQlFX9HaRzlDaxN4iva1fkTSt\nS8AdUhX6lLLHcxx4SdoxPKP02JA6zQFcXTdFOiBeBB6Su7gcBX4CF0jjr3vAZeAEaaN6u0qk0gYz\nC0Vd1pCZ9i/SZ2QbuSE2pGHUAdK06TDpqwGpjOuvLloacQ7g6rrF9vk3qXRjyetxsvTyjrSalbYU\nl1DUZf1UV3wE9lJuu7WD9KSQOs8BXF3RLHle7RhWVr01ZFZ+hXSA67XgPTm8MCVJkiRJkiRJkiRJ\nkiRJkiRJkiRJW8oficN/jVry+kIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "transfer.plot(response='2d')" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcU/W9//HXzLAN67DIjgKj7KKgBUTQoGLBFXGrC2Kr\n9v5aH9Vae4va3jpqr4pVq9dWbd2KtLV1qV6xoqKXWMRdQdlRFtlBZZedye+Pz4lzCJmZzExOvifJ\n+/l45DEnJ8nJZwJzPvl8twMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiaTcXOMF1EGkUAVYGcNyuQDlQ\nGMCxRQJRz3UAEjrbgZi33QTYBez37v8Q6OciqBy0HGiLfbbfANOAq4GtDmMSEanUMuAk10F4gvry\nEsFNheD/bNsBs4G7AohDJGUqZ6WmllNxIisDngEmY99sPwWOAG4E1gNfACN9r20BPAasAVYBt1H1\n/8Fy4MfAZ8Aib98Z2MlzEzATONL3/AnecbcCC31xNgTuA1Z7t98BDZK83wTv9/G737tVF38hcDfw\nJbAEOL2K3yvReuA1oK9v3xDgbez3nA2c6Hvscu89tgJLgYt9+2cCDwCbgQUcmNA7Ai8CX2Of6ZW+\nx8qAp4FJ3nHnAsf4Hq/ssy0AbgA+B74C/gG0TPH3FpEskqxC8O8rA3ZiJ/0i7GSyHEsIRdgJZ6nv\ntc8DDwHFwCHAe1gzVGXKgVeBEuykPgA7eX4HOxFd5sVTH+gJrADae689FOjubd+KnVzbeLeZ3j44\nsEI4DGu+aerdL8JO/oNSiP//YSfgTtgJcTrWHFRVhXCyt90ZS6a/9u53wk6uo7z7p3j3W2PNeFuw\nxAtWXfTxti8H9gLXerFfgCWGEu/xfwO/x5LhUcAGYIT3WBn2bzkK+2xvB97xHqvqs70W+2w7Yv8O\nDwN/q+R3FpEslkpCeNX32JnANuyEAtAMO6k3x05cu4BGvudfBPxfFe9fjp2w4x6i4kQetxDr5C7F\nksXJ2InJ73MqTq4Ap3q/BxzcZDQDGOdtj/ReSwrx/x8HJreRVN1ktBz7rLZ6z3ve99wJwJMJz38F\nS4CNsaphLJaY/C7HKiC/94BLgS7APiyhxN0OPOFtl2FVSlwfYIe3fTiVf7bzOfD/SAdgD2p9yEr6\nR5O62uDb3ol9k4357oN94z4MO5msxU5om7Bvk4d4z5mHnSC3Acf7juk/WR8GXO97/Sbs23UHrAnl\np9iJbT3wlLcf7NvrF77jrPD2JfM37EQP1hTzV997VxV/h4RYV1Ry/LgYcDaWLCPYSfVY33udn/B7\nHo99Q98BXIhVJGuAl7Bv8HGJCeELL7YOwEasAvLH2Ml3f71veweW/AqxpFjZZ9sVS2bxOOdjiadd\nNb+/hJASgmTKSmA31uzR0ru1oKIPoC9WUTTDmnTiYr7tFcB/+17fEks2//AefwoYjp1QY8BEb/8a\n7MQVd6i3L5lnsRN0J2AMFc0f1cW/1juu/z1S9W+s3T8e7wqsX8b/ezajotP5NazKaY9VSI/4juU/\nwYN9Fmu8WysqmsPiMa5KMcbKPtsVWPXlj7Ux9nlIllFCkExZi53I7sVOboVYM09N5jQ8gn0zHoQ1\nSzXBOm+bAj2wb9kNsRO3f7jsU8CvqOhD+DV2wk3mSyAK/Bnr/4h3ZlcX/9PANVT0IdxQg98LrNN7\nEDAY+AvW/HYq1hfQiIok1RarLJpg/QXf+H5PvMevwaqZ84FewMvYif9t4A7sM+oP/MB7r+pU9dk+\njDU9xRPgIcBZqf/aEiZKCFIXMQ78Bk819y/DOjTnY80Xz1DRUVnZ8f0+Aq7COkY3YiNlLvMea4id\n7L7ETt5tsM5tgN8AH2Idt59627+p4n3+hrWXJ3aOVhX/I1h/yife8Z9LctyqfIV1ysdH85wN3IQ1\nya3AmsoKsL/Z67Cmoa+xb+0/8h3nPazD+UtsFNS5WFMOWFNYV6xa+CeWGON9IFX9W1b12d6PjVx6\nDesPeYeKTniRgxQBs4Ap3v1W2CScxdh/opJKXiciNXM51ikuUiuZqBCuxb5Rxb9t3IAlhB7AG9S8\ntBYRkSzUGXgdG+scrxAWUjECId4pJiJ1Nx7roBYJpWewyUQnUpEQNvkeL0i4LyIijgTZZHQG1iE2\ni4qJSomSdWSJiIgDQa52OhQbfnYaNmyuOTbUbz3WVLQOm9yyIdmLS0tLY0uWLAkwPBGRnLQEm11e\nY0FWCDdh0+W7Ad/DhreNw4aojfeeMx54IdmLlyxZQiwWC/3t5ptvdh5DLsSoOBVn2G/ZEic2P6ZW\nMjkPId40dCe2zstibLLLnRmMQUREKpGpC+S86d3AJvSckqH3FRGRFGmmch1FIhHXIVQrG2IExZlu\nijO9siXOuqhs9E8YxLz2MBERSVFBQQHU8tyuCkFERAAlBBER8SghiIgIoIQgIiIeJQQREQGUEERE\nxKOEICIigBKCiIh4lBBERARQQhAREY8SgoiIAEoIeWXqVLjvPtdRiEhYaXG7PDJwIMyaBfpYRXKX\nFreTlDRq5DoCEQkzJYQ80rCh6whEJMyUEPJIvEJQk5GIJKOEkEf27LGfu3a5jUNEwinohNAIeA+Y\nDcwH7vD2lwGrgFnebVTAcQiwcaP93LbNbRwiEk71Aj7+LmAEsMN7r7eAYUAMuNe7SYbs2GE/t2+H\ntm3dxiIi4ZOJJiPvNEQDoAjY5N0P85DXnLR7NzRvrgpBRJLLREIoxJqM1gPTgXne/p8AnwCPASUZ\niCPv7dkDrVsrIYhIcplICOXA0UBn4AQgAjwEdPP2rwXuyUAceW/3biUEEalc0H0IfluAfwHHAlHf\n/keBKcleUFZW9u12JBIhEokEFlw+UEIQyT3RaJRoNJqWYwXdjt8G2AdsBoqBV4FbsGajdd5zrgO+\nA1yc8FotXZFmDRrABRfAiBFwxRWuoxGRINRl6YqgK4QOwCSsaaoQmAy8ATyJNRfFgGXAfwQcR94r\nL4e9e6FVKxtlJCKSKOiEMAcYmGT/ZQG/ryTYuxfq14emTeGbb1xHIyJhpJnKeWL3blvLqEkTJQQR\nSU4JIU/s2VORENRkJCLJKCHkid27rVNZFYKIVEYJIU+oyUhEqqOEkCf27FGFICJVU0LIE6oQRKQ6\nSgh5wt+prIQgIskoIeQJdSqLSHWUEEIkyJU61GQkItVRQgiJdeuge3coKLDtdNuxw5KBEoKIVEYJ\nISR++EO48EIYOBAWLUr/8XfsgOJiJQQRqZwSQgisXg0zZ8Ktt0KfPrBsWfrfY8cOaNzYbjt2BNs8\nJSLZSQkhBN56C4YPt07fbt1g+fL0v0c8IRQVWV/Czp3pfw8RyW5KCCHw5ZfQubNtd+0abIUAajYS\nkeSUEEIg3r4PwVcIoAXuRCQ5JYQQ2Lmz4mQdVIXgfw9VCCKSjBJCCPgrhE6dYO3a9Hf6qslIRKqj\nhBAC/m/vDRpYp++2bel9D3/S0VXTRCQZJYQQ8J+swa57vGlT+t8jnnRKStJ/fBHJfkEmhEbAe8Bs\nYD5wh7e/FTANWAy8BpQEGENW8FcIYAlh48b0vsfmzdC8uW23bp3+44tI9gsyIewCRgBHA/297WHA\nDVhC6AG84d3Pa4kVQsuW6f8Gv2EDtGtn261awddfp/f4IpL9gm4y2uH9bAAUAZuAs4BJ3v5JwJiA\nYwi9TFQI69dXJITWrZUQRORgQSeEQqzJaD0wHZgHtPPu4/1sF3AMoRd0hRCLWYXQtq3dV5ORiCRT\nL+Djl2NNRi2AV7FmI7+Yd0uqrKzs2+1IJEIkEkl7gGEQdIWwZYuNXIonnTZtbHa0iGS/aDRKNBpN\ny7GCTghxW4B/AcdgVUF7YB3QAdhQ2Yv8CSGXJRtllM6E4G8uAujYEdasSd/xRcSdxC/Lt9xyS62P\nFWSTURsqRhAVAyOBWcCLwHhv/3jghQBjyAqJFUK6m4z8zUVg6yatXp2+44tIbgiyQuiAdRoXerfJ\n2KiiWcDTwBXAcuCCAGPICpmuENq1s07lvXuhfv30vY+IZLcgE8IcYGCS/RuBUwJ836yT6QqhqMia\njVasgNLS9L2PiGQ3zVQOgaArhLVrD6wQAPr2hTlz0vceIpL9lBAc27vXhoX6m27SnRAWL4YePQ7c\nd+SRMHdu+t5DRLKfEoJjO3dadVBQULEv3U1GCxZA794H7jv0UFi1Kn3vISLZTwnBscT+A7A1h3bs\nsOqhrvbvh88+g549D9zfrp11NouIxCkhOJbYfwBWLZSU2IJ0dbVsmXUoN2ly4H4lBBFJpITgWLzJ\nKFG6+hGSNReBJYkNlU4JFJF8pITgmP86BX7pWoCusoSgCkFEEikhOLZrFzRqdPD+Dh1suGhdLVyY\nPCE0b259FDt2HPyYiOQnJQTH9u2DekmmB6ZrvaFPP7U5B4kKClQliMiBlBAc278/uISwdatVCMcc\nk/zxdu3UjyAiFZQQHNu3z5aSSJSOhDB9OgwZkrxJCqxjWRWCiMQpIThWVYVQ1xVJp06F0aMrf7xd\nO1i3rm7vISK5QwnBsaAqhFgMXnkFRo2q/Dnt26tCEJEKSgiOBdWHsHAhlJdDnz6VP0cJQUT8lBAc\nq6xCaNnShqR+803tjvvGG3DqqQeukZRITUYi4qeE4FhlFUJBgVUJtZ2LsGgR9OtX9XNUIYiInxKC\nY5VVCFC3ZqMlS6q/+I0qBBHxU0JwrLIKAeqWEJYurT4hqEIQET8lBMeqqxAuvRTmzavZMffvhy++\ngG7dqn6elq8QEb+gE0IXYDowD5gLXOPtLwNWAbO8WxWDI3NbVRXCjTfC4MEwc2bNjrl6ta2WmmwV\nVT8tXyEifpWcitJmL3AdMBtoCnwETANiwL3eLa9VVSG0a2cjhVaurNkxU+k/iItPgKuumhCR3Bd0\nhbAOSwYA24EFQCfvfhUDIvNHVRUC2KUuV6yo2TFrkhC6dbOL6IiIZLIPoSswAHjXu/8T4BPgMaAk\ng3GESlUVAmQmISxdWrPji0huCrrJKK4p8CxwLVYpPATc6j12G3APcEXii8rKyr7djkQiRCKRgMPM\nvOoqhC5datdkdM45qT23tNQmsYlIdopGo0Sj0bQcKxPNNvWBl4CpwH1JHu8KTAGOTNgfi8ViwUYW\nAnfeCZs2wcSJyR/fudNmLe/YYduJ10ZOtGoVjBkDDz4IgwZV//4ffwyXX27XTRCR7FdgyxPU6twe\ndJNRAdYkNJ8Dk0EH3/Y5wJyA4wityi6QE1dcbMNDH3gAmjat+ljbt1tF8dFHqTcZ9e0Ln30Gu3en\nHrOI5Kagm4yOBy4FPsWGlwLcBFwEHI2NNloG/EfAcYTW/v1V9yEAHH00/PSnth2LVb4+kX94aqtW\nqb1/w4bQqZPNW+jRI7XXiEhuCjohvEXyKmRqwO+bNfbtg/r1q37OmDEwbZptb90KLVokf97HH9v1\nD37+86oXtUvUvbt1LCshiOQ3zVR2rLpOZYDx4+Hcc+GII6yPIJnHH4eHH4bzz4eTTqpZDN27W0e0\niOQ3JQTHqht2CtaR/OyzNgS1squoXXGFDU9NpSM5UbxCEJH8poTgWCoVQlynTskrhG3bLGmsXWud\nxDVVWqqEICJKCM6lUiHEde5sFcLChdbJvGmT7Z83D3r1stVLa0MVgohA5iamSSVqUiF07gxXXw33\n3WejjXr0gEsugT/+sfqL4VQl3odQ1QgmEcl9SgiO1aRCOPVUm4F8111WFdx7r406+vOfYWodxm21\naGHDT7/8Etq2rf1xRCS7KSE4VpMKobQUnnvOtjt3ttFHmzdbh/OoOi4gXlpqVYISgkj+Uh+CYzWp\nEPwaNoQRI+CTT+CUU+oex4AB8NZbdT+OiGQvJQTHalIhJLr/fvj97yufqFYT55wDU6bU/Tgikr2U\nEByrbYUAtm7R1VenJ46hQ22m85496TmeiGQfJQTHUlnLKBOaN7d+hNmzq3+uiOQmJQTHysvDkRAA\njjsO3n7bdRQi4ooSgmP790NhSP4Vhg6Fd95xHYWIuBKSU1H+ClOFMHSoKgSRfKaE4FiYKoTSUti1\nq+aX7BSR3JDKqahPkn2RNMeRt8JUIRQUqNlIJJ+lkhCeBiZgl8NsDDwA3BlkUPkkTBUCqNlIJJ+l\ncioaDHQB3gHeB9YCQ4MMKp+EZdhp3HHHqUIQyVepJIR9wE6gGGgELAXKgwwqn4SpyQigf39bOK9c\n/8IieSeVhPA+sAs4FhgOXAw8k+LxuwDTgXnAXOAab38rYBqwGHgNKEk95NwStiajkhJbCmPFCteR\niEimpXIquhL4L2Av1lx0FpDqqjd7geuAvsAQ4GqgN3ADlhB6AG949/NS2CoEsKuuzZ/vOgoRybRU\nEsJ64NCE25spHn8dEF8MYTuwAOiEJZVJ3v5JwJgUj5dzwlYhAPTpY81GIpJfUlln82Ug5m03AroB\ni7Bv/TXRFRgAvAe0wxIN3s92NTxWzghbpzJYhaCRRiL5J5WEkHhxxoFY009NNAWeA64FtiU8FqMi\n4RygrKzs2+1IJEIkEqnh24ZfeXn4KoS+feGRR1xHISKpiEajRKPRtByrtlfQncvBiaIy9YGXgKnA\nfd6+hdjktnVAB6zjuVfC62KxWNI8kVOOOcauiXzssa4jqbB5sy2tvXWrrrEskm0K7I+2Vn+5qVQI\n1/u2C7EKYXWKxy8AHgPmU5EMAF4ExgMTvZ8vpHi8nBPGTuWSElsOe8UKOOww19GISKak0ljRDGvy\naQo0wL7tn53i8Y8HLgVGALO82yhspvNIbNjpSeTxzOcwdiqDdSxrpJFIfkmlQiirw/HfovKkk4Yr\nAWe/MFYIAP36waefwujRriMRkUypKiFUNdcghg0dlToKa4Vw4ol2veYJE1xHIiKZUlVCuKeKx3K/\ntzdDwjjsFOCUU2DcOOtYbt7cdTQikglVJYRlwBeZCiRfhXHYKUDTpnD88TBtGpx7rutoRCQTqjoV\n+Uf+PBd0IPkqrBUCwOmnw7/+5ToKEcmUVL+bdg80ijwW1k5lqEgIWvlUJD+EsLEiv4S1Uxmge3do\n3Ro+/NB1JCKSCVWdivpjy0xsA470bW8DtgYfWn4Ic4UAcMYZajYSyRdVJYQibFJaM6zzuZnvpnEn\naRLmCgEsIbz0kusoRCQTQnwqyg9h7lQGu8byypXw+eeuIxGRoCkhOBb2JqN69eDii2HyZNeRiEjQ\nlBAcC3uTEcB558Hzz7uOQkSCFvJTUe4Le4UAcNxxsGEDLFjgOhIRCZISgmPZUCEUFdmaRuPHw+7d\nrqMRkaCE+fIneXGBnIYNYcsWaNTIdSRVi8Ws6ai0FO66y3U0IlKZulwgRwnBsfr14ZtvoEED15FU\nb80a6NkTNm2yzmYRCZ+6JISQN1bkvrAPO/Xr2BE6dICFC11HIiJBUEJwKBazW9j7EPyOOQY++sh1\nFCIShCw6FeWe8nK7iH02Xcj+mGPg449dRyEiQVBCcCgbhpwmUoUgkruCTgiPA+uBOb59ZcAqYJZ3\nGxVwDKGVDUNOEw0YAJ98YrGLSG4J+nT0BAef8GPAvcAA7/ZKwDGEVjZ1KMeVlED79lYlaE6CSG4J\nOiHMADYl2Z9FrebBCevlM6szciQMHgzXXus6EhFJJ1eno58AnwCPASWOYnAuGysEgGuugf79bT6C\niOQOF9OLHgJu9bZvA+4Brkj2xLKysm+3I5EIkUgk4NAyKxs7lQF69YLHHoMrr3QdiYhEo1Gi0Wha\njpWJppuuwBTsqms1eSznZyp/+SX07g1ffeU6kprbvh3atoVt27IzqYnkqmybqdzBt30OB45AyivZ\nWiEANG0KhxwCy5e7jkRE0iXohPAU8DbQE1gJ/ACYCHyK9SGcCFwXcAyhlY3DTv0GDoRXX3UdhYik\nS5hH++R8k9HKlXatgVWrXEdSO7NmwahR8N570LWr62hEBLKvyUg82TrsNG7AALj5Zhg+XHMSRHJB\nFp+Osl+2Djv1+/GP4fDD4eWXXUciInWlhOBQNncq+116KfzhD7Bnj+tIRKQulBAcyvZO5biLLoLi\nYrjqKteRiEhd6LpXDuVKhdC4MUyaBN27w+bNtt6RiGSfHPh+mr1ypUIAaNUKTj4Znn3WdSQiUls5\ncjrKTrnQqex33nnw4ouuoxCR2lJCcChXmozivvtdiEZhxgz73UQkuyghOJRLTUZgzUZdusAJJ8Ab\nb7iORkRqKodOR9kn1yoEsOrgl7+EqVNdRyIiNaWE4FCuVQhgVcKYMUoIItkox05H2SXXOpXjBg6E\njRth2TLXkYhITSghOJTtaxlVprAQRo/WiCORbJODp6PskasVAthyFpMmuY5CRGpCCcGhXOxUjjvp\nJGs2+uAD15GISKqUEBzKxU7luMJCuOkmazr6619dRyMiqcjR01F2yOUKAeCHP4RnnrFhqPv2uY5G\nRKqjhOBQLlcIcSNG2GJ3LVrA2rWuoxGRquT46SjccrlT2W/GDBg7FiZPdh2JiFQl6ITwOLAemOPb\n1wqYBiwGXgPydrHkXB12mqhZM7jiCpgwAW67zXU0IlKZoE9HTwCjEvbdgCWEHsAb3v28lC8VAtj6\nRtdfD7feCitXuo5GRJIJOiHMADYl7DsLiI9QnwSMCTiG0Mr1TmW/wkK4+24YPx7+8Q/X0YhIMi4a\nLNphzUh4P9s5iCEU8qFTOdGVV8LEifDRR64jEZFEri+hGfNuSZWVlX27HYlEiEQiwUeUQflUIcQN\nGQJ33gk33givveY6GpHsF41GiUajaTlWQVqOUrWuwBTgSO/+QiACrAM6ANOBXkleF4vFKs0VOWHy\nZHj1VfjLX1xHklm7dkFxsW1/8gn07+82HpFcUlBQALU8t7tosHgRGO9tjwdecBBDKORTp7Jfo0aW\nBE86CR591HU0IhIXdEJ4Cngb6AmsBL4P3AmMxIadnuTdz0v5Muw0mUsugT/9Cf7+d9iUOOxARJwI\nug/hokr2nxLw+2aFfK0Q4kpLYdw4qxSmTYM2bVxHJJLf8vT7aTjkY6dyorvvhlGj4PjjbQTSihWu\nIxLJX0oIDuXjsNNEBQVw++02YW39etsWETfy/HTkVr43GcUVFMCFF8JDD8HTT8PSpfCTn8CWLa4j\nE8kvruch5LV87lROpnNnGDrU+haKi2HRIs1VEMkknY4cUoVwsHvvtUlrGzbAZ5/Bu++6jkgkfygh\nOKQK4WA9elg/QtOmcN11cP/9riMSyR86HTmkCqFqF18Mr7wCb77pOhKR/KCE4JCGnVatTRt48kn4\n3vfghRdsmY/t211HJZK71KnskIadVu/MM+GWW+Ccc6BXL2jZEl5/HRo3dh2ZSO7R6cghNRml5sor\nIRqFuXOhbVt44AHXEYnkJlUIDqlTOTWFhXDiibZ9xx129bUhQ+Doo6F+fVULIumi05FDqhBqrndv\nWyF1/Hjo2BEGDYJ9+1xHJZIblBAcUqdy7Zx9Nnz+OaxeDS1awEsvuY5IJDcoITikTuXaq1cPSkrg\nxz+GBx+EGTOsCUnVgkjtqQ/BIVUIdTd2LFx1FZxxhvUlRKNWPbRvD2PGuI5OJLsoITikCqHuiovh\n2WchFoOZM+EPf7A5CwC7d0ODBm7jE8kmOh05pE7l9DjtNDj9dFsY74UX4LHHYNgweOYZ15GJZBdV\nCA5p2Gl6nXaaNReVlsIRR9gM55ISSxYiUj2Xp6PlwKfALOB9h3E4owohvQoLLRkADB8Ov/kNXHaZ\nrYV06aXwi1+4jU8k7FxWCDEgAmx0GINT6lQO1ve/b0tdnH22fdZ79sDOndC1K/zsZ/acggKnIYqE\niusmo7z+c1SncvDGjIFPP7XO53nz4J13rON55kzrcP77311HKBIeriuE14H9wB+BRxzG4oSajDLj\n0EPtZyRit9at4eqroUkTmDLF9jVr5jBAkZBw+f30eGAAMBq4GhjuMBYn1KnsxrhxMG2a9StccAH8\n+teuIxIJB5cVwlrv55fA88AgYIb/CWVlZd9uRyIRIpFIhkLLDFUIbhQXW1UwfDjcdJNdpW3uXFsG\n4/XX7aI8Q4a4jlIkNdFolGg0mpZjuWrDbwwUAduAJsBrwC3ez7hYLBZzEFrmXHIJjB5t31TFnTlz\nbHLb22/DRRfBbbfBBx9YM9LKlXD44a4jFEldgY2UqNW53VWF0A6rCuIx/JUDk0FeUIUQDkceabe4\nhQuhW7eK+xddBH/8o0YkSe4L83/xnK8QLrgAzjvPfkq47N4Ny5dDly7WtFRUBJ07w//8jy27rb4f\nCatsrBAEDTsNs4YNoWdP2542DWbNsialHj2sUhg3DkaOtDkO9fRXJDlCpyOH1GSUHVq1gpNPhv/6\nL1izxuYzHHEE/Pa3cOqp8PXXNhv6V7/S8tuS3ZQQHNKw0+xTUmIzna+/3ia3fec7MGAAnHOOLaY3\ndqxVFHv3uo5UpOZU7DqkCiG7FRXBxIl2LYZmzezynhMn2ryGJUtg8GBo2hR++UvYvNlWYBUJM30/\ndUgVQm4YPtyu1tawoSWDd96Bp5+2DukVK2xZ7vPPt9VX27aFG26w1331Ffzud7a+kkgYqEJwSBVC\n7oovkxGL2e299+Caa+DJJ+EHP4ATTrDhrddfbwnhppv0BUHcU0JwSKud5r6CArsdd5xNdgP45z/h\nrLOsA/qJJywpfPghPP+8DUPu1Anuuefg/xuxmOZCSLD0fcQhDTvNT0OGwOLFdnW3yy+3zumRI23G\ndHk5PPKIrdL63e/CFVfAW2/B7bfb6qxpWqFAJClVCA6pySh/lZRYsxFAr152A3juOfjsM3j8cet7\nWLYMLrwQtm6Fhx6y+Q9dukD//jb09fDDYds2G/Z6yy02aU6ktsJcgOb8TOVhw+COO6xTUqQyO3fa\nzOmSEti1yyqGOXPscqHPP28X/rnwQuunePNNW9Zb8lddZiorITh03HHWVjx0qOtIJFtt22Z9C82a\nwZVXWqIYNMhmT/fvDyeeCB06WNLYtw8eftjmTQwbZqu7Su5RQshSgwfb2jiDB7uORHJBLAb33Qfr\n1llVsXYtvPGGTZIrL7c5ESNHWpPU2rX23LlzbdXdww6zJBL/k1PndfbSWkZZSp3Kkk4FBXDddQfu\n27QJ1q8OSryGAAAIB0lEQVS32+7dttQG2DWlzzvPrhx31FH2f3HECBsKW1AAN99scyr69YPJk625\nyp8kyssrRlBJ7gjzP2fOVwgDBsBjj8HAga4jkXwTi1kzUsOG9nPjRnj/fWje3CbTTZgAd94JL71k\n14o48kjYsMGSStOmVnUUF8PPf25JY88eGzXVr5/9f+7Tx57bpo3r3zT/qMkoSx11FEyaZLNcRcJq\n3z4b9dS7t41sWry4Yk7En/5kcyhWrrQlOpYutZna8+db5/bFF8Oxx9rzFy2yxDFlio2YGjHCksqa\nNZaYWre299u6FbZssdFUUnNKCFmqXz946qkDL84ikm3277cTfXGx3S8vtxVgt261k//LL9vJvqjI\nlhD/7W/hRz+y5qwePaw/o6jItgcNsol769bBo4/asaZOtcEXnTrBn/9so6uGDYNGjeynlh8/kBJC\nlurTx1bI7NvXdSQimRGvLPbutcrjww9txdhVq+CLL2DGDKsoCgrgwQctUTRubE1XLVrYaKqxY60K\n2bIFVq+uWDRw717r6zjtNEsW5eXWJ9KzpzWFvfIKjBpliWvwYKhf3+1nERQlhCzVsyf87/9WTEoS\nkeTiI6fat6+oRMCuajdjhiWOJk3g3Xdt5vfixXDIIZYcFiywTvWTT7ZFB/fvt2TQvLltb9tmVcaG\nDfY32bu3XUJ12zZLQJs3W79IvXo2VPzrr22k1tixtu+bbyyO2bOtGbhfP1efklFCyFJHHGHl9BFH\nuI5EJLdUte5TLGZNV/EKoWFDq1Y6drTmqAUL7ATftCls326VyZtvWsXx9tuWkLp1s+cWFlpC6NTJ\nOtBXroTRo62Zq08f6zcpLbW5ILGYVSznnmuLGQYlWxPCKOA+oAh4FJiY8HjOJ4Tu3e1iKqWlriMR\nkVTs32/Jo0EDO/k3bGhVROPG9vhdd1kn+bhxNlqrb1+7NsaqVVZN9OoFLVsG2ypQl4TgShHwOdAV\nqA/MBnonPCeWDaZPn17r1x56aCy2bFnaQqlUXWLMJMWZXoozvbIlTqDW36RdTYsahCWE5cBe4O/A\n2Y5iqZNoHZafzNT693WJMZMUZ3opzvTKljjrwlVC6ASs9N1f5e3LK1rtVETCxNUI3pRKmjPPDDqM\nulu0CD76qHav/fprjaEWkfBw1fEwBCjDOpYBbgTKObBj+XNA3a0iIjWzBDjcdRA1UQ8LuivQgOSd\nyiIikidGA4uwSuBGx7GIiIiIiEhYjQIWAp8BExzH8jiwHpjj29cKmAYsBl4DSnyP3YjFvRA4NUMx\nAnQBpgPzgLnANd7+MMXaCHgPax6cD9wRwhj9ioBZwBTvfhjjXA58isX5vrcvjHGWAM8CC7B/+8Eh\njLMn9jnGb1uwv6OwxRl/33nYeelvQMOQxllnqUxYy6ThwAAOTAh3Ab/wticAd3rbfbB462Pxf07m\nhvW2B+KLaDfFmuJ6hzBWbz4n9YB3gWEhjDHuZ8BfgRe9+2GMcxl2IvALY5yTgB942/WAFiGNM64Q\nWIt90QpbnF2BpVgSAPgHMD6EcabFccArvvs3eDeXunJgQlgItPO223v3wbKwv6J5BRtN5cILwCmE\nN9bGwAdAX8IZY2fgdWAEFRVCGONcBrRO2Be2OFtgJ7BEYYvT71RghrcdtjhbYV/4WmLJdQowMl1x\nhi1TZMOEtXZYMxLez/g/Qkcs3jhXsXfFqpr3CF+shdi3lfVUNHGFLUaA3wH/iQ2FjgtjnDEscX0I\nXOXtC1uc3YAvgSeAj4FHgCYhjNPve8BT3nbY4twI3AOsANYAm7GmorTEGbaEkG2r2VW3bkimf5+m\nwHPAtcC2JLG4jrUca9rqDJyAfQNPjMF1jGcAG7B25Mrm6YQhToDjseQ/Grgaa+JMjMN1nPWAgcCD\n3s9vOLjqD0OccQ2AM4FnKonDdZylwE+xL34dsb/5S5PEUas4w5YQVmPtdnFdODC7hcF6rCQD6ICd\nPODg2Dt7+zKlPpYMJmNNRhDeWLcA/wKOIXwxDgXOwppjngJOwj7TsMUJ1s4N9g38eWyNsLDFucq7\nfeDdfxZLDOsIV5xxo4GPsM8Uwvd5Hgu8DXwN7AP+iTW1h/XzrJMwTljrysGdyvE2uRs4uPOmAVYm\nLyFzM8ELgCexpg6/MMXahoqRD8XAv4GTQxZjohOp6EMIW5yNgWbedhNgJtb2HbY4wf6te3jbZV6M\nYYwTbKHN8b77YYvzKGwkYbH3fpOw6jBscaZNmCasPYW10+3B+ja+j3XqvE7y4V03YXEvBL6bwTiH\nYc0xs6kYNjcqZLEeibUhz8aGSv6ntz9MMSY6kYpRRmGLsxv2Wc7GThDxv5WwxQl2EvsA+AT7Rtsi\npHE2Ab6iItFCOOP8BRXDTidhrQNhjFNEREREREREREREREREREREREREREQkV7WmYv7GWmxm7Sxs\n+Y/fO4xLREQcuhlb+lok74RtLSORMIhP7Y9QsXRFGTYr9N/YhWnGAndjs66nYsuugK3PFMVWIH2F\nivVlREJPCUEkdd2wFVrPAv6CLTvcH9gJnI4tIfAAcC62CNkTwH87iVSkFupV/xQRwZYMngrsx9YO\nKgRe9R6bgy2C2AO76M/r3v4ibC0skayghCCSuj3ez3Jgr29/Ofa3VIAtOjY0w3GJpIWajERSk8qS\nwYuAQ6i4RGF9bPlhkayghCBysJjvZ7JtOPiqUzGsajgPmEjFUuTHBRemiIiIiIiIiIiIiIiIiIiI\niIiIiIiIiIiIiIiIiEP/H7DvjyvIf8HIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "transfer.plot(response='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XPP9x/HXzb4nyCIEUSQNQmgr1DaIFI1UedBa+kOj\nvx9F+Pm1lajlolVKS2tptRESJZZIU2ubCBMVmhBiySIRCRHJTWLJRq4s8/vj8x1z7twlk3vnnPOd\nM+/n4zGPOcss3+/Mvec93+/3LCAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiTbAF+FoIr7sYOCaE1xVp\nkmZxF0BitRj4HFgbuP0xzgKViYy71eU+oBr7Lj4BpgD7RFMsKXcKhPKWAYYAHQO34SG8T/MQXjOr\nwt2SIgPchH0XOwEfAPfGWiIpGwoEqc85wIvAzdgv1feA4wLrOwP3AB8BHwLXk/t7OgeYBvweWAVc\nA2wPPAGsBmYAvwL+7R5/J3BL3vs/DlxaT9nS7vnTgPXA7sDXgcnAx8A84NTA408AZgNrXFn/L7Du\nJ8AC97x/AD3reL+BwDJqBs/3gTfcdDNgBPCuq+/DwHaBx/4IeN+tu6KeOtVlA/AoNVsIOwGPASuw\n7+TiwLqDgFexz3g58Du3vDfW/fUTYCn2nQU/g9bAbW7dUuBWoJVbl8I+s8uAKvfccwLPbeizHQLM\nAj7Fvqv+BdZbRGKwiPr7ss8BvgSGYRvC87GNRdbfgT8BbYFuwHTgvwPP3QhciG0s2wAPAQ+66X7Y\nL98X3OO/5V47u8Htim3ou9VTtjTW3dXPvX5nYAlwtpsfAKzEQgJsY36om+4MHOCmj3aPG4BtAP8I\nTA28T3AM4V1gUGDdo8Av3PQlwEvYxrol8GdXV4C9se6fw9x7/M59NkfXU7d7sXAFaA/cDzzn5psB\nM4ErgRZYEC4EBrv1LwNnuul2WJBBLhAewL6vfbFAyX7317nyd3W3aW4ZWCBsBCqxlt7x2HfT2a2v\n77M9AAuQb2Hf639hf2/ZoBERzyzGNlafBm7D3LpzsF/OWe2wjUp3oAf267VNYP3p5DZc52C/iLOa\nY+GyV2DZ9eRaCABzyG1wLwKebKDcz2MbqKwfkAuXrLuBq930+1hYdcp7zD3AjYH59q6cu7r5YCBc\n7x4P1p2zDtglUPbgBr6ne53mrgwPBta1w8YI6guE+4AvsO9iM7bB7+rWDaTm5wowEhjtpqdin0vX\nvMf0dnXpE1h2EzDKTS+kZutvMLbxBguEz6nZm1CFtUag/s/2T+RCJWsecATiLXUZlbcM8D2seyN7\nuyewfnlg+nN33wHYDfslvIxckPyZmr/olwSmu2G/aIPLPswry1jgLDd9FvbLGPe62QHvEfW8/m7Y\nxjIYbGdgwQVwCta1sRhrXRzslvek5gZ2PdZ1tDO1jQNOxn7hnoz9Us+WoTfWYsq+9xxgk3v/nnl1\n/dy9R30yWDfddu51q7Ff19l67pRXz5FYSIOFeR9gLtYt99281w5+Zh+Q6x7L/xw+cO+T9TEWKME6\ndHDT9X22u2HdR8Gy9qLuLjnxRIu4CyAlaQm2odqBmhuKoOBeNCuxDeQu5Fodu+Q9/m/AW8D+WFfP\nRLf8fHdr6PU/wH4dD67jcWD96idhv9gvBh7BWgEfYRvdrPZYnZZS2xxso3k8FjbBX/0fAOdiXTb5\nlmFdW1nt3Hs0JNt1tgQb5H8U+zW/BPvl3qee573ryga2oR6Pjd1k7Qq8E5j+yE1nP4e5dazbmvo+\n2w+AXwM3FPg64gG1EKQxe+gsAyZhg8Ydsb+jPai/O2AzMAHrzmiLbfB/RM2N+ofYxmUstiGr3oZy\nP4ltJM/CWi4tsb7rr7vpM7H+7c1YS2Oze944bEO+PzawegPwH2xjVpcHsYHuw7GNdNaf3XOzXU3d\ngKFuejw2uHoo1rq4job/7/K/j2exDf0F2DjNWmzsoi22Ed4X+KZ77FnkWmmrsc83GNhXuuftg3Xr\nPeyWj3PrsmMIV5NroTWkoc/2r1iQH+Tq1B5rsXSo/TIi4oNF1D4O4TG37mxq98tvJten3gm4C/vV\n+hnwGnBaA8/tim24V2MbthuxjV3QWdgG7MitlPt54Md5y/q411+B7c3zLLAfttF6BttTKvve3w48\n73+wDe7H2J5Nwa6SYH3BWjWbsb2lgiqA/8X6yNe41/tVYP1/UXMvo/doeFA5v+/9NKzV0hLrcnkQ\nC+VPsMHg7Gvdj/Xvr8VaW9lQ6o19rue511kG/Czw+q2BP2Ctgo+wPY6CexnlB+Qi955b+2y/g3Vd\nfepe92EUCGWvC/YraS7W7B6INWMnA/OxX5pdYiudxOUmau9ffzi1B02l6XpjgaAeAYndGHK/5lpg\nzcvfkttl73Jq7ukhydQX+8VegXUjrCT3Cxbs1+ZjWNeFFFdvFAjigc5Y8zjfPHJ7gOzo5iXZvokN\nKK/H/iYuD6zrh+3G+SLqUghDb6yrS4EgsRqA9Svei/Ux/xUbXPo08JiKvHkREYlB2L8YWgAHYoOP\nB2K/DkfkPaahE32JiEhEwj4O4UN3e8XNj8cOpFmOdRUtx/aaWJH/xD322COzcOHCkIsnIpI4C4E9\nG/PEsFsIy7HdErMH0gzCToT1BLZrIu5+Yv4TFy5cSCaTSeztmmuuib0Mqpvqp/ol74YdE9QoURyp\nfDF2Uq1WWHKdix1Q8wh2qP1icvuvi4hITKIIhDewo0bzDapjmYiIxES7ocUklUrFXYTQJLluoPqV\nuqTXryl8vtJUxvWHiYhIgSoqKqCR23a1EEREBFAgiIiIo0AQERFAgSAiIo4CQUREAAWCiIg4CgQR\nEQEUCCIi4igQRCRyFRWwalXcpZB8CgQRidSmTXb/+uvxlkNqUyCISKTWrrX7mTPjLYfUpkAQkUit\nXm33uv6VfxQIIhKpNWvsfvPmeMshtSkQRCRSCgR/KRBEJFLZQNiyJd5ySG0KBBGJVHYMQS0E/ygQ\nRCRSa9ZAx44KBB8pEEQkUmvWwHbbqcvIRwoEEYnUmjXQpYtaCD5SIIhIpDZsgA4dFAg+UiCISKQ2\nbID27dVl5CMFgohEasMGaNdOLQQfKRBEJFLZFoICwT8KBBGJVLaFoC4j/ygQRCRSaiH4S4EgIpHS\nGIK/WkTwHouBNcBmYCNwELA98DCwm1t/GvBZBGURkZipy8hfUbQQMkAKOAALA4ARwGSgDzDFzYtI\nGVCXkb+i6jKqyJsfCoxx02OAkyIqh4jETMch+CuqFsKzwKvAT9yyHkCVm65y8yJSBqqrNYbgqyjG\nEA4FlgHdsG6ieXnrM+4mImVAXUb+iiIQlrn7lcDfsXGEKmBHYDnQE1hR1xMrKyu/mk6lUqRSqRCL\nKSJRUJdRcaXTadLpdFFeK79vv9jaAc2BtUB7YBJwLTAI+Bi4CRtQ7kLtgeVMJqOGg0jSdOoETz8N\nF1wAb70Vd2mSp6KiAhq5bQ+7hdADaxVk3+sBLBReBR4BhpHb7VREyoC6jPwVdiAsAgbUsfwTrJUg\nImVk82bYtAnatFGXkY90pLKIRKa62sKgeXO1EHykQBCRyGzYoEDwmQJBRCKTDYRmzdRl5CMFgohE\nZsMGaN1aLQRfKRBEJDLBLiO1EPyjQBCRyAS7jNRC8I8CQUQio0FlvykQRCQy6jLymwJBRCKTPQ5B\nXUZ+UiCISGTUZeQ3BYKIREZdRn5TIIhIZLSXkd8UCCISGXUZ+U2BICKRUZeR3xQIIhKZ/HMZ6RpY\nflEgiEhksoFQUWE3BYJfFAgiEpnsye1AA8s+UiCISGSyLQTQwLKPFAgiEpn8QNDAsl8UCCISmWAg\nqMvIPwoEEYnM+vXQvr1Nq8vIPwoEEYnM+vXQoYNNq8vIPwoEEYnMunW5FoK6jPyjQBCRyKxbV7OF\noEDwiwJBRCKjLiO/KRBEJDLqMvKbAkFEIpPfQlAg+EWBICKRyGRqtxDUZeQXBYKIRKK6Glq2hBYt\nbF4tBP9EEQjNgdeBJ9z89sBkYD4wCegSQRlEJGbBPYxAg8o+iiIQLgHmANkT3Y7AAqEPMMXNi0jC\nBbuLQIPKPgo7EHoBJwCjgAq3bCgwxk2PAU4KuQwi4oHggDLoegg+CjsQbgV+DgQbhj2AKjdd5eZF\nJOGWLoUegf92BYJ/WoT42kOAFdj4Qaqex2TIdSXVUllZ+dV0KpUilarvZUTEd3PnQr9+uXkFQnGk\n02nS6XRRXqti6w9ptBuAHwGbgDZAJ2AC8C0sIJYDPYHnga/X8fxMRn8tIolx/vmw775w0UU2378/\nPPAA7LdfvOVKmoqKCmjktj3MLqMrgF2A3YEfAs9hAfE4cLZ7zNnAxBDLICKemD8f+vbNzauF4J8o\nj0PIfvU3Asdiu50e7eZFJOFWrYLu3XPzCgT/hDmGEDTV3QA+AQZF9L4i4olPPoHtt8/NKxD8oyOV\nRSQSCgT/KRBEJHRffGEHobVrl1umQPCPAkFEQvfpp7DDDhYCWQoE/ygQRCR0+d1FoEDwkQJBREKn\nQCgNCgQRCV1VFXTtWnOZAsE/CgQRCd3cufD1vPMRKBD8o0AQkdDNng17711zmQLBPwoEEQnd7Nmw\nzz41lykQ/KNAEJFQrV0LixcrEEqBAkFEQjVjBgwYAK1a1VyuQPCPAkFEQjVzJnzrW7WXKxD8o0AQ\nkVDNn197DyNQIPhIgSAioZo/H/r0qb1cgeAfBYKIhEqBUDoUCCISmjVrYN062Gmn2usUCP5RIIhI\naBYsgD33rHmW0ywFgn8UCCISmvq6i0CB4CMFgoiE5p13YK+96l6nQPCPAkFEQvPaa3DAAXWvUyD4\nR4EgIqHIZODll+Hgg+ter0DwjwJBREIxZ45dQ7lXr7rXKxD8o0AQkVA8/DCcckr96xUI/mkRdwFE\nJHmuugp+9SuYPr3+xygQ/FNIC2HvOpalilwOEUmI2bMtDKDuk9plKRD8U0ggPAJcDlQA7YDbgRvD\nLJSIlK6nn4aLL7ajlOs6IC1LgeCfQgJhILAL8DIwA1gGfDvMQolI6ZoxAw46CDp2bPhxCgT/FBII\nm4AvgLZAG+A9YEuYhRKR0jVjRsNdRVkKBP8UEggzgA3AN4HDgTOARwt4XhtgOjALmAP8xi3fHpgM\nzAcmAV22rcgi4qtFi6C6uv7TVQQpEPxTSCCcB1wFbMS6i4YCTxTwvA3AUcAAYD83fRgwAguEPsAU\nNy8iCTBlChx1VMNjB1kKBP8UEghVwK55t6kFvv7n7r4V0Bz4FAuUMW75GOCkQgsrIv7KZODuu+GH\nPyzs8QoE/xRyHMLTQPZrawPsDrwD7FPAc5sBrwF7AH8CZgM9sJDB3ffYhvKKiKdefBFWr4YTTyzs\n8QoE/xQSCPvmzR8IXFjg62/Buow6A//Cuo2CMuTCppbKysqvplOpFKlUqsC3FZEoTZkC118Pw4dD\nswLPf6BAKI50Ok06nS7KaxXQ01ent6kdFFtzFba30nnYgW3LgZ7A80Adl+Amk9Ffi0hJyI4ZrFgB\n3boV9pyTT4Yzz2z49Bay7Srsy2jUtr2QFsL/BaabYS2EpQU8ryu2y+pn2C6rxwLXAo8DZwM3ufuJ\n21BeEfFMJgMtW8JddxUeBqAWgo8KCYSO5Lp1NgFPAo8V8Lye2KBxM3e7H9ur6HXs6OdhwGLgtG0q\nsYh45fzzYeNGOO+8bXueAsE/hQRCZSNf+y2sNZHvE2BQI19TRIpk0SLrshk0CK67btufv2EDfPe7\n8NxzsN122/58BYJ/GgqEho41yGC7j4pIifra1+y+urpxgXD77fDqq/CXv8CwYdv+fAWCfxoKhN81\nsE5fo0hCtG+/bY+fOhUGDLCT2D30EBx/fOPet6ICtugkOF5pKBAWAe9HVRARiUfbtoU/9osvIJWC\niy6y1sFhhzX+fZs1UwvBNw3tMRzc+6eQQWQRKRHBX+Zr1uSWffhhw8+bNMnu77gDRo7c+hlNG6Iu\nI/8UegnNr4VaChGJ1GefQadO8I9/QFUV/OIXMHkynJa3z18mY8cWZE2fDiecYNOXXda0MigQ/KNr\nKouUoZUroUcPOxHdokVw882QTsOqVbBpEwwcCF9+CS+9ZI+rqrIWxLRpcMEFtodRmzZNK4MCwT8N\njSHsB6x1020D02CDyp3CKpSIhGv5cjuILNjlM306fPopLFli1zRYvBg++MDWjR9vQfHZZ3DEEdC6\nddPLoEDwT0OB0DyyUohIpJ5/Hg45pOay6dOtVbBwoc1fc43tRdSsGcyda62D226zrqZiUCD4R11G\nImXoySdhqDuSaOxY+OY34fPPrRXw5pu2/KGH7H7wYDt53QcfWOugWBQI/lEgiJSZ6mqYMyd3mcsf\n/QjuvDO3fuZM2Gmn3Py++8K8edCvHzQvYr+BAsE/hZy6QkQS5O23Yc89ax5/0L9/bnrePDjuOBg9\n2pZffDF0726BUEwKBP+ohSBSZh57DA4+uOayYDgsWGDnNwJrOey6K/z85zBkSHHLoUDwjwJBpIyM\nHQt/+xtce23tdevW2UZ/7VrYfXc46CD4el1XKikSBYJ/1GUkUiYyGbjlFhgzBnr2rL2+fXvYZReb\n7tbN9joKkwLBP2ohiJSJqVPtXERHHln/Y/r2tfttudBNYykQ/KMWgkgZWL4czjgD/vCHhq95vNtu\ndt+UcxQVSoHgH7UQRMrAtGl2rMGppzb8uOyeRBWNvdr6NlAg+EeBIFIG3nwT9t9/64/r2ze6jbQC\nwT8KBJEy8OqrhQVClBQI/lEgiCTcggV2srrBg+MuSU0KBP8oEEQSbtQo+PGPi3dSumJRIPhHexmJ\nJNz48TBhQtylqE2B4B+1EEQSbOVK+Pjjmucq8oUCwT8KBJEEe+kl+MY3Gj72IC4KBP94+GciIsXw\nhz/YNZLPOy/uktRNgeAfjSGIJNS998KkSQ2fqiJOCgT/qIUgkkBLl9oVzg49NO6S1E+B4B8FgkjC\nPPMM9OoFRx8NLTzuA1Ag+CfsQNgFeB6YDbwNDHfLtwcmA/OBSUCXkMshUjYuvRRatcpdM9lXCgT/\nhP37YSPwv8AsoAMwEwuCc939b4HLgRHuJiJN8NFHsGqVnebaxz2LghQI/gn7T2Y5FgYA64C5wM7A\nUGCMWz4GOCnkcoiUhalT4Ygj/A8DUCD4KMo/m97AAcB0oAdQ5ZZXuXkRaaJ0GlKpuEtRGAWCf6Ia\ncuoAPAZcAqzNW5dxt1oqKyu/mk6lUqRK5S9dJAabN9tupj/9adwlKYwCoTjS6TTpdLoorxXBZTBo\nCTwJPAPc5pbNA1JYl1JPbOA5/3LemYz+WkQKduWV8MIL1m0UxQVummrECOjcGUaOjLskyVJhX36j\n/gLC7jKqAO4B5pALA4DHgbPd9NnAxJDLIZJo77xjZzUdN640wgDUQvBR2F1GhwJnAW8Cr7tlI4Eb\ngUeAYcBi4LSQyyGSaBMmwCmnwM47x12SwikQ/BN2ILxI/a2QQSG/t0jZmDLFjj8oJQoE/5TAzmki\n0pA33rBA8Pk0FXVRIPhHgSBSwpYvh6OOguHDYbvt4i7NtlEg+EeBIFLC/vEPOOEEO9V1qVEg+EeB\nIFKiVq+2IDjmmLhL0jgKBP8oEERK1K9/bRvVIUPiLknjKBD84/HJcUWkPtXVcP/98Nxz0K1b3KVp\nnIoK2LIl7lJIkFoIIiUmk7HWwf77Q79+cZem8dRC8I9aCCIlZtQoeOwxeOqpuEvSNAoE/ygQRErI\nli1w443w4IPQu3fcpWkaBYJ/1GUkUkJeeAHatYODDoq7JE2nQPCPAkGkRKxaZWcIPffc0jmBXUMU\nCP5RIIiUiLFjoXt3uPDCuEtSHAoE/2gMQaQEvPAC/OxndlbT1q3jLk1xKBD8oxaCiOcyGTtX0U9/\nCscfH3dpikeB4B+1EEQ898orsH493H57MsYOshQI/lELQcRzN90Ew4YlKwxAgeAjtRBEPDZxIrz9\nNjzwQNwlKT4Fgn/UQhDx2LXXwq23Qps2cZek+BQI/lEgiHjqlFPsAjjHHRd3ScKhQPCPuoxEPLR0\nKTz7LCxZAs0S+rNNgeCfhP6piZS2e+6B00+HTp3iLkl4FAj+UQtBxDMLFsAdd0A6HXdJwqVA8I9a\nCCKeufpquOwy2HvvuEsSLgWCf9RCEPHIrbfCiy/C3XfHXZLwKRD8o0AQ8cSCBfCb38BrryV77CBL\ngeAfdRmJeGD1avjBD2DIEOjVK+7SREOB4B8FgogHHnwQXn8dzjgj7pJER4HgHwWCSMyqq2H0aBg/\nHgYNirs00VEg+CfsQBgNVAFvBZZtD0wG5gOTgC4hl0HEa3fdBV27wve+F3dJoqVA8E/YgXAvkH/g\n/QgsEPoAU9y8SFkaNw6uvNIujdmizHbxUCD4J+xA+Dfwad6yocAYNz0GOCnkMoh4af58u/DNxIlw\n5JFxlyZ6CgT/xDGG0APrRsLd94ihDCKxymTgiivgoovg2GPjLk08FAj+ibuRmnE3kbKRydhFb957\nD+6/P+7SxEeB4J84AqEK2BFYDvQEVtT3wMrKyq+mU6kUqVQq5KKJhOv996F3b5tesADato21OLFS\nIBRHOp0mXaQTX0VxUb7ewBNAfzf/W+Bj4CZsQLkLdQ8sZzL6a5GEufZa+P3vYeNG+PzzuEsTr9Gj\n4d//hnvvjbskyVJh11pt1LY97DGEccBLQF9gCXAucCNwLLbb6dFuXiTx/vMfeOopePhhWL8+7tLE\nTy0E/4TdZXR6PcvL6PAbERg1Cq66CvbfHw47zDaG5U6B4J+4B5VFEm/WLDvWYPJk6N9/648vFwoE\n/+jUFSIh2rQJ/vhHu/qZwqAmBYJ/1EIQCdH999ug6dSpcZfEPwoE/6iFIBKSTAbGjrVB5COOiLs0\n/lEg+EeBIBKCN96AH/7Q9iYaOjTu0vhJgeAfBYJIkX32mZ2OIpOBJ5+ENm3iLpGfFAj+USCIFNGj\nj8Iee8Ahh8Ajj0D37nGXyF8KBP9oUFmkSN58Ey680K56dnp9R+DIVxQI/lEgiDTR+vXw0kswciTc\ncAOcd17cJSoNCgT/qMtIpIkuuggGD4bNm2HYsLhLUzoUCP5RC0Gkkd591y59OXEifPQR7LCDTkmx\nLRQI/lEgiDTCli2w117Qvr21Dnr2jLtEpUeB4B91GYlsow8/tBBo3twGkK+5Ju4SlSYFgn8UCCLb\n4JVXYMAAu/3rX/CXv9gZTGXbKRD8oy4jka1YswZWrrTjCy65BG67Dc46K+5SlT4Fgn/UQhDZiiuu\ngD33hDvugBUr7JQU0nQKBP+ohSDSgDVrYMIEOPVUuPhiu+pZC/3XFIUCwT9qIYjUYfNmSKfhwAPh\n+9+HceNs19KBA+MuWXIoEPyj3zoiAdXVUFkJ991nG6vRo+H4423jpV1Li0uB4B+1EESwFsHw4XZw\n2dy5NnC8bBmccIIONguLAsE/aiFIWXv3XXjxRXj5ZQuCxYvt6GMJnwLBPwoEKVtr18KJJ9r0AQfA\n449Dly7xlqmcKBD8o0CQsrJ6NVx3nbUCRo+G73zHdieV6CkQ/KNAkLKxahVceqmdemKPPSwIvvOd\nuEtVvlq1skF88YcCQRJt2jS7hOUtt9gFbObMgeefh1Qq7pJJ5852nIf4Q4EgifPll/DEE3ah+5tv\ntvkrr4TTToMhQ6Bly7hLKGCBsHp13KWQIAWCJMbChfDPf8KoUdChA+y4ox1c1qkT9OsXd+kknwLB\nPz7vYZ3JaMRJtmLZMjuI7I47rCVw4olw9NFw5pk6fsB31dXQsaPd67sqngr7MBv1icbZQjgOuA1o\nDowCboqxLFIi1q2zM4/ed5+NBzzzjB1BPH48dO9ug8VSGlq3hmbNYMMGaNs27tIIxHekcnPgDiwU\n9gZOB8qqUZ9Op+MuQmiKWbf162HGDLj6ajvLaN++cPDB8NprcPjhtsfQggVwyCHRhUGSvzuItn5x\nDCwn/ftrirgC4SDgXWAxsBF4CPheTGWJRZL/KJtat/nzYdIk+OUvLQAGDoTrr4f99rMWQVWVDRoP\nHx7PgWRJ/u4g2vp16hT9OELSv7+miKvLaGdgSWD+Q0DnkSxzy5fbWUUrK6F/f2sB3HknzJoFw4ZB\nr15xl1CKTQPLfokrEAoaLc6eViCJ3nkHZs6MuxThaEzdMhnrBho82K4/cMwxuXXfK6u2Y3nZbju7\nCt0OO0T3no35+zz8cPjFL8Ipj0/iGts/GKjExhAARgJbqDmw/C6gIUIRkW2zENgz7kJsixZYoXsD\nrYBZlNmgsoiI5BwPvIO1BEbGXBYREREREfHVccA8YAFwecxlaazRQBXwVmDZ9sBkYD4wCQjuMDkS\nq+88YHBEZWyKXYDngdnA28BwtzwJdWwDTMe6MecAv3HLk1C3oObA68ATbj5J9VsMvInVb4ZblqT6\ndQHGA3Oxv9GBJKt+X2mOdSH1BlpSumMLhwMHUDMQfgtk91O4HLjRTe+N1bMlVu938f/SpjsCA9x0\nB6zrrx/JqWM7d98C+A9wGMmpW9ZlwAPA424+SfVbhG0gg5JUvzHAj910C6AzyarfVw4B/hmYH+Fu\npag3NQNhHtDDTe/o5sHSO9gS+ie2F1YpmQgMInl1bAe8AuxDsurWC3gWOIpcCyFJ9VsE5O/ImpT6\ndQbeq2N5UernW1LUdcDazjGVpdh6YN1IuPvsl7cTVs+sUqtzb6w1NJ3k1LEZ9quqilzXWFLqBnAr\n8HNsV++sJNUvgwXeq8BP3LKk1G93YCVwL/Aa8FegPUWqn2+BUC6nN83QcF1L5XPoADwGXAKszVtX\nynXcgnWJ9QKOwH5JB5Vy3YYAK7D+9fqOQyrl+gEciv1IOR64EOvCDSrl+rUADgTucvfrqd2L0uj6\n+RYIS7EBy6xdqJlupawKa8oB9MT+KaF2nXu5Zb5riYXB/ViXESSvjquBp4BvkJy6fRsYinWrjAOO\nxr7DpNQPYJm7Xwn8HTt3WlLq96G7veLmx2PBsJxk1K+GJB2w1pvag8rZvrwR1B70aYU1Bxfi93Uq\nwMo3Fut6CEpCHbuS20OjLfACcAzJqFu+I8mNISSlfu2Ajm66PTAN27MmKfUD+5vs46YrsbolqX41\nJOGAtXGHe0HkAAACCklEQVTAR8CX2JjIudheD89S925hV2D1nQeUwmXfD8O6VWZhXQ+vY7sLJ6GO\n/bG+2VnYros/d8uTULd8R5Lbyygp9dsd++5mYbtEZ7chSakfwP5YC+ENYAI20Jyk+omIiIiIiIiI\niIiIiIiIiIiIiIiIiN9K6gAFkSLYjB1fkDUOO6hHRETKTP45l4qhRQivKRI5385lJBKXxdhpAGZi\nLYi+bnl77IJH07EjmIe65edgR/lOwS5M0hZ4BDsz6gTsOgrfwI5SD57i4yfA78OqhIiIFG4TudNt\nvA6c6pYvws6MCXABdlphgBuAM910F+y0Ku2wQFhC7hQBPwP+5Kb3ATZiJx1rj502oLlbN82tF/GO\nmrpSbr7ATo1clwnu/jXgZDc9GDgR2+ADtAZ2xU4hPBn4zC0/FLjNTc8mN06xHnjOvcY87Cyxs5ta\nCZEwKBBEcqrd/WZq/m+cjF2TNmggtrEPqm8njVHAL7Fr4I5uYhlFQqMxBJGG/QsYHpjPti7yN/7T\ngNPc9N7YWVOzZmDnoT8D26tJxEsKBCk3bak5hnBDHY8JXnHqeqyb503sdMrX1vEYsCtYdcO6g653\n96sD6x8BXsxbJiIiCdQMG18A2AO7EHqw2+kJal+KU0REEqgjdtGSWdiFS7IXIsnumfRwTOUSERER\nERERERERERERERERERERERERKab/B5WvRS57HCkNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "transfer.plot(response='energy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By enabling `save=True` parameter, the plots can be also saved." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction can be saved in pickle format and retrieved later." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.write('transfer.pickle')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Saved files can be read using static `read()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer_new = TransferFunction.read('transfer.pickle')\n", + "transfer_new.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Artificial Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For quick testing, two helper impulse response models are provided." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1- Simple IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "simple_ir() allows to define an impulse response of constant height. It takes in time resolution starting time, width and intensity as arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEW1JREFUeJzt3W+MVNd9h/FnvAtpUmRTpAjXsOpaQBSo2gYrosRNlGlD\nW4ocaCMlGMVxa0c2L0rttFFCcKV6LfVF0sqKi5AxTUlCaydUxZaFJWzaKJ4qUVxsYoxtYClLSwNY\n2JZTpzGKFXZ3+uLcZYfxLnN3ZnaHO7/nI43m/jn3zjns8L1nzz0zC5IkSZIkSZIkSZIkSZIkSSqA\n1cAgcALYPMH+9wPPAG8Dn6/Z3gc8DRwBXgbumt5qSpLaoQcYAvqBWcALwNK6Mu8FPgj8NZcG/7XA\nB7LlOcDxCY6VJM2gq3KUWUEK/lPABWA3sK6uzOvAwWx/rXOkCwXAW8Ax4Lom6ypJaoM8wb8AOF2z\nfibbNlX9wHLgQBPHSpLaJE/wV9vwOnOAPcDdpJ6/JKlDenOUOUu6STumj9Trz2sW8CjwMPB4/c5F\nixZVT548OYXTSZKAk8DiZg7M0+M/CCwhDdXMBtYDeycpW5pgfSdwFHhgogNOnjxJtVrt2se9997b\n8TrYPtsXsX3d3LZqtQqwKEd+TyhPj38Y2ATsJ83w2Um6Sbsx27+DNHvnOeBqYJQ0pLOMNKPnFuBF\n4FBWfgvwVLMVliS1Jk/wAzyZPWrtqFk+x6XDQWO+T77fKiRJM8RQnmblcrnTVZhWtq/Yurl93dy2\nVtWPyXdCNRuvkiTlVCqVoMkMt8cvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEv\nScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY\n/JIUjMEvScEY/JIUjMEvScEY/JIUTJ7gXw0MAieAzRPsfz/wDPA28PkpHitJmmGlBvt7gOPAKuAs\n8BywAThWU+a9wK8Afwj8L3D/FI4FqFar1eZbIEkBlUolaJzhE2rU418BDAGngAvAbmBdXZnXgYPZ\n/qkeK0maYY2CfwFwumb9TLYtj1aOlSRNk94G+1sZg3H8RrqCffaz8Nprna6FpqKvDx58sPXzNAr+\ns0Bf7euSeu555D52YGDg4nK5XKZcLud8CUnN+uY34bHH4Crn9hXCSy9VOH68Qk1cNq3RjYFe0g3a\njwGvAM8y8Q1agAHgp4zf3M17rDd3pRk2Ogo9Pem51NTtQXVaKzd3G/X4h4FNwH7SLJ2dpODemO3f\nAVxLmrFzNTAK3A0sA96a5FhJHTYyAr29hn5UV8KP3R6/NMN+9jOYNy89q5imczqnpC40PJx6/IrJ\n4JcCGhlJY/yKyeCXArLHH5vBLwVk8Mdm8EsBGfyxGfxSQAZ/bAa/FJDBH5vBLwU0POysnsgMfimg\nsU/uKiaDXwrIoZ7YDH4pIIM/NoNfCsjgj83glwIy+GMz+KWAnNUTm8EvBeSsntgMfikgh3piM/il\ngAz+2Ax+KSCDPzaDXwrI4I/N4JcCclZPbAa/FJCzemIz+KWAHOqJzeCXAjL4YzP4pYAM/tgMfikg\ngz82g18KyFk9sRn8UkDO6onN4JcCcqgnNoNfCsjgjy1P8K8GBoETwOZJymzN9h8Gltds3wIcAV4C\nvgW8q+maSmobgz+2RsHfA2wjhf8yYAOwtK7MGmAxsAS4E9iebe8H7gBuAH4tO9fN7ai0pNYY/LE1\nCv4VwBBwCrgA7AbW1ZVZC+zKlg8Ac4H5wP9lx7wH6M2ez7aj0pJaY/DH1ij4FwCna9bPZNvylPkx\ncD/wI+AV4E3gO61UVlJ7jIw4nTOyRtf8as7zlCbYtgj4HGnI5yfAvwCfBh6pLzgwMHBxuVwuUy6X\nc76spGbY4y+eSqVCpVJpy7ka/ejPAn01632kHv3lyizMtpWBHwBvZNsfA26kQfBLmn4Gf/HUd4rv\nu+++ps/VaKjnIOmmbT8wG1gP7K0rsxe4NVteSRrSeRU4nq2/m/QbwSrgaNM1ldQ2Bn9sjX70w8Am\nYD9pVs5O4BiwMdu/A9hHmtkzBJwHbsv2vQD8I+niMQo8D/x9G+suqUkGf2wTjc3PtGq1mvdWgqR2\nuOMOWLEiPauYSqUSNJnhfnJXCshZPbEZ/FJADvXEZvBLARn8sRn8UkAGf2wGvxSQwR+bwS8FZPDH\nZvBLAfmnF2Mz+KWA/NOLsRn8UkAO9cRm8EsBGfyxGfxSQAZ/bAa/FJDBH5vBLwXkrJ7YDH4pIGf1\nxGbwSwE51BObwS8FZPDHZvBLARn8sRn8UkAGf2wGvxSQs3piM/ilgJzVE5vBLwXkUE9sBr8UkMEf\nm8EvBWTwx2bwSwEZ/LEZ/FJAzuqJzeCXAnJWT2wGvxTM6Gh6vsr//WH5o5eCcXxfeYJ/NTAInAA2\nT1Jma7b/MLC8ZvtcYA9wDDgKrGy6ppLawuBXo+DvAbaRwn8ZsAFYWldmDbAYWALcCWyv2fd3wL7s\nmF8nXQAkdZDBr0bBvwIYAk4BF4DdwLq6MmuBXdnyAVIvfz5wDfAR4OvZvmHgJy3XWFJLDH41Cv4F\nwOma9TPZtkZlFgLXA68D3wCeB74GvKeVykpq3ciIUzmja3Tdr+Y8T2mC43qBG4BNwHPAA8CXgL+q\nP3hgYODicrlcplwu53xZSVNlj7+YKpUKlUqlLeeqD+x6K4EB0hg/wBZgFPhKTZmHgAppGAjSjeCP\nZud+htTzB/gwKfhvqnuNarWa9/oiqVWnT8ONN6ZnFVepVILGGT6hRkM9B0k3bfuB2cB6YG9dmb3A\nrdnySuBN4FXgHGkI6H3ZvlXAkWYqKal97PGr0Y9/mDRUs580w2cnaWbOxmz/DtKsnTWkm8Dngdtq\njv8z4BHSReNk3T5JHWDwq6lfE9rMoR5pBh07Bp/4RHpWcU3nUI+kLuMXtMngl4LxC9pk8EvBOMYv\ng18KxuCXwS8FY/DL4JeCMfhl8EvBOKtHBr8UjLN6ZPBLwTjUI4NfCsbgl8EvBWPwy+CXgjH4ZfBL\nwTirRwa/FIyzemTwS8E41CODXwrG4JfBLwVj8Mvgl4Ix+GXwS8E4q0cGvxSMs3pk8EvBONQjg18K\nxuCXwS8FY/DL4JeCMfhl8EvBGPwy+KVgRkaczhmdwS8FY49fBr8UjMGvPMG/GhgETgCbJymzNdt/\nGFhet68HOAQ80WQdJbWRwa9Gwd8DbCOF/zJgA7C0rswaYDGwBLgT2F63/27gKFBttbKSWmfwq1Hw\nrwCGgFPABWA3sK6uzFpgV7Z8AJgLzM/WF5IuDP8AlFqvrqRWGfxqFPwLgNM162eybXnLfBX4AjDa\nQh0ltZGzetToup93eKa+N18CbgJeI43vly938MDAwMXlcrlMuXzZ4pJaYI+/mCqVCpVKpS3najT8\nshIYII3xA2wh9d6/UlPmIaBCGgaCdCO4DNwFfAYYBn4BuBp4FLi17jWq1arD/9JM+eQn4VOfSs8q\nrlKpBE0OoTca6jlIumnbD8wG1gN768rsZTzMVwJvAueAe4A+4HrgZuC7vDP0Jc0we/xq9OMfBjYB\n+0kzfHYCx4CN2f4dwD7SDdwh4Dxw2yTnslsvXQEMfuX58T+ZPWrtqFvf1OAc/549JHWYwS8/uSsF\n459elMEvBeOfXpTBLwXjUI8MfikYg18GvxSMwS+DXwrG4JfBLwXjrB4Z/FIwzuqRwS8F41CPDH4p\nGINfBr8UjMEvg18KxuCXwS8F46weGfxSMM7qkcEvBeNQjwx+KRiDXwa/FIzBL4NfCsbgl8EvBVKt\nppu7zuqJzeCXAhkdhauuglKp0zVRJxn8UiAO8wgMfikUg19g8EuhGPwCg18KxeAXGPxSKAa/wOCX\nQnEqp8Dgl0Kxxy8w+KVQDH5B/uBfDQwCJ4DNk5TZmu0/DCzPtvUBTwNHgJeBu5quqaSWGfyCfMHf\nA2wjhf8yYAOwtK7MGmAxsAS4E9iebb8A/Dnwq8BK4E8nOFbSDDH4BfmCfwUwBJwiBfluYF1dmbXA\nrmz5ADAXmA+cA17Itr8FHAOua6nGkppm8AvyBf8C4HTN+plsW6MyC+vK9JOGgA5MrYqS2sVZPYJ8\nwV/Nea76r32qPW4OsAe4m9Tzl9QB9vgFkOctcJZ0k3ZMH6lHf7kyC7NtALOAR4GHgccneoGBgYGL\ny+VymXK5nKNakqbK4C+uSqVCpVJpy7nyfDlrL3Ac+BjwCvAs6QbvsZoya4BN2fNK4IHsuUQa+3+D\ndJN3ItVqNe8vFZJa8b3vwT33pGcVWyl9t3ZTX7Cd59o/TAr1/aQZPjtJob8x278D2EcK/SHgPHBb\ntu+3gFuAF4FD2bYtwFPNVFZSa+zxC/IFP8CT2aPWjrr1TRMc9338kJh0xTD4BYayFMrwsLN6ZPBL\noYyM2OOXwS+F4lCPwOCXQjH4BQa/FIrBLzD4pVAMfoHBL4XirB6BwS+F4qwegcEvheJQj8Dgl0Ix\n+AUGvxSKwS8w+KVQDH6BwS+F4qwegcEvheKsHoHBL4XiUI/A4JdCMfgFBr8UisEvMPilUAx+gcEv\nhWLwCwx+KZSREadzyuCXQrHHLzD4pVAMfoHBL4Vi8AsMfikUg19g8EuhGPwCg18KxVk9AoNfCsUe\nv8Dgl0Ix+AX5gn81MAicADZPUmZrtv8wsHyKx0qaIQa/oHHw9wDbSAG+DNgALK0rswZYDCwB7gS2\nT+HYrlepVDpdhWll+4qlPvi7rX21urltrWoU/CuAIeAUcAHYDayrK7MW2JUtHwDmAtfmPLbrdfub\nz/YVi8EvaBz8C4DTNetnsm15ylyX41hJM8g/vSiARqN91ZznKbVSiY9/vJWjr2zHj8MPf9jpWkwf\n21csL74Is2Z1uha60q0EnqpZ38I7b9I+BNxcsz4IzM95LKThoKoPHz58+JjSY4hp0gucBPqB2cAL\nTHxzd1+2vBL4jykcK0m6Av0BcJx0ddmSbduYPcZsy/YfBm5ocKwkSZKkKLrpA159wNPAEeBl4K5s\n+zzg34D/BP6VNN21yHqAQ8AT2Xo3tW8usAc4BhwFfpPuat8W0vvzJeBbwLsodvu+DrxKas+Yy7Vn\nCylrBoHfm6E6Nmuitv0t6b15GHgMuKZmX2Ha1kMaAuoHZlH8ewDXAh/IlueQhriWAn8DfDHbvhn4\n8sxXra3+AngE2Jutd1P7dgG3Z8u9pP9Y3dK+fuC/SGEP8M/AH1Ps9n2E9E0BteE4WXuWkTJmFunf\nYogr+ytrJmrb7zJe5y9T0LZ9iEtn/Xwpe3SLx4FVjM9ygnRxGOxYjVq3EPgO8NuM9/i7pX3XkIKx\nXre0bx6pM/JLpIvaE6QgKXr7+rk0HCdrT/2swqdIk1GuZP1c2rZafwQ8nC1PuW2dvCrk+XBYUfWT\nrtYHSG/CV7PtrzL+piyirwJfAEZrtnVL+64HXge+ATwPfA34RbqnfT8G7gd+BLwCvEkaEumW9o2Z\nrD3XkTJmTNHz5nbGZ1NOuW2dDP5qB197Os0BHgXuBn5at29s/m0R3QS8Rhrfn+wDe0VuXy9pRtqD\n2fN53vkbaJHbtwj4HKlTch3pfXpLXZkit28ijdpT1Lb+JfBz0n2ayVy2bZ0M/rOkG6Jj+rj0qlVE\ns0ih/0+koR5IvY5rs+VfJoVnEd1I+l6m/wa+DfwOqZ3d0r4z2eO5bH0P6QJwju5o3weBHwBvAMOk\nm4MfonvaN2ay92N93izMthXNn5A+O/Xpmm1Tblsng/8g6Rs9+0kf8FrP+A3DIioBO0mzQR6o2b6X\ndBON7Plxiuke0pvretIntb8LfIbuad850tDj+7L1VaQZME/QHe0bJI37vpv0Xl1Feq92S/vGTPZ+\n3Et6384mvYeXAM/OeO1as5o01LoOeLtme+Ha1k0f8Powaez7BdJwyCHSD2oe6YZoEafLTeajjF+k\nu6l9v0Hq8ddOl+um9n2R8emcu0i/oRa5fd8m3a/4OemifRuXb889pKwZBH5/Rms6dfVtu500XfN/\nGM+XB2vKF6ltkiRJkiRJkiRJkiRJkiRJkiRJktS9/h+lSqkVoCGKbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = simple_ir(dt=0.125, start=10, width=5, intensity=0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2- Relativistic IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: time_resolution, primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHiBJREFUeJzt3XmUVOWZx/Fv0Q0Csq+yaBpZBCIEJMEmQSgWFTTAxNhB\nYtSgjrjOzMlMgphRO05iNCee5KhxCUZjjIIRSYRIQEHKBVFEkUAABRoUcGFRUNka6J4/nmq7qG6o\nqu5bde+t9/c5557ablc/tNav337ue98LIiIiIiIiIiIiIiIiIiIiIiIiIiKh8DDwMbAqxX7fAA4D\nF2S9IhERqVWDNPZ5BBiTYp8C4E5gPhCpb1EiIlI36YT6y8CnKfa5AZgF7Kh3RSIiUmfphHoqXYAJ\nwP3xx5UevKeIiNSBF6H+W+BGLMwjqP0iIuKbQg/eYxAwM36/HTAWOATMSdype/fulRs3bvTg24mI\nOGUj0CPdnb0YqZ8KdItvs4BrSAp0gI0bN1JZWRn47dZbb/W9Blfq7Nq1ktLSYNcYpE11ulkn0D2T\nQE5npD4DGI6NwrcAtwIN4689mMk3E6ly4ABs2wafpjoELyIZSSfUJ2XwfpPrWoi45b33oLJSoS7i\nNS/aL3klGo36XUJawl5nWRlEIrB7d27rqU3Yf5ZBozr9lcuZKpXx/pAIv/sd3HsvtG8PL73kdzUi\nwRWJRCCDrNZIXXxRVgaDBqn9IuI1hbr4YtMmOOMMhbqI1xTq4guN1EWyQz11ybnKSmjZ0mbAdOgA\ne/dCo0Z+VyUSTOqpS+Dt2gWFhdC6NbRqFYwZMCL5QqEuOVdWBt262f3WrdWCEfGSQl1yrqwMTj3V\n7rdqpVAX8ZJCXXJu06bqUNdIXcRbCnXJucSReuvW6qmLeEmhLjmXHOoaqYt4R6EuOadQF8kehbrk\n1KFD8MEHcMop9lgHSkW8pVCXnHr/fejcGRrGV+TXSF3EWwp1yalNm6rnqIMOlIp4TaEuOZXYTweN\n1EW8plCXnFKoi2SXQl1yKjnUdaBUxFsKdckpjdRFsktL70pOtWkD774L7drZ44oKmwlTXg4FBf7W\nJhJEWnpXAmv3bjh8GNq2rX6uQQNo0QL27PGvLpF8olCXnKmazhhJGnOory7inXRC/WHgY2DVMV6/\nGFgJ/BNYAvT3pjTJN8n99Crqq4t4J51QfwQYc5zXy4BhWJj/H/B7D+qSPKRQF8m+dEL9ZeB4H7ml\nQFVH9HWga32Lkvx0vFDXWaUi3vC6p34FMM/j95Q8oZG6SPYVevheI4DLgW8da4fS0tIv70ejUaLR\nqIffXoKsshJWrYLevWu+pgOlItVisRixWKzOX5/u3MciYC7Q7xiv9wdmY733DcfYR/PUHbZ2LZx3\nno3Wk2e/3H47fPYZ3HGHP7WJBJkf89RPwQL9Bxw70MVxCxfCqFE1Ax3UfhHxUjrtlxnAcKAdsAW4\nFYivhs2DwC1Aa+D++HOHgMHelilht2gRTJxY+2s6UCriHS0TIFl3+DC0bw/r1kHHjjVfX7AA7roL\nnnsu97WJBJ2WCZDAeest6Nq19kAHHSgV8ZJCXbJu4UIYPfrYr6unLuIdhbpk3aJFdpD0WBTqIt5R\nT12yav9+6NABtm2z1Rhrc+gQNGlit7XNjhFxmXrqEiivvgr9+h070MHWU2/SBD7/PHd1ieQrhbpk\nVdX89FR0sFTEGwp1yapFi45/kLSK+uoi3lCoS9bs3m1z04uLU++rUBfxhkJdsiYWgyFD4IQTUu+r\ns0pFvKFQl6xJt58OGqmLeEWhLlmTan56Ih0oFfGGQl2yYskSm6M+YEB6+2ukLuINhbp4rrISfvpT\nuOUWKChI72sU6iLeUKiL5xYuhA8/hEsvTf9rdKBUxBsKdfFUZSXcdBPcdhsUZnCxRPXURbyhUBdP\nPfOMreFSUpLZ16n9IuINLy88LY47cgRuvhl++UtokOFwQaEu4g2N1MUzM2dC8+Zw/vmZf6166iLe\n0NK74olDh6BPH5g+HUaMyPzrDxyAli3tVsvvilTLdOldhbrUW3k5TJpk959+uu7v07gxfPIJNG3q\nTV0i+UDrqUtOHTgAF1xg/fQnnqjfe6mvLlJ/CnWps337YPx4aNYMnnoqvYW7jkehLlJ/CnWpk927\nYexY6NQJHn/crl5UXzpYKlJ/6YT6w8DHwKrj7HM3sB5YCQz0oC4JqE8/hdJS6NkTzjgDHnkk/aUA\nUtFIXaT+0gn1R4Axx3n9PKAH0BO4Crjfg7okYLZuhWnToEcP2LIFli6F3/wm8/nox6OzSkXqL52T\nj14Gio7z+njg0fj914FWQEdsdC8hdPAgbN4Mr70GL74IL71kbZGSEnjzTSgqys731UhdpP68OKO0\nC7Al4fFWoCsK9UDbtAnWr7fwTt527YKuXWHQIBg+HH70I+jb19tReW0U6iL159UyAclzKGudkF5a\nWvrl/Wg0SjQa9ejbSyY++ghOOw2GDbNRd1GRHfTs1s3ud+rkXZ88E506wRtv5P77igRJLBYjFovV\n+evTndBeBMwF+tXy2gNADJgZf7wOGE7NkbpOPgqI9estxDds8LuSo61dC2PG2F8LOqtUxPhx8tEc\noGrl7GJgN2q9BFp5OTRq5HcVNfXubScxrV/vdyUi4ZVO+2UGNvJuh/XObwWqZiU/CMzDZsBsAPYC\nk70vU7x08GD9TxTKhkgEzjkHnn8eevXyuxqRcEon1Celsc/19S1EcieooQ5w9tnw5JNw3XV+VyIS\nTjqj1EHl5cEN9VGjIBazVR9FJHMKdQcdPBjMnjpAhw42C2fZMr8rEQknhbqDgtx+AWvBPP+831WI\nhJNC3UFhCPXnnvO7CpFwUqg7KMg9dYChQ2HVKtizx+9KRMJHoe6gIPfUAZo0gSFDYPFivysRCR+F\nuoOC3n4B9dVF6kqh7qCgt19AfXWRulKoOyjo7ReA/v2tp755s9+ViISLQt1BYWi/NGgAo0erBSOS\nKYW6g8IQ6qAWjEhdKNQdFIaeOtgyvAsXaskAkUwo1B0Uhp462EUzevSAl1/2uxKR8FCoOygs7ReA\nceNg7ly/qxAJD4W6g8LSfoHqUNdFs0TSo1B3UJhG6gMGwIED8M47flciEg4KdQeFpacOdjWkb38b\n/v53vysRCQeFuoPCNFIH9dVFMqFQd1CYeuoAI0fCihXwySd+VyISfAp1B4Wp/QK2amM0CvPn+12J\nSPAp1B0UtvYLqAUjki6FuoPCGOrnnw8LFujsUpFUFOoOCltPHaBzZzj1VFiyxO9KRIItnVAfA6wD\n1gNTa3m9HTAfeBtYDfzQq+IkO8LWU6+iFoxIaqlCvQC4Fwv2vsAkoE/SPtcDK4ABQBS4Cyj0tErx\nVBjbL6CzS0XSkSrUBwMbgM3AIWAmMCFpnw+BFvH7LYBdwGHvShSvhbH9AjBwoP1CWr3a70pEgitV\nqHcBtiQ83hp/LtF04KvAB8BK4D89q06yIqztl0gELrwQnnrK70pEgitVmySdP3RvwvrpUaA78Dzw\nNeDz5B1LS0u/vB+NRolGo+lVKZ4Ka/sFoKQEJk+Gn/3MQl4k38RiMWKxWJ2/PtXHohgoxXrqANOA\nCuDOhH3mAb8AquYlLMIOqC5Peq/KSjVDA6GwEPbvh4YN/a4kc5WV8JWvwLx5cPrpflcjkn0RG72k\nPYRJ1X5ZDvQEioBGwERgTtI+64DR8fsdgdOAsnQLkNw6cgQqKizYw0gtGJHjSxXqh7HZLQuANcCT\nwFpgSnwDuB34OtZPXwj8BNAqHQFVXm799DC3LkpKYNYsv6sQCaZcfrTVfgmA3butfbFnj9+V1F1F\nhf0bFiyAvn39rkYku7xuv0ieCet0xkQNGsB3v6sWjEhtFOqOCfPMl0QlJQp1kdoo1B0T1jnqyYYM\nsVbS2rV+VyISLAp1x+TLSF0tGJHaKdQdkw899SpqwYjUpFB3TL60XwC++U27xN2aNX5XIhIcCnXH\n5Ev7BawFc/HF8NhjflciEhwKdcfkU/sF4NJLLdSPHPG7EpFgUKg7Jp9G6mDrv3ToAIsX+12JSDAo\n1B2TTz31KpdeCn/6k99ViASDQt0x+TZSB5g0CebMgS++8LsSEf8p1B2Tbz11gI4dYehQmD3b70pE\n/KdQd0w+tl9ALRiRKgp1x+Rj+wVg/HhYsQK2bEm9r0g+U6g7Jh/bLwCNG9vFMx5/3O9KRPylUHdM\nvo7UoboFo2X7xWUKdcfka08dbNmAgwdhefLVcUUcolB3TD6P1CMRuPxymD7d70pE/KNQd0y+9tSr\nXHGFrdwY5sv1idSHQt0x+TxSBzjpJDj7bPjzn/2uRMQfCnXH5HNPvcrVV8MDD+iAqbhJoe6YfB+p\nA4wYYW2mV1/1uxKR3FOoOybfe+pgB0ynTLHRuohr0gn1McA6YD0w9Rj7RIEVwGog5kVhkh0utF8A\nLrsM5s6FnTv9rkQkt1KFegFwLxbsfYFJQJ+kfVoBvwPGAacDF3pco3jIhfYLQNu2MGEC/PGPflci\nklupQn0wsAHYDBwCZgITkvb5PvA0sDX+WGOjAHOh/VLl6qvhwQehosLvSkRyJ1WodwESl0jaGn8u\nUU+gDbAYWA5c4ll14jlXRuoAxcXQtCksWuR3JSK5U5ji9XQmhTUEzgBGAU2BpcBrWA/+KKWlpV/e\nj0ajRKPRNMsUr7jSUwc7YHrddXD33TZ3XSQMYrEYsViszl8fSfF6MVCK9dQBpgEVwJ0J+0wFmsT3\nA3gImA/MSnqvykpNHPZdv362kmH//n5Xkhv790NREbz4IvTu7Xc1IpmLRCKQOqu/lKr9shxrrxQB\njYCJwJykfZ4BhmIHVZsCZwJr0i1AcsulnjpAkyZwzTXwm9/4XYlIbqQK9cPA9cACLKifBNYCU+Ib\n2HTH+cA/gdeB6SjUA8ul9kuVa6+Fv/wFtm/3uxKR7Et7SO8BtV8CoFMnePNN6NzZ70py66qr7N+c\ncFhHJBQybb8o1B3Tti28+67dumTdOhg+HDZvtpaMSFh43VOXPOPSlMZEvXvD4MG6OLXkP43UHdOw\nIezd615fHWwGzFVXwdq10EDDGQkJjdTlmCoq4MgRC3YXDRsGzZvDs8/6XYlI9ijUHVJebiP0SC7/\nPguQSAT+53/gjju01rrkL4W6Q1ztpycqKYFdu7R0gOQvhbpDXJyjnqygAG6+2aY2arQu+Uih7hDX\nziY9losugh074IUX/K5ExHsKdYeo/WIKCuCWWzRal/ykUHeI2i/VLrrIlg3QaF3yjULdIRqpV1Nv\nXfKVQt0h6qkfrWq0vnix35WIeEeh7hCN1I9WWGij9Vtu0Whd8odC3SHqqdc0aRLs2QNzkq8SIBJS\nCnWHaKReU0EB/OpXMHUqHDrkdzUi9adQd4h66rUbMwa6doXp0/2uRKT+FOoO0Ui9dpEI/PrXcNtt\n8NlnflcjUj8KdYeop35sAwbAuefCnXem3lckyBTqDlH75fh+/nN44AHYutXvSkTqTqHuELVfju/k\nk2HKFPjf//W7EpG6U6g7RO2X1G68ERYsgGXL/K5EpG4U6g7RSD21Fi2sr37NNXaVKJGwUag7RD31\n9FxyiV327v77/a5EJHPphPoYYB2wHph6nP2+ARwGLvCgLskCjdTTE4nAfffBz34GH37odzUimUkV\n6gXAvViw9wUmAX2Osd+dwHwyuOq15JZ66unr2xeuvNKuaSoSJqlCfTCwAdgMHAJmAhNq2e8GYBaw\nw8vixFtqv2Tm5pthyRJdz1TCJVWodwG2JDzeGn8ueZ8JQFUHUuvdBZTaL5lp2hTuvhuuvdZ+diJh\nUJji9XQC+rfAjfF9Ixyn/VJaWvrl/Wg0SjQaTePtxStqv2Ru/Hj44x9tCYFf/MLvasQFsViMWCxW\n569P1f8uBkqxnjrANKAC659XKUt4n3bAPuDfgeTFTCsrtWi1r773Pfjud2HiRL8rCZePP4avfQ2e\neQbOPNPvasQ1kUgEMjhWmar9shzoCRQBjYCJ1AzrU4Fu8W0WcE0t+0gAqKdeNx07Whvmsstg/36/\nqxE5vlShfhi4HlgArAGeBNYCU+KbhIh66nX3ve/Zol9aQkCCLpfTD9V+8dnIkfDTn8KoUX5XEk67\ndkG/fjBzJgwb5nc14gqv2y+SR9R+qZ+2bW0Vx8mT4Ysv/K5GpHYKdYeo/VJ/48fbKP2GG/yuRKR2\nCnWHKNS9cc89sHQpPPqo35WI1KRQd4jmqXujWTN46ilbQmDNGr+rETmaQt0h6ql7p18/W6K3pAT2\n7vW7GpFqCnWHqP3ircmTYdAg9dclWBTqDlH7xVtVS/QuXWpLCYgEQaq1XySPaKTuvWbN4OmnIRqF\n3r2huNjvisR1Gqk7RD317OjbFx55xNbVef99v6sR1+mMUkdUVEBBgd1GdBmTrLjrLvjzn+GVV+DE\nE/2uRvJFpmeUKtQdceAAtGypdcGzqbISrrgCdu+GWbOggf4OFg9omQCplVov2ReJ2MWqd+zQwl/i\nH4W6I3SQNDdOOAFmz7aR+j33+F2NuEizXxyh6Yy50749PPccnHUWtGkDF1/sd0XiEoW6IzRSz62i\nIpg/35Y7btMGxo71uyJxhdovjlBPPfe++lX429/sikmvvup3NeIKhbojNFL3x5Ah8Nhj8J3vwBtv\n+F2NuECh7gj11P1z7rnw0ENw/vnw2mt+VyP5TqHuCLVf/DVunK2/Pn48LFnidzWSzxTqjlD7xX9j\nx9oZp9/5Drz4ot/VSL5SqDtCoR4M55xjF64uKYF58/yuRvKRQt0R6qkHx8iRMGcOXH45/OEPflcj\n+Ubz1B2hnnqwFBfDSy9ZS2bLFrj1Vi20Jt5Id6Q+BlgHrAem1vL6xcBK4J/AEqC/J9WJZ9R+CZ5e\nvWz++rPP2kJghw75XZHkg3RCvQC4Fwv2vsAkoE/SPmXAMCzM/w/4vYc1igfUfgmmjh1h8WLYvt36\n7Tt2+F2RhF06oT4Y2ABsBg4BM4EJSfssBfbE778OdPWoPvGI2i/B1awZPPOMnaj09a/Dm2/6XZGE\nWTqh3gXYkvB4a/y5Y7kC0HH9gFH7JdgKCuD22+1CG2PGwJ/+5HdFElbpHCjN5MoWI4DLgW/V9mJp\naemX96PRKNFoNIO3lvpQqIfDhRdCnz7wb/9mZ5/edRc0aeJ3VZJLsViMWCxW569P53h7MVCK9dQB\npgEVwJ1J+/UHZsf321DL++jKRz6qml2R8HtVAmz3brj6avjXv2DGDDj9dL8rEr9k48pHy4GeQBHQ\nCJgIzEna5xQs0H9A7YEuPlNPPVxatbIw/+//hhEj4L777HJ5IqmkE+qHgeuBBcAa4ElgLTAlvgHc\nArQG7gdWAMs8r1TqRe2X8IlE4Ic/tLViHn7Y1o3Zts3vqiTo0p2n/g/gNKAH8Mv4cw/GN4ArgbbA\nwPg22MMaxQMK9fCqms8+aBAMGGArPmrULseiZQIcUV6ueeph1qiRHQ9ZtAgeeADOPhvKyvyuSoJI\noe4IjdTzQ//+Nivm3HPhG9+A226D/fv9rkqCRKHuCIV6/igshB//2E5SWrmy+rJ5askIKNSdoWUC\n8k9RETz9NPz+93DTTTZ6X7nS76rEbwp1R2hKY/4aPdrCfNw4C/aLL4aNG/2uSvyiUHeE2i/5rWFD\nuOEGWL8eeveGM8+E667TFEgXKdQdoVB3Q/PmcPPNsG6dLS/Qrx9MmaKZMi5RqDtCPXW3tGsHv/41\nvPMOtG8PgwfDJZfAqlV+VybZplB3hHrqbmrfHn7+c+ux9+1rK0COHGlL/R454nd1kg0KdUeo/eK2\nli1h2jTYtAmuvNKW+e3Vy0bzujBHflGoO0LtFwH7f+D734fXX4fHH4fVq6FnTygpgQULNHrPB7m8\n1K2W3vVRly6wbJndiiTas8dWhHzoIbus3qRJNi2yXz9dDDsIMl16V6HuiHbtbEZEu3Z+VyJBtmoV\nPPGEbc2b26j+wgutVSP+UKhLrZo3hw8+sFuRVCoqbGXIGTPgr3+F1q3hggtsGzBAI/hcUqhLrRo1\ngs8/18FSyVxFhbXuZs+27cABGDvWttGjoUULvyvMbwp1qaGyEho0sA+nRlhSH5WVdtbqP/4B8+bZ\naH7gQJsmOWqUncmqA/LeUqhLDQcP2mjq4EG/K5F8s3cvvPIKvPCCrfX+7rtQXAxDh8JZZ9lJTyee\n6HeV4aZQlxo++wy6drVbkWz65BO7/N4rr9i2ciX06WMj+MGDbevVy/5ylPQo1KWGnTttkaedO/2u\nRFyzf7+t+/7GGzY3ftky2LXLDrYOHFi99e6tts2xKNSlhm3bbISkFfskCHbuhBUr4O237XbFCti8\nGbp3h9NPt61vXwv6Hj0U9gp1qaGszGYpaKU+CaoDB+w8itWrba78unW2vfcenHKKtWx69Kjeune3\n512YzZVpqBdmrxQJCi0RIEHXuLG1ZAYMOPr58nJbjGz9etiwAdasgTlz7LmtW23Bsm7d7CpQJ59s\nQX/yybZ16QJt2rg34yudUB8D/BYoAB4C7qxln7uBscA+4IfACo/qEw9ohUYJq0aN7EBrnz41Xzt8\n2FqKmzfbtmULvPWWrUD5/vt2st3+/dC5s22dOsFJJ9nWqRN06GBb+/Z2my+zdFKFegFwLzAa2Aa8\nAcwB1ibscx7QA+gJnAncDxR7XmmOxGIxotGo32WklEmdfq7QGIafZxhqBNWZrLAQvvIV24YPr32f\nffss3Ldtg48+qt5eegnWro1RURFl+/bqlSrbtrWlNNq1s/utW9tov00bu9+qVfXWsmX11rBh1v+5\naUsV6oOBDcDm+OOZwASODvXxwKPx+68DrYCOwMeeVZlD+fjBUagfXxhqBNVZF02bVvfhk5WWxigt\njQJ2UtW+fTYzZ+fO6ttPP7Vpmh98YP3+3buP3j77zBZEa9jQzgVp0cKW4kjcmjWzvwKqbk880eqq\num3a1K5SVXVbtTVubLeZShXqXYAtCY+3YqPxVPt0JaShno/Ky9VTFzmeSKQ6cE85JbOvray0Ns+e\nPbYUR+L2xRd2gtYXX9i2Zw98+KE9V7Xt32/bvn22HThgW9XzmUoV6ulOV0k+FFHr140bl+a7+eid\nd2xebdBlUuf27VqdUSRbIpHqEXenTtl5/4z2T/F6MVCKHSwFmAZUcPTB0geAGNaaAVgHDKfmSH0D\n0D2z8kREnLcRO27picL4GxYBjYC3geTj0OcB8+L3i4HXvPrmIiLivbHAO9hIe1r8uSnxrcq98ddX\nAmfktDoREREREambMViffT0w1edaEj2M9f1XJTzXBngeeBd4Dpue6beTgcXAv4DVwH/Enw9arY2x\nKa1vA2uAX8afD1qdVQqwk+Tmxh8Hsc7NwD+xOpfFnwtana2AWdg05zXY7Lig1Xga9jOs2vZgn6Og\n1QnWDfkXlktPACcQsDoLsLZMEdCQ2nvyfjkLGMjRof4r4Cfx+1OBO3JdVC1OAqpOnm6GtcL6EMxa\nm8ZvC7FjK0MJZp0APwIex06mg2DWuQn7QCcKWp2PApfH7xcCLQlejYkaAB9ig6Wg1VkElGFBDvAk\ncBkBq3MIMD/h8Y3xLSiKODrU12EnToGF6bpcF5SGv2Fn+Aa51qbY2cdfJZh1dgUWAiOoHqkHsc5N\nQNuk54JUZ0sshJIFqcZk5wAvx+8Hrc422KCtNfYLci5wNgGr80JgesLjHwD3+FRLbYo4OtQ/Tbgf\nSXocBEXAe0BzgllrA+yvsc+x0QUEs86nsL/ShlMd6kGsswxrFywH/j3+XJDqHIC13B4B3sI+6ycS\nrBqTPQxcG78fxDqvwj4/24HH4s9lVGe2rz8S5rV2KwlW/c2Ap4H/xP6jJwpKrRXYB70rMAwbCScK\nQp3fxj4wKzj2eRpBqBPgW9gvn7HAdVjLMJHfdRZis93ui9/upeZf4n7XmKgRMA77pZ4sCHV2B/4L\nG7x1xj7zP0jaJ2Wd2Q71bVjvqsrJ2DICQfUx9ucNQCfswx8EDbFAfwxrv0BwawU7EPUsMIjg1flN\nbL2iTcAMYCT2cw1anWC9X4AdwF+xtZiCVOfW+PZG/PEsLNw/Ijg1JhoLvIn9PCFYP0uArwOvAruA\nw8BsrIWd0c8z26G+HFu9sQj7LTmR6gNTQTQHOzBB/PZvx9k3VyLAH7CZBb9NeD5otbaj+qh8E6wX\nuILg1XkTNrjoBlwEvABcQvDqbIq12cBaGudgrcIg1fkRtu5Tr/jj0djMjbkEp8ZEk7Bf5FWC9LME\n65UXY5+fCPbzXEMAf561nbwUBDOAD4By7H/MydiBioUEZOpQ3FCsrfE21VOyxhC8WvthfdW3sWl4\nP44/H7Q6Ew2nepARtDq7YT/Lt7GprFWfnaDV+TVspL4SG1m2JHg1gv1i3En1L0oIZp0/oXpK46PY\nX+lBrFNEREREREREREREREREREREREREREREREREwub/AU1lgzCZ356cAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = relativistic_ir(dt=0.125)\n", + "plt.plot(r_ir)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/notebooks/Window Functions/window_functions.ipynb.txt b/_sources/notebooks/Window Functions/window_functions.ipynb.txt new file mode 100644 index 000000000..a32f5b53b --- /dev/null +++ b/_sources/notebooks/Window Functions/window_functions.ipynb.txt @@ -0,0 +1,848 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Stingray` now has a bunch of window functions that can be used for various applications in signal processing.\n", + "\n", + "Windows available include:\n", + "1. Uniform or Rectangular Window\n", + "2. Parzen window\n", + "3. Hamming window\n", + "4. Hanning Window\n", + "5. Triangular window\n", + "6. Welch Window\n", + "7. Blackmann Window\n", + "8. Flat-top Window" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All windows are available in `stingray.utils` package and called be used by calling `create_window` function. Below are some of the examples demonstrating different window functions. " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.utils import create_window\n", + "\n", + "from scipy.fftpack import fft, fftshift, fftfreq\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`create_window` function in `stingray.utils` takes two parameters. \n", + "\n", + "1. `N` : Number of data points in the window\n", + "2. `window_type` : Type of window to create. Default is `uniform`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Uniform Window " + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGN5JREFUeJzt3X2UXXV97/H3xwREtCUouV5MgCBGNFirOEUUURDbi4py\nl0st+Ix6ufYigtV60dqLdumydalVqsJCRfCKoKWooPh0i4BYRYYHkfBQIyhJQAlaAaEFwe/9Y++R\n45iZ+SXkZCZz3q+1Zs35/fY+e39/k8n+zH44e6eqkCRpJg+Y7QIkSVsGA0OS1MTAkCQ1MTAkSU0M\nDElSEwNDktTEwNBISHJCkr8ZaP9Fkp8l+VWSh81mbVNJsm+Sa+/H+yvJozZlTRpt8XMY2hIkKWB5\nVa0a6HsH8KiqetkGLmsr4DZg76r6/iYtdA5Z389Muj/cw9AoejiwDbByQ9+Yjv9vNJL8xde8kGS/\nJGuSvCnJzUluSnLYwPSTk7wryaOBicM8v0xybj/9qUkuTnJr//2pA+89L8m7k3wbuBN4ZN/3riT/\n2h/WOjvJw5KcmuS2fhnLpqj1lCRv6l8v6Q8dHdG3d0vyiyQPmBjTwPt+nOTNSa7o6/xskm0Gpv9V\nP+4bk7x60jq3S/KpJOuS/CTJ2yeCr28/qX/90r6ePfr2a5J8YWP/XTS/GBiaT/4rsB2wBHgN8JEk\n2w/OUFX/BuzRNxdV1TOTPBT4MnAc8DDgA8CXJ53beDlwOPAHwE/6vkP6/iXAbsB3gE8CDwWuBo6d\nos7zgf36188ArgOePtD+VlX9Zor3vhg4ENgVeDzwKoAkBwJvBv4UWA48a9L7/pHuZ/PIfh2vACYC\ndaZ6zp+iFo0YA0Pzya+Bv62qX1fVOcCvgN0b3vdc4IdV9X+r6p6qOg24BnjewDwnV9XKfvqv+75P\nVtWPqupW4CvAj6rq/1XVPcA/AU+cYn3nA0/r/8J/OvBeYJ9+2kwb6OOq6saq+gVwNvCEvv/FfT1X\nVtUdwDsm3pBkAV24vbWqbq+qHwPvpwu7iXqe0b/eF3jPQNvA0G8ZGNpS3AtsNalvK7qQmPDzfmM9\n4U7gIQ3LfgT37TVM+AndnsOE1et5388GXv/HetrrXXdV/Qi4g25jvy/wJeDGJLsz8wb6pwOvB8f3\niEk1Do5nB7qf1U8mTZ8Y3/nAvkl2BBYAnwP26Q+pbQdcPk09GiEGhrYUNwDLJvXtyu9v6DfGjcAu\nk/p2BtYOtDf15YTnAy8Etq6qtX37lcD2bNwG+iZgp4H2zgOvb6EL1l0mTV8L0F9FdSdwJHBBVd1G\nF0yHAxdOc3hMI8bA0Jbis8DbkyztTwg/i+6Q0RmbYNnnAI9O8pIkC5P8ObCC7i//YTkfeD1wQd8+\nr29fWFX3bsTyPge8KsmKJNsycP6kX97ngHcn+YMkuwB/CXx6PfVM7N2cN6ktGRjaYvwt8K/AhcC/\n0x33f2lVXXl/F1xVPwcOAt4E/Bx4C3BQVd1yf5c9jfPpTqBPBMaFwLYD7Q1SVV8BPgicC6zqvw86\nku4w2HX9uj4DnDRNPZPbkh/ckyS1cQ9DktTEwJAkNTEwJElNDAxJUpOFs13AprTDDjvUsmXLZrsM\nSdpiXHLJJbdU1eKWeedVYCxbtozx8fHZLkOSthhJmj/86iEpSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVKToQVGkpOS3JzkyimmJ8lxSVYl\nuSLJnpOmL0hyWZIvDatGSVK7Ye5hnAwcOM30ZwPL+6/DgeMnTT8KuHoolUmSNtjQAqOqLgB+Mc0s\nBwOfqs53gUVJdgRIshR4LvDxYdUnSdows3kOYwmweqC9pu8D+CDwFuA3My0kyeFJxpOMr1u3btNX\nKUkC5uBJ7yQHATdX1SUt81fViVU1VlVjixcvHnJ1kjS6ZjMw1gI7DbSX9n37AM9P8mPgdOCZST69\n+cuTJA2azcA4C3hFf7XU3sCtVXVTVb21qpZW1TLgEODcqnrZLNYpSQIWDmvBSU4D9gN2SLIGOBbY\nCqCqTgDOAZ4DrALuBA4bVi2SpPtvaIFRVYfOML2AI2aY5zzgvE1XlSRpY825k96SpLnJwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUZWmAkOSnJzUmunGJ6khyXZFWSK5Ls2ffvlOSbSa5KsjLJUcOqUZLU\nbph7GCcDB04z/dnA8v7rcOD4vv8e4E1VtQLYGzgiyYoh1ilJajC0wKiqC4BfTDPLwcCnqvNdYFGS\nHavqpqq6tF/G7cDVwJJh1SlJajOb5zCWAKsH2muYFAxJlgFPBC7abFVJktZrzp70TvIQ4J+Bo6vq\ntmnmOzzJeJLxdevWbb4CJWnEzGZgrAV2Gmgv7ftIshVdWJxaVWdOt5CqOrGqxqpqbPHixUMrVpJG\n3WwGxlnAK/qrpfYGbq2qm5IE+ARwdVV9YBbrkyQNWDisBSc5DdgP2CHJGuBYYCuAqjoBOAd4DrAK\nuBM4rH/rPsDLgR8kubzve1tVnTOsWiVJMxtaYFTVoTNML+CI9fRfCGRYdUmSNs6cPektSZpbDAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNZkxMJJsm+Rv\nknysby9PctDwS5MkzSUtexifBO4CntK31wLvGlpFkqQ5qSUwdquq9wK/BqiqO/H245I0cloC4+4k\nDwIKIMludHsckqQR0vIApWOBrwI7JTmV7ol4rxpmUZKkuWfGwKiqbyS5FNib7lDUUVV1y9ArkyTN\nKVMGRpI9J3Xd1H/fOcnOVXXp8MqSJM010+1hvL//vg0wBnyfbg/j8cA49101JUkaAVOe9K6q/atq\nf7o9iz2raqyqngQ8ke7SWknSCGm5Smr3qvrBRKOqrgQeO7ySJElzUctVUlck+Tjw6b79UuCK4ZUk\nSZqLWgLjMOAvgKP69gXA8UOrSJI0J7VcVvufwD/0X5KkETVjYCS5nv5T3oOq6pFDqUiSNCe1HJIa\nG3i9DfAi4KHDKUeSNFfNeJVUVf184GttVX0QeO5mqE2SNIe0HJIa/MT3A+j2OFr2TCRJ80jLhv/9\nA6/vAa4HXjycciRJc1VLYLymqq4b7Eiy65DqkSTNUS2f9D6jse93JDkpyc1JrpxiepIcl2RVkisG\nD30lOTDJtf20YxpqlCQN2XR3q30MsAewXZIXDEz6Q7qrpWZyMvBh4FNTTH82sLz/ejLdhwGfnGQB\n8BHgT4E1wMVJzqqqqxrWKUkakukOSe0OHAQsAp430H878D9mWnBVXZBk2TSzHAx8qqoK+G6SRUl2\nBJYBqyYOgyU5vZ93aIHxzrNXctWNtw1r8ZI0VCse8Ycc+7w9hr6eKQOjqr4IfDHJU6rqO0NY9xJg\n9UB7Td+3vv4nT7WQJIcDhwPsvPPOm75KSRIw/SGpt1TVe4GXJDl08vSqesNQK2tUVScCJwKMjY39\n3ifSW2yOZJakLd10h6Su7r+PD2nda4GdBtpL+76tpuiXJM2i6Q5Jnd1/P2VI6z4LeH1/juLJwK1V\ndVOSdcDy/tLdtcAhwEuGVIMkqdF0h6TOZj03HZxQVc+fbsFJTgP2A3ZIsgY4lm7vgao6ATgHeA6w\nCriT7jbqVNU9SV4PfA1YAJxUVSvbhyRJGobpDkm97/4suKp+77zHpOkFHDHFtHPoAkWSNEdMd0jq\n/InXSbYGHkO3x3FtVd29GWqTJM0hLTcffC5wAvAjIMCuSf5nVX1l2MVJkuaO1psP7l9VqwCS7AZ8\nGTAwJGmEtNxL6vaJsOhdR/dpb0nSCGnZwxhPcg7wObpzGC+iu7/TCwCq6swh1idJmiNaAmMb4GfA\nM/r2OuBBdPeXKsDAkKQRMGNgVNVhm6MQSdLc1nKV1K7AkXR3kf3t/DN9cE+SNL+0HJL6AvAJ4Gzg\nN8MtR5I0V7UExn9W1XFDr0SSNKe1BMaHkhwLfB24a6Kzqi4dWlWSpDmnJTD+CHg58EzuOyRVfVuS\nNCJaAuNFwCO9f5QkjbaWT3pfSfdcb0nSCGvZw1gEXJPkYu47h1FVdfDwypIkzTUtgXHswOsA+9I9\nBU+SNEJmPCTVPxfjNuAg4GS6k90nDLcsSdJcM90jWh8NHNp/3QJ8FkhV7b+ZapMkzSHTHZK6BvgW\ncNDAszDeuFmqkiTNOdMdknoBcBPwzSQfS3IA3TkMSdIImjIwquoLVXUI3bO8vwkcDfyXJMcn+bPN\nVaAkaW5oOel9R1V9pqqeBywFLgP+99ArkyTNKS0f3Putqvr3qjqxqg4YVkGSpLlpgwJDkjS6DAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1GSogZHkwCTXJlmV5Jj1TN8+yeeTXJHke0keNzDtjUlW\nJrkyyWlJthlmrZKk6Q0tMJIsAD4CPBtYARyaZMWk2d4GXF5VjwdeAXyof+8S4A3AWFU9DliAz+CQ\npFk1zD2MvYBVVXVd/zzw04HJT+lbAZwLUFXXAMuSPLyfthB4UJKFwLbAjUOsVZI0g2EGxhJg9UB7\nTd836Pt0d8UlyV7ALsDSqloLvA+4ge6OubdW1deHWKskaQazfdL774BFSS4HjqS7seG9Sban2xvZ\nFXgE8OAkL1vfApIcnmQ8yfi6des2V92SNHKGGRhrgZ0G2kv7vt+qqtuq6rCqegLdOYzFwHXAs4Dr\nq2pdVf0aOBN46vpW0t8McayqxhYvXjyMcUiSGG5gXAwsT7Jrkq3pTlqfNThDkkX9NIDXAhdU1W10\nh6L2TrJtkgAHAFcPsVZJ0gyme0Tr/VJV9yR5PfA1uqucTqqqlUle108/AXgscEqSAlYCr+mnXZTk\nDOBS4B66Q1UnDqtWSdLMUlWzXcMmMzY2VuPj47NdhiRtMZJcUlVjLfPO9klvSdIWwsCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU2GGhhJDkxybZJVSY5Zz/Ttk3w+yRVJvpfkcQPTFiU5I8k1Sa5O\n8pRh1ipJmt7QAiPJAuAjwLOBFcChSVZMmu1twOVV9XjgFcCHBqZ9CPhqVT0G+GPg6mHVKkma2TD3\nMPYCVlXVdVV1N3A6cPCkeVYA5wJU1TXAsiQPT7Id8HTgE/20u6vql0OsVZI0g2EGxhJg9UB7Td83\n6PvACwCS7AXsAiwFdgXWAZ9MclmSjyd58PpWkuTwJONJxtetW7epxyBJ6s32Se+/AxYluRw4ErgM\nuBdYCOwJHF9VTwTuAH7vHAhAVZ1YVWNVNbZ48eLNVLYkjZ6FQ1z2WmCngfbSvu+3quo24DCAJAGu\nB64DtgXWVNVF/axnMEVgSJI2j2HuYVwMLE+ya5KtgUOAswZn6K+E2rpvvha4oKpuq6qfAquT7N5P\nOwC4aoi1SpJmMLQ9jKq6J8nrga8BC4CTqmplktf1008AHguckqSAlcBrBhZxJHBqHyjX0e+JSJJm\nR6pqtmvYZMbGxmp8fHy2y5CkLUaSS6pqrGXe2T7pLUnaQhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWqSqprtGjaZJOuAn2zk23cAbtmE5WwJRnHMMJrj\nHsUxw2iOe0PHvEtVLW6ZcV4Fxv2RZLyqxma7js1pFMcMoznuURwzjOa4hzlmD0lJkpoYGJKkJgbG\nfU6c7QJmwSiOGUZz3KM4ZhjNcQ9tzJ7DkCQ1cQ9DktTEwJAkNRn5wEhyYJJrk6xKcsxs1zMsSXZK\n8s0kVyVZmeSovv+hSb6R5If99+1nu9ZNLcmCJJcl+VLfHoUxL0pyRpJrklyd5CnzfdxJ3tj/bl+Z\n5LQk28zHMSc5KcnNSa4c6JtynEne2m/frk3y3+7Pukc6MJIsAD4CPBtYARyaZMXsVjU09wBvqqoV\nwN7AEf1YjwH+paqWA//St+ebo4CrB9qjMOYPAV+tqscAf0w3/nk77iRLgDcAY1X1OGABcAjzc8wn\nAwdO6lvvOPv/44cAe/Tv+Wi/3dsoIx0YwF7Aqqq6rqruBk4HDp7lmoaiqm6qqkv717fTbUCW0I33\nlH62U4D/PjsVDkeSpcBzgY8PdM/3MW8HPB34BEBV3V1Vv2SejxtYCDwoyUJgW+BG5uGYq+oC4BeT\nuqca58HA6VV1V1VdD6yi2+5tlFEPjCXA6oH2mr5vXkuyDHgicBHw8Kq6qZ/0U+Dhs1TWsHwQeAvw\nm4G++T7mXYF1wCf7Q3EfT/Jg5vG4q2ot8D7gBuAm4Naq+jrzeMyTTDXOTbqNG/XAGDlJHgL8M3B0\nVd02OK26a6znzXXWSQ4Cbq6qS6aaZ76NubcQ2BM4vqqeCNzBpEMx823c/TH7g+nC8hHAg5O8bHCe\n+TbmqQxznKMeGGuBnQbaS/u+eSnJVnRhcWpVndl3/yzJjv30HYGbZ6u+IdgHeH6SH9Mdbnxmkk8z\nv8cM3V+Ra6rqor59Bl2AzOdxPwu4vqrWVdWvgTOBpzK/xzxoqnFu0m3cqAfGxcDyJLsm2Zru5NBZ\ns1zTUCQJ3THtq6vqAwOTzgJe2b9+JfDFzV3bsFTVW6tqaVUto/u3PbeqXsY8HjNAVf0UWJ1k977r\nAOAq5ve4bwD2TrJt/7t+AN15uvk85kFTjfMs4JAkD0yyK7Ac+N7GrmTkP+md5Dl0x7kXACdV1btn\nuaShSPI04FvAD7jveP7b6M5jfA7Yme7W8C+uqskn1LZ4SfYD3lxVByV5GPN8zEmeQHeif2vgOuAw\nuj8Q5+24k7wT+HO6KwIvA14LPIR5NuYkpwH70d3G/GfAscAXmGKcSf4aeDXdz+XoqvrKRq971AND\nktRm1A9JSZIaGRiSpCYGhiSpiYEhSWpiYEiSmhgY2iIk+ev+TqRXJLk8yZOHvL7zkoxtwPwnJ1mb\n5IF9e4f+A4Obopb9Ju60u6kkOTrJK2aY54+SnLwp16stm4GhOS/JU4CDgD2r6vF0n+pdPf27ZsW9\ndNe7zymT707a35zv1cBnpntfVf0AWJpk5yGWpy2IgaEtwY7ALVV1F0BV3VJVNwIk+T9JLu6fgXBi\n/ynfiT2Ef0gy3j8P4k+SnNk/L+Bd/TzL+udFnNrPc0aSbSevPMmfJflOkkuT/FN/P671+SDwxn6D\nPPj+39lDSPLhJK/qX/84yXv6vabxJHsm+VqSHyV53cBi/jDJl/tnGpyQ5AHT1dYv9++TXAq8aFKd\nzwQurap7Bn5Wf5/ke0n+Lcm+A/OeTfcpecnA0Bbh68BO/cbso0meMTDtw1X1J/0zEB5Etycy4e6q\nGgNOoLtVwhHA44BX9Z/2Btgd+GhVPRa4DfhfgytOsgPwduBZVbUnMA785RR13gBcCLx8A8d3Q1U9\nge6T+CcDL6R7Zsk7B+bZCziS7rktuwEvaKjt51W1Z1WdPml9+wCTb8i4sKr2Ao6m++TwhHFgXyQM\nDG0BqupXwJOAw+lu2/3Zib/Qgf2TXJTkB3R/Oe8x8NaJ+4L9AFjZPxPkLrpbZUzckG11VX27f/1p\n4GmTVr833Ub620kup7tPzy7TlPse4K/YsP9bg3VeVFW3V9U64K4ki/pp3+uf23IvcFpf50y1fXaK\n9e1I93McNHEzykuAZQP9N9Pd/VVi4cyzSLOv31CeB5zXh8Mrk5wOfJTuKWurk7wD2GbgbXf1338z\n8HqiPfG7P/neOJPbAb5RVYc21vnDfuP94oHue/jdANnmd9+10XXOVNsdU/T/xzQ13Mvvbhe26eeX\n3MPQ3Jdk9yTLB7qeQHeDtYmN3i39sfsXbsTid+5PqgO8hO6Q0qDvAvskeVRfy4OTPHqGZb4bePNA\n+yfAiv6OoYvo7qS6ofbq76r8ALob7F24kbVBdxfXRzWu99HAlTPOpZFgYGhL8BDglCRXJbmC7jDM\nO/rHjn6MboP2Nbrb1W+oa+meb341sD1w/ODE/tDQq4DT+nV/B3jMdAusqpXApQPt1XR3Er2y/37Z\nRtR5MfBhuo399cDnN6a23lfoHuHaYn/gyxtcreYl71arkZXuUbVf6k+Yj5QknwfeUlU/nGaeBwLn\nA0+buKJKo809DGk0HUN38ns6OwPHGBaa4B6GJKmJexiSpCYGhiSpiYEhSWpiYEiSmhgYkqQm/x/6\n0mpI7TkJ/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Uniform window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcZUddNv587770Pt09PftkJwlbQkCRRZBFkCUIrwKC\nL1EU9eUVFF71RVFxiSg/QRZB2SWgifEVSNghQDbINiEJycwks+89Pb3dfb+3fn9U1Tl16pzqe+7M\ndPftmXo+n/70vXXrnFNn+z71XYsYY7CwsLCwsDAhstoDsLCwsLDob1iisLCwsLBYEpYoLCwsLCyW\nhCUKCwsLC4slYYnCwsLCwmJJWKKwsLCwsFgSligsLFYQRHQZET1MREUiekfIbRgRXbzcYwsDItpJ\nRC8Qn4mIPk9Ei0R0/yoPzQgi+lMi+sxpbvsCIjp2tse01hBb7QGcyyCiQwDWA2grzZcyxk6szogs\n+gB/DOCHjLGnB/1IRLcD+BJj7LQE21IQAv5LjLHNp3tMxtiVytfnAngJgM2MsfJZHOpZBWPs71Z7\nDGsdVqNYfryKMTag/PlIgojOK8I+385XwzYAO1d7EGcJ2wAcOh2SOM+fgTUHSxSrACLaLswJbyWi\nIwB+INp/loh+TEQ5InpEqvjitwuI6A5hsvgeEf0zEX1J/OZTj4noEBG9WHyOENH/JaL9RDRPRDcT\n0Zg2lrcQ0REimiOiP1P2ExWq+35x7AeJaAsRfZyIPqgd81Yi+kPDOTMiejsR7QWwV7Q9SZzLAhE9\nQUS/qvT/JSLaJY55nIj+j3quYkxz4jzfpGw3TEQ3ENEsER0movcSUUT8dh0R3U1E/yjMJQeJ6OXK\nttcR0QFxzIPafn+TiHaL7b5DRNuWuL+vFiaaHBHdTkSXi/YfAHghgH8mohIRXaptdz2A5ym//7Py\n84uJaK/Y58eJiE5nbN1ARO8Tz8cN4jrsJKJrlN8PEdGLieitAD4D4NlirH8lfv9tIton7umtRLRR\n2TboGWBE9L/EuRWJ6G+I6CLxHhTEWBKGsR4momeIz28S+7pSfH8rEX1VOSf5rnR73tNE9G/iWu4C\n8EztmJeLe5oT1+bVov0C0SaftU8T0Slluy8S0R+c7n1ZdTDG7N8y/QE4BODFAe3bATAANwDIAkgD\n2ARgHsAvgRP4S8T3CbHNPQA+BCAJ4PkAiuDmAgB4AYBjpmMDeCeAewFsFtt/EsCN2lg+LcbxNAB1\nAJeL3/8IwKMALgNA4vd1AJ4F4ASAiOg3DqACYL3hWjAA3wMwJo6TBXAUwG+Am0CvAjAH4ArRfxrA\n88TnUQBXK+faUq7FzwMoA7hM/H4DgFsADIpz2wPgreK36wA0Afw2gCiA3xPnQGI8BWU/GwBcKT5f\nC2AfgMvFWN8L4MeG87xUjOclAOLgpqZ9ABLi99sB/NYSz4zvd3Htvg5gBMBWALMAXnYaY/M9J/ox\nAbwPQA38OYwCeD+Aew3P1XUA7lZ++wVxD68W9+ZjAO40PQNK2y0AhgBcCf7sfR/AhQCGAewC8BbD\n+dwA4N3i86cA7Afwe8pvf6ick3xXtmPp5/3vAdwlxrgFwGPymon7uQ/AnwJIiPMtKs/MEQDPEJ+f\nAHBA2e8RAFettkw6bVm22gM4l//ES1UCkBN/XxXt8mG9UOn7JwC+qG3/HQBvEcKhBSCr/PYfCE8U\nuwG8SPltA7jAjClj2az8fj+AN4jPTwC41nB+uwG8RHz+3wC+ucS1YAB+Qfn+egB3aX0+CeAvxecj\nAH4HwJDW5wUB1+JmAH8OLtgaEGQjfvsdALeLz9cB2Kf8lhHjmgInihyA10EIMaXftyDIRnyPgJPi\ntoDz/HMAN2t9jwN4gfh+O06PKJ6rne//PY2x+Z4T/ZjgQvU25bcrAFQNz9V18BLFZwF8QPk+IJ6z\n7UHPgNL2HOX7gwD+RPn+QQAfNlyrtwK4VXkWfwvATeL7YbiTi/fBTxSm5/0ABAmL72+DSxTPA3AS\nYnIk2m4E8D7x+YsA3iWepycAfADA7wK4QDxbkaDzWAt/1vS0/HgNY2xE/L1G++2o8nkbgF8R6muO\niHLgzsINADYCWGReW/DhHsawDcBXlP3uBnewr1f6nFQ+V8BfcoDPqvYb9vsFAG8Wn98M/qIsBf18\nf0Y73zeBv2QAF9i/BOAwcZPbs5Vtg67FRnCtJg7vtTkMrq1JOOfJGKuIjwNif68Hf7GniegbRPQk\nZawfUca5AK6FqPuV2KgenzHWEecd1LcXmO5PL2NrgV8fHXFwgW46VorC+RT0cy+Ba8XqWI7qGwGY\nUT5XA74PIBh3AHgeEW0AnyTcDOA5RLQdXBt5eImxmq7nRm2M6rO0EcBRcU/V3+X53QFOxs8HcCc4\nAf+8+LtL225NwRLF6kIt3XsUXKMYUf6yjLG/BzfDjBJRVum/VflcBp8dA+B+BQAT2r5fru07xRg7\nHmKMRwFcZPjtSwCuJaKngZs+vtplX/r53qGNaYAx9nsAwBh7gDF2LYBJsd+blW2DrsUJcLNHE1x4\nqr+FOU8wxr7DGHsJODk/Dm6ekGP9HW2sacbYjwN2c0I9vvAlbAk7BnivURj0MrYjAMaJyBG8Ynzb\n0NvEwwT93LPgZkr13Hs9PyMYY/vAhfzvg5u4CuAE8DZwTed0BPM0+P2SUN+zEwC2SD+E8rs8vzvA\ntY4XiM93A3gOOFHccRpj6RtYougffAnAq4joF4k7kFPEHbebGWOHAewA8FdElCCi5wJ4lbLtHvBZ\n3yuIKA5up04qv/8rgOulk5OIJojo2pDj+gyAvyGiS4jjqUS0DgAYY8cAPACuSfw3Y6zaw/l+HcCl\nRPTrRBQXf88UzsKEcE4OM8aa4L4D/aWX1+J5AF4J4L8YY21wQrmeiAbF+b4L/NouCSJaT0TXCuFW\nBzcZymP+K4D3KI7SYSL6FcOubgbwCiJ6kbgX7xb7CxLcQZgBt8+HReixMcaOALgPwD8Q0QARJcF9\nUE1wH9aZ4kYAv0FETxf7/jsA9zHGDp2FfZtwB7jZUwri27XvveJm8Os5SkSbwUlI4j5wYvpj8by+\nAPw9vAkAGGN7wTWgN4NPggrg9/N1ZzCevoAlij4BY+wouGPyT8GdlUfBX2J5j34NwM+Amxb+EtxZ\nJ7fNA/hf4EL9OLiGoUZBfQTArQC+S0RFcKHwMyGH9iHwl+e74AL7s+BOQIkvAHgKupudPGCMFQG8\nFMAbwGdqJwH8A1yC+3UAh4ioAG4OepOy+UkAi2K7fwfwu4yxx8Vvvw9+/gfAZ3T/AeBzIYYUASeV\nE+DX+OfBnd1gjH1FjO0mMZ7HALw8aCeMsSfABcXHwDWcV4GHSDdCjAHg9+p/iKibj3br3MvYBF4P\nrqXtA39WXgTgFYyxWsjxLTWW28B9NP8NPjO/CPz+LifuAA9cuNPwvVf8Fbh2dRD8mXeea3EPXwV+\nfecAfALA/1SePXn8efE+y+8E4CenOZ6+AAknjMUaAxG9D8DFjLE3d+u7zON4PviMfRtbgYeJDElj\nFhYWywerUVicNoRp5Z0APrMSJGFhYbE6sERhcVognkSWA3f8fniVh2NhYbGMsKYnCwsLC4slYTUK\nCwsLC4slcU4U5hofH2fbt29f7WFYWFhYrCk8+OCDc4yxiW79zgmi2L59O3bs2LHaw7CwsLBYUyCi\nUImW1vRkYWFhYbEkLFFYWFhYWCwJSxQWFhYWFkvCEoWFhYWFxZKwRGFhYWFhsST6liiI6GXEl8fc\nR0T/d7XHY2FhYXG+oi+JQqyn8HHwKo1XAHgjEV2xuqOysLCwOD/Rr3kUzwJfsvIAABDRTeAluHed\nzYM02x1c/43dWCg3sH1dpvsG5xKIVnsEK47z74zPy9sMOk/uNAPDyXwNv/ncC3Dp+sFlPVa/EsUm\neJcjPAZt/QQiehv4SlbYulVdhCo8irUW/u3Hh5R9ntZu1hxseS8Li3MH64dSuPQl5ydRdAVj7FMA\nPgUA11xzzWmJvrFsAt98x/Pwyo/dhbe/8GK8+6WXndUxWlisJs7Hgp/nyym3Ogw/9/c/wJaxNN7x\nokuW/Xj9ShTH4V23djPCrzncE67YOITnXDyOrzx0HO96yaWg80WtsDjncT4+y+fLKd+zbw5zpTr+\n9jVXIhpZ/pPuS2c2+DrMlxDRBUSUAF9O8dblOtirnroRxxar2DNTWq5DWFhYWJw1/PDxU0jHo3jB\nZZMrcry+JArGWAt8gfTvANgN4GbG2M7lOt6zL1oHALj/4PxyHcLCwsLirOGBQwu4ausIUvHoihyv\nL4kCABhj32SMXcoYu4gxdv1yHmvzaBobhlO4/9Dich7GwsLC4oxRqrewe7qAa7aPrdgx+5YoVhJE\nhCdvGsbu6cJqD8XCwsJiSTx6LI8OA67eOrJix7REIfCkqUEcnCuj1myv9lAsLCwsjNh3qggAuGxq\neUNiVViiEHjS1BDaHYZ9p6xD28LCon+x71QJA8kYpoZSK3ZMSxQCF08OAAAOzpVXeSQWFhYWZuyb\nLeGiieyKhj9bohDYMpYGABxZqKzySCwsLCzM2HeqhIvExHalYIlCIJOIYWIwiSPzligsLCz6E7Vm\nGzOFOravy67ocS1RKNg6lrEahYWFRd9iplADAGwYXjn/BGCJwoMto2kcXbREYWFh0Z+YzkuiSK/o\ncS1RKFg/lMKpYv28LKZmYWHR/5jOVwEAU1ajWD1MDqXQaHWQrzZXeygWFhYWPrgahSWKVcPkYBIA\ncKpYX+WRWFhYWPhxMl/DUCqGbHJlC39bolCwXiSwSIeRhYWFRT9hOl9bcf8EYInCA0ejKFiNwsLC\nov8wX6pjfDCx4se1RKFgcogTxWzJEoWFhUX/YbHSxGjGEsWqIh2PIhGLIFexzmwLC4v+w0K5gbGs\nJYpVBRFhJB1HrtJY7aFYWFhYeNBqd1CoWY2iLzCSiVuNwsLCou+QrzbBGKxG0Q8YSSeQq1qNwsLC\nor+wKCwdo5YoVh/DVqOwsLDoQyyUuVwazcRX/NiWKDSMpOM2M9vCwqLvIH2n1kfRBxjJxB0Vz8LC\nwqJfUKq3AAADK5yVDVii8GEkk0Ct2bFrZ1tYWPQVyoIoVrp8B2CJwgfJ1pK9LSwsLPoBpTqfvFqN\nog8g2bpStxqFhYVF/6BcbyFCQCq+8mLbEoWGbCIKACg3uEZxqlDDHXtm7RoVFhYWK4pcpYHbds2g\n0+Gyp1RvIZuMgYhWfCyWKDRkhEYh7YHXff4BvOVz9+Pbj51czWFZWFicZ/j9Gx/Cb92wA/+54ygA\nThSrYXYCLFH4MJCUGkUbJ3JV7JouAAC++vDx1RyWhYXFeYS5Uh0/2jcHAPj6T08A4JPX1XBkA5Yo\nfMgkpI+ihR2HFwEAl0wO4CdHctb8ZGFhsSL4yeFFdBjwpKlB/PRYHowxx/S0GrBEoUGNejoyXwYA\nvPbqzZgt1jFj16mwsLBYAeyeLoIIeM1Vm1CstTBbrKNcbzkWj5WGJQoNGeHMrjTaOLJQweRgEldu\nHAIAHBLEYWFhYbGc2HOqiK1jGVw8MQCAr2xXrretj6JfIFW7cqOFIwsVbBnLYNu6DADgyEJlNYdm\nYWFxnuBErorNo2lMDfPlmafzNWt66ickYxEQAdVGG3OlBiYHk9g4kkY0Qjgyb4nCwsJi+TGd42tj\nbxBEcTJfRa3ZRjpuTU99ASJCMhZBvdVBrtLASCaBeDSCycEkZgq11R6ehYXFOY5Wu4NTxRo2DKcw\nlk0gHiXMFOuotzpIxixR9A1S8SiqjTZylSZGREnf8YGkXUvbwsJi2XGqWEeHARuG0yAiDIuK1o1W\nB4nY6ohsSxQBSMYiWCg30Oowp/b7xGASs0VLFBYWFsuL6Ty3XEiz05BYnrnR7iBpiaJ/kIpHcVKY\nmUZE7feJgSTmFI3iwGwJv3/jQ3j8ZGFVxmhhYXFu4IZ7DuH939rt5GktlPkyB+sGuOwZTsedSepq\naRSr40LvcyRjEZwUrD6SFqanwQTmSg10OgyRCOED334C3955EgvlOv79t352NYdrYWGxRnE8V8Vf\n3LITAPCci8bx/EsnnIXThoXsGU7HcXCOh+ZbjaKPkIxFHVYfSHEuHUkn0O4wlBstMMbw4/08vf6+\nAwt27QoLC4vTwvd2ujXk7twzCwA+osgmY1gU8ui8Igoi+v+I6HEi+ikRfYWIRpTf3kNE+4joCSL6\nxdUYXyoeQVUI/5QIRxtKc8Io1Fo4NF9BodbCLzxpEq0Oc+pBWVhYWPSCx04UMD6QxJM3DeGJmSIA\nlygGU5woMvEoCjVepPR8c2Z/D8CTGWNPBbAHwHsAgIiuAPAGAFcCeBmATxDRiseDqSFoKfF5SNy0\nQrWJA7MlAMBrr94EAHh8urjCI7SwsDgX8MTJIi7fMIhL1w9ijyCKQrWJwVQM0QgvJy6rRQA4v8Jj\nGWPfZYzJJeTuBbBZfL4WwE2MsTpj7CCAfQCetdLjU1k7nZAahUsUJ3JVAMAzto0iHiUcXbSJeBYW\nFr3j4FwZF00MYPu6LGYKddRbbeSrTcfsBLhLHwDnn0ah4jcBfEt83gTgqPLbMdHmAxG9jYh2ENGO\n2dnZszqgWMRdGESuJuVoFLUWTuRriEcJ6wdT2DSSxlFb2sPCwqJHlOotlOotTA2nMDmYBADMFut+\nooirGsU5RhREdBsRPRbwd63S588AtAD8e6/7Z4x9ijF2DWPsmomJibM5dMSjikah+yiERrF+KIVI\nhLBlLIOji1Wn//FcFa//5D24ecdRWFhYWABAo9XB737xQfz113Y5bTKycmoohckhThSnAogirZie\nzrnwWMbYi5f6nYiuA/BKAC9i7kIPxwFsUbptFm0rilhU1Si8Pop8tYmFcgMTYgYwMZjEgVm3quxn\n7zqI+w4uYNeJAn75qk0e0rGwsDg/8YPHZ/BtEeH0az+zBRdPDuKUyNVaP5TCoIiuPFWoo1Bt4uLJ\nAWdbuUYOACRWSZ6sVtTTywD8MYBXM8ZUu82tAN5AREkiugDAJQDuX+nxxSLuZZGqnmT1atNrQxwf\nSGK+XHeSZe49MA8AKNZb2HXCRkNZWFgAP3j8lPP5R/u4jJBJvR7TU6mOSqPtJQdFi0ieZ0UB/xnA\nIIDvEdHDRPSvAMAY2wngZgC7AHwbwNsZYyuepBAXGkUqHnEWMpdVZWsaUazLJlBrdlBptFFvtfH4\nyQKuffpGAMBOSxQWFhYAdk0X8NyLx7Eum8DOE3kALlGsH0p6gmVqzTbSCVc0xxULx2ppFKuSmc0Y\nu3iJ364HcP0KDseHmEMULnsTEdJqsUBJFAN8JjBXqqPdYegw4HmXTOAHu09ht82vsLA479HuMOw5\nWcJ1z9mOarPtrGuTqzSRjkeRScTAGEM8SijVW6hq5cRVckjEyLf/lYA1oAdA+hX02u/peBSVZhuF\nmqJRiHosc6WG8wBsW5fBlrEMjudcJ3e53sLb//0n+MxdB1biFCwsLFYBxVoTb7thB754zyGnbb5U\nR6PdwZaxDLaOZXB0gcuFfKXpBMkQEQZTcRRrTR9RqH7OaOQ88lH0O+SNSWlEkYpHcapQB2PAcMYt\n2AUAhVrTiX7aMprBxpG0k28BAF9+6Di+8eg0/vYbu53yIBYWFucW/mvHMXx31wz+/JadKNV5qti0\nEt20ZTSN6XwVzXbHF900kIxhodwAY15fRFzxUaih+ysJSxQBkDdDtQ0C3GcxW+Q3fUhEKQyKZJhS\nrYV5UV12fCCBzaNpj0Zx7/555/N9B9zPFhYW5w5++ITrtH7oyCIAb9nwiaEUOgxYrDRQqDWdaEqA\nE4WsEuvVKFw5FLFE0T+ICY0iQt6bkk5EsVhpOp8Bt2hgqd7CQrmB4XQcsWgEU8MpFGstlMWs4qEj\ni3jpFesRjZB1cltYnINgjGHniQJ+8cr1AOBEPZ7M8wnj1HAKY8ISsVBu+DSKwZRCFIlgH0WULFH0\nDeIG1k7Ho1iscLORrAElC3eVapwo1mX5gzCWdR+IequN6UINV2wcwkUTWc8aFs12B++86SH83Td3\nL9v5WFhYnF1M56t4w6fuwa2PnHDaZot1LJQbePaF67BhOIUnTvLaTdOFGhLRCMYyCYxmubyQRDFk\nIgqDj2KVXBR2PYogxAwhaKl4FEVRxVH6LzLxKIh43sRipYFRQRCjYuawWGmg2e6AMe672DqWwTEl\nk/vuvXO45WH+sP3yVZtw+YahZTsvCwuLs4NP3XkA9x5YwN6ZEl7xlA2IRsgxNW8Zy2DzaBonhCYx\nV2xg3UACkQg5E8jFchOFatMxYQPc9FRuyKrVanis1Sj6EtIm2HESxjlU57a8kZEIYSARQ7HWxEK5\n6RDEmJg5LFZcJ/fWdRlsGknjuEIUtys2zR/vt74LC4u1gDvE2hHz5YZTTdopyTGcwtRw2vmumpgc\n01OlgWqz7Sn455UvatkOlxxiNuqpfyCd2RpPeNRB9UYOpGIo1VrIVRoYEWtsyyVUF8sNzBTcqIeN\nI2kU6y0UatzXsXu6iGduH8X6oSQeO573HO8bP53Gfz947OyenIWFRWjkKg188LtPeAp/luotHJwr\n4xVP2QAAzno0JwQxbBxOY8NwCicLNTDGUFCIQsqF2WIdzTYzypR+Mz1ZogiAND1pPOFRB9XPg6mY\n47geEDME1WklV6cazSYwJRZMnxEP1YG5Ei4cH8AVG4Y8CXonclW8/T9+gnf/1yM+ArGwsFgZfOA7\nT+BjP9iHv7jlMadt70wRjAGvfOoGxCLk+CJO5qtIxiIYycSxfiiFWpOHwKq+iEQsgkQ04kRIpg2V\nYZPGPApreuobyGgn/Zaovgt1AZF0PIpqs80TZbT1K3LVJhYqDSSiEWQTUazL8kzuxUoThVoTc6UG\nLpjIYvNoxpN3cfsTbun023bPnNXzs7Cw6A7GGG4XNZru2jvnLHksw123rctiajjlfJ/O17BhOAUi\nwqiwLOQqTV90UzYZxZwgilQimCjUkFi1SKkeiblSMDqzieijIbYvMMbeexbH0xeQfKDflHjEX1UW\n4OxfqrfQbDNkxY2PRmTJjxby1SZGs3EQkWOaWig3HK1ig9AyCrUWirUmBlNxPHx0EeuyCYxk4j6N\n4kPf24Pd0wV85A1P9xQPs7CwOD3cs38e//Dtx/HX116Jp27mKzOfyNdwIl/Dsy4Yw/0HF7DvVAlP\n3jTsEMPGkRQ2DKcwLZzWC+WGU9JHEkO+2vRUcgD4GtjzJW5lSGtyRMLkwO5HjeJaAA92+Xvdcg9w\nNSALAerkrd48rxkq6piX0orgziajKDfampPbjYaaFbOKicEkNo2kAcCJnDgwW8ZFkwN4yqZhTxXa\nU8UaPvr9vfjerhknWsrCwuLM8P5v7cbDR3P48G17nTbppP7lq/jaadIXMZ2rIhWPYDjNTUxBTmv5\nf77Mq8HqGdhzXUxPJnPTakU9LTUd/SfG2BeW2piIRs/yePoCppsRi3rJwfkci2BeEEVWUSUziRgq\nMmw24w+blWvhTg4mnQdjtljHk6b4EokvuWI9JodSuPWRE2i2O4hHI7hrz5yz/3v2z+ONz9rqfH/8\nZAEPH8nhV6/ZsmoZnBYW/YxjixV8f/cpvOFZWxzzcb7axKNCa79n/zw6HYZIhHBonjuwn3/pBCIE\nHBMO7elCDRuH0yAiTA2l8L1dM2CMIV9t4tL1gwBc0/OJHCeRbFKdQMacEHm1SmzSUKojYvi8kjAS\nBWPsw902DtNnLUJGFpBuehK2wmiENO0iinzVm7EN8EXRy402yvUWxsYyzu/peBQLpYbzoI4PJCE9\nIgvlBqqNNubLDWwZy2BiIIkO46F3W8Yy2DVdQCoewfMumXAeboDbU9/yufsxU6gjHo3gdc/YDAsL\nCy9+/8aH8NCRHEr1Ft7+Ql7E+tFjeTAGvPppG3HrIydwZKGC7eNZHJ4rIxWPYONwChODScfkdDJf\nw/ohbi4eG0ig3uqg3uoEahRycSJVc8gkok4dqFRM1Si6m55WC0bTExGliOgtRPRq4vgTIvo6EX2E\niMZXcpArDaMzWzCIXhNeNUNlEt6ZQ6XRQqXR9mgaQ+kYSvUW5kp1xCKE4XRcScRpOGrpxGASm0a5\nSUrOQA7OlbF9XRZXbBjCwbmy42B7YqaImQLf7jtiJS2J47kqbrz/CJrtTu8Xw8JiDeLgXBn/+cAR\ndDpu7OJssY6HjuQAAN9V3pGD83yFylc8lYe7Pi6imGaKdUwNcef01HDaWT9isdLAmKgaLWs1LVYa\nKNVbjiYhiUJu49UcFGuE6sxW5IjqwF4tv4SKpUxPNwBoAsgCeDeAx8AXHHougH8DX8b0nIS8MTqR\ny5unt6tmqKymURRrLVQaLa/vIsGJIhblJEEk/wMLlabruxhIOuG0JwsuUVy+YRCbBYFM52u4YDyL\nBw/zAmRXbR3xOb/feeND2HF4kZdAfv5Fp3VNLCzWChhjeNOn78WJfA3xaASvvZpr1/K9eNqWEeye\nLqDV7iAWjeCQ0Byu2cYt6TL6cLZYE9o+MDWUxME5TiiFAM3h+GKVV5UW31PxKBLRiDN58zqtXUIw\n5UvElYSJ1Yp0UrGUM/sKxtibAPwPAJcxxt7OGPu2iHLassR2ax4RozM7OBHPkyijEMWAQaPIJKOo\nNNoo1VpOUcFohDCSjnONoiir0Cad2lGL5SYYY5jOV7FpJI3No9yUJR/qg7P8YX/ZlVM4ka85zvWF\ncgMPiiqW337Mq2k8djyPP7jpIRyZr8DCYi3iyz85hvd+9VGPtrx/tuQkv31LeealM/p1V29Co9Vx\nBP+RhQq2jGYwlk0gEYs4WsBcqeEQxcRgEnOlhuOL0Ini6CJ/h9SSHLyIqKgNZ3Baq0Shag79plEs\nRRQNAGCMtQDo4TUrvjzpSsI1PXlvkDQ9MS0Vz3PjNWd2qcZXrMpo7eV6CyUlQQ/gju4FJRpqfDCB\noVQcEXJV21qzg/GBpKNRyHIgB4RJavt4FoBrqvrJ4UUwBjxt8zB2nuCzKIm//voufPXhE/jH7z7h\nuwayOJmFRT+g2mgjLyo3S+QqDbzr5kfwpXuP4GtKcb77D/KJ0dM2eyMGjy5UMD6QdMJfD4sJ0myx\njvXCxLRMGVJlAAAgAElEQVRByYuYK9UxPuiuO5Ov8kWFmm3mIwq5jeq0ziSiwWGwsWDtQvVFeHMn\nwlyh5cVSRLGZiD5KRB9TPsvvm1ZofKsCeWNMGkWH6e3KUoVR1V8RxbxYiEQ1PXFNo41izUsUg6IU\niHSMj2Z4IbGRTAIL5QbmxEM3MZjEhLIYO8Bfgm2ilhQAHM/xl0DOml579WbUWx0cEN+LtaZjrrp7\n3xyYoibdeP8RPPP62/CJ2/eFul4WFsuJequNV37sLrzwg7c7Gc0AcO+BBefznXvcBNX9syWk4hG8\n9MopHM9VnffpeK6KTaNpTAlH9HRBIQThc1g/lMJMvoZmu4NcpeloFEOpONod5kQxSd+EJAqZE5XW\nynBIjSJtTKxTiEIhB9X0pAfVrAaWIoo/As+V2KF8lt//ePmHtnpwfRR61JPQKDTbk8r+8ag33K3e\n4jP4bFKPhuIaxWDK7/wu1VqIR8l5oEYzcSxWXCf3+EASqXgUmYSbvzFXqmNi0NU0jimaxlg2gads\nHgYAp2bNrhMFtDsML758EgvlhmeRpZvuPwIA+OI9hz3nenShgv/5ufvxg8dtprjF2Uenw/AXtzyG\nv/n6Ls9zd9+BBeyfLWOh3MA3FVPSQ0cWkYhG8LxLxh0HNAAcEtr1JZMDAIDDwll9fLGKzSNpTAwm\nEY0QZvK8FhMnCk4I4wNcq5dVon0mJvH+yO/SeS19EXphv4qoBmuq6aQSgikkth9gJArG2BeW+lvJ\nQa40upXw0H0U6s1OeOq1BNsis4kYKvW2z/TETVKupiGJaiwrNArFdwG4pqpmu4PFShMTAykMp+NI\nxSNOEtDRhQq2jmWwWUvok5rGq562EQDw+DR/0Qq1Jn56PI+RTBzT+ZrzAgDAJ+/cjzv3zOLPv7rT\n8yLXW218+LY9eORoznBFLSxcMMbwbz86iO/t8k44frx/HjfccxifvfsgHjvumozuPTCPWIQwmIw5\nq8YBfBK0bV0GT9k0jH2nSmiISdmhed6+YZg/8/JdOFmoYWo4hWiEMDGQxMlCDeVGm5tzB13NIV9t\noiSIQq43IwnhmPRFiLWupUl5oezXHFRzs8lH4fFF9IHmYMJS4bFfI6JbTX8rOciVRsQQ9WQqP27S\nKBJRhRxUQkhGuY+i1tIScaJco6i7Tm6AP7zFmltxVpYBGcsmsFhuOHbQ8cEEiAjrsklnJb7ZYh2T\ng0mMDySRiEYcn8bBuTIS0QiedcEYAG9GOGPAG57JE/nUXA1ZWvl4rupZU+Om+4/iw7ftxW/dsANt\nxS7HGMOX7j2Mhy2BnJdod4Lv/+17ZvG+r+3Cb9+ww+N3+NF+N5n0rn2uKemJk0VcPDmAq7aNOhMa\ngGsK28ez2L4ui1aHOVWaTxXq2DCcxvphLvxnCjXUmm1UGm0nDH1yKMkXGhLvjgwakb4I+a7JiZzu\ni5AkkIxFRLSi3xehkkZ6jYTBmrCU6ekfAXwQwEEAVQCfFn8lAPuXf2irB8dHobW7zmytXQ1rU258\nwuDkziZiKDdaKAZpFI7vwk35zyg+DcBdfnU0m8BCpekxSfH2uGMb5Q65JCIRwvrhpBPRcSxXxcaR\nFNYPppCIRdzoqTletuAlV/DlHA8JzSNfbeLoQtUprawSyPdF4bTZYt2ppAkA3999Cu/96mN4/Sfv\nQb3lxj8wxvD5Hx30RWFZrE1UGi186LtP4KfHvITwtUdO4L1ffQzXff5+zwTiDqXg5d37XHJ4+EgO\nT9sygk0jaQ8hHJwv44LxLC5bP4B9syUwxsAYw+H5CraNZZwQ8uk8J4RivYXxgQTGs0nEIoTpfM15\nH2RlBJ0QhhRTUqPVcSotyCgmPS9CaghEvKabo1GEKBueMITBqqTRb1jK9HQHY+wOAM9hjL2eMfY1\n8fdrAJ63ckNceUjTk58QgsNj1WKBHo0i5vVXSKQTUXQY0Gh1fDkYlXoLpXoTg6qmkYg6UVL8uyCK\nDA+nlS/BmLK63kK5gVa7g4WKG+I3lkk4msZcsY7JwRQiEcKmkTSOOURRQYSAp2waxkAy5jNVvfwp\nUyCCQwiMMTx0ZBE/eyHXTNQcDln1tt7q4IGDrslgx+FF/NXXduF3v/Sgk7kq9/W3X9+Fv7zlMZ8f\nqNXu2ITBFYRM5FRxaK6Mt3zufvxIEe4A8PkfHcJHf7AP77jxIc99+4GYQOQqTTyikMgDhxbwzO2j\niEbIU1r/0HwZF01k8aSpQWe54HaH4ajIlN44kkaj1cFCuYFivYV6q4P1QymnqObJQs0zaYpECBOD\nSWeJUsBdUGwoHUeh2nTeqUFNc5Cat5yUSc0/KIopk3CJImUoyWFyYHvKc6xF05OCLBFdKL8Q0QXg\nSXjnLEy3y5Rf4dUogokiEQ1+aNQ+mWQMlWYbharX9JRJxJy8i2wi6qioA4rzG4DjGB/NJJCrNLAg\nIq5khNSoMFUBPFpKhv5NipcJ4ElG6waSSMQinEAWvZrGk6aGMDmYdAhkvswdfy++fD0yiagTqw4A\nDx5exDNEEpNHA9ntrup3515X6Dx0NIfP3H0QX7jnMO4/6Ea0dDoMb/z0vXj+B37oiXoBgN3TBdzy\n8HEfsVh0x2yxji/ec8hHCv+14ygu/4tv4+YdRz3tH75tD+7YM4u/+fouT7tcpfHQfMWpjwQAOw4t\nOPd/pwhTZYzh4FwZT940jAvH3fXja802pvM1bF+XxdZ1GUdQz5X4Aj+bRtIOIUzna66/bjCB9bI9\nV/VEBgKu5pCruJGEarvuixjWfBGyXRJDUBRTN82ByCsjTCam1Vq9LgzCjOwPAdxORLcT0R0Afgjg\nncs7rP6Esfy4wc6YDEEgKmlkE1Ewxl+OgaRehbaFos+nIZzfYlbkLJqUTWC+3HC0B7mI0pjQNACu\nUUxITUMlkKIbAbJpNO2YpGRY4KaRtGc51wOzXNO4eHIAW0bd9cDbHW4auGb7KDaNpD0E8vDRRTxt\nywgyiahHA7lHWQpWXRZ254kCHji0iOl8zbOYfbvD8IZP3Yt33vQwblPIBwA+/sN9ePb7v499p0qe\n9sPzZXzktr0oi2sm0ekw7JkprgnCKdaanig1iYeOLOLTdx7wlK0AgH+9Yz9+9u++jz0zRU/7H/2/\nR/Dnt+zEx3/oDYP+7N0HwRjwubsPOm2MMfxI3JPHTxadiUWz3cEjR/N49oXrAMDRECqNFk7ka3jh\nZRMYSsWc9tkSr6a6fV0WF05kcUREEUnBvHUsgw3DKWGCbTrHGR9IOvWVZgo1hxDGB5IYTMaQiEU8\nAR+y3PeQIAT53I9qvohiXfgixCRLmqDk9ZXvVFp3Wse7O63lOx/XCCBmIIq16qMAADDGvg3gEnBy\neAd4lvZ3l3tgqwrD/aIuNaB0JAzRDQkDacj1c+dKdV+CnkMgKW9CT7XZRkHEiQ8Kv8ZQipcIKQr7\n66Di08hVGqi32ijUWopPI+HMlGZLDSemfExtL9YxmIwhnYhi02jGeZHkC75lLOMhluOLVTTaHVw4\nnsW2dRmnHwDsny3j0skBXL5hyEMgDx3J4aIJHtaoaiDSjp2MRfCTI64J45FjOSdGXvV3VBttfOT7\nezGdr+ELPz4EFe/58qP4p9v2+ITjv9yxHy/9pzvxmbsOetrvOzCPq//me/h/2pK0J3JVvPFT9+Ib\nP532tBdrTfzhfz6Mbz7qbW+0OnjPl3+KG0XosUSr3cG7bn4Y7//mbk97u8Pw65+9D6/9xI88M/5W\nu4PXfuLH+IV/vN0J+wS4wH7TZ+7D9d/cjVseOe457oe+uwcnCzV8/kfuuVUbbceEpGYvL5YbePxk\nEal4BI+fLDrP0Il8DbPFOn7pKVMAXEKQ9/kVT93gMSVJAtg+nsVFkwNO9r9MctsqopKkc/iUiK6b\nHEpiSolWcuueJZRyNl4TkyyBo/ocRqTPQUQxFTWtezgdFw7wuqddVlA4pbU7GkXZn2ktf4tpxULl\nO6/7Hkyhr2uSKIjoavmZMVZnjD0i/upBfc4l6BnZEtEupT10mExPpvaMeOA6zNtH5mDMFGua74J/\nPiVmUbJfJsmJRc7GJLmMZRMoN9rOSzDi+DTiWKzwEiFzxbqjtqtEIZ3iADdVyRdV/p8cTGLjSMoh\nkKPODDGLTSMugchZ4gUTWWwdc00MAF8W9pLJQVyxccjjFN87U8SG4RRecNmERwN58JCbgau2P3Is\n54RKPnDINWEtlhuOpqKGZsroLAC46QGvIP/E7fuxUG7go9/f62n/zF0Hcc+BefzlrTs9jtr/fOAo\nvvLQcfzBfz7sEfDfemwaN95/FO/58qMe89nd++bw5Z8cxyfvPOCx1+84tIC79s7hJ0dy+OHjrrb0\n8NEc9p4qod7qeNYjeex43onZv22X2//R43k0hG9HNec9ciyHZpvhqZuHcWC2hKrYdrcwBcny9fI+\nyKCGVz5VhFOLfocEWV02NYiNIymHIA7N8f/bxrKexX3ks7dhOIWp4RSKNe57mxMCeGIg6SbE5b2a\ngzQb5SpN5xquG9BMSXVvwMew8EVUGsK/Z/JFaJqDfO6lxp+IRRCLEMriOnn9D3wbVcsAXI1C1yDO\nNY3i80Q0SkRjpj8An12pgfYDTKU91FmEikQI01MYn4asSDtTqPvCbHl7Del41LGDylmRDBeU5CIj\nOE5q7aOZBNodhkKt5Uk+GsnEUWt2UG20MauZqiqNNmpN3p6KRzCQjGHDcBr5ahO1ZtslkCFeAfdU\nsY5Gq+MQydYxnkV+slBDq90BYwzHF6vYMpbG5lHeLgXw/tkSLpoYwGXrB3F4vuw4tffPljCWTeD5\nl05g76miI5ilwP3VazZj76mS0y61l6u3jmC/IhxnCnVM52uYHExi/2zZmZW2Owz3HeTEcmSh4nG8\n376HC+O5Ut1Z4AZwHbiNVgc/PZb3tQPejGKVBFQn8Z17Z50Jyf0K2cnPE4NJT96KzLK/Ztsodp5w\njysjkd74rC04MFd2BKY0yb32qk3oMF59GHBn/C+7kmsOe2ZKnvanbxnBYDLmmCJl+7YxTUMoitUb\nR1KYGuLtMrkNANZlXUI4qfocBpKO8A9KMk3EIihUmygIDUHNkDZpDvlqE+U6v9dyMiaJYTpf8yS3\nSmGfqzSRiEU8Sbfyt3Q86mmPx/hnNewVcN9nXT6YfRRrkyiG0X2Fu6Zx6zUMU/CBY2EyVJXV4SGE\nMNqF4bMU/POaSSrrEEjN5/wGeJlkwJ1dZZT+gNenAfDa+fVWxyEU6dtYEC+sdH6PKOsBzwoNhK8T\nnPC0A1ygbRhOgTEuPGT75GAKG0fSaHcYZop1zBbrqLc62DKWcdvFOA/O8fDIjSNpdJg7/gOzZWHa\nyjprdgDAnpkixrIJPO+SCbQ7zInYkgTyK9ds8QjHXdNcsP7qNbzW5U6R7MXLuHfwetH+mBDA5XoL\nB+fKePmTuTBVHbWPHc/jxZevF+2uwN55ooAXXDaBWISc4/ExFXHNtlFMDiY9ZrgnTpZw8cQArto6\n4qlXtHu6iM2jaTznonWe/vtnS1iXTeDnL53AofmKM7M+PF9BNhHFz186AcaA/afcQniJWAQ/d/G4\n6MfbD82XEY8Srto6igjB0QSOLFSQiEYwNcQ1AakhnirWEI0Qxgf4fZb3YK5YR4T4JGTDcIqHd4vS\n+kT8mZOa61ypjrlSHVFRcl9dRnRRrDcvn3tVc1AF/HA6jkKNE0UiGnFm+cPpOMqNNvLVJpKxiDOZ\nkkJ/rsQnX1Lwy3ckV214tAbA1TZURzagag4RrT3Y9GQyVa9JjYIxtp0xdiFj7IIl/p61koNdbXRb\np0KHNxEvOL8ijHlKPpi6SSqj2FO9pUC8GoUkBLfda39VZ1fq95GMu0ZGvtrCcNp1igPucq5upri7\nHvhssY5ELILBZGxJAgG4gHfWIR5Oe5aFrTW5P2VqmBML4DrWjy1WsFWpb+X4R3I1bB5NO2t5qMJu\nKBXDVVtHnO0BV3i+XNjfpdDcK4jk2qs2iu98dr33VAmM8az2eJSc8hFzpQYKtRZ+7qJ1WJdNOLkA\nzXYHh+bKuGLDEC6aGPDkCOybLeFi4a9R2/fPlnDJ+gE8aWrI44Q+Mi/KU6wfxHS+5mgIh+f5tZBF\nIaVJ5chCBVvXZd1qw+JaHJorY6sgZfXeH1vk1YkTsQjWD7kF8uSEIBIhbBhx12aYKzYwluU1yaYE\nUXQ6DHNl3h4VIaq8bx1zpQbGMgmHFAA4zma5H9meq/CopMGUK8jVaCW1eoFLIE3PpEl+ni3VfQX7\n+DEansWDJIHUmh1P8T7A9UsYTUzRYEuDLh8MBoi1SRTnM0y3S97IpaKeVKgPSK9aRBiTlHzwTxW9\nmoYsQHiqwGdvUvNw2wUhaDHipxwNhL+oquZQqjcdYlEJJFdpOsQhI0pylYZjqiIip10SCMCJQu3v\nxLkPJJzollmhaQDcdr1RKXjIGMNsieeC6OuNn8xXMTWktvPzPZGrYeNIWiEc3n86X0MmEcWl6wcR\nIZVw+P/Lp4YwmIo5QlMK4e3rsp7ZtTRBXTQ5gC1jrsP/6EIFrQ7DhRPe9nyFC8gLJ7LYPJp2hHi7\nw3BkoYILxnn7YqXpmMkOL3BC2DiScs4JgJN85rTn3WNvHUu7SWni2DOFGjYMpzCQjPFzk+HOJddH\nNaVqCErhvA0KgcyX3YnCxEASjXaHaw7FOtZl3RBVgBPCXKnu8SvI9mKt5Wiy8WgE2UTU0RxUwa9q\nFL72StNXaNPRHLR3RC4YlKs2jYmxukYh33OfiUlGN0X1/sG14aKmiaUlirUFU7VGU1VZ00xAbdeL\nBTqfQ4TNGvMuxENdqrc8sx9pqjpZqGEgEXOiLPy+i7hnP067pmkUak3Umh3Hp+GsxlfxvrCjiqlq\nsdLAqEhukprGoiCQVJwLAre96WTCrssmPOuKO4s4DSYdH8l8iRNUs80wMZj0ZOYCwLQghImBJOJR\ncgT7yUIVG4ZTGErFPXb26Txvj0f5LPq4015DKh7BSCbOQ4IdYuH/N46ksHE47XyXs+xNIylsHEk5\nwloK242i3SE00X/DMCevnCCE+VId7Q7DlJJMNp2volxvIVdpYvNo2qljNJ2vgjFuppsaTvvqG80J\nMh3LJJCIRpSKqQ3nem4YTjnrN6hrMEwNpZwxzpfrTsjp2AAPp+Zk7UbJydDSQpXfz3Vae77aRKHa\nxIjQTIfF/c9XmijWW07OAuDXHNT2nEMIbv+sssbLYMqvOcyX686ESW3PVZpaMhw5762fKCKiXdco\nhIlJkwOSQHyJuwZ50W+FAFVYougBJtNTGOeUqQZUKN+F0t80+wlyfs8W6771MQBXQOkahe781glE\n9pf/S3XviyyJYbHM186QROQ1YTUxmuE1qUYyrkaxqMS56z4QgBPFYCqGCIl2JdpKmrgWKw2U67w0\nyvohnnU+PuBGaE3nak7o5YYRVxM4ka85WsbGEVfwT+er2DicdtYpUHNKMokohtNxbBxJO4QjI3om\nBjmBnMhxIX5K8ctsGE47kT7S4bt+KOXRBE4V3f24hFBzsoInBpLYKNtzNRSqLbQ6DOMDCUwOJrlv\nIVdFSxSLXDfATTqTQ0mnYup82Y1imxhMOlFE88qMfySTcBLV5ooNTz2kVoehIkjNCX5QCCFfbTr3\nUdUcyg13YjGQ4PeTE0LTI+CHnDwHr+AfSsVQrHs1XIBrDq0Ow0Kl4TExyed/rtRwgj8AIBN3+6ga\nAhEhpUQ6qXCd0wYTk0+jCK7kcK45swEAYr3sNxPRX4jvW4nonPZNGJ3ZTngsBbbrCOWjCGFiMpqk\nDH2kLyJfbXpeAtkuBZoTEhgPJgQ12gpws1SlZiLrTzkVNsX/Qo0nB8r9SAGyqJkGhlIxRCOExUoD\n8+UG4lFeITQVj/Ja/krBQynsRjIJRzMB3PpWI1k+08yJvApZqmFEZKl3hBCZGHDLnOSUcibS3DI+\nkHCOOVOoO2aw9UMpR4DPFGvKWsopzBRqghBqSMYiGErFMDWcQq3ZQaHqEsLkUNIhhJP5qnNdJweT\nmBrign8mX1MIxNWWZgo1zJXdc54cctcjUdtj0QhGMzzhUhaqW6dEq+WqTRGx1nEE/0g6gXy16RKL\nYjIqVJsOsch1ouX9zAkNQS/FrWsCpvZIhBxC0Cspq1FMquaQTsRQlc+dhxD458Vyw7cmBMDNnqpG\noZbaSOgCPiY1h2CNQhfocROBxKRGoZuezq3wWIlPAHg2gDeK70UAH1+2EfUxnHUqtHYjURgWH1Ef\niDD+il4/d9M05ssNxCLkbCNnYCc1Qsg4xOJ1crux5k002h1nZpeMRRCNkPsii/ZYlM/4pUCQ7TxS\niudwLJYbjqYBcHMVXxeg6RnTSEYQgizJ4Ji3OIHkhHCUwknuv1hv8TWNM27kVq7K+0otB+BCU8bQ\n5xTz2UgmgbzINeHtbg5Kq8OEhlDH5JA3Amyx0sCpAje3qY79xUrTQyDyOLlq0yWQoZRjnuO5A25N\nr1Q8ilQ8gny16SFTgJt01PZxRRPIKUUk9exlmcmv+hAagjyCVnXLiVUXHULw+LRcAe9xTpt8DpqJ\nKZvkhKBrDplEFNVGG+V6K9g5XfWakkxZ06YV54AwJqZgH4WPQGQR0ZAaxVonip9hjL0dQA0AGGOL\nABLLOqpVhul2SVmv2xxNJVpMN75n7SKET8PbRzVVqaXOXU0jyNcxKwhBagwy5vyk5rtIRHny0Smt\nnYiQictyI01txhcVBNJ0nOUAPDNKacsGXLNHsdZChNwxSULwEwgveCgztWWEluwvy1m7BJIQArCD\nUr3lzJJHsnHkxCyam09cYmm0O6g02shVmm7/tBvRtVBuOLNxVfDLdm5uc4XmQonPfjMJb2SYJMGx\nTAKDqTiI5H68SWYjaa4tzSu5CbzdSxRjWtkKt+6RS7589i4qqWrBDNLHM6gRwkyhhg6Dojm65KgS\nQiIWQToedTQEPWm0Iispa+tNyzpmAxohVJpcI0oFrPci8x/U/UgkYt2LdwLue6g7rc3RTTIMNjhf\nQp9IGn0Ua7woYJOIohDykYgmAJyXZTzljdfXozDdYFM0lEejMBULDFG63LNtCAJRwwB1xzk3AXFB\nkZQlCaIRJGMRNxoqqRBCIuoLvwW4FiIXZVKdk1lR8FC3OTszxEbLIQOALwxTrHHhpYZBSg3Bqfrp\nONLjyCmE4NjHpQYitAdHwAuTVE7rP5pJoNHqoNr0EoIzsxeCdjjjFaZ5nxnG9b8Uam77iNJerLWc\nBXCcWXeV949HCak4vy9DqTjywjwHKIQgzm1R065ckvWW0B4R18jJXpZh0Ok4mm2mZPh7xyTDiNVs\nZ8Cf1eyu2eAlFrnPfLWJeqvjE/xl+bxo0Ur8uWj7tALGeIa/OVopWItQ31NTcAn/jffTTVIJoy8i\n2PTkEoWnua+d1iaEIYqPAvgKgEkiuh7A3QD+7mwcnIjeTUSMiMaVtvcQ0T4ieoKIfvFsHKf3cQW3\nywctLFGEMUmZ/A9xo4bQmxlKJZCIYm5SXwIp+KtNf3kCtYSy7hif0Xwdsn2uVEeHwedsrNRbvhll\nRswoy/WWYxpz270+EIBrEOV6C4VaC0TcIQpwYaf6KFzBH/eE36rtzTZzhJpjknKEYxWtDlMcsmpI\ncMMR+COKiUk1t6maQ6GqtGcVYqk1ndm7NCXx/k2hSZCzr5yYjcci5Mykh9O8vRwg+HPVhq9YpPRF\nSALpVs5CXgu3QJ7XFyVL08tzS8X5Ij7Oc6FNCE4V/e1p8XwxBp8pqdxoo9HqBJqSyo22hxAyCcM7\notZeUgR0NKJENxnyIkwaRVw3MYl2PezVXQAtnEbRz4h168AY+3ciehDAi8CtMq9hjO3usllXENEW\nAC8FcERpuwLAGwBcCWAjgNuI6FLGmL84/iqAnP+6Mzu4f69hs6pKa9QQQjiz5UvQ7rBAtbrR6vja\nM4moU/5A92vIME9Pe9IlkEyiu0BYKnyRr53BsHEk7mmvNvwaiDRJFGtNT+hvRpRcd01PrlDrMDd0\ndkTTBGRZbFXTANz1N1xC4L/PluooN9oewgEEIdSa7uxdseMXak1sGeMJb4NJ14Ff1K6FNCXVmm52\nvNxXrsK1EjWLeCQTx6G5im+dkiHRXyeQ4XTck8E+qGkIJ7SKqfL+yWsnTZdSoM8WAjTNeNSngQLi\nuZCmTa1d+oQ8PoRE1CmlogpyEyGopGEKJ9cFeSIaQbXT9juzTT6K2NKmJx2yNpw/jyK4fx9bnpYs\nCqjWdDoF4EYA/wFgRrSdKf4JwB/Da/K/FsBNogjhQQD7APRNhJXpRppufBiTlLqtSdPwfnYf3lg0\n4pCUSU02hfjp6rZsj0XIoxpnk1HHGectKxJzXnDd3yFt5t5lIXlYY7XZ9q7el+AEUmn4nZPS1zGk\naBQZsWC9LmQz8SiabYZcpYkIucf254jI3BEhBIVwdFY4E/uUs+shx5TE/x8VRe98jl1Rf0gXvjLS\nS/XjSKeySiyAa0rS24eE5mCKDCrVudlO3rfhtFg6t+othCfHIIMWZLusWjxT1KPeRDCDEPx63o0M\nUfaGo8Z8CZ283SUEvTKyNP95nqN4zH3ulGfbtPa0+k6ZFgnSM6JNCXTmqCeTL4J/18WA7ObPowgW\nu6ZipP2ApUxPDwLYIf7PAtgDYK/4/OCZHJSIrgVwnDH2iPbTJgDqainHRFvQPt5GRDuIaMfs7GxQ\nlxWD0fQUwsmtbmqKhjK1q9+N7UYCMUV6ePubXsx0Ioq6qNDqNQ3EXF+HlgS4WG6KfXr7V+otYYsO\nNj2ZSqurJil3vYC6p2ibDJt0ViZLeAlE2v2lfyTttHtnxbL/nDZblkI2X2mg0eo4pBaLRpCKR/hY\nNbKT2hXPRtb8OA1+bmr7QJJfo6DIoLIw2wVFAM2VeBkV+SykHcGvlXbRSmu70W0yH8cr+OU60Xp/\neWzTmg0OIUS9z5GsbuvVZM3+tKB2Ux/vpCzcpCnp+By0dhkGqzGCaZ0ak6naVMKjn2E0PTHGLgAA\nIgpQld4AACAASURBVPo0gK8wxr4pvr8cwGu67ZiIbgMwFfDTnwH4U3Cz02mDMfYpAJ8CgGuuuWaF\nVpvpLaMyjI9C7RNbghBM7XxfflNS3KBRyEqXpkgPU7v+m+lFziZdX4fubNRLN8v9VJrcFp1NeAVL\ntdFGtdHWFqnnM835ckMzbbmEkE74TRW68EorwlT97hCFQyxeITuv+WvcHBS+nyHNL1MSS9iqGkI6\nzs1nnOxi/vZay8nfkO3VpnD4J73nJovtecjUKclS8/mDAJ6IGYsoFVM1zcFHIFoZe2likmSa0a63\njJLzTCziMWdi4dUclIlIPIzgDzY3hck78oWvdnlHdEuBfG91jUK+w36NwpRwZ9Ao+leh6O6jAPCz\njLHfll8YY98iog9024gx9uKgdiJ6CoALADwiZn2bAfxEJPEdB7BF6b5ZtK0wlrYh6gk0Jh+FiSg8\nGoXaX3W2GbbVNQTZS3/Yk4bZkhP6Z5gtmTQT/bNpZpdWM141U5VcL8Frc46hXG+h2WaOgOPtPNO2\nWG95orWksFooN5zkNdkf4IJct3Xz9rpnYRkpNHUCkRm7khBSjglL6y/2GxUCVzdtyW3minUwBl9y\nWLXZCQwJnS83UNE0hJQgzVK97SGiTCKGdodhsdzwzurjroD3rIioaA5BFVNni7yCq9T4dNL0aHzJ\nmJNNr08IGkGEYHI2GyP9ugt+U7uJQHyCX5qeDNq1/v7K7U3RTbrckO+zL5zeIC/6mCdCRT2dIKL3\nEtF28fdnAE503coAxtijjLFJUZ12O7h56WrG2EkAtwJ4AxElxdrclwC4/3SPdbZhupEmoW5qV5tN\nZGKqN6ULfvkQ+kxMRsEfDWw3zq4MznNTeGHKMCv0CArNxNBs87PIapoDwJ3ByYB4+cVKw/OCy/b5\nsrY6oJKZG7R8pS74XeEoZ8sxbf/BZhWTQ9ZpV88tHkGl3kKj1fFlEVcbLdRa3hyBjNQo6v6cAkAQ\nQkLVrryEoI4H4L6FgQACmS/XkYq5azAkojw8VwYI6PetJdYLMd1nU72yMOajXiP6TH0iEXI0CZ0o\nIs55mqKYPM3O9v5qsHJ7zcRkcGb3sy/ChDBE8UYAE+Ahsl8BMAk3S/usgjG2E8DNAHYB+DaAt/dL\nxJMK/UabhDoZrq5KDuZQ3OB23W4qF/cxaQ5+U5LB9ORoINHAdn0RlzBVb70EEmxiMGXOSuHVbLPA\n7HK9mJsz4y/phOBqAh4TlhT8YrYstRaTqSoqQovdSC/vvqRfRk8Cc9q1scowXj3Es9rkC0J5SFC0\n+3wUSjVg3aEM+ElT9uEk69UCAF5aW72X0sQkoc6kVS3PE74doqZZ0pDP432OKLC/5/mKd3/u1N90\n05MU5LrpWB7blCjnW9rU8UV4mo2mJ9M7b5Ij/YAw4bEL4OtlLwuEVqF+vx7A9ct1vHAIdnl0qyqr\nw6RRqP275Wx0O1ab+Wd16vewUU+ORmFwfuumqoRB1Q81WzREsagzPk8ClYFYghKuyo12oOlprtTA\ntnUZ337my7y8hhQWPs1Bs78HR3RFHTOMLuBlnkZS659zNBDvtag02qhrGkU6wSPPctWGV1sSmkOh\n1vL0zyqC3+sn4O1MW9dEPRefCTMeQbEefqIQ5p4bk0ZDPEempFTT/gEu+KtNPyHI7/p76kQxGfqb\nVqzTNQeTM9uE/qWJEERBRD9EgORkjP3Csoyoj+EqmOHiosOYlcx9DGPQfpAPp+nh9Qn4blFSJmIx\nLPMIhHM2emaIBsGkzvi80VbBcfSmmj5BzmxANxfxR7/W7Di5EAAXBql4xMkp8WwTjzrluPXkQ5l3\noZvJ3AgwU7t3rPK4psV0wmTapzxaQHeTjwyz1hfGApaYKBjJIUS0UojS+qFMnkbnt64VRwG0jGtX\n+3wR4qvPOU3BJiy3YgMC23XhaX63g9v7AWGc2f9H+ZwC8DoAreUZTn/DeIO7OL+X3KehPaxGwYmD\n+R5ex3fRo+YQNBsL6t+r78I4+zM4G00CJAyBBPki9G1lFjFj/hXLMokYas0GohHyEFyQ6Up+lkIi\npY1JmgZTcVN78Mw+yC8DhFvQyhyAEGwikv1qzU54X5djxyfPfTOVm+l5zfhQWkrwRMQfGRgs4CVM\nmoMv3NVQkiNq0BxkP7/pqY8ZwYAwpic9Z+JHRNQ3DubVgI8YTKanEKn6vWoUvoeaZP9wmobJad0t\nEc/UPx71JugZZ4hqu8G2HKYGlnEBqIAZOGCuGEpEIhzVG36r9sso+RiAX4sIak9qJqOgsZoql6YN\npJY2mNuMZr4Qwld/LhJRThS+duc+G54LQ/Rc2HGYJg2m++zVTL1akfs5eMavm5jkvdUTqx3fhU/T\nMAStdMm0DssL/UwgYUxPahZ2BMAzAAwv24j6AoYbD6lKalEMPfoZwmwb1h9iiuEmg5osZ1dGE4NB\nAzGFEPqJqPuM0pwQRV37qxVAvYSjmK2WiLBSkYxFgolCfE9p7RlD6K/JHGYkLA8h9EYsPc/MQwhr\n/p2bZ3qdKCyVdxNmnXjTBKJXv4QKo0DXGEF+80++DM7saLCJyQmD9RnoTXJk7SGM6elBcEsGgZuc\nDgJ463IOql9hNj0FI0ztr14d5L5YbcNDbdI03FhwTT3vEg1lip7SX8owM0eTpqGGHYaKelHbDYJF\nhke2OsxY5C1lIMGU1l9un4xFPMLFZA7zag4hNIoQxNJzaKmmsZlqgBnzaLokYi71vKjP3pmYJE3n\npmsOEuZE19766zwku/kyrQ2mJ0ej0Pbbx4qDEWGI4nLGWE1tIKLkMo1nTcIYHnsGT0R4H0Vwu0nT\nkC+Lvnsn9M+wKIsxEU/bT5iX3ZwQFbB/7XOYmXOQua3VaYc3w3Xxy5hqAAFecjGRlzoOU96JqX8o\ngbuU5hAVhfB61RxCmp6ca7SU8zuEg91MDl7iC4KpdI7+Tsmv+n5ck5GugUing77f4OOZ3v5zNY/i\nxwFt95ztgfQXTOGxKzeCsE5u8/Kswf3dAmbB7aayBXq7FAj6OL3VcEMI+Jj64ofQQEK0+0s1GEhQ\nbG9eX0DTuozamEHLMYQBm3IK1PElQzmwDfkIS5Cm44syBTP4+kd9+1f7mUxVca1dPZ5J0zBNCNTr\not5boyYQUqMwTbK6EYgpikk/LBnezXNKoyCiKfCCfGkiugquTBgCkDFtdz5iOe672SRletiDHXWm\nipamdp+mEQ1+O+SLrL80uoBw+6umpO4C3hgGaRDK0Qg5UUwmwa/6N9Qx6UXe5Dn7NBCHWDRzmyRN\n8p6nul/POavtJj+LIbQ4zHVZKqegq3PapF31qIH4JhCx4OfZ48cwPAvq7YmGIArd5yADO6IGn4Z/\nP8Hvjvyq50vIX3yJuIFHO/d8FL8I4DrweksfUtqL4EX9zmH0ZkpajhmCUZ0NqebK734fRReNwqCx\n6A58k73X5GA0F21TXnyVKAyzblXg6LNZAicu08IyukbhFnkz9NfbTRqFaE/FvFFS6jmoGoVKZCoh\nxAwkYCw/b3AcR0RYb7MdvB6Jvh/1u1EDOQ1ntgp9vxLqNfbkF6l1zww10HqusWYwJfW68JiObnkR\na5EYdCxVPfYLAL5ARK9jjP33Co6pb7GSNsfQGoVsjwT3M5UhMK26ZepvXCBeazcSiMfE1H0WGSp6\nSnM2k1ApfBqFIBef4DeYnuSY4tpFNUZ6SWGqjSdm0igMIZ5mrUu9XsHXRS8bL/Nr9DpGp+20Nmlp\nBtLUZ/Wm58JUSVXtH4ZAVJgIxGR6MpmY9HeBOb8Hv4M+05NJLqxB5ljK9PRmxtiXAGwnonfpvzPG\nPhSw2TmNlcyoDKtRdLOD+k1MJpOU3E9wu7+mvqHdEInicUIabNTqC6vWD/Iu7qR+9msUfJ/BGoI/\nd0BoCAYNRDeXxJ1Zd7CmYXL4AmZ/jemzNwLMoFEYyMQ0BvW7L7HSoDmYHP6mMGtp3tFHYyKEMLkJ\nPWsORlIKZ6oy9ZePuk9772JpCE0gfYylTE9Z8X9gJQZi4UVYjeJstXfTHMKWJwjjSPQscu8Jj1Xb\ng80N6nUxzQT1maMU4Kb1CEyhwjoRSULwtfdqbjGYUvQ1nfXx6Ptcav0SaUfXycutmGoQ/CHDpo1h\n1qbnIvhSmIX6EvdZotd1YHzPi9Pf20++A752BDNFr2L/nHJmM8Y+Kf7/1coNp79xJqU6ej6WcRYV\nrt0ciRHc362dH6w5mJZz1IklTKy6+oJ7CMTgzA4dKiy8FLopyRH8BvOJ0fRk1EyCNQ1duzJdC5Uc\nowYSMCUfqoJcJU1dE5DErgcXmEq7yOP1Sgg6TAXyjCYm03rTqs+lx1yjnjUN3cQkxh42vN0YTut8\nDSaotYQwmdkTAH4bwHa1P2PsN5dvWKuN3sJjl0OV7HWdip41CoMN2Sj4Dcs5mkxSOsIkR5lm2sa4\neENYii7I5TH8JiYK7G9yfrump2ChqWtdutB19qPs12SGixnI1BxV5m2XtaR0DcGkaRhDfw1BDlKQ\nm8hRvxbdiEWH10cR2MVcnVm7RHIo+hjkGP1RUkuPTYcxsa7HoJh+RpiEu1sA3AXgNgB9tzbESsJ0\ne1fSR2EK2TPZQfWXxhTpYTIxRQztcoboNzH0Rlgmc0s4p2XwTM3kuzBqFD5CEEJTt9dL05MeHmvU\nKExCPfjcYtHg81fHYYwqMxCI3t5xaoBpEwWxX1NlVP1Uupsqw00gzKX4gycNKkwCV+8vx+IjBPH0\n+p3WQqPQ9uv6KPTnbmlLwxrkBR/CEEWGMfYnyz6SvkJvd3Y5noNeZyNhNQpzkhF5fpdwbc4Gs4op\nGkqD0SR1GoTg9PeZDMSxDNpLWFOSFPAmJ7ffvyOIQmNTk4PZlF1sjAAzhMcGja1buxy7qQaYKRrO\nFGZtIkf9WpyJRtGr6UkfqxyKPgZXc0Bge9jgFYdYfO+UYfvg5r6GQan34OtE9EvLPpK1gJAP5lk5\nVEiNwm3vjVh0IjLt17RKVzefhmk/S7X3WotH7+7OloPt8qb1CEwagimcVr8WkhD87d01CnVIsRCa\nRhgHuQrzhEC//xTY3xQl55qYDD4tw/PiG7fJR2HQLk19lmqXpOVrd5zWukbBYarIbNY0vJDvmK99\nDTJFGKJ4JzhZVImoQERFIios98D6EcZZ/jIcq/coJu93o+Yg/usCvhvRmDQNUzSUb3whZo7GEMqQ\n+5RCy2+LFu2akJXnZpp1+5ziJue06NdmukbRfZavCqOYwXdh8t2oMJVw8WsCsh3B/bWnOWbQohwT\nUweB7f7gh3BaoUSYyVevpid/uGuw6anTjRB6fOHP9fBYAABjbHAlBrIWsJJ5FGGP1c0OajI9mdbx\n1XdjVu+D23s2PYWwRYfVouQp6QJaCjPdFGReHVD01w5sMtv06sA35jyoJilDxnJYTTMaIXTazJ/P\n4GgOwedg0hx0yHadHE2aRq8abxh0WwdCouOYmEJqJg4hGDQN6M9RcH/3nTLM1tYQwkQ9XR3QnAdw\nmDF2Xq50p2M5TE/hNYpgU4LbX+vdo+bgqs/BQlPfW6/mI89sucey0b732+CjcGeUwY5dn+B3CCE4\nVFQfTq++FaPPRTU9Ge9TYHOAkCIAzH8sg4nJ0UANJOgT/F20PJ/pqcdJQBh0M5dKuJqmHgHG//t9\nDqJd22+v/U2nthZNT2Gc2Z8AcDWAR8X3pwB4DMAwEf0eY+y7yzW4fsNK3t9eZ/K9zth000C3KCu/\nqcJALCEIwbOfED6KsKYnIv4ymwok6pYgk10+YiCEiHG2LI7jG3fgsEOVnjDPlnsTuGaHqmnCEW57\npwaY4Vr4+ptCnM9AaoYlYpPT2pkoGHwRpjGbEFbbX4M8EcpHcQLAVYyxZzDGngHg6QAOAHgJgA8s\n5+D6DeS8HCt3LB29raVtDiENO+PrtRCi6SUwzUDDjCF0RJdhbPKrf3Yd3G5aiMZp1+zy5lLvp38+\nJtI0zlINSV29LrWr7ydqeOaNJCj7h/aBBe8nDMw5Qt7vJo1SjtDk5A7rk/RXk/X2XIvEoCMMUVzK\nGNspvzDGdgF4EmPswPINqz/RDzfcNGs5U9XeKOC7aRoGk5Rv/yHGYdY6gvub1kA2+WVCC3JjjgD/\nHzZHIGyyY1D/XvdpvL5hSdNpD3c8t6qw1m40PRmGtww+Cn3MMvnQHx4bnIHtRj1Baw8mBLc1+LnT\nca4m3O0kon8BcJP4/noAu8Qqd81lG1kfYzXvc1hB0U0g9Ho8n6HC4P3u1TSmwuSjCGuvjxDPCDUu\n7qRvbxibqQyFa27RjhsJ3n+vSWZq/541uR6ve9gJh/zqN1V2PwftCIbxGbqHgNFHYTA9mU1SwQSi\ng5kYxABXww3W9tYSwmgU1wHYB+APxN8B0dYE8MLlGlg/oh8mAmdaOx/Oi+99GUwRHUT6B89uAqKk\nejOZqAiTpevpr/sonKxz7dgGIWjys7imp+Dj+XJHztBM2K1dhVkM93qssOTbRaMwaA7hfWCn/1KF\nNc+64dHBmoOPWAz7Nzmtex1fP8iRXhEmPLYK4IPiT0fprI+oL2Co9YTgl2MlYXrGTDNB//ZLP6W9\nCopenZ9L4YyrhEolx0BqoQmkS4in0b+jE06P53MmuQMm85yJ+MPeJ3NIaZftQ/vAgvdzJtCvRdvx\nUQRrDr4xOBqI3h7c3xQN1Sup9zPChMdeAuD9AK4AkJLtjLELl3Fc/Yk+uL9nK8wwLNn1btI4fYEQ\nNrtYQhdWZkIgz39/u7Zf06zYGCrqPX7XcZ/RLNrQ3qNGEfY+ddv+TGt9nalpNMw+HROTT9MQ7YZw\nWl++hPgf1sndq5mwnxHG9PR5AP8CoAVuaroBwJeWc1Crj95m3SsJMghH05h0M0mvYzf7KOTxdXNO\n8H7CHLfX8h8m04DfxBQ8BoMiYC6VbTJJnYHTuleYNcreNjBl7JtCi8PnRfQ2UViOdynsc2QsCthj\nraduFoi1SAw6whBFmjH2fQDEGDvMGHsfgFcs77D6E45WvYqmp7ARPT3KDeM5dTMx+dVt02zrDMwq\nJh9FSKHUjUCMmoOvPIXof6aVUXuMz1cRVhMwmdWcMYTUTN1u+jkHj8+Nhgo3QVkJjULC56MwFQXs\nUj1Wx+mW9lhLCBP1VCeiCIC9RPS/ARzHebrqXT88B706Bc0Pt+7M7q0C5nI4ak0ILey6RLeEHYNJ\n2Ml2XaPoVmhPR9h1DoLHZvolnDmkW7s/aKGLNneGocLL8U6drWgov8ZqIBDxP+zCZmuRUMIWBcwA\neAeAZwD4dQBvWc5B9Sv6If6514Q7Hd21IoPGYtiP7yhGdf30r53ZKWw6Vo/tXb7r4zDlUfjs+8uQ\njdxzdFOvjnMWrAn4ckq6PIdnaqo6E4Q2PRmLAvL/Z2ouM+VdnJPObMbYA+JjCcBvLO9w+hv9eHtN\nCxFJ+Ir/9XgW3bKOw2cj93TYUNv6iwIabM7iv79sdPB+u4UK+53fvWkOZyQceyRiEwmaTExhrapd\nE+58/YP3sxxzL2NVWZ+PIrgdZ9n0ZAw5X0MwEgUR3brUhoyxV5/94Vh0Q68Jdyb0KhB8x+u1/xlF\n+oSdIRrGYJg5Kgfopdn44uuEsbKk6f3uOlLD3Y+eJxDdSnj4NJOz/1z0ClN0k2kpVHPGtsEkFfzY\n+bAGeWJJjeLZAI4CuBHAfVib53dW0Q8zgZ59FNr3kBaHrv0du7zeHtx9WWB2Wgf319v///bOPNqO\notrD3y83MyEJmSdCAkkwA0TkJkxhDiCDIJMgU4IiSxkVUUFcGmVFEcWBpz5lElARUQYRGQQkDkRk\nJiTwkCg4IA8eyCAKwYT9/ug6N+ee7j6nO/fMd39r3XX77K7u2tV9Tu2qXVW70oxl+g+8fOlK9Rk1\nZAA3nbqA4YP7lehRfaMZn8pZMI7J9+l5aJeCQeguzxLwsFGkRY9N+17E5BVaV1nHKFqRcoZiHFHg\nv/cCRwE/B35YHPept9EMvsWslUylZHlnbpXerutHVOqXr2cLMeZKqhC7p7Qy7Qr+lkysKBWL1j1B\nRx8xZ+KwyvfNQWZdu+TVcX9lNQhpLqymGN+LzW4K8tgYRcpCvEDWnkNqqMAmeBZ5SR3MNrN1Znar\nmS0CticK47EszHxyGkTeGRTpkS27kxY2Oj3f5B5FPW1p2lhEWkswXreVrxBK6bKNPSxjTyqK7K5H\nhfQpeefsWcb1COlTtsLNGhSwnsR7FBVWWqf00krpksbukzzW0QSPIjdlB7ND4L/9iXoVU4ALgetr\nr5aTRtb9JSpNlyz90hd2XXtzXffFA+nrK5L1qWeFkH91eFqPIluF0HWf2H3LJq8qeacrx3tRyeM1\necuQf21L46vHtAZE2grstHmwmcOPF+Q9fNbNQLnB7CuBOcDNwGfNbGXdtGpSWvEFx0jxLffvG7W2\n1q7L1wOJ375+Dyl9+mmyPPO0xpSaIuv4QCPIO5Uz8xhFSs8hbYwi78ZK9SRzOPG0PbMrpE/Nt4Ie\nrUC5dRTHANOJ1lEsl/Rq+PunpFd7mrGkUyX9j6RVks4vkp8tabWkJyTt09N82p2uHkJaaOSU9KUU\nuuX/KelRDOrXAcC/1qxLzj82RpGmafVJX1iXNrCb0qPIWMk2w88760ystPTrXYYZx7pIcyWl9Chq\nMSW4RqT1rgrEvy/JBqRA1unXrUhqj8LMehBooDySdgcOAuaa2RpJY4J8FnAkMBuYANwhaYaZJddS\nTuaQDqWUfocH9oted+kPffzwKA7k28ZtnHiffiXxD+o6mF1hQLVApZXZaS3HrNSzDsy/Ir42Lfyu\nnkbGhXil4TOagfU72ZXK8w1md8nTMmq+oucmSwiPWvAh4DwzWwNgZs8H+UHA1UH+lKTVwHzgd41R\ns/nZYswQnnn5dQb07egmXzBtFLc/9hxTRm7UTf6uuRP4+p1PcuDc8d3ku205hpN224L3L5jaTT5q\nyAB+ftoCNh/VPWrLmrVRz2PqqO73rye5/fUpPY3U+6fl18DWcd7KKO9sqKyTH1LVSGle9k8LDlWG\nX31sNzYaEK+iLjp220T9F+84hUefeSUm32naSO5e/WJMPmPsEO57+iX69e2uW6EXnTadtpT0R9Y+\nXYpGGYoZwM6SlgJvAGeGFeATgXuK0v0tyGJIOhE4EWDy5MlVVW70kAEAdG62STd5oQW7cNbYxOu2\nmzoiJuvoI2ZPGBqT7zN7LK+tWRuTf/HQrVj5TNyzd8vpO3Pf0/+Iyb9x1DY89JeXGb3xgG7y43bY\njH3njGPM0IHd5NPGDOHp8+IxHTv6iI+/823xQgGzJ8SneG4xeiM+tf9MDt6m++tp5PTYNB3yRwNN\nSdcE8+Tz76VeMs7SdR8S5fEMo3+pa05KPm/IYPZ3F89LNAibjUxuhOw9e1yifMmBsxPlly2ex+tv\nxp0SFx/XycpnXmVISd7nHbo1V/7uz7Hf8/t3nsoDf3mJQ98xqZt8u82jdEdv170eGr1x9Ns7an5y\n/XTA1uMT5VNGDk6UN5KaGQpJdxCtxSjlnJDvCKJpt/OAayTl2t/CzC4CLgLo7OysqumePHIwd5yx\nS6w13q+jD8vP2oORQ/rHrnl0yd6xVj3AHz+/X2Ie3zm2M1F+xLzJHDEvLp85figzx8cNztCB/dh1\nxuiYXFLMSFQTSZywc/yVNaMbJm2+fGpLsMIU4UZ6ErK6zwq61mJnuXJsSMDD3d82pgaarGdA347E\n3+bwwf1ZMH1UTD5qyADO2GtGTD5+2CCuP2mnRHlS42vYoH6JcoBHPrM3G/WP63TfOQsZnCC/95N7\n0ncDemXVomaGwswWpp2T9CHgOov6ufdKegsYRRSZdtOipJOCrO5MG5Psk58wfFCifOOB/RLlvY1C\nBVQPl1TegHfplWy22TCkyOs56yn/Arra9ILyuv2c7gwblFxflHoGCtSy0ZeFRrmebgB2B+6SNAPo\nD7wA3AhcJekrRIPZ04F7G6SjswF09BEXH9fJ3Elxd1W9SJu+mLZAr5S0+fXps11yKlgDejoNtkDe\nsCalYxrl8rvqhO0Yn9LQcpqbRhmKy4DLJK0E3gQWhd7FKknXAI8R7ah3ss94aj32ShnDqRe5W7VZ\nxy6awCCkUXHfiErXp64RyZdfOdfTjtPibh6nNWiIoTCzN4nWaSSdWwosra9GTr0Y0Lf2ftbMYclz\nx7vKV5nWk7TZRtVa11JphliXHuEZTxvTK/c2a1sa1aNweiHXnbQj44fV3teatvApdaOjks95V9o2\nA3lb/mlkXWldrqNy9YnbM90NRVvhhsKpG++YvEnlRFUgPuupsKK2OusomjF2T+ZpsCkL5dLoujzH\nGoLtNx+Z7eZOy9C4+VaOUyPyupjSYgDF0qXfIYtaNSU2gJ8ir0RWb9xG/aM25mZNOOffqT7eo3Aa\nzs9OWcDgAfG54xtK1lDclVrJeQd4G0lP96TOa1AmjxzMpYs6mZ+wyNRpP9xQOA1nqypPpc0ai8dS\n5On3bfzK7KwUVIq7pKLPeUN1JKXec2ZjZ7c59cNdT07bkeaGKSVt45qs920msi4OzDp7qcCAECxy\nUMJqYaf34D0Kp2m56oTteGNt/mU0Wd0tqfsLpKVPiRnVDPYjs7utS54tKOC+c8Zzxl7/4vidpvRE\nPafFcUPhNC0bukArdR+BvOvwMob8aAayTo/N63rq6CNO23N6T1Rz2gB3PTltR1pQwNLqNHUrzLRN\noFKDBTbecMS3NlWQZ7u+GY2f0zy4oXBajqO3m8zEMjGD8lbcWXsO+afN1o+8LqZS3r3NBKD2kVyd\n1sRdT07LsfTgrfJdkDK2UMn5kjMga0PJGzG3tOxbTxqeGhLbcbxH4bQ9eafB5o4B1YSGo0DMgDSx\nrk7z4obCaXvWD2ZnG4so0EIdilRK7URhS9JWKoPTeNz15LQNN526gLtXv5D7uqx+/DS70koDwV8+\nfC6X3f0U86b4imonO24onLZhzsRhzJkYX+Wd5npK3wc6eTptmryVGDdsIJ/cb2aj1XBaDHc9c/dt\nPQAADkdJREFUOW1P2kK5AvEw44X0tYmTVA+aUCWnhXFD4fQaYi6inIPWudM7TpvghsJpe75wyFbM\nHD+UcSmbJuWeNtsC7fWvHvF25k4a1hUO3HF6gn+LnLZnp2mjuOX0nWPyvBsXdclTNgNqJhbOGsvC\nBu9d7rQP3qNwej1ZewjueXJ6K24onF5L2nRXS5kmlTo9thm7FI5TRdxQOL2WtNlQaXtsF8i694Pj\ntAs+RuH0Ws7ZfyZr33qL3bfsWSC8gn3IG/qjGly6qJPfPJl/kaHj5MENhdNr2XTEYC5ZNC8mT3VJ\npfQ0GtmT2HPmWN+S1Kk57npynBRiLqkKC/ccp11xQ+E4PaQV1lU4Tk9wQ+E4JXRFm22wHo7TLLih\ncJyMpO5w5xbFaXPcUDhOCftvHW0LevA2E3NdV0uDsXjHKcyf6qHBncbgs54cp4SpozZK3BY0baOj\nekyPXXLg7Nrd3HEq4D0Kx8lI14Jt9zU5vQw3FI6TEzcTTm/DDYXjOI5TFjcUjlMl3CPltCtuKBwn\nK74y2+mluKFwnIysj/XkOL0LNxSOk5FNBvcHYOqoIYnnGxE91nHqga+jcJyMbDN5E65833y233xk\nzfK486O7eo/FaToa0qOQ9HZJ90h6WNL9kuYXnTtb0mpJT0japxH6OU4au8wYTf++yT+baoxdbDF6\nCJuPTu6xOE6jaFSP4nzgs2Z2i6T9wufdJM0CjgRmAxOAOyTNMLN1DdLTcRyn19OoMQoDhobjYcDf\nw/FBwNVmtsbMngJWA/MTrnccx3HqRKN6FB8GbpP0ZSJjtWOQTwTuKUr3tyCLIelE4ESAyZMn105T\nx3GcXk7NDIWkO4BxCafOAfYEPmJm10p6D3ApsDDP/c3sIuAigM7OTp9v4jiOUyNqZijMLLXil3Ql\ncHr4+GPgknD8DLBpUdJJQeY4TY9Pj3XalUaNUfwd2DUc7wE8GY5vBI6UNEDSVGA6cG8D9HMcx3EC\njRqj+ADwdUl9gTcIYw1mtkrSNcBjwFrgZJ/x5LQKHtrDaVcaYijM7LfAtinnlgJL66uR4ziOk4aH\n8HAcx3HK4obCcRzHKYsbCsdxHKcsbigcp4cU9tAe2M9/Tk574tFjHaeHjN54AB/bZ0sO2Hp85msu\nOHwuEzcZVEOtHKd6uKFwnCpw8u7TcqU/dNtJNdLEcaqP95Udx3GcsrihcBzHccrihsJxHMcpixsK\nx3EcpyxuKBzHcZyyuKFwHMdxyuKGwnEcxymLGwrHcRynLLI22JZL0v8Bf260HhvAKOCFRitRZ7zM\nvQMvc2uwmZmNrpSoLQxFqyLpfjPrbLQe9cTL3DvwMrcX7npyHMdxyuKGwnEcxymLG4rGclGjFWgA\nXubegZe5jfAxCsdxHKcs3qNwHMdxyuKGwnEcxymLG4o6ImmEpNslPRn+b1ImbYekhyTdVE8dq02W\nMkvaVNJdkh6TtErS6Y3QtSdIeqekJyStlnRWwnlJujCcXyHpHY3Qs5pkKPPRoayPSlouaW4j9Kwm\nlcpclG6epLWSDqunfrXCDUV9OQu408ymA3eGz2mcDjxeF61qS5YyrwU+amazgO2BkyXNqqOOPUJS\nB/BNYF9gFvDeBP33BaaHvxOB/66rklUmY5mfAnY1s62Ac2nxwd6MZS6k+yLwi/pqWDvcUNSXg4Ar\nwvEVwLuTEkmaBOwPXFInvWpJxTKb2bNm9mA4/ieRgZxYNw17znxgtZn9yczeBK4mKncxBwFXWsQ9\nwHBJ2TfZbj4qltnMlpvZS+HjPUCr7/+a5T0DnApcCzxfT+VqiRuK+jLWzJ4Nx/8LjE1J9zXg48Bb\nddGqtmQtMwCSpgDbAL+vrVpVZSLw16LPfyNu6LKkaSXyluf9wC011aj2VCyzpInAwbR4j7GUvo1W\noN2QdAcwLuHUOcUfzMwkxeYmSzoAeN7MHpC0W220rC49LXPRfYYQtcQ+bGavVldLp1FI2p3IUCxo\ntC514GvAJ8zsLUmN1qVquKGoMma2MO2cpOckjTezZ4PbIalruhNwoKT9gIHAUEnfN7NjaqRyj6lC\nmZHUj8hI/MDMrquRqrXiGWDTos+TgixvmlYiU3kkbU3kQt3XzF6sk261IkuZO4Grg5EYBewnaa2Z\n3VAfFWuDu57qy43AonC8CPhpaQIzO9vMJpnZFOBI4JfNbCQyULHMin5VlwKPm9lX6qhbtbgPmC5p\nqqT+RO/txpI0NwLHhdlP2wOvFLnkWpGKZZY0GbgOONbM/tAAHatNxTKb2VQzmxJ+vz8BTmp1IwFu\nKOrNecBekp4EFobPSJog6eaGalY7spR5J+BYYA9JD4e//Rqjbn7MbC1wCnAb0UD8NWa2StIHJX0w\nJLsZ+BOwGrgYOKkhylaJjGX+NDAS+FZ4p/c3SN2qkLHMbYmH8HAcx3HK4j0Kx3EcpyxuKBzHcZyy\nuKFwHMdxyuKGwnEcxymLGwrHcRynLG4oWhxJJumCos9nSlpSZx0uL0TJlHRJTwP6SZoiaWXKuS+F\nCLNf6kkezUR4fk9Vc4pl8TvpjUhaLOkbFdIcEaLAtnSE5nrgK7NbnzXAIZK+YGYv5L1YUt8wP7wq\nmNkJ1bpXCicCI8xsXbGw2uVoAB8zs580WolqIqmj9D01E2b2I0nPAWc2Wpdmx3sUrc9aovDNHyk9\nEVrmvwx7AtwZVsoWWpvflvR74HxJSyRdIek3kv4s6RBJ54d9BG4N4TWQ9GlJ90laKekiJQSzkbRM\nUqekA4sWzz0h6alwfltJv5L0gKTbChFUg/wRSY8AJycVVNKNwBDggdAaLC3HRpIuk3Svor08DgrX\nDZJ0taTHJV0v6feSOsO514ruf5iky8PxaEnXhvLeJ2mnIF8S8lgm6U+STiu6/rjwrB+R9D1JG4ee\nQuH5DS3+nIaksUHPR8LfjpI+J+nDRWmWKuzbIekT4V09Ium8hPulPfPTFO0BskLS1QnXLZb001DW\nJyV9pujcMeE5PyzpO4pCayPpNUkXhPe4Q8n9YvlJmi/pd+F9LZe0ZVHeNyjaw+RpSadIOiOku0fS\niJBumaSvBz1WSpqfUI7Ed+nkwMz8r4X/gNeAocDTwDCi1tGScO5nwKJw/D7ghnB8OXAT0BE+LwF+\nC/QD5gL/JorNA3A98O5wPKIo3+8B7yq632HheBnQWaLjNUSVfz9gOTA6yI8ALgvHK4BdwvGXgJVp\n5S06Li3H54FjwvFw4A/ARsAZRflsTWRcOxPudxhweTi+ClgQjicThRcpPKvlwACiWD4vhnLNDvmN\nKn5WwHeLnt+JwAUJZep6fuHzj4gCIwJ0hPc6BXgwyPoAfyRa9bxv0GdwSb6Xh/KUe+Z/BwYUnleC\nXouBZ0M+g4CVRLGMZhJ9t/qFdN8CjgvHBrwn5d3F8iP67vYNxwuBa4vyXg1sDIwGXgE+GM59tej5\nLAMuDse7EL434fpvlHuX4fNuwE2N/h03+5+7ntoAM3tV0pXAacDrRad2AA4Jx98Dzi8692Pr7ha4\nxcz+I+lRosrp1iB/lKiSAthd0seBwcAIYBVRhZFKSP+6mX1T0hxgDnB76Ix0AM9KGk5Ucfy6SNd9\nMxW+ezn2JgqoWHAlDCSqGHYBLgQwsxWSVmS470JgltZ3moYqim4L8HMzWwOskfQ8Uej0PYIuL4R8\n/hHSXkIUMv4G4HjgAxny3gM4LtxnHVEl+YqkFyVtE/J7yMxelLQQ+K6Z/bsk3wJbkvDMw7kVwA8k\n3RD0S+J2C8H8JF1HFAF2LbAtcF+45yDWB3tcRxTcMYmk/IYBV0iaTmRkintbd1m0P8k/Jb3C+u/a\no0QGv8APQ9l/HXptw0vyTXyXZvYaTibcULQPXwMeJGrBZuFfJZ/XAFgUHvk/FppbRHti9JU0kKjl\n2Glmf1U0YD6wXAahEjucqKIGELDKzEpdEqU/7DwUl0PAoWb2RMn9y11fHMOmuDx9gO3N7I2Ee60p\nEq2jzO/IzO5W5ALcjajnkzhIn5FLiFrK44DLMl6T+MwD+xO9m3cB50jayuLjPKUxfizc8wozOzvh\nnm9Y+rhELD+ine/uMrODFe1FsqwoffFzfqvo81t0f+ZJOhaT+C6d7PgYRZsQWpLXEMX9L7CcKMIl\nwNHAb3qQRaESfSG0rMvOqJG0GdG2kYebWaGX8wQwWtIOIU0/SbPN7GXgZUmF/QqO3kAdbwNOVajN\nQ+sb4NfAUUE2h+6t0eckzZTUh2jDmQK/INqprFCet1fI+5fA4ZJGhvQjis5dSeT+yGrE7wQ+FO7T\nIWlYkF8PvBOYR1RWgNuB4yUNTsgXUp55KO+mZnYX8Amilv0Q4uylaN/zQUS7E94d9DtM0phCnuF9\np1Imv2GsD9W9uPxjSeWIkMcCoqi8r5Scz/sunRLcULQXFxD5zQucSlSJrCCKznr6ht44VOYXE/mp\nbyMKuVyOxUS+7RvCQOPNFm0feRjwxTDY+TCwY0h/PPBNSQ8TtVg3hHOJXBcrJK0KnyHabWyIpMeB\nzwEPFF1zFtE4x3LWu2QgcuN1hoHXx4CyU1fNbBWwFPhVKFtxuPQfAJsQXCQZOJ3Izfdo0HVWyONN\n4C6iqKXrguxWolDX94dn120GT5ln3gF8P+TxEHBheMel3EvkSlpBNH5wv5k9BnwK+EX4bt0OVNrW\nNS2/84EvSHqIDfdwvBGu/zbdG0oFcr1LJ45Hj3V6HZKWAWeaWV3CXitaz3CQmR2bcv5yogHVstNj\nQ6v8QaJe2pNVVzSe32IiV+Mptc5rQ+npuwwuwTPN7IBq6tVueI/CcWqIpP8i2oPj3DLJXgHOVZkF\nd4oWMa4G7qyHkegNSDqCaNztpUbr0ux4j8JxHMcpi/coHMdxnLK4oXAcx3HK4obCcRzHKYsbCsdx\nHKcsbigcx3Gcsvw/9zNZB2vXBA8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(uniform_window,nfft ) / (len(uniform_window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Uniform window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parzen Window" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N, window_type='parzen')" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8lfX5//HXlQ0kECBhZLOX7DAUUNyioNYJbmu1fh21\nw7b2Z1s7vv12WrVVa6l7AnUhuLUCIjLC3hBCyGKEEQgJ2dfvj3Ogh0iSk5CT+4zr+Xich+e+z33u\n874xOVc+9+e+Px9RVYwxxhiAMKcDGGOM8R9WFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCVYUjDHG\nnGBFwZg2JiKTRGTrabxfRaRva2Yy5jgrCsZviUiuiBwTkaMisldEXhSRWKdznS5V/VJVBzidw5hT\nsaJg/N00VY0FRgGZwM+buwMRiWj1VMYEKSsKJiCoaiHwIXAGgIjcLiKbRaRURHJE5LvHtxWRySJS\nICI/FZE9wAsiMs/d4jj+qBOR29zbDxSRT0XkoIhsFZHrPPb1oog8JSLvuz9rmYj0OVVGEXlJRH7k\nfp7sPs1zr3u5j3v/YcfzebwvV0QeFJF1InJYRGaLSIzH6z8Wkd0iUiQi3673mZ1E5GURKRaRXSLy\ncxEJc7+2S0RGu5/f6M4zxL18h4i8ezr/T0xwsqJgAoKIpAKXAqvdq/YBU4GOwO3AYyIyyuMtPYAu\nQDpwl6pOU9VYd6vjWmAP8LmIdAA+BV4HugHTgadFZLDHvqYDvwY6A9nA7xqIuRCY7H5+DpADnO2x\n/KWq1jXw3uuAS4BewDDgNvdxXwI8CFwI9AMuqPe+vwOdgN7uz7jF/e/hTZ6FDWQxIcyKgvF374pI\nCbAY15fY/wGo6vuqukNdFgKfAJM83lcHPKKqlap67PhKEekPvARcp6r5uApLrqq+oKo1qroaeAtX\n4TjuHVVdrqo1wGvAiAayLgQmuv9SPxv4EzDB/VpTX8J/U9UiVT0IzPP4jOuAF1R1g6qWAb/yOJZw\nXAXrZ6paqqq5wKPAzR55znE/nwT83mPZioI5JSsKxt9dqarxqpquqvcc/4IXkSkistR9SqYEVysi\nweN9xapa4bkjEekEzAV+rqqL3avTgXEiUnL8AdyIq6Vx3B6P5+XAKTu7VXUHUIbrC30SMB8oEpEB\nNP0l3NBnJAH5Hq/t8nieAETWW7cLSHY/XwhMEpGeQDgwB5ggIhm4WhdrGsljQpR1wJmAIyLRuP6a\nvwWYq6rV7vPj4rGZ1ntPGK5TRF+o6kyPl/KBhap6YSvFWwhcA0SpaqGILARuxXXqqSVfwruBVI/l\nNI/n+4FqXIVtk8frhQCqmi0i5cD9wCJVPeLuY7kLWNzIqSwTwqylYAJRFBANFAM1IjIFuKiJ9/wO\n6AA8UG/9fKC/iNwsIpHuxxgRGdTCbAuB+4BF7uUF7uXFqlrbgv3NAW4TkcEi0h545PgL7v3NAX4n\nInEikg78EHj1FHmOt1IW1Fs25iRWFEzAUdVS4Hu4vhAPATcA7zXxthnAeOCQxxVIN7r3dRGuc/NF\nuE7j/BFX0WmJhUAc/y0Ki4H2HsvNoqofAo8D/8HVyf2fepvcj+uUVY77s14Hnm8kT/1lY04iNsmO\nMcaY46ylYIwx5gQrCsYYY06womCMMeYEKwrGGGNOCLj7FBISEjQjI8PpGMYYE1BWrly5X1UTm9ou\n4IpCRkYGWVlZTscwxpiAIiK7mt7KTh8ZY4zxYEXBGGPMCVYUjDHGnGBFwRhjzAlWFIwxxpzgs6Ig\nIs+LyD4R2dDA6yIifxORbPc0hKNOtZ0xxpi248uWwou4phdsyBRc0wv2wzW++z98mMUYY4wXfHaf\ngqoucs/w1JArgJfVNUzrUhGJF5GeqrrbV5mM8QVVpehwBTnFR8kpLqOiupZeCR3ondiBtC4diIqw\ns7QmcDh581oyJ08zWOBe942iICJ34WpNkJaWVv9lYxxRVlnDv7PyeXFJLrkHyk+5TVxMBNPHpHLr\nWRmkdG7fxgmNab6AuKPZPX3iTIDMzEybAMI4qrq2jqe/2MGzi3MorahhVFo8d0zqTd/EWPokdiA6\nMpzc/WXk7D/K55v38fxXuTz/VS6XDe3JL6cNJiG2pfP3GON7ThaFQk6eezbFvc4Yv7XrQBkPzFrD\nmvwSLhnSg++e05uRaZ2/sd3w1HiGp8bzrZEpFJUc46UlubywJJclO/bz52uHc+6Abg6kN6ZpTp7s\nfA+4xX0V0njgsPUnGH82d00hlz7xJTnFR3nyhpE8c/PoUxaE+pLi2/GzSwcx776JdO0Qze0vrODX\n8zZSU1vXBqmNaR6ftRRE5A1gMpAgIgW4JhyPBFDVZ4APgEtxzTtbDtzuqyzGnK6XluTyyHsbGZvR\nhcemjyA5vl2z9zGgRxxz75vAHz7cwgtf5bLncAVPTB9pHdHGr/jy6qMZTbyuwL2++nxjWss/F+7g\n9x9u4aLB3fn7DSOJjghv8b5iIsP51eVDSO3Snt/O30TVqyt56sZRxES2fJ/GtCb7E8WYRvz98+38\n/sMtTBuexFM3jjqtguDpjom9+O2VZ/D5ln3c+XIWFdW1rbJfY06XFQVjGvDvrHwe/XQbV41M5vHr\nRxAZ3rq/LjePT+dP1wzjy+37eeitdbgaz8Y4KyAuSTWmrWXlHuThdzZwVp+u/PGaYYSHiU8+57rM\nVPYeruDRT7fRr3sc957b1yefY4y3rCgYU0/+wXK++8pKkuJjePrGUa3eQqjvvvP6sn3fUf788Vb6\ndovl4iE9fPp5xjTGTh8Z46GiupY7X86iqraOZ28dQ3z7KJ9/pojwp2uGMTylE9+ftYZte0t9/pnG\nNMSKgjEe/vDhFrbsKeVvM0bSt1tsm31uTGQ4/7olk/ZR4XzvjdVU1ljHs3GGFQVj3BZuK+bFJbnc\ndlaGI3ccd+sYw5+uGcaWPaU8+sm2Nv98Y8CKgjEAHCyr4sF/r6V/91gemjLQsRznD+rOjePS+NeX\nOSzJ3u9YDhO6rCiYkKeq/OztdRwur+bx60c6fiPZzy8bTK+EDvxwzlpKyqsczWJCjxUFE/LeX7+b\njzfu5cGL+zM4qaPTcWgXFc4T14+k+Gglf/hwi9NxTIixomBC2pGKan4zbxNnJHfkjom9nY5zwtCU\nTtwxsRezVuSzIveg03FMCLGiYELaox9vpfhoJf/3raE+u0Gtpb5/QT+S49vx8DvrqbYRVU0bsaJg\nQtba/BJeXrqLW8anMywl3uk439A+KoJfXT6EbXuP8uyXO52OY0KEFQUTkmrrlIffXU9ibDQ/uniA\n03EadOHg7lw0uDtPfL6N/IOnnvLTmNZkRcGEpDlZ+WwoPMIvpg6mY0yk03Ea9avLhyCIdTqbNmFF\nwYSco5U1PPrJNjLTOzN1WE+n4zQpKb4dd53dm/fX72blLut0Nr5lRcGEnH8u3MH+o5U8fNkgRPyr\nc7kh3z2nN93iovnf9zfbENvGp6womJCy+/Ax/vVlDtOGJ3k1v7K/aB8VwYMXDWB1Xgnvr7epzI3v\nWFEwIeUvH2+jrg5+4sedyw25enQKA3vE8cePttiAecZnrCiYkLGp6Ahvry7g9gkZpHZp73ScZgsP\nEx6+bBD5B4/xyte7nI5jgpQVBRMy/vrpNmKjI7hncuDObjapXyIT+ybw9IIdlFXWOB3HBCErCiYk\nrM0v4bPNe7lzUm86tffvS1Cb8sOL+nOwrIoXl+Q6HcUEISsKJiQ89tk24ttHcvuEDKejnLZRaZ05\nd0AiMxflcKSi2uk4JshYUTBBb+WuQyzYWsx3z+5DnJ/fqOatH144gMPHqnl+sQ1/YVqXFQUT9P76\n6VYSYqO49ax0p6O0mqEpnbhocHee+3KnzblgWpUVBRPUluUc4KvsA9x9Th/aR0U4HadV/eDC/pRW\n1thgeaZVWVEwQe2pBTtIiI3ipvHB00o4blDPjkw5owcvfZ1rfQum1VhRMEFrfcFhFm0r5o6JvR2f\nYtNX7pncl9KKGl5davctmNZhRcEEracXZBMXE8FN49OcjuIzQ1M6cXb/RJ77cifHquwuZ3P6rCiY\noJS9r5SPNu7htrMyguaKo4bcO7kPB8qqmL0iz+koJghYUTBB6ekFO4iJCOf2Cb2cjuJz43p3ZUxG\nZ2YuyqGqxqbtNKfHp0VBRC4Rka0iki0iD53i9U4iMk9E1orIRhG53Zd5TGjIP1jO3DVF3DAujS4d\nopyO0ybuObcvRYcreHd1odNRTIDzWVEQkXDgKWAKMBiYISKD6212L7BJVYcDk4FHRSQ0fouNzzy3\neCdhAt+ZFPythOMm909kcM+OzPwyh7o6m2/BtJwvWwpjgWxVzVHVKmAWcEW9bRSIE9dMJ7HAQcBG\n+TItdri8mjlZ+UwbnkTPTu2cjtNmRIQ7z+5F9r6jLNxW7HQcE8B8WRSSgXyP5QL3Ok9PAoOAImA9\n8ICqfuOkqIjcJSJZIpJVXGw/8KZhry3fRXlVLXdO6u10lDY3dVgSPTrGMHNRjtNRTABzuqP5YmAN\nkASMAJ4UkY71N1LVmaqaqaqZiYmJbZ3RBIiqmjpe/CqXSf0SGNTzGz9GQS8yPIzbJ2Twdc4BNhQe\ndjqOCVC+LAqFQKrHcop7nafbgbfVJRvYCQz0YSYTxN5bW8S+0sqQbCUcN2NcGrHRETz7pbUWTMv4\nsiisAPqJSC935/F04L162+QB5wOISHdgAGA/zabZVJVnv8xhYI84JvVLcDqOYzrGRHL9mFTmrdtN\nUckxp+OYAOSzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8FzhKR9cDnwE9Vdb+vMpng9eX2/WzZU8p3\nJvXGdd1C6Do+Z4RNwmNawqfDRqrqB8AH9dY94/G8CLjIlxlMaHjhq50kxEYzbXhPp6M4LqVze6ac\n0YM3lufxwPn96BAdXKPDGt9yuqPZmNO2c38ZX2wt5qbxaURHBOfAd811+4QMSitqeMduZjPNZEXB\nBLyXluQSGS7cMC54B75rrlFpnRma3IkXl+SiajezGe9ZUTABrbSimjdXFjBtWBLd4mKcjuM3RITb\nJ2SQve8oX2UfcDqOCSBWFExAe2tlAUcra7j1rAyno/idy4b1JCE2iheX2MxsxntWFEzAqqtTXvp6\nF6PS4hmeGu90HL8THRHODePS+XzLPnYdKHM6jgkQVhRMwFq4rZid+8u4LQSGx26pm8alES5il6ca\nr1lRMAHr5a9z6RYXzZQzejgdxW916xjDpUN78ubKAsqrbKxJ0zQrCiYg5R0oZ8G2YmaMTSMy3H6M\nG3PLmemUVtQwd02R01FMALDfJhOQXlu2izARZoy1y1CbMjq9MwN7xPHK17vs8lTTJCsKJuBUVNcy\nOyufi4d0p0cnuwy1KSLCLWdmsGn3EVbllTgdx/g5Kwom4Ly/bjcl5dXcND7d6SgB44oRScRFR/Dq\n0l1ORzF+zoqCCTgvL91Fn8QOnNm7q9NRAkaH6AiuHp3C++t2s/9opdNxjB+zomACyrqCEtbml3Dz\n+PSQHw21uW4an0ZVbR1zsvKb3tiELCsKJqC8tjSPdpHhXDU6xekoAadvtzjO7N2V15bmUVtnHc7m\n1KwomIBxpKKa99YWccWIJDrGRDodJyDdOD6NwpJjLNpuc52bU7OiYALGu6sLOVZda6OhnoaLBvcg\nITaK15flOR3F+CkrCiYgqCqvLc1jaHInhqXYOEctFRURxrWZqXy+eS+7D9t0neabrCiYgLAq7xBb\n95ZaK6EVzBiTRp3C7BXW4Wy+yYqCCQivLcsjNjqCy4cnOR0l4KV1bc+kfgnMXpFPTW2d03GMn7Gi\nYPxeSXkV89ft5ooRSTbfcCu5cVwauw9X8MVW63A2J7OiYPzeW6sKqaqp48Zxdgdzazl/UHe6xUXz\n+jK7w9mczIqC8WuqyhvL8xieGs/gpI5OxwkakeFhXD8mlQXbiikssQ5n819WFIxfW7nrENn7jnLD\n2FSnowSd6zJd/6ZzrMPZeLCiYPza68tdHcxTh1kHc2tL7dKeSf0SmZOVb3c4mxOsKBi/dfhYNR+s\n383l1sHsMzPGpLL7cAULt+1zOorxE1YUjN+au6aQiuo6ZoyxexN85fxB3UmIjeKN5XYKybhYUTB+\nydXBnM8ZyR0ZmtLJ6ThBKyoijGtGp/KfLfvYd6TC6TjGD1hRMH5pXcFhNu8+wnRrJfjc9DGp1NYp\n/15Z4HQU4wesKBi/NGuFa4jsK0ZYB7OvZSS4JiyatSKPOutwDnlWFIzfKaus4b01RUwd1pM4GyK7\nTUwfm0r+wWMs2XHA6SjGYT4tCiJyiYhsFZFsEXmogW0mi8gaEdkoIgt9mccEhvfX7aasqpbpY+3U\nUVu5eEgP4ttHMmuFDakd6posCiLSXkR+ISL/ci/3E5GpXrwvHHgKmAIMBmaIyOB628QDTwOXq+oQ\n4NoWHIMJMrNW5NGvWyyj0myI7LYSExnOt0Ym88nGvRwsq3I6jnGQNy2FF4BK4Ez3ciHwv168byyQ\nrao5qloFzAKuqLfNDcDbqpoHoKp2sXSI27a3lFV5JVw/JtXmYG5j149Jpaq2jndWFzodxTjIm6LQ\nR1X/BFQDqGo54M1vazLgefFzgXudp/5AZxFZICIrReSWU+1IRO4SkSwRySoutlEdg9ms5flEhgtX\njbI5mNvawB4dGZEaz+wVeahah3Oo8qYoVIlIO0ABRKQPrpZDa4gARgOXARcDvxCR/vU3UtWZqpqp\nqpmJiYmt9NHG31TW1PL26gIuGtKDLh2inI4TkqaPSWXb3qOszi9xOopxiDdF4RHgIyBVRF4DPgd+\n4sX7CgHPUcxS3Os8FQAfq2qZqu4HFgHDvdi3CUKfbNxLSXk108fY4HdOmTo8ifZR4cxabh3OoarJ\noqCqnwJXAbcBbwCZqrrAi32vAPqJSC8RiQKmA+/V22YuMFFEIkSkPTAO2Ox9fBNMZq/IJzm+HRP6\nJDgdJWTFRkcwbVgS89bu5mhljdNxjAMaLAoiMur4A0gHdgNFQJp7XaNUtQa4D/gY1xf9HFXdKCJ3\ni8jd7m0242qFrAOWA8+q6obTPSgTePIPlrM4ez/XZaYSFmYdzE66fmwqx6prmb+2yOkoxgGNDT35\nqPu/MUAmsBZXB/MwIIv/Xo3UIFX9APig3rpn6i3/Gfiz95FNMPp3Vj5hAtdmWgez00amxtO/eyyz\nVuTbvSIhqMGWgqqeq6rn4mohjHJ39I4GRvLNvgFjWuz4uDtn908kKb6d03FCnohwXWYqa/JL2Lqn\n1Ok4po1509E8QFXXH19wn94Z5LtIJtQs2l7M7sMV1sHsR64alUJkuDDbZmULOd4UhXUi8qx7OIrJ\n7jub1/k6mAkds5fn07VDFOcN7O50FOPWpUMUFw3uwdurC6isqXU6jmlD3hSF24GNwAPuxyb3OmNO\n2/6jlXy2eS9Xj04hKsLGZ/Qn149JpaS8mk837XU6imlDTc5xqKoVwGPuhzGt6u1VBdTU6YlJ5I3/\nmNg3geT4dsxekW9zZIcQbwbE2ykiOfUfbRHOBDdVZfaKfDLTO9O3W6zTcUw9YWHCtZkpfLl9P/kH\ny52OY9qIN+31TGCM+zEJ+Bvwqi9DmdCwctchdhSXcZ11MPutazNTEcFmZQsh3tzRfMDjUaiqj+Ma\nq8iY0zJrRT6x0RFMHdbT6SimAcnx7Ti7XyL/zsqn1mZlCwnenD4a5fHIdN+N3GRfhDGNOVJRzfvr\ndjNteBLto+zHyZ9dPyaV3YcrWLTdRigOBd78Nj7q8bwG2Alc55s4JlTMW1vEsepauzchAFwwqDtd\nOkQxe3k+5w7o5nQc42PeFIU7VPWkjmUR6eWjPCZEzF6Rz8AecQxL6eR0FNOEqIgwrh6VzAtf5VJc\nWkliXLTTkYwPedPR/KaX64zxyqaiI6wrOMx0m10tYFw/JpWaOuXtVdbhHOwabCmIyEBgCNBJRK7y\neKkjrkHyjGmROVn5REWEceXI+hPxGX/Vt1scmemdmZ2Vz11n97ZiHsQaaykMAKYC8cA0j8co4E7f\nRzPBqKK6lndWF3LJkB7Et7fZ1QLJdWNSySkuY0XuIaejGB9qsKWgqnOBuSJypqp+3YaZTBD7cMNu\nDh+rZvpY62AONFOH9eQ38zYxa0UeY3t1cTqO8ZHGJtk5PuXmDSLyt/qPNspngsys5fmkd23P+F5d\nnY5imql9VASXj0jig/Wuwm6CU2Onj45Pi5kFrDzFw5hmySk+yrKdB7l+jM2uFqhmjEmjorqOuWts\nSpVg1djpo3nu/77UdnFMMJu9Ip/wMOGa0Ta7WqAamtKJIUkdeWN5PjePT7cO5yDU2NVH84AG72tX\n1ct9ksgEpaqaOt5cWcD5A7vRLc4uXgtk08ek8ou5G1lfeJhhKfFOxzGtrLGb1/7SZilM0Pts814O\nlFUxw+b8DXhXjEzmdx9s5o3l+VYUglBjp48WHn8uIlHAQFwth62qWtUG2UwQeWN5HkmdYji7f6LT\nUcxp6hgTyWVDk3hvTSE/v2wQHaJt7Kpg4s2AeJcBO3ANmf0kkC0iU3wdzASP/IPlLM7ezzWZqYRb\nB3NQmDE2lbKqWuavK3I6imll3gxz8ShwrqpOVtVzgHOxWdhMM8xekY+ADX4XREand6Zft1heX57v\ndBTTyrwpCqWqmu2xnAOU+iiPCTLVtXXMznKNrpkU387pOKaViAg3jEtjbX4JG4sOOx3HtCJvikKW\niHwgIreJyK3APGCFiFxVb0wkY77h8817KS6ttA7mIHTVyBSiI8J4fVme01FMK/KmKMQAe4FzgMlA\nMdAO1zhIU32WzASF15fn07NTDJMHWAdzsOnUPpLLhvVk7poiyiprnI5jWkmTlw2o6u1tEcQEn/yD\n5Xy5vZjvndePiHBv/v4wgeaGsWm8vaqQeWuLmG6twaDQZFFwT6hzP5Dhub3dvGaaMmtFHoJrLH4T\nnEand6Z/91jeWJ5nRSFIeHOB8bvAc7j6Eup8G8cEi+raOuZkFVgHc5ATEWaMTePX8zaxofAwZyTb\nTHqBzps2fYWq/k1Vv1DVhccfPk9mAtqnm1wdzDeMs78eg91VI1OIiQzjNetwDgreFIUnROQRETlT\nREYdf/g8mQlory7dRXJ8OybbRO9Br1P7SKYNS2LumkKOVNiQ2oHOm6IwFNdMa3/AdSPbo3g5LpKI\nXCIiW0UkW0QeamS7MSJSIyLXeLNf49+y9x1lyY4D3DAuze5gDhE3jU+nvKqWd1bZkNqBzps+hWuB\n3s0d70hEwoGngAuBAlz3NrynqptOsd0fgU+as3/jv15btovIcOG6TOtgDhXDU+MZltKJV5fu4pYz\nbUjtQOZNS2EDrnmam2sskK2qOe6CMgu44hTb3Q+8BexrwWcYP3Osqpa3VhZwyRk9SYyLdjqOaUM3\njUtn+76jLN950Oko5jR4UxTigS0i8rGIvOd+zPXifcmA58AoBe51J4hIMvAt4B+N7UhE7hKRLBHJ\nKi4u9uKjjVPmrS3iSEUNN1kHc8iZNjyJjjERvGodzgHNm9NHj3g8F2ASML2VPv9x4KeqWtdYc1NV\nZwIzATIzMxuc+Mc479Vlu+jfPdYmdg9B7aLCuXp0Cq8u3UVx6WBrKQaoJlsK7stPj+Aa0uJF4Dzg\nGS/2XQh4nlROca/zlAnMEpFc4BrgaRG50ot9Gz+0Nr+EdQWHuXGcnVMOVTeOS6e6VpmTZaOnBqoG\ni4KI9HdfiroF+DuQB4iqnquqf/di3yuAfiLSyz1Jz3TgPc8NVLWXqmaoagbwJnCPqr7b0oMxznrp\n61w6RIVz1ajkJrc1walvt1gm9k3g1aW7qKm1e10DUWMthS24WgVTVXWiuxDUertjVa0B7gM+BjYD\nc1R1o4jcLSJ3n05o43/2H61k/trdXD06hbiYSKfjGAfdcmY6uw9X8OmmvU5HMS3QWJ/CVbj+uv9C\nRD7CdfVQs84JqOoHwAf11p3y1JOq3tacfRv/Mmt5HlW1ddxyZobTUYzDzh/UnZTO7XhxSS5ThvZ0\nOo5ppgZbCqr6rqpOxzU38xfA94FuIvIPEbmorQIa/1dTW8erS/OY1C+Bvt1inY5jHBYeJtw8Pp1l\nOw+yZc8Rp+OYZvKmo7lMVV9X1Wm4OotXAz/1eTITMD7ZtJc9RyqslWBOuC4zleiIMF5assvpKKaZ\nmjXIvaoeUtWZqnq+rwKZwPPiklxSOrfjvIE2zpFx6dwhiitHJPPu6kIOl9t4SIHEZj4xp2Xz7iMs\n33mQW85Mt3GOzEluOSudY9W1zM6ym9kCiRUFc1qeW7yTdpHhNs6R+YYhSZ0Y26sLLy2xy1MDiRUF\n02L7Sit4b00R12amEN8+yuk4xg99Z2IvCkuO8fFGuzw1UFhRMC326te7qK6r4/YJvZyOYvzU+YO6\nk961Pc8uznE6ivGSFQXTIhXVtby6LI/zB3anV0IHp+MYPxUeJnx7Qi9W55Wwctchp+MYL1hRMC3y\nzupCDpZVccdEayWYxl0zOoWOMRE8v3in01GMF6womGZTVZ5bvJMhSR0Z39tGQzWN6xAdwYxxaXy4\nYTf5B8udjmOaYEXBNNuCbcVk7zvKHRN72Wioxiu3npmBiPDiklyno5gmWFEwzfbMgh306BjD1GFJ\nTkcxASIpvh3ThvXkjeV5lJQ3a2Zf08asKJhmWZV3iGU7D/KdSb2IirAfH+O9uyf3obyqlpe/tqEv\n/Jn9VptmeWbBDjq1i2TGWJtu0zTPwB4dOW9gN15cksuxKq9H4TdtzIqC8Vr2vlI+2bSXW89Mp0O0\nNzO5GnOyu8/pw8GyKpuZzY9ZUTBe++fCHGIiw7j1rAyno5gANSajM6PTOzNzUQ7VNvSFX7KiYLxS\nVHKMd9cUMn1MGl1jbUJ20zIiwv+c04fCkmO8v26303HMKVhRMF6ZuSgHVexmNXPazhvYjf7dY3nq\ni2zq6tTpOKYeKwqmSXuPVPD68jyuHpVCapf2TscxAS4sTLj/vH5s33eUDzZYa8HfWFEwTfrHgh3U\n1in3ntvX6SgmSFw6tCf9usXyxGfbrbXgZ6womEb9t5WQTFpXayWY1hEeJnzvfGst+CMrCqZRx1sJ\n953bz+lEPPffAAAUHklEQVQoJshYa8E/WVEwDdp3pII3rJVgfMRaC/7JioJp0JNfZFNjrQTjQ8db\nC499us2m7PQTVhTMKeXuL+P1ZXlMH5NqrQTjM+Fhwo8uGsCO4jLeXFngdByDFQXTgL98spXI8DAe\nON9aCca3Lh7SnZFp8Tz22TYbE8kPWFEw37CuoIT563Zz56RedOsY43QcE+REhJ9NGcTeI5W8sMRm\nZ3OaFQVzElXlDx9uoUuHKO48u7fTcUyIGNurCxcM6sY/FuzgUJnNt+AkKwrmJIu272fJjgPcf15f\n4mIinY5jQsiPLx5IWWUNT32R7XSUkGZFwZxQXVvH/87fRFqX9tw4Lt3pOCbEDOgRxzWjU3jp61x2\n7i9zOk7I8mlREJFLRGSriGSLyEOneP1GEVknIutFZImIDPdlHtO4V77exfZ9R/nF1ME2q5pxxIMX\nDyA6IpzfzNvodJSQ5bPffBEJB54CpgCDgRkiMrjeZjuBc1R1KPBbYKav8pjG7T9ayWOfbePs/olc\nMKib03FMiOoWF8MD5/fji63F/GfLXqfjhCRf/jk4FshW1RxVrQJmAVd4bqCqS1T1kHtxKZDiwzym\nEX/+aCvHqmr55dTBiIjTcUwIu/WsDPokduA38zZRWWOXqLY1XxaFZMBzzr0C97qG3AF8eKoXROQu\nEckSkazi4uJWjGgA1uaXMGdlPrdPyKBvt1in45gQFxURxiPThpB7oJznF+c6HSfk+MWJYxE5F1dR\n+OmpXlfVmaqaqaqZiYmJbRsuyNXU1vGLuRvo2iGa++1GNeMnzu6fyIWDu/O3z7eTf7Dc6TghxZdF\noRBI9VhOca87iYgMA54FrlDVAz7MY07hxSW5rCs4zCPTBtPRLkE1fuRXlw8hTODhdzegaqOothVf\nFoUVQD8R6SUiUcB04D3PDUQkDXgbuFlVt/kwizmFvAPl/OWTrZw/sBtTh/V0Oo4xJ0mOb8ePLx7A\nom3FzF1T5HSckOGzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8EugJPi8gaEcnyVR5zMlXl4XfXEy7C\nb688wzqXjV+6+cwMRqbF8+t5GzlwtNLpOCHBp30KqvqBqvZX1T6q+jv3umdU9Rn38++oamdVHeF+\nZPoyj/mvt1YV8uX2/fx0ykCS4ts5HceYUwoPE/549TCOVtbw2/mbnI4TEvyio9m0rcKSY/x63kZG\np3fmJrtz2fi5/t3juGdyX95dU8RHNhmPz1lRCDF1dcqDc9ZSW6f89brhhIXZaSPj/+47ry/DUjrx\n0Nvr2Xukwuk4Qc2KQoh5bvFOvs45wCPTBpPetYPTcYzxSmR4GI9dP4KK6lp+/OY6uxrJh6wohJDN\nu4/w54+3ctHg7lyXmdr0G4zxI30SY3n40kEs2lbMy1/vcjpO0LKiECLKKmv43hur6dgukt9fNdSu\nNjIB6abx6UwekMj/fbCZTUVHnI4TlKwohABV5f+9s57s4qM8fv0IusZGOx3JmBYREf5y7XDi20fy\nP6+t5PCxaqcjBR0rCiHg1aW7mLumiB9d2J+J/RKcjmPMaUmIjeapG0ZReOgYP/73WutfaGVWFILc\n6rxD/Gb+Js4b2I17Jvd1Oo4xrSIzowsPTRnIJ5v2MnNRjtNxgooVhSC290gF97y2iu4dY+zyUxN0\n7pjYi0uH9uCPH21h4TYbPbm1WFEIUuVVNXznpSwOH6vmnzePJr59lNORjGlVIsKfrhlO/+5x3Pfa\nKrbtLXU6UlCwohCE6uqU789aw8aiwzx5w0iGJHVyOpIxPhEbHcHzt40hJiqc219YQXGpjY90uqwo\nBKE/fLSFTzbt5RdTB3PewO5OxzHGp5Li2/HcrZkcKKvkrleyOFZls7WdDisKQebpBdnMXJTDLWem\nc9tZGU7HMaZNDEuJ54npI1mbX8Ldr66kqqbO6UgBy4pCEHnl61z+9NFWrhiRxCPThtgNaiakXDyk\nB3+4ahgLtxXzwKzV1NRaYWgJKwpB4q2VBfxi7kYuGNSdv1w7nHC70siEoOvGpPKLqYP5cMMefvrW\neurq7B6G5opwOoA5fXNW5PPQ2+uY0LcrT94wkshwq/UmdN0xsRdllTX89VPXZI5/vHooEfY74TUr\nCgHu+cU7+c38TUzql8DMmzOJiQx3OpIxjrv/vL4I8Oin2yivquHx6SOIjrDfDW9Y+QxQqsrfPt/O\nb+Zv4pIhPXj21kzaRdkPvTHguofh/vP78Uv3qaQ7X15JeVWN07ECghWFAFRVU8dP31rHXz/dxlUj\nk3nyhpH2V5Axp/Dtib3409XDWLy9mOv++TV7DtsEPU2xohBgDpVVcfNzy5iTVcD3zuvLX64dbudL\njWnEdWNSefbWTHYWl3HFU4tZX3DY6Uh+zb5NAsjGosNc+fRXrM4v4fHrR/DDiwbYeEbGeOG8gd15\n656ziAgL49p/LuGd1QVOR/JbVhQCgKryyte5fOvpJVRU1/LGneO5cmSy07GMCSgDe3Tk3XsnMCw5\nnh/MXstP3lxr/QynYFcf+blDZVX8v3fW8+GGPUwekMij1w63SXKMaaHEuGhev3Mcj3+2nacWZLM6\nr4Qnpo9kcFJHp6P5DWsp+ClVZf66Ii7460I+3bSXn00ZyPO3jrGCYMxpiggP48GLB/DKt8dxqLya\ny59czKOfbKWyxsZMAisKfqngUDnffWUl972+muTO7Zh3/0S+e04f6z8wphVN7JfApz84m8tHJPH3\n/2Rz2d8WsyzngNOxHCeBNpVdZmamZmVlOR3DJ0orqvnHgh08u3gnYQI/vLA/357Qy64uMsbHFmzd\nx8PvbKCw5BiXDOnBQ1MGkpHQwelYrUpEVqpqZpPbWVFwXnlVDa8vy+OZhTvYf7SKq0Ym8+DFA0iK\nb+d0NGNCxrGqWp5bnMPTC3ZQXVvHjLFpfPecPiQHye+hFYUAUFJexWvL8nhu8U4OllVxZu+uPDRl\nIMNT452OZkzI2nekgsc+28a/swoQgatGpvDdc3rTOzHW6WinxYqCn1JV1uSX8OrSPOavK6Kypo5z\nByRy33l9GZ3exel4xhi3gkPlzFyUw6wV+VTV1DGhb1duGpfOBYO7B+Sgk1YU/Ez2vlLmrd3N/HVF\n7Cguo31UOFeOTOamcel2OZwxfqy4tJLZK/J4Y3k+hSXH6NIhikvO6MHUYT0Z16trwAxTb0XBYWWV\nNSzPPcjCrcUs2l5MTnEZIjA2owuXj0ji8uFJxMVEOh3TGOOl2jplwdZ9vLO6kM837+NYdS1dO0Qx\nsV8C5/RPZGK/BLrFxTgds0F+URRE5BLgCSAceFZV/1DvdXG/filQDtymqqsa26c/FoVjVbVs31fK\nlj2lrC84zKq8Q2zefYQ6heiIMMb37sq5AxKZMrQn3Tv67w+NMcY75VU1/GfLPj7fvI9F24o5UFYF\nQGqXdoxK68yI1HgG9ujIgB5xdOkQ5XBaF8eLgoiEA9uAC4ECYAUwQ1U3eWxzKXA/rqIwDnhCVcc1\ntt+2KgqqSmVNHaUVNRypqObIsWoOHK2i+GglxaWVFB46Rv6hcvIOllNYcozj/4yx0REMT+3EqLTO\njMnowtheXWyOA2OCWF2dsrHoCEtzDrAq7xCr8g6x90jlidcTYqNI7dKetC7tSencju4dY0iMjSYh\nLppO7SLpGBNJXEwE7SLDfXovkrdFwZfDXIwFslU1xx1oFnAFsMljmyuAl9VVmZaKSLyI9FTV3a0d\nZuG2Yn47/78fraoooOpqFtbU1lFTp9TUKRXVtRyrrqWxepkQG01ql3aMTu/MNaNTGNgjjgE9OpLW\npX3AnGM0xpy+sDBhaEonhqZ0AlzfLcWllWzZU8rWPaVk7ztK3sFyVu46xLy1RTQ2Q2h0RBgxkeFE\nhocRGS5EhAvhIoSJIALTx6Rx59m9fXo8viwKyUC+x3IBrtZAU9skAycVBRG5C7gLIC0trUVhYqMj\nGNA97qR1IhAmQpi4bn2PCHP9T4iJCKddVDgxkeHExUTQqZ2rknftEE1iXDRdY6Ns/gJjzCmJCN06\nxtCtYwxn90886bXaOuVgWRX73WccXGchXGcjjlXVnviDtLr2v3+o1qlSp1CnSmKc74e5CYgB8VR1\nJjATXKePWrKP0emdGZ3euVVzGWNMc4SHCYlxrj8uB/V0Os2p+fJi20Ig1WM5xb2uudsYY4xpI74s\nCiuAfiLSS0SigOnAe/W2eQ+4RVzGA4d90Z9gjDHGOz47faSqNSJyH/AxrktSn1fVjSJyt/v1Z4AP\ncF15lI3rktTbfZXHGGNM03zap6CqH+D64vdc94zHcwXu9WUGY4wx3gu8ATyMMcb4jBUFY4wxJ1hR\nMMYYc4IVBWOMMScE3CipIlIM7Grh2xOA/a0YJ1CE4nGH4jFDaB53KB4zNP+401U1samNAq4onA4R\nyfJmQKhgE4rHHYrHDKF53KF4zOC747bTR8YYY06womCMMeaEUCsKM50O4JBQPO5QPGYIzeMOxWMG\nHx13SPUpGGOMaVyotRSMMcY0woqCMcaYE0KmKIjIJSKyVUSyReQhp/P4goikisgXIrJJRDaKyAPu\n9V1E5FMR2e7+b9DNNiQi4SKyWkTmu5dD4ZjjReRNEdkiIptF5MwQOe4fuH++N4jIGyISE2zHLSLP\ni8g+Edngsa7BYxSRn7m/27aKyMWn89khURREJBx4CpgCDAZmiMhgZ1P5RA3wI1UdDIwH7nUf50PA\n56raD/jcvRxsHgA2eyyHwjE/AXykqgOB4biOP6iPW0SSge8Bmap6Bq5h+acTfMf9InBJvXWnPEb3\n7/h0YIj7PU+7v/NaJCSKAjAWyFbVHFWtAmYBVzicqdWp6m5VXeV+XorrSyIZ17G+5N7sJeBKZxL6\nhoikAJcBz3qsDvZj7gScDTwHoKpVqlpCkB+3WwTQTkQigPZAEUF23Kq6CDhYb3VDx3gFMEtVK1V1\nJ675aca29LNDpSgkA/keywXudUFLRDKAkcAyoLvHjHZ7gO4OxfKVx4GfAHUe64L9mHsBxcAL7tNm\nz4pIB4L8uFW1EPgLkAfsxjVb4ycE+XG7NXSMrfr9FipFIaSISCzwFvB9VT3i+Zp7YqOguQ5ZRKYC\n+1R1ZUPbBNsxu0UAo4B/qOpIoIx6p0yC8bjd59GvwFUUk4AOInKT5zbBeNz1+fIYQ6UoFAKpHssp\n7nVBR0QicRWE11T1bffqvSLS0/16T2CfU/l8YAJwuYjk4joteJ6IvEpwHzO4/hosUNVl7uU3cRWJ\nYD/uC4CdqlqsqtXA28BZBP9xQ8PH2Krfb6FSFFYA/USkl4hE4eqUec/hTK1ORATXOebNqvpXj5fe\nA251P78VmNvW2XxFVX+mqimqmoHr/+t/VPUmgviYAVR1D5AvIgPcq84HNhHkx43rtNF4EWnv/nk/\nH1ffWbAfNzR8jO8B00UkWkR6Af2A5S3+FFUNiQdwKbAN2AE87HQeHx3jRFxNynXAGvfjUqArrqsV\ntgOfAV2czuqj458MzHc/D/pjBkYAWe7/3+8CnUPkuH8NbAE2AK8A0cF23MAbuPpMqnG1Cu9o7BiB\nh93fbVuBKafz2TbMhTHGmBNC5fSRMcYYL1hRMMYYc4IVBWOMMSdYUTDGGHOCFQVjjDEnWFEwfkVE\nHnaPgLlORNaIyDgff94CEfF68nMReVFECkUk2r2c4L5xrjWyTD4+ymtrEZHvi8gtTWwzVERebM3P\nNYHLioLxGyJyJjAVGKWqw3DdvZrf+LscUQt82+kQ9dUfGdM9YNy3gdcbe5+qrgdSRCTNh/FMgLCi\nYPxJT2C/qlYCqOp+VS0CEJFfisgK9xj6M913sx7/S/8xEclyzykwRkTedo85/7/ubTLccw685t7m\nTRFpX//DReQiEflaRFaJyL/dY0idyuPAD9xfup7vP+kvfRF5UkRucz/PFZHfu1s/WSIySkQ+FpEd\nInK3x246isj77nHxnxGRsMayuff7RxFZBVxbL+d5wCpVrfH4t/qjiCwXkW0iMslj23m47gg3Ic6K\ngvEnnwCp7i+sp0XkHI/XnlTVMeoaQ78drhbFcVWqmgk8g+vW/3uBM4DbRKSre5sBwNOqOgg4Atzj\n+cEikgD8HLhAVUfhulP4hw3kzAMWAzc38/jyVHUE8CWu8fKvwTXvxa89thkL3I9r3o8+wFVeZDug\nqqNUdVa9z5sA1B8oMEJVxwLfBx7xWJ8FTMKEPCsKxm+o6lFgNHAXrmGhZx//Sxs4V0SWich6XH8B\nD/F46/FxrNYDG9U1r0QlkMN/BwrLV9Wv3M9fxTUkiKfxuL6IvxKRNbjGlklvJO7vgR/TvN8hz5zL\nVLVUVYuBShGJd7+2XF3zftTiGupgohfZZjfweT1x/Tt6Oj5I4kogw2P9PlyjjpoQF9H0Jsa0HfeX\n4QJggbsA3Cois4Cncc22lS8ivwJiPN5W6f5vncfz48vHf8brj+dSf1mAT1V1hpc5t7u/oK/zWF3D\nyUUi5uR3tThnU9nKGlh/rJEMtZz8+x/j3t6EOGspGL8hIgNEpJ/HqhHALv77xbbffS79mhbsPs3d\nkQ1wA67TP56WAhNEpK87SwcR6d/EPn8HPOixvAsY7B6tMh7XCJ7NNdY9mm8YcL07Z0uygWv00L5e\nfm5/XAPMmRBnRcH4k1jgJRHZJCLrcJ0y+ZW6ppn8F64vrY9xDYXeXFtxzVm9Gddoov/wfNF9Guc2\n4A33Z38NDGxsh6q6EVjlsZwPzHHnnAOsbkHOFcCTuL7QdwLvtCSb24e4puz0xrnA+81Oa4KOjZJq\ngp64piad7+6kDiki8g7wE1Xd3sg20cBCYOLxK5VM6LKWgjHB7SFcHc6NSQMesoJgwFoKxhhjPFhL\nwRhjzAlWFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCf8fcGqGIouq0A4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Parzen window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYJFd57n9fp+nJYWd2NszmIGmVpVUCIZGERBQ5Y+MA\nxgabiwPRvsb2BV9jA8ZggcHmGhEtEAIBQiABCkhIYldxg1abd2Znd3Lomc7d5/5Rdaqrezqcmt1J\n2nqfp5/pqTpddarq1HnPl0UphQ8fPnz48DEbBBa6Az58+PDhY+nCJxEfPnz48DFr+CTiw4cPHz5m\nDZ9EfPjw4cPHrOGTiA8fPnz4mDV8EvHhw4cPH7OGTyI+fCxCiMhZIvK4iMRE5M8Mf6NEZPNc920p\nQ0Q+KiL/OcvfPl9E+k53n5Y6fBJZBBCRIyKSEJEp12fVQvfLx4Lig8CvlFLNSql/K90pIveIyB/O\nxYlFZL1NSHosHhGRD8/FueYbSqlPKqXm5L6dqfBJZPHglUqpJtenv7SBiIQWomMLhTPtekuwDti9\nwH1oU0o1AW8B/reI3OD1AGf4Mzwj4JPIIoZrRfgHInIM+KW9/UoReVBExkXkCRF5vus3G0TkXlsN\ncpeIfEFEvmHvmyGO26vMF9vfAyLyYRE5KCIjInKLiHSU9OV3ReSYiAyLyMdcxwnaqoKD9rl3isga\nEfl3Efl0yTlvF5EPVLhmJSLvFZH9wH5729n2tYyKyD4ReaOr/ctEZI99zuMi8pfua7X7NGxf59tc\nv2sVkZtFZEhEjorIX4tIwN73ThH5tYj8i4iMichhEXmp67fvFJFD9jkPlxz390Vkr/27n4nIuirP\n91Uistt+jveIyDn29l8CLwC+YEsCW0t+9wngea79X3DtfrGI7LeP+e8iIrPpmxtKqd9gEdp59nE+\nJyK9IjJpP+fnuc7xcRH5noh8Q0QmgXfafdFSzbT9jNfb7V8hltpu3B7TF7iOdURE/lJEnhSRCRH5\nHxGJVriXR0XkUvv72+xznGv//wci8gNX//T7UGtM14vIf9v3aw9wWck5z7Gf27j9HF9lb99gb9Pj\n6SsiMuj63ddF5H+Z3PslAaWU/1ngD3AEeHGZ7esBBdwMNAL1wGpgBHgZ1iLgOvv/Lvs3vwE+A9QB\n1wAx4Bv2vucDfZXODbwfeAjosX//H8C3S/ryFbsfFwIp4Bx7/18BTwFnAWLvXwZcDvQDAbtdJxAH\nuivcCwXcBXTY52kEeoHfA0LAxcAwsM1ufwJ4nv29HbjEda1Z1724FpgGzrL33wz8EGi2r+0Z4A/s\nfe8EMsC7gCDwx/Y1iN2fSddxVgLn2t9vBA4A59h9/WvgwQrXudXuz3VAGEt9dQCI2PvvAf6wypiZ\nsd++dz8G2oC1wBBwwyz6pp91yL7m59rP7EX2/rfbzzYE/AVwEoja+z5u37tXY43P+pJjfxK4z77m\ni4FB4Ar7Pv8u1nisc43NR4BV9njYC7ynQp9vBv7C/v5l4CDwx659H3D17xsl11lpTP9f4H773GuA\nXdjvj93/A8BHgQjwQqx3TY+LY8Cl9vd9wCHXcY8BFy/0vHPa5q+F7oD/cV6WKWDc/vzA3q4H+UZX\n2w8BXy/5/c/sF3At1sTZ6Nr3LcxJZK+eKOz/V9oTQsjVlx7X/keAN9vf9wE3Vri+vcB19vf3AXdU\nuRcKeKHr/zcB95e0+Q/gb+3vx4A/AlpK2jy/zL24BfgbrAkrjU1E9r4/Au6xv78TOODa12D3awUW\niYwDr2PmBPlTbCKy/w9gTb7rylzn3wC3lLQ9Djzf/v8eZkciV5dc74dn0Tf9rMeBMfv5/VmVvowB\nF9rfPw7cV6Hdm+zxphc8XwT+oaTNPuBa19h8u2vfp4AvVTj2HwC3u8bbHwLfsf8/SmFx8XFmkkil\nMX0Im4Tt/99NgUSeh0WeAdf+bwMft79/Hfhze8zss/v+HmCDfV8D5a5jKX58ddbiwauVUm3259Ul\n+3pd39cBb7DF5XERGQeuxprwVwFjSqlpV/ujHvqwDrjNddy9QA7odrU56foeB5rs72uwVn/l8DWs\n1Sv236/X6Efp9V5Rcr1vw3o5wZrMXwYcFUuNd5Xrt+XuxSosaShM8b05iiXlaTjXqZSK21+b7OO9\nCWtCOCEiPxGRs119/Zyrn6NYK3n3cTVWuc+vlMrb112urRdUej5e+qbRqZRqV0qdo1zGfVvFtNdW\nMY0DrVj3VKO39EAicjHwBeA1SqkhV5/+ouTZrsG6N7WupxT3As8TkZVYi4RbgOfaarNW4PEq11np\nHKtKrsU9XlYBvfZzc+/X9/NerIXMNViS1z1Y0vC1WIsi9++WNHwSWRpwp1ruxZJE2lyfRqXU/8VS\n7bSLSKOr/VrX92msVTVg2TGArpJjv7Tk2FGl1HGDPvYCmyrs+wZwo4hciKVO+UGNY5Ve770lfWpS\nSv0xgFLqt0qpG4Hl9nFvcf223L3ox1KHZbAmMfc+k+tEKfUzpdR1WMT9NJY6RPf1j0r6Wq+UerDM\nYfrd57dtF2tM+0DxPTKBl75VhG3/+CDwRqBdKdUGTGARUtm+iYh+Nu9VSj1W0qdPlPSpQSn1bY/X\nhlLqABYB/CmWJDSJRQ7vBn49y0n7BNYz0XC/S/3AGm33cO3Xz+9eLGnl+fb3X2OpBa+1/3/WwCeR\npYdvAK8UkevFMmZHxTIi9yiljgI7gL8TkYiIXA280vXbZ4CoiLxcRMJYevE61/4vAZ/QBlcR6RKR\nGw379Z/AP4jIFrFwgYgsA1BK9QG/xZJAblVKJTxc74+BrSLyDhEJ25/LbKNmxDaitiqlMli2itLJ\nQt+L5wGvAL6rlMphkc0nRKTZvt4/x7q3VSEi3SJyo01OKSw1pD7nl4CPuAy6rSLyhgqHugV4uYi8\nyH4Wf2Efz3RSHwA2Grb12rdqaMZSEw4BIRH530BLpcZieWd9D0uFdEvJ7q8A7xGRK+wx02iPzeZZ\n9Ausyfl9FCbpe0r+94pbsO5Zu4j0YBGUxsNYpPVBe0w+H+td+w6AUmo/kMCSvO+1SW0AS3L2ScTH\nwkEp1YtlJP0o1ovci2XU1s/yrViGylHgb7GMivq3E8CfYE34x7EkE7e31ueA24Gfi0gMy8h+hWHX\nPoP10v0cazL/LyxjpcbXgPOprcoqglIqBrwEeDPW6u8k8E8UyO8dwBGxPIHeg6Xq0jiJpa/vB76J\nZZR92t73p1jXfwhrlfgt4KsGXQpgEU4/1j2+FsvwjlLqNrtv37H7swt4abmDKKX2YU0wn8eSjF6J\n5eadNugDWM/q9bbn0Iw4kjLnM+5bDfwMuBNrQXIUSFJGfeVCD9aK/H9JcRzUWqXUDiznhS9gPacD\nWPao2eJeLJK7r8L/XvF3WNd4GGtcO2PXfk6vxLqHw8BNwO+4xpc+/4j9zur/BXh0lv1ZlBDbCOTj\nWQoR+TiwWSn19lpt57gf12Ct9NepeRh09srwG0qpnrk+lw8fZzJ8ScTHnMNW17wf+M/5IBAfPnzM\nH3wS8TGnECuAbhzLCP2vC9wdHz58nGb46iwfPnz48DFr+JKIDx8+fPiYNZ71ydE6OzvV+vXrF7ob\nPnz48LGksHPnzmGlVFetds96Elm/fj07duxY6G748OHDx5KCiBhlu/DVWT58+PDhY9bwScSHDx8+\nfMwaPon48OHDh49ZwycRHz58+PAxa/gk4sOHDx8+Zo0lRyIicoNYJVIPiMiHF7o/Pnz48HEmY0mR\niF3/4t+xMmduA94iItsWtlc+fPjwceZiqcWJXI5VtvQQgIh8Byst+p7TfaIHDwzzx998lJedv4Ku\nprraP/DhYzYQqd3Ghw8PyOTy3L1ngDddtoY/fJ6XkjOzw1IjkdUU1y7oo0y9CxF5N1ZFM9auXVu6\n2whff+goE4kM336k1z7mrA7jw0dF+GnrfMwl/s9P9vokMlsopb4MfBlg+/bts3pVb3rbJRwcmuYv\nvvsEe/on+Na7ruSy9R2ntZ8+fPjwcboQT2d57U0P0jsa51Ovv5AbzlsxL+ddUjYRrGp87prHPZjX\npPYEEWHz8iZu/r3LWdVWz19+9wmSmdxcnMqHDx8+Thmf+fkzPH0yxk1vv5SXX7CSYGB+1CdLjUR+\nC2wRkQ0iEsEqmXr7XJ6wtSHMP772fI6OxPmvXx+ey1P58OHDx6xwZHiarz5wmLdcvpZrt9bMmXha\nsaRIRCmVBd6HVed5L3CLUmr3XJ/3OZs6ecFZXfzXrw8TT2fn+nQ+fPjw4Qn/cd9BQsEAH7huy7yf\ne0mRCIBS6g6l1Fal1Cal1Cfm67zvfcFmRqfT/OCx/vk6pQ8fPnzUxMhUilt3HucNl/awvDk67+df\nciSyULh0XTtndTfz3Z29tRv78OHDxzzhR0/0k87l+Z2r1i/I+X0SMYSI8IbtPTx2bJyDQ1ML3R0f\nPnz4AOC2x/s5Z2ULZ61oXpDz+yTiAS87fyUAP989sMA98eHDhw84NhLnid5xXnPxqgXrg08iHrCq\nrZ7zVrdw916fRHz48LHwuPeZQQCu2zY/MSHl4JOIR7z4nG4ePTbG6HR6obviw4ePMxz3PjPEmo56\n1i9rWLA++CTiEVdv7kQpeOTw6EJ3xYcPH2cw0tk8Dx4c4dqtXcgC5mXyScQjLuhpIxoO8PDhkYXu\nig8fPs5gPNk3Tjyd4+rN8xtcWAqfRDwiEgpw6bp2HjrkSyI+fPhYODzeOw7AJevaFrQfPonMAtvX\ndfD0yUmmU370ug8fPhYGjx0bp6e9fkECDN3wSWQWOH91K0rBnhOTC90VHz58nKF47NgYF69tX+hu\n+CQyG5zf0wrAruMTC9wTHz58nIkYmEzSP5Hk4jULq8oCn0RmheXNdXQ21fGUTyI+fPhYAOzpt7Qg\nekG7kPBJZBYQEc5f3cLu4746y4cPH/OPfQMxALYuX5hUJ274JDJLbO1u5vDwNLm8X+PUhw8f84tn\nBmJ0t9TR2hBe6K74JDJbbOpqIp3L0zcWX+iu+PDh4wzD/oEptnYvvBQCPonMGpuWNwL4GX19+PAx\nr8jnFfsHY2xZBKos8Elk1tjY2QTAoaHpBe6JDx8+ziT0TyRIZvJsXt600F0BfBKZNdobI3Q0RnxJ\nxIcPH/OKY6OWCn3dAiZddMMnkVPAxs5GXxLx4cPHvKJvLAFAT3v9AvfEgk8ip4Ce9nr6JxIL3Q0f\nPnycQegbjRMQq77RYoBPIqeAVW31nBhP+m6+Pnz4mDf0jiVY2VpPOLg4pu/F0QsXROTjInJcRB63\nPy9z7fuIiBwQkX0icv1C9hMsEsnmFUOx1EJ3xYcPH2cIekfji0aVBYuQRGx8Vil1kf25A0BEtgFv\nBs4FbgBuEpHgQnZytf0gj4/7Ki0fPnzMD/rGEvS0Lw6jOixeEimHG4HvKKVSSqnDwAHg8oXs0Oo2\nn0R8+PAxf8jk8gzEks4CdjFgsZLIn4rIkyLyVRHRuY5XA72uNn32thkQkXeLyA4R2TE0NDRnndSG\nrf4KJJLM5Dg8PI1Svs3Ehw8fZhieSjE8VV5FPjqdRikrCexiwYKQiIjcLSK7ynxuBL4IbAQuAk4A\nn/Z6fKXUl5VS25VS27u65q50ZFNdiIZIsKxNZHAyyUs+ex8v+Jd7eN+3H/OJxIcPHzXxkydPcNU/\n/oIrP/kLfvLkiRn79VzTtYhIJLQQJ1VKvdiknYh8Bfix/e9xYI1rd4+9bUHR2VRXlkQ+9bN9nJxM\n8sbtPdyyo49rt3bxxu1ryhzBhw8fPiyC+NCtT7JtVStKKT5621Ncs7WT5mi4qA0sLhJZdOosEVnp\n+vc1wC77++3Am0WkTkQ2AFuAR+a7f6Xoaq6bIXqOx9P84LHjvPXytfzT6y7ggp5WvnTvQfK+K7AP\nHz4q4JsPH2U6neUzb7yQj7/qXCYSGe54qlgacUikySeRaviUiDwlIk8CLwA+AKCU2g3cAuwB7gTe\nq5TKLVw3LXQ2RWaQyF17BsjmFa+9ZDUiwu9etZ5DQ9M8emxsgXrpw4ePxYx8XnHro308d1Mnm7qa\nuHhNGxs7G/lxiUpraMqXRGpCKfUOpdT5SqkLlFKvUkqdcO37hFJqk1LqLKXUTxeynxqdTXUMT6WL\ntj14cISu5jrOX21VHbvu3G7CQeGuPQML0UUfPnwscuw5MUnvaIIbL1oFWIXvrtnaxY4jY2Ryeafd\nUCxFczRENLyg0Q1FWHQkstTQ2VTH6HS66EE/dmyMS9a2ISIAtETDXL6hg3ufmTtPMR8+fCxdPHBg\nGIBrthYcgS7f0EEik2OXqwz3UCy1qKQQ8EnklNHZFAFgLG5JI2PTaY6MxLloTXtRu8vWd7BvIMZk\nMjPvffThw8fixgMHR9i8vInulqiz7aI1bQDs7i+U4R6eSrGsMTLv/asGn0ROES31lufEZMIihwN2\navizVxYXjLlsfQdKwWPHxue3gz58+FjUUErx+LExLlvfUbR9ZWuUxkiQA4OFchOTySyt9T6JPKvQ\napPIRCILwGE7NfzGzsaidhetaSMglqrLhw8fPjT6xhJMJrOct7qlaLuIsLm7uZhEEhlnzlks8Enk\nFFEqiRwemSYcFCclikZjXYi1HQ3sH/CLWPnw4aOA3f2WzePcVa0z9m3uaioikYlEhpb6BQnvqwif\nRE4RBUnEJpGhadZ0NBAqk6Z58/JmnhmIVTxWLq+4c9cJfntkdG4668OHj3nFiYkEt+7sq5rpe0//\nJAGBs1fMrJm+ur2egViSTC5PNpdnKpVddJLI4qK0JYhSEjkxmZwhhWhs7W7inn2DpLN5IqGZJPPh\nW5/kuzv7APin153Pmy5bO0e99uHDx1yjfzzBy//tfsbiGVa0RPnxn11NZ5kgwYND06ztaCjrtruy\nNYpSlldWvb1/sZGIL4mcIlqixeqs4SoueFu7m8nmFYeHZ5bU3Xl0jO/u7OOdz1nPVRuX8X9+spex\n6XSZo/jw4WMp4BN37CWZyfPpN1zI8FSKL/zyQNl2R0amWV9iQ9VY0Wp5a52YSDoL1ZaoTyLPKkRC\nAerDQSYSGZSyClQtb46WbbvBHijHRuMz9n37kWM01YX44A1n8Tev2EYsmeX7jy14ajAfPnzMAoOT\nSe7cdZJ3XLWO113awysuWMmtj/aRzBQn2VBKcWwkzrqO8vVBVtguvycnkk54gC+JPAvRWh9mIpFh\nPJ4hnctXTNOsq5H1lpBILq/42e6TXH/uChoiIbatauGCnlZ+4JOIDx9LEj98vJ9cXvHmy6ykq6+9\npIdYMsuDB4eL2o1Op4mlsqxbVl4SWelIIglHEmlt8EnkWYeW+hCTyQyDNTJsdjRGaIgE6Rsrrj+y\nu3+CWDLLNVs7nW0v2dbNU8cn/NK7PnwsQdy3f4gty5vY2NUEWNHnkVCA3xwcKWp31F5QrltWXhJp\nrQ8TCQYYmkoRS1phBM3RxWXK9knkNKA+EiKezjEYSwKVC8aICD3t9fSNFUsiDx+yvLGu2rjM2abT\nH+h0CD58+FgaSGZyPHJ4lKu3FBaF0XCQS9a28dChYs9LrZVYW0GdJSK0NoSZTGSYTlkk0hjxSeRZ\nh4ZwkEQ6x1jcEjeXNVWOKF3dVj9DEtlzYpKVrVGWu1IebFvZQn04yBN91SPcdx4d47bHZupaffjw\ncfrx8KERfvj4cdLZfMU2Tx2fIJXN85xNnUXbL+hpY99AjGxJQkWg6N0vRVt9mPF4hoT9jtdHFk/y\nRfBdfE8LGiJBTkxkiNmGr+Yq3hPdLVF2uXLhAOw9MTnDRzwUDHDuqhae7JugEu7cdYL3fONRAL7/\n6HFu/v3LnaSPPnz4OL347o5e/up7TwJw53knueltl5R933bbCRN1Fm+Ns1c0k87mOTIyzebl1vs+\nFEsRCQVoqaKiamuwSCSetkikYZGRiC+JnAbUR4IkMjkm7dQn1VzwuprrGJlKkbMLVGVyeQ4OTXH2\nypYZbc/vaWV3/0TRykUjk8vzt7fv5rzVLfzV9Wdx//5hfvLUzHKaPnz4OHXEkhn+/sd7uGJDB+97\nwWZ+uuskDxwYKdt2z4lJljVG6G4pVmufvaLF3l8IOB6Kpehqqqu6+GutjzCeKJBINOSTyLMODZEg\n8XSWWDJDOChEw5Vva2dTHXlVyPrbP54gk1Mzcm0BnLeqlWTGWrmU4hd7BxmYTPGBF2/lPdduYmNn\nIzc/ePT0XZQPHz4c/OiJE8SSWT780rP50xdtpr0hzLcfOVa27e7+SbataplBDBu7rHf8qCtObDCW\nYnlL9dTubQ1hJuJpEuks9eEggcDi0jb4JHIa0GAb1ieTGZqj4aqrCu25pXWh2j6ypoxhbdNyy7Pj\n0NBMErlz1wmWNUa4dmsXwYDwukt7eOTI6AyjvQ8fPk4d33+0j7O6m7loTRt1oSCvvHAVv3h6gFS2\n2BaZzyv2D06VTWESDQfpaq4rsolqSaQaWuvDjiSy2FRZ4JPIaUF9xDKsTyayVXWbgJP2QJfU1ZO+\njiFxQwcnlka4K6V44OAIV2/pdHJ0vWRbNwD376/uzZVI53i8d7yqYdCHjzMFBwZjnJhIVG0TS2Z4\nrHec67Z1OwvEa7Z0kczkefRosePLYCxFOpuvGPexuq2evvG4q32ypiTSaKvL4+ncojOqg08ipwUN\n4SDZvGJ0Ou1k9a0EXcTKLYkEA+JEprrRWh+msykyg0QOD08zFEsVuQRvXt7EipYov67iEjyRyPDy\nz9/Pq//9AV73xQeJp7PG1+jDx7MN//aL/bz4M/dxzad+xa+eHqzY7pHDo+TyiudsLrxvV2zsICDw\n0KFiu8ixGi67Pe31HLclkXQ2z1g8Q1dTZc8ssEIIlK0C9yWRZyn06mAolqrpw73MlkRG7bxYfWMJ\nVrREy2b9BVi3rHGGTWSvbZg7z+X9ISJsX9/O41WKXn32rmc4OhLnT56/iaeOT/Dl+w7VuDIfPp6d\n2Hcyxr/e/QzXn9vNpq4mPnTrkzNUUxqPHB4lEgxwydpCtdLmaJiNXU3sOVHsaXnUflcrk0gDx8cT\n5POKcdsu2lElJAAK3lgjU2nqF1mMCCwQiYjIG0Rkt4jkRWR7yb6PiMgBEdknIte7tl8qIk/Z+/5N\nFpEva4P9YMfi6apGdYDmuhAihay/QzUMaytbo5ycSBZte/rkJMGAsNm2mWhc0NPK8fEEI1Mzo9xj\nyQzf3dHLqy9azQdvOJuXbOvm/z1wpOKL48PHsxn//eBh6kJB/ul1F/CRl53DYCzFnbtOlm2758Qk\nW1c0zciyu21lC3tK3PV7R+MExErhXg7dLXVkcoqJRMY4F1a9QyIpGspk+l1oLJQksgt4LXCfe6OI\nbAPeDJwL3ADcJCL6rn0ReBewxf7cMG+9rYE6O637ZDJTNp2zG4GA0FwXckhkdDpNR0PllciqtnpO\nTCRRSjnb9p6IsbGzcca5zl9t1WR+6vjM2JL79w8znc7xxu09ALzlirVMJDLcu2+o5vUN2vUMfPhY\n7BicTJZ1iXcjnc3z4ydO8NLzV9DWEOF5mztZ1Rrljgou8ntPxBz3XDfOWdnC8fFCTiuw1FkrW+sJ\nV9AsLHPZRCcN05joFPBj8UzZEhILjQXpkVJqr1JqX5ldNwLfUUqllFKHgQPA5SKyEmhRSj2krNn0\nZuDV89jlqtAPNpnJO4RSDa0N4WISaaxMIitaoqRs3anGMwMxzirj/aG3uSuhady/f5imuhCXrLNE\n8qs3d9JcF+JXNUjk47fv5vJP/ILrPnNvTQOkDx8LBaUUH/rek1z+yV9w/b/eVzXn3OO948RSWV6y\nbQVgLeyuPWs5DxwYmeFwMhRLMTyV4pwycVza8cWdUHVgMsWqtso2jk77XR+eSjvlI2qldtfqrEQm\nV5GcFhKLrUergV7X/332ttX299LtZSEi7xaRHSKyY2io9kr7VOFeHdSSRMASXyft1PGj0+mqOlE9\nIPvHrQk8m8vTP54om7CtozFCW0OYQ2XqlTxwYJirNi1zBmE4GOCKjR385mBlQ/yv9g3y3w8e4YZz\nVzAYS/EPP95T89p8+FgI/HTXSf5nRy+vuGAlvWMJPnnH3optf31gmIAU56q7enMnU6nsDBuHrkRa\nzmVX2z3cpR2GpirXEwLotPeNTBckkdYa5W7dHlmR0KLR4juYMxIRkbtFZFeZz41zdU4NpdSXlVLb\nlVLbu7q65vp0RILeSWQikWEqlSWdy7OsiiSystXSrWq7yEAsRTavWN1W3nC3sbORQ0PFkshEPMOx\n0TiXrmsv2n7lxmUcGYk7iSNL8dVfH2Zla5TPv/Vi/vB5G7njqZNlC2r58LHQ+M/7D7Gxq5HPvfli\n3nHlOn70RH/Fcf3I4RHOXdValFL9wjWWk0qpKri3SpbdNR3Wu1lEIjXiPvS7PhxLeZBECiRzRkki\nSqkXK6XOK/P5YZWfHQfWuP7vsbcdt7+Xbl8UcEsidTUM61AgEe2h1V7FJqKTOeq22j2wkuFuY1fT\njIn+6ZPW6qpUBaa9u3aXGAfB0tnev3+YN2xfQzgY4K2Xr0WEmjVOekfjvPebj/KR7z/p5BLz4WM2\n+ObDR3nHfz3MT2uk8zk0NMWjx8Z582VrCAaEt1y+lmxecceTM3+nlGJP/2SRZyNY8RvtDWF2leSq\n6x2LE6rggt8cDdPRGHFIJJXNMZHIVJVEtBF93GVYrxUW4HbrDQXOIBKZJW4H3iwidSKyAcuA/ohS\n6gQwKSJX2l5ZvwNUI6N5RRGJGOS1aaoLMZ3KMWITQ7Wsv9peMmq7Ax63A5Uq1XFf3VbvBDxp7Ksg\nkm9bZefyKUMiD9p1D1549nLAKtO5fV07v9pX2Z8+nc3zrpt3cPfeAf7nt7186NYnK7b14aMa7tx1\ngo/dtotHj47x3m89ymPHxiq2/aUd4/GKC1YBVszU+mUN3Fcm8LZ/IslkMuuMfQ0RYduqFp4eiBVt\n7xtLsLKtsgv+qrYoJ2xV81CNekJgJVZtiASJJbNMJrJEgoGadtT68OJWZ1VUxonIvxn8flIp9dde\nTyoirwE+D3QBPxGRx5VS1yuldovILcAeIAu8VymlfVD/BPhvoB74qf1ZFChWZ9Xm5YZIiOl0tlCp\nrL4yidQpO7oaAAAgAElEQVSHg9SFAk699f5xS0SvZLxb1RZFKRiYTDqpVJ4+GaO1PjxjNdUSDbO2\no2GGHhjggf3DtERDRZlIn7Opk8//cj8T8UzZ6mo/eaqfp0/G+NLbL2XfyRifvfsZnuqb4Pye1hlt\nffioBKUUn7pzH2d1N3PLH13FCz99D1/45QH+652XlW3/0KFR1i9rYJVrYXXN1i6+t7OPXF4RdOWa\n2msvmLatnGnj2NDZyI+eKJZeekfj9FRQHYOVgWJ4yno3TUgELG+sWDJDKBigORqqmXnbrd1Yauqs\nG4GdNT6vm81JlVK3KaV6lFJ1SqlupdT1rn2fUEptUkqdpZT6qWv7Dlsdtkkp9T7l9nldYBQZ1g0k\nEZ0mRReZaaqrbFgTEToaI446a3TailptqBB05NhQJgv64MND02zqaiw7WDd2NXKkjJ3jsd4xtq/v\nKHoBr9q0jLyCncdGZ7QHuOW3faxb1sBLtnXze1evpy4U4Hs7e8u21Tg5keTNX/4N133mXh45XP64\nPpY+JpMZ/vBrO7j2n3/Fz3aXj8fQ2Hl0jEPD07z7mo20NoR52xVr+cXTgwxOzrRx5POKRw6PcKXL\nSA5w0Zo24uncDPuglsrPKuOyu35ZIxOJjLNgA0sS0baPcrBIxCIPnVS1mnoarMWbJYlkjKoUuhep\nS02d9Vml1NeqfYD/mK+OLmZ4tYk0Rqw0Kdptt7GuOvG0N0ScAVrLJVjXZNbeXADHxxOsbi+/mlq/\nzCIRNyens3kODU3PUH85NpTjMyWXqVSW3x4Z5WXnryQQEFqiYV50znLu2HWSSnyvlOIvv/sET/ZN\nMJ3K8p5v7HT0xD6eXfi72/dwz75BBHj/dx4rcostxU93naQuFOCG8ywX3JeevxIoqK3cODoaZzKZ\nLYomh8JYLTWU943FWdYYKbtwW2/nuzpsR52ns3kGY6kiCacUmkSUUk4piFrBg5YkkiWZyVVcDLrh\nlj7Ci1CdVXHGU0r9a60fm7Q5E1CkzjKSRKyBo8XfapIIMEMSqerNZQ/4E7Y3Vz6vODGRqGhDWb+s\ngel0jiFXlPvBoSmyeTXDEN9UF2JDZyO7+mcGMz5yeIRsXnH15kI1t2u2dDEUS7G/TNwKWP76vz4w\nzF+85Cz+4x3bGZ1O8/Xf1E5n/+v9w3zu7v1+3MoCIpvL882Hj/K1B4/UTOZ5bCTO9x/r4w+u3sC3\n3nUl2Zziqw8crtj+oUMjXLqunUb7vTh7RTMrW6PcXyYv3L6TWrIoHqubupqIhgMznEZ6RxP0VEhJ\noj2wNMHpd66qy25TZEYEei1DeXM0TCxpVSo0SagYChaII7KU1FkiEhWR3xWRV4mFD4nIj0XkcyLS\nWel3ZyK8xok0uHJtAc7LUgntjRFHahmdTtNehUSa6kI0RIIM28cemkqRyamK3lzr7YCpoyOFlaF+\nMctF6W5b2eLk7nLjoUOjREKBIjfi59qE8puD5Yv3fG9nHw2RIG/c3sP5Pa1cvr6DWx/tqyi5APzq\n6UHe8dWH+ezdz/D6L/6mKFrYx/zh7360h4/dtou/vX13TQeK7z9mhXi987nrWdVWzw3nreAHjx13\nCrO5MRHPsOfEZJF6SkS4ZF35vHA6jmNLd3EKoGBAHCnbjb6xeNmM2QDdthQ/OGm9O1pN1VnFZVcT\nzPBUwWW3loqqIInkjWyo4cDStYncDLwE+H3gHmAt8AUghmXg9mEj5LIbmKQlcJNIJBSoOTCsGstm\n6iyw1F/am0vXLuipIImsKpFcwIp4DwbEKaLjxsauRvrG4jNWn3tPTLK1uzi/UE97PZ1NkbJpWADu\n2z/Eczd3OuWEX3nRKg4NTZcNlgRLqvqHH+9hU1cT337XlRwfT/DVX1de0Wo80TvO3/9oj29zqYKh\nWIpP3fk033nkWFUSB2vi/sbDR3nnc9bzvhds5rbHjrOrwjMGuHvvAJet63Dsddefu4KxeKasx9Wj\nvWMoBZet7yjafvGaNo6PJ2ZEou8biLG2o6GsWmjdsoai5KW5vOL4eII1FVS7zXUhouGAE1+ivSc7\nq3hPaoIZiqWZTGaJhgM1PTSbo2FiqSyJdK7I86oS3EWo3FLJYkG12WubUuptwOuBs5RS71VK3Wl7\nY62p8rszDkGPD1kP+KGpFI0G4myj7RIMtdVZYKm/tHFwyH4hKiV57G7Wq68CiRwftzILlyO39csa\nyStmFL96+mSMs7rLuU22lo1DOTYSp3c0wXM3FVacz7MllwcrpLN/5Mgoh4aned8LNnPVpmW86Ozl\nfPPho2VXtBoHBmO85SsP8dUHDvPWrzzE472Vsxy7MR5P18zBtNgxOp0mX+XeaGRzeX7nq49w0z0H\n+fD3n+Kmew5Wbf/dHb2EAsL7X7SFd12zkYZIkG8+XF4NOZHIsLt/siiN+jVbuxChbHnZZ2wp+JyV\n5e1xOuZJ4+DgFFtKEpFqrO9spHc04YwPKwecqiiJiAjLm6MMaEnEJqxljbXjPiaTGSYTmZqBg2B5\nXCbTOZLZHHUeEyouKXUWkAZQSmWB/pJ9fupXF9wrhaBBcmEtiQzHUjVVWQBNdUHSuTyTth61mjoL\nLPXXqK3+cmJRKrwILfXW6sudKfj4WBUbSqe1inOv8Ean0wzFUmVTQ5y3qoX9A7EZ2YIfPmxNIM9x\n2VDWLWtgVWuUhypIDHc8dYL6cJCXnGsV4HrNJasZnkqz82jlGILP3rWfoAh3feAa2hsj/MvPyqVs\nK8a/3v0MF/39Xbzw0/caV4ocjCUdHboJcnnlKallOpvncIkDRCXk85bDwiX/cBevvumBmiq/7+3s\nY++JSb709ku4/txu/v1XByr+Jp9X/OiJE1y7dTntjRFa68O88Ozl3LVnsCxh/fbwKEpRpJ5qrQ+z\nuauJx3tnPrd9AzG6W+poK/Fw0lLxwRL72vHxREVSWL+skbSdJggK7vGVxjZYWXYLkohNIlUkEa26\niiWzTCYzNe0hAPWRAIlMjqShJOLGUlNn9dgp1z/v+q7/r5i36kyEmzhCBvWPNYkMxpI1jepQMLzr\nl6GW90dHQ9iRRPTf9sbyvxERuluiDLjUBJY3V+UXE+DI8EwbSrmkkJuXN5HNK3pHi43gT5+MEQ0H\n2NRVWEWKCBf0tLG7gmrkoUMjXLahw5Hkrt3aRTgoZb12wLr2O3ef5K1XrGVLdzO//9wN/PrA8Ay3\nTzd2Hh3lX+/ez/PP6mJsOs3HbttVsa3G9x/t46p//CVX/uMvuHvPQM32sWSGTR+9gy0f+6mRim08\nnualn7uPF/zLPbzr5h1VJS+AHz5xnO/t7OPl569kd/8kn/55deK8ZUcvZ69o5vpzV/CnL9xCPJ3j\nh4+Xz0xwYGiKk5NJrreJHODF53QzPJUqK3E+3jtOMCBctKataPtFa9p4vHd8Bik+MxBja/fMcdTV\nVEdzNMRBV6noyWSGWDJb0XtKeyoO2FK2LpFQzVC+vDnq2ERGptJEQoGq76iWPGLJjFFlU7AkkWxe\nEUtljWwibiw1ddZfYcWC7HB91/9/cO67tnTgVmcFDEhE2w0yOWVkiNfSihazaxW+aneps0am0zTV\nharqabtbogzYkkg2l+fkZLLiaq2jMUIkFHBeTIBjo9aLrbOauqEN96UGzn0nY2xZ3lx07wDOXdXC\nkZH4jJQpY9NpnhmY4ooNBV15czTMeatbebSCJPLLpwfJ5RUvv8ByEX3VRVZE88+rTPRfvOcQHY0R\nbnrbJbzn+Zu495mhGSoUN4anUnz0tqe4aE0bm7ua+KvvPVGzYqSbmN51846y9V/c+OQde+kdTfCW\ny9dw995BbtlROfZGKcVNvzrIOStb+PxbLub1l/Rwy45ex6ZWit7ROI8eG+fGi1YjIpy3upVNXY3c\nVeEe/faIRXqXu56D/v5oGRvHvoEYG8qULTh3VQtj8UyRV2A+r9g/MMVZZUhERNjU1cRB1wLghBN4\nW36sLteq2pg2lNfOENHVXOfYXXSZhmrBgE2zkET0vYgls0benG4sKUnEIEbEh40im4gBibgHgomO\ns8khEeulqaUC62iIEEtlSWfzRob45c0FEX54Kk0ur1jRWj4i3pJc6oqCGY+PJQgIZX+zQUsuJdUZ\n91VIZ3/uasuu8vTJYg8wPUGVGlwvWdvOE33la8b/8ulBulvqnKj71W31bFvZUrEU6mQyw73PDPLa\ni1fTEAnx1svXEgwIP3qiVJtbwNd/c5R0Ns8/v/4C/uHV5zIWz3Drzr6K7Q8Mxrj9iX7e94LN/PwD\n1zCRyPDNh49VbD8YS3LbY8d56xVr+eRrzufCnla+ct+himqtp0/G2D84xVuvWEsgILz9ynUkM/mK\nxPmgncX5um3LnW0vPHs5Dx0aIZGeqbXecWSMzqa6osp9K1ujLG+uK2tvemYgVpYUNtl2jIODhXEx\nPJ0ilc2ztkyyQ7Cy5mpHEShI5pVIpNu2A5ZKItXeh9Z6y+idyyumUllaamTYDQcD1IeDTCYydvCg\niTorWPa7CZaUTUREfiQit1f6zGcnFzvc6qzSlXU5uHPlmHhzadIYdEik+sBrs1+S8Xja2JtrPKFt\nKNqtsXqNk4EiQ3yS7gqG+LaGMC3RUBGJjNk2lHKTy8ZOa3IpTSKpI41LDa4Xrmkjlc2zf3Cm2/Hj\nveNctr6jaCV5xcYOnugbL2uPuP+ZYTI55QS5tTdGuGJDBz/fXVly+clTJ7hy4zI2djVx6boOzl7R\nzI/KJP7T+MFj/QTEcnfd2t3M87Z08j+/7a1ICnfvGSSTU7zl8rWIWMkFDw1Pl3WzBvjFXquvL7Wv\n4bzVLaxoifLLveWJ87dHxmhvCBepFS/fsIxMTpWNB3qyb5yL1rQV3VOthiz1wounsxwbjZddLOjz\nuSWLWjYLXeVT36s+m0QqtW9viBAKiCOJjEynaY5Wl8odQ7mdZdtE3axddhOZnFHlQbcdxEQT4caS\nkkSAfwE+DRwGEsBX7M8UUN194wxDkWHdgEQiHklEi8xanVVrYDfb+2OprBGJtNlFsvJ55RiHO6p4\npHS3FDxYwEoKWelFFhF62hsc1QMUUmeXS6/d015PKCAz1F8HBqZY0RKdsdLTRFRaiGt4KsXx8QQX\n9hTr4i9d104yky+bdHLH0VGi4QAXuvT312ztYv/gVFmV05HhaQ4MTnH9uSucbS85dwU7jowWpc5w\n4+69A2xf3+G4hr7s/JUcH0/wzEB5O80v9g7Q017PVjsO4rpt3YhYxymH3x4Z46zuZuf4IsI1Wzt5\n+PBIWaLaedRKb+MmBW2/KI3LyOTyHB2JO31xY0t3E0dHpovI+dDQNEpR1ntqRUuUhkiwhESqSxYr\nWqOkc3lnjJ4YTxAKSEUbRyAgLG+ucxY8w1PV07SD9S6A5VUWS2ZpMpAsmqMhYqmMcdzHqZDIkrKJ\nKKXuVUrdCzxXKfUmpdSP7M9bgefNXxeXFoxIxJ3GwGBQaNI4aajO0u2nU1nG45mauXxa68MoZelo\nCyRS+TfdLcUrwv7xZNXUECtao0XqLz1ZlDPeh4IB1nQ0zFB/HRiamhFQBpYdJhQQJ+hM4yk7pXdp\n8kdNKuWMwI8eG+eCnrai1Z4Onny0TKDbDtsWc9Wm4uJGeUVZj7GTE0mePhnjxecUVEcvOMv6ft8z\nM4un5fKK3xwa4QVnLXcm+WVNdZzV3ezYJkrbP3p0jO3ri1OAXLy2nbF4piigFCxj8OHh6RlG767m\nOla1RmdIFkdHpsnmFZvLkMKmriYyOVWUzuS4/ZzXlIkQDwSEnvb6ovQ8tUhEG8p1TNPIlLVAqvbO\ndbVEHRvHyFS6qj0ECpKIrvfTbOL4YufCSmRyRqTgTo3k1bBuMl/MN0yuoFFENup/7BTtMy2oPgCz\nBGnFkoi5+KsjaGtJIppkplJZYsnaSd60O+V4Im1IInUkMjmm7ASSQ7EUy6t4vHS31JWov3QAZKV8\nXg1F3l9KKQ4MThWpXDQioQDrOxtnrOT32sbw0pTfq9vqaYgEZ6i/kpkce/onuHht8YR6/upWQgEp\n64762LExmutCbHb164Ieq/3OMkbmJ/osItrusuusaI2ypqO+rD3h0NAU8XRuRp+2r2/nsWPjM7y0\nDgxOEUtlZxQf0yShz6+hPZ3KkcKW7mYODRffUy3tlSeRxqJjgolkUV8U5No3lqCpLlTRw6m0QNto\n3ERVG2bcdncfi6dnuA6Xwl3vYyppps6qDwdIpHOks3kjEinKheVRPRUwCCGYb5hcwQeAe0TkHhG5\nF/gV8P657dbShcmYcJOIycpCr1z0BG8qiUwls0ync7VtKPrFiVuFsgJS2Fa2vSadeIZEOkcik6ta\n4re7JcrwVNpRdfSNJWiMBCsaLVe21RdJLkOxFPF0rmwEPcC6joYZCf2OjViJ9kqDvwIBYfPyJvaX\nkM6RkWkyOcW5q4oll2g4yPrORvadnKlueuzYOBetbStSZ0bDQbatauGJMqTwVN8EwYCwraRe94U9\nbWVJ5EktTZUUULpoTTtTqewMu1GhlGvx8bcsbyIcFMcVW6M6KTRxcHC6KPZDE0Q5Mt/gpM8pJpFo\nOEB7mbIBACtbokUk0j+eYFVbtKI3VLddykCPjbHptJGUrWNeTCQLtzprKpV1VMnVUB8OOjZF7yTi\njRRqpY1fCNSc8pRSd2IVh3o/8GdY0es/n+uOLVUEDSSRUEDQY6FWQRooDMwR20WxlvFOk8botOVp\nVYt09IszbldbbG+IVHVV1i/uWDxdCMiqof6Cgqtlvx2HUnGyaI4yOp12AhT1RLOqtfyKtqe93pFu\nNI6OxMvaXAC2LG+eIYkctifIjWXclLd2N3GgpH0ur9g/GJtBCGDZacrZOJ48PsHW7uYZE80FPa0c\nH0/MCFZ86vgEDZEgG0smbW0H2j8wkxREmEG2oWCAdcsai+wPun04KKwro27a2NVIIpMrIvPe0Tid\nTXVlx1NrfZj6cLCEFCw1Z6XnvLItyvBUoYDa0FTKccstBx3rpN2VxwwkkbYSEqlFCvraYklzw3p9\nJOjYwOpNcmGdQmr3xUch1b2zLtHflVIppdQT9idVro0PCyYR6yLiDCQTcVYTzVQqSyQUqBmL0lTn\nzRDvkEg8zVi8eoJHwFlZjsXNSvzqYlhFBs4q6q8VrdY+HfSlJ6ZKbser2+uJJbNFUdZHR6ZZt6y8\n5LK2o4GByVRRFL3O11Uu1mXL8maOjsZJZgrtj48lyORUWeloa3czw1OpGcb1fScnZ3iX6eMDM4Ig\n9w/G2NI9M5Zm8/ImRJhBVAeGpuhpry+7Gt7Y2VikagLLM2r9ssayVfv0fXDbpk5MJCsWQxMRx3tK\n4/h45cwHYNk4lMJxLx+r4QRSFwrSVBdidFqrpzIVg2g1WuvDTCYzlsuugXqqIWztH45Zz86k3kc0\nHHRKNZhJIlL2ezXoaWURCiJVJZH/JyLtItJR6QP813x1dKkgaDgo6uwX18TvOxIMFCQXk7gS7c1l\nv5y1ghN1ZUXtkWJsQ4kXbCjVDJaalPSkanmMVYkadiQXq/8n7ZTvKyuRiG1b0fXnU9kcJyaTRbEM\nRe1tg36/y2Ps0NA03S3lV9kbuxpRquBVBjj2glIpAQoZZd3G/kQ6x8BkyombcaOcuyvY0lSZa6iP\nBFnT3jBDmjo4OFVknyk6x/ImjgxPF+UDswoulb9HpdHeACcmEmVrjWusaI0WpefvH09UfGZQeM56\nsWNJwdVJoa0hzFjckrDH41YwYDW0NkRQylq4ZPOqpiRS78omAbUXYGCps7TWzyTuYzaSiJ5VlppN\npJXalQ39PNwlMAk2hIJdxMTFV0QcacSkfX04SEBwotBrqbM0aUylskYivJZcxqbTRi7BbskFdCRw\n5clCT1QnJwqSSCQUqLhKLZCCNYH1jSVQiookonMtHXcFrh0ennJiVMzaV5ZcHPuAi3Q0AZULpFvd\nXk8kFCiSFNJZK+fT+goquXXLGuh19UcpxdGROBsqXMOa9gayeeWoFMEi50qTvDZiu4n2RA0vvJUu\nQ7lSipHpdFWJs8O1GMnk8kwmszWl4I5Gq0DbZCJDXlGzvTaU6yDFWjaRSChAKCCFWj+GNhGNWhl8\noYREjCURq93io5AqNdaVUuvnsR/PGpiuFPTgMfXOiIaDJDN5o/YiQkMk5KSUqEUKdSFL0tEle7ur\n6KXBZYhPZMjaS7BqK8K2MpNFVUnEnngcSWQyyYqWygZXd00HKKjBKksu1kToTq7YP57k6i3ly+Ro\nSadvvJhEmqOhsragla31iBSTjjY4l1OxBQPC2o6GIqP08fEEeQVrK6jkVrfVs9cVQDiZsFxMK6mb\n3O6xq9rqSaRzjMUzFe9RfSRIW0PYUU/FkhliqWxVyWJFq+WFp6O9c3lVVc2pFwWj02nHg8okMHZs\nOu0YsttqSC56gaQlJCNSiASdsdRgIFm4pQ8Tl93ILLyzAmJnvV2ELLL4wh+XOEwlES3+mkgWUKiY\naNq+LhRwDPG1vLNEhIZwkOlUztIb13jRQsEA0XCA6ZRlhxCprjtuiYYIBoSxeNpRaVXz5mpriCBS\nIrlUmVz0RK4zFmvy7KywCl7ZGiUgBckll1cMTaUqqmqWN9cRDkoRKfSPJ+hpbyhLbJFQgOXNdUXG\nfifAsor6yG2UPuKQTgWVXFs9w1Mpx07T76j8KsRYtGnpzjrHiRrtwZIIdTu9Mq9UUgCs2hp5ZUV7\njxm4ijtqznjaMZabeFtp91uAprrqJOIkO3Xsg7WDBxsiBW8rE8nC7RxjkpXXXeLWdL4oSCKLj0V8\nEjnNMLWJ6EA901w42s3XmHTCQefFNKnjXB8JkciYqbPAkm6mUjkrqjcSqmrsFxHa6sOMxTOu1PSV\nJ4ugXaNd998KmKz88kfDlsFVrx51HYhK0cmhYID2hgjDTpLKFLm8cnItlSIQEFa1FXuADUymKrYH\na5J3k86x0TjN0VDFlfOqMjETQMUCSlqFp/vkkEIlSaSlvqidJpNK7aGY2LThuJoE6UgWtoMGVCeF\nxkiQcFAYnTZz0ABLkpi21a76GNWgx/6ABxtHQyTkSEYm75tbmjAxrLvtIOWcGsohsEQN63MGEXmD\niOwWkbyIbHdtXy8iCRF53P58ybXvUhF5SkQO2CnpF+HtNPPOApxAMVNS8OLNBdbqaNpOoGdabTGe\nzhnFlVjtQ8TTWaZTWaOaKG0N4SJDvEmQ2JgrSKzW5LKsKeJIXkNTKUIBqZoy32pfrP7qqqLG626O\nFhXuGphMVlX7rW5vKCKdwclUVZXcitYSd9dYCpHKOcy0Sq7fIRGbFCqom1rqrbLJup2W1qoFiS5r\nqnOVFLCeRTUyd1y/p10kUuU5i4hVhXM65bSvpZ6yFi/WuIPa9j6niqj9jE28repdCzCTRZ7X4EGv\nGSugoCZfjJNezSu266u/XUT+t/3/WhG5/BTPuwt4LXBfmX0HlVIX2Z/3uLZ/EXgXVszKFuCGU+zD\nnMAk7QkU1FmmpKDFXmN1lmtFZEoiY/GMUVwJ6GqLWabTWSPSaYqGmUrlnDrUtWqitDZEiiSR1hqT\ny7LGiENQw7EUnU11VaWjDld77YFUTbJY1hRxpKhsLs/wVHVJpLu5zpGMwJq0qxmZV7VZ7q66L0Ox\nFMsaIxVXqqV2oIGJJAGhYpyFVbWvkDlgzGDl39FYKLM8aiBZuG0c2g23pvdUvZUyJGarp2pVBmyM\nhEhmrAJtYE4i2qHATBIpeFvVmcR9eAweLlZnefTOMpxf5hMmV3ATcBXwFvv/GPDvp3JSpdRepVTt\nEnM2RGQl0KKUekhZeqCbgVefSh/mCuY2kdlJIiYuvlCSKdjgN/WRYMEjxbDaouXNlTNuP53KEktp\nXXaNmih2uop0Ns9UKmsgiRQm7eGpFJ3NtdtryWXQ0fdXliyWNblIaipNXlVv39EUIZ7OObVFhmxi\nq4TSaOxa7XWlSn0No3ZKj2qLmI7GiKOmGY1btqxqZN7eECGZyRNPZz3bOGoVQ9NonCFZmAXSmpKC\nNnrrBYCJC667jZEkUlQe26vkcgZIIsAVSqn3AkkApdQYUP0NPTVssFVZ94qITvS4GnAXaeijSnVF\nEXm3iOwQkR1DQzMT280ljP24HUnErL2eHNyrmGpwe4mYvAiNkZDLI8VUErG8uUw8XhojtuRiTCIR\nxhNpJ4CwVvzAssaCpDAaz1TV3QN0utsb2Gk6GusYs+uu69V8NVVQZ8kkXyvAUpPCqMs5oFr7lvoQ\noYA47cemMzVVQW7pazyepiUarjrpLXNJFmPxDJFgoKq3kvbaG4tnGE+kCQWk5nN21FO26tXUHf2k\n475uZhOZsCUpkwwRRS67HtOYmCwiQx5JB3DYYzEq8U2uICMiQexpT0S6gJrFoUXkbhHZVeZzY5Wf\nnQDWKqUuAv4c+JaIzMwrUQNKqS8rpbYrpbZ3dXV5/fkpwfQhFyJQzX6gycbYEB/yps6qjwSZiGuP\nFLMaJ9OpLFPJbM1gRihMFtqrptZk0VhneYuNO7ry6uuWlvqwUw3RJOlkR2MdEwlL0plMZIiEAlWN\nop1NVtDaWDzj6O+rBVi6VTvTqSzxdK4qKZSm9BiOVScREaHdRQomdiM3iRjVmXGCRC1vq/bGcNXx\n2hCx4pOccVEXqjm+m+oKi4tQQGqOPae2jmEgrSaEMS+Gco9SvLu9SdyH+56Yai5cv/bYfu5R++2H\nfwNuA5aLyCeA1wN/XetHSqkXe+2MnVIlZX/fKSIHga3AcaDH1bTH3rboYEoKWrIwHRJad2runeWt\nZklDJEjajmY2qnESsUghHKxeg9o5fp1luJ9KW6lbap1DqzmM4wHqLF15JpdnKlk70Z52MR6PW9JO\nLRuNW1KYMLDraIIZmU7RGrPaVatlUchHlkEpy+W4Vu2LZY0Rp+Tr6HSangqeXM45bBuHUorxeG3J\nxQkqjacZNSApEaGxzirQZKrmbKwLWYlCU1kaIsGa74+7VHRDJFjTRhC0iSlhu0KbZohwvhu8C5Gg\nm4K2oqcAACAASURBVBS8pnY3bG9rLhajJFLzKSulvikiO4EXYc15r1ZK7Z2LzthSzqhSKmenn98C\nHFJKjYrIpIhcCTwM/A7w+bnow3xBq728BieapI53twsGxMjYH/UouTTUBa3018G8sSFeSyJGNRoi\nIdLZvKNbr6kWcdW6NkndotONT+ra2DUlF5sUplKOc0C1etpum0V7Q217QkMkSCQYYCyeJpnJk87m\nazsTNFmeTWA5H5y/uoY6qyFCOptnOp1jLJ6umsIEiuvSxJKZmkZv/RtL8jJzuGiOhjza1qw2Q7GU\nUSAgWPc2lc0TDIihzaLwvphI5aeSldcj5yxCOaR6AkZ3jqxB4NvAt4ABe9usISKvEZE+LIP9T0Tk\nZ/aua4AnReRx4HvAe5RSuvrOnwD/CRzAqqz401Ppw0LDa0K1gouvofor4E395SYOE+N9Xch6MZOZ\nnFGUriaF8UTGiHQa7DbDTsBkLV15QR2UyORqBpU1O6STMZJEtLppIpHxKImkHc+jasQmIpYb9HTG\nUcvVqtfd0VjH6LQlWZgkztSkN5W0DOW1VIR6wo6lskynzFy/HbVlKmtoWwsybWdKMBkXWj01kcgY\nj23dD9P2blLw6uJrbOOwYbqI1An5F2NkQ7WnthOr7wKsBcbs723AMWDDbE+qlLoNS0VWuv1W4NYK\nv9kBnDfbcy4+aEnErLXWnZqsjMBliDclHY8ifDQcsNRfOe914k0miyZ7wtIeY7UigZ3qj7bBtZYk\noifoKTvqvpbqyJlQ7WzB0XCgajRzQyRIKCBM2kkt3eesBCcvlOPuWlua0hX1Utl87UA9p1iZlcKk\nUj0XDX0PtSv32rrq6jIo9rYyVWfl8oqR6ZTRuNALllgyU9Omo+ElT11R+2DtjNng3bDuhteEiovQ\nw7dqedwNSqmNwN3AK5VSnUqpZcArAL+eyCmiMHa8TfKmqym9IjJXf3kLmCoy3AfNVqhguWY2Gaxo\nZxhQa0wwesLVAX61SKSUFGpJIs22ZBNLmbUXEUdVU5Asaie2HI8XJJFa6qOmaMjpD9SOvWlyqfCm\nU7UdIpwKmXb7JgPJQl9z3DBo1T0uTNrrcZdXXiQLbzFWkaBX0nGndvcmiZhygs5wsVTTnlyplLpD\n/6OU+inwnLnr0pmBQmpns/YFycLbi2MqubiNgyYvj/u4JgFZus1EImOUj0hPcFoSqaX/1qv8E8aS\nSGGCnIjXJoUmd3sDEtG/mXIF0tUkkXpLEjFt31yn7UY68M5MWhux41xqEXM4GKAuFGAqnSWeytFg\nQv4R65qnDEgKCrY403FRFP/kNcbKY3uvxwfvkoJXSWQRarOMvLP6ReSvgW/Y/78N6J+7Lp1ZMNVx\nasO6aW6uoMcI94jHl7POYxyKniC0O20tNLpWqAGpPQHoCbRAImaSxWRSq3aqtw8GhIZIkKmUmQ0F\nrGR/MVsSEantjtpYFyKezhmrv5ziY4Z5oQrFysxiLKw+WCqz6bRhTjVbEklmckbqqTpHPZU1G0ce\nMzHA7EnBVDXlJgLPNotFSApeYXJX3wJ0YdkwbgOWU4he9zFLeI1ADdtuHKbirFf1l1djoldvLj1Z\n5JXZitDJeRRL0RCpHW/Q4EguhhNqtCDpKINVuT5mLJllMpE18lRqrgsRS2aYNEhSCdrIbK7+arL7\noHN61TJkN7nsUibtrT6FGI6ljCQXsGxXyUyOeNpMctGLi1xeeZaAjZ1GvL4LtnrKlA9Ma4KUg6nk\nUjCsz/pUcwYTF99RrPrqPk4j9GAwdfHTA9WrIX42kojJJF/nMQ7Fqxoi6gSJpY2rywEM2d5ctaLo\ngwGhPhw0NtyDvSp33FfNVuWDsaSRyzHYSS1TOWN1VmkZ5FqShRPtPamJ1kw9NWDfo1oZc8EyfCcz\neVLZvJF6yms802zUWbqduWq3sOAxgWnS1XLwKrksRptIzZEtIr+iQIQOlFIvnJMenWHwKlmYx5V4\ndAn26J3lniCMSKfIEG8+WcTTuarpRTSiEau9jvg2IQUr6aR5+6Zo2PGGMiWdQ0NZplKZmqopsCb1\ndC7PaDxtpP4qJYXaWQCKScesREDQpf4yUE+Fgk5gn+dx4aHKZyqb96Ce0vZBMycT/S7kDVnkVJIi\nGksiSp9r1qeaM5jYRP7S9T0KvA7Izk13zhzosWO6EHEi3D1KIqZZhb3aRCIe1QqzNcSDVeukZn/s\nOvTaU8lU2tHpMKIGq+zGSJBEOksinTNK5KfVX14kEbAy8jbV1VZ/OZLIhFkKkHAwQCQYcKQvU5da\nnbTRpFaGW7IwWcB4zfEGzIJEZmcTyRqSyClJIh4liyUpiSildpZsekBEHpmj/pwxcCqVGQ7AQlEa\nb4Z4U0Q82kTcmUtN40oKxzfXlVvtzfIRWXUgzPN/RcMBRxKJGpJOLJklmckbTagNEWtVPp3K1gzs\ng4I6amgqZeTZpO1GuriWkQ0iHHDyZ5kY1qOhoFMAyshWFvYqcXqTaMGlnjK2cXgjEb0A0261tWC6\nUCsH83ytylP7+YSJOssdnR4ALgVa56xHZxhMx58mD9P22hCfM1xNuV8wk6hbdxsz10yPhnhXG9OX\ntD5s5ecyPUd9JMjRkbjz3eT40+ks6VzeSJ0VDVskYpGOiTOB9TqOxdNG0pqesHXqkwbDPo0nzFV4\nUY/eUMU2i9NvE4FZeB56NKxrCdDQJHKK6iyvksjig4k6yx25ngUOA38wl506E+CkPZkjcVa/aDnD\nN8FrpG3QoyRyKoZ4UxLxugqOhoKOEdtkQq1zqXbqI2aTvFJWVLxRbIwtGYxNZ8wC7+x7OjqVpi4U\nMCL/aDjAUMw80ab7ORgFoXolHY/PDApJDr0ayk2lc+ddmBfD+ty2nw+YkMg5Sqmke4OI1LZ0+qgK\nr7mzvAYnan20qXHQq/or5JFEIkWSi5kBNRIKkLYT55lAT6p1oYCR2s8tfZiop+rDQUcVZGYfsNqM\nx9OGbs12MOB0io7GZuPjT6dzNVOkOL9xkdmckILXKn8exxG4k5F6c9k1XfV7lSxORZ1lnDvLeY0X\nH4uYPIUHy2z7zenuyJkGLVF4XVmYDnC9KjVVZ3kVq92kY7KCdL9opitI3c40vbbXdBVuIvBCCubt\nrX5Mp3Oe1FPJTN7MpuNRRQjeJUK3usnMzuTNxuFVonX/xtzGEZhxrqrHF2/qrFOyiRi2031ZjLmz\nKi5fRGQFVvXAehG5mML1tgC1M7H5qIrZqrNMoSWFvKFx0GsdBHd7k5fZa3uw7CgxssbEWUhvYebK\n6Z7wTG0i5b6btDfpk5uMTUgqHBQC4i2PVNSjq7W7HyaSS9hj+hy3Cs50XOgFj4mDhru9V09IY8P6\nvKqzFh+LVJOBrwfeiVUA6jOu7THgo3PYpzMKxisLj+ovLSmYkojX1VTIY82F2Ugi2ivL1F7jNV+Y\ne8IzMzK73I49Si4mffIa8CkiRG1ngvAspC+zRJunsFgwmOSL1KKGRKgnd2Mbh04Z5LFgnLlh3bBh\nGXgPNlx8qEgiSqmvAV8TkdfZKdp9zAGMB5GubGY4jAppVebGJdj98psQkFcbChTyhJkSnOdEewH3\nyt+bO6qJ5FKsCvKWXNBE/WWdwyYRU0kkXFDtmNxXr0GoIc+SiPdxoce26bjwWgDOYyJez6rgWWEp\nVjYUkbcrpb4BrBeRPy/dr5T6TJmf+fCIudJxiqPXnStJpPCmmbxEgaIVp5kawtFlG745XutGhD2m\n8PYqfbmJw4ykvJEOFOJbvOZIM81k4CZ/k9+4JRGv7U3J3yER05gp+xpM1aJBu0+GQvy8TuxLLdiw\n0f7bNB8dOVNhPAA9jh3HODhHboruycWrOO/V1dI0c/FsU367z2Xa3sw+4G2C9KrOAld6G4/tTUmn\nSA1pop7yKFnMxrDu1bNRk4dx2QWPC7D5nNiXlCSilPoP++/fzV93zkTMzajwKuF4lUTc7b2K8151\n095tIoaFuFwpv03Uiu6J14QIiyQXAxuKexI1May7z2ES1Q+ussmzIFq35Fb5+N6JUCNouBrxqp7y\nXG3Q46JofrRZphaa+YdJxHoX8C5gvbu9Uur3565bz344CdU8DkDj1dEpuOyawD1ZeCYRYzdlb2oL\nrzmS9PG9Gmjd56oGr7ExXttD4Tl4jrEwrpDpzfAdnIXa0vmtcRzHzHOZ9MnYZdejFD8fKCRgXHyi\niEmE0g+B+7HK5ObmtjtnHkwne68is8egW8/qLLeKyeu4Nne19Obf7zVORBOBV5ICs9VtsQ3FRBUU\nIBgQcnnlQZ0lM/pW6xxgrv5yLxZMIuK9uvi6YTqOCpKIWfuCy67h8R31lzfD/Xxg8VGIGYk0KKU+\ndDpPKiL/DLwSSAMHgd9TSo3b+z6ClVYlB/yZUupn9vZLgf8G6oE7gPcrU0fuRQgtUczVwsKresrr\nCqfYJjJHkojHTMQOKXhsb4qwR0nEq00ECpOEVyI0Lpus1VmzkETM2ntT+blhvKDymLy0sEgwtXHo\n8xg1n1/D+iJkEZOR9GMRedlpPu9dwHlKqQuAZ4CPAIjINuDNwLnADcBNIqKXcF/EUqttsT83nOY+\nLQjmyijndXXkOWL9FGwi5q6WHkkk5E395bX4kGfDuttTyaPR2JgUPKYACXkkHRPpo6i92/Xb87jw\n1s7YxdejJFIIBDZsb9juVOBUNlyEsojJCHk/FpEkRGRSRGIiMnkqJ1VK/VwppWuSPIQV0AhwI/Ad\npVRKKXUYOABcLiIrgRal1EO29HEz8OpT6cNiwVytLLwe17M6q4hEvJ3Lq0HU1DCq3UW9Vos0tTOF\nPa6yi1yIDa9BTxLm0po3byuvFS+9GqVDRWrOuZGGvaqzCmUUzNp7lXTmM4p8MUoiJvVEameCOzX8\nPvA/9vfVWKSi0Wdvy9jfS7eXhYi8G3g3wNq1a09nX0875mpQeH+BvR3f/eJ4l0TM2umJ1DztiTdd\ntld1VpFh3eCGuWMg5kzl59hEvLX3SjqmcF+zeA7a89bOvBaPo6Ayau9ZnWXW7LRgEXKIkXfWJWU2\nTwBHXdJEud/dDawos+tjSqkf2m0+hpVe/ptm3TWDUurLwJcBtm/fvqjtJl7FU2PjoONhMjcJGE/l\nt15tIqYTmVeDqJ5ITe+pVxdf98Rues1aKjJ3a/bonRXQhvU5Itp5UHNq8jCVnj1nzHayPZi2N2x4\nCtDv8VLLnaVxE3AJ8JT9//nALqBVRP5YKfXzcj9SSr242kFF5J3AK4AXuQzkx4E1rmY99rbjFFRe\n7u1LFl5rJnvP9mufx7D9qaWz9tbe2CDqeGd5WzV7XcWb3iOvRmP3BDxXqh19zV5tKHOWDucUvPaM\n75HXd6fkr2l702cwHxO7YxNZfBxiZBPpBy5WSl2qlLoUuAg4BFwHfGo2JxWRG4APAq9SSsVdu24H\n3iwidSKyAcuA/ohS6gQwKSJXivXEfgfL9XjJY6ka1k/tXGbt9IRnuhjWK1Ov2Vq99gcM1Vmu9t7V\nQh4lEY+G8rnK7nxKxGlaW8PxbDRtb8E4wt2jJDKfWIx9MpFEtiqldut/lFJ7RORspdShU2DgLwB1\nwF32MR5SSr1HKbVbRG4B9mCpud6rlNKxKX9CwcX3p/ZnyWK2wYammKuJvRw8G/E9qqeMI5kD3lbZ\nQY/qr6IJ0iRNiqvfnl2ujfvkTRLR5GRaZ8bU1qLhvk7vac69tfda0Ml0XBTUX4tvyl6MfTIhkd0i\n8kXgO/b/bwL22NUNM7M5qVJqc5V9nwA+UWb7DuC82ZxvMWPuDOv2F9PcWadSWGeOVpy6nemq3GvO\nI93eq8uxKQKzsA/oCc88it72SDOWpqz2piTiOTHnPNhECgsw0/banuCpO4uqANT/b+/M4+Uqqjz+\n/RGWBEKAQFhDCEtEISJOAoZVYKISQIIIAwqE4EgmAwiouPDBDzIwEYRhxmFcGGQwRKOIIssgq5Go\nIxMkQEgCiATQDzARATWIYCTJmT9u9Xs3L/3eq+ru2327+3w/n37vLnVvnbrbqTp16lSvIiwfMdWX\n6WSutueG3zNh25vAoUUJ1i0UVbNI9QZqZjiFojriay1z7FH1TD6U2reQ2hKJfY4qcqyKnTY50ZxV\nl9deZFaps/z1jrGIlCPRm6uZlLAhEuXi+wZwZfj15bWGS9RlFPVMNLNPJJXUDtFUb67o1lfiqLIy\nerClztpXuUaxzgT1PBbJQUALcj7oqcUX5M3VTNrSnCVpHHApsAcwtLLdzHYpUK6uIT52VhpFv8D1\nUE/Y+QHPmxpoL1Hp1DODXT1moYHo1YOxz1ExyqxqXon3OTZ9xTyV2rEeL0f4n3hcMyihDokyZ32D\nLOTIKjLz1RzgW0UK1U0U3bHejCk+U4n9WKxJ/Fgkj40JF7+oKYTzJIcjTyxzUXGemtpCTTRPRadP\n7BNJvabNpIQiRSmRYWY2D5CZ/cbMLgKOLFas7iF9sGFsKPi09M38WEQPvEvsZE6eEyVR0dbTWksO\ncBlZ5kqq1Ai4sSMsm9m5XNRYmgrxrbXa5GkGbWnOAlZKWg94StJZZIP8fLbDOkmtHRXlRtuTvoQ1\nzooHUXStPNGc1TMgMzFEeC2kByMsxhSU7nZbPoeLdO+s7H/qu1a+z3U5ZYoNwLgxcDYwATgFOLVI\nobqJ6EG6iYbdomt19RArW8XMlOzim9ixHm3OqqslEpeuIkmsV1TN7tXR5rKk09dF4oD1BPNXqLBF\ny5Hm8dZMSihSlHfWg2HxNeC0YsVxGkWZfNz7EquwKl6osa2qyguWPFlRXPK6FG2qq2xqOJz4uFNh\noY3NnBXZY5V6ckskLllLKGMo+H6ViKTbBjrQzI5uvDjdR9FmiDJGn4z9VlRaCNFKpPI/0fzVjAGZ\n6R5psZNYpXasF2tWq4f0MCbFpK+ka6azSSzt1hLZD3gO+A7wAOVW0G1H0R/3MnYKVoj9oCYrkTRL\nTc0j3Gsh9YMUGy8s1X6fHiwzLX09JLulp44TiTxvT2WkhJ+8Mr7WAymRbcmCLH4I+DDwQ+A7+Tha\nTv2kPhPRs7MlS9I84l18s/+p/QOpMZJiqadmmmrOio0X1tv6ijtvmfvK4seJZP9TW7TpLZe48zeT\nMiq2fp9UM1ttZneZ2anAJLLQJ/ODh5bTZMr48NRKfA2y0hJJO3+87TtN6TS1JZJo5iyqctFcF9+4\ndD0d5bGVkTVpDhqpgxmbSQlFGrhjPQRZPJKsNTIWuAq4uXixOp9Ub6tUUj8uzSS9TyTuC9zjNh0p\nR2qIpHq8deI7gdNMeKmDSjuhT6RC7DVaXVEKiQ4dJfxel1KmgTrW55BFzb0D+CczW9o0qZy6qdSu\nY+39zST2ZV6dXIMM5y/ow1fPWZPH7cSmD8li3ZQTfQma2yeSfJ/jzltpicS3JMurRcrodjxQS+Rk\n4M9k40TOzgkvwMxsRMGyOR1K/DiRkD61Bhndsgj/45LXRcp84GvMoj+QqWbOcrdE4tKlVhZWJ5pF\ni66M1EMZXff7VSJmVkIHt86jhM9p4aSadqJbIj228jg50t1j49LVw3rrqVcbRpBqtixsytoGUFRe\nq9eE83eCOauEHwxXFC2iVjNT+YxT6cS+B6mDDXs/pMV4ZzXlBa5xYFxRMdLKGDur19sq7ryr12Ra\nJLryklgZ6XZcibSYotxRK5SzY72YcSKprpm95qzu+VqUUnH25BWX7o+vZxOqbjZsg6j0lZZIamWk\njOasMuJKpEFM2GmLpPQn7jMGgBHDYmJgwgG7bQXAfrtuGZV+5PANQz47Jsl10LitotNO2mUk244Y\nOnjCPsS+zD0doonG8tT+hFJ9K7TOQtxhiaOxYyljS2T6AWMB2HrTuGfvsLduDcCkXeLencozfdyE\n0VHpKxyy+6jotGO33DhpeoAPv2tMkizNJO4L5gzK9/5hvyRT07mTx3HWYbv1zHk9GJN22ZKnZk2J\nTj98o/V5+gtHJH0Efn1ZWoT/G2bsl5S+QrQSqZizUgeJJbbuyqRDKhSl2MrcJxL7XMx8967MfPeu\n0ec9cNxWPHvpEdEKdItNNkx+d5bNmpJ0reZ98pD4kwOzjhnPxUfvmXRMs3Al0iCS5zaQeubHjiVW\ngVSoJ9ZTGUg2Z3VQoL2i6J24Ky19MyjycU1tgSXPRFnwuykpeo6ZZtMSc5akKyT9UtJiSTdL2jxs\nHyvpDUmLwu/q3DETJC2RtEzSVSqjm4LTUFJddtfUONiwjI9S4oiGhp+3J30TL00Z74MzOK3qE7kX\nGG9mewG/As7P7XvazPYOv5m57V8DTgfGhd/hTZPWaQlrEiel6m2JRKuR3N9yUdQHtczjRJz2pCVK\nxMzuMbNVYXUBMGAPlqTtgBFmtsAyX8Y5wDEFi+k0mE+9b/eeTs4YUudYT3X97MbvY3qfSDFy5PmX\n49/B+B187HK7UoY+kY8A382t7yxpEbAC+JyZ/QzYAXg+l+b5sK0qkmYAMwDGjCmvV0O3ceahuyWl\nX5M40rhC6lzaZWyKRJuzEu1ZRfcN1MJxE0Yne0I55aEwJSLpR2Th5PtygZndGtJcAKwC5oZ9y4Ex\nZvaKpAnALZKSXRLM7BrgGoCJEyeWcKSEE0OqeSp9Lu0ym7Pi0qUOjEufT6SMV8cpE4UpETObPNB+\nSdOBo4C/DSYqzGwlsDIsPyTpaeAtwAusbfIaHbY5HczqRHNW6lzabe68thbxbs3BO6sjYh84ZaBV\n3lmHA58Gjjaz13PbR0kaEpZ3IetAf8bMlgOvSpoUvLKmAbe2QHSniaxJHDyYGrCxzCPVo2VLNmel\ny+I4A9GqPpEvAxsB94aa0YLgiXUwcLGkN4E1wEwz+3045gxgNjAMuDP8nA5mTSVwXuKXrxNcfFNJ\nndmwzArUaS9aokTMrGoPq5ndBNzUz76FZPObOF3CpkOzxzN2kJX1DllPoow6pOgR627OchpFGbyz\nHKcq103fh7uW/pbtNhsWlb53sGGxQS2dgfn26e/ijb+ubrUYTpNwJeKUlu03H8ZHDtw5+bjoAIwl\n9s6KpYztif13jQ/i6bQ/HsXX6RgqI9xTY2eVsU8kOWR7dLryldVpb1yJOB1DZ0XxLVaqMs4z47Qn\nrkScjiE9im8Z1UcasTMaOk5RuBJxOobe0duJLZES6pIyR9t1nDyuRJyOoSd0fGR6VVkqC0UpBVc2\nTqNxJeJ0DFP33h6Ao8P/QfEPahR7bj+Cj09+S6vFcEqKu/g6HcOuo4anTfGb2IfSTGL7a5rRJfLD\nsw8qPhOnbfGWiNO11DjAvZSkOgl4f7zTKFyJOF1PKVsiJZTJcarhSsTpWspcGy9qjvWe87uSchqE\nKxGn6+mE8SKpSqHMCtRpL1yJOE4ZaX+95nQJrkScrqXM4dDL5J3lOAPhSsTpWoaEcL9bbbphiyVp\nHhutn73yIzfpnjI7xeLjRJyuZetNh3LZsW/nsLdu3WpR1qGoju9x22zKPx8zninjty0mA6frcCXi\ndDUn7jum1SKsRTO6Qk6etFMTcnG6BTdnOU6JSB0AWeZ+Hac7cCXiOCUkNhJxb/h7d+dyWkNLlIik\nSyQtlrRI0j2Sts/tO1/SMklPSnpfbvsESUvCvqvkb43TgdT6UPvL4LSKVrVErjCzvcxsb+B24EIA\nSXsAJwJ7AocDX5U0JBzzNeB0YFz4Hd50qR2nYDopnpfTHbREiZjZq7nVTeh9d6YCN5jZSjN7FlgG\n7CtpO2CEmS2wbCq3OcAxTRXacZpI8hzrrnWcFtEy7yxJs4BpwArg0LB5B2BBLtnzYdubYbnv9v7O\nPQOYATBmTLm8bxxnIFwXOO1GYS0RST+StLTKbyqAmV1gZjsCc4GzGpm3mV1jZhPNbOKoUaMaeWrH\nKZRec5arE6c9KKwlYmaTI5POBe4APg+8AOyY2zc6bHshLPfd7jidSaQOMY974rSYVnlnjcutTgV+\nGZZvA06UtJGknck60H9hZsuBVyVNCl5Z04Bbmyq045QYb7c4raJV3lmXBdPWYuC9wDkAZvYYcCPw\nOHAXcKaZrQ7HnAFcS9bZ/jRwZ9OldhzggN22LDyP2I7yyXtsA8DEsSMLlMZx+qclHetm9sEB9s0C\nZlXZvhAYX6RcjjMYSXO410Bqi+KgcaMKl8lxBsJHrDtOifBxIk674UrEcUqIB2Rw2gVXIo5TIlx1\nOO2GKxHHKRFuznLaDVcijlNC3JrltAuuRBynRLjucNoNVyKOU0I87InTLrgScRzHcWrGlYjjlBDv\nE3HaBVcijuM4Ts24EnEcx3FqxpWI4ziOUzOuRBzHcZyacSXiOI7j1IwrEccpERtvOKTVIjhOEi2Z\nT8RxuoW5H30XL7+2Mjr992buz7wnXmToBq5MnPbAlYjjFMgBu22VlH63rYez29bDC5LGcRqPm7Mc\nx3GcmnEl4jiO49SMKxHHcRynZlyJOI7jODXTEiUi6RJJiyUtknSPpO3D9rGS3gjbF0m6OnfMBElL\nJC2TdJV8EmrHcZyW06qWyBVmtpeZ7Q3cDlyY2/e0me0dfjNz278GnA6MC7/Dmyeu4ziOU42WKBEz\nezW3ugm9U0tXRdJ2wAgzW2BmBswBjilQRMdxHCeClvWJSJol6TngJNZuiewcTFk/kXRQ2LYD8Hwu\nzfNhW3/nniFpoaSFL730UsNldxzHcTKUVewLOLH0I2DbKrsuMLNbc+nOB4aa2eclbQQMN7NXJE0A\nbgH2BN4CXGZmk8MxBwGfMbOjIuR4CfhN/SVqKlsBL7daiCbjZe4OvMztw05mNmqwRIWNWK988COY\nC9wBfN7MVgIrw/EPSXqaTIG8AIzOHTM6bIuRY9CLUDYkLTSzia2Wo5l4mbsDL3Pn0SrvrHG51anA\nL8P2UZKGhOVdyDrQnzGz5cCrkiYFr6xpwK04juM4LaVVsbMuk7Q7sIbM1FTxwjoYuFjSm2HfTDP7\nfdh3BjAbGAbcGX6O4zhOC2mJEjGzD/az/Sbgpn72LQTGFylXibim1QK0AC9zd+Bl7jAK61h3AwaE\nIgAACjhJREFUHMdxOh8Pe+I4juPUjCsRx3Ecp2ZciZQASSMl3SvpqfB/iwHSDpH0iKTbmyljo4kp\ns6QdJd0n6XFJj0k6pxWy1oukwyU9GeK+fbbKfoV4cMtCTLm/aYWcjSSizCeFsi6RdL+kd7RCzkYy\nWJlz6faRtErScc2UryhciZSDzwLzzGwcMC+s98c5wBNNkapYYsq8Cvikme0BTALOlLRHE2Wsm+Cy\n/hVgCrAH8KEqZZhCb0y4GWRx4tqWyDI/C7zbzN4OXEKbdz5HlrmS7ovAPc2VsDhciZSDqcD1Yfl6\n+okLJmk0cCRwbZPkKpJBy2xmy83s4bD8JzLl2W+4m5KyL7DMzJ4xs78CN5CVPc9UYI5lLAA2D/Hi\n2pVBy2xm95vZH8LqAtYeTNyOxNxngI+ReaD+rpnCFYkrkXKwTRhQCfBbYJt+0n0J+DTZGJp2J7bM\nQDZNAPBO4IFixWo4OwDP5darxX2LSdNOpJbn72n/cV+DllnSDsAHaPOWZl9aNdiw6xgollh+xcxM\n0jp+15KOAn4XwsEcUoyUjaXeMufOM5ys9nZunwjQTpsj6VAyJXJgq2VpAl8ii/m3ppOmQ3Il0iQG\niiUm6UVJ25nZ8mDGqNbUPQA4WtIRwFBghKRvmdnJBYlcNw0oM5I2IFMgc83sBwWJWiQvADvm1qvF\nfYtJ005ElUfSXmSm2Slm9kqTZCuKmDJPBG4ICmQr4AhJq8zsluaIWAxuzioHtwGnhuVTqRIXzMzO\nN7PRZjYWOBH4cZkVSASDljnESfsv4Akz+9cmytZIHgTGSdpZ0oZk9+62PmluA6YFL61JwIqcqa8d\nGbTMksYAPwBOMbNftUDGRjNomc1sZzMbG97h7wNntLsCAVciZeEy4D2SngImh3UkbS/pjpZKVhwx\nZT4AOAU4TL1TJh/RGnFrw8xWAWcBd5M5BtxoZo9JmimpEjPuDuAZYBnwdbI4cW1LZJkvBLYEvhru\n68IWidsQIsvckXjYE8dxHKdmvCXiOI7j1IwrEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgS\n6VAkmaQrc+vnSbqoyTLMrkQqlXRtvcETJY2VtLSffVeESL9X1JNHmQjX79lGuojm70k3Imm6pC8P\nkuaEEIm3rSNlNwsfsd65rASOlXSpmb2cerCk9YPve0Mws4826lz9MAMYaWar8xsbXY4W8Ckz+36r\nhWgkkob0vU9lwsy+K+lF4LxWy9IOeEukc1lFFl774313hBr9j8N8DvPC6OFKLfVqSQ8Al0u6SNL1\nkn4m6TeSjpV0eZgD4q4QkgRJF0p6UNJSSdeoSmAgSfMlTZR0dG7g4JOSng37J0j6iaSHJN1diWIb\ntj8q6VHgzGoFlXQbMBx4KNQi+5ZjE0nXSfqFsrlYpobjhkm6QdITkm6W9ICkiWHfa7nzHydpdlge\nJemmUN4HJR0Qtl8U8pgv6RlJZ+eOnxau9aOSvilp09DCqFy/Efn1/pC0TZDz0fDbX9LFks7NpZml\nMO+KpM+Ee/WopMuqnK+/a362sjlcFku6ocpx0yXdGsr6lKTP5/adHK7zIkn/qSz0OZJek3RluI/7\n9TnfOvlJ2lfS/4b7db+k3XN536JsDppfSzpL0idCugWSRoZ08yX9e5BjqaR9q5Sj6r10EjEz/3Xg\nD3gNGAH8GtiMrFZ1Udj338CpYfkjwC1heTZwOzAkrF8E/A+wAfAO4HWyOEcANwPHhOWRuXy/Cbw/\nd77jwvJ8YGIfGW8kUwwbAPcDo8L2E4DrwvJi4OCwfAWwtL/y5pb7luMLwMlheXPgV8AmwCdy+exF\npngnVjnfccDssPxt4MCwPIYsJEvlWt0PbEQWF+mVUK49Q35b5a8V8I3c9ZsBXFmlTD3XL6x/lywI\nJcCQcF/HAg+HbesBT5ONBJ8S5Nm4T76zQ3kGuub/B2xUuV5V5JoOLA/5DAOWksWFehvZs7VBSPdV\nYFpYNuDv+rl36+RH9uyuH5YnAzfl8l4GbAqMAlYAM8O+f8tdn/nA18PywYTnJhz/5YHuZVg/BLi9\n1e9xO/zcnNXBmNmrkuYAZwNv5HbtBxwblr8JXJ7b9z1b29Rwp5m9KWkJ2YfrrrB9CdkHDOBQSZ8G\nNgZGAo+RfUz6JaR/w8y+Imk8MB64NzRihgDLJW1O9lH5aU7WKVGFX7sc7yULXlkxTwwl+2gcDFwF\nYGaLJS2OOO9kYA/1NrZGKIsyDPBDM1sJrJT0O7Lw9ocFWV4O+fw+pL2WLKz/LcBpwOkReR8GTAvn\nWU32AV0h6RVJ7wz5PWJmr0iaDHzDzF7vk2+F3alyzcO+xcBcSbcE+apxr4WgiZJ+QBaFdxUwAXgw\nnHMYvYE1V5MF0qxGtfw2A66XNI5MAeVbafdZNr/MnyStoPdZW0JWGajwnVD2n4bW3uZ98q16L83s\nNZxoXIl0Pl8CHiar+cbw5z7rKwEsC1/9poVqGtmcJutLGkpW45xoZs8p67wfOlAG4QN3PNlHHEDA\nY2bW18zR96VPIV8OAR80syf7nH+g4/PxgPLlWQ+YZGZ/qXKulblNqxng/TKznyszKx5C1mKq6jAQ\nybVkNextgesij6l6zQNHkt2b9wMXSHq7rduv1DdekoVzXm9m51c551+s/36QdfIjm+3wPjP7gLK5\nZObn0uev85rc+hrWvubVZMxT9V46aXifSIcTaqA3ks3ZUOF+siijACcBP6sji8oH9uVQIx/Q80fS\nTmTTiB5vZpXW0ZPAKEn7hTQbSNrTzP4I/FFSZa6Jk2qU8W7gYwpf+lBrB/gp8OGwbTxr12JflPQ2\nSeuRTSRU4R6y2ekq5dl7kLx/DBwvacuQfmRu3xwyk0qsgp8H/GM4zxBJm4XtNwOHA/uQlRXgXuA0\nSRtXyRf6ueahvDua2X3AZ8haBMNZl/dIGilpGNmslD8P8h0naetKnuF+98sA+W1Gbyj16QNfln45\nIeRxIFlk5BV99qfeS6cKrkS6gyvJ7PQVPkb2gVlMFiX3nFpPHD70Xyezi99NFhJ7IKaT2dJvCZ2e\nd1g2nehxwBdDx+siYP+Q/jTgK5IWkdV0a+ESMnPIYkmPhXXIZpgbLukJ4GLgodwxnyXrV7mfXjMP\nZKbBiaET+HFgQPdbM3sMmAX8JJQtH9J+LrAFwewSwTlkpsMlQdY9Qh5/Be4jixy7Omy7iywU+cJw\n7dbyNBrgmg8BvhXyeAS4KtzjvvyCzDy1mKy/YqGZPQ58DrgnPFv3AoNN89tffpcDl0p6hNotJn8J\nx1/N2pWoCkn30qmOR/F1nICk+cB5ZtaUsOTKxmtMNbNT+tk/m6xzd0AX31Cbf5isdfdUwwVdN7/p\nZObLs4rOq1bqvZfBzHiemR3VSLk6EW+JOE4LkPQfZHOoXDJAshXAJRpgsKGyAZzLgHnNUCDdgKQT\nyPr5/tBqWdoBb4k4juM4NeMtEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgScRzHcWrm/wFZ\n/Tb2voD4tQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Parzen window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hamming Window" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hamming')" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUZCJ5BQQiAhCaGDEBABBQQFbCx2XSu6\nrGv3VVfd3Xctq2t511UUFNF10dVVsQMWBKSJBQLSEkpCTSgJoUNIv98/ZpIds5QAmZwp9+e65mLO\nmTMzvwPk3HnOc87ziKpijDHGAIQ4HcAYY4zvsKJgjDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYY\nY6pYUTDmGEQkQ0SGOPj9fxCRN07xvUNEJLe2M5nAZ0XBOEZENovI8GrrbhKR75zK5ElVu6rqPAe/\n/6+qeqtT32+CkxUFY4wxVawoGJ8mIg+LyAYROSgimSIyxuO1m0RkkYi8ICL7RGSjiAxwr88RkXwR\nudFj+yki8oqIfCUih9zvbSUiL4rIXhFZKyJneGxf1ZIRkcdEZKqIvO3OkiEiaR7b9haRn92vfSgi\nH4jIk8fYpy0i0sf9/NcioiLS1b18i4h85vGd77ifJ7i3u1FEtopIgYj80eMzo9z7t1dEMoG+1b6z\ns4jMc/89ZYjIJe71ie51Ie7l10Uk3+N9/xKRe0/hn874KSsKxtdtAM4GmgCPA++ISGuP188EVgLN\ngX8D7+M6ICYD1wETRKShx/ZXAn8CWgDFwA/AMvfyR8Dfj5PlEvfnNwWmARMARCQC+BSYAkQD7wFj\njv4RAMwHhrifDwY2Aud4LM8/znsHAanAMODPItLZvf5RIMn9GAF4FsNwYDrwDRAL3AW8KyKpqroJ\nOABUFsNzgEMen3uiPCbAWFEwTvvM/ZvqPhHZB7zi+aKqfqiq21W1QlU/ALKAfh6bbFLVf6pqOfAB\nEA88oarFqvoNUIKrQFT6VFWXqmoRrgN5kaq+7fH+Mzi271T1S/e2/wJ6utf3B8KAl1S1VFU/ARYf\n53Pm4zrYgqvgPe2xfKKD8OOqekRVVwArPDJcCTylqntUNQd4yeM9/YGGwDOqWqKq3wIzgGs884hI\nK/fyR+7lRKCx+3tMkLCiYJz2K1VtWvkAbvd8UURuEJHlHkWjG67f6ivleTw/AqCq1dc1PM72x9u2\nup0ezwuBSBEJA9oA2/SXo0vmHOdz5gNnu1s8ocBUYKCIJOBqES0/iQyVedtU+84tHs/bADmqWlHt\n9TiPPENwtRIWAPNwFafBwMJq7zMBzoqC8Vki0h54HbgTaO4uGqsBcTTYf9sBxImIZ674Y22sqtm4\nDuh3AQtU9QCug/04XK2RUzkI76j2ne08nm8H4iv7DTxe3+Z+Ph9Xi2WI+/l3wEDs1FFQsqJgfFkD\nQIFdACJyM66Wgq/5ASgH7hSRMBEZzS9PcR3NfFzFrvKgO6/a8smaCjwiIs1EpC2uglPpJ1xF6Pci\nEu6+9+JiXP0jqGoWrlbSdcB8d5HKAy47jTzGT1lRMD5LVTOB53EddPOA7sAiR0MdhaqWAJcCtwD7\ncB1cZ+DqyD6W+UAjXKdrjrZ8sh7HdUpoE64O5X9Vy3cxMAoowNVvc4Oqrq2WZ7e7P6JyWXB1wpsg\nIjbJjjG1T0R+Aiap6j+dzmLMybCWgjG1QEQGu+95CHPfG9ED+NrpXMacrDCnAxgTIFJxnddvgOu+\ng8tVdYezkYw5eXb6yBhjTBU7fWSMMaaK350+atGihSYkJDgdwxhj/MrSpUsLVDXmRNv5XVFISEgg\nPT3d6RjGGONXRGTLibey00fGGGM8WFEwxhhTxYqCMcaYKlYUjDHGVLGiYIwxporXioKIvOmeDnH1\nMV4XEXlJRLJFZKWI9PZWFmOMMTXjzZbCFGDkcV4fBaS4H+OAV72YxRhjTA147T4FVV3gnknqWEYD\nb7tnq/pRRJqKSGsbL8b4gyMl5SzZvIflOfsoKz/KnDgidG7ViP4dmtOsQUTdBzTmFDl581ocv5w+\nMNe97r+KgoiMw9WaoF27dtVfNsbrSssrWJGzj0XZu1m0oYCft+6ltNw1bpgcZR64yiHFRKBL68YM\nTG7BgKTm9EuMpn6E390zaoKIX/zvVNXJwGSAtLQ0G8HP1Jm8A0VMnJvNx0tzOVxSjgh0bdOYsQMT\nGZDcgr4JzY56kC8tr2BlrquIfL+hgCmLNjN5wUbCQ4VhnVpy33kdSW3VyIE9Mub4nCwK2/jlnLJt\n+c+cscY4as/hEibN38Bb32+mvEIZ3SuO4Z1jOSupOU3rn/h0UHhoCH3aR9OnfTR3D0vhSEk56Vv2\nsGD9Lt5fnMPMzJ1c0rMN9w7vSGKLBnWwR8bUjJNFYRquOW3fB84E9lt/gnHa/iOl/GPhRv7x3SYK\nS8sZ0yuOe4an0L756R24oyJCOTslhrNTYrh9SDKTF25kyqLNzFi5g8t7t+Xu4SnENY2qpb0w5tR5\nbT4FEXkPGAK0wDW/7qNAOICqThIRASbgukKpELhZVU840l1aWpragHimtqkq//pxC89/s579R0q5\nsHtr7h2eQkpL753iyT9YxKvzNvDuj1sBuHFAex4YkUq9sFCvfacJXiKyVFXTTridv02yY0XB1LaD\nRaU89PFKvly1k7NTWvDQyE50i2tSZ9+/fd8Rxs/O4oP0HHq0bcLEa3sTH12/zr7fBAcrCsbUwNqd\nB7j9nWVs2VPIgyNS+e05HZCjXU5UB2Zm7OSBqSsICRFeuKon53Zq6UgOE5hqWhRsmAsTtD5emsuv\nJi7iYHEZ7956JrcNTnKsIACM6NqKGXcPIq5pFGOnpPO3mesor/CvX9qM/7OiYIJOUWk5j3yykvs/\nXEGv+KZ8cfcg+ndo7nQsANo3b8Antw/g6r7xTJibzfX/+IldB4udjmWCiBUFE1T2F5Zy1Ws/8N7i\nHG4fksQ7t5xJbKNIp2P9QmR4KM9c1oP/u7wHS7fs5aKXF5Kdf9DpWCZIWFEwQWN/YSm//sePrNlx\nkNeu78PvR3YiLNR3fwSuSIvn09sHUl4BV0/+iez8Q05HMkHAd38ijKlFlQVh/c5DvHZ9H0Z0beV0\npBrp0qYx7487E4CrJ/9ohcF4nRUFE/D2F5Zy3T9+qioIQzvFOh3ppCTHNqoqDNe8boXBeJcVBRPQ\nKgvCup0H/bIgVKosDKpWGIx3WVEwAWt/YSnXv+kqCJOu7+23BaFScmwj3vvNfwrDhl1WGEzts6Jg\nAtLh4jKuf/Mn1u5wFYRAuREspeV/CsPVk39ky+7DTkcyAcaKggk4FRXK/0xdzupt+3n1usApCJUq\nC0NpeQW3vpXOwaJSpyOZAGJFwQScF+dkMTMjjz9d2IVhnQOrIFRKadmIV67tzcaCw9z3wXIq7M5n\nU0usKJiA8sXKHbw0J4sr+rTl5oEJTsfxqgHJLfjzRV2YvSaf52etczqOCRB+MfOaMTWRsX0/D3y4\ngt7tmvLkmG6OjmNUV244qz1rdx5g4twNdGrVmIt7tnE6kvFz1lIwAaHgUDHj3l5K0/rhTLq+T9DM\nSSAiPH5JN/omNOPBj1awKne/05GMn7OiYPxeSVkFv3tnKQWHipl8fZrPjWXkbRFhIbx6XR+i60cw\n7l/p5B8scjqS8WNWFIxfU1UenbaaJZv38tzlPejetu4mx/ElLRrW4/Ub09hbWMLv3llGcVm505GM\nn7KiYPzah+m5VSOeju4V53QcR3Vt04Tnr+jF0i17eeqLNU7HMX7KioLxW1t2H+ax6Rn07xDN/een\nOh3HJ1zYozW3DErk7R+2MHdtvtNxjB+yomD8Ull5Bfd+sJzQEOHvV/YiNCTwrzSqqQdHpNKpVSMe\n/Ggluw/ZBD3m5FhRMH5pwtxsft66j6fGdKdN0yin4/iUyPBQXry6FweOlPLQx6vwt3nYjbOsKBi/\ns2zrXl7+NpsxZ8RxiV2Xf1SdWjXm9yNTmb0mj/eX5Dgdx/gRKwrGrxwuLuO+D5bTqnEkj4/u6nQc\nnzZ2YCKDklvwxPRMNhXYwHmmZqwoGL/yxPRMtu4p5O9X9qRxZLjTcXxaSIjwtyt6EhEWwr3v/0xp\neYXTkYwfsKJg/MbXq3fyQXoOvxucxJkdmjsdxy+0ahLJ05d2Z0Xufl6ek+V0HOMHrCgYv5B/oIhH\nPllJt7jG3Du8o9Nx/MoF3VtzeZ+2TJibzdIte5yOY3ycFQXjF/702WoKS8p58aoziAiz/7Yn69GL\nuxDXLIoHPlxJUand7WyOzX66jM+bmbGTbzLzuO+8jiTHNnQ6jl9qFBnO02N6sKngMK/MzXY6jvFh\nVhSMTztUXMajn2fQqVUjbhmU6HQcvzYopQVjzojj1fkbyM4/6HQc46OsKBif9reZ68g7WMRfL+1O\neKj9dz1df7qwMw3qhfGHT1bbbG3mqOynzPisFTn7eOuHzVx3Znt6t2vmdJyA0LxhPf4wqjOLN+/h\nw6V2U5v5b1YUjE8qK6/gkU9WEdOwHg+OtMHuatMVaW3plxjNX79cS4GNjWSqsaJgfNKU7zeTueMA\nj13S1W5Sq2Uiwl/HdKewpIwnZ2Q6Hcf4GCsKxufk7i3k+W/WM6xTLKO6tXI6TkBKjm3I74Yk89ny\n7SzM2uV0HONDvFoURGSkiKwTkWwRefgorzcRkekiskJEMkTkZm/mMb5PVXn08wwAHh/dFREbEttb\nbh+SRIcWDfjjp6vt3gVTxWtFQURCgYnAKKALcI2IdKm22R1Apqr2BIYAz4tIhLcyGd/39eqdzFmb\nz/3nd6Rts/pOxwlokeGhPDmmG1v3FPKSDYFh3LzZUugHZKvqRlUtAd4HRlfbRoFG4vp1sCGwByjz\nYibjwwpLynhiRiZdWjfmpgEJTscJCgOSWnBZ77a8vnCjjaRqAO8WhTjA85q3XPc6TxOAzsB2YBVw\nj6r+11COIjJORNJFJH3XLjv/Gahem7+RHfuLeOySroTZPQl15qFRqdQLC+WpL6zT2Tjf0TwCWA60\nAXoBE0SkcfWNVHWyqqapalpMTExdZzR1YPu+I7y2YAMX9mhNv8Rop+MEldhGkdwxNJnZa/Kt09l4\ntShsA+I9ltu613m6GfhEXbKBTUAnL2YyPurZr9eiCo+Msn9+J4wdlEC76Pr8ZUYmZTbvQlDzZlFY\nAqSISKK78/hqYFq1bbYCwwBEpCWQCmz0Yibjg5Zu2cvny7cz7pwO1rnskHphofzhgs6szzvEe4u3\nOh3HOMhrRUFVy4A7gZnAGmCqqmaIyG0icpt7s78AA0RkFTAHeEhVC7yVyfieigrliekZxDaqx22D\nk5yOE9RGdG1J/w7R/H3WevYXljodxzjEq30KqvqlqnZU1SRVfcq9bpKqTnI/366q56tqd1Xtpqrv\neDOP8T2fLd/Gitz9PDSyEw3qhTkdJ6iJCH++qCv7j5Qy3i5RDVpOdzSbIHa4uIxnv15Lz/imjDmj\n+oVpxgld2jTmqr7tePuHzWTnH3I6jnGAFQXjmEnzN5B3oJg/X9SFkBC7c9lX3H9+R6LC7RLVYGVF\nwTgid28hkxds5JKebejT3obF9iUtGtbjrmHJzF23i3nr8p2OY+qYFQXjiGe+WosIPGyXoPqkmwYk\nktDcdYlqqV2iGlSsKJg6tzxnHzNW7mDc2R1o0zTK6TjmKCLCQvjDBZ3ZsOswU9NtMp5gYkXB1ClV\n5dmv1tK8QQTj7BJUn3Zel5aktW/G+NlZHCmxUVSDhRUFU6cWZBXww8bd3HVuMg3tElSfJiI8PKoT\n+QeLeXPRJqfjmDpiRcHUmYoKVyshPjqKa89s73QcUwNpCdEM7xzLpPkb2FdY4nQcUwesKJg6M33l\ndjJ3HOD+81KJCLP/ev7iwRGdOFRcxivzNjgdxdQB+8k0daKkrILnv1lP59aNuaRnG6fjmJOQ2qoR\nl57Rlinfb2bbviNOxzFeZkXB1In3Fm9l655Cfj8y1W5U80P3nZcCCi/OWu90FONlVhSM1x0uLuPl\nb7M4MzGaIR1tPgx/1LZZfa4/qz0fL8slK++g03GMF1lRMF73xsJNFBwq4eFRnXDNvGr80R1Dk2kQ\nEcZzM9c5HcV4kRUF41W7DxUzecEGRnZtxRntbDgLfxbdIILfDu7ArMw8lm7Z43Qc4yVWFIxXTZib\nzZHSch4Ykep0FFMLxg5KJKZRPZ79ah2q6nQc4wVWFIzX5O4t5N0ft3JlWjzJsQ2djmNqQf2IMO4e\nlsLizXuYa4PlBSQrCsZrXp6TDQL3DE9xOoqpRVf3jadddH3+Pmu9tRYCkBUF4xWbCw7z0bJcru3X\njtZNbNC7QBIeGsLdw1JYve0AMzPynI5japkVBeMVL32bRXiocPtQG/QuEP2qVxs6tGjAC7PWU1Fh\nrYVAYkXB1Lrs/EN89vM2ru/fnthGkU7HMV4QFhrCPcNTWJd3kC9W7XA6jqlFVhRMrRs/J4vI8FBu\ns6GxA9pFPdqQEtuQF2evp9xaCwHDioKpVet2HmTGyu3cNCCB5g3rOR3HeFFoiHDfeR3ZsOsw01Zs\nczqOqSVWFEytemHWehpEhDHunA5ORzF1YGTXVnRu3Zjxs7Mos2k7A4IVBVNrVm/bz9cZOxk7KJGm\n9SOcjmPqQEiI8D/ndWTz7kI+WWathUBgRcHUmhdnr6dxZBi3DEp0OoqpQ8M7x9KzbRPGz8mipMxa\nC/7OioKpFctz9jF7TT7jzulAk6hwp+OYOiTi6lvYtu8IU9NznI5jTpMVBVMr/j5rPc3qh3PTQGsl\nBKPBHWPo3a4pE77Npqi03Ok45jRYUTCnbemWPSxYv4vfDk6iYb0wp+MYB4gI95+fys4DRby3eKvT\nccxpOGFREJH6IvK/IvK6ezlFRC7yfjTjL16cnUXzBhHccFZ7p6MYBw1Iak6/xGgmzd9grQU/VpOW\nwj+BYuAs9/I24EmvJTJ+ZemWvSzMKuC3gztQP8JaCcFMRLh3WAp5B4r5YIn1LfirmhSFJFV9DigF\nUNVCwKbPMoDr7uXmDSK4rr+1EgycldScvgnNeHXeBorLrLXgj2pSFEpEJApQABFJwtVyMEHu5617\nWbB+F785x1oJxkVEuGdYR3YeKGKqtRb8Uk2KwqPA10C8iLwLzAF+79VUxi+Mn5NFdIMIrrdWgvEw\nMLk5fdo34xVrLfilExYFVZ0FXArcBLwHpKnqPO/GMr5uec4+5q3bxa1nJ9LArjgyHkSEe4ensGN/\nER+m5zodx5ykYxYFEeld+QDaAzuA7UA797oTEpGRIrJORLJF5OFjbDNERJaLSIaIzD+VnTB1b/zs\n9TStH84NZyU4HcX4oEHJLejdrimvzttgdzn7meP9ive8+89IIA1YgauDuQeQzn+uRjoqEQkFJgLn\nAbnAEhGZpqqZHts0BV4BRqrqVhGJPdUdMXVnRc4+5q7bxYMjUu2+BHNUIsI9wzty45uL+WhpLtee\n2c7pSKaGjtlSUNWhqjoUVwuht6qmqWof4Axcl6WeSD8gW1U3qmoJ8D4wuto21wKfqOpW93faTOB+\n4KU5WTSJCrf7EsxxnZPSgl7xTZk4N9taC36kJh3Nqaq6qnJBVVcDnWvwvjjA8/KDXPc6Tx2BZiIy\nT0SWisgNR/sgERknIukikr5r164afLXxllW5+5mzNp9bByXSKNLGODLH5motpLBt3xE+WWZ9C/6i\nJkVhpYi84T73P8R9Z/PKWvr+MKAPcCEwAvhfEelYfSNVnexuqaTFxMTU0lebUzHe3Uq4cWCC01GM\nHxjSMYaebZswYW42pTbfgl+oSVG4GcgA7nE/Mt3rTmQbEO+x3Jb/Pu2UC8xU1cOqWgAsAHrW4LON\nA1Zv28/sNXncMiiRxtZKMDVQ2VrI3XuET22+Bb9Qk0tSi1T1BVUd4368oKpFNfjsJUCKiCSKSARw\nNTCt2jafA4NEJExE6gNnAmtOdidM3Xj52ywaRYZxk7USzEkYmhpLD3drwWZn8301GRBvk4hsrP44\n0ftUtQy4E5iJ60A/VVUzROQ2EbnNvc0aXDfGrQQWA2+4+yyMj1mz4wAzM/IYO9BaCebkiAh3nZvC\n1j2FfL58u9NxzAnU5HrCNI/nkcAVQHRNPlxVvwS+rLZuUrXl/wP+ryafZ5wzYW42DeuFMdbmSzCn\nYHjnWDq3bszEudn86ow4QkNs+DRfVZPTR7s9HttU9UVcHcMmSGTnH+TLVTu4cUB7mtS3VoI5eSLC\n3ecms7HgMDNWWmvBl52wpVDt7uUQXC0Hu2MpiEz4Npuo8FBuGdTB6SjGj43o2oqOLRsy4dtsLu7R\nhhBrLfikmhzcn/d4XgZsAq70ThzjazYVHGbaiu385uwORDeIcDqO8WMhIcKd56Zw93s/83XGTi7o\n3trpSOYoanJJ6i2Vdzer6nmqOg4o8XYw4xsmzs0mIiyEW8+2VoI5fRd2b02HmAa8NCeLigp1Oo45\nipoUhY9quM4EmK27C/n0521c2689MY3qOR3HBIDQEOHOocms3XmQ2WvynI5jjuKYp49EpBPQFWgi\nIpd6vNQY11VIJsC9Oj+b0BDht4OtlWBqzyU92zB+ThYvf5vNeV1aImJ9C77keC2FVOAioClwscej\nN/Ab70czTsrdW8hHS3O5um88LRvb7wCm9oSFhnDHkGRWbdvPvHU2lpmvOWZLQVU/Bz4XkbNU9Yc6\nzGR8wKT5GwC4bXCSw0lMIBrTO47xc7IYPyeLIakx1lrwIcebZKdyys1rReSl6o86ymccsHN/EVOX\n5HJ5n3jaNI1yOo4JQOGhIdw+NInlOfv4LrvA6TjGw/FOH1WOQZQOLD3KwwSoSfM3UK7K7UOslWC8\n5/I+bWndJJKX5mShalci+YrjnT6a7v7zrbqLY5yWf7CI9xZvZcwZccRH13c6jglg9cJCuW1wEo9O\ny+DHjXs4K6m505EMx7/6aDpwzPKtqpd4JZFx1OsLNlJaXsGdQ5OdjmKCwFV945k4N5uX5mRZUfAR\nx7uj+W91lsL4hIJDxbzz41Z+1SuOhBYNnI5jgkBkeCi/HZzEX2ZksnjTHvol1misTeNFx5ujeX7l\nA/gB2AvsAX5wrzMB5o2FmygqK+eOc62VYOrOtf3a0aJhBC9/m+V0FEPN5lO4ENgAvARMALJFZJS3\ng5m6tedwCW//sJmLe7QhKaah03FMEImKCGXcOR1YmFXA0i17nY4T9GoyzMXzwFBVHaKqg4GhwAve\njWXq2pvfbeJIaTl3WivBOODXZ7YnuoG1FnxBTYrCQVXN9ljeCBz0Uh7jgP2FpUz5fjMXdGtNx5aN\nnI5jglCDemHcenYi89btYkXOPqfjBLWaFIV0EflSRG4SkRuB6cASEbm02phIxk+9uWgTh4rLrJVg\nHHXDWQk0rR9urQWH1aQoRAJ5wGBgCLALiMI1DtJFXktm6sSBolLeXLSJEV1b0rl1Y6fjmCDWsF4Y\ntwxMZPaafFZv2+90nKB1wkl2VPXmughinPHWos0cLCrjrnNTnI5iDDcOTOD1hRt5+dssXrs+7cRv\nMLWuJtNxJgJ3AQme29vNa/7vUHEZb3y3ieGdY+kW18TpOMbQODKcsYMSeXF2Fmt2HLDWqwNqcvro\nM2Az8DKuK5EqH8bPvf3DZvYfKbVWgvEpNw9IpFG9MCZ8m33ijU2tq8kczUWqaqOiBpjDxWW8sXAT\nQ1Jj6Bnf1Ok4xlRpUj+cmwYmMGFuNuvzDtoVcXWsJi2F8SLyqIicJSK9Kx9eT2a86u0ftrDncAl3\nD7NWgvE9Ywcm0iAijPFz7EqkulaTlkJ34HrgXKDCvU7dy8YPHSouY/KCDQzuGEPvds2cjmPMf2nW\nIIKbBiQwcV4263YeJLWVtRbqSk1aClcAHVR1sKoOdT+sIPixt3/YzN7CUu4dbq0E47tuPbuytbDe\n6ShBpSZFYTWueZpNAHC1EjYyJDWGM6yVYHxY0/oR3DwwgS9X7WTtzgNOxwkaNSkKTYG1IjJTRKa5\nH597O5jxjre+38y+wlLuHd7R6SjGnNAtg1xXIo2fbX0LdaUmfQqPejwX4Gzgau/EMd50sKiU1xdu\n5NxOsfSyK46MH6hsLbz0bTaZ2w/QpY3dt+BtJ2wpuOdOOIBrSIspuDqYJ3k3lvGG/7QSrC/B+I9b\nBnWgUaT1LdSVYxYFEenovhR1La4b17YC4u5ofrnOEppacaColNcXbmJYp1h6tLVWgvEfTeqHM3Zg\nIjMz8sjYbmMiedvxWgprcbUKLlLVQe5CUF43sUxte2uR6+5l60sw/mjsoERXa8H6FrzueEXhUmAH\nMFdEXheRYbj6FIyfOeDuSxjeuSXd29oYR8b/NIkK55ZBiXyTmWcjqHrZ8eZo/kxVrwY6AXOBe4FY\nEXlVRM6vq4Dm9E1ZtJkDRWXWl2D82s0DE2kcaXc5e1tNOpoPq+q/VfVioC3wM/BQTT5cREaKyDoR\nyRaRh4+zXV8RKRORy2uc3NTIgaJS3li4kfO6tLSRUI1fc7UWOjArM49VudZa8Jaa3KdQRVX3qupk\nVR12om1FJBSYCIwCugDXiEiXY2z3LPDNyWQxNfPGgo3WSjAB4+ZBCTSJCufvs9Y5HSVgnVRROEn9\ngGxV3aiqJcD7wOijbHcX8DGQ78UsQangUDFvfLeJC3u0pmsbayUY/9c4MpzbBicxd90u0jfvcTpO\nQPJmUYgDcjyWc93rqohIHDAGePV4HyQi40QkXUTSd+3aVetBA9Wr8zZQVFrOfXbFkQkgNw5oT4uG\n9Xhu5jpU1ek4AcebRaEmXgQeUtWK423kPmWVpqppMTExdRTNv+3Yf4R//biFy3q3JTm2odNxjKk1\n9SPCuOvcZBZv2sPCrAKn4wQcbxaFbUC8x3Jb9zpPacD7IrIZuBx4RUR+5cVMQeOlOdmoqs2XYALS\n1f3iiWsaxd++sdZCbfNmUVgCpIhIoohE4BovaZrnBqqaqKoJqpoAfATcrqqfeTFTUNhccJip6Tlc\n268d8dH1nY5jTK2rFxbKPcNTWJm7n5kZeU7HCSheKwqqWgbcCcwE1gBTVTVDRG4Tkdu89b0GXpy9\nnvBQ4Y5zk52OYozXXHpGHB1iGvD8N+sor7DWQm3xap+Cqn6pqh1VNUlVn3Kvm6Sq/zWgnqrepKof\neTNPMFihjIrmAAATaElEQVS78wCfr9jOTQMSiW0U6XQcY7wmLDSE+89LJSv/ENNWVD8zbU6V0x3N\nppY9/816GkaEcdvgDk5HMcbrRnVrRZfWjXlhVhYlZce9XsXUkBWFALI8Zx+zMvP4zTkdaFo/wuk4\nxnhdSIjw4IhUtu4pZGp6zonfYE7IikIA+dvMdUQ3iGDsoESnoxhTZ4akxpDWvhkvf5tFUakN5Hy6\nrCgEiO83FPBddgG3D0miYb2aTKhnTGAQER4YkUregWLe/mGz03H8nhWFAFBRoTz95VpaN4nkuv7t\nnY5jTJ3r36E553SMYeLcDewvLHU6jl+zohAApq/czqpt+3ng/FQiw0OdjmOMIx4Z1YkDRaVMmGtD\na58OKwp+rqi0nOe+XkeX1o0Zc0bcid9gTIDq3LoxV/Rpy1vfbyFnT6HTcfyWFQU/99b3m9m27wh/\nvLAzISE2MZ4Jbv9zXiohIfDcTBta+1RZUfBjew+XMGFuNkNTYxiY3MLpOMY4rlWTSMad3YHpK7az\nPGef03H8khUFP/bSt1kcLi7jkQs6Ox3FGJ8xbnASLRpG8Ncv1thgeafAioKf2lxwmHd+3MJVfePp\n2LKR03GM8RkN64Vx33kdWbx5D7MybbC8k2VFwU89N3Mt4aEhNoGOMUdxVVo8ybENeeartZSW2/AX\nJ8OKgh9aumUvX67aybhzOhDb2Aa9M6a6sNAQHhnViY0Fh3l/8Van4/gVKwp+RlV56otMYhrV4zdn\n26B3xhzLuZ1i6d8hmhdnZ3GwyG5oqykrCn7m69U7WbZ1H/ef15EGNpyFMcckIvzxgi7sPlzCq/M2\nOB3Hb1hR8CNFpeU89eUaUls24oq0+BO/wZgg171tE8acEccb321iy+7DTsfxC1YU/Mir8zaQu/cI\nj13SlVC7Uc2YGnl4VCfCQ4Qnpmc6HcUvWFHwE1t3F/Lq/A1c3LMNZyU1dzqOMX6jZeNI7hmewpy1\n+cxZY5eonogVBT/xxIwMwkOEP9qNasactJsHJpIc25DHp2fanAsnYEXBD3y7No/Za/K5e1gKrZrY\nJajGnKzw0BCeuKQrW/cU8tr8jU7H8WlWFHxcUWk5j03LJCmmATcPtBnVjDlVA5JbcGGP1rwyL9tG\nUT0OKwo+bvKCjWzdU8gTo7sREWb/XMacjj9d2JnQEOGJGdbpfCx2lPFhOXsKmTg3mwu7t7ZRUI2p\nBa2bRHHXuSnMysxj7rp8p+P4JCsKPuwvMzIJEeGPF1rnsjG15ZZBiXSIacDj0zIoLrNO5+qsKPio\neevy+SYzj7uGJdOmaZTTcYwJGBFhITx2cVc27y7k9QXW6VydFQUfdKSknEenZZDYogG3DLLOZWNq\n2zkdYxjZtRUT5mbbnc7VWFHwQX/7Zh1bdhfy1Jhu1AsLdTqOMQHp0Uu6EB4Swu8/WklFhU3GU8mK\ngo9ZumUPby7axHX92zEgyTqXjfGW1k2i+NNFnflp0x7e/WmL03F8hhUFH1JUWs6DH66kTZMoHh5l\nncvGeNuVafGcndKCp79aa/cuuFlR8CEvzFrPxoLDPHtZDxrasNjGeJ2I8MxlPQgR4eFPVtqczlhR\n8Bk/b93L6ws3ck2/dgxKsdNGxtSVuKZRPHJBJxZl7+a9xTlOx3GcFQUfUFRazoMfraRV40j+cEEn\np+MYE3Su7deOAUnN+euXa9i274jTcRxlRcEHjJ+TRXb+IZ6+rAeNIsOdjmNM0BERnr2sBxWqPPxx\ncJ9GsqLgsBU5+3ht/gauTGvL4I4xTscxJmjFR9fn4VGdWJhVwNT04D2N5NWiICIjRWSdiGSLyMNH\nef3XIrJSRFaJyPci0tObeXyN67TRCmIa1eOPF3ZxOo4xQe+6M9tzZmI0T84I3tNIXisKIhIKTARG\nAV2Aa0Sk+pFvEzBYVbsDfwEmeyuPL3p8eibr8w7xzGU9aBJlp42McVpIiPDc5a7TSHf9exml5RVO\nR6pz3mwp9AOyVXWjqpYA7wOjPTdQ1e9Vda978UegrRfz+JTPl2/jvcVbuW1wEkNTY52OY4xxa9+8\nAc9c1oNlW/fx3NdrnY5T57xZFOIAzxNzue51x3IL8NXRXhCRcSKSLiLpu3btqsWIzsjOP8Qjn6yi\nb0IzHji/o9NxjDHVXNyzDdf3b8/rCzfxTcZOp+PUKZ/oaBaRobiKwkNHe11VJ6tqmqqmxcT4d2fs\nkZJy7nh3GZHhobx8TW/CQn3in8AYU82fLupM97gmPPDhiqC629mbR6RtQLzHclv3ul8QkR7AG8Bo\nVd3txTw+4c+fr2Z9/kFevKqXzbdsjA+rFxbKxGt7o8Ad/14WNHMveLMoLAFSRCRRRCKAq4FpnhuI\nSDvgE+B6VV3vxSw+4cP0HD5cmstdQ5M5xy4/NcbntWten/+7vCcrc/fz9JfB0b/gtaKgqmXAncBM\nYA0wVVUzROQ2EbnNvdmfgebAKyKyXETSvZXHaet2HuR/P1/NWR2ac89w60cwxl+M7NaKWwYlMuX7\nzXyxcofTcbxO/O3OvbS0NE1P96/acai4jNETvmP/kTK+vGcQsY3stJEx/qSkrIIrX/uB7PxDTL9r\nEIktGjgd6aSJyFJVTTvRdtbL6WUlZRX87p2lbN5dyEvX9LKCYIwfiggLYeKvexMeKtz8z8UUHCp2\nOpLXWFHwoooK5aGPV7Iwq4CnL+1uk+YY48fimkbxxo192XmgiLFTlnC4uMzpSF5hRcGLnp25lk9/\n3saDI1K5Mi3+xG8wxvi0Pu2bMfHa3mRsP8Dv3g3MO56tKHjJP77bxGvzN3LDWe25fUiS03GMMbVk\nWOeW/HVMNxas38VDHwXeiKo2vZcXTFuxnb/MyGRUt1Y8enFXRMTpSMaYWnRV33bkHyjm+VnriW0c\nycOjAmceFCsKtez77ALun7qcfonRvHBVL0JDrCAYE4juPDeZvINFTJq/gdhG9Rg7KNHpSLXCikIt\nWpm7j3H/WkqHFg15/YY0IsNDnY5kjPESEeHxS7qx62Axf/kik+YNIxjd63jDu/kH61OoJfPX7+Ka\nyT/SJCqcKWP72lDYxgSB0BBh/NVn0C8hmns/WM6b321yOtJps6JQCz5Mz2HslCW0a96AT24fQOsm\nUU5HMsbUkcjwUN4a24/zu7TkiRmZPPVFJhUV/tv5bEXhNKgqL83J4sGPVjIgqTlTf9uflo3t5jRj\ngk1keCiv/LoPN57lGm77ng+W++0AetancIrKyiv4389X897iHC7tHcczl/YgIsxqrDHBKjREeOyS\nrrRuGsUzX60l/0ARk29I87tTyXYUOwWFJWWM+9dS3lucwx1Dk3j+ip5WEIwxiAi3DU5i/NW9WLZ1\nL1dM+p7tfjbXsx3JTtLSLXsZPWER89bl8+SvuvHgiE52H4Ix5hdG94rjrZv7sWNfERe//B3TV2z3\nm5vcrCjU0OHiMh6blsHlk77ncHEZU27ux3X92zsdyxjjowYkt+CT2wcQ1yyKu977md+8nc6O/b7f\narChs2tg3rp8/vjparbvP8IN/dvz4MhONKxn3THGmBMrK6/gn4s28/ysdYSFhPDQqE78ul87Qur4\nxtaaDp1tReE49hwu4YnpGXy2fDvJsQ159rLu9GkfXSffbYwJLFt2H+YPn65iUfZu+iY04+lLe5Ac\n27DOvt+KwilSVZbn7OODJTlMX7GdkvIKfjckmTuGJlEvzO5QNsacOlXlw6W5PDkjk8Ml5QzrFMvV\n/eI5JyWGsFDvns2vaVGwcyBuew+X8OnP2/hgSQ7r8g4SFR7KRT1a85tzOtCxZSOn4xljAoCIcGVa\nPENSY3hj4SY+XprLN5l5tGocyRVpbbkyLZ746PrOZgy2lkJ5hbLzQBE5ewrZuqeQ3D2FrMs7yNy1\nuygpr6Bn2yZc1bcdF/dsTaNI/7q+2BjjX0rKKvh2bR7vL8lh/vpdqMKApOZ0b9uEdtH1iW9Wn3bR\n9WnTNOq0L3u300fVzF2bz+PTM9i27wil5f/Z5xCB1k2iOK9LS65Mi6dLm8a1GdcYY2pk274jfJSe\ny4yV29myu5ASjwl8Ko9TNw9M4NazO5zS59vpo2qiG0TQNa4JI7u1dlXg6CjaRdendZPTr8DGGHO6\n4ppGcc/wFO4ZnkJ5hZLncUYjZ+8RcvYUEtOontdzBE1LwRhjgllNWwr2K7IxxpgqVhSMMcZUsaJg\njDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYYY6pYUTDGGFPF725eE5FdwJZTfHsLoKAW4/iTYN13\n2+/gYvt9bO1VNeZEH+R3ReF0iEh6Te7oC0TBuu+238HF9vv02ekjY4wxVawoGGOMqRJsRWGy0wEc\nFKz7bvsdXGy/T1NQ9SkYY4w5vmBrKRhjjDkOKwrGGGOqBE1REJGRIrJORLJF5GGn83iLiLwpIvki\nstpjXbSIzBKRLPefzZzM6A0iEi8ic0UkU0QyROQe9/qA3ncRiRSRxSKywr3fj7vXB/R+VxKRUBH5\nWURmuJcDfr9FZLOIrBKR5SKS7l5Xa/sdFEVBREKBicAooAtwjYh0cTaV10wBRlZb9zAwR1VTgDnu\n5UBTBtyvql2A/sAd7n/jQN/3YuBcVe0J9AJGikh/An+/K90DrPFYDpb9HqqqvTzuTai1/Q6KogD0\nA7JVdaOqlgDvA6MdzuQVqroA2FNt9WjgLffzt4Bf1WmoOqCqO1R1mfv5QVwHijgCfN/V5ZB7Mdz9\nUAJ8vwFEpC1wIfCGx+qA3+9jqLX9DpaiEAfkeCznutcFi5aqusP9fCfQ0skw3iYiCcAZwE8Ewb67\nT6EsB/KBWaoaFPsNvAj8HqjwWBcM+63AbBFZKiLj3Otqbb/DTjed8S+qqiISsNchi0hD4GPgXlU9\nICJVrwXqvqtqOdBLRJoCn4pIt2qvB9x+i8hFQL6qLhWRIUfbJhD3222Qqm4TkVhglois9XzxdPc7\nWFoK24B4j+W27nXBIk9EWgO4/8x3OI9XiEg4roLwrqp+4l4dFPsOoKr7gLm4+pQCfb8HApeIyGZc\np4PPFZF3CPz9RlW3uf/MBz7FdXq81vY7WIrCEiBFRBJFJAK4GpjmcKa6NA240f38RuBzB7N4hbia\nBP8A1qjq3z1eCuh9F5EYdwsBEYkCzgPWEuD7raqPqGpbVU3A9fP8rapeR4Dvt4g0EJFGlc+B84HV\n1OJ+B80dzSJyAa5zkKHAm6r6lMORvEJE3gOG4BpKNw94FPgMmAq0wzXs+JWqWr0z2q+JyCBgIbCK\n/5xj/gOufoWA3XcR6YGrYzEU1y95U1X1CRFpTgDvtyf36aMHVPWiQN9vEemAq3UArtP//1bVp2pz\nv4OmKBhjjDmxYDl9ZIwxpgasKBhjjKliRcEYY0wVKwrGGGOqWFEwxhhTxYqC8Ski8kf3aJ8r3aNA\nnunl75snIjWe8FxEpojINhGp515u4b6BqjayDKkc7bO2iMi9InLDCbbpLiJTavN7jf+yomB8hoic\nBVwE9FbVHsBwfjlmla8oB8Y6HaI692jAnsthuHL++3jvU9VVQFsRaefFeMZPWFEwvqQ1UKCqxQCq\nWqCq2wFE5M8iskREVovIZPcdzJW/6b8gIukiskZE+orIJ+5x5Z90b5MgImtF5F33Nh+JSP3qXy4i\n54vIDyKyTEQ+dI+jdDQvAve5D7qe7//Fb/oiMkFEbnI/3ywiT1eOgS8ivUVkpohsEJHbPD6msYh8\nIa65PyaJSMjxsrk/91kRWQZcUS3nucAyVS3z+Lt6VlzzL6wXkbM9tp2O685gE+SsKBhf8g0Q7z5g\nvSIigz1em6CqfVW1GxCFq0VRqcQ9rvwkXLf33wF0A25y3+kJkAq8oqqdgQPA7Z5fLCItgD8Bw1W1\nN5AO/M8xcm4FvgOuP8n926qqvXDdeT0FuBzX3A+Pe2zTD7gL17wfScClNci2W1V7q+r71b5vILC0\n2rowVe0H3IvrbvdK6cDZmKBnRcH4DPe8AH2AccAu4IPK37SBoSLyk4iswvUbcFePt1aOY7UKyHDP\nrVAMbOQ/AyHmqOoi9/N3gEHVvr4/rgPxInENQ30j0P44cZ8GHuTkfoY8c/6kqgdVdRdQXDl+EbDY\nPe9HOfCeO+eJsn1wjO9rjevv0VPlQIFLgQSP9flAm5PYFxOgbOhs41PcB8N5wDx3AbhRRN4HXgHS\nVDVHRB4DIj3eVuz+s8LjeeVy5f/x6uO5VF8WXHMRXFPDnFnuA/SVHqvL+GWRiPzlu04554myHT7G\n+iPHyVDOL3/+I93bmyBnLQXjM0QkVURSPFb1wjW4V+WBrcB9Lv3yU/j4du6ObIBrcZ3+8fQjMFBE\nkt1ZGohIxxN85lPAAx7LW4AuIlLP/Zv/sFPI2c89mm8IcJU756lkA9fsc8k1/N6OuEbbNEHOioLx\nJQ2Bt0QkU0RW4jpl8ph7noDXcR20ZuIaCv1krcM1b/MaoBnwqueL7tM4NwHvub/7B6DT8T5QVTOA\nZR7LObhGqlzt/vPnU8i5BJiA64C+Cfj0VLK5fQWcU8PvHQp8cdJpTcCxUVJNwBPX9Jwz3J3UQUVE\nPgV+r6pZx9mmHjAf14xeZXUWzvgkaykYE9gextXhfDztgIetIBiwloIxxhgP1lIwxhhTxYqCMcaY\nKlYUjDHGVLGiYIwxpooVBWOMMVX+HwMypbVyYD+xAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hamming window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HcW5/z+vepcsS26S3LuNO2C66R1DSAIJLSGB8AOS\nkNzcEAIJaeTmphBCQggEcsGUUEIwhGZMMwZ3Y2Nb7t2SbFm2JEu2ZdX5/bG7R3tWZ6VjtaPyfp5H\nj87Ozu6+uzsz35l3ZmfEGIOiKIqitIaoSBugKIqidF9URBRFUZRWoyKiKIqitBoVEUVRFKXVqIgo\niqIorUZFRFEURWk1KiKK0smIyBgRWS0ilSLynTCPMSIysqNtizQiMlhEDotIdARteFtEbmrlsT8T\nkWfb26auTEykDejpiMhOoD9Q7woebYwpioxFShfgh8CHxpgpoXaKyEfAs8aYJ9r7wiIyFNgBxBpj\n6lzhTwEFxpj72vuax4MxZjeQEmEbLo7k9bsb2hLpHC43xqS4/poIiIj0KkHvbffrYQiQH2kjFKU9\nUBGJECIy1HZRfENEdgMf2OEzRWSRiJSLyOciMst1zDARWWC7QeaLyF+cprOIzBKRAs81dorIefbv\nKBH5kYhsE5GDIvKSiGR6bLlJRHaLyAERudd1nmgR+bF9bKWIrBSRPBF5RET+4Lnm6yLyPZ97NiJy\nh4hsAbbYYWPteykVkU0i8mVX/EtEZL19zUIR+YH7Xm2bDtj3eZ3ruHQRmSMiJSKyS0TuE5Eoe9/X\nROQTEfm9iJSJyA4Rudh17NdEZLt9zR2e894sIhvs4+aJyJBm3u8VIpJvv8ePRGScHf4BcDbwF9tt\nM9pz3APAGa79f3HtPk9EttjnfEREpDW2hYOIvCwi+0TkkIh8LCITXPueEpG/2m6fwyLyqYgMEJGH\n7OtvFJGprvg7ReS/RWSNiBwRkSdFpL99fKWIvCcifey4TlqMsbc/EpFf2teoFJF3RSTLde4b7Xd8\nUER+4k7znvsZZj83Jx38XUT2u/Y/IyJ3ua75Tft3S+llmLjyJJDlua5fOvi6iPzHFW+LiLzs2t4j\nIiFbql0OY4z+deAfsBM4L0T4UMAAc4BkIBHIAQ4Cl2AJ/Pn2drZ9zGLgQSAeOBOoxHJ7AMzCckeE\nvDbwXWAJkGsf/xjwT48tf7ftmAxUA+Ps/f8NrAXGAGLv7wucBBQBUXa8LOAo0N/nWRhgPpBpXycZ\n2AN8Hcu1OhU4AIy34+8FzrB/9wGmue61zvUszgKOAGPs/XOA14BU+942A9+w930NqAVuAaKB/2ff\ng9j2VLjOMxCYYP+eDWwFxtm23gcs8rnP0bY95wOxWO6rrUCcvf8j4JvNpJkm++1n9waQAQwGSoCL\nWmGb865jPOFPAb9ybd9sP7944CFgtSfuAWA6kIBVAdoB3Gg/019huevc6XAJlls3B9gPfGa/b+f4\n+0PZZz+LbfYzTbS3f2PvGw8cBk4H4oDf2++2SX6z4+8Gptu/NwHbaUzju4Gp3uffXHoJI0/6pgNg\nOFCOlc8HAbuw86+9rww7X3X1v4gb0NP/7Ax02E4w5cBcO9zJLMNdce8GnvEcPw+4CavgqAOSXfue\nJ3wR2QCc69o30M4cMS5bcl37lwHX2r83AbN97m8DcL79+07grWaehQHOcW1fAyz0xHmMxgJlN/At\nIM0TZ1aIZ/ES8BM7o9dgC5G971vAR/bvrwFbXfuSbLsGYIlIOXA1kOi55tvYQmRvR2EJ5pAQ9/kT\n4CVP3EJglr39Ea0TkdM99/ujVtjmvOtyz18NLhHxHJNhH5Nubz8F/N21/9vABtf2CUC5Jx1e59p+\nBXjUc7w3X7hF5D5X3NuBd+zfP8WuCLneZQ3+IvIM8H37XW8CfgvcBgyzn0GU65puEfFLLy3lyZbS\nwR5gGnAt8DhWnhuLVal6/XjKmUj+qTurc7jSGJNh/13p2bfH9XsI8CW76VsuIuVYtayBWLWVMmPM\nEVf8XcdhwxDgVdd5N2B19vd3xdnn+n2Uxg7OPKzaYCieBq63f1+PlVGbw3u/J3vu9zqsDApWYX4J\nsMt2GZziOjbUsxiE1RqKJfjZ7MKqATsE7tMYc9T+mWKf7xqsgmWviLwpImNdtv7JZWcpVuvFfV4H\np2bpXKPBvu9QcY8Hv/dzPLY5ZLnSZAZW4QcE3Je/Ect9WYElAhDsqil2/a4Kse3tHD/e+G787nsQ\nrvRkv8uDzZxnAVYF5EzgYyyxOMv+W2i/p2av704vtJwnW0oHbnsWeOxZ0Mx9dClURCKPexrlPVgt\nkQzXX7Ix5jdYrp0+IpLsij/Y9fsIVi0JsAoCINtz7os9504wxhSGYeMeYITPvmeB2SIyGcudMreF\nc3nvd4HHphRjzP8DMMYsN8bMBvrZ533JdWyoZ1GE5WapxSpY3fvCuU+MMfOMMedjCfdGLBefY+u3\nPLYmGmMWhThNkfv6dt9FXrg2EPyMwuF4bAuHr2K5yM4D0rFaB2AJU1diL5Z7FgARScRys/qxAKu/\naZb9+xPgNFpfaLeUJ1tKB46InGH/XoCKiNJGngUuF5EL7dpgglidyLnGmF3ACuDnIhInIqcDl7uO\n3QwkiMilIhKL5RePd+3/G/CA0+EqItkiMjtMu54Afikio8Rikoj0BTDGFADLsVogrxhjqo7jft8A\nRovIDSISa/+dKCLj7Hu8TkTSjTG1WH0V3pqi8yzOAC4DXjbG1GOJzQMikmrf7/exnm2z2J29s+1C\noRrLDelc82/APWJ3MIvVef8ln1O9BFwqIufa7+K/7POFW6gXY/nFw+V4bAuHVCx7D2JVTH7dhnN1\nJP/Cyi+nikgc8DOaETpjzBasVs/1WJWXCqxnfTWtKLTDyJMtpYMFWIMsEu18tBC4CEsIVx2vPZFC\nRaQLYYzZg1UD/DFWx+kerE5t5z19FTgZy11xP1YHsnPsISx/8RNYNZ0jgHu01p+A14F3RaQSq6Pz\n5DBNexArQ7yLVZg/idXJ6fA0lh+8JVdWEMaYSuACLJ9wEZbb4H9pFL8bgJ22S+U2LFeXwz6szsci\n4DngNmPMRnvft7HufztWbfN54B9hmBSFJThFWM/4LKyOVIwxr9q2vWDbsw4I+T2BMWYTVkH1Z6yW\n0eVYw7xrwrABrHf1RXs00MMtRT4e28JkDpYbphBYj5VWuhzGmHysd/0CVqvgMFanfXUzhy0ADtp5\nzdkWrI7+1tBcnmw2HRhjNts2L7S3K7DS7Kd2Zahb4IwwULohIvIzYKQx5vqW4nawHWdi1fSHmE5I\nUGINe37WGJPbUlyl9yAiKVgd5KOMMTsibU9vQVsiSpuwm+nfBZ7oDAFRFDcicrmIJNkuyN9jDUXf\nGVmrehcqIkqrsT+cKsfqhH4owuYovZPZWO7HImAU1rB0rcx0IurOUhRFUVqNtkQURVGUVtPjJ8HL\nysoyQ4cOjbQZiqIo3YqVK1ceMMZktxSvx4vI0KFDWbFiRaTNUBRF6VaISFgzYqg7S1EURWk1KiKK\noihKq1ERURRFUVqNioiiKIrSalREFEVRlFbT7URERC4SaxnVrSLyo0jboyiK0pvpViJir5HxCNYM\npeOBr4jI+MhapSiK0nvpbt+JnIS1VOV2ABF5AWvunPXtfaFPthzgm3OWMyUvg+lD+hAtXW09HkVR\nlKbsKati4ZYSvnXmCG4583iWpWkd3U1EcgheXrWAEGtiiMitwK0AgwcP9u4Oi2eX7OJYbQNLtpey\nZHupfd5WnUpRFKXD8U6D+MBbG1REWosx5nGshe+ZMWNGq2aYfPT6aVRU1fHBpmL+OH8LheVV/HL2\nRL56cutESVEUpaPYuv8wN/1jGSWHq/nm6cP48ow8BmcmtXxgO9DdRKQQa41ih1zCX7f6uBAR0pNi\nuWpqLueN68+3/7mKH7+6luT4aGZPyemISyqKohw3xRXHuPHJpdTUG1657VROyE3v1Ot3q451rLW8\nR4nIMHtN5WuxlnztUFITYvnb9dM5aWgmP3plLVv3H+7oSyqKorRIfYPhjuc+o7yqlqe+fmKnCwh0\nMxExxtQBdwLzgA3AS/Y6yx1OQmw0f/7qVBJio/ivl1bT0KDrsCiKElmeWrSTFbvK+OXsiUzM6XwB\ngW4mIgDGmLeMMaONMSOMMQ905rX7pyXw08vH83nBIV75rKAzL60oihLEwcPVPPjuJs4Z248vTIuc\ni73biUikmT05hyl5GTw4fzM1dQ2RNkdRlF7K3xZso6q2nh9fMhaJ4NBRFZHjJCpK+O55o9h76Biv\nf14UaXMURemFlB6pYc7iXVw5NYeR/VIjaouKSCuYNTqbsQNSeWLhdnSNekVROpt/rdxDdV0Dt501\nItKmqIi0BhHhuplD2LivkvyiikiboyhKL6KhwfDc0t2cNDST0f0j2woBFZFWc/mkgcRFR2kHu6Io\nncqqPWXsOniUa0/KazlyJ6Ai0koykuI4b3w//vN5kQ73VRSl03hn3T5io4XzxvePtCmAikibuGD8\nAA4crmFN4aFIm6IoSi/AGMPb6/Zx2sgs0hJiI20OoCLSJs4anU2UwAcb90faFEVRegFb9h+moKyK\nCycMiLQpAVRE2kCf5DimDu7Dgs0lkTZFUZRewJLtBwE4fWRWhC1pREWkjZw8LJP8wkNU1dRH2hRF\nUXo4S7YfJCcjkdw+iZE2JYCKSBuZMbQPdQ2G1XvKI22Koig9GGMMy3aUcvKwzIh+oe5FRaSNTB+c\nCcDKXaURtkRRlJ5MQVkVBw7XMG1In0ibEoSKSBtJT4plcGYSG/ZVRtoURVF6MBv2Wh82jx+UFmFL\nglERaQdG909ls4qIoigdyIa9lYjA2AGR/0rdjYpIOzBmQAo7Dhyhuk471xVF6RjW7z3E0L7JJMV1\nrQVpVUTagdH9U6lrMGwvORJpUxRF6aFsLznCyH4pkTajCSoi7cCIbOvF7jqoIqIoSvtjjKGgrIq8\nPkmRNqUJKiLtQE6GNWa7sPxYhC1RFKUnUnqkhqraevIyu873IQ4qIu1ARlIsSXHRFJZVRdoURVF6\nIAV22ZKrLZGeiYgwKCORwvKjx31sTV0DD7+/hV+/tYFDR2uD9m3df5gFm0uo11mCFaXbsGlfJQu3\nlAQtWGeM4YVlu7lv7lp2HDh+t7cjIo7XoyvRtbr5uzH9UuM5eLjGd/+mfZV878XVGOCha6Ywxh6m\n98s31vPMkl0A5Bcd4tlvnIyIsGjrAW76v2XU1huunDKIh66dCkBtfQO/+M96lu8s5dvnjOLSSQMD\n19hfcYxlO0s5Y1Q26YldY4ZPRenOGGP4eMsB0hJimDq48SO/grKj3P3KGmrrDf979SSGZSUD8G7+\nPr717EqMgRtmDuGXV04E4MXle/jRv9cC8MGG/bz3X2eRFBdDdV09d/9rDUt3lHLH2SO5fuaQkHaU\nHqkGIDs1viNvt1VoS6Sd6JMcR+mR0CJSXVfP/3tuJcUVxyiuOMZ3X1hFQ4PhwOFqnl+2m+tnDuZn\nl4/n060HWb6zDGMMv3hjPTkZiXzt1KHMXV3E8p3WF/FPfrKDZ5bsovxoLXe9uCpQqymuOMbFf1rI\nnc+v4qpHPqXyWGOr5u8fb+fM337I/76zMah2VHqkhqcX7WRdiKnsj9XW6zopSrfmWG19k+Wry4/W\nMGfxzibTFC3cUsL5Dy7gljkrgvLOA29u4KZ/LOOqvy7ilZXWAnTGGO56YTWrdpezoaiCO5//DGMM\n9Q2GB97awJj+qXx5Ri7PLNnF5uJKGhoMj3y0lWmDM3jpW6dQdOgYLyzbA8ATC3cwd3URKfEx3Dd3\nHZ/tLgt5L+W2l6IrVg67nIiIyM9EpFBEVtt/l7j23SMiW0Vkk4hcGEk7vfRNjuPgkRo27qtgT2mw\nW+vNNXvZXnKE335xEvdeMo6N+ypZvrOUt9bupb7BcMPMoXxpRh4JsVG8saaI9Xsr2LivklvOHM6P\nLh5LSnwML6/YQ0OD4alPd3LGqCxe//ZpCMKcxTsBePj9LVRW1/HTy8az/cARnl5khS/edpAH3tpA\ngzE8+tE2XltdBFgZ7MuPLeb+1/O56q+fBmWqpz7dwcT753HhQx+zv6JxsEBB2VG+/+JqfvP2Ro7V\nNn4TY4zho037WbT1QJPncqy2nqM1de30lJWeTn2D4VBVbZPw3QePMndVYZN9b6/dy23PrGT++uJA\nmDGG++auZexP3uHGfywLpNWaugaufXwJP30tny8+uihQMSs9UsMdz33G4eo6Pti4n1+/tRGAPaVH\nefLTHXxhag7Th/Thf+x0v66wghW7yvjhhWO4/4oJ5BdVsGR7KYu3HWTXwaPcec5IfnTxOGKjhVdW\nFrBqTxl7Squ4fuYQThqWyfiBabyxpoj6BsMzi3dx1uhs5t5xGtmp8Tz03pag+ztWW8/KXaWUV9WS\nFBdNXEyXK7K7nojY/NEYM8X+ewtARMYD1wITgIuAv4pIdCSNdNMnKY5DVbVc+vAnXPKnhZRUVgf2\nvbyigGFZyZwzth8XThxAXHQU720oZsn2gwzOTGLMgFSS42M4aVhflu8sY/E2a7rn88f1JyE2mrNG\nZ/Pp1oOsKTzEvopjXD0tl36pCZw9Npt31u2jrr6B1z8v4tITBnLz6cM4dURf/r2qEID/+3QHWSnx\nvPf9sxg7IJW/L9xu2bSygK37D/PbL06iT1Icv5tnZZydB47wizfWMzkvgz1lR/nFG+sBK3N/8+kV\nvPZ5EX9bsI3fvrMpcH9/nL+Zr/3fcr76xFKesM8P8NnuMk7+9ftM/cV83lm3LxBecayWO57/jKv+\n+imrXDUvYwwvLt/N/a+tY/fBYCHeUlzJC8t2U340uLVXVVPPyl1lIT/0LDtS06QmqoRHxbFaausb\nmoRv2ldJYXnwABJjDPPy9zF/fXHQ866tb+CRD7fyP28H9/cdrq7jO/9cxexHPmXlrsb3v7/yGBf8\ncQFTfvEuD87fHAjfXnKYSx9eyF0vrubLf1scEIWVu8q4/fnPeG9DMbc9u5L8IqtFPX99Mc8u2c3p\nI7NYuOUAT36yA4C5qwrZuK+S33zhBPqlxvM7Ow2/trqQimN1PHnTiVxzYh6vrCyg8lgtL68sQIAf\nXDiGO88eyYHD1SzedpA31hQRFx3FVdNyueQEKz+/v6GYhVtKiI0Wzhnbj0x7mYhF2w6ydIclVueM\n7QfA2WOz+bzgEKv3lLOv4hhXTB5EcnwM156YxydbSih2Vdy+9+Jqrn50MU9+sqNLtkKg64pIKGYD\nLxhjqo0xO4CtwEkRtilAcrylZ/UNhsrqusDa6zV1DazcXca5Y/shIqTExzBuUBrrCitYU3CIE3LT\nA+eYkpvOpn0VLN5mTffcLy0BgKmDMygsr2JevlUQnzzcmvTxlOF92XvoGO9t2E/lsTrOthPphRMG\nsL3kCNtKDrNwywEuOWEACbHRXDU1h/yiCvYequI/nxcxdkAqX5qey/Uzh/Dp1oPsrzjGP5fvJjpK\nePS6adx0ylDeWruXkspqPti4n437KvnjNVO4ZkYezy7dRemRGvZXHOPRBdu49ISBzBqTzR/nb+ZQ\nVS0NDYYf/msNKfExDM9O4e5X1nCk2mqRPPDGBt5Zt4+dB45w6zMrAy2Vl1cWcPcra3l68S6uf3Jp\nYHr9DXsruOzPn/Cjf6/ly481FiKHqmq59M8LufrRRUGFS0OD4dv/XMXUX87nuieWBgnMEwu3c8L9\n87hlzoqg8A837ueCPy7grhdWBU3rv2FvBTc8uZS7/7UmqEVVXHGM7724mh+/ujbI/VF5rJafvZ7P\nfXPXUuZyb9bUNfDg/M3c8++1QYVEQ4PhsQXb+O+XP2enq8PVGMPTi3Zy5/OfsaYg2PXy/NLd3PzU\ncj7cFLwY2gvLdvPFRxfx/NLdTcLP+cNH/OqN9UEuymeX7OKEn83jpn8s43B14709+ckOpvz8XWb9\n7qOgb58e+XArFz70MbN+92HQGjoPzt/Mt55ZyS1zVvDnD7YGwn/z9kZ+N28Tjy3Yzp3//CwgML9+\nawNvrCmioPQot85ZEUgXv3l7I3vKqjh9ZBYPv78l4GZ9cP5mEPjpZePZVFzJi8stV9DfP95O3+Q4\nFt59Nslx0fxtgVWBeXH5HgamJ/DU10/k9JFZ/HPZbowxvPZ5IUP7JnHNiXlcN3MIy3aWsvdQFW+u\n2cu4gWmMH5TG1dNyqKlvYMHmEj7deoDJeRkMykjklBF9SYiN4uMtJazYVcYJuemkJ8aSFBfD1MEZ\nrNxdxqo95ZyQkx74ovykoZnkFx1ixc4yhmUlk5EUB8Ck3AzqGwzP2X2hJw2z8vPlkwfRYOD9DdZ7\nLSg7ytuuypeKyPHxbRFZIyL/EBGnNysH2OOKU2CHNUFEbhWRFSKyoqSkcxaMSoxtbBRNyk0PNK/X\n762gpq4haObN8QPTWLm7jIKyKsa55sEZMyDNSkQb9wfNjzMxxxKaf39WQFZKPAMC4mKd03FpzbCv\nMSUvA4CXlu+hqraeU0dYC9icPsr6/9GmEj7bVcasMZawOTWkT7YeYMGmEmYMyaRfWgKXTbIS9Sdb\nS3g3fx/pibFcMnEA188cQk1dAx9t2s+ba/dSW2/4/gWjueu80Rypqefd/H0s21nK1v2H+cGFo/nV\nlRM5VFXLG2uKOHi4mn+vKuCGmUN4/MYZlFRW89pqa536P3+whSl5GTz7jZPZXXo0IMR/eHczyfEx\n/OrKiWwuPsxLK6xk8NiCbZYQnTmczwsO8ZxdeL7+eRH/+byI88b1Z9G2g/zjE+v5rCko51dvbiAv\nM4n564t59KNtgO3OeP4zKqrqmLu6iIfet2rBNXUNfPPpFazaXc5LK/fw67c2AFYBf+fzn/Gfz4v4\n57Ld3Dd3XeBd/fjVdTy1aCfPLd3NXS+uDoT//t1NPPz+Fl5Yvptb5qwIFOZPfrKD/3l7Iy+vLAhy\nvfz7s0Lufz2ft9bu5aZ/LOPgYatl+/6GYn786lo+2XqAbz2zkm0lhwFYtqOUH/17LZuKK/nxq2tZ\ntM1yLa4rPMQ9r66lqqaeJz7ZwYv2s9tSXMlPX1tHbp8kPt5Swp/es+5518Ej/PqtDcwYmknFsVp+\n/h+rJVpYXsVD723mnLH9GNI3mZ/MXRfo13v0o21cPnkQF00YwCMfbuXg4WoOHa1lzuKdXDMjj59c\nNp6FWw7w2e5yKo7V8q+VBVx70mAev3EGB4/UMHd1IZXHanlzzV6+PCOXR66bRmJsNC8u30PlsVrm\nry/mC1NzuPn0YUwYlMZrdvwPNu3nskmDGJieyKWTBvLBhmLKj9bw8ZYSLps0kJjoKC6bNJCCsirW\nFVawdHspF04cEJTmF245wJqCQ5xp541JuRnExUSxYmcZawsOceJQq4BPiI1m/MA01hdVsK7wEJNz\nM1z5NpUtxYfZXnI46IvyUf1TaDDWyqfu8PEDrQkU31y7l9SEmMDaIKP6pdAvNZ7F9sJTS7dbLRhH\nZFREXIjIeyKyLsTfbOBRYDgwBdgL/OF4z2+MedwYM8MYMyM7O7udrQ9Ngi0iqQkxnDK8L2sKyjlW\nW89ndnN9mmtkx4jsZGrqLFfBgPTGIXvuD4kGZiQEfg/pa40NL66oZmjfpMBaAsOzrREhi7YdJDE2\nmoHp1jFjBqQSHSW8/nlRYBtgVL9UYqKEt9fto67BMCXPEqfxA9NIiI1ixa4yNu6rDLR0JgxKIy0h\nxnKxbT/IqSP6EhMdxYRBaWQmx/Hp1oN8uvUAQ/smMSI7hcm56WSnxrNwywEWbC4hJko4f/wApg3O\nYGB6Ah9tKuHjLSXU1huunpbLjCF9GNI3iffWF5NfVMGe0ipumDmE00b2ZWS/FN5Zt49DVbV8sLHY\nqj2ePJgJg9KYu6oQYwz/WlnAOWP78+NLxlmdlnYN9fmluxmenczfb5zOqSP68tzSXRhjmLN4F6nx\nMbx02ymcN64/zyzeRX2D4dklu6iqrefZb57EFZMH8fyS3VTV1PPm2iIKy6v481em8pWTBvPS8gLK\nj9awbEcpy3eWcf/l47ntrBG8/nkRBWVH2VN6lDfWFHH7rBHcc/FYFmwuYW3BISqO1fLM4l18YWoO\nv//iZNYUHGLBlhJq6xt4fOF2zhiVxZybT2J36VFe/7wIYwyPfbyNCYPSePM7Z1B2tDbQunj84+3k\nZSay4L9nIRBw1Tz5yXYyk+P45O5z6J8Wz+MfW7XypxftJDE2mnnfO5PJuemB+M8t3U1sdBTPffNk\nLp80iBeW7+FYbT0vryjAGMOfvzKVm08bxoeb9lNUXsVrqwuprTf8/IoJfOfcUewuPcrSHVa/Xl2D\n4c6zR/Ltc0dSXdfAu+uLeSffqlxcP3MIX56RS1x0FG+v3cv7G4qpqWvg6mm5TBucwbCsZN7NL2bh\nlgNU1zUwe0oOaQmxnDk6iw827mfp9lKq6xq4aKI1CvHccf1ZtaecRdsOUlPXEBCD00dmc6SmnldX\nWXaePKwvYK33A/Dyyj3UNRim2hWsUf1SiI+JYu6qQmrqGwIVtdjoKMYNSGVe/j5q6hsY07+xMjey\nXwpLd1j2DMtq/F5jVP9UDlfXceBwDcOyGsViSN/kwO9B6Y35eUB6AlEC1XUN5GQkBvKziHDKiL4s\n2X4QYwyr9pSRGh/DrDFWGRbVhdYQcRMRETHGnGeMmRji7zVjTLExpt4Y0wD8nUaXVSGQ5zpNrh3W\nJUiMs0QkMTaak4ZlUltvLVT12e4yBqUnMMCTiBz6pzUO2RvkGgM+0CUu/VMTiIkSO37jsakJsfRN\ntprIuX0aE2NCbDQD0hLYe+gYcdFR5Nk1nbiYKIb0TeJj2xXhTNcSFSWMyE7h3Xyr9TTazjhRUcLo\n/qmsLThEQVlVoAYVFSVMGJTG5uJK8osqAi0iEWHa4Azyiw6xenc5E3LSSYmPsTLH8L58truMZTtK\nSU+MZcKgNESE00ZmsWxHKZ/aNeczRmchIswanc2yHaV8vLmEBgNn262mc8f2Y/WeclbsKmN/ZTUX\nTOgPwAUTBrCpuJKt+ytZubuMSyYORES41K6Jbis5zEeb9nPOuH6kxMdwxZRBHDxSw5qCct7fUMy0\nwX0Y2S/fi8YPAAAgAElEQVSVL83IpbK6jiU7DvJufjED0xOYNSaba0/Mo6a+gQ827mdefjHxMVF8\ncXoeXz1pMMbAO+v28ebavRgD180cwjUnDiY6SpiXv4/3NxRTVVvPDacM4Yopg0hNiOHd/H0s2X6Q\nkspqrp85hDNGZTE4M4l56/axcV8lm4sPc93JQxg3MI0Th/Zh3vp97K84xtIdpVwzI4+B6YmcP74/\n89cXc7TG6hC+amoO6YmxXDklh0+3HuBwdR3z8vdxyQkDSUuI5QvTctm6/zC7Dh5h/vpizhqdTWZy\nHFdOHUTlsTo+21XG+xv3c/KwvvRPS+CySQMxBj7ZcoCPNpVwQk46eZlJnDu2H9FRwqJtB/h4cwnD\nspIZMyCV8QPTGJiewKdbD7B420H6pcYzMSeN1IRYpg/pw7KdpazcZRWMU/MyEBFmDu/L6j3lfL6n\nnLjoqEANf/qQPhSWV/HxlhJErNY9wKScdIyx+hkBTrAL/wn29OiOq8txEw/LSiExNjowsmqcnYZj\noqMY3T+VRXb/46j+jYX/iH4p7D10LJCvAuHZjXFyXOHuOIMzG8XFnbfdlcXY6KhAPvZ+9zF9SB9K\nKqspLK9i1e5yJudlkJVinedobdec4LXLubNEZKBr8yrA8RW8DlwrIvEiMgwYBSzrbPv8SIixRKTB\nmEChunpPOat2lzPVs4jMgDS3iDT+djdXB7qEJipKAv5U7zhxJ4HlZQZ/yTrIbskMykggJrrxNTvj\n2aMEBvdtPGZEdgoHbJeJO7OM6p/CWts3PcLVJB/Zzwrfe+gYI7Iba1yj+qWy8+BRNu6rYFRQ0z6V\n4opqVu0uZ0z/VKJsURw3MI3K6joWbCphYHoC/VItu0/ITaemvoG31u4lylWITB3chwZDoNXhuBuc\n/88t3U19gwm0pmYOt2qkc1cVceBwDaeOsLad/x9vPsCawkOcZm9PH9KHmChhxc5Slmw/yGkjLVGb\nMCid1IQYVuyyWmUnDs0kMS6avMwk8jITWbGzjOU7ShmenUxORiLpibFMyctg0bYDLNtRRmpCDJNz\nM4iNjuLUEX2t4dw7SokSAtc4c3QWi7cfZJndEXuG7WI5Y1Q26woreH+j5Ss/fZRVMz1zVDYlldW8\n8plV+z5tpHUPp43Morbe+rit4lgdpwx3wq3/b63dR2F5VcBNMn1IJiKWO3NzcWWg9j4iO4WMpFiW\n7Swlv/AQUwdbBXxyfAzjBqayclcZawsPMdl+NyLCCTnprC+qYG3hISblpgcqNhNz0ti4r5LVe8qZ\nkJMWeP8TBqVxqKqWd9cXM3ZgamD00YRBjgu3kGFZySTHW/0Mzloa720opn9aPH3sStTgzCQSY6PZ\nuK+SpLho+tn5JDpKGNI3iSN2P5e7cuYu/PunNuY3d97LdeWrfi5RcH85npXcGJ5p2wONedN7TrAG\n4kCwxwFgap717BdtO8jGfZVMHZxBqn3v1SoiYfNbEVkrImuAs4HvARhj8oGXgPXAO8Adxpgu81Sd\nlkh9gyEzOY4hfZOYl29lVqcJ7dDHldD6uUQh1lXYu+MAxNuZyy06VjxLeLJSguM78TI953ESdmZy\nHPExjf047tZRblAtqzGzDHU1z4e7hMb9e2S/FOobDGVHa4PFyBaUjfsqGdEvuUn44u0HA+455zwA\n7+TvI7dPUsBd6NQY5+XvIy46KlDzC4TbHZFOa2pIZpLlSlm3Nyg8KyWerJQ43l2/D2NgrF1DTYqL\nYVT/VD7ZcoCyo7WB1ld0lDA5N4PP95Szbf/hQM0XrIy/pqCctYWHAoUAWAXkluLDrCkoZ0pehqvg\nTGd36VGW7SxldP9UUuxCYuKgdI7W1PPOun1kpcQF3oNzrbmrComNlsC2U6C+Zo/Ec2rxTm37P2us\ne57kqpXHRUfx2morvlOLT0+MZVjfZOauKqS+wQQKcKfF+d6GYo7U1DNxUOMgkHED0lixq4ziiuqg\nRZLGD0pj+4EjbCs5EnCjAowdkEZNXQPrCiuC+gec97HjwJGgWryTFg5X1wXV1gekJRAb3bRVHhUl\ngYK6X2p80PKxTnhmclzQEFknzcdGCxlJ7gpc8PUcMl1i4RaIrNTGPObkR+u8jddynx8stzc0ionD\n2IGpxMdE8ewSy9U6dXAGKXZcxwXe1ehyImKMucEYc4IxZpIx5gpjzF7XvgeMMSOMMWOMMW9H0k4v\nTiHnTFEyOTeDVbutUTXe5SzTEhoTlCM+Tc4XExzu5Ik+nsTY107YKfHeRGptuxM+QF9bbLyddH1d\nYpPkssktTu7Mku0KH5geumUVJEau/h63r3iIqzXktJIAhtu+ZWMIEpdB6YkkxkZTcayOoVlJRNsF\nc1pCLP3T4ik6dIyU+JiAOMdERzE8O5lt9jT9XsHLL7JWixsRJIrJfF7QtPU1PDuZ/KIKauobgsJH\nZKdQdOgY+yutPiv3+Sur68gvqgi6T6cQXbK9NEiYR7gEdUjf5EBB6MRfuqOUnIzEQOHkPJcVu8pI\niY8JVBiyUuJIS4jhc/vbH6eVGh0lDMtKZqO9gNow13MdmpVMke3Ccds6tG9y4EM39/scmtXYr+d2\nw7qFwF0A54RR63enneyUeOxXG2idgiUWzrY7HBpFoV+aT7inFe8cn2y7XB3cFS8nfUFwHnFGY0Kw\nEGR6RMHBPfAGIN7eTvCEx0ZHcUJOOmvs9Dclrw9xjhh1zS6Rrici3ZWEWOtROgMoJ7taHxM8y1k6\nNU+gMYH4nM/BSYTej43SEq1zObWVxmtY8TOTg8XCEZWYqODz9HXVrNwZqq9LhNyZxV0TCw5v/O3O\ndO7z+IW7C4XEuOhAM95dM4yKkoBbYZDHn+zEc/cPQaPfOSMpNkg83QWeu+B0T7c9zFXIu+O7BW9w\n39Bi6Y7jPqdbFN0F8/Cs0OG5fZICtW93yzApLiZQULvvWUQC185OjQ8qqJz7jJLgZx/k2nEVwu5n\n7HbnuAt/93tzt2jdhblbUNzncV/LXcjHREcF0pg7vnVM6PBAfI9Y9PFxBTtpwZsH/UZBucPdrfh4\nV55MTQh9bLxHLOKiG/svvTijK3MyEslMjiPGjqsd6z0cp3bovOZptv/4hJz0oAQHwYlOfBKGN3E5\nNaJYT4JvsFu4KfHB8Z2WiTe+UzC7a1gAGT4Zx+1Wc5/LLTruOH7h7haUW3Tcouh14WXagtS09WWF\ne2t9joD19bj2nO2+yd5wy9bkuOig5+3X+nKfN8id4fqdk5EUOtxVSLvD3YW3+7m4w6OjJFA7doe7\n7WsSbl/D23Hr3HPflPigNOCcXyT4ebufWbZLLPxcsn6i4C7A3aLjfv9eV61TIevvKfxT7II6OyU4\n3KlQZTUJD50XnPjeCU6TfLwDfl4Ddx72+6LcWyl0KnHeFgo0ei6cPisnblTX1BCdgLG9CIiInaCm\n5GXwqysncordYesmKozUEK6I1NsfcCXHB79Kp7ld7fGjJsUHu9284V5S4kMnEXd4mqsV5K6tuQvF\nmGb6exy8ouDUEL39Ok5B6D2PU7P2+pkD8b3h9vGxnozvvp47k/f16UANamX5tMT8Wm5u0Y2KEqKj\nhPoGE3RO55jiiuomzyLT556dZ+MVYKdl6i2AnfPGRkcFFYruZ+x+z+535W4RuN+/uyUS7CINPYmg\n93062cRbu3cqYcmeNOvE8xbkTt7wfoHv2OQN9xMLP3Fx462cOXjd006+TYxrKjrnj+/PfZeO44rJ\ng4LO2VVbIioi7YQzBNd5zyLiOyNnOHhrLk5CiosJTkgNdmL0Nsmdjrsqz4gOJyPUNMlQoZOCX8Zx\nh7sLHXcm8mZyh/TE0NfyuhGcjOYNdwp2bwHpdF42KVCTQhcu3gI5VLifr9xdoLqFwy2u7kLRHe5+\nRl6Rjo+J4mhNfZNw5316KwuOUHndmY6t3vjOs2nPZ+FOO+7+vmSfNBKq4ISmadix0Wur49rzVqic\ndOEtaxPs470VJ6dg94aHah2447cGb6XQuWaoa8VGR/HNM4YHtruodgRQd1Y74ST09nrfTTvWQ2cc\np3binSHKcaF5546KP86M49u094nvxq9pHxftk0m9wmnfm7dm6GSqRI/wOYWZ9zxOQerNjE58bw0v\nNSG0yLnD3YWiO9xdaLvflbcw9wt3BMYrCo6NXtscMfOKTsDf36QPzQr3jvRxavHecL+WqF+6cF/P\nm1YdvP1xjccGv4foFtJ8jCfcaaF4Z592CvA6b7jTEgkzL4TjQfDDmyad1o+3ryQUThbuqi0RFZF2\nIjrQEmmfF92kw81OSd4M5Te/YKBF5JE1JyF684NfM9ybUQPnCSNDxfoUFrExoY/13puz7RfudE46\nNLonQvu4/cM97ozY0AVnOCPpknwKBb9WmTfcKQC94uKIfrJHOJ078hb2TvrxvoPEQIEafM8Jvr78\n4+sfcBMT7fOefa7lfc+NLtzg8zitfu/7d+J7540MiIhnhyM63nC/vNAWvM+xzk6LfnnEjeNtCCNq\nROiiZnU/GmsLbTvPmaOtD8niPRnNKSz8andeGkfqBIf7jfSI8RORNtyQn9D43UOTGqe96XVzOIWK\n9/xObc9PFLy17IBrzyfci5/Lz22H3z2H07cEjbVlb7hf35cT32uzU8BGewragIjUh66te/HWoAPh\nYbh2fCsRPuLibaH49QNG+VTYGkUk+H06rSNvfauxwzp0Ras9cL4z8uZnR8T9hNZNQxdviWifSDvR\nNzmOCyf0D/JltoY/fGkyJZXVTQojR6T8akneUMeN5c1oUT7i4nfejqiV+bq5vP09dlnQZDCBnau8\nmcopJLzhfoWWX+ES71twtr7O5e8uDN2yaNJCMaHDAy1R7wt13Jyem3PEwtsn5tviaINrx7cSEaY7\nK8rHneVtXTs49+pN87E+HdPRUaHzQlvcVl7mfOMkiiuONbHJaRWHUykcNzCVs0Zn88OLxrSbXe2J\nikg7ERUlPHbDjDafJzs1PuQSmMYuXsJN3oEmsI9YeMXB153VESISZkukIeDC8w4msP57TWtoaP6e\nveEBQfXYEe1T42uLoHoLkZOHZbJ0R2mTe3O2vM/didb0vVn/vX1f0QERCQ4PCKdHXPyEPdyW7/EQ\nrjvLsdErLn55wU9PAy0XT3w/F3R7JnlrZoSm+dlpifhVcNzEx0Tz9M1dZtWLJqg7q5vQWMsKL75T\ni/crIP1qZV46oiUSrjvLuWdvodMokKHFxc/N4XfPTdwZfq29dnQnXDRxQLP7/a51vC4Nr1g4j9jb\nGPCrLHTM+w/PzemIRZP04vOe/RYgc2L5uXD9xKUjOXuMNfuw99uY7oi2RCLE2p9dcFzxW1qgz7vb\nz7XjHoLsxtdN1gF+WL9r+X0D4225+I1W8ROXloTTr4USCfzeGz7hfq4dP6J8noWfcHZES9TPneXt\nH3Des7evJNDi8Bzvny5CHxDlV4nohPd/13mjuWHmkCZTtHRHVEQihN/0CC0RbqHR4NMn0nieYBoL\n2laZ1S54xaLBZ0Sa32gVPxeec7Pe+H4Fqp87qz1pqVLg9x7CfT+NlYXg8Gif2ndntkT8BKtJZcHH\nhsb+Pjzx/dxcocO933YF7OuE9x8dJT1CQEBFpNvwl69O5e8LdwTNmArNuLf8+g18CuDoLjA/j3fo\nb6Am6tsn4hPuMygh/I7V47G6bfhVCnzD2/h6/PsBOq8l6kdTd2boSoFf34efy9cv3LdPrBXC+dsv\nTmrqDuglqIh0E4Znp/A/Xzgh7PgNPrU1vwLYz+XTmfiNwvK2DBp8Rmf533Po8MA9hznIoDNwrtxe\nr6Fpn0ho4ewIt9Xx0rRPxMJXFDzFf2P88IQ5xtedFZ69br48I6/lSD0U7Vjvofj51v3cXH7uj87E\nW5D5d6D7DPH1EUi/cKfFEQmfeEv4uXxacoO1eF6f2nd7DmttLU063AP3GhzufHPhbaE64d7hyoH3\n7yntAq9ZvOGRfxbdCW2J9FD8at+Oi8CbXxNiohmencxd541ucq7ff2ky4wamNgl/6JopIYcvfv20\noVTVNF0vLCcjkcLyKl+bm462ccKD4/n1fTT4tFzqfYTTr3+gM0SkJS3w3tvxFmy+Xk6fkU2RbImc\nPSabDzeVNLHp/ism8JO565rMUHzvpePITInjognBI9yuO3kI5Udr+X+zRgSFT8pLJyslnu950nZX\nn06ku6Ai0kPxKyzGD0xn7IBU7r10fFB4VJTwwX/NCnmuL07PDRl+5dSckOH3Xz4hZPi8750ZUlxe\nvf3UwFrXbs4ak83zS3cHTeoH/kN5/b4f8fOtO2IT7ki1DsG3Az10Z3KTw4/TVKeTOdxpb9qT5755\nMpuLK5uEP3r99MDCV27OGp3Nxz88u0l4RlIc91w8rkl4XEwU3zu/aSUoLSGWFfed1zTcXsL4u+eO\nCvcWlBCoiPRQAi0RT3hiXDTv3HVm5xuENZVHqOk/pg7uE1iX3s3Pr5jA7bNGkO6Zrfe7545iw96K\nwNrhDs4UHUmeazjfzHhbKI0uv+DrRtKz49cP0PrzBYuPX39Ca0TkS9NzmywMBfD5/Rc0mQQRrLXf\nTxuZ1SQ8ITaaAemtnyG3tURHCXPvOK3Tr9vTUBHp5vj5yP06n7sTsdFRQSv5OUzMSeeTu89pEv61\n04ZSXdfA108bGhTuiFBeZvC5/KaS6Qo+8eP9/iNcWhpkMKZ/U7fln66dErR8sMPvvjQ55DX8VgZU\neiYqIj2Uc8f152f/Wc81J/aeUSPxMdF8J4Rr4sShmTx2w3RmjckOCnem+hgVouDsaFr+utoTfrx9\nIj7RnZage414sNyZz3/zZMYMaPosZk8J7bbsyeT2SeSrJw+OtBndAhWRbo5fYZGXmcTO31zaucZ0\nYS6c0HSakczkOJ79xslMykuPgEUWfu8v7D4Rn/M6w2W9I5WG9E3mqa+fGFh61c2pIVxNvZVQLV0l\nNBEZ4isiXxKRfBFpEJEZnn33iMhWEdkkIhe6wqeLyFp738PSFXwOXQCnZumdaloJj9NHZTXpuAf4\n5ZUTefu7Z0TAIou2uiEvnzyIO88eyX9f2HTm11lj+vlOa68ox0ukUtI64AvAY+5AERkPXAtMAAYB\n74nIaGNMPfAocAuwFHgLuAh4uzON7or88KIx9EuL57JJgyJtSo/ihmaWNg7Vb9DeSJNvGkKLyszh\nfXl68S4meGYyiI2O4gchBERpG4/fMD3kLNu9mYiIiDFmA4TMGLOBF4wx1cAOEdkKnCQiO4E0Y8wS\n+7g5wJWoiJAUF8Pts0ZG2oxeQ/7PLwxrIaG2Em5L5OITBrLqJ+cHreeudBwXhHCL9na6mg8kB9jj\n2i6ww3Ls397wkIjIrSKyQkRWlJSUdIihSu8kOT4msE59e+AnFd7wiXZLIyOpqViogCiRpMNaIiLy\nHhBKtu81xrzWUdcFMMY8DjwOMGPGjF46LZrSmXxy99ntOpzae657Lx3PVdNyGdmv6VBbRYkkviIi\nIg+HcXyFMea+UDuMMU0/EW2ZQsA9JjXXDiu0f3vDFaVLEOp7lrbg1aO4mCim5GW06zUUpT1ozp01\nG1jZwt/V7WzP68C1IhIvIsOAUcAyY8xeoEJEZtqjsm4EOrQ1oygdSVsnUlSUrkJz7qw/GmOebu5g\nEWk6V0UYiMhVwJ+BbOBNEVltjLnQGJMvIi8B64E64A57ZBbA7cBTQCJWh3qv71RXuj6zxmSTX1Th\nu987uOQ7547id/M2dcja5orSEYjfR0w9hRkzZpgVK1ZE2gxFCeLvH2/ngbc2sO7nF4acT0xRIo2I\nrDTGzGgpnm91R0QSROQmEblCLO4WkTdE5E8iop+2KoqiKM32icwBLgBuBj4CBgN/ASqx3EqKorQS\n7+y6itJdaa4dPd4YM1FEYoACY8xZdvg7IvJ5J9imKD0enbtH6e401xKpATDG1AFFnn1NVxZSFEVR\neh3NtURy7W9FxPUbe7v3zQ2tKIqiNKE5Eflv12/v8CYd7qQobaCHD4pUehG+ItLSNyKKorQdXdBA\n6e40N+3Jf8B/CIkx5ooOsUhRFEXpNjTnzvq9/f8LWBMpPmtvfwUo7kijFEVRlO5Bc+6sBQAi8gfP\nV4v/ERHtE1GUNqBdIkpPIZwJepJFZLizYU+MmNxxJilK70H0SxGlmxPOpD3fAz4Ske1Yw3uHALd2\nqFWKoihKt6BFETHGvCMio4CxdtBGe/laRVEUpZfT3ASM05zfxphqY8zn9l91qDiKooSPfiei9BSa\na4n8n4jMovnpfZ4EprarRYrSi9DvRJTuTnMiko61emFzybykfc1RFEVRuhPNDfEd2ol2KIqiKN0Q\nXYNTUSKAriei9BRURBRFUZRWoyKiKIqitJoWRcReX/16EfmpvT1YRE7qeNMURVGUrk44LZG/Aqdg\nTbwI1hrrj3SYRYrSC9DvRJSeQjgicrIx5g7gGIAxpgyIa8tFReRLIpIvIg0iMsMVPlREqkRktf33\nN9e+6SKyVkS2isjDIjrCXun+aCpWujvhiEitiERjTzwqItlAQxuvuw5rivmPQ+zbZoyZYv/d5gp/\nFLgFGGX/XdRGGxRFUZQ2Eo6IPAy8CvQTkQeAT4Bft+WixpgNxphN4cYXkYFAmjFmiTHGAHOAK9ti\ng6IoitJ2wpmA8TkRWQmci/X1+pXGmA0daNMwEVkNHALuM8YsBHKAAlecAjssJCJyK/ZMw4MHD+5A\nUxVFUXo3zS2Pm+na3A/8073PGFPa3IlF5D2sFRG93GuMec3nsL3AYGPMQRGZDswVkQnNXScUxpjH\ngccBZsyYoV2YSpdF1xNRujvNtURWYvWDCDAYKLN/ZwC7gWHNndgYc97xGmPPEFxt/14pItuA0UAh\nkOuKmmuHKYqiKBHEt0/EGDPMGDMceA+43BiTZYzpC1wGvNsRxohItt2Jj72a4ihguzFmL1AhIjPt\nUVk3An6tGUVRFKWTCKdjfaYx5i1nwxjzNnBqWy4qIleJSAHW9ydvisg8e9eZwBq7T+RfwG0ut9nt\nwBPAVmAb8HZbbFCUSGL0QxGlhxDO8rhFInIf8Ky9fR1Q1JaLGmNexRrx5Q1/BXjF55gVwMS2XFdR\nuhr6nYjS3QmnJfIVIBur0H8V6Efj1+uKoihKLyacIb6lwHc7wRZF6TWoN0vpKbQoIiLyITRd/MAY\nc06HWKQovQj1ZindnXD6RH7g+p0AXA3UdYw5iqIoSnciHHfWSk/QpyKyrIPsURRFUboR4biz3F+u\nRwHTgfQOs0hRegHaJaL0FMJxZ7m/XK8DdgDf6EijFKW3oCsaKN2dcERknDHmmDtAROI7yB5FURSl\nGxHOdyKLQoQtbm9DFEVRlO5Hc7P4DsCabj1RRKbSOBoxDUjqBNsUpcei34koPYXm3FkXAl/DmjH3\nQVd4JfDjDrRJUXoN2iOidHd8RcQY8zTwtIhcbc9ppSiKoihBNOfOut4Y8ywwVES+791vjHkwxGGK\noihKL6I5d1ay/T+lMwxRlN6E0S9FlB5Cc+6sx+z/P+88cxSld6GfiSjdnXC+WM8GbgGGuuMbY27u\nOLMURVGU7kA4Hxu+BizEWia3vmPNURRFUboT4YhIkjHm7g63RFF6EfqdiNJTCOeL9TdE5JIOt0RR\neiE6d5bS3QlHRL6LJSRVIlIhIpUiUtHRhimKoihdn3DWE0ntDEMURVGU7keLLRERmRbib4SIhNOf\n4nfO34nIRhFZIyKvikiGa989IrJVRDaJyIWu8Okistbe97CoH0DpxmiXiNJTCMed9VdgCfB3+28J\n8DKwSUQuaOV15wMTjTGTgM3APQAiMh64FpgAXAT8VUSi7WMexRpqPMr+u6iV11YURVHaiXBEpAiY\naoyZboyZDkwBtgPnA79tzUWNMe8aY5x12pdgTfIIMBt4wRhTbYzZAWwFThKRgUCaMWaJMcYAc4Ar\nW3NtRVEUpf0IR0RGG2PynQ1jzHpgrDFmezvZcDPwtv07B9jj2ldgh+XYv73hIRGRW0VkhYisKCkp\naSczFUVRFC/h9Gvki8ijwAv29jXAent1w1q/g0TkPWBAiF33GmNes+Pci7Xk7nPHZXULGGMeBx4H\nmDFjhrqfla6Hfiii9BDCEZGvAbcDd9nbnwI/wBKQs/0OMsac19xJReRrwGXAubaLCqAQyHNFy7XD\nCml0ebnDFaXbokNDlJ5AOEN8q4A/2H9eDrfmoiJyEfBD4CxjzFHXrteB50XkQWAQVgf6MmNMvf2N\nykxgKXAj8OfWXFtRFEVpP8KZgHEU8D/AeCDBCTfGDG/Ddf8CxAPz7ZG6S4wxtxlj8kXkJWA9lpvr\nDmOMM1/X7cBTQCJWH8rbTc6qKIqidCrhuLP+D7gf+COW++rrhNch74sxZmQz+x4AHggRvgKY2Jbr\nKkpXQXtElJ5COGKQaIx5HxBjzC5jzM+ASzvWLEXp+WiXiNITCKclUi0iUcAWEbkTq0NbVztUFEVR\nwp6AMQn4DjAduAG4qSONUhRFUboH4YzOWm7/PIzVH6IoShvRz0SUnoKviIjI680daIy5ov3NUZTe\ng84hqvQEmmuJnII1Bck/sb7N0BSvKIqiBNGciAzAmmTxK8BXgTeBf7rn0VIURVF6N74d68aYemPM\nO8aYm4CZWDPqfmSP0FIUpQ0Y/VJE6SE027FuT7J4KVZrZCjwMPBqx5ulKD0f9Q8rPYHmOtbnYH0h\n/hbwc2PMuk6zSlEURekWNNcSuR44gvWdyHdcI0kEMMaYtA62TVEUReni+IqIMaZN82MpiuKPfiei\n9BRUKBQlQuhnIkpPQEVEURRFaTUqIoqiKEqrURFRlAigXSJKT0FFRFEihOiXIkoPQEVEURRFaTUq\nIoqiKEqrURFRlAig34koPQUVEUWJFNolovQAVEQURVGUVhMRERGR34nIRhFZIyKvikiGHT5URKpE\nZLX99zfXMdNFZK2IbBWRh0WXhVMURYk4kWqJzAcmGmMmAZuBe1z7thljpth/t7nCHwVuAUbZfxd1\nmjMOQFAAAA81SURBVLWK0s7oeiJKTyEiImKMedcYU2dvLgFym4svIgOBNGPMEmOMAeYAV3awmYrS\noWhTWukJdIU+kZuBt13bw2xX1gIROcMOywEKXHEK7LCQiMitIrJCRFaUlJS0v8WKoigK0MLKhm1B\nRN7DWqfdy73GmNfsOPcCdcBz9r69wGBjzEERmQ7MFZEJx3ttY8zjwOMAM2bMUL+BoihKB9FhImKM\nOa+5/SLyNeAy4FzbRYUxphqotn+vFJFtwGigkGCXV64dpijdE63aKD2ESI3Ougj4IXCFMeaoKzxb\nRKLt38OxOtC3G2P2AhUiMtMelXUj8FoETFeUdkPHFyo9gQ5ribTAX4B4YL49UneJPRLrTOAXIlIL\nNAC3GWNK7WNuB54CErH6UN72nlRRFEXpXCIiIsaYkT7hrwCv+OxbAUzsSLsURVGU46MrjM5SlF6H\ndokoPQUVEUWJELqeiNITUBFRFEVRWo2KiKIoitJqVEQUJQIYXVBE6SGoiChKhNDvRJSegIqIoiiK\n0mpURBRFUZRWoyKiKBFAu0SUnoKKiKJECO0SUXoCKiKKoihKq1ERURRFUVqNioiiRADtElF6Cioi\nihIhRD8UUXoAKiKKoihKq1ERUZQIoEN8lZ6CioiiRAh1Zik9ARURRVEUpdWoiCiKoiitRkVEUSKA\n0UG+Sg9BRURRIoV2iig9gIiIiIj8UkTWiMhqEXlXRAa59t0jIltFZJOIXOgKny4ia+19D4sOslcU\nRYk4kWqJ/M4YM8kYMwV4A/gpgIiMB64FJgAXAX8VkWj7mEeBW4BR9t9FnW61oiiKEkRERMQYU+Ha\nTKZxFojZwAvGmGpjzA5gK3CSiAwE0owxS4y1rugc4MpONVpR2hH9TkTpKcRE6sIi8gBwI3AIONsO\nzgGWuKIV2GG19m9vuKJ0W9Qfq/QEOqwlIiLvici6EH+zAYwx9xpj8oDngDvb+dq3isgKEVlRUlLS\nnqdWFEVRXHRYS8QYc16YUZ8D3gLuBwqBPNe+XDus0P7tDfe79uPA4wAzZsxQx4GiKEoHEanRWaNc\nm7OBjfbv14FrRSReRIZhdaAvM8bsBSpEZKY9KutG4LVONVpRFEVpQqT6RH4jImOABmAXcBuAMSZf\nRF4C1gN1wB3GmHr7mNuBp4BE4G37T1G6LTpKXekJREREjDFXN7PvAeCBEOErgIkdaZeiKIpyfOgX\n64qiKEqrURFRlAhg9EMRpYegIqIoEUK7RJSegIqIoiiK0mpURBRFUZRWoyKiKBFAe0SUnoKKiKJE\nCO0SUXoCKiKKoihKq1ERURRFUVpNxKaCV5TezIRBaVTV1LccUVG6OCoiihIBrjlxMNecODjSZihK\nm1F3lqIoitJqVEQURVGUVqMioiiKorQaFRFFURSl1aiIKIqiKK1GRURRFEVpNSoiiqIoSqtREVEU\nRVFajfT0FdZEpATYFWk7jpMs4ECkjehk9J57B3rP3YchxpjsliL1eBHpjojICmPMjEjb0ZnoPfcO\n9J57HurOUhRFUVqNioiiKIrSalREuiaPR9qACKD33DvQe+5haJ+IoiiK0mq0JaIoiqK0GhURRVEU\npdWoiHQBRCRTROaLyBb7f59m4kaLyCoReaMzbWxvwrlnEckTkQ9FZL2I5IvIdyNha1sRkYtEZJOI\nbBWRH4XYLyLysL1/jYhMi4Sd7UkY93ydfa9rRWSRiEyOhJ3tSUv37Ip3oojUicgXO9O+jkJFpGvw\nI+B9Y8wo4H1724/vAhs6xaqOJZx7rgP+yxgzHpgJ3CEi4zvRxjYjItHAI8DFwHjgKyHu4WJglP13\nK/BopxrZzoR5zzuAs4wxJwC/pJt3Pod5z068/wXe7VwLOw4Vka7BbOBp+/fTwJWhIolILnAp8EQn\n2dWRtHjPxpi9xpjP7N+VWOKZ02kWtg8nAVuNMduNMTXAC1j37mY2MMdYLAEyRGRgZxvajrR4z8aY\nRcaYMntzCZDbyTa2N+G8Z4BvA68A+zvTuI5ERaRr0N8Ys9f+vQ/o7xPvIeCHQEOnWNWxhHvPAIjI\nUGAqsLRjzWp3coA9ru0CmgphOHG6E8d7P98A3u5QizqeFu9ZRHKAq+jmLU0vMZE2oLcgIu8BA0Ls\nute9YYwxItJk3LWIXAbsN8asFJFZHWNl+9LWe3adJwWr9naXMaaifa1UIomInI0lIqdH2pZO4CHg\nbmNMg4hE2pZ2Q0WkkzDGnOe3T0SKRWSgMWav7cYI1dQ9DbhCRC4BEoA0EXnWGHN9B5ncZtrhnhGR\nWCwBec4Y8+8OMrUjKQTyXNu5dtjxxulOhHU/IjIJyzV7sTHmYCfZ1lGEc88zgBdsAckCLhGROmPM\n3M4xsWNQd1bX4HXgJvv3TcBr3gjGmHuMMbnGmKHAtcAHXVlAwqDFexYrtz0JbDDGPNiJtrUny4FR\nIjJMROKw3t3rnjivAzfao7RmAodcrr7uSIv3LCKDgX8DNxhjNkfAxvamxXs2xgwzxgy18/C/gNu7\nu4CAikhX4TfA+SKyBTjP3kZEBonIWxG1rOMI555PA24AzhGR1fbfJZExt3UYY+qAO4F5WAMDXjLG\n5IvIbf+/vXONsauq4vjv32lDW0pbB6t+UfliCFBfYSQWSYOkGokiWqc2EaxTowQVipIqGg1OaBBt\n06gIBG1TplSUpx0VsaUpHYpUoe9pC6lUwJhIMK1SrdARyvLDWteeuXPu7Z3bsUOn65fcZJ+999lr\nr73P3c9z1pZ0eUR7AHga2AMsAb44LJkdIhrU+VrgVOCWqNdNw5TdIaFBnUckafYkSZIkaZqciSRJ\nkiRNk51IkiRJ0jTZiSRJkiRNk51IkiRJ0jTZiSRJkiRNk53ICEWSSVpcuJ4vqfMY56GrYqlU0tKj\nNZ4o6TRJO2uELQpLv4uORsZriSi/Z4byFdFinZyISOqQdNMR4swOS7zHtaXsY0V+sT5y6QNmSrrB\nzPYO9mZJo+Pd9yHBzD43VGnV4DKg1cwOFT2HWo9h4Ktmdu9wZ2IokdRSXU+vJczsLknPA/OHOy/H\nAzkTGbm8gpvX/kp1QIzoH4rzHNbG18OVUeqtkh4DFkrqlLRc0iOS/ixppqSFcQbEqjBJgqRrJW2U\ntFPST1RiGEhSj6Q2SR8tfDi4W9IzEX62pIclbZa0umLFNvy3S9oOfKlMUUm/AiYAm2MUWa3HyZKW\nSXpcfhbLxXHfOEl3SnpS0kpJj0lqi7ADhfTbJXWFe4qk+0LfjZLeF/6dIaNH0tOS5hXunxNlvV3S\nCkmnxAyjUn4Ti9e1kPTGyOf2+J0r6TpJXy7EuV5x7oqka6Kutkv6bkl6tcp8nvwMl15Jd5bc1yHp\nl6HrU5K+XQi7NMp5m6Qfy02fI+mApMVRj9Oq0hsgT9I5kn4f9bVB0ukF2d3yM2ielXSFpKsj3h8k\ntUa8Hkk/jHzslHROiR6ldZkMEjPL3wj8AQeAicCzwCR8VNUZYb8GPhPuzwLd4e4C7gda4roT+B0w\nBngn8CJu5whgJfCxcLcW5K4ALiqk1x7uHqCtKo934x3DGGADMCX8ZwPLwt0LTA/3ImBnLX0L7mo9\nvgNcGu7JwB+Bk4GrC3LegXe8bSXptQNd4f4ZcF6434KbZKmU1QbgJNwu0r7Q66yQ9/piWQG3Fcrv\nMmBxiU7/K7+4vgs3QgnQEvV6GrAl/EYBf8K/BL8w8jO+Sm5X6FOvzP8KnFQpr5J8dQDPhZxxwE7c\nLtQZ+LM1JuLdAswJtwGfrFF3A+Thz+7ocM8A7ivI3gOcAkwB9gOXR9j3C+XTAywJ93TiuYn7b6pX\nl3F9PnD/cP+Pj4dfLmeNYMzsn5JuB+YBLxWCpgEzw70CWFgIu8f6LzX81sxelrQDb7hWhf8OvAED\neL+krwHjgVZgF96Y1CTiv2RmN0uaCkwF1sQkpgV4TtJkvFFZX8jrhQ0p31+PD+LGKyvLE2PxRmM6\ncCOAmfVK6m0g3RnAmTo82ZootzIM8Bsz6wP6JP0NN29/QeRlb8j5e8Rdipv17wbmAp9vQPYFwJxI\n5xDegO6XtE/Su0PeVjPbJ2kGcJuZvVglt8LplJR5hPUCd0jqjvyVscbCaKKkX+BWeF8BzgY2Rprj\nOGxY8xBuSLOMMnmTgOWS3oZ3QMVZ2jrz82X+JWk/h5+1HfhgoMLPQ/f1MdubXCW3tC7N7ABJw2Qn\nMvL5AbAFH/k2wr+rrvsAzM1Xv2wxTMPPNBktaSw+4mwzs7/IN+/H1hMQDdwsvBEHELDLzKqXOar/\n9IOhqIeAT5jZ7qr0691ftAdU1GcU8F4zO1iSVl/B6xB1/l9m9qh8WfF8fMZU+sJAgyzFR9hvApY1\neE9pmQcfxuvmIuCbkt5uA/eVqu0lWaS53My+UZLmQau9DzJAHn7a4Toz+7j8LJmeQvxiOb9auH6V\n/mVelscipXWZDI7cExnhxAj0bvzMhgobcCujAJcAjxyFiEoDuzdG5HXf/JH0VvwY0VlmVpkd7Qam\nSJoWccZIOsvMXgBekFQ5a+KSJvO4GrhS0dLHqB1gPfCp8JtK/1Hs85LOkDQKP0iowoP46XQVfd51\nBNkPAbMknRrxWwtht+NLKo128GuBL0Q6LZImhf9K4EPAe3BdAdYAcyWNL5ELNco89H2zma0DrsFn\nBBMYyAcktUoah59K+Wjkr13SGyoyo75rUkfeJA6bUu+oXyw1mR0yzsMtI++vCh9sXSYlZCdyYrAY\nX6evcCXewPTiVnKvajbhaOiX4Oviq3GT2PXowNfSu2PT8wHz40Tbge/Fxus24NyIPxe4WdI2fKTb\nDAvw5ZBeSbviGvyEuQmSngSuAzYX7vk6vq+ygcPLPOBLg22xCfwEUPf1WzPbBVwPPBy6FU3a3wG8\njlh2aYCr8KXDHZHXM0PGf4B1uOXYQ+G3CjdFvinKrt+bRnXKvAX4acjYCtwYdVzN4/jyVC++X7HJ\nzJ4AvgU8GM/WGuBIx/zWkrcQuEHSVppfMTkY999K/0FUhUHVZVJOWvFNkkBSDzDfzI6JWXL59xoX\nm9mna4R34Zu7dV/xjdH8Fnx299SQZ3SgvA58+fKK/7esZjnauoxlxvlm9pGhzNdIJGciSTIMSPoR\nfobKgjrR9gMLVOdjQ/kHnHuAtceiAzkRkDQb3+f7x3Dn5XggZyJJkiRJ0+RMJEmSJGma7ESSJEmS\npslOJEmSJGma7ESSJEmSpslOJEmSJGma/wL71//A3XXO4gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hamming window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hanning Window" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hanning')" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUYCodcQEggQehMCKiBFUMHG2pG1gbus\na/dVV91m2XVXXd0VBUV0XXR17Q2QFQFpYoEE6RASIJDQQugQ0u/3j5nEMQvJAJmcKffnuubKnDJz\nfgeSuec55XlEVTHGGGMAwpwOYIwxxn9YUTDGGFPBioIxxpgKVhSMMcZUsKJgjDGmghUFY4wxFawo\nGAOISKKIHBWRcAcz/FdEbj7N1z4mIm/VdCYTeqwoGL8hIlkiMrLSvFtE5Gtfb1tVt6tqrKqW+npb\nVWQYrapvOLV9Y8CKgjHGGA9WFExAEZGHRWSziBwRkfUicoXHsltE5GsReVZEDojIVhEZ7bF8oYj8\nSUSWul//pYg0cy9rJyIqIhHVretefpOIbBORfSLyhxO1ctzrJYnIQREJc0+/KiK5Hsv/LSL3emzz\nF17uS5KILHJnmws0q7Tdy0VknXvbC0Wkq3v+eBGZ6bFehoh84DGdLSJ9TuO/xgQJKwom0GwGzgMa\nAo8Db4lInMfys4F0XB+SzwD/FBHxWD4OGA+0AKKAB6rY1gnXFZFuwEvAz4E4d5b4E72Bqm4FDgNn\nuWcNAY6Wf0gDQ4FFJ9l+VfvyHyDNvexPQMW5CBHpBLwD3As0B2YDM0Ukyr2t80QkTERau/frXPfr\n2gOxwOoq/k1MkLOiYPzNp+5vtwdF5CCuD98KqvqBqu5U1TJVfQ/IAAZ4rLJNVV91nxt4A9eHdkuP\n5f9S1U2qehx4H6jqW/HJ1r0amKmqX6tqEfBHoKpOxBYBQ0WklXv6Q/d0EtAAWHWS151wX0QkEegP\n/EFVC1V1MTDT43XXAZ+r6lxVLQaeBWKAgaq6BTji3pchwBxgp4h0wVWglqhqWRX7YoKcFQXjb36m\nqo3KH8Dtngvdh21WehSNHvz00Mnu8ieqmu9+Gnui5UB+pWWVnWzd1kB2pe3sq+J9FgHDcH0ILwYW\n4voAru5D+GT70ho4oKrHPNbd5vG8tee0+/2z+bE145lnUaU8J2u1mBBhRcEEDBFpC7wK3Ak0dReN\ntYBU+cKatwto45ErBmhaxfqLcB3yGuZ+/jUwiNP/EN4FNBaReh7zEj2e7wTaeuQTIAHY4ZFnmDvT\nIvfDioIBrCiYwFIP12GaveA6aYqrpVDbPgQuE5GB7uP0j1FFYVLVDOA4cAOwSFUPA3uAqziND2FV\n3QakAo+LSJSIDAYu81jlfeASERkhIpHA/UAh8I17+SJgOBCjqjnAEmAUrsL2w6nmMcHFioIJGKq6\nHngO+BbXh2pPYKkDOdYBdwHv4vrWfhTIxfXBezKLgH2qmu0xLcCK04wxDteJ6P3Ao8CbHvnScRWg\nF4E8XAXjMvf5D1R1kzvzEvf0YWALsNTJ+zSMfxAbZMeYMyMiscBBINl9tZExActaCsacBhG5TETq\nuo/rPwusAbKcTWXMmbOiYMzpGYPrhO5OIBkYq9bsNkHADh8ZY4ypYC0FY4wxFSKcDnCqmjVrpu3a\ntXM6hjHGBJS0tLQ8VW1e3XoBVxTatWtHamqq0zGMMSagiMi26teyw0fGGGM8WFEwxhhTwYqCMcaY\nClYUjDHGVLCiYIwxpoLPioKIvC4iuSKy9iTLRUReEJFMEVktIn19lcUYY4x3fNlSmI6rO96TGY2r\ne4BkYCLwsg+zGGOM8YLP7lNQ1cUi0q6KVcYAb7r7i/lORBqJSJyq7vJVJmNqyvGiUpZn7Wdl9kFK\nSk8wcJoIXVvV55z2TWlcL6r2Axpzmpy8eS0ejyENgRz3vP8pCiIyEVdrgsTExMqLjfG54tIyVmUf\nZGnmPpZuzuOH7QcoLnX1GyYnGF6nvEsxEegW14BBHZsxsENTBiQ1oW5UwN0zakJIQPx2quo0YBpA\nSkqK9eBnas2ewwVMWZDJR2k5HCsqRQS6t27AhEFJDOzYjP7tGp/wQ764tIzVOa4i8s3mPKYvzWLa\n4i1EhgsjurTkvgs60blVfQf2yJiqOVkUduAaN7ZcG34cQ9YYR+0/VsTURZt545ssSsuUMX3iGdm1\nBed2aEqjutUfDooMD6Nf2yb0a9uEu0ckc7yolNRt+1m8aS/vLstmzvrdXN67NfeO7ERSs3rVvp8x\ntcXJojADuFNE3sU1rOAhO59gnHboeDH/XLKFf369lfziUq7oE889I5Np2/TMPrhjosI5L7k55yU3\n5/ZhHZm2ZAvTl2Yxa/Uuru7bhrtHJhPfKKaG9sKY0+ez8RRE5B1gGNAM13i6jwKRAKo6VUQEmIzr\nCqV8YLyqVtvTXUpKilqHeKamqSr//m4bz325iUPHi7mkZxz3jkwmuaXvDvHkHing5YWbefu77QDc\nPLAtD1zUmToR4T7bpgldIpKmqinVrhdog+xYUTA17UhBMQ99tJrZa3ZzXnIzHhrVhR7xDWtt+zsP\nHmfSvAzeS82mV5uGTBnXl4QmdWtt+yY0WFEwxgsbdx/m9rdWsG1/Pg9e1JlfDWmPnOhyolowZ91u\nHnh/FWFhwj+u6835XVo6ksMEJ2+LgnVzYULWR2k5/GzKUo4UlvD2L87mtqEdHCsIABd1b8WsuwcT\n3yiGCdNTeXZOOqVlgfWlzQQ+Kwom5BQUl/LIx6u5/4NV9EloxOd3D+ac9k2djgVA26b1+Pj2gYzt\nn8DkBZnc+M/v2Xuk0OlYJoRYUTAh5VB+Mde98i3vLMvm9mEdeOvWs2lRP9rpWD8RHRnOU1f14m9X\n9yJt2wEufXEJmblHnI5lQoQVBRMyDuUX8/N/fseGXUd45cZ+/GZUFyLC/fdP4JqUBD65fRClZTB2\n2vdk5h51OpIJAf77F2FMDSovCJt2H+WVG/txUfdWTkfySrfWDXh34tkAjJ32nRUG43NWFEzQO5Rf\nzA3//L6iIAzv0sLpSKekY4v6FYXh+letMBjfsqJgglp5QUjffSQgC0K58sKgaoXB+JYVBRO0DuUX\nc+PrroIw9ca+AVsQynVsUZ93fvljYdi81wqDqXlWFExQOlZYwo2vf8/GXa6CECw3giW3/LEwjJ32\nHdv2HXM6kgkyVhRM0CkrU/7v/ZWs3XGIl28InoJQrrwwFJeW8Ys3UjlSUOx0JBNErCiYoPP8/Azm\nrNvD7y/pxoiuwVUQyiW3rM9L4/qyJe8Y9723kjK789nUECsKJqh8vnoXL8zP4Jp+bRg/qJ3TcXxq\nYMdm/PHSbszbkMtzc9OdjmOCRECMvGaMN9btPMQDH6yib2Ij/nxFD0f7MaotN53blo27DzNlwWa6\ntGrAZb1bOx3JBDhrKZigkHe0kIlvptGobiRTb+wXMmMSiAiPX96D/u0a8+CHq1iTc8jpSCbAWVEw\nAa+opIxfv5VG3tFCpt2Y4nd9GflaVEQYL9/QjyZ1o5j471RyjxQ4HckEMCsKJqCpKo/OWMvyrAM8\nc3UverapvcFx/Emz2Dq8enMKB/KL+PVbKygsKXU6kglQVhRMQPsgNaeix9MxfeKdjuOo7q0b8tw1\nfUjbdoAnP9/gdBwToKwomIC1bd8xHpu5jnPaN+H+Czs7HccvXNIrjlsHJ/Hmt9tYsDHX6TgmAFlR\nMAGppLSMe99bSXiY8Pdr+xAeFvxXGnnrwYs606VVfR78cDX7jtoAPebUWFEwAWnygkx+2H6QJ6/o\nSetGMU7H8SvRkeE8P7YPh48X89BHawi0cdiNs6womICzYvsBXvwqkyvOiudyuy7/hLq0asBvRnVm\n3oY9vLs82+k4JoBYUTAB5VhhCfe9t5JWDaJ5fEx3p+P4tQmDkhjcsRlPzFzP1jzrOM94x4qCCShP\nzFzP9v35/P3a3jSIjnQ6jl8LCxOevaY3URFh3PvuDxSXljkdyQQAKwomYHyxdjfvpWbz66EdOLt9\nU6fjBIRWDaP565U9WZVziBfnZzgdxwQAKwomIOQeLuCRj1fTI74B947s5HScgHJxzziu7teGyQsy\nSdu23+k4xs9ZUTAB4fefriW/qJTnrzuLqAj7tT1Vj17WjfjGMTzwwWoKiu1uZ3Ny9tdl/N6cdbv5\ncv0e7rugEx1bxDodJyDVj47kr1f0YmveMV5akOl0HOPHrCgYv3a0sIRHP1tHl1b1uXVwktNxAtrg\n5GZccVY8Ly/aTGbuEafjGD9lRcH4tWfnpLPnSAF/ubInkeH263qmfn9JV+rVieC3H6+10drMCfn0\nr0xERolIuohkisjDJ1jeUERmisgqEVknIuN9mccEllXZB3nj2yxuOLstfRMbOx0nKDSNrcNvR3dl\nWdZ+Pkizm9rM//JZURCRcGAKMBroBlwvIt0qrXYHsF5VewPDgOdEJMpXmUzgKCkt45GP19A8tg4P\njrLO7mrSNSltGJDUhL/M3kie9Y1kKvFlS2EAkKmqW1S1CHgXGFNpHQXqi2vcxFhgP1Diw0wmQEz/\nJov1uw7z2OXd7Sa1GiYi/OWKnuQXlfDnWeudjmP8jC+LQjzg2T7Ncc/zNBnoCuwE1gD3qKrddhni\ncg7k89yXmxjRpQWje7RyOk5Q6tgill8P68inK3eyJGOv03GMH3H6zN1FwEqgNdAHmCwiDSqvJCIT\nRSRVRFL37rVf4GCmqjz62ToAHh/THVcj0vjC7cM60L5ZPX73yVq7d8FU8GVR2AEkeEy3cc/zNB74\nWF0yga1Al8pvpKrTVDVFVVOaN2/us8DGeV+s3c38jbncf2En2jSu63ScoBYdGc6fr+jB9v35vGBd\nYBg3XxaF5UCyiCS5Tx6PBWZUWmc7MAJARFoCnYEtPsxk/Fh+UQlPzFpPt7gG3DKwndNxQsLADs24\nqm8bXl2yxXpSNYAPi4KqlgB3AnOADcD7qrpORG4Tkdvcq/0JGCgia4D5wEOqmuerTMa/vbJoC7sO\nFfDY5d2JsHsSas1DoztTJyKcJz+3k84GInz55qo6G5hdad5Uj+c7gQt9mcEEhp0Hj/PK4s1c0iuO\nAUlNnI4TUlrUj+aO4R15+ouNLMnYy3nJdog2lNnXMeMXnv5iI6rwyOj/OaVkasGEwe1IbFKXP81a\nT4mNuxDSrCgYx6VtO8BnK3cycUh7O7nskDoR4fz24q5s2nOUd5ZtdzqOcZAVBeOosjLliZnraFG/\nDrcN7eB0nJB2UfeWnNO+CX+fu4lD+cVOxzEOsaJgHPXpyh2syjnEQ6O6UK+OT09xmWqICH+8tDuH\njhczyS5RDVlWFIxjjhWW8PQXG+md0Igrzqp8s7txQrfWDbiufyJvfptFZu5Rp+MYB1hRMI6Zumgz\new4X8sdLuxEWZncu+4v7L+xETKRdohqqrCgYR+QcyGfa4i1c3rs1/dpat9j+pFlsHe4a0ZEF6XtZ\nmJ7rdBxTy6woGEc89d+NiMDDdgmqX7plYBLtmrouUS22S1RDihUFU+tWZh9k1updTDyvPa0bxTgd\nx5xAVEQYv724K5v3HuP9VBuMJ5RYUTC1SlV5+r8baVoviol2Capfu6BbS1LaNmbSvAyOF1kvqqHC\nioKpVYsz8vh2yz7uOr8jsXYJql8TER4e3YXcI4W8vnSr03FMLbGiYGpNWZmrlZDQJIZxZ7d1Oo7x\nQkq7Jozs2oKpizZzML/I6TimFlhRMLVm5uqdrN91mPsv6ExUhP3qBYoHL+rC0cISXlq42ekophbY\nX6apFUUlZTz35Sa6xjXg8t6tnY5jTkHnVvW58qw2TP8mix0Hjzsdx/iYFQVTK95Ztp3t+/P5zajO\ndqNaALrvgmRQeH7uJqejGB+zomB87lhhCS9+lcHZSU0Y1sn66g9EbRrX5cZz2/LRihwy9hxxOo7x\nISsKxudeW7KVvKNFPDy6CyLWSghUdwzvSL2oCJ6Zk+50FONDVhSMT+07Wsi0xZsZ1b0VZyVadxaB\nrEm9KH41tD1z1+8hbdt+p+MYH7GiYHxq8oJMjheX8sBFnZ2OYmrAhMFJNK9fh6f/m46qOh3H+IAV\nBeMzOQfyefu77VybkkDHFrFOxzE1oG5UBHePSGZZ1n4WWGd5QcmKgvGZF+dngsA9I5OdjmJq0Nj+\nCSQ2qcvf526y1kIQsqJgfCIr7xgfrshh3IBE4hpap3fBJDI8jLtHJLN2x2HmrNvjdBxTw6woGJ94\n4asMIsOF24dbp3fB6Gd9WtO+WT3+MXcTZWXWWggmVhRMjcvMPcqnP+zgxnPa0qJ+tNNxjA9EhIdx\nz8hk0vcc4fM1u5yOY2qQFQVT4ybNzyA6MpzbrGvsoHZpr9Ykt4jl+XmbKLXWQtCwomBqVPruI8xa\nvZNbBrajaWwdp+MYHwoPE+67oBOb9x5jxqodTscxNcSKgqlR/5i7iXpREUwc0t7pKKYWjOreiq5x\nDZg0L4MSG7YzKFhRMDVm7Y5DfLFuNxMGJ9GobpTTcUwtCAsT/u+CTmTty+fjFdZaCAZWFEyNeX7e\nJhpER3Dr4CSno5haNLJrC3q3acik+RkUlVhrIdBZUTA1YmX2QeZtyGXikPY0jIl0Oo6pRSKucws7\nDh7n/dRsp+OYM2RFwdSIv8/dROO6kdwyyFoJoWhop+b0TWzE5K8yKSgudTqOOQM+LQoiMkpE0kUk\nU0QePsk6w0RkpYisE5FFvsxjfCNt234Wb9rLr4Z2ILZOhNNxjANEhPsv7MzuwwW8s2y703HMGai2\nKIhIXRH5g4i86p5OFpFLvXhdODAFGA10A64XkW6V1mkEvARcrqrdgWtOYx+Mw56fl0HTelHcdG5b\np6MYBw3s0JQBSU2YumiztRYCmDcthX8BhcC57ukdwJ+9eN0AIFNVt6hqEfAuMKbSOuOAj1V1O4Cq\nWreLASZt2wGWZOTxq6HtqRtlrYRQJiLcOyKZPYcLeW+5nVsIVN4UhQ6q+gxQDKCq+YA3w2fFA56/\nGTnueZ46AY1FZKGIpInITSd6IxGZKCKpIpK6d+9eLzZtasuk+a5Wwg3nWCvBwLkdmtK/XWNeXriZ\nwhJrLQQib4pCkYjEAAogIh1wtRxqQgTQD7gEuAj4g4h0qrySqk5T1RRVTWne3Mb49Rc/bD/A4k17\n+eUQayUYFxHhnhGd2H24gPettRCQvCkKjwJfAAki8jYwH/iNF6/bASR4TLdxz/OUA8xR1WOqmgcs\nBnp78d7GD0yan0GTelHcaK0E42FQx6b0a9uYl6y1EJCqLQqqOhe4ErgFeAdIUdWFXrz3ciBZRJJE\nJAoYC8yotM5nwGARiRCRusDZwAbv4xunrMw+yML0vfzivCTq2RVHxoOIcO/IZHYdKuCD1Byn45hT\ndNK/ZhHpW2lWef+4iSKSqKorqnpjVS0RkTuBOUA48LqqrhOR29zLp6rqBhH5AlgNlAGvqera090Z\nU3smzdtEo7qR3HRuO6ejGD80uGMz+iY24uWFm7k2JYGoCLslKlBU9RXvOffPaCAFWIXrBHMvIJUf\nr0Y6KVWdDcyuNG9qpem/AX/zPrJx2qrsgyxI38uDF3W2+xLMCYkI94zsxM2vL+PDtBzGnZ3odCTj\npZOWb1UdrqrDcbUQ+rpP9PYDzuJ/zw2YEPLC/AwaxkTafQmmSkOSm9EnoRFTFmRan0gBxJs2XWdV\nXVM+4T6809V3kYw/W5NziPkbc/nF4CTqR1sfR+bkXK2FZHYcPM7HK+zcQqDwpiisFpHX3N1RDHPf\n2bza18GMf5rkbiXcPKid01FMABjWqTm92zRk8oJMim28hYDgTVEYD6wD7nE/1rvnmRCzdsch5m3Y\nw62Dk2hgrQTjhfLWQs6B43xi4y0EhGrPEqpqAfAP98OEsBe/yqB+dAS3WCvBnILhnVvQy91auLJv\nPBHhdiWSP/OmQ7ytIrKl8qM2whn/sWHXYeas28OEQdZKMKdGRLjr/GS278/ns5U7nY5jquHN9YQp\nHs+jcfVk2sQ3cYy/mrwgk9g6EUyw8RLMaRjZtQVd4xowZUEmPzsrnvAwb7pPM07w5o7mfR6PHar6\nPK6+ikyIyMw9wuw1u7h5YFsa1rVWgjl1IsLd53dkS94xZq221oI/q7alUOnO5jBcLQe7YymETP4q\nk5jIcG4d3N7pKCaAXdS9FZ1axjL5q0wu69WaMGst+CVvPtyf83heAmwFrvVNHONvtuYdY8aqnfzy\nvPY0qRfldBwTwMLChDvPT+bud37gi3W7ubhnnNORzAl4cxnAreV3N6vqBao6ESjydTDjH6YsyCQq\nIoxfnGetBHPmLukZR/vm9XhhfgZlZep0HHMC3hSFD72cZ4LM9n35fPLDDsYNaEvz+nWcjmOCQHiY\ncOfwjmzcfYR5G/Y4HcecQFW9pHYBugMNReRKj0UNcF2FZILcy4syCQ8TfjXUWgmm5lzeuzWT5mfw\n4leZXNCtJSJ2bsGfVNVS6AxcCjQCLvN49AV+6ftoxkk5B/L5MC2Hsf0TaNnAvgOYmhMRHsYdwzqy\nZschFqbb8Lr+5qQtBVX9DPhMRM5V1W9rMZPxA1MXbQbgtqEdHE5igtEVfeOZND+DSfMzGNa5ubUW\n/MhJWwoiUj7k5jgReaHyo5byGQfsPlTA+8tzuLpfAq0bxTgdxwShyPAwbh/egZXZB/k6M8/pOMZD\nVYePyofFTAXSTvAwQWrqos2UqnL7MGslGN+5ul8b4hpG88L8DFTtSiR/UdXho5nun2/UXhzjtNwj\nBbyzbDtXnBVPQpO6TscxQaxORDi3De3AozPW8d2W/ZzboanTkQxVX300Ezhp+VbVy32SyDjq1cVb\nKC4t487hHZ2OYkLAdf0TmLIgkxfmZ1hR8BNV3dH8bK2lMH4h72ghb323nZ/1iadds3pOxzEhIDoy\nnF8N7cCfZq1n2db9DEiyvjadVtUYzYvKH8C3wAFgP/Cte54JMq8t2UpBSSl3nG+tBFN7xg1IpFls\nFC9+leF0FIN34ylcAmwGXgAmA5kiMtrXwUzt2n+siDe/zeKyXq3p0DzW6TgmhMREhTNxSHuWZOSR\ntu2A03FCnjfdXDwHDFfVYao6FBiOjcIWdF7/eivHi0u501oJxgE/P7stTepZa8EfeFMUjqhqpsf0\nFuCIj/IYBxzKL2b6N1lc3COOTi3rOx3HhKB6dSL4xXlJLEzfy6rsg07HCWneFIVUEZktIreIyM3A\nTGC5iFxZqU8kE6BeX7qVo4Ul1kowjrrp3HY0qhtprQWHeVMUooE9wFBgGLAXiMHVD9KlPktmasXh\ngmJeX7qVi7q3pGtcA6fjmBAWWyeCWwclMW9DLmt3HHI6TsiqdpAdVR1fG0GMM95YmsWRghLuOj/Z\n6SjGcPOgdry6ZAsvfpXBKzemVP8CU+O8GY4zCbgLaOe5vt28FviOFpbw2tdbGdm1BT3iGzodxxga\nREcyYXASz8/LYMOuw9Z6dYA3h48+BbKAF3FdiVT+MAHuzW+zOHS82FoJxq+MH5hE/ToRTP4qs/qV\nTY3zZozmAlW1XlGDzLHCEl5bspVhnZvTO6GR03GMqdCwbiS3DGrH5AWZbNpzxK6Iq2XetBQmicij\nInKuiPQtf/g8mfGpN7/dxv5jRdw9wloJxv9MGJREvagIJs23K5FqmzdFoSeukdae4sdDR171iyQi\no0QkXUQyReThKtbrLyIlInK1N+9rzszRwhKmLd7M0E7N6ZvY2Ok4xvyPxvWiuGVgO2av2UX6brst\nqjZ5UxSuAdqr6lBVHe5+nF/di0QkHJgCjAa6AdeLSLeTrPc08OWpRTen681vsziQX8y9I62VYPzX\nL84rby1scjpKSPGmKKzFNU7zqRoAZKrqFlUtAt4FxpxgvbuAj4Dc09iGOUWuVsIWhnVuzlnWSjB+\nrFHdKMYPasfsNbvZuPuw03FChjdFoRGwUUTmiMgM9+MzL14XD2R7TOe451UQkXjgCuDlqt5IRCaK\nSKqIpO7dawN9n4k3vsniYH4x947s5HQUY6p162DXlUiT5tm5hdrizdVHj3o8F+A8YGwNbf954CFV\nLatq4G5VnQZMA0hJSbFx+07TkYJiXl2yhfO7tKCPXXFkAkB5a+GFrzJZv/Mw3VrbfQu+Vm1LwT12\nwmFcXVpMB84Hpnrx3juABI/pNu55nlKAd0UkC7gaeElEfubFe5vT8GMrwc4lmMBx6+D21I+2cwu1\nparhODsB17sfecB7gKjqcC/fezmQ7L4jegeu1sU4zxVUNclje9OBWar66ansgPHO4YJiXl2ylRFd\nWtCrjbUSTOBoWDeSCYOSmDQ/g3U7D9G9td1970tVtRQ24moVXKqqg1X1RaDU2zdW1RLgTmAOsAF4\nX1XXichtInLbmYQ2p+6Npa67l+1cgglEEwYnuVoLdm7B56o6p3Alrm/3C0TkC1xXD538wP8JqOps\nYHaleSc89KSqt5zKexvvHXafSxjZtSU929i3LBN4GsZEcqu7T6S1Ow5ZX10+VNUYzZ+q6ligC7AA\nuBdoISIvi8iFtRXQnLnpS7M4XFBi5xJMQBs/KIkG0XaXs695c6L5mKr+R1Uvw3Wy+AfgIZ8nMzXi\ncEExry3ZwgXdWtq3KxPQXK2F9sxdv4c1OTbegq94c59CBVU9oKrTVHWErwKZmvXa4i3WSjBBY/zg\ndjSMieTvc9OdjhK0TqkomMCSd7SQ177eyiW94uyKDRMUGkRHctvQDixI30tq1n6n4wQlKwpB7OWF\nmykoLuU+u+LIBJGbB7alWWwdnpmTjqrdy1rTrCgEqV2HjvPv77ZxVd82dGwR63QcY2pM3agI7jq/\nI8u27mdJRp7TcYKOFYUg9cL8TFTVxkswQWnsgATiG8Xw7JfWWqhpVhSCUFbeMd5PzWbcgEQSmtR1\nOo4xNa5ORDj3jExmdc4h5qzb43ScoGJFIQg9P28TkeHCHed3dDqKMT5z5VnxtG9ej+e+TKe0zFoL\nNcWKQpDZuPswn63ayS0Dk2hRP9rpOMb4TER4GPdf0JmM3KPMWFW5r01zuqwoBJnnvtxEbFQEtw1t\n73QUY3xudI9WdItrwD/mZlBUUuZ0nKBgRSGIrMw+yNz1e/jlkPY0qhvldBxjfC4sTHjwos5s35/P\n+6nZ1b8xswjhAAAUCklEQVTAVMuKQhB5dk46TepFMWFwUvUrGxMkhnVuTkrbxrz4VQYFxV535GxO\nwopCkPhmcx5fZ+Zx+7AOxNbxZkA9Y4KDiPDARZ3Zc7iQN7/NcjpOwLOiEATKypS/zt5IXMNobjin\nrdNxjKl157RvypBOzZmyYDOH8oudjhPQrCgEgZmrd7JmxyEeuLAz0ZHhTscxxhGPjO7C4YJiJi+w\nrrXPhBWFAFdQXMozX6TTLa4BV5wV73QcYxzTNa4B1/RrwxvfbCN7f77TcQKWFYUA98Y3Wew4eJzf\nXdKVsLBTGhjPmKDzfxd0JiwMnpljXWufLisKAezAsSImL8hkeOfmDOrYzOk4xjiuVcNoJp7Xnpmr\ndrIy+6DTcQKSFYUA9sJXGRwrLOGRi7s6HcUYvzFxaAeaxUbxl883WGd5p8GKQoDKyjvGW99t47r+\nCXRqWd/pOMb4jdg6Edx3QSeWZe1n7nrrLO9UWVEIUM/M2UhkeJgNoGPMCVyXkkDHFrE89d+NFJda\n9xenwopCAErbdoDZa3YzcUh7WjSwTu+MqSwiPIxHRndhS94x3l223ek4AcWKQoBRVZ78fD3N69fh\nl+dZp3fGnMz5XVpwTvsmPD8vgyMFdkObt6woBJgv1u5mxfaD3H9BJ+pZdxbGnJSI8LuLu7HvWBEv\nL9zsdJyAYUUhgBQUl/Lk7A10blmfa1ISnI5jjN/r2aYhV5wVz2tfb2XbvmNOxwkIVhQCyMsLN5Nz\n4DiPXd6dcLtRzRivPDy6C5FhwhMz1zsdJSBYUQgQ2/fl8/KizVzWuzXndmjqdBxjAkbLBtHcMzKZ\n+Rtzmb/BLlGtjhWFAPHErHVEhgm/sxvVjDll4wcl0bFFLI/PXG9jLlTDikIA+GrjHuZtyOXuEcm0\namiXoBpzqiLDw3ji8u5s35/PK4u2OB3Hr/m0KIjIKBFJF5FMEXn4BMt/LiKrRWSNiHwjIr19mScQ\nFRSX8tiM9XRoXo/xg2xENWNO18COzbikVxwvLcy0XlSr4LOiICLhwBRgNNANuF5EulVabSswVFV7\nAn8CpvkqT6CatngL2/fn88SYHkRFWMPOmDPx+0u6Eh4mPDHLTjqfjC8/ZQYAmaq6RVWLgHeBMZ4r\nqOo3qnrAPfkd0MaHeQJO9v58pizI5JKecdYLqjE1IK5hDHedn8zc9XtYkJ7rdBy/5MuiEA9ke0zn\nuOedzK3Af0+0QEQmikiqiKTu3bu3BiP6tz/NWk+YCL+7xE4uG1NTbh2cRPvm9Xh8xjoKS+ykc2V+\ncTxCRIbjKgoPnWi5qk5T1RRVTWnevHnthnPIwvRcvly/h7tGdKR1oxin4xgTNKIiwnjssu5k7cvn\n1cV20rkyXxaFHYDnbbdt3PN+QkR6Aa8BY1R1nw/zBIzjRaU8OmMdSc3qcetgO7lsTE0b0qk5o7q3\nYvKCTLvTuRJfFoXlQLKIJIlIFDAWmOG5gogkAh8DN6rqJh9mCSjPfpnOtn35PHlFD+pEhDsdx5ig\n9Ojl3YgMC+M3H66mrMwG4ynns6KgqiXAncAcYAPwvqquE5HbROQ292p/BJoCL4nIShFJ9VWeQJG2\nbT+vL93KDeckMrCDnVw2xlfiGsbw+0u78v3W/bz9/Tan4/gNCbTh6lJSUjQ1NThrR0FxKRdPWkJh\nSRlz7htCrPWCaoxPqSo3vb6MtG0HmHPvEBKa1HU6ks+ISJqqplS3nl+caDYu/5i7iS15x3j6ql5W\nEIypBSLCU1f1IkyEhz9ebWM6Y0XBb/yw/QCvLtnC9QMSGZxsh42MqS3xjWJ45OIuLM3cxzvLsqt/\nQZCzouAHCopLefDD1bRqEM1vL+7idBxjQs64AYkM7NCUv8zewI6Dx52O4ygrCn5g0vwMMnOP8ter\nelE/OtLpOMaEHBHh6at6UabKwx+F9mEkKwoOW5V9kFcWbebalDYM7RQaN+YZ448SmtTl4dFdWJKR\nx/upoXsYyYqCg1yHjVbRvH4dfndJ5b4CjTG17Yaz23J2UhP+PCt0DyNZUXDQ4zPXs2nPUZ66qhcN\nY+ywkTFOCwsTnrnadRjprv+soLi0zOlItc6KgkM+W7mDd5Zt57ahHRjeuYXTcYwxbm2b1uOpq3qx\nYvtBnvlio9Nxap0VBQdk5h7lkY/X0L9dYx64sJPTcYwxlVzWuzU3ntOWV5ds5ct1u52OU6usKNSy\n40Wl3PH2CqIjw3nx+r5EhNt/gTH+6PeXdqVnfEMe+GBVSI3UZp9IteyPn61lU+4Rnr+uj423bIwf\nqxMRzpRxfVHgjv+sCJmxF6wo1KIPUrP5IC2Hu4Z3ZIhdfmqM30tsWpe/Xd2b1TmH+Ovs0Di/YEWh\nlqTvPsIfPlvLue2bcs9IO49gTKAY1aMVtw5OYvo3WXy+epfTcXzOikItOFpYwu1vpxFbJ5JJ1/ch\nPEycjmSMOQUPjepCn4RGPPTRarbmBfegPFYUfKyopIxfv5VG1r58Xri+Dy3q23kEYwJNVEQYU37e\nl8hwYfy/lpF3tNDpSD5jRcGHysqUhz5azZKMPP56ZU8bNMeYABbfKIbXbu7P7sMFTJi+nGOFJU5H\n8gkrCj709JyNfPLDDh68qDPXpiRU/wJjjF/r17YxU8b1Zd3Ow/z67eC849mKgo/88+utvLJoCzed\n25bbh3VwOo4xpoaM6NqSv1zRg8Wb9vLQh8HXo6oN7+UDM1bt5E+z1jO6Rysevaw7InZi2Zhgcl3/\nRHIPF/Lc3E20aBDNw6ODZxwUKwo17JvMPO5/fyUDkprwj+vsSiNjgtWd53dkz5ECpi7aTIv6dZgw\nOMnpSDXCikINWp1zkIn/TqN9s1hevSmF6MhwpyMZY3xERHj88h7sPVLInz5fT9PYKMb0iXc61hmz\ncwo1ZNGmvVw/7TsaxkQyfUJ/6wrbmBAQHiZMGnsWA9o14d73VvL611udjnTGrCjUgA9Ss5kwfTmJ\nTevx8e0DiWsY43QkY0wtiY4M540JA7iwW0uemLWeJz9fT1lZ4J58tqJwBlSVF+Zn8OCHqxnYoSnv\n/+ocWjawm9OMCTXRkeG89PN+3Hyuq7vte95bGbAd6Nk5hdNUUlrGHz5byzvLsrmybzxPXdmLqAir\nscaEqvAw4bHLuxPXKIan/ruR3MMFTLspJeAOJdun2GnILyph4r/TeGdZNncM78Bz1/S2gmCMQUS4\nbWgHJo3tw4rtB7hm6jfsDLCxnu2T7BSlbTvAmMlLWZiey59/1oMHL+pi9yEYY35iTJ943hg/gF0H\nC7jsxa+ZuWpnwNzkZkXBS8cKS3hsxjqunvoNxwpLmD5+ADec09bpWMYYPzWwYzM+vn0g8Y1juOud\nH/jlm6nsOuT/rQYJlOpVLiUlRVNTU2t1mwvTc/ndJ2vZeeg4N53TlgdHdSG2jp2OMcZUr6S0jH8t\nzeK5uelEhIXx0Ogu/HxAImG1fGOriKSpakq161lROLn9x4p4YuY6Pl25k44tYnn6qp70a9ukVrZt\njAku2/Yd47efrGFp5j76t2vMX6/sRccWsbW2fSsKp0lVWZl9kPeWZzNz1U6KSsv49bCO3DG8A3Ui\n7A5lY8zpU1U+SMvhz7PWc6yolBFdWjB2QAJDkpsTEe7bo/neFgWfHgMRkVHAJCAceE1Vn6q0XNzL\nLwbygVtUdYUvM53MgWNFfPLDDt5bnk36niPERIZzaa84fjmkPZ1a1ncikjEmyIgI16YkMKxzc15b\nspWP0nL4cv0eWjWI5pqUNlybkkBCk7rOZvRVS0FEwoFNwAVADrAcuF5V13usczFwF66icDYwSVXP\nrup9z7SlUFqm7D5cQPb+fLbvzydnfz7pe46wYONeikrL6N2mIdf1T+Sy3nHUjw6s64uNMYGlqKSM\nrzbu4d3l2SzatBdVGNihKT3bNCSxSV0SGtclsUldWjeKOePL3v2hpTAAyFTVLe5A7wJjgPUe64wB\n3lRXZfpORBqJSJyq1vjo2As25vL4zHXsOHic4tIfC2GYQFzDGMadnci1KQl0a92gpjdtjDEnFBUR\nxqgecYzqEceOg8f5MDWHWat38q+vsyjyGMCn/HNq/KB2/OK89j7N5MuiEA9ke0zn4GoNVLdOPPCT\noiAiE4GJAImJiacVpkm9KLrHN2RUjzhXBW4SQ2KTusQ1PPMKbIwxZyq+UQz3jEzmnpHJlJYpezyO\naGQfOE72/nya16/j8xwBcV2lqk4DpoHr8NHpvEfvhEZMGde3RnMZY4wvhIcJrRvF0LpRDGe3b1qr\n2/blV+QdgOfAxG3c8051HWOMMbXEl0VhOZAsIkkiEgWMBWZUWmcGcJO4nAMc8sX5BGOMMd7x2eEj\nVS0RkTuBObguSX1dVdeJyG3u5VOB2biuPMrEdUnqeF/lMcYYUz2fnlNQ1dm4Pvg95031eK7AHb7M\nYIwxxnt22Y0xxpgKVhSMMcZUsKJgjDGmghUFY4wxFQKul1QR2QtsO82XNwPyajBOIAnVfbf9Di22\n3yfXVlWbV/dGAVcUzoSIpHrTIVQwCtV9t/0OLbbfZ84OHxljjKlgRcEYY0yFUCsK05wO4KBQ3Xfb\n79Bi+32GQuqcgjHGmKqFWkvBGGNMFawoGGOMqRAyRUFERolIuohkisjDTufxFRF5XURyRWStx7wm\nIjJXRDLcPxs7mdEXRCRBRBaIyHoRWSci97jnB/W+i0i0iCwTkVXu/X7cPT+o97uciISLyA8iMss9\nHfT7LSJZIrJGRFaKSKp7Xo3td0gUBREJB6YAo4FuwPUi0s3ZVD4zHRhVad7DwHxVTQbmu6eDTQlw\nv6p2A84B7nD/Hwf7vhcC56tqb6APMMo9Nkmw73e5e4ANHtOhst/DVbWPx70JNbbfIVEUgAFApqpu\nUdUi4F1gjMOZfEJVFwP7K80eA7zhfv4G8LNaDVULVHWXqq5wPz+C64MiniDfd3U56p6MdD+UIN9v\nABFpA1wCvOYxO+j3+yRqbL9DpSjEA9ke0znueaGipceIdruBlk6G8TURaQecBXxPCOy7+xDKSiAX\nmKuqIbHfwPPAb4Ayj3mhsN8KzBORNBGZ6J5XY/vt00F2jP9RVRWRoL0OWURigY+Ae1X1sIhULAvW\nfVfVUqCPiDQCPhGRHpWWB91+i8ilQK6qponIsBOtE4z77TZYVXeISAtgrohs9Fx4pvsdKi2FHUCC\nx3Qb97xQsUdE4gDcP3MdzuMTIhKJqyC8raofu2eHxL4DqOpBYAGuc0rBvt+DgMtFJAvX4eDzReQt\ngn+/UdUd7p+5wCe4Do/X2H6HSlFYDiSLSJKIRAFjgRkOZ6pNM4Cb3c9vBj5zMItPiKtJ8E9gg6r+\n3WNRUO+7iDR3txAQkRjgAmAjQb7fqvqIqrZR1Xa4/p6/UtUbCPL9FpF6IlK//DlwIbCWGtzvkLmj\nWUQuxnUMMhx4XVWfdDiST4jIO8AwXF3p7gEeBT4F3gcScXU7fq2qVj4ZHdBEZDCwBFjDj8eYf4vr\nvELQ7ruI9MJ1YjEc15e891X1CRFpShDvtyf34aMHVPXSYN9vEWmPq3UArsP//1HVJ2tyv0OmKBhj\njKleqBw+MsYY4wUrCsYYYypYUTDGGFPBioIxxpgKVhSMMcZUsKJg/IqI/M7d2+dqdy+QZ/t4ewtF\nxOsBz0VkuojsEJE67ulm7huoaiLLsPLePmuKiNwrIjdVs05PEZlek9s1gcuKgvEbInIucCnQV1V7\nASP5aZ9V/qIUmOB0iMrcvQF7Tkfgyvmfql6nqmuANiKS6MN4JkBYUTD+JA7IU9VCAFXNU9WdACLy\nRxFZLiJrRWSa+w7m8m/6/xCRVBHZICL9ReRjd7/yf3av005ENorI2+51PhSRupU3LiIXisi3IrJC\nRD5w96N0Is8D97k/dD1f/5Nv+iIyWURucT/PEpG/lveBLyJ9RWSOiGwWkds83qaBiHwurrE/popI\nWFXZ3O/7tIisAK6plPN8YIWqlnj8Wz0trvEXNonIeR7rzsR1Z7AJcVYUjD/5Ekhwf2C9JCJDPZZN\nVtX+qtoDiMHVoihX5O5Xfiqu2/vvAHoAt7jv9AToDLykql2Bw8DtnhsWkWbA74GRqtoXSAX+7yQ5\ntwNfAzee4v5tV9U+uO68ng5cjWvsh8c91hkA3IVr3I8OwJVeZNunqn1V9d1K2xsEpFWaF6GqA4B7\ncd3tXi4VOA8T8qwoGL/hHhegHzAR2Au8V/5NGxguIt+LyBpc34C7e7y0vB+rNcA699gKhcAWfuwI\nMVtVl7qfvwUMrrT5c3B9EC8VVzfUNwNtq4j7V+BBTu1vyDPn96p6RFX3AoXl/RcBy9zjfpQC77hz\nVpftvZNsLw7Xv6On8o4C04B2HvNzgdansC8mSFnX2cavuD8MFwIL3QXgZhF5F3gJSFHVbBF5DIj2\neFmh+2eZx/Py6fLf8cr9uVSeFlxjEVzvZc4M9wf0tR6zS/hpkYj+6atOO2d12Y6dZP7xKjKU8tO/\n/2j3+ibEWUvB+A0R6SwiyR6z+uDq3Kv8gy3PfSz96tN4+0T3iWyAcbgO/3j6DhgkIh3dWeqJSKdq\n3vNJ4AGP6W1ANxGp4/7mP+I0cg5w9+YbBlznznk62cA1+lxHL7fbCVdvmybEWVEw/iQWeENE1ovI\nalyHTB5zjxPwKq4PrTm4ukI/Vem4xm3eADQGXvZc6D6Mcwvwjnvb3wJdqnpDVV0HrPCYzsbVU+Va\n988fTiPncmAyrg/0rcAnp5PN7b/AEC+3Oxz4/JTTmqBjvaSaoCeu4TlnuU9ShxQR+QT4japmVLFO\nHWARrhG9SmotnPFL1lIwJrg9jOuEc1USgYetIBiwloIxxhgP1lIwxhhTwYqCMcaYClYUjDHGVLCi\nYIwxpoIVBWOMMRX+H7AincKiXlzgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hanning window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4HGd9+D/fvbVa3Zdt2ZZv546TmBxcIRAgBEJCuQIE\nSCkNtNCmQAuFtlB+EEpbyhmuFCgkHGlSEgghJCEhd5w4dg7ftmTJsu772JV2V1rt+/tjZlazox17\nrcM6/H6eZx/tzrHzzmpmvu/3FqUUGo1Go9FMB898D0Cj0Wg0ixctRDQajUYzbbQQ0Wg0Gs200UJE\no9FoNNNGCxGNRqPRTBstRDQajUYzbbQQ0WjmGRHZLCIvikhURP42z32UiGyY67HNNSLyPhF5cJ7H\nEBORddPc91ER+fBsj2kxoYXISUZEjohI3LxwrdeK+R6XZl75NPCIUqpIKfVt58q5fFCJyBpTIPkc\ny38qIl+ei2PaUUr9Qin1hrk+znHGEFFKNc7nGBYzWojMD1eZF671andu4Lyplzqn2vk6qAP2zvcg\nNJrpoIXIAsE2I/wLETkK/MlcfrGIPC0igyLykoi8xrbPWhF5zDSD/FFEbhaRn5vrXiMirY5jHBGR\ny833HhH5RxE5LCJ9InKHiJQ7xvJBETkqIr0i8k+27/GKyOfMfaMislNEVonId0XkvxzHvEdEPuFy\nzkpEPiYi9UC9uew081z6ReSgiLzLtv2VIrLPPGabiPy9/VzNMfWa5/k+234lInKriPSISLOI/LOI\neMx114vIkyLyNREZEJEmEXmTbd/rRaTRPGaT43s/JCL7zf0eEJG6Y/x/3yoie83/46Micrq5/E/A\nZcDNpla6ybHfTcCrbOtvtq2+XETqze/8rojIdMaWDyJyp4h0isiQiDwuImfa1v3UPP7vzd/pWRFZ\nb1uvROSjucZq/f55busVkf8y/8dNIvJxyaFFmdv+uYj8zva5XkTutH1uEZEttmNuyPNcXi8iB8zf\n4WbA/pt7zGurWUS6zWuuxFz3MxH5lPm+1rr2zc/rzet9cT6PlVL6dRJfwBHg8hzL1wAKuBUoBAqA\nWqAPuBJD4L/e/Fxl7rMN+DoQBF4NRIGfm+teA7S6HRu4EXgGWGnu/0PgV46x/Lc5jnOBJHC6uf4f\ngN3AZoyb6FygArgQaAc85naVwChQ4/JbKOCPQLl5nEKgBfhzwAecB/QCZ5jbdwCvMt+XAefbzjVl\n+y0uBUaAzeb6W4HfAkXmuR0C/sJcdz0wDvwl4AX+yjwHMcczbPue5cCZ5vurgQbgdHOs/ww87XKe\nm8zxvB7wY5ivGoCAuf5R4MPHuGamrDd/u3uBUmA10ANcMY2xWf9rn2P5T4Ev2z5/yPz9gsA3gRcd\n2/aZ/38f8Avg9jzHej3wZJ7bfhTYh3HNlgEP5Rq7ue06YBDjvlkBNGPeD+a6ASavUwVsON65YFzP\nUeAd5v/xExjX3Ydtv1GD+f0R4C7gNtu635nv3wscBv7Xtu638/1smvYzbb4HcKq9MB7kMfMCHwR+\nYy63buZ1tm0/Y12EtmUPAB80b7AUUGhb90vyFyL7gdfZ1i3HeJj6bGNZaVu/HbjWfH8QuNrl/PYD\nrzfffxy47xi/hQJea/v8buAJxzY/BL5gvj8KfAQodmzzmhy/xR3Av2AIhjFMQWSu+wjwqPn+eqDB\nti5sjmsZhhAZBN4OFDiO+QdMQWR+9mAIzLoc5/kvwB2ObduA15ifH2V6QuSVjvP9x2mMzfpfDzpe\nY9iEiGOfUnOfEvPzT4Ef2dZfCRzIc6zXM1WIuG37J+AjtnWX4yJEzPUtwPnAtcAtGNfwaRiTlHsc\nx9xwvHMBPgA8Y1snQCuTQuRh4K9t6zczeU+txxRcwA8wrkFLqP0M+OSJPksWymtxqk+Ln2uUUqXm\n6xrHuhbb+zrgnaZaPygig8ArMR74K4ABpdSIbfvmExhDHXC37Xv3AxNAjW2bTtv7UYzZFcAqjJlU\nLn4GXGe+vw647TjjcJ7vRY7zfR/GAx2Mh/mVQLMYZrxLbPvm+i1WYMwe/WT/Ns0YWp5F5jyVUqPm\n24j5fe/GmAF3mCaO02xj/ZZtnP0YDxX791pYM2HrGGnzvHNteyK4/X9OZGwWlbZrshRjQgJkzEhf\nFcN8OYwxGQHjtz3eWPJdn8+2K8i+Xuzvc/EYxgTj1eb7RzG01EvNzzM6vjIkgH0MWf9n870PQxM/\njKGNbsEwT94LtIvI5jzGs6DRQmThYS+r3IKhiZTaXoVKqa9imHbKRKTQtv1q2/sRjFk1YDwIgCrH\nd7/J8d0hpVRbHmNswZhZ5eLnwNUici6GOeU3x/ku5/k+5hhTRCn1VwBKqeeUUlcD1eb33mHbN9dv\n0Y5hDhvHeLDa1+VzniilHlBKvR5DcB/AMPFZY/2IY6wFSqmnc3xNu/34po1/Vb5jIPs3yocTGVs+\nvBfDRHY5UIKhvYDNH3CS6MAwZVmsOs72lhB5lfn+MfITIsc6fuaYtv+jRdb/mUlrQZdtPO/AMGO2\nmZ8/iGGae3Ea41kQaCGysPk5cJWIvNGcDYbEcCKvVEo1AzuAL4pIQEReCVxl2/cQEBKRN4uIH8Mu\nHrSt/wFwk+VwFZEqEbk6z3H9CPiSiGwUg3NEpAJAKdUKPIehgfxaKRU/gfO9F9gkIu8XEb/5epmI\nnG6e4/tEpEQpNY7hq0g79rd+i1cBbwHuVEpNYAibm0SkyDzfT2L8tsdERGpE5GpTOCUxzJDWMX8A\nfFZMB7MYzvt3unzVHcCbReR15v/iU+b35ftQ78Kws+fLiYwtH4owxtuHMTH5ygy+aybcAdxoOqZL\nMcy9x+IxjKCFAvO6fAK4AsN/98I0jv974EwR+TPTmf+3TGrJAL8CPiFGwEsE43f6X6VUyjaejwOP\nm58fNT8/aV6nixItRBYwSqkWjBng5zAcjC0YTm3r//Ze4CIMc8UXMBzI1r5DwF9jPPDbMDQTe7TW\nt4B7gAdFJIrhZL8oz6F9HeOGfhDjYf5jDMe4xc+Aszm+KSsLpVQUeAOGDbsdw6zw70wKv/cDR0yT\nykcxTF0WnRg253YMZ+hHlVIHzHV/g3H+jcCTGKaan+QxJA+GwGnH+I0vxXC8o5S62xzb7eZ49gBv\nyvUlSqmDGKa972BoRldhhHmP5TEGMP5X7xAj0mpKHkmO4+U9tjy5FcM004bh2H5mBt81E/4b45rb\nhSEE7sOY6ed8ACulDmEI/ifMz8MY18BT03loK6V6gXcCX8UQqBuBp2yb/ATjmn8caAISGNeexWMY\nAtkSIk9iCOXHWcSI6djRLAFE5F8xHITXHW/bOR7HqzFm+nXqJFxgYoQ9/1wptfJ422qWDmKEYv9A\nKVV33I01c4bWRDSzimmuuREjwkXPUDSzhogUiJEr5BORWgzt++75HtepjhYimllDjAS6QQwn9Dfn\neTiapYcAX8QwW76AEVH4+XkdkUabszQajUYzfbQmotFoNJpps+SL3lVWVqo1a9bM9zA0Go1mUbFz\n585epVTV8bZb8kJkzZo17NixY76HodFoNIsKEcmrAoY2Z2k0Go1m2mghotFoNJppo4WIRqPRaKaN\nFiIajUajmTZaiGg0Go1m2iw6ISIiV4jRNrVBRP5xvsej0Wg0pzKLSoiYPTG+i1GR9AzgPSJyxvyO\nSqPRaE5dFlueyIUYrUwbAUTkdoxS6ftm+0BPN/Ty0Z/v5HWn17CqrOD4O2g0Gs0CYHRsggf3dfH+\ni+v4y1efSBua6bHYhEgt2e0oW8nRA0NEbgBuAFi9erVzdV7c9kwzw4kUd78w2XxOTnYfN41GozkB\n7KUQb7pvvxYi00UpdQtwC8DWrVunVWHye+87n9aBOF+9/wC/39XBJy7fxI2Xb5zVcWo0Gs1ssadt\niHf/cBsVkSD/9mdnc8m6ipNy3MUmRNrI7mm8kvz7VJ8QIsKq8jA3v+c8gj4P33joEFvXlPGKDZVz\ncTiNRqOZNiPJFB//5fOUFPi54yOXsKwkdNKOvagc6xi9uzeaPYwDGG1U75nLA4oIN11zNusqC/nH\nu3YxlnK29dZoNJr55dsP19PcP8rX373lpAoQWGRCxGx4/3HgAYyGNHcopfbO9XELAl7+5aozaOmP\nc/tzR+f6cBqNRpM3HUNxfvr0Ed52Xi0XnyQTlp1FJUQAlFL3KaU2KaXWK6VuOlnHfc2mKi5cU853\nH2lgfEJrIxqNZmHww8caSSvFJy7fNC/HX3RCZL4QEW549Tq6hpM8tK9rvoej0Wg0jI6l+PXOVq48\nezmrysPzMgYtRE6Ay06rpra0gNueyavMvkaj0cwp97zYTjSZ4rqL6+ZtDFqInABej/CuravY1thH\n13Bivoej0WhOcX7zYhvrqwrZWlc2b2PQQuQEefM5y1EKHtjbOd9D0Wg0pzA90STbm/p58zkrkHnM\nhNZC5ATZUB1hY3WE+3Z3zPdQNBrNKcyD+zpJK7jy7GXzOg4tRKbBFWctY3tTP0Px8fkeikajOUX5\n0/5u6irCbK4pmtdxaCEyDV6xoZK0gmcb++Z7KBqN5hQkNZHm2aZ+Xrmhcl5NWaCFyLQ4b3UpIb+H\npw9rIaLRaE4+L7UOEUumFkQZJi1EpkHQ5+Vla8p5qqF3voei0WhOQZ42nz3zkaHuRAuRaXLJ+grq\nu2MMjIzN91A0Gs0pxnPNA5y2rIjywsB8D0ULkemyZWUpALvahuZ5JBqN5lRCKcWu1kHONZ9B840W\nItPkrJUlAOxqGZznkWg0mlOJ1oE4g6PjnLOqZL6HAmghMm2KQ37WVxXyUqsWIhqN5uSxq9WwfpxT\nqzWRRc85K0vZrc1ZGo3mJLKrdZCA18PmZfObH2KhhcgM2FRTRNdwUicdajSak8a+jmE2LYsQ8C2M\nx/fCGMUiZWN1BICG7tg8j0Sj0ZwqHO6OsbF6YWghoIXIjNhYYwmR6DyPRKPRnAqMJFO0DyVYX1U4\n30PJsOCEiIj8p4gcEJFdInK3iJTa1n1WRBpE5KCIvHE+xwmwsixM0OehvktrIhqNZu5p6h0BYH1V\nZJ5HMsmCEyLAH4GzlFLnAIeAzwKIyBnAtcCZwBXA90TEO2+jxOgvsr4qQr02Z2k0mpPA4R7jWbO+\nWgsRV5RSDyqlUubHZ4CV5vurgduVUkmlVBPQAFw4H2O0s7aykKP9o/M9DI1GcwpwuDuGR6CuYn5a\n4eZiwQkRBx8C/mC+rwVabOtazWVTEJEbRGSHiOzo6emZ0wHWlhXQNhgnnVZzehyNRqM52j/K8pIC\ngr55NcJkMS9CREQeEpE9OV5X27b5JyAF/OJEv18pdYtSaqtSamtVVdVsDn0KtaUFjKXS9I4k5/Q4\nGo1G0z6UoLa0YL6HkYVvPg6qlLr8WOtF5HrgLcDrlFLWFL8NWGXbbKW5bF5ZWWb8Q1sH4lQXheZ5\nNBqNZinTPhjngnnsp56LBWfOEpErgE8Db1VK2Z0N9wDXikhQRNYCG4Ht8zFGO7WmEGkbiM/zSDQa\nzVImnVZ0DSdYXqI1keNxMxAE/mh27HpGKfVRpdReEbkD2Idh5vqYUmpiHscJkFEt2wa1ENFoNHNH\nbyzJ+IRiRenCsngsOCGilNpwjHU3ATedxOEcl6KQn6Kgj67hxHwPRaPRLGGsieqKBaaJLDhz1mKk\nIhKgL6abU2k0mrnDmqguK1lYmogWIrNARSRIb0xHZ2k0mrmjz+yiWhkJzvNIstFCZBaoKNSaiEaj\nmVusVtylYf88jyQbLURmgYpIkD6dJ6LRaOaQ/pFxCgNeQv6Fk2gIWojMCpWRAP0jY0zorHWNRjNH\nDI6OUVYYmO9hTEELkVmgojBAWsHAqDZpaTSauaF/dIxyLUSWJqVh4x87rDscajSaOWJgZIyysBYi\nS5JI0Ei3iSVTx9lSo9FopofWRJYwkZApRBIpHtzbyblffJBv/PHQPI9Ko9EsZl5qGeRlNz3EP9z5\nEgBDo+MUhxZcfrgWIrOBpYlEkym+/sdDDMXHufmRBlp0nxGNRjNNvnTvPnqiSe7c2cqBzmHi4xMU\nBrUQWZIUmbODlv5RDnRGue7i1UykFb/b1T7PI9NoNIuRtsE4O5oH+OAldQA8erCH8QlFOLCwwntB\nC5FZwdJEnmzoBeDNZ6/grNpiHjs4tw2xNBrN0uSRA90AfODla1hWHGJ7Uz8A4YDWRJYklk/kYGcU\nMFrmbq0rZ3fbkM4d0Wg0J8xLLYOUFwZYV1nImsowBzqGAbQmslQJ+rwEfB46hhJ4PUJVUZBzVpYw\nOjbB4Z7YfA9Po9EsMna1DnHuyhJEhJVlYdqHjOKLYe0TWbpYM4TqoiBej3BWbQkA+9qH53NYGo1m\nkTGWSlPfHc08Q2qKJwsuhhdYyRPQQmTWCHiNn7Km2CjTvLo8jAg09+kILY1Gkz+tA6OklWEWB7IS\nDMNBLUSWLEG/8VNaFTZDfi8rSgpo7huZz2FpNJpFhjXxrKsIA5MVMUA71k8IEfmUiCgRqbQt+6yI\nNIjIQRF543yOz0nQZ8wQIjabZV1FmCNaiGg0mhPAembUVRiaSGnBZOn3Qu1Yzw8RWQW8AThqW3YG\ncC1wJnAF8D0RWTC/qGXOcgqRozrhUKPRnABH+0cJB7xUmCVOimxZ6tZkdSGxIIUI8A3g04A9PvZq\n4HalVFIp1QQ0ABfOx+ByYZmz7EKkuihE38gY4xPp+RqWRqNZZPREk9QUhxARgKz+IT6vzNewXFlw\nQkRErgbalFIvOVbVAi22z63mslzfcYOI7BCRHT09Jyfhz+8xfkp7WYKqoiBKQb/ZkSw1kWZ0TBdp\n1Gg0k0ykFSO24q19sbGMFgKTE1TQQiSDiDwkIntyvK4GPgd8fibfr5S6RSm1VSm1taqqanYGfRzS\nylCa7MlAVUVGaF5PNEl8bILXf+NxLrrpYQ506rBfjUZjTCyv+9GznPvFB3n8kDHh7RtJZvVRD9lM\nWD7Pgpv3z48QUUpdrpQ6y/kCGoG1wEsicgRYCTwvIsuANmCV7WtWmssWBF6PMUPweyd/UrsQueuF\nVpp6R4gmU3zrofp5GaNGo1lYPHKwh22NfaTSipv/1ABAb2yMikhuTcR6ziwkFpRYU0rtVkpVK6XW\nKKXWYJiszldKdQL3ANeKSFBE1gIbge3zONwsrH+uXd2sLDSESG8syVMNvdSWFnD9y9fw8IFu4mMT\n8zJOjUazcPjNi21UFAb4yKXr2NHcTzQxzsDoGBUumohfm7Omj1JqL3AHsA+4H/iYUmrBPIk9phPM\nPlOwoiqiiRTPNw+ydU0Zrz2tmrFUmu1H+udlnBqNZmGglOLZxj4u3VzF+avLSCvYdrgPpaDKponY\nHetaEzlBTI2k1/b5JqXUeqXUZqXUH+ZzbE5MGYLP9k+2CjP2xJJ0DifYUBVhy+pSAHa3Dp70MWo0\nmoVD60Cc3tgY560q5YzlxQA8fbgPgDK7Y91nc6xrn8jSx2v7J/u9Hgr83kwFzpXlBRSH/KyrLGR3\n29B8DVGj0SwAdrUaz4BzV5WyorQAn0c41GVUArdHeXpsE1OtiZwC+Bz/5KKQj/0dxoWxqswoY7Ch\nOkJjj85k12hOZazM9A3VEbweoaY4REO3UfW7cAGWN3FDC5FZxjlTKAr56Bw2yjhbxRnXVBbS3D9K\nWvca0WhOWZr7RqgqCmbqYdUUB+mOJoGF2TfEDS1EZgkru3SqJjJZ96bYfF9XEWYslabDFC6ATkLU\naJY4ifGJrOoVR/tHWV0eznzOLrSohcgpSy5NxMJytK8oLQCgcygOwL/ff4AzPv8AP3js8EkapUaj\nOZkc6oryspse4opvPk7MzE5v6Y9nCxF7ocUF2HzKDdeRisi389h/WCn1z7M4nkWLJTqcQsSaUUSC\nvsy6ajMJsXs4SV8syS2PNwLw7Yfrec+FqymxXUwajWbx882HDhFNpIgmUtz9Qhvvu3A1HUNxVpSG\nMtuUhCfv+6WiiVwN7DzO6+1zPcDFghXiK47giYCZKFQcyi7MCNAdTfJkQy8TacUXrjqD0bEJHj3Y\nfVLGq9FoTg6J8QkeOdDDBy6pY3V5mMcO9jAYHyetyCpvUhyyC5EloIkA31BK/exYO4tI2SyPZ9Hi\nFnhnlYi3+0YqCgN4PUJ3NEFT7wjhgJfrLq7jWw/X82R9L1dvyVlXUqPRLEJ2HBkgPj7BZZurSYxP\n8PD+bvpHDAd6uS0fpCCwsJMK3XDVRJRS3zzezvlsc6qhHAFXVt0bu2/E4xEqCgP0RJM09o6wrqoQ\nv9fDllWlOn9Eo1li7Gk37unzV5exoTpC38gYh80Q/+xCi4vTRe06ahEJicgHReStYvAZEblXRL5l\n7zaoMbCis5xCJNOsKpSt9JWG/QzHUzT2xFhXGQHgjOXFHO6JMZbS/Uc0mqXCwc4oy4pDlIT9rDXv\n9R1m2SO7JmIvb7KYOJbouxWju+CHgEeB1cDNQBT46VwPbLHhpnxaJQsC3uyfujjkZ2B0jPbBOKvK\njWitTTVFjE8ojvZPJiImxidQTsmk0WgWLM579kBnlM3LioDJvulWtvpSFyJnKKXeB7wD2KyU+phS\n6n4zGmvVMfbT2AiYQsTvECIlBX5aB+KkFVSY1X4tYdLSb4T+PlnfyzlffJDrfvwsEzoxUaNZ8Ny+\n/Sinf/5+vnDPXsAostjcZ5isAapM81Vzn9E2294JNeRfYuYsYAxAKZUC2h3rFkz13IWG81EfdLFz\nlhT4aRs0hIXVO8Aqi9IyYFxg33r4EGOpNE819PHIAR21pdEsZBLjE3zlvv0oBbdua6alf5RoMsXo\n2ATLS4yIzJICP36vZKpYFNi0j+AS1ERWisi3ReQ7tvfWZx0+5MAK7XWanixNJO1YbveRlJmZqlVF\nQYI+D60DcQZHx3juyAB/+7qNVEYC3POSU45rNJqFxFMNvQwnUvzrVWcA8NihHrodJY88HsmYsEJ+\nT1ZxxYJFKkSOFeL7D7b3OxzrnJ9PeW549Xoe2t/N+XXZUc+WL8QpROwXjHVRiQiVkSC90SQvthil\n4i9eV05T7wjPNvWhlMo48DUazcJi+5F+Al4P77loNd9/7DA7mwdYU2GYsSwhAka4f9dwckouyLF8\nIpduqspKTFxIuAqR4+WIaLK5cG05R7765inLrWRDp0vDfsHYewdURAL0jYxxoNOo/HtWbQlb62L8\n7qV2OocTLC8pmIPRazSambK7dYjTlhcR9HnZVFPE4Z4YXQ5NBCb9IM6sdGfdPTs/+9CFczDi2eFY\nIb6/E5F73F5zOSgR+RsROSAie0XkP2zLPysiDSJyUETeOJdjmC0sf7rz+rAnFtmdaxWFAfpHxmgd\nGKU07Kc45GdTjRHZcagrltmuqXeEhu7o3A1co9G4MhQfZ3tTf6YSt1KK3W1DnFVbAsDaykKaekZs\nFbwn80GsnDGnEHEG3ywWjmXO+pr598+AZcDPzc/vAbrmakAichlGyZVzlVJJEak2l58BXAucCawA\nHhKRTQupRW4urLa5HocZym7OyjZtBTnYGaV1IM7KMiv014gtr++KcummKhq6Y1z5rSdIK8Vdf/1y\nzllZOtenodFoTFITad71g20c7Iryics3cePlG+kfGSOaSLGhyrhX11QUEk2maOodIeT3ZJmurElj\ngcOc5VuA/dPz4VgZ648ppR4DXqGUerdS6nfm673Aq+ZwTH8FfFUplTTHYYUlXQ3crpRKKqWagAZg\n4ep4JvkIEb/t4rHMWa0DcWrNar8VkSBFQR+tA0Y010+fbmJsIs2EUvzwsca5PgWNRmPjof3dHOyK\n4vUItz1zhIm0ykRa1poTP8t81dQ7QiSYXVDVqtAbdvhA/Auw9W0+5DPqQhFZZ30QkbVA4dwNiU3A\nq0TkWRF5TEReZi6vBVps27XiEiUmIjeIyA4R2dHT0zOHQz0+1nXh9IeHbKqs3VleUuAnmUrTNZTI\nKomwvDREu3mhPlHfy+WnV/OeC1fz2KEeneGu0ZxEHjvUTVHIx3+981x6Y2Psah2kzZzgWRO/KrNS\nd1PvSFbJI5g0YxUGHT6RRaqJ5FMq8hPAoyLSiJGYXQfcMJODishDGCYyJ/9kjqkcuBh4GXCHXYjl\ng1LqFuAWgK1bty6ILD1nQTW3cL5C8wKLJlNZJeGXlRTQMZRgYGSM5r5R3nfRalaVhfnls0fZ2z7E\neat1LUyN5mTwVEMfl6yrYOsa457b2z5MYtywqltCpNLM/eofGcsss7Byx5zRWEtWiCil7heRjcBp\n5qIDlqlpuiilLndbJyJ/BdyljISL7SKSBiqBNrIz5VeayxY0VmSv05zld7lg7M1oim1CZEVJiH3t\nQxzuMZzrG6ojbKw2HO77OoYzQqR1YJR97cO87vSaRVUJVKNZiOxpGyKaSHHJ+goAoolxjvaPcu2F\nq6gtLaAo5GN/xzBBn5dwwEup2RPEfu86NZGgGbHpjMZacuYsETnfem/6IV4yX8lc28wivwEuM79/\nExAAeoF7gGtFJGia1DYC2+fg+LOKVa7Eac5yi8SwR2rZNZGKiBG1ZQmR9VURVpZNXsQAI8kU7/rB\nNm64bSfffrh+Nk9DoznlqO+KcvV3n+I9//0MfzpgxBI1mtV311dFEBHWVRZytH+UvpEklZFgxjRt\nv48jQacQsXLHso+3WDWRY4m+/xGRMhEpd3sBP56DMf0EWCcie4DbgQ8qg73AHcA+4H7gYws9Mgsm\nNRHvFE0k908ftmsith4kpQUB0soo5iZiqM0iwpqKQo6atbYe2t9F+1CCSNDHrduOkEwt+J9Ho1mw\n/OSpI3jEyCz/xTNHAbImcWA40DuHEgyOjme0EDBMVW4VvK32EKl0ti9zKYb4lmB0LzyWeJx1r7VS\nagy4zmXdTcBNs33MucTKVHeas9xmHRGbs82uiVjvG3tGKA8H8JkX3Krygkxi4iMHuqmMBPnyNWfy\n0Z8/z0stQ1y4tnz2TkajOUVQSvH4oR5ee1o1y0sK+OX2o4yl0jT2jOD1SKY3+rKSENsa+ygM+qa0\ntS4K+egbGaPIoYn4TLOVszj3sZINFzLHCvFdo5Rap5Rae4zXgg+xnW9Sps7qNHc6S8NbWPZSyLal\nWjbWxt5h8Fn+AAAgAElEQVRYVvnolWVhoxpwWrG3fZgtq0q4eF0FIvBsY1/Wd48kUzM6F41mqTI6\nlsokDoJRSbttMM4rNlRy3upSxlJpDvfE6BhKUF0UzNTEqykOEU2k6BpOZPlBYPL+DTkz080JpLMU\n0mL1YS5O/WkRkZowVFanquqmiQRsVX/tWe2WqtzSH89U/QVYXhJiLJWmK5rgcE+MM5YXUxoOUFce\nZn/ncGa77z3awJlfeICv/uHAzE9Ko1lCPH90gAu+9BBX3fxkJsrKunfOXVnKGcuLjWUdw/TEkpnw\nXYBq833HUIJShxCxJoTOCaOliTh9Iou1Lp4WInOMpYlMESIukRj27ewXX7aTffIitrSSPW3DpBWs\nqTRSeDZUF1FvlkmJJVN88yHD0f6jJxrpjiamfT4azVLjvx48SHx8gr3tw/x+Vwcw6UBfV1VInVlE\nsaU/Tk80mREckB2F5TRnWZrF1Hs/dxfUxYoWInPMmKmJODUPN9XVHvrrt2kl9ou1zObAs4TIvnZj\n5rTM7FuwsSZCU+8IE2nDtjuWSvOVt51NKq14YO+cVa3RaBYVw4lxth3u469fs57lJSEe3NcJQGNP\njKqiIEUhPwGfh8pIgM5hQ4jYNZFcJmcnTiHizQiRpSFFjitEzP7q14nI583Pq0VE+0JOELuvA6YW\nZLQIuGgi9uREey6J1YtkX4fRbnOZWW6htrSAVFrRF0vyUssgAa+Hd25dybLi0BRfyZ62IQZGxqZx\nVhrN4mEirdjZPEB8bDJq8dnGftIKXrWxiovWlrPbbFvb2DvCusrJwhzLSkK0DyboN0N5LewRlM4E\nYss65cwJc/OJLFby0US+B1yCUXgRjB7r352zES0xPnjJGj5wSR0feXV20r0zWsvCzZxlb50Z9tuq\n/kYsIZKtiVjCpGMowb6OYTYti+D3eji/rpTdbUOZ/W/ffpS3fOdJrrr5SUbHtONds3T5yn37efv3\nn+ZDP30uowXsbh3EI3De6lLOWFFMu1kVoms4wQpbpvmy4gIae2OklUP7CNnDenM/TgO+3KbsXCLk\n8285g/+94eLpnuK8kI8QuUgp9TEgAaCUGsBIANTkQWHQx/+7+qws7eFY2E1Y9osv5LNrIrZeJKYm\n0tIfp8DvzVQLtYRJx1CCxp4RNpnZ7RurizjaP0pifAKlFLc83ogItA7EufeljmmepUazsBkcHeO2\nbc2IwLbGvsyk63DvCKvKw4T83kwFiMbeGL0OB3pVUYAWMx/Lfi/b70VnGZNJTSS3OcvpWAf40CvX\nctG6imme5fyQjxAZFxEvpuAUkSpAV/ybIZ58fCK291ltNAPZF661nT2pyRIi7YNxo5mV2RVtQ3UE\npQzHYetAnMbeEf71qjNZVV7AH/drX4lmafJ4fS9jE2l+9IGtiMDD+43i4E09k2Yr6x6p74qRGE9n\n6l9BtsZRaCvhbp/oOU3WFu6O9VPHnPVt4G6gWkRuAp4EvjKnozoFcPOJ2Ovn+Nyy2h1x55b2UZTD\nV1LfHWUirTIdEa0kqdaBUXY2DwDwsjXlXLKugueOTDbZSaYm+Pgvn+fG21/IhD1qNIuBXz57lHd8\n/2leMltMAzzX1E9R0MdrNlezrrKQ3W1DKKVo6h1hbaWRfW7dI7tMc2+VSxSWXROxCw6nOUuworOy\nb/bJyt6LM6TXyXGFiFLqF8CngX8DOoBrlFJ3zvXAljpuPhE3DcWOszezVfnXrol4PUJxyMe+DiOb\nfbnlKzH/dg0nONQVxecRNtVE2LKqjMHRcdqHDJX9tm3N3Lurg9++2M4vnz16gmen0cwPbYNxvnDP\nHnY0D/C5u3dnlh/sirJpWRFej3DmihL2tQ/TPzJGfHyCVeWG8CgO+QgHvOwxhUhFod2BntuEZRcQ\nbj3SnXkiS0V4WByrAKO9RlY38Cvgl0CXuUwzA2ZyHQUdjjrLvFXoEC6l4QCHu41cEWtWVRkJ4vUI\nncMJmvtHqS0rwOf1sKHamI01mNv/7qV2zl1ZwrkrS7jrhdbpD1ajOYnct6uD8QnFBy+pY2/7MC39\noyilONQVzbSZXldVSPtQnI4hI1/KujdEhOqiIE29Ro6I3YFeZDNn2Qsq2gVCvj6Rpcaxzm4nsMP8\n2wMcAurN9zvnfmhLGzlmSbJj48wxsdRrZ6G30rCfmFnqxLoJvB6hKhKkcyjJ0b7RjHnLLkTiYxPs\nbhvi0k1VvPa0Gva2DzMUH898790vtPL53+7JWqbRnGxu3XaEL9+7Lytk96nDvWysjvD+S+oAePpw\nL72xMQZHxzNtpleUFKAU7G03NA57yG5JgZ9owrhn7GYrux/SLUjGLTrL71vaQsQ1ZEgptRZARP4b\nuFspdZ/5+U3ANSdneEuXmZTJcVYEtnwkzkJvhTn6OoMx8+qNJekYinNWrVHSoSzsJxzw0j5ohASn\nFZxVW0Ik6EMpeLFlMNPf/VN3vERaGRm3X7rmrOmfiEYzTbY39fP53+4FjMnT312+CTCSbl+5sZJ1\nlREK/F4OdsbYvMy4xq0Jk+VA39U6VYjYfR9236Nd+3eWdrdw0zj8zpvd9KcvFaNWPiLyYkuAACil\n/gC8fO6GdGrg5hPJa1+XLonOGZL9JrCr5qVhP4PxcQZGxzMZ7yLCsuKQUYPLNGmdtqyYzcsME4Bl\n5rrnRaMP2GtPq+b/drbqcvOaeeH27UcpKfCzta6Mu19oQylFTzRJdzTJmStK8HiEDdUR6rujdJpm\nK6vvuZX/YeVL2aOw7KVLIi4O9IJAbt+HWxXepeYDcZKPEGkXkX8WkTXm65+A9rke2FJnJkLEac6y\nwgzDjp7N1sXu90rWTKq4wE/bwCgTaZWJ4gKoLg7SPZygdTCOiDFjKy8MUBr2Z/ooPNHQy5ZVpbzn\nwtXExycyEV4AT9T38JHbdmSyfjWamTI6luIff72Lr//xUCYkVinFEw29vHpTFW85ZznNfaN0Dieo\n7zKCSE43Jz5rKws50jeSqRVnCZEKc+LU1DOCSHb4bkmWJmITIjZTlVsHQrd7eonLkLyEyHuAKoww\n37uBaiaz1zXTRGZgJp3aatf4MmcUiKWJRIK+rNlQaYGf3phR5sQuRGqKQ3QOJ2gfjFNTFMLv9SAi\nxs3YO0I6rTjQEeXcVaVcuMaIrXipxRAY8bEJPvG/L/LA3i4+cceLWWW1NZrpcsvjjdz+XAvffrg+\nk9vRMZSgJ5rkwjVlnLOqFDBMU22DRmThyrLJXh/dw0k6hxL4PJIRHkUhPyIQTaYI+73ZOVj+ycq7\n2Tkgk+/d6t65LXcuVeTudrpYySfEt18pdaNS6jzzdaNSqv9kDG4pM6uaiCk8nMutmZTT4W6fbdl7\nk1RGgvTFxmgfjLPCtBuDER7cNZygdSBOfHyCzTVFlIT9LC8JcdAsmf1kg+HAvGbLChq6Y7xgi9HX\naKaDUoo7d7Tyyg2VVBQGuNs0pdabptWNNUWcbvo7DnVGaR9MIAI1JYaPo7ooSDKV5kjfCGWFgYyw\n8Hok4z8MO0zAVoSVU6u3m7OceR8WrkLETUNxOe/FRj4FGB8RkT85X3M1IBHZIiLPiMiLIrLDXuxR\nRD4rIg0iclBE3jhXYzgZzOQCcjrWrZvDaZMtyDjcs6uL2n0lZYXZ9uDRsQk6hxNZzsbqImNG19Rn\nlcc2olw21RRxyCw3/1RDLwV+L5+78nRE4Mn63sz+Tzf0svXLD/H/frdveiesWfI8WW9cI1/47Z7M\nsiN9o7QNxrnirGW8elMVzzUZc1fLP7exOkJBwEtlJEDbYJy2wVGqIsHMA98K3T3cPZLlEwQj/B2m\nJu5aEVZOrd4eeeUmFBZrU6mZko9R5e+BfzBf/wK8iBH6O1f8B/BFpdQW4PPmZ0TkDOBa4EzgCuB7\nZjmWRcnMHOvZny2h4nWsCJuzKmcZens8u/3msjSU1v54lrZSXRwkmkxxxIyftxIXV5eHMyaE/R3D\nnLa8iOriEBurI+xqNTQRpRT/+ru99MaS/OSpJg7YGmVpNGBcI1/+/T56Y0l+tq05c41Y19DWNWWc\nu7KE7qgRUdjQHaMs7M/01aktLaBt0Oz1UZw9+QGjL7o9zwMmnebOxF3r3nAKBLeSJnackzuLpWK2\nciMfc9ZO2+sppdQngdfM4ZgUUGy+L2HSiX81cLtSKqmUagIagEVbkn4mF5bzArdkh1MTsZyBzhI9\n9hvHXr7aEhxjE+msUMeaouyQSGuGt7w0xFB8nJFkioNdUU4zHZqblxVz0HRyHu6Jcagrxidfvwmf\nR/jdS9kxGTubBzJOe83SJ5ZM8fD+rqxSOvXdMQ50RvnU6zfh9Qj3mY2hDnfH8IjhILfCdA93j9A5\nFM+qsLuyLEzbQJzB+HiWj6+s0LiGU2mVlXEO9gRdh9nKvB8mHD69oEsOiB23ahNTfCJLzF2Yjzmr\n3PaqNM1IJXM4pr8D/lNEWoCvAZ81l9cCLbbtWs1lucZ8g2kK29HT0zOHQ50+M/KJTNl30tZrx3K4\nK0fR6YKAvcT8VCEC2RErlt/kUFeU0rA/s0+teSMf7IoyODrOWrOQ3eaaCK0DcUaSKZ5vNmaTbz5n\nOWevLGF706Q77aF9Xbz9+09z5bee4GjfaJ5nr1msKKX46G07+Yuf7eDv73wps/zpBsP0ec15tZy2\nrCjjT6vvjlFXUUjQ582UJmkdGKXb0V2wqihITyzJUHw8a/JjD9F15nZY5ilnuK7lQHcKEad5Kxfu\nPpHc2y+V0N98zFn2zPVtwKeAv5jJQUXkIRHZk+N1NfBXwCeUUquATwA/PtHvV0rdopTaqpTaWlVV\nNZOhzhkzMZ86ZzzWteg0W2WEiGPmY9c+st7bbqjiAt+U9w3dsayb1+pZ8uJR46a3QihXmUldHUNx\ndrUNUhTysbaikPNXl7GrdSjTd/5HTzYS9HlIptL8YntzPqeuWcTs6xjmyYZeQn4P9+3uyORv7OsY\npjISYFV5mHNWlvJSyyBKKQ73xFhfZUxMlhWH8HqE1oG4KUQmAz/KwgGiiRS90WRWn3O7L9DpE8nk\nVrmYs8YnsguV5zPpc8sTWTou9NzkI0ROV0qtU0qtVUptVEq9AXhuJgdVSl2ulDorx+u3wAeBu8xN\n72TSZNUGrLJ9zUpz2aJkJrMQpyYijr8W1uzJGW1bYI9/t4Uu2gWKXROx3sfHJ7KWWw2xLBu2JVSs\naqjtgwmO9I6yriqCxyNsrikimUrTNhhndCzF9qZ+Pvyqtbx6UxV/3DdZhl4pxRd+u4e/vHUHQ6O6\ntMpi5OY/1fO+Hz1DsxmMAUb5dRH4n+svJK2MiD4w2hKsN4M11lcVMpxIMTg6TsdQIqPt+rwelpeE\naO4fpS+W7fuwzFbDiVSWNm0vlBhxBJe4RWGFzPthfCL7psnHaZ5vnsgpZ84Cns6xbNtsD8RGO3Cp\n+f61GPW6AO4BrhWRoIisBTYC2+dwHHOKdU1eUFd2wvs6L2jrInVem35f7r4FdmFh12rspi27WcCt\nDLYV4XKg0/B/WBWCLcd751CCloFRVpUZD4I1prmrqXeEXa1DpBVsrSvnorXlNPaMZATGH/Z08rNt\nzfxxXxfffbTB9XfQLEz2tA3xtQcP8VRDH1+5b39m+a7WQdZXRbhobTlFIR/PHzUSVQ/3xFhv1m6z\ntNiGnhjRRIrq4kmNozISpLHH6C5YYYsqtPtBSsOT16rP68lMkpxh7hkh4uITSaWdmsjxzzvfPBHL\np2hVg1jsuNbOEpFlGD6HAhE5j8nfohgIz+GY/hL4loj4MLop3gCglNorIncA+4AU8DGl1KKtuSEi\n3Ps3r2R1xYn/lFPMWea/xpngF/AaN4Rz5uNs12mR1cfdpWSKfXZnmQ7qu7IrBVtmrdbBOO2Dca48\nezkAayqNcz3SO5LRxM6sLc6Y3Xa3DfHKjZXc82I71UVBtqwq5a7n2/jsm07LbD8wMsb+jmEuXleR\nV9l8zdxS3xVlQilOW1acWXb3C20EfB7etqWWu19sI5ZMEQn62NU6xCs3VOLxCGcsL+ZQZ5SBkTEG\nRsczjaFWmYmCViWEKluoeXlhgB1HDJ9axF5V16VdLRgmpiRThYV1rTvrXVl1rpz3TD6WA7fL0bnv\nuatKufOjl3CemSi52DlWz9Y3AtdjmI2+blseBT43VwNSSj0JXOCy7ibgprk69snmrNrpxSdMyRMx\nPzrNVtbMyHn9u9luQzaHu2trXpspzOf1UBT0EU2m8Igt29fnoTjk43BPjPEJldFMKguD+L1C53CS\nsVSacMBLVSTIRLUx8Ka+EV6xoYJnm/q4/PQaXramnAf3ddHQHWNjTRGpiTTv+uE26rtj/N3lGzNF\n9zTzw8HOKG/5zhNMpBV3fvTlGa36yfpeLlpbzlvOXc7/7mjhxaODnLGimO5okjNWGMKmriLMIwd7\nMuXYLbOVleS6O0djqLJwgGGzwq7dUR528evZcQoLy7HuvJdmkutxIibql61ZOt00XM1ZSqmfKaUu\nA65XSl1me71VKXWX236auceZJ2JdvE5zlnU/OG21bpqI3Zxl38bjkcxnZ5HHTBl6Z2mVcCCTV2KZ\nvTweoaLQqCB8tN8oQy8i1BSFCPk9NPeO0DGUYGB0nLNqS9i6xngoWWaPPx3opr47RsDr4cdPNOni\nj/PMj55oJK2M6+/WbUcAoyNmQ0+MLatKOWuFMUna2z5E64ARfWdV0l1dHqYnmqTFXF5pCovikB+v\nRzhkmkjtSa92U1WWELFNbKb29DCuyYA39z3g1GZ9mYjG2WOp68vHakp1nfl2jYh80vk6SePT5MAt\nqcnp+7BmVU6h46aJ2M1ZU2ZuGSHiaM0bnKzPZacs7M8IkTLbzW+VoW8bjGdmnx6PUFdeyJG+0Ux+\nyenLi6mrKCTg83C4x/ieRw/1EAn6+Na1W4gmU+w8kl388e3ff5r793TkPDfN9OkcSvD+Hz/LV/9w\nIHONpdOKRw5285ZzlvP282v50/5u0mlFY88IE2nFxpoiygoDLCsOcbArSuuAkZRaa/rHLN/Hi2Y4\nryUsPB6hvDBAc78hXLJNqbnNqnbnuFt3wal9zo3PzlvJKmmyVPqfnwyO5VgvNP9GgKIcL8084eZY\nd2JpIE6h49r3wJvbnGUcw/iOKZqIW32ucIARs1lQaYG9PleA3liS/pFkJroLjKz4nliSdjMDflV5\nAV6PsK6yMFPm4sWjg5xfV8arNlUhAs+aOSepiTSf+b9d7Gwe4DO/3s2I2YhLMzv85wMHeaK+lx88\ndphnGo3f/EjfCL2xMV6+voIL6sqMigZ9IxwyJwGbzS6Cq8oLaB+M02YKkZWlhvCwfB0HOozIPns5\n9orCAGMpw7GdJTgC9mgruyZiEyLO69b8O1WI5I5Gse4tLULy51jmrB+af7+Y63Xyhqhx4uZYd06e\nPBmfSH5CxI4zucpKvnLG1Wcyfx3CpSgrimtSE6mMBOmJJhkYzc4uNoo/GkLE65FMHsCaikKa+4zZ\n7eGeGJtrIkSCRt7JQdPk8fzRQdqHEnzgkjqG4uM8crA7ayz1XVGiCR0qfDyUUuxpG8rKJk+MT3Dv\nrnb+7PxaCgNe7jErDtTbes5Yvr297cM0m0mjVhDF8pIC2gcT9MSSBH2eTM6RVbLkUFeMoM+TJRTc\nAjnCLt0Fw353c5aFs7ugLxP+nn3TuOVWadzJJ2O9SkQ+JyK3iMhPrNfJGJwmN1PyRDKTquwrf9In\nkr2/MykxF05NxBIiziiXwkBuc5bdwWkXIiUFfrpMx7q9+GNFYcCsIJzIJJaBWc47mqSlf5RkKs3G\naqu0SlEmP+Wphl48Ap98/SaKQj6eapgs/njnjhZe/43Hufq7T2U9HDVT+dqDB3nLd57kQz99LmPO\neb55gGQqzZvPXs5F6yoy0VGWdri+OpKpVHC0f5Su4QQVhYFMrakVpQV0DMXpi41RFg5kJjSWFto2\nGDdLs09ek5aPQyTbxGr3fdg1X/u1NkWImF/r9IlYcyRnMIp7wqDGjXzyRH6LUebkIeD3tpdmnphS\nO8stOitTmNHhPMzjRnFT/53CJWxzrGctdzE92G9+u6+ksihIfHyCpt4RauxF9IqDRBOpTH2tlWb5\ni7qKQtoG40aPk85h1lQUUhoOsGVVaSayRynF9x49DBgJbQ/s7TzueZ+qRBPj/OTJIwA8fbiPve2G\ngLb+nr+6jHNWltDQEyOWTFHfFaW2tIBI0Ec44KMs7KdtME7XcDIrt2NZcZDxCcWRvpEpkwkLp5/N\nul4KA9nBGvbt7BqxvTS7a59zx/VsmXqdmojPpeGUxp18frGwUuozSqk7lFK/tl5zPjKNK85oK+uz\nW2y705wlecSLOIWFZQ5wHtsK/3Was6zZYcDnyTp+JEeyIti6zfWOZFcQLsoO+bQ+15aGGJ9Q9MaS\nHOqKZRK3NtcUUd8VYyKtaOwdoal3hC9dcxbLikNZQkQpxV3Pt/LgKShYjvSOcMvjhxkYGcsse/pw\nH/HxCX74/gsQgYf2GxUEGrpjVBQGKCsMcNqyIpQy9m8bjLOybLIIYm1ZAW0DcbqjiaxJgKVtHunN\nFiJ+WyKgs5JuOGMidQRx2LazT4zs19eU6Czzr5uPz3nP5KOla7LJR4jcKyJXzvlINHnj1Cwsm/Tm\nZZGs5ZZ5y6l45NNV0dl4x+Oi1Vg35xQNxbRTO49tFyIlObLinUX0rFpde0whYj2grNIqrYNxWvpH\nMyaVTWZplZb+0UxNr4vWlnPRunJ2Ng9kzDS/393BJ+94iRtu28lzR06dHmtjqTTX/892vnLfAT7z\n612Z5c829hPye7hsczWbqosyUVMNtmxyq2Ngpn6VTeNYUVJA51CC7uFkVoKg9T/uGxnL8oGBXeNw\nmEhtmoidoEtoup18gkZg8rp0RmEdT0u3C06NQT5C5EYMQRIXkWERiYqIbgoxjziv86vOXcHDn7qU\n155Wk7Xc8mM4VfR8isk5+0hbu0zJOTGFjd8xKGs26axBZDdnuZm87FnH1oOnvjtGOODNbLfcTErb\n2z5MKq0yJVesm7x9KM7e9mFCfg/rqyJsWVVK13CSnmgSgF88c5Sa4iDFIR+3bTt1ij8+Ud/Dkb5R\nNlZHeGh/F13DRrLfoa4om2uKCPg8nL2yJGPGauyJZepaWb9t68Ao3cPZlXTLCwP0j44xnBjPmhy4\nlSSByWvBmSBoaSDOulZu+U123JIF3c1Z2dv5jhF08uznXscfbnzVccdwqpFPP5EipZRHKVWglCo2\nPxcfbz/N7PNms3xIrsxY60a3kzLvkCkhwXkcy62kiJsm4myIZT0YnCW17YIjq8yKXYjkqCDc3DdK\neeGkY9bKK9hnPuwsM9cyW90uK6HR6xE2mLPpxt4REuMT7Gju55ottbzhzGU8Ud+TVTLm+aMD3Lur\nfdHnCuxpG+Ku51uz/gePHOwmEvTxH+84h7SCZxr7AENYWB0r11QYiYCDo0ZJklpTYJcU+CkMeDnY\nGSU+PpElRErDAfpiSUbHJrImCm7tBWBS05hSSdc0kTobQeUTVTg1/N1KNsy975RqDscwZ9UUh6Y0\ntwIyWvCpyrHKngAgIufnWDwENCuldED+SeSb127hy9eclff2aRchMp1eJtYeznvREiLOm8/N9GDV\n84Js+7WbJmJ/H8kRNpypIFySXUG4YyhB68BophbTmgrjRj/SO4Lf62F8QnHe6jKiiXH+b2crh3uM\n0ipHekd49w+3MT6hGH5bivdetDrneSx0eqJJ3vmDbcTHJ+gYSvCxyzYAsLttmLNqizm7toQCv5cX\njg5y+ek1tA8lJutXmYmAVl8Pq/SIiFBZFMzkgmSXJPFnZvWuORz+3A50N43DKcTzMWc5zVGW49x5\nfbpNEKYTnfWHG1/FmKN0/KlEPuas7wHPAP9tvp7BKNF+UETeMIdj0zjwez1ZYbHHw1UTmYHvcKo5\ny3gAOL/SzfSQVZPLTYjYe0K4ZCwHfV4KA14aHMUfCwJeSsN+OocStA7EMw/EFaUFBLwejvSNctgM\nTz19eVGmlpPVK/6OHS1MpBXVRUF+9vQRl19h4XPHjhYSqQmWFYe4/bmjKKUYn0izv2OYs2tL8Hk9\nbKqJcLgnlsntWGv27rB8Hy9YRRAd9auOZrLJJ/9PdlOV/X8Wsmuezn7mAZdKum6NofIQIlMmSCr3\ncuubndftdKKzQn7vFC3rVCKfX6wdOE8pdYFS6gJgC9AIvB6z/7lmYTLpE5kFTcTcxXmTZTSTKeUj\n3ByckxvaHyr22ahdWPi8Hlu0TrbiXBoOEE1OLchXHg7QMZQglkxlHoBej1AZCdATNep2eT3CitIC\n1ldFEJnMe3jsUA8Xri3nhlev42BXlI6heM7zWOg8erCbs2tL+JvXbaClP05T7wjNfaOMpdKcvtwQ\nnKvKwxztH6U7avhFrH4wVvDCPjObvCoy6UAvLwwwYJbst0dP2XvU2Ht3uDVAg0lh4TRnBUwz1oRL\nIuCxcNMk8r3kdZ7IiZOPENmklNprfVBK7QNOU0o1zt2wNLOBNTuyZuMWM9JEXIo/OsOG3W747OrA\ntjIrtu2dZgtLY4k4zB72Ga/T1HWkbyTz3qLSrNvV3D9KbWkBfq+HkN9LbWkBTb0xkqkJDnVF2bKq\njAvXGlVWn7PV5/qfp5p41w+3ZTLlFwJjqTSfvONFPnrbzky5l/GJNC+2DHLxugq2mOXG97QPTymC\nWFdh9Ca3nOuWwK0oNP5aWen28jRuRRCzSpLY/i/268CZw2H9z51mLusaSU2nMVSePT2Ot3/dNFo0\nnKoc1ycC7BWR7wO3m5/fDewTkSCga0ksYF6xoYLvve98Lj89O2prdvu758bN9GAXEPZImGPV7Qq5\n5BNYmkyB35v1gCkNB9jVaoQEO0urdA4lGB1LZUqOg9FEq3M4weHuEcYnFGeuKOb05cX4PMKBjmHe\neu4KmvtG+PLv9zORVnzhnj3cfsMlef0Oc83/7WzlrueNBp9nP13Cxy7bQHPfKOMTis01RWyqKcLv\nFdKjlzIAACAASURBVPa1D2f6lFtFEGtLw6TSKhOcYAUrFAS8FPi9GTNXxEVY2zXDApdIOztOYWFp\npc7Z/2QRxOz9Z3LdunUXzBWk8osPX8TGmqmBKprc5KOJXA80AH9nvhrNZePAZXM1MM3MERGuPHv5\nlIfyTDR21+5tLtVQndgd627f64ykmdREchd/nGLmKvBn/EHZdbus4o9jlNt8SzXFIbqGk5mZel1F\nGL/Xw+qKMI1mBeEH9nYykVa896LVPNPYT9vgwjBz/e6ldjbXFHH+6lLu32MkTjZ0G5rSxpoIfq+H\nFaUFtA6M0jYQx2erSzbZ3jhKgd+b9Tvafx+7uckuyIuCuZfnK0SsScSUcuweqxz7iWsi7uS/7ys2\nVGb1cNccm3xCfONKqf9SSr3NfH1NKTWqlEorpWInY5Ca2WUm/d2dN7wV5ZKvg9Jq2XssnELPalk6\nNYPZ+FzkqCAczuq+mK2J9Jud9OwaSk1xiM6hREYwWCXq11dFMuVWnmnsZ0N1hPdfXAfAtsN9xz2P\nuWZ0LMWO5n5es7mKSzdVs7ttiGhiPNNp0gr7ri01Kun2RJNURoKZh7FVObe+O5ZlsoLJ3zrk92Q9\nvAvdiiDalrtFUTl9Im79bnwumki+WrCdjAM9t79dMwvkU4Bxo4j8n4jsE5FG6zWTg4rIO0Vkr4ik\nRWSrY91nRaRBRA6KyBttyy8Qkd3mum/LTJ6EmhPG8nm43cjOxdYDwrncLV7fjtOfYn2F05yVyWw+\nRnmMskJ71JChofQ7sqdrio26XQc7o4T8nswsvLa0INN572BnlDOWF7O5poiikI8Xjk76SoBM6fK5\nJDWRzgpN3dM2zPiE4qJ15VlRZu1DcSojgczvs6LUqKQ7MDqepZlZvo/+kbGpWp5L1njYRXDYBYRb\nroVbwt+UAqEu5dhnUtbK7WGhnyIzJ59/y/8A38foa34ZcCvw8xkedw/wZ8Dj9oUicgZwLXAmcAXw\nPRGxrs7vY/Rf32i+rpjhGDTTwGlScMvHszQWp707nzBNN0HjnMmG3SoI51H51f4wtQTKgc4oNcWh\njKZWUxwilkzRHTW0lM3LivB4hE1mfS6Lrz94kNM/fz+3PTN3me9Heke4+N8e5g3feJyY6UC3tKSN\n1UWcZtYOO9gZNbPJs30+XdEEA6PZwrPIpXoA2EqSTDEhTm5nn8fZfSJuWqhbqPmUAqGZcuyzZ86a\nEuK7yBNJFxL5CJECpdTDgCilmpVS/wq8eSYHVUrtV0odzLHqauB2pVRSKdWE4Yu5UESWA8VKqWeU\n8d+/FbhmJmPQnBhuN/xkvH3uMGLnzZtXLxNn8Udv7rpdlo19ymzZ9kCzC6QiF5u/lVXdOjBKaY66\nXS+YNbisiJ1NNREOmX6HvliS7z56mIm04j/uPzBn5ea/+0gDvbEx6rtj3P18KwCHu41eHLWlBawo\nNZp4tQ2OmnWtsnM7lDJKtWdFV7nk4MDkb+oULvn0MHd72E+p4eZSINRVE5lFx3pm+ZJvXjv35CNE\nkiLiAepF5OMi8jaMbodzQS3QYvvcai6rNd87l+dERG4QkR0isqOnp2dOBnqq4qaJOG9Sy+zl1ETy\nyTp2aiLWzNSt5ErQETpqN7nYHfzZjY+mliXvjY1lF380H8S7W63ij8bsvq6ikMHRcWLJFA8f6GYi\nrfjsm04jmkjxZP1kL5PZIp1WPLC3k3dcsJL1VYU8uM+osHvYLFXi8Qhej1AVCdI1nKRrOOEoSWKc\nU080mSVEgj5v5rd2Cgu3tsfOUiQWgaxIOzeTp3OiYfx1bp75P89mdJaLsNDmrJmTbwHGMPC3wAXA\n+4EPHm8nEXlIRPbkeF09syEfH6XULUqprUqprVVVVXN9uFMC617L90bOFGx0qWV0LJyaiFtfFOvB\n5RxT2GbOsu+T1cjItk2xS30nK29iT7shRKxkvOWZ+lxxdrUOUhT08cGXryHg9bB9DioCH+iMMpxI\n8YoNFVy4tpxdrUMopWgbjLPKVlW2piRE13CCvpGxTLguZIc5lxTkdqBP8TdZmsgUIXL8JNJ8NRG3\na8lNCM3EnOUW4quZOcfNE1FKPWe+jQF/nu8XK6Uun8Z42oBVts8rzWVt5nvncs1JZqo5K3d0ltfF\nJ5IPrg8RZ8mVTI2l7O3CbnZ7e/Z0YPJhmCVEbMUfLQ2l3lFaxRImHUMJ9rYPc/qKYkJ+L2fVFk9x\nuM8GO5sNwbS1rpxYcoJfbW+hzYy2spIiAWqKguzvHGYirbI1rXDu8wNDsA6MjruWHnGWaXfzadmv\nCzefiFsfnCnN1DIhvs79c37ttHCGD2umj6sQEZF7jrWjUuqtsz8c7gF+KSJfB1ZgONC3K6UmzDL0\nFwPPAh8AvjMHx9e4YD2MnQ9yS0iMO54Ebv1H8mHKg8pFq7E0EWd3OrcHnT8rKz53ZFGu4o9tg3GK\ngr6MDyZT5HEwwdG+Ud5wppHMuXlZMffv6Tj2yU2Dwz0jFAa8rCwrYIMZttvQHWNgdDyrJEllUZCW\nfUaYslvJ/bAjOMEt18YyETpLo7v5tOzC2i06yylErI9TuwtaIb7Ksf3s+0Q0M+dYmsglGP6JX2E8\nuGft32D6Vb4DVAG/F5EXlVJvVErtFZE7gH0Y0WAfU0pZnsq/Bn4KFAB/MF+ak4xzkmmZQeJj2Q5l\n61kzHTu2W+l65/PL0lichfryKbmS3Zc7t1YSDhiZ8BNplfWQtXIqOk3TkSVU1lcVMjA6PiWZcaY0\n9Y5QV1GIiGRMaVa/D3txRHu0VVYioN9WENGlxIgz8u1EC2vamXH9qjnoLugmgLRsmTnHEiLLMIos\nvgd4L0Zf9V/Z62hNF6XU3cDdLutuAm7KsXwHkH8ddM2c4LwZz1lpdFU8c0Vxzu2mo4m4CR7ncm+e\nXews7PZ8+0MzZNNK7I5kEaHYNPfYc1HCAS8+j2RKoltl6NeZVXCbemOUF5ZztG+Uhw908fYLVp5Q\nldff7+ogHPRy2eZqAJr7RjhzRUnWsXa1GhFjlbYkQbey+aFAbuEJk1qAM9fG0kSmCujj/z/dHtj5\nTijcorMsXr6+Iq/vyRqT23ItRWaMqxAxNYD7gfvNOlnvAR4VkS8qpW4+WQPULGy2rinniU9fNqVt\nqJszfCY4be3Ww2ZKQqNLVrxduNiFiN1M5nQcFwYNITJFuBT4M4UYV5iaiKWRdA0nUUrxkZ/vZH/H\nMC+1DPLNa8/L6xwfOdDNx375PAD3/s0rOW1ZES0Dca40G5KF/F7Kwv5M6frspk+5c2LsTnNndJVl\nMZqioZi/VSqdnUQ5o1wNh2x3q1+V8YnkkCLbP/e6LG0xX5zXiKVZ5moypTkxjulYN4XHmzEEyBrg\n27hoEJrFxfffd/6sFZlzVgmGyVnkdB46brNDp4JhCappVRD2u4SqulQQdvoMSgr8NPUadbUs05UV\nAtxpOtz3dwxTGPBy764OPn/VmXmZuH61/SjhgJf4+AS/eaGNGy5dx0RaZcxYYJiwDps1vbI7QubW\nRLIDClzqV81h6RELN01kSlCGWJrIVCli7+t+IjivkXdvXUV8bIL3X1I3re/TTOJq4BSRW4FtwPnA\nF5VSL1NKfUkppaOilgBvOns5G6qLTni/fDN9J1waYuWD84Z36+/ucdFE8ull4maWce5r+UucQqQ4\n5MsUebR8EWVhPwGvh65ogp1mQ6d/f8c5pNIqr1pbifEJHq/v4R0XrORldeW80DJIb3QMICtktzjk\nz/y+2V0EcxdBtP8PQr7c2tyUrHG3CKkZZY1nf87UXZuShGitn/ahpjC1Da6HD79qnWveiyZ/juUl\nuw4jOupG4GkzOmpYRKIiMnxyhqdZKHz6is1A9sPsWGSEyDRmrlMym3F70OUWIm6OXbuW4TYrnlL8\n0Zc76S5X90URobo4SNdQgt1tQ1RGgrzx/7d37nF2VFW+//76ke7O+9UkIQkGBHlFeTWaCChi9AOC\n8hDEOwqCMzD4Qq+XC/pxrjI6MyqOL9RhRMYJoDPqiKBXGCMgDF4RJeGRhxkkCMwEoiQBEpJAku6s\n+0ft6q5T59Tp6tPn2Vnfz6c/XbVr135Ude9Ve+211zp8NuPHtfPbx4cXIv/5xxd4afceFh8wg0Pn\nTOI/N2xl47adAMxICpFE3YXRHttKpidJz0SGnCAW5st6hqOZiYzUumokQuS0V83huAOz10oasfRR\nTVVuM1NuTWQU7s6c0fDVdx45qt25teD0I+dy+pGZTgKKGNVMJGthNh2hMRYiRTOXDAGRmGVkfVEX\nq7PimUjh4DslYyCPI//t7B9gQXApf8jsSazNEchqbYgkePi+U3h2xy627xpg9VPRRsekl90pGWqr\nZNvzhCeGbNcj7YNmtpRMr4S8IWor4et/dnT5DA34d7r6nUex9N4neOXcKfWvvI7kCUrl1JmRDNbN\nyv4zJzBnSjefOPXQEd+b9f+e/jrOypcd82T4kaQolklHef9c3Z1tBSqwKT2dbHlxN5u37+To/aYB\ncMicydy6cgNmVrYNv3t6KxO7Opg3rWfQHX3scmXmhKQ6K2pLmwrNk5MCIu9MYsj1SOk1kbRCq5rq\nrCxmTe5m/vQePnXa4RXXVVx3/aXI/Onj+T+nHVb3euuNCxGnJvSMa+fXH39jRfdm6cizvmTT0mQ0\nWoTiWCbBP1emmqvQumdKTydPbt7BhudfYt4RkSA4sHciW17czXM7dpddXH9803Zevk/kC2vfIERi\nM+LkHpDuRMz5pFAqjBqZT5DGAjdtOZU5E6niwnqWdda4jjZ+eflJFddTiuaa148tXGXlNB1ZX+vp\nAS1emM1yp1EJ6ZnIuEHnj2khEp2nA2JNHd/Jfz27g/49Rm9Yx4jNn+PIiVk8/fyLzAvCI773yWd3\n0NPZnjJDjv1dlXZVAuVcj6TPVfB72PtHE9OjgSO5hx+qHS5EnKZnuP//9OXRqFzS1llDHoQL83Vl\nrJUk9x3EC+DzpkUm0Oufyw6pGztUjGO/x/dGu+UL64hVWOmBPmlplO0EsfT6UdFGzowNf1WdiVDa\nOqsWuAipHS5EnJYhvW8gyw19NdVZg2sGGQN22kQ06ZsqFihzc8xEnt2+i539ewbVWO1tGlz7SHvY\njetMm1vncUmSFi5ZIWqznmE1F9ZjajnAZ5kRO9XDhYjTsgw58CtMH83XclqdNWReXJgvVh2lnQcm\nTWhjVdfk7g66OtrYtG1XZr1PPx+F4Y2FCMDU4MI9S23Vn+p4nlgtxQK3dP9i0oKquvtEKi5qxHjw\nqdrhQsRperIGgFjl8/yOwsF5NPrv9va0uif6nf6KjgfstG+pUkJEEjMndrEp7PkoxZ+2RkJkVmJH\nduy2vcjDboYAyzMTyQoTm35mgxv+Mu6vaEaSdYvrs1oat85yWob0l+viA2ZwwkEzi8yIR6POymte\n3BXUVv0DhY1KzhqSDhFnTBzH5jIzkeeCIJyWiP0RuytJz0RiVyzpmUie0MNZFm5FayWUts4a39nO\nKQtnc96ikbsLqeU+keFwdVbtcCHiND1ZA0B3Zzs3/vlritJrobdPl5k5E+ksnokAzJgwbnD3eSme\n37EbgGkJE+CsGPKD6qyUAMujxstSKRXJn4yi2trENe8+Zth6StedZeJbUXEjwmVI7XB1ltMy5FWh\nVzN4UVaY3/irf6BoTaS0/6oZE7uGnYl0tKkgDsigKW+Rm/bofPdAoYfdPN3OjquRYVY9fJG5KZbt\n9VsUcRPf2uFCxGl64gE77zAwqljcOfMN+u1KpXcXbPhLBLvq7uSFl/ozy3tux26mju8sDOcb1Fjp\ngFGdGT7D8gyURTORwXtTZcXXq7j6PVIB5rQGDREiks6RtEbSHkl9ifQ3SVohaVX4fVLi2jEhfZ2k\nq+WfFnsNnz3rlbz3uP057sCZufJnORXMQ94/qywPwlmL2xO72tm2s589aVOywPM7dg1aY8XEAim9\nHpPlMywPaQGbvbA+8rK/9I4j+OZ52aquRlpnObWjUWsiq4GzgG+m0jcBbzWzpyUtBJYBsSOpa4CL\niEL13gacjIfI3SuYNbmbT741vw+iWPeeteu6HMVjZ3n3H2k9f9bidhwkasfugSKPwAAvvNRfEFQK\nhtZE0qq09gwBloe8wmFoJpK/7LOOnlf2evpZxU4lYys0pzVpyNszs7VQ/AdtZg8mTtcAPSEw1nRg\nspndF+67ATgDFyItyb9etKjAK221iQervgXTRnxveojNMnXNUpllzURiM93tO/tLCpEXdw8UbSqM\n1VlFM5HBYFwjJ2t2lk6OXf4fMnvkMWey6y6s5dI3HsR+08dzaojaWEuqqZZzCmnmT4C3Aw+Y2U5J\nc4H1iWvrGZqhOC3G4gpiZI+EcR1t/PRDx7Ng5oQR35vX79aQOivnTCQIjkf++ALX3P0Y7zvx5cya\n3M1X73iUQ+ZM4sVdA0xLqbNiK6ysmUglPsKyLKTSHLbvZH54yWKOmD91xHVkkW5uV0c75x67X9XK\nL0VXZzvbdw3UtI69nZoJEUl3ALNLXPqEmf14mHsPBz4PvLnCui8GLgbYb7/a/pGONZZeeCzPbs+2\nImoVFlYYwyFrgTlNe8ZsIMsFeyxEvnrno6x48jkmdnXwtiP35ct3/B6IXOcXha5tiw0KUkIkbmQF\nU5FM1yMlkvsWTB95BRXUXUt+8JeLuG3VHz2Weg2pmRAxsyWV3CdpHlEc9/PN7LGQ/BSQVLjOC2lZ\ndV8LXAvQ19fn89gRcOLB+zS6CQ0lc7G6yP1H4e+Y4dRZcdjcFU8+x/6JmdLjm7bz6tSgPRjnPKVM\nG5X1WZF1VlhYr4OFVCMC/R24zyQufWP1VHJOMU1l4itpKnAr8DEz+1WcbmYbgK2SFgWrrPOBsrMZ\nx6mIjH0iaYZmIqVVTWnS6yD/9ewOHt+0vSCtOHRt+Y2PlYzJxdZZFRRSIc0WrdOpDo0y8T1T0npg\nMXCrpGXh0geBA4FPSnoo/MSfxu8HrgPWAY/hi+pODcj6Ws67sJ41UKZdlzy95UUefaYwZG53aj/I\nYFFFIWpDXRV82jd017jLkDFJo6yzbiZSWaXT/wb4m4x7lgMLa9w0Zy+naL9Exvd+1j6RrHE9qeY6\ncJ+JrHtmG49t3M7Leyfw2MZoRpIWNBkypC7WWbXAt3aNTZpKneU4jSbvMBfnSw+MWbODpIv5BTOi\nIFVPbNrO3BCwCop3pmfRnmEZlgcfyJ1q40LEcRJkqaPSawdxvt39e0qmp0ma/saRDvv3GDOTDhfT\nM5F4j0qq8iGniaMXCIOL9i5bnApp5n0ijlN3shwwpgfyQ+ZM4sj5U7n85IML0vOos+IQuDAUEwUK\noyJCtjv22VO6OXL+VK44+ZDMfuRlcE3EpYhTIS5EHKcMWUNrV0c7t3zguKL0PDOR3kldg8dJIdKZ\nYR6cXhPp7ixddyW4/bszWlyIOE6CtBD4yJJXsH3XAO84dn5F98d0JiImTp+QECIJf1npeCBDs6Bc\nVQPwV6ceygG9I9+pX8ulkjYVhzB2xg4uRJym4WcfOYEnN+9oaBvSg+m0CeP4+3OOyH1/pvVTouAZ\niXWQyT2djGtvY9fAnuw45yOYL/zFCQfkzhsKj9o3srtGxB0ffT1rnt5awxqcRuJCxGkaDpk9mUNm\nT25oG0Y7mOZZ7J6eECI9ne10dURCpBru2EfK4I71GtZ1QO9EDuidWLPyncbi1lnOXsVr9p/OkkOz\nXbuMdld1nsE4ucje3dk+aBac1zKsmlz8upcD8IpZPsg7leEzEWev4vt/ubjs9Xpso0gKi+7OtoRX\n3lRbat8U3nTYLJ743Kl1qMkZq/hMxHES1EOFlFxA7+poHxQq6ZmI7wt0WgEXIo5TZ5T4rxvX0TY4\nA8kSGh5QyWlmXIg4Tp1JzkQ62jSozkovymf5znKcZsKFiOPUmaTaqrO9rYw6q/SOdcdpJnxh3XGq\nzJSeTt7z2gWZ15OyoqNdCYeKhflOPLgXgLcfMw/HaVZciDgOUXjadJCoSnn4U+WjOifVVp1tQ2si\n6ZnIy2ZMcMspp+lxIeI4wE3vey1PbK6OEBmOpLDoaNfgmkctI//9+uMn8ez2XTUr39l7cSHiOES7\nyJM7yWtJW0qdNeTavXZ1zpnSw5wpPbWrwNlraVR43HMkrZG0R1Jfiev7Sdom6bJE2jGSVklaJ+lq\neXQdp0VJ/ul2trWVTHecVqFR1lmrgbOAezKuf4niGOrXABcBB4Wfk2vWOsepMV8590guOmF/JnZ3\nDPqvqqU6y3FqRaNirK+F0l9eks4AHge2J9LmAJPN7L5wfgNwBsWCxnFagjOOmssZR80tSKtCoELH\nqTtNtU9E0kTgCuCvU5fmAusT5+tDWlY5F0taLmn5xo0bq99Qx6ki8ZqIz0ScVqRmQkTSHZJWl/g5\nvcxtVwJfNrNto6nbzK41sz4z6+vt7R1NUY5Tc1yIOK1MzdRZZrakgtteA5wt6SpgKrBH0kvATUBy\nx9U84KnRt9Jxmoe2ptILOE4+msrE18xOiI8lXQlsM7Ovh/OtkhYBvwHOB77WkEY6To3wmYjTijTK\nxPdMSeuBxcCtkpbluO39wHXAOuAxfFHdGWP4wrrTijTKOutm4OZh8lyZOl8OLKxhsxynIcSu3n2f\niNOKuBbWcRpMPdyeOE6tcCHiOE1CuwsRpwVxIeI4DSY28XUZ4rQiLkQcp0lo85V1pwVxIeI4DWbI\nd1aDG+I4FeBCxHEazKA6C5ciTuvhQsRxmgRfE3FaERcijtNgbPgsjtO0uBBxnCbBJyJOK+JCxHEa\njPlUxGlhXIg4TsMZXFl3nJbDhYjjNJiece2AW2c5rUlTuYJ3nLHM0guPZdvO/qL0G9/7Gm5dtYHe\nSV0NaJXjjA4XIo5TJ048eJ+S6QtmTuADbziwzq1xnOrg6izHcRynYlyIOI7jOBXjQsRxHMepmEaF\nxz1H0hpJeyT1pa69StKvw/VVkrpD+jHhfJ2kq+Vh4BzHcRpOo2Yiq4GzgHuSiZI6gO8Al5jZ4cCJ\nwO5w+RrgIuCg8HNyvRrrOI7jlKYhQsTM1prZIyUuvRlYaWYPh3ybzWxA0hxgspndZ1FA6huAM+rY\nZMdxHKcEzbYm8grAJC2T9ICky0P6XGB9It/6kFYSSRdLWi5p+caNG2vYXMdxnL2bmu0TkXQHMLvE\npU+Y2Y/LtOd44FhgB3CnpBXAlpHUbWbXAtcC9PX1uWcix3GcGlEzIWJmSyq4bT1wj5ltApB0G3A0\n0TrJvES+ecBTeQpcsWLFJklPVtCWRjIT2NToRtQZ7/Pegfe5dXhZnkzNtmN9GXC5pPHALuD1wJfN\nbIOkrZIWAb8Bzge+lqdAM+utWWtrhKTlZtY3fM6xg/d578D7PPZolInvmZLWA4uBWyUtAzCz54Av\nAfcDDwEPmNmt4bb3A9cB64DHgH+ve8Mdx3GcAhoyEzGzm4GbM659h0h9lU5fDiyscdMcx3GcEdBs\n1llOxLWNbkAD8D7vHXifxxgyD6vmOI7jVIjPRBzHcZyKcSHiOI7jVIwLkSZA0nRJt0t6NPyeViZv\nu6QHJf20nm2sNnn6LGm+pLsk/S445PxwI9o6WiSdLOmR4Dz0YyWuKzgVXSdppaSjG9HOapKjz+8K\nfV0l6V5JRzSindVkuD4n8h0rqV/S2fVsX61wIdIcfAy408wOAu4M51l8GFhbl1bVljx97gf+l5kd\nBiwCPiDpsDq2cdRIage+AZwCHAb8jxJ9OIUhx6IXEzkbbVly9vlx4PVm9krgM7T44nPOPsf5Pg/8\nvL4trB0uRJqD04Hrw/H1ZDiXlDQPOJVov0yrM2yfzWyDmT0Qjl8gEp6ZPtOalFcD68zsD2a2C/ge\nUd+TnA7cYBH3AVOD09FWZdg+m9m9YV8YwH0UeqRoRfK8Z4APATcBz9SzcbXEhUhzMMvMNoTjPwKz\nMvJ9Bbgc2FOXVtWWvH0GQNIC4CgijwWtxFzgvxPnpZyH5snTSoy0P39O628eHrbPkuYCZ9LiM800\nzeb2ZMxSziFl8sTMTFKR3bWk04BnzGyFpBNr08rqMto+J8qZSPT19hEz21rdVjqNRNIbiITI8Y1u\nSx34CnCFme0ZSzH1XIjUiXIOKSX9SdKc4CNsDqWnuscBb5P0FqAbmCzpO2b27ho1edRUoc9I6iQS\nIN81sx/VqKm15ClgfuK8lPPQPHlaiVz9kfQqItXsKWa2uU5tqxV5+twHfC8IkJnAWyT1m9kt9Wli\nbXB1VnPwE+A94fg9QJGrfDP7uJnNM7MFwDuBXzSzAMnBsH0OIZD/CVhrZl+qY9uqyf3AQZL2lzSO\n6N39JJXnJ8D5wUprEbAloeprRYbts6T9gB8B55nZ7xvQxmozbJ/NbH8zWxD+h38IvL/VBQi4EGkW\nPge8SdKjwJJwjqR9gzv8sUiePh8HnAecJOmh8POWxjS3MsysH/ggkYfqtcAPzGyNpEskXRKy3Qb8\ngci56LeInI22LDn7/ElgBvAP4b0ub1Bzq0LOPo9J3O2J4ziOUzE+E3Ecx3EqxoWI4ziOUzEuRBzH\ncZyKcSHiOI7jVIwLEcdxHKdiXIiMUSSZpC8mzi+TdGWd27A09lQq6brROk+UtEDS6oxrXwiefr8w\nmjqaifD8Hq+miWjyneyNSLpA0teHyXNu8MTb0p6y64XvWB+77ATOkvRZM9s00psldQTb96pgZn9R\nrbIyuBiYbmYDycRq96MB/G8z+2GjG1FNJLWn31MzYWbfl/Qn4LJGt6UV8JnI2KWfyL32/0xfCF/0\nvwjxHO4Mu4fjr9R/lPQb4CpJV0q6XtIvJT0p6SxJV4UYED8LLkmQ9ElJ90taLelalXAMJOluSX2S\n3pbYOPiIpMfD9WMk/YekFZKWxV5sQ/rDkh4GPlCqo5J+AkwEVoSvyHQ/Jkj6tqTfKorFcnq4r0fS\n9yStlXSzpN9I6gvXtiXKP1vS0nDcK+mm0N/7JR0X0q8Mddwt6Q+SLk3cf3541g9LulHSpDDDZg7F\nDgAABdpJREFUiJ/f5OR5FpJmhXY+HH5eK+nTkj6SyPO3CnFXJF0R3tXDkj5XorysZ36pohguKyV9\nr8R9F0j6cejro5I+lbj27vCcH5L0TUWuz5G0TdIXw3tcnCqvqD5Jr5b06/C+7pV0cKLuWxTFoHlC\n0gclfTTku0/S9JDvbklfDe1YLenVJfpR8l06I8TM/GcM/gDbgMnAE8AUoq+qK8O1/wu8Jxy/F7gl\nHC8Ffgq0h/Mrgf8HdAJHADuI/BwB3AycEY6nJ+q9EXhroryzw/HdQF+qjT8gEgydwL1Ab0g/F/h2\nOF4JvC4cfwFYndXfxHG6H38HvDscTwV+D0wAPpqo51VEgrevRHlnA0vD8b8Ax4fj/YhcssTP6l6g\ni8gv0ubQr8NDfTOTzwr458Tzuxj4Yok+DT6/cP59IieUAO3hvS4AHghpbcBjRDvBTwntGZ+qd2no\nT7ln/jTQFT+vEu26ANgQ6ukBVhP5hTqU6G+rM+T7B+D8cGzAOzLeXVF9RH+7HeF4CXBTou51wCSg\nF9gCXBKufTnxfO4GvhWOX0f4uwn3f73cuwznJwI/bfT/cSv8uDprDGNmWyXdAFwKvJi4tBg4Kxzf\nCFyVuPZvVqhq+Hcz2y1pFdHA9bOQvopoAAN4g6TLgfHAdGAN0WCSScj/opl9Q9JCYCFwe5jEtAMb\nJE0lGlTuSbT1lFydL+zHm4mcV8bqiW6iQeN1wNUAZrZS0soc5S4BDtPQZGuyIi/DALea2U5gp6Rn\niNzbnxTasinU82zIex2RW/9bgAuBi3LUfRJwfihngGgA3SJps6SjQn0PmtlmSUuAfzazHal6Yw6m\nxDMP11YC35V0S2hfKW634DRR0o+IvPD2A8cA94cyexhyrDlA5EizFKXqmwJcL+kgIgGUnKXdZVF8\nmRckbWHob20V0cdAzL+Gvt8TZntTU/WWfJdmtg0nNy5Exj5fAR4g+vLNw/bU+U4Ai9xX77bwmUYU\n06RDUjfRF2efmf23osX77nIVhAHuHKJBHEDAGjNLqznS//QjIdkPAW83s0dS5Ze7P+kPKNmfNmCR\nmb1UoqydiaQByvx/mdmvFKkVTySaMZU0GMjJdURf2LOBb+e8p+QzD5xK9G7eCnxC0iuteF0p7S/J\nQpnXm9nHS5T5kmWvgxTVRxTt8C4zO1NRLJm7E/mTz3lP4nwPhc+8VBuTlHyXzsjwNZExTvgC/QFR\nzIaYe4m8jAK8C/jlKKqIB9hN4Yu8rOWPpJcRhRE9x8zi2dEjQK+kxSFPp6TDzex54HlJcayJd1XY\nxmXAhxRG+vDVDnAP8GchbSGFX7F/knSopDaiQEIxPyeKThf358hh6v4FcI6kGSH/9MS1G4hUKnkF\n/J3A+0I57ZKmhPSbgZOBY4n6CnA7cKGk8SXqhYxnHvo738zuAq4gmhFMpJg3SZouqYcoKuWvQvvO\nlrRPXGd435mUqW8KQ67ULyj/WDI5N9RxPJFn5C2p6yN9l04JXIjsHXyRSE8f8yGiAWYlkZfcD1da\ncBjov0WkF19G5BK7HBcQ6dJvCYuet1kUTvRs4PNh4fUh4LUh/4XANyQ9RPSlWwmfIVKHrJS0JpxD\nFGFuoqS1wKeBFYl7Pka0rnIvQ2oeiFSDfWER+HdAWfNbM1sD/C3wH6FvSZf23wWmEdQuOfgwkepw\nVWjrYaGOXcBdRJ5jB0Laz4hckS8Pz67A0qjMM28HvhPqeBC4OrzjNL8lUk+tJFqvWG5mvwP+Cvh5\n+Nu6HRguzG9WfVcBn5X0IJVrTF4K9/8jhR9RMSN6l05p3Iuv4wQk3Q1cZmZ1cUuuaL/G6WZ2Xsb1\npUSLu2VNfMPX/ANEs7tHq97Q4vouIFJffrDWdVXKaN9lUDNeZmanVbNdYxGfiThOA5D0NaIYKp8p\nk20L8BmV2WyoaAPnOuDOegiQvQFJ5xKt8z3X6La0Aj4TcRzHcSrGZyKO4zhOxbgQcRzHcSrGhYjj\nOI5TMS5EHMdxnIpxIeI4juNUzP8HWIkMz2GBd4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hanning window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Traingular Window" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='triangular')" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVIW5//HPsxQBpTelo3SQusEaATWKESUYCwgk5iZR\nbIFoVNRf4tVYkptrQ1Q0idErKBgFG6Yo9s4urPQWehEWkCJtXXh+f8yZdVjZ3WHZs9O+79drXs4p\nc+Y5JHueOe17zN0REREByEp0ASIikjzUFEREpIiagoiIFFFTEBGRImoKIiJSRE1BRESKqClISjOz\nKmb2tZm1SnAdZ5vZyhCWe7yZfX0En19rZv0rsCRJc2oKUqmCDXj0dcDM9sQMDz/c5bn7fnc/xt1X\nh1Fvorn7cnc/JtF1SOaomugCJLPEbuCCX9a/cPe3SprfzKq6e2Fl1BaWdFgHyRzaU5CkYmZ3m9kU\nM3vezHYCI8zsFDP71My2mdkGMxtnZtWC+auamZtZm2B4YjD9H2a208w+MbO2Mcs/z8yWmNl2M3vE\nzD4ysytivvvpmHnbmZnHDP/CzBYGy/2Pmf2ilPVYa2Y3mdlcYNchpt9jZg8G748K9pjuC4aPMbO9\nZlb3EDV8aGZ3mtnHQR3/NLMGMdOvMLNVZrbZzMYW+84awb/NBjNbZ2YPmFn1YNpHZjY4eN8v+Dc9\nNxg+18xyyvrfTtKDmoIkoyHAc0BdYApQCIwGGgGnAQOBq0r5/OXAb4EGwGrg9wBm1gR4AbgpWNYK\noO9h1LUROB+oA/wSeMTMupcy/1DgPKDeIaa9B/QP3p8ErAfOCIZPBea7+/YSlns58FOgKXA0cAOA\nmZ0IjA+mNweaAcfGfO53QDbQHehF5N/y1kPU0w9YHlNPv2C6ZAA1BUlGH7r7a+5+wN33uPtMd//M\n3QvdfTnwJJENVUledPccd/8GmAT0DMYPAvLc/ZVg2oPA5niLCmpa7hFvAzOA75fykYfdfa277znE\ntI+BLmZWj8jG90mgrZnVouyN8F/dfam77wb+HrN+lwAvu/tH7r4PuA2wmM8NB/7b3fPdfRNwFzAy\nmPYe3/6bngHcFzOsppBB1BQkGa2JHTCzTmY23cy+NLMdRDZmjUr5/Jcx73cD0fMYzWKX7ZE0yLXx\nFmVmg8zsMzPbambbgHPKqGNNSRPc/WtgNpEN8BnAu8CnwCmUvRGOd/2+BrbGzNsMWBUzvIrIHgXA\nR0BXM2sMdAOeAY43s4ZAH+CDUuqRNKKmIMmoeHTvE8A8oJ271yFyGMS+86mybQBaRAfMzPh2owiR\nY/+1YoaPjZm3JvAikV/QTd29HvDvMuooK4L4PeBs4EQgNxg+j8ghnvJshDcALWNqPobIIbSo9UDr\nmOFWwDooaiB5wK+J7E19A3wG3AgscvevylGPpCA1BUkFtYHtwC4z60zp5xNK8zrQ28wuMLOqRM5T\nNI6Zngf0M7OWwWGd2BO1RwHVgXxgv5kNAs4qZx1R7wFXAHOCq5PeBa4EFrv71lI+V5K/A4ODE/NH\nAXdzcGN6HvidmTUK9gh+C0wsVs91fLuX8m6xYckAagqSCm4kcmJ1J5G9hinlWYi7bwQuAx4AtgAn\nEDmEsy+Y5Z/ANGAu8DnwasxntxH5FT2NyCGZi4k0mSPxIZE9k/eD4blETqq/X+InSuHuc4g0uheI\n7AF8ycGHmu4EviCy1zWHyJ7AfTHT3yPSgN8vYVgygOkhO5KpzKwKkUMqF7u7jpmLoD0FyTBmNtDM\n6gWHV34LfENkr0BEUFOQzHM6kWvw84FzgSHB5Zsigg4fiYhIDO0piIhIkZQLxGvUqJG3adMm0WWI\niKSU3Nzcze7euKz5Uq4ptGnThpwcZXOJiBwOM1tV9lw6fCQiIjHUFEREpIiagoiIFFFTEBGRImoK\nIiJSJLSmYGZPmdkmM5tXwnQLHg24zMzmmFnvsGoREZH4hLmn8DSRxyaW5DygffC6Eng8xFpERCQO\noTUFd3+fg5/6VNxg4P+CRxt+CtQzs+PCqkekou0uKGTKzNXsKdif6FJEKkwizyk05+DHFa7l4Kdg\nFTGzK80sx8xy8vPzK6U4kdK4Ozf9fQ63vDSXW16agzLEJF2kxIlmd3/S3bPdPbtx4zLv0hYJ3V8+\nWMH0uRvo07o+r36xnqc+WpnokkQqRCKbwjpinidL5Nm56xJUi0jcPvnPFv7wz0Wc1+1Y/n7VKZzT\npSn3vrGQz5ZvSXRpIkcskU3hVeAnwVVIJwPb3X1DAusRKdOG7Xu47rlZtGlYiz9d0oOsLOP+S3vQ\nukEtrn1uNht37E10iSJHJMxLUp8HPgE6mtlaM/u5mY0ys1HBLG8QedjJMuDPwDVh1SJSEfYV7ufq\nibPY+81+nhiZzTFHRfIka9eoxhMj+7C7oJCrJ+ZSUHggwZWKlF9oKanuPqyM6Q5cG9b3i1S0O19b\nQN6abUwY0Zt2TY45aFr7prX508U9uPa5Wdw9fQF3De6WoCpFjkxKnGgWSbQXctbw3GerGdXvBAZ2\nO/SV0+d3P45ffr8t//fJKqbOWlvJFYpUDDUFkTLMXbud//fyPE5r15DfnNOh1HlvGdiJk49vwK1T\n5zJ//fZKqlCk4qgpiJTiq10FjJqYS6OjqzNuaC+qVin9T6ZqlSzGX96b+rWqM2piLtt2F1RSpSIV\nQ01BpAT7Dzi/mjyb/J37eHxEHxoec1Rcn2t0zFE8NqI3X27fy+jJeew/oBvbJHWoKYiU4P5/L+aD\npZu5a3BXerSsd1if7d2qPndc0JX3luTz8FtLQqpQpOKpKYgcwr/mf8lj7/6HYX1bMrRvq3ItY/hJ\nrbikTwvGvb2MtxZsrOAKRcKhpiBSzH/yv+bGF76gR4u6/PeFXcu9HDPj9z/qRrfmdfj1C3ms3Lyr\nAqsUCYeagkiMXfsKGfVsLtWrZvH4iD4cVbXKES2vRrUqPD68D1WyjKuezWV3QWEFVSoSDjUFkYC7\nc/OLc/hP/teMH9aLZvVqVshyWzaoxbihvViyaSdjX5qrRFVJamoKIoFo8unNAztxartGFbrsMzo0\n5jfndOTVL9bzNyWqShJTUxDh4OTTq844PpTvuLrfCfwgSFT9fEVpz58SSRw1Bcl4xZNPzSyU74km\nqrZqUItrJs1SoqokJTUFyWglJZ+GpU6NakwIElWvmTRLiaqSdNQUJKNFk0//95Ie30k+DUuHprX5\nn4u7k7vqK+6evqBSvlMkXmoKkrFik0/PO/HQyadhGdS9mRJVJSmpKUhGOpzk07AoUVWSkZqCZJzD\nTT4NixJVJRmpKUhGKW/yaVhiE1XHTMnjgBJVJcHUFCSjPPBm+ZNPwxJNVH13cT4PzVia6HIkw6kp\nSMb49/wvefSd/zD0e+VPPg3L8JNacXGfFoybsZQZC5WoKomjpiAZYXmQfNr9CJNPw2Jm3B0kqo6Z\nokRVSRw1BUl7u/YVctWzuVQLkk9rVDuy5NOwxCaqjpqoRFVJDDUFSWvuzs0vRZJPHxnWi+YVlHwa\nlmii6uKNO7l1qhJVpfKpKUha+8sHK5g+ZwM3nduJ0yo4+TQsZ3RozI0/6MAreUpUlcqnpiBpK5p8\nOrDrsYzqF07yaViu6d+OszsrUVUqn5qCpKUN2/dw/fPR5NPuoSWfhiUry3jgsh60VKKqVDI1BUk7\n0eTTPQX7eWJkH2rXqJboksqlTo1qTBjRh137lKgqlUdNQdLOXUHy6Z8u6UG7JrUTXc4R6Xjst4mq\n9yhRVSqBmoKklb/nrGHSZ6u56ozj+WElJ5+G5YIezfj56W155pNVTJutRFUJl5qCpI1567Zz+8vz\nOPWEhtx0bsdEl1Ohxp7Xib5tI4mqC9bvSHQ5ksbUFCQtfLWrgKuejSSfPjIsccmnYalWJYtHL+9N\n3ZrVGDUxl+27v0l0SZKmQv3LMbOBZrbYzJaZ2dhDTK9vZtPMbI6ZfW5m3cKsR9JTsiWfhqVx7aN4\nfEQfNmzfw5gps5WoKqEIrSmYWRXgUeA8oAswzMy6FJvtNiDP3bsDPwEeDqseSV8PvrmED5Zu5s4k\nSj4NS+9W9fndBV15Z3E+DytRVUIQ5p5CX2CZuy939wJgMjC42DxdgLcB3H0R0MbMmoZYk6SZNxds\nZPw7y7gsuyXDkiz5NCwjTmrFj3u34OEZS3l7kRJVpWKF2RSaA2tihtcG42J9AVwEYGZ9gdZAi+IL\nMrMrzSzHzHLy8/NDKldSzfL8r7lhSh7dW9TlzsHJl3waFjPjniHd6NqsDmMm57FqixJVpeIk+mzc\nH4B6ZpYHXA/MBvYXn8ndn3T3bHfPbty4cWXXKElo175CRk3MpWoV47HhvZM2+TQsNapVYcKIPpgZ\nVz2by56C7/zZiJRLmE1hHdAyZrhFMK6Iu+9w95+5e08i5xQaA8tDrEnSgLtzy0tzWLbpax4Z1psW\n9WsluqSEaNmgFuOGRRNV5yhRVSpEmE1hJtDezNqaWXVgKPBq7AxmVi+YBvAL4H1310XYUqq/friC\n1+ds4DfnduT09qmRfBqWfh0ac8PZHXg5bz3PfLwy0eVIGqga1oLdvdDMrgP+BVQBnnL3+WY2Kpg+\nAegMPGNmDswHfh5WPZIePl2+hfv+sYhzuzbl6n4nJLqcpHDtgHZ8sXYbd09fSNfmdflemwaJLklS\nmKXaLmd2drbn5OQkugxJgA3b93DBIx9Sp2Y1Xrn2tJQNugvD9j3fMHj8h+wq2M/060+nSZ0aiS5J\nkoyZ5bp7dlnzJfpEs0hc9hXu55pJQfLpiNRNPg1L3ZrVeGJkNl/vVaKqHBk1BUkJv399AbNXR5JP\n2zdN7eTTsEQTVXNWfcW9byxMdDmSokI7pyBSUV7MXcvET9Mr+TQsF/RoRt6abfz1wxX0aFmXIb2+\nc9uPSKm0pyBJbd667dw+bS6nHJ9+yadhUaKqHAk1BUlaX+0qYNTEXBocXZ1HLk+/5NOwKFFVjoT+\nyiQp7T/gjJ6Sx6YdkeTTRmmafBqWxrWP4rHhSlSVw6emIEnpobeW8P6SfO4c3JWeaZ58GpY+rZWo\nKodPTUGSzpsLNvLI25mVfBoWJarK4VJTkKSyYvOujEw+DUvxRNWVm5WoKqVTU5CksWtfIaOezdzk\n07DEJqqOmpjL7oLCRJckSUxNQZJCNPl06aadGZ18GpaWDWrxSFGi6lwlqkqJ1BQkKUSTT286t1PG\nJ5+G5YwOjbnxBx14JW89TytRVUqgpiAJF00+Hdj1WEb1Oz7R5aS1a/q34+zOTbln+kJmrtya6HIk\nCakpSEJt2L6H656bRZuGtfjTJd0xs0SXlNaysowHLutBywa1uGbSLDbt2JvokiTJqClIwhQUHvg2\n+XSkkk8rS50a1Zgwoo8SVeWQ1BQkYe56fX5R8mm7Jko+rUxKVJWSKCVVEkLJp4mnRFU5FO0pSKVT\n8mnyUKKqFKemIJUqmnza8OjqjFfyacIpUVWK01+kVJr9B5xfTZ5dlHzaUMmnSUGJqhJLTUEqzYNv\nLuGDpZu5c3BXeij5NKn0aV2f3w3qwjuL8xn3thJVM5maglSKf8//kvHvKPk0mY04uTUX9W7OwzOW\n8s6iTYkuRxJETUFCtzz/a2584QslnyY5M+PeISfS+dg6jJ48m1VblKiaidQUJFS79hUyaqKST1NF\njWpVeGJkJFH1qmdz2VOwP9ElSSVTU5DQRJNPl236WsmnKaRlg1o8PLQnizfu5LZpSlTNNGoKEppo\n8ulvzu2o5NMU079jE244uwPTZq/j/z5ZlehypBKpKUgoosmn53ZtytX9Tkh0OVIO1w5ox9mdm/D7\n1xcoUTWDqClIhYsmn7ZuWIv/vaSHkk9TVFaWcf+lPWlRv6YSVTOImoJUqH2F+7lm0ix2F+zniRFK\nPk11dWtW44mR2Xy9t5Brn5vFN/uVqJru1BSkQv3+9QWR5NOLe9C+qZJP00HHY2vzx4u7M3PlV9wz\nXYmq6S7UpmBmA81ssZktM7Oxh5he18xeM7MvzGy+mf0szHokXNHk0yvPOJ7zuyv5NJ1c2KMZ/3Va\nW57+eCXTZq9NdDkSojKbgpnVMrPfmtmfg+H2ZjYojs9VAR4FzgO6AMPMrEux2a4FFrh7D6A/cL+Z\nVT/MdZAkEJt8erOST9PSrT9UomomiGdP4W/APuCUYHgdcHccn+sLLHP35e5eAEwGBhebx4HaFjkT\neQywFSiMp3BJHtHk0wZHV+cRJZ+mrWpVshh/eS8lqqa5eP56T3D3/wG+AXD33UA8l5M0B9bEDK8N\nxsUaD3QG1gNzgdHu/p0zWWZ2pZnlmFlOfn5+HF8tlWX/AWf0lDw27djHY8N700jJp2mtSe0aPDa8\ntxJV01g8TaHAzGoS+VWPmZ1AZM+hIpwL5AHNgJ7AeDOrU3wmd3/S3bPdPbtx48YV9NVSER56awnv\nL8nnjgu70KtV/USXI5WgT+sGSlRNY/E0hTuAfwItzWwSMAO4OY7PrQNaxgy3CMbF+hkw1SOWASuA\nTnEsW5LAmws28sjby7ikTwsuV/JpRlGiavoqsym4+5vARcAVwPNAtru/G8eyZwLtzaxtcPJ4KPBq\nsXlWA2cBmFlToCOwPN7iJXFWbN7FDVPy6Na8Dr//UTfdoJZhlKiavkpsCmbWO/oCWgMbiBz7bxWM\nK5W7FwLXAf8CFgIvuPt8MxtlZqOC2X4PnGpmc4nsgdzi7puPbJUkbLsLChn1bCT5dMKIPko+zVBK\nVE1PVlICopm9E7ytAWQDXxA5wdwdyHH3Uw75wZBlZ2d7Tk5OIr5aiCSf/mpyHtPnrOeZ/+rL99vr\nHE+me3fxJn729EwG92jGg5f11F5jkjKzXHfPLmu+EvcU3H2Auw8gsofQOzjR2wfoxXfPDUiGeOqj\nlbz2xXpuPKejGoIAkUTVX5/dgZfz1vPMxysTXY4coXhONHd097nRAXefR+QyUskwny3fwr1vLOSc\nLk25pr+ST+Vb1wWJqndPX6hE1RQXT1OYY2Z/MbP+wevPwJywC5PksnHHXq59bjatG9Ti/kuVfCoH\nU6Jq+oinKfwMmA+MDl4LgnGSIQoKD3D1xFx2FxTyxEgln8qh1a1ZjQkj+yhRNcXFc0nqXnd/0N2H\nBK8H3V0/AzLI3dMXMEvJpxKHTsfW4Q8/PlGJqimsalkzmNkKgruZY7n78aFUJEnlpdy1/N8nq/jl\n99sq+VTiMrhnc75Ys52nPlpBr1b1GNyzeLqNJLMymwKRy1GjagCXAA3CKUeSybx127lt2lxOPr4B\ntwzUjeYSv1t/2Il567dzy0tz6NC0Np2P+056jSSpeA4fbYl5rXP3h4DzK6E2SaBtuwu4elIk+XT8\n5b2VfCqH5TuJqnuUqJoq4nmeQu+YV3ZwN3I8exiSovYfcEZPzmPjdiWfSvlFE1XXb9vDDVPylKia\nIuLZuN8f876QSGjdpeGUI8ng4beW8N6SfO4Z0k3Jp3JE+rRuwG8HdeF3r8znkbeXMfrs9okuScoQ\nT1P4ubsfFFJnZm1DqkcS7K0FGxmn5FOpQCNPbk3e6m08NGMJ3VvWZUDHJokuSUoRz4HiF+McJylu\n5eZd/PoFJZ9KxTIz7hlyIp2OrcPo52ezesvuRJckpSgtJbWTmf0YqGtmF8W8riByFZKkkd0FhVz1\nbC5VsozHhyv5VCpWzepVeGJEkKg6UYmqyay0PYWOwCCgHnBBzKs38MvwS5PK4u6MfWkuSzbtZNzQ\nXrRsUCvRJUkaatWwFg8N7cmiL3dw+7S5lJTQLIlV4jkFd38FeMXMTnH3TyqxJqlkf/toJa9+sZ6b\nzu3IGR2UfCrhGdCxCWPO6sCDby2hZ6t6/OSUNokuSYopsSmY2c3u/j/A5WY2rPh0d/9VqJVJpfhs\n+RbuCZJPr+6n5FMJ3/VntmPO2m3c9doCuhxXh+w2uhc2mZR2+CgaXJID5B7iJSmuePJpVpZOLEv4\nsrKMBy6LSVTdqSi1ZFLik9eSlZ68VjEKCg8w7M+fsnDDDl659jQF3UmlW/TlDoY8+jHdmtfhuV+e\nTDXdNR+qeJ+8Vtrho9c4RBBelLtfWM7aJAncPX0Buau+YvzlvdQQJCGiiaqjJ+dx7xsLueOCroku\nSSj95rX/rbQqpFJNnfVt8umg7s0SXY5ksME9m5O3Zht/+2glPVsqUTUZlHb10XvR92ZWHehEZM9h\nsbsXVEJtEoL567dz61Qln0ryuO2HnZm/bocSVZNEPIF45wP/AcYB44FlZnZe2IVJxdu2u4BRE3Op\nX0vJp5I8qlXJYvzwXtSpoUTVZBDPVuF+YIC793f3fsAA4MFwy5KKduCAM2ZKJPn08RFKPpXk0qR2\nDR4foUTVZBBPU9jp7stihpcDO0OqR0Ly0IylvLs4nzsu7KLkU0lK0UTVGYs28cjby8r+gIQinpTU\nHDN7A3iByDmFS4CZZnYRgLtPDbE+qQBvLdjIuBlLlXwqSe+gRNUWdRnQSYmqlS2ePYUawEagH9Af\nyAdqEslBGhRaZVIhosmnJzavq+RTSXrRRNXOx9Zh9OTZrNqyK9ElZRzdvJbGdhcUMuTRj9m0cy+v\nXX86Leor6E5Sw5qtuxn0yIc0q1eTqVefSs3qSu09UvHevBbP1UdtzewBM5tqZq9GXxVTpoQlmny6\ndNNOxg3rpYYgKaVlg1o8HCSq3qZE1UoVzzmFl4G/Aq8BB8ItRypKbPLp99sr+VRST/+OTfj12R14\n4M0l9GxZj5+e2ibRJWWEeJrCXncfF3olUmFik0+v6a/kU0ld1w2IJKr+/vUFdG2mRNXKEM+J5ofN\n7A4zO8XMekdfoVcm5VI8+VQnliWVZWUZ91+qRNXKFE9TOJHIk9b+QORGtvuJMxfJzAaa2WIzW2Zm\nYw8x/SYzywte88xsv5npp0A5FRQe4OqJuewuKOSJkX2oXaNaoksSOWJ1a1Zjwsg+7NxbyHWTZvPN\nfh3FDlM8TeES4Hh37+fuA4LXmWV9yMyqAI8C5wFdgGFm1iV2Hnf/k7v3dPeewK3Ae+6+9fBXQyCS\nfDpr9Tb+dHEPJZ9KWokmqn6+civ3vrGw7A9IucXTFOYReU7z4eoLLHP35UGA3mRgcCnzDwOeL8f3\nCPBS7rfJp+d3Py7R5YhUuME9m/Oz09rwt49W8kreukSXk7biOdFcD1hkZjOBfcE4d/fSNvAAzYE1\nMcNrgZMONaOZ1QIGAteVMP1K4EqAVq10R25x89Zt57ZpczmprZJPJb0pUTV88ewp3AEMAe4FHgBm\nAu0quI4LgI9KOnTk7k+6e7a7ZzdurMsrY23bXcDVkyLJp48OV/KppDclqoavzC1I8FyFHUQiLZ4G\nzgQmxLHsdUDLmOEWwbhDGYoOHR22/Qec0ZPz+HL7Xh5T8qlkiGii6rqvlKgahhKbgpl1CC5FXQQ8\nAqwmEosxwN0fiWPZM4H2wR3R1Yls+L9zJ7SZ1SWSq/RKudYggz381hLeW5LPHRd0pbeSTyWDKFE1\nPKWdU1gEfAAMikZnm9mv412wuxea2XXAv4AqwFPuPt/MRgXTo3sbQ4B/u7uSrw7DWws2Mu7tZVzc\npwXDT9J5Fsk8PzmlNXlrgkTVlnUZ0FGJqhWhxEA8M/sRkV/3pwH/JHL10F/cvW3llfddCsSLJJ9e\nMP5DWjesxYujTqVGNYWFSWbaU7Cfix7/mHVf7eb1679Pq4bK+CrJEQfiufvL7j6UyLOZ3wHGAE3M\n7HEzO6fiSpXDsbugkKuezaVKlvH48D5qCJLRalavwoQRkYCFqybmsqdgf4IrSn3xnGje5e7PufsF\nRE4WzwZuCb0y+Y5o8umSTTsZN7QXLRvoV5FI64ZH8/CwXiz6cge3K1H1iB3W9Yvu/lVweehZYRUk\nJYsmn/7mnI6c0UGX5opEDejYhDFndWDq7HU8++mqRJeT0nRRe4r4fEXk9v4fdGnK1f2UfCpS3PVn\ntuOsTk2467UF5K5SWk55qSmkgI079nLNpFm0CpJPs7KUfCpSXFaW8cBlPWlevyZXT1SianmpKSS5\ngsIDXDNpFrsLCpkwsg91lHwqUqK6NasxYUQfduz9Romq5aSmkOTumb6A3FVf8T8Xd6eDkk9FytT5\nuDr88cfd+XzlVu57Y1Giy0k5agpJbNrstTzzySp+cXpbBnVvluhyRFLG4J7NueLUNjz10Qolqh4m\nNYUktWD9Dm6dGkk+HXuekk9FDtft53fme23qM/aluSz6ckeiy0kZagpJaNvuAq6amEO9mtUZf7mS\nT0XKo1qVLB69vDfH1KjKqGeVqBovbW2SzIEDzpgpkeTTR4f3pnFtJZ+KlFeTOjV4fHhv1ipRNW5q\nCknmoRlLeXdxJPm0T2sln4ocqew23yaqjn9HiaplUVNIIjMWbmTcjKVKPhWpYD85pTVDejXnwbeW\n8M7iTYkuJ6mpKSSJlZt3MWZKHt2a1+HuH3XDTDeoiVQUM+PeISfS6dg6jJmcx+otuxNdUtJSU0gC\nuwsKGTVRyaciYYomqro7o5SoWiI1hQRzd26dOpfFG5V8KhK21g2P5uGhvVj45Q5uf1mJqoeippBg\nT3+8klfy1nPjDzoo+VSkEgzo1ITRZ7Vn6qx1TFSi6neoKSTQzJVbuWf6Qs7u3JRr+rdLdDkiGeNX\nZ7bnzE5NuOt1JaoWp6aQINHk05YNavHAZUo+FalMWVnGg5f2pFm9mlwzSYmqsdQUEiCafPr13kIm\njFDyqUgi1K0VSVTdvkeJqrHUFBIgNvm047FKPhVJlM7H1eEPFylRNVbVRBeQaWKTTy/ooeRTkUT7\nUa/m5K3ZxlMfraBHy7oM7tk80SUllPYUKpGST0WSkxJVv6WmUEm27/6GURNzlXwqkoSUqPotbZkq\nQST5dDYbtu/hsRFKPhVJRrGJqje+kLmJqmoKleDhGUt5Z3E+v7ugK71bKflUJFllt2nA/zu/M28t\n3MSjGZqoqqYQsrcXbeThGUv5ce8WjFDyqUjS++mpbfhRz2Y88NYS3s3ARFU1hRCt2rKLMZPz6Nqs\nDvcMUfKpSCowM+67qDsdm9Zm9OQ81mzNrERVNYWQ7C4o5KpnczEzJoxQ8qlIKqlZvQpPjOyDu3PV\ns5mVqKqyU5RzAAANqUlEQVSmEIKDkk+HKflUJBW1bng0Dw3tyYINmZWoGmpTMLOBZrbYzJaZ2dgS\n5ulvZnlmNt/M3guznsoSm3zaT8mnIinrzE5NGXN2ZiWqhnZHs5lVAR4FfgCsBWaa2avuviBmnnrA\nY8BAd19tZk3CqqeyKPlUJL386sz2zFm7nbteX0CXZnXT/tnpYe4p9AWWuftydy8AJgODi81zOTDV\n3VcDuHtKn+rfpORTkbQTTVQ9rm5NrpmUm/aJqmE2hebAmpjhtcG4WB2A+mb2rpnlmtlPDrUgM7vS\nzHLMLCc/Pz+kco+Mkk9F0lfdWtV4YmSQqPpceieqJvpEc1WgD3A+cC7wWzPrUHwmd3/S3bPdPbtx\n4+Q8Rn/vGwvJUfKpSNoqSlRdsZU//CN9E1XDTEldB7SMGW4RjIu1Ftji7ruAXWb2PtADWBJiXRVu\n2uy1PP3xSn6u5FORtBZNVP3rhyvo0bIeF6bh33uYewozgfZm1tbMqgNDgVeLzfMKcLqZVTWzWsBJ\nwMIQa6pw0eTTvko+FckIt/2wM9mt63PLi3PSMlE1tKbg7oXAdcC/iGzoX3D3+WY2ysxGBfMsBP4J\nzAE+B/7i7vPCqqmiRZNP69asxqOX96aakk9F0l71qlk8Njx9E1Ut1W7IyM7O9pycnESXwYEDzs+f\nmcmHyzYz+cpT0v4yNRE52MyVWxn25Kf079iYJ0dmJ/3VhmaW6+7ZZc2nn7blFJt8qoYgknm+l6aJ\nqmoK5aDkUxGBgxNV30mTRFU1hcMUTT7tcpyST0UyXWyi6pjJeazekvqJqmoKh2FPwf6i5NMnRir5\nVEQOTlQdNTH1E1XVFOLk7oydOkfJpyLyHemUqKqmEKdo8ukNZyv5VES+68xOTRl9VuonqqopxOHb\n5NMmXDtAyacicmijz2rPgI6Nuev1BeSu+irR5ZSLmkIZDk4+7Zn01yKLSOJkZRkPXdYrpRNV1RRK\noeRTETlcqZ6oqqZQinumL1DyqYgctthE1fveSK1E1TBTUlPatNlreeaTVUo+FZFyiSaqPvXRCnq0\nrMvgnsUfJ5OctKdwCEo+FZGKEE1UHfvS3JRJVFVTKEbJpyJSUVIxUVVbvBgHDjhjpsxmw/Y9PDa8\nD41rH5XokkQkxTWpU4PHhvdm7Vd7uPGFPA4cSO4b29QUYhQlnw7qouRTEakw32vTgNtTJFFVTSEQ\nTT69qHdzRpzcOtHliEiaueLUNgwOElXfTeJEVTUFDk4+vXfIiUo+FZEKF0lUPZGOTWszenIea7Ym\nZ6JqxjcFJZ+KSGWpVb3qQYmqe79JvkTVjG4K7s6tQfLpw0N7KvlUREIXTVSdv34Ht0+bl3SJqhnd\nFJ75eCUvB8mn/Ts2SXQ5IpIhoomqL81ay8TPVie6nINkbFOYuXIrdyv5VEQSpChR9bX5SZWompFN\nIZp82qJ+Te6/VMmnIlL5iieq5u/cl+iSgAxsCrHJp0+MzKZuTSWfikhi1K1VjQkjoomqsyhMgkTV\njGsK976xkJxVX/FHJZ+KSBLo0qwO9110Ip+t2Mof/pH4RNWMagrTZq/l6Y9X8vPT23Khkk9FJEkM\n6dWCn57Smr98uILXvlif0Foypiko+VREktnt50fidW5+cQ6Lv9yZsDoypins3PsNbRsdo+RTEUlK\nByWqTsxlx97EJKpmzNbxpOMbMv3605V8KiJJq2mQqLpm625umPJFQhJVM6YpALr0VESS3reJqht5\n7N3KT1TNqKYgIpIKoomq97+5hPeW5Ffqd6spiIgkmYMTVWdXaqJqqE3BzAaa2WIzW2ZmYw8xvb+Z\nbTezvOD1uzDrERFJFbWqV2XCiD7sP1C5iaqhNQUzqwI8CpwHdAGGmVmXQ8z6gbv3DF53hVWPiEiq\nadPoaB66rHITVcPcU+gLLHP35e5eAEwGBof4fSIiaeeszpWbqBpmU2gOrIkZXhuMK+5UM5tjZv8w\ns66HWpCZXWlmOWaWk59fuSddREQSbfRZ7bmwRzOaVsIl9VVD/4bSzQJaufvXZvZD4GWgffGZ3P1J\n4EmA7Ozs5HoihYhIyLKyjHHDelXOd4W47HVAy5jhFsG4Iu6+w92/Dt6/AVQzs0Yh1iQiIqUIsynM\nBNqbWVszqw4MBV6NncHMjjUzC973DerZEmJNIiJSitAOH7l7oZldB/wLqAI85e7zzWxUMH0CcDFw\ntZkVAnuAoZ5sDywVEckglmrb4OzsbM/JyUl0GSIiKcXMct09u6z5dEeziIgUUVMQEZEiagoiIlJE\nTUFERIqk3IlmM8sHVpXz442AzRVYTirJ1HXXemcWrXfJWrt747IWlHJN4UiYWU48Z9/TUaauu9Y7\ns2i9j5wOH4mISBE1BRERKZJpTeHJRBeQQJm67lrvzKL1PkIZdU5BRERKl2l7CiIiUgo1BRERKZIx\nTcHMBprZYjNbZmZjE11PWMzsKTPbZGbzYsY1MLM3zWxp8N/6iawxDGbW0szeMbMFZjbfzEYH49N6\n3c2shpl9bmZfBOt9ZzA+rdc7ysyqmNlsM3s9GE779TazlWY218zyzCwnGFdh650RTcHMqgCPAucB\nXYBhZtYlsVWF5mlgYLFxY4EZ7t4emBEMp5tC4EZ37wKcDFwb/G+c7uu+DzjT3XsAPYGBZnYy6b/e\nUaOBhTHDmbLeA9y9Z8y9CRW23hnRFIC+wDJ3X+7uBcBkYHCCawqFu78PbC02ejDwTPD+GeBHlVpU\nJXD3De4+K3i/k8iGojlpvu4e8XUwWC14OWm+3gBm1gI4H/hLzOi0X+8SVNh6Z0pTaA6siRleG4zL\nFE3dfUPw/kugaSKLCZuZtQF6AZ+RAeseHELJAzYBb7p7Rqw38BBwM3AgZlwmrLcDb5lZrpldGYyr\nsPUO7clrkpzc3c0sba9DNrNjgJeAMe6+I3jaK5C+6+7u+4GeZlYPmGZm3YpNT7v1NrNBwCZ3zzWz\n/oeaJx3XO3C6u68zsybAm2a2KHbika53puwprANaxgy3CMZlio1mdhxA8N9NCa4nFGZWjUhDmOTu\nU4PRGbHuAO6+DXiHyDmldF/v04ALzWwlkcPBZ5rZRNJ/vXH3dcF/NwHTiBwer7D1zpSmMBNob2Zt\nzaw6MBR4NcE1VaZXgZ8G738KvJLAWkJhkV2CvwIL3f2BmElpve5m1jjYQ8DMagI/ABaR5uvt7re6\newt3b0Pk7/ltdx9Bmq+3mR1tZrWj74FzgHlU4HpnzB3NZvZDIscgqwBPufs9CS4pFGb2PNCfSJTu\nRuAO4GXgBaAVkdjxS929+MnolGZmpwMfAHP59hjzbUTOK6TtuptZdyInFqsQ+ZH3grvfZWYNSeP1\njhUcPvqNuw9K9/U2s+OJ7B1A5PD/c+5+T0Wud8Y0BRERKVumHD4SEZE4qCmIiEgRNQURESmipiAi\nIkXUFEREpIiagiQVM7s9SPucE6RAnhTy971rZnE/8NzMnjazdWZ2VDDcKLiBqiJq6R9N+6woZjbG\nzH5SxjwnmtnTFfm9krrUFCRpmNkpwCCgt7t3B87m4MyqZLEf+K9EF1FckAYcO1yVSJ3PlfY5d58L\ntDCzViGWJylCTUGSyXHAZnffB+Dum919PYCZ/c7MZprZPDN7MriDOfpL/0EzyzGzhWb2PTObGuTK\n3x3M08bMFpnZpGCeF82sVvEvN7NzzOwTM5tlZn8PcpQO5SHg18FGN/bzB/3SN7PxZnZF8H6lmd0X\nzcA3s95m9i8z+4+ZjYpZTB0zm26RZ39MMLOs0moLlvtHM5sFXFKszjOBWe5eGPNv9UeLPH9hiZl9\nP2be14jcGSwZTk1Bksm/gZbBBusxM+sXM228u3/P3bsBNYnsUUQVBLnyE4jc3n8t0A24IrjTE6Aj\n8Ji7dwZ2ANfEfrGZNQL+H3C2u/cGcoAbSqhzNfAhMPIw12+1u/ckcuf108DFRJ79cGfMPH2B64k8\n9+ME4KI4atvi7r3dfXKx7zsNyC02rqq79wXGELnbPSoH+D6S8dQUJGkEzwXoA1wJ5ANTor+0gQFm\n9pmZzSXyC7hrzEejOVZzgfnBsxX2Acv5Nghxjbt/FLyfCJxe7OtPJrIh/sgiMdQ/BVqXUu59wE0c\n3t9QbJ2fuftOd88H9kXzi4DPg+d+7AeeD+osq7YpJXzfcUT+HWNFgwJzgTYx4zcBzQ5jXSRNKTpb\nkkqwMXwXeDdoAD81s8nAY0C2u68xs/8GasR8bF/w3wMx76PD0f+PF89zKT5sRJ5FMCzOOpcGG+hL\nY0YXcnCTqHHwp8pdZ1m17Sph/J5SatjPwX//NYL5JcNpT0GShpl1NLP2MaN6Egn3im7YNgfH0i8u\nx+JbBSeyAS4ncvgn1qfAaWbWLqjlaDPrUMYy7wF+EzO8CuhiZkcFv/zPKkedfYM03yzgsqDO8tQG\nkafPtYvzezsQSduUDKemIMnkGOAZM1tgZnOIHDL57+A5AX8mstH6F5Eo9MO1mMhzmxcC9YHHYycG\nh3GuAJ4PvvsToFNpC3T3+cCsmOE1RJIq5wX/nV2OOmcC44ls0FcA08pTW+AfwBlxfu8AYPphVytp\nRympkvYs8njO14OT1BnFzKYBN7v70lLmOQp4j8gTvQorrThJStpTEElvY4mccC5NK2CsGoKA9hRE\nRCSG9hRERKSImoKIiBRRUxARkSJqCiIiUkRNQUREivx/gDjbhNwyqfkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Traingualr window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXecJUd5Lvy8J6eJOzObo3ICI4TAXIJMFGCQ74dtkfwh\ng40Dtrm2sQ02RtfwCZtLNCDbBGMLZNCVwSCECUKgnHclraRdabU5zOzkOWdOjvX9UaGr+3Sd6dHu\nzJzdref3m9+cU12nu7q7qt56nzcUMcZgYWFhYWFhQmilG2BhYWFh0d2wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOsIKCgsLCwuLjrCCwsLCwsKiI6ygsLA4ySCi84jocSLKE9GfBPwNI6Kzl7pthmvf\nRkTvXIlra22IiGewZZmv+24i+vFz/O3ZRHRGxBeQjaM4MRDRIQCrATS14nMZY2Mr0yKLlQYR/SuA\necbYnxqO3wngRsbY17QyBuAcxti+E7juywHISY8ApAAUtSoXMsaOPNfzLyWIKAKgDmArY+zQCjcn\nEIRg38sYo5Vuy1LDahQnB29mjGW0vzYhIQbCGYMz7X492Axg13JflDF2j+yDAC4Sxf1av3QJCSIK\nEdEpPwec4X1tWXDKd5JuBRFtEar0e4noCIBfiPKXENH9RJQlop1EdIX2m61EdJegLH5GRF8iohvF\nsSuI6JjnGoeI6DXic4iIPkRE+4lohohuJqJBT1veTURHiGiaiP5GO0+YiP5a/DZPRDuIaCMRXU9E\nn/Fc8wdEZFopMyJ6PxHtBbBXlJ0v7mWWiPYQ0W9q9d9IRLvFNUeJ6IP6vYo2TYv7fKf2uz4i+gYR\nTRHRYSL6iJzwiOgaIrqXiD5NRHNEdJCI3qD99hoiOiCuedBz3vcQ0dPidz8los0d3u9biGiXeI93\nEtEFovwXAH4FwJeIqEBE53p+dx2Al2vHv6Qdfg0R7RXnvJ6ISPtd4LZ1gng2HyeiB8C1jU2i7Bpx\n/BwiukO8r2ki+iYR9Wm/P0ZEf0ZETxJRjoi+TURx7fiHiWhcvM/fJY1O0q8jvv8Oce3K9HwfJ6J5\n0Wf/Vjt2tjjvbxMfW7f5/P4+IrpKfH6lqP968f31RLTd2wZy6K/fI6J94ll/QTtnmIg+R3x8HQBw\npeeaG4joh+LZ7SWi94jyFBFViGhAfL+WiOpElBbf/56IPt35za0wGGP27wT+ABwC8Bqf8i0AGIBv\nAEgDSAJYD2AGwBvBhfRrxfdh8ZsHAHwWQBzAKwDkwSkKALgCwDHTtQF8AMCDADaI338ZwLc9bfmq\naMfzAVQBXCCO/wWAJwGcB05ZPB/AKgCXAxgDEBL1hgCUAKw2PAsG4GcABsV10gCOAvhtABEALwAw\nDU6BAMBxAC8XnwcAXKrda0N7Fq8En9TOE8e/AeAWAD3i3p4F8F5x7BpwCuN3AYQB/IG4BxLtmdfO\nsxbAReLzVQD2AbhAtPUjAO433Oe5oj2vBRAF8JfitzFx/E4Av9Ohz7QdF8/uhwD6AWwCMAXgysW2\nzaf/RTzl94p+c4Foe0SUXaPd26sBxACMALgPwKe13x8D72drRB95Vt4LgF8Vz/oC8ay/LdqwRbv2\nNdq5fgfAneJzxFP3VeBaUQi8P04D+FVx7GxR99/A6bWkz/1/AsDnxOePAtgP4Drt2Gc6tOEWAH3i\nGc7CGWN/BK4pbhD3fjcApl3zPgBfBJAAcKlo8yvFsfsBXCU+/0K057XasTev9FzWsT+tdANO9T8x\n6AoAsuLv+6JcDtRtWt2/AvBNz+9/CuDd4JNDA0BaO/YtBBcUTwN4tXZsLfiEGdHaskE7/jCAt4nP\ne2Qn9rm/p7UO/UcAftThWTAAr9K+Xw3gHk+dLwO4Vnw+AuD3APR66lzh8yxuBvC34JN/DULYiGO/\npw32awDs046lRLvWgE9eWQBvhWdyAef236t9D4ELxc0+9/m3AG721B0FcIX4fieem6B4med+P7TY\ntml15Dv3ExQf9Sm7xnCeXwfwiPb9mOw34vtnAXxJfP4GgI9rx87HcxQUPu34EoBPic9SUGzqcP+v\nB/Co+Hy7uNa94vt9AN7SoQ0v0c7zXwA+KD7frb838AUfE5+3go83vc9+CsDXxOe/F88qCmAcwJ8C\n+P9E/6yAU4QrPp+Z/iz1dHLwa4yxfvH3a55jR7XPmwH8hqAWskSUBfAy8El9HYA5xphufDy8iDZs\nBvA97bxPgxvYV2t1xrXPJQAZ8Xkj+ArHDzcAeJf4/C4A31ygHd77fbHnft8JPmkDfMJ+I4DDxCm3\nX9Z+6/cs1oFrNVG4n81hcG1NQt0nY6wkPmbE+a4G8PsAjhPRfxPR+Vpb/1Fr5yy4FqKfV2Kdfn3G\nWEvct1/dxcD0fhbTtiA4ajpARGuI05ajRDQP4N/Bn3mQdq7znNt4nYVARL8sKL0pIsqBT+jednQ6\n/30ALiKiYQAXg/fjbUS0CsALAdzT4bdB70/vg+sATPv0WfmO7gJfAL0IwGMAfg6uKb8UwNOMsWyH\n9qw4rKBYejDt81FwjaJf+0szxv4BnIYZkLylwCbtcxF89QGA86UAhj3nfoPn3AnG2GiANh4FcJbh\n2I0AriKi54NTCt9f4Fze+73L06YMY+wPAIAx9ghj7CpwiuP74KtoCb9nMQauztfBJ0/9WJD7BGPs\np4yx14IL52fA6TjZ1t/ztDXJGLvf5zRj+vWFLWFj0DbA/YyCYDFtO9HrfxKclryEMdYLrqEF9eo5\nDk7LSGz0HHf1YTgLBj/cBOC7ADYyxvoAfM3bDrmU9wNjrADgcfCV++OMsTqAhwD8OYBnGGNznW/F\nF8fhvid9fI4BGPLps7JP3AdOpb0FXGg8CT7mrhTfuxpWUCwvbgTwZmFMCxNRgrjhdgNj7DCA7QD+\njohiRPQyAG/WfvssgAQRvYmIouA8dVw7/i8ArpNGTiIalsa8APgagI8LQyYR0fPEyguMsWMAHgHX\nJL7LGCsv4n5/COBcIvotIoqKvxcR0QXiHt9JRH1iEM8DaHl+L5/Fy8H57/9kjDXBBcp1RNQj7vfP\nwJ9tRxDRaiK6SgzmKjhlKK/5LwA+TEQXibp9RPQbhlPdDOBNRPRq8S7+XJwv6MQ9AWBbwLqLbduJ\nogd8Qs8R0UYAH1zEb28G8F7icSQpcIpOx+MA3kpESeJG/vcs0I5ZxliFiF4C4G2LaIfEXeB0qZyI\n7/R8XyxuBvC/iGi9GB9/JQ8wxg6Cj99PEFGciH4J3DZ3ozieB7ATwB+CL54YuOB63wm0Z9lgBcUy\ngjF2FNww+dfgxsqj4IZk+R7eAeDF4NTCteCcr/xtDryTfQ18lVIE54sl/hHADwDcRkR5cIPjiwM2\n7bPgg+A28An7X8GN0RI3ALgEC9NOLojB8TrwQT4GrtJ/Eo6A+y0AhwTF8fvgtJTEOIA58bv/APD7\njLFnxLE/Br//A+C897cAfD1Ak0LgQmUM/Bm/EtzYDcbY90TbbhLteQrAG/xOwhjbA07DfRFcw3kz\nuDGyFqANAH9Xv+71qjFhMW07CbgW3IkhB96fvhv0h4yxWwH8MziXvxd8FQ1wIQoAnwbXZibB31cn\n4f4HAP5e9OW/hlvbDIq7wAXO3Ybvi8U/g1NGT4Ivnr7jOX41gHPA++53APw1Y+xOT3vC4AJFfs+g\nMw3WFbABd10MIvrfAM5mjL1robpL3I5XgA/qzZ3U/ZN4vSvAjfgbFqpr0b0goksAPAogLuw4Fqco\nrEZh0RGCWvkAuPeGXVVYdAQR/U9BFw4C+AcAt1ghcerDCgoLI4gHkWXBDb+fX+HmWJwaeD84HbcP\n3O3z/SvbHIuTAUs9WVhYWFh0hNUoLCwsLCw64rRIpjU0NMS2bNmy0s2wsLCwOKWwY8eOacbY8EL1\nTgtBsWXLFmzfvn3hihYWFhYWCkQUKPuDpZ4sLCwsLDrCCgoLCwsLi46wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOqJrBQURXUl868x9RPShlW6PhYWFxZmKrhQUYq+F68EzZF4I4O1EdOHKtsrCwsLi\nzES3xlFcDr6d5QEAIKKbwNNz7z6ZF6k3W/jYrbsxU6zi7OHMwj+w4KCg+9hYAMF3/bHgsN0rGBgD\nnhzN4cNvOB/nrO5Z0mt1q6BYD/eWg8fg2VuBiN4HvukHNm3SN5oKjnylgW8+6MSb2A66MGxqMAuL\n7sILNw+csYJiQTDGvgLgKwBw2WWXPafpazAdw30fehWu/NzdeMV5w7j+HZee1DZaWFgsDjZJaTBM\n5at46T/8Aq+/aA3+8ArTLsYnD90qKEbh3pt2A4LvR7worO9P4u0v3oSv3XMAk/kKRnoSS3EZCwuL\nACCr1gfCf+44hkaL4YOvP29ZnllXGrPBtxk8h4i2ElEMfCvNHyzVxf6fS9ejxYDbd08u1SUsLCws\nThp+8tQ4Xrh5AFuH0styva4UFIyxBvgm6D8F8DSAmxlju5bqeuet7sGmwRR+8czEUl3CwsLC4qRg\nulDFk6M5XHHugklfTxq6lXoCY+xHAH60HNciIrx46yBuf3oCjDGr/lpYWHQt7t8/AwB4xTIKiq7U\nKFYCL9w8gLlSHQeniyvdFAsLCwsjdh7NIh4J4aJ1vct2TSsoBF64eQAA8OiR7Aq3xMLCwsKMJ4/l\ncOG6XkTCyzd9W0EhsG04g3gkhD3j8yvdFAsLCwtftFoMu8ZyuGR937Je1woKgXCIcNZwBnsnCyvd\nFAsLCwtfHJktoVhrLivtBFhB4cI5qzPYO2EFhYWFRXdC2lDPWuaUQ1ZQaDh3dQ9Gs2UUqo2VboqF\nhYVFG6SgWK74CQkrKDScNcwf/iHr+WRhYdGFODhdRE8igsF0bFmvawWFhg0DKQDAsbnyCrfEwsLC\noh2HZorYNpRe9lgvKyg0rO9PAgCOzZVWuCUWFhYW7Tg0U8TmVctLOwFWULjQn4oiHQtjNGs1CgsL\ni+5Cq8UwkatinVjQLiesoNBARFg/kMSopZ4sLCy6DLOlGmrNFtb0xpf92lZQeLC+P2ltFBYWFl2H\n8VwFALCmz2oUK451/Ukcz1lBYWFh0V2QgmJt3/LvmWMFhQfDPXHMleqoN1sr3RQLCwsLhePzVlB0\nDYZ7OP83U6itcEssLCwsHIznyoiECKsy1kax4hgSL2EqX13hllhYWFg4mJyvYigTRzi0/PvlWEHh\ngdQopgtWUFhYWHQP5kq1ZY/IlrCCwoNhq1FYWFh0IeZKdQykoytybSsoPJAaxZTVKCwsLLoIc8Ua\nBlJWo+gKJKJhJKIhZEvWmG1hYdE9mCtZQdFV6E/GkCvXV7oZFhYWFgCAZoshW65jwNoougd9ySiy\nJSsoLCwsugPz5ToYAwZS1kbRNehLRq1GYWFh0TWYFVS49XrqIvRaQWFhYdFFkDbTfmuj6B70p6KY\nt4LCwsKiSzBb5PPRoBUU3QNLPVlYWHQT5MK1NxlZketbQeGDvmQUxVrTJga0sLDoChRrDQBAOm4F\nRdegL8k9C6xWYWFh0Q0oVLmgyFhB0T2QL6NUba5wSywsLCz4XBQOEeKRlZmyraDwQToeBuCoexYW\nFhYriUK1gVQsDKLlzxwLWEHhi1RMaBRWUFhYWHQBitXGitFOgBUUvlAahaWeLCwsugDFWmPFDNmA\nFRS+sBqFhYVFN6FYbVpB0W1IC0FhNQoLC4tuQLHaQDoWXrHrW0Hhg5Q1ZltYWHQRClVLPXUdrEZh\nYWHRTSjVmmeeMZuIPkVEzxDRE0T0PSLq1459mIj2EdEeInr9SrQvEQ2BiNsoWi2GT/30Gdy2a3wl\nmmJhYXEGotZo4eM/3I3bd08A4NRT6gyknn4G4GLG2PMAPAvgwwBARBcCeBuAiwBcCeCfiGjZnw4R\nIRkNo1xr4u69U7j+jv143zd3oNawKT0sLCyWHrfuHMO/3nsQH/zOTjDGUK43zzxBwRi7jTEmDQAP\nAtggPl8F4CbGWJUxdhDAPgCXr0QbY5EQas0WHjo4q8p2HsuuRFMsLCzOMDxwYAYAkC3VMZaroNpo\nIbZCUdlAd9go3gPgx+LzegBHtWPHRFkbiOh9RLSdiLZPTU2d9EbFIyFU6y0cmi4iGeWS/NmJvDpe\nrDbwsVt340HxQi0sLCwWi1aL4R9v34tbHh91le8am1caxNNj82i2GOKR01CjIKLbiegpn7+rtDp/\nA6AB4D8We37G2FcYY5cxxi4bHh4+mU0H4GgUY7kKXrh5AMloGPsni+r4DQ8cwtfvO4g/uHGHzTJr\nYWHxnPCTXeP43O3P4gM3PY6xbBkAFx77Jwt47YWrAQCHZvi8c1pqFIyx1zDGLvb5uwUAiOgaAL8K\n4J2MMSZ+Ngpgo3aaDaJs2RGPhFFtNDGWLWN9fxJbh9I4OF1Qx3/8JDduz5XqeMJSUhYWFs8B0lgN\nAHfsmQQATBerqDVbeP6GfoQIODJbAoAVSwgIrJzX05UA/hLAWxhjJe3QDwC8jYjiRLQVwDkAHl6J\nNsbCIRSrTUzlq1jbn8CavgQm81UA3CNhz3geV1/GZdqDB2Y7ncrCwsLCFw8dnMUbLl6DgVQUT43m\nAADHsxUAwIaBJIYycSUoTkuNYgF8CUAPgJ8R0eNE9C8AwBjbBeBmALsB/ATA+xljKxLMEIuEMF3g\ngmEgFcNwJo4pISj2TxVQa7bw0rNXYX1/Ens124WFhYVFEJRqDYxmy7hwbS/OHskoavt4jlNQ6/qT\nGEjFMDnP551YeOUExYpEcDDGzu5w7DoA1y1jc3wRj4QwnuOSPROPYKQ3julCFc0WUxJ+21AG24bT\n2DdV6HQqCwsLizYcmubzyNbhNEazZdwmaCjJXIz0xtGXjOLANBcg8ehpaMw+1RGLhDBbrAEAMokI\nhnviaDFgtlhTAmRtfwJnDWdwcKoIx8xiYWFhsTCkkXrLqjQ2DqYwW6yhUm8iW+I7aw6kYuhNRhSz\nsZIahRUUBsSF1xMA9CQiGEzHAHBBMZYrIxYOYTAVw7r+BIq1JvJVmxfKwsIiOA4KTWHLUBrDmTgA\nYCpfRbZURyYeQTQcQq/Ylhk4A43ZpwJ0n+WeeBS9Cf7C8pU6xnMVrO6LIxQirO5NAAAmhJZhYWFh\nEQRT+Sp6EhFk4hEM93JBMZmvIluuoU8ICDnvAFZQdCV0D4NMIoKeBDfnzFfqmC3WsCrNX+waISjG\n562gsLCwCI7pQhVDQpPQNYpcqY7+FBcQCc0usZJeTyuXjrDLoUvvnkQELWGDyFcayJXriopa0ycE\nhdUoLCwsFgEuKPg8MtwjBEWhimxZFxTOPHRaRmaf6nBpFHFdo+CCQqqGUmDMlbjhu1ht4Kov3YsP\n3PTYMrfYwsKiW3F0toRXfuoOXH/HPlU2U3CYCTmf5Ct1ZEsO9ZTsEo3CCgoDdA+DeCSkuML5ct0l\nKDLxCCIhUp4KP35qHDuP5XDL42Nt8RVHZ0uYE55UFhYWpx8YY3j8aLZtG+Ub7j+EwzMlfP72Z1Ft\n8NCwmWINq4RGEY+EEA0T8pUGyrWm2hMnGbOCoqshX0osHAIRIR4JIRYOKUHRLwQFEaE/FUW2zAXF\nY0fm1DkeOeR8PjJTwqs/exde/dm7ULAeUhYWpyW+99gofu36+/An33YzCjIbbL3J8MzxPBrNFuZK\nNWWjICJk4hEUKg2U6k0lIBIRKyi6GpEQAQCiYf6fiNCTiGAsVwFjcLmt9SWjyAmN4qnRHH552yr0\nxCPYfTyn6vzoqeOoNVqYLdbw86cnYGFhcfrhP7cfAwDc/vSkisOqN1vYO1HAay7gSf72TRYwV6qD\nMSiNAgB6ElEUqg2Uapqg0DQKOSetBKygMCAc4o8molFQiWgYE8K7SRcUA6mYslEcni1h23Aa56/t\nwbPjTsT2A/tncNZwGulYGDsOO5qGhYXF6YFqo4lHj8zhkvV9AICdR3my0MMzRdSaLbzuotWIhgl7\nJwuKVdDdXzPxCHLlOmqNFlJRTj0lNC0iRFZQdB2kfNCleDIWRlYIBN3I1J+KYq5UR7nGoyrX9Sex\nvj+JMZGzBeCriEvW9+Hi9X3YeczRNCwsLE4PHJgqotpo4bdeshlEwBNinI+KJH9bVqWxti+J47ky\nChUuKNLaPtiZRETlk0vG+ASkp+0IW42i+xASLyWkvZxENIQ5QTHpgqInEUWx2lDJvNb2JbC2P4mJ\n+QpaLYZKvYnRbBnbhjM4d3UPDtrcUBYWpx0OTPFI64vW92J1T0LlhDuedeaFoUwM04Uq8lU+j2Q0\nQdGbiCjGIimM2VFt/gmvoEZhjKMgoi8E+P08Y+wjJ7E9XQOpSbg0iqijUeiBMMlYGKVaQ8VSrOlL\noFhtoN5kmC5UlXDZMpRGIhpqc7FljKHeZCtqrLKwsFgcap7tSeV+NVuH0tgwkMSxOS4oxnIVEPF5\nYbgnjoPTRRSr3PNJut0DXGhMibxOciGqaxGhFZweOl36KgA7Fvh761I3cKUg+UCdF0xEw6g3mfjs\nPLp0LIxSrakEwqp0HGv6kgCAifmqWiWs7Utg40AKAHeVBYBGs4X/+U/34/Wfv9t6Q1lYnCK4bdc4\nLvzoT3Djg4dV2ViuglXpGFKxCDYOpnBsjmsSk/MVrErHEQ2HMNzDtyso+GgUiWgYMreo3AZVt5Gu\npI2iU2T25xhjN3T6MRENnOT2dA2kJhEOuQWF3+dkLIJSrYlsmWsbvckIBkRk5VyppnjH4UxcRXyP\nZcu4eH0fHj44i8eF0eunT43jrS/cAIBrGX/xnSdwYKqAf7vmcvSlHKOXhYXF8uAnT43jo7c8hU++\n9Xn4lfNHVPnX7jmIRovha/ccwLteshkAT78hI6z5RmcVMMYwV6phMM3H71AmjrlSXcVdpT2CQkJq\nFDqj0ZU2CsbY5xf6cZA6pyrCBupJwqtRAFx7ALi7rAzBz5brKk3wUE9c+U1L17lHRdxFJETYftjZ\nKe/ZiQK+s+MYHj2SxXcePXZyb87CwiIQPn/7s5jMV/H5n+9VZdK7KRIiHJpxgmj13E2DqRjqTYZC\ntYFsqY7+JHeDlV5OMjecTj3paYOke6yLeupGryciShDRu4noLcTxV0T0QyL6RyIaWs5GrgRMxmzn\nsyM0UmJVMJ4rIxIiJKNh9ImOkRMaRTIaRjoWVik/ZkTnevp4HpsGU3jRlkHsPu5Ect+zd4qfOxbG\nA/tnluIWLSwsOmAyX8Ez43kkoiE8ecyJtt43WUCjxfDrQvt/+vg8AHfupgGZ2qcoMjmIhWMmIeeK\nCsIhcgkH/bOcX6Ia9dSVGgWAbwB4HYD3ALgTwCbwLUzzAP59qRu20pCahP5qomGDoBCfj+cq6E1G\nQUTKUJ0t1VWoPhEhEQ2jJ+5sRrJ/qoBzV2dw3poe7J3Iqw2Qdo3NY21fAq+7cLXaS9fCwmL5IMfd\nNS/dihYDnhTurnsnuNH6Lc9fBwDYN1UAYwzTeSfSWlJNM0W+v4SkoqVNYqZQQyoaBmlagu4KK1MI\nuTWKk3+PQdFJUFzIGHsngF8HcB5j7P2MsZ8IL6eNy9O8lYNU8/R960yCIh3nn8dzFSUgYpEQ0rEw\n5kp15Ct1V2DNYCaGmQLXKI7nKljXn8SGgSRKtSbmy3zVcmC6iG3DaVy4rhfj8xUV+Q0AdzwziY/d\nulvljLGwsDgx7DyaxUe+/yRmxAIOAPaIgNmrfokLBLkj3ahwd33+xn5EQoTxXAXFWhPlehNDPVJQ\n8P9zpRrmSjX0p7iGIW0SM8Vam5ejrlHIjBDyPwCXUFludBIUNQBgjDUAjHmOnfYzlJ+ap7+0hItP\nFOrkfMXFOfanYsiWa8hXGkrlBHjG2dliDeVaE7lyHat7E1grvKRkkN7BqQK2DWWwaZB7SR3Lci+p\nerOFP/yPR/H1+w7i5keOutp38/ajuPrLDyiPKgsLCzduevgIrv7yA2qyl/jQfz2JGx88guvv2K/K\nxrJl9CWjOGckg3CIcHSW/+Z4roz+VBTpeASrexMYz1UwKxZ+qwTlJDWI47kKqo2WlkSULypni9W2\njYh0jSLqo1GsJDoJig1E9AUi+qL2WX5fv0ztWzHIF6TvhS1d1SIhcrmtSWN2vtJQbm0Aty+Ua00U\nqg30uAJroshXG8qgtaY3gbX9zr4WxWoD85UG1g8ksb5fCArharfj8BzKdS6nf/HMpDpnvdnCtbfs\nwkMHZ/Hlu53ObmFhwVFtNHHtD/gY+erdB1T5xHxF2RnuFrZBgAuKdf1JRMIhrO1LqLiI8VxFLexW\n98YxPl/BfIVr/L1JN8UkPR7lHJGJ8+OzC2gUkbB0pumO2KpO7rF/oX3e7jnm/X7aQQkKrUxKeZ12\nAtwbiuifkyK+Il9p4JwRd2DNsbmSiq9Y3Ztw7ZQnO9dITxwbBniHlFrC7jHeoV9+zhCe1ozfjx/N\nKgFy797p53jXFhanL7YfmkO10QIA3LvPGSMyJ9PLzxnCffumUao1kIrxBKDrxMZk6/qTGBOpOCbm\nq1gtti5d3ZvAsxN5FQMlF4SSYpK2SOnFJGnqepO1bUSkCwppo4iEu1yjYIzd0OlvORu5ElDh8pqk\nkOH0XqowZvBcSEbDKNe5RpHxRGAWqg3Mi9Tk/akoBgSHmS3VVXTmUCaO/lQUsXBIle2bKqAvGcXL\nzxnC+HxFueZJQ9s1L92CQzMl5CuOTeOJY1n81XeeUIJJR73ZCv5QLCy6DK0W87XV3bpzDNf9t9uO\nt2uMj5H/95c348BUARWxsNovUm+85fnr0GKOsXosW1aa/lAmhlmRlWGuVMOgGK/9qSjmKw2Vu0mO\n83gkBCIoW6Skp/UAO69Goe+Bo7MX3YBO7rG3EtEPTH/L2ciVgK9GIV4sY+66uu0i7kntUa41Uag0\nlMoJ8M5UqHB6CeBUVCIaQiwSQrasBej1xEFEGEhHlUA4OFXEWcNpbB3KAIDKJ3NguoDeRASvOJd7\nLu8Zd7SNa3+wC/93+1F8/vZnXe3+v48cwcXX/hTf3WHjNCxOPbRaDL/55Qfw8k/eocYMAJRrTfzx\ntx/DV+85iP96dFSV750oYLgnjpdsW+USCAemChjKxHHB2l4AXEBU6tx+KCmmgVRMjcFcyXF37U1E\nMV+uK41y9SbxAAAgAElEQVRCCgIiQjoWcQSFmBdSMf+4CcDtii/nlFPBRvFpAJ8BcBBAGcBXxV8B\nwGlPgvu9ICndWx5JYdIoUrEwsuUaas1WW06XYq2p8kb1JiN8AySxr8W0plEA3INCBuhNzHN+dK1Q\niY+L/FIHp4vYNqwZv4VNY7pQxWNHuGp9xzMO/woAX73nIKqNFv75rtP+dVqchthxZA7bD89hMl/F\n9x9zBMKDB524I51iOjDNF1mbV8kxwhdZo9kyNg7yjM8AT8Uhtw2Qmv5gmm8lUGu0kK82nAC6ZBTV\nRkuNWZ05SMXCmC5W1WeACwDJSHg1iohLUIRc/1canainuxhjdwH4H4yxqxljt4q/dwB4+fI1cWXg\nZ8yWL82rUZippwim87zDpTUjtxQacpLvEa6z/akosqW6coV19uWOqgA9mSbAERRcIIxlK9gwkMQ6\n0dmlV8czwo5xxXnDGJ+vKIEznqtg3yRfYe2bLKhygAcafezW3S6tRGKmUHU9EwuLk4lCtaEoIR3f\nfOAQvqnlVQKAhw/yTAb9qagrq8HOo1kQAb9y3rCiZAHe59f1JZWWIMffVL6KkR5O8yaiIRzPlpHT\naGGAC4wWczR4WS6N12osa8xBKhbWqCc+/olIUUxejUJfnPqlEFpJBBFXaSLaJr8Q0VYA6aVrUneg\nkzHbq1HEwyZjdkgZmHVKSqqnY9kyeuIRdS3pTluoNvjWq6IjSY2iXGsiX21gpDeOwXQMsUjI09kT\nSMUiGEzHlKB4VuzbLX3BpXfH0+P8/zsu3wTAMZIDwOd+thdfv+8g/uZ7T7ru8449k7j8Ez/Hh77r\nLrewOBmYzFfwiv9zB970hXtctoW9E3n87S278Lfff8oVfLrzaBbbhtO44txh7DzqlB+YKmJ9fxIv\n3DyAI7MllGtNMMbUImsgFUUsElJeh5Ni7BAR1vQmMJGvqlxM/WqxFhPn5nSVEhQJZyyHQ+TK3pCK\nRZTA0dP/qG2W2zSK9ijsrrdRaPhTAHcS0Z1EdBeAOwB8YGmbtfKQxmxdJkgPBO96OhrRbRTujiKh\nG6oyWufybqmaLdUxX2koLQMABlPcRuF4Q/FOPSTiMUq1BgrVBoZ6eGde05vAhBAgh2aK6ElE8KIt\ngwCcFdFBYcB70/PWAgD2TDjaw93Pcopq++E5RY8B3Ae92WK4ecdRNQAk9k8VUK6d9uE1FicJh2eK\nLocLAPjxk+OYLdawf6qIe551KKM79jhu4Hc9O6Wdo4RtQxmcNZzB+HxFaSIHpgvYNpzBBpGpeTRb\nxny5gVqzpex+a/sSGMuWUW1wW8SICJTrT8WQLdWUoFC2iCQfs5LSleNW/h/LlpGOuSOtpYcTAJfb\nvNQkvF5PuvYgz7OSQXY6FhQUjLGfADgHXDj8CXiU9m1L3bCVhqNROGIhpqgnj41Cj9jWXn7CZxUB\nOKuLyXzVZbvoiUdQFJO+Xp4WNo0ZwXfKoJ6+VAzZUl3RW8PKpuFszcptGgms7k2AyG3T6ElEcM5I\nBsloGGNCA5nMVzCaLeMV5w4DgHLBZYzh/v0z2LwqBca4J5XE/fun8erP3IV3fO1B13PJlet4+1ce\nxHX/vdv7eC3OAIxly7jy83fj+jv2ucqfGs3hik/fiauuvw/NljOW7t03jbV9CURChB1HnO2CHzuS\nxeZVKWwdSitXVsYYDs8WsXlVChs9drnRuTI2ajTsWLaMyTzv9zK761CGa+nTghqSEdV9SW6czolM\n0JL+lYs+6X0oWQGpUUzmq4pekkhqC8WkT3oOr0bRLTSTHzp5PV0qPzPGqoyxneKv6lfndINjo3DK\npEbR8qgUevCdW6PwFxRyJZEt1ds3QKo2ka/UXW506XgEzRZTnVqubvqTUeTKNUwV+CCQnX0gHVN7\nY0zMc7U6Gg5hOBPHuLBpjM9XsL4/CSLCuv6EEhTSE+Stl/KYSklVjc9XkK808JuX8ewtOlV1604e\nuP/YkSz2a7v3ff+xUTxwYAZfvecgDk4XXc/srmenXMJGolhttGkrFt2DOc2WJdFotnDrzjFl0JX4\nj4cO45nxPD710z2uFDS3PjEGxjhFJFPsA5wmvXTzAM4eyeCZ407/OjhdxNnDGVy4rldRqVP5Kir1\nFjYNprBx0Ik1qjVamCvVMdKTwPoBx16na+MAFwC5smMPlBRTfyqKbNlJAy4FRTomczS5NxZKir2t\nc+V628Sf8oxtiVhkYRtFt6GTRvFvRDRARIOmPwD/ulwNXW6E/ARFyF+j0OGNo5DQO5HkMcv1pqt+\nOs73tShUPBqF6GSSU5Wutsr4LSZW5aGRiirj9OR8BSMiOGhtX8Jl05CrKx5M5KzGAODSTQPoiUcc\n91tBVb1gUz9W98bx7IQjEB7YP4Ntw9xs9fgRZ+Df/eyU8vC4f79DJeydyOPdX38YV11/nyu3TrnW\nxOs+dzde/Zm7XBMLADRbDC2vhLZYMjR9nvV3dhzDCz7+M3zuZ24363+//xD++NuP4Q9u3OEqv3PP\nlJr8Hj7kGJsfPDCLbUOivwhBUak3cXS2hLOGeYJM2b9aLSY8+viucWNZvr3wpJj4V/cmtE3CKkpY\njfTGFZ00na8qTWBY0xxy5bqivySF1C/Kix5315SgkaRxWi7wpAAo1ZouZgHwjvkgNopTU1D0YeEd\n7k7bpV9YcYRaWWhh3lDnHfWoyni4XaMAPFloYzxAL1du1ygAKG1AChG5+slX3J16IB1DrlxHvdnC\nVKGqVlFDmbjq6FP5qqKq1vQm1F4ax+ZKCIltG9f2J5RX1QGhEWwb4tyvFCzVRhOHZ0t448VrEY+E\n8My4sxLcfXwev/ZL69GTiCjNBABu2z0BgAvhO/Y4nPMdeyYxmi1julDFj546rsoZY3j31x/Gyz75\ni7ZV65fv2o/f+teHfFe6NpjQgd/Ef9uucVx1/X1qlS5x8/ajOPcjP8Ytj4+6yuVubt944JDrfLft\n4u/zkUNziuKpN1vYO1HAO1/MnSX2iH7BGMO+iTxece4wVqVjqvzobAktBpwlBMLEfAXNFsNUoYpq\no4VNq9LY0J9ETfTpaTXxxxQVO1N0bxIWDYeQiUcwpy2mpBG6T7iiy7Ejx5QUIMVaE0ktu6tkB6ZF\nP5Pf9cWg1+agu7bqQkDW62Sj6DZ0co/dwhjbxhjb2uHv8uVs7HIi5Cso5DHz79wZILWQfB+Nwls/\nrfGg3khuABjPuX21+5IxV2eXfKn00BjLllFvMpXyuC/FB4HuAQJIqooPgGPZsqKq1vQl1T7gk/MV\nhAjKNVcmLzwyUwJjwNkj3Ki4d5KvBAvVBo7nKjh7JIML1vQqN10AeOTQLM4eySATjyjOWZYnoiH0\nJiLYcdjhqJ8+nse9+6Yxlqvge1oA1Xyljr//8TO4Z+80vvXwEdd7uO6/d+PSj/2sjd76wc4xvOoz\nd7rcJgGuzfzkqeNtrpmtFsNDB2Z8XTZNgshvUpblftqoSVs6NldyUXkSB6YKvnuUfPZnz+JXv3hP\nmzD9xI+exkXX/sR1z4wx/N2tu7HzaBZf/IXbhvDlu/aj2WL46j1OPqR8pY4njmWxvj+JuVJdUYm1\nRguPHZ3DCzb1A+Dp8QFOF9WaLVy6aQDr+hIq+nkqX0Wx1sS24TTOXd2j+oue92xNXxKNFsNMoepJ\nZ+PYImZUEr44EtEwUrGwy+FDtznIxJyAM5b6kjzfWlYIEOk80peKgTGunbjztvlTT/pYbou0Fk4u\nsXDItbiU9aKe9Bzdkq7DD90RzdGF8FMalCcCzC805hIU7Z0D8OSG8uExvbYLqVHIFBwZ0Wl7kxHU\nmu3BPjKluXSRVXEaSe7Rka9yDxAZ0DeQiqHaaKFca2K6UHOoql43VbUqE0c4RFjfn8TxHKcADs1w\namrLUBrrBxzBckhpIDzA6eick9F2/1QB56/pwUXrerFb0zSeGs3h4nV9uGzLoGuCv3efs4mT7i9/\nn5bTSqe2yrUm/u2+Q8hXG/j3+w6p8laL4f/85BkcmCq2GVg/8aOn8fs3PopP/XSPq/yGBw7h6q88\niL+7dZerfMfhWTz/727DZ25z1z8wVcDl192Oa295ylUuXT//6FuPucrnK3W85rN34Te+/AAamuDJ\nlmq48vP34E1fuMeVeqVUa+DNX7wXb//qg66Jf7pQxRd+vhdPjc7jWw8dcdX/yt0HUKm3cMMDzrM4\nPFNS/eO+fdNKgE3OV7B/qohMPIJdY/OKgtk7WUCLAW97kbBRifd2ZLaEepPhKrE3g1wQyNxkm1el\nsG04o9xKpYDZsiqNdf36QsShktaKvGdjuYorS4Fc2ExrGoWyy6W4B6BDw7rp2XylgVg4pMaVtD1I\nqlVqFDK763Sh2qbty3LAGasmhxXAWSh6BYCkqLw71oW7xMPJD1ZQGOCnBgZ5kW51c3Eahcv4rWen\njcuNkcrIxCPKfiI1kMl8FWGxs55+HjkIe7WAvmKtqVIiS6O4HFSzpRqyWu784Z44pgtVtFrMRVWt\n7k2g1mghW66rSWxNb8JlA5H/1/XzKPLJfBX1ZgvVRhPH5srYNpzB5lUpFR0L8Eln61Aa24bSODJb\nUpPXnvECVvfG8doLV+MJbXLcfXweIQJ+87INeOJoTq3KHzk0i0aLIR0Lu7xnDs0UlWfMgwdn1Pmb\nLYYfPcmprh/sHHOt+m96mKdy//5jYy4N4psPHEap1hSTsKNt3PTIUcwUa7jhgcOulf33HxvFaLaM\n/37yOPZqVM9tuyZwcLqIHYfn8NBBRwjesWdSBJ+1VNsA4KEDsygKN+QfPuFk/3/wgKNh6NrG9kP8\n/tOxMLZrdoKdQhC//fKNmC3WFPUoBcA7XrwJjAHPiKBL6U79uovWIETAPnEPcuJ//kZuu5Ia0Jh4\n/2v7kljX7/QLaVtY25fAmr44JvNVNFsME4KyGumNY02fk0lZp5LU9sKlGmaKNcTFni8AsCoTw0yx\npmwOcnE0kOLacqFad2npUlDI/icFhfRUmi3WXOMxGuZxTZV6C0S6i2tILSq9xumoIV+TrO+dY05J\n6ulMh9/+tI6Nwvw7/WW7qCeXZ5T/3tumCG9Ho3C708pVzUSugkw8ojQeWd+J/HZsGoCPppGS2zby\nTVb01ViLAYVagwcl9UqqyhmwcjJclYlhTV8CuXIdpVrDoQx641jbnwRjfJI4NlcGY8DmwRQ2DKQw\nMV9FtdFEpd7ExHxVeLGkUKm3lAHywDTfm+OckQyO5ypaMrcCNq9K45IN/chXG2oSkpz7O1+yGYdn\nSioWRNIi73rJJmRLdbW/wMHpAmaKNVyyvg9T+aqiQfKVOvZM5HH2SAblelN5hDHGcM/eafTEI6g2\nWuq8ADfgy8nrUY0+u/vZaVX+yCGn/J69Uyrj6Hat/KEDs+hLRjHSE3cJx4cOziIaJpy7OuMqf/JY\nDrFwCFdfthG7xnKunRL5PW/GoZmSykl0YKoIIuCNl/A4GhmAKSf+N1y8BgCUUDs4XUQ4RNg2nMZI\nT0IJgsMzjoawpi+pFg7Hs3xb4OGeOEZ6Epgp1rjNQdMQ1vQm0BQU0+R8FZl4BKlYRG0jyj36nPrS\nWWOuVMd8uY4+sZsk4AiENptDyrFFuF3OHQeRWCSktHzpqTRTqLW5u+p2CT3OIaFsDv6CwqtpSHgF\nQ7ekFPfDgi0T+2W/i4g+Kr5vIqKTYpsgoj8nIqbvwU1EHyaifUS0h4hefzKu81zgJ9ylgOgsKJzP\nZurJn4ZyCRMf20Wh2nAZz2T5RN69YZLs0HLQSo8OuYqStECPx6aRLdWRLdbVgJS/y5XqmC3WVL1+\nbcBOF6oYSEW5TUNQBhPzVWXUHMo46UbGc46b4urehEqhPjpXViv9jS53RzmRS68Xt7/8AZEgcaM4\nj1wd7p8qYDAdw+UiyFDSY3vG8wiHCG9+ntzCkk+C+wRPLvdAlpSOjCGR0esyKnimyFe0bxeG2ifF\n6rzebGH/VAG/cdlGhAh4Uosi3jORx5UXr0VfMuouH8/jRVsHcdZwuq3+Ret68bwNfa7yfZN5nDWc\nwQs3D7oEwoFpHlNw8YY+zFecvU4OTRcxlInhMvEs9Il/fX8SZ4/w5JLSOeHQdBE98QguXt+HEDma\nwfh8BSM93ECsOzlM5vkGPP2pqIuqHM9VsLo3gXCIMNIbR7PFMFvkE380zLcKXq2l1p8raf1L9rty\nHdlSDcloWNkhYuEQFwiejMw9CZ6ROV9tIBENqUlaGqd5Yk59kSXTgNdc5XLszBRrbdsJyPGW8ggQ\nudhrzwbbeU+JNo3iFLdR/BOAXwbwdvE9D+D6E70wEW0E35P7iFZ2IYC3AbgIwJUA/omIwv5nWFqE\nOlBPnWwUuiYSMWgUUYNAiBk+m+pIlz25GpMwaRRy4vdqFJKCmilWka82lKDQB+y8tp2rU15z7RPs\npErnRsXBdAzRcEgdny3WNW+VuJoopvJuo+Vazd2xUm8iW6pjbZ8jWKRAcLaRbRcg24bS2DDorj+W\nLWNNbwJbhWumrC81hVdfMAIAOCrK5daXv3L+CCIhwuHZoqv+y84eQk8iogy1h2eKqDcZnrehD1tW\npRUNI5/HeWu46+e+ST5ZN5otHJgq4pyRDM5f06vKAT5hbxlK46yRDI7MlBStdlAIhLOG05ivODEn\nsr58RnLiPzhTxJZVaZXwTvaJY3MlbBpMYaSHT+bKPTpbwfqBJI+76YnjeNYRCNLddF2fszfDVL6K\noQyPdl7Tl1B052yJ7xMPOIGg8j3L+gPaAiVfaWjBbWFEQqTKZf8lIm5zKHL3VX0zsHQsomKQ9KwG\naW1PGD+BkC3VPLtV+kdTA87Y8woQOZ69Xkyyvmlh6aWyT3UbxYsZY+8HUAEAxtgcgNhJuPbnAPwl\n3BkxrgJwkwjwOwhgH4AV8awK+QiF0KKpJ3+NQq+TMLjXBREaUk2e9ax+2jSKhDtoSBnF5SYrcitX\nMcgltSQHLud4G8qrSlEAxTpmilU1Ich0B9kyFwhDslw7j049OFRCzYk6z8Rd7o66YHEibSsqDbS+\nudOoNqmt7kuoyVEaLEezZazrT2AoE0csElKC4thcGUOZONb3J5GMhlX9sWwZRMD6/iTW9idUfUm3\nbB3iE7CzGi855QNJdZ7DM7I8gw36Bjj5KmrNlqo/lquAMYZcuY65Uh1bVqWwXriEThc5l390tuya\n+EezZTDGcGyujE2DKa28ou5h42AK68S+CrKt3G2aOyes6U3guKg/XXC84db2JZVmonvJjfTGMTnf\nXn+kN45CtYFSrYFsqa7e+5BmhJ4paP1FX4iU6+0CodxOGQ2k+L4QhUpDLYgAvmgq1hoi/Y1bcyjX\nm5iv1N3lYrzMlWouKjhliKYGnMWet1xRTJ44ClMSUQnvYvRUt1HUxaqeAQARDQM4IQd1IroKwChj\nbKfn0HoA+kbQx2DYdpWI3kdE24lo+9TUlF+VE4LfK3OEhxn6qsDkHqvDqFEY4i5iPraLRou5y6WR\nWxgoJR/rCBBe3qsMeE5KEUBzIUw5eWwYcxsIAaiB3OehtubLdcyXGy4jOsAprKl8FZEQT6kuqYbZ\nYl0FCA6mY2qlOVuoqTaN9CRUfV3gjPQkkIiGkYlHlFCR2UB7ElH0JiJKgEgNJCQ8t+REPpmvYHUv\nX+VuGEhiNOtoIMNCqOj1J+bd9Jk8vzTIrhFCalTtiOYY/Nf188m30Wwpwby6L4F1fdxBYKZYU7TO\n+v4U1vU5wnG2yFPWr+tPYq3UELIVFGtNlOtNd1ZhIUCkwO5LRpGMhnFcCCN94l+jOSHw+k58zbhP\ngOZAKoZirYlao+Uql6m3c2UetyApStkP5is8j5n8rvpLxa2xymO5Ei/PaOU9Yi+XQtWtIaRjEaU5\neDUK2Wf8FlOVesvoUOK1Ucicbt7U39KryeT1xNqyw3F4maZTNeBO4gsAvgdghIiuA3AvgE8s9CMi\nup2InvL5uwrAXwP46Ik0nDH2FcbYZYyxy4aHh0/kVIEhJb6foVtCXyXoL9672pCIGymmxWkXcR9K\nSu7IpQx1Hk2jx6NpyIlW1nM8Q/jEJTnhnkQEREBOGA9lpLi+QsxX65rLIc+Qmy1zY3l/KoZQiJQA\nmSvVlF+8tHf0JiKYLVZdGojuL69y9/Rq+a20BIl6kOFssQbGGMbnK4ruGsrElBaj0yprNZfNsWxF\nTcjrhEswr1/BKpG91ytAiKC0k+lCVRjp5Za3XCviXj5VtSpf3ZNw0sPPlVXurqFMzJWvSN+nRG7R\nOZYrY1rzDOpJRJGJRzA+X1FeUzo1NKGV6xN/1je+hq/qWy2G2WIVq9IycZ7znqcLNSf3mPb+50o1\nRVHKfpAXO8H1eNy4c3JhkXR7Jcn4h17d/haPoFRr8H6XcGsUTdHOjJ6MTwiTuZI7xYZpAyFTZgVA\n2yPCEFHdZsw2bHQmcSrZKDrtmQ0AYIz9BxHtAPBq8MX0rzHGng7wu9f4lRPRJQC2AtgpPAc2AHhU\nGMhHAWzUqm8QZSsGXSao9/ocvJ4iJkHhop78BUI4RIiECI0WM2oX3v12IyFCrdFCNEyqTSlNIBA5\nRrhE1H/bRici3G3rCAlX3FKt6UpgKCcKyS1vE7vwyU2Z5kS5HPiJaBhpkbO/1mxiIBVVz2lVJs6N\nxgVH0wAc6kGWD6WdoMGZYk1pUWqVm4pirlRDpd5CrdFS2tBAKqYoocl8FZes7+PXSUVVDMh0oapo\nrUHhpw9wgaAnl8tXG6g2mpicr2BVmht8Jd0iXU/DIcKqjBYLoHlXre6NoyZcb2eKVcyXuefOUE9c\n8fAzxZqaWFdlYup5zBQcz6Ah7Z75BlhS4Gjl5bpL+MryXWM5FKoNVBstjTLkAZ2FWgMt5rxfqSnk\nytzt1OssMVfkGoX0nnMERV3kMYuK9x9CLBzCfLnRplFkEtIIXVe0GcDjHMayTRRr7RoFwLXQ1T0J\nrZyPl1qj5d4CIADl69Uc5GIv6pngTd5NMUO2aQkv9XRKahSenE6TAL4N4FsAJkTZcwJj7EnG2IiI\n/N4CTi9dyhgbB/ADAG8jorjY9+IcAA8/12udbChNokPKoZCBejIhZqCn2qM823lQU30iUmqze38M\nqYbXhf+34+KXiobbNAppA5kQE4uu0qdiYZTkfuBiwEbD3K8958Mt96WiyApbh74SlFHhuXJDTUAA\n1yy4u6M7F4/UHOQ2snJyWiXOI7UoucodTMcwW6yryHO5Gh5Mc4HTEu6Zrih1ueWlRp8MpGMo17kb\n71S+ghGhmfRrBlldM9HtL1IDCYdITZ6SPouECAOpmFOuGfyH0nFF/+U0V+ShTBwRoXXlynWXRiGv\nPafXV9QQDz6T0cjq3kRQmtqDIeVoCLVmSwlf5WYtnvlUngtgKczksz02x6P1+8R50jGugeYrjTbj\ndG8yitliFaVa05VyPx0Loyw0B/dmQBEUq402LybZZ2dLNWNiTtNCTK9vSruh/8YbQCcXYu3ZYGVg\nHXzhNV53YipWGp00ih3gUyIB2ARgTnzuB/dU2nqyG8MY20VENwPYDaAB4P2Msa7Z5EB2CO/GRX51\ngGAh+RGDwdtLVcUjIZ54zFDHr34e/gF9zRZzDTKAaxHTnv19I2G+4pucd2sUvH4YswXuG+92U4yq\nlaMuWHriERSqTe6t4t0WttrgAXIaZSBXlPlKAyFyVoYD6RhmS3UtsMoxsD9zfN5JZyIz7KZi2DU2\nr21tGVXnmStyakNfLQ+kYshXG6g3W66YEn3iz5brynNqUCvPlevKEUCf+Pnq2u1aLJM59iWjgoZz\nzjNdqCEWDqktclOxMOZKdSSiboHQn3ILR8d9mWtvcuIf1K69b6rQlvKlP8WFoNxF0TvxH1VBaVHf\n8oxHo5TGenmeUIiQiUf43tI1N5XUm4woSi8dd/cvqbHq/UsuRBot5hIC8rfc5uCvLRgFhUGL8FJB\npu1J5XTgLXdS/vjPA36eld0K45JX5HLaBuB2AG9mjA0xxlYB+FUAJ20/CqFZTGvfr2OMncUYO48x\n9uOTdZ1Ft8unTL7wTklM9VWCyS7hd05vfS/f6ZdxMm5Qn/VzeQdBxLD6ScXaNQqAc79SgLjKoxFl\nJ8h4vE/mSnXUm6xNsFREZlyvK2+pxgWIzhtn4mG+chQai9R+5H4Bkp7Rgwml9wwv1zSHorYRjTC4\nrkrH0GgxlbNK0h7SkD6eq6BSb6kJXObLmi3WhIdOu0CYL9fbzjNXqrn4d12jmK801Cq6Jx5BiKQA\nqaHXJ5gsV66DSBeOXBMoVLzPgieFLFTdwlRujCWFrNe2NOqxRXltVF6K0Sn3bgtaVu9cojcRxfh8\nBYy17ysthXjCowmUalyDc8UOif4CeFzFg2gOHjpXztP62NE9Fb0aRVTFRXg0gZB/fTm2TYKim91h\nvQhizH4JY+xH8ouYvF+6dE3qLuivMsgCQI+tCbJicGsgZuop7hP9aaKh9O9xr4ufIRe+XwI0gNNP\nWY9RHOCTgOTGvcF+jluuXh5BqS4nfjeFVaw1fDnnUrUh3Bq9fvEN5Ct17m8vnkFaUGHzlfbJsdpo\nGV1/ZRp170Qus+XK1bMTvS48dzSNBeD++K5YEy3dRE4TII6rsBQszqpbagheA67MV1SoNpCJOSlc\n+oQRulDlWpd8h9weVFMCRJ/485WGEpreiH2lIUiNQgoET4CmXL1Petys5X9pA9H7VI/mfeaiMKMR\nzBV5e/RNv1KxCPKVOlrMf9MvwN3/TSn9TUJD/67XISIlEMIhb31H09ZhEgjOnjYGrydDao9uRBBB\nMUZEHyGiLeLvbwCMLfirUxzSoPd2EZUbFPrLD7JiMMVdBNEoTHEa+vcg5wE8boGeRIUNoUJ5aSzl\nfusSLBFlaPb6pJdr7f7sMlCqWG26qId0XETatvnF882dvMbPdDzC04Qo11/p0eXey0OWy0nN6wGm\nBIiIlXAoI0Gr5MpotpimOegTvyZAklq6iYpj8JW2BSVYNF7eJRA8gkJO/K7yJLf7yGAyqYEo7cqT\nMdCcbHUAACAASURBVNWbwkWeK9PmtBB1HZfR2bKt3ngcKdTCIUI8ElIUllcTkN5cel9LuDQKt/tq\nvdne7+KulDeLEw6mNOD6OeV9AGaNwssUKEFhME6bGAhv/U6BvDI770phQa8n8Ijsa8FdZAHgbjhR\n2qctehJRHPqHN7lWA0Ekvi4cgmggen1daJg2NfEarWOREGqNltGHu01QGIKDdJogadAuvKp+tcE9\ndby79MmBrw9AnXP2aiDFGve2Sbs4ZxlR2y5YirV2AZLSJv5wiByDvGeVKyc5eY/HPYkT5f16Y0pS\nYiezCc+kKY9nyzWU6011Hp4/KIRCtaHyEkn0JKIoiKhq6f4q2zBfqaNca7q0q0w8gql8tS12oDfJ\nYwraYgeE0JwW6TJkHzBlIVYaQt5ti1Lu1B6vN+klJ+NJvFSS9A7T+1EiGlJR5PqEnRLec7KOfh6J\nIFq0O9vBwq7l+rna9oUgqVGQb32TMdtrkpQCxBxHEUyF8M5DK4Eg7rGz4Ptln5Fwb1K08IvVVwlB\nNkZ3UU+GbLP6ueKeCT4aItRg1hxMaQW8lJSe6TJI3EaygwCRA9/rjpgt1cGYRxAJgVCtuzWKVCwi\n9iSoqT2RZf0W426hfrsAHvckSNRz9/B28+9q0sz5T45eu0wq7q+ZSMEizyO9lORvZf6hXs9kWqo1\nXUGJsrwiPMk2pbV7FtHFhao7GlkKzULVs9GVFi/j9yxkyhfZV+XKX038cSlMvfE1jrdSKupQj17N\n0VdQRPimXED7AkLCZISOGdLym+IfTILFPEb8NYR2jUKOEW99/t+UDdYcR+H+3mm6CDKXLCUWFBRE\ndAd8bLuMsVctSYu6GI53bPubJ+IdwqQhmOCiqgzBeoDDc5oEiHG1FDUMDkO6gfY8Nv5aTsrACScN\nK0G5e5/eNoBPdoUK3x8j7VlFAzzVxLlrelz1AWC6WFVRyPz8zmrZz79+plB1CUGVin3eX1DMFt37\nDnjplh6NbolFQmqS7fHYZabyVVdUu7xGqc61JV2AJKOOa3HGQ7eVfbWxCCr1FnLlels5b2vV4zFk\neEYa9USarUO+Y0UNuYI6I8p2lfBM/JKqkloYr6P1C+396+UJg5uqOSjVUN+UkTnq3+fbBIXUEAwT\nv3fDITJQTyED9SQFh9em0cUmikDU0we1zwkAbwV3XT3j0OlFErg01TtXIOrJWMld3lR2Av8ciab9\nek3Uk0mAtG2yYshuqwsEfeCYNnJJGFaCqVhEBZvp1JOTtK3u0WTE5FWsYcuqtCqXrrUzxZqL5pH1\nZwo138y70p4iJ0snKNHNs0u6ZUrVd7dVraKj7glexmQkPNReSQS3eWk7JRDibgEi91KXGXr1Nkzm\neXp2b/nEfMUloJJKCLqfUVppXVWk9O0/xXmy5ToP+gy7Bf9Uvn3xomsXiZj/JG2KczD1HdPEb/xs\nijUKu8eOHHpet1ZZ7l2sye/eMaI0CmOSv2DG7G5GEOpph6foPiLqmiC4lUAno5NLUAToCEYfa09x\n06BRNH0MzYCZf5X12gSLYZMV3c1WV3/jhs2XTKp+ykAx6BOuPlHoK15XfTERzXkEiJzo54o1FfSm\n158pVtsoL14uPbrcmsaMgW6ZK7Z7gKWiYZUORF8Vp2NhFeOQ8EymMrGg14DrFzsgtbH2DKiO/eV8\nTevSy1frgkU9u5oKMOTPwolBGNCos1g4hHCI0GyxtoWFK7I57BZ23nZ471OfsE0begXJexY3CIS4\noW1GzaFt4pflJiN3MGN22KBReI9LrDS91AmhhSroEdpENCT2iOhbhrZ1HTq9SPIxgAWJtDStKtp+\ny/zrmzSNhbye2tVwf3VbCRavsVy3pxgGvmsyjZkmB6dcX6mZBFEq7j/w5STI05y0ayDTno1o9Ekz\npglBOQE66Uz0STDiaAgeumWu1G6odWkUbQb/ett5UrEIsmUexOji/WNhMMbb6g4y45/zlYav8K02\nWr7PrsXMOY28zhKSfjL1I+9n133qtJLLzhDACG3Y6CsQ9RRA6wA0o7VhnLbHS/jTvGrHuoDusaYd\n7rpXTASjnvQI7QaAgwDeu5SN6lY4imT7EiFEQBPuCX6x7rHu83nKDZ1LRonLzJYSzgbu/gPclBLZ\nu1oyGcVNmXFjBq7YRCvon91JFA1UlSHIMIjGkvSZxJqeCF+ZxyovdoLzTszSsOu+hrMnhXfidwSC\nWwPxcwlNxsKo1Fvi/tvvuerxbjPFFJi8fkz5jcIhUppDW/xONIR81RzQ6b1GTHMhdafTX1jrdFNM\n5FsnWILMYF5PpiSfzHNcQvbP9gm+s02jaVAp2mwUXSwpggiKCxhjFb2AiOKmyqczOnolCCuF3lkC\nudMaBIVBThjywzBjsI9XrVbusYYVopd/lZpGe2ZMfyN3EH92U+oRV5S64TwuW4dB64h7Jmvnc7tA\nKNebbZOgpHqiYXIJxKTh2qYJ2Oseqp9fLjJd5QZhanJRNvH4QdxJ22xU4RDKraaRkjTatELk6sOm\nBHmm92a0bxm11IU1Cm9CTb9rAWYjtNQAzJHWrmI1VtuM2V088S8WC1JPAO73KXvgZDfkVEAn24Ra\n8S/W68kgTdoEhaFTq05qMKSZXPxMK8Q23/EFjOJ6Hf383nKTpuHSKEx5rwznNxo/Dato7/4CevZc\nHZKiadsK02A3SZkEgsujx01h+Z0naaLnYv4TqImqWazBF3DeScyrOS5AYZoWHG2rcf3dGnZ7TBg0\nAVMuJv08nQSChDmVhvt7y0DzmtxdyUhhkev4QuhmG4VRoyCiNeCbBiWJ6AVwFrW9AFKm350J8BMY\nssSVwuNkUk+q3P/3Jo3CWy4HrJeS0uModMiJyRTQxz+bNAHd/uA/wF1J2EL+dYKkVjdx3XrbdI8k\n/VzeSVAKF9PeyN7PJqOtLlgSQQSLrjn4UE9AUE3OIEAMwlo/FjQozS+XGKAnzvOnbfi1w231vb8x\n3U+noFQJo0Aw2AS85Y5G4U9VeYkkNfYNmoYJKxxDtyh0op5eD+Aa8D0hPquV58E3Hjrj0CmOwi/f\ny4m4x5p8rL31Teqw2RfcRDGFxHWCaRSmFaJpIg+iLbgnE4MGEsBo6Ze7p95s99wxaVey3LQVJpF5\n0jX5/CcMVFXCpVH4n9OlaRjjCxbm5U3CV68XNCht0RqFYRGgf9ZX1KZ0Nq4+YnAVDzymqP26gNlG\nIat5s0ebqCfyHJeQAan6++52GAUFY+wGADcQ0VsZY99dxjadkuhPRVHOuTOiB4vM9i9vp574/6Cd\n3ZSGIGLQNOQA9w4C04QQNQzwmGGAm6kqf6rONJlEI/4TRSREKujRTyDUmz78u9EDLOT67y33ugrr\nHmAJw2rZXe6/unbx8gatK0jwmak8FNKE5iIFgslGYdJAvKtx/Z5dnyP+Y6TTPfiV6wisUZB/uZQU\nXu1aLaK81JM8v4lG9nyX59VjWbodnaindzHGbgSwhYj+zHucMfZZn5+d1ug079/0vpfgF89MuuiG\nIDB16nZjtv/Eb9IoFqak3PXl4PUKCqNgMUg4r3ul9zyAmRpx1wmgUUTd14qFQ8Il1E9DaBpjRBIG\nWqVNUIg2tUWvGzx0TNHCEZcAWVjrMlEyz8UWEZNC0+vdJJ6B0ZhtiMdpf9aGBYpRc/DvR7qgMWUs\nMNsifIuNmoZ3glcahSGwzssnODmd3NA3BtPxj29/AX64cwxnDWf8G9qF6DSrybDXU+duVhCbV6Xx\n2/9j66J/5115SZg0h6AahQoa8pzeNPEvnCrZfR7TADeWB1zx+pXrK23TeeRvvLED+rm8ex0bNQox\n8XsnooV4+Ygnetmk/cQMmkYQBwGTLcZLz0jtyo8aKtaai6aSvPWNgkXzhtJh2ubT1F9M8Ugu93PT\nxB+YzhV93uBybmqzKS6irdzzX2J9fxK/98qzfM/drehEPX1Z/P+75WtOd2MpvBIMcsLoX2VaLbVr\nFPJ/yFNusGkogeMud1IluweBaTVn0jSihoSHpq0njVRKB57d2eTeoCF0iDp3tdWgUSgNxGC7MJXz\nYyYB4q9RLNa+49XkoqEQas32rMKmuBgZ5Ww2ZgcTLMrW5e1Hi+wven19xa+XL3bnOBP11MY8Gbye\nnN95y00ahe/PT0kESQo4DOB3AWzR6zPG3rN0zepOLMV7X6zXk8lzo13TEBqFQUNos2nIcviXeweB\nd3UuYZoQXN46AXzeTRSTia/X22iKOvduOGNOhBjyvRd5D16qypRczuTKqWuRbg8tgxZlOI9JmALO\nJOWdyOW1jRO/QUPwCk1HKPvX92qgJs05iEZBIf9yk01gsTvKtXk9wd/ryeSk5GgUnnLlHmv44SmE\nIIT6LQDuAd8StWv2r14JLMULD+6h4a8mOzyo6fz+522jnkL+5zFqFIaB79VgnPMszKGbeGmTv3y7\nW2N7fcA88RsnxwWM2V4DbMTAy5sM/iYtyhSDYtLGTIZtwJnUgtiS9HsIGohp2lJXXq8ZUAM1LSz0\nvmDKdmDUHIyahvu7aZFl0ihkub8+AXhFyekgICSCCIoUY+yvlrwlpwA6Btw9Rxg9JQyderGrKLMa\n7t8Ok6bhXS0FNQxKuASCvi+xwevJZQg3THYme41X21HRwkYB4q+BmKgnrzCU9byZGoz0nCZowgZv\nIJegMMROmKg6AGgZkkW2DMklTRO/2SkiZChfeOIPUj9sEA6m8+gwL5qCahTyWv6ahncaMGkUWg3T\ngVMGCz914IdE9MYlb8kZClPHb1u1iILFB+j5T6Ym47f3LHJC8I6BxRoSTZxzpz04FnstkzA1Zf2U\nk6hXDpmCD81BiZJu8Xct9kJvRxCNwhSD4HZLdtNhJoHgd139Gm2CwuRmbfCScyhMN7weRBJGmkir\nr1cxncevDW3lBu+mdhsF63geL8xeT+7/pzKCCIoPgAuLMhHNE1GeiOaXumHdiKV44V4+XSLwxK/K\n3fVkZ29Xk58b9eSdBE3xH0YqwaA5BEl5EjTNialtsp4pj1Wbz/8CXlJemFyLg3iG6e/BaIswCJBO\nbZPajbfcmBJbalEG5wdTPI53FW2iNs1UpUkDWbi/mGBcTBmoJBP15O0vDvXkv/hqC8Q7DTQJiSD7\nUfQsVOdMwVK8di81IGF2j/U/T/B8Mv7nkXOR9zQL5bfxwjRITSthk11Ch4ltWGxUu5d6khNH+6RG\nrv+qXFFMnlgTycu3ggoKfy3KRD2ZvJ50mJ6FOU7Bf+Jv84aTgsKgpXmfhdJMvQuOE4h5COISG+ic\nnka1DJqDiXqSMMU4tY8RefzURxCvp0t9inMADjPGzqyd7pbgjZsm3MXyrGYBEqx8oTiKNorhBD1L\n1HW1eWyx1FNQzzA18D2TlUqcaEhn0m7MFs/CIxAc6gm+9b1w57daWKMwlesIsjIHnOdtes+LjfBv\np57ge57FJ+rTBUV7OzshqL1OaRRt5VKABCFcFk7tcTogyJP4JwAPAviq+HsQwH8C2ENEr1vCtnUd\nTqYq+eKtg52vZVi1GLPHBuRTveeTcFaC/uc3aRpeLNp2EUCjWLQbpCmAKuxPq7QnTvQ3cocMD0Ma\nm9vSnwSgnkzeUPocZUpzoqM9/by6gqvcuHfCAguFdqrK34BvsnUt1pitX48MQsOExRqtvfcs78m0\nb7337C87ewgAcPaIOzb5THOPHQPwXsbYLgAgogsBfAzAXwL4LwC3LV3zTl98472Xo1JrGY+bqCfz\npBnsurKaN7GhyQjpDHx/weKFmWIIolEYaLgTFEpiS+42KslJnOj9Pf8f82ogJkPtIg3+Zk1DEwja\n83JPlAs/R3ntVpMZM5oGTi4ptS6jjcLQj05wYWFCEIo1aByF0hyCaqbSRuGpfvWLNuJVF4xgpCfh\nKneop1NfUgQRFOdKIQEAjLHdRHQ+Y+xAN+dPXwqczNuNR8LG7JeAmWc3YbE2CpMR0kRJebHY1X8g\njcIwgS5WOJomhDaNQtEqwcoX8ttvFyDPXcAF3dDKVJ/3h/YNrcxxNPK/v2Zi2u/Eq1GYtLSgzhkn\nA6b35BWmDvXkfx6TBtJuzKY2IcHrnT4IIih2EdE/A7hJfL8awG6xy119yVrWhVjOF2+aBNtdtf0H\npsmnWwoU0+q3XaOQv/PW9z//ooOgaOE6Qb1YTOXOfua+1dtpmwXsQEGfxYkICrPtanHPt53CNLXB\nf6Fg1EAMGoWpfabJeJEKRSAEtZ+1FqlRSASVbSba9lREEBvFNQD2Afhf4u+AKKsD+JWlalg3Qk2y\ny7DhSNuAI/+BKbFY6skLOdmZIsLbr2cYRIbzmyZf/fyLFggBJwT5rX1vZKlp+K+W2+g5g+Zgsu+c\nqBHeD6YabbYlw7WUTcv4/oK1bSFtzhSns9B5TwaCeFIBmo0ioCPA4sf9aSAhBIK4x5YBfEb8eVE4\n6S3qYqzka1/o2osd+G31jNTT4q53IlSC0espKOcsyw0G/6BCz1ktw7f8RAXCYrWuIOc0Trht6w2p\nXZkEiLu+KZ2FKQeY8nrylC+2H50IgixKAGfRFdx7zt+YbYJjozj1EcQ99hwAfw/gQgCKiGOMbVvC\ndnU1VkKVNF3zuaq3bSk5FjBae09/omq5H4zRuwa9Nyhfb7oHZvBucWJHgrkEKwGyQDsWOk8gjWKB\nlXxb2wyahpE6DGgPWmih0H54+TSKIAIXWDhLbFtSQGWkCLj4UtVPfVERhHr6NwD/DKABTjV9A8CN\nS9mobkU3vG+T9ht4ZUbyPP7eKqY8Nt6bXywdFASL1igC2gBMBll13OAqajLUtgmERdtWfIsDTSim\nGkFtACZjttMG03UXRyW1G7P9z7s01FNAQSHbEFij4AiuUXTBhHGSEERQJBljPwdAjLHDjLH/DeBN\nS9us7oQpArMb4B0cDTHLte/j638PslbQleNi02oEwcmKzWhrs5oc3cXOROH5fUgKCv8AqnZjtr+Q\nXSwlFQSLjYg3pZs40bYtpJG0U5gn/1mYEDBOzomLMDShbeGyQH0vTh8xEczrqUpEIQB7ieiPAIzi\nTN31bgXfvLx00AleppNY3Rt31zfcg9n1z30diRNZFZuwELXTVh5wlboQBdAefMb/mz3Dgj2jxUav\nB0FQ6slkczDtUyJhEqbt7fBfcJjsOEEprZOBoFpKawHqyWjrCGz3C1TtlEAQQfEBACkAfwLg4wBe\nBeDdS9mobsVKvvhPvvV5+PRte3DJ+j7f496B+eevOxdDmf+/vTOPtqOo9vD3y80IZCAkEAgJQQlD\nwiRcIAxChKBMgiIICgqIRgUZVFCR93woCwcUn/rUh4gIOICogKgMAhIckEmEMLgUHuhSQQVUFJVA\n7t3vj66Te9Knq0/3PfPJ/ta663ZXV1ft6j5du2pX1a4J7L/1hoXSjy0mKtujaOTDb97K7GyZYgO1\ncdfq5dyWFB7kbuAhxU1PKTNJpGyKxI+Fr7qe7i2tmhmWHZ5Opeh4UjNI/y6uO+Wl3P+HZ2riVcyv\naRm+9uZd+O59j2fEL8catTLbzO4Kh88Cx7VWnN6gEy9+/gaT+cIbBqPX09/btLXGc8qS+TXxYqKv\nmtERURRRc0uNHO0zq8TWjtROg42lHylznVlPhU1MJU1mRShrwolY4XJMVQXliK6jyc636JqXZpB+\nFlttOIWtNpxSE294ODv+7pvNYPfglqOaWGNqTSCqKCRdk3ejmR3cSMaSTgJOJNk17/tm9p4QfgZw\nfAg/2cxuaCSfZhIz/3SSERNDuV9vurUcq2QjdWN8QVgpKYpRdkpobLZKfAZp2vSUnEc9o6bla2CR\nYVnKm56yTUCx9RVFWXV/pNdVeDC7BbVuWUVcNHrZ6bGxxlcvktej2BX4HXAZcAdNrAMkvQw4BNjO\nzFZIWj+ELwCOBBYCGwE3SdrczLpiC9ZunsVQVFFEvu+aSnEkfrlKuhXPqOxU3BpXDZXwSA8kRu3+\n4dn5jpieVg+fOmkcABtNXd29Q0O9rshnWHQKcb0eRZrYM6r3/muUacnfUSMUrvhLblA02h5Fv/t6\nmgXsC7wOeD3wfeCyar9PDfB24KNmtgLAzP4cwg8BLg/hj0l6BNgZ+FkT8myYbn7dxWdiZEeMmWdG\nZvpkt7rTtGJwsuzUyrKKpeizq7t2IBU+afwA28+ZxpSgMOrJV4T0FrmxNEc2qErdP+qcVye2q1ts\nJlGjz74MRRsrw5FedLPS7ybLQ6NEJ5KZ2ZCZXW9mxwCLSNx4LAsznxplc+Clku6QdKuknUL4bJJe\nTIXfh7AaJC2VdLeku5988skmiFSfbuxQxNyP1yP2gRdeWNWCWU8xyvo3Kjv4nSb2fdeb9ZSV/tCw\n1U6/bahHkU3MPUnMFUysB1m0bouVITZ7ruykiHYQG8yOxx8d3VhvlCV3MDs4/juQpFcxD/gMcFWR\nhCXdRNIrSXNmyHc6iQLaCbhCUqmV3mZ2AXABwODgYB/p7tFR9LcYMz2NbPOYHT8d3s4eRYyoS4aC\n899jLb6YiaHeLJYshTY0bIX9JBWhrAmn5n2G/0Vbu+mFmSNyZKczsno5X44KrTA9FSU2LlcvfuH0\nS8rTzeQNZl8KbA1cC3zQzB4ok7CZLclJ++3AlZZ82XdKGgZmkKzRmFMVdeMQ1hX0g60xRsWePnf6\nWpnXi856auczKrqrW3yDmuxeVGwQcjSDk8NWqygaITouUzMNVpnhI6JYZvw0K4eSeOnd/mJlqjyj\noj3TTo77jZieisUv+/5jGx31Ink9iqOBf5Ksozi56oUKMDOrnW9WnKtJ3IHcImlzYDzwFHAN8HVJ\nnyQZzJ4P3NlAPk2lG7uQ5QfWEtItxcF50zn/6B1ZvMXM1cLruSuvCS+4KrYZFHU0F+sh1LdRF3u4\nee9gZUaPopHKMTqYXVSBrDI9ZcdPv+8Xwq5P6b26R9zVZ8+eK2p6Gg03nLpnk1KKmOfyo5duDHXz\nJJiiRBWFmbXyk78IuEjSA8DzwDGhd/GgpCuAh0h8S53YLTOeup3C3dycH+1+W2dZCsNtBT+OVrhk\niOaVqh2feyGp1NaekP2zrlUg+d5D08QqwTyGh2s3D2qEMmavrPgx01Ms3edXJs801qOImjDT+Tax\nNtli1uSmpDMckbUeJfVKX1BkZXbTMbPnSXosWdfOAc5pr0RrHkXtrZUK4fmh+Lat1TRTTUwYO4YV\nK4tvFzt2QDw/NGJGqzBiDomYniI7n6WJOQ/NUxxDZlFnh6Oh0UqtokSLijRzcuICZsY641cLj41R\nDUeUbzsbEEUpaxoa9WD2KO/rJjqiKJzmUfZHOGJ6Ksb0tZMK4oWIothl0+mrnTezQvjhaYv57dP/\njF5PV1ZXnrAbdzz6l8J7HdczPdUOfsfWmkRFZOWQNXX1cWmzRyr+Jw7fjq/e/lt2mLtuofvfue/m\nLJw9lb02X90kWW+6a3ozqHrKcnCTYvI0k9jYVTR+WcXSR10KVxQ9TmxLyhgLN0qGlhZkuDTIYt56\na3Hqkvkcsn3tLOU73r9PTes975v79JHb15gw8pg9bRKzp02KXk/3BLacNYUtZ9WWK7Yye8iybdT1\nnmQZm/OwWVOngBbVOaum7Kae0czJE3jnvptH70v/jiaOG+Dg7TYqLN9uL57Bm3bflLfutfokxvE5\n7/2O9+/DlInjasI/fti2bDg1/v7TTF97PH/55/OF41ceZfHB6XLxqwY1eh5XFCWo/EDmRGYGNYOX\nzp/Bjx9+qnD8i4/bicvu/F1uhVrNyxfOYtlpi5k3Y+1C8SVx6pLsimWDKRkbyud8FFnKphEaXSg1\nXHHFHmsdp87jnlTjeQ4NW03ruhHKLvZqtcmnZgOsMeIDr1xQEy+vV5X1OwI4fHBOZniMW09fnGuq\nTHPZ0kVcdc8faho7Mfbecn0u/MljLHrReoXirzMhSXf7jacVlqlbcUVRggljBzj/6B3ZYW7xF3/r\n6YuZOG6gcPyvHL9LKZk2W38y/3lQ7YeZR1ElMRraaYsu21JPy/aKhbO47oE/1jqMi+07MIoG4lCz\nB7NT5/tvnZShaPxG43UzkyeOo8ww95azpnDGAcUnb+622Qwe+8gBhZX1rKkT+c6Ju5cafP/q8buw\n0bRsxdlJXFGUJG9mUBabrNe6SrkbqXxCk0oox1HnVXL2SbpR+6qXzGb/bWYxYexAZvy0fT82j77e\nYHYr11F87vU7rNqkKite2amZZc3qfWSGL0TZ57ndnHK9iT3m13qt7QZcUThNZezAGN6z3xbss+UG\nLc+ruBmmMghZGz+tJPKo9Aynr7X6DKB6pqfmKorUbKIxYnxO+sXHNMqa8ZL/RcfGAM559dZsvkFz\nprY67cUVhdN0Tli8WadFyKTsoGWaXV+0Hh88eCGH7lB8rCXx9VS8Er586aKWKpampTsKY9VRu2zS\nAkmcduCKwlljKD/4nT4Xx+w2rzZeThrvfvkWbLVh8VZ00YHSonTQlZLTR7iicPqeVTOACs7MLWNO\nqcfxe2zatLRGQ9mWf9Gid+H6OaeFtNEzj+N0hpGdycouVisYrwsrzbJrBEZLPy0qc+K4onD6ntZX\nZl2oKQKN7lMSY/LExBixZQmzmtO7uOnJ6Tg3vWvPUmtNWk1st79epFUl2HjdtfjG0kVs2weLyZz6\nuKJwOs5m67enVdrorKdG0+0EZfdSL8MuTR54d7oXNz05fU9k07W68fuBblZiTu/gisLpeyzmkqMO\nReN3c13sisJpBq4oHKdBunkso+zakWZODXb6B1cUTt8zUvWVc/nRDxRVE5WtTpu5yZLTP/hgttNz\nXPHWXfnNU/ENjWoY7ZaXRffMLpdsW6j0cor2KE7aez7Dw8brdpnbSrGcHsUVhdNz7LzpdHZO7ayX\nR9nB7ApdbFEqTFFFsc6EsZx5YDl39c6ag5ueHCeFldx3oqsVSjfL5vQMrigcJ4WNcoJsNyqMbpTJ\n6T1cUTh9j0X2xq5H8emxlX3LSyXvOD2DKwqn7xntGEVRurHV3oUiOT2MKwqn77GSs568Z+A4vIbK\nOgAADbdJREFUq+OKwul79tlqfQCmThpX6r5uXkhXj8re7uMH/BN3Gsenxzp9z5kHbMXb93ox01J7\nXccYbYeim/TKhw/dhtP326KrvPI6vYs3N5y+Z+zAGNafMrFw/NFOj+0mk9W4gTGsP7l4mR0nD1cU\njhOj6KynbupKOE4LcEXhOClGu47CcfoVVxSOE6GXfT05TjNxReE4KUY71uAWKKdfcUXhOBEKr8zu\nwsFsx2kmrigcp0GKmqgcp1dxReE4Ebz6d5wEVxSOk6LsDnc+NuH0O74y23FSHD44h6vvfZyjFm1S\n6r5WKoz3H7Aljz5ZYlc/x2kiHVEUkrYHzgcmAiuBE8zsznDtDOB4YAg42cxu6ISMzprLBlMmctO7\n9iocv6IfWjmYvXTPF7cuccepQ6d6FOcCHzSz6yQdEM4XS1oAHAksBDYCbpK0uZkNdUhOx3GcNZ5O\njVEYMCUcTwUeD8eHAJeb2Qozewx4BNi5A/I5Tml8rMLpVzrVozgVuEHSJ0iU1W4hfDZwe1W834ew\nGiQtBZYCzJ07t3WSOo7jrOG0TFFIugmYlXHpTGAf4J1m9m1JrwW+BCwpk76ZXQBcADA4OOhLnRzH\ncVpEyxSFmUUrfkmXAqeE028CF4bjPwBzqqJuHMIcp+vxldlOv9KpMYrHgcq0kr2Bh8PxNcCRkiZI\n2hSYD9zZAfkcx3GcQKfGKN4CfFrSWOA5wliDmT0o6QrgIZJpsyf6jCenV/DBbKdf6YiiMLOfADtG\nrp0DnNNeiRzHcZwY7sLDcRzHycUVheM0CR/MdvoVVxSO4zhOLq4oHKdJ+GC206+4onAcx3FycUXh\nOI7j5OKKwnGahA9mO/2KKwrHcRwnF1cUjtMkfDDb6VdcUTiO4zi5uKJwHMdxcnFF4TgNomBzmjjO\nPyenP+mU91jH6RtmTp7A6a/YgoO23bDwPecdvh2z153UQqkcp3m4onCcJnDiyzYrFf81O27cIkkc\np/l4X9lxHMfJxRWF4ziOk4srCsdxHCcXVxSO4zhOLq4oHMdxnFxcUTiO4zi5uKJwHMdxcnFF4TiO\n4+Qi6wMn+pKeBH7baTlGwQzgqU4L0Wa8zGsGXubeYBMzm1kvUl8oil5F0t1mNthpOdqJl3nNwMvc\nX7jpyXEcx8nFFYXjOI6TiyuKznJBpwXoAF7mNQMvcx/hYxSO4zhOLt6jcBzHcXJxReE4juPk4oqi\njUiaLulGSQ+H/+vmxB2Q9AtJ32unjM2mSJklzZF0i6SHJD0o6ZROyNoIkvaT9CtJj0h6X8Z1SfpM\nuL5c0g6dkLOZFCjzUaGs90u6TdJ2nZCzmdQrc1W8nSStlHRYO+VrFa4o2sv7gJvNbD5wcziPcQrw\ny7ZI1VqKlHkl8G4zWwAsAk6UtKCNMjaEpAHgc8D+wALgdRny7w/MD39Lgf9tq5BNpmCZHwP2MrNt\ngLPp8cHegmWuxPsY8IP2Stg6XFG0l0OAS8LxJcCrsiJJ2hg4ELiwTXK1krplNrMnzOyecPwPEgU5\nu20SNs7OwCNm9qiZPQ9cTlLuag4BLrWE24Fpkopvst191C2zmd1mZn8Np7cDvb7/a5H3DHAS8G3g\nz+0UrpW4omgvG5jZE+H4j8AGkXifAt4DDLdFqtZStMwASJoHvAS4o7ViNZXZwO+qzn9PraIrEqeX\nKFue44HrWipR66lbZkmzgVfT4z3GNGM7LUC/IekmYFbGpTOrT8zMJNXMTZZ0EPBnM/u5pMWtkbK5\nNFrmqnTWIWmJnWpmf2+ulE6nkPQyEkWxR6dlaQOfAt5rZsOSOi1L03BF0WTMbEnsmqQ/SdrQzJ4I\nZoesrunuwMGSDgAmAlMkfdXMjm6RyA3ThDIjaRyJkviamV3ZIlFbxR+AOVXnG4ewsnF6iULlkbQt\niQl1fzN7uk2ytYoiZR4ELg9KYgZwgKSVZnZ1e0RsDW56ai/XAMeE42OA76QjmNkZZraxmc0DjgR+\n2M1KogB1y6zkq/oS8Esz+2QbZWsWdwHzJW0qaTzJe7smFeca4I1h9tMi4Jkqk1wvUrfMkuYCVwJv\nMLNfd0DGZlO3zGa2qZnNC9/vt4ATel1JgCuKdvNRYF9JDwNLwjmSNpJ0bUclax1Fyrw78AZgb0n3\nhr8DOiNuecxsJfAO4AaSgfgrzOxBSW+T9LYQ7VrgUeAR4IvACR0RtkkULPMHgPWAz4d3eneHxG0K\nBcvcl7gLD8dxHCcX71E4juM4ubiicBzHcXJxReE4juPk4orCcRzHycUVheM4jpOLK4oeR5JJOq/q\n/DRJZ7VZhosrXjIlXdioQz9J8yQ9ELn28eBh9uON5NFNhOf3WDOnWFa/kzURScdK+mydOEcEL7A9\n7aG5HfjK7N5nBXCopI+Y2VNlb5Y0NswPbwpm9uZmpRVhKTDdzIaqA5tdjg5wupl9q9NCNBNJA+n3\n1E2Y2Tck/Qk4rdOydDveo+h9VpK4b35n+kJomf8w7Alwc1gpW2ltni/pDuBcSWdJukTSjyX9VtKh\nks4N+whcH9xrIOkDku6S9ICkC5ThzEbSMkmDkg6uWjz3K0mPhes7SrpV0s8l3VDxoBrC75N0H3Bi\nVkElXQOsA/w8tAbT5Vhb0kWS7lSyl8ch4b5Jki6X9EtJV0m6Q9JguPZsVfqHSbo4HM+U9O1Q3rsk\n7R7Czwp5LJP0qKSTq+5/Y3jW90n6iqTJoadQeX5Tqs9jSNogyHlf+NtN0ocknVoV5xyFfTskvTe8\nq/skfTQjvdgzP1nJHiDLJV2ecd+xkr4TyvqwpP+qunZ0eM73SvqCEtfaSHpW0nnhPe6aSq8mP0k7\nS/pZeF+3SdqiKu+rlexh8htJ75D0rhDvdknTQ7xlkj4d5HhA0s4Z5ch8l04JzMz/evgPeBaYAvwG\nmErSOjorXPsucEw4fhNwdTi+GPgeMBDOzwJ+AowDtgP+ReKbB+Aq4FXheHpVvl8BXlmV3mHheBkw\nmJLxCpLKfxxwGzAzhB8BXBSOlwN7huOPAw/Eylt1nC7Hh4Gjw/E04NfA2sC7qvLZlkS5Dmakdxhw\ncTj+OrBHOJ5L4l6k8qxuAyaQ+PJ5OpRrYchvRvWzAr5c9fyWAudllGnV8wvn3yBxjAgwEN7rPOCe\nEDYG+D+SVc/7B3nWSuV7cShP3jN/HJhQeV4Zch0LPBHymQQ8QOLLaCuS39a4EO/zwBvDsQGvjby7\nmvxIfrtjw/ES4NtVeT8CTAZmAs8AbwvX/rvq+SwDvhiO9yT8bsL9n817l+F8MfC9Tn/H3f7npqc+\nwMz+LulS4GTg31WXdgUODcdfAc6tuvZNW90scJ2ZvSDpfpLK6foQfj9JJQXwMknvAdYCpgMPklQY\nUUL8f5vZ5yRtDWwN3Bg6IwPAE5KmkVQcP6qSdf9ChV+9HC8ncahYMSVMJKkY9gQ+A2BmyyUtL5Du\nEmCBRjpNU5R4twX4vpmtAFZI+jOJ6/S9gyxPhXz+EuJeSOIy/mrgOOAtBfLeG3hjSGeIpJJ8RtLT\nkl4S8vuFmT0taQnwZTP7VyrfCluQ8czDteXA1yRdHeTL4kYLzvwkXUniAXYlsCNwV0hzEiPOHodI\nnDtmkZXfVOASSfNJlEx1b+sWS/Yn+YekZxj5rd1PovArXBbK/qPQa5uWyjfzXZrZsziFcEXRP3wK\nuIekBVuEf6bOVwBY4h75BQvNLZI9McZKmkjSchw0s98pGTCfmJdBqMQOJ6moAQQ8aGZpk0T6wy5D\ndTkEvMbMfpVKP+/+ah821eUZAywys+cy0lpRFTREzndkZj9VYgJcTNLzyRykL8iFJC3lWcBFBe/J\nfOaBA0nezSuBMyVtY7XjPGkfPxbSvMTMzshI8zmLj0vU5Eey890tZvZqJXuRLKuKX/2ch6vOh1n9\nmWfJWE3mu3SK42MUfUJoSV5B4ve/wm0kHi4BjgJ+3EAWlUr0qdCyzp1RI2kTkm0jDzezSi/nV8BM\nSbuGOOMkLTSzvwF/k1TZr+CoUcp4A3CSQm0eWt8APwJeH8K2ZvXW6J8kbSVpDMmGMxV+QLJTWaU8\n29fJ+4fA4ZLWC/GnV127lMT8UVSJ3wy8PaQzIGlqCL8K2A/YiaSsADcCx0laKyNfiDzzUN45ZnYL\n8F6Slv061LKvkn3PJ5HsTvjTIN9hktav5Bned5Sc/KYy4qr72PzHEuWIkMceJF55n0ldL/sunRSu\nKPqL80js5hVOIqlElpN4Zz1ltAmHyvyLJHbqG0hcLudxLIlt++ow0HitJdtHHgZ8LAx23gvsFuIf\nB3xO0r0kLdbRcDaJ6WK5pAfDOSS7ja0j6ZfAh4CfV93zPpJxjtsYMclAYsYbDAOvDwG5U1fN7EHg\nHODWULZqd+lfA9YlmEgKcAqJme/+IOuCkMfzwC0kXkuHQtj1JK6u7w7PbrUZPDnPfAD4asjjF8Bn\nwjtOcyeJKWk5yfjB3Wb2EPAfwA/Cb+tGoN62rrH8zgU+IukXjN7C8Vy4/3xWbyhVKPUunVrce6yz\nxiFpGXCambXF7bWS9QyHmNkbItcvJhlQzZ0eG1rl95D00h5uuqC1+R1LYmp8R6vzGi2NvstgEjzN\nzA5qplz9hvcoHKeFSPofkj04zs6J9gxwtnIW3ClZxPgIcHM7lMSagKQjSMbd/tppWbod71E4juM4\nuXiPwnEcx8nFFYXjOI6TiysKx3EcJxdXFI7jOE4urigcx3GcXP4fOGc3BGgZWBkAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Triangular window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Welch Window" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='welch')" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX9x/HXJ4MkEJIACSuDhL1nCCAq4MSJ+hNExa2I\no9X+bKudtr/W2tbWWqui1oEWFaniqihOEGWGDQISVgYjCSHMDJJ8fn/cA71ECAFyc+74PB+P++De\nc849532AnE++Z3y/oqoYY4wxAGFuBzDGGOM/rCgYY4w5woqCMcaYI6woGGOMOcKKgjHGmCOsKBhj\njDnCioIJKSIyRUR+X4/lZovI7Q287etF5JNT/G66iKiIRDRkJmNqs6Jg/JqI/ExEPqo1bcNxpo1v\n3HQnR1VfU9UL3M5hTF2sKBh/9xVwhoiEA4hIOyASGFBrWmdnWWPMabCiYPzdYjxFoL/z+SzgS2B9\nrWkbVXUbgIh0F5FPRaRERNaLyLjjrVxExojIchHZKyIbRWS01+wOIvKNiOwTkU9EJPE465gjIv/j\nvB/unOa5xPl8rogsd97fLCJfe31PRWSS08opFZGnRUSceeEi8hcRKRaRTcAltbbZXkTed/YxR0Tu\ncKZHi0jZ4awi8gsRqRKROOfz70TkiRP9pZvQZUXB+DVVrQQWAmc7k84G5gJf15r2FYCINAM+BV4H\nWgPjgWdEpGftdYtIFvAq8BMgwVnPFq9FrgNucdbTBPjxcWLOAUY670cAm7yyjXDmH8+lwGCgLzAO\nuNCZfoczbwCQCVxd63vTgHygvTPvDyJyjqqW4ymkI7y2vxUYXs88JsRZUTCBYA7/PciehacozK01\n7fCB7lJgi6q+rKpVqroMeBsYe4z13ga8pKqfqmqNqhao6jqv+S+r6neqWgZM578tk2PlO3wQPht4\nlKMPynUdhP+oqqWqmounBXR4G+OAJ1Q1T1VLnHUCICKpeA7yD6pquaouB14AbvTO41yU7gs86XyO\nxlOA7DSbOS4rCiYQfAWcKSItgSRV3QDMw3OtoSXQm/8e6DoAQ5zTMaUiUgpcD7Q9xnpTgY11bHeH\n1/uDQOxxlpsPdBWRNngO6q8Cqc4pnCzqPggfbxvtgTyveVu93rcHSlR1X635yc77wy2XgcAqPC2n\nEcBQIEdVd9WRx4Q4u73NBIL5QDyeUyrfAKjqXhHZ5kzbpqqbnWXzgDmqen491psHdDrdcKp6UESW\nAPcBq1W1UkTmAf+L51pH8SmsdjueonVYmtf7bUBLEWnuVRjSgALn/TygG3Alnr+Lb0UkDbgYO3Vk\nTsBaCsbvOadvsvEcZOd6zframeb9m/h/8PzWfoOIRDqvwSLS4xirfhG4xbkYHCYiySLS/RRjzgHu\n5b8H3dm1Pp+s6cAPRSRFRFoADx2eoap5eA78jzoXlvviORU21Zl/EFgC3OO1/XnApNPIY0KEFQUT\nKObgueD7tde0uc60I0XB+c35AjwXmLfhOT3zJyCq9gpVdRGeC8l/A/Y42+hwGvmae2Wp/flk/ROY\nBawAlgIzas2/FkjHs4/vAA+r6me18kQCixoojwkRYoPsGGOMOcxaCsYYY46womCMMeYIKwrGGGOO\nsKJgjDHmiIB7TiExMVHT09PdjmGMMQFlyZIlxaqadKLlAq4opKenk52d7XYMY4wJKCKy9cRL2ekj\nY4wxXqwoGGOMOcKKgjHGmCOsKBhjjDnCioIxxpgjfFYUROQlESkUkdXHmS8i8qQzlOBKERnoqyzG\nGGPqx5cthSnA6DrmXwR0cV4Tgck+zGKMMaYefPacgqp+JSLpdSwyBnhVPd20LhCRBBFpp6rbfZXJ\nmNNRU6PsOlDJjj3l7NjreRXvq+B4PQ23aNaEtnHRtImPpm1cNK2bRxERbmdsjX9z8+G1ZI4ebjDf\nmfa9oiAiE/G0JkhLS6s925gGt+fgIZbnl7Iiz/Nat2MfhfvKOVT9/QIg8v3vH6tOiEBSbBSdkmLp\nl5pA/9R4+qe2oG18tA/2wJhTExBPNKvq88DzAJmZmTYAhGlwxfsr+OzbnSzYtIsV+XvYXHwA8BzI\nOyfFkpnegvYJMZ7f/OOiaRcfTdv4aBJjowgP+35VUFVKDlSyY285O/eWs2NPBTv2lrO9tIz1O/fx\n4tebjhSYNnFR9E9NYHB6S87v2YYOrZo16r4b483NolDA0WPQpvDfMWaN8bn83QeZtWYns9bsIHtL\nCTUKrZtHMSAtgbGZKfRPSaB3Sjxx0ZEnvW4RoVVsFK1io+jVPv5788sPVbN2+15W5JWy3HnNWrOT\n33+4lu5tmzO6d1su7NWW7m2bI8dqihjjI24WhfeBe0VkGjAE2GPXE4yvlRyoZHp2Hh+u3M6qgj0A\ndGvTnHvP6cKFvdrQs11coxyEoyPDGZDWggFpLY5Myys5yKw1O5i1Zgd//3wDT3y2gbSWTbmoT1uu\nz+pAWqumPs9ljM+G4xSRN4CRQCKwE3gYz5ixqOqz4vnJewrPHUoHgVtU9YQ93WVmZqp1iGdO1uqC\nPbwybwvvrdhGZVUN/VITuMj5bTwj0f9O1xTtq+DTb3fy8ZodzMspplqVUd1ac9MZ6ZzVOZGwY5yy\nMqYuIrJEVTNPuFygjdFsRcHUV2VVDR+t3s6r87eyZOtuYiLDuWpgMjedkU7XNs3djldvO/aU8/qi\nXF5fmEvx/go6JjbjhmEduHpQCs1P4dSWCU1WFEzIOlRdw7TFeTz1xQZ27q0gvVVTbhiWztWDUoiP\nCdyDaEVVNR+v3sGUeVtYlltKsybh3DI8g4kjOp7SdQ8TWqwomJBTU6N8sHIbj3/6HVt3HWRwegvu\nHtmZEV2Tgu50y8r8Up77ahMfrtxOQtNI7h7ZiRuHpRMdGe52NOOnrCiYkKGqzF5fxJ9nrWft9r10\nb9ucB0d3Z2S3pKC/c2d1wR4em7WeOd8V0TYumvvP68LVg1LsITnzPVYUTEhYs20Pv33/WxZtKSGt\nZVMeuKArl/VtH3QtgxOZv3EXf561jmW5pXRMbMYvL+3BOd3buB3L+BErCiaolVVW88Tn3/HC3M20\naBrJfed15ZrMVJpEhO5vyKrKp9/u5M+z1pNTuJ9L+7bj4ct6kdQ8yu1oxg/UtygExBPNxnj7ekMx\nv3h3FVt3HWRcZgo/v7gHCU2buB3LdSLCBb3aMrJba56ds5Gnvsjhq++K+MUlPRiXmRr0p9JMw7CW\nggkYuw9U8vsP1/L20nzSWzXlD1f14YxOiW7H8ls5hfv5+YxVLNpSwtCOLXn0qr5++UyGaRx2+sgE\nlY9X7+AX76xiT9khJp7dkR+e28XutKmHmhrlzew8/jBzLRVVNTxwflfuOKtjyF1zMXb6yASJ8kPV\nPDpzLa/M30qf5Him3j6EHu3i3I4VMMLChGuz0ji3e2t+9d5qHv1oHd9s3MXj4/qRGGvXGsz3he5V\nOeP3Nhcf4H8mz+OV+Vu5/cwM3r7rDCsIp6h1XDTPThjEI1f2ZsGmXVz897nM37jL7VjGD1lRMH7p\nveUFXPrkXApKy3jhxkx+eWnPkL6zqCGICNcP6cC7dw8nNiqC619YwBOffUd1TWCdQja+ZT9lxq+U\nVVbz0NsruW/acnq0i2PmD8/ivJ52v31D6tk+jg9+cCZj+ifzxGcbmPDCQgr3lrsdy/gJKwrGb2wr\nLeOqyfN4MzuPe0Z1YtrEobRPiHE7VlBqFhXB4+P68djVfVmeV8rFT37NstzdbscyfsCKgvELK/NL\nueLpb8grOchLNw3mJxd2t64afExEGJuZynv3DiemSRjjn1/AhyttSJNQZz91xnUfr97OuOfmExke\nxtt3ncGo7q3djhRSurZpzrt3D6dPcjz3vL6Up77YQKDdqm4ajhUF4xpVZfLsjUyaupQe7eJ4957h\ndGsbOOMcBJNWsVFMvX0IY/q35y+ffMcD/15BRVW127GMC+w5BeOKyqoafvnuKqZn53Np33b8ZWw/\nexjNZdGR4TxxTX86Jsbyt8++I7+kjGdvGETLZtaFSCixloJpdPsrqrj55UVMz87nh+d05snxA6wg\n+AkR4b7zuvDktQNYnl/Klc98Q+6ug27HMo3IioJpVHsOHuL6FxaycHMJfx3bj/+9oJt1ueCHLu/X\nnjfuGErpwUOMe24+OYX73Y5kGokVBdNoivdXMP6fC1i7bS+Trx/I/wxKcTuSqcOgDi2YNnEoVTU1\nXPPcfNZu3+t2JNMIrCiYRrFjTznXPDefzcX7eeGmTC7o1dbtSKYeerSLY/qdw2gS4blldXleqduR\njI9ZUTA+l1dykLHPzWPn3gpevXUIZ3dNcjuSOQkdk2KZfucw4mMimfDCQhZusj6TgpkVBeNTG4v2\nM+65+ewtq+K124eQldHS7UjmFKS2bMq/Jw2jbXw0N728iK++K3I7kvERKwrGZ3IK93PNc/M5VF3D\ntIlD6Zea4HYkcxraxEXz5sShdEyM5fZXsvlyXaHbkYwPWFEwPpFXcpAJLywEhDfvHGZdXgeJVrFR\nvHHHULq1bc6kqUtYYKeSgo4VBdPgCveWM+HFhZQdqmbq7Vl0Sop1O5JpQPFNI3nl1izSWjbltimL\nWWEXn4OKFQXToHYfqGTCiwsp2lfBlFsG072ttRCCUctmTZh6+xBaxjbhppcXsX7HPrcjmQZiRcE0\nmH3lh7jp5UVs2XWQF27KZEBaC7cjGR9qExfNa7cNJSoijAkvLmRL8QG3I5kGYEXBNIiyympueyWb\nb50H087olOh2JNMI0lo1ZeptQ6iqruH6FxayfU+Z25HMabKiYE5bZVUNd722hMVbSnj8mv6c28NG\nSgslXdo059Vbh7C3zNOFSfH+CrcjmdNgRcGcFlXloRkrmb2+iEeu6MPl/dq7Hcm4oE9KPC/ePJht\npWXcNmUxZZXW7Xag8mlREJHRIrJeRHJE5KFjzI8XkQ9EZIWIrBGRW3yZxzS8p77IYcbSAu4/rwvX\nDUlzO45xUVZGS54cP4CVBXv40ZvLqamxgXoCkc+KgoiEA08DFwE9gWtFpGetxe4BvlXVfsBI4K8i\nYp23B4j3lhfw10+/48oBydx3bhe34xg/cEGvtvzi4h58vGYHf/p4ndtxzCnw5SA7WUCOqm4CEJFp\nwBjgW69lFGguIgLEAiVAlQ8zmQaSvaWEn/x7JVkZLfnj//TB809oDNx2ZgZbdh3gua820aFVM2tB\nBhhfnj5KBvK8Puc707w9BfQAtgGrgPtUtab2ikRkoohki0h2UZH1ueK2LcUHuOPVbJJbxPDchEFE\nRdgAOea/RITfXNaLEV2T+NV7q62fpADj9oXmC4HlQHugP/CUiHzvaSdVfV5VM1U1MynJeth0U+nB\nSm6dshgFXrp5MC1sqEZzDBHhYTx13QC6tI7lnteW2sNtAcSXRaEASPX6nOJM83YLMEM9coDNQHcf\nZjKnobKqhjv/tYT83WU8f0MmGYnN3I5k/Fjz6EheunkwMU3CuXXKYgr3lbsdydSDL4vCYqCLiGQ4\nF4/HA+/XWiYXOBdARNoA3YBNPsxkTsOv31vNws0l/PnqvtYFtqmX9gkxvHjTYEoOVDLx1SVUVNmt\nqv7OZ0VBVauAe4FZwFpguqquEZFJIjLJWex3wBkisgr4HHhQVYt9lcmcujcW5TJtcR73jOrEFQNq\nXxoy5vj6pMTz+Lh+LM8r5f8++PbEXzCu8uXdR6jqTGBmrWnPer3fBlzgywzm9C3PK+Xh99Zwdtck\n/vf8bm7HMQHooj7tuHNER56bs4l+qQmMy0w98ZeMK9y+0Gz83K79Fdw9dQmt46L4+zX9CQ+zW0/N\nqfnJBd04o1Mrfvnualbl73E7jjkOKwrmuKqqa/jBG8vYdaCSZycMsjuNzGmJCA/jH9cOILFZEyZN\nXcLuA5VuRzLHYEXBHNdjn6xn3sZd/P6K3vROjnc7jgkCrWKjmDxhEEX7KvjhtGVUW1cYfseKgjmm\nj1Zt57k5m7h+SBpj7fyvaUD9UhP47ZhezN1QzOOfrnc7jqnFioL5npzCffz43yvon5rAry+r3V2V\nMafv2qw0rslM5ekvN/LJmh1uxzFerCiYo5RVVnPX1KXENAln8oSB1oWF8ZnfjulF35R4Hpi+gryS\ng27HMQ4rCuYov/vwW3KK9vPENQNoFx/jdhwTxKIjw3n6uoEg8MNpyzhU/b1uz4wLrCiYIz5atZ3X\nF+Zy59mdOLOLDadpfC+1ZVP+cGUfluWW8sRn37kdx2BFwTgKSst48O2V9EtN4IELurodx4SQy/q1\n55rMVJ6ZvZF5OdahgdusKBiqqmu4f9oyahSeHN+fyHD7b2Ea18OX9yQjsRk/mr6cEnt+wVX202/4\nxxc5LN6ym99f0ZsOraznU9P4mjaJ4MnxA9h94BA/fWsFqvb8glusKIS4RZtL+McXG7hqYLJ1dGdc\n1Ts5nocu6s5nawt5df5Wt+OELCsKIaz0YCX3T1tGWsum/N+Y3m7HMYZbhqczqlsSj8xcy9rte92O\nE5KsKIQoVeWht1dRuK+CJ68dQGyUTzvMNaZeRITHxvYjPiaSH7yxjLJKG3+hsVlRCFHvLCvg4zU7\n+PGF3eibkuB2HGOOSIyN4vFx/cgp3M9js6wbjMZmRSEE7dhTzm/eX0NmhxbccVZHt+MY8z1ndUni\nxmEdeHneZhZu2uV2nJBiRSHEqCo/m7GSyuoaHhvbz8ZHMH7rwdHdSW3RlJ+8tZIDFVVuxwkZVhRC\nzL+z8/lyfREPje5ORqLdfmr8V7OoCP4yth95uw/yp4/XuR0nZFhRCCEFpWX87j/fMiSjJTcOS3c7\njjEnlJXRklvOyODV+Vv5xp52bhRWFEKE526jlVSr8tjV/Qiz00YmQPzkwm5kJDbjp2+tZF/5Ibfj\nBD0rCiHi9UW5zN1QzM8v7kFaq6ZuxzGm3mKahPOXsf3YvqeMP8y000i+ZkUhBOSVHOSRD9dyZudE\nrh+S5nYcY07aIOdOuTcW5TLnuyK34wQ1KwpBrqZG+elbKwkT4U9X90XEThuZwPSj87vSuXUsD761\nkj1ldhrJV6woBLlpi/OYv2kXv7ykB8kJNmiOCVzRkeH8dWw/CveV88eP7DSSr1hRCGKF+8p59KO1\nDOvYimsGp7odx5jT1i81gVuHZ/DGolwWbylxO05QsqIQxP7vg2+pqKrhkSt722kjEzR+dH5XkhNi\n+PmMVVRW2RCeDc2KQpD6cn0h/1m5nXtHdaZjUqzbcYxpMM2iIvjdFb3YULif5+ZsdDtO0LGiEIQO\nVlbxy3dW07l1LJNGdHI7jjEN7pzubbikTzv+8WUOm4r2ux0nqFhRCEJPfLaBgtIyHr2qD00i7J/Y\nBKeHL+tJVEQYv3hntY3U1oDsiBFk1mzbw4tfb+barFQGp7d0O44xPtM6LpoHR3dn/qZdzFha4Hac\noOHToiAio0VkvYjkiMhDx1lmpIgsF5E1IjLHl3mCXXWN8rMZq2jRtAkPje7hdhxjfO66rDQGdWjB\n7z/8lpIDlW7HCQonLAoi0lREfiUi/3Q+dxGRS+vxvXDgaeAioCdwrYj0rLVMAvAMcLmq9gLGnsI+\nGMer87ewMn8Pv76sJ/FNI92OY4zPhYUJf7iyD/vKq3jkw7VuxwkK9WkpvAxUAMOczwXA7+vxvSwg\nR1U3qWolMA0YU2uZ64AZqpoLoKqF9Uptvmf7njL+Mms9Z3dN4rK+7dyOY0yj6da2ORPP7sjbS/OZ\nZz2pnrb6FIVOqvpn4BCAqh4E6nPTezKQ5/U535nmrSvQQkRmi8gSEbnxWCsSkYkiki0i2UVF1u/J\nsfz+P2upqlEeucKeSTCh54fndqFDq6b86r3V9uzCaapPUagUkRhAAUSkE56WQ0OIAAYBlwAXAr8S\nka61F1LV51U1U1Uzk5KSGmjTwWNeTjEfrtrO3SM7k9rSekA1oSc6MpxfX9qTjUUHeGXeFrfjBLT6\nFIWHgY+BVBF5Dfgc+Gk9vlcAePetkOJM85YPzFLVA6paDHwF9KvHuo2jqrqG33ywhpQWMdw5wsZb\nNqHr3B5tGNUtib9/voHCveVuxwlYJywKqvopcBVwM/AGkKmqs+ux7sVAFxHJEJEmwHjg/VrLvAec\nKSIRItIUGALY1aKT8K8FW/lu535+dWlPoiPD3Y5jjKt+fVkvKqtq+KMN33nKjlsURGTg4RfQAdgO\nbAPSnGl1UtUq4F5gFp4D/XRVXSMik0RkkrPMWjytkJXAIuAFVV19ujsVKor3V/D4p99xVpdELujZ\nxu04xrguI7EZt52VwYylBSzZutvtOAFJjvckoIh86byNBjKBFXguMPcFslV12DG/6GOZmZmanZ3t\nxqb9zoNvreTtpfl8fP/ZdG5t/RsZA3Cgoopz/jqb1s2jefee4YTb0LMAiMgSVc080XLHbSmo6ihV\nHYWnhTDQudA7CBjA968NmEa2Iq+U6UvyuGV4uhUEY7w0i4rg5xf3YFXBHqZn5534C+Yo9bnQ3E1V\nVx3+4JzescdlXVRTozz8/hoSY6P44bld3I5jjN+5vF97stJb8tis9ew5aKO0nYz6FIWVIvKC0x3F\nSOfJ5pW+DmaO7+2l+SzPK+Wh0d1pHm1PLhtTm4jwm8t7UXqwksc/Xe92nIBSn6JwC7AGuM95fetM\nMy7YW36IP328noFpCVw5oPazgMaYw3q2j+P6IR3414KtrNux1+04AaM+t6SWq+rfVPVK5/U3VbWb\ngF3yj883sOtABb+9vDdhdgHNmDo9cEFX4mIi+c37a6x77XqqT4d4m0VkU+1XY4QzR8vddZAp87Yw\ndlAKfVLi3Y5jjN9LaNqEB87vyoJNJXy21rpWq4+IeizjfQtTNJ6eTK2jfhf8adY6IsLCeOCCbm5H\nMSZgjM9K4+V5W3j0o7WM7JZEZLgNI1OX+pw+2uX1KlDVJ/D0VWQa0ZKtu/lw5XYmnt2RNnHRbscx\nJmBEhofxs4t6sKnoANMW5bodx++dsKVQ6+nlMDwth/q0MEwDUVX+MHMtSc2jmHi29W9kzMk6r0dr\nhmS05G+fbWDMgGTi7K6946pPO+qvXq9HgYHAOF+GMkf7ePUOlmzdzQPnd6VZlNVjY06WiPCLS3pQ\ncqCSZ2dvdDuOX6vPEeY2VT3qwrKIZPgoj6nlcOde3do0Z2xm6om/YIw5pr4pCVzRvz0vfr2ZCUM7\n0D4hxu1Ifqk+LYW36jnN+MDUBVvZuusgP7u4u/XhYsxp+vGF3VDgL5/YA23Hc9yWgoh0B3oB8SJy\nldesODx3IRkf23PwEE9+sYGzuiQyoqsNLmTM6Upp0ZRbh2fw3FcbuXV4Br2T7dbu2upqKXQDLgUS\ngMu8XgOBO3wfzTw9O4c9ZYf42UU9bIhNYxrI3aM6kRATySMfrrUH2o7huC0FVX0PeE9Ehqnq/EbM\nZIC8koNM+WYLVw9MoWf7OLfjGBM04qIjuf+8rjz8/hq+XF/IOd1tLBJvdQ2yc3jIzetE5Mnar0bK\nF7L+PGs9YWHYg2rG+MB1Q9LISGzGH2auo6q6xu04fqWu00eHh8XMBpYc42V8ZHXBHj5YsY3bz+xI\n23i7fGNMQ4sMD+PB0d3IKdzPjGU2PIy3uk4ffeD8+UrjxTEAf/1kPfExkdxhD6oZ4zMX9mpL35R4\n/v7ZBsb0b09UhI1xDnXfffQBcNyrMKp6uU8ShbjFW0r4cn0RD47uTnyMPXVpjK+ICD+5sBs3vLiI\nNxbmcvNwe/wK6n547S+NlsIAnu4sHvt4PUnNo7jpjA5uxzEm6J3ZOZGhHVvy1Jc5jBucStMm1mNA\nXWM0zzn8AuYDu4ESYL4zzTSwrzYUs2hLCT84p7P95zSmERxuLRTvr+Tlb7a4Hccv1Gc8hUuAjcCT\nwFNAjohc5OtgoUZVeWzWOlJaxDB+cJrbcYwJGYM6tOTc7q15bs5GG8+Z+neIN0pVR6rqCGAU8Dff\nxgo9H6/eweqCvdx/XleaRFh/78Y0pgcu6Mbe8iqen2ud5dXn6LNPVXO8Pm8C9vkoT0iqrlH+8sl6\nOreOtXGXjXFBz/ZxXN6vPS99vYWifRVux3FVfYpCtojMFJGbReQm4ANgsYhcVatPJHOK3llWwMai\nA/z4gq7W6Z0xLvnR+V2prK7h6S9zTrxwEKtPUYgGdgIjgJFAERCDpx+kS32WLERUVFXzt0+/o09y\nPBf2aut2HGNCVkZiM8ZlpvD6wlzydx90O45rTniLi6re0hhBQtWbi/MoKC3j0av6WKd3xrjsB+d0\n4e2lBTz5+Qb+fHU/t+O4oj53H2WIyOMiMkNE3j/8aoxwwa6sspp/fJHDkIyWnNUl0e04xoS89gkx\n3DC0A28tyWdj0X6347iiPqeP3gW2AP/g6KE5zWl6beFWivZV8MAF3ayVYIyfuGtkJ6Iiwnnqi9C8\ntlCfJ6TKVdV6RW1g5Yeqee6rTZzRqRVZGS3djmOMcSTGRnHDsA68MHcTPzinMx2TYt2O1Kjq01L4\nu4g8LCLDRGTg4ZfPkwW51xfmUrSvgvvO7eJ2FGNMLXec1ZEmEWE8FYJ3ItWnKPTBM9LaH/nvqaN6\n9YskIqNFZL2I5IjIQ3UsN1hEqkTk6vqsN9CVH6rm2TkbGdqxJUM6tnI7jjGmlqTmUUwY0oH3lm9j\nS/EBt+M0qvoUhbFAR1UdoaqjnNc5J/qSiIQDTwMXAT2Ba0Wk53GW+xPwyclFD1zTFuVSuK+C+87t\n6nYUY8xxTBzRkYgwCbnWQn2Kwmo84zSfrCwgR1U3qWolMA0Yc4zlfgC8DRSewjYCTvmhaibP2UhW\nRkuGdbJWgjH+qnXzaK4f0oF3lhWwdVfotBbqUxQSgHUiMsvrltT36vG9ZCDP63O+M+0IEUkGrgQm\n17UiEZkoItkikl1UVFSPTfuv6dl57Nxbwf12LcEYvzfJaS2E0lPO9SkKD+M5cP8BeBxYDHRuoO0/\nATyoqnUOkqqqz6tqpqpmJiUlNdCmG19FVTWTZ29kcHoLayUYEwBax0VzbVYaM5YWkFcSGk85n7Ao\nOGMn7MXTpcUU4Bzg2XqsuwBI9fqc4kzzlglME5EtwNXAMyJyRT3WHZCmZ+ezfU85953b1Z5LMCZA\n3DWyE2EV3iM/AAATtUlEQVQh1Fo4blEQka7Orajr8Dy4lguIc6H5H/VY92Kgi/NEdBNgPHDUk9Cq\nmqGq6aqaDrwF3K2q757qzviziqpqJn+Zw6AOLRje2VoJxgSKNnHRXJeVxltL8kOitVBXS2EdnlbB\npap6plMIquu7YlWtAu4FZgFrgemqukZEJonIpNMJHYj+nZ3Ptj3l3HduF2slGBNgJo3oRJgIz8wO\n/tZCXU80X4Xnt/svReRjPHcPndTRTFVnAjNrTTvmqSdVvflk1h1IKqtqmDx7IwPSEqyPI2MCUNv4\naMZnpfL6wlzuGdWZlBZN3Y7kM3WN0fyuqo4HugNfAvcDrUVksohc0FgBg8E7y/IpKC3jh9ZKMCZg\n3TXS01p4bs4mt6P4VH0uNB9Q1ddV9TI8F4uXAQ/6PFmQqK5Rnp2ziV7t4xjZNXDvnDIm1LWLj+Gq\ngclMz84L6tHZTmowYFXd7dweeq6vAgWbWWt2sLn4AHeP7GytBGMC3J0jOlFZXcPL32x2O4rP2Ajx\nPqSqPDM7h4zEZozubaOqGRPoMhKbcXHvdvxr/lb2lh9yO45PWFHwobkbilldsJc7z+5oYy8bEyTu\nGtmJfRVVTF2w1e0oPmFFwYcmz95Im7gorhyYfOKFjTEBoXdyPGd3TeKlr7dQfqjed+kHDCsKPrIs\ndzfzN+3ijrM6EhUR7nYcY0wDumtEJ4r3V/DvJfluR2lwVhR85JnZG4mPiWR8VprbUYwxDWxox5YM\nSEvg+a82UlVdZ9dtAceKgg9s2LmPT7/dyU1npBMbVZ8RT40xgUREuGtEJ/JKyvhw1Xa34zQoKwo+\nMHnORmIiw7n5jHS3oxhjfOS8Hm3o0jqWybM3oqpux2kwVhQaWP7ug7y/fBvjs1Jp2ayJ23GMMT4S\nFibcNbIT63bs44t1wTNGmBWFBvbPrzYh4hn42xgT3C7r157khBieCaLWghWFBlS8v4Jpi/O4on8y\n7RNi3I5jjPGxyPAwJp7dkSVbd7N4y2634zQIKwoN6NV5W6isruHOEZ3cjmKMaSTjMlNp1awJk4Ok\nW20rCg2krLKafy3Yynk92tC5dazbcYwxjSSmSTg3Dkvny/VF5BTuczvOabOi0EDeWprP7oOH7FqC\nMSFowtA0oiLCeGFu4HeUZ0WhAdTUKC99vZm+KfEMTm/hdhxjTCNrFRvFVQNTmLGsIOC71bai0AA+\nX1fI5uID3H5WR+se25gQdduZGVRW1fCvAO8oz4pCA/jn3E0kJ8RwsXWPbUzI6tw6lnO7t2bqgq0B\n3VGeFYXTtDK/lEWbS7hleDoR4fbXaUwou/2sjpQcqOTtpYHbUZ4dxU7TP+dupnlUBNcMTnU7ijHG\nZUM7tqR3chwvzt1MTU1gPsxmReE0FJSWMXPVdsZnpdI8OtLtOMYYl4kId5zVkU3FBwK26wsrCqfh\n5a89t5/dPDzD5STGGH9xcZ92tIuP5p9zN7kd5ZRYUThFe8sPMW1xHpf0aUeydWlhjHFEhodxy/B0\nFm4uYVX+HrfjnDQrCqfozUV57K+osofVjDHfMz4rjdioiIBsLVhROAWHqmt4+ZvNDMloSZ+UeLfj\nGGP8TFx0JNcMTuXDVdvZVlrmdpyTYkXhFHy0egfb9pRbK8EYc1y3DE8HYMq8La7mOFlWFE7Bi19v\npmNiM87p3trtKMYYP5XSoikX9W7LGwtzOVBR5XacerOicJKW5e5mRV4pNw9PJyzMurQwxhzfLcMz\n2FdRxYwAepjNisJJmjJvC82jIrhqYIrbUYwxfm5gWgJ9U+KZMm9LwIzM5tOiICKjRWS9iOSIyEPH\nmH+9iKwUkVUiMk9E+vkyz+kq3FvOzFXbGZuZSmxUhNtxjDF+TkS4+Yx0NhYd4OucYrfj1IvPioKI\nhANPAxcBPYFrRaRnrcU2AyNUtQ/wO+B5X+VpCK8tzKWqRrlxWAe3oxhjAsQlfduRGNuEKd9scTtK\nvfiypZAF5KjqJlWtBKYBY7wXUNV5qnp4YNMFgN+ek6moqua1hbmM6taa9MRmbscxxgSIqIhwrstK\n44v1hWzddcDtOCfky6KQDOR5fc53ph3PbcBHx5ohIhNFJFtEsouKihowYv3NXLWd4v0V3HxGuivb\nN8YEruuHdiBchFfn+/9YC35xoVlERuEpCg8ea76qPq+qmaqamZSU1LjhHFPmbaVjUjPO7JzoyvaN\nMYGrTVw0F/Vpx/TFeX5/e6ovi0IB4N2fdIoz7Sgi0hd4ARijqrt8mOeUHbkN9Qy7DdUYc2puPiM9\nIG5P9WVRWAx0EZEMEWkCjAfe915ARNKAGcANqvqdD7OcFrsN1RhzugLl9lSfFQVVrQLuBWYBa4Hp\nqrpGRCaJyCRnsV8DrYBnRGS5iGT7Ks+pKtxbzocr7TZUY8zpCZTbU316TUFVZ6pqV1XtpKqPONOe\nVdVnnfe3q2oLVe3vvDJ9medUvLYwl2q121CNMacvEG5P9YsLzf7KbkM1xjSkQLg91YpCHew2VGNM\nQ/P321OtKNTBbkM1xjQ0f7891YrCcazML2VFXik3Du1gt6EaYxrUTcM6sK+iivdXbHM7yvdYUTiO\n1xbkEhMZzlWD7DZUY0zDGtShBd3bNmfqgq1+d3uqFYVj2FN2iPdWFDCmf3vioiPdjmOMCTIiwvVD\nO7Bm216W55W6HecoVhSOYcbSfMoP1TBhqN2GaozxjSsHJNOsSThTF+S6HeUoVhRqUVVeW5hLv9QE\neifHux3HGBOkYqMiuGJAMv9ZuY3Sg5VuxznCikItCzaVkFO4nwlD0tyOYowJchOGdqCiqoa3lvhP\nf0hWFGqZunAr8TGRXNavvdtRjDFBrke7OAZ1aMFrC3OpqfGPC85WFLwU7itn1uodXD0ohejIcLfj\nGGNCwIShaWwuPsC8jf7RSbQVBS/TF+dRVaNcb6eOjDGN5KLe7WjRNJKpC/zjCWcrCo7qGuWNRXkM\n79yKjkmxbscxxoSI6MhwxmWm8unanezcW+52HCsKh81eX0hBaRkThthtqMaYxnXdkDSqa5Rpi/JO\nvLCPWVFwTF2wldbNozivZxu3oxhjQkyHVs04u2sSbyzKpaq6xtUsVhSAvJKDzP6uiPFZaUSG21+J\nMabxTRiSxo695Xy+rtDVHHYEBF5flIsA4wennnBZY4zxhXO6t6ZdfLTrF5xDvihUVtUwfXEe5/Zo\nQ/uEGLfjGGNCVER4GOMHpzF3QzFbit0bgCfki8In3+5g14FKuw3VGOO68VmphIcJ0xa7d8E55IvC\nm4vzSE6I4ewuSW5HMcaEuDZx0ZzTvTVvLcnnkEsXnEO6KOSVHGTuhmLGZabaQDrGGL8wfnAqxfsr\n+HytOxecQ7ooTM/OI0xgbKYNpGOM8Q8juibRNi6aNxe706V2yBaFquoapmfnMaJrkl1gNsb4jYjw\nMMZmpjDnuyK2lZY1+vZDtijMXl/Ezr0VjM+yC8zGGP8yLjMVxXM2o7GFbFGYtjiPxNgozune2u0o\nxhhzlNSWTTmzcyL/zs6nupG71A7JorBzbzlfri9kbGaKPcFsjPFL4wenUVBaxtwNRY263ZA8Ir61\nxFN9r8m0J5iNMf7p/J5taNmsCW828jMLIVcUamqUaYtzGdaxFemJzdyOY4wxx9QkIoz/GZjMp9/u\npGhfRaNtN+SKwvxNu8grKWN8lrUSjDH+7ZrBaVTVKDOWNt4YziFXFN5YlEt8TCQX9mrrdhRjjKlT\n59axDE5vwZuL81BtnAvOIVUUSg5U8smanVw5INnGYDbGBITxg9PYVHyAhZtLGmV7Pi0KIjJaRNaL\nSI6IPHSM+SIiTzrzV4rIQF/mmbE0n8rqGjt1ZIwJGBf3aUfz6IhGu+Dss6IgIuHA08BFQE/gWhHp\nWWuxi4AuzmsiMNlXeVSVaYvz6J+aQPe2cb7ajDHGNKiYJuFc0T+Zmau2s+fgIZ9vz5cthSwgR1U3\nqWolMA0YU2uZMcCr6rEASBCRdr4IszR3NzmF+7nWWgnGmAAzPiuViqoa3l1e4PNt+bIoJAPe7Z18\nZ9rJLoOITBSRbBHJLio69Qc5zu6axKV925/y940xxg292sczpn97WjRr4vNtRfh8Cw1AVZ8HngfI\nzMw8pUvwgzq05NVbsxo0lzHGNJa/jx/QKNvxZUuhAPA+V5PiTDvZZYwxxjQSXxaFxUAXEckQkSbA\neOD9Wsu8D9zo3IU0FNijqtt9mMkYY0wdfHb6SFWrROReYBYQDrykqmtEZJIz/1lgJnAxkAMcBG7x\nVR5jjDEn5tNrCqo6E8+B33vas17vFbjHlxmMMcbUX0g90WyMMaZuVhSMMcYcYUXBGGPMEVYUjDHG\nHCGN1R1rQxGRImDrKX49EShuwDiBJFT33fY7tNh+H18HVU060YoCriicDhHJVtVMt3O4IVT33fY7\ntNh+nz47fWSMMeYIKwrGGGOOCLWi8LzbAVwUqvtu+x1abL9PU0hdUzDGGFO3UGspGGOMqYMVBWOM\nMUeETFEQkdEisl5EckTkIbfz+IqIvCQihSKy2mtaSxH5VEQ2OH+2cDOjL4hIqoh8KSLfisgaEbnP\nmR7U+y4i0SKySERWOPv9W2d6UO/3YSISLiLLROQ/zueg328R2SIiq0RkuYhkO9MabL9DoiiISDjw\nNHAR0BO4VkR6upvKZ6YAo2tNewj4XFW7AJ87n4NNFfCAqvYEhgL3OP/Gwb7vFcA5qtoP6A+MdsYm\nCfb9Puw+YK3X51DZ71Gq2t/r2YQG2++QKApAFpCjqptUtRKYBoxxOZNPqOpXQEmtyWOAV5z3rwBX\nNGqoRqCq21V1qfN+H54DRTJBvu/qsd/5GOm8lCDfbwARSQEuAV7wmhz0+30cDbbfoVIUkoE8r8/5\nzrRQ0cZrRLsdQBs3w/iaiKQDA4CFhMC+O6dQlgOFwKeqGhL7DTwB/BSo8ZoWCvutwGciskREJjrT\nGmy/fTrIjvE/qqoiErT3IYtILPA2cL+q7hWRI/OCdd9VtRroLyIJwDsi0rvW/KDbbxG5FChU1SUi\nMvJYywTjfjvOVNUCEWkNfCoi67xnnu5+h0pLoQBI9fqc4kwLFTtFpB2A82ehy3l8QkQi8RSE11R1\nhjM5JPYdQFVLgS/xXFMK9v0eDlwuIlvwnA4+R0SmEvz7jaoWOH8WAu/gOT3eYPsdKkVhMdBFRDJE\npAkwHnjf5UyN6X3gJuf9TcB7LmbxCfE0CV4E1qrq416zgnrfRSTJaSEgIjHA+cA6gny/VfVnqpqi\nqul4fp6/UNUJBPl+i0gzEWl++D1wAbCaBtzvkHmiWUQuxnMOMhx4SVUfcTmST4jIG8BIPF3p7gQe\nBt4FpgNpeLodH6eqtS9GBzQROROYC6ziv+eYf47nukLQ7ruI9MVzYTEczy9501X1/0SkFUG8396c\n00c/VtVLg32/RaQjntYBeE7/v66qjzTkfodMUTDGGHNioXL6yBhjTD1YUTDGGHOEFQVjjDFHWFEw\nxhhzhBUFY4wxR1hRMH5FRH7h9Pa50ukFcoiPtzdbROo94LmITBGRAhGJcj4nOg9QNUSWkYd7+2wo\nInK/iNx4gmX6iMiUhtyuCVxWFIzfEJFhwKXAQFXtC5zH0X1W+Ytq4Fa3Q9Tm9Abs/TkCT87X6/qe\nqq4CUkQkzYfxTICwomD8STugWFUrAFS1WFW3AYjIr0VksYisFpHnnSeYD/+m/zcRyRaRtSIyWERm\nOP3K/95ZJl1E1onIa84yb4lI09obF5ELRGS+iCwVkX87/SgdyxPAj5yDrvf3j/pNX0SeEpGbnfdb\nROTRw33gi8hAEZklIhtFZJLXauJE5EPxjP3xrIiE1ZXNWe+fRGQpMLZWznOApapa5fV39SfxjL/w\nnYic5bXsB3ieDDYhzoqC8SefAKnOAesZERnhNe8pVR2sqr2BGDwtisMqnX7ln8XzeP89QG/gZudJ\nT4BuwDOq2gPYC9ztvWERSQR+CZynqgOBbOB/j5MzF/gauOEk9y9XVfvjefJ6CnA1nrEffuu1TBbw\nAzzjfnQCrqpHtl2qOlBVp9Xa3nBgSa1pEaqaBdyP52n3w7KBszAhz4qC8RvOuACDgIlAEfDm4d+0\ngVEislBEVuH5DbiX11cP92O1CljjjK1QAWzivx0h5qnqN877qcCZtTY/FM+B+BvxdEN9E9ChjriP\nAj/h5H6GvHMuVNV9qloEVBzuvwhY5Iz7UQ284eQ8UbY3j7O9dnj+Hr0d7ihwCZDuNb0QaH8S+2KC\nlHWdbfyKczCcDcx2CsBNIjINeAbIVNU8EfkNEO31tQrnzxqv94c/H/4/Xrs/l9qfBc9YBNfWM+cG\n5wA9zmtyFUcXieijv3XKOU+U7cBxppfVkaGao3/+o53lTYizloLxGyLSTUS6eE3qj6dzr8MHtmLn\nXPrVp7D6NOdCNsB1eE7/eFsADBeRzk6WZiLS9QTrfAT4sdfnrUBPEYlyfvM/9xRyZjm9+YYB1zg5\nTyUbeEaf61zP7XbF09umCXFWFIw/iQVeEZFvRWQlnlMmv3HGCfgnnoPWLDxdoZ+s9XjGbV4LtAAm\ne890TuPcDLzhbHs+0L2uFarqGmCp1+c8PD1Vrnb+XHYKORcDT+E5oG8G3jmVbI6PgLPrud1RwIcn\nndYEHesl1QQ98QzP+R/nInVIEZF3gJ+q6oY6lokC5uAZ0auq0cIZv2QtBWOC20N4LjjXJQ14yAqC\nAWspGGOM8WItBWOMMUdYUTDGGHOEFQVjjDFHWFEwxhhzhBUFY4wxR/w/H6igK+FfyYwAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Welch window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeYZFd55/95K1dXV+cwWROUhQCBEBhMBhMMyGkXbGBh\nvQs2Bi+/BRsMmF17sRzWNrZZwQK2scGkFWAwJgkEiiiMRkgahZFGEztM51hdOZzfH/eeW/feqttT\n0zM9HeZ8n6efrjo3nVv33PM9bxalFAYGBgYGBitBaK07YGBgYGCwcWFIxMDAwMBgxTAkYmBgYGCw\nYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWDEMiBgbrGCJymYg8JCIZEflvLR6jROTi1e7bmUJE\nTojIK1rY75z3X0Q+LSIfXeGxbxeRu85lfzYTDImsI9gvWV5Ellx/29a6XwZrig8Atyql0kqpT/g3\nishtIvJfV+PCInKziHzQ9X27PcE3a9uyGn04V1BK/bZS6mNr3Y/NCEMi6w+vV0q1u/5O+XcQkcha\ndGytcKHdrw8XAY+t0bXvAF7k+v4i4IkmbU8ppcbPZ8cM1g8MiWwAiMhue7X3X0RkCPiJ3f48Eblb\nROZF5GEReYnrmD0icrutBvmRiNwoIl+0t71EREZ813BUDSISEpE/EJGjIjIjIjeJSI+vL28TkSER\nmRaRj7jOExaRD9vHZkTkARHZKSKfFJG/9l3z2yLy3wPuWYnIu0XkKeApu+1y+15mReRJEfmPrv1f\nKyKP29ccFZHfc9+r3adp+z7f7DquU0S+ICJTInJSRP5QREL2treLyF0i8lciMicix0XkNa5j3y4i\nx+xrHved9zdF5JB93M0ictEyz/cNIvKY/RxvE5Er7PafAC8FbrSl0kt9x90AvNC1/UbX5leIyFP2\nOT8pIrKCvt0BvED/Hva1/ha41td2h+vcrxNL/TZvj82nB9xz03HSSv9d50iIJbn32d8/IiIVEemw\nv39MRP7W/vzPIvIn9mc9Jt4vIpMiMiYi/9l13l57bC6KyH5gn++6zxeR+0Vkwf7/fLv9pSLyiGu/\nH4nI/a7vd4rILwX81hsXSinzt07+gBPAK5q07wYU8AUgBSSB7cAM8FqsxcAr7e/99jH3AB8H4lir\nxQzwRXvbS4CRoGsD7wXuBXbYx38G+IqvL39v9+MZQBG4wt7++8AjwGWA2Nt7geuAU0DI3q8PyAGD\nAb+FAn4E9NjXSQHDwH8GIsA1wDRwpb3/GPBC+3M38CzXvVZcv8WLgSxwmb39C8C/AWn73g4D/8Xe\n9nagDLwDCAPvsu9B7P4sus6zFbjK/nw9cAS4wu7rHwJ3B9znpXZ/XglEsdRXR4CYvf024L8uM2Ya\nttu/3XeALmAXMAW8egV9iwN54Br7+6PAXuCnvrb/ZH++BpgEnmv/Xm/DGlfxJmOs6Tg5Xf+b9PEO\n4Fftzz8EjgKvcW37ZfvzPwN/4hsT/8v+zV+LNRa77e1fBW6yn/HTgFHgLntbDzAHvNX+/X7d/t6L\nNU4LWGM7CkzYx6btbXl9j5vpb807YP5cD8N6yZaAefvvW3b7bvvF2uva94PAv/iOv9l+cXfZL0nK\nte3LtE4ih4CXu7ZtxZpMI66+7HBt3w+8yf78JHB9wP0dAl5pf34P8L1lfgsFvMz1/Y3Anb59PgP8\nT/vzEPBbQIdvHz1huH+Lm4CPYk10JWwisrf9FnCb/fntwBHXtja7X1vsCWYe+FUg6bvm97GJyP4e\nsiepi5rc50eBm3z7jgIvsb/fxspI5Od99/sHZ9o31/nfizV5Dtttf+5qq+ljgf8LfMx3/JPAi5uM\nseXGSWD/m+z7MeAT9tgct/v150AC16RNI4nkgYjrPJPA8+wxUQYud237U+ok8lZgv68P9wBvtz/f\nCfyKfa4f2n1/NZZEefBs54j1+GfUWesPv6SU6rL//KLvsOvzRcB/sMX9eRGZB34ea8LfBswppbKu\n/U+eQR8uAr7pOu8hoAoMuvZx68BzQLv9eSfWarAZPg+8xf78FuBfTtMP//0+13e/b8aa0MGazF8L\nnBRLjfdzrmOb/RbbqK8YT/q2bXd9d+5TKZWzP7bb53sj8NvAmIh8V0Qud/X171z9nMVabbvPq7HN\nfX2lVM2+72b7ngmCns+Z9A3qdpEXYkkgAHe52oaVUrr/FwHv9z2jnVj36Mdy42S5/vtxOxYpPAtL\nsvkRlrT5PKwFwEzAcTNKqUqTa/RjEZJ77LnHxzYa3yX3mNH9eZH9+Ta7Py+2v286GBLZWHCnXB7G\nkkS6XH8ppdSfY6l2ukUk5dp/l+tzFmtVDVj6aayXx33u1/jOnVBKjbbQx2F8OmQXvghcLyLPwFKn\nfOs05/Lf7+2+PrUrpd4FoJS6Xyl1PTBgn/cm17HNfotTWOqwMtbk597Wyn2ilLpZKfVKLOJ+AkvF\np/v6W76+JpVSdzc5zSn39W3d/85W+4D3N2oFZ9I3sEjkhViT4p1220+BF9htd7j2HQZu8J27TSn1\nlYB+BI2TM8HdWCqxX8YaH49jPcPXsrJJewpLcnXbZ9zvjud5ubbr5+UnkdsxJGKwTvFF4PUi8irb\nSJmwDYY77JXhAeCPRSQmIj8PvN517GEgISK/KCJRLL143LX908AN2uAqIv0icn2L/foH4GMicolY\neLqI9AIopUaA+7EkkG8opfJncL/fAS4VkbeKSNT+e46IXGHf45tFpFMpVcayVdR8x+vf4oXA64Cv\nKaWqWGRzg4ik7ft9H9ZvuyxEZFBErrfJqYilhtTX/DTwIRG5yt63U0T+Q8CpbgJ+UURebj+L99vn\nC5rU/ZjAslO0ijPpG1iqmi4syfFOAKXUHNZk+xa8JPL3wG+LyHPtZ5+yx1i6yXkDx8mZwJYOHwDe\nTX2SvhtLQjzjSdseE/8K/JGItInIlVgqYo3vYY3D3xCRiIi8EbgSa3zqa1+GZQPcr5R6DFuKxvtb\nbRoYEtmgUEoNYxlJP4z1Qg9jGSv1M/0NrIE7C/xPLAOyPnYB+B2sF3kUSzJxe2v9HfBt4IciksEy\nsj+3xa59HGti/CHWZP6PWEZFjc8DV3N6VZYHSqkM8AvAm7BWg+PAX1Anv7cCJ0RkEWsCebPr8HEs\n4+cp4EvAbyulnrC3/S7W/R/DUtN8GfhcC10KYRHOKazf+MVYhneUUt+0+/ZVuz+PAq9pdhKl1JNY\nk/H/wZKMXo/l5l1qoQ9gPatfE8vTqiGOpMn1Wu6bvX8Wa5KO2ftq3Ikl9d3h2vcAlhPCjVi/9xEs\nu1IznG6cnAlux1JL7nd9T7PySfs9WKqtcSxbyj/pDbZ67HVYZD+D5QjxOqXUtL09C/wMeMz1DO8B\nTiqlJlfYn3UNsY1BBpscIvJHwMVKqbecbt9V7seLsFb6F6nzMPjEcnv+olJqx2pfy8DgQoSRRAzO\nG2x1zXuBfzgfBGJgYLD6MCRicF4gVgDdPJYR+m/XuDsGBgbnCEadZWBgYGCwYhhJxMDAwMBgxdj0\nie36+vrU7t2717obBgYGBhsKDzzwwLRSqv90+216Etm9ezcHDhxY624YGBgYbCiISEtZLow6y8DA\nwMBgxTAkYmBgYGCwYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWjA1HIiLyarFKox4RkT9Y6/4Y\nGBgYXMjYUCRi1734JFbW0SuBX7dTNRsYGBgYrAE2WpzIdVjVyo4BiMhXsdKhP36uL3T3kWl+72sP\n8/pnbCMe2VBcu/khstY9MPDBPJH1hXuPzfCLT9/Kf/q53at+rY1GItvxlq0coUmdCxF5J/BOgF27\ndvk3t4Qv3TfEqYUCn7njmH3OFZ3G4BzDpHozMGgN9x2fNSSyUiilPgt8FuDaa69d0bRz429cw2se\n2cLvfuVB3vZzu/mjN1x1TvtoYGBgcK5x4MQsv/bpe3j9M7bxl7/29PNyzY2mpxnFW/t4B63Xoj4j\niAive/o23vLci/jCPSc4OZNdjcsYGBgYnDP8yXcPsaUjwV/86tUkouHzcs2NRiL3A5eIyB4RiWGV\nSv32al7wPS+7mHBI+KefnljNyxgYGBicFQ6OzPPQ8Dzvesk+2mLnT8m0oUhEKVXBqn98M3AIuEkp\n9dhqXnOwI8Grn7aVbz00SrlaW81LGRgYGKwYX9k/RDIa5peftf28XndDkQiAUup7SqlLlVL7lFI3\nnI9rvuEZ25jPlbn76Mz5uJyBgYHBGaFaU9z82AS/cNUgHYnoeb32hiORtcALL+kjFQvzw8fG17or\nBgYGBg14eGSe2WyJl18xeN6vbUikBSSiYZ67t5d7jCRiYGCwDvGTQ5OEQ8KLLzltDalzDkMiLeL5\n+3o5Np1lbCG/1l0xMDAw8OC+4zNcvb2Tzrbzq8oCQyIt43l7ewHYf3x2jXtiYGBgUEe5WuPgyALP\n2tW9Jtc3JNIiLtuSJh4J8cjIwlp3xcDAwMDBobFFipUaz7qoa02ub0ikRUTDIa7c1sFBQyIGBgbr\nCA8OzQNwjZFE1j+esaOLR08tUK2ZBE4GBgbrA4+fWqQ3FWNbZ2JNrm9I5AxwxdY0uVKVkbncWnfF\nwMDAAIDDkxkuGWxH1ihLrCGRM8DFA2kAjkwurXFPDAwMDEApxZGJJS6x56a1gCGRM8DFA+0APGVI\nxMDAYB1gYrFIpljhksH2NeuDIZEzQGcyykA6biQRAwODdYGnJjMARhLZSNjX387RKUMiBgYGa4+j\n9oJWa0nWAoZEzhA7e5KMzpmodQMDg7XH8FyeRDREX3tszfpgSOQMsaO7jclMkUK5utZdMTAwuMAx\nOpdnR3fbmnlmgSGRM8b2riQAp+aNNGJgYLC2GJnPsaM7uaZ9MCRyhtAPbNSQiIGBwRpjZC7vLGzX\nCoZEzhDbbRIZMXYRAwODNcRSscJ8rsyO7rY17YchkTPElo4EITHqLAMDg7XFmD0Hbetam3QnGoZE\nzhCRcIieVJypTHGtu2JgYHABQ89BA2lDIhsO/ek400uGRAwMDNYO09kSwJq694IhkRWhrz1mJBED\nA4M1xYy9kO1tj69pPwyJrACWJFJa624YGBhcwJheKhIOCV3J818S1w1DIitAf7tlE1HK1BUxMDBY\nG8wslehJxQiF1i7QEAyJrAj96Tilao3FQmWtu2JgYHCBYnqpRN8aq7LAkMiK0N1mGbLmskalZWBg\nsDaYXiquuVEdDImsCJ22DnIhX17jnhgYGFyomMkW6U0ZEmmAiPyliDwhIgdF5Jsi0uXa9iEROSIi\nT4rIq9aqj51thkQMDAzWFvO5Ml1thkSa4UfA05RSTwcOAx8CEJErgTcBVwGvBj4lIuG16KCRRAwM\nDNYSSimWihXSichad2X9kYhS6odKKW2xvhfYYX++HviqUqqolDoOHAGuW4s+GhIxMDBYS+RKVZSC\n9rghkdPhN4Hv25+3A8OubSN2WwNE5J0ickBEDkxNTZ3zThkSMTAwWEssFa11dvuFKomIyC0i8miT\nv+td+3wEqABfOtPzK6U+q5S6Vil1bX9//7nsOgCJaJh4JMSiTSJz2RL3HJ2hVjNxIwYGBquDI5NL\nPDVh1VTP2OEF60ESWZMeKKVesdx2EXk78Drg5aoe0TcK7HTttsNuWxOk4hGypQpKKX7z8/fz4NA8\nH3rN5fzWi/etVZcMDAw2KYZmcrz2E3dSrSl+9N9f5EgixibSBCLyauADwBuUUjnXpm8DbxKRuIjs\nAS4B9q9FHwGS0TC5UpWh2RwPDs0D8C/3njRR7AYGBuccX7l/iFKlRrWm+NZDp1hyJJG1TXkC65BE\ngBuBNPAjEXlIRD4NoJR6DLgJeBz4AfBupdSaFTpPxcPkilXuOToDwG+9aC8jc3kOTyytVZcMDAw2\nKW59YpIXXNzL1ds7OXBilqWipUpfD+qsdUciSqmLlVI7lVLPtP9+27XtBqXUPqXUZUqp7y93ntVG\nMhYhV65ydGqJeCTEf7jW0rQ9NDy3lt0yMDDYZMiVKhyeyPDsi3q4dDDNsamsYxMx6qwNjLZomHyp\nwsmZHLt62tjblyKdiPDwyMJad83AwGAT4dDYIjUFV2/v5KLeNsYXC04W8fUgiax9DzYoUvEwp+bL\nZAo5LuptIxQSLh5o5/hUdq27ZmBgsInw+JjlkXXVtg5yJUsCOTS2CFgOPmsNI4msEMlYhHy5ylSm\nyECHVZ5yd2+KkzOGRAwMDM4dhmayxCMhtnYm2GLPNSdnc4RDQiyy9lP42vdgg6ItGiZbrDCfL9Nt\n59La3Zvi1EKBQnnN7P0GBgabDMOzeXZ0JxEReu2svRMLBWLh9TF9r49ebEC0xcNMZopUa4qupPVg\nd/e1AXByJrfcoQYGBgYtY3gux84ea27RZSjGFwvrQgoBQyIrRlusnvtRZ/Xd1pUErAdsYGBgcC4w\nPJtjZ7dFIl1tMcQuZGhIZIMjHqmTiK5xPJC2qoxNGhIxMDA4B8iXqiwWKmzptGwh4ZCQilnGdKPO\n2uCIuh6gzuk/kLYe9GSmuCZ9MjAw2FyYyVpzibv4lNaCxI0ksrERDYvzWQf8JGNh0vEIU4ZEDAwM\nzgHmslZkeo+LRLRbr1FnbXC4H2AyWldt9afjTC1ZJDKbLfHiv7yVX/rkTylWjMeWgYHB8vjM7Ue5\n6n/8gO8eHANckki7m0Ss+caQyAaHW52VcJFIRzLqpIj/yv4hTs7keGh4npsfmzjvfTQwMNg4WCpW\n+NtbniJbqvI3txwGrIUoQE8q7uzXZmwimwPuB+jWTXa1RZ1iVXcfnebKrR30p+Pc/Nj4ee+jgYHB\nxsE9R2fIl6u84ooBjkwuMbFYqJOIq5Z6KmYkkU2BaKS5JNKZtEikVlMcHF7gWRd18dw9PTxkp4s3\nMDAwaIYDJ2aJRUK87fm7AXhiPMNMtkQkJHQk6+lNtGeoMaxvcMRchnX3w9QkMrVUJFOscNlgmmfs\n6GJ0Ps/0kjG4GxgYNMeTExn29bfztG2d1vfxReZzJbraoojU5xu9gF0vksjaZ+/aoHDbREKh+gPu\ntG0iI3NW1Pr27iThkLXv0ckl+trjGBgYGPjx1MQS1+7upjsVo6styshcnmyx2pCpN2rPNzFXrNpa\nYn1Q2QZENMCo1ZmMUlPw5LhVnGp7Vxu7e+10KLMmHYqBgUEjlooVRufzXDqYBqzA5YnFAtlixTGk\na+i5Z70Y1o0kskIEiZI6ZuTwhJW+eVtXgmQ0TCQkJsOvgYFBU5yazwM4ObIG0gkmM0XikZDj0qsR\nCWtJZH2QyProxQZEkCSStFcNo/N5YuEQ7fEIkXCILZ0JTs3X06EopUy2XwODCxS1mqJWU873CTtV\nkk71PpCOM7lYJFeqNtQM0XOPMaxvcERcdhA32mxPrfGFAh3JukFsIB1nMlMnkQ98/SBP/+Mfcsfh\nqdXvrIGBwbrBUrHCyz9+Oz/35z92nG0mFq3/gx2WzbS/I85UpshSseLkytLQ2TKC5qDzDUMiK0Q4\niERsH+6xhYLHLa/fXllY2/J87YERSpUaN/7kyOp31sDAYN3g3x4a5fh0lonFIjcdGAbqkojOv9eR\niFKq1pjLljwZw6EuiQTNQecbhkRWCAl4fm226Dm9VKTTzu4L1uDQ6VC09PGqqwZ5YGiOxUJ5dTtr\nYGCwbnDL4xNc1NvGFVs7+OmRacAikY5EhKRNGB22bXUuV25QZ0W0Kn19cIghkZUiFMAinjojLhLp\nT8eZz5UpVqocGsuQioV56/N2U60pHjSBiAYGFwweGV3kObt7uHp7B4fGMiilmFysl9kGSCfqc4ff\nsK5j1Nw2lbVEoHeWiHyiheMXlVJ/eA77s2EQRCLuZIwdroGgS+gu5iscGlvksi1prtzWAcBTExle\nfGn/KvbWwMBgPWAqU2R6qcgVWzsICdx0YISppSLz+ZIntYlbFR7k4lutnZ8+nw7LufheD/yP0xz/\nB8AFSSJBLtrxaH2DeyB02FLJYqHM6Hye5+zuoScVo689zpPjmVXtq4GBwfrAE+OLAFyxJU3Bzuw9\nOpdnMV9hW1ddEmmP1xegfi8src6qqXUuiQB/o5T6/HIHi0j3Oe7PhoEESCLuAKBmUsl8rszEYoFB\nW3Td25fyBCHWaop7js3w9B2dHpHWwMBgY0Epxf7js1wymHbqgQzZ7/qe/pSTXHF8ocBioczlibRz\nrHvu8MeDaO+s6jpRZwXaRJRSf3u6g1vZZ7MiSJ3lfuDuErpaKjk5k6VcVWy1y11u7UowtpB39rvx\n1iO8+R/u4x1fOLAa3TYwMDhP+Or9w7zxs/fyxs/c40z44wsFwiFhIJ1ga2cSsDw5F/NlR1sBXo2G\nPzJdzz2V9U4iIpIQkbeJyBvEwgdF5Dsi8nci0rfaHROR94uIcl9LRD4kIkdE5EkRedVq92E5BHnX\neeuMuFRbtlTxpB3JriWRbV1JxhcKVGsKpRRfe8By+bv32CzHp02Eu4HBRsWX7xsC4KnJJR4atpxn\nxhYK9LfHCYeE7rYosUiIsYU8mWLF8cgCSLgWoEGBzUEeoucby3lnfQH4BeA3gduAXcCNQAb459Xs\nlIjstK895Gq7EngTcBXwauBTIrJmGciCJBF3AJBXErFI5OS0Jc7qSmXbupKUq4rppSLDs3mGZ/O8\n80V7AUwgooHBBsVCrswjowv85gv2AHDvsRnAcuXdYmshRITeVIyh2RxKESyJ+NRZWv5YJxyyLIlc\nqZR6M/BrwGVKqXcrpX5ge2PtXOV+/Q3wAeq/F1iG/q8qpYpKqePAEeC6Ve5HIEIBoojbVtJMEhm1\nc+ToHFv9NplMLxUdo9trnraFvvY4j4wunPuOGxgYrDoeO2W9uy+5rJ/dvW08Pma922MLBSe1CVhh\nAMOz3jkBTiOJ2Ab1jSCJlACUUhXglG/bqiV9EpHrgVGl1MO+TduBYdf3Ebut2TneKSIHROTA1NTq\nrOZbCRZ1SyKJaAgRGLcjU7XRvNt265vLlp2kjZcMprlia9ohFQMDg40FTRpXbutgd1+KE7Zq2nKq\nqZeD6EhGnTnB7crrlkT83ll1SWR9sMhy3lk77FgRcX3G/t508m4VInILsKXJpo8AH8ZSZa0YSqnP\nAp8FuPbaa1fF+hRuYRngHggiQjIaZipjRa3rVUe37bUxlysxMpenrz1OezzCJQNpvrJ/CKUUIsJc\ntsTb/mk/WzsTfOrNz143KQ8MDC50/L/7h/jEj4/wv66/ipdfMQhYWbz72uP0tcfZ3Zti//FZKtUa\nmUKFLlc8SFcy6nhpucnCbUxf7zaR5Ujk912f/a5CZ+U6pJR6RbN2Ebka2AM8bKuFdgA/E5HrgFG8\narQddtuaIMjF1424r2hMMhomV6oiAu32qsORRHIlW19qrVJ2dCfJl6vM5cr0pGJ85f4hDo4scHBk\ngduenHQGq4GBwdqhVKnxFz94ktlsib/4wRPOezm2UGB7t+V9tbOnjVypysicpbZyZ7Lw2kHq84Vb\nXR4Ne+eadRIe4iCQRE4XI7IaUEo9Agzo7yJyArhWKTUtIt8GviwiHwe2AZcA+893HzVaU2d5VxC6\nFnt7LOIMki47kn0uW2Z8sci2zrrXFlh1BnpSMW59YpLLt6QZmctzy6EJQyIGBusAB07MMpstcd2e\nHvYfn2VyscBAR4LxhQL7+tsB6LPtntrb0k0c7jRJiYDU7n7Dug4yXCeCyLJpT/4dr2HbA6XUG1al\nR8HXe0xEbgIeByrAu5VSa1aQI8g7yw2/ykkb2t0GtGg4RDoRYS5XYnKxwDW7ugDYbpPI6HyeK7d2\n8MjoAr9x3UUcn17iZydNri0Dg/WAB23X3fe89GL+0/H9PHByjtdcvZXxhQIvuNiKTuhNWdqFYzaJ\nuCURd1ChWxJxI1idtT5oZDl11l/Z/38Fy37xRfv7rwMTq9kpDaXUbt/3G4Abzse1T4cg7yw3/CSi\nM3S2J7w/ezoeYbFQZiZbcmqwD9pqrcnFAsNzOQrlGpcOtpOIhrjzqWmKlaqjLvvZ0BxDMzmuf+a2\ndTOwDAw2Gx4anufo5BK/fM125/1/dHSB3b1tXLvbSt5xbDpLplAmU6w4AcXanf/YlFUy20MiLkkk\nqMhUg4vvBlJn3Q4gIn+tlLrWtenfReSCD6duRZ3ln8/1qiPhW3Gk4hGn1ogOOKrbSsoctQffJYPt\ntMUjVGqKY1NZrtjawWy2xJs+cy+lao1KTfFrz95xNrdlYGDQBAu5Mv/x0/dQqtaoKsV/vNYyz56c\nybGnL0VbLMJAOm7XCbGrFPpIpK7Oqk+7HkkkgET8Wg/HO2udrBdbSQWfEpG9+ouI7AFSq9eljYFW\n1Fn+fTR5+AdLKh5xUp9oVZdWc81mS4wvWASzrSvJLrsG86htpPvJE5OU7HSe//bQmvkZGBhsanz/\n0THnPfv3h+sRD8NzOacu+u6+FCdnsszlrPpAOl+Wzs57csYKNHbnxHNLIv7FpYZfo6Ecm8j6YJHl\n1Fka/x24TUSOYdlyLgLeuaq92gBoxcXWTyI6mt0vnqbiYY5MWtKGO3tnTyrmeG2JQJ+dLgHqQYt3\nH52mrz3G9c/czr/cc5JSpdZwfgMDg7PDfcdnGUjHedVVW/jGz0aoVGtkS1UyhQo7uy0S2dKR4ODI\nPAs2iWi1VSQcIhENMZO1FoNu6aM1SaR5nzaMJKKU+gGWJ9R7gf+GFb3+w9Xu2HpHKw/Q//B1Cme/\n628qFmGpWAG8Rvfuthiz2RKTmQK9qTjRcIi+VJxYJMQpm0Semljiiq0dPH1HJ6VqzVF9Adx3bIb/\n76sPOgRlYGCwPCrVGjd893E+eau3bPXDw/M8c2cXz9zZRa5U5cRMlmE7I+8O25W3JxVjZqnEQt4i\nEXc9ofZ4hELZkmTcZOGxiQRIIq1oPdYSyyVgfJb+bKcaedj+Kzbb50JDKw/Wb+TW/t7+rJztrvKX\nXhKJ2pJIkYG0ZWgPhYQtHQnGFgrUaoojk0tcOpjmyq1WgatDdqRstab44DcO8q2HTvHH//7YCu7Q\nwODCw7cfPsXf33mcv7z5SQ6cmAWgXK1xYibLZVvS7Om3NPknZ3KML1i2D+2O39ceI1OsOGWw3QZ0\nd4nboKAh4LuPAAAgAElEQVTCQEmkQZ1l/V8v1LKcJPJPItItIj1Bf8A/nq+Orje0ZhPxfo+ErJ/b\nr25yR7a7SaQjGSVTqDCXKzn6VairuaaXiuTLVXb3pbioN4VIXe/6xPgiJ2ZyDHbEufvojCNiGxgY\nBOO7B8foa48RC4f4waPjgJW+vaZgZ3cbu3stEjkxk2M2Z0Wa63ez1/asPD7VGA+SsoOLIyGp10jH\nOxcEufL65xHFxsmd1Qk8cJq/C3ZmasU7y2830TYR/4rDrd7y1laOkC1WWSpUAiUUgMG0peIaSMcd\nW8mBE3MAfPDVl1OtKR4YmnWOL5SrfOm+k5ycManmDS5MFCtV/t/9Qx71b62m2H9illdeuYWrtndw\ncMRKouiorXqSdLdFScXCDM/mmLdJRKcu6rX/H5teIh2PeN5/rW3wG8/9WolmaPDO0pLIOmGR5Vx8\nd5/Hfmw4tPIAGwzr4eaG9SAdaSoWJlusEAmJR+XVnYpxeGLJcSV01ybRtpInxjN0t0V5xZWDzveX\nXW59vvEnR7jx1iPs7m3jx+9/icnDZXDB4dO3HeNvbjnMju4kt//+SwmHhFMLeTKFCldv7yQaFr7x\nwAhKKYbnLBLZ2d2GiNCfjjObLZGIhomFQ6Tsd1arr0bm8p5FH0BbvLlnZrQFJxj/VLPOwkRacvE1\nWCH8D1+LsX4S8VZDrH9OxSPky1UW8mWPhNLTZnttZbwkst1FIidnsuzuS9GRiLK9K+nUcVdK8Y2f\njQCWSP7g0Ny5uFUDgw0DpRQ3HbASgo/M5Z2CUTqOY3dfG/v628mWqkwvlRidyxOSetxHTyrGTLbI\nXLZEdyrqLCi13WN6qUgi1lzi8EsiQSosN4KSva6XpZ8hkVWEXxKJBrj4BhnatPSRL1c9Ue7dqRi5\nUtWpQ6Bz8/S1x5mxM4KenMk5+tuLetsckXxkLs/YQoH3vfJSwHJd1KhUa/zlzU/wL/eeXOktGxis\nKzw6usAHv37QUyV0ZC7P6Hye99vvwN1HpgGcdO17+9o9aYdmsiW622LOhN/bHmdmqcRcruQEBUP9\nfS1XlaceCNTf+QZJJHzmGg21zqpSGRJZRfgfftg2rEd86iM3qbjVZG6Pjg6fwR2sAd4ejzgSTndb\njEyhQrFSZWwh77wIlprLklp0sZwXXdrP3r4UB0fqebi+/fApPnnrUT76rUd51BTEMtjgUErxvpse\n4v8dGOaj33rUadfF3l56+QA7upNOyerj0zmS0TCDHXHH42p0Lm+Rhcuxpa89xvRSicVC2ePG6/HA\nijbXNvjdeFuRRPzzSG2dBRue9g7s+upvEZH/YX/fZadmNzgN/KYGverwDwp/3IiGuzKi2yaidbAT\nCwWvwT1ll+CdyVFTdQllW1eSiUyBcrXGUdtz5NLBdvYNtHNsqr5C+/eHT9GZjBISHM8UjWyx4qjK\nDAzWG3KliuNUovHkRIbDE0v0pGLcfXSaTMHyA6qrrVJcOpjmqQnLuD62kGdbVwIRcRZgYwt5ZrMl\nutsag4BzparHhul+R/2SSDxAEmnJyzNgll4ndvWWJJFPAT+HlXgRrBrrn1y1Hm0i+P27tWHdb5QP\nijB3k4tbnaVXPGOLea/B3Rat9UuhXQ63dSZQyqqqNjKXpzcVoy0WYV9/OydmslSqNZRSPDQ8z6uv\n2sLV2zu57/iMc95Cucqr/vYOXvyXt3okFwOD9YBqTfErn7qbn/+Ln/BTWzUF8MBJy973+6+6jJqC\nA/b3E9NZ+tNW8bc9fSm7xrliZqmeALUjaXlXzWZLzOfKHrVVOhGlWlPMZkveVO7RkOOk0iCJODYR\nb7tfK9EMQUSzTjikJRJ5rlLq3UABQCk1B8SWP8QAgtVZ/ocfmL3TJeq2NVnxTCwUPZKI9lfXEeo6\n8Ztun8+VGZnLOcVydvW0Ua4qJjNFRufzzOXKPG1HJ8/c2cWhsYyTo+fHhyYZmctTrio+f3ejvaRW\nW2/+IgabFZVqrWG83XtshifGMygF/3z3Caf94PACXW1RXvu0rQActp1LTsxk2WPbC7d0JMiXq2SK\nFaaXivTZQb0iQlcyyny+zGzWG6elF3FTmaJHEhERpyZIkE3Eb1hfSfoktYFqrGuURSSM7VkmIv1A\nbVV7tUngHx/ay6Lmy+UcKIlE3Qb3+uDThFKq1mh36WR1gasjtu+7XlVpfe5stsSp+bqtRFdRnFgs\nOEGKF/e3s7e/naVixSnle9eRaToSEV511SD3HqtLKAB//v0nuPyjP+Dmx7zqLwODc425bImX/fXt\nvPJvbndUUwC3H54iFg7xy9ds575jM1Rtkjk+k+Xi/nY626L0pGKcsOOiRubyTtLEAbve+cRCgaml\nIn0usuhsi7KQKzOfL9PpUmelbRIpVmqexR24bR/NbSL+uJBWSkr41VnrLRV8KyTyCeCbwICI3ADc\nBfzpqvZqk6BRErH+V30rqUiA0jMWENkalCZFt4/Yfu2aVNwleGddNUsG0pbL4mSm6ByzozvpVGTT\nZHRwZJ6n7+jieXt7GZ3PO+keZrMl/uHOY5SqNW78iTfXEFi1UIyUYrASzGZLFCvemnP/+uAoQ7M5\njk5l+dZD9Uy6B0fmuWJbBy+4uI/FQsWxeYzO5Z28Vrt72zg2lXXUVv22xLHFdo8fnsuRKVScdwOs\n92ZqqUipUnMizsFrQG+LeeNBYkGSiL0IbHD7Pyt11voQRVpJwPgl4APAnwFjwC8ppb622h3bKNA5\nq5rB/+z1qqOq/CTSfDC4PTncJOIWidNNBrSWIDSpaKPgbNZKDqfJRceXTNq2knBI2NqZcF68sXmL\nBJ6aXOKKrWkuG0wDOFG+9x6boVJTvPzyAR4ZXXCuC3DT/cNc96c/5sPffCTg1zEwaI6fHpnm2j/5\nEW/9x/2O6gbgx4cmuHxLmu1dScctF6xA2qu2dbDPzmt1Ytqy840vFthhZ9jd3t3G+GKBTLFCqVpz\nnE4G7HdAq4C7XBJHVzLqlGhwSxypePMsvOBWWzWXRCpV77u/kpISV2235pynbe887bHnA8slYHTn\nyJoEvgJ8GZiw2y543P+RV/CNdz0/cHuDJKLVWb7VeTjAVzwwUVvUbStplEQmM0VE6qshHUmrvba6\n2uppGkJi7T+2UGAgHScSDtVF/EyBaXsltqunjb22hKIrtP3s5BzxSIh3vMgqN+M2un/yNksyuenA\nMHN27Iq+95sODDvJ7QwuXMxlS/zjXcedzAsan73jGDUF+4/POuVnazXFIyMLXLu7m+v29DhG86Vi\nhflcmV09bezps0jk+HSW8cUC1Zpy7H997TGmM0VmlqyxqO2F2nV+zJau3Q4snW1RxmzXeG8mCbdU\n0jyo0O/Kq9/lcoMW4sxz8L3s8kHu/MBLefXTtpz22POB5SSRB4AD9v8p4DDwlP35gdXv2vpHfzru\nGVx+tJpOJGgguaUPT1R72OsR4v4cEihVarRFw47kE7ELXGmdcJdNKqGQkE5EWcyXmXMZD9tiEdJ2\ntcVhu/jVju42BjviJKNhTtj2k6NTS+ztb+fKbdbKSPvbD8/mOGmX660py6ai8a2HRvnA1w/yps/e\ny8xSXXIBa6Iw6q/NiWbP9SPfeoSPfedx3n/Tw05bqVLj3mMz/MqztgNwz1HLBjcylydTrPC0bZ1c\nMtjOZKZIplB2irNt70rS1Rajqy3KydmsExe13cmwGydbqjpBt7ruuc4Eocki5VuUVex+e2uhu9MU\n+dVZdvVSn51Te2YqnxaiFZtIsxRL2qazHhBIIkqpPUqpvcAtwOuVUn1KqV7gdcAFX0+kFQRJqv5B\nEUQ28YB0KB6Duy9QUb8E/sHdHo84cR46ngQsV8bFQoVZX/Rtf0ecyUzBsZVs704iIgx2xJ2V4/Hp\nLHvt1CpbOxOOa7FOI/Fff34vsUjII6F8/QEr5Uqlprj5sQmnPV+q8tpP3MmL/+pWpn3kYrCx8ZFv\nPsLVf3Qz97mcMhYLZef533Vk2llQHBpbpFip8YorBtnTl3LGks5ftbsvxd4+SyI+MZ1jdL4+PgH6\n2+NMZ0rM2gWgtMTRb9s6DtsLHb1gikVCxCMhR23ltje6F4hudZbHa9Inceg32S+JaK2E3yjeiiSy\n3tGKYf15Sqnv6S9Kqe8DwTocAwdBtZH9CDSsB5BIkMEd6one/GJ2WyzsrM46k3Wy6LAlkflc2aMP\n1i+jFv/7Xcb4yUyRak0xPJdnd5+1ItrZ3eaQ1LGpLCJWTfh9/e0ctsmlUq3x4NA8b3/+bvraYx6V\n1s2PjfPEeIbh2Txf3T/k6ftN9w/zji8ccF50g/UHpRR/9r1D/ME3DnoM4idnsnzpviGypSqfvO2o\n037/8VmqNcUfvOZyAO49Zo2FY9PWWNE1co7atgq3xKHH3MnZrNO+wyVxTC8VmbdLH+iFUV/a+q+l\ncX/JhWbqLE8FQteiLMg+CfV33O+2r8nC75m5GZKftkIip0TkD0Vkt/33EeDUaY8yCE7h7NsvaCAF\nkYVbBPZHu+v9/F4jqXi9emK7J51KvWaJm0Q6k1EWC2XmcyVCUk+10t8RZypTZC5XolpTjofXls6E\n8yIem15iW2eSRDTMpYPtjtHyyNQS+XKVa3Z1cc2ubh5ySSi3HJpgsCPOVds6uOOpuvprIVfmw998\nhB89PsHf3fKU556eHM/w+197mCfGF5v+fgbnHoVylRu++zg33T/sab/32CyfueMYX71/mH/92ajT\nrp/lSy/r575jMxTKFsE8YcdsvPHanYQEnrSf4dBMHhHLS3BHT5KRuTy1mmJ03mof7EgwaI+5qUyR\n8cUC4ZA4XlV96ThTS0WnzrkmEf1fL6RSPg/HSdspxOt51VwScb9z/txX+tX0Sxj6nfVLIusl1uNs\n0AqJ/DrQj+Xm+01ggHr0usEyCFxktOjm5yaXoFiSxmSOtiTis9W4db0JXxGsuZzlteWPys3Yaq6u\ntpjTl4F0nMnFguOJpV0lt3YlGF8oWKmzZ3Nc1GutFnd0Jx0jp05wt6+/nYsH2hmayVGpWiFHj51a\n5Jqd3Tx/Xy8PDc87btA/fmKCSk2xpy/FLYcmPTrlD3/zEb72wAgf+PpBz71OZYr87lce5N8eGsVg\nZTgxneU9X/4Ztz4x6Wn/0n1D/P2dx/nANw46zxPgB4+OkYiG6E/H+fGhuprywaE5BtJx3vicXRQr\nNSeb9LGpLIMdcbpTMXb1tDnpeE7OZtnSkSARDbOrp41StcZEpsDofJ4Bu25OZzJKNCxMZSyJoysZ\ndSZpS4IuMp8vEYuEnLGuJQ/tnu51k/eWsdVwSx/JAE/JiI9EdC4sv60jKEZsvbjpng1acfGdVUq9\nVyl1jf33XqWUca1pAX7bhwpQaAVJIm41V1CitrivXUsvfoO/W73lFsE7klFOzedRylvOsyMZsQzu\nPjVXbypGtlR11Ahuf/tStcZstsTUUr2c75bOJNWaYnqpyJBt1NzV28bu3jYqNcWp+QLZYoUTM1mu\n3NbBJYNpSpWaYwB9eHie9niEd75oL9NLRWeyGZ3P88DJOXpTMQ6OLHhUXZ+89Qj//vApfu9rDzPr\n8gzLFiv8yqd+yts+t59y1RsvO71U3NRJJ6cyRSf5phufv/sEP/8XP+Eul/QHcMP3DvGdg2P83tce\ndoge4PuPjDku47e4yOKBoTmefVE3r7higP3HZx2yPzaV5eKBdi4ZtGOPbKn02PSSY9vY19/uuI0P\nz+Yco7F2z7UyT+edpIghW/KYyhQbAgF7263xObFQoLutnqa9PW7toyUXt7qpo0lKIfASh1cScZGI\nTxUdDUhtpN9x/wxwQUgiInKriPzE/3c+OrfR4SeHujqrNcO6uz2opkBQZGzKp85yr6oSnkqKEbKl\nqr2Pt8JiplhhOlOkxyehQD2JnbaVaEPlXK7M5GLR8b/fav8fXygwNJujMxmlIxHlIqfMaJbhuRxK\n1SUUgKfsyebRU4tcubWDq22f+Kdsw+hDQ5Yq7AOvvgyA+2ydulKK7z4yxo7uJOWq4s6nppy+f/X+\nYX42NM/th6c8CSaLlSqv+8RdvO7/3MUdh+v7A/zwsXHe9rn9Tu169zHfOXiqqRPAXLbUQFKngz8A\nVd/L9FKxwaOnVlP84NFxh2g1SpUav/e1h/nYdx73HFOsVLn+xrv4xU/cxe2u+8sWK/zVzU8yMpfn\nr3/0pNOeL1W54/AUWzsTzGRLTs6pYqXKQ8PzvOm6XeztTznZCyrVGocnlrhyaweXb+lgsWBlO1BK\ncWxqib39KS7qaSMaFue5Hp/OOvXKt3YlHGeNsYWC41GlKwXOLJWYy5ad72AtXqaXiizYkoiGljhG\n5vJ0JWMN7TrflXuS95BFAHEkAwzrfklEv9sN2Sp0g1+dxcZHK+qs3wN+3/77KPAQluuvwWkQpM5q\nCEIMIAi3mitoxeJPoxCUdiHIu8vzorglFPulG53PeyQR/TKenLVIRKvAtBQzPJejWKk55KIL+Ywt\nFJhYLLLV/q4jhacyRccgv7Ur4dRA0RPk8eks+wba2WtPOHol+8joAtGw8IZnbCcWDnHI1qmPzueZ\nyhR5xwv3ko5HPPVSbntykn39Kbrboh41zS2PTzJuT2JfdNVSqVRrfOhfH+H2w1P86fcOeX7Pj//o\nMO/58oO84wsHPBP2o6MLPO/PfszrPnGXh0hKlRrX33gXL/zfP2lwbf7Qvz7CM//4hw2xM5/48RGu\n/ZNb+JsfHfa0f+GeE/z2Fx/gTZ+913ONbz98iq8/MMI/3nXcQxa3PD7JqYXG+7v/xCyZYoXr9vTw\n0PC8o6I8ODJPsVJzjN66X0cml6jUFFdu7eCKLR2Ow8TQbI5SpcZlWzociePwxBJzuTKLhQp7+tqJ\nhENO5c1ipcp8ruwsMAbSCeZyZUqVmidPlfas0upWd83y7raYlRwxX3LinsCltloseIzkFnFYn90q\nK6h7UsUiIY8ayhOb5Vp4uffxSyL6Go3ZKgLUWZtAFGlFnfWA6++nSqn3AS9ZzU6JyO+KyBMi8piI\n/G9X+4dE5IiIPCkir1rNPpwLtBKNCsEEEfKQyOljSaBOFv7BrfcT8RKKWyrxqLlsiWNiseAx0mtJ\nZNznzaJJRHvTaDVXt5P8seSZIHSiu6mlIqMun/7utiixSIiJTIFcqcJstsSO7iRtsQjbOhOOBHR8\neoldPW0kY2F297U5Ke21SuoZO7u4cluHo4Ov1RQ/OznH8/f18dw9vU4QG1iR9+3xCL/27B3sPzHr\nxDTcf2KOmWyJvX0p7jk64zgmVGvKMR4/ODTPMZdt4F/uOWnp/icy3PZkfSL/3iNjPDyyYHmfuYzS\nw7M5vrJ/iEyxwidvraeOqVRrfO6nxwH43E9PeMji63ZlytH5PPe7iOcHj44xkLZieX58qE6S9xyb\ndu7v/hN1VdMDJ+cIh4Tfeck+lKr/djre57o9PWzvSjpkod1jL9+S5pLBdobncuRLVScF+87uZH0R\nMJdzFgK7bPXUYNqSOKZtjz89BrTqc2QuR65UdcaIXqBYmXRLHsmiI2k7hGS9kohWW01mih7bn4jQ\nbo/jlJ9E9MLLtyBzSxl+iSOovU4i3v0cF1/f8RufQlpTZ/W4/vrsyXvV4u1F5KXA9cAzlFJXAX9l\nt18JvAm4Cng18Ck7MeS6RUNtZKeYjG+/s7hGQ6ld+0Xwe404kbSRkIeQ3MThlkT0iq5cVU3bT80X\nSEbDzgpLrwa13UNLL5pc5vNlZpaKTnr6VCxMMhpmOlNkbD5PxNZzO7EoCwVHQqknjEw4JYFH5+tJ\n9Pb21XXqOhByX3+Kvf0pJ7p+fLFAtlTlsi1pLt2S5sRM1vEUenhknqfv6OQ5u7uZz5UdN1Ado/D+\nX7iMik1CYAVZTmWK/O7LLgbg7qP1+IfbDk/yqqsGSURDnrTkdxyeojcV4+rtnfzEJQXd+qT1+WWX\nD3DvsVmHLB4cnmchX+aXnrmNpWLFufZCrsyjo4v8zkv2EQmJY8tQSvHg0DwvvrSf6/b0sN8lgT04\nNM8zd3bx7Iv0/Vm/0eGJDLt727hmVzdQ95h6YjxDRyLClo4El21JO+QxYlfS3GlHhysFo/M55zlt\n60rSn44jgk0WXueLAduzb1o7ZbTX2wGH8DWJJKJhUrEwE/az80vEi4Uyiz4JRY/PUqXWkJJESxxB\nJOJ/l9x2yCDnl6hvsabJIkhl7VdNbgJBpCV1ljty/R7g/cB/WcU+vQv4c6VUEUAppd+464GvKqWK\nSqnjwBFgXRfHCkycJv7vKx9JfluJfhH8K6SgVNTu1Zo3Ere5PjhIXaDJYmTOG7SVioWJhISFfJmZ\nbMnRa4sIfekY00tFq+hPqu4BZq1Y6xKKNqgOdljt+jo6x9e2rqQjGQ3P5uhqi5JORNnb185czorG\n15LK3v4Ulw2mUcpSzyilODK5xGVb0lxi5wbT+z4+tsj2riTP22tl+dH6fG2gft3Tt9HdFuVx+/tk\nxlLZXbenl2fu7PJIOw8MzfGc3T1ct6eHR0cXHBvIQ8Pz9LXH+dVn7SBfrvL4KUst95gtFbzzRfsA\nyzak+wTw3L29XDzQ7kz8k5kiM9kSV23r4PKtaY5NLzl1Yo5PZ7lksJ3Lt9i5z9x2ib52OpNRtnQk\nHFXh6FyeXb1tiAi7etocSePUQoHeVIxENOzkXRtfsJ6TiEXy0XCI3lTcQyI6T5X1/FztNrno6HEt\n8bjTrve0xxzpszPpJ5EKuXK1aZkEaBzrmiz8AYJaVeV3Xokso7bS8NszHRIJ8MBsNKxvfBZphUSu\nUErttSPYL1FK/QJw/yr26VLghSJyn4jcLiLPsdu3A27n9BG7rQEi8k4ROSAiB6ampprtcl4QWBvZ\nh7MZR0EFrhrUWboojr/iWoAkkgj4rNVcs9mSL97Em0FYE4yI0JmMMrNUJFOoeCYIKzCs5Lhpagx0\nWL7+OurYSZaXtianXMnKl6TJZaAjTq5UZalY8ZCLjmIeWyhwfKZeP3tnj9V+yq6fnStVuainzakx\noSWRo5NLXDrYTm97nJ5UjCOT9ZV6LBxiX3+KiwfqcTCHxqztV27t4NLBNMdskiqUqwzN5rh8a5rL\nt6QpVmqctK9xaCzD07ZbEz/Uk1s+MZ6hJxXjiq1pelIxpxaGjom5wia9p+w+aWK4dDDNxf3tlKuK\nodkck5kiuVKVPX0pR600NJujVlOcmMmxxw7c29aVcDzcxhbybO2sS3+ZQoWlYsVq7/LatMYXC0wu\nFuhNxZ1JeLAjzviCS22lYzgaUo9Yz1UvTLQU63Y170hEnf3dkkhHIkqpUqNaUy2NW+t78wWWXjz5\nJRGPOitIEglUZzWPE9mMWX1aIZG7m7TdczYXFZFbROTRJn/XAxGgB3geljH/JjlDulZKfVYpda1S\n6tr+/v6z6epZwT/u9Pjxi7pnsxbx/zKaLILquPtflKCXzm03aabOAq/bcCQcIhULOzmI3ATTmYw6\n9Uq6PSoJywPMMo76Ah3tKHrrmHrG1Uyh4rgX96W8OvXJxYJnAnTaMwWmFguExFKtaGP/+GLB43bc\nnYrRmYw6JDI6n3fcTPf0pZx7GJnLs707SSQc4uKBdsftWJ9rT1+Kff3tZOyaLFblPKv9Ulva0VLQ\n8GyO3b0pdna3EQ6Js+o+Np1lX38KEeGSgXYnLf/wbJ5kNEx/Os7F/e0Mz+YplKuMzNdznOlEmSdm\nsk6fd/W00ZOKkYqFGZrNMZcrUarUHFXhVpc0N7ZQYJv9G2lHiPGFAuMLBbZ01MkFLLXVXK5EjyuV\nTr8d8De9VKQ9HnHGVUfSm+xQq6HaHek2b48Lr8utlj6blYgG/xhuPm6hLnH43414gPTuXogF5biK\nBLje+wUXffjGlzsaEQnaICJbsFb6SRG5hvr9dwBnlf1LKfWKZa77LuBflaU83C8iNaAPGAV2unbd\nYbetW7TKfWcj0vpXPHV1VnPDul/8TgSQhcdWEmue5sHv5ZKMhZ3VZzrujjmJOt5PHiO9nc+rWBZP\nQrmORJQFO0ZFXNHyWorRE6022jsp7TNFZrNlnn2RnS9JG+8zRaaWivSk4lZ0cypOJCSMLxScc2qp\nZktHgsnFIkvFCgv5sqfd8QCbqxf22t6VZDZbolC2YmeiYWEgHXeCLYdmc8zYsSp7+lIOwY0vFpjL\nlVkqVtjZ00YsEmJHd9K5t7GFPM+ybRXbu5KOO+2p+byTx0xLBVOZIqNzeUelpLNCTy4WycYtu8/W\nTuuY7d2Wh9SUY6+ou2L/+NAE2WKFTKHCVtd9g0Uic7kSz9jR5YyDdDxSD/hzSQ+dySjHp7PMZUue\nPG3aKUN7imki0GNl0iYLv3oqb9uughY83iSkzdWwUJc4wr4Z3vG88ue1CjCme/YJUGf538vNEFQY\nhOUkkVdhGbV3AB8H/tr+ex/w4VXs07eAlwKIyKVYpXingW8DbxKRuIjsAS4B9q9iP1aMwY5403Yn\nTqTBc2Pl1/KfS5OEX8zWqgb//sEvZnM1l1tCaUYiGm4pxZ2byN2eiodZKlQa1FkdySjFSo3JxQId\niahzT1qVVld7WN+1usTKmVRPJOkuujW5WA+ADIWEwQ4rwn7Gr3Kx7TRjjrHYdkPtiDuT3KirOuSA\nKwXH6LwVEBcKie/a1r1v7UzSm4oRDQun5guOmmZnt5fAajXF+ELBIZzBTitfWa2mOOUKuht0qZRG\n5/MMphPEIiHHYD2xWGwwbvem4lZAqC/jwJbOBIVyzZHC/G62s7lSQ361Dic1TmOsxmLeIsj2eKPR\ne3zBkqb0QicRDREJiRMrEpT4MIgs4q2qs04jifg1TUEBvm4EeWf54Ugim5BLAiURpdTngc+LyK8q\npb5xHvv0OeBzIvIoUALeZkslj4nITcDjQAV4t1Kqusx51gzf/J0X8Nip4HxOjd5ZZyOJND93kIuv\nH0FqK48bsKtdxIr2LVZqDV4ubdGIvX/IIwm1RcOUKpbXUdKTajtKtlihXKt5o+V1LMpMzqf+qrdD\n3f21YCcAACAASURBVCNMt4/NF6jUlDMBJmNh2uMRppcsSURPmGBNkrO5EjPZEiJ1lVl/e5wHhuYa\nJ9mOhCOdTC8VGeyskwtYap2JhYKzctftk4sFZrNW/rGeVIxQSNjSmWB8Ie9cQ5NBfzrOY6cWmV4q\nUq4qtnfVVUqVmmI6a9V9uWJLh9Mnfe0Z1/3FIiF6UjEmMwWKFYuE9STf0x7j0KnFhvtz4ny0/cH+\nrol7crFAsVLzSBwdySiLeSvv2jN3drmeX9Sxo7S7FxMuzz732BER2hMRR33ZrEYOeGM1ghY5Cc+4\n9UkcWhIJcDrxe061kmHX/54FSSIrecVved+LnIXLesZy6qy3KKW+COwWkff5tyulPr4aHVJKlYC3\nBGy7AbhhNa57LrGtK+msFt0ISntydqsTn/He/t9gPLQn9YbSvAHFrpZVC9gk4g90TNj7uVef/uO9\nqoowGZ0U0pdVFSyJo8818ev2k/ZE1+MzzPoDIMGauDIFK97kYttWANakuZAvM5st0pWsSzt9dvbi\n+bzfHmP1w7Jl1KUgtyptLldyIu572mJEQuK0a1UaWJP/uE0u7vvoT9susD7pSF9jYqFo1X1xvJ2s\n7eMLBWZ9UoLlhFCkbFfx0zr93lSMmWzJkVC0pOEuXOb+7n4W4DduWxLHfL5Ml09tVakpppdKjpQF\n3tQju3z1MNIuEnGTQirA2ypIKnGP50abSHN7oZba/XaPII+sZsdq6G8NhnXH9bd1XDyQ5uKB9Bkc\nsTZY7ldK2f/bgXSTP4MzhLPQOQcyrR7vDcZ7+xpBhnV/eU73SxAPWMUF+dv7iUq7TrptKNa5Akgk\n0XyC0Kvf8cVC05WsXi3riS4ViyBSnwDdHmDtiQhL9qo47XNJXsiXmVkqObErYLmd5svVeu0Vm0R0\noJv2qnJSjLtUaXO5kmOn0fmdJjNFpjIljxTUmYyxkLeSW7r725+Os1SsOAZmverX20fnc1RqyiMl\nhAQW8mWPGs861nJOmFkqOS60YKmzLPK07E26vLK+1gmflJeIholFQnXpz6d21JUvOxLu9nqyQ3+2\nXLAWMv5SBZpgEtGQx27ncUEPkI79EodGkGHdbxfUNhL/xN+KTcR/rqBgw02oxXKwnDrrM/b/Pz5/\n3bkw4B9QrVQ3aziHCCgVmOTRb1gPSrvg1vu6z+VWHQSv6LzX0BKHX0LxJrLzqrM03GoI92TjzfNV\nj6KPR+qTTSgktMcjjt3FTRaWB1iZpUKlQdpZzJetKHqfSyk0rrz1xFhXpUU919LJKt3qt662qKP+\n0m7Kuv3Q2CKz2RLxSMghVk1IRyez3ms32ILqROWuTOn3fNNkq/sOOFLM8GyO9njEeeZ+dZZbvdiZ\njDZt70hEHTtGW6zxOVnqrEYSgUZ7mjay+0sYxMLNVVhB6iw3/Kl/NCn4AwT1gsv/FrZmWPeeq273\nbO7iuxkRSCIaItIPvAPY7d5fKfWbq9etzYkgF/GzGV7+sam1VX4xux4x693fv59/f4BogFuwfxWm\nX+aYLxbFLZmkAozvgQb+JoGOOV/0MngntKTPu2dsIU+lpjykpSWRpWLFsS24rzE8myMeCdXdUwMm\n8kQ0TCwcYnTeSnff7cvjpKWg7S71ZmcyynzOKvjVk4o5E04QgTWomnx2Ip2jyp9DKlOoEBJxnAOs\na2g327wjhXiuMeslMH2MDjh0SxYdSVfyziZ51/z7+0vPuqElZT8hxFqQjv0GdI2GDLuh5jYRPY6r\n/gVWC+qs0xnSnf1Oe6aNi1biRP4NK83JLcB3XX8GZwqd9sQ/wM7Cc8NvlNfvQZBO1m+XaUXv6z9X\nkG5Zr9z8RvxkgH2llSAxf24vTXr+yUZPmv5t6USkHrviU2eVq4rZbMnTJ20DGJ7Le20rzkTeZJJN\nRhia9Xo1WdeuS0FuwuxMRsmWqkwvFX2Gam/QnVah+dsbgvHmGmNwOhKW55RfGtAT+cRiMTDjQCQk\nnmfQmYxSKFuOEe72dIC9IsimEQqJ8/wCo8ljy5FIkE2ktWhyTR5BNpGG0rUtSCKtlsDezDitJAK0\nKaU+uOo9uYDQGGx45kY3FUBIWt4Jcv1tkEQCvLbcCA7O8qsFmieyc3tktQWWGQ1YcfrtK5Ew5Wql\nKYk0u0Y6EXGM981W3mMLBc8KWZ9n1BX5DnUpQa/I3TaAdCLqVMxzT9jt8QhHpyoNrq6agMYXCt4y\nrYl6JmR3QaVk1Eod09S4nYw4Eorf/rBUrBANh7zSQLwuibg9qrSbbaWmPNIfeH9PjwdfC4uA9rif\nLKzn15DzrQUS8eSyCsiw64Z/8RO1x3GQTcSv6m1lgRXkWRn0Lm9GcmlFEvmOiLx21XtyASBInVX3\nIW99gAXZ6INqlgTl7mnFjdH/0kUDouKjAZKI+3tQtcbACSkgTYt/JRtUhc4/qdf3b54nTKti8uWq\npz0RDRENixM97T9mslkwpTteosmq/9RCvmlespG5PB2Jur1CRKyATdvm45W0ok5pV/+5lLLT0yQa\nSbKmoN1FhCJ16cO/sg8i+CAPviAvP3BlzG0YI2H7WN/+AbEa0YBx5EYQWTRI0AELrJVIIkHv+CbM\nduKgFRJ5LxaR5EVkUUQyImKKWq8AQcGGZ6MwbZBqgnS0AVlEW0lXH1Qbwf+SBqmzgojKW68hSG3R\nfBLyux17Iu89dhcXiSSaE02gbcZFYCLiGIz96fTTiairsJe3Xdf6dq/INZllChWfFGSdv1SpNdx3\npx2A6b+/jkTUcdv2k4tzvVijJAJeycx97/6VfXBgn+uZRZpLBkHxSv5AviAVaRBBeB1Cmu4SuMjx\nR6wHOZ0EFYJbDsEaAgubTw5pQZ2llDLuvOcYjRyyEnWW9d8vcevVq99IqF8I/2orqKricvvoF8Rv\nlNcTht87K5BEgogjgBCs/ZobYPXkFnbp3f3n9daZb+4x5lXXNLftJCLeynhpDzkFeSNFXfs0d3le\nzlgctM1NTkESmNe43Zw8oU6A/vsOtEW4PfgCIsuDVKFBxdSC0vX44ZYSgib7hjrnoeY2Ef29toLs\niMFqK+/3oOSrmwGteGc9q0nzAnBSKVU5913avAgKNjyblAit6mQ12fh70Mpqy69R0Nf0r+iC1FlB\nagEPibhXrwESivW9uTrLkVCi3gk+FhBMGTSRL+c6qo/3E1uQ44CHRNwxMQFp9oPidPzfE0HkG3Af\n7msv57rtJslm1xbx/p7BqXHqn/0LEL0tuJiaTxIJUme52gPLS/vjPgIkaJz3rzWp3ruPz7HltPuf\n/pwbDa0Y1j8FPAt4xP5+NfAo0Cki71JK/XC1OrfZEKTOOrsEjK3tV5dEfOqsFhSarZTvhfrk31iX\noflFvBNSQMBYkCTSJIq+abvrvO7rBednCpYG9OSa8E+AQa6nrsk0SGJwXzsUEhLREIVyrclEbn2P\nhiWQZIPS1gRJV0FedP5nodv9BB2kgnS3+xcQ0cjydrMGFVRL6qwgScT7XY/8oBogfrTyXrb65vrf\nu82EVmwip4BrlFLPVko9G3gmcAx4JfC/lz3SoCkaVjzO/zMnk1b5x/HOCmhv5Vg/GiaIUPMJIigW\nJUid5UbQZJpsqCFfn+iatfuvFxQAGQ5JvfZKgDTg914KWt0HSVpB17au0VzSCmoPqgfjnsjd/XAT\naVBZgCCbSFCf/J/d125QhdJ8jGgDekMxtQBJxH3eViURbTsKiuFYkSbgDI/ZjNl8WyGRS5VSj+kv\nSqnHgcuVUsdWr1ubE4HBhnUWOWO0KsXUDeu+9hUY1jWCJBE//GovDY93VsCKM0ht1TiZNreVxAIm\n01bUVkGTZtD+EKyecl+7LUAKcp87kMCWmci9HlLNySwUEmcSdUeDu8/VeG2r3T/5JgLu2z0O/FKo\nONduLon4x2cs0sIiJ2B8+sml5tgR/Wor7QV32ks1oEGdFeAduXnlkNbUWY+JyP8Fvmp/fyPwuIjE\ngfKq9WwTIriy4Zkb1p1jW9wvSJ21Ehffertf4tATgT/JY/Pj4+HmE4/3nM29dfyTUFBhoaCJ/HRq\nnUyh0ro0EKlPsp5cZAHXSCxDIo40EKBKC0pB4++Xuz3ITdZvQA8iaP1bB1XRhGBp0z++tAeUf9Gg\nx1JjmYQWVEoBu/jHrR6XjYG49nnOpZQQaHE/d5dYL2hFEnk7Vj3z/8/+O2a3lbHrfhicGc5lxHor\nLxmcJ3WW/b0hU3DA8VHXKjOoG41J8UJN+6Qncv+140GqHM9q2XcuvepvUPc0l3Z0ezgkgfnHglRb\ngUQVGB8T7DkVpM7y2xV0H/1ErPfzT/DRgEhvt5QRKA34xki1ps/pt5vphVRzj6rlELzIaVGddQ4n\n9sA4kU0sirTi4punXpDKj6Vz3qNNjMBU8M7/1bOJOETV0H7m6iz9Mga5Svrdi4MM6+6JJIgMGwId\nXUkX3XCyFPtIpBV7gF8K0t1vCHwL9AyzvvufXxCBeaWV5oQUZNwOUu8td94gu0KDcduxBXmvoX8f\n/xNyXy9woRG4APFeWz/PlUgigS6+vnZHnRUQqLUZPafOB1px8b0E+DPgSsDJ5KaU2ruK/dqcCNCX\nno1OtlVJ5GxE9UbdsmraHnHUWd7jA5M8uvoedB8NNR60JOJPaeHkP/JLIl7vp/r+wR5EzYL3rHM1\nn+DrlfGCr+2esL0uyP77WN7ms5xNJMhzyk8WEtAelNdKk4s/jCLSgodUY9Em67+f1xxJJCCwdTkE\nZcgNGrfB6qzVw2YmqFbUWf8E/F+saoIvBb4AfHE1O3WhYjXHmX6XV+JOHPQy+lUSQeqsoInA/fK3\nmg01yNc/SF0XZLB3r5D92VodvX1AKvGGYlz2pOuXgpazuzjX9huYAzzDtAQWpGrywyuhBNhEGs4V\natpXfd+NEubpx5KfoIMq/7WqkjoTtLr4caeXOVs4EesN7Wd96nWLVkgkqZT6MSBKqZNKqT8CfnF1\nu7U5EZzvauUjrNVx36rE0gxBuuVWE9m1Uqs6UJ3VEADWnESiAdGUQZOQe8JoqJNtTwF+ctH34V/5\nBmWBDbLBePZpsFdY//1utnrV35BUsIVgPD9ZBHlI6WP8j0K3+yO6W3mujTEZug/NScT/tM5m3Daq\ns5rbRFZDEgkipM0okLTinVUUkRDwlIi8BxjFqnZosEI0rFJ0+wpemKCXzE9LZzN4/RO5nkv8K9HT\nTRDLIWiXhuI+jjqkNUmktTrZARNawGTq/z2C7i/IvbjZOU/X7kzkLUoD7nb/tfUiIMi43UhUAZJI\nS0Wbmi8C/N0O+s1beX6tXluP28Y4rdWf2oPsoZsBrUgi7wXagP8GPBt4K/C21ezUZkWQxJGKRRhI\nx/mTX3raGZ+zdcP6WdhdfKNE34ffOBpkvA9SuXiu0aJhPUgdEgmwibRCYI1G3ubHOpPsMl5KzfaH\n5dJ3NCck/+6Bnm8tBOP5ySIUIM1pT6r/v70zj7ekqu7999dNzyPdNA3dTTNJkG4QkQtpwEiDjTIo\nCAFBBYTkyQdEweThQEgITx4xwfhieNEYJAoYI0GRIYogIgQjYWgUmumDtBIVxAE0IFGm7pU/ap97\nT1fVPrdOnaoz3fX9fO7n1nT2WrvqnL1qr7X32tkGPhLrKpDuIBYTybiz2nRzFaHoEN9ORkfGSBe1\ncsk8Zk6dzJmv36k6IX1CkdFZd4fN54CT61VnuGnMTp6Zyp46eZK465w1pcqMpmzIXFeqeCBn5m/D\niERdRZvuF1qXIaJfzGOSDczGGvIiDV2+UYgPL97080VWh4w19mn9Yr2B0SSBGVfh+O669DVJ2Zb5\nkjSec3aYbfK/TMqceEwk//rM97aDL276s+MN8a1zrY95M6bw0IcPrq38XhI1IpKua/VBMzu8enWG\nm9NW78j0KZM5bq9tKiuz6Ne+kx9IJkC5Mf94TKcib5NRH3LErx1L552ZB1OgFxRzKWXcWW0Gf4sY\nsKJB3s1G3VnFZLfSY9IkYEP8rT8bM8iXUWj4baZ+jf/F3LBl0rHHPtuYo5KZsV6hO6tMePNTx7+G\nZZvPrEyHbtOqJ7IP8GPgC8CdDGdMqKtMnzKZ01bvWGmZhdOeRFxNZWSMjc5Kuwtiny8hNJBuCEaT\n6GXiFflv6mVGEI3KjgwvbjRGY7IjLqUCBiybWyohrfZo/UoEt2NzL7K91db3If14ixiR9P2PLd8c\nHZ1XxOEeIeaGzQ7WCP/Li8rQznf+4F23rlBy92llRLYiSbL4NuDtJOuqf6E5j5bTe7oxOitNrDdg\nkcBlJxQd+jnWMLbvU88Ef1NljpUVzmfcdbGeSAnZsZhBIy5RQkbRuFJjv2hvoEgDn4lLjMoa/7Ot\nZJf57OjorJTeVcZEhjmAHiP6NTCzDWZ2g5m9E1hFkvrk1jBCy+kTio7OalBFAx+bsT46yqxCmdnh\n0PlljjW+m15frCeS/zMo6taJ9WSKyI75/LPB7fzPF3GZFQ0kN2Sme5TRVOsFnmusp5T+bKwXW+XQ\n9NiM9VjSxE4Yxmy9MVoG1kOSxcNIeiPbARcBV9evllOUTIMduW40rUQFMhs/unTjaWO/xkI6FSHb\nk8hffrTdSWzNxBr72Jt6+upYluJyvaBQj8gcnHRwu0gbW3Q4bUNmZpnYUeuSLrf9XtB4y8em6eSd\nJ/1ysGFUdsSITJx2v1KirzGSLgf+g2RBqv9jZnuZ2flm9kSdCkl6taQ7JN0raa2kvZvOnS1pvaRH\nJL2xTj0GhcxbVfS69suelcow22Dc0VkVvoVlJoxtzD8+uh9pMFuReVuOupRi9c2nSA8sFniODYHN\nxCVKDFqIuf4aZIP3+eUW+U7F5moUHbpbphe7aM40IPv9jcVEnM5o1RM5HvhvknkiZzQ9TAFmZnNr\n0ulCEqP1NUmHhv3VklYAxwErgSXANyT9jpltqEmPwSDye8j2UNr/4dxy1mp+9MvfZI5HYyKRcjr5\nzRYdwhxrfIvUO56WJV9GrBdUhni8Iv+67How7cscm6ux6fFGNdJ+/VispIyRHIuJFFO8TP2uPX0/\nfvrs8xn9YkN8q4xjbLtwFt9e/zTzZkyprMx+J2pEzKyDcREdYUDDQM0jWVkR4AjgCjN7AXhM0npg\nb5Le0tByw/t+r+UInKI/skmRBrAVW86dzpZzp2eON3oDmZ7IqM+5uIzxyDZCkUzI4zSMZYitQBmT\nXYai631HDV1H8aZ8A5Y2VJ1M+Cs6fDo6OqtE/ZbMn8GS+TMyx2Mz1mMjxspw7ptWsGaXLdlt2byO\nyxoUiqQ96TbvA26U9Nck7rZ9w/GlwB1N1z0ejmWQdApwCsDy5cvr07QLvHKr1h2+wt39Chv2sVEu\n+Q18poEomeLeLOetMeK/Hs9FU4bY8OK0jE4an8zKf5EyY+8RZURbxNg39tPDiMeMS/tv7BkDFJk1\nHqNKz1NjmHR8gmbnMqZPmcyBr1zceUEDRE+MiKRvkAwhTnMO8Hrgj8zsKklvBf4RaGs6t5ldDFwM\nMDIyMtRj7mLf+3Yq/fFjX83cGcW/ChsjvuU6MpXGYj6ZdPqN/xX0RGINeYxJkaG/rVi+YCY/+uVv\nchIwxtxZ+UN8O+uJbLofM9AdpR6JPL/i7qzqrMiHj9iVpfNnsP/vLNpUp6FuIeqnJ0bEzKJGIQT0\nzwy7XwQuCdtPAM1TvZeFYxOabAygfd6yR26HLsrozN98b1bOeint66RQXrq3szEyAqxxXZmYSIxY\nLyh7XaMXVJzbPnBA7vGYMRxtjNOpR0rc3HYTfnZiRDK91UgvqI6Jqmm2mD2Ncw5bkTke60E7xehV\n3KMVPwH2D9sHAo+G7euA4yRNk7Q9sBNwVw/06yva/+J3/kuJurMib7JlJI6mfC8YWB8NFkeC4WUo\nmrcpllSwDLEiomldOumJFLyuyhjXqOyi7qwuzreYSHM7qqQfYyLvAv5W0mbA84TYhpk9KOlK4CGS\nBbJOn/Ajs8hxScQurLDL/sqt5nD795/OrFNRxxtdZgpGdFZ8rCfSPmMupWK+8/Gub0t2+B8Lbmcm\nApZ4DYxls431UGKjs8rQ+I4UHQBRhwFL4/NEOqPvjIiZ/TtJyvm8cxcAF3RXo/4m9vZU5+/hUyfs\nyUM/eZY50zcdxjjWwHXeFYnFJeKz4hv/06606txZ8esawkuLypCNS4wjuw3GjEXqeL6nMGrAytDu\nSKhW1932/gP47Uudv0c2etZuQ8rRd0bEaY+iDV1j9u5W86Z1LHPu9Cms2mFh9HyVb3RF8x/FGsBO\nVMm66/Ibm9i8izLE2umxwHo6JlJCxngNeWbUVvXNaxWjs5YvrCbzbWN548YkRac93IgMOEVTai+Y\nNZW/OXZ39nvFFrXpEu0llBziC9nG5oWXkqj+wlnpH3xkeHENvaA0dQwvzg4jbi27HdodqjsWj+m8\nKxJzHcUD6/X3D3bZei4X/v6reOPKvAGjzni4ERlwInPVcjlyj2W16hLLi1SuIU/GZ6V7HH/25hVs\nu3BmxhjGkuvV4c4qmvyxSmITAavMBhAzEq1GZ130tj2YWiDlfYONke9Ir3lrhWv8TDTciAw43XhT\na5dKJ/ylGrCl82dw9qG7ZK7bGElp0QmxIH16idrRVCVdiAJn056Uj4nEEgDHJlPm9RYO331J2/Lz\nZDiDSz8O8XUGlKhLokxhbQ6bbXfuQ0vREdnTgu/8xZc35l5fJPX7eIznaap0smHqycRkdzJPJCrb\nbcjQ4EZkyOjl5Nt203y3ot0iRgPuNY6QmhoGJ7yYWtqw0ZBX2djGXIKZdc7LiBwnx1k2pUwJGTHR\nXZhU6HQXd2cNKb34TVa5KNVVp+3Ldff9JDMXJSq7wiR6DdJFzZme/Fwy82NqkJ3RJTaUO8icMSU/\nbX/LMosOYS5hRf7hhD356TPPZ4777PDhw43IkNKLHkmVy+PuunQeuy4tngm1GwHbNbss5v1v3Jnj\nV22bK7sKI1Lmuf3FkbuxaocFbcuIPafMPJESkw1jI53qWEXQ6S1uRIaMfvxpdkOnKnsDjQYuE8Se\nJE4/4BWZ6xuB9jpiB6M6tSj67b9bLlN1usjY0N9uxEQ8CeLg4jERpzLqWJSqKGM9ke6b0YZ7a6fF\ns2uTMXta8r63/RazOi4rmvZkvPQfVcxY77wIp8/wnsiA8oYVi/n6Qz/rtRqbsHJJsvbJXtsVd61U\nxe7L5iPBqfvv0HXZW86dzuV/sDd7LJ/fcVmx3sA2C2by2ZP3qvTeFrW3UydPYt6MKZx9yCs7lhmb\n9T+eLu2467rB7svmcd/jz/Rajb7AjciA8sl3vKaSvEFVsmqHhdz1J6/PrIbYDf/35rOm8thHDquk\nrDKdmdel1qiogwN23rKSctpe02OSuO/P31CJ7Abt3ON7zz2IGVPbHzhQJ188dV9eSo3Sm6i4ERlQ\nNps8iTktls3tFXnL6TrtU6dbLhZ/iK0HU6nsEp+ZP3Nq5Xp0ytTNJmUWFJuo+F1w6qcfo/0FGNZg\n72g69oLrwVQsPMgY0C+Fk8GNiOOk2DZkh+2FC6WbdqsXzbinXR8+3J3l1M6gvXT+9TG7c9Rrnq5k\nJFTbRFLal+H6M34vX0QXJkfGmBVGmaWHDQ9rr28i4EZkyBjZbnM+f+eP2HnxnF6rMkqrpurSk/fi\npQ391YLMmT6l52nBq2jfV4TRckVljM4m71x0lItPHOHae59g+YJq1gLpBss2n9FrFfoaNyJDxpF7\nLON3t1/IkvmD8cVfXdGIo2GhijU7xpeREJ3wV2MPZen8Gbx7dXbCZr/2Vu899yAPoI+DG5EhpN8M\niAdR26cbw6I99cj49OPIsH7DTazjTDTGy+LbPU2cIcCNiFM7E71R2mFR8QD9QSsWA7DzVvWlUGmQ\n7iH2dhmBHgp3OsLdWU7tTGRv1vf+7yFtrcdx5B7LOHjl1rUOLx6dJ1JwPRHHaYUbEcepkTJB2W7N\nT8nERHrYHXDDNbi4O8upHQ/g9hejM9MLrrHuOK1wI+I4E4zYCpQelnDK4EbEqZ1+cFUsnjut1yr0\nDbH1RF6x5exN/jtOEXoSE5F0DHAesAuwt5mtbTp3NvCHwAbgDDO7MRzfE7gUmAFcD5xpscUXHKeJ\nb33gAOZOn9JrNfqOtHE/fPcl7LhodlvLEjtOr3oiDwBHAbc1H5S0AjgOWAkcDHxSUiPK+PfAu4Cd\nwt/BXdPWGWi2WTCTeTPdiDSIrSciyQ2I0zY9MSJm9rCZPZJz6gjgCjN7wcweA9YDe0vaGphrZneE\n3sflwFu6qLLTAf3gznIcpx76LSayFPhx0/7j4djSsJ0+noukUyStlbT2F7/4RS2KOs6g0sssvs7w\nUVtMRNI3gLxUqOeY2bV1yQUws4uBiwFGRkY8btJjfMhof+I2xKmC2oyIma0p8bEngG2a9peFY0+E\n7fRxx3FK4j0Rpwr6zZ11HXCcpGmSticJoN9lZk8Cz0papSThz4lArb0Zpzq8repP+umx+DjLwaUn\nRkTSkZIeB/YBvirpRgAzexC4EngIuAE43cw2hI+9G7iEJNj+feBrXVfcKUU/NVYObDV3OuDG3amG\nnswTMbOrgasj5y4ALsg5vhbYtWbVnAnEV894LU8992Kv1eg6XzptH+754a/6ap2XPlLFaRNPwOjU\nTj81Vs2sXDIx50Qs23wmyzYfnOVpnf6m32IijuM4zgDhRsSpnf7shziOUwVuRBzHcZzSuBFxaqdP\nQyKO41SAGxGndvo1sO44Tue4EXEcx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzHcUrjRsRx\nHMcpjRsRx3EcpzRuRBzHcZzSuBFxHMdxSuNGxHEcxymNGxHHcXrO5ElJapypk71JGjR8USqnK5z7\nphXss+PCXqvh9CmH7bY1Dz/5a07bf8deq+K0icys1zrUysjIiK1du7bXajiO4wwUku4xs5HxrvO+\no+M4jlMaNyKO4zhOadyIOI7jOKVxI+I4juOUxo2I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO3DnV\nxAAACq5JREFU45Rm6CcbSvoF8MNe69EmWwBP9VqJLuN1nhh4nQeHbc1s0XgXDb0RGUQkrS0yU3SY\n8DpPDLzOw4e7sxzHcZzSuBFxHMdxSuNGpD+5uNcK9ACv88TA6zxkeEzEcRzHKY33RBzHcZzSuBFx\nHMdxSuNGpA+QtEDSTZIeDf83b3HtZEnflfSVbupYNUXqLGkbSbdIekjSg5LO7IWunSLpYEmPSFov\n6UM55yXponB+naTX9ELPKilQ53eEut4v6XZJu/dCzyoZr85N1+0l6WVJR3dTv7pwI9IffAi42cx2\nAm4O+zHOBB7uilb1UqTOLwP/28xWAKuA0yWt6KKOHSNpMvAJ4BBgBfC2nDocAuwU/k4B/r6rSlZM\nwTo/BuxvZrsB5zPgweeCdW5c91fA17urYX24EekPjgAuC9uXAW/Ju0jSMuAw4JIu6VUn49bZzJ40\ns++E7V+TGM+lXdOwGvYG1pvZD8zsReAKkro3cwRwuSXcAcyXtHW3Fa2QcetsZreb2a/C7h3Asi7r\nWDVFnjPAe4GrgJ93U7k6cSPSHyw2syfD9k+BxZHrPg58ANjYFa3qpWidAZC0HbAHcGe9alXOUuDH\nTfuPkzWERa4ZJNqtzx8CX6tVo/oZt86SlgJHMuA9zTSb9VqBiYKkbwBb5Zw6p3nHzExSZty1pDcB\nPzezeyStrkfLaum0zk3lzCZ5e3ufmT1brZZOL5F0AIkReW2vdekCHwc+aGYbJfVal8pwI9IlzGxN\n7Jykn0na2syeDG6MvK7ufsDhkg4FpgNzJf2TmR1fk8odU0GdkTSFxIB83sy+XJOqdfIEsE3T/rJw\nrN1rBolC9ZH0KhLX7CFm9nSXdKuLInUeAa4IBmQL4FBJL5vZNd1RsR7cndUfXAe8M2y/E7g2fYGZ\nnW1my8xsO+A44Jv9bEAKMG6dlfza/hF42Mz+Xxd1q5K7gZ0kbS9pKsmzuy51zXXAiWGU1irgmSZX\n3yAybp0lLQe+DJxgZt/rgY5VM26dzWx7M9su/Ia/BLx70A0IuBHpF/4SOEjSo8CasI+kJZKu76lm\n9VGkzvsBJwAHSro3/B3aG3XLYWYvA+8BbiQZGHClmT0o6VRJp4bLrgd+AKwHPg28uyfKVkTBOp8L\nLAQ+GZ7r2h6pWwkF6zyUeNoTx3EcpzTeE3Ecx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzH\ncUrjRmRIkWSSPta0f5ak87qsw6WNTKWSLuk0eaKk7SQ9EDn30ZDp96OdyOgnwv17rMohos3PZCIi\n6SRJfzfONceGTLwDnSm7W/iM9eHlBeAoSR8xs6fa/bCkzcLY90ows/9VVVkRTgEWmNmG5oNV16MH\nvN/MvtRrJapE0uT0c+onzOxfJP0MOKvXugwC3hMZXl4mSa/9R+kT4Y3+m2E9h5vD7OHGW+qnJN0J\nXCjpPEmXSfqWpB9KOkrShWENiBtCShIknSvpbkkPSLpYOYmBJN0qaUTS4U0TBx+R9Fg4v6ekf5N0\nj6QbG1lsw/H7JN0HnJ5XUUnXAbOBe8JbZLoesyR9RtJdStZiOSJ8boakKyQ9LOlqSXdKGgnnnmsq\n/2hJl4btRZKuCvW9W9J+4fh5Qcatkn4g6Yymz58Y7vV9kj4naU7oYTTu39zm/RiSFgc97wt/+0r6\nsKT3NV1zgcK6K5I+GJ7VfZL+Mqe82D0/Q8kaLuskXZHzuZMkXRvq+qikP286d3y4z/dK+gclqc+R\n9Jykj4XnuE+qvIw8SXtL+o/wvG6XtHOT7GuUrEHzn5LeI+mPw3V3SFoQrrtV0t8GPR6QtHdOPXKf\npdMmZuZ/Q/gHPAfMBf4TmEfyVnVeOPevwDvD9h8A14TtS4GvAJPD/nnAvwNTgN2B35DkOQK4GnhL\n2F7QJPdzwJubyjs6bN8KjKR0vJLEMEwBbgcWhePHAp8J2+uA14XtjwIPxOrbtJ2ux18Ax4ft+cD3\ngFnAHzfJeRWJ4R3JKe9o4NKw/c/Aa8P2cpKULI17dTswjSQv0tOhXiuDvC2a7xXw2ab7dwrwsZw6\njd6/sP8vJEkoASaH57od8J1wbBLwfZKZ4IcEfWam5F4a6tPqnv8EmNa4Xzl6nQQ8GeTMAB4gyQu1\nC8l3a0q47pPAiWHbgLdGnl1GHsl3d7OwvQa4qkn2emAOsAh4Bjg1nPubpvtzK/DpsP06wvcmfP7v\nWj3LsL8a+Eqvf8eD8OfurCHGzJ6VdDlwBvDbplP7AEeF7c8BFzad+6Jt6mr4mpm9JOl+kobrhnD8\nfpIGDOAASR8AZgILgAdJGpMo4frfmtknJO0K7ArcFDoxk4EnJc0naVRua9L1kEKV37QebyBJXtlw\nT0wnaTReB1wEYGbrJK0rUO4aYIXGOltzlWQZBviqmb0AvCDp5yTp7Q8MujwV5PwyXHsJSVr/a4CT\ngXcVkH0gcGIoZwNJA/qMpKcl7RHkfdfMnpa0Bvismf0mJbfBzuTc83BuHfB5SdcE/fK4yULSRElf\nJsnC+zKwJ3B3KHMGY4k1N5Ak0swjT9484DJJO5EYoOZe2i2WrC/za0nPMPZdu5/kZaDBF0Ldbwu9\nvfkpubnP0syewymMG5Hh5+PAd0jefIvw36n9FwAsSV/9koXXNJI1TTaTNJ3kjXPEzH6sJHg/vZWA\n0MAdQ9KIAwh40MzSbo70j74dmush4PfN7JFU+a0+35wPqLk+k4BVZvZ8TlkvNB3aQIvfl5l9W4lb\ncTVJjyl3wEBBLiF5w94K+EzBz+Te88BhJM/mzcA5knazbFwpnS/JQpmXmdnZOWU+b/E4SEYeyWqH\nt5jZkUrWkrm16frm+7yxaX8jm97zPB2byX2WTnt4TGTICW+gV5Ks2dDgdpIsowDvAL7VgYhGA/tU\neCNvOfJH0rYky4geY2aN3tEjwCJJ+4RrpkhaaWb/BfyXpMZaE+8oqeONwHsVWvrw1g5wG/D2cGxX\nNn2L/ZmkXSRNIllIqMHXSVana9Tn1ePI/iZwjKSF4foFTecuJ3GpFDXwNwOnhXImS5oXjl8NHAzs\nRVJXgJuAkyXNzJELkXse6ruNmd0CfJCkRzCbLAdJWiBpBsmqlN8O+h0tacuGzPC8o7SQN4+xVOon\ntb4tUY4NMl5Lkhn5mdT5dp+lk4MbkYnBx0j89A3eS9LArCPJkntm2YJDQ/9pEr/4jSQpsVtxEokv\n/ZoQ9LzekuVEjwb+KgRe7wX2DdefDHxC0r0kb7plOJ/EHbJO0oNhH5IV5mZLehj4MHBP02c+RBJX\nuZ0xNw8krsGREAR+CGg5/NbMHgQuAP4t1K05pf3ngc0JbpcCnEniOrw/6LoiyHgRuIUkc+yGcOwG\nklTka8O922SkUYt7Phn4pyDju8BF4RmnuYvEPbWOJF6x1sweAv4U+Hr4bt0EjLfMb0zehcBHJH2X\n8h6T58PnP8WmL1EN2nqWTj6exddxApJuBc4ys66kJVcyX+MIMzshcv5SkuBuyyG+4W3+OyS9u0cr\nVzQr7yQS9+V76pZVlk6fZXAznmVmb6pSr2HEeyKO0wMk/X+SNVTOb3HZM8D5ajHZUMkEzvXAzd0w\nIBMBSceSxPl+1WtdBgHviTiO4zil8Z6I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO45TGjYjjOI5T\nmv8BB6iJV+uXCzUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Welch window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Blackmann's Window" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='blackmann')" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX6//H3nU4ghJLQUkiA0JsYQGmCDVTsDTusK+ta\ndl3Lrtvd/a1bv/aGggqWFbE37ArSBZReAwmEHmpCQvr9+2NO2DESGCCTM+V+XddcmVNmzudAMvec\nc57zPKKqGGOMMQARbgcwxhgTOKwoGGOMOcyKgjHGmMOsKBhjjDnMioIxxpjDrCgYY4w5zIqCCQgi\nMllE/naS7zFcRLbUV6ZAIyIHRaTDCb52hoj8tL4zmdBjRcE0CBHJE5FDzgfbPhH5SETS3M4VTFS1\niapudDuHCW1WFExDulBVmwBtgZ3AEy7nMcbUYkXBNDhVLQXeBLofabmINBeRD0WkwDmq+FBEUr2W\ntxCRF0Vkm7P83Tre5xciskpEUmtOLYnIr0Vkl4hsF5FLROR8EVknIntF5Hderx0gIvNEZL+z7pMi\nEuO1XEXkVhFZ76zzlIiIs2ysiMwWkf9z8uWKyHl1ZBwnIh94Ta8XkTe8pvNFpK/XNjs5zyc72/xI\nRIpEZIGIdPR63TkiskZEDojIk4B4LYsQkT+IyCbn3+IlEUl0lk0RkXuc5ynONm93pjs6/072uRHC\n7D/XNDgRiQeuBubXsUoE8CLQHkgHDgFPei1/GYgHegCtgEeOsI0/AWOBM1S15jpDGyAOSAH+BEwE\nrgdOBYYCfxSRTGfdKuBXQBJwOnAWcFutzYwG+gO9gauAkV7LBgJrndf/G3i+pmjUMhMY6nxQtwNi\nnO3hXD9oAiw7wusAxgB/AZoDOcCDzuuSgLeBPzjb3wAM9nrdWOcxAqjZRs2/70xguPP8DGAjMMxr\nepaqVteRx4QCVbWHPfz+APKAg8B+oALYBvTyWj4Z+Fsdr+0L7HOetwWqgeZHWG84sBV4GJgNJNZa\ndgiIdKYTAAUGeq2zGLikjgx3Ae94TSswxGt6GnC/83wskOO1LN5Zv00d750P9MPzIf8c8C3QFRgH\nvF9rm528/r0meS07H1jjPL8RmO+1TIAtwE+d6S+B27yWd3H+T6KAjsA+PIV5AvAzYIuz3hTgbrd/\nl+zh34cdKZiGdImqNsPzbf0OYKaItKm9kojEi8izzumNQuAboJmIRAJpwF5V3VfHNpoB44F/qOqB\nWsv2qGqV8/yQ83On1/JDeL41IyKdndNWO5wMf8fzrdvbDq/nJTWvrb1MVUucp97LvdV8Ox/mPJ+B\n51v5Gc50Xerafjs8haZm++o97Szf5DW9CU9BaK2qG4BiPIV4KPAhsE1EuviQx4QAKwqmwalqlaq+\njecUzZAjrHIPnm+vA1W1Kf87fSF4PtxaiEizOt5+H57TOi+KyOA61vHFM8AaIMvJ8Du8zsvXs5qi\nMNR5PhPfikJdtuMpngA4p628W3ptw3NqrkY6UMn/CuRM4AogRlW3OtM34TlNteQE8pggYkXBNDjx\nuBjPh8zqI6ySgOdb+34RaQH8uWaBqm4HPgaedi5IR4vIMO8Xq+oM4DrgbREZcIIxE4BC4KCIdAV+\nfoLv44uZeM7vN1LP9Y9ZwCigJfD9CbzfR0APEblMRKKAX+C5nlLjNeBXIpIpIk3wHAW9rqqVXnnu\nwHOEBp4jlzuA2V5HWiZEWVEwDekDETmI58P2QeAmVV15hPUeBRoBu/FcjP6k1vIb8JwDXwPswnO+\n/wdU9XPgJ842+51A1nuBa4EiPBekXz+B9/CJqq7Dc71lljNdiOcC75wT+RBW1d3AlcA/gT1AFjDH\na5UX8Fys/wbIBUqBO72Wz8RTFGuKwmw810W+wYQ88ZxuNMYYY+xIwRhjjBcrCsYYYw6zomCMMeYw\nKwrGGGMOi3I7wPFKSkrSjIwMt2MYY0xQWbx48W5VTT7WekFXFDIyMli0aJHbMYwxJqiIyKZjr2Wn\nj4wxxnixomCMMeYwKwrGGGMOs6JgjDHmMCsKxhhjDvNbURCRF5yh/lbUsVxE5HERyRGRZSfYaZkx\nxph65M8jhcl4uv+ty3l4em/MwjMoyjN+zGKMMcYHfrtPQVW/EZGMo6xyMfCSMyrUfBFpJiJtnf7y\njQl4ObuK+GTFDsorfzxksYgwuFMS/TOac+ShmY0JTG7evJbCD4cI3OLM+1FREJHxeI4mSE9Pb5Bw\nxhxJZVU1X67ZxUvz8piTsweAI33mq8JjX66na5sEbhqUwcV92xEfE3T3ipowFBS/par6HJ4BzcnO\nzrYBIEyD23OwjNcX5fPq/M1s3X+Idolx3DeyC2P6p9GySeyP1j9UXsV7S7YyZd4mfvv2cv4xfTVX\nZadx/WntyUhq7MIeGOMbN4vCVn44bmyqM8+YgKGqTJi5kUe+WEd5ZTWDO7XkTxd256yurYiKrPuS\nXKOYSMYMSOfq/mks3rSPKfM2MXluHpNm53JVdip/vbgncdGRDbgnxvjGzaLwPnCHiEwFBgIH7HqC\nCSSlFVXc/9Yy3l2yjfN6tuHuczqT1TrhuN5DRMjOaEF2Rgt2XdCNibM2MnFWLut3HeTZG06lVUKc\nn9Ibc2L8VhRE5DVgOJAkIlvwDL4eDaCqE4DpwPlADlACjPNXFmOO167CUm55eTFL8/dz38gu3Da8\n40lfMG7VNI7fX9CdfunNuXvaUi5+cg4Tb8ymZ0piPaU25uQF3RjN2dnZar2kGn9avuUAt7y0iMLS\nCh6+qi+jerap922s2HqA8S8tYl9JBQ9d1Yfze7Wt920Y401EFqtq9rHWszuajfHy4bJtXPnsXCIj\nhDdvHeSXggDQMyWRd+8YTLe2Cdz26nc89sV6gu0LmglNVhSMcTz3zQbu+O/39GyXyHt3DKZ7u6Z+\n3V6rhDheG38al/VL4ZEv1vGr15dQXW2FwbgrKJqkGuNv05dv5+/T13BBr7Y8fHUfYqMapmVQbFQk\nD13Zh4yWjXn483WkNo/n3pFdGmTbxhyJFQUT9lZsPcDd05ZwSnozHrqq4QpCDRHhzjM7sW3/IZ78\nOoes1k24uG9Kg2YwpoadPjJhbVdhKbe8tIgW8TE8e8Oprt07ICL89eKeDMhswX1vLmNJ/n5Xchhj\nRcGErdKKKsa/vJj9JRVMvCnb9XsGYqIimHD9qbRKiOWWlxax/cAhV/OY8GRFwYQlVeX+tzzfyB+5\nug892gXGvQItGsfw/E39KSmr5JaXFnGovMrtSCbMWFEwYemZmRt4d8k27jmnM6N6BtY9Al3aJPD4\nNaewclsh976x1JqqmgZlRcGEnc9W7uA/n67lwj7tuOPMTm7HOaKzurXm/lFd+Wj5dh77cr3bcUwY\nsaJgwsr2A4e4Z9pSeqUk8p8regf0WAfjh3Xgsn4pPPrFeuZt2ON2HBMmrCiYsKGq/OGdFVRUV/PE\nNacEfC+lIsKDl/QivUU8v317mV1fMA3CioIJGx8s286Xa3Zx77ldaN8yOMY0aBQTyT8v70XenhIe\n/WKd23FMGLCiYMLC3uJyHnh/JX3SmjFucKbbcY7LoI5JXDMgjYmzNrJsi92/YPzLioIJC3/9YCVF\npRX8+/LeREYE7nWEutx/XjeSE2L59ZvLjjgmtDH1xYqCCXlfrdnJu0u2cdvwTnRpc3yD5ASKxEbR\n/O2SXqzZUcSzMze4HceEMCsKJqQVlVbw+3dW0Ll1E24b0dHtOCflnO6tGd27LU98lcP6nUVuxzEh\nyoqCCWn/+mQNOwpL+dflvRu8ozt/eOCiHsTHRvKbt5ZRZd1sGz+womBC1oKNe3hl/mZ+MjiTU9Kb\nux2nXiQ1ieXPF3bnu837eWlenttxTAiyomBCUlllFfe/vZy0Fo2459zObsepV5f0TWF4l2T+/cla\ntuwrcTuOCTFWFExIemnuJnJ3F/O3S3oRHxNaw4aICA9e2gtF+c+na92OY0KMFQUTcvaXlPPEV+s5\no3MyZ3ROdjuOX6Q0a8TNQzJ5b8k2lm854HYcE0KsKJiQ8/SMDRSVVXL/eV3djuJXPzujIy0ax/D3\n6autJ1VTb6womJCSv7eEyXPyuLxfKt3aNnU7jl81jYvmF2d2Yt7GPcxYV+B2HBMirCiYkPLw5+sQ\nIeQuLtfl2oHtyWgZzz+nr7EmqqZeWFEwIWPF1gO88/1Wbh6SSdvERm7HaRAxURH8elRX1u4s4q3F\nW9yOY0KAFQUTElSVv09fTfP4aG4dHtx3Lh+v83q2oW9aMx76fK11r21OmhUFExJmritg7oY9/OKs\nLJrGRbsdp0GJCL87vxs7C8t4YU6u23FMkLOiYIJeVbXyz4/XkN4inusGtnc7jisGZLbgnO6teWbG\nBvYcLHM7jgliVhRM0Hvruy2s2VHEr0d1ISYqfH+lfzOqK4cqqnjcxnQ2JyF8/4JMSDhUXsXDn62j\nT1ozLujV1u04rurUqglj+qfx6oLN5O4udjuOCVJWFExQe3XBJnYUlvK787oiEnyD59S3X56dRUxU\nhA3daU6YX4uCiIwSkbUikiMi9x9heaKIfCAiS0VkpYiM82ceE1pKK6p49puNDOrYkoEdWrodJyC0\nSojj+tPa88HSbXa0YE6I34qCiEQCTwHnAd2Ba0Ske63VbgdWqWofYDjwkIjE+CuTCS2vL8ynoKiM\nO8/McjtKQPnp0EyiIyN4+usct6OYIOTPI4UBQI6qblTVcmAqcHGtdRRIEM9xfxNgL1Dpx0wmRJRV\nVjFh5gb6ZzTntA4t3I4TUFolxHHNgHTe+X4r+Xuta21zfPxZFFKAfK/pLc48b08C3YBtwHLgl6r6\no1HJRWS8iCwSkUUFBdbHi4G3v9vK9gOl3Hlmll1LOIKfndGBCBEm2HjO5ji5faF5JLAEaAf0BZ4U\nkR/1Yqaqz6lqtqpmJyeHZlfIxncVVdU8PSOHPqmJDM1KcjtOQGqb2IgrslN5Y9EWdhwodTuOCSL+\nLApbgTSv6VRnnrdxwNvqkQPkAqHd37E5ae8t2Ub+3kN2lHAMPz+jI9WqdrRgjos/i8JCIEtEMp2L\nx2OA92utsxk4C0BEWgNdgI1+zGSCXFW18vTXOXRv25SzurVyO05AS2sRz6WnpPDat5vZVWRHC8Y3\nfisKqloJ3AF8CqwGpqnqShG5VURudVb7f8AgEVkOfAn8RlV3+yuTCX4fLd/Oxt3F3HlmJztK8MHt\nIzpRUVXN87OsTyTjG78OXquq04HpteZN8Hq+DTjXnxlM6KiuVp78aj2dWzdhZI82bscJChlJjbmo\nTztenr/p8EhtxhyN2xeajfHZZ6t2sG7nQW4f0YmICDtK8NXtIzpxqKKKF2bb0YI5NisKJiioKk98\nlUNmUmNG927ndpygktU6gfN6tmHK3DwOHKpwO44JcFYUTFD4eu0uVm4r5LbhHYm0o4TjdseILIrK\nKpk8J8/tKCbAWVEwQWHCjI2kNGvEJafUvv/R+KJ7u6ac3a0VU+bl2ehs5qisKJiAtyR/P9/m7eXm\nIZ4+fcyJGT+sI3uLy3nrOxvL2dTN/sJMwJs4ayMJcVFc1T/t2CubOvXPaE6f1ESen51LdbW6HccE\nKCsKJqDl7y3h4+XbuW5ge5rE+rUFdcgTEW4Z1oHc3cV8sXqn23FMgLKiYALa87NziYwQxg7KcDtK\nSBjVow2pzRsxcZZ1HGCOzIqCCVgHSiqYtiifi/qk0CYxzu04ISEqMoKbh2SyMG8f32/e53YcE4Cs\nKJiA9eq3mygpr+KnQzPdjhJSrspOo2lcFJOs6wtzBFYUTEAqq6xi8pw8hmYl0a3tj3pTNyehcWwU\n153Wno9XbGfzHhuEx/yQFQUTkN5fso1dRWWMH9bB7SghaeygDCIjhBfm2NGC+SErCibgqCqTZuXS\ntU0CQzrZIDr+0LppHBf1SeH1hfnsLyl3O44JIFYUTMD5Zv1u1u4s4pahHax7bD+6ZVgmhyqqeHXB\nZrejmABiRcEEnInfbKR101gu7GMd3/lT1zZNGdY5mclz8yirtK4vjIcVBRNQVm47wOyc3YwbnElM\nlP16+tv4oR0oKCrjvSXb3I5iAoT91ZmA8vysXBrHRHLNgHS3o4SFwZ1a0rVNApNmbUTVur4wVhRM\nANlVWMoHy7ZxZXYaiY2i3Y4TFkSEnw7twLqdB5mTs8ftOCYAWFEwAeOV+ZuorFbr0qKBXdinLUlN\nYqx5qgGsKJgAUeq0gjmzSysykhq7HSesxEZFcu3A9ny1Zhe5u4vdjmNcZkXBBIQPlm5jT3E54wZb\nlxZuuP60dKIjhSlz89yOYlxmRcG4TlV5cU4enVs3YXCnlm7HCUutEuK4sHc73liUT2GpjeMczqwo\nGNd9m7uXVdsLGTso025Wc9G4wZkUl1fxxiIbmS2cWVEwrntxTh7N4qO51MZfdlWv1ESy2zdnytw8\nqmxktrBlRcG4Kn9vCZ+t2sGY/uk0iol0O07YGzc4k817S/hqzS63oxiXWFEwrnp5/iZEhBtPb+92\nFAOM7NGadolxvGjNU8OWFQXjmpLySqZ+u5lRPdrQrlkjt+MYPCOz3XB6BnM37GHNjkK34xgXWFEw\nrnnru60UllYybnCG21GMl2sGpBEXHcHkOXluRzEusKJgXFFdrUyek0uvlERObd/c7TjGS7P4GC49\nJZV3vt/K3mIbayHcWFEwrpiVs5sNBcWMG5xhzVAD0LjBGZRVVvPatzbWQrixomBc8eKcXJKaxHJB\n77ZuRzFH0Lm1Z9S7l+dtoqKq2u04pgEdsyiISLyI/FFEJjrTWSIy2pc3F5FRIrJWRHJE5P461hku\nIktEZKWIzDy++CYYbSw4yIy1BVx/WjqxUdYMNVCNG5zBjsJSPl25w+0opgH5cqTwIlAGnO5MbwX+\ndqwXiUgk8BRwHtAduEZEutdapxnwNHCRqvYArvQ9uglWL83bRHSkcO1AGzMhkI3o0or2LePtgnOY\n8aUodFTVfwMVAKpaAvhyEngAkKOqG1W1HJgKXFxrnWuBt1V1s/PedsdMiCsqreDNxVsY3bsdrRLi\n3I5jjiIiQrjx9AwWbdrHiq0H3I5jGogvRaFcRBoBCiAiHfEcORxLCpDvNb3FmeetM9BcRGaIyGIR\nufFIbyQi40VkkYgsKigo8GHTJlC9tXgLB8squcnGTAgKV2anEh8TyWTrPTVs+FIU/gx8AqSJyKvA\nl8Cv62n7UcCpwAXASOCPItK59kqq+pyqZqtqdnJycj1t2jS06mplyrxN9E1rRt+0Zm7HMT5oGhfN\n5f1SeX/pNvYc9OW7oAl2xywKqvo5cBkwFngNyFbVGT6891YgzWs61ZnnbQvwqaoWq+pu4Bugjw/v\nbYLQN+sLyN1dbDerBZmbBrWnvLKaqQvzj72yCXp1FgUR6VfzANoD24FtQLoz71gWAlkikikiMcAY\n4P1a67wHDBGRKBGJBwYCq09kR0zgmzw3j+SEWM7rac1Qg0mnVgkMzbLmqeEi6ijLHnJ+xgHZwFI8\nF5h7A4v4X2ukI1LVShG5A/gUiAReUNWVInKrs3yCqq4WkU+AZUA1MElVV5zMDpnAVNMM9a6zs4iJ\nsttjgs3YQRncPGURn67cweje7dyOY/yozqKgqiMARORtoJ+qLnemewIP+PLmqjodmF5r3oRa0/8B\n/nNcqU3QsWaowa2meeqUuXlWFEKcL1/ZutQUBADnm3w3/0UyoeZgWSVvLt7CBb3aWjPUIBURIdxw\nWnsW5lnz1FDnS1FYJiKTnDuPhzt3Ni/zdzATOmqaoY4dnOl2FHMSrsxOIz4mkinWPDWk+VIUxgEr\ngV86j1XOPGOOqbpamTI3z5qhhoDERp7mqe9Z89SQ5kuT1FJVfURVL3Uej6hqaUOEM8Hvm/UFbNxd\nzFi7WS0kWPPU0OdLh3i5IrKx9qMhwpngN8Vphnp+L2uGGgpqmqe+Mt+ap4YqX04fZQP9ncdQ4HHg\nFX+GMqEhd3cxX68t4LqB6dYMNYSMHZTB9gPWe2qo8uX00R6vx1ZVfRRPtxTGHNXkObnWDDUE1TRP\nfdF6Tw1Jvpw+6uf1yHZuPjvaTW/GUOj0hnqh9YYaciIihJtOz2Dxpn0s27Lf7TimnvlyTP+Q1+Mf\nQD/gKn+GMsFv2sJ8isurGGfNUEPSldmpNImNsqOFEORLUbhZVUc4j3NUdTxgo3mbOlVVK1Pm5ZHd\nvjm9UhPdjmP8ICEumitOTeXDZdvYVWiNEUOJL0XhTR/nGQPAl6t3kr/3ED8ZYkcJoWzsoAwqq5VX\n5m9yO4qpR3VeGxCRrkAPIFFELvNa1BRPJ3nGHNELc3JJadaIc7u3djuK8aOMpMac1bUVry7YzG0j\nOhEXbeNth4KjHSl0AUYDzYALvR79gFv8H80Eo9XbC5m/cS83nN6eqEhrhhrqxg3OZE9xOR8s3eZ2\nFFNPjtZL6nvAeyJyuqrOa8BMJoi9OCeXuOgIxvRPO/bKJugN6tiSLq0TeHFOHlecmoqIL8O3m0B2\ntEF2aobcvFZEHq/9aKB8JojsOVjGu0u2cVm/VJrFx7gdxzQAEWHs4AxWbS9kQe5et+OYenC04/ua\nEdAWAYuP8DDmB177djPlldWMs36Owsqlp6TQPD6aF+fkuh3F1IOjnT76wPk5peHimGBVXlnNy/M3\nMTQriazWCW7HMQ0oLjqSawakM2HmBvL3lpDWIt7tSOYkHO300Qci8n5dj4YMaQLfxyu2s7OwjJ/Y\nzWph6YbT2yMivDQvz+0o5iQdrbuK/2uwFCbovTAnjw5JjTmjc7LbUYwL2iY24ryebZi6MJ+7zu5M\n41jrCSdY1XmkoKozax7APGAfsBeY58wzBoDvNu9jaf5+bhqUQUSEtT4JV+MGZ1JUWslb321xO4o5\nCb50iHcBsAFPl9lPAjkicp6/g5ng8fysXBLiorj81FS3oxgX9UtvRp+0ZrwwO5eqanU7jjlBvnaI\nN0JVh6vqGcAI4BH/xjLBYvOeEj5esZ3rBraniZ0yCGsiwvihHcjbU8Lnq3a6HcecIF+KQpGq5nhN\nbwSK/JTHBJkX5uQSGSE23KYBYGSP1qS1aMSkWTY4Y7DypSgsEpHpIjJWRG4CPgAWishltfpEMmFm\nf0k50xblc2GfdrRJtO6wDERFRvCTwZks2rSP7zbvczuOOQG+FIU4YCdwBjAcKAAa4ekHabTfkpmA\n9+qCzZSUV3HL0A5uRzEB5KrsNJrGRdnRQpA65klgVR3XEEFMcCmrrGLK3DyGZiXRrW1Tt+OYANI4\nNorrTmvPszM3sHlPCekt7Wa2YOJL66NMEXlYRN62m9dMjfeXbGNXUZkdJZgjGjsog8gI4QXr+iLo\n+NJc5F3geTzXEqr9G8cEA1Vl0qxcurZJYGhWkttxTABq3TSOi/qk8PrCfO46O8s6SAwivlxTKFXV\nx1X161o3tJkw9c363azdWcRPh3awrpJNnW4ZlsmhiipeXbDZ7SjmOPhSFB4TkT+LyOki0q/m4fdk\nJmBN/GYjrZvGclGfdm5HMQGsa5umDM1KYvLcPMoqq9yOY3zkS1HohWektX/iuZHtIXzsF0lERonI\nWhHJEZH7j7JefxGpFJErfHlf455V2wqZnbObsYMyiYmykdXM0Y0f1oGCojLeW2IjswULX64pXAl0\nUNXy43ljEYkEngLOAbbgubfhfVVddYT1/gV8djzvb9wxadZG4mMiuXZAuttRTBAY0imJrm0SmDRr\nI1fayGxBwZeveivwjNN8vAYAOaq60SkoU4GLj7DencBbwK4T2IZpQNsPHOL9pdu4un8aifHRbscx\nQUBEuGVoB9btPMjMdQVuxzE+8KUoNAPWiMinXk1S3/PhdSlAvtf0FmfeYSKSAlwKPONrYOOeyXPy\nqFa1MRPMcbmwTztaN43luW/sZrZg4Mvpoz97PRdgKDCmnrb/KPAbVa0+2mGliIwHxgOkp9tpCzfs\nLynnlfmbGN27nY2sZY5LTFQENw/J5O/T1/D95n2ckt7c7UjmKI55pOA0Py3E06XFZOBMYIIP770V\nSPOaTnXmecsGpopIHnAF8LSIXHKEDM+paraqZicn2yAubnhxTh7F5VXcPqKT21FMELpuYHuaxUfz\n1Nc5x17ZuKrOIwUR6Qxc4zx2A68DoqojfHzvhUCWiGTiKQZjgGu9V1DVw+chRGQy8KGqvns8O2D8\n72BZJZPn5nFO99Z0aWPjL5vj1zg2inGDMnnki3Ws3l5oXaMEsKMdKazBc1QwWlWHqOoTgM+NjVW1\nErgD+BRYDUxT1ZUicquI3HoyoU3DemX+Jg4cquAOO0owJ2HsoAyaxEbZ0UKAO9o1hcvwfLv/WkQ+\nwdN66Ljak6nqdGB6rXlHPPWkqmOP571NwyitqGLSrFyGZiXRJ+1EGqEZ45EYH831p7Xn2W82cHfB\nQTokN3E7kjmCo43R/K6qjgG6Al8DdwGtROQZETm3oQIad72+MJ/dB8vsWoKpFzcPySQmMoJnZmxw\nO4qpgy8XmotV9b+qeiGei8XfA7/xezLjuvLKap6duYHs9s0ZmNnC7TgmBCQnxHLNgHTe+X4rW/aV\nuB3HHMFx9VOgqvuclkBn+SuQCRzvfr+VbQdKuf3MTnYnqqk344d1QAS7byFAWec15oiqqpVnZm6g\nZ0pThne2ZsCm/rRr1ojLTkll6sJ8dhWVuh3H1GJFwRzRR8u3k7u7mNuH21GCqX8/H96Ryqpqnp9l\ng/AEGisK5keqq5Wnv86hU6smjOzRxu04JgRlJDVmdO92vDJ/E/tLjquvTeNnVhTMj3y5ZhdrdhRx\n2/CORETYUYLxj9tHdKK4vIoX5+S5HcV4saJgfkBVefKr9aS1aGSD6Bi/6tImgXO6t+bFObkUlla4\nHcc4rCiYH/hs1U6WbjnAnSOyiIq0Xw/jX788K4vC0komWUukgGF/9eawqmrloc/W0iG5MZf1Szn2\nC4w5ST1TErmgV1smzc5l98Eyt+MYrCgYLx8s3ca6nQe5+5zOdpRgGsyvzulMaUWV3eUcIOwv3wBQ\nUVXNw5+vo3vbppzfs63bcUwY6dSqCZf3S+Xl+ZvYfuCQ23HCnhUFA8C0Rfls3lvCfSO7WIsj0+B+\neXYWqsr3Nn0sAAAUtUlEQVTjX1oPqm6zomAoraji8S/Xk92+OcO72N3LpuGlNo/nuoHtmbYon7zd\nxW7HCWtWFAwvz9vEzsIy7h3Zxe5eNq65bURHoiOFR75Y53aUsGZFIcwVlVbw9IwchmYlcVqHlm7H\nMWGsVUIc4wZn8v7SbazeXuh2nLBlRSHMvTA7j30lFdw3sovbUYzhZ8M60CQ2ioc+s6MFt1hRCGP7\nisuZOGsjo3q0oXeqjapm3NcsPoafDevAF6t38t3mfW7HCUtWFMLYhJkbKC6v5J5zO7sdxZjDxg3O\npGXjGP7v07VuRwlLVhTC1JZ9JUyem8elfVPIap3gdhxjDmscG8VtIzoxd8MeZqzd5XacsGNFIUz9\nY/oaROAeu5ZgAtD1p6WT0TKev364ivLKarfjhBUrCmFo3oY9fLR8O7ee0ZGUZo3cjmPMj8RGRfKH\nC7qzsaCYl+bluR0nrFhRCDOVVdX85YOVpDRrxM+GdXQ7jjF1OqtbK87onMxjX6ynoMg6y2soVhTC\nzGsL81mzo4jfnd+NRjGRbscxpk4iwh9Hd+dQRZVddG5AVhTCyP6Sch76bC0DM1twfi8bZtMEvk6t\nmjB2UAbTFuezfMsBt+OEBSsKYeSRz9dReKiCBy7qYd1ZmKDxi7OzaNk4hgc+WImquh0n5FlRCBNr\ndxTxyoLNXDswnW5tm7odxxifNY2L5r6RXVi8aR/vLdnmdpyQZ0UhDKgqf/lgJU1io7jnHGuCaoLP\nlaem0SslkX98vJriskq344Q0Kwph4NOVO5i7YQ93n9OZ5o1j3I5jzHGLiBAeuKg7OwvLeHqGjbng\nT1YUQlxpRRV/+2g1XVoncN3AdLfjGHPCTm3fgkv6tmPirFw27ylxO07IsqIQ4h75fB1b9h3izxd1\nt3GXTdC7/7xuREcIv3tnuV109hO/fkqIyCgRWSsiOSJy/xGWXyciy0RkuYjMFZE+/swTbr7fvI+J\nszZyzYA0BnVMcjuOMSetTWIcv7ugG7NzdjN1Yb7bcUKS34qCiEQCTwHnAd2Ba0Ske63VcoEzVLUX\n8P+A5/yVJ9yUVlRx35vLaN00jt+e383tOMbUm2sHpDOoY0se/Gg1W/cfcjtOyPHnkcIAIEdVN6pq\nOTAVuNh7BVWdq6o1nabPB1L9mCesPPblenJ2HeQfl/WiaVy023GMqTciwr8u7021Kve/tcxOI9Uz\nfxaFFMD7+G6LM68uNwMfH2mBiIwXkUUisqigoKAeI4ampfn7eXbmBq7KTmV4l1ZuxzGm3qW1iOe3\n53Vl1vrdTFtkp5HqU0BceRSREXiKwm+OtFxVn1PVbFXNTk5ObthwQaassop731hKq4Q4fn9B7bN1\nxoSO6wa257QOLfjbh6vZfsBOI9UXfxaFrUCa13SqM+8HRKQ3MAm4WFX3+DFPWHjiyxzWO6eNEhvZ\naSMTuiIihH9f3ofKauW3b1trpPriz6KwEMgSkUwRiQHGAO97ryAi6cDbwA2qaiN1n6TlWw7wzMwN\nXN4vlRFd7bSRCX3pLeP5zaguzFhbwJuLt7gdJyT4rSioaiVwB/ApsBqYpqorReRWEbnVWe1PQEvg\naRFZIiKL/JUn1JVXVnPvG0tp2TiGP42200YmfNx4egYDMlrw1w9XseNAqdtxgp5frymo6nRV7ayq\nHVX1QWfeBFWd4Dz/qao2V9W+ziPbn3lC2X8+XcPanUX8/dJeJMbbaSMTPiIihH9f0ZuKqmrueWMJ\nVdV2GulkBMSFZnNyPlmxnYmzcrn+tHTO7t7a7TjGNLiMpMb85aIezMnZw6Nf2Jnok2FFIchtLDjI\nvW8so09aM/5op41MGLu6fzpXZafyxFc5fLVmp9txgpYVhSBWUl7Jz1/5juhI4enr+hEbZcNrmvD2\n14t70r1tU+6auoT8vdZp3omwohCkVJXfv7OCdbuKeGzMKaQ0a+R2JGNcFxcdyYTrTwXg1lcWU1pR\n5XKi4GNFIUi9smAz73y/lV+d3Zlhne2GPmNqpLeM5+Gr+rJyWyEPvL/S7ThBx4pCEFqSv5+/frCS\n4V2SuWNEJ7fjGBNwzu7emttHdGTqwnymWW+qx8WKQpDZW1zOba8splVCHI9e3ZeICHE7kjEB6e5z\nujC4U0v++N4KVmw94HacoGFFIYiUVlTx81cWs/tgOROuP5Vm8Ta0pjF1iYwQHhtzCs3jY/jZy4vt\nxjYfWVEIEpVV1dzx3+/5Nm8v/7myN71SE92OZEzAS2oSy8QbszlwqIIbnl/A/pJytyMFPCsKQaC6\nWvnNW8v5YvVO/nJRDy7ue7QeyI0x3nqlJvLcjaeyaW8JY19cSHFZpduRApoVhQCnqvx9+mre+m4L\nvzq7MzeenuF2JGOCzqCOSTxxzSks27KfW19ZTFmlNVWtixWFAPf0jA1Mmp3L2EEZ/OIsa2lkzIka\n2aMN/7y8N7PW7+bu15daH0l1iHI7gKnbfxds5j+fruWSvu340+juiFhLI2NOxlXZaewvKefv09eQ\nGB/Ng5f0tL+rWqwoBKiPlm3n9+8u58yurfjPlX2s6akx9WT8sI7sK6ngmRkbaNYomvtGdrHC4MWK\nQgD674LN/OHd5Zya3pynru1HdKSd5TOmPv16ZBf2l5Tz9IwNlJRX8cfR3Ym0L16AFYWAoqo8/Pk6\nnvgqhxFdknny2n40irFO7oypbyLCg5f0onFMFJNm57LjQCmPjulLXLT9vdlX0ABRUVXNvW8s44mv\nchjTP42JN2bTONZqtjH+EhEh/GF0d/44ujufrtrBdZMWsK/Y7mOwohAAikor+MnkhYebnf7jsl5E\n2SkjYxrEzUMyeerafizfeoDLJ8wN+y637ZPHZTsLS7n62fnM3bCHf1/Rm1+enWUXvYxpYOf3assr\nNw9kz8FyLn16Lsu3hG9fSVYUXPRt7l4ufWoOeXuKeWFsf67KTnM7kjFha0BmC976+enERkVw9XPz\nePu7LaiG370MVhRcUF5Zzb8/WcPVz80jOiqCaT87nTNsTARjXNepVQLv3DaIHu2acve0pdzx2vdh\n11+SXclsYDm7irjr9SWs2FrImP5p/HF0d7ugbEwAadU0jqnjT+fZbzbw8GfrWJy3j/+7sg9DspLc\njtYg7EihgagqL83L44LHZ7NtfynP3nAq/7y8txUEYwJQZIRw2/BOvHv7YBrHRnL98wv4fx+uCovh\nPe0TqQFs2lPMn95bycx1BQzvksy/r+hNq4Q4t2MZY46hZ0oiH945lH9+vJrnZ+cye/1u/n5ZL05t\n39ztaH4jwXYhJTs7WxctWuR2DJ8UFJXx5FfreXXBZqIjI/jd+V25/rT21rrImCA0Y+0ufv3mMnYV\nlTGyR2vuG9mVTq2auB3LZyKyWFWzj7meFYX6d7CskonfbGTirI2UVVZzdf80fnlWFq2b2tGBMcGs\nuKySF2bn8uw3Gykpr+Sq7DTuOrszbRID/2/bioILyiqrmPptPo9/uZ49xeWc36sN957bhQ7JwfNt\nwhhzbHsOlvHU1xt4eX4eESKMG5zJrWd0COghcq0oNKB1O4uY+m0+b3+/hf0lFZzeoSW/Oa8rfdOa\nuR3NGONH+XtLeOTzdbyzZCsxkRGc36stV/dPY2Bmi4A7TWxFwc+Kyyr5aNl2Xlu4me837yc6Uji3\nRxuuG5DO6R1bBtwvhDHGf9buKOLl+Xm89/02isoqyUxqzNX907i8XyrJCbFuxwOsKPjFjgOlzM7Z\nzez1BXyxehcHyyrpmNyYawakc+kpKbRsEhj/+cYYdxwqr+Kj5dt5feFmFubtIypCOKNzMsM6JzO4\nUxIdkxu79oXRikI9OFBSwbd5e5mTs5tZ6wvYUFAMQIvGMYzo0ooxA9LIbt/cjgqMMT+Ss8tzWvmT\nlTvYsu8QAG2axjG4UxJDslpyeockWjeNbbDPj4AoCiIyCngMiAQmqeo/ay0XZ/n5QAkwVlW/O9p7\n1ldRUFUOVVRRXFZFYWkFm/eUsKHgIBsKitno/Nx9sAyAuOgIBma2ZEinJAZ3SqJrmwQbCc0Y47PN\ne0qYnbObOTm7mbNhN/tLKgBIiIuiY3ITOiQ3pmNyEzomNyYzqQnN4qNpHBtFfHRkvX3WuF4URCQS\nWAecA2wBFgLXqOoqr3XOB+7EUxQGAo+p6sCjve+JFoUZa3fx1w9XUVxWSUlZFcXllRxp3O7m8dF0\ncP5zOiQ3oXdqIqe2b05slA2+YYw5edXVyqrthSzM28vGgmI2FBxkY0ExOwpLj7h+fEwkjWOjaBIb\nxbUD0rllWIcT2q6vRcGfdzQPAHJUdaMTaCpwMbDKa52LgZfUU5nmi0gzEWmrqtvrO0zTRtF0a9OU\nxrH/+weOj4miSWwkTeKiSGseT4fkJrRoHLhNyowxwS8iQuiZkkjPlMQfzD9YVkluQTF5e4opLK2g\nuKySg2VVni+y5Z7nDXHR2p9FIQXI95regudo4FjrpAA/KAoiMh4YD5Cenn5CYfqlN6ffdaF7a7ox\nJrg1iY2iV2oivVITj72yHwVFh3iq+pyqZqtqdnKydTFtjDH+4s+isBXwHjUm1Zl3vOsYY4xpIP4s\nCguBLBHJFJEYYAzwfq113gduFI/TgAP+uJ5gjDHGN367pqCqlSJyB/ApniapL6jqShG51Vk+AZiO\np+VRDp4mqeP8lccYY8yx+XU8BVWdjueD33veBK/nCtzuzwzGGGN8FxQXmo0xxjQMKwrGGGMOs6Jg\njDHmsKDrEE9ECoBNJ/jyJGB3PcYJJuG677bf4cX2u27tVfWYN3oFXVE4GSKyyJe+P0JRuO677Xd4\nsf0+eXb6yBhjzGFWFIwxxhwWbkXhObcDuChc9932O7zYfp+ksLqmYIwx5ujC7UjBGGPMUVhRMMYY\nc1jYFAURGSUia0UkR0TudzuPv4jICyKyS0RWeM1rISKfi8h652fIjTYkImki8rWIrBKRlSLyS2d+\nSO+7iMSJyLcistTZ778480N6v2uISKSIfC8iHzrTIb/fIpInIstFZImILHLm1dt+h0VRcMaLfgo4\nD+gOXCMi3d1N5TeTgVG15t0PfKmqWcCXznSoqQTuUdXuwGnA7c7/cajvexlwpqr2AfoCo5xu6EN9\nv2v8EljtNR0u+z1CVft63ZtQb/sdFkUBr/GiVbUcqBkvOuSo6jfA3lqzLwamOM+nAJc0aKgGoKrb\nVfU753kRng+KFEJ839XjoDMZ7TyUEN9vABFJBS4AJnnNDvn9rkO97Xe4FIW6xoIOF629Bi/aAbR2\nM4y/iUgGcAqwgDDYd+cUyhJgF/C5qobFfgOPAr8Gqr3mhcN+K/CFiCx2xq+Hetxvv46nYAKPqqqI\nhGw7ZBFpArwF3KWqhSJyeFmo7ruqVgF9RaQZ8I6I9Ky1POT2W0RGA7tUdbGIDD/SOqG4344hqrpV\nRFoBn4vIGu+FJ7vf4XKkEO5jQe8UkbYAzs9dLufxCxGJxlMQXlXVt53ZYbHvAKq6H/gazzWlUN/v\nwcBFIpKH53TwmSLyCqG/36jqVufnLuAdPKfH622/w6Uo+DJedCh7H7jJeX4T8J6LWfxCPIcEzwOr\nVfVhr0Uhve8ikuwcISAijYBzgDWE+H6r6m9VNVVVM/D8PX+lqtcT4vstIo1FJKHmOXAusIJ63O+w\nuaNZRM7Hcw6yZrzoB12O5Bci8howHE9XujuBPwPvAtOAdDzdjl+lqrUvRgc1ERkCzAKW879zzL/D\nc10hZPddRHrjubAYiedL3jRV/auItCSE99ubc/roXlUdHer7LSId8BwdgOf0/39V9cH63O+wKQrG\nGGOOLVxOHxljjPGBFQVjjDGHWVEwxhhzmBUFY4wxh1lRMMYYc5gVBRNQROT3Tm+fy5xeIAf6eXsz\nRMTnAc9FZLKIbBWRWGc6ybmBqj6yDK/p7bO+iMhdInLjMdbpJSKT63O7JnhZUTABQ0ROB0YD/VS1\nN3A2P+yzKlBUAT9xO0RtTm/A3tNReHL+92ivU9XlQKqIpPsxngkSVhRMIGkL7FbVMgBV3a2q2wBE\n5E8islBEVojIc84dzDXf9B8RkUUislpE+ovI206/8n9z1skQkTUi8qqzzpsiEl974yJyrojME5Hv\nROQNpx+lI3kU+JXzoev9+h980xeRJ0VkrPM8T0T+UdMHvoj0E5FPRWSDiNzq9TZNReQj8Yz9MUFE\nIo6WzXnff4nId8CVtXKeCXynqpVe/1b/Es/4C+tEZKjXuh/guTPYhDkrCiaQfAakOR9YT4vIGV7L\nnlTV/qraE2iE54iiRrnTr/wEPLf33w70BMY6d3oCdAGeVtVuQCFwm/eGRSQJ+ANwtqr2AxYBd9eR\nczMwG7jhOPdvs6r2xXPn9WTgCjxjP/zFa50BwJ14xv3oCFzmQ7Y9qtpPVafW2t5gYHGteVGqOgC4\nC8/d7jUWAUMxYc+KggkYzrgApwLjgQLg9Zpv2sAIEVkgIsvxfAPu4fXSmn6slgMrnbEVyoCN/K8j\nxHxVneM8fwUYUmvzp+H5IJ4jnm6obwLaHyXuP4D7OL6/Ie+cC1S1SFULgLKa/ouAb51xP6qA15yc\nx8r2eh3ba4vn39FbTUeBi4EMr/m7gHbHsS8mRFnX2SagOB+GM4AZTgG4SUSmAk8D2aqaLyIPAHFe\nLytzflZ7Pa+Zrvkdr92fS+1pwTMWwTU+5lzvfEBf5TW7kh8WibgfvuqEcx4rW3Ed8w8dJUMVP/z7\nj3PWN2HOjhRMwBCRLiKS5TWrL57OvWo+2HY759KvOIG3T3cuZANci+f0j7f5wGAR6eRkaSwinY/x\nng8C93pNbwK6i0is883/rBPIOcDpzTcCuNrJeSLZwDP6XCcft9sZT2+bJsxZUTCBpAkwRURWicgy\nPKdMHnDGCZiI50PrUzxdoR+vtXjGbV4NNAee8V7onMYZC7zmbHse0PVob6iqK4HvvKbz8fRUucL5\n+f0J5FwIPInnAz0XeOdEsjk+Bob5uN0RwEfHndaEHOsl1YQ88QzP+aFzkTqsiMg7wK9Vdf1R1okF\nZuIZ0auywcKZgGRHCsaEtvvxXHA+mnTgfisIBuxIwRhjjBc7UjDGGHOYFQVjjDGHWVEwxhhzmBUF\nY4wxh1lRMMYYc9j/ByIchgUrJJgtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Blackmann window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8FdXZx79P9j0hISwBQtgREFEQcF+qdauitX1datVq\ntS5t7f62tW/tpt03W6u1m1L3XVQQQVlERPZ9CSFsCSEJAUISQtbz/jEzN3Mn9yaXkOTmhuf7+dzP\nnTlzZs5zZs45v7PNGTHGoCiKoigdISrcBiiKoiiRi4qIoiiK0mFURBRFUZQOoyKiKIqidBgVEUVR\nFKXDqIgoiqIoHUZFRFG6EBEZIyJrRaRKRL4e4jlGREZ2tW12WLtE5JITvMZPROSZzrKpJyEi54nI\nthM4v9ueZbhQEelE7AxZKyLVrl9OuO1Swsr3gAXGmFRjzKPegyKyUES+3BUBi0ieXYg5abFURP4m\nIrFdEV5vxBjzoTFmTLjt6MmoiHQ+VxtjUly/fV4PIhITDsPCxckWXw9DgU1htiHDGJMCnAqcBdwf\nZnuUXoSKSDfgqhHeKSJ7gA9s9+kislREDovIOhG50HXOMBFZZHeDzBORvzpdBiJyoYgUecLwdUuI\nSJSIfF9EdohIhYi8JCKZHltuE5E9InJARB50XSdaRH5on1slIqtEZIiIPCYiv/eEOUtEvhkkzkZE\n7heR7cB2222sHZeDIrJNRP7H5f9KEdlsh1ksIt9xx9W26YAdzy+4zksXkZkiUi4iu0XkRyISZR+7\nXUSWiMjvROSQiOwUkStc594uIoV2mDs9171DRLbY580VkaFtPN9rRGST/RwXisgptvsHwEXAX+2W\nwGjPeQ8D57mO/9V1+BIR2W5f8zERkY7Y5sYYUwbMA8YFicdUEfnYDrPETnNxruPjXc+vVER+GOAa\nsSLyvIi8KiJxYnV1vSwiz9j3eYOIjBaRH4hImYjsFZFPu87/kh23KvvZfMV1zEkL37bPLRGRL7mO\nP2Xfq3fs8z8RkRFB4vq0iHzb3h7kpFd7f4Qdxyjx5DU7/X1HRNaLSKWIvCgiCa7j37Xt2icid3jC\nbCut7haRyfb2F2x7xtv7d4rIG4Gfag/AGKO/TvoBu4BLArjnAQaYCSQDicAgoAK4EkvML7X3s+1z\nPgb+AMQD5wNVwDP2sQuBomBhAw8Ay4DB9vl/B5732PIP247TgDrgFPv4d4ENwBhA7ONZwFRgHxBl\n++sLHAX6B7kXBqvAyrTDSQb2Al8CYoDTgQPAONt/CXCevd0HOMMV10bXvbgAqAHG2MdnAm8CqXbc\n8oE77WO3Aw3AXUA0cK8dB7HtOeK6zkBgvL09AygATrFt/RGwNEg8R9v2XArEYnVfFQBx9vGFwJfb\nSDOtjtv37m0gA8gFyoHLO2Cb86xj7P0cYB1wR5B0MxmYbl83D9gCfMM+lmo/o28DCfb+NPvYT4Bn\n7Of8DvAUEO06dgy4zL7uTGAn8KB9v+4CdrrsuQoYYT+jC7DSmDct/Mw+90r7eB/7+FNYeWiqHdaz\nwAtB7s0dwFv29s3ADuBF17E3A+U1+34tt+9lpn2P7rGPXQ6UAhOw0tdz9v0fGUJanQl8295+0rbn\nXtexb4a7fAuahsNtQG/62QmsGjhs/96w3Z3MPNzl93+B/3rOnwvchlVwNALJrmPPEbqIbAE+5To2\nEKswjXHZMth1fDlwo729DZgRJH5bgEvt7a8Cs9u4Fwa42LV/A/Chx8/fgYfs7T3AV4A0j58LA9yL\nl4D/wxKGemwhso99BVhob98OFLiOJdl2DbAz+WHgeiDRE+YcJ3Pb+1FYhdXQAPH8P+Alj99i4EJ7\nfyEdE5FzPfH9fgdsc561kx4NsNR9jwlS8bGPfQN43d6+CVgTxN9PgFnAIuBRQDzH5rn2r8bKI47I\npNp2ZQS59hvAA660UIstirZbGTDd3n4K+Kfr2JXA1iDXHQEcsu/fE3a6KbKPPQ18K1Bes+/XLa79\n3wBP2Nv/Bn7lOjbajttI2k+rdwKzXPnsy9gCCOzGFtKe+NPurM7nWmNMhv271nNsr2t7KPB5u+vg\nsIgcBs7FKvBzgEPGmBqX/93HYcNQ4HXXdbcATUB/l5/9ru2jQIq9PQSrFhSIp4Fb7O1bgP+2Y4c3\nvtM88f0CVoEOVmF+JbBbrG68s1znBroXOVitoVj8781urFaegy+expij9maKfb0bgHuAErsLZKzL\n1j+77DyIVTN2X9chxx2+MabZjncgv8dDsOdzPLY59DXGZGCJ6EdYlZVW2N1Mb4vIfhE5AjyCdY+h\n7XQBVgtmIlYh6l3VtdS1XQscMMY0ufZx4iciV4jIMrs76TBWmujrOr/CGNPo2nffGwh+3/wwxuzA\nakFOwupSfBvYJyJjsFpAi9qIa7AwcvBP8+502V5aXQScJyIDsQTnJeAcEckD0oG1bdgTVlREuhd3\n5tqL1RLJcP2SjTG/wuo26CMiyS7/ua7tGqwCAbDGMYBsz7Wv8Fw7wRhTHIKNe7FqaYF4BpghIqdh\ndae010/rje8ij00pxph7AYwxK4wxM4B+9nVfcp0b6F7sw+oOa8AqWN3HQoknxpi5xphLsYR7K1YX\nn2PrVzy2Jhpjlga4zD53+PbYxZBQbcD/HoXC8djmH5AxtVi19eki0jeAl8ex7sMoY0wa8EMsgXLC\nHd7G5d8Dfgm8LyL92/AXFBGJB14FfofVTZoBzHbZ0NksAj6H1fVYbO/fhtWd2pFCuwTr2Tu482yb\nadUYU4AlSF8DFhtjjmCJ1d3AErty0iNREQkfzwBXi8hlYg1mJ9iDeIONMbuBlcBP7cHJc7G6ARzy\ngQQRuUqs6Zo/whovcHgCeNgZcBWRbBGZEaJd/wR+LiKjxGKiiGQBGGOKgBVYLZBX7UIpVN4GRovI\nF+3B11gROVNETrHj+AURSTfGNGCNVXgzjXMvzgM+A7xs12ZfsuOaasf3W1j3tk1EpL+IzLDFqQ6r\ni8UJ8wngB66BzXQR+XyQS70EXCUin7Kfxbft67VbqNuU0nbh7OV4bPPDLqS/iFU4VQTwkop176vt\nVtm9rmNvAwNF5BsiEm/f72nuk40xv8Hqdn0/iEi1RxxWOi4HGsWaBPHptk85IRZhdcsutvcX2vtL\nXC2l4+El4HYRGSciScBDzoEQ06pjj9MKWujZ75GoiIQJY8xerEHSH2Jlmr1Yg9rOM7kZmIbVXfEQ\n1uCac24lcB9WgV+M1TJxz9b6M1Yf9XsiUoU1yO6X4dvgD1iJ/T2sAuVfWAOmDk9jTRVtryvLD2NM\nFVaBcCNW7X0/8GtaxO+LwC67G+UerK4uh/1Y/df7sAZL7zHGbLWPfQ0r/oXAEqxC7N8hmBSFlYn3\nYd3jC7ALTWPM67ZtL9j2bASuCHQRY8w2rK69v2DVNq/GmuZdH4INYD2rz4k106rVeyQBwgvZNheH\nRaQaS7DOAq4J0OUE8B2sdFeF1Sp70RVuFdbkgauxnsd2rJlnXvt+jtWSnC/2jMBQscP4Olb6O2Tb\nMut4rnGcLMISTkdElmC18BcHPaMNjDFzgD9hzb4ssP/dtJdWvfZ493skEjgtKT0NEfkJ1iyPW9rz\n28V2nI9VexoapCDq7PAuxJpQMLirw1IU5fjRlogSMnZ3zQNYM2C09qEoioqIEhpivUB3GGsQ+k9h\nNkdRlB6CdmcpiqIoHUZbIoqiKEqH6fUL4/Xt29fk5eWF2wxFUZSIYtWqVQeMMdnt+ev1IpKXl8fK\nlSvDbYaiKEpEISIhrZKh3VmKoihKh1ERURRFUTqMioiiKIrSYVREFEVRlA6jIqIoiqJ0mIgTERG5\nXKxPqxaIyPfDbY+iKMrJTESJiP3djMewVi0dB9wkIgG/F60oiqJ0PZH2nshUrM+dFgKIyAtYy6lv\n7uyAlmw/wB1PryAvK4npw7PISIzt7CAURVE6lcZmw6rdh9i07wj3XTSC+y4c2eVhRpqIDML/85NF\nBPhOhojcjfVFMHJzc72HQ+KZZbupb2wmv7Sa/NJq17U7dDlFUZQuI9ASiL95d5uKSEcxxjwJPAkw\nZcqUDq0w+fgtZ1BT38S2/VW8tW4fL67YS5TAT64Zz+enDGn/AoqiKN3AjvJq7n1mFfml1Zw7si83\nT8vlzLxM+qbEdUv4kSYixfh/w3gwoX/L+rgQEVLiY5g8tA+Th/bhznOH8b1X1vPdV9azq6KG73x6\nDKLNEkVRwsjynQe58+kVxEZH8a/bpvCpUzr0efsTIqIG1rG+7z1KRIaJSBzWp1a78vOZPoZkJjHz\nzqncNHUIjy3YwV8+KOiOYBVFUQKyvugwdzy1guzUeN68/5ywCAhEWEvEGNMoIl8F5gLRwL+NMZu6\nK/zY6CgevvZU6hsNf5iXz9CsJGZMGtRdwSuKogBQduQYdzy1koykWJ778nQGpCeEzZaIEhEAY8xs\nYHa4wo+KEn59/ansOVjDD1/bwIRB6YzITgmXOYqinGQ0NRu+/sIaqusaePbL54ZVQCDyurN6BDHR\nUTx60+nExUTx3ZfX0dysX4dUFKV7+O/Hu1hWeJCfz5jAmAGp4TZHRaSjDExP5MGrxrF6z2FeWrm3\n/RMURVFOkJLKWn47dxvnj87mc5MHh9scQEXkhLj+jEFMG5bJr97dStWxhnCboyhKL+d3c/NpbDY8\nfO2EHjM7VEXkBBARHrzqFA4fbeDfS3aF2xxFUXoxBWVVvL6miFvPGsqQzKRwm+NDReQEmTg4g0vH\n9eefSwqpPKqtEUVRuoY/zt9OYmw093bDW+jHg4pIJ/CNS0ZRdayRF1bsCbcpiqL0QvYePMqcDSXc\nctZQMpO75030UFER6QTG56QzbVgm/122myadqaUoSifzzLLdiAi3nZUXblNaoSLSSdx+dh5Fh2p5\nf0tpuE1RFKUXUVvfxPPL93D5+AHkZCSG25xWqIh0EpeO60//tHheWKHTfRVF6TzmbSnlyLFGbpk+\nNNymBERFpJOIiY5ixqRBLM4v51BNfbjNURSll/DGmmJy0hOYNiwz3KYEREWkE7nmtBwamw1zNu4P\ntymKovQCKqrrWJRfzjWTBhEV1TPeC/GiItKJjM9JY0R2MrPWdcnq9IqinGTM21xKU7PhmtNywm1K\nUFREOhER4bLxA1ix6xBH9A12RVFOkA+2lpGTnsApA8O/RlYwVEQ6mYvG9qOp2bBk+4Fwm6IoSgRT\n19jEkoIDXDS2X49Z4iQQKiKdzOlDMkhLiGHB1rJwm6IoSgSzfOdBjtY3cfHYfuE2pU1URDqZmOgo\nzhudzZKCAxijLx4qitIxlmw/QFx0FGeP6BtuU9pERaQLmDYsk5LKYxQfrg23KYqiRCgrdh3k1MHp\nJMZFh9uUNlER6QKmDLXmc6/cdSjMliiKEokca2hiY/ERpgztE25T2kVFpAsYMyCV1PgYlu86GG5T\nFEWJQDYUV1Lf1MxkFZGTk+goYVJuBuv2Hg63KYqiRCCrdlu9GCoiJzHjBqaxvbSahqbmcJuiKEqE\nsWnfEQZlJJKVEh9uU9pFRaSLOGVgGvVNzRSW14TbFEVRIoz8/VWMHdBzXzB00+NERER+IiLFIrLW\n/l3pOvYDESkQkW0iclk47WyPcTlpAGwuqQyzJYqiRBL1jc3sKK9mTISISEy4DQjCH40xv3M7iMg4\n4EZgPJADzBeR0caYpnAY2B7D+yYTEyVsL60OtymKokQQhQeqaWw2ESMiPa4l0gYzgBeMMXXGmJ1A\nATA1zDYFJSY6isF9Etl98Gi4TVEUJYLYaXeBj8hOCbMlodFTReRrIrJeRP4tIs70hEGA+4tPRbZb\nK0TkbhFZKSIry8vLu9rWoORmJbOnQkVEUZTQKTpkvaQ8JDMpzJaERlhERETmi8jGAL8ZwOPAcGAS\nUAL8/nivb4x50hgzxRgzJTs7u5OtD52hmUnsrtCBdUVRQqfo0FFSE2JIT4wNtykhEZYxEWPMJaH4\nE5F/AG/bu8XAENfhwbZbjyU3M4kjxxqprG2ImAShKEp4KTpUy+A+kdEKgR7YnSUiA1271wEb7e1Z\nwI0iEi8iw4BRwPLutu946JdmzfEur6oLsyWKokQKRYdqGZSRGG4zQqYnzs76jYhMAgywC/gKgDFm\nk4i8BGwGGoH7e+rMLIfslBYRGdkvMgbJFEUJLweq65iS1/PfVHfocSJijPliG8ceBh7uRnNOiL6p\nlogcqNaWiKIo7WOM4XBtA32S4sJtSsj0uO6s3kTfFBURRVFC58ixRpqaDRlJkTOGqiLShWQkxhIl\nUFFdT1OzfqBKUZS2OXy0HkBbIopFVJSQHBfDkx8WMu7H7zJ/c2m4TVIUpQdSWdvAxb9fyOV/+hCA\nPsnaElFskuNjqG9spq6xmUc/2N5l4RhjmL+5lMX55a0+y/vB1lKe+mgn1XWNfu4FZVW8uGKPr/bj\nUFvfxMc7Kqjx+AerptSsrSqlB1F5tKFVS98Yw5o9hyg6dLSV+9xN+5m/udQvnxhjeG/Tfp5euouj\n9f7pfteBGl5ZVUTl0YYui8PLK/dSWF5DbYM1VyhDWyKKQ3ysdYtFYH1RpW+676GaeqqOHX+i/PP8\n7Ux4aC53zVzJsYaWyWm/fncbX565klv/vZzHF+3wub+0ci93PLWSn7y1mbueXunLOJv3HeGqR5fw\nv69u4HNPfOy7VnVdI9c+9hE3/WMZV/9lCUdcNv5k1iYm/WweV/91iZ/wfLC1lPN/s4A7nlpBZW2L\n/32Ha3nghTX8+M2NfgLW0NTMfz7ayZOLd1DX6D/BbtXuQ7y7sYRGzxL6B2vq2Vhc2Uogm5sNB2v8\nRVA5cbz32aGmrrFVIQtQfLiWgrKqVu4biip5Z30J9Y3+z3PB1jJ+N3dbq0LeSq8rWrXaH1+4g7N+\n+T4/fWuTn22/fncrp/3sPa7482IqXGOPv3hnC9f9bSkX/24RH++o8Ln/7r1tfOW/q/jyzJX85YMC\nn/vzy/dy939X8dCsTXzlv6t8YeSXVnHlox/ynZfXcd3fPvJLxzM/3sXEn8zlxic/Pu402NRsKD5c\n6wtnUb7/yhpJPfyTuG5URLqYmjqrkLx2krVCy8biShZsK2PaI+8z/ZH3WbrjQKtz/rVkJ9Memc+M\nxz6isLxlAcf5m0v54/x8xgxIZd7mUv78vtWy2VNxlCcX7+Czpw/i0nH9efT97VRU19HY1Mxv527j\nzLw+PHT1OD4urGDBtjIA/jAvn+T4GB657lQKyqp57pM9ADyzbDfbSqv46kUj2VVRw99tQVpacICn\nlu7i4rH92Lq/ij/OywegorqOrz23BoNhcX45v5y9BbAKoXueWcXsDSXM/Hg3P5m1yRePR2Zv4adv\nbeaR2Vv5wWsbfO5vr9/H9Y8v5Z5nVvN9l3t+aRUX/W4hn/nLEv731fU+98raBmY89hFn/HweP3x9\ngy9DNjcbvv/qesb8aA4PvbnRr9CZ+fEuLvjtAn7+9ma/FtXi/HI+9/hSHpm9xU/A8kuruHvmSn45\ne4tfQVhWdYzvv7qeX87e4ifmNXWN/HLOFh5+Z3Mr4XxsQQE/fWuT30QLYwxPL93Fg69vYK9nnbWX\nV+7lOy+vY/O+I37ub63bx/3PrmbJdv+08+7G/dz27+W8tHKvn/v8zaV89m8f8du5W/3i/MHWUi7+\n/ULue3aVnzAs2FrG5F/M5/I/LfazacHWMqb8Yj5TH/ZPtwu2lnHhbxdwyR8W84/FhX7uMx5bwv3P\nrearz632PYcF28r40lMr+OuCAm58cpkv7EX55XzvlfUsKTjAPc+sIr/UEqWlOw7w63e3khAbzX8+\n2sXLq4oAWLv3MI8v3MEFo7PZeaCG387d5ntm/1qyk2sn5ZCTkcBDs6w0UHbkGE8sKmTGpByumDCA\nvy4o4EB1HfWNzfxpfj7ThmXy4JWn8OH2AywpsOL3x3n5xEQJv7l+IoUHanh66S7AyscPzdrEsOwU\nVu85zP+9udEX74amZn7w2gYm/ew97nt2lV/FCloqauf86gO+8/J6mpsNq3cf4oYpLe9Sx0ZHTtEc\nOZZGKNV1VgI6d2RfwErgj7yzhQHpCfRPS+DbL62jtr6lEHp1VRE/f3szeVnJ7D14lK/8d5WvUHti\n0Q5yM5N48e7pXH1aDs98vJu6xibeWFuMAb5z2Ri+eclojjU08+6m/SwrPEh5VR13nDOMW6YPpU9S\nLG+s2cfBmnoWbivj85MHc/O0XCYOTufNtdbL/899soezhmfxncvGcPHYfry8sghjDM8t30NmchyP\n33IGMybl8OrqYo41NPHyqiJq6pv4z+1nctPUXF5bXUzl0QaWFR5kfVElv7h2Al8+dxivrS5i3+Fa\nyo4c49lle7hhyhDuuWAEr60uprC8mqZmwy/e3sLEwencdtZQXllVxMZiaxn9X7yzhSiB688YzEsr\ni1i+0/rs8GMLCti4r5JLTunHc5/sYaFdm3t1dREvrNjL2AGpPP3xbt7ZUALAmj2H+PGbm2g2hn8t\n2ekrbEuPHOMr/11FQXk1Ty4u5D8f7QKs71x/6T8rWJRfzt8XF/KoLdrGGO59ZjUvrtzL3xcX8rO3\nN/ue3w9f38DfFxXyjw938u2X1vrc/zAvn9/O3cZ/PtrlV9Od+fFuHpq1iWc/2cOt/17ua5nN3lDC\nd19ZzyurirjlX5/4arqfFFbwtefXMGdjCXc8tYIddiVj6/4j3P/capYVVvC9V9bzkV0IFh06yn3P\nrmZHeQ2PLdjB8yusykJ5lSX+x+qbmLNxP7+ba1UKauoa+caLa0lPjKXoUC0PvmEVjnWNTXz3lfUM\n7pNIdmo833tlPQ1NzTQ3G370xkaG903h/NHZ/Pa9bZQdOYYxhkdmb2FEdgpfuWA4720u5RP7uf15\n/naG9U3m6TumUnSolhdXWM/hH4sLGZSRyIffu4iE2GifID29dBdZyXHMeeA8xuek+Z7PzI93kRof\nw2NfOIPPTR7C62uKqa5r5NVVRcRECf/3mXHcd+FI8kur2Vh8hLfXl9DUbPjaxSN54JJR1Dc2M2fj\nfhbnl1NWVcc9F4zg1rOHkp4Yy5tr93Gopp65m/Zz87Sh/M+ZQzh7RBav2AL27Cd7SIiJ5r93TuWu\n84Yxe0OJb528Jxbu4PnlezgzL5P3NpXy9efX+Lee5mxl075KLhqTzauri3h/axk19U2cOjjd5yc2\nKnKK5sixNEJx0s6QzCSyU+OZt7mU7WXV3H3+cH5x3QRKKo8xa51VgB9raOJX725l8tA+PHfXdH5x\n7QS2l1Uzb3MpZVXHWLn7EDecOYSY6CiunZRDVV0jnxQeZMG2Mk4fkkFORiKnDExlSGYii/PL+XB7\nOXHRUVw0th+x0VFcMDqbZYUVfFJYQWOz4bIJAwC45JT+rCuqZGNxJXsOHuVy2/3T4wZQVlXHttIq\nFuWX8+lx/YmPiebq03Kormtk5a5DzNtcysTB6Yzsl8r1kwdT39TMwvwy3lq/j5T4GGZMGsTN03Jp\nNvD+llLe3bSf+qZm7jp/OHeck4cIvL2+hGWFFew/cox7LhjBty8bQ1x0FK+vKWZ/5TE+3F7ObWfn\n8fB1E0iNj+HllXtpaGrm5ZV7ufLUgTx+y2T6pcbzvKs1NXZAKq/eezbD+ybz3493A/DU0l1kJMUy\n54HzmTg43VcYPbPMEuNZ95/LeaP68q8lO2lqNsxat4/iw7X8+/Yz+czEgTy1dJc1XlRYwardh3jk\nulO59ayhvLhiL+VVdew6UMOba/dx/0Uj+OYlo5m7qZTtpVVU1zUyc+kuZkzK4ZefPZVVuw/xUUEF\njU3NPLFoB9OGZfKf289k54Ea3lpnCd7jC3cwql8Kb3/tXA7W1PPsMisOjy3cQXZqPIu+exFRUVar\nFeDJRYXEx0Sx+HsXMTA9gSfsFuRTH+2i2RjmPHAeZ+Rm8I/FhRhjeHW1Jf4z75zKZ08fzPPL93C0\nvpHX1xRTWdvA7z5/GvdeOILF+eUUllfzwZYyDlTX8eBVp/D9K8ZSdKiWJdsPsKywguLDtXz14pE8\ndPU46hubeWt9CRuLj7C9rJo7zh3GNy8ZTXJcNG+u3cfuihrW7j3MjWcO4YLR2YwbmMY760s4UF3H\n0h0HuO70QfRPS+DT4/rz3uZSjtY3smBrOddMyiEhNpoZk3LYUnKE4sO1LM4v55Jx/UmJj+GqUwdS\n19jMil0HWbitnLNGZJGVEs+l4/ojAgu3lbEov5xR/VIY2S+VMf2tfPLxjgMs3VFBfEwUZ4/MIj4m\nmnNH9uXD7eUs3VFBs4FLx/UHrP+dB2rYXVHDuxtL+PT4/qQlxHLztKEYA3M37aeusYl/LtnJpeP6\n849bp/DDK09hUX45C7dZFZyK6jpeXLmXG84cwp9uOJ3oKPGJ5dCslqVOYmOkk0uirkNFpItxRCQu\nJoqcjERWur6dfNbwLIZnJ/PqaktE5m7aT3lVHd+6dDTRUcJl4weQlRzHu5v2+/p1zx9lLSh51ogs\nRGD5zoNs2neEKXmZAIgIpw3OYNO+I2zcV8nYgakkxFr9q6fn9qGsqo65m/YTGy2Mtz+cddqQDMCq\nXQG+t2WnDbeu+dKKIqqONfq+9zx5aB8r7F0H2VBcybRhlr8JOWkkxUWzavchVu46yOShfUiIjWZY\n32QGZSSydEcFHxUcYEhmIiP7pdAvLYFTBqTxyc4KPt5RQXSUcMHobNISYpk2PNPn3xi4bPwAEmKj\nuWhsPxbll7Nu72EOHW3g6okDiY2O4vIJA1i8vZySylrWFVUyY9IgYqKj+MxpOSzfdZCDNfW8v6WM\ny8cPICU+huvPGMy20ip2V9Qwd9N+pg3LIjcric9PGcL+I8dYu/cwczaUMLhPImePyOLmqblU1zWy\neHs5szeUkBgbzbWTBvGFaUNpaja8t3k/szdaAvCFaUO5eVouUbZAzt9cSk19E7eelcdnzxhEclw0\n724qYfmug5RUHuPWs/K4cEw2QzITeXdjCTvKq9lQXMnN03KZMCidqXmZvLtpP5W1DSzZXs7/TBnM\nkMwkLh8/gNkbSmhoambe5lKunphD/7QEPnvGID4qOMCRYw3M3byfC8f0Iycjkf+ZMoRdFUfZXlbN\nnA0lnJ7JcwIoAAAgAElEQVSbwch+qVx3+iBqG5pYWlDBgq1lDOubzOShfbjmtBzA6uqbt6WUrOQ4\nzhuVzQWjs0mKi2bBtjI+2FpGXEwUl47rz4jsFEb1S2HhtjI+LLAKTee5nTcqmw+3l/vSsVMwXzQ2\nmzV7D/sK7IvG9gPg3FF9qaxt4PU1xdQ3NTN9eBYAZ4+wWvSvririQHU90+00OnloH2KihEXbyskv\nq/Kl1T7JceRlJbNxn1VJctK6k0/W7a1kQ/FhTh2UTnyMk08yKD1Sx6L8MmKjhYl2C+FMO4+9vb6E\nQ0cbOMu2aVBGIqP6pfBhwQEW5x+gsraBm6flAvDFs4bSLzWe55ZbeWve5lLqG5v54vQ80pNiGd0/\nleW7rBba0MxkX7kRoy0RxaGx2eqKiouOop/9BntcdBSj+qUgIlw+fgCrdx+ipq6RdzfuJzs13pc4\no6OE80b15eMdFazZc5jkuGjfFxOT4mIYmpnEnI3WoKUjCGB9VbHoUC0rdh5i3MAWd+dzm7M37mdE\ndoov00ywz317/T5EWr5jMKRPEomx0cxat8/yN8jKTGkJsQzLSmbW2mLqG5t97jHRUZw6KJ1Vuw+x\nvayaSa4MO2FQGvmlVWzdX8XEwRk+m6bk9WHtnsOs2XuIsQNSSY63FlGYNCSD/NIqPi6sICU+htH9\nLdtPz83wCSHAGbktwnasoZmXVljdDVOHWe5T8zIxxip0qusafcLo/C/OLye/tJqzR1j33Ln3q3Yf\nZPWew5w3qi8iwuS8PsRFR9kCeYgzh2WSGBfN6P4p9E2JZ+Uuy31UvxRyMqwun7ED0li5+yCf7DxI\nakIMk4ZkEB8TzfThWXxUUMGKnYcQgfNGW2GcPyqbj3dU+Lrrzh+dbf/3ZdO+I8zbXEqzaalInD2y\nL4ePNvDGmmKq6ho5b7RVwJ4zoi/Nxho72XuwlnNH2nGz47g4v5xN+4744nrmsD7ERgsrdx9i+a6D\nvgJ7SGYSgzIS+WTnQdbuPczpuX2IjhISYqOZODid9UWVrCs6zIScNF9F5YzcPmzad4T1eysZmpVE\nZrI1y2jikHSr9VJwgNSEGIb1tQrMUwel09RseG11EVGCL706aerllUW+9AAwsl8KUQJzNlrP30kX\niXFWZeWdDSUYA+NzWrqGxuWksTj/ABU19X75YXxOOsWHa9lQXOn37Y5R9jXnbiplaFayb3zCCftV\nu0vLESRne0vJEVbuOkhcdJQvPcVGR3HNaTks3FZGdV0j728tY5DdYwAwpn9LuM5ae9Z52hJRbJp9\nLRHxiUh2ajwxdsKcPjyLxmbDqt2HWLqjgovGZBMV1ZKAxuekU1ZVx+o9hxienUK069jo/qnssD9g\n417106nR1Dc1k+NayC3Xbi7XNzYzMD3B556ZHEdyXDRVxxoZlJHoKxCiooRhfZN9A8GD+7Rca2hW\nErvsPuDhfVsywvDsZDbtO4Ix/s3zkf1S2FFew+6Ko4zom+znXlPfxCeFBxnTv+VLbuNz0mhqNry7\ncT9jBqT64n2qXbi8trqYfqnx9Euz4uEI00sr99qFkeVv4hDr3xkLcPyN6pdKYmw0zy+3+uOd/ujs\n1HgG90nknQ1Wzd8pzOJjLAFfvvMg28uqmWi7iwhn5Gawbu9hNhRX+vVrTx7ax1fTnTQkwxeHCYPS\n2VVRw8rdBxnVL4W0hFife409RpGeGMtw+z6Nt8N6e72/mJ+Ra8XF6aefYBecTuH2xppiv/NzM5Po\nkxTLa6uLaWw2vnsRHxPN8L4pfFRwgKpjjb4CznkO64sqKSyv8d17gLEDrErBlpIqvwJ77MBUDtbU\n81HBAb8C+5QBTkWlhFMGpCEivusALNxWztCsZBLtWUkjslOIiRLW7j1MfExLBSwhNpq8rGS2lFiT\nDbxpz5n96F7AcFhWsm/q7CBXGnbS87GGZvJcaXJEtrVdWdvg23bCzs1MovBAje9+Oozpn0p5VR0L\nt5UzLifNV0EDqzLQ0GQNnq/efYjpw7N88R+Qnmg/gyhfvgMdWFcCEBcd7VsO3l3jcFoW728ppbK2\ngUlD/BdeG223HtYXVfoVyoCfQAxwiYJ7Ozu1Jaz+qQm+gsztR0R813ILBUB/29aU+BhSE1pegHJ/\nMMcdH7e7W9iG+WX2lu28LCuTNjYbBmYktDq3uq4xoBBW1NT72Tq4TyJRYk01zU6N9xVGaQmx9E2J\no7C8BpGWjB8dJQzNSmKzXRi5a6LD+iazbu9hAEa63Edkp7B272Gamg2jXDXIEf1SKDxQQ3lVnZ8Q\njshOprqukY3FR1oJqjHw4fYDvvg77mC1FPKyknwFjWPDwm3lDExP8LXWcjOTiY4SPtl5kNho8d2P\n5PgYBqYnsGKX1XXqiJGIMDw7xRdnt02jB6SywZ7I4LZpRL8Uig/X+u6xw6j+KRytb6K6rtGvYHbu\nY1VdIwPT/SsdDu605362/VxpNTpK6G9XEAb1SfTdC2cfICMplnTX8iAD0lquOzBIfnCH4bY7J8Pt\nJ7B9gM+mtIQY33OAlme3rbSq1RcJz7C7f9/dtJ+KmnomDEpzXS+eQMRoS0TxEhcT5SuEU1yJLys5\njj5JsbyzwWqej3N1SwHkuTJfrudLZ+7C2505gmWaqCghya7t9HdlOGgRG6f7oeX8hFbX9PrLcm33\nTQ6cSd1i5rbb7e7OsO4CK8ctiinxxMVYydZdSMVGR/n2B3ji5ghbVnK8Xw0vN4gQBivw3O7u+zc0\nM4i7q3Y7xCWow121W7fQDu8b2H1QRqIvzsNcfqxxtgRfXGJccXPCS02I8XtWfvfVdb/dNXe3iLgL\nY7+COUiB7Y7/gPT4gO7ugjMuJsq3xlw/z3Nz4uZdFt1ZHTvLm1Zd52cEERe3H/f5qQkteTIuJopE\nO58EC8ObH9zpxx1vsPL7wLQE37sv7oqGk/4bPO9F6ewspRVxMVEkx1sJs9k13U/Ev8vIm2GcDAa0\n+rBVdoq7D7XlUfZxZSB3rQqsGn8gd0fYvGv29E2NaxWW2190lPgVXn2CiIt7212oueOX4xIFd1wH\nelpNmXbY3ozcNyWwe5YtbN5an7PKcp+kWL/uB7dN7vvkJ4SpgYXQz911HbcouP27C/U+SXE4FW63\nAEdFCX3te+a+vttW7/N0nlu/1Hi/WrzjPzkumjRXwem2yb3khju8gX6thsCC0t+vMG3x7661eysw\nThjeuDlvbXsL8iz7ObdKq7Z7lOAXZ3d83M/E3bJOivNf0NxpsfdpValy0pJ/HPzE03MMIK9vMmV2\nV5v7Pjr5zm0v4Nel3dNREekm4mKiiAvSz+kkwLjoqFYZxp35kuL9E3qwryUmuvpWvX4S7DfovW/E\nBhMRJ6N50rivpudN6m6BiI9pia+7YM5MCiwo7tqgO1NlegTMaep7C500O67eDO7Y6s3cjth6/bvv\nQaLrPvmJs+scd0HjrpH28RPLlm339ft6WopOGvGKdpa97y3UHIH0tiCd+926oLXcUxNiPeLS4s9d\noPoLahDhdN0Ld3rzPp9A50LLILLX3UmTyZ5079yDRE8adsaWvKvypLnEIs6VJt3pLdkjIk5Fz3v/\nnGt58487TXvTE3hbsS3xdOIYyQu0qoh0E3HRUX4J2I2Tefqnx7dZA0mK9RT8CYE/B+MuHLx9q47A\nxHtscWzzZlgno3mb205h0ehJ/OmJgYXAbau7H9s9USAhNvBSD954O7Z6M7JTc03xFjp2eF5BzUiM\n87tey3UCi7O7QPF2STpkp7gmLLj8u++ru9WYEu8fh/h2nkNmkNq3d8E+R1RSPWkk0/ZX2+C/3Iw7\nbu5n4r5n7sqJ+7ru5+B+5sGW7kj0PE/nfiR7/Dstd+/zdPajPXklWH7wVr684brDcoiy4+EVKsef\nt9B351uvoEOL2KfGx/iJtLcFFImoiHQTsdHiK6y8yxI5Cay95Z+9Cd2buQLhFREnk3sLTqfw8k4t\ndAoCb0XJ3f3jJpgQuAuOYC2yoOfGeQtaWwi9omrfD+91fIvZBWlNHa0PXqAGvI7XPdEtFi1hu+32\nFuY+/55CxOka9D5rJ82kewTOibPbBre79zk74tTsSYRe0fJdx2W3u6B0C0RCkLTgTSNO2vLa5KTR\nGE+6cNKM1zan4PUW5MEK5IQglTc33jAcm7xjE44/b+XJTaC84YixNy1H0lTeYKiIdBMiEnTaXlpi\n4IztxZtJgrVs3HgzgbPrPdexzZsxHfdoT39WsLCDZWR3rdHb/+vgzWAOThdci01iu3taKLa7t5Xl\nFHjBCh3vqsRBW0TB7ItrCc9bO3YIVkh73Z004K0g+Ao1TxpybPW6t4hF4PC8cfaKVnt2u59hfGzg\ntOB9DkIQEYlyKjAe/0EqPM5zaGzyj8PxVk4CXbO1TZ50HyQ/+PkJkDcc8feKj1c4I5HIb0v1cF65\n5yw+tBfKC1bw+mo3TW2LiDejhzKX3NsScZrp3tqSk7ajvGIR3bIKsRtvAeHg7ao4HoLVGL2FgCMG\nXv9OTdlbkDvnt25N2S1DT3jBnlOwwtJdeAUTyGCtRq+7U7h7C28njBhP3Hzib7wC6RS0/t2QTteg\n13+w1kSwgtlNsLTQ6n5J4Gu2CKR/3IKtJBwT5DkHe26hiYj3+RjbNk8FJsbJD8FFJND9cFoitZ5W\nr/d5zrxjqu8dmEhBRaSLmZKX6VuSxMk83ryREqSLwUtibOCCpS1a1e6ccz0J3Qnbmzccf63EJUiG\nDVYTD4VgLRGvMDli4C0cnNqht8XhtGS89zeYKATrYghWGLVVoPjCCtZyiw8ct9bdXIFbIr6gTeAW\npNc2p1D0tlCDvZcQSkUlWPy9FZVgac95bt6lPpwoeWv9Thrzjh8Ge26hpEmvH+c5eK8Z64TdxiUD\n5Y1UXzeYv6g74TpRPH90tm+lgkgh8ttSEUSwdOeIgbeg9uJtiYTUneUpBFpaIqGJgOPfO209mICF\nUJ4GJVht2CsuTm3dGwenUPG2OKId44OM63hrvMHuTTD7QsFb0Drvinjvo1PIeLvwHBO9hb0jjN4C\n1ffcvCIS5Yw/BG7ReDmRSkGr5xOke6rFhsBhmVZtRdu2oBWe47EyMM599d4Xx5K28mqg+CUG6VJ1\nnkNb3WM9HRWRMODNFC0Di20nJG+TO5RaYqtCQJxz/d2dxO3NHI6l0R4VCVYQtCeEbRFsZpq38HYy\nuLdl4ITtbXE4l23VEolxWij+4cVFBxaLzhwE/eL0oW0e994Lx0Zvbb052HOz4+pNIsEGsbtimY1W\nYyJBurNa0lho9zdYWvWN33WCijj31fvM2+stgMCVEN/4m+d053lG0nshXsIiIiLyeRHZJCLNIjLF\nc+wHIlIgIttE5DKX+2QR2WAfe1RC6UOIEEIZrIPWLRGn3/uW6bkhh+VkPG9eCFajnTQkgzH9U7n3\nghH+NgcVkZBNCRnv1E3nZcLWImL9eweNnQFdb5yd7iyvqAeLW3cmuWCi4O1DbxnL8j+/yScigQva\nWI97Vyyz4RWqYN1ZJkhXast5gePsfR59kuKYODidv9x0escM9rPJ+veKtrNO2Dn2opaBCJR+gk3K\niA6he6ynE64xkY3AZ4G/ux1FZBxwIzAeyAHmi8hoY0wT8DhwF/AJMBu4HJjTnUZ3FU5Caq8G5a2R\nJ8RGs+b/Lg36XkMg8rKSKSirDjCw7tTu/P2nJ8Yy95vnt7pOdxa03lryfReOJC0h1m/5EGgpYL21\nvWAtkWBjVKF0E54o7VVovRWKFpEnoLv3vgcraH1prVVf//HH+WczxlN65FjI/oPNtvLZGqTD1yvy\nwVpZcTFRzPrquSHb0xa+7iyPrcP6JrP2x5f6vcDoJVBXb7DxvhYRiVwVCYuIGGO2QMACZwbwgjGm\nDtgpIgXAVBHZBaQZY5bZ580EriXCRMRZePCzpw/2c2+wZ2W1V3gFavJ632Bujz/ccBofbT/gW8jQ\nwRnvCzUxhzKof6L85abTW30CFqwlzZ1lzd3ced5w9hw8yu3n5Pm5O/fNW27HBhGR7py77y04ja/w\n9/cXTBSCzaoL3s1l/XtFo604f/vS0UxwrU7scOtZeQH9P3bzGXywtayVu68lEqQ7K+igoYdgrayO\n8M7Xz8Uz1g24BtYDhBHsfSGHQBWpYC0R517ccc6wdiztufS02VmDgGWu/SLbrcHe9roHRETuBu4G\nyM0NvaunqxmQnsDOX17ZKpE5n0R1LyjoZuyAVLbur+oUG9ISYrni1IGt3IO1RILRHSJy9Wk5XG1/\nGCkU0hNj+dONrbsypuZlkpkcx30X+nfJBdPL7miJtEfrMZHjG/tw/Hu1wRm493ZfRUcJI/ultOq2\nBPjap0Ydl+1XTRzIVRNbp7GR/VNYs+dwq8Lf150V5HpeoQ02JtIR3MvYuwk2sN4Wp+dmsGbP4YDH\nnF4Eb76Ji4li16+uCjqdORIIKiIi8mgI5x8xxvwoyPnzgQEBDj1ojHkzRPs6hDHmSeBJgClTpvSo\npxOolnLB6Gzuv2gEd5/XOgMDvHrv2VTXNXapXcFqusFwCrmp9lcNT4T53zqfmrqm9j12kD7Jcaz+\nv0tbuTs1ymtP9xeq7hDIYDi339udZXwtDn//wQpUn7vnBGctrBmT/OtgIsL8b13QYbtD4V+3ncm6\nvYf9Fj4Ed9xCS3vOYpYTA7SOOotgs+Ha4tkvT+NIbeB8GhUl/PSa8b4PfnmJ5CHetloiM4Aft3P+\n94GAImKMuaQD9hQDQ1z7g223Ynvb694riImO4ruXjQ16PDk+Juibw52FM8gcbHprIBZ858Kgi+wd\nDyP7pbbvqQtIiY9h408va7U2V7C++84kWM0mmFgEa4kEE39n0kGgBRg3/vSyVutUdQeZyXG+z9+6\nccY8Qi1HJw/tw+yvn+f7UmdX0JGWSFJcTJtrYd12dt6JmtUjaatk+qMx5um2ThaRPm0d7wCzgOdE\n5A9YA+ujgOXGmCYROSIi07EG1m8F/tLJYZ/UfP+KsWQlx3FVgK6uYLi/bRGpBHuT/M83TvL7kl+X\nEaTgDNad1XqsJHA35JWnDmR/5TFuCTCVOJQ118JBsIH1QHi/u9Mef7np9FarBLdFTLTQ2GxazYZT\nWhM0NRlj/tTeyaH4CYSIXIclAtnAOyKy1hhzmTFmk4i8BGwGGoH77ZlZAPcBTwGJWAPqETWo3t08\n9aUzKakMfeZMWkIs3/70mC60CH712VODzlLpaXi7e9y4l03vKoK2ODwF7Xi7MHW+rOcQHSXcdf7w\nrjOwE/n19RP56wcFvu/edwXHM7YG8Nq95zBvc2mvWNuqq2lrTCQBuAE4BLwFfA84D9gB/NwY03ra\nTIgYY14HXg9y7GHg4QDuK4EJHQ3zZOPCMa27DcLNjVN7ziSHjrLsB5/qFCFsbyC19ZhI4BbH5yYP\nZtKQDEb1D0+XYGcwuE8Sv7p+YtDjwd5Y70rG5aQdd2vnZKUtmZ0JfBq4A1gI5AJ/BaqwWgSKctIx\nID0h6MfAOkLQF+w8OdOZBOB9wVJEIlpAlMinrc7RccaYCSISAxQZY5ypG++KyLpusE1RIobnvjyt\nU7s+vC2R31w/kbdG7evSGUk9leMZK1G6n7ZEpB7AGNMoIvs8x7puPqaiRCBnj+zbqdfzjon0SY4L\n+nKfooSTtkRksP2uiLi2sfeDjzoqinLCRPBrA8pJRlsi8l3X9krPMe++oigdwKsVU4dl8uH2AxG9\nlpJyctHWFN823xFRFKV9lj/4KY7VB1icKQhP3DKZPQeP9oilVxQlFNqa4vsWwV+sxRhzTZdYpCi9\niH6pCQHdg83wTY6P4ZSBOrVUiRza6s76nf3/Waw1sJ6x928CSrvSKEVRFCUyaKs7axGAiPzeGOP+\ncNRbIqJjIorSCUTywnuKAqF92TBZRHzrJ4jIMCDyF01SFEVRTphQVmL7JrBQRAqxJpMMxf5Wh6IE\n4usXj9R+/XYIx1Iekca9F45gz8Gj/M+ZQ9r3rISNdkXEGPOuiIwCnLXKt9pfHlSUgHyrixdy7E1o\nZ1ZwslLiefLWKe17VMJK0O4sETnD2TbG1Blj1tm/ukB+FEVRlJOPtloi/xGRC2m7svQvoPX3SBVF\nUZSTgrZEJB1YRdsiUt655ijKyUEEf1JbUfxoa4pvXjfaoSgnJTrDV4l0dG0FRVEUpcOoiChKGNDe\nLKW3oCKiKGFEP7ikRDrtiohY3CIiP7b3c0VkatebpiiKovR0QmmJ/A04C2vhRbC+sf5Yl1mkKIqi\nRAyhiMg0Y8z9wDEAY8whIO5EAhWRz4vIJhFpFpEpLvc8EakVkbX27wnXsckiskFECkTkUdGV65QI\nRqf4Kr2FUESkQUSisccCRSQbCP0rO4HZiLXE/OIAx3YYYybZv3tc7o8DdwGj7N/lJ2iDooQdrQop\nkU4oIvIo8DrQT0QeBpYAj5xIoMaYLcaYbaH6F5GBQJoxZpkxxgAzgWtPxAZFURTlxAllAcZnRWQV\n8Cmst9evNcZs6UKbhonIWqAS+JEx5kNgEFDk8lNkuwVERO7GXmk4Nze3C01VFEU5uWnr87iZrt0y\n4Hn3MWPMwbYuLCLzsb6I6OVBY8ybQU4rAXKNMRUiMhl4Q0TGtxVOIIwxTwJPAkyZMkV7n5Uehy4F\nr/QW2mqJrMIaBxEgFzhkb2cAe4BhbV3YGHPJ8RpjrxBcZ2+vEpEdwGigGBjs8jrYdlMURVHCSNAx\nEWPMMGPMcGA+cLUxpq8xJgv4DPBeVxgjItn2ID721xRHAYXGmBLgiIhMt2dl3QoEa80oiqIo3UQo\nA+vTjTGznR1jzBzg7BMJVESuE5EirPdP3hGRufah84H19pjIK8A9rm6z+4B/AgXADmDOidigKOFE\np/gqvYVQPo+7T0R+BDxj738B2HcigRpjXsea8eV1fxV4Ncg5K4EJJxKuovQ0dIqvEumE0hK5CcjG\nKvRfB/rR8va6oiiKchITyhTfg8AD3WCLoiiKEmG0KyIisoAAK1cbYy7uEosURVGUiCGUMZHvuLYT\ngOuBxq4xR1FOLnQpeCXSCaU7a5XH6SMRWd5F9iiKoigRRCjdWe4316OAyUB6l1mkKIqiRAyhdGe5\n31xvBHYCd3alUYrS2zH6oojSSwhFRE4xxhxzO4hIfBfZoygnFfqeiBLphPKeyNIAbh93tiGKoihK\n5NHWKr4DsJZbTxSR08E3jSQNSOoG2xSl16K9WUpvoa3urMuA27FWzP2Dy70K+GEX2qQoJw3am6VE\nOkFFxBjzNPC0iFxvr2mlKIqiKH601Z11izHmGSBPRL7lPW6M+UOA0xRFUZSTiLa6s5Lt/5TuMERR\nTiZ0SETpLbTVnfV3+/+n3WeOopxciM7xVSKcUN5YzwbuAvLc/o0xd3SdWYqiKEokEMrLhm8CH2J9\nJrepa81RlJMDneKr9BZCEZEkY8z/drkliqIoSsQRyhvrb4vIlV1uiaKchOiIiBLphCIiD2AJSa2I\nHBGRKhE50tWGKYqiKD2fUL4nktodhijKyYTRSb5KLyGU2VlnBHCuBHYbY/QLh4pyAugMXyXSCaU7\n62/AMuAf9m8Z8DKwTUQ+3ZFAReS3IrJVRNaLyOsikuE69gMRKRCRbSJymct9sohssI89KjrBXlEU\nJeyEIiL7gNONMZONMZOBSUAhcCnwmw6GOw+YYIyZCOQDPwAQkXHAjcB44HLgbyISbZ/zONb7KqPs\n3+UdDFtRFEXpJEIRkdHGmE3OjjFmMzDWGFPY0UCNMe+5usKWYa0UDDADeMEYU2eM2QkUAFNFZCCQ\nZoxZZqxPws0Eru1o+IoSbvQ9EaW3EMp7IptE5HHgBXv/BmCz/XXDhk6w4Q7gRXt7EJaoOBTZbg32\nttc9ICJyN3A3QG5ubieYqChdg/bKKpFOKC2R27FaBN+wf4W2WwNwUbCTRGS+iGwM8Jvh8vMg1nfb\nn+14FFpjjHnSGDPFGDMlOzu7My+tKIqiuAhlim8t8Hv756W6jfMuaeu6InI78BngU3YXFUAxMMTl\nbbDtVkxLl5fbXVEiEu3NUnoL7bZERGSUiLwiIptFpND5nUigInI58D3gGmPMUdehWcCNIhIvIsOw\nBtCXG2NKgCMiMt2elXUr1ppeiqIoShgJZUzkP8BDwB+xuq++RGjdYG3xVyAemGf3CS8zxtxjjNkk\nIi8Bm7G6ue43xjiLPt4HPAUkAnPsn6IoihJGQhGRRGPM+yIixpjdwE9EZBXw444GaowZ2caxh4GH\nA7ivBCZ0NExFURSl8wlFROpEJArYLiJfxRqL0K8dKsqJoHN8lV5CqAswJgFfByYDXwRu60qjFOVk\nQGf3Kr2BUGZnrbA3q7HGQxRFURQFaENERGRWWycaY67pfHMURVGUSKKtlshZwF7geeAT9Ps5itJp\n6IiI0ltoS0QGYC2yeBNwM/AO8Lx7HS1FUTqO1sqU3kDQgXVjTJMx5l1jzG3AdKylTxbaM7QURVEU\npe2BdXuRxauwWiN5wKPA611vlqL0bnSGr9JbaGtgfSbWy32zgZ8aYzZ2m1WKchKgK/gqvYG2WiK3\nADVY74l83ZXgBTDGmLQutk1RFEXp4QQVEWPMia6PpSiKovRyVCgUJQwYneSr9BJURBQlTOiIiNIb\nUBFRFEVROoyKiKIoitJhVEQUJQzoeyJKb0FFRFHChL4movQGVEQURVGUDqMioihhQHuzlN6Cioii\nhAnRSb5KL0BFRFEURekwKiKKoihKhwmLiIjIb0Vkq4isF5HXRSTDds8TkVoRWWv/nnCdM1lENohI\ngYg8KroEqhLB6BRfpbcQrpbIPGCCMWYikA/8wHVshzFmkv27x+X+OHAXMMr+Xd5t1ipKV6DVIKUX\nEBYRMca8Z4xptHeXAYPb8i8iA4E0Y8wyY4wBZgLXdrGZiqIoSjv0hDGRO4A5rv1hdlfWIhE5z3Yb\nBBS5/BTZbgERkbtFZKWIrCwvL+98ixVFURSgnc/jnggiMh8YEODQg8aYN20/DwKNwLP2sRIg1xhT\nIa8meHkAAA6xSURBVCKTgTdEZPzxhm2MeRJ4EmDKlCna+6z0OHQpeKW30GUiYoy5pK3jInI78Bng\nU3YXFcaYOqDO3l4lIjuA0UAx/l1eg203RYlYdEhE6Q2Ea3bW5cD3gGuMMUdd7tkiEm1vD8caQC80\nxpQAR0Rkuj0r61bgzTCYriiKorjospZIO/wViAfm2TN1l9kzsc4HfiYiDUAzcI8x5qB9zn3AU0Ai\n1hjKHO9FFSVi0N4spZcQFhExxowM4v4q8GqQYyuBCV1pl6J0J/qmk9Ib6AmzsxRFUZQIRUVEURRF\n6TAqIooSBnRIROktqIgoSpjQpeCV3oCKiKIoitJhVEQUJQwYXcZX6SWoiChKmNApvkpvQEVEURRF\n6TAqIoqiKEqHURFRlDCgQyJKb0FFRFHChA6JKL0BFRFFURSlw6iIKIqiKB1GRURRwoAOiSi9BRUR\nRQkToi+KKL0AFRFFURSlw6iIKEoY0Cm+Sm9BRURRwoR2Zim9ARURRVEUpcOoiCiKoigdRkVEUcKA\n0Um+Si9BRURRwoUOiii9gLCIiIj8XETWi8haEXlPRHJcx34gIgUisk1ELnO5TxaRDfaxR0Un2SuK\nooSdcLVEfmuMmWiMmQS8DfwYQETGATcC44HLgb+JSLR9zuPAXcAo+3d5t1utKIqi+BEWETHGHHHt\nJtOyCsQM4AVjTJ0xZidQAEwVkYFAmjFmmbG+KzoTuLZbjVaUTkTfE1F6CzHhClhEHgZuBSqBi2zn\nQcAyl7ci263B3va6B7v23cDdALm5uZ1ntKJ0Itofq/QGuqwlIiLzRWRjgN8MAGPMg8aYIcCzwFc7\nM2xjzJPGmCnGmCnZ2dmdeWlFURTFRZe1RIwxl4To9VlgNvAQUAwMcR0bbLsV29ted0VRFCWMhGt2\n1ijX7gxgq709C7hRROJFZBjWAPpyY0wJcEREptuzsm4F3uxWoxWlk9EJhkpvIFxjIr8SkTFAM7Ab\nuAfAGLNJRF4CNgONwP3GmCb7nPuAp4BEYI79UxRFUcJIWETEGHN9G8ceBh4O4L4SmNCVdimKoijH\nh76xrihhwOgcX6WXoCKiKGFCh0SU3oCKiKIoitJhVEQURVGUDqMioihhQEdElN6CioiihAkdElF6\nAyoiiqIoSocJ2wKMinIyMz4njdr6pvY9KkoPR0VEUcLADWfmcsOZusK0Evlod5aiKIrSYVREFEVR\nlA6jIqIoiqJ0GBURRVEUpcOoiCiKoigdRkVEURRF6TAqIoqiKEqHURFRFEVROoz09o/jiEg51id4\nI4m+wIFwG9HNaJxPDjTOkcNQY0x2e556vYhEIiKy0hgzJdx2dCca55MDjXPvQ7uzFEVRlA6jIqIo\niqJ0GBWRnsmT4TYgDGicTw40zr0MHRNRFEVROoy2RBRFUZQOoyKiKIqidBgVkR6AiGSKyDwR2W7/\n92nDb7SIrBGRt7vTxs4mlDiLyBARWSAim0Vkk4g8EA5bTxQRuVxEtolIgYh8P8BxEZFH7ePrReSM\ncNjZmYQQ5y/Ycd0gIktF5LRw2NmZtBdnl78zRaRRRD7XnfZ1FSoiPYPvA+8bY0YB79v7wXgA2NIt\nVnUtocS5Efi2MWYcMB24X0TGdaONJ4yIRAOPAVcA44CbAsThCmCU/bsbeLxbjexkQozzTuACY8yp\nwM+J8MHnEOPs+Ps18F73Wth1qIj0DGYAT9vbTwPXBvIkIoOBq4B/dpNdXUm7cTbGlBhjVtvbVVji\nOajbLOwcpgIFxphCY0w98AJW3N3MAGYai2VAhogM7G5DO5F242yMWWqMOWTvLgMGd7ONnU0ozxng\na8CrQFl3GteVqIj0DPobY0rs7f1A/yD+/gR8D2juFqu6llDjDICI5AGnA590rVmdziBgr2u/iNZC\nGIqfSOJ443MnMKdLLep62o2ziAwCriPCW5peYsJtwMmCiMwHBgQ49KB7xxhjRKTVvGsR+QxQZoxZ\nJSIXdo2VncuJxtl1nRSs2ts3jDFHOtdKJZyIyEVYInJuuG3pBv4E/K8xpllEwm1Lp6Ei0k0YYy4J\ndkxESkVkoDGmxO7GCNTUPQe4RkSuBBKANBF5xhhzSxeZfMJ0QpwRkVgsAXnWGPNaF5nalRQDQ1z7\ng2234/UTSYQUHxGZiNU1e4UxpqKbbOsqQonzFOAFW0D6AleKSKMx5o3uMbFr0O6snsEs4DZ7+zbg\nTa8HY8wPjDGDjTF5wI3ABz1ZQEKg3TiLldv+BWwxxvyhG23rTFYAo0RkmIjEYT27WR4/s4Bb7Vla\n04FKV1dfJNJunEUkF3gN+KIxJj8MNnY27cbZGDPMGJNn5+FXgPsiXUBARaSn8CvgUhHZDlxi7yMi\nOSIyO6yWdR2hxPkc4IvAxSKy1v5dGR5zO4YxphH4KjAXa2LAS8aYTSJyj4jcY3ubDRQCBcA/gPvC\nYmwnEWKcfwxkAX+zn+vKMJnbKYQY516JLnuiKIqidBhtiSiKoigdRkVEURRF6TAqIoqiKMr/t3eu\nMXZVVRz//TttaEtpy2jVLypfDAGqaBiJRdIgqUaiiNQpTQTr1CjRCEVJFY1GJzSItmlUBIPSlCkV\n5SF2UJSWpnQoMgqlj5lOIRUUjIkE0yqjFTrCsPyw1nH23Dn39s7t2KHT/Utuss/e++y1H+fu5zlr\nNUweRDKZTCbTMHkQyWQymUzD5EFkgiLJJK1OrpdLaj/KeegoNJVKWnOkyhMlnSKpr0rYqtD0u+pI\nZLyWiPp7ZixfEU3b5HhEUpukGw8TZ3Fo4j2mNWUfLfIX6xOXAWChpOvNbP9ob5Y0Od59HxPM7NNj\nlVYVLgeazWww9RzrcowDXzKzn493JsYSSU2V7fRawszulPQ8sHy883IskFciE5dXcPXaX6wMiBn9\ng2HPYUt8PVzMUm+W9CiwUlK7pHWSHpb0Z0kLJa0MGxAbQyUJkr4habukPkk/VoliIEldklokfST5\ncHCfpGci/CxJD0naIWlTocU2/Hsk9QCfLyuopF8CM4AdMYusLMeJktZKekxui+WiuG+apDskPSlp\ng6RHJbVE2MEk/VZJHeGeI+meKO92Se8N//aQ0SXpT5KWJfcvibrukbRe0kmxwijqb2Z6XQ1Jb4x8\n9sTvHEnXSvpCEuc6hd0VSddEW/VI+nZJetXqfJnchkuvpDtK7muTdG+U9SlJ30zCLot63i3pR3LV\n50g6KGl1tOO8ivRGyJN0tqTfRXt1Szo1kd0pt0HzrKQrJF0d8X4vqTnidUn6fuSjT9LZJeUobcvM\nKDGz/JuAP+AgMBN4FpiFz6raI+xXwCfD/SmgM9wdwH1AU1y3A78FpgBnAi/ieo4ANgAfDXdzInc9\ncGGSXmu4u4CWijzehQ8MU4BuYE74LwbWhrsXmB/uVUBftfIm7spyfAu4LNyzgT8AJwJXJ3LegQ+8\nLSXptQId4f4pcG6434KrZCnqqhs4AdeLdCDKdUbIe31aV8CtSf1dDqwuKdP/6i+u78SVUAI0Rbue\nAuwMv0nAH/EvwS+I/EyvkNsR5alV538FTijqqyRfbcBzIWca0IfrhToNf7amRLwfAkvCbcAlVdpu\nhDz82Z0c7gXAPYnsp4GTgDlAP/DZCPtuUj9dwC3hnk88N3H/jbXaMq7PA+4b7//xsfDL21kTGDP7\np6TbgGXAS0nQPGBhuNcDK5Owu234VsP9ZvaypD14x7Ux/PfgHRjA+yR9GZgONAN78c6kKhH/JTO7\nSdJcYC6wORYxTcBzkmbjncq2JK8X1FX44eX4AK68stiemIp3GvOBGwDMrFdSbx3pLgBO19Bia6Zc\nyzDAr81sABiQ9Ddcvf35kZf9IefvEXcNrta/E1gKfKYO2ecDSyKdQbwD7Zd0QNK7Qt4uMzsgaQFw\nq5m9WCG34FRK6jzCeoHbJXVG/srYbKE0UdIvcC28rwBnAdsjzWkMKdYcxBVpllEmbxawTtLb8AEo\nXaVtNbcv8y9J/Qw9a3vwyUDBz6Ls22K1N7tCbmlbmtlBMnWTB5GJz/eAnfjMtx7+XXE9AGCuvvpl\ni2kabtNksqSp+Iyzxcz+Ij+8n1pLQHRwi/BOHEDAXjOr3Oao/NOPhrQcAj5mZvsq0q91f6oPKC3P\nJOA9ZnaoJK2BxGuQGv8vM3tEvq14Hr5iKn1hoE7W4DPsNwFr67yntM6DD+FtcyHwNUlvt5HnSpX6\nkizSXGdmXy1J85BVPwcZIQ+3drjVzC6W25LpSuKn9fxqcv0qw+u8LI8ppW2ZGR35TGSCEzPQu3Cb\nDQXduJZRgEuBh49ARNHB7o8Zec03fyS9FTcjusjMitXRPmCOpHkRZ4qkM8zsBeAFSYWtiUsbzOMm\n4EpFTx+zdoBtwMfDby7DZ7HPSzpN0iTckFDBA7h1uqI87zyM7AeBRZJeF/Gbk7Db8C2Vegf4LcDn\nIp0mSbPCfwPwQeDdeFkBNgNLJU0vkQtV6jzK+2Yz2wpcg68IZjCS90tqljQNt0r5SOSvVdIbCpnR\n3lWpIW8WQ6rU22pXS1UWh4xzcc3I/RXho23LTAl5EDk+WI3v0xdciXcwvbiW3KsaTTg6+lvwffFN\nuErsWrThe+mdcej5G3Nzoq3Ad+LgdTdwTsRfCtwkaTc+022EFfh2SK+kvXENbmFuhqQngWuBHck9\nX8HPVboZ2uYB3xpsiUPgJ4Car9+a2V7gOuChKFuq0v524GRi26UOrsK3DvdEXk8PGf8BtuKaYwfD\nbyOuivzxqLthbxrVqPMm4CchYxdwQ7RxJY/h21O9+HnF42b2BPB14IF4tjYDhzPzW03eSuB6Sbto\nfMfkUNx/M8MnUQWjastMOVmLbyYTSOoClpvZUVFLLv9e4yIz+0SV8A78cLfmK74xm9+Jr+6eGvOM\njpTXhm9fXvH/ltUoR9qWsc243Mw+PJb5mojklUgmMw5I+gFuQ2VFjWj9wArV+NhQ/gHn08CWozGA\nHA9IWoyf8/1jvPNyLJBXIplMJpNpmLwSyWQymUzD5EEkk8lkMg2TB5FMJpPJNEweRDKZTCbTMHkQ\nyWQymUzD/Be7EGrwo8OjJAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Blackmann window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flat Top Window" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='flat-top')" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOWV4P3fUWmXbO3etFiWLGO8bxgLbIPZwmIgGwmB\nZICkx/12epLQ05l0Mt096fTbebt73nRCd0imA0kI3UmAQCAEYgKGgDdkY9ngfZElL7Ika7UsWbuq\nzvxRV1AotizLVbq1nO/nUx/Vrbp177mS6tRT5z73eURVMcYYE/3i3A7AGGPM+LCEb4wxMcISvjHG\nxAhL+MYYEyMs4RtjTIywhG+MMTHCEr5xnYgUi4iKSLzbsQSTiLwiIg+M8bV/JyI/D3ZMJrZZwjfj\nRkSOi0iPiJwLuE27xG1cLyKnLrJOWHyAqOptqvqkmzEYE8gSvhlvd6pqesCt3u2AjIkVlvBN2BGR\nh0TkoIh0ikiNiPyp83ga8Aow7SLfEDY5P9uddcpFJE5E/kZETohIk4j8h4hkONsd+kawTkTqRaRB\nRL56gdhmiEi7iMQ5y4+LSFPA8/8pIg87998SkT9x7j8oIltE5DsickZEjonIbcO2u9E55g1A7rD9\n3iUi+519vyUiVwb8rl4KWK9KRJ4NWK4VkUWj/uWbqGYJ34SjJmAtMBF4CPieiCxR1S7gNqD+It8Q\nVjs/M511KoAHndsaoARIBx4d9ro1QBlwC/BXInLT8A2r6jGgA1gcsK9zQwkYuA7YeIHjuho4jD+Z\n/2/gJyIiznO/BHY6z/2/wPu1fxGZBTwFPAzkAeuBl0Qk0dnXKucDbRqQCJQ7rxs6zj0XiMfEGEv4\nZrz9xmmltovIb863gqr+TlWr1W8j8Bqw6jL3ez/wXVWtUdVzwDeAe4fV+b+lql2quhd4AvjMBba1\nEbhORKY4y885yzPwf0jtvsDrTqjq46rqBZ4EpgKTRaQIuAr4W1XtU9VNwEsBr/s08DtV3aCqA8B3\ngBTgGlWtATqBRfg/fF4F6kVkNv4Pn82q6hvl78hEuajqFWEiwkdV9fWRVnBKHd8EZuFvlKQCe0dY\n/1zA4pwLrDYNOBGwfAL////kgMdqhz0//wLb2gjcBZzCXz56C/gc0MvICfb00B1V7XYa9+n4W/Vn\nnG8wgfsvPF/squoTkVogPyCe64GZzv12/Mm+nAt/2zAxyFr4JqyISBLwa/yt2Mmqmom/hDFU+vij\n4V2HnQQ+eb51gHpgesByETAINAY8Vjjs+QudUN6I/xvH9c79LcC1jFzOGUkDkOWcowjc/3ljd8pA\nhUBdQDzXOzFtdG7XXUY8JkpZwjfhJhFIApqBQae1f0vA841AztAJ1wtoBnz4a/VDngL+wjk5mg78\nf8AzqjoYsM7fikiqiMzFf+7gmfNtXFWrgB7gs8BGVe1w4voEY0iwqnoCqAS+JSKJIrISuDNglV8B\nd4jIjSKSAPwl0Ae87Ty/Ef/5hxRVPQVsBm4FcoB3LzUeE72spGPCiqp2isiX8Se5JPy17N8GPH9I\nRJ4CakTEA8wZfuLWKZd8G9jqJMhbgZ/iL41sApLx17q/NGz3G4Gj+BtC31HV10YIdSOwQlVrA5Zn\nA7vGcNgA9+Gv67cBFcB/AJnO8RwWkc8C38dfxnkPf/fWfuf5I05Za7Oz3CEiNUCzc77AGADEJkAx\nsU5EioFjQMKwFr8xUcVKOsYYEyMs4RtjTIywko4xxsQIa+EbY0yMCKteOrm5uVpcXOx2GMYYEzF2\n7tzZoqp5o1k3rBJ+cXExlZWVbodhjDERQ0ROXHwtPyvpGGNMjLCEb4wxMcISvjHGxAhL+MYYEyMs\n4RtjTIywhG+MMTHCEr4xxsSIsOqHb0y4eG3/afbVnT3vc4unZ7HmiknjHJExl88SvjHDvPDuKf7i\nGf+0tO9PMe5Q9T/2o88u5Za5U87zamPClyV8YwK8Xd3C157bQ3lJDk9+fjmJ8R+uevb0e7n38W18\n+el3eXpdOYsKM12K1JhLZzV8YxxHGjv50//cSXFOGv/+uaV/lOwBUhI9/OSBZUyakMwXfraDk63d\nLkRqzNhYwjcGaOro5aEndpCc4OGJh64iIyXhguvmpifxxENX4VXlwSfe4UxX/zhGaszYWcI3Ma+r\nb5DPP7mDM939PPHgVRRkpV70NaV56Tz+X5Zxqr2Hdf9ZSe+ATR1rwp8lfBPTBr0+vvTUuxyo7+AH\n9y1hXn7GqF97VXE23/3UQnYcP8NXn92Nz2eTCZnwZidtTUz7u5f284dDTXz7Y/NYM/vSu1quXTCN\nujM9/OMrh8jPSuEbt10ZgiiNCQ5r4ZuYteN4Gz/fdpJ1q0u4/+rpY97OutUl3Hd1ET/aWMOB+o4g\nRmhMcFnCNzHrRxtryEpN4C9umnVZ2xER/uojs0lN9PD45pogRWdM8FnCNzHpaNM5Xj/YyOfKi0lJ\n9Fz29jJSE7j3qiJe2l1PfXtPECI0Jvgs4ZuY9OPNNSTFx/FA+dhLOcN9fmUxCvx0y7GgbdOYYLKE\nb2JOU2cvz++q45NLC8hJTwradguyUlm7YCpPvXOSsz0DQduuMcFiCd/EnCffPs6Az8efrCoJ+rbX\nrS6hq9/LL7efDPq2jblclvBNTOnqG+Tn207ykTlTmJGbFvTtz52WwcqZuTyx9Rh9g3YxlgkvlvBN\nTHlmRy1newZYd13wW/dD1q0uoamzjxffqw/ZPowZC0v4JmYMen38ZMsxrirOYklRVsj2s6oslyun\nTuTxTTV29a0JK5bwTcz43d4G6tp7WLe6NKT7ERHWrZ5BVdM53jrSFNJ9GXMpLOGbmKCqPLaphtK8\nNG4cwxAKl2rtgmlMy0jmRxvtQiwTPizhm5jwdnUr++s7+K+rSoiLk4u/4DIleOL4/MoZbD/Wxu7a\n9pDvz5jRsIRvYsKPNtWQm57ERxfnj9s+711exITkeB7bZK18Ex4s4Zuod/h0J5uONPPQtcUkJ1z+\nMAqjlZ4Uz/1XT+eVfQ3UttnMWMZ9lvBN1HvxvTo8ccJnlheN+74/Vz4dn8JLe6yLpnFfyBO+iHhE\n5F0ReTnU+zJmOFVl/d4GrinNITstcdz3n5+ZwuKiTNbvbRj3fRsz3Hi08L8CHByH/RjzRw42dHK8\ntZvb5091LYbb501lX12HTXhuXBfShC8iBcAdwI9DuR9jLuSVfQ3ECdwyZ7JrMdw6b8r7sRjjplC3\n8B8Bvgb4LrSCiKwTkUoRqWxubg5xOCaWqCq/29vAipKcoI6KeakKs1NZUJDB+n2nXYvBGAhhwheR\ntUCTqu4caT1VfUxVl6nqsry8vFCFY2LQkcZz1DR3uVrOGXL7/Knsrm3n1Bkr6xj3hLKFfy1wl4gc\nB54GbhCRn4dwf8Z8yPq9DYjAR+ZOcTsUbnPKOr+3Vr5xUcgSvqp+Q1ULVLUYuBf4g6p+NlT7M2a4\nV/Y1sLw4m7wJ7pVzhkzPSWPutInWW8e4yvrhm6h0tKmTI43nwqKcM+T2+VPZdbLd5rw1rhmXhK+q\nb6nq2vHYlzEA6/eeRuSDHjLhwMo6xm3WwjdRaf3eBpZNz2LyxGS3Q3lfSV46s6dMsO6ZxjWW8E3U\nqWk+x6HTndw2L3zKOUNunz+VyhNnaOzodTsUE4Ms4Zuo84pTMgmncs6Q2+dPQdXKOsYdlvBN1Fm/\nt4HFRZlMy0xxO5Q/MnPSBMompVtvHeMKS/gmqpxo7WJ/fQe3h2E5Z8ht86fyzvE2mjv73A7FxBhL\n+CaqDJVzbpsffuWcIXfMn4oqvLrfyjpmfFnCN1Fl/d4GFhZkUJCV6nYoFzRrcjoleWlW1jHjzhK+\niRq1bd3sOXWW28LoYqvzERFunzeVbTWttJ6zso4ZP5bwTdQYKpGEc/1+yG3zp+BTeO1Ao9uhmBhi\nCd9EjbcONzNrcjpFOeFbzhkyZ+pE8jNT2HjYhgQ348cSvokKPf1e3jnexuqyyBhiW0RYVZbL1uoW\nBr0XnC7CmKCyhG+iwvZjrfQP+lg1KzISPsCqsjw6ewfZfard7VBMjLCEb6LCpiMtJMbHcfWMbLdD\nGbVrZ+YQJ7DxSIvboZgYYQnfRIXNVc1cPSOb5ASP26GMWmZqIgsKMtlcZXV8Mz4s4ZuIV9/eQ1XT\nOVaV5bodyiVbPSuP3bXtnO0ecDsUEwMs4ZuIt6XKXxJZHUH1+yGry3LxKWyttrKOCT1L+Cbibaxq\nZtKEJK6YPMHtUC7ZosJMJiTFs+mIlXVM6FnCNxHN61O2Hm1hVVkeIuJ2OJcs3hPHNTNz2FzVgqq6\nHY6JcpbwTUTbV3eW9u4BVs+KvPr9kNWz8qhr76GmpcvtUEyUs4RvItpQKWTlzAhO+M7FYlbWMaFm\nCd9EtM1VLczLn0hOepLboYxZYXYqM3LT2FxlJ25NaFnCNxGrs3eAXSfPRMxwCiNZVZZLRXUrfYNe\nt0MxUcwSvolYFdWtDPqUVVGQ8FeX5dEz4GXniTNuh2KimCV8E7E2VTWTmuhh6fQst0O5bCtKc4iP\nEzbZMAsmhCzhm4i1uaqF8pIcEuMj/984PSmepdOzbJgFE1KR/04xMelEaxcnWrsjcjiFC1k9K4/9\n9R02ubkJGUv4JiJtiuDhFC5k6MNr61Er65jQsIRvItKmI83kZ6YwIzfN7VCCZt60DLJSE6w/vgkZ\nS/gm4gx4fVRUt7J6VmQOp3AhcXHCyrI8NtkwCyZELOGbiPPuyXbO9Q2yOorq90NWl+XScq6Pgw2d\nbodiopAlfBNxNlc1EydwTQQPp3AhQ9cUWG8dEwohS/gikiwi74jIbhHZLyLfCtW+TGzZXNXCwsJM\nMlIS3A4l6KZkJDNrcjpb7MStCYFQtvD7gBtUdSGwCLhVRFaEcH8mBpzrG2Rv3VmuKc1xO5SQuaY0\nl8rjZ+gf9LkdiokyIUv46nfOWUxwbnYmylyWHcfa8PqU8pLoK+cMWVGSQ8+Al92n2t0OxUSZkNbw\nRcQjIu8BTcAGVd1+nnXWiUiliFQ2N1vd0oysoqaVBI9ExXAKF7KiJBsR/1hBxgRTSBO+qnpVdRFQ\nACwXkXnnWecxVV2mqsvy8qLnIhoTGhXVrSwuyiIl0eN2KCGTmZrIlVMmWsI3QTcuvXRUtR14E7h1\nPPZnotPZ7gH21Z+lvCR66/dDyktz2HnyDL0DNlyyCZ5Q9tLJE5FM534KcDNwKFT7M9Fv+7FWVP3J\nMNqVl+TQP+hj10kbLtkETyhb+FOBN0VkD7ADfw3/5RDuz0S5ippWkuLjWFyU6XYoIbe8JJs4gW1W\n1jFBFB+qDavqHmBxqLZvYk9FdStLp2eRFB+99fshE5MTmJ+fQUWNJXwTPHalrYkIbV39HDrdGRP1\n+yErSnN4r7adnn6r45vgsIRvIsJ2p6UbC/X7IeUlOQx4lcoTbW6HYqKEJXwTESpqWklJ8LCgIPrr\n90OuKs4mPk6se6YJGkv4JiJUVLeyrDgrKqYzHK20pHgWFFgd3wRP7Lx7TMRq7uyjqulcTJVzhpSX\n5rDn1FnO9Q26HYqJApbwTdjbNlS/j6ETtkPKS3Lx+pQdx62Oby7fRRO+iKSKyN+KyOPOcpmIrA19\naMb4VdS0kp4Uz/z8DLdDGXdLp2eR4BHrj2+CYjQt/CfwD3Vc7izXAf8QsoiMGWZbdSvLZ2QT74m9\nL6QpiR4WF2ZZHd8ExWjeQaWq+r+BAQBV7QaiZyJRE9YaO3qpaemKyXLOkBWlOeyrO0tH74DboZgI\nN5qE3++MhaMAIlKKv8VvTMgNdUmMxRO2Q8pLcvApvFNjdXxzeUaT8L8J/B4oFJFfAG8AXwtpVMY4\nKqpbmZgcz5VTJ7odimsWF2WSGB9nZR1z2S46lo6qbhCRXcAK/KWcr6iqTbhpxkVFTStXl+TgiYvd\nKmJygoelRVl2AZa5bBds4YvIkqEbMB1oAOqBIucxY0Kqrr2Hk23dMV2/H1JemsPB0x20d/e7HYqJ\nYCO18P/F+ZkMLAN242/hLwAq+aDXjjEhYfX7D5SX5vDdDbCtpo1b501xOxwToS7YwlfVNaq6Bn/L\nfokzDeFS/EMe141XgCZ2VVS3kpWawBWTJ7gdiusWFmSSkuB5/yI0Y8ZiNCdtr1DVvUMLqroPuDJ0\nIRkDqsq2mlZWlOQQF8P1+yGJ8XEsK7Y6vrk8o0n4e0TkxyJyvXN7HNgT6sBMbKtt66GuvcfKOQFW\nlORwuLGT1nPWK9qMzWgS/kPAfuArzu2A85gxIVNR4+8IZidsPzD04bfN+uObMRpNt8xe4HvOzZhx\nUVHdSm56EjMnpbsdStiYn59BWqKHipoW7lgw1e1wTAS6aMIXkWM4V9kGUtWSkERkYp6qUlHTyoqS\nbESsfj8kwRPHVTOyrY5vxmw0k5gvC7ifDNwDZIcmHGPgWEsXjR19Vr8/j/KSHN463ExTRy+TJia7\nHY6JMBet4atqa8CtTlUfAe4Yh9hMjKqI4fHvL2boQ9CGWTBjMZqSTuBVtXH4W/yj+WZgzJhUVLcy\neWISM3LT3A4l7MydlsGE5Hi21bRy96J8t8MxEWY0iftfAu4PAseAT4UmHBPr/P3v21g5M8fq9+fh\niROutjq+GaPRJPwvqGpN4AMiMiNE8ZgYd7TpHC3nrH4/khUlObx+sImGsz1MzUhxOxwTQUbTD/+5\nUT5mzGX7oH6f63Ik4ev9Or618s0lumALX0RmA3OBDBH5eMBTE/H31jEm6CqqW8nPTKEw21quF3Ll\nlIlkpiZQUd3Kx5cUuB2OiSAjlXSuANYCmcCdAY93Av81lEGZ2OTz+cfPuWH2ZKvfjyBuqI5vPXXM\nJbpgwlfVF4EXRaRcVSvGMSYTow43dnKme8Dq96NQXpLDq/sbqW3rpjA71e1wTIQYqaTzNWfy8vtE\n5DPDn1fVL4c0MhNzhob+tYR/ceWl/nMc22paLeGbURuppHPQ+Vk5HoEYU1HdSlF2KvmZVr+/mFmT\n08lOS6SippV7lhW6HY6JECOVdF5yfj45lg2LSCHwH8Bk/GPxPKaq/zqWbZno5/Mp24+18ZG5k90O\nJSKICCtKstlW3Yqq2jkPMyojlXRe4jyDpg1R1bsusu1B4C9VdZeITAB2isgGVT0wtlBNNDvQ0MHZ\nHqvfX4rykhzW7z3NybZupufYVcnm4kYq6Xzncjasqg34p0dEVTtF5CCQj388fWM+ZJv1v79kgf3x\nLeGb0RippLNx6L6IJAKz8bf4D6tq/6XsRESK8c+Fu/08z60D1gEUFRVdymZNFKmobmVGbhpTMuwS\nj9EqzUsnb0ISFTWt3Lvc3jvm4i56pa2I3AFUA/8GPAocFZHbRrsDEUkHfg08rKodw59X1cecCdKX\n5eXljT5yEzUGvT7eOdbGChsd85L46/g5VDh1fGMuZjRDK/wLsEZVr1fV64A1jHL2KxFJwJ/sf6Gq\nz489TBPN9td30Nk3aPX7MSgvyaGps4+ali63QzERYDQJv1NVjwYs1+C/2nZE4u828BPgoKp+d4zx\nmRgwdMXoihKbV+dS2bg65lKMJuFXish6EXlQRB4AXgJ2iMjHh42xM9y1wOeAG0TkPed2ezCCNtGl\norqVmZPSmTTB6veXqjgnlSkTk22YBTMqoxkeORloBK5zlpuBFPzj6yhw3lKNqm4BrHOwGdGA18eO\n4218wgYBGxMRobw0h81VzdYf31zURRO+qj40HoGY2LTnVDvd/V6r31+G8tIcXni3jsONncyeMtHt\ncEwYG80UhzOALwHFgeuP4sIrYy5q05EWROAaS/hjtnKm/9qFLVUtlvDNiEZT0vkN/pOvLwG+0IZj\nYs2Woy0sKMgkMzXR7VAi1rTMFErz0thc1cKfrCpxOxwTxkaT8HtV9d9CHomJOR29A7xX286fXVfq\ndigRb1VZHk/vOEnfoJekeI/b4ZgwNZpeOv8qIt8UkXIRWTJ0C3lkJupVVLfi9Smrymw4hcu1qiyX\n3gEfO4+fcTsUE8ZG08Kfj9O9kg9KOuosGzNmW6paSE30sLgoy+1QIt7VJTnExwmbj7ZwzUz7ADXn\nN5qEfw9Qcqnj5xhzMZurmllRkkNi/Gi+aJqRpCfFs6Qoi81VzfzVrbPdDseEqdG80/bhn9fWmKCp\nbevmeGu3lXOCaFVZLvvrO2jrsraZOb/RJPxM4JCIvCoiv3VuL4Y6MBPdthxtAbCEH0Qry3JRha3O\n79aY4UZT0vlmwH0BVgH3hiYcEys2VzUzZWIypXnpbocSNRYUZDIxOZ7NVc3cuXCa2+GYMHTRFr4z\nLn4HsBb4Gf6Ttf8e2rBMNPP6lK1HW1lVlmtDAQSRJ064dmYuW6pabLhkc14XTPgiMsvpjnkI+D5w\nEhBVXaOq3x+3CE3U2Vd3lrM9A6y0ck7QrSzLpf5srw2XbM5rpBb+Ifyt+bWqutJJ8t7xCctEs81V\nzQBca90Hg27VTP8kQpuPNLsciQlHIyX8j+Ofk/ZNEXlcRG7ERr80QbC5qoW50yaSm57kdihRpygn\nlek5qe+fFDcm0AUTvqr+RlXvxT+X7ZvAw8AkEfk/InLLeAVooktX3yC7Tp6xck4IrZyZS0V1KwNe\nG/rKfNhoTtp2qeovVfVOoAB4F/irkEdmotL2Y60MeJXVZTZ/caisKsujq9/Luyfb3Q7FhJlLusRR\nVc84k47fGKqATHTbXNVCUnwcS6fbcAqhUl6aQ5zAliqr45sPs2vazbjaXNXC8hnZJCfYiI6hkpGS\nwMLCTDZVWR3ffJglfDNuGs72cLTpnJVzxsGqsjz2nGrnbPeA26GYMGIJ34ybzU6L007Yht6qslx8\nCm9XWyvffMASvhk3W6payE1PYvaUCW6HEvUWFWaSnhTPZuueaQJYwjfjwudTth5tseEUxkmCJ44V\nJTlssTq+CWAJ34yLAw0dtHb1vz/htgm9VWW5nGzr5kSrDbNg/Czhm3Hx1uEmwIZDHk+rZ/lPjr95\nqMnlSEy4sIRvxsWGA40sLMxk0sRkt0OJGTNy0yjNS2PDwUa3QzFhwhK+CbnGjl52nzrLLXMmux1K\nzLl5zhS217Rxtse6ZxpL+GYcbDjgb2Fawh9/t8ydzKBP3y+pmdhmCd+E3GsHGinOSWXmJJvdarwt\nKsgkb0ISr+23so6xhG9CrLN3gIrqFm6eM9m6Y7ogLk646cpJvHW4ib5Bm84i1lnCNyG18UgzA17l\n5jlT3A4lZt08ZzJd/V4qqlvdDsW4zBK+CakNBxrJTku00TFddE1pLqmJnvfPpZjYFbKELyI/FZEm\nEdkXqn2Y8Dbg9fGHQ03cOHsSnjgr57glOcHDdbPy2HCgEZ/PJjePZaFs4f8MuDWE2zdhbntNG529\ng9xsvXNcd/OcyTR19rGn7qzboRgXhSzhq+omoC1U2zfhb8OB0yQnxLHKhkN23Q3Ot6wNB067HYpx\nkes1fBFZJyKVIlLZ3Gwz9EQLVWXDgUZWleWRkmiTnbgtMzWR5cXZVsePca4nfGfKxGWquiwvz1qC\n0WJ/fQf1Z3utnBNGbp4zmSON5zjeYoOpxSrXE76JTq8daCRO4MbZk9wOxTiGPnytlR+7LOGbkNhw\noJGl07PISU9yOxTjKMxOZfaUCZbwY1gou2U+BVQAV4jIKRH5Qqj2ZcJLbVs3Bxs6uMUutgo7t8yd\nQuWJNtq6+t0OxbgglL10PqOqU1U1QVULVPUnodqXCS+vO8PxWv0+/NwyZzI+hTdsyOSYZCUdE3Sv\n7W+kbFI6xblpbodihpk7bSLTMpJ5zco6MckSvgmq9u5+3jneZq37MCUi3DRnMpurmunpt8HUYo0l\nfBNUbx5uwutTbplr9ftwdcucKfQO+Nhy1CY4jzWW8E1Qvby7gSkTk1mQn+F2KOYCri7JJiMlgZf3\n1LsdihlnlvBN0DR19vLWkWY+tiSfOBssLWwleOK4a+E0fr/vtE19GGMs4ZugeWFXHV6fcs/SArdD\nMRdxz7IC+gZ91sqPMZbwTVCoKr+qrGXp9CxK8mwqw3A3Pz+DKyZP4FeVp9wOxYwjS/gmKN6tbae6\nucta9xFCRLhnWQG7a9upaux0OxwzTizhm6B4tvIUyQlx3LFgqtuhmFH66OJ84uOEZ3daKz9WWMI3\nl62n38vLu+u5fd5UJiQnuB2OGaXc9CTWzJ7E87vqGPD63A7HjANL+Oayvbr/NJ19g3xymZVzIs09\nSwtoOdfHxsM2F0UssIRvLtuzO2spzE5hxYwct0Mxl2jN7Enkpify7M5at0Mx48ASvrkstW3dbD3a\nyieXFFrf+wiU4InjY4vzeeNgEy3n+twOx4SYJXxzWX696xQi8Iml+W6HYsbonmWFDPqU37xb53Yo\nJsQs4Zsx8/mU53ae4prSHAqyUt0Ox4zRrMkTWFiQwXM7T6GqbodjQsgSvhmzbcdaOXWmh3uWFrod\nirlMn1xWyKHTneyr63A7FBNClvDNmD1XeYoJSfF8xEbGjHh3LZhGYnycnbyNcpbwzZh09g6wfl8D\naxdOIyXR43Y45jJlpCbwkblTePG9enoHbJz8aGUJ34zJy3sa6B3wcY/1vY8a9ywt4GzPgE1yHsUs\n4ZtLpqr8cvtJSvPSWFyY6XY4JkiunZnLtIxkfrn9pNuhmBCxhG8u2ZuHm9hbd5Y/WVWCiPW9jxae\nOOHzK2dQUdPKO8fa3A7HhIAlfHNJVJVHXq+iICuFT9rImFHn/qunk5uexPc2HHE7FBMClvDNJXnj\nYBN7Tp3lSzfMJMFj/z7RJiXRw59dX0pFTSvbalrdDscEmb1jzaipKo+8cYSi7FQ+vsRa99Hq/quL\nmDTBWvnRyBK+GbUNBxrZV9dhrfsol5zg4YvXl7L9WBtvV7e4HY4JInvXmlHx+ZTvvV5FcU4qH1ts\n4+ZEu3uXFzFlYjKPbKiy4RaiiCV8MyqvHTjNwYYOvnRDGfHWuo96yQkevrimlHeOt7H1qNXyo4W9\nc81F+Xz+njkzctO4e9E0t8Mx4+TTVxUyNSOZ771+xFr5UcISvrmo3+8/zaHTnXz5xpnWuo8hSfEe\nvrhmJjtPnGFzldXyo4G9e82IfD7lX1+voiQvjbsWWu0+1nxqWQHTrJUfNSzhmxGt39fA4cZOvnJj\nGR6b0SqDof+MAAAP2klEQVTmJMV7+PMbZvLuyXY2HrF5byNdSBO+iNwqIodF5KiIfD2U+zLB1zfo\n5ZHXq5g5KZ21C6x2H6vuWVpIfmYK391whEGvz+1wzGUIWcIXEQ/wA+A2YA7wGRGZE4p9dfUN0tPv\npW/Qy4DXh8+n9vUzCP7plUMcbTrHN26bba37GJYYH8fXbr2CPafO8m9vVLkdTsRTVXw+ZcDro3fA\nS0+/l+7+wXHZd3wIt70cOKqqNQAi8jRwN3Ag2Dta9g+v03OeMbzjBOI9cSTHx5Gc4HFu/vupiR4y\nUxLJSksgMzWRrNQEMlMSyU5LJD8rhcLsVNKTQvnrCW+v7j/NE1uP8+A1xdx45WS3wzEuu3tRPpur\nWvj+m0dZPiOHlWW5bofkmo7eAWrbuqlv76Wtq4/27gHOdA/Q3t3Pme5+2rsH6Bnw0jvgpXfA5/z0\n0jvoY9Drw3eetmjehCR2/PVNIY89lBktHwicPucUcPXwlURkHbAOoKioaEw7+upHrqB/0IfP+eT0\nKXiHfYr2DvjoHfzgj9DVN0h18znOnPD/oQbP81fITE2gMCuVwuwUCrNSmT11AvOmZVCSlx7VLd7a\ntm7+x7O7mZ+fwTdun+12OCZM/P3dc9ld287Dz7zH+q+sZNKEZLdDCplBr4/q5i721p3l8OkOatt6\nqD3TzakzPZztGfij9RM88n7DMSMlgey0RJLjP2hgJid4SEqII9ETh4jgESFOIC5O8MQJaeM0iZDr\nTVhVfQx4DGDZsmVjqsN8YeWMy42Brn4vZ7r6ae3qp+6M/49b29ZN7ZkeDp3u5PWDTfQP+uuXqYke\n5kydyLz8DObnZ3BVcTZFOdExiXf/oI8vPfUuqvCD+5aQFG+zWRm/1MR4fnD/Eu56dAsPP/0e//mF\nq6Oi4aOqHGvpovLEGfbVnWVv3VkONnTQO+B/vyfFx1HgfOtfUpT1/v38zBRy0hPJSk0kNdETEUOF\nhzLh1wGBs1sXOI+FHREhPSme9KR4CrNTWXSeST0CP/H3ObdndtTys7ePA1Cck8rqWXmsLsujvDSH\ntAgtB/3/rx7ivdp2fnj/kqj5EDPBM2vyBP7+rnl87dd7ePQPR/nKTWVuhzQmHb0DvH20lU1VzWw6\n0sypMz0ApCV6mDstg/uWT2d+wUTm52cwIzd6vtGHMivtAMpEZAb+RH8vcF8I9xdS8Z44rpgygSum\nTHh/HHivT6luPsfbR1vYVNXCs5Wn+I+KEyR4hCVFWdx45STWLpjGtMwUl6MfnTcONvL45mN8bsV0\nbp8/1e1wTJi6Z1kBFTWt/OsbR1g+I5vy0hy3QxqV2rZuXtpTz5uHmth1sh2vT0lL9FBemsufri6h\nvDSXktw04qIkuZ+PhLI3i4jcDjwCeICfquq3R1p/2bJlWllZGbJ4Qq1v0MvO42fYWNXMpiMtHGzo\nAOCq4izuWjiN2+dPJSc9yeUoz6+uvYc7/m0z0zJSeP6L15CcYKUcc2FdfYPc+egWOnsHWf/lVeRN\nCM//66aOXl7e08Bvd9fzXm07APPzM1g9K5fVZXksmZ4V8SO/ishOVV02qnXDqftipCf84Y63dPHy\nnnp+u7ueI43n8MQJ187M5e6F07ht/hRSE8Oj7NM74OX+H2/nUEMHL395FTNy09wOyUSAgw0dfPQH\nW1k+I5ufPHAVifHhkTg7ewdYv7eBF9+rZ1tNKz6FOVMncufCady5cCoFWdFVqrSEH4YOne7gt+/V\n89KeemrbekhPiufOhVO5Z1khiwszXTvhc7K1mz/7xU7213fw/c8s5s6FdoGVGb2n3znJ15/fy9Lp\nWTx632KmZrhTvlRVdhw/wzM7alm/t4GeAS8zctO4c+E07lo4lZmTJrgS13iwhB/GVJXKE/5/zN/t\n8f9jlk1K59NXFfKxxfnjWvJ5bf9p/vLZ3QjwvU8vsv72Zkx+t6eBrz23m6QED498ehGrZ+WN276b\nOnp5btcpnq08xbGWLqchNY1PLStgkYsNqfFkCT9CnOsb5OXd9TxTWcu7J9uJjxPWzJ7EJ5bks2b2\npJB1iRzw+vjOq4f50aYa5udn8MP7l1CYHV1fc834qm4+xxd/vosjTZ18+YYyvhzCsZd6B7xsONDI\n87tOsamqBa9PWV6czaeuKuT2MCqVjhdL+BGoqrGTZ3ee4oV362ju7CMjJYG1C6by8SUFLCkKXkul\nsaOX//bLXew4fobPrZjO36y90vram6Do6ffy17/Zy/O76lhVlssjn14UtG+sPp+y43gbz++qY/3e\nBjr7BpmakcxHF+dzz9ICSvLSg7KfSGQJP4INen1srW7l+V2neHX/aXoHfBTnpHLTlZO5dmYuy2dk\nX3Iff1XlcGMnbxxs4omtx+jq8/JPn5jP3YtsuGMTXKrKMztq+V+/3U92aiIPXVvMjVdOojQv/ZIb\nLR29A2yvaWPr0RZeP9jIqTM9pCZ6uG3eVD6xJJ8VJTlR3YVytCzhR4nO3gF+v+80L75XzzvH2uj3\n+oiPExYVZnLNzFyuKc1h5qR0UhM9JMd7PvTP3zvgZVtNK3841MQbB5uoa/dfWLKkKJN//sQCyiZH\n70ks4759dWf5ny/sZc+pswBMz0nlhtmTuHH2ZJbPyP5Qjx6fT+kZ8NLd76WqsZOt1S1sPdrK3rqz\neH1KUnwcV5fk8LHF0/jI3Ngr2VyMJfwo1DvgpfL4GbZWt/D20Rb21p39o0GYUhP9g8KlJHpoPddP\nd7+X5IQ4Vs7M48YrJ3HD7ElMnhi945+Y8FPf3sMbh5r4w8FGtla30j/oIz0pnqy0BLr7/El++MCH\nnjhhYUEG187M5ZrSXBYXZdp1ISOwhB8DzvYMsL2mldMdvXT3+9843X2DdDvDrU5IjmfNFZMoL82x\nN4sJC939g7x9tJW3jjTR1ecNaKDEk5roIS3RQ35WClcVZzMhOcHtcCOGJXxjjIkRl5Lww+PSOGOM\nMSFnCd8YY2KEJXxjjIkRlvCNMSZGWMI3xpgYYQnfGGNihCV8Y4yJEZbwjTEmRoTVhVci0gycGOPL\nc4GWIIYTKey4Y4sdd2wZzXFPV9VRTUIQVgn/cohI5WivNosmdtyxxY47tgT7uK2kY4wxMcISvjHG\nxIhoSviPuR2AS+y4Y4sdd2wJ6nFHTQ3fGGPMyKKphW+MMWYElvCNMSZGRHzCF5FbReSwiBwVka+7\nHU8oichPRaRJRPYFPJYtIhtEpMr5meVmjMEmIoUi8qaIHBCR/SLyFefxaD/uZBF5R0R2O8f9Lefx\nqD7uISLiEZF3ReRlZzlWjvu4iOwVkfdEpNJ5LGjHHtEJX0Q8wA+A24A5wGdEZI67UYXUz4Bbhz32\ndeANVS0D3nCWo8kg8JeqOgdYAfy58zeO9uPuA25Q1YXAIuBWEVlB9B/3kK8ABwOWY+W4Adao6qKA\n/vdBO/aITvjAcuCoqtaoaj/wNHC3yzGFjKpuAtqGPXw38KRz/0ngo+MaVIipaoOq7nLud+JPAvlE\n/3Grqp5zFhOcmxLlxw0gIgXAHcCPAx6O+uMeQdCOPdITfj5QG7B8ynkslkxW1Qbn/mlgspvBhJKI\nFAOLge3EwHE7ZY33gCZgg6rGxHEDjwBfA3wBj8XCcYP/Q/11EdkpIuucx4J27PGXG50JH6qqIhKV\n/WxFJB34NfCwqnaIyPvPRetxq6oXWCQimcALIjJv2PNRd9wishZoUtWdInL9+daJxuMOsFJV60Rk\nErBBRA4FPnm5xx7pLfw6oDBgucB5LJY0ishUAOdnk8vxBJ2IJOBP9r9Q1eedh6P+uIeoajvwJv7z\nN9F+3NcCd4nIcfwl2htE5OdE/3EDoKp1zs8m4AX8ZeugHXukJ/wdQJmIzBCRROBe4LcuxzTefgs8\n4Nx/AHjRxViCTvxN+Z8AB1X1uwFPRftx5zkte0QkBbgZOESUH7eqfkNVC1S1GP/7+Q+q+lmi/LgB\nRCRNRCYM3QduAfYRxGOP+CttReR2/DU/D/BTVf22yyGFjIg8BVyPf8jURuCbwG+AXwFF+IeW/pSq\nDj+xG7FEZCWwGdjLBzXd/4m/jh/Nx70A/wk6D/6G2a9U9e9FJIcoPu5ATknnq6q6NhaOW0RK8Lfq\nwV9u/6WqfjuYxx7xCd8YY8zoRHpJxxhjzChZwjfGmBhhCd8YY2KEJXxjjIkRlvCNMSZGWMI340JE\n/toZ9XGPMxLg1SHe31siMurJn0XkZyJSJyJJznKuc/FPMGK5fmjUx2ARkYdF5L9cZJ35IvKzYO7X\nRDZL+CbkRKQcWAssUdUFwE18eAykcOEFPu92EMM5o8IGLsfjj/OXI71OVfcCBSJSFMLwTASxhG/G\nw1SgRVX7AFS1RVXrAUTkf4nIDhHZJyKPOVfWDrXQvycilSJyUESuEpHnnTHB/8FZp1hEDonIL5x1\nnhOR1OE7F5FbRKRCRHaJyLPOuDzn8wjwF05CDXz9h1roIvKoiDzo3D8uIv84NH65iCwRkVdFpFpE\n/p+AzUwUkd+Jf+6GfxeRuJFic7b7zyKyC7hnWJw3ALtUdTDgd/XP4h8//4iIrApY9yX8V6waYwnf\njIvXgEInGf1QRK4LeO5RVb1KVecBKfi/CQzpd8YE/3f8l5P/OTAPeNC5+hDgCuCHqnol0AF8MXDH\nIpIL/A1wk6ouASqB/36BOE8CW4DPXeLxnVTVRfivCP4Z8En8Y/d/K2Cd5cCX8M/bUAp8fBSxtarq\nElV9etj+rgV2DnssXlWXAw/jvwJ7SCWwCmOwhG/GgTOu+1JgHdAMPDPUQgbWiMh2EdmLv+U6N+Cl\nQ+Mi7QX2O2Pj9wE1fDBoXq2qbnXu/xxYOWz3K/An2a3iH2r4AWD6COH+I/A/uLT3RmCc21W1U1Wb\ngb6h8XCAd5x5G7zAU06cF4vtmQvsbyr+32OgoUHldgLFAY83AdMu4VhMFLPhkc24cBLdW8BbTnJ/\nQESeBn4ILFPVWhH5OyA54GV9zk9fwP2h5aH/3eFjgwxfFvxjyX9mlHFWOcn3UwEPD/LhD4DkD79q\nzHFeLLauCzzeM0IMXj78vk521jfGWvgm9ETkChEpC3hoEf5BoIaSVotTu/7kGDZf5JwUBrgPf0km\n0DbgWhGZ6cSSJiKzLrLNbwNfDVg+AcwRkSSnxX7jGOJc7ozqGgd82olzLLGBf9avmaPc7yz8Iy4a\nYwnfjIt04EnxT0S+B38Z4++ccd4fx5+QXsU/3PWlOox/ntuDQBbwfwKfdEorDwJPOfuuAGaPtEFV\n3Q/sCliuxT9a4T7n57tjiHMH8Cj+ZH0MeGEssTleAVaPcr9rgN9dcrQmKtlomSZiiX/Kw5edE74x\nRUReAL6mqlUjrJMEbMQ/i9LguAVnwpa18I2JTF/Hf/J2JEXA1y3ZmyHWwjfGmBhhLXxjjIkRlvCN\nMSZGWMI3xpgYYQnfGGNihCV8Y4yJEf8Xqz66jDo2m7oAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Flat-top window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HNW5uN9PvVuSJTfJstw7GCxsh15DTUwNNUAgEH5A\nINyUG1IJCZcU0kjh4pBcILSQQscU04wxNi7YuNuybFmWZFmSVW1LVjm/P2ZmNTvSSmtZ0mrX3/s8\n++zMmfbN7sz5zlfOOWKMQVEURVF6Q1SoBVAURVHCF1UiiqIoSq9RJaIoiqL0GlUiiqIoSq9RJaIo\niqL0GlUiiqIoSq9RJaIogwQRmSwia0SkQUTuCvIYIyIT+lmuG0VkSX9eIxSISKOIjOvlse+LyFf7\nWqZwRJVIiBCRnSJy0H6Qnc+oUMulhJTvAO8ZY1KNMQ97N/ZnxSUi+bZCcj+Pa3txnvtE5Kke9hkU\nSskYk2KMKQq1HOFOTKgFOMr5gjFmUXc7iEiMMaZ1oAQKNUfb/XoYAzwXYhnSj+LfX+kFaokMMlwt\nwptFZBfwrl0+T0SWikitiKwVkdNdx4wVkQ9sN8jbIvJHpzUoIqeLyG7PNXaKyNn2cpSIfFdEtotI\ntYg8LyKZHlluEJFdIlIlIt93nSdaRL5nH9sgIqtEZLSI/ElEfu255ssick+AezYicoeIbAO22WVT\n7HvZJyJbRORLrv0vEJGN9jVLReRb7nu1Zaqy7/Na13FDRORJEakUkWIR+YGIRNnbbhSRJSLykIjU\niMgOETnfdeyNIlJkX3OH57w3icgm+7g3RWRMN//vF0Vkg/0/vi8iU+3yd4EzgD/aVsAkz3EPAKe4\ntv/RtflsEdlmn/NPIiK9kS1YROT3IlIiIvX2f36KXX4e8D3gykCWjH2//wt8zt6n1i7v6b/5yH6u\n60Rks4icFUC2r4jIK671bSLyT9d6iYjMspd9rkARedz+7V6z/+PlIjLeddw59nXr7N/e/RtH2fIW\ni8he+z6G2NueEJFv2ss5zrNur4+3n+/wroeNMfoJwQfYCZzdRXk+YIAngWQgEcgBqoELsBT/OfZ6\ntn3Mx8BvgHjgVKABeMredjqwO9C1gbuBZUCuffyjwLMeWf5iy3Es0AxMtbd/G1gHTMZ6qY4FhgJz\ngDIgyt4vCzgADA/wWxjgbSDTvk4yUAJ8BctaPg6oAqbZ+5cDp9jLGcDxrnttdf0WpwH7gcn29ieB\nl4BU+962Ajfb224EWoBbgGjg/9n3ILY89a7zjASm28vzgUJgqi3rD4ClAe5zki3POUAslvuqEIiz\nt78PfLWbZ6bTdvu3exVIB/KASuC8Xsjm/NcxXWy7EVjiWr/O/p9jgG8Ce4AEe9t92M9eN/fhd74g\n/5tW4B77d7sSqAMyuzj3OKAW6z0ZBRRjP//2tho6nksDTLCXH8d6p+bY9/U08Jzr+W0ALrevf48t\nz1ft7TfZv/M4IAX4D/B317ZX7OVrgO3AP1zbXgp1XXTEdVmoBThaP1gVeaP9wNcCL9rlzss8zrXv\nfzsPpavsTeAGu+JoBZJd254heCWyCTjLtW0kVmUa45Il17X9E+Aqe3kLMD/A/W0CzrGX7wRe7+a3\nMMCZrvUrgQ89+zwK/Nhe3gV8DUjz7HN6F7/F88APsRTDIWxFZG/7GvC+vXwjUOjalmTLNQJLidQC\nlwGJnmsuxK7s7PUoLIU5pov7/CHwvGffUuB0e/19eqdETvbc73d7IZvzX9e6Pt9y/TZLupGrBjjW\nXr6Pw1QiQf43ZYB4nsMvBzh/CXA8cBWwwN53Claj5GXPb+dWIo+5tl0AbLaXrweWubYJsJsOJfIO\ncLtr+2Q63qHx9u8ThWWBfY0OpfYE8F/B1hmD9RPeZlT4c7ExJt3+XOzZVuJaHgNcYbsram0XwMlY\nFf4ooMYYs9+1f/FhyDAGeMF13k1AGzDctc8e1/IBrNYWwGisllVXPIHVYsX+/nsPcnjvd67nfq/F\nqtDBqswvAIrFcuN9znVsV7/FKKzWZCz+v00xlpXn4LtPY8wBezHFPt+VwG1Aue3ymOKS9fcuOfdh\nVTLu8zo4LWPnGu32fXe17+EQ6P85HNkcslzP5ENd7SAi37JdZHX2eYdg/b5d7XuKdATqNwS6Jj3/\nN6XGrnld2wMlonyA1aA41V5+H8sqPc1eD0Sg33EUrufTlsP9vPr9r/ZyDJblvR3L+pyF5Y58FSgT\nkclByBMWqBIZvLhfmBIsSyTd9Uk2xvwcy7WTISLJrv3zXMv7sVrVgBXHALI95z7fc+4EY0xpEDKW\nYLW0uuIpYL6IHIvlTnmxh3N57/cDj0wpxpj/B2CMWWGMmQ8Ms8/7vOvYrn6LMix3WAtWxereFsx9\nYox50xhzDpbi3ozl4nNk/ZpH1kRjzNIuTlPmvr4duxgdrAz4/0bBcDiyBYUd//gO8CUgwxiTjuVa\ncmIEfjIaYz60/7sUY8z0APcRzH+T44710PG/doWjRE6xlz8gOCUSiHKs/wnw+98c/P5XOrwDFS55\nLsdyW5ba6zdguWLX9EKeQYUqkfDgKeALInKuWMHsBLGCyLnGmGJgJfATEYkTkZOBL7iO3QokiMiF\nIhKL5RePd23/X+ABJ+AqItkiMj9IuR4DfioiE8XiGBEZCmCM2Q2swLJA/m2MOXgY9/sqMElEviwi\nsfbnBBGZat/jtSIyxBjTghWraPcc7/wWpwAXAf80xrRhKZsHRCTVvt//wvptu0VEhovIfFs5NWO5\nIZ1r/i9wr4hMt/cdIiJXBDjV88CFInKW/V980z5fsJV6BZbfPVgOR7ZgScWqICuBGBH5EZDmkTG/\nh2BxBZArInEAQf43w4C77GfhCqyGyesBzv8BVpJCov0cfgichxXH+fSw7tbiNWC6iFwqIjHAXXRY\nxQDPAveIleCSAvwPVtzDyXL7AMulu9hef99eX2Lfe1ijSiQMMMaUYAVJv4f18pZgBbWd/+8aYC6W\nu+LHWEFK59g64HasCr8UyzJxZ2v9HngZeEtEGrCC7HODFO03WC//W1iV+V+xAuMOTwAz6dmV5Ycx\npgH4PJZPuwzLzfALOpTfl4GdIlKP5WK61nX4HiwfdBlWcPQ2Y8xme9vXse6/CFiCFTv6WxAiRWFV\namVYv/FpWIF3jDEv2LI9Z8uzHji/q5MYY7Zgufb+gNX6/gJWmvehIGQA67+6XKxMq079SLq4XtCy\nHQZvAm9gNU6KgSb8XTtOJlS1iKwOcI53gQ3AHhGpsst6+m+WAxOxfrcHgMuNMdVdndwYsxVL0X9o\nr9fb5/2oN5W2MaYKuAL4OVbwfSLwkWuXv2E944uBHVi/yddd2z/AUr6OElmC5R1YTAQg/m5GJRIQ\nkfuwAobX9bRvP8txKlZrcowZgAdNrLTnp4wxuf19LWXgEJEbsYLYJ4daFqUzaoko/YLtrrkbK+NF\nWyqKEqGoElH6HLE6lNViBaF/F2JxFEXpR9SdpSiKovQatUQURVGUXhPxAzBmZWWZ/Pz8UIuhKIoS\nVqxatarKGJPd034Rr0Ty8/NZuXJlqMVQFEUJK0QkqJEv1J2lKIqi9BpVIoqiKEqvUSWiKIqi9BpV\nIoqiKEqvUSWiKIqi9JqwUyIicp5Y06UWish3Qy2PoijK0UxYKRF7Low/YY1EOg24WkSmhVYqRVGU\no5dw6ycyB2sK0yIAEXkOa4j0jX19ofc27+Urj68gOkqIiRJio6OIiRaS42LIzUhkXHYy2SnxPZ9I\nURSlHzjY0sa2vY2U7DtA9f5DHDzURnNrx9Q63zh7It84e1K/yxFuSiQH/7kLdtPF3BcicitwK0Be\nXp53c1A888kuANraDW3txvfn1B5oobT2IMt37PNcs1eXURRFCZrDGerwd4u2qRLpLcaYBcACgIKC\ngl6NMPmX6wtobze0thta2tppbTO0tLfT2NRKSc0BNpc3sHR7FUsKq2hpM5w1ZRj3XjCV8dkpPZ9c\nURTlMDhwqJUFi4tYsLiIA4famDoyjVMnZXHc6AzyMpPITo0nKS6ahNhooqMGtkUbbkqkFP+5jXMJ\nfn7qwyYqSoiLEuJiOkJHWSnx5Gclc8rEbG45dRzVjc08s3wXjy4u4vzffch/nz+Fm07KR9Q0URSl\nD1hbUstdz31KcfUBLpg5gttPn8CMnCGhFstHWA0Fb89vvBU4C0t5rACuMcZsCHRMQUGBGYixs6oa\nm/nuv9exaFMFXzh2FL++4lg/5aMoinK4vLSmlG/9cy3ZKfH85spZzBs3dMCuLSKrjDEFPe0XVpaI\nMaZVRO7Emuc5GvhbdwpkIMlKiecv18/mkQ+288s3tlB3sIW/XD+b+JjoUIumKEoY8tSyYn7w4nrm\njs3k0S/PJj0pLtQidUnYNZWNMa8bYyYZY8YbYx4ItTxuRITbT5/ALy6byeKtlfzX82tpbw8fS09R\nlMHBa5+V88OX1nPWlGE8cdOcQatAIMwskXDhyhPyqD3QwoMLNzMuK5lvfn5yqEVSFCVMWF9axz3P\nr2F2XgZ/uvZ4EmIHtzcj7CyRcOHWU8dxxexc/vheIUu2VYVaHEVRwoCGphbufGY1Q5PjWHB9waBX\nIKBKpN8QEX4yfzrjs1O45/k11B1sCbVIiqIMcu5/ZSMlNQd5+OrjyEwevC4sN6pE+pGkuBh+d+Us\nqhub+dWbm0MtjqIog5hlRdX8c9Vubj11HCfkZ4ZanKBRJdLPzMgZwg0n5vP08l2sKakNtTiKogxC\nWtra+cGL68nNSOSuMyeGWpzDQpXIAPBf50xiaHI8P1+4iXDql6MoysDwz5W7KdzbyI8umkZi3OCP\ng7hRJTIApCbEcscZ41lWtI+l26tDLY6iKIOIppY2/vDuNo7LS+ecacNDLc5ho0pkgLh6Th4jhyTw\n0Ftb1BpRFMXHs5/soryuiW9/fnJYDpekSmSASIiN5vbTx/PprlpW76oJtTiKogwC2toNf12yg4Ix\nGZw4ISvU4vQKVSIDyGWzc0lLiOFvS3aGWhRFUQYBizZVsLvmIDedPDbUovQaVSIDSFJcDFfPyeON\nDXsorT0YanEURQkxj3+0k5z0RD4fhrEQB1UiA8x188bQ1m74z6rdoRZFUZQQUlTZyMdF1Vw3bwwx\n0eFbFYev5GHK6Mwk5o7N5IVPSzXArihHMS9+WkqUwKXH54RalCNClUgIuOz4XIqq9mvnQ0U5SjHG\n8MKaUk6akMXwtIRQi3NEqBIJAefPHEF8TBQvftpvkzIqijKIWb2rhpJ9B7l4VnhbIaBKJCSkJsRy\n2qRs3t5YoS4tRTkKWbhuD3HRUXx+evgG1B1UiYSIs6cNp6yuiQ1l9aEWRVGUAebdzXuZN34oqQmx\noRbliFElEiLOnDIMEStPXFGUo4eiykaKqvZz1pRhoRalT1AlEiKyUuI5Pi+DdzfvDbUoiqIMIM47\nf6YqEeVIOXlCFutL63TCKkU5ilhSWMW47GRGZyaFWpQ+QZVICJk3bijtBlbs2BdqURRFGQBa29pZ\nubOGeeOGhlqUPkOVSAg5Li+duJgoPi7S4eEV5WhgY3k9jc2tzB0bPjMX9oQqkRCSEBvN8XnpLFMl\noihHBcuLLK+DWiL9iIjcJyKlIrLG/lzg2naviBSKyBYROTeUcvYVx+dlsGVPA00tbaEWRVGUfmZl\n8T7yMpPCvpe6m0GnRGx+a4yZZX9eBxCRacBVwHTgPODPIhJe80h2wTG56bS2GzaWa38RRYl01pfW\nc0zukFCL0acMViXSFfOB54wxzcaYHUAhMCfEMh0xzgO1bnddiCVRFKU/qdl/iNLag8zMUSUyEHxd\nRD4Tkb+JSIZdlgOUuPbZbZd1QkRuFZGVIrKysrKyv2U9IkYOSSArJZ61u3UwRkWJZNaXWQ3FGapE\njhwRWSQi67v4zAceAcYBs4By4NeHe35jzAJjTIExpiA7O7uPpe9bRITpo9LYXN4QalEURelH1pda\nLuvpo9JCLEnfEhOKixpjzg5mPxH5C/CqvVoKjHZtzrXLwp4Jw1JYvqOa9nZDVJSEWhxFUfqBbRUN\njEhLID0pLtSi9CmDzp0lIiNdq5cA6+3ll4GrRCReRMYCE4FPBlq+/mDCsBSaWtp1ylxFiWC2V+1n\nXHZyqMXoc0JiifTAL0VkFmCAncDXAIwxG0TkeWAj0ArcYYyJiLzYicNSACjc2xgxQyEoitKBMYai\nykbmzxoValH6nEGnRIwxX+5m2wPAAwMozoAwwaVEzoiQQdkURemgqvEQDU2tjMtKCbUofc6gc2cd\njaQnxZGaEMPumgOhFkVRlH5gR9V+gIh0Z6kSGSTkpCdqTERRIpQy+92ORHe1KpFBQk56IrtrVIko\nSiRSVme92yMiaLgTB1Uig4ScjERfa0VRlMhiT10TaQkxJMcPujD0EaNKZJCQk55IfVMrDU06QZWi\nRBrldU2MSk8MtRj9giqRQUJWSjwA1Y2HQiyJoih9zZ66JkYMiTxXFqgSGTRkJlu9WPcdUCWiKJFG\nZUMz2XZDMdJQJTJI8CkRtUQUJeKoO9hCelJsqMXoF1SJDBJ8SmS/KhFFiSSaW9s42NLGkERVIko/\nMjTFUiLVLiXS2tbO3vqmUImkKEov2N/cSr0rQabuoLWsSkTpV5LiYoiLjvI9cK1t7Xzp0Y+Z8z/v\n8PA720IsnaIowfDZ7lrm/c87zH3gHT6z5wiqt9/pNFUiSn+TGBfNwUOtALy2rpzVu2oZm5XM7xZt\npXBvY4ilUxSlO4wx/PClDcTHRhEbLfz27a2AWiLKAJIcF82BQ9bAxO9u3ktWSjzPf+1zREcJzyzf\nFWLpFEXpjrW761hbUss950ziqjl5fFRYzcFDbapElIEj0aVEVhXXMHdcJtmp8ZwxeRhvrC/HGBNi\nCRVFCcTr68qJjRYuOmYUBWMyONTWzuY99TS1tAOWyzoSUSUyiEiKi+G1deXc8481lNUeZHyWNeLn\nqZOyKatr8o0EqijK4GPJtirmjM1kSGIsU0ZYU+A+vnQntz+9GoCY6MictVSVyCDCmRr3hU9LaTeQ\nm2GN+HnShCwAPtmxL2SyKYoSmAOHWtm8p57ZeRkAjBiSgAi8tKbMt09sVGRWt5F5V2HKvv3Nfuu5\nmdZYO2Myk0iKi2bznoYez1HZ0Myf3itk6fYqv/K3N1Zw3u8W870X1nGotd1v2566Jr+UREWJRNra\nDTuq9tPW7u8WfnltGef+djH3vbyBdte2ivom/vjuNlbs7Lnxtm53He0GZuWlAxAXE+UbysghNiYy\nLZHIdNKFKXUH/CtyZ5iEqChh8ohUNu+p7/b4lrZ2rntsOVsqGogSeO7WzzFnbCZltQe585nVDEmM\n5ZnluxiZlsDXz5oIwN+W7OCnr20kJT6Gp26ey7Gj033nqz1wiJY2Q3ZqZA7XoEQmTS1tVDY0+83d\ncai1nWsfW8aKnTXMHZvJ32+eS1xMFEWVjXzr+bUMSYrl8aU7GZuVzA0n5tPU0sZVC5axo2o/MVHC\n87d9juNtK6MrCiut7EnHjQUwNDmOyoaOhmGMWiJKf+NtIbmHjZ4yIpWtFd2n+b7waSlbKhr49RXH\nMiw1gd+/Y6UYPrWsmNZ2w39uP5Gzpgzj8aU7OdTaTkV9Ew8u3MS8sUNJjY/hu/9Z5wvef7itknkP\nvsO8B9/hhU93+13HGENTS0RMb6+EMa1t7TS3+j+HZbUHOevXH3DKL9/jxy+t95X/30c7WLGzhkuO\ny2H5jn08+4mV7fjkx8WIwGt3ncyc/EweW1KEMYaX1pSyo2o/f7j6ODKT4/jNW1u7lWVX9QHiYqL8\n5gtJjIv22ydWYyJKf9PSjRIZnZnEvv2HOGD3I+mK1z4rJ39oEpcen8OXCnL5eHs1tQcOsWhTBXPH\nZpKbkcQVBaOp3n+IT3fV8J/VpbS0GR68dCZ3nz2RTeX1fFpSS1u74d7/rGNUeiIzc4bwwxc3UGsP\nDFnZ0Mz5v/+Q6T9+kwWLt/fPD6EoPbCxrJ4Tf/4ux93/Nm9vrPCVP7hwMzUHDnH+jBE88XExq4r3\nYYzhuRUlzB2byW+vnMWxo9N5bkUJ7e2GhevLOX1yNsNSE7jk+BxK9h1kS0UDr9rv0kXHjOSauXl8\ntL2KvQ2BR4/YWb2f0RmJvrgmQJT4K43Y6MisbiPzrsKUTpaIqyUz0h5Gek9d1w/ywUNtfLy9mrOn\nDkdEOG1yNu0GFm3ay9aKRl9w/sQJQ4kS+LiomiWFlUwZkUp+VjLnTR9JdJTw7qa9LN1exe6ag3zz\nnMk8cMkMGptbeeWzcgB+8cZmiqr2MzsvgwcXbmZTueViM8bws1c3csIDi/jNW1s0HVnpE5YVVXP6\nr97j8keW+oYAam83fPtfa+3kk0S+86+17G9upaqxmYXryrl6Th4PXXEsqfExPL9iN9v2NrKjaj/z\nZ+UA8Plpw+0GUw0V9c2cPnkYACfb78iKnTWsLq7hlInZiAhnTx2OMbC0sDqgnMXVBxgz1H/+dO87\noNlZSr/jVSIxrpbLiDQryB5IiWzaU8+htnbmjM0EOnyzr6y1skOmjkwFIC0hljFDk9myp4G1JXWc\nkG/tPyQplmkj01hTUsvS7dXERgtnThnGtJFpjMtO5u2NFTQ0tfDK2jKuLBjNX64vID4miqeWFQPw\n6mflPLZkB0MSY3n43ULecrUOF2+t5PJHlvLg65s63aOiALyzqYLLH1nKQ29u8QW3G5tb+fqzn9Lc\n2s6Gsnq+/6Llnvq0pJYNZfV859zJPHDJTGoOtPDG+j18uK2S1nbDJcflkBwfw8kTs1i8rZJPd9UA\nMG9cpt/308ssl9aMUUMASyGlxMfwxvpy9h9q45hcq3zKiFQSY6NZU1IbUP499U2MSu9+vhDNzupD\nROQKEdkgIu0iUuDZdq+IFIrIFhE511U+W0TW2dseFpHIVOsBcCyRMpcS+Xh7Ncfd/xa/fmsLm8ut\nzK2pIy3lkRwfQ25GIh9srQRg0vBU33Hjs5NZVlRNY3MrE4al+MqnjkxlU3k9q4prmD5qCIlx0YgI\nc8dmsmZXDcuK9tHc2s4FM0cyJCmWs6YMZ9GmCowx/P3jYsZlJ/P6XaeQPzSJvy7ZAVgZLrc9tYpt\next5dHERf11S5Lve3oYmvvfCOn7xxmaNsRwlvL6unK8/+ykfFXZkD5bsO8D/e3o12/Y28sf3Cnlu\nRQlgNYAqG5r5w9XHccup43h7YwVltQdZuK6cuJgozp85gtl5GWSnxvPelr18smMfaQkxvndg9pgM\nyuua+GBrJakJMYy1+10578Jr6yzreuJw6x0QESYNT+Ej2+Jw3o2Y6CimjUpjY3k9q4r3UfCzRfz0\n1Y0++dvbDXUHW8hIiuv23t2urkgiVKpxPXApsNhdKCLTgKuA6cB5wJ9FxPHpPALcAky0P+cNmLSD\ngAx7qPjKhmZK9h0A4E/vFVJzoIVH3t/O6l01JMRGkZvRMQVnvsu8dqcbjstOocbOBBuX3bHPpOGp\nvnjJpOEdyuWY3HTqm1p59bMyogSOHW210OaNy6SivpkNZfV8snMfXzhmFHExUVx6fC6f7NhHVWMz\nTy/fxcGWNl6+8yROnZTNgsVFtLS1Y4zhjqdX8+wnu3jk/e3c73kpn1m+iz+8s01Tj8MQYwwvry3j\nN29t8ctOWlZUze1Pr+bVz8r4yuMrKLIzmpwGxxvfOIXj8tJ57EMruP36OisuMXtMBl88diRgDQe0\nsriGWaPTSU2IJSpKKBiTwYayerbsaWDaqDSi7craUQIfbKkkLzMJp92ZmhDL0OQ4mlvbGZocR0Js\nh9s4J6Mjo8s9E2FeZhKlNQd55P3tVDU289clOyivO0jN/kPs2ncAYzoPa3K0WN0hUSLGmE3GmC1d\nbJoPPGeMaTbG7AAKgTkiMhJIM8YsM5aj8Ung4gEUOeSkxscgYsUkTvnleywtrOLjomrm5GfS2m5Y\nuK6c4WkJuA00JzU3NlqIj+n4q4e5UnZzXS+No4Ba2oxfufMyLly/h/HZKb7hG46zUx6ftsf1clxj\nJ00YClhDt7y7uYITxmQyZmgy18zJo6rxECt31vDJjn2s2FnDT+fP4MYT8/nHihLKag8C8MgH2/ne\nC+v49dtbuePp1X6+5Y1l9TyzfJcv0K+EDmMMb6zfw+vryv36V/xndSl3PfspD79byA1/+4TWNqtf\n0sPvbGN4WjyLv30GAvzfRztpb7fOcfqkbEYOSeTS43IoqtrPtr2NrNi5j9MnD0NEGJ+dwtDkOFbv\nqmFTeT3H5AzxXW/i8FSKq/eztaLRZ21Ax3O7/1AbOZ75zR0F4U1fd94NEf+GV25GImV1B1lWtI/j\n7L4gi7dWcvGfP+L0h94HIN1jiRwdKqQbJWK7jHr6/KyP5ckBSlzru+2yHHvZWx5I9ltFZKWIrKys\nrOxjEUNDVJSQ4srW+t2ibbS1G750wmjAelGGeV6ILHuOkuT4GD/l4kyABZDpevCHu9IT3RaNs3yo\ntZ0cV7ljxbz6mRV3mWm/2DNyhhAbLSwtrGJDWT0n2krllIlZRAks3V7F2xsriIuJ4rLjc7nxxHza\n2g1vbtjDwUNt/O/72zln2nB+/IVpfLitiqXbLffCZ7trufhPH/G9F9Zx5aPL/NI7Dx5qY2lhFQ1q\nufQ5xhhWFe9jd80Bv/I/vFvIbU+t4vanV/PQW1absK3d8Ms3N3N8Xjq/v2oWG8vreWtjBfv2H+Lj\nomqunpPH6Mwkzpk2nIXr91BU1cie+ibOnjocgM+Nt4Lb/169m6aWdt8zJWL1lVq8tZLm1nafCwpg\n4rAU2o0VQ3EHt93P8yivEknrXokkxET7ZVPlpCdi7Gt8qWA0SXHRPPNJCcXVHb9JeoQOsNgT3Vki\n84FVPXwuC3SwiCwSkfVdfOb3nfhdY4xZYIwpMMYUZGdn9/flBowYl0/1E7sX7azR6b4Wk/eFyEyO\n73ScVd6hOFITOhST+3h3vvuwVGsIB4DhqR3lSXExZKXE09DUSmp8DEPs6T/jY6IZnZnEok17MaYj\nyJ8cH8P47BQ2ldezbEc1BWMySIyLJj8rmXFZyXy4rYrF2yppaG7lxhPzuWZuHqnxMby0phSAh97a\nSlpiLA8ZTFGsAAAgAElEQVReOpMtFQ38w/adN7W0cekjS7nmseVc+PCSTrND7m9uPWpcC0dKQ1NL\np6yiH720gcse+Zgzf/0Bq4qt525vQxN/fLeQC2aO4AvHjuKxD3ewt6GJ5Tuqqahv5uaTx/GFY0aR\nnRrPG+v3sHR7FcZY48ABfG78UDubag8Ax9gu0rFZySTERvGKPVzIlJEdsbyJw1KosqePdisIt9tp\npGs5NjqKONsCH5bm/244VoP3nXGmsPX26XBbJflDkxkzNJm1nkC7d/rbyIyAdKY7JfJbY8wT3X2A\nRwMdbIw52xgzo4vPS91csxQY7VrPtctK7WVveUTx4h0n8e1zJwfc3tBk9RFxP+A56YmMGGIrEc8w\nCynxlq/Xm4PgNrvdwT63pZPiUi7RUUKK7cIantZ1y234EP/MlPyhyZTa7im3i2HqyDQ2ltVTuLfR\nFwAFOHZ0OpvK61mxYx9xMVEU5GcQHxPNqZOy+aiwmurGZpZsq+SqE0Zz9Zw8ZuSk8a9VlnH61LJi\nNpXX8/UzJ1Bae5A/vNsxideCxduZed+bnPPbD6jQWSIDYozVN2jmfW9x1YJlvv5Ia0pq+fuyYi49\nLofslHjuf8WKXS1ct4dDbe3cc/Ykvn7mBA61tfP2xgo+2Frpy+yLihJOmZDF0u1VrNlVS0JslM8N\ndWyu5RL656rdxEZb7iqwnrUJw1J8CSQjh3RYECP8ljuet6GuRpE3uJ1gK5HUeP/BOdISrfW0BP+K\nP9Veb/U0OtwTSo0YkuCzzqNd70+gSae+9flJ3PeFaV1uiwQCKhFjzO96OjiYfQ6Tl4GrRCReRMZi\nBdA/McaUA/UiMs/Oyroe6E4ZhSWzRqdzxxkTAm53HuxpduWbEBtFYly0T3l4H2Kns6K3RZTk6Unb\nUd7xoiV7Xro2u3WaneavLJwW3kiPEnG71sYMTfJbLqtroqml3S+oP2VEKuV1TSwprGLGqDTiYywZ\nZ41Op7T2IG9trKDdwBlTrJbsudNGsK60jroDLfxndSmzRqfzzc9P5sKZI3nh01IOtbZTVNnIgws3\nU5CfSXltEz95ZYPveqW1B7nlyZXc9eynVDf6j1kWyRhjePSD7Xzp0Y95Y/0eX/nbGyt49pNdnDop\nm+U79vHXD61g979X7SYhNor7L57BzSePZe3uOnZU7WfRpgomDEth4vBUJg5LISc9kY8Kq1i3u46p\nI9N8vbWnjUqz4mDFNeQPTfalrTv//a59BxgxJMHPdeSks8dGCxmu1n0gSznLVe61BuLs58g7DLvT\nYIqL8a8Cnee+pc1/fDm3xZ6VEud7vt1u34QY//fKUUMnTcjixpPGEql0FxNJEJEbROSLYvHfIvKq\niPxeRLKO5KIicomI7AY+B7wmIm8CGGM2AM8DG4E3gDuMMY7j+3bgMaxg+3Zg4ZHIEM7k2mMCRdsW\nhvOCxHteCEdZeHvOBlIi7hfK23JzWlzeDBTHNeZ1Czjmf3xMlF/2i7tlOdblv3aslc17Gvz82jPs\nlus/VpQQHSVMG2mtz87PwBh4b8teNpbXc840y6d+wcyR1B5oYU1JLf9YWUJMlPCna47nKyfls3D9\nHirqmzDGcOczq1m8tZKF68v59r8+85N9W0UDy4qqw77D5M6q/SzZVuXnynt5bZnVSbSsnq8/u5rt\ndobU35cVMzozkb/dUMCpk7L5x8oSjDG8tXEPp08aRkp8jO83Xry1knWldRSMsRIrRITpo9LYvKeB\nzXsafI0cgPF2cHtNSa1fo8FxhUJnC9qxdi03audEEfB/Dt3PanqiN83Wundvo8j9TLpJtMu93k93\nAy0xNtpnsbitoEADLEZ6b4Tu3FlPAp8HbgLeB/KAPwINwONHclFjzAvGmFxjTLwxZrgx5lzXtgeM\nMeONMZONMQtd5Sttd9h4Y8ydJtzf8CMgy35wnR/AqfzjPS0hZ8C3hFj/vzkxwAvkxvvSOeeO8/iK\nHXdAimf/oXZQ/5CnRed2h7lbkG73hLt151gxa0pqGZOZ5GvhTreVyT9XWXGRWfbAkSfkWxXb6l01\nfLi1itljrH4E82flYIyVIrqquIZPd9Xyoy9M455zJvHu5r1sLLN63r+3eS/n/f5DrlqwjJ+80pF2\nHG4sL6rm879dzHV/Xc5//9tSksYY/vReIZOHp/LON09DEP7+cTF1B1v4eHs1F8wcSUx0FBfMGMHu\nmoMsKayior7Z1zkvNyORjKRY3tm8l9oDLUx3ZUhNHpFKUeV+9u0/5Pf/jXO5Mt0DIkJH4kegBojz\nDDmkuawBd8XsXnZbDNChDJLj/Z/5ONvyaW3zr0acd6XdU724zxsTHeVbd7uz4iJ0WJOe6O6upxlj\nrgUuByYbY+4wxrxhjPkB/nELZYAZar9kTgc9J3DuNc1jAymXIB52r7XivKfe8X+cl9NrBTktRa+q\nT3X5oN3+6xEBMsOGpyX4YkDu4OiQpFiyUuJ8HcMmj7ACsENT4slJT2R1cQ2b9tQzZ6yVGTZpeApZ\nKfGs3FnDO5v3EhMlfPHYUVx9Qh5Rgm/myJ++tpFxWclcdnwujy/d6VMuAIs2VvCLNzb7+ukMBlra\n2vnrkh088v523/NgjOFHL21gWFo8V88Zzb9W7WZ9aR07qw+wtaKR6+blMSwtgTOmZPP2xgo+3VVD\na7vhtImWq9BJ3X5+pRVzmtFFhhRYUxQ4uONebmtzqMvKcLfaocP15B0y3Wn1e1vw3oZKV3jfAaet\n6XVnOZV/W7t/I8exULzPrbfh5SiRFpcSivVcO7Ltjw66q00OARhjWoEyzzbtXhxCnAfYeXydF8I7\nNk+sXe61RKKD6DnrfYGdNa8ScV6uzi6zrl94d0Xg9l+7g/1OVpkjq6NshnviMU7aZlx0lF8FNS47\nmfe3VmJMR18Bx+WysbyelTv3cUzuEFITYslIjuO4vAw+LKzis911FFXu55ZTx/Gji6YRFxPls3Q+\n2FrJV59cySPvb+eqBctobA48EOZA8sBrm/jpqxv5xRub+aE9LMiGsnq2VDRw5xkTuPeCqcRFR/Hy\n2jKW2L3ET7aVxZyxQymtPcj7WyylMN0e/mNcdjJx0VEstHt0O0FvgLFZHctu69GtCEa6hv9wj//m\nDXo7rievcnGe72bPKAZe67grvErEiSN6G0XOO+B1WwWy0r0Zjo6MrS4l5LVEjhZXSXdKJNfuC/IH\n17KzHrCPhtL/OBWx01pyMqzavW+E/dzHx3rdXIffRnJ0hPcldZRNsK1Gt1vArZDc5/W6HhyrxqtE\nHF/68CHxftcfnZnkm3jL7U6ZMjKVwr0NbK1oZLJr3oeZOUPYsqeBj4ssq+b0ydkMSYrllAlZvLt5\nLwB/fHcbeZlJPP3VuZTWHuRpe8wwsGa1W72rptNkX31N4d4GX8YbWMOF/H1ZMdfOzeOWU8byr9W7\nKdl3gDc37CE6SjhvxgjSEmI5YWwGi7daY0hlp8aTb7sIj7XHhnppTSkjhyT4UrRjo6PIG5pEa7sh\nLibKT9m7Eybc6d5uJTLMVe7+X7xKJMmxYj3Pp1Phe11K3mevKzo926brcsdC8YYr4mO7vob3+U6M\ntZ5jt7c20Ci9kW6RdPevfBurL8hK17Kz/p3+F00JhNfvG+Mzzf1fOqdS87qavFbD4eB9UZyX0fvu\nOi+j91LBtCZT4/2D906rMcvjI3d86SPT/DuSuSs0d0/l3IwkWtqscY7GZ7vTjlM5cKiN1z4rZ3Rm\noq8SPGFsJsXVB9ha0cCKnTV8qSCXkyZkMXtMBi98amWYNzS1cNEflnDpn5dyzV+W9ZsieezDIs7+\nzWJO/9V7LNlmWRQL15fT1m647bTxXDN3DMbAok0VrCmpZcqIVJ91NzMnne2VjWzf28j47GRfhZhv\nK9iaAy2dsus6gtvxAYPbTpos+P83gRI3UjzPrTMgobeCd7KcvG2iYIZSDxTE9pY7p/buHSjg7sVx\nsbrT7YOx8COR7lJ8e+ojooSIFE8l6ygFb257s0+J9IElYr9uXpPduaT33fXFaTz7B+PX9loiTjDd\n62pwKslMjzvEXaG5ldbINP+xkBzG2e6adaV1fuONOb2lnZGKnd7Un582nM17Gtjb0MTjH+2kqHI/\nN56Yz8riGt++fUlFfRO/fHMLp07KJjcjiZ+8sgFjDIs27WXayDRGZyYxNiuZ0ZmJrNxZw7rSOp/s\nYLn0WtoMa3fX+bmjrHGjrP/HG9x2rAzvKAhu15O7Ynb/zoEqYm8Hvuhoxw3r/4wkxAawRHoRuHbO\n0MlA8T23XgsjOCXiKIxgFEeku7UCvtEi8grd3L8x5ov9IpHSI94WXYd/1//vcgLUp07yz8juzWii\ngdxZPpdagAl4vC9+MC4Jr6JxWqzeY7vKkAEY6oqpuI9xZ4O5M3/cQX13BpETT3llbRnRUVZMBaDA\nyQArruXFNaXMG5fJfV+czvrSOp5aXsxNJ/dtn4B/rCihpa2dn82fwYeFlXz/hfVsLK9nQ2kdVxR0\n5LhMGZHG6l011B5o8UundS+PzuywzESEzKQ4yuqaOgW3A6Vue589B3fl67V8HaI9Q6E7DQ3v4+iL\n4XWyRHrf0vc+n4EqNue5ddKZA+HsF6nDux8O3TULH7K/LwVGAE/Z61cDFV0eoQwIXnfWZHto6zxP\nCuX0UUP46LtnMsrjqugNHYF178tovY7ebBYnyB+M0vCS5LVWAmWG2RZKqyfDJlBF51ZObv+8u6Ic\n7Rp4MjslnriYKGoOtJCTnuhrITt9VZbvqGZ75X4un21V5F+cNYofvbSB7ZWNjM9OYfWuGt7bvJfL\nZ+d2mrAoEM2tbfz942LiY6O5dk4eUVHCO5v3cmxuOnlDkzgzxppA6fkVJew/1Ma0UR2xnUnDU3yz\n/Ll7d7v7YWQl+yuF1IRYqGvqpCycLDrvbx7IknQ3TAJZIl4LODqAGzaQJXIk7qJOSiRATATgk++f\n1ak/lIP33QsqSSVIGcOVgErEGPMBgIj82hjjnvPjFRFZ2e+SKQHxdgS8oiCXCcNTON5OzXTjHb30\nSPFWKk6GlNe6cfqo9GZKUG9l46x5FZITkBXPa5oS33Ul5q4A3C4wd6XndtdERQkj0hLYte+AX3px\nYlw0w1LjedWe7dEZ1dWZPXJVcQ1x0VFcvWAZza3t/HPlbt6859SAFZObn7yykWfsUZGbW9q48oTR\nfLa7lrvPmghYVlNmchxvbrCUhTtxwD3IoDvG4ba6vD26nUrQG/R2FLE3xuOdN7wrAlWs3vJALqWO\nvhr+xx9Jp71ABoP32QH/xAA3737zNJ8L1enRHqmzFR4OwbzhySIyzlmxhyMJrlml9ClT7L4Q3hdZ\nRLpUIH1JRxaWf/llx+fygwuncttp4/zKnfqiN5aIt9UYqI+K4yrzVhDBpBcHalF7rRhn2I0Rnsyw\nvMwk31wZThxl7NBkUuNjWFtSy5Mf76TdGB798mz21Dfxfx/t6PJ6bnZU7eeZ5bu4+eSxnDh+KH9b\nsoPNexowBt8seyLClBGp7LHHAXNnrLldUm553b9Hhid+5DxL3v/JcU953T5HMk94oFictzQuumtL\nBOD3V83i3W+edtjX7myJOOXBn2Ncdoqv8eF0UozUedMPh56jnHAP8L6IFGH932OAW/tVKqVLnr1l\nHkVV+zsFygcS73sdHSV89ZRxnfZzOmH1Rol4W6y+oL7nXE4r0NuaDPRiu7OGArWWvdljaQHSi3Mz\nEllZXEN0lPhcQVFRVme8wr2N1B1sYd64oZw7fQQnTRjKS2vKuPusid22pv+1qoQogVtPHceSbVV8\n859redHOAnOnJLstDreF5DcsSNLhuWO8FbwT1/D+30fSK7uzJdK1S8lpFHQ1JoUzT/rh4lUi7d24\ns4LBcaFGRwlLv3smtQcCT0Fw1AbWHYwxb4jIRGCKXbTZGHP0jFg3iMhIjmN2cpzv5TsSV1V8TBRf\nnjcm6P3/duMJ/H3ZzqCv6aSIHs41HAK1Dju5uQJYR4ECsIGGynDjtVAcF5TXFeW4NYalxvtVjnlD\nk3h7QwUNza1cONOaje+iY0Zx73/W2f1TUgnEe5srmTM2k+FpCb4Jvl5fV05stPjFtZyMqfSkWL8G\nhXs+C+9ggA5eBRvry5DyupSc4w+/r0YgYjwmY6A0W6e1f91hPDu/u3JWtx1Avc/UmVOG8eDCzVx4\nzKigr+HGse5y0hMZZX+OVrrLzjreGLMawFYaa7vbRxk4RIS/3lDg62HcG7b87PzD2n/yiFR+dvHM\noPdPT4pj588v7NUghp16y9urXoujo4+KJx5zBK1lrxJJCuDucSwUbwpsbnoiDXZlNtbOijpxvDX0\nysrifQGVSH1TC5v21HPXmVbsIzcjkXg7qD9qSNcDEXqVqlv2QIq0c3Db6avRdRZdb/pqBCLam5QR\nICaSFBfDzp9feFjnvvi47i0U7zUmDk897Gu4OWViFg9dcSwXHTOyx30jPWrS3RPxfyKSISKZgT7A\nXwdKUMWfs6YO9xt2YrDSFyOYOqcwnlaxc25v8Df2CLJ4vB3lHAXldeOkeYaecRjaRUfHvMwkhibH\nsWZXLYFYW1KLMR1TDEdFiS/bzps55VhFLZ7BA91ZbYF+d6+CdX6qTn047N28cYkjCSR7FdiRupSC\nwWlo9HVHQBHh8tm5QXdOjGS6c2cNweqh3t2vHxlzzw4yhiTGasDOhWOBeI2akydkkRIfw40n5fuV\nH4klEqiSDGSJeBWYO+vLmUpYxJpoyRl2vSsK91rbJo3o6AyYlRLPtr2NnZSIE7dp9YyQHExHuc7D\nfzjl3sEDu/7Nk+NiGDUkgW+cM6nHa3nxVuTtASyR/iAUnckvnpXDZ7vrIt7V1V2Kb/4AyqG4WP3D\nc0ItwqCiwxLxJzM5jvU/ObfT/kfSWo4O4ErznjM5zhmAz18qd4qwu0/GuOwUFq4vD3jdosr9pMbH\n+PXpyEh25qzwKBH72i2eawdTUXYKbjvl0V3fd1d9NZbee1bPF+qCztlZXQ+Z0x+EYk6Pr5yUz3Xz\nxhxRHCkcCCY7SxlgjtYxeAJx++kT+Hh7tW9q1Z5wehH35nfsXNl03SJ3Kgav0nEPde/uOzMuK5na\nAy3UHWjpMnOqeN8B8rOS/a7vBO+9Kd2Brh1MRentYR0ortSbSvfsqcM7jcjrJmA/kQGIGoRiXigR\nIS7ARFWRhCoRJSQ4weZg+Nz4oRT+zwVB7+/49289tXPqcU90Si92rCCPFnGu4a2ckgJ0dHRScV9d\nV8a/V+3mhxdNY+rINO5+7lOmjkyjurG5Uxqxk23lbcn6lEgvlKTX4nDwlk60h3w5nJTax24o6Ha7\n12V23owRPLeixDeMTH8S+VV56FAlogw4R5IVEwwx0VHseDB4peOmU+s+wH6BKvJAI9g6vaC//4I1\n58ev39rKZbNzeHNDBW9uqCBKYKprWlnoiHEESmHuTes62OD2qPREiv7ngl6NsxYI7291+uRh/f4s\nOET6FLWhpEdnnT2/+nUi8iN7PU9E5vS/aIrSe0SkVxWHeN6IQPEYX295zzUCdcbzBsc/2bHPN84V\nWEFmryvIlyAQoMNfb4b0DxRY7+pcfalAurr2QOAMqKke4v4jGEvkz0A7cCZwP9Yc6/8GTuhHuZQQ\n8cY3TqGxaXDM2hcKvJaIgzcmEqiCDZQZ5p4f/NRJ2SzeWsmbGyqYk5/JJzv3AZ2HtHcu4Q1uO5l7\nvXJnBbJEDvtMh09fK6Vg+PvNc1lVvC/gUDjKkRNM2sBcY8wdQBOAMaYGCBw9U8KaKSPSKLD7KhyN\neCtZp4XujYnk2mmbV54w2q88UCc/dx+OgjFWDKCt3TBlZEfnQ68S6YjH+J/LGf/q+s8d/mgAnSZn\nCtRtPELITo3nvBk9dwhUek8w6rlFRKKxjWoRycayTBQl4vAaIufNGMGTHxczz5MIMCwtgY33n9up\nb4Y3eOyQ5NrPGUwR/Ifv97aWHQXm7TU+JDGWjfef22XrOiZKOH3ysC5l6Iru3FmKEgzBKJGHgReA\nYSLyAHA58IN+lUo5KnngkhksL9oXUhm87qwTx2cFDP4GqsS7wu3KmTS8w/rITo0nJT6GxubWgO6p\nrkazDeSeOZwsNksu67s/Vcjvr5rFy2vK+vEKSigJZgDGp0VkFXAW1rN2sTFm05FcVESuAO4DpgJz\njDEr7fJ8YBOwxd51mTHmNnvbbOBxIBF4Hbjb9GZgJmXQcu3cMVw79/BdNIfDQ1ccG3DmPTjyPjrB\n+P3dQ2WkxMdYmV7NnV1hA2EdPHTFsSxYXNSvLsz5s3J6PfquMvjpbgBG91O1F3jWvc0YcyRNxvVY\nMyY+2sW27caYWV2UPwLcAizHUiLnAQuPQAblKOTy2bndbh+IVFB37/fk+Bif8ugcj7G++7OtlJuR\nxP3zZ/Tb+ZXIpztLZBVWHESAPKDGXk4HdgFje3tRx5IJ9oUVkZFAmjFmmb3+JHAxqkSUMMTdazwl\nPibgLJApdu93dy94RRlsdDd21lgAEfkL8IIx5nV7/XysCry/GCsia4A64AfGmA+BHGC3a5/ddlmX\niMit2BNn5eXl9aOoSqRw7Oh01pYEHmX3cPjTNcczdWTgeUO8lkhMAEvkkuNyqDvYwrVzj/wZHpIY\nS93BwBMnKUpvCSawPs8Yc4uzYoxZKCK/7OkgEVkEjOhi0/eNMS8FOKwcyDPGVNsxkBdFZHoQMvph\njFkALAAoKCjQuInSI0/dPIeK+r6Za+3CHuaYcAffk+OifRlSnYdjF24+udcGvx/vf+t0Go7i/j9K\n/xGMEikTkR8AT9nr1wI9ploYY84+XGHsya+a7eVVIrIdmASUAm5ndq5dpih9QmpC7IC5jUSE9KRY\nag+0EBcT5ZsnJTpAenBfkJEc12l+dUXpC4J5aq8GsrHSfF8AhtllfY6IZNt9UhCRccBEoMgYUw7U\ni8g8sQIp1wOBrBlFGfTcfdZE33LHnB7aV0MJP4JJ8d0H3N2XFxWRS4A/YCmn10RkjTHmXOBU4H4R\nacHq0HibKwvsdjpSfBeiQXUljHEnXPmUyBHMg6IooaJHJSIi79F5/DmMMWf29qLGGMeq8Zb/G2tc\nrq6OWQloLqISUQjiS+EN1NtdUQYzwcREvuVaTgAuAzRCpyh9hNNCU3eWEo4E485a5Sn6SEQ+6Sd5\nFOWowG3aqztLCWeCcWe5e65HAbOB4OYpVRSlewRXdpYqESX8CMad5e653grsAG7uT6EUJdJxD2XS\nriPpKmFMMEpkqjGmyV0gIvGBdlYUJXhEOtxZqkKUcCSYdJClXZR93NeCKMrRijMvu84DroQj3Y3i\nOwJrfKpEETmOjoZSGpAU6DhFUbrmiZvm0NDUefyqJ2+aw2vryjvNw64o4UB37qxzgRuxhhj5jau8\nAfheP8qkKBHJaZOyO5UJkJ+VzB1nTBh4gRSlD+huFN8ngCdE5DK7E6CiKH2ETqemRArdubOuM8Y8\nBeSLyH95txtjftPFYYqiHAYaB1HCne7cWcn2d8pACKIoiqKEH925sx61v38ycOIoytGB6TwcnaKE\nJcH0WM/Gmts8372/Meam/hNLUY4O1JmlhDvBdDZ8CfgQWAS09a84iqIoSjgRjBJJMsb8d79LoihH\nEZqdpUQKwfRYf1VELuh3SRTlKESTs5RwJxglcjeWIjkoIvUi0iAi9f0tmKJEMmqIKJFCMPOJpA6E\nIIpyNCIaWlfCnGCys47vorgOKDbG6AyHiqIoRzHBBNb/DBwPrLPXZwLrgSEi8v+MMW/1l3CKEqlo\nYF2JFIKJiZQBxxljZhtjZgOzgCLgHOCX/SmcokQ6GlhXwp1glMgkY8wGZ8UYsxGYYowp6j+xFCWy\n0R7rSqQQjBLZICKPiMhp9ufPwEZ7dsPOkyMEgYj8SkQ2i8hnIvKCiKS7tt0rIoUiskVEznWVzxaR\ndfa2h0VHrlMURQk5wSiRG4FC4Bv2p8guawHO6OV13wZmGGOOAbYC9wKIyDTgKmA6cB7wZxGJto95\nBGv4lYn257xeXltRFEXpI4JJ8T0I/Nr+eGnszUU9wfhlwOX28nzgOWNMM7BDRAqBOSKyE0gzxiwD\nEJEngYuBhb25vqKEGg2sK5FCj5aIiEwUkX+JyEYRKXI+fSjDTXQogxygxLVtt12WYy97ywPJfKuI\nrBSRlZWVlX0oqqL0LeqUVcKdYNxZ/4flSmrFcl89CTzV00EiskhE1nfxme/a5/v2eZ/unfhdY4xZ\nYIwpMMYUZGd3npJUURRF6RuC6SeSaIx5R0TEGFMM3Cciq4AfdXeQMebs7raLyI3ARcBZxviM+1Jg\ntGu3XLus1F72liuKoighJBhLpFlEooBtInKniFzCEc52KCLnAd8BvmiMOeDa9DJwlYjEi8hYrAD6\nJ8aYcqBeRObZWVnXYw1RryhhjQ57ooQ7wVgidwNJwF3AT4EzgRuO8Lp/BOKBt+1M3WXGmNuMMRtE\n5HlgI5ab6w5jjDOHye3A40AiVgxFg+pK2GI0sq5ECMFkZ62wFxuBr/TFRY0xE7rZ9gDwQBflK4EZ\nfXF9RRksaGBdCXcCKhERebm7A40xX+x7cRRFUZRwojtL5HNY6bbPAsvR6aAVpc9Qb5YSKXSnREZg\nDbJ4NXAN8BrwrHscLUVRjgxtmSnhTsDsLGNMmzHmDWPMDcA8rKFP3heROwdMOkVRFGVQ021g3R5k\n8UIsayQfeBh4of/FUpTIRr1ZSqTQXWD9SaxsqNeBnxhj1g+YVIpylKCDUSvhTneWyHXAfqx+Ine5\nHnYBjDEmrZ9lU5SIRQPrSqQQUIkYY4Lpza4oyhGgdogS7qiiUBRFUXqNKhFFCQE6Pa4SKagSUZQQ\nonF1JdxRJaIoIUAD60qkoEpEUUKIpvgq4Y4qEUVRFKXXqBJRlBCg3iwlUlAloiiKovQaVSKKoihK\nr1EloiihQNOzlAhBlYiihAhNzFIiAVUiihIC1A5RIgVVIooSItQQUSIBVSKKoihKr1EloighQOPq\nSlLEdDIAAA92SURBVKQQEiUiIr8Skc0i8pmIvCAi6XZ5vogcFJE19ud/XcfMFpF1IlIoIg+Ljheh\nhDn6CCuRQKgskbeBGcaYY4CtwL2ubduNMbPsz22u8keAW4CJ9ue8AZNWUfoYHQpeiRRCokSMMW8Z\nY1rt1WVAbnf7i8hIIM0Ys8wYY4AngYv7WUxF6VfUDlEigcEQE7kJWOhaH2u7sj4QkVPsshxgt2uf\n3XZZl4jIrSKyUkRWVlZW9r3EiqIoCtDNHOtHiogsAkZ0sen7xpiX7H2+D7QCT9vbyoE8Y0y1iMwG\nXhSR6Yd7bWPMAmABQEFBgfoNlEGHBtaVSKHflIgx5uzutovIjcBFwFm2iwpjTDPQbC+vEpHtwCSg\nFH+XV65dpihhi8bVlUggVNlZ5wHfAb5ojDngKs8WkWh7eRxWAL3IGFMO1IvIPDsr63rgpRCIriiK\norjoN0ukB/4IxANv22mOy+xMrFOB+0WkBWgHbjPG7LOPuR14HEjEiqEs9J5UUcIF9WYpkUJIlIgx\nZkKA8n8D/w6wbSUwoz/lUpSBRDQ/S4kABkN2lqIcdWhgXYkUVIkoSqhQQ0SJAFSJKIqiKL1GlYii\nhAAd9kSJFFSJKEqIUG+WEgmoElGUUKCGiBIhqBJRlBChPdaVSECViKIoitJrVIkoSghQb5YSKagS\nUZQQoT3WlUhAlYiiKIrSa1SJKEoIMDruiRIhqBJRlBCh2VlKJKBKRFFCgBoiSqSgSkRRQoQaIkok\noEpEURRF6TWqRBQlBKg3S4kUVIkoSogQjawrEYAqEUVRFKXXqBJRlBCg2VlKpKBKRFFChDqzlEhA\nlYiihACd2VCJFEKiRETkpyLymYisEZG3RGSUa9u9IlIoIltE5FxX+WwRWWdve1g0KqmEO/oEKxFA\nqCyRXxljjjHGzAJeBX4EICLTgKuA6cB5wJ9FJNo+5hHgFmCi/TlvwKVWFEVR/AiJEjHG1LtWk+lI\nm58PPGeMaTbG7AAKgTkiMhJIM8YsM9bIdU8CFw+o0IrSh2hgXYkUYkJ1YRF5ALgeqAPOsItzgGWu\n3XbbZS32srdcUcIW9WYpkUC/WSIiskhE1nfxmQ9gjPm+MWY08DRwZx9f+1YRWSkiKysrK/vy1Iqi\nKIqLfrNEjDFnB7nr08DrwI+BUmC0a1uuXVZqL3vLA117AbAAoKCgQB0HyqBEc0OUSCBU2VkTXavz\ngc328svAVSISLyJjsQLonxhjyoF6EZlnZ2VdD7w0oEIriqIonQhVTOTnIjIZaAeKgdsAjDEbROR5\nYCPQCtxhjGmzj7kdeBxIBBbaH0UJS3RmQyVSCIkSMcZc1s22B4AHuihfCczoT7kUZSBRb5YSCWiP\ndUVRFKXXqBJRlBCgziwlUlAloighQr1ZSiQQss6GinI0M31UGgcPtfW8o6IMclSJKEoIuPKEPK48\nIS/UYijKEaPuLEVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVR\nFKXXqBJRFEVReo1E+pDUIlKJNdx8OJEFVIVaiAFG7/noQO85fBhjjMnuaaeIVyLhiIisNMYUhFqO\ngUTv+ehA7znyUHeWoiiK0mtUiSiKoii9RpXI4GRBqAUIAXrPRwd6zxGGxkQURVGUXqOWiKIoitJr\nVIkoiqIovUaVyCBARDJF5G0R2WZ/Z3Szb7SIfCoirw6kjH1NMPcsIqNF5D0R2SgiG0Tk7lDIeqSI\nyHkiskVECkXku11sFxF52N7+mYgcHwo5+5Ig7vla+17XichSETk2FHL2JT3ds2u/E0SkVUQuH0j5\n+gtVIoOD7wLvGGMmAu/Y64G4G9g0IFL1L8HccyvwTWPMNGAecIeITBtAGY8YEYkG/gScD0wDru7i\nHs4HJtqfW4FHBlTIPibIe94BnGaMmQn8lDAPPgd5z85+vwDeGlgJ+w9VIoOD+cAT9vITwMVd7SQi\nucCFwGMDJFd/0uM9G2PKjTGr7eUGLOWZM2AS9g1zgEJjTJEx5hDwHNa9u5kPPGkslgHpIjJyoAXt\nQ3q8Z2PMUmNMjb26DMgdYBn7mmD+Z4CvA/8G9g6kcP2JKpHBwXBjTLm9vAcYHmC/3wHfAdoHRKr+\nJdh7BkBE8oHjgOX9K1afkwOUuNZ301kRBrNPOHG493MzsLBfJep/erxnEckBLiHMLU0vMaEW4GhB\nRBYBI7rY9H33ijHGiEinvGsRuQjYa4xZJSKn94+UfcuR3rPrPClYrbdvGGPq+1ZKJZSIyBlYSuTk\nUMsyAPwO+G9jTLuIhFqWPkOVyABhjDk70DYRqRCRkcaYctuN0ZWpexLwRRG5AEgA0kTkKWPMdf0k\n8hHTB/eMiMRiKZCnjTH/6SdR+5NSYLRrPdcuO9x9womg7kdEjsFyzZ5vjKkeINn6i2DuuQB4zlYg\nWcAFItJqjHlxYETsH9SdNTh4GbjBXr4BeMm7gzHmXmNMrjEmH7gKeHcwK5Ag6PGexXrb/gpsMsb8\nZgBl60tWABNFZKyIxGH9dy979nkZuN7O0poH1LlcfeFIj/csInnAf4AvG2O2hkDGvqbHezbGjDXG\n5Nvv8L+A28NdgYAqkcHCz4FzRGQbcLa9joiMEpHXQypZ/xHMPZ8EfBk4U0TW2J8LQiNu7zDGtAJ3\nAm9iJQY8b4zZICK3icht9m6vA0VAIfAX4PaQCNtHBHnPPwKGAn+2/9eVIRK3TwjyniMSHfZEURRF\n6TVqiSiKoii9RpWIoiiK0mtUiSiKoii9RpWIoiiK0mtUiSj/v71zjbGrquL4799pQ1tKW0arflH5\nYghQRcNILJIGSTUSRaROaSJYp0aJRihKqmg0OqFBtE2jIhiUpkypKA+xg6K0NKVDkVEofcx0Cqmg\nYEwkmFYZrdARhuWHtY6z5865t3duxw6d7l9yk3323mev/Th3P89ZK5PJZBomDyITFEkmaXVyvVxS\n+1HOQ0ehqVTSmiNVnijpFEl9VcJWhabfVUci47VE1N8zY/mKaNomxyOS2iTdeJg4i0MT7zGtKfto\nkb9Yn7gMAAslXW9m+0d7s6TJ8e77mGBmnx6rtKpwOdBsZoOp51iXYxz4kpn9fLwzMZZIaqpsp9cS\nZnanpOeB5eOdl2OBvBKZuLyCq9f+YmVAzOgfDHsOW+Lr4WKWerOkR4GVktolrZP0sKQ/S1ooaWXY\ngNgYKkmQ9A1J2yX1SfqxShQDSeqS1CLpI8mHg/skPRPhZ0l6SNIOSZsKLbbh3yOpB/h8WUEl/RKY\nAeyIWWRlOU6UtFbSY3JbLBfFfdMk3SHpSUkbJD0qqSXCDibpt0rqCPccSfdEebdLem/4t4eMLkl/\nkrQsuX9J1HWPpPWSTooVRlF/M9Prakh6Y+SzJ37nSLpW0heSONcp7K5IuibaqkfSt0vSq1bny+Q2\nXHol3VFyX5uke6OsT0n6ZhJ2WdTzbkk/kqs+R9JBSaujHedVpDdCnqSzJf0u2qtb0qmJ7E65DZpn\nJV0h6eqI93tJzRGvS9L3Ix99ks4uKUdpW2ZGiZnl3wT8AQeBmcCzwCx8VtUeYb8CPhnuTwGd4e4A\n7gOa4rod+C0wBTgTeBHXcwSwAfhouJsTueuBC5P0WsPdBbRU5PEufGCYAnQDc8J/MbA23L3A/HCv\nAvqqlTdxV5bjW8Bl4Z4N/AE4Ebg6kfMOfOBtKUmvFegI90+Bc8P9FlwlS1FX3cAJuF6kA1GuM0Le\n69O6Am5N6u9yYHVJmf5Xf3F9J66EEqAp2vUUYGf4TQL+iH8JfkHkZ3qF3I4oT606/ytwQlFfJflq\nA54LOdOAPlwv1Gn4szUl4v0QWBJuAy6p0nYj5OHP7uRwLwDuSWQ/DZwEzAH6gc9G2HeT+ukCbgn3\nfOK5iftvrNWWcX0ecN94/4+PhV/ezprAmNk/Jd0GLANeSoLmAQvDvR5YmYTdbcO3Gu43s5cl7cE7\nro3hvwfvwADeJ+nLwHSgGdiLdyZVifgvmdlNkuYCc4HNsYhpAp6TNBvvVLYleb2grsIPL8cHcOWV\nxfbEVLzTmA/cAGBmvZJ660h3AXC6hhZbM+VahgF+bWYDwICkv+Hq7c+PvOwPOX+PuGtwtf6dwFLg\nM3XIPh9YEukM4h1ov6QDkt4V8naZ2QFJC4BbzezFCrkFp1JS5xHWC9wuqTPyV8ZmC6WJkn6Ba+F9\nBTgL2B5pTmNIseYgrkizjDJ5s4B1kt6GD0DpKm2ruX2Zf0nqZ+hZ24NPBgp+FmXfFqu92RVyS9vS\nzA6SqZs8iEx8vgfsxGe+9fDviusBAHP11S9bTNNwmyaTJU3FZ5wtZvYX+eH91FoCooNbhHfiAAL2\nmlnlNkfln340pOUQ8DEz21eRfq37U31AaXkmAe8xs0MlaQ0kXoPU+H+Z2SPybcXz8BVT6QsDdbIG\nn2G/CVhb5z2ldR58CG+bC4GvSXq7jTxXqtSXZJHmOjP7akmah6z6OcgIebi1w61mdrHclkxXEj+t\n51eT61cZXudleUwpbcvM6MhnIhOcmIHehdtsKOjGtYwCXAo8fAQiig52f8zIa775I+mtuBnRRWZW\nrI72AXMkzYs4UySdYWYvAC9IKmxNXNpgHjcBVyp6+pi1A2wDPh5+cxk+i31e0mmSJuGGhAoewK3T\nFeV552FkPwgskvS6iN+chN2Gb6nUO8BvAT4X6TRJmhX+G4APAu/GywqwGVgqaXqJXKhS51HeN5vZ\nVuAafEUwg5G8X1KzpGm4VcpHIn+tkt5QyIz2rkoNebMYUqXeVrtaqrI4ZJyLa0burwgfbVtmSsiD\nyPHBanyfvuBKvIPpxbXkXtVowtHR34Lvi2/CVWLXog3fS++MQ8/fmJsTbQW+Ewevu4FzIv5S4CZJ\nu/GZbiOswLdDeiXtjWtwC3MzJD0JXAvsSO75Cn6u0s3QNg/41mBLHAI/AdR8/dbM9gLXAQ9F2VKV\n9rcDJxPbLnVwFb51uCfyenrI+A+wFdccOxh+G3FV5I9H3Q1706hGnTcBPwkZu4Aboo0reQzfnurF\nzyseN7MngK8DD8SztRk4nJnfavJWAtdL2kXjOyaH4v6bGT6JKhhVW2bKyVp8M5lAUhew3MyOilpy\n+fcaF5nZJ6qEd+CHuzVf8Y3Z/E58dffUmGd0pLw2fPvyiv+3rEY50raMbcblZvbhsczXRCSvRDKZ\ncUDSD3AbKitqROsHVqjGx4byDzifBrYcjQHkeEDSYvyc7x/jnZdjgbwSyWQymUzD5JVIJpPJZBom\nDyKZTCaTaZg8iGQymUymYfIgkslkMpmGyYNIJpPJZBrmv/jnK9qSdwCGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Flat-top window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/pulsar.rst.txt b/_sources/pulsar.rst.txt new file mode 100644 index 000000000..f51f5ebe6 --- /dev/null +++ b/_sources/pulsar.rst.txt @@ -0,0 +1,18 @@ +Analysing Pulsar Data +********************* + +The subpackage ``stingray.pulse`` implements a set of tools for +analysing (X-ray) pulsar data, in particular periodicity searches. + +Many of these methods are generally applicable for searchsing for +and analysing strictly periodic signals (with a possible frequency +derivative) in the presence of instrumental noise. + +Below, we show examples of how this functionality can be implemented and +used in practice. + +.. toctree:: + :maxdepth: 2 + + notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb + notebooks/Pulsar/Phase Dispersion Minimization.ipynb diff --git a/_sources/simulator.rst.txt b/_sources/simulator.rst.txt new file mode 100644 index 000000000..1f27007c0 --- /dev/null +++ b/_sources/simulator.rst.txt @@ -0,0 +1,227 @@ +Stingray Simulator (`stingray.simulator`) +***************************************** + +Introduction +============ + +`stingray.simulator` provides a framework to simulate light curves with given variability distributions. In time series experiments, understanding the certainty is crucial to interpret the derived results in context of physical models. The simulator module provides tools to assess this uncertainty by simulating time series and spectral data. + +Stingray simulator supports multiple methods to carry out these simulation. Light curves can be simulated through power-law spectrum, through a user-defined or pre-defined model, or through impulse responses. The module is designed in a way such that all these methods can be accessed using similar set of commands. + +.. note:: + + `stingray.simulator` is currently a work-in-progress, and thus it is likely + there will still be API changes in later versions of Stingray. Backwards + compatibility support between versions will still be maintained as much as + possible, but new features and enhancements are coming in future versions. + +.. _stingray-getting-started: + +Getting started +=============== + +The examples here assume that the following libraries and modules have been imported:: + + >>> import numpy as np + >>> from stingray import Lightcurve, sampledata + >>> from stingray.simulator import simulator, models + +Creating a Simulator Object +--------------------------- + +Stingray has a simulator class which can be used to instantiate a simulator +object and subsequently, perform simulations. We can pass on arguments to +this class class to set the properties of the desired light curve. + +The simulator object can be instantiated as:: + + >>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + +Here, `N` specifies the bins count of the simulated light curve, `mean` specifies +the mean value, `dt` is the time resolution, and `rms` is the fractional rms amplitude, +defined as the ratio of standard deviation to the mean.. Additional arguments can be +provided e.g. to account for the effect of red noise leakage. + +Simulate Method +--------------- + +Stingray provides multiple ways to simulate a light curve. However, all these methods follow a common recipe:: + + >>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + >>> lc = sim.simulate(2) + +Using Power-Law Spectrum +------------------------ + +When only an integer argument (beta) is provided to the `simulate` method, that integer defines the shape of the power law spectrum. Passing `beta` as 1 gives a flicker-noise distribution, while a beta of 2 generates a random-walk distribution. + +.. plot:: + :include-source: + + from matplotlib import rcParams + rcParams['font.family'] = 'sans-serif' + rcParams['font.sans-serif'] = ['Tahoma'] + + import matplotlib.pyplot as plt + from stingray.simulator import simulator + + # Instantiate simulator object + sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + # Specify beta value + lc = sim.simulate(2) + + plt.plot(lc.counts, 'g') + plt.title('Random-walk Distribution Simulation', fontsize='16') + plt.xlabel('Counts', fontsize='14', ) + plt.ylabel('Flux', fontsize='14') + plt.show() + +Using User-defined Model +------------------------ + +Light curve can also be simulated using a user-defined spectrum, which can be +passed on as a numpy array. + +.. plot:: + :include-source: + + from matplotlib import rcParams + rcParams['font.family'] = 'sans-serif' + rcParams['font.sans-serif'] = ['Tahoma'] + + import matplotlib.pyplot as plt + from stingray.simulator import simulator + + # Instantiate simulator object + sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + # Define a spectrum + w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:] + spectrum = np.power((1/w),2/2) + # Simulate + lc = sim.simulate(spectrum) + + plt.plot(lc.counts, 'g') + plt.title('User-defined Model Simulation', fontsize='16') + plt.xlabel('Counts', fontsize='14') + plt.ylabel('Flux', fontsize='14') + plt.show() + +Using Pre-defined Models +------------------------ + +One of the pre-defined spectrum models can be used to simulate a light curve. +In this case, model name and model parameters (as list iterable) need to be +passed on as function arguments. + +Using Impulse Response +---------------------- + +In order to simulate a light curve using impulse response, we need the original light curve and impulse response. Stingray provides `TransferFunction` class which can be used to obtain time and energy averaged impulse response by passing in a 2-D intensity profile as the input. A detailed tutorial on obtaining impulse response is provided `here `__. + +Here, for the sake of simplicity, we use a simulated impulse response. + +.. plot:: + :include-source: + + from matplotlib import rcParams + rcParams['font.family'] = 'sans-serif' + rcParams['font.sans-serif'] = ['Tahoma'] + + import matplotlib.pyplot as plt + from stingray import sampledata + from stingray.simulator import simulator + + # Obtain a sample light curve + lc = sampledata.sample_data().counts + # Instantiate simulator object + sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + # Obtain an artificial impulse response + ir = sim.relativistic_ir() + # Simulate + lc_new = sim.simulate(lc, ir) + + plt.plot(lc_new.counts, 'g') + plt.title('Impulse Response based Simulation', fontsize='16') + plt.xlabel('Counts', fontsize='14') + plt.ylabel('Flux', fontsize='14') + plt.show() + +Since, the new light curve is produced by the convolution of original light curveand impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter `full`. However, at times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to `filtered`. For a more detailed analysis on lag-frequency spectrum, follow the notebook `here `__. + +Channel Simulation +================== + +The `simulator` class provides the functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where we can create a di↵erent simulation channel for each energy range. The module provides options to count, retrieve and delete channels.:: + + >>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + >>> sim.simulate_channel('3.5 - 4.5', 2) + >>> sim.count_channels() + 1 + >>> lc = sim.get_channel('3.5 - 4.5') + >>> sim.delete_channel('3.5 - 4.5') + +Alternatively, assume that we have light curves in the simulated energy channels `3.5 - 4.5`, `4.5 - 5.5` and `5.5 - 6.5`. These channels can be retreived or deleted in single commands. + + >>> sim.count_channels() + 0 + >>> sim.simulate_channel('3.5 - 4.5', 2) + >>> sim.simulate_channel('4.5 - 5.5', 2) + >>> sim.simulate_channel('5.5 - 6.5', 2) + >>> chans = sim.get_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5']) + >>> sim.delete_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5']) + +Tutorials +========= + +Important Concepts +------------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Concepts/Simulator.ipynb + notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb + notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb + notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb + + +The Simulator Object +-------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Simulator Tutorial.ipynb + +Available Spectral Models +------------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Power Spectral Models.ipynb + +An Example Lag Analysis +----------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Lag Analysis.ipynb + +Transfer Functions +------------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Transfer Functions/Data Preparation.ipynb + notebooks/Transfer Functions/TransferFunction Tutorial.ipynb + +Window Functions +---------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Window Functions/window_functions.ipynb diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 000000000..81415803e --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/astropy_linkout.svg b/_static/astropy_linkout.svg new file mode 100644 index 000000000..483249635 --- /dev/null +++ b/_static/astropy_linkout.svg @@ -0,0 +1,75 @@ + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/astropy_linkout_20.png b/_static/astropy_linkout_20.png new file mode 100644 index 000000000..432267972 Binary files /dev/null and b/_static/astropy_linkout_20.png differ diff --git a/_static/astropy_logo.ico b/_static/astropy_logo.ico new file mode 100644 index 000000000..16d5af740 Binary files /dev/null and b/_static/astropy_logo.ico differ diff --git a/_static/astropy_logo.svg b/_static/astropy_logo.svg new file mode 100644 index 000000000..1d7e10143 --- /dev/null +++ b/_static/astropy_logo.svg @@ -0,0 +1,87 @@ + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/astropy_logo_32.png b/_static/astropy_logo_32.png new file mode 100644 index 000000000..fc3d93099 Binary files /dev/null and b/_static/astropy_logo_32.png differ diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 000000000..30fee9d0f --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/bootstrap-astropy.css b/_static/bootstrap-astropy.css new file mode 100644 index 000000000..1c6c6494e --- /dev/null +++ b/_static/bootstrap-astropy.css @@ -0,0 +1,664 @@ +/*! + * Bootstrap v1.4.0 + * + * Copyright 2011 Twitter, Inc + * Licensed under the Apache License v2.0 + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Heavily modified by Kyle Barbary for the AstroPy Project for use with Sphinx. + */ + +@import url("basic.css"); + +body { + background-color: #ffffff; + margin: 0; + font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; + font-size: 13px; + font-weight: normal; + line-height: 18px; + color: #404040; +} + +/* Hyperlinks ----------------------------------------------------------------*/ + +a { + color: #0069d6; + text-decoration: none; + line-height: inherit; + font-weight: inherit; +} + +a:hover { + color: #00438a; + text-decoration: underline; +} + +/* Typography ----------------------------------------------------------------*/ + +h1,h2,h3,h4,h5,h6 { + color: #404040; + margin: 0.7em 0 0 0; + line-height: 1.5em; +} +h1 { + font-size: 24px; + margin: 0; +} +h2 { + font-size: 21px; + line-height: 1.2em; + margin: 1em 0 0.5em 0; + border-bottom: 1px solid #404040; +} +h3 { + font-size: 18px; +} +h4 { + font-size: 16px; +} +h5 { + font-size: 14px; +} +h6 { + font-size: 13px; + text-transform: uppercase; +} + +p { + font-size: 13px; + font-weight: normal; + line-height: 18px; + margin-top: 0px; + margin-bottom: 9px; +} + +ul, ol { + margin-left: 0; + padding: 0 0 0 25px; +} +ul ul, ul ol, ol ol, ol ul { + margin-bottom: 0; +} +ul { + list-style: disc; +} +ol { + list-style: decimal; +} +li { + line-height: 18px; + color: #404040; +} +ul.unstyled { + list-style: none; + margin-left: 0; +} +dl { + margin-bottom: 18px; +} +dl dt, dl dd { + line-height: 18px; +} +dl dd { + margin-left: 9px; +} +hr { + margin: 20px 0 19px; + border: 0; + border-bottom: 1px solid #eee; +} +strong { + font-style: inherit; + font-weight: bold; +} +em { + font-style: italic; + font-weight: inherit; + line-height: inherit; +} +.muted { + color: #bfbfbf; +} + +address { + display: block; + line-height: 18px; + margin-bottom: 18px; +} +code, pre { + padding: 0 3px 2px; + font-family: monospace; + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; +} +tt { + font-family: monospace; +} +code { + padding: 1px 3px; +} +pre { + display: block; + padding: 8.5px; + margin: 0 0 18px; + line-height: 18px; + border: 1px solid #ddd; + border: 1px solid rgba(0, 0, 0, 0.12); + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; + white-space: pre; + word-wrap: break-word; +} + +img { + margin: 9px 0; +} + +/* format inline code with a rounded box */ +tt, code { + margin: 0 2px; + padding: 0 5px; + border: 1px solid #ddd; + border: 1px solid rgba(0, 0, 0, 0.12); + border-radius: 3px; +} + +code.xref, a code { + margin: 0; + padding: 0 1px 0 1px; + background-color: transparent; + border: none; +} + +/* all code has same box background color, even in headers */ +h1 tt, h2 tt, h3 tt, h4 tt, h5 tt, h6 tt, +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code, +pre, code, tt { + background-color: #f8f8f8; +} + +/* override box for links & other sphinx-specifc stuff */ +tt.xref, a tt, tt.descname, tt.descclassname { + padding: 0 1px 0 1px; + border: none; +} + +/* override box for related bar at the top of the page */ +.related tt { + border: none; + padding: 0 1px 0 1px; + background-color: transparent; + font-weight: bold; +} + +th { + background-color: #dddddd; +} + +.viewcode-back { + font-family: sans-serif; +} + +div.viewcode-block:target { + background-color: #f4debf; + border-top: 1px solid #ac9; + border-bottom: 1px solid #ac9; +} + +table.docutils { + border-spacing: 5px; + border-collapse: separate; +} + +/* Topbar --------------------------------------------------------------------*/ + +div.topbar { + height: 40px; + position: absolute; + top: 0; + left: 0; + right: 0; + z-index: 10000; + padding: 0px 10px; + background-color: #222; + background-color: #222222; + background-repeat: repeat-x; + background-image: -khtml-gradient(linear, left top, left bottom, from(#333333), to(#222222)); + background-image: -moz-linear-gradient(top, #333333, #222222); + background-image: -ms-linear-gradient(top, #333333, #222222); + background-image: -webkit-gradient(linear, left top, left bottom, color-stop(0%, #333333), color-stop(100%, #222222)); + background-image: -webkit-linear-gradient(top, #333333, #222222); + background-image: -o-linear-gradient(top, #333333, #222222); + background-image: linear-gradient(to top, #333333, #222222); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#333333', endColorstr='#222222', GradientType=0); + overflow-x: hidden; + overflow-y: hidden; + width: 100%; +} + +div.topbar a.brand { + font-family: 'Source Sans Pro', sans-serif; + font-size: 26px; + color: #ffffff; + font-weight: 600; + text-decoration: none; + float: left; + display: block; + height: 32px; + padding: 8px 12px 0px 45px; + margin-left: -10px; + background: transparent url("astropy_logo_32.png") no-repeat 10px 4px; + background-image: url("astropy_logo.svg"), none; + background-size: 32px 32px; +} + +#logotext1 { +} + +#logotext2 { + font-weight:200; + color: #ff5000; +} +#logotext3 { + font-weight:200; +} + +div.topbar .brand:hover, div.topbar ul li a.homelink:hover { + background-color: #333; + background-color: rgba(255, 255, 255, 0.05); +} + +div.topbar ul { + font-size: 110%; + list-style-type: none; + margin: 0; + padding: 0 0 0 10px; + float: right; + color: #bfbfbf; + text-align: center; + text-decoration: none; + height: 100%; +} +div.topbar ul li { + float: left; + display: inline-block; + height: 30px; + margin: 5px; + padding: 0px; +} + +div.topbar ul li a { + color: #bfbfbf; + text-decoration: none; + padding: 5px; + display: block; + height: auto; + text-align: center; + vertical-align: middle; + border-radius: 4px; +} + +div.topbar ul li a:hover { + color: #ffffff; + text-decoration: none; +} + +div.dropdown { + position: relative; /* Fixed this to relative */ + display: inline-block; + z-index: 999999; +} + +div.dropdown-content { + display: none; /* Fix this at none */ + background-color: DimGray; + color: White; + width: 235px; + height: 155px; + box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); + padding-top: 3px; + padding-right: 15px; + position: fixed; +} + +div.dropdown:hover .dropdown-content { + display: block; +} + +div.dropdown-content a { + display: block; +} + +div.dropdown-content a:hover { + color: white; +} + +div.dropdown a:hover { + color: #FF5000; +} + +div.dropdown z:hover { + color: #FF5000; + width: 10px; + display: none; +} + +div.dropdown z { + color: white; +} + +div.dropdown:after { + content: ""; + position: absolute; + right: -13px; + top: 9px; + width: 0; + height: 0; + border-left: 5px solid transparent; + border-right: 5px solid transparent; + border-top: 5px solid white; + z-index: 999999; +} + +div.dropdown:hover { + cursor: pointer; +} + +div.topbar ul li a.homelink { + width: 112px; + display: block; + height: 20px; + padding: 5px 0px; + background: transparent url("astropy_linkout_20.png") no-repeat 10px 5px; + background-image: url("astropy_linkout.svg"), none; + background-size: 91px 20px; +} + +div.topbar form { + text-align: left; + margin: 0 0 0 5px; + position: relative; + filter: alpha(opacity=100); + -khtml-opacity: 1; + -moz-opacity: 1; + opacity: 1; +} + +div.topbar input { + background-color: #444; + background-color: rgba(255, 255, 255, 0.3); + font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; + font-size: medium; + font-weight: 200; + line-height: 1; + padding: 4px 9px; + color: #ffffff; + color: rgba(255, 255, 255, 0.75); + border: 1px solid #111; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0px rgba(255, 255, 255, 0.25); + -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0px rgba(255, 255, 255, 0.25); + box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0px rgba(255, 255, 255, 0.25); + -webkit-transition: none; + -moz-transition: none; + -ms-transition: none; + -o-transition: none; + transition: none; +} +div.topbar input:-moz-placeholder { + color: #e6e6e6; +} +div.topbar input::-webkit-input-placeholder { + color: #e6e6e6; +} +div.topbar input:hover { + background-color: #bfbfbf; + background-color: rgba(255, 255, 255, 0.5); + color: #ffffff; +} +div.topbar input:focus, div.topbar input.focused { + outline: 0; + background-color: #ffffff; + color: #404040; + text-shadow: 0 1px 0 #ffffff; + border: 0; + padding: 5px 10px; + -webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); + -moz-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); + box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); +} + + +/* Relation bar (breadcrumbs, prev, next) ------------------------------------*/ + +div.related { + height: 21px; + width: auto; + margin: 0 10px; + position: relative; + top: 42px; + clear: both; + left: 0; + right: 0; + z-index: 999; + font-size: 100%; + vertical-align: middle; + background-color: #fff; + border-bottom: 1px solid #bbb; +} +div.related ul { + padding: 0; + margin: 0; +} + + +/* Footer --------------------------------------------------------------------*/ + +footer { + display: block; + margin: 10px 10px 0px; + padding: 10px 0 0 0; + border-top: 1px solid #bbb; +} +.pull-right { + float: right; + width: 30em; + text-align: right; +} + + +/* Sphinx sidebar ------------------------------------------------------------*/ + +div.sphinxsidebar { + font-size: inherit; + border-radius: 3px; + background-color: #eee; + border: 1px solid #bbb; + word-wrap: break-word; + /* overflow-wrap is the canonical name for word-wrap in the CSS3 text draft. + We include it here mainly for future-proofing. */ + overflow-wrap: break-word; +} + +div.sphinxsidebarwrapper { + padding: 0px 0px 0px 5px; +} + +div.sphinxsidebar h3 { + font-family: 'Trebuchet MS', sans-serif; + font-size: 1.4em; + font-weight: normal; + margin: 5px 0px 0px 5px; + padding: 0; + line-height: 1.6em; +} +div.sphinxsidebar h4 { + font-family: 'Trebuchet MS', sans-serif; + font-size: 1.3em; + font-weight: normal; + margin: 5px 0 0 0; + padding: 0; +} +div.sphinxsidebar p { +} +div.sphinxsidebar p.topless { + margin: 5px 10px 10px 10px; +} +div.sphinxsidebar ul { + margin: 0px 0px 0px 5px; + padding: 0; +} + +div.sphinxsidebar ul ul { + margin-left: 15px; + list-style-type: disc; +} + +/* If showing the global TOC (toctree), + color the current page differently */ +div.sphinxsidebar a.current { + color: #404040; +} +div.sphinxsidebar a.current:hover { + color: #404040; +} + + +/* document, documentwrapper, body, bodywrapper ----------------------------- */ + +div.document { + margin-top: 72px; + margin-left: 10px; + margin-right: 10px; +} + +div.documentwrapper { + float: left; + width: 100%; +} + +div.body { + background-color: #ffffff; + padding: 0 0 0px 20px; +} + +div.bodywrapper { + margin: 0 0 0 230px; + max-width: 55em; +} + + +/* Header links ------------------------------------------------------------- */ + +a.headerlink { + font-size: 0.8em; + padding: 0 4px 0 4px; + text-decoration: none; +} + +a.headerlink:hover { + background-color: #0069d6; + color: white; + text-decoration: none; +} + + +/* Admonitions and warnings ------------------------------------------------- */ + +/* Shared by admonitions and warnings */ +div.admonition, +div.warning { + padding: 0px; + border-radius: 3px; + -moz-border-radius: 3px; + -webkit-border-radius: 3px; +} +div.admonition p, +div.warning p { + margin: 0.5em 1em 0.5em 1em; + padding: 0; +} +div.admonition pre, +div.warning pre { + margin: 0.4em 1em 0.4em 1em; +} +div.admonition p.admonition-title, +div.warning p.admonition-title { + margin: 0; + padding: 0.1em 0 0.1em 0.5em; + color: white; + font-weight: bold; + font-size: 1.1em; +} +div.admonition ul, div.admonition ol, +div.warning ul, div.warning ol { + margin: 0.1em 0.5em 0.5em 3em; + padding: 0; +} + +/* Admonitions only */ +div.admonition { + border: 1px solid #609060; + background-color: #e9ffe9; +} +div.admonition p.admonition-title { + background-color: #70A070; +} + +/* Warnings only */ +div.warning { + border: 1px solid #900000; + background-color: #ffe9e9; +} +div.warning p.admonition-title { + background-color: #b04040; +} + + +/* Figures ------------------------------------------------------------------ */ + +.figure.align-center { + clear: none; +} + +/* This is a div for containing multiple figures side-by-side, for use with + * .. container:: figures */ +div.figures { + border: 1px solid #CCCCCC; + background-color: #F8F8F8; + margin: 1em; + text-align: center; +} + +div.figures .figure { + clear: none; + float: none; + display: inline-block; + border: none; + margin-left: 0.5em; + margin-right: 0.5em; +} + +.field-list th { + white-space: nowrap; +} + +table.field-list { + border-spacing: 0px; + margin-left: 1px; + border-left: 5px solid rgb(238, 238, 238) !important; +} + +table.field-list th.field-name { + display: inline-block; + padding: 1px 8px 1px 5px; + white-space: nowrap; + background-color: rgb(238, 238, 238); + border-radius: 0 3px 3px 0; + -webkit-border-radius: 0 3px 3px 0; +} diff --git a/_static/copybutton.js b/_static/copybutton.js new file mode 100644 index 000000000..52a9baad5 --- /dev/null +++ b/_static/copybutton.js @@ -0,0 +1,63 @@ +$(document).ready(function() { + /* Add a [>>>] button on the top-right corner of code samples to hide + * the >>> and ... prompts and the output and thus make the code + * copyable. */ + var div = $('.highlight-python .highlight,' + + '.highlight-python3 .highlight,' + + '.highlight-default .highlight') + var pre = div.find('pre'); + + // get the styles from the current theme + pre.parent().parent().css('position', 'relative'); + var hide_text = 'Hide the prompts and output'; + var show_text = 'Show the prompts and output'; + var border_width = pre.css('border-top-width'); + var border_style = pre.css('border-top-style'); + var border_color = pre.css('border-top-color'); + var button_styles = { + 'cursor':'pointer', 'position': 'absolute', 'top': '0', 'right': '0', + 'border-color': border_color, 'border-style': border_style, + 'border-width': border_width, 'color': border_color, 'text-size': '75%', + 'font-family': 'monospace', 'padding-left': '0.2em', 'padding-right': '0.2em', + 'border-radius': '0 3px 0 0' + } + + // create and add the button to all the code blocks that contain >>> + div.each(function(index) { + var jthis = $(this); + if (jthis.find('.gp').length > 0) { + var button = $('>>>'); + button.css(button_styles) + button.attr('title', hide_text); + button.data('hidden', 'false'); + jthis.prepend(button); + } + // tracebacks (.gt) contain bare text elements that need to be + // wrapped in a span to work with .nextUntil() (see later) + jthis.find('pre:has(.gt)').contents().filter(function() { + return ((this.nodeType == 3) && (this.data.trim().length > 0)); + }).wrap(''); + }); + + // define the behavior of the button when it's clicked + $('.copybutton').click(function(e){ + e.preventDefault(); + var button = $(this); + if (button.data('hidden') === 'false') { + // hide the code output + button.parent().find('.go, .gp, .gt').hide(); + button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden'); + button.css('text-decoration', 'line-through'); + button.attr('title', show_text); + button.data('hidden', 'true'); + } else { + // show the code output + button.parent().find('.go, .gp, .gt').show(); + button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible'); + button.css('text-decoration', 'none'); + button.attr('title', hide_text); + button.data('hidden', 'false'); + } + }); +}); + diff --git a/_static/css/custom.css b/_static/css/custom.css new file mode 100644 index 000000000..1dd0a11af --- /dev/null +++ b/_static/css/custom.css @@ -0,0 +1,7 @@ +div.topbar a.brand { + background-image: url(''); +} + +div.sphinxsidebarwrapper { + overflow: scroll; +} diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 000000000..d06a71d75 --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 000000000..b91d1390b --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '1.1.2.dev406+g17fbaf0f', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 000000000..a858a410e Binary files /dev/null and b/_static/file.png differ diff --git a/_static/graphviz.css b/_static/graphviz.css new file mode 100644 index 000000000..8d81c02ed --- /dev/null +++ b/_static/graphviz.css @@ -0,0 +1,19 @@ +/* + * graphviz.css + * ~~~~~~~~~~~~ + * + * Sphinx stylesheet -- graphviz extension. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +img.graphviz { + border: 0; + max-width: 100%; +} + +object.graphviz { + max-width: 100%; +} diff --git a/_static/jquery.js b/_static/jquery.js new file mode 100644 index 000000000..c4c6022f2 --- /dev/null +++ b/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 00 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/_static/minus.png b/_static/minus.png new file mode 100644 index 000000000..d96755fda Binary files /dev/null and b/_static/minus.png differ diff --git a/_static/nbsphinx-broken-thumbnail.svg b/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 000000000..4919ca882 --- /dev/null +++ b/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/nbsphinx-code-cells.css b/_static/nbsphinx-code-cells.css new file mode 100644 index 000000000..a3fb27c30 --- /dev/null +++ b/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/_static/nbsphinx-gallery.css b/_static/nbsphinx-gallery.css new file mode 100644 index 000000000..365c27a96 --- /dev/null +++ b/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/_static/nbsphinx-no-thumbnail.svg b/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 000000000..9dca7588f --- /dev/null +++ b/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/plot_directive.css b/_static/plot_directive.css new file mode 100644 index 000000000..d45593c93 --- /dev/null +++ b/_static/plot_directive.css @@ -0,0 +1,16 @@ +/* + * plot_directive.css + * ~~~~~~~~~~~~ + * + * Stylesheet controlling images created using the `plot` directive within + * Sphinx. + * + * :copyright: Copyright 2020-* by the Matplotlib development team. + * :license: Matplotlib, see LICENSE for details. + * + */ + +img.plot-directive { + border: 0; + max-width: 100%; +} diff --git a/_static/plus.png b/_static/plus.png new file mode 100644 index 000000000..7107cec93 Binary files /dev/null and b/_static/plus.png differ diff --git a/_static/pygments.css b/_static/pygments.css new file mode 100644 index 000000000..0d49244ed --- /dev/null +++ b/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #eeffcc; } +.highlight .c { color: #408090; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #007020; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #007020 } /* Comment.Preproc */ +.highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #FF0000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #00A000 } /* Generic.Inserted */ +.highlight .go { color: #333333 } /* Generic.Output */ +.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #007020 } /* Keyword.Pseudo */ +.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #902000 } /* Keyword.Type */ +.highlight .m { color: #208050 } /* Literal.Number */ +.highlight .s { color: #4070a0 } /* Literal.String */ +.highlight .na { color: #4070a0 } /* Name.Attribute */ +.highlight .nb { color: #007020 } /* Name.Builtin */ +.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */ +.highlight .no { color: #60add5 } /* Name.Constant */ +.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */ +.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #007020 } /* Name.Exception */ +.highlight .nf { color: #06287e } /* Name.Function */ +.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */ +.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #bb60d5 } /* Name.Variable */ +.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #208050 } /* Literal.Number.Bin */ +.highlight .mf { color: #208050 } /* Literal.Number.Float */ +.highlight .mh { color: #208050 } /* Literal.Number.Hex */ +.highlight .mi { color: #208050 } /* Literal.Number.Integer */ +.highlight .mo { color: #208050 } /* Literal.Number.Oct */ +.highlight .sa { color: #4070a0 } /* Literal.String.Affix */ +.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */ +.highlight .sc { color: #4070a0 } /* Literal.String.Char */ +.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */ +.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #4070a0 } /* Literal.String.Double */ +.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */ +.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */ +.highlight .sx { color: #c65d09 } /* Literal.String.Other */ +.highlight .sr { color: #235388 } /* Literal.String.Regex */ +.highlight .s1 { color: #4070a0 } /* Literal.String.Single */ +.highlight .ss { color: #517918 } /* Literal.String.Symbol */ +.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #06287e } /* Name.Function.Magic */ +.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */ +.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */ +.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */ +.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */ +.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js new file mode 100644 index 000000000..7918c3fab --- /dev/null +++ b/_static/searchtools.js @@ -0,0 +1,574 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/_static/sidebar.js b/_static/sidebar.js new file mode 100644 index 000000000..15d87f3ac --- /dev/null +++ b/_static/sidebar.js @@ -0,0 +1,160 @@ +/* + * sidebar.js + * ~~~~~~~~~~ + * + * This script makes the Sphinx sidebar collapsible. + * + * .sphinxsidebar contains .sphinxsidebarwrapper. This script adds + * in .sphixsidebar, after .sphinxsidebarwrapper, the #sidebarbutton + * used to collapse and expand the sidebar. + * + * When the sidebar is collapsed the .sphinxsidebarwrapper is hidden + * and the width of the sidebar and the margin-left of the document + * are decreased. When the sidebar is expanded the opposite happens. + * This script saves a per-browser/per-session cookie used to + * remember the position of the sidebar among the pages. + * Once the browser is closed the cookie is deleted and the position + * reset to the default (expanded). + * + * :copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +$(function() { + // global elements used by the functions. + // the 'sidebarbutton' element is defined as global after its + // creation, in the add_sidebar_button function + var bodywrapper = $('.bodywrapper'); + var sidebar = $('.sphinxsidebar'); + var sidebarwrapper = $('.sphinxsidebarwrapper'); + + // for some reason, the document has no sidebar; do not run into errors + if (!sidebar.length) return; + + // original margin-left of the bodywrapper and width of the sidebar + // with the sidebar expanded + var bw_margin_expanded = bodywrapper.css('margin-left'); + var ssb_width_expanded = sidebar.width(); + + // margin-left of the bodywrapper and width of the sidebar + // with the sidebar collapsed + var bw_margin_collapsed = 12; + var ssb_width_collapsed = 12; + + // custom colors + var dark_color = '#404040'; + var light_color = '#505050'; + + function sidebar_is_collapsed() { + return sidebarwrapper.is(':not(:visible)'); + } + + function toggle_sidebar() { + if (sidebar_is_collapsed()) + expand_sidebar(); + else + collapse_sidebar(); + } + + function collapse_sidebar() { + sidebarwrapper.hide(); + sidebar.css('width', ssb_width_collapsed); + bodywrapper.css('margin-left', bw_margin_collapsed); + sidebarbutton.css({ + 'margin-left': '-1px', + 'height': bodywrapper.height(), + 'border-radius': '3px' + }); + sidebarbutton.find('span').text('»'); + sidebarbutton.attr('title', _('Expand sidebar')); + document.cookie = 'sidebar=collapsed'; + } + + function expand_sidebar() { + bodywrapper.css('margin-left', bw_margin_expanded); + sidebar.css('width', ssb_width_expanded); + sidebarwrapper.show(); + sidebarbutton.css({ + 'margin-left': ssb_width_expanded - 12, + 'height': bodywrapper.height(), + 'border-radius': '0px 3px 3px 0px' + }); + sidebarbutton.find('span').text('«'); + sidebarbutton.attr('title', _('Collapse sidebar')); + document.cookie = 'sidebar=expanded'; + } + + function add_sidebar_button() { + sidebarwrapper.css({ + 'float': 'left', + 'margin-right': '0', + 'width': ssb_width_expanded - 18 + }); + // create the button + sidebar.append('
«
'); + var sidebarbutton = $('#sidebarbutton'); + + // find the height of the viewport to center the '<<' in the page + var viewport_height; + if (window.innerHeight) + viewport_height = window.innerHeight; + else + viewport_height = $(window).height(); + var sidebar_offset = sidebar.offset().top; + var sidebar_height = Math.max(bodywrapper.height(), sidebar.height()); + sidebarbutton.find('span').css({ + 'font-family': '"Lucida Grande",Arial,sans-serif', + 'display': 'block', + 'top': Math.min(viewport_height/2, sidebar_height/2 + sidebar_offset) - 10, + 'width': 12, + 'position': 'fixed', + 'text-align': 'center' + }); + + sidebarbutton.click(toggle_sidebar); + sidebarbutton.attr('title', _('Collapse sidebar')); + sidebarbutton.css({ + 'color': '#FFFFFF', + 'background-color': light_color, + 'border': '1px solid ' + light_color, + 'border-radius': '0px 3px 3px 0px', + 'font-size': '1.2em', + 'cursor': 'pointer', + 'height': sidebar_height, + 'padding-top': '1px', + 'margin': '-1px', + 'margin-left': ssb_width_expanded - 12 + }); + + sidebarbutton.hover( + function () { + $(this).css('background-color', dark_color); + }, + function () { + $(this).css('background-color', light_color); + } + ); + } + + function set_position_from_cookie() { + if (!document.cookie) + return; + var items = document.cookie.split(';'); + for(var k=0; k { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/_static/stingray_logo.ico b/_static/stingray_logo.ico new file mode 100644 index 000000000..ac5cd7c87 Binary files /dev/null and b/_static/stingray_logo.ico differ diff --git a/_zenodo.html b/_zenodo.html new file mode 100644 index 000000000..daeea608a --- /dev/null +++ b/_zenodo.html @@ -0,0 +1,141 @@ + + + + + + + + <no title> — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + + +
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/acknowledgements.html b/acknowledgements.html new file mode 100644 index 000000000..431b9fb4a --- /dev/null +++ b/acknowledgements.html @@ -0,0 +1,108 @@ + + + + + + + + Acknowledgements — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Acknowledgements

+

Thank you to JetBrains for the free use of PyCharm.

+

Stingray participated in the Google Summer of Code in 2018 and 2020 under Open Astronomy, in 2017 under the Python Software Foundation, and in 2016 under Timelab.

+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/api.html b/api.html new file mode 100644 index 000000000..f8a548302 --- /dev/null +++ b/api.html @@ -0,0 +1,13138 @@ + + + + + + + + Stingray API — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Stingray API

+

Library of Time Series Methods For Astronomical X-ray Data.

+
+

Data Classes

+

These classes define basic functionality related to common data types and typical methods +that apply to these data types, including basic read/write functionality. Currently +implemented are stingray.Lightcurve and stingray.events.EventList.

+
+

Lightcurve

+
+
+class stingray.Lightcurve(time=None, counts=None, err=None, input_counts=True, gti=None, err_dist='poisson', bg_counts=None, bg_ratio=None, frac_exp=None, mjdref=0, dt=None, skip_checks=False, low_memory=False, mission=None, instr=None, header=None, **other_kw)[source]
+

Make a light curve object from an array of time stamps and an +array of counts.

+
+
Parameters:
+
+
time: Iterable, `:class:astropy.time.Time`, or `:class:astropy.units.Quantity` object

A list or array of time stamps for a light curve. Must be a type that +can be cast to :class:np.array or :class:List of floats, or that +has a value attribute that does (e.g. a +:class:astropy.units.Quantity or :class:astropy.time.Time object).

+
+
counts: iterable, optional, default ``None``

A list or array of the counts in each bin corresponding to the +bins defined in time (note: use input_counts=False to +input the count range, i.e. counts/second, otherwise use +counts/bin).

+
+
err: iterable, optional, default ``None``

A list or array of the uncertainties in each bin corresponding to +the bins defined in time (note: use input_counts=False to +input the count rage, i.e. counts/second, otherwise use +counts/bin). If None, we assume the data is poisson distributed +and calculate the error from the average of the lower and upper +1-sigma confidence intervals for the Poissonian distribution with +mean equal to counts.

+
+
input_counts: bool, optional, default True

If True, the code assumes that the input data in counts +is in units of counts/bin. If False, it assumes the data +in counts is in counts/second.

+
+
gti: 2-d float array, default ``None``

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +Good Time Intervals. They are not applied to the data by default. +They will be used by other methods to have an indication of the +“safe” time intervals to use during analysis.

+
+
err_dist: str, optional, default ``None``

Statistical distribution used to calculate the +uncertainties and other statistical values appropriately. +Default makes no assumptions and keep errors equal to zero.

+
+
bg_counts: iterable,`:class:numpy.array` or `:class:List` of floats, optional, default ``None``

A list or array of background counts detected in the background extraction region +in each bin corresponding to the bins defined in time.

+
+
bg_ratio: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None``

A list or array of source region area to background region area ratio in each bin. These are +factors by which the bg_counts should be scaled to estimate background counts within the +source aperture.

+
+
frac_exp: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None``

A list or array of fractional exposers in each bin.

+
+
mjdref: float

MJD reference (useful in most high-energy mission data)

+
+
dt: float or array of floats. Default median(diff(time))

Time resolution of the light curve. Can be an array of the same dimension +as time specifying width of each bin.

+
+
skip_checks: bool

If True, the user specifies that data are already sorted and contain no +infinite or nan points. Use at your own risk

+
+
low_memory: bool

If True, all the lazily evaluated attribute (e.g., countrate and +countrate_err if input_counts is True) will _not_ be stored in memory, +but calculated every time they are requested.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
**other_kw

Used internally. Any other keyword arguments will be ignored

+
+
+
+
Attributes:
+
+
time: numpy.ndarray

The array of midpoints of time bins.

+
+
bin_lo: numpy.ndarray

The array of lower time stamp of time bins.

+
+
bin_hi: numpy.ndarray

The array of higher time stamp of time bins.

+
+
counts: numpy.ndarray

The counts per bin corresponding to the bins in time.

+
+
counts_err: numpy.ndarray

The uncertainties corresponding to counts

+
+
bg_counts: numpy.ndarray

The background counts corresponding to the bins in time.

+
+
bg_ratio: numpy.ndarray

The ratio of source region area to background region area corresponding to each bin.

+
+
frac_exp: numpy.ndarray

The fractional exposers in each bin.

+
+
countrate: numpy.ndarray

The counts per second in each of the bins defined in time.

+
+
countrate_err: numpy.ndarray

The uncertainties corresponding to countrate

+
+
meanrate: float

The mean count rate of the light curve.

+
+
meancounts: float

The mean counts of the light curve.

+
+
n: int

The number of data points in the light curve.

+
+
dt: float or array of floats

The time resolution of the light curve.

+
+
mjdref: float

MJD reference date (tstart / 86400 gives the date in MJD at the +start of the observation)

+
+
tseg: float

The total duration of the light curve.

+
+
tstart: float

The start time of the light curve.

+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +Good Time Intervals. They indicate the “safe” time intervals +to be used during the analysis of the light curve.

+
+
err_dist: string

Statistic of the Lightcurve, it is used to calculate the +uncertainties and other statistical values appropriately. +It propagates to Spectrum classes.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
detector_iditerable

The detector that recoded each photon, if relevant (e.g. XMM, Chandra)

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
+
+
+
+
+analyze_lc_chunks(segment_size, func, fraction_step=1, **kwargs)[source]
+

Analyze segments of the light curve with any function.

+
+
Parameters:
+
+
segment_sizefloat

Length in seconds of the light curve segments

+
+
funcfunction

Function accepting a Lightcurve object as single argument, plus +possible additional keyword arguments, and returning a number or a +tuple - e.g., (result, error) where both result and error are +numbers.

+
+
+
+
Returns:
+
+
start_timesarray

Lower time boundaries of all time segments.

+
+
stop_timesarray

upper time boundaries of all segments.

+
+
resultarray of N elements

The result of func for each segment of the light curve

+
+
+
+
Other Parameters:
+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving window), +this indicates the ratio between step step and segment_size (e.g. +0.5 means that the window shifts of half segment_size)

+
+
kwargskeyword arguments

These additional keyword arguments, if present, they will be passed +to func

+
+
+
+
+

Examples

+
>>> import numpy as np
+>>> time = np.arange(0, 10, 0.1)
+>>> counts = np.zeros_like(time) + 10
+>>> lc = Lightcurve(time, counts, dt=0.1)
+>>> # Define a function that calculates the mean
+>>> mean_func = lambda x: np.mean(x)
+>>> # Calculate the mean in segments of 5 seconds
+>>> start, stop, res = lc.analyze_lc_chunks(5, mean_func)
+>>> len(res) == 2
+True
+>>> np.allclose(res, 10)
+True
+
+
+
+ +
+
+apply_gtis(inplace=True)[source]
+

Apply GTIs to a light curve. Filters the time, counts, +countrate, counts_err and countrate_err arrays for all bins +that fall into Good Time Intervals and recalculates mean countrate +and the number of bins.

+
+
Parameters:
+
+
inplacebool

If True, overwrite the current light curve. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+apply_mask(mask, inplace=False)[source]
+

Apply a mask to all array attributes of the event list

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current light curve. Otherwise, return a new one.

+
+
+
+
+

Examples

+
>>> lc = Lightcurve(time=[0, 1, 2], counts=[2, 3, 4], mission="nustar")
+>>> lc.bubuattr = [222, 111, 333]
+>>> newlc0 = lc.apply_mask([True, True, False], inplace=False);
+>>> newlc1 = lc.apply_mask([True, True, False], inplace=True);
+>>> newlc0.mission == "nustar"
+True
+>>> np.allclose(newlc0.time, [0, 1])
+True
+>>> np.allclose(newlc0.bubuattr, [222, 111])
+True
+>>> np.allclose(newlc1.time, [0, 1])
+True
+>>> lc is newlc1
+True
+
+
+
+ +
+
+array_attrs()[source]
+

Extends StingrayObject.array_attrs to the specifics of Lightcurve.

+
+ +
+
+baseline(lam, p, niter=10, offset_correction=False)[source]
+

Calculate the baseline of the light curve, accounting for GTIs.

+
+
Parameters:
+
+
lamfloat

“smoothness” parameter. Larger values make the baseline stiffer +Typically 1e2 < lam < 1e9

+
+
pfloat

“asymmetry” parameter. Smaller values make the baseline more +“horizontal”. Typically 0.001 < p < 0.1, but not necessary.

+
+
+
+
Returns:
+
+
baselinenumpy.ndarray

An array with the baseline of the light curve

+
+
+
+
Other Parameters:
+
+
offset_correctionbool, default False

by default, this method does not align to the running mean of the +light curve, but it goes below the light curve. Setting align to +True, an additional step is done to shift the baseline so that it +is shifted to the middle of the light curve noise distribution.

+
+
+
+
+
+ +
+
+bexvar()[source]
+

Finds posterior samples of Bayesian excess varience (bexvar) for the light curve. +It requires source counts in counts and time intervals for each bin. +If the dt is an array then uses its elements as time intervals +for each bin. If dt is float, it calculates the time intervals by assuming +all intervals to be equal to dt.

+
+
Returns:
+
+
lc_bexvariterable, :class:numpy.array of floats

An array of posterior samples of Bayesian excess varience (bexvar).

+
+
+
+
+
+ +
+
+check_lightcurve()[source]
+

Make various checks on the lightcurve.

+

It can be slow, use it if you are not sure about your +input data.

+
+ +
+
+estimate_chunk_length(*args, **kwargs)[source]
+

Deprecated alias of estimate_segment_size.

+
+ +
+
+estimate_segment_size(min_total_counts=100, min_time_bins=100)[source]
+

Estimate a reasonable segment length for chunk-by-chunk analysis.

+

Choose a reasonable length for time segments, given a minimum number of total +counts in the segment, and a minimum number of time bins in the segment.

+

The user specifies a condition on the total counts in each segment and +the minimum number of time bins.

+
+
Returns:
+
+
segment_sizefloat

The length of the light curve chunks that satisfies the conditions

+
+
+
+
Other Parameters:
+
+
min_total_countsint

Minimum number of counts for each chunk

+
+
min_time_binsint

Minimum number of time bins

+
+
+
+
+

Examples

+
>>> import numpy as np
+>>> time = np.arange(150)
+>>> count = np.zeros_like(time) + 3
+>>> lc = Lightcurve(time, count, dt=1)
+>>> lc.estimate_segment_size(min_total_counts=10, min_time_bins=3)
+4.0
+>>> lc.estimate_segment_size(min_total_counts=10, min_time_bins=5)
+5.0
+>>> count[2:4] = 1
+>>> lc = Lightcurve(time, count, dt=1)
+>>> lc.estimate_segment_size(min_total_counts=3, min_time_bins=1)
+3.0
+>>> # A slightly more complex example
+>>> dt=0.2
+>>> time = np.arange(0, 1000, dt)
+>>> counts = np.random.poisson(100, size=len(time))
+>>> lc = Lightcurve(time, counts, dt=dt)
+>>> lc.estimate_segment_size(100, 2)
+0.4
+>>> min_total_bins = 40
+>>> lc.estimate_segment_size(100, 40)
+8.0
+
+
+
+ +
+
+static from_astropy_table(ts, **kwargs)[source]
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_astropy_timeseries(ts, **kwargs)[source]
+

Create a StingrayTimeseries from data in an Astropy TimeSeries

+

The timeseries has to define at least a column called time, +the rest of columns will form the array attributes of the +new event list, while the attributes in table.meta will +form the new meta attributes of the event list.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of EventList: time, pi, energy, gti etc.

+
+
Parameters:
+
+
tsastropy.timeseries.TimeSeries

A TimeSeries object with the array attributes as columns, +and the meta attributes in the meta dictionary

+
+
+
+
Returns:
+
+
tsStingrayTimeseries

Timeseries object

+
+
+
+
+
+ +
+
+static from_lightkurve(lk, skip_checks=True)[source]
+

Creates a new Lightcurve from a lightkurve.LightCurve.

+
+
Parameters:
+
+
lklightkurve.LightCurve

A lightkurve LightCurve object

+
+
skip_checks: bool

If True, the user specifies that data are already sorted and contain no +infinite or nan points. Use at your own risk.

+
+
+
+
+
+ +
+
+join(other, skip_checks=False)[source]
+

Join two lightcurves into a single object.

+

The new Lightcurve object will contain time stamps from both the +objects. The counts and countrate attributes in the resulting object +will contain the union of the non-overlapping parts of the two individual objects, +or the average in case of overlapping time arrays of both Lightcurve objects.

+

Good Time Intervals are also joined.

+

Note : Ideally, the time array of both lightcurves should not overlap.

+
+
Parameters:
+
+
otherLightcurve object

The other Lightcurve object which is supposed to be joined with.

+
+
skip_checks: bool

If True, the user specifies that data are already sorted and +contain no infinite or nan points. Use at your own risk.

+
+
+
+
Returns:
+
+
lc_newLightcurve object

The resulting Lightcurve object.

+
+
+
+
+

Examples

+
>>> time1 = [5, 10, 15]
+>>> count1 = [300, 100, 400]
+>>> time2 = [20, 25, 30]
+>>> count2 = [600, 1200, 800]
+>>> lc1 = Lightcurve(time1, count1, dt=5)
+>>> lc2 = Lightcurve(time2, count2, dt=5)
+>>> lc = lc1.join(lc2)
+>>> lc.time
+array([ 5, 10, 15, 20, 25, 30])
+>>> np.allclose(lc.counts, [ 300,  100,  400,  600, 1200,  800])
+True
+
+
+
+ +
+
+static make_lightcurve(toa, dt, tseg=None, tstart=None, gti=None, mjdref=0, use_hist=False)[source]
+

Make a light curve out of photon arrival times, with a given time resolution dt. +Note that dt should be larger than the native time resolution of the instrument +that has taken the data.

+
+
Parameters:
+
+
toa: iterable

list of photon arrival times

+
+
dt: float

time resolution of the light curve (the bin width)

+
+
tseg: float, optional, default ``None``

The total duration of the light curve. +If this is None, then the total duration of the light curve will +be the interval between the arrival between either the first and the last +gti boundary or, if gti is not set, the first and the last photon in toa.

+
+

Note: If tseg is not divisible by dt (i.e. if tseg/dt is +not an integer number), then the last fractional bin will be +dropped!

+
+
+
tstart: float, optional, default ``None``

The start time of the light curve. +If this is None, either the first gti boundary or, if not available, +the arrival time of the first photon will be used +as the start time of the light curve.

+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +Good Time Intervals

+
+
use_histbool

Use np.histogram instead of np.bincounts. Might be advantageous +for very short datasets.

+
+
+
+
Returns:
+
+
lc: Lightcurve object

A Lightcurve object with the binned light curve

+
+
+
+
+
+ +
+
+meta_attrs()[source]
+

Extends StingrayObject.meta_attrs to the specifics of Lightcurve.

+
+ +
+
+plot(witherrors=False, labels=None, axis=None, title=None, marker='-', save=False, filename=None)[source]
+

Plot the light curve using matplotlib.

+

Plot the light curve object on a graph self.time on x-axis and +self.counts on y-axis with self.counts_err optionally +as error bars.

+
+
Parameters:
+
+
witherrors: boolean, default False

Whether to plot the Lightcurve with errorbars or not

+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
+
+
+
+ +
+
+classmethod read(filename, fmt=None, format_=None, err_dist='gauss', skip_checks=False, **fits_kwargs)[source]
+

Read a Lightcurve object from file.

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • hea : FITS Light curves from HEASARC-supported missions.

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a time column and a counts or countrate column. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all lightcurve attributes such as dt, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
lcLightcurve object
+
+
+
Other Parameters:
+
+
err_dist: str, default=’gauss’

Default error distribution if not specified in the file (e.g. for +ASCII files). The default is ‘gauss’ just because it is likely +that people using ASCII light curves will want to specify Gaussian +error bars, if any.

+
+
skip_checksbool

See Lightcurve documentation

+
+
**fits_kwargsadditional keyword arguments

Any other arguments to be passed to lcurve_from_fits (only relevant +for hea/ogip formats)

+
+
+
+
+
+ +
+
+rebin(dt_new=None, f=None, method='sum')[source]
+

Rebin the light curve to a new time resolution. While the new +resolution need not be an integer multiple of the previous time +resolution, be aware that if it is not, the last bin will be cut +off by the fraction left over by the integer division.

+
+
Parameters:
+
+
dt_new: float

The new time resolution of the light curve. Must be larger than +the time resolution of the old light curve!

+
+
method: {``sum`` | ``mean`` | ``average``}, optional, default ``sum``

This keyword argument sets whether the counts in the new bins +should be summed or averaged.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with the new, binned light curve.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes dt_new with +f*self.dt

+
+
+
+
+
+ +
+
+sort(reverse=False, inplace=False)[source]
+

Sort a Lightcurve object by time.

+

A Lightcurve can be sorted in either increasing or decreasing order +using this method. The time array gets sorted and the counts array is +changed accordingly.

+
+
Parameters:
+
+
reverseboolean, default False

If True then the object is sorted in reverse order.

+
+
inplacebool

If True, overwrite the current light curve. Otherwise, return a new one.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with sorted time and counts +arrays.

+
+
+
+
+

Examples

+
>>> time = [2, 1, 3]
+>>> count = [200, 100, 300]
+>>> lc = Lightcurve(time, count, dt=1, skip_checks=True)
+>>> lc_new = lc.sort()
+>>> lc_new.time
+array([1, 2, 3])
+>>> np.allclose(lc_new.counts, [100, 200, 300])
+True
+
+
+
+ +
+
+sort_counts(reverse=False, inplace=False)[source]
+

Sort a Lightcurve object in accordance with its counts array.

+

A Lightcurve can be sorted in either increasing or decreasing order +using this method. The counts array gets sorted and the time array is +changed accordingly.

+
+
Parameters:
+
+
reverseboolean, default False

If True then the object is sorted in reverse order.

+
+
inplacebool

If True, overwrite the current light curve. Otherwise, return a new one.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with sorted time and counts +arrays.

+
+
+
+
+

Examples

+
>>> time = [1, 2, 3]
+>>> count = [200, 100, 300]
+>>> lc = Lightcurve(time, count, dt=1, skip_checks=True)
+>>> lc_new = lc.sort_counts()
+>>> lc_new.time
+array([2, 1, 3])
+>>> np.allclose(lc_new.counts, [100, 200, 300])
+True
+
+
+
+ +
+
+split(min_gap, min_points=1)[source]
+

For data with gaps, it can sometimes be useful to be able to split +the light curve into separate, evenly sampled objects along those +data gaps. This method allows to do this: it finds data gaps of a +specified minimum size, and produces a list of new Lightcurve +objects for each contiguous segment.

+
+
Parameters:
+
+
min_gapfloat

The length of a data gap, in the same units as the time attribute +of the Lightcurve object. Any smaller gaps will be ignored, any +larger gaps will be identified and used to split the light curve.

+
+
min_pointsint, default 1

The minimum number of data points in each light curve. Light +curves with fewer data points will be ignored.

+
+
+
+
Returns:
+
+
lc_splititerable of Lightcurve objects

The list of all contiguous light curves

+
+
+
+
+

Examples

+
>>> time = np.array([1, 2, 3, 6, 7, 8, 11, 12, 13])
+>>> counts = np.random.rand(time.shape[0])
+>>> lc = Lightcurve(time, counts, dt=1, skip_checks=True)
+>>> split_lc = lc.split(1.5)
+
+
+
+ +
+
+split_by_gti(gti=None, min_points=2)[source]
+

Split the current Lightcurve object into a list of Lightcurve objects, one +for each continuous GTI segment as defined in the gti attribute.

+
+
Parameters:
+
+
min_pointsint, default 1

The minimum number of data points in each light curve. Light +curves with fewer data points will be ignored.

+
+
+
+
Returns:
+
+
list_of_lcslist

A list of Lightcurve objects, one for each GTI segment

+
+
+
+
+
+ +
+
+to_astropy_table()[source]
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+ +
+
+to_astropy_timeseries()[source]
+

Save the StingrayTimeseries to an Astropy timeseries.

+

Array attributes (time, pi, energy, etc.) are converted +into columns, while meta attributes (mjdref, gti, etc.) +are saved into the meta dictionary.

+
+
Returns:
+
+
tsastropy.timeseries.TimeSeries

A TimeSeries object with the array attributes as columns, +and the meta attributes in the meta dictionary

+
+
+
+
+
+ +
+
+to_lightkurve()[source]
+

Returns a lightkurve.LightCurve object. +This feature requires Lightkurve to be installed +(e.g. pip install lightkurve). An ImportError will +be raised if this package is not available.

+
+
Returns:
+
+
lightcurvelightkurve.LightCurve

A lightkurve LightCurve object.

+
+
+
+
+
+ +
+
+truncate(start=0, stop=None, method='index')[source]
+

Truncate a Lightcurve object.

+

This method takes a start and a stop point (either as indices, +or as times in the same unit as those in the time attribute, and truncates +all bins before start and after stop, then returns a new Lightcurve +object with the truncated light curve.

+
+
Parameters:
+
+
startint, default 0

Index (or time stamp) of the starting point of the truncation. If no value is set +for the start point, then all points from the first element in the time array +are taken into account.

+
+
stopint, default None

Index (or time stamp) of the ending point (exclusive) of the truncation. If no +value of stop is set, then points including the last point in +the counts array are taken in count.

+
+
method{index | time}, optional, default index

Type of the start and stop values. If set to index then +the values are treated as indices of the counts array, or +if set to time, the values are treated as actual time values.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with truncated time and counts +arrays.

+
+
+
+
+

Examples

+
>>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+>>> count = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+>>> lc = Lightcurve(time, count, dt=1)
+>>> lc_new = lc.truncate(start=2, stop=8)
+>>> np.allclose(lc_new.counts, [30, 40, 50, 60, 70, 80])
+True
+>>> lc_new.time
+array([3, 4, 5, 6, 7, 8])
+>>> # Truncation can also be done by time values
+>>> lc_new = lc.truncate(start=6, method='time')
+>>> lc_new.time
+array([6, 7, 8, 9])
+>>> np.allclose(lc_new.counts, [60, 70, 80, 90])
+True
+
+
+
+ +
+ +
+
+
+

EventList

+
+
+class stingray.events.EventList(time=None, energy=None, ncounts=None, mjdref=0, dt=0, notes='', gti=None, pi=None, high_precision=False, mission=None, instr=None, header=None, detector_id=None, ephem=None, timeref=None, timesys=None, **other_kw)[source]
+

Basic class for event list data. Event lists generally correspond to individual events (e.g. photons) +recorded by the detector, and their associated properties. For X-ray data where this type commonly occurs, +events are time stamps of when a photon arrived in the detector, and (optionally) the photon energy associated +with the event.

+
+
Parameters:
+
+
time: iterable

A list or array of time stamps

+
+
+
+
Other Parameters:
+
+
dt: float

The time resolution of the events. Only relevant when using events +to produce light curves with similar bin time.

+
+
energy: iterable

A list of array of photon energy values in keV

+
+
mjdreffloat

The MJD used as a reference for the time array.

+
+
ncounts: int

Number of desired data points in event list.

+
+
gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Good Time Intervals

+
+
piinteger, numpy.ndarray

PI channels

+
+
notesstr

Any useful annotations

+
+
high_precisionbool

Change the precision of self.time to float128. Useful while dealing with fast pulsars.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
detector_iditerable

The detector that recorded each photon (if the instrument has more than +one, e.g. XMM/EPIC-pn)

+
+
timerefstr

The time reference, as recorded in the FITS file (e.g. SOLARSYSTEM)

+
+
timesysstr

The time system, as recorded in the FITS file (e.g. TDB)

+
+
ephemstr

The JPL ephemeris used to barycenter the data, if any (e.g. DE430)

+
+
**other_kw

Used internally. Any other keyword arguments will be ignored

+
+
+
+
Attributes:
+
+
time: numpy.ndarray

The array of event arrival times, in seconds from the reference +MJD defined in mjdref

+
+
energy: numpy.ndarray

The array of photon energy values

+
+
ncounts: int

The number of data points in the event list

+
+
dt: float

The time resolution of the events. Only relevant when using events +to produce light curves with similar bin time.

+
+
mjdreffloat

The MJD used as a reference for the time array.

+
+
gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Good Time Intervals

+
+
piinteger, numpy.ndarray

PI channels

+
+
high_precisionbool

Change the precision of self.time to float128. Useful while dealing with fast pulsars.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
detector_iditerable

The detector that recoded each photon, if relevant (e.g. XMM, Chandra)

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
+
+
+
+
+apply_deadtime(deadtime, inplace=False, **kwargs)[source]
+

Apply deadtime filter to this event list.

+

Additional arguments in kwargs are passed to get_deadtime_mask

+
+
Parameters:
+
+
deadtimefloat

Value of dead time to apply to data

+
+
inplacebool, default False

If True, apply the deadtime to the current event list. Otherwise, +return a new event list.

+
+
+
+
Returns:
+
+
new_event_listEventList object

Filtered event list. if inplace is True, this is the input object +filtered for deadtime, otherwise this is a new object.

+
+
additional_outputobject

Only returned if return_all is True. See get_deadtime_mask for +more details.

+
+
+
+
+

Examples

+
>>> events = np.array([1, 1.05, 1.07, 1.08, 1.1, 2, 2.2, 3, 3.1, 3.2])
+>>> events = EventList(events)
+>>> events.pi=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1])
+>>> events.energy=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1])
+>>> events.mjdref = 10
+>>> filt_events, retval = events.apply_deadtime(0.11, inplace=False,
+...                                             verbose=False,
+...                                             return_all=True)
+>>> filt_events is events
+False
+>>> expected = np.array([1, 2, 2.2, 3, 3.2])
+>>> np.allclose(filt_events.time, expected)
+True
+>>> np.allclose(filt_events.pi, 1)
+True
+>>> np.allclose(filt_events.energy, 1)
+True
+>>> np.allclose(events.pi, 1)
+False
+>>> filt_events = events.apply_deadtime(0.11, inplace=True,
+...                                     verbose=False)
+>>> filt_events is events
+True
+
+
+
+ +
+
+apply_mask(mask, inplace=False)[source]
+

Apply a mask to all array attributes of the event list

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current event list. Otherwise, return a new one.

+
+
+
+
+

Examples

+
>>> evt = EventList(time=[0, 1, 2], mission="nustar")
+>>> evt.bubuattr = [222, 111, 333]
+>>> newev0 = evt.apply_mask([True, True, False], inplace=False);
+>>> newev1 = evt.apply_mask([True, True, False], inplace=True);
+>>> newev0.mission == "nustar"
+True
+>>> np.allclose(newev0.time, [0, 1])
+True
+>>> np.allclose(newev0.bubuattr, [222, 111])
+True
+>>> np.allclose(newev1.time, [0, 1])
+True
+>>> evt is newev1
+True
+
+
+
+ +
+
+filter_energy_range(energy_range, inplace=False, use_pi=False)[source]
+

Filter the event list from a given energy range.

+
+
Parameters:
+
+
energy_range: [float, float]

Energy range in keV, or in PI channel (if use_pi is True)

+
+
+
+
Other Parameters:
+
+
inplacebool, default False

Do the change in place (modify current event list). Otherwise, copy +to a new event list.

+
+
use_pibool, default False

Use PI channel instead of energy in keV

+
+
+
+
+

Examples

+
>>> events = EventList(time=[0, 1, 2], energy=[0.3, 0.5, 2], pi=[3, 5, 20])
+>>> e1 = events.filter_energy_range([0, 1])
+>>> np.allclose(e1.time, [0, 1])
+True
+>>> np.allclose(events.time, [0, 1, 2])
+True
+>>> e2 = events.filter_energy_range([0, 10], use_pi=True, inplace=True)
+>>> np.allclose(e2.time, [0, 1])
+True
+>>> np.allclose(events.time, [0, 1])
+True
+
+
+
+ +
+
+static from_lc(lc)[source]
+

Create an EventList from a stingray.Lightcurve object. Note that all +events in a given time bin will have the same time stamp.

+
+
Parameters:
+
+
lc: :class:`stingray.Lightcurve` object

Light curve to use for creation of the event list.

+
+
+
+
Returns:
+
+
ev: EventList object

The resulting list of photon arrival times generated from the light curve.

+
+
+
+
+
+ +
+
+join(other)[source]
+

Join two EventList objects into one.

+

If both are empty, an empty EventList is returned.

+

GTIs are crossed if the event lists are over a common time interval, +and appended otherwise.

+

Standard attributes such as pi and energy remain None if they are None +in both. Otherwise, np.nan is used as a default value for the EventList where +they were None. Arbitrary attributes (e.g., Stokes parameters in polarimetric data) are +created and joined using the same convention.

+

Multiple checks are done on the joined event lists. If the time array of the event list +being joined is empty, it is ignored. If the time resolution is different, the final +event list will have the rougher time resolution. If the MJDREF is different, the time +reference will be changed to the one of the first event list. An empty event list will +be ignored.

+
+
Parameters:
+
+
otherEventList object or class:list of EventList objects

The other EventList object which is supposed to be joined with. +If other is a list, it is assumed to be a list of EventList objects +and they are all joined, one by one.

+
+
+
+
Returns:
+
+
`ev_new`EventList object

The resulting EventList object.

+
+
+
+
+
+ +
+
+classmethod read(filename, fmt=None, **kwargs)[source]
+

Read a EventList object from file.

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • hea or ogip : FITS Event files from (well, some) HEASARC-supported missions.

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a time column. Other recognized columns are energy and +pi. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all eventlist attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
ev: EventList object

The EventList object reconstructed from file

+
+
+
+
Other Parameters:
+
+
kwargsdict

Any further keyword arguments to be passed to load_events_and_gtis +for reading in event lists in OGIP/HEASOFT format

+
+
+
+
+
+ +
+
+simulate_energies(spectrum, use_spline=False)[source]
+

Assign (simulate) energies to event list from a spectrum.

+
+
Parameters:
+
+
spectrum: 2-d array or list [energies, spectrum]

Energies versus corresponding fluxes. The 2-d array or list must +have energies across the first dimension and fluxes across the +second one. If the dimension of the energies is the same as +spectrum, they are interpreted as bin centers. +If it is longer by one, they are interpreted as proper bin edges +(similarly to the bins of np.histogram). +Note that for non-uniformly binned spectra, it is advisable to pass +the exact edges.

+
+
+
+
+
+ +
+
+simulate_times(lc, use_spline=False, bin_time=None)[source]
+

Simulate times from an input light curve.

+

Randomly simulate photon arrival times to an EventList from a +stingray.Lightcurve object, using the inverse CDF method.

+
+
..note::

Preferably use model light curves containing no Poisson noise, +as this method will intrinsically add Poisson noise to them.

+
+
+
+
Parameters:
+
+
lc: :class:`stingray.Lightcurve` object
+
+
+
Returns:
+
+
timesarray-like

Simulated photon arrival times

+
+
+
+
Other Parameters:
+
+
use_splinebool

Approximate the light curve with a spline to avoid binning effects

+
+
bin_timefloat default None

Ignored and deprecated, maintained for backwards compatibility.

+
+
+
+
+
+ +
+
+sort(inplace=False)[source]
+

Sort the event list in time.

+
+
Returns:
+
+
eventlistEventList

The sorted event list. If inplace=True, it will be a shallow copy +of self.

+
+
+
+
Other Parameters:
+
+
inplacebool, default False

Sort in place. If False, return a new event list.

+
+
+
+
+

Examples

+
>>> events = EventList(time=[0, 2, 1], energy=[0.3, 2, 0.5], pi=[3, 20, 5])
+>>> e1 = events.sort()
+>>> np.allclose(e1.time, [0, 1, 2])
+True
+>>> np.allclose(e1.energy, [0.3, 0.5, 2])
+True
+>>> np.allclose(e1.pi, [3, 5, 20])
+True
+
+
+

But the original event list has not been altered (inplace=False by +default): +>>> np.allclose(events.time, [0, 2, 1]) +True

+

Let’s do it in place instead +>>> e2 = events.sort(inplace=True) +>>> np.allclose(e2.time, [0, 1, 2]) +True

+

In this case, the original event list has been altered. +>>> np.allclose(events.time, [0, 1, 2]) +True

+
+ +
+
+to_lc(dt, tstart=None, tseg=None)[source]
+

Convert event list to a stingray.Lightcurve object.

+
+
Parameters:
+
+
dt: float

Binning time of the light curve

+
+
+
+
Returns:
+
+
lc: stingray.Lightcurve object
+
+
+
Other Parameters:
+
+
tstartfloat

Start time of the light curve

+
+
tseg: float

Total duration of light curve

+
+
+
+
+
+ +
+
+to_lc_iter(dt, segment_size=None)[source]
+

Convert event list to a generator of Lightcurves.

+
+
Parameters:
+
+
dt: float

Binning time of the light curves

+
+
+
+
Returns:
+
+
lc_gen: generator

Generates one stingray.Lightcurve object for each GTI or segment

+
+
+
+
Other Parameters:
+
+
segment_sizefloat, default None

Optional segment size. If None, use the GTI boundaries

+
+
+
+
+
+ +
+
+to_lc_list(dt, segment_size=None)[source]
+

Convert event list to a list of Lightcurves.

+
+
Parameters:
+
+
dt: float

Binning time of the light curves

+
+
+
+
Returns:
+
+
lc_list: List

List containig one stingray.Lightcurve object for each GTI or segment

+
+
+
+
Other Parameters:
+
+
segment_sizefloat, default None

Optional segment size. If None, use the GTI boundaries

+
+
+
+
+
+ +
+ +
+
+
+
+

Fourier Products

+

These classes implement commonly used Fourier analysis products, most importantly Crossspectrum and +Powerspectrum, along with the variants for averaged cross/power spectra.

+
+

Crossspectrum

+
+
+class stingray.Crossspectrum(data1=None, data2=None, norm='frac', gti=None, lc1=None, lc2=None, power_type='all', dt=None, fullspec=False, skip_checks=False, save_all=False)[source]
+
+
+classical_significances(threshold=1, trial_correction=False)[source]
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is important! +If there are other sources of (aperiodic) variability in the data, this +method will not produce correct results, but instead produce a large +number of spurious false positive detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be corrected +for the number of trials (frequencies) in the power spectrum before +being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be corrected +by the number of frequencies before being applied. This decreases +the threshold (p-values need to be lower to count as significant). +Default is False (report all powers) though for any application +where threshold` is set to something meaningful, this should also +be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (index, p-value) tuples for all powers that have p-values +lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()[source]
+

Compute Coherence function of the cross spectrum.

+

Coherence is defined in Vaughan and Nowak, 1996 [1]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+
+
Returns:
+
+
cohnumpy.ndarray

Coherence function

+
+
+
+
+

References

+ +
+ +
+
+static from_events(events1, events2, dt, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)[source]
+

Calculate AveragedCrossspectrum from two event lists

+
+
Parameters:
+
+
events1stingray.EventList

Events from channel 1

+
+
events2stingray.EventList

Events from channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc1, iter_lc2, dt, segment_size, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)[source]
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 1. If arrays, use them as counts

+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 2. If arrays, use them as counts

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
save_allbool, default False

If True, save the cross spectrum of each segment in the cs_all +attribute of the output Crossspectrum object.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc1, lc2, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)[source]
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
lc1stingray.Lightcurve

Light curve from channel 1

+
+
lc2stingray.Lightcurve

Light curve from channel 2

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_time_array(times1, times2, dt, segment_size=None, gti=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True)[source]
+

Calculate AveragedCrossspectrum from two arrays of event times.

+
+
Parameters:
+
+
times1np.array

Event arrival times of channel 1

+
+
times2np.array

Event arrival times of channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for AveragedCrossspectrum.

+
+
gti[[gti0, gti1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
+
+
+
+ +
+
+initial_checks(data1=None, data2=None, norm='frac', gti=None, lc1=None, lc2=None, segment_size=None, power_type='real', dt=None, fullspec=False)[source]
+

Run initial checks on the input.

+

Returns True if checks are passed, False if they are not.

+

Raises various errors for different bad inputs

+

Examples

+
>>> times = np.arange(0, 10)
+>>> counts = np.random.poisson(100, 10)
+>>> lc1 = Lightcurve(times, counts, skip_checks=True)
+>>> lc2 = Lightcurve(times, counts, skip_checks=True)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> c = Crossspectrum()
+>>> ac = AveragedCrossspectrum()
+
+
+

If norm is not a string, raise a TypeError +>>> Crossspectrum.initial_checks(c, norm=1) +Traceback (most recent call last): +… +TypeError: norm must be a string…

+

If norm is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, norm=”blabla”) +Traceback (most recent call last): +… +ValueError: norm must be ‘frac’…

+

If power_type is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, power_type=”blabla”) +Traceback (most recent call last): +… +ValueError: power_type not recognized!

+

If the user passes only one light curve, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=lc1, data2=None)
+Traceback (most recent call last):
+...
+ValueError: You can't do a cross spectrum...
+
+
+

If the user passes an event list without dt, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=ev1, data2=ev2, dt=None)
+Traceback (most recent call last):
+...
+ValueError: If using event lists, please specify...
+
+
+
+ +
+
+phase_lag()[source]
+

Calculate the fourier phase lag of the cross spectrum.

+

This is defined as the argument of the complex cross spectrum, and gives +the delay at all frequencies, in cycles, of one input light curve with respect +to the other.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)[source]
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')[source]
+

Rebin the cross spectrum to a new frequency resolution df.

+
+
Parameters:
+
+
df: float

The new frequency resolution

+
+
+
+
Returns:
+
+
bin_cs = Crossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class +AveragedPowerspectrum, too.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes df with f*self.df

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)[source]
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+time_lag()[source]
+

Calculate the fourier time lag of the cross spectrum. +The time lag is calculated by taking the phase lag \(\phi\) and

+

..math:

+
\tau = \frac{\phi}{\two pi \nu}
+
+
+

where \(\nu\) is the center of the frequency bins.

+
+ +
+
+to_norm(norm, inplace=False)[source]
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+type = 'crossspectrum'
+

Make a cross spectrum from a (binned) light curve. +You can also make an empty Crossspectrum object to populate with your +own Fourier-transformed data (this can sometimes be useful when making +binned power spectra). Stingray uses the scipy.fft standards for the sign +of the Nyquist frequency.

+
+
Parameters:
+
+
data1: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None``

The dataset for the first channel/band of interest.

+
+
data2: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None``

The dataset for the second, or “reference”, band.

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
power_type: string, optional, default ``real``

Parameter to choose among complete, real part and magnitude of the cross spectrum.

+
+
fullspec: boolean, optional, default ``False``

If False, keep only the positive frequencies, or if True, keep all of them .

+
+
+
+
Other Parameters:
+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the input +Lightcurve GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the Lightcurve objects before making +the cross spectrum.

+
+
lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data1, but no +stingray.events.EventList objects allowed

+
+
lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data2, but no +stingray.events.EventList objects allowed

+
+
dt: float

The time resolution of the light curve. Only needed when constructing +light curves in the case where data1, data2 are +EventList objects

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!)

+
+
+
+
Attributes:
+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples

+
+
power: numpy.ndarray

The array of cross spectra (complex numbers)

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging more than one spectra). Note that for a single +realization (m=1) the error is equal to the power.

+
+
df: float

The frequency resolution

+
+
m: int

The number of averaged cross-spectra amplitudes in each bin.

+
+
n: int

The number of data points/time bins in one segment of the light +curves.

+
+
k: array of int

The rebinning scheme if the object has been rebinned otherwise is set to 1.

+
+
nphots1: float

The total number of photons in light curve 1

+
+
nphots2: float

The total number of photons in light curve 2

+
+
+
+
+
+ +
+ +
+
+
+

Coherence

+

Convenience function to compute the coherence between two stingray.Lightcurve +objects.

+
+
+stingray.coherence(lc1, lc2)[source]
+

Estimate coherence function of two light curves. +For details on the definition of the coherence, see Vaughan and Nowak, +1996 [2].

+
+
Parameters:
+
+
lc1: :class:`stingray.Lightcurve` object

The first light curve data for the channel of interest.

+
+
lc2: :class:`stingray.Lightcurve` object

The light curve data for reference band

+
+
+
+
Returns:
+
+
cohnp.ndarray

The array of coherence versus frequency

+
+
+
+
+

References

+ +
+ +
+
+
+

Powerspectrum

+
+
+class stingray.Powerspectrum(data=None, norm='frac', gti=None, dt=None, lc=None, skip_checks=False)[source]
+
+
+_initialize_empty()[source]
+

Set all attributes to None.

+
+ +
+
+_initialize_from_any_input(data, dt=None, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)[source]
+

Initialize the class, trying to understand the input types.

+

The input arguments are the same as __init__(). Based on the type +of data, this method will call the appropriate +powerspectrum_from_XXXX function, and initialize self with +the correct attributes.

+
+ +
+
+_normalize_crossspectrum(unnorm_power)
+

Normalize the real part of the cross spectrum to Leahy, absolute rms^2, +fractional rms^2 normalization, or not at all.

+
+
Parameters:
+
+
unnorm_power: numpy.ndarray

The unnormalized cross spectrum.

+
+
+
+
Returns:
+
+
power: numpy.nd.array

The normalized co-spectrum (real part of the cross spectrum). For +‘none’ normalization, imaginary part is returned as well.

+
+
+
+
+
+ +
+
+_rms_error(powers)[source]
+

Compute the error on the fractional rms amplitude using error +propagation. +Note: this uses the actual measured powers, which is not +strictly correct. We should be using the underlying power spectrum, +but in the absence of an estimate of that, this will have to do.

+
+\[r = \sqrt{P}\]
+
+\[\begin{split}\delta r = \\frac{1}{2 * \sqrt{P}} \delta P\end{split}\]
+
+
Parameters:
+
+
powers: iterable

The list of powers used to compute the fractional rms amplitude.

+
+
+
+
Returns:
+
+
delta_rms: float

The error on the fractional rms amplitude.

+
+
+
+
+
+ +
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+ +
+
+classical_significances(threshold=1, trial_correction=False)[source]
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is +important! If there are other sources of (aperiodic) variability in +the data, this method will not produce correct results, but +instead produce a large number of spurious false positive +detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be +corrected for the number of trials (frequencies) in the power spectrum +before being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be +corrected by the number of frequencies before being applied. This +decreases the threshold (p-values need to be lower to count as +significant). Default is False (report all powers) though for +any application where threshold` is set to something meaningful, +this should also be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (p-value, index) tuples for all powers that have +p-values lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()
+

Compute Coherence function of the cross spectrum.

+

Coherence is defined in Vaughan and Nowak, 1996 [3]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+
+
Returns:
+
+
cohnumpy.ndarray

Coherence function

+
+
+
+
+

References

+ +
+ +
+
+compute_rms(min_freq, max_freq, poisson_noise_level=None, white_noise_offset=None, deadtime=0.0)[source]
+

Compute the fractional rms amplitude in the power spectrum +between two frequencies.

+
+
Parameters:
+
+
min_freq: float

The lower frequency bound for the calculation.

+
+
max_freq: float

The upper frequency bound for the calculation.

+
+
+
+
Returns:
+
+
rms: float

The fractional rms amplitude contained between min_freq and +max_freq.

+
+
rms_err: float

The error on the fractional rms amplitude.

+
+
+
+
Other Parameters:
+
+
poisson_noise_levelfloat, default is None

This is the Poisson noise level of the PDS with same +normalization as the PDS. If poissoin_noise_level is None, +the Poisson noise is calculated in the idealcase +e.g. 2./<countrate> for fractional rms normalisation +Dead time and other instrumental effects can alter it. +The user can fit the Poisson noise level outside +this function using the same normalisation of the PDS +and it will get subtracted from powers here.

+
+
white_noise_offsetfloat, default None

This is the white noise level, in Leahy normalization. In the ideal +case, this is 2. Dead time and other instrumental effects can alter +it. The user can fit the white noise level outside this function +and it will get subtracted from powers here.

+
+
+
+
+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_events(events, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)[source]
+

Calculate an average power spectrum from an event list.

+
+
Parameters:
+
+
eventsstingray.EventList

Event list to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)[source]
+

Calculate the average power spectrum of an iterable collection of +light curves.

+
+
Parameters:
+
+
iter_lciterable of stingray.Lightcurve objects or np.array

Light curves. If arrays, use them as counts.

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)[source]
+

Calculate a power spectrum from a light curve.

+
+
Parameters:
+
+
eventsstingray.Lightcurve

Light curve to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_time_array(times, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)[source]
+

Calculate an average power spectrum from an array of event times.

+
+
Parameters:
+
+
timesnp.array

Event arrival times.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(data1=None, data2=None, norm='frac', gti=None, lc1=None, lc2=None, segment_size=None, power_type='real', dt=None, fullspec=False)
+

Run initial checks on the input.

+

Returns True if checks are passed, False if they are not.

+

Raises various errors for different bad inputs

+

Examples

+
>>> times = np.arange(0, 10)
+>>> counts = np.random.poisson(100, 10)
+>>> lc1 = Lightcurve(times, counts, skip_checks=True)
+>>> lc2 = Lightcurve(times, counts, skip_checks=True)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> c = Crossspectrum()
+>>> ac = AveragedCrossspectrum()
+
+
+

If norm is not a string, raise a TypeError +>>> Crossspectrum.initial_checks(c, norm=1) +Traceback (most recent call last): +… +TypeError: norm must be a string…

+

If norm is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, norm=”blabla”) +Traceback (most recent call last): +… +ValueError: norm must be ‘frac’…

+

If power_type is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, power_type=”blabla”) +Traceback (most recent call last): +… +ValueError: power_type not recognized!

+

If the user passes only one light curve, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=lc1, data2=None)
+Traceback (most recent call last):
+...
+ValueError: You can't do a cross spectrum...
+
+
+

If the user passes an event list without dt, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=ev1, data2=ev2, dt=None)
+Traceback (most recent call last):
+...
+ValueError: If using event lists, please specify...
+
+
+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+ +
+
+modulation_upper_limit(fmin=None, fmax=None, c=0.95)[source]
+

Upper limit on a sinusoidal modulation.

+

To understand the meaning of this amplitude: if the modulation is +described by:

+

..math:: p = overline{p} (1 + a * sin(x))

+

this function returns a.

+

If it is a sum of sinusoidal harmonics instead +..math:: p = overline{p} (1 + sum_l a_l * sin(lx)) +a is equivalent to \(\sqrt(\sum_l a_l^2)\).

+

See stingray.stats.power_upper_limit, +stingray.stats.amplitude_upper_limit +for more information.

+

The formula used to calculate the upper limit assumes the Leahy +normalization. +If the periodogram is in another normalization, we will internally +convert it to Leahy before calculating the upper limit.

+
+
Parameters:
+
+
fmin: float

The minimum frequency to search (defaults to the first nonzero bin)

+
+
fmax: float

The maximum frequency to search (defaults to the Nyquist frequency)

+
+
+
+
Returns:
+
+
a: float

The modulation amplitude that could produce P>pmeas with 1 - c +probability.

+
+
+
+
Other Parameters:
+
+
c: float

The confidence value for the upper limit (e.g. 0.95 = 95%)

+
+
+
+
+

Examples

+
>>> pds = Powerspectrum()
+>>> pds.norm = "leahy"
+>>> pds.freq = np.arange(0., 5.)
+>>> # Note: this pds has 40 as maximum value between 2 and 5 Hz
+>>> pds.power = np.array([100000, 1, 1, 40, 1])
+>>> pds.m = 1
+>>> pds.nphots = 30000
+>>> pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99)
+0.1016...
+
+
+
+ +
+
+phase_lag()
+

Calculate the fourier phase lag of the cross spectrum.

+

This is defined as the argument of the complex cross spectrum, and gives +the delay at all frequencies, in cycles, of one input light curve with respect +to the other.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')[source]
+

Rebin the power spectrum.

+
+
Parameters:
+
+
df: float

The new frequency resolution.

+
+
+
+
Returns:
+
+
bin_cs = Powerspectrum object

The newly binned power spectrum.

+
+
+
+
Other Parameters:
+
+
f: float

The rebin factor. If specified, it substitutes df with +f*self.df, so f>1 is recommended.

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+time_lag()
+

Calculate the fourier time lag of the cross spectrum. +The time lag is calculated by taking the phase lag \(\phi\) and

+

..math:

+
\tau = \frac{\phi}{\two pi \nu}
+
+
+

where \(\nu\) is the center of the frequency bins.

+
+ +
+
+to_astropy_table() Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+type = 'powerspectrum'
+

Make a Powerspectrum (also called periodogram) from a (binned) +light curve. Periodograms can be normalized by either Leahy normalization, +fractional rms normalization, absolute rms normalization, or not at all.

+

You can also make an empty Powerspectrum object to populate with +your own fourier-transformed data (this can sometimes be useful when making +binned power spectra).

+
+
Parameters:
+
+
data: :class:`stingray.Lightcurve` object, optional, default ``None``

The light curve data to be Fourier-transformed.

+
+
norm: {“leahy” | “frac” | “abs” | “none” }, optional, default “frac”

The normaliation of the power spectrum to be used. Options are +“leahy”, “frac”, “abs” and “none”, default is “frac”.

+
+
+
+
Other Parameters:
+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] – Good Time intervals. +This choice overrides the GTIs in the single light curves. Use with +care, especially if these GTIs have overlaps with the input +object GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the input object before making +the power spectrum.

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!).

+
+
+
+
Attributes:
+
+
norm: {“leahy” | “frac” | “abs” | “none” }

The normalization of the power spectrum.

+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
power: numpy.ndarray

The array of normalized squared absolute values of Fourier +amplitudes.

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging power spectra of segments of a light curve). +Note that for a single realization (m=1) the error is equal to the +power.

+
+
df: float

The frequency resolution.

+
+
m: int

The number of averaged powers in each bin.

+
+
n: int

The number of data points in the light curve.

+
+
nphots: float

The total number of photons in the light curve.

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

AveragedCrossspectrum

+
+
+class stingray.AveragedCrossspectrum(data1=None, data2=None, segment_size=None, norm='frac', gti=None, power_type='all', silent=False, lc1=None, lc2=None, dt=None, fullspec=False, save_all=False, use_common_mean=True, skip_checks=False)[source]
+
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+ +
+
+classical_significances(threshold=1, trial_correction=False)
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is important! +If there are other sources of (aperiodic) variability in the data, this +method will not produce correct results, but instead produce a large +number of spurious false positive detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be corrected +for the number of trials (frequencies) in the power spectrum before +being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be corrected +by the number of frequencies before being applied. This decreases +the threshold (p-values need to be lower to count as significant). +Default is False (report all powers) though for any application +where threshold` is set to something meaningful, this should also +be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (index, p-value) tuples for all powers that have p-values +lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()[source]
+

Averaged Coherence function.

+

Coherence is defined in Vaughan and Nowak, 1996 [4]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+

Compute an averaged Coherence function of cross spectrum by computing +coherence function of each segment and averaging them. The return type +is a tuple with first element as the coherence function and the second +element as the corresponding uncertainty associated with it.

+

Note : The uncertainty in coherence function is strictly valid for Gaussian statistics only.

+
+
Returns:
+
+
(coh, uncertainty)tuple of np.ndarray

Tuple comprising the coherence function and uncertainty.

+
+
+
+
+

References

+ +
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_events(events1, events2, dt, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two event lists

+
+
Parameters:
+
+
events1stingray.EventList

Events from channel 1

+
+
events2stingray.EventList

Events from channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc1, iter_lc2, dt, segment_size, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 1. If arrays, use them as counts

+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 2. If arrays, use them as counts

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
save_allbool, default False

If True, save the cross spectrum of each segment in the cs_all +attribute of the output Crossspectrum object.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc1, lc2, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
lc1stingray.Lightcurve

Light curve from channel 1

+
+
lc2stingray.Lightcurve

Light curve from channel 2

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_time_array(times1, times2, dt, segment_size=None, gti=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True)
+

Calculate AveragedCrossspectrum from two arrays of event times.

+
+
Parameters:
+
+
times1np.array

Event arrival times of channel 1

+
+
times2np.array

Event arrival times of channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for AveragedCrossspectrum.

+
+
gti[[gti0, gti1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(data1, segment_size=None, **kwargs)[source]
+

Examples

+
>>> times = np.arange(0, 10)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> ac = AveragedCrossspectrum()
+
+
+

If AveragedCrossspectrum, you need segment_size +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) +Traceback (most recent call last): +… +ValueError: segment_size must be specified…

+

And it needs to be finite! +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) +Traceback (most recent call last): +… +ValueError: segment_size must be finite!

+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+ +
+
+phase_lag()[source]
+

Return the fourier phase lag of the cross spectrum.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')
+

Rebin the cross spectrum to a new frequency resolution df.

+
+
Parameters:
+
+
df: float

The new frequency resolution

+
+
+
+
Returns:
+
+
bin_cs = Crossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class +AveragedPowerspectrum, too.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes df with f*self.df

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+time_lag()[source]
+

Calculate time lag and uncertainty.

+

Equation from Bendat & Piersol, 2011 [bendat-2011]__.

+
+
Returns:
+
+
lagnp.ndarray

The time lag

+
+
lag_errnp.ndarray

The uncertainty in the time lag

+
+
+
+
+
+ +
+
+to_astropy_table() Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+type = 'crossspectrum'
+

Make an averaged cross spectrum from a light curve by segmenting two +light curves, Fourier-transforming each segment and then averaging the +resulting cross spectra.

+
+
Parameters:
+
+
data1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object

A light curve from which to compute the cross spectrum. In some cases, +this would be the light curve of the wavelength/energy/frequency band +of interest.

+
+
data2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object

A second light curve to use in the cross spectrum. In some cases, this +would be the wavelength/energy/frequency reference band to compare the +band of interest with.

+
+
segment_size: float

The size of each segment to average. Note that if the total duration of +each Lightcurve object in lc1 or lc2 is not an +integer multiple of the segment_size, then any fraction left-over +at the end of the time series will be lost. Otherwise you introduce +artifacts.

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
+
+
Other Parameters:
+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
dtfloat

The time resolution of the light curve. Only needed when constructing +light curves in the case where data1 or data2 are of :class:EventList

+
+
power_type: string, optional, default ``all``

Parameter to choose among complete, real part and magnitude of +the cross spectrum.

+
+
silentbool, default False

Do not show a progress bar when generating an averaged cross spectrum. +Useful for the batch execution of many spectra

+
+
lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data1, but no +stingray.events.EventList objects allowed

+
+
lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data2, but no +stingray.events.EventList objects allowed

+
+
fullspec: boolean, optional, default ``False``

If True, return the full array of frequencies, otherwise return just the +positive frequencies.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average. Use with care. +This is likely to fill up your RAM on medium-sized datasets, and to +slow down the computation when rebinning.

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!)

+
+
use_common_mean: bool

Averaged cross spectra are normalized in two possible ways: one is by normalizing +each of the single spectra that get averaged, the other is by normalizing after the +averaging. If use_common_mean is selected, the spectrum will be normalized +after the average.

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
Attributes:
+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
power: numpy.ndarray

The array of cross spectra.

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging power spectra of segments of a light curve). +Note that for a single realization (m=1) the error is equal to the +power.

+
+
df: float

The frequency resolution.

+
+
m: int

The number of averaged cross spectra.

+
+
n: int

The number of time bins per segment of light curve.

+
+
nphots1: float

The total number of photons in the first (interest) light curve.

+
+
nphots2: float

The total number of photons in the second (reference) light curve.

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals.

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

AveragedPowerspectrum

+
+
+class stingray.AveragedPowerspectrum(data=None, segment_size=None, norm='frac', gti=None, silent=False, dt=None, lc=None, large_data=False, save_all=False, skip_checks=False, use_common_mean=True)[source]
+
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+ +
+
+classical_significances(threshold=1, trial_correction=False)
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is +important! If there are other sources of (aperiodic) variability in +the data, this method will not produce correct results, but +instead produce a large number of spurious false positive +detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be +corrected for the number of trials (frequencies) in the power spectrum +before being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be +corrected by the number of frequencies before being applied. This +decreases the threshold (p-values need to be lower to count as +significant). Default is False (report all powers) though for +any application where threshold` is set to something meaningful, +this should also be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (p-value, index) tuples for all powers that have +p-values lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()
+

Averaged Coherence function.

+

Coherence is defined in Vaughan and Nowak, 1996 [5]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+

Compute an averaged Coherence function of cross spectrum by computing +coherence function of each segment and averaging them. The return type +is a tuple with first element as the coherence function and the second +element as the corresponding uncertainty associated with it.

+

Note : The uncertainty in coherence function is strictly valid for Gaussian statistics only.

+
+
Returns:
+
+
(coh, uncertainty)tuple of np.ndarray

Tuple comprising the coherence function and uncertainty.

+
+
+
+
+

References

+ +
+ +
+
+compute_rms(min_freq, max_freq, poisson_noise_level=None, white_noise_offset=None, deadtime=0.0)
+

Compute the fractional rms amplitude in the power spectrum +between two frequencies.

+
+
Parameters:
+
+
min_freq: float

The lower frequency bound for the calculation.

+
+
max_freq: float

The upper frequency bound for the calculation.

+
+
+
+
Returns:
+
+
rms: float

The fractional rms amplitude contained between min_freq and +max_freq.

+
+
rms_err: float

The error on the fractional rms amplitude.

+
+
+
+
Other Parameters:
+
+
poisson_noise_levelfloat, default is None

This is the Poisson noise level of the PDS with same +normalization as the PDS. If poissoin_noise_level is None, +the Poisson noise is calculated in the idealcase +e.g. 2./<countrate> for fractional rms normalisation +Dead time and other instrumental effects can alter it. +The user can fit the Poisson noise level outside +this function using the same normalisation of the PDS +and it will get subtracted from powers here.

+
+
white_noise_offsetfloat, default None

This is the white noise level, in Leahy normalization. In the ideal +case, this is 2. Dead time and other instrumental effects can alter +it. The user can fit the white noise level outside this function +and it will get subtracted from powers here.

+
+
+
+
+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_events(events, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate an average power spectrum from an event list.

+
+
Parameters:
+
+
eventsstingray.EventList

Event list to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate the average power spectrum of an iterable collection of +light curves.

+
+
Parameters:
+
+
iter_lciterable of stingray.Lightcurve objects or np.array

Light curves. If arrays, use them as counts.

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate a power spectrum from a light curve.

+
+
Parameters:
+
+
eventsstingray.Lightcurve

Light curve to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_time_array(times, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate an average power spectrum from an array of event times.

+
+
Parameters:
+
+
timesnp.array

Event arrival times.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(*args, **kwargs)[source]
+

Examples

+
>>> times = np.arange(0, 10)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> ac = AveragedCrossspectrum()
+
+
+

If AveragedCrossspectrum, you need segment_size +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) +Traceback (most recent call last): +… +ValueError: segment_size must be specified…

+

And it needs to be finite! +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) +Traceback (most recent call last): +… +ValueError: segment_size must be finite!

+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+ +
+
+modulation_upper_limit(fmin=None, fmax=None, c=0.95)
+

Upper limit on a sinusoidal modulation.

+

To understand the meaning of this amplitude: if the modulation is +described by:

+

..math:: p = overline{p} (1 + a * sin(x))

+

this function returns a.

+

If it is a sum of sinusoidal harmonics instead +..math:: p = overline{p} (1 + sum_l a_l * sin(lx)) +a is equivalent to \(\sqrt(\sum_l a_l^2)\).

+

See stingray.stats.power_upper_limit, +stingray.stats.amplitude_upper_limit +for more information.

+

The formula used to calculate the upper limit assumes the Leahy +normalization. +If the periodogram is in another normalization, we will internally +convert it to Leahy before calculating the upper limit.

+
+
Parameters:
+
+
fmin: float

The minimum frequency to search (defaults to the first nonzero bin)

+
+
fmax: float

The maximum frequency to search (defaults to the Nyquist frequency)

+
+
+
+
Returns:
+
+
a: float

The modulation amplitude that could produce P>pmeas with 1 - c +probability.

+
+
+
+
Other Parameters:
+
+
c: float

The confidence value for the upper limit (e.g. 0.95 = 95%)

+
+
+
+
+

Examples

+
>>> pds = Powerspectrum()
+>>> pds.norm = "leahy"
+>>> pds.freq = np.arange(0., 5.)
+>>> # Note: this pds has 40 as maximum value between 2 and 5 Hz
+>>> pds.power = np.array([100000, 1, 1, 40, 1])
+>>> pds.m = 1
+>>> pds.nphots = 30000
+>>> pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99)
+0.1016...
+
+
+
+ +
+
+phase_lag()
+

Return the fourier phase lag of the cross spectrum.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')
+

Rebin the power spectrum.

+
+
Parameters:
+
+
df: float

The new frequency resolution.

+
+
+
+
Returns:
+
+
bin_cs = Powerspectrum object

The newly binned power spectrum.

+
+
+
+
Other Parameters:
+
+
f: float

The rebin factor. If specified, it substitutes df with +f*self.df, so f>1 is recommended.

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+time_lag()
+

Calculate time lag and uncertainty.

+

Equation from Bendat & Piersol, 2011 [bendat-2011]__.

+
+
Returns:
+
+
lagnp.ndarray

The time lag

+
+
lag_errnp.ndarray

The uncertainty in the time lag

+
+
+
+
+
+ +
+
+to_astropy_table() Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+type = 'powerspectrum'
+

Make an averaged periodogram from a light curve by segmenting the light +curve, Fourier-transforming each segment and then averaging the +resulting periodograms.

+
+
Parameters:
+
+
data: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object

The light curve data to be Fourier-transformed.

+
+
segment_size: float

The size of each segment to average. Note that if the total +duration of each Lightcurve object in lc is not an integer +multiple of the segment_size, then any fraction left-over at the +end of the time series will be lost.

+
+
norm: {“leahy” | “frac” | “abs” | “none” }, optional, default “frac”

The normalization of the periodogram to be used.

+
+
+
+
Other Parameters:
+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] – Good Time intervals. +This choice overrides the GTIs in the single light curves. Use with +care, especially if these GTIs have overlaps with the input +object GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the input object before making +the power spectrum.

+
+
silentbool, default False

Do not show a progress bar when generating an averaged cross spectrum. +Useful for the batch execution of many spectra.

+
+
dt: float

The time resolution of the light curve. Only needed when constructing +light curves in the case where data is of :class:EventList.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average. Use with care. +This is likely to fill up your RAM on medium-sized datasets, and to +slow down the computation when rebinning.

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!).

+
+
+
+
Attributes:
+
+
norm: {``leahy`` | ``frac`` | ``abs`` | ``none`` }

The normalization of the periodogram.

+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
power: numpy.ndarray

The array of normalized squared absolute values of Fourier +amplitudes.

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging power spectra of segments of a light curve). +Note that for a single realization (m=1) the error is equal to the +power.

+
+
df: float

The frequency resolution.

+
+
m: int

The number of averaged periodograms.

+
+
n: int

The number of data points in the light curve.

+
+
nphots: float

The total number of photons in the light curve.

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

Dynamical Powerspectrum

+
+
+class stingray.DynamicalPowerspectrum(lc, segment_size, norm='frac', gti=None, dt=None)[source]
+
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+ +
+
+classical_significances(threshold=1, trial_correction=False)
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is +important! If there are other sources of (aperiodic) variability in +the data, this method will not produce correct results, but +instead produce a large number of spurious false positive +detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be +corrected for the number of trials (frequencies) in the power spectrum +before being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be +corrected by the number of frequencies before being applied. This +decreases the threshold (p-values need to be lower to count as +significant). Default is False (report all powers) though for +any application where threshold` is set to something meaningful, +this should also be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (p-value, index) tuples for all powers that have +p-values lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()
+

Averaged Coherence function.

+

Coherence is defined in Vaughan and Nowak, 1996 [6]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+

Compute an averaged Coherence function of cross spectrum by computing +coherence function of each segment and averaging them. The return type +is a tuple with first element as the coherence function and the second +element as the corresponding uncertainty associated with it.

+

Note : The uncertainty in coherence function is strictly valid for Gaussian statistics only.

+
+
Returns:
+
+
(coh, uncertainty)tuple of np.ndarray

Tuple comprising the coherence function and uncertainty.

+
+
+
+
+

References

+ +
+ +
+
+compute_rms(min_freq, max_freq, poisson_noise_level=None, white_noise_offset=None, deadtime=0.0)
+

Compute the fractional rms amplitude in the power spectrum +between two frequencies.

+
+
Parameters:
+
+
min_freq: float

The lower frequency bound for the calculation.

+
+
max_freq: float

The upper frequency bound for the calculation.

+
+
+
+
Returns:
+
+
rms: float

The fractional rms amplitude contained between min_freq and +max_freq.

+
+
rms_err: float

The error on the fractional rms amplitude.

+
+
+
+
Other Parameters:
+
+
poisson_noise_levelfloat, default is None

This is the Poisson noise level of the PDS with same +normalization as the PDS. If poissoin_noise_level is None, +the Poisson noise is calculated in the idealcase +e.g. 2./<countrate> for fractional rms normalisation +Dead time and other instrumental effects can alter it. +The user can fit the Poisson noise level outside +this function using the same normalisation of the PDS +and it will get subtracted from powers here.

+
+
white_noise_offsetfloat, default None

This is the white noise level, in Leahy normalization. In the ideal +case, this is 2. Dead time and other instrumental effects can alter +it. The user can fit the white noise level outside this function +and it will get subtracted from powers here.

+
+
+
+
+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_events(events, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate an average power spectrum from an event list.

+
+
Parameters:
+
+
eventsstingray.EventList

Event list to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate the average power spectrum of an iterable collection of +light curves.

+
+
Parameters:
+
+
iter_lciterable of stingray.Lightcurve objects or np.array

Light curves. If arrays, use them as counts.

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate a power spectrum from a light curve.

+
+
Parameters:
+
+
eventsstingray.Lightcurve

Light curve to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+static from_time_array(times, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate an average power spectrum from an array of event times.

+
+
Parameters:
+
+
timesnp.array

Event arrival times.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(*args, **kwargs)
+

Examples

+
>>> times = np.arange(0, 10)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> ac = AveragedCrossspectrum()
+
+
+

If AveragedCrossspectrum, you need segment_size +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) +Traceback (most recent call last): +… +ValueError: segment_size must be specified…

+

And it needs to be finite! +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) +Traceback (most recent call last): +… +ValueError: segment_size must be finite!

+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+ +
+
+modulation_upper_limit(fmin=None, fmax=None, c=0.95)
+

Upper limit on a sinusoidal modulation.

+

To understand the meaning of this amplitude: if the modulation is +described by:

+

..math:: p = overline{p} (1 + a * sin(x))

+

this function returns a.

+

If it is a sum of sinusoidal harmonics instead +..math:: p = overline{p} (1 + sum_l a_l * sin(lx)) +a is equivalent to \(\sqrt(\sum_l a_l^2)\).

+

See stingray.stats.power_upper_limit, +stingray.stats.amplitude_upper_limit +for more information.

+

The formula used to calculate the upper limit assumes the Leahy +normalization. +If the periodogram is in another normalization, we will internally +convert it to Leahy before calculating the upper limit.

+
+
Parameters:
+
+
fmin: float

The minimum frequency to search (defaults to the first nonzero bin)

+
+
fmax: float

The maximum frequency to search (defaults to the Nyquist frequency)

+
+
+
+
Returns:
+
+
a: float

The modulation amplitude that could produce P>pmeas with 1 - c +probability.

+
+
+
+
Other Parameters:
+
+
c: float

The confidence value for the upper limit (e.g. 0.95 = 95%)

+
+
+
+
+

Examples

+
>>> pds = Powerspectrum()
+>>> pds.norm = "leahy"
+>>> pds.freq = np.arange(0., 5.)
+>>> # Note: this pds has 40 as maximum value between 2 and 5 Hz
+>>> pds.power = np.array([100000, 1, 1, 40, 1])
+>>> pds.m = 1
+>>> pds.nphots = 30000
+>>> pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99)
+0.1016...
+
+
+
+ +
+
+phase_lag()
+

Return the fourier phase lag of the cross spectrum.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')
+

Rebin the power spectrum.

+
+
Parameters:
+
+
df: float

The new frequency resolution.

+
+
+
+
Returns:
+
+
bin_cs = Powerspectrum object

The newly binned power spectrum.

+
+
+
+
Other Parameters:
+
+
f: float

The rebin factor. If specified, it substitutes df with +f*self.df, so f>1 is recommended.

+
+
+
+
+
+ +
+
+rebin_frequency(df_new, method='sum')[source]
+

Rebin the Dynamic Power Spectrum to a new frequency resolution. +Rebinning is an in-place operation, i.e. will replace the existing +dyn_ps attribute.

+

While the new resolution need not be an integer multiple of the +previous frequency resolution, be aware that if it is not, the last +bin will be cut off by the fraction left over by the integer division.

+
+
Parameters:
+
+
df_new: float

The new frequency resolution of the dynamical power spectrum. +Must be larger than the frequency resolution of the old dynamical +power spectrum!

+
+
method: {“sum” | “mean” | “average”}, optional, default “sum”

This keyword argument sets whether the counts in the new bins +should be summed or averaged.

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+rebin_time(dt_new, method='sum')[source]
+

Rebin the Dynamic Power Spectrum to a new time resolution. +While the new resolution need not be an integer multiple of the +previous time resolution, be aware that if it is not, the last bin +will be cut off by the fraction left over by the integer division.

+
+
Parameters:
+
+
dt_new: float

The new time resolution of the dynamical power spectrum. +Must be larger than the time resolution of the old dynamical power +spectrum!

+
+
method: {“sum” | “mean” | “average”}, optional, default “sum”

This keyword argument sets whether the counts in the new bins +should be summed or averaged.

+
+
+
+
Returns:
+
+
time_new: numpy.ndarray

Time axis with new rebinned time resolution.

+
+
dynspec_new: numpy.ndarray

New rebinned Dynamical Power Spectrum.

+
+
+
+
+
+ +
+
+time_lag()
+

Calculate time lag and uncertainty.

+

Equation from Bendat & Piersol, 2011 [bendat-2011]__.

+
+
Returns:
+
+
lagnp.ndarray

The time lag

+
+
lag_errnp.ndarray

The uncertainty in the time lag

+
+
+
+
+
+ +
+
+to_astropy_table() Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+trace_maximum(min_freq=None, max_freq=None)[source]
+

Return the indices of the maximum powers in each segment +Powerspectrum between specified frequencies.

+
+
Parameters:
+
+
min_freq: float, default ``None``

The lower frequency bound.

+
+
max_freq: float, default ``None``

The upper frequency bound.

+
+
+
+
Returns:
+
+
max_positionsnp.array

The array of indices of the maximum power in each segment having +frequency between min_freq and max_freq.

+
+
+
+
+
+ +
+
+type = 'powerspectrum'
+

Create a dynamical power spectrum, also often called a spectrogram.

+

This class will divide a Lightcurve object into segments of +length segment_size, create a power spectrum for each segment and store +all powers in a matrix as a function of both time (using the mid-point of +each segment) and frequency.

+

This is often used to trace changes in period of a (quasi-)periodic signal +over time.

+
+
Parameters:
+
+
lcstingray.Lightcurve or stingray.EventList object

The time series or event list of which the dynamical power spectrum is +to be calculated.

+
+
segment_sizefloat, default 1

Length of the segment of light curve, default value is 1 (in whatever +units the time array in the Lightcurve` object uses).

+
+
norm: {“leahy” | “frac” | “abs” | “none” }, optional, default “frac”

The normaliation of the periodogram to be used.

+
+
+
+
Other Parameters:
+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] – Good Time intervals. +This choice overrides the GTIs in the single light curves. Use with +care, especially if these GTIs have overlaps with the input +object GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the input object before making +the power spectrum.

+
+
+
+
Attributes:
+
+
segment_size: float

The size of each segment to average. Note that if the total +duration of each input object in lc is not an integer multiple +of the segment_size, then any fraction left-over at the end of the +time series will be lost.

+
+
dyn_psnp.ndarray

The matrix of normalized squared absolute values of Fourier +amplitudes. The axis are given by the freq +and time attributes.

+
+
norm: {``leahy`` | ``frac`` | ``abs`` | ``none``}

The normalization of the periodogram.

+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
df: float

The frequency resolution.

+
+
dt: float

The time resolution.

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

CrossCorrelation

+
+
+class stingray.CrossCorrelation(lc1=None, lc2=None, cross=None, mode='same', norm='none')[source]
+

Make a cross-correlation from light curves or a cross spectrum.

+

You can also make an empty Crosscorrelation object to populate +with your own cross-correlation data.

+
+
Parameters:
+
+
lc1: :class:`stingray.Lightcurve` object, optional, default ``None``

The first light curve data for correlation calculations.

+
+
lc2: :class:`stingray.Lightcurve` object, optional, default ``None``

The light curve data for the correlation calculations.

+
+
cross: :class: `stingray.Crossspectrum` object, default ``None``

The cross spectrum data for the correlation calculations.

+
+
mode: {``full``, ``valid``, ``same``}, optional, default ``same``

A string indicating the size of the correlation output. +See the relevant scipy documentation [scipy-docs] +for more details.

+
+
norm: {``none``, ``variance``}

if “variance”, the cross correlation is normalized so that perfect +correlation gives 1, and perfect anticorrelation gives -1. See +Gaskell & Peterson 1987, Gardner & Done 2017

+
+
+
+
+

References

+ +
+
Attributes:
+
+
lc1: :class:`stingray.Lightcurve`

The first light curve data for correlation calculations.

+
+
lc2: :class:`stingray.Lightcurve`

The light curve data for the correlation calculations.

+
+
cross: :class: `stingray.Crossspectrum`

The cross spectrum data for the correlation calculations.

+
+
corr: numpy.ndarray

An array of correlation data calculated from two light curves

+
+
time_lags: numpy.ndarray

An array of all possible time lags against which each point in corr is calculated

+
+
dt: float

The time resolution of each light curve (used in time_lag calculations)

+
+
time_shift: float

Time lag that gives maximum value of correlation between two light curves. +There will be maximum correlation between light curves if one of the light curve +is shifted by time_shift.

+
+
n: int

Number of points in self.corr (length of cross-correlation data)

+
+
auto: bool

An internal flag to indicate whether this is a cross-correlation or an auto-correlation.

+
+
norm: {``none``, ``variance``}

The normalization specified in input

+
+
+
+
+
+
+cal_timeshift(dt=1.0)[source]
+

Calculate the cross correlation against all possible time lags, both positive and negative.

+

The method signal.correlation_lags() uses SciPy versions >= 1.6.1 ([scipy-docs-lag])

+
+
Parameters:
+
+
dt: float, optional, default ``1.0``

Time resolution of the light curve, should be passed when object is populated with +correlation data and no information about light curve can be extracted. Used to +calculate time_lags.

+
+
+
+
Returns:
+
+
self.time_shift: float

Value of the time lag that gives maximum value of correlation between two light curves.

+
+
self.time_lags: numpy.ndarray

An array of time_lags calculated from correlation data

+
+
+
+
+

References

+ +
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)[source]
+

Plot the Crosscorrelation as function using Matplotlib. +Plot the Crosscorrelation object on a graph self.time_lags on x-axis and +self.corr on y-axis

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() function.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default -

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional (default=False)

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+ +
+
+
+

AutoCorrelation

+
+
+class stingray.AutoCorrelation(lc=None, mode='same')[source]
+

Make an auto-correlation from a light curve. +You can also make an empty Autocorrelation object to populate with your +own auto-correlation data.

+
+
Parameters:
+
+
lc: :class:`stingray.Lightcurve` object, optional, default ``None``

The light curve data for correlation calculations.

+
+
mode: {``full``, ``valid``, ``same``}, optional, default ``same``

A string indicating the size of the correlation output. +See the relevant scipy documentation [scipy-docs] +for more details.

+
+
+
+
Attributes:
+
+
lc1, lc2::class:`stingray.Lightcurve`

The light curve data for correlation calculations.

+
+
corr: numpy.ndarray

An array of correlation data calculated from lightcurve data

+
+
time_lags: numpy.ndarray

An array of all possible time lags against which each point in corr is calculated

+
+
dt: float

The time resolution of each lightcurve (used in time_lag calculations)

+
+
time_shift: float, zero

Max. Value of AutoCorrelation is always at zero lag.

+
+
n: int

Number of points in self.corr(Length of auto-correlation data)

+
+
+
+
+
+
+cal_timeshift(dt=1.0)
+

Calculate the cross correlation against all possible time lags, both positive and negative.

+

The method signal.correlation_lags() uses SciPy versions >= 1.6.1 ([scipy-docs-lag])

+
+
Parameters:
+
+
dt: float, optional, default ``1.0``

Time resolution of the light curve, should be passed when object is populated with +correlation data and no information about light curve can be extracted. Used to +calculate time_lags.

+
+
+
+
Returns:
+
+
self.time_shift: float

Value of the time lag that gives maximum value of correlation between two light curves.

+
+
self.time_lags: numpy.ndarray

An array of time_lags calculated from correlation data

+
+
+
+
+

References

+ +
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the Crosscorrelation as function using Matplotlib. +Plot the Crosscorrelation object on a graph self.time_lags on x-axis and +self.corr on y-axis

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() function.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default -

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional (default=False)

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+ +
+
+
+

Dead-Time Corrections

+
+
+stingray.deadtime.fad.FAD(data1, data2, segment_size, dt=None, norm='frac', plot=False, ax=None, smoothing_alg='gauss', smoothing_length=None, verbose=False, tolerance=0.05, strict=False, output_file=None, return_objects=False)[source]
+

Calculate Frequency Amplitude Difference-corrected (cross)power spectra.

+

Reference: Bachetti & Huppenkothen, 2018, ApJ, 853L, 21

+

The two input light curve must be strictly simultaneous, and recorded by +two independent detectors with similar responses, so that the count rates +are similar and dead time is independent. +The method does not apply to different energy channels of the same +instrument, or to the signal observed by two instruments with very +different responses. See the paper for caveats.

+
+
Parameters:
+
+
data1Lightcurve or EventList

Input data for channel 1

+
+
data2Lightcurve or EventList

Input data for channel 2. Must be strictly simultaneous to data1 +and, if a light curve, have the same binning time. Also, it must be +strictly independent, e.g. from a different detector. There must be +no dead time cross-talk between the two time series.

+
+
segment_size: float

The final Fourier products are averaged over many segments of the +input light curves. This is the length of each segment being averaged. +Note that the light curve must be long enough to have at least 30 +segments, as the result gets better as one averages more and more +segments.

+
+
dtfloat

Time resolution of the light curves used to produce periodograms

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
+
+
Returns:
+
+
resultsclass:astropy.table.Table object or dict or str

The content of results depends on whether return_objects is +True or False. +If return_objects==False, +results is a Table with the following columns:

+
    +
  • pds1: the corrected PDS of lc1

  • +
  • pds2: the corrected PDS of lc2

  • +
  • cs: the corrected cospectrum

  • +
  • ptot: the corrected PDS of lc1 + lc2

  • +
+

If return_objects is True, results is a dict, with keys +named like the columns +listed above but with AveragePowerspectrum or +AverageCrossspectrum objects instead of arrays.

+
+
+
+
Other Parameters:
+
+
plotbool, default False

Plot diagnostics: check if the smoothed Fourier difference scatter is +a good approximation of the data scatter.

+
+
axmatplotlib.axes.axes object
+
If not None and plot is True, use this axis object to produce

the diagnostic plot. Otherwise, create a new figure.

+
+
+
+
smoothing_alg{‘gauss’, …}

Smoothing algorithm. For now, the only smoothing algorithm allowed is +gauss, which applies a Gaussian Filter from scipy.

+
+
smoothing_lengthint, default segment_size * 3

Number of bins to smooth in gaussian window smoothing

+
+
verbose: bool, default False

Print out information on the outcome of the algorithm (recommended)

+
+
tolerancefloat, default 0.05

Accepted relative error on the FAD-corrected Fourier amplitude, to be +used as success diagnostics. +Should be +` +stdtheor = 2 / np.sqrt(n) +std = (average_corrected_fourier_diff / n).std() +np.abs((std - stdtheor) / stdtheor) < tolerance +`

+
+
strictbool, default False

Decide what to do if the condition on tolerance is not met. If True, +raise a RuntimeError. If False, just throw a warning.

+
+
output_filestr, default None

Name of an output file (any extension automatically recognized by +Astropy is fine)

+
+
+
+
+
+ +
+
+stingray.deadtime.fad.calculate_FAD_correction(lc1, lc2, segment_size, norm='frac', gti=None, plot=False, ax=None, smoothing_alg='gauss', smoothing_length=None, verbose=False, tolerance=0.05, strict=False, output_file=None, return_objects=False)[source]
+

Calculate Frequency Amplitude Difference-corrected (cross)power spectra.

+

Reference: Bachetti & Huppenkothen, 2018, ApJ, 853L, 21

+

The two input light curve must be strictly simultaneous, and recorded by +two independent detectors with similar responses, so that the count rates +are similar and dead time is independent. +The method does not apply to different energy channels of the same +instrument, or to the signal observed by two instruments with very +different responses. See the paper for caveats.

+
+
Parameters:
+
+
lc1: class:`stingray.ligthtcurve.Lightcurve`

Light curve from channel 1

+
+
lc2: class:`stingray.ligthtcurve.Lightcurve`

Light curve from channel 2. Must be strictly simultaneous to lc1 +and have the same binning time. Also, it must be strictly independent, +e.g. from a different detector. There must be no dead time cross-talk +between the two light curves.

+
+
segment_size: float

The final Fourier products are averaged over many segments of the +input light curves. This is the length of each segment being averaged. +Note that the light curve must be long enough to have at least 30 +segments, as the result gets better as one averages more and more +segments.

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
+
+
Returns:
+
+
resultsclass:astropy.table.Table object or dict or str

The content of results depends on whether return_objects is +True or False. +If return_objects==False, +results is a Table with the following columns:

+
    +
  • pds1: the corrected PDS of lc1

  • +
  • pds2: the corrected PDS of lc2

  • +
  • cs: the corrected cospectrum

  • +
  • ptot: the corrected PDS of lc1 + lc2

  • +
+

If return_objects is True, results is a dict, with keys +named like the columns +listed above but with AveragePowerspectrum or +AverageCrossspectrum objects instead of arrays.

+
+
+
+
Other Parameters:
+
+
plotbool, default False

Plot diagnostics: check if the smoothed Fourier difference scatter is +a good approximation of the data scatter.

+
+
axmatplotlib.axes.axes object
+
If not None and plot is True, use this axis object to produce

the diagnostic plot. Otherwise, create a new figure.

+
+
+
+
smoothing_alg{‘gauss’, …}

Smoothing algorithm. For now, the only smoothing algorithm allowed is +gauss, which applies a Gaussian Filter from scipy.

+
+
smoothing_lengthint, default segment_size * 3

Number of bins to smooth in gaussian window smoothing

+
+
verbose: bool, default False

Print out information on the outcome of the algorithm (recommended)

+
+
tolerancefloat, default 0.05

Accepted relative error on the FAD-corrected Fourier amplitude, to be +used as success diagnostics. +Should be +` +stdtheor = 2 / np.sqrt(n) +std = (average_corrected_fourier_diff / n).std() +np.abs((std - stdtheor) / stdtheor) < tolerance +`

+
+
strictbool, default False

Decide what to do if the condition on tolerance is not met. If True, +raise a RuntimeError. If False, just throw a warning.

+
+
output_filestr, default None

Name of an output file (any extension automatically recognized by +Astropy is fine)

+
+
+
+
+
+ +
+
+stingray.deadtime.fad.get_periodograms_from_FAD_results(FAD_results, kind='ptot')[source]
+

Get Stingray periodograms from FAD results.

+
+
Parameters:
+
+
FAD_resultsastropy.table.Table object or str

Results from calculate_FAD_correction, either as a Table or an output +file name

+
+
kindstr, one of [‘ptot’, ‘pds1’, ‘pds2’, ‘cs’]

Kind of periodogram to get (E.g., ‘ptot’ -> PDS from the sum of the two +light curves, ‘cs’ -> cospectrum, etc.)

+
+
+
+
Returns:
+
+
resultsAveragedCrossspectrum or Averagedpowerspectrum object

The periodogram.

+
+
+
+
+
+ +
+
+stingray.deadtime.model.A(k, r0, td, tb, tau)[source]
+

Term in Eq. 39 in Zhang+95.

+
+ +
+
+stingray.deadtime.model.A0(r0, td, tb, tau)[source]
+

Term in Eq. 38 in Zhang+95.

+
+ +
+
+stingray.deadtime.model.B(k, r0, td, tb, tau)[source]
+

Term in Eq. 45 in Zhang+95.

+
+ +
+
+stingray.deadtime.model.Gn(x, n)[source]
+

Term in Eq. 34 in Zhang+95.

+
+ +
+
+stingray.deadtime.model.check_A(rate, td, tb, max_k=100, save_to=None)[source]
+

Test that A is well-behaved.

+

Check that Ak ->r0**2tb**2 for k->infty, as per Eq. 43 in +Zhang+95.

+
+ +
+
+stingray.deadtime.model.check_B(rate, td, tb, max_k=100, save_to=None)[source]
+

Check that B->0 for k->infty.

+
+ +
+
+stingray.deadtime.model.factorial(n, exact=False)[source]
+

The factorial of a number or array of numbers.

+

The factorial of non-negative integer n is the product of all +positive integers less than or equal to n:

+
n! = n * (n - 1) * (n - 2) * ... * 1
+
+
+
+
Parameters:
+
+
nint or array_like of ints

Input values. If n < 0, the return value is 0.

+
+
exactbool, optional

If True, calculate the answer exactly using long integer arithmetic. +If False, result is approximated in floating point rapidly using the +gamma function. +Default is False.

+
+
+
+
Returns:
+
+
nffloat or int or ndarray

Factorial of n, as integer or float depending on exact.

+
+
+
+
+

Notes

+

For arrays with exact=True, the factorial is computed only once, for +the largest input, with each other result computed in the process. +The output dtype is increased to int64 or object if necessary.

+

With exact=False the factorial is approximated using the gamma +function:

+
+\[n! = \Gamma(n+1)\]
+

Examples

+
>>> import numpy as np
+>>> from scipy.special import factorial
+>>> arr = np.array([3, 4, 5])
+>>> factorial(arr, exact=False)
+array([   6.,   24.,  120.])
+>>> factorial(arr, exact=True)
+array([  6,  24, 120])
+>>> factorial(5, exact=True)
+120
+
+
+
+ +
+
+stingray.deadtime.model.h(k, n, td, tb, tau)[source]
+

Term in Eq. 35 in Zhang+95.

+
+ +
+
+stingray.deadtime.model.heaviside(x)[source]
+

Heaviside function. Returns 1 if x>0, and 0 otherwise.

+

Examples

+
>>> heaviside(2)
+1
+>>> heaviside(-1)
+0
+
+
+
+ +
+
+stingray.deadtime.model.pds_model_zhang(N, rate, td, tb, limit_k=60)[source]
+

Calculate the dead-time-modified power spectrum.

+
+
Parameters:
+
+
Nint

The number of spectral bins

+
+
ratefloat

Incident count rate

+
+
tdfloat

Dead time

+
+
tbfloat

Bin time of the light curve

+
+
+
+
Returns:
+
+
freqsarray of floats

Frequency array

+
+
powerarray of floats

Power spectrum

+
+
+
+
Other Parameters:
+
+
limit_kint

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
+
+
+
+ +
+
+stingray.deadtime.model.r_det(td, r_i)[source]
+

Calculate detected countrate given dead time and incident countrate.

+
+ +
+
+stingray.deadtime.model.r_in(td, r_0)[source]
+

Calculate incident countrate given dead time and detected countrate.

+
+ +
+
+stingray.deadtime.model.safe_B(k, r0, td, tb, tau, limit_k=60)[source]
+

Term in Eq. 39 in Zhang+95, with a cut in the maximum k.

+

This can be risky. Only use if B is really 0 for high k.

+
+ +
+
+
+
+

Higher-Order Fourier and Spectral Timing Products

+

These classes implement higher-order Fourier analysis products (e.g. Bispectrum) and +Spectral Timing related methods taking advantage of both temporal and spectral information in +modern data sets.

+
+

Bispectrum

+
+
+class stingray.bispectrum.Bispectrum(lc, maxlag=None, window=None, scale='biased')[source]
+

Makes a Bispectrum object from a stingray.Lightcurve.

+

Bispectrum is a higher order time series analysis method and is calculated by +indirect method as Fourier transform of triple auto-correlation function also called as +3rd order cumulant.

+
+
Parameters:
+
+
lcstingray.Lightcurve object

The light curve data for bispectrum calculation.

+
+
maxlagint, optional, default None

Maximum lag on both positive and negative sides of +3rd order cumulant (Similar to lags in correlation). +if None, max lag is set to one-half of length of light curve.

+
+
window{uniform, parzen, hamming, hanning, triangular, welch, blackman, flat-top}, optional, default ‘uniform’

Type of window function to apply to the data.

+
+
scale{biased, unbiased}, optional, default biased

Flag to decide biased or unbiased normalization for 3rd order cumulant function.

+
+
+
+
+

References

+

1) The biphase explained: understanding the asymmetries invcoupled Fourier components of astronomical timeseries +by Thomas J. Maccarone Department of Physics, Box 41051, Science Building, Texas Tech University, Lubbock TX 79409-1051 +School of Physics and Astronomy, University of Southampton, SO16 4ES

+

2) T. S. Rao, M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time +Series Models, Lecture Notes in Statistics, Volume 24, D. Brillinger, S. Fienberg, +J. Gani, J. Hartigan, K. Krickeberg, Editors, Springer-Verlag, New York, NY, 1984.

+

3) Matlab version of bispectrum under following link. +https://www.mathworks.com/matlabcentral/fileexchange/60-bisp3cum

+

Examples

+
>> from stingray.lightcurve import Lightcurve
+>> from stingray.bispectrum import Bispectrum
+>> lc = Lightcurve([1,2,3,4,5],[2,3,1,1,2])
+>> bs = Bispectrum(lc,maxlag=1)
+>> bs.lags
+array([-1.,  0.,  1.])
+>> bs.freq
+array([-0.5,  0.,  0.5])
+>> bs.cum3
+array([[-0.2976,  0.1024,  0.1408],
+    [ 0.1024,  0.144, -0.2976],
+    [ 0.1408, -0.2976,  0.1024]])
+>> bs.bispec_mag
+array([[ 1.26336794,  0.0032   ,  0.0032    ],
+    [ 0.0032   ,  0.16     ,  0.0032    ],
+    [ 0.0032   ,  0.0032   ,  1.26336794]])
+>> bs.bispec_phase
+array([[ -9.65946229e-01,   2.25347190e-14,   3.46944695e-14],
+    [  0.00000000e+00,   3.14159265e+00,   0.00000000e+00],
+    [ -3.46944695e-14,  -2.25347190e-14,   9.65946229e-01]])
+
+
+
+
Attributes:
+
+
lcstingray.Lightcurve object

The light curve data to compute the Bispectrum.

+
+
fsfloat

Sampling frequencies

+
+
nint

Total Number of samples of light curve observations.

+
+
maxlagint

Maximum lag on both positive and negative sides of +3rd order cumulant (similar to lags in correlation)

+
+
signalnumpy.ndarray

Row vector of light curve counts for matrix operations

+
+
scale{biased, unbiased}

Flag to decide biased or unbiased normalization for 3rd order cumulant function.

+
+
lagsnumpy.ndarray

An array of time lags for which 3rd order cumulant is calculated

+
+
freqnumpy.ndarray

An array of freq values for Bispectrum.

+
+
cum3numpy.ndarray

A maxlag*2+1 x maxlag*2+1 matrix containing 3rd order cumulant data for different lags.

+
+
bispecnumpy.ndarray

A`` maxlag*2+1 x maxlag*2+1`` matrix containing bispectrum data for different frequencies.

+
+
bispec_magnumpy.ndarray

Magnitude of the bispectrum

+
+
bispec_phasenumpy.ndarray

Phase of the bispectrum

+
+
+
+
+
+
+plot_cum3(axis=None, save=False, filename=None)[source]
+

Plot the 3rd order cumulant as function of time lags using matplotlib. +Plot the cum3 attribute on a graph with the lags attribute on x-axis and y-axis and +cum3 on z-axis

+
+
Parameters:
+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() method.

+
+
savebool, optionalm, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name and path of the image to save. Depends on the boolean save.

+
+
+
+
Returns:
+
+
pltmatplotlib.pyplot object

Reference to plot, call show() to display it

+
+
+
+
+
+ +
+
+plot_mag(axis=None, save=False, filename=None)[source]
+

Plot the magnitude of bispectrum as function of freq using matplotlib. +Plot the bispec_mag attribute on a graph with freq attribute on the x-axis and y-axis and +the bispec_mag attribute on the z-axis.

+
+
Parameters:
+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() method.

+
+
savebool, optional, default False

If True, save the figure with specified filename and path.

+
+
filenamestr

File name and path of the image to save. Depends on the bool save.

+
+
+
+
Returns:
+
+
pltmatplotlib.pyplot object

Reference to plot, call show() to display it

+
+
+
+
+
+ +
+
+plot_phase(axis=None, save=False, filename=None)[source]
+

Plot the phase of bispectrum as function of freq using matplotlib. +Plot the bispec_phase attribute on a graph with phase attribute on the x-axis and +y-axis and the bispec_phase attribute on the z-axis.

+
+
Parameters:
+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() function.

+
+
savebool, optional, default False

If True, save the figure with specified filename and path.

+
+
filenamestr

File name and path of the image to save. Depends on the bool save.

+
+
+
+
Returns:
+
+
pltmatplotlib.pyplot object

Reference to plot, call show() to display it

+
+
+
+
+
+ +
+ +
+
+
+

Covariancespectrum

+
+
+class stingray.Covariancespectrum(data, dt=None, band_interest=None, ref_band_interest=None, std=None)[source]
+

Compute a covariance spectrum for the data. The input data can be +either in event data or pre-made light curves. Event data can either +be in the form of a numpy.ndarray with (time stamp, energy) pairs or +a stingray.events.EventList object. If light curves are formed ahead +of time, then a list of stingray.Lightcurve objects should be passed to the +object, ideally one light curve for each band of interest.

+

For the case where the data is input as a list of stingray.Lightcurve objects, +the reference band(s) should either be

+
    +
  1. a single stingray.Lightcurve object,

  2. +
  3. a list of stingray.Lightcurve objects with the reference band for each band +of interest pre-made, or

  4. +
  5. None, in which case reference bands will +formed by combining all light curves except for the band of interest.

  6. +
+

In the case of event data, band_interest and ref_band_interest can +be (multiple) pairs of energies, and the light curves for the bands of +interest and reference bands will be produced dynamically.

+
+
Parameters:
+
+
data{numpy.ndarray | stingray.events.EventList object | list of stingray.Lightcurve objects}

data contains the time series data, either in the form of a +2-D array of (time stamp, energy) pairs for event data, or as a +list of light curves. +Note : The event list must be in sorted order with respect to the +times of arrivals.

+
+
dtfloat

The time resolution of the stingray.Lightcurve formed from the energy bin. +Only used if data is an event list.

+
+
band_interest{None, iterable of tuples}

If None, all possible energy values will be assumed to be of +interest, and a covariance spectrum in the highest resolution +will be produced. +Note: if the input is a list of stingray.Lightcurve objects, then the user may +supply their energy values here, for construction of a +reference band.

+
+
ref_band_interest{None, tuple, stingray.Lightcurve, list of stingray.Lightcurve objects}

Defines the reference band to be used for comparison with the +bands of interest. If None, all bands except the band of +interest will be used for each band of interest, respectively. +Alternatively, a tuple can be given for event list data, which will +extract the reference band (always excluding the band of interest), +or one may put in a single stingray.Lightcurve object to be used (the same +for each band of interest) or a list of stingray.Lightcurve objects, one for +each band of interest.

+
+
stdfloat or np.array or list of numbers

The term std is used to calculate the excess variance of a band. +If std is set to None, default Poisson case is taken and the +std is calculated as mean(lc)**0.5. In the case of a single +float as input, the same is used as the standard deviation which +is also used as the std. And if the std is an iterable of +numbers, their mean is used for the same purpose.

+
+
+
+
+

References

+

[1] Wilkinson, T. and Uttley, P. (2009), Accretion disc variability in the hard state of black hole X-ray binaries. Monthly Notices of the Royal Astronomical Society, 397: 666–676. doi: 10.1111/j.1365-2966.2009.15008.x

+

Examples

+

See the notebooks repository for +detailed notebooks on the code.

+
+
Attributes:
+
+
unnorm_covarnp.ndarray

An array of arrays with mid point band_interest and their +covariance. It is the array-form of the dictionary energy_covar. +The covariance values are unnormalized.

+
+
covarnp.ndarray

Normalized covariance spectrum.

+
+
covar_errornp.ndarray

Errors of the normalized covariance spectrum.

+
+
+
+
+
+ +
+
+
+

AveragedCovariancespectrum

+
+
+class stingray.AveragedCovariancespectrum(data, segment_size, dt=None, band_interest=None, ref_band_interest=None, std=None)[source]
+

Compute a covariance spectrum for the data, defined in [covar spectrum]_ Equation 15.

+
+
Parameters:
+
+
data{numpy.ndarray | list of stingray.Lightcurve objects}

data contains the time series data, either in the form of a +2-D array of (time stamp, energy) pairs for event data, or as a +list of stingray.Lightcurve objects. +Note : The event list must be in sorted order with respect to the +times of arrivals.

+
+
segment_sizefloat

The length of each segment in the averaged covariance spectrum. +The number of segments will be calculated automatically using the +total length of the data set and the segment_size defined here.

+
+
dtfloat

The time resolution of the stingray.Lightcurve formed +from the energy bin. Only used if data is an event list.

+
+
band_interest{None, iterable of tuples}

If None, all possible energy values will be assumed to be of +interest, and a covariance spectrum in the highest resolution +will be produced. +Note: if the input is a list of stingray.Lightcurve objects, +then the user may supply their energy values here, for construction of a +reference band.

+
+
ref_band_interest{None, tuple, stingray.Lightcurve, list of stingray.Lightcurve objects}

Defines the reference band to be used for comparison with the +bands of interest. If None, all bands except the band of +interest will be used for each band of interest, respectively. +Alternatively, a tuple can be given for event list data, which will +extract the reference band (always excluding the band of interest), +or one may put in a single stingray.Lightcurve object to be used (the same +for each band of interest) or a list of stingray.Lightcurve objects, one for +each band of interest.

+
+
stdfloat or np.array or list of numbers

The term std is used to calculate the excess variance of a band. +If std is set to None, default Poisson case is taken and the +std is calculated as mean(lc)**0.5. In the case of a single +float as input, the same is used as the standard deviation which +is also used as the std. And if the std is an iterable of +numbers, their mean is used for the same purpose.

+
+
+
+
+

References

+
+
Attributes:
+
+
unnorm_covarnp.ndarray

An array of arrays with mid point band_interest and their +covariance. It is the array-form of the dictionary energy_covar. +The covariance values are unnormalized.

+
+
covarnp.ndarray

Normalized covariance spectrum.

+
+
covar_errornp.ndarray

Errors of the normalized covariance spectrum.

+
+
+
+
+
+ +
+
+
+

VarEnergySpectrum

+

Abstract base class for spectral timing products including +both variability and spectral information.

+
+
+class stingray.varenergyspectrum.VarEnergySpectrum(events, freq_interval, energy_spec, ref_band=None, bin_time=1, use_pi=False, segment_size=None, events2=None, return_complex=False)[source]
+
+
+property energy
+

Give the centers of the energy intervals.

+
+ +
+
+from_astropy_table(*args, **kwargs)[source]
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+from_pandas(*args, **kwargs)[source]
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+from_xarray(*args, **kwargs)[source]
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+main_array_attr = 'energy'
+

Base class for variability-energy spectrum.

+

This class is only a base for the various variability spectra, and it’s +not to be instantiated by itself.

+
+
Parameters:
+
+
eventsstingray.events.EventList object

event list

+
+
freq_interval[f0, f1], floats

the frequency range over which calculating the variability quantity

+
+
energy_speclist or tuple (emin, emax, N, type)

if a list is specified, this is interpreted as a list of bin edges; +if a tuple is provided, this will encode the minimum and maximum +energies, the number of intervals, and lin or log.

+
+
+
+
Other Parameters:
+
+
ref_band[emin, emax], floats; default None

minimum and maximum energy of the reference band. If None, the +full band is used.

+
+
use_pibool, default False

Use channel instead of energy

+
+
events2stingray.events.EventList object

event list for the second channel, if not the same. Useful if the +reference band has to be taken from another detector.

+
+
return_complex: bool, default False

In spectra that produce complex values, return the whole spectrum. +Otherwise, the absolute value will be returned.

+
+
+
+
Attributes:
+
+
events1array-like

list of events used to produce the spectrum

+
+
events2array-like

if the spectrum requires it, second list of events

+
+
freq_intervalarray-like

interval of frequencies used to calculate the spectrum

+
+
energy_intervals[[e00, e01], [e10, e11], ...]

energy intervals used for the spectrum

+
+
spectrumarray-like

the spectral values, corresponding to each energy interval

+
+
spectrum_errorarray-like

the error bars corresponding to spectrum

+
+
energyarray-like

The centers of energy intervals

+
+
+
+
+
+ +
+ +
+
+
+

RmsEnergySpectrum

+
+
+stingray.varenergyspectrum.RmsEnergySpectrum
+

alias of RmsSpectrum

+
+ +
+
+
+

LagEnergySpectrum

+
+
+stingray.varenergyspectrum.LagEnergySpectrum
+

alias of LagSpectrum

+
+ +
+
+
+

ExcessVarianceSpectrum

+
+
+class stingray.varenergyspectrum.ExcessVarianceSpectrum(events, freq_interval, energy_spec, bin_time=1, use_pi=False, segment_size=None, normalization='fvar')[source]
+

Calculate the Excess Variance spectrum.

+

For each energy interval, calculate the excess variance in the specified +frequency range.

+
+
Parameters:
+
+
eventsstingray.events.EventList object

event list

+
+
freq_interval[f0, f1], list of float

the frequency range over which calculating the variability quantity

+
+
energy_speclist or tuple (emin, emax, N, type)

if a list is specified, this is interpreted as a list of bin edges; +if a tuple is provided, this will encode the minimum and maximum +energies, the number of intervals, and lin or log.

+
+
+
+
Other Parameters:
+
+
ref_band[emin, emax], floats; default None

minimum and maximum energy of the reference band. If None, the +full band is used.

+
+
use_pibool, default False

Use channel instead of energy

+
+
+
+
Attributes:
+
+
events1array-like

list of events used to produce the spectrum

+
+
freq_intervalarray-like

interval of frequencies used to calculate the spectrum

+
+
energy_intervals[[e00, e01], [e10, e11], ...]

energy intervals used for the spectrum

+
+
spectrumarray-like

the spectral values, corresponding to each energy interval

+
+
spectrum_errorarray-like

the errorbars corresponding to spectrum

+
+
+
+
+
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+ +
+
+property energy
+

Give the centers of the energy intervals.

+
+ +
+
+from_astropy_table(*args, **kwargs)
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+from_pandas(*args, **kwargs)
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+from_xarray(*args, **kwargs)
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

It is strongly advisable to define such attributes and columns +using the standard attributes of the wanted StingrayObject (e.g. +time, pi, etc. for EventList)

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+main_array_attr = 'energy'
+

Base class for variability-energy spectrum.

+

This class is only a base for the various variability spectra, and it’s +not to be instantiated by itself.

+
+
Parameters:
+
+
eventsstingray.events.EventList object

event list

+
+
freq_interval[f0, f1], floats

the frequency range over which calculating the variability quantity

+
+
energy_speclist or tuple (emin, emax, N, type)

if a list is specified, this is interpreted as a list of bin edges; +if a tuple is provided, this will encode the minimum and maximum +energies, the number of intervals, and lin or log.

+
+
+
+
Other Parameters:
+
+
ref_band[emin, emax], floats; default None

minimum and maximum energy of the reference band. If None, the +full band is used.

+
+
use_pibool, default False

Use channel instead of energy

+
+
events2stingray.events.EventList object

event list for the second channel, if not the same. Useful if the +reference band has to be taken from another detector.

+
+
return_complex: bool, default False

In spectra that produce complex values, return the whole spectrum. +Otherwise, the absolute value will be returned.

+
+
+
+
Attributes:
+
+
events1array-like

list of events used to produce the spectrum

+
+
events2array-like

if the spectrum requires it, second list of events

+
+
freq_intervalarray-like

interval of frequencies used to calculate the spectrum

+
+
energy_intervals[[e00, e01], [e10, e11], ...]

energy intervals used for the spectrum

+
+
spectrumarray-like

the spectral values, corresponding to each energy interval

+
+
spectrum_errorarray-like

the error bars corresponding to spectrum

+
+
energyarray-like

The centers of energy intervals

+
+
+
+
+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+to_astropy_table() Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+
+

Utilities

+

Commonly used utility functionality, including Good Time Interval operations and input/output +helper methods.

+
+

Statistical Functions

+
+
+stingray.stats.a_from_pf(p)[source]
+

Fractional amplitude of modulation from pulsed fraction

+

If the pulsed profile is defined as +p = mean * (1 + a * sin(phase)),

+

we define “pulsed fraction” as 2a/b, where b = mean + a is the maximum and +a is the amplitude of the modulation.

+

Hence, a = pf / (2 - pf)

+

Examples

+
>>> a_from_pf(1)
+1.0
+>>> a_from_pf(0)
+0.0
+
+
+
+ +
+
+stingray.stats.a_from_ssig(ssig, ncounts)[source]
+

Amplitude of a sinusoid corresponding to a given Z/PDS value

+

From Leahy et al. 1983, given a pulse profile +p = lambda * (1 + a * sin(phase)), +The theoretical value of Z^2_n is Ncounts / 2 * a^2

+

Note that if there are multiple sinusoidal components, one can use +a = sqrt(sum(a_l)) +(Bachetti+2021b)

+

Examples

+
>>> a_from_ssig(150, 30000)
+0.1
+
+
+
+ +
+
+stingray.stats.amplitude_upper_limit(pmeas, counts, n=1, c=0.95, fft_corr=False, nyq_ratio=0)[source]
+

Upper limit on a sinusoidal modulation, given a measured power in the PDS/Z search.

+

Eq. 10 in Vaughan+94 and a_from_ssig: they are equivalent but Vaughan+94 +corrects further for the response inside an FFT bin and at frequencies close +to Nyquist. These two corrections are added by using fft_corr=True and +nyq_ratio to the correct \(f / f_{Nyq}\) of the FFT peak

+

To understand the meaning of this amplitude: if the modulation is described by:

+

..math:: p = overline{p} (1 + a * sin(x))

+

this function returns a.

+

If it is a sum of sinusoidal harmonics instead +..math:: p = overline{p} (1 + sum_l a_l * sin(lx)) +a is equivalent to \(\sqrt(\sum_l a_l^2)\).

+

See power_upper_limit

+
+
Parameters:
+
+
pmeas: float

The measured value of power

+
+
counts: int

The number of counts in the light curve used to calculate the spectrum

+
+
+
+
Returns:
+
+
a: float

The modulation amplitude that could produce P>pmeas with 1 - c probability

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain pmeas. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence value for the probability (e.g. 0.95 = 95%)

+
+
fft_corr: bool

Apply a correction for the expected power concentrated in an FFT bin, +which is about 0.773 on average (it’s 1 at the center of the bin, 2/pi +at the bin edge.

+
+
nyq_ratio: float

Ratio of the frequency of this feature with respect to the Nyquist +frequency. Important to know when dealing with FFTs, because the FFT +response decays between 0 and f_Nyq similarly to the response inside +a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq

+
+
+
+
+

Examples

+
>>> aup = amplitude_upper_limit(40, 30000, 1, 0.99)
+>>> aup_nyq = amplitude_upper_limit(40, 30000, 1, 0.99, nyq_ratio=1)
+>>> np.isclose(aup_nyq, aup / (2 / np.pi))
+True
+>>> aup_corr = amplitude_upper_limit(40, 30000, 1, 0.99, fft_corr=True)
+>>> np.isclose(aup_corr, aup / np.sqrt(0.773))
+True
+
+
+
+ +
+
+stingray.stats.classical_pvalue(power, nspec)[source]
+

Note: +This is stingray’s original implementation of the probability +distribution for the power spectrum. It is superseded by the +implementation in pds_probability for practical purposes, but +remains here for backwards compatibility and for its educational +value as a clear, explicit implementation of the correct +probability distribution.

+

Compute the probability of detecting the current power under +the assumption that there is no periodic oscillation in the data.

+

This computes the single-trial p-value that the power was +observed under the null hypothesis that there is no signal in +the data.

+

Important: the underlying assumptions that make this calculation valid +are:

+
    +
  1. the powers in the power spectrum follow a chi-square distribution

  2. +
  3. the power spectrum is normalized according to [Leahy 1983]_, such +that the powers have a mean of 2 and a variance of 4

  4. +
  5. there is only white noise in the light curve. That is, there is no +aperiodic variability that would change the overall shape of the power +spectrum.

  6. +
+

Also note that the p-value is for a single trial, i.e. the power +currently being tested. If more than one power or more than one power +spectrum are being tested, the resulting p-value must be corrected for the +number of trials (Bonferroni correction).

+

Mathematical formulation in [Groth 1975]_. +Original implementation in IDL by Anna L. Watts.

+
+
Parameters:
+
+
powerfloat

The squared Fourier amplitude of a spectrum to be evaluated

+
+
nspecint

The number of spectra or frequency bins averaged in power. +This matters because averaging spectra or frequency bins increases +the signal-to-noise ratio, i.e. makes the statistical distributions +of the noise narrower, such that a smaller power might be very +significant in averaged spectra even though it would not be in a single +power spectrum.

+
+
+
+
Returns:
+
+
pvalfloat

The classical p-value of the observed power being consistent with +the null hypothesis of white noise

+
+
+
+
+

References

+
    +
  • +
  • +
+
+ +
+
+stingray.stats.equivalent_gaussian_Nsigma(p)[source]
+

Number of Gaussian sigmas corresponding to tail probability.

+

This function computes the value of the characteristic function of a +standard Gaussian distribution for the tail probability equivalent to the +provided p-value, and turns this value into units of standard deviations +away from the Gaussian mean. This allows the user to make a statement +about the signal such as “I detected this pulsation at 4.1 sigma

+

The example values below are obtained by brute-force integrating the +Gaussian probability density function using the mpmath library +between Nsigma and +inf.

+

Examples

+
>>> np.isclose(equivalent_gaussian_Nsigma(0.15865525393145707), 1,
+...                                       atol=0.01)
+True
+>>> np.isclose(equivalent_gaussian_Nsigma(0.0013498980316301035), 3,
+...                                       atol=0.01)
+True
+>>> np.isclose(equivalent_gaussian_Nsigma(9.865877e-10), 6,
+...                                       atol=0.01)
+True
+>>> np.isclose(equivalent_gaussian_Nsigma(6.22096e-16), 8,
+...                                       atol=0.01)
+True
+>>> np.isclose(equivalent_gaussian_Nsigma(3.0567e-138), 25, atol=0.1)
+True
+
+
+
+ +
+
+stingray.stats.fold_detection_level(nbin, epsilon=0.01, ntrial=1)[source]
+

Return the detection level for a folded profile.

+

See Leahy et al. (1983).

+
+
Parameters:
+
+
nbinint

The number of bins in the profile

+
+
epsilonfloat, default 0.01

The fractional probability that the signal has been produced +by noise

+
+
+
+
Returns:
+
+
detlevfloat

The epoch folding statistics corresponding to a probability +epsilon * 100 % that the signal has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.fold_profile_logprobability(stat, nbin, ntrial=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
statfloat

The epoch folding statistics

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
logpfloat

The log-probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.fold_profile_probability(stat, nbin, ntrial=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
statfloat

The epoch folding statistics

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
pfloat

The probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.p_multitrial_from_single_trial(p1, n)[source]
+

Calculate a multi-trial p-value from a single-trial one.

+

Calling p the probability of a single success, the Binomial +distributions says that the probability at least one outcome +in n trials is

+
+\[P(k\geq 1) = \sum_{k\geq 1} \binom{n}{k} p^k (1-p)^{(n-k)}\]
+

or more simply, using P(k ≥ 0) = 1

+
+\[P(k\geq 1) = 1 - \binom{n}{0} (1-p)^n = 1 - (1-p)^n\]
+
+
Parameters:
+
+
p1float

The significance at which we reject the null hypothesis on +each single trial.

+
+
nint

The number of trials

+
+
+
+
Returns:
+
+
pnfloat

The significance at which we reject the null hypothesis +after multiple trials

+
+
+
+
+
+ +
+
+stingray.stats.p_single_trial_from_p_multitrial(pn, n)[source]
+

Calculate the single-trial p-value from a total p-value

+

Let us say that we want to reject a null hypothesis at the +pn level, after executing n different measurements. +This might be the case because, e.g., we +want to have a 1% probability of detecting a signal in an +entire power spectrum, and we need to correct the detection +level accordingly.

+

The typical procedure is dividing the initial probability +(often called _epsilon_) by the number of trials. This is +called the Bonferroni correction and it is often a good +approximation, when pn is low: p1 = pn / n.

+

However, if pn is close to 1, this approximation gives +incorrect results.

+

Here we calculate this probability by inverting the Binomial +problem. Given that (see p_multitrial_from_single_trial) +the probability of getting more than one hit in n trials, +given the single-trial probability p, is

+
+\[P (k \geq 1) = 1 - (1 - p)^n,\]
+

we get the single trial probability from the multi-trial one +from

+
+\[p = 1 - (1 - P)^{(1/n)}\]
+

This is also known as Šidák correction.

+
+
Parameters:
+
+
pnfloat

The significance at which we want to reject the null +hypothesis after multiple trials

+
+
nint

The number of trials

+
+
+
+
Returns:
+
+
p1float

The significance at which we reject the null hypothesis on +each single trial.

+
+
+
+
+
+ +
+
+stingray.stats.pds_detection_level(epsilon=0.01, ntrial=1, n_summed_spectra=1, n_rebin=1)[source]
+

Detection level for a PDS.

+

Return the detection level (with probability 1 - epsilon) for a Power +Density Spectrum of nbins bins, normalized a la Leahy (1983), based on +the 2-dof \({\chi}^2\) statistics, corrected for rebinning (n_rebin) +and multiple PDS averaging (n_summed_spectra)

+
+
Parameters:
+
+
epsilonfloat

The single-trial probability value(s)

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of independent trials (the independent bins of the PDS)

+
+
n_summed_spectraint

The number of power density spectra that have been averaged to obtain +this power level

+
+
n_rebinint

The number of power density bins that have been averaged to obtain +this power level

+
+
+
+
+

Examples

+
>>> np.isclose(pds_detection_level(0.1), 4.6, atol=0.1)
+True
+>>> np.allclose(pds_detection_level(0.1, n_rebin=[1]), [4.6], atol=0.1)
+True
+
+
+
+ +
+
+stingray.stats.pds_probability(level, ntrial=1, n_summed_spectra=1, n_rebin=1)[source]
+

Give the probability of a given power level in PDS.

+

Return the probability of a certain power level in a Power Density +Spectrum of nbins bins, normalized a la Leahy (1983), based on +the 2-dof \({\chi}^2\) statistics, corrected for rebinning (n_rebin) +and multiple PDS averaging (n_summed_spectra)

+
+
Parameters:
+
+
levelfloat or array of floats

The power level for which we are calculating the probability

+
+
+
+
Returns:
+
+
epsilonfloat

The probability value(s)

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of independent trials (the independent bins of the PDS)

+
+
n_summed_spectraint

The number of power density spectra that have been averaged to obtain +this power level

+
+
n_rebinint

The number of power density bins that have been averaged to obtain +this power level

+
+
+
+
+
+ +
+
+stingray.stats.pf_from_a(a)[source]
+

Pulsed fraction from fractional amplitude of modulation.

+

If the pulsed profile is defined as +p = mean * (1 + a * sin(phase)),

+

we define “pulsed fraction” as 2a/b, where b = mean + a is the maximum and +a is the amplitude of the modulation.

+

Hence, pulsed fraction = 2a/(1+a)

+

Examples

+
>>> pf_from_a(1)
+1.0
+>>> pf_from_a(0)
+0.0
+
+
+
+ +
+
+stingray.stats.pf_from_ssig(ssig, ncounts)[source]
+

Estimate pulsed fraction for a sinusoid from a given Z or PDS power.

+

See a_from_ssig and pf_from_a for more details

+

Examples

+
>>> round(a_from_pf(pf_from_ssig(150, 30000)), 1)
+0.1
+
+
+
+ +
+
+stingray.stats.pf_upper_limit(*args, **kwargs)[source]
+

Upper limit on pulsed fraction, given a measured power in the PDS/Z search.

+

See power_upper_limit and pf_from_ssig. +All arguments are the same as amplitude_upper_limit

+
+
Parameters:
+
+
pmeas: float

The measured value of power

+
+
counts: int

The number of counts in the light curve used to calculate the spectrum

+
+
+
+
Returns:
+
+
pf: float

The pulsed fraction that could produce P>pmeas with 1 - c probability

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain pmeas. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence value for the probability (e.g. 0.95 = 95%)

+
+
fft_corr: bool

Apply a correction for the expected power concentrated in an FFT bin, +which is about 0.773 on average (it’s 1 at the center of the bin, 2/pi +at the bin edge.

+
+
nyq_ratio: float

Ratio of the frequency of this feature with respect to the Nyquist +frequency. Important to know when dealing with FFTs, because the FFT +response decays between 0 and f_Nyq similarly to the response inside +a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq

+
+
+
+
+

Examples

+
>>> pfup = pf_upper_limit(40, 30000, 1, 0.99)
+>>> np.isclose(pfup, 0.13, atol=0.01)
+True
+
+
+
+ +
+
+stingray.stats.phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=1)[source]
+

Return the detection level for a phase dispersion minimization +periodogram..

+
+
Parameters:
+
+
nsamplesint

The number of time bins in the light curve

+
+
nbinint

The number of bins in the profile

+
+
epsilonfloat, default 0.01

The fractional probability that the signal has been produced +by noise

+
+
+
+
Returns:
+
+
detlevfloat

The epoch folding statistics corresponding to a probability +epsilon * 100 % that the signal has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.phase_dispersion_logprobability(stat, nsamples, nbin, ntrial=1)[source]
+

Calculate the log-probability of a peak in a phase dispersion +minimization periodogram, due to noise.

+

Uses the beta-distribution from Czerny-Schwarzendorf (1997).

+
+
Parameters:
+
+
statfloat

The value of the PDM inverse peak

+
+
nsamplesint

The number of samples in the time series

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
logpfloat

The log-probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.phase_dispersion_probability(stat, nsamples, nbin, ntrial=1)[source]
+

Calculate the probability of a peak in a phase dispersion +minimization periodogram, due to noise.

+

Uses the beta-distribution from Czerny-Schwarzendorf (1997).

+
+
Parameters:
+
+
statfloat

The value of the PDM inverse peak

+
+
nsamplesint

The number of samples in the time series

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
pfloat

The probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.power_confidence_limits(preal, n=1, c=0.95)[source]
+

Confidence limits on power, given a (theoretical) signal power.

+

This is to be used when we expect a given power (e.g. from the pulsed +fraction measured in previous observations) and we want to know the +range of values the measured power could take to a given confidence level. +Adapted from Vaughan et al. 1994, noting that, after appropriate +normalization of the spectral stats, the distribution of powers in the PDS +and the Z^2_n searches is always described by a noncentral chi squared +distribution.

+
+
Parameters:
+
+
preal: float

The theoretical signal-generated value of power

+
+
+
+
Returns:
+
+
pmeas: [float, float]

The upper and lower confidence interval (a, 1-a) on the measured power

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain the result. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence level (e.g. 0.95=95%)

+
+
+
+
+

Examples

+
>>> cl = power_confidence_limits(150, c=0.84)
+>>> np.allclose(cl, [127, 176], atol=1)
+True
+
+
+
+ +
+
+stingray.stats.power_upper_limit(pmeas, n=1, c=0.95)[source]
+

Upper limit on signal power, given a measured power in the PDS/Z search.

+

Adapted from Vaughan et al. 1994, noting that, after appropriate +normalization of the spectral stats, the distribution of powers in the PDS +and the Z^2_n searches is always described by a noncentral chi squared +distribution.

+

Note that Vaughan+94 gives p(pmeas | preal), while we are interested in +p(real | pmeas), which is not described by the NCX2 stat. Rather than +integrating the CDF of this probability distribution, we start from a +reasonable approximation and fit to find the preal that gives pmeas as +a (e.g.95%) confidence limit.

+

As Vaughan+94 shows, this power is always larger than the observed one. +This is because we are looking for the maximum signal power that, +combined with noise powers, would give the observed power. This involves +the possibility that noise powers partially cancel out some signal power.

+
+
Parameters:
+
+
pmeas: float

The measured value of power

+
+
+
+
Returns:
+
+
psig: float

The signal power that could produce P>pmeas with 1 - c probability

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain pmeas. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence value for the probability (e.g. 0.95 = 95%)

+
+
+
+
+

Examples

+
>>> pup = power_upper_limit(40, 1, 0.99)
+>>> np.isclose(pup, 75, atol=2)
+True
+
+
+
+ +
+
+stingray.stats.ssig_from_a(a, ncounts)[source]
+

Theoretical power in the Z or PDS search for a sinusoid of amplitude a.

+

From Leahy et al. 1983, given a pulse profile +p = lambda * (1 + a * sin(phase)), +The theoretical value of Z^2_n is Ncounts / 2 * a^2

+

Note that if there are multiple sinusoidal components, one can use +a = sqrt(sum(a_l)) +(Bachetti+2021b)

+

Examples

+
>>> round(ssig_from_a(0.1, 30000), 1)
+150.0
+
+
+
+ +
+
+stingray.stats.ssig_from_pf(pf, ncounts)[source]
+

Theoretical power in the Z or PDS for a sinusoid of pulsed fraction pf.

+

See ssig_from_a and a_from_pf for more details

+

Examples

+
>>> round(ssig_from_pf(pf_from_a(0.1), 30000), 1)
+150.0
+
+
+
+ +
+
+stingray.stats.z2_n_detection_level(n=2, epsilon=0.01, ntrial=1, n_summed_spectra=1)[source]
+

Return the detection level for the Z^2_n statistics.

+

See Buccheri et al. (1983), Bendat and Piersol (1971).

+
+
Parameters:
+
+
nint, default 2

The n in $Z^2_n$ (number of harmonics, including the fundamental)

+
+
epsilonfloat, default 0.01

The fractional probability that the signal has been produced by noise

+
+
+
+
Returns:
+
+
detlevfloat

The epoch folding statistics corresponding to a probability +epsilon * 100 % that the signal has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
n_summed_spectraint

Number of Z_2^n periodograms that are being averaged

+
+
+
+
+
+ +
+
+stingray.stats.z2_n_logprobability(z2, n, ntrial=1, n_summed_spectra=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
z2float

A Z^2_n statistics value

+
+
nint, default 2

The n in $Z^2_n$ (number of harmonics, including the fundamental)

+
+
+
+
Returns:
+
+
pfloat

The probability that the Z^2_n value has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
n_summed_spectraint

Number of Z_2^n periodograms that were averaged to obtain z2

+
+
+
+
+
+ +
+
+stingray.stats.z2_n_probability(z2, n, ntrial=1, n_summed_spectra=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
z2float

A Z^2_n statistics value

+
+
nint, default 2

The n in $Z^2_n$ (number of harmonics, including the fundamental)

+
+
+
+
Returns:
+
+
pfloat

The probability that the Z^2_n value has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
n_summed_spectraint

Number of Z_2^n periodograms that were averaged to obtain z2

+
+
+
+
+
+ +
+
+

GTI Functionality

+
+
+stingray.gti.append_gtis(gti0, gti1)[source]
+

Union of two non-overlapping GTIs.

+

If the two GTIs “touch”, this is tolerated and the touching GTIs are +joined in a single one.

+
+
Parameters:
+
+
gti0: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
gti1: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
+
+
Returns:
+
+
gti: 2-d float array

The newly created GTI array.

+
+
+
+
+

Examples

+
>>> np.allclose(append_gtis([[0, 1]], [[2, 3]]), [[0, 1], [2, 3]])
+True
+>>> np.allclose(append_gtis([[0, 1], [4, 5]], [[2, 3]]),
+...             [[0, 1], [2, 3], [4, 5]])
+True
+>>> np.allclose(append_gtis([[0, 1]], [[1, 3]]), [[0, 3]])
+True
+
+
+
+ +
+
+stingray.gti.bin_intervals_from_gtis(gtis, segment_size, time, dt=None, fraction_step=1, epsilon=0.001)[source]
+

Compute start/stop times of equal time intervals, compatible with GTIs, +and map them to the indices of an array of time stamps.

+

Used to start each FFT/PDS/cospectrum from the start of a GTI, +and stop before the next gap in data (end of GTI). +In this case, it is necessary to specify the time array containing the +times of the light curve bins. +Returns start and stop bins of the intervals to use for the PDS.

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
segment_sizefloat

Length of each time segment.

+
+
timearray-like

Array of time stamps.

+
+
+
+
Returns:
+
+
spectrum_start_binsarray-like

List of starting bins in the original time array to use in spectral +calculations.

+
+
spectrum_stop_binsarray-like

List of end bins to use in the spectral calculations.

+
+
+
+
Other Parameters:
+
+
dtfloat, default median(diff(time))

Time resolution of the light curve.

+
+
epsilonfloat, default 0.001

The tolerance, in fraction of dt, for the comparisons at the +borders.

+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving +window), this indicates the ratio between step step and +segment_size (e.g. 0.5 means that the window shifts by half +segment_size).

+
+
+
+
+

Examples

+
>>> time = np.arange(0.5, 13.5)
+
+
+
>>> gtis = [[0, 5], [6, 8], [9, 10]]
+
+
+
>>> segment_size = 2
+
+
+
>>> start_bins, stop_bins = bin_intervals_from_gtis(gtis,segment_size,time)
+
+
+
>>> np.allclose(start_bins, [0, 2, 6])
+True
+>>> np.allclose(stop_bins, [2, 4, 8])
+True
+>>> np.allclose(time[start_bins[0]:stop_bins[0]], [0.5, 1.5])
+True
+>>> np.allclose(time[start_bins[1]:stop_bins[1]], [2.5, 3.5])
+True
+
+
+
+ +
+
+stingray.gti.check_gtis(gti)[source]
+

Check if GTIs are well-behaved.

+

Check that:

+
    +
  1. the shape of the GTI array is correct;

  2. +
  3. no start > end

  4. +
  5. no overlaps.

  6. +
+
+
Parameters:
+
+
gtilist

A list of GTI (start, stop) pairs extracted from the FITS file.

+
+
+
+
Raises:
+
+
TypeError

If GTIs are of the wrong shape

+
+
ValueError

If GTIs have overlapping or displaced values

+
+
+
+
+
+ +
+
+stingray.gti.check_separate(gti0, gti1)[source]
+

Check if two GTIs do not overlap.

+
+
Parameters:
+
+
gti0: 2-d float array

List of GTIs of form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
gti1: 2-d float array

List of GTIs of form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
+
+
Returns:
+
+
separate: bool

True if GTIs are mutually exclusive, False if not.

+
+
+
+
+

Examples

+
>>> gti0 = [[0, 10]]
+>>> gti1 = [[20, 30]]
+>>> check_separate(gti0, gti1)
+True
+>>> gti0 = [[0, 10]]
+>>> gti1 = [[0, 10]]
+>>> check_separate(gti0, gti1)
+False
+>>> gti0 = [[0, 10]]
+>>> gti1 = [[10, 20]]
+>>> check_separate(gti0, gti1)
+True
+>>> gti0 = [[0, 11]]
+>>> gti1 = [[10, 20]]
+>>> check_separate(gti0, gti1)
+False
+>>> gti0 = [[0, 11]]
+>>> gti1 = [[10, 20]]
+>>> check_separate(gti1, gti0)
+False
+>>> gti0 = [[0, 10], [30, 40]]
+>>> gti1 = [[11, 28]]
+>>> check_separate(gti0, gti1)
+True
+
+
+
+ +
+
+stingray.gti.create_gti_from_condition(time, condition, safe_interval=0, dt=None)[source]
+

Create a GTI list from a time array and a boolean mask (condition).

+
+
Parameters:
+
+
timearray-like

Array containing time stamps.

+
+
conditionarray-like

An array of bools, of the same length of time. +A possible condition can be, e.g., the result of lc > 0.

+
+
+
+
Returns:
+
+
gtis[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

The newly created GTIs.

+
+
+
+
Other Parameters:
+
+
safe_intervalfloat or [float, float]

A safe interval to exclude at both ends (if single float) or the start +and the end (if pair of values) of GTIs.

+
+
dtfloat

The width (in sec) of each bin of the time array. Can be irregular.

+
+
+
+
+
+ +
+
+stingray.gti.create_gti_mask(time, gtis, safe_interval=None, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001)[source]
+

Create GTI mask.

+

Assumes that no overlaps are present between GTIs

+
+
Parameters:
+
+
timenumpy.ndarray

An array of time stamps

+
+
gtis[[g0_0, g0_1], [g1_0, g1_1], ...], float array-like

The list of GTIs

+
+
+
+
Returns:
+
+
maskbool array

A mask labelling all time stamps that are included in the GTIs versus +those that are not.

+
+
new_gtisNx2 array

An array of new GTIs created by this function.

+
+
+
+
Other Parameters:
+
+
safe_intervalfloat or [float, float], default None

A safe interval to exclude at both ends (if single float) or the start +and the end (if pair of values) of GTIs. If None, no safe interval +is applied to data.

+
+
min_lengthfloat

An optional minimum length for the GTIs to be applied. Only GTIs longer +than min_length will be considered when creating the mask.

+
+
return_new_gtisbool

If True`, return the list of new GTIs (if min_length > 0)

+
+
dtfloat

Time resolution of the data, i.e. the interval between time stamps.

+
+
epsilonfloat

Fraction of dt that is tolerated at the borders of a GTI.

+
+
+
+
+
+ +
+
+stingray.gti.create_gti_mask_complete(time, gtis, safe_interval=0, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001)[source]
+

Create GTI mask, allowing for non-constant dt.

+

Assumes that no overlaps are present between GTIs.

+
+
Parameters:
+
+
timenumpy.ndarray

An array of time stamps.

+
+
gtis[[g0_0, g0_1], [g1_0, g1_1], ...], float array-like

The list of GTIs.

+
+
+
+
Returns:
+
+
maskbool array

A mask labelling all time stamps that are included in the GTIs versus +those that are not.

+
+
new_gtisNx2 array

An array of new GTIs created by this function.

+
+
+
+
Other Parameters:
+
+
safe_intervalfloat or [float, float]

A safe interval to exclude at both ends (if single float) or the start +and the end (if pair of values) of GTIs.

+
+
min_lengthfloat

An optional minimum length for the GTIs to be applied. Only GTIs longer +than min_length will be considered when creating the mask.

+
+
return_new_gtisbool

If True, return the list of new GTIs (if min_length > 0).

+
+
dtfloat

Time resolution of the data, i.e. the interval between time stamps.

+
+
epsilonfloat

Fraction of dt that is tolerated at the borders of a GTI.

+
+
+
+
+
+ +
+
+stingray.gti.create_gti_mask_jit(time, gtis, mask, gti_mask, min_length=0)[source]
+

Compiled and fast function to create GTI mask.

+
+
Parameters:
+
+
timenumpy.ndarray

An array of time stamps

+
+
gtisiterable of (start, stop) pairs

The list of GTIs.

+
+
masknumpy.ndarray

A pre-assigned array of zeros of the same shape as time +Records whether a time stamp is part of the GTIs.

+
+
gti_masknumpy.ndarray

A pre-assigned array zeros in the same shape as time; records +start/stop of GTIs.

+
+
min_lengthfloat

An optional minimum length for the GTIs to be applied. Only GTIs longer +than min_length will be considered when creating the mask.

+
+
+
+
+
+ +
+
+stingray.gti.cross_gtis(gti_list)[source]
+

From multiple GTI lists, extract the common intervals EXACTLY.

+
+
Parameters:
+
+
gti_listarray-like

List of GTI arrays, each one in the usual format +[[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
+
+
Returns:
+
+
gti0: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +The newly created GTIs.

+
+
+
+
+
+

See also

+
+
cross_two_gtis

Extract the common intervals from two GTI lists EXACTLY

+
+
+
+

Examples

+
>>> gti1 = np.array([[1, 2]])
+>>> gti2 = np.array([[1, 2]])
+>>> newgti = cross_gtis([gti1, gti2])
+>>> np.allclose(newgti, [[1, 2]])
+True
+>>> gti1 = np.array([[1, 4]])
+>>> gti2 = np.array([[1, 2], [2, 4]])
+>>> newgti = cross_gtis([gti1, gti2])
+>>> np.allclose(newgti, [[1, 4]])
+True
+
+
+
+ +
+
+stingray.gti.cross_two_gtis(gti0, gti1)[source]
+

Extract the common intervals from two GTI lists EXACTLY.

+
+
Parameters:
+
+
gti0iterable of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]
+
gti1iterable of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

The two lists of GTIs to be crossed.

+
+
+
+
Returns:
+
+
gtis[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

The newly created GTIs.

+
+
+
+
+
+

See also

+
+
cross_gtis

From multiple GTI lists, extract common intervals EXACTLY

+
+
+
+

Examples

+
>>> gti1 = np.array([[1, 2]])
+>>> gti2 = np.array([[1, 2]])
+>>> newgti = cross_two_gtis(gti1, gti2)
+>>> np.allclose(newgti, [[1, 2]])
+True
+>>> gti1 = np.array([[1, 4]])
+>>> gti2 = np.array([[1, 2], [2, 4]])
+>>> newgti = cross_two_gtis(gti1, gti2)
+>>> np.allclose(newgti, [[1, 4]])
+True
+
+
+
+ +
+
+stingray.gti.generate_indices_of_gti_boundaries(times, gti, dt=0)[source]
+

Get the indices of events from different GTIs of the observation.

+

This is a generator, yielding the boundaries of each GTI and the +corresponding indices in the time array.

+
+
Parameters:
+
+
timesfloat np.array

Array of times.

+
+
gti[[gti00, gti01], [gti10, gti11], …]

Good time intervals.

+
+
+
+
Yields:
+
+
g0: float

Start time of current GTI.

+
+
g1: float

End time of current GTI.

+
+
startidx: int

Start index of the current GTI in the time array.

+
+
stopidx: int

End index of the current GTI in the time array. Note that this is +larger by one, so that time[startidx:stopidx] returns the correct +time interval.

+
+
+
+
Other Parameters:
+
+
dtfloat

If times are uniformly binned, this is the binning time.

+
+
+
+
+

Examples

+
>>> times = [0.1, 0.2, 0.5, 0.8, 1.1]
+>>> gtis = [[0, 0.55], [0.6, 2.1]]
+>>> vals = generate_indices_of_gti_boundaries(times, gtis)
+>>> v0 = next(vals)
+>>> np.allclose(v0[:2], gtis[0])
+True
+>>> np.allclose(v0[2:], [0, 3])
+True
+
+
+
+ +
+
+stingray.gti.generate_indices_of_segment_boundaries_binned(times, gti, segment_size, dt=None)[source]
+

Get the indices of binned times from different segments of the observation.

+

This is a generator, yielding the boundaries of each segment and the +corresponding indices in the time array

+
+
Parameters:
+
+
timesfloat np.array

Array of times, uniformly sampled

+
+
gti[[gti00, gti01], [gti10, gti11], …]

good time intervals

+
+
segment_sizefloat

length of segments

+
+
+
+
Yields:
+
+
t0: float

First time value, from the time array, in the current segment

+
+
t1: float

Last time value, from the time array, in the current segment

+
+
startidx: int

Start index of the current segment in the time array

+
+
stopidx: int

End index of the current segment in the time array. Note that this is +larger by one, so that time[startidx:stopidx] returns the correct +time interval.

+
+
+
+
+

Examples

+
>>> times = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
+>>> gtis = [[0.05, 0.55]]
+>>> vals = generate_indices_of_segment_boundaries_binned(times, gtis, 0.5, dt=0.1)
+>>> v0 = next(vals)
+>>> np.allclose(v0[:2], [0.05, 0.55])
+True
+>>> np.allclose(v0[2:], [0, 5])
+True
+
+
+
+ +
+
+stingray.gti.generate_indices_of_segment_boundaries_unbinned(times, gti, segment_size)[source]
+

Get the indices of events from different segments of the observation.

+

This is a generator, yielding the boundaries of each segment and the +corresponding indices in the time array.

+
+
Parameters:
+
+
timesfloat np.array

Array of times.

+
+
gti[[gti00, gti01], [gti10, gti11], …]

Good time intervals.

+
+
segment_sizefloat

Length of segments.

+
+
+
+
Yields:
+
+
t0: float

Start time of current segment.

+
+
t1: float

End time of current segment.

+
+
startidx: int

Start index of the current segment in the time array.

+
+
stopidx: int

End index of the current segment in the time array. Note that this is +larger by one, so that time[startidx:stopidx] returns the correct +time interval.

+
+
+
+
+

Examples

+
>>> times = [0.1, 0.2, 0.5, 0.8, 1.1]
+>>> gtis = [[0, 0.55], [0.6, 2.1]]
+>>> vals = generate_indices_of_segment_boundaries_unbinned(times, gtis, 0.5)
+>>> v0 = next(vals)
+>>> np.allclose(v0[:2], [0, 0.5])
+True
+>>> # Note: 0.5 is not included in the interval
+>>> np.allclose(v0[2:], [0, 2])
+True
+>>> v1 = next(vals)
+>>> np.allclose(v1[:2], [0.6, 1.1])
+True
+>>> # Again: 1.1 is not included in the interval
+>>> np.allclose(v1[2:], [3, 4])
+True
+
+
+
+ +
+
+stingray.gti.get_btis(gtis, start_time=None, stop_time=None)[source]
+

From GTIs, obtain bad time intervals, i.e. the intervals not covered +by the GTIs.

+

GTIs have to be well-behaved, in the sense that they have to pass +check_gtis.

+
+
Parameters:
+
+
gtisiterable

A list of GTIs.

+
+
start_timefloat

Optional start time of the overall observation (e.g. can be earlier +than the first time stamp in gtis).

+
+
stop_timefloat

Optional stop time of the overall observation (e.g. can be later than +the last time stamp in``gtis``).

+
+
+
+
Returns:
+
+
btisnumpy.ndarray

A list of bad time intervals.

+
+
+
+
+
+ +
+
+stingray.gti.get_gti_extensions_from_pattern(lchdulist, name_pattern='GTI')[source]
+

Gets the GTI extensions that match a given pattern.

+
+
Parameters:
+
+
lchdulist: `:class:astropy.io.fits.HDUList` object

The full content of a FITS file.

+
+
name_pattern: str

Pattern indicating all the GTI extensions.

+
+
+
+
Returns:
+
+
ext_list: list

List of GTI extension numbers whose name matches the input pattern.

+
+
+
+
+

Examples

+
>>> from astropy.io import fits
+>>> start = np.arange(0, 300, 100)
+>>> stop = start + 50.
+>>> s1 = fits.Column(name='START', array=start, format='D')
+>>> s2 = fits.Column(name='STOP', array=stop, format='D')
+>>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI005XX')
+>>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='GTI00501')
+>>> lchdulist = fits.HDUList([hdu1])
+>>> gtiextn = get_gti_extensions_from_pattern(
+...     lchdulist, name_pattern='GTI005[0-9]+')
+>>> np.allclose(gtiextn, [1])
+True
+
+
+
+ +
+
+stingray.gti.get_gti_from_all_extensions(lchdulist, accepted_gtistrings=['GTI'], det_numbers=None)[source]
+

Intersect the GTIs from the all accepted extensions.

+
+
Parameters:
+
+
lchdulist: `:class:astropy.io.fits.HDUList` object

The full content of a FITS file.

+
+
accepted_gtistrings: list of str

Base strings of GTI extensions. For missions adding the detector number +to GTI extensions like, e.g., XMM and Chandra, this function +automatically adds the detector number and looks for all matching +GTI extensions (e.g. “STDGTI” will also retrieve “STDGTI05”; “GTI0” +will also retrieve “GTI00501”).

+
+
+
+
Returns:
+
+
gti_list: [[gti00, gti01], [gti10, gti11], …]

List of good time intervals, as the intersection of all matching GTIs. +If there are two matching extensions, with GTIs [[0, 50], [100, 200]] +and [[40, 70]] respectively, this function will return [[40, 50]].

+
+
+
+
+

Examples

+
>>> from astropy.io import fits
+>>> s1 = fits.Column(name='START', array=[0, 100, 200], format='D')
+>>> s2 = fits.Column(name='STOP', array=[50, 150, 250], format='D')
+>>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501')
+>>> s1 = fits.Column(name='START', array=[200, 300], format='D')
+>>> s2 = fits.Column(name='STOP', array=[250, 350], format='D')
+>>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='STDGTI05')
+>>> lchdulist = fits.HDUList([hdu1, hdu2])
+>>> gti = get_gti_from_all_extensions(
+...     lchdulist, accepted_gtistrings=['GTI0', 'STDGTI'],
+...     det_numbers=[5])
+>>> np.allclose(gti, [[200, 250]])
+True
+
+
+
+ +
+
+stingray.gti.get_gti_from_hdu(gtihdu)[source]
+

Get the GTIs from a given FITS extension.

+
+
Parameters:
+
+
gtihdu: `:class:astropy.io.fits.TableHDU` object

The GTI HDU.

+
+
+
+
Returns:
+
+
gti_list: [[gti00, gti01], [gti10, gti11], …]

List of good time intervals.

+
+
+
+
+

Examples

+
>>> from astropy.io import fits
+>>> start = np.arange(0, 300, 100)
+>>> stop = start + 50.
+>>> s1 = fits.Column(name='START', array=start, format='D')
+>>> s2 = fits.Column(name='STOP', array=stop, format='D')
+>>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501')
+>>> gti = get_gti_from_hdu(hdu1)
+>>> np.allclose(gti, [[0, 50], [100, 150], [200, 250]])
+True
+
+
+
+ +
+
+stingray.gti.get_gti_lengths(gti)[source]
+

Calculate the length of each Good Time Interval.

+
+
Parameters:
+
+
gti[[gti00, gti01], [gti10, gti11], …]

The list of good time intervals.

+
+
+
+
Returns:
+
+
lengthsnp.ndarray

List of GTI lengths.

+
+
+
+
+

Examples

+
>>> gti = [[0, 1000], [1000, 1001], [3000, 3020]]
+>>> np.allclose(get_gti_lengths(gti), [1000, 1, 20])
+True
+
+
+
+ +
+
+stingray.gti.get_total_gti_length(gti, minlen=0)[source]
+

Calculate the total exposure during Good Time Intervals.

+
+
Parameters:
+
+
gti[[gti00, gti01], [gti10, gti11], …]

The list of good time intervals.

+
+
minlenfloat

Minimum GTI length to consider.

+
+
+
+
Returns:
+
+
lengthfloat

The total exposure during GTIs.

+
+
+
+
+

Examples

+
>>> gti = [[0, 1000], [1000, 1001], [3000, 3020]]
+>>> get_total_gti_length(gti)
+1021
+>>> get_total_gti_length(gti, minlen=5)
+1020
+
+
+
+ +
+
+stingray.gti.gti_border_bins(gtis, time, dt=None, epsilon=0.001)[source]
+

Find the indices in a time array corresponding to the borders of GTIs.

+

GTIs shorter than the bin time are not returned.

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
timearray-like

Array of time stamps.

+
+
+
+
Returns:
+
+
spectrum_start_binsarray-like

List of starting bins of each GTI

+
+
spectrum_stop_binsarray-like

List of stop bins of each GTI. The elements corresponding to these bins +should not be included.

+
+
+
+
Other Parameters:
+
+
dtfloat or array of floats. Default median(diff(time))

Time resolution of the light curve. Can be an array of the same dimension +as time

+
+
epsilonfloat, default 0.001

The tolerance, in fraction of dt, for the comparisons at the +borders.

+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving +window), this indicates the ratio between step step and +segment_size (e.g. 0.5 means that the window shifts by half +segment_size).

+
+
+
+
+

Examples

+
>>> times = np.arange(0.5, 13.5)
+
+
+
>>> gti_border_bins([[16., 18.]], times)
+Traceback (most recent call last):
+    ...
+ValueError: Invalid time interval for the given GTIs
+
+
+
>>> start_bins, stop_bins = gti_border_bins(
+...    [[0, 5], [6, 8]], times)
+
+
+
>>> np.allclose(start_bins, [0, 6])
+True
+>>> np.allclose(stop_bins, [5, 8])
+True
+>>> np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5])
+True
+>>> np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5])
+True
+
+
+
>>> start_bins, stop_bins = gti_border_bins(
+...    [[0, 5], [6, 13]], times, dt=np.ones_like(times))
+
+
+
>>> np.allclose(start_bins, [0, 6])
+True
+>>> np.allclose(stop_bins, [5, 13])
+True
+>>> np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5])
+True
+>>> np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5])
+True
+
+
+
+ +
+
+stingray.gti.join_gtis(gti0, gti1)[source]
+

Union of two GTIs.

+

If GTIs are mutually exclusive, it calls append_gtis. Otherwise we put +the extremes of partially overlapping GTIs on an ideal line and look at the +number of opened and closed intervals. When the number of closed and opened +intervals is the same, the full GTI is complete and we close it.

+

In practice, we assign to each opening time of a GTI the value -1, and +the value 1 to each closing time; when the cumulative sum is zero, the +GTI has ended. The timestamp after each closed GTI is the start of a new +one.

+
(cumsum)   -1   -2         -1   0   -1 -2           -1  -2  -1        0
+GTI A      |-----:----------|   :    |--:------------|   |---:--------|
+FINAL GTI  |-----:--------------|    |--:--------------------:--------|
+GTI B            |--------------|       |--------------------|
+
+
+
+
Parameters:
+
+
gti0: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
gti1: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
+
+
Returns:
+
+
gti: 2-d float array

The newly created GTI

+
+
+
+
+
+ +
+
+stingray.gti.load_gtis(fits_file, gtistring=None)[source]
+

Load Good Time Intervals (GTIs) from HDU EVENTS of file fits_file. +File is expected to be in FITS format.

+
+
Parameters:
+
+
fits_filestr

File name and path for the FITS file with the GTIs to be loaded.

+
+
gtistringstr

If the name of the FITS extension with the GTIs is not GTI, the +alternative name can be set with this parameter.

+
+
+
+
Returns:
+
+
gti_listlist

A list of GTI (start, stop) pairs extracted from the FITS file.

+
+
+
+
+
+ +
+
+stingray.gti.time_intervals_from_gtis(gtis, segment_size, fraction_step=1, epsilon=1e-05)[source]
+

Compute start/stop times of equal time intervals, compatible with GTIs.

+

Used to start each FFT/PDS/cospectrum from the start of a GTI, +and stop before the next gap in data (end of GTI).

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
segment_sizefloat

Length of the time segments

+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving +window), this indicates the ratio between step step and +segment_size (e.g. 0.5 means that the window shifts by half +segment_size).

+
+
+
+
Returns:
+
+
spectrum_start_timesarray-like

List of starting times to use in the spectral calculations.

+
+
spectrum_stop_timesarray-like

List of end times to use in the spectral calculations.

+
+
+
+
+
+ +
+
+

I/O Functionality

+
+
+stingray.io.common_name(str1, str2, default='common')[source]
+

Strip two strings of the letters not in common.

+

Filenames must be of same length and only differ by a few letters.

+
+
Parameters:
+
+
str1str
+
str2str
+
+
+
Returns:
+
+
common_strstr

A string containing the parts of the two names in common

+
+
+
+
Other Parameters:
+
+
defaultstr

The string to return if common_str is empty

+
+
+
+
+
+ +
+
+stingray.io.get_file_extension(fname)[source]
+

Get the extension from the file name.

+

If g-zipped, add ‘.gz’ to extension.

+

Examples

+
>>> get_file_extension('ciao.tar')
+'.tar'
+>>> get_file_extension('ciao.tar.gz')
+'.tar.gz'
+>>> get_file_extension('ciao.evt.gz')
+'.evt.gz'
+>>> get_file_extension('ciao.a.tutti.evt.gz')
+'.evt.gz'
+
+
+
+ +
+
+stingray.io.get_key_from_mission_info(info, key, default, inst=None, mode=None)[source]
+

Get the name of a header key or table column from the mission database.

+

Many entries in the mission database have default values that can be +altered for specific instruments or observing modes. Here, if there is a +definition for a given instrument and mode, we take that, otherwise we use +the default).

+
+
Parameters:
+
+
infodict

Nested dictionary containing all the information for a given mission. +It can be nested, e.g. contain some info for a given instrument, and +for each observing mode of that instrument.

+
+
keystr

The key to read from the info dictionary

+
+
defaultobject

The default value. It can be of any type, depending on the expected +type for the entry.

+
+
+
+
Returns:
+
+
retvalobject

The wanted entry from the info dictionary

+
+
+
+
Other Parameters:
+
+
inststr

Instrument

+
+
modestr

Observing mode

+
+
+
+
+

Examples

+
>>> info = {'ecol': 'PI', "A": {"ecol": "BLA"}, "C": {"M1": {"ecol": "X"}}}
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode=None)
+'BLA'
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="B", mode=None)
+'PI'
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode="M1")
+'BLA'
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="C", mode="M1")
+'X'
+>>> get_key_from_mission_info(info, "ghghg", "BU", inst="C", mode="M1")
+'BU'
+
+
+
+ +
+
+stingray.io.high_precision_keyword_read(hdr, keyword)[source]
+

Read FITS header keywords, also if split in two.

+

In the case where the keyword is split in two, like

+
+

MJDREF = MJDREFI + MJDREFF

+
+

in some missions, this function returns the summed value. Otherwise, the +content of the single keyword

+
+
Parameters:
+
+
hdrdict_like

The FITS header structure, or a dictionary

+
+
keywordstr

The key to read in the header

+
+
+
+
Returns:
+
+
valuelong double

The value of the key, or None if something went wrong

+
+
+
+
+
+ +
+
+stingray.io.lcurve_from_fits(fits_file, gtistring='GTI', timecolumn='TIME', ratecolumn=None, ratehdu=1, fracexp_limit=0.9, outfile=None, noclobber=False, outdir=None)[source]
+

Load a lightcurve from a fits file.

+
+

Note

+

FITS light curve handling is still under testing. +Absolute times might be incorrect depending on the light curve format.

+
+
+
Parameters:
+
+
fits_filestr

File name of the input light curve in FITS format

+
+
+
+
Returns:
+
+
datadict

Dictionary containing all information needed to create a +stingray.Lightcurve object

+
+
+
+
Other Parameters:
+
+
gtistringstr

Name of the GTI extension in the FITS file

+
+
timecolumnstr

Name of the column containing times in the FITS file

+
+
ratecolumnstr

Name of the column containing rates in the FITS file

+
+
ratehdustr or int

Name or index of the FITS extension containing the light curve

+
+
fracexp_limitfloat

Minimum exposure fraction allowed

+
+
noclobberbool

If True, do not overwrite existing files

+
+
+
+
+
+ +
+
+stingray.io.load_events_and_gtis(fits_file, additional_columns=None, gtistring=None, gti_file=None, hduname=None, column=None)[source]
+

Load event lists and GTIs from one or more files.

+

Loads event list from HDU EVENTS of file fits_file, with Good Time +intervals. Optionally, returns additional columns of data from the same +HDU of the events.

+
+
Parameters:
+
+
fits_filestr
+
+
+
Returns:
+
+
retvalsObject with the following attributes:
+
ev_listarray-like

Event times in Mission Epoch Time

+
+
gti_list: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

GTIs in Mission Epoch Time

+
+
additional_data: dict

A dictionary, where each key is the one specified in additional_colums. +The data are an array with the values of the specified column in the +fits file.

+
+
t_startfloat

Start time in Mission Epoch Time

+
+
t_stopfloat

Stop time in Mission Epoch Time

+
+
pi_listarray-like

Raw Instrument energy channels

+
+
cal_pi_listarray-like

Calibrated PI channels (those that can be easily converted to energy +values, regardless of the instrument setup.)

+
+
energy_listarray-like

Energy of each photon in keV (only for NuSTAR, NICER, XMM)

+
+
instrstr

Name of the instrument (e.g. EPIC-pn or FPMA)

+
+
missionstr

Name of the instrument (e.g. XMM or NuSTAR)

+
+
mjdreffloat

MJD reference time for the mission

+
+
headerstr

Full header of the FITS file, for debugging purposes

+
+
detector_idarray-like, int

Detector id for each photon (e.g. each of the CCDs composing XMM’s or +Chandra’s instruments)

+
+
+
+
+
+
Other Parameters:
+
+
additional_columns: list of str, optional

A list of keys corresponding to the additional columns to extract from +the event HDU (ex.: [‘PI’, ‘X’])

+
+
gtistringstr

Comma-separated list of accepted GTI extensions (default GTI,STDGTI), +with or without appended integer number denoting the detector

+
+
gti_filestr, default None

External GTI file

+
+
hdunamestr or int, default 1

Name of the HDU containing the event list

+
+
columnstr, default None

The column containing the time values. If None, we use the name +specified in the mission database, and if there is nothing there, +“TIME”

+
+
return_limits: bool, optional

Return the TSTART and TSTOP keyword values

+
+
+
+
+
+ +
+
+stingray.io.mkdir_p(path)[source]
+

Safe mkdir function, found at [so-mkdir].

+
+
Parameters:
+
+
pathstr

The absolute path to the directory to be created

+
+
+
+
+

Notes

+ +
+ +
+
+stingray.io.read_header_key(fits_file, key, hdu=1)[source]
+

Read the header key key from HDU hdu of the file fits_file.

+
+
Parameters:
+
+
fits_file: str

The file name and absolute path to the event file.

+
+
key: str

The keyword to be read

+
+
+
+
Returns:
+
+
valueobject

The value stored under key in fits_file

+
+
+
+
Other Parameters:
+
+
hduint

Index of the HDU extension from which the header key to be read.

+
+
+
+
+
+ +
+
+stingray.io.read_mission_info(mission=None)[source]
+

Search the relevant information about a mission in xselect.mdb.

+
+ +
+
+stingray.io.ref_mjd(fits_file, hdu=1)[source]
+

Read MJDREFF, MJDREFI or, if failed, MJDREF, from the FITS header.

+
+
Parameters:
+
+
fits_filestr

The file name and absolute path to the event file.

+
+
+
+
Returns:
+
+
mjdrefnumpy.longdouble

the reference MJD

+
+
+
+
Other Parameters:
+
+
hduint

Index of the HDU extension from which the header key to be read.

+
+
+
+
+
+ +
+
+stingray.io.rough_calibration(pis, mission)[source]
+

Make a rough conversion betwenn PI channel and energy.

+

Only works for NICER, NuSTAR, and XMM.

+
+
Parameters:
+
+
pis: float or array of floats

PI channels in data

+
+
mission: str

Mission name

+
+
+
+
Returns:
+
+
energiesfloat or array of floats

Energy values

+
+
+
+
+

Examples

+
>>> rough_calibration(0, 'nustar')
+1.6
+>>> rough_calibration(0.0, 'ixpe')
+0.0
+>>> # It's case-insensitive
+>>> rough_calibration(1200, 'XMm')
+1.2
+>>> rough_calibration(10, 'asDf')
+Traceback (most recent call last):
+    ...
+ValueError: Mission asdf not recognized
+>>> rough_calibration(100, 'nicer')
+1.0
+
+
+
+ +
+
+stingray.io.savefig(filename, **kwargs)[source]
+

Save a figure plotted by matplotlib.

+

Note : This function is supposed to be used after the plot +function. Otherwise it will save a blank image with no plot.

+
+
Parameters:
+
+
filenamestr

The name of the image file. Extension must be specified in the +file name. For example filename with png extension will give a +rasterized image while .pdf extension will give a vectorized +output.

+
+
kwargskeyword arguments

Keyword arguments to be passed to savefig function of +matplotlib.pyplot. For example use bbox_inches='tight' to +remove the undesirable whitepace around the image.

+
+
+
+
+
+ +
+
+stingray.io.split_numbers(number, shift=0)[source]
+

Split high precision number(s) into doubles.

+

You can specify the number of shifts to move the decimal point.

+
+
Parameters:
+
+
number: long double

The input high precision number which is to be split

+
+
+
+
Returns:
+
+
number_I: double

First part of high precision number

+
+
number_F: double

Second part of high precision number

+
+
+
+
Other Parameters:
+
+
shift: integer

Move the cut by shift decimal points to the right (left if negative)

+
+
+
+
+

Examples

+
>>> n = 12.34
+>>> i, f = split_numbers(n)
+>>> i == 12
+True
+>>> np.isclose(f, 0.34)
+True
+>>> split_numbers(n, 2)
+(12.34, 0.0)
+>>> split_numbers(n, -1)
+(10.0, 2.34)
+
+
+
+ +
+
+

Other Utility Functions

+
+
+stingray.utils.baseline_als(x, y, lam=None, p=None, niter=10, return_baseline=False, offset_correction=False)[source]
+

Baseline Correction with Asymmetric Least Squares Smoothing.

+
+
Parameters:
+
+
xarray-like

the sample time/number/position

+
+
yarray-like

the data series corresponding to x

+
+
lamfloat

the lambda parameter of the ALS method. This control how much the +baseline can adapt to local changes. A higher value corresponds to a +stiffer baseline

+
+
pfloat

the asymmetry parameter of the ALS method. This controls the overall +slope tolerated for the baseline. A higher value correspond to a +higher possible slope

+
+
+
+
Returns:
+
+
y_subtractedarray-like, same size as y

The initial time series, subtracted from the trend

+
+
baselinearray-like, same size as y

Fitted baseline. Only returned if return_baseline is True

+
+
+
+
Other Parameters:
+
+
niterint

The number of iterations to perform

+
+
return_baselinebool

return the baseline?

+
+
offset_correctionbool

also correct for an offset to align with the running mean of the scan

+
+
+
+
+

Examples

+
>>> x = np.arange(0, 10, 0.01)
+>>> y = np.zeros_like(x) + 10
+>>> ysub = baseline_als(x, y)
+>>> np.all(ysub < 0.001)
+True
+
+
+
+ +
+
+stingray.utils.check_isallfinite(array)[source]
+

Check if all elements of an array are finite.

+

Calls _check_isallfinite_numba if numba is installed, otherwise +it uses np.isfinite.

+

Examples

+
>>> check_isallfinite([1, 2, 3])
+True
+>>> check_isallfinite([1, np.inf, 3])
+False
+>>> check_isallfinite([1, np.nan, 3])
+False
+
+
+
+ +
+
+stingray.utils.contiguous_regions(condition)[source]
+

Find contiguous True regions of the boolean array condition.

+

Return a 2D array where the first column is the start index of the region +and the second column is the end index, found on [so-contiguous].

+
+
Parameters:
+
+
conditionbool array
+
+
+
Returns:
+
+
idx[[i0_0, i0_1], [i1_0, i1_1], ...]

A list of integer couples, with the start and end of each True blocks +in the original array

+
+
+
+
+

Notes

+ +
+ +
+
+stingray.utils.create_window(N, window_type='uniform')[source]
+

A method to create window functions commonly used in signal processing.

+

Windows supported are: +Hamming, Hanning, uniform (rectangular window), triangular window, +blackmann window among others.

+
+
Parameters:
+
+
Nint

Total number of data points in window. If negative, abs is taken.

+
+
window_type{uniform, parzen, hamming, hanning, triangular, welch, blackmann, flat-top}, optional, default uniform

Type of window to create.

+
+
+
+
Returns:
+
+
window: numpy.ndarray

Window function of length N.

+
+
+
+
+
+ +
+
+stingray.utils.excess_variance(lc, normalization='fvar')[source]
+

Calculate the excess variance.

+

Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source +intrinsic variance: if a light curve has a total variance of \(S^2\), +and each point has an error bar \(\sigma_{err}\), the excess variance +is defined as

+
+\[\sigma_{XS} = S^2 - \overline{\sigma_{err}}^2;\]
+

the normalized excess variance is the excess variance divided by the +square of the mean intensity:

+
+\[\sigma_{NXS} = \dfrac{\sigma_{XS}}{\overline{x}^2};\]
+

the fractional mean square variability amplitude, or +\(F_{var}\), is finally defined as

+
+\[F_{var} = \sqrt{\dfrac{\sigma_{XS}}{\overline{x}^2}}\]
+
+
Parameters:
+
+
lca Lightcurve object
+
normalizationstr

if fvar, return the fractional mean square variability \(F_{var}\). +If none, return the unnormalized excess variance variance +\(\sigma_{XS}\). If norm_xs, return the normalized excess variance +\(\sigma_{XS}\)

+
+
Returns
+
——-
+
var_xsfloat
+
var_xs_errfloat
+
+
+
+
+ +
+
+stingray.utils.find_nearest(array, value)[source]
+

Return the array value that is closest to the input value (Abigail Stevens: +Thanks StackOverflow!)

+
+
Parameters:
+
+
arraynp.array of ints or floats

1-D array of numbers to search through. Should already be sorted +from low values to high values.

+
+
valueint or float

The value you want to find the closest to in the array.

+
+
+
+
Returns:
+
+
array[idx]int or float

The array value that is closest to the input value.

+
+
idxint

The index of the array of the closest value.

+
+
+
+
+
+ +
+
+stingray.utils.get_random_state(random_state=None)[source]
+

Return a Mersenne Twister pseudo-random number generator.

+
+
Parameters:
+
+
seedinteger or numpy.random.RandomState, optional, default None
+
+
+
Returns:
+
+
random_statemtrand.RandomState object
+
+
+
+
+ +
+
+stingray.utils.is_int(obj)[source]
+

Test if object is an integer.

+
+ +
+
+stingray.utils.is_iterable(var)[source]
+

Test if a variable is an iterable.

+
+
Parameters:
+
+
varobject

The variable to be tested for iterably-ness

+
+
+
+
Returns:
+
+
is_iterbool

Returns True if var is an Iterable, False otherwise

+
+
+
+
+
+ +
+
+stingray.utils.is_string(s)[source]
+

Portable function to answer whether a variable is a string.

+
+
Parameters:
+
+
sobject

An object that is potentially a string

+
+
+
+
Returns:
+
+
isstringbool

A boolean decision on whether s is a string or not

+
+
+
+
+
+ +
+
+stingray.utils.look_for_array_in_array(array1, array2)[source]
+

Find a subset of values in an array.

+
+
Parameters:
+
+
array1iterable

An array with values to be searched

+
+
array2iterable

A second array which potentially contains a subset of values +also contained in array1

+
+
Returns ——- array3iterable An array with the subset of values
+
contained in both ``array1`` and ``array2``
+
+
+
+
+ +
+
+stingray.utils.nearest_power_of_two(x)[source]
+

Return a number which is nearest to x and is the integral power of two.

+
+
Parameters:
+
+
xint, float
+
+
+
Returns:
+
+
x_nearestint

Number closest to x and is the integral power of two.

+
+
+
+
+
+ +
+
+stingray.utils.optimal_bin_time(fftlen, tbin)[source]
+

Vary slightly the bin time to have a power of two number of bins.

+

Given an FFT length and a proposed bin time, return a bin time +slightly shorter than the original, that will produce a power-of-two number +of FFT bins.

+
+
Parameters:
+
+
fftlenint

Number of positive frequencies in a proposed Fourier spectrum

+
+
tbinfloat

The proposed time resolution of a light curve

+
+
+
+
Returns:
+
+
resfloat

A time resolution that will produce a Fourier spectrum with fftlen frequencies and +a number of FFT bins that are a power of two

+
+
+
+
+
+ +
+
+stingray.utils.order_list_of_arrays(data, order)[source]
+

Sort an array according to the specified order.

+
+
Parameters:
+
+
dataiterable
+
+
+
Returns:
+
+
datalist or dict
+
+
+
+
+ +
+
+stingray.utils.poisson_symmetrical_errors(counts)[source]
+

Optimized version of frequentist symmetrical errors.

+

Uses a lookup table in order to limit the calls to poisson_conf_interval

+
+
Parameters:
+
+
countsiterable

An array of Poisson-distributed numbers

+
+
+
+
Returns:
+
+
errnumpy.ndarray

An array of uncertainties associated with the Poisson counts in +counts

+
+
+
+
+

Examples

+
>>> from astropy.stats import poisson_conf_interval
+>>> counts = np.random.randint(0, 1000, 100)
+>>> # ---- Do it without the lookup table ----
+>>> err_low, err_high = poisson_conf_interval(np.asarray(counts),
+...                 interval='frequentist-confidence', sigma=1)
+>>> err_low -= np.asarray(counts)
+>>> err_high -= np.asarray(counts)
+>>> err = (np.absolute(err_low) + np.absolute(err_high))/2.0
+>>> # Do it with this function
+>>> err_thisfun = poisson_symmetrical_errors(counts)
+>>> # Test that results are always the same
+>>> assert np.allclose(err_thisfun, err)
+
+
+
+ +
+
+stingray.utils.rebin_data(x, y, dx_new, yerr=None, method='sum', dx=None)[source]
+

Rebin some data to an arbitrary new data resolution. Either sum +the data points in the new bins or average them.

+
+
Parameters:
+
+
x: iterable

The dependent variable with some resolution, which can vary throughout +the time series.

+
+
y: iterable

The independent variable to be binned

+
+
dx_new: float

The new resolution of the dependent variable x

+
+
+
+
Returns:
+
+
xbin: numpy.ndarray

The midpoints of the new bins in x

+
+
ybin: numpy.ndarray

The binned quantity y

+
+
ybin_err: numpy.ndarray

The uncertainties of the binned values of y.

+
+
step_size: float

The size of the binning step

+
+
+
+
Other Parameters:
+
+
yerr: iterable, optional

The uncertainties of y, to be propagated during binning.

+
+
method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum``

The method to be used in binning. Either sum the samples y in +each new bin of x, or take the arithmetic mean.

+
+
dx: float

The old resolution (otherwise, calculated from difference between +time bins)

+
+
+
+
+

Examples

+
>>> x = np.arange(0, 100, 0.01)
+>>> y = np.ones(x.size)
+>>> yerr = np.ones(x.size)
+>>> xbin, ybin, ybinerr, step_size = rebin_data(
+...     x, y, 4, yerr=yerr, method='sum', dx=0.01)
+>>> np.allclose(ybin, 400)
+True
+>>> np.allclose(ybinerr, 20)
+True
+>>> xbin, ybin, ybinerr, step_size = rebin_data(
+...     x, y, 4, yerr=yerr, method='mean')
+>>> np.allclose(ybin, 1)
+True
+>>> np.allclose(ybinerr, 0.05)
+True
+
+
+
+ +
+
+stingray.utils.rebin_data_log(x, y, f, y_err=None, dx=None)[source]
+

Logarithmic re-bin of some data. Particularly useful for the power +spectrum.

+

The new dependent variable depends on the previous dependent variable +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
x: iterable

The dependent variable with some resolution dx_old = x[1]-x[0]

+
+
y: iterable

The independent variable to be binned

+
+
f: float

The factor of increase of each bin wrt the previous one.

+
+
+
+
Returns:
+
+
xbin: numpy.ndarray

The midpoints of the new bins in x

+
+
ybin: numpy.ndarray

The binned quantity y

+
+
ybin_err: numpy.ndarray

The uncertainties of the binned values of y

+
+
step_size: float

The size of the binning step

+
+
+
+
Other Parameters:
+
+
yerr: iterable, optional

The uncertainties of y to be propagated during binning.

+
+
method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum``

The method to be used in binning. Either sum the samples y in +each new bin of x or take the arithmetic mean.

+
+
dx: float, optional

The binning step of the initial x

+
+
+
+
+
+ +
+
+stingray.utils.simon(message, **kwargs)[source]
+

The Statistical Interpretation MONitor.

+

A warning system designed to always remind the user that Simon +is watching him/her.

+
+
Parameters:
+
+
messagestring

The message that is thrown

+
+
kwargsdict

The rest of the arguments that are passed to warnings.warn

+
+
+
+
+
+ +
+
+stingray.utils.standard_error(xs, mean)[source]
+

Return the standard error of the mean (SEM) of an array of arrays.

+
+
Parameters:
+
+
xs2-d float array

List of data point arrays.

+
+
mean1-d float array

Average of the data points.

+
+
+
+
Returns:
+
+
standard_error1-d float array

Standard error of the mean (SEM).

+
+
+
+
+
+ +
+
+
+

Modeling

+

This subpackage defines classes and functions related to parametric modelling of various types of +data sets. Currently, most functionality is focused on modelling Fourier products (especially +power spectra and averaged power spectra), but rudimentary functionality exists for modelling +e.g. light curves.

+
+

Log-Likelihood Classes

+

These classes define basic log-likelihoods for modelling time series and power spectra. +stingray.modeling.LogLikelihood is an abstract base class, i.e. a template for creating +user-defined log-likelihoods and should not be instantiated itself. Based on this base class +are several definitions for a stingray.modeling.GaussianLogLikelihood, appropriate for +data with normally distributed uncertainties, a stingray.modeling.PoissonLogLikelihood +appropriate for photon counting data, and a stingray.modeling.PSDLogLikelihood +appropriate for (averaged) power spectra.

+
+
+class stingray.modeling.LogLikelihood(x, y, model, **kwargs)[source]
+

Abstract Base Class defining the structure of a LogLikelihood object. +This class cannot be called itself, since each statistical distribution +has its own definition for the likelihood, which should occur in subclasses.

+
+
Parameters:
+
+
xiterable

x-coordinate of the data. Could be multi-dimensional.

+
+
yiterable

y-coordinate of the data. Could be multi-dimensional.

+
+
modelan astropy.modeling.FittableModel instance

Your model

+
+
kwargs

keyword arguments specific to the individual sub-classes. For +details, see the respective docstrings for each subclass

+
+
+
+
+
+
+abstract evaluate(parameters)[source]
+

This is where you define your log-likelihood. Do this, but do it in a subclass!

+
+ +
+ +
+
+class stingray.modeling.GaussianLogLikelihood(x, y, yerr, model)[source]
+

Likelihood for data with Gaussian uncertainties. +Astronomers also call this likelihood Chi-Squared, but be aware +that this has nothing to do with the likelihood based on the +Chi-square distribution, which is also defined as in of +PSDLogLikelihood in this module!

+

Use this class here whenever your data has Gaussian uncertainties.

+
+
Parameters:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan Astropy Model instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the Gaussian log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PoissonLogLikelihood(x, y, model)[source]
+

Likelihood for data with uncertainties following a Poisson distribution. +This is useful e.g. for (binned) photon count data.

+
+
Parameters:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PSDLogLikelihood(freq, power, model, m=1)[source]
+

A likelihood based on the Chi-square distribution, appropriate for modelling +(averaged) power spectra. Note that this is not the same as the statistic +astronomers commonly call Chi-Square, which is a fit statistic derived from +the Gaussian log-likelihood, defined elsewhere in this module.

+
+
Parameters:
+
+
freqiterable

Array with frequencies

+
+
poweriterable

Array with (averaged/singular) powers corresponding to the +frequencies in freq

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
mint

1/2 of the degrees of freedom

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.LaplaceLogLikelihood(x, y, yerr, model)[source]
+

A Laplace likelihood for the cospectrum.

+
+
Parameters:
+
+
xiterable

Array with independent variable

+
+
yiterable

Array with dependent variable

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
yerriterable

Array with the uncertainties on y, in standard deviation

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+
+

Posterior Classes

+

These classes define basic posteriors for parametric modelling of time series and power spectra, based on +the log-likelihood classes defined in Log-Likelihood Classes. stingray.modeling.Posterior is an +abstract base class laying out a basic template for defining posteriors. As with the log-likelihood classes +above, several posterior classes are defined for a variety of data types.

+

Note that priors are not pre-defined in these classes, since they are problem dependent and should be +set by the user. The convenience function stingray.modeling.set_logprior() can be useful to help set +priors for these posterior classes.

+
+
+class stingray.modeling.Posterior(x, y, model, **kwargs)[source]
+

Define a Posterior object.

+

The Posterior describes the Bayesian probability distribution of +a set of parameters \(\theta\) given some observed data \(D\) and +some prior assumptions \(I\).

+

It is defined as

+
+\[p(\theta | D, I) = p(D | \theta, I) p(\theta | I)/p(D| I)\]
+

where \(p(D | \theta, I)\) describes the likelihood, i.e. the +sampling distribution of the data and the (parametric) model, and +\(p(\theta | I)\) describes the prior distribution, i.e. our information +about the parameters \(\theta\) before we gathered the data. +The marginal likelihood \(p(D| I)\) describes the probability of +observing the data given the model assumptions, integrated over the +space of all parameters.

+
+
Parameters:
+
+
xiterable

The abscissa or independent variable of the data. This could +in principle be a multi-dimensional array.

+
+
yiterable

The ordinate or dependent variable of the data.

+
+
modelastropy.modeling.models instance

The parametric model supposed to represent the data. For details +see the astropy.modeling documentation

+
+
kwargs

keyword arguments related to the subclasses of Posterior. For +details, see the documentation of the individual subclasses

+
+
+
+
+

References

+
    +
  • Sivia, D. S., and J. Skilling. “Data Analysis: A Bayesian Tutorial. 2006.”

  • +
  • Gelman, Andrew, et al. Bayesian data analysis. Vol. 2. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014.

  • +
  • von Toussaint, Udo. “Bayesian inference in physics.” Reviews of Modern Physics 83.3 (2011): 943.

  • +
  • Hogg, David W. “Probability Calculus for inference”. arxiv: 1205.4446

  • +
+
+
+logposterior(t0, neg=False)[source]
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.GaussianPosterior(x, y, yerr, model, priors=None)[source]
+

A general class for two-dimensional data following a Gaussian +sampling distribution.

+
+
Parameters:
+
+
xnumpy.ndarray

independent variable

+
+
ynumpy.ndarray

dependent variable

+
+
yerrnumpy.ndarray

measurement uncertainties for y

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PoissonPosterior(x, y, model, priors=None)[source]
+

Posterior for Poisson light curve data. Primary intended use is for +modelling X-ray light curves, but alternative uses are conceivable.

+
+
Parameters:
+
+
xnumpy.ndarray

The independent variable (e.g. time stamps of a light curve)

+
+
ynumpy.ndarray

The dependent variable (e.g. counts per bin of a light curve)

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
+
+
Attributes:
+
+
xnumpy.ndarray

The independent variable (list of frequencies) stored in ps.freq

+
+
ynumpy.ndarray

The dependent variable (list of powers) stored in ps.power

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PSDPosterior(freq, power, model, priors=None, m=1)[source]
+

Posterior distribution for power spectra. +Uses an exponential distribution for the errors in the likelihood, +or a \(\chi^2\) distribution with \(2M\) degrees of freedom, where +\(M\) is the number of frequency bins or power spectra averaged in each bin.

+
+
Parameters:
+
+
ps{stingray.Powerspectrum | stingray.AveragedPowerspectrum} instance

the stingray.Powerspectrum object containing the data

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
mint, default 1

The number of averaged periodograms or frequency bins in ps. +Useful for binned/averaged periodograms, since the value of +m will change the likelihood function!

+
+
+
+
Attributes:
+
+
ps{stingray.Powerspectrum | stingray.AveragedPowerspectrum} instance

the stingray.Powerspectrum object containing the data

+
+
xnumpy.ndarray

The independent variable (list of frequencies) stored in ps.freq

+
+
ynumpy.ndarray

The dependent variable (list of powers) stored in ps.power

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.LaplacePosterior(x, y, yerr, model, priors=None)[source]
+

A general class for two-dimensional data following a Gaussian +sampling distribution.

+
+
Parameters:
+
+
xnumpy.ndarray

independent variable

+
+
ynumpy.ndarray

dependent variable

+
+
yerrnumpy.ndarray

measurement uncertainties for y, in standard deviation

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+
+

Parameter Estimation Classes

+

These classes implement functionality related to parameter estimation. They define basic fit and +sample methods using scipy.optimize and emcee, respectively, for optimization and Markov Chain Monte +Carlo sampling. stingray.modeling.PSDParEst implements some more advanced functionality for modelling +power spectra, including both frequentist and Bayesian searches for (quasi-)periodic signals.

+
+
+class stingray.modeling.ParameterEstimation(fitmethod='BFGS', max_post=True)[source]
+

Parameter estimation of two-dimensional data, either via +optimization or MCMC. +Note: optimization with bounds is not supported. If something like +this is required, define (uniform) priors in the ParametricModel +instances to be used below.

+
+
Parameters:
+
+
fitmethodstring, optional, default L-BFGS-B

Any of the strings allowed in scipy.optimize.minimize in +the method keyword. Sets the fit method to be used.

+
+
max_postbool, optional, default True

If True, then compute the Maximum-A-Posteriori estimate. If False, +compute a Maximum Likelihood estimate.

+
+
+
+
+
+
+calibrate_lrt(lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None)[source]
+

Calibrate the outcome of a Likelihood Ratio Test via MCMC.

+

In order to compare models via likelihood ratio test, one generally +aims to compute a p-value for the null hypothesis (generally the +simpler model). There are two special cases where the theoretical +distribution used to compute that p-value analytically given the +observed likelihood ratio (a chi-square distribution) is not +applicable:

+
    +
  • the models are not nested (i.e. Model 1 is not a special, simpler +case of Model 2),

  • +
  • the parameter values fixed in Model 2 to retrieve Model 1 are at the +edges of parameter space (e.g. if one must set, say, an amplitude to +zero in order to remove a component in the more complex model, and +negative amplitudes are excluded a priori)

  • +
+

In these cases, the observed likelihood ratio must be calibrated via +simulations of the simpler model (Model 1), using MCMC to take into +account the uncertainty in the parameters. This function does +exactly that: it computes the likelihood ratio for the observed data, +and produces simulations to calibrate the likelihood ratio and +compute a p-value for observing the data under the assumption that +Model 1 istrue.

+

If max_post=True, the code will use MCMC to sample the posterior +of the parameters and simulate fake data from there.

+

If max_post=False, the code will use the covariance matrix derived +from the fit to simulate data sets for comparison.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative +log-likelihood or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
pvaluefloat [0,1]

p-value ‘n stuff

+
+
+
+
+
+ +
+
+compute_lrt(lpost1, t1, lpost2, t2, neg=True, max_post=False)[source]
+

This function computes the Likelihood Ratio Test between two +nested models.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative log-likelihood +or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
lrtfloat

The likelihood ratio for model 2 and model 1

+
+
res1OptimizationResults object

Contains the result of fitting lpost1

+
+
res2OptimizationResults object

Contains the results of fitting lpost2

+
+
+
+
+
+ +
+
+fit(lpost, t0, neg=True, scipy_optimize_options=None)[source]
+

Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) +fit to the data.

+

MAP fits include priors, ML fits do not.

+
+
Parameters:
+
+
lpostPosterior (or subclass) instance

and instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0{list | numpy.ndarray}

List/array with set of initial parameters

+
+
negbool, optional, default True

Boolean to be passed to lpost, setting whether to use the +negative posterior or the negative log-likelihood. Useful for +optimization routines, which are generally defined as minimization routines.

+
+
scipy_optimize_optionsdict, optional, default None

A dictionary with options for scipy.optimize.minimize, +directly passed on as keyword arguments.

+
+
+
+
Returns:
+
+
resOptimizationResults object

An object containing useful summaries of the fitting procedure. +For details, see documentation of class:OptimizationResults.

+
+
+
+
+
+ +
+
+sample(lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test', pool=False)[source]
+

Sample the Posterior distribution defined in lpost using MCMC. +Here we use the emcee package, but other implementations could +in principle be used.

+
+
Parameters:
+
+
lpostinstance of a Posterior subclass

and instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0iterable

list or array containing the starting parameters. Its length +must match lpost.model.npar.

+
+
nwalkersint, optional, default 500

The number of walkers (chains) to use during the MCMC procedure. +The more walkers are used, the slower the estimation will be, but +the better the final distribution is likely to be.

+
+
niterint, optional, default 100

The number of iterations to run the MCMC chains for. The larger this +number, the longer the estimation will take, but the higher the +chance that the walkers have actually converged on the true +posterior distribution.

+
+
burninint, optional, default 100

The number of iterations to run the walkers before convergence is +assumed to have occurred. This part of the chain will be discarded +before sampling from what is then assumed to be the posterior +distribution desired.

+
+
threadsDEPRECATED int, optional, default 1

The number of threads for parallelization. +Default is 1, i.e. no parallelization +With the change to the new emcee version 3, threads is +deprecated. Use the pool keyword argument instead. +This will no longer have any effect.

+
+
print_resultsbool, optional, default True

Boolean flag setting whether the results of the MCMC run should +be printed to standard output. Default: True

+
+
plotbool, optional, default False

Boolean flag setting whether summary plots of the MCMC chains +should be produced. Default: False

+
+
namestrstr, optional, default test

Optional string for output file names for the plotting.

+
+
poolbool, default False

If True, use pooling to parallelize the operation.

+
+
+
+
Returns:
+
+
resclass:SamplingResults object

An object of class SamplingResults summarizing the +results of the MCMC run.

+
+
+
+
+
+ +
+
+simulate_lrts(s_all, lpost1, t1, lpost2, t2, max_post=True, seed=None)[source]
+

Simulate likelihood ratios. +For details, see definitions in the subclasses that implement this +task.

+
+ +
+ +
+
+class stingray.modeling.PSDParEst(ps, fitmethod='BFGS', max_post=True)[source]
+

Parameter estimation for parametric modelling of power spectra.

+

This class contains functionality that allows parameter estimation +and related tasks that involve fitting a parametric model to an +(averaged) power spectrum.

+
+
Parameters:
+
+
psclass:stingray.Powerspectrum or class:stingray.AveragedPowerspectrum object

The power spectrum to be modelled

+
+
fitmethodstr, optional, default BFGS

A string allowed by scipy.optimize.minimize as a valid +fitting method

+
+
max_postbool, optional, default True

If True, do a Maximum-A-Posteriori (MAP) fit, i.e. fit with +priors, otherwise do a Maximum Likelihood fit instead

+
+
+
+
+
+
+calibrate_highest_outlier(lpost, t0, sample=None, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None)[source]
+

Calibrate the highest outlier in a data set using MCMC-simulated +power spectra.

+

In short, the procedure does a MAP fit to the data, computes the +statistic

+
+\[\max{(T_R = 2(\mathrm{data}/\mathrm{model}))}\]
+

and then does an MCMC run using the data and the model, or generates parameter samples +from the likelihood distribution using the derived covariance in a Maximum Likelihood +fit. +From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit +in the same way as the data, and the highest data/model outlier extracted as for the data. +The observed value of \(T_R\) can then be directly compared to the simulated +distribution of \(T_R\) values in order to derive a p-value of the null +hypothesis that the observed \(T_R\) is compatible with being generated by +noise.

+
+
Parameters:
+
+
lpoststingray.modeling.PSDPosterior object

An instance of class stingray.modeling.PSDPosterior that defines the +function to be minimized (either in loglikelihood or logposterior)

+
+
t0{list | numpy.ndarray}

List/array with set of initial parameters

+
+
sampleSamplingResults instance, optional, default None

If a sampler has already been run, the SamplingResults instance can be +fed into this method here, otherwise this method will run a sampler +automatically

+
+
max_post: bool, optional, default ``False``

If True, do MAP fits on the power spectrum to find the highest data/model outlier +Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will +be generated from an MCMC run, otherwise the method will employ the approximated +covariance matrix for the parameters derived from the likelihood surface to generate +samples from that likelihood function.

+
+
nsimint, optional, default 1000

Number of fake power spectra to simulate from the posterior sample. Note that this +number sets the resolution of the resulting p-value. For nsim=1000, the highest +resolution that can be achieved is \(10^{-3}\).

+
+
niterint, optional, default 200

If sample is None, this variable will be used to set the number of steps in the +MCMC procedure after burn-in.

+
+
nwalkersint, optional, default 500

If sample is None, this variable will be used to set the number of MCMC chains +run in parallel in the sampler.

+
+
burninint, optional, default 200

If sample is None, this variable will be used to set the number of burn-in steps +to be discarded in the initial phase of the MCMC run

+
+
namestrstr, optional, default test

A string to be used for storing MCMC output and plots to disk

+
+
seedint, optional, default None

An optional number to seed the random number generator with, for reproducibility of +the results obtained with this method.

+
+
+
+
Returns:
+
+
pvalfloat

The p-value that the highest data/model outlier is produced by random noise, calibrated +using simulated power spectra from an MCMC run.

+
+
+
+
+

References

+

For more details on the procedure employed here, see

+
+
+
+
+ +
+
+calibrate_lrt(lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None)
+

Calibrate the outcome of a Likelihood Ratio Test via MCMC.

+

In order to compare models via likelihood ratio test, one generally +aims to compute a p-value for the null hypothesis (generally the +simpler model). There are two special cases where the theoretical +distribution used to compute that p-value analytically given the +observed likelihood ratio (a chi-square distribution) is not +applicable:

+
    +
  • the models are not nested (i.e. Model 1 is not a special, simpler +case of Model 2),

  • +
  • the parameter values fixed in Model 2 to retrieve Model 1 are at the +edges of parameter space (e.g. if one must set, say, an amplitude to +zero in order to remove a component in the more complex model, and +negative amplitudes are excluded a priori)

  • +
+

In these cases, the observed likelihood ratio must be calibrated via +simulations of the simpler model (Model 1), using MCMC to take into +account the uncertainty in the parameters. This function does +exactly that: it computes the likelihood ratio for the observed data, +and produces simulations to calibrate the likelihood ratio and +compute a p-value for observing the data under the assumption that +Model 1 istrue.

+

If max_post=True, the code will use MCMC to sample the posterior +of the parameters and simulate fake data from there.

+

If max_post=False, the code will use the covariance matrix derived +from the fit to simulate data sets for comparison.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative +log-likelihood or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
pvaluefloat [0,1]

p-value ‘n stuff

+
+
+
+
+
+ +
+
+compute_lrt(lpost1, t1, lpost2, t2, neg=True, max_post=False)
+

This function computes the Likelihood Ratio Test between two +nested models.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative log-likelihood +or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
lrtfloat

The likelihood ratio for model 2 and model 1

+
+
res1OptimizationResults object

Contains the result of fitting lpost1

+
+
res2OptimizationResults object

Contains the results of fitting lpost2

+
+
+
+
+
+ +
+
+fit(lpost, t0, neg=True, scipy_optimize_options=None)[source]
+

Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) +fit to the power spectrum.

+

MAP fits include priors, ML fits do not.

+
+
Parameters:
+
+
lpoststingray.modeling.PSDPosterior object

An instance of class stingray.modeling.PSDPosterior that defines the +function to be minimized (either in loglikelihood or logposterior)

+
+
t0{list | numpy.ndarray}

List/array with set of initial parameters

+
+
negbool, optional, default True

Boolean to be passed to lpost, setting whether to use the +negative posterior or the negative log-likelihood.

+
+
scipy_optimize_optionsdict, optional, default None

A dictionary with options for scipy.optimize.minimize, +directly passed on as keyword arguments.

+
+
+
+
Returns:
+
+
resOptimizationResults object

An object containing useful summaries of the fitting procedure. +For details, see documentation of OptimizationResults.

+
+
+
+
+
+ +
+
+plotfits(res1, res2=None, save_plot=False, namestr='test', log=False)[source]
+

Plotting method that allows to plot either one or two best-fit models +with the data.

+

Plots a power spectrum with the best-fit model, as well as the data/model +residuals for each model.

+
+
Parameters:
+
+
res1OptimizationResults object

Output of a successful fitting procedure

+
+
res2OptimizationResults object, optional, default None

Optional output of a second successful fitting procedure, e.g. with a +competing model

+
+
save_plotbool, optional, default False

If True, the resulting figure will be saved to a file

+
+
namestrstr, optional, default test

If save_plot is True, this string defines the path and file name +for the output plot

+
+
logbool, optional, default False

If True, plot the axes logarithmically.

+
+
+
+
+
+ +
+
+sample(lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test')[source]
+

Sample the posterior distribution defined in lpost using MCMC. +Here we use the emcee package, but other implementations could +in principle be used.

+
+
Parameters:
+
+
lpostinstance of a Posterior subclass

and instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0iterable

list or array containing the starting parameters. Its length +must match lpost.model.npar.

+
+
nwalkersint, optional, default 500

The number of walkers (chains) to use during the MCMC procedure. +The more walkers are used, the slower the estimation will be, but +the better the final distribution is likely to be.

+
+
niterint, optional, default 100

The number of iterations to run the MCMC chains for. The larger this +number, the longer the estimation will take, but the higher the +chance that the walkers have actually converged on the true +posterior distribution.

+
+
burninint, optional, default 100

The number of iterations to run the walkers before convergence is +assumed to have occurred. This part of the chain will be discarded +before sampling from what is then assumed to be the posterior +distribution desired.

+
+
threadsint, optional, default 1

The number of threads for parallelization. +Default is 1, i.e. no parallelization

+
+
print_resultsbool, optional, default True

Boolean flag setting whether the results of the MCMC run should +be printed to standard output

+
+
plotbool, optional, default False

Boolean flag setting whether summary plots of the MCMC chains +should be produced

+
+
namestrstr, optional, default test

Optional string for output file names for the plotting.

+
+
+
+
Returns:
+
+
resSamplingResults object

An object containing useful summaries of the +sampling procedure. For details see documentation of SamplingResults.

+
+
+
+
+
+ +
+
+simulate_highest_outlier(s_all, lpost, t0, max_post=True, seed=None)[source]
+

Simulate \(n\) power spectra from a model and then find the highest +data/model outlier in each.

+

The data/model outlier is defined as

+
+\[\max{(T_R = 2(\mathrm{data}/\mathrm{model}))} .\]
+
+
Parameters:
+
+
s_allnumpy.ndarray

A list of parameter values derived either from an approximation of the +likelihood surface, or from an MCMC run. Has dimensions (n, ndim), where +n is the number of simulated power spectra to generate, and ndim the +number of model parameters.

+
+
lpostinstance of a Posterior subclass

an instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0iterable

list or array containing the starting parameters. Its length +must match lpost.model.npar.

+
+
max_post: bool, optional, default ``False``

If True, do MAP fits on the power spectrum to find the highest data/model outlier +Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will +be generated from an MCMC run, otherwise the method will employ the approximated +covariance matrix for the parameters derived from the likelihood surface to generate +samples from that likelihood function.

+
+
seedint, optional, default None

An optional number to seed the random number generator with, for reproducibility of +the results obtained with this method.

+
+
+
+
Returns:
+
+
max_y_allnumpy.ndarray

An array of maximum outliers for each simulated power spectrum

+
+
+
+
+
+ +
+
+simulate_lrts(s_all, lpost1, t1, lpost2, t2, seed=None)[source]
+

Simulate likelihood ratios for two given models based on MCMC samples +for the simpler model (i.e. the null hypothesis).

+
+
Parameters:
+
+
s_allnumpy.ndarray of shape (nsamples, lpost1.npar)

An array with MCMC samples derived from the null hypothesis model in +lpost1. Its second dimension must match the number of free +parameters in lpost1.model.

+
+
lpost1LogLikelihood or Posterior subclass object

Object containing the null hypothesis model

+
+
t1iterable of length lpost1.npar

A starting guess for fitting the model in lpost1

+
+
lpost2LogLikelihood or Posterior subclass object

Object containing the alternative hypothesis model

+
+
t2iterable of length lpost2.npar

A starting guess for fitting the model in lpost2

+
+
max_postbool, optional, default True

If True, then lpost1 and lpost2 should be Posterior subclass +objects; if False, then lpost1 and lpost2 should be +LogLikelihood subclass objects

+
+
seedint, optional default None

A seed to initialize the numpy.random.RandomState object to be +passed on to _generate_data. Useful for producing exactly +reproducible results

+
+
+
+
Returns:
+
+
lrt_simnumpy.ndarray

An array with the simulated likelihood ratios for the simulated +data

+
+
+
+
+
+ +
+ +
+
+
+

Auxiliary Classes

+

These are helper classes instantiated by stingray.modeling.ParameterEstimation and its subclasses to +organize the results of model fitting and sampling in a more meaningful, easily accessible way.

+
+
+class stingray.modeling.OptimizationResults(lpost, res, neg=True, log=None)[source]
+

Helper class that will contain the results of the regression. +Less fiddly than a dictionary.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
res: instance of ``scipy.OptimizeResult``

The object containing the results from a optimization run

+
+
negbool, optional, default True

A flag that sets whether the log-likelihood or negative log-likelihood +is being used

+
+
loga logging.getLogger() object, default None

You can pass a pre-defined object for logging, else a new +logger will be instantiated

+
+
+
+
+

References

+ +
+
Attributes:
+
+
resultfloat

The result of the optimization, i.e. the function value at the +minimum that the optimizer found

+
+
p_optiterable

The list of parameters at the minimum found by the optimizer

+
+
modelastropy.models.Model instance

The parametric model fit to the data

+
+
covnumpy.ndarray

The covariance matrix for the parameters, has shape (len(p_opt), len(p_opt))

+
+
errnumpy.ndarray

The standard deviation of the parameters, derived from the diagonal of cov. +Has the same shape as p_opt

+
+
mfitnumpy.ndarray

The values of the model for all x

+
+
deviancefloat

The deviance, calculated as -2*log(likelihood)

+
+
aicfloat

The Akaike Information Criterion, derived from the log(likelihood) and often used +in model comparison between non-nested models; +For more details, see [7]

+
+
bicfloat

The Bayesian Information Criterion, derived from the log(likelihood) and often used +in model comparison between non-nested models; +For more details, see [8]

+
+
meritfloat

sum of squared differences between data and model, normalized by the +model values

+
+
dofint

The number of degrees of freedom in the problem, defined as the number of +data points - the number of parameters

+
+
sexpint

2*(number of parameters)*(number of data points)

+
+
ssdfloat

sqrt(2*(sexp)), expected sum of data-model residuals

+
+
sobsfloat

sum of data-model residuals

+
+
+
+
+
+
+_compute_covariance(lpost, res)[source]
+

Compute the covariance of the parameters using inverse of the Hessian, i.e. +the second-order derivative of the log-likelihood. Also calculates an estimate +of the standard deviation in the parameters, using the square root of the diagonal +of the covariance matrix.

+

The Hessian is either estimated directly by the chosen method of fitting, or +approximated using the statsmodel approx_hess function.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
res: instance of ``scipy``’s ``OptimizeResult`` class

The object containing the results from a optimization run

+
+
+
+
+
+ +
+
+_compute_criteria(lpost)[source]
+

Compute various information criteria useful for model comparison in +non-nested models.

+

Currently implemented are the Akaike Information Criterion [9] and the +Bayesian Information Criterion [10].

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+

References

+ +
+ +
+
+_compute_model(lpost)[source]
+

Compute the values of the best-fit model for all x.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+
+ +
+
+_compute_statistics(lpost)[source]
+

Compute some useful fit statistics, like the degrees of freedom and the +figure of merit.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+
+ +
+
+print_summary(lpost)[source]
+

Print a useful summary of the fitting procedure to screen or +a log file.

+
+
Parameters:
+
+
lpostinstance of Posterior or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.SamplingResults(sampler, ci_min=5, ci_max=95, log=None)[source]
+

Helper class that will contain the results of the sampling +in a handy format.

+

Less fiddly than a dictionary.

+
+
Parameters:
+
+
sampler: ``emcee.EnsembleSampler`` object

The object containing the sampler that’s done all the work.

+
+
ci_min: float out of [0,100]

The lower bound percentile for printing credible intervals +on the parameters

+
+
ci_max: float out of [0,100]

The upper bound percentile for printing credible intervals +on the parameters

+
+
loga logging.getLogger() object, default None

You can pass a pre-defined object for logging, else a new +logger will be instantiated

+
+
+
+
+

References

+ +
+
Attributes:
+
+
samplesnumpy.ndarray

An array of samples from the MCMC run, including all chains +flattened into one long (nwalkers*niter, ndim) array

+
+
nwalkersint

The number of chains used in the MCMC procedure

+
+
niterint

The number of MCMC iterations in each chain

+
+
ndimint

The dimensionality of the problem, i.e. the number of +parameters in the model

+
+
acceptancefloat

The mean acceptance ratio, calculated over all chains

+
+
Lfloat

The product of acceptance ratio and number of samples

+
+
acorfloat

The autocorrelation length for the chains; should be shorter +than the chains themselves for independent sampling

+
+
rhatfloat

weighted average of between-sequence variance and within-sequence +variance; Gelman-Rubin convergence statistic [11]

+
+
meannumpy.ndarray

An array of size ndim, with the posterior means of the parameters +derived from the MCMC chains

+
+
stdnumpy.ndarray

An array of size ndim with the posterior standard deviations of +the parameters derived from the MCMC chains

+
+
cinumpy.ndarray

An array of shape (ndim, 2) containing the lower and upper bounds +of the credible interval (the Bayesian equivalent of the confidence +interval) for each parameter using the bounds set by ci_min and ci_max

+
+
+
+
+
+
+_check_convergence(sampler)[source]
+

Compute common statistics for convergence of the MCMC +chains. While you can never be completely sure that your chains +converged, these present reasonable heuristics to give an +indication whether convergence is very far off or reasonably close.

+

Currently implemented are the autocorrelation time [12] and the +Gelman-Rubin convergence criterion [13].

+
+
Parameters:
+
+
sampleran emcee.EnsembleSampler object
+
+
+
+

References

+ +
+ +
+
+_compute_rhat(sampler)[source]
+

Compute Gelman-Rubin convergence criterion [14].

+
+
Parameters:
+
+
sampleran emcee.EnsembleSampler object
+
+
+
+

References

+ +
+ +
+
+_infer(ci_min=5, ci_max=95)[source]
+

Infer the Posterior means, standard deviations and credible intervals +(i.e. the Bayesian equivalent to confidence intervals) from the Posterior samples +for each parameter.

+
+
Parameters:
+
+
ci_minfloat

Lower bound to the credible interval, given as percentage between +0 and 100

+
+
ci_maxfloat

Upper bound to the credible interval, given as percentage between +0 and 100

+
+
+
+
+
+ +
+
+plot_results(nsamples=1000, fig=None, save_plot=False, filename='test.pdf')[source]
+

Plot some results in a triangle plot. +If installed, will use [corner] +for the plotting, if not, +uses its own code to make a triangle plot.

+

By default, this method returns a matplotlib.Figure object, but +if save_plot=True the plot can be saved to file automatically,

+
+
Parameters:
+
+
nsamplesint, default 1000

The maximum number of samples used for plotting.

+
+
figmatplotlib.Figure instance, default None

If created externally, you can pass a Figure instance to this method. +If none is passed, the method will create one internally.

+
+
save_plotbool, default False

If True save the plot to file with a file name specified by the +keyword filename. If False just return the Figure object

+
+
filenamestr

Name of the output file with the figure

+
+
+
+
+

References

+ +
+ +
+
+print_results()[source]
+

Print results of the MCMC run on screen or to a log-file.

+
+ +
+ +
+
+
+

Convenience Functions

+

These functions are designed to help the user perform common tasks related to modelling and parameter +estimation. In particular, the function stingray.modeling.set_logprior() is designed to +help users set priors in their stingray.modeling.Posterior subclass objects.

+
+
+stingray.modeling.set_logprior(lpost, priors)[source]
+

This function constructs the logprior method required to successfully +use a Posterior object.

+

All instances of class Posterior and its subclasses require to implement a +logprior methods. However, priors are strongly problem-dependent and +therefore usually user-defined.

+

This function allows for setting the logprior method on any instance +of class Posterior efficiently by allowing the user to pass a +dictionary of priors and an instance of class Posterior.

+
+
Parameters:
+
+
lpostPosterior object

An instance of class Posterior or any of its subclasses

+
+
priorsdict

A dictionary containing the prior definitions. Keys are parameter +names as defined by the astropy.models.FittableModel instance supplied +to the model parameter in Posterior. Items are functions +that take a parameter as input and return the log-prior probability +of that parameter.

+
+
+
+
Returns:
+
+
logpriorfunction

The function definition for the prior

+
+
+
+
+

Examples

+

Make a light curve and power spectrum

+
>>> photon_arrivals = np.sort(np.random.uniform(0,1000, size=10000))
+>>> lc = Lightcurve.make_lightcurve(photon_arrivals, dt=1.0)
+>>> ps = Powerspectrum(lc, norm="frac")
+
+
+

Define the model

+
>>> pl = models.PowerLaw1D()
+>>> pl.x_0.fixed = True
+
+
+

Instantiate the posterior:

+
>>> lpost = PSDPosterior(ps.freq, ps.power, pl, m=ps.m)
+
+
+

Define the priors:

+
>>> p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+>>> p_amplitude = lambda amplitude: ((-10 <= np.log(amplitude)) &
+...                                 ((np.log(amplitude) <= 10.0)))
+>>> priors = {"alpha":p_alpha, "amplitude":p_amplitude}
+
+
+

Set the logprior method in the lpost object:

+
>>> lpost.logprior = set_logprior(lpost, priors)
+
+
+
+ +
+
+stingray.modeling.scripts.fit_crossspectrum(cs, model, starting_pars=None, max_post=False, priors=None, fitmethod='L-BFGS-B')[source]
+

Fit a number of Lorentzians to a cross spectrum, possibly including white +noise. Each Lorentzian has three parameters (amplitude, centroid position, +full-width at half maximum), plus one extra parameter if the white noise +level should be fit as well. Priors for each parameter can be included in +case max_post = True, in which case the function will attempt a +Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one +entry for each parameter. +The parameter names are (amplitude_i, x_0_i, fwhm_i) for each i out of +a total of N Lorentzians. The white noise level has a parameter +amplitude_(N+1). For example, a model with two Lorentzians and a +white noise level would have parameters: +[amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2].

+
+
Parameters:
+
+
csCrossspectrum

A Crossspectrum object with the data to be fit

+
+
model: astropy.modeling.models class instance

The parametric model supposed to represent the data. For details +see the astropy.modeling documentation

+
+
starting_parsiterable, optional, default None

The list of starting guesses for the optimizer. If it is not provided, +then default parameters are taken from model. See explanation above +for ordering of parameters in this list.

+
+
max_postbool, optional, default False

If True, perform a Maximum-A-Posteriori fit of the data rather than a +Maximum Likelihood fit. Note that this requires priors to be specified, +otherwise this will cause an exception!

+
+
priors{dict | None}, optional, default None

Dictionary with priors for the MAP fit. This should be of the form +{“parameter name”: probability distribution, …}

+
+
fitmethodstring, optional, default “L-BFGS-B”

Specifies an optimization algorithm to use. Supply any valid option for +scipy.optimize.minimize.

+
+
+
+
Returns:
+
+
parestPSDParEst object

A PSDParEst object for further analysis

+
+
resOptimizationResults object

The OptimizationResults object storing useful results and quantities +relating to the fit

+
+
+
+
+
+ +
+
+stingray.modeling.scripts.fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None, fitmethod='L-BFGS-B')[source]
+

Fit a number of Lorentzians to a power spectrum, possibly including white +noise. Each Lorentzian has three parameters (amplitude, centroid position, +full-width at half maximum), plus one extra parameter if the white noise +level should be fit as well. Priors for each parameter can be included in +case max_post = True, in which case the function will attempt a +Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one +entry for each parameter. +The parameter names are (amplitude_i, x_0_i, fwhm_i) for each i out of +a total of N Lorentzians. The white noise level has a parameter +amplitude_(N+1). For example, a model with two Lorentzians and a +white noise level would have parameters: +[amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2].

+
+
Parameters:
+
+
psPowerspectrum

A Powerspectrum object with the data to be fit

+
+
nlorint

The number of Lorentzians to fit

+
+
starting_parsiterable

The list of starting guesses for the optimizer. If it is not provided, +then default parameters are taken from model. See explanation above +for ordering of parameters in this list.

+
+
fit_whitenoisebool, optional, default True

If True, the code will attempt to fit a white noise level along with +the Lorentzians. Be sure to include a starting parameter for the +optimizer in starting_pars!

+
+
max_postbool, optional, default False

If True, perform a Maximum-A-Posteriori fit of the data rather than a +Maximum Likelihood fit. Note that this requires priors to be specified, +otherwise this will cause an exception!

+
+
priors{dict | None}, optional, default None

Dictionary with priors for the MAP fit. This should be of the form +{“parameter name”: probability distribution, …}

+
+
fitmethodstring, optional, default “L-BFGS-B”

Specifies an optimization algorithm to use. Supply any valid option for +scipy.optimize.minimize.

+
+
+
+
Returns:
+
+
parestPSDParEst object

A PSDParEst object for further analysis

+
+
resOptimizationResults object

The OptimizationResults object storing useful results and quantities +relating to the fit

+
+
+
+
+

Examples

+

We start by making an example power spectrum with three Lorentzians +>>> np.random.seed(400) +>>> nlor = 3

+
>>> x_0_0 = 0.5
+>>> x_0_1 = 2.0
+>>> x_0_2 = 7.5
+
+
+
>>> amplitude_0 = 150.0
+>>> amplitude_1 = 50.0
+>>> amplitude_2 = 15.0
+
+
+
>>> fwhm_0 = 0.1
+>>> fwhm_1 = 1.0
+>>> fwhm_2 = 0.5
+
+
+

We will also include a white noise level: +>>> whitenoise = 2.0

+
>>> model = (models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) +
+...          models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) +
+...          models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) +
+...          models.Const1D(whitenoise))
+
+
+
>>> freq = np.linspace(0.01, 10.0, 1000)
+>>> p = model(freq)
+>>> noise = np.random.exponential(size=len(freq))
+
+
+
>>> power = p*noise
+>>> ps = Powerspectrum()
+>>> ps.freq = freq
+>>> ps.power = power
+>>> ps.df = ps.freq[1] - ps.freq[0]
+>>> ps.m = 1
+
+
+

Now we have to guess starting parameters. For each Lorentzian, we have +amplitude, centroid position and fwhm, and this pattern repeats for each +Lorentzian in the fit. The white noise level is the last parameter. +>>> t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]

+

We’re ready for doing the fit: +>>> parest, res = fit_lorentzians(ps, nlor, t0)

+

res contains a whole array of useful information about the fit, for +example the parameters at the optimum: +>>> p_opt = res.p_opt

+
+ +
+
+stingray.modeling.scripts.fit_powerspectrum(ps, model, starting_pars=None, max_post=False, priors=None, fitmethod='L-BFGS-B')[source]
+

Fit a number of Lorentzians to a power spectrum, possibly including white +noise. Each Lorentzian has three parameters (amplitude, centroid position, +full-width at half maximum), plus one extra parameter if the white noise +level should be fit as well. Priors for each parameter can be included in +case max_post = True, in which case the function will attempt a +Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one +entry for each parameter. +The parameter names are (amplitude_i, x_0_i, fwhm_i) for each i out of +a total of N Lorentzians. The white noise level has a parameter +amplitude_(N+1). For example, a model with two Lorentzians and a +white noise level would have parameters: +[amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2].

+
+
Parameters:
+
+
psPowerspectrum

A Powerspectrum object with the data to be fit

+
+
model: astropy.modeling.models class instance

The parametric model supposed to represent the data. For details +see the astropy.modeling documentation

+
+
starting_parsiterable, optional, default None

The list of starting guesses for the optimizer. If it is not provided, +then default parameters are taken from model. See explanation above +for ordering of parameters in this list.

+
+
fit_whitenoisebool, optional, default True

If True, the code will attempt to fit a white noise level along with +the Lorentzians. Be sure to include a starting parameter for the +optimizer in starting_pars!

+
+
max_postbool, optional, default False

If True, perform a Maximum-A-Posteriori fit of the data rather than a +Maximum Likelihood fit. Note that this requires priors to be specified, +otherwise this will cause an exception!

+
+
priors{dict | None}, optional, default None

Dictionary with priors for the MAP fit. This should be of the form +{“parameter name”: probability distribution, …}

+
+
fitmethodstring, optional, default “L-BFGS-B”

Specifies an optimization algorithm to use. Supply any valid option for +scipy.optimize.minimize.

+
+
+
+
Returns:
+
+
parestPSDParEst object

A PSDParEst object for further analysis

+
+
resOptimizationResults object

The OptimizationResults object storing useful results and quantities +relating to the fit

+
+
+
+
+

Examples

+

We start by making an example power spectrum with three Lorentzians +>>> m = 1 +>>> nfreq = 100000 +>>> freq = np.linspace(1, 1000, nfreq)

+
>>> np.random.seed(100)  # set the seed for the random number generator
+>>> noise = np.random.exponential(size=nfreq)
+
+
+
>>> model = models.PowerLaw1D() + models.Const1D()
+>>> model.x_0_0.fixed = True
+
+
+
>>> alpha_0 = 2.0
+>>> amplitude_0 = 100.0
+>>> amplitude_1 = 2.0
+
+
+
>>> model.alpha_0 = alpha_0
+>>> model.amplitude_0 = amplitude_0
+>>> model.amplitude_1 = amplitude_1
+
+
+
>>> p = model(freq)
+>>> power = noise * p
+
+
+
>>> ps = Powerspectrum()
+>>> ps.freq = freq
+>>> ps.power = power
+>>> ps.m = m
+>>> ps.df = freq[1] - freq[0]
+>>> ps.norm = "leahy"
+
+
+

Now we have to guess starting parameters. For each Lorentzian, we have +amplitude, centroid position and fwhm, and this pattern repeats for each +Lorentzian in the fit. The white noise level is the last parameter. +>>> t0 = [80, 1.5, 2.5]

+

Let’s also make a model to test: +>>> model_to_test = models.PowerLaw1D() + models.Const1D() +>>> model_to_test.amplitude_1.fixed = True

+

We’re ready for doing the fit: +>>> parest, res = fit_powerspectrum(ps, model_to_test, t0)

+

res contains a whole array of useful information about the fit, for +example the parameters at the optimum: +>>> p_opt = res.p_opt

+
+ +
+
+
+
+

Pulsar

+

This submodule broadly defines functionality related to (X-ray) pulsar data analysis, especially +periodicity searches.

+
+
+class stingray.pulse.SincSquareModel(amplitude=1.0, mean=0.0, width=1.0, **kwargs)[source]
+
+ +
+
+stingray.pulse.ef_profile_stat(profile, err=None)[source]
+

Calculate the epoch folding statistics ‘a la Leahy et al. (1983).

+
+
Parameters:
+
+
profilearray

The pulse profile

+
+
+
+
Returns:
+
+
statfloat

The epoch folding statistics

+
+
+
+
Other Parameters:
+
+
errfloat or array

The uncertainties on the pulse profile

+
+
+
+
+
+ +
+ +

Performs epoch folding at trial frequencies in photon data.

+

If no exposure correction is needed and numba is installed, it uses a fast +algorithm to perform the folding. Otherwise, it runs a much slower +algorithm, which however yields a more precise result. +The search can be done in segments and the results averaged. Use +segment_size to control this

+
+
Parameters:
+
+
timesarray-like

the event arrival times

+
+
frequenciesarray-like

the trial values for the frequencies

+
+
+
+
Returns:
+
+
(fgrid, stats) or (fgrid, fdgrid, stats), as follows:
+
fgridarray-like

frequency grid of the epoch folding periodogram

+
+
fdgridarray-like

frequency derivative grid. Only returned if fdots is an array.

+
+
statsarray-like

the epoch folding statistics corresponding to each frequency bin.

+
+
+
+
Other Parameters:
+
+
nbinint

the number of bins of the folded profiles

+
+
segment_sizefloat

the length of the segments to be averaged in the periodogram

+
+
fdotsarray-like

trial values of the first frequency derivative (optional)

+
+
expocorrbool

correct for the exposure (Use it if the period is comparable to the +length of the good time intervals). If True, GTIs have to be specified +via the gti keyword

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good time intervals

+
+
weightsarray-like

weight for each time. This might be, for example, the number of counts +if the times array contains the time bins of a light curve

+
+
+
+
+
+ +
+
+stingray.pulse.fftfit(prof, template=None, quick=False, sigma=None, use_bootstrap=False, **fftfit_kwargs)[source]
+

Align a template to a pulse profile.

+
+
Parameters:
+
+
profarray

The pulse profile

+
+
templatearray, default None

The template of the pulse used to perform the TOA calculation. If None, +a simple sinusoid is used

+
+
+
+
Returns:
+
+
mean_amp, std_ampfloats

Mean and standard deviation of the amplitude

+
+
mean_phase, std_phasefloats

Mean and standard deviation of the phase

+
+
+
+
Other Parameters:
+
+
sigmaarray

error on profile bins (currently has no effect)

+
+
use_bootstrapbool

Calculate errors using a bootstrap method, with fftfit_error

+
+
**fftfit_kwargsadditional arguments for fftfit_error
+
+
+
+
+ +
+
+stingray.pulse.fit_gaussian(x, y, amplitude=1.5, mean=0.0, stddev=2.0, tied={}, fixed={}, bounds={})[source]
+

Fit a gaussian function to x,y values.

+
+
Parameters:
+
+
xarray-like
+
yarray-like
+
+
+
Returns:
+
+
gfunction

The best-fit function, accepting x as input +and returning the best-fit model as output

+
+
+
+
Other Parameters:
+
+
amplitudefloat

The initial value for the amplitude

+
+
meanfloat

The initial value for the mean of the gaussian function

+
+
stddevfloat

The initial value for the standard deviation of the gaussian function

+
+
tieddict
+
fixeddict
+
boundsdict

Parameters to be passed to the [astropy models]_

+
+
+
+
+
+ +
+
+stingray.pulse.fit_sinc(x, y, amp=1.5, mean=0.0, width=1.0, tied={}, fixed={}, bounds={}, obs_length=None)[source]
+

Fit a sinc function to x,y values.

+
+
Parameters:
+
+
xarray-like
+
yarray-like
+
+
+
Returns:
+
+
sincfitfunction

The best-fit function, accepting x as input +and returning the best-fit model as output

+
+
+
+
Other Parameters:
+
+
ampfloat

The initial value for the amplitude

+
+
meanfloat

The initial value for the mean of the sinc

+
+
obs_lengthfloat

The length of the observation. Default None. If it’s defined, it +fixes width to 1/(pi*obs_length), as expected from epoch folding +periodograms

+
+
widthfloat

The initial value for the width of the sinc. Only valid if +obs_length is 0

+
+
tieddict
+
fixeddict
+
boundsdict

Parameters to be passed to the [astropy models]_

+
+
+
+
+

References

+
+ +
+
+stingray.pulse.fold_events(times, *frequency_derivatives, **opts)[source]
+

Epoch folding with exposure correction.

+

By default, the keyword times accepts a list of +unbinned photon arrival times. If the input data is +a (binned) light curve, then times will contain the +time stamps of the observation, and weights should +be set to the corresponding fluxes or counts.

+
+
Parameters:
+
+
timesarray of floats

Photon arrival times, or, if weights is set, +time stamps of a light curve.

+
+
f, fdot, fddot…float

The frequency and any number of derivatives.

+
+
+
+
Returns:
+
+
phase_binsarray of floats

The phases corresponding to the pulse profile

+
+
profilearray of floats

The pulse profile

+
+
profile_errarray of floats

The uncertainties on the pulse profile

+
+
+
+
Other Parameters:
+
+
nbinint, optional, default 16

The number of bins in the pulse profile

+
+
weightsfloat or array of floats, optional

The weights of the data. It can either be specified as a single value +for all points, or an array with the same length as time

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …], optional

Good time intervals

+
+
ref_timefloat, optional, default 0

Reference time for the timing solution

+
+
expocorrbool, default False

Correct each bin for exposure (use when the period of the pulsar is +comparable to that of GTIs)

+
+
modestr, [“ef”, “pdm”], default “ef”

Whether to calculate the epoch folding or phase dispersion +minimization folded profile. For “ef”, it calculates the (weighted) +sum of the data points in each phase bin, for “pdm”, the variance +in each phase bin

+
+
+
+
+
+ +
+
+stingray.pulse.get_TOA(prof, period, tstart, template=None, additional_phase=0, quick=False, debug=False, use_bootstrap=False, **fftfit_kwargs)[source]
+

Calculate the Time-Of-Arrival of a pulse.

+
+
Parameters:
+
+
profarray

The pulse profile

+
+
templatearray, default None

The template of the pulse used to perform the TOA calculation, if any. +Otherwise use the default of fftfit

+
+
tstartfloat

The time at the start of the pulse profile

+
+
+
+
Returns:
+
+
toa, toastdfloats

Mean and standard deviation of the TOA

+
+
+
+
Other Parameters:
+
+
nstepint, optional, default 100

Number of steps for the bootstrap method

+
+
+
+
+
+ +
+
+stingray.pulse.get_orbital_correction_from_ephemeris_file(mjdstart, mjdstop, parfile, ntimes=1000, ephem='DE405', return_pint_model=False)[source]
+

Get a correction for orbital motion from pulsar parameter file.

+
+
Parameters:
+
+
mjdstart, mjdstopfloat

Start and end of the time interval where we want the orbital solution

+
+
parfilestr

Any parameter file understood by PINT (Tempo or Tempo2 format)

+
+
+
+
Returns:
+
+
correction_secfunction

Function that accepts in input an array of times in seconds and a +floating-point MJDref value, and returns the deorbited times

+
+
correction_mjdfunction

Function that accepts times in MJDs and returns the deorbited times.

+
+
+
+
Other Parameters:
+
+
ntimesint

Number of time intervals to use for interpolation. Default 1000

+
+
+
+
+
+ +
+
+stingray.pulse.htest(data, nmax=20, datatype='binned', err=None)[source]
+

htest-test statistic, a` la De Jager+89, A&A, 221, 180D, eq. 2.

+

If datatype is “binned” or “gauss”, uses the formulation from +Bachetti+2021, ApJ, arxiv:2012.11397

+
+
Parameters:
+
+
dataarray of floats

Phase values or binned flux values

+
+
nmaxint, default 20

Maximum of harmonics for Z^2_n

+
+
+
+
Returns:
+
+
Mint

The best number of harmonics that describe the signal.

+
+
htestfloat

The htest statistics of the events.

+
+
+
+
Other Parameters:
+
+
datatypestr

The datatype of data: “events” if phase values between 0 and 1, +“binned” if folded pulse profile from photons, “gauss” if +folded pulse profile with normally-distributed fluxes

+
+
errfloat

The uncertainty on the pulse profile fluxes (required for +datatype=”gauss”, ignored otherwise)

+
+
+
+
+
+ +
+
+stingray.pulse.p_to_f(*period_derivatives)[source]
+

Convert periods into frequencies, and vice versa.

+

For now, limited to third derivative. Raises when a +fourth derivative is passed.

+
+
Parameters:
+
+
p, pdot, pddot, …floats

period derivatives, starting from zeroth and in +increasing order

+
+
+
+
+

Examples

+
>>> p_to_f() == []
+True
+>>> np.allclose(p_to_f(1), [1])
+True
+>>> np.allclose(p_to_f(1, 2), [1, -2])
+True
+>>> np.allclose(p_to_f(1, 2, 3), [1, -2, 5])
+True
+>>> np.allclose(p_to_f(1, 2, 3, 4), [1, -2, 5, -16])
+True
+
+
+
+ +
+
+stingray.pulse.pdm_profile_stat(profile, sample_var, nsample)[source]
+

Calculate the phase dispersion minimization +statistic following Stellingwerf (1978)

+
+
Parameters:
+
+
profilearray

The PDM pulse profile (variance as a function +of phase)

+
+
sample_varfloat

The total population variance of the sample

+
+
nsampleint

The number of time bins in the initial time +series.

+
+
+
+
Returns:
+
+
statfloat

The epoch folding statistics

+
+
+
+
+
+ +
+ +

Performs folding at trial frequencies in time series data (i.e.~a light curve +of flux or photon counts) and computes the Phase Dispersion Minimization statistic.

+

If no exposure correction is needed and numba is installed, it uses a fast +algorithm to perform the folding. Otherwise, it runs a much slower +algorithm, which however yields a more precise result. +The search can be done in segments and the results averaged. Use +segment_size to control this

+
+
Parameters:
+
+
timesarray-like

the time stamps of the time series

+
+
fluxarray-like

the flux or photon count values of the time series

+
+
frequenciesarray-like

the trial values for the frequencies

+
+
+
+
Returns:
+
+
(fgrid, stats) or (fgrid, fdgrid, stats), as follows:
+
fgridarray-like

frequency grid of the epoch folding periodogram

+
+
fdgridarray-like

frequency derivative grid. Only returned if fdots is an array.

+
+
statsarray-like

the epoch folding statistics corresponding to each frequency bin.

+
+
+
+
Other Parameters:
+
+
nbinint

the number of bins of the folded profiles

+
+
segment_sizefloat

the length of the segments to be averaged in the periodogram

+
+
fdotsarray-like

trial values of the first frequency derivative (optional)

+
+
expocorrbool

correct for the exposure (Use it if the period is comparable to the +length of the good time intervals). If True, GTIs have to be specified +via the gti keyword

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good time intervals

+
+
+
+
+
+ +
+
+stingray.pulse.phase_exposure(start_time, stop_time, period, nbin=16, gti=None)[source]
+

Calculate the exposure on each phase of a pulse profile.

+
+
Parameters:
+
+
start_time, stop_timefloat

Starting and stopping time (or phase if period==1)

+
+
periodfloat

The pulse period (if 1, equivalent to phases)

+
+
+
+
Returns:
+
+
expoarray of floats

The normalized exposure of each bin in the pulse profile (1 is the +highest exposure, 0 the lowest)

+
+
+
+
Other Parameters:
+
+
nbinint, optional, default 16

The number of bins in the profile

+
+
gti[[gti00, gti01], [gti10, gti11], …], optional, default None

Good Time Intervals

+
+
+
+
+
+ +
+
+stingray.pulse.phaseogram(times, f, nph=128, nt=32, ph0=0, mjdref=None, fdot=0, fddot=0, pepoch=None, plot=False, phaseogram_ax=None, weights=None, **plot_kwargs)[source]
+

Calculate and plot the phaseogram of a pulsar observation.

+

The phaseogram is a 2-D histogram where the x axis is the pulse phase and +the y axis is the time. It shows how the pulse phase changes with time, and +it is very useful to see if the pulse solution is correct and/or if there +are additional frequency derivatives appearing in the data (due to spin up +or down, or even orbital motion)

+
+
Parameters:
+
+
timesarray

Event arrival times

+
+
ffloat

Pulse frequency

+
+
+
+
Returns:
+
+
phaseogr2-D matrix

The phaseogram

+
+
phasesarray-like

The x axis of the phaseogram (the x bins of the histogram), +corresponding to the pulse phase in each column

+
+
timesarray-like

The y axis of the phaseogram (the y bins of the histogram), +corresponding to the time at each row

+
+
additional_infodict

Additional information, like the pulse profile and the axes to modify +the plot (the latter, only if return_plot is True)

+
+
+
+
Other Parameters:
+
+
nphint

Number of phase bins

+
+
ntint

Number of time bins

+
+
ph0float

The starting phase of the pulse

+
+
mjdreffloat

MJD reference time. If given, the y axis of the plot will be in MJDs, +otherwise it will be in seconds.

+
+
fdotfloat

First frequency derivative

+
+
fddotfloat

Second frequency derivative

+
+
pepochfloat

If the input pulse solution is referred to a given time, give it here. +It has no effect (just a phase shift of the pulse) if fdot is zero. +if mjdref is specified, pepoch MUST be in MJD

+
+
weightsarray

Weight for each time

+
+
plotbool

Return the axes in the additional_info, and don’t close the plot, so +that the user can add information to it.

+
+
+
+
+
+ +
+
+stingray.pulse.plot_phaseogram(phaseogram, phase_bins, time_bins, unit_str='s', ax=None, **plot_kwargs)[source]
+

Plot a phaseogram.

+
+
Parameters:
+
+
phaseogramNxM array

The phaseogram to be plotted

+
+
phase_binsarray of M + 1 elements

The bins on the x-axis

+
+
time_binsarray of N + 1 elements

The bins on the y-axis

+
+
+
+
Returns:
+
+
axmatplotlib.pyplot.axis instance

Axis where the phaseogram was plotted.

+
+
+
+
Other Parameters:
+
+
unit_strstr

String indicating the time unit (e.g. ‘s’, ‘MJD’, etc)

+
+
axmatplotlib.pyplot.axis instance

Axis to plot to. If None, create a new one.

+
+
plot_kwargsdict

Additional arguments to be passed to pcolormesh

+
+
+
+
+
+ +
+
+stingray.pulse.plot_profile(phase, profile, err=None, ax=None)[source]
+

Plot a pulse profile showing some stats.

+

If err is None, the profile is assumed in counts and the Poisson confidence +level is plotted. Otherwise, err is shown as error bars

+
+
Parameters:
+
+
phasearray-like

The bins on the x-axis

+
+
profilearray-like

The pulsed profile

+
+
+
+
Returns:
+
+
axmatplotlib.pyplot.axis instance

Axis where the profile was plotted.

+
+
+
+
Other Parameters:
+
+
axmatplotlib.pyplot.axis instance

Axis to plot to. If None, create a new one.

+
+
+
+
+
+ +
+
+stingray.pulse.pulse_phase(times, *frequency_derivatives, **opts)[source]
+

Calculate pulse phase from the frequency and its derivatives.

+
+
Parameters:
+
+
timesarray of floats

The times at which the phase is calculated

+
+
*frequency_derivatives: floats

List of derivatives in increasing order, starting from zero.

+
+
+
+
Returns:
+
+
phasesarray of floats

The absolute pulse phase

+
+
+
+
Other Parameters:
+
+
ph0float

The starting phase

+
+
to_1bool, default True

Only return the fractional part of the phase, normalized from 0 to 1

+
+
+
+
+
+ +
+
+stingray.pulse.search_best_peaks(x, stat, threshold)[source]
+

Search peaks above threshold in an epoch folding periodogram.

+

If more values of stat are above threshold and are contiguous, only the +largest one is returned (see Examples).

+
+
Parameters:
+
+
xarray-like

The x axis of the periodogram (frequencies, periods, …)

+
+
statarray-like

The y axis. It must have the same shape as x

+
+
thresholdfloat

The threshold value over which we look for peaks in the stat array

+
+
+
+
Returns:
+
+
best_xarray-like

the array containing the x position of the peaks above threshold. If no +peaks are above threshold, an empty list is returned. The array is +sorted by inverse value of stat

+
+
best_statarray-like

for each best_x, give the corresponding stat value. Empty if no peaks +above threshold.

+
+
+
+
+

Examples

+
>>> # Test multiple peaks
+>>> x = np.arange(10)
+>>> stat = [0, 0, 0.5, 0, 0, 1, 1, 2, 1, 0]
+>>> best_x, best_stat = search_best_peaks(x, stat, 0.5)
+>>> len(best_x)
+2
+>>> best_x[0]
+7.0
+>>> best_x[1]
+2.0
+>>> stat = [0, 0, 2.5, 0, 0, 1, 1, 2, 1, 0]
+>>> best_x, best_stat = search_best_peaks(x, stat, 0.5)
+>>> best_x[0]
+2.0
+>>> # Test no peak above threshold
+>>> x = np.arange(10)
+>>> stat = [0, 0, 0.4, 0, 0, 0, 0, 0, 0, 0]
+>>> best_x, best_stat = search_best_peaks(x, stat, 0.5)
+>>> best_x
+[]
+>>> best_stat
+[]
+
+
+
+ +
+
+stingray.pulse.sinc_square_deriv(x, amplitude=1.0, mean=0.0, width=1.0)[source]
+

Calculate partial derivatives of sinc-squared.

+
+
Parameters:
+
+
x: array-like
+
+
+
Returns:
+
+
d_amplitudearray-like

partial derivative of sinc-squared function +with respect to the amplitude

+
+
d_meanarray-like

partial derivative of sinc-squared function +with respect to the mean

+
+
d_widtharray-like

partial derivative of sinc-squared function +with respect to the width

+
+
+
+
Other Parameters:
+
+
amplitudefloat

the value for x=mean

+
+
meanfloat

mean of the sinc function

+
+
widthfloat

width of the sinc function

+
+
+
+
+

Examples

+
>>> np.allclose(sinc_square_deriv(0, amplitude=2.), [1., 0., 0.])
+True
+
+
+
+ +
+
+stingray.pulse.sinc_square_model(x, amplitude=1.0, mean=0.0, width=1.0)[source]
+

Calculate a sinc-squared function.

+

(sin(x)/x)**2

+
+
Parameters:
+
+
x: array-like
+
+
+
Returns:
+
+
sqvaluesarray-like

Return square of sinc function

+
+
+
+
Other Parameters:
+
+
amplitudefloat

the value for x=mean

+
+
meanfloat

mean of the sinc function

+
+
widthfloat

width of the sinc function

+
+
+
+
+

Examples

+
>>> sinc_square_model(0, amplitude=2.)
+2.0
+
+
+
+ +
+
+stingray.pulse.test(**kwargs)
+

Run the tests for the package.

+

This method builds arguments for and then calls pytest.main.

+
+
Parameters:
+
+
packagestr, optional

The name of a specific package to test, e.g. ‘io.fits’ or +‘utils’. Accepts comma separated string to specify multiple +packages. If nothing is specified all default tests are run.

+
+
argsstr, optional

Additional arguments to be passed to pytest.main in the args +keyword argument.

+
+
docs_pathstr, optional

The path to the documentation .rst files.

+
+
parallelint or ‘auto’, optional

When provided, run the tests in parallel on the specified +number of CPUs. If parallel is 'auto', it will use the all +the cores on the machine. Requires the pytest-xdist plugin.

+
+
pastebin(‘failed’, ‘all’, None), optional

Convenience option for turning on pytest pastebin output. Set to +‘failed’ to upload info for failed tests, or ‘all’ to upload info +for all tests.

+
+
pdbbool, optional

Turn on PDB post-mortem analysis for failing tests. Same as +specifying --pdb in args.

+
+
pep8bool, optional

Turn on PEP8 checking via the pytest-pep8 plugin and disable normal +tests. Same as specifying --pep8 -k pep8 in args.

+
+
pluginslist, optional

Plugins to be passed to pytest.main in the plugins keyword +argument.

+
+
remote_data{‘none’, ‘astropy’, ‘any’}, optional

Controls whether to run tests marked with @pytest.mark.remote_data. This can be +set to run no tests with remote data (none), only ones that use +data from http://data.astropy.org (astropy), or all tests that +use remote data (any). The default is none.

+
+
repeatint, optional

If set, specifies how many times each test should be run. This is +useful for diagnosing sporadic failures.

+
+
skip_docsbool, optional

When True, skips running the doctests in the .rst files.

+
+
test_pathstr, optional

Specify location to test by path. May be a single file or +directory. Must be specified absolutely or relative to the +calling directory.

+
+
verbosebool, optional

Convenience option to turn on verbose output from pytest. Passing +True is the same as specifying -v in args.

+
+
+
+
+
+ +
+
+stingray.pulse.z_n(data, n, datatype='events', err=None, norm=None)[source]
+

Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2.

+

If datatype is “binned” or “gauss”, uses the formulation from +Bachetti+2021, ApJ, arxiv:2012.11397

+
+
Parameters:
+
+
dataarray of floats

Phase values or binned flux values

+
+
nint, default 2

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The Z^2_n statistics of the events.

+
+
+
+
Other Parameters:
+
+
datatypestr

The data type: “events” if phase values between 0 and 1, +“binned” if folded pulse profile from photons, “gauss” if +folded pulse profile with normally-distributed fluxes

+
+
errfloat

The uncertainty on the pulse profile fluxes (required for +datatype=”gauss”, ignored otherwise)

+
+
normfloat

For backwards compatibility; if norm is not None, it is +substituted to data, and data is ignored. This raises +a DeprecationWarning

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_binned_events(profile, n)[source]
+

Z^2_n statistic for pulse profiles from binned events

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile (containing the number of +photons falling in each pulse bin)

+
+
nint

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The value of the statistic

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_binned_events_all(profile, nmax=20)[source]
+

Z^2_n statistic for multiple harmonics and binned events

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile (containing the number of +photons falling in each pulse bin)

+
+
nint

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
kslist of ints

Harmonic numbers, from 1 to nmax (included)

+
+
z2_nfloat

The value of the statistic for all ks

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_events(phase, n)[source]
+

Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2.

+
+
Parameters:
+
+
phasearray of floats

The phases of the events

+
+
nint, default 2

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The Z^2_n statistic

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_events_all(phase, nmax=20)[source]
+

Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2.

+
+
Parameters:
+
+
phasearray of floats

The phases of the events

+
+
nint, default 2

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
kslist of ints

Harmonic numbers, from 1 to nmax (included)

+
+
z2_nfloat

The Z^2_n statistic for all ks

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_gauss(profile, err, n)[source]
+

Z^2_n statistic for normally-distributed profiles

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile

+
+
errfloat

The (assumed constant) uncertainty on the flux in each bin.

+
+
nint

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The value of the statistic

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_gauss_all(profile, err, nmax=20)[source]
+

Z^2_n statistic for n harmonics and normally-distributed profiles

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile

+
+
errfloat

The (assumed constant) uncertainty on the flux in each bin.

+
+
nmaxint

Maximum number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
kslist of ints

Harmonic numbers, from 1 to nmax (included)

+
+
z2_nlist of floats

The value of the statistic for all ks

+
+
+
+
+
+ +
+ +

Calculates the Z^2_n statistics at trial frequencies in photon data.

+

The “real” Z^2_n statistics is very slow. Therefore, in this function data +are folded first, and then the statistics is calculated using the value of +the profile as an additional normalization term. +The two methods are mostly equivalent. However, the number of bins has to +be chosen wisely: if the number of bins is too small, the search for high +harmonics is ineffective. +If no exposure correction is needed and numba is installed, it uses a fast +algorithm to perform the folding. Otherwise, it runs a much slower +algorithm, which however yields a more precise result. +The search can be done in segments and the results averaged. Use +segment_size to control this

+
+
Parameters:
+
+
timesarray-like

the event arrival times

+
+
frequenciesarray-like

the trial values for the frequencies

+
+
+
+
Returns:
+
+
(fgrid, stats) or (fgrid, fdgrid, stats), as follows:
+
fgridarray-like

frequency grid of the epoch folding periodogram

+
+
fdgridarray-like

frequency derivative grid. Only returned if fdots is an array.

+
+
statsarray-like

the Z^2_n statistics corresponding to each frequency bin.

+
+
+
+
Other Parameters:
+
+
nbinint

the number of bins of the folded profiles

+
+
segment_sizefloat

the length of the segments to be averaged in the periodogram

+
+
fdotsarray-like

trial values of the first frequency derivative (optional)

+
+
expocorrbool

correct for the exposure (Use it if the period is comparable to the +length of the good time intervals.)

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good time intervals

+
+
weightsarray-like

weight for each time. This might be, for example, the number of counts +if the times array contains the time bins of a light curve

+
+
+
+
+
+ +
+
+

Simulator

+

This submodule defines extensive functionality related to simulating spectral-timing data sets, +including transfer and window functions, simulating light curves from power spectra for a range +of stochastic processes.

+
+
+class stingray.simulator.simulator.Simulator(dt, N, mean, rms, err=0.0, red_noise=1, random_state=None, tstart=0.0, poisson=False)[source]
+

Methods to simulate and visualize light curves.

+

TODO: Improve documentation

+
+
Parameters:
+
+
dtint, default 1

time resolution of simulated light curve

+
+
Nint, default 1024

bins count of simulated light curve

+
+
meanfloat, default 0

mean value of the simulated light curve

+
+
rmsfloat, default 1

fractional rms of the simulated light curve, +actual rms is calculated by mean*rms

+
+
errfloat, default 0

the errorbars on the final light curve

+
+
red_noiseint, default 1

multiple of real length of light curve, by +which to simulate, to avoid red noise leakage

+
+
random_stateint, default None

seed value for random processes

+
+
poissonbool, default False

return Poisson-distributed light curves.

+
+
+
+
+
+
+count_channels()[source]
+

Return total number of energy channels.

+
+ +
+
+delete_channel(channel)[source]
+

Delete an energy channel.

+
+ +
+
+delete_channels(channels)[source]
+

Delete multiple energy channels.

+
+ +
+
+get_all_channels()[source]
+

Get lightcurves belonging to all channels.

+
+ +
+
+get_channel(channel)[source]
+

Get lightcurve belonging to the energy channel.

+
+ +
+
+get_channels(channels)[source]
+

Get multiple light curves belonging to the energy channels.

+
+ +
+
+powerspectrum(lc, seg_size=None)[source]
+

Make a powerspectrum of the simulated light curve.

+
+
Parameters:
+
+
lclightcurve.Lightcurve object OR

iterable of lightcurve.Lightcurve objects +The light curve data to be Fourier-transformed.

+
+
+
+
Returns:
+
+
powernumpy.ndarray

The array of normalized squared absolute values of Fourier +amplitudes

+
+
+
+
+
+ +
+
+static read(filename, fmt='pickle')[source]
+

Reads transfer function from a ‘pickle’ file.

+
+
Parameters:
+
+
fmtstr

the format of the file to be retrieved - accepts ‘pickle’.

+
+
+
+
Returns:
+
+
dataclass instance

TransferFunction object

+
+
+
+
+
+ +
+
+relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)[source]
+

Construct a realistic impulse response considering the relativistic +effects.

+
+
Parameters:
+
+
t1int

primary peak time

+
+
t2int

secondary peak time

+
+
t3int

end time

+
+
p1float

value of primary peak

+
+
p2float

value of secondary peak

+
+
risefloat

slope of rising exponential from primary peak to secondary peak

+
+
decayfloat

slope of decaying exponential from secondary peak to end time

+
+
+
+
Returns:
+
+
hnumpy.ndarray

Constructed impulse response

+
+
+
+
+
+ +
+
+simple_ir(start=0, width=1000, intensity=1)[source]
+

Construct a simple impulse response using start time, +width and scaling intensity. +To create a delta impulse response, set width to 1.

+
+
Parameters:
+
+
startint

start time of impulse response

+
+
widthint

width of impulse response

+
+
intensityfloat

scaling parameter to set the intensity of delayed emission +corresponding to direct emission.

+
+
+
+
Returns:
+
+
hnumpy.ndarray

Constructed impulse response

+
+
+
+
+
+ +
+
+simulate(*args)[source]
+

Simulate light curve generation using power spectrum or +impulse response.

+
+
Parameters:
+
+
args

See examples below.

+
+
+
+
Returns:
+
+
lightCurveLightCurve object
+
+
+
+

Examples

+
    +
  • +
    x = simulate(beta):

    For generating a light curve using power law spectrum.

    +
    +
    +
    Parameters:
      +
    • beta : float +Defines the shape of spectrum

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(s):
    +
    For generating a light curve from user-provided spectrum.

    Note: In this case, the red_noise parameter is provided. +You can generate a longer light curve by providing a higher +frequency resolution on the input power spectrum.

    +
    +
    +
    Parameters:
      +
    • s : array-like +power spectrum

    • +
    +
    +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(model):

    For generating a light curve from pre-defined model

    +
    +
    +
    Parameters:
      +
    • model : astropy.modeling.Model +the pre-defined model

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(‘model’, params):

    For generating a light curve from pre-defined model

    +
    +
    +
    Parameters:
      +
    • model : string +the pre-defined model

    • +
    • params : list iterable or dict +the parameters for the pre-defined model

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(s, h):

    For generating a light curve using impulse response.

    +
    +
    +
    Parameters:
      +
    • s : array-like +Underlying variability signal

    • +
    • h : array-like +Impulse response

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(s, h, ‘same’):

    For generating a light curve of same length as input signal, +using impulse response.

    +
    +
    +
    Parameters:
      +
    • s : array-like +Underlying variability signal

    • +
    • h : array-like +Impulse response

    • +
    • mode : str +mode can be ‘same’, ‘filtered, or ‘full’. +‘same’ indicates that the length of output light +curve is same as that of input signal. +‘filtered’ means that length of output light curve +is len(s) - lag_delay +‘full’ indicates that the length of output light +curve is len(s) + len(h) -1

    • +
    +
    +
    +
    +
    +
    +
  • +
+
+ +
+
+simulate_channel(channel, *args)[source]
+

Simulate a lightcurve and add it to corresponding energy +channel.

+
+
Parameters:
+
+
channelstr

range of energy channel (e.g., 3.5-4.5)

+
+
*args

see description of simulate() for details

+
+
+
+
Returns:
+
+
lightCurveLightCurve object
+
+
+
+
+ +
+
+write(filename, fmt='pickle')[source]
+

Writes a transfer function to ‘pickle’ file.

+
+
Parameters:
+
+
fmtstr

the format of the file to be saved - accepts ‘pickle’

+
+
+
+
+
+ +
+ +
+
+

Exceptions

+

Some basic Stingray-related errors and exceptions.

+
+
+class stingray.exceptions.StingrayError[source]
+
+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/citing.html b/citing.html new file mode 100644 index 000000000..005f15cc1 --- /dev/null +++ b/citing.html @@ -0,0 +1,243 @@ + + + + + + + + Citing Stingray — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Citing Stingray

+

Citations are still the main currency of the academic world, and the best way to ensure that Stingray continues to be supported and we can continue to work on it. +If you use Stingray in data analysis leading to a publication, we ask that you cite both a DOI, which points to the software itself, and our papers describing the Stingray project.

+
+

DOI

+

If possible, we ask that you cite a DOI corresponding to the specific version of Stingray that you used to carry out your analysis.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Stingray Release

DOI

Citation

v1.1.2

10.5281/zenodo.7970570

[Link to BibTeX]

v1.1

10.5281/zenodo.7135161

[Link to BibTeX]

v1.0

10.5281/zenodo.6394742

[Link to BibTeX]

v0.3

10.5281/zenodo.4881255

[Link to BibTeX]

v0.2

10.5281/zenodo.3898435

[Link to BibTeX]

v0.1.3

10.5281/zenodo.3242835

[Link to BibTeX]

v0.1.2

10.5281/zenodo.3242829

[Link to BibTeX]

v0.1.1

10.5281/zenodo.3242825

[Link to BibTeX]

v0.1

10.5281/zenodo.3239519

[Link to BibTeX]

+

If this isn’t possible — for example, because you worked with an unreleased version of the code — you can cite Stingray’s concept DOI, 10.5281/zenodo.1490116 (BibTeX), which will always resolve to the latest release.

+
+
+

Papers

+

Please cite both of the following papers:

+ + +
+
+

Other Useful References

+Stingray is listed in the Astrophysics Source Code Library. +Copy the corresponding BibTeX to clipboard.
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/contributing.html b/contributing.html new file mode 100644 index 000000000..5d4ec8afa --- /dev/null +++ b/contributing.html @@ -0,0 +1,538 @@ + + + + + + + + Get Help, Report Bugs or Contribute — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Get Help, Report Bugs or Contribute

+
+

Reporting Bugs and Issues, Getting Help, Providing Feedback

+

We would love to hear from you! +We are writing Stingray to be useful to you, so if you encounter problems, have questions, would like to request features or just want to chat with us, please don’t hesitate to get in touch!

+

The best and easiest way to get in touch with us regarding bugs and issues is the GitHub Issues page. +If you’re not sure whether what you’ve encountered is a bug, if you have any questions or need advice getting some of the code to run, or would like to request a feature or suggest additions/changes, you can also contact us via the Slack group or our mailing list.

+

Please use this link to join Slack or send one of us an email to join the mailing list.

+
+
+

Getting Involved with Development

+

We encourage you to get involved with Stingray in any way you can! +First, read through the README. +Then, fork the stingray and notebooks repositories (if you need a primer on GitHub and git version control, look here) and work your way through the Jupyter notebook tutorials for the main modules. +Once you’ve familiarized yourself with the basics of Stingray, go to the Stingray issues page and try to tackle one! +Finally, you can read these slides from a talk on Stingray in 2021 at the 9th Microquasar Workshop.

+

For organizing and coordinating the software development, we have a Slack group and a mailing list – please use this link for Slack or send one of us an email to join.

+
+
+

Contributing to Stingray

+
+

All great things have small beginnings.

+
+

Hello there! We love and appreciate every small contribution you can +make to improve Stingray! We are proudly open source and believe +our(yes! yours as well) work will help enhance the quality of research +around the world. We want to make contributing to stingray as easy and +transparent as possible, whether it’s:

+
    +
  • Reporting a bug

  • +
  • Discussing the current state of the code

  • +
  • Submitting a fix

  • +
  • Proposing new features

  • +
+

A successful project is not just built by amazing programmers but by the +combined, unrelenting efforts of coders, testers, reviewers, and +documentation writers. There are a few guidelines that we need all +contributors to follow so that we can have a chance of keeping on top of +things.

+
+

Contribution Guidelines

+

Contributions from everyone, experienced and inexperienced, are welcome! +If you don’t know where to start, look at the Open +Issues and/or +get involved in our Slack +channel. This code is +written in Python 3.8+, but in general we will follow the Astropy/ Numpy +minimum Python versions. Tests run at each commit during Pull Requests, +so it is easy to single out points in the code that break this +compatibility.

+
    +
  • Branches:

    +
      +
    • Don’t use your main branch (forked) for anything. Consider +deleting your main branch.

    • +
    • Make a new branch, called a feature branch, for each separable set +of changes: “one task, one branch”.

    • +
    • Start that new feature branch from the most current development +version of stingray.

    • +
    • Name of branch should be the purpose of change eg. +bugfix-for-issue20 or refactor-lightcurve-code.

    • +
    • Never merge changes from stingray/main into your feature branch. +If changes in the development version require changes to our code +you can rebase, but only if asked.

    • +
    +
  • +
  • Commits:

    +
      +
    • Make frequent commits.

    • +
    • One commit per logical change in the code-base.

    • +
    • Add commit message.

    • +
    +
  • +
  • Naming Conventions:

    +
      +
    • Change name of the remote origin(yourusername/stingray) to your +github-username.

    • +
    • Name the remote that is the primary stingray repository( +StingraySoftware/stingray) as stingray.

    • +
    +
  • +
+
+

Contribution Workflow

+

These, conceptually, are the steps you will follow in contributing to +Stingray. These steps keep work well organized, with readable history. +This in turn makes it easier for project maintainers (that might be you) +to see what you’ve done, and why you did it:

+
    +
  1. Regularly fetch latest stingray development version stingray/main +from GitHub.

  2. +
  3. Make a new feature branch. Recommended: Use virtual environments +to work on branch.

  4. +
  5. Editing Workflow:

    +
      +
    1. One commit per logical change.

    2. +
    3. Run tests to make sure that changes don’t break existing code.

    4. +
    5. Code should have appropriate docstring.

    6. +
    7. Format code appropriately, use black as described below.

    8. +
    9. Update appropriate documentation if necessary and test it on +sphinx.

    10. +
    11. Write tests that cover all code changes.

    12. +
    13. If modifications require more than one commit, break changes into +smaller commits. Commits involving just the docs might use [docs only] in +their commit message to avoid running all the tests. Very trivial commits +(e.g. a space in a docstring) might skip all tests with [skip ci] in +their commit message.

    14. +
    15. Write a changelog entry in towncrier format (see below)

    16. +
    17. Push the code on your remote(forked) repository.

    18. +
    +
  6. +
  7. All code changes should be submitted via PRs (i.e. fork, branch, work +on stuff, just submit pull request). Code Reviews are super-useful: +another contributor can review the code, which means both the +contributor and reviewer will be up to date with how everything fits +together, and can get better by reading each other’s code! :)

  8. +
  9. Take feedback and make changes/revise the PR as asked.

  10. +
+
+
+
+

Coding Guidelines

+
+

Compatibility and Dependencies

+
    +
  • Compatibility: All code must be compatible with Python 3.8 +or later, and with the latest two major releases of Astropy.

  • +
  • Dependency Management:

    +
      +
    • The core package and affiliated packages should be importable with +no dependencies other than the Python Standard +Library, +astropy>=4.0, +numpy>=1.17.0, +scipy>=1.1, +matplotlib>=3.0

    • +
    • Additional dependencies are allowed for sub-modules or in function +calls, but they must be noted in the package documentation and +should only affect the relevant component. In functions and +methods, the optional dependency should use a normal import +statement, which will raise an ImportError if the dependency +is not available.

    • +
    +
  • +
+
+
+

Coding Style and Conventions

+
    +
  • Style Guide:

    +
      +
    • Follow the PEP8 style +guide. Follow the +existing coding style within the sub-package and avoid changes +that are purely stylistic.

    • +
    • Indentation should be ONLY with four spaces no mixing of +tabs-and-spaces.

    • +
    • Maximum line length should be 100 characters unless doing so +makes the code unreadable, ugly.

    • +
    • Functions and methods should be lower-case only, and separated by +a _ in case of multiple words eg. my_new_method.

    • +
    • Use verbose variable names (readability > economy). Only loop +iteration variables are allowed to be a single letter.

    • +
    • Classes start with an upper-case letter and use CamelCase eg. +MyNewClass.

    • +
    • Inline comments should start with two spaces and a single #.

    • +
    +
  • +
  • Formatting Style: The new Python 3 formatting style should be +used, i.e. f-strings f"{variable_name}" or +"{0}".format(variable_name}should be used instead of +"%s" % (variable_name).

  • +
  • Linter/Style Guide Checker: Our testing infrastructure currently +enforces a subset of the PEP8 style guide. You can check locally +whether your changes have followed these by running +flake8 with the following +command:

    +

    flake8 astropy --count --select=E101,W191,W291,W292,W293,W391,E111,E112,E113,E30,E502,E722,E901,E902,E999,F822,F823

    +
  • +
  • Code Formatters: We follow Astropy, enforcing this style guide +using the black code formatter, see The Black Code +Style +for details. Please run

    +

    black stingray

    +

    before each commit

    +
  • +
  • Imports:

    +
      +
    • Absolute imports are to be used in general. The exception to this +is relative imports of the form from . import modulename, this +convention makes it clearer what code is from the current +sub-module as opposed to from another. It is best to use when +referring to files within the same sub-module.

    • +
    • The import numpy as np, import scipy as sp, +import matplotlib as mpl, and +import matplotlib.pyplot as plt naming conventions should be +used wherever relevant. from packagename import * should never +be used, except as a tool to flatten the namespace of a module.

    • +
    +
  • +
  • Variable access in Classes:

    +
      +
    • Classes should either use direct variable access, or Python’s +property mechanism for setting object instance variables. +get_value/set_value style methods should be used only when +getting and setting the values requires a +computationally-expensive operation.

    • +
    • Attribute names should be descriptive if possible, use names of +desserts otherwise (e.g. for dummy test classes)

    • +
    +
  • +
  • super() function: Classes should use the built-in super() +function when making calls to methods in their super-class(es) unless +there are specific reasons not to. super() should be used +consistently in all sub-classes since it does not work otherwise.

  • +
  • Multiple Inheritance: Multiple inheritance should be avoided in +general without good reason.

  • +
  • init.py: The __init__.py files for modules should not contain +any significant implementation code. __init__.py can contain +docstrings and code for organizing the module layout, however if a +module is small enough that it fits in one file, it should simply be +a single file, rather than a directory with an __init__.py file.

  • +
+
+
+

Standard output, warnings, and errors

+
    +
  • Print Statement: Used only for outputs in methods and scenarios +explicitly requested by the user

  • +
  • Errors and Exceptions: Always use the raise with built-in or +custom exception classes. The nondescript Exception class should +be avoided as much as possible, in favor of more specific exceptions +(IOError, ValueError etc.).

  • +
  • Warnings: Always use the +warnings.warn(message, warning_class)for warnings. These get +redirected to log.warning() by default, but one can still use the +standard warning-catching mechanism and custom warning classes.

  • +
  • Debugging and Informational messages: Always use +log.info(message) and log.debug(message). The logging system +uses the built-in Python logging module.

  • +
+
+
+

Data and Configuration

+
    +
  • Storing Data:

    +
      +
    • Packages can include data in a directory named data inside a +subpackage source directory as long as it is less than about 100 +kB.

    • +
    • If the data exceeds this size, it should be hosted outside the +source code repository, either at a third-party location on the +internet.

    • +
    +
  • +
+
+
+

Documentation and Testing

+
    +
  • Docstrings:

    +
      +
    • Docstrings must be provided for all public classes, methods, and +functions.

    • +
    • Docstrings should follow the numpydoc +style +and reStructured Text format.

    • +
    • Write usage examples in the docstrings of all classes and +functions whenever possible. These examples should be short and +simple to reproduce. Users should be able to copy them verbatim +and run them.

    • +
    +
  • +
  • Unit tests: Provided for as many public methods and functions as +possible, and should adhere to the standards set in the Testing +Guidelines.

  • +
  • Building Documentation:

    +
      +
    • Use sphinx to build the documentation.

    • +
    • All extra documentation should go into a /docs sub-directory under +the main stingray directory.

    • +
    +
  • +
+
+
+

Updating and Maintaining the Changelog

+

Stingray uses `towncrier <https://pypi.org/project/towncrier/>`__ +which is used to generate the CHANGELOG.rst file at the root of the +package.

+

As described in docs/changes/README.rst, the changelog fragment +files should be added to each pull request. The changelog will be read +by users, so this description should be aimed at stingray users instead +of describing internal changes which are only relevant to the +developers. The idea is that the changelog lists all new features, API +changes, bugfixes, and so on that have been added to stingray between +versions so that a user can easily follow the changes without having to +go through the entire git log.

+

The towncrier tool will automatically reflow your text. You can install +towncrier and then run towncrier --draft if you want to get a +preview of how your change will look in the final release notes.

+
+
+
+

Testing Guidelines

+

The testing framework used by stingray is the pytest framework with tox. +To run the tests, you will need to make sure you have the pytest package +(version 3.1 or later) as well as the tox tool installed.

+
    +
  • Execute tests using the tox -e <test environment> command.

  • +
  • All tests should be py.test compliant: http://pytest.org/latest/.

  • +
  • Keep all tests in a /tests subdirectory under the main stingray +directory.

  • +
  • Write one test script per module in the package.

  • +
  • Extra examples can go into an /examples folder in the main stingray +directory, scripts that gather various data analysis tasks into +longer procedures into a /scripts folder in the same location.

  • +
+
+
+

Community Guidelines

+
+

Our Pledge

+

In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to making participation in our +project and our community a harassment-free experience for everyone, +regardless of age, body size, disability, ethnicity, gender identity and +expression, level of experience, nationality, personal appearance, race, +religion, or sexual identity and orientation.

+
+
+

Our Standards

+

Examples of behavior that contributes to creating a positive environment +include:

+
    +
  • Using welcoming and inclusive language

  • +
  • Being respectful of differing viewpoints and experiences

  • +
  • Gracefully accepting constructive criticism

  • +
  • Focusing on what is best for the community

  • +
  • Showing empathy towards other community members

  • +
+

Examples of unacceptable behavior by participants include:

+
    +
  • The use of sexualized language or imagery and unwelcome sexual +attention or advances

  • +
  • Trolling, insulting/derogatory comments, and personal or political +attacks

  • +
  • Public or private harassment

  • +
  • Publishing others’ private information, such as a physical or +electronic address, without explicit permission

  • +
  • Other conduct which could reasonably be considered inappropriate in a +professional setting

  • +
+
+
+

Our Responsibilities

+

Project maintainers are responsible for clarifying the standards of +acceptable behavior and are expected to take appropriate and fair +corrective action in response to any instances of unacceptable behavior.

+

Project maintainers have the right and responsibility to remove, edit, +or reject comments, commits, code, wiki edits, issues, and other +contributions that are not aligned to this Code of Conduct, or to ban +temporarily or permanently any contributor for other behaviors that they +deem inappropriate, threatening, offensive, or harmful.

+
+
+

Scope

+

This Code of Conduct applies both within project spaces and in public +spaces when an individual is representing the project or its community. +Examples of representing a project or community include using an +official project e-mail address, posting via an official social media +account, or acting as an appointed representative at an online or +offline event. Representation of a project may be further defined and +clarified by project maintainers.

+
+
+

Enforcement

+

Instances of abusive, harassing, or otherwise unacceptable behavior may +be reported by contacting the project team at any of our personal email +addresses or through private Slack communication. The project team will +review and investigate all complaints, and will respond in a way that it +deems appropriate to the circumstances. The project team is obligated to +maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted +separately.

+

Project maintainers who do not follow or enforce the Code of Conduct in +good faith may face temporary or permanent repercussions as determined +by other members of the project’s leadership.

+
+
+

Attribution

+

This Code of Conduct is adapted from the Contributor +Covenant, version 1.4, available at +http://contributor-covenant.org/version/1/4

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/core.html b/core.html new file mode 100644 index 000000000..69814da85 --- /dev/null +++ b/core.html @@ -0,0 +1,392 @@ + + + + + + + + Core Stingray Functionality — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Core Stingray Functionality

+

Here we show how many of the core Stingray classes and methods +work in practice. We start with basic data constructs for +event data and light curve data, and then show how to produce +various Fourier products from these data sets.

+
+

Working with Event Data

+ +
+
+

Working with Lightcurves

+ +
+
+

Fourier Analysis

+
+

Powerspectra

+ +
+
+

Dynamical Power Spectra

+ +
+
+

Cross Spectra

+ +
+
+

Cross- and Autocorrelations

+ +
+
+

Bispectra

+ +
+
+

Bayesian Excess Variance

+ +
+
+

Multi-taper Periodogram

+ +
+
+

Lomb Scargle Crossspectrum

+ +
+
+

Lomb Scargle Powerspectrum

+ +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/dataexplo.html b/dataexplo.html new file mode 100644 index 000000000..2e2b0d203 --- /dev/null +++ b/dataexplo.html @@ -0,0 +1,158 @@ + + + + + + + + Data Exploration — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Data Exploration

+

These notebook tutorials show some ways to explore data with +Stingray.

+
+

A quick look at a NuSTAR observation

+

Stingray transparently loads datasets from many HEASOFT-supported missions. +In this Tutorial, we will show an example quicklook of a NuSTAR observation.

+ +
+
+

Spectral timing exploration with NICER

+

In this Tutorial, we will show an example spectral timing exploration of a +black hole binary using NICER data.

+ +
+
+

Studying very slow variability with the Lomb-Scargle periodogram

+

In this Tutorial, we will show an example of how to use the Lomb-Scargle +periodogram and cross spectrum to study very slow variability in a light curve.

+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/deadtime.html b/deadtime.html new file mode 100644 index 000000000..812ee0449 --- /dev/null +++ b/deadtime.html @@ -0,0 +1,127 @@ + + + + + + + + Dealing with dead time — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Dealing with dead time

+

Stingray implements a few features to deal with instrumental dead time. +This is particularly useful in missions with long dead time, such as NuSTAR or IXPE. +In this tutorial, we will show the effects of dead time on X-ray observations, and explain how Stingray can help model it and, under some conditions, even correct for it.

+ +
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/genindex.html b/genindex.html new file mode 100644 index 000000000..58141b916 --- /dev/null +++ b/genindex.html @@ -0,0 +1,1235 @@ + + + + + + + Index — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+ + +

Index

+ +
+ _ + | A + | B + | C + | D + | E + | F + | G + | H + | I + | J + | L + | M + | N + | O + | P + | R + | S + | T + | V + | W + | Z + +
+

_

+ + + +
+ +

A

+ + + +
+ +

B

+ + + +
+ +

C

+ + + +
+ +

D

+ + + +
+ +

E

+ + + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

H

+ + + +
+ +

I

+ + + +
+ +

J

+ + + +
+ +

L

+ + + +
+ +

M

+ + + +
+ +

N

+ + +
+ +

O

+ + + +
+ +

P

+ + + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

V

+ + +
+ +

W

+ + +
+ +

Z

+ + + +
+ + + +
+
+
+
+
+
+

  + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/history.html b/history.html new file mode 100644 index 000000000..23f266625 --- /dev/null +++ b/history.html @@ -0,0 +1,379 @@ + + + + + + + + History — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

History

+

For a brief overview of the history and state-of-the-art in spectral timing, and for more information about the design and capabilities of Stingray, please refer to Huppenkothen et al. (2019).

+

Stingray originated during the 2016 workshop The X-ray Spectral-Timing Revolution: a group of X-ray astronomers and developers decided to agree on a common platform to develop a new software package. +At that time, there were a number of official software packages for X-ray spectral fitting (XSPEC, ISIS, Sherpa, …), but +such a widely used and standard software package did not exist for X-ray timing, that was mostly the domain of custom, proprietary software. +Our goals were to merge existing efforts towards a timing package in Python, following the best guidelines for modern open-source programming, thereby providing the basis for developing spectral-timing analysis tools. +We needed to provide an easily accessible scripting interface, a GUI, and an API for experienced coders. +Stingray’s ultimate goal is to provide the community with a package that eases the learning curve for advanced spectral-timing techniques, with a correct statistical framework.

+

Further spectral-timing functionality, in particularly command line scripts based on the API defined within Stingray, is available in the package HENDRICS. +A graphical user interface is under development as part of the project DAVE.

+
+

Previous projects merged to Stingray

+
    +
  • Daniela Huppenkothen’s original Stingray

  • +
  • Matteo Bachetti’s MaLTPyNT

  • +
  • Abigail Stevens’ RXTE power spectra code and phase-resolved spectroscopy code

  • +
  • Simone Migliari’s and Paul Balm’s X-ray data exploration GUI commissioned by ESA

  • +
+
+
+

Changelog

+
+

v1.1.2 (2023-05-25)

+
+

New Features

+
    +
  • Phase Dispersion Minimization as a method to search for periodic signals +in data is now implemented in the stingray.pulse submodule. To use it, +you can use the phase_dispersion_search function in +stingray.pulse.search. The accompanying statistical tests are located +in the stingray.stats module, under phase_dispersion_probability, +phase_dispersion_logprobability and phase_dispersion_detection_level. (#716)

  • +
  • Add is_sorted function, to test if an array is sorted. (#723)

  • +
  • Check if invalid data are inside GTIs, and warn or raise exception accordingly (#730)

  • +
+
+
+

Bug Fixes

+
    +
  • The method apply_gtis of the class Lightcurve is applied to all the attributes of the class Lightcurve. +This works for both inplace=True and inplace=False (#712)

  • +
  • Avoid allocation of an unneeded square matrix to improve memory management in _als (fix Issue 724) (#725)

  • +
  • Fix Issue #726 – Loading events without fmt keyword crashes (#727)

  • +
+
+
+

Documentation

+
    +
  • Reordered information about contributions with new black and towncrier procedures (#721)

  • +
+
+
+

Internal Changes

+
    +
  • Using towncrier to generate the changelogs. (#697)

  • +
  • Added stingray’s logo in the documentation’s favicon and top bar. (#707)

  • +
  • Improved contributing workflow by appending black codestyle configuration to pyproject.toml and ignoring PEP-8 non-compliant E203, W503 in flake8. (#715)

  • +
  • Added a scrollbar to sidebarwrapper (#718)

  • +
  • Simplify numba mocking code, and possibly improve code coverage estimate (#731)

  • +
+
+
+
+

v1.1.1 (2022-10-10)

+
+

Bug fixes

+
    +
  • Fixed white_noise_offset in compute_rms to 2.0, as it should be

  • +
  • Fixed a bug that produced a crash when calculating the rms in spectra corrected through the FAD technique

  • +
  • Fixed a bug that eliminated the imaginary part from cross spectra corrected with the FAD

  • +
  • Fixed a bug that considered contiguous GTIs as non-continuous (due to very small differences between stop and start of the next GTI) by allowing a small tolerance

  • +
+

Full list of changes

+
+
+
+

v1.1 (2022-10-02)

+
+

Bug fixes

+
    +
  • IMPORTANT: Fixed sign of time lags, which were calculated using the interest band as the reference.

  • +
  • Fixed an issue when the fractional exposure in FITS light curves is slightly >1 (as sometimes happens in NICER data)

  • +
+
+
+

New

+
    +
  • Implemented the bexvar variability estimation method for light curves.

  • +
+
+
+

Improvements

+
    +
  • A less confusing default value of segment_size in Z searches

  • +
+

Full list of changes

+
+
+
+

v1.0 (2022-03-29)

+

TL,DR: these things will break your code with v1.0:

+
    +
  • Python version < 3.8

  • +
  • The gtis keyword in pulse/pulsar.py (it is now gti, without the ‘s’)

  • +
+
+

New

+
    +
  • Dropped support to Python < 3.8

  • +
  • Multi-taper periodogram, including a Lomb-Scargle implementation for non-uniformly sampled data

  • +
  • Create count-rate spectrum when calculating spectral-timing products

  • +
  • Make modlation upper limit in (Averaged)Powerspectrum work with any normalization (internally converts to Leahy for the calculation)

  • +
  • Implement Gardner-Done normalization (1 for perfect correlation, -1 for perfect anticorrelation) for Auto/Crosscorrelation

  • +
  • New infrastructure for converting EventList and LightCurve objects into Astropy TimeSeries

  • +
  • New infrastructure for converting most Stingray classes into Astropy Table objects, Xarray and Pandas data frames.

  • +
  • Save and load of most Stingray classes to/from many different file formats (pickle, ECSV, HDF5, FITS, and all formats compatible with Astropy Table)

  • +
  • Accept input EventList in DynamicalPowerSpectrum

  • +
  • New stingray.fourier module containing the basic timing products, usable on numpy arrays, and centralizes fft import

  • +
  • New methods in Crossspectrum and Powerspectrum to load data from specific inputs: from_events, from_lightcurve, from_time_array, from_lc_list (from_time_array was also tested using memory-mapped event lists as inputs: useful in very large datasets)

  • +
  • New and improved spectral timing methods: ComplexCovarianceSpectrum, CovarianceSpectrum, LagSpectrum, RmsSpectrum

  • +
  • Some deprecated features are now removed

  • +
  • PSDLogLikelihood now also works with a log-rebinned PDS

  • +
+
+
+

Improvements

+
    +
  • Performance on large data sets is VASTLY improved

  • +
  • Lots of performance improvements in the AveragedCrossspectrum and AveragedPowerspectrum classes

  • +
  • Standardized use of new fast psd/cs algorithm, with legacy still available as an alternative option to specify

  • +
  • Reading calibrated photon energy from event files by default

  • +
  • In pulse/pulsar.py, methods use the keyword gti instead of gtis (for consistency with the rest of Stingray)

  • +
  • Moved CovarianceSpectrum` to ``VarEnergySpectrum and reuse part of the machinery

  • +
  • Improved error bars on cross-spectral and spectral timing methods

  • +
  • Measure absolute rms in RmsEnergySpectrum

  • +
  • Friendlier pyfftw warnings

  • +
  • Streamline PDS/CrossSp production, adding from_events, from_lc, from_lc_iterable, and from_time_array (to input a numpy array) methods

  • +
  • PDS/CrossSp initially store the unnormalized power, and convert it on the fly when requested, to any normalization

  • +
+
+
+

Bug fixes

+
    +
  • Fixed error bars and err_dist for sliced (iterated) light curves and power spectra

  • +
  • Fixed a bug in how the start time when applying GTIs (now using the minimum value of the GTI array, instead of half a time bin below the minimum value)

  • +
  • Fixed a bug in which all simulator errors were incorrectly non-zero

  • +
  • Fixed coherence uncertainty

  • +
  • Documented a Windows-specific issue when large count rate light curves are defined as integer arrays (Windows users should use float or specify int-64)

  • +
  • If the variance of the lightcurve is zero, the code will fail to implement Leahy normalization

  • +
  • The value of the PLEPHEM header keyword is forced to be a string, in the rare cases that it’s a number

  • +
  • and more!

  • +
+

Full list of changes

+

v1.0beta was released on 2022-02-25.

+
+
+
+

v0.3 (2021-05-31)

+
    +
  • Lots of performance improvements

  • +
  • Faster simulations

  • +
  • Averaged Power spectra and Cross spectra now handle Gaussian light curves correctly

  • +
  • Fixes in rebin functions

  • +
  • New statistical functions for signal detection in power spectra and pulsar search periodograms

  • +
  • Much improved FTOOL-compatible mission support

  • +
  • New implementation of the FFTFIT method to calculate pulsar times of arrival

  • +
  • H-test for pulsar searches

  • +
  • Z^2_n search adapted to binned and normally distribute pulse profiles

  • +
  • Large data processing (e.g. from NICER) allowed

  • +
  • Rebinning function now accepts unevenly sampled data

  • +
  • New saving and loading from/to Astropy Tables and Timeseries

  • +
  • Improved I/O to ascii, hdf5 and other formats

  • +
  • Rehaul of documentation

  • +
+

Full list of changes

+
+
+

v0.2 (2020-06-17)

+
    +
  • Added Citation info

  • +
  • Fixed various normalization bugs in Powerspectrum

  • +
  • Speedup of lightcurve creation and handling

  • +
  • Made code compatible with Python 3.6, and dropped support to Python 2.7

  • +
  • Test speedups

  • +
  • Dead time models and Fourier Amplitude Difference correction

  • +
  • Roundtrip of LightCurve to lightkurve objects

  • +
  • Fourier-domain accelerated search for pulsars

  • +
  • Adapt package to APE-17

  • +
  • Periodograms now also accept event lists (instead of just light curves)

  • +
  • Allow transparent MJDREF change in event lists and light curves

  • +
+

Full list of changes

+
+
+

v0.1.3 (2019-06-11)

+
    +
  • Bug fixes

  • +
+
+
+

v0.1.2

+
    +
  • Bug fixes

  • +
+
+
+

v0.1.1

+
    +
  • Bug fixes

  • +
+
+
+

v0.1 (2019-05-29)

+
    +
  • Initial release.

  • +
+
+
+
+

Presentations

+

Members of the Stingray team have given a number of presentations which introduce Stingray. +These include:

+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 000000000..7381d6da0 --- /dev/null +++ b/index.html @@ -0,0 +1,492 @@ + + + + + + + + Stingray: Next-Generation Spectral Timing — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Stingray: Next-Generation Spectral Timing

+Stingray logo, outline of a stingray on top of a graph of the power spectrum of an X-ray binary +

Stingray is a Python library designed to perform times series analysis and related tasks on astronomical light curves. +It supports a range of commonly-used Fourier analysis techniques, as well as extensions for analyzing pulsar data, simulating data sets, and statistical modelling. +Stingray is designed to be easy to extend, and easy to incorporate into data analysis workflows and pipelines.

+
+

Important

+

If you use Stingray for work presented in a publication or talk, please help the project by providing a proper citation.

+
+
+

Features

+
+

Current Capabilities

+
+

1. Data handling and simulation

+
    +
  • loading event lists from fits files of a few missions (RXTE/PCA, NuSTAR/FPM, XMM-Newton/EPIC, NICER/XTI)

  • +
  • constructing light curves from event data, various operations on light curves (e.g. addition, subtraction, joining, and truncation)

  • +
  • simulating a light curve with a given power spectrum

  • +
  • simulating a light curve from another light curve and a 1-d (time) or 2-d (time-energy) impulse response

  • +
  • simulating an event list from a given light curve _and_ with a given energy spectrum

  • +
  • Good Time Interval operations

  • +
+
+
+

2. Fourier methods

+
    +
  • power spectra and cross spectra in Leahy, rms normalization, absolute rms and no normalization

  • +
  • averaged power spectra and cross spectra

  • +
  • dynamical power spectra and cross spectra

  • +
  • maximum likelihood fitting of periodograms/parametric models

  • +
  • (averaged) cross spectra

  • +
  • coherence, time lags

  • +
  • Variability-Energy spectra, like covariance spectra and lags needs testing

  • +
  • covariance spectra; needs testing

  • +
  • bispectra; needs testing

  • +
  • (Bayesian) quasi-periodic oscillation searches

  • +
  • Lomb-Scargle periodograms and cross spectra

  • +
+
+
+

3. Other time series methods

+
    +
  • pulsar searches with Epoch Folding, \(Z^2_n\) test

  • +
  • Gaussian Processes for QPO studies

  • +
  • cross correlation functions

  • +
+
+
+
+

Future Plans

+

We welcome feature requests: if you need a particular tool that’s currently not available or have a new method you think might be usefully implemented in Stingray, please get in touch!

+

Other future additions we are currently implementing are:

+
    +
  • bicoherence

  • +
  • phase-resolved spectroscopy of quasi-periodic oscillations

  • +
  • Fourier-frequency-resolved spectroscopy

  • +
  • power colours

  • +
  • full HEASARC-compatible mission support

  • +
  • pulsar searches with \(H\)-test

  • +
  • binary pulsar searches

  • +
+
+
+

Platform-specific issues

+

Windows uses an internal 32-bit representation for int. This might create numerical errors when using large integer numbers (e.g. when calculating the sum of a light curve, if the lc.counts array is an integer). +On Windows, we automatically convert the counts array to float. The small numerical errors should be a relatively small issue compare to the above.

+
+
+
+

Installation instructions

+

There are currently three ways to install Stingray:

+
    +
  • via conda

  • +
  • via pip

  • +
  • from source

  • +
+

Below, you can find instructions for each of these methods.

+
+

Dependencies

+

A minimal installation of Stingray requires the following dependencies:

+
    +
  • astropy>=4.0

  • +
  • numpy>=1.17.0

  • +
  • scipy>=1.1.0

  • +
  • matplotlib>=3.0,!=3.4.0

  • +
+

In typical uses, requiring input/output, caching of results, and faster processing, we recommend the following dependencies:

+
    +
  • numba (highly recommended)

  • +
  • tbb (needed by numba)

  • +
  • tqdm (for progress bars, always useful)

  • +
  • pyfftw (for the fastest FFT in the West)

  • +
  • h5py (for input/output)

  • +
  • pyyaml (for input/output)

  • +
  • emcee (for MCMC analysis, e.g. for PSD fitting)

  • +
  • corner (for the plotting of MCMC results)

  • +
  • statsmodels (for some statistical analysis)

  • +
+

For pulsar searches and timing, we recommend installing

+
    +
  • pint-pulsar

  • +
+

Some of the dependencies are available in conda, the others via pip. +To install all required and recommended dependencies in a recent installation, you should be good running the following command:

+
+

$ pip install astropy scipy matplotlib numpy h5py tqdm numba pint-pulsar emcee corner statsmodels pyfftw tbb

+
+

For the Gaussian Process modeling in stingray.modeling.gpmodeling, you’ll need the following extra packages

+
    +
  • jax

  • +
  • jaxns

  • +
  • tensorflow

  • +
  • tensorflow-probability

  • +
  • tinygp

  • +
  • etils

  • +
  • typing_extensions

  • +
+

Most of these are installed via pip, but if you have an Nvidia GPU available, you’ll want to take special care +following the installation instructions for jax and tensorflow(-probability) in order to enable GPU support and +take advantage of those speed-ups.

+

For development work, you will need the following extra libraries:

+
    +
  • pytest

  • +
  • pytest-astropy

  • +
  • tox

  • +
  • jinja2<=3.0.0

  • +
  • docutils

  • +
  • sphinx-astropy

  • +
  • nbsphinx>=0.8.3,!=0.8.8

  • +
  • pandoc

  • +
  • ipython

  • +
  • jupyter

  • +
  • notebook

  • +
  • towncrier<22.12.0

  • +
  • black

  • +
+

Which can be installed with the following command:

+
+

$ pip install pytest pytest-astropy jinja2<=3.0.0 docutils sphinx-astropy nbsphinx pandoc ipython jupyter notebook towncrier<22.12.0 tox black

+
+
+
+

Installation

+
+

Installing via conda

+

If you manage your Python installation and packages +via Anaconda or miniconda, you can install stingray +via the conda-forge build:

+
$ conda install -c conda-forge stingray
+
+
+

That should be all you need to do! Just remember to run the tests before +you use it!

+
+
+

Installing via pip

+

pip-installing Stingray is easy! Just do:

+
$ pip install stingray
+
+
+

And you should be done! Just remember to run the tests before you use it!

+
+
+

Installing from source (bleeding edge version)

+

For those of you wanting to install the bleeding-edge development version from +source (it will have bugs; you’ve been warned!), first clone +our repository on GitHub:

+
$ git clone --recursive https://github.com/StingraySoftware/stingray.git
+
+
+

Now cd into the newly created stingray directory. +Finally, install stingray itself:

+
$ pip install -e "."
+
+
+
+
+

Installing development environment (for new contributors)

+

For those of you wanting to contribute to the project, install the bleeding-edge development version from +source. First fork +our repository on GitHub and clone the forked repository using:

+
$ git clone --recursive https://github.com/<your github username>/stingray.git
+
+
+

Now, navigate to this folder and run +the following command to add an upstream remote that’s linked to Stingray’s main repository. +(This will be necessary when submitting PRs later.):

+
$ cd stingray
+$ git remote add upstream https://github.com/StingraySoftware/stingray.git
+
+
+

Now, install the necessary dependencies:

+
$ pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm
+
+
+

Finally, install stingray itself:

+
$ pip install -e "."
+
+
+
+
+
+

Test Suite

+

Please be sure to run the test suite before you use the package, and please report anything +you think might be bugs on our GitHub Issues page.

+

Stingray uses py.test and tox for testing. To run the tests, try:

+
$ tox -e test
+
+
+

You may need to install tox first:

+
$ pip install tox
+
+
+

To run a specific test file (e.g., test_io.py), try:

+
$ cd stingray
+$ py.test tests/test_io.py
+
+
+

If you have installed Stingray via pip or conda, the source directory might +not be easily accessible. Once installed, you can also run the tests using:

+
$ python -c 'import stingray; stingray.test()'
+
+
+

or from within a python interpreter:

+
>>> import stingray
+>>> stingray.test()
+
+
+
+
+

Building the Documentation

+

The documentation including tutorials is hosted here. +The documentation uses sphinx to build and requires the extensions sphinx-astropy and nbsphinx.

+

One quick way to build the documentation is using our tox environment:

+
$ tox -e build_docs
+
+
+

You can build the API reference yourself by going into the docs folder within the stingray root +directory and running the Makefile:

+
$ cd stingray/docs
+$ make html
+
+
+

If that doesn’t work on your system, you can invoke sphinx-build itself from the stingray source directory:

+
$ cd stingray
+$ sphinx-build docs docs/_build
+
+
+

The documentation should be located in stingray/docs/_build. Try opening ./docs/_build/index.rst from +the stingray source directory.

+
+
+
+

Using Stingray

+
+

Getting started

+ +
+
+

Advanced

+ +
+
+
+

Additional information

+ +
+
+

Indices and tables

+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/modeling.html b/modeling.html new file mode 100644 index 000000000..6391e263e --- /dev/null +++ b/modeling.html @@ -0,0 +1,132 @@ + + + + + + + + The Stingray Modelling Interface — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

The Stingray Modelling Interface

+

Stingray provides a custom-built fitting interface, built on top +of scipy and emcee as well as a set of general functions +and classes that allow the user to perform standard model fitting tasks +on Fourier products, but also enable users to implement their own models +and classes based on this framework.

+

Below, we show on some examples how this interface can be used.

+ +
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Bexvar/Bexvar tutorial.html b/notebooks/Bexvar/Bexvar tutorial.html new file mode 100644 index 000000000..17128dc34 --- /dev/null +++ b/notebooks/Bexvar/Bexvar tutorial.html @@ -0,0 +1,294 @@ + + + + + + + + Baysian Excess Variance (Bexvar) — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Baysian Excess Variance (Bexvar)

+

The Bayesian Excess Variance (bexvar) is a statistical measurement of variability in Poisson-distributed light curves. Bexvar is a Bayesian formulation of excess variance. A brief summary of theoretical understanding of bexvar is given at the end of this tutorial.

+
+
The bexvar() method implemented in Stingray, provides posterior samples of bexvar given a light curve data as input parameters.
+
This tutorial is intended to give a demonstration of How to use bexvar() method implemented in Stingray. The method takes following input parameters. (Given here for completeness)
+
+
+
  time : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
     A list or array of time stamps for a light curve.
+
  time_del : iterable, :class:numpy.array or :class:List of floats
+
    A list or array of time intervals for each bin of light curve.
+
  src_counts : iterable, :class:numpy.array or :class:List of floats
+
    A list or array of counts observed from source region in each bin.
+
  bg_counts : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
    A list or array of counts observed from background region in each bin. If None
+
    we assume it as a numpy array of zeros, of length equal to length of src_counts.
+
  bg_ratio : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
    A list or array of source region area to background region area ratio in each bin.
+
    If None we assume it as a numpy array of ones, of length equal to the length of
+
    src_counts.
+
  frac_exp : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
    A list or array of fractional exposers in each bin. If None we assume it as
+
    a numpy array of ones, of length equal to length of src_counts.
+
+

Let us start by importing the bexvar module

+
+
[13]:
+
+
+
from stingray import bexvar
+
+
+
+

Now consider an example dataset.

+
+
[14]:
+
+
+
import numpy as np
+
+time = np.arange(0,8)*100
+counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])
+time_del = np.ones(np.size(time))*100
+bg_counts = np.array([722, 696, 701, 721, 722, 703, 722, 695])
+bg_ratio = np.array([0.01474, 0.01158, 0.01214, 0.01308, 0.010877, 0.01177, 0.01058, 0.01138])
+frac_exp = np.array([0.37416, 0.21713, 0.37937,  0.50140, 0.11617, 0.39221, 0.64275, 0.31160])
+
+
+
+

Call bexvar function to get posterior distribution of bexvar.

+
+
[16]:
+
+
+

bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del, frac_exp=frac_exp, + bg_counts=bg_counts, bg_ratio=bg_ratio) +
+
+
+
+
+
+
+
+preparing time bin posteriors...
+running bexvar...
+[ultranest] Sampling 400 live points from prior ...
+[ultranest] Explored until L=-2e+01   [-20.4040..-20.4040]*| it/evals=3622/5046 eff=77.9595% N=400
+[ultranest] Likelihood function evaluations: 5051
+[ultranest]   logZ = -24.86 +- 0.0784
+[ultranest] Effective samples strategy satisfied (ESS = 1590.2, need >400)
+[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.47+-0.06 nat, need <0.50 nat)
+[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.08, need <0.5)
+[ultranest]   logZ error budget: single: 0.09 bs:0.08 tail:0.01 total:0.08 required:<0.50
+[ultranest] done iterating.
+
+logZ = -24.856 +- 0.156
+  single instance: logZ = -24.856 +- 0.093
+  bootstrapped   : logZ = -24.856 +- 0.156
+  tail           : logZ = +- 0.010
+insert order U test : converged: True correlation: inf iterations
+
+    logmean             : 0.350 │ ▁ ▁ ▁▁▁▁▁▁▁▁▂▃▄▅▆▇▇▇▆▅▄▃▂▁▁▁▁▁▁▁ ▁ ▁▁ │0.575     0.461 +- 0.020
+    logsigma            : 0.010 │▇▅▄▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁        ▁     ▁ │0.227     0.028 +- 0.018
+
+running bexvar... done
+
+
+

The bexvar() method uses UltraNest python package to obtain the posteriors of bexvar. Ultranest gives a brief summary of log evidence (log(z)) and its uncertainties, and the parameter constraints.

+

We can then plot the samples to visualize the posterior distribution of bexvar.

+
+
[5]:
+
+
+
import matplotlib.pyplot as plt
+%matplotlib inline
+plt.hist(bexvar_distribution, bins=20)
+plt.ylabel("# of samples")
+plt.xlabel(r"$\sigma_{bexvar}$")
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png +
+
+

If the light curve is intrinsically variable, then the posterior distribution of bexvar should exclude low values. Users can compute the lower 10% quantile of the posterior, and use it as a variability indicator (see Buchner et al. (2021)).

+

The method uses fractional exposers (frac_exp) in each bin to compute the count rates (i.e.\(~\scriptstyle{R_i = C_i/(\Delta{t_i}\times f_i)}\)). In its current form it only considers time bins with frac_exp < 1. The bg_ratio parameter is used to scale the bg_counts to estimate counts in source region. The bg_count, bg_ratio and frac_exp are optional parameters, if they are not provided, the method defines default values for them as described in documentation.

+

Let us see an example to get bexvar distribution without these optional parameters.

+
+
[3]:
+
+
+
import numpy as np
+
+time = np.arange(0,8)*100
+counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])
+time_del = np.ones(np.size(time))*100
+
+bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del)
+
+
+
+
+
+
+
+
+preparing time bin posteriors...
+running bexvar...
+[ultranest] Sampling 400 live points from prior ...
+[ultranest] Explored until L=-4e+01   [-36.8486..-36.8486]*| it/evals=3615/5101 eff=76.8985% N=400
+[ultranest] Likelihood function evaluations: 5125
+[ultranest]   logZ = -41.34 +- 0.09729
+[ultranest] Effective samples strategy satisfied (ESS = 1692.4, need >400)
+[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.06 nat, need <0.50 nat)
+[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.10, need <0.5)
+[ultranest]   logZ error budget: single: 0.09 bs:0.10 tail:0.01 total:0.10 required:<0.50
+[ultranest] done iterating.
+
+logZ = -41.331 +- 0.174
+  single instance: logZ = -41.331 +- 0.092
+  bootstrapped   : logZ = -41.335 +- 0.174
+  tail           : logZ = +- 0.010
+insert order U test : converged: True correlation: inf iterations
+
+    logmean             : -0.517│ ▁  ▁  ▁▁▁▁▁▁▁▁▁▁▂▂▃▄▆▇▇▆▅▄▃▂▁▁▁▁▁▁▁▁▁ │0.383     0.020 +- 0.081
+    logsigma            : 0.029 │ ▁▂▆▇▇▅▃▂▂▁▁▁▁▁▁▁▁ ▁▁▁▁▁   ▁         ▁ │1.236     0.213 +- 0.074
+
+running bexvar... done
+
+
+
+

Bexvar: Theoretical background

+

This section provides a theoretical understanding of Bayesian excess variance (bexvar). This is an optional read.

+

Given a lightcurve data \({\scriptstyle 𝐷 = (𝑆_1,𝐵_1,~…~,𝑆_𝑁,𝐵_𝑁)}\) where (\(\scriptstyle{S_i}\)) denotes counts obtained from source region and (\(\scriptstyle{B_i}\)) denotes counts obtained from background extraction region in \(\scriptstyle{i^{th}}\) time bin. If it is assumed that the counts \(\scriptstyle{𝑆_𝑖}\) and \(\scriptstyle{𝐵_𝑖}\) can be expressed as Poisson processes.

+
+\[\scriptstyle {𝑆_𝑖 ~ \sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((( 𝑅_𝑆(𝑡_𝑖) ~+~ 𝑅_𝐵(𝑡_𝑖) \times 𝑟)~×~𝑓_𝑖~\times~Δ𝑡)}\]
+
+\[\scriptstyle {𝐵_𝑖 ~ \sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅_𝐵(𝑡_𝑖) × 𝑓_𝑖 × Δ𝑡)}\]
+
+
Here, \(\scriptstyle{𝑅_𝑆(𝑡_𝑖)}\) is source count rate and \(\scriptstyle{𝑅_B(𝑡_𝑖)}\) is background count rate in \(\scriptstyle{i^{th}}\) time bin.
+
It is further assumed that \(\scriptstyle{𝑅_𝑆(𝑡_𝑖)}\) is distributed according to a log normal distribution, with some unknown parameters (i.e., \(\scriptstyle{log(\bar{𝑅_{S}})}\), and \(\scriptstyle{\sigma_{bexvar}}\)).
+
+
+
+\[\scriptstyle{log(𝑅_𝑆(𝑡_𝑖))~\sim~𝑁𝑜𝑟𝑚𝑎𝑙(log(\bar{𝑅_𝑆}),~ \sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}\]
+
+

This \(\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}\) provides intrinsic variability on log-count rate and it is defined as Bayesian excess variance (bexvar). The posterior distribution of \(\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}\) can be used to identify intrinsically variable object.

+

The bexvar() method in Stingray returns posterior samples of \(\scriptstyle{\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}}\) given a light curve data. The samples are generated following the same prescription given in Buchner et al. (2021). The method uses flat, uninformative priors on \(\scriptstyle{log(\bar{𝑅_𝑆})}\) and \(\scriptstyle{log(\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}\) and obtains the posterior samples using nested sampling Monte Carlo algorithm MLFriends (Buchner +2016, 2019) implemented in the UltraNest Python package (Buchner 2021).

+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Bexvar/Bexvar tutorial.ipynb b/notebooks/Bexvar/Bexvar tutorial.ipynb new file mode 100644 index 000000000..a8159be7b --- /dev/null +++ b/notebooks/Bexvar/Bexvar tutorial.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Baysian Excess Variance (Bexvar)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Bayesian Excess Variance (bexvar) is a statistical measurement of variability in Poisson-distributed light curves. Bexvar is a Bayesian formulation of excess variance. A brief summary of theoretical understanding of bexvar is given at the end of this tutorial. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method implemented in Stingray, provides posterior samples of bexvar given a light curve data as input parameters. \n", + "This tutorial is intended to give a demonstration of How to use `bexvar()` method implemented in Stingray.\n", + "The method takes following input parameters. (Given here for completeness)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "  ```time``` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "     A list or array of time stamps for a light curve. \n", + "  `time_del` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of time intervals for each bin of light curve. \n", + "  `src_counts` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of counts observed from source region in each bin. \n", + "  `bg_counts` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of counts observed from background region in each bin. If ``None`` \n", + "    we assume it as a numpy array of zeros, of length equal to length of ``src_counts``. \n", + "  `bg_ratio` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of source region area to background region area ratio in each bin. \n", + "    If ``None`` we assume it as a numpy array of ones, of length equal to the length of \n", + "    ``src_counts``. \n", + "  `frac_exp` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of fractional exposers in each bin. If ``None`` we assume it as \n", + "    a numpy array of ones, of length equal to length of ``src_counts``. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us start by importing the bexvar module" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import bexvar" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now consider an example dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "bg_counts = np.array([722, 696, 701, 721, 722, 703, 722, 695])\n", + "bg_ratio = np.array([0.01474, 0.01158, 0.01214, 0.01308, 0.010877, 0.01177, 0.01058, 0.01138])\n", + "frac_exp = np.array([0.37416, 0.21713, 0.37937, 0.50140, 0.11617, 0.39221, 0.64275, 0.31160])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call bexvar function to get posterior distribution of bexvar." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-2e+01 [-20.4040..-20.4040]*| it/evals=3622/5046 eff=77.9595% N=400 \n", + "[ultranest] Likelihood function evaluations: 5051\n", + "[ultranest] logZ = -24.86 +- 0.0784\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1590.2, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.47+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.08, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.08 tail:0.01 total:0.08 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -24.856 +- 0.156\n", + " single instance: logZ = -24.856 +- 0.093\n", + " bootstrapped : logZ = -24.856 +- 0.156\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : 0.350 │ ▁ ▁ ▁▁▁▁▁▁▁▁▂▃▄▅▆▇▇▇▆▅▄▃▂▁▁▁▁▁▁▁ ▁ ▁▁ │0.575 0.461 +- 0.020\n", + " logsigma : 0.010 │▇▅▄▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁ ▁ ▁ │0.227 0.028 +- 0.018\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "\n", + " bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del, frac_exp=frac_exp,\n", + " bg_counts=bg_counts, bg_ratio=bg_ratio)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method uses [UltraNest](https://johannesbuchner.github.io/UltraNest/) python package to obtain the posteriors of bexvar. Ultranest gives a brief summary of log evidence (log(z)) and its uncertainties, and the parameter constraints. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then plot the samples to visualize the posterior distribution of bexvar." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEICAYAAACuxNj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAY3ElEQVR4nO3debRlZXnn8e/PQnACBbkaoMACG0w7FlpBE2MWOCLYgENr0VFwaHHATmxcrTh0HBJ6kcGJNo1dKiJGQZSwRIU2SAftdItQYFkMghSDocoSCmxxDA349B/nvXIo7r371K17huJ+P2vtdfZ59rv3eWqfA8/d+9373akqJEmaywPGnYAkafJZLCRJnSwWkqROFgtJUieLhSSpk8VCktRpu3EnMCy77rprLVu2bNxpSNI249JLL721qqZmWna/LRbLli1j9erV405DkrYZSX442zJPQ0mSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHW6396UtzWWHf+1ea9744mHLmAmkjQZPLKQJHUaWrFIckqSW5Jc0Rf7QpI1bboxyZoWX5bk133LPt63ztOSXJ5kXZKTkmRYOUuSZjbM01CnAh8DTpsOVNUrpueTfBC4va/9dVW1fIbtnAy8HvgOcC5wMHDewqcrSZrN0I4squpbwE9mWtaODl4OnD7XNpLsBuxUVRdVVdErPEcscKqSpA7j6rN4FnBzVV3bF9s7yXeTfDPJs1psD2B9X5v1LTajJMckWZ1k9aZNmxY+a0lapMZVLI7k3kcVG4G9qmp/4Djg80l22tKNVtWqqlpRVSumpmYckl2SNA8jv3Q2yXbAS4CnTceq6g7gjjZ/aZLrgP2ADcDSvtWXtpgkaYTGcWTxXODqqvrt6aUkU0mWtPl9gH2B66tqI/CzJM9o/RxHAV8eQ86StKgN89LZ04FvA49Lsj7J69qildy3Y/uPgLXtUtovAW+squnO8TcDnwTWAdfhlVCSNHJDOw1VVUfOEn/1DLGzgLNmab8aeOKCJidJ2iLewS1J6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnYZWLJKckuSWJFf0xd6XZEOSNW06pG/ZO5OsS3JNkhf0xQ9usXVJjh9WvpKk2Q3zyOJU4OAZ4h+uquVtOhcgyeOBlcAT2jr/LcmSJEuAvwVeCDweOLK1lSSN0HbD2nBVfSvJsgGbHw6cUVV3ADckWQcc0Jatq6rrAZKc0dpetdD5SpJmN44+i7ckWdtOU+3cYnsAN/W1Wd9is8VnlOSYJKuTrN60adNC5y1Ji9aoi8XJwGOB5cBG4IMLufGqWlVVK6pqxdTU1EJuWpIWtaGdhppJVd08PZ/kE8BX29sNwJ59TZe2GHPEJUkjMtIjiyS79b19MTB9pdQ5wMokOyTZG9gXuBi4BNg3yd5JtqfXCX7OKHOWJA3xyCLJ6cCBwK5J1gPvBQ5Mshwo4EbgDQBVdWWSM+l1XN8FHFtVd7ftvAX4OrAEOKWqrhxWzpKkmQ3zaqgjZwh/ao72JwAnzBA/Fzh3AVOTJG0h7+CWJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE5DKxZJTklyS5Ir+mJ/neTqJGuTnJ3kES2+LMmvk6xp08f71nlaksuTrEtyUpIMK2dJ0syGeWRxKnDwZrHzgSdW1ZOBHwDv7Ft2XVUtb9Mb++InA68H9m3T5tuUJA3Z0IpFVX0L+MlmsX+oqrva24uApXNtI8luwE5VdVFVFXAacMQQ0pUkzWGcfRavBc7re793ku8m+WaSZ7XYHsD6vjbrW2xGSY5JsjrJ6k2bNi18xpK0SI2lWCR5N3AX8LkW2gjsVVX7A8cBn0+y05Zut6pWVdWKqloxNTW1cAlL0iK33ag/MMmrgRcBz2mnlqiqO4A72vylSa4D9gM2cO9TVUtbTJI0QiM9skhyMPB24LCq+lVffCrJkja/D72O7OuraiPwsyTPaFdBHQV8eZQ5S5K2sFgk2TnJkwdsezrwbeBxSdYneR3wMWBH4PzNLpH9I2BtkjXAl4A3VtV05/ibgU8C64DruHc/hyRpBDpPQyW5EDistb0UuCXJ/66q4+Zar6qOnCH8qVnangWcNcuy1cATu/KUJA3PIEcWD6+qnwEvAU6rqqcDzx1uWpKkSTJIsdiu3e/wcuCrQ85HkjSBBikWHwC+Tu8O60taB/S1w01LkjRJOvssquqLwBf73l8PvHSYSUmSJkvnkUWS/ZJcMD0gYJInJ3nP8FOTJE2KQU5DfYLegH93AlTVWmDlMJOSJE2WQYrFQ6rq4s1id83YUpJ0vzRIsbg1yWOBAkjyMnpjOUmSFolBxoY6FlgF/G6SDcANwCuHmpUkaaIMcjXU9cBzkzwUeEBV/Xz4aUmSJsmsxSLJjMN5TD/VtKo+NKScJEkTZq4jix1HloUkaaLNWiyq6v2jTESSNLkGuSlvnyRfSbIpyS1JvtyG/JAkLRKDXDr7eeBMYDdgd3pDf5w+zKQkSZNl0JvyPltVd7Xp74AHDTsxSdLkGOQ+i/OSHA+cQe/GvFcA5ybZBaDviXaSpPupQYrFy9vrGzaLr6RXPOy/kKT7uUFuytt7FIlIkibXIFdDLUlyWJI/SXLc9DTIxpOc0q6guqIvtkuS85Nc2153bvEkOSnJuiRrkzy1b52jW/trkxw9n3+oJGn+Bung/grwauCR9G7Um54GcSpw8Gax44ELqmpf4IL2HuCFwL5tOgY4GXrFBXgv8HTgAOC90wVGkjQag/RZLK2qJ89n41X1rSTLNgsfDhzY5j8DXAi8o8VPq6oCLkryiPbs7wOB86c70pOcT68AefmuJI3IIEcW5yV5/gJ+5qOranqI8x8Dj27zewA39bVb32KzxSVJIzLIkcVFwNlJHkDvaXkBqqp22toPr6pKUlu7nWlJjqF3Cou99tproTYrSYveIEcWHwJ+n97NeTtV1Y5bWShubqeXaK+3tPgGYM++dktbbLb4fVTVqqpaUVUrpqamtiJFSVK/QYrFTcAVrS9hIZwDTF/RdDTw5b74Ue2qqGcAt7fTVV8Hnp9k59ax/fwWkySNyCCnoa4HLkxyHnDHdHCQ51kkOZ1eB/WuSdbTu6rpRODMJK8Dfsg9N/2dCxwCrAN+Bbymfc5Pkvw5cElr9wHvGpek0RqkWNzQpu3bNLCqOnKWRc+ZoW3Re4TrTNs5BThlSz5bkrRwBrmD2+dabIFlx39t3uveeOKhC5iJJC2czmKRZAp4O/AE+kabrapnDzEvSdIEGaSD+3PA1cDewPuBG7mn/0CStAgMUiweWVWfAu6sqm9W1WsBjyokaREZpIP7zva6McmhwI+AXYaXkiRp0gxSLP4iycOBtwH/FdgJ+I9DzUqSNFEGuRrqq232duCg4aYjSZpEgzzP4q+S7JTkgUkuSLIpyStHkZwkaTIM0sH9/Kr6GfAieldC/SvgPw0zKUnSZBmkWEyfqjoU+GJV3T7EfCRJE2iQDu6vJrka+DXwpnaT3r8MNy1J0iTpPLKoquOBPwBWVNWd9Ab5O3zYiUmSJscgRxb0j/JaVb8Efjm0jCRJE2eQPgtJ0iI3a7FI8sz2usPo0pEkTaK5jixOaq/fHkUikqTJNVefxZ1JVgF7JDlp84VV9SfDS0uSNEnmKhYvAp4LvAC4dDTpSJIm0azFoqpuBc5I8v2q+t4Ic5IkTZhBroa6LcnZSW5p01lJlg49M0nSxBikWHwaOAfYvU1fabF5SfK4JGv6pp8leWuS9yXZ0Bc/pG+ddyZZl+SaJC+Y72dLkuZnkJvyHlVV/cXh1CRvne8HVtU1wHKAJEuADcDZwGuAD1fV3/S3T/J4YCW9Z4DvDnwjyX5Vdfd8c5AkbZlBjixuTfLKJEva9ErgtgX6/OcA11XVD+doczhwRlXdUVU3AOuAAxbo8yVJAxikWLwWeDnwY2Aj8DJ6RwELYSVwet/7tyRZm+SUJDu32B7ATX1t1reYJGlEBhlI8IdVdVhVTVXVo6rqiKr656394CTbA4cBX2yhk4HH0jtFtRH44Dy2eUyS1UlWb9q0aWtTlCQ14xwb6oXAZVV1M0BV3VxVd1fVb4BPcM+ppg3Ann3rLW2x+6iqVVW1oqpWTE1NDTF1SVpcxlksjqTvFFSS3fqWvRi4os2fA6xMskOSvYF9gYtHlqUkabAhyhdakocCzwPe0Bf+qyTLgaL3+NY3AFTVlUnOBK4C7gKO9UooSRqtzmKR5D1V9RdtfoequmNrP7Q9E+ORm8VeNUf7E4ATtvZzJUnzM9cQ5e9I8vv0rn6a5gi0krQIzXVkcTXwb4F9kvyv9v6RSR7XbqyTJC0Sc3Vw/xR4F72b4A4EPtrixyf5P8NNS5I0SeY6sngB8Gf07n34ELAW+GVVLdQNeZKkbcSsRxZV9a6qeg69K5M+CywBppL8U5KvjCg/SdIEGOTS2a9X1WpgdZI3VdUfJtl12IlJkibHIMN9vL3v7atb7NZhJSRJmjxbdAe3T8yTpMVpnMN9SJK2ERYLSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkTmN5rKpmtuz4r8173RtPPHQBM5Gke/PIQpLUyWIhSeo0tmKR5MYklydZk2R1i+2S5Pwk17bXnVs8SU5Ksi7J2iRPHVfekrQYjfvI4qCqWl5VK9r744ELqmpf4IL2HuCFwL5tOgY4eeSZStIiNu5isbnDgc+0+c8AR/TFT6uei4BHJNltDPlJ0qI0zmJRwD8kuTTJMS326Kra2OZ/DDy6ze8B3NS37voWu5ckxyRZnWT1pk2bhpW3JC0647x09g+rakOSRwHnJ7m6f2FVVZLakg1W1SpgFcCKFSu2aF1J0uzGdmRRVRva6y3A2cABwM3Tp5fa6y2t+QZgz77Vl7aYJGkExlIskjw0yY7T88DzgSuAc4CjW7OjgS+3+XOAo9pVUc8Abu87XSVJGrJxnYZ6NHB2kukcPl9V/yPJJcCZSV4H/BB4eWt/LnAIsA74FfCa0acsSYvXWIpFVV0PPGWG+G3Ac2aIF3DsCFKTJM1g0i6dlSRNIIuFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTOIco1wJadvzXtmr9G088dIEykXR/5JGFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTyItFkj2T/GOSq5JcmeRPW/x9STYkWdOmQ/rWeWeSdUmuSfKCUecsSYvdOIb7uAt4W1VdlmRH4NIk57dlH66qv+lvnOTxwErgCcDuwDeS7FdVd480a0laxEZ+ZFFVG6vqsjb/c+D7wB5zrHI4cEZV3VFVNwDrgAOGn6kkadpY+yySLAP2B77TQm9JsjbJKUl2brE9gJv6VlvPLMUlyTFJVidZvWnTpmGlLUmLztiKRZKHAWcBb62qnwEnA48FlgMbgQ9u6TaralVVraiqFVNTUwuZriQtamMpFkkeSK9QfK6q/h6gqm6uqrur6jfAJ7jnVNMGYM++1Ze2mCRpRMZxNVSATwHfr6oP9cV362v2YuCKNn8OsDLJDkn2BvYFLh5VvpKk8VwN9UzgVcDlSda02LuAI5MsBwq4EXgDQFVdmeRM4Cp6V1Id65VQkjRaIy8WVfVPQGZYdO4c65wAnDC0pCRJc/IObklSJ4uFJKnTOPosNIGWHf+1ea9744mHLmAmkiaRRxaSpE4WC0lSJ4uFJKmTxUKS1MliIUnq5NVQ2mpeSSXd/3lkIUnqZLGQJHWyWEiSOlksJEmd7ODWWNk5Lm0bPLKQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ6+G0jZra66kAq+mkrbENnNkkeTgJNckWZfk+HHnI0mLyTZxZJFkCfC3wPOA9cAlSc6pqqvGm5m2Zd7jIQ1umygWwAHAuqq6HiDJGcDhgMVCY7G1p8DmyyKlcdlWisUewE1979cDT9+8UZJjgGPa218kuWYEuW2pXYFbx53ELCY1t0nNC0acW/5yi5pP6n6b1LzA3B4z24JtpVgMpKpWAavGncdckqyuqhXjzmMmk5rbpOYF5jYfk5oXmNtctpUO7g3Ann3vl7aYJGkEtpVicQmwb5K9k2wPrATOGXNOkrRobBOnoarqriRvAb4OLAFOqaorx5zWfE3yabJJzW1S8wJzm49JzQvMbVapqnF+viRpG7CtnIaSJI2RxUKS1MlisRW6hiBJskOSL7Tl30myrMWfl+TSJJe312f3rXNh2+aaNj1qxLktS/Lrvs//eN86T2s5r0tyUpKMOLc/7strTZLfJFnelo1qv/1RksuS3JXkZZstOzrJtW06ui++1fttvnklWZ7k20muTLI2ySv6lp2a5Ia+fbZ8S/Pamtzasrv7Pv+cvvje7btf134L248qryQHbfY7+5ckR7Rlo9pnxyW5qn1nFyR5TN+yof3O5lRVTvOY6HW0XwfsA2wPfA94/GZt3gx8vM2vBL7Q5vcHdm/zTwQ29K1zIbBijLktA66YZbsXA88AApwHvHCUuW3W5knAdWPYb8uAJwOnAS/ri+8CXN9ed27zOy/EftvKvPYD9m3zuwMbgUe096f2tx31PmvLfjHLds8EVrb5jwNvGmVem32vPwEeMuJ9dlDfZ76Je/77HNrvrGvyyGL+fjsESVX9P2B6CJJ+hwOfafNfAp6TJFX13ar6UYtfCTw4yQ6TkNtsG0yyG7BTVV1UvV/macARY8ztyLbuQurMrapurKq1wG82W/cFwPlV9ZOq+r/A+cDBC7Tf5p1XVf2gqq5t8z8CbgGmtvDzh5LbbNp3/Wx63z30fgtHjCmvlwHnVdWvtvDztza3f+z7zIvo3VsGw/2dzcliMX8zDUGyx2xtquou4HbgkZu1eSlwWVXd0Rf7dDvE/c/zPJTc2tz2TvLdJN9M8qy+9us7tjmK3Ka9Ajh9s9go9tuWrrsQ+21r8vqtJAfQ+0v2ur7wCe1Ux4fn+QfL1ub2oCSrk1w0faqH3nf90/bdz2ebC5HXtJXc93c26n32OnpHCnOtu1D/fc7KYjFGSZ4A/CXwhr7wH1fVk4BntelVI05rI7BXVe0PHAd8PslOI85hTkmeDvyqqq7oC497v0209pfnZ4HXVNX0X9LvBH4X+D16pzXeMYbUHlO9ISz+HfCRJI8dQw4zavvsSfTu75o20n2W5JXACuCvh/k5g7BYzN8gQ5D8tk2S7YCHA7e190uBs4Gjquq3f+lV1Yb2+nPg8/QOWUeWW1XdUVW3tRwupfdX6H6t/dK+9ec75MpW7bfmPn/tjXC/bem6C7Hftmq4m1bsvwa8u6oumo5X1cbquQP4NKPfZ/3f2/X0+p32p/ddP6J991u8zYXIq3k5cHZV3dmX78j2WZLnAu8GDus78zDM39ncFrIDZDFN9O5+vx7Ym3s6qZ6wWZtjuXdH7Zlt/hGt/Utm2Oaubf6B9M7ZvnHEuU0BS9r8Pu0Ht0vN3IF2yChza+8f0HLaZxz7ra/tqdy3g/sGep2OO7f5BdlvW5nX9sAFwFtnaLtbew3wEeDEEe+znYEd2vyuwLW0jl7gi9y7g/vNo8qrL34RcNA49hm9onkd7eKEUfzOOvNeyI0ttgk4BPhB+1Lf3WIfoPeXAMCD2o9+Xfsi92nx9wC/BNb0TY8CHgpcCqyl1/H9Udr/uEeY20vbZ68BLgP+Td82VwBXtG1+jDYCwKhya8sOBC7abHuj3G+/R+988C/p/QV8Zd+6r205r6N3umfB9tt88wJeCdy52W9teVv2P4HLW25/BzxslPsM+IP2+d9rr6/r2+Y+7btf134LO4z4u1xG74+SB2y2zVHts28AN/d9Z+eM4nc21+RwH5KkTvZZSJI6WSwkSZ0sFpKkThYLSVIni4UkqZPFQpLUyWIhzVOSpyT5VhtK+jdJKskHxp2XNAzeZyHNQ5IH0btZ6qiqujjJn9O7mfDt5X9Uuh/yyEKan+fSGy344vZ+Lb1hFyrJJ4f1oQv+QBtpQBYLaX6eSG/Yh2lPBS5L8mDgXyd5X5IzkjwwyX9J8pEkJwEkmUry6SRLk5yS5D8kOagtOyXJw9r6H03yZ0l+J72n3b0D+J2R/0slegNaSdpyt9F7QA9J9gNeQm+so/2BL1bVR5L8d+DtwIOBn9IbOI6q2pTkn4EP0ntWwXLgKUnuBi6hN8rudm2dZ9IbI+n0qjppRP826T4sFtL8nA4cluQK4FbgyKq6rT1gaG1r8xB6BeLY6nu4VZKH0Rso766q+kXbxpH0Brb798Aq4E/pjQC8J71i8uWR/KukWdjBLS2gJJ+gPY+B3uMyd6T3YJ+b6I1Y+g16xeD99J6XcElVXZjkcuC9VfX3Sd4G7ETviXHX0CsWr697HlokjZzFQpLUyQ5uSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkThYLSVKn/w/Mcv0r9yyyzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "plt.hist(bexvar_distribution, bins=20)\n", + "plt.ylabel(\"# of samples\")\n", + "plt.xlabel(r\"$\\sigma_{bexvar}$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the light curve is intrinsically variable, then the posterior distribution of bexvar should exclude low values. Users can compute \n", + "the lower 10% quantile of the posterior, and use it as a variability indicator (see [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529))." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method uses fractional exposers (`frac_exp`) in each bin to compute the count rates (i.e.$~\\scriptstyle{R_i = C_i/(\\Delta{t_i}\\times f_i)}$). In its current form it only considers time bins with `frac_exp` < 1. The `bg_ratio` parameter is used to scale the `bg_counts` to estimate counts in source region. The `bg_count`, `bg_ratio` and `frac_exp` are optional parameters, if they are not provided, the method defines default values for them as described in documentation. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us see an example to get bexvar distribution without these optional parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-4e+01 [-36.8486..-36.8486]*| it/evals=3615/5101 eff=76.8985% N=400 \n", + "[ultranest] Likelihood function evaluations: 5125\n", + "[ultranest] logZ = -41.34 +- 0.09729\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1692.4, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.10, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.10 tail:0.01 total:0.10 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -41.331 +- 0.174\n", + " single instance: logZ = -41.331 +- 0.092\n", + " bootstrapped : logZ = -41.335 +- 0.174\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : -0.517│ ▁ ▁ ▁▁▁▁▁▁▁▁▁▁▂▂▃▄▆▇▇▆▅▄▃▂▁▁▁▁▁▁▁▁▁ │0.383 0.020 +- 0.081\n", + " logsigma : 0.029 │ ▁▂▆▇▇▅▃▂▂▁▁▁▁▁▁▁▁ ▁▁▁▁▁ ▁ ▁ │1.236 0.213 +- 0.074\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "\n", + "bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bexvar: Theoretical background" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "This section provides a theoretical understanding of Bayesian excess variance (bexvar). This is an optional read.\n", + "\n", + "Given a lightcurve data ${\\scriptstyle 𝐷 = (𝑆_1,𝐵_1,~…~,𝑆_𝑁,𝐵_𝑁)}$\n", + " where ($\\scriptstyle{S_i}$) denotes counts obtained from source region and ($\\scriptstyle{B_i}$) denotes counts obtained from background extraction region in $\\scriptstyle{i^{th}}$ time bin.\n", + "If it is assumed that the counts $\\scriptstyle{𝑆_𝑖}$ and $\\scriptstyle{𝐵_𝑖}$ can be expressed as\n", + "Poisson processes. \n", + "$$ \\scriptstyle {𝑆_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((( 𝑅_𝑆(𝑡_𝑖) ~+~ 𝑅_𝐵(𝑡_𝑖) \\times 𝑟)~×~𝑓_𝑖~\\times~Δ𝑡)}$$\n", + "$$ \\scriptstyle {𝐵_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅_𝐵(𝑡_𝑖) × 𝑓_𝑖 × Δ𝑡)}$$\n", + "\n", + "Here, $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is source count rate and $\\scriptstyle{𝑅_B(𝑡_𝑖)}$ is background count rate in $\\scriptstyle{i^{th}}$ time bin. \n", + "It is further assumed that $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is distributed according to a log normal distribution, with some unknown parameters (i.e., $\\scriptstyle{log(\\bar{𝑅_{S}})}$, and $\\scriptstyle{\\sigma_{bexvar}}$).\n", + "$$\\scriptstyle{log(𝑅_𝑆(𝑡_𝑖))~\\sim~𝑁𝑜𝑟𝑚𝑎𝑙(log(\\bar{𝑅_𝑆}),~ \\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})} $$\n", + "\n", + "This $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ provides intrinsic variability on log-count rate and it is defined as Bayesian excess variance (bexvar). The posterior distribution of $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ can be used to identify intrinsically variable object.\n", + "\n", + "The bexvar() method in Stingray returns posterior samples of $\\scriptstyle{\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}}$ given a light curve data.\n", + "The samples are generated following the same prescription given in [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529). The method uses flat, uninformative priors on $\\scriptstyle{log(\\bar{𝑅_𝑆})}$ and $\\scriptstyle{log(\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}$ and obtains the posterior samples using nested sampling Monte Carlo algorithm MLFriends (Buchner [2016](https://link.springer.com/article/10.1007/s11222-014-9512-y),\n", + "[2019](https://arxiv.org/abs/1707.04476)) implemented in the [UltraNest](https://johannesbuchner.github.io/UltraNest/) Python package (Buchner [2021](https://arxiv.org/abs/2101.09604)).\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.9.10 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.10" + }, + "vscode": { + "interpreter": { + "hash": "f6246b25e200e4c5124e3e61789ac81350562f0761bbcf92ad9e48654207659c" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Bispectrum/bispectrum_tutorial.html b/notebooks/Bispectrum/bispectrum_tutorial.html new file mode 100644 index 000000000..8f166ebd1 --- /dev/null +++ b/notebooks/Bispectrum/bispectrum_tutorial.html @@ -0,0 +1,949 @@ + + + + + + + + Bispectrum Tutorial — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Bispectrum Tutorial

+

This tutorial is intended to demonstrate bispectrum Analysis on Lightcurve data.

+

Bispectrum is an example of a Higher Order Spectra(HOS) and contains more information that simple Powerspectrum or non-ploy spectra. For detailed information on Bispectra visit : https://arxiv.org/pdf/1308.3150.pdf

+

In Stingray, Bispectrum can be created from a Lightcurve(For more information on Lightcurve, visit Lightcurve Notebook).

+

First we import relevant classes.

+
+
[2]:
+
+
+
from stingray import lightcurve
+import numpy as np
+from stingray.bispectrum import Bispectrum
+
+import matplotlib.pyplot as plt
+%matplotlib inline
+
+
+
+

Lightcurve Object can be created from an array of time stamps and an array of counts. Creating a simple lightcurve to demonstrate Bispectrum.

+
+
[3]:
+
+
+
times = np.arange(1,11)
+counts = np.array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])
+lc = lightcurve.Lightcurve(times,counts)
+
+lc.counts
+
+
+
+
+
[3]:
+
+
+
+
+array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])
+
+
+
+
[4]:
+
+
+
lc.plot(labels=['times','counts'])
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png +
+
+

A Bispectrum Object takes 4 parameter.

+
    +
  1. lc : The light curve (lc).

  2. +
  3. maxlag : Maximum lag on both positive and negative sides of 3rd order cumulant (Similar to lags in correlation).

  4. +
  5. window : Specifies the type of window to apply as as string

  6. +
  7. scale : ‘biased’ or ‘unbiased’ for normalization

  8. +
+

Arguments 2 and 3 are optional. If maxlag is not specified, it is set to no. of observations in lightcurve divided by 2. i.e lc.n/2 .

+
+
[5]:
+
+
+
bs = Bispectrum(lc)
+
+
+
+

Different attribute values can be observed by calling relevant properties. Most common are: 1. self.freq - Frequencies against which Bispectrum is calculated. 2. self.lags - Time lags in lightcurve against which 3rd order cumulant is calculated. 3. self.cum3 - 3rd Order cumulant function 4. self.bispec_mag - Magnitude of Bispectrum 5. self.bispecphase - Phase of Bispectrum

+
+
[6]:
+
+
+
bs.freq
+
+
+
+
+
[6]:
+
+
+
+
+array([-0.5, -0.4, -0.3, -0.2, -0.1,  0. ,  0.1,  0.2,  0.3,  0.4,  0.5])
+
+
+
+
[7]:
+
+
+
bs.lags
+
+
+
+
+
[7]:
+
+
+
+
+array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.,  5.])
+
+
+
+
[8]:
+
+
+
bs.cum3
+
+
+
+
+
[8]:
+
+
+
+
+array([[-0.3885, -0.0915,  0.1685, -0.5085,  0.8135, -0.0675, -0.2708,
+         0.0229,  0.1426, -0.0567,  0.    ],
+       [-0.0915,  0.2328, -0.5162, -2.0652,  0.3058,  0.1968,  0.8135,
+         0.5492,  0.0209, -0.2484,  0.0063],
+       [ 0.1685, -0.5162, -0.3999,  0.9821, -0.4989,  0.5011,  0.3058,
+        -0.5085, -0.2348,  0.2379,  0.0426],
+       [-0.5085, -2.0652,  0.9821, -0.3096,  0.5704,  2.1084, -0.4989,
+        -2.0652,  0.1685,  0.8632,  0.0999],
+       [ 0.8135,  0.3058, -0.4989,  0.5704, -1.3613, -0.3823,  0.5704,
+         0.9821, -0.5162, -0.0915,  0.0872],
+       [-0.0675,  0.1968,  0.5011,  2.1084, -0.3823,  0.864 , -1.3613,
+        -0.3096, -0.3999,  0.2328, -0.3885],
+       [-0.2708,  0.8135,  0.3058, -0.4989,  0.5704, -1.3613, -0.3823,
+         0.5704,  0.9821, -0.5162, -0.0915],
+       [ 0.0229,  0.5492, -0.5085, -2.0652,  0.9821, -0.3096,  0.5704,
+         2.1084, -0.4989, -2.0652,  0.1685],
+       [ 0.1426,  0.0209, -0.2348,  0.1685, -0.5162, -0.3999,  0.9821,
+        -0.4989,  0.5011,  0.3058, -0.5085],
+       [-0.0567, -0.2484,  0.2379,  0.8632, -0.0915,  0.2328, -0.5162,
+        -2.0652,  0.3058,  0.1968,  0.8135],
+       [ 0.    ,  0.0063,  0.0426,  0.0999,  0.0872, -0.3885, -0.0915,
+         0.1685, -0.5085,  0.8135, -0.0675]])
+
+
+
+
[9]:
+
+
+
bs.bispec_mag
+
+
+
+
+
[9]:
+
+
+
+
+array([[  6.1870122 ,   9.78649295,   6.29941723,   8.10990858,
+          3.90975859,   1.49707597,  10.53408125,   8.44275685,
+          7.73419771,   7.91909148,   3.40576093],
+       [  9.78649295,  12.99063169,  11.9523207 ,  12.31681   ,
+          7.34404789,   1.93438197,   5.05536311,  15.92827099,
+          6.61153784,   3.09535492,   7.91909148],
+       [  6.29941723,  11.9523207 ,   4.84009298,   8.98535468,
+          5.6746004 ,   1.71227576,   9.35566037,  12.00797853,
+          1.60576409,   6.61153784,   7.73419771],
+       [  8.10990858,  12.31681   ,   8.98535468,  18.69373893,
+          9.83780286,   2.72630968,   7.87985137,   5.32007463,
+         12.00797853,  15.92827099,   8.44275685],
+       [  3.90975859,   7.34404789,   5.6746004 ,   9.83780286,
+          5.93123174,   1.60598497,   0.51743271,   7.87985137,
+          9.35566037,   5.05536311,  10.53408125],
+       [  1.49707597,   1.93438197,   1.71227576,   2.72630968,
+          1.60598497,   1.262     ,   1.60598497,   2.72630968,
+          1.71227576,   1.93438197,   1.49707597],
+       [ 10.53408125,   5.05536311,   9.35566037,   7.87985137,
+          0.51743271,   1.60598497,   5.93123174,   9.83780286,
+          5.6746004 ,   7.34404789,   3.90975859],
+       [  8.44275685,  15.92827099,  12.00797853,   5.32007463,
+          7.87985137,   2.72630968,   9.83780286,  18.69373893,
+          8.98535468,  12.31681   ,   8.10990858],
+       [  7.73419771,   6.61153784,   1.60576409,  12.00797853,
+          9.35566037,   1.71227576,   5.6746004 ,   8.98535468,
+          4.84009298,  11.9523207 ,   6.29941723],
+       [  7.91909148,   3.09535492,   6.61153784,  15.92827099,
+          5.05536311,   1.93438197,   7.34404789,  12.31681   ,
+         11.9523207 ,  12.99063169,   9.78649295],
+       [  3.40576093,   7.91909148,   7.73419771,   8.44275685,
+         10.53408125,   1.49707597,   3.90975859,   8.10990858,
+          6.29941723,   9.78649295,   6.1870122 ]])
+
+
+
+
[10]:
+
+
+
bs.bispec_phase
+
+
+
+
+
[10]:
+
+
+
+
+array([[ -7.65814471e-01,  -8.39758950e-01,   7.49083269e-01,
+         -9.35797260e-01,  -1.22623935e+00,  -3.13514588e+00,
+          4.35308043e-01,   6.65460441e-01,   6.17269495e-01,
+          4.39881603e-01,  -3.14159265e+00],
+       [ -8.39758950e-01,   1.84719564e+00,   1.70902436e+00,
+         -6.50042861e-01,  -5.76818268e-01,  -9.16177187e-02,
+          1.76512372e+00,   2.97853199e+00,   1.45401552e+00,
+          0.00000000e+00,  -4.39881603e-01],
+       [  7.49083269e-01,   1.70902436e+00,   1.64851065e+00,
+         -5.51373516e-01,  -1.32816666e+00,   2.45429375e-01,
+          2.86246989e+00,   3.08272440e+00,  -1.10623774e-15,
+         -1.45401552e+00,  -6.17269495e-01],
+       [ -9.35797260e-01,  -6.50042861e-01,  -5.51373516e-01,
+         -2.97776986e+00,  -2.96295975e+00,  -4.83162811e-01,
+          1.34000660e+00,   0.00000000e+00,  -3.08272440e+00,
+         -2.97853199e+00,  -6.65460441e-01],
+       [ -1.22623935e+00,  -5.76818268e-01,  -1.32816666e+00,
+         -2.96295975e+00,  -1.30996608e+00,  -1.24358981e-01,
+         -3.14159265e+00,  -1.34000660e+00,  -2.86246989e+00,
+         -1.76512372e+00,  -4.35308043e-01],
+       [ -3.13514588e+00,  -9.16177187e-02,   2.45429375e-01,
+         -4.83162811e-01,  -1.24358981e-01,   3.14159265e+00,
+          1.24358981e-01,   4.83162811e-01,  -2.45429375e-01,
+          9.16177187e-02,   3.13514588e+00],
+       [  4.35308043e-01,   1.76512372e+00,   2.86246989e+00,
+          1.34000660e+00,   3.14159265e+00,   1.24358981e-01,
+          1.30996608e+00,   2.96295975e+00,   1.32816666e+00,
+          5.76818268e-01,   1.22623935e+00],
+       [  6.65460441e-01,   2.97853199e+00,   3.08272440e+00,
+          0.00000000e+00,  -1.34000660e+00,   4.83162811e-01,
+          2.96295975e+00,   2.97776986e+00,   5.51373516e-01,
+          6.50042861e-01,   9.35797260e-01],
+       [  6.17269495e-01,   1.45401552e+00,   1.10623774e-15,
+         -3.08272440e+00,  -2.86246989e+00,  -2.45429375e-01,
+          1.32816666e+00,   5.51373516e-01,  -1.64851065e+00,
+         -1.70902436e+00,  -7.49083269e-01],
+       [  4.39881603e-01,   0.00000000e+00,  -1.45401552e+00,
+         -2.97853199e+00,  -1.76512372e+00,   9.16177187e-02,
+          5.76818268e-01,   6.50042861e-01,  -1.70902436e+00,
+         -1.84719564e+00,   8.39758950e-01],
+       [  3.14159265e+00,  -4.39881603e-01,  -6.17269495e-01,
+         -6.65460441e-01,  -4.35308043e-01,   3.13514588e+00,
+          1.22623935e+00,   9.35797260e-01,  -7.49083269e-01,
+          8.39758950e-01,   7.65814471e-01]])
+
+
+
+
+

Plots

+

Bispectrum in stingray also provides functionality for contour plots of:

+
    +
  1. 3rd Order Cumulant function

  2. +
  3. Magnitude Bispectrum

  4. +
  5. Phase Bispectrum

  6. +
+
+
[11]:
+
+
+
p = bs.plot_cum3()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png +
+
+
+
[12]:
+
+
+
p = bs.plot_mag()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png +
+
+
+
[13]:
+
+
+
p = bs.plot_phase()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png +
+
+
+
+

Another Example

+

Another example is demostrated here for a periodic lighturve with poisson noise.

+
+
[14]:
+
+
+
dt = 0.0001  # seconds
+freq = 1 #Hz
+exposure = 50.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal = 300 * np.sin(2.*np.pi*freq*times/0.5) + 1000  # counts/s
+noisy = np.random.poisson(signal*dt)  # counts
+
+lc = lightcurve.Lightcurve(times,noisy)
+
+
+
+
+
[15]:
+
+
+
lc.n
+
+
+
+
+
[15]:
+
+
+
+
+500000
+
+
+
+
[16]:
+
+
+
lc.plot()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png +
+
+

In this example, ‘unbiased’ scaled Bispectrum is calculated.

+
+
[17]:
+
+
+
bs = Bispectrum(lc, maxlag=25, scale='unbiased')
+
+
+
+
+
[18]:
+
+
+
bs.freq[:5]
+
+
+
+
+
[18]:
+
+
+
+
+array([-5000.00000001, -4800.00000001, -4600.00000001, -4400.00000001,
+       -4200.00000001])
+
+
+
+
[19]:
+
+
+
bs.lags[-5:]
+
+
+
+
+
[19]:
+
+
+
+
+array([ 0.0021,  0.0022,  0.0023,  0.0024,  0.0025])
+
+
+
+
[20]:
+
+
+
bs.n
+
+
+
+
+
[20]:
+
+
+
+
+500000
+
+
+
+
[21]:
+
+
+
bs.cum3[0]
+
+
+
+
+
[21]:
+
+
+
+
+array([  4.16469688e-04,  -1.15175317e-06,  -1.07527932e-05,
+         3.12465067e-05,  -1.49891250e-05,  -1.13491830e-05,
+        -3.01378025e-05,   8.84909091e-06,  -9.76499980e-06,
+        -4.03093430e-05,  -1.39169834e-05,  -1.06733571e-05,
+        -3.56900080e-05,  -4.36904080e-05,  -1.64739272e-05,
+        -6.07642325e-06,  -9.40724231e-05,   3.20972054e-05,
+         1.10825598e-06,   1.57445478e-05,   1.50738698e-04,
+        -1.53088049e-05,  -1.06758132e-05,  -8.50761732e-05,
+        -2.70732731e-05,   5.15575763e-04,  -2.26276548e-06,
+        -5.46966498e-05,  -3.49049233e-05,   6.93111630e-05,
+        -1.96629892e-05,  -4.00897434e-05,  -5.37940654e-07,
+        -1.25908665e-04,  -4.04722751e-05,  -1.95122973e-05,
+         7.48985545e-06,  -1.59418559e-05,  -3.40950546e-07,
+        -5.28946188e-05,  -6.77547458e-05,  -2.58282563e-06,
+        -2.16597857e-05,   2.08264564e-05,   1.62145798e-05,
+         6.20770115e-05,   5.74011370e-05,   3.04301082e-05,
+         5.42455829e-05,   6.16520488e-05,   5.25699675e-05])
+
+
+
+
[22]:
+
+
+
bs.bispec_mag[1]
+
+
+
+
+
[22]:
+
+
+
+
+array([ 0.10270301,  0.09674684,  0.1026435 ,  0.10278492,  0.09607422,
+        0.09961388,  0.10090391,  0.10316149,  0.09881147,  0.10027435,
+        0.09052907,  0.10086312,  0.09964639,  0.09224589,  0.10189853,
+        0.09783874,  0.1029246 ,  0.10003251,  0.1003841 ,  0.09654483,
+        0.10021589,  0.10265071,  0.09913028,  0.10406698,  0.10248613,
+        0.12079938,  0.10038381,  0.09376602,  0.09916139,  0.10218425,
+        0.09798569,  0.10296954,  0.10377357,  0.10144925,  0.09848511,
+        0.09731673,  0.10031293,  0.09733791,  0.10085873,  0.09769191,
+        0.10021328,  0.1000008 ,  0.10362033,  0.10352851,  0.09763424,
+        0.10249754,  0.09752426,  0.09520164,  0.09959243,  0.12395456,
+        0.10188173])
+
+
+
+
[23]:
+
+
+
bs.bispec_phase[1]
+
+
+
+
+
[23]:
+
+
+
+
+array([ -1.44942123e-02,   1.67988284e-02,  -3.06544878e-03,
+         1.24304742e-02,  -4.69267453e-04,   1.80410887e-02,
+         1.18875941e-03,  -1.85154750e-03,   2.17338081e-02,
+         1.03821918e-02,  -7.09489717e-03,   1.05358508e-02,
+         4.01625879e-03,  -2.05403388e-02,   1.17686452e-03,
+         2.56746832e-02,   2.17353559e-02,  -7.69020683e-03,
+         1.54447950e-02,  -9.03814639e-04,   3.43660863e-03,
+        -5.37971533e-04,   9.42017522e-03,   1.42720920e-03,
+         1.17025084e-03,  -5.00982277e-03,  -1.53439701e-02,
+        -7.63874625e-04,  -4.10637611e-02,   2.41131565e-02,
+        -1.95500843e-02,  -2.98681684e-02,   1.23914953e-03,
+        -2.75100800e-02,  -3.88428578e-03,  -7.87537903e-03,
+        -1.53613857e-03,   1.47624077e-02,  -4.86162981e-03,
+        -2.76731089e-03,   9.30828311e-03,  -2.86531767e-02,
+        -1.16465064e-02,  -2.30165990e-02,  -7.71187242e-03,
+         2.00694116e-02,  -5.16511843e-02,  -1.98737477e-03,
+        -9.87738671e-03,  -2.09922507e-17,   1.39146079e-02])
+
+
+
+
[24]:
+
+
+
p = bs.plot_cum3()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png +
+
+
+
[25]:
+
+
+
p = bs.plot_mag()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png +
+
+
+
[26]:
+
+
+
p = bs.plot_phase()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png +
+
+
+
+

Window Functions for Bispectrum

+

Bispectrum in Stingray now supports 2D windows to apply before calculating Bispectrum.

+

Windows currently available in Stingray include: 1. Uniform or Rectangular window 2. Parzen Window 3. Hamming Window 4. Hanning Window 5. Triangular Window 6. Blackmann’s Window 7. Welch Window 8. Flat-top Window

+

Windows are available in stingray.utils package and can be used by calling create_window function.

+

Now, we demonstrate Bispectrum with windows applied. By default, now window is applied.

+
+
[29]:
+
+
+
window = 'uniform'
+
+bs = Bispectrum(lc,maxlag=25,window = window, scale ='unbiased')
+
+
+
+
+
[30]:
+
+
+
bs.window_name
+
+
+
+
+
[30]:
+
+
+
+
+'uniform'
+
+
+
+

Plot Window

+
+
[32]:
+
+
+
cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)
+plt.colorbar(cont)
+plt.title('2D Uniform window')
+
+
+
+
+
[32]:
+
+
+
+
+<matplotlib.text.Text at 0x1ac8b7e8e80>
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png +
+
+
+
[34]:
+
+
+
mag_plot = bs.plot_mag()
+mag_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png +
+
+
+
[35]:
+
+
+
phase_plot = bs.plot_phase()
+phase_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png +
+
+

Now, let us try some more window functions.

+
+
[36]:
+
+
+
bs = Bispectrum(lc, maxlag=25,window = 'hamming',scale='biased')
+
+
+
+
+
[37]:
+
+
+
bs.window_name
+
+
+
+
+
[37]:
+
+
+
+
+'hamming'
+
+
+
+
[38]:
+
+
+
cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)
+plt.colorbar(cont)
+plt.title('2D Hamming window')
+
+
+
+
+
[38]:
+
+
+
+
+<matplotlib.text.Text at 0x1ac8bbfe710>
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png +
+
+
+
[39]:
+
+
+
mag_plot = bs.plot_mag()
+mag_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png +
+
+
+
[40]:
+
+
+
phase_plot = bs.plot_phase()
+phase_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png +
+
+
+
+

Another Window demonstrated

+
+
[45]:
+
+
+
bs = Bispectrum(lc, maxlag = 25, window='triangular',scale='unbiased')
+
+
+
+
+
[46]:
+
+
+
bs.window_name
+
+
+
+
+
[46]:
+
+
+
+
+'triangular'
+
+
+
+
[47]:
+
+
+
cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)
+plt.colorbar(cont)
+plt.title('2D Flat Top window')
+
+
+
+
+
[47]:
+
+
+
+
+<matplotlib.text.Text at 0x1ac8bdc15f8>
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png +
+
+
+
[48]:
+
+
+
bs.plot_mag().show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png +
+
+
+
[52]:
+
+
+
bs.plot_phase().show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png +
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Bispectrum/bispectrum_tutorial.ipynb b/notebooks/Bispectrum/bispectrum_tutorial.ipynb new file mode 100644 index 000000000..c54a68345 --- /dev/null +++ b/notebooks/Bispectrum/bispectrum_tutorial.ipynb @@ -0,0 +1,1177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## Bispectrum Tutorial" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial is intended to demonstrate bispectrum Analysis on Lightcurve data.
\n", + "\n", + "Bispectrum is an example of a Higher Order Spectra(HOS) and contains more information that simple Powerspectrum or non-ploy spectra.
For detailed information on Bispectra visit : https://arxiv.org/pdf/1308.3150.pdf" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "In Stingray, Bispectrum can be created from a Lightcurve(For more information on Lightcurve, visit Lightcurve Notebook).
\n", + "\n", + "First we import relevant classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import lightcurve\n", + "import numpy as np\n", + "from stingray.bispectrum import Bispectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lightcurve Object can be created from an array of time stamps and an array of counts. Creating a simple lightcurve to demonstrate Bispectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1,11)\n", + "counts = np.array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])\n", + "lc = lightcurve.Lightcurve(times,counts)\n", + "\n", + "lc.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYXOeZ9/HvQxd1qBKCAdSLJYoA2ZJiy3FcY6+7HRcV\nZK8db5KNs8mm7ZvdJLvZxOnJJnFiJ7aQ3HvsxGluyLbAlkC9gdogQIUBRO/M8/4xg4ywQAPMmTPD\n3J/rmktomJlzay5xc+ac37kfpbVGCCHE5BdkdgFCCCG8Qxq+EEIECGn4QggRIKThCyFEgJCGL4QQ\nAUIavhBCBAhp+EIIESCk4QshRICQhi+EEAEixOwChkpKStJZWVlmlyGEEH6joqKiQWud7M5jfarh\nZ2VlUV5ebnYZQgjhN5RS1e4+Vg7pCCFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRIAwNKWjlLIB\nbcAA0K+1LjBye0IIIUbmjVjmJ7XWDV7YjhBCiFHIIR0hvOC9g3aqTrWZXYYIcEY3fA28qZSqUErd\nf64HKKXuV0qVK6XK7Xa7weUI4X29/Q4eeKKCH/xlv9mliABndMP/hNY6F7gG+LxS6pLhD9BaP6q1\nLtBaFyQnu3V1sBB+pdzWREfvADtrW9Bam12OCGCGNnytdZ3rz3rgFWCpkdsTwheVVDk/uTZ19FLT\n1GVyNSKQGdbwlVJRSqmYwa+BK4E9Rm1PCF9VUlnP1NhwALbXnDa5GhHIjNzDnwq8r5TaCWwBXtda\n/83A7Qnhc443d1F1qp21y7OICA1iR02z2SWJAGZYLFNrfQTIMer1hfAHJZXOwzmXL5jKOwfq2SkN\nX5hIYplCGKiksp7pcRHMSYkm12phz/FWevsdZpclApQ0fCEM0tvvYPOhBlbOS0EpRa41nt5+BwdO\ntppdmghQ0vCFMEh5tTOOeek8Z9w4xxoHIId1hGmk4QthkE2VdkKDFStmJwGQZplCUnQ426XhC5NI\nwxfCICWVdgoyE4gOd2YjnId1LJLUEaaRhi+EAY43d1F5qu3M4ZxBeRkWjtg7aOnsM6kyEcik4Qth\ngE2uq2svnZdy1v056RYAdtXJXr7wPmn4QhigpLKe1LgI5k6NPuv+bGscSsGOY9LwhfdJwxfCw5xx\nzEYunZeMUuqs78VGhDIrOVqO4wtTSMMXwsMqqk/T3tPPyrkp5/z+4IlbmZwpvE0avhAeVlJVT0iQ\nYsXsxHN+P8dqobGjl9rTMjlTeJc0fCE8bFOlnYKseGIiQs/5/Tyr88StHNYR3iYNXwgPOtHSxYGT\nbR9L5ww1b1oM4SEyOVN4nzR8ITxoU+VgHHPk1dtCg4NYnBYnDV94nTR8ITyopNLOtNgI5k2NGfVx\nOVYLe+pa6BuQyZnCe6ThC+EhfQPO6ZjnimMOl2u10NPvoPJkm5eqE0IavhAeU1F9mrae/lEP5wzK\ndZ24lUFqwpuk4QvhISWVdlccM+m8j02Pn0JSdJhccSu8Shq+EB5SUllPfubIccyhlFLkpFvYWSsN\nX3iPNHwhPOBkS/d545jD5VotHLa309otkzOFd0jDF8IDNlXVA6PHMYfLzbCgNeyqaTGqLCHOIg1f\nCA/YVOWMY86fNnocc6js9MErbk8bVZYQZ5GGL8QE9Q84eO9gAyvnnj+OOVTclFBmJkexQ/bwhZdI\nwxdigrYda6at27045nAyOVN4kzR8ISaopNI1HXPO+eOYw+VZLTS091DXLJMzhfGk4QsxQSWVdpZk\nxhPrRhxzuFxrPCCTM4V3SMMXYgLqW7vZd6J1XIdzwDk5MywkiJ3S8IUXSMMXYgJKBhcrH2F1q/MJ\nCwli0fRY2cMXXiENX4gJ2FRpZ2psOAtS3Y9jDpdrjWe3TM4UXiANX4hxcsYx7WOOYw6XY42ju08m\nZwrjGd7wlVLBSqntSqk/G70tIbxpe00zrd39YxqncC55rhO3MldHGM0be/gPAvu9sB0hvKqksp5g\nN6djjsaaMIWEKJmcKYxnaMNXSqUD1wJ/MHI7QpihpNJOfkY8cVPGHsccSil15gIsIYxk9B7+L4Cv\nAXI2KsD8tuQwN/5mM919A2aXYoj6tm72Hm9l5TjjmMPlpFs4ZG+nTSZnCgMZ1vCVUtcB9VrrivM8\n7n6lVLlSqtxutxtVjvCil7fV8sO/HWBHTTN/3nXC7HIM4c5i5WMxODlzd63M1RHGMXIPfwVwvVLK\nBjwLXKaUenL4g7TWj2qtC7TWBcnJnvnhEeb58EgjX39pF8tmJjI7JZoNpbZJOSempMpOSkw4C1Nj\nPfJ6uemy5KEwnmENX2v9Ta11utY6C7gDeFtrvcqo7QnzHW3o4LNPVpCREMnvVuWzdnkWu+ta2HZs\nco3/7R9w8F7VxOOYQ8VFhjIzKUqO4wtDSQ5feMTpjl7Wrd9CkFKsL1pKXGQoN+elERMRQnFptdnl\nedQOD8Uxh8uRyZnCYF5p+FrrEq31dd7YlvC+nv4BPvtEBcdbuvn9mnwyEiMBiAoP4fYCK3/dfYJT\nrd0mV+k5JZV2goMUnxjHdMzR5Fot2Nt6ONEyed4r4VtkD19MiNaab7y0my22Jn5yWw75mQlnfX/N\nskwGtOapDybPXn5JVT1LMiwTjmMOl2sdXAFLDusIY0jDFxPyf28d4pXtdXzlirlcnzP9Y9/PTIzi\nsnkpPL3lGD39/h/RrG/rZk9dq8cP5wAsSI0lLDhIGr4wjDR8MW6v7qjj529WccuSdL5w2ewRH1e0\nIouG9l5enwQRzXerGgBYOdfzibKwkCAWTo+VK26FYaThi3HZamviqy/s4sIZCfzg5sWjplU+MTuJ\nWclRFE+CiGZJZT3JMeFcMN0zcczhcq0Wdte10C+TM4UBpOGLMbM1dHD/xnLS46fwyOp8wkJG/2+k\nlKJoeRa7alv8Omc+3sXKxyIvw0JX3wBVp9oNeX0R2KThizFp7uzlnuKtADxeVIglMsyt5928JJ2Y\n8BCKN9sMrM5YO2ubaenq89jVteciJ26FkaThC7f19jt44MkKak938eiaArKSotx+blR4CLcVWPmL\nH0c0SyrtBCm4eLZxDT8jIZL4yFBZ8lAYQhq+cIvWmm++vJsPjjTxo1uzKcxKOP+ThjkT0fzwmAEV\nGq+k0s6SjHjiIj0bxxxKKXXmAiwhPE0avnDLb945xEvbavnS5XO4MS9tXK+RlRTFJ+el8PSH/hfR\ntLf1sLuuxdDDOYNyrRaq6tto7+k3fFsisEjDF+f1p53H+ck/qrgpL40HPzVnQq+1dnkWDe09/GW3\nf0U03x1crNyA/P1wuVbn5MxdsgKW8DBp+GJUFdVNfOWFnSzNSuChW0aPX7rj4tlJzEyO8rv5OiVV\ndpKiPTcdczQ5rsmZO2tkVLLwLGn4YkTHGju5b2MF0+MieGR1PuEhwRN+zaAgxdplWeysaWa7n0zR\nHHDoM4uVBwUZE8ccKj4qjKzESHbU+Mf7I/yHNHxxTi2dfawr3oJDax4vKiQ+yr34pTtuyU8nOjyE\nDaU2j72mkXbUNNPcaWwcczhZ8lAYQRq++Jjefgf/8lQFx5o6eWRVPjOToz36+tHhIdyan87ru09Q\n3+b7Ec1NlfXOOKaHp2OOJtdq4VRrDydaury2TTH5ScMXZ9Fa860/7qb0cCMP3ZzNhTMTDdnO2uVZ\n9A1onvaDiGZJlZ28jHi3LzLzhBzr4HF82csXniMNX5zlt5sO83x5LV+8bDa35Kcbtp0ZSVFcOi+Z\npz48Rm+/786NaWjvYVdtC5caMCxtNAunOydn+vMoCuF7pOGLM17fdYIf/a2S63Om829XzDV8e0XL\ns7C39fDXPb4b0fRmHHOo8JBgFsjkTOFh0vAFANuOnebLz++gIDOeH92abdhwsKEumZPMjKQo1vvw\nfJ2SSjtJ0WGGTcccTZ5rcuaAw78njArfIQ1fUNPUyf0by5ka64xfRoROPH7pDmdEM5MdNc0+mUgZ\ncGjePWjnEi/FMYfLscbR2TvAwfo2r29bTE7S8ANcS1cf9xRvpbffweNFhSRGh3t1+7fkpxMVFuyT\nEc2dtYNxTO8ezhmUa40HkMM6wmOk4QewvgEHn39qG0cbOvjdqnxmp3g2fumOmIhQbiuw8uddx30u\nojk4HfMSL8Yxh8pKjMQSGeqTn36Ef5KGH6C01vzXq3t4/1AD3795Mctnm9PUwDlFs29A88yHNabV\ncC6bKuvJtVq8GsccSilFTrpcgCU8Rxp+gHr03SM8s6WGz106i9sLrKbWMjM5mpVzk3nqw2qfiWg2\ntvewq67FtMM5g3KsFqpOtdEhkzOFB0jDD0B/23OCh/52gGsXp/LvV84zuxzAGdGs96GI5rsH7WiN\nV8cpnEue1YJDw+46GaQmJk4afoDZWdPMl57bQa7Vwk9vzzElfXIuK+cmk5UY6TMnbwfjmIumx5la\nR44seSg8SBp+AKk93cm9G8pJig7n92sKvBa/dEdQkGLNsiy2HWs2fQ78gEPzbpWdS+aYE8ccKiEq\njMzESEnqCI+Qhh8gWrv7uLe4nJ7+AdYXFZLk5filO24tcEY0i03ey99V28zpzj5Wmnw4Z1BOuoWd\nshiK8ABp+AGgf8DBF57ezmF7O7+9O585U2PMLumcYiNCuSU/nT/vPEFDe49pdXwUx/SNhp9rtXCi\npdtvF38XvkMa/iSntebbr+3l3So737txEZ8wKVPurjXLsugdcPCMiVM0S6rs5FgtHl0DYCJyM5zH\n8bfLYR0xQdLwJ7nH3j/KUx8e47MrZ3LH0gyzyzmv2SnRXDwniSc/rKZvwPsRzcb2HnbVNnPpXHPj\nmEMtTI0lNFjJiVsxYdLwJ7G/7z3J//5lP9csmsbXr5pvdjluW7cii1OtPfxtz0mvb/u9gw0+Eccc\nKiI0mAWpsTIbX0yYYQ1fKRWhlNqilNqplNqrlPquUdsSH7e7toUvPbuD7HQLP7s91/S0yVhcOjeF\nzMRIU07ellTWkxgVxuI0c+OYw+VaLeyqbZbJmWJCjNzD7wEu01rnALnA1UqpiwzcnnA53tzFvRu2\nkhAVxu/X5DMlzHfil+4YjGhWVJ9md633LjhyODTvHmwwbTrmaHKtFjp6BzhU3252KcKPGdbwtdPg\n/85Q1012TwzW0dPPPcVb6eod4PGiQlJiIswuaVxuK0gn0ssRzV11LTR19PrU4ZxBH12AddrkSoSn\n7T3ewvPl3pkjZegxfKVUsFJqB1APvKG1/vAcj7lfKVWulCq32+1GlhMQNpTZOHCyjV/fvYR503wz\nfumO2IhQblmSzp92HvdaRLOksh6l4GIfiWMONSMxitiIEHbUyIiFyeRkSzf3FG/l529U0e6FeUmG\nNnyt9YDWOhdIB5YqpRad4zGPaq0LtNYFycm+94PmT/oHHDxZVs3yWYms9PIarEZYuzyT3gEHz27x\nTkSzpNJOTrqFBB+JYw4VFKTIscrkzMmko6efezdspb27n8eLCokODzF8m15J6Witm4F3gKu9sb1A\n9ca+Uxxv6aZoeZbZpXjE7JQYZ0Tzg2OGRzSbOnrZWdvsk4dzBuVZLVSebKWzVyZn+rsBh+bBZ7ez\n/0Qrv75rCQtSvbOEppEpnWSllMX19RTgCuCAUdsTsL7URnr8FD61YKrZpXjM2mVZnGzt5u97jY1o\nvndmOqbv5O+HyxmcnOnFE9nCGN97fR9v7q/nO9dfwCfne+//nJF7+KnAO0qpXcBWnMfw/2zg9gLa\nvuOtbDnaxJplmQT7WMJkIj45P4WMBOOnaJZU2kmICiPbx+KYQ+W6TtzKXB3/trHMxvrNNtatyGLN\nsiyvbtuwg0Za611AnlGvL862odRGRGiQ6YuZeFpwkGLNsky+9/p+9tS1sMiAhuw4Mx0zyefimEMl\nRodjTZgix/H92DsH6vnOa3u5fEEK37p2ode379YevlLqQaVUrHJ6TCm1TSl1pdHFCfec7ujljzvq\nuCkv3bTl+Ix0W4GVKaHGLXS+u66Fxo5enz6cMyjXGi+jkv3UvuOtfOHpbSxIjeWXd+SZ8knc3UM6\n92itW4ErgXhgNfCQYVWJMXl2aw09/Q7WLs80uxRDxE0J5eYlaby68ziNBkQ0SyrtKAWX+EGyKSc9\njuMt3dTL5Ey/cqq1m3s3bCUmIpTH1hYS5YVEzrm42/AHfxV9GnhCa713yH3CRP0DDp78oJplMxOZ\nP807Z/rNULQ8i95+B89u9fwFKiVV9WT7aBxzuLwMWQHL33T2OuOXLV19PFZUwLQ48y6GdLfhVyil\n/oGz4f9dKRUD+MZq0wHuzf2nqGvuYu0kiWKOZM7UGFbMTuTJD6rp92BE83RHLztqmrnUD/buAS6Y\nHkdIkEzO9BfO+OUO9h1v5Vd35nGByUtmutvw7wW+ARRqrTuBMGCdYVUJtxWX2kizTOHyBb5//Hmi\nipbP4ERLN//Yd8pjr+kri5W7a3BypjR8//CDv+znjX2n+M/rFvpEXNrdhv+G1nqb6wIqtNaNwM+N\nK0u4Y/+JVj440sTqZZmEBE/+SdeXzU8hPX4KxZttHnvNTZV24iNDyU63eOw1jZZjjWNXbYtMzvRx\nT35QzR/eP8raZZmsWzHD7HKA8zR814jjBCBJKRWvlEpw3bKANG8UKEa2scwZxbyjcHJFMUcSHKRY\nuyyLLbYm9h6f+MVHDodmU5WdS+Ym+9W1C7nWeNp7+jlil8mZvmpTlZ1vv7aXT85L5j+v8378ciTn\n2y38LFABzHf9OXh7Ffi1saWJ0TR39vLK9jpuzE2blFHMkdzuwYjmnuODcUz/OJwzaPACrO1yWMcn\nVZ5s4/NPbWPu1Bh+ddcSn/r0PWolWutfaq1nAP+utZ6ptZ7huuVoraXhm+i5rTV09zkm/cna4eIi\nQ7lpSRqv7jhOU0fvhF7rTBzTB6djjmZmUhQxESFyHN8H1bc5p19GhgXzeFGBVwaijYVbv3q01r9S\nSi1XSt2llFozeDO6OHFuAw7NxrJqLpyR4LWhS75k7bIsevodPLt1YlM0SyrryU6LIzE63EOVeUdQ\nkCIn3SJLHvqYrt4B7ttQTlNHL4+tLSQ1borZJX2Mu1faPgH8BPgEUOi6FRhYlxjFYBRz3Yoss0sx\nxbxpMSyflciTZeOPaDZ3OuOYK/3g6tpzybVaOHCyja7eAbNLETjPB335+R3sqmvhl3fksjjdN2cy\nuft5owBYqLWWWIAPKN5sY3pcBJf7QMzLLGuXZ/HZJyp4Y98prlmcOubnv3uwAYcfxTGHy7VaGHBo\n9hxvoTArwexyAt4P/36Av+45ybeuXcCVF0wzu5wRuXs2YQ/gu/+KAFJ5so2yI42sXpblUyeDvO3y\nBVNJs0wZ9xKIJZX1xEeGkuNHccyhzix5KHN1TPfMlmM8sukIqy7K4N5P+Eb8ciTudowkYJ9S6u9K\nqdcGb0YWJs6tuNRGeEjgRDFHMjhF88OjTew/0Tqm5w5Ox7x4jn/FMYdKjgknzTKFHTIq2VTvH2zg\nW3/cw8q5yXznny5AKd/+/+TuIZ3vGFmEcE9LZx+vbK/lxtw04v1g7ovRPlNo5edvVrGh1MZDt2S7\n/by9x1tpaPe/OOZwuRkW2cM30cFTbfzLUxXMSYnm13fl+cUnbndTOpvOdTO6OHG258qPBWQUcySW\nyDBuykvjle11nB5DRLOksh7wj+mYo8mzWqhr7sLe5p1F3sVH7G09rCveSkRoMI8VFRITEWp2SW5x\nN6XTppRqdd26lVIDSqmxfY4WEzIYxVw6I4GF0wMvijmStcudEc3nyt2follSZSc7PY4kP4tjDjd4\nAZbk8b2ru2+A+zaW09Dew2NrC0iz+F78ciTu7uHHaK1jtdaxwBTgFuBhQysTZ3n7QD21p7smzQLl\nnjJ/WiwXzUzgCTcjms2dvWw/dtpvpmOO5oLpcQQHKcnje5HDofnK8zvZWdvMLz6T51czmGAca9pq\npz8CVxlQjxhBcelRUuMiuHJh4EYxR1K0fAZ1zV28ub/+vI99zxXH9Nf8/VBTwoKZPy1G9vC96Cf/\nqOT13Sf45jXzuXqR/wUX3Tppq5S6echfg3Dm8mXJHS85eKqNzYca+epV8/zixJC3Xb4gxRXRPHre\nH8KSSjuWyNAzh0P8Xa7Vwms7juNwaJ9ej3cyeL68hodLDnPn0gzuu3im2eWMi7vd45+G3K4C2oAb\njCpKnK241EZYSBB3Ls0wuxSfFBIcxOplmXxwpIkDJ0c+tTQ4HdOf45jD5VottPX0c6RBJmcaqfRQ\nA//x8m4unpPEf9/g+/HLkbh7DH/dkNt9Wuv/1Vqf//OzmLCWrj5e3lbHDTnT/WIJPrN8psBKeEjQ\nqFM0951opaG9Z1Icvx/00YnbiY+LFud2qL6dB56sYGZyFL+5ewmhfvwp292UTrpS6hWlVL3r9pJS\nKt3o4gS8UF5DV9+ARDHPIz7qo4hmc+e5I5qTJY451KzkaGLCQ9hRc9rsUialxvYe1hVvISwkiMfW\nFhLrJ/HLkbj7q2o98Bow3XX7k+s+YaDBKGZhVjyL0nxzGJMvWbs8i+4+B8+NsNB5SaWdxWlxJMf4\ndxxzqKAgRbY1Tk7cGqC7b4D7n6igvrWH368pwJoQaXZJE+Zuw0/WWq/XWve7bsXA5NlN8lHvHKjn\nWFMnRct9ez6Hr1iQGsuFMxLYWFb9seX/Wjr72HbstN9fXXsuuVYLB0600d0nkzM9xeHQfPXFXVRU\nn+bnn8klLyPe7JI8wt2G36iUWqWUCnbdVgGNRhYmYEOZjWmxEVx5gUQx3VW0PMsV0Tx7ofP3Dtn9\nejrmaHLSLfQ7tEeWfRROP3+zij/tPM7Xr57Pp8cxjdVXudvw7wFuB04CJ4BbgSKDahLAofo23jvY\nwOplmX59ksjbrlg4lelxER87eVtSaSduSii51smxpzZUboZryUOZq+MRL1bU8qu3D/GZAisPrPTP\n+OVI3O0k/w2s1Vona61TcP4C+K5xZYkNpdWEyVTMMQsJDmLVskxKDzdSebINGBrHTJo0ccyhUmIi\nnJMz5Tj+hJUdbuSbL+9ixexEvnfTIr+NX47E3YafrbU+EwPQWjcBecaUJFq7+3hpWy3X50z3u+X3\nfMEdhRnOiGaZDXDGMe1tPVw6Ca6uHUmu1SINf4IO253xy8zEKB6+O39SfrJ2918UpJQ681lYKZWA\n+6OVxRi9UF5LZ++AzM0Zp4SoMG7Inc4r2+po6exjU5UdgJWTKI45XI41jtrTXTS0y+TM8Wjq6OWe\n4q2EBCnWFxUSN8W/45cjcbfh/xQoU0r9j1Lqf4BS4EejPUEpZVVKvaOU2qeU2quUenCixQYCh0Oz\nscxGQaZEMSdi7fIsuvoGeL68hpLKehalxU6qOOZwg+cmZJDa2PX0D/DZJ8o50dLNo5MkfjkSd6+0\n3QjcDJxy3W7WWj9xnqf1A1/RWi8ELgI+r5RaOJFiA0FJVT3VjZ1yodUEXTA9jqVZCTy++SjbjjVz\n6dzJezgHYFFaLMFBSg7rjJHWmq+9uIutttP87PYc8jMn30n9odw+SKW13qe1/rXrts+Nx5/QWm9z\nfd0G7AfSxl/qyDp6+pks66uv32xjamy4X07i8zVFK7I40dLNgENPyjjmUJFhIcydKpMzx+oXbx7k\n1R3H+epV87gue7rZ5RjOK2cllFJZOE/yfujp127u7OWG32zm128f8vRLe92h+nbeO9jAqgsliukJ\nVy6cSmpcBLERIZNmOuZocq0WdtY043BMjp0fo71zoJ5fvnWQW/PT+dyls8wuxysM7ypKqWjgJeBL\nWuuPjTJUSt2vlCpXSpXb7fYxv37clFAWp8Xx0zeqeHVHnQcqNs/GMhthwUHceaFMxfSEkOAgfnpb\nDj+8JTsgxkrnWS20dvdztLHD7FL8wsMlh7AmTOH7Ny2edPHLkRj6U6CUCsXZ7J/SWr98rsdorR/V\nWhdorQuSk8f+sVspxUO3LGZpVoLrUuimCVZtjtbuPl6qqOW6nFS/X3rPlyyfncQ1k+hKydEMXoAl\nC5uf3566FrbaTrN2WRZhIZN/Z2CQYf9S5fyV+RiwX2v9M6O2AxAeEswjq/OZHhfBfRsrqPbDPZwX\ny2vp6B1gnczNEeM0KzmaqLBgOY7vhg2lNqaEBnNbQWBd2Gjkr7YVwGrgMqXUDtft00ZtLD4qjMeL\nCnFozbrirbR09hm1KY8bjGIuybCwOF2imGJ8goMU2ekWdtZKwx9NU0cvr+48zs1L0iZt3n4khjV8\nrfX7Wmultc7WWue6bn8xansAM5OjeWRVPjVNnTzwZAW9/edf1NoXbKqyY2vspGiF7N2LicnNsLD/\nRKtMzhzFM1uO0dvvCMjo86Q7eHXhzEQeujmbsiON/L9XdvtFXLO41EZKTDjXSBRTTFCu1ULfgGbv\n8ZGXegxk/QMOnvygmhWzE5k7Ncbscrxu0jV8gFvy0/niZbN5oaKWh0sOm13OqA7b29lUZWfVRRLF\nFBP30ZKHcljnXP6x7xQnWrpZuyzL7FJMMWnn4fzbFXOxNXby479XkpkY6bMXVTxRVu2MYsoC5cID\npsZGkBoXISMWRlBcaiM9fgqfWhCYa0xM2l1KpRQ/ujWbgsx4vvz8TrYd8701P9u6+3ihvIbrslMn\n9ZwX4V0yOfPc9h1vZcvRJtYsy5yUY7LdMWkbPkBEqDOuOS02gvs2lFPT1Gl2SWd5qcIZxQzEk0fC\nOLlWC8eaOmmUyZln2VBqIyI0iNsDLIo51KRu+ACJ0eE8XlRI34DDGdfs8o24psOh2VBWTV6GhZwA\nuOxfeM/g/yeJZ37kdEcvf9xRx0156Vgiw8wuxzSTvuEDzE6J5ner87E1dPC5pyroGzA/rvnuQTtH\nGzpk5r3wuMVpcQQp2FEja9wOenZrDT39DtYuzzS7FFMFRMMHWD4riR/cvJjNhxr5zz/uMT2uuaHU\nRnJMONcsCozL/oX3RIXL5Myh+gccPFFmY9nMROZPizW7HFMFTMMHuK3Ayuc/OYtnt9bwyLtHTKvj\naEMH71TaufvCjICa4yG8Jy/DOTnT7B0bX/Dm/lMcb+mWc2UEWMMH+MoV87guO5WH/nqAv+4+YUoN\nG8tshAaQdUIEAAARPUlEQVQr7pKpmMIgOekWWrr6ONrgf3OlPG39ZhtplilcvmByL4LjjoBr+EFB\nip/clkNehoUvPbfD6x9723v6eaG8lmsXp5ISE+HVbYvAMTg5M9BP3O4/0cqHR5tYvSwzIEZkn09A\nvgMRocH8fk0BKbHh/POGcmpPey+u+fK2Wtp7+mVujjDUnJQY5+TMAB+VPBjFvKMwcKOYQwVkwwdI\nig5nfVEhPf0D3FO8ldZu4+OaDoemuNRGjtUSECswCfMEBykWp8cF9InbwSjmjblpAR3FHCpgGz7A\n7JQYfrcqnyP2Dj7/1DbD45rvH2rgiL2DdXLySHhBjtXCvhOt9PQH5uTM58pr6O4LzKmYIwnohg+w\nYnYS/3vTIt472MC3X9traKqhuNRGUnQ4nw6QFZiEufJckzP3BeDkzAGH5omyai6ckcCC1MCOYg4V\n8A0f4DOFGTywchZPf3iMP7x31JBt2Bo6eKeyXqKYwmtyrfFAYE7OfHP/Keqau1i3IsvsUnzKpJ2W\nOVZfu2oex5o6+P5f95ORGMlVF3h2Nv3GsmqCleJuiWIKL5kWF8G02IiAbPjFm21Mj4vg8gCdijkS\n2dV0CQpS/Oz2XLLTLTz47HZ2eTDO1tHTzwvlNVybnUpKrEQxhffkWOMCblRy5ck2yo40snpZlkQx\nh5F3Y4iI0GD+sKaAxKhw7t1QTl1zl0de9+VttbT19MvJI+F1udZ4bI2dnO7oNbsUrykutREeIlHM\nc5GGP0xyTDjr1xXS3TvAvcVbaZtgXFNrVxQzPY48iWIKLzuzAlaAXIDV0tnHK9truTE3jfgoiWIO\nJw3/HOZOjeHhVUs4WN/OF57eTv8E4prvH2rgsL2DtcuzUCowF10Q5slOd03ODJALsJ4rPyZRzFFI\nwx/BxXOS+Z8bFrGpys53/7Rv3HHNDaU2kqLDuDZbopjC+6LCQ5iTEhMQIxYGHJqNZdUsnZHAwukS\nxTwXafijuOvCDO6/ZCZPfFDN45ttY37+scZO3jpQz11LMwgPCfZ8gUK4IdcaGJMz39p/itrTXbLG\nxCik4Z/HN66ez1UXTOV7r+/jjX2nxvTcjWU2ZxTzosBedEGYKzfDwunOPqobfWuJT0/bUGYjNS6C\nKxdKFHMk0vDPIyhI8YvP5LE4LY4vPrOdPXXurSLU0dPPc+U1XLM4lakSxRQmOnPidhLHM6tOtbH5\nUCOrLpKpmKORd8YNU8Kccc34yFDu3bCVEy3nj2u+sr2Otu5++XgpTDcnJZopocGTuuFvKLURFhLE\nnUvlwsbRSMN3U0psBI+vK6SjZ4B7istp7+kf8bFaazaU2licFseSDIliCnOFBAdN6smZLZ19vLyt\njhtyppMgUcxRScMfg/nTYvn1XXlUnWrji8+MHNcsPdzIwfp2iiSKKXxEntXCvuOTc3LmCxU1dPUN\nSBTTDdLwx+jSeSl85/oLePtAPd97ff85H7N+s43EqDCuy5EopvANuVYLvQMO9p9oM7sUjxpwaDaU\n2SjMimdRWpzZ5fg8afjjsPqiTO79xAyKS20Ubz57umZNUydvHTjFXRdKFFP4jhzXidvJNlfnnQP1\n1DR1UbRcVpBzhzT8cfqPTy/g8gVT+e8/7+PtAx/FNc9EMS+UKKbwHalxEaTEhE+64/jFpTamxUZw\n5QUSxXSHYQ1fKfW4UqpeKbXHqG2YKThI8X935rJweixfeHo7e4+30Nnbz3Nba7h60TSmxUkUU/gO\npRS5VsukavgHT7Xx/qEGVi/LJFSimG4x8l0qBq428PVNFxkWwmNrC4mbEsq9xeX8btMRWiWKKXxU\nboaFow0dNHdOjsmZG8qcUUyZiuk+wxq+1vpdoMmo1/cVU2MjeGxtIW3dffzfWwdZlBZLfma82WUJ\n8TG56a7j+LXuXTzoy1q6nFHM63OmkxgdbnY5fsP0z0FKqfuVUuVKqXK73W52OeOycHosv75rCWEh\nQTywcpZEMYVPyrZaiAgN4ldvHfT7eOYL5TV09g7Ip+kxMr3ha60f1VoXaK0LkpOTzS5n3D45P4Vd\n376S67Knm12KEOcUHR7CT27Lobz6NF97cZffDlMbnIpZkClRzLEyveFPJhGhEsMUvu267Ol89ap5\nvLrjOL9486DZ5YxLSWU9x5o65UKrcZBFzIUIMJ+7dBZHGzr45VsHyUqK5Ka8dLNLGpPiUhtTY8O5\netE0s0vxO0bGMp8ByoB5SqlapdS9Rm1LCOE+pRTfv2kxy2Ym8vUXd7PlqP9kKw7Vt/PewQZWXShR\nzPEwMqVzp9Y6VWsdqrVO11o/ZtS2hBBjExYSxO9W5ZOeMIX7nyjnaEOH2SW5ZWOZjbDgIO68UKZi\njof8ihQiQMVFhrK+qJAgpbineCunO3w7n9/a3ceLFbVcl5NKkkQxx0UavhABLDMxikdX51N3uovP\nPlnh03HNF8tr6ewdYJ3MzRk3afhCBLiCrAR+fFs2W4428c2XdvtkXNPh0Gwss7Ekw8LidIlijpc0\nfCEEN+Sm8eUr5vLy9jp+9fYhs8v5mE1VdmyNnRStkL37iZBYphACgH+9bDa2xg5+9kYVmYmR3JCb\nZnZJZ6wvtZESE841EsWcENnDF0IAzrjmD25ezNIZCXz1hV2U23wjrnnY3s67VXZWXSRRzImSd08I\ncUZ4SDCPrMonLX4K9z9RQXWj+XHNjaWuKKYsUD5h0vCFEGeJjwrj8aJCHFqzrngrLZ19ptXSNhjF\nzE4lOUaimBMlDV8I8TEzkqJ4dHUBtU1dfPbJcnr7HabU8WJFLR29skC5p0jDF0Kc09IZCfzw1sV8\ncKSJ/3jF+3FNh2sqZl6G5cyavGJipOELIUZ0U146D35qDi9W1PJwyWGvbnvTQTtHGzpk5r0HSSxT\nCDGqL10+h+rGDn7890oyEiL5pxzvrPmwodRGckw41yxK9cr2AoHs4QshRqWU4oe3ZlOYFc9XXthJ\nRfVpw7d5xN5OSaWduy/MICxE2pSnyDsphDiv8JBgHlldQGpcBPdvLOdYY6eh29tYVk1osOIumYrp\nUdLwhRBuSYgKY31RIf0OzbriLbR0GRPXbO/p58WKWq5dnEpKTIQh2whU0vCFEG6bmRzNI6vzOdbU\nyeeeqqBvwPNxzZcqamnv6Ze5OQaQhi+EGJOLZiby0M3ZbD7UyLde2ePRuKbDodlQaiPHaiFXopge\nJw1fCDFmt+Sn86+Xzea58hp+t+mIx173vUMNHGnoYJ1EMQ0hsUwhxLh8+Yq52Bo7+eHfDpCZGMmn\nF088Plm8+ShJ0eEeeS3xcbKHL4QYF6UUP741m/zMeP7tuR1sPzaxuObRhg7ekSimoeRdFUKMW0Ro\nMI+uzmdqbAT3bSynpmn8cc2NZTZCghR3SxTTMNLwhRATkhgdzuNFhfT0O7ineCut3WOPa7b39PNi\neS3XZqeSEitRTKNIwxdCTNjslGgeWZXP0YYOPv/UtjHHNV/eVktbT79MxTSYNHwhhEcsn53E929a\nzHsHG/ivV/e6HdccjGJmp8eRJ1FMQ0nDF0J4zO2FVv7l0lk8s+UYv3/Pvbjm+4caOGx3TsVUShlc\nYWCTWKYQwqO+euU8jjV28oO/HiAjIYqrz7Pw+IZSG0nRYVybLVFMo8kevhDCo4KCFD+9PYecdAtf\nem47O2uaR3xsdWMHb1fWc9fSDMJDgr1YZWCShi+E8LiI0GB+v6aApOhw/nljOXXNXed83MayaoKV\n4u6LMr1cYWCShi+EMERyTDjriwrp7h3g3uKttA2La3b09PP81hquWZzKVIlieoU0fCGEYeZMjeHh\nVUs4WN/OF57eTv+QuObL2+to6+mnaLns3XuLoQ1fKXW1UqpSKXVIKfUNI7clhPBNF89J5ns3LmJT\nlZ3v/mkfWmu0dkYxF6fFsSQj3uwSA4ZhKR2lVDDwG+AKoBbYqpR6TWu9z6htCiF8051LM7A1dPDI\nu0fISopi3tQYDtW385PbciSK6UVGxjKXAoe01kcAlFLPAjcA0vCFCEBfv3o+1Y2dfO/1fcxIiiIx\nKozrJIrpVUYe0kkDaob8vdZ1nxAiAAUFKX7+mVyy0+I4Yu/gzqUZRIRKFNObTD9pq5S6XylVrpQq\nt9vtZpcjhDDQlLBgfr+2gAdWzuLeT8gSht5mZMOvA6xD/p7uuu8sWutHtdYFWuuC5ORkA8sRQviC\nlJgIvnHNfOKjwswuJeAY2fC3AnOUUjOUUmHAHcBrBm5PCCHEKAw7aau17ldKfQH4OxAMPK613mvU\n9oQQQozO0OFpWuu/AH8xchtCCCHcY/pJWyGEEN4hDV8IIQKENHwhhAgQ0vCFECJASMMXQogAodxd\naNgblFJ2oNrsOiYoCWgwuwgfIe/F2eT9OJu8Hx+ZyHuRqbV266pVn2r4k4FSqlxrXWB2Hb5A3ouz\nyftxNnk/PuKt90IO6QghRICQhi+EEAFCGr7nPWp2AT5E3ouzyftxNnk/PuKV90KO4QshRICQPXwh\nhAgQ0vA9QCllVUq9o5Tap5Taq5R60OyazKaUClZKbVdK/dnsWsymlLIopV5USh1QSu1XSi0zuyYz\nKaX+zfVzskcp9YxSKsLsmrxJKfW4UqpeKbVnyH0JSqk3lFIHXX8asrK7NHzP6Ae+orVeCFwEfF4p\ntdDkmsz2ILDf7CJ8xC+Bv2mt5wM5BPD7opRKA74IFGitF+EcnX6HuVV5XTFw9bD7vgG8pbWeA7zl\n+rvHScP3AK31Ca31NtfXbTh/oAN2/V6lVDpwLfAHs2sxm1IqDrgEeAxAa92rtW42tyrThQBTlFIh\nQCRw3OR6vEpr/S7QNOzuG4ANrq83ADcasW1p+B6mlMoC8oAPza3EVL8AvgY4zC7EB8wA7MB61yGu\nPyiloswuyixa6zrgJ8Ax4ATQorX+h7lV+YSpWusTrq9PAlON2Ig0fA9SSkUDLwFf0lq3ml2PGZRS\n1wH1WusKs2vxESHAEuC3Wus8oAODPq77A9ex6Rtw/iKcDkQppVaZW5Vv0c7opCHxSWn4HqKUCsXZ\n7J/SWr9sdj0mWgFcr5SyAc8ClymlnjS3JFPVArVa68FPfC/i/AUQqC4Hjmqt7VrrPuBlYLnJNfmC\nU0qpVADXn/VGbEQavgcopRTOY7T7tdY/M7seM2mtv6m1TtdaZ+E8Gfe21jpg9+C01ieBGqXUPNdd\nnwL2mViS2Y4BFymlIl0/N58igE9iD/EasNb19VrgVSM2Ig3fM1YAq3Huze5w3T5tdlHCZ/wr8JRS\naheQC3zf5HpM4/qk8yKwDdiNswcF1BW3SqlngDJgnlKqVil1L/AQcIVS6iDOT0EPGbJtudJWCCEC\ng+zhCyFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRICQhi8Cimty5edcX09XSr1odk1CeIvEMkVA\ncc06+rNrUqMQASXE7AKE8LKHgFlKqR3AQWCB1nqRUqoI54TCKGAOzgFfYTgvqOsBPq21blJKzQJ+\nAyQDncB9WusDSqnbgG8DAzgHgl3i5X+XEOclh3REoPkGcFhrnQt8ddj3FgE3A4XA/wKdroFnZcAa\n12MeBf5Va50P/DvwsOv+/wKu0lrnANcb+08QYnxkD1+Ij7zjWs+gTSnVAvzJdf9uINs1DXU58IJz\nDAwA4a4/NwPFSqnncQ4EE8LnSMMX4iM9Q752DPm7A+fPShDQ7Pp0cBat9QNKqQtxLvxSoZTK11o3\nGl2wEGMhh3REoGkDYsbzRNcaB0ddx+tRTjmur2dprT/UWv8XzgVPrJ4qWAhPkT18EVC01o1Kqc2u\nBaTHM5b3buC3SqlvAaE4Z/7vBH6slJoDKJxrku70VM1CeIrEMoUQIkDIIR0hhAgQ0vCFECJASMMX\nQogAIQ1fCCEChDR8IYQIENLwhRAiQEjDF0KIACENXwghAsT/B7NiWFcKMAmnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['times','counts'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Bispectrum` Object takes 4 parameter.
\n", + "\n", + "1. `lc` : The light curve (lc).\n", + "2. `maxlag` : Maximum lag on both positive and negative sides of 3rd order cumulant (Similar to lags in correlation).\n", + "3. `window` : Specifies the type of window to apply as as string\n", + "4. `scale` : 'biased' or 'unbiased' for normalization\n", + "\n", + "Arguments 2 and 3 are optional. If `maxlag` is not specified, it is set to no. of observations in lightcurve divided by 2. i.e `lc.n/2` ." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Different attribute values can be observed by calling relevant properties. Most common are:
\n", + "1. self.freq - Frequencies against which Bispectrum is calculated.\n", + "2. self.lags - Time lags in lightcurve against which 3rd order cumulant is calculated.\n", + "3. self.cum3 - 3rd Order cumulant function\n", + "4. self.bispec_mag - Magnitude of Bispectrum\n", + "5. self.bispecphase - Phase of Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.5, -0.4, -0.3, -0.2, -0.1, 0. , 0.1, 0.2, 0.3, 0.4, 0.5])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.3885, -0.0915, 0.1685, -0.5085, 0.8135, -0.0675, -0.2708,\n", + " 0.0229, 0.1426, -0.0567, 0. ],\n", + " [-0.0915, 0.2328, -0.5162, -2.0652, 0.3058, 0.1968, 0.8135,\n", + " 0.5492, 0.0209, -0.2484, 0.0063],\n", + " [ 0.1685, -0.5162, -0.3999, 0.9821, -0.4989, 0.5011, 0.3058,\n", + " -0.5085, -0.2348, 0.2379, 0.0426],\n", + " [-0.5085, -2.0652, 0.9821, -0.3096, 0.5704, 2.1084, -0.4989,\n", + " -2.0652, 0.1685, 0.8632, 0.0999],\n", + " [ 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823, 0.5704,\n", + " 0.9821, -0.5162, -0.0915, 0.0872],\n", + " [-0.0675, 0.1968, 0.5011, 2.1084, -0.3823, 0.864 , -1.3613,\n", + " -0.3096, -0.3999, 0.2328, -0.3885],\n", + " [-0.2708, 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823,\n", + " 0.5704, 0.9821, -0.5162, -0.0915],\n", + " [ 0.0229, 0.5492, -0.5085, -2.0652, 0.9821, -0.3096, 0.5704,\n", + " 2.1084, -0.4989, -2.0652, 0.1685],\n", + " [ 0.1426, 0.0209, -0.2348, 0.1685, -0.5162, -0.3999, 0.9821,\n", + " -0.4989, 0.5011, 0.3058, -0.5085],\n", + " [-0.0567, -0.2484, 0.2379, 0.8632, -0.0915, 0.2328, -0.5162,\n", + " -2.0652, 0.3058, 0.1968, 0.8135],\n", + " [ 0. , 0.0063, 0.0426, 0.0999, 0.0872, -0.3885, -0.0915,\n", + " 0.1685, -0.5085, 0.8135, -0.0675]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 6.1870122 , 9.78649295, 6.29941723, 8.10990858,\n", + " 3.90975859, 1.49707597, 10.53408125, 8.44275685,\n", + " 7.73419771, 7.91909148, 3.40576093],\n", + " [ 9.78649295, 12.99063169, 11.9523207 , 12.31681 ,\n", + " 7.34404789, 1.93438197, 5.05536311, 15.92827099,\n", + " 6.61153784, 3.09535492, 7.91909148],\n", + " [ 6.29941723, 11.9523207 , 4.84009298, 8.98535468,\n", + " 5.6746004 , 1.71227576, 9.35566037, 12.00797853,\n", + " 1.60576409, 6.61153784, 7.73419771],\n", + " [ 8.10990858, 12.31681 , 8.98535468, 18.69373893,\n", + " 9.83780286, 2.72630968, 7.87985137, 5.32007463,\n", + " 12.00797853, 15.92827099, 8.44275685],\n", + " [ 3.90975859, 7.34404789, 5.6746004 , 9.83780286,\n", + " 5.93123174, 1.60598497, 0.51743271, 7.87985137,\n", + " 9.35566037, 5.05536311, 10.53408125],\n", + " [ 1.49707597, 1.93438197, 1.71227576, 2.72630968,\n", + " 1.60598497, 1.262 , 1.60598497, 2.72630968,\n", + " 1.71227576, 1.93438197, 1.49707597],\n", + " [ 10.53408125, 5.05536311, 9.35566037, 7.87985137,\n", + " 0.51743271, 1.60598497, 5.93123174, 9.83780286,\n", + " 5.6746004 , 7.34404789, 3.90975859],\n", + " [ 8.44275685, 15.92827099, 12.00797853, 5.32007463,\n", + " 7.87985137, 2.72630968, 9.83780286, 18.69373893,\n", + " 8.98535468, 12.31681 , 8.10990858],\n", + " [ 7.73419771, 6.61153784, 1.60576409, 12.00797853,\n", + " 9.35566037, 1.71227576, 5.6746004 , 8.98535468,\n", + " 4.84009298, 11.9523207 , 6.29941723],\n", + " [ 7.91909148, 3.09535492, 6.61153784, 15.92827099,\n", + " 5.05536311, 1.93438197, 7.34404789, 12.31681 ,\n", + " 11.9523207 , 12.99063169, 9.78649295],\n", + " [ 3.40576093, 7.91909148, 7.73419771, 8.44275685,\n", + " 10.53408125, 1.49707597, 3.90975859, 8.10990858,\n", + " 6.29941723, 9.78649295, 6.1870122 ]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -7.65814471e-01, -8.39758950e-01, 7.49083269e-01,\n", + " -9.35797260e-01, -1.22623935e+00, -3.13514588e+00,\n", + " 4.35308043e-01, 6.65460441e-01, 6.17269495e-01,\n", + " 4.39881603e-01, -3.14159265e+00],\n", + " [ -8.39758950e-01, 1.84719564e+00, 1.70902436e+00,\n", + " -6.50042861e-01, -5.76818268e-01, -9.16177187e-02,\n", + " 1.76512372e+00, 2.97853199e+00, 1.45401552e+00,\n", + " 0.00000000e+00, -4.39881603e-01],\n", + " [ 7.49083269e-01, 1.70902436e+00, 1.64851065e+00,\n", + " -5.51373516e-01, -1.32816666e+00, 2.45429375e-01,\n", + " 2.86246989e+00, 3.08272440e+00, -1.10623774e-15,\n", + " -1.45401552e+00, -6.17269495e-01],\n", + " [ -9.35797260e-01, -6.50042861e-01, -5.51373516e-01,\n", + " -2.97776986e+00, -2.96295975e+00, -4.83162811e-01,\n", + " 1.34000660e+00, 0.00000000e+00, -3.08272440e+00,\n", + " -2.97853199e+00, -6.65460441e-01],\n", + " [ -1.22623935e+00, -5.76818268e-01, -1.32816666e+00,\n", + " -2.96295975e+00, -1.30996608e+00, -1.24358981e-01,\n", + " -3.14159265e+00, -1.34000660e+00, -2.86246989e+00,\n", + " -1.76512372e+00, -4.35308043e-01],\n", + " [ -3.13514588e+00, -9.16177187e-02, 2.45429375e-01,\n", + " -4.83162811e-01, -1.24358981e-01, 3.14159265e+00,\n", + " 1.24358981e-01, 4.83162811e-01, -2.45429375e-01,\n", + " 9.16177187e-02, 3.13514588e+00],\n", + " [ 4.35308043e-01, 1.76512372e+00, 2.86246989e+00,\n", + " 1.34000660e+00, 3.14159265e+00, 1.24358981e-01,\n", + " 1.30996608e+00, 2.96295975e+00, 1.32816666e+00,\n", + " 5.76818268e-01, 1.22623935e+00],\n", + " [ 6.65460441e-01, 2.97853199e+00, 3.08272440e+00,\n", + " 0.00000000e+00, -1.34000660e+00, 4.83162811e-01,\n", + " 2.96295975e+00, 2.97776986e+00, 5.51373516e-01,\n", + " 6.50042861e-01, 9.35797260e-01],\n", + " [ 6.17269495e-01, 1.45401552e+00, 1.10623774e-15,\n", + " -3.08272440e+00, -2.86246989e+00, -2.45429375e-01,\n", + " 1.32816666e+00, 5.51373516e-01, -1.64851065e+00,\n", + " -1.70902436e+00, -7.49083269e-01],\n", + " [ 4.39881603e-01, 0.00000000e+00, -1.45401552e+00,\n", + " -2.97853199e+00, -1.76512372e+00, 9.16177187e-02,\n", + " 5.76818268e-01, 6.50042861e-01, -1.70902436e+00,\n", + " -1.84719564e+00, 8.39758950e-01],\n", + " [ 3.14159265e+00, -4.39881603e-01, -6.17269495e-01,\n", + " -6.65460441e-01, -4.35308043e-01, 3.13514588e+00,\n", + " 1.22623935e+00, 9.35797260e-01, -7.49083269e-01,\n", + " 8.39758950e-01, 7.65814471e-01]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plots" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bispectrum in stingray also provides functionality for contour plots of:
\n", + "\n", + "1. 3rd Order Cumulant function\n", + "2. Magnitude Bispectrum\n", + "3. Phase Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX+4LN1V1/lZVd1Vfe8959z76msCJoTwSxzQccRXMiOO\ngvwQQyDD6GDk1xDEyCgqIiPgOA8MwmNAGIgDI7wiIkJEQMGIUX7NMIEZYZIgiAR0IAaT8EJ4Q+57\nz7n3nqru6j1/7NpVu3btqtrVXXV+3Nvf5znP6a6qrqqurvqutb9r7bVEKcUBBxxwwAGPF6LLPoED\nDjjggAMuHgfyP+CAAw54DHEg/wMOOOCAxxAH8j/ggAMOeAxxIP8DDjjggMcQB/I/4IADDngMcSD/\nA7wQESUiHzjzMV5cHmcx53EuA4/ydzvg0cCB/B9BiMh3iMivicg9EfkPIvI5MxzjZSLy/4rIfRF5\nt4h8p4i8cOrj7HBev0NEvkdEnhWR50Tk34rIF4hIfNnntitE5NtE5Csu+zwOeLRwIP9HE68G3l8p\ndQJ8EvAVIvL7fBvu4pmKyJ8AXgt8PfAk8KFABvyEiDwx1XEGzqG1PxH5AOCngLcDv1spdRv474Df\nBxxPefwDDrjuOJD/Iwil1L9TSj0wb8u/DwAQkY8UkXeIyBeJyK8Bf79c/j+KyDMi8qsi8tld+xYR\nAb4W+Aql1GuVUg+VUr8GfA5wBvzlcrvPEpH/W0S+TkTeDXyZiMQi8jWlV/5W4BOcfd8Wkb9Xnsc7\nReQrjMfu25/n9P4X4P9RSn2BUuqZ8lr8e6XUpyml7prv7hzzbSLyMeXrLytHDd8hIqci8nPlSOJL\nRORdIvJ2Efk432etz39Hx3V7pYj8Qrnft4rIn7XWmd/kr5THeUZEXlmuexXwacBfFZEzEfnnXb/N\nAQeMwYH8H1GIyP8uIg+AXwSeAV5vrX4v4LcA7wu8SkQ+HvhC4GOBDwI+hm58MPAi4HvshUqpLfBP\nyn0YvAR4K/B84CuBPwO8DPi9wFPAn3D2/W3ABvjAcpuPQxuVrv25+Bjge3vOPQSfCPxD4Ang3wA/\niH5OXgB8OfDNO+73XejvfgK8Evg6Efkwa/17AbfL4/xp4BtF5Aml1NPAdwJfrZQ6Ukp94o7HP+CA\nBg7k/4hCKfXn0FLHfw38U7QsY7AFvlQplSmlHgKfAvz9csRwH79XbfBk+f8Zz7pnrPUAv6qU+t+U\nUhvrOF+vlHq7Uuo3gb9pNhSR5wMvBT5fKXVfKfUu4OuAV/Tsz8Vv7TivMfhxpdQPKqU2aAP324BX\nK6XWwHcBLxaRO2N3qpT6F0qpX1Ya/xfwQ+jfxmANfLlSaq2Uej16FPXBe36XAw7oxIH8H2EopQql\n1E8ALwT+B2vVbyilzq33vx2tkxv8Ss9uny3/v7dn3Xtb63H2OXSc9wWWwDMicldE7qK97Of17M/F\nuzvOawx+3Xr9EHhWKVVY7wGOxu5URP6YiPykiPxm+d1eStNQvrs0OAYPdjnOAQeE4kD+jwcWlJp/\nCbeU6zPA+1jvX9Szr38PvAMdSK0gIhHwx4Ef3fE4b0ePTp5USt0p/06UUh/asz8XP1KeQxfuAzet\nc47Rnv2uaOwPLd20ICIpWhL7GuD5Sqk7aBlOAo9zKL17wOQ4kP8jBhF5noi8QkSOygDrHwX+FE1S\ndvHdwGeJyIeIyE3gS7s2VLoG+BcCf11EPlVEViLyXsC3oPXsrxs4zl8UkReWWUFfbO33GbQU8rUi\nciIikYh8gIj84cCvTnnef0BE/lZ5TojIB5YB3DvAfwBWIvIJIrIE/jqQjti/i58BXiEiSxHxxTAM\nkvI4vwFsROSPoeMZofh14P33OM8DDmjhQP6PHhRa4nkH8B60t/n5SqnXdX5AqX+JTtv8P4BfKv93\nH0Cpfwx8Bjqz593AW4AbwEcopd7d89G/iw6g/izw0+hYhI3PRBPlW8pz/15GyDhKqV8G/ivgxcDP\ni8hzaI/7TcCpUuo54M+hDdU70Z77O/x7C8L/jB5RvQedafTajvM6Bf4i2vi9B/hUoPP38ODvAR9S\nymHfv8f5HnBABTk0cznggAMOePxw8PwPOOCAAx5DHMj/gAMOOOAxxIH8DzjggAMeQxzI/4ADDjjg\nMcS1Kjf75JO31Ytf7E2lvt6YNeju7js0tXxCiDlm81yU9b6ZeKBa2zQ/ubU+5xyigaZv49tEOq9H\ne7l4DuL/vGeZ9zf2LFP1d0PM+Ys5gcbnqmtT7dtZXu1o2ziF+nNS7lZV30UfIkIw300Qkeq13onS\n56lU+d56bf9tPcvM9xBpv446lrfeR8521nWyrtGb3/z/PauU2mceB79bfqs6Yz243ds4/UGl1Mfv\nc6yLxrUi/xe/+Pn81Bu/YfbjxBd5WYp82v1tOvZnli8S/XdRiOtjFWy8mxTb+uEq1Lr8v2kt61te\nHU6WnmWLwW18cD83Zh9x5F/vvbd898Amr3+n8hqa62eul3utOt9v9ft8q8k3K6T8H5HGW9JYkURC\nHC2IZUkszv9oqc+7yPV5bfLGOatN1ly3XkNe/yn7vUGy1H+ALOvX9nKWzjU012ORVNdEFml9j9n3\ndpwg0R/pm6kehDPWfFn84YPbfVbxo08ObnTFcK3I/6JQsLkYAzAF8XeRfdd62whcEcTRsiK0WJYU\nal0Rb6E2FdH2L28ShY+4Q0nfwJCob18+w9NYXzTXV+fq8SLj2HNe8are1/Zh45i7k327pcG+xL8T\n+ojfwCV+qA2iuYfjBLXJ9LgoTpr39tRO1SOIA/l34MIMwFgMkb1vG/tBcB+SORHg9Veblp5ysV0H\nkv3CIueaKHb18vvQZwTC99FtLFxD0XX8ELK3vfohpPF2EuKXRdpbf0Lw16cQm+BtA+AjfgPXAJT7\nnkvMlAjSVcDe7890AjPiCrLbY4JQzySE7Pu2LY+jNrqop9dLukJwjYAhOJfsbcPg3c8EpO+iUP0G\nbNpjNaWuEAlnLNJY0+Yc16oXybIm/mQZTvwG9n1eevmKUgIqruZ9fRVxIP8eXLj3P4bohz7jarLW\n64s2AENevw9GCgoZBVSfuWgSC8CQPNTcth3PGCPhjEEa6yBwHOlruq/cM8b734v4bTgyT8sAHNCL\nA/l7UGzXtQc6hwGwb85dCL/vcz7Sdx6Gapg8pwGI99/fGCnoojCGzP2f7wh6256+V8aZvgVxEsnF\n6fxo0lfr8nsmHslnF2za9zZMJwNFIiRpwKjqIPtcb9hZJxeCscTft71L8C7x+7wkmH0EsIvX78IX\nENavF5cmxQxv239e7r4uivAN0lhpkp+Q+Ie8f/J1eGbPGHQEgg/ox4H88ZP+bN7/Lh7UPqRvf/6S\nDMAUCBkFXDRCj+kzGobswZV0hKyIyLdCEs0z/6MK9M4waho0AAZTEb/BriPoxxiPNfkPefqzyj9j\nUzR9CPX2Nx5DcAEGYAqv30WfEZjTAPjmHwxt21q+bX7WF7TNt5r8s0I4SYpZDIDx+oELkXtaGErp\n3AcT38MSQZpewsTIC8BjSf6DpO/JG5/mwDukaQbsJ8jbN1rrcjm/AZhA7x88RMfcgDkMQB/xD+b7\ndxA+dJO+/tM6cxorjpcFU8EEesEEeacn/iDvf5cAbygOo4AgPFbkH6Lpt7XYGbz/rolXgyfX3m7Q\n219b3ye/QANwAfClhc5nAJq59Z3bbdvHtgkfhkk/K4TzAiCuyHpKA1AHepcX6/FXJzAj8RtMZABE\nCAv4XkM8FuS/E+lb3r9tAHY/iYGyCyM/O8rbzy/eAMwh+XTBTgud2gA08+3D5ByDPtIHOF3HXtJ/\nT/WTCqu4DvpOYQCagd75Hv9e739u4j8gCI88+YdIPH3rXPlnb+/fp793noB//U7efu75no/ICADm\nMQC9cs9Iwtevo3IbTfb38qhB+g8LOC/gbl4XJ1vFALUB0MHa3eIAdqDX3NcX7vVfBNbhWVmPMx5Z\n8t/F2x/a387yz9iHKZT0Ydjbd/8ny6YhmNoAXIDeD+0CaQWbSQ3AUCkFF32kr983JZ57edwiff0n\n3C1/5vONcCc1+9UGII13DwTbgV4og70zEn9w5s9U8I1090Qkh4DvtcG+pO/WcZlc/jEImKRlYy9v\n35V9TLZFlwTE5cwEDkHL6JbXI46TyQ1AdYgO4ncJH4ZJ30g8z+XSIv3zDdzNIcv1COE82WLPjT0v\nYm4n+vVYA2C8frACvdFydo+/ZQDmCMaGjnQvGSLyrcDLgHcppX6XZ/1t4DuAF6G5+WuUUn+/XPfx\nwGvQXsC3KKVeve/5PDLkPxXp2+99BqBaH+r9h87mndHbV84wuKInexRgGwDor5g4gKn1/i7Cd5dN\nZQC8ZaWdMgsuQknf1vVt0jdG4PRsSZ5pLz9PCzhaYwzAeUz5Wq8fYwDsOj7VHwvggiUepyjb3hga\n6e4JiQJn+Ibh24BvAL69Y/2fB96ilPpEEfltwL8Xke8ECuAbgY8F3gG8UURep5R6yz4nc+3JP3RW\n7hjiHzre3tk/9s3f421N4e0r9+FI9BT7uQ3AFBgkfU+Br30NQJfcA+Gevt62lnZcXf9u3ib9LI/I\n85ize0uykvxTQzqlAVgtoC7OEZdzAbaDgWC7jk/D6zfXcGadv+H9e6py7oSZSX8OKKXeICIv7tsE\nOBbdNegI+E1gA7wE+CWl1FsBROS7gJcDjyf5XwTpd3n/wfLPjjV8Jvf2Pbr/VTYAo0jfXjaZARjW\n+ftIf0jXv5tJi/TzLOb0nvb6zfujY+t7Hq1ZFVDLQOMygdxAr/5ilxDgNcS/qwHouu+t1+5I94Lw\npIi8yXr/tFLq6ZH7+AbgdcCvAsfAn1RKbUXkBcDbre3egTYIe+HSyV9EYuBNwDuVUi8b2n5u0q/r\nxiyrbftS4kZ7/wNe/yzevi/Vcw4DYNfvHxkfCZJ2+uZH2KSyowHoK8PgzsY18JG+IX5fMNfW9Q3J\n51lElsWcnSbkWcwmE5ZZwRn19ayNQR0HCM0EstM7wQr0bs4ujPgr77/Im78VhBmBvrTlrvt+AohA\nElLPH55VSj215+H+KPAzwB8BPgD4YRH58T332YlLJ3/gLwG/AJwMbagCcwf2JX7zuqXzd3j/XgMw\n0uuf3dv3ZfvMYABsvT/EAIz28ruu5SbfywCEyD19aZuurl9r+k2J57mHbdI33v6DewuWWcHNrGCZ\nFzwgqQxAkhrPvjYAq3g4E8it49MK9EKrCJosUv81ngJxUhsACBsFhN73PsNwvfBK4NVKN2X+JRH5\nj8DvBN4JvI+13QvLZXvhUslfRF4IfALwlcAX7Lu/KUi/67OTZP90eP2zevs+739mAxCCvUnf3T5O\nJjAA3XKPj/j7Jmn5grlZHpXefZP08yxG7m25meUs84IkK1hmmuyNAUhyW9bJOS+23EnsKvlxGdRt\nBoLbdXwsrx+r/641agupiLmLgTCfqUyTOwpwf+MpnJ09oWv7XNgM3/8EfDTw4yLyfOCDgbcCd4EP\nEpH3Q5P+K4BP3fdgl+35fz3wV9H6lhci8irgVQAvetHzLui0xqNT/pkys2GqG9tO9xyzziGJLjQa\nsnsM5E6a/q4ocu0XxwlxtCh/p2XzHD19AQq11ttvN2WKZNP71x5/m/gflhzdFdD1Ef8mE5bQIP5l\nviHJYtZJwYMsBmLyJCbPCvI0Jk22tYEpVFkOoj6fJCqcSV1OoNdcd3Ptzf/AeRpVZ7gdjYDaZM1R\nwD5xgGvi5YvIPwI+Eh0feAfwpcASQCn1TcDfAL5NRH4Ore19kVLq2fKznwf8IHqY961KqZ/f93wu\njfxFxOS7vllEPrJruzJo8jTAU0/9DmUX9HLh6+5Ur+su/dv3Ofuz9rYGnfLP0PDWrCfgYVgutRfk\nkrIh6rJOulrX773/DUw53a4m2va2i6T+DnHSfNiddQ3JxxkhAY3rBDSvVfXBvDmScEcXG4ekbMNh\ntvGNRKz5AABEVEbANxowr+NYr7sRmZGAQssuESdJURK/4l4eY7cQuZPo1Mxq0laiM26OTiDJtuRZ\nwek9c54xa2IekLBOCm6Rs05j7h8nrNOYRao4Os45PslJ0i1JUrCK4U4Kq1hr/6tYe/wnyZY01n/H\nSzvDx/L6LcnHe51GTNTb1Qi0RgEGIwyAmHvbbhJzhaGU+lMD638V+LiOda8HXj/l+Vym5/8RwCeJ\nyEuBFXAiIt+hlPr0oQ/aBb28662GH+113QG/ZqOQcDnHJjevAQB/kGvIAPjQQ/ANA+CD2dZa39tc\no4v446ST+Ivt2tLPneC59XuZa1W9dw2B24t1yAj0Eb8NYwTKz5rRAHWxy5r4XaMQwY0IkmiDMQBN\nQyCkRQS5HSBU3EnLQK99EOD4JNejgCTmjIR1qd3fJ2GZF6zTGHUScXSck6QFSbrl6Djn9o1tSfiK\nOwk8kWh5R//p1M86yLusPX87vZMeeWfkKMDsax8pCHP/98F2ghxvvy6IUWKf7mD2fgUWyYXOU74w\nXBr5K6W+BPgSgNLz/8IQ4rfRZwT2HQW42/rWuTCjgEEDYL+2yC5IE3UfAMezrx6Crm0sohe7wJaP\n+Ksv7iF+a539/b3XxdNnN3g04GvIvekwjmNjD9ZowJWE+kYDRHC83JDGhRULMLrwlttJxKpRpE2n\nZt4BzuMt58mWU+dUjsjJUy0Dre/BOo1ZpzE30w1JWnB8suboOCdNtqXXr4n/RqyJX3v9WutPY9WW\ne8y968o8Q9fnAgyAQcsQuCPhPhgHyGMYDvDjsjX/STCHEbDX2/sZgm0AoCSzIQMA42UgH4ZkIAOb\n+B0JqEH8i6Sb+Mt1oInbXHs3a8ZNkx09GnAlIXNsaKd67ooRo4EKESQYGciQrpTyjxkVCE8kJt1T\ncdfuLHu0Jku0fs+95unkJzoOcPNkowk/LUjSgjTZcieB1ULLPDdiuJ1o4teEr0oDIA25B6gLuNEj\n+XRdmws0AAaDspDrDM0EEVgst8MbXkNcCfJXSv0Y8GP77meOeID92VB44wC2J9tnAMptBmWgoVGA\nTwYq17WI38BD/PVFGE/87mvbEEw+GpgKg6MBbQQKtSDnoWUAwuMAd7NyWU8cIEkhSQrStODoZM3x\n0VpLPQu9nycSbQC0vq9KqWdrEb+V2ml7/bbk4+vv3HVNLiAO4MNUstABbVwJ8g+HELPorR0zVTxg\n31rnowPB5rW1zc4ykAVXBvISv2mu4SF3WaRt4jen4wR49f86XbKdQTNuNBAcIJ4DAaOBJIJCNsTR\nelQc4E6q6glfXXGALOb4JOfoZN0I8N5JugO8zfo9HV6/e83cEuN9BqC8FqGYahRgsJcsdEAL14z8\nNQwJ7GoEQkYB7ra7YFQg2H29jwzUMQqo4CN+Ax/x2+vKc7MDvK3v7QR8oXkdh0YDowPEc89SdUYD\nuU8FmCEOYDJ7bt/YNjJ7nkiopB47wOvKPQ2vH+o6Pn3oMwDmWlyiATAIkoWmOI5AfAj4Xj3MaQTs\n9ftidCAYvMHgygD4ECADAd3Eb7J3fMTvZPbY3wv8ck/rGnRkUfkMwU6S0EWg/L2S+AZFKQUVakG+\nfajXTxgHSLJtI8BrMntMgNcEedvEX1/fVovGUMwgA801a3iULHRAA9ea/A2GpCDYPR4wFYICwdA7\nCqi8nV3mBLjwEX+JIeLv0/lDA7563bAsFDIaiC/C+zdec3kt4jipFJ4kYvI4AFAFeO+kqjPACzSI\n3/b6vSjypt4/9J2vYBygC52jgQO8eCTIH/YfBUAzHjCV129jMBAM40cBvkJZBj3ZPl7iN5k9bu58\nuc6cd/V9BojffR1qCMaOBvSErRlhlz0uctgksDpqGACDqeIAbmbPE4kmfjfAa3R+G5UB8LVodL+X\n+d9F8hMaAJh3FGAw6f5FsVg+mubkepG/Gv4RppKC5sJgIBjGjQLcA/QFg2Hc7F3z3yF+tzSC/h8e\n8DUYyv5xP+Magsb+5/D+LdK3JQUBOD+DRUK8SIjjG9PHAQp/Zo+p32+I3+f1j/6O5v+uBgBGG4HZ\ncdXO5wriepE/BN9sU4wE5oIbCAbCRgFTlYYImb1rjmnO2SH+EImsT+LR68PTQO3tW6OB0rmeVP5x\nid94z4uEtq89XRzgbl7W6l+0SzeYAG8f8fd6/UPXpk/rnzgQPBvcSYh7QiJYJIc8/6uFiY3ARRsA\n2GEUMEYG6kPI7N2ezJ4hucdbF99ZFhL4dT9n91jwbTsZXOLPzloesirJTqyahJPEARKqQm1u6QY3\nwLsLgvT+LqKfOBA8KTrmoRzQjetL/gYTGYHLHAV0GgAIHgUEl8sNnb1rnwPjid+UQ44j/y0WEvjV\n6wINwRTef5e3v8n16Mkzj0Jlp0iRTh4HMAFet3SDjUGvf+i7Dq2/oDjAXuiZfHhAP64/+RtcYyPQ\nKQPBfimhXcFg3+xde521bEyA11cH322B6DMGfaOC0DkBeyOE+M3f0c3GRysZaOI4gB3g1XKRX+7p\nRFeg1/7OQ9fkqsYBBkh/qudXBOJDwPeaYEIjcBEGIKg7mFsaAgZHAd45AeaBDczl3+VB8vW77Vs/\nZAzGZAHt7P13yTwu6RucPSjnS6xhmcPqaDAO0DAEgXGAvgCvDdfr98IJWjdgauP4akbNEAfYK+Mn\ngPTnTNneByLyrYApZf+7POtfjq7pvwU2wOcrpX6iXPc24BQogM0ELSOvG/mr8Nl7ExiBOUcBXS0j\nXQNgn2PwKKBvTkAX8Rt0EP9Ynd+0PrTh06mHjEHXqKCzDhMjRgIjvH1lyT7tb3E2GAdIYFRdoKwQ\nT+mG5nXoyu7pndTlLreLoq3X3UUDLzsOMIL0+yYbjoWImjLg+23oJu3f3rH+R4HXKaWUiPznwHej\n2zgafJRp7jIFrhn5lxi64WxMZASmMgBdXoktY/hms45KCR2YGewl/oDMnlC5x0f8vuX7GgNvBtF2\nHeb970L85n2yhPUS4aZ311PEAYCqdIN9vXxyT6fX3yX59Mk9uxiAoXX7GIAdSL9Q60kNwFRQSr1B\nRF7cs/7MenuLmeerXU/yN7hAI7CPAfBnv/hz3oNGAWMmhtkGgAHi91ybXYnf6Nmux2ojZHTQZww6\nh/dD8o9N/NlpMOm7AV/FAyQvy2VMHAdIYxp9ePvknsYyn9c/NgA+lwGAcCOwJ+lfgvTzpIi8yXr/\ndNmFcBRE5JOBvwk8D93f3EABPyIiBfDNu+zbxfUmf4OZjMC+BiCE9O3lXQbAHBt2HwVUlDpA/GN0\n/iHid18bjDEIY4zBIPbw9snXqPOiJflUJD9xHCAroobOX31fH+F3ef32ebp6/1CwdygOsIsBgOFR\nwESkPxR7CoWu5x/kgD87hQ6vlPo+4PtE5A+h9f+PKVf9QaXUO0XkecAPi8gvKqXesM+xHg3yN5jY\nCHQZAOgnx1DSb9WtaXSMctZNkRJqEEj8IeUbdoFrEPYZHRTbTZ0sY8P1/icgfnW+QZ1vkFWBnJgT\nXKOObk4SByhkAzzExAFs4nflHp/m3/L63YldVj1/oCZ4TwprY5upDYAPE5J+l+x4nVBKRO8vIk8q\npZ5VSr2zXP4uEfk+4MOBA/m30OXV+G7IriFxefOFFI2rdjWS9H3vdX0hvxFoGByL8LzNYnywH8oA\n4h+T0gk2KQ8/fE2PfrcJS1cGZw/0Ny4rpsqtm81RgG0EStktXh0RO7OCzegvURtuLOrfvVGb39H3\nK8LPzvW5uOUo+tI9Q4oAdsk/feTet86XYtxB+j4nxGsAekaee0MgmrcUUX0okQ8EfrkM+H4YkALv\nFpFbQKSUOi1ffxzw5fse79Ek/y74HoCAINUYA7Av3Cwgg1icEUhH4DOOmw9rHB/Vb6ybuCb7hzvl\n7/dh19mn1wGyWiCrjjJyZpRgd0wz8QDXCJT/4zIeUMRNI1CoAMK3Zx2HEr6LLnI32IXkndF0YyKh\n/TnvLHJdFsN1Pvo8fEP2WVH/LidJHSi/KhCRfwR8JDo+8A7gS0Gnpymlvgn448BnisgaPQT8k6Uh\neD5aCgLN2a9VSv2rfc/n8SJ/H8YYBAvTZgANlKO2RgD1ZzoMw/ahkwniq6kzLdm3ztfN0JlIf50F\nnt9aKMcuTitAWQU+Lm5WkJFVkiXcuukYAZ0VZIwA8Q0KNuTFg/ZsXZfU3fLMoYTvw5Qk767vGW0W\n2zU4DsiQd+8jextpfDVr8Sil/tTA+q8Cvsqz/K3A75n6fA7k74P9AI3w/vtaRHYhRD8f2sYOFuv3\n3SMGe/1cQbIkulHtv1DryhhcuhFY1MHvSpjqI0tLDhFAnRf18qF+CeAxAlZ57bKstlodNYyAyQy6\nEZ9oUi+2sDlr6PeNmMXQdwiBPcHPB09crJPozf7s/y1p0T/aHOvdd2Gf2kctRIKkjyZNPprfakpc\nlWqFA+jLImovm5bsbSTxDU+tHpOxZBmoizQE5vfblyShW/Lpg88IGANQBlRVScCSHldGYFbCt9GT\n6gsDRG9/vnOy4KYK2PpGm76ssTFkf8BuOJC/C/ehsm5o1/vfRfoZmuQ1J+Ym3Lp/7KIcBVmZLNZD\nbra9iPNqZEYNwfX0ndV7+5LGCAAc3WwagTI4rJwSHKP0+13gzvp20UX07nu7CKBD+FCT/FCgNit8\nqVvhSOOtd07EzhDZzeBfAxzI30bfbMgZvP85JqT4iNQ8XHMHYnVmypIkLic8eaRX33e9tBEBNMls\nHfA7hEo+QwjIEJqN8G0sknZA1lnf+d7j3YNfVqzIf0cpJxSms9ncTZkeBRzI38AKojXg3PxTeP82\ndiX+IZK0c52NR6XLBex0uEHE0YIkukES3ag9baukgQ5a+0cB7n5gGiNgz43wH6xjBnAXpiB9F70Z\nQjMTmPH6fXq9732Hd18t68nQMaSv78V5PGkT6J3M63/EcbhK0E389jq4cO1/DAH6JrbUnlXE6Tom\n3wpQzGIAkuiGlnuiZSVVmJIGJpfdRZ/hm3s0YJe8aKBP+slnlOZ8GUJHN3V20FwwXr9b7tvAud/9\nbTyHs3TmJn0bSSTDpa5HQCKIDgHfRxA2sduBtRICzQfA5Gb3ZP6EZvw0mpzvSG59hK9fR+Rb7fXf\nyyPqmWHYS+EiAAAgAElEQVTTGgAT5I1lSVxsdT0bC77CZjaGrtfkhqDL4zeTnvowh/dvo2EE1rUR\nmHoUYHv9vd59+bqD8N33bqaOIX1zHwKNYnVTIo1VPRfiIPsM4vEl/wHi927bkQ4XKv305eqHoG/a\nehfp64fP1Iq3SylMYwDsIG8S3dC18AtrJGWlL/pmtNbEEXYtXENgyh4Ew6elu3WRDBLHGMxN/AZW\nEbmqPtDUBsD2+vck/Mb7DtI396GBDsxOV4bBBHqBeVp7PoJ4PK+SR+ZpEL8xBjjevxX8nWrW7xjt\n3oU7jd1H+lkR8VwuPCydrTS2h977G4BGkLeUe1R2Wq5MWhkyfaOAscZwtLbrI37fKMCQfL5Glsta\n+plT9jH7t+oIRXfq1pyTykAerb9P0tGvu0nfTdH0kf69POa80O0psyLqbE25L+xZ0ZPgkO1zVTBB\ntkof8Q81wDAe4p65/32TtkKKUvlIH+B0HTdIPyvbAb4nBzM/6UYsQH0zp/Fm5yygVpB3c1aXSC7h\nq2wZQ8cooD8YPAZ2ZdRRCJF+poZbPC6r/0fnBeIWj9vXANgZPovEW0dHv25no/Xn5Ut5D/qdD0P+\n9j2YxmoSGegg+YzHNSP/PTAk87jVEEsorPxnR/6xvf99yj3vQvh6WVR+vtb1bdI3D9zdXDgv7c0q\nNnSsH74kUqUHNt4ANIK82Vkt+ZhKma16NvUsVph2FLALWkFfd2RQjgC6yj3sDYf0t89lqPOCbaZ/\nrKi02JF1DtWvVM4QHg03uBsn3hm3+nX/TPAh0s8KqRwP/afP/k6iv0lWLKoaPPvIQK7k09XhbCdE\nEl7W45rh0fxWLkKJvyOvWm2ynYK/QwgJXnZVKHQlnnt53CL98wLuZlK91rBpJK5iAGMNQCvIuynr\nzGxyuP/A+xnvKMAxAKEpoaPhyjvuex/xu2TvW7YLekhfnReobMM2gyjNiLIN8fmG6HxDZFJC12s9\nL2DXOIAV6C1oT74yCCF9k0nWN+I8L7Tz4d6DWk0xIwDZWQayc/sr2acvxfcA4DqS/9jJL4H6fmOf\nPl3Y2UdfLRRfxk8XiXV5/aGk7xta2w/c3RyyPCIvA74crVktagOQxvWMylAD0Bnkzc7g4f02QQ6M\nAvZJCa3Oacog31zSj0X6mvA3XtI/v69/q8V6S0IzCcH8WjsHgp1Ar/b622ma+nU/6efb2ulwR5x3\n8ybpnxf6PtTYcr4R7qT63j8vYm4nddeyMTKQndtv9zo4YBjXj/zHIFTfH6qXUuRN+cfe1vL+Q6Sf\nPm+2rw55F+n3eVnnBZyeLcmzmDyrSX4Vr6lHAM1g1pOr4YqIsSy11u8GeTd5oyFKo3yBg5BRgIvJ\nRgGuA9E32WsK6ae8Jtu7Wa3nO6SfnwmbPKZYC5s8YrMWVrcKoCBBjwzi86IZB8jX4wLBTnpn7fV3\neP49pB8iM9qkn+cxZ/eWJOkWyDlPttVVPY/NFY4rMh9jAExuP1DJkMElPYYggqSHgO/1gUfmgRHE\nb7oXORp/Jf9Yy3YN/tqSzxDpAzt5WWenCXkWkWUxeVbfwElSoBnWDL/tAHD/LGAT5I1l2Q7yrte6\nbEEp+/gI3oYC2GS9o4BdU0JD0av77yv9DJB+cW/DZt0m/SIXNutI/88jNnnB6lZTIvTGAYYMQKfX\n3w7iQjfph8qMhvTzLOb0nnZCkrQgzyKOTtZwtOa8EHRSk+JhITyR6HsxK8JkIDfQW3n9Y/sWXwBE\n5OOB16A9rm9RSr3aWf8E8K3ABwDnwGcrpf5dyGd3waWRv4i8D/DtwPPR9/DTSqnX7L3jXfR989oe\n6tvt63z1fXqCv6HoT+NsBnP3eeDMewPjfRkDoIPAZv0SWHcagN4g79mDugUidFeytOvXLJLRo4DR\nZbNDi7tNVU8nX6PunTczdwJIP7sfs8mFLNsCitTxOFfW/aV8cYC+CWG9Xv+6RfpQlwXpStt0Zca7\nWfsezLOI03tJ9T7JC/Ks9uozyxFZVXNQ3FiU/znxBXr1pxfo+3t/SDSij0PffkRi4BuBjwXeAbxR\nRF6nlHqLtdlfA35GKfXJIvI7y+0/OvCzo3GZnv8G+CtKqZ8WkWPgzSLyw0FfqOshnYr4Tc11s8zS\n91vBX8cw9Ek/vhTPrrTN0AfO1fXNA5dlcen5x2wyYVk+cGfYoxRtAOo0ZhN8i/HNARgM8prJSWdl\nwNeSe0JGAReSEhpK8LbuHyr9nD1op2uWpL99LmObMUj6+fmWPNuSZYo0FY5ux9xaL/SIYC2k64Ik\nu090u5Ygg+IAfV6/0/e2i/RDY0t99+AaIT/R92CWxRyfrIGc82LLnaSUgQp4ItEykB4BbHtloEYn\nu8hx2K4OPhz4pbIxCyLyXcDLAZvvPgR4NYBS6hdF5MVlF6/3D/jsaFwa+SulngGeKV+fisgvAC9g\n1y+0j77vEr/5n3huJF/DdLPKTv20gr5ua8auLJ8+Xd9NmTMSz3MP2w9cXj505oG7mRUsc/3wPCDh\njIQkNQ9TzirWnqb5Fr5ZwCFBXmVknzKtwyVzVV7rrlHAhaeE2lq//Xqs9NNB+sVzWRXE3ZRkb0g/\nux+xWUde0j+9p69fnporGNOMzRStQLD0xQEGvH63ymZo2uY+9+DdLOXmiTXaSAs40rEo7WhrU+ZK\nkvYo4IpJPk+KyJus908rpZ623r8AeLv1/h3AS5x9/Czw3wI/LiIfDrwv8MLAz47GldD8ReTFwO8F\nfmpgQ//yoYwedzsbfcRv3jvyjzf3Hzq9/6F6P1Pq+uYhlHvb6oFLsqLy/KE0AGl7BGAMgG8WsHcm\nr/H6jcdfZbPUD3XrF3ODvx4vepdg8IXALffgmZy1vZu1snc2FeHHDU2/Jn5N+Ib882xLdq7gdgz3\nzO/WbwAiQFbl+fCgGQcY8PrdAoC7JhTY9+CDe4sG6bv34DqLeVCOQvMs5vhEP0dZUnD7hpaBzgvF\nnUR/d3dWcK/kYzqfTYEoeIbvs0qpp/Y82quB14jIzwA/B/wbYLZmxJdO/iJyBPwT4POVUvc8618F\nvArgRS96fr0idKq+D74bwyUh2/N35R+T/WOOae0vLptRx9GyIioj91TpiJEOrOmbVwHbygDUXvcW\nE9Z7WM6MdGkxA8uDt049i1l3ZCisE71uyYY0LUjSgjTZslqY2ZdU56EfMu1d2Q9YA4sEsPL6k2V5\nZoEwk5VMK8EdZ07brSwbr+2yzj7vvixBoTZZU8ozv/Xaug/ccg8GdQI7soqbNiqrDeEiMb8pwJZN\nbnm1qVBbt3oPSRqRpBFpGrFYFiyWinipWCwVki6I0kXZVH7ROE+VlCOAZA2LHBVnSJzAIieJbzRO\n/5iHnJa3uM62qc/RVOKs+U/fg1VHS6dRuoktLVLF2jJWSUn85r5cpzGLMtUzSYsyDoW+F8uPNe/H\nbfVsmNf6vuyIb1w92eedwPtY719YLqtQ8t8rAUR3a/+PwFuBG0Of3QWXSv4iskQT/3cqpf6pb5ty\n6PQ0wFNPffC0hUCGYAyC6/EtktEGAEzJgaYBAEP4W9KYclhrHhr9ID6R1N5XwwDc2HKebMmSoqHl\nH5GTp9oLWzvmdJ3G3DzZcHSck6RbkqTgTqJn/q5iuJ3oGb/6AdtaJXKXjQyfhpF1vHlZLRre/1jI\nIq2rTRpv1WkFaP8fhMVnsWtcxhoA2qWe5UR73eq8qH5uQ98xEGUbFllR5u/XJ7OiYJFoYj99zj5R\n/f/4JOb4JCZZCYtEESeKRbJlkWyJUm1oZBUjqf7f+B3KZjH2CKp6vzoijpfE5f0YRwuOlxvSuLBi\nUPocT5KCtIhYlbKP2dOdtBwBxFues45xfJLrEUASc0ZSGYD7JCxLR+XBcaLvw1Tfh8YJOT5as4ph\ntdCzgJ9ItAHQHv+2zEQrenv06uA+/T2Jx0BkqoJ+bwQ+SETeD03crwA+tXkouQM8UErlwOcAb1BK\n3RORwc/ugsvM9hHg7wG/oJT6X4M/OLYBx1j4gnk+/d9nAKz1oQYgqTI4dFqdyXNOY5NLXW6I8ERi\nAr6Ku/ZjnWzhWBM+DtnnJzEPsrgacquTiCTRD9zRcc7tG7XX/0RSe1XmIev1+l0DsLYIcrWoCcn6\nkz0qU/qIvxE/MQQvi7ZRsFi5ZQDMOZf/Bz2MpKy3v9QSi/35iBSVxqhVAXftw25YUbBZC/FSwf2m\ngT++HZNlAs8VQESS6tFAshJuHQvprYLVrYL0VkFypIhup8S3U6LbadPrt1Geo/6fwyKvJLs4PioN\n+oZYNta9qAAjrZhqsGFOyKlzeOOEPLhX3zvrNG44IGlacHSyroj/TqqJfxXXxJ/GqqX3XzcopTYi\n8nnAD6J9gm9VSv28iHxuuf6bgP8M+AciooCfB/5032f3PafL9Pw/AvgM4OdKjQvgrymlXj96T7sO\n87pmcebNoX5L/+8yAM65jBkBGAmoNgDaAzxJICvKfGtLJriT6MkxJsWORB/g6ASSbEueFZzeMyQX\nVx7YzXTD8UnO0cm6GmIbL0s/ZKrhXbWmzA8Z3mSJTlEe2Mb8OZJPn9fvg52lkrCpFQvzzWVpyW5l\nLCYqtWGfl4+/f2/zoPX9IdxEJXWWk+2PRndS5DxGpQXFc9oALEqZD2CxFjbLCO6DPvEIbkNyrnX/\nULlHTlad5N+SfzitzjFJj6pNC7Ug56FlAPQ9eJIU4U7I0ZosKdpOyImWgx6UktDNkw1JUlTEnyRF\nRfxmBGrfj7bOX92XZSlvu45PodbEXN3ZvSW3vd5Z9k3W638N/I7Qz+6Ly8z2+QkmKdM5AYa8fVf/\ntwPAgQYAmilpfQZAoykBQD0EJ28O5kOH4EBL7rmTNr0sI/nUD9j4KfN7lcAdIffYwco0VuRb5TUA\nLewrAzmofrWjmzoukKxxDWBMyjaLkfMC7m1wtf14beQ+vSxZxaRpVHr728rzj08W/XKPC1f+uUFD\n/zfyD0ASQSEb4mgNrBvnOOSE3M3KIzhOyGljJFoWE0wKjk/q+/D2jW15D+oA742YivTr2NO2X+6x\n4jyuDLsXppN9rhwuPeA7DiUxGuln6sBOX9DXfm8HgAMNgCb4dcsAQEmsJRkl6JzrvjjA7URrsGOH\n4EClr7pyT/NBazbBbk2e8V3zRE/kUs6yluQz5PUHoNke0JZP9LWopLSLkoHYLQ7AmWPgbxUslsIi\n0ZlAXTq/kXuiO6k2OEMYkH+S+CZ50SzGd2MBSaTjALb0A34n5E6q6px/a5h7fAJ5Vuicf5IG8Vey\nY6w/b4i/jjuZUWgd7AUOPXonwuEquuiawGPLP4nj+VteYasExIABsFGotS6fMEUcoGMIbuurq9gn\n99ReP9CUfMx37oMh9l1q4AR6/VCXHtB9ic31AJOymkSi4wFzyUCbvDmRKiAOsCVrZAIl6EDwZu37\nDlFD5+/N7hmCm/5JM28sTrUBKLZrcjuVtowDaOlHgp2QO7RHoeWJ6O9dEn8lO5ajT0P8zbhTfUK2\n19/5DG31M3QFA75XDgfy90Ct13Vgckj+2TgjkDjprAHUNwKo0xT1zRsSB9AemeV9DcQBAEtfVWWW\njw7y1hk+dnncPaokOl5/a12g198n9+g8dJswofakyzTCuWQgFwFxgAhQqwI5jynKdNgqDnCr0Jr+\nWjgnJk6aOn98stAe/50yyNul83dhIP3T3JsJVDOo8/K6NOMAtALBthNyN+/PRkvSbZVefCehMfqs\n78VtlW2mj+f3+g/tGvfDtbp6CjVcp6WUhFoFu4bgeKqdBsB+H2oAoJKGQgwAEBQHMB5ZXxzAHoKD\nzqPWgTXtaZk0OiP3uF5/45y6JtEtrRHR2k9IDcnHh4Agryv36NnQfq/5QmSgMXEAmrJKDKi0YJvF\n8FxmBYK1zr/Jo/C0zlC48g9nTvpncyJdEt3QhkA2wEN8geCWE5LoUWgrDmCy0aCV0tmX2WOIP8Tr\nN6jSPQ/oxbUi/wZc3X9I/3fLOhjd3ib9PgNgb2PLP64BgKrSZ4gBgLYHo4NX08QBzBD8vBwFuDn9\n5mGzh9cu6dclcgPjKyGyT4/XHyr3mBmoTTSD5JPLQMax8H2nvvkARzeRZI2sdJVP+2y5rcsz2HGA\neFmwSLattM5gnd+H1uxfav3//ExXVU2PvDOpk/gGcbQmidxgde2E2IFgqOMA9ii0lnpq4rdjTnZm\nT3VsM5P3MrT+g+zz+ECFpH/2wQoAhxiAZgropuXVhMQBuobgrTgAxtvy5/TbXj+YafOe7+xL93QJ\nfyjQa8Px+rGqV/bJPea1hiNWzyUDlaiIvej2/gEkWTZiAADRHXT5h4E4wF46fxe65J9qg7OqrHa+\n9Xw+Yq8JYRCW0glNuWc09uix/bjg2pF/wzO7AOzk/TsGQJ+4RZg9EpAxAGPiAJ1DcJqpeGaYXafS\nNasl+nKnW+gbXfkyfrrg8/o9QV7z/X1yj/nT8Gn/5v3EMpAdBwj4qsJNHQhO6oqnQ3GAJNXEv5fO\n34WBALBBYlVU9QWC7QlhwbPSGU7phLbc00pA6ND7r3qu/1XCtSJ/pZxHbarZvr4UT2g/aF2TvwYM\nQFUILtAAGEwZBzAt83wlHPryp+uT6Ujx9KGLoOxAr4Ht9VvfO0TuyYqo0Rc2jVU5EvCNAiaUgSyM\njgOUMYChOIA6L6bR+X2oJiw6+r+pqspxfU4jA8FD2WjG4x/K7AnF7C0bRfaalX6Vca3IvxO75vs7\nen+X5NMb/LWX7WIAKInF4qYW6RMWB9Cod9SOAzTlHjfIa3v91f+xer8NV/Kxv3eP16+/77DckxW6\n6F0N25++QBlohjjAFojL0g2TyD0uXPnHgspO67LaA4HgvglhvlEo6HvQEL+vVn+X1x+KKt3zgF5c\nyyvUKf2EGoG+5txuALh86HrlHx9CDUCJ7lIQ4XGA46W/JovxwKCd0z85TMaPL+A74PWPlXuM13/e\nKmxaZtfH2+BsoDiqpZ8gGcij9U8RBzCHiVcxslpMK/e4sGf/JksdAC5RLTeB4EUCcfPeNOiaEOYb\nhd6I2ymdQJDOP8bLH9tVrxPRIeB7ZaC9YuvH2Ff6GcpK6fP07deu9w87SUB2I/g54gB2CQef1z8Z\nfIFeA9vrt1I7zXcNlXvsjlJtmBLJECQDOXGA6lS7ZKAxcQB3QhhWHKCrMFxWTC/3+GDSPwF4QNVc\nZ3XUigPE1P2V3RnB7oSwaiFgj0KhndLpI/5BGfKAvXHNyH+mqn6Bmv9o+ceGzwCY5dCMAcAscQCo\n6/R3wS/5TAB7UhfUXj/N1E79HcPkHrurlP/emFcG6osD7DshrKqKumtaZyiq4K97HO3xqyJH0uPG\nmjhOqhnBhVqQbx/qFQGVQY3T4UvpNGjk9Hvkm8Pkrmlwba9iS/pxJll5RwO2JOTJ6R8s7cAI+ceX\n/++rA+QrQhUnM8UBjN7f9vp7MSbYi57Q1YifDHj94MzgHSH3mHoy/bU4p5OBqte+OID1W+81IcwY\ng4uSGzoNgIbilKq9JroSqB0HSCJjsIcrg3YR/1Ba5+yB3S4c8vyvFlrSz67oquZpv/aVduhb31cC\nAroLwUErZjF1HACocvpd2IHeToQYgPIatAK9A16/+Q7j5J66paBGXym2aWSgBrZ6AlzBZng+wAC8\n281NOq4DxANYL+sey86oo7pfy/7KvglhQ5VB9TbNb9ol9+wTtO0qAX6ZEJGPB16DTuz6FqXUqzu2\n+/3AvwZeoZT63nLZ24BToAA2E7SMvH7k3yjdarCP7r+D5h8s/9jweX6+GIATI5gyDmCjz+s3ko8X\nfdfZN7PXntTl0/q3Dy2vf6Tcs+nS/MNkIJ0aKoyVgew4wM7zAYYKw+1aHK8PPbPZbVQkf1aeR7LW\njQTtdcDQhDBfILgu2zBDssEcmMjzF5EY+EbgY9EN2N8oIq9TSr3Fs91XAT/k2c1HKaWe3ftkSlwr\n8lfOI+TN+hnK+PFk+rRSPAPy/EfLP+CtAtqbBTR5HMA/vO6a1LWz3m+uQZ/X7w3yDss9ts5vN7I3\n5QNWMcEyUHsEACEykBdTxwHWa78BGGMQOsheWdbStNuUVaEbwJfefnvS1/2yHHSy04QwE3fKiqhT\n7uny+u17M0Tvn0wZmBYfDvySUuqtACLyXcDLgbc42/0FdGvb3z/3CV0r8rfh/YH3qe/f91Dtor92\nNYAxcA1AUccrKkOwKdeX5BkDcdl82zxo2gutG5cbQ6CLcUEcrUtDYA7s74LkDfIarX+TV4ZJbbLm\ncoPl0p9C2+X1s9vQfBV3ZffsD0NKukx0uAw0SxzAEP+ydjaAtkEIkS4t+Ii/67PKnIcLX+8Ka8Ji\n7BpJ74SwpmEeS/xXkNyfFJE3We+fLvuPG7wAeLv1/h3AS+wdiMgLgE8GPoo2+SvgR0SkAL7Z2fdO\nuLbk3/rxXenHLsNrYDfktiDLsiSBz+PveF15/QHbNtDzwANNQ2C+R5FCRu01lnnXMXG57Ialnd9w\nsmZ04LhOVwwh/LMwwvfBvQYDXj/Uk4ZiWZLLw0ovNsFZU7/H1I0BPWMU6poxpkrkKq5nMpuZpOa9\nIRwT8Lbfu8i3un59PWO4KQM1pB8bQ3GAERPCbIhN+nZAfYw8lK+rLmt6BnH9+Pf2W+4qwW3Fbmz4\niNn83qH6/r6k3ztKGwORtuPmx7MT6PBfD3yRUmqrW5w38AeVUu8UkecBPywiv6iUesM+B7u25A90\n69LWCKDxoNnE5ZZotpf1GAFZDpB9F+kPef9dmNgYzEL4Bsb7N9fA9fpL8vCVa7Z7BRdqAaVeXNeO\nsdoIEpfef92/wJQNMB0k68lETcLXr/0phi6ajWK2rVaRrTkAVhygYQB2mRA2MNrsNAYu7O2s1+Ia\nDR/xH90cJn773D0FC6ssqTIZId+qIC9fvx9H+t544NXBO4H3sd6/sFxm4yngu0rifxJ4qYhslFLf\nr5R6J4BS6l0i8n1oGenxIX8Jafnbl/Jp36jrJsELztDaYApv30UI6XdhD2MATE/4Lsw1Wq8rcmiQ\nRRnk7YIZBYDOGjnmIWmsJ6WdruPGKACkqhtjvHxD/nWp6nGE70MtAznF4cYEgm2SdwPB7jqfp7mP\nMegwAK3Xhvhv3azf+4g/Peq+f4sc4vrCNEi7kn/CNf2x8s7kBkBk92e1iTcCHyQi74cm/VcAn2pv\noJR6v/qw8m3ADyilvl9EbgGRUuq0fP1xwJfve0LXivxhxAQPYwTch8ysM7Bu/mo7x/Pf2dt3sav3\n34cRxkAfbwbC98GQRpy0UjuHEMuyyh0HrDryzVEAxJUMBE2CN7LOVFklxgDUcwWGA8FTzggOQo9n\n3+qt7BndNkjfR/zpcdvb96Cao+JcepONVm03k55/FUcASqmNiHwe8IPoVM9vVUr9vIh8brn+m3o+\n/nzg+8oRwQJ4rVLqX+17TlfrCgVil5vDK//YD5h5aJbNksSTefsu3Nz/IYQaiD5jUGI2wrfhFm8L\n8PptGBkoFj2D1B4FANW8haxF/tMRvouuQHBfXaDQyqC9mUAzGAN3dODtuWBGbumxX+bpgl2ttnCu\nhZOoMVcQ1xuPuWQopV4PvN5Z5iV9pdRnWa/fCvyeqc/nWpL/IOx0ytLDqrx++wEzxOfR/yfz9l34\nvP8QjCVpXyaR2c9chO87fkeQNxS+UYAvGAwXkzvuCwQH9wdwDYCTCdQyABvPSNVe595HPQFjoBUc\nFnedTfyro359PxBdhH7FM3dqTCf7XDk8WuTfN9nLzf7x6f9QyT/mNUOv98G+ks/Qvvvezwnb6+8J\n8oaiKxicxhvu5bEVmJ0Xfc3iu/oDwI6poH2VQfe5b4Y0/xu3hgO7IejoVmfjSpP+Y4BrRv52lkDg\njeMEgFv6P7TlH5fc9/X250bIpDb7IZ+7OcXIIG8o3GCwPQo4Xc/fstuuC5TGWycQ3J8KahuAnVNB\nd8HQ3Bc7Mysko2cMqhnq7cyuAy4fg+QvIkulmmNYEXlyymnGYxB849g3ve8B6JN/hvL994Vv1m8X\ndvHY7ZFM2TXKNKuRWzd1Ct9cBsAN8u4o93TBloHclNA5DUC7WXx7RnBfKmgDQ6mgpQHwoTc2EArf\n8zA18Vtwa1NdL0T7X+8rik7yF5GPAv4hsBKRnwZepZR6W7n6h4APm//0ZkCI/DMX6XdhCknGV6LC\nIn3TO1blZfemo5twa4ZywYum3APTF9kyMpCbEgq6euTUMlBYs/gJU0G70GMU9FE74JNDXQPgEv/q\nqP9cQuHIPxcViJ1sktcjjD7P/6uBP1qmI/0J9Kyyz1BK/STt0h5XH0PyT0f652zYNfDr7sOFj/TN\nMoBk2ZyaP6UMZHv9MLnX78INBptsoDniAO1m8b7CcBOmgtqw5630oPcbL9LmbHd7f6Z3b2Aq5z6o\nixBevWwcL0R6De51Rh/5J0qpnwdQSn2viPwC8E9F5IuYravKBLC9nAG9M2j271XCUPvJDtJX5wXq\nfIPKCt0WMF+j8jVMLQMtmqmd+wR5Q2EHg4HJ4wBdzeK7G8RMmAral+2zA6QrIWJimaeFlvdf1p+a\nyQAcvP4w9JH/WkTeSyn1awDlCOCjgR8APuBCzm5qjJ39OzdCvP+hcwkg/e1zWVXQS51viG6nFUUp\nmEYGWlge/4RB3j64ncbMnIAp4wB2VdF2s3hfg5jtNKmgITLQLuhyiGb2+Puyf6Y0AgfiD0cf+X8x\nembZr5kFSql3iMgfBj5v7hPzwRQ7Cs70gX7vf0j+uSgj4CLkuCNIf5tt9LJME7+BnBd6FHB0s5YM\ndjUATl7/XHKPtyYRkKRHFNT3xRRxAKPxN71+LCPgaxDj7w2wcypoKMYYi66A7wXB7k0x1yhgsv2J\nPH4BX6XUj3Qsfw74ytnOaG54bvyW/GO2sb3yuQzB2P3uSPr5mQDCItPr4vOC6I4eAVQGcG0Fg8fI\nQCZP3QR6Z/D6K9K3CN8uUwEQL3RvWZgmDuB6/V2N4rX275I+NAPB41NBx2C0sbC337UR0lg4zYmA\nSRiKQ18AACAASURBVEcBdgHDA4ZxzfL8Z4Bv9q+v9IJdsOwysAfpb/KYYq2Jb7NUrCxiUecbovMN\nUUn6VTB4rAGw0jsnTe10Sb8k/Cp4Wf52pr1gvDqqmovX+9BxgDEGwNX67Y5h7Z4C7UbxTYMwPhU0\nFIZE97nm8UUaAqs5kduhbu5YwE6Q6DDD91rDl9Zmv/elf/qCbRc1GrAxAelv8ojNWihyIb21pVgL\n6bogye43ZKCoPN7odFA7vdNqzbjPZJ5e0rcbypf/FVS/Y7w6qpreQD0reEwg2N86srtH8CqGdktI\n2DkVtOu6uF3cJgioF6wrIxLbGUBzocwuillMNgpwvf6D9j+MUeQvIhFwpJS6N9P5TIO+Mg89n+ms\nse4agosYDUxI+tn9mE1eev7riPSWcVsLkrLim/58mQ0E4emgzqSuAtOSsa5zPwZBpL/J9TV3m5gs\nrBaDi4Qk1bnqZj6AHQjuiwPYE7psj79ufKX7B3TJQH2poBr+TCCoDUBXVcq5SK0oSu/bGII4asZW\n9kVH3G2KUcCB6HdDyAzf1wKfCxTomtQnIvIapdTf2vfgod3sZ8FAIBhoB4EvYjQwA+ln2Zb8fEue\nbTm6HaMvN3q7vGCVZcQnNZNFEJ4O6vX6Ny1C60NfY5lO0s895J/o96rIdc46kCwSinhZnUcuDwfj\nAF1ev1/qqUcBNyo5qHsE4MsEGuwPPDHcY7V+Hzd0sa8hcEZpjcKLE44C5vH6H+/Cbh+ilLonIp8G\n/Et0FtCbgb3IP7SbvYtRmT42hmqcQFv+6TICMP1oYGbSP72nmSvLFPl5zHG+YHWrZrMVG50NlG2I\nQ9NBO7x+aD+s3gbxPUHcIdJXrudvjBTA0uoxOzIOUGv90mwWv+kO+PqnvXSngjZfB6aC7oEh4jQj\nDSPVVe8LS7pzs5BCjYBL/Oa153ncZRRwnYK8Q86u6HTG1wAvBR4An6WU+umQz+6CEPJfisgS+G+A\nb1BKrUVkikleod3s50NHzZ/Kp3ONAEw/GrgA0s8yRZ5p0klS+6eL2azLeMBaSG/VMhCgZaC+dFCP\n1w/dD2TVOzgkiDtE+vZfWZGyIvxykt4ucQC7jIOd4XNeQJaXDJjoa7mKjRRUG4BVPJwK6isK15cK\nuiumMCCuIQiWhVzS7zIWA6MAYwDcc+o+3/Le216tVM9AZ/ePAR9U/r0E+DvAS3Z1lIcQQv7fDLwN\n+FngDSLyvsAUmv8LGOhmDyAirwJeBfCiFz2vWh77Tr3vJhxa5tmHPa37QkYDnkbcKmu7m9ustYgi\n98gXWdNGZ+eKpPxKebYly4RF0v6cOi9QabPBdwPrtS7968nw0ZLPphHwHSMBzdZkxvR1QFcHzbeQ\nRFQGwJ4Qpr11/dpk9qxiOLdI38A0jbeXdfUPbjYvb7aZBIijhYfoxhH4rqRXWPLTUNxhclmoB8YA\nAFc3IygMIc7uy4FvV0op4CdF5I6IvDfw4oDPjsYg+Sul/jbwt61Fv1IWfbsQKKWeBp4GeOqpD1YN\n0p+Y7BtwvH23vkdr6LPLjEyn+YZwE5WsqyJspXCASmO2ZJWfGANRtoGzZhZJvFZmLbDlmJg8E7hX\nABFJCmkqpKlwdDvm1rH29hdLRbxULJYKSRfEt1M9B+B2iqziVnNvU/Pd9frz8q9Qa4rtpiIUr6bs\nqWfTEFA6ZDqvyGI3HTfn6PYUSI8a6ZB2eWg7EAx23f66UfxdhDvWIW3SH2oab3cXs0lfNzKXxjUy\nhGuIDi4voNkpB5n323W3DBvSUCnweekzAJ3voxC/dlI8KSJvst4/XXKXQYiz69vmBYGfHY2QgO8X\neBY/JyJvVkr9zB7HfifD3eybUKpN1mPIfoxXUtSeYmvYN5cxoCS3o5t6FHD2oJFBrlYF3K0dr4QN\ni6zg/H5Mxai3ChZLQRsBvez4BJJS+knSiCSNSNOIxVITf3qrYHWrID5ZIKtY/6X6P0c62Fv1dy3r\nvkt6XDXyrjN81hXx59vmpKYWugxASRKtImTuNbIXuMbJnKNVs8ZXZ8gUhgPIecjxsjYAJ+a08pgn\nEjAGAJqkf6MkfkP6vh7Cpu+wTfpVaqWH9H0e90UYgGLb9P57t3UMQMGmWZpiDBbN58w3Z2EXAzAN\nVOgcimeVUk9NdNALQYh5fKr8++fl+5cB/xb4XBH5HqXUV+947MFu9l7MRfZj0NGH1cY+xqAit9II\nCA+qddGdFDmPKUptPmLDioLN2jYTsKJgYZjNpB6mMUkacXw71mSfKBbJlkWyJUpBVrH2+kvPv+VR\n37rZDvLGEcV2Xcs9JfFnhbQmNbVgG4A4gUUt93SFUVvXqBw5NYxT2YKwKk3cM+N4rAGAmvSNx29I\nvvb4a9K3jYFL+jbh6//N9y5CCC2OFqOln3xrRiG+Y/q9f++2rgHwef8GC8f7D9DVbQNQLesxAFcM\nIc5u1zbLgM+ORgj5vxD4MKXUGYCIfCnwL4A/hM762Yn8u7rZD3zq4ok+FB4Jw0awMShb68nZg/oz\nRzeRZA2c14cDVFpQPKcNwAIFtwripYL7RoDecutYe/mnz5W7XwmLRBEnitWtQgd5j7TcE6ULZKX/\nSJZNj99IKelRXfrXknuM12+Iv1nuwG8ACrUhLkkljpb9MpDnOolTqtor9wSUlbYNgF0TyHjsAGlh\nCmH06/k26ZtlhvS7SL71viPdUV+zeQyA7zjdRmiE/GPQNXHS3ffQb+VkAUG3AZgCCjVVZdoQZ/d1\nwOeVmv5LgOeUUs+IyG8EfHY0Qsj/eYA9Bl8Dz1dKPRSR7rF5AHzd7Ps/YD0Nl032QxhrDFwc3dRZ\nNpbXLycgqzXbu/Vlj0nZZjE8l2kDUDLGYi2c29LP7Zgs2+6m8x/dbOv8pYZek/5Diu2mIv46mwUa\nKY2RIRbHgwyJA4A+9jJvB8/dWIQtSQU8vMYA5NuHJPGN0gDU99u9HG6XFsIn7UCYnj9E+I0qpdGC\nfEcDsCuM9ONd5zEIg/JPX4p1gNzjQ6gBuErocnZF5HPL9d+E5sKXAr+ETvV8Zd9n9z2nkCv0ncBP\nicg/K99/IvBaEbnFRaZlgl/zvy7oMQYNcnPSRIWbsGwageiOzshpJF3c1lU6ubfBMOnqVsFmGcF9\nvdUiERbL7X46v6Oht+UenTdvPP+h8sYN9BgAFikqzrp//+WyJUmNLTAXYgB80o5+79fzQ738rmyZ\nJL5BwZK8eNBYPmQAxnr/PumnT+rpzQaqTsIj/xjsOXHKZwCqdZNq/tPB5+yWpG9eK+DPh352X4Rk\n+/wNEflXwB8oF32uUspEtT9typMZhLq6PWRGwyK4IX1bb7N/JpCp7bOvzt8n94BdHsE/qQlGBIIN\ncWzy/uu0g9zjQ1d3MBt9en5fALef8J30Voss4zipJqnZI4HZSj1M5f2HYKTX3/hoz0SwqTR/pdSV\nNCRTIOgXUkq9UUR+BVgBiMiLlFL/adYz6zqXniwQG5O0XiucINVcsOsKQWdT930zgRZLHeA1On90\nO+3W+Y9uNnX+DrnHeP1AJfe4LQ/bk5qgKw4AdZ2ZOF62SMRrAMpGJLvIPT4Y4kgiMynsISdJbQCG\n9HyvAQgl/Gqdc05lI5QEgg3AFNp/fZww7z9I/tlR7vHhylcFvcIISfX8JOBrgd8OvAt4EfCLwIfO\ne2o+bIMJOcRIXHpvzkVb3hgeAeyTCURD54/SRa3zn6xGpUzak7mM12/knnbAt1nf3u1za1YbMqm8\nttD5ALCX3ONDnwFw9fzxXj69M2DNvevGiWwDUKiyaxnTjQD6pJ+uZW7wtxcz1cg5GIDdEOL5/w3g\nvwR+RCn1e8sJXp8+72l1QHmyffbwzHtzyec0DG6am+XpD2W47JMJtMmjSuePy8BupfO72T09KZO2\n3GMHeZvEj2MAoK+6pZkQ1kJgINjOQMonaiTj7w9sr9vRy3cIv3Ef2kbAKlBXHddqhWjiE9BtAHb1\n/n3Sz5DOPyr3fwKvv7E7jwGYBuqRNSQhV2itlHq3iEQiEiml/k8R+frZz8wHo/nbw0d31uBVh038\nHedcFZdz15sZwTtmAi2WRaXzyyqudf5S4vHp/K6G7so9zSCvK/lAd3lj2DcO0GhIvmiWmZgSxvs3\ncoshfZ+Xvxfhe7JiFKeDBqBQG/LtjDGAQO+/sb7PAExM/AZ9QeAD2ggh/7sicgS8AfhOEXkXZf7I\nhcP2/F0NcWIjoDbZtN6/Z1KLufl9Lfi624bY24zLBDI9fLXXb+n8ybKt83do6GFyj10B01/eeGwc\ngC26qJgnDmCuq5lwNgdq+cfR9W0vf1/Ct1+v11XWl+K0jAvVRsBthm7KVfhGPUPev5mQB/0TvqBJ\n9ENG4TLQVQxuVyge74Dvy9Gawl9GZ/fcBr58zpPqhZvf3WUE4OqMBkoyBRpeT0VUEbV3ZKMsI9GX\nCgrhmUCyiqsA76DOb6V12t25+uQeoCqF/LDw1beHsXEAcOYFdMhAc/QNdmEMgFfWsUtSm2XQajfZ\n2MYlewNPgT8AlZ0iRQroJjWuAdDnyCjZS5fh6Jjda0k/Q6TuMwpe799sP8MIzcA3E/iANkJSPW0v\n/x/MeC7DUKou4dtXIdMQ7RSjgX0yfnq8fXNzmqbdrXrpFoIDwQOZQMA4nd+Re3LTqMWRe6AuhWyI\nv1373tfo3JxhfxxgsDDcjmmdY9Ep6+xL+Pkw8RvUVN1vAFoNdWbK/An19Eelf06Anft+PEbo/DVE\n5JTuLhVKKXUy21l1wZC/gW0Elsu2ZjqlERiLAW+/VfN+S+0l7WMAoM4EsgLB0R0tYUkah+v8A3IP\nNBudNztfdZ0hdMUB3AlhEBYH2Cetcwidss4Q4fvknC7vfgT5g2UANjoQ7zMABqEGoEv66cv5bx+r\n2/tvbHcBhnoqKKxn9BFD56+qlDruWndpKCtF9j4gIUYA5jMEgd6+t+WcpYhUBsCXCdRTF2goEByk\n83fIPfo7+HP6m52vTLNzVdXDNxhudF6/DikMVzAf6XfKOkOEP8a7t14rdzS7XiN5WV7DQWUAzs9G\nGYB90BXkHRP8PeDq4GoVwBiC7fmXaY+t1wY+IwDzjgZGePu97ee6dG3CZwN3BYLlZFUTvqPzd8k9\nIUFeI/dA3faw/2y72hxaFyCkMJx4ZKEd0evlhxL+PmTvbme6k509qGssWWgYgEVCnB4NGoAp5Z8h\nXGbwdzqJaftYB3yvFMwD4w1RDRkB3yzDHiMQnPHjSd+0vX2X6Ds9f6gmzDQMgOPpD6aCVts5gWCL\n8N26Pf1yT39OvyHvyuvfNLN9VrHqkYGageBmXCC8MNw+JDPk5bfaS5p14JdydiV732sskj970G0A\nADgjXiQQL3caAYRIP2O9/1GVP/fERcYUHgVcr6tlBXwrI7D0EL7PCNjoMwIwbjSwh7dvCLWzb+vA\nCABGBoLLJuwtnX9A7hnK6beDvOeW/NN1tu0+t9AlA7XiANu1JqWOaxZqBIK9fNvD7/Lu+4h7F53f\n184TywAkS7jlWWe+G/0G4CK9/8axJzYAB7LfD9fr6rkBX2ryGzQCvgyhrhrjboaPL+NnAm/fPICu\nATCVFIHpMoGgDvC6Or+b1jlC7gGH+DfNpuchZztFHMD2PPsMwM5evmkcb+AjfvYne2VdNF8Z8HrZ\ng0EDEMc3JisJPYX3r/dj5KfdjMAg4U9c9VcpLsVQXgSuH/lDW+sfMxIYYwS6MIW3j8mxLk+rK6gJ\n3ZlAZXek0KJw+kA9Ov8IuQdoB3lL4s9y64tYTc93jQOMLgznxAL29vJdot9XynENhkX46rxJNL0G\nIOmQhyzEHSMAIj+pjZnwNQau/h9qBC6a7C8LIvJbgH+Mbtb+NuBTlFLv6dg2Bt4EvFMp9bJy2ZcB\nfwb4jXKzv1aWge7E9SJ/sW7EpH3TiD35ybO+sWzpWe8WWjN6v11WYA/SNzAeVMKmesC6ioS1asUU\neZOcynMZHAFYhrJL57flHnMeSWS3NzQsojuFaZIQnkjgPTncSRV3M4EbW86Lus3hKq4bnlfvPf1v\n9T67O2OZY9qVNLuKqrU9fIvYXcL3Zen4rp39HnQ6rZmFu163t7W263yNnnthDICs9Dm7RsDsr9Gk\n3kFDuqtGpPV+6tHc2kv85poDDdK3Uz0btY56Yi6+dX1E30vyl0jwCtVw0mbEFwM/qpR6tYh8cfn+\nizq2/UvALwBuuv3XKaW+JvSA14/8zU1verf6CD/pMAJmW19TiZLMqwfIXueVdh6OCuT6EEcLbkTW\nw2HVjGnVi/HNIm3szDIAvlRQQzqW3GN/b1vuqXbpMQCmtn0a196/6XFrDECd7VOTvm0IfP1v69f+\nzlj6fZP0O6+VuQabs0Y+fm/gtgvLZSuQXqERXKcmfUuOIV9X7/tGCeKMDOSERkZWRfpHN2vjbRtw\ne/Rm+ioX96wRnJ/0NclfDOk/Ll78jng58JHl638A/Bge8heRFwKfAHwl8AX7HPBakn8w4dvbDRG+\nee8Qo0320KHdO7Mpx8AlsmqZTfruxKLOnQ0YAKivSUd2T/v8FrV2KxtMaeN7ecxJUlS6v+lx+7CA\nu7keERjSN0RvSH/Iy7fX+conu6Oi6joVWz/h++ScMfCNEn1wPPrGMixJxjUSHQai4eXbIzY3TmPH\narZriuK8no3d4eW3Tn1mT7+rU9kjhCdF5E3W+6eVUk+P+PzzlVLPlK9/DXh+x3ZfD/xVwDcP6y+I\nyGeiJaG/0iUbGVw78pdbVqrblIRvtrFnjDrefZ+Uswt016iyXkyoxDO40wED0JHdA/0GTBcOKwvR\nRWtgXenyJ0nd43ZVpX0qr7Qz5OWbdT4v371OjRFRiH6/L0KNgG+7td8gNJCvm5q9Q/j7evldMMR/\nIP02lHKr1HbiWaXUU30biMiPAO/lWfU/NY+plIi0tCYReRnwLqXUm0XkI53Vfwddfl+V/78W+Oy+\n87le5B+1ZR/AT/g26QUQPhj9/mHLu5+K7F0Yr3q0xDO44x4DYJeSXrTjFkPnm0Q6g+TGApJoAxSV\nt54Vint5zBOJVJq/6+Xr1939b6vrMOTlZ+e76ff7IiQhYNfP3fAsm8HLdxFC+n3rgki/a9b9YwSl\n1Md0rRORXxeR91ZKPSMi741unOXiI4BPEpGXorsqnojIdyilPl0p9evWvv4u8AND53PNyD9qe/g+\n7x6GCb9cZggfnIDYHlJOCIzXv7PEM3gAjwEo99mV0x923ou6fLATCLbjAGkRtbx8/Tqs/20n6Vte\n/oURvoEtCY7BjrPIG7+TaZ+5p5ffOrWo2ZNAvx5H+no/jq7fV/LC3IvXwABsFZW0OTNeB/z3wKvL\n///M3UAp9SXAlwCUnv8XKqU+vXz/3pZs9MnAvxs64PUif5F6GGwwRPhmG2+WTlvWmZv0DQzxV3Xi\nd5F4huAzAJ4SDqN368QBTJNzEwe4l8dWYNjv5YM/gFvvP5D05yZ8G/aoyYNR/R+69uMZpdn36r5e\nvvdUnG5k7nJ3XRDpQ2+rygaugRG4ALwa+G4R+dPArwCfAiAivx34FqXUSwc+/9Ui8l+gH/e3AX92\n6IDXj/x9mSp0EL7538jUMXnsTaK3H6h8q7ixmG4mogtN/Av94MxNYk4aaHWdjORjTUgbCy0BPSSJ\nb7TiAFnp+Xd5+dAOdnfKX12kb+fg32oXP5sUtubuIsSz9xGcu8ypdz+1l++DnWhgL6tfB5I+dHv7\nTl0kr4L+mBsApdS7gY/2LP9VoEX8SqkfQ2cEmfefMfaY14/806P6bR/hl8ttwoe2tFMtq8oXCKfr\nBcfLDXfS6S+P6Qsby5K42F6M91oaAPPancm7D0wg2MQBYI2JA3R5+dAj7UAY6Z89gHyNWte59lWA\ndA7YQXJned9nWnA+b4+8+uTHOWaZuqWa5yb96n35MQF9PVxJ6ApBQdWz4lHD9SJ/oiDCh7aXD35p\nxyb9rIg5XceV95rG68lHAEYzT6IbkJ1dnGzhSGBT1sC34wCUgeA0LjrTNM1nvNIOdJP+/QdVjSJl\nvP58rclkva5LVE9tAFy5zF7uvSDt5TXJN6/70FyRuUsLuFVR9yJ9+3VX5lW1w0QXTvSd1BUzAI8q\nrhf5R1H3A9jj5duvu0g/3wr38rhRswbgydV0BqAK8lpyj8pO/R7lnAhI7Ry9S2tCWCGbUgZqSzvV\nsj5pB4JIv/orUZU3mNoALJyZ0NWX7iJ525tvXuOudGHfKHSq0gpdMCNQ/bqf9GGcrh/U3IbrNQp4\n1HC9yF+izuCtz8vX/4dJPysi7uV13Ro90z6uDjuVAaiye1jA+W+islNNeGXhuNmNwAxevw0TCDY9\nZCfR83tIf3s3Q2WF7k5WnoOinC17dHOaOIAnSA5tkoduotevN63l3fdlOXEu3nI8k4qlR2PGGHsy\nfqYm/b4R7hUeBeg8/wvJ9rlwXC/yp9b8fV6+/t8O4kI36WdF7fE3+88KxgDoTJX9DEAjyJudlTNS\n85YXVHlAU8NTv2cumDhA98S1aUhfnW+qmjgqK4jOC93J7OhmTST7GgDb6/d0ZbMRQvaN91aBP999\nqXsbFJwkxeSjAFd+q5b7SB/6ydwdsfm28/XcXiSHUcAl4nqRv0hQS0Q3SNb1cBnib9ajr1sQ2gZA\nYzcD4Avyqk2mb+6H9xsSxSwGwJkcdBEw8lY9f4HJSX+bbRoVMUEX+bR/PWB3A+B4/b4ifgY+sreX\ndxE+wOl60bgnzWtdPkOX0T5eFo2JcPvAzu3vnaAF4bq+b1vzu0J3720PfNVJK1ywEdgCgTN8rx2u\nFfkrtkG18kNIPysinsulRfrnG7ibw/lmOgNg5JAqyFvk+v/D+zW5JWtY6lz8OWWgfVI7hzA4U3li\n0lfZhvxMWCybM+FtA6D74K53iwO4Xr+nmJ9+PeDxOyW8Q0ef50Vc9TowqbPHy2ISKcieq9EbzIXd\nJZ6+pjddWCT6PinfirvumkwOuw64XuSvVG/phVDSzwrhPXmb9M8LeO5hRJ7HcLSm6UPGVsnbcANg\ngrxJfLMR5GWTtwKWre/LBKOAmb3+3oqaMCvpb/KYYi1slorFuiDJ7hNlG+LzDdH5hqgk/Z0CwT6v\nv6PURyjhg77/TEaZfT+eF1j3pLkfFXcSbQSyIqoK6e0rBbke/4WRfh/5d/TcVpQp3b4JYgcjsBeu\nFfmDqoKJfaQPUj5gbdL3P2T67/RsSZ7F5FkZ4Dlas1rYBsC+XGEGoBHk3ZzVxF/mqjfy1G1sJhgF\n+GrBTOT1e7V8tzTF3KSfR2zWmgBXtwqgICFrnGcjEAzhBsDr9beL++nXTcIH18uPgkeedzO7E5q+\nX+8kioeFkBWLvaWgZqB32R/MtV/3EX8g6Xv7b/e1XL0CowClDrLPlYBCDZL+OM+q7jx1dpqQZxFZ\nFpNnTZmnOQIINwCtIK+RfDZ5Rfzka1S+hvUSyZ0Svo3vPnIUMAPxtwgfvF4+cCGkX+TCZu1mYnQY\ngPI6B2UCdXr93a04we/ld2WTGdK/m7fvxTzX92CSFpwfrTnfCKuFHglMJQVV96X5Dc3vZzCht6+c\ndYqOjnsGh1HAheBSyF9E/hbwiUAO/DLwSqXU3aHPKfpJ383Vtx+0u3kY6ZsHr4mmAUjjqLHOZwB6\ng7xW3nrVkJuBQJe7vs8ITEj8obIOdJRSnpH0758q8vMtyaqOy2zyiE1esMoy1HlBfF7oTKDbaXgg\nuNPr33TKOlB7iF2jziGp0Yw6zb14fJKTZzHZcc7tG1vON7K3FGRLPtVvaX4v+/9EEo9L/Oa115u/\ngqOALYdUz6nxw8CXKKU2IvJV6Ep1XS3LKii1baRs7utdnd1btkh/kwnLrOBu1qzhsoptA9A0Dkm0\n8UyV7w/yKqtEQYV8jUqWnlGAJxgMfgPgIX6Dqh6/DP/so2Sd8nUry2Nm0s+zLVmm4B7k5zHH+aKU\nf8rfzIlxBGUC9Xr97f7Ldi2j4QAu3M3E6+Wf3lu27sM8j0mSgjyLyE/WJEnBeWFaZNZSkE4J1VJQ\nEqlOI+CXfP7/9s49VpasOu+/1dVd3ffec849gxnjAcaA5PxhhB1sj0YoVmRiCCZjEoITozxw7OCY\nRHJiHGHZE5AFkhWLOCRYMVbiMZaCBIpDbI/AOHZ4iMQiEohhDAM2ToQSTMwbmzvn3rn3VHVX7/yx\na1fv2rXr2dWvc+qTrs7t6np31bfW/tbaa8XNiH9d0i8h9XVGATDUCVoHOyF/pdR7rY8fBv52o+1Q\n3JyDS/p9vWyTKOH6zZgwSnjiOOTW1HmIrq8MwCzIG4Anzxa5FLraIK+pTZOenMzmOamn8SiggQxk\nT3QLZJLl4LvwEz643bGgQcPzLZB+Rv75q8h9cg2ApIFgLbV5MoGqvH7H8QA6yYx2bMl2Pm6fjZlE\nCWE051qccDsKiU9C4jggigKOT+bEsZaCTkPzXCvuCrUR0Omhyywe4EpBudx+I/k4xjz7ba3PlcTf\nlPR95J56+pVEXoU9nhx2CNgHzf+V6K71tTCz7Zrm6pvgmU36cTTi5llYIP2rUcK1mzGTKGESrwjj\nFuUGwCUaYwAy7yoN8mYv0TxPiOo8yTXqdh/iWgPgBoNL5B63kJ1rAJp6+VBD+lBJ/OrsXBO+Q/zL\nxyOWESxSwreJP3oiYBELUbQkPlc54r95lhCdK6YzIY70vyhyU3PzBmB0OkWdJ0iYntfE/J3Uev32\nDNy2qcPNnsE4ewYB7YREIbdPwnS77lKQr25/TjvvKvNY/68lfvPXbXIfa8cnS36ILUfI/H8+X40C\nDLGnz79aRKtYgHGGeqqZNQR8O6CqZZlS6l3pOq9Dz5F/R8V+XgW8CuCp9z4pLQ88Qk+/WM2EdGnS\ndJICIFxmy+NoRDi1JwYFzAmYRAnxdEUa8TRgPtVBN/1vSRgmaU9aVWhAPg2Wuh4LiyzFJGFBMA7J\n4o+mJ+sT6F7EsznqfIHMxsgsyAd77abdnh6uGVId1H08gyBc3SZ7uafGjr4LNc1kAq25ynhave2m\nNwAAIABJREFU7BC2iFeNziF7cQW0h51CZnlSNhO0ZDpmxIIxCvO7msOPJ+b3tn5zQ45TzwUC41AR\nhIpxuGQcLhlN9bFlFiDTwHuvfQgw5SkWBLIgHC2IEnLPYJSsrsm+PHvu2SwgewZNPMl+BhfR6jU0\nz6D7PNrr2/+fWW+wfXxTRnsrSAlcJprAbUIv/LW3cZCrzurC17zJbOcWezxAiMiT0E7wM9H1+F/u\n68ErIq8Gfgz9ev2qUuoX22xvY2PkX9WyDEBEfgR4CfACpVShX6W1n4eAhwC+/TufoSD/8p2Eq/aB\nNgWehorzYDUCMC/f0QmE0ZI4Srh5Zh6WgNsnIZMoYR4mXCNmHgaokxFhGDNNDcD1K0tmY/2S3RXC\nSWhS7Wz9VxEs72jvejknCK7okhSLSD+4oa4+qdKXYXSankIX4jdoaAAakT6Ue02mWQ4rzbUOwlVU\nuPL+hdvZd6PTKXIeoKYJyeM4BgDGc2ExGWljaRmAYwLiSAgjRRzpqz4+CTi6HnDtWJheS5hdS5he\nSxhPlDYu03FqZMfFe+zcy0zj9pCJ0dfNM2i87LPYnGP6K4Rakrlh/yrhEo5jTepn1k5PtFG4HQVc\nPVvd+3mon8vxVBGGCccnceaEXL+yzByR01A/j9NA6/3a21deA6Clv/S1t0soWL8teDrAmb/GyJcQ\nfK0BgGIrVvNblHxXIH6rtlerBjodsFR5Q75BPAh8QCn1RhF5MP2ci4OKyHPQxH8/Olnm90TkPUqp\nzzTZ3sWusn1ejO5A/z1Kqdt169twXz7jDZr852kygtimQcXpNB1+O17i8UlMFAWptKNHAABPoIfa\nV6cLwmnC0cmc46N59rKZF20aqDTXOr/fZLkgljsEMiZhQjDWfVhVEuvAbThZGQDIP+htiT87aLkB\nCEb6PEzwt5i5U0P6Lqz+AE2MQM5YHF1Fwjky09p/tkumLKMAOU8YRQu4Zf++EMwV44mRdPK/PehR\nwHQ6YjzRhB9MlP57Mia4PmV0OtUZPyczfQ6m/LN9f801LSIkCGEcEwQTgpQwg9FYj+yyqyk6IVEi\nEK9c8HWcEEP8R8dxRvxHqdwzC+B0qon/SrAifuOMuH2RXSTL+SpJYewYAXuE52JdA2DQN/GXlXg/\nHLwUeH76/7ehG7W45P2twEcMZ4rI/wB+APiFhtvnsCvN/y3AFHifiAB8WCn1T+o2EiR9mPMGIBwl\nrHTeJdfDETMr6GbU81PgPFhyHi65mdtzTBwGxFMddAOsl26eyT3mZdONyZechH6XIF4qgpFuuRfI\nRHv/xgAsYp29E040+ZhUz66kb8OuEJpMYbGKA5hRwFqkb6PNKCCc6IJr5O386FRLP2oasCTKqVQh\nC8ZRkk3iMiQ/I2EcaqKPIoHHE8LpiOPrQertLzPPv6vcY3v/QXCUk34Y6XOLl6YvcdEQnYRJL06I\neQaN7Hh0HDMNV8Q/CzTxXw9XZO9zRgqXpxZ6ZGpkSduzh7wBWETZ58Jz2MUApM9D9lxsgvh3gyeL\nyCPW54dS1aIpnmL14P0S8BTPOp8C/qWIfANwB93h65EW2+ewq2yfb+mynZgR9cimnNWDPg0klX/M\niyjcFZo8f8cvPpoThUkxoJsOwY+OV3LPNFxyOiV72fTQetWX1odkuSCRhTYAo0n6koWpBJR6//EE\ndaRTDdcm/tzBK2QgX7B2HbQYBQhXYTJfyUC3bmNTu5olyHlAkgZJMhnoWqI9+blwnvP8R3Bdb+/T\n+UfXp9rrTz1/jq7mvX6on+2b5L3/RM2zEYBtAKYB6fPQjxNiJnmF00Q7IOY5DMlJjytHZJnFngCr\nFAmFNGRI5R8scm1jAKpy6usMgEHfxL8hLNH80QBfU0rdV7VCVRzU/qCUUiJSeJ2UUp9OU+PfixZD\nPw4Uzq5sexf7kO3TCsFoTLJcEI4ke/l8GmwhDpBqsOeBTv/Uy1YabBgtuWnpsMbbOj6ap96+9rS0\nl2X3pfV7Wcb7T9SYOLnNleBEe//JFDU7yrymjKD7In6DEgPQG+nbaBkLyNY7uqpJIpwD56vdAWqa\nZDIQZwsM4c+uJSwmI4K5IdoR41DldP7wSGnCb6rze7CSfvK/gc6UmlsSEORHotoJceMAxgkpxAHK\nnBBYjTynyeo5HGspyRC/cUTMTF99/FXrTBeFuR4+Um9jAFwZyIbPAMBmiL9Jh7UdoyoOKiJfFpF7\nlFJfFJF7gK+U7OPXgF9Lt/l54E/Trxptb+PAyF8Pq+sMgBsHsDVY0EPmLA3PGjkcn0AcJVlO9dFx\nrHX+MVZQbYkd5K3CncWcYDJJe9zeITTefxDClWv5YbD70PfxALsGoG/Sd9FqFJBfR05Is5+S7Bcx\nv2QAjCItA50/YXn+15I0DkBO5zcB3kqdH6q9/hLpJ4cR2XPoSpFNkhGqnJBwmmQjzyzelBK/jj2t\nEg6mQfUotPQSbd0fil69CXq3NQCOl+8+E4fg8Ruo7QV83w38MPDG9O+7fCuJyDcqpb4iIt+M1vuf\n12Z7GwdF/kLe82piAGClwc7SKfYa+SH4486xzDB7FugXbhVUsz2s+nS6OEkDv2pMEqTB32Sqtflr\nV4Hb/Xn7PrgGYNMvTZNRgJEF0jx7FaaT3tLtRkxR0wA1S+AGljFYMEPHAYKJgidSbXyy8vxNgLe1\nzu+BL/CbZPKP1s1dA6DRLBmh2gkZcZSLN61Gn3bCgZvZU+X128jOH1aEDnnP3/x/HQPgyEC5Z8D9\n2zWrZ089/ZZ4I/BOEflR4E+AlwOIyFOBtyqlHkjX+81U858DP26VxfFuX4WDIn9wShOk+fT28FvD\nr8HCiLtCu96PRYtXtAZrhuBhmHAargJrK0+rXf50vHRSP43mbySFa+mKmyB+AzsQDNvxmtJjNZaB\nUgmoKh10GQXweFRIBwUK+fyVOj/kvX77vrt6doX3bxsAKAaCV2n6pjbMKg5Q54SE0yRL6TTEX5fS\naev8Bj6930bCQicBbMkA6Itbk/jL5B7f5wOBUurPgBd4ln8BHdg1n/9ym+2rcFDkLylR255X/SjA\nr8EClbnYdTn9bYxAIfVzdoQYQjbYxkNrjwI2bQDGqxEAtJSBStJBRwDXKaSDjsNlpvNrr7+bzl9A\nEoNDPDmv3161JA5wPDEEnU9GqHVC4lEhl78spdNF0xLPuaAvbMcAZCfZA/FvAUu2JvtsHQdF/mDJ\nPq0MQPtc7LKc/i7wpn6aiV/bRPoyb9wAeEYxrWSgnOdfnw4K5CZyVer8LeFKP+bguWcvHY26z6Eb\nB2g7IaxNSqfP669C7ryN9w+tDAB0mAwG/RH/BfH6d4UDI3/j+Xc3AE1zsaty+rtMnfelfsr0WBd8\n89Un7xOeDJ+NGQCrvlDu+K1koKut0kFluprI1Ujnb9PO0Qn8Jsz9Xr8jR1bFAZo4IeeL6pTOdWDX\nddJB30knAwAUJ4M1DALvu8d/GXBQ5C8i9eWIPfprlwlhbXL6m6Ay9RM2ZwDsuvoOejcATmG5wLNf\ngZVkUIE26aBAFuCt1Pk7ouD9Ayw9pE99HKBVMkJJSqcr99hevy351Or9jny1lgGo+k09qZ5rE/+W\nvHyd7TMUdtsLlHr9nlGALxBsUDchzJfTr7fr7nUZ7z+X+skREoSbGQG4DVVA/722WqU3A+CpKMqI\nUgNgjp2dp/syhxPk1u1G6aAmwNtI52/bxN1BwFiT5GhiP045IvU9h3UTwuw4wNfjVWaPL6VzHbnH\nRaLmq9pP644Amk4GW7dWj2+fg+TTGgdF/lIn+7SUgaomhLXN6W8C2/vPUj8xgdHjVXOUPoxASSct\nTYi3dYmJK3rVtQ2Ah/gzUikxANBgUtjR1WbpoKCDvF10/iakYRd7Q1+PMQDJcl4g/dyma0wIq0rp\n9KFtQ3d35NJZAkrvUaNAsEFT4t+x3LNUcL6oX+8QcVDkD+ReuD4MQFkutpvTD/2UybUnfmVVPy1k\nhLiOAahooZinhyd0obnZUXcDUEL8WYPzlcJRLgM1OExVOmhZSewC1vD6czN+k3h1LSNyBsCgLg5Q\nNyFsFpSndBqs6/XnzzU1YF0MgLVOrQEw29l/2xD/4OH3hgMjf9EP5CptuhRdA8EmDtAlp78pchO/\nmBRIcS0DYBO/6RZmyT7+BjG3YBz21iTe7nUL2LO0mslAJShLBzWfe9P5fXKF4/0DEISF57GQ/dNx\nQphpylKW0ukSv+v11+n92WWlwd8yAwA0mweQ3o/G9YD69PgHg9AJh0X+adl/W3ctGwUUUDEhzASC\n7ThAn3KPC3viV5zcTtM/JwTBEaAbo7c2ABXefq7dHlUdwm61NwAlxJ95/jbWkYEq0kEb5fOvqfVn\n8NS/ceMAXQLBvglh66QXuyiOTIqtPH0GAFpMBIN6A2DWT9dtRfw7IPkhz3+fkM5UbWIAmspAtmtq\n4gDuS9f3KMBM/ApHqexjiHF6BGNN5JK+OLVxgCbEbwd8j65WG4AkRqbH1QYg9frLiD/n+dvoTQay\n0kFh7Xz+Jsj1i7XJjHwcoCwQvFpWDAS7E8KiZFRaPLAvuSd/jvZoZYMGwOAAiP+i48DIP33oN2AA\nijLQZmEHfzOUeMaVo4CmxJ/2DJZZoOWgSgMAipv6BZ0eF7+05Z7lHS/xJ8tVO8sCNiEDVdXt6cvr\nNzN+3d+hJg5QNSHMHwjWz2BdgNegbaA3d0nKvDctDUB2P+oNgL46VvetaVZPE2zYKGyxsNvWcVjk\nr5aFyUr2Cwfkht3rGYAVNqX9m9TPHNoYgJbEb5rFC2RNZNTR1eom8dHNVYN4KOr8JcTv9jP2oi8Z\nCLrp/B2IwzQ4z6Qxm/gsp6RrIFhD3xjfc9e3158/txYGAMolHccAQH4yWCnxD17/VnFY5N8QXs3f\nB08cwE7Dq0PbF9HnocXJHYLROO0Ulf5NX7ywbSZQA+L3boM1AqiSTbwBXj/xAzkDYLxLAxNkzAyA\n7VFC61nBlZjP/d6/q0E3+S4l+JwE5EHWPxnWmBCmURfcBX+A1/ce+CZJ5oh+wwagFF1SOquMwjAj\nuBYXkvwNushAhmq0EVif3JvgzmJOOFoUjIB5+YLpTMcCkhgx3n4So4JIxwfGsU7ZhHxevEmLtLNi\nnHTIQgexK9cygs88fof04+SsVN+3texwJOk1TdLfY5xWxsw3ki+0lnQyarJZwbB64c06TTV+d4az\nbQzs47mE4vsuJbPMky05ZG5U2sSfGPkSEpqRfVOir4O9TWHU0sQAQGlTmOLBamJKXb7rmfSXCqK4\navh6uDgs8pf0R7CyBYAsJc00KLexXiA4j3W01TrESwXLOTDPkWYgY4LlZEWc01nWdzULCGdGIMxk\nIPHJQOAnfLuXgCH96VHRy68g/dw9Tw3A2sRf2LFDIqZ2TBfY25UZAsgTjTsasIyAuNs4weAm6cmA\nZzS6nlffBI1HyjQwAFBM7bQng1VhTwh/FxCRHwTegG7Sfr9S6hHPOjPg99H9z8fAbyilXp9+9wbg\nx4Cvpqu/Vin1X6uOeVjk3xHdZaDNw0gkhWVL/2ggqBsNmMwgKx5gG4KM8K9dLRJ+Sy+/Cn0Tf5Y5\nYuAQ7FooMwTg9/w9RqDVKAAaGwHo06uvfg+qvH4bxsnqNBfAxZ4TvlJC7HQC3BA+he7M9SsV60TA\n9yqlbonIBPiQiPyuUurD6fdvVkq9qekBD4/8W3j9LtqOAnaNVqOBhoag4OVPj/1avkX68fJO63Pf\nqMffJ/G7aGIIfEagbBTgoLUURHOib+PBVx2j6X46ZwLtOeHvAkqpT4MuXlmxjsJMBIJJ+q9zSOzw\nyH9N5KoYHoABMFjHEKjoppaFZpR6+fHyTmNZpyl6If7CTnuUfupQJw25Gjc0GgVAs4BwYZs1yH1T\naB0H8OFiEP6TRcSWah5SSj3U90FEJAA+BnwL8MtKqY9YX/8zEfkHwCPAa5RSX6/a14GRf/o6dfD6\nXTR6kdI0vH1DmSEIR1dWspCZMTyOEdfr6tnLd5EZpZ6JPyf92KSySQNg4DMEZV7tpgLCG0IXr99G\nqziAwYEQvloKcdRI9vmaUuq+qhVE5P3AN3m+ep1SqrbhOoBSKgGeKyKnwMMi8hyl1KeAfw/8HPqx\n+zng3wCvrNrXgZF/v2giAxnvbB+NAOTjA1l2UNloAFoHb7tg4x5/WfbItmAMQQsj0FtAeINYZ2TR\nOA5QevD9IfxNQSn1wh73dUNEPgi8GPiUUurL5jsR+VXgPXX7ODzy78Hrz+3O88AfggzkooksZGD6\nCfRJ+Ab6mD0Tv4XSwO82vH+3DWELI7BOQHgTv9OmUBsHsHEAhK8UxNF+pHqKyN3APCX+K8BfBf5V\n+t09Sqkvpqu+DB1ArsThkf+G4E6/d7EJA+DL9OltvyWGoG8v34UrIfRJ/FsN/LqwCuM1MgKu1t0l\nIIx/lrAP68dn+osnVMpAA7wQkZcBvwTcDfyOiHxcKfV9IvJU4K1KqQeAe4C3pbr/CHinUsp4+L8g\nIs9FP2KfBf5x3TEPi/zTSHhfXr+LKhkowwbiAFHDNnFdpva7aaObRCHDp0/iLxzMoydvyvu3i+LB\nivSrjMAaowAgXyjOQtkzv46B2EQg2ZWBggOjmm1DKfUw8LBn+ReAB9L/PwZ8R8n2P9T2mMMv4qBJ\nNtCu4gBNjYR/W4AFxxP/pKG+kMk+GyT+gvQDmzMALvHb/+9qBFI0loJYOTxNjYF3fzvIFvL2Bjgg\nLJdC1Czge3A4rF/CQt9ev4uyglyHFAcAiBJtqeKlpC0rE07COVfG/ROB9vjH2/P4YbPSj0v8WRtM\n5/suRqBFQBj8hgCKxgA2/260hSsDweEZgYuIg/sFki3MvvWViM6dQ48GYB1vvnyfLuFLdpwoEeKl\ncDzpdxSwCvRaZNQ38RcOauWS2/Vk+vD+fcRv/4Ui6Ztl7mefETBoIQUBZFVDU/jeh3VGB5uCbQBg\nMAL7gOHOp3BfmOyzp0S0ja4GoM9gryH71b5XpH8WB0SJZDXJr4cqaxNoRgEmKLwOjNcP6Qu9YeL3\nSj821jEAVYTvW6/paKDKCKSoCwjn0MAQwP4YA/u47kgA9tMQ6GyfQfbZA2jC7OvhLRC+czuqOjP5\nAsH63LYjA7mED3BzHmReviH/8wS+Hq8aUtxJhLvCIPtejwISpkF3Kcj2+IPRZEX8m4Iv59/1/rui\nhPiVY0hkUkH4vmVVRsCRghqPAgxSSaiJIYD9MAZ2QDhbNowGtopLd5d9GmnhYavoFJZbbctxAB/h\nu9LOWRxwnsCdRBO+/iecL+zPirtCIUrGmaE4niRESTcpKJfTzxgWafmRDadhlnr/XeWfhsTvLssM\nQRtJKKw/t1zzk6aT2hxD0EQmzbzwDRsBk22US6qoMAKwe0OwxcJuW8fBkX/XB7TOyy+8XOlnO+Vu\nW3EAGz7CB036RtKxvfw7CdyIi4QfxSPiOOD8aM75QjhPFLMAzpPVKED3L1atAsK59E7j9cPm8++r\nvP8uqCN+V/qxvHyzTqvRQAcjAJsbDcAq1tU33BTTKiNgziNbPowGNoYLfUdbE35JMM7Xm7WPOIAv\n2FtG9lD08qNkxOOxlHr5j9/RhB9HQTZLMY4CouOY82TJ6VSPAu4kq1HASbhsHRDOgr2MgQ1LPnXo\nEvxtS/z2si0aAehnNADV8YG+DEDdxLNcE6CGo4HBCPSHnd5JEXkN8CbgbqXU1+rWVw2ql65N+CUG\nwO7NCjSOA/gMgBvsrSJ8vb4m+rN4VPDyDenfiKTg5cdRwM2ziSb/dOh6dBwTRyPikznnR3NOQ8mk\nIDMK0COAZmmhdnpndv+akFJPsz0z6aeq3k+VAWhD/E1kHTpKQi3hHQ0ENSMf655XGYJ1DICP8O32\nnbnj5EqO7KckpJZDwLd3iMi9wIuAz627r7UJv+myDnGAroFgn5cfJZIFb31a/s1bk8zLj6IgI/3b\nZ2MmepYXfx5d4eg4zr6PjmOuX1lmUpAZBZiG9lWjgEJ6Zxro9enwhf6tfRgIl/DbBn+7Er/9uSrI\ny5qjgYaoDBCX3QPHEKxrANqQvvt9UyNgzitbPowG1sIu79qbgZ8GGpUyddGa8KHey/cVnvKQyCbj\nAGVpmq60cyMqevlxNOLmWZh9XkTCJEq4GsVcu6nP/4ko5EY05erJItsmPplzfDTXxqQkIOxLC83V\n8TGBXnMP09GSQWVapoWckWgoa1SmfZbJP12IvyHhtzYC9rp9jwZ8GDvxEvwB4iaB4Kak767nzqRf\nLR8X1t+lJKSUsIg21751l9gJ+YvIS4HPK6U+UdW5Jl33VcCrAL75m+/uftA64m8J11sqiwPU9Qm2\ndf+uQdxbZ5Ocp2+I/+pZzCROCKMk8/yvoa/7NiGcwM0zy7s+mnO+gBu6ZTp3hTBNRpxZt+okTAhZ\nEAZXVj0E3PTOxPm7hYJeBfmnr5m/a5BxYUYw2giI2yFsk3CMMFDdWMUD3yigK+m7y4sj54XHifKM\nsPdAEjp0bOwOVTUuAF6LlnxqkXbDeQjgu+77C5lz45sxmPvBfWUAoLwVn28bGyXtI220CQTnG8Wb\nAIKttyvO4oDMhwtTXT7Q+r5eprc7OoEwWnLzLHc23D4JmUQJ8zDJSP+J45DbJyHjqSIME45PYo5O\n5oRhwiyA2RhOQ038swCmwZKTcJnOBVgSjiQlfqeUQ+r1N/Xwy6AWUVEiqoJFbMaMrjN9rvE+Qg+B\ne5Z5ib7htoXlZl82cTvPJVijp8CzngvHOPgkIB/Ms55fNi4YAN969nfFZc2a1YM/bXtAc2yM/Msa\nF4jItwHPAozX/3TgURG5Xyn1pZp95j7XThn31RH3dRTyGQCzreelqaoq2qYyqDsCmAZLVm2djCEQ\ncPKMT6cqGwXcsCLPxycQRwlRFHCLEAiYo7d9An0d82nAeKo4Oo45PokJp0vCMOH6FZ39Mwt0Cugs\n0F7+SbhkGuh/RvdfNWuZ5GfzmnvtaXC+lXK+6TG2YgQ2QfRl69n77Yv4K7z/pjGAdQzAoRC/LFU2\nar5o2PrYSCn1SeAbzWcR+SxwX5NsHygOAcuGf7WjgDoDYMPzklWhaYewJgYANAlPkxGzNOCroQsB\nnALnwZLHC2cRE4cB8VQHfLOtTkaE0yT9t+QoDfhqwlechmi5J1DpP+P1K+3lW81acnKPz+t3ettu\nrZ77BoyAu59eib5qHR/x26RtrtUeLVU4Lk2xSQPQlPhLz+0Cevwi8oPAG4BvBe5XSj1Sst4/B/4R\n+nH8JPAPlVLnIvIk4D8Dz0TX83/5Bevhq1GWEdCrATDL3GM37CXQpjR0yMJrAMJRAhivXy+7K7Tj\nAFYlmCtLzsMlUZikXr+FE1ZxgOki9frnhNOEaaiJ/3Sqif9KoIlfe/0J4UifVziSFekbz9/N63fr\n+dhZN5tAk2wg+jEC9n6AbkTf1OM32BbxlxjmTRgAH8qI32sktkz8orbm+X8K+AHgV0rPReRpwE8A\nz1ZK3RGRdwJ/B/iPwIPAB5RSbxSRB9PPP1N1wJ2Tv1LqmV239Y0C1jYAkCesll6/i6YlIcLsJTMU\ntZJzpoHJ8wdtMWriAMcx8TQoxAHCqc7zn6ae//HRnNNQ6/yzQBP/9VATvyZ8lRoAKco9dV6/ex9h\nc96/fYyKtMYyL74Tmmj0TVAX/O1T3+8J6xiAwr5aEP9FhlLq0wB1CTBozr4iInPgKvCFdPlLgeen\n/38b8N/Zd/JvB1XIBuhkAGBlBHyB35KXp2sHMVf3r6oJVCUDnYQQJaoyDnAjIgsEQz4OEEcB02nC\nUZraWRbgnQYqF+BdtYFcyT1ZkNfn9ZfVsd8GfL+nQZ/B4SYkv25Wz6aJv4EsVxYA7tMAFPZ9mAHe\nJ4uILdU8lCar9Aal1OdF5E3ouVF3gPcqpd6bfv0Uq4fvl4Cn1O3vwMhfo4kBACtP2ZcH3KQpyJpe\nv402cwHWiQOcTtN0UE8cYJrq/Caz53Sqib8swJvX+R25x0rnLM3wmc+LfW0beP+NMn7q5I2Wo4FO\nRqArubch6KYyT9v9+rBlA7CPAV4XomASN5J9vqaUuq9yXxUZkEqp2vlOInIX2sN/FnAD+C8i8gql\n1Nvt9ZRSSkRqH+mDJH/wGwDoOQ5g1qG715/bVU0qKFAbCK6KA2gjUB0HcAO8s6A8wJvX+S25B/La\nvuv1u5OcPGWLt9rMu8oQrGsENjmi2UJgtymapoBCdXrnap39J/6+UZYB2QIvBP6vUuqrACLyW8Bf\nAt4OfFlE7lFKfVFE7gG+UrezgyJ/t7ZPkwkhnecDbAhNM4GA1nGAu0IzE1ilE7VSpHEAoF2AN6fz\nW3JPE68fVkbArlvfJ3xBUKie3FVmCPoKDvd9jT6Zx17e9/EqDPM6ZSBs7/8yEn9P+BzwPBG5ipZ9\nXgAYqendwA8Db0z/1o4kDor8wUPuJfVB1jIA9nL68fpzu21gANaNA5yGOhDsxgFOQ038ZQHeUp3f\nqd9T6fX7etl2kH/Kb2DNdk2Ngc8Q9JwhtBa2Edj1GeWWv00b+ce7/R4Hd2WpCLeQ7SMiLwN+Cbgb\n+B0R+bhS6vtE5KnAW5VSDyilPiIivwE8CiyAPyCdAIsm/XeKyI8CfwK8vO6YB0f+UDLdu0MgGKie\nEGbvv+c6530aADcOQJzPa8niAMkqs6cswOvq/OZcV03ZazJ8bPjKFfct/zQhwCbGwDUEm8gQ6ohd\nZPRsSv8vbFdB/JfJ61dKPQw87Fn+BeAB6/Prgdd71vsz9EigMQ6S/KG7AQCajQIqyjj0hSYeTxMD\n4MYBroc6EOzGAUxmT1WAt6jze/ryZidX4vX7Whi6+n/nm9aD3FFnDOyMIU+G0DpoU/5iV/p+Hfoy\nAIdA/KIYZvjuA1zPyxvk7SsQbB9nw+3tmpaEgPo4gK4HZEYD+TjAebLy+o3UUwjwjixv3xgA+0Vs\n6vUbGOJ39X9Y3/tvko3VpDJok/IHi4bnWXO8VnWLDDZN/GUGuaX+D20koP0n/ouOgyJoJVbmAAAH\nT0lEQVR/aBjk7SMQzGa9fgNfWeh1ZKDSwnCsJnKZzB5/gLdE7qnz+h2o+Vwf2RB/S/2/dYG30htc\nQ5h1hfyaoKo0SB2qjMU2ZZ4ydDDOdQZgIP79wMGRPzQM8nYMBEN+PkDvWr+vgXzPBsAtDGfHAXwB\nXn0OY3xyTwZD9GVevyX5KLdufl/yj88DXjdm0NQ4lI0Oyr7zrdfl+E323weqfo+W+n8Z6mTOfSR+\nUYpJvHkncBc4SPI3qNP4m6xTVxe8D3gJ3731nvaQLroGgk0cAPwB3nCkDUMurdP1+jsgq13v61K1\nrvyzLU+4q3FpMGO8dH0b2/T4OxjkNvLPgP3CgZH/slbi6SsOYJZ1RSPCd74r6w5WNSEM/HGAaUDq\n2dtxAHK1+V25x3u+trxjvP6KQK9yJnnlmpd0kH8KqCi2t00EjP3nWjVSgP0g+SpsWP8vwz56/TCU\ndN47dNL4O8QB2qIx4ZfMKWhiANaLA0gxs8cj9xSCvF3hk3zq0j/L4COeDc4SriWtUXFRrUGA9kZh\nn7AhA7CvxH/RcZDkDx01/oZxgDZYi/A9ssemDEB+NFBP/Gt5/Y7Mo2Al/9Tp/y29/y5e/7qNyQG/\nPOcYhMIcktyOS9JLXezCKHTQ/6tQZQAG4t8dDor8nUZenTT+puuUoZWc06SJvGdZYF6u3uMAZAHe\nrcAi+Fr5x2MICxk/DQK9XaS6qolIrSpSure2bHQAzQwC7M4o9Kj/Q0kG0AEQ/5Dnv0dIlossFx3W\n0PgbrGOjFw+/apln5mvTOEBzA8B2vP6qSV5l8o+r/+dudDUJNSX88mbi5QRfN0O1Em1GB9DcIEB1\n9tGm0UH+gSEIvG8Qty/uPkNEvoquW7ENPBlo1FrygHARrwku5nVdxGuC7V7XM5RSd6+zAxH5PfQ5\n1+FrSqkXr3OsbeOgyH+bEJFH6upzHxou4jXBxbyui3hNcHGv6xDhUSUHDBgwYMBFx0D+AwYMGHAJ\nMZB/OR6qX+XgcBGvCS7mdV3Ea4KLe10Hh0HzHzBgwIBLiMHzHzBgwIBLiIH8BwwYMOASYiD/GojI\na0REiUiTXN+9h4j8axH5YxF5TEQeFpHTXZ9TV4jIi0Xkf4nIZ0TkwV2fTx8QkXtF5IMi8kci8oci\n8updn1NfEJFARP5ARN6z63MZMJB/JUTkXuBFwOd2fS494n3Ac5RS3w78b+Bf7Ph8OkFEAuCXgb8G\nPBv4uyLy7N2eVS9YAK9RSj0beB7w4xfkugBeDXx61ycxQGMg/2q8Gfhpdte7u3copd6rVFbP4MPA\n03d5PmvgfuAzSqn/o5SKgV8HXrrjc1obSqkvKqUeTf9/E02WT9vtWa0PEXk68P3AW3d9LgM0BvIv\ngYi8FPi8UuoTuz6XDeKVwO/u+iQ64mnA/7M+/ykXgCRtiMgzge8APrLbM+kFv4h2pLZYWXBAFQ6u\nsFufEJH3A9/k+ep1wGvRks/Boeq6lFLvStd5HVpieMc2z21AM4jIEfCbwE8qpc52fT7rQEReAnxF\nKfUxEXn+rs9ngMalJn+l1At9y0Xk24BnAZ8QEdDSyKMicr9S6ktbPMVOKLsuAxH5EeAlwAvU4U70\n+Dxwr/X56emyg4eITNDE/w6l1G/t+nx6wHcDf0NEHgBmwImIvF0p9Yodn9elxjDJqwFE5LPAfUqp\ng6+yKCIvBv4t8D1Kqa/u+ny6QkTG6ID1C9Ck/1Hg7yml/nCnJ7YmRHsbbwP+XCn1k7s+n76Rev4/\npZR6ya7P5bJj0PwvH94CHAPvE5GPi8h/2PUJdUEatP6nwH9DB0XfeejEn+K7gR8Cvjf9fT6eeswD\nBvSKwfMfMGDAgEuIwfMfMGDAgEuIgfwHDBgw4BJiIP8BAwYMuIQYyH/AgAEDLiEG8h8wYMCAS4iB\n/AfsDUTk1gb3/Q1ptcxbIvKWTR1nwIBDwaWe4TvgUuEc+FngOem/AQMuNQbPf8DeQUSOROQDIvKo\niHwyLbJnvvvZtIb/h0TkP4nIT6XLfyKtgf+YiPy6u0+l1BNKqQ+hjcCAAZceg+c/YB9xDrxMKXWW\nNtH5sIi8G7gP+FvAXwQmwKPAx9JtHgSepZSKDrlBzYAB28Lg+Q/YRwjw8yLyGPB+dKnmp6BLH7xL\nKXWe1rr/bWubx4B3iMgr0NVKBwwYUIGB/AfsI/4+cDfwXUqp5wJfRleDrML3ozt7fSfw0bTw24AB\nA0owkP+AfcR1dP33uYj8FeAZ6fL/Cfx1EZml9e5fAiAiI+BepdQHgZ9Jtz/awXkPGHAwGLyjAfuI\ndwC/LSKfBB4B/hhAKfXRVPt/DD0a+CTwOBAAbxeR62jJ6N8ppW64O01Lc58AoYj8TeBFSqk/2sL1\nDBiwdxiqeg44KIjIkVLqlohcBX4feJXpeTtgwIDmGDz/AYeGh0Tk2egYwNsG4h8woBsGz3/AgAED\nLiGGgO+AAQMGXEIM5D9gwIABlxAD+Q8YMGDAJcRA/gMGDBhwCTGQ/4ABAwZcQvx/iwq0yCPFTuwA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu8LdtV1/kdVet19nnkAglIci8kYPjYSIM2IdCidhBR\nvMSklW4ID5vwEAPGpgU6EO02dGv6E9RugwaMVwghRoMIESKGJoCG2AqSgNJI+DSPGMhNDBDJzXns\ns9ejavQfs2bVrFlzVs1aj3P22Xv9Pp/92WtV1arHWlW/McZvjDmmqCpHHHHEEUdcPmT3+wSOOOKI\nI464PzgagCOOOOKIS4qjATjiiCOOuKQ4GoAjjjjiiEuKowE44ogjjrikOBqAI4444ohLiqMBuMQQ\nkVeLyP96v8/jMkNEvkRE3rLH/b1QRP6ffe3viIuNowG4wBCRd4vIXRG5LSIfFJF/LiKP2PWq+iJV\n/av36dzuO1FV56Ai8re85c+vlr/20Oegqv9QVf+Yc2wVkd996OMecQQcDcBlwJ9U1WvARwO/Cfyd\n+3w+yRCR/B4c5teALxCRibPsy4BfvgfHPuKI+4qjAbgkUNUz4PuBT7TLROS1IvLXqtdPFpEfFpEn\nROR3RORfiUhWrXu3iLxURN5ZRRLfLSILZz/PFZF/X33234jIJzvrHhGRN4rIb4vIfxaRV4nIfwG8\nGvivq+jkCed8/q6IvFlE7gCfJSJvFZGvcvbXihwqj/lrReRXROSWiPxVEfn46jxuisj3icis56t5\nP/ALwB+v9vfhwB8A3uRuJCL/RETeLyIfEpG3icjvddZ9hIj8s+p4bxeRvxY4xxdV5/iEiHy7iIh/\nPSLytuojP199L18YipTcKKE69puqY/8M8PHetr9HRH6s+k3/PxH5gp7v4ohLhqMBuCQQkRPgC4Gf\njmzyDcDjwFOAjwL+EuD2CfkSDEl+PPAJwP9S7ff3A68B/hzwEcDfA94kIvPKg/9h4NeBpwNPA75X\nVX8JeBHwU6p6TVUfco7zxcDLgetAqkT0x4FPBT4DeAnwGPClwCPAJwFfNPD51wH/Q/X6BcAPAUtv\nmx8Bngl8JPBzwD901n07cAf4XZjo4csCx3gu8GnAJwNfUJ1zC6r6h6uXn1J9L/944Lztsc8wEd5X\nVH8AiMhV4MeAf1Sd9wuA7xCRTwzs54hLiKMBuPj4wcrD/hDwOcDfiGy3xpDIx6rqWlX/lbYbRb1K\nVd+jqr+DIWhLql8N/D1V/beqWqjq92DI8zOAZwNPBf5nVb2jqmeqOkTqP6Sq/1pVyypqScFfV9Wb\nqvqLwH8A3qKq71LVD2GI+/cPfP6fAs8RkSdhDMHr/A1U9TWqektVl8C3AJ8iIk+qjNznAy9T1VNV\nfSfwPYFjvEJVn1DV3wD+JfD7Eq8tCufYf6X6fv+Dd+znAu9W1e9W1Y2q/jvgB4D/ftdjH3ExcDQA\nFx//beVhL4AXAz8pIr8rsN3fAH4VeIuIvEtEvtlb/x7n9a9jiB3gY4FvqKSNJypj80i1/hHg11V1\nM+J83zO8SQe/6by+G3h/re/DqnoX+OeYqOYjVPVfu+tFJBeRV4jIr4nITeDd1aonYyKmiXfeoWt4\nv/P6dOicEhE69q87rz8W+HTvt/kSTKRyxBFHA3BZUHnnbwQK4A8G1t9S1W9Q1Y8Dngd8vYh8trPJ\nI87rjwHeV71+D/ByVX3I+TtR1TdU6z7GS7DWh4ydqvf+DnDivD8Ueb0OI4O9PrDui4HnA38UeBJG\nzgIQ4LeBDfCws737Xe2K1vV7xtse2/9tLN4D/KT321xT1a/Z4/kd8QDjaAAuCcTg+cCHAb8UWP9c\nEfndVXLyQxhDUTqb/HkRebhKkv5lwOrTfx94kYh8enWMqyLyeSJyHfgZ4D8Br6iWL0TkM6vP/Sbw\n8ECCFuDfA39aRE6qxOdXbvcNDOInMRJZqErqOkbW+s8YMv4/7ApVLYA3At9SnePvocknbIPfBD7O\nef/zwO8Vkd9XJd6/pefYn0g7//DDwCeIyJ8RkWn192lVEv6II44G4BLgn4nIbeAmRrv/skor9/FM\n4MeB28BPAd+hqv/SWf+PgLcA78KUTv41AFV9B/BngVcBH8TISC+s1hXAnwR+N/AbmCTzF1b7+xfA\nLwLvF5EP9Jz/3wJWGGL8HtrJ171BDX6iynH4eB1GWnkv8E66ifQXYyKD9wP/AHgD3SRyKr4F+J5K\nsvkCVf1l4H/H/Da/Qjcx/mKMnPR+4LXAdzvXdAv4Y5jk7/uqbb4VmG95bkdcMMhxQpgjhiAi7wa+\nSlV//H6fy4MAEflW4Hepaqga6Igjzg2OEcARR+yIqtb+kysJ7NkYmeqf3u/zOuKIIYSSc0ccccQ4\nXMfIPk/FSFX/J2YswRFHnGscJaAjjjjiiEuKowR0xBFHHHFJcSEloMWTbui1j3oKkikZINJYOhHI\nxBRwm24sZl0mznoUqbfRehu7LBPFvNoXxkRh/ccV6VsfXyf1f/GWuPt0loX2pWV3WWy9G3lmOUiG\nooCiWlI6rwsVVKFQoVQoEYoSCjXfnH1dAmUhlKVQFIKqUBYCqmRlczytrkfdS6iWSabu2/r3d7/W\nbGAb976D5t6x953dtu++s/t17zto7j3zm9ilzrW1IvrmdelcbGsL503ZWt7d3j0v97rsukyaLd17\npv2q+p6d82/dS+49Io1/au+N5hq1Xq7uVvUFaX3N6lxn6VybAr/8/777A6r6FHbAfykfobdZJ237\nbm79qKp+7i7H2ycupAG49lFP4fO/66+yyGGRwyyDRXWli1xZ5DD1Yp8r1bbz3Nwp87xkkinz3P6Z\nG3OeKdOseX+vMcniDTJzmUbXZT2NNfNqnFYuU3KZ1PtxP2OXicsYxSrpnJvtqwHBG+9z8xN0MqfQ\nNevyjFV5l0I3rMsz7qyVdSncXOfcXGXcWecsC+GDK7i1hrNCuLmCswJunuac3pmyWmbcujljs8m4\nfXNGviy4cqd5QDfVj7+emesr5ub/bF7U29jXk0nZej+v/s/mZXD9bF7U9x00956978Dce1ecbez9\nZe83d5m938yykkmWk8u0/m1ymVB4A61Lba6jUOe6y2b5smgegHXZEPDSfe1ssyyk9WzMq3NynwV7\nbmDuHf++sq+bc3fuKfdeKjaQVw9sPqsNdqHr+toKXdfX7b4utaiveVMW9TWsS6mvbVlkLAvz+g99\n9Je7I6e3wm3WfEv+7KRtX1j8xJN3Pd4+cSENgGTaIf9FdfOGyB/gbvVsnBVSPZgZbZ/Ifqj03rdx\nvwzDtvAf0mm2aBmSmvA325a1uwebNP+tMcgnkM9q8i90U5P/pixYlzk3K9LflMKyEM4KWJfmtzrb\nGPI/K2C1NMSyXO7WRXqI/Ps+d6/I3/3d+pBJXpNmnk9rcpxkjUGY5w3ZTzOtDcI8K2rSnNvzPTTx\nB15LPku61u7FgxnPWL+pUHJe1W8ReQ2mh9NvqeonVct+H6Z77gIz8vtrVfVnIp/PgXcA71XV5w4d\n70IagIwu+bsPYAx3W8+34BqBxgPyDQP1Q2q2O8yNtYth6fP+oU3+EyYmXh7r3Y+F5+GVZUGhG1bl\nXUot2JQFt9c5y4r076wzlkVmPP11RfobWFVfiyX/1bL5/lc7GoIYQt7/vSZ/S4Z5sMtGHLsYBPv+\nYMTvR4aTmeMozBBVcjHnbPdZ6Lo+lvu61MIcr7ouc84Z61IqI1bu7VmVDOaLREn4zuAWr8UMqnQb\nEv514H9T1R8RkUer98+JfP7rMCP9b6SczoU0ACLdB7CP+H00hsAYgWXhE3DXCMTgGodDYrR3BDWR\ntMh/ddqQ8z2AilSe/7oO8QtdmzC9FG6ujPe/LDI+tBLuFtbjF1Zl4/0DbDbNj+y+djEk/2wr/bi4\nl+S/ze/uYoxBuCfE7zserhHARAPbRQJgogE/EjhfUNW3icjT/cU0hP4kmj5cLYjIw8DnYUb8f33K\n8S6kAchle/K3aBsBiElC87xs6aZzj/Bd78nFvTIMMe8/Sv6blfmbnwQ/t1dU0k+h61r3L3Rd6/5W\nq7XSz92i0f3PKk6w0o/r7R/K87fo0/3vBfn78s8QIfp5AutFh9BnEGAPxO/KPBHi180Smcy7xiCf\nQLFCqqjR7r/29oFCN63XbqRg8mcmL3Cvnr8Aniwi73DeP6aqjw185n8CflRE/iaGeP5AZLtXYubD\nuJ56MhfSAGSyG/lb3C3M35Uc+iUhA98YQNcgWNwLw7AN+evyFlCZvUMagXzGhk2S7n9zlXd0f+v9\n+9hV/4dh79/F/ST/IWkvFakGwb4/JPG7r2sjkM+azzhGwD1WMqq8wD6NgAhMJslVgR9Q1WeNPMTX\nAH9RVX+gmtHtuzCdaZ1zEJs3+FkReU7qji+kARDiyd5tMCwJmYfY1RTt+lSDYBEzDPM9ObWD5L86\nBUzMKZPZweSgbXV/Czfxu1rmbDZZS//3sZlmTNbhkN+Xf8Lb9Ov+Q+Qfqi4z78eRf9sD303+iSFm\nEPZG/BHS9z3+VvmpawTqE9o+L9Akhx8IfBlG2wf4J8B3Brb5TOB5VY5gAdwQkder6pf27fhiGgDZ\nH/lbDEtCBvbBtsbANxRjDUIKQkQQ8g6TyN/1tJa3YX5t/0bAkX7G6v5u4ncsNt5NUQSsal/lT5/u\nD/ee/CUyij/FMPievU/6rmxk121F/AnefrQSCEyRwGbZHnWyQ17ATw7vAyLCbJFIOB/a6hDvA/4b\n4K3AH8F0hW1BVV8KvLQ6n+cA3zhE/nBBDcCh0CcJ+fANgVnW3bYvf9DarkrCbcqidyxADEnkf3Yb\nVg0J1MPd9mwEXO9/rO7vJn597T8VNgHsIkTqIemnT/e3OBT5u4TbSag6sPKIiwmTup7ewif9PqOw\nD+JPJv3NqlMB1MkL2PUj8wItnMNKUBF5A6bC58ki8jjwMky79W+rJlY6w0zDiog8FfhOVX102+Md\nDcAWcKOBZZFXD3VDEkYOkvq1xRhjANtHB773P4r8T9vT8O7bCOhkXg/2WpV3k3X/Plj5Z7mFQQhW\n8bQGhLWlH7s+Jv3cU/L3idPCHUjlIGQYfGLsMwqjiH+st+/LO74RwMqS/cnh0DVBPDm8D2QZzOf7\n6Qygql8UWfWpgW3fB3TIX1XfiokWBnEhDcC9MOzhMQOQYgggLhG1tvHqr0Pwb/ZdyV/vnCLTKUxy\nmJmHUDdL83DtagAC0k+q7h/y/mMwBqH/Ae+TfyAu/dwv8u+QbrHpkuYQAoah1tcdxIzCGOLfmvRj\nqEh+27zAEWFcTAMg5kG8e+A8j7t/dwSxnyR2DYF9bzEUFeyCZM3fIX9Wa3S17nT6aSKB7SuDQtKP\n1f2t9DNG97fJ310RagFhXre9/nNH/vsarOcZhpBR6AwQHCL+bUnfSpCzaRMFeBVArbyANQI7DBq7\nzLiQ34BIU3YHhzEE68obXXQcjHCSuE36/VGBWddmvHUpg5VA7d49ieR/eqdF/lYCCrW728kIRLz/\ndZmzLDJurrKW7h+SftxBXy76qn98uPr/LODlg/H+Xemnrzoohn2Sf53s9chfe9pzRAUJW1Y5BLdV\nh7+8T+ZJIf4Y6ceWTcKe/j6Tw7tABGbzc5hQSMCFNAAZ9sFrbo99GoF12Xin8U6ecVnIImYIzLph\niSiGIPkXqyTy15tn9dnX3+BsCpNV44EVI+Ugp+bf6P5LlsUZt9d9ur/5aKjmP5T8DdX/x2QgV/7x\nvf+Q9GPXpXr/Q+Tvj6gdJH/X63bJvycC6MseBY1DzDBY79q+ttuyZ9IPGYHZtLt8i7xAX3L4suNC\nGgARS5x1E2hgP0bAJX8zGrVtBNZlU4I6JAtZJBmCrHvyrnfjdocMkv/yNIn8y1srZJohizXMpuh6\njTiJ4W2Swv3ST6TPjzPa18L3/n35Z9sRwC7Rw27Szz0l/1gSeAAaJXtD6DLx5oy328eIP4X0Uwh/\nE3hArRGwkhB0KoBaRiCQF9h60FgiRGRvSeB7jYtpAIBJpkyygk1pPfHdjIAdQ9TRpTdwtpGqDLAv\nGoA+WQj6DYFZnwUjAr9t8y7kr8sNumzO1l6Ve3uPMgID0k+f7g9h79/FGPnHhSV2973v/Z8L8ne1\ndp/8+5KmruceQqRSCCIG4hCkHyL8Vg7AW+8aAYu+5HBCXuCy42IaAFGPRG00sJ0RaEs+YVmCOhqA\nVFloU0qLMCyCJaSlDA5dNySyG/mXT7R15agRyGdJlUFD3n+f7u8mfvuMgCv/9CWFQ/X/vsY/m5et\nZeea/MdWAfnoMxIxAxGq84+Rfgrhh7bzl03ysBR0TvICIjCZHiOAc4MMuDEraLd73c4I+JLPqhUJ\ntLddrQxRgFQJYq33EZKFmvMyGBsRQFv6mWVXdib/8vYamefoWYHOS/SsQGZr8xBO10156Op0MCkc\nqvm/s1ZubzJurnLurLOo7m8RI/5tq3+KeR4d9GXJ32Kb5C/skfwdzT1I/iHiHIs+I+BKLu579/Uu\nXr4DXXeXydTJAVgjcIC8wGXGfTUAIvK5wLcBOWZE2ysi230a8FPAC1T1+4f3S93zOzwRRJoRCJG/\nS/yrZc6KAFHU9+JQkhiGZCGwjefay9ybd5/kr2cb1BPf7Tc2qjIoUfqJ6f4p3v8uvf9n8yJa4bOL\n9BMifztye+/kP2QALGEOwZVdQuhL4O6R8P3tFM8IWOySF/AGjV123DcDUM1c8+3A5wCPA28XkTep\n6jsD230r8JbkfeMOnOo3AhA2BH3kH2xBEPIWE2UhdzRxTBYy59Q2BJZM9kn+yzvmAHO6UtAYIzBG\n+nHlNWhHWfWyEd7/WGPgev/nhvzdhGuM/GOSyrZIMRgHJPzWPiuPv6Xt7yMv0NpuP0bAjAQ+loGO\nxbOBX1XVdwGIyPcCzwfe6W33F4AfAD4tdcdZpwoobATMRBftaKAlRfSQf5SE5kVrfECKLGTQXza6\nLLJWJdChyH911xmL4BiBTmXQpvLCQuWhCd7/zVXOB1dt3T8k/fRp/5De/nk9y2v5x/X+H2jyH4oA\nQoQ5BLv9JPK97kL4kW2D+3SMQH3Puev3mBe4zLifBuBpwHuc948Dn+5uICJPA/4U8FkMGAAR+Wqq\nJkkPP/LhnfVtgwDulHCWrP2RvSHZx8VqmTGbl7UxmM0LVstGY7aGwFYLVWfKLrLQssiqyTkCZW2h\nplqt93Ey2Kz6k1i67skHeO0iUrx/i9D3epGwbd/+oTr/JAxJO30YMgS7nE/oOLFz2OfxDwQzEOyY\nBD4EXgl8k6qWIgMEZWbVeQzgU/6rp7cYdp6pM7l1tzrIRgFXWvdaJWwEvNLQCFK/SyS0RwnXmrZX\nNupGC26nUV8WgpJlbiqBNmVBLkXTqVELNJsiVdWGFHNTymeTd6s1Mp2iE7O9LNbIWYYuQRYTZF0y\nmW0o1pBPzfeTT0uzbpohi7z+z2za/gvMGSCqjsc7oZQp8/yskrCUZWE85iu5VOW1apLjkyYKWORd\n42ANrIv5vNjLJDAxhMZ6GDTdYH25bl2XHhe1z+EbgXbr5WlHk66P6BuBbcjcRyqp+sdaVUY/JMN4\n5C7TaTcKCCZwA/vrO8/Q9YeWua0t7LgG9zu+h9Oenmfcz2/hvcAjzvuHq2UungV8b0X+TwYeFZGN\nqv5g6kHcSa3neeP1Nw9tkxOwhNNIM10jgENCfpMwaMoGY3ANwZiy0UnWnnBmkq3JNG/qmjVnkttE\n2Mz8TSrpwEoB6+r/bIosCqQa3CBnGbKYkK+K5ngzRea5MQLzCbKYVISfO83iAg9edfxcppRSkMuG\nQjZMsryWRua5sClLFnnuRF1aS0GzrPmeQoZgMil78wAhQwGQLwtWJJCfWxaaIO02fZ4qg+CU627K\noh142nPx+tCoSNwIuHCjOpc8x3rKfYYktG4yA+4czghAbzQg0wHit86OW9GUB17H1u8CMQ7Tg4j7\naQDeDjxTRJ6BIf4XAF/sbqCqz7CvReS1wA+PIX8XfhTQTOkIseogQ+RhIwDUck8q+btYlePKRue5\nVESTMT9gFGClpyTvP4aqyiI1CjDXWX3nkSggROqzeVlXAsVI32K6KoLjAA4FGwW4A/fcXvs+WnKe\n15gtWgRsydhHSpQQ28YvCXXfn2Akv9uno4wAeDkBe+yUaCBojPL+9SHv372Wo/df4759E6q6EZEX\nAz+KKQN9jar+ooi8qFr/6kMc10YBQ0YAmtG/izxuBGKSTypS8wPzImNSeZbLXJgWGZNsXZ92oZMm\nCoB2FAAwWzdRAESjAFZFmvdv4RKEa3AgOQoAWlIQxKOAIaI/JLr5itCkQE0U4EtBLsmHp1yspCBX\n9sln/UYghj4jEKv795e7ROkO+rtGQ94xwt5VEnLusdr7d69pG+/fvaZqLMB5g4i8BrDz+36Ss/wv\nAH8eKIB/rqoviXw+B94BvFdVnzt0vPtqClX1zcCbvWVB4lfVF47Yc9JWKUYA2t6pbwR2IX+LlPwA\nK8HYyaKqCNJaXsg0NxNe1FGAIf46CrAykI0CqsqKWBQw6P1bhIikrrc261KiAJCWFAQmAT+royDz\nf+bJb1YGcvMAQ/JQKkKjvBeB0twYlqX0SkFNW+J24r6TD9i0jcEopBI9dMm+gutBK8Dcfv52+/OH\nkITGeP+ud1+dv0zmUelHRYJGeBuIQD7ZbvKmAF4LvAp4XbN/+SxMheSnqOpSRD6y5/NfB/wScCPl\nYJciFrJ5ACsDubkAiyEj4CYqXSOwC/H7GMoPLAqppSAbBUAjBdkowJDIZPsooEKv9j8kM1QyUEoU\nAFmvFAT3JgpwDce2o4Ch3bPJl4J80mk6UyYkhf32z7bssa/nzxDZQ5TwffK00Ykub8HimikBPlRe\nwEeKZJUi/Tjk3yfJ3S+o6ttE5One4q8BXqFqunSp6m+FPisiDwOfB7wc+PqU410KAxCCLwVZTFoj\niMNGANKSg9silB94aGYiAisF2SgAsjohbKMAwEhBbhQAVQuHcBQAk7YxWHi3RgrpRzAUBUC/FARx\n8nfzAD7GGApb0juEFBmoHrvhRAHLyli78zm73r+NCCwp9VYGWbjkHzMCIb3b328P6buSCfkEliDz\n640x2jIvEDQCEM0hBLe1SJV+PPLfawQwS44Aniwi73DeP1ZVMPbhE4A/JCIvx8wJ/I2q+vbAdq8E\nXgJcTz2ZS2cA3GRwvcyRgpr+O3EjYCWKQ8PND5xVA5H8KABoJYQLNT9pnRC2UQCYByUSBeh6ZSSf\nM0OmHflnS9gOjH1RANArBUETabkE7Ms920QGdvt5j8ff/A7pMpCNAuy9Zkemu1KQO1OVhZsnSK4M\ncrEt4UPYm3a0cslnRgIqnLzElnmBYHLYbhsbkezLP6ne//lK+n5AVZ818jMT4MOBz8CMh/o+Efk4\nVa1vBRGxeYOfFZHnjNnxpYVfFurmAzZlm5jaaJLCoakK94mmLYIhHz8KgLJOCNsoAGgSwjYKACMF\nuVEAwKboRAGQIP/0yQ7QasML/VEA0CsF+d/zzKnCsthmPMBmk3XmAnBRn0Nkt42xCkcBqVJQLpNo\nUrh5k1gZBP2E76+PkD5QE7/1mDPJySfzuhW45DMjBx0iL0BC8rdz/rN2zX9E97fe/wM0IczjwBsr\nwv8ZESkxZfG/7WzzmcDzRORRYAHcEJHXq+qX9u34QhuAkNaf9rkmH+CPFm5w74wAGD3cjQKo6tlv\nzBguC81npp97PvGigHVN6m4UAPQnfy36ukh66/qiADMYr18KgnAUAGEZaCgacEdsj13fHS/ShetM\n9ElBjeQzkBT2BoTJZB4fPdJH+JBM+igtqaTQtalmmszryES4fpi8gI++0s+enEZM+rEj1PcCUSbT\nvSWBQ/hBTDeEfykinwDMgA+4G6jqS4GXAlQRwDcOkT9ccAPgojUgrDUmoBsF2NcGaaOFD2kELOE8\nsWx8vw+bdRPCNgoAryx0ZBQApA/8SoCooiLRKMCMpu2XgmJRAHSbww1VAvWRu9vWw8dZogzUIn8v\nCvClIH96wtSkcMggtDCC9MEjfnzi31STqE+hPKOUgmm2QGYnh80L2G1DryddDz8o/fSQ/3mMAETk\nDcBzMLmCx4GXAa8BXiMi/wFYAV+mqioiT8V0UX502+NdGgOQij4jMDRa+BBGwPYhMonguBRUl4Vy\nBtnCKwudNPXktla/igIEzOCwKgqwSYeo9z/kffmzSTnvY1EAEJWC7HfgV1/FegjtUiEUSwTXCeiA\nTQnJQPV4jUAUEJOC/HyALwvFksItxKQdCJZ5hrx9+96So31dakEhG2bZFbOPEmMEbF5gyfi8QM+g\nsWDy137Ovy4/8duj+7vkv68qIMlgMtvPw6+qXxRZ1fHmVfV9QIf8VfWtwFtTjndpDUAsCuhsN3K0\n8L6MgNsN0xLaWV4w28QTwrGyUBsFAE1Z6MzpLFm1ipCFN1ozNPBrDJxZpfqigIYQu1IQUBm8+KAd\nV8cfygPky6I1Kbz7uVAiuDUWw1sOcRkoFAWkSkGuEbCwHnhvH/sE0oewt2/fB4nfMUSr8m7VhRYo\njeGahJLDXkBSwzUEqZU//v3ne/84Nf8Duv8RbVxaA+AjJgXZ9wbx0cIQTlhug9i8A2fVwLN4QtjA\nLwuNtogIRAGcFWHvf2gA2AiYlshNFABFVAqCJh/Q15LjEAhJRSkykJ3TAXCqy4aloL58QKuZXJ8R\nGCB9s99xxL8pq8GH+Zn5vbJFZQhMRLAR0pLDI/IC9XL3dcT778pfw9LP3stAD5sDOBgulQFw8wBD\nGGMEDPq91FSE5h2w0sRqmUejgJurLJgQrgeH2QfUHRwWiwL24f27iWBPBjL/myiAjKgU5OYDDtU6\nOkT0wWVlVwZat4x9W95xS4tTpKBQPiCYFFaPbHqSoL63D13id7X+EPGvy5xlKaxL4drUyIz2d1uV\nlcE6QHIYiHv/oWtO1P3tMiOZXm5cKgPgwx8T4EtBvhGA4YFiu0hBMfJv2hzknSjggyuAvJoDuZsQ\n7h0cFosCLHyPa8cowMpA0I4CgKgU5OYD+noyWfRJQKGGcKFS0NCykBQUk4egiQLGSEFuPmB0UjjR\n27fLYsQF9l5EAAAgAElEQVRvSdEl/uY8S1ibvM3VqelDVecF9p0cHvL+q2sOSj8O+sh/mwrBi4ZL\nbQDGYsxAsbFGoI/8rcRho4AnsA+OREcIu1GA8VyvdAeHuVEANO2iod8QjIGTB7DwowAgKgWFSkPt\n9xuKCFwdfxtpKJQIDpN/Wwbyk8HzvBwtBbn5gG2SwmOI3xqYMPFLi/jN/M0m0pznyo1pwZ21Ms/P\nmOeL9LzAmEFjIUzaXn6K9OPDJf9UNSAFe+wFdE9x6Q3A2Chg3wPFXOIHguS/2WSdssaUhPBgWagf\nBbjtomPyz7b6fyUDhaIAICoFNa+7UlBNypHKn13HAsS2OdtU+Z4K3ek92+WffVKQv60vBflJ4dio\nYftZC1fmsftKJX57/1vit/e6nZjoJrnT5nrHvIBFaC6AlL5TI6UfF35HgMuIS2cAxuQBLPryAbsM\nFIt5/UCL/N0OmKtlEZSCtikLjUYB0C//RKCbZdcri8CNAoCoFATd0lBfCjor3NHB24f1fiVQSh4g\nFB34I8pjUhA0UUCfFOQmhUOVQdsSvzlmP/G7y5rzV25UfsBB8wIuQt7/lrr/vr1/ET1OCHOREOsW\n2pcUdteljBEYknxc4m8kINPuYCghvCyEm9VI4WvTeFloJwrAKcHra8k7BH8sQA9sojMmBfWNEgZh\ntaoIuJ6PuWx9Z/uET/YxGchuY4k+JAVBOyHcJwXFksJm3boj85j/Xc+3j/jt/Rsi/rPCTlcqLHKT\nb7q5ypjnwo1ZcZi8wJbFB6nk7xq8y4wLbwCaMLz5sf0ooA7FPSnI/1zjAcUHinXRNQKp5L9a5uTL\ngsVqxXpm3g9FAazy+pxiCeFoFAD9XthY2EogmwfwZCA/CoCuFLQsmu85JAW53UJn86Ijlc3mBYXX\nRRm63r3/3k8Ed8h/QAYKaf4pCWFfCvLzAaGksH0fKuW0792KHmAU8dtKp7riaWXnqy64Wb3ea17A\nwu07lej9++gjf7/AY1uYgWDHHMC5hjs1n3nf3eYadLyCa5OyEy4unVGqzQNTth6iRfUATbNqIFNF\n1K3pDvOCs8pznUysZ2+8/MmkrDXss+WM2bzg5Oqa6zdWnFzdcO3GikVuCHCRa3UcuDEruDotuTEr\nuDYpKw+U/iigvprb7YfQHwPgtx72Wgp0Jt+ObBcqTTTv9zc0P2QM/PV97/0qIF/m8btlW/K3281z\nre+5iZPXaIxZM3dwk/coa+/fEr0dOGeXua+n2QKAdXlWn0fIMPjwtW+fCC35u+ireOqDie6qEb4i\njYvkj0y3GJoXoAcPQquH84YLagCk1Xd9TL2vbyjMsvZ711BYA7HMG69ikqmpmCgynoTrTSnr0kYA\nwmwzbAhOrq5rOcMl/4dmphHcQzPlxhSeNFOuTgtuzEpuTAun0ZrBsjhrX0S2YDI7qb4tOlLQQUnf\ncZZClRrm98q8ZWnemomQ2p8t5nmwBNQnfX8ksDvfM1Ab3Oa9tkjxikf+Ey+h7RoFl/wbQ5G3iB9s\npdS09doYhSlSySjTycIk+0vvN7bXr+taWmt/ryX+99wXzVono3UdrdeuAZvUBqs+X3f8QrHqTnCz\nA/mDN1iusxKMtHiYQYMPKi6oAWjDNQb722fzelMWTKvEq40OjDEom/K5nqhgtoEbU1jNCs5OioA8\nVDCbl0wmZRL5m6RcF4UGpCDXCHQu8jCkHzs39z+EqzTGDAYzxqD92/ttIHxP337PLkLev6v9TzND\n/i45GifANwDDXr9L/HaZ7/WLKizv1NNFSrExxjxbRI0AUJNgyAiEp0YF1xA0Bq65PntN00xrA2YJ\n3zVeomokwGLTnuYSzHt3mTcn8D5hv/ew8dsSIt0JlB4QPJhnfR/gl9y53kYuBZPM6Iw2OrDGwI8K\nbtDUVo+LCgpunBTcmMJDc+X6FD5s1kg+VoeNkT/QVAU5MA29AtNHHpD0fa/frVCxcGW3sVrtbF7W\nA8KsjOZ6/0Pyj10W8v7d53yRp5G/6/W7xA9bev3FBpa3jQddrJC5mQDKGoHeJme1EajfEI8E7Da2\n+spcT0P+Wl/TPC/JZdHq9eSeN97oZXvu9bwRR9wXHA1AAD7ZW4QeUGg862lmSMwaAxsVMG0n3VyJ\nKBQVQJMvsFEBECV/V+8fgh0gtirv1sumkwVCNwrYF+n3EVJQo3byMKnkv8hNn9xUhOSfUCfQRR6I\nACrpx036+uQf8/pd4oc0rz+TnAkTM6fD8rQppVyeAnWZgdlvPkEnC3dumi4ycx+4pbZtwnfRSEK1\nx5833r+9pkmWO+Q/bRst3/svxvxSDipjERp5Y+ef7kUnAtpT6WYGEkoqPgC41AZg8Iap0Pb2J8yy\nK/UNbhJPTZ22NQY2KoCuRGQNwdVpO3HsVl74EtFi0pZ85nk5mvwtloWp1IglhYNthUeQ/jZtdm0U\nENL/m/NOjwTmziAwWwk0JP/YZcGIIOtKP+B6/23yH+P1u2Rv/k+6BLo6hU1F/NVrTu/U52HmdVgi\n8+sIxqgPGQGDeF7AOit2WUj6seTvSj5uVddO8HMCOzYhfBAgIq8B7PSOn+St+wbgbwJPUdUPRD6f\nA+8A3quqzx063qUxAKlkb+EnlNybe5ot6gdTs2k92javjIE1BFPmVRVEOyqoE8cJUcH1qdbld2P0\n/iH0JYXNxQxU7gwkckOIdV8M6f/mHPdfpx2Sf0JtoGdVia2f+IWw9OOT/xiv3y+HjUo+y1vm9VlV\nrXVa/YarNVxbweJa7R0LMMvnbMQkh91qnBZ68gJtjNP9+7z/lvxj9X/blNBiT3mAzjUfIBksIkjf\n9HDj8FrgVcDrvGM8Avwx4DcGPv91wC8BN1IOdiENgDg15mMRIn6g9vrrJFz1YEo+MV9iPquNgWm+\ndqVVkmYlonne1CX7UQF0y0ltVGCJZh/kb9GXFIZxlTv+ftPPIawBd0sVxz9gbimo6/2HNf8y6v1D\n4/270o+r+/vkP6a00/wPEGdI8tlUg6ZOz+oZtPz++QpIsYL5tVHJ4WWR9SZJx+r+na6lKdhhHIqo\nBtpjhO+v5jrPF1T1bSLy9MCqvwW8BPih2GdF5GHg84CXA1+fcrwLaQDGIlY+Zm/oWXYl6JE1G1by\nST4xUopMzOQnlTEYlog2zSCVSDnpLpJPDLGksDnXhvRjhL/PCTZiCeAxCPX+CVUC2eV9+3G9/1CB\nx5VA0tcl/528/j7J5/QMVmv0zmkdAejJotHEV2s4WaHzkyYvMDshz6+3xgt0EE0ON+9Dur9/PR2E\nvP99wq0eShx9fp/xZBF5h/P+MVV9rO8DIvJ8jKTz8yK9z8YrMUbieurJXGoD0Ef8EPH6XY+s/sDM\n0c5PYTKrjYFmU6YYvd2ViKAZselLRKFyUmCv5G/hzx0Q0o334dGnfCbWojc0BmBMOag1DDH5Z8j7\nh7b3b6UfoF3x45D/mAFdHa8/JPncPoVN0RD/ao3eNIReJ+/Xa+SqE8GByQtsVsj8pJMXMCOLHQoY\nyAu40lay9BNCrBw0FcWqSQQnkH5MBrpPZaAfUNVnpe9aToC/hJF/+razeYOfrSaFT8KlMwB9g0Xc\nhzLm9df6ZVWBAcBkYwZSQdsYTDbVTdoYg0xzplAnj+MS0aZVTjrPdGfJJwY3H+Dr3YceTRnT/y3G\nl4D2jwBO+bzv/YfIf6giJqW0065vEebytCL+VVjyOT2D26foWUF5y9xzGSCrNVw7aVfIbPrzAlE4\nBLmuW1WU6SWfLoYqf8YagUB78eAlOM/5Az4i+OOBZwDW+38Y+DkRebaqvt/Z7jOB54nIo8ACuCEi\nr1fVzlzCLi6NAegdJUg7yRsccGO9fjcJZ2fSsn10JrPGGOQz0/hq0jYGE9u7ZCBf4I8tODQ6SeFz\ngG17tYRGA1vvfjYvam8/Vvo5hJj045J/Smlna5BUquSzWlM+saS8vUKrMEiXG7Jrs9qfVSqDcLKo\nz3nbvIDrJfeVfLqIef+18+QjZQTwxnnGYihWdTlozKGoeSCjajK4B2SYaVQPAFX9BeAj7XsReTfw\nLL8KSFVfCry02uY5wDcOkT9ccAMwRPoQ9vrrmuuQ1289sk1hblz7H0wbhZntbWKkoKgxqJPH806+\noCURZfduCjtrfPq+p0Mg1Kd91wogdzDYEKxBSPf+hytiYITXP0LyKW+t0OWmMgJV2+hrDQFnYLZ1\n8wJgjEtCXqDQTYsk3bxAX8lnuN1DROYJDf7qMwLW0YrBHiMSGbRbaDfH3qeUui+IyBuA52ByBY8D\nL1PV74ps+1TgO1X10W2Pd0ENgCSTf9Drtx5YzOu34fhqXffPl+nUMQanTWQQMAZSOAOsnOSxmy8I\nSURWqz+UIbBJ4dCo5zFh9Bhj4e43tU/7OvG5nQeSwikYkn5SRsJC2Ou3r6OSz+md5h67UzkajuRT\nfmiJnm0ob69Z3zT3gf219KxA1yXZ9aLOCwiYfVTRQLMsnBfowMkL9On+Lfhefij5u63+76On9bg/\nq9qDAFX9ooH1T3devw/okL+qvhV4a8rxLqgB6Eey128NgeP1653Ttudfla3pJNEYTDbo6rRpbesk\nj6VqbxvOFxiJyLTZPZwh2JQFG5qe9H2IGdltNNe+AWAu7o685GaimDwo/4S8/xBSdH9XFoEer986\nGf59liD5WCOwWQmru/ZkCyZnG7InNZPx2AYOWpG/a1a12MDspM4LpDaTa8h/0ro2c60J3r9vGGJG\nwPX4e7z/2AREthw0RPzhpPeOEEHmDyaVPphnvSV8z8wd0NXSYG1Y7g64Wa2bJJxTgQFnRv+bTTvG\noK7PtsZgtgbuOD3OI8agJ1+Qy4RVefdgEUEzHsHpJuo9KPbBj5WHpkRfLlI9tDGVP9ugT/pJ0f19\nWSTq9e8g+ejZhuWdnNXdjM2qGuOwFmZXSuY0XrYuN2RnG7KHDEHWnn+VLHaXpTaT8w1cs8whaL+/\nTyca6HEO/DEAfYPBYp5/ZHkzq9qDEw3cC1waA7A3r9+rwACQswxZGPnENQbKmbmBrTE4PTPrYsbA\nrSQK5Au08tSsd7NvQ+BOmGFmqsqr6QrbraVjBsEiZBhiRiF1FPGuk3d0S0C73r+LbXR/vwNmJ9E7\nQvIpn1ii65LyQ8vKCBSsbxYUa0P+Z3dyipVQbITZiTOREUt0WYTzAqt2mSiYNuBjmsnFpJ/OoC/H\nu++Vf7ZpAR2rBIosD0UDY52UXux3JPA9xYU3APv2+vVsUz+YFrLIkUqYtsZAFk5f/W2NgZc8tp5a\nHRHIlFV5t5Uj2LaaZ1lk3N5kTgRQTY3pGAOgYxDcOWyb77wbso/tDxSal3ZXuPKPi1DiF+K6P7gt\nHvKO7t/r9Vsnw7nPagcjQfJZ3snZrIXVacbd25b4m++n2AizVYH7C8TzAms4uTqqmVxI+mkO3uP9\nb9sAzoedZS5heSxSzWWylUx5EXFfDYCIfC7wbUCOyWa/wlv/JcA3Ye7PW8DXqOrPp+zb1frc5m2d\nroq+Blt5+v5DaR9GG47rukSXBTLPkbMMWCKLSWMMboFMI8Zg0kzAHjQGrbJSL3m8WSGTWWMIqoZ0\ntSGo3o8xBLfXeasvUTOdoSEyt7NlX3Rg8wauQUhpyXE/5mp1vX+LULuH0OQnfdJPzOsPtnPYQvJZ\n3slY3c1ZLZU7t+2550BGsRLmVy1zGyNgyN8QY29eAJKayfVGNxYx7981DkNRQEj7j5F/QPax0462\nz/0wMpBkHOcDGIuqa923A58DPA68XUTepKrvdDb7j8B/o6ofFJE/ATwGfPrgvqv/Ha9/s4TC8/rt\nA+mSvQ3FA16/rcDQsw2blTCZbeofX9alIwexmzGY5B1joJOZSd7tyRD4pHtzldWjbu3/SaYtg2D+\nb2cM7G/i4l5rsn7tv9/wbVfpp5UM3YPks7o7oVgLZ3dyVqcZxTrj1s2CzVq5VVUBLZfK1WXG9Rtt\nWaNYK/OrbflFonmBlGZyTclnvT8/8Vu/3tLjHykJBRPBAYNwcBnoAcX9NFvPBn5VVd8FICLfCzwf\nqA2Aqv4bZ/ufxoyCS8IhvX6rxRYboVgr3FHyadkYg9vrOjLYyRhsCnMurjGo6rlbEcH8pKkckpx1\n9cBaQ7Auzzr5AZf8b67yTgM6oEX2m1J2NgZwf5Nwrrfvev+p0k/KSNixko91MMrbq5YRiEk+y2XB\nndslt24WrM5KNhvl5Frz/V7H3JebtbC4aq7PJofVIf960FgsLxAYNNYr/VgE6/4H1qcgFBGEEr6B\nPIB1hizsuR9loPtrAJ4GvMd5/zj93v1XAj+SsmMha9f1u2H4Xsg/Y3W3qcDIp4p5pEpYFUxmjVek\n61WdINKzohoxOAE26JkxGK1GXtVNXvd2cSuJXEw2jQe3NO9ldmJu7sy0pl7VvbwWrUSxJf+b67yl\ntd9c5fV8BFequQgWOR2y38YYAEGDcGiEWj27jeDc5O+Q9GNeh5ugtWa+qkogW/eac2+177NNrff3\nkX+xzmryXy1LVmcld26X9fWs5o3ccf1GTrFSNtOMfKos7+TMWZI9aW6OMy8pn1gaI3DtBF2vkc3U\nyFJgIoHNEsmbsmSbHO5N/HoYbPy24xzAHUTyAAd3OjI52EjgQ+OBEK5E5LMwBuAP9mzz1cBXAzzy\nMU9pbtTC0dNxJkAHOAEwk2rIdNqeDQsqbX9C9hCUTyyr3WyAkhkm4QaQT2wEYPYgi4mJACo2qXMD\nVa2wiQCq17ZqqJ6E3byvid/KQT78aoeE/iguQvPturi5NmS4jTGAdt4A6K0q8qUoPwHsTpTjTp95\ntoFV/T5yndXcyi42m6z2/s+KRv6xczCYcxJsB+n266yeD9rtsV9q0XjF+aSS6ObmXtusmhwPmPEi\nGxsZFl4BwYQJG4q1MpmZJmzFRCnWMJ9nbNbKagmzRcZmY77j2SJjNs+Yz4X5PCOfluQz+3nIp6W5\nB6dZTVSymNT3lkyn9X1HNRZFJvP6mVERyiqCtEbANJKr5K581n7ONlXOisoIhNZborZOz8qJhu0y\n97635+bCVstZVOfuRgV2UKULO6bmiPtrAN4LPOK8f7ha1oKIfDLwncCfUNX/HNtZ1VL1MYBPfdYz\nFTwPJZ+Yv2KG5DOjy+YTc9Oc3Take3oG0zU6M1p8NpuaEH2aIfMJ5YeW5iG6vWZS5wC0IvO8Jn2X\n3GU+6RgCoCH9SfNepp4hCKFKDDfX1X7fjCIODYKZ1j1QbIMvOyE4WNKWerCVHXG7LhtjAHAlt3PE\ntsl+U1oPPy06sEghfnseMfJfVUS/2WSslllN/H5juLkzMAxgcVJFStVczO4o43lRRXXY8RFldZ1F\nraG437OtzJJ8BnPMvQZoPjORAMBq3XTvnOQIZlfqlBHqPK9lGxNdVr/fVDAJX5gtm+XXb+RcvZYx\nn2dcuabMTkoWVwtmV0ryacn0Rk52bUr20Nz0DHpobu6zk4WRf04WZmzAZAbzE1MWOr8GsxNUpJIU\nw150nQi2c0p72r91MxSC61uw5O88E/V/e987ExU1pdLOrHX5rDWPhTuI0i4rdLPVrHVRiPS3qjjH\nuJ8G4O3AM0XkGRjifwHwxe4GIvIxwBuBP6Oqvzxm53U43lkxqTycWZMMzicwOa1vQGMIpuidU2Q2\nRapksEwzytsrZDExeqr13CrSr72r+STJyzefnca9fGjfWPa1HThWz9nr3PihS66Sd/amt3PB2ijA\nEviyJnjz3yVD//XY6MAcp328eV62cg7beP2pxG9h+wNZGchGDrPM7N9+gVdyO/bAEL/7elpkgDEC\nbu+kvPp+ayNQeaKSz5qfZWIIUMA4G9XrOh8EdZO3OUYOstiszTnM5pM6AQxw9ZpJAOfTskX+86sF\nsph0yf/aiTE+LvkvrpnnIkL+MY/ZRgQtQ+Cies5ahiCwPgjX63e8+9Zc1Z5RUJGW1+82WbTXEHOQ\nLiPumwFQ1Y2IvBj4UYxb8xpV/UUReVG1/tXAXwE+AviOqhXqJq2XdnW79XkbriFY3m68tEkVrt82\n5K93Ts3DMpsit0+RxcTkBhZ5ren70s6gl2/X+aTf50W4XlB9DV3vPwWTLA9GAc0k4TLYcsGNDmA4\nOuiTiw5N/KG5AOx2dauIKgoAYZGrc/1G/mmMmJ2wxkhBpUP6fvmrqMLsxNxnWC/YeeSqCEABZtMm\nMetUKU2XBVCQT7TJO62U6ziJ3xs5sysF+Uxb5J89aU52fYYs8jb5nyzMfeiS/+zEEGuE/O21meuM\nyye5TGEyj+YHBGAy7+YHQoagz+u367fw+vfeRuUYAWwHVX0z8GZv2aud118FfNU2+06eji6fwMlD\nyPK0uTFXpnkbp3eQSd4kiSc5cnpGXpG/npkbrCb9mUfuvpcPXV0zhL6bacD7HwptLVGlRAGpTdcg\nLBcNRQcWY4kfSCJ/V/t3X7uJ4dUyB6caCLr5hLFSkEXLK55X5FdNZmIO2EQDdnrHjCYCANDphikw\nOWtId1PJRdYIzK4UzK8a0s8n2iL/7ElzZJq1yf+qiQBa5D+/DlV12YYNZVl0yN8lft8Q2JxA69pd\nQ5BPWmWiUUPgwtP0W5JPotdvz9v1+mMTD11GPBBJ4LGQdiPcNMxP6vwAk7mRhmx+YLU2huD0rM4P\nyGxtwvYxCdwQsQ95Dq7Hn+j99/VC9w2EjQKa5K0xDGeFMM3GGQGLMdGBT/ywu9c/1AHUbRPtRgZu\nFADaSgiPkYJ8BPMC0Pr9ZNMUIchsbeKwSnKEeF4AqMl/dsVUoLnkbyOAFvmfLMx9FyN/jZO/7/1b\nQ2BG166DhqAlCwUMQetq3PWus5Po9dtz7PP6U7vOXgZcSAMAbDcQJZYoXmy8RPG0aQcN8QSuT+4x\nsu+b5KJzftt7//VuqmQw1YQfy1LqCABMFGBVrG0MgI++6AD2J/ds0/q5/owXBbjnbRCXgsBMqxlC\nq2LGzQvglUlWyeE690RaXgCoyX96wxQitMj/xqKb8D25WhN+Kvm791Zfe3BrCLrLp938gP1mq+Rw\n2xCkef1A7zmHvH5bcbY3iMRzeOccF9cA7AI/P7BZthPFt09N3fTUK1cLJWwtUkg+2RBsp/3HEIoC\n7Otto4AY/OgADkv8dl1ownigMzm8HwW4iElB87z5DWIEaNY5eQGc5LC9t2BUXsDCkn92bWqSvi75\nV96+T/4yv27uo0TyD13T+Hki0iuGYl4/0JJ8tvH671W7kW0gIq8B7Py+n1Qt+xvAnwRWwK8BX66q\nT0Q+nwPvwEwi/9yh4x0NQB9sfsCO6qwTxbNmcA+0yT5E4qnEHjuH+rVX9xyo/AnptTGYAU1FXZLZ\nlHNKpyT0UHhiFSd+oJf8Y8QfWh5KBNv913D7AgX2myoF+UYgl2krWQwgTnJ427yANQJumafMJy3y\nb0k+LvnPTdWPTuadxGmfFx1q/pdqCJIrhlzih1akW+i6jna39frdyrO9YL9J4NcCrwJe5yz7MeCl\nVeHMt2KmfvymyOe/Dvgl4EbKwS6mAdA9T/XmJ4ptfmASaU7lfm7f8MJhNwxOgc0DuFUr08zSj/H8\nJ05EECoJ3Qd28fpjBL/X84tEAWArgOzyrIqg+qUgF7lMUZGt8gIAWulzlnJ2qfEPVc1AmEzd/7sY\nAvd76KsYGuP1Q2MUhrx+O97kPEJV3yYiT/eWvcV5+9PAfxf6rIg8DHwe8HLg61OOdzENwKHgJopD\n09wdGEPefx9iLXDvRxRwVsATS7kvxD+4vRslxKSgvGmWN8/VqaRqDHIKGbZ08fm1aF6gb9AYsHWN\n/1DJZH/VzPaGYLBiqF4R9/pTzjXm9duy471BpCn8GMaTReQdzvvHqkGsqfgK4B9H1r0SeAlwPXVn\nRwMwFl6iuIM99T0PGpcdvf/O7gJRgC0DNfX65vXYktA+uOT/xGo74k8h/XzZ/k6KeR6VgcYiRQrq\nnE+kfn6XQWMyn5iZv7ao8R9L/m7VjGnnYS/S+T5HyupDFUNjBnWN8fo3jlG4D/hA2limLkTkL2Pc\nkn8YWGfzBj8rIs9J3efRAGyLfGKSeZbwbemaKwmldD6MGIzQXKfNscPe/7bJYDcKqMcHOAPDdikJ\ndWH1/pvrxus/vWMIIET+sTr+EHzCD60v5vF9xHIBsShgSAoaIsOhvEB00JhtU0I1CXxqjX/VSnwX\n8m/aeJj3riEwYzsK+1V0rnEMmm6d4yOUFK/fNQoPCkTkhZjk8GerBjWzzwSeJyKPYlJYN0Tk9ar6\npX37PRqAbeCEpnlF1LXn4hK6V/PcwSYyr2kMAe9/G4TGA0A7CnAHhu1aEurq/Zb8b9+cRb3+FOIf\nIvw+hPbpzhGQgrMiLgVZIxCSR2Lw8wKt5LAdj0I3LyCLdXKN/67k7/7vYntD4M41YHEIr98n/r3N\nMX3gkcDVxFkvwcyNchraRlVfikkOU0UA3zhE/nA0AOloPUBLitI8KGvOWhODYA1CPQIy0gCr2AxX\nB4UiCM/737WplZWBbHsIoBMF7FISasn/5sq8vnnakP2tm1NH/ukn/W0Jf7oyn1vPmhHEKTJQixwC\nUUBfryCDKhKwLxmZF3CTwz15gWCNv504aI/k78sltrEf0IoK2qFP0V2UiJRWDtt6/fa3PXSF2zYQ\nkTcAz8HkCh4HXoYh9jnwY1VLnJ9W1ReJyFMxMyk+uu3xjgZgCO7D4w2Pt55LLuZG9SfLjpa79cGN\nGDrtb9O8/21b3Ta9gJooYJdksJ/steR/emdSe/2NBNQm/VTCtwSfgpgMtAxGBOH9dr3GrhTUNgKQ\nmheIDhrryQuYk5321vinkL9FjPxducSM4G48/rAh8K7fXxSAvXb3/Mz/zV69fr/b7c4Q9jYQTFW/\nKLD4uyLbvg/okL+qvhV4a8rxjgYghurBWZdnFGWb9F1vaQ1OBNA2BqUUHWMAND3UXdgoIVY6Wmx6\nvf9dB4MBnShgl5JQt77fJntP70xryce8bur9Y4Q/huD7MF0VdRRg4TeE8xGKAha5drZxpSCDxgg0\nOpQ48GEAACAASURBVLkxAqm6eGozOXMB4Rr/MeTvetUx8m+a+IVIHnAmEQ5FBSF5qA+H8vrdliOX\nHUcD4CIg84SI331QzBSBZt7d9jyxE+BuPV9szBhAxCBAN5+w6+U5paBuHsCtBnKbxG1TEhrS+13y\nv1Vr/znFTVis9lM1NQbu6GAfbjI4tN5tGQ1dKajJnbiRAMSSw0Mjh2G4mVynxv9A5O+XTrrGIC0q\nGCcPHcrrt8R/9gAlgQ+Fi2kAtCQ0N2gUPTLPulx2HpBlOWlpou5k4b4xKGQzaAxsUyuLVv7AvSyn\n/8mh4LeKtlFASkmor/e7yV5X7799c0a+LJiuCib7HmEWge2gGZKBXPnJTwb7UcDCu6XcttFtKQhq\no1CTYDcv4CNkEAabyXk1/tAdOLUv8rf/2/M8hA2BQez39eShwPdxKK/fEv/ZdkppF8d20A8gRnv7\neXDmKjNpeHPzu8YAVvUcstYYQJMrsMYAaA2RjxoEB3ud0Yj+KCClJDRV718tc/JlwZU7a6aroupr\nA+uANu9LNrsiJgP5/YAgHiX4I4TdMVnme/K9ym4kUEshCTJISjM5t8YfDkP+vsMTMgQ+xkUFXUPQ\nl4zexeu3xL+6N77HucbFNAB9cwEMJHV94r+9mXRIP5QUM5p51xhYmcg1BmWCMTDr2gYh5v3vOypw\no4CUktCQ3u+Sv6v3L26tmKxLpquCk5uN/DN1cgDWGISWuRhjICbrso4CIE7wq6XZxjcK7sxh/jIL\nM++BIfw2MdoPhZPDW+cFlraBXFPjD+MmRUkl/xQPPyUqcA2BC3++aLN9dhCvf7XvHMAxAjiH2DhJ\n1S20fSvzDE1QPs1sn/ucRd42Bsbb05YxAJhmbWOwZukkkafNFI6OVHQIxMYDuHDLQH1so/dP1iUn\nt1ZMlwVX7nT1/2KSMVu2Y/PVfLJXA9EnA807BsFMGLNwNj8LJIR9KciXPhoS3G9ewCzcbkasseRv\nCDNeDZQSFbgX2xcVHNLrb5ZHTvES4WIagCzvlsAlePsxmadvxqpFrq2JT67kwiLPWxOl28jAnR4x\nlEAuWzkDyGVTGwUXLjn4JZ8+cbjrfbL3t21Pk5e1vgv7cLsPWR/5L536/tUyJ2d/T9t0WXQIP2gg\nnAqi9Syv8w3rmZGhVs60ipNJGRkgVrRmDYNq/uCAFOQaATsDGpTVPaTV+ww7K5pBVnu9ZBWBO6XE\nfruEVkfNqn/O2EZpvnftE6xPrvG6+XA1UPv6+hCOJJYBz97+3wSigaEkr+/12/V7ayAoslvH3/uI\ni2kAJGva3B6I+C3OqvWLXDmrtmkMQTMVYmMItF7WlogKNtXo0S4BdLNVfUagrzw0NheqJQWL25us\nRf7LIuNDK6m/B7+Nc1+Zp034dq5hkpFvytZ7H6t59xYNefsuggYiUk7qGoFB+FVB0TYRFnFD4N4D\nxvvNK4egawjc8SY2OnCjQ3uPQ39f/BDxx7T+GPH7r21psJ36s0HYINi8mT1GIy82TlPzucMS/747\nyD6IuJAGQNHOhNZ7J36HcxcTd51vCMAlgk1ZOg9A1xAYgjhrGYJmyr1tvXmq47VJHqA9cKe97bIQ\n7qwbQ9D6LgKav9vWoQ/red7y2GF/5D+EkCE4rBGw5NjMiRy7B5alOJFhWTsETW+cJiJ02yekjZgd\nR/wu0ccKtdpRz34Ngntu5nWc+O2yI/GPx8U0AFqyKu8enPhXpSsHWMQNgUsElgRs5UjYGzyrCcB9\nqC3iJA/uAxcl+QHyN3/m9QdXzffhVvv4Cd+VJ/3EsJ7ntdbvk/8hiN+FrQZyS1D3YwRg2BC0o0L/\nHoC2IXAdAnsfuDIhDGn85rpSNf7QKNlttfJdDEKM+O1+90H8/sxyW0OyowR0nqAYA7Av4vdJ34X7\nvm0MmpvW5gma+XAbQ2CTZ26eoOsNnrWO6ZN8iOD75jzta4PrEsSddV5/L+534pd6bjZZh/wthlo6\nHIr8QzJQa33ACMAOhqD1u6dM0tBEhaF7wJKi7TDqGgIrD9lKsnAfny7x+wnUIY/aIj5gKnEyigpj\nDIL5f86J/wLgghoAIwEdivhDHtEib7ZxDYGVh6whWOR+nqAtDYRIYAzBx8h9qPWtv958P+a8bZLX\nH+TV19QtJcxezSetip9De/4+DpsXaIx/P3bLE9SH9e51oJf4fX3fJ/5Y1OufexfpRqHfIIwnfvs/\nhfhtue9eIBxm9r97gAfzrAegWnJnrcnEf6t6jnzi7yN99/0i7wmTPXnIJQU/YWwrRNyEsVs1EiL3\nPmIfIn3we9g0uLnK6+/HLff0R/iulllwovY+rGfdHMBB9P6BKKDe7iB5AYu2NGR+f7yIcPs8gVm/\nf+Lvi3rD1+lfr0W3d5JP9BauQbDvdyV+/77cK/FfAFxIA1CotKpYfOJ39WxIJ36f5G1r4fHGYLvK\nIRgm9ZSp7vokIAvXOIbKPS3521p/6D6AVv4JEaybCPbJ/5Befwx7zwtYeJKgwf7yBECQ+H0NfRfi\nH4p4w9dbfXYjnfYZ7vX7BsEaxr7WDX4t/xDx+6Qf6v66G7Jx83qcI1xQA2A82FgJ49Cw8BjpD81J\nm2wMOqQwnDAOIYXIzXbDRsFFWxLrL/eMkX8qzgP5W+xsBCBqCFYrdxRxWlSQkiewSCH+sd5+n/Mz\nCgNGwZfK+hyzfRL/eawGEpHXYGb++i1V/aRq2Ydj5gF+OvBu4AtU9YORz+fAO4D3qupzh44XNQAi\ncgMzEcHDwI+o6j9y1n2Hqn5t4jXdc5Qq/M7ZJKjvQ5j4U0l/1E3jkEHIGFhSsA9EX8I4BfsY2eh6\niLEWD26tP2w/gYtfDnoI8k+VgertD5EX8FHde20i7EYFIWegO7BsuJRziPi3cn52nVs5IVLYB/GH\nvP3zSPwOXgu8Cnids+ybgZ9Q1VeIyDdX778p8vmvA34JuJFysL4I4LuBXwF+APgKEfl84ItVdQl8\nRsrO7xc2pXQ8/thN795YFimk795wtm+MHw20PpdICq48ZENjSwT7nMFoqAmnW+sfK/f0scuDdT89\n/xB2zgtYBFtKO7KHZwxcadCNCsznunkC6PbCGaqRr69nhPPTe2+Pud6eZb5RGEP823j7+ysDlf45\nvEdAVd8mIk/3Fj8fM0sYwPdgJnvpGAAReRj4PODlwNenHK/PAHy8qn5+9foHqxnp/4WIPC9lx/cT\nG21XrkA8cWTRNyVh7EZZLTNm83L0jbSiaUJmHwT7348K3MqhPuzD+3cR6uzpl3vC9qRvE8H3gvi3\nPc7ejIBFojEIjSnoRoVNniBE/EPe/ljS35ksEwyD+76P+FO9/QtU/vlRqvqfqtfvBz4qst0rMXMH\nX0/dcZ8BmItIpqolgKq+XETeC7wNuJZ6gPuBUhv5AuINoMbc7LHqgdDy0UahxxicZaEk2uGxqiOn\ncLknxL8/V/7Z14xe9wt7yQvYzy2b+YhdJ8Ai5gT4UQG05aGYvp9C+qmOj73Pt3F4/GtvIfAd+J/r\nI/5tSX+vMpDImCTwk0XkHc77x1T1sdQPq6qKSEcvFBGbN/jZalL4JPRRyz8D/gjw487BXysi7wf+\nTuoB7geKEmyn4dDAEP91KuEPVQ/YTpJjS81aD0fAGGzTt3y2g7Pjkn+s3HMfD1CoJcShsEu0scug\nMRsl9m5DekTojyexGCNzpj4Hoft432WUUcPgnFtI5lkmGq7YNvcRH1DVZ438zG+KyEer6n8SkY8G\nfiuwzWcCzxORR4EFcENEXq+qX9q346gBUNWXRJb/38Az08/93qPQtvcK42/0PrKPdY2MfWY+LzrH\niBFDyEvsq52OYVtJyJJPX7ln6JwfBOxqBELYRRJyJ6MZcgJi8qDZLu7tjyH9Q5dLxu55ew7+HAw+\n8Y8h/dg9eZB79fCtIN4EfBnwiur/D/kbqOpLMUU7VBHANw6RP1zUMtBSat0atrvJR5cz7nhjhUJs\n26J4Ni9InTk35k2lwiWMULmnXRdDSvXP/cSueYdd8wLLZd6Zc6Czvx4nwJcHYRzp3+8yyb7rdw1E\nyNsfjtrHFSacx3tVRN6ASfg+WUQeB16GIf7vE5GvBH4d+IJq26cC36mqj257vAtpAMpSavKy2KYc\nbB9Jo1ifeXt8n7DdB2Qoydw3laGPsYYhVO4Z2v+D4v276JuGMunze8wLhH5vCEcHIWNg4ZP+NiWS\n9ypp2if79J1Tipcfux/PI9mHoKpfFFn12YFt3wd0yF9V34qpFBrEhTQARSHcuhmvUYf0m3tbgrM3\n+NBxQnPS2mOGZCXXe4oloGPH8REyIBahcs8h8h/7kIVm7LpXOQF7rPuRF/B/c5cQhwyCbwzs593/\nKYR/v3Xz2FzMoe1i57ML2e+9OOGi9gISkT/dt15V37jtwUXkc4FvA3JMKPMKb71U6x8FToEXqurP\nDe3XRgAu9nEzD+1j1iLn9OO5hO9iaKxB6DN9BqN73Gb/vuHwyz23wTYPWd9MX4fAeckLxPIBsYjQ\njywPlSg9pBGI3fexY28z4PBBr0I7NFLM1lcCfwD4F9X7zwL+DfDbmELlrQxANWT524HPAR4H3i4i\nb1LVdzqb/QlMwvmZwKcDf7f634uyEG7fvPe9OXbPA8TJPbbOf5Bj0YS/Px+WLOZV1OGT//2Sfu6F\nQThEXsDFIQzCUOHCvvTysVFdsaQz3/IQYoYgNcIcQ/J+xLYXyMXuBTQFPtEORKjKkF6rql++47Gf\nDfyqqr6r2u/3Yka8uQbg+cDrVFWBnxaRh2w5VN+OpVQWt5q0aWxy8POOYhlZPu+OxPXlAHeZRaza\nwkVYRhj+/u6Vxnoog3CIvEAf0kpI846hdz3/0G9+CLK/V160f7/780innsdBSP6CIsUAPOIR7m8C\nH7OHYz8NeI/z/nG63n1om6cBHQMgIl8NfDXA/MZTWjfB0A2xmabJHPsyJId4oEKE0pdsc+EahJDR\nCHlmfnTie335suh8X9NVEf2ut/1O9j2W4BB5gVT4v2Fvy4UI7G/pGoJQJBlaFvoN4fw4UKnnsZ7l\nR+knESkG4CdE5EeBN1TvvxBncNh5QTWa7jGA6x/9zM5IuVSSh/iN5j8g2zygdj+7eMyxEDtE9qFl\nMcKfe6+Xbjni2LLYEbLHZF3u9NBawt53NODvP+mzq67hS0GKbOL+VpNJ2WvcY79bqNY+Kr147W0e\npIqvsTLUrlAZ13H3vGDQAKjqi0XkTwF/uFr0mKr+0z0c+73AI877h6tlY7fpQEUGCX/oIQ3dQO6D\nYl9vnfjdpacM25G9v828voays70hhqYm2xoEuw/3WieTtPYAKde8i+d2qJHFh+5YGoL/W4bIfz4v\nmM3LYD7AwjXqoVLo0P0bG5AVur92MQq7fHaX8S67jpW5SEitXfo54Jaq/riInIjIdVW9teOx3w48\nU0SegSH1FwBf7G3zJuDFVX7g04EPDen/PlK8sSGyD70P6eipRGj3t+8HoI/soU0GltztZ0LX6xKC\nNQiWbFyD4G8/BiGjcB6NgMUu0cG+YMn/5KoZ/uv+7n33n1/p5RsOv2JsGZCLzOfaxj/l2KHP70rE\nqZ8PPav7NAKKtqbnfJCQUgb6ZzHa+ocDH4/R4F9NYGDCGKjqRkReDPwopgz0Nar6iyLyomr9q4E3\nY0pAfxVTBpqUeFYJE39fWDjkUffp5KHP3ItweRvCdz/nRzGdlr3OtViCd41cn/c5xiCsyKM5g21w\nr3sMdY49IAP560LSYuz9ydV17fmnRIF9v0GIGNu5g9BAw6y+r/yIIuU3D0lOu6CvoCH1ebjMSIkA\n/jymYuffAqjqr4jIR+7j4Kr6ZgzJu8te7bzW6vijMaQBpjw8KVp5DL6HfAiMJXz3Mz7p2/+2idyq\ndFoPnJjRp/YBD0UH9pjbNgvzI4F95AXu5aAyi323uPadEEv+J1fXSUQ6Vrbp26d1AKArEVr03ffu\n5/uQOkis73z9Z7TPAdodSqkPpqyUYgCWqrqSKskhIhP6JjU9D/ASMrEfetsE6WxeJoW+KfpsipGI\nVfOk3ORmeTdf4RK/JX237fQC01VylvUbA7vfFIOQcr2uIThvyeFDoM/798n/+o1Vfe/N5sXoBoEW\ni5Ph7yPUTNCNbmO/udluvCMQk5Xc44YQcsbGOj+XGSkG4CdF5C8BV0Tkc4CvxbSKPreQTPdC+tBN\nlIa8h77Qd0xeIAS3Emcs4fuvY96+21nSnZDDkL4MGgN7nH3JXg9aXmBfiN2zlvAt+V+7sWKRN8Z7\nm3bhQ4iRY4oTMBbLiIPjIhZ1+1JOzHiEIt5dWqZfFKQYgG/GjAb+BeDPYSSb7zzkSe0TKclSf7uU\nZGlMpz2k9t93s29D+mZ5M/XkNLOTkZvX67KZiKSepcqbtq/VlMz5bnYlhljF0IMgCU0D+YyxsL+h\nJf/rN9Ytz3+Rw41q8Oli1xMec16buBPQB1cycuHmFAaPHfh8X7TQJ3O6Ts+uUL2gSeCqXcPrVPVL\ngL9/b05pd4ikVe0Mkb77OZf4e0PHSG5hGxL0H5qUmx3ipA9hb98Sv39ddh7iadaekcqNClyEjMEu\n2Hde4DzANQyu/BP6Ld1yT/v6xklRe6/7IrBx2F9EGDIKff2pYFgeGsptudOsjhgadGHRawBUtRCR\njxWRmaqmtqQ/N0gp/9qG+EMJUwu/TW9zoP2QVirpu+fnevt2G3vzu8Q/z5V5Xlanm7EspHU9flRw\nr4zBvvIC96pENKUSKIYQ+Z9c3VQSUEP+D8213xGJneOOpOf/9n5E2EJiQtkiZBCGnuHQM+C+tt6+\nPXd774ccnu2hFNr3RZxfpEhA7wL+tYi8CbhjF6rq/3Wws9oRIpqk6zfr00okQzcV0CHAkC471jDE\nEr8pNzx45+fJPBAm/kmm9STjk6xgngvLImOew6KaeNxGBQ2sF2okoiFjkCoZ+Nh3XmDf2MWwxH5n\nt9xzNi94aObKF3Eyv7IjsfUR41nhOQKRPFEHA05AX4VQX1lsyjMQIn7X2TlvEJG/CHwV5uH6BeDL\nVfUssN2nAT8FvEBVv3+bY6UYgF+r/jJGzDZ/vzFUNTOmUiDmTbTRrjwKEeEoRB6Y0A1vzw3C3j50\niX9erXeJ37xvjMA8VyaZsikFMIZgWc0768pD7VwBxPIFY64zhH0YgUNEAf7+UkpB+wYfurX+ttyz\nln0m8NBMW/mabT3ZeaKE5BLlvMhqZ8CXB1N/d5tAtkjpWeWvT414Y8Tv3vO7Yp8DwUTkacD/iGnA\neVdEvg8zSPa13nY58K3AW3Y5XtQAiMg/UNU/Azyhqt+2y0HuNdwq0G1LJfuIP/TAtQmwPpP2Nuxo\nFOi/4e15uNulEL+7bJ6Z18va+7cRgTEE8zwsD7XRnIOdqHxbqcDHvpPDu2JXY+Lfd26tv5v0vTFt\n9Guf0FKQ4u1OsuF92cjQNQQQNgQp93vIGFjESN997ee3zLph4j/PEQCGl6+IyBo4Ad4X2OYvAD8A\nfNquB4rhU6s5J79CRF6Hx2aq+ju7HPiQyDI9CPHb9S6punKI9YYtUoxCkpfsXkfkhm+O2ZyL6yG6\nN3yM+KcOAUwzZZ4py9r7N4bAl4egMQR+VGDQloii1zwyT7DP8QLbwif/2dJc2Go+CVYC2ffW+w8V\nKsTKPd3kpSW1G7P+6x0i9D7jEVtnI8CQIbiS+4YAxkSDvjGA4YgXtiN+/36/h3iyiLzDef9Y1cgS\nAFV9r4j8TeA3gLvAW1S15eVXUcKfwszNcjAD8GrgJ4CPA36WNnNptfxcI6Vsclvid0NQl+S7GrmP\n9k3X8pIrWC01hFRv3y5PJf5mG/PhTVkwz2FaZLUhMBJQ1iEBmydYFvGOiEFSgC4x3ANJaFcZKPRZ\nS/7+uaQkgmdOlU+s3NOS241p87vGCH4bYjfruh7x3DuGjQxdidAaAjcqbJyAtgPg3tu2ggiacSch\npES9Y4l/npfM8/0U0CqMSQJ/QFWfFVspIh+GmQflGcATwD8RkS9V1dc7m70S+CZVLWXHLqRRA6Cq\nfxv42yLyd1X1a3Y6yj2GKQM9jMfvJk4t+shv2CBAd2B1P5E2r83/McRfV/kEiD+XKZmYneRSVLpm\nYwjWpTDPiiAJ+HkCPyqIX2+gkuQe5wXGIIX8Z8vNYA7AvQ9Tyj3tfWh/26vTwrsHh7z9sNzhEzzQ\n8Yzdz9YOQUAiDBUNRMeTQDQq8I1BX9Q7hvivTYvqPp+RSU4u53Ie3z8K/EdV/W0AEXkjZkZG1wA8\nC/jeivyfDDwqIhtV/cGxB0tpB/1Akb9FyojAWI2wXT9UKunCesfN630ahDZSiN96h33Eb7z9hvjd\nByKXCZnmtSGYZCYqqK/RMQShPIGVh4ahHMIIQL8h2CYKSPX8++DX/qeWe04z+LBZ8/v6kVwMKQQf\n24eNBu094t4HscjQdwbchDE0huCskJrMY1HBPoj/2qSs7/VcFvV9nst0jwZgr72AfgP4DBE5wUhA\nnw24khGq+gz7WkReC/zwNuQP6e2gHyiINDd4ylDwVOI3/9vk6hL9JCuqmz/dIKTA94gORfzuQ2FD\nWmsISi3I8ymTbF0bgjF5gn4oQa34HOUFUsg/35jvuphkvZVAfh17SrnnFec3vjotcT3b4PluQfJg\n7gEXNiK0r0stIKNlCNalAGXQENiigXjlEITkIYuxxH9jVnTu9RDxu9HueYKq/lsR+X5MC/4N8O+A\nx7wuyXvDhTQAcHjid8smY+S+T4Pg1nzHavjdc3PJoY/47QPvPxS5FhQ6odBN7f3VRsExBPvLEzha\n8RbRQN2gbM9GINXrt+TvfzaWA5jNi1Hlnk+a+R6u8W59xKIB+9vX5+sQvU+E7UiwbRAKXQcdgphE\n6DoDoYRxKE/gIoX4b8zKjr4/RPy5TBE9n60gVPVlwMu8xUHiV9UX7nKsC2kA3FYQY4nfLhsmfqc2\nukXuhzMIfYO33GUh4s/FJLz6iD/k/RlDsCYXYwysITDb75YnCOMwklDICAzJQNuSf74p8adTXM/M\nvMnWyx9f7tklO5/s+0ge2kTvyx/+tjEjYJ0C/z4IRoZbJozPCuklfpv/CCV2k4l/s4TiwRy9u09c\nTAOQaRLxQ7hcEoaJvxt6jzcI8c90CfLgHr99MArT8WOSz1ARs03l8dnPWQIAWoagL09gz9U1BAah\n76YxAq4mbI1ASl/51LxAzAjs4vn7x3OnJ7Xk77Z2Hir3bMizTXiNfJPu0fvbDhkCf1+NU9DcB26+\nKBgZbpEwhnbF01BFz2ji36zqe/0y40IagIx4ZU9sgBSEK2fscvO/S7KW3FwYKcTsx9745rXUr31s\nej6zPfkzSP52WU3+y9PqYCCOEUiBMQI5UAA2GlCMofO/J0ucTY7ATY4bEmiMgEWo6+o8sAxMwjX3\nZ+wKSDKhmch8/T6k6U+XRcvTd8cBrOc5p9dnbKYZ61lOfgOuzFdR2cd6/g/Nzs9UG+2IYdp6nWnO\nFCirCNHKg4WuKbINpRpjALApNyyr6HCZm9/aRAZl9UwIN2ikQ5vz2jvxHwzKprw/AxF3xYU0ACKH\n8/q7NfP2hzcHbEivbQjcbaBtDKxXBHFDEDu/fZO/Ls1UzwIw2SCzk3pfYB74tiSw7lZTZGCNQIOy\ncz3NcnO+bg8bd2yFmxj0B9bFJh/ZpT/9kJGwUYRrEFwDsZ7nrGc5m2nG2fVZrfeHqn1swjfU3M0a\nxHlu7wutHI6SaWZIx40CLEottkpw9hl6q5drVXfe3E++MZi0jYFu6sgAGmNgIwNoJ46tMQA6ye42\n6c+GSb9YAQHizy8k7W2FC/lNZOzH6/flnhDBNhxXVJ9j66jANQQGvsZ7IPJfncLyNrpZmtdUIkxR\nubf5BMlnSZFAbSBqIwDNl1S23jcPvfH2z1oRQH0WnXYCbhWNP9mOlYZc8rfkPVn3yzWpSIki7l6d\n1pq/JX93kJdb5x/r7Lkuzb1q7pFGFpznVJU32f/f3rvH2rJdZ52/UVXrcfbZd99LMDiO7WCDAlIE\nCQHfbiQjsMEB58aKMQrBNDEJHWSFNG5HBMU2UbdaQkjOP5HdLbqdixOcKAYTmZBYJiHOg6gVMBF2\nsEjjKyAKLyc3cRzFPvecfdaravQfc86qWbNmvdZa+3HWqU86OmvVqr2qau+qb4zxjccks5dvDPGw\nSG0IGt6/NQBh4tSPEGPGwJzbrmYMFqk5X98YMDPPiJ8zuJ3efhOFSvSZfxRwkgZA5Gq9fl87d6Vx\naTrzKgGGRQVxjxj7WT0qODb5lw+yI//1C0YbXd0vz0HzjYkEFufm92qNQK7bYR5m4jqKQwmoem8e\ndve+ygeEXN0VBcAwGcjX4q8SLuF7frHp1Pv9Dt82PLRyiPP8h0YBx4SfGyqRzqvPLGLGAKqKMqiM\ngcsZVMag6i3A2rFY49Zob78NUxQAnKgBSCTeLHUsr7+3izCICpr6t0PFckOigqOSf74xhO/If31p\nEmP3L6vTy+ZVhX46L/MCsdLA1t9H7XfRlReIS0FtUQCEQ8SOKwP1oa2803n9dxZ18o/p/X3k7+A6\naBdp/d7Y2rLbGHwZyHje+z3qvvdfv9CmQQijA98YzFia+0Rz4E4ZEThjMEtgkealMbit3v6p4SQN\ngPMjr8rr98m1E4EhcCVysF9UMIb8HQaT/+UD2Gzh0hs7PjcRjYJ5wKE0Au54MYzJC/jvY1KQwzKj\n0STWtQ4zHLY859DFXMLO3pS8VuMf0/vHJHtdJOSigCzJrRSUmCqrPAEMYR4iA7VVEdXul+gP2r9z\npKLG3Sf+MdxxEk07jQHAPLlzHG+/DUeKAhQnyT16OE0DIM1Vf47p9Y9uI29EBNVG3xAYxKMCc67e\nTJaB5xh9eNaXkG/q5H+5gs0WfWAiAAHYeeeb7apoINvB/AxRPVJeIGmVggy0MTDPR1gSGpOBoF4C\nuu+avV1z/NtGOwzR+/uwyqtkMNjyYq+nZB/03cOl9+/KJh0yj9i7DENgFHyDkJGhSWUMwoqizB2x\nHwAAIABJREFUydu/HpykAUhon39vXg/3+oFGGAoV4Y6aAVJTKZryUHdU0DbSYTz5G71/UyN/fXBZ\niwAUYDurqHi+KbfHksOH5QUKFqmUr50U5OAnhGOjIro8fV8G2of0Y4Tvvtd/7RP/vnp/G/xksEn8\n5mViGDhaFAAt3n+IXU/9fDaPG4Z8V/O6nbSYWRrSpEoigzESR/P2rxCqlMb4UcNpGgBpn4gJh3n9\nYfOUOd44Q1DVy8MYeeho5L+xer9P/pcruH+JWv3FRQCl17+xCe7dBl2cjc4LuK5R8wsrt5ZvmpMt\n2xPCfWhbYGQI2gg//F7/fRf5j9X729BVEuq2h9i3HBQC7X9o05Tz8LsMxG4TjyDSDMESUjq3x5sa\nta4aJ2kARNqbpszrw7x+v4Qy1E5HTwXskIdCHI38V/dNsneX18i/+PwatWybALK0OYDNFrlr+gG6\n8gL7No1ti7QWEeyKdimoLQrwsY6QfqwpzG3vQte6zDHiP0Tv70JXSSjUo4CxiP3NerX/GIZ21rr9\n/BxBTWKqjMKjgIJ46fejgEfjNzwSCe1zcmA/rx+IJKKqMHafsLvWVGXvn0oeqUcF5hr2IH/r7TfI\n/3KFbrc18i/ub8oIQNc7kvO5Oa35rIoEOvICfU1jUST+5Eoj/2S2SiiUgvaFLwP1Eb7/M23buojf\nST6H6P1t6CsJddhXBqpFtoH3r1ehv7d95xokW9gI8+z4x51Q4iQNgEj76lfAIK8ferpmA8/Ir4xx\nmvhQxAyBQSUP7U3+YY2/I/8HJgLwyd+PAGRVnYgsc4TxeYEQbrJoiEW6YogURHW0UWOjh5J/28Lk\nXcTvPm9bwevYCEtCod4Y1hYFjCkFDe9x3a2vdm5OJMrQzaUpNMg3pg/lEYkGHjWc5G9VqNfMw3G9\n/kZVhNtmyc99z1j4hiDMExxE/n6Nv6/5b7Y18i/ub1FbcC/emnuyLSpBJpYXoL1prAsuL+DPDxoi\nBcUXot8PbaQffjbU6z+G3t+GWEko0BkFDM0DdHn/ndhnomYsR+Bv22xhPivzTezWyOIJkzs4piEI\nylT3haoctN7HTeI0DYDEG6agklEO8voHPBhiqxs0WLOzs2nKos0QDCJ/N+2wpcbfkb/eW6GrXY38\nt/dy8q091iYvqzFkaYimlhcAZOYRfEvTWF9eoIwKEljnWjaJdUlB/qC4Epasw9EQDr4M1EX64ee3\ngfhDhCWhMCwK8OHfQz5avf+hRN9XIRR+7pyIssjA/u4vV3C2NPsvz9F8Y3JOV2EIbhlE5Cng/cAf\nxDxq/7Oqfjyy39PAx4E3q+qH9znWSf4WE/oln7Cpa7DXb9+XD4ZLhDoEVQ6hIXCJYn/G/tBoYRD5\n99X4W/IvXthQfGFtjYAh/83DlHxrh33tBDBGQLwyHFklpUql2daTg6xhyG2PAIzOC+wjBW0CPmkb\nE+0WjOnCIcQP9dn1rmrnSOOHSsRKQiEeBYxFp/ffR+w+2vb1Isba611evtfttowAZLM1RmCzhbO7\nJueUb4wROEJ+IHTO9v4eDlvxL4L3Av9cVb9eROZA40JFJAW+G/jYIQc6SQMgUlX4wHG9/poe6ryk\ngYagq2IoZghqpZPQSv4ZmUmoDajx98m/eGGDrvOS/NcPUtYPEtK5ks0ckeRk88r7E+vi+slhtn6V\n0Li8gI+hUpBPqrUlBPcY/RAahTbid/u2ef1h46H738lVxzQIYUmoeV2VELshcUOTwe4eG+X99xmE\nzbb9vfPyN1tD+O5zzxBwuULPltW95WShs7uVk2Gfu70MwZHkn2NDRJ4E/gTwzQCq2lYP+zbgnwBP\nH3K8kzQAcKDXD9WNH/P6faPgIWoIPAypGGozBJ3kP6LG3yf/4gtrdhupkf/mYUq6K8gzT0/eKgvb\njOOSw7otSJ7I98oLxJrGxkhB1Uy3ZhTgE3qsHDS2n8M+ck9smcLy+N4ymG71q2NEB22NYcZINofE\nDckD9Hr/XYQfkn1sW8zL97e7z1Y5utohy8xEAOdnVRmy2/f8rMoPpPO9E8XHWsZRtS7H9eBFIuIv\n8v6sqj7rvX8l8JvAPxCRrwQ+CbxdVR+4HUTkpcCbgNcyGYAmTBJ4+IA0t89gr99/IMLGFoIVTp2X\n4p/fgIohfy3eUeS/ut/Q+/0af5/81w9S8p3UyP+FezmLRcJ8UbnW2dwwVbrZMLuw3uIBeYGYAfTz\nIkOlIOdd+1GAT1OLgOTbZKBjEb/fc+LWwt15A9sWtlZ8aeWCQ6IDVxIK+0cBje2htx/z/mNk37bd\nEnarl7/ZVmXHqx26LVC36tr9Dcn5HFnlyMUS3eWQpZUhcPmBbL5XolhFqgf1evE5VX1Vx+cZ8EeA\nt9kF4t8LvBP437x93gO8Q1ULOVDGuhEDICJfBPxj4BXAfwG+QVV/O9jn5cAPAi/G/KmeVdX3Dvn+\nRLTT6zfvg6oZn/z7vP7dpv1BgLIiqGYIIp+PrRhqkP8eNf4++W8eJuw2SY38H9wv2G2V9Vp4wi6r\nuDs0LwC9w+RSqYhmiBRUEWCVEF7l3RNCh8o9fQneNvKvlx3bTu5cyv99g3CM6MAvCa2OZYbEmd9X\nfzK4EfmGdf9t93sb4dvPhnj5QEn6oSGQWYKucpInF8hqR/LUwkiOlvzL/MB8W0sUl/mBLkNg77/R\nTZvXg88An1HVX7DvP4wxAD5eBXzIkv+LgGdEZKeqPzr2YDcVAbwT+BlVfbeIvNO+f0ewzw74DlX9\nRRF5AvikiPyUqn66/+ult2LGbev0+qFuFJzX793MJZxGGYGC8VCyRfTztoqhEA3y36PG3yf/1YOU\n3EpAjvxfuJezWUgZASzWCXfODTmMyQuMGSZnEsPVvHgnBZkuYaEaGKfl6ztpMxJwBO2igPkiPhW0\ni/jd94zx+mNjusGN8aiG+rlRzs4YAOUMpLHRQVgSWo2EUG8uTbVgTPW7bXnk+7z/NocnJu14hqDL\ny28aguo9QPLkArXkb4zC2hiCzbbKD8xmtUSxOueqJ1F8LPkHoOB4C8Ko6q+LyH8XkT+gqv8B+NPA\np4N9Xulei8gHgI/uQ/5wcwbgjcBr7OsfAH6OwACo6vPA8/b1CyLyHPBSgl9GDCLSO8oh6vVDXfKJ\nef1huVoXAnmoUcvSUzHk4ML4WbI8uMbfJ//NZcLD+8J6XZH/5f2cy/twdu68fwVSIOnNC8CApjHn\npUEZBcUS3QA78jKRv859r9pbKJ56WagfBbiS0PkiZ7dLao1bx5B72tapdZhZUijnOnlLIJr/JSoX\n9UUHUBmAIVGAC8/CVb728v77vHz32QAvHyhJf7cxv5t8a2TJNNNScjT5pjmyTKvck8sPZNt6ovj8\nzMhCfqI4yA84+eeYRuDIeBvwQVsB9CvAXxWRbwVQ1fcd80A3ZQBebAke4NcxMk8rROQVwFcBv9C1\nn/cTNb0fmnN8gG7yd2h7CEKPKEsj2+bVd9vxuDVZKG1+7hbWCJOliaRVtLJz57mryH+XmwfSnpvz\n+HWV2/93pea/2yTkGyHfJiX5b9YFm1XBemW9/axgs7Ba8qxgvkiBwshBD1IWd3N2GyH7wtp6ajkF\nm1pOAICZ9zqrZLVyNLCXE/D1arOouJGC/FlB/thoNyLakWT4Osuq9YJ9rx+4MvL3JZesnHxajfUw\ng/7yg6OD0CD4jWFgoo9RJaGh1h++H1K5szfxm3sx30lZhpxvhTnAvZzZBRRsjNT4lIsB5wiXZdSt\nXBojcP/SyELW8a/noM6uRP5RPW4ZqKp+CiPz+IgSv6p+8yHHujIDICI/DXxx5KPv8t+oqopI650q\nIueYcqdvV9V7Hfu9FXgrwMte/jvHnaxP1MdAixTk0CYFOcSkoEJzNJkZ4sx2SL4wVUfZvNTaZTYz\nHtF8ZpO0O2SZIqsEWWakG6OrZ3ND5OmuYLFIrJefMF8qu535U8yXJhG8WAiLRUI6K0gzUx66uJub\n13M11RqzxBxnkZkO4vms/i9L7f9Gl5VsUdNoc92WD6SbBw+GPP3Q2n/I/Nd+Z7D/OmwKc1JQmBy+\nSjiDMMYYwPDoAOBinteM0sUsr0UjfhTg4JZoBCuFBmOaNWx09Jwbwco9kfu8fufuaFKM1fhtyJKV\n3XzhCnGQzgpzjy1Se49l5h6z95t/j8nMu8/Ce63MCZjGxG2xqt1njzOuzACo6uvaPhOR3xCRl6jq\n8yLyEuCzLfvNMOT/QVX9kZ7jPQs8C/CH/+jvVffH9T1+RzK1KCDNmt5OOY7Ww3zWnfhtg18hFKs9\nbvnchaeuaQwgz7fMkiWZba4SQN3NbdfydfKLzGeIv7wjMF+kFF+oD+BKM2G+yHjhXkWKC5sDuHue\nsFiYHMD8rCjJf34nJ5sryZOLMjRPzudloo6zpfHG7GvTxDM3Ibmr1LDX4Ifj7m/mX/O2kNpi4Tv7\nepUbD3hbwCo3S0ZurCyyWac13X+zTmsS0FXDv798mWGIMYD+3EHdGFQRycU8j0pRYI63sx3ChczK\nfMA8uUMhOUmakmZ3jSHI58bRcA2F2bxykjZbU43D0nj/My8isAQsziFZWv3/ibnx/hcFaq2WrnJ0\ntkPdYj3rnMyTgkrnYpHW7jFZZob8z8+qqiDnZFj5x3n6ki1K+UezhXE0ipxN8fC4OQA97niS68RN\nSUAfAb4JeLf9/8fCHcSkuL8PeE5Vv2fc1zcDimg5XIzox6LH22+FbwxCfdIibBQzG1fgjECaIevL\n+tXOZ8h8Vq7s5XwqWWQl+TvtPp0p6wfmAXQVP4uFfQBnwhMXKfM7OelcWd7Nmd8pSGcFs4uU5HyG\nLLOaEeD8zJC/S8yFD+TiifK1u07n/bslAd3/zvuPkf86F4/8zfVt7Gv/Qdysk85egKtAeI81ezoM\n8fjGAKyXzn5S0cW8aM1DhIgZArf0ojMEWXpmHSNjCHT9gnmfzWFJXRaNGQOXlN3DGMwx8pDz+pOn\nFqXX7zsYpddvX5dORpgAjnj9pUM1RQA3ZgDeDfywiHwL8F+BbwAQkS8B3q+qzwCvBt4C/JKIfMr+\n3N9W1R8fe7BY9YOKNBaxBiPPNEbfxiSiWETgG4MsTvA1+afH+3ev3U2b2geWYkUhM2bZEqOgulLL\nDLJqSUd3dcl8ht7z1voFlkvTAezjqZnw8L5hpDvnSprlLO4WpeSzuGvL8uzDWHpkF8u65++8seV5\n9UC6RJx9IMMIx11noXlJ/luP8M0/89qRvCH8+oLxzvtvmwl0THTp/20YYhDG5g3ceZzPhruhNUNg\nG8UqQzCrGQJx97/LkTljkG2M1u4bg529vgHGQG1HX8wYOE//Krz+ifgr3IgBUNXfwpQ3hdt/DXjG\nvv55IiX0YxCTgcz2luaYWERwrPxA2iIFBd5/kxgrz7iBgsoIZHNTGeR9LFkKMxMNuD5RMGWbxefX\ndtibHXU8L1g9SMu95mcFy7s56UyPLvnENH9H/rluK/IvpCT/nX3tSz9AKf2E3j+YTuBjGoNYvX8M\nsa7btqRj7N4cYwyGeP1dGGMISmkI6gUTexoDuaBKHAfG4Jhe/6Z46P1+j0/+BfWE/KOEk+wEVtVo\n+7sj18YD6kj4GETfFgXQ7f3HpB+f/FurFgqqhxTP82/JC6RL0xvgMAOy+a6UghwOlXxiD6S5pm09\nr2Gv0W3bFabqp1/3p7FQvO/9h01gh6KL8H20jVwYahQajom9jDZjcAj5+wgNwSxZkMquNASzbAnZ\nwgz3yze1PAHQNAZzr2cmZgwy+/uIGAOeMM9GGVn6Xr8j/1BatIbAef3bfDXJPQNwkgYghLsJok0w\nXXmAWIIYzM07pA/AfUd4PP+zQPqpe8bbmmfchly3VV4AKt3WQywvAGbuf/HCppYXMKfWI/k4j+zu\nWfVQ9kg+/rWZ/8fp/lAn/y7vP8Rmne6dBB464nnsGhBtxsI3DLXvjBiDY8MZgqr3xBgC9z6RlDRb\nGPIvjcGuShrv1rXtrcbgLlVJaWAMSvj3mKvwGen1Xwfxqx5/6ut14UQNgNYIM0b87oZuzQNAf4LY\neftZ8CQGnn+j+iecHRRp/AplkVgpXw02OZwuTCWHnwMgm8Plg0ZeQJZmMqjDgnVZhTG7SJGF8fZ9\nIzBG8uny+v3rHKr7d4XZofe/rr23TW1WChpTBnpnIMn6+v+Qlbe6iGnIAi5pWs2QcgnkY8I3BLNk\naftqTESwZdU0Bk4iWpw38wWLs/HGACav/xpwogagHa0ykENfZdDQctCY/DPA+/c9Yp/8/UW/W6OB\nYkUheS05TLaoRQMCrXkBmSXIffv7OYLk01bf7z+gfbo/EJV+xnj/IdbrtBwT0YXZABWpkmCqmVND\nMHQ/h3A0OPj38OpKjABYQ1A8qM3W8o1BIVZqTRNTRqrani+IGQP3LDlj4BoH/f4R38Hw1wpO5+zY\nUezh9d/SOUDXjsfGAHTKQDAsD9BF/rFy0Ngwqoj3XyfKetLX94zdak9ATzRg8wJnT8Hmsh4NzGdw\nv9omQGqTwj4GSz7uoWyRfEK5x70G6tENlfRjrjte8nko+Tts1of1BYRzf2CY574vugxGITN2XC2h\nNcpHxRVYVONWnDFIs0U8XwDNSiJXVuqMgZco9mXFmtdvo8tct1by6SiUCHAVxK9MfQC3CoVKQzJp\ne4BUpJbMasWQaqCoEZg3O389ovTR5xkbuIvqloQaeQFs09imag4TQOczuFzV8wJ+BYZfehdWX0Qk\nH1d2586hzet324aWfHahS/7x9wmnge52Se8qYTH0JYT3WQ96LGL38zpfRfY8Du5vK+M2SzZl2asz\nBi4qcOfWni+IJI9jxsA1n7V6/flgr3/y9ttxkgagD/X8QM/DOrZCKNT/y++Jj6jtk378ihg38dHA\nRgMJ5UTNBsK8QKxp7HJV5QWoFoOv1faPlHyGeP1Qj276Sj739f77VghrWyOgLfHbRv7VOhP7k/9w\n+ShsNtuRy44sSa9ECrq/Tbm3TWt9B1UF0oosSdna84pJREAzX8BZM3kMlTE4gtd/XcRvOoGnReFv\nDcwanRVBhhjyoA1OBMfQtyhFVCPvr4hxKz5VaL/GEm15gVjTWJYil9aLHCL5eA8lWu9dMNdUH+/g\ntvldr8NGPbRfXsz7j+3j/j9E9skiw9XqCw/V/+Zjdf4QbcbEH2fexPHyAes84f4u4d4m5cHWTTBV\nFql46x74zXCrQRIRaWLnD8WTxyU8WdF5/a6hq434J29/HE7SAOwNn7QPHREBlfzTs0DF0E5YAzP/\npS4JDcsLzLKleejCvAC2acyLBhqST8s4h329fmif8xObrDjG++9q/tpX9omhbdrmWOLvixrCMc5A\nNc4cf41rU7NPcnhlUEj+9zYpqzw2FbUZFUC/RNTIF3jJ4xLWwQjHOMTI/yaJX5VaN/qjhJM0AJHK\nzgZCGWhQHiCGsAS0DxHiHNoJW8GRWxG8r89+Dx+UocPkam32fm1/h+Qz1usHauQfK/kMpZ8QfWMf\nfPknXeewqLYvaiuHpSzPugkkbLZqSwB3kf9QeShMJjdI31+eFMzfM1lWP1BwUFLYST73NgkPtilf\n2Aj37OPyMIc7qbBMUxapsiuKMioARktE0ZJSiz6vfx/SP+YQuKuCiKTAJ4BfVdU3tOzzNPBx4M2q\n+uF9j3WSBgCoV83sKQN1wm8G80fQ+vpl6P23kv+wTti6/AP7SkJ9w+TK/zskH5eEg6bXHzZ8hV4/\nNMm/Tff30eX9+8nf+vbjV+aExiDU/4/RENZH+rWcVJoZTzr4u++TFG4j/89v3NoLygtb7FoJwp00\nrUUFvkTkDAHQIxE18wVdo1CGEv+jQPYteDvwHHAR+9AaiO8GPnbogU7WAFwZHEHuMxo6wDDdn44c\nAOW2hR0N0G30hg+T65J8tsWqPH/z/ziv37+mmO7vIxz17NDl/Yfb0nVe/oyTf4b2AkB31U+b/t+F\ntnLRwaTvV9BA+TdMswWF5HslhdskH0f+9zZYCUhqi+Zsi3hU8GALWZLUFs7xowL3u2uTiELi7yL9\nmyb6gub9uS9E5GXA1wJ/F/ibLbu9DTMm/+lDj3eSBqCAhkaepk2vLCoDeQh1cmD8vKAO79+cQ+Ux\n14gy4hlDtxGovx+RF6A5TM4f5+BPVRxS2glxrd9do399bpuv+7fN+uny/pvbxnn+Tt/ug28M/AYw\nh5j339UfsC/p1+TKfANrc3fMMk8KAoYkhWPk/9sbeGELn1+bCODepbmGlV09bVPAKrFRQW0FtXpU\n4EtEzhDc3yXRxPGWdSkRtRH/TZP9NeA9wHcCT8Q+FJGXAm8CXstkAIYjduMcLAPFEMo/AfaRfuqe\nsV3zNS168wJmnz5JqDlMDmhIPn1efziWoMvrN6+rvEZsyqdDl/fvY6j841cCjW0G88nfTwCH+n9f\nQ9jBpB/sp1iDbWvsw6RwVz4glHzWuUTJ//LBjM06iS6l6YxBW1TgfncmMRyPChqJ40eI6HXcgjAv\nEpFPeO+ftYtZISJvAD6rqp8Ukde0/Px7gHeoaiGRlQPH4iQNgKohzkUy/K+yF/wEsNP/Q0Rm4O+7\n+EkFf4hDVzSwR9OYq1QKGm6GNHQBg73+Kq9BQ/qJJX5j3n9s6meb/DPb5OR7TE/riwqG6P41wgfw\n15vYk/TDSLRc+5ZIUph4PqBL77+3gc9v4P69OZcPstLAunWV3YylzSIvo4J726ZEVK2rHE8c++Wk\noUR0CIaszXBD+Jyqhuv9Orwa+DoReQbTFnchIj+kqt/o7fMq4EOW/F8EPCMiO1X90X1O5iQNgEOj\nVLJFFz8YQQdwLfkLkcTvuCFojvybRsBdm/nALRJySHI4tV3LodffV9oJ8Qofsz3m9TfLPbsSv+X7\nFu+/9jPB+9nGfIGrBPJLQYeWhfo9AK4CKEYyYY3+YdJOC+l7i7ADcA5kc3S3Lmvr/XyA+7s7I+BL\nPutcesn/hXtzLh/Myt/X5YNZGQUsFnktKgglojAqgGbiOCwndRJRiFjZbdso7KuajRRDwXFGQajq\nu4B3AdgI4G8F5I+qvtK9FpEPAB/dl/zhxA1AH44mAZUDrSzhuwcxAr+aYUyYG2rUMc3adWqW7wuJ\nPkj186kWxyk0HzS8zW3r8/p94oe61++2xaSfWNlnzPv3cR3VP21oNoAFHv+BEk8r8bsqtM3WDFdL\ns2g+YFNQJoUfbLVX71/lTfLP7xlD+nCeki9MJOCigLFRQVvi2C8nhWbyPUb226Ipg4wxFI8CRORb\nAVT1fcf+7pM0ACLVMnn+cn31OuSI5+9mmPvjbP1tbrWj8AEscd+OSgBdv4DkpnxSgCydsxOYJ3fI\nNTMzTJIlqeTACki4mOXcK5OKuXkYNnbR7MSMJnak73tP1fvqus3P+EsVxq8//F00F9HZ2eqhaopq\nobn5mXIufVES+yLR0giEa9iabWZff5u7Pt8ILLN6c80yrRuBLCtqRmC+yEeRvt8L4EjMff8Sc6xZ\nQpl89+vc11aqcPmVRKscgDOQqcyqZUddj0nb+hL7wpuk6ebn6PqFznzAIl2ZVcVStYSr3ClJtxKS\nNpbQHdHfXxiHxpH/fJG3RgEuN+A7KJsC2EG8tEJY55UhcKuu+feHeV83+vWGSLutrIYzcMbA/9lH\nwRio6s8BP2dfR4lfVb/50OOcpAFIoJf8awOrWtYF6IRP/r4ndm63ZbvqcUqNUcjSOZrMoIB5Ysh1\nUzxkkS7Jki0PtsrFLGedCvcs8V/Mc9ikUeKv9NPjE7+Dq8hw+7qxxI7o/FLDmffwxYg+S5RdITWD\n4a7LzwEsU61VAIXkPwRtBqGtFHSzTsES18oS1dKv+LF9GE5iM79rW2Em1TgPGDAV1A0W3Lf5EGCX\nm/n5YMYouygAWqUgFwW4+8MYtRxIYSNsC2N4N4Wp9nFGsvydLeDOwhxjDPk7dBkBf/+d50A4hNHt\nbYIWcq0R5zFxkgbAx2DyH+L9d2GXG0/s/iXMt2Z9VEDzjfHI1kC2Q+ZnzJKl8RqLlY0ItlDA3ZmV\nVbYpF3OTG7i3ScrXY4g/FRP+dxF/bMRACCMRVWV59ddVZBCLAmrbrCFwRsDf5mMI2Yfkvljk0RlA\nQ+CSyM4olMfewcr7yqUlfhdxrUuvOSFLnERmR457UcDREMo/fiQ621ZRAFRSUEcU4HBvk7IrCpZp\nysPcGt9EjI4fRAHQJH5/Wxf5l5fREwm46jWISJqN90mvN19VGU2I4SQNgEhzoQ5gMPm3wj10bctB\nOiOw2QIPzAO5PDcLsqRzxJb2ite5mWpuHopSSlhxPsuZWeK8mFMSZ4z4Z6UE1E78TqPuI34/CvK3\nOyMQvo5JQZDYhcuHSUE+YjIQQRnoEKmnb5/YULhyf0ti4PoQ1L4GXwryO7NDKSjXrPwdN2SgCCRb\nVHmAEDHHw91/9n/dbqsoADoTwrnsWKRLIC4FdUUBQKvXD/SSv8MQIwAFseF7IUIjMCTvdWyoXm/O\n6Zg4TQOAT4iV99/Yz6/O8NDw/tvgFq7wcdS8gPGm75HWyuXaiN+vR+8i/jbSB8rfh6TzhhFwPxvm\nA2A/Kch8XunOXTKQ2daMDuaLYq8F4LuWh/SjAEdSbnWwUAqCwhrruhSUOuMY4pA8gNd97uQft7Ri\nGQVAPSEciQKAhhTUFQU4rK0xGCr5dF7KQCMAj44U9CjiJA1AIjpI+imnxoXST4gw+QvNkLzNEBwr\nL2A9myqy4XjEH5Ye2l4AUW2QWCwfYF6Pk4LCfX3EiD62LUwEt23bztOyFDREVDrySM9V07vIJJSC\n/HyALwXlmpFoWk8Gj4HveIRjR9y96BUjlFEAVAnhSBQwT2BTPOxMCG8LeGph79SznHtUBvMY5B/C\nj7QqDDcCNx0FqErrQMLbjpM0ACDjdX8fXd5/m/zTFg0cKS8w825y37gBjWuEjhHC/jWWrwOP1L33\nSln972vLBwyVgsw1aNDJXC3AHnYDG9IKto2s+tkXq8BLDaUgqPIBvhQUjQJ8GWjICnOc3v3VAAAa\ncklEQVQxuOTvLq8bBhcFQLMs1IsCgNaE8K4oeHKe4CKyUAqCcXp/H1wUsPRYKN7weFgkMOUB2nGi\nBqBCL/k7+IlfH877H4IuI3BgXgC7HmsoabURf9TbD6/Nv/4WMnJSUH1uUjwfAP1SkHldJYTNw21I\np+n1Gy807AloI/9jGQVXEVSiQwqCKh/gS0FhFLAXYlGA5/2r/YW5Ed663SJu3eqWKACcw9AsC3XX\n0yYFOa3/WJ4/NKWgZlVYuxHwMSQhPKGJkzQAIhLV/Wvk7xCTfmLev5/8tQ+jbrdmucRwv04jAPvm\nBcYQ/yBvPxb5RBDLB/hGwD9+rltbfpo3pCCIJ4RjaKsGatveVgmUL9JyHEQbwp/r6gwOpaBYaWiW\nbBtRQE0G2jcPEHj/6llGmW8HRQGpzKJloa4HpSshDMMTvWMQywc4QxsbguiMQFcUcJ0ykEkCTxLQ\nLYJEpZ8auqQfhw7v3yXhWo0A1A2BLx3tkRfwO3YHEf+epK+7tRllEWzvSgqb9/HSUCcFufexhLAf\nBTjEZCCIk/++iWBoXxO4cawWKShWGrorOqKAsBoofB8ahjDv5Hn/an9JsqR0PDqjAEDmZy1loUlv\nQhiOT/7lpbUkhZ0sGI44iRmBKQoYj5M0AMIe0o+PmPcfe21RNuSMiQbuX1ZGgP68ANAwZq3zZqCd\n9COE37geZwSC7wqNANSTwtAsDQWvG7MjIdyGNhnIIZb0deiThHa7+DRQv+TRxyomBaXU5hs5Kag3\nChgDG32G3r+uzS9F7cn0RgFwUFnoVWNIo5hffttnBK4rCigK2bsP5aZxogZA+sk/rPnv8/7bkr8e\nRktCYXLYtfG765iflWSaat7v7Q8g/WiVU6wUFs8f96actlUGmfNq5gP6pKA2zDo8fqjIuY3gh/QC\nhATvogjfKPjHr6KQqku4TQrqjAIc2hLBsW0R79/lAHRRNKMAqI+IcFFAvhtVFmpg7oZ7ezYtj0Ff\neagj+li3cBf8RPAUKVQ4SQPg0CB/h11AiC2fAZ0ef4zc98sL9CeHRy0R2Oflx7T+iCZdMwIOwZC7\nmCwUloZCe29AhboMFK4M5lA1acU/h+6ooA2uxt1HaCT8qhV3/DYpqC0KAKrfYVceIFZ6HHj/Lgeg\nyzQSBcyqSqGeKABoTQizqUtB1xEJQLP6qkK8W3iSgvbDiRoAiVde+Lp/LPHrEBqBIPlbe32oEaih\nPTlc04p7SL+X8NuIJ+J5xoyALwVVw8+qWyksDY1FAW09AG2IdQXHcMxKoHA8RGl8IlJQ2CXcFQXs\nM3eqdDos/ByArnJ0YayTLHuiAGg0hwGNslBIolLQkvgiPcfEpqhHW0O7hWNJ4euQgaZO4FuGqgqo\nXfePvu5qvrEIH8Ry34gRgCAvcEjTWBYfJQwB4Q/07gfXoOebXiMAzaQwNKWgtt6ACoZ4VrmUyT+D\nZldwCDeXZogW2/Dsg/d+biAWBcSkIKh3CfdGAWPQkvwF0HWOznboMkVmc3SVl1GAEgyKSzOzLWgO\nAxploRBPCBuIlWmuxhD4ndiuR6AZ8XUnhacoYBhO0gC4CKBX+nFo8/57kr81tJD7wXkBlxyG8lo6\nCX8M2Q8xAmlwi3g/05YUhjAi6JaCQgyd/hmS9jHglj00r7ujAF8KgnqXcG8UYPX49hOp5k7Fkr/m\n/9z8v0ijUQCuGsiLAoDe5rDzmRlIGBsZbWyP2r/R8Q1BY+W3YDLr0EYxHy4KuKqGsKkT+JZBkDr5\nt0k/Q7z/WPK3yxhcYV6gcc4hgexD9AOb3GrRSHn8TdQIQDMf0CYFjYGTgRyOsQqT7+37eYAxUUCs\nS3hQFOCMa6z5sDxYPPlr/rc5AC8KgKw7CqA5LhrqzWEkdCSEfXix4YGykJ9T6WrEG9IoNjQKuI3L\nRorIy4EfBF6M+QU/q6rvbdn3aeDjwJtV9cP7HO8kDUANfdLPEO/foiH/OOOQBTfSFeUFuvMUB5L8\ngH0aUpAXHbSPk67OOZSCoOoVqNDsCXBH75OBrgNuJbZ6QrjZJdwXBWRtj57/d+zx/ncb20tBFQXI\nIkNXPVFAvulsDgMac4LcuhRgavMflhGRloZv3/xAg/zpNgLQ3yh2nVLQkXMAO+A7VPUXReQJ4JMi\n8lOq+ml/JxFJge8GPnbIwW7EAIjIFwH/GHgF8F+Ab1DV327ZNwU+Afyqqr5h8EHCkk+LqPTT5/3H\npKBwQZhDjAAMywuE5xo75xiGjrIY8HNt+QCVamvX2gIOfm/AbYDv5XfJQE6eCqUgqHcJ90UBmngy\nUDqHMHHvD3xr8f7zrbvnCmYHRAF9ZaEXc7i3cVVbbX+v/fIDvuTjr/fcWJ8BRjeK1SqDbmBM9D5Q\n1eeB5+3rF0TkOeClwKeDXd8G/BPg6UOOd1MRwDuBn1HVd4vIO+37d7Ts+3bgOeBi8Lerd+dFkqbR\nROlY77/x8y1GAGrkvnfT2Lwl+TwEA3oYogjPxxrMoZVBEDEGgRR0bMTGO2/YzzvrkoGgWwo6KAoY\noP3vNkK+M3+FdEYtF9CIAqBz0Rjztr0s1E8IL1LXjCW1XE21lsPw/EAb+YdLffYZAehrFKuigFsw\nGO5FIvIJ7/2zqvpsbEcReQXwVcAvBNtfCrwJeC2PqAF4I/Aa+/oHMGtfNgyAiLwM+Frg7wJ/c9QR\nItLPKO+/a1vXgjBwfEmoNkeo5xyGYN+IwGsIK0sKPXQlhR380tBK+hkuA/keJlCXCWDUSIgYqff1\nA3RFAb4UNDwKyDwnZVev/+/x/vOt+f3kme1A7ooC/EVjMhN51EZEdJSFAqUUVP/7QHdEEM8PtEk+\njvjDv2FstbauRjHfCLhzh6uLAkYuCfk5VX1V304ico7x8L9dVe8FH78HeIeqFiKHRdA3ZQBebEMd\ngF/HJDxieA/wncATLZ+XEJG3Am8F+NIv/d3HOMfbi5sgfx/5ptEQNgT+AjKPK5zMkki631iIY2C3\nqRnzLizSgm2R2tdhyS6EhnpIfsCPHPy+jb4GvmVaRVwh/KRw2C3szvNRKQsVkRmG/D+oqj8S2eVV\nwIcs+b8IeEZEdqr6o2OPdWUGQER+GvjiyEff5b9RVRWRxpMgIm8APquqnxSR1/Qdz4ZRzwK86o9+\nmZYTF73St3LpPb8T07Xju/2cF+4SZ+58sPJNbMBb6PFD05MnIvu07Nf4znAf934sme/y9uPFju+S\niNnc/HNJ33RuZgWl3nabB8h1S6FO6tiV/wPl9l1hJKBtIawLYZ0nxlPOhZ33fpWbB3tbOLlAShJx\n8oGTDna7hM06YV17b16n65zZJmc77/fSYhKSHyXEhqK5HMAyVZ6Ywe+Yw8U85+6s4GKec54V3J0J\ns2RpZ1SZf6Xuvzhr7Xl1fnTIewuqaDadFcwuUpLzGbLMkEVG8sQcuViWf0O5ewZn9v3yHOZnprw4\nm8P8jB07tsWqXJCoy1CbJUndKI+6LBRHMz9Q/8LmsWLrDswT24zmxnCkeI14scog8CMBP0dgXh/J\nGVHtnTg7FGJY/fuA51T1e+KH01d6+38A+Og+5A9XaABU9XVtn4nIb4jIS1T1eRF5CfDZyG6vBr5O\nRJ7BNCBeiMgPqeo39h5ckibJu4+gbgQcYl6RMwKWOGtGIDAQbcQ6mPRDI+Lv00ba+xqCIYiRv5ML\nRpK/I5OrJv/Rl9gx9hnqM4Fi+/re6DI12ved1BCkW8N5YROpqSy7vf89jEC6MdKRT/7Jk4s6+Z8t\nR5N/DKZnIw22xUZ5uLOOoS4L+Qv9LM/yWlTg/o+Rf0j8PupGAOqkH76/lbX7rwbeAvySiHzKbvvb\nwJcCqOr7jnmwm5KAPgJ8E/Bu+/+PhTuo6ruAdwHYCOBvDSJ/HzGST+flraFg5YxIs1NMi7dGoPzZ\nCI5O+ENC9aGrSznDNQTXRP4+9iH/2s8H3v8Y+ATvKoDC7b7378g/JKVlatdtTg3xzxKzPKnrTG94\n/z58I7DbmMT/Loetmesjyy2ySpBliqwSZhfmhI5N/u7v6DArx3c0B/j5RiBLciu7JDYqMPu2yUJA\nMyIIft9jyN/hob1/TIVQvTrIIHx/GERpXXJ0LFT152m3oLH9v/mQ492UAXg38MMi8i3AfwW+AUBE\nvgR4v6o+c8iXK1qWJYqboeNI3hqBUhLyfzCIFoB4YnZjErjRRC6MJ/zwvTsH/1zKpqG2uch23z5D\nMNRYBORfjoceSf6OSNrI3/f+94Ev/YRw8s+hiBkBqC9lOEuM9NPl/c+TO8ySJRIjf4dsjuQLdHFW\nbvIjgxj3HZv8u+CPXIhtN4jnB+roloW6jOxQtDWLVef2aOQErhI3YgBU9beAPx3Z/mtAg/xV9ecw\nlUJDj1AuoKIiTSPgcEheYOOR/xDCj+3X5um7157mXiLWEexj39WmQlwz+e8r/fiIbYNu78yXeXz9\nP1wnwCf+UPp5YlZJP3dnORfzgotZzvksZ5EumSUL5smdYYnfNCsHAPp7thkBXeUHk7/v7bdhkSi+\nLR1uCOKyUFvZqJOF+vT+oeg3Ao83TrITWFUbtejik+gx8gIxjPHyoZv0oS67NI61iM/2dz/XZiCG\nwif/1ItIbgn5O8S8/0O6MkP5p8v793X/J+e6v/QTossIWGdEljmyLZoJ34Hkb/5GzSR9DH4lUPOz\npiEYIgs1Uc8P7Ov1x9BmBPoWIxoKUSULl7B7RHCSBgDqs2hcNCCqx80LxLAP6UPD26953W7fQLqR\nLqI/1ECElT7uHG8J+YeJ39D7H2MEwgRvn/dfVf3Udf+7s2Jc4rcLLu/iJsHOTX+A3D1rJIX3If9N\n8bBG/j7aIoKuEd59hmCsLHQs8nfojgQeX5yoAdDojV0uqjIkL+A+96MFZwR8SShmFPYkfWghfrdv\nTN7p0P67/Js+KjqE/N1SkEPIvw8++Tv4RL9uRATV6zb9v6/6J7ZPWIO+TDWu+7d4/xnZ+KhsQGWQ\nOdkO8s8Wg8h/aH+GX0sf+/sNMwSVLNTVTXws8nfwjcA6TwevJtYHKY6XBL5unKQBUPvI+AuTVAuX\nDMwL1Lb1JIe7CD983yfxRIl/RA4gPG5Lwrc3+PX1fvv+Ksi/z/v3EXaLrluMgm8Ehj6Yi0Vek3+g\nXobo4KSJUPd35O/X/M+TO2Xid5D0Ez2xbiPALu8m/8X5Uch/Fpne2mUMQkPQJgtVVxMer/eU9kJ9\npbnbMYfqJnGiBqA9jHU4al4ARpM+9Hj73naNtXtni7qkcAzdv/b9N0/+Xbp/9fq4I31dA1KIsBQx\n1P0v5vlxpJ/oSdnKoNzee355aFuT10DyPxaqJRqHG4JhstDx0bbc6L4QVWZHagS7bpykAXASUCqZ\nt1JV9bo1L+BXANm8QGkEQsloiBE4AvHnugWtvLRyvr77Wn/2TmgU3HftYxi8yOO2kH8o/YQYIv84\nzBd5Q+sPP/fr0B1C3d8v+Tyf5fsnfrvQkRQGqq7tPcg/9P67HKfFgAmubVFBzBC0dRM7WejYRB3i\nqr//UcBJGoCwCqgLByWHY4agj/T97QOJ338oneHquyYfEl6bO1aXYbgl5O8QGxQWMwz7NIDF5J8Q\nzvsPdf+LeVHT/Q3pe97/oeTv0GIEzEVcr+cfDlRrMwgxY9AfEdRloYmkrxYnaQAgrAKqcgFteQGI\nJIfLL+vJC4T7d3n7MJr4ux7cIQbBv0YfUcNgB7052emqyb8PMemnz/t3GJuY65s/06X7O+nH1fzP\nkqUd93xEWc4aAXbrqjII9ib/IU5SlqTsiry7FHSAQQglonANX++s7P91Weg2G4JJArp1MPPX+/o8\nepPDfcPkal/W4+3DXsTvvy5H9Qak738W+7zr+kPINZP/WOnHoeuzUP7JtgW7PbOKQ3X/Rbo8vvQT\nQ5ohiyfqzsiRyH9IQ9gQdBmEMCoIDYEvC121EXhES/ePipM0AIWam8YZgTrRZ503+t7JYXpkHtib\n+N25F5qXOYB9Sb8PJkralse7LeQ/xPvvkn+ybdE5DbTN+4fhuv88uXM9o56DyqDrSviGC6lsO3IB\ntdP1fq7NGDhvrR4RNCeNHsMI+PffMZAUMF8fP7F+HThJA6D4CahmJDA6OewQ5gV2635vH/YmfujO\nAfgGIURflNCHPvJ3v9+rIP8QIfl3ef9jEdP/Q+lnjO7vRj5fifdfO3FjBMg3o8n/WGsydK2s1WYc\n2qKDyhjUE8exaOAQI+DnnCacqgHQauk3Q0LGSxsT4g7NC5idr5b4HeG6h2Rnr8fsP8wgjMVNkv8x\nCb4L9QmglfcP43V/X/o5WuK3D25gX4T8bxptxiE0DM0VutpGNVdGYN8qobDgYMKJGoCCMBHVNAJD\nk8OdeQEfV0j8kNgHx38ovLu/hScPMQjXQf4x9Ek/zc/r253+7xLAbTNa/BJQ/3Uo/dxJ6yOe23T/\nwcPejglbqhsj/7He/3UZjb6owRmERZLbZ9i/ufeXhPqaDA+CKunu0UwonKQBgGpx6EWiHnnau2Wk\nY9mXF6h2vBrid8bMX9N0W1Trta5zjUYHY+Ebwusg/775/leF2Ox/5/076eepuZa6/8U8r+n+/qgH\nX/cvxz24cR1h1HgovHswTNQfQv5DcawlFdtGgMSNQ7hetL+t3wh0RZ23FSLyeuC9QIoZj//ulv2e\nBj4OvFlVP7zPsU7SAKiK1Q6bRmCRFr3J4cF5gXwXrfs/OvF7D8w690rqRhqEMYni6yZ/H2O9/32x\niKw8NUT3vzuTdt1/fRk/2D7GINIJXnrqXnPgEPK/TRhuSNx9bwi/viBNvyS09Yg+JjkeC6IcrQxU\nRFLg7wFfDXwG+Dci8hFV/XRkv+8GPnbI8U7TANj/fSNQoT053IfWvMAVEr+74f3qCH+Q1VUZhD7y\n98/rGOQ/puonRCj/DIGLAvzRD/OkubSjP+LZH/UQlnyKqnEIeqesdjxybYSvde89vJeGkH+X939M\n+Wff6DOOHN8I+GWjbhuYe9HlbpwRCJO9Q1aUuyX4H4BfVtVfARCRDwFvBD4d7Pc2zMLxTx9yMNHr\n1CyvCSLym5iVxq4aLwI+dw3HuW6c4nWd4jXBdF2H4veo6u865AtE5J9jzncIlsDKe/+sqj7rfdfX\nA69X1b9m378F+B9V9W94+7wU+IfAa4HvxywKP0lADof+QYdCRD6hqq+6jmNdJ07xuk7xmmC6rtsA\nVX39NR/yPcA7VLWQ2KDIEThJAzBhwoQJjyh+FXi59/5ldpuPVwEfsuT/IuAZEdmp6o+OPdhkACZM\nmDDh9uDfAF8mIq/EEP+bgf/J30FVX+lei8gHMBLQaPKHyQAcimf7d3kkcYrXdYrXBNN1nRRUdSci\nfwP4SUwZ6Per6r8XkW+1n7/vmMc7ySTwhAkTJkzox9X22k+YMGHChFuLyQBMmDBhwmOKyQCMgIh8\nkYj8lIj8J/v/7+jYNxWRfysiH73Oc9wHQ65LRF4uIv9CRD4tIv9eRN5+E+faBxF5vYj8BxH5ZRF5\nZ+RzEZH/037+70Tkj9zEeY7FgOv6y/Z6fklE/pWIfOVNnOcY9F2Tt9/TIrKzNfITjojJAIzDO4Gf\nUdUvA37Gvm/D24HnruWsDseQ69oB36GqXw78MeB/EZEvv8Zz7IXXRv81wJcDfylyjl8DfJn991bg\n/7nWk9wDA6/rPwN/UlX/EPB3uOVJ1IHXdLSRBxPimAzAOLwR+AH7+geAPxfbSUReBnwt8P5rOq9D\n0Xtdqvq8qv6iff0Cxri99NrOcBjKNnpV3QCujd7HG4EfVIN/DTwlIi+57hMdid7rUtV/paq/bd/+\na0z9+G3GkL8VVCMPPnudJ/e4YDIA4/BiVX3evv514MUt+70H+E7qQ4huM4ZeFwAi8grgq4BfuNrT\nGo2XAv/de/8ZmkZqyD63DWPP+VuAn7jSMzocvddkRx68iUcgSntUMfUBBBCRnwa+OPLRd/lvVFVF\npFFDKyJvAD6rqp8UkddczVmOx6HX5X3POcYj+3ZVvXfcs5xwKETktRgD8Mdv+lyOgKONPJgQx2QA\nAqjq69o+E5HfEJGXqOrzVjaIhaWvBr5ORJ7BDH66EJEfUtVvvKJTHoQjXBciMsOQ/wdV9Ueu6FQP\nwZA2+iH73DYMOmcR+QqM7Pg1qvpb13Ru++JaRx5MiGOSgMbhI8A32dffBPxYuIOqvktVX6aqr8C0\ncf/sTZP/APRel5in8PuA51T1e67x3MagbKMXkTnm9/+RYJ+PAH/FVgP9MeALnvx1W9F7XSLypcCP\nAG9R1f94A+c4Fr3XpKqvVNVX2Gfpw8C3TeR/XEwGYBzeDXy1iPwn4HX2PSLyJSLy4zd6ZodhyHW9\nGngL8KdE5FP23zM3c7pxqOoOcG30zwE/7NroXSs98OPArwC/DPx94Ntu5GRHYOB1/e/A7wT+b/u3\n+cQNne4gDLymCVeMaRTEhAkTJjymmCKACRMmTHhMMRmACRMmTHhMMRmACRMmTHhMMRmACRMmTHhM\nMRmACRMmTHhMMRmACY8cROR/FZHnROSDV/Ddf8FOOy1E5JFYlHzChH0xdQJPeBTxbcDrVPUz/kYR\nyWx9+SH4/4A/D3zvgd8zYcKtx2QAJjxSEJH3Ab8X+AkR+X7gSeD32W3/TUS+EdPI9hpgAfw9Vf1e\n28n8fwFfjRlCtsGst/ph//tV9Tl7nOu5oAkTbhCTAZjwSEFVv1VEXg+8VlU/JyL/B2ae/B9X1Yci\n8lbMeIenRWQB/EsR+RhmeukfsPu+GPg08P03cxUTJtwOTAZgwingI6r60L7+M8BXeKtHPYlZ/OVP\nAP9IVXPg10TkZ2/gPCdMuFWYDMCEU8AD77UAb1PVn/R3uG1ziyZMuA2YqoAmnBp+EvjrdnQ1IvL7\nReQu8P8Cf1HMWs0vAV57kyc5YcJtwBQBTDg1vB94BfCLNvH7m5glLv8p8Kcw2v9/Az4e+2EReRMm\nWfy7gH8mIp9S1T97Dec9YcK1Y5oGOuGxhIh8APhoWAU0YcLjhEkCmjBhwoTHFFMEMGHChAmPKaYI\nYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU/z/pw86qjP4jcAAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu0Ldtd1/n5VdWqWvucvc85994gYHJDItAorXbThofi\nEJCBIE/RHk3k0QbFGDEIGuVl+2iBMVBsJAoarjwigkQ6pulIRwkPUd6dBOlOJ2kbjGASwiO595yz\n9zl7Va1Va/Yfs2bVrFlz1mM99t5n3/UdY49dr1Wrqtas+Z2/3/f3+01RSnHAAQcccMABLqLLvoAD\nDjjggAOuJg4EccABBxxwgBcHgjjggAMOOMCLA0EccMABBxzgxYEgDjjggAMO8OJAEAcccMABB3hx\nIIgDJkNEXiUif/2yr+MqQkQ+UUTefdnXccABu8CBIA7oQER+RUTOReRMRJ4Rkf9DRJ40+5VSL1NK\nfd0lXdtLROSnLuO7nWsoq+dzX0R+UUQ+8zKv6YAD9oEDQRwQwmcppY6BDwZ+A/iHl3w9oyEi8QV8\nzc9Wz+cO8J3AD4jIYxfwvQcccGE4EMQBvVBKLYDXAh9ptonIq0Xk66vl54jID4nIXRF5WkR+UkSi\nat+viMjXiMjbK0vku0Vkbp3nM6vR910R+RkR+b3WvidF5HUi8lsi8n4R+VYR+V3Aq4DfX43e71rX\n849F5A0i8gD4JBH5CRH5Eut8LctDRJSIfKmI/JKInIrI14nIh1bXcV9EfkBE0hHPZw18F3AEfKh1\n/leIyG+KyHtF5Iut7Z8hIv+h+o53icjfsvbNReR7q/u9KyJvEpEPrPbdFpHvrM73HhH5+gsiwgOe\nxTgQxAG9EJEbwOcBPxc45BXAu4EPAD4Q+FrArt/yBcCnojvP/wr4n6rzfhS6Y/1zwBPAtwOvF5Gs\n6vh+CPhV4AXAc4HXKKXeAbyMavSulLpjfc/nA98AnABjXVCfCvw+4OOArwSeAr4QeBL43cCfHDqB\niCTAlwBnwC9Vmz8IuF1d958Bvs2yLh4A/yPa8vgM4M+LyB+r9v2p6nNPVs/kZcB5te/VwAr4MOCj\ngD9Sfe8BB+wNB4I4IIQfrEbo94BPAb4pcNwS7Yb6EKXUUin1k6pd4OtblVLvUko9je7ATaf7UuDb\nlVI/r5QqlVL/FMjRnfXHAL8d+KtKqQdKqYVSaqjT/9+VUj+tlFpXVs8Y/F2l1H2l1NuA/wd4o1Lq\nnUqpe8C/RnfEIXxc9Xx+vbqnz60+Z57J366exxvQ5PERAEqpn1BKvbW6zv8b+H7gE6zPPQF8WPVM\n3qKUul9ZEZ8OfEX1PH4T+PvAi0fe5wEHbIQDQRwQwh+rRuhz4OXAvxORD/Ic903ALwNvFJF3ishX\nO/vfZS3/KrrjB/gQ4BWVK+Vu1dk+We1/EvhVpdRqwvW+a/iQDn7DWj73rB/3fPbnlFJ3lFLPUUp9\nnFLqR61973eu/aE5l4h8rIj828p1dg9tJTynOu6fAT8MvEZEfk1E/q6IzNDPaga813pW3w78tum3\nfMAB43EgiAN6UY1kXweUwB/07D9VSr1CKfU7gM8G/rKIfLJ1yJPW8vOBX6uW3wV8Q9XJmr8bSqnv\nr/Y9v3LfdL4ydKnO+gPghrXuI7fLwD8HXg88qZS6jdZUBKCyOP5npdRHAn8A+Ey0O+pdaOvqOdaz\nuqWU+q8v5xYOeLbgQBAH9EI0Pgd4DHiHZ/9nisiHiYig3VElsLYO+Qsi8jwReRz4a8C/qLb/E+Bl\n1YhaRORmJeCeAP8n8F7gG6vtcxH5+OpzvwE8b4SA/IvAHxeRGyLyYWgt4CrgBHhaKbUQkY9BaycA\niMgnicjvqTSY+2iX01op9V7gjcD/IiK3RCSqBPVP8H7DAQfsCAeCOCCEfyUiZ+iO6huAP1X56l18\nOPCjaD/7zwL/SCn1b639/xzdub0T+E/A1wMopd4M/FngW4Fn0G6ql1T7SuCz0ILsf0GL4J9Xne/H\ngbcBvy4i7+u5/r8PFGhC+afA942/9b3iS4G/LSKnwN8AfsDa90HoiLH7aDL+d2i3E2hLIgXejn5e\nr0VrPwccsDfIYcKgA/YFEfkV4Esc//wBBxzwiOBgQRxwwAEHHODFgSAOOOCAAw7w4uBiOuCAAw44\nwIuDBXHAAQcccIAXvjjzRx4nkqoPmh0RCUSxECcgAhIpohhEFBKBJJHeEYu1HEEU6f8i6A9E+i/S\n/xUKpdYoFKGwfBUM1/djH5bc1GvwQXSIfv8xMuKYwHmECJFI71drWK/1f7WGdQlKQWm262W1Msuq\nWob1WqrDBbWGclUdUirKUqHW1U8oUv2vvj8S/TNXP7EIIFUbqY+x1gWIBImkah/1Q9DtSKrtBlHP\nsxl6bn37fd9hvls3dus4Z93eD3U7VkpZbUZV7VxZxzS/o4hUy1JvF2mv6w9WEc9KVX/r+vyYNq/W\nzX5z7KYY0RZtvOVtv/Y+pdQHbP6F8HvkCXXGctSxv8LpDyulPm2b77tIXEuC+MD4iFc9+fFk84jb\nd2Lmx4okXZPdXHN0siKZKeJbCfHjc2QeEz1+RHQrg3QGxzeQk2M4vgFpBvNjiFNkfgKzOcQpK1aU\nakVePqBU/oZRTkoCJngeG3m5HjxmG+SlfrmyOPyCZvE4ozOW2YhjEmKZkcU3iSUhIYHFfVgVqPwU\nFmdQ5HD2EHV6BsUSzh6yvp+jHixZ38spn16g8hXFmXB+mlAWwuJBzOJMOD9fc3qv5N7dsv7Oo6OI\nNBOyuf5vts0yiGe6nSQzRZwqZtmaJNXPPJkpogwkS4huJMg8QeYxkiXITX2vkul1QLelPvTt79kn\nWRY+Pp1VfxkkVZpIkur2m1jbqnasROp2V6oVq3VOqVatbaVa1u0uL6VuG1kcEcuMuMplNMtJlFXr\n+rcV09mXBSwXsCoAUKtcbwO9bVXo3xr073xBiD7yr//qtuc4Y8nfij9m1LEvKX/sOcNHXR1cS4KI\nY7YjB/OSGXJI2i9lLLPJBNCHfZGD6fDHHRtZy/p/Fvu+M3wdNnn03ZMhD/MM8/IBWXwTBJL5LVjc\nRzhp7J9jPS5Vp2dwfIOougrzbeXTC1JWwIrz04Q5JRBje1CLXF0+MWy6jwAxDH0+8eQSzuadTb62\n7G7LS6naiPn910BOFi+t33NJqVaaNCLq5VhmkGRInNZEIUmqBwKrvLnWahtwoSRxQBjXkiAkku3I\n4fg4SA6XAXsEt915wqP/Yt09d7GOSSPXmvATRBarXhIbIo8OSZSFJgWoOzoBKJYodNevsqbatVqs\nSFkAK1aF+a6YWaaXi1zfR5rJxRLDFpbEICmMOVfsIYnKerBhrAcbtvVg0LQhP1EYUjD/V+QkUeYn\nCggTBacHkrgCuJYEEccwy6jJYZata3LQL7smB8nihhyyrCGHyiyvkaTekZcxr8dYAJtiCjn0EYCB\njwj6PpeXbUvCTxrQb1mEySOLm2fXIok4haNbFUmcwo0TfdDZQ+TkGAUID4ken9ffHj821yRxtmZe\nHb54EHPrTsSy6n9CxADU20LEACA3Z8PEcJGk0Dl39/OhQY6v3RorwIaxHoq11L+9SxR5qcjivB4I\ntKyHNdOJ4sYJpJXb6YoThUSQzUcO3h7s91p2jWtJEBJBdrOsyWF+s6zJIbqT1eQgJ0cNORzfaMjB\njFh7rAczOurbP8YNNc69JNX/aUFnPjLwnefhSjr72u4l93t9nb3/2rJ4HSQ348+2n8FqnetT7Zgk\n4qpPvjRi2AcphM7pcy0FBjlGe+hub1sPpi3ZbSqNVKu9aCLZEVHEObp6i7mAq00S1xXXmCC2IAfX\nenDP70RZaNN69w04L9ejyCFEBM15up/1kYJeNt8X1x24a0U8XMXcSIZdT3YH4qIhjnWrMynW1fw4\nOyaJ1VL2Qwz71BUmnq8FH0mA170EjSAd1h66gwfT7rYlCoDYJQqMe7FoLuaKkkQkQpqNHLwdLIjL\nh4iqySHKqMlBsqQhh3TWkEM665DDZWsP9ujNvHxDRGAf68ImBPe4hhT6zj9kRbT3Z/Hae71+F8W6\n5cMu1apRoV2SiK3RbrGsOxJJl/UVqLnWJlIWJJXivsz1XqMz7I0YLoMUQsf0aGg+MrD3udZDu700\ny/bv3B0QrHuJoixXrcgnaBOFnN/XJDE/PugSl4RrSRBRTE0O8WPzmhyix+cNOdShrDM9KvWRgx0W\n6EESZbCeHtJqMGR12B32WHeRgUsI7rH2uc3yoopeerCCmwksSqHqa1shjhrTCANCpGEiY2ySWDan\ndEnCdBoAnGorEB3hJCfV2Z5eEJnJSJ9ZMKccFJ+BWoCeTAy7JIUpVsLYzwXcS0AntNWGbT1Au00Z\nC9K2HELuJ5coSrUkllWj4TlEEctMk8TRLWS5QC1Oqy+tdIkzy/V0zSAiTwLfg56+VwFPKaVe6Rxz\nG/he9PwqCfD3lFLfXe37S+ipaBXwVuCLJ8yw2MH1JIhIbUwOY+GGuu7SzeS6luwXr8/VNEQKer2f\nGBZl6/CaLDQ2tzBuJF13k3FVNOGT65ZoXZ9mBySRZlWi1ybEsE9S2JQQvOca+M6Ae8nAzXuAxnpw\n25ZLFuOsCkMUiixe9hJFLIm2Jqha3arQLkbQ7uArJF5LpEOmd4QV8Aql1C9Uc6O8RUR+RCn1duuY\nvwC8XSn1WSLyAcB/FJHvQ88L/xeBj1RKnYvID6CnpX31phdzLQkC0eQg86QhhyxpyMEkFHnIoWM9\njMBYQdpGiEx8riV32cBHCL5jfaQAfmJYWKQx70mYs8lCRym56+0Ow73WplNZW53I/khi/XC1PTFc\nRVJwYQVZhGDcSz5x2sC1HvQ2P8H3kUV7oDCeKLL4JmC5nExuTJw/ErrEpqgmh3pvtXwqIu8Anoue\nB6Q+DDipJuk6Bp5GEwvoPv1IRJboGRV/jS1wLQlCkgiZJ0S3s4YcWnkONxpyaH1ueAS2T9ghrbbu\nEDLz258Nk4K7HiKGRYfjzGdU/bl57B5jHxdCt2Np7qMhieY6R5LEctGQRGqJm3muK2IAqtIgZF5p\nC1YuQ00MG5LCpRLC0Dnd7OkAbHG6z3rIy6jjZvQRxjiyGCaKvHxALEmVZT9DTG7Mo69LPEdE3myt\nP6WUesp3oIi8APgo4OedXd+Knrb219AzFH6eUmoNvEdE/h56kq1z4I1KqTduc7HXkiAQGU8OW3T6\nJmPUjMRcN9MmlkVIdxjjPnI/767bxGDWbWKwCWMeW1rESpjXLWWILGCKddH0/Pp/43YaQRJY0S6c\nadeDtU1/6znR40eoB/pco4gh0PleOCHs6jye0hp98FkP9j4XTbRb2Gpsk4WJgoor61Efr8+jk+7S\nyHzfA5IoI42OrqwuEQl1dv4IvE8p9aKhg0TkGPiXwFcope47uz8VPaXuHwY+FPgREflJdPmAzwFe\nCNwF/lcR+UKl1PeOvTgX15MgYqk6gqTRGgw52HVqfK4laI+6AuJeN9R1PBn4BUG/7uD6fzclBegS\nA8Bi1SaGvMpCzoEs9eU72N/VdUFpcdt/fJgs2iShLYhujgSwMUlI1riVWrWLDDyd8UblLTbBtueZ\n+Hm37pJPpPZZD+5vZ+C2v+4gAPyuJnt7ZIVTr4FzYlmRRkf1IbEkrd/8KusS20BEZmhy+D6l1Os8\nh3wx8I1KV1L8ZRH5z8DvBD4E+M9Kqd+qzvM64A+gBe2NcG0JIrrVhLB2iu9BmBw2QBJlQStiDMbo\nDkMuJHfbJsRQFF2TwBCF32Jou6Bc9JGFgeloNAm6ZLGuo15a2IQkimWXGKyOtZcMdkEE+9QdoBn4\nbBBwYWAGKVMHIQaNJTFEGF2yMORQrGPyUnErLcniJcW6qVhgfnMjXgONLnGJSXUS6RpfOzmX1hW+\nE3iHUuqbA4f9F+CTgZ8UkQ8EPgI957sAHyciN9Aupk8G3hw4xyhcS4KQKBpNDh1MEKd3iT7XUig8\n1bdtLDGY7TYxFHlMUeULpNmaIo9JM+uEg0QBY8liHtvXbbuW/CQBTjixRRJ2tIubXCXpTG8znUZq\n6ij1VEWdin13/hug1h8c95LPenDhsx6gG+EG7bYQIo3udrs922K3ScBcc7+IK7dTzo0EivU5pQqJ\n149OUt0IfDzwRcBbReQXq21fiw5pRSn1KuDrgFeLyFvRzf6rlFLvA94nIq8FfgEtWv8HwKtvjMW1\nJAjtFJx1K7NChxy2sR7cqqRj3EzuaHi8a6l/BLcJMQAURdwihvPzpPoPR0f6A4YoiiImTcse9xMY\nspjHytuhgEsWbbHajm7y5UiA9Qytkq6mwxDQ/mnze5+d6XbgdhjblOO+ZjDidJ/1EPotQ9vBHQSE\n0c3aFytTvykGmEbU4nWtSxjx2ugSRrx+RPMllFI/xUDUh1Lq14A/Etj3N4G/uavruaYEEXUrs46B\naz0E9AfvRzdwM+3CteTLW3Ajk8YSQ5F3XUyGKIo8Is2cyp6McT+1ycKI32ATRZckwFhS3fDX2uVQ\noSFoHe3iIwng0en0L/E6Q9YDNL9bH25aP02YVKTTXtoRUuY3j6s2UHKVdQmZJlI/UrieBCHiJ4cd\nWg82bMthrFg9FNJqu5ZcgRDGEYO93SUGgCKPWsSgCaMqU5GVXRcTDVG4VgVBiwL6XFAhkvC7nfyR\nTSYDV4dJBkiiCMf8P/Jw9Icp7qWx1oObRBmKYBtDIiEY4tBkYYjBvAOPli5xXXCpBCEinwa8Eh2e\n9R1KqW8MHPfRwM8CL1ZKvXbwxHHUFN+rt+2eHNxIpiF03UvDIa3bEgM0OoNLDHo5bhEDRTV6LyJI\npT7GJgzb/VRff8D9pMNk9fI8aVxetlVhRp22JmG7mMbmSGhybpOEHlHStIVVwShcZ0IJoM96cNHn\nWtoGTea+cL/QgvVjGdi6xK10WV3vs0aXuDRcGkGISAx8G/ApwLuBN4nI652UcnPc3wHGJ3xEUTuj\ndExUx4bitO1O8rmZfBaF61ry6Q72C+rzAY/JZZhKDOm50+mT1ETRtSa2cT+BLwLKrvvUjWiKnAqw\n40iilYFbFu3f2UcWZttQ2Yo+XFFy2dZ6WIzQE8aicTl2B1mmzTxRuW2eyWOyWHgs0xbF/aIRr/V1\nXm5SXbTbUhtXCpdpQXwM8MtKqXcCiMhr0Ekeb3eO+zJ0TPBHjz6zRL3kMMp6mKA/wHg3k8+1pNdD\ny+2XcmrIqtEZXGIwyzYxpHnJzFQ/zWLSvKTIYoqqmRTEHWuiIY7x7ifbqrADVM16O/FqeiKdnyQA\n63dXq7zbNqYQSB+mkMs+yCTgXuq9jAnWwzZws/UXgcoAdzLF+3O4mQjzWLiVwjO5TrhrdIlHL6nu\nUcNlEsRzgXdZ6+8GPtY+QESeC3wu8EkMEISIvBR4KcDzn/d4s6O0XuiqQ6hnrcIiC/vFT1I9wbqN\n2dx7LlGqZS2YzGp7tjmbMLI4qklCj4ijznIIYwRoX8iq0RlcYgBNDjYxzIqu78AQBedQHCUt95PB\npu4ncy8uSehnsnkiXYck7N/OzIlsY1X0E4j5fB+BjHVf2Uiz3ZCErT/0YBvroVuKpR/b6BFgsver\ndlFEQV3CiNd28MKjVOzvKuOqi9Tfgo7xXUtPFUqAqp7JUwAv+m9f4BcHSucFjtMWWUBFGO6L7iMM\n+zNxWodgAnapGf21hjyqZR3Xv67EON2jFetmuVuzBmyh13Y33UyaF9F0voYk9Gi+OYcZ8Q9hlrff\nbNuaSM9XFEcJFIqC5lxtjSKhqR1GO0S2iDoWxdxphbZonQUKBrqTDbkw8w74b3De+3t6YU1mM4gr\n6mK6DrAHDGlUtlyO9UCsHiTM2iS/cgYFOyIIifRUttcRl0kQ7wGetNafV22z8SLgNRU5PAf4dBFZ\nKaV+cCdXsAvCqCwLqcx5OzfCzBfhg3aP2BO/R63lh6uGMEwIoO0D1r7bZlQ3j9vEMZYMhuBaFC5J\nGH3C/k5DEkafqPdZJOHmUdhWxM1Aq7Q7h/aUqA1MB2FPQrMTuG0lZD1cBjnsIbnTbW+bwPyO20U2\n6f8+HcsNg46lnUhpJiYSY+2bgAWDRyXs+RJxmQTxJuDDReSFaGJ4MfD59gFKqReaZRF5NfBDOyMH\nHzYlDLOvaogda2JtRrQNecQyI4uXlS9dZ4/mZVRF7HQJA2AeD1sRAGladspmdAgjlTpiyYdZvmJZ\nlcCeFSXLNK7dUH0kYX+fSxL29bmWhGtFGNiCdXea0wZ2LoQXUyyARwnbiOkXBLd9boJQKHTb7di2\nCFr5MbEOWmk5M3f07EQgnk2LaHxUcGkEoZRaicjLgR9Gh7l+l1LqbSLysmr/qy7r2mqMIQxoWxRx\n6tUl+i0JMKMgDeOCiurSA3kZVUQi9cvmWhGg3Uwm58Hg6GhVi9RT0EcSBi5J2ETkkoQRsKFNEn1a\nRMjFBDjuhfBoUIlMDknuRZ/1YLstrtgIddOZD3eBXZDEEOzAhVhmOqKwehUSkjrwRADlBiQc4MWl\nahBKqTcAb3C2eYlBKfWSCSceLxhOaSQBwvAZ4kaXGBKvzbJPl3AJw7ibmg61+T7fNhOW2hnBb+h+\nsknC6BLQTxIGIZKApuMIWREGbkG/kJvJoNeqmKJDjLE8fK4lu0DgATsliVDwghkwlKpqTEaPiBpX\nE9DVIw7w4qqL1PvH1MiTpBvZonBcT5Yu0Sdeu/DpEq54rSM5tBWh/bJdKwL8biaYTg62FQFhkgCd\nN+GShP19PpLQF9VvRWgME4LB3nQIH+z2Y6wHmxgeYZKwy6LsCtvqEib81mdZ2hn3k/WIbSDUc55f\nNxwIYioChGIam2tN9InXY3QJV4vISyPkSuclq8Vdj5sJ+slhmXXdRwZjSKLWJQZIQmPV5EtMtCJc\n+BLn9qpD+H5/23q4ZiSxL2xiTfiSLm2r0mTcQzv8uZ2jNKvdwtezetJucSCITeDmTJh12+Vk6RJ9\n4rUPri5hxOumNHLUEqxDVoSBznLeTIcIYZAk0Il1vqQ6EwabZuvGyrGsCAjNIxFOnBvCFB3C1ZmC\ncK0HlxzsEuOXTBJ9809fFkIkcTMZN1DQulx7ilRfcUc79BWaOUQOGMaBIMZgaNTooJnJzEJAvB6j\nSzRTNOoXQBNFW7C2MY9pRQjtJNzVsSJggCSsXIk+koCuFgHiLcGwKUzC3GYftn77lWfZFab7LAhn\nToqtcQERTN1Jn3Z//jGWRFOjScOu/mqsiFBxx0E9YkuIKJJDFNOzBEOahM+dkFr6Q6LdGB1dosKm\nukReSh0Cq3WItmBt09IU07040idIA+4lG9uQhIFLEmlWBK2IXaA3YW6X8CVdhdxMj6jLaZ50S2Xs\nAlN1CZscbCvCEINd3DGL29FbCVmTYX+wJAZxPStMTcGqaP+FUOQNObjuBLPPPk9ZoFa5dlesiiZi\npixqV0css7rzSqKsXra3a11Ch7iaF+FGoupJ3kNll0NIs7L+c8tlbAqTTDerSnYYsqmL/5kKsW65\nD3SElW3hPFjpTmjhlHowJc/tekGmfpDevm6VkTClrTvYRafQYz2oPK//zDZ7v3d5z9g2vNVuY1M1\noimYOjiw60XZFZDtsvluu7ALFqqB6gxjIQJxqkb9DZ9LnhSRfysibxeRt4nIl3uO+Z0i8rMikovI\nX3H23RGR14rI/ysi7xCR37/NvT37LIipUUvFwItukM6aY0O6hIWxuoQtXmtLQlsRD1fNLFw3E7sy\nqvVNnciK7XUInxUBjSWhjxmfUAfs3Yow6OgQQ6GuIfcSdC1JT5tQea6nNg1pEQdLogPfb2+L0+Hq\nwBo+i6K3FMfVwwp4hVLqF0TkBHiLiPyIU+X6aeAvAn/M8/lXAv9GKfXfi0gK3NjmYq4/QWxSQA36\niWGD0V/ddY9IqrN1CRtZvKxF6iaBLm69PBeBKSRh4MuVqPdZeRpZum5pEaGQV7sezxhspUPYCAnT\n0LYaqo6/Jgl7+wWK12NmNhyDuVvqxYQlX1Lunc/N9HAlrdkI3XlEfKGvVw1KqfcC762WT0XkHejC\npm+3jvlN4DdF5DPsz4rIbeAPAS+pjiuArcL2rt4T2gXUeu/EYDoD7wgRwrqE5yvHFvvTwrUmhkaw\n1i9BM42j34rYhVA9Bi5J9CXU2Ugz/azsEhxj3BnhaUmb59nRIaaGu/ZZDzAoUntJwl5+RC0J2K81\nMQbtqUrNtrYVYeYRCZXi2Ba6WN/oPIjniMibrfWnqkKj3fOKvAD4KODnR577hcBvAd8tIv8N8Bbg\ny5VSD8ZenIvrSRBT4ROe7eXQKJFw/kMIfUl1Q8X+YllVeRKqI1iH6jQZNCP21SBZZOcr8qP+phGy\nIqCfJKCbUAddKwJMxzOt/IZBPXKemDDXG+I6ZD30hLmOIonq2F1BibgzvO4FF0USbiSTjT4roiEJ\nTymOi8f7lFIvGjpIRI7R8+B8hVLq/shzJ8B/B3yZUurnReSVwFcDf33Ti312E0QowcndRpcYWsum\nA6iW2xZFV5foS6qDvmJ/+ufK4hxtRcTcSEx+RBP2amo0GbivQdMpb2dVbEISvoS65rrGWRG+Geey\nkbcyOh/CWBgr539AmLbX6/8OCXSszm0inIZCXC84QuciLYkhHQIawrBJwhv6egUhIjM0OXyfUup1\nEz76buDdSiljcbwWTRAb4+o+pX1iJDF4X/ye5ZALqcaIpLoxxf5cwdoX9mpbEVnAzaRLcPsD2cZY\nEUMYQxImBFaHv46zInxkYHcANwKXvbUO0SdMTwhz3bt4PXE2xF3hot1Nxr3U/B9OnPTqEVtCRO2s\n1IbouQ2+E3iHUuqbp3xWKfXrIvIuEfkIpdR/BD6Z7gydk/DsIohtiGFUFNNSk0RIl/Bgki6xtju5\nvCNYt+s0NWc2ZGEsh/Pz4OV0JgsaQp8VASNIouoImwqww1ZEE94YcSPp+tOMe6mXDKboEL56SxU6\nbcWt5jpEEvb2XYjXl1yh9LLFa6B2M/msCEMguxLv94CPB74IeKuI/GK17WuB54MuZioiHwS8GbgF\nrEXkK4CPrFxRXwZ8XxXB9E7gi7e5mGcHQQyFqk4kBuV0om4H36tLjEmqC+gSRI2w1lgRTfkNu06T\nuZLFSupG6wnBAAAgAElEQVTMahNKqovmmbBSgQBhjLUippKEQZHpqU+nWhG2e8GuxeNaFqYT0MlR\ngYS5vlDXFjEMWA99FkSg49+1eD1qrvULwmWL1wZDrqarBqXUTzHgiFBK/Tp6gjXfvl9ET7S2E1xv\ngpgYkRTa7yMGVXV0ksWofOXVH7y6RABjdAm7kzOCdUMO3TpNi1K/qCZsNE3bczWM0SB24WqCNkmA\nQxSOFaHrNJVBK6I9JWmz3bz8LlGs1nlLqB7UIUL5D33CtNmPbidiCHNAkN6ZeH0Fs4IvgiRCbiZb\nrA59Lli+YCJEOJTaeKSglFdMbP1nO2JQD7odvo/2B3WJ0PFeXaLRI7qCdbdOkwl7NRZFTtvNZEii\nOEq8pTbGEkOf9TAKjhUBDVn4rIh2TZ4uKZhoFZ/FMFqHcK2HMcI0TVsx/yVLBrWG3pDpa5BU14dN\nCWSMUG0QcjXZmdgH+HE9CWIqQu4BB8rpRFvE8WCJ3JwhWQz5CsmaEaAyL7cZLdYvvzkm166nSsRW\nZVFPaCKrZuarZH6LOGo6iWJ9zo3EuJvKOjHo4Uq4X8Q8kQnvz+FOppgnesS0SNecArfvFNy7m3J8\nq6DIY87I6tIYvg7fHv1PxXJEiFFd/sNeT9vPe+4pLZLF3alIszgKkkBnu+VeUqu8az2MdS0VS1S+\n6rSRFoxlEdIl7O22kD0q2umsbjemzchsThKnxNGsziLOyyYkvpl/xDfxjnH1uVWDd4u+Tt7sswcE\nZpsJdW7+N2VoDMw2817YAvaYUOnRELiIqUcuA89agmiNAA28pGBGhM2Lrx5UnYEn4cBYFposzCiy\nepnTWd0JtF5+e7RoNIpEz6Fbv/RJBov7yGxOmhxZVV9XFGu4lS65X+gXIKtcTHp0HbEo4f254om5\n8P4FcLwkT5v8g3t3des2ZbrHFO6biiJAEsWRDnc1BHF0tKrKk2vrYR435Z/r5ZiqNlXz4qdRU58K\npJ4gJpakVecK0O4lhwha+Q9uXa4RriVDDj7L0gvXwugjjDHhsRZcq9UOeMjim1Y9osTKrSnrgpBZ\nLDyTg0sSvhyEfU0jum9S0JWSDxjCs4Mg+vz/PdaDK0ZDlxx8JGEfKzdnqLxEssqqgIYoquXaB53O\nBq0KHacEcZKRxTdr0bpUCbfSc/Ky5H4R81hW8kwOt1LIShPd1Mwb8X7WcFJwRsrtOznn5wlnpBTp\njKLYrFnUxflGwiYHoCYHYz20yaERqA052NaDIYch66GlPbjitBvVNMa11Ilq2nSqtAHdArqWqL3/\nuH26PpLw1fxyrYnHspK8VHVhxKwqluhiarFIH9xXyD7nvkjhitZhunJ4dhCEwRii6HEt2eSgRjpP\njWA52QUFDVmAJov5MWpxiqwK5OiWnvhE9KgwLx+QRlTx3Xn9Muel4pk85nYKxoe/iPXyg3gNFK3R\nfZHHnN3fTPAsPKNZvSNgzluWg/5ryCGzxGnjWjKjSpscjPVgo896AKZZDxB2LVkDCWM99A0YzLFi\nufBMu9D7St0+YJAwWgMMgLOHTXu5caLPx3Yk4Xc57R4hD+QmpNAlBP0EXELYaR2mSFq/6XXC9byr\nAXizojvHtF1LxnVgyGH9sE0Q0Y1kFGl0rQrLxTDkggLtdgLk/D4kaUuXWK3zWpfQknRbl4CYedzo\nEiBwpHUJgDRb17qEi22yru35IFzYriWgJgebEFzXkoHrWppsPdhEULpupTzsWnJE6Zoc8tXogUMI\nmxBGNxDitLY+Q7oEdjK6hcsiCRfbkYKG3RZcQjhYEOPwrCSIDhzrwac72NvXD1cdV4IbMOd7ldSi\nROZxx6oAGhdUn1Vxdta4G8oC4UTrEvNbpFFbl6ASr40uATFQtnQJ0OK10SWMeG1yEezS4LaADNsR\nhg1bdzDf4bqWXN2hT5j2WQ+tzqAsusK0DVeYhsa11KM72G5He/CwbZc6ijDOHjYDi5Nj/3lok4gr\nXod0iftFjCEHX1LirmDP57APUtirBXGNcXhKIxByLdm1viLChNHXSXRdUI6wDW2r4vgGcAo3TlCc\nNrrEbF7rEtrddNTSJYBafLyVAkXEExktXQK0eF1kcVVIrxlR2wlsQD3i38U8165rySYHW6D0uZZs\nYboPnbyHPusBOm4kd7uPHIxlaQ8efJH2bntQixVixYOagUS9bpGBjzBacUanZ82AYge6xK20Ea91\nKPV+4HMz7ZIUXEKYUsBxCBIJUai+yyOO63lX0NUU3Gzp4P6ua8nXAaxzWC31C5PMFG5hSJswfGTh\ndgoGfS4oVSybxDsI6xKVeG10CTivX3Sgzrg24jUo7iI8ATyI19yDOsTUZF+HCvwZEnEJZCy09VC2\nXEvQ1h18QqjPtbSR9eALa+1zLdnbe9oG6NBHn2i9LWn4CCO6ZX0W9qhLXAz6SGEXhHCwIMbh8JQs\nTCWHVV3orv1WuYRhk0VpuwYermrtQuZJ0AVVC9sn1Qjx5Lh5+aGtS1QkYesS0IjXoO/tsaytS9ji\nNUdVclrZJKrl1b26xGHQn5kd9stPCWm1rYcpmBzWamC7lny6w9DAIZA34Fqb4LQLg6p91N9rkYZr\nZayx3JTHN6bpEvNbE0hiPHaRa7ApKQwRwkGDGIdnJ0EErAcbY8hhmUfMsrVFFAbOi7Rsp+J7rYsB\nstBuhXMk06Jk7W8+O4PjY0yilMnCNrqEga1LNOK11iVMUp2tSyxW7cnk5xZpgO7Qc+e+07TsEMcQ\npoa0hoTpQesBxoe11m4knxbRzneYMnBorsNfmsFHHJ0zWKQRskKFh43FGdAkwLImqvyaMbrENGzn\nkjK/3z4IYVTJ97EQ8f4O1wHX865cuO4l7z6/MA0EyQGo/w/DetXtDiJf1VmY9SjSRxbVvujxedMB\nQDuHwqNLmKQ6o0uYpDpbl4Aqqc7SJRb1NKbSqqlz06rtND9abz3N6VBI67YYbT14XEuAQxhd3WHa\nwMGGhzx8xFG1S7v/81mhMtdtJHpcDwrqco2nZ45+1cZUl9NFwUcKOyWEKTMKPovx7CAIH7z1c8L5\nDm4HUBZ9o6Nh0tDWffX2eQijtDNtoe4EgMbnfPawecF9ukS1z9YlgGqyFK1LmKQ6V5cwRKDnItaj\neTMncYgwYDpptFxLju6wjfXQwVBYqw3XtdQjSkO3bcCUgUMbrXbRun6HPCzisNWB9dPntcXp1SVM\nMubxcXdfhX2TxBT3TogU+iKURCldj83ARwahCr6bIKLl7rtOuN4EMVRjqUUS/bqDgSEH42cei7KI\nidP2KMaMNGEcYcSPzbWvuSYPXUW2diWcPWwiV4wusSpqXcIk1bm6hBGvH8uwkupgHmu3k0sWep+f\nMLzwdHjGPWW7lmAaOfShzntwOodgWKvrWpogSo8fODTwtQcDu124l9ohjyUkhiyc43t1CRMybekS\nwkn9WR9JXLSwO4kQbLiE4CODTeesf5bhehOEhaHqmzBelG77mX3wD7lWS+m4EOyOwow6tXtC70/S\nNZikWRZIlhA/Pmf99HnlTnB0CbBGiG1dYkqxP13xUtUlFjQhOC4mizDsMeioMs9VR+cLaR2Lra0H\nmxx6MChKW+QwdeAQQllpOb5BBeAQyBrur2q9Kn68O6PcGF2idk/2FPu7KIQIYdA6GEkGvXOPXyJE\n5LuAzwR+Uyn1u3uO+2jgZ4EXK6Vea22P0ZMJvUcp9ZnbXs/1J4iAxeBaD2NFaXuEWHo6g3imesnD\nNwp0icPuHFodwtm6Gi0uaqGypUsc32ji4KGlS9RJdSOL/Zk6PFlsiv7RIQsbbbKAKQLlNq4lH3qt\nh5DvOWA9uGU0QhFLhhz6Bw5tBN1J9jGeQYX+PpdA1iQoIlaUTy9ql6R9NR1dYmRSXWd2wx1g7Pla\nhLBLMtilBiE7LbXxauBbge8Jf53EwN8B3ujZ/eXAO9CzzW2N60kQjsnZZz10sqUHyMGsl0th6R2E\nDHeM5TImdl76lsVgtll5FtrSiDg6WcH9ZiTX0iWgEa+hSapLM21hTCj2l0alJWC3yUJPzkKQLKon\nGXwmdoTUtiGtY62HQWF6hO4A4YAFu11Mga8tuPC1jXrfUigLqduGIQm7QEY7wKHBxkl1HkyOChpz\n/BAhrAbch75zBD57VaCU+vci8oKBw74M+JfAR9sbReR5wGcA3wD85V1cz/UkCB88ZRIMOhVaR5LD\n+Xn7hT06igKk0cUy16/fzEnoLJeNn8V0HHUHsVwDCbNszRzdURldou4MbF0C2i+/pUsMFfsDTQB5\nGdVkkZe63IIpi7AZWUDLHeUJaXXRJ0y7CFkP+uFuL0r3WZXhQUM/lrl02oEPvrahodvh+aluG8ly\nTWqRRH3U04s6W18quWFSUt3kO9sCuyKDEBFcHkE8R0TebK0/pZR6auyHReS5wOcCn4RDEMC3AF8J\nlpi0Ja4vQYQE6hGuJYMhcijy5iVNM+kQxhicW/NBHx213ROGRAzmx+39uiNY1OZtE+Z4XifVeXUJ\nhov9lWpZdfxlTQJN6YM2WRi9YhxZgE0YvpBWn2sphJ1YD74r7GkboYGDb9AwFqYduG0gBLttzLIY\nbpqHXX2+ckeaQYTnG+tyLlOS6naGkR30XonArbm1KWKpy5+MwPuUUtvMGf0twFcppdYiza8mIka3\neIuIfOIW52/hUglCRD4NeCU6Y+s7lFLf6Oz/AuCr0O33FPjzSqn/a/QX+JKd8FXgHOdbDpED0Fnf\nBEVgop40Mw0h0p1BdV3zE+BMjxaN3xkqXQKa6JU6+3p8sT8dCtvMfQ19ZNEVt22ysKGjoZr1MYX4\n9PfswHqY4FoCRovSpm342sVUuG2g+e37EAExq5mqrEwDrUvwjB5ERDcSojvtTxrrYWqxvyHsRAQe\nSwTBcOWBaxgITriieBHwmoocngN8uoisgI8FPltEPh2YA7dE5HuVUl+4zZddGkFUQsu3AZ8CvBt4\nk4i8Xin1duuw/wx8glLqGRH5o8BT6AcxDSNcB33JcECHHPLFxWUQ5ZW1XeSK23diTGcAEKcRsKpD\nHQGiO407oaVL2MX+XF3CKvZnZ9HGMqNUOoKliXjqkkWxNoQQjoTyIeRaGhPWOtl6cLGhKN2nR+26\nXeQD4frZ3C7FbWp4E9QlgGBSHQzrEjX2mWi2KxIYIoAdEYSINFV29wyl1Aut73018ENKqR8EfhD4\nmmr7JwJ/ZVtygMu1ID4G+GWl1DsBROQ1wOcANUEopX7GOv7ngOft8gLGRCzZkSk2OWw7UtzEFXF0\npL8zzYRbdyIWD2LmlLXv2egSQB3BsoYmqc6nSwQmIYrjptyCHeLokkVersniphCgSxahSCgf+iYB\nAnZvPRgEBw/Doc7uwGEXluQUFHlJmok1eGhP9NCnSwwm1bm6xK799mPPty8SuIIWhIh8P/CJaK3i\n3cDfBGYASqlXXfT1XCZBPBd4l7X+bvqtgz8D/OvJ3zIQleLD2IilTf3N9aXl0z+vXQ5GDJeaJCAi\nSRuXgitemw6gVezPJglAKmEwibWvOY5mVdnwZU0QxrIATRZppF1SrmUBmixOZlCsu24ofazUbiWg\nJyFOenMeWuRg5TzUYa2BUt6dOR7oBiwYhEKdfVbltu1iOvSvfH5uyMGdDUg/7yQvWxFONuw2Ah6X\nUroHi2ETDWCbDv8KEoILpdSfnHDsSwLbfwL4iV1czyMhUovIJ6EJ4g/2HPNS4KUAz//g280Oe6rG\nkdBJSNVIcY+WdJpFG5FECKsiIpk1k9bE86Txp5t5A9IZKs8RZ5a66gTNyeK0Dl1MSEgkQYn0EIbe\nnkZwI1lRqiWgyMs1eSmczPRkRQ1hNF1UmBTSkaRwr+1O6iujUT0DADz6VD3XgkMQOhdhXZ2+cSfo\n6CPdGQ+5gy4bq6WQoIgDEVMqXzWk4E4fa+ZIH4Ndib+7xD7JYbd5EFcKl3lX7wGetNafV21rQUR+\nL/AdwB9VSr0/dLIqVOwpgBf97ud6YiVnQZGt8eJqf63dt+jYc3dU1p6CcZsRY5rpc2xDFKul1AlT\nq6WQZnrZ1AqSLKnzPcSUCDcvTDozGVuoVa6f0WzuddVIZVkMEQYYodtPGNCE0F4YKXggWRbM1jDl\nTHxtw05Os9uGdi/tpl1sgiJXHB0NH6fythXh7dwKayrTepB1BTv+A/aKyySINwEfLiIvRBPDi4HP\ntw8QkecDrwO+SCn1/13UhTUJSXbZZrsj0J2t8f3aoYmbdgqGKCBMFmNDINd5VTralIWuazfF1JMP\n5RUZuFZEkvkzVD2ksSlhNC4pRSyVO+siSMETpqlnwmiv62fVvBotklj628Yyl9r9B+u6XVw0SZyf\nr5ll49qJgetulY71YA0mrio2cD15qzsf0MKlEYRSaiUiLwd+GB3m+l1KqbeJyMuq/a8C/gbwBPCP\nqrCu1agYYpG6MYc6ABfuSNH139r9kOkI8sW6JgkD04nvwqqA8ZZFWXSTrdYPV5rW6pnIHCsiy2rC\nqP32cd59RknqJ43lQhNHBQGIUy9hALXobZZLtbwQS6G+hwmfc+PaTfvQ0WJdktDhx66FqY+5aJIw\n+tTGaQt2rhAewjigjUiuNnlugUt1nCml3gC8wdn2Kmv5S4Av2fd1mA7UJgmcQUfY1QSmM9g1UUCb\nLIZgwnKNDmFg+9NrKwL8VkRZ1IQqScU4UzpkizQM0RjRO5GENGkTxl5JwUWgxxw7iOChrqzrHUDM\njEPG1zYuniSAKuKqS2ZuOY7BUtX2CPxR6wgP1sNWuJ7KSgiWVWHDF9Fki5IhV5NxJWRzvzUB7MT9\n5EOfK8GIkbabyaCxIiqR2lgR0ESqVB36qGSnVd4QSb2tLh6k/xvrY6ZrASXVdyQmf2GfpDAGlT41\nRBLRjcRrZZZFHBhAgE0Yl0ESY+AK8kCPWL189EjCwYEcxuP6E4T98gdGE0F/szNS9JVyNqRgkwT4\nM6t3ZVVMgXEz2fBaEelMi5CVFTEFqixqUmnBIhhJMhz1vzqmaFdZvQhScC0Jt10EBhKt3BKrfehk\nRegOIOxtlydebwVbrIaqnVySJnFVw1Tl4GJ6NGE3Zgc2KZj5hQ3MSBHHsmisCl8nQL0esiYMLoMo\nbLhWRMvPvGm8u6/zt7/TJR17EHeRhdN8WoSrV1ltxrQT9WDpdUUmqFZYtN0+lrn5rS9flxiDQbEa\n2hbEVbEmQsThm2v+YD1MwvUliBA5BPIiWoSxaKZz9PmbfZ3A+fl6kjUB2xPFGDHShDTG1dzWNiSz\nRoLmZd9FKOOWkUV7QeyxjExcf4sQ2qGvZl9ItCZfDUS92Udfvi5hYCLdWuGurhZhvyN2QMO+SSLN\nLiakdlcWycGCeMQgXVdQ/eJ7RofQtiJkngRdTXaSVDyzje/m5bdJAui1JmCaTpHNo04Bt14xsuoD\n1WKFzF09YlWL1HuNVhl6Ea0S03uFTRKuJeEbOARcTQYR+hn2DyLMGS5fl2hqi629kxD1QeW5rtFk\nkwR0CeOq4GA97ATXkyBc+KwJz7banVCNtKMbCaVjdttJUqsiIp4pyqUOMW27FMB1OcFw1dc+q2Jc\nZc/xUHmp79n30tuYOtIaYfLbL6ucHOt9x8f7sSjcc9rk0GdFWM8j9OR15dw+kjDrmiSMpXmRuoTR\nzkJzYNvouJnMgt0mfBbEo5ArYeOq6hlXDNefIFwi8IwUTSVGY0XUeQOL1WAHECIJn8sJhq0Jg13r\nFF6x+ubMb0VM8OkO7ffO5mf/t+dJNp3NvojCxZAV4az7Mo5DkU3OVD30i9f6+H2QxKqIBqc1tdtG\nMOTVtI/MIlSfm+mirYmRHX1oVsmdQKR5LtcM15sgnM5OsqzdUEyEk8k0NnV47NLZng6gyTfwdQhd\nl5O9PsWagPHZ0z7Y4a6hWjEtKwI2LobWMd/daqnW//ZUrznRrUzPR3B8o3FjHN+oJ63ZKYybyUcO\njsVQ35PV+bXckvmq1x0JurBfN7gBLkKXKJfSO52p0SH62ga0XY/mmUgrPPoCdIkpOFgHO8P1Jggb\nPkvCsSLs+altK8KFiVoxL/9qKSTp/qyJTdA3cmwlztlWhF2CIwCvH9d9IT3kYJOCXTFV5jHqwVLP\nl1wsUelME0VNErOdEIUkWTivwxZFrXbRcjV1rIl4dHh0A78uYdrFReoSq6UEdQh3wOSzwGtNwuz3\n6RLW8ZOxQ6F6r9bDNcf1JYjAS+9b18Xs/FbE0Aixjc1IAsZZE2OxzKOKxJyrq0tvdJPnWlaEa2nZ\n6CMDa72Zla2sXXehqV3jx+eapLKkIYrjG2A6IUMUWwrZNUmExOq+Tq5jXayCkU3ddmL2gk+X8InX\nsJ17cZl35zs3CA0e6uKOfZnVFll6SaJv+SLgtMdeYXpXZHEotXF94HMz2aPC2qz2CNZuVc9Zpt1N\ncaocVwJMcTnB7qwJPZNY+zw+V8KQFQH4X6AeghhDCuYYMwFPMlOo/AzJkpooosePkIowaqKwNYqp\nROFL4oOuWB2yInJn+4TKwD6SMBbnZegSvYMHN+vejuwzCw5ZdlxOV4EkQnhErIcRUzH/VeALqtUE\n+F3ABwA3ge8BPhCd0vOUUuqV21zL9SeIPtG11RG0rQg37NV1NRmXko8kLsvl5HMb+Lb5Q16dQn4G\nAxbDWFKoavR5p3OdZWvmN1eo/Iz4sXnteqqJ4uSoPWfyriOeBqyIjqupR7RWi1V3MFETAoTFa7NP\nb2u0qukkcX6+9mpXYwcPQG3RdRDo+FthsLB5KOzYOSfM9/esX4j1ADvNgxgzFbNS6puAb6qO/yzg\nLymlnhaRDHiFUuoXROQEeIuI/IgzjfMkXE+CkICwO8KFELIi+l1NBl2XU3t7f2Id7Nbl5HMluCPF\nXn+zgcdK0Mvt2fnGkIKZqc9cH8D8Zskyr+ZPzhdEGTVRRLczJC+1z78iioYkRgjZzj6vm8nAZ0UM\ntBm3E5V5ZXHithXo0yXMIGJf4vWUwYO+j7abybYwB0nC2X4lQmF9QRNXE4NTMTv4k8D3Ayil3gu8\nt1o+FZF3oGfuPBCEF1PcBoStCJnHYVeTZS2MsSb25XIaE87ojgrNSL3ZXxGj53P2MZuSgiEEex7n\no6OIcpmQ3SwpixlxqmqiiG8ltbVjiKIV8VSHxY4kCl+Gt9nusyJGuJrsgQWA1OJ7e0ABblY+TE2q\ng/3mS/S5mcz9DZHmVdElHuGkuOcycipmEbkBfBrwcs++FwAfBfz8NhdzvQliCnqsCFuwtl1NTSkO\nMAL1rl1OsJk14fqa1zl1VjW03UwdK4LppKCtgnGkUOTr+h5P75Wc3I45ymNmGTVRzE9KkmVJarSI\nxYroTrZdxFNFAqMjmuptAXeJpUc0kzK1X6l2V99Ynqat9IvXZnsT7bTJJES+wYO7zedSmupmqvNa\nLiMUdmx49j6sh2kupueIyJut9aeq2TA3wWcBP62Uerp9OXIM/EvgK5RS9zc8N/BsIYgx0SkVplgR\nKtfzA6xzNyfCYNjlZNZDJAENUWwK15VgjxRDVoRNCua+d0UKRa7qbXpebkWaSU0U82NNqtnNNati\nTZJqolg/XG0U8dQpR24QyomAfivCuy/8KrW7+r4Ip+aoTYv9mWfZh6HBA4TbBdDOvodpLqcpukRf\nqGtPRz86rPVyXE3vG5j07D2MmIq5woup3EsGIjJDk8P3KaVet82FwnUmiIEZxEJupmZ/vxURIomp\nLqe27xlCLqcp8ImRBsFRIVXF0puzCeSAlxzKal9DDop8sa4toYYwmo4yzeJ6Tmc9z0VUkVqVlJiX\nRKxaFtz66QVyc6aPMBnZ1XJ1Un3t1ix5rfkm9A20/5sOqVg2baIO3XWiuwb0iNaz9YjX1V1U/8eJ\n1/b+fbmbfEEMXuzChXSREU6Phg4xOBUzgIjcBj4B+EJrmwDfCbxDKfXNu7iY60kQplifcTUUebcR\n2tEp7scxHWk4Hty88NxI9Mg2059JM1WRRemQBQ5ZlFUnOy4c1iDNhKOjqI5xj2eqdhUkM0Wcqnp0\nmKRNUbYoa0a50Y0EmSf1CFGypHYv2fdsLChDjrZP3dyne53mvrQV0fjTDQFowouqe9GfPDqK6iKE\nt+5E9T2Ze5nfLGvh2r5unXxnXDsr5ATU6VkThppW0U6c6d+5jxTcTt9HCn2dSg9JSJagKgvUPEPT\nXow1YdqJ/fvrMU7zHI+OjAbRfqZpJvXzM9FLs2xc2zCWg2RJ3S5AW8ymXdT6in1v9vsUWK6thxHH\nTopectEKohifFOebKGwjiGx3/RZGTsUM8LnAG5VSD6yPfzzwRcBbReQXq21fW83cuRGuKUHEkB2H\nK3fah1b/XaIYcuq0XE5m40SyAHsflVVBZVVElYuhESa3IQbjUvIRg68DMFaTsaTUgyVqHrd0GHm4\nIspXJHlZ35shQWMtxbPIuRepOzW7c7t9p9EgzP0cnaz08q2kQ2o21k+fVzWz0CXMj2+gTs90tNPZ\nWbsjWhVtK8HzX+UewhgDD0n4MvTNMzREEdXivv79TPsoC8EQRTwzllnUeo7ZvHFBmvZhymuYdrAp\nMZjrr+9nCimMOd7XqU6cO3w0HOuhXe7lamFoKuZq/dXAq51tP8Vw1zUJ15MgogiZn6AWp+Fj3Gxq\nHJIwL/vUrzYLI8nCZ1X4yMLAEIMhgDEvPzTEYF52LzE4VpZ97y5RqEVZzTGx6hAFNK4nmyhs4rOJ\n4ugoYn7c3Nf8RJ8nPVb1PUR3+kdoKl+xfnqhdQkeapcTNLoEVVvYNSm4sNwsPqKwNS2bKIxVluRl\n7b5ziQKaNmFrEn3EoM+zDg4adkEMk0gBusTQV213U4TcSfXvXXYmCjugi+tJEBLV8x+35jke+lj1\nP+R2srWI1r7A9jFkMeSCatwM7J8YAr7gIFHkq1ZHZ4jCvTebKICWVWG7QrKb616X0hAMScjNGdEt\n4OxhV5eAagQZsCJ2hQBRQDcR0xCtLoXSJQpoW2WGKEIDhzHEABu2jSnWwhRS2BQh91LPsSpftVyn\nW5VZj8sAACAASURBVEOii5v46oJxLQlCsUYlGVJFqchyoYkizvvnW3ashhBR9KEtaA+7oRLUKL3C\nwBCD7V4achfA9Jff+1wsF4qyiML42G2iMEToup9s8otnUatTG+tS6kNdyoO2LiEnx/snBYOAcCtZ\n4o2SM+suUZi2YesTLlGAf+Dgto9dEcNW1sJFdaI9YrQZRNgBGAeEcS0JYq3WFOtzYkmIDVEs7nfd\nSAMQ8Bau28TJFyILuzMd0it2QgxjR4SBe7efgSEKAJ9OYYiwT6cANnIp9cGI19HjR8A5ki2b3/0i\nolf6onI8RAHtgUUErbbhIwpg1MDBF5iwM2LY1IXkwt0/5F7y/IZjrAejO9ilYHYCkYMF8ShBsSYv\nHxBLQhJlpNERMr/VtiaM22mEvzNELG3XizUytENkHXcCeMhihF5hEHrxzXkH/cihF3/AvVTfv5MD\n0KdT1IJ21dm5RGEE901dSkOoxWtLl9g7fJ2mL5TTcj11QqqtiCeXKOyIp76Bw1DE2mRi2LW1sEnW\n+1R0dKaqbVbkUD6z2P47rjmuJUHYFkSpKvPdtiZ8RDGAVkfpyZuwjwmew068M1FCjuAbIguYFqo6\n+cUf6Dztmea8Yr4nE90QBdDRKRIrgmQbl9IQOrrEvkkinbVG23ViHXiJwkew9bonNNaOeDJE0ReZ\ntDNi2JYUpo6wDUlMTZYLuA/X93Mrt0dbt+txr/6zGteSIMq18ExecCtdEktDEFl8k1hmmiQq1NZB\n34T2FsYQBeB0mH7roj52BFkYbEMMvW4CN/SwZ7KWulNzM4ut+x6jU9j3tI1LaQhdXeJoP1/kPssq\n10Zfw3SiGIp4MlbmViGr6aw/d2EoPLWvrMkU2CXZ+3RCD4aqttqitFqUdcJnEwSwLSRcUv4RR5Ag\nROQW8DXoVO9/rZT659a+f6SU+tILuL6NsFbC6TIGSrI4h0QTBEASZWFrou+knrBY8I+mffA1RZ8r\nKkgWMH5EOHY06BsJui/2QIVTL2FaVoVky5ooalHWJoo9WA0+dHSJfZBEiIRp//597ayPKKArZOvj\ntiOGUQMHGCaGMaQwpiONN3QxeUKYXd2hrATqdd5EBx4QRp8F8d3AL6HrevxpEfkTwOcrpXLg4y7i\n4jbFSsEzue508lIBOVm8pFQrUrXqtSboK+TmQafyqb1iE4ZnlA1+68JHFvX3+YhhqpugbyQ4duTn\nIQOKZdCqkGzpTby7CBifs8wTJ6kuaXeA2yAwIgc80Uweq8KB265CEU/1fkuAnkwMm1oLQ23lMkbV\nPnKwdAdDDosHcWtOkgP86COID1VK/Ylq+QdF5K8BPy4in30B17UVSiXcL3TncyPRXXYWr0dZEywX\nfrdTCK5l4axPJYz6PA5ZwLiIpK1JwfdS2y63EYXtOmRR7ZN02XE/rZ8+737fDrG+m9cuhSZCit3r\nEr5nb//WZn2iVeHm37hEAf6otZ1ZlDA8eNghEdSVdoeE6lB9LAuGHNb38pbusFqKlYC4i4uOwgUh\nH3H0EUQmIpFSag2glPoGEXkP8O+B4wu5ug2xWsO9QoC4siCgWEvLmgAo+6yJqoFuO21Pp/MPFQm0\nO1doOlKnJlSHGKZaC/ZLbpZb922OG2FJ+absDJBFy6qw3E/AbpOWLBhyKO9rf3Ni126aN+Lv1iQR\nsh76zhmyKgKH+xI1W5nauyCGkLUwNIAYwMadp48k+sKUXevBEaWN7rAq2hNXHRBGH0H8K+APAz9q\nNiilXi0ivw78w31f2DYoFbw/BxDmsZCXwq20bFkTt9JzYlm1rIk0OgLbmsDjdvKOoJ1IC5cU+qyM\nMYRhb/O99LsiBefY1utjP4MhQd9DFh2rAqBYEgEqi+vkpV3ADmM07gTQlzmnhGcWxI/NtWjdKva3\noS7hWg++GkO+gpEeBMOKrf22Baav3bEqNyWGCaSwzxGzJBlqhFDttR48uoMhh+KsKU1vl6Xf/oKf\nhXkQSqmvDGz/N8CH7+2KdoCVgru5dhTNY7iZ+K2JW2nbmoAqHNa2JmbztttpLIZIw8IgYTij0skv\n/FhSmM17b2mQMHyuKJcsrPtVoCf84SHR4/OdkISPHIw7wZSgSJZrUhZIlhA/Pt9Ol/BZD3ZnYVtY\nBiPIouN+ci0zrOi3PmLYgavxkXCfVJapIYf10+cd3aFVmt4qS39AGNc0zNWyIBJYlHqqz3msG0QW\ni9eaAFrJdSQZohpa6CvBMSq5x40IgmFNwiKMSdZCr/vI6ghsUnBHiq4GU5Flcz6bEKy5nqFNGAGy\nsIlC0sqa2EKX8JHD4jSuR4vJck1ZCPMT4GxNyory6UVLl9BJdUwiCa/1YN+7DfMcDEJkYbcHc3+e\n/bJLqxJGWZZ7x6roj2RyS2m06jG1RWmf7rB4ENeTWR3Qj2tJEOsy4vRsRl6U3D5aVxaEtiYgIoul\nZU2YcNgyXpJGR6Osick++tC2wLzZLf+069feEyko6Y6oZAJpBAmjLLrXmFZlt6vRsMrzalS8mS5h\nhzAaV4Ihh/xBXBUGjOFmyeI0Jk4jYEXSEnubkONRuoT5LVzrISTq+gjDxoBl4XXTVdexsVUJ40gh\nZF0u95iN3DPo6uQ+BHQHoz/ZuoMhh3t3d1SLSWTQ+n5UcS0JoiyFs/sz0iwGChbpGmNNgOJm0rYm\nQIfD+qwJn4Bt0OlOfaThi4RyG74r9kI/adjzLnte9E1JoVR+F1gsTqflWFate/QRRnU9HcJIUk0U\n6M5PAZw9JLrVTEM0hiSGyOH+XX2283O4RcxqpphTcn6a6OqxaDfEJrqE13pw24qt19gYIgwDj3vS\n1AlrHbNPUgglsk3pGMeSSZKC/R6FsqmN9VCRg12EzxWlbUvSzHS4yWyNzzYMEoSI/PG+/dvMeyoi\nnwa8Ej1z0ncopb7R2S/V/k8HHgIvUUr9wtB5y1K4dzcjzfQIochKYMl8BYuVcCdrWxOgw2Fta8KE\nw5ZqVZFEEiSK1jV7rYYRxDGGNMx2+/8OScFYTmPRIg6bNGw3k7mG5UI/G6jvS8U5cKZnfTurKq7C\nJPHajVQ6P01aboT7d5spT7N5xP27a27diVg8iEmWTQdhxGtbl2iK/Xl0iR7rQWxCtJ+HQYgwxsDR\nIuptrf9bEMNAmxGlwpFMQ8LyWDJZLhqhekS461AynC1Kl0upp8E1U+BeNWzTLw59dirGWBB/BvgD\nwI9X658E/AzwW2i36EYEISIx8G3ApwDvBt4kIq9XSr3dOuyPogXxDwc+FvjH1f9+rODsfloTxNGR\n7mDytPRaE3mZcCtdt6wJEw471poYvN8AcYCnI3E7kJWzvidSWAWK06zISdxZ7WnChF3UxFFdX6tT\nsUhDlgtNCEkz9afAaF1iLDmc3is5P19zdKRas6/Nj6PqkvQ2LV43ugRgFfujQxJD1oMr7m5FGKH8\nk3p5P9aC22461qQ5b4g4JpbNGIQJmXZEaV8ynK07GHKwBww7m9Nbop3lgmzTL4787CSMIYgZ8JFK\nqfdWN/DBwKuVUl+86ZdW+Bjgl5VS76zO+xrgcwD7Zj4H+B6llAJ+TkTuiMgHm2sJIS7XpPeWFEcJ\nZ6QUecz5ecLtO0XLmgBhUfqtCRhIrtuEKByR16BDHj0j0H2SQq8FEXqXPJGCvcThkEY9qRM09+To\nEqBH8zZJrO/mnUil/EGk3QlnepR4eq+kyBX37q7IF4oiX3P7TlJvh3hQl/Am1fncOUPaAzskDJ+1\n6R6/Q1JoXdpYN6T57k2sjdncL1R7xGl78ipXlDYDBlt3MOSgLYgr6WLauF8EXjDis5MwhiCedDrk\n3wCev+kXWngu8C5r/d10rQPfMc8FOgQhIi8FXgpwdPwBpFWMeGGNsooqtT5PS0jXvH8BT8y1gK2r\nb5sM7BKIRyXXeeH66MfAQx6uS2afpBB68QexJXEkpgw7xuUEcFqFv2oT1RWv1/c2Dz85P19X2lSD\nVRG15lawoRZlKyHNoI4UcqwHSbKWW03f5B4Iww0pNphCDDtyO2pXbLf9xDLzBj7ABOIYWfp76uQ/\nO7MepuM5IvJma/0ppdRT1vo2/eKYz07CGIL4MRH5YeD7q/XPw0qeuyqoHvJTALc/8MNUkcUURwlp\nVlp/a9KsJEvXzGN4Yg7zWFsQ8xiyWJHFTceeRlq4NtAd3MxaD4+mNnoxfD7a5WK0f9i9pjGWwpjO\noK8D8H0mlsTrrkqirHu8QBKncHQLOb9vJYg54rWlSwBNGfGHK+asqvkQdHPWriPNUKf3Sm7fSSoX\nU0SaCSe343oe5+xm2ZoH257RLrqTNS4mo0Mc36Ce59qQw/xYk8P8RP9G5rdxXYYDCEXlDw41ttQV\nYLjd2JF9HQTyzUKWpD7PgMVxdKtdRNO2LnvahC5YuCDKV8CqFqi5WRLPIiDm/Fzfd5FH8MB/7VMR\net89eJ9S6kW7+db9Y5AglFIvF5HPBf5QtekppdT/toPvfg/wpLX+vGrb1GM6UCIURwmkUpPD7TuF\nXk7LKnmuIYebSUMOWbzmRtImBhvaD5v0Nv6pxNEr/LVOsD9SMNvyUt93FoezTM19u/dpXnqXBMzx\nLmnUhCHoelhVpzBWl2jh/oqjkxWQVDPVxfWczUWutYdsrgni1p0oOA+2EallHhM9ftSUr6gIQU6O\nG8vhxokWpTP9n9kclWSt59Jxq0GYOMa6IOsH6OhCO7YwfdalWW4NlMrp5NEH88zqastY1mUVHh1q\nE6ZumVqsSFnUE1Sdn/rbxXBvcuHYpl+cjfjsJIwNc/0F4FQp9aMickNETpRSp9t8MfAm4MNF5IXo\nm3gx8PnOMa8HXl750j4WuDekPwCUsbTI4ehoVZNDlq41OSTU5HA7bchhn5jsv/UQxy5cSC5ZGFLI\nS8GMY3XYrxm75nsjDNuqMEUTvbrE2UMd5XR6hpyA0SUA76gRtB/6FnEV1ii11RDPFPObZWsebHtG\nu+h21tQ2OjlqE8PxjSbMODvWI/ajWxCnemCyPq+ff+verM7TFvE7rsgxBSJD2AMpuOvub2rfl0/E\nLkv/QCoU+GCj1vncgYNPq0pnyNlDr4XZ1y52AYXa3EXbxcb9ooj81ojPTsKYMNc/i/btPw58KNrP\n9Srgk7f5YqXUSkReDvwwOiTru5RSbxORl1X7XwW8AR3K9cvocK5xwnjkksO6JocnMkMOqrIi2h8d\naz0keNwlHoSsDPe8/s92iWMf1oImBsjLqAr11e61vMR6Fs0zMXqMucYQAYwiDHNai3+S+a1qDvET\nFKd6pA69SXXQHjUCVjnnZtS4L5fSihXlekVePuh0rrEkrQ7RZ30GQ4brA0YQx5akYB8baiugP2MG\nDJsSB4TJw24LNUnEKTKbw/n9tjUBwYx8oJ53xG0XyUzVNbquErbpF0Of3eZ6xlgQfwGtrP98dRG/\nJCK/bZsvNVBKvQF9s/a2V1nLqvr+SRBRlVsp7+gOhhyeyNq6g0sKadR+QfNy3RpFm9HvEKbkFrgv\ni484tiUFaBNDXlbm9rohCY12zz2GLPQ9TCMM01mu1nnTMUhAvB6pS/DMQuc1eLAvl5ImhhXF+rzu\nEM291etlmzCA8aRBj35VYV+koNuJframDbQtTHCtTJcU+lyyHXgGDUFrAoIZ+WLyaDx61VWeLGib\nftH32W0w5hfLlVKFmEQZkYSJdesuGlFFEIYcTo6XHd3BJ0qb8NY+uEL1LjGWTKa6kMC1FvzE8HDV\ndDAPVzE3EteKcMnDXZ5OGC5JTNEl1OlZp9hfdEcf4orXpljfvlxKmhhWlGrJ/ULp8Gjredj5NHbn\naY+iXbfLGNKwsWtS8LWTYh3XgycjA21KGqF7rI9bt59Jy5oA7YaMU0jOvIMHnzVhXJGJq2FtBTVp\nIPgoYQxB/DsR+VrgSEQ+BfhSdCnwKwuJaOkONTlYuoNNDrb1MEaHMK6mUGLZvrGptaD/Ny+8WTbE\nkJdRfZx+NiFisEdf9rNTlitCuyE6gi1hIuyQBG1dQi1OtXsH4Jhe8dqnS+zTpVSqFQ9XOXmpp7s1\npVuaTjOvn4dNiub38hFG51EPYFNSgGGr0rQRM2iA5l1xScN+h4ZIw1xH76BLT8RdI5YZYizMvqAG\njytS5jHru3k9gDigH2MI4qvR2dRvBf4c2nz5jn1e1LaIItXSHQw53Em7uoNpzD7rYd+i9Vi4Heou\nrAXwE4P5r5djL1H4rQqYQhbQdjG19q1dgVd3CGOS6vp0iX26lPJyzf0irok3L/XztrWcEFmY33EM\nYfSJu2NIwd7W1058bUT/b357Y2W6223CcPfpdZc0upZnB2OsCajqe2W6dIvHFekOIA7oRy9BVKnb\n36OU+gLgn1zMJW0PETg+KTq6gyEH17XkwtUfbIwJcx2DqSbpEClAv7Vgr4eIYVHCg+rUuqChOW9c\ndfhD7qZxZKG3dUfT9npQvB6pS5hB55rKlfRwRXQj2ZtLKS9jTpcxD1e6c83idd2BZvG67jRDZGF+\nyyHC6DzyCpsFJvQPHhpSaNqI/i3j+v0ZQxj6/LHzXrVvwiUNlzBstxNR83xa1gRVu+gJkXYHELuA\nUurSvAn7Rm8Pp5QqReRDRCRVSu24qMr+IJGqyaFPd3Cth20thl35IUNRTX2jQL28PTG4CamLUpxI\nL7+7SXeCdgRUs922SpqOxeRb2C6opEMarnjd0SXcYn+VLuFLoDJzN+/HpRTxTB5XLhpxqgRLS88J\nkwUMhRSHsI2r0V53icEcb9qFaQ+GLPRxw4Sh0UcY7f162f8saquq2uUK2MHkutOzTmDDAf0YMwR+\nJ/DTIvJ6rLxDpdQ37+2qtoRIkwBnKre6usM2MEL1toQwFDvd51pyX3i9PJ0YQJPDotQvv4FeVzU5\njCWK9rb2dh9ZmOiwcKhvQJeAZpa/EUl16sGyPW/zDl1Kmhj0s71XCA9WjQVmyMJoEq7475JF+/kN\nWxcGu3I1muNtYrAHD/OY6v7abWJbwtDwtaF1axDRunfL7RRLUutVU5LrdgH1LBep/1P1FwEn+72c\n3SCSrih9O3V9nttZD4PCmuf4cccNk4JedsNStyeGxcp2MYHpgk3HoOFmgreJQnd+/VaF2deQRUMS\no3WJvqQ6jy5hRoz7cindLyIWpZ7JcFE2RSDNczREYbvqppFFv59+lxYlNMRgWw5m+zxWHbIwx7h5\nRRrN795HGGEXZtfaNPdsu51genLdAf0IEoSI/DOl1BcBd5VSr7zAa9oaifiT4XxRSy769IexmJJV\nGRp5jCUG89Lb28a++C4xuO6leiRclUY3nUJDHjbGaxJ+F1TTCWytSzjF/jh72HQGe3IpaWLQc6Hb\nz822wsxEVW0/fn+k2FiyCLmQYLy+4A4coCI7p4kuVube2mRhPttnXbTvtX1PoefQPAM/UUDjdnKt\niaHkugP60WdB/D4R+e3AnxaR78HpEZRST+/1yraASH++g8GYvAcfGqF6egPrM0WHSEEvhxLbwi8+\n+EeEtsWwKCEvIopCv9V5FQEGXaJotkGIKPQI2Q6NDFsVhiQal9M0XWJssb99upTuFs3zvHcesUjX\nzK3nZnekfQEAffknIbJo/97j3Ujmfx8xuNqUayG4ZGEjZF2E3FHt+/IR5ji306A1AXVy3W6w01Ib\nVwp9BPEq4MeA3wG8hXZPoKrtVxKR6Ib8REaHGHzWw9htbjb1WIwlBfMd+n+XFGDaiw/TiaHImx6g\nKOIWUUDTIZjOYBdEoeficEmiPyx2alJdPQvbvlxKK71snqV5di5R2NpOW6dQjLMiuts2bR9jXI2h\ngUPb7dhuGzZZ+I7TcNsL1XW5EXP2M2mWjbDvczuZNtKxJsCbXHdAGEGCUEr9A+AfiMg/Vkr9+Qu8\npq0hNKI0+F1Lm1oPBv3VXPsFqxAp6OXdEoNZHkMMRR5xfp5wdLSiyCPSzLou0J2dEa0domhgOvmm\n84cxRNG8/C5JhLKxJxX7MwSxJ5fSooTTs1n9HNNsrZez0iEKuyP16RTK00k2z9HnwgtZk277cCOS\nphCDO3BI05IcBslCo0sW47ULnwXh1yfaQn6bKNLoKJxcd0AQY8p9P1LkABBLV3cYg031h7ERDFNc\nSDCsL9ifHSIGaDqEvKpDUxRxixjAEEVcTddqiMKsd4lCz8rnj3jyEYVGW9A2JNFoE203ik+XcE41\nXOwvLZo5o/fgUiqKmLP7M87PE+v5mYx+hyhivDqF67tv31g4WmybtgFdDSo0cGjuZ13f46Zk0Q/b\numjuvxG1/W4nCAj51SE+a2IXeLZHMT1yEOnqDiHrYZvchzGNYqq14CMF6L789ud9uQxjiQGoO7XW\nKNEhCrPNdHyYzsByMblEYV50myj0cqjTW+9Ol/AlT5kZ33bsUjo7TSnyiHt3s9ZzS7OyXnaJAvC4\nn1SbPCz3U59VcRHEYNqGfT+2pbQfsvATRXhZ//fpEyFr4oB+XEuC2FV886bYxoXkbh9DDNAfmTSW\nGIo8hqJ6adPmeuxOwawXVZ0rH1GEIp58RGFcT43bqen8dqlLsCpqq2HXLqV7d9P6ORanEem5ng+9\n7jgt0jBEYTpUn04BXfdTG+1OcRtrEizdpG4HXYvS7DMDBHM/5+fshCx8Irfe7rOofBFO48Ji7XLk\nsTvh0gEdXEuCAC7AevBVphwmhimk4G6fSgwQfvl9xJCeN9dfkFAUUctqcIkCGn80gYinIaIwRGCT\nxD50CTNa3JdL6ex+CoXi+G7OLC9J8xIz7S2ptMjCnqdkqk7RxrTABLu9uIMGu22Y37plVVYDB7tN\nuP+3IQsNc38+yyJkTZj18WGxefmgtiZ2AaWenVFMjyxEppPA5vrDbqyFIVKwl/sik8YQg16PLYtB\nkZ6vSPOSWVXMrO7gPEQB1J2BEbLdiKcxobENUTQv/BhdYnJSnTXt595cSveWpHnJjdOCWb5iWSTM\n8rh+jkDHqmi7ajbXKXZFDJ22AdXAQbcNQN/LOUHi261l4ScKf9TX9LDYR003EJHHgX8BvAD4FeB/\nUEo94xzzEdUxBr8D+BtKqW8RkW8CPgso0MnPX6yUutv3ndeSIEIYaz2MJZWQ6KzXp7mSfBgihzFW\nw5A7yX75Z3nJrGhny7WIgrZ/XcMf8dQXGtugiXhqtIkwSdhJdWOK/dkkAbpjsMkBNHncSpfcL8z1\nxsCaWylQRDyRwftzBQhPAO9nDScFZ6TcvpNzfp5wdj+luD2DewApszRmaUjBsiLs59aa7dCaDhca\ni8s8sybRzj/yHpvH4NMYhtqGaQNm4NBCRRRFEe2ULLQFpduHRrvdGG2mQdc16VqgvoCHXUHRLUa5\nJ3w1/P/tnXuwLVld3z+//eg+5947d14gjozJYNRUqPJBghYVTARBhXEC0VKiFQxGE4Ikiq9SRqqi\nqZRVg6YMRkx0ApRYUBpUEMpHYMRQljGjDkh8TYxvAgyPuc6d+zpnP3/5Y/XqXr16rX7s1zlnT3+r\nTp29e/fu3b336vVdv9/39+C9qnqfiLw6e/49pXNR/WPg8yEvtvoR4B3Zyw8A92ad514L3Ou/38de\nE8RJlusuEoEkm9jMYE0GmpOEu/3cSHMrwm4vH0O9m8ImX4nzvJoNbW7IeiKapsOcJADGk/DNM82G\ny5SQfyDwnmzCK9/w9SQBBN1NsQ5/dSVPXHdTXeXdoYy5NYUb80n+3V+dDUmHxu10MDSlMy5N4GAk\nXBouSZPj3Jo4PJwbayIdcu3qiORoXiKFC+nMi2panRRCUXnu7+6PgfOjgiQAkmSRk8QqCBHF9HBk\nLNFakhjVk8R0kJOEPe/jOZ5GUX1sYceK/ziErmVyThFeDDwne/xm4H3UT/DPA/5MVf8KQFXf47z2\nIPDVTR+41wThos566OJe6posV0x+xeC1nzddSiNJuMewOO/cNO62694cbW/Qpm0hREkimwy6kkSB\nOElAcXP7JOG+Vi3dQMWK8FFUOI2vHM+NUs6NCqK4Ohvmv4kliksTM3lfngjXM6K4em1Mki6NWJ2a\nlfiqpGB/21iYdjxs24wPdwwc5MScvTdZ5i4mqC4e2o4NMEQx8xYW9QsIF9XfIEYSYF1qvpuS4Diw\n4wYoLSxiY+aM4Smq+kj2+GPAUxr2/1rgpyOvfSNlV1QQe0sQp6XZD/jRO1Vrwp0A7eC+MZcKSRhI\nxUrwJwJYf6UIhiRm6ajidgJyl1MVhfhanEyIJAC0dLNDOLoJqLiazHviVoQf2dQF50Yp6XBGOpzn\nUU3nRspjkyHp0AjXtnTG5YlwMJzx+FER1vr45SRICiWrYA1SqI7tQWkBYY5Tb112IQMLOw5miXmf\nSxLTdFhYTitYE6XrK7knm62I0OQfw6rVEOqgKhXrvgZPEpGHnOf3q+r99omI/CrwqYH3vab8mari\niq0eRCQBXoRxI/mvvQbD0m9tOtm9JQgXm7Ie1kETSfjb7co1VE7BIjQRQHWlaLHSpBCxJKAgiepx\nI+9xbvyDTGy9Pjffv3+zN7kM6qyIGLo0dRnKmHMjcqK4MjUuJ0MSRYTTwVC5PBXOj5Zcny9zoliH\nFNqUh6lWQTU6CVStCH/b2m6m6aJEEiG41kRXl5M5ycI9Ce2siNiYaXI57RiPquozYy+q6vNjr4nI\nx0XkDlV9RETuAD5R8zkvBD6gqh/3jvENwD3A81S1cfLbS4IYOPNl15IaqwyktgKVr0uYx4PWuoS7\nUgy5lCCsQ4Bxc9gQRhfTw1EuRtahTpeIuxSaXU7HpbfG9QiotyJchPo+l19v71pwieLKdJn/VpYo\nrkwHnB9pHgpriQLCpLAKITSNYX9swPYXD12siVVcTuakqgsK0EYrIuZmcnFGdYh3AS8D7sv+v7Nm\n36/Dcy+JyAuA7wa+WFVvtPnAvSSIGE7KeqieR9Wa8HUJKFxObgisXSmG3EwQJo02QnUbWJKYJcPS\nyrGNeB1aHZrz9jWJsB7hRqeE/MptxOp1YIVsExZriMIK2TYs9vyoELLrSCGWowNxMqhfuAxqNLI6\n/gAAIABJREFUrQgI61YWscVDG/jWxKZcTklSPlHf1eReU8yK8NHFFdUFS22OSNwQ7gPeJiLfBPwV\n8BKArOr2G1T17uz5eeBLgX/lvf/1QAo8ICIAD6rqK+o+cK8JYt2CfNtEF5dTcR1LJovyJBxbKVrU\nrgwTKTKnW6KNy6n6uWFL4mAYi26q6hFQ50IorIiY1WDdS+smNLWNeIqRQlPByNjkVr+YWWJanJat\nCLChxdWeDvlxN7B46Opyqp5DgCRauJrM87gWcYrdTCtBVS9hIpP87R8F7naeXwduD+z3mV0/c68J\nwsVpHBxdQ2Hd98RWivl+SZHAFsIqeoRFW5Ioo8ndVJCEG+fe5DaIWREhN9Mmo1ZiEU+PTYakzjn5\nnQstQuOxjUUbet906faQKKwICFsMQL5CX3UM+FhHwK7Cj7gou5qg3oqA8njxsWmhWinnN+0T9pYg\nmqyH0M3YlkQ2PcC6hMI2oc6VYLEOObhwicINeeykSwRIwl8VuuU47GPzWr0WsQu4EU9WyHZLmbuI\nEcAqi5fyStlUOI1ZEYBTIA+I6BCbwKZcTiYarjqIrcUZsyKgai3EdIgezdhbgnBxGq0HH+1CYW3G\naFmsNqh3JVhsihwsuiTVuTd/+aTKJGEjm8q9JcrEYCu/mufl1WNTTsSm4QrZk8WCK5nVVp+tv7kJ\ny2gzRSlsQxQuScRdkF1gw54b93OsiVVdTuBZN56rCcJWBPjkWSYL3+LsUY+9JAh3bbSqKX8SaKNL\nuPuGxOoYTCmM1cXIOmzE5WSTx0a+9VMWIG0pDiAvp1C2IuI5EfbxtuAShT33ODbpkljmVsSN+bA0\njtZFXoZlasuxZIEKLYliPZdT/ULCDXuFqhXhjhW7bRuLRZMHcdI1pLeDvSSIs4w6XaKwHpqPczCk\ndENt0moIIUQS+UTQgSSaRGug4mqCuBXhPt8FhjKqzcXYznlMcguzzoooPa8kLzoVer2xErIC2hJF\nkzXRRBJJGu/Z4Ie9QtiKgN7NtCr2miB24VraVpGukC5RvOZWrwxPAjHxetvoni9R3v96/puFSSLk\navLJIiRW28fbgCGFcU4Mo0FaScorVZb1sO55GYtliS1zba0IYCXXUpIuzG911LxvWYeKTycxa8LC\nT6zLt/sRVgHBGsJWBIQXE3BymtVZw14TRAibFAq3Dd/lZDWIG/PtWgPronuxvyxXIllU3EtuZBMU\nonXIfWCrdu7ixg+Rgt0GkAwOSxO/azn45LGq+8sefyjjTCgvWxGTxdCbMJXj+SZdW2U0WRW+NdE+\nsa78vRwcmnvVtTarxfvCxGBf26QGtKRcrn+fsLcEsakJfxuJNV0/3/cnF315wxErpwHdi/3N874J\nIV+zIY5qKKMli3C2bH3pja6oIwVRNU2JZo+bnccH5ubKWpuWLJphmBBGVC2PEELWyEJnlFuSDjJd\nomxF+NFM69brCqENUTQJ2P74cF1NvjhtUVjNYQLwNasezdhbgghhkz7IXZqoxWA30SrV19r5mjeR\nTd0FXYv9uT0l3PP2y3EYVEMZiyivsli9TjRTJ1KYT9F5NsEfXzX9rwGxrU6B0TABqJBG/nnD+kY2\n8+UkSHpDmZesCEsUvhVRKQef50NsfmzUEUWjNZGUf686V1PMioC4G7JHO+wlQdQUOTzz6CpWl96b\nRTK5mG4pHt6iW+Z1eBIIleMwaH/zd/Hzr0QKi6npez3PVrqjBJ1cM32wJ8AwyQmDUYJkhMEwYcQI\nlWZLcKHzYMmQxaII6zULhqJhjm9FHDgLinJ11yVHLTSHVVCnU7jWhEsSXVxNUAjWBcJi9Taww1Ib\nO8eJEETL1nmfDvwUpua5Ysri/siqn1lnPZzVlYUvVq8kTCfSSoxcF03idawsx8FhfWSTSxLl/0Wb\nyTY+fpcU7CTciRSmmeUwnZm/ZGz+ABJzPB0lccIAY2VECMNYQeHCg3a7tSImC82KGhZj5GBYza4+\nGJpTsTClLuIup/RozuRwvSkjZFWELEyoWpluL3QoE9zBCqe1oy5wZxonZUE0ts7DzBTfqaofEJGb\ngPeLyAOq+ke7PtkYNjXA2ruqltRZD37SXFvCmB6OShEl20Jdsb9Y/PtxTTmOdbFxUpjO0Ekx5Uqa\nZiRxwyGLcZQwcreURxjmvMLRT0MZwaCwIgDS4YSyFWFW0q4VYcXqtKUOYX+71Kn8uw5ZxIjCHRtT\n7/htkiy7LCI2ZV107AdxpnBSBNHYOi/rnPRI9viqiDwMPBU4NQTRhG1qFLHMahc5YbSYBKZpXDTc\nJIL5Eoc+QYCdCCbJIlqOYxUrojUpZK6i1qRgn9vXkjF67UbJkmgiDEYJupi2IgxXw3Cvb6FzTL8K\nzd2RtgSHtSKOF+WaRklS5B50ybS3ZLFJonDDYeM5NMUYSiv5HD02iZMiiE6t80TkLuAZwG+1/YAm\nQXqdMgirTvzrln2w8e7uJGhDXmNitbUiyuWTzUZ/Ipilm49oqYN1LcQmgiSdBkuE++U4DApySAZh\noksGh3FimE9gdlxPDC4B+MSQvaaTOTpZIKn5jiXN3pOM0WnxWNI0f5wThuuSGmVE4BCGOPqGq2EM\nZWyuaVkQxcXElCUPJc/dnsKliRkfB3Pz3U6z3IOjI6fURTbxG31gs1NFU86EC1+rcjGZDlpZETse\n2nuDrRHEBlvnXQB+Hvg2Vb1Ss9/LgZcD3HHnbcDqJBAjgDYT/CbDKkPwSeLWdMFkUfRN9kni9gNT\nn+n6cMnjpSMVJDGdDPMchV0jJ6VETCe27M/1N9vObG4DHjBupnSo2Z/Ji3B/83Q4KInNLkrk4KFE\nDj4CrqT8fRk5mMfFf0mHMJkbskjG5v0+Wbi6hX0MBVnMp4YshgnMJxWySEaHJStiunRJgowcMjF1\nOshJwo4PmBlrDRMx9PhlQ2B2XCSTBeNkd7PsLB2a/t6Ho9LYsPC79sWaM9nxsU0soXcxdcUmWueJ\nyBhDDm9V1bc3fN79wP0An/OMuzQd1vsYu5KAP8lsswhcjGQWOmeho1yMtCvEwqJYmHozC7fMgmNZ\nHC45TpZMkgXXSKhENCVjptNyh7ltaxP5JAAlcnD7OccmAKBCDsnA/PctKt+tVMJiWrIeSnCth6kX\nCVVyMxly0OvxaKmKZREji+xxlCygTBbZlQ5HKenwfC7GL3TExeQoLyB4a7rgsQlcTMjHyPW5chnh\nduASS7hpmuejHB2NuEZiQk7Lq4uNIeTWjJGDOzYgvHAIkcNZDUI5DTgpF1Nj6zwxLY/eCDysqj/c\n5eAidmDEXUFtiSC077pWwsrdzbxxfjEx1UOL1UtBFjcnZM1rCndCjqSYCJJ0yeOXk/ylKWVrwhcK\n80O0aFPaBv4k4JNDmixrJwALnxw2Yj1ELIiQawlArxuicCHpKEgatWSRjGEyiZNFkppzs2QByHyK\nHF40eRYC6fA8k8V1koGJboJJPk4mC9O3wo4R0CzXRHJL88JF55InQ0MU0+p3ualx4KKJHOzYsIi1\ndXXhW5dnESLyNcD3A38H+EJVfahm3yHwEPARVb3He+07gf8APFlVH637zJMiiDat854NfD3w+yLy\nwex936uqv9x0cEHyCSKE2ATfhgjqJvdtu5fy+d9B4XJaZBOk8NjE7gzW53x9XkwCQMlve/MtU6aT\ngVkxXkla9BCmnMjUsStdCQ3kYG/2utVhU++Pla0HKFsPbVxLbcvrlt5vyELSUcliqJBFThKFxWEE\n7muGJI6uwChhdHCR4cAcY76cMF0ecW4ERsxY5PqcdUvengqXJnBLqlnOyTKPHrMLiAsXp7lm5WpX\nfkLbWmPBRQM5uNYDUHoMcdfSNgr2qdb3X9kg/gD4KuAnWuz7KuBh4KK7MUsf+DLgQ20+8EQIok3r\nPFX9DVasiSxZhEdbIjDbmsnA3efEGp7XkkSzLmEngeN55lIooSpet4poSVevFutOAvnzoG85Tg51\n1kOI9FtbD9MqGQBR15JO5mhTQ44alPUKhyyswO1HQ1mysISymCLcBMdXkIOLuSgPWQ5IVorc6hIw\nxLolYZBbm7cfCJeOgQthXaJcTM/73dPI9gjqtK825OBqUhC2LNt08zsLUNWHwcxvdRCRO4GvAH4A\n+A7v5f8IfDcBr00I+5lJjQQnBwufDEIryzrNQVTNsmETWMTLGfsYDROGg3GWNTtnvpyUdAmzQmyv\nS9yOEa+PkyVX808pT3C1k0Fgv65EUZkEaiaAruRg0Wg91CEWzhokB/MdLG+Y73BwbtSZMPT6DDk/\nrorbUCGLXNy+cA64Cklq4nfmJixWxge5LmHcTYclXQLILU5fl7DNp6wucY2Em28pCNP2FYn97m3H\nQ8xaLQvS9eQQci351sMpIoUniYjrGro/0083iddhSOAmd6OIvBjjcvrfTSRjsZcEAXELoisZgEcI\nsQm9aaLZECQLawQq1kS1q1mZLGp1iWy1aHWJUG2ew8PmhkNdO9b5K0QgOgF0RWvrIZYEF9AZQrDk\noMdzljfmuQ4RmpJiqpgeL5BshtPMgoiShSduC5htF7KDHVxAj6+WdYlMvLa6BBxxMVkEdYk818TR\nJaAQr03fhmn22FyRjTrzx0fdeLD9H0JoG80Wci0Vj8vWg+te2mRk00I7ldd/VFWfGXuxLvpTVRtX\n/SJyD/AJVX2/iDzH2X4O+F6Me6k19pIgrAWxNhlAmRBcEoj5rHeAOpIAQxL25jc3hUsW0EaXiK8M\nyxPDuugqSu/UenBQaz145LCcwCClIliD91PdmDM4V38LhsmiLG7r1WvGooBCnxglhS6RkYSrS5jv\nxlqd5re+NbUVcoccDAtdAqSIgJsOigJ/02FlnCTptDI22iwsfMRE6Rg5uK6lk67AvA7qoj9b4tnA\ni0TkbuAAuCgibwFeCzwNsNbDncAHROQLVfVjsYPtJ0GI5AXWfAQJwUULQsgrdu4C7vnMs2SpUYIc\nXGwkiUKXMK4Eu0o0aKdLuJNBaXvNyjA0Sfg4OhpFfcurkIOPEFEEXY4trIcm1xJQIgeAUNXuEGnE\nCEOP58iBfWysixhZSGrcTHr1GnLTBbh2zdMlyMdMMjjMP87VJQrxuqpLQDE+bEOn44VZ0U+yYo9J\nssjHSHhsdHO11QUsABVysChIws2H2a57SdmZSN0IVb0XuBcgsyC+S1Vfmr38KXY/EflL4JmnNYpp\nywhrELXWAdRaCDkplCbs3VsRuWPo+AoyPqjVJUwVvnLmtV0l2oQp/8hWl4DyoHcnAwt3UuiOdlEp\nbSOWYmGtvvVQlNNYzyXo6g56XJDDfBb37Y4InPtkjnuKCytQQ5AwQmQxuO0AybKxlUzEtrrEuZtQ\nrpZ0CZtUZ3UJm1QX0iVsUp3NlzgYmUY950fGrXJwuMzHSYwwoDtpdBGlzTlXv9vQWDlFWkRniMhX\nAj8KPBn4JRH5oKp+uRf9uVHsJUFIpkHUWgdQnSRiVkKIFE7QxeQX1Yi5nGwMfDipbpkLk9ad4B/Z\nTgIW7mRgESIOaE8esQmgLhM25lqy2In14OkOYMhhXls+PTw5VYjDIY0QYVjhWw6KH0POjxlcBK7d\nQKezQpcAEwprdQnML+zqEkC+oPB1CcAJcDA1sA6Gpry2TxYQJ4yuaCNKW/iupRAJ7EM/alV9B/CO\nwPY8+tPb/j5MnbvQse5q85l7SRDgrBRdrEMI7uNY+OMO0ZYkLOqS6gBuT414bXWJvPLnyLZ2NPBJ\nA8LE0RaxCaCyX8C15MMnAt/NGLUeVnAtARXdAWC2gjZjvIbe9cxgNM4mtcwtNUgNYYBJwLOEsQQk\n3z5HbsJxN92o6hLzaa5L2KS6trqEGSPkXf58sgBvjDjX1YYwci2jBTnUVfS11sMuLIalrtb7+yxg\nPwlCl/GJwO7i6whdSMEt2rZL2Jj3rORCHveeoY143ZRUZ1G0+Swmgfw1jzRiiBGHK3RCu1IJoUzY\nOmHaRaP10BKhkFbXtTSfDlhM6yaK+OQ4mwwYp+XrqxBHgDSsq2l42wHLvz5icNshcISkM2OXJONC\nl7hwAbhW0iXcpDogT6qL6RLW4gSiZOGisqDoUH21DTm0sR56rI49JQgNZsd2shKgIAWXCE6KHCLI\n/ctWvI7oEtOl6QrUJamu5DpwCMM8X400gNIk0UaULr3Vcy256Gw9dHQtQTWk1SUHaz2EdIjRWBvI\nAxbTIcOk7Aqxx7Tk4Q7PUbI0pDGZA8e5XiHpKKxLgFlgZLpEnlTXstjfYxNTFXWyMOXl02ERNp1r\nEjVkUYFHFu7CIS2NkdVDnXush/38ylXL/YEtNkQKoXILu0Dd7dbocqJbsb9J3lym3CS+pEk0kEYb\nnK8hB4s611JTWGtt3kMITVFLgXwHSw6LqdToEO1WtpZcckshw8LRcyyJWPI4vGkOV4ofxmoTJV0C\nKrpEKamOdsX+JosB50aLPNAhHWo+XtyxYlAkOLYaF97CwVoPPpqsB9+9ZPUH+3zTYbCqHRZHZwx7\nShDLsPtgE6QQ2mcV+DVsWsAngabX19El0qHm282qsUoY8bNwUT8x2AkgVoCvybVk0eRmam09uGgR\n0jqfSYUcFp4FMRxrg3hdRcVScF+rWCgjxumSA8x5DW89KKVISjo3EvN0VugSNqnO0SXaFPsrJlvJ\nLc8mq8KgG1l0dS312A72kyDQaj3/ECHA6qSwrotplff7ZRaScaFLnDNaRFeSCOkS/o1v9tsUYYCv\ndRwMq7HsoSzYUM5DXVhra+uhrjsc9SGtduKPkQMQ3NYFi1lYjR2Oq9/taLYk4TiPfJLJPKxLgBk7\nVpegudifzdK3RGDHC5CPGfPYlnYpyKIMv9lTFV1F6Zj1sAss6JRJfaawnwSRuZi2RQqhDNldoNov\nzsXVkngd0yWAxmJ/pvsYJXeC2W8ThGHPnnz/cm8Hv+lP1bXUOazVsR7qCvKtEtKaWw8ZOcx26H2c\nTcx3Ps5KYCymwsFNwLUlCXMWfx3RJWxSXamrXXOxv+nSLeeyJB0aspgsTBc/s7gIu6BcYbtAMQ5s\nJJRFne7QxXqoC2/dZkvgfcGeEsSyWo1zQ6SgToOTuuYwPuT8Zqq/1pNEGSFrwt70zcX+IBksmC7L\nlkQbwihbCPWE0UZ3sPCF6VZhrS783JVYvaUWIa2+7gAwm8DR0Xor1+mku8vk5luGwJB5ZlEMkwEw\nz8Rrg8EtsPzrY6NLQCFeQ6dif0A+XhY6y8ZA2aooxkx3F5SFby3UJcT51kOPzWFPCUKLm99iA6Tg\nEkJXK2JVq0MCvXvXJYk2xf7K1kHR57kNYdibOEQYPnxyCLcOLbuWOoW11lkPFgHXUlNIqzl0VXfo\nMsFPjlcnE/9zklS4eMuA4+tDDlhwdLWsS4ARr4O6BLQu9jdfTvIFhkmuK5IxgdLYKVyWXYTtclAE\nhF1L9d0iq9/rNl1OO+wHsXPsMUHMtkYKqzSFWRXuZ0kW8y7nx0UNHl+XuHCuegy66xJmsrdRH2HC\nmC6rlkSMMMo9e8X5rPrqm75ryUWrsFYLX4/yhelVQ1od19LR0bLVpN+GRLpaIklqvtPDwwEwZDRz\nIoJYwGMRXSJLqmtb7M+Sw4g0t0CHMmahZnvIBeUL21CUe/GtCou6Oksu+ryH7WI/CQKaySFAEl3I\nYZ3GMBKK3dsUIuJ3V5Iw7oOBQxKFVVDclGaSNFbFMnt9kE/yxr1Q3tdFQTpVi8HFytZDCIESKX7Y\ncqi3tG8Buq4lC3/ib2tNtCGD6aR+nyQdMp0oh4dWFB9kobIDRsmSEcqAoqFRcX2GJMyH2HvDfh/X\nSiRhx4whhBkMyInCh7Uo3IKR5YFW1rrMeygtJEJupVBCnLuo8ENb3W3l4/T6QxvsL0HE4Pb2PaFk\nt6KWztn7+svi9DKzJsyNZ4misCbUsSaW+HpFSHewaBKmY1jorH6/UVIhCUnTvLeCeV70ZSi2jRgw\nh2w3m4vgHsqs4ge5FZGkspKmEEKSDhpJAgzZjNMismqY2BDbJUmqLG/MGQCazb6SDkuLKIHivhgl\nxgobpbmbToYJmnVsBCNejwZpNM2jCICAcsl587hYRAzyMWGXMm2Jwd12EsSwVFauOXXacfZmqLbw\niEDStHWCm6RDU0r5/LiTEN0Vbknn04CFzjLfcv01h0gCXIGybE3UkYTdXhy7Xpi2aNXydZiES2mM\nEvPfXSC4eSluvSOLLHrJrMrN+S6mwyxHYQAIR0fVj2pDEoeHg7XF7RgWU2GcBSstJzDMHhe6SpZU\nZ+8X26UOIDHfnQ4nFesTvN8gMw6sywmKx4XLyXx3xaKiShg+uhJDeSz1FsO6OD2z0yYRaaeXk4Rv\nReQkMtp5COtpIQmbPdsWvsvJJwmzzzLocnJJwqKNMG3+x78rMyFl5bFFylFMowT8/AdLCp4l6RKD\nHQ+2KF6dFWH8/9lq2NEiNkUSba2I2QSGY/f5IE+208mcJTC0vSayBZBta5pbEcm4cDWNpsbVNEqK\nZMNhgqjm7qahjIKuSos6l1MxRpalIAfzvtWJoSeF9XHyM9M2IFK++U/QndQGJ00SIR9yWxTuonqS\ngMLl5FoYdW0hzfs3cJOPD2B2jIxsGKdnVWQCrUItWbS1IqyrCdi4uylEEoaYyljMJDeUgJKbCcoa\nmmk+NM/dS0pmUZgPrC1xb3UJlyRspBNQbKfQtQwRFK6lsEZhENIX4HQRg6qs0RfldGM/KVacy8oH\nuvnvJwedFujxfC3he1V0tRxCcN0AdSIhxG/4LtZDk3upyUXGKKE0e7pIxllE2CjXIiwG50ZGi3Aa\n/AwTZTTWfIVuJ2sbVZQeFGPRboshNNGvg1B5j+UksyJuFL+7CefNQojcvJDpzFgRGTHkGehzp2zJ\nYppbEjaAYDRI86gyd7t9nA4Huf7kuhTdxcK5kZYsBruf/XPHWnGswV5bDSLyQyLyf0Tk90TkHSJy\nS2S/N4nIJ0TkDwKvfUt2jD8UkR9s+sw9tiCyu7jJcjgFbiYXu7QmGifSDlhVvO4S1uqjzt1U7BTR\nIaAYIxYBjaqS4BixIsCWvjDWw9HRMrca0oP2wvUmXU1Q5GyMA225/QWJpsPcvRQUrIkXyagTr9vo\nEiEt4qxEJOlSou13N4wHgHtVdS4ir8W0Fv2ewH4/Cbwe+Cl3o4g8F3gx8HmqOhGRTwm8t4T9JAik\nukIMCdY1ricrVJ8EdkESKhIuk+TAhri2xTridUyYbqM9xFDRIRogaVr+SgILhTotApYsZsNsMl6d\nJLaBopFREfLKufJ3WgjW2YVZwToZl91LwwSdT/KeEm6EE4TF6xB8XaIsXm+PGFoFOJxCqOp7nKcP\nAl8d2e/XReSuwEvfDNynqpNsv080feaeEgRlgggI0iXUEUVNJJM10wfnNv81nrQusSqaSMLdHhKm\nXaxzI1fCXccHAIXWAI1tY0NZ7JAVRp/Mo1bEYiY5SRgsO5HEpq2IGGzIq4+KYN0ytwaIitdtdImy\nFmGwCWI4ZYTwJBF5yHl+v6rev8JxvhH4bx3f89nAPxCRHwCOge9S1d+pe8PZm4HaQAbGtWARIIdg\n2OuKYvbSaS6/Sfj5Enq8iE5anTCM+N83hC4RTna7+966CWClm70p3NVF61BokxcxQplPy1YEDHKS\nmE2K6KZNk8S2oJN5HvYaFayzHAkT3ZRWc0vcREwoe5ACsPkS5UTM1Yhh14RgKvu0Jq1HVfWZsRdF\n5FeBTw289BpVfWe2z2uAOfDWjqc6Am4DngV8AfA2EfkM1biZvacEIUXEClT1CJcIguRR1SGatIlt\nkQScfWvCdS35JFHsGxamzeP21+6Guq4C380Uk5WtFQFFv4ZSUx/HknBJwr57E+6mJG2elGz0UnHW\n4LqZwtkHhRVRulcivdgrusT4wIjXK+gSPoO0IYVTZiGsBVV9ft3rIvINwD3A8+om9gg+DLw9e99v\ni8gSeBLwydgb9lPyF6NByCgjhlFiSCKLUMl3SwPKXen1bsKTGxmyaeQlEtYV0DNXy64Qimm3kSj2\ncRdhuis0khOzCdiIplFeRbWIaBoly7xfgxWI3QinNtFNq0Y1HR0tmU1W60Ohk3nRHMntkQFlonBD\nXxdOlJONcJod5xFORZTTKI9yso/d0ik2wgmIRiQVUVHF3xMFIvIC4LuBF6nqjRUO8QvAc7NjfTaQ\nAI/WveHsLUvbQAbFRDiPiNXZ43zFuKE8iW3qEmcVdbqEu4/FqtaDj2DZjVFS1iEC8F/vYkXYNdd8\nJnl+hG9JWPHazZWIWRJdXU3TiTaG01osJ1SsCDmwZUY8wbrl/ZHrEi2S6lxdwkUhXp8N62C5FI6O\ndnK/vx5IgQfELHweVNVXiMinAW9Q1bsBROSngedg9I4PA9+nqm8E3gS8KQt/nQIva7JC9ncWy/zs\nMp+WJ4OQeynw2rrhrtt0Oe0CXSOYmhAjiW5hrWtOFlnC3CbhaxEWo7GWSCLbu0ISri6xi+imUjRT\noCNdqXqwrdPkhr2Cdw9FdInAZzfpEq543aMKVf3MyPaPAnc7z78ust8UeGmXz9zLX0NRE+II5RXj\nfFqOfXcFa+e5Txx+JJPbWawOWxOvr886u7+AeHLYjhATr0NhrU3oPJHU5UN0hBsoELMiFlMpkcR8\nOsjzJLqSxKYE68VUHDG9gC2/MaBcQNK3ImITfwgV8bqFLlE53w0kce4CumRXeRA7x14SBCgLnZlG\nJxkE01IxiIgVsQmcdUtiG3DF67rGL5taTbbOh3D1J+JuJj/s2bcixmnmWqohCYPdkIQVqn2LYT4T\nI1Z7Upzf78QVrMu1mtwFla3bVFTLrUuqg/pif6tYE2eFUM4S9nLmUlUz0AbjfDACZT3CjciorcWz\nfsJcTxJVlF1OzdbDqu6lWPnvUpSbRSRKJwbrr/etiPl0kJOEhU8Sbq7EptxNk+NlSfyuw3w6cCwe\nA5sX4UfMuXWaoIUl4ZZUjyTVdS321ybrvyeUzWMvZy3Nbn07OcgwKRdrg6CrKYet28SPrz6tAAAV\nuUlEQVQGooYybFq81km3nIg8ousUISZMm+friNM1oa558EIHd5MzHlyE+kWMMMlzliRmk0FR9bWG\nJAyWtSSxihWxmEkeTWUxm1gCyz41E6tLVWwrVsSoFA6uZFGAMT3PQxddwhev3ZDYYtv6Vv6mLNSl\n7qzUxs6xlwQBaiqUZvfdUMaIn0kb8MfHrIhNorcmythpHZ22OoS7QIDG8SAHo2Lx62RYh0jCoEoS\nsYS6TZCEC1+HmM+k5HoKWRF6fVbUaXIQcyEB7ZLqIrqEG3wfinTaFmH0qOJEZioRuQ2TJn4X8JfA\nS1T1sci+Q+Ah4COqek+b4yvGxWSVt6GMy9nD80m1FMcO0ZOEQcy1tI1IlkYdouV4CFlt7mp7kJoV\neYwkrC7RRBLZ0daKbppNykX6fDLw3Uw6CVsRJqIvewwV/SGoS0TQRZfIBWwHPWHsFic1S70aeK+q\n3icir86eh6oSArwKeBi42OUD8gGyJE/IkbrQ1wy14qTnbvJvqC44rSSx0NlGQlw3aRmsG95a24bU\nLhzqXE5uafhYzS7HihgwL5GERYgkDOpzJXyS2ERUU9DN5MzFbvZ+papA4HhBF1JEvG6jS4RwWglD\nexfTxvFiTCIHwJuB9xEgCBG5E/gK4AeA72h7cCtSW9jHOUn4yVItyj5DtpLyfLPrkgSsrkvkNXO2\njG26gVaZ/DdiYdgx4HeZsyjpUIEy4F6YsT8uXEuiyIeokkSXhDrrfoLuJBESpfPXQm6mc079r4Pi\nWnNLwmoSENclGlBX7K/kcorgtBLGPuGkSm08RVUfyR5/DHhKZL/XYVLLG+8EEXm5iDwkIg9devRq\n3l8ZzKAp9VoeH8RLcZANcq8sx2lEa2JqWZwvFNVx0rX2N45hUl9uxBkH1deKZkIhyMEobyoExYrc\nTr6jZMk4NX9WB3BfG46V4ViDpTnANB9qmyW9KuqCMrbRn71C0B1yVUILBZ8wYvv1aIetfXN1VQnd\nJ6qqIlJxsIrIPcAnVPX9IvKcps/LSubeD/A5z7hLr0yVi8mMaeZiWuicdHgeBIaj1FgSx1cQbkKH\nE+CaOdAFTAkOMgvjwrksUch0pB8AaldUa7qIuhbgk4Oh6XR2fhxPlLPElqT1ndMyVMjTQxd30ypk\nEvpcd5sJg5w7z0eV9wxlzGJR3mdOMfGMBikLnZMMDgsdIlT+Gwo3SMjt6KyYg26WzIoYnBvBuRHL\nG3OGqZl0k1QxnV2L79NYC4VF4bqchmMyi2LArPS+AemBLc9RjAGXPA4PB4xT8uilUbIs1Ysap8vc\nmhiNizwISTOCy8alHW9QNE4qjTuXSNs8HjnuvNC4nB2vXSss1D536+GsS4Xpbvt77ApbI4i6qoQi\n8nERuUNVHxGRO4BQ44pnAy8SkbuBA+CiiLxFVVunil+ZKulwks/jk8V1hjIiHZ437qaDiyaK4uhK\nFtlkB+7VjBgy0/nqNeQmkzCU36a3VN0Ku4SkI4cMxoXVE8MoWzlnESOuhbUpbINMfDLwycNsixOI\nJQ+7ikwGh2ZxsJjGSQKM7zymTTnlWGLQ48JNU0ztBVGMxou825t9tXA92deKEh2WKA4PyVxPw9zd\n5BMDGHIIEQMUhOETA5hFS4gYXJSu2y9+6bb4dcuEh7CYljUgSxpOZFMd2ozf0D52fPR5EM04Kdvr\nXcDLgPuy/+/0d1DVezEt9cgsiO/qQg4WJhlrQjqckQzstuuMBmkxWRxeRGbH6PFVs8O5myCZwjVj\nVchNF4wf+toNBhdNa0adLIIm9zbbla5kPQyTU5kDsaoQ7hJLF+vDdTN0Igmohr3mr1uiqBco8zPO\nrIoBWVIdmpNBkWBX1EsqXiOLeLIVWstFjELEYN6vQWIA4/4KEYO5nlGFGOw15uRQIoBxuTJyyYJo\nHns6nxRjdA0rImQ9+HDJYVM6hCgkR/tJNidFEPdhmlV8E/BXwEsA/KqEm4IhiSVwxFCMq8Eu64Yy\nyktyCMB8ipIRxYULZpK4dqPkZhDilXbrOtC1RRPJdLYeWsDeMJsu0rdpdDu/YsKwFUItYbQmCai4\nlvwoN/t72UlVJ/OiKurxwmn4NN+4+8li28RQQlvXkksOMVena0VsGL6F4JPDlT11C20SJ0IQqnoJ\neF5ge6kqobP9fZhIp5VhSSIdFroEkFUoy3SJbN+2ukTRmtFvLtSuPEeMSKIi6KrWQ8S91KQ/bAK2\nnMZJY7JQLiZHJANjQUJHkoBqcccM9gp1sgi6ZELwG6x1dT9ZqwKoEAOQ6ww+MQC5zuASA5TdSf44\nK1kO9r8f1OFt74yYNrECYuRgH1+Zal4sskccTyh5f7KQbKIwg2W6PCrEa3zxmkKXsMh0Cb16rXRc\nq1W0RR4q2HIycYlkG9aDj9MyqbdF040+XQrJQLkyXdaThI/YZOWGd2YIkYSpulvkEoSsCt/9ZK2K\nJveTQZwY7PYQMUBYgIYaYnARa7rV0bXkouJmAqhxjfoEUOdecslhujzKyeHqbDO5C4OlkqxZr+20\n4glFEBZWvLa6hBWvc13CF68PLhTiNUaTyDttxUqEBz43d0VErICY1RGMIHFxhrSHtlhldWdbmYaO\nY7/aEEm4bkZwrIiFUyrCQ54fESAJ6GZNWLhWRVv3U7Fty8TgWgjZ/5wcPD2iQg5NVkFMrF4RMfHZ\nJ4fH9jS5bZN4QhIEtNQlMvE61yWseO3oEqRpMJEqhNi6vIk48vevYj2coHsphnVN+xARhI59Yy6V\nbea9Cy4m5ncHyuHP2X4lV1Me+lqe+EpJdF6BR/e37EoWbdxP1qoAKsQA7UJWzX5D53G9tRDcFnu8\nAkpWRAe41kPMtTRdHjFZLJkshlydDbkxlzNnKYvIDwH/CNMN7s+Af66qlwP7fTvwLzBD+Pez/Y5F\n5POBH8dEhc6BV6rqb9d95hOWIGAzugTTWeFicsnCdzu5rU7dbUTq+7SNhvKthxWwDYF6E/7dOiKI\nfY4lBfc141o022/N559FnicDlN2M2R7BHIkQSUA0R2IdshgejEwv8oD7ySBODFAfslpLDE2kQMC1\n1BTS6qOFpWAzqleFTw5XpgU5XJkOeXy6GYIQVca7cTE9ANyrqnMReS0myrNUgUJEngp8K/B0VT0S\nkbcBXwv8JPCDwL9T1V/J0gd+kKKiRRBPaIKADegSNa6l2hiJGsKAmtVck/UQEafbosuqalMiXxsi\nqPvMECmYx4YY8nSVbMW9NklAfY5Eqed5Ta5ERK8IIeZ+ys+hBTHUupFakILdFnQtQZgc2i5afDcT\nRMetayXErIc25HD9jEWmqup7nKcPAl8d2XUEHIrIDDgHfNQegqKm3c3O9iie8ARh0TmpzuoS7oTh\nNxvK/vu+6go5BETP0vYYXOuhAb57qS22EemxLiFAmRT8/VxiuD4nJ4jbUzZDEtAuRyLwe65at8vC\nWhWurdcUstrJWqhzE23JteQi5mbq4gp1w1ktOUyXkpPDZGHI4fLGLAgYT1tbEE8SkYec5/dnVSC6\n4hsxFbFLUNWPiMh/AD6EKf/wHodYvg14d/b6APj7TR/SE4SDlZLqrChs3Q/TSZQooAVZ2G0Qvnlj\n1kNHcbq+vMbJkULdZ9eRgnkeJobjhXA8B1DM/Gl7YdvjLUiHk/xuyBcGTSQB4RyJ2G/qu2ki1xkK\nkzYlt52Mcet+YgViaEsKge2dsqW7ujw75kSErAeXHG7MJzk5PDYZ5uRwaWLI4fhkLIhHVfWZsRfr\nShSp6juzfV6D0RDeGnj/rZhiqE8DLgM/KyIvVdW3AN8MfLuq/ryIvAR4IxCteAE9QVTQOaluPjGD\nejQti5mR9pWNZAHhbT6a4s1bupe2JVRvghCgSgr+e6xLrI4Yim3CLalyaQIw4GICj+U/0wIwJJEM\nDpksrrcnCcgJoHafwP4Wq5CFW2U1RAydSaHBEthUSGtrLKa1oa75bhVhuh05XOrWYXYnqCtRBCAi\n3wDcAzxPNdjg5PnAX6jqJ7P9346xFN6CqVrxqmy/nwXe0HQ+PUEE4OoStcX+FlMnyolmoqj4p4vB\n34osQtaDF9oaQpvaS+sK1JtwG1mESMF/X4gYwBCBTwyTzK10iSVbJwm8iZTAb9sCoW8gloDZmhg6\nkIJ/DaX960JaN4C8V0Sg5EbdGLZj/MZ8wmQhOTlMFoOcHI4X5ORgx8W6kKUy3mKJnfxzRF6AqW79\nxaoaK+fwIeBZInIO42J6HqbhGhjN4YsxScdfAvxJ02f2BFGDRl3CTsjjg7WIAoob0g+bdPfJUWM9\n5OJ0BDa8NYSuYX+7JgXzvBsxTKfDopnLTdPtk4SLDRFGE1kE6yRZtHQnRQkh9t424dWrwHMzxSKZ\nrHvJdS255GDzHCaLAVemg5wcLk8kJ4drV7dT4mOLeD2QAg+I+U4eVNVXuCWKVPW3ROTngA9g3FC/\nS1blGviXwI+IyAg4Bl7e9IE9QTSgTpcYyshMHE4J6ShRjJIihyKGkFUBhRBaZz34cHIfQlhFf+hC\nCE3HgjgphN67DjFMJwOOjsxQn6YLYAYIJkVAgYGjR5iyHJYkbOhzkCRqEumCOkS2PTQZ1xKOEwDh\nZu23thRiWkLd59W91jWkdUvwycGEarcnh8cvny2CUNXPjGwvlShS1e8Dvi+w328Af6/LZ/YE0QJR\nXcKZw2JEwSg1+RPuZGKJwrckIlZFCTHroUacjpFBU7njroRg0UVobnqfTwxQEEFbYphOim033zLN\n8uFn3A5czuyB21MT4QJwa7rIHhvrcbo0vUCqJHGTSaD0E+li5FAD/1tpSxilbaHHrEEGdftughya\nciFmx0G3aVmcLsjhylS5OrMuJUMOZpwYcrg+L8hhOhlsrE2oLJW0r+b6xEYoqc60MhzlDWlKFoWt\n7zM7znrvrkAU9rlFyHrwYcVpD7Hw1lCC3CrEsCopxN67CjEAGRmUicFOBNeumO9rKyQBwRyJEmqs\nisqk7pOAn7Hvvt6GENoSQdN+bY6zbsG9hbHAxTuO30Y4Rg5GlDbkcGlSkMPjRwU5PH45zcdDjzh6\ngugAP6kOihXMUEYwoCAKq1GsQxRQXRmGwltD4nTEvbTJJimbdCEV2zdMDFMlOcqSpm4eb4UkmDdM\nNNOArrQCQqQRRNtchq44CdeSF8nkL3LcyqyWHOzYaSSHvtx3I3qCWAFusb+iq9kGicJFKMw1YD3E\nxOmmpjoWbQXqbZCC+/nbIIZksshLIUwPR1zDfE+Hh5YsZxzMwcrP50cCmOOfG9lJZJL3lADTxjQZ\nHSL2XTYvxkWkhlMJ044RTiH3kv96F3Te/+QLQFqrIVR8b7IQHp/aiKWCHIzr0ZCDHR8XLm8mzlWU\nXZXa2Dl6glgRhS6xBlFkCXY5UbhJdyG0sR5ahgaGttVP4JvTFcqvS+m/m8sQC1e1OkNbYhhPF6Uw\nxCkFSeS4MOPSMRQxSpYkFliyuJgssL3JLYIkMa8Rry3akEcMdSSxwazm6rFbnOuG+jkA5jvyxnMX\ncrh0XJDDtSvjnBymVwdcuDzZ20l9k5BwrsXZhoh8EtOpbtt4EvDoDj5n19jH69rHa4L+utbF31TV\nJ69zABH575jzbYNHVfUF63zeLrGXBLEriMhDdWnzZxX7eF37eE3QX1eP7aLvudejR48ePYLoCaJH\njx49egTRE8R6WKVM71nAPl7XPl4T9NfVY4voNYgePXr06BFEb0H06NGjR48geoLo0aNHjx5B9ATR\nASJym4g8ICJ/kv2/tWbfoYj8roj84i7PcRW0uS4R+XQR+R8i8kci8oci8qrQsU4aIvICEfljEflT\nEXl14HURkf+Uvf57IvJ3T+I8u6LFdf3T7Hp+X0R+U0Q+7yTOswuarsnZ7wtEZC4isR7MPbaEniC6\n4dXAe1X1s4D3Zs9jeBXw8E7Oan20ua458J2q+nTgWcC/FpGn7/AcGyEiQ+DHgBcCTwe+LnCOLwQ+\nK/t7OfBfdnqSK6Dldf0FppHM5wD/nlMu8ra8Jrvfa4H3+K/12D56guiGFwNvzh6/GfjHoZ1E5E7g\nK2jR0u+UoPG6VPURVf1A9vgqhvyeurMzbIcvBP5UVf9cVafAz2CuzcWLgZ9SgweBW0Tkjl2faEc0\nXpeq/qaqPpY9fRC4c8fn2BVtfiuAbwF+HvjELk+uh0FPEN3wFFV9JHv8MeApkf1eh2kNuF4fz92h\n7XUBICJ3Ac8Afmu7p9UZTwX+n/P8w1RJrM0+pw1dz/mbgF/Z6hmtj8ZrEpGnAl/JGbDy9hV9sT4P\nIvKrwKcGXnqN+0RVVUQqMcIicg/wCVV9v4g8Zztn2R3rXpdznAuYFd23qeqVzZ5lj3UhIs/FEMQX\nnfS5bACvA75HVZcS6YzYY7voCcKDqj4/9pqIfFxE7lDVRzK3RMjsfTbwIhG5GzgALorIW1T1pVs6\n5VbYwHUhImMMObxVVd++pVNdBx8BPt15fme2res+pw2tzllEPhfj1nyhql7a0bmtijbX9EzgZzJy\neBJwt4jMVfUXdnOKPXoXUze8C3hZ9vhlwDv9HVT1XlW9U1XvAr4W+LWTJocWaLwuMXfpG4GHVfWH\nd3huXfA7wGeJyNNEJMF8/+/y9nkX8M+yaKZnAY877rXTisbrEpG/Abwd+HpV/b8ncI5d0XhNqvo0\nVb0ru5d+DnhlTw67RU8Q3XAf8KUi8ifA87PniMinicgvn+iZrYc21/Vs4OuBLxGRD2Z/d4cPdzJQ\n1Tnwb4B3Y0T0t6nqH4rIK0TkFdluvwz8OfCnwH8FXnkiJ9sBLa/r3wK3A/85+20eOqHTbYWW19Tj\nhNGX2ujRo0ePHkH0FkSPHj169AiiJ4gePXr06BFETxA9evTo0SOIniB69OjRo0cQPUH06NGjR48g\neoLoceYgIt8qIg+LyFu3cOyvyarVLkXkmZs+fo8eZwl9JnWPs4hXAs9X1Q+7G0VklMXXr4M/AL4K\n+Ik1j9Ojx5lHTxA9zhRE5MeBzwB+RUTeBNwM/K1s24dE5KWYRL/nACnwY6r6E1km+I8CX4opEjcF\n3qSqP+ceX1Ufzj5nNxfUo8cpRk8QPc4UVPUVIvIC4Lmq+qiIfD+mn8AXqeqRiLwcUz7jC0QkBf6n\niLwHU332b2f7PgX4I+BNJ3MVPXqcDfQE0WMf8C5VPcoefxnwuU73sZsxzYH+IfDTqroAPioiv3YC\n59mjx5lCTxA99gHXnccCfIuqvtvd4bTVjerR4yygj2LqsW94N/DNWWlyROSzReQ88OvAPxHTK/wO\n4LkneZI9epwF9BZEj33DG4C7gA9kwvQnMS1U3wF8CUZ7+BDwv0JvFpGvxIjZTwZ+SUQ+qKpfvoPz\n7tHj1KGv5trjCQkR+UngF/0oph49ehToXUw9evTo0SOI3oLo0aNHjx5B9BZEjx49evQIoieIHj16\n9OgRRE8QPXr06NEjiJ4gevTo0aNHED1B9OjRo0ePIP4/kadCXr3KWBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example\n", + "\n", + "Another example is demostrated here for a periodic lighturve with poisson noise." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "freq = 1 #Hz\n", + "exposure = 50. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*freq*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc = lightcurve.Lightcurve(times,noisy)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGZhJREFUeJzt3X+MHOWd5/H357xeJdpEYu88t0H+cZPT+f4IEUe4EWHJ\nSsch5QQELasTFxFpQ8StZJEjOqLN3u4kJ5FNpN2NbqUoR8jiOAkCFkKWbAjxMiYJy5LDOTBmbIyN\nfyTxETu2MXhig39gY2P8vT+6PO5p93RVd1d1V1V/XtJouquernqe+vGpp6uruxQRmJlZvfyzYVfA\nzMzy53A3M6shh7uZWQ053M3MasjhbmZWQw53M7MacribmdWQw93MrIYc7mZmNfQbw5rxokWLYnx8\nfFizNzOrpA0bNvw6IsbSyg0t3MfHx5menh7W7M3MKknS7izlfFrGzKyGHO5mZjXkcDczqyGHu5lZ\nDTnczcxqKHO4S1og6XlJj7YZJ0l3SNopabOkS/OtppmZdaObnvttwPZ5xl0DLE/+VgB39VkvMzPr\nQ6Zwl7QE+AjwzXmKXA/cFw3rgAskXZhTHUfKwWMn+eGL+4ddDTOruKw9968AfwqcmWf8YmBP0/O9\nybA5JK2QNC1pemZmpquKjor/es9z3HL/Rg4ff2vYVTGzCksNd0nXAQciYkO/M4uIVRExERETY2Op\n354dSXteOwHA6TPzHUfNzNJl6bl/CPh9SbuA7wBXSbq/pcw+YGnT8yXJMDMzG4LUcI+Iz0bEkogY\nB24E/iki/rCl2GrgpuSqmcuBwxHhE8dmZkPS8w+HSboFICJWAmuAa4GdwHHg5lxqZ2ZmPekq3CPi\nJ8BPkscrm4YHcGueFTMzs975G6pmZjXkcDczqyGHe8k0znCZmfXH4V5SkoZdBTOrMIe7mVkNOdzN\nzGrI4W5mVkMOdzOzGnK4m5nVkMPdzKyGHO4l46vczSwPDveS8lXuZtYPh7uZWQ053M3MasjhbmZW\nQ1nuofoOSeslvSBpq6QvtClzpaTDkjYlf7cXU10zM8siy806TgJXRcQxSQuBn0p6LCLWtZRbGxHX\n5V9FMzPrVmq4J3dZOpY8XZj8+Yq9gvgXf80sD5nOuUtaIGkTcAB4PCKebVPsCkmbJT0m6aJcazmC\n/Iu/ZtaPTOEeEW9HxCXAEuAySe9vKbIRWBYRFwNfBR5pNx1JKyRNS5qemZnpp95mZtZBV1fLRMTr\nwJPA1S3Dj0TEseTxGmChpEVtXr8qIiYiYmJsbKyPapuZWSdZrpYZk3RB8vidwIeBHS1l3qPk1kGS\nLkumezD/6pqZWRZZrpa5ELhX0gIaof1QRDwq6RaAiFgJ3AB8UtJp4ARwY/hmoGZmQ5PlapnNwAfa\nDF/Z9PhO4M58q2ZmZr3yN1TNzGrI4V4yPptlZnlwuJeU/KO/ZtYHh7uZWQ053M3MasjhbmZWQw53\nM7MacribmdWQw93MrIYc7iXjq9zNLA8O97LyZe5m1geHu5lZDTnczcxqyOFuZlZDDnczsxpyuJuZ\n1VCW2+y9Q9J6SS9I2irpC23KSNIdknZK2izp0mKqa2ZmWWS5zd5J4KqIOCZpIfBTSY9FxLqmMtcA\ny5O/DwJ3Jf+tW77Q3cxykNpzj4ZjydOFyV9rBF0P3JeUXQdcIOnCfKs6WuTr3M2sD5nOuUtaIGkT\ncAB4PCKebSmyGNjT9HxvMqwwf/LdFxifnOJvfrKT8ckpjp86PW/ZiGB8coq/WrN9zvAjb77F+OTU\neX87DxxjfHKKx7e9CsB/+Osnufwvn5jz2ubyvTj72r99Zhfjk1N84u71HDt5mqMnG+24+M9/PFvm\nhrueZnxyii/+w7Y5r//oymdmy+z69Rtzpj9z9CTjk1M8uP5X89bhG0+9xPjkFF97cmfb+v3x322a\nffy572+Zffypb2/km2sbrz365lsArNmyn/HJKXYffOO8aTX7t//zMcYnp/jAF38MwGtvnDpvOY5P\nTnHT3esB+PwPXpwz7uTptzMt9/HJKf7Hd1+YfdxYr0cZn5zid//qiUb7HtrE+OQUJ0+/PVuvQ2+c\n4qLbfzj7mh2vHAHg4LHG8nzg2d0AfHTlM7z3s+3rMD45xR/d8xwvv36ibV0feHb37PB9SZlHnt93\n3nR2H3xjttx/Wfn0nHG/Onic8ckppjbvnx12xxO/YHxyijffevu8af2vH+5obDNff2a2Phf/+Y+4\n+itPzdbhB5vOr8N8zi6P+9ft5sCRNxmfnOKh5/akv7CN1v3vF68ebTv+o19/hqPJPvuNp17ix1tf\nYXxyiv83c6ztNP/7g8/zvqZ12Y8bV53b167532tnh+85dHx2+K8OHp9dps31/uBf/mNf8+5VpnCP\niLcj4hJgCXCZpPf3MjNJKyRNS5qemZnpZRKz/n7DXgD+9pnGzvb68bfmLXsmeZ/xjbUvzRl+4Mib\nbcu/sOd1AB7b0thxdh88zivzlO3X3003doj/8/MZDh472bbM9O7XALj7//5yzvD1uw7NPt768pE5\n486G7Nnl1M6XfrgDgL/+0c/ajn+4KXC+/ey5g8Sjm/dz/7rGcv/1sVMArN70MgDbWurR6tTbZwB4\nLVlf+14/0bbcUz9vbB/3Juv3rOMnzw+u+Xy3pe2b9hwGYP/hxrp8eOO+2Wmerde+107wxqlz89iQ\nLPtfHToOwEPTjWmu33WITndEfGLHAX7eElJn3ff0uTadLfP9NuH+4r5zy/K5Xa/NGbf15UZb/uGF\nl2eH3fP0LgDeOHl+R+ebaxvbzvpfnttmjrx5mh2vHOVnyQGs3QFmPntfa6y3h6b38FLSsfj7jfNv\na914Ptn/Wq3/5aHZ7e2BZ3czleyfW/Yeblt+9Qsvc/xU9u2lk3UvnVtu2/efWy/bWh6fXabNXj3S\nfr8uWldXy0TE68CTwNUto/YBS5ueL0mGtb5+VURMRMTE2NhYt3U1M7OMslwtMybpguTxO4EPAzta\niq0GbkqumrkcOBwR+zEzs6HIcrXMhcC9khbQOBg8FBGPSroFICJWAmuAa4GdwHHg5oLqO1C+cMXO\n0+lcjFmJpIZ7RGwGPtBm+MqmxwHcmm/VupNll8u6Ww7ySpWisyI6zCCPZnaafhGGFa3KcaPwlVA2\nCJX/hmqW/WT+MvXdy4oOkDzDrq7mW0bu/NdHmfeCyod7kQbeK+1jdtFDn3bU8nm+5lY5azOv9wzr\nupvl0LZsXguyy+n0su0Xoyz1aBjxcG+/MkYt9Oyc1qBoPeDmsfvmsX21m0avnRH12f8c5O7S3Ebv\npp2NeLiPtn536lFS2JLqkMe9HgQGccps2FuOTwumc7h3UK43WeXUuoy8zHrTbVb5vL2lqU24Z3lL\nmnWHGGSPtvCrZQqabl5LqNv2D/pzkLLzu6/hKvM7iMqHe38Lt7wrpn/DaVudlyh0dzCqyrIozweS\nlqfKh7v1oSrpU7As7waK7qAV/YYk7+qX6XDgN3PtjXS4p+2wg95o+pldL3UdtWwv5TvoPuuUR6+7\nn1M7za/M6x1A1umU7ZRI2Q4yIx3u862Mkm0zPRrMlla2Dbpfae0pyymMTtvooD+XGGTIlmPpV0Nt\nwr2qIVPRag+t2z/o5XV2fsP44LLbOZatJ1uk0Wlp72oT7r1IPS0zmGoUpBqbf1l6wkXoN2u7XTLD\nuJKovmsvmzLvZSMd7qNuhDp6PaviImrXg897XVdxuYwah/sI6+tUQ426bF39pkre7a7ochx2tZvn\nX9VTskVzuJdIX1fsl6QrVfX9bL7lWPyvbHZXvohA63eaedWp03RKspm3VbZt3+HewSDOYTbPo4hL\nIQtrwrA+UC3bHlQHfaxLMbyORZmDvgyy3GZvqaQnJW2TtFXSbW3KXCnpsKRNyd/txVS3Xf2KmGb1\nN5ssTShk2XVZvmxhnWd95jvtlcf2VYNNtCcl21xKvR6y3GbvNPCZiNgo6d3ABkmPR8S2lnJrI+K6\n/KtoVh6DPBgNLDfKlpgZlDhTSyO15x4R+yNiY/L4KLAdWFx0xcqggtu85ayIbWAYlyxm+fC8zL1Q\n615X59wljdO4n+qzbUZfIWmzpMckXTTP61dImpY0PTMz03VlB2VUtvF82ulDYB7yyPthrImgfKfW\nrCFzuEt6F/A94NMRcaRl9EZgWURcDHwVeKTdNCJiVURMRMTE2NhYr3XOzSiEeKf9rp9zv1VcdmXp\nmc5Z7iX43CO3+eY0466vHMpntn0ryeY1K1O4S1pII9gfiIiHW8dHxJGIOJY8XgMslLQo15qmKKT3\nUJatpgdl29DyMuxvtFZ4k0jV74/PDeJSyHlnPiTNB6KybRtZrpYR8C1ge0R8eZ4y70nKIemyZLoH\n86zo/PXr57XzXc3Q+zT70c+52LJtWFlVpd69bBOZXlOGa8v73N7L8o7I5spytcyHgI8DWyRtSoZ9\nDlgGEBErgRuAT0o6DZwAbgzfMsesrXZZ2H1AOlGts9Rwj4ifkrIlRcSdwJ15VWpQ6nz8ydKyPOKh\ndRFWfYkOov55/ep5N2Pq0rues71VfWMrmL+h2sGwz+8WLsdTWnUJj/O0HL0G2SHo9otodV0FbY1q\nu7tQm3DPM4jrcIPsQW/wA8u8PuYz33rNUnffiHquMr3rHWZNyrxdVD7cy7xwR1H3Pz9QnpDI23zL\nIusy6nbR9LskK7cmvOt3VPlwL1KNcwfwvpFJBc83DaLG7a40y2t3qepuV7a8cLi3MbRLIft57ZC2\nrJJtz4Upa8ZnXe1Zqt9rE0u6aEaew9164h26d/kcEL0GrLPahHvZ3hJlVfgVOR0WTD8/PzDwG1Un\n7ajoara6KvExtvLhXuTb5UEfMPq7E1PrpYmD2epKvG2fJ49F0tU24W9+2hBVPtyL4H1qcMrQE+/4\n7ilJcwftXGW6yqlMdSkTh7v1pXW3KvNuVq8MyL8xPU1xiEc9XwbdmcO9g9p/Q7UPrbtVXXq2VesF\nzvlVwk43lu6wgvpadc33AM5p2VVsFcwqW1443NuoS1BB2u+5D6watZHHDlz0AWQQ67X5YDHK21GZ\nm16bcC/XMTO75v08z+vci7yuuf38c5xYh+kPq1dX1lMAVe3lWvEqH+5F7nLecbrX/c8PFFKNtgbd\nwyz2gFDOg42VR+XDvR8drgAfYC2KMbDf8arDATCnd09lMYh1MrzPJs6fbx3WWRGy3IlpqaQnJW2T\ntFXSbW3KSNIdknYmN8m+tJjqWrc6Hab6uodq9Y9/Pck70zqfw+9uIQ9lnQxpQ9DwZl0ZWe7EdBr4\nTERslPRuYIOkxyNiW1OZa4Dlyd8HgbuS/zZk7tX05+zyKzpIis6pQeRgfj8cVp2ttrmDVLZ3sak9\n94jYHxEbk8dHge3A4pZi1wP3RcM64AJJF+Ze2871zH+auU9xcPOoW6cmZv+XbA8y6re11YO6CUVJ\n48BTwPsj4kjT8EeBLyW35EPSE8CfRcT0fNOamJiI6el5R3c0PjnV0+sGYfEF72Tf6yeGXQ0zK7GH\n/9sVXLrst3t6raQNETGRVi7zB6qS3gV8D/h0c7B3WakVkqYlTc/MzPQyidJzsJtZmv/8N08XPo9M\n4S5pIY1gfyAiHm5TZB+wtOn5kmTYHBGxKiImImJibGysl/qamVkGWa6WEfAtYHtEfHmeYquBm5Kr\nZi4HDkfE/hzraWZmXchytcyHgI8DWyRtSoZ9DlgGEBErgTXAtcBO4Dhwc/5VNTOzrFLDPfmQtOPH\n4dH4VPbWvCplZmb9GelvqJqZ1ZXD3cyshhzuZmY15HA3M6shh7uZWQ053M3MasjhbmZWQw53M7Ma\ncribmdWQw93MrIYc7mZmNeRwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOzGspym727JR2Q9OI846+U\ndFjSpuTv9vyraWZm3chym717gDuB+zqUWRsR1+VSIzMz61tqzz0ingIODaAuZmaWk7zOuV8habOk\nxyRdlNM0zcysR1lOy6TZCCyLiGOSrgUeAZa3KyhpBbACYNmyZTnM2szM2um75x4RRyLiWPJ4DbBQ\n0qJ5yq6KiImImBgbG+t31mZmNo++w13SeyQpeXxZMs2D/U7XzMx6l3paRtKDwJXAIkl7gc8DCwEi\nYiVwA/BJSaeBE8CNERGF1djMzFKlhntEfCxl/J00LpU0M7OS8DdUzcxqyOFuZlZDDnczsxqqXLj7\ns1ozs3SVC3czM0vncDczqyGHu5lZDVUu3H3K3cwsXeXC3czM0jnczcxqyOFuZlZDlQt3n3I3M0tX\nuXA3M7N0DnczsxpyuJuZ1VDlwt2/LWNmli413CXdLemApBfnGS9Jd0jaKWmzpEvzr6aZmXUjS8/9\nHuDqDuOvAZYnfyuAu/qvlpmZ9SM13CPiKeBQhyLXA/dFwzrgAkkX5lVBMzPrXh7n3BcDe5qe702G\nnUfSCknTkqZnZmZ6mtnUlv09vc7MbJQM9APViFgVERMRMTE2NtbTNNa91OlNhJmZQT7hvg9Y2vR8\nSTKsIL5axswsTR7hvhq4Kblq5nLgcEQUdu7kzJmipmxmVh+/kVZA0oPAlcAiSXuBzwMLASJiJbAG\nuBbYCRwHbi6qsgDhnruZWarUcI+Ij6WMD+DW3GqU4oyz3cwsVQW/oTrsGpiZlV/1wt2nZczMUlUu\n3J3tZmbpKhfuznYzs3SVC/czPuluZpaqcuHubDczS1e5cHfP3cwsXeXC3dFuZpaucuHudDczS1e5\ncPdpGTOzdJULd2e7mVm66oW7z8uYmaWqXrg7283MUlUv3IddATOzCqheuLvrbmaWqoLhPuwamJmV\nX6Zwl3S1pJ9J2ilpss34KyUdlrQp+bs9/6o2+FJIM7N0WW6ztwD4GvBhYC/wnKTVEbGtpejaiLiu\ngDrO4Wg3M0uXped+GbAzIl6KiFPAd4Dri63W/NxxNzNLlyXcFwN7mp7vTYa1ukLSZkmPSbqo3YQk\nrZA0LWl6Zmamh+q6525mlkVeH6huBJZFxMXAV4FH2hWKiFURMRERE2NjYz3NyFfLmJmlyxLu+4Cl\nTc+XJMNmRcSRiDiWPF4DLJS0KLdazplXEVM1M6uXLOH+HLBc0nsl/SZwI7C6uYCk90hS8viyZLoH\n864s+OcHzMyySL1aJiJOS/oU8CNgAXB3RGyVdEsyfiVwA/BJSaeBE8CNUdD5E/fczczSpYY7zJ5q\nWdMybGXT4zuBO/OtWnu+zt3MLJ2/oWpmVkPVC/dhV8DMrAIqF+5OdzOzdJULd18tY2aWrnLhfsbZ\nbmaWqnLh7m+ompmlq1y4u+duZpaucuHubDczS1e5cPeF7mZm6SoX7o52M7N01Qt3p7uZWarKhbt/\nW8bMLF3lwt3ZbmaWrnrhPuwKmJlVQPXC3V13M7NUmcJd0tWSfiZpp6TJNuMl6Y5k/GZJl+Zf1QZn\nu5lZutRwl7QA+BpwDfA+4GOS3tdS7BpgefK3Argr53rO8g+HmZmly9JzvwzYGREvRcQp4DvA9S1l\nrgfui4Z1wAWSLsy5roB77mZmWWQJ98XAnqbne5Nh3ZbJxc6ZY0VM1sysVgb6gaqkFZKmJU3PzMz0\nNI0H/uiDOdfKzGywvv7xf1/4PLLcIHsfsLTp+ZJkWLdliIhVwCqAiYmJnk6wXPFvFrHrSx/p5aVm\nZiMjS8/9OWC5pPdK+k3gRmB1S5nVwE3JVTOXA4cjYn/OdTUzs4xSe+4RcVrSp4AfAQuAuyNiq6Rb\nkvErgTXAtcBO4Dhwc3FVNjOzNFlOyxARa2gEePOwlU2PA7g136qZmVmvKvcNVTMzS+dwNzOrIYe7\nmVkNOdzNzGrI4W5mVkMa1k/oSpoBdvf48kXAr3OsThW4zaPBbR4N/bT5X0XEWFqhoYV7PyRNR8TE\nsOsxSG7zaHCbR8Mg2uzTMmZmNeRwNzOroaqG+6phV2AI3ObR4DaPhsLbXMlz7mZm1llVe+5mZtZB\n5cI97WbddSDpbkkHJL3YNOyfS3pc0i+S/789zDrmTdJSSU9K2iZpq6TbkuG1bLekd0haL+mFpL1f\nSIbXsr3NJC2Q9LykR5PntW6zpF2StkjaJGk6GVZ4mysV7hlv1l0H9wBXtwybBJ6IiOXAE8nzOjkN\nfCYi3gdcDtyarNu6tvskcFVE/DvgEuDq5F4IdW1vs9uA7U3PR6HN/zEiLmm6/LHwNlcq3Ml2s+7K\ni4ingEMtg68H7k0e3wv8wUArVbCI2B8RG5PHR2ns/IupabuTm8mfvSHwwuQvqGl7z5K0BPgI8M2m\nwbVu8zwKb3PVwn1gN+Iuod9purvVK8DvDLMyRZI0DnwAeJYatzs5PbEJOAA8HhG1bm/iK8CfAmea\nhtW9zQH8o6QNklYkwwpvc6abdVi5RERIquVlTpLeBXwP+HREHJE0O65u7Y6It4FLJF0AfF/S+1vG\n16q9kq4DDkTEBklXtitTtzYnfi8i9kn6l8DjknY0jyyqzVXruWe6EXdNvSrpQoDk/4Eh1yd3khbS\nCPYHIuLhZHDt2x0RrwNP0vicpc7t/RDw+5J20TilepWk+6l3m4mIfcn/A8D3aZxeLrzNVQv3LDfr\nrqvVwCeSx58AfjDEuuROjS76t4DtEfHlplG1bLeksaTHjqR3Ah8GdlDT9gJExGcjYklEjNPYd/8p\nIv6QGrdZ0m9JevfZx8B/Al5kAG2u3JeYJF1L47zd2Zt1/8WQq5Q7SQ8CV9L45bhXgc8DjwAPActo\n/JrmRyOi9UPXypL0e8BaYAvnzsd+jsZ599q1W9LFND5IW0Cjk/VQRHxR0r+ghu1tlZyW+ZOIuK7O\nbZb0r2n01qFxGvzbEfEXg2hz5cLdzMzSVe20jJmZZeBwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOz\nGnK4m5nVkMPdzKyG/j9Mccz20QZE3QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, 'unbiased' scaled Bispectrum is calculated." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25, scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5000.00000001, -4800.00000001, -4600.00000001, -4400.00000001,\n", + " -4200.00000001])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.0021, 0.0022, 0.0023, 0.0024, 0.0025])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags[-5:]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.16469688e-04, -1.15175317e-06, -1.07527932e-05,\n", + " 3.12465067e-05, -1.49891250e-05, -1.13491830e-05,\n", + " -3.01378025e-05, 8.84909091e-06, -9.76499980e-06,\n", + " -4.03093430e-05, -1.39169834e-05, -1.06733571e-05,\n", + " -3.56900080e-05, -4.36904080e-05, -1.64739272e-05,\n", + " -6.07642325e-06, -9.40724231e-05, 3.20972054e-05,\n", + " 1.10825598e-06, 1.57445478e-05, 1.50738698e-04,\n", + " -1.53088049e-05, -1.06758132e-05, -8.50761732e-05,\n", + " -2.70732731e-05, 5.15575763e-04, -2.26276548e-06,\n", + " -5.46966498e-05, -3.49049233e-05, 6.93111630e-05,\n", + " -1.96629892e-05, -4.00897434e-05, -5.37940654e-07,\n", + " -1.25908665e-04, -4.04722751e-05, -1.95122973e-05,\n", + " 7.48985545e-06, -1.59418559e-05, -3.40950546e-07,\n", + " -5.28946188e-05, -6.77547458e-05, -2.58282563e-06,\n", + " -2.16597857e-05, 2.08264564e-05, 1.62145798e-05,\n", + " 6.20770115e-05, 5.74011370e-05, 3.04301082e-05,\n", + " 5.42455829e-05, 6.16520488e-05, 5.25699675e-05])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.10270301, 0.09674684, 0.1026435 , 0.10278492, 0.09607422,\n", + " 0.09961388, 0.10090391, 0.10316149, 0.09881147, 0.10027435,\n", + " 0.09052907, 0.10086312, 0.09964639, 0.09224589, 0.10189853,\n", + " 0.09783874, 0.1029246 , 0.10003251, 0.1003841 , 0.09654483,\n", + " 0.10021589, 0.10265071, 0.09913028, 0.10406698, 0.10248613,\n", + " 0.12079938, 0.10038381, 0.09376602, 0.09916139, 0.10218425,\n", + " 0.09798569, 0.10296954, 0.10377357, 0.10144925, 0.09848511,\n", + " 0.09731673, 0.10031293, 0.09733791, 0.10085873, 0.09769191,\n", + " 0.10021328, 0.1000008 , 0.10362033, 0.10352851, 0.09763424,\n", + " 0.10249754, 0.09752426, 0.09520164, 0.09959243, 0.12395456,\n", + " 0.10188173])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ -1.44942123e-02, 1.67988284e-02, -3.06544878e-03,\n", + " 1.24304742e-02, -4.69267453e-04, 1.80410887e-02,\n", + " 1.18875941e-03, -1.85154750e-03, 2.17338081e-02,\n", + " 1.03821918e-02, -7.09489717e-03, 1.05358508e-02,\n", + " 4.01625879e-03, -2.05403388e-02, 1.17686452e-03,\n", + " 2.56746832e-02, 2.17353559e-02, -7.69020683e-03,\n", + " 1.54447950e-02, -9.03814639e-04, 3.43660863e-03,\n", + " -5.37971533e-04, 9.42017522e-03, 1.42720920e-03,\n", + " 1.17025084e-03, -5.00982277e-03, -1.53439701e-02,\n", + " -7.63874625e-04, -4.10637611e-02, 2.41131565e-02,\n", + " -1.95500843e-02, -2.98681684e-02, 1.23914953e-03,\n", + " -2.75100800e-02, -3.88428578e-03, -7.87537903e-03,\n", + " -1.53613857e-03, 1.47624077e-02, -4.86162981e-03,\n", + " -2.76731089e-03, 9.30828311e-03, -2.86531767e-02,\n", + " -1.16465064e-02, -2.30165990e-02, -7.71187242e-03,\n", + " 2.00694116e-02, -5.16511843e-02, -1.98737477e-03,\n", + " -9.87738671e-03, -2.09922507e-17, 1.39146079e-02])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXv4ZlVd//16zzAMR0EYQI4OKHoFdWlIYPXTDoICmVQe\nLsgksSKe8DE7KURmP5Pfg1lZpImUphZGJKHTTwzBSn/2PKMcRJSTAmKAowgICDMMM3w/zx9737jZ\nsw9r7b3W3vu+v+t1Xff1/d73Xue99vqs9fl81l4yMxKJRCKRiMWKsQuQSCQSicUmCZpEIpFIRCUJ\nmkQikUhEJQmaRCKRSEQlCZpEIpFIRCUJmkQikUhEJQmaxOBIMknPjJzH2jyf7WLmMwaLXLfEYpIE\nTcILSf8g6VuSHpL0VUm/GiGPl0r6gqRHJN0n6UJJB4TOp0O5niXpnyXdK+lBSddL+m1JK8cuW1ck\nfVDS28cuR2KxSYIm4cu5wCFm9hTgZcDbJT2vKmCXGbekVwAfAf4CWAMcDmwGPifpqaHyaSnDNulJ\negbweeBO4IfMbDfglcDzgF1D5p9ILBpJ0CS8MLOvmNnG2df88wwAST8p6S5Jb5b0LeDv8t9/T9IG\nSd+U9Lq6tCUJ+DPg7Wb2ETPbZGbfAn4VeBj4rTzcayX9l6R3SboP+CNJKyX9ab7auB34mVLau0l6\nf16OuyW9fbYSqUqvonj/E/h/zey3zWxD3ha3mNmrzeyBWd1Led4h6Zj8/z/KV0P/IOl7kr6cr5DO\nknSPpDslvbgqbiH+P9S026mSbsrTvV3Srxeuze7J7+T5bJB0an7tNODVwJskPSzpX+vuTSLRhyRo\nEt5I+mtJG4GbgQ3AZYXLTwP2AJ4OnCbpOOB3gWOBQ4FjqOfZwEHAPxd/NLMl4JI8jRlHA7cD+wDn\nAL8GvBT4YeBI4BWltD8IbAWemYd5MZkAq0uvzDHARxvK7sLPAn8PPBX4InA52TO4P/A24H0d072H\nrO5PAU4F3iXpiML1pwG75fn8CvAeSU81swuAC4E/MbNdzOxnO+afSDSSBE3CGzP7DTJ10QuAfyFT\nbc1YAt5qZpvNbBPwKuDv8pXQI1SvFmasyf9uqLi2oXAd4Jtm9ldmtrWQz1+Y2Z1mdj/w/8wCStoH\nOAF4o5k9Ymb3AO8CTmpIr8yeNeXy4f+Y2eVmtpVMmO4FnGtmW4CLgLWSdvdN1Mw+YWa3WcZngE+R\n3ZsZW4C3mdkWM7uMbHX47J51SSScSYIm0Qkze9zMPgccAPxfhUvfMbNHC9/3I7NrzPhGQ7L35n/3\nrbi2b+E6pTTb8nk6sArYIOkBSQ+QrR72bkivzH015fLh24X/NwH3mtnjhe8Au/gmKul4Sesl3Z/X\n7QSeLJTvy4XbjI1d8kkkupIETaIv25HbaHLKrwPfABxY+H5QQ1q3AHeRGdmfQNIK4OXApzvmcyfZ\nqmuNme2ef55iZoc3pFfmyrwMdTwC7FQo80qyFUtXnpQemfprGyStJlMr/imwj5ntTqbKlGM+6fXt\niegkQZNwRtLekk6StEtufH8JcDJPFgBlLgZeK+kwSTsBb60LaNmZFb8L/IGkX5S0g6SnAX9LZn94\nV0s+b5B0QO6ddmYh3Q1k6qQ/k/QUSSskPUPSTzhWnbzcPybpnXmZkPTM3Li/O/BVYAdJPyNpFfAH\nwGqP9MtcB5wkaZWkKpvTjO3zfL4DbJV0PJn9yZVvA4f0KGci0UoSNAkfjExNdhfwXbJZ9BvNbF1t\nBLNPkrkq/ztwa/63PgOzfwJeQ+Zhdh9wI7Aj8ONmdl9D1L8hM65/CbiWzHZU5BSyQfnGvOwfxUMV\nZma3AT8KrAVukPQg2UriauB7ZvYg8BtkQvFushXJXdWpOfEWspXid8k83j5SU67vAW8gE7TfBX4R\nqL0fFbwfOCxXKX6sR3kTiVqUDj5LJBKJREzSiiaRSCQSUUmCJpFIJBJRSYImkUgkElFJgiaRSCQS\nUUmvGQdW77Cr7bzzk7c8aAnMUQz7hO2CluqvNeVbjmcrmtNqImb9qqgqe9P1JmKUvSr/tny6tn1T\n+n3TnAJjPTtNNJXpu/d//V4z67NHih/SnvYwW5zC3sH3Ljez4/rkNzZJ0AA777wXxxz3v5702+pN\n2UbqzTuO20SzclTRt2xNaYfOy5di2arydi17zHJXlaEuv7rylsP73JO+jJl3Uzkg3PPnWyeX/P75\nIyc3vd3CiYfZwh+tPMop7Gsf//Sa9lDTJqnOKhjrgfMhxAC6ecftnNMZuk1mZasrn0u5YwvHugGy\n3FauQqbuN5dyuMZratc+7dUn7qx9Zm1XbK++/c63XRJxSC07Mm0z9ypCPxCus/DVm7Z2zrucVqyH\neujBYvOO21UOhm0DZFM569KcKrO69Cl3U7w+/c6FJGDik1p4JJoGp1nH91HNxKCYV3HW2VYel8Gm\ni4BtKt+Y+A6wrquxMYRN37rEKncfVVpTmcbqQytWwI47OSqUvhe3LEMwjSd1Ysw6ZqjZ+9DxY1Al\ndMr/d2Wo1U5MXAZYn3qN2Qd8hEXVc9I0Uepbrimnl6gn2WhqGEvIzAOxH9AqO8c80KYOc6FL3WO0\n19A2wCHSSYxHunsTZSoeQXXEmrUWia2bj0FVu7jUYaj769OmTeHKq9pYNqep2fJC3SetEDsk1Vmi\nCzEHi9huun3sJEnYbMuYarI2u1mINvWdaMSwYxXxseGMLWSWI/P3BCe2oY+hM8TD4zqI1Nl5hmRq\ngstln9SUB7jZvXdp1y79pI06V/I6u1FiHJKNZqL4zv76bGr0DVtXBp/rY7lyw7ScNVz2CbXtKSrT\nto8nZJv6OIZMWWA2EcMGtmIFrF4tp88ikARNQEIPikMbxUMIG5+NgG16/aF39Q8Zv462eru2S507\nemzq8ovp8lwmVL+ZV6eUKZIEjQehl/0h863LewwPpvJs3CfskB5GUxE2xQ2PIalaycRazUyFEPVL\nAiY8SdA0UHwlRvk1GWOUZej8qj6u+A5qfV9h0lUYhxA2oexcUwrfh3kdpId8tlcIdtxxhdOnDUnH\nSbpF0q2Szqy4Lknn5devl3RE4dpvSvqKpBskvbEi7u9IMklr8u9rJW2SdF3+Od+pvi6Bliu+qqDY\ndHkQuthOmlYWsR7ELumW28O1fWK4jncRxn0Z28DtoxKN4YVX7qNjt8cYSFoJvAc4HjgMOFnSYaVg\nxwOH5p/TgPfmcX8Q+DXgKOA5wEslPbOQ9oHAi4H/LqV3m5k9N/+c7lLOJGgcKHbomO6TroTWg/c1\nNvehi6BoK8O8zqjLhFLVTmUAjtXHlvmGzqOAW83sdjN7DLgIOLEU5kTgw5axHthd0r7ADwCfN7ON\nZrYV+AzwC4V47wLeBFjfQiZB48GUOnPVbL5MqF3ZsfAVmD6rhrYwU7qXVfgY85sG2tj17OJNOMaE\nxoXyan5om2EDayRdXficVri2P3Bn4ftd+W84hPkK8AJJe0raCTgBOBBA0onA3Wb2pYryHJyrzT4j\n6QUuFRi9BReV2BsZZ8R0XS2mWeUyO2WvsFkasXasdy1PMW/feL5qUN8y9UnHN57rHiGfjZgxCZ2/\n15sB4F4zOzJoAQAzu0nSO4BPAY8A1wGP50Ln98nUZmU2AAeZ2X2Sngd8TNLhZvZQU15pRbMAjDXz\nir33JgRTUaO17W0p/j6ki/DYGxt9VjdTuZcT427yVUjOAflvTmHM7P1m9jwzeyHwXeCrwDOAg4Ev\nSbojD3+tpKeZ2WYzuy+Pew1wG/CstkKOKmh6ektUxpX0Tkk35+EvlbT7UPUZg7Fnen0ZQkAOOXDP\n0q3zUiy/HcFnw2Ms+kxUQpR/zM27MJ3JSEeuAg6VdLCk7YGTgHWlMOuAU/Lx9PnAg2a2AUDS3vnf\ng8jsMx8xsy+b2d5mttbM1pKp2o4ws29J2it3QEDSIWQOBre3FXK0UargLXEsWUWukrTOzG4sBCt6\nSxxN5i1xdEvcK4CzzGxrviw8C3hzlzL23RAWWzXTVo7Y6q2QuKpSulJuixi7+1135Jf7xbwOdKHb\ncMzNyUM/KytW4OS63EY+zr0euBxYCXzAzG6QdHp+/XzgMjL7y63ARuDUQhKXSNoT2AKcYWYPtGT5\nQuBtkrYAS8DpZnZ/WznHHIWe8JYAkDTzligKmie8JYD1kmbeEmvr4prZpwrx1wOv6FI4F6+mvobP\nPg+Wi5Ap/u37ENUNBKEf0JgCZ1bW0Bsti99dJydDD6yhianGi9kubc/1vEzMipjZZWTCpPjb+YX/\nDTijJm6rMT9f1cz+vwS4xLeMY7ZqlSfE0Q5h9neMC/A64J+qMs89N04D2GmnNU+65uti29d4OpTT\nwDw9RHUDcV/BPaXB3VXYTOm+uRjvYzmk9GXePRHnmYVtWUlnA1uBC6uum9kFwAUAe+x5yBN+4qE3\nRLbRdeBreqDbbBKhN8919abyzdfH62pehLfPKmg5EMtNf5bOVNpaK2DV6kGzHJUxe3Ifb4lVTXEl\nvRZ4KfCifNk4V/TZue4qGFxVb76EmKGHGGyGXC3OiKWSmze6COCh7lNZ2Mx7W88LY3qd9fGWqI0r\n6Tiy3awvM7ONQ1WmC64DquvKJZRAiv3Q+7rwTm0w8F05ua7EXD2/fDaujsWUhe6ENmIuG0Zr6T7e\nEnVx86TfDawGrpAEsN71fTy+hO6oXTYX9jFwx/TE6kIMIRPL6F5cMYVI33ezY2hnj9CEUM9OrU4h\nkWDV6qWxizEYo97Jnt4S28TNf39mRXBnQhloXdQHxcHK1YOtTtiEYAh1k68wDWUHmaW1KIxhjyrn\nW5V3EjCJKtIdraCv0bA42+zrAj0GsQbmrvUM6aJdTK8vUxFcY25k9HkeQqTlm0+fNKe6WpxHUgvW\nMNXONeT+C9eB2aVMId1TQwmc5YaPEXxIW1lMz80QjgkxXLa1AlbtMHd+Sp1J7zoLTB8DvStDD5RN\nhlMXQ7av/aGNqawk5omqfunjkNGHGP01lkNEU5ukftedJGgGYKiHwYcQXjehBxCfhzk99O5Mua26\n9CHf+qQ+NT7LU4ewzBl6j0Ob6iHGptUpMWY5m9q2bQUaUoVUpV4dQsiU4/W5DyHvoWSsXJW8zhKB\nadvJ79qJ63TnMWwkIWd4VXUMkb6Li/Y8CKMYdBEy5TB1quAxVsNtDjq+b7FIDMfyfAJLaMlvt3yM\n9y512a1fDF832I4tYMrpxvBoa0trUbyHXO9ryElH0+rGN82Z4Ap5H6qegUWwiy4ayUZTwNUQ2NUw\n2GbAbPOecaXrzuchDJ4+eRTrUf7Eznvq1NVl6vXr6+JeTCeE88ki0PNcr9+SdIOkr0j6R0k7lOL+\njiSTtKbw21l5WrdIeolLGZOgKVEUBmMMTD6Dx5CrApc4ofZduITrI3RCqeyGzrOqruUJUJc0QhDr\nWalKd4y9aaHrN3szgMunOZ0nzuY6HjgMOFnSYaVgxXO9TiM71wtJ+wNvAI40sx8ke8vKSYW0DyQ7\nzvm/C78dloc5HDgO+OvZQWhNJEHTg1iuzD6Dx9gzWB+BXHSFdgnnSt+Vji9jtnnXevZdCcYI25ZO\nX3tbLLfqifHEuV5m9hgwO5uryBPnepnZemB2rhdk5pMdJW0H7AR8sxDvXWTvjbRSWhflRzp/nez1\nYEe1FTIJmokypKvvGA9PLLVHH6eK2ITMsyg42oz+Lra/ulW8j8qqLo4PTf2+q4BdANZIurrwOa1w\nre7MLtrCmNndwJ+SrVg2kL20+FMAkk4E7jazL7mk1VaBhbgLYzIzbk5wpuPEUOUeUt0R8360zbKH\ndkyoEzZ9N762pdfkQTjEysmHKT6fWmGs2sHZvfleMzsyeBmkp5KtUA4GHgD+WdIvAf8C/D6Z2iwI\naUUTgHlUpcCw5XZRMw5tE+uS1xRnyKGFTBdCqC9jtu0U71sg+pzrdQzwdTP7jpltIRMwPwY8g0z4\nfEnSHXn4ayU9zTG/bVjY1u9LTPWAT/5990LU4eoCO4TDQXnGOeRemJDutvOijpva7L5IbBflNqE8\n5bap4YmzucgG/JOAXyyFWQe8XtJFZEfeP2hmGyT9N/B8STsBm4AXAVeb2ZeBvWeRc2FzpJndK2kd\n8BFJfw7sR+Zg8IW2QiZBU4GPmie2z37dsn8IIdOUf2ja8vFRzXTxCOuzt8RlRdFVIIR+o8K8rOKq\nBECISYGLI8oQ/T3UeTQ9z/X6vKSPAteSHXv/RfLj7Rvyu0HSxcCNeZwzzOzxtnImQVOii8dTqI7Z\nZiAPrd93LUPMh6+Pe/LY6pCqyUbTPezi3FGX9qKtZNoY8l5P0abTRM9zvd4KvLUl/bWl7+cA5/iU\nMQmaiTCUsTykR88UmfoAEXMlGiPuovQLX+ZN2Eyd5dmLJsaYs7UxDMchmMoAGGMvVd9Brqxi8k0r\ndtv2XZH28XDzyTuqsFkBK1YvH1+saTytE2HowWuswTLkXpO6tHzURF3UlSGY8v0OIWx88hqDLve+\nSbD72LOmon5dLqRW7smUH+g+xtM+QqZ8LfRGxTHjD0ls9c0YbVE14Iea+FQ5ZfTd1xTT6Wc5MT9P\n3USJMRiEnG11SSuWS3Vbek0PdYh8Ywysrvd/agJuzNX0UKsLn+fSReAEfc5XCO20Klx6E2davX9k\nuq4AYs08+z6AoYRLl/T6pNV3019dXULumXHNsw9T8vQLnX/dht1YalEXl/7yhuG0mglHEjQlug7u\nLh2764MUW58cQsjUlXHIzZdj0iRs+tohEhl9Vo8uWwRcNg4nurF4T3wgQq0m+uik68rUlF/INF3T\ndn04pyBgYq1qYHnvc5kCQ20RCIFWiBVJdZaY4bLruwlftUrXwWYsLxrX8i63DXezMoR2H+/71oGp\nDLR19FFfh2AKfWcRmXavWxDqluQxDesuDLXnY4zBbQxbTTkPl7y6vC6njI8toc8elKGoa7Mh7lsi\nDumujUhR4PisnPraPULP2ELaJ0Iyxuy0zjY3K09TuKGZstCZQvtERUI7tB5MuTBMq3dNgL6qiaZ0\nm2bYbWXwud5ETE+mPmrGKQ96Zerq6bJno0349d0AO1VcJyJj13Ps/BeVaT/RAxLL3TZkOfoS+yEK\nVXZf1WKTSmUIV9oQNjiXyUXbSnZq9oXQjiFTn4Ak6lk+L9uZAGM+KFMagKrYvON2T/q4UrSFTL2O\nEHdTYtf6x+iXocsy1LPj2/+mgKTjJN0i6VZJZ1Zcl6Tz8uvXSzoi//3Zkq4rfB6S9Mb82h/nYa+T\n9ClJ++W/r5W0qRDn/HJ+VcxXi0bCJiRuYzgK9BmAx9xB7hqu62A7lqde0+74qvL4vnqlKZ+qMFOj\nXO6pOZMEIdCbASStBN4DHAvcBVwlaZ2Z3VgIdjzZAWWHkh189l7gaDO7BXhuIZ27gUvzOO80s7fk\n194A/CFwen7tNjN7rk85JzTELg981EGuzGbzTYboLkxxEOpD3YrJt41iv6mheD/7rgyaVghjbgB2\nEYB9y9hXUIQowwAcBdxqZreb2WPARcCJpTAnAh+2jPXA7pL2LYV5EZkA+QaAmT1UuLYzYH0KmQRN\nDTFnM74Djs/1UIPUxB8ub8r16Vs/3zYKnb9vXmVbzqJTVKmGYORnYo2kqwuf0wrX9gfuLHy/K/8N\nzzAnAf9Y/EHSOZLuBF5NtqKZcXCuNvuMpBe4VGDxe5wHIXfxt+GzNB/SPTa2vj5G+lMzgrsSo9xT\ncWpZVIK14UqhnZ1VZ/ea2ZFhMt4WSdsDLwPOKv5uZmcDZ0s6C3g92UmcG4CDzOw+Sc8DPibp8NIK\naBtGXdF0NWI1xZX0Skk3SFqS5HxzmlyPp/I6kb4rlTZiCtXZJ1b5x9isOoS3WVX4oQzm5dVxCJXY\njNhCr0112JUJTmjuBg4sfD8g/80nzPHAtWb27Zo8LgReDmBmm83svvz/a4DbgGe1FXI0QVMwYh0P\nHAacLOmwUrCiEes0MiNWW9yvAL8AfNa5LEvtYWIImzGM0E2focoAcYRm1x34XYRU6HK7uDeX1V+x\n1GGxJ1cuZQ3RxstkBXcVcKikg/OVyUnAulKYdcAp+cT9+cCDZrahcP1ktlWbHVr4eiJwc/77Xvn4\ni6RDyMbm29sKOeadeMKIBSBpZsQqeks8YcQC1kuaGbHW1sU1s5vy33oVrskzqK0Dl72gusxaq9Lq\nSuhBKMYsMVSaTZsn+2wodcmzLt/iNRfVlk85523G7ipkiv8PITBc8gnZNtlLNfvXy8y2Sno9cDmw\nEviAmd0g6fT8+vnAZcAJwK3ARuDUJ8oh7UzmsfbrpaTPlfRsYAn4Bt/3OHsh8DZJW/Jrp5vZ/W3l\nHFPQVBmojnYIs79j3E64bIBr6pS+4Wd5tF3vSoiH1McV17VMQ9rD6srQBddVapMq1mX14ho2JL79\nLLS3XlObucTvQpVr/LythMzsMjJhUvzt/ML/BpxRE/cRYM+K319eE/4S4BLfMs5XiwYk99w4DWDn\nHbdp5yfwETZ91A2xBpUQ6VYNnjHSHHJgjbUyC5X30LYAX8cUH7qqNF3T6ELbyjMRljEFTR8j1iqH\nuI2Y2QXABQB7PvUQg266eh9XZZfBJYTwqkoXwgmHkJQFzpCzyq5qzaYVnk/es/Sa0hpK+A7tATdk\nGmWq6jm456IE2y+f82jG9DrrY8RyiRsMX72yKy52hJBMeaYWQ8C6ENOLzzX/qv/rwsQk5KAe4pmJ\n5UUXO5/EtowmaMxsK5lv9uXATcDFMyPWzJBFpne8ncyI9TfAbzTFBZD085LuAn4U+ISky13K46o3\nLxPLjTl22lOkSthMubyhcKnnUKqeEB6IUxMyTQJmuW1kHYtRW7anEWubuPnvl/L99/U401VF4Rqn\nKlyTt1Lslc08PVS+5V0OwqnIPN1LF0ILmUkiwQ6rxy7FYKRX0HhQ3ATWtq+hKp5L2qEYcm9MKELM\n2ic7sMwJIVaRXVdnMfpsmyOCi+oy0Z/5Goki4+N62nY9lKHZl3KeXVy0fRla1961HLFoc2meF0KW\nP7Trc0zm/b7NA0nQlAg1AHdNo04wVKXn6m4c06PGJd1QbtHle9N3MOvrwFEl1LumOyZNKwyXcF2Z\n+oo76v1csQJ22D58uhNl2nc6AdQ/kGMObF3zdHEtHct2tdxoassmm2KIe9BFyHR1fe8y0apyEkh9\nrztJ0JQYe5blo+YKoUsPvfLqWo6m723lcI03zwPF0P2y2DdCrUjr7pWPQ83MrhJb2MxzX5kiSdAU\nGGunuE9aQ9hcXBl8k1tF/lXfh9yDM8T+n1j3te3+hXabrst7yE2ps/xGR0Kr0obNZcfYKxlXQg8M\nk3joPGnzTpqXe+nCFOviUyZXTzLXfhhCWIRalSXcSYIGMMdW8HH9DO095srQgqNqplrl/h0rv77h\n+hLLPXYo9/SYefh6cPoImxCbSpPQGI4kaBzxHVD6DrZDCoy+eyea6jqWOnKe2q/I0AOgb7lDT7ZC\n7syflc2njIsgbHoeILm7pI9KulnSTZJ+NP/9j/Ow10n6lKT9CnHOytO6RdJLXMo4/60cgLaDz/ra\nRIbQ47uUwddYHuohDG3LaWv7mO0b0y7V1/XbN01Xr7PY/TVEPxvKbhmsLVaEeTNA4RDIY8mOS7lK\n0jozK57rVTxA8miyAyRnx6r8JfBvZvaK/L2RO+W/v9PM3pLn8QbgD4HT8wMmTwIOB/YDrpT0LDN7\nvKmcSdDkdOmUoV5bE9Po2oeQD6rrAO3qXVfn6jrWnhCXPGPgOnnwtauEYgwnFd/8x3Zq6UmfAyQ3\nkh1k9loAM3sMeCz//6FC/J0BK6R1kZltBr4u6da8DP9fUyGToCkwlBdRmUl5w5SIPVC4pN00EHR9\nK8FUVyY+dHHX7dLXXNpqzMHaRdjOuYpsjaSrC98vyI85gX4HSG4FvgP8naTnANcAv5kfhoakc4BT\ngAeBnyqktb4irUaSjaaFtg46pdVInz0xTUxRAE6Z2O3V1yYUa4f/nA/m2xDVXiZlbwZw+cC9ZnZk\n4XNBW/KObAccAbzXzH4YeAR4wsZjZmeb2YHAhWRvy+9MEjQOtHW4KQibvvHanBf6uFU3DYwuxtsp\nDapjE8KtN+TgWed1WHc9NC4rrS4TqSHr0JM+B0jeBdxlZp/Pf/8omeApcyEwO9rZJb9tSIKmgK87\n5ljl6BLeV1XSZCup8u4p/+br/VNOo67cXe5Bk40nFn3bIjR1m1urKJezi6PBFOxTLgJmAbzTOh8g\naWbfAu6U9Ow83IvIbTuSDi3EPxG4uZDWSZJWSzqYzMHgC22FnGzrDY2PB9kQHi59jOdlugwUxeux\n9oo00SRgutgZFkBPP6nVmattLRYhhIxv3KB2qBUrgnidmdlWSbNDIFcCH5gdIJlfP5/s3K4TyA6Q\n3AicWkji/wYuzIXU7YVr5+YCaAn4BjBL7wZJF5MJpK3AGW0eZ5AEDeC+YXPGUIbPtnz6CsdQ5ZgX\nZsKmb13GaI8QKrOq35tUmnXXpyCwm8rep3xT0Wr40PMAyeuAIyt+f3lF8Nm1c4BzfMqYVGeetNkb\npkqVOizkxjufcnQhVBlCpRPCrX0ouk5WptyfoV3F6xLX1xYz9TaZKknQeODSyWJ59MRKz3cTZ4i8\nY23QGxqfFeXYM+E2YeOqChu7HlX0mUTVxa8iaJ+TYLvt3T4LQBI0DnQxak+ZqodyCgbrNmKVcbmo\nWvp4aE2pHnXE2gM39ediHph+7xmZrh0spPG5Sh8dYs/NPKoA54kpDs6uO+VnYYvfu+TVlkdoyv26\n73OYnoUwTO9JmBAxDLAhyjHFAcyFUMb4kIRoy3Kd+rhgD+kW7Gqf8R2sXVXMQ9R1skJGglU7xEt/\nYszniDUQXdxoQz88sYTMWIN9kxfT0GWKuXHRlao9K0NNJMoCp23TrK/jQFu6oYVryGclhkfbcia1\nmgMh97T4MDUhE0MHXvb6Ce18MOUBYyorOx/vw2K7hVKNdXm2YrbdlPvMvJJajvZjAiDMnhZX9cpQ\nqjLXh9fFQNzlwa9KN5SwKXq4hR6UQqw6piJkfOl6n/vW1zd+aLtS+GdwBWy3fFRnrV5nkrY52FrS\nmjjFGY8YqvI5AAAgAElEQVTYXldVKhKX32KVo26QL/8+lJCbN/rcp3kVMjBdF+fEtKkVNJJ+StJd\nwIb8hLW1hcufil2wqdFnv0nXa8UwQ26arNrM1kSdfr6Lq2yM1ccQ+bjie7+Hvvcx4o7R1qHUw33T\nS2Q09Zw/AV6Sv9vmFcAVkl5jZusBDVO8adBVhz1kOaa067xut3Wsh7VKNeOzuXaoXf6+9XfZ99Il\n/S6qrKqVrovzwBADdJ3TQVc1WF25h3TUWDSaWm17M7sBwMw+Kukm4F8kvZnvn7a2kBQ7VJfBYYhB\nqGu+Md2u29KP+ZD2EWi+92zMwaatfYecebsIm3L4umtd8/cpj2/adcImCFqBtuv/Us15oclGs0XS\n02ZfcqHzIuCPyF4NvdD0UVmM5Q495CATI6+QDgVTZEr7RkIJ1hj5uaQ1xBsMptqP5pEmQXMmsE/x\nBzO7C/gJ4NyYhZp3qmZabb/NU6eOqQLzJeqsMwJ9jeltE6Cp2PzK9QyZZ1NaPipTF+bB+UHScZJu\nkXSrpDMrrkvSefn16yUdUbh2h6QvS7queFy0pHdKujkPf6mk3fPf10ralIe/TtL55fyqqG1BM7uy\n5vcH8XxF9KLgok4bS3U0I6Ye2fUh7mtwjrmSHFq91FQO6PeKo2I6rml13VjpYteo+72Ybsg9XOU2\n8Em7i7o0aL8J9GYASSuB9wDHkp2YeZWkdWZ2YyHY8WRaqEOBo4H35n9n/JSZ3VtK+grgrPy8m3cA\nZwFvzq/dZmbP9SnntEX1RKhz+R1qv0tV+i6G2JCEnI2GMr4XPbN80ogtbFz3SxWvD6Gmbcp/9n+M\ndgmxB62JPm03qrAJw1HArWZ2O4Cki8hOxCwKmhOBD+fn0qyXtLukfc1sQ12iZlb0LF4PvKJPIZOg\nITv4bCjPI9f02jyi6oRO7H0vvp5Qvtddw5TD+XoYueRx3767sOeGh53K0lQGF0K71ba1TVu7hO5T\n5UG6b5pdHAtC1WME1hTVWsAFZnZB/v/+wJ2Fa3fx5NVKXZj9gQ1kjl1XSnoceF8h3SKvA/6p8P1g\nSdcBDwJ/YGb/p60CXq0maQWwi5k95BMv4c9UvaCmqq8OWa779t2Fn/jFh/iB3R7kQ+t3ZafLNg5e\nhpBpTmESFSvNmOlGRSt8VGf3mtk2p2AG4n+Y2d2S9ibbwnKzmX12dlHS2WRHNl+Y/7QBOMjM7pP0\nPOBjkg5vkwkubwb4iKSnSNoZ+Apwo6Tf61qrUtp9jFiVcSXtIekKSV/L/z41RFkTy4M7Dl/Da37t\nQd78nN145dPXcO7x32G30xbamz8x39wNHFj4fkD+m1MYM5v9vQe4lEwVB4Ck1wIvBV6dq90ws81m\ndl/+/zXAbcCz2grpcvDZYbm0+jngk8DBwGsc4jVSMGIdDxwGnCzpsFKwohHrNDIjVlvcM4FPm9mh\nwKfz74lEKw8csyvnnPJNXvuMNaz65Md57K8u4PDvfZdzjtrEwW9Y4uHdl8+7qRJzw1XAoZIOlrQ9\ncBKwrhRmHXBKPnF/PvCgmW2QtLOkXQHyhcSLyRYTSDoOeBPwMjN7Ykkvaa98/EXSIWRj8+1thXRZ\nc67K33f2c8C7zWyLpBBTvM5GLGBtQ9wTgZ/M438I+E++7y2RSFSy+jUr+fOjvsXhrGLL+/+OL77v\nEb71zS284MZPsdevHsEfHnEUH9zlET708X1Ye0PZQSeR8ESClf2Pac69wl4PXA6sBD6Qv83l9Pz6\n+cBlwAnArcBG4NQ8+j7ApZIgkwUfMbN/y6+9G1hNpk4DWG9mpwMvBN4maQuwBJxuZve3ldNF0LwP\nuAP4EvBZSU8HQtho+hixmuLuU/Cm+BalvUAzJJ1Gtkpip50W7h2hCU9223ULe+6wFR5+nKX7H+XR\njUt8996tbHxwe3bbsoUdttuVvXfYBNsvq7cvJeYAM7uMTJgUfzu/8L8BZ1TEux14Tk2az6z5/RLg\nEt8ytgoaMzsPOK/w0zck/ZRvRmNgZla3+sq9Ky4A2GPPQ5ISfplzz1+v4E2v2YM3PO9hfuSMk/nR\nPS7lR+6CHV5xJBsPew4fvPEe/vGiPVl7+3fGLmoiMXe0ChpJv13x84OSrjGz63rk3ceItaoh7rdn\nPuK5mu2eHmVMLCM2//3jnL1hb37v2Ps49rRfZ7vv3sl3dtzKn137KDf/zQ7st+mBsYuYWBiMx5nc\nnpxouDgDHAmczvdVVr8OHAf8jaQ39ci7sxGrJe464Jfz/38Z+HiPMiaWGbtf+T3O/vB+fPCr3+TK\njfA7n9mVr5+3gtWbtoxdtERibnGx0RwAHGFmDwNIeivwCTKj0DVkxwl408eIVRc3T/pc4GJJvwJ8\nA3hVl/JNkSE2ZrrkP7V9C6HfhLD2hnu5+O6duffgXVn7xXFUZa6v02mL79IuU72vZXzfFp6YDi53\naW9gc+H7FjKD+yZJm2viONHViFUXN//9PrK3TDujpeaHLUYHd91hXyVcql4qONZrPHzSa9rN7TMg\nulzr2x67PPAou3zxUe9y9K2HD33P3Gk6v6Xviz+r6Jpm35eIhixLKAxj69Jjo5ZhSFxa+0Lg85Jm\nKqifBT6S+13fWB9tPvE55AziHYDlMpgN/d6lLm8rcH2hYuhVyViHVDXl2+WwsVCHmZXL1ZZujHOV\nuj4zXd4x1lbXsfrHcsXF6+yPJf0b8GP5T6eb2ey9O6+OVrIJUjd4unbY0O/CGvIlf/P+5umQhB7U\ni+n65lUXr6lcTSuXuolB6ElAjHTr0qubmM2LynARcGphM7tK0jeAHQAkHWRm/x21ZHNE24MT8g27\nPtd88wit8ujCIgkbn7T65OUTzuVlrXUrgGKYUIQa7H1e1lolcIbuc2bG1qVeloe5wsW9+WXAnwH7\nkbkKHwTcDBwet2jzSegVxhQG3aEfxC6vb59nQrVvzPNY6vLpsnLrUh7fVWQT895f5hEX9+Y/Bp4P\nfNXMDgaOITufYNlRZYTvw+Ydt3vSp+r6ULjOhEOmGSKtsewwQzhPuFzrU55yvC7pzOKEaI++KsIY\n9yURBpendEv+SugVklaY2X9I+ovoJVtAQpzVMiZD2aNcmXp7+TKWzaBJiE9t4A6hHkwMj8udeEDS\nLsBngQsl3QM8ErdYw+OyJ6Et7tRm3THydUl3aFfpqdFkYHdhCoP7rA5DeziG7LcxnoFQ7WAYj9v4\n93koXO7CicCjwG+ReZntBrwtZqGmRqxTB33xdTqINbMbe8YYas/QlIVVHWOtMsZyqa/C1027HKcL\nU6j3PNNqozGzR8zscTPbamYfMrPzZgffLDea7Cmz60NRpV9vCuuaTohyhUwn5uooVN3LfaJotwht\n0yv+dS1X1adPGbrED5V/VbouLLKg6HOAZH59paQvSvrfhd/eKenmPPylknYvXDsrT+sWSS9xKWPt\nXZL0PbLzpLe5RLZp/ykuGSTCUPeguD5AXfd2DJ1mOf0yY6kD6xhqclHOp6+6tq8XV5V60NdTcGiV\naNf7HENIGcZW6/9mgMIhkMeSHZdylaR1ZlbcTF88QPJosgMki0ey/CZwE1Ac068Azspf9/UO4Czg\nzfkBkyeReR3vB1wp6Vlm9nhTOWtXNGa2q5k9peKzaxIy84nPLNt15rnIM8U26gb/2Pm0lSGUm2/I\nvUCh4vRNZwH76xMHSJrZY8DsEMgiTxwgaWbrgdkBkkg6APgZ4G+LEczsU2ZPGJHWk73zcpbWRfmR\nzl8new/lUbTg4t688FhqhSdRfHBdhU3yMotD7DqHVmXNA777jSbAGklXFz6nFa7VHQ6JY5i/IDuy\neakh/9cBn/TIbxuWVw+LTExVwJBG4KKKwXX14xq2K0NvaHRNL6bqsCqPJvraXrrm24dyvx4i30kI\nVlvyeanmvWZ2ZOgiSHopcI+ZXSPpJ2vCnA1sJXvnZWfSXD4QXYWMz2pgyNmnj4otNlMTMnWG/1j0\n2czZlTHbfEoTljlY8fU5QPLHgZdJuoNM5fbTkv5hFkjSa4GXAq/O36Tvmt82JEHTk7pBxte+EVsf\nPgQxyhXCLXUi6o9KXL2xquow1XoV27zrZCXGfQvhbTfBZ6/zAZJmdpaZHWBma/N4/25mvwSZJxuZ\nSu1lZraxlNZJklZLOpjMweALbYWcXKvNC00PwRBG9Cns2h7DmOtK7Lbp2/5NLvJNHoZT2s9SRZ1A\n7HqPQ6nSpiYgsg2b/U9t7XOAZAvvBlYDV0gCWG9mp+dpX0x2RMxW4Iw2jzNIgqYTsR7yUC6iy5V5\naou6e+26AXGKTOW5KDM1IROaPgdIFsL8J/Cfhe/PbAh7DnCOTxkX+w70oKs6rO9qxncncwhh46uy\nKV7rovMeYr9NVb5D5+maRt0qxbetxnxzhYuA7FOmroI5MQ2SoKmg7+bILmnXhXMVbk0Pch81n8/G\nPtd8Qnoa9VVhToGmSU1Xwew7YZkHYnr5ufbBUHkumdi0dfmYyJdPTR2Z2gzJxyOt6Vps1UPTDvWq\n+LGN/LF3mMeky0bQLpOMNnwnRUMQw8uv6LgwhoffciAJmgKxO9IU3T1d6apea0uzixBsy2+eZ/FT\ncYzw8RqbAiFXxFP3VJxH5veJnCi+uuSqjXIxytR2zUdF1yXvIQd/17buSkwnjFgbFmM6mriGrSpD\nSPtiXTlC2XdC3pclg41Jdbb8GHrDXZNKKZTR02dmFkJFFyL9mIRUuzStxELvuXAdxEOEGRKXlanv\nc9I1r0Rc0oomAE3G7b7ea33UHl3juTgIdMkr1my9C6FWWq5tNVQ7tU1SuqTtEsdVtdpHzeoabp73\nIS0qaUXTk6J3UHkA7ipkyuFnHxcX0iE942C+7SEw3IATeyXYtsLqk2YIYdyl3/fJr44Yq/xEO/M9\nSgSkjxtpVdyQA3DTjDDWDM11xh9TKC3Sg97FthWyD4V0Ka+iqb+MaQupS3fsvrUEbHp8+czzk6Ap\n0CRsmjppLCEzBb17Vd18hV0fNdDYA0IIpuJtGEvY+KjGQvQVV1Vek/BznaBNSd07zywfkepI1R6G\nLvsa+jBl90rfvSuxbSBTpuo+hnQSKOflQmivr5A2l9DGfZe27rNHLOHO/D7FEZnNhpo6Yd1sO8RG\nxNCE8mJzSTvGIBpzZdOlvG19w2W2PoRbex2hVEh9VWJdHSWK/4fob2M4CJiJzY9rsPzGJq1oKojt\nGRMyja4z5FAz61DOB1NexfngsmfJJ05s+tgmQ8QZa0UVK51ENUnQAFqqHuyaBr+Yxn9X9+emGXKR\nNnXXmOqpNntX3W+x8nehT3sV+1lT/+ri8TUvg2Vd3duetxgahFna84yk4yTdIulWSWdWXJek8/Lr\n10s6Iv99B0lfkPQlSTdI+p+FOK/Mf1uSdGTh97WSNkm6Lv+cX86viqQ6c6C8RI8pZIppxnqw6vKD\nYR+6RdzvEELNF0LF1Ce/Jpr6ZCjnlbIRf+yJRoxnbskI8lJNSSuB9wDHAncBV0laZ2Y3FoIdT3ZA\n2aHA0cB787+bgZ82s4clrQI+J+mTZrYe+ArwC8D7KrK9zcye61POJGgcqdIHx14JdFGjhRjkhnDF\nHcvbZ0ourr64DLyx2s1l0hPalja2gJkTjgJuNbPbASRdBJxIdjDZjBOBD+fn0qyXtLukfc1sA/Bw\nHmZV/jEAM7spTy9IIZPqzIPZ8n1sdZMvUxOIrg95yMFgSO/BeeobbSyK7awrE7mXayRdXficVri2\nP3Bn4ftd+W+4hJG0UtJ1wD3AFWb2eYfyHJyrzT4j6QUuFRilFSXtAfwTsBa4A3iVmX23ItxxwF+S\nHVH6t2Z2blN8SXsCHwV+BPigmb0+dNkn0vFqKc8qQwuBqde/TAj3Vh+mMCinvR/tjL1Hawmv82ju\nNbMj24P5kx/D/FxJuwOXSvpBM/tKQ5QNwEFmdp+k5wEfk3S4mT3UlM9YK5ozgU+b2aHAp/PvT6Kg\nezweOAw4WdJhLfEfBd4C/G6IQhYNsj6rmFheVL57JRZNyPjch5irzjpj/hSETGh8nUyG7iN92nzs\n/hyIu4EDC98PyH/zCmNmDwD/ARzXlJmZbTaz+/L/rwFuA57VVsixBM2JwIfy/z8E/FxFmCd0j2b2\nGDDTPdbGN7NHzOxzZAKnE128fYr4eNJ0SbfrxjzX9OvSCu1V55Nendqr7rcxBruhhMyiCbOqyVyX\nyV2f/Oecq4BDJR0saXvgJGBdKcw64JTc++z5wINmtkHSXvlKBkk7kjkU3NyUWR5nZf7/IWQOBre3\nFXKsVt4nN0QBfAvYpyJMlV7xaI/4XsR2k+yjzqgSXiEfEN/d/qFwUV+4qL6GVBX5Cvqu+0361Cd0\nW4ytZmojRHsNXT8zgmzYNLOtkl4PXE5mYviAmd0g6fT8+vnAZcAJwK3ARuDUPPq+wIdywbECuNjM\n/jeApJ8H/grYC/iEpOvM7CXAC4G3SdpC9sq2083s/rZyRns6JV0JPK3i0tnFL2ZmkqxrPl3j5wa1\n0wB23nHPbVwqu9DWYbs+EH3tLk3lqUo/FK6usE2DclubFVd6U5mdlvc3+bZtUz3aBNgQ7u9Taeci\nfZ/fqQvTJszsMjJhUvzt/ML/BpxREe964Idr0rwUuLTi90uAS3zLGK3HmNkxddckfXvmXidpXzKP\nhzJNekWX+G3luwC4AGDPpx7yhKDqO6DH8v0PLVzK6Q7lmtplD1L5nrSlPeYqbKhBuElgNxF7tRTS\nNb7rarCIr4q2a76JZsay0awDfjn//5eBj1eEadI9usTvTV9D45C65ibqnBOG3hfUhq/QaQrjc+9C\nDCxN9zi24PPtX7EG0q7plp0rQtq8uqQ1xF6rJYNHtrp9FoGxBM25wLGSvgYck39H0n6SLoNM9wjM\ndI83kekPb2iKn6dxB/DnwGsl3VXwVOtE6L0cQ9L3gZ13Q2yonepNxHCUiMVy3gDpK8DGnnQtGqO0\nZu4e96KK379JZrSafd9G99gUP7+2NlhBc2Lopfss8WMS2ynCNf+QM9piuiGZyj1L+OH7PE/VLjVP\npNYbibKuP0ZnHsPA6auyalM3hRQ4Q6hE6vL2DRtLMA7tsTjUpCOGfaVY/tD35XFbHLWYC0nQjEiV\nsJn9Po/EGLxDCssx1KA+7ttD9IUutpyqOK716nr/uhjx6+IN4eSSaCa968yB2MbcMl08d3zSD0lf\n463PbLXp+pDCOYSQqSpz7EHSh7LQ8zHU93UyCe2k0qd/zOukb2qkVpwAfTqzyz6SqlllqM2jQ1E3\nM57qQBBjFj1EXUM4R9T93mdSEeL+z/NemXlnmk/pxPDRa4+p/mrKO1R5YjysfewGs7hTG0D6qIym\nsIrxJfT+mro8+u5zK5ZnzEnKEsvLRpNUZzWUO2HTJsGySmHsWfbYg26X/UOx1W/zRMgNjK5MIe2u\ndpmuLFq/mTJJ0JQoDo7lgTLWprIYxCxbkxDpu5oao01jTQya0p1S34mlLvNJ2/Ue9LG3VJUlhI0w\n0U5qwQIhXG2XW6d0dZn1UQmFUGtM5T5MXYU2tpCZwn0aQ41mBo8GeKnmvJBWNB64dMap7M8Y6sGJ\n9ZCW6zalFUAomurUpqqNnX8bbSsLF8+0oQf35H02HknQeNLXABlikKhLx9cuEqMMTfiWq6uKckqD\nQlvZqwSqS31DqG+7tJNL//J1625Kp+7Th7INcUr9pQuSjpN0i6RbJVUdIilJ5+XXr5d0RP77gZL+\nQ9KNkm6Q9JuFOK/Mf1uSdGQpvbPytG6R9BKXMs53C88R5X0JIfXMsR6UGKqP2CqhKQ0aTS7lVZsz\nQ+VTlV8I+qQXuixjqLtC9t3HDR7Z0j+dwknEx5Kd2XWVpHVmdmMh2PFkB5QdSnam13vzv1uB3zGz\nayXtClwj6Yo87leAXwDeV8rvMLIXHB8O7AdcKelZ+ZHQtaQVTQd8Z3R1RkifTtu0ionBPKqqpiBk\nqjwQ6zZnDrGZNhRdN6l2rafrqm5optDHSjSdRDzjRODDlrEe2H12zIqZXQtgZt8je3nx/vn3m8zs\nlor8TgQuyo90/jrZYWpHtRUyCZoCMTqur+qka5gxmOBDNzq+KpkhhE1MW0xd+NDeYU1hp/p8DETV\nScT7+4aRtJbsELTPB8hvG9JIUcJl1TCkcHARVIs44Pt4+s2Yyj6mvsTYR1PVT1wM9kPTZy/VPN33\nJb+Xaq6RdHXh+wX5wY1BkLQL2amZbzSzh0KlW2R+7syIjGVTGHOm1qaPHsoDr4tefN4GHR8X8TZ8\nXMj75FOV3tht7lqGKZTVk3vN7Miaa00nEbeGkbSKTMhcaGb/4lAWl/y2IanOehJL1z4FdUBXFUho\nb6hYOv4pEaoPuUxcYgiZEITyyGy6VmyDeesjNTSdRDxjHXBK7n32fOBBM9sgScD7gZvM7M8d81sH\nnCRptaSDyRwMvtAWaa7E+pTpouqpYozO76Jy6moM9iWk0J7DmWsQmlaBMfpXCG+sUOWqut8u+5XG\n2LC5eWv/DZtmtlXS7CTilcAHzOwGSafn188nOzzyBDLD/Ubg1Dz6jwOvAb4s6br8t983s8sk/Tzw\nV8BewCckXWdmL8nTvhi4kcxr7Yw2jzNIgqYXTa9b6fLgjLFfpMrNNoQba9fd8PPA1AXYPHpj9RVW\nfe1aU7+nTVSdRJwLmNn/BpxREe9zQKW0M7NLgUtrrp0DnONTxvls2TnAtePPOrjrAzHUZsyxB45y\nebqWIRbFMg2VT5EYDgPzSNdNp8utncYmCZqOhHiVhYvOPESedbSpFEIIG5e8ymFDMOTsNJb6ZQyV\nT9t9j6lqijnhqrP7jSVwlkw8umn5DL/Lp6Ye+Op5++YTYwd+CEKqE+rqGmvAaiNGOUK1l69L9xCD\nZsi0+7aTr73QxfaYVjhxSYKmgqEeXtf0Q3kC+dZpKjrreRoM+g6iY9fRZxDv0y/7rIxc8h67HRNP\nZhojyQSJuVFyaqqyoQRKVf4+7egqcFz3pExlMJpKOcawNXWd1DUJqjo7aBNDeVXOsCXx6KaVQdKa\nB5Kg6YGrPrsLQ82KxxQyxWu+rzkZU9j0EVKhhcoQ+2/64nKv+qbddk9CqDWnMiGYR5Kg6Ymv11gd\noR70oYWMi/fVVPdu9Emn6xsLQlJl4J6aW3koj8EQwqqvui/RnSRoejLruFNSxbgQw2g99F6EeWrz\neSlnSEIKvZAbomNpIRL1JEETEB933rp4XRlDXVYe6Pu4fHdNp0/cWOqv8mAWa/Aq2yn61CeGUT6G\nu3IIgTOFzZlLS7Bp4/IZfpdPTRuwFd1mxy5uk0Mwpk1m1m4hN3j6eiT55j2Ei3WT119TmFB5dUlj\nLGEzxqbLunLP0yp5nkiCpsDUdui7MIXyxtoTEXpz4JgDSN2gNiNm2Vz3hTUJjaZno4+w6dt3hlrZ\nTOV5n1dS65Vwefin0OmmIGBcqRsQXI3Z8+4x5FJ2V5WQ7+DqKziGXNlMoW+2TWZilXFpSTz22PJx\nb07HBDSwecdtX5M/hYdjKEIOzlVCZayyDIlvPUNvRGxahfjE6av+6pLmkKze9OQjuBNhSYLGkbLA\ncSFWxx1yNRND2HS1bc3bINDHOcLXIaIpTpd2K9rLys4WVR+XtOqudS3fEP1hHvqcpOMk3SLpVkln\nVlyXpPPy69dLOqJw7QOS7pH0lVKcPSRdIelr+d+n5r+vlbRJ0nX55/xyflUkQQNoKWx65Ydg6NlS\nF6HYRMiy+6iR6soSmi5OIE1tHKr9u7RVXd59hI1Pebrm61O+eRj827D8pZounyYkrQTeAxwPHAac\nLOmwUrDjyQ4oOxQ4DXhv4doHgeMqkj4T+LSZHQp8Ov8+4zYze27+Od2lvknQBGQIYRLDgydU3iFp\nEza+bR2rXXxn913SDxWvz4RniNW866bLoZm4YDsKuNXMbjezx4CLgBNLYU4EPmwZ64HdJe0LYGaf\nBe6vSPdE4EP5/x8Cfq5PIZOgyQmxEayNPoNQ04Pr6r3UdebeJ42uTPzh3oYp6vjrPN1irkx8w4Yg\nhoAvpz9h9gfuLHy/K//NN0yZfcxsQ/7/t4B9CtcOztVmn5H0ApdCjtKCkvYA/glYC9wBvMrMvlsR\n7jjgL8mOKP1bMzu3Kb6kY4Fzge2Bx4DfM7N/dy1XrI1cQzwEVftQquhSx2LaQzx0MYR2zMGvnHbo\nturrxjuka3VsIRNq39bYLC2JR903bK6RdHXh+wVmdkGEYlViZibJ8q8bgIPM7D5JzwM+JulwM3uo\nKY2xVjRN+j+gVfdYF/9e4GfN7IeAXwb+3rdgIXTZRab4QAyhOumKi2pwKuqpNqawunG187iEG0KI\nhAwXgok8v/ea2ZGFT1HI3A0cWPh+QP4bnmHKfHumXsv/3gNgZpvN7L78/2uA24BntVVgLEHjov9r\n0j1WxjezL5rZN/PfbwB2lLTat3CuuuI2VUnsTtrHZbiLmid2fdracoqrzbY2nIKwccXVgyxGnSYy\noM8jVwGHSjpY0vbAScC6Uph1wCm599nzgQcLarE61pFN1sn/fhxA0l75IgBJh5A5GNzeVsix7m6T\n/m9GlV7xaI/4LweuNbPNVQWQdBqZBwY777jnNtebNhiGVu2U3UddyjIFQqmIxtoYO8TgNhX1mW9e\n4G7v83kuYjJkG/VmyeAxaw/XgpltlfR64HIyE8MHzOwGSafn188HLgNOAG4FNgKnzuJL+kfgJ8nU\nc3cBbzWz95OZIC6W9CvAN4BX5VFeCLxN0hZgCTjdzKqcCZ5EtCdN0pXA0younV38UtL/eVMVX9Lh\nwDuAFzfEuwC4AGDPpx7Smn9502aowXGsByOkcIihMw/tnh0r/ZB9ITR96x3LyaQtjbHbbd4ws8vI\nhEnxt/ML/xtwRk3ck2t+vw94UcXvlwCX+JYx2h01s2Pqrkn6tqR9zWxDUf9XokmvWBtf0gHApcAp\nZnZb74p4MKSQ6fMwxniQQxrAu3pFua4GYwjFIQZKnxl72xsB+ryxYEgX/iR0FoOxbDSV+r8STbrH\nOuGpoSIAAAl9SURBVP3h7sAngDPN7L9CFbbNa6cuTBNj7QEZ087SRl/X26LdrM6WMMR+mrHxsTF2\nYch6Ts1lPBQy2H7TVqfPIjCWoDkXOFbS14Bj8u9I2k/SZZDpHoGZ7vEm4GIzu6Epfh7+mcAfFl6R\nsHefgjY9UF0Hl5gPzlADwNC79+vyWcRBqImiO3sIe968tJ/rvY65eTbRnVHuRIP+75tkRqvZ9210\njy3x3w683bs8DeI2pP2hz65+H7VJU1iX+rjWuSqfrk4QPvlWxZ0HQrzSpS2ebz/pwxgOCn3jTeFt\nEsuR1JI5fQfnNkK+OiZ2WXzospmzasAtbzb1sQn4eD2FdlxwFR5VZRtyE2yRqQ2gTcIgppPJVJ04\nFpHUogViuWmGSi/UqsYlbozwbftkyp5svnkP6RruMylx3WsT0xNuioNnXZnGUP8O/baBFUs2l6vy\nrqR3nVUQ27W2mE9MXfKUBpcpbfLrWxYXwVFeobmmG3JSMvsbsx90SXuK9pOplWfRSK1bQ4iON2+v\nponFlITMjCFmsF3rHVJ1NEQ929SnfWxxicUg3e2I1Kmv+rjwFv+P4fkVegBwtZvEwGXl0XVGPqRn\n3SzPLvH6pOGDr4NCH2G6CLYVJdVZIiR91ARN+0Fm133Cj6myCOl26hK/78bGEGUImV4ItdpU3cF9\n1Ysh0kkMy/xMAeacWHtt+hjNYxuMm1YMXRwvQpQvlsNHH4r2lBCOA7FWcn1oq5ur230bTenE9GZL\nNJNam/BHOfdl6L0JU/WyKxJSyEyJcplCqOVc7qursAml+nXBVUh0TXtKyIxVmx8fuxiDkVRnNG/Y\ndMXHE2lqFAemIYVOKJVJFXVG6aHug4uasIt7r4/qsS2sSzsM6TI+Ne+4RDiSoAlI1SDWZWCLsY/F\nZ8NocUCu+vgyloCNObj42MGqytFWtrKqs49tqynuVCY/QwiCRRU2ko6TdIukWyVVHSIpSefl16+X\ndERbXEl7SLpC0tfyv08tXDsrD3+LpJe4lDEJmgD4GuVDEvLhCbHx0sdxYQh8BnRXung9tW0srYsT\n+v52WaEM4R7dRMi+4tumsZ7jbMPmFqdPEy0nEc84nuyAskPJzuB6r0PcylOM8+snAYcDxwF/PTsI\nrbG+bQESYelivI8Rvi9dVzZTViH2waX9p7JRMYQ6LHb4Ij5tFqp9y/10wn236STiGScCH7aM9cDu\n+fEq3qcY579flB/p/HWyw9SOaitkEjQBGHPw6LIDPXTedd+r6DrYTmGAbmKig1BUhqyvqyCPlV8o\n1/wIVJ1EvL9jmKa4dacYu+S3DZNrtXnFx1so9AY6n3xDb/L0cZUtq4+6GqN9GNrVN5QLrU8f8c3T\n15Osj/daX5fkIlV9Zl4dCLTk9bytkXR14fsF+QnBg9D3FGRIgiYovu7CbQ9YDPfjWLPQLuk21W+C\nM0dvugqxssoG3NVdVeH73HMfQdE3n6FXLXPEvWZ2ZM21ppOI28Ksaohbd4qxS37bkFRnI+Oi+536\nwxVi30fINwf4MhWVV1M/8FVTutoUQnmkhWjDqdyHOaPpJOIZ64BTcu+z5wMP5mox71OM899PkrRa\n0sFkDgZfaCukzHqtiBYCSd8BvjFQdmuAewfKa0gWsV6LWCdYzHoNWaenm9lefRKQ9G9kZXbhXjM7\nriGtE4C/AFYCHzCzcySdDmBm50sS8G4yL7GNwKlmdnVd3Pz3PYGLgYPIxsZXmdn9+bWzgdcBW4E3\nmtknW+ubBM2wSLq6YRk8tyxivRaxTrCY9VrEOi0SSXWWSCQSiagkQZNIJBKJqCRBMzyDuSUOzCLW\naxHrBItZr0Ws08KQbDSJRCKRiEpa0SQSiUQiKknQJBKJRCIqSdAEoum12qVwXq/llnSspGskfTn/\n+9MLUKc9Jf2HpIclvXugugz6KvWhiFSvV0q6QdKSpFFchiPV652Sbs7DXypp96Hqs+wxs/QJ8AH+\nBDgz//9M4B0VYVYCtwGHANsDXwIOa4oP/DCwX/7/DwJ3L0Cddgb+B3A68O4B6lFbxkKYE4BPAgKe\nD3y+a/0GvD+x6vUDwLOB/wSOHLJOkev1YmC7/P93DH2/lvMnrWjCUfda7SLer+U2sy+a2Tfz328A\ndpS0OkL5q4hVp0fM7HPAo7EK7lHGGSFfpT4UUeplZjeZ2S3DVWMbYtXrU2Y2e8/NerL3dCUGIAma\ncNS9VrtIl9dyF3k5cK2ZbQ5QXheGqNMQDP0q9aGIVa+xGaJeryNbESUGYNpva5wYkq4EnlZx6ezi\nF7N+r9Wuii/pcLLl/ou7plvFmHVaJBa9fotE/q6urcCFY5dluZAEjQdmdkzdNUl1r9Uu0vSK7dr4\nkg4ALgVOMbPbelekwFh1GpihX6U+FLHqNTbR6iXptcBLgReZWZoYDERSnYWj7rXaRbxfy517xnyC\nzOj8X5HKXkeUOo3A0K9SH4pY9RqbKPWSdBzwJuBlZrZxqMokSF5noT7AnsCnga8BVwJ75L/vB1xW\nCHcC8FUyz5izHeL/AfAIcF3hs/c81ym/dgdwP/AwmR79sMh12aaMZF5vp+f/C3hPfv3LFLytutRv\nwH4Xo14/n9+TzcC3gcsXpF63ktlvZs/R+UPXa7l+0itoEolEIhGVpDpLJBKJRFSSoEkkEolEVJKg\nSSQSiURUkqBJJBKJRFSSoEkkEolEVJKgSSw8kh6OmPbgb6JOJOaN9GaARKIfjwJvIXuz9g+OXJZE\nYpKkFU1i2SBpF0mflnStsvN9Tixce0t+hsnnJP2jpN/Nf3+DpBvzM0wuKqdpw7+JOpGYO9KKJrGc\neBT4eTN7SNIaYL2kdcCRZG/Gfg7Zu7KuBa7J45wJHGxmm9NBWYlEN9KKJrGcEPC/JF1P9sqY/cle\n7f/jwMfN7FEz+x7wr4U41wMXSvolsjf+JhIJT5KgSSwnXg3sBTzPzJ5L9h6vHVri/AzZO7WOAK6S\nlLQAiYQnSdAklhO7AfeY2RZJPwU8Pf/9v4CflbSDpF3IXiOPpBXAgWb2H8Cb8/i7jFDuRGKuSbOz\nxHLiQuBfJX0ZuBq4GcDMrsptNdeTrXK+DDxIdv78P0jajUztdp6ZPVBOVNIdwFOA7SX9HPBiM7tx\ngPokEnNBentzIkHmkWZmD0vaCfgscJqZXTt2uRKJRSCtaBKJjAskHUZms/lQEjKJRDjSiiaRSCQS\nUUnOAIlEIpGIShI0iUQikYhKEjSJRCKRiEoSNIlEIpGIShI0iUQikYjK/w/N1dMGrR7RJwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2YJNdd3/v5dXVXdc/O9IxW2l3JXssysmxhy9gEIzuB\nSwwE4id24tybJ4ZLeHtCQhzia0hIwA43wL3AfRTghvAkThyHYOwAcUgCFwfsmJfgGBO/CSyELQlb\niJW9svZFuzvqmd3pqu7qc/84dbpPnTqnqnpm5JU9/X2efbanXs5L1anzPef3KkopVlhhhRVWWOGw\n0LneDVhhhRVWWOELCytiWWGFFVZY4VCxIpYVVlhhhRUOFStiWWGFFVZY4VCxIpYVVlhhhRUOFSti\nWWGFFVZY4VCxIpYVGiEibxGRf3K923GUISJ/Q0R+4xDL+3YR+cBhlbfCCjZWxLICInJGRPZEZFdE\nrojIr4vIs8x5pdTrlFI/cp3adt0nwKINSkR+yjn+muL4zz3VbVBK/YJS6uutupWIPPeprneFFfaD\nFbGsYPCXlVLrwC3AeeBfXOf2tIaIRJ+Dav4EeK2IdK1j3wZ88nNQ9worfF5hRSwrlKCUGgP/GXiB\nOSYiPyciP1r8vklEfk1EtkXksoj8roh0inNnRORNIvJAsfN5m4j0rXJeLSL3Fff+TxH5Euvcs0Tk\nl0XkoohcEpF/KSJfDLwF+LPFbmrbas+/FpF3i8hV4KtF5H0i8res8ko7nWKF/10i8ikR2RGRHxGR\n24t2jETkl0Qkrnk054A/Av5iUd5x4M8B77IvEpH/JCLnRORJEXm/iLzQOnejiPzXor6PisiPetr4\nuqKN2yLyZhERtz8i8v7ilj8snss3+HZ29q6mqPtdRd0fAW53rr1TRH6zeKd/LCKvrXkWK6xQixWx\nrFCCiKwB3wB8KHDJ9wJngRPAKeAfA3ZcoL+BnnxvB54H/J9FuV8K/Czwd4AbgX8DvEtEkmLH8WvA\no8BtwDOBdyqlHgReB3xQKbWulNqy6vkm4MeADaCtqOwvAl8GvBz4PuCtwDcDzwLuAv73hvvfAXxr\n8fsbgV8FUuea9wB3ACeBPwB+wTr3ZuAqcDN6t/NtnjpeDXw58CXAa4s2l6CU+qri54uL5/IfG9pt\n6h6jd6R/s/gHgIgcA34T+MWi3d8I/CsReYGnnBVWaMSKWFYw+P+KHcGTwNcBPxG4boKenJ6tlJoo\npX5XlQPO/Uul1GeUUpfRE7+ZrL8T+DdKqQ8rpXKl1NvRk/LLgbuBZwD/SCl1VSk1Vko1kcWvKqV+\nTyk1K3ZZbfDjSqmRUuoTwMeB31BKPaKUehJNCF/acP+vAK8QkU00wbzDvUAp9bNKqR2lVAr8MPBi\nEdksyPOvAT+klLqmlHoAeLunjnuUUttKqU8DvwO8pGXfgrDq/sHi+X7cqfvVwBml1NuUUlOl1MeA\n/wL89YPWvcLRxIpYVjD4q8WOoA+8HvgfInKz57qfAB4GfkNEHhGRNzrnP2P9fhRNGADPBr63EPFs\nFyT2rOL8s4BHlVLTJdr7meZLKjhv/d7z/L1ed7NSag/4dfQu7Eal1O/Z50UkEpF7RORPRGQEnClO\n3YTe4XWddvv6cM76fa2pTS3hq/tR6/ezgZc57+ZvoHdWK6ywNFbEskIJxW7il4Ec+ErP+R2l1Pcq\npb4I+CvAPxCRr7UueZb1+1bgs8XvzwA/ppTasv6tKaX+Q3HuVkcxPq8y1FTn76vAmvX3UzUpvgMt\nDvx5z7lvAl4D/AVgEy3WAxDgIjAFTlvX28/qoCj131kUmLrdd2PwGeB/OO9mXSn1dw+xfSscIayI\nZYUSROM1wA3Ag57zrxaR5xZK5SfRBDSzLvl7InK6UG7/AGDk//8WeJ2IvKyo45iIvEpENoCPAI8D\n9xTH+yLyFcV954HTDYp1gPuA/01E1gqF9Xfs7wk04n+gRYU+q7kNtHjvEnqS/3/MCaVUDvwy8MNF\nG+9koa/ZD84DX2T9/YfAC0XkJYXBxA/X1P0CyvqdXwOeJyLfIiK94t+XF8YTK6ywNFbEsoLBfxWR\nXWCE1o18W6GLcHEH8FvALvBB4F8ppX7HOv+LwG8Aj6BNdH8UQCl1L/C3gX8JXEGL0769OJcDfxl4\nLvBptHHANxTl/XfgE8A5EXmipv0/BWToCfftlJXmhwal8duFDsnFO9AipseAB6gaQLwevZM5B/x7\n4D9QVf63xQ8Dby9EV69VSn0S+L/R7+ZTVA0aXo8Wq50Dfg54m9WnHeDr0Ur7zxbX/FMg2WfbVjji\nkFWirxUOCyJyBvhbSqnfut5t+XyAiPxT4GallM86bIUVPm+x2rGssMLnCIWvyJcUosC70eK6X7ne\n7VphhcOGT1m6wgorPDXYQIu/noEW2f2/aF+YFVb4gsJKFLbCCiussMKhYiUKW2GFFVZY4VBxZEVh\nN920qW599glyNSHNO0xmwjiHvYmgZgKAUjCb/5ZKGSJ6t9fpqOJvfQ8s7jP3KssgVylBRNGJFFHx\nr9NRdIpbZspct7jeYGZtMNVMsDecdp12m2zY19vnpLM4oUptr17bFqZM0y8RhQilfiql+5fn+t8s\nF6TFcsc8+zbodNS8/VI8526k6Ecw6M5IOhB1YmSWA6A6HaazjL1ph71c2Jvotrn9sscJlJ9/mzaY\nZ2DKcoUH7vvpyKLf9jn3PjNe7LLdts+vLeqdzWR+n4gek26d+Uwq10fRDJFy+3zfit2e0nNxxobd\nJ6VEj5Ga5+qD+z7sfnWc/tvvxG6Pi0ufeuQJpdSJpRri4EVyo9pl0uraM+y8Vyn1yoPUdz1xZInl\n2bed5D2/+yYe2l4Exh1lHf74yQ73n+uxO+qRphFZps9naTmA7nivS38wJU70ZBTH+fycucdGlkaM\n9xaP29y7sZGxPpwQJzlbiWKvKCadSule93eW6tk3tc859dptakKSlK9N03DA4Lpr7XNxMrN+58RJ\nTtJVDIrL93LdzyyNyNKInVGP3Z0md5WirDj3PufgPXFOkuTEyUw/92NTvnhL8aLjU+7YHHM8OU2S\nacf/az3Fhb0LfOrJPvdfjrj/XK/y/g2ytDPvf6g9pu5F+3Ub7Hdpl2G/N9995hmU2+Efc2ac2GX4\n2p9l0XyM9gdT1jey0vMy5e2MevN7d3di7/VNMG0y19pjAxZjwu6DeT7u2LNR9x7MMw2N3WT+XGeV\nZwvwjr/4DY9WDi6JXSb8cHR3q2u/Pf/tmw5a3/XEkSWWySwrkQrA6fUJSaQfyf2gPTqoDtTxXpdp\nKoxbPD53crfJxSBLI+Ik95IKUJqEbLiTvzvZmt9tCKaOSJa5Nk2j+UeapZ3KRKP7tiAXWEySG8NF\nu0MTuSEVe4IITeimjPFel+FW2V0kTXLGuWKUdUhzIZtdI0mO6/umF9ib6uOmTlOWb9Ix/a60NTCZ\n2ZO9Syrzeop73efpe6Z1ffeVUSEXi1RkNGNM19tPm1RAP4vxXnf+D2C4lXqJ1CW4dP48Z1Z7m8my\nbuyFxsHGRua02xmTaVT9lmoIbIVmHFliyfLFQE+iGc/ZUAy6G5waXCaJ+vQjuC/JefzssdJ9hlSA\nCrm4g3FjI/N+VD5yMXBJpdRmzwq3DdxVcN110ExEpQnQ6XMc58GJzBAoLHYrpXuTnI0hZGnODnFl\nYrFJxZSZppF392ImSvOuRttJiVyyNGKcK9K8w3bWZaO3xzTSO5Z8NiGddUitMRKXJsq8VI4PbjvN\ns3B/+3bFPnIBSs/U1xYX9m7Evt9GapGvjGb00pzJCEaUn1eIOPuDaWk873y6hxom3HTy2rxOu72p\nQ3ht+mHKCY159/nZZZlvsC12dmLiVI/DwyYX6UDSbynWu3qoVX/OcWSJZVysRg2pbManiDsDIulx\n6/oFRlmHfgQf6+5y5sx6aaLqpYsBN6H4MItHaYvGQttqG2kaFeRTXbHtB/Yk65v07FW0b6Xsu9bA\nLreOHF1yMfeYZ5FOZS72mN9T7Armuxcy0nghovGRio9c7F3KNBXWRnq1OkkiRiT0B1MgI05njKdT\nxjmkuZCrKXkRAzNX0/luZWzpVux3mXQV6VSqIqmCxMvtXIivbPGULYIybfY9SwN3Uk5qyM4Vcc3b\nXUz0ZcKL9LNKc47tZFwl5loaVcjYxpzksnz+rDef2OPYKGM7HXAuPcb61gQdDKGMOhFmaHfugzvO\nTTvWtxaLkDbfICzehenzzgiSpMP6sJ1OZIUyjiyxXJ3ARy92ef7mjFODPQZdvcLKZntsZ/qxnBrM\n+LMnO9wQ7/LwuWSuA7AngG4wRmJ5ZXlYaLNbMZOs7yM1E19ptRgvZOg+nZGv3LZwJ7AFcs+xMkoT\np7N694lzDMz76SaKSaKPT5KI9cGkdduTqPpe7RWx2W25k7hBqJ1GnwAQpzOyNJ8TqH2N3ec61O1e\nkkQT3A6xdwdlrsmynG7SZZLodkySiG6ivKRi6yJALwBA7wgnccTVYTy/37TH3DN/JmYcOXqvuv7V\n6hKte40Yz4i/NIl6xnKgPr3wYFHniKcluYjIK4GfBiLgZ5RS9zjn70SH7fkzwA8opX7SOncG2EF/\nhFOl1EuL4z+MDrt0sbj0Hyul3i0iXwfcA8TolcI/Ukr997r2HVlimU473Pton+2bU57MjvHC4zts\nxVc4v9fj4t5ClnxykLMZC1vJmIeuZFy+mHtXgi7cwe9TkLaBUWz7PrA6LEsCcZy3mshC19ikBGG9\nglkt+8Rcphx7sgwpa+tESTbUUF+3PpiwXkw2STG597vQjzSJRNIl7gwAiKSLDgZc7p//d3lnECd5\nhbwr4kKjqD42Zedqd67Lm59fwujCbofvN1TFQZX2pDnDrZQRCdeIUcPOnFRcQwJDAvb7Mtc9wRqT\nUURyasb6xrhEQlnaqbzLtsr+Uj+z8oLIJWSbVJqgd82WMcQIvDusJcTOdeiIECctF5s1orAiv86b\n0cFQzwIfFZF3FTl+DC4DbwD+aqCYr1ZK+WLv/ZRNQgWeQKcu/6yI3AW8F52ML4gjSyxK6Q/w4XMJ\nV7KUcZ5walBWTp4YTHnOhiJXE4Zxn624y0PJHmcvJt6VpgtXkb7sALVJpYlQ7I/WXhm67WgqYxni\nmrcz8+903JWoTS72NfpY/c4lJJuvIxUDY7VkytL15vQjRRLNSDoz4miAFHaqUadH0slIohn9qEOW\nlj+TkCjLtMMllzgtW3NtJYqtBMZTGETaOnB3FOsxdYBJLLRDbhIHmWdiyMUlFddiyvQBYJuc9SEw\ngptOXmN3EM8txMw99v+mnT5RYbkv5fcdsnh0Sdi3EHEXPbYFmk0u60Ozi1x8bwd5H08h7gYeVko9\nAiAi70Sna5gTi1LqAnBBRF510MqKxG8GnwAGIpIUyey8OLLEAgtrkCztkE7H3HkDPH9TD/bbhymn\n1zdZ795IribEnfMM45StOOGhJOWTF7tzUYYpK2idtIRZ7PyefZKK+dsn6jJtsZX5vgnAp2z1mRG7\nE5mtJK5biZpn5epi3Lp9ZTSRir0bdMnO7avZrWwlOZH0IN3V53sDBt2dct88zyS0WHDJxYhjzIR8\n85r2oSGG7UxbySXHU+/u5SBwCaXN7rWOVNaH2dxcvF90eytRc3KJ01nlnqY669oXJMoaMgmNTbsO\n2+Rdo6ov8xndfI5xk4jca/39VqXUW4vfz6SctO0s8LIlylbAb4lIjs7q+lbr3P8hIt8K3At8r1Lq\ninPvXwP+oI5U4AgTy2wmi4kpi9jZidm9acz4dMqLjy8GmChFJL35KvbEYEoSdehHivuLXH9zu3yf\ndVKLFXXp+nQxWflk9/sRk9hoJe4qiU3aiyrcsn2TSppGJf8HewIOtcGGK693ScXXpjrfh2XQJHbz\nIcvKSnYzIfcjGOeL33v7bKJv0eHrb/MEX9W92OeWtZBaVsQVQt2CDer8phbEsPCbaSkWnhuSHC65\nSAeSpLWz5xNG9/EU4CuVUo+JyEngN0XkIaXU+4F/DfwImnh+BB3L7m+am0Tkheh0Cl/fVMGRJRal\npDI5XHqiz8cBSEnzAfAktxybks8mfObqlFGmRWXDeMbzNwEmc3KB+m1znbWLWdFW9Q6W+MAiwfl5\nR6G9H9hbft9Ow5Wl220O1ZtaxGivIA2pwEJJWrIWS8tmynVwLc6WgfYHiRjnM9JcCquwCXR1FuBc\n7bI31fUbq7DSTsljFRfSmRnLJHPfuULsYkhlO4XtVI/FXcdPpI1TYKlf1tiwzXzrx56to3Dffdnw\nIksjsiQnTcrOjFqMtz/xkSumanOdvRBpO2bK53LsBKS2Q6bvnqehOOwxytlATxfHWkEp9Vjx/wUR\n+RW0aO39Sql5qm4R+bfoBHDm79PoSNzfqpT6k6Y6jiyx+DDa1nmNPg6MpykwIJ3tMcoiYDG4TvQn\nnOiDzoOkyaVp294kDmv7gdnX++opXRPwS3FX/QbG9HleZqI91EGbkLhy7zr4ym5yZLQV3nWTqY9w\nq9eUzZMrYrs0YpxPSfMOe9OONjXuatLLp7rPxo9lvoOseYeGaNxoDMZQwK73HIsoC/bEDP7n6poW\n16EtyYbIpmmnYROM+dt1nIRFm6umzfWizqa6m8jFB7stCzRbJZp7DwsitFfe1+OjwB0i8hw0oXwj\nOi12izbIMaCjlNopfn89OkEcInKLUurx4tL/FT0VIiJbwK8Db1RK/V6belbEQtnp0XwoDwOglfrP\nWl+sRm9dT9lKNoiky6B7hSTqA/BQUnWm9ImGmgZym12Le60RJ7WBuytxdRZZWg57csM8wsp0Ti5Z\n2vGKr3yE1aSPcPsCZYKxy9V9rYY18TlT2n2NPSvaLO2wneqdQzrrkM8mqCJwlHGQBK1gd9tpjxfQ\nZs0uQua9powLhYTa7FLaEHXd5Gk/Xx9Rz9vVwlhCX+fqO6pjr0n/55/QD4ZlyCVk8LF0nfvQkT6V\nUEpNReT1aOusCPhZpdQnROR1xfm3iMjNaD3JEJiJyPcALwBuAn5FZxanC/yiUuq/FUX/uIi8BL2d\nOwP8neL469HZXX9QRH6wOPb1hYGAF0eaWMwq03Z6tEUcDwPjPGWcd7l1PWcY56x1uwwiHXtko7fH\nMM65eRDRj2bAVS5f7Ffqcb3D25oaG7jkYoti+oNpiWDq4H54toOhKTeNo8pk2O/CINdhULK5wUPZ\ncdGtx43b1GYlbSu9wUfMZVKxJ1Dj5OdO8iE9D2i9RtlBcuGvkOYyF1c1wVdvXf2hCApNurQQubhO\nlqUx4YmEsGibX+xZB5+Zd53ero4Q24anCbXRrdfUVfdMfWJaH4mGHEyfLlBKvRt4t3PsLdbvc2gR\nmYsR8OJAmd8SOP6jFCnG2+LIEouIKoWjmCRRyaPerN4vjLpspznbGdy2HpFEKXCeSLp85uqUs7ta\nfLYVw0tumvFgd4/HHx+U6jKD3XZEtOvZL2yCCoUZCSnHXdjnd0Y9NoZFPK3CUXAvX3xwdn2hckNm\nn03wrUjrJqf5CjzLWd8yxxarWNvU1xxzoUVeecnzHuqVrN1EBQnF9DNxdqghcdcyYyB0ryFanygu\nBJ8HfkinZrcfbM/7ZuOSNuI1H0IhX3zRI9x7QubJZd2cq9wv6wPtZ3sY6MhSyvvPaxxZYoHFgBmj\nRRuTJCp50puJKUsj7k9zzg2nbGcJo80poPhMQSoGz16fsRV3eCje49NXuhVlrFuvQdnJa/lVZH28\nKL9y3IbvAzVy8+R4yl4OO1e784jP83pbWJjtl2Dm1zqkGNJFhXRMWZp7RTZJkjsmp+0wHzN73eAu\nxbRzBx13KqTTMm2sQ929obaBXxTnE0n5yMUHX5TkOJmxMyr3YXcnnvsMmfa3ia3mnivtrOLyLrZO\nnAvtSMX0wedYutMiwvYK9TiyxGLyMtjkYmMhrliIELI0YjvN2M663FzelPDC4ylb8ZTtrEs/SthK\nJjyU5HPRmL1r8YbVryGXOoR2Dj5P8Toi8BNAR/tWwL5IRbfP35f9iBfcgJZt0Fa2bovB2sDe7YZE\nm75wOvuFj/ybwsP7zIRD5ALVd+W7tup53ymJO3e3eyXxaJOpcmhnVNENWbsvX5mhnYpBSAzsllH3\nTA8K6Szhef95jiNLLCKLlZC9CjWIPStF40x572jGc29OuXNLk9NzNzOesQaD7g1s9PaAlGHcZSuG\nh5I9HjlbZqEQuWhT3Kyov/wB16Fu4DeFj6mz1Texkua/G+A6Oy7qKIuifCLBg8IWzdhYxgfIkIv+\nv7pqdWOwtdGV2bqow0RoVQ5VUmnreFg3DtxwLsbceH04mU/Iu9s91kYZo0RHN06cazWqu09b52Tq\nc+F66vue587OwojDp/urg7nXl2fpsPygjhKOLLG4CH6EvolqR38E43yPO7d06PVcjcnVlGy2R5rr\nSenW9ZytOGIr2ePjZ7XYrLLqDMiRfU5dISuctmHx3f4etlLSRypgW6+Fd2K+sCg2ygpo//kmuH4e\nYLzvZ9oJVrT4z/zvQ93O0Hv9UzQpLfu+fe0MWd6555Ytf5rKfJG0bmVMtAN3uvc1+YykNWPI3Lux\noSNiLwu3zvGePx/NCu1x3YmlCKh2L/CYUurVInIc+I/AbWiTt9easAIi8ibgO9DLnjcopd5bHP8y\n4OeAAdpS4ruVchO2lqFUlTTWN7KlxBWPnB2wl+8xzruk+YATgz1GWX8ech10vLFhLPQjxb2P9iuO\ndga234UN14Q0hHn4EKf99qo6FETQDhLoTja25ZivPhttRHhuQEJXQVoxmXWMD9wglm1MWUM7RBuR\ndIvgkyYIZbOxg73brZqJ1xs3GBxmGKDS/R7nyLoxVEck9QYAi/dkIiQD7G73Gu9127qsb5Rdv93W\nkC+Q3R5fnS6ZHPZuRQTitvlYPs9x3YkF+G7gQbS9NcAbgd9WSt0jIm8s/v5+EXkB2hHohcAz0LFu\nnqeUytGhCP428GE0sbwSeE9dpXZ+cnsAmYFZmzPCmiy0BdgetgOlwYnBlGcd65KraRGGfcy9j/oz\n8flJJRyxdtnwMeXgkOXdme/j1OdnpWOuT4orfmkLX7Rb17ppfjwtmyD7nO5CE1Kpzz7SLf5MIkXU\n6dEtPoeo0yOJFoTsIy8Tkn4e98wzKZnrbHGjT3fgPgMbdf5CvvLs56TbXm7bfn1Kqgp+//s2xALM\n9S3u/cuiNtCrx3zaPO/9OJu2XRCsUI/rSixFmIBXAT8G/IPi8GuAVxS/3w68D/j+4vg7i+Bnfyoi\nDwN3F7kFhkqpDxVlvgMdKrqWWAzq8lS0jdP1+OMD0ukYgOdt6mvu2BxzY/8GNqLjKBGiG86iQ7GP\nuf9czqOPaB5t8hCH5SYDvzd1VenpS1TVFHXWjs9l9FG2BVCdqWq1TWViKFn+BMjFXBtyuvP5VYT8\nPgz6ESSdmd6l5LovkXRJOrM58dgIifvc+n16Dnt3aPpSeiaBKA1u0FC3bp/i2hYdtTLzrtHZNCEp\niL8/mLKblhdNJpqFbR3XZKlW1y7zt6vPc3fhBvazaRsCaUUqB8f13rH8c+D7gA3r2CkrrMA54FTx\n+5nAh6zrzhbHJsVv93gFIvKdwHcCJMdPVs4fRO9w+WKf+1iQi87x0YM8Q6K4WAWPuW0d+s+cECdX\n2B15FMQBE0jwT0Sl0Pwt226HDK9LhexDaNJzlfXLPMe24fp9q/dlRDiuP9Ey2I8e63OF0m6yhQWg\ni9BOt04UFArv4/r32M6a9vWtRGQtxIRNATftxWEbh86n8h3rIJQrq7CnFCLyauCCUur3ReQVvmuU\nUkpEanUly6AID/1WgPVnPU9Vw1SEk0e5HuE+v4jLF/t8YDTj3M0po2ydF9zwBLccO0aeTfjEFcXF\nPU0kNw/g5admPJSkXBh1GyfhOjPTkPLfPZdl0TzdqnuN17yzWOn6wqHESV5RcC5raWTD97zLbfEr\n8kMe1u51NkIk5sYKMyFdSn1xxHGmDnPOfd56ld4J7lLa6lHsyc6nxPZ5iLvm6yFxXoiYM6tf5Rhu\n5XLSdBFY1KCbqFLqgibP/FK9Lce2e62v/cExaevsnmbhWr5QcD13LF8B/BUR+UtAHxiKyM8D500w\nNBG5BTDxaEIRPR+jHLqgdaTP8V53EQIjy0s7AF9sJB982+sHHh1wJdtjOxtwx2bGKOuQ5ovzJwZT\nbt/MOTXo8cdrioeulBWsQZFYze7E6zTosXBzPyRXjOIjTbd/UB+Wxm27qzgN1d2GVNyJLnR/k89O\naWL2kAjgDenSRq/lIxj33uB4CiiQQ3GvmvSBuq79rZLLYzIgpguMC1fEa9ph2h4iFLc8N4p0k9Xm\nol2d4AIxdN8yYXT2AxHoxoe2Tn5a47oRi1LqTcCbAIodyz9USn2ziPwE8G3oHMvfBvxqccu7gF8U\nkX+GVt7fAXxEKZWLyEhEXo5W3n8r8C+WaYs9eEMD255IQ7sYWHwwZ86sc+nyhHOnU+7cXAym2zdT\nbtsYEEmXU4PL88yUZ3YUn75SfR3uxOHGhNoP6jyL3TAqdQmT3Ha6cOXbdZ7nbUjFbaN7v/1M9iO6\nsoNQ1iFEEO4k6MbtCl3nwvWhMF7uvok5RGyuwUNtfQ1Wc2YB5iI0/kwGSTs52Dw0/civEwo9RxPs\n03ZgbkMuoV3wMpEbVtg/rreOxYd7gF8Ske8AHgVeC1BE7/wldPrNKfD3CoswgO9iYW78Hloq7m3Y\nuxcb7t9u8Me6FdClJyI+OOqxffsuL7lRcXKQc2owYRCdmudXv3X9Ckk049Sgy1aidy9G9+LzebE/\nOtuZaxmzVncStmGb9/pWa254DYOQpZIr3/aV40Mb6xyXVKapzCegNn4I/QOOfpvkbdiRj92IDiHY\nE6i92l8flknOJRjX7Hl+nUd81kgwjm7MDtJqYMfT2017JV2Ku0sxzpE6dI5OAWwyTdqWke5z9NU3\nKawu695vSAdZNxZC4V5WOBieFsSilHof2voLpdQl4GsD1/0Y2oLMPX4vcNcydXZ7s3ka1mXQNGH5\nVt5nLybs5Sl/9mTE+b0eg+6IXE3Ym+5wfk9/YDozZUQ/gge7KZcuLxwqXVPhZbyLvcrNuN6j3zcp\nhc77Pe04Ia3OAAAgAElEQVRbiPJcoplbTZVNhEN98GFMe6KdW8cVOe+BUs57mHqtwnxttsO7QDmM\nvu3FXQf7nW5sZBVLpzq4pL7MJFkXasgsPMxkbk/4Brai3hvHa6pTL5s+mn5uDCfsOGmYzfM0sftc\nBCNIH0AZ76ZkeCohAr2nuI6nC54WxHI90IkUN940Xkr+vJ+otGZg71ztct+lKTo52B5J5yqjSfn+\n08cyhnFEP4p5KEo5e7HsrT+Pv9Ry225/ND4ltq9PbeESipkEq7qfxQo71G7XSdIllGVjp7UlpH4R\nuXnQ9ZsbV8oOtd9DLqDzx7d1sjMe4z4nVp9peMjyLhTvKxyzrewYW0dkY7rznYPZSRhFfZz4gl6a\n9vnLdH3H3L6N9xb1GbjhVppQ77MSHldPd897EXkl8NNoB7qfUUrd45y/E3gb8GeAH1BK/aRzPsJy\nTC+OvQR4C1rnPQW+Syn1keKc1zk9hCNLLFFHsT7MgkrUpo92HnK7xorFnlSyNOLCCO5Dk8tzNxf+\nHwDP2VCs925ibzoiiVL6UUI/Snn4XDmCso0mU1vfh1O25KoaCjQRTYhQQE+ASXc6nwTLzyPstBZy\nAAz509ShzWRT8ueJ1MI0fFIQS6/HoDsjiWb0u/oZxWmYpKFMLmbys3cejW1K/c9zXqeVCrgi9gq0\nx7zfpmcxJx/PriWOy0YtDJhP+DapuCbnofbYbfaRo0syZvdSybPTcifS9vn7cNjkIp3DUd4XpPBm\n4OvQ7hUfFZF3KaUesC67DLwB7dPng+uYDvDjwP+llHpPYVT148ArGpzTvTjCxIJOD9st0tA6/hx1\npruLa2ZkadmR0qd4tcsw5DLOY+46riey52wojifPpJvPiONTwHnSPKMfxfS7KZ+86DdJDpmxhpwc\nfROSHQjQ9Yb3xZJyyzVydMAKQ28+Hp+lWphg3HpCH7aPHNugksAsooiIUMQHm17Tv+O1xrb5kKVR\naZdilNelMrrlicWMO7ev1Weqc+K4BGOXZ67V103nidlM20IEZPrm21WWdhXxYpzbuo5y5OHwd1M3\nFutg6mprrNIUhHMZuO/raYK7gYeVUo8AiMg70Q7kc2IpsjteEJFXuTcHHNNBf7iGaDaBzxa/vc7p\nwAdDDTyyxAL6A2yDOtPjSv6UBtGHIZe9XJPLi45PydWYbLZH1B2Sz/aKQJb9Qu/SoR8p/nRnurCs\nCbSrTT/qJhcbdQEKK9dOpfED9D2zpt3RMu09bJidTD9ShZinXmTaVjxZ55Aa6m9TeebZ2+PZrqeJ\nXOr8XOr+bkIbSz9Xt9ZkRh/Sn/l0Jcs8zyafmeuAm0TkXuvvtxZ+eKAdwD9jnTsLvGyJsn2O6QDf\nA7xXRH4S6AB/zqrP55wexJElllkxDzZ5nrtbeB8W5qC+SbCaIClLIy6lEfdNM8Z5l1G2xu3DJzg5\nGLEzGfPp3UV642E848tPzNiKuzy0DdueXYArJw+F8/CJHnyOZK284K2djvkQfRNb6Pk1xfqyg00G\nzY6tti8bF8pLhMZBUrmWWDlgWzH5RYe+sCvLkKOtwDeE4S5+fOPVd8wmk7oUwPaYMGMopNC2RWal\nuto6eto6P2fn5fqZ+Mou3R/czfoja7dF9frDIxkRRdRrrS98Qin10kOrfN6GWsf0vwv8faXUfxGR\n1wL/DvgL+6nnyBILHA6p2LAdwcJlLs7tjmLuT3PG+ZQ0H3BxbJT7GsM4t4JYztiKYx56Eh6/1tx2\nU1dTdsAm/Uobqxldbl4KEWNPbD6E/GDK4fE7FXL0tX1ZAwTfRK/JZPFMTYRqYxlWl7dmGTQ9Fx+5\nzNvU6p1Hzv+d0kLDwN4h2NEVfO97sYBY7DQr4YQcT3+7Hh+hVP+u7lhCFo0+tEnJULdAWfzu1BLx\n0wQhZ/E28DqmK6W+Ge03+N3Fdf8J+Jn91ndkiaU+qP6CVHzRU234LHXsFZhvMkqdgfzxNGI7Tblz\nq8sdm1qOfKI/4ZZjx9js6VBpcXSeYe8qwzjmk09GPLgN5aRJ1V1HnYOjry0ulhF9GHJZ/C7vKHyT\nmjth+dpTzhpZ/yx9qK7AF78r5sRd4zhaNkNPuorMmnzb1m0Q2iW2Mw1eTpTjEko1tEvkHbOL8+X3\nFXpXtj7G56tUCerq0QUZGN2RLyiqDZ+1X8jAo25H6EOd3u9piI8Cd4jIc9AT/DcC39TmxpBjenH6\ns8CfR7t+fA3wqeK41zm9rp4jTCz1sm7743e9uOsIJmQG2hQjyvi6jPMuz9vM5yawMk0hiomky1aS\nk86mhey/LBpru5qu+3jqvNX9CZbckOxl/Y+7o/BH+20OWLkfUV0T9pPvHpqND+pgjylgHmLH9Qty\nc6nUyfx9hAL14sUmNFnj1UWmriOXZWGLmL3WhIHv0DVIabrPR8JN9ewLhxTSRSk1FZHXA+9Fmxv/\nbOFA/rri/FtE5Ga0OfEQmInI9wAvUEqNggXr1CM/LSJdYEwRsLfBOd2LI0ssEF7V+CYOexKoW2nW\n7VRMOfZvO4HVztUuDzJlnEfoXeoV/V8Ol8ZX2M60nH8Y59x1fAbEc3KJk6jWiqtuMjxIID7fxGc/\n14OSgLtbOaxV5V7ujwW2TJtCbXF1XPYkVxfWpnK8JRHUkYq7yvenZShPwK4IMqTwNwg5WNpwjQxs\nCzZz3u6Lry5fnLE6cjHn2yy67MRznw/e+Eqpd6NzT9nH3mL9Pkc5hqKvjPdROKYXf38A+LLAtV7n\n9BCOLLHMVFjn0LSqt1EncmoKtOebkNMk5093ACLSfMBdx6+wN+2Qzhavaiuezs1k+1HMfZcgKyyX\nbNJzveHdNoUCCi6bGdLXn1aZHRt2K3X17u7EQQshG1WCLROhne3TwFXem/t8Zfuepx0XzUzQ3gjS\nNcnamuA+u9Dz9vvcuBGu/TmA7Gfm1u2iKUqyqzMKGXq49ZVMhkf1C4tW/kLObsyI91zDhP045zZB\nhGWU95/XOLLE4sMyIg4zsUG9CKlaxyLel7m/rLDWuoo/3aHYuQw4vb6Y6E4NJqz3jhN31og7l4AM\niLmPqfNBzgiJqUybfW2a37+fnCUtxDG6bf6y/eKOxUrbnN/didnd7tFNtDOinWzMRtsVp49cSuc9\nSvNK3pxsOUOPEEJiVB9B6v/DkaR9Y2Du2NuC+EP6MeM/47VGy8pk5xK6uce2CvPBF3lgfUiJXHZ2\nYjbISu2z29VGzGqjbV6gFZpx5ImljYjFDadvJuFgIEfPpOybeEI7BNAf3OPXFHrn0uH0esawlzPo\nDhlEQ7p0ybtDTg0ukOYd+lGX+6KUc9f8pqelVXpaJRVfFFnQMZ0OgrYRdl0ELdCyiN3tHmujjEkS\nVRz1DA5LjNFGXGberU3OcVIvGppfF0jVsCxJ+RxkXYusRdmLMd8q4VZBEH4LL/+4chdLrr7IJRR3\nl2KTiglimaV6XBh9SJZGpHHVQda0q80zDHn/63PLR35YQePIEouayVI7FHsCsEN3+FBSYNYE9/OJ\ncsqDPOfMCLZTuDOLuWNzyqC7QyRdIumxO7lcCmL5spMd/vByxJmRn1xCOSpgkfnPbnfTpBNa9frC\nou/sxMRpzsawfK1PTNSkCzp+aswoSYrnaK2IneCZSWm17qzsk5xxrua7lVxNICr8xZacRw4Scr0u\nbYA5bkgqpN9rI4byWTlCOYVCHTG7id6AucNuRUfj6A7rTMbdttpY7HBsM/bOnFR2t3vz+jY2Mr2j\nodxXl3DrTPB9Ju+HCRG1ysfyhQ6l9qcINh+pTSq1VjuhtK8OqfitePSksk3Oxy7Bdtbl4l6X2zd3\nSDozLo7L+cVPr08Ki7GIh67Y/jK9WqsXQ5R27Kcm2GHPQ332HXezWPpIyFufk0NmuJV6xXt15DK/\nLu2wO4oZD1PSvMPetKMzSBbI1VTrtXLRYV8Kc+OmydFnxVUnJm0iFVPmsvA5yLZZvZsJe30jq4xH\nV4+Ypeb/xQRuRJTrW/vf5ZZJ0Ox09LndUY+dnbi0O9Tk0tO7l4Y+hvSh9oJrtJ1w08lr8+NPc3+W\npy2OLLG0gRs3y87vUPEHiMuTSR2alM7VgR+RJTkPTXO2U8V2lsz9XQzu2Byz3jvOM9Z25scMuZhJ\nuW5y8UXntdtb5x+xDGzrutrUsoE8LmDtpjaYTzS6bVVrqLrJZjvVoq501iGfTeaJvlr1o2UCtNI9\nnr60JZVld0V+cim3OXHEdaPtZL5rrVv4uL5FNqmsjTJ2iVnfWrQ7rGtbzuLNJRUbu9u9OanVfV8+\ncjHj+fL5PmujjCdY46aT1w591yKi03UcBRxZYpnNpHY12SYp0vy3a0XleiXXkJCNurAk+kPosZvM\nuJIt/F2SSHHH5pjjyWmSWYdBMuTFNy6cYh+60mktrw8la1r0Y0EqoTLbrrDdPOl1JstzyyBP8iuj\nRDeTjis6cmHanmU5e/meJpZcyNV0bg0WyiBZpwyuI8plCeUgsPu9zI58tJ0goxlrhc/IeOjPbeNO\nzIZU0vMdNnf2ODbK6GU519KY8bBbynnkkowpq06XERpzvnwtvTQnPd9hN6knGNvAwSbFzSd0+7dh\nTi4HiY58lHFkicXAlw1xP2WEdiyHYZXiHnv88QHpdMx2Jrz4eE6aC9nsGnH3RvLZHtemU9K8x23r\n0I9m8MVX+NSDN+yjZ9V2+BTV0D6hFbQzX62bxG2iLocsccipJoUxaB2B1rN0CClWbOW9b+XfZElk\n56xvI/oKwSWMUD6d+a7ac22ofTbJ97KcSVIvYoTybiPLcnaTHpM04uow5tpGzCSJWB9MWscVc6MC\nVBxJrX72B1OdK5Zy9k6Tu6WbqEaLzVI8tyynm3SZxBGTJJr3/4kLa8C1FbHsA0eWWDqdshLNJRh7\nVRNCSTka8Anx3ucZ7HZ4crt+3zXmgzgzErbTiCezYzx3c5db1y+znUY8cOXY/J6bB/DyUzOS7mXO\nnFmv7BRs2Cs8X2iVEHwr2zZphyvHnft9RJFlERtk8zY1ieXKimT/dUk0mxtEGKSzDmneYZwLO1e7\n7NbolOz22+PIlxPHFqUuC5+fTNO1BvUJr/S53bTHNTQpdPErmd10ALujeP4+RknCZBShhh2Ob40r\nz8BV8Jv/sywiTvPKTqjNzrjNpO+LbrA+nJTeQxznPMEak0S337730HaXHeg0RMn+QsGRJZYQfArg\nxnsOOPCqeVs6FYIJ5SnZToX3fVY4txdz23qVNG7f1KKIrTjhvniXBx4dcOmJQeW6Jqe30Ifuis/M\ntRWSWHJHWLfSNRZmbfU8ddfZ8cLc1MQA4ymtSMXAjXDsOviZ9rQLZROIjBzYZZes4Kw+7+7EZFn5\nHfnQTVQpgVeoT+vDbBH7y0qWF8c5u4OY9Y2xV5RqEIoz5tvpmx2Jayyz4fFdsgnMNfYwMKSyccyU\nl7M+pEi0do3dQcx4zzZSiGoNVVbw48gSi4hfF2IQks/vF6FJok7GbBNMk039Q1c6bKeKl9yoP/gk\nmnHX8T1ODk4CsBVfIIkGbCXXuH844dFHFna/tg7DhU+UYn/shlQ2PHoPc3/dBLgsmpT67nXzv52J\nCsqBETWZlDHO9T8zSYUmZlcc5vqR2A5+capjX+1YDrbBvlo6I+95J/xIWTxVFf3Z7fOhP5gyplsy\nh7fvMav8rUTNCXkcKbZLk7O//8A88Zh+BoHwNlZ7bT2KaZchlbKebeHzAiYU/6yyo7VJZRDpRcU4\n0sn+doCN4eJd2ouog3z3JYgg/aMx5R6NXtbAkEvIM70UfLJGVBOyw69DKOruMtgdxfMV2qPAlec9\nyZfeqLh13Uq5C6x1uwzjGc/fhK14wseOadFYGzSJm9zsgXUr8YM4StqWeb4wMvuFCY9jct6DVuiP\nc70jHG3rVAZ6ws1q+xCaVF00WcVB+76Fwstn2cL51XV8dUWvQMmM3jWYqLPgSrpqbhLc5Jy56FuY\nBA2h9Kz8RhMiGDjfo018ThrnzKnb7YMb2drdQZqUzHb7VmiPI08ssD/Ffd09rjw3NDGHFKs+MYlP\nx2H7p5jrP/5Hx0m/+ArjHJKozx2bZwH41JN9Rpku49RgxitPw4fjXT72yXpyCYlX3H48VagLrFi5\ntmkXk0a1ZtU2DNkk3bJYyBdJoN65c0G2tiOhHfSwCfu1XITyLsQVWdaVU043PCstGrbRuxbQxGv6\n5hMZ2WFczHVNdZs895MkKpEL6OdVDn9kUH7P7rO2Q8ukSc44WsQsWzh6+ndRBzHsOapYEUuBNitI\ng6YV67zMufhqxs7IsRbzWto0h9yf31+juP7UgzeQfdGIcQ6jrJq//cRgyqnBhCTq0+/u8sEHFuTS\nRh/SNDm7ZNDGSmlZcmq14vdMosvowxZJvtq/F3Nc97NDnIRDuDeRy7JRdl2HPnd170v94BKd3ba6\nXCfbFmGaBY5BUyQAtw0+1JGLXZZvl+x71jZ2RzEUeqJ0KvNdvw9Nu7VlIB1BkqduEfZ0wpElFl+i\nryarprqIp6FEVjaMbF3/9k/gJUsVT8hvXzRd36T36CNDsvQq2zenvOzkop7bhynP3riJuDNgo3ee\nJJrQj3b4n59c00RlKWJDfW0zObse9W3NZdvAFuO4ZrzuM2+bqjaSrve3L29L2wWI61TotsvWobll\nhnQnPrgh713YpOISiD3G3EWRO46rk3d4ld/0Xu0y3Wdh2mrIxVd2KPKyPlafnG/R/jIJ+aINrPxY\n9oejYfvWAklSXt3aMtZlYGTLRr5u/sVmkC7hoV+HNvc+/tgxPvbJdT58QV97YjDllmPHWOts0L06\nYjM+xR2bY25bh6/54mtsFMrZjY2MjeFk6QCUJq1rG5hVvdsn3z8D845MAqhy3Vo+bxOjrfuxV9+h\nGG82ko5/5b8sUs/q2d7JQjGBeXR5IVKxx5gpJzSB+hcvs8a/bVJx9URml7Lj7FT8jqB+onN/28/C\nHO8PptpSLdGWam65vn+2OM5+575dV1tSeToSi4i8UkT+WEQeFpE3es7fKSIfFJFURP6h53wkIh8T\nkV+zjh0Xkd8UkU8V/99QHO+JyNtF5I9E5EEReVNT+47sjsWN3tFm5Wx7HdethGAhWy7nge+UrrHr\n9a8KndAu+3C83N2J+dgn1xnnu7z8ZIdh7yrxxg6D9RvZnZznU0/2Ae3v8pVfNOa+YaZFBQHUBc30\n7ULqAhs2TUrmfl9AxNDzL1l9Wc/UF0QRFuKuXE3tlPeks6rPRakNmb+Pddc1RnOI/c/nIKKY0GTf\nJseOeU52JGJ7lxJ6Lu7O1Bd+vy2Mjsiu3+AgYe59hOIa7LRdJLXGIVmFiUgEvBn4OuAs8FEReZdS\n6gHrssvAG4C/Gijmu4EH0RkmDd4I/LZS6p6CrN4IfD/w14FEKfUiEVkDHhCR/6CUOhNq45EllrZw\nJ8taL2tre774MBdB9eqsq0Iy4pBJZluYyeHBP1lnO73Kub0BLz1xhVODC4VCfzEEbh7AK54x474k\n5ezFpFROXb+b2hOaUNtMDKF7Qx+9vRvx+eEYxHFeFXNFmlDzaeHDkpcTUul6/Y6bIZh3bwI7hhYm\nTVEXlhGHLTvZuk6JJsdJ1YCkPkK2IfXhVuo316+JdNyUvqJkQFHTvzpxdagu1yqtP5jO/X6eprgb\neFgp9QiAiLwTeA06dTAASqkLwAUReZV7s4icBl6Fzgj5D6xTrwFeUfx+Ozq75PcDCjhWpCweABlz\nryw/jiyxSEdVPmafh24Irt8CVGW7thVMnZOVkRm7IUNC+hRfOBUf3Anw8bPHuHwxZzsT7tws70pO\nDKbcsTkmzYXNeMAfr4156EonqNh0FdqubsagTkcw38EFdCRxXHUcrYP7HHwWXHa7Qshnk3k4fWMx\nZKdJqPMtMecN7HflkouvTW3Ipan+eTsajEXcOox14Q7x3BNe1+tPrez6Bhl9yGg7mZOLa6zh7l58\nhDjfOSTVSOJu/9qI+kL9tevKUh2Gv5fm7KaLJHJZlhN7jAf2hQ6Ia+ccxk0icq/191uVUm8tfj8T\n+Ix17izwsiVa8s+B7wM2nOOnlFKPF7/PAaeK3/8ZTTqPA2vA31dKXa6r4MgSi4uSb4THegbKg9F8\n3HZ4Dd8H5NbhOxbHi1VsG1KxFZrdRFW8k+sCXqZpxAcfWGf79l1ecqN2dDu9nvH8rT7r3ZvJ1ZS1\n7nlODISbBzH3JSmPnK166tv1LAix/PyaFM8maZOBnVlz4T/hX/m6z6h6jSXK8exWQIvB7O/cjm6s\nw7ks2mV8QWxyqYPrj2HEOaFslwa+xY6NOqU11KdfMOfdcWqej4lubCITl8uoxu6yCaWX5qwVE/Ak\niRiRBHcuprymdtfB9Ml1Em2+ryriNP1eG2Uc28m4WsQ6swnmOuAJpdRLD7tQEXk1cEEp9fsi8orQ\ndUopJSJGsXU32p77GcANwO+KyG+ZHZMPK2JpCVtBmqU5adxsCVOxwDEBAgMTfzAUu/Nx2jJnX16Y\nJpn/aDvhQeDCaMzdz5xwYtCZR/TN1aSI8hvz3M2Mk4OIT25c4wOP9Oe7LtfU16cfaopaa663raJ8\nH/B8ArH1Npby21gTpbGfPIJ/2+lsOzpWmEy1l1/U6TGM9+hHC8J2PdJ95s52G23dwIQiIGPSnDyt\nVF7mJ5iq4UJ9UEzXg95n6WSevz223J24Xba53+TxMQEggXkASlOu31fLb+7shntpckJeFj5rPNPv\nSRJxtYiVZgwGrhOpNOEx4FnW36eLY23wFcBfEZG/BPSBoYj8vFLqm4HzInKLUupxEbkFuFDc803A\nf1NKTdDitd8DXgqsiMWFmon3A2wjVzUkU5eBsk7W6/Pqb2OCayzVzERbtzMJtj3OGW6lbAwnZGnE\nR+bDccodm2fYTiNGk4WY7MRgyonBlH4EHzqf8fjZY95ydV/LIffNsbrrQ1iIQ/wy+VB4nBC5+55p\nv6tD3wy6M+LOGlzb1WUPBiSdq2zFsGVFynXNdu36fEEz54Q40DsV15y3znfCjjJgoyoWC4vUQkEx\nfZZOG2RaBGa9w1DbQn00O5jjW2PvvXbfzb023Bh5rue7753X6XIWf/t3faY/Or1xTjaI2N2O6SZq\nvhA4VIggyaFMuR8F7hCR56AJ5RvRk38jlFJvAt6kmyOvAP5hQSoA7wK+Dbin+P9Xi+OfBr4G+Pci\ncgx4OVqcFsSRJRYXbT5i/XvxUZq4R67+xEcq7kophDYTo20KvR9nQ9cbfUEufZJo0eZhL+fZGzcR\nSY+t+DG24mN8KNnlwT9ZX+y+HJ2Uz5/H24ak7K8zb4+zSs/SqjjNNzEuyNY/4Yb0F0mkWOt2iaSL\nunpJl3XsOWwlOUk0ox8t+tgmvEmln857cseEr63u/fsJjGqTS6m8xA01szi/QVZa4IR2RnVl++Bz\nivX5yNjPw0cwTbDraWOJFiIYqLdmvN5QSk1F5PXAe4EI+Fml1CdE5HXF+beIyM3AvWirr5mIfA/w\nAqVUndL9HuCXROQ7gEeB1xbH3wy8TUQ+gbadfJtS6v66Nq6IxULTADZRXW8oFvTjZMp2qj9U433s\nC4MBiw9nLrqpUdKC3xO60t6Q70JAVxOeMBbk8tITWgdw63rGif5tRJcfg2nGs089j7XuGZKoRz/S\noWDqJs0QfD4MbowmWBCMS+7uxJh0p3Nz2DJZucYF1efej0w8tS5duqhU71i6+Yy4M2AYz9hKOsXu\nzv9e3Xp8+ram5+IjmIOY0vrKsHcrSVdZFnEKm1zaTMTuAmkZM/KD+obsx+LNtzBx/14Q26SVOfa+\n0Dm8IJRKqXcD73aOvcX6fQ4tIqsr431oyy/z9yXgaz3X7aJNjlvjyBKLz/O+Du4H2e9qc1QTgM9V\nRPvubyMjrlsd1X/09bLopsnfJZe4M9CT7VVt/CHTlDgacGIw5qtuUcAuD59LvGW1aaMPJRm+CTbp\n0S24Dnu2r1AduYQQdXo6AGU2KR1LorJIx7cbc6Mk+Dzb94vQzgCaE3i5aPIg95H8fuGSzmH44/jK\nbgubKELRBEI76BX2h+tGLCLyLOAdaJM2hTan+2kROQ78R+A24AzwWqXUleKeNwHfgV5ivUEp9d7i\n+JcBP4e2sX438N1K1VPHEunNAQozTB36O+kqBvkiAJ8dK8kN4+GuRuvIJ/TRtBnoIVPlNh76izb1\n+EAaFel6p7zwhse48RkvBGBbbfPH23qiHcY5X3WLJtePnw2Ti6sH8vsvhMOCzK9xRZSe5+QzfV78\n7bHQs47lswnEMawV+qMoJs8mRWbJos4SgZTrqvPePqiT3X7FMG5bdkY9NuaucDmwCDFvm8X7Tcv9\noYXats1njv9UoU53tcLnDtdzxzIFvlcp9QcisgH8voj8JvDteLw/ReQFaCXVC9Fmb78lIs9TSuXA\nvwb+NvBhNLG8EnjPsg1qsvWfh4FIcnaKv0P+KW0cKm0sIzoJt68TJBRfzC4fdkY9fuePemw/b5dR\nlnP3SW3W/qc7ZSY+fUyLzPqR4v5zvdLEVKc4DbW3cq4mDtruKPYSVtOEYj+bJMkZ5zLPdz9lSlQ4\nSE6Zkqspad5lnEvl/lAfbDP0JgR1PkuIPE39LkKiqJ0RmMCYDE0WTn9oE5/pvFtulkXehFuhti8i\nT3S8u4j9IBS3rxK1wnLO9Juw677tjHqH8i36IB1Zxo/l8xrXjVgKR5zHi987IvIg2vEn5P35GuCd\nSqkU+FMReRi4W0TOAEOl1IcAROQd6DAGSxGLz48lpKhts8q2y/XBpxw8KKHUTcbl65styj72yXWu\nZLukeYfT64vJI4kUt20MiDsDTg5GJJG2GLvviZzdUVw2MqhxjGz17NKF347Pt8KUBWECb7K008Qy\nIVdTor6O8pyrKbmakOa9eR11KQNcv44m2L5PvvJCE5sv3pU7ifoWFrbPh4EJ2xOKRF1H+Pb42iH2\nWpH5SMOd7N1JvFJXnVFDg96k6X77G7BJxQ3Bs9r97A9PCx2LiNwGfCl6xxHy/nwm8CHrtrPFsUnx\n281Ni/IAACAASURBVD3eCLNq9E0MITPGkLNd6TqPl7zrvGg+4MMklWUmt3n7k6o1HOh+nTmzzn+b\nXuUlN8W86PiUJJrxjDVY7x6nm8+Iejdyx+ZZ0nxAP4KPddNWbQW/yfX8Oqsvxvlud1s7qw23dB0h\nB1LXqsedIO2+jqfaEdKQiyTaEVmTisyvCd0fbGvaqwRNNAg97/l5xzm3jWWdSy6+BYaPXCBARA0h\nakxf3T66Y9lV0sdJOM6YfY+7MHJ3USGyLVuYLcRvoVA6rnGHS5p2nSssh+tOLCKyDvwX4HuUUiOx\nlB+O9+dh1PWdwHcCDG460VpM1XaFbRAKhx+6pmkCCe1A2pBKk4OXrbwsHS+I7/Gzx9gdTTh3LeUl\nNyqGvT0G3RFxZ429fMSnd/XK99b1nFMD4Q/XUq/eJbSr8sbesvoSysNu2miX5et/naOk8WPxYW/a\nKelY2sJ1rKsTuyxjntuEiqVfVnUsdetoVa4TjduQhdsHO3xOWbdYbkeTgUsd3HA4rmgrpPvy35tX\nrtvYyCo7sENV5AuH5cfytMd17aWI9NCk8gtKqV8uDoe8P0Pepo9RNqsLeqEWsXbeCnDD7c+tEFbb\ncB3LOCP6/BAM6hzWyp7m7ayb7ARcdsbAUrmBCMkh2bP5wB4+l3AlS9nOBtw12eXU4Aqf3k1I80UZ\np9cn2kQ3VnzksV6p/KbwKzZcgjATdRtZ/DyIYIOuo2nCGHRrLPA8Ie7NOzL1+/wh6hz9bLQllarj\nXxFOP10klnOdaV0TcdsKr9RG3+KoxbgPxUJzJ3pX3Ox+AxUDjKy6k6iLYVenbyy3q1yG0RmtLMMO\nhutpFSbAvwMeVEr9M+tUyPvzXcAvisg/Qyvv7wA+opTKRWQkIi9Hi9K+FfgXh9HGg+RLgXJCKqj3\nU4GFGW06lQqZNJGLfb4pDW3FpNeze/BNIpcuJ7z/as52Bl9yvNyWu47vcTw5TTa7xjDeYSuGD16Y\nculyslDaNjzPkBjPiL9C7TL3mthcdviVw4ZvYnZD9bge+i6WHVe+dx8ilaSr2AE2hmASy4VIxe2H\nfY0N+3rfda5hSJORg12uTSq202Zoh9Pm2fkMKgzq9Efg1w0dGkQgDgej/ULC9dyxfAXwLcAfich9\nxbF/TMD7s/As/SV0aOgp8PcKizCA72Jhbvwe9mER1hah1WRIDux6FrsRkO2Pquy0Bna+dFNW087F\nBP5zY0K5sbZ8K8pFO8PGC1kace+jEeM85e4TevJ+8Y1TTvTvgEtnSJINvnjrFFvxY2zGAz4cpzzw\n6CC4U4JqdFwju2+7SzEwKWxVUs57ExJNGgdJ7STZg+m1oiD/xx+amG1yMUEmmzz0D0Iu7oKjMn6O\nTUkTbUxhvOnt9vrgWqmFrnOTv7mOp24+FoOQ46i7U9F9UGQW4fl0H6E+1AXL9F3vtsWHp4RkvsBx\nPa3CPkAptVIJXxu458fQOQTc4/cCdy3bhlpnxCVzMTxVJopPBVxS8ekh/KSy+Gg/flYrtl92Mi+C\nVgLdIp+JmrA37XBiMOWrblH0u3t88uJk7u9jh885qENeSXFuHbfD3C+LSHRJWv9StRR0EYqSUOfB\n7QshZODTsbik0tY7fJmx2EYE11RvyJnTLb9Jr9gWvlA37nMNjYP96LJWaIejoUlqQJuAe65fyjLO\njL7JM02jyrV2UqlF1snqas1NzLSouywnr7YjnAyqTah79/jD5xLGeUqar/NlJx7m5PpJstkeZ57c\nmetehnHO/3KzYitW3FesoivEZvQTznC0w+jP+xDQAdgRdrvU62TaTCZJVOyaurrfbSYhr9jLSocQ\neuY+pCUCWfx2y14gx3Z6tLOA7sdpsC6C8n6SirU1od7LyxkrkyT36qZa6zlrjGZsuEr9pwQrUdgX\nPqRTNZWs8yGA6ta+TfgO16TRLsedGMppjKsrVF876tAUj8yFj1RCoUsMzl5M+J08ZZwf44XHLxdm\nuouJ4TkbikiEYZyyFSc8tJby8LnEO9nZCnAbPisqH3mGTHzbIJIuKje6nDVgQS7QjoxCQSWXtSo0\naHKydRXYOrSQX1zahlya4oQtm0OlztnTZ7BiUnlX7vEYS4T8k9r4jYXa5yOXlRhsfziyxALViaBN\ndN7Qx9RW5FBvqVKexOvChTTJ6G1Fqis/d1f9Ib2QjbpYSpcuJ7xvmjHOE+46vnCmfP5Wn63uScgz\nBpspW/EFNuMBW8mY+8/15mWFCAbKIq2KiWvgXdSJwCpiK6NfsRCJle8mUkV73Da2n4R9Sus6NL1r\nnw7DNfFdtCWs43PbXD0WttIyu+VlogDXkcq83KlfOt4U8NT3XS6TAMzARy4+stsXOqsdyxc8Otb4\nbfqofLDt9u17mnxO7Hur1/gV3AeNctvG7PKg1jC7o5j3p8ZiLOeOzTFx5wZId2GaER8bstHrc2Iw\nJYmikre+qdu1sMrSaG5C7eY8r5ucDmOV6ZJNG7iTuP5dTmS1DFw9lCvqtAnG3b1UREBJ2ZmyTqTb\nxp/EF6miDodhbeV3kPST5TI60vBicbVb2S+OLLGIqMrAqYs55Toj2mgb+sEXHyp1VpdVM1L/ytiO\nGtAWrq+CKWc/8MeP6pOl40LvMuDLTpwnSk4TJX2ezM7z8EjXNYxzXnRcAV3uIyvpA1r1I2mXkM0H\nV4RZCulSHDMhXcznocdJmWh8O5iQCKpOX+FrX9UrPaAXcHYM+5m8K3ofqx9td+zu7tjb1hbGBq65\nvVuvL1yQK2ZcdlwEQ9dU9FdPL4jIK4GfRluX/IxS6h7n/J3A24A/A/yAUuoni+N94P1Agh7g/1kp\n9UPFuR9Bh86aof0Hv10p9dni3JcA/4Yivwvw5UqpYEa3I0ws1a1+2aSzLMrwEUpoImmCHRK+ya6+\nqcw2xOIS2jIigpDYKbQL2hn1CouxFFjjruOPkURq7qFvcKI/4UXHoR91+Vg35dLlpFRuXXtc/xxX\n3h4KwGmv8ONU596wIVE1YkAoZqBvgRDSUS2c9sqixDY6C9PXtouIxp12gNT8k3b7RUvTWE6sceR1\nxLXETUbX6CMX8/9Bd/F1CDl5HhiHpLwXkQidfOvr0CGsPioi71JKPWBddhl4Azpuoo0U+Bql1G7h\noP4BEXlPEWvxJ5RS/6So4w3ADwKvE5Eu8PPAtyil/lBEbsT9eBwcWWLpiCs7tUmmmVQW1+6PXFyk\nzqSzKKt+otggY2fHBBSsfrR1TppNCK6UGxwes7RT5GpJSfNjlSCWzzrWJY7WubG/U5j0xjwUpZy9\nmHjb5+aaD1mu2TlRfBOxu8I30Y3NrsU2lw6VDeUx4RoUbJCVdg4bx6YMItjrat8Sl2Dq0hzEcV71\nG/HERXN9lg6C0DjcL0IxwWzY3+Eg0pZhbo4dt30h+MZ5kyVnHZ6mQSjvBh5WSj0CICLvRO805sSi\nlLqAzk//KvvGIp3IbvFnr/ininN2dsljLBzqvh64Xyn1h8V1l5oaeGSJBZg7lFUH8kIOvbvTLKYJ\nBfjbz8fphhNvM1nEae6dcHzwieOWaWedSNCFMUe+M4u5Y9MKYtm7kbgzIJIet66fZ5RF6B19yoOB\nNAQuqfj6aOsQ5ivkwO6lYcEVhBubzdX/6PS2szmpmGyj/QjGkfISTLVtWH319NN+14H0wG13G027\noHojBUeUvI9IFS6pmP+N6X1Ib+kLBFu3i7V/tyGYp4GPy00icq/191uLkFSgg+x+xjp3FnhZ24KL\nHc/vA88F3qyU+rB17sfQ0UueBL66OPw8QInIe4ET6CjzP15Xx5EmFjN4fZYoxnehbZyuwyCXJnGE\nfzINWPnsI66TL6hfWVy4nNlslnY4ezFhO83Yzro8f3PGsJcSR3phlM32OL/XY5RFbMVw55aC23d5\n5OygsZ46IwnTt0o4D+f5mejG21mXrWSPteQkAHl+me00Is2FcV7uu2/y9Hl2bwx1QrJxpDSp5Asf\nDUMqIX8kt59ePx5nFd8kvvLpBVOLmEJRj3Vd4ejJzaK3OoOR3GtibPtzNZGK+bvOMdN3fBlyObRd\niwgSiOrgwRNKqZceTsVlFBFLXiIiW8CviMhdSqmPF+d+APiBIqni64EfQvPEVwJfDlwDfltEfl8p\n9duhOo4sseSzsGmjQTnZ0XLk4sqb6+T/7kfhKvRDbcgKWfMyK8U644F65WuzXNudYE1Zu6OY+9Oc\n7XTKk9mA507GnBrscH6vx9ndhV7DkEs/2uPTV7pcutivhHPPsog4zYOivWU9+nW2TCHL95h29c5j\nb7rDaBLxZNZhO5V5nhnXGdXnd2P/ztIO2XBSImqfCbnv/ZVD4Ojrd5zdsz1uyhkiq2j0YQksRNzx\n4T6DEHG3IQRzjyEXn4MwMI/YUBtMcolvoDYHjEcf9zREKCDvUlBKbYvI76ATI37cOf0L6KSJP4Te\nEb1fKfUEgIi8G20UsCIWF/lMgtYvtmmmi2VEDC65hMxHfWgzoH0JqJaRsy8XUsQfBqYpMrGNh89F\nRYTkmJsHVRHjicGUEwOt0O93p5xJrvL42WP+HCjusaIdbVIHmLaPc/1vlEVcm45Z7+0BcG06ZZT1\n5+e9z9mZiH3kkmXGPNbvj9TGFyl0bShf0DLwRZbwoY25uq6/ZuK3djdmh1W+vhBnOU7CbUhlXodn\nkVYXrdl3vxuw8lAhAvGhTLkfBe4QkeegCeUbgW9q1wQ5AUwKUhmgDQD+aXHuDqXUp4pLXwM8VPx+\nL/B9IrIGZMCfB36qrp4jSyyzXNgd9VqJqvyhOppFF2ag1wVgtK9z0UQuy66m6iY1XxDKZepyowuH\ncOlywkeu5jzvxJTb1rWYKIlmnF6f8Iw1rThPoph+FOsgkd1dHn98UFmtu0Ri6va2rSbasdmxbGdd\nNnpaRLeddYtjsJ3KUhZ1pj1G/wJlHdiyCBFKnQ7Bh2XC0SzrjLsM5t+E43Njxp1LKjs7cXgB6Im3\ndpDnHApYeegEc0AopaYi8nr0hB8BP1sE6X1dcf4tInIzcC+FebCIfA/wAuAW4O2FnqUD/JJS6teK\nou8RkeejzYkfBUx5V4qo8h9FK/TfrZT69bo2HlliyfMOl54YsL6RofOA11vVuFFs6+CSizkWgm+y\nagrncRC0Xf21he9jdLNxlvvT4w9GOY/fssdzNhTP39TXudZYt63DzQPFmbU9Pn52Vkkda2dtXEvL\n725SxNcy//vijtlIOu3MxJfFaDtpHQyzabfpS4Ngo63pedtr2oy9tjrIpnA8NrmUdiqpnbGyW8kz\n1OZ7tGH6tl5Y2+ncNWG9x9ONVAyUUu9Gi6rsY2+xfp+jnKfK4H50tl5fmX+tpr6fR5sct8KRJRYD\nbfW1MIdtK04Im+JWxV1tScVWkrZVLh4W9iNCc1d4oVhdIR1CmkZw2y7QIc2TwjoMLlpl9iN48fGc\nrXjMfU9kXL7YLymdd1M9KUySiF6a08tyJnG5Pl8aXbv8YTxj0J0x6GolxVZ8gYtRV++muqoxVYLB\nsmmhXYR2i/sJTdKEkC+NjYo4dJ+7gbZjq+66g8SBc5/f+nDCxjFN9mlxbGfk3JPU59TZFzod6Fd9\npb4QceSJBarkYsP+ANvsWlwiCZGKO3AXJsbNH7wvDa0Py3wQtiOeXWZInNdmEvWKFZyV65kz66Sn\nrzLOFeO8W3JITKIZdx3fI4kUJwZaPPZQssfZiyZ5mH5nu9u9eS4Wg16az8nG7Fpc9CPmori1bpe4\nMwBgrdtlGOdsxRE3xHCpsBC0YT8ne1UNB5sEXTTtUnzm40uV3yI4ZdKw26gvP7AAC4h/7Xa17Vft\n9+jUYUjlhlhHrt5OFQz1OLLJ5SlLT3xEsCKWArs7MVnmz7poYz/k4p6D6k7FPueLNVUXHNOd9JfZ\nfbgOhz4nQx+puLsAn7jHRyyuFVGWRVpBf2LMeDrlJTfqModxPs9KGUmXQfcySbSnIyQnKZ+82IWR\nVpB3k672Jy7g27VU69eikH4Ew15OHB2jW3wOg+4Gw96TbMYz+l39PJPEHwzURS/NmRCVkpXtB77x\ncRCz17qJvE1wSts3yJRXB3ect71Pmx7npR2/nW57Gdh1bwwnrA8zkq7ihhi2ElUsYgSokovvuzww\nVmHzjybsSa8tuXjLycq+IOAfnG4AS/t3EzGVjlkkV7Vw8++47DbUfUAlgrFIxZ5AfblPTABJqBKM\nO0FkWaRNi9MJ/W7KnZuKE4MpcWdA3BkgShF3BpwajEhzYRhH9CPFQ1adIxIm1orT1rHYbbT73u/q\n3cqgO9O7lVQ7JEe9HoPujCRS9KPy7sPd1dWJOe2IAcuER7HrMro/32LDhc8nZdmFxrysSgSIWYVc\nTF0hs2Nv5s6KQ2c1i2R9u8qLv3mkAGehVx3j+u9BpN+72a32I0U/0ubOmbWAcPuywnJYEUsB92No\nco6qk7vbH/hhDcx5GBVPuBmDOgWpb6Xty3RYniD8IoAx3VpSMW0xZVXMfX1WdlnEzggrzlhC0tkj\nji4RSY/dyeV5vLFhnPPlJxT9qMuD3b15GSMSrhV1mrZtJIWSto0SdprNw7r44FrV2c+qP5jCQJPo\n+mDinVzbkosbYaDOmz4UX2y/5OJzmtVllL8Dd/eyH/IMRRY4bNhje3ueEE3oR4rtVLiSwc7V7vxa\n37e2wnJYEQtlfYeNkMPgvkK1HJLJZp1PwcZGViIbO9CliyY/FQMzscXpjCzNi5AleWWyCnlwe8sL\nBFY05PKw7injfEA622ErnnJ+ryxCuHU9JYlm9KMYWJCLvUP0rWx9WORkmcA0I4rXSkm+7PubrPyG\nW2ltjpJlJ984yefiIfd+t0++vraZ8EMRAEILq5IFZbFLdBdRdUTeJv9PE+xvcBkza5dctlOp7LZC\n2TIPDJHahcsXEo40sYQsP+q80evMkl1xhf2ht5l4Q5OA++GY+GV2OzY2MkyI9p1R1blumYRMdnva\nmMC6f9tiudBEb08MIXIZ53rn8txNK1VtEcRy0L2BrWSPJNqjHyXcF+3xyFkdq8uuw/aQN17v9vM0\nBOLLIAk6UGXmEqBvl5BU9XPuAiRJNDG3ibMWJzPWh9lcFzCOFNuEScIXmHPZiAy7O/E89pn93n3j\n35xfH7JYdDQ4MrYhFBPyJoRQDLU58VsLnlBcuSyNuJASxH5SOa9QxpElFhFVm+fdRy4hebCrR2lD\nMG1QSXGbRYy2k7mOYzzszlfI9ge0MWROLiFPYp+Iw4jE5mKc+WoZlslJ4dP5uKTiM0Cw27oz0nEk\n9vKUcV4OYrkZn6Kbz4i7A56x9hhpnhUOlToUTLndBuH2z5N6TbPib/1Z6DTLthiy7BPTFHW5Ok46\n82dhl+fCTJx2H4zpc5YY89iec305+dW8To9ItByqaBFs1VjX7aY91reYt9U3/kPjoslC0X33y8Qa\ni5PqomQ/WLgENPuvHa4fmUC02rF8waPJ5PGg4qtQelo73IsvHlmduKM/mLKb9pgkEeuDScXKyY5F\nBeVdg91fXy6Qsmy9mUh8ylLfyr5VWR4T5p1RMfFNx2xnXb7keM616ZhBd8QgGpLN9ubhV4ZxzstO\nCv0uPH6tsboS5om+5mHzXZ3QjOyJMqlMU6n16Dd9CumT7Hfs9juNdb6YNMkZFDuqcV5ezftEmU3K\n/VBcOvPOuomCtGwu3fiNBHaCdaFU3ECnBrFDeL7oEMZrv25MhZ/Rop3z9qULhb1vcXmYUQeOEo40\nsYCfPEp6Cmuyz7K8NBDBv3qqy3du6z+Cbfr/2Xv7cEmuu77zc7qqq27fubdva0Z3RrJkWbZeLGz5\nBcuWbZ4QQhJ4vEuyZhNYA1nyAg9eAqxhHwgJeEn4IzxrWC/ECSxexRgeZxOcPISAd2PjYEhwAMu2\nsGRblrSyZEv2iJE0mlFP3zu3u6q7+uwfp07VqVPnVFXfe0ca+c73eeaZvt1V55yqOnV+5/f2/Xnq\n3EeR2xeUJkFBQuhi4W3LejbH2jUx026nqbxAW7Sd2dYiEewm/SLLOk2VAN6dzJllCZP0GDdt7XBq\noBiIT19cK84dRkvu3JZ87nzAl3dK81myUESS5uJXlEM26rGIeFONZ7nH2L73DjOla6xRUq2h0mTW\naWMsMEks9QJejqdurvHVEXKxDriEj960bAzK8ZvBLGp+9IjioNCcXIt1ZUzOLHt3tU1Tk9BULvY9\nKgVCtYKkLazTJGCHqPK+usbYxJd3RajsH0desEB9cvkctMXuTJMLesqx+tTnLvQuTedrbGymtYVc\n+ybMfnxY7YUxF5CqNtSVgLJpV29eqzbxqR90Vn2fjdGcNA34TNJjfP2UcRpzw0a1r2GUcfMwIJOL\nPEw45MFxyTvlou3w0uYvniZZ9kiyUntTO2UVQq2vU491TlAImOEoYWdCrUCXvlY7bNuVTKl5xoaj\nJO/f/bx8vgBXPzZ/mz1ntfDS4/FpBLWNUoNQKY8ptZcupiWTygWqzAm6rZ1JPRTe1y+0bOQ6CsQD\n44rz/uihyTlrL5imjX0Vk5HLRr+f/AZQwsXVtg2ficouUGWiTWsxX2QfCWRb9rnrHveTrJJBrz/v\nEqkkSODBRwPG119klsGtW+r364+lXHvsGFv9UwAEV50mDpTf5d5zimy03r9akF20+dmyLhTiOCNN\nS63FNU4SFfKs76svudHOBfLdr8lY0X/oMgE+/02TplLpZ1DrooYuSYhNVPom7Dliwhcs00QGqees\nLTCa3iFb0/NBJ+teweHgimAx4JuA5i7VeV5TpFfFYV43pxw0jl87yl0hwE3oqkXYC1jTjrPYwXt2\n2DZsp3ilrbTsd32SMo8DJsQMRwlnTh8DLjJOBa85ro4LRIiQEilKAXdqsOTNJ3vcF0x58NGNWh+a\nFl9pJlnhW8nkolLky4S+HzNCxGRZo5KZT0r+sjTNKqWKfYugnaVvzjVNYlmaYd1lmaFZ020S9KsS\nOdp9+SIenfO9oc6Jbww+FoO2Ma+iQet3p5J3dEXQ7Bve1VIIMQR+CsWQ+REp5b8xfvs/pZQ/9ByM\n7zmDb5ekJ2GXJD8fXOVjXRN5vzCFS6fjHQEDPtgBBXawQbEYEiJzW3ZIdSEoHLWOCCXzO83tBdQo\nWXSwgo6+ikPJmT0YJwEX0gGT+S4v3dwB4KFxwCRVz3IrWvKmkz1gtyJcXAubjgZT//vNm0UI8yBg\ndxyxPqnzzOm5lERBzVyzNlgU9ytE1u6Teb75uS3Z0mZW0PPMDCF2Ra+VfqfVNic2XIuyGUXZNtdd\nv/v45uwk5K5mWW/fjnDxQ4foXTGFAb8OfBH498D3CSH+JvA9UsoEeNNzMbjnCk02bx+FCrTvaJoo\nLezfuhZdMo+1d42dnadN5H8rCLouC5ArrNj8bAt0U9sxNaAwlirMNc4KynNQZWw/8bRgnEZM0qwI\nEdbYHiwY9jPiIGYt2OWBx8uyx7piYRwsCURYhh1T5rfMFjpwo75DLxiWiSpmPG160n4N18LnEiZN\nxcPse+fTWmwuOzN03M7oh2oItG/+dEmwdQWa7AdtC7tLALRl/tvkoLYZWLe5aQRKXO4QQrwFeA+q\nHsv7pJTvsn6/DbWGvw54p5Ty3fn3LwY+AJxCZYneJaV8j3He/wz8MGpn9R+llD9p/HYD8ADws7o9\nH5oEy00GP//vCCHeCfyhEOK/a7/sFw5ctmiX6u3a6cHc67w8COW2L1vcbsvFlwR+gee6Bp3Y5jqv\nkWE5qr/YXdHkF6poLQbfl9ZWfHkHD45VsS5tGgO4fmPOjZuKb2wUPwWssxZO+cyjSrgkC8EsKzcS\nQubJkr0+sCiYls3F1+bv0phNQ+YTi1XZEC42fLt4+xm37bxdz8jFCecSKmoceXRcx8XUN5+7zvMm\naiFzPCZWTbI175np+zM3jrYWp4WKmVBb9n+INe+Dg9Pm50W6fgVV/fE08GkhxIeklA8Yh50H3gF8\nu3X6AvhxKeVnhBCbwJ8JIX5fSvmAEOKbUZUjXyOlTIQQJ61zfxH4SJcxNs3aWAjRk1IuAaSUPyeE\neAL4OFA3WL/A0OuVE0wLFTPKZ2M0905kZwy+Y8d3ULV6v+e7xlJnMa4SG66avGm33QU+gad9WPql\n1w5tDa2t+KDzO86c6TNOprz2hOTkIOPUYM4gOEXUG5CGU7YHM64Z9HjdTVPuPx1zzbrkJRtLbthI\nafNsuxZmpUH1lP8jzgoiTFPrMiOyzGCPNoGi2zc/79dU49ScW8K+D4r9JDHapSNMEx24E3yLv42k\nU9MnGsbSWc7ANg3qfnRpZFey82WEO4FHpJRfAhBCfBAlEArBIqV8GnhaCPFt5olSyjPAmfzzjhDi\nQeC6/Ny/D7wrt0rpNsj7+Hbgy8DFLgNsEiz/D/CXgY8Zg/oNIcSTwL/o0vjlDCHUZByOkkJrmU9A\nDnsFiWBN5c6T0Lqqyl3zQnxom9CunZQrqazt/ErCWAsJ54Fqf9gMtMbO0NQO7V3+2mBRSexU5+Rm\nKCs/5cFHNxgnF3nt1RAHa9w2eoooGHDm4kUeuTBglsEokrz+JTNevrXkju09AtEnk4vC8Z8t50Vp\n4lnmjnzSYzfvx3CUMCEufEy1a2jwNfjuq4u5QN8HH5oSFeu5L47kRsvP0pZNXx1v85xtSuIs3y93\nkIiZWOxs2xIuGqZgL8dR9zeZ8+oyMIddLYS4x/j7LinlXfnn64CvGr+dBt64agdCiBtR1SQ/mX91\nK/CNQoifA2bAT0gpPy2E2AD+IUpD+okubXsFi2lbs77/PeCWroO/XCF6ZWVAPSFnhBUSQWcyX0Py\nY+U46yXoImAOTFXREHpp5uCY43L5DjRMwbhfgdJKb+7ZqfsyspMkMJLj6osiwJnTx9idzBmnCZO0\nxzBK+WIuVDRMoaKRLqfF/0m2xixTNe/9eRL17HC9UfHBnltt0VGrailes2ZazkObxscOUTZDept8\nZOZ1qGO7z1+fgKmMrcHno+fmKr4d+1paw+qLwJXD4g1bKY/lGSnl6w+p4/pIlLD498CPSSl15rHW\nNAAAIABJREFUwYkQOI7yob8B+HdCiJcBPwv8kpRyVwjhaq6GIxtu3BOgSRt1NcJGG26HnXuNrtxw\nfLZpL/X6Fx3NS1bCYpdomFUif3zMAdD8Erv8QT7h0taW/ZtJa+4TeDuTPp94oM/4pl1u3Kw+u1u3\nVBExU6gApEvFBTNOAiZpj1lWCuQa7UrDgmZen+0fgOYFzSVUupAiurSUprbN83zJlF3yrFyJlkV/\nLVpYedxqWnFXzaXr99Wx+P1/lxGeAF5s/H19/l0nCCH6KKHyr6WUv238dBr4bSmlBD4lhFgCV6O0\noe8QQvwCMAKWQoiZlPKXfX0cWcESBpITx5PCPq92wXntDsPmqmFzIplCw3y52qNa3EluFTbZGoGi\nG0mcsTtROyD9knWtsmcKl1V2xfWFpLtA1JqG6r8uvKuoJynW2uuQz/Hgoxs8vT3j1dfMGUVw+/GU\nl25KomBYO0/nseis+1nm353p+6Az7H3EpFXetnrggWIGtvirDIGyMayHMtvUJb6xudCkVZh+LlfU\nmtmfGU5tOr7NuZs4xmHPbX2MmcjoKypWOS+ps477UZ9Ltefg+Nunte0bh5d5/2ngFiHES1EC5buA\n7+k2BCGAXwMelFL+ovXz7wDfDPxnIcStQITSnL7ROP9ngd0moQJHWLCsh/D1J2Rea33JLCsXZFVV\nTn9W/6tj5swywWxBYVZZc2xs1lruqlmV0O6nfqzuv/7bLJPMrppVxqRDaAcdNlxmn+aY9fhcY9Lj\nmGXCeR2+9tV588p16IV75pCFejx2BUezXXMsRZuL6m/TDK5dV6avm4YJJ9bcO/9BMCQ6q8zWt159\nDXHvmTxEWRLFzwJqURwEeeVB6xnXx1lfzFz3aJwunM9uLSjL59bPWxrXOPfeC9fY7Pmm/Ej++WP3\nbc/DUVydL9Xju2yQNMmm2ti55sdhoW2+mn2r30th9YFDHcnBIKVcCCF+BPgoKtz4/VLKLwghfjD/\n/b1CiGuAe4AhSsP4MeAVwKuB7wU+L4S4L2/yp6WUHwbeD7xfCHE/kAJ/J9deVkarYBFC/I2Wi/zt\npt+fK7TFddtYD5fcsZ3kJIS9gowQVA6D+rcs8hns4zSPlI04WBZttEH30fV4DTNXo2lMuu22Mbj+\n1tce91Tp3umil+/kRdGvrx/ftTSN236pdZvDSN+fsg/XMzH/trE9WHDbKAPcz2yrfwq+8hmWd38e\ngMGbXsVtN7yOUfxF4mBQLEKjqBxb2/My76MPeuyTNChYAPT1rwWK/2wYZa192ffVPZ5ynulnCjBO\nw2IM5v3zzUs7T6i8Tnse+a+7rU3zOly/udB2nD1OPT5fP/Z7cLkhFwQftr57r/H5SZSJzMYfA86b\nJaVMgf+xpd+f7TK+LhrL9wPfAPxh/vc3A38KnEVtN553wdIxrruCqBdy03CTNJuSyQWZnFcESyD6\nKmmup+zwmj/KPtaFsnhUv8jm1ueaUL8FBL3qcb7ja78v5wYNSXX8ZR91nqwm6GsOREjUWy8SBzM5\nJ11OC4p537nVv8u+M1neP3Pse4tFTWjpxW8UZ0S9QfEMysz4ftFmJhdky3nucHcvDk33YCRGyPs/\nzuJPH+L8f70AwPHxPYTfsMu1t72R4MQZhtrkGUhG0cKoOFm9tiQTtblj3r/y+PIe6HHrBT7JekqY\nWNfvu7eudl3Q4yjGlp9/7XJKutwjk4v8XZhX2rf7Nftrgnmefn5dz9HPtOmaKsca998F1/sY9BQr\ntp6H/me45nw39wXRu1KPxUAfeEUe/4wQ4lrgN6SUf++Sjmw1tMZ12+hJySYbEB1nwUK9WMu9ymIq\npIQst3FHURmOKqsLugn7xRWGJmmer48t+lhYtvQwUvuKloloj8lefIVLk9XXlLdt8msJKSHZRSY7\nMDsHya46NIwYxBsQRope3rQV22Mv/rYWoTACIvV/ADKMC4GVLqek2bRYkKOeSmwMCav3Z5EiMzUm\nEcQQrkO8UTzDTM6rC4glhPQiCjBKQpZf+C/MP/4wT/zRgk/9kfr+Gy7ucurCZ+lfnHLyla8nGi3y\ntkphGxLW7r3Zd0io7l1tvMY9iCIWLEiXU0bxtFjkomBQv37zvi7S+r0FdS9q9zvHbFeNY5EW4wKI\n4g2itQ31TOOT9bkAtfliwp7Teg42zj8T9rWpUeVzRL1ztrDzvVOmgNAwBWTlfOu9NueH+YzJUpjt\nNl/DFdTQRbC8WAuVHE8BN1yi8ewXneK6hRBvB94OcMP1J8qKgWGcvxDlzsq14IugFC6BCCvnuHZy\nlQkcRAVJYm2CL6yXK4zU5zAqz3fB0aYam/UC+trIvxemgNHjWaTleem8HBNA4GnPuFdlmd8Slf1k\nGFUWCPXih8ZntbtmkVhCJSk/AyK/R0EYV9rS96HIpi8WmH6x+MksgXSOnC2YJz2SmTp2uhMgZwv1\nW5YQiLg4t1igpKyQXtpjZ5GU9yF/ljJL1D0w7mUQxgRiQSDmZMwr96F2b/NznPc2iKvzR5/jaYN0\nDlG/fN5BCmEKYeyfN/bf1vxTgtUhVJrmsDlOe/6j5mbtvTTaNN/JytAq70N5P33vtXle5Rmac+4K\nOqOLYPkDIcRHgd/M/34bRtLkCwl5gtFdAK+742a5E6Zkco8sqe44wTAJhVrl3oNF3fzkQlXl1mVv\n3XTsZh9BX78MMm+7+YXMFn6ad+e4HCaJbDmHrDQ5BCIkWhsQrZ8iENepXRtUdnXqf8fYQvOF7tdM\nUOX9kmRyl2yhzC/aHDaZB7kZ7AKj+DyB6BMFA4Iwf9H7/Uq7ehxNz7DsW/02TgKSpbKrv/hYyImv\nfzNR1OfGtYcZbCrzyKk39+j/xdvoveYbGAd7kJuJfHDtkotx9zdqmw997zK5RzqbVsyBAHHvAoNQ\n2faj3oAoGKh729fXZWkmtTHI+pj6fYL1U1VtHCraeibHZIl1njVnKnMtK++tOQbbjNxmSirmvTX/\nzXfON6YsrZqovX1Y5kk9VzO5S5pWzeHrYVhqzv0BQXRV4/hXgUsIfi2iVbBIKX9ECPHfA38x/+ou\nKeV/uLTDWhkrx3WnywWPTnYMx28ABpVIHGTEQWnfrTqtg/xv/+0rnX8z4zzXcbPK8ZXfelap1KW7\nDdu2bPZl/hY7NI3yuvrFOIbRLnGwU9j5zeNsf0j1WsprsMfuwmQekGQBk7SfF9wqHddxsGQYLRlG\n1QXdbLceTBCQZKExDiP0NQtJsrIf9V1KtrnDyTu/lejYgGu3HgIg/IbbEK/8RsaLgtGihj/fg9O7\npRA174H6Nyt8RSb0M9TjnqRhce/tgIiyrd1yPrXcV3uO2H4roBBa+nfzmdbnaVppx40w/72cQ+Y9\nKK6pw5ywr8M3prrzPTTGUYfvuZTXHeRt6GPV+x/3LhaBDlfQHV29Up8BdqSUHxNCrAshNqWUO5dy\nYCti5bju3XmPPztbmk/sMMqmMEtX6O9+UQn59Xxugz2eMvS0DCWFekixHe47y3QobchaIIsoKFe7\nbWgLoy7HB+O0HsK9FgasBT1GkXuKto2hfk/qIbWzTDEi3378EbZf+WbCofIhZde+nF2PUMnknPvP\nD/jc+YAn90R5nVZ4tO/6/c/KXhCDxrZcz6WpH/u8esh2/bymcHAXyvlThuy7w6W7j993v9z9u4XK\nbOEfU/VdqY6vafz7gXRokl+r6BJu/AMov8Rx4CaUP+O9wF+5tEPrDl9cd9M5F+dw91O56cGRkJgs\n6pN0lWzcVY51JUrqnAkbU8eLZR43zUpSxt1J38kDZtOJmFniPnr1Va5tlcTPnYthjZrF7NufeBh4\n+7GPU/9XqUuiOCN52SQv9LXOTcOv8pLrblbHLs47r+vP9+AL5zd4bFdw/+m4KHfsYmo4rKQ6O0mv\nU8XSlgRKXxsuRt/91H7f3EyL57d5bNEppwqqc9t8/1wlwrvAvAZ7TlUSORdlCWsNfczgEAXLUUIX\njeWHUVFXnwSQUn7RQaf8vMMV192ExaJXZK3v4qaiMCemDV+dChe61m1RC5RarGwmZXNclXPjDFN1\nNOvS2wWm9P+7lq5ZrS0eWhULq/eg27X0jazoul/H5InyLVyqv34lu9ocQ23BzYWhPU6b3t+kZ0mT\noEKbr3eTLn/KQ+OAz59X540iyV942Yz7nkk5c/pY0Wd1npRCJ4qXhRAy4Rqj63f7GF9Guo/iZBX6\nHNfxdnmAJqwNFuwQFXOnK31QXXi0k2yuWmtIEZj2gL6Trslk1GjaWF1BO7oIlkRKmWryMSFESLeU\n2hcMzN2gl8SxA2twG0dR06JsLxZdie98ZI2uNn3nmlUg2yoN+gpCrVJ/pmk37LuH/poxpdBM0/q5\nvvHonesoUrZ3lTOinOJTqpL3s+dCHr5Q7fclG0tGEdwX7/Kl0wPnom4uTptDKsKlrVa7DR/vXBdy\n0KZCXV3O39hMO2sttfK+TTV9PO9b29y3i5lVznVs+LqSybqeiWZcPhzI1ty0rxV0ESx/JIT4aWAg\nhPgW4IdQlPovaIi8HkubicHe9WvYO7cozhonte9FsGtMuNheu05sU1ux+wfHztXgaYJ6jQrXjs2+\nji47aRs+LaWNTt402bl2zrOpYqc223MV5dK/xaEsMtx13ogNW6isBXDHdsKL1mFvseDkYI3Pre/x\nuSf7nDu7Vhzn4vqK49LcZ16DXdGwGKODWbipZnwXNJGD6j6gvlGwF3PfhmaVmj4HKabVNK/t45qo\n+k2hMhnHda19nzWKjjq6CJZ/hMq+/zzwP6HMTe+7lIN6rmH6NSCrkU3axHu6cJCPBdZ8KV21xW1U\nC3C5hUs5Vr+Q8b2c9uJQHG/UJVfnt/s49HV02RWa43WZ5+wFqak8s0uomNUBNSbjuBAusTF+lzZ3\nVaRoWuJAEvTMnBeVo/TZcyGfOhvy8NmQO6+bsxYoEssbNwds9U+RLqfEwWlgwCiCe48teOyxjYKU\ncfOYKSwyojgorl8zCWuYNWi0kHEt3quYYG34WLtt5uny3tWLwvnmWJsJ6lIhNu6L6zfX5sg1F2fT\nEDFZsp5XAN1N+myMDnesUl5x3gMFVcoHpJR/C/iXz82QnhvIZdU5GMVZ4fQuvnfUZHeVOtW/V+pY\ntNmxrYXVpZkcpKjWQVCjhHeZEvaxwNkvslke1td/pQyBw3Snq39CWRZ4Qilc9H321W7x4cs7gocv\nBDw2EZw7u8YfJwGvf8mMJOuRZlPSQFGhjBMVen5qsOTNJ3sMgl1ngIWJNAkq44Zq1Uy7MFVbTRQX\n9it8zOdqF7Zrun+rzIe2kturYFX/p3kN9vttlsU2q00eZmXNo4JGwSKlzIQQLxFCRDlB2dcUtDNP\nvzzmArSzE1UWsi6lTittW5PRNP/UIpasF6Fp8euyMK7q3G2Dq2SAraG56s10MeG5TFouYWJDL7Yz\nQuYE1VrzE5gQkyYBG5tpYYIy29V09xrZcl5JXkuynsqnyaOHdiZ97nkcZpkiLr1l6wnGacjp3TJk\nfSta8k3XwmfPB5zZs64pv39aW9GlsHUZ46IsdlwX6m0+utYovZbSxDUNOS2d2HZBraZF1jWPm7RQ\n+3t7/nSdr76CYGka1AJQ7GPN+RfGkr1hRBhL54bnCrqjiynsS8CfCCE+hFHv2MHl/4KClA5zS/6C\nmULFBVOguFAIKavol/4N2qNr2tBW+VGjyUnrc8Q7v3NUGoSqb6mpmFkUL70LhX0vXFFIrrKyGrtJ\nNeKqn2RwNmN3GOXXYwm8SJnIbOr7KlFmfaw7kz6febQHTEmyqj8mDiS3H1fRZMNojc+fD3lwXNWK\nk1xALxJRxMpVtBaPUPH5E1aJ1uocwejRAHzt+SpV7scX1FZN02y3aWz27/a714RLK1SumMJMPJr/\n6wGbl3Y4zx2WS+GsROeL1jG1FtdvNpzCxSFU7FKw0GKvdjhOuwqZJrjyQ8xzmyoNNgkX039jCx37\nPtifKz6UQdmeXmzjOGOHiI0R7I77lUUaYH2SsktEGFed+rWdcSZySo/6cxwEVd9UkgR84oENZrfu\n8toTsmAIuG2UcTy+UdG59E4zjBJGUcxDY8GTe4KdSb+mrfQNgTePSjOMjHtqcXNE5vkCGGx/k+3/\nM5+N6TuzTb8mmiIOfTDn/UEd33a5ZBOrCEr7vbXbqrX9AtBU2sqECCFuA34deB3wTinlu43f3g/8\nNeBpKeXtxvevQeUobgCPAX9LSjnJg7behSr8lQL/QEqp2e6d8AoWIcS/klJ+LzCWUr6n+yW/sODc\njXnCILtWZ3T24wgA0JqPLyoIqhqHHUhQLBqeHa25213VDOZbGLRQ6ScZc4KKcGlDWQo6I4ncQlZD\nL5R6sS38MdZiu0laCJfZNGQ+oYJ+kkGiTGO+nWhJqx4a3y0bs64feHzALJvy2hM9tgeLCgdX0OsT\n91JODjK2IsFnzwek2zPOnV1TGxTq46zfq7qjHdxapn2vbM0H1PPUiYuufvQxNsxn0u0ZZ4ciXGzN\n2J7vq+QA2TC1YFsTfiGgY5mQ88A7gG93NPEbwC9Tr1/2PuAnpJR/JIT4PuAfAD8DPAP8dSnlnwsh\nbkclol/XNMYmjeUOIcSLgO8TQnwAi5xWSulOT36Bwk6ksxMTV81AN3fWZoipC3aYrwuu7xvLAHvy\nUA6KYmEkqJgNXGP3RhDlAkZfw2Qc147RQlc7tTcGc+diG8VLNklLQUXoXGhDkzcsCdiwaOejYFAQ\nbkbBgDjwk07qfqcZfOJpwSxTG7mbh6cJen0e25lydqrMcHEguXN7wSiSPHhswZkzA2VqHQTsjqOa\nljWPAzYG1tg8Gx37XsnclxAiG02H3mtq8cWY8C3cUaT9lFUNuEv/7WW9m8Oane9IbvbswhZhrwGH\nDXl4eSytZUKklE8DTwshvq02Dik/LoS40dHurcDH88+/jxIgPyOlvNc45guo1JNYSumlfW4SLO8F\n/gB4GfBnVAWLzL//moBzUUzdZoCKFhC5c1yK8GVrYdewa4tHcebcTVbG01ID3HU9vjyUetvNWpC+\nlso1OJIpfeN27ZL1v908adCXm6LvU1M/tqDSbc0tP4nZvrrmhSJ77C2VtlLUngmJe8tCWzH9Q678\nlHvPKeGSZAviYMYkLfvZHiwYRQuGUZ9RFHFfMOX02TIT3w47Nv13bc+7SYN2CQQ3pUm3iL8uC+3m\npr4nKbs7JRW9FjQbm+74H1cYdKVvYz62hbm7wvbjOCveVd1eeXzZbtMacJmhU5mQfeALKAH1O8B3\nUiX21fibwGeahAo0CBYp5T8H/rkQ4lellH//AIO9rOHa2ZswVe7G46wF2+RL8h1nC5WuqnhbBnyX\nPBTz2oCK36S6260nl5m5IXaCp32s/lv/tjFMCw6mabgozjMXWhtNyYPm/dwczqtmNkJnrouNQbgk\n6q0jE1XbPoquYhSfV+awsBoIsZHnqNi8Zw+OBbMs5NXHy/tx/bGU6ze2iHrrjOIJw/5F1oIBD8UJ\nD58ttVm9Odkdl0EIvh1+xZHf0QfSJPi7Hm+O1Xd8MYcnKmCioBAa9wuBaQsXU6i0zX9fMq6Po838\nvMG8jGyMAq/JWAukpvyY/UIiO5e4AK4WQtxj/H1XXvbjUuL7UGv+zwAfgmrdDiHEK4GfB761raEu\ntPlf80Kl+NtcMBO9SHaf+D6133SGR3FWtVtHzULA5MQyExjtJEX9AvjJ9uqaixZOtt9EO8p9pgX7\nZbMFrrlbLBLv8jHFoeQqsxDhsQU7qKx0FyWLvnYvXY7HzFHcy4E7sqzYzeZ06oEIy+Jbub+kQvne\nsKnQeOjZHrNM8JrjGduDBScHEYNgSJgtCcLjnFibcv1GyjBSzMUPxRm7k4id3N+iE/K6bjD2m/He\n1lb1++pmwc68jxyCIYqXRPl7MxnHhZ9L++O0cHEJFft5uuZgF6HSdE0+uLQd3wbuOcAzUsrXe35b\nuUxIF0gpHyIXGkKIW4HCjCaEuB74D8DfllI+2tbWIRVzfuEhCGTjLq6N6mVV6Im6n0gbfV4TKaZG\n/bdyZ2+2YQqn4SgpzEcbg3me+9G+kNp92uSSGpVchoVgltOX6791KG7TtYPlB/OEirvybFwOWue1\nGaV8VVho+Xp0ua9JErA7nDNbJLz2RI9hf0oUTIh660wXY87NlkDAMMp4w7ZkFIXcGyqLwo7lzPct\nZvb1dcnId7dV1fhS4xmaGqfTlOkwk5UbsKzI1wEYjhIjcGLu2HR1pCsyLAemWdIcXz3puB7lZs9/\njcS6/ib+sMsAK5cJ6QIhxEkp5dNCiB7wv6LcIQghRsB/BP6RlPJPurR1ZAWLDTVB6zueUSyZZore\nvXp8PZPbPL9LTL7dVxxKJ134KlnjOm5/06o+2cYjpp2cbQEELqoVO2Tb7ccp+56Giwq9fxfKj6aX\n20X/b8O20UdxVtQ7gbxWO6rEr3aw1gqo5QIwjntEceBcgMpnnDDLBiTLHU4NzvOV3QgzN2YYZdx+\nfAlEPBQkfElvPBy5T7rvVfIxuiSZdm7LMffsnfzOTslobB87HCWdOeXaxuMSMF3hmv/2vL2kAkUe\njvPeVyZECPGD+e/vFUJcA9wDDIGlEOLHgFfk4cO/CfwllLntNPBPpJS/Bny3EOKH825+GxWuDPAj\nwM3APxZC/OP8u2/NAwScOLKCRfSkY3dW7ng2jy24KlIFgkbAIFgwTqqUL91zRLpTiZhj0f+3ne8S\nWOaL7oLt3NRoc6TaY7RzWGzUI8UCdihNHqu8vIV2YJADdllsbaHiW9hEoKLTdIlaH/QCZIfEagJD\nNZ4es2zKLIu5/Xi1rRs2Ujb6x8nkgjiYshbEwJQvnR54Ew59C505Z92JrSV9jpnL04QmTjANV9Km\nmYxYtLWif6crmjSYw2j7MtRSKnCVCZFSvtf4/CTKROY697s9378HlRtjf/9PgX+6yviOrGDpCdMB\n3Cv+j+KsECqjWFVRVJXlBCAZGySVbThoeO+q/Fa+xMmmyJny3O5RZ0X7Rn8uU4w/UqwuNFexY1f6\nTeqEjjoMWo/TJVAq2mUmlOmrMIX5mRVcwkSHDK8bXGUAXzoN02zKLIt41XEVgXbDRspWdIr13iZS\nCF587DSQsBbErAVTHni8Tj1i5y9pmGSVriCRiu8sVuy91Vo7tm8sM9qr+8nMe1jmJNU1LfBHJpbP\n/hAEQMf3whdJqPFcmb2uVJA8InBpH1GyJIkzZnnpXrMQlHmejyhR/21TWqwyaW27fVMymG/HbmoT\n5njaalOsgtpi1pa0ZtnDD7K4uMKTzcx1PT4fd5W6X8tCM1GCZSP/vKvqwGe9oiyvvbjrBXtdE2Ca\nWfQ5V1nR72LGLAt5+daSU4M5mVS8ZJmck8kFk/y+3TaSzLIpp8/G7Ezcz9YXYlzRXIx7E8aylnNU\nXE/BpZVh8uWpNno1E6PNrFCP/qv6fVxj9MGXK1anXXL/bTNQaNgajQsurfoKDoYjK1iWsurwBfUC\nFU7UYYrauaqFZ5zAOBHsTqKq+WzFiBEfLYyazC1RZ1aI5Ko291Xs0k11YA4SKeMrsHRQ6AUUqCRD\n2jA3EONkwYW0x1PTPpv9KYtoCMA02WEyDyo10EvG3+pYC+LLKKgIl0VuNk2igPNn17hnsmR8TUKS\nHeOmrR1etL5DJufcf35QCJa1QAmXtSDhK3HGubNrRbKu7xn7mAvse2OzDhTRXZaAcQkUF1ybAnOc\nvnN9JSFMFmX9fRffWXm8J4nZIxRdMGmCrgiXg+HIChZNm+9yitrCRTvvdTLffphencckecivI3DA\nhGsh34/a7goTbh7fwarnNb3Iq5q/usBOOm2C8oGQ17zvkS6npEuVbb+3WJBkcfG7DybNugvlQq8C\nKR55MubZNGGcxpzdyEiyPklWLrTDKGN7IFkLQtbCBY/FFzlz+liNCcLfTx0ugWJ+bvKPdMGqvj/v\nsRVtdjWh0ql9i8uuSVve3EwviXCR1ANCvlZxdAWLrBMrmjCFS5oEKwmVNpg8YTZWMZftF7b20hyl\nc7hFmtruXxf6jSZUQos9XGm673EiGKeSSdpjnAQMQiVYlBlMNAoVs3yCqbVo2Fxq2q+RJj2SxYxx\nCjdulO1tDxbcsJHkeTURa0HEWiCJw10ee2wDF3ycYbaAXbWq46XizPIJIa9prUOUX3FsSyBIW56O\neUyaBAVNkMkgcAXdcWQFC7QLh52CbqQ9f8TXfjUzvUza03+7HKhmToHu1zZ9NRFXrjq2LgJGw5Wc\n2QWrCORVFrZVyw+4+k+yHsmyV2RFJ8ued2epx2YWh9L/V7jJYlkzyWmtIEkCdidzntxOuHFTcs1A\nkV6qRM1+LlyW3LjRYxRJrop2+cqzpcYM9Sqeejz9JCvYkZvgoi+xN1iHmYDp6hOqIb72eKAuVPwC\non1DYmstvnYLyiGdJH1ImvVSCqaLS1dN83LCkRYsPtK9aiJe+0RoIq+rRcsYE9ikcvFRUWjYwqWL\nUPHtPn2LhC+p0UabAHLltLiihrq+sK4cCB2RtLMTVUgsvT4shxlwFJc170fRgihQVSFG0bOcDUIv\ns7GGrXXqoAFNItlE4LgzgQcnfcbXX+TGoQTKnfHZaViYyEYRvPaEZBTPi0x9HzQ5qE1iaaMp+bVt\nvuwndLjNnNpUK6i60aqGjWsUfpQG4eL6vgux64ntg2nQRxVHWrBo2HbnVc+xv29bMLWJZmNYLkAm\n91SyEI0RMm00Jo0mASM6rGsGf1u4ZtO54A9FbeKfso81+9SC2LxOmyG5SZPRNDprgVq4h1HGehgy\nCIZ5bsl54pwdwCdcdH0eZ1a/I+zaFUIMKB/K9ozZYsEsi2r9bQ8WbK/N2R70GUUhD8UJT0/81zaz\nXunUoV366Ina5sSqKEOO6+HG5lig2Rrg0pxME+cqmxT3e7N0bsIulUnwKODIChYhqi9Sm0BpmvjO\nEF6fD6FBqAwCmGZlOVyfgGnSgsy/td3ZXPDsRdoXNt10P9p408zsa5dQscsC+45TbdVbZ4UiAAAg\nAElEQVS5zwb5oZrEsmjDMuWYVS7NdtX9TxnFkq1oybCfMQi3CAkJRcggHDKMppivh+t52j6MLsml\nLo323Nk10mTOLEt47YmS7ub6jZSbhwGD8GpODiZl8bB4wcNnq4tk0/NyhZt3WTTtOd8e7FEdj0na\n2XROF+Gi29TjsPNQXBpOl7G2XVMcSuLwUKjuWUplZj0KOLKCRaPrLs13nG9immR99uJj7rw19GKp\nhQtQULzsd+dUMSM4WIibXmhfmKZPqNjJdbpd04xRFWz+BaBNqOiFV/1fvvQ7hjnJLBBl9x/FS+JQ\nLeBxIBnFGYHoK9r8MCIQVdp82xyqx16/pvpzdcGM6NP5F+eeUXk9a8GU20aSk4OMGzZSBuEpBsGQ\nQPR50fpTJJkisRxFkgfHC86dj4t73QZXwqJ5LT60tW0Ky9k0LDcyDgHr3Ch5hIupifjysHx+yDbo\neaGZsM2xmhu9K9gfjqxgEb0qc23XFxPqPoQm4dK4kzRe6GlWn8gmb1gTmnw8redaL3+XMGkXvEIi\nruc22DkLleMdC0h5bIadFa/5xnTBLy1cbNu8TS2i7q0jMm+REvT7DMJlQZuv2XorGp0WpA52g1Vp\naiJjXj3yZAwkQMBT0z5RT4UnpstphcTy9dsZoyjiEySFcGnCKqSialz1nXVbHggYbABplZhStenY\nwJiCpKPmYqNrKQsTmr/MGVCwEMShdL6TV9ANR1awKEqXdk4kF2wBs8qL4CKtNCdycZxHqLQtDvtJ\nXjxIrooLTeSc2nHd5F+pLtK9QhClSUAaZySWqc+8jsjIK/E5nV3PPBB9WOypz9F6hTLfbs+ZU2Qk\nGfqQJGX4qi+qL016PPJkzCxLgJgkSzk1eJqnpn1MEstTgznDfgYMuC9IOH029jrBYX+Lr+8aoJvj\nWx/bFHBQb+NwhEuTWcy10bDrDen3L1lQq72zX1zJYzkCEEIaO6neoTsuof7y+QSRnsimb8UF80Ux\nx1vZiXc0Cbh2kW1ljLsSU7Ye40nG8+0g61Qw/j5Usa/92bFllhRElEDuwFfzxPQb+e6veV1uavn2\ne6P7OH02Zpolquzx8eoxL92UbEXXkck5g/Bp1oJj3BckPAKceybwCtTKeDrOddNXZtPjtKF9Djab\nymz/XxdN2tWmS3O1efJcx5e44sRfFUdYsFg7acditGpope0k9S3Excvq2SW1wa5yZ495FQFpR+zY\nY16VAHMVCnyXU91/jp+lufzc/fw0CZhl6txA9FWhL5RwCcSwVugL6sEeNc3FXAgtv4X5W9fcm3Pn\nY+4lASJu2VIkljcPA7aiU4QXJxBGnByc5I7tp4mDAWthwmcMipTDgpmdD90jJ81zfHA9Px8HHbSb\n49oYLJr8THDwDP8mSCkqTAtfyziygsXEQcMKVzE9mVrLpaAT17BDqFeJ6DHhMks1nWcKPTOJz+Wf\nsMfZBleUUnoJFtJV4WIeNmGHR2sTmDaHmYShJSeZutfnzsfcvUiZZSGvOr4gXU7J5IIwjCCMyOQu\n4zRke7DgG69ZMookn3qiv68F0j7HVYNlP3BpGy6m6S7h8m2+IqfpayXmAXOzV2rJV7AargiWHKZZ\nzIZv194kUOxzXEyxNuxCX0U/xm7Kt3P3jdFvXvKPvUnraPrN1gBXCeeGZsqPttBXH7mhD+r6Vdiz\nZhk2e1A1WaqvR5P21iRU7M+mgHGdZy/Eu5OITyUZ41QwSXvcNDzDtceOkWUXeGSSoYlS42DJ67dT\n1gK4+yl/MmWTNuUr6qXhMu+2mV6bIrpsoaLMwe650nUjZj57X6XIpnPs757PTYsPQoi3oGqnBMD7\npJTvsn6/DVWo63XAO6WU7zZ+ez/w14CnpZS3G9//78BfB1LgUeDvSSnH+W8/BXw/6uG8Q0r50abx\nHVnBImVTslSdgddEU46KiTZqfacpy1FF0mVm6mqiavNZmN91hev8jWFaGXtbPoFdArYJXfMpul5D\nkpv8ZpmoOFPLQl/7y1uwubp8cO3MzfBon1P//iRgnCRcSAfcPJ/Vjrl5GBAFA4b9C6wFAz4RlhFj\n9jNzR2j5n0dVw+huLrU3Nk2mr1Wd5F1zVroIl6Y5dlh8eUt5OM57IUQA/ArwLcBp4NNCiA9JKR8w\nDjsPvAP4dkcTvwH8MvAB6/vfB34qr1D588BPAf9QCPEKVPnjVwIvAj4mhLhVSumV9EdWsLjQ5nOx\n+Yu6mNAq2dZWpJRe4IAiR8OMDLN3khqrhEb7nJQHfVnMhcrMMRkEkmm4sIRj9VgNzcfURNXuo3Px\nXUebidHl3+rysvt3ukGFpwtKahfXNbhMgmbRMCiz520TWZIEfCnpMU5mjNOyeFgcSG4abrLJBsx2\nednwWgbhE6wFx7jbETHm2lSYEXo+s5XPn2VqLa6EXN95tkApQ3v9WktbrpBvXrcJl7boxMsMdwKP\nSCm/BCCE+CDwVqAQLHnZ4KeFEN9mnyyl/LgQ4kbH9//J+PNu4Dvyz28FPiilTIAvCyEeycfwCd8A\nrwiWFthhsT6iPv0SubSUAzERW+YvMxLM1VdbxnybKW0VHjDdZpuAtRcD147dF3TQFg3k0nx812IK\nrzjOiiJewIEr+y0SQd/4vDFqzjhva2tG6X8xYZJYjtOEO7cX3LI1I+qtw94uMtkh2jjBehgyjDK+\n6VrBJ/OIMRdMoWKaXH3Jny5ciojKVdFlo+Qap+sd1cLcPO8wsGK48dVCiHuMv++SUt6Vf74O+Krx\n22ngjQcfYQXfB/xbo7+7rf6uazr5eREs+7HlCSHuQKlwA1St5x+VUkohRIxS6e4AzgFvk1I+1jYG\nKasP2KcdgEHrbdXFaNqZtaHqpM1qCXtF3obDPKHHY/Ml6TEWY90HTU2TgPFpFbuTyCiMViYt2i+r\neW2rLLr2S17mtpSs0y5Nx9RefGOvIC9NrGveK+p84d0YVNiFcwJIaDeFFddlbVJMuvv2c3vcfzpm\nnMAkPcYd209wcnCS6Nh1nJ89xmfPqXbjQPLGkxlrYcL9p+NaG3a+0arRUTuTfoUZeRXGbT0PXHlc\n9hjsoJf9mIVXHdfzjGeklK9/PjoWQrwTRWnxr/fbxvOlsezHlverwA8An0QJlrcAH0EJoWellDcL\nIb4L+HngbW0DWMpmYaLRJCzcNC3NwsW1E6pmlrcLFVetelcYbFNehW9sJpW+nR9jjt/Mpt8kVZU1\nPVE9PhqPVVEkIkZ1bc1c2GzzkXmcjcMK/1wbLAoTlrd8sGUWtR33XRZlO+Hx9NmY30tSxukx7tg+\nT9xbcvpi1Wl//cacYaQixu57pldz6tvmOZdw8eWxuOj2mxZmf+CAHYxRmix9gTAHQcWHcki0+M8h\nngBebPx9ff7dgSGE+Lsox/5fkVLqHdLK/T0vgmVVW54Q4jFgKKW8G0AI8QGUU+oj+Tk/m5//W8Av\nCyGEcVMaYddasR2NbTsXV1y8areeE9JtPPV69zbP1yq8TrVF3kM5bv9tL8rmb7bJZGcnIkoyNof1\n8XTd+TUtFrXFyOG30nXo9eJeC989wOLRZmbp6kTWmIzjWrE3u9JjW8itid1JxMcmME7h1ccNn1Qg\neeVVgkF4nOmiJLG8L/Zn6tuwc3Ogrn3axJ9tAtIleGomP2tj1SXqzNlXC7FqrOdJ/gwPWueoCcvD\ny2P5NHCLEOKlqAX+u4DvOWijeaTZTwLfJKXcM376EPBvhBC/iNrw3wJ8qqmty8HH0sWWN88/29/r\nc74KkGtAF4ATwDNNncqlqDkt0yQgTbNKnRQNV5a+LVSqRIzm59Js4/UlWLtE2+5tEzja59pJk+ZO\nUi1iq73wXTOdTQezpmrZj0BtstM35TeYju9+kkECu0m/cr37yb9QVSR7hR/Gdz9MVl17vLbT3nwe\nusKkWY/ezj3ylRvw3d97Hl9jnCiG5GGUccvWjI3+9cTLHlF0ikw+QZKlbEUhn40T7j+tTFl2X/b9\ntjWrLqWQ28bqo1rRv1UCTRo0PbtiaKWPtLoBArfG3xQufTk68PN17keAj6LCjd8vpfyCEOIH89/f\nK4S4BrgHGAJLIcSPAa+QUk6EEL8J/CWUH+c08E+klL+GihSLgd8XQgDcLaX8wbztf4cKDlgAP9wU\nEQaXULAIIT4GXOP46Z1Syt/NjzmwLW/FMb0deDvA4OptoO4/0bU6NOzdaG0BL2Ld67vWpqTDJuEC\nmpokK9hXbZJD3Z8rFNl+GbQj2F68Kn0b12+2Y9YhN4+zd52VRbRj/L8rL8c1vpK80j+XZ4SVQlvm\ntfjMHmthtXKjTJ4FIIiuKkgoTX6uJuFij91+BnFcPkvtj/EJFde9aF6kS637EeDZNOHrTwRsD/oM\nwgkEQ9JstyCx3B4s+KvXLbhmILn7qZQzp485F2Vzw9RVI+siVHzwJWhWWI7jarJp05w2n0vbeKpW\ngbLNS53IvF9IKT+McgmY373X+PwkymTlOve7Pd/f3NDfzwE/13V8l0ywSCn/atPvK9rynqB6k0wb\nnz7ntBAiBLZQTnzXmO4C7gI4fstNhR0ijrOKFgKrZeM3CRfzdxNtIZxaC7EjuYoF3iFQXO3rdrsk\nubnG5fSPmItOQ7vtSYr1IIkmIkUXXHU4fIubeZ1FmHcuVAIRwiIFULT5gVRcYWG1L9d11sbkqaOe\nXzVRnDEZxzXzlwtdFmj79zJbPybJZpwa7NRILG/YSDk1mDOKjnF3vMuDj25U22zR8ppoeQ6SUOgr\nA26Pp6sWumnUg6lv/KzgBccG4TAhgdnlJ6MuCZ6vqLCVbHlSykwIMRFCvAnlvP/bwL8wzvk7qJjq\n7wD+sKt/xeUEd/kwzB26bdoyz3d93i9cXEalUOnWvktg+o6r9l2tgQKQ6IVbsbjXdu8HTVpsa6cr\n7BBZ18KtF5O1XHgEIiQkRCa7AISEiu3YatfZn7WIukxiLgxHSWPb1YCQBh+CpU1r6Gz9WQZv2O7l\n2pfCzcOAE9HNSCFYDx9jGIWM4l0+8UBVuOhx6P+bhH6XsOT62FdjkbDH1JRkG8dlkTFzDrcxLV8q\noXLU8Hz5WPZjy/shynDjj+T/AH4N+Fe5o/88ypG1Mg6DtuGwMnShbTHZ32Ld5Rq1QAEq1Rp10trG\nkEK4mG03oUs2d3UMqy1Odvi1uSC3agTBkqC3BlkKexfVl1lKFAyIg5Q1BxGl3Uc5bkPQWlnkcbhg\nxx57Q1KeKdzr1+yO4nIdd8/jATDjDdsqmfLlozVGYoT86r2KxPLaV/K6q58gDuasBTvc8/gaLmYF\nPSZfKL4txPdLGdQ0V9qSbM1xRnHG5rEFgwBGMcwWMAsk8fGEnYvhSsEWhxXOvJRXNJZLiv3Y8qSU\n9wC3O76fAd95qAO00IX6BbrvtA42Frep4HK0A7eha1LmKu3VzXEt1RHNKJ2o1FKyZbeESV/7ZhkE\n/XfRjakprxit1mVBtHM8/vThHrDHG7YX6roiRWBJECGFIJML4kDwhu0FMOOex9ca221iIVg1I94c\nZ5fratt0mGwWGmYibFcGcRMvxHfr+cblEBX2vMCMCtPQ5p04rtb/8MEWLm0ZyG3svM27PIfvJg2c\nn8Ht+2hyqptmtijWC0RGU9Kjvqa2F8+X8exzkLY5/5s4rZIkqCTRmffVjALcJC24wtJsilw7BbEy\nBckwJlssSLKQmZUp7UrQK8dlL6zVHbzLbOWqTWPnNzVFxXW5N0kS8J8/v8n41l0macadJx/n+LUv\nB+Ds9It8ZVeZh+JgmYcr14XLzqRqGjTbtvtv+t28Pt/vvn7s+26biHVbO5M+cdwjTYKCww7opKns\nt4LqFVRxdAWLhJ28mp8ZVrk2WJCmWaUaYGM0SUsVyibCSn947bK2qKhxVoWY3fZkrDKrTSp2E6aA\ncZFtul8qMwTUnV/TJFxcxcO6sgOYO1R7rLoSo2uH7Lq3dkLfDhHjZMokDdhbzEiXU6I1JVjS5ZS9\nxYIk8y+mPpLC6piDVqFgh7pWw37bNzd2kq+LhUD3c+/DG8yyXZKsxx3bjzNd9JjMS59DHEhu2ZoB\nazRpLi50IWs154sLNkuC2Y7JpGBuGHxalN5gNGk5+61WuV9cMYUdAWSZ2tGYeQVRMmd3GBHGIcNR\nUln4XE7acvEvFz9zd+7jITJ/g+pC6NNi2kwJk3GMmKhxqDwOd/yCrb1AuVCbgnWTtHKeLVT0NTQJ\nF/ueNWkuPuFkX/fOTkSaBOyO3ddo8zyZ/dh5GdNMJRWO05ATa3vE8aY6drlXy2Ox0cRr1kWLq+Ui\npXVt0HdscY5xvKZWacODj24wTi4yTo8VxcNAlTo+sXYVUW+d9fCp/GglXHYmfXZ3osbQXn0N9tj0\nvW7KN4GqFuN8hxy0PhptVgIz56wJdt6Y7utypM2/3HFkBQtQESrrO2lRL30eB0yInQmFXbLxTbTl\ntpgLoU/A+KB3u1qorO+kzPNciTlBkYWu+wEqL5kpKOzMdZ1zUY7bMhvqKDmPcKkL4noCp76GrtBC\nZTYNrWRIWTwr1/02s6qhJHncuRgyG82ZpEFuDjsBQDZ/imTZrIXWNI2k3ETY98W8B+r/MqTdfsZm\n8l+d8scxFsdzKftz39szp4/xscmcJ69PuG1Lcv1GynoYEvXWCUSoqPejGTduBIxumeW5Lt4h1DZQ\n5jVoxmY7aRXcz97UpF1s4vo7WxBp+EhgtRVCH+8TFhWC2UM2iV0JNz4CCIKl0kryBWePiHmUsTeM\nCGNZhIPadCqroCSaXE3VtmllVBseLrMoYzhKmBCra4hV4l1IudhG1kvo4jXT96Ipwa3CSeZYtPzm\nsDJMuwltO32b9BFUMqTZTxN0YS0zMXEtKCPDhBWlPsvKhcDWMG0BacLnxPY9w0rSppHbUt7rbr4m\ne77ZC7KdxHr/6ZgzewlfN4qYpBm3Hz9NIPr8+R6c3lVm1VEEb3nxkvvWd7n34Wo4so+926yQGcay\noK8xr62tHII+xmdO89UT8s5BB8+Zq7+2ROIr6IYjK1iEgM3NlCRSi8CEmL0kqNCdd02Ig/bELvvl\nszmJXH1VE+3coZ466U8LF1OgqPPKa/Hl6ei2dogqi6YPlUzolhfQ6QNpsG37TGqmttPWvm8caRJU\nqjZqp65d2941JheahEsTfGacNiaDLuPqupnRz+Dc+Zg/Pg/j6xMm6QZxsKzxWd20leS5LjuFaawc\nm7+fQsAYzA82mnKOmkOPq4ERrg1Y2zx2BTrYQuW58r98reHICpYgkI07do1VckC8znjrZfcxwTZl\n4/teHrMPM+nO/s0UKr7F2PSrrKqd+QRi+V2dGgfaX1xTuzKFS5twczqwDeESxRmDANbywwIRqlwW\nC9PMra24xu/yJ5hjt+FztNvHuJgSmuDSXGyt1YbWXt58slfck2GU8ZoTC7aiU9y4OWF7MGUUUdDA\ndNXEbaHiMhGa5kE1ZvccNxMfbXTVis3/XX1cKijn/cErSL4QcGQFixCyNjn3K1B8SWPuY9WENos5\n+eDKvtdjcpFa+hZbl6ayShlhu8/iuwO+hPbi3LW4kqmpedv2EBK6fo971WcciLxMsDaDWeY/fS9T\na9FvImc0718Xxl4bPvr/Nq3aJm1sumdnzgz4L4sZbzq1ZBTB7cenHI9vJLw4IT52khs3nybJZoyi\niLvjXT774FbjvGl6v/SYfZRGUbx0anMFFU8lAbWqvdTH4Q6uccEVmXZFa1kdR1aw2IW+XDAX42pY\nZzXEU8PnFLQXZJPdloG//6ZwVZ/20iZQNKqlg9tfnFWy/bvn5ngYbB0OWp/w3u9L37Sou2rez6ah\ndzet23L5tMzj2/ivDoo2f5wL2qylI6KSJODjyYw7r5vzld2Ijf6EjY0TpMsp42SHs9MBcbDkTSd7\nwAUefHSjCP32jmuf12kHL6gx5s89rguTVX2Zus0rpq/Dx5EVLEsJu5O+N4HLNhu5COxMNFFa2Lsv\nE7vjPhsj9xh9C3MT/5V9DRvDtDYe+0U0F75OyZSOsEwXumZb+8KDfTA1BrMdH3y+EF2xsCkCrDIm\nj0+oHFezlrQKbA3EpZmu4gNsG5P5HM+dXeOPk4BZBkm2xy1b5xknAY9Oyl2QFi5rwS4PPD7g3DPV\nHZLt29NwJVS68n5cbYGKDNSF5cw54JrDNryMAS01Ww4LUuINX/9aw9EVLJloFCo6Y3cQ5AvQMPUS\n2LmEUD05sVd7qftJxjzWORl+B6dtLvD5SPT1aEbXKM4Y5bkeY7KacGkyzfjyXcy6Ina0kW/H3LTw\nNy2+Ls3F5ydqy/Cuta39XfkhmVxAB/N3bYPRIjx8fqDDINus/N1istXmsKZgB7PNnUmfP324xyyb\nMkktbbFIpIQ4GLAWTrk/XnLmiWO19nxafBMtjGtc5n3WwuUgpkUffKbkyw05ke97UJTV75NSvsv6\n/Tbg14HXoUqVvHuFc38ceDewLaV8RgjRB96XtxUCH5BS/m9N4zu6gmVZX0VcQmUt//cskjQuKSTM\nfBBNeFe0Ey6cpqYoqvsytHAxc0j0sfbuq8Y4vBB1O7ZFwKcdsaNYVoSLGRHjCxu1d5p2sapWHq5D\neOFN4WKzLsfhomBd1kSEPv4xk6lAR+SpZyRJ9uFQbfLZuPJbzGPMxXYVs5XLP2DPj6Yxtn1vI0kC\nPvHABrNbd7ltJNmKlgyjJbeNMrYiVWcvDk4r4RJIHhqmfPHBq9RYLEd7K5VKy1yysWOZ3+xNU1Ow\nQNMYwB2efRhYcjh5LEKIAPgV4FtQRQ8/LYT4kJTyAeOw88A7UJV2O58rhHgx8K3AV4zTvhOIpZSv\nEkKsAw8IIX5TSvmYb4xHVrAAnbKJbdjZ54UD2iIddJ6bnxPGEhKViFn8TTV6prZweXMZVl+0tQnQ\nl9jmSkSzF2pTCKapP3LJzih3mQtXWVAqfRj8ZU38YRpmeDk4wo2DfLFa4BQ2BTPBCotg5XqNxeow\nmbBdaLoXrbVWrHnxyfu3ePJlE157Nbzq+JJM1gk6b9yAawZLRvF5xsnBIp+6CCEfzGfkQyU3zZEr\n05TkepngTuARKeWXAIQQH0SVaC8Ei5TyaeBpIcS3rXjuL6FKmvyucY4EjuX1rgZASoXjvI4jK1h6\nPclsGlYiZoajpLDfpnFGYmgHOxfDmk8mTQPOPRM0qvygFhGdNQ5KgJi0K20Fn0paCkUQmcZlFT1z\nUd3didjYTNkcwg7KwVmYwnINo3YNhlCxa8bbqOeXuG3nrqQ9F8xr8P0OFESNVZqZ+vV3QRyXNv+r\nolKjM2EyG5uap885r8fog7l4HYa5xkT1WZamIVO7hHoIdBMvl2qrOke++OBVpC+bME4Fk7TH7cef\nYLro8cCzZdLkWgBvOil56AI8NqkLF5f51U/o2f2Zmmgrv+3M9o+qm52u+TSXGFcLIe4x/r4rL1QI\nRjn2HKeBN3Zs13uuEOKtwBNSys/m5Uw0fgslfM4A68D/IqU839TJ0RUsgcqu18SNAOefWiNNgmJx\nVigXsCbnX5oGmAU3bNOIvXi6MpGbOJJsYkXzJTX5s9RCskcc99gYKt8KqMJPLvMXlJpKl0g1b1hr\ny8LadoyzTUvT2dmJiJKMzWE18KCiQXYgxgTYGM5ZC0vBki3nyOrL1Gi2cO10XcfElsZi/m8eZ+Og\n5kM7zBjK5D97E1R3qLv7fvxLQ3YnU2aLKRfSYzWhfH1elXJ7EDOKQh4ci0Iwu4SK+XkV/i+fac0X\nPOOCS7D6nsNhaS1LWQaMdMAzUsrXH0rHHZCbuH4aZQazcScqpvtFwFXAfxVCfExrPS4cXcEiqhNp\nkQi2npmyl0TMpuvoxTnKzVU2bbiLK8omRmzaPZmUMTbNiisM1+xLL5p6QdVcYVs7U/Y2I55hvWw/\nrvtUXBCTpeLfwjCJeV4ovevv4kMxX2CXgOlif1fjL80TOxM3UaH+3Kwlqfu8eWyRV5BcFnks2sST\nyQVJ1j6mJuFSS0pNlqRJVvENmNfUdN3l2BuCEay52JRTo9tyBSK0PYtzzwz45E7Es7de4OtPSEb5\n5bziqikv2byaqDdgFJ9nGE25ZhBz3zl4ck94Q641TAHjYxTwJb2ax6wKuz+naeyQtcxDgK+E+0HO\nvQl4KaC1leuBzwgh7gS+B/g9KeUcZV77E+D1wBXBYkMISRxnXH1yj2eeXmd9knJsokwte0TsDiIg\nbbVV64V9kQjWJynzOCh8J7uJEkamyQv8O0c7QcyVL2ELGpOA0hz/BKWJafORK4dCt7FIBH2gn2bF\n2PWCt0qior2o+xhru+z2bdi+CvN/H1ykmGY7LjOYjTgsE2ld/riKmSupsijYGeVp0iuO9+VedBW0\nLpjn1bP/63POZ8rs0s/9nz9O8nXP8qZTS27YyDix1iPqDQizJYNgyKnBhEka8MaTPf6/Cz0eYlaJ\nqmwTMF3QmM2/whxzCReNwxQqUu6v0JgDnwZuEUK8FCUUvgu1+O/7XCnlF4CT+iAhxGPA6/OosK8A\nfxlVqfcY8CbgnzV1cmQFi5SieMGGo4Tziao9sTeM2BjN2dhMG+PvNaJICac0DZjEccHm6kMUZ2xu\npp2c8V2y/k0CSoC9zQg57Cl/kaMf1wt0/FTGZBxzIR5UCDj91+DOZL4Ujs79OPabtBaf4z3o9Ys6\n94EIiYOMUQSDQF1XW5Z/mgYVobBDlNf0KWvfmNpKY9jvPoMZ2kKJXX5A05SoNZ02P4XZ191P9Zhl\niv4lEE8xCIfspuf54gX1Pg2jJa8+LlkL4MEwKQIu7HLCJlzvmovp2P69KTKvS/Si8zovQ+e9lHIh\nhPgR4KOokOH352XdfzD//b1CiGuAe4AhsBRC/BjwCinlxHVuS5e/Avy6EOILqKD8X5dSfq7phCMr\nWExEUcbxUzPOs8bxU7OKbbxpYbbbKATMuC5gtD9FL/Zdd6ZNwsUkoEwHARfiQU6iOa/04ztXjxuq\nXGn2cU3kj11oMmz4wnF9fZjjbGzXs4A03UMXAWXQ6zPsp6wFql765nCeVyWst6NNS3MAACAASURB\nVF1LWqwEVQTs7rgX/C67YttHY4fYNrVpwxYqXSKrinbtoA1rXPc90wMikmzB9toznJ1VzcbbgwXD\nKGMURTy2C49NTC2uNNX60MVEp4+rfWdohmakl2lOfiFCSvlh4MPWd+81Pj+JMmd1OtdxzI3G511W\nLP9+5AWL+bKZQsVlLnAtorbJI03KWh2mgDGFis6Gr75Y/rDcJpimqI0RhaZlJxLaL7GtjeldeatD\n2kMYuJ+XtItQ6aIpmG11CQVOkwCMvKNBuCQQYUGbr7nC4mDJWtBjY5h6Fz6XxmZf12QcV7TAKMrY\nHM7zY933zp6DaaKi4lzElV0y8FuLXCVlflIYS6/m4tN87numxywLefVxURHWt2zN2OgfJ5MLhv2L\nbEUxo6jHg2NZ5GE1MRq4hIo5N7y5OsY5vjDxLvP1MJMjpRT7NnO+0HDkBYuGK1/DlXxYYdi1EvZA\nhfhGccbupE8UZZVcGX18JaMf98TtsjiaJI6V2HzXuKxkSh+9eJP5r4kdeRUiTh/0AtBFqPjON9F0\nvk6OrMBgNx6ES+JAmXDiULIxnFshuNX7Z1O7mAt1P1FlGYajxFiY/dpP08YgSpbsTKrRguY5q8Il\nqLRwMVELRnCM/6Fne8wywWuOZwyjJTdsJGxFp1jvbbJgwbXHAC4yjPqMopCHxvBsCj4SyaaQ6YLt\nwREQYgsV/X9RDK5DpFcbW/cVNOOKYMlx2Cpx4YdIM2Mn2yteyGlGJRTTB5dgKNR6TyRNZdELF8b3\nBseXh8q90rdtx3bmGwReIaX7cbXrCnFty+fxjiu1Mq0dTvZVoH0tXdFELjkjZE7AxmDe4PdZLVnS\nxSqwX/gSX33PwjcH9G9pMme2gNee6CnzVzwl6g1Il1PSbEqyVN/fvLVkLYi475zgWSTQ1TTsfrZt\nSY9dLQCrsJqviqVsD4P+WsGRFSzLfEPm4rWKrQW8CeVEyWqZ91G8LMqh6rbtfFWX+cvODNefXTT3\nvvBkDSO1xmFSaBcuNvWIWjxKh7RtFnSd6/vbDJn2JR36FmNbezTbqFHmG0SHRd/WswpEv6bAdEGT\nz02PY0bJjGwz9tpoor9vgm026wLz2de5x+r+LZe/rZafMoEn44z7gFkWA1NetP4Ee4sF49QouxxI\nXnHVFBjw0AXBmT1JasSMNPn1bLiONSMWfSSnLv62K9rJ4eDIChaoZipDdbKVi6dbE3BBR7yYsHfn\n+uWrL7puoTLIT51mfu3FOZbWhagsF+wsquTxMWnYeT1t5/r6h6qAseEKYTZzftrgWgwPEnVla2ht\n2NhMGzWotrbaNjcu023b3GiCy1FvwsVObH6fJAG7k4gnC5aEGEgwl5q4t+TaY5qw8iJxEAMBySKr\ntOkak8+f1CRYu+RcNZWYuILVcaQFC7iJEtuytjW6UX7XM5wLZ69HuNhCRX/WWbum9uIclxH50tSP\nKVzs63HZ0W3KEFfOii1U2l5U3w7btQC4Xn7b1+SDS2sp2nVEhsWBLHwsPnQ1n7oWw8PkCvNdV5P2\n4qvQ2DXTvClLXmm1AU8WvpOYm7dS4kAyihacWLuKzeA4AMHGeQbhs8CAtaDHQ89CFJfC29Q4nCYw\nx3wt53XD9VtM3j7f0WGaruRSHOpzv5xxpAWLd6HxqMRNuScrmSDyREeV53Bw9bsSRmokD9o0MIfR\nT2kSK192VxRdl52fuQDYMHeZvii9FwrcZp12M6SN1LFRcEfp1QMJqu34+3WZh/YD3eeTZMwymGUR\nt2wtGEXuHJlhtOQN20vWgpAHw4Rz52PncfsdT9O77it1rM574c23ywFHVrD0hHvS+DLhNfw7QFcM\nfX1X10bfEcVZwZQ8zaqmMPBn7vqEi4bmYtLmPV8OQZMWVr0faUVLWUWg2CY9sx9XIICv/VV3k5UF\n9ZhjgVvk5hvDymfyhbWZOW20OYJdwqVrnZImQb7KJsfXX1cntk9IlYXiMsaJ4N5zME5DJmmPm4YX\nODmYEvT6nLl4kbOzUoi86viCURRyX5Bw+qxbuLj6UfO2e15Yk2Z+BQfHkRUsrpr3Gm2+AY02YVL7\nzVP3xGzbJVw07BovvsXG7Mv8bAsXe7yuwAWXRmG+nKsIFHAHJLgF/OH4RVw73DTpkSwEs8ztrV81\nKqyp36aNiu3jMgVVFzObzy/XlB/SRvToCrNtmvNtZkhzPn95B8ZJwIV0wM1bKZCRZOW93l6bc2JN\nRY2tBTEPxQkPnw1r4/ahqeqpC12ESlspjFUg5dEpfXyEBYv637bLmuiymPmc+113nvZv1XF015jA\nWgA8QqwqXNzj9Wk21b6qNmnXC2hrV10DEuxrabpe7Ux3MRybJrQa71oSoEovKQSiD4u9vOHqa+EK\nyiiuyaG1uDStpvH7zGJa0Lv8Q657X/rkmpMPfddRtu3WhlybDFfIu71BKY+FZJHxbArjNOLWrazw\nb92wkXBycJKoN2AQThhFzzKM1lQBsWczb/VW3xxu8ju5PtfuhzGfB0dDFhwqjqxggboTfD+7Yntx\n88FFU19va1l5ee3Pvv6d3xtOT7s/k6LcHnPTYqb7sxcYl8DQ3+v76xI8ZkCC73rs87qQ+Lkc0LWw\n7CRgli32VT2yC1yayn4cwa7Fsqu50RWe7mq3KbTXtRB3DVt3R1aqekL3LZTv5eVbS67fmLPZX6uQ\nWK6HOwyjjDdsy8LvsnMx9N5Dk+8sTbOa/3K/GvBhCpXlUlyOTMmXBEdWsJhMo/uN/DDNSV1UXDOL\n2C5FvEp/beY4m1SwqS8XPYhvx+kai/pMbu5wH2ea9qAuTKo1OwLr+pzdG8eXRc7MzH3fC+yKlEsy\noSjzQ7Ur1vT5SSYsH0s3Z7vdR9s9bKOUd/3m1mxL7U+37zN5+trWm4qmKDr7mnzalv/cHtDnc8k8\nF+494t6UoHeeQTBkNz3Ln+fKYxwsedXxBWtByL0s2KH+3rloX6qlGZYrv+NNc/oK2nGEBUvdvLEf\nZ3AngeKgzND/uxb8tnDnJsGSJr2aUNEFvFTVyrAxw92Vy+M8ruar6RIZV9VybMGuq1vGcfcF3Kb9\naKtDAvp5qAzxJOsxXfRywaKqIWZylyQThTbTNXdlP7tRX/E1aM4hcT+bcjPQRaC4YOdcuZ5Flcyy\n+R1oCg7YnfS5PwmYLRJm2YBXLqeMoh2emvZRJLoK22tz4mAJRNy9KOeYS6jY5mAdfan7NMfdhi7B\nAFfgxpEVLE30Cl0jddrQVHypn6jaJ6Zw6ZILE8Vmhn9Vqyh2cIZQaeqv3k/Zt20S85k6mv72QWsw\neux64dbsvV0XaPueanSpe26PNZOLQmMhg+lC/T5rMZU1kSV2QVO0oLOwVVT3ZTQl8+6Xddr8rpFz\nraV9fV/sJEdz7I88GTPLEmZZzC1bQS5EFG7YSNnoHyfNpkAKRNyty4evyHrcdV6ZTAOHiSsklEcA\nbclKXcKDwZ201XSe1iCA4v9Smyj9CYUGkCpWW9tZrmy/JQ2G7cDW6BuUMr7+CnI+o0/75Xfdm6br\nNe9LkwaWJgE7k763nG5XaCGqr8nHaGtjlkGy7FVKE2dyQbLskWTVnB0fDjJ2X5BFk0bZBRXtpkPS\nY1PEossE2wZz0Z9NQy9bsp5fp8/GTLOEWRZy61bGMMo4NZiz0T/ORniCtDflho3TTPJx3hsmnHtm\nrXVM+1nIXwiLvxDiLcB7UDVV3ielfJf1u8h//2+BPeDvSik/k//2o8APoNTCfyml/Gf59/8WeHne\nxAgYSylfm//2auD/Iq/vArxBSjnzje/IChaoL5BN1A/uyKhqprJZhtd1LJSkhCZsJlnzeHd7GTry\nR42tbmteGyyK2vX2ghdSFSj2dbaGYBrX2RpC3bD78wnDJthj1tfmKwnddTEMeu4Q49k+bOwuU2PX\n8sM2mjYuvt9cc9gVMWcfX+t7ReFmMg2vGmwCcO58zKcuZoxTwW1bAXEg2exPSXtT0uUe4yRgkgaM\nIvjmayVXRRd44PFB40bHZZ613wfXe2Ae01a8ryvkspuptg1CiABVfOtbgNPAp4UQH5JSPmAc9t8A\nt+T/3gj8KvBGIcTtKKFyJ0oF/D0hxP8rpXxESvk2o4//A7iQfw6B/xv4XinlZ4UQJ4B50xifV8Ei\nhPhx4N3AtpTymfy7nwK+H7V6vkNK+dH8+zuA30Atlx8GflRKKYUQMfAB4A7gHPA2KeVj+xlPk5Zi\nR8QUUTP5y6Tra5jwMazapijfQmjv+rXNO4pVZI2923fBjtU/7N2Yq3qieW9MIeRyGledrM1CwL43\nTYu1/Xy6CC9dj2VV+Agc2xh3wb9hMc93CQG72JY6z51T0pSLZNfmcV1XE5dbpR/P72ZJbrNdHx4+\nG3Jmb8GT05hbtzKuP3aGyTzg9O6gctwbT2aM4j0+92S/8M/ZYzfJSSubLvtajbHZ0ZSujd/zjDuB\nR6SUXwIQQnwQeCtgCpa3Ah+QUkrgbiHESAhxLfB1wCellHv5uX8E/A3gF/SJubbzP6DKEQN8K/A5\nKeVnAaSU59oG+LwJFiHEi1ED/orx3StQNZhfCbwI+JgQ4lYpZYaSuD8AfBIlWN4CfAQlhJ6VUt4s\nhPgu4OeBt9EBTvp2h0mnbfHz1ddwttcQ2mn2abYNVZ4xLWB0NBTgrFnhKq9sVy70+pk61qxoYve1\n6Wrs5L8mAe5qz+y36D/yO3Bdi6/dp48LLO7VHdSNARWOmuttWFWouP7uWpbA/t3OoTHZgM1+ChNs\nsiRNspqW6npePrNeE12M7SfaAT51EZ7cE7z2RLW9YZRx+3FFx789SLlmAPedW/Cl06XgMQUwVAWM\nOUbXXNHzSt+jw9AyDhnXAV81/j6N0krajrkOuB/4uVzrmKJMZfdY534j8JSU8ov537cCUgjxUWAb\n+KCU8hdowPN5x34J+Engd43v3ooadAJ8WQjxCHCnEOIxYCilvBtACPEB4NtRguWtwM/m5/8W8MtC\nCJFL6n3D3m2CW+i0cQ05z3MJlxU5mnZ2Iu+kj+KsqFJY2eUn9WRBLTib8gN8RY9s2nqz7/qYqrtp\nn2PaBR/Bpb6mNCkFjNmOj4fN7jvuqQqSutCXriBpwyVcXIu4SwjafTf5VPZTvMueU8V9NuZI1HAf\nq21VGRXiUJJoQWQVGmsSjvb1aHQjeFXtPvJkwLNpwptPKkLQ7cGCV14lOBHdDFnK4HjCqcHTbEUD\nrlkvtZe2DZVLoFxqynwpxSpmtauFEOaCf5eU8q6Dj0E+KIT4eeA/AReB+6hnYn838JvG3yHwF4A3\noPw1fyCE+DMp5R/4+nleBIsQ4q3AE7m9zvzpOuBu428tZef5Z/t7fc5XAaSUCyHEBeAE8Iyj37cD\nbwcYXL1dG1dXR73ezXd58Su7shbbtOsckz7F9qXsjh1+gUG1DTvZsmmXau5Au+y4zWixwyIvfC6w\nnyJgdkBDFzgTDzuUf/aduyqiqOpfWPW6zQjEOKzWS2k6xx6Dia6s4eY8P/PEMZKve5Y3nVpy/caS\noLdWbTNnon751hKY8zlU6Pr/3965x0hylAf8903PTs+cb/eWs8/GYDs+sHlDgDi2pUBiggHjoEAi\nXooSHokSESAPJRFx8D/8AwITgRNAMQ6g4AAJBIKwwMQESIIUAYYQ8/QBxrzOXOyzz+vd88327Mx+\n+aO6Zqprqnt69sa7t7v1k1Y704/qqunu+qq+V7nXrJ2JOmCT2Ujg9Ay4R1UvKtl3J3Cu8/2cfFut\nY1T1vcB7AUTkTTh9a25P+U2MacFyGPiCY664CXgqsPmCRUQ+Czw0sOtq4PUYNdimkkv86wEe8sgL\nCjOaqnUagKD+1rd7uFH4fhm2Ay+o1Sa86KGFskxnbkbowJhwWe2aRaWyLJko9EJtqtv5uELKLStk\nrA8tChaiLD16KFUIFF1qQ4bqUBk+Q68wx9140DdeYaveTxHKGO1fLxTxb+vqdnB+B1bIsjA2w508\nki4LWAxF0Je5iYe9AIvqIz+7dbGeAbVYiUo1lGrHv5+uuurI4dP4Eg+wOmgBqzx68W4SaXJ45X4O\nP2BGU65wOZQOOHa0KIBsffzvfuyWW4dTlK8AF4rIQYyweCnwW94xNwKvze0vlwD3q+oRABE5U1Xv\nFpHzMELkUue8y4FDquoO5G8GXiciezAG/1/BaJxKedAEi6peHtouIk8EDgJ2tnIO8DURuZhyKXtn\n/tnfjnPO4Vza7sMY8WszSWcM1R5froDxsWulbyRNOlSrKyxWuMxlA9SrgxvzEgqaK5RZU9C5nZWb\nKypEWVLFKqN6VUc9+q3H9f3Fuk4y7hc764K78fraMDgyJFwm1R/CthB/jZGqgNKNCBfLpAGDO+io\ninfplQnBKWxj9viCanlsTZ1iEGeZavbY0Ta3ZDYrQo+FVpej3WIOsQOdPrZbO8TqULjUcTyw9ZwU\nqLpRZF0L7v8bJdfMvBbT4SfA+1T12yLyqnz/dRg79JXA7Rj11SudIj7meHa9RlWXnH0vpagGQ1Xv\nE5G3YQSaAjep6qeq6rjpqjBV/SZwpv2e208uUtV7RORG4EN5Ix6GcZW7RVUHIrIsIpdijPcvA96R\nF3Ej8HLgi8ALgc/Xta9k3ojR10Wbz8UXcJKAcTsUa3vxX8xJhlX3uj6+lxdQiLA/keUBaa3qzK0h\nV+uq/e717f9Rx1MtNCddC8pf/Enb66ScgerOwaR06TPQtfx/Hzfye5p6Fa7pdKCh2Z05ZrQ/mLJn\nCgEzzYBhmlxxZamL/NgU344xidB7McnexzLcAnmescYwiWWaKOftzZifa3NWp0uatGkncFuzy5Ej\nnWB5IR4soTJrVPUmjPBwt13nfFbgNSXnPr2i3FeUbP8AxuW4FqeUu0MudT+CcZvrY6SpvbOvZuRu\n/On8D4yu8B9zQ/8xjMStjZ/+BOcZrKvndl+GXm/A/HyvQjCUpxmvswqjm5Sxlw5I0wYLixnLS6O1\nK6bRCZe1sU5Mjv1cZ9Q9yxd0GpfpugJmoGv01rvDz9mgXZitTOO2XJbU0bd3+N6GbnqcwvbeaFZo\nO/xxVdr0kfZ12Kh7emjkH1qpcSRYG4X3qOwZtsLlq1nC0kMzHrOonNkxAZXzc21aSYc92mehNWCx\nlfCU05VO0uWOw9WBvW4wpx+HNCt7oehsZizbgS0XLKp6vvf9jcAbA8d9FXhCYPsq8KLpr+t5MuUv\nqu+iOwm3DCCog4fyUZ8l5Ajg599yU6FYrO1mYTHjWNZm7+LasF69LCHzRsT+zMuU6193fLEtf7tb\nx4KefApvr41SNy7HdcH2swr4JDJHInPDBJSl164xKp9k4J/GmDwx6r/EnleF9WTsZeOxRX7ZVTOk\nUDzI8FzX5lUx+3VnvfP0WKEkPb5333pZg+/8uMN9vS6PXUzIBkLayFhMu9zVnePwcVNOO4Enn64s\npl2+d7QZfF5doeL+t8/ZrIX1bmDLBctWsb4+ruooEyplKU0mpTHxy3DPKzPyjl+7/KF2PV9arQF7\nF4vuxSvOfr8NVR1GlWorZPjdiAtxXapckF2XWktV7rA61F3kK02NV6DNb2YJ39v6asMyZhXY6rrH\n22el8Jw4s6MyXC/CQh1rZKuo2m+FS5nhPOSZd+RIh6y/ylJPyAYdFloD7u4Wzz2zM2BfS1hsKbct\n9Yfp93tZY6wt1h3YDWI+VdVhpzK7VrC4hALpLBsRKv6x9rPvuVSMV5g8Cve3+8Jr73xv7Bq9wNS7\njiG4bIEsf1udgDkf1/heWYcSV1XXBXtl2dYpXFY/k2HkdN36ucKlOwjbiIZ1yAZj6hS3roX2TFCH\nTcJvYy3XXc/ZwKqiFm00+YKJ3XGFC5TPusrum//bThL2ZQSX2J6gHjt2tM3x5XWWsozHLCaFoNcL\n9vU4OK8MdI0DnRaLrRaHlvr85D6n7oF7sJFlLSYhCnO93SGkdr1gceNRyl4MX389je1gTKB4L0nZ\nYkRl7qN12uPWcWWlFQwCq/TiKej4y1c3tNfxVQlVke9lXmKhNliqFmxyPfHceruBaLaTmDRrKQuM\nDNVldP+KyxRYTOT2gxNwV1fAFAR+HjC7d6HHYqospiYPWtpUeumA+QUjXIbP5yQPwYr9GxUqw7JL\nlti230PxRL2swR2HO3QHXZ5yugmmvGBfjwsWEvbOnQ5AIncBPfa1mjx0j5m93HssNYODvM7DRK1p\n8ZmOTMeu/tXKhAqMd2ChgEJLlUdVHV1zsG5pOCam9vle9HfdTi4cn1CMtrdllsVk+Nd3KRvxho63\naptp6mppploryrmdGI+iRJrDmUoiTdJkQDsxWaSrMjOX1i2fLZYNFsqepUnlQm4TDKhdx1ycHbdm\nd+G2brNPOyBj03RArzcqe3R/x9PyTKqfvVa70y90zkWHhfIVSn3cQYsfT+SWabYd57GLSjZo0Fvv\n5t5+a5zo98kGKQutdZ64f5120uRQkhUir49n5hloplpbfVoXWdfh2jA7nV0rWBqNehlfQu61mddB\n+BQ6XUfdUeVBVX798RmD/0KWvexuxzymD9+AkAtdO3TsJOrlsjLCfv4083KH1p2flB25LOPxcFv+\n9KeNdZLG3DAJZdKYI036tBMjeMaXNZ68eFYvS8ysJXMXQxs3tLtlFI3T1TO6kNdelcB2XYezdMB9\neYZrd7nfVroe7PjqeJz5AtLPzVXnuahzTB115r3HUm7t94Am2aDDhfvupttvcHQ1LRz3hP092kkL\nMMKl10topuM59yLTs2sFC0wwUFpVR1NJm/1aa637Zc9SuJRt9yO67bXHOuZ0wPHlEo+bQqS2H+0/\n7vLs44+86xg7Q3V262BVNu3ECIClTFmi6JIbCpD0R8h+W0YdbX5/80Wl/Fxhi60+aTJHu2k988LR\n6pMSea4sT7aFBLMXlzwn1sFkmlmEf/3jyy1Y6A09Bf1jfWE1zSzT3+cLGLtteFzprKV6pl4WzAjm\n3hxfbnErvXxLexjvAuaeH5zXfGaaASmQ5edGD7BZsKsFC5R3pDZepDN8zpRieovyzjioLvKES726\necbeCgcDey3X68d2zACriZLuzwoj1LKRt2vPCKbpmGBMrUuow927sMb8aX06CSymsNiyHYIAI+Fi\n4x5CuKPNKo+wdt7ZdJrrRg22lguWublh/qnFlua/w7hacmKKmoqZbUi96B7nts2NrQipbstS5lQF\n25YNMqqyUVcRupeh5I+hz/4KqTaYtGo2WJVZwZ7nCpdH7RuQJspCa8C5pzXZ1zrLuJg37gK6tJOU\nW5MMdyXTWSNKjGPZ6UiNCUin5H1yg7pOBQrpQvKX1A2kLB5r6m5dlUu93CrdkcOjaVe4nSyuZ49R\nSSntZPoFl2yHXOX5Ny1V7tVlQqzMDgIl9y8dZWyeVf2rntdi5z4+Ey6L/5mG6mSr1ZkiinWtcBzw\n6mmFi4nUX+dAe42kYWKWRPNZS2OdNFnnkjOh3ezyrcNFQX0K5ww7Zdm1ggWKi0+ZRJKjkbpRfY06\n55CO31JL5x5wTy4LivQ/h9Y0969t1UIryxgPH4z6y7qVdgcU/Pfduk5KjxJuc7XdwGWqALPcfTjr\n27obYbKUwVIm+PaAKhVjqEMOeZd1+w0TGJnuB2AwOEY2ELKBjOUKc38zN9sBhBdsK0uoGcJ1o7bU\nEdZ1OsFJ98C9Rpnaa1LcVkilV0YoCn8aJuWa6/WSob2olzX4RrbGUtbn/l6HC9ZWOTj/IxJp8tMH\n+hw+PrqPP79/QDtZ5dB9jWASy0g9dq1gkYYWRmRWyMwvmP1WuKRNrRQqLv4UetI6LlVUReqHEgge\nX2lxfGluGHlv27HEyEOnSqgsL6V5zEeThcWscJ2yevlUxb7UwdYlO5qYFTkXenQHSicpChVzrcHQ\n1bgsKWJVah2XbL1Bb9BFm/lSz4MuS70m2aDB6kCGv9tQxbLSqnRDDblbl+XkqsJfMsFSGrwacM2d\nhmkjzP3ZQd3zT0aohAYLZZ6XbpqlLEvoZWvc18tY6rVY7hnV2HJvFL+z0DIzmoXWHIutJofSLoeP\nFgcPJ4OoMtfbHU4Bu1awNAJalZGxtcHeBbs1/OD7Bka78JbdZ8srnFOiSqiynfh6bjetudvRZXc1\n2LfS5UTWYrW7BzhRaIffObr1W15KkeV19mQD1tKEXscKj7CHUEitU5Wxtg7WCG715yvLpoy9C2us\nlJxT6tTguZG77q8uqwMhG5h6DrTv5ArrD2crq/2RowCMhIosr7OWJmPL1oaESig/nB/hHnJ5D5U7\nlpLEv6fBWe1InVbFNPFZdd3LXfx4pGmEiq/SHJvpezYpF2ujMu/3HCsHTKT+Y/bp0HnjQKfPBQsJ\nneYZnNlZZqGVsdhKOZRmfO/oru0mN8yu/sXcF952GEad0YPlOq6160NjXy8zC281Ux1LZDcpgtzH\nFQKTRp1WqOxZ6XHasjFUnqDFPewZzjxsG0NYoTKXDThtxUTu35922Ls4HuTnL8BkYx7GDdP1BYyf\nBNSNkrcjzaoAydB6ML5QsbPOMgFjUuTrME+YTULp4wqVuWzAXC6IdaFRmuXXV2+FMvhW/X5VTMrR\n5newZQLGD3IdrlHvZIawhvhQ2paqHGyWkxEqZYRyedk22xgmayw/ns3RTEcC5vhyj6Vzujz59AZn\ndgac1Vmj03wInWSBROZ42J67WO71WchTwdxw0rWdXdr87cAuFyz5A74M0Cu8dHWm9a4HSSsdDB/c\nMoFSt05j1/Fe2mJH1KOVJiwvtTkx3yqMom0sRQhbRrvTZ5Uma/lysyfmWzRTrR49O2t81A0wtYyp\n9Zx2udHxvspjtMBUo1TY+dcYdjy5q7gvUNpOyvVEmrQaJrV1q9FhodWnnTRpN121W29Yz7Vlhr+1\nnw3XvV8j+1hjTKiEg1EHw87aYh0xbDt8e1Ido37VjKXVGhSCKavsQpUR9zMw8Ju2mvaljueXKyTd\nYE9/4GKfn1XMQGUtTcY6816WsEKLOw6TR+onLLTm2NM8BkC3v8zPTuTXiXwWvQAACZ9JREFUSpQn\n7t8d6qtZsqsFi2XvwtpwLe9J+Oovl6Ftokaal0mj1PHUJeEybTLEVmvA8U4L7Y7qZ1eTrEqR4naW\nJ2gVRt9VwZ9lKgkfK7xtJxCM2SiM8MeFFnij85JcZeB36mG1kHudNFkfBkg289ehlXRIG/eTJuu0\nkwbW3dj/vZqMCxW3Hi6hmYqtz3D2l5nUKr5Q6STG+cLHtb2EZhXTDnCmEQrT5DmrmnEWjivxZLRY\n4bJCi1Y2GLbZX35geHx+P9dIgpH0WZbka7V0WR20yAZ9DrTvYXktIRuMyjzQrs54vRWIyBXA32AW\n+nqPqr7Z2y/5/isxC329QlW/lu/7E+D3MZ4xf6+q1+bb9wMfBs4HfgS8WFXvc8o8D7OkyRtU9a+r\n6hcFS04rNS+1a78IzVrqZvKt6x3ldyJWZRMakU7KSOy+aH7uKres8TQpo87S1WWHruELhypCwtId\nZfpxPsPjAkLLN2DXcQUdufCOe4yZ76b8TnPdzFay44CJY1lMByy0jGCx+bScs2upctzUI1WBlKP6\nFO1a7jWM2Ws0mg9RlSamDtN4dUHYOaV6dj2ibFY2LDsNB0mWpYdx6zN2TkmeOHu+zZAMTR61TwrB\nlBfuW2Vf66xgudMyqzgWEUmAdwHPwqxH/xURuVFVv+Mc9lzMQokXYpYm/jvgEhF5AkaoXIx58f9N\nRD6pqrcDVwGfU9U3i8hV+fe/dMp8G6N1sCqJgsXBHV27lOX+Gp7n6KKrKNtv7QAwEi52e9nxIfY6\n0dRW9XLcquoq1FamXRtR25UvSGbbMsJXR5QLl9AI170ndWxPdlZYNtMZzVg0V4XNQf9Evs/o2c2M\nxXTqvgNB3RH7NK7cVkUzX1NwmboWBW5doe87YFQNWqpSGJXZXvw6VhEKRu6NzINj9rfgSq8Be9A0\n2GWPVwfwpP3GY8wKlT06O8+wGXExcLuq3gGQr2v/fMxswvJ84IZ8JckviciiiJwNPBb4sqqeyM/9\nL8y699fk51yWn/9+4D/JBYuIvAD4IfBAnQruWsFy7/fvuOeG57zkx5t0uTOAezbpWpvFTmwTxHZt\nJzazTT93sgUcW/rhzR/4+O+cUfPwtoh81fl+vapen39+OPBTZ99hzKzEJXTMw4FvAW/M17zvYlRl\n9jpnqeqR/PP/AWcBiMhejIB5FvAXdSq/awWLqh7YrGuJyFdV9aLNut5msBPbBLFd24nt1iZVveIU\nqMNtIvIW4DOY2cetBGIqVFVFxKoc3gC8XVWPS52UJexiwRKJRCLblDuBc53v5+Tbah2jqu8F3gsg\nIm+C4coBd4nI2ap6JFeb3Z1vvwR4oYhcAywC6yKyqqrvLKvgqZHsKhKJRCJ1+QpwoYgcFJEW8FLg\nRu+YG4GXieFS4H6r5hKRM/P/52HsKx9yznl5/vnlwCcAVPXpqnq+qp4PXAu8qUqoQJyxbBbXTz5k\n27ET2wSxXduJndimiahqX0ReC9yMcTd+n6p+W0Rele+/DrgJYz+5HeNu/EqniI/lNpY14DWqupRv\nfzPwERH5PeDHwIs3WkdRrbfgVSQSiUQidYiqsEgkEonMlChYIpFIJDJTomCZESLy5yKiInKGs+2v\nROR2EfmuiDzH2f4LIvLNfN/f5ukXEJFURD6cb/+yiJy/+S0Z1vGtInJIRL4hIh8XkUVn37ZtVxki\nckXentvzqONTGhE5V0T+Q0S+IyLfztN0ICL7ReTfReT7+f+HOOdMdd+2ChFJROR/ReST+fdt36Zd\nh6rGv5P8w7j13YwxeJ2Rb3sc8HXMgtoHgR8ASb7vFuBSTK6eTwPPzbe/Grgu//xS4MNb2KZnA838\n81uAt+yEdpW0Ncnb8QiglbfvcVtdrwl1Pht4av55Hvhefm+uAa7Kt191MvdtC9v2ZxhPpU/m37d9\nm3bbX5yxzIa3A6/DXXLSpEf4Z1XNVPWHGO+Mi3P/8AVV/ZKaN+AG4AXOOe/PP38UeOZWjbRU9TOq\nahMsfQnjBw/bvF0lDFNkqGoPsCkyTllU9YjmSQVVdQW4DRNZ7f7W76d4D6a9b5uOiJwD/BrwHmfz\ntm7TbiQKlpNERJ4P3KmqX/d2laVUeDijgCR3e+GcvFO/Hzj9Qaj2tPwuo+RzO6ldlrI2bQty1eJT\ngC9TkpaDjd23reBazCDNTTC23du064hxLDUQkc8CDw3suhp4PUZttO2oapeqfiI/5mqgD3xwM+sW\nqUeex+ljwJ+q6rI7EVQtpOU45RGR5wF3q+r/iMhloWO2W5t2K1Gw1EBVLw9tF5EnYnS7X89f6HOA\nr4nIxZSnVLiTkVrJ3Y5zzmERaQL7gHtn15IiZe2yiMgrgOcBz8xVCm4dLadcuzZAnRQZpxwiMocR\nKh9U1X/NN5el5djIfdtsfgn4dRG5EmgDCyLyAbZ3m3YnW23k2Ul/mMVxrPH+8RQNi3dQbli8Mt/+\nGopG7o9sYVuuwKThPuBt39btKmlrM2/HQUbG+8dvdb0m1FkwtoNrve1vpWjovmaj922L23cZI+P9\njmjTbvrb8grspD9XsOTfr8Z4qnwXxysFuAiTvvoHwDsZZUBoA/+CMULeAjxiC9tyO0Z/fWv+d91O\naFdFe6/EeFb9AKMK3PI6Tajv0zDOIt9w7tGVGNvV54DvA58F9m/0vm1x+1zBsiPatJv+YkqXSCQS\nicyU6BUWiUQikZkSBUskEolEZkoULJFIJBKZKVGwRCKRSGSmRMESiUQikZkSBUtkRyIifywit4nI\nzDMGiMiL8ozC6yJy0azLj0S2OzHyPrJTeTVwuaq6OaMQkaaOkmtulG9h1gp/90mWE4nsSKJgiew4\nROQ6TAr8T4vI+zApZB6Zb/uJiPw2Zn3vyzBR2+9S1XfnGZffATwLExzaw6wn/lG3fFW9Lb/O5jQo\nEtlmRMES2XGo6qtE5ArgGap6j4i8AbN2x9NUtSsifwDcr6q/KCIp8N8i8hlMhuBH58eehUlp876t\naUUksn2JgiWyW7hRVbv552cDTxKRF+bf9wEXAr8M/JOqDoCficjnt6Cekci2JwqWyG7hAeezAH+k\nqje7B+RZdSORyEkSvcIiu5GbgT/M084jIo8SkdOALwAvyddcPxt4xlZWMhLZrsQZS2Q38h7gfMza\nOQIcxSxd+3HgVzG2lZ8AXwydLCK/gTHyHwA+JSK3qupzNqHekci2IGY3jkRKEJF/wKRu/+ikYyOR\nyIioCotEIpHITIkzlkgkEonMlDhjiUQikchMiYIlEolEIjMlCpZIJBKJzJQoWCKRSCQyU6JgiUQi\nkchM+X8sWHGKYmCUNgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwZVle1/n57fd53nNfdTMrM6srq6kumqZhEKbpUWOE\nMERAtJ2ZCGUcQzBUpgeIcUJmFBxnwkGI6BBn1BCGx6ijjoNIGD56HBwcFAxGaaRBsIHuppqqrs7K\nyse9eR/nnnvO2c81f6y19l57n3Ozsrqqqwry/CIy8t579tmPtfde3/X7/b6/70+UUmxsYxvb2MY2\n9maa91afwMY2trGNbezxsw34bGxjG9vYxt5024DPxja2sY1t7E23DfhsbGMb29jG3nTbgM/GNrax\njW3sTbcN+GxsYxvb2MbedNuAz8Y+ZyYiPyAi/8NbfR5vRxORrxCRl9/q89jYxt4q24DPxj5rE5FP\ni8hCRGYiciIi/7eI3LCfK6U+qJT6C2/RuX2jiPx/b8WxO+dQmvGZisgvisjXvZXntLGNvV1sAz4b\ne732e5VSQ+AqcA/4a2/x+TyyiYj/JhzmZ8z4TIC/AfyoiGy/Ccfd2Mbe1rYBn429IaaUWgL/APgC\n+zcR+Vsi8l3m5z0R+acicioixyLy0yLimc8+LSLfISK/ajyo/11EEmc/X2e8hlMR+Tci8kXOZzdE\n5B+KyKGIPBCR7xWRdwM/APxHxus4dc7n+0Xkx0TkAvhKEfkpEfnjzv5aHpOIKBH5ZhF5XkTOReQv\niMg7zXlMReRHRSR6hPGpgL8J9IB3Ovv/NhG5LyJ3ROSPOn//PSLy78wxbonIn3c+S0Tk75rrPRWR\nnxORA/PZloj8DbO/2yLyXW8SyG5sY6/JNuCzsTfERKQP/EHgI5ds8m3Ay8A+cAD8WcDVdvovgN+N\nnpjfBfw5s98vQU/a/yWwC/wg8GERic2k+k+Bl4CngWvAjyilPg58EON1KKUmznH+EPDdwAh41LDc\n7wa+FHg/8KeBHwL+MHAD+ELgP3+1HYhIAPxxYAY8b/58Bdgy5/3HgO9zvKIL4I+gPabfA/xXIvL7\nzWffYL53w4zJB4GF+exvAQXwecCXAF9ljruxjb2tbAM+G3u99o+NZ3EG/C7gey7ZLkeH5t6hlMqV\nUj+t2sKC36uUuqWUOkaDg53Qvwn4QaXUzyqlSqXU3wZSNBC8D3gS+O+UUhdKqaVS6tUA5Z8opf61\nUqoy3tqj2F9USk2VUr8C/DLwz5VSLyilzoB/hp7kL7P3m/G5a67pPzHfs2PynWY8fgwNTM8BKKV+\nSin1MXOe/x74e8DvcL63C3yeGZOfV0pNjffztcB/Y8bjPvCXga9/xOvc2MbeNNuAz8Zer/1+41kk\nwLcC/0pErqzZ7nuATwH/XEReEJFv73x+y/n5JTSoALwD+DYTXjo1E/kN8/kN4CWlVPEazvfWq2+y\nYvecnxdrfh8+5LsfUUpNlFJ7Sqn3K6V+wvnsQefc53ZfIvLlIvKTJpx4hvZu9sx2/wfw48CPiMgr\nIvIXRSREj1UI3HHG6geBJ177JW9sY59b24DPxt4QMyvwfwiUwG9f8/m5UurblFLPAL8P+FMi8jud\nTW44Pz8FvGJ+vgV8t5nA7b++Uurvmc+eMiGtlUNedqqd3y+AvvP7OuB8K+yHgQ8DN5RSW+gclgAY\nT+l/Ukp9AfBbga9Dh+huob3CPWesxkqp97w1l7CxjV1uG/DZ2Btiou0DwDbw8TWff52IfJ6ICDpE\nVwKVs8m3iMh1EdkB/nvg75u//2/AB40nICIyMMn4EfBvgTvAh8zfExH5beZ794Drj0AG+EXgPxWR\nvoh8Hjr38nawEXCslFqKyPvQuSoAROQrReS9Juc1RYfhKqXUHeCfA/+ziIxFxDPkiN+x9ggb29hb\naBvw2djrtf9LRGboSfC7gW8wuZGuPQv8BDqv8TPA/6qU+knn8x9GT5wvAL8OfBeAUuqjwJ8Avhc4\nQYfuvtF8VgK/F51c/wya0PAHzf7+JfArwF0ROXrI+f9lIEOD1d8G/s9Hv/TPqX0z8J0icg78j8CP\nOp9dQTMLp2ig/1foUBxoDygCfhU9Xv8AnWvb2MbeViabZnIbe6tNRD4N/PFOPmRjG9vYb2LbeD4b\n29jGNraxN9024LOxjW1sYxt7020TdtvYxja2sY296bbxfDa2sY1tbGNvuq2rj3gsbG9vSz391B5U\nFagKqhKUAs8Dz9f/EPM/ehulAKW3dc0PUQKlKkgLKDvOZOApQk/hiY8nPoKn9wcgHgpFpUoUFcoe\nw1ilhMDz8CRAqgqqAspCn4uIOSea/30fwoSSikoVXBQ+WQmhp88j8hSeKH1ta0phKiUAZJWQlUJa\nQSAwCBRxAIFEUGSt88fz9P5Emh11x8oLwPMpVUGlSkqlz8AT8MRD8PDER6FQqqKipKwUpYKiEkTa\nKyXfUwSe4EuIVCXkKaSZPocwgCAEL0B5HkpVeOLrc7HjV1V6Wz/Q/7wARaXvTZFClqLmGWqRUxWC\neAoJBfE9JPQg8M2/AIIIvIBSFSgqPHzneKUeK2meK0VFZc5JqgrKHPIM8qK5j1Vzb1SpUGlJmUGZ\nC3mmyDKFeNDreQSRwk/A64cQhRAlqCAgK3MWpce80LvzRN9LEf08eCh8ARH9v70X9TPaeu6p3wWF\nvreVqupnqFIVldLPvlJCZR6BSpcmEXkVvtB+lu11ZzlqUVCmyhxO6kPbR0kPncKLQKJA34Mw0M+e\nmPfU/m+fRS0dWJ+v3lczriIegjTPRVVCWer7UJSotEQVFVUh/NLx9Egptb/ywrwGe6/sqhn5I237\nac5/XCn11a/neG93e2zB5+mnr/DRn/krsJyhlmd6Qi0yPZHEQyTs6Q2DTplIkaHyBZTZ2v2Wuzd4\n/uwW9xYhaalfooN+wdV+Rc8f0w+2CMpKH8uaOYYKYkqVU6qCUumHtKgy/Z10iTq9DdMTmC1QaYpc\nXfMuDHcod28wL7SCy9HyjHuLkINeziDUk7UvAb6EZNWCtGwrzKSl5/wsfGYWMY4qPn8Ssu3t6Otf\nnEE60+ftR3qsgqgZKzOWankGs+P6vGS4TxEnzIszFuUUX0Iir0fsD4grD3V+CID0tiAeUlDU274w\nbT+qvaDiHcOYSXQVjl6Auy9TfewF/f2nD/TYbF1BJtdI1ZK48vS9nh3CcgazuZ6o+wNIhkiyhRru\nIrMH+l6c3kZ9/Hnyj92hvDfH24oJrg7wnhjCsI+MhjDswc6BPoZXkZYXlCon9gdEXo+grPQ1lRmS\nbEEyrO9xVi30NgT6vp7dRb30CmSdySkKYTanuj8jf/GM80+XnN6NuP9KRRQL199Vsv2sEL17F++5\np+CJPeTaeznJ7/KJ05yXZyF3FrAsIfFhO4IneiUH/YLYqxhHJbGfNPeh0XN1HmrzrPoRBUX9fBZV\nVj+n9aaqIC2XTDOftPJYFPp5Oujp7WK/YhRuMwr3kOU56uhF1K3bqE/fI/v4A6qzlCJrFjFlrr/v\nhxXxjT7hzS1kb6Tv77APyXD9+2qeTSWy8k4B9Xtgf5bluX6uL47h/hHqzv16zLPDjMkP/sRLqwPz\n2mxGzp/33/dI235j+S/2Xn2r39j22IKPokIFMZIYHyBfQJA1k6k1C0jWgkhv3wWfz3wa9eAE/x33\nePez72ccfYrnz/SLHHtNLaUvIRTnbfCxgAb4QOBO5sEILo71BDW/0MBzPtOT1PEUdsbtc5tcq4EH\nYC/ZYhwt8KVP7A/08QFfAoJKX1cXgKzFvuLZrZTtuF8DT+u8XetejwWe46kGyt0cBQTs04+39Ol6\nET1/rF/809twdB+iEBXdhWSIHw8Z97YYxzfpbT/g9sWU06z9yIpSqCJDPTglf/EMSXzCcQKjASQz\nSGdEyQiy83qM1527yhfI8rzZ7+QavFtr1YQ353qiG/aR0cB4F6EGreE+he9RVunKRIwfaSC1z5Df\nPEf2PigRZHINVWbI1bwBnyhs/e9fneI9cZ/w5ozhJ46ZXIF4UJI8OyJ871XkHU/WQDgtHvDSLOVw\noY+3HcGi1P/v9woOejk7CQb8xw3oXByj8gfIaL91rvbnVwOe2B/oU/Z6xL5e2KSlVy/CwC5uTgDo\nx1sEV57Tz20cE48Tqvsz4s7tUWmJtxU3oDOZ1GO/1jrAk1Wr990uwDQw5RAn+MkICXsotHflRYdE\nSYA3ma0/zsZelz224FOpSq8+gx4yiJB0tnZiVfkC8kWzuoc2GN19GfX8S6T/7j7ZYUZ842Wirzzl\n2nvfR38345ceFMS+wpeIwIsQpVpgQ5nplfj8op541LDvgE+kJ/HZHHV+oVfsszlqWUIUIhZ8DPCk\nXqW1A4zF/oB+sKVXdy65pMzwA/1dXwKyakHhhBNjv6pXxGMZrY5N1yO0VmTau5ieoB6cwrEGQv1C\nhxqAgmvamyNAnbyMOruLunNYb0sU6ok+jlHDHvQHjPduEo+vcrR8mc/MnOkpnWlv8PiM8t4FoMNP\nfhTq48VDJIgeDppBpO9DZxsLQJyeavBx74lZpBRxQrlGWq5UBb4X6mOb8VJuWNKxGoDs+djxtQuh\nZIjaOkSe2MO/f0TyxJDo/gxJAuTpA+TGNf394S7T/IjbF1PuzZv7k/iwFakaeMZRRD/Yqj0vLo5R\ns5f0c5jlqItjGOy0QOhhwFN7egRQZqhwbDy7ixYI1bfMAFCpcvrBhPjgOX2fhj28nVMk7sIPEAUa\ndMx5qSCmUHl9zJZ1PJ6iygi8Zjzqc+2QrUqVw2BMEESo4DYShRAdEiabjhSfC3tswUehwyRgvIB4\nCDQAVIfW7O9l1g4xFRnqxRepPnGb9Bfvc+/XexzdSbhyr+Qg+XWiOGb7XV/Mb9kLOc+XRF6vWe3m\nCz1pmvBPDSpZXq+qZTTUL9ywr/+eFTXwVKcpAGJ+Z9ivJx+qRT2xU2aQZWiF/eXq5Bpk9OORDkGU\nIZksiH3aE5Mdgy5grjMLPMsZzBb62qZL1LLQGQQzqSg/Ihjto85NuOnOIdw9orw31+cV+3iTOcp6\nGFEIRUZ85Tn2kusE3h1emAbGi8xgtqC8N+fiJND5j+Ml/sEc9eAU6Q+gt9W+n93QlgEgZRcZ7hhN\nrsHkmv6ls/hQQQydUI5rpcoJrAfh64WHElnZrv58uN8K/SoR5uWUojqnPznQYzbY0SB0eqrHZf9G\nHVo8T29xuMi5twiJfQVUxGbePOgX7Cc5o3C7BgspUn0PLo7h9FQ/h1mOjBawk2lvbLgP8XAlbGWv\nt/aa0pkOW5n3JO5tESV7l4LQNPNJy7neb7BFb/u6Hvuds5VxAfRng506FJul9wENJPXz3hl7HQK8\nIKsW7XAogX7/gMCEdwG932rBKNoj3ruJslGOaM39+ixMPIiT9QuQFbt4Qw75trbHFnwEj8CLGrfb\n62kACvQE1QqtrcttmFCBJAGS6ElvNA5Ihku8vg4/qNPbjK5/EYEXtcMsYU/vO4ggyvUK350QOyEX\nPQE7wJSUzt9DvVo9ehEB4iACihWgaYWcXPBYnBGHPeLBLgWF9pCKFNLlan6rG3az4Q3XM1zjEUkS\nmHM1j1s6g7CnxyEZIqM5ajbHW5Zme1+Drr3eOK73XaqUnj/moHdGP9iCdApRgMQ+8cD5vsmVcP8I\n5Z5XYgSoI+feJsP2/XWv7RJvRZbnCOAHzirdLO7dfIISQZwQlvU+68mySNvj6RxXe6MZWbUgqCL8\nYKy9kd4WaqAnaRnt63N0FvEHvdyAT+PB9oOdFuhZYJSwp8dn2EeyQu8mChqAnR0iRUY82EF5PUqV\n1+EqdyKv8yUWyMtMfy8ZEoV7JvR1RODlXORtj6OoMjJZEA13kcFO6zM7/vYbPmEd3itV3rxbHS8m\nIMD39PXabSzgsjzWYWFAiowgGVL4zXzgS0DhQ7B7E+VH2gPa2BtujzH4tCeVUhUgejKxn0iyVU/a\nrcnVj/RnO2Pk6QOiZcHu8j7JMGB4Ffx37ukXuMjg5GX8rd36OFm1IB7saHArMj0JWmCBZrId9vTf\ntozIcnCsw0gPTuuXQXadbsxZjnrl12C8/dCQWOt/68GVGeQLnWui4/W533EBMsubUFQ3PxBE+vzT\nFMnyZlvnPNTyDEm29Mp6uA97h8jR/XoMWv+jPZDC96DSk8k4agCdYR/v+jbRi2dIEhDe3Kq/qx6c\nIFEAe0+sAlAXcOyYmM8sAIBeYdfnUqTawzM5nSAe4j5O/lqRbce6Ib7u/SozxI/qY9a5sc4EK2FP\nL5TMtv1gi/3eWX0O1jPxJVgJDdrnPRjsIEGkrwf0/eo8Q2p5pkPPvS2CICLwE5TX0+eTGhKHCQ2T\nFfrZjy5Q/VlN5oiTIYR7zItTCBfEfkng+ZeO1WWgD5gogv7euvBZPT5KEUtCYcZCA49DOsG8g/mC\nYLSPH4xbAF1QaG/zMk//NZonQhQ/YnXLxvP5zWue+ERer55cWkyYIDar1ZmeU9yVs++sjJMhspvj\nPZMTpSXeKzM98bkTbTojlmt1zBzQ7CsLQGYzAf3igp64+wM94Q50XibobaFOTRzavuRDJ0RUh+YW\n9ffr8+yQAdb+DHoFbP9ugab+v5m8VJo25www3NE5HddriDJkNNAeXZY3cXy7v24I0IKQPUaHHKCG\nu2TltP69H2w1HwYRsrtNePPEnE+//d07h/pcr1xv/uhH2otwfq+3F0s3X3CeH1GqnN34RuO9npvJ\n1lnhB8kQP+itYX/l7ZCQyfG1FjVdMzkoCyqlCvREf9kkaLbt+TaHpz2voKxQZ4eQzvDjYR2ea87N\nLLiSkX4W/Wj1GM4CxA092zxai1hiiTDWY50tYNiAUDy5hh/u6fCWrJIArFf1KNYNs73qtpbNZnOE\nM3P8YQ79TD+/vS2iZNS6h4XvEdiw68beUHtswYeq1K65P65jwml5QeBFRJ6hX9owHNSTk52YxMTl\n6WfIbo7/zlznKp55op0wLTLUgxcJhvsE8bB++VcAyGU59QfI3k3SKOA01b3PRuEe/b2bmhUWRJqg\nAA37zeRX3JBVTQc2oTnc41jL2itiCyztbfK1P9tqIYIITLikG1KsQ4NR0PJkXO8Hsw+bvNerdu0t\n2tX+3AEeoE2gMJ6Wd327tQ1Zjpo2k61EIewc6Al0cq0OM3bNMqTO8yOOl5BWHpF3xCS6qr2eCz3Z\n6pxchjJhWkmaMJw7gSmR2kuoJ2x3QoeVfKILQK2wkvneWtAC+p5hRy7PUA4oyGiIeuKYaLBTg1Br\nwZWMtAdkqOFAQ4SZLWpvhv5AL1LiYZO3PJ6iHpygjs5Ry0KHoseJzpWkaQNCQDDcZ5TssSinpOUF\nvoQtMsBlVoNvJ//YjUg0N7EdKlbLs/p61INTvYCDxjs390LAEA7iptzB39Tify7s8QUf0A9osMqs\nsR6KL2Edr18JA7jx8ihEdrfx7EQL7YkWzISSEQW9GuyU10OSYQNASxOm2LtJ6lXMi1OOzdzpyxl+\nuEe86wDQ9KTZv32BliXihvEeZmu8mdVtHq0ojk5+THuKFzqfddm+zfZFnOjJPr1FUem6E1+Cmhru\nS1CHoJp7E7T2Ye+BSlPjBeZrgFb/LmFPs6Gq5vq7IBR5PXr+mHF0QloqYn+wEvZqjV++QJKmoanN\ni3St9ugswDhAU4N553PpTqyPYpcRK9xfq6zOU5WqwPcDvcq/ONahKUPmUA9OmsWMDaFaj+i4vShY\nsSyvqcv2Oyvj2LHX4gGtXJs7Ti55yITZLn2e3fByENXnuI5o8dmaeBDHj0g4eAzs8QUfz0cFcR12\n8yUErwlZdKnJ9ucWCNkVoGE7CzQr/P5gbYGqAFHghFLsfmziO9bJb5+C2B+wk+jz03TpoD3J7xzA\njk6aMj2pV3DdsBOwCopB+yXVYb9crwofZjbfNBrqGqPhjvZeDBMpSNs1Q3UoZjRYOb4tOnXzKr4U\nOpHtRTVD0LLEoAMSSmnqbTLUIaMg0mOR5XrSHPbrnJNc3dd5H0uQKFKiYL33YI8xCvfoB1uUqmiK\nL33j5e2Y+2Cv3yStedhEFUR1Hcla2n6Z1aEtoKH4F1lNiqg/M2smSymGogHTfh9/8E6CA02jxniY\narjLopwyz16uCQNU1M99fQ75ogYv61UDOoRqiAkMe+2J3Iy1JHlNla/NhoQtGFySz3Hfue6En1UL\nIr+HH4wQpZCyDTZ2HHzrZVorsprZBsBkoj1gsyiS0aCpGzLPsc31vVGg87kwEflq4K+iSwP/ulLq\nQ53PxXz+tej27N+olPoF89mngXN0UUahlPqyzne/DfhLwL5S6sj87TvQjRZL4L9WSv34672GxxZ8\nFGql+Gwt8LiTAbQmwtZk0jcvQxS260FgZdUqSrVj1oEhMCzPWuEUX8JOHN8UqHbNAhHoFd5lNS12\nWzPx12PhUKgF2gDULXoEZHeyUnNhX9YgiPWYpAZ0DIVcnV/o79nr7QAP6HoRW5NRA0/RyS+t8wBM\nGI2w15Al+rMGiLJcA0/ceCbq/LDJ+TzEqwjKigBPv+L2+p0ktKUip2rJPNdqDv1g0vLMWpPhZUXK\nsLL6BifPssb7SdWSsmqUMNaefy+C3p6mHC9foKjKpuYmXBB5ELDm+o3Xo+un5kjsI8sSyXIN6p3N\nJY5RO1vrPYss1xO9u/sqq71Ye/w6tOaEuUpVcJrdAaifidgf4PuB+Vwvduw4+FK0VBpqIHXN5EPF\n5kZtwaqhXWfl6rzwRpgnkPRefwjPdLD9PuB3oRso/pyIfFgp9avOZl+DbuD4LPDlwPeb/619pQWW\nzr5vAF+Fbs5o//YFwNcD7wGeBH5CRN5lmjl+1vbYgs86XTMLPCvWWWWtnUyS4frV7LqJrQNo9X7M\nCrr1ZxMP9yV4aLjCssGCstJhORtmcJltUANG4Xv1tbrx9Fr17RIPSHYnsPeEritKRqTVgtQk5UtV\n0ItvILZeKiuaOp/hXHs/UahXlx0CgTXLzgoINA156axa3TDVurE1ObRWUt/mCeL2uIIBoHUUcSsh\nZAuArecRD2vpHwveKhnV+aFppse6VAWjcO9y1psFEheAujR29zrtfXEAKFVLzRyjCUVaa6SZ9Nww\nzXyjDGH/aTsgh3DheP3mszLTOcQHJ5T35hSv6IJWfydBlgVeljdekJPflDhu5y+hqV+z14StwclJ\nyyX9QN+X2qsvMvxgVD9Pp9mdWlppEi3YSRa1NFH3eut8Ybin66us12Pzo5aE4/482GnJOa1TQ3gb\n2vuATymlXgAQkR8BPoDuXmvtA8DfUVrM7iMiMhGRq6bV+sPsLwN/GvgnnX39iFIqBV4UkU+Zc/iZ\n13MRjy34KKVaseW1K9XXQLF0admflV1Gj8bxetaAjwWd8/yIeTajHwwZ7d5otOCc/ctwvw4PWQme\nGty8ED9OCNhvA5AzkdjQlQz3UcmoZoJZdYS09OgHU/oGQFWaopYFKi2b/SRDZLRviiez9jlYlpYt\nAnQLW3HIDR3Jo26YxPdCXTNySZIaqO9tK88CbUKA1YDLioYVZbxDWwS6KKc1MeGekbPROmZH9IMt\n7bkuV73V2mN2Ke1d+nXrd/O5H9XAMy/asi+BpxmcabnkcBlymoYcLgLuLBpdt9hXjKOSSVwS+xW+\nJC1Pk+UDo3RQQJZTzXN9/4DyeIm/kzR5RZvPsQAUBdqbcCWgrBkPVB29SBA8RxwOKFWhFQ6MtE89\nNrMHMBhznh9xZ+7x8ky/o9PII60K9pPlpXmh+l1ZM+b1c+OWTHSAZ16c1YtQOy5vQ7sG3HJ+f5m2\nV3PZNteAO+jH/idEpAR+UCn1QwAi8gHgtlLql6QdGr0GfGTNvl6XPbbg4yG1woFrbpIbxzvomii1\nkty8jIEEXB6GewQNLTwoVdCE6tzVvFkp6pfFN4nuAuKEYHKtBiALPKBDSaNQM46s2Yk7iIewOGvC\nbA5LTr30CpxfwNUZ5AvGk2vMK/2S+6JVFDRI6uu1RbhAQ781WmjzrKlHwUjf9cKxDrMVpmjRHe81\nY2snDAti1muqw6ZlezJ3ZXZqinvX83G2q4tTO56P9XbS4oLz/ITDZci9ecD9hc9WpJjEpbm2EJk9\n0IWaw/2VeiJxPZtuMW/XTE5LPxv5irfTD4aajacUo7BgFJ6x6E856OXsG8WDSVQ4QqLDRnapSKGs\noDjXwGs9hSjE64dUsV97Pt5WjIyTdgGwZVQ61ycYEotlldmiYUDd/SS94Q794T7M56j8wcq9Di6m\n7A5v4MsdYk8vGuy5+xLXhabu4tEKhFI6Gn3DfV3L4wKOW9tlPOKAALwehZfVRamXRkI+SxNPiJNH\nDrvtichHnd9/yILEG2C/XSl1W0SeAP5fEfkE8FHgz6JDbm+KPbbgQ6l1pWzoAuDufEHszxmEUq8E\nXXUC1zuqQ1aPykJ6BMZSV4FXqyQXbSqqu0q2agxK1XUvTfV3oemzNrfTCefJ8px+PGpRbkuVa76w\ne07LJqwrAMdnqCxHruaoMqM/uYYfhMyL05qlVqNJpCm3khiG1HgbkiHz4ozDRc5+r3mxAy9qigBf\nzYOMh8yrc4rOJB3ZwkdXNaA7kZtJ59L6LftzjGav2bE2itQ2zJhVC6ZZxr1FzOEi4O5CWJawFWkh\nWV9iIq+HOn1eqyzszJC9m22PLRnpc1Gq8b66Hp/NLYU9c47FSn5nFG4zlhHq7idQRYafDBkP9xkl\nzzAKp+z3zkyuZNKWl0mnqHzRDkC7Yc4oxD9oiAM18Liq3hZ0bMI+iJoFTxTUYTgZdcKes2OUYXd2\n3wurmCGzB2wPruAPHtTyOGvzsukMijlqdqiBxobSzD2WvZs8irlFufX+H1Zf9bm1oy4RwLHbwA3n\n9+vmb4+0jVLK/n9fRP4ROoR2AtwErNdzHfgFEXnfIx7vNdvjCz55RpwVzM1CZF7M+OjhsBZgnEQL\nxtGsDmXE/mCtq+/SsS+1RwCowrCVXOFGK09fA6EFPweAVL5A0hlBPKyBx5pVU2i9PLbC20yo8eQa\nhd8U27aYSFleh80k9k0Nh0k6Z7n+v8h08WC816hp25Wmo80mo4EOb/gei3TKZ2YRsZ8yjqy6cg8u\nppfrx9lmKLUoAAAgAElEQVTVqgGe8/yoJmOABl3tNT3iROGoHFhbYWEFcU3Fz6oF8+wOWbXgIldM\nc5/TNOJwEXCS6ZYFFqdjX9EPJnDyMurWbbh7BOd6Uq8BKB6uLXCOYi3zVAvdWhKFAS3X4wk8n0l0\nlTgrUHc/1rRkGPZh9x7sHNAf7tNLbuixWcxQyyM96TveTcsjcwRuLWvNW5bt+rHdSdPOwMlVWuKJ\n1UVjdtwUT9uC6Nm8XWezs6X356oquJJNF8eMkxEqjB1vVntpNUi72nSzuabcP/V0W/XazfldAiai\nVLOAcUHnUZ+pN89+DnhWRG6iQeDrgT/U2ebDwLeafNCXA2dKqTsiMgA8pdS5+fmrgO9USn0MeMJ+\n2TDivkwpdSQiHwZ+WET+FzTh4Fng377ei3iMwadA3f0ko3d8MQ/SW/ybu0P+5WcCnhiVXBuEPD0M\nDAgVjKNZneTsTvDwcABSXernms+73g40fVHS0iP2F/q4pZOPyHLt+QSNF2RriFwrKOqbrM4P9Ytq\nJxhTIBlMruEnOsZes7psjN7E++3/gAahpc7j2BqlYHKNfrxlwNnQrS3lNss1xXW0z7w4487c4/7C\nJ/Yj3r2dE3imX9GyIyrZNQd47sw99pOTWijT9uu51LpkkIfotrkJbNujpw06PtPM5yyTGnguCrsv\nxSAUYklQZ3drwVQfYDRE8SKyd5MiLlpet73/voQ6V5SMazC1XlpXw203Nrm9u59EvfQK1Qv3KU+W\nBFeHehKeLVA7x1qBwslhtSZ/Q4muhWy79WFR2ITZbEsJt4+OE4a04DwK9+gbXTS421D4jRCuJTEA\nBE+e4R8cwZW9BoTqkdQmAPlhc+kWFKzau9l3dX+GSkv82Vw/l0/psFsaBaTFg0ZQ9SGLQVkHOm8Q\n+IhA9AbU+SilChH5VuDH0W/s31RK/YqIfNB8/gPAj6Fp1p9CU63/qPn6AfCPjHcTAD+slPp/XuV4\nvyIiP4omNBTAt7xepps9+GNr6vmX8LOcg2ffz2+98imWZeP5gG5YllYeaakIvGYycmuCoCmKW1sL\ntOZ3aCjbdZLceDVuz51RaBS30yXq/kvNyxdEbaWBfFFX2EdG4sWukEtV4Ae9Vq+ali1nWrZnuM9o\nuKcnvNE+Kp0huwt8275hnXUmqpo664QYJY61mnUQoY5eZBQPeffkgP3kZbbjA/oqRp3c1pOje31d\nM55K3xvhRyG+HNEPdloV/SxnKzTylpnzsvdjnUqz/X/dZ4MwB0piryL2FbHvsRV5nGXColQsS90v\nx5dQH8N6f64ZDT5//wbbjmxLrZxhlRBy536Z87YsMZegQVAZEscQb2LEMk1ojGGv8fDcolO3GNoe\n/3zW5HCiQIdMMQCwo0NYsjtpvmcWPGp22IjTJjuoKNZ5rtOP1YucWrXdmJgckv25OW5nrCwpxJIR\n7DNiF0bnbS+tnV8M9L1ORjUoliqn9B1B1HWs065ZAsrbzJRSP4YGGPdvP+D8rIBvWfO9F4AvfoT9\nP935/buB7/4sT3etveXgYzjrH0WzLL5ORHaAvw88DXwa+ANKqROz7dpCJxH5UuBvAT30DfmTSj3E\n3YCaOabuHMLsJ7n2Bf8hX/PUaU2Xda3bAbRrj1SQ2j28AzzNfoLG7bfU59OXVknhQQR9WnkklS8Q\nQ/t2lZZXes0Y5YGWLWe1wCKm9kX2bmqttZ0x3DlsJo+u+vawr0Ma8ZCyOjdqyaNasZphR2kgnRHd\nn3Ft72YDOpfkZaxJstWaJGJJiKPrphL/k/r7bj8kaAOQk2x+GPDYmiL8qFZFtqKcNhwaeRrYd5J8\nxRNKS2ESFfhiQkyDHdjZ0l7PzlZbi+/wlq6Fgtb1Kzv2HevSgC0AqSCGK59v6N89/NmiLv5tvrxm\njNeZDafWXlCglQlgFbCKrOlSS1sXUNk2IWaf3WJULwoJk0BT8J8YIlef0OfslivYY7iMQ2grWNjz\nMv/Lkzu6zcjOlmZl9rYo6sVd2PqHDdF2wKeg0DTtTqj6jTDPg/hRhUUfA3vLwQf4k8DHqXUC+Hbg\nXyilPiQi325+/zOvUuj0/cCfAH4WDT5fDfyzRzq6qeJWP/uT7H7Rb2EyecpQiAvHK2kk8l+LtQpS\nO9ad/JqmWI7y7tF9DY7QdHB0w0edSVotzpDeltancibalbDfOumdItO9daApvkyGyPX3wvC2bppn\nV5pWpmY0rAttCxqvsPAKgmQIy7O1q2wA9fLH9A/r2kZ3a3k6ZIla/sWZmNR5M0HYFXsLgDrAY2tC\n6u+YJn+u2XHU0vw9Sq8Jx5Uqp+dnDMIp47CsQci2MihVrlXCdyf6XGyBrblmdX6hQd0dA/v/sxfI\nk+9qCk2T0UpN1AoFePu6DoEZdeqWda+r28LDHtsFb/d8u/fQKEhYq+WTXFmjdffVBYq9UHvru9sa\neLrerqMrV9O2rcezLFFLDUa2rXltwz5ydd/pQ7RsLcDqejkLyK4Mo+kVNAr3agJIi/23sTfU3lLw\nEZHrwO9Bu3N/yvz5A8BXmJ//NvBTwJ/hkkInkxgbK6U+Yvb5d4Dfz6OCD9RKvOrf/wL+1X0mOwd1\nBf55vlIEfLmtcePXAVC3l7ylF2tP53bdQ768daZbQ8c+wZNH+De22qtEeyxnlaYWZzWVVOLhpfVB\nrWtv/XxXJ/fNhF/4HuXOVeLhPhy9qM/NTjZRoLdLdPI8qxb4UhBUkfZ+ki2d3IZaSVg9OKkb4lkB\nykYI1SpxZ+06DD9q94w5PW2KYDuTkiR+U6cENcXZ9TTbC4ugvRKGdmGuzblgXpYg0ooHxBCMiP0B\nPf+CcbRgHGamdsaRMBpvN0y2zvWrtNR1NGYytXm16P4M7/NPkZs3kcm1lTye25jQNZWMIBnpsJcb\nKlqn82bFZjvjhx079370B+2QlwsI5lrKk2ULFHSfKx+vb1ihsY83iRugsFpxFngcz6mbm7KFyuvG\nK0xL/IO8HRoc7jT3vGruc80atVGFfKFlevyoBp5FOdU5RD9xzuU3ROHpbzh7qz2fv4Kuph05fztw\nqnDvohNkcHmhU25+7v59xUTkm4BvAnhqf7XiHdAv1HIGyRYBMEmutuphrL2WOgAXgFaAxwEGKwVi\nQwv6RdMvczXP8Y2XJgBPRNSK2+usyIBZU9tSZKt9ZNYpXWd5LZKZehWn6W2KqmQUbjO6/kUweBk5\nvGVaN/S1RxHEFPk5RVVSUNbhw8Dq1c2OG50wu3JNbeO3vO7GWgt1mvmprscoO+dvt1uzylZGAoas\n0K28bT1NrTbdrp96qHJEp5h15W9l1tKHG1un1IuMQoMZa9vwz4C2vf7uRGrvdV2UaxYj8cFzqIcU\nO1pChKXm93tb9IbPrILQI5hmNDpjaskFdiKmHfqy19IFUGuGdI+HI3rrUrXXePDAito6sBaoq3mu\n2Xg46huG8r1Om02/r22hWysyq5+Lsi45ULNDvdC5c/+1DOGl9kYRDn6z2FsGPiLydcB9pdTPi8hX\nrNtGKaVE5OG5m9dgpkjrhwC+7AuuqroZmxvXNn106nqQ5Tm9ZLxS2LcWeC6T0qGpB3KT2fWK1kOr\nC8RDXUG/q2PvgZPoD29u1as7dT7TsfgJqyEp15xYf52Qv2wV3P25yIjjIaNwr64rOc+PdDvnsFcX\nThaDMefZnbraPvD8ulJ8lOyt9CyyXolvu41aFpUtVhxvNzI23SJMwLZPoKuUbUOBiabrqTTVY7Sc\n6W6UQdTRDMuhMpOR6PDayiT4ENUJa6IUVoG7HkKvpz01O+bGs5ar+5ohuLtAzmf4LnC6nsfTB8iN\na8213/6YzgOtkQgC6tYgtj/VvDjTlfpRQL9/lTjZQh29uFZxYF0oq9mm+d32W1L5Qrcmr1stnOCP\ndfFpdZZqMOh3iCjHSyos0SCvgViioF5o2PGWZEvnAe09jkL9HcDfTlBpSXnciNd6/bBV9OqGa0u1\nJC0vSMtlXYCtW8UnWFks+85GXq+eDTXt/1jXIt05pLz19iMc/Gawt9Lz+W3A7xORrwUSYCwifxe4\nZzWIROQqYJcdlxU63TY/d//+cPN9eGJP/+xWt69hSsnynCAe4nthKw/k2lpKtZu0tAKRSjksuebl\nLlVBphb0J9daki/1DdpxmqeBFuq0QOEA0DolgLXAYybEFXPZUUFGLxhzXjWhx3lxRn+wRTDYIVVL\nzrO7pOVyZTfWW2wBkNXBsw3x3J5DVuBxjb5dSy7frMJlNGgntWmAp7as0JNkEEHYIxjsgLhU6rwl\nySMu2HQXEg8pNLT30wJQQKBDhC15HpoJcidEbLjJCWfVa2JXg6zIdL+c+QXsHOiF0ZpFjhWrDbwR\nqVwYD6/QsktRwPaV51B3P9mMy0Os9h7NebnesoQ9mFyDCWYB0jNe8Ax/PEcM3dma671bD8lK87TO\nwwBPMRgTAIrbuo7MHpeGLefvJLUX5G3Fq2w5J+SWVQsOlyGxV7HfWxB4kW5lYvNpTkjcApCVplJ3\nDqlePiH7eFuBYWNvjL1l4KOU+g7gOwCM5/PfKqX+sIh8D/ANwIfM/1bgbm2hk1KqFJGpiLwfTTj4\nI8Bfe9UT8EP9IkPj+ncZQQ7NUgrdVyUwml6vautaJTsA1N1HWl6wKKf40VViC0DrFIKtmdqJei+d\nCbsl19JVul4HQA9ptdAPtloyNraYdFFOa/HKdbYop7oFdDJuOmVigNVSejs1I2vDXF0z1ypoEF6R\nArI/x3EdRrXhNz8ZAU0M35Uv8oN45d7UNPo1+TXXXJo2y/Na0NKSNARgxwH7rSvtTqrG1NGLzTXP\nL1AvvYI6Oter+51TuHq8+t1Ormo02OM0u1uf/88fCl+6f8qeBaBovdfThEL1tKDSVIOLzY+4Cxvb\nyiIeQv+4BiEvClFH51Rn7RAjaCCS2AeWjRdsFoCSbJH2+5ymt9gd3DAABJIVjYhplGNryDyAfqgX\nHJZabdmfQVSHIS9yxb15YKjxGb5cGCWDtpKHtcjroWYv6Nzmp++RfeKYs/uPqGLyaibgh9Wrb/eY\n2Fud81lnHwJ+VET+GPAS8AfgVQudvpmGav3PeBSyQRDVvTvqkFoUaJFDQ4F1a0earps6j6LWNKED\nLl8hdyYICSKioFd3dJwXM6aZjy9HEO5pALLJ7qxo4uzQnmRni4YhFg/bCgHdifsyMHPbQKwbKgJK\nCSnQ+7PSMrH/6i+SBapeMtbj5o6HK8ti+gFBh/bcFQSF5lyjXHtA0KojsVaHduzqvch0Hx+/1xI1\nrfXw6i+29/PQFtaONeSRDtC7495qFni8so/RwTvxT+9pRt+DU6qXTyhPlvjLAu7P8I7PkKtT1M7d\nNp3aHR7TVXaaZfzycY9/fc8DCt73xIzt6+9FvfALr3ot7QWKybcZIooWptXeQH9yQDDa1wXM/WM9\n3lGIn+hWDNbqvFBaNvU4oMdqsEMxGHOa3tIK1mMHgMw7YNmMMtZ5wurUkl4aFQ13n77pijvNNQ0+\n9jUtfhwZL0xkbbGpFClqOUOdz6jOUvJpyezBGwQ+G2vZ2wJ8lFI/hWa1oZR6APzOS7ZbW+iklPoo\n8IWv6aBV0VJDriVt/IGWOCFAiqxZrVsG2CWV8VKkK39b601BLZopvS368aheNQfegn6wpQGwmJn8\nhqlAB2e1WjSNsBzPoT5P0BMFxgNyVBAAPZm45+jUwdjzcuti7CrSVY4ehELxCIs4mxsrVQ6+pycq\naLxAV6izvGhCV5bhZhQd6nCovS6bo1nOmuZglm69TvDSAVcrrNplkXXp1wD+6T3UxfGKLpv+cM2z\nYO+302JdnV/ocxnqFtZzSUmLi1oNvD1eIePJNV3k6wqzGqvuzzQI2fqYp55eGXML4uMo4ssPlsR+\nxPue8In9AXNSevs3wFEsFyOV1CIZDPtrikr1omueH7EopxwvYRyd0A+G9Ld2iUf7qMEhMrwLoyH+\n8ASJTygN683bihuZHquWsHUFtq9zmt7iztzjcBGQlsK7t28x6V8lvvIcKnhR68Q5VH/PsvXsfkzY\n1p5rUGQtYdLYV+wlW7UG4qXdUtfURAXRG5N21nXHb1gK+ze8vS3A5y2xqkSKFN8PWhTceXFGKhf0\ng4mW5TegcqmnA81q11XPtdYBoJouXGR6ghnua/21YIJfmuZxl2mU2Q6pGDDqijLaVsxOeETCni4c\ndbTg3P5E9bZu/ZALOkUbdKDRYstksZLvKaqSwPPr7axQY/25ASB3MluY9gqtfJodA8uw6oR9ZLQP\nvS09nqmpzrfyMF1PzubyXNVl08n0Yf1b/Ae3UM9/UntVV0+Rp9/TCm92gcf1emxuRAURMsm0x2OB\nx7DSHhayrPfp0JVdyz95hHfrTL/ADgDJcL/R2EOPpQWeepvJNbiqw3ItD8fmYCxoW5vNV57joio5\nzWLSygNSxuErjKOI0daeBqHhbWRnjDfs4zlSPq0FUxDB9nUepLc4XOScpvqYFoC+cMeoYFx5DpXc\nRobHTV2XiQTUjQ3tfXHeAVeY9FHaI6xjPW7A4nNnjy/4lAXq/BB/+zo2B2DVDQZhTpkXtZabLwHd\n9si1qrUDPFbmpgU+fvPSunUqtkeMAsgXxKN9/GBrNWyzjoFlWUHdcJT9Xic2X1CAn2iV624IyWlD\nDDYJrztkWm+ne939YEtTqSv9XQtAWoeucYcir7f2hS98r24Ylpmw4+pGHR27ZNhcl6GBW4ZgXQOU\nzJox6gJrJ5dlC3Ij43XZa7dAaYGn/KXPULwyI3r3OV5WwM13aeAzcjethnxrFgyuqnjqVRRm7F+1\nRXMQ1VprOk9iTv3OBemtORenIcnggnH8An4UwBXNuSnihCzTNVC+BHoR5fVqOjbAvDqnv3dzvYjr\nrBMKtKA0v9DsSnPuaekxzfQ/gFNfn+NTw1fYjvtM9p5p2njYWi+b2zNRBBXEnGZ3NPBk7alomvn8\n/OGAZ7eOuNLv6f0lW6hEFxeLBTQXeByz1yYXx4yDmCJYn+NZsTX3cANAnxt7jMGnhHSmJ3sxeYxc\nv0BpWRH7mQYhM8GsWzm1gMcQE2qmmhOiExMeIp01BZJZDra18NiIczpJ5MvyHG6736Ac6lg7rCU4\nqGRU55Ra7SGcrpW2DTGqmRAt6FzkinuLkF5QsZ/kxH5SN0gTpfAdVem0XOqYOhB4OMAdrujYAU5d\nyuok3KpAt5OMqb2yk/h5flRTnK0StM3V1ePVJQkUTofSomkMZwFIy+f08B/cgs98muoTt5n/0jEX\npyGT9D4x4EUBPN2jGIzJqgU9P1w//tbMc5Aa2m+jrhCarHnnNrvtM5xcRnHngvLeBWf3I2YPepw+\nUMRxyNPhIcNEl73K0++pK/Qjr6fzF2eHUGb4QN9Rn1ZDZ6xdG+7r+hYLQqagVDA50OFunUu5v2iz\nCxcl3JoFfN5WzlPD57XXcvBcc18MWSetFpQqJc2OOUnnpJV977okHOGXj3ukVUrWf4FRb49+clMX\nYtvFxLpSA6fY2y4IAzcq4TdFx63FQ8dc0H8jTLwNkLn2+IIP1BNcFPeY0+byx35F5A1NO+TVsMcK\n8NjJ0lmh29BVFPQQW7XvTChi20oHTiW/079FlU1Bo9uFNKvOSUsdGown1/TK38qqFFldg2Np3S54\nNl1C56jhbitE05L293r4UUHsa3Aahdv0gy39/c6L6obV0lKI/ZLIs/tz2x23W0bYv7WOKUED2Dbn\nleWtiSMGStMIzU6yLI8bZmLSpqXXiwDfUL1tozqTN3LVxIN0qb3RYQ9vEhOOfZK8RGJHjSGImBdn\n9TVEXq+pE7LPQCcfFEnPAfyiNdZufx4bdpVkCxUday20yRw/LanOUpJByfLcJ449ekNFOPb1eaGp\nz/3BOzVtv9L1LLZjal2wazy2y8KNNTMR4Phe3RBOATI7RpItRv099pOXuTFsT86xrzjo5WzHfUbh\nVX1t6MaG5kpB2TxgQM8fU6pbpGVez0TTDGIfw05T9cKn52/T90ZNd15XEcH+b73k8fYqHX0N8Oh7\n0YR6RalascMKlXpbMcnJw6npG/vs7PEGH9DMmGSELwHjUD/IsV/pBl3BrlZ8djsfug+9Czxd8UFH\nhfg0O6UfTYh3b+rV+7jpp2M9mXolFsQ1fboVWjP5ERumshOY8noN3dqu7gwA2XBeFBq16oupPl8j\nRc+V64z2nrlUQkiHbYZNq+O121iyhE/sNSE3O7lZJQhbQe62jOgey676S5XrTqzBNU0sKLOV+pa+\nik1/mjtNuwCrTdZvmpTZ0Fs5GNeMRqLd+jhFdQ5WWCHYQp2ZzsM7B8h7dAFadJriXd9G3v0scuU5\nTqpj5vmsvo7Cy7QHlrhCHeYeOmFO+7IFfoJt2qdEwG8mwZq4YlhxBBHEMf7ODP/GFuGtM3qvzNg9\nXBJEiuT9N5B3PKm/c3SfYHKN0hRNp2oJ/T6+jJt7YjrPFlXW9rK6ZidyI28jWa5bQiSHxMlNRuE2\nTw3PiP2q7nnVDyaPpIEYlJWmlAN7B8/hy11O0jZbsRdUjMPSANk1gosp6uzFVe/SpaWbiIJkOVyJ\nWs9LYdhvqOUKm1GPvX5eI79HYIRdJY6JEx9JVlmJG3v99niDj83TKEXsDxiE+gGcRNeJKw9175Na\n3BN0bHmw00p6t4DHsoUcZd5SFZyk95hmPjvJgp4/1gWaVq7EhM/KzgvhB7Ghgc6aHJJpPlZUWc2S\nijwtdtm6iQ4AwUyHlpKtGnTUnUM4PtPnen6BFBnjg+eYFg9WWgnYfMGlVOMOCSP2FWkppKUHlPii\nxUYDL2o1yFtXqFurDbuX4nsETtuB2i4TFrXsrd1tGF5Af1C3wg4GO5Q0gDcvTlvHC7yo8Xqs7Rwg\nXxLiH0/hySeRg+c4yfVEOc31d8dhE54t/bzV4A5o8lFrTMJefX+tblzLDACpZIgYoU1/5xT/xhnh\n/RneJEaefUfrK1aOJ1UNEcT1bl3rdkStwaj2IgqYzSnuzPC3E7ydGTI9QcVDRts6x2R75HDyMpz9\nir4fe0/onkX+alwxuJiijl5sGt8tZ2xfeY64P4D5Yd2uYhxFjMID/R4+uLVe/dyeq9WBOz7TKhFZ\njrjv62CnpoY/zOziqB9MtKRRECFRQLSuGPuzMBFFEG/qfKw9vuBTOdNMmRn5/JBJdEW/IKe3my6U\nADunyOgI5Uq/u8BjxQeNB1Sgq8ufP0uYZj77WcFB74xxpOnUfhRSVudrJwBfNNlB4mFNj9Yg1TQ1\nS0uffmCAwp6LLRptAZApXDyeou7cp7o/I3/xTIsy3pxriZciY3zlOabqvGao2XonNXtBT8jWi1hT\nD6SBowCyWtUZLHkhoCzboGNZXr5vCzMDc92rj2NB0YRESiO8enyvyZvZ1flSh6Uk9jW7yqUL9weG\nEaf3f5rd4eMnIU8N5+yZEJ0O6XyyGU9rw52aDnyU3jKts8M60b6IPHp5xTicMwj14mAUmsLJIm3Y\neNCePIusBsb6mF2qu/m7TK41gLCjFxH+O1brmgC9WAoior1n6rzakQlHjqNmjNeFkosqo24mWGS6\n1uU0rWtqvOMzGJmi0t4W42CEuv+iPuZLr5B/8gi1LAmuDvCe+TX8dz5tGuclWvXh3idRr7yCeuk2\n2ce1NxGZe9h/8l1cGzzJ0fLlVtRBnd1tlN279Hnr7czmqKNzijszffxlgb97BDe1wOi8OtcF3A9R\np3ebN+px15EK5UeNksjbyETkq4G/ir5jf10p9aHO52I+/1p0M7lvVEr9gvN5q5WN+dvadjYi8jS6\n84B5QfiIUuqDr/caHl/wWWO2JkXli6YRltXbsnpUWU6tutxZiSlLIDA5gbRcMs0GnGVC7HukZcQk\nLhmHhwxCcY6rH+6+yWPUYpdOEtsP2pX5sa/q2H7A5TRwoC3qmZa1iKUVK7UTWxBa/bmgObZLE6eR\n/VlXkBr7VfPyYkGm01nVoReXKm8REwLzOGqgbfJDgRdpkkN39btGl6wl4WK3icz3ooDT7A4vTAN+\n7UwfaxBONVi4hAHDJrQeZ0FBVk6JvJ4RD80Afc8mpmhRe3ywkxhZoXCPlhhqPQBrfnafJd/xPuyx\nq4VuoBcnuoB0ck2rNuQLDWyu522+K0qRlhfcvpjy/Jn21vd7BQe9OYNQGIWrHXmtqXzRjK3tZLu0\nHW1TXf9miRvTEy1Dc39GeW9e34docgajI1QQEezdRJ3fNuUFaVtMdbrUHVfzBb6MTZh3S7NCL47h\neKo9dYwsk9P0zuaj9DNQdJ6DFDEtQvxotyUE7IYbXXJNWvqGOj7Xz1+wRX9yrc0efR0mAsEboHBg\ngOP7gN+FFlL+ORH5sFLqV53NvgatAvMsuo3295v/rXVb2cAl7WzMZ7+ulPoPXvfJO/b4gk8UapmS\nyTXm1Tnz/MxQhu8wMSEFcbaV0aCmddYTk83JlBn0TYhssEPqVWS5Tvg+u7Xk3qJZOZ2mvgkt6JfZ\n1sS4LDLKTCfQ7eSCJhz0Bzv4YYgvp3XOZF6cUXg9xgfPwfC4XcdjbedAi0HunuIPD2sRSP+de8iz\n70CuPMc8VJznRzWjzw/GmiQRD1sFoe4K3ea0XI001+y1XfY3t7lXXHl6gkKz/gI/oXDEW7NqoRUo\nDp5DxbcbcUsbPuwUSdb3y3oXgx3OMy1+/sy4YJp5PDXMiLy+YZ5FjWxP4nge6YwgiPCDcZ2b6QcL\ntuMLzdTqMLSOlw0A9eMtgsABCli9Nw/rpJnONIvP67UIDr6ExP0BcaXJLcoy/ZbNs1JQsCinnGYB\ndxfClV7jkVqihr6H7dybKNWEHg3NW5IAfydpyxhZb262aBY1y4IiEzwDBJzPdLhwOdPXnQyRmzqf\nYq/ae+4pXae0fR1UTuwPtJdk+uioByeo6dLcl7wm7Cj3fkch3hNDrYiQlroA1/YjOrtLBOxu31jL\naNM1ZUC4QC+vNDhMs4xSHVH4Gf3B1sr33mJ7H/Ap05UUEfkRdMsZF3w+APwd01TzIyIycTQz17Wy\nseSnViYAACAASURBVN/5CvOz287mc2KPL/iYArd5OeU8PzJdKUP2kxkWgCTsNSKPNn5sqZ1+BDG6\nHwg0Ia5kxHl6qz7Mfi/kNFOtSeo0CxhHjQcQeT0NPMvzVRKDEeC0Xkc82MEP95gXZ3VSP6sWHGUv\nMxlcISiHLY+lnvQGO6bQcYLcP0LSVDfdcoBHV6zrScWXkCgZtT2dbk1QVayEDYEV2Z1uiMdSXK3X\no4HnEM7uamKFyVMFyRC/0xY8VUvY2m1YfoszJDXadbbplytSasBnbrqsWntqmJkwlHNuvhMCc205\nQ5jVuZkgiOmHI0ZhwYP0Fo7IMqdZQFpV7CcnBqhMsbKbN+tILT3UDAAFXkRZNgyteXFKKqFufb48\n1yDk0I/nxZl+pjOPZdmmMbuK7O71lyrX5+gApO3L06IdO96y2/4DoMw93S7iLMXfMyHR5LAdRnz2\nOb04yAoNPHvPtJiDNZDOFnXOCYyCtQFDcVXRQQPQ9W39vuxstYtkz+7qZ6Vbfwe6vs68TzAl9sva\ne7/IFRe5DpW/BbYnIh91fv8ho8oPumXMLeezl2l7NZdtcw24w/pWNnB5OxuAmyLyi8AZ8OeUUj/9\nGq9nxR5b8FGez3l+xHl+wjTzOc3C+gW1ADQa7OmeNFAz0sCyY8yK0SZVjVDheXaHrj0zLlotl21S\nXtO5e/SDLWR5rpPoDui4Peoly+tW18FoX4cmClqU2QfpLXr+WCtJGyq4uCGdsKe9tWSo+5+YinsL\nPLbQL/AW+vICiI1sT+vazQKyS5d2Q27WLms7bmt0WsBzbPomDS9QY32t0tsiiIctsgDAtHhAEEZE\n8QEB1wx93AljOQzCUhWcZ21G306ymmtqCWe6ahCXMKz8ZMgTe88QeXe4O7eFynoMDpch41CHbyKv\np49j2nLjJ00ey61NuszSGVHcazEFX74oib0F+70Fk/gKQTys73Xhe2TZotY1e5AKV43nE/sVsT9o\ny0GZiVj3IHLOJwprhYWuzE9dg2XybWpZUmRCkUkT0jXPsEyyVUA3RbEu8IB+NtTiXu31uDkn2yzQ\n64dwtqZBHTR5Pljpctu0B28AS5UZwXCfUaLzdAumQNl6lm3x+eu21yavc6SU+rI35sDOKTxCKxtY\naWdzB3hKKfVARL4U+Mci8h6l1Gqjs9dgjy34lCrnPD8hLT3SyiMtpRYg1A/ejFIVjCL9UJaGouqa\nXfWvq1lxV5elCohiGISLuuVyWgrjKGnCDFaC37J3LPCYIksVhTrxaTwD+8Kc50daNn6Rc28RctCb\nspPoPEY/HunJrUMSECOoOs2PWBRTLnLFaRbWsiaQs5Ms8MsQPzCPiFoN0XTN9Xhs/xQ7FqvbGpbU\n/IE+x9m8mSRMHx5z2FYhqFX/vjP3GIclg1C0BxUOiOJxfR8smeOyFhh1gapbOOzQ6Fu1WxZ8ulI0\nwwtd9zLYg/4RL81SU/nvHkmz4Sgb0HULfiNXdeIhnpANTy7KKS9MAz51FpP4cH2Y88z4VnO/Y8iM\nl7co2uPeC6rmvuRrjuXmm6xFWpOtuRxz7a0GfgVqWVDma6pmQSt6DLO2ermzOHBNilTXt5mwWnmy\nbLVosLkdSfx2gzrbF2o0qBXf6/fHUvBNFMH+k1hfl33GXABKSz3vTnOfe/O33TR5WXuZR9nmP2NN\nKxul1B/mknY2pnt0an7+eRH5deBdaMLCZ21vu1F9s0wpPVHGfsW+rwvZ3NWO/nmJL6cr390Or2jm\nVTiuGWgWiB7W2bRbuBl5Y4oqo/AKgt6WfukMU01s90tbkLo70cVzoCfH09vIcJ/xYJd5dc5+7wwN\nGjrZ3fPHsDxvREyNJIyldpdVju3cmJbWGzP/Ko+iyim9fC3gWPp1URdNmgnEo9Z2e5ROr4tySm+4\n28jr2xWpDZtZPTZfS+TbeiRfwrpldVFBUc10MW8nj2HDe7aosalJilaYT0pEswu7nohtmrYzbref\nyHJ9nka+3xcdsl0UXl2jYmtguscqVU5Z5i1wduu7VswBA19CDnoZ08yrizp9acKhtrA48no8NdTX\nsixDrg/1PTpeQs+/II53H36sVsuFQns+NQnBqIUP+8iz78Ab9oknMd7kzLDddnRd1FWt2KEenMKD\n09rzUKZQl2QIuzfah/c9gmQLNdQFtsHVYUP6cXTuqrkO9dXAaPOypihZ4lg76N1GiU7eSjk9lBRa\nad4Kj4IWTl0U3lqP/i22nwOeFZGbaED5euAPdbb5MPCtJh/05cCZCamtbWXjfGelnY2I7APHpn3N\nM2gSwwuv9yIeW/DpWuwnjELd4uAi16se6wH1g0bCYxTuabqvk5cI/BGF12ZoXWZ6xZ20JqO666cN\nkRUZaqBDPrK3Zl82LGfCcP3JNfwwBI7oB1v0vVEDPHYyNfUObvuAOlxWeWYM2iEBez0ugNSKAkWm\nQ5J+z4yVlo7pAo8VtGxo1u3rWZRT6IX0hp+PTIx3aVbFha0Lqs5XalXGUdQSNV3HrLPj7TKcalWE\njuRP3bfH/XKRNfIytvdQPRCh1s2LEzChz34w5KA3N6GtZAV815Ey3L8FDyEf6LHVhcuDMOepYVaP\ng9XQswl169WVquCp4ZK0FHqBXmyllcfR8oygHzUEF8dsK/f6d6cfD1A3glPnF3qsJhPddfXGNaL3\nXLQ8IgCyguoF3Q9SkuNW11EZDQmG+3oMjZ1md9kd3tAh16t6X8Ga9tzK6fLb8mb2btZqHxIFGoDW\ntRKxQBqFWicuiFDnhwSjfTN2OeNoRlp5KznMz9ZE1BvSz0cpVYjItwI/jqZa/03TcuaD5vMfAH4M\nTbP+FJpq/UcfYddr29kA/zHwnSKSoxkZH1RKve7K28cefLp6ZZrufLeO86alRz+w2w50IeLZXf3g\nmkr6BoQSlFF7fhgIrfMIFuWUyO8ZSrW2urbFVIMDGphsgd75BXJVa5TFk2v40ZVaPqcGHhu+CnQz\nNYmHWnHgEmHLLgC5Fnk9nZsyNFt73Zj+OLrWp5n8XBAqVaDB7pJF5KKcQmjAqUjXhjK74+dL0GpL\n4Cpq6+3CFgDWE7QhdtjmgLYFQalyDag21GbyDpiOmuKunIc7yGi/lXPzJaxradzQmh7vtsKDPR4V\n9Zj43novUUxLaPc4O7a1tKMMoXea4QdxXSsGmlxhdQvh/2fv3WMkybLzvt/NG498RGZlvaaqp7tn\nppecbVHcFSWvoJchQ34IkAgDNGxAlgTYpiBYIExCNuA/JFm2BdgQQMCwAMEWRBCSYBOQ9QBo2Pxj\nBcE2INgCTImkSGpJ7a5mOb3T7+6qrqrMysrMiIzI6z/OvTduRGZ19+y0uCv3HGAw1VX5iIyMuN89\n53zn+6SUlObPKGOZSfIA5MgGbsDUZj3r+cp/baprS1lZf9MRtT+Awz14VG+KzSePKL4h61RIFnDk\nAZ310F/8vb4399HEwM4D9nclI1JAp1g1DOqADctvNRzA3pE4oXYzIRfMzmo/rMsgow3K2V46yJW0\ngXR8k8qC9yguWCTfc5kPxpivIgAT/u6ngp8N8OOveI1/gLWysf/eamdjjPlZ4Gc/0wFvibcYfBS7\n6ZFnmZnpQ0w+I8oOGQ+O0eqU83zOs0VMqiX7cYOI5smJpPbDhTTHAxBS3Yw0oAk7UU9gq5yJA6hy\nXVwLVqOju5gXVlrk+SmcTVhf5HTesYviDStMOr4JZQt43E0WJTIwFyWgO433Eur39h1euS7QOm4C\nj23uO6OvaLDXyHBC4HFacA4IHAi1tc2cQV2buiwaX2vvPOkIGlrFUu6qYm/t4Hp2boaqBkF7HG02\nYZSgysIuVqnMTDmHS5v1MJvLuQZbfot9STDvrDekWhy5QHTq4job6chnd5/3VVlQGFrF/n2aqhCR\nP6/ehgJs6S1qZEqptkrUFoROljF5JfTtYXxgyQZBxhOaFyJlLp1q22OJ6/Kb/bs6uMM8NszLCQff\n/zsw3/plKEpW9ybMLAcnSkqgRMdrosSguhHdW49Rex/D/m1Olw/51iQDVujxE3bHN4X5aIenQ4O6\nRiaU9SUD27/D5eopqR7QtwOi8NQ7yXoVjGA2rAOyoXCmjAD5jF5XSuKDeEVv9YYyn8+FRRvx1oJP\nrGJ60ykwrdePFiNnECtfyamMmM8RJUE9OaqnrUNhSWwJReFT+OuiDUhuIW6rAYz27wgA2Sl9xz5y\nTdOXzos48dK4B9rShX0ZKiLqLEj1il4kM0iOBt4WBt08+Je8JzQXRHuMEVFjIXbZkFskwWwhLnQ9\n6NTCqFOSbN/33DxxZA1QNYZ4XxZO9Vh1IYl6cryOoOEsDbpVbdVsfXnKtEv1Ei+gRlQFSluCgdtE\nr93na9G9qQHGs+HKKelgjxy8m6w7d04SqTKRL9sZpTwN3r1n0oF+BLsBd6AfjUnXHcgDrri9jlWa\nSkmqG/k+S5virNJUzsf+HfuZAlLOeCxEA+oF15WcHPCo1L6WlqHs+7OUJwvo6phxsoD+U3b378gm\nx44baKB6Nkelurb9HgZGcu2IkpoxOsyaMkzdkPkWNYg5IfX7sPsajMTP41PHWws+W5lFWpqgYann\nqOdsBpZcFE/qm8EJg4YDia3XjrTQa4v1q/1bnOK00YpFNfVDha6MlJtlba1dlDLAZ4201Pim9+3R\n0VCyGzf3EVDFwxvUlWQiO+6nEyeP09zl1UOkEZEFMBOY0RFZleD1yjbet1ByQ7mfSJSl3UIppaba\n92cYby7ooRp3mHkpQPf79j0L2xxWfojXKWv7Y9qiSgFNAHJ/V84ILolRjnBgh5Jzs4TgGglZjzXD\nsaxBxb1mG4CoGXDuZwjESJcz6S/Or2DviHT/DlVHSnW1HMySVHfJ1ZXPOPOy6Y/kstKwDKpmL2C9\nWdJUvR25droZKutBdoEOWGIqTetNVxLXfkWIRFFfp5inVoVlPCa+e0DvIq83S0HJTXUj1PvvUo2P\nWOQPyKuYsb1cZRZuRj8Krvt9IQl0lhWduWQv6mBYn+OrM/p9K4J7dVbT72f1NaWGmYCqU0sPJZgG\ne7WzbjX196zLuj+PNxtvL/jM51KbPr7VyBpMlFJVQl+XfkG9KyzWC6blC0YHd64XOWxJvSstJZiX\nAZAv/S0mqLjnlQzm5YUvUVVmRWkVdw3I5Hi2h8oON2yok6iH6lJL40Nt2WDDLYKVKUn1gHJdMEqc\n0nPdQ9Gq3kFHutvUILNab22bBFeqc748ZrWQBnLc29Cdc/lJZM9ZQ2DTqwwsN0uJRSn1+cGXye2i\n7ejy47QirwyprhdXo1RNJtiSJW4zAlTZoZRu9qw4a7ZPfk22I4OfM6KOpsfI69a1KdQOgML+2Ian\njNOwc0Kws7lI0AC9gy+wYOqzPYmlPYaySR2HjRKguXgEk6esnV7a7Zuinu2fYDMfq+DB6ASm51vd\nYWXQOsg48lmzPwmo998l8QoFwWBo1heb8OO7otKxroCYnm1N5ZXiZBmT6lOS7m3ZDIBsvIoV2vV8\nAptvs1qI6oOz13DEnDyvKwTYaoH7t9VqdJYlrvwa9uZeR6n7tUKpzXmptzje2jOxviwo/+HX0T9w\nIZL0O8eo3o5fXBwrLOroxmK8YEoUJ+J7ss3u+jUAyOmVaRXLLm32wqs0myipnU3t5LV7jlYx6Mj2\ndora38faULtyXaVXIg0/2JNFBJqLBHhKrnzWukFergtPsQ6zHm/f4LIfILR5cPpYUjqzC2BVm+wB\nkjFp+Xw+3O7UCaNCc6ELBVzd/JOd3VCAGTwi3dkHJuSVYlIoL2EUkhZ8FhK13j+IrQBkJYXyztqz\n2hpftwXdeTnzPaek4+SGen5RDIuAAkAvyXZmJyLW+eTEN9r1bC6MO52QjI8a/lMOhPJKehQObGpN\nvBxz8THm7Jm85uMzVvfk+ckPnML7p6LabW0rnPcRqdCPCbKbDfCpChkSDh16Qzvz8Rj1gQzKbwiD\ndjMpX65mG3TmvFIsyg7ToiDpnDLMDuR72ysgz+mE14oLd/4c8AQzSaZYCdXbhTuObE+qFwHwzMvm\neMXLxgU+j+883lrwMZXxU9jC3rE6ZgGr6Lpwu6JE90B36z7EdVEVEKUNllm5LqTHUBU1vdWZptnd\nso6GG7IqAKRiiS0f5Ppynp9duSaUMV7MM1KR3KjREBOnHsgcUDorZmea5hvNy0v6KHrd2ySd01q1\n4OzRpgx+u+zl/m4zGTmpdp4ksYKgbrELhxvDeZOqIFVddtM+o0Sa6uO0asw7qTKH+Yvm4Chca7/s\njOzqXfAlVM3+TDg7JBlnl1RL2bIuva2uvcHCBS2kO9fXQotttqxk118VvnyWV5vf/SCW167nVQjA\n2xIoJrlnjq0vcrFKsCU+dXCHKrRCSLuBGVwdlSlFztY59M6v6o1Bq0Sn9sc1SLgNhbXTjoisCvgp\nqZ4xTmNvq+DmpNy16Gbh1P5KBkbDsJ/RuGOy81nmsibdGKzKQdZrSjAFmzh3b7dnwj6PNx9vLfio\nWBHdyEQHajyWsopSYK5nI11nmlVSot2kehChk6W7gZwRnKPfRs5tMkpksQVfzqitpsvGDRCyqCIi\ntB5RdVakZrBB43bHsE1UsXGsL+7B2TO/G0zdbtAO0oafNUozoAm2annJqFSY2Scv914JwwNJ0Hso\nyubuOPwviWV2w7Kt1P7Y9xx242M+3HnIUW9hDcgOrGnZxxinHBGKUVqFAvaOGmU4N33vlKzdtRAC\niu9BIaCdxALM/aiZGRXrBbo7sgzD0EGzRBNvXmO6g969JRnI+AzePUGfPqdzeSWf9d0vkvf7nM4/\nYlpsuogedHeaoGOPN0oz1PFd6eMkEToQDFUfHMmcjgV5c3lCNL7plcVfFY2Nk9vIOfFP+7NkHAtL\nlrGgkZzL9zg7QacZu8NDhr0DhnGd0YWzWVG1lj5fdwczKlD7C9l8uMFSqEH24qIGQiv/A7YMnTRn\nuRwDNNIZlWMNtt77jZXdOm/emvtf5nh7wSeJUO/uya7M+vO01ZnD/ocDHreoUS4x3WFjSFH+H9yw\nJnydJovN/d6VsvwC2xX5kRIxYjvP53Y3HcGaupcSij8iDfzIWlBvCzf9vhG2Tm9+49uYx2dSlz8+\ngBuHXg4lsk1Yn7VR1vMw7vUvHmHuSb3f19eTay4vpxDQnhN5WUSJeOt0M1Q2q+2Sg8xuP71NP5rK\nkO3VmfQ33EIETXkcgDwX2nC2VwNQYGOwbRPSsCK3oYAoSoj0EKOEMOLCzW9hLaRfFpUpmZcT2W33\n++jB9xEd3UXlM0x3yGn+gJPphHwtC6Rzjh0lFbvpkbi7Xk09+cSFEFFSYaV1d2D8SPxukggO3mke\nRD6DqzM7vxW9HIACoVS32K8vclS3knkgqBWow/JYOPRpJXFM9hSd7TFyqhYgSuPufUKn4DSDvZGn\nYDeiBTzri5zqfEmnH9PBAtDejpQwuZL3insQSSUilGPy5IxXbNw+j+8s3l7wiTu1ZI2jSQfRvulC\n4DEXj2QXNr6JDhblUPa+HW4YUeRsOgzile+vRCFV22c9l1yuzrk/k5LHD+wu6IVN7LZtt/tcUf06\nbSBqA5C5eAQnDzAffULxq8/IH8yJEkP0/oT4zikcH6BuHGLyGSo7JAoWtVJ3iOwpMvd/DfPr3yL/\n5eeobiRmYuN0U10YC0yfFnRCgkBAaVctl1NlDP2Vwszu1YZzZxMvyb9xroqVNJ6t5YKKew2acuMw\nbOmxwbprh+1p9YcyAxReF27eKAxHkwZ8ljsPhD3DgdmzixMr/Fq/Rpqs2eta5935HHP6zz0oR9kh\nxlLR3etrFaGzfdH2GzzaLBXbPokBL2DrAKitdNH4zDajXF/k3i9KLeXYG0AEDS8fQORxutqa/53A\nvs2+nWFjSG5x35tl4zWyb2vo6Mts9niq86Ucl81+PABhKdq2z6oANWiXVTc3ep8l1OeEg0a8vWci\nruVSVMssKpyxyasOoySpBUAvH3kBUDM7QZUFOttnUU1ZVNOGWVq4eLjXcuPs5bryjX1ferOPNUox\nLyecLGMezCK6GsZpxfuZlHzM5GHzhmj3VazrqOpmGyDkAejqDCZPMZ88pnowIX8wZ/IsJUrX7CA7\n9xh7k+6vvEKCq/9XpkQvJvIaH31C8fUzLr9dESUl6bMr9NGA6EZeg5B7/9f4alSoPLzl+8E5qsLG\nAmpmJ8ISs8Czfj6jOhfwcfMqLjoA2UwoxdZyIsxO3dR9gxzQdicNz7+zschnpOOblKn48Fyuzr32\nnJ9VCjYB0uSeMC0KpquYRekIBMoz+EILDsBaTVe11fTspB5+dooMgM72N9hbUSdB7+yTqpuyAfHe\nPPO6rzYuZHDZAtC1EZQzTV55a4W2JoADnPW8af7Xma8kK1lWctw2m1HDQAQUNl1fnTZcMEjtB2MD\n4HHyQCavvDWEV2lIU28PYZYTVJR4FXd5wVcLvn4e33m8veDTsbeHa1L6nV7PlluE6ebUbV2ETC+/\nK5u9oD/YgxjvYAr1gGgIOi62CU76OH/IwfAdkuElI1sDP+4f0jcp5vTjWv3aRVjGsGUk7zrazVBb\nAIhsH5YT1P4UPZuTHM7IVit0vLbAIf0wtT8WM7rxTcqgEZ3ORZaEnWPUhyuSYsVw+dwbj+mj/tbM\n59ooVuJYacs0CoR0QABYbbKCncsIQ2WH9UwIIs0S7jZVVwfnqS/il4e3fRalKTey18qUdZaKvQba\nWYMjTrhzfPGIaHzTKyU7Be32TjoCdDSy18KFteJuvn9edXi2qC0/5PU2YdwPP7dio5zsCCx6IE6d\nV2deD82rFtgBUaegri2dvxGOap3NIOvT2Ul9TyOc65FBXQtKWzIf5TOf/sYcEWDP67wp7ArNHp6L\nJIa9HTrJHNWNxFrdfud6t0vnncyW+qy9ghWHBfxmksFe8zN+Hv9C4u0FnzBcJgMNYcFwB1yuC4xW\ndv5BDNsaO/KrMz+fA6cN0ct2iI9PVqsbbEnrzeUJo7hHOnhXVAiuppjZY5m5mL1kst7ZRzsA8rvF\nes7BKUSP92+jdYLKeqRJTPRgIh4pTpH44B3UwZ0G6ACib7ec1Dfm4W3U790lPb63ffGwJZHG58sD\nP5nZvKHdpY9WNTPJRai2PLPN5v0rzCFNAEozEZdMM3E7HQ6EJQbN43KltlbpLiKi/W3k1dITRHTU\nqx1e82bZx/WWvFKyVR4fZtZfaZ03syT73ShkkFHHBxtaca78c9yf8nR+0nDF3XCKTSLI8yaz7Jpw\nStxG2/mnkGHnPoO1QvBGhrYf5krSRinU8LB+vM265FhqoPDWBRbY3GOh5bGzbaMym0sW6z+jpaZv\n6Suq4aDu7+3toPZ20MWqHpJ1lgvhNdBiPJrZicykhdfFmwKgjqo3P5/HWww+7ca8nZBuCwvSkDMJ\n+jPb4uqMtJuhk2MuV6eN+j3Ufjdu0fCaXNiFOFQOQJhEyUTUrc3sbGPOBdi8YUM2TzeThaG348Gn\nWC84XT7ko0mXD3e+zcHOLdKeZCh670Ru6ncOJNMZjLhcnZKqQaCIEMkE+9kU3jmod4lphvotX/aA\nbNqzPElcZwZhz8cCT/lk5k3DQGRUQsl7v7hbVpWZLmX4EuDdni/F5GaJ1pGwxoaHmO6jeqEPrMBN\nlG42ki2YJGmd/VZmxcky5kbf+hupQOnBgY+bonflJwIACn7eOC+twVtHWnClHrN44eeget2MOwff\nx24qxnVOidyHA7I0rRfWa6JYLzhbwmFvUV/TNPXc/HGfTeUzlQK40fAQHfVqkLTnVDQGV5vXZQCE\nW6kwQY/SfwdBP9OVT324Mpz72bHpnOzUcLD5Ho7q7bKc686NvccYF14FHriWxPN5fLZ4e8HHmC3y\n7/bfcY9etm/r5MW1/ZkNp0s7+BllhwzTA5z5l0zbN71d2s3bjcXahVVXDpupZrr0NfONklJgue3D\nAsKikt3zr50N+MZEMS0GfGnvsZT0bn0ZskeymIxvMi1fcDq7z/1Zwjg944s7e9JvevZNzEefYE4v\nUZcz1Pfhy19TnVOZQqyjO4F1dCj146yu87wBPNWzOaup62tY22Qnm28fG7KXzLIiWpZ03AJ0fBcT\npeTW88c5hyYHX/D2Ca6fMy+fM10UNSXb3QbeoVTmq9wi7YZWD3sLonWCjkaS/URJ3aR3xwi1UrL7\nbh34bVn0PPxZIPIDkvMrWXgdfXlvB/V9M3YP7tAfjbnY4ph7XYkzvNbcMOyzRcwoWYqYqsuKW2Us\nr47hftEvvMV5OthraCKq3g5mL7gX3GdtEwbaQ6rtyK2k0HImwHdWi4lCk6rstObqPtGmU6lnkLZl\nsOx352e/bEXBXM5QRRn0OLMGe/HzeHPx9oLP6hrGlV0kwhq5WF6XzSl/+7dGPyJkrYF460Q79PQm\nM8r3AMq8HtRbzmqWT3gTJ0VdTrPRZs000vlwEXIT9sZQrgvfxL4qhfOTV0qYXSqV92z1h9ykebku\n6C9WmMePWT88p3xyRdLV8H6BGh5yvj7jG+crpkWHo/4zbvTX9PRIGuyDvYbUD8WF9CeKldf6Wqfa\nqh7jRSe9HEsrOv2YKvRzsed7YZUWoNZZy6urDfHWfrRD0rF2ArMXG68PInkkSgGnpHrObtpHq1go\n82pBGiUyc1IWQFNLrS43lnaAmfo7vWbXvUGqwPZwZvNrS1I+c14VPvsylzPRLQvCESfyasnJUl5n\nnFaivr4WU0S6meieOfpyUC7zpS37GYTUcVKb/bnj3aaEEEpXBbbmlckpSxEiDb+fXnfk+3aNc8mr\nZ2R8vyrrb7imhtRzf4juupyd2PfZLGfnZrnhJfUdR0dtkF7e5nhrwcfkJebJiXdb9JFmnuosN6zi\nopBp8r3uKeW6IE0G6LS7dUq9fZFH1ZqRGlLqToO+rVVkvWXs7sv1cvaQuZNwkbL/Vk763c25wPay\nW3vwriogn5EmAw57Cz4c50DKe8OC436PUbSPefQ1zINH8tyqYDS+SdRPSPUzUt1lpIaY069hvxkW\n0AAAIABJREFUnjynfHJF9eyK9Y0B+mwKBzN0GtOLcnHY7LQk6IN5ENdbkJ7NGPbHRB+CduUVV5vf\nH8tncIv22RSTxHQSyfxUqum8k8njBnuY7pB5/mBjILQ9nAsIO2xyiupuKacE512rmHFyg1RPG9Tr\nvLoiiQ/q7Mcu1CbYcfuF2wEQbCoqWFaiC5/9dq0IbN+a2BWlzLVYNe356pSrlWGUWN2xci7X0ZPn\ncl24a9puovLqiodXop3m4rC7IunI8VyuTum7/t+7r6ngfPocMz1Hvfel5u+3KWq47z/oO14XvgwY\nJT6LaZMY5GcLRFm/0VsMM06nPWiUoqhq2az6RfASVN6AzqofKGtyN1+dem+v76VQSv0h4C8jFeq/\nZoz5ydbflf37DyOTvT9qjPknSqnbwM8AR8h+8KeNMX/ZPufvAHftS4yBC2PMb7d/+3PAnwQq4E8b\nY/7+Z/0Mby/4LMVhsZPEsoABjHZRw0NKyo0Bw4si4qKAo96EUbJFvZk6m3ERVWuv8KsHe0TDQxEu\ndYvi8lKAZ3ZW71qh2Qh1fYruDqY7kQUp6213Z4Ttu2S76CfdIUmnx43+FMi5NdDsxsdSSrNDpnS1\nlB3KQhxSu7ek3Pb0G5gnJ56WnV9FdO5N6HxhBssJUc+xuuo+ipcmKS8bk/C+ROXICeCBiPG4WSZx\n5ZHuCer0uUyoJ7E0tp06xfCQeTW1VGXNjb4bFIwa8iip6mKefZP1vXvw9BRjbaA3hDWDUMbQ74hT\nbbgDXlRT+ukQVRaioBCUe0IRS6CmL0dBNtsCnq3RzeAg8cw+k+1bteWmKKlZTuBsyvr5DJNX6OML\n1J7oqVWm5Ol8Qci2HMUVw3i38VbzckK6s0/SuVWXSx11vE0tP32O+egT+dmWPF1MyxdNgzqo1cyv\nGdZ0Ek5bw9o6QIupGPy9EU5pIbh/nEp829VWXlTKrApROyCfiZNuts98dSpiwqs3RBJQ6o0oHCil\nNPBXgD8IPAR+QSn1c8aYfxY87A8jdtcfIjbaf9X+vwT+cwtEQ+CXlFL/hzHmnxlj/v3gPf57EAFB\npdRvRay6fxB4F/g/lVJfNMY0+f+fMt5a8KkKKL5xRtqNasHDNPNCmbW6QfNiEcrrilQ3jc/ydYdR\nPOemY6dZ4DG/8W0A1P4FZnwGFoTAzovMzmRX/+JcegXFSna7x3LzKCt1EqWZ7NBavkEbse33y5mw\nv8rcM/luDUr209sCKvfuUX39Cat7wnZLlhUqz+HGjPTgDmb1Ak6fw9NTysczri5iZi8i0sGC9Ex6\nFEnnts14ajIFNJWaNxrzeW4nzZFs5+COH4ysLckv6Q92vDulSp5BmtbSKoM9St3hMj/l/iyxlgoF\ne93aSkGrCP3iAeb+t1l/8z7Ln3/M5HnCYLyi/0On6B94jPq+D7ywphOMNYuJJxXoNGM0PKTUHavC\nXFB2rNJDN4PkqrEQNth8BH2T0ebQJAT9w3Y4HbTxTXIvt7Ty154qc8zsDPNCSqHrSY6+PfEl1Pnq\nKR9Nuhz2SnrRmrSz5qC7Y/XUJOtxkVdXXK5OvSGeTizBIs0wz6xNwuPHmE8ekf+yWGOntsTlsrLL\nxVMaBnXhdWkVvV9HtsdllAI+ejvgbAMeqAktUUJJyaXNFEV0VajmWsWN6Qfdra1I6Gbk60Wj5/c9\nFr8L+JYx5mMApdTfBn4ECMHnR4CfsY6mP6+UGiulbhhjngBPAIwxl0qprwM3w+farOmPAP9G8Fp/\n2xiTA/eUUt+yx/D/fpYP8daCz7pSMm+wtCWgdw5Qw0NyL6tS1gZlLXfNiyKiF615No/kMZViWcFO\nYoDH3By8S1SWlihga/ZFKTdgPqt7H1diL+xYRuISaW8gO8FfUvoJ+aQ7FKHQvJ7zaRAV2uWtEIjs\n39J1Bx0fUJlSFi47n7Ker1hNK+IRXkWZYlUvikXpB/bKPKJadahWHTlm+z4iBrlld7tN0839P4n9\nnM18fcnl8uPN5yN9msj1Alzm0x8EQptx472FzSWLUFStgwV6xtV5xOyFXPrJ4xn6aAL7FxjbA3DA\n01DcBujteLHXeTkhWidELvvpz8T3hxbwuM/qsqFt5IMtG4ZG5qdlEdVKRDgrU9LTV75c6tiP7np2\ng5MlJef5nKeLPnkVcytbcZitiDp1FpLqgQWdc06WMRe5ZpzOGMViyJd0euIMOr4pMkx57pUMAHnv\n5QyihMvVKfdnKUe9OZV5yjA+ENX2ayIsizayH3duHLiEPaxtsz6t//veT5oxL18IgBQxvdWaUTxn\nECt6Og7Ks0If11oUICqzYr46E7+kdbyho/ebFAdKqV8M/v3Txpiftj/fBB4Ef3uIZDVhbHvMTSzw\nACilPgB+B/CPWs/9/cAzY8xHwWv9/JbX+kzxXQOf62qPSqk94O8AHwDfBv6IMebcPmdr3VEp9RXg\nf0K0/L8K/KcW8a+NuGfo/p53UR8coe7cQR3dlRmGdb4xlBfGOK047DqTt5L7l/UikleK+7OEVD/k\nqPcB+vB2PfcwHjeH1yzwECUiYQNWZ6zvDeJMdwjeljpqDig6am27gR2CUlA6CZvBUbUmsts+dXwX\nooQ46xPdeCZT4O/fFIn9gzvknbUvJXaAFDjgOdmLFYPfOqBz9z3UrS9TrBdyU6/W5OsOJwvpkRFD\nMhgRDfZs6fCkLhvabMedl35niG7tZiuzEmXq2QthQQWfHZCF7+k3ODi6ix4/tSUmifoYDui//xX5\nnEnMbv8J2b0JnZ2U5IeOpPT27heltKUUdIfghGLdOUwzcrPkMpf72ZVwSkrRQRvsidx/sZLP145Q\nRdm+j399x6wKSSYB6NDqI2oVMapSzKNfqvtJeztE706oupGUI23ZaRAr3s9EXeNkEZFXig93nkEq\nC/6imvJk3sH1g456K0aJkBFc5liuC8p0x1t5dGZzYgc+xwewcyw9zapknJRMV5rpquKw+1Ds5xMp\na+fli0ZW2yhRB/JFc3UJuwf09++gDmqNPmBTmimYIZK/i+CsIxksqqnt2Sp6EVYnscso2oeqEKsM\nf62VVl/vgnk54/4s5WQR8XTxZqjWqrNJFHpJnBpjfucbeeNtx6JUBvws8J8ZY9p0vj8G/K1/Ue/t\n4ruZ+WytPQI/CvxfxpifVEr9WeDPAn/mFXXHvwr8xwiCfxX4Q8Dfe9mbd0Ypna/cRb37RcrBiMo4\nVYLCTrRX5JX2UicgN6ZI9R/Z3fYpaWfJ/VkCdnckAJQC3+Zo/AFb90zt6fgoEWXh+ZU0Ox3w2PDU\n7FcJHKaZoENViLROuGvfBlIOwA7uyHvevifHcnCHucqZl885mclidLB3i0QndJKIbleTXOR0vvAO\n6os/RKk7lK3de77u8GQOV/EJo0QWlrQ/IB3chbFoo6nhYZNum8/w3RJ/vKn4HTng2RZlgXn2TXaP\n7qIHL3h0Vd9LZ0u4Wp0wSiYM3/2QdHwTtf/r6O87EfCzG49tIbbpKQuVMy8eNv4W7prRkZf7v5Zq\nbFlXnvG1lkxG2ya80kndE2ooYDcjIsK8uId52jweNRygj6zKwI1DATl7nEf9epM0LTS/dtbjvUzK\nbeG8UNoRrThHRAijMqXowrnP7973jlw77v5JtbFW5lhmXc5h92HgOVQv5C4z9UrSVjcvSWWOaL6+\nhF6M7n9IMngBk6fbVQ2gLt+C3EPDQ+blhKuV4WQRkWopOUYdzTA+8LJCqd1guXBivs8WNfBcfO/x\nDR4Bt4N/37K/e63HKKViBHj+pjHmfw2fpJSKgH8X+MqnfL9PHd818HlJ7fFHgD9gH/Y/A/8A+DNc\nU3dUSn0bGBljfh5AKfUzwL/DK8CHXg/14e/xlshNPa/Ni/u9rGCUJFJKWHfAgE6OgadAwf1ZwrTQ\ntgxnOFnGRJ0H7I9vizqBK49VdqbA7vwboOCAJ9tvvHdD4HDLhHzoPQNI+UDF4AYpw15CMNugxjcb\nr6GO7zJXOZerRzyZd7h/mfB0EXHcMzIPNDqk3/sdkPWF5fbeB9KjCQz4RnHRaNBOV5pnC8M4mTJK\nzulHGWk8oNe91QRTp0Jtj8WHm6V5VVgAGh3cIRomPJ2f+IXuo0nKUb/ksPuQYbrL6Ad/P9x85AHh\nunBKENNCvvsw2g1yY5vW7e/FAUm+XoBZUq2dbqAzFAy04ywQVWa1IYKnVQznDzFWj888lsxZHQxR\n+7tCeDg+qMuR9hi0ihjF4jNUA0Cn0QdyIcCznQThrdRdadIpFBzcsaoH8u9Ur6HVoP9o0t0oXdsz\nzHE/0M2zgq1RmjVUJh5dPWZ30Gd3+GXMw6/VquhhhBmz7QMWhZAFJoXiHfuxkk6PtCgxJw88Oy49\nuivrAHC5OufZIuXhLOa8gIsCO5bwBuLNKRz8AvChUuoOAgJ/FPjjrcf8HPATth/0u4GJMeaJ7ef8\ndeDrxpi/tOW1/y3gG8aYh63X+l+UUn8J2fh/CPzjz/ohvid6Pq3a45EFJpCV/cj+fF3dcWV/bv/+\npWHihPn6ckO9GLDllJrI8V4mA4n9aCw03csTsJpX4/TYz4Lcn8kN73oPZ0uAB4z7N0jXmTzPMdv8\nTAL1IFx2KM3lYFH2IpQOeNr9gShpWP+6OrpjeWkViQFc2+XRCaNaGZG5yjnPn/HRpMuDWY/zAh5d\nKZ5fat4ZVuRVny/tnXJzMGJ068twMAvIAfVCMIgVUDFdaS5yzckisv2wiFFSMU5zRvFcMhHXE8it\ne6cbQHVzM9uGJsOFvR1lgTm9R//oLrupKER/NOnyzYlmWmguetLPOOyeszs6Iul00ddYTVyuTjld\nTrg/S3gw63M7K/0GpB/tNNSPofbNIW3Os4SlpuY1FvnGtwOyJGyAhzR+60TK2TPMJzJn5ZxIo3dt\nfy7rCwgNQ+CJSfWAQbzgw52cvFI8W8ScLCKeLGBSxP5z7aZ9Ur1FHaB1PEYp1GBP+nRxT9ibtk8q\n7ELNYXfl+0cni4h7du/Q1fIfwG4ivdO97oJhbFmi5Qu5TqsClDDwPpoYfuGkz40e/L7j+xy9/0Po\nFw/kPtp2TUQJanho74clF3mXRYUVCK7oR2PM5IUM8BYrmYm6OoN+3/esHs5i3BhZV8PVpxBh/80I\nY0yplPoJ4O8jSejfMMb8ulLqx+zffwqpAP0w8C2Eav0n7NP/VeA/AL6mlPoV+7v/whjzVfvzH6VV\ncrOv/XcRUkIJ/PhnZbrB9wD4tGuPKhTANMYopd6YmYZS6k8Bfwrg9nsH1wKPX7Q7C0ZJTqq7Ajyq\nK6rWtmxmZidE5Q7j7IYFoHMAr2Tg9NvSdUd29e6GcRpcLgIXRrUFXNygqI9AhkfFojWWphk6irwK\nc1MOXmrbSbaP6mYePNX4JnOVy3kwMIx3+dLegg93xNZ4utI8m0cc9Uvez1J24zs1CEbCCot0Ata2\nGaAyETopGcQrP++TV4pRsmaclIySynsjJZ2eAKuf64g3P/t1sW1g0zLDnP5Yqru8lwkr8ahfMoor\nrzQxLyeUnbrJLd+XbI8dA+ygu0OqzxmnMTf6a4bx4YYYbOM8L+33m+1bwsqVXwTddQH4Jv6GZ4wj\nOEQJsKw/39IOIPdlfqsznotaONaSwIpyeofONPPfT19LH62nZWNy3McPnPajjFTveNvtl/nWuPk1\n73ezewsDDcVsrWJ6OqZQC270V/Z8G1Id2WtA/j1OK9LOmuN+j34kvchiLYO7aPlvXgib7gujkmnR\n4b2sINVdLoqnDPdukDhadPsamIlEVn//Dnl0xVFvwbTQvDcs/PlXcQ+cDpzd+FUmF4JBJQQJB5Sp\nNtzd+czr7BsPCxZfbf3up4KfDfDjW573D2G70pH9+49e8/u/CPzF7/Bwt8Z3FXyuqT0+c5RApdQN\n4Ln9/XV1x0f25/bvN8KyRX4a4F/5yveb62YLZBcnN1LVWXng4eqs6aUTJV4RezS+ubGQuQXFXNxr\nlo7cIGhLiYDZmcyMbNvdX+MMaqyHjCoLom4mRIJyCeW0Sd/duyFluQ6wI2W9vLpslHdGagh6CEnd\nc/jizkLM2azJGNQMO2VpqZFOQOFp3NI3izjslYySpbcEkCZ2r6nwDHL84VR7GNvKbk7Gv12es5Tk\ny9XT+jMlCV/aW9gNQV2Kas97uLJSO4bxLsMYT/rYGCx2tOzZiT9OBejByEv0hOGAp6dHAWi9aGSk\nbS+bhnHg7ZsYLD1g20Bu1JofqgpSOqRRs5TrNxFroNyUj2lsdoCot0MZ2GmLTNF25Y6ok4hNfGfF\nIF4wtsoV9TWQevBtvKelO+eBlb1WMV859J8YkM3BwfiWuO+GYT2c1P4KujsMBwdUvadcFLLx0Moq\nlwz2hNST9X2JLl9d+bKkq1ykes17WcFh7w2pEij1+irvb0F8N9lu19Uefw74j4CftP//34Pfb9Qd\njTGVUmqqlPo9SNnuPwT+h1e/f4ek02uUQ9yuLlyUIpK6NOQWCNf0zPA0U3PxiP7QMsoWM8zqhcyI\nbCuVvVQafot0/MvCLjimKiDsK4XW0YhYathYdfMcLka5wnz7H9Xvm8RooBclosu2JUxV+KHYKM3Q\nnVgyn8AkTauIflSXgK51h0yzBiOvsfg53xYX7nwlQfZjgWdavthQknADldcOMtpol8Y2QBKafSpX\nynTAcyaLuIlEJLRK6izJZcMeeKysklktBNSdA2exEo0yl8VsmelSt2/W1O29UZ05OsByA5b22msw\nH8tC3uvFRVMN45oypjvfZjQjChTOt83q1OXIntdCTM2AnnZU/EBSajEDBAgc2BTrBVpHXBbP/Ws6\nsG6D3Xx9ST879MoEovBwIuaBtu8VRQn9eIf3smf1R3LzWeOb4uEzvtlQM5HjXHPUL7k10AzjG6Sf\nxvzw83jt+G5mPltrjwjo/F2l1J8EPkGGnV5Vd/xPqKnWf49XkQ0AhfIltjbBoGEeBqJEsJjUN6+z\nB5jNRXOtDzCr2U4OoGxvB2haDUCt8mylZuoFdYtEy8vsqKFZggrNvZwKNMDeI9i7AcDH0yd8NOny\n+47F4GxUpZh//gtUv/rxtVRQNep6KZNwwTIgmQtC+9ZRas9p8xyGmaDLypz8iV80B3t+lx9SyM1i\nUgOQ/3xlnf1Ya4T5+tJnGm7RCsHDadZtszx3vaukI3JD0ocSVWmfkbnsysm2ONBxwGHVl1USYaLE\nq6PPyxlaxVbnT4DHXJ4I6AQCouZUtM7oTmp/m+vA4Z0D+9hsUy0hFMy0wrShuZ6TR1LdiM5OKs6z\nzufGqX246xIEEGcLAdX9O35w05XuHKhGRJIJQm3r3umBtn2ryYndxNUGcIzHJPb7y40InYr2Xk/s\n6pczzPKJdYh9xw/5zssJSXpMVO7IZ31+inl8RvlkRrSsRKeum/nyW5iBVqYU4kQ321AzSbXhB3Zl\nSLZvUszze5jTGgw/jzcX302228tqj//mNc/ZWnc0xvwi8KXNZ3y28ENwUUtC3+lthVI2bgF9HdfD\ndmbjbvJtGc+rgCcMt0A5JpIV7wwf++jqMfdnKd+eKd67EndULMH5dWYQvA322VR23S32nVOQdqDu\ngDxk3bmduCsZ+tfepnMGtehq2xeoWAFXsgBXhahYW9Dx2erioVdidhbjkX1P3Qk14Fy/LKbhVhpm\nXEFvzil0e+XpayjA7ajMqr7pogS4qgVEXYTCnk6ZuV2KtRm3o1TTBmt3vFYR3WnPOSXoULLGf+/u\neg6vH+cPFFyHl6tTThYrpNc9ox9dzxgMY6sJ38WFgPejj0kO3pHy61KOf1sHKiKiH+1AaTMla4pI\nEnmRWlFEkOMNRXLDXp1RCqUTtFIywNxJ0GrCKFkyjI+sceM9ePyY9Tfvv9bne/UJ+LzsFsZ3nXDw\n3YxwB+wEGCGYO+gkwALdidGDkcw5OBVq2FwQXBO0FFteRgWq/dgwogSSQmrP7cXrdS7SEPjC/4IZ\nH7U3AkDt3+HSzqqMkjUfZLUAqOkOxcPn8npKc2js5rXZ8hx1A/ENWi18tqLc4u4ByM4ouZ14SP0O\nFiMTKDcAjbLPtQZ6xUpq/WVBenBHehv5DDO757MSihKzNxKBVpcluMFOaICR/35dFnud7UZhJZG2\ngY4r0+iEsry0Pa9lQKkeCc27twN2sVV7I9QNa2PtSm42q9mQ3SkLeH4KSSRZmaM/uxKdK7sG4Kj2\nxSBQ3Tgk/uCKuC3i6kp8adbsMbnvIM2oxkdcFA8t8Nivr+oQdazXUSRzS3JfCemjWst9NU5uoLrU\npWFoOL8Cohn3+LFkdS0R1nBj4jItXzY++ILPvvXxlXyew9tyvPkD8mrpyQYCMvXAttIJERHaqpgX\n64UAz8UjePyY6lc/Jv+VzzOffxHx1oKPwfiyi6snT4ui4bsjbo9NZhNA1Ev8q0hYB06zFrXr7lDo\nqA6IZifXZ0QhgPVpPu5VYNSmmHZ3Nh7iylvz9aUH21605rBX+sZqZVYyvb5/sf292gv/2USUpYuV\n9B722OxNaMmC2jNKPqMJMyaQHborp71uFKXNQlcwPa8zknYprFjBi3NZ3MdjTLtU5c4f1H2YsFcX\nHJcHXlfaXG4yobzdhvUQuihc36eeh0qcgkKKDARnhz5j2ShHOiq6i9PnomCdxOLSuldgsj2xeHDH\n7oDn6Snri1zsxN9/V15/KA6vHLxT2w4EM0kbn8cYcrPkIn9gxweaUa4rFki/q0k6WXl9NHgiAGSN\n54Cm7fjlFdWv3qc6WxLf2aFz9z1474P6TQIChjJmcx5p95acN2v1kPf7XOQPvJV9zWKNfXYbXq8K\nWQwjPRQiw/1vU/3qx1z94xOe/UbTouI7js8zn0a8teADxt8ki2rK1crwbBF78cVU10DkLmAXNStm\nmzNpzaRK0p4XLDSLSS2psy3CXe7LhiqvoRc3FiwXdjdolGJub8S8kmPtRWt//K4GzsE7m++jE0ie\n1s30F+esn8+ozpfoZUmHYLHVLZkYHSgZu9+FjW+rK0dRilHey0pXriQU9sLCsABEsfK7fXecZlmh\n9+YyD+N2xqNdKfu54wwdWPOwt7Sqj8+CjjO0c94sW5WKdeL7SCcLN2S5Yq8rWULjoToC3QXLJqs3\nRWK9naS9urcxO/Pq4irVdIqVZKD7K4xTb1rOfI+nejanOlsSAfpGWauIf/CDVtmjFnClrKsBLtyx\n5NXypRpn5bqiUAv//GK98PfUySIiX+dUgweM02Mi3LZNMgrz0Sfkv/yc848MsxcR4288Z3RvQvJD\nz1E/+P2bFiPXhMn2IdtnXk05Xz689nEqzMJbm0KznGA++ibrbzzi6h+f8PgbA77+tZfY1n8e33G8\nteCjrLZZsV5Qriumq5hpISKhMkKx9gt1qGztdKLc7EovWnsRRqj1oYr1gjkT6UEkA9L0JvR2GpTc\nRsbigKMsRAMtbBi3ozVB74HHyrfIcayozNKXE8OGat6223EmeaFvfQg+cQ/DvdpSOa+8yKgXcixW\nm+Uh19MJez0uAuKAB552GeaaMND0ywGfATmShZkuMXnlRTBVV9NZVihv5RDXlGbqDHEjWoSQ0Em1\nWsrrMl9tBaJapkmul3zdoVyvKFRzMWuXf9sxjA+81bUHwPlKrmAPkCvfBwp/t55bwdG8ku9pb4S6\n9WWm5pJHE9Gpk1mctd9EnS1r2R0nL9WLrC2FLdUe9mLfJ2t+Fgdmck85iZpRojnsLrlcnTJMDwSA\nsj7mk8dUz+YsHpdMnva4nFZAwmD3ivXzGR2+ZQGoJcXUOn9ursr9nOqmoGnS6UlvZ8uS17guLRmi\nfHJFfqW5nFZcTr735nz+/xBvLfiwLul3hiRJTxSKO1NGsUyBb1VmtnHUq2VEUt0l6WR1g9sKFYYy\n9c66udID2cFGN31px83J+HDU2BB4rtNmC8KsFrbmLzVsmdEpfWYHm6oNi7Jjd7Iz//fE6sk12GBm\nSTrYk6aulQTq7EjtxQ04quFAegaBi2ujhBOlwobr7dTN8G6G0zJTSSSgscUYz8XWbCcMC0IqTT24\n6K5kByavRPPsYCjmgVbkdautAYEI69ie24AK3cnmdMbzRrmt4TOTxNKz2L3FZf6AqKO5la2k1Nld\nNQQ7m9YRlc+oXaR6zTDepW9SKGdSVjuWTNPN+aj9XSF+ZDbtscOo6gaYJCYGKbu9k0nP5/gupe6Q\nmgF73WkjW6+p8E/5aCL3gAdOd19EcGugOdCSJeeddaPMBm6OquRGf8Vh94qTpQzpOs24eTlhlO5D\ntocaTtFHfXrvzhiclei4w/i4QB+J2sL6+YxO9hinORjKIYXnD6SfE7F5nzTm7sJwPcqQrAHSF7tz\nSTZ5zsEZ3JoksF1s/dPF52W3Rry94FMWmItHRL0dht0D28C8sJnQeutTXC/IU0GtEKKZPMHMzqBY\nkewdMdy70QCg83zOKCkpO0VtK73Nu2Ub8IRlqFcBUNDw970q618SRtpZs0DsIqYFOACqdP24hple\nNCa1Q6BqtoDRXMptjn7tPF16O01RTEOtuBClKFsG9L0f5wRaWtKFy3xC1p9llV1LOAjPQZ57kFLD\nDIYZnb1ZraB941AWPKssvVEGdRPzASipuIe59dtQ4xdw8ag+lstZ0zzO0eitudp54ZXrOeqtGpnF\ndTFdaUaxgJrb3Iyi/cZxqu4OfLBT2wxke9teSgCoL72dzqWUGtXBHT8oqlVET49qNelqLVToqmD/\n4AtUo4/5eNpcHnrRmhv9NQfJ+5hPfgmAZOcYdm/5klu42XHzPrcGJVrVm4fKrEQNPDvE7J3B5Yz4\nTs7+5DlX5xHZDYhu1FI/5vGZUKcdANkMqJ0phuoTG35S1wBPI2zZ2BzMUB9ckSxL9qcnlEXvzYDP\n59GItxd8qgomTzH5DJUdknYzdHxgwafwGYuLxmT68hKzeIZxO2I3Q3GR0/nCCckP4gGoMiueLWKg\nYBBLD6AfjUkiO2znoj2b8TqUbahLW9B4TihS6Qy8oo4mr5o34QYABSSMcDeedG/IrnM1aqFxAAAg\nAElEQVRvBM5x1TGlnFWAk7ZZh69RC2gmnZ74EWGfH/cEhKwSt88C2+VEu1FwzLV2hPMojZIc1AOb\no13JaLqZiE6uL+m3Acid94C+PNU5jy4+Fk27m1+W4xjNmizGgByg4h5zlTfKUVKS1RvSPP5t1xUn\ny5hn84gLrXkvk+9xnBxL83t2Vmv/uc91cMdTkhvH347xGGUzvXIwavzJlaHMxSN/LTvfqXeOfwvl\n+iPuz1LL1is57K54p/sh5uE/xfz6t+Q4bkzh6ox0fJNyMNpQLQB8eS5klBbrBVGUymZgf06nWBGd\nL8m6c+I7TeKMWZaYTx5J/zJKrCBuugE8PrupCigv/TnxGW1ArPDlYHvveD2+zpp0fBNuzOgUK/p5\nxcHqYvO8fh6fOd5e8CkrO6uCl8iJhofoaETVWRGt5aIs10U9rLi8hMUL6dtMzzcG99aTnDiviIYZ\naXeHPO3x6GrFyUJO87gqGSUzKlNK9qTtIF1bu83Ftgb8a5Xf6ka/lNteDWRhCc4Z5OXr2Nb856R6\nSn94KDMz+3OZGXHltjSTRZ3SgzcE5buqNg1zzpi+5OZo4VAPy9oFwr2eTvqk3buY7iPv/ApN0Gn8\n34GPoywP9lDWwrxYL5ivzmToMIZeti9eQa3zb7J9XuQP+LVT+KdnPX7b3oIPd77F7uiIvjnc6Nu5\n4xUx0XqxatDNt0RlVkwL0dB7vtB0tQjZ9qPMm+BxNoVsJQuv7Q+WaRcGI3mM1erz4Bn2BC2bLZTG\nccellpdyLTs33SfPZaA0iVDZIbu9I6bFKQ9nQsTZTY9EWfvBI1bflMw+toQHkMVEW0X2hpp6KYQH\nopReMvIsOBOlUkocz+DyivjODnq3Pk6TV6znK/+zzs5ReyPZYOyL9bmvQFQFFC3AqZqbOC9F1WL3\nVWZFUTlh3pKkext2jlE3VujZnMH81fNbrxUd9ery8VsUby/4KFUPzjk9LJ1sZDz9aEcAYv6i+fzR\nruzEihWdYoW2TW191JfsYLBHYedqHKss1caLamoV24lwkZFv3CjbACYcNgwzgyDMxSNMV+y269JE\nrTotrD0pt/WitW8mL2j2GlyknTWH2Yrd9Iietjd9dogZz8T4rrWwa/tq9fuWjYXX9wQ6gd0D1Jmb\nM/ukpFhfemFOrWKID0j374iNOHgAaoRzjb0u26mmzMuJFZDsoJVkDh6A3Lkf7OGsoD/ceUhe9byw\n5bycQLRD3xrC1ddKnemketAsW7JFNQNXJipJdcEoEcuDVK+ZrjSpnjHsHaBdWc1mPmXa5XJ1ynzx\nVPpB0Q7R8FAyMkdXHyd1NtoVa3haWYIypu6/RYncC27ezF1rGO9Om3bWlOtCFu7hoAYJ1/Oz82Uv\nA1rKQjQI0wztJIasEZ+6UWCATjZvbCY6ywqzLOmMU+lvWSq9efQ1+gd3gC3c7y3v6z9n+O9gHECs\nLeL63LjnZn2iG683RPt5fLp4e8FHd2y/ou4BzNeXzYeomOhqyyLnWGmjXdRoF6bn6OML9GwuTd1b\nX+Z89dQvPk7RWex7RzXr5upss3QSvkeU+AyhATq9nU2K6OxEyiaZLRtFhXxGahVjp1R9XTxbxJ5Q\nAQKWB91bjZkK0x1KyWcxEQJBd9iYRN+WaeXVklR3RbBV15mAucbOoB2uXJPEPenBdDNI5k1l8Nmc\n9UWO6lawlzfcRE2UUlTTBuvPvW65LijUgtS5kVIrOGsVcdT7gPTwKQSN7Ly6sorczeOMiIhURGkb\n+K7E5M5L47FWfFOriEG84oh6BgvEiC2v7nO8e0g/kLSZL542XkerGJYvvOyTubQbgyiRTLg1rNlQ\n0HaZSTeDsaXMFyWMdqWEWsqGa5RU/nyZ7gEcvEPnlswdqRuHcHxLfKhaILd1QBYgnzWa/Gp4KAO3\nTkIpAB9/TC6LdVEWmPu/Jg604WYtKOsa+7jwOUDd03OZkJ0b8uy9fLZp+PgmItzwfh5vMfh0Og1b\n42n5gkU1ZRgf+IekRSk7yvYQZ5vyuXckIGQN2qbm0tNsU91hnJTsdamBp1rDsgU8LxtCDTMdu4sn\n7XpgNKuFLwOqohSr6iiR2RF4LeCZFh2eL3QDfI77h6TzOWb1QhYXy14z1ma6DRvuJq7MypMcynXF\ntNDsdUU1OpTcAbYCkJy70FG2Q9KRDC7qZsK8y/ryWS0AmenSz97o2Rz2x/7cOdl/R6sPWWUuMzRO\ndWBLjJNjKddZYUtHpw8/hyOfYNXFddTzr8+araKmUSfxJclULxknZcNZdLrSTCdn3OifBsfdnDFT\nxgTffz3n5ABIynBBD8wprS9amx4LQEL+OPTftRAf3DCylEHTgzvwvtiHsHckPZhraNDXRjsbcWSC\n1oybL5+Fv59fYX79W5hlRWe2gDtf9N9dbpakFoBYLTaHnwnK00E4pYNIRVCebVe3+DzeaLzF4KPl\nJsv2vXHYs0XMhzsT+tEO/c4Qc/FNkTEByHqY5GxT7t6GK3HMVU5RTho77E3gmV2f8YTRaryb7tD3\nLAB2B8fSML868/0nU6xQWQ+TZujukHI9eSXwhHbB92cJ72UFNwcj+iuFefzP7SzPrGHvvaimvnzo\nw8qVhGW2aaG5KCJSvUInpZXab5ULAwAySvmMQjIe6T+5hS/SQ+kTLGe1L9JsznqSy0zPskIfBaWb\nKCGvLmlbG/hDtkBXqIVdtOxN4dQp7OLX7+7Q777TMO7rRzv28a0sdrVA9XZI08xnQdvmd8D1hIQM\nMkoqpkXT2npRdviV04hRsm5sDMACWlXIsc4WIk66rAR4ZvMNiZoQILdmJO7xtnwWKmKEahgmGsGe\neDw64Gnbfm/NasvNeS/ffwHpm9nB1zr6wpa8eObVv9dfE8kbsyxJlyUaMHe+aK2zz6j0gH46RDnL\nkRB82iVt1yMLzke7//eG3EffaCil/hDwl5EhxL9mjPnJ1t+V/fsPI2ZyP2qM+Sf2b38D+LeB58aY\nLwXP+W8Rx+g1MgH8o8aYx9bs8+vAN+1Df94Y82Of9TO8veBj1n5XvKimfhL7qLcg6RRc0wbxEQ52\n+kZzdUm1Xtk5h4ikA6ku/YBbI64rSQQ3YqOnk2a+/OQW0pLylV+gL/3Fm4NyaWftpV/C2OtKr8vM\nntWLeMDAu1ydcrk6t3NOtXp0O65Whosi9nMicizyuAbTLyAcqCgREND22OMFqa7Iq4qk0xM5/K4Q\nHMgKuJTSlkpbApn2HFIWpMmARTXdUKoo1xVa10BZqqhuXjvgccaBy4nMKg2Exu68erZ97nYvbhvw\n9PSoVQKMgAWjpCKvjHcdnRaapwvFcU8uyNCQ73XjOuADtgu7lgWRzuhHonB92J3579pltpEbSN4i\nyfPSvo9/UFOKKTdLclt9aH9PUUezP74tPUW3GQzC5DmqKmRjsKwljNJu1tSSc/dWJf2lhh7eaygo\nfOZ4Q3M+SikN/BXgDyLOzb+glPo5Y8w/Cx72hxHbmQ8RG+2/av8P4gDwPwI/03rp/84Y81/Z9/jT\nwH8NOJD5DWPMb//MBx/E2ws+ZYmZnZDu3yHp9BgnC+/nUZmV3FCpbVxDQ3ixDTyO4bXtJm8Dj4lS\nVFQ0at6NaP3eXNraej4jSrPGa21Ma4cq2+Cbqa5E459nF65U1zd5qjv0FkLz3cho2ofYSbYvfg2S\nQ9sbx6BVIs912V/oPwS1MnZZkA720PEB83LCAlmQLlfnXK7OpdG+f5vIkgnYP6ezd0HyjtVG+/B9\nOBTfQbOYkKY3LUgs/MIm33WHqCPlwIikIYC64YHjxFOrwtpGlMzLC/LqSs5xf0BimV6lZXOV1kK7\nbVznPG0iRGS0UAvbRwKtSqLOilSL6+d0pRklmnFaNZxY/ffjjPj2ZkKBL1bSmB+PvS17sb6UZnon\nrq87p5O2ZdBW7oKZbAIsAG1sMAKKcvidh9T+cL5ro4cSMhzTpuL0S8OqVzslCdWNGgwyr93mzo3r\nEULz3moDUPC51NiqkXRPZP7M2Ux878TvAr5ljPkYQCn1t5GMJQSfHwF+xjqa/rxSauxMOo0x/7fN\nZhphjAkb3AO2C4u/sXiLwaeCs2eQHdJPxoySmS0POb2zFVFvB9O3cyBOjDKgabapxWF4fbfO5i44\nSpvlkHDnuJER2MFHs5Cdd5RmfhKdqvBCkk4yvw1AIVCEdGf5vziNptrQi+Qx4jY5kF7CtsxsSzgX\n0IhoqzBlfU4iOR9X01ooM1yELNPKlGJSF3UzL3d/nteGYCEIDY9/Cyp7AaMTGIrYpgMeH1dn9Ptj\niqLeBTtyRaorEpvlhgKom4Z8M8+0ctmPK6eJMO0Fcy7s+ahVCwBS3W0ZFEbeclt1IQn6QwJmUQBC\nqxbo1EOinrQRJX5ehqL0bEtHfy/XkslXJvIK3tukhDbo/pUw/IjGG+AQfs9NpYaCktqevDJ2vqvN\nNAtKcKqqyTGvDDfIG1hChLEBYm29w9bnM7CxETRKQXcoM2mhYd1vbhwopX4x+PdPWydmgJvAg+Bv\nD6mzGl7ymJvAE14SSqm/iBhyToB/PfjTHeu7NgH+S2PM//O6H+S6eGvBxxSV9ElGj0iP7tKPMnpR\n3nyQpY8CDf01Ywfcts20hKATOnaGNfEyoOWKhE3NvBrGBx6AGgZ2bh4mKvxiRXnZLF9ck9K3J7/d\nwuCOPeqsgIo0W1v5l3hjRsJFOD+0cU7tZ3RZYCjLIo1rMRzbcISFhnmZ2l9tzF7l0RXzsp5Duj9L\nOOpNOewtGPYPSAd3Mel2SqxZTkgHe/T0iMv1OXml/OyVHFuQpZU1oIfCp2T131Q+Q3eHnjDgYl7O\nOFm681KTA0ZxgVZXdfbgVKqtkrbqCkCVwcIp303P2rhv/059WDKMGVuw3DkWJmKUUrVM1HQnlkyk\n1YgPs1CfEdhIdbdxzYbRBh6f/a/xIFSs5TU2xGWDn3Uk51OvmzJQ4WdVcU+uiyS2PkS64TXkMn3/\nmZSSz3GdLUX7Z6uN2KDIW3LNG4lPV3Y7Ncb8zjfzxq8fxpg/D/x5pdSfA34C+AsIYL1njHmhlPoK\n8L8ppX6wlSl96nhrwQdjZGF5/BgTJYwPvkA1eEDSyRrEAM9ws5mPk8kP9aQAIpKNclU4aOca8dtE\nJN1N65rqDfUDV492C58tSwFNqwYr76LStLHTC7W73PH6Y+zUoJnqpRdS1SqC8jXmJ4LYZqssr2vo\nRYG0TOiT44RFtw2LLsXIzeQzSDPGu7eAJ5zncz6apHxzovkg0+Trghv9JwzjA5LxUaOp3iid5TOi\nOCHVXfJ1xbLCl1l9RhZmPaHwaZ7Xi/EIv1tOdM+rop8t4dmiy8kiamgDpnpNmq09saGnR1BO/Xfr\nZZFaHkg1Ffvli1VlVpLN2PkksE38tCYNOMady360imslcneOXhGvymq3HRfUA8Y6ssPF5UuU3d17\ntVTiUz2wA7cntcX7bleEbV2cPcPohOHuLTkHZe6HTj1oheVd9/9rsiJ3PV9X2fguxyMgTO9v2d99\n2se8LP4m8FXgLxhjcqxvjDHml5RSvwF8EfjFlzz/lfH2go9SkPVl4fvom6iy4ODoruX4vxzQZR6g\nznS0a1TnM0y3ufMikLmp1ttVi50gYgheJkpleNMdbosGbC6C68hlZ+DVmlVvh5LSz5q0m8DhZ3Cs\nMoBpUaCVVR4e36wtpAd7fhZqHrD5irU8P9UD/1pOTj9faz+38mTeQQ8mJMmxaHqBzy5UW8khC/xT\nljOxSqgKdvfvkOpLUv2MVHc56q047MX0o71meTPNxCfHUYq19OdYX9KPdrg1mLAoVxz1Vhx0d+hH\nO3JuQkFZCz5Ocdu4mRPwABQNDy3jTH6dVwrRG5VHHvZK3ssKdtO+P/eXq1OG2UHda7C77fZwcxjb\nfu82L6keQKe27pAv1zbwA3JK6GWjyvxTl5JKykYHwPUbayv6erZp05ZBNlaRiq5d7Othz6iRpad6\nQLruiKuopVurYUZnPBFx172dOps4eSCMy0CGSA62afXhAdeBvv0ewqiPIdpKKvmOQqk3RWz4BeBD\npdQdBFD+KPDHW4/5OeAnbD/odwMTY8yrSm4fGmM+sv/8EeAb9veHwJkxplJKfQEhMXxmtbu3FnxU\n1NzFmXv35PftC9dFWetAQV0KcLI75uKRPGawB3b35SIUGXUR9gC0ir3tM2m9wzRRKs3PVrPWnN6r\nS3EuApqs6srwZ1FNWVRTf5yvipr5NgcsAB2IjInpDpmuTv3ruah31/XcS14tma42d+wPryrgKePB\nsTDWnIp3OMvRnsn45LE4cd5YYMqC/sEddPcWUecJPT1qNMI3qL1p5hedsGzUj3b4wuiUng6AJwx3\nDEVZG8clcbMcNQLiHslgZBl/c1JtcC2IEHic4oGLy9Up/cGOAEhrsPm6CDPLyqy4WhlSvfSMu1QP\nSLSch1AdApolOmWMkFhmQS/TRXthtItzbmoX1vogbEYPENDrnZlcOGDrgNJ0enUZbMsi3M7QvY7i\nxaPmnI/TFyxWoi0YxtkzzHJm9d+C9wiHWsOSYwt42qW7hkzQ90gYY0ql1E8Afx+hWv8NY8yvK6V+\nzP79p5Cs5YeBbyE39J9wz1dK/S3gDyB9pYdIdvPXgZ9USt1F8uRPqJlu/xrw3yilVvZvP2aMeXUK\n+4p4a8GHLSUEc+8e7J97C+MNZ9DWHEtEhDl/KKKMz0+lPLNvbzoLQItq2pJZaS50/gZzts/drJ4W\nx9at06ym/M5O6vcazr2iNCD/T2VS3w1FXq1sjyYp7TE3b3o3yOm8V4RwEZNXC6reU4bJAVpFXBZP\nrp2VkddZ+SZ73ffYDAdA/WinNttzN/hyJsDqvo+PPqH6jVPW8xXRdInKxX0yPbjDfnq77qm1F4hw\nBsuKSBatRX4YHzQAuQFcttdjLmfiC7QsUd3KT837khVCikj1gEG88OW2W9mK97JcCBG2h2fiUWMT\n4gZWtw2fAo1eYij2CuK3c1HIORbq9cyDkHPgDQkPWgfkl+WlzMs4eaIslNMJzllAqpmXFw2QDwkT\n3pYAiHSC7sQU67p86I67XBeimbht528Zb+58eJXt84eYydNa7TzIiNX+uCkyO1vUtuZZH25cyQBs\nuJncBkZbhmP9teCuyW26i9/lMMZ8FQGY8Hc/FfxsgB+/5rl/7Jrf/3vX/P5ngZ/9jg/2mnh7wafT\naRpx2TCzuVdrNv3ZdhACK+j4SG7k56dy4c/mUp7pD7z0TGjPHRpcRdid3awWKmW2gOxKHEGtosBF\n8YRUD+hHqTW6Oqsn2cNSkAUeNZTp9Ly8qpv+6w6pXtKPMpz6L2D1rCLyqsNFrpkUiq7W/ghTXQCy\nYL50VgT8BH5eaW84Fg5LhvHwquJG/7RR09edGD0YoVfHojb+5IT1w3NW9yaiarysSLoa0lQW/YM7\nkEabdXwXLbXiNuhv01qDoPFelNYmu/S9BdVd1eZ5IIv2ckZi1Zx7UcVhr+Sot6IfZQI8VrRU9Xbo\npzu+ZHmey4I6iJXPXNzxhIt2W2X8ZBlzkWtPmJgmHS/fNEq2S8K4z+/LbfMrKSfigHQhIwWJLUWl\nQOSAZ9Iq3QUsS9iqFOCur1BVourY0pvuSg+mrTxgKexJB6J8KeXSiTjomhdWTcHpyCVxrUPXcq4V\n76alSPMUK8xBsVWBwVUXtso7uTmvtubiZw3V+c2ZJ/qXJN5e8NEdkdsnUEfGyvHvjerF3PVaAhVc\nZUxT1Tjrib9L1pfXtKn85eqUaVF4e+5RXJDqWucMTU0FTWJIVr5+bZTicnXKeT5nEC/QyQ3S8LHQ\nZM7Y4zFIg3UUpYyim+zvCABc17juR2P60ZhRcspRTxaUva6bTzr0MvXnq6cvzXxS3WUY9/zCmlf/\nH3vvGiNJlp2HfTfujUdmRj4qq6qrX/PoIWZnV1yakLlYGoJh2JZpy4RhQjJMCxQIWSIs2xThn+bK\n+qMfJrC/BFCCLGpF0CIJ0BIBm9YKokSAFGgDliiRK0jYJZfLWc6ru6equl75zozn9Y9zz40bkZHV\nNTs9w53tPsBM1yszIyMj7rnnnO8hbBICthPR8coDUJhzsrCCq6O9+1Rh9lfwRiG8YYgSgBwb76BA\n1RxIrwt3lnKdqrSrM2cXRgZwWEiv49cThvSZm8+D20rrXDmEWiNFE8W0QIcxCk1tsrN1hvcWISWN\nIsc4ovPa9w9M5QKrj+e6hSpP4k6XPHU+s0cJiqqdqAYkcR09+TmeCiJZrM31xyrSC6jRPfSjAwc2\nTdWtbEoRNRQ/XKADzxOVR/bhUqlKIoklq1j8FKaqytOtz8Ged6YSRDEQG+g7yDjPOruyd9PBLeJA\nRf3tzVMj59RabQxHd80PX8Qzj+c3+QQh8OBTAGj3ZomjTpIBdrCsnJ0fedwElaTJiEy7VuUc62JG\n+lzGnnudk84bqRhTS64TDejmYeRNRNVLYpQXSBanQEcuEYb79Pv9EfR8SbvA5nA+T6tjVgGxwsN4\naw7VjL5/gK4ycipGcVhPz0g2BsDewQOs/F4NbGBPpddBV40QighaCEhBCggsjdMWVlE79ywoYeCv\nIMU5BvsPiOuT5vBZ1fj+HsQrd62WGC9Wwt3R5mnt82uKiN4oAZlk4bbXBFfD/bhSfzabEx31sUqP\ncbmp9PGSIqqj8HoDrPILzLMrnG18vDfnCri05FuGoSNPLJTeHd67xx54HTKZAxyEHoCcqqmwt4/E\nWKiznxIv6hU6suVcpLmt+BB3adYSxuiO7tVEd9fFDDJoehPV6QOuNt8s85EUJQbBFQpNflahUUjQ\nqmEx4Mw36XM29xa3Bpt8OwA4ILVs64cVUuva8vCy84obtyOa17RUIaBCanl/m818vlPi+U0+KkQx\nOqpxFNJyAlkqoKxudh58ctSqHg4ZAMPbQExIm8Qrscpo3jJJpEGS0QI7SZXRyqJdqBQ+wpDk8vVm\nChENkUsPq+zSPh4ABsGaRBNdSwN3AbEtxAoQoJPEthTFKyekRm1Y+M2QQhHoYXkJvfh90k5zWx6v\nLNG9+ykEvduYpCd2we6qYdU+3BwDMsBgdA+h7NnKj6Lc2YZb55SkJolEKK+gvADdgweUAJKEBst3\nDoHDl6xbqn2PXIm29O6bTpfXhYXOS7MBgJOAmknH2bGvihlW+QKTlEzXrlJgXQgkRYh1nuHlmJB5\nszTFe4sIs1TahLwF9TYQcZd42lTGHqh9ss44+63db2awhzA+JAM5zySFpyyg7rWCwECx0wzokj5a\nd3QPK1F1CBhUwFWRmxyrimeDWSqxzj3rnDvwV1SRNWZugLm3Gi0uER9SBQSHa+dIWgFA4WvA94EO\niQLnZYo0fWRblUnhYRCsTWVZLXltmnuVSkOVTKV8Rsvks0O7fUfEc5t8cp3iInmIZUYSJpNEYpZK\nHHYyU52sLKucyZ8ACE7t7LA4hN8BjGnXKju3iC9uwwAekoJ4H7zoHEYbSDEB1Ahhb0woHCOHkpZr\nzDJpF+XDaIPAq6qf2k26WEHPjZfLYgU926CcJigu6V8ACD79BN5r70O8ctcmoVBE1VB1M6WE4ziz\nFqcr5O9Tog0XK2Cxhnz5VRzsP8BVdkI72NKrBsOXMyBQ0MkC4egeZHgbUpzb+QYHVz1uVcSLcihD\nAKdAeER+LbxbN8TJJhGwZs3QmPPYz9rs/m+iOaaFsCRMwZBwAwSxScd8ToneYJVNMUupur1KgYtE\nYD/UuEqBzZQ+/1FY4HQVGsM+GDg2RShLsLcTzxiYeOomIDfp6HffR/mINgUiUhXLnzcj4wkBZwZ7\nBGuP94F8Xhf0DEPoJKmSjjv7DHyaJ/ZjUwVRNe0moHl2jmWm7czKJS/zrCcpPExShVla/7yTIgNw\nbqWn7Geyw8ZAxIcNcvfcGr+5CSYpBCapcq4r3/xHVuaFPt4Cmrjhcnq47XnTzcuL+ODx3CYfrUss\nM23EG6ldcrwGpqmPWx2Wrdc46mQYR1RNuHYLHFz+s9pxUa4N3DTHYbSxz+MutNyCI/MwcwMZh09u\n90nhI/Qy+3h73EIQlJoXZTcJ8QB2k1sHyKdGk9G/63xtCO2Fk0fQmwX2br8BPT0jEugHjI4qEXpV\nJbTOPSOoKTAKcnRVjLxMkUif5Ptdh1MnLPPdRSc5BmE2rlFucSHMrW2ZMK7r+TmLIGBaYMEGR93c\ncqX2AvrMBkGBUVgg9EocdXNjGCfstcCOpdcFAzKsx8xibUAPBUQooTd0/CKSlRFcI671TLqpbYC5\nPjrRwCYebgnDX5NEUcnH7KMjfQRehp6/xmXLqOlsnWEQbGwbbishOOcaMEnAURVhjyqyHw8wS+n+\nvUjo3PYUwd73AuBWp8r2TPQVeQLkc6hGFcWvVUlRfXgh0CrEB7ee+A6OnclHCDEA8FdAzNh/orX+\nJed3/5vW+sc/huP7yEIKH3thFz2fCJFHXYlbq/rp4J1UKDMEHl34YRgDhrhorQ4afvIAcUkCrwPl\nzTDwC2tpwLt+qq5Ky21gUUuXbDeOMiRljoFfoKsI0ivypA79VAEQg9pwYQgdd+GNM3hOBSRCSTOT\nO4fA8DZ0vE/zJjkgxQS/QzpuvLs3bqAyvoI3DAlq/OpRZYQ1mUDnX93mGY1RVQxRH6vsHKt8scX5\nCb3SGJRtK233/T3n/JtKT6Vb6skKahtizQlUBTVIPD8XUO1o2yDODK6wtgM7wk1uoewZ/bxzhN4G\ng8C3CWcQFBZhWMkxVbv0vZDmdYXOqKXqgFty6VljtsDrADkZxrntMUJ2OTOTwAfGQ4Ihs4trb0wc\npzAiWPtmTjJEgwWEK3HkyhsxoMKFYBt0mtAaoexhL8wQykrtui04Cd3rwapAuOFat0PBCJluf9b8\nXHQujHV2Sfp6A3+FdUAbuUgK9BQlWk48L8W5Q0YeVtQGrjLzFKo3rgZ8XkVHqBHIX8Qzj+vO6v8O\n4E0QvvsvCiH+KwA/YqQW/r2P4+A+yvCExCi4g7Rco+9n2CuWOIwWZidVnRbeqYi6NcMAACAASURB\nVKYloXUCv1NDwHHiaZOXUV6AvneAwFvaJMcIMNIUi+q7d7Nz590uV0+sYhx4HZIMafMoMSg4qxbQ\nj4FxQsZqAA3rD18C9u5j7pBFO2oAoeoEWgwCoNuDMHMOkWYEbuBIc+h336dF7uBW9XPmGUWxtao4\n2/g1UAHAaLq4NlcDqgXGnXMkelNp2ZmoEf/aNLr471xOlpGr4Vjl05pCeM3hc1ficX7eTG40T5ga\nodYIgUebBW5taj+0yDtuGbmxyicIojsQWm/pqFnDOFZd2BQoVxm8rrl2WOPMUARc+/CmP5KbhOAO\n6fPUyjZdO5cojLagqs4bn99m8DUr8gT96ABSPMTZutqkMalZeWvCK6jR1mfN7999TgBGAdw3FRDr\nCCrb0rzTqYi+gyBA3z+gz4ITz5J4SjzXU1EMSHcepJ7uNvwiPlRcl3y+yyEd/d9CiL8K4J8JIf7L\nj+G4PvrIE4jFBcGXw74xe1ujqya1JMTVzyBIULjVj/EP2dUTdsU8A69jSIAV74H+RhmIrGp5bO7w\ncZRVmr62PRbFQAT7e+G6MTqJh1FXMFybMIwr4y13p3sQQMSLiuQHWP5NcbWBunMJcXdCiY0lfjoV\nYOJyA3MOPbzcp2M6jDJ05J5d+Jl/QmS+GYTfQRj1kUvPmrbxObThWh3wcbnzDOeUcJKQIrdVT1qu\nDRBi6hyH2laScJ5TZ+u6EnSDcAxQtWsr3qIEVgvoxbu2GgtNQugEA4cIWolxskGfG2STPadjc/lo\nm4Lk2rjyaUk8kEHrxqjQORAoBFGfbLZdpYkbtFGp8lOWm9QM+/7X9P61mZkdHL0BKU5wslojKT3L\nVQIIbi6LSnW9aVJoXxsAHNfRQg0xjs6RlNS2vUol9gIi+h51MuyFXYvEtIKuZrZJ5y2tqahLZapf\nTjqLy9r1/6HC81rVxJ/XuC75hEIIT2tdAoDW+qeEEI8B/L8gjd9PdmhNF5c0ysIqqO3oXokJ+ssc\nHa4+kmKJwO8QWm6Hf09bNaO8vk1CvOBseaTwDhRAqAKEah85clqgXRUENxx4uHth17xyDGl1ZhLP\ne4sQjxY+gARSnAP+ARlvmfNhgzXR1KUFIujzOfLjpQUy+JGkKutWYJ1OV9k50nJths0SmwKYJNLO\nOKxwa55Cr08p6Tk8JQCQUYxuNAR6dA52VSVt7HOdra2JmPBJzj8wXA8m/VIblNSmu2pUtVaeRih0\nqwOTgBQUpFfpmwl3d71aGg6NsouwiA8RRjG0GqDw6kKzq3xagwXX5jXOTK8WnHjYw8cRwXW5Am6y\nY6sD5QWV0kSeAJ3htihr8/3LeqXKIYUi8vXklGaB3NZbrElJIb5Ev3eAonOCN6d0YEyCzssMhZdV\nFUfeUJh3w0lGgSSDu8NogXXuYS+Qlug7CIIq8bgbljyt1BHSDFCOaK8M6onHRXy+iGca1yWffwTg\nPwbw6/wDrfXfE0KcAPibH/WBfeQhPAuXdXkhbkLZC7sYBDmkCGs3Wlqu7eLQHFi7Ngq1C14FUACU\n7ENLsZW4rPw7h3mcNItY68i4mXicobzgeYx57cQQHBmZ5YYUCtjMyN+Id878/ABgVIFFmgODFeSY\nFga5Z4ifTLgE7EwAAF6O6aZNCmF1zvr+gVGHOKv03Pg43VhcGvTdY8jeGNixY+SEu0sCRWdrYDOF\nyFN0e2NI34cUE4RyYRKhWZx2hWuvzK/ZdhwwMO08ocSTLEhJ4GJigQAizYG4sosQnSHJzRhZGrZQ\nmKQndH7N9dSPDoyxIRGZvdEKklUXBhGZxwV+pZLtzOLcpOZG3z+wyYjbkaHsQYYRVBiTx45TEQm/\nY++V5oCej1Ulm20dNoc8rbM1FMboqiFejsmf6aiToecL9P0jsm2/eAgYdNtTw1gxhLKHtFxjFOSY\nBZ59Tq5CsbgAq36LKKZrjys+sxlgFKW9dx1hWUYWvohnGzuTj9b6f97x838KUjX9ZIcKoON9k3A2\nKMqGH4mJrhpuSaq3VTy1xOPOI1z5dvO6AoDiobLznMrRcAOMjtt779A3t7aRdhyus2pzUCtMYk0M\n/DspfYvKCr0SgRcTzHfyGPpiQguro4eVhxFSX6MLo3CdJJBpRiCGWzGBGNjl1TkXygvQVTFejheY\npdK2P2zi4SqmidZzg+dXT86hxwMII3Jqw5FoaU1CRUq71zQjqaRsjbB/CGmUBLpquD1Mduwr6ARs\ny/ZYt8+mRAxACy/v+hfrujCpK4dk+DO8cRBm46CMPA215WiRv0ge4mB0H9ooP+jFCh4PN1ySMUCv\nbSSW+DqdZ+dbJNWw9ADZxwpze30zqZXljgKju8fHTElns0V8lUJBLWeUeFbLbcSdC1woUgSyY6+N\nUEYYBbchJ6fQb/8Byf7sj4B7r0H0HV22piePc955tjQIFhgEBPToyL1K9Je9k8LYdgE4tBBbGzva\nsJjP73KK/HiJZxMveD5uPLcwjlIXmGfnO2c2oexVkEwR2hkE7xSlrNsT1BKPs6hu7ciddphqSH/k\nyO0Hos/fhv7Dd1B8/dgs9E8qJFPX6bXLakaTI0dRbu9IizK3vAtG2xHgwVQpS2qr4XJKFc5d2GR2\nuv4mzjY+XuvHGLDCdZrBi42AY9yt31COzTQt8DFCmVcVxuayakftijQj3tLl1Ap7erdi4M4MuHt3\nt1ikmwgSsmLQF9TbF4wQA6D6h9cmHve92Odtmq+hpQLiAT4TdOc0LysnCfFxBhF0mgGGOItgCXR7\nRKJ0Ktiw27NSRoXO8PUrH9+7f4I9triYL83j/Up1oeUcFDrHPDvHWzOF1wYVfLjvH0CfvwXIAJ29\n+5iXleApyzkFXgeJMcCrni+rbcSkNICCxQVdr8dnlGz5uBgxFzTbc7593j3/NvTpN6C/8Qcovn6M\n/P0F/AdDePMl8OCB3XBY/lWDLOuaGypPGnfaqO4BNLsygIxDy81j+aot+kSR0n9pBn1B2oLF6bNK\nPi/Cjec2+RQ6x7qY2eE/AKsvZhfKxYVFuqhoCBXF0H41LHaN2pqJpzZz2YHIskgbwzVIyzUURC3x\npF+/AADIoyXUnQW8+ytqs4wHtJsz7RCtQqTFbKtKa0MhsVU4EwT15hh6vkT5ZAEP5PwpRvdwmryN\nf34S43gNAIsqAdk+ftVuc2dFPJBWXgCUqGZbmzmdT56DAPWFE7BJp3yyQHG1QXFKw155tYFvFm7c\nWWxXQQAdCw/NOfGYysOtOjgBQW4/RS2aXCpOQOY9t7b6zJxDJ4lNPJXp2QZiACICw0CamZtjqkdd\npAjifQReB/PsCl+77OAbU4lQZvj06BJ7o3vAnQUlsV2umHmKQnpY5RM8Whb45pRACa8PKfFQNXBp\nr59+fGCBKO8tIozCAgN/hZ4vai3mZkihKsuDyxlwco5yksAbhVWSZQkovk7y1IqPdnVYSzyrf3uJ\n5cTHcPoEISp6ljh4UImj7jgOdkHt+Rm6akhST/PHBjBAunV6PYUw99rF5iGOVx4OI7Jjr5Fd85RU\nss/nKCcJllcvFA4+inhuk48nPLrYnPEH78hab7aGeOLOcCTm7eLU9A9ptmqSBZQKINUAevaIetP7\nE8ijKTyjMCDHEe3+3RlLWAlsijyxfi5uAuKvA6+DvVBhEOSYpQlCWWI/fNW88QAiDOGNQnp+GWAl\nEvT9Axx2pgilxGGU0Y7ZBzA+AgJHUl85YIec4eKEMOPzW+jMzjdqlVsjBHOVuFIx2m48XxL9XiUs\n2ryRWZCySK0QpXZY+9z+EX6n/bOU1QJZ+6zapPh3hZkliDCEbgiT1iDRYVgTzWxGVw0Ryh4+O34E\noIPXhwJ7/m2qGoe3IfpGRmnHc1DS8HEYLXCro4zFw30DcJnXUY2oZkBHnTUGQVFTYHe9mgCuMgIC\njfB7DiY0j3LOtRUCbZ6zZEGE6vlj+jz2R5BHU/iDKXrI4A3pWhT9HknpSPcmbVQ/RUqzNq+D3EtR\n6Mr8bUuctCWswy4HK5fEHYiDPrzRAmHvZp5LL+KDxVOTjxDiz1z3e631//XsDudbDyHEnwLw06D9\n7M9qrb943d97Qtl5jmuGVkPwNIf5JlyXwxrAwH2cCipnSRc9xL/P07pVQ55CbBZV//neaxCBj9Dc\nNOLOrUptm4/LFVcEoIoSUg2QinWNK1Mdt2/ItcbGgN/r3n0gIXVgjAf0veEBfe++wipf4G63GvNZ\nhYUWlB0A4xIZwnVLTcs1UkESLfA70NF0ex4G0KIVd4D9EbyLCYJbZmZy+8CSZGuzgJYQ0RCaNdpm\nxuNlNKKkbqwu7N82Pzt+nAoIOOASaRsJqxU263fotVVA7yOekDCp2yJzk4UjlsnPmduZisJR51WE\nhyc4kLcsN0X4Hei4Y8+XTcQsqhr1kRvvoL6/h8+Or7AXHlXISsPFsl+bGAV3ALSbXTZt2K03EIz+\n2j1DTm5UcvY9ouHGmyyq++H2fYi4iyjuIjyfQ9wdQ3zXqxC336gnHjfca8ZsdtjIDoAViSX1a0M8\nNteNFD6127rnVm7H3sdmA4O7nwIGe/DjLtSdU+DvtB/GH1U8bb0TQgjz+x8Emcn9t1rrf33dY4UQ\nYwD/AMCrAN4B8MNa6yvzu78C4MdAzPD/SWv9ax/2Pdyk8vkxAH8CwD8z3/9HAP45gDNQB+OPPPkI\nISSAvwXgBwA8AvDbQogva61/b+djyhJdr4/cy+0sx21RaSEs+79tt3sdF8GGc/Nt2fg23BxbpdsP\nX4LgKoHVfHnB27XzB2mCSaF2+s+3yZkIFvKMD7Fy3EpD2TOLkhO9MaG12hZfVhiwSg11cc9VOUcn\n3qeFgY26QtTnK4arJOJuxbEYjWhQ7CzUuwbQgEkMvPOFEaXsjbcAGTWEE4cjqe+2UK/laLhIQxXY\nBGsXZKCeKPgxT/tMARzo0TbEnq+LJuLRiJ26sRce1cRxWaKJv3aDidfN+Q4nnV1QaNEZAnc7FSHz\nukTttqU54jHEHx9DLKiyK0ZHtV9vtbbdKKpWHsPd+RhEfFhtlJwIvA76/oE9L22OpSI+BD4db7ul\nfqshvGcir3PD9e4/BwHDXgfZaP9tAN//lMd+AcBvaK2/KIT4gvn+J4UQfwxk1f3dAO4C+HUhxKe0\n1tsSJR8gbpJ8fAB/jP2/hRB3APw9rfVfuP5hH2t8HsA3tdZvAYDxLf8hADuTD4oMevIYqjOECikJ\nbakUyPqO0v7YUcO9VjfLkQkhscqKxwOgTuxzINnoje1TiNG92vfV8dcXXmt8ZSoiFcaQkqqgQmf1\n3V2ygG29mGPUKoQ4eIBcepBOm6VN20oLYRfm2s85IdW4IGoL1LEuZoSmivefzt8xm2XRP9y+ca9B\nQNnz1/CLaYudCUgGABZ12+Vm8KLmIA2FDICQkpB2j9Gdi7UlHPN7BRAh0kC27eLpXodcuThJh2HQ\nPGe77jO0pOAWkAwTr5kS4Lqkbn1ejZak2H9QJ6o2Wphb/CH38TKAuP89u6udbyVUYIVJm/dwR7bQ\nIhphq6Bvr7jJevdDAH7BOJr+lhBiZNbuV6957A+B7LUB4OcB/CaAnzQ///tG3eZtIcQ3zTH8iw/z\nJm6SfF7ixGPiFMDLH+ZFP4K4B+Ch8/0jULavhRDiLwH4SwDw8j1nQTcILbf1xjeZXk/pAmxLAM1g\n9WOXN1Q6hl4qrCUh5OlOJ07RPySlgHwKVc5rC4h9rl07QfOeYBbcjhwYK4h5667T5Qgxc9zGDqfH\np5psOa/fFqGIqt1zy45fmPN9na/SzsTvwM5tS7Xp19J0MG1LQAC1pVzlh+a5dhL4Vvs26j/dD8ZR\n4rbvK0+qa6OtNSmDqmXrvNc247zWtjBAIIG2limHQ6BVOgSWM+hsvf05GL4SS02l5RoyjKrX5vfS\nTDz8foz7Ll/r0HOj21a/3j9o1N7zjorSfa9NoJBLX2jKHX1McSCE+B3n+y9prb9kvr7Jetf2N/ee\n8tgjZ60/AcDl5z0Av9V4zD18yLjJp/obQohfA/B/mO//GzjE009SmA/vSwDwuc+9odPhvtmVJ0CR\nbO3umDCnVUBtoutKZibjATQz2OUN7y4oUVwjBAJkrrUuZkiKS6CkFlkzmP8BAPBA9tOCqggtBJJy\nDaAEynW1yDe96F3ypCtfYtpTO6NIoU++QdDsg1u1mQG/J6t3Z+Rxmoi77jqDnnyVZjCN+U1NxRhA\nUW578nCLNPA6VRLmpA7YZODClZvcFGb41157l7VyU/WBj8OQLQtjtOZKKtUM6loSDFcUKOvtKwbB\nBNyabHKh+Fh5kVRBbcZWO3fGl6ZJotUXb0P/7tdoDvU9n68/cfM6L1Lo87evBdzwBk1E5GjLi3Wh\nM0B6kKpf+3v3/CZ6g6SYg9f3Nskevt63NnBALfFvZcYWGabr7mFXXshysPKUgDLPKJptzmviXGv9\nuWf2wh8wtNZaCHFNW+fDx1OTj9b6J4QQfxrAf2B+9CWt9a98lAf1LcRjAC853983P9sZbUZjNvEs\nL4kfcP6EHEPDEDoid0Q4QqJ2d8aVQLIgIiAARDG5ITrP3VpFODHTcxTpZe1nvHC0yb63waq3Wiym\nRVIDPADb8O88JQhwfEnHvyMB6fO3oR8+Bi6nxDd58MAmIOF3kEvPJh0+T27y6cxmRCY8Jt6Sy+Xg\n92VNwhpyMPwzAMizSunbQt6dxNWWtNzHA0BatszucE0V5Px+3ZirtIWbgNyfpeUa8+wceVlY2aY2\nkzPp+VZxgMEG1RPVOUi7jtfadZhbnRNP9pX34HV9iH4P4tXvtn+fS6+2KOiTbwBPziszvdhcF41F\nnCWNuOXrVgttn19SLLfOO8sucQXVfB+cTJuftZt0tq5/d1PoJBFrHujKKrntRJ7PPq1q+qOJm6x3\nu/7Gv+axp0KIO1rrY9Oie/IBXu8Dx03r2X8NYK61/nUhRFcI0ddafzvhD38bwOtCiAegk/JnAfzI\ndQ/Y5GVN2ZgTj548tqRLJs1pg8DSMgD27qPQOVb5BNI3LTq+cDcLaj8AlU5UWzT63bn0cJE8xNev\nfHxmL7M78q4a2UWHZd/5JmY0m3tTLzcaB9HQ7h5DEUGvH+/W6DISIlisLSGSGfOcgNxqQJ9+A/rt\nt1H+/mPkx0v4DzYEp335VVqMemOs8gu72LDRF3Mogstj6De/gexf/CGK0xXkURf+YgW8voC4/z0A\n6oZe/DxJsTHv2bNaYOtc4aizwiCoNMrYfbIt6bSpVLhkx5smoERvkORLmlsZlYTronksq3xq9fUA\nZW3VQ7mxsF8pcrv4soBnJ96HWFw4b4iSDmuSAbCt47b3rbw+JZ43v4HsK+9h+m9WUIHGcPgWvLhL\nG4DeGJP0EQ4CslzXF7TR0O+cEkx8PITYJ6t4NCp2e94WZ9amoKqA8tpmhH14Bv4KB6Z9qLyA5HkW\nZxDREGFvjERv7DnkZJUjrX3WbS25rQ5Dkdp70k2ahc4hPbp/rWr4Fvm5RbHhWwwNvZPU/gHjJuvd\nlwH8hJnpfD+AqUkqZ9c89ssA/jyAL5p//6Hz818SQvx1EODgdQD/6sO+iZtArf870JxkDOC7QL2+\nnwHwJz/siz+r0FrnQoifAPBrIPjgz2mtf/e6xyxzga+cCbw+PMNBNCRRUYZ/rpbWGZTY6QXEYg2M\nyc+kWlzzOos6zUjHysB0hQrMguBccI0ksBIJThZn+NplB1+58DBLJT47XuF29xDhalVJg6gAKoxR\nIEfTxXGWSscxcoq9MCOE2qbFfoGPgSud+bIiYs42lHQWK+joDAJA0SM0kJycGsmRFYor8gnKjxfw\nD64gjPRNoje2Iqh8ayT6foquCInYeHKO4nSFxTHQ28wg9yLI/T3o6G2IozeQ5/Ot5JUUHmYZ2THP\nUvJumaYCs9TDUTfHYXRlq6BmuEmnakdVCzS3BVmiv3ZdcQIyCubrYoZVPrWLZ+hlGEfkyLmTH2Zf\nmz63eXaFN6cRHi7ob291PAyC0iQhTnbu55Wi51NC7vaGdoHmjY7VKLMIwwrg4V4nXa9PhMuTc+Tv\nzjA56UIFGt23pwjfmAEHwCy/wKNlgcC7wKAIjbDmlDyhNhJesKqUHUaoJyCXPJ2tIcwclZXJeR51\nvPJwuurgyVpiGGh8djzF7e4hkZ3Xp1YlQqgAoSIJKreNCABFUc21XBRedbK3ZzjcnRB5CmG6EpVg\n71n1HtrM9W5quPcxxa71TgjxP5jf/wyAXwXBrL8Jglr/hesea576iwB+WQjxYwDeBfDD5jG/K4T4\nZRAoIQfwlz8s0g24WeXzl0HIhn9pDuRNIcSt6x/y8YfW+ldBJ/xGIQUwCErL9pfCB0JlEUpszuYx\nJ+PWAak2C2HhmVYuxuhA6fmCuBzdXgUqcNoDCqpWwufSQ4AOXo5fxiA4wWEnx2uDHPvhy6R1xbI3\ngU/HpALrJ88LMwAMgsI4gXo4iIaWxW6j2TZwyJPWhG6+oK8NCRJhTEKQiZlXJEaReX8Pco+EFtUd\n+h7xmNqMhribFJtalTLPrhBGPQTxGLh9AP/BCjGmkEcDePf3Kt265SW6vaGTeFIUXoZQ5gjlxpiP\nKcxSYBjQoj3wC+uLxBVjbffvAqdKrnjUVoXA37sJyFbCBXGyXGHSw6hupJaXaTuqzD5/BuUF2AuP\n8NnxFEcdWhRdl1oOviYBWNUNKxezJrVlfXxGVect2GuD+S5A5fZZ6AyzNEUo5+gMb0O8MkPwmRUO\nlhNIv0TwmfvArQMk3S6UznAYkUKAXpxWunRuuByl5izMtAKZxMsVCyceALjTLXGnm+JyQ9ftQXTf\nnn/VGVLbOqr4a6oooWTfmdVtt8rd1qm1HQHAOoruGXYVz4H6vBMq+MTo9betdybp8NcatHbf6LHm\n5xfYUVRorX8KwE99iEPeipskn0RrnQpuvwih0A4++kSF72mMghzKk/WBOAsP9g+hh2cQty7Novug\n1rvvyAHJxSzOqEVn2lbElelURFKndeMOn5sxCm7ju/emGKh96NNv1PXBAOL7dIZbw1sO5Un0/QEG\nat+S//j9NKMmwhnFQHdBx8wEweHt6phZoZnj1gG81xbwFiua2bDWmgwA5K27//cWIUJ5jtH+S5AA\nZEosdiYTWrmaxRlUFEPJCNojhWdeQElCZQ0gR0eRRt0oyK1EUCh7tn9P9gYtu1XH6hmomPptUWvB\nrpatwqTNaCLNdkVXDfFKn1pw7ibCDddAkE3p9PwxMD2hdvDJObWDAeBu1ep1Nzv83KfrEMAZbg8O\n0f3U90IBGIRvkerCH/8McP/fAUybr6uM0GyRVrYDbRHFddIoUAPSsFzUrjjs+Oj7Df6Y8ZXaaukl\nC4SKjRsrNXkXSl6DTNdOZFBLNjZ4htZ0480byQh4JtwcCr1N53iO4ybJ5/8RQvwvADpCiB8A8OMg\nu4VPdCiPhDWl2HFhcRIy1U4z24o8se0Pbl1Vbas1CUbyoNOE1aeyF7Nrx+BjUITQp181ycw85/mc\n+u37E+geaVMBqC1YNWuAhhmY8Dt1IzQzQNUqrGCw0bBSHGhWSS03s3jlLml5mWrQfQzL2yeFRlJ6\nmCQSSSFwtk4hxTlGB69BvJFC7D+h2UHz9QyZUqgASgU2EUnhQxY+xtEMy6yyqWbHULKaNjbQAFTD\nitkCRLzdVQr/jcgTUt5eXpKiNguBoi5M2kbidZNe22tYd0+t0Q36SPQGq3xSW6h5N89gilBElAid\nxJO9PYXX9SEBcpw9AOB3IHpOZV0WONv41rQtlKdA5wjdT30vydoFCuKV70PiVCZdNarml81gyZxu\nD9bryQ3FQ/oQheNb5QaZNho/pxI1J+AcOTmK2jdQAXmgCF6uDBqPLChMpbPL2dYE3wMA6rp/aWZ9\nkGwSalM1+fYDHHxHxE2SzxdAKgdfBfDfg8q1n/0oD+rjCCkqYU1eDJikCcBCdauZgGMSx4uTMZvC\nYoXyyQI6KajLEy+q6idZAKGrk+X0q/OyusGK1PjXTGqKzvnxghaZ8QQieAgY1eN5dmWTDkvHI79s\nvk06XtfrxxARU0P0tP4tZtdX4++4i5CL+oli4G5cI++xcRlL+ACpmdFIxw12ASnOMTh6A7phH8HB\nMy76kCq7gTCMIZUyn8XSEB/r799yslhpAPUk1ExAbtiNgdb0nhl0cnHVLkzaGUJGA0BWwAhuFXI1\n5cK7rUL6egGdXVAbUwUIZICwfwgdhEboNq1db+TyapTAL2fA5RTF6QrF6QplKEnxPJ5ABH5FCRA8\nY/JwulI4WQsAypgingOdA3Q/9b2ACuxQv7ovFJCv6FpIEmvZLUOjgRZQ61h0hlv8F0aguW02DlYT\nEJs59PQhXeumypFhDNUZ0n0iAfZ5sgrhBgSguxWPTnSGFQeryYVqazNna+cznUC/b+6VxQq4mJB0\nk+sCi3pifBHPPq5NPkaK4Re01n8OwN/9eA7p4wnlSYyCO47LobMQ7uhXd6TZFU8eVy6Hx0+sArN9\n+GBF3jiBD72eVoKaaHBJZGC1pGzvmfvpgQ9gQ3BYvvHTDPr9P0Bw+BKORq9aq2aaJ9ajttODUUrg\nxOPYU3PrqQbrZXh201a7TQ6mEdzuSQoCBExTer9JIZAUHroqox1u/xBgjg9zkJpVVmGOwVRkUgbo\ndobohreN/YQyrpPHdjHTAOm/OS0h1+7aXUjclpsdWidOsm1+Hq5IptNSrVU4DeBCjbTMihnZunbu\n9JwG3l2/A0R9IEuBfFZ9jolj+xzQ9SBCacRKVXV8RpUhz6ntOggCfHa8xiAIMQrofV9uAIASEKCB\nBmQ/8DoWyCDCGTCIIDc5vQ5baISxdaytn8N2iHztHDDYZTKhtt4th3StCNhhRXktMIacYJFOyIYi\n8Cl5h/HTJY92hIgk9Kag85Zm0O++D8QTYP8KGOzRc7NSiPeM0G76maHdviPi2uSjtS6EEK8IIQKt\n9TU07U9eSKHIUCvflnYBaMfcVUPLtq4ZU12eUtnuSP9rY+5VAvBmGxrem6+CUwAAIABJREFUX84q\n6LVhgW/NfMIYUGklxQLyntHmXw90o1h9qTQDHr8FWaT271uDXUJ51xjGFn0HMPmSEHssm28TUWCM\nxHrj1uqkOkl1dn9arrHKp7jcAO8tAgMQACLJ/kElvQYUnXenkrJab5uGcsLlaTWLCnwCYagAMowr\nq2ZG7ZnWmLiTQY/rwq3N896WeOi4zNA8PqyQXWlOSuJmUQIMoovbQbKdkV8bgnOEMS2uLQoRND9s\noU+slnb+Ivb34KUZVFJQAjro0649JsIuO9bal5MRXh8CZ87Y43ID5OWpAWrUl4C0XENGAwLXGCko\nBt2wsCv27lsLBp5Nue+7yaGja0uZ6p6qGeuzFChgVIEmhNmQ2YpmsSJ7isS0VENz/QYrIF4Q/y6u\nE5W3wlRKukhJZHROCUw0IdQLMupDPIHo96C5HffMZj4vwo2btN3eAvD/CSG+DMCC4LXWf/0jO6qP\nI8rc7jhr4VgGs1S7hWROHlO/+PiMEo/j1aI31Y5ab3II5gcZv5oaiqc5yDQ7VmH+DiNYlI4A2nkG\nJ49oFxrF27335qIMA1gwM4E25BB9vQaKai6hvABB2KFF+RoNNTfxzNIUp+vAuqUClHio5SMJDr1L\n2yuKATf5LC4rTx6nAmE7giZMXPMOPc0ogR+ktYXJJf26LTGbeFqEJTXvvtvOs3MeOAE10XJtum6t\nCWh6QrtvJ9Fa24Xm4H88hGQzuf092y7KpYdVVm+9spV0V61xsjpDUlAlOkslQpmi52e15JGXKVKx\nRhgSqVrDJAgDRBGje5hl5zjfTHG6DtFRJUIvM5uLiqtkz7k5J1L4wObCAmlwSe+dnt9UlH6HRGb5\nnOcG9LCoKnvtou/mS3J2zVNSy2irgky1r8IYWE9ps9Dv0fO4z5VmdiMp94x9ycWENn1Nt9hvMTR0\nq9Dv8xo3ST5/aP7zALRDrT6JkSUV4qUhjmgXfcOtweKiUjzgiscknnKV2arHJqKkgN4UVQICgDi1\nApEsdtkMHfUraKiTgABUO3tebDcFxCAi4l+/Vw1NudpxiaMA0O9VMwGv3n5yuTShVwLIMAg2NcSV\ndf50W3EsY1O4ice3c55NAawL0gYNvbJqbeUb2gE3bCFy6ZG7KwM5zHCdnUBtRLTA6U2BcprYz6Cc\nJhChhP8gh5dmEGkOfSu1tsmcIFxYtYXpMviiEWJ0zx7r1ufVAJTUqqu2Abjzex31aTEsUuDkEfS7\n7yP7xjn0poAcRzTLYX8lB94swpAUN24bePqtA0qSUR9pMbPvrauGxO1ZXkJvztGNhrjXu4vzzaMa\nL4x4UvWkYVURemO6Bo3GmRjdwyy/wPlmijenoeXqkP8PbTAI+l46hFma04k8sUaC+uLK3j8y8KsW\ndRhDFA7hc7Gia9hNEot6i1kvVhBpDsRLaJ7ZAPX5ZrmGlIPt6sckoPLJAvnxEsXpEslSIuzN4A2n\nUHdjyKMpoTpfxDOPnclHCPGLWusfBTDRWv/0x3hMH18wuqsN5cXh3gyAXfjdxKM3ueNWCZQrghLv\nfD3+GqjpkEkoGv7DJJ2Y2h7auVHs629yiIh/lu/UALPBu+fNAmEUAz65VyYF8WcYmRYaReGk5Mql\nwGF0ZZWNbRIycyGhAgSSLZc3GAW5nS9wjCOS6g9LD/riIb03d0jMMNpyXelorZb2vQKoqhqg9jP+\n3n6dFLXPwsqrXNf/57ZYG8wWqBa0FlHW1mhLPEbp2xWcDTtDqqbTvPa5lqvMOMoWEIGz8DoVsOj3\n6PvVkqwbIppN2M8o2UAv3q7IlnmKIItxd+91hPIhkrJAUgiEXllz8A28DoEcko09D2J0z1Z9XTXE\nIFjjqEvnm+3YO4ow7EkhEEpY6aCtYNQgf0ZuYrlOgNX5O/78AUAE5Bor4k79s3YSD/PFWqufxcps\nFnPkqUCeCkhfwDf3t7cpLNLxRTzbuK7y+T4hxF0Af1EI8QtA3cFWa90OrfqkhFSVTpX9mZm5sES9\nCdE/JH8WVG0weZC1uzAHPpXqzQF1FFcVj7kxmqKUVmfKzGfIlOzSzh30fEEumFgR/Jp3xbGDZmOj\nMObusF212SEDqCUgKSZQ3trCl6ukU0VSeAilox1nkGV8rpQKsBfeRldtsBduQ43D0oO+fEyVnxvM\nZgcgIvIhwuqi3s6KZC3x8M8Qd4Fzc+7GEQqapNMQPjSOoYGi894/tHphRZlZ5r+VVvIM/L1RAbvH\naV/bhe22xBaXq9FerCRmlpDhkCq9WymQJPDtpkJRVeu2e9par9yiuzyFzlOEo3sIw33oyWOah23p\n910CyQIHBw8Q9OdIe2t01YFF4umpaUM3+TtOKCgcBPfR9ze43zuvtPZauEp5WSAvaWbYCQZ0f5lr\n1huGtGFgd1rTEdAqrFUoIs1ps+K0yWoLkeuYGlUK2Wk5ty0ulwPGrUQA5Bd15xDq9QzyYoLwcoqe\nsQFH3DUE6s4zk9fBs5PX+Y6I65LPzwD4DQCvAfgK6p+5Nj//5IanaDFuk8hv2yVHMRmuqcd1x0ag\nSjINR8rm4xm6mZbbsnhb5EzmGXWG0IpmTQKg4SsH37h84/FMKU+tkye6ZijeGMrq+RnCzhBBdAfz\n7BzADKEsMEvRmoDoGI3+nUM8tSi99RShX5FrXfn8raTDweRS074SkYNycs5vZUVtksp4aHrxEwjT\nlpPjCOWKbmzbrhqN7CwkLWY26XC1d9ghbT82ILuuOrLHy+hEng06KEBr/8CyPA0FAC0EipISz/lm\nikGwxqh3m25C855F87pygobtJtLczIPMYja7ovPMrdddkZNK9WB0Dwj3jYju7xNacLGiTc54sIUY\nbEaY5ggxQh5GdUUKM/9zk9EqX6CriKCrE6MCEk2rTUTcJSHb3hjrYoZONKi1nKn63/GeePNlgAcr\nkSBvXG+B16mJ+gp203UQluLgFpCnkNydcCHdL3g+H0nsTD5a678B4G8IIf621vp//BiP6eMJT1KV\n4LpoPi1MC0K78jRmwddR3+qaNSU/AEIRJdm5vTldUUpb9Rj01NZwml8zuKQ5kvmVCMMKdOAa3/Fs\nB9hqx7ncCT1YQMSHGPT2obwAq3yKcZRhmRVWGofDIpaSxU4Soj0vvIjxzCnNzGwqpoWCXTjd44LZ\n3TS16Hhmxl/fuUVyPL0xgSjCEF7wBHpmKp9Qml2rmYEZsVOCl3OL0cckkQAyHHamgAICjxCON70W\ndkF8a1YKjQREoIwJrpIV3pyGpnV1gv34JQK63DEir0my9by1xGOf0CQgwFQGFRT52gXTJKCavp/h\nlelNDu9WDHFnBt0kEScLmscxvw2AHA8g4zHE6B5y1SFodeFjjZlNQLNUoqsmCII7dM/FnUrANgyt\nWkKOHKt8SsRao3ag8xSIMwgGmDRaYCxnJeJDJIHCPD2ucfJC2WtX/O6NIVrAIE0rDkAjb9ksfiuh\nXygc1OImlgrfeYkHQKkLJHqDmjEbx3ULEPfAAUASSW+eneNscobTtY9RWGDgFxgEQS0B8eIHVEgj\nYIq+f0BcI1cy39wM3LMOwg6UurfVhnPbbbwLbzp2FtKzkvw6W1PSYI4FKGEIFaATkV7dKp9iEBiV\nbJOE6hDptKpMOOzXjlDpYoVyklj+k5wk8EZTk4TWwHiwtUDubGe5UN+DWzRgj/epPWP0u4AnFpaO\nuFstSEbsdJlpzDJKOrNUWv6Rm4CkHFQtM2duY8mru8L1lEEjARkgg476SPKlTTzvLiS1M70NpDjG\naO8+vWZ3QRIzJoE/NZp/k+YkbsuzIk5EzerTVTM3ABqmDCgQvFoEis5vfEjq6A5Jk9FqSBKI/Qw6\nT6HiQ8iYPLIC3YEUOWZpikmqMI7WSMs1zbm6l/QZpRldwyEhCQu9sfy6wJCLEcbAAMDGaA9ycuZr\nLiajRx3vY548xPHKw8BfYS/skupH6cEKtTaSTCE92/pOiiVW+cLSA17ERx8f3CLwOyQ8IStlg4b+\nGprJyAlXsoV3SH0zOwllhcSZpSmAtCYSyTEICvT9vWowvDbcDgvHJrJdWjhkUNVA63B7hltXzuzE\nbQHZiMwcyX08y6SowLZNWHRTCt8mIVISGFbgi2a4aCxU7RK3eWf76Fz9tLQ3hd+xszUWPbVV3v4I\nGB/Re8vWwNUj4vw8OSdvIB5kbwpKRiZphOE9IwQ7Q1KUCKWHUJYYBp4dljc/XxeAoM/fpipxfFTj\nDfE5dc91XdzSGPixAnU8xmD/AVQ3QCiJY3PUyTAICqxyo/wwulepTMQmyTM0uRG6xntxPwtVF//c\nJRGjguoairsQmwJe10cJ0+Z0n8N9DP+8Bgev2s5V+42S4iAI0PMz9H1C5+VhBDW6V1kXjI/sZi4U\nUUX8NvYRloAdj+l8BD61JnmWOdijx2uNUXAbwAkCLyZx3RYEY2V0WOcihbKHUPbQ91MDI39Wc54X\nsSue2+QDXdLF2QhhFpOmAVj1uPan66oRQtnDPDvHMnOcGgtvKwHthUcVDNZl9jNax7TMeDGzaB1u\nybkyNy5T3iQgtmCwKseOXbWIhgbynVonUUaacdSNzRS6alQRQ83zINgxK1MBDXJNO8eL3babgYTz\n3/O/DRgzATOG0L01xGCPFpCmuR3rnF1Oa6g4ABUkPaIWYRj0UOgM44iESWGUscnGoKy9X8vN2ZCT\nrX74GFisiDd0r2473awyXR8ZvZ5Wx7hYQezPoPMU3dE9yOg+lHdcm4vMsyuokHhVMupbN12qms6A\n99+vv3/mPrnJhw3fbjKjiGLgIIDAE9vy9AASfD3o0ybB2dzYJDDYqytFO/MWrUKssvMtQdGOHNQU\nJmS8DxySN5ntIpgI03xbJorboSqokpBp3bqPV1AYBbfpWmVx3Qbgg2wn/Nb2V+B10PX6CHs9hPKR\n8Vx6dvFC4aAez2/yKfLKEwXYecM2b6Q21WZLUiw9BOFLkOLEVD4V9JRjLzxCNxMVDJbD3iQsNVIn\nRBY6h5IRLQLXHLPlz5g23NYQPYqtfAm1rVi/avumYMUDK9rZBs5wn9dUBnoztZUL+r2qRdjtbSPK\ndgE04FRCzWqLCZkO54letyKZMvycqx+oEZCjloBCqdvhwJsFOba++z70+5copwlkmlEldvjSFhoS\nQD1ZMCfs+AzloysUVxuoO3OIJAFeIlTafu8lzLNzrBxZp3l2bucVrDQhwwgqimmxdxOQhSwnVfXD\n878WVGHtvPdoRkM+RQFEcOqoOWQGBNDZvr54k9DtVfBj5taEMdbFbOt+YZKru9in5RrB3v2tVree\nn9XmnrVromnfwLdHg/irkk075SCvt95c3yOrObcgzbmgN8bR6FUA7zzzBPQiqnh+k48uKxHLLRXb\nSiCR215N6X0pVKUina9owc1TyDDG/t5LkOIYV8kKp2sfSenhMMoo8egQelLxL7bC/Lyt7aeFMLL5\nDa6Q+zW34eDAE9sSkIO+cxcGu/A5oInWFqSbAI0OlrXTVkGllN0mTHrTMMdo7Q2AaxMP/2sXRpZp\nSRYIoj5d7U4Coqonsgz8QmdQyxklnuMz6PcvkX79wnJSZPA+JdSDBxa6zX4+tuKZPLatwOLhFNnb\nU+LuTBLYd5+nUHiAUXwHXbW2qtZ5WWCZrSxJ01W37h48sAnIzjy4bRaG9QrEXIttmwWel82yc2o1\nsYoBYCHNFkF5zecCU8AytD/RGyTFEkmxsbI9rtK6MvNITk4s6cRAG5atqkkpuaizFvSoTUic9JvS\nTM2KWnEFRfe3TTpXb5HRobEwEfsTSID0Ez1yGP4khRBiDOAfAHgVwDsAflhrfdXyd38KwE+D5Fx/\nVmv9RfPz/xrAXwPwGQCf11r/jvn55wF8iR8O4K9prX/F/O43AdwBa3cB/6nWmm24W+P5TT5CtCce\nE03pGXZPrGx8q1NXE0F0Nkokrkk768OoUVlcRwgFgCKFlMppV2QotKqJlNaep22ovCs4wUXYsl5u\nJllrgtcMi6ob2iTBC0sQ9SHyhGZM7jHWZFOcmRXPooDq83CeUwoF5VZArtQOw97diLtWfZlfV+QJ\npKSFvNC5o+Cg7Odp0YncoolIvNMSIs3r6sUZRG9sraEDr0NIOV4s4yUQd+ENN/CGIen9jUJ6PlOl\n6Mljq9YNNbIIsaSoEn3FoUkB1aeFfjwAjhuyUIGiqjKMq9ZqtgawqF0fnHjWxQzrYkbACP8AKhqS\nYrSRMqr4bJWNhP383H9h2nEqRGKquFkqMQg26Pt7lZ4bc8L6hwhUp6YWD69TXdNuwnM2KzVIuxu7\nkk5L2ORVs9HOalc2J3U9X0IkC6jiEB05wFFne+b2rYVu5UN9BPEFAL+htf6iEOIL5vufdP/AiEb/\nLQA/AOARgN8WQnxZa/17AL4G4M8A+DuN5/0agM8ZN9Q7AP6tEOIfaW0XkD/Hieom8fwmH+lv9Zvp\n5/ULXHkBiqJu44vSVAhuC44X1aJetZCas6hpnT0tSbhzH+UFlixX6BxSdajKYC6NCw/mm9NNqM0b\nlttCeUrw3v6hdUd1EQLcipPCr5Ewrf6cYexzAmcYMS3uihZjN9nw+3atu5mn5M4pTCJi8EQoo5pD\npo7HhK5qnDOu8kQY0gLtEIiZ9S5VH1Lkpg2U1XXH4CgdqABifwSdZlB3EuhxBHnUrcRdTYXTHR1h\nlU/t56P8AJ2D1yghD/Yg9p8gOKCZD8ZDQuvxAmueQ8SHCHtjSMVipOstYdKuGlYQd1eTzB3+O4jH\nVmSbar/mpPDpOlotrZSRx8K2fQeuf8PNTVJ6UF713NhcEEpOBaQtGAFSqqqdC5CsEpM/+bN23Exb\nK+Y2EdraG6seY9ukTO42YAOr4M3nCKjke2ZXQHyIbm+Iw84NVC2+veKHAPyH5uufB/CbaCQfkDv1\nN7XWbwGAEOLvm8f9ntb66+ZntQdorV1towgf0lT0uU0+WsC2dOo/F7Wqx23JcPDXWog6N2Wxqs0C\nktLDpgBCk3jyMgXEU3rITvXElshuFNrIhGBBbYQ83V6IG+RHm5z4hl1cGrRbas3RIFXr3IcrLkvC\n5KTjvE6O3EJV+biVUNuVzmINfXEFfT4385k5cNCvJyFDlHTBE3XFgyH0IK1xf8B/B7Rq5vHnw9WP\n8gIDBfbrVY+TfNDtQexn5NiaZsDtg1riwPISqn9Y2xzkZYqL/CHZPvTIs4jBF1vilGkGpFf02WVr\na1DHKuocNbXtJsT9JtFIGO71bo3zElKZLk5XKC43kEkBb1MAB1lVAQXtr7sLHq+8gNqlxukXBrko\nAKjeGPDqbbQcOaHgGlw3a0HigoMYRchJ8Zp2rltFu+oSfK0r6chVLlaVpNFibZ11mY/3YaPUjU3o\n9XEghHCriC9prb+086/rcaS1PjZfnwA4avmbewAeOt8/AvD9T3tiIcT3A/g5AK8A+FGn6gGAnxdC\nZAD+TwD/q7Hy3hnPbfLJywzz7BxdNdw91zChvAAo21SgnRvI1VhzeELrAohM9VMLd/faeoDUm+ZW\nX/WaRg6GjbSAKinYAw5qNzCA6oadXVmuRNOdE7LTan3MbTnlVj/mdQgSTm2cs42Pw2iBUPagvY6F\nPGOxqgmy5sdLCw5QmxzeaEVmbQxMAC1AGmjv9zP3g99ro3WqF9tq5c3qp1JydqqeJr8r7kLcuUVz\ngH5v+znnZ+js3ce8PAcAC9E96pxhL1yiO9wnVj/7P3G4auNAtQlggzrUkwSSxc005Vw0ZPPvGUnp\n/rkXkHfQ7Mq6o2azAv40gTzq0uLASMUmqo7DqfSTguzNAeKFYXlZ2ScYsrCbgJpmdDlywCgmgE3u\nzGmwFbB7HQMAlrX2rZuIWJ3ASisZGDh/zcaCkIFFSJbThBoA4wRiQ2TqTrz/9HP/7ONca/25Xb8U\nQvw6gNstv/qr7jdaay2E+FAVSuP5/iWA7xZCfAaUbP6J1noDark9FkL0QcnnRwH8wnXP9dwmn00h\n8Hg5wziaoSMHlhdQKR9ndWQb3VO13VPgdXaewK4a4X7vHJNhjlBqjKMdf9iMxi6OB85uWP8dFVI7\nrM233tk5WnMuE6w8oGH0rWwbrTpIV/pdykYvHpXqN/fvl5kmYVKvRFctDbeGDzivCUq6QqxWATzN\nrG+L297a6aXCRmI8M3LnQ+GDCj1VVNWXNpJAQRgjZCO7kv/nnENewPMUiDuVpUAznPP+eDnDm9MO\npqkwatEJDqNH6KoY/f2XqK3kJiHefKQZ0K2ea+cmqKn84IZLJL0BOKvr9SEDnzT3Tr66DVVHJdYq\nBuYYm9I+QC0JhbKHnj9DJysNYs9RXrgmXO+fpu22q1IAoH0DxdeKG44sjpt4ANNGd77e6VfF1+tN\nkv4fQWit/5NdvxNCnAoh7mitj81spm3w/xjAS873983Pbvr6XxdCLAB8FsDvaK0fm5/PhRC/BGrr\nvUg+14UUPklwGFIgVAARxrVBvwvLdMMab+Up9CC1Gmu59ABdou8f4LPjc1s5rIsZIIHB7Td2628p\nkurJdQY4c4m2iqR6Ew76zeX9mBaiMpWBdmYGeraBcKXiVWCTqhuh7LX73TCPCFRF9HyBo06GcVRJ\nmtgbN+6QyCkAeXsC+dK0Ahw4u2p9bO6RMARi0JxCbbcVAVByAaz/klApDe8LIvcCNODW87PtRTtZ\nQE9PyICtOffjqoF30W2LpwUkDJGb2VgoyVoAkAilthbiyiNmv1SDimPV8CeiE3MNEpA3E1Fs0Ggx\nKTIHvhXlBEx1V6SUmI0jLVu0i2hY40qFIqLEY2Yc4u4Y8ngBEZKwpvW0uc5OgN1TDTimIwc4jK4Q\nyjG953ifSKT8t/HYwrITo2bgOp4C21QGq6K+vKwnHrZaaCQfER8iDyODHpwDGfF9XCANJ7Ou1wfy\nS7o3Dm4B8yVkMDUV76H1L1oVzwZwoIHtDshHE18G8OcBfNH8+w9b/ua3AbwuhHgASjp/FsCPXPek\n5m8fGsDBKwA+DeAdIYQCMNJanwshfAD/BYBff9pBPtfJJ5S60izbzCz0WuQpDfxrVZDvVD90o7Dx\nVhDvW98TMbpXQ4/1/QMLpQUoARVehrBDN0CbAyacRMe97lBGVgnbjRoj3z5RJfdCrcURQreiWqys\n4R3SDGxmVzQ0rKypXFvicRZ0nqEMggUCzyTuHRJFYn9EC8ainkx1kqB8QgnZYz23wN+ufly7ApNs\ndUF/I1hY0329ztBWPPa13n6byKlxF3gjhTh4UP2SNcXajt+tfqLYMPqrz6RKQBRJ6WGZFQg8UyWz\nWR4rA/BzumAL12bdfR9M8uz2LBfHavu5n617vjgJNaMwyg1szQ36XNSdS5Rd3xJNrzVRM7wtbony\n/KyrqtdbFzN0GUgggy3F6SbM341Q9uicFSWwaUk8fO26qMkwxsrXSLLz2nPVbM5RXdesogAY24yX\nUuKlxV3r2LoqZljlT0fTfZvFFwH8shDixwC8C+CHAcC4FPys1voHTQL5CQC/BoJa/5zW+nfN3/1p\nAH8TwCGAfyyE+Dda6/8MwL8P4AtmrlMC+HGTcHoAfs0kHglKPH/3aQf5nCefkuTWi7KSQeFZgyFh\nNqsggAlquU1MaQmEvTGECpBLDxKeHeZis0CoYqz8nlGPporpKlnVjoP+jYxUD30sCgp6/ti2l9hP\n3hU+rN1YziLEiedktcZhJ0cY3q92yJsCxdUG3shxiBQCq3xaoYBASaXN4bMtqIJkzowCZWnzuGbL\nKh5D3B1Cv/8HVRI6OUd+TFWXzyrWDJd2xV9d5FwjCeoitZ9bDSnFfze7gn73fRR/SPMNedSFn2bA\nZ1KI22/Q0yLfhrO7YeDULP9fOLvijiqRFBVpdZ17CL0SaUnVj5J9el5OIM7xNedaW5sKd54Td6vk\n3GjT6vXUqltwJHpDfBuAqqHzt0m5AajcUmGqn8GqsurYFWwzsNUi9rdaxCuRoLv/AFoIJOUaST7f\nmXT4ug9lr7J5YOJpI/GwCKp0zmE63Me7s2OzCWigVg3LihOanj6itrNz3q2AbxgDe/exNomHNRk/\nKaG1vgDwJ1t+/j6AH3S+/1UAv9ryd78C4Fdafv6LAH6x5edLAN/3QY/zuU4+1n8+c9BqjOphpriq\nBv+BB5tw8jK1ZEyAFi0Z9aG4fQdHQVoF6B48gAzuYJIe43jl4c0J7XxJX4ySzyAo8XL8yOq+oSDw\ngt2FL84goiFVMaEZwObbirtahZin54bkGgDIMApyyDyFni9RThPT0y/IKnh8ZAQdN0gKDzLIK8HT\nxCGJ1k5e9b0LirDnpOW4uM2VeCWSYonBa/8u9KOvErnPOJECIEWBSBLfgmdSwDZs2z0WTkaFIwRq\nqiARkWkbKw6kX7/A8kohnM0h9yLI/XPo3hjYu4+0mEGFfap+VABgacQ6/VriYR0zjlCWQCZrWnEd\nRf5IeUnXS+7lUFyJ3cAjpqaMnadV9dOG6APoPDlJh1Wi18XMaqZZ9BnbWLs6bf2Yvm87FlZS4MTT\nsBUn2RpaTpot6lWj0qH7hypEew/a89irNBc3CwsyAM8EraEizQ31fEl2CAev4Xz1Jr52GSOUGoed\n3GjnBbUqSk9Oa15HDJzhGaIY3SNXWDPLpPvixgi1a6PUu+1Knsd4bpNPoQWWmUZHLhGG+4YcmG4t\nMO7NXHFCOii8bBsl5yQeGw7yLBACo+AO8vIRJh2JP5gq0Oiedst7Af372mBGVQfvlJ3Kw3IbJo+3\nEG28ixObOfbUGN3eCIPgHH3/DuTFQ5JnSTOyHYBRgE4z4L13IAEcjO8DgKPccGnnNqJf9wMCYFnt\nbBMReB0kxRJ5maIbDisl7iK1SafQCaBpkbHmZXEHIpLW/dUbhnBNxujcOsmGVblblLFFfGjPi3WI\n7Q3oQn8lhZdmCJIC4u0p5FEf3mu3gLt3a739VTlHtzem2U83rSceM7PghT0t15ilKWYZLaDs6OnG\n2cYHQOisbjisOC0Nki4JXlY8H46a1xB/3m4Ccq4D4XfAauurfIJE+U5MAAAgAElEQVRVvsDZxocU\n55DBbSKUBqdVS82KgypD2mWgADvDOhBn/l0LdwwgwjIAuznjr+nfvPZ9MxjuzolICwHBUlDm+QVQ\nzbqigkz3GIV48vu4e/vT+BO334TyJDpyQAoO5lrW61MSonWOt3b8mwVtNkwiCvuHkP6Bua7rc9AX\n8WziuU0+mwJ4cxoilFd0kcaH0A67vlUZ2oTIE6g8BbBDR4r/zjLNqwi8DvbCI7wcn2GWSpysq9c4\nXgODwMPlBtWcoDPchg6fPKIdHwt1MuKr4U8S+h2EvfuEsjp5ZBcSbxRCJoVdgHSSQLz3DgIGJmQX\nNZQYAKCRfGZ6jnXaPojllh8A9EdEMUjLdY2SFqY5Df05bh9ATYxS80HfuEi2zDNY0j81HJRbB7Xz\nnQQKSTFHkdVbO93OEJ1XPwcxvA115y3Iz0yIRPngU0iH+1vzrlU5R2fvft04zoBJ0nKOVT41SUcC\n7Z62tTjb+JilMxx21uj6Q3SP3rCtqEInyLO509b17YCcRTAD1YGQQaXYbTT8AKd1xNeBEChKev+z\nVGKSSBxGG7LL6BkQQJOoyuc5SCuiZTO4AnSrTMAmRhbtlCIHPBiVdL814bCmnivjxOAWwCQp6UGZ\ndradx4KqNcEV2sgBHJgExDp7enFBVQ5vCJ/GkUozEHR7AV2kUNEQqjfemhl9q6G1MFD0FwE8z8kn\nE3h3ITEIQoTyHDK8bXv9lmhqFssaF4R1qNrC3JSu9H6bdE/gdXAQDfH6cIak6ODKrO9/OBOIpEQo\nfQwC4ssoVzl5s6BePTPRRyEwntAQn5MQHwdgbrwpcPKo7vsSd4lEyMGM9sdvQY9GdTIj/zta2N32\nSiR4vJhtwcfbFpq50RBzo6tD6PNv1J5f7I/g3TLD+P297arGTTyXUwsNFpx8VIC8N8D5+h0khbdl\nhjfwzzAIpugOhuj2vx+Yn0F0hlj5ugbwcGNdzNCJ9wm5JwTWxQxJtrTVRDPphF5V9bTakZceHi0L\nHEanSNSyATMurAK68iRkWS3KyguQlnTdiDAGlEOydbktJhlxyygpNpikIWapxNnGh/Jm1UZr1BDV\nbfoYuX5Crruq+3m0VKVEVagUM1zIfls0E0/zGuJ2tgCMn1UAEVxV0O9mFXby+1QprZaV9w+jCxkd\n2BLWqI7BHP0VnaOMPIhexLOP5zb5JInEV84FOtLHKFgj8Ka0SOrNlmiEZYLz8NP0oFv79k1yJA8w\nG8/XVUPc7mZIygT/6kmIxyuBd97rAVhiL1AYhT7xZYIBLQzLS+iHj6HfObVil94whLqTEAt/vqQk\n5Gqd2X/zLXdMMdgmHun5EpjvaDEsziCiGIlX4mR5hjenHRym1Ffv+aLarTtkXF6kQ2+Ne70BoaG8\nPvTF2+0VI8OuOfG4YIHV0srysPGZAiBWS2AcAwev4WLzFr52SVUAJyCOQVBgEJQYBecYR0B/cICb\nqIOwO21eplgXM1xugNN1hIcLhWFA6LZRSImw7g20OxFR4qLPY53zLaiMArrGKHC15/IasEQKI13E\nbTeHz8XnPSmWSMu1qbY8TFOBSSIx8AsE3gRBdKeCmLsJCKgrZixWVavrA0QToNP8nVvhNVUmKsuD\n6rHrYmYMFYPK74nvvU1FH7DXuYOEKyeJ5ZR5wxBwrLtFGFaQbaNuoJn0vFgR6Xm8A/n4Ij50PLfJ\nx/dLfNdA41ansNwURnm5fWoplDEHu+EF6DLuGbSQLLYSEMcrcYjDaIGvXXbQUwt8eqjx+pDQNat8\nga5aE0s+WRjL4UrskoUva6ZezTC7V8ul4Z83eCatNs1uhNRyOl+/h6SQjmadQM9HAyEXGJSQYbwr\nWKJfjXzqHgdA3Ao+h65Kw45zLyIzu4oPMcvOcbzy8GRdr0YiyaAObQEAl5sSl5tzDIICyiNTQffz\nB+ozCh6W0w49RSg1hgEBRVzn2sCjz3ieXQHwnsrpcFswHVWio6h64uPi1weqRVsKRfOQpiunc80q\nL4AsfQz8FOvAM865GrNMIpTGuK63bx/rvo6ScU3hmi22MR5StbFr09UIt+VZ/zpr/F0GhcCiR6vj\nycGupoXOkXspfUbxPrXh1lMrLOpGM1mKqHC+lhbJV4O68xzJfaLArys5PIMo8bHxfD4R8dwmn25Y\n4vOHOT6zlxESKM2h148gOkOoMIYWour1spcNz0F27ATFwYMt0zM9eUzJSAXWqG7rWFSMz98CjrpJ\nrXUzSyX6/hKQPYRGUl8ACGAcOwcRVQv7o8orZ7OoVT/W8dK0G+xA+f9n791iJMnS+77fiXtmRmZl\nVWV19X22Z3d2SHFXlLkEqRfbMmQJBGGDerBJWoIt2YQEwxKkB8MSab3owQSWsCFDAAUBtCyIMiRT\nhAyYfKBAi7L5JkoUDK72piV3p2emu6cvdemqrKzMjMiIPH74zjlxIjKre3Z39ubuD2h0VVZmZFzP\nd/t//7/tp7wAxeZnb/NY8975A2ypyaKJ9jIDX/WQf7VeGdqiS9JwZiJ4edgvVqLYqbfp+HT3xZ5D\ngH4pLAjliqBcidM1ctlECfVa6vqZ53ss6qkXrVvn1WYo1vG05pnAXXu72LcHji8ZxAsjRKed03HD\nkIgDlp6XlmwmWLeynzRYy755TOd+DwS6cylR6/y2qIDCxGULviVBj1ECUFLUygEhfPCDb9YpDONJ\ne1GYzVndPyda1vCx2A0LEyUoA6HWrW00xJ3WcXQdjkW6VYiTdWAVdem48iyIxdqibkAt/VSeUcdq\nbQUZTW9H7ZkAp1xJb6usGoVXaAc85cppTumLmfye95tnarD3Ygn11/YN2yvrfAaRbhzPOhAnsZwJ\nImaw19KneWnWEyWoyT3msaY1lmdLdKZc4DumbXMObw5zh56yEZJ7AMMB6eHbRvwrkjKbBRz4qLyu\njss2Rzkei6O0x+eXFbyeVxN9znhy0QZOWMfjI5TcJszC3e31yHGvKMI1qSn7+FG70OPErQVfad0w\naY8b3RllyTrtsRvfYh3LKKmdTHUUhFup7K2Wj/QbYhdk2AZ6ZIXHAut8TH9CD0iCywbC62vSgKiV\nJjeAx1gHBI3TGcSKJOi7c2XNggy6SDG/5Obvp3/NbF/KAhQsjcwgXnHYW7Wc3zYHZOHEabho+ozl\nCn18Qf1UAAjxxww/ZSTyDPP1Fjg9bMCq5bXtUgLOEa1nrtd1FSKu1ivnhPrRDmESi3yHpz7r2wY1\nTrd8VpXCzWwlRvJek9lZkbwrAqLX9s3bK+t8slA3juf4voh0XcwEAZVfokdSKrMQY6fZs7GhHDW5\nx1RfcDw/Z5KVjCJT0licG636S5e1KEOoaBfnZopbGKdVtsMkv83cIKr8Abcwioj2TQZkAACOet4O\nkIIQOtqIr+t8JtdQh28zrU6oV7ONxa8yQ4DlesHlShs0F6Sd/vkoqc3i3dD/N0ilhrgzDQcbnF3z\n6ozaOCY/yr1c2YW55xyCcLUZ1gGAvESVlZyD/fEGKtH2YA6yFWmY0Y8aNJxPKin73FD7Kx8m3xlg\n9Z1RpCJ00HNDkFxOm3muuTStdVWSTu4xTm4QqmOOFitGce2cTrfE15V00KHaWLw3ZB/cQbWb/eKA\nmmuSBCKed7mq3bUEcUB+2c86yEF8TC97U/bj4pLV/XOWJ5qMOfHpubBTGHDHRfGgdd3b2lPteZ4P\nMysjWkalm3vbqjJLg6Z0GWuQEAYxSYcA1C9FumvcmRPTq0UzxOxrH3Weq4/CtH5ddvPtlXU+cZCS\nnJ+gjx6gHx81ZaqLmWQWdsB020yAFZy6c0syHlVwvDjnD85T4Jw6XbEbX5cb2quR69kRzI6I8gNR\ndlycQ/FBS6xLm8i7j6Kf3nYcWH6EbXm+Wg+IPw/kpJQ7kd+tN1FDiVgvVs8dugrMg26C02bBCFlU\n0rs47K29TKdBYfmL6FW2jRXcL8lU61ogwWVMb7XmIJtR68pR2YeBN+cSJRtkn6oqSMMBB9nMLfK9\ncHcDQZUEPfo0yCWXsUwftqAHKu61r/u2vsJq0abtqcqGrcHMjYSDEaGKPPBAWz9ow6FYctEw8d7X\na95Tl0I1s1psyk0bZ6miRDI2JY5fCHAhTCpThvNF6lYtYEaxNswcywvX85HDUaIUa5GJ41suWEjD\nRrl0+7WXrNPeZ12zTsnfhxEytPtS4bVAslHWQn5r+3KLetq6v1pBTTxwCqZ2cBeQyoTb6Q7K8nX2\n8y2x74jzUUr9j8B/jDBAfg34L7XWZ+ZvPwf8DLIU/mWt9W+a1z8D/H3kafwN4K8YuvAUYU/9DHAC\n/JTW+t2X7kRxif63n2+QMdb8ZqrPbuyZc1bDATp7RH//HrvpJXfzBbuplFPm6wvhtdqSLTkqn+6k\nuilnNPs4E5LiaoVeHqOXs4aJAdD5qZs039C7N2JqLs6aXHNZXF+nVPEu/ahDz+M+L//tpglv0C77\nQDvC7do2luIuKapF+0l5SQZ207BiL1uZaDbvTLpfNOesez5NuaU/2KOKS9JQSjK2lwOycDs1Vit3\nvTjfinXboLmx/QRoR83zy6bPBnIdrpk+1vgWOt9nvjpuHbvVRirqS6eo6i/aYbQd9KGWF44glM49\nwHiM9qWmDb+d74B8Rg4wPbpiKVyFvbxVZpXep8wQqbc/STKbs5MdE93IUT/wCdTdTwFCyrmbXnpo\ntSYoadgBDA2V5xiae8BS6bSHT6v1h0PWDePd9j1i5exXC/rDA8IoZl4Jd90gtmCRgcuAnB6Qz9Jg\nr/22gPMjsDVfl57P/+/tO5X5/DPg5wy53S8APwf8NaXUH0LYVX8AuAn8llLqk1rrGvg7wJ8H/iXi\nfH4M+KeIo3qutf6EUuqngV8Afuqle7AsHMXIRmnKU4bUUdpGwczmTgwtSI5k2C3bYTiYUPeaocmi\nviSMYpmp8OeCqhL9uS9JM/SNW3DzZvO3bppfGQJIM3Phw0KBhn13XDbT2bb3EyZCjhg1C6Jvo2jf\n6al0HZCLshdbRLs8oEBkGbw984W6hFm43iifJEHP/etOvttSiiAMC+coNpgjfEXQ1QJVzBhmE9eU\nVlpLnaNuZzB6dgSnT9EnZ9Izu377Sh43l2H4TqerxHrnVguubKWqL1bHDqbtH7/sH05Guu3AFxto\nQDU7aa6BnV2x9wEYDSRxhPYesHIXDRegZAahioiKJfrJ51j/wXuOUoe8R9gfEEYJ2kdlpjnqM3+E\neO8+an/sHI9c6BnDdNKwfNQlVEtgSZrmhFFkrr9FCjZ9vK5Uu7s86xJCO6e0nU8tCkJXLmc+Q69O\nGrocW5W4PCWd3CNMJ4aFornnonotIxOeoKIbzt36ja/tW2XfEeejtf6/vF9/B/hPzM8/AfyK1roA\n7iulvgr8iFLqXWCktf4dAKXUPwD+FOJ8fgL4G+bz/wT4RaWUepmKnl5W1A/OhcE321JbNnQqF6tj\n0fqJe+jLU/TJGav75+hlRZJFkJ9B/5FTPPQlCebVGUl+A6zzmT5Hf/GrLH/nMatpTf8H54Q/WKDu\nCauyn/Xo2ZGwErz3QWteYT1fuXmE6GZOOJtvDpr6C4hF63RLCcuZzE0AsGz9Tc+O4PiZ40IDzEDr\njpsl0oYiPzIU9oAj0PRLaU8XGWmoeXPUOLo0HDTIMBv5e8SXVMI23EUxXRmBekqlaZiJ0/KP1Z5P\n43R4ckz9dC7X/uQM9cZNcdSetRyP7eWcnMmc0bMZ9fOlyA6Au35EiXM8L5LAsA7IyrP75hiXMY7n\n7JGjE/JJNdfnBSoNZcZrbwe1v3IADMt+oJB+VRKZaP/Jl1l/7V3qLz9m/jmhmkkOEqKbuZyLUSYO\n1T8faY76vk8LAKdjUbGEatq+VgCLc6LeDlE6pAqq1rnoAkpalzGQ85HqAaE6c8GLLQ+nYcY4uS4O\n9Ph+kwHa+R5vSJSqJJrcY5hP3KCzJerl/InwCRYFarZwDN1Xcua9tm+JfTf0fP4r4B+bn28hzsja\nQ/Payvzcfd1+5gGAyaTOgX2gzavesfWypvzyCcFOSjBOCSyVPBjuqB2qMGBRCM9aH0zkOTfEnJUQ\nYM7mZgDyiGR8uIFUOisfs2uExPTjI8ovn3L2fkBVRERfPiHbSV0ErrOhlFjsQvn4iPrBecvhrM8L\nqlJyMV1I5hZiEGBlJXQzUUMw2WJ4tqJqyyso4qtSnM7JGfqDU1b3zykeSJaVHCQE43OiG6feImVU\nUKNbVGHgolwBKsScFSFHi8jN2NwehEJYug5w4m3bGsDwYvG07j5HiVMqbb1u/rd0/PrxEfqDU6rH\nM+d8Ynu9ockUfVi96eXoi1lLidWSsybXzmH4zCEIp8bxXIXYsnbV7EtYx01paHneGq61A7a6qKlP\nJWCIgCCZN9c/X8Fot3UOVFWin3wF/Qfvsfr8Yy6/dMnTrwngY/C0Iv/gjGxfER72G4f6hpwPFfeo\nBiPzXVFDNGshzv618hr2TrE0zcFkuP4gaStAMPeqDUjCIKYO7TlZUNTaMb47BvqzszYrgdGoAkFC\nushztWA0vmXEBT3HY7JHbWmarPnVh4+o3GbtNeCgbd8y5/MimVet9a+Z9/x1oAL+4bdqPzr79BeA\nvwBwJ8+EmNDS96ehDG0Oc+mXRAlRsWQYT2Qqf/aVptRhiTnTsKHtiHuu39EeUKwhgt3JPZg+J/n+\nc8bnj1lNVyTfv4/62KH0Y7IduTutHovZbrCTuu/TRU2dRQRL2X4wTgkP+xL5Dj1YeFW2CCuBlw/K\nGskBykq2NVkRLStpNJvvim7kDTOCWQxtb6nWEuHKmiizLYe9tYNkD+MJfZ36g/9iXWJQ878PwtiY\nwvfJGWy/y0Kur5pGH+26bdubPtzNUDf3JJvzhOV0plCDvUaMjWZ4MQDhxQPCvawh6Dw7Q1efZ3T9\nbeZx4uQptlkS9OhHmwqc/hCujlIp4VWGSidN0UksjsYusmkoGWneb67/bNE4H3vOTAlW3ZgTHV+Q\nPZ2zcynnaTBeEY9Ckc2+kcv5MEJq7N4WUUN7KYzMtQUlWPn2jRJDmrtRBatB1XI8HWRZ12zPyGZM\nFiwgpewdIUcdzwT12CmZ2/tVPTkWx3JDqKOoyybzfRFjQ7d0/dq+ZfYtcz4vknkFUEr9OUTx7o97\nJbKrpF0fmZ+7r/ufeWgU9XYQ4MG2ffol4JcAfuj6jrYlt3A3k4f4+gT2Rq3yV1+nQgeznDlixWCc\nopc1wTiVhz7LYbBHUZ24UgFYJE8AzJgz4/CtHybcOyTb+wJZuUK9cRN185PNDvroqXwPtT9vCDTN\nAxPe2WkeHt/pYAhCy1WzOIeJa/j3wpFbLDYWaQsT9gTe1P4uQd4nHXuT4NZMGTDIz4TOHttM33yo\nbw1GAj1/GUWJ72DsrI0fXdv98kk0zTCwXSBrLcirFgu4//nRLmq0i9p/RvyxS5lyN4zWXQYKrRRk\nQ/m3ext2HqL2JGoO8+eEh/NmGNHabI5+/wv0b36SsC/lnu45cZLtS29Gxi3AKVSFCxh0NkQdvg25\niKmppRFRu7iUjNv2bOw+m9KTso10s5Aelw8Z7kxI4x5BEpONMvY+91S++sbYKZb6Tqc2SrogGUmb\nRWElfGtaC8+cRVf6DsVzPBtm+3hssqULErNdtPD7YPPqnKiX0M/edtmVzWJUForUgnVAp+fuPa5s\n2jXLZGDJVcOkfY+Z6/C9ZEqpPaSa9DHgXeAntdYbk8VKqR8D/hZSPPm7WuvPmte3AsKUUn8G+O+8\nTfxh4Ie01r93FSDsRfv5nUK7/RjwV4F/X2vtU+j+OvCPlFJ/EwEcvAX8K611rZSaKqX+KAI4+C8Q\npT37mT8L/Aukd/R/v+ygAVSoGsdjH7798Ubt3/ZH3IKfxIS7mfBF5X0jEX1AReW4v7qEk0Ut9CZP\nF+8y3Nll9KP/QaM50/0u3ybXpJTiW4fy3prjtEpTiXwNu/HJ8gGXK831PvTDoTxQqzYkuNVE9xY0\nlabwxq1G3trY6r6Un9Jx6vox1bo0x97YG8MJ/cUKPXvULv9tM29ex1HHRGW7lOYRv5brBbXRiQGv\ndBWNSfFAELZv429ncg01MT22DiNF187KxzyZL3hjNKHf20Fnj2QYcbZo0a84GhpTAkpuvcl4fJ2z\n8kmLPaAXjhoQwRWmJvcaB6QU9WBE5GVi6vJ0I1gANpGbUcK0OuELp3DYeyzX4+6nIIlJTMZme4Vq\nfItqMJIsxXOYERH65D7KMDxbkIrN8MPQ9G+itJlTMtfHN5f12OuxJRjZ5njszJcv01CtS6aUjK6/\nLWjSonCsHrqoUWnYOKDZXPqm2yiBrqIJ8gKhuSp4cvG17e/7Om2thU3/22A/C/xzrfVnlVI/a37/\na/4blFIh8LeBP4G0MX5XKfXrWusvcQUgTGv9DzFVKqXUp4H/U2v9e2aTVwHCrrTvVM/nF5HRrn+m\nZMH5Ha31f621/qJS6leBLyHluL9okG4A/w2NZ/2nNAf2vwL/mwEnnCJouZdbFDjHo25cEzLL3DAb\n+BF3R4IZcJkPeV8W+ixnXp1zuoSzMtqq6QKicjktpywMsWU/GMpAqGfue+0CbKlC/Fp0msvDOzuF\nUyNrYMkRbf8iEoqXd6YR0zIgDZ9CCv10CIvzpszWUYdUWSjbsNxX1yaovZE8wLbZ/nTOaloT3D8n\neUtih1qveH+WkIaau3nJrcFNmaO6//viGK08sYWGe86o0bKxoARvQetwmJXrBfPVWSvD7FoYT0S5\ncumhoDznYxFpvCBGWdRTnsyP+MJpj3dnPf7w3jmf2oP9698H6UPonzoZagvMWN2XaD6lUWkaj69z\nUjxw5Vt8EMEVZuXYdZSyqKc8L57KwGy8Qy+7jRoeCGLL7oMPRljWqPml009652zG//M44xPDiGJ9\nyht5yu4bn2mE9sa3qNKMs/IJD59fsKgC3tpRjBMJwvTZIylX9YXhOTJS2LWumFdnLai1vXb2Orrr\noTow9+V5u9cXJs7xvDONuJsXjvqoH41FBC/osWDqHFC5XjANYHT708Dn5f605884IHmjR7K7jV7H\nciJapKAB5+go5aR4wMPLms+fvEBO/LvTfgL4Y+bnXwZ+m47zAX4E+KrW+h0ApdSvmM996QWAMN/+\nM+BXzGdvcDUg7Er7TqHdPvGCv/088PNbXv/XwKe2vL4E/tOveyeU2nQ841tuobKDhNvmfMj7qGQl\nQAFDuFmWC4q1ofI3Uso+y/HCI5p8f6YYJWfczZ/ST3LXSN2AE0Mzr2MHSk2pCcwimj0SJ3Ixa2mz\nFMGaSCeMkykQEQUh8+qcMI5JfTXNZNX0rbJVQ7pozoll1LYql2q6NA92TdBvHuJaV6SGxFP4znov\nL7WFiZRmHEKudPDjULUdkXU6ta4o6iXTMqRYb0auN/oL5tW5lLbwzqdfy7dOrytVba+VgUjvpn3u\nDgsg4W5e0o8OpFzW2xF25SiB42cbn99m1bpEh4oXtps7M2YXq2OOl+c8XaSMkxV72TFFfSkL8vjW\nxj5YmQnKlQs+ns4jnsxhEMG1ecSN/kJkCux5SHPm1YnILxQZ0zLkbi4Dmsn5CTx6x8DSF3BTaKLC\nfN8J6cGiJf/gTncHTu3+toUs1ooSSjARGXRbM5dDVaCQzF2HIm1RrhfyHRonga7NCIL0b6M2inWL\n42n9ze6XeXbOlu9wudI8nac8vhq4+HXZGlh8+MxnopT6197vv2TaBh/GDrXWj83PT4DDLe9xQC1j\nD4Ef3fI+HxDm208hzspu6ypA2JX23YB2+46YipQrm1mFyioMiMK8mTTHNL4zUz/vD5qSC7jBTVvX\nHsU1Z0Vzw/vIFjfB7Sa6NUUd0I8ME7EpFVnxMmB7A70uHY2KzoamRJPIvNHpVHpW+/dALwlVzK3B\niIPeAktWebE6JsnuCLebzQp8ehhDptjs+AyeSSlEpSl87JAECMYzwo9PBKUXpYTriMPegjTUJMGO\ncI11nbaNLns76GzoJtGt+YuX3ytp08xEpGHGKFkyLTflCi5XmiSQPlea5Q3bg59BLc5hcd7m77N/\n86h60nDAJ3cGvDksGal9kVu377OByXiMQjp7bu/3duT14YHLiNNQAAjDwUTYLbIjd427YnBzVfB8\n8VWmZQgoR2IaqmaY0+3DNhBJWUFVkqQ9Rsmcj480N3pwNy8ZxhPCs6eiaouohI4m90izAVHwmMtV\nySS7TTqfC/vHex+wfjYjGJ+jcnF2KpMhYDuPU9FIYrtr2QkMHHN4NpRSqjnmKs2Ym1JbP8o57M0Z\nJYkbFO5S4iigH6X00jvyN3Pe1PW3oVwR7jUZZcNcHUlZdJt56qwq7kGaU1QnXK4kKHlrp6CovyPE\nosda6x++6o8vAnT5v5hB/G9ohOkqQJhS6keBudb6C9/Idq29ss6HIJDeRn9gMoghczMPkIYNnEqB\nRJirhUCYo6ShdckPpGRkImVLse87IMAsImKNExI5gq0N2a69AHWjo1TYhS3lTn5AoZvmi62X+99j\n5x7CNBP0khFM4/K03aCvS7dIufORpnBzj3iUCWAiP3ANf0vimYaDTadpB3czWfC3NeO3DR/6GjXt\n90ofrfAqnIsqIA3WQlBaxyTxRK7RogMtNz0TnTwRFJg3gNuCPatYYOHFCtiSlULjgMpKwodyhbpx\n4Mpei3LK00Us+1ovqHtPRMnUMEJ3CVzLarG1b5iGa8dFJzvaOb9er0cXhYig9fcZJ1Nu9GI+sbPi\ner9Hf6XQj95h/ZX3AVCFLO7p5B776R2G8UJYDo7vo9/7gPrBOav7Mg+X5B+4oWpLHeSTttqZHLnH\nm/0RMlUBpNThiiSU7AlwjseaRbY5OqlqtnH9VNyTrNYvRUeJgHdG23tpKnm+HXBgr6F5fgq9dJmv\nNStx8t1kLwJ0KaWeKqVuaK0fm5LYtvT8KnCX3cafYxMQZu2ngf+9s62rAGFX2ivtfGzWQ5azqKcs\n6qksPtFYBvO8tyuv/KbtDT/Y21hA02DNOMU5IOtkoN1sTFxszRIAACAASURBVOuAYh00KLGwQdRs\nZD8vMa0U7N6WGaFsCOtFC9qaxtddacMOgtqGcIveJY0ZZaafAGbW6JksbB6yTg1zGOZwcAeipOXY\nhNYmkml3Pyq3pY0sd9xytq7/MtumhhmqmEG8AhrCTKteWq1X1Db7SXPpcYFkcWaOyYErbsxFK8kg\n3mpdCbT+7BEcPWBtqZSSuBnk9VnE7b1wbdLcL6NdGOwxXz3hdImbdZL9EyXTKm6Yn20Z8ayMKOqY\nw17nngp1R3a6EaOTqf4tAUxdGl65mmu9mrt5wTi5i374b9B/8B7F78l6lCwrgnIFVUm4c11AFdbx\nfO2Y8ssnnD9LGIznhHvHhOY6RlmOlcy2mU9zDJvFRdE9mjOIFy4Lgk2Kpl442mAZ79Ib6cvT5t7K\n9xr26SwX5F23YlAJA4jqD5r5IGsdNpNideyyHv/8fxSmv32AAwvC+qz5/9e2vOd3gbeUUvcQR/HT\nwJ+GFwLCUEoFwE8C/659zTi5qwBhV9qr63zCwNGm6yilWl1wudKESWVYl1f0otHmABo4aKlWinpd\ntRZHuVFlxsU+iM3N65d02hoz36zVegVpRu07Hq9kkQKJoZ+ZV2feTI5Pt1/wRr5yQ7FueG9ZC2rI\n7wdlBjQQJqL+Cq0F0k6+W9OPj1A3gPyAMIlbRJs+ASjQGtK059YvydmFq6gvIV7gO6DmfFRmLiQi\n6u003HBl1YArRrgSlV6cOzYA/fwhnD9pSXarLGxgu3nZ9MPsIhclMuBblZL16Kuj5WkZUtTnFLXi\nrIw4Wgw4LxWPF3BZKW71I673RItonDSOpcUKcAViTC8rd5eFKmYY7/LWzjmT7LYMrs4v0cua1bQm\nSjT186WwJMzmclweo8N6vqK4DKmKgOIyJJuvCI2joiqJ4iYwmpYlxTpgWtqy8lUcZjXECzfn1OUJ\ntKqmdi7NlRY9+hygnektTfAw2BMi3vWFe9RCJVDqdP+eZPZRspkFmQzKBoJXkaB+D9lngV9VSv0M\n8B7iLFBK3UQg1T9ukGx/CfhNJM3+e1rrL5rPbwWEmb/9e8ADC1Tw7CpA2JX2Cjuf0JXbAPrRDrtp\nm3UZIAnbkbkbII01lZlmL+qlm+nxo75xUjFOBAHXbFf+Pk5rRklNtaYBAni9Ft/ptWdZKtBL6nV7\ncbYPb2t4sdPYVcsL4d2KhfPqoGe0g9ZSsupFUrIq9JI07qGt3HBiMx+DWMu3w5OrdS20MXrlbixf\nvls/PoLTKcnNmxxO7jWLd1lCZQKsKCFNcyq1nZTSz+iSoMe8OgemWEruUdxWAa111UgyVCUkZj4H\nmhkPf6I9SiWLHB5A/gj2x20KFl/rqStm5qMR9ZJ+NOZ6H4p14bR8fBbxNJR97kVrns4jIGRRa+d4\nQO4dcUAamLrSVS8bQTaU/t7kVGTOp2aU4+AO5c4+hSlpTbIdwyoB6uYnCWYL+pae5/au0Okc3HFD\npeHBHRQQlysGQPrelPBwQPz2REqtRgsq1IacFJxwHX2r0NpewMdJZYQH+4yTG/D8IdQlyeRNJ4+w\neUN1mCauGg6tSgmWVqL6WwSNJpD9Xwc9qV6YsnlLuXc5Q4cJUZS452deXVFm/R4wrfUJ8Me3vP4B\n8OPe77+BwKK773sRIOy3gT+65fWtgLAX2avrfIKo1ViXKHHSmjMQBE6zeHd1Spr69nbdEZA+yCip\nN6jjR0mTfwuJ4jG1kRDoOpRuX8gvVXT1UlriaNusEE63YTwxte1zLNVNGqybz2WG6SGXElxLuM59\neSnx0cvMj1LLFdy/Lwi9/qbYnEVgRcMDwqjnSCntsYnuzgl6tSDq7TDMrF6POCBZ3K3zMddKRURZ\nLvNNY08PaJjLMXnHY0XZdJTC5M0WAlJHacNdV504RU3VoZexszAgwcDtwTG1XhOqJlMQJ1oxSpai\nY+OheUdJe+GWzHRNUcMoEbkJe49EQQK9mLD/BuHhxwlVLPew1yMbKW9IMstRn/xBefCTyMw8iSzI\nxfIdqnXNZOc2aW8Hkpg47ztKJfUDn5DGvgFpuJJtxwGN4nZtyfKy9aMdGdp+8m/R9+8DoJYzYYVQ\nRTvLrYom65lvAQt0UWtVKdlqXZKOb1GFvQ1G8chDtG2Y4RBMB3tgHNCL4PzfiK35tpXdvifs1XU+\nYbQhaR0RMTRZgR85+QSHtlRS1HGrFmxne2wprVGslAfVotrsNqGtrlnUS6/U1HxXsQ5cVtJYU9JY\nVJH5vFHLDCX6DVXUyAh0rSpRVUk/HRLGMaE6Iw1nDhjhelBh0kzwv4B4seldBI4i336P497ybTZH\nPzluoOF24DFNZUHMZ+i6ROUHTtJcaS0zMhaZV5Xoy1PU+BbDfGIa8cd0A4FqXcosSpgJyq4uYa9s\n9IC8prVlx8abaNdRyoW+oKzPKMplS/9mL5syjCckYU9QkpENGtrBwjCebGV/aByI9K6arGHTbGl0\nWkIalqbfBdXKv4eCBuZubBTto88eNRRE4BwQUeJmfI4WMqdV1AGf2vuASbYjMzSRuQfyPur2p1s9\nyFaA03JAbQuVPFfR5RR9/PvoP3iP+mvHrOcrYsON2L/5SarBTuMw/KzHG/B+qc1O0VVJNL5FmI0c\neKDWFZEHJCKJml6Z5TxcLVCXp84BhXVsZotee4xvhb26zkeZMoTPNVWVjp3a55c6XUKxFqLMaRly\nXioWNewmdq6lpqhDxmntSitpmDmVxa65zCZoSw9Y5dBFJb0i/7t6IWThZvOzC2ZIw5S7uTggmXWx\nX7pJOaNAGvIm0ouCJlLUSsliPTKDmlcx/tYlSdijUJek4dI5Pb08b6QfjAPySTH1skJlEeFe5pjF\ndd5vSD49ckoVJU7pleXMDVaS99DRkcBvB3uESaPh4nbP1PErFREZtJ2DgG+LgL3zZOdsZFFWFLXt\nNclZvZ2vOOwdMUokk0wiWfS3Q0R6m5msWbDLNaThktHWz4lZp7RAApHpyr7e3CtPFordBD5zcC6l\ntnAg5ajzJ25w1V7HajDiYnXM89kz3p8lPJj1+OqFYllBUfd5azyT/t+tT8P4tA2yMGZ1ksIgxkqM\nb7vfk6BnHI8AGdYPn1N+WRiwgn4sIIYkJuIedb/fnr3yQSv+oKj/mv+/MT07QkUJvUiOU9hSM15o\ndSkQ8GJGYgIQuWYfzaDPWktP77WJvbrOB5qGvMeoLEqQObVDFS02Ib21LPbLGuwgtaB5GsVGKxwW\nbVmKbIPdN7sgTepLFvXUOaKzInwJE26w9e920X3pBS5mzgGFtRnmrAQd1stGruzU5VgD3OId1Wt2\ngz362VhkyZ9+pT18aUlS8z6UK4Kd1DkfNcqaDMjW4n1Yts/5ZksmZjskcTOnc3lKGiUk2Y0NaLnL\nAq0KqM12uqSmZrq91qutxKASVGjzs+ZuXtCPchn6XAfoU9ODnby5caq6dDPdnsRV5jLp5IomeAS9\nSO6/g17AYW/FrcHN1jHpLcdry7O7KQziBYe9Fdd6kvm8tbPk1kA46ES6fH/rMK77DuOErMR495iE\nrcKg0YY5Kjsl2JF6bbBjrrdBnda6kP7Mti/yHc+LsiB77yDP+DCeSDn17JHA7KvypZ8HWpWI1/bR\n26vrfPS6lW4DTQYUlS6KrfXKIaoaE4cwSiTTOeyt3IxLZdaIal1Trdty0NbSdSBQZHCOL0KcX9rb\nYZi9ySKesltfcpA15bDuQKVIXAuENzU9n160biHJnFaP11Tf4JQzDiiMIurVylCnnDOvzknCHsNs\nsjHs19qmPS4zH9Kijuk+5HkftbdDYMEL2yzfc6zczqJEQAC9HSM/PttQcLXDo6IlI591JbsuTVLX\nqdmf05xyLaSfoYoZJUkL+uxntv3o0FEk6bNHbhiXMBEyUmM2i3ZfbbKDDV66jqXButUb9M32+EaJ\nRYmFhCpkGN9sv3GwB6vFhqaTqgr64dAJ+vXCS/YyKVGNkxsbEPir2CDaOzVDmepBi6vPfi7NBZJe\nFMSWe+3mnsjRe6jTOuj0ZxLv/NhSKWz2H92Jy1t/U1Uh4wM+RNtuy9+el9lZxo1yvWjN6b22j85e\naefjhte8OQKb/agwMdP0A0Md0y6LiPNZM04q44SkzFaqtgpjUS9b5Tc3Q7JFIZOyQuc9GO3Szw/o\n5TfoRwuG8WVLpE22KwOVtidU1CYiN6CBq9Qit9IFgQMi9KNxC3RRrhc8W74jC5LHZNwyq5kzO21K\nbcZUmjrKfYcwunlT2JpNk7fl/MPkxSSk1gl15a6NAB6ANsAIlR8081lXZW9238x3aqVaIJNQRexl\nll0hdtfSSlHr2X2nvaQ/EJ6+IIkciwPgzqfLdk2A0s3QrPnIOH/g2VqtV0SB3T+574bxRAhL5yco\nj3+t0EvSDnO0zyodxT2iKCFN9xnGE15kVzogKz1hHfzyHJXtyLm3PITWshx140Dg3SBM2oM9GOy5\ne9z2Z1zWlniftxlcVzret45T0ovzDQ5FS0Ta2qZnFqxyudK8P/swqJqX21rD8kPMlL8q9uo6n/V6\nY3gNaGU/YZQSqsqLApektWKcStZx2Fs5UIFFmNk5BQvVnJYhUTBlGAijsZ0haTFJGyEsvaycYij7\nz2ByjTQ/IB3sN0zOekVRX5KGFnW3Mjxn4oQ+1EDcVQt7VZKmOUXQc98lxKQJb+18wG7aF3qWKDWo\ns1kzP3M6RZ8YqK+NKBGH45zO3gh1/W3msebJ7B3plfQnJMF+03v7MBYmsmBZRobzJwLjtiCGE1F2\n1flpk0X519c/D2GbTHIbG3MvbGaRrKCaXjxFW2Gyx88cEwBAloWuQV8Ea44WlgFiueFMushJm+1I\nJpNtcKb56D9X7jt7BLN3m4HY/THheEw42BNH7c0j6YsjcRKGR7BVkttC9eNnMNBxQDZ48OmZTDlU\n92fiBCyNEaYECHJN3jBAlL1DcdRKUVSXbtFvQaP9LNUvx6ZX9yGB9r7BZtDlZz00ZVfChHp9wbya\n8XSR8t7sdebzrbBX1/nob26QTPi21oQqIw0HQpVfFRSB1akPHct1Gq5Igkt5j30AfTMRWP18KX0Q\n+7r3sHSHLpuhvJC9DGBNLxSwxJUw6w9pQjE0oKgvOeyd04tCw7c19pQoy6Z/coX53FpMrgkVT5px\nUTzg/ZktZx07Hq/Qo+XfCAy8hdAdu4VPW/swaCi7ENvF1mY8WxzPxkdV/EIm7JaVK1nod/ZdQCAO\nJWoIM+kiIDvf1THp4SXuHkiCHpQX7vuusoqqCRg2/li2zrH2F3jzd2XOjzVXTnvJKQCuzk5Gu01G\nagZ8+9EO0TqR52R50XDyefNTXa2dRuLBY9kwsuEvNIvCHG+W3Gz2O4x3eXM0fa0++i2yV9f5+E1E\nP/rJD5wQVmmIL+fVjKIOmK78KXvt6GGSoCfUNotz0vEtCgNUACnPCbfXjFAdMxrsy4JZPpCSlFk0\nRASrbibUvSbs89UTR8NiI+S9TjVmGE+EtytuL1o6G26QdAKtiNovpWilnIxoGg64NRhw10b8dSmL\nnV/CCpOGeTt58e2kVwuiImE/vcP37z5w5aKN/fDQhw6ZZ6NnH3FlInWd76H2V+5cWmiwYyEAWVA7\njlJnQ4r1AljDekFq0VDhJpecnLuVnAdHx5IYaHifYGfpmuiul1WXpOuA3bTvzqfjLDMlquaMKbef\ndp/9jMNmPP7grTtfYSIchbOF6Dl1KGPKekoSQGTPl3W+3UzAztQksSACvcVedTIgMLyCmUfACzKv\n5JfFMmF9j2oT7PlaUu5/gdZH+QFh5jkeaPaXjiNbSmYVGWZ0e27AgDsCCK0Oku3J+TZbiPhi3m8H\nUFHSCkJ64YgfenE18kPbt5Fe53vCXl3nU9fuBrbWcjwG9TUty5bTAVuTX5MEkmlI7V96HhpId/bN\nDSyL4dEiMkCAKVGQ0B/fEkmDFhlkzfq8QFuvksSobIciWPPetDB9ncxAfgPeYukcUC8c0ZtO0Y/e\nEZLL62+3ItX23FLlGANsltSltrGWBD3pI6wWbgFomS83vHMdIq+huy0SN04lomlqK62bbMLPdnzm\nAARMYB1QaI9N62ax7g9Q++Y7PcezNfJOhV8u7GY6xiGkab7hgPxylzM7Le/LjluRQXscyxnDgaxe\nrmQ3O2pnHNZ8vjLbM7GIQnOuwyC+el/ynpz3/sA13W3jPFQxYRDLNm020YUx2wU5TcHMX2vbh4PW\n/JMtyyZhj2iwJ9mRzSptRpkKUedF+Yxxcp2IpOVMnM6Svd5V2VIRbtk2jkPPAVnH6GdAta6oqYQE\ndbVoAQ6s+imnU7iWSB8z7kGYUFSNEHIUJC0l1df20dkr7HzWgsqaeGUG87AUHtz56SJuDXjamryF\n2Eb1WhaT06citRAlpMMD5ioCVm5W5+k8Ig1K4BhixAEtZ2BIDuvTJatpTThfyZikkeY+XnyVPzjL\nWdZtiDdk/GgmsgmjOkXf/zesv/K+QJfnl6i7n0JnQ8r1govV887QagRo0ROKbL+qcgua6yOcPmVt\nNO/VMHdRPtBq/Dob7DVZyxUs0Hq1kPmiKIF1pzTiRcPO8fjzScYBKWg5VxX30IO91uJ9FSGrzoZc\nrI65WD131xAQwbKFRMdu/sk4IFvuAtPzsBszzsdqIgXjzca0Xi2I6rwBZXQkyx39kD+Mmx/B/tgN\n9roeRyROwC22xmm7Bb0/kOa8yXpERn3pYPe1NrNO3eyn23+0s1b5qhku9tgfbN/RZdRBT5ge7DXM\ncieEd7E6NhyCT8QBWee3DTlpz1G3/9QJInzgiJ0JU6kQnW5jA5lXZ4x3bzcCjFZ4cbqU4METbLRl\nvH60I8/29Agu3916L3299prhoG2vrvNZr9EXl6jkOewduhvPOh7p18QcLeQUjZKacdrcOU5XxbI3\nlyuJGueXUJWEYUyxLjgvFc9LyMLQlN9KQnVOkl4n3LkuhJ1Pjp3sr17W8kAYaYSjZczjBZwUZpi0\nkht4nMDpEt4Y7qCfH6FPnlM9nhEuK8IbC3mIzUL7/ix17NrTMnQPwLQMuJsv2MsWjk04XQfSq5id\nOmJNSlPSSuK2rLd9aK0yqUU2LWdSkqpKodEx4mZy4hrI91Wln5bj6fzdyo+rjM0MyWuSQ6dME4lI\n2EXxwEzz97ibLzjoVYLyqst25hWVpGFGGEWU64Vh626TtdrtkohzdmU/2+uyTX1okGDeveIczjay\nTJqeig6TNlza9GFax2/Pp90nzyzs3rFh+9nP/FIGds2C7L7/YmZYILzp/7oE0xvzyV8BcUDeNV7U\nU6dl1Nz3x4yzG8KzZ4/X9um23A8266Iut2fe9tyagEZFCWmYiUChrlpBZKiOGY1vSTlx9qx9zsuV\n3O9hQpgNJZg7f4CeGYRcB8H52j4ae3WdD2zceFGUOP2bUTKjWAetOYuzImScYmDNhkUgM5oxVSla\nJ3uH0lRfPOGsaBozooYop/uwt5IH0URjqqxIljUqOye+tyPw0ywnXcMbecof3qtajmNRwyd3xAm8\nd3HMm3s3SD5dEud91HCA+tgPUPT7nC1l6NGSm25rnFreMJA+kI5ikWmuS+mjmPNk5RTAROuzORQF\n6o4pWXR53kzJST823HBJLNwrdorc2hbAQquHYLdl32cXIl/m3DopI5PAQQcFleXieFbHFPWSUQKH\nfYHIh0qGInU02pRJqKVEGEYj43SaXoReLRoUleWos1lM3msWVSvl3ZlN2bgSvlP3SUw9eQ29WjRO\nyJwXJ0ntO0TzugKhignZFGazljT9SZDgR10F3KhEyDAJelRBSa0b8ERUryVbXs5gsEd/eEAYTwx1\nkwjE1brirHzMOL8h1+9FpVzf7Hm+imUDHHRc9XaIooTIBA4CBrqUgdnjd5ohZUuYazP5cgVHD+T+\nWs42z9Nr+8jt1XU+WhtE0qU8bJenEPccr1OtK0ax3IC+OJz9Oa0V8JyWOuXiHDW+xVn50NDmt5eY\nxwtY1lZmYQ48Znf/njiuoiAZZagb15wsMMBusMf37z6iWtcOUn1WhK3Bx3emj7m1P2E0uUcVBpwU\nD6BsBLjSUNOL1p68g3Kv2wl6gYjLouML1DmFVN+eHLM+KwjGc2lwX5Po3BJsWnirP/sCxgFZRmx/\nuNO3bQ/9NkRd1+mUldTxkxg12m2VA6swYL46bc1fCRtFExzUekVkekobzAfLi3aGtW0/+wM5q10K\nGJtR5P0Wt9rWhbRbbrrCrBPayA67WaLPVba8aB9T3JO+o7+fLzB/nyw7AtCAbc6MnPtsAXulI/gM\n4wlw7KH6Kk6KB4zH1xvkJLTh0T6C8fJUyuP2nG6ZyWkds3VCZn4pSnOSuCcs2tbyPdT+VCoV++P2\nBk6fbqImPwyK8kOYXivK4jVs29qr63zW2st8FoLwmQlPWJLvG1YCYXyWZn/jSM6KkDS0LNVzav2E\nYTIhyW4zXR0zLUvOynirpsnzEhZ1SBomwJxQnTA6NM5mKLM93YfrWvYm5boZNr3Rl+E3f58eXU65\nSJ63pIytpeHazSdBo6wqg4y6xbZsTSsl1DpxD13+ftOjePyM1f1z43xS4iSW8kyUNOwDZu6HJ8dU\nj2foZS0S00mMuiONaZXlG+gpwCHSWtmPv7huG8y1zWOb+QyfwS2zuA/2mFcnGxT5g7j93VZ6YUOE\nbHG+0Xtq7ZNvtudizfZSypWUK/donE60SR+kLdS8OxB51fxT1XE+XQcSSXlLddkdrjCHtsy62/Hu\nj7rJfgABpJgBX23njC5mqBsrR/A5zm5wYeRHrJ2VTxzsHARIEapI0GkWmVYL+s6Kv6ly1Tjxzj51\nsz83v2TKtBtlu72RbM9auWqJDJL3xTF9RI7ntW3aq+t8oP2wlitgJg9rlIheClDrYw5ZtRimbf+k\nobpfUuvHRl9mRlGHJssQev8sbDcaz0p4MDPN/fC5IOAm99C2d9J5kBQz0iwniScNyigQCLh1JO/P\nEt6bhVzvae4OSw6yVUOzE8aMkqVhRA5Iw3XLMXYHGa1ppSDfF60XHqBPztDTJfXTOatpTQKsn80I\n8jNU3m8W6rMz9Mlz1mcF9VOpl6/PC0LDYGxJKrfRykR+NuRHwP5Ca0XuzMJuG+XrswKV1XBxiTp/\nApN7Tha5JXR3xXFrpQTK3R2e9MtmV5n/921NfGictGFfsDB46U9cUBbC0DDsTwT2bYdoryoBddFq\n9n+/j9J9X2dg85sxtbyQczQVcTZ9fCGD0h5oQSMo0tFgn0IvRahRV6IjVUt5244s2IwqHRo13eVM\ngh7Tc9HWiSdeJrnNASdxc82iZHu/KN9z4APrdOz+AwTXpM+phrmUQb+HTCm1B/xj4GPAu8BPaq2f\nb3nfjwF/C6GC/7ta6892/v7fAv8TcKC1Pjav/RzwMwjf2F/WWv+mef23gRs0Ndw/qbXeJt/t7NV1\nPoGSG9gKikHjgM4eofID+oM9iCEJDCKtBeNctQgHLZdbV0r4Wq9u9WqWtbBTwyZDdYt/qzuTYhq9\nFv5raX+Kdc37FwnvzhRffK643leclyl38pC7eckkkwfHLzlts1BFzWBepxymoRUBqjTEct2pLGrY\nDOKeZEpjQfEF43mbQDLve/2RmSivdulllECpFThHrLf1B8pVMydlqFJUFpn9S2UxmX2R5NabXNt9\n00XdvsPrOlwLLFDQLPpGdlndONhcrK8AOOjluT2Uds8s7zdidMhc0zaEluxo2ZynFzm/bQ5om23b\nd8edFhlov7kxPaJX977BngdnXoGGMBsKeKA/Qw0XMFmhZvNGeHC0K+fDVBRsSXtenZGGSyBo8RBa\n2iLmJ236KbtPGIg0SIAxnDeVAgtW6DrXLaVdd50MKtPeRyoLHeFtcx6ij67spvl2ld1+FvjnWuvP\nKqV+1vz+1/w3KKVC4G8DfwJ4CPyuUurXtdZfMn+/A/xJ4H3vM38Ikdv+AeAm8FtKqU9qre1C+GeM\nqNyHslfX+SSxKDj65h7emUPR9Me3WiSL/oJ1Ujzo8LgFvD9r3+xpKKqUdj6nqBXLWpzSOKnoR7ls\n/3IqTeJuRBomTKsT6rIpxfSjsTR91yWj+Jw0XJOFkmENIk0WCsvxIFaO480vx/maNC3bBn8FM1xq\nkFxZiMoi4lFNMBYpBJWmro8hg4emLDIckBgGanXjGty82WyzKqXMpbbMZugKAhyXnPLLXtYZZTOY\nPpcF3jT6lSWg9IddH70jxKn5gcm4hq1FdOvCX5VN9vP4SBwZoO7cat4TGYkCj3nBqs2G+b78bTkD\nCwiwWa3/HdUpKssdqi5aS98tXQdN5rVtHujrsS6IwnvN6RuNG0dpS1vKQL3V+BbVYOTIVsGXvq7c\nIKcePELtPWnmjPzvW85koTdKo6EZLO5Hqw0ZdbW8aOagQLKOiy1lw9kcfXouQ6JeKZMo2T4r1Dl+\nrZSUfs8aeL0GgsQru1ny253rH/58f3fYTwB/zPz8y8Bv03E+wI8AX7Vy2EqpXzGf+5L5+/8M/FXg\n1zrb/RWtdQHcV0p91WznX3wjO/nqOp+g04/xB+zsImYgoZEfgYODzU4O3+a4fOgc0DbHY4EBFihg\nGahHydoQkg5E/8agp3RoiDMBwoTnqycbu26RS2k4YBBPGSVresb5ZKHAwtNg7dgX7GcE5CC2rBtd\nGgfDrTrAgisa2eFeJuWVvhGCy3tCnRMGlPWUMIhJD9+WMqKVP9g7bG3DOtquA/Izk0W9MmXDCMKs\nzYRQGDh3coo6nUqwYOv1/vdcXMLFfekDjccOQcaW724dd1WiHx+xfvic+vlSelZWzRUcVVCtK+r1\nhZl7qUxJ1JSQ+gOSfF8ACx2z2ZFFr0VZThQO2yU/v8xobVsGdFXGY+d9PC0e3/Ha2RzhWzMKr0Uh\ni65xPEW/z/Hi3VZprDLKt1EgpdNaxYTjQ6LhgbCa+2b7fyYgsEwGw2zSZJpOU6vjeKDJwPxjPD13\n5dww/wD19ifdn9T+PcN4sD1bkYBjSVFdSrl7/15DTrsHPgAAIABJREFUfAtSLkxThzhU41stxeNv\nxrRWlOV2scAtNlFK+VnEL2mtf+lDfvZQa/3Y/PwEONzynlvAA+/3h8CPAiilfgJ4pLX+nGr3ZW8B\nv9P5jBeR8ctKqRXwfwD/g9Yv5qJ6dZ1PJFPxVqLXwoddnXc2hxypu1+eNqSJtsENUJVMbn2a4/Ih\n07LkaBF5bMSN1AIIPNtnoRZuOGEkppjJv/mlyRgOnON5bybsBm/tKEIV0Y/GDn2V5PskQY9xsmAn\nidjPGsE5gRHHTs1U+NpmZl9EoM43pXUbZdRpvDtwRhKj0pBgnDaltNEuZDnz6twtKHWwIhkfElkQ\nwpa6u14IHNh3Aj6jNEBF6RgZAJfJJWmPKLolMzBRgjo7c4uIq+FPl6zPJSsKdlLUZIja33XM4So/\nIMpywqjnza0YaPPxM3hyLOAKs404PxJnmu+h833mpolu2Y+fLmKKOmacFqTBglHyXK5xaFinjRPS\ni3PpN/g9CQ9C7Up+/nnfdv++KCPaEulDk+1Zp5GmeTN3g8l8+gOR1o41Ty4/4AunA0ZJzWFPZsIc\nL13dsH3ba9O7/n2CLDNlM/34SGbF7IzYXulmmNI0FxTeFUPF1tRwINe0XKGPL6gez6ifztHLimwn\nRQ0/EKb08S2pEpj7xUdw2mOv1qWb/QGYZCUj3wHZAGa0ixrfckPJ3wE71lr/8FV/VEr9FrAtJfvr\n/i9aa62U+pCEhKCU6gP/PVJy+3rsz2itHymlhojz+c+Bf/CiD7zSzkeNb6GjI4GIfhMmWcXSOZ5R\nsnaM11bWOQpgEIPM1KyFi83IK+ijB80Cc/xMoNfX35boOViQJmtC1WOc3GgRJqqqYDfYY3cn4dbg\nhLd2puxlQl3jSjczKSsk40P6Uc44WTBNApZ16Pb3SvmFjQM1mUcWEfRj1CiTKDmVxm+aDLhYCfw8\n0VIWTJMBYXrYcMNZKO0WZyTOdaeVBVlqGGstuYNIxO5akasFIXi2nq9c70n4vDYbyDbjUsuLTeLX\njqn8gMrIq9ve33QVOyDKogogsvNgS8M7tjI9khcTXl51bj602YHRSEp91gm1e12RIMvqtQjs2Sws\nM1Lghi0iTPpOHNE3X7JDqJsMw/qqpoguGY4PiYqdzSyoa93jvMqZ2uxny7CnBQiQ5hRJxKI8oloL\nK3iie1vlReR+Kpt7v+5kWv2BA4RYNozvNtNa/4dX/U0p9VQpdUNr/VgpdQPY1vh/BNzxfr9tXvs4\ncA+wWc9t4P9VSv3ICz6D1tr+f6GU+kdIOe6189lmta7Q+b5h7DXcVcNBc6N34ZwessYuXmp8i7mp\nhfejnLvDokWJD5tN7VBF4kRmJ+izzztJaNe3SFNpclefZ3T9baKh8IL1dQp24epGvXXJSA0Z5UPj\ncB5LjX3Z1Mqj3g79ZMxetuCsFLSbzb62Wtg59us5alLC/nM4OSMsV9KEP7jjehnpOmAY7/LocoqA\nXhaAOERx0AOSwYhQ7TuqFumTyAJiyScju08qQ4dek7t1HpsZEQcJx8wSpak4mSQmzEKCZe2yHmzW\nc/i2RMnrU0wViXFyAz018yC33kQlMWkSo6dLET37+MdQk3uyj4ijrNYldbDi9qDiIBPi10ZGPW8x\nWIOZoTL7666lvc+Ws3b0HyUNdNufc/H/91FetmyWRELw6S2q/n1oVT03UGD+IC+QzmHSv81nDh4S\nBaFjwXClMiCMY4NgW7l7vtaVsB1kuWQtFhSS91p0QTpKDVHsrCn/eYzjvqn+QJ7PkzPiUUa4O0MX\nNcGb0kuUUrVoWRHQQs/5PHj2NddvKiv08VdalQ2SWGaktP7wgdmHsPX62wY4+HXgzwKfNf//2pb3\n/C7wllLqHuJAfhr401rrLwLX7JuUUu8CP6y1PlZK/Trwj5RSfxMBHLwF/CulVASMzXti4D8Cfutl\nO/nKOp/VupZp6+xGc+MvZy9EyRAmMsVvGpw634e66ZPc6FumgPaCvqG/8uTfoo+fNU7Hg8k6GhtA\nv/8Fegd3mh6Qbx1orz57JKUiz5G1LMtJD9+mF4447J17A6fNwuRP028ct/1/L5EhzqpsGu7efgyz\nCaPkeUv98feOE0bJisPekdE/6ok8A+1FQV88dPthzXJ3Rf4xh8mmtMFgT85Zdg79mdAcpanU8MuV\nOJ69kUBsJ29yXDxoLUppOJCAwN/mwR1Uf4A6O4Prt9uN7GJGkvacEqjt9QxjGrE5y15dnTgwBjQQ\n9m4WtBVW3QWgtO7PNiKsdS/5/TqPeaI1EAoNd9sW06sFyfmCw/HH5Ktt9jo/cfdJOjyAaAxVRyo8\nNPs4Hht4dNQQnkaNhEUS9FCpZFzKD6q680/DA3T2SMqep1Mnya7euGkqGCl1PXVZXRfI4HbL9Q0N\nlP34fhu6jym95QZ0otg6O/ddbp8FflUp9TPAe8BPAiilbiKQ6h/XWldKqb8E/CZSnvl7xvFcaVrr\nLyqlfhUBJVTAX9Ra10qpAfCbxvGEiOP5X162k6+s81lUAe/NCurBA8bpdaLoVitT2GqdRWBeT10Z\nSFQut38sDQetEptFUG01gzbSF5eGI+yBTKJ7FPXW9MURmO2t33lG9fgSlYVSEkvDBnqchTAcoNOc\n/viQUbJgnNZGj6h9C3Sn67vOyOm8dKHgnrT17uiQaSl18i+c9vjXx4qPjzRHvajVOxjGk2ZYcXnh\nJu71VUORPgPAtiDBZ1eOEnHiSSTRrHE89f4dTpbv8HvHCW/tzJ3cgVyfz7vttLbZdbJ2d8zjE6kI\nHfRshVVkm8+eynEszQCs10MAWajDMGqkBizCbtsxd352mYP9HHQ44qpmm/j79Ag9O236MNDAoi0T\n+JbjDM+eAoZrrQNC0eAQbD57OtDITli6oazhALQly3ItwVlrvstDEJbrBfPysdDkTN5EZTvo7Ahl\nnKea3IMooQuhbyHorJP3uPC0JRm1g8oe154G1HhmSo8f3ZDpeq1YLL71S67W+gT441te/wD4ce/3\n3wB+4yXb+ljn958Hfr7z2iXwma93P19Z53NZwedPUhbVird2DOOuXXS6zXbYfCjDBNYFUZC0HNC2\nwcleOILZiUyuzxZwei4EotDMVljzkT1pKj9Pn0O/lAfZNKZ9BU/9wSmr++eUR7If8Sh0zifcy1DL\nkODiElXMiBDoeBp0kG1X2FaqF4ue8uUB7LmKpEdzvd/jcycVXzhTvPNBxlm55OMjGCcRR4uI2/mK\nu/lTdtNDUXhdPH2x8/fOv0+6CbRE5sJsKBG0Xfjs5wZ71ONDzsonfPl5zOdOQyDlj0wWXMvelJKm\nPQ5PFkBnQ+b1lCTINolFvfvE6QzVZVst1CxuJLEALKzMwOrYAUhSlX048EDH8brF/aphUwQRqKKk\nYdSezRtGZ6RM6c6nKZVtNZ9FwEfgGWaLMBoK+s2AELRSjYx2X0pp1mkK8adV5DVzX958F2EiA6mr\nM8r1gtMlwrUYXdLvj0kHb6NTw4LgkHyVQ222HI/NkP1eoy1JWy2tbSSv5jiTbNgqm762j85eWedT\na6G6kSbxUmYWAnOzegvJtkhQnz2CqqQ/uUcRrMFkPF2kljVLpuhmKQDee7T1vc5sxGXISruqm9B2\nDAkQjGXxDnel7OeG5TC9pMjO/CQOhedoZ6IxSb4v7+2WtLp0L0sZxN02uKiyHTcI+4P7Iiuxn2p8\nH/u8hFEZMC1D+tHlN6aXEiUeQ8CSer1qehFmKFLZ7ADTF6JinFznU3tPSMMVb44qrmVvNpGxv8jb\nQdDlBb1s5GQJCAMIM5f1tAYvMQvo8KDt/KrSRf2FkTiwi+OGLo93fM68a+/MJxWNEifrALQHI43G\nlHPseV9KkNa8mR7Xj9m2DxaRltLqS1kNLFtyC1Xs5BYEkSiBgL1e5XrBfHUqz1unF6NmJwLBz3ZI\nB3sum9rLpkY7S2DuFRXR8ED2wclL4Oh6NhwPmGPLGycUJeacXErm52U/bm4NyRjt9762j9ZeWeez\nzTYWXUu1Ys0uus+O5UZdzkgn98wQ3qIV+Vkr1wuqdU2tH9Dv7dDP3kZnOSqJ0O99sB1Ga2cNkkg0\n7s3swlYaltufNkSJD4lvnm2hDKJp9trDUjFpmLn5pHk1a8kGWLPN1n5n9/Tvfw79+FkzOOrbYI/a\nm0361B4Udc17s3aGt4337qVmy269Hao0o6zb2duGzLWNtsHptACMk+t83/iYcXK33XexujWdbE8t\nLwg7irD2etRrea1aN5DwNDTzPd5iZ/e5Nou0i/i3HaP/3dnO1mzEcehZs/eMVTL1zcK67favTRrV\nWVNu8zWDts0EhWbgt5UBGYey8K6DrQTYf1GQkAxG1LpiXj52/TFoeqGhiprhUm8gNRoeiK7OBmS6\nElBKR1bdbmvD8fhmnVBVNuVZkwW5Em3eaxHTpuoKUM7XaVq/Jhb17ZV1Pnr99emyW3E1218BCAxv\nV3hwh97ubRb1tFV6syWDYh2TBitGyVOKKGe4f4co25FSzHsfNNxVls7e0npMrqH277VktC2z9aIK\nuJs/pG+3lx/ApGEWbomU2W16dfVuxF2tay5XTR/KQmyjIKSXv4maibqj/v3PUf72l6ifzonvnRN+\n/6wZ8jMlJd9CFfGZg4q7+YL3ZwnPFiELM+BarIP2gKfvLLvWcTwXq+PWAr51wQmvLiPtxtcb9KD/\nfrsgQWv+RFUlYb7fUoSdV2fuZ59uyTpy54S0duq47XNjh3s9WiMb7NgS22BPIv3agzwvZ40+kG9W\nybTLql2uJDPqew5vPJbj9LSYmoV807HaQCQMYsI0IzS9q0X94vJttS4p6suNY/fPgRNktKzYyRzG\nzYB3mI02Pm8HSV+Egmxe3A4eUmneLh17/bnmi74J2Ptre6G9ss5HBdoNZKZhJouxFa/qmHM8733A\n+uFzVvfP0UVNXNSENP2H3u5tLtbSaLeknzJ4KMiyYh2QBgvK7AHj/g3Su5+C/gD9tXebBjCmRDa5\nhjp8m+erJzyZLwxfXOaUUUHE4A77BQfZuwzjXYbXvw81lghSec1ULKGlZzL/EFKta4o6YLoKeTr3\n0V/aSTH0wmNGKPQHv8/6K+9z+aVLZqcxO9NT+kCYxKh791DDA2rdlCl8BzeMKw56xxwtFjxdNCJ9\nYCJrf+e6C6jtcXiO53kxZxCLCJ7jBLNMAj4Qwfzvvm2bSJ1t5Fv6m2pTJ8cSzoa2dFSduazW0hWd\nlSm9aM0oLhnEMgck7OjbrRUA+PvTkaEu6kunrAkvQMVB0zO0sGHwmDviJrvZ4nTqtXWiZWsYVc4b\nrTLhtvmZromK6KzDot440V4YN1xuVrzQyE9YTSF/INXPcrqsFC32ixeY3Ua5XghIyPYIfQHE9Iq+\n12v7SO2VdT5pCG/kNXfzgn50aAbuZu7BdGajYcv3lF14BJahyyqUmTMBiXwtwajV9UlD7Tmhmmr9\nkN30kL7R7tHJI9TpOeztSFlkco9pdUK5XpjtSI/keSms2ADPy1C+pxdy2Juyl03phSP6+3eIxrek\n8W37NYM91PDANXtBHtjLWibzp2XAs0XjAhrHvGYUn9PP7xKOdlGTIdn+M6qyIh6FhIf9RhNlOaNn\n+kZdC1XMOLlOP1qwlx1z2Fuxl0Gt18yrc0bDgxei3CydzVn5xJQLm7KdpRtyWi7DAxdIOCDCtoh4\nC5LMLeq+1LO1qkRVBWFo4buLlsaSCP4FLJKAcV2RhiW1PnYNa58JwLEE6JUgvTIjQ20QjVaG2s8a\n+tEOEdF2oIE1P9M1TkjZHlCUtJF8VYnOmsW463SsY7WWhssWEeiLrMub93QRm21IQJMGa9JQEG9u\nJiidCsOIdZRZ3obdGyJW3162H7IzbWCIRabW2mSjgZCebkC9rxq5+Abt20gs+j1h31Hn83VSdn8G\n+PtAD4EH/hVDHZEik7SfAU6An9Jav/uy785CuJuX9KPcwaAtVFh1bjpLwKj25WGOLO367V0ZtMz3\nIMs3SgN24v15Cb1QsZOIBIMVpIuCY4gnzgFZ7jB1/W3mqqCsZXvjpKKoY3lwQ8XSu399gbpiXTGK\nzxklEnH3dm+7aN6itoxoKVGQuP3tRWumZeCkH3zHY53m08W7TK69QfJpyIDk4XM5/u9/yy3cenbk\nEE7btHpCFbtotxeeu5LNop5SqgXjw49fuZhMV8dcLJpeksDEM8eNx/LUlaI0bMxGOQfkSmvtTKNl\nXYSjv8hXJVGYtxRvrVSFJY+dlgCRGeKtCVW1Ueb0S0YVFYSBEJJqLdmOoe6xpda9bGqOeyALJThS\nTGceBRLQZqbu8pNdnrpsjjRznG22vAt0HM/aOR5bUrTntWt+TycNM0aJbM9WAYo6RHDpoug7TCcS\nLFUlam/k9rdFxGoRiGY4+UM5Hfu5zvVTZm4sCjNXJi70slVOdM7TAERe20dv3zHn8w1Qdv8d4M8D\n/xJxPj8G/FPEUT3XWn9CKfXTwC8AP/Wy70+CNQe9mGE8kUXL8rf1y2bxsuy3lv9qVKLKFYGNKPd3\nZX4j2zGDj8smYlzHzvE4LZ9SkYUho6RmUQWcLtdA44D04AjV22GuCocYA3EE49RyxEUb+kBWoK6o\nRfZ7nNaM4iNGyTn92DzAW2rzsjgsYRVuyDvY77XlwqLWHC8figP6dxLCN562a+PG9OwIZR5wm0Fq\npVpZR0TEKNonChLHm1XrFSfFA0eN0uxjbI673UuyRJe23Oa0d6yZDEJ5jsXP+FSnqW5NWa44aOZo\nuqi+uiQNM2oja5GGzeImZK1yvs5KebxGyZJ+1GTTFpXX7VnYDMRmO5crzXQVC10PFXvZVN4fjbc7\nIK/U5izLZb5o0ZR1KWbw7BiSCB09Iprcw/oZgUBvgkG6jqfJ3KJW0NVFfAqcPAdmG1LuTxexIbv1\nHJDluNuCMu06oJfathIrtH5P8n1PbqPa6OXZc/JR2Gsl07Z9JzOfD03ZbSgeRlrr3wFQSv0D4E8h\nzucngL9hPv9PgF9USqmXMarGQVPG0LMjcTxGrRMLDx3sNRGzXUzHwv4LyOCiSc+1UtRrKwwmgACr\n43NSKPZTb3fc9H9EGq6wDqi3e5tivaAwglvWrBJpGgYGIh3yuNO/Xdbw7kyxm0ip7/9r79xjJFnP\ns/57u6qrunv6NrMznp2ze9Y+x5cTxU6Ui7ETEZCDczEmwglyQoQgQkEKEAgggsDE/1jKP44DOJBE\nOCZYBAjEwSFKZDAOSUBIUZzEGN8d+5z43PacPXtmdq493V3VVf3xx3epr6q7d/fsOZ717tQjjaa7\nuru6Ll3fW9/7Pu/z2CC01bruBEyX5ejDRmCstPU2+bMeH3ZQ3ZteZX19m053qzzwZWkh0toZ6UHP\nDNy2sOsK+GaG0uluEXR2OEy1AO+Xj0N2J61in01A1PtR3m47CLp0m+1hMXCSSa2upkd7KA0myl+e\n6cBgBz5LyV1RdI4abbKGru8M84zjtDi+dpA9TLXYbNiYEDUwVGBNMtA9LQ333TboHKcpx7PA/IYa\nngWGnmkBLgAxm+gbpywt5HWcnI1ukB1LQic0Bm15alxHnzdNuE1U3CVav0ySnxrSRPl42VmmH3gs\nSzAIY5fCWjVIW3bldjt1yu/WTFHDBKC1TcK8u/x4V5aJJ5bqw93oeIHnZoK5EkZEpo6Xqxknsz0n\nOmrPoTaNrPFS464EnzuQ7J6Zx9Xl9jNPAxjJiCPgArAgRSsiPwL8CMDlBy/oQWCJSdlS+E19G6Yv\nxdOp8i88m27bamdASCtQtINKHSWam7SMvrCT/NTNdm51x2UDUBVWzdo+nmQNdqdN+s3UmHdpDbpl\nNN9hnLuLbdksyMdBoll7nZe9nFhapu9pf8FFU80meiA3daeSaKZ5PZA+w2jHzIC8uliuU5SAcY8t\nBgBrga1TWXM30Kgb+o7VGo2p7j50NzSzcEkOf2UB2zOHU5VlPmzRvU2fjdYxyTwrBUyr89cJu86D\naRnsbMc6fAL0mzn9Zs62+Ug/ioAm0CzuzsOhdv0E3XDsyyoNLjqV55P0gKy5Tn94CXWjIvaZzjSb\nTykj6qqbU28XkiWEQUTQaJLO0XFrUYvU7cPrNnD7CDr1vR53HEnF6b15v5OV323uL29rFgTldVoi\nyd7jEEZEpq4Yxdq19wsHdsb9wlixNW4fX7HgcwvJ75/ghUt2v2gYP4z3A3zjN79Sgfmxd7dQNmVj\n9adaum4RYArV1TuodKaLH4C2hNaspN3JzBVXAbbaGf1ISuwx0IOL1jm7ObMmm+fsTpuuoG2hvYCK\nddr12c+swjgbuQY/SwUHzEA5v62LzabFxtkhY6AzuEA8vATD/cVB3iMROKfT2URrebULBetec5PX\nrp9ypXuw8D0Ap14cPp0pgkinSEJ7l57OCsZg1ERZ1pQNQlYo1lKYwfkJ2RpCrmbFXTOU0m/LJH1s\n4LIBaKdzXBKW1Vpvm8vrE5YM4bnTBhKy1izLxHTCAe2gz4mpAVnYmYYK+zpItrra2RO0KnN74Ojd\nx2nA7nTETueY4caONtYzVGsZXiKLW1hx115z05zbWwSgJTMRrXOnh5RVDddQBCE9k9osCZUu0N+r\nJIBlzqS3m4az273gk2Rm7KN9AmB78yGCjTGf3V+5ljuDUgTJ6mvzvOErFnxWSX6LyNfxwiW7nzGP\nq8vxPnPVqKsO0MSDm0IoN9CxtlFQUHtbTkVAvykttLeq0iIm5ZZkpxwkY65PyheHvQP2U1k6fx6t\n7m6nsOnenTZLFGhAm8c5xpByd46xtJwelu0y1+vKKDuuataSTi8UF+0wyhby8kkutCubWR1MXRDq\nDBca8qyXj98574JQqwfegNprbrrBb7F/47nSHfNxmtIJZ0Csz8lo4gzGrLSQjMZFEIqPncaYUx4w\ntTwxEi1OONPCUrDt40oDZj4vZks2AG21J0QNrf4czxuow+sFkWV4yQ2S/nmqHlvbKNmXHmr3cTj+\nHL2Nbdh8mBtJ4f+V5Kc6ndrq6vRb1/SpmEBrU0mWjad9pK5xsdNmePnrl/fIZIkLmKusBBZYg1bt\nADRzz7jsWlS/xwZlyRI9S0oXzfaWMhFvwjyzAWgl1bo667FtCBROuDy3x/wwoXH5SS68/o1802aL\nT+xN6tnPVwhnnnZTSn2GFyjZbZRTj0XkW9CEgx8CftaswsqH/z7wduB3b1XvMd9bfm4kUXz14duC\nucgn+XFpxlOYyUVAUOqP8LGKLWQDz1MnkVnf3K13GGUundNrbhImU9TzT6KOD6CzRtTqEne3UMYt\n0sq52L4U0LOH6kVl122bWO3rk6xBHBWB06cJ+9ibXqXXXKcfGrp1nha1HihLtxh2YCytotHPzj7D\nSCcVvcH+wvqDBHKNg0QHmOuTJuvxKZ1mz6TcDsie1Z+XVugEVrk+1l4+/VbZHjlqLujlLW1I9ZUB\n/MBj5Xb8tzYiHXRMKlIdPQf7x6iTEdLroh4YlcRFl60jkJD15kXUjcdRT30a9eQz5NfHBA8OkNfu\ns3nxEY6DxJxXPbMJwr5mZCYjPaNsDVBhTDY74XSmOEw0JT8O5iR5k8N0xpXuo6zH26VUoJW3sU6j\nlhCydCZ9E0ZgEMbEwdpCGtkGHQ6uwtHHdbrQBvVKgFmQE7oNyrMLPKv8kKYjF3ic79NoTP70EbPH\njxhdg+koZLC9Sy+d0fvmb+Bbt1/OF4ywao2XFl9VfT6rJLvNyz9KQbX+iPkD+LfAfzDkhH00W+62\nUJp5GD2wBfaTSbmtXolmuYGeJWimWU4/iogaZWmQqvRH4tE47Z2ilebP5uW0hzWos0GoFHiMRL66\ncYiMJoVbZJYSr22QYO+oMzJ078b1SdPNnkAHnrWmOMO7zHS321rLWlNoB4OSn0tGxjjTlOn9KTw1\nanOlewxr0A8v6O2yAcXWgLwAH2eJNjPzu9uh0CbzmiJlekInGhJIk73pEcepUUfwZqOqktLIp7kT\nbpVpRmNoLA3Q7phwqrWDwrSgHS9jWS0NPMutmuN5A3XyjK5z7R+jbhzowQ6Q4wMn9JkFjdKsx67L\nHbf966hrzzN7vGwZTatL7+LXcCN5miTXRnVRw2ioGWuC0vZ4dHlNcda4Omry6uE+l9cCLapL6BiD\nKoiQLKWztgFNbRhnyQYLs/UqG3A6QloQhTqoWa+fXnOTdtDXAc4eG2vZXTnX1pyweuzLJ9frx3oh\n8BmB+0fu+I6uweFzEYc3FBDT+uIe0c6zRGHEw4M70B5cAlHQTOu0m8VdDz63I9ltln8ceN2S5VPg\n+1/o9wqNIhB4SsXiCXeCKWYaB8qSXD9aVNH2CQyjHV63sUcgsRugS13XeQrZFDW57pop4+ElkqhM\nt7Wf6TXX6YTapKxKMwadkw+kSa+1qWtWWarTQ5blZAQfbYe83zNSpNa046ZO381L9ad2YLeDMsNp\nPEJNtVldEHfp97boxAPagRaA7DU36agY9cxnlgdtM5hYkc7QNFcqu+32Pf6Mw/2fEwdrrMczXj0Y\nM4yu6LSWSYNKXCZh2NlPYxAj/ZaZ9XR1cKvKy9ziLtuRE1SZnOAPxq7fCHQadyOFJNGssl5X12LM\nrCQ1Ukzus/YmJfFqjxsDbZo2zfU+XBg6EU//N+FqX9Yp1mij9YeXCBsRYWOPdjjnqZOIJBdH0z9M\nArZaU93ka2er/nE43afT6hI0N0v7mZHpVF/l/FpbDQFkLfLEUz0yhz23UVj8Xv3AEy5aZiy9IawQ\nR0qv+4QFnzbvzWwlClFAM2rS6BzR5QhIaXVDBtsJzUcecLqF7tjcIxCRDeCDwCuAJ4AfUEot5FBF\n5C3Av0Szl35RKfVus/xd6LaWXfPWnzD2C/ZzV9AThHcppf6ZWba0D/Nm23nXg8/dhE/JdN3xzTbS\nohSAcjUjCGMI44I2DCRR+fDZO0jyFPI5ZBV/+ukIxqcFK2unECaFxSKt309he2AstGSJtqzurW0S\nhpGW7DcziyxokM5PHIvKBh7b6KfXr9z/OGhjDec6AAAdd0lEQVSVZHFcYE5GqNEN/d/QmZ3pVhyj\nNp4j6G7Q727Ra2kNOLX3pdUH3dHSdcE8bzSdCKc62XXnoIosaICysz69nWE+14HcBh/Pv8h6GjWG\nsfGs6eqaj6/e7OT4F+EPaLcKOqVj5ZNSBhf1AJtqXTUZXiJb6ztxUXdIjOJBIE3U5Ko7TnJhSOPy\nmGYrRB7Y0A3IvS2S/MSk0RSd0GxLNi3SSgCMUDcepzO8RBDtEMgecWNq1CwK1Y3S/nosP4fpiDiM\nUK126SZJhbGm0rsTlDrKt60khmsbrhm3hLhb1Kd81+CKZcSq9Peyc+PD7+OysOoFyur9TUfamK63\nRrAxIHjwiObTR+T7U5oP7SCvfVXRPF1lCN4hGnNFdDaEg3cAv6OUereIvMM8/yf+G0QkAH4e+E40\ne/iPROQ3lVKfN295rw0sS/AvKDJPFqv6MFfi/AYfNV/ae6JyPYNYFoAc4tbCQBQmU9TkRtma2Pe5\nsUFn/4j58/q7FoRJOTbra+payOk+6vAJCCO2jc6bZSHZBsYkH5Or5+hFm8SxLmhP8mOS2WlJe+x4\n1nS5/6NUHO27HWJmPe2CdZSnqJOrOj1i+p/UifWmmTE/TLSF8SBGNnvQ3YULuulUTVezpOygZmsd\n2Tw1XfUzgkaTaP3yyoJxXhEsHUY72iPJ9LdA4Y3kAs/LujrwXBjqhlhPz8yqXAc3YUmt1hEr6ndu\n5jwdLXeBHVzUhAsjD1Tth7GprJAQsqQYR8NINzDvGGfbnS0dvIIGk+SYw1QrKLhts31WTkRUL1aH\nzxB3twjii0SNI/rRAU+NYnYnoWNeWpSo5QZqNtE1sSwlNCKn9tiE3o2YGu06S3i6M5dejFo9Ejkt\nZnl+y4I/26nQ4W/FXqvK91SxLAABRQ9Xa6DTjK0uMkzhwpBg45BgNEZe/oBWLbl38TbgTebxLwH/\nm0rwAd4APKaU+jKAiPyK+dznuQlE5HuBx7EUQb1sh9V9mCtxroOPZWKV6JetrutPkSBy0vmAGzBz\nNXPNgq64bAdqHzaNZHL/au+E7NrIDd7LhEklS1DHu3p9h4fFLClLWb/4CHG8xkFyneO0AdgBJCVX\n12gHfU+nywpeBk4bLskbHKVadQGgH9kZUKto2LR6cF6wVMdT1DQjP5iipjnzowQ1zWgMYsIHEl3Q\nH42RC5OSdUMJHi0dMrJ5asQdQ2dDkcjpQo3MokrYkCxZENhsdPRrNig66+zBxVLQGRvNPOv/UtVe\n84POspSofWxnO9UbGF8bUJpt6G2RBY2FwdKvn9n1LGDzZVpks78OrS7j7EgrH6QN2mHR+6Rmk4rC\nwWkRgEa7hGgSAbCSzo4hX5RM12yjpkmP2gCUzifk0tSzohNjhWCK+ALQMbWjeElfmdFy0wfy9mY7\nFqvOzTK430pFZBaAGGetAOj/G54/0r2NbaXUNfP4OWB7yXtcf6TBVeCN3vMfE5EfAj4O/LhS6kBE\nuugg9p3AP6qsa1Uf5kqc3+BD5U6v+qPz0kOWtlz9wXfCoaZ3Vu8Yq5YAUajrDemMYJo5F9PGINZ+\nKqYvA5/c4G+LzYl7WCwi52TzA9cNn8yLbbB3uMcptIKAdbOqfjRnqzUjkLho2HTffeq+W/ogrRnS\nCpkfGVrqINbpLX+gt4FnlSWCOaYBujmzLC2TLR3sVwUjwPW3EGk6dbBtPmtnO8OhNpHziCQBWlLJ\nl9qpohxkQqc+kJGWVCKc8gX6BsLOet1g6mncBRR6bqWZk6k3uhshKMRsLfrreuYUNEjTiUuZWWWK\nXGWEzTaqqulmj7upUzrqtVNMaHA6y4ka+oYlDo2atkmdrTp/aT5hnJmequambnRNRrrPyPrhGPO8\njKzsWAqFfUGW6pmhF3iWBXvJktJsqBA+XQzW1d9V9fyWZlQ2la6UZglWg46fMn8JIErRvP2026aI\nfNx7/n7Tp6jXdfM+Sgejf3lL9m8F/xr4SXRC8yeBfw78MFpJ5r1KqVGVLXwnONfBB7yeE1OktLUA\nFcauD6PqWWINw8CkH1rdok/Ih5vim6l9b41G95BoaC7ci5vIg5ecDz3e4KXy1AQszxLBWXcHLvgA\nroejmkYB2GrpC/E4DWiHDeJAOdrtMMqcZpd/PBRAJy0KtfY1IEgL+wNXR6kGxyWPpbvlKMaAm23c\nzII8VzOYQxCUBxCXmmt1nVupRE03+No0mwwvrRQ5DU+PTYBYfQlYt9JQQggw8jM6VWgRB2tOkFLM\n3Xz17t0Onv46lchi4LEpy7UN97u0UN0LnKTXSPIpcdDQ/WOmZpOrmf799df1OvwaimfNcDLbM03Q\nxfnR7QGmOTUcEplzVJKoATAMvfFsr3Q9HKbXNIV6+5Vam21ypNXTg4ZWrZiNXO+SKKVnSH6KrtV1\nTqfLYD/jZJqWoHQTk89WG/Wx2JC6YJBnYdOBfpPr2WJPKfX6VS+u6qMEEJHrIrKjlLpmUmLPL3nb\nqp5KlFKOWy4i/wb4sHn6RuDtIvIeYAjMRWQK/Bqr+zBX4twHHwt3sXuBx3q2VGEL8hYqjHWfhb8u\nKF1QamLzy0O4YC68l20iVtF6GVpd6JoLq5K/HkZZqa/I3sn6AajfzIkDne/qR1OSXLnG1Hao/wcS\nlTXfLDvI2gj7ckM+M8kW65fdFVYL12FUCjyAk7X3U10hkUtrWtj60EoVY9Olr8LIecBYtp+1bQ4I\ny+m6vcdRe1rbzAWpKqW3Iu8StXolarRlnNn0nZPaqViCO6p+ZWYtUNSJbMrNpm3DqBR4WNvQyt/e\nb9FS5EEH8KyREXa3dC3FCzo2zTjJj7k2bnCYLB5HPwDZ1CdA0GhCFLoesXF65HrQfGRz7YTbDvqE\n/T5Jvr9cYic3PkmmLYB0hnTbqLjrArc14nNIRvozgQ4EQRgvlZ8qO6Q2oeHNlCu07IWGVF8DzoqX\nrrqZujdgex/fbf7/xpL3/BHwahF5CB0ofhD4K6BrOF7a7vuAzwIopf6M/bBhxI2UUj9nnq/qw1yJ\n8xt85pWrw0uT+D4q+9OiBwbKs54S4m6hFVDpCwH0XZulwtqBfVhJi1YMxQA32EuzXaRwpEkcpAzj\n3NkzAKYORElup6hnhISNCXFQDBxrTanUUjxpE8sKGlIMnJaaPLxEoqYF/TorD9TVpsFlMw+r6uyn\nonKVGfZ3OQhl87Q8mFRhA5AdXMydd2rOYyA61SbTE9RzX0Q9+Szq2X1NUNgYwIXndW2lu+WstKsp\nFwHiaM39LnYnMw7TmGE0Iw5SZzmQzVM64aAIln4tp0pNrgYe1+ekxT4tczFRmg5dHfR98ddcafqz\n7VXy/YDG2chJNK2CDUB2P6CcsloWdHxk85yT+YHZrtbCuQoJdf+TMY1TzxpKevcQ6axBewBh7M5X\nIGEhGmuDt2GiBkG4QAbJ1cwJgsIxbfru91XsRFoKQG6Zf679c2V/wy+RuZzMIZ6sJkm8hHg38Ksi\n8jeAJ4EfABCRB9CU6rcaHcy/C3wUnRX+gFLqc+bz7xGRb0AnPp4A/uZtfOeqPsyVOL/Bx8IfKPNU\n54EN9MVWXLC+qu+yXLKsSPE4mEZWsd4qt5NLtnTP0S4CnlnbEXEwJW7MnXyKRdHk2nZOmrnKCPIm\neWNGHGSumXXVd1Z7I6Rr/HG8FE4nHNAO+zro+oHHd8dUU1BLGGLJyPVUVWshoFNtfl7/dgzMnIeP\nR2qwg5ObgRg7DGU8mdzMzhdCXQEdIGdOskYb/EUljb2t1oEjpLSDPtYVtaTuUMWqtE6rS9KYl6SS\nltkdWChTw0jnk5If0O5U2zJYWw6g1Fys/xcKFjbI2Ibk6uvLYBUzknmDfjMFUtPg2lo8b1XxXhNc\n/LrqgsurPS9ZSphBGPcIpMlheo1snhtTv6L+GcjEzOBW/Mb9dd/sNS8dfq9AKXUDePOS5c8Cb/We\n/3c0Lbr6vr92G9/xrsrzpX2YN8P5DT5BuCinMh0hYUq71XcXTNiYEEi0RE4+WbirX9oMt4QBVWzD\nkoGuehdmUzFR0T/RWdsgaDaJGqfEgR5gbBCygacTDnTnuznFQaPpZhe66FykkGwtoxMOCINu6W5/\noVKZjIiBOL6sUyLHV3V9ygs+Akvz8y7wnO47tQNLaV8WgEAHoWqacyW8gSQM9DEI5wVhQTd+biOj\niZYjjZplYoLf9xODePulWj1OjPVD1Giz05kwyeaGRSjOxVSnOouAp6ZH+m4fFgKQDC8VA5tH1XYz\nt/kElOkDUm1gAl5ASPIGYWNGrmxQ9BpevVRqv5m6dCtQmd0UzaCW3OETbOLApreK2uCyGWgQ+TMQ\n3PYlubacyNWM3nCb0NR3pNfVCgem5plEIYfJ02b2cgQhhWwQHonDwvwOtQleEVTtTdha0zBTG8Yp\n1kOp5mNUIUq/df/9y/yA7hCiFM2q39I5xvkNPhWok10dKMzgGcddCIcEedM1AeoO9qJxVNqDBUUE\nC0dbtus0NO7blgOxjCCXitFXtO1ej3tbRM1NU3M4JA50I6m1THDba+wMJIwIw4gwaKFMT884O/LS\nFzPG2ZHWJgsKcdBl8zg12oW9x4uLslIXslI1fn7ewebws3Shp6pKOlilh6dEFrfLH7zNQBWGkR7A\nvN4hsY6ZVsLHIybYdTuYmUSuZoxnZYeOqNHmSnfEo0etkkbe8SwolKnzFEZaSgYAL/io7gVduDcf\nDTodLDc6V0mpZmJTvbbmY2cYyRziYKZlk+bp0pmsVcrWskniUlp2vTbguJuqWUocX3DST3r2uPw8\nVP2h7OtR49Bp8IGeFWWBVlPvdTaJW484vyXZfIixJBxMrxZMTU+9od3qL/8NGi+p4fYrndjqJGvw\npaOQ1wz07D+QCbFa04QRFptTnX+TtTFfQS5Q06OFZTVePM5t8CkNMlPPydQOnkYXLQgN44lQD5xG\nQgRMQ2prgISpSzWJbTg0d7yMxnqd1mDtZp31QVRWzx6NdXMnhlk2GhdByHx3bORP/L6VdtA327Ff\nXDgeCcAGok44KAUgS8UlHBKF7fJFn6VOg80Wi5ciaiI76B6P3pbJz2eOVuyM3+yxzhYDEFRFIgu2\nmDtvPtnBBh7z3NfqFm/f7edkeMmJWloZolXyOX5vl4Xt8QqkyZXuEY8e6ZuP5yf6rnurNXHHjNEY\ndeNA31l3j9z5n+THzsXVr6VopYkiSNnAkM4paf4dJpbxqGc/0MZaZfiwxA772JEJTBAqftdXtVqE\nuUmKWwNY2yBrZAukmyoV3VHGZ/p3G69dJJAb7Jnf3vEsgFlAv1n0o/W3NdHG+g3pRujAuLbirLfB\nBKDpiTum6vAZx5YLu1tEkZ4VHqcNPncgQGhSoVM64QzlBeVqy0Q6N/XQ6myHSk2uxkuOcxt85io3\nEiGJHqBtwbdLIa6YjHQXd55CNlpsSm11i3x+mOo7KJPjZzoqmv68qbYbGCsBaEEO3nbum0FeJYkX\nDE7N9+iAFrYGhK0uUbOYnZW21a7P0pLNWsJAi5NaZp+1WghyPbjEQasIOqP9UrOs8oQ68ftLQG9z\nMtJFZDOLcjWXBVsKUxNB64GVnCjtdntY6Fq3r/v7SjkAAZUGw26J4eaLhUI54NiB184q/Fll1NSS\nM1e6Ex49anFtou3Mr3QDNltNrXhhGi9VkiBPPYG68gpkbYNktm9ssgMmWdEE3I9yrnR3C5uMeQPS\nE+K462y7tbdiYVq45tfUvcAZNjRxo0ghR0XQsYocyaj4rXrHVE1HMJsQtgcErX6JcViWpbrhjrdd\nJmFEJx7Qj7Qr6/VxSJI32GpnDPOMfnRQIgzoFGBOnAuEGOdXrQSfzVMmHNOJe4X6uS9R9cTnWP+a\nN5K3n+fRowbTXLv6JrkQNgJnO+Efn1KPkC2hCQRh7OqXS1PfLxIyf0F9Pvc9zm3wyeY5h+k1rQxt\nhDmdzpTx9AFKwcb130BJCsSRAqwIKRQCpHZAtuttD1Ctnk65zBOzLXqdYSOiE/eQLNXb051BkiBx\nXCg9W4zGwBi65SC0simuSiWmmEVEjTZR1CYOjp1qg74bfkYHETvbMdJAKsmZj2dF8PHg99ioVo+x\nKXzn4cClULS+1qiQVTH09lzNCFhS21nSeLs09bakUdjut5WFATNAR6FJbxUMv3agU3Rjb2C0s5JA\nMkc0CaQJ0xPXvb/RmrCVZhylTV7WztlomZRh5TyoJIFHvwjTEeubD9FZG7LpRF8nJHmDOJjTa64X\n7Dzrh5QZlekQttpHwMyxMNtBv6Q4vUx2phR4To9Rz35p8ThXj+XpvkuN6jVPUZMjfQ14PUkOtjk2\n7jLObpieJN3MDPMFKxCbZrUBoddMXZCrNvO6bfJvXNKZZs793ke58PXfxJseiOhHE1490Olnf3gr\ny2E1HaFFvzYzBBwTgFpGYHhypH8/nZsfqhp3hnMbfNK5cJB4umibD7lmttIAVik4SmtQKkw6RWTP\n3TJo9ZwStn+RWguCNDlkd1JOW1mywGYrpdfdNLUk07tSSXG5tFfULJpQo1OX2iuhwt4qKQZX0Gn0\n9IAzvVakxswFzv4R88PESeyoaaaNt7zZj+xswaWHHRX7JHmaR4+0FMx2Z5+dzh7toE9nuE3IJSdd\nlKuEbHaCld4PCYu02goWWq5MIbmaEjEByPUYBRHj+YmbyfgpF2tc546NSe20W30mHOvv8NhfegAP\nPXr5iCjW9bPt9thZapQUzeO4UB6w5+/pZ2B8SrSxrV1FTY3FKgHE8wYYbx2rBGDTk+UAhKN138yY\n0MIFnic+x/wzX9ZU84ub+oZhGbLUkSXc8+mosIqImsgjUVlOqD1gPD8pGdFtt2ckubDRgnZgAutI\nz5hC0HYQYQwS62ZWpx9n9fd0IF+qnWczA5/+BL1HXsO3br9cW4x7WBaMdbowLKUUdeo60ynnwGN8\nhktu5mq8aJzf4JMLjx7FXOmmwB55ONAXdnXWsCzf6zdRLknduB97A4K1vpZnMY1++1PdU/H0aLE4\nPIgUrx4cs9WeMIwvEoamd+XoudLdnhX4BEqSKtKbQHSoJXtsl7u3zas0tFydyhq6GZdHdaLTMWrv\nhPlRwnxciIparTcbfOTCOlx6mHy4zcnsOQ6SMY8exXxqP+TGVHhlP+Dl3Zztzoit1gFx0PL6eAoG\nF+wxjHZcCtKREyio1Fb2KGg0y0Vi+9/O8MLI9cgk+dQVtK3W3Tds7rkAFDXaqIlu7JYwIgqsG6ce\nnAp7gCZMb7jGxzDu0gmH5CozfkvKsfpupmmiru3CjUMnyBrFXeLeFqQmzekIJ1ayZuZSiQXdHqoE\nAh9+nSpqtEuBZ/qxZ5FWSPOhMcGDR8jOy1br8o1MT05FoxCgCcgjr3EBKItbnCRPlz4eB3PWmoG2\n22j0UAdXtdGeRRiV/gcmQxCaJtlAmpCdeCnbbLHmmM5QX/wS0fEB8QOv0YoQs72lTcq+gG4Q9kuK\nDZbpFzXahLZ37yVju1Gn3Tyc2+AzyeHJUUCSt0jmKTudPbLA0I2tLUJWvtuyd9PurtrUbZbVDAAn\nnpmrmRd0Qh47EZ46CIji8g9xGAlHaZtXDWY83H+aYbRDbIvjJgCpk1NdxDb6cGLkc4iaKH821J05\n+4BVgcfRnj1yhO/w6CtY5/taXFQlObPjHBCCaa5TgRsDuPIK8uE2N5KnuTZu8JkbHT57IPzx42vs\nXu9w9VVHXN5MTRAKTSrG+goVA0McjAhEB4WlaTXjBaSbEcPiB1wdIJwczD7HacrxTPe67E5CnpsI\nhylA5AJQSOh8lmi2Cdc29ExnXlB5XeOjL2iajLS8joSuSB42onINKmrq42nOmz2OWnn7CLq7yIUh\narjv5P7drNMX6zQW4BJGRHF7IZVkz6lOZ5Xv9sNkinr2S6hHnyT55PNc/5M2YaQYHO8T709pHk+R\nBzb07BXKg7s3+82vj8meHZHumv6r9ecJel146DVIb2up82nY8ALPoWe0Z1PKVXTbqI4+FmF3a7UE\nUlV9I53pBuIbh8jOFr3BRWR4ifH8xAWgkpAruoaoCR2T0vUKQKOtZZOyZMmX13ixkNtwnL4vISK7\n6O7fs8AmsHfLd91buB/3Cer9updwlvv0cqXU1otZgYj8D/Q23w72lFJveTHf99WOcxt8zhIi8vGb\niQTei7gf9wnq/bqXcD/u03nCaq2OGjVq1KhR4yuEOvjUqFGjRo0zRx18zgbvv9sb8BXA/bhPUO/X\nvYT7cZ/ODeqaT40aNWrUOHPUM58aNWrUqHHmqINPjRo1atQ4c9TB5yWCiPy4iCgR2fSW/VMReUxE\nvigi3+0t/2YR+Yx57V+JaJE1EYlF5INm+R+IyCvOfk/cNv60iPyxiHxaRH5dRIbea/fsfq2CiLzF\n7M9jIvKOu709t4KIPCgi/0tEPi8inxORv2+Wb4jI/xSRR83/de8zL+i83S2ISCAi/09EPmye3/P7\nVGMJlFL134v8Ax5E29E+CWyaZV8LfAqIgYeAPwEC89ofAt+CVkv5CPDnzfIfBd5nHv8g8MG7uE/f\nBYTm8U8BP3U/7NeKfQ3MfjwMRGb/vvZub9cttnkH+CbzuAd8yZyb9wDvMMvf8WLO213ct38I/Cfg\nw+b5Pb9P9d/iXz3zeWnwXuAfUzb+fBvwK0qpRCn1OPAY8AYR2QH6SqmPKX2V/Hvge73P/JJ5/CHg\nzXfrjk0p9VtKOY2WjwGXzeN7er9W4A3AY0qpLyulUuBX0Nv8VQul1DWl1CfM4xPgC8Alysf6lyif\ngxd63s4cInIZ+AvAL3qL7+l9qrEcdfB5kRCRtwHPKKU+VXnpEuArLF41yy6Zx9Xlpc+Ygf8IuMDd\nxw+j7x7h/tovi1X7dE/ApDG/EfgDYFspdc289BywbR7fyXm7G/gZ9I2c5+V6z+9TjSU4t8KiLwQi\n8tvAxSUvvRP4CXSK6p7DzfZLKfUb5j3vBDLgl89y22rcHkSkC/wa8A+UUsf+hFIppUTknumlEJHv\nAZ5XSv1fEXnTsvfca/tUYzXq4HMbUEp9x7LlIvJ16Fzzp8xFfxn4hIi8AXgGXQuyuGyWPUORwvKX\n433mqoiEwAC48dLtSRmr9stCRP468D3Am036wt9Gi6+6/boDrNqnr2qISBMdeH5ZKfVfzeLrIrKj\nlLpm0k/Pm+V3ct7OGn8a+Isi8lagBfRF5D9yb+9TjVW420Wn++kPeIKCcPBaysXQL7O6GPpWs/zv\nUC7M/+pd3Je3AJ8HtirL7+n9WrGvodmPhygIB6+929t1i20WdC3jZyrLf5pycf49d3re7vL+vYmC\ncHBf7FP9VznHd3sD7qc/P/iY5+9EM3C+iMe2AV4PfNa89nMUShMt4L+gC6d/CDx8F/flMXQ+/ZPm\n7333w37dZH/fimaM/Qk67XjXt+kW2/ttaILLp71z9FZ0Le13gEeB3wY27vS83eX984PPfbFP9V/5\nr5bXqVGjRo0aZ46a7VajRo0aNc4cdfCpUaNGjRpnjjr41KhRo0aNM0cdfGrUqFGjxpmjDj41atSo\nUePMUQefGvclROTvicgXROQlV2YQke83StJzEXn9S73+GjXOA2qFgxr3K34U+A6llK/xhYiEqhBM\nvVN8FvhLwC+8yPXUqHFuUQefGvcdROR9aHuEj4jIB9ByPq80y54Skb8KvBvdyBgDP6+U+gWjtP2z\nwHeiG2xT4ANKqQ/561dKfcF8z9nsUI0a9yHq4FPjvoNS6m+JyFuAb1dK7YnIu9DeL9+mlJqIyI8A\nR0qpPyUiMfB7IvJbaGXoR8x7t9HyQh+4O3tRo8b9jTr41Dgv+E2l1MQ8/i7g60Xk7eb5AHg18GeB\n/6yUyoFnReR378J21qhxLlAHnxrnBafeYwF+TCn1Uf8NRk25Ro0aZ4Ca7VbjPOKjwN82lgSIyGtE\nZA34P8BfFpHASPd/+93cyBo17mfUM58a5xG/CLwC7b0kwC7aZvnXgT+HrvU8Bfz+sg+LyPehiQlb\nwH8TkU8qpb77DLa7Ro37BrWqdY0aKyAi/w4t6/+hW723Ro0aLwx12q1GjRo1apw56plPjRo1atQ4\nc9Qznxo1atSoceaog0+NGjVq1Dhz1MGnRo0aNWqcOergU6NGjRo1zhx18KlRo0aNGmeO/w9iNRS7\nvTCLTgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window Functions for Bispectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Bispectrum` in `Stingray` now supports 2D windows to apply before calculating `Bispectrum`. \n", + "\n", + "Windows currently available in `Stingray` include:\n", + "1. Uniform or Rectangular window\n", + "2. Parzen Window\n", + "3. Hamming Window\n", + "4. Hanning Window\n", + "5. Triangular Window\n", + "6. Blackmann's Window\n", + "7. Welch Window\n", + "8. Flat-top Window\n", + "\n", + "Windows are available in `stingray.utils` package and can be used by calling `create_window` function.\n", + "\n", + "Now, we demonstrate Bispectrum with windows applied. By default, now window is applied." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "window = 'uniform'\n", + "\n", + "bs = Bispectrum(lc,maxlag=25,window = window, scale ='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'uniform'" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Window" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VfW59vHvTZhkhoQZJ9RSoFZLKdLWsQhOVSoOB2rF\nqXI4Tq0etVqPTD22Tkf7WrW8qK2F9uDLUai04FFqFastKkUUU6UiqEAgzFOAhCTP+8dee7sJO9kr\nyU729Hyua13Za/it9VsMz15Zw71kZjjnnMsvLdLdAeecc83Pi79zzuUhL/7OOZeHvPg751we8uLv\nnHN5yIu/c87lIS/+LqNIKpZ0evBZkn4tabukt9LctVpJ+rGkJxvY9nRJ61LdJ+eS8eKfpyS1kfSU\npE8l7Za0XNI5cfNPl1QtaU8wrJM0R9LX6lhnwkIm6VVJ3w/TLzMbbGavBqMnAyOBfmY2rH572HzM\n7KdmFmr/nMsUXvzzV0tgLXAa0Bn4D2COpKPilikxsw5AR2A48CHwF0kjmqmPRwKfmFlZfRtKatkE\n/XEuZ3jxz1NmVmZmU8zsEzOrNrM/AmuAryZY1sxsnZlNAp4E7mvodiVNCX6DmBn8xlEsaWjc/E8k\nnSnpmmBbXw9+85gazL9W0ipJ2yTNl9Qnrq1Jul7SR8BHcdOuk/RRsL2fSDpG0l8l7Qr60rqWvn4q\n6avB58uCdQ0Oxq+R9Pu4ffpt8PmoYLkrJH0maYuku+LWeZikp4NTWf8AvlZjmwOD35R2BH82FwTT\njw6mtQjGn5C0Ka7dLEk/bOjfi8s/XvwdAJJ6Al8AipMsOhcYIql9IzZ3AfAM0AWYDzxacwEzewqY\nCPzNzDqY2WRJ3wJ+BlwK9AY+DdYT7zvAScCguGlnEflSGw7cDswAvgccDnwJGFdLPxcDpwefTwNW\nA6fGjS+uYx9PBgYAI4BJkgYG0ycDxwTDWcAV0QaSWgF/AF4CegA3Ar+TNMDM1gC7gK8Ei58K7Ilb\nb7L+OHcQL/4uWnR+B/zGzD5MsngJICKFu6FeN7OFZlYFzAJOCNnuMuBXZrbMzMqBO4n8ZnBU3DI/\nM7NtZrYvbtr9ZrbLzIqB94GXzGy1me0EXuDzglrTYiJFFeAUIl880fFkxXaqme0zs3eBd+P28VLg\nnqCPa4FH4toMBzoA95pZhZn9Gfgjn385LQZOk9QrGH82GD8a6BRsx7lQvPjnueA0wiygArghRJO+\ngAE7EsyrBFolmN4KOBA3vjHu816gbchz9H2IHO0DYGZ7gK1Bn6LWJmhXGvd5X4LxDrVsbzFwiqTe\nQAEwB/hm8GXTGVheR19r7mN0G31q9PHTuM99gLVmVl1jfnT/or+JnAq8BrxK5EvoNOAvNdo5Vycv\n/nlMkoCngJ7ARWZ2IEkTgAuBZbVchP0MKJIUK6bBNo7k4CLXUCXBuqLrbg8UAuvjlklZTK2ZrSJS\nuG8EXjOzXUSK+gQiv700pNhuIHK6KeqIuM8lwOHR8/px86P7t5jIbyCnB59fB76Jn/JxDeDFP7/9\nEhgInF/jNMlBgvvt+0qaDHwf+HGi5czsM+BN4D5JHSS1AW4jctS/JAX9nQ1cJenEYN0/Bd40s09S\nsO7aLCbyG1G0uL5aY7y+5gB3SuoqqR+RL5aoN4l82dwuqZUizzucT3Bdw8w+IvKbyveAxcGXUSlw\nUSP64/KUF/88JelI4F+BE4GNcffzXxa3WB9Je4A9wNvA8cDpZvZSHav+FyIXK1cROWIdAZxnZvsb\n22cz+xNwN/AckSPoY4CxjV1vEouJ3Or6Wi3j9TWVyG9Ba4hc2J0VnWFmFUSK/TnAFuBxYHyN6zCL\nga3B9YLouIBlDeyPy1Pyl7k451z+8SN/55zLQ178nXMuD3nxd865POTF3znnMoCksyWtDOJL7kgw\nv6ukeZLek/SWpC/FzfuBpPeDSJBQMR85dcG3o1pbEW3T3Q2XZoe1a8FhRS1Qt66UWRWlZQVoS+78\nO3epsW3Hmi1m1r0x6zhehbaHMI/HwCfsftHMzk40T1IB8E8iKbbriNxdN87M/hG3zAPAHjObKumL\nwGNmNiL4EngGGEbkYc3/BSYGz6nUKqeSD4toy5SCjE3+dc2lHDrvLeCs8S1p+2/nUNqlDfe/2561\njxfQtizcf1SX+3477/JGP3i4hwOha86VVS8X1TF7GLDKzFYDSHoGGA38I26ZQcC9AGb2YRAi2JPI\nszpvmtneoO1iYAxwf1398dM+Lift3F7FnJ+Vs3PqfHqu/IwpX23J8Nsq+fSLhenumnOJ9OXg2I91\nHBxbApHspjEAkoYRedq9H5G8qlMkFUpqB5zLwU+RJ5RTR/7O1fT8U9WctvEdjrhxBz8ccQH9O5by\nwPyeHLO4NHlj55KQoGUrhVu4iiJJS+OmzDCzGfXY3L3A/5G0HFgBvANUmdkHku4j8tBgGZHMqapk\nK/Pi73Le4gX7GbLlMwZunMmFY8bQa+x67u3ZlU5zdqe7ay6/bDGzobXMW8/BR+v9ODiziiDO4yqI\nZWatIRIzHo1AfyqY91MivznUyU/7uLyw7M0yFk/eyv6Hn2a47efhczfR8ZYWVLXy/wKu4dQC2rRR\nqCGJt4Hjgpf2tCYSWzL/oG1JXeJePPR9Pg8bRFKP4OcRRE4N/XeyDfq/fJc31n1awf+bXMaeac9x\n9IZN/HSYGHwHbDq8U7q75vKcmVUSCQx8EfgAmGNmxZImSpoYLDYQeF/SSiL5Tz+IW8VzwZvh/gBc\nb2aJItcP4qd9XN6ZO8MYue0Nek3czG2njKLvddt59Pk+DFxSku6uuSwjKfw5/yTMbCGwsMa06XGf\n/0bkbXuJ2p5S3+35kb/LS4uerWDllE8omDuHK48p4sHvrWXrhZ3T3S3nmo0Xf5e33np9D2/cvZmK\nx5/gtNZVPHx+KS0mJnyXu3M5x4u/y2trVpUzf9Iu9t4zmy9s38aDp5bR50ct2N6zMe+nd/lCgjZt\nWoQaMk3m9ci5Zla2p5pnf2FsnvRnit5dydShHbngpr2sPr5RT/47l9G8+DsXeGF2JaunFNN6wfNM\nGNCLO6/exNpRdT2R7/JdC0HrNgo1ZBov/s7FeX3RPt66u5QD/3cG3+7amkcuXU/lVYelu1vOpZwX\nf+dqWFm8jwWTdrDvgZkcv2cnD4/YRvfbWrCnS5t0d81lGAlatVKoIdN48XcugWgw3NbJL8aC4c64\npcKD4VzO8OLvXB0WzKri0ynv0OG1v3Dj4N7cfO1WPj6tZ7q75TKEWojWbVqEGjJN5vXIuQyzeMF+\niid/RtWvn+TCnu35r7Hr2X95u3R3y7lG8eLvXAjL3ixj8T07YsFw943Y6sFwLhbpHGbINCn5lxvi\n3ZOS9Egw/z1JQ5K1lfSApA+D5edJ6pKKvjrXUB4M53JJo4t/8O7Jx4ikzA0CxkkaVGOxc4DjgmEC\n8MsQbRcBXzKzLxN5t+Wdje2rc6kwd4axYfIbdPrrm9z25S6Mu243Hwzvk+5uuTSIPOGbkkjnZpeK\nI//YuyfNrILIi4RH11hmNDDTIpYAXST1rqutmb0UxJwCLCHycgPnMoIHw7lsl4riH+bdk7UtE6Yt\nwNXAC4k2LmmCpKWSlu7GX87tmo8Hw7lslvFXqyTdBVQCv0s038xmmNlQMxvakVbN2zmX9xIFw/W/\ny4Ph8kUqL/iGuHbaWdIfJL0rqVjSVXHzbg6mvS9ptqS2ybaXiuKf9N2TdSxTZ1tJVwLfBi4zM0tB\nX51LuZrBcHee6MFwrn5CXju9HviHmZ0AnA78l6TWkvoCNwFDzexLQAGR10DWKRXFP+m7J4Px8cFd\nP8OBnWa2oa62ks4GbgcuMLO9Keinc00qUTDchnO7pbtbrikJClpVhxqSCHPt1ICOwcvbOwDbiJwV\ngchbGQ+T1BJoByR9LV2ji3/Id08uJPKW+VXAE8B1dbUN2jwKdAQWSVouKfY6M+cyVc1guIfGbPBg\nOBdVFL0+GQwT4uaFuf75KJH3+JYAK4AfmFm1ma0HHgQ+AzYQObh+KVlnUvIO3xDvnjQiv7KEahtM\nPzYVfXOuua0s3sfGSRWcVTKT468dwcMjqrm/qD1rnmhFhx3l6e6eSyEJClqGPiO9xcyGNmJzZwHL\ngW8BxxA5MP4LkdM8o4GjgR3A/0j6npn9tq6VZfwFX+eykQfDuXoKc+30KmBucMv8KmAN8EXgTGCN\nmW02swPAXOAbyTboxd+5JuTBcLlNgoLWFmpIIsy108+AEZHtqicwgMjp9M+A4ZLaBdcDRhA5jV6n\nlJz2cc7VbvGC/QzZ8hkDP3uSC8deQq+x63noiE60neX3MbgIM6uUFL3+WQD8KnrtNJg/HfgJ8LSk\nFYCAH5nZFmCLpGeBZUQuAL8DzEi2TS/+zjWDZW+Wse7TCs7Y8DTDrzmHn48q557uHdnxCyg4kPRO\nEJepZLRslZq70ENcOy0BRtXSdjIwuT7b89M+zjWTTRsPxILh+qzeEAuGK+nvmYWu+Xnxd66ZzZ1h\nrJ/6diwY7tqJOz0YLktJ0KKlhRoyjRd/59Lg5d+Xx4Lhxvbr5MFwrtl58XcuTaLBcOWP/CoWDNf6\nBr8M55qHF3/n0mjNqnKenbwnFgx3/zcqPBgui0SC3apDDZnGi79zaVZ5wGLBcF2XrYgFw60c2ivd\nXXM5zIu/cxnihdmVrJq8MhYMd8/4Eg+Gy3R+wdc5lwp/e2VvLBjuzHZ4MJxrMl78ncswK4v3sWDS\nDvbdP5vj9+zk4RHb6POjFuzp0ibdXXM1SEbL1uGGTOPF37kMtHN7Ff/z4IFYMNykIW09GM6llBd/\n5zJYNBjusEUvxYLh1o4qSne3XECCggILNWQaL/7OZbjFC/azbFIJVb9+kgt7tueBizaw//J26e6W\ny3Je/J3LAsXL97Jo0nb2P/w0Qw+U8fNRm+l4Swv2t2+V7q7lN0GLNuGGTOPF37ksEQ2G2zl1fiwY\nbvhtlR4M5xrEi79zWeb5p6pjwXA/PL6HB8O5BvHi71wWigbD2e9mxoLhdl3aMd3dyj8thNq0DDUk\nI+lsSSslrZJ0R4L5t0laHgzvS6qS1E3SgLjpyyXtkvTDpF1v4C4759Lsrdf3sHjy1s+D4c7d5MFw\nWUpSAfAYcA4wCBgnaVD8Mmb2gJmdaGYnAncCi81sm5mtjJv+VWAvMC/ZNr34O5fF1n1aEQuGO3rD\nplgw3KbDO6W7a/lBoFYtQg1JDANWmdlqM6sAngFG17H8OGB2gukjgI/N7NNkG/Ti71yWiwbDbZj8\nRiwYbtx1uz0YLvMUSVoaN0yIm9cXWBs3vi6YdghJ7YCzgecSzB5L4i+FQ/jviM7liEXPVvD1rSs5\n9sbtXHnuJfQdX8J9PYrovXBburuWsyShtqHL6BYzG5qCzZ4PvGFmB/3FSmoNXEDklFBSfuTvXA6J\nBsNVPP5ELBiuxcTW6e6WS249cHjceL9gWiK1Hd2fAywzs9IwG/Ti71yOWVm8j/mTdsWC4R48tcyD\n4ZqKlKpz/m8Dx0k6OjiCHwvMP3Rz6gycBjyfYB21XQdIyIu/czmobE91LBiu6N2VsWC41cd3T3fX\nXAJmVgncALwIfADMMbNiSRMlTYxb9ELgJTMri28vqT0wEpgbdpt+zt+5HLZgVhUnbyzm6Bt3cOM5\nl9K/43oefKE7h7+0Jd1dyw0tQG0LUrIqM1sILKwxbXqN8aeBpxO0LQPqFfnqR/7O5bjXF+2LBcN9\nu2trD4ZzgBd/5/JCNBhu3wMzY8Fw3W/zYLhGk1CrglBDpvHi71ye2LTxAHN+Vh4Lhpvy1ZYeDJfH\nvPg7l2eiwXAdXvtLLBju49N6prtbrpn5BV/n8tDLvy9nyIbPGLhxJmMvvpQjx67n3p5d6TRnd7q7\nll0k1CbzTumE4Uf+zuWpZW+WxYLhhtv+WDBcVfJ70l0OSMnfcogoUkl6JJj/nqQhydpKukRSsaRq\nSal4JNo5V8O6Tyt45se72TPtuVgw3OA78GC4sFoArQvCDRmm0cU/TBRpMO+4YJgA/DJE2/eBMcBr\nje2jc65uc2d8Hgz371/2YLh8kIpz/rEoUgBJ0SjSf8QtMxqYaWYGLJHURVJv4Kja2prZB8G0FHTR\nOZeMB8PVn/L8nH+YKNLalgkdY+qca3oeDJc/sv7KjqQJ0Xzs3RxId3ecy3q1BcNt79k+3V3LPErd\naxybWyqKf5go0tqWqU+MaUJmNsPMhprZ0I7404rOpUKiYLgLbtrrwXA5JBXFP0wU6XxgfHDXz3Bg\np5ltCNnWOZcmC2ZVsXpKMYcteokJA3px59WbWDuqKN3dyhwCWrYMN2SYRhf/kFGkC4HVwCrgCeC6\nutoCSLpQ0jrg68ACSS82tq/OufqLBsNVPv2UB8PlkJR8HSWLIg3u8rk+bNtg+jxCvIHeOdf0ipfv\nZfOkA5y+ZiZD/+0cfj6qgv/q1ZG1jxfQtiyPr7VJ0Do7Tzdn/QVf51zz8GC4ppXsYdlgmdMlLQ8e\ngF0cN72LpGclfSjpA0lfT7Y9L/7OuXrxYLjUC/OwrKQuwOPABWY2GLgkbvb/Af7XzL4InEDkNHqd\nvPg75+rt5d+XUzz5M+x3MxnbrxP/NXY9uy7tmO5uNT8JWhaEG+oWe1jWzCqA6AOv8b4LzDWzzwDM\nbFOkC+oMnAo8FUyvMLMdyTboxd851yAeDFdvRdFnkoJhQty8MA+8fgHoKulVSX+XND6YfjSwGfi1\npHckPRm807dO/rfknGuwvA+Gi17wDTPAlugzScEwo55bawl8FTgPOAu4W9IXgulDgF+a2VeAMiDh\nNYN4Xvydc40WHwx325e7eDBc/YV54HUd8KKZlZnZFiKhlycE09eZ2ZvBcs8S+TKokxd/51xKLHq2\nglWTV1Iwdw5XHlPEPeNL2Hph53R3q2lJqKAg1JBEmAdenwdOltRSUjvgJOADM9sIrJU0IFhuBAcH\nayaUeY+dOeey1t9e2cvGtVUM3/AEZ37vAo44v5Sf9uxE9fSKdHcto5lZpaToA68FwK+iD8sG86eb\n2QeS/hd4D6gGnjSz94NV3Aj8LvjiWA1clWybXvydcym1ZlU5myYd4NyS2XzhX8/gwVMLeLSwDX9/\n8jC6lpalu3uplcKHvJI9LBuMPwA8kKDtcqBeL73y0z7OuZSLBsNtnvRnit5dye1f9mC4TOPF3znX\nZF6YXZnbwXAiVff5Nzsv/s65JhUNhjvwf2fEguEqrzos3d3Ke178nXNNrnj5XhZM2sG+B2Yy9EAZ\nD4/YRvfbWrC/fXaGosXU7z7/jOLF3znXLHZur4oFw/Vc+VksGO7TLxamu2t5yYu/c65ZPf9UNZ9O\neScWDHfztVs9GC4N/FZP51yzW7xgP0O2fMbAjTO5cMwYeo1dz709u9Jpzu50d61+PM/fOefqJxoM\nt//hp2PBcB1vaeHBcM3E/5Sdc2mz7tMK/t/kslgw3E+HKbuC4SQoaBluyDBe/J1zaRcNhuv01zdj\nwXAfDO+T7m7lNC/+zrmMsOjZClZO+SQWDPfg99ZmfjCcBC1bhxsyjBd/51zGeOv1Pbxx92YqHn+C\n01pX8fD5pbSYmHmFMxd48XfOZZQ1q8qZP2kXe++ZzRe2b+PBU8vof1cLtvdM+nKqNBC0aBluyDBe\n/J1zGadsTzXP/sJiwXB3ntjRg+FSzIu/cy5jRYPhWi94PhYMt+Hcbunu1uf8nL9zzjWN1xft4627\nS2PBcA+Nyc1gOElnS1opaZWkQ97BK+l0STslLQ+GSXHzPpG0Ipi+NMz2Mu9ElHPO1bCyeB8bJ1Vw\nVslMjr92BA+PqOb+ovaseaIVHXaUp7t7jSapAHgMGEnknbxvS5pvZjVfx/gXM/t2Las5I3i3byh+\n5O+cywrRYLitk1+MBcOdcUtFmoPhUnbBdxiwysxWm1kF8Awwuil77sXfOZdVFsyqigXD3Ti4dzYF\nwxVJWho3TIib1xdYGze+LphW0zckvSfpBUmD46Yb8CdJf6+x3lr5aR/nXNaJBcN99iQXjr2EXmPX\n89ARnWg7a2/zdkQtUMs2YZfeYmb1es9uDcuAI8xsj6Rzgd8DxwXzTjaz9ZJ6AIskfWhmr9W1Mj/y\nd85lpWVvlrFo0vZYMNzPR23O5mC49cDhceP9gmkxZrbLzPYEnxcCrSQVBePrg5+bgHlETiPVKSv/\nlJxzDmDTxgOxYLg+qzfEguFK+ndpng6k7lbPt4HjJB0tqTUwFph/8KbUS5KCz8OI1O+tktpL6hhM\nbw+MAt5PtkE/7eOcy3pzZxgjNr1Nnxt2cNspozim43YenNuHgUtK0t21UMysUtINwItAAfArMyuW\nNDGYPx24GPg3SZXAPmCsmZmknsC84HuhJfDfZva/ybbpxd85lxNe/n05w7Z8wheun8PY8y+i1/fW\ncn/vbhTO29l0G5VSFt0QnMpZWGPa9LjPjwKPJmi3Gjihvtvz0z7OuZwRDYYrf+RXsWC41jf4MW4i\nXvydczllzapynp28JxYMd/83KpowGC7P4x1CPJYsSY8E89+TNCRZW0ndJC2S9FHws2uyfnQpSsXe\nOOeyXeUBiwXDdV22IhYMt3Jor3R3LWM0uvjHPZZ8DjAIGCdpUI3FziFyP+pxwATglyHa3gG8bGbH\nAS8H43Uq6NOFf5nanh69svOFys651HphdiWrJq+MBcPdM74ktcFwyu9I5zCPJY8GZlrEEqCLpN5J\n2o4GfhN8/g3wnWQdKVML2t58JSOndWXwie0av2fOuaz3t1f2xoLhzmxHzgbD1Vcqin+Yx5JrW6au\ntj3NbEPweSOQ8PltSROij0uvWbuPeaVlFFz1fYZM68Np57Vt2B4553LKyuJ9LJi0g333z+b4PTt5\neMS2dHcp7bLigq+ZGZHsikTzZpjZUDMb2r66PQ8/Ucgvijewb+QojpzyFc67vKCZe+ucy0Q7t1fx\nPw8eiAXDpYpJoYZMk4rin/Sx5DqWqattaXBqiODnpjCdOfLDrbzyUGumLdtP6YAjKJx6Fpfc2orO\nXf1LwDn3eTBcvktF8U/6WHIwPj6462c4sDM4pVNX2/nAFcHnK4Dnw3aow45ySu6r5uaXu7GiQ2cO\nu30c597dkQGD/Tyfcy4SDJcaRjVVoYZM0+jib2aVQPSx5A+AOdHHkqOPJhN5am01sAp4AriurrZB\nm3uBkZI+As4Mxuul5a/3ccvc3vxpL7S+7lqG/aQnXz/DLwQ751xK7j8K8ViyAdeHbRtM3wqMaGzf\nei/cxl2b+rD+olLGnjeaY4teo0NhMYuerWjsqp1zec4wqqoPpLsbDZIVF3wba8DSjcx+vCM/W76b\n7UOOp/fUb3LxjaJlq8y7COOcc80hL4o/QI+1u1h9TzW3/7U1a3r3oN1d47h4agf6HZl5j10757JH\n3p7zzzYVj1Zy88IeLK4ooM1NV3Pa1EKGndwh3d1yzrlmlXfFH6DTnN3c+tvDeWbdLnTZeAZMOYoR\n3wn9KjbnnAPALHLOP8yQafKy+AMMXFLCE9M7c+/yzez6xkn0nfw1Rl+Tt38czrk0SxaQGbfc1yRV\nSrq4xvQCSe9I+mOY7eV1teuzegfLHyrgx28ZJf1703nyBR4M55wLzTCqrDLUUJeQAZnR5e4DXkqw\nmh8QuWU+lLwu/gBtyw6w+6FqfvhSd5a2au/BcM65dAgTkAlwI/AcNRIPJPUDzgOeDLvBvC/+UW1n\n7eUH/93v82C4e4/0YDjnXCoVRUMog2FC3LykAZmS+gIXEkTi1/Bz4HagOmxnMi9kOo2OWVzKw6WF\nrP3uBq457QyOLOzCed3eYsGszLtNyzmXCaw+t3FuMbOhjdjYz4EfmVm14oLiJH0b2GRmf5d0etiV\nefGvIRIM14ZPrt3P7SccQc+pXbm038u8OL2Sndv9S8A51yTCBGQOBZ4JCn8RcK6kSuAk4AJJ5wJt\ngU6Sfmtm36trg37aJ4EOO8rZ/EBcMNxt4zlvWhcPhnPOHSQa75CCWz2TBmSa2dFmdpSZHQU8C1xn\nZr83szvNrF8wfSzw52SFH7z41ykaDLdoVzmt/nWCB8M555pEyIDMlPLTPklEg+HWXLiR8UEwXJde\nK3hhdt23bjnn8kG9zvnXvaYkAZk1pl9Zy/RXgVfDbM+P/EMYsHQj8x9pFwuG6z7tWx4M55zLal78\nQ+paWhYLhvtn126xYLijj/VYCOfylRlUVVeGGjKNF/96qni0kpv/0DMWDPfNn3T3YDjnXNbx4t8A\nhfN2xoLhqsZc6sFwzuUto8qqQw2Zxi/4NtDAJSU8sakLH1+2g+u/cRJ9C7swpscbzJ1h6e6ac84l\n5Uf+jdBn9Q6K7yUWDNdh0kUeDOdcHqk2UV7VItSQaTKvR1mm4EB1LBhuidrGguGGnNQ+3V1zzrla\nefFPkbaz9vLvz/SNBcMNnnqEB8M55zKWn/NPofhguCtPPcWD4ZzLcQYcqM7O5338yD/FIsFwrZny\n90pKBxxB4dSzuPTONnTuWpDurjnnXIwX/ybgwXDO5QczKK9WqCHTePFvQtFguD9ur4gFw5080r8A\nnHPp5+f8m1jvhdv42doelIyNBMP17/kGHYuWezCcczmgGjLyNs4wsrPXWab/is2xYLgtJwyIBcO1\n7+B//M659PDq00yiwXC3vtY+Fgx3wbROHgznXDYzUVkdbsg0XvybWfX0ilgwXOvrrvVgOOccAJLO\nlrRS0ipJdySYP1rSe5KWBy+APzmY3lbSW5LelVQsaWqY7XnxT4NoMNzTH2+JBcONvLh1urvlnKun\nyDl/hRrqIqkAeAw4BxgEjJM0qMZiLwMnmNmJwNXAk8H0cuBbZnYCcCJwtqThyfruxT9NBi4pYfbj\nHXngvR3s+sZJ9J76TcZMyLxfDZ1zzWIYsMrMVptZBfAMMDp+ATPbY2bR5Mj2RJ4xwyL2BNNbBUPS\nhEkv/mnUY+2uWDDcmt49YsFw/Y703wKcy0FFwema6DAhbl5fYG3c+Lpg2kEkXSjpQ2ABkaP/6PQC\nScuBTcAiM3szWWe8+KdZNBju5oU9YsFwp00t9GA457KAWSTeIcwAbDGzoXHDjPpvz+aZ2ReB7wA/\niZteFZzPnuNUAAAPyklEQVQO6gcMk/SlZOvy4p8hOs3Z/Xkw3GVXeTCcc/llPXB43Hi/YFpCZvYa\n0F9SUY3pO4BXgLOTbbBRxV9SN0mLJH0U/Oxay3IJr2LX1l5SoaRXJO2R9Ghj+phNjllcysNPFPLQ\nig3sOfUUjpzyFUZf49/PzmUqIzUXfIG3geMkHS2pNTAWmB+/gKRjJSn4PARoA2yV1F1Sl2D6YcBI\n4MNkG2xsZbkDeNnMjiNyJTrR7Ul1XcWurf1+4G7g1kb2L+sc+eFWljzQMhYM13nyBR4M51yOM7NK\n4AbgReADYI6ZFUuaKGlisNhFwPvBuf3HgH8JLgD3Bl6R9B6RL5FFZvbHZNtsbLzDaOD04PNvgFeB\nH9VYJnYVG0BS9Cr2P2prb2ZlwOuSjm1k/7JS27IDbH4Abr6qG7cM38XXbhvPeX3m8u5T+yhevjfd\n3XPOBcyUskhnM1sILKwxbXrc5/uA+xK0ew/4Sn2319gj/55mtiH4vBHomWCZuq5ih2mft1r+eh+3\nPfd5MNyQaX08GM45lxJJj/wl/QnolWDWXfEjZmaSGvz28oa2D26XmgDQ/rDChm4+Yx3+0hZ+tiES\nDHfZyFH0L3zLg+GcyxDRh7yyUdLib2Zn1jZPUqmk3ma2QVJvIveY1lTXVeww7ZP1bwYwA6Cwa/8G\nf/lksv4rNjN/U3s+vnIft54wgO7TunFJ31dYOL2Ksj3V6e6ecy4LNfa0z3zgiuDzFcDzCZap6yp2\nmPaOSDBcyX2fB8MddrsHwzmXbmawvyrckGkaW/zvBUZK+gg4MxhHUh9JC6H2q9h1tQ/W8QnwEHCl\npHUJci7yUjQY7k978WA451yDNepuHzPbCoxIML0EODdu/JCr2HW1D+Yd1Zi+5bLCeTu5c0M/1o/e\nwHfHXMqA7i/Refo/WfRsRbq75lxeqQYqsvTMq7/JK0sNXFLC7PWdWH/lDiYOH0Lv3t0Z0+1V5s7I\nycsezrkU88dHs1g0GO7upS09GM45Vy9e/LOcB8M5lz75fMHXZYhoMNwzJXvRZeMZPPUIRnzH7wRy\nziXm5/xzyDGLS3m8tJD1Yzdx7amn0LewC6ML3+T5p7L0ipRzGc6AA1n638uP/HNMfDBcyRf6eTCc\ncy4hL/45KBIMV82tfy5iaav2HHbbeM6b1oXBJ7ZLd9ecyynVBvurFGrINF78c5gHwznnauPn/HOc\nB8M513SM7H3Iy4/880D/FZuZ/0g7pi3bz5YTBtB92re45NZWtO/gf/3OZYra3ngYN/8ySe9JWiHp\nr5JOCKYfHrz58B+SiiX9IMz2/H9/nogPhlvRudCD4ZxLgWqD/ZXhhrokeeNh1BrgNDM7nsjL26Mv\ngK8E/t3MBgHDgevDZKF58c8z1dMruGVu71gw3Mn39+brZ/iFYOfSLPbGQzOrAKJvPIwxs7+a2fZg\ndAmReHzMbIOZLQs+7yYSoNmXJPycfx7qvXAbd23qw/qLShl73miOLXqNDoXFHgznXD3V8z7/IklL\n48ZnBO8jgcRvPDypjnVdA7xQc6Kko4i80vHNZJ3x4p+nBizdyOzSTqy/cjcThxxP76ldPBjOuaa1\nxcyGNnYlks4gUvxPrjG9A/Ac8EMz25VsPX7aJ49Fg+Fu/2vrWDDc2J929GA455pfXW88jJH0ZeBJ\nYHQQiR+d3opI4f+dmc0Ns0Ev/nmu4EA1FY9WxoLh2tx0tQfDORdSCoPd6nrjIQCSjgDmApeb2T/j\npgt4CvjAzB4K23cv/g6IC4Zbt8uD4ZxrZrW98VDSREkTg8UmAYXA45KWx10/+CZwOfCtYPpySefW\n3EZNfs7fxRyzuJQn1nZh/fggGK5nIaML/+rBcM7VotqgvCI1x9CJ3nhoZtPjPn8f+H6Cdq8D9c6P\n8CN/d5A+q3d8HgzXv3csGK5Hr1bp7ppzLoW8+LtDRIPhfvhS91gw3MhpXT0YzrmaTFRWtgg1ZJrM\n65HLGG1n7Y0FwxVc9X0PhnMuh/g5f1enaDDc6ks2cE0QDNe51zssmJWB76VzrplVG1SUZ+e7MvzI\n3yXVf8VmXnmodSwYrnDqWR4M51yW8/+9LpQOO8o/D4br0DkWDDdgsJ8GcnnMRGVluCHTePF39VIz\nGG7YT3p6MJxzWcjP+bt682A457KfF3/XINFguDXjd3NTEAx3ce9X+f10qDzg4XAuP1RX+wVfl4d6\nrN3F6nuqY8Fw7e4ax8VTO3gwnHNZwIu/a7RoMNziioJYMNywkzuku1vONTkzceBAi1BDpsm8Hrms\n1GnObm797eGxYLgBU47yYDjnMpif83cpM3BJCU9sigTDXfONk+hb2MWD4VxOM3/Iy7mIaDDcj9+y\nWDDcv0xt78FwzmUYL/4u5dqWHWD3Q58Hw7W9+UoPhnM5yTzYzblDRYPh5pWWxYLhTjuvbbq75VxG\nknS2pJWSVkm6I8H8L0r6m6RySbfWmPcrSZskvR92e178XZM6/KUtPPxEIb8o3sC+kaM4cspXOO/y\n7DxH6lxN0XP+YYa6SCoAHgPOAQYB4yQNqrHYNuAm4MEEq3gaOLs+fW9U8ZfUTdIiSR8FP7vWslzC\nb7Ta2ksaKenvklYEP7/VmH669Dryw62xYLjSAUfEguE6d/UvAecCw4BVZrbazCqAZ4DR8QuY2SYz\nexs4ULOxmb1G5MshtMYe+d8BvGxmxwEvB+MHSfKNVlv7LcD5ZnY8cAUwq5H9dGkWDYa7+eVusWC4\n86Z18WA4l9WsWvU58i+StDRumBC3qr7A2rjxdcG0JtPY4j8a+E3w+TfAdxIsU9c3WsL2ZvaOmZUE\n04uBwyT5TeM5oOWv98WC4Vr96wQPhnP5ZIuZDY0bZqSzM40t/j3NbEPweSPQM8EydX2jhWl/EbDM\nzMoTdUDShOg3aXn5rnrvgGt+vRdu466ZfZixciMV543m2KkDOGecP3Li8tp64PC48X7BtCaT9H+c\npD8BvRLMuit+xMxMUoMTvRK1lzQYuA8YVUe7GcAMgMKu/T1RLEsMWLqR+Wvbs/77kWC47tO6c3HR\nIg+Gc9nFjBaVKXmI8W3gOElHEyn6Y4HvpmLFtUl65G9mZ5rZlxIMzwOlknoDBD83JVhFXd9otbaX\n1A+YB4w3s48bsnMus3UtLfs8GK6waywY7uhj/Qyfyy9mVgncALwIfADMMbNiSRMlTQSQ1EvSOuAW\n4D8krZPUKZg3G/gbMCCYfk2ybTb2d+35RC7I3hv8fD7BMnV9oyVsL6kLsAC4w8zeaGQfXYareLSS\nGy7sxe0jtnH6TVfzzaOfo/tjO3jr9T3p7ppzdZJBq/LUvM/azBYCC2tMmx73eSORg+dEbcfVd3uN\nPed/LzBS0kfAmcE4kvpIWhh0KuE3Wl3tg+WPBSZJWh4MPRrZV5fBCuftjAXDVY251IPhnGtijTry\nN7OtwIgE00uAc+PGD/lGS9L+P4H/bEzfXPaJBsN9fNkOrg+C4cb0eIO5M/wagMtMMqPgQHYGF/oT\nvi6j9Fm9g+J7iQXDdZh0kQfDOdcEvPi7jFNwoDoWDLdEbWPBcENOap/urjl3EBm0qqgKNWQaL/4u\nY7WdtZd/f6ZvLBhu8NQjPBjOuRTxJ2tcRjtmcSkPlxay9rsbuPLUUziysAvndXuLBbMy70jK5R+Z\n0dLP+TvXNKLBcFP+XhkLhrv0zjYeDOdcI3jxd1mhw45yNj8QFwx323gPhnNp5+f8nWsm0WC4P26v\niAXDnTzSvwCcqy8/5++yTu+F2/jZ2h6UjN3I+PNG07/nG3QsWs4LsyvT3TXnsoYXf5eV+q/YzPxN\nkWC4G04YQPdp3bi4aBEv/FqU7cnOC3Au+6jaaFWenQcdftrHZa1oMNytr7Xnn1270e6ucZz/4/Ye\nDOdcCF78Xdarnl7BzX/oyeKKAtrcdDXf/El3hp3cId3dcnlABi0PVIcaMo0Xf5cTosFwT3/qwXDO\nheHn/F3OGLikhNnrO7H+Sg+Gc81DZhl5G2cYfuTvckqPtbs8GM5lJUlnS1opaZWkOxLMl6RHgvnv\nSRoStm0iXvxdzvFgONdsLPLvLcxQF0kFwGPAOcAgYJykQTUWOwc4LhgmAL+sR9tDePF3OSs+GE5X\nXeXBcC6TDQNWmdlqM6sAngFG11hmNDDTIpYAXYLX34Zpe4icOue/bceaLb+dd/mnzbS5ImBLM22r\nOeXWfs2DMT/MsX36XC7uV3Pu05GNXcG2HWte/O28y4tCLt5W0tK48RlmNiP43BdYGzdvHXBSjfaJ\nlukbsu0hcqr4m1n35tqWpKVmNrS5ttdccnG/cnGfIDf3K9v2yczOTncfGiqnir9zzmWp9cDhceP9\ngmlhlmkVou0h/Jy/c86l39vAcZKOltQaGAvMr7HMfGB8cNfPcGCnmW0I2fYQfuTfcDOSL5KVcnG/\ncnGfIDf3Kxf3KSkzq5R0A/AiUAD8ysyKJU0M5k8HFgLnAquAvcBVdbVNtk2Z+QMwzjmXb/y0j3PO\n5SEv/s45l4e8+NcgqZukRZI+Cn52rWW5hI9T19Ze0khJf5e0Ivj5rRzYp0JJr0jaI+nRZtqXlD8C\nH/bPpyk10X5dIqlYUrWktNw+2UT79YCkD4Pl50nq0lz7k1PMzIe4AbgfuCP4fAdwX4JlCoCPgf5A\na+BdYFBd7YGvAH2Cz18C1ufAPrUHTgYmAo82w37U2se4Zc4FXgAEDAfebOj+NePfT1Pt10BgAPAq\nMLQ596mJ92sU0DL4fF9z/33lyuBH/ocaDfwm+Pwb4DsJlqnrceqE7c3sHTMrCaYXA4dJaq7M4aba\npzIzex3Y31Qdr0cfoxryCHyYP5+m1CT7ZWYfmNnK5tuNQzTVfr1kZtHXZy0hcl+7qycv/ofqaZF7\nZwE2Aj0TLFPbY9Zh218ELDOz8hT0N4zm2KfmUFcfky2TyfvXVPuVbs2xX1cT+c3B1VNe3ucv6U9A\nrwSz7oofMTOT1OB7YRO1lzSYyK+qoxq63kTSuU+5JNf3L5dIuguoBH6X7r5ko7ws/mZ2Zm3zJJVK\n6m1mG4JfPzclWKyuR7FrbS+pHzAPGG9mHzd6R+Kka5+aWVM9Ap/u/Wv2R/ubSZPtl6QrgW8DI8zM\nv6wbwE/7HGo+cEXw+Qrg+QTL1PU4dcL2wR0JC4hcWHyjifpemybZpzRoqkfg071/zf5ofzNpkv2S\ndDZwO3CBme1trp3JOem+4pxpA1AIvAx8BPwJ6BZM7wMsjFvuXOCfRO5IuCtE+/8AyoDlcUOPbN6n\nYN4nwDZgD5HzsoOaeF8O6SORu40mBp9F5MUWHwMriLvLpSH714z/7ppivy4M/k7KgVLgxRzZr1VE\nrgdE/x9Nb+79yoXB4x2ccy4P+Wkf55zLQ178nXMuD3nxd865POTF3znn8pAXf+ecy0Ne/J1zLg95\n8XfOuTz0/wHRcxpuECIMWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Uniform window')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULMld3/n5ZVZlVvft7umZuYNGSLJ4iSMLGWMbJHbt\ns4vtRegs2PJjLVjex9hYa2sxa9Y8d22dBXYHG5vlYBkhswhpMZa1GC0ySMvLPAxrQAIDFuKskeWR\nJTFXM3fmtrr7dldmZVbsHxGR+cuoiKzqe3u4g7q+59xzq6syIyMzI+Ibv7cYY9hiiy222GKLy0J2\nrzuwxRZbbLHFRxe2xLLFFltsscWlYkssW2yxxRZbXCq2xLLFFltsscWlYkssW2yxxRZbXCq2xLLF\nFltsscWlYkssW6yFiLxORP7ne92PqwwR+SIR+YlLbO/LReQXLqu9LbbQ2BLLFojIoyJyLiKnInJL\nRH5MRJ7nfzfGvMoY8833qG/3fAF0fTAi8h3B969w33//090HY8w/Nca8TF3biMgnPd3X3WKLO8GW\nWLbw+DPGmD3g2cCHge+6x/3ZGCKS/x5c5j8ArxSRifruy4B//3tw7S22+H2FLbFsMYAxZg78EPAi\n/52IfL+IfIv7fF1EflREjkTkKRH51yKSud8eFZFvEJH3OMnnDSIyU+18noj8ujv3/xWRT1W/PU9E\nflhEnhCRJ0XkH4nIHwReB/xnTpo6Uv35bhF5u4jcBv6kiPysiPwV1d5A0nE7/L8uIr8jIici8s0i\n8omuH8ci8hYRKUYezQ3g3wGf49p7APjPgbfpg0Tk/xKRGyLyERH5eRH5FPXbgyLyL9313iki3xLp\n46tcH49E5LUiIuH9iMjPu1N+wz2Xz49Jdlqqcdd+m7v2rwCfGBz7QhH5SfdO/z8ReeXIs9hii1Fs\niWWLAURkF/h84JcSh3wN8EHgIeBZwDcCOi/QF2EX308EPhn4n1y7fwT4PuCvAQ8C3wO8TURKJ3H8\nKPB+4OOA5wBvNsb8NvAq4N8YY/aMMYfqOl8IfCuwD2yqKvsc4I8Bnwl8LfB64IuB5wEvBv7bNee/\nCfhS9/kLgB8BquCYdwAvAD4G+DXgn6rfXgvcBh7GSjtfFrnG5wGfAXwq8ErX5wGMMf+F+/iH3XP5\n52v67a89x0qkf9n9A0BErgE/Cfyg6/cXAP9YRF4UaWeLLdZiSyxbePzfTiL4CPDZwN9PHLfALk7P\nN8YsjDH/2gwTzv0jY8wHjDFPYRd+v1h/JfA9xphfNsa0xpg3YhflzwReAnws8LeNMbeNMXNjzDqy\n+BFjzC8aY5ZOytoEf88Yc2yM+S3g3cBPGGPeZ4z5CJYQ/sia898KfJaI3IclmDeFBxhjvs8Yc2KM\nqYDXAH9YRO5z5PkXgb9rjDkzxrwHeGPkGo8YY46MMf8J+Bng0za8tyTUtf+Oe77vDq79ecCjxpg3\nGGMaY8y/Bf4F8Jfu9tpbXE1siWULjz/nJIIZ8Grg50Tk4chxfx94L/ATIvI+Efn64PcPqM/vxxIG\nwPOBr3EqniNHYs9zvz8PeL8xprlAfz+w/pAVfFh9Po/8vTd2sjHmHPgxrBT2oDHmF/XvIpKLyCMi\n8h9E5Bh41P10HSvhTYJ+x+7hhvp8tq5PGyJ27ferz88HXhq8my/CSlZbbHFhbIlliwGcNPHDQAv8\nicjvJ8aYrzHGfALwZ4G/JSJ/Wh3yPPX5DwC/6z5/APhWY8yh+rdrjPln7rc/EBjGu0umuhr8fRvY\nVX8/XYvim7DqwB+I/PaFwCuA/wq4D6vWAxDgCaABnquO18/qbjG4/2BT4K8dvhuPDwA/F7ybPWPM\nf3eJ/dviCmFLLFsMIBavAO4Hfjvy++eJyCc5o/JHsAS0VIf8DRF5rjNufxPg9f//BHiViLzUXeOa\niHyuiOwDvwI8Bjzivp+JyB93530YeO4awzrArwN/QUR2ncH6K+7sCazFz2FVhTGvuX2seu9J7CL/\nv/ofjDEt8MPAa1wfX0hvr7kTfBj4BPX3bwCfIiKf5hwmXjNy7RcxtO/8KPDJIvIlIjJ1/z7DOU9s\nscWFsSWWLTz+pYicAsdY28iXOVtEiBcAPwWcAv8G+MfGmJ9Rv/8g8BPA+7Auut8CYIx5F/BXgX8E\n3MKq077c/dYCfwb4JOA/YZ0DPt+196+A3wJuiMjNkf5/B1BjF9w3MjSaXxqMxU87G1KIN2FVTB8C\n3sOqA8SrsZLMDeD/BP4Zq8b/TfEa4I1OdfVKY8y/B/4X7Lv5HVYdGl6NVavdAL4feIO6pxPgZVij\n/e+6Y74NKO+wb1tccci20NcWlwUReRT4K8aYn7rXffn9ABH5NuBhY0zMO2yLLX7fYiuxbLHF7xFc\nrMinOlXgS7Dqurfe635tscVlI2Ys3WKLLZ4e7GPVXx+LVdn9A2wszBZbfFRhqwrbYostttjiUrFV\nhW2xxRZbbHGpuLKqsAev75vnPf9BlsbQLgUDtEZYGlgshcUSFktoW6FpMtpWMEZgaRADYgzLTCAT\n8myJZCCSlv6Mkf7zku74zP0v0p8vttkV1vc+vUvj27Tt+v+XS/f30h/XXzPPzeB6qT6O/QawXA7/\n9sdnrrP6HsK/9T2J2P43BpZLYbkU2tb+G4N+jiKGPDfdZ98H/Rz8M8hze2yW2edQ5HBtYtiZGKZZ\nCc0c5s5Ba7aDmUyo2wVnTcbJgq5f4XNI9S1E+K6zzGDcvRvT37sx/Xjy70xk2E7/uX+m/jNAu7Rj\npV3SPVdYfUe+z+G40de2z2s41vR5HtkGW1Q9zmXkNYfjWo8JPd5SY82f65+nPj/z56j+6rGTZfae\npxlMM8gFcjH8zr979KYx5qH1d5nGH5IHzSmLjY59lJMfN8a8/G6udy9xZYnlec9/kLf93DdyXOfU\nSzvwqjbjuM44XeQc1XDjXHjsDG4dFTz2oWvUVU59kjGtWnZPas72CxZlDoWwd1BTlG3Xfqk+A1TV\nagLesmwpypaiWDKZLofnTww7wSnn7ueqsf2tq5xmkVHX/Sypq5yqyqnd9fz/hbuWviYwOFfD/961\n647z7cfupbuOO3cyXXbf6fuZ5TCbwLyBWzWc3J5wdntCXeWcHI+Hq9Tq2v6e/PX9Z/0M/L+9g5r9\ng5q9/QWT6ZI/cH/DSz+m5VMfPOdZO8+hOLkF7/8dAOQTXszZzpQP3X6C33xyl196XHj82E6VZpGt\nPA+P2HPRfdPPxff17HTK6cmUqso5PS6oq5yibNk7qCnLlr39xeBZaujn6p8pwFFlx4p+rvocYPD+\n/fM6dc++KFv23XjevdZQlO3KWKsT97punIf3v3LsxFA10l0P6J5PrE19L/4ZNYts5Rz/XP25sf76\nNnevNXzMQcNhCQ/vGA4L+G8+8Yt1poI7wikLXpO/ZKNjv7z96et3e717iStLLEtjBqQCUOZLylyw\nMX85NrhbgJq6znjyiR07odzGdvekZlHlLMqcU4puQYD0IrMpqkaoGjvR9Hd+QoeE4qEnbB1MrBDh\nd1WVd5PLt60JZqw9PXH9ec0iGyyI5y0ducwbmKu1pSiWK23E+ju4RmKBCEmF2gxIa29/wa0aPlJn\nHNc595dnlOU+Zs8Frs/2WCw/QtVmg2vVVR5d4FOLLKwuqqnzYs9zcO06S7QBlScY9zhCUvHPpnT3\noN9vSMLTk4bTffuc9t1Y1mS6jkh9O+E47MjKjQt/Xyn435pF1n0O37G+L31OuPkp1Yaqa189S3+s\nbvNx4PxaAwjzdmuHviiuLLE0SxmQCkCRGQ6KluM6Z7FcMsszHt6x5FI9YNmkrnLqOocTe860VhOo\n7glmbNLAqkSTgpZOIE0o4Bbn4De/IHZ9TCwM4cLWTdKgPb0IXQztgCQ3wabPKAa9UE6rljPsYunJ\nZXdvwVFtOFnkzNtT9mbPh/37ATCTkrZuqJfCvLXSgO17v3BNpnaB7Hb+jpRTi52GX1ghLjGmnu3K\ngl3r61uC8ced3V6d2n7joNvx7/P0uGB60lhJHDill15SO/ywb16ij93D3kHNyXFxIXKBoaQWXvv0\nuBiM71hbWuoL2/Pn6Ha91FhXtetjzbwZV89uCsmgnG3Y1u1LueQ9w5UlllAfXmSGMl8CGWVuqFrD\nfcUSaksu8wagoq5ynmSHxfFwkNsJWVDT79i89JJCaifroSenJ5RwBxqqA1ZUWBF1QEgMqYUs3HWu\nSAKR/hZlS61UKXrhLCfjOSY3JePU4ua/15LKtGqZ1i3TqqWm35menU45Oqg5rjPOmzn19JxyxxJL\ntTynNau6cK+m0f3UJBH2M3w3IWLn6vP8vYT3GBKuJxgvIXpSGSN/rSrVpLJzau/bk8u6MazHw/Sk\nYbeyxy/K/tqL0l5jHbn4jYd/zoNnUiw74q4T49C34/vsr6NVshp6o3NyXHB6XGBumk5i86j2NrOL\nbNHjyhJLY+CJ8wllbqUUsDaWeilUztg3zQzXZy2ni5wXHhoOS8NheZvf3V/w5MGs290AULtBWvQL\nj99Rwfii6XXOekJpCQWGuvCUdBEituMfW7RiC5HuvyelMaklJa01i4yT2xO41pPLeasksjVqPd2/\nMYLxC6V/H4sy7/4V+8vOdjGZLpnlhjI3FNlwEcujuTDXI7mbD9RYk+mS/WsNVSNM3Dn7B/Xg3Yb2\nulAN5L9feYf1qvpOj4OQ7Cq3GTAnq/3273L/oI6+a3+uv84pRU8ohUTbAWX3C8ilaiRKKneCMmG7\nhCGh7DsbksdT1U5nL+02KgkNwRZpXFliWSyF04VVeVWtcOAnWtsTC0CZG8q84XSRMcszDgvDYVnz\n6N5iYHhdpx5KSgXBbvaiE0svOF4Vto54YoRTq0VCG/l1u2FbWqetvwv12R6eXLTKJlTtbaJ3H1MV\neUnFwztXhAbx/WsNh4V9v3k2och2MPUTAOR7D5LLFKiZqUvFnCa0BOmfYUgw+p48qdxfwDw3nDsp\nTo+DGBF0fbigCjJmV9CLrb+H0/2CRdXCHtYpZX/CXmkdHnavNSvOHiFhATzw0Hly7EXHXMJutMm9\n+D6E43Fs/EFPKt7Wd97a7w4fqKJ9uVtbqUYmQlFuSFJbVdjvTyyWcOMcDouMWW6JZpoNbQAHxdKp\nx3DqsSV7U+GwyDksDDd2a26sIZgxKUBj6AVm9fn1mh1TTOe+0q5b6MYWqzGkVGxatx3aFlJGUrDk\nEnpWXRR6Jx6qv2yf1HtUHnueVCbTZedJtT9tKbJriDGY1u6oxRhymVBkq/khPalor6OYuhHiaitP\nKoelYd4Kswag4eT2hL39xeiz07jIghcSih5r9bWG2qmvTuuC3ePakspBzYMPnbN7rWHfSZlewoqp\n8ELpKLyPcMOTMvBfZFMVSseaVEJpJSSU2crjM+BUXjEvtC0uhitLLHULj54ID+9ad8JZnnFfsezI\n5aBYsj9tOShaqlacDUaoWmuD8QTz8K4lmFuHNbeOiijBxCYRDHXxfqGbb7jmpyZmjMjWLfZhG2M7\nPn2+3sWmrh29zgaEEvWAiqh5dN8H0oqTUrQapiiW7O4t7A61hPvcxiGTHNoaGmdPaGv7nYJ2gdXv\nOHp/Abn4z7t7i45UDguYt4Z5Dtbz0KrGOJ0Cq0Zm7yywKULVmyYU7Zp8fq2hWWS2n/s5Z86u4iUV\nT4TQS1gpgtH2jO47f+/EJVRgxXvQP8PR+wsILObu7jFGKn7O2d8M5WHNrtsshhLp3UIyKMvLcQR4\npuPKEstikfH48YTztt9BwpBcPMrcYEPOMqq2/+6+Ysm8zdy5EjXyaXLR2FRq8BNubDHW3j7roCdd\n6EUW9kkvFH4R0QvAysIy0odUHMyY99SmSNm5tGpkLRpFLAHm7aqkomNONLS6Tv/mCS2FnRwqZ36K\nuTQ/3dB2lKLsPanCWKoxpEglxEXUX2PS7d2MmXWYTFc9LLfYHFeWWJat8IFH93nwoXNOrjXcutZg\nVSiWXKpWnIQiyqifDewv4HZ/bgd4WBrqajlYXFKoqzAYsF94dLzKGMJjQiOv/j7ERXfAHjFXWb0g\npcgltEWkkHJzHj3Wt+cMxrEFpzvmdAp7C+aNce8zY2lamBT2H0BesGzazt34vCVKKuG9x/rmd/5g\n3+utLjbKqsJ8kGjVSLdL1giJPYXNpMWWsPCmVz0VxbJzIPBG9qJsOW/7Xb13tojaxor142ns99hv\nsfiZMY9Av7nS76RZZNTOruXjqLwLOfQaAh187O/PY1NJfIseV5ZY2qUdrI99cI+9g5qzg5qqqfCS\nyTQzgwC5GKlATyyHhWHeSKePhjU7eGXoLcrWeQfFjx/bPW2sflI76NSOONxlhx41IamERvtYHI1e\nEFLSWwybqOJCh4KV/kSMvQCcTrk1qa0kshRa0wyIxYj9rmozjtyiHyOVWNuhN1dRDJ/hkFz6zAOe\nuMJ7HCPyEP4Zj+/kh+QSc9cNVVqbqGcvuruPEWZILmPZHmKxNaFNS5NMs8jY3VsApiMXjzCjhT7/\nMm0tImxuvP99jitLLNKaLpjrqWpHLRhnWHKxA+rAbWJjpGLJp9/ReZUYWL11WdqYjpWFwKlsNllo\nPTn5yPSuiWBBWLdYp6QWjypCEtDrp2tlx67rjJPjIu7OrAIGddubODXEEFPP6c+xhVFjJebDL0KN\ncFTbzUNrFhgRyO3Lbs2Cuj2nagvmrU27olOe2IYCtVbRe4xpO1WMxHtyWY2QD89fl3qnazPo3zjB\nWHKJxYqMXiOQVta9Q92HmM3HY4xQ/L1phOl7tKSeckHv4MgFrPSSJJV6K7HcDa4usRjD7vFQp/5Y\ntec+WXKZ5bmzr4zDSix+F+TI5bAeunWGxmXiEyfMewS9SJ/amYftxX4LEZKRX4DX2SM8qYQOCIO2\nFbmMGbljfdYIo8RT9xG2t073Xlc2QHJ+f8VxndEuK1qzIM/tdGhNQ700nC4yjiorrfhFO9lf/15V\nMd9QWtE4cUGMOkdarYiFNYGJHuuCVmPuzxbxzUiMXM6DW7hTo/aYcT+Wgy0cOzF7WcxD0J+vN25d\ne3XWOSXESEWrwS7bM0wEJtOt8f6jGksXFKdTskxPGp58YoeibPmPkzmz3ACTzuU4NOovVEqYztaS\nwyy3XkdHRcMNt+t88uZsZQHwk+r0uBgsJLE8W50Rv+rjTXQbHmNSQYqEBlKActWMISZljZFLeH19\n7+HkD/u54iY9sqNOkVAVWXTA5gubh1Joa9WY1tXYup/PJuO2o+ENyqDvHmN2knCBjqnwYipGf43Q\nvqXbWYcVz7pIfjgdtOgX3TDP1tg4i7lcew81336ImDQe3lvokaihPfHCueal/5jaC4hKY+uyD9wL\niMjLge/Eqla+1xjzSPD7C4E3AH8U+CZjzLcHv+fAu4APGWM+z333l4DXAH8QeIkx5l3q+G/AVjxt\nga8yxvz4WP+uLLFIDmcHRZepGLA5paqSk+OColjyaF4Dhlmedca+Vf/3HjaJpXVdtgZCuzAdlVZ6\nOXqqTGbvjZFLDN0kcl48o4Zq9bdeRGILnXYhHqjI9G5ujY5/pa+Re4gt8qn2YilrotdRi09IrOkd\n+zjyzGZlmOVmRfKI9reQlWNidpdBUs81ed30ApoKfg3PjyGM7RhDjCT8GAjHyybjIBZXEovZCtv3\n52qSiLnBx1zew/P8fXT3WGddxgN9Xf8+wjl6Nznrng44Ungt8NnAB4F3isjbjDHvUYc9BXwV8OcS\nzfxN4LeBA/Xdu4G/AHxPcL0XAV8AfAq2+ulPicgnG2OSD+bKEksmhmJ/SY313ffk4jPhnp5MeXy6\nZJY31uOrsDssLZl4lPmSvenSBVHanW6ZSxepf1TALG+6XaVWe2h4ctnEcN1dO3FsKAmEnjLRNOwb\nuIGGUebrkJJcfBtjBvFN+qV382U53KXqzyuSXbCo5zK1sSz+s8Mst0Qca7vvRO/eHOLEpfUJs0Yn\n76dcdZGOefCF0kq46K4joJjtzLe7KWLXW0emQBdLA6tqthA6wDfmXNClhHHjYIxcdF9jBB9T72mv\nvruFiFxWHMtLgPcaY97n2n0z8AqgIxZjzOPA4yLyuZF+PBf4XOBbgb+lzvlt388ArwDebIypgP8o\nIu91ffg3qQ5eXWLJDXsHNacU1MWEM6zEAv0AO7s94YabhPNGmE2cFJL3dhVNKl5i8R5kmmDASi+P\nTeadasxfq/u/Nl1W2f2Dem2Q3Fg0fWjT0Tv6MdfQ1I425n4ZkktK5bOWsA7qteSyDnpBCfupP8cW\nmjxbnQa5TCnzpjunI0P/f50N3JsHx0R0/bUijJSt7CL3HyMVv+B6ddVFPLXGXHpTrukxh5LwOWtP\nRE1oHj4wMSS4FMKxpPt2IXJJ1DCqq3yQxHI3yCX2DMFzgA+ovz8IvPQC5//vwNcC+xe43i8F13vO\n2AlXllg89vyixqTLKwV0BlWwA7ZyAW47uXBYOvfiFrxrsjfyexfl0iU49ARz2OaAJahqbxFNKlkz\n1A2HKpixlPkhisgCqL+/aBzListzbaBkZTG/U8R2vxdpN7T5+AVl3WK9iXOG7uO+y9Crv1tRz4xJ\nN8Fxd0KmVUAq67CpQ8OYu/Im48VvZHSGb72RibWrE5F2bYxdYyS/mP8tJBdYdUnW14llTH46yCTL\nLuRufF1E3qX+fr0x5vV32wcR+TzgcWPMr4rIZ91teyncc2IJjUgi8gDwz4GPAx4FXmmMueWOjRqQ\nROSPAd8P7ABvB/6mMWbjFaMnl1WjXzfY3KCt9hact32Qm5VafOLK1UFjU8JkztCf2TQeLdQusZ+f\nAOGkjrpNbuDiubKoKTVNqUglBa0mG1OZXAZ0ht0QWi2xYryNJERMXiNi/PWYXYBUdHueXNYtPtro\nH0orKYkidi8xVU3KfrB5kOLQ5pC6tsbGmxGnTtYoyhZOp9TTZVeYDIaBobHrj7kR677D0E6ojfpa\nevFtacLRhOKP16R4j3DTGPPpid8+BDxP/f1c990m+OPAnxWR/xqYAQci8gPGmC8eOefC17vnxMKq\nEenrgZ82xjwiIl/v/v66NQak7wb+KvDLWGJ5OfCOi3TCk4uGl1q8AbgsdSW/GhCrGmuzzmNM74DL\nfOmSHJouDmbeWsP+uUqbnhq8Me+WWDqUGFK76G7ylasG09OTKUU5jL3wRtaqbKPFo7r2x+rKrMli\nm1JfhQ4Nvt+bxBjohSRGABdZMGKLpI9S3wT7ym4WcyeH8aJrsWPW9jkgi05FpW0L1aprbSgthi7z\nKXWnP29atSzK8Xo9Phret7OOVFJ/x7BSgC2iGgvvd3DtQBKv67g98h7jncALROTjsQv8FwBfuMmJ\nxphvAL4BwEks/+MaUgF4G/CDIvIPsWvvC4BfGTvhnhJLwoj0CuCz3Oc3Aj8LfB0JA5KIPAocGGN+\nybX5JqwnxFpiCT2U9pynVUxvHN/5WnIB40oa98SyP22dzcVQ5m1XrbJqndTSyCCpHwxVI3rgjy06\n61QhMY+a2EKrM7qmvId8saXT0SsO0S1wF0yR3vVrA8kghVSKm8uAlkYgHsSnj4VVUgnVi+FYuyzo\nHfpKZgS3qI+pgXq7yJBgvHorvPdp1bIg7wqr+XNCz6yiWA6yDej+hkhJ8zGDvia/lN0l1n6sH54I\nLwMil5OE0hjTiMirgR/Huht/nzHmt0TkVe7314nIw1hN0AGwFJGvBl5kjDlO90/+PPBdwEPAj4nI\nrxtjPse1/Rasc0AD/I0xjzC49xJLzIj0LGPMY+7zDeBZ7nPKgLRwn8PvVyAiXwl8JcDO9YeSndIT\ne8zbBWAnr50xX+cY66WWIhPqpaHoJJolD+9YY/68xeWLMszLmvMWbh0V3eSvqtUgMd2PdbaIlLok\nhE5X4r3SNt2ljbUbW8TuVrUQi4u4KDY531aQ3HwRiJUlhs3iSUKEi/CdEmS4WIbtRqUVp8bSRbwu\nglihLxjag8I55bFuwU+R7d3aQwaEx/C+L5PgLxPGmLdjtTP6u9epzzewKquxNn4Wu3H3f78VeGvi\n2G/FCgAb4Z4RyyZGJGOMEZGLK8ITcMav1wPc9/EvMHczWbXa7Ly1eace3sn4SD0kmKq10soT55Mu\noNKTiyUWTzCWZHbymsePJ6O7K92PGMZ2z9qH36shwjxeum1fiMrbmbq2Iw4BY/2808kfW9zu5L2F\nZGIrSLpCX7K6a45hE3VN+J0mm04aUUZmr26NeVT581J2t7ExEEq6YbsQz0HnSzh770Sgc7eNRcfr\nLAxF2Zd/9u+tK1F9gfEa3ltMivLfjY2FmOdXCC3F+zb1tVJeZXcCyWBarj/uowH3UmKJGpGAD4vI\ns40xj4nIs4HH3fEpA9KHGDLzRQxZK9ADbN3EHdpkauaNuAJOPcEcu8Gto/QB9qYte1P7feXsLmC4\nkYOVNuHoqeEoHOz0arOyK4whFlR2dnvSLWx6UQvVOjpCuVmsr0w5kPTUpNa2jpjUEssl5o/3O911\nZDJGYFG1VHCcGEO4g6la6ZIVbrK7TuH0uOjclP39+PYGpKLeqV+UfWGylKPDpmR3EYTkEnpQ6e9S\n78zfp+//7rWmS18z1s9Yu+s2J5tsvsY2W+F3FyHwLeK4Z8SSMiKJyN8Hvgx4xP3/I+6UqAHJGNOK\nyLGIfCbWeP+lWD3hpSBKMD42hCG5VHsL5i0cVTYh5VGdcVjYglIe08x0lSm9a3LV9mWRZ3nuvJV6\nclmZZLWJ6rFXdOMjqgytW1/5TU/k0+lgZxtO8tDTTOuk/S5RXyO289Sf9cLvF1ePTSZ8bHcbXtsv\n0lZiWa+a0zr2cGFdJ62dHhedesmPpVqd040flUPO3/ve/qKr46JdclNEvAk2VUVOqxZT9TXg/f3o\ne4ttLLT3m48B8TaaomyTHmBJQqkNYLpzdHqVmN1lzO7lsbaQXdl7ao61s0Ua99rGEsMjwFtE5CuA\n9wOvBFhjQPrr9O7G7+CCHmGwmd69H+hD+OC+Bx8658xVKbxVY+uat1aC8cGUZW7Yn7oFLrNqMq+W\n9tUp7WsxzPI+4vdELUDTqu2COVPkEmbH7e4h4rqaWqBi0ofWPYcLtV8AQyJaZwsKr6lLCafqkKd2\nzGE/w0LjDMD3AAAgAElEQVRiYdZmsLnBgGShr02uO9DTV0pd6t4XFdR1npYyC4HaDAh1Ml126U92\ncoM1Jw6vcSfwnl51lXcOGb69zkbSXch09+ExrVqmNN396M2AllKKsuWwNKoyqum8wSAt/XT3psb6\nosxZuI1cyvYTI4JwU5OaFyHCUIDLgAjk00vT7D+j8YwgFm1EMsY8CfzpxHFRA5JLlvbii1xTxCSr\nF8YMd+t2iXWV8+QTO90O206gBu81BvCsHXfs0pY6rgP1mN09Zzw4a/DkAkEqmNJOLh/MOebp1e2q\ng1Tz/n/fpj82VGOESElEfhHxUdTQSy1he7pPIWGFC5T/WzsSeNuT7nOsn2Mk5tub5XROFV1p4knh\nat73kff6flPXjY2LcKe/Vy66/oXn1VUOpbp3937uL2wRuXnjyFBVKdX2G02cm9ZsD6XDmMt9f7D0\nJEmfpWJRTLo2YqUCdMoWL3X538feUV3Z8b1AEV6QOic2HvX/oX0kJJVNHFTGMlRvkcYzgljuBWwU\n7PjOJcz6G6p2YuK8n9B7+wuXGr1hNhHmra394eNdQlLpFjh6cinzDB90WbpUMN49c0zlA+PeU54I\nvBE/jCSPfQ6/C9Udfmdq4RbA0+mg5K1GLPV6TNoKXUg3QdJLTr1PXXI3k7yXVpoa2tpJMc1K0tHR\nnGEJ7B3UScnJv08/rrxdZXdvYZ/pxAdyCveDreOyt1hpS8ebTKZLzm5PuveaSgRp76N3I9dtxlBj\npYZOgiiHhvpwPtln1BJWrfTwcyrMlDDY2HlyCZJ8pkgl9p3ONTZGKiHhX3r8isDk3gVc/p7iyhKL\niEkmlxvscrx6p8qj4nGoE9Z/7+0vqBrnTuzUATZKPxvo9ovMdH/3moiMqjU8f29psyufO4+x6VDS\n0H0IJ5s2wnvsdqlpeo+vcJcbS1UfU4f551FOTFeeuUev9ogR8BhphYtgiFiq9E2hFwtvY+m8whZO\nGmhqUPaXcIFJBXSG9xIjyLDfOh7EPxevAvMlGGadJCjsKJWSb3P/WjNI7DgvG47cdWNxItAXuQp3\n//Wa56rJRZ9XBvcZIlZue1N7z5gd0V97DClSWWdnGbvmFuO4ssSSZSY+SCd9dTlwk7Uw3Jo0UYIJ\nvXpOj4tOBVKUbVcG10st90GX/qXMlx2p9LnGxEkvSw6KvnLlLM+4kdssyTeCRWPMa6qLR3C2n3Ji\nOvXKrAFoOLk9YW9/0R3f9V1hRXXlFhFPUnpn3V07sQseUymGEd869cdgRzlCLpt4r62UP2hqqHti\nySb2gFSZhDDBoSZ3vZDtOulC23S0tHQ+Wc3A4NWK9pkykARnLhAXtynyhNI/f1ydmd4mMyh5rJ6p\nTgDpE0qmFu6B3cKRi1ZNhSqw7thOahlioN4cSRwZOnTo/zdR16auuyLxTK6G7eP3CleWWFLwhY00\nwprf3jhdlC0PPnQ+IBitA+5cSm9P2MmbLpDSJ620XmFW9QVLwoSIPltymRtbdCrPOSr6Gi+Puxov\nME4u3khbVznlpJfS9H1dtGb53UBP6sv2uLmIisoTei5TTHvaEws2u3GRWWnBv9OxtsfUeJv02ccU\nbbqL773ETJL8NsWYnU7/NpCSWSWhVDmGsC3oF/KTRJqgdeSSan/d80v1MTbv/TO+LNIRMUy2xvuP\nbqyWHOhRNULljKW6fOnAwyQYwA8+dL5SIEgvmr+7yLpAyqM65+Gd3Bnpe3Kp2rjtpcj69DB7U3EE\nQ+c1thG5uJxHlUslA31m2TtJWaHb28kN82a4u/fPLZVu3auAwmzBHmE23NDl9iJp4dfZo0KYtgKm\nlLkLopyYXiV4h0Q4cBdu+vvRpOLbnlQ5R51tQjpJ5KiycTWhQfwWhp0WZrkt7XBU2WO9a69WiYab\ni/CZamjVUexdhZuoTUjRS7iHLkRrJ2+6vobJI0Pje2iI19CeaL4/GnocRsdk2RKrZrnFneHKEksm\nq4vV6qKR1qXHdj0PXp+vGKUHye7qjJNrDR9z0Dg35AnXZy1lLl09F439acu+02KcLOg8ycrccF+R\nuTov1nju411i5BLmPPK2FU2WMbfKpyOzq45tqBrpDPypypoXwUUW/dnExhQVmVhDfdusSCz+ndxf\n5JwEnmkhtPF7o4JpCVLRC/T5pHHqSmHe0JFKuADav70azB7TjTcnSeuEivp4jVj9n4GkMPKuNAno\ndjpJzu36vRrWF87rvSYXG5FLDJ5U9gc201VD/DpyCft82RCBvNhKLB/VyOh1zHqi+gE3maZLr8Z0\n9h4xI3/oV98o6WXe5jxrZ0nVGg6K3mDsSaXIrY/yYbbgvFl0Npgy921mXQGxDz8+WyEXHZjn78tL\nZHphSyGW0E8/q1EvokDCWy1NO/Qeuxty2ZRUtI0hibaJ1r2PXW/M825df8NnX0UIwEsjMF5tUUvZ\nJ7cng0wJetOwzn02VjLBG/rXvSv9DvT9aylllttSE30l1r5w3q1J3anGQnLRCEnck8rAgSE36nn1\n9zsoWFf3BcJWitNtDfZ3hStLLCH8RPcIB9pFkjKmUorriOC6zqgeqNxONONhF+NyUPjMyIY8m5LL\nhNY4763M7u6q1leu9ISYAQIfM+fWUcHpyTRZPe+yMrVqnLe4IDhfGkDde4S0vPF6J7dqobvFpqRy\nN+6jdpEdz3S7yWKkx1msDspqRt20u24MHalEnrtWE2l1WOo4WH1XE+WNFnUjT5CLX/DD/2MI39Om\n9q0QnhBDzUSqvxdp+04gcndj8PcTtsSiMLZzj+1uxgZJGPMS/vbkE45JsBW05q3h4Z3w2EX3htpl\nw8kCqrY/xhr7fR8cuWA90jS5QJ8pWRuXY1UsUxMpVfL2zBVvgqbbWWv9fsy+cd6qXbCC729V2XgO\nTqddzEa4IMdUd+vcTvViPW8Mi6XNPN2ahjyfQOH0jrkl83ppVnK8hQgTTupkk36saDVMaowl64O4\n/npsLJlpdZyKo+muF1EBa9LsbQ4m+q68q/46cvH9v4XhfuAI4bAwHLmwoaPajpdb9bBPYfxSzHVa\n26RCAta2UX9srGT2mIei7v8WF8OVJZYlvb66U0tEBlgYaKgX4JQXT2rxCNv35FJXDfODBuvh41Qs\n+dKpvewCV7XS5RYDOpfkqs2ZZoZn7XjvMksuE+cxFtpcNMGksgmEi5DfMYZFlDyaRcato8KWXHbP\nUgf+eaTdUVdxclz05OKPDYhwTCU5UMP5nbp6L/OyoWozqlZozQIp9zF7uwBIXrq0+RdHWBjOj5MQ\nmth1n72H4f7BanqZlLSU2uCEAb7+b63C1KQS9lOTSywOZddVQdULftrLr1VqvaFDgiaVmHSi7Tyh\ndBdeQ6u2Y4SpoVPbxNqMqcieKRCRlwPfia3H8r3GmEeC318IvAH4o8A3GWO+3X0/A34eKLHr/w8Z\nY/6u++012IKJT7hmvtGl50dEPhX4Hlx9F+AzjDHzVP+uLrGYVQNqKslhbPHz8QqxBS6UAsLFQ+dd\nevKJHerKLyKWXD5uL1euxy0wJBUN7aLsyWWWw428N+rD6iQMU7XrPsX08SG5xKCllNgC488rJ03U\nCB3i5LjoF2f1TOsqpz7JKPb7pIQxMoT4u7M2Lquys2Wj5zC5D6ZugZzt0ZrTvuqn0hqtUwP5fzrg\nMZX00O+Y9fkeA7tcooSxlorGELt2uOjq9+bzfflzB55jgTHex0CF0kQoIfuqkTa2qY/HmSfGwYqN\nR6nuxuYltNF70yQbJkzVKmqfiXrsvd0xBCaXYLx35dxfC3w2tv7UO0XkbcaY96jDngK+Clv0UKMC\n/pQx5lREpsAviMg7fKFE4Ds8CanrTYAfAL7EGPMbIvIgOnFdBFeWWDy0V044UMdE5LrKuwHosU4X\n7EnFRy37iOKqylWK/Mbt5vpX06d7iSNGLp1a4IFqQC568fOZY31/AOqirwWzKcbIJIZYzEDy2JBQ\nqpzpScNuVXNGwSkqIHUkS4Duqy8HMG+tl11rGpgUMNuzB+UFy6Z1Ek180daG5cEz9ddR5LJuobpo\ntuLQGWTMEy3llh0jlPD6mlz8/2EAsQ6CHXi2JQzvAEf0Dhwxh4Shg0dvj6kUEcSyZjeLLGqc77QM\ngQQHvdRyclxYUjlR6tuI1PgMwUuA9xpj3gcgIm/GVtjtiMUY8zjwuIh8rj7RGGOgKwI7df/WTcaX\nAb9pjPkN18aT6zp4ZYnFmH6HDXag6TrmoSQS7pJCEikjf8fQRS0DPtOtP0+Ti3dHhp44QndkvehZ\n19ihyqzLKOv04bFJrknloggJJSXZxQmnHUiL64hp8C78sFX5o1JuqSmV2C69xAJgxgKbRlCW7aha\nMexD2I+VY2ozKJbl/w+fjz9ej7s7dQ8PyVGnpvfk4vvhNwWaEHQlyk3JBdqB40bcrjS0mdRVX2zO\nZxT30NKtbm+dC70nqm7TUjV2fpbDuX4ZEDHkmxvvr4vIu9Tfr3eFCsFWyP2A+u2DwEs374fkwK8C\nnwS81hjzy+rn/15EvhRb1vhrjDG3gE8GjIj8OLZs8ZuNMX9v7BpXlliWS4nqlMegd6GbHB/aZrpB\nH1TZ0zh6qhy4I8OE+4qli9aXlej8wfVcpL5V4eTMWxtgd678+3U24xA+ueAmGNvpDo5L/LbOEB+D\nf16nxwU1ky69/qbXXFU7LTsbS4d81Y12NsH7RCSxCcHA6kKXen4p+9FFMxWsCyKNqWl1WiJ/be2I\noI3ZfnPW7firPvvEenIZ71dt/VqoXFs+saaWuHUesYtcJ6bCvsjvvwe4aYz59KejYVdu5NNE5BB4\nq4i82BjzbuC7gW/GMvo3A/8A+MtYnvgTwGcAZ8BPi8ivGmN+OnWNK0ssxsR3qClVxSDC+IID7qI1\n2k9Ppp07MsBhYd2RF0sb7+Klk659lXOsajMO3K7ssM0Bw7wRfOEw6A3MYULBZP+Vu2YoYWyqvkkd\ndyexK3suY3IqtmQTNItsJVVPjFQuCh1jkVKPxfqqbW+henUsy8BYFuuLwF9/97jm7KBYIRcNnRZl\nUIX0JGP3uOLsoOj6rjdhsUV/E/dbTyoxlSN1XwRMb9RSc9Q/xzBOTaupN91c3UOkquleCMaYIxH5\nGeDlwLuNMR/2v4nIPwF+1P35QeDnjTE33W9vxzoFbIllHdapEWIJB2F1EbhIG+HxOrtwXeU8/tgu\ncMZhad2RD4uMZ+0snQvssosMLzLDQdFSZEKZux1iK65yZdZJLppcOpVFhFwGKr2ILSRFKqF6MKUW\n8vaGTXeXsWNTG4BNF9m6zpi3YiWWZUNrOgXlQC1m1Y+bqeh0EskxktP9HJNuUhmDU+radUh6MSo1\n0LRuB+TibQ2hK3V47unNKbvHNTu3rfR3RrGiVkv1fYxc9EYmlFa6mjBlL73EnokmtZjNLRxb06rt\n6sxcJkQgv5y8Y+8EXiAiH48llC8AvnCzPshDwMKRyg7WAeDb3G/PNsY85g7988C73ecfB75WRHax\nsvt/CXzH2HWuLLG0rWw0MVNqipguedOJHlOBaeiF5/HHdjnbX3De1q4ipa1GaWGJo8iCyeJiL7z9\nYJbDw7uG2URsbia3YD15c+bUSqt2n6rKu7T//t6091zsuXh1UEoKCVWJm+Ciu3G9SKzEbiQ2BDH4\noNSqzQZeYR5j9zC2SUm5co/hTl1eL5JLzS/Uk8WSRZGvLK5hvRZtmyzKlmI/Z1HlTOu2K8qlK4Em\nr0tPeDrLg/9eb2IGKujSOpqEWDe3PLTUVZYttXsPizJnsT/p2rkMafCyYYxpROTV2AU/B77PVdh9\nlfv9dSLyMNZOcgAsReSrgRcBzwbe6OwsGfAWY4yXTP6eiHwaVhX2KPDXXHu3XEn4d7rf3m6M+bGx\nPl5ZYjHLoUukxkXVO3XVe/7EaprAxXXMup0uJsQFC/pyx76uS9XKoCrlE+cTThd5p+rxpWEPi2H6\nDN/+k0/sdOTiJ+WpM4Z297pG/eULVNV1tuIEET6zUP+eQuhFlXIH3xShNDVvGA2ArJfi0u7AraMi\nWqs9hdECcoHkGzPmw7DkQWyRjZFSqDbz53SVTSNSS6EWVU8Mi9K274uUdSqmSKnrfXfMk+zwkXKH\nYn/JAwfn0WDc8P7C+RI6KoxJdClV3aYIA0L3DmpOKbrPl44MsvJy4mJcfMnbg+9epz7fwKrIQvwm\n8EcSbX7JyPV+AOtyvBGuLLHAatzA3exO9GT3f6cWznJksQyxGs9QdYvdvDXM8qwL9PNeYTfnq23q\nVBqz3HBY0hUOAzpy0dCSR+g5FOqzfSLAyXS5uvgk7nHdM4q50Y55oMXaT3237rm3ZkHVZhzV8Pjx\nJBrwucl4GSPRFdWqK/+77h70bzHVjj7vRHlP6YDNlN1mUeSDMsA6psUjpbp68KFzTkob3Onfna5W\nOlZ4TGeI0GQSkq//PCZNxLznNEJyjbU9OP6CG5gtrjCxLI0kd313QjCdl0pCx6vb1ru4mCtpDP73\no6dK6msN59ca5o1Nkz5vDYdt3kkmIcK8TMPCUU03mWyw5nBSai+y7jenz/bn7R/UXSJArzoLFyPd\n5hgBxxIMpp7FnU54f55/VvVyuJi3ZkG7bDiuS45qGZT59RjT23fHBJl6U/aNmG0qtrjFPM5SzyAM\nJj2l6OIyPLn44zS0GstLoWM2kDAbw4MPnUdLIJeTfmzEpJeB9K/GmXc5DsdbbHxp9dydjo2nRVK5\ngriyxOIRm9DawOyR0o2PGag1YuoE/X+4e40RjV5Qm0VG5SpCzl2w36aJ/nxJXh9IOW8B54F2EsQH\nDHaObjc9rVoWCUOpTtYYGnn9c9P/xxCTVPRvvr1NFpCx3/3zsck9gXa4qCyWwlG1+kzGpJAwM0FH\nLiP3M3DqiBTQ0hKHdmn25/vfPPzvp8dFZzupyQfk4hfmgQqKCdSmt5uU7WiNk02hAyF1Ekvd16FR\nvjdqeQP92UEB5VCiiD1r/Vlv3Pw9xmree0IKnURCu9JdQwSZXY0l92rcZQR5bpITZlNPrzA9vV5s\n9ISPqStSRZW0Z5HuWxUhnC6KfG9hbSiltaPM296uEpNW9lz2ZLDOAN2uUCUW1LvxjlzoyWUMKYcH\n/zw8xshTP4tYW96OEyOXkARiKMu2q8mSZxNb976xi24uVl0zzeLVGaNSaUK66lRTI+SiPcT0op5M\nBRMslmE/BseR2yQeSrXlCQOUZHlQWyIq6e0qxVDq0OlSLgJPKvpcn2csRE1unQZC199iaAvTSSpT\nzg3hnEqVJQ4JaNDGyCZnizSuLLGIxGvee4xN6vDvuuqTOoa7nE0rHYY7wzCbcCzXl18o6jrr1GO4\n7LExUrmvWLI37d2Ue9iYDh9IGUpQ3tNLT7xp1XbpXzxSOZ9if/trhCqmpD3mgsGssfbCDcPMxQPl\nMkWMwThiEWPJBmxwZFm2XQ6MTTC22I1hTAJLbUT89cJ2AGr/fz0krN1rTVcUy+f6AsDFB3m7ymS6\nHKRWsRuQeB9jJQAs2mTa+sl0yd7+YjAOOk1AxA2+I8YiPldS0HMLQhf6NpqAs1Tj9LJS3UsmyDM/\nRuZScGWJJc8N+24iQdxICPFdsx5oWr+cErX9wB9466gd7O7egsPSdFJGrMJjWFypUx+UfZSznVw1\nnlw8vOprb7p08S5DYqnaPtbFl4qdVPmK14zfAcfiXmIFpDSphs/GG3SBuB1nBHonOrbbDCULLTXt\nXmvcczGugmQNC7fAtrWrIGnJR6tfwvFSRtofI8dNvMW0ZBEeHy6SYwjVhnpRjuX60uf56+jiWRaW\nXGL3mbYVBuSgFvaqkW4chOdrN/jYPXu1q4cer6F0EuY48/d0C+PKPqzeT1jueIvNcWWJBSKuk2qx\nCAdTrNyq3y3FjksNRm249LuhcuLcgN3b6I3ww4njpSKdJ6mzNQz0wz25eFKxKWFMF0wJqCj+JYeF\nV4nZlObzshmUFairvFOXjNatGVEn6EmqbTHrUqEMFr2gDntoINfSY0xlpImgtzXRqcE8cplQ5pdQ\nhYy46kzvsv1vqXxn/vhwkUxfzz6nMH+dJww/3vq22qitInadsOpqKhNDStofSkC2rbECalr9qu0+\nsb75Zxp7Vvqamih38j65pbd3hfN/04SpW/S40sSSSkfuoQdXqmRxOCFiJU69NBHmxeoWlEaYdzYP\ne55e1H1fB4uvsnXEI45rl8rFABn3FcsuhxjYBbVeCse1dVf28S2HhcF7K89bYd5YkumC1vxiVYHP\nK5V6rmOLzMo5I9KKbsfv+seqMKba0AuHvb/08a1purT5Y33StVP8zltLpysbACW16LQoYT+7v4P7\ndb1bWexCVVMy1b7P7KxSAuk+anLztVg6SbrtrxUb0/odhjVl9D35Qm+6rXXonBEU9MYhVv21KONJ\nM/X1dVE6n+8szGq8rrzDxtga768OwkkxpueG9eoMDz+4Y4SiJ1+/g150uuhwsui0/v63QX6vyrqJ\n1vTSjM415gMqP1JrgrFpX04X/b0eFraiX1c3vDVQ+EWl7iQDu0C6gxS5XFbeqhRWFunEe0q5bofn\nz1sbq9Klzff1WPKiK8w5b2Xw3EOPuRh5xsZUrHDXuvv07YYOAL62iT5GQ2cb1vCkManyTt3qSxmf\nnkw7aRiUZLe34FZQPCuZZgUGGx6dcXg1gWV/3Cb556YnDXXtPNsczm5vunytetmdqDb8PXgvulP6\nmixhsbktNsOVJ5YQG5FLNV4DY3BsYkcXPTZRwnbl/Ihn1rRqobKG2uHi13DrWsP9BRyWfcR+CoeR\nbCy9Wm7e9ac+UW3UhtObU4r9YY2aFMlcVLWwzvMrhZAEwt+6XGFmsZKA0gZI2uj86GJXm85TyefU\n0mNHvyv/rHzgYOqeNrm/mOQzdn6MjL3UAv2irlWsvthV15ayEYZj0d+jdhHWEvRggR4+4bX3Gf42\nrVpMBU9VO1H1ImxenloTY++W3bB7UnNWFZzu2yScw83fXSIDScUAfJRhSywwmCThApGC1sWmyhPH\nCCXW5kDVE9llps5LZSVeKMnlwYfOu5gXH7F/VBsOCzr1F/R2mBj2pmDT8EP1QDXY3WmYm4bT/WJg\n7A6xVi1WG1s0deT4Sr0ruLOA1qpypOGkNyNipRb3uV02LJYT5q169iGhR9SR+rdp1XTv6LSwN7V/\nUA+cPULVqb6vdRJZynNxrDS29yL0zhmDlPcnGdOq6aTR0FMrRSjTqmVa9/1YVDZ6v5NqGUover5o\nwop3OrKJOmm61Cu+f5vAP5dQQtk9rpjWNk9aFzcDnNb9ZmmLi2FLLIy4xI4MqHCSpDzFNMJdlr5O\nTG0R9mmwGy4mLPbd69OTTxW/ApuqpXKqsfqaTUBpsyW71C6FN2JH7jE3XJ813edZPrEuupPbnYuo\nXmi0B0/s2YWODuXEwN5qBPWYV1RqAQqfq19EY/E40MexdO7GTYU5vw2ANBVFvsPetOWwzHvvwZKN\nMNZHb3z2CJ9JWJX0Qu1rb7lARaffSejBN0jCSN6NoU0XbJ9bzMed6JQw66DTAIWZKPRmLJZwcuX+\nyz6oed3c9cfU5Ctp8nVamy3uDFeeWPwE0rszj1QddVgNutLQwVt+EsdsLGM77qQaqWxHpZjUd/r7\n80nDrEkHUUJPKtdnzkMor11Qpa1kupPPefxaM9DPp6SIdWrD3YBcwuNjzzgWL6Sz48ZckXWf9vYX\nHBbWQ26a7cL8FGrXj6Ymz61XmHc31qk+1uWoGpC/W7TGgg49/PMbk8Cq1DMOveUiY9fHp3j39nOV\nZsXPA1+HRRN7bBx3Y2q/twn6jc6AxFRfdXv+N3+uJxj/7vRvY3V/YmQyVqbZ/7+3v+hc+OuDnNPj\nki4oU2U33pRcN4IIUl6NJfdq3GUCOs5Cx7R0v0cmLmxWnMhjd2/RJeDTO+nUdTbq98jxfuKHHjTd\nzl15Bc1b61oc4qBYcn224LCcMMsPAMizU8ClAclzZnnGYdlwVMHR3oK6yjtj6ib2D5/mwzsshOSS\ncuMOEctL5R0gwjxWGrt7Cw4L2J+2FNkupr0Fp2cAmOqE6d4e+9PbHBZTdlUFzjGC9NmdYyrQmLSy\nci8RaVZDjx0ticU2OWE/Q1I5LGHW4LzDFp1H2wqhqEU7HMdj+e3CMe6DMMO4kJS2wF/Lf7dOUr1o\nIGNRtuxiMwCc3Z4MtAF7ZR0lrGcSROTlwHdi3Ty/1xjzSPD7C4E3YAtyfZMx5tvd9zPg57Hy9wT4\nIWPM33W/PQD8c+DjsGnzX+lS5n828AhQYGMZ/rYx5l+N9e9KEwusBvGFv3msi08JMfCfD2JCYt4s\nYwtWbMKk+uG9dnS0/EBvX2dwOqWc1G5hsVLLfe78h3Yars8a9qa7TLOSHU8sMiWXU8r8jDKfMM0m\n3JznHBVwVMJRZSP/T25P2HWSzKb1QDS5pIyy/t5CNZInFB3IN8/73XhsUSrKlsPScF+xZH9qY1ao\nzzC3LbFIfUaRPcRB0Vry8RkJtDSrSExjV70Db7+AvmiXP1cTa+i11PUzMSY8wej+xAJyu77GSCX3\nbsTWpdh7iYVEreM//DPVBLNpn32/OgkmGSPjn0svTU2qvBtTsTZhGAip34l+99GxUlr1sCeYFRXi\nZaZzyS7H3djVUnkttkjXB4F3isjbjDHvUYc9BXwV8OeC0yvgTxljTkVkCvyCiLzDGPNLwNcDP22M\neUREvt79/XXATeDPGGN+V0RejK0D85yxPl55YklhjFTCyOEQsaCssG296KYGbypVR+p6Fn2wlzYC\nh4vrye0JO3nTLSxVm7E3bSgy0yVltGQydZ8bcplQZOIi901XodIvUkeVrVI5mNgbkkvqHvUC7kli\n05QpepEJ253ldM4KOk9YDD6ITvcn7J9HOB50sGas3fPIKx1T5YxlGoD13mYevUu5/Xzexp0J/LGp\nmJ9NF94xaSKcJ6E0q997tA/Buwnfe6diVKSi1/cwSHST53eP8RLgvcaY9wGIyJuBVwAdsRhjHgce\nF8MPvTsAACAASURBVJHP1ScaYwx0GYqmeN22xSuAz3Kf3wj8LPB1xph/q5r4LWBHREpjTJXq4D0j\nFhF5HvAm4FnYG3u9MeY7U+KYO+cbgK/AbvG+yhjz4+77PwZ8P7CDLX7zN90DTMIYWXHphfjirWNS\nbIDkant6QvoYg0q1pXex4a485ToapqhI9THcoYVxLwOPt3KYAuZob8G8sRUm560fDg3XZ+ddm7lM\nmbcnnDcn3Jxn3JxPOm+qQZ2XCey0UMUqLtb23n0MRqUWwLGdqH7Wg2dcqzgh116oCku1XZQt87Yv\n8tWaBfmkgKKPY/EBkvO2D6LT716TtkYqJsN7Re3tLzi5PenGhn8P+p5SzyJMsRM+Cz9GQk+rocpq\ngc+wAHBU2UXcx7PE3pOOrwrH8J3Edfnn6O+hauIErZ/tZrnXhvNCn28/t+j4GbCE2WWXUM/sovf3\nNOC6iLxL/f16Y8zr3efnAB9Qv30QeOmmDTuJ51eBTwJea4z5ZffTs1Rp4hvYtTnEXwR+bYxU4N5K\nLA3wNcaYXxORfeBXReQngS8nIo6JyIuwtZ0/BfhY4KdE5JONMS3w3cBfBX4ZSywvB96xrgN64K2r\nrdF1OrK4hW35drTKK5zkYeqIsZ29D4rrF9v4jmqsPjisxhdUVc7pyZSz/QW3DmuevQvzduIqUjZc\nn511bZ8uzrg5n/DEeXzI+Kh9u2AZjujva3WCry7MF0lXHpv8zSLjTB8Tif73ah7r4dVQtRn10tCa\nhjwvkC5ActIV+vLuxn7BDZ91rF+hR1MILRnofg6SmCacQ1JJTX3//O8xZ5Eelly8etZHnus++Gd7\ndnvS9SUkzKK08SmdKnnDBdjf+6DtiDSSmmubIk5GQ3I5b4fkDqw8gzu5dgySyUXiWG4aYz79Ui4c\nwK2ZnyYih8BbReTFxph3B8cYERmwsIh8CvBtwMvWXeOeEYtjxsfc5xMR+W0sE0fFMff9mx1T/kcR\neS/wEhF5FDhwOkJE5E1YveIosSzdOI5Fw/vJ4heilViDYOLq80OkdraxY1II03qErs3+GH+dGKnY\nH82g/yHBnDxQMb+/Yd7mLJZC1Wad5HJzXnAcmWB9XRcLqxazaTRCyU4/r1TRqqK0mYQ39ciJlYKO\nLahhgN5563arXYDkpJNYJC9pzaIrTRwr9BUiRp7hO6+rfBAwGJJqSiLVf2uPtxh0pcuwHx0pONdz\noLMrxI7XHl0r7r/V0DsttgCvuIpHgn7Dc8fuLUXSKaLV5/m+aknM/xbLjqHJ5RmIDwHPU38/1313\nIRhjjkTkZ7Ab8XcDHxaRZxtjHhORZwOP+2NF5LnAW4EvNcb8h3VtPyNsLCLycdg6zL9MWhx7DvBL\n6rQPuu8W7nP4/SiMkeTOMsxz5BFTcYztTFOIGj03JBeI7+TCfoVYCaaswJzAaenUrIVwclzQLG4z\nf7Bm3mZ8nCp5HCOVPqBySZnDzOUc61Utq/VdtGpOFw4D2K2qLg5CLwabEEyMpDy8O7n39CnKtsuD\n5bMQSF7afWwxhUnB0pxzXOcc1VZNEsuJFrvWMKBvGECp7R86o3PYhh9/2jXZ2xogTi6h9F0nxnZ4\n7Rhh6OcGvUJ++M76FCu1I8rwPaXylQ0CLdUGYpOFfF2lVX2dTc4ZczK59BRFwmW5G78TeIGIfDyW\nUL4A+MKNuiDyELBwpLKDdQD4Nvfz24Avw3qAfRnwI+6cQ+DHgK83xvziJte558QiInvAvwC+2hhz\nLNLbC2Li2F1e6yuBrwSYPfhQ931sQq3sNpVKJyzMlDpHIxVXEPr2x5DM/Dqi8giN9+xHPGUCaeb0\n5pQny5n/ArswToLaLRY6St9/3ptau8Qsz7mRG2YTm4a/KFvOTqcr9c7rOrNR2ypye1q3feQ2vRto\n7PklF09V0tbeyaqaLYRpnXhVL6CpySa5Cwod1u1Z+44jQZQp1+HY/eg+6jGhDdIxN+oxDzJ9jZgb\nbVg5cdSd3T3LTQIpYxLLunngj1snIcbKFXTXCSRB/XlMtZXa8D3TCn0ZYxoReTXWOysHvs8Y81si\n8ir3++tE5GHgXcABsBSRrwZeBDwbeKOzs2TAW4wxP+qafgR4i4h8BfB+4JXu+1dj7TF/R0T+jvvu\nZc5BIIp7SizO3e1fAP/UGPPD7uuUOJYS/z7kPoffr8AZv14PcPgJn5QkrBU7QCTlRKkm6Cb2mVjs\nSiwGIwavBx/0cU3SPn+NsYqNPo1H+F1ZthztLaynV2GY5dlKEOU0G96Pj32p2oybc0OZZ8zO+6zJ\ntyZ1tyB2CQ8pqIPaLqn7CD/r++rUeqHqb6SdzoMoX3aebz5A0rQVuexR5ktmuQuoC+KcYmqrWL30\ncIyESG0GxlyT62roGRdzhfdSWtj2WBoiTTDhwh1KGrpMcKzsdgwr1S2rPDoPTpxtMkUuYza4jpwS\n0mt43lgBOd+v/WuXUz7hMmGMeTvWnqy/e536fIPhuujxm1jtUKzNJ4E/Hfn+W4BvuUj/7qVXmAD/\nB/Dbxph/qH6KimPu+x8UkX+INd6/APgVY0wrIsci8plYVdqXAt910f5EpZSETneT71aOSRRs0rEC\nKbueD2LT5DJGKnqy++C+ZpF1QWp6Mp3Sk4uvCllVOWenU25NambnfV0X7QG2WEonqfjYl52J7V+Z\n19ycT11p39zaXSaqiJhbFMuy5Ul2WLh7GOSbKocLd4xQQnKJIrKr9u/CF/oCoG0wrtCXtA25TNmf\n2jiWyXQZJTL9vL3dZHDpyEIKjEoHunSw/k27Jofut+E4Kif1yuK8TkIO69ro/qci7y9CKrHnEhLK\n/YW/16bbTabI5SLXjG0C1nl77V6zkrYvwHcpEOk9Dz/KcS8llj8OfAnw70Tk191330hCHHOi3luw\nvtoN8DecdwPAX6d3N34HG3iEZdmGC5PDuoG8SdRvuGPWhDKbEI2Cn7fifO57ctG1WcL2NaGEkpBX\npfggPl8M6kl2esmlNtamcGLda3dyW+7Yx6r0k8zGvVyfNRwULXvTXWb5Hq1Z8OCs6gIpdY6xWQ6H\nLpjSxrzYRfapageAndt2YV8U8R1maqcafXeJPE+xTUBXQbLWFSR9322AZBjU2u22IyQeu44OnNQL\ndLSPgbTi40h0ka3umURiM2x6N5VtWC2sYUR9DKmgwzDyPtbndQgL5nlC0eN/3goc2MBFGJLLmMSl\n247ZjVbU3RGVmJZSdtx4jc3LLcZxL73CfgHvTL+KFXHMnfOtwLdGvn8X8OKLXD9V8z7UQ8PqDvVO\nEbajCw6FmG9QZGoMsXxRKewd1J1aSicPbBYZR5Vw3hruL6Sb/Na1GOeWvNrP1vTpWXSFSrtA9gR1\ngz4Fymk9pZnaiR4mBRxDuPvX9pQ7QmJHGVvIwnESuoSPPX//25hhuWqEndwMir953O2YDMfQZnEi\nTw/m7TBg0SPmMTgG/fz1+Zcxdy8FIjB5RnqZXTruufH+XmJssQhVHet2aJtOzM49uNs12niCnRZm\n+XCR1tHOPkjP2ydi8LuzTiVzOo3GB3THqx3b3kHNU9XOwE7g06tDy43G746lIwgGi/hZRyhHVcPJ\nwg6tMl+yNxVXGlk6zzG/C6yrhrqy9ouzyu5MNbGM2TVSXkzJ+1XHV40wb41zN7ZxLGGApMdODicj\niTB922GlR73QxbyPijKe1dp7I+3tL6iroYSwOs6GcRkAt2p7f2HpY+jfeSzoUru1byKBh+72o0Sa\nkGi8dx6VHf+zCcwbO96bRZaUOFKIhQJodWrM8SY8P+zXYbnNcnxRXFli8c5nsUR3o14xd6gCWAmm\nU9HNmmBCePXVOlLxffNGWz+JvF1l7F680XbvoF6dfIXeAaIi3H3Z474/+1MfdBg4OuSm+78jmDwD\nDPPW5oCqqpynTmbEsIntC3ppc2wh0h5083bpKkjaOBYdINn3fdnd47rFdl08xaCvzqYRemSFbrLh\nJidOpENyWVfud+CmHMs+ETPsB3FJY04jMYRt6nvqFnH6Esh1lSdjUda5HMf6Fg0fGLGh1m5DBcap\nFre4CK4wsZi1C8VYLRBdWW60kl9k4oaFmsJSsxp+Rxm66sLdORzEMLaD0/05g65wmCeXxVJ4cJZF\nXZPDIEpPMA+TM29NV/Y45qU28Pga/GAo9vtr+VTv66B3/vMW6qUNkJS8xCTUYLN81WAethd+DhEz\niutxE4s90Z5Tsfa1ylKnX9l0Zx/2O7ZgR8dE0Ff9fex4X1xsTBrS5KKlrZAk/DV0jEnY75B8LxKL\nsvrsWm5xSTaWrfH+auBOdK9JT6xEFUkYTtyBUbFcdQEd87Gvq2HAVqUWnxTB6Mm+Urcicf8rxvHI\nIlTXGTzgt7C25DHANMucXcUMSMZ/1uaTMrf5yXxlSoDHPrg3uE742dfMABtTUewvB/VD9LMKz4/d\nb9VmLE0Lkx3CyPvYcxlbtNftpFMeWak2YwZoDV06t5dMA7d2FRuSumY0DioVFxORIvTzXesEM7IJ\nqxrpnE0m016iw7l6h+8vRSgxD8J10Ju9GLlscTFcWWIR0YnvhgbYEJvEjMQQc+HU2W438UqLBcHp\nya0z56Z2kCvusTHb0hpvN51S3NsBgAG5+HiXxXIJWCklJsEUzk35oGhdokfb1qPYssdelRd7JjU5\ni2LSSSwhqXTXSOyc9X1Zd2PVv2A3WbXSReZD79Wl/w7bT8WBhAWuPDZxsvDPIoz+155put2wPR1M\nGZaISJJacJyWIvz32h53NwbyMBv4Tj5M4+/Vu+uwiXQS8ygMAykvNdpeYyuxfPQjk2Agt30NiJVg\nxCqexkVjXapzILmjTsG7DIfX7BYoNenWLRRdf9xxF3WP9oZUD7+Lts9q0aVyeXjHSiVV59U2JJci\ns1Ubi0w4WViJ4VlLATLmDfDsM/b2FzZ3mVpMVqSOcr36K0U2RWHdSWe57U8mwTObFLSmXzR9Isp1\nWYghTSjadVdDq0BjgbZdLq2I9KKPm0yXkSDb9QTjr5FK7e9tDeucJMrI2F4nwen+etdeD+8yrd2c\n19kYYxuMFML5ummqmC02w9UlFlIBiYZaRTWHMSN+YsfURetKosaQIqkwIr90O7hY/ZdY9ctQFZaq\nDBhDLAuAdzLQ7eqF/9akpjfoZ65Wi2vPdc2Tys7E1nnZ55yqbQck5NvyffQJNWMksa4krSb0MFuw\nLvaUgs9uPHDzDdSbMYTPOVxAPXwNFA9/P/q+unZc/311UO144X8L2w5zjHmE6WC8inVFtbQmq++m\nJYFX7kU9Ex2D0xcfAxDuZ1i0zbcTShmx2JYxpwmPcHO1SXaEu4JI7yDyUY4rSywidK6NMFxkfObT\nMXfHde6V6xBzDPBtpir4WQyLeunzoZ94WoIJd7bhYhdDeN2qtCnUQyOz3+naSO8+mNKTi/cIC0kl\nlwlFvsNBcUa9FJdjzNaF6aL03WKxbqeaQizbgX9G/n0PVGF+0rsklBraXVjf+yapelKxSj7gMazx\nktoAdJkTIuPOH6eDKfs0MOOF0lJOIKHEmromsELcYVup+9ekcuj2Kd6dfZ7TBdKCgb0FKG2C9pob\nvX6w6dtEWo9pCLbYHFeWWIzpSUXHi/jdqV5Ikvr+QD1w0aJAqd1vP4lbdtzCrHfNfvfm1TOx+IhQ\nXaJr3vu2Y/ALUej6vGIMr4315KLPlNssss5bzBYO6/t1ULQc1zmwYMeNurq1GYSrNmPhUtT7d+Ej\nnr30cvRUGY352ASxd+Kv1RvvC/sPbBzLouFkkXNU2yJYqcJZoU0lbvgdzwMXFuZKeX956dnD79yL\n0taj93YJ6N+fHise62KuNGHGXJPDfuqxnyLgVQyfS1il0r4f6e4lLMYVzTxRxEtc+P8vkv4ldv9b\nbI4rSyyLJdw4k5Wdu66kB3Fjn/5cV/nAO2dMFx1OhNiE07swO0kW0XNhtVqhRszmonX4ycVlz14v\nJdH4e55WDdPKZiJ+6mRGsb8cFA47qmx99aM647DIeNZOxt50Sb0UimxJmZ+7hJUTnpxPuHG+eq3Z\nBJ49waWVYYVcUpKkvn//eaUey6Rh3sLJIqdenmPKj4HSeqQ1NI70So5qGdRjSS36MQ8l/5y9HSX2\nzDeVxkIbl75O7WwQVSNd9U5/7CaBu0kPvMRx2ovMu/5CPOHmeHt9XNTcSaxei+BVkLpypX9Wd9Jf\nXWNpXQDo6XEx8Ni8NGRb4/1HPZZLa6Q/Y7Vw1iZptfWAPvVeTIHxMOVrv06N5r2u9g/qgegfIkUq\nqT7rtsfatDmvVvXy+p69y69Pe68JxtcT8QTz8K4lmId3Mk4XlmB8jZebcysVQLyu+iw3PLwLPveV\nJpeYFOX7ZevM+IdgbRK6Zsgg8n65oF6eUxbXbFvLc04WcLrIOaro7DzR5xXZSITFokKsW3j1Yg39\nrjlWHC1sbxLYB/011tlBxmJBwmNijgTQq+jGnlVo71spLe3GQqyyZezeY23H+pqqsRS2Ed5bOKef\nKRCRlwPfiY3e/V5jzCPB7y8E3gD8UeCbjDHf7r5/HpGS8MG5XwN8O/CQMeamy0L/va6tCfAmY8z/\nNta/K0ssbSucnkw7MX4MsV1pKlYiJI11RnXdfggdhBnDnXqyjE1Q//ve/oLdvWEsR7db9MWeVDbi\nad3CCSyOc04Pio5s9w5qzq7Puf+w5qiCh3czlTeMKKnYEscESS8NmlwGEkRt2D2uuiSWHj732Nl+\n0ans/OIyqWzk/eki42QB16ZnlDMrsSyWH+nUYEdVX+gr9Z7GPPJS6q11m4uQXNZlXNDnpSSLdbvv\n1FgN/06Nn4sauX2/dGlpT4wxQkmR8Fg//f9hzE/oNh7brOg+Xgouyd3Y1VJ5LbZI1weBd4rI24wx\n71GHPQV8Fbaarka0JLw/1xHPy4D/pM75S0BpjPlDIrILvEdE/pkx5tFUH68ssSxbGaQUhzV1HiJq\nrdSA22SChSqbp4NAdLtjlQKT/TqdDsildFJZ6tzJwu6Gp1XLAqsPf+pkxulxwelD55w8UHGrbnj2\nbk8eoZQSpuf3sSazPOOwMByWDY9da7h1tOCxD12jPsnYPa7Zub1g96Sy1y5trIuu83IGnNbTbpHZ\nvdYkE31mklNkPhuzGcSKjD2zjX9zhchiCTNj9jF//YFNIzgGhtJo+K7DmJN19VjWYWVBj9XBCTJM\nh33V0PNJq7zqKlfZGEzXbmpTFiPZUC0KdOM69fszHC8B3muMeR+AiLwZW7q9IxZXhOtxEflcfeJI\nSXh/7ncAX0tfrgTsg78mIhNsBvkaOB7r4JUlFo91C3ssDmUMm+7adF6uMTWFD7Bcp/KK4SJ+/R7e\nHpGqaukXubODIlqgK5WZWLsm+1T8IXzdF7CEcl+xdLnFhjnGZjns5Nao/wH2OaWwlSeLiQ2eTPXF\nLUj+Xc9cu/tTKLJdzMmTtn8HD3F9dsT1WcvDuzm/e30eJeNNdrPR38v+/HUoSpuOXyeUrKu4e/Am\n19ceZ4PvR7I+dN0u+3gXfe91lQ/uKbZQx9yqU33S+e3qKrcEVQ9JJVZUbQxeDarrrACDQEwALtju\n04jrIvIu9ffrXaFCsETwAfXbB4GXXvQCQUl4ROQVwIeMMb+hK/kCP4QlrsewFSD+B2PMU2NtX1li\nWZrN63WEky5FQn7ijUkEfmEOCSVlTNTBkLCZ9BLGQehrj/ULSJKKd33VC8si3HEnaqBoPXeHg2YY\nEKfqvXgpZW+65KBwElebUbXSFQ+zJNQAJ3yAfT6CrenipSaNRZFHCW+W28qXeTahyHagtoVHJ0zY\nmezz0M4ZD89z7j+0i82TN2fR6PfBI1ij3gr/XrFTVMM6L34h9J5fsXr3qRxf4e5dlzwOF/+6ygfx\nMpumFtLjIbzHtZu2YPyH5w7admPLb8i8SjNlb4rFBO1eawZ1VmAYiKnvb9CXyypNfDFV2E1jzKdf\nzoVjXVkpCb+LrYf1ssjhL8EaXT8WuB/41yLyU15iiuHKEssmSKXV1xPLfxf+HhLMOkIpynRsiR/0\ne/sLinI8vcUmfv3+uNi9jf3tz+t048R3pym7AqwjF/tvb9pS5jbuZX/qnpWTWKrW5iLbmwqzPMeq\njC25nFUFB0/NO9vK2P0VZdsRWJHtIvMTzMkt++POU0x3ZlyfHXN9NuHj93Og7ipJrjPmp1QrsYU2\n5m3mj/Pv+7AcZobQJLCJRDtQqRWpOKb+GN8+JOJXFPnEJKgxlXKsnTDm54jh89H995JHGDjqbTKx\na+viXb6oWKeKzQGkq9LK6XRl7jwD1WOpMu0bIVES/hOBjwe8tPJc4NdE5CXAFwL/jzFmgVWv/SLw\n6cCWWDbBpgNoZQEOIn43sdFsSirQ1zr37afUICFZaFLR3kIxySWljvP9qisnuQWqkDFdd3gd/51f\nLB4Hzq9Zm0sYsFjmpsspZoMsfYbkPlPy9VnLCw+H5PJkeW1FRbcoc2IlioE+pUvTV5A0bUWRHVBk\n0lWR3Mmta+zA3pGwK8SeTUz9s6JOUu2VZTtI0xKre+/flx9zYwSjpRXfHvTxLj5KX/dNHz9GMDGs\nVe9Gxn9fWnmYoj/Wpj/Xj+ux/HeeuPqKrb1ziC8yNnfPVqfY6TYCa4KJN4ZIH4R7d3gn8P+z9+7B\ntiVnfdivV6/H3ufsc+bcmbmjGfTwSEhCJSiSgJBcriRgG1FUwBEJThC4/MIFkUElKxWMkRUeqZgq\nsCkwNsRTihCUsEFxHraVshSFR8VUHLAliIESZSIhydJIurpz594zZ+97zl6v3fmj++v1rW91r7XO\nuffOjObcr+rW3WfvtXp19+r+vv5ev+9VSqmXwwqUN8My/xldCJeEN8b8PoBH2HWfAvA6FxX2aQB/\nCsAvKqX2AfxxAH937DmXXrDIzc0Zz5ykqkGdCWGmCAkZzmzTbOf+7l8nSwpXZYdVRdqQbHvKTCb7\nFYpq42OS/QolYvb6HBF4IaJTvx1Tha2DTbd1WnYoW4VCWwwx+3fiq1VyGH4SLovUCpcvFHs9TVEy\neTrV2t/Fu6062z4V+rIgmaxGSE8TDTMcqaWEtMPY3MfMiUQS0if2TmLJpPRuzwREEPXhvJUk5yVD\nxonP1VhFVXoGQfBLgRcKrZZ0XFLemsJRYXwS5nHZRf8FQWgDQu65JGNMo5R6K4APwYYbv8eVbn+L\n+/0JpdSjAD4C4BDATin1dgCvBfCVCJSEN8Z8YOSRPwvg55VSH4V1jv68Meb3xvp4qQULX4QlYzhS\nuIRoUuCMbPAwNLe4TzAQCsEkhrw5yb29WRJFB4057/vCo6OQ0MuLYUJljHkGx1aZgdmM97OqEqz3\nG2zbBhbIMkGWGIcsbIWILIHMhcsD+Q6PrxIADfJi7fMfYkmN9E6oHkuMqp1BvVM4LhXWt9MepM0U\nhUyfoX7EhMqY9kwMcCBURH0Xfn1Vap9nwtvmjDlkjgu1PYdkLk/INMW/I8h8SorkcErcnFwG1iMX\nKiEgT/mca00XjXjWdknRkp7Lcs1T5ATBB8R3T7DP12DNWZLGSsLzth5nnzewIcez6dIKFsOc9wNh\nMnLqmbPBuNYSOsXHTnWd9jIk2vgkVFCZUeFCz4lt7Nj15+kT0Bcq3LzjGULAXCT7K7UXwBYBA4DD\nHBhoFo5IuJSt8cJloQ2O9yrcqiw6NMH98zDc2Ml0MB8ONn/bDnHjYmYwEig0L7KC55RQCpnrJMWE\nCjd9cogZ/k5CiYI0PwRuuTqs/DVeKHJtN1IAb0roxph9jGTeVE8LFUEGNDbe/pjFgTDIJJK5pLsK\n6aJUBxv0AqdLK1hC1MNICgiX857aQo5Navu8RBuHhMreSYVTkYgYukf2h4gzIR5sEH1+NYQUCTGK\nPCBIfV5LQGsh6iMCdMKlcICWQOd/Id8LaRuH+Q4nlQW9XOgEx7nBUQUc5w1u7Tde2+iNtUo8Vlg3\nyNpH7VChr21rmRCHXhkzgxFxYS79AKH5Dvm9OIXwsui+sagqYsw091K4eIGyTpCVLfbKEpuqEzCc\nQkKGKHQoia2XWEAJN8txgZE5nJoqT3taCxEdTOjfihUGi4Fi9mCbJor03YfUPz9dWsGik13wdMgj\nW/jmBeb5XOg6ICxAQrb1OYB3tJlo05wiR34QHsNYVBZdGzuxc/PNVLXDkH9qwCxdYS55kqcx8b5y\njeCsrbBtDYDUR4l15Y13XrgQHVI4drsDLettCyzbPlp1iHwFydUegK6C5LrWvhaLnKMK7iQd8Ylw\nn4Y0N8lxh4hO5bxkr2eIAWY3icAbMUfy52dli6yyED1VnvpD0XmDVXqaHXsGCbSp4mZcO1wdVthU\n2SD4Qq43GQxBz6IoOC5M+PyFzN/U/l0XKPc1lhc+qWRcHY8h2EphQxRSzc9DY+Y3yazzokVVzIea\nCAoYZ66Tws0/Q0C/E8KvbJds91xT2QiThBQo0v/EzUvlZxN87OQKHnvJBusHSxxfafD4gcaLljuU\nrfECJpCbiYOsdQ5/AEidYLKM+SxtHLR/N37Amruq3RlQXAX2rWDB/oOo6897M1iUApnlIX8Kj9aK\nOu3F/YBdS2lpAyiIMW7WYdMNZ9ZBwErGmA8OK6wOalRVggMHdVKVNteH/vH3Nhr9lQ+rpMqxDZh/\nHjevcl+if8aBS5yMmPD8dQETKzCufYTAW+9rKXdOl1ewqHkhhNJGLZ39QGfP5fdMtUn3zXl+iOYK\nlWi7Ae1Ilu7Niy5DuXQO09BJW86R7Ke01/Pn8fb2TkqbQV+2+Hy1j/VJjqa+jVtVhZcfJHh8Zcse\nk4ChWi+AFSqUTNlRCnvaV/1EuE3WO+G3uwYNGuj9B2GvatCaumcmC8332GEgNi9zDhw9oZR30U8k\nVGJMT7YdE1xkIuLhvnYNu+sZQoHUWufktQAIQv9MrXtakzJPK2ZZiIVwc+J5MLwP/B7e3kXM1Pdp\nSJdWsCRJv/JiCLuIq/Qh1fu8FFu0oU0irw1V67uIHZhHzcRMZZTtXaQdxArF+HPNZMpRy81qSaui\nBwAAIABJREFUvd9ERFpVamTrBsvbNbKyRVrsrIA50V57KR87xbY1zkEPAK0TLjscZK2FZdFO48Ap\ne5oVLseuIuEtKhhF89EqVDuDaneGPYZufNbUKNvFqMYyGFdkTXANbsxPFbzXAaXeKfXeR975Y5ra\n5kXhsMIGnW+FC6DY8weRggLlARg3B8s1DIQDAMb8cqFxTglY+ZvUoO8dJYC+bwq7lNQTKA4sEAAo\n8Q2IM+Up9Fiu9fD7+X1TzBoIOxvn5JBIn8gUjeUUdI12WkNVJeAAgSEKmlUqg711ZZ3H6xJ1Zf0y\nJGBIezl98W0cP1Th8YMuauzqcty3QACWNilOYdkCgE0GtJn3THN19u/WVKxc8vlpzNzViyZjyZQh\nip2i6V3L9UZ1Robac/dMEhaUEJmKw8LdoilQVdLy5cHubmoM0tdDxANN6Dr6zPt93xx2cYoKFqXU\nIYB3wMZCf9AY80vst//BGPM9z0L/7hntdv2T/phAAcZDJWlhSkiLEMl25goV/pyY2W1MuITMeLET\nH51EeUXCYG6BDLkdwQqbCoCoc40lao9MzLG9stIy1806w/GqxnEBAAZHrUa9U3hokaBsWxzmVlO5\nsU3x1FmK2kWNdYjJBgvvgzFesOSJglYZ0Nj7dZZ5gbNtVc9hHmNWNM7g36HQ5Mj8zCW5bvjaqErd\nh52JCPtghjsLYyeTVDBpcCTQJOS3A/prn8/VWDkKujZkRpX30rU9s6MQ5GNE2nWs/3dMSgH6cpzl\nx0b58wA+Bosp851KqW8F8B3GmBI2pf+LmoxRvQS6gUABEIPnDp36Y/6XGEmhMpfmMKGYRsU1rjl2\nehmRdJ6Y/phGFu6w3fAxZGRqryw1jm8W+Hy6BWALdW3bBGWbYJXZJMqyTfD0tt9OD4o/7WrCe6ww\nvUSeLGGqpwAAeu/q4PlSqMzxr1yEpD9vzlqSz4wJQDKDzSEuXKZAJMdoqu93UyuQ5uuYQJfvjpts\n83w3CGy5T+enMcHypcaYb3Wf/6lS6p0Afl0p9Z8+C/2652R2fYFCsfKcuXGnIV+IMX9IyF47F9fr\nIhQzx035UaY2TF9w9kN1o/kugdNgzFYe0lrqQvtCXfQOJJgkva/17RRL3Tjtw0JzkPYSokLvcJQn\nOK4IRbnTZPLEQKsUyhiY1gYZaJUiT1gCbTXMAufjG2WwE9oKb2vKJMYpdLgJReWF+jcpEFwYtS9u\nNhNKPtZuLEl4TGCNzbP020mrQ3TOWXi4bJOESizv5T6dj8YES6GUSowxOwAwxvyoUuqzAH4DwOpZ\n6d09pJ1RTKi0Pob/FLkNt3Q5IlPlTIH+RpALlm+oOVoM0Zht+LwkfStT7cwRPFWpMQVBEmJ+8qRI\nARRVpXG2n3lhUufdPVzYl6XG6e0U1wEcuGJdRwW89sK1E0qo5ETFu7atQqF3KPTOglC2lQWiBKxZ\nzNG2CZyEBYXmtDdHAXPMlLYjoxB5u6HnzIWaOS9VpfaCaqzPPB8kthbm+iUlFP8YkVZ33rFTPwdo\nyUUf3TkGKnshUgpKF9PXvQBoTLD877CIlr9KXxhjfkEpdQ3A37/XHbvXlKY7n2xYOZt+VraoD2wy\n3+qwGsV5GqOgPXvER+O/51E1EjbjAtASU47Luadv/h3lPfDsZn7dLGYgToYPXT3DurDlgwmZuKc5\nHux676F3Si9akO9k28q6LokXMhZw0H5eaAub/tCi9UW+UHWCRRkDnXRbYw5USWhe/edieC2d4qV2\nEaK5kDxcM6hGmHNVahTMfzZG5znsSPiawbWBNT0lbOQaCwkiOpz4+Szi+5Xmn5u/KAqSXyOFy306\nH0UFizHm+yPf/x8AXnXPevQskdbGMjQOB5GnvUJCkgFOMZe5/g8gzhwmM6jRLfQQ45hKwqP7OHRN\nr+0yXmuG+kbCJbThebEz+TxpbuBjJc2QzC854rUwuBZoTXQ1itTgCoBto7BIOwEDdPDonI5ym/uS\n6yW0Sr3j/jzUM6Ow8ctr+Log/DBexiAmXPi8Ad2aCVb2DFSADAoVhwxM8ClBNAKhVU0dGKiPPDR5\nzgGD15SZo83MCophKQREfP57moqAwiFE8bJR/QPC3Sr0hfuZ9y94ShKDvX2HQcRMCVw13lvV/ToV\nF3TqhXJQiAYlYifszj3MKcFIpvDI+EmN+hW6TmIx8edT/w9CGkug8NTYyZGfCoGufCyRDP2U5kZP\nm8zV0bDvc9mi86Owok5ERznw0KJBoXfQKoVWGUxbArU7cbeVM4fNqDci5jSmrUpzi6zxsWGBJPL0\nfLcLT0lIld58BoQK/T96sBIFxAoByz+HxnyGszT+oo2uvTEtRb4L2vP0+/MR5Vgp9Y0AfhoWNv/d\nxpgfE7+/BjYA66sAvNMY8xPst/cA+GYA140xX8G+//cAPAHr6vgUgD9njDlhv78MwB8A+BHeXogu\nrWDJNfDIYYOz/a4q3+nttJccSNXmAIPjsukBAU7hHfnnRJgCX8w8X2Qh9tbCvaFtA2yLxhdmKhuF\ntNST9dCJUYU0BhoD34h0mqMyrlfcAWvbAii6OdhjfZQbk+aInkHjp3n142Xt8bFwYcNPwBJzS46n\nY2LG1/awmorCUW5wlFuIfSp5fFSkWOgDqKaEqU6BjdNathtkiwJXl2scFTrqZ4tV66QDCx8Djfuo\n6LQpG51WYW9V4/hmgaefWvrrCXZFCqIl08L4ewHQWxs0XwSeyTWlnmBzyaJ8nrl2FRJA/BC2Oqix\nt6pxVDgTJOMo2wZAPnSk969pfL2b0LoBhia2mFYvtSWODSYPi3Ieh42Z3pp/PpFSSsPWSHkjbL37\nDyul3m+M+QN22U0AbwPwLYEmfgHAzwB4r/j+3QC+zxjzL5RS3wngrwP4Qfb7TwL44Jw+XlrBcpgZ\nfP2LG2xqjW1rcFztsG1rHOX9uuuZAzusdwShbrBtd+MYUoIWgUUsHcwZA1XsJe05ooQ93g+g68fw\n//5JUdaUJyLfAxU9WmjLgI/yru487wNFXhHcCXeQ9+dqN/BrhJzqsTkd9jU+1oEwZvNNYyi0cVhi\nO5elv8RhdhVpuYW59RmYT/077D72eQCArmqsXvFqfPmVF+Eg+xyOcuC4OkOMxp7P+5ElQyiap7ca\nz1QJrl05w/FLtrhVoVc+l9Yjn7csiUeade+H5r90vqf4un6mstceV2d+Dcj+h9YXrSnqI29X9ifr\nVQPtE60ruxa6tTFnj4UEA7XB+8zHT30NkS19PfztZ6e7Mk13D4Ty9QA+TjXnlVLvA/AmWG0CAGCM\nuQ5bRvib5M3GmN9QSj0eaPfVsMFZAPArsIXEftA941sAfBLA7TkdnBQsSqn/fOx3VjP5OaUp1VDS\nMk3wNY8kqNpTrGu7oNa19hAhPnHOOXHbXYNqZ3yNjlCBKIm4y0kuVtpgFNaqk7QXjQTYsFei1lj8\nKt4PoA/7zvvUg4MH1XY3LhKKVad046H788TWms8T5fwPBRKlsTOt7wPNB80N9VurzFdebE3l+9rN\nz3DOaO4pB0X29UBgLvL2ZN+753TjpHeoVYYs2YdWGbTKkCdL4JnPwZxch/nEp9H+4TWUv3/DPn/b\nQN8+Rf7qV+KVj70Whf44TirN+jAchxS0fB6H8+TWlGlQtWdY18C61j6pM0sMDvNdTxAS8aACuV6I\n+DuitSLngu6tdmdod03vPVD/+Xj4GOldhdZU6B3zvofmgPrc7pxp2r3j0BqPCQRJc9YFkXyefU5/\nvp5n9GIAn2F/PwngDXeh3Y/CCqh/ClvY66UAoJRaAfgbsBrS981paI7G8lcA/AkAv+7+/pMA/h8A\nT8Fmzz3ngmWmatijxAAPJg/B5AWuFGdoTY16t0WidI/5KGNglF1wrak7Bm/q6IKbWoi0qeg6ZRyz\ndHkUFJ3U+7x4ANA5jFK+H0TESGJ/c0ZCPgV5LbVHv6umBJoKplwDaFyYpAbSA3vqyvN+f32ftf09\nza2Id33mRONt0OBK0aDanXrBRX3IkgXyZIl0ZIkaZZGJ6X3sjD2i8nfox2OM7W9dAc2pTYY8/gLM\nH30a9b/5HG7/4Smuf9JihT1ydgv7z5TIqhrq7DZe9rKvRLOX9OaJ5o7mj/qvVYpEaeTJHrRKbf9D\n7xUA0tyvv2p3ipeuNmh3jRPouZ+DwToBxtdKemD/z3I//378jZ0D05b2naYPAlmOFy2L3rqSa7Qb\nbxNcX93n8PvqvQO+XtKlnwtaL/Ru5do8D/E+8r3K1wQfU/e59nvf74Pt5tzPD5I6F1bYw0qpj7C/\n32WMedfd6UiUvhPA31NK/SCA9wOgxfUjAH7KGLNRap7PbI5gyQC81hjzeQBQSj0G4BeMMX/5vL2+\nhzSpGg7o7BTm478N7O8hX6yAfA97xYFlpu0GaBugrWD8Bsjtutc5g2VweBjtzIXfCsbi2jZNZR3H\nrOa6/0zFp+hflkGnOXQRSCWScBG8XyxPA/S8LLOIW25sSHO7ieoaZnMKVDWMc2gbACpj/eD9dH2l\nawfX0f9Z5tsCAL1YQescRb5vBSeZCcoNzPoWUD4Jc3a7Py98blZ7yJf7QLGCojZofPQeq1P7mc03\n6hrYnMJ88klUv3cdJx+r8YVPLPDR37U+li8v9/Ci6gyH208jP90Cm1PoKw+4KXZ9TC3Thk4dg152\n/d9urOC6fRPm9mnX31wcOPIMWO4jL1Yo8n0c7L+se1fbDUx1DLTXPWMz1Hc5D+4d9Oaf2s/ZnIvr\n/Dtd7QF5Bp1l0ItVf50w0nydhBgkrb/Qfig3/XVO/+Qaoc9undNzh8+awaB7+6Hs+sVzltLc72n7\nHnN7mKrsvJvbzPf27NINY8zrIr99Fk6bcPQS990dkTHm3wL4BgBQSr0aAJnR3gDgzyql/jaAIwA7\npdTWGPMzsbbmCJaXklBx9AUAL7tQz+8dzVINlVLfDeC7AeBlLzpwC7sG0mq4UOXJCugYR9vYRSsZ\n93lIMnnOJPj/8jMxDf48zfoVopBQAfpMiqgWgoIxRVPXXbHsPBsKlYoxLNlunvWfl2W2Lzq3p+fG\nMatWzHloPujvqgayCkgrmDa1bbgxmrbszwcXKo5M2cCUFhutLJmJrTRo6gSmbGHKxo4lNFfUjhiv\nfbYYA80Xn4+qBpbsxtatQ9//Ktjv3vjd58H8Z1lfoAmh0ruW9ysdeSZg9wD9PtgzYv2F9gQXKqwf\nnuQ80fOkcJnabzrv+sP3amhf0zV8HGxfmpF3/xzRhwG8Sin1cliB8mYA33GnjSqlHjHGXFdKJQD+\nW9gIMRhj/iN2zY8A2IwJFWCeYPk1pdSHAPyy+/vbwJImv5jIqZLvAoDX/QevMOrVXwUUq55JRed7\n0OpwYH4ImcOkvfg8FDSDiZOiaTuEQDpN0WlRmpeI+iaAbqNz9b9nUhFj42YwlOve5vRZw9QP3l9i\n5G6D9q4l4p/dGGje690Zquom8mSJbLlAvv+YNSNd2QyZANFiBegcDRrXDmmXgFYrb/aw4+9OxMoY\noNwgyTMURYoHi+tIswpFYWPdXvSKEoevypB/5SNQX/Zy4JGX9E60/B30zaPuFJytoNUVa0qluQxR\nmsOkBardmTMHPgM0QJJq5PkVaHW1b0oLETFJLkj5O+Bzzq8jIaZTqOLAj6lBE16bwkQ1ZZ7ieyJk\nBhusbTYn/n/2TE7SFBeiUP8GZlFgsA5bUyE/uoo8eVlnBqtm+atnUWzfnqsNYxql1FthnesawHuM\nMR9VSr3F/f6EUupRAB8BcAirYbwd1vJ0opT6ZQBfB2tuexLADxtjfg7Atyulvtc95n+DDVe+EE1y\nRGPMW5VS/xmA/9h99S5jzD+56APvEZ1bNWwT4GayRlvdjDqZuaNUOu+JyJkYinaZQ71nKWcDLuxz\nE9WHf9iZM7S7Ndo2vrG4AzTUV+64DDlJucM531v2+kB+hKo9BlwXdJJC55nzLfSvtWSjqVrT+LSQ\n1tRAC+80XtcaZZvgpNIodImHF7dxmLdYphkW6aq3Sqnd1jRo2w3aehhUIYMoQoETyzTD1Vd+NZBn\nyPcWODr6AtJ8DZ3tsHztA0hf8yKoL30Z8NCLoQ4fc8W/GicEn0FbD4MpYnPN1xGRVhnatsZZWQ8C\nQqyT+dj3k/sD+HvWSQqdZECOyPy3aM26e2ZB1xTQ6ggAUO+2aM0aVX2GqjTuHfTXiU5StPVwXYXm\nms833xPeEZ5kvh822KPzUVk682uF1rl06hPNLW1AgQYhh3zbdu/wpNKodgoHWTf3ebFEtjya9Zxn\nk4wxHwDwAfHdE+zzNVg+GLr32yPf/zRsANTYc39kTv/mHrV/B8DaGPOrSqk9pdSBMWzFPvd0btXw\ntDH4vadblK0GXG0PisjhVGjjwiFTX6qW/vVQcydyJmOhk/w+G665A1D5sFTapMS07GaKJ2yVbcFC\nN4HjaryvodDdhbb5HllSsVryCmWrXHj2Xq9N2+8qKFzpu054KQDa9TH3/TuuFLaNDbN9dJn6JMbD\nfI08Mb2oMeqLfSd5cByxeaexH+XA1zzyGbz0FV8DtdxHmmc4KK4BAPSXPQr1ipdBXXkpzOohPFNf\nZ8W/VE8Q1rvUv5+x8NhhqLUBYPvPw7L5O+hClFsxbwmA3Ldn1+xw/nmIum2n9O+k0DuUbeLeaYKy\n3cNxBQfUOQzN5f0cC/cOhVrzfha6RaGbwbqWfabx2v6nvWv5XM0N+w/Nqd3bCTb1ordfKHx6lbUo\ndOnLMdwpGZhZ2tYLgeaEG38XrF/iQQBfCuvPeALAn763XZtPMdVw7J51pfBrn7WnlsXELGwb9JK4\nTjedWSWWSU0UyjyOgTICiU/eomSzRYBZ8xwV+fu2tQz6VgWsb6c4vZ32IS1YMp9MOKT+8EQyniB5\n1to2KfFMZpIvtWAyYl63TdcW0LVHfVyf5D7p7spRhcf2Mhzlqc+joFwbGt/UHPPxSdrbb3Bc7eMN\nj3wSr3rRy5EXK6T7/5/98cVfAnXlpWiKBU6qz+Fzt0usa42TaoFNrT0Dpr7w8fD+8EQ9niAbSiil\n63kC7VJrvw7kGuTvSyb8cWZLfeK/8/dyXA7fwxAlQPWSLiX6RGhtyURgGgsQXtd8TW8b/v1wLHz8\nRDI7PoRoYdez7j2frydqt5vT1CW0Xtp0vwvTnBn7Xtioq38FAMaYjymlHrmnvboAhVTDMSobhU/f\nSqOwDnQNgEEWc8Wy1GNZyiGai9ba39Thvnf9VYPfTjfZoK+8/VCfOKNaHVbYrDOsDmqULjP7dJMF\ni0hxqAzKkI5Bj8is6qpK+lht7t/TTy2xuXqG9YMlDvYbLHVfqIdgdWSGeKh+CqcHr57hU1dO8KWH\nKb5k/xaKwxfBPPgF++PeEcziAGfN09jUp7ixLfD0NvXa1RRJBszhRWKYYrzMAq2BtcDeCrUpURV8\nH4QwDTF9oHuv9B48VpuAqqE+VmJex/DSuMC5BQjh6tqcOHgBGBwQOALAHOL9ueX21sF+BzlDqBu0\ntjmW2PWR0sz3KU5zBEtpjKkoflkpZYuIvwCIQ6FwZs0Xe4yhAh3SLgcajMF/9BB52edQbRdqq6kT\nh4EVag++74P7J6r7SegL37fKeCRe2a4seSvHRDS2CWMMInQvwZs0dYK1065CTDVEU0Kld23r8iV0\n7iPulC7QmBr1rsRJpfH0NsU1kXhvTSsGW92dthekvew3WN8ebq1Yn3qfR9ZQiPh6iQkrAJ5R0j1j\neFuyXxxYdOqdh5CJQ+txULmS0VjFyimhMjY23nd6P7SupGDluIF3DyvMXCgn54uR5giWf6GU+psA\nlkqpNwL4HlhI/S9qMoZl3rrFyAVKTEsJIsayxUwV98aYXu+ZZbjg0VygS77oybxFzDdGQaYWKI5E\ntdHtdQ5kMjL+ucQZxBQc/dNPLXtllCVTlkKSf54jVKKU5iwrPsOx4PMEY9KZ55xZxQmZRQMAFoMO\nzGwaOpTwec/KFpsDa3vkwiWNCFZOU3+TmZHak9fEAEnH5k+CZcbWsX8vVXewGEMMjh2Mpt5laF2E\nruHmPr6/Nyc5snWDqur2OpXPuE/nozmC5Qdgs+9/H8B/BWtueve97NSzRbSA02w3YExcNR4IlAAT\n5mB3dOqcWtySYtoL0aSpLYK8HEOyPQ/TjZ3cuMZGxIWlRGI+L6PfnOSgvOeBEMxVkIlMCZXQPBqO\n45TmqHYbFymU4NpZh4tFQsVGGQEPACKow2oxgMJWGwA1UmY28geUdYKsbHz9mayy/9dli41TG0nL\nIKEyZ65C8wDA188Zo6mT/nk11DGaGs+olnmHhxu6noT0xu3xbN1gb12hLjXqwhaf2yBHdZcEizH3\nnfcAPFTKe40xfw7A//jsdOnZoZ07MEnhwk+Gc4VKiHh5YPmdJK69zGlzrKQrRziOXUPP5P/fTQrV\nepHPkWPlwmnQJz/nZvg9Ey5zxkLjPzisvBObwlm9YNE5dk2Lk0rbKLjG1nkhBN/BeJmQAYAvnCVY\naIPjygqkW6lFbS6YYMlKy8QAIK0duGTZIi12qAvL0Igkui+f39GDghDAvBxCTBiP0dw5jtGd3Du1\nN2TfQgcO2QYX8oBBXWgvVOpCI1Ru+z7No1HBYoxplVJ/TCmVG2PmG36/SCio+ld9U5JkxFHKVc/p\nCfQXcoiRzqFipK0p4THVLj+tDUroCpoytcT8S7F5o+eHmNVsBjax8Xk7kqFKU0xragvtAUoCbFDt\nlAivVQ6JGSgC3Xto4bSPxGBTaydcgEWqAFTBMrdcqBBRJdPeWEStG+nLGJB4l/y53MQJtLNLQIS0\nZ87AQ2bdu+H4DgkVGVQg+yT7G/vbftfN1elh3tvLd2sMlu5rLJw+AeBfKqXeDwaZbIz5yXvWq2eZ\n5EknZMP2TGqkhjlfjGMUYpyhE9aYbbeaEC78Wb2/eflj99tGBCVEn1klQQHpo2jmCmFHvG4MtXWR\nU+3YnEs/APcFUMhptTOodmfYyy0IZemysMnE5Wu7NORHARYMXp3QiB9eWKZRaO1yRRIsdILjymDb\nKKz3G/+eQ1lgWeXqquxno0KeC5c5QoWocH6FvGh9+HHZhH0uU88ePHLErzF17xhNBWoAw8NXSHuJ\nfhZ7WQqU+/6Vi9EcwfJH7l8C4ODedufZI2NU74RFC25WCCM7KYfCLTnF2psrXEKbRN4XCjeVFCqe\nlbJ2Nic5Kgz72g9t7vpAZiguUAc1zdmcTpWVPRfDiWgqY4KNC5W8aMPFopwprDW1S4YssG0pSrDL\nezh2zOhFSytUri4bPLxosMosJMxBduay5zWyxGCh7al421qT2PokR8mSXLOyRVZZf0udp97fMjoF\nRb/k8cD/JOYqZ+Mu0s6kZ9/t/JP5lNmx519j2uFYOe3QuKitOQ55opB2z/vN/7fz1JkK5cFwrCLo\nfZqmqGBRSv2iMebPAzh2qf4vSJojSKRKLM0rd4v4CUmetHlfQ4JljEJCJfRs2S6ZSGLlZfkm5JUc\ngc53VUaECz91h95Bb66FILn7Joowla3yZrCyUVhqY9EBnNZStglWWROFNal2Coe5zXx/dJm4AIAK\nabbDF4o93PzsEnsnffNhXWicHuQXsu/nRRs8HNzpPEmT4oW0ynwYri6fwWmszPYcASMjCYcPPL+l\n4U7JwDDomhc2jWksX62U+hIA36mUei9EJp4x5uY97dmzTNJmO3b6XTlfwlxz1pwoFumjCGkfIVWf\n+4Ni98bi8Ck02WtBlUEF7QMXDg4rr9Wc3k5FMMPFU5l8iVwX7jlGIQ2O/o+ZZOaShfiw+FF5soQ5\ndRUkj672C0G5No9BWfOKZW93WyhPbLLLugZubLtxrTKCEVFY6ASLtEFerHFwWOHzT65wckM7raVF\nnWvUB2lv3LH8oVBuyVj0V1Vq5PkOZUMRa/0yxlOaBD1zivhhIkZTGsHUgWOsjwD8oUX68kKHw/NY\nGu7TPBoTLE8A+DUArwDw2xDI4O77FyTxRR0SFHxxrkWI51R7dJ8UQnTqB8I1vasqCUZbyb/zoh3N\nE+BChnwmPFIJJbBB7hkUT6oLmeGkZjXmrAfQq7vO758SCCG7d1G00fkf62dVal+XvtAGubYFxczt\nm0CaI09eBp2kHnuLIgWbOgFWNW7B4ArA8ltoG9k217XQKHVXlpdMY0e5waeKLfb2G3zhcA83n1oi\nWzeoi/66CB1yYsmKdOCh9xDSrKsqQVpqnKWNb5PGFwoKIRPnnHDnGMXMWOfREub4b2J/h7Tjuc++\nmwLG4GJFy74YKSpYjDF/D7aa2D8wxvzVZ7FPzzrJhEYedROC2vDQFI7pEnOTG5nukT4Syjeg6wgf\na28VjxghgRCKpBo9aUq/B2MQXFhk6y6noi70QGj2zHCBiCMJ4xJiRHRdXrTetk8n5bxoB3kYvD3u\nH+G5MQeH1XgCKwtJJqJ2OlDCAig3wO1TAKdQV0tolaHQjX+Ov3+TOTSEBvasRXNht5IEguyQfnn5\n4garTOEo1/hU0ddeUHYmGj8E1nceySeZp1xvMUHf1EkU+0sGhdBchw4qU4cB/k7yovWCT45viuYK\nlTEfI4+qo74RTQmPi5j+LjvNgc1/wQqVkJNREhcmsVPXwWE1gHuRm15m9wJWM3jw6lncmcyIIFXG\nTAihU/p5spjJFMOJCxR/z0RoMjCcy7xosbffeKFio5IMKjevEpGAjzEkVOR8BQUK+1xheGpeaOAg\na6FVZqsGbk6BPAO2G2SLAqSBhMyNFhJkKFwsIq4RkPH0eecFTHdNioU2+GS6RZ7v8PnP7kdNM55R\nu+TKqtLIDzqBLudt9BDiEAHGsvmpHQ5YyhnzmK/LRxpWBnsnJU4Pc9wsl1gdVj14GUmhkOoxn+Yc\noeKvZQeSmLCSfszgYeV5QEqpb4SFuNcA3m2M+THx+2tg66l8FYB3GmN+gv32HgDfDOC6MeYrAm3/\nNwB+AsBVY8wN9907YBPlWwBvM8Z8aKx/lxa2U2vTY1Sc+HcxgdK7njkA6R/5S+ikRKEm66BFAAAg\nAElEQVShltkPNwox3JijXG5sjNjSe6YMkfnOn1eVFg+JBOMzJ3v2ZFnUPWYO9M1+5FDvMRkXxspP\nwby/1A+OxBsjybQGDCZnyMwBph8SelyLXB3UvWRHXwRMlA4mbSN3JjfqF81LUycoVzVuVcCVHDgq\nDB5fadS7HawQ6fpBtVZ4u0CChxctLG+w0PcA8PSNRa8fg/HlylfFDpmZxrRZqXWHqBDvVfroaH2P\nnfRXh5WPNKTcEC9UmMAi8ut7hoAApiMNYxTTpLmmdu/8K7u7ksfiEtd/FsAbYavlflgp9X5jDC/F\nfhPA2wB8S6CJXwDwMwDeG2j7pbDliT/NvnstbCmSLwfwJQB+VSn1amPikQiXVrAoZSbDc/OixVFh\nPLKupKZOeoIDDldIMlP/f+AExn0rAILC5bxRMaFrQiYxfg1t+DHNgASQJO8HYKdg+ewpAT33ZCiv\nGZjBQppUIOSWzGBTBdoWuj930nexWWdW8Ow3uLXfADB4fEXj38FG6YfXmX2+wgM5XWeFS5rtcHyz\nGI2MosxwvqakeWfOfE5pyuSvCx1MiCHHGDH56TYn1meXF31zMu/7VD9Cz+gFs0zgj9FYYiQ1O2lS\nfJ7R6wF83BjzCQBQSr0PwJsAeMFijLkO4LpS6pvkzcaY31BKPR5p+6cAfD+Af8a+exOA9xljSgCf\nVEp93PXhN2MdvMSCpa/ic9pbdSfaRQocAdg2xtdsAOLMXgoVn3wmtBa6lhgdneTPxBqWGoB8HtFU\nNr6kganKaRxTQkAKF6+FRZjLXKHS/WF6gmAKoHOuQOJC/GC/wVFhHek8+itEC90dMkLP3YA0mhbH\nRYvysVMAOzy+SljRuAS8iqXNcdn5ip0dWeFyTVuT4ekmG2gvNJZgzlEZD9/mNMbUxwJDen0QibYx\nAUO+FT7/cj3E1gYd3Pj4QhQLDvC/h7SUgCbPTXCxZMs7IWMYfNA0PayU+gj7+12utDpga2J9hv32\nJIA33Gn/lFJvAvBZY8zvqn4J5RcD+C3xvBePtXVpBUuSmN6pi4jqf9gCP6ZDsdUAAQsel+N5HaHT\nPiEDTy1U8j2ENKSQMIip9qHrOYUKIe25zzwhksxWx+hrN1JzCUXbyOfHiqF5YtqGZDwxTcXfOjKn\n3ES5t6p9QTLSVnx9dmEKI9+INMd1fg773abIAGS+X8Aa29bgNQ9oAO3A39JpSlZTsZUMjddcFtrg\nuAA+n3bay1zmFvIR0BiAvknSEjuZ53EB4/svzGihw1kInYEnppLZd5zm+UAAZroTWsucSDa5h6Sm\n8hz6V24YY173bD1MKbUH4G/CmsHumC6tYDFuXdPCoSp/oUQ4oKu5QRpFqDph50NJvG2aayz8eTHi\nGovUVrzfIoIYTCdW2Y8Q8b7xvt8JSXiWwe+BLP4eU8r7uSPSdMifEWKc5PsJEb/+LG1cgqO9tjUN\nUl3AkGBJcwBVzy9C95JQ2Tupugx5Bs9yE7aOTPXYKYAGj6+0Exy6J0zIPMafIcv0PrYHUAABAF+E\nSgrUEAMM/T2o1xLx58XaCr3TKaESu75I4yd33q8YonZoH9Gal9fy36fo+eioD9BnAbyU/f0S992d\n0JcCeDkA0lZeAuB3lFKvv8jzLq1g2e26aoREPlcBdS8RDuiXcKU6LSHiDIwvdFkpka7pLeT9ZhAG\nytuUzwDCjDZnqvxoFJkQPCRsqpJfT/VYuiS6MfwmmWlPc8DbLvnpn+XSyDFuTixk+RzGSWOMMYaq\n1Pj8kys8dPUMTZ1gqSs8utS4sU2wTNcoFg8AS4sVZhYHqKvPeaywoWZk54QAJDk9cOPMCxfAChcg\nxQP5DmVrkyQLbbxAOam0qzuvBzXlgbBwCY0tOCcM3ZjWBGkNIZMuFbyaIr5uZH2dGJXudwpqCRVC\n4yTLZsdyd/yeKvo4cLIv0gzNx/JskYFBtbsrNRI/DOBVSqmXwzL4NwP4jjvqmzG/D8BXBlZKfQrA\n64wxNxxO5C8ppX4S1nn/KgD/eqy9SytY2lb5Ij+cDg4r64R2iXBLtw6Py34J0/NkIAMdo7R/dLkV\n3oSU7wZV7ULmH95e6DP/O2ebaU5BsZCWQ0KGJ9GdxywjtSiuyfFsft5f2bfznCI54wjdR8XD0myH\na3s1XrxN8aK9MzT5Fei9I3vf7gxVe4aTqgiWIqYsef43p72TCjdBvpFTbJsGj+4leHQJ1LtOwADA\npk7wjGNunWDpaxIkXIjZ+ui89ZApyr4AQI3+QUCiGcsqijGhHSKuLc8hXghvqtjXmECJ9WPsuh4i\ndECbj5r/nmfOe2NMo5R6K4APwYYUvscY81Gl1Fvc708opR4F8BEAhwB2Sqm3A3itMeZEKfXLAL4O\n1o/zJIAfNsb83MjzPqqU+sewwQENgO8diwgDLrFg2bUqmHtCCx+ATYRjWoQs/kX3TJHfGKECYaKd\nqRKsUuPpfhgiLvO288iJjVMPlJNtvJig42aYsXbJhNO7J1KUTJKft4CJa2ruY7+TgL92eGJr2Zen\nWOgTHBQWY7XanWJdW4wvYvIhgdqDuq+Gpp2ecGkbbFvjMMPgQpKBZ6qEmVs7bWUhotUe27PQ+0RU\nupn3RQo8AD4vqcpTv3ZCEYL0WyhJdYwuEpobw7zjaySYPzVBY4IhZBKLaSux/t0pGaO8+fXO2zIf\ngC26yL97gn2+BmuyCt377TPaf1z8/aMAfnRu/y6vYDEqWHEvlB0cKgs7xlSj2oRARaZ/PGEsVHdD\nbjLfZixJUQiZ85iNaDwh7SbEqPm1PDpICj9urojV7YjOZQBNOtaf3n0jv21OchyXFql4XWs8Ylrr\nW9E50HYweMTgyYSzOclRVbYgFFadOawuLN5XXWic7Wc+HPjmU0t7KLl6huMHSxyXBo/uGRzlnZZC\n/0uhwitWblsbpXglr3BtZfOMnnZthzQXIl+ZsugqJsrCYbGS08Aw2pHoPAJlLFJxrGaRXO+xvtC1\n/H9JMeEir+HXjqEl36dxurSCJVFmFLCPq+qDGHt2H1+gIUwwuYBJmEiIGIqUKRvVlbIVQoa3UZUa\nroLtLKLn8r5SH+V1vb8jaASDzR6A/ojNrYTQOU+/ed/HwD3HTDcUAntU2Ki/g6xFliyAM1sEWS8z\nFNpgle2w0Ik3BR64PKV1kWOTF0BlhgW6ig5EMmdw9J3vwmY2btsOhp+ICxTACpSHF61z/isstMZx\nbnBUGFxzOGPcnLg56fo0MIk5P0tIoPNorbtt9om9ax6NNVZaIrTWYtfyw17ocCfNpKG1TlFufB1L\nQXyfpunyChaXeU/kfQCR0zoQCJ+NnJ7HBAwlIub5Dnur2uev+JK3ucG2aHxSZlrqXmRMKE9hyv5N\nv8+FgxmtnSIEyAAjrAyXWQ4JVE4hBNopW/zqoO6Z1ErBLGKaGmmJRwWwylocZLDoxtWxvWb/MSxT\nK1wW2obmViJRNC8cttkBi2BCCgVgVYSLrUrhsgjsPilUri4bHGQtyjbBut5hlSU4yi2I5VHR4Piw\nwXUnYDi00Ok69wKmLvqHkn4FSbvO+AEhZiKSjv0xE2gIW08SIVxzTTdEMYFIfeDPBPp4arK/8lrf\nHjvg3Sufys4MI/9eqHRpBYvWBgdO85ij6sqTTM8kw5PFxMakzTcmUAiCncKbt63CogG22uAsbbyA\nkW1PCYrYZoziNE2YCmge5O/EpJYaHjUXwMCHRfcRsrAkEgwEuzKV8xCbF96WJGJ4e/sNjnJb+dGj\nG5dWY0mRIk+WOMhuY6EzLLWNKObgo2MHkLH1xIXLUWFwFNA6H10CDy1s8bCHFzvoJEW7a3CYtzjI\ndE/AXDtDJ2BOUqwOamzWmdWqTnJvohtjmDS/hVtre4FruKlpSisPaePyWX6u2DsMUWyfye8GwpBl\n/fN+htYj9ZNy2O7TndOlFSxKxRnsFHkTlcAUA4bZwkCfmRGjJKHiM/zdgl5ouAqFskrBiE2YaQ+x\nuP/Qtfz3ucXCvDYRSKKkMZTOdFQULSq2mTl8TYzJnW+jD+eFPwsYolMD6LLvcwKhXABtBTRO0yg3\nSFKNQu/8uyGmxA8YU8wwFoDho68eLHG23+BKTocLq6msshaHuf2X6z1olaJVDYAzn6lPSZaFTnBU\nJbimgYVucO20D19DeF05g5XJi3Ywr5Q/FU9cjPtYQqYmaeIlGr7PfgXLmIl1iqJarcMso37yd0Nr\nhPrZsxw4CmmVFyUDDHKjXqh0aQUL0RzICCCSEMkSFmWdE36yG7bbYqm5jX24mbcNfL31GPU0DA7M\nOJGMGcq6j0V8EXV5KM7UxZIdfU34SF9jpipqV84XvRNKVpVEcxKDfuc0B8E6UdoKlbpvSyezBc9l\nkXM8l/GF5rcsNU4PK5QPWu0FUFhog3qnULYJylZhmdo+taZGtbO+Fs6cssRm7G9bwhoDrqEGNpkX\n7IBlsNyvdjaSoAjEsfF4/wcRjZxx9zSI7jBC744EDH+H1FYvOGYGBtgUcRMrd9DTIYbCr6lvXLhs\nL0f5lLtOl1awKGWiJ/ygU3gkkUqavkJtlIxx2kRDdyJvgYVWvZORFCohBhqKoImdlKcivEJmpFjY\ncZ+GDIOezwtH0Xd0cpSoyTzqrSj62dOSAcrEPgoBn0NcW+tgXcaZFr0HidfGGV+I+DuQ0Yd87BTZ\ndXpQ49jX40lcxUkNoMFB1qDaGZxUWqAkd0L3yD/COAFf++fLfuX5bhLoNDgmeQAIOMpH73eIzPZg\n0j33NJIsyc1vc4JKxkgKFbknTl3uGmD8Qek+XZwurWCZojHtZWwjTflreIIYYM1GRWqcgBlqKTHY\njdAzx9BwgX44JS+0xUkKKMk8eYJj94xOwJSNGpxs+eebTy09KGGon3wMPENctie1lCkhyoVKXrS9\nU6lWWWcGc7QzLaqdrXm/vp0ONKIp+Bq6RjqRQ9rh+iS3IdpVgk+RY1/za1qUrR41oxR650OYO7SE\nXRDXjapIEsVKV0uaJXxmXCO1+yniibZSI5oqeyH7NRZAYq+hdzlmvrsY2TyW+877+4R5GyVUpGrq\nesr1WB3UqLKdFzDAPGEy1Tf5G7cnc5u3xzILMPiiGNq8JSOQAmYqnwCwuSBT80QhvpLGtDbeb94O\n72vPkSxh86uhKWzrtJVQRBQQhgqhvpFQoZLDAIKoxHQPtfn5dOt8O3oU1t9qW3yOdv38mMMG10V/\niUKmXbpuzhqW4b2yDSL+PuZGW/E2Y0gPfD3OKvJVjEclAnZOxmCN7tN8urSCRan5Cz1GMkM3FoUU\nzSJ2SXcUJ09ROWPEk9mmwobPQzJcOvR97zmMIfVQnMmmf1BHtZI5/Q19L5nghQo9BRinVhlMu+kE\nS1N55/1Yn2J95+Yvq/G562IAmS7Bkf7P8x2WuoJlaN0W5UKmK3lsq1L6Z7eJM6ElTiuzwiV4io9o\nYTHhzP8ns2UIGNO3X/ZDz7lWyXNDpM+P1zniZreQgIoGUAS+H1sv45rT3Qk/3gF3LfP++U6XVrAk\nCt4cBCCYiDhG8gQ7Fn4aqu/ANymPgFrqeGExH5F0ToY65rgOtRXauFMmi7zoiqJBQOyHQjyB7mQf\nCnPumZoihaZCFAtCoPtHC0pVNZBnMG0JrVbIE+PrsRRibUj7f8jH5ft6MIKJJa7dnOR4uqBS1Y1L\nmkxd/RZe8jgZCL48MTjIuNZFDv3Gl3qYEo5z/Rn0TmQlyZD2Jg8tq4Mae6u+dijzaqhfB5Fk5Fi/\n5vx+noNOXyO/T3Pp0goWrbraJ1XJQohnaAExoTKH4fONRuG3FOp4VPAolHiZ4rENxU+ToVDbMZL5\nOEQS+j/0zCLtwqZl/g1vjzN2yhwfM2uFHOSTlQInhAsAbIumb+9uyZtcA20DrTIfbuwjiEZO5rG/\nz3NfVrZACWyKzg93za3RozzBA/kO9U75AmJcUzlwiZ46SUGOewBYaCtcvP9OaMXUNwlVxH0acxIc\neenmGHGhYqPg+kR+r1D+1kWJwsKnsOnkGhwLzLhP03RpBUuiWFjhfuORhadqYocAKOegtXLioY/k\n86DCYgsNVkjM9E5vvT7dwWYL1UWRCaAhZsI1BxoDr345jPnv5ygA/Zr3Z639/nST9RgcJ8msZNLd\nlCkt5GSXvhutUqCtYFy4sXLf8cz7PN8NYHDGTvvSph/qD2+Dw7CcrnOsC/JDdRAw2zZx0V8uHLu1\nWstB1uKosEmdidJ4aFGi0KcodIosSQFoLLSNFjsubbE60iypFAL1pVon2CD3mHmyUiQRrR/aN6RZ\nxGD3pVAJJYYSLVIMEoRD8x2jkG+OCxhqK+TLqcohBP+dhjsTGXN5TGGXWiSfN/mpt/iEcCGGN1W7\nm99Dn2XUCSXLXZTudCNIn4k8tYY2+Fh/Q0Jloa3GWKTGn3xDxE1loUxuHkYq+87fl//sGEswP6iq\nncYShmSZ1Poq05ubXlImO4SEKCtbLG/XWN6ukZWtZ9KnmwzXTpX9d6Zw7cwiIm9q7ZlUoQ20ypAo\nbSPcBHEwy0f3LAjmldwm5/LgDaqKOfAFIixU6PuQj01S7Ht7mOr/40RrhNqYo3nP3YNBoTKyZp5P\npJT6RqXUHyqlPq6U+oHA769RSv2mUqpUSn3fnHuVUv++Uuq3lFL/Rin1EVfki377StfeR5VSv6+U\nGtbMZvScaCxKqb8D4M8AqAD8EYC/bIw5dr+9A8BfgT3qvs0Y8yH3/VcD+AUAS1i46L9mjDFKqQLA\newF8NYCnAXybMeZTU31od7Z4F9VZCdWVD5FkakRTeS6h0/j6JHcM1cbPHxWql8NCRcXOS7wvsfBn\nyimIRQdJCiE8HxxyBtz42jXkIwr5TngyJfcljT1fhpsG0QVEjoms4yFPonurGtvWJhy2poHWOXxp\nYp2jNc3gdBk9MUdQpqVfjX/H2yJNpckS//fpOscGrIRDucPZfoNtozzSMZCyPp5imdbQKsOmPsWN\nbYoTFzRgTXq2bTKJLbTBcaVw7DSJstRAnlsFqTLY3OgElJxzjptGRe/Gorc44kJV2uTMhbM8biPm\nXr4+aH9KugjD5wfCKZ/q3fatGNhSDHdKSikN4GcBvBG2/vyHlVLvN8b8AbvsJoC3AfiWc9z7twH8\nd8aYDyql/hP399cppVIA/xDAnzfG/K5S6iFwe2uAnitT2K8AeIcrWPPjAN4B4G8opV4LWw3ty2Er\nlf2qUurVrqjMPwDwXQD+Faxg+UYAH4QVQreMMa9USr0ZwI8D+LapDjTGChVZRVLSRU7/Y+VRJT19\ngwR/jbO2My9IQXfefkjmWrHTHhcIodDQkK08VDZgLcKGeWVIoBNanQO09cmUXEuj60LMqdc+E86D\nMrvsPilQqB3e9ukmw7YtUbYJWlMDOoXKSLB024LQBILvNFa2AMN3HhIoY+ti76TCKaxJjPrf1AnK\nVY1bFXAlBwCDo1b7TP2HFzWABus6xVNn3RiyxAw0yoXz3Ty6B3y63LFqn92FmxsZqrJfSiI077Fx\nhHyPTZ3g1nEOHIW1Qt/ujEqqYzljcyIGPcJDxDx5p1Gj95BeD+DjxphPAIBS6n0A3gRbiAsAYIy5\nDuC6UuqbznGvgS0MBgAPAPic+/wNAH7PGPO7ru2npzr4nAgWY8z/yf78LQB/1n1+E4D3GWNKAJ9U\nSn0cwOtdmcxDY8xvAYBS6r2wkviD7p4fcff/LwB+RimljDGjwee7ncLxTWvoDZ2sgfOFLE45Z8c2\nwdM3FqiqBHv7TTRPQ2JdDZ4VObFvTnJvoqFT2tNPLaM+ipgDNqYFAF0wQ0y76idUdsKFmAcvNBWK\nKgpRzM8x97uqSnBcAdVOoTU1FK95DwuhQs597uwOmYk8sQJrodPwXKGSVS3q3IJH8rBlQiXI8x3K\nVY1ta01b2zbxEDCFNjgJHJR4BBk5/Rc6wbY1uOXW3fokH9R2qdYJbpbdetnQUCeYLhcqofV66zgP\nQgvR3IT2wdh8ynZCflD+O++TjPiT9BzVY3lYKfUR9ve7jDHvcp9fDOAz7LcnAbxhZrtj974dwIeU\nUj8B6yb5E+77VwMwSqkPAbgKy6P/9thDng/O++8E8D+5zy+GFTRET7rvavdZfk/3fAbwJTufAfAQ\ngBtjD20aNWDeRDGbPWAXs4y4kr9zii3K0H3S5ttrj5ypM6JVpFChaKOqCuM7ceLfS20hJFSIeOXN\nUFgoCRegHzwQ0lbGTow9xh7TGJj/eKyNbatwUmnsTAukS28KU7qwWgyG+Gc9gSHyUqJm0gnGRMmT\nhETMv/NmqTzvR6dVCar9Bmdtg8f2yLmf4gHHMClyjEj+TfVmtm0KB4/YE/A0t7R2zLrf12qdgGq8\n8PH2nN4jAS1VNTQ9x+rc8znszWXo/bPCdjIMXAq6kG8odrC6G7Q7X+b9DWPM6+5JR+L0VwH818aY\n/1Up9V8C+DkAXw8rJ/5DAF8D4BTArymlftsY82uxhu6ZYFFK/SqARwM/vdMY88/cNe+EraH8j+5V\nP0SfvhvAdwPA8uGro9eGHMX0vYeTCGg3MvIkWttlZPFKm7w0J/SKaQWEDI/9r0qNKk99u9IBKk/R\nMpqJIO6poBS/jrc5CuHvTtkcaFD6YIqiDRZQ4yjFAwYdqCwZY+6S8qLFQhsc5m0HQukSJCmPhcKN\nKSqMtzlmsptDsh1i6PVB2vs9R7hGSFXaMFwbldXAxrJZ7YWc9aSlSKFymO/w8KJ2UWUGC51hoQ2W\neos831nYfUJgdmtHMvGsbFFDW+RkNvcHgWgyickXxVfjpl+xRkPvd4piAiVEtM5W7ADHv3+e0WcB\nvJT9/RL33Z3e+xcB/DX3+X8G8G73+UkAv2GMuQEASqkPAPgqAM++YDHGfP3Y70qpvwTgmwH8aWa2\nig36s+jXb+aTQfc86ZxMD8A68UN9eheAdwHAg698pZEn8lAdCZ70J80boVyPuSQX+cAsIBjZ3Axj\nLvQoeS12agsVyZJzcCBqp1w0h4dDb8hTYayAGmcGNPehTG8p3Oi7YD/cfXsONj9PzDDz3uexdL4J\n/n5k0qd8R2Po0iEBAYRhgaaYWlUlHk/tuLToyEd5l7MSSqK8urR1Xpap1c6K0qE+aI2FTrDQXenj\ngZ+OaYpUepkfVniJbbmeQ2Ul5iTdSgodYMZMYv5zBMIl9tuctXReMogjgJ+TPgzgVUqpl8PyvzcD\n+I67cO/nAHwtgP8LwJ8C8DH3/YcAfL9Sag824OprAfzU2EOeq6iwbwTw/QC+1hhzyn56P4BfUkr9\nJKzz/lUA/rUxplVKnSil/jis8/4vAPj77J6/COA3YX01vz7lX7F96EIYQ5oFCZVe0p8TMERzwixj\nFLqXY4XRd5RgODc6jG9aHvkiBSYA7KGzZ/P+U90Ynm+w1A2OXRsUBQTET4MxpsH9LXJM/GQu+8oT\n5WRuypiJIzY/VmOxp3qtMqBtujyWtrK5LbC/L7X2gQnUvjxU5EUf6400ilgABi8aBnTVMGPX0dzR\nYYDmhebwGFYD2/qor+HYSaissj0s9AoAoNWml/Oy0NqXPj4urR9yIGAwFOoHh1WvgFvMBDlWt8hf\nF9FcQmu4KrX3TUoKrYOxfTRX232uyZn83wrL8DWA9xhjPqqUeov7/Qml1KMAPgLrjN8ppd4O4LXG\nmJPQva7p7wLw0+6AvoWz7hhjbjme/GFY+fgBY8w/H+vjc+Vj+RnYiu2/opQCgN8yxrzFTc4/ho1Q\naAB8r4sIA4DvQRdu/EH3D7B2wF90jv6bsBJ4FvFse858qcIjVXfs0zDpD5AFkmZEpAhhwqOkqAbJ\nWWvxw4AhXPyUoOECRlZjJMh4nolNJZBp7FR86iincVHdmH6UodzsPdOaTEZjJrGQhka/y74Ctp/r\n26nHIOMo0bGiUiGieTwqbB2Tg6xLkORYYVplyBPVi6gamEVFH2OZ43y8oUMEEa/cKItj8VLVIYgb\nALhVAfSeCEa/0NafQtUol+khFvoAebLsjyU5Q54Yp6WlOMoNrp0Bx8UW10/SHkICD7Lgmoqcf4kc\nwdeHFJi964RGE3rHfr+4Mt6h58l5pAPb2B6a0nKeL2SM+QBsdCz/7gn2+Rr6Vp7Re933/zds2kbo\nnn8IG3I8i56rqLBXjvz2owB+NPD9RwB8ReD7LYD/4m70y58yS+0Z+t0gHnbbe9bIqWiswNccmjIz\njBXlKtLGnnrvweqQ/hb+/d0gYi4hAcOF81lqIV2qXUAQpZ25L5R3IE0vF6nfMRfBeg51c9niFqj6\nqBUui9bWdql2CtXOIDeNC0zoC5ZqZ6/huTs2YdEy41AphNAaPu+4Ygek52NS4p3Sztw1U9jznp4P\nUWHPCRmjsFlbO7PM0C7cRlpPQIf0Hd/d97FKjnITNnXik83KGao3Nx+FsI/GItCIOXCI/lABMd/H\n/cahiVhGQcmkp5vMm8K4+ZAzCMmE5mIwkWDnjJIgy3kipQxNDiVOkn2Vm178c5yWSgmS1e4My3wP\nat/pDDpHtTvDurZZ7rcqVwhKEM2nDUbAwBQ2lnQbWlek2VBww5T2JUOf6WS/zna45UBNjwrg0Z7U\n6yzPramxbTc4a2rc2Ha5L5RQSRr7UWFQlUP/GEUeco10jKbC5EPj45/lGg5dN2yj+zwWQBDymd2N\n6pWXlS6tYNnthlAO2brxMfvrk9yq+AH/wRhxYRKKv++Zz5hPIWgeEpuHNgb3cfD2ObPt9Yk5twmu\nvCrD2fS9gIaiY+xSqAyiogI+Fn7NnFwACiCIzTfhWq1P8l5VRiocNjeCp3QC7Lgqsa71II9F5fuo\ndqdY1xrHlc25oENIb8yOmfIaHtTP0BzExiSvPXqw7L2HudorBVYURYvT26kd46rGcQlse4mUZzgq\n7Do4Lhvc2ObB3Beg01oOHJ5eSCBKQR8imSsyx/kOCEifYhjKPCdoJiTgpw5l90K43NdYLgHtWtVt\niHWCvZMSy9s1zsoMdaGxKTJsTnLPtEJhlED/5COFSTD23lFetD2GXwmmKuG6Q8t+FNMAACAASURB\nVEKg177LV8nQDHMOaMOLUEqgA9WkecgP+s8knwohFMhn8/ZC8DBSYE0JmOFcdYyMnr85yZGtGxvy\nWmhsqn6exxzarDMcVxVOKo16VwKLh4CV01gWK9S7p3FSaRxXyoffyrmTSAXcNyDXQkzw0VxxcFPA\nChdKJo3NUwhtgDNh+nf68BZAhW2b4HGfR2HDjW9s8ygwood/SYFlaw8aJNylP436IMswU182rE9T\nNIaiUDHBMha0ERPucYij/jMOWJXT+3R+urSCBQATKpUH/wNc5nOpLdNCB1si0U6ldhI1l1GSIv++\n6hhuaLNwR/ZY/23blslmVfcMytyuC40aGijCpzQuVLKyRQU7ZsBBvzgTkDRBcQbmP4tcnjkbc+y0\nOoiIouey+fQJhS6ngn4PkkhoPC5vY1MnqNozmLwAlvsAAJMWqM7OsKkXOC77TD9m1pSmwbnZ4qSB\nSWENhIVL7PTdJcNa32BVaZdFbw9IVbXB2SNbWA0088JkTKjQv+Oqi468lVZIs52vU+9LL7t3sleW\nvXbqQsOs7f/c4c8pKHAjB7OYVhTz20kBPPc5FNZ+cFjdNX/PXQw3ft7TpRUsiTZYHVbYIMdpXqAu\nNPbWFercCpT6wKr9Dx6e9eLzgXg4K8/IB/p2dDplS4oxqlCCpnzuyuVTVHlq+39iNZK60L08g1VR\nB094JBR84mNux7w6rDxwoO/DJoueVHl/Q9/H7ilH2gNYngETvKQ5kvDzuRTo+8N8myRkAlnyC22T\nB3WSQhkD4+reK2O/yxIbbn1wWOHpp/rObqIYoyNmSWsixjzHmF6oqJucY5rDB6+e9QRM7znrhPWf\nhMu8rb/QwKPLDrjyqACO8wa39hvs7TcoCgsRVMEdYGbSWNKvXJec+FqQlSgH1+a70fUXvY9ZEmTf\n7tM8urSCRWvTy/beIMczjBlzgXKRfJWQDXmDHFJ7mTIPdKfV/iakzeJrq0Pj9FAwW7ZBZMgmMMwN\nIdMfbVieIOmd1EwY8E0+Njc872PMcR8jaXaTVQWlmYnXm4/BrhRFi0XaQc73oPLbyiVI2tyQsXc0\nZz3EhMp5KBZtxdum97wJYX45Rp3ntuwxwdPzfBfSSnrt6x1W2Q5lq/BArvBMlVi/S6qw1HZt5E64\nbE5yL1ykhk7X0fsLmbBi61K2cd76R3OuGzs03afz06UVLEp1ddm5KkwLn4oSjUfmhFVyItowlHDo\nN33gZBcTAF1Aj+klTvaINBfBbLlg9AxV5Ib0GBZpKkU7eD7Z16UTlhjbWOAB/V2VegjvwU7z59nU\nD109C6Il0Cmf6rGHnMo0P7L2B+ru9GsLfTW2gmS+66EYhCiUYAvMy8a/G0RzsDqo7diLvIcVV+U2\nD2WzznA922GhGx9OzoXMUd4Jl1XW4jC3hcQAYF1rl9ejcZQbHOfAQje4xg4WJNC5gAll6Z9rXTqS\n75poLKeLrpPrDsDAXMtNdXOrrp6HrPP+chT6urSCJUlMb3ES4yBmTJXu+AmO20dt8mKf2Y8lwnHa\nYHiilJQX7SBJTgqXUIGsmIAKJfJZMqiynTcp0H10D11bpMZrLYO+uj5MhcdyQdyD9oiYA2WdepnQ\nKiFEvGbh/EIHh1UQgoaT1VjENmgqQMNjhdHzC8GEQhQy74RMhGP3n0crjp36iTYnXY0V0nBPb6f4\nNDi6hMIipfVt8OjSjp0wxQopgAEUWsEC4LoyyenW92VzknufXp2nQGX6DDuwLmmdUfXIW2Jd8vGG\nir3RfE5FVxLR+gsJl969981gF6JLK1g46MsggsctprOWZVMLoQL0i1mNnZrKRvVKwHKK+Svs9124\nL7Xjr2GbiW+M2KnO3msGiXyy0BaNvyq7RMmxMZBpjDCrxmhqrrhmwT9PZUjfKbWmoXQdS2kOmDMA\n/fceq6lCJsJCvBOZDBqDKuFE3/t59eugCzkf5BxNtMn7yn0X9n3Kg4eyvpQ8QdnuHBqvOwCwBEpC\n6V1oC90PKF9jhfxKXosuAuPKhmt8oeEL3cm17scgAGD5u6B5lgnJoWvkvIz9fbeEizF2fJeBLrFg\nUdEEtqpK7Kl3VWPL4FWAaWgV/ndetANmS5stK20CYl3oqGmsqRNgVfv7+G9WOwjbsQfjIebXECwL\n/Jg8syr7hbtWB7VFziUfS6l74ca8DC8XxpLGBG4oaofajKJCR+BM+L2964Xpjvd52ypXQbIGdA74\nQl852rrBSaWxbS2yc7CUQaD9UJ/GtLwxknVuQnkxoTyLECo3oRGTH42bCE9vp9jbb3zektdSdYJC\na1QOfeCk0tjUCZ4JzD8XLhQ1Ru9WzgGPIpQJj2QF4Amp8p37/cn/RuC9BLDXYmtHmjljn+/TPLrE\ngmU6HLEqNY4x3BBzACFD9tzQczj8OD2D8lso3Feq9mRyigqXUIazf3Z3QvRaiMxPYTH8lBTHw31J\nMBKkOo3LJ1+K3B5g/mn6oppIyARCFGP+26YLtzVKeSgXo5Qr9GWFj4+2ivR77Bm8D/4z9wdNCBhe\n5wYYAnBKKlIDStQk8xPlNfE+UzsyF6fab2Bh+owvZ7zKrACudyooVCjf5aggOBnrUwyhFcgxAPBJ\npoANEpmzvyQyN42L+0kADLTIQTuRgw3/+277Wi4DXWLBoqKMYCz8VQIrjjGGELOj0753aoIJlyrp\nRTFxoEVCjqVFTsCE56XO/NBpIZTJTsWbSHuh0N5BXXMKZ61MlzsSoFjWNP3NT7Q8+IBfM0Z3YqIo\nS6uN1DuFdmfxs7QTLK2p0e4a1LvUCp8I4xmzzc8xVYWES+jwMXbw8UECRTyZkhcQo3e2YdqpZLzH\nResixAysH8WavkI5GD6J0nXxqLARY8elQZH2tRc+Fllmuhd4EnivXGuRpuueJimqpc4VDHPN1HdC\nO9zPY3nB086tXblpYxhYoUUti3CN1XzoMc5cdbkmRIFqfLJ/5FS/U+Kal9RCUNrggpVzfB+IbH1K\n5qxgI31CcCqh7HyuiUXDbx3To+eNmdiAoRko5MvgfedUFC2OClEES3daCYFT+pr3MzWvwZgEBU/N\nM0x7sedz4RACTqV5rN37ou9CPop+fynRsRMuMfKOd++PtACYx5UNST5zcDDHN4terhf3T/mnsv0X\n2lejQkVQJZ7DhYwM05Y5aPL+5xu50iM/DQt9/25jzI+J318D4OdhC3K90xjzE1P3KqX+e9hS7zsA\n1wH8JWPM55RSbwTwYwByABWAv26M+fWx/l1awRKigS14Bk4Qnbym6mbz7O28aFFBVAosxqOBfNub\nzNukvX+EmfQoUzgGT8/NDARVwsNSubDjCWIUPcMjrXIhKEIBBb2TaBEP4+Q2cbqvEN9dhIhhyACH\nowdLHOUWJl4nqc1lCZCEzJ/1jtC/h4gzLtJWQgcWfn9IE+LEhf/aZcP3UAqoHXSneP7OZOLnzaeW\n7BlWuGxbE8xxkX8/kO+QJcZjki00FR3rcl4oY1++k9g88XGH5ocLjKq0gQIXpZiAuVu0M3eOWg4A\nSikN4GcBvBG2uuOHlVLvN8b8AbvsJoC3AfiWc9z7d4wxP+iuexuAHwLwFtgy73/GCZmvgK3l8mKM\n0KUVLIngVxR/T6VJgaFdfAzIbupUE2I6PTPGCBPibVSlxuqgDmKH0Rg4rtkYPD03bREkTE+LQnda\nlMIldLLkn6c2ZywBDpXxzEEyn9gcx4Q/MRtpgstzm/i50MBh3kKrQIZ30pkki6KD3aE2el2e0Gak\nBup9VgE/QWwMY0KGTKbk4+LYZvz59O64uYmSSbtGjV9HValRPVhie9jgqOhq84SKiD28sDkvhbaR\nZCeVQaEVFjrxggmwxeKObxajY+ZzFfoMhIM7+BxdVMuI+WGeZ/R6AB83xnwCAJRS74PVNLxgMcZc\nB3BdKfVNc+81xpyw6/bhnLHGmP+Xff9RAEulVGGM6eP3MLq0goVTxRis1FpCiVVj7YQ+h8wXXCWn\njc6fNeYMDsH9E5DmprJM4aGrZ6P95PcS1lha7wZaS6/fTLhIoTtFXFvhwiqk6Y05xDmD6dnmJ/rA\n5zgvWlzJ4UsTxyhLjE8ilBpPjObY9CXzmxTCM4QLp1B7ElHBa5TuoEHCJCsbH0xC2kxTJzg7qrBt\nlHPQWyItZpW1uLpscJC1KLQtRVBojdLVgql3ygUCkIApe4798wgYIAAHw+aF3k3IHBui0Doeizx8\nFulhpdRH2N/vcqXVAastfIb99iSAN8xsd/RepdSPwlbofQbAnwzc/60AfmdMqACXXLDwkz6h5Z4i\nt9ArLDJqSrhI56GlDrqlqjRC9cGBLkKIqAcfkw/r0stnUt/3SgukCQCnyPE0lnjo6lnwxB/bdE2W\n+CzpuXRRB/ocgc2ZxVjkzlRfpFApUuPgXOz1gwTJwP0xvC/qHzBu3uFUzhQosv2YcKHfQp+p/1Ko\nkKOfhPsGAIcb4sKlLF2Qx37jtRfK1i/0DoU2vvqk1fQMytYA2OEwB06qBA/ktsbLNW3n/vPOsU9+\nl9B8nCeYI7TOuTl2KpgiGDAw412eh4w5VyG0G8aY193VDswgY8w7AbxTKfUOAG8F8MP0m1LqywH8\nOIBvmGrnUguWKYoxKmm3lydKEjD85C+FyhRycSiaLGT/XR1WqAqN07U1Z5we5sgPdt6pTtFkPNOY\nj8FCzHTLoC7CCLR8Ts5zmosxwrEiWHQfNxHypDsgzCzuxGShjAHXXXSSujK9xjPfKRpjkGP+lqk2\nY+aZmEmO05hfa4zJ8TB4biq7DuBsv8Fje8qhHlutZF1rJ6ipeJrySZSH+Q4nVYIsafHHtMJRZYuI\nHec2LPn4ZtEzWcZyhmg88vu5AmDM/8dzXuYEfzzH9FkAL2V/v8R9dzfv/Uew5Yt/GACUUi8B8E8A\n/AVjzB9NPeS+YHHkhYDTLIIOaQFBwmmwySnpsTI9beXgsPLYYXMYYZrtPHQLLXiJCkzPPkUnVHgd\n8kFf+eY5rLxw4ZhOd4OkIBwLpbVjMb3x8M8x85g3BRbxiLMYlW1YsElH/pxiUjEijXh1eL76HiGz\n4dw1QyTNj2PjyIt2ADPEhUtV9tGGrTNeOc3FaZZao2xNT6gQHeY7ZyIzHm/sOCftZYsvXF9Exxb7\nfgpjTq6T884f0d3LvI+nOJyTPgzgVUqpl8MKhTcD+I47vVcp9SpjzMfcdW8C8G/d90cA/jmAHzDG\n/Ms5D7kvWGYQMYSY6UYKoZ7vg0XjkFAhxOCCge3NEVacuMbET68S8r5Lpmw8ztjgWV64DMEaR+fl\nAhuujAiIrtG+01w+Zyyn46ICxhNHOAacxjKM2DtP9Bdpr5Q3MqYN+ucKYTDGEKNmwWLo0+r1MaSt\njJhApQZxXLToZ+krnFQ6givmsNa0FeaFtmazVaaw0Nq1sR1U6vRjc+blEELF1Hu+iHCRJrK9VRya\n/7kgY0yjlHorbHSWBvAeY8xHlVJvcb8/oZR6FMBHABwC2Cml3g7gtcaYk9C9rukfU0p9GWy48b+D\njQgDrEnslQB+SCn1Q+67b3ABAkG61IKll3Hs6knwzR+rL9L7O8D8JHFmnxetB90j0D9LgVyLXsJb\nwJQhmDRnJhKdOASa2RufEy7SBHURGgOX5KdMLoDpHdD1oXkNmUHGmMTYGKYwm6zW0nThxkzLGzMT\n0nO9mdEVkrPQPd12i7URAxCNvf9QO1O5VWMUDNwQkXoAnPO9dvPTZemXrfGCA7BChQdI5IkzbWou\nxKy2utQVrju/ixdkrgAdgB5CRWjMIQpp9sC02ZS/g2lw1WefjDEfgDVV8e+eYJ+vwZq5Zt3rvv/W\nyPV/C8DfOk//Lq1gUcp4LYIzOBICValHTUn8/5jzPUYUyy7xx0J0xVkfbiHOXIAhoyL4eB43HwP2\n88znsAMRlOaTuZFxss3Yxqa/fZGxcihUgu2KdxYylfnxjjjcAXI875AobbWV7QYAoJrSweZXWGgr\nkE8xtL8PfDzCNu8LySHHWDLp3aLz1inhRPNeVZ1JmL4H0AvD532+BjrN20TKB9izQ9oLEUHxd0Sm\n0E7i+7WBrk8hvxL3dfLxyGCVMZL3hlCU75SMOf8++mKlSyxY+syPABgLwShStyDlguBMlxYfaQTy\nWmrTq/mrGq6CbNQJWaTGhsT68E6FrTY97DJO0vziT3whrcudgrn2ImHzgXEhGQrzlTUyetpGhNlJ\naHs/lyQwAkmqngkyxsG1Nk6hpDoAPozYF/qqq64eS1MhSTUOMgttstTAOhLFFhNoRCRcvNZ6DvMe\nwOuUdAcLKcAk7E+MeVHCrDQJeeEs5nBKyG/WmYtatNFi2xZ4dJngRUsyfYUFC0WSAVbDOfRzERYu\noTnmfYxVepRlFohC893LdYqUm7hP8+kSC5ZhPZZQjkCIIYYECi/IhVXdQ1/lRMIlVqODFjMJlSPP\nc40rEmR8ISSqtBeLrtqsMx9iyomDWIaES6i2h4RLkVAzksa0OKllyGx+eV3vXl5/RTCO82ZNE5yL\nVhlMeQvYnAIATLlGnl9BoW+5mixDzWROPgkRBVNQ/7nfhIrNjZXhDc0Bj6LiRemWGjgurZNYvjOO\nxhDz6ZFmws2qfIyhUGlq62yfHPpWc7EAn4k3fwFWqBxkgE5of0j/xVC40DOmNNnQnuJ4bNyUORVV\nxoVKKCH0ImSMej7kxzwrdIkFy7hz2p/4xYlZ5gHEimdx4SI38WadDUwWvpiUECpHjN9sW4seS4WQ\npGksxCzoWRzEcin6SiayUAlmGidHnfUwMBylIOJ7khTzG4WKcvXaC2iIedF6jfI8p9Neu4myeSxt\nA1SOybUNtEqRJ8onSZKfY44pI4Z1JddOkTYehoXGL/0m9K6WGl7L5W1TMMhSA0fOD7LQBrfc4eNU\nwMvPSSSNRZLxyDSJl3d8s3BzUwFQeHxlw5ALbaPE8sTgMG/tfDsIHa1Sx4GmhUtM8PK+RgWx+55b\nH3qCJlB24D7dGV1awUJ0N22oUxQC2+PPv+iC5vfxTS+JhMtFKC866Hz+LF6a+GA/XFKWKFQRkzNr\n0jhCZgnqw51SVYbBGu82ze0rzSswDM+evJcxxA4I0mDbqIEg4jRWYiDWR7qPE2kR9M66iK7K9cd2\n6upy3rOsiUzh4UXrosUMFtqG5q8Oao+wfac0Vq74bvtVLitdesFCJM0+U4WrqtLeUzaWYZ61HZT9\n+nY6CwuqF9XlTk/2BGtNChQxtm3tv+NSYdvaZ0gG3qsWGfC3HPz/7X17kCVXed/vu31v98zszGh2\nWYldJIJkLFzmkUqMIlEVk/gBtlCciFA4KC4nAaegCBCTxCkHzD/6B4eHY+QYyrIssC0/AEeEsooY\nJBSnnJTLEiiEp2SHBWSBIiFW2tHO7Mztvrfvlz/O+bq/Pn36MQ/t7Ow9v6qpubdv9+lz+nF+53sr\n6WIdpY0lU6s4tx0XlVQgSek9J3E5ixGwGLG3fxpH43oJWumrXu33NaDqyaHpemtC3Dg3xNF4ismM\nkM0YOU8bfI0MxtNqtdAu7HViKhJLWs8rfa/cwNKucw1H9SJZvhxytTHUvNKq9jpXstLkYs43ts9t\nhMmMsDyaKcllgnhgWG9jAmxMymloNc6VS/IAC9EAawnj8cR4jLkp+CtJYJVE1kWcfe6RWxhvr5jN\nLsi8Y88IArEotD1s+kV09dSaZOTl1/74LrQx0kcuZ9ZjpMuTglAAYD2tE4r7kMok4kuBoqtDStW+\npjTz+qUUVYysfkW/X6ghrArC1E7XrXClrzI5FaQSGbXeYg6kdtWuDfDuxNZZ9rijaJt7vca5iamQ\nQl+IhkA8Kj7nPEU2M3muDgJFX202a6DMDLyv52lwBACqdgagvE+yX1PJiSyN8N0nFpAeS22p4QFO\nLJprvRobghGvsI2J41wxMKlgTKp+ky15LS6ll8eTaqS+W99F+u9TYRfncNSROpas5vyxz+QyLwjE\nouAaswVZGtXE5raSxC6p+AydbeQSx7MiTgDolgA0dNbaLK3nBJPVsK/Ko0DbewRuZUIAhWNAMjSk\nIh5s66n0tUoIQiprsaRTN+SynVdtUn6vnLIvO8i3VEMR4JcSxjkjzQfIeQKKkn2ZPnyLE3eSS6fU\nGRtRk7g8Rl+5T8+E15LcV228ToZV6dIHTS5PPLZksiPnU1ujJcKzZ2QrUg6KwEkANtdYGUhpvlNN\nepFI/TPrsbcq65PfWyw88Iq24zqpuHZGg2dWBcZMz1hK/gsNc00svpdbtrkxHy657KTuuvvbTsgl\nS+sG9TbUVB9pBF1AC6iWu/W54xarUscWoX/T2xaj0n0XqH6Wl7Z0cqhfc20PaHL11BUzXQnGLR/Q\ndZ2EbMe5WT3nbI3HVmKhKLGlieupSfS4uyLw+8K9Z4LU85z0wcLQSGSyGNhxfjfHdrMwLANK5RmI\nPRKL7rc8X2LU384zHI2N9LIWD3B8IUcSkSUNn3tyKbXIf3MvpPxxhjPrcSWHnNQVeipd9MYMaaml\nLEpWPltNkvFeFjLzirkllp1kGnXtED530ya4k4P+78YSNL2oQ2eVKJNu5klc7VaFLAp4eaKWfWOQ\nbcPRDOmUsBiVROvzbjMwktVaQlb1Uartyom+LPq0EHGh5htPzb5ZGhXXtXAUsAXN9Auv+1ArmewZ\nlzYuuxA144xzYLhYqsI8+/VxL256Jlzjt1GbluPptHckKrmp3m4JYNsuAAyhUHFNJaaqVkfIkaB8\nXnTLKxOkU8IZMBZVIK/2MmtzNnAdVbJsYFRjOXBiiTHOIxvvoomjfB/TfIDMqiEN8Qys67cpILYY\nETZGs8JFvrhOqCaD1Sl+ioXR8sR6VZbjcq9DwN4wx8RCtQlIw33IXFLpiupuKtRV/LdShG/lW0k1\nk9WN6kXKc+dYmUR8iR1dcmlTZQD1SatpX5k0siOmBK02MgPmeumX+SiAdQi5GGeEYgJ0jLEyEWzJ\n9VPVFuX8XZOB67lUG4NIJEPlzjqMkXNWq/Pex9W4r6pD7p2vYFtTXEWN3CSmyNoBFuytGitS14sg\nNxbH1+/aOSy5A6iQSlOAZ9P9kEDH7FiK7XyKk0tAWfLYEIdO/ZJ5bFsmeSWs2hVFyeOCXGxaokr/\nHYLTRv6+WSX2K/aEg/H+4sdsVkbINwWMCXykApQvVFf1x9pqukGK8E0eQF1HrIMxtdQi/dOrW8mz\nJJ/b8i3pvkrAmbuy9hnJZdLwSXSVCX15gnGh7qCKtCJVDwvyVStNfU1dia8PfOSiJ5Ocp4ZYRnbi\nHMaYcVkoTafFaZpkmkiuyUFD+uCSih6XjtHwEUGaGm8/E5+RF9dWrqkma90f99roz/r6Svu7SUPi\nthsnpgpnmkaYHh8jnU6seq0kl2r+sBJi0E8iwmRWlVpgyUV7K/qkS99z1ef5mRci2G/MMbGUwYN9\n4E4AAj1x+FQD+kXVpKIT6yFudmXVdd91QrwFqxeurHydSaQsOuYOptlwXJm4W4LOXKTOuSvS2arO\nGjwpjPxnMuP6u3VuWJlYi/MntgCV06Zcw81khHil7GMxuXSsoIVcjGeYmsxEaoliYFpdNTdNrql7\nfxWa7DCuDaxiI0CVNN28dLK/JAzV7Ws3cq0m3FQegfo66TG4CxKB2OOE4CpjcaQWn7rX3Kspskwl\nG02lwqlZFY3zAZ63bNrRNhcAhRSjpZm12Ny7tQRWSptW+lNZoNg+mB1K1WzmPDNA9wJxr5jtX9r8\nCx5zSyzaQ6PP6ldP2totFqg+kE1652LSs1mUdf0X/bv7v+bS6bg/CqloW0MhdazMgJXyYY6THDHK\nYEOpPlkZZzwsyDJO8sZcaV3Xyvc/TvJabIbPJiTXJUujSvLDoq2YCkLW10rQpEoC/Flwc56AiSrq\nsJzNdRG1EuBXxbnttz1LTbFMWlLpO/FIDJGgMKgrFZjuq7sY6purrDK2DpVQRdXW0eaT31s0+5wU\nRaeQywxprtPvq37mpc3lecvAWjbAegYsDAlH4ynOZGWsVdG+B+713mvc0UGAiK4H8GswUai3M/N7\nnN/J/n4DgC0Ar2fmL9jf3g7gjTBeEL/FzLfY7R8H8AO2iTUA68z8t4hoBOB2AD8Ewxl3MPN/bOvf\ngRILEf0CgF8BcCkzn7bb3gngX8L4/v08M99tt78UwO8AWIRJ+fx2ZmYiSgDcAeClAJ4E8Dpmfrj7\n3NYo7VPZeODznnJTd7TtL/u5htgmQnFRWc2PZthAqUop9Nct59Rt63Fuok4uTeiaWBJnYnHPqwP/\nJI7GVYGZA8wEoj17dKLJLI2ApD65+tBEKMPRrDEHFJM5v7axuBN127natvkkWnfS79ueL5eX9txz\nF06FCkjXGNkceQtmyf5SMM5372sSsqePspDyZSZO08jGpExhpA7jMbYQlTVcRgPjbpzmVIspkgj9\ntZixnhkJZj02sS6AIS/pgw+HmFQiAB8C8EqYmvWfJ6K7mPlBtdurAFxt/64D8BsAriOiF8OQyrUA\nMgCfIaJPMfMpZn6dOsd/gql7DwA/DSBh5pcQ0RKAB4noo23z7IERCxE9F6Z28iNq2wthKpq9CMBz\nANxLRC9g5hzmwrwRwP0wxHI9gE/DkNAZZv5+IroJpibz67ALbDgqA8AvgTTlgnKhJ0ONpsnD95C7\nE6JW37m6efdFkYmhqa8yeWwmcaXuxU7RRrA+1Yr0SZNi2alqtU2fmmsnKoquujJNGXiNC3JpX9qJ\nJNEHrnSpj9eLlspvKh+au13gsy+47WuVamZX+DqS3iWVwivRo8LTaLrWuoBck43nEQDjfIoTS2Kg\nN+cSY71Wj40GjEsXzWJIyh4vRBHGuXFnl1iXOJ7hydMLpi5Oy/07X9LLPlaQvBbAKWb+JgAQ0cdg\nKj5qYrkRRrJgAPcR0RoRnQTwgwDuZ+Yte+yfAXgNgPfJgVba+ScAfky6DuAIEQ1hFvYZgLNtHTxI\nieUDAH4RwB+rbTcC+BgzpwC+RUSnAFxLRA8DWGXm+wCAiO4A8GoYYrkRYJeaZAAAHBJJREFUwM32\n+DsBfJCIyF7QRgwGVdJompw12pILNqGLXPqQiQtdw6SqQioLMkmQmM5uXKze7aSyoSK5NxF7V3Zu\nXik9jjaCbVPriN6+TaoTUtH5zSTVjs+Wknr6pfvWBrcUcdGm9VrTasC+k2mtrQ5JZTdoG1uTbUkX\nmwPKaHottWjJRlRLosb0Zbcu2t7FpKzbeQLAdj4tgjIlQ8NCZNLxJ9EMy6MZVuMcx60LnCl3HBUE\nc0lMWNgeQGJdBF3k0oS9FLx7BnE5gG+r79+BkUq69rkcwFcBvJuIngVgG0ZV9oBz7MsBfFeVKb4T\nZp59DMASgH/LzE+1dfBAiIWIbgTwKDN/iagi3l4O4D71XS7GxH52t8sx3waKkp1PA3gWgNOe874J\nwJsAYOnS48X2wnBq69Nr1cFeVjHaTuLTP/uko6Y2tF5fPheuldaYDZQ2El/7vra3zg2Ng0Ditxv5\nUt77VDc7LS7VJnX0vd66LztN4LhT7LXtpoDUncKVWtquu3Z2kAWHD0MdD6IWJG3tNqnvNNqqOjb1\ndToZYKMSIEs2azPjxOIAy6OZMugT0twY9tO8lF5MRvAykNI9x4EZ0Gfc6jjj4DgR6Qn/Nma+ba9d\nYOaHiOi9AO4BcA7AF1FPOfBPAXxUfb/W7vMcAEcB/C8iulckJh+eMWIhonsBnPD89C4AvwSjBjuv\nsDfmNgA4/oLns2tw9ZWe1Z91ugrZXyf0k8j8piSBaQOhAPWXUAyshbTh0XMvi9++NWY3qbLcAk9N\nAWE1e48n15L0YS8rOd+xmsx9fXczHrSpxNzgPN9qeieLhTbbUpdtrus8u5nkCnLZBZk3EYZO9tk2\n8Wv1a9O+Gr5ro++HlAqQ/un4pTKGxpaLsKldksguJqIZNiZRJTtCEjEmsxnW4kGRMiidmjG7rvIV\nu2UPojzPOM3M1zT89iiA56rvV9htvfZh5g8D+DAAENEvQy3arbrrNTA2a8HPAPgMM08APEFEfw7g\nGgDnn1iY+RW+7UT0EgBXARBp5QoAXyCia9F8MR5FtX6zvpByzHfsRbkExojfCZ1QUbyNit8SfxxF\nE7kAfs+pOJ5VSKGPKkWTyopVBenCXnqlvqyCwsTTrEKYDX3TRl59jPRJdPGuxKTdXncjrbSpTHyq\nLU3cfUjFhzZC78I498dW9IF7fVz7SJLkNRtT3wmuVVJpIUKpiuoLfHVdmwEnc7TH06zPNdXlENxr\n4kqaupJr+YyazA5ie5ECbdmsnnLH2MxM22uxSQFzYsmUUPa9P3o8gNECLCvbXtfC4YDweQBXE9FV\nMPPfTTCTv8ZdAN5m7S/XAXiamR8DACK6jJmfIKK/AUMiL1PHvQLAXzKz1hA9AmNv+T0iOmL3v6Wt\ng+ddFcbMXwFwmXy39pNrmPk0Ed0F4A+J6FdhxK6rAXyOmXMiOktEL4Mx3v9zAL9um7gLwL8A8BcA\nXgvgT7vsK+a8ZfS66zbaJFG0kQvgX0k22V+aHlixK5SqAPnFX/MeUOTSQ8xuqyAo55exADqfWl4c\n34SKZOG8uHqy2AkRNcV8+LzOasdqlY3jxNAHaQOpuJO/71567U6ecUuBL9/90AuD/YZPam2zFfo8\nzdzjgXa1WE0K90jzhd0wcZ0YJpZYGAtWYln11IWT9C9pXkbpn1iy5SeSKdbT6gKtdu0zrpHLfoEY\nu3aQ0bAq/7cBuBvG3fgjzPw1Inqz/f1WGAenGwCcgnE3foNq4hPWxjIB8FZmXle/3YSqGgwwHmi/\nTURfg9Ev/jYzf7mtjxdUHIu9OH8E490whRm03Im3oHQ3/rT9A4xI93vW0P8UzIXpBZ38TyZnLam4\ndhGXXDRc6UXar+yjVvs+6EnXXxa1Ti6V2Br0W0G2kUNfI2yffdpSrviKLPlQkSid7dIPVy3jU3Fs\nno2RJVVPs52WnG2c/B1y6SPJuaVydb8rz90uVF5dkJiXnewv/Sv+20WMOHz0sef5SGWovNI2zxrv\nRNEcCMHIfmeGUywMRSVGOJtJ5mObAj+qXqckMiqx9Uzyk5l7Pk6mRd0kOUeWRsg2Blg6m2GSRNiE\nmQvcOKoLBcz8JzDkobfdqj4zgLc2HPvylnZf79m2CeNy3BsHTizMfKXz/d0A3u3Z7wEAL/ZsH2OH\ngzbHUaVoEFB6UvkmBt/EpicUn2rMxU5yDukEkE3w6bndF9zXn7aVaV+JwjvJOqoq3b+dqBN80oj+\n30U2FUnFmQD1ynicm3EW2Y0tcp4gn00B1BcP7rl0f91nYbeQFXMX3PvkevBpFa/uT9P9byL6om58\nUo0nknMA/W1FvuqVcTwrXNA3Uc/1JXaY6fExYEsfmyzJwCXxDGkuxEKVmBdRk63FMIGUVuIxCVAJ\ni1GpDpSYF6CUKjIMayW49wJi3heJ5TDgwInloDCbUa2Otquq8b6kCl3k4ntRtX2gS3+rc1TpbMG+\njLXSR32eYruHKGQ8XZX2+mR+dW0jrqrIN0ZfmdumCVnbKKRN6b97D32k4uvrdDJQKV3sfpFHt9IA\nd0L1uWHvZZFRpGFZzVqfEx+5+Pqp+9WGpj7rInJuu0B/YmlbtGjvRLft4s9mST6xZOr5jPNBofKa\nzAzJTDy2lzV7ayXg1dSHAYApts4Nsbya4anUkMsoyzHKcmxBkUvAjjC3xJI7+nM3GAyovjy63rvP\n3bJLcnFT7Xetas2+4hFTJxXXgO0jPn1uTZZivwH6kUvlGrRUauyaXGJnwvW15V6XJhvFcDSr5Iaq\n9aGFVATjnJDmhHw2Rc6TxtScO7IJ9ZBa+johZGk1J1hTe33612Q7kySmbilt7+IqLm1zTc9b2zPQ\nxxnBZ3PSnyVVS3YsxZkjUxyNTYG5tRg2OWW13SSaFcb+yYwgmZQWLPGMc8b2ZePi+k6SCKPM9HNp\nIzPkku2PezLNULR9sWNuiYXVu6hJpbLCU4XAdISySyxAM7m48CXrc1eSPnVBH/he3NSZKEpSQYVc\n9D4a/QiwKnFotVVjNLZjlPdJLFoP7xuf/l6ZjHxODDZGyXd+wOQGi6L66yCFydpW+/oaNBnz+8Ln\nsaRVfzshlyaHAh+8ixX1zPjUrtI/32fvOZyFkKBQtSlyEZuLObBUZ8r1SNMIW6tZUeNlnJeVSeUP\nMFH6pQ2mfC6W7TM1zodGcj25hTSN8NTGAiaqnzphbEB/zC2xSKZR0e22kQqAwu1X0PSS+4z6sr/P\n7bXJpiPHiLFepBW9X5uU4uuDW8t+2+m+Tw2ipRvfWJsmnS67ij6PTCTSjo66l/P7irKJaqTeONXJ\nxbEzxPHMGoHNfhENgXxqP48QDYZYjWdYiPpJdD6VmO/58NWY1/u32Y00uejr27YwkH1k8eSD9vhq\nIpAmeMfYcC3cRY6Ge42bMlZIuxJJL9LL9pEpxlMqpBeg3TlD7vvxhRyFLe3KDQDAU/Fi8fwEUtkd\n5pZYBsSNE7qQiq6LvZ0bchEbjFvXXuBzSdbbi3O0EApQ15XXdOd9Iq7Vvr5yv95jHXKRFPdt7s5A\n1ajetVr3qbfE9VOnoVk5Uqb3OIM6ubilAioTkUgnjqQSJ8YzTJJQJhEjjhZNWpe8NNJGNEISZViI\nzH2XhJkaTSUSXPuLayPSfWlDkwTnu8Zd5OJu95V29rXXhEZJ1CFA3wJMYml8WFqe1BNjxv5FhZDV\nVpGayHiNjfOytIS37yo1/2psVGRXLlv15MmtSnxRFu/fFEnMGE6eGffxCw1zSyyA37XWJZX6w8nA\nchnJC9QNt00uye55m1yTNYn4HAB2oyZzIfVc5BySEFJPQnGSd7o7y35iW2iCS6K6ep9WgejA0KNx\nmS8KoAq5FIbcFgnRbChT6wupLK9MsHJkWiQ3jGgIYgZPDbEQMyIaIh6kWIvNsyBlcH22sqZJuZLt\neQcp57v20c9t7dxO/3xefuLhpaXgrn64wbRNxNNX0vF5sBVaguXSSy9rGKdscyXm9bRUh43z0lNM\nIKRS1neZYXlknpETiwPg0iketosbb+btgF6YW2Ih9T5VDdp+UpEH1fzGSNaysqa7ikmQCdZHKj4p\npcl+0Ob66a5i9YOvJ2rf+HRszGIEpFbDJ+oFWDVUHJsMuAu1J6RdcpG22qAnFJckl5ZNrRYxypb6\nckMuj0/LcfpULgI98bqkMhzNsBgZT6F4wBhQZKSVaWZqsuQZBhQhiWYmFiKJijK4TWPM0qhUv9m8\nXIU6x5VUfLYsj8ebbltLKT6ycMfadJ6m/reh6Vnskkzdib8J7rN5BlzYNJsIVJ9DsGVr/cjzcmKx\nuq8mldXYtHs2i6yLMhc5xhYixvpShseXJwXB7Af2K0DyMGBuiWW/0VazomZ07pEVuTg+q9pVutA3\n8FD3r1iZbQywidirOtkJ+tp+mtCmqkuGbALblLTSZlzW9gghlbokpjBtjlmIk2oaHO10UO5UVdt0\nOT+0natGjj3ji9zz+aRhN01OH/TZ170XjYSgqqK6WIyqWZfdMbW1OUyjIpByPeMiBYxILfGAa4GU\nguWRsbcUEf5DYD3J8MQ+aAjmDXNNLFJOVx7cpSNTrBwxUbmLVkKRCUj830V95Or7fQnu9P9WV0vP\nb256FN2OL3+T7NemypCkfiKZpVMTJLpxNsbm2RhLZ1NsIcZGYlxcN84NiyAyN47GPXcb+uT1KtpS\nFSYBY4wd58B6SkUpYzm/lgybJjEfqbiOGTPOjaSyYOvjRjFm0xxpPkCaD7Ce2mtl08aLesT1WtK1\nZNyJsPJ9B5M5gNZMwy58rttd0fu+57ZtXzlPYxob+383mZzHuXnWXHVek1NEQe5K0ts6N8SGfZfX\nM+DEYoS12BCHSbNfSi4bkwhn1f1YHuVIIrKuyyIx9yuEF1BibolFcoUBVYKZTga2uh4X5AJUPai0\nnt+N7XBXsDtZsYr3k+9F0kTlcwjQxNPm4isEA6BCKqONqQkMS/NKjfR1tWrezSpX0DTJ6HGmaVSp\nMGmy+phr7ZKKwEcuri3C50penH9GyHlqqkbaAEkmQjbbxsYkwnpm7v3W5qhS/tmXm81HKnuJxtf9\n9tlD+uRR8xJAU9BmWnVt9qGLLHySu2/c9awWJmbLqGfrxvqma+e+F5sQR5Ac60mOMysTPLaW4aoV\nxonFqIjUTyKpElqeS9LDpDlZKccQzFrcO9V9K4gZo2w+SGpuiWXgzI0yWRQvjiUXDd8DX/ymXuou\nD5udqJl8L6r28a+0nTHilXL1BqDimSb7y29CKlLPZTiZYWkjw9NJ2b4b5KnPuRsVj5C4mzVa2tSe\nYcamYV5EH6lopwFNLq4tS5OKK60ANoULT4o4lmy2jXw2RZrHWLeEJqQibq6jjWmRTdqciGqk4qLt\nurm/xfGssDctRsD2cFqTGPWx7qLGVUfp69JGSPrYtjEIfHYfv9t8N8z7VSfrrj5UftsY2HxjceFp\nuLkxwsaxFOtHpzixVKaCGQ2qRv3VOLeqMrLSqiEYtyRyQDfmmFi4iPKV5HejNC/SOmTZAGvH0ora\nSCAPtq/mfO2h7yiyJNBBiyK1yDkE7mp5lOYY2YlXjIKTNMLmStw6ybmZZEdpKa1IW1k8LOwvegXb\nVPURaA6w9Dkz+AJFC9LzZCL2uVtLGnp9jkpcSIukApTSKGACJIdRYj9PkM0Ym5MBxjlhOhlUkiSO\n0imWNjJM0giTJMJkZdjrevtqy/sg/a4nIi0dJ7SatM+iJk7ySsbgNgmgy57RRC61cTjbm1ImVSS8\nBvJsa7cYd8ZYOlu1kaVJhPTRBWxcHmPr3DbOXDbGySXjASbqMcC6nRf2lwGAGZIIBcHsB2gWcoVd\n9Igjxtqx1Hg/JTk2EkMwxy7dBlCmCVk7ltZeJK0Skv2avHmQoDbp+HTe6ZRqgYBNL79kYp6Ij33G\n5eo5ps6U33oiWF7NsIkYW/b7JDYTpbTRVyqRYMZi3A6a1Cu+VXKWdkeuu9JTV2qUQjVkrzNQTtgR\njRAPFsHbpsTP4vL3Y3F4Bssjkx13OJoVeawAIEPkJZWuKpEuwfh+A/wE7SOXYv/EnzfN3cdHKvq5\n7QqQ7JLGffE62u7iphXqQl9nAen/5tkYW6sxRmmOpQ1DMJJC5enTykXssjGMipUBRMr2QjCkUsJ4\nBnZ2I8DB3BLLcGBSaZ8Zlisc30rIuDDa7y2TWZJUiSVN/Tp1d9Lp8gzzeTlt2Oy3xUudVH/3ndeX\n0l23JeTimyjlOJ/0IU4PcZIXwZRabVPpe4PnnKBJZeg6LOj9fZKQq/6rtJnYCppx6SUU0RA0TcHj\nTQAATVPEg0WsxltYi4dFgCRQpo7ZWo0bjfVt44o90ttuUFuoJHktg0HT/kCdBHzSRRNqEqbqhw/i\nfOBTSbapl+Ucfa5XnOTFO5HFQ2zBpmPJSim8qt41WZKFXIDcJq701MwZXXhSBhFdD+DXYDp/OzO/\nx/md7O83wNRjeT0zf8H+9nYAb4S5AL/FzLfY7e8H8A9hLs43ALxB12qxhcEeBHAzM/9KW//mllhG\nA+DKFcbCtqmLPRzNCmO2wPdAN8WnFF5HcVW895GQm9qiy7Dr/iYqvKZj2lQTbqJNaUvIxV3ZutUP\ntTQhvwuprCXAuLBNmpW1K6n43KFrhOIQmntcWyLMtnY1xonpqElSuABsbwJnnjY9X30SCytHsTLa\nwEJUBkjK5A2gUrvHJwn4yt/2QWJtIHKPFiITJCrXVeKoZELuWpjoc3tLNDv3F/CTkEsaNclc9vUc\n2xQnZj5z4XG4U7gSYkV6QYxJEmHpbFYmfswYWRrhydML0nNUycVE4os7ssS7LA4vrDgWIopgim+9\nEqas8OeJ6C5mflDt9iqYQolXw1SQ/A0A1xHRi2FI5VqYC/AZIvoUM58C8FkA77SFxN4L4J0A/oNq\n81dR1sFqxdwSS0RlQJR5uOq5wNK03X1YJhTtyioPtk6sp1/KiieXx5ffZ1w2qOrWVzpqRLgvuy+7\ncTolYHNUIRfZ34Vr05BtS8uTglTEPXOcExamwNhOGlp1I9em0rZHhab7kAwZkoW3L6no84nBWpcy\nEC+/JGJENAJn6+BzRiFI2RbiwXOwMjI6+LVkWHjHFdezp4pQE4tPHei20yTpAmWQrj7WfdaazuPa\nnlx0VbrsY5CvTPAthOKPIfLng9PnqzwTDZ8Foi7eWo0rdpfCe2xjZANlxfNQjPYmA7ImlXiwWGv/\ngHEtgFPM/E0AsOWHb4SRJgQ3ArjDFvy6j4jWiOgkgB8EcD8zb9lj/wymPPH7mPkedfx9MBV5Yfd7\nNYBvATjXp4NzSyxf/8rDp1/7/J/96/N0uuMATp+nc50vHPoxfci/+dCPqwEX47jO55iet9cGnlr/\n1t2//8l/drzn7gtE9ID6fhsz32Y/Xw7g2+q378BIJRq+fS4H8FUA77alibdhVGUPoI6fA/BxACCi\nZRjJ5ZUA/n2fzs8tsTDzpefrXET0ADNfc77Odz5wMY4JCOM6TDhsY2Lm6y+APjxk1Vz3wEgfX4Tj\nDUJE74JR4fyB3XQzgA8w86Yx3XRjboklICAg4JDiUQDPVd+vsNt67cPMHwbwYQAgol+GkWZgv78e\nwE8B+HGrRgOMNPRaInofgDUAMyIaM/MHmzoYiCUgICDgcOHzAK4moqtgyOImAD/j7HMXgLdZ+8t1\nAJ5m5scAgIguY+YnrJfXawC8zG6/HsAvAvj7YoMBAGZ+uXwmopsBbLaRChCI5Xzhtu5dDh0uxjEB\nYVyHCRfjmDphvbbeBuBuGHe2jzDz14jozfb3WwH8CYz95BSMu/EbVBOfsDaWCYC3KpfiD8IEL3zW\nqrzuY+Y376aPVEo7AQEBAQEBe8fOswkGBAQEBAS0IBBLQEBAQMC+IhDLPoGIfoGImIiOq23vJKJT\nRPRXRPSTavtLiegr9rf/bNMvgIgSIvq43X4/EV15/kdS9PH9RPSXRPRlIvokEa2p3w7tuJpARNfb\n8ZwionccdH+6QETPJaL/QUQPEtHXbJoOENExIvosEX3d/j+qjtnRfTsoEFFERP+HiD5lvx/6Mc0d\nmDn87fEPxq3vbgB/DeC43fZCAF+CMYZdBZN7J7K/fQ7GE4NgUiS8ym5/C4Bb7eebAHz8AMf0EwCG\n9vN7Abz3YhhXw1gjO47vAxDb8b3woPvV0eeTAH7Ifl4B8H/tvXkfgHfY7e/Yy307wLH9OwB/COBT\n9vuhH9O8/QWJZX/wARg3Pe0JcSOAjzFzyszfgvHOuNamVVhl5vvYvAF3AHi1OuZ37ec7Afz4Qa20\nmPkeZpY8N/fB+MEDh3xcDShSZDBzBkBSZFywYObH2CYVZOYNAA/BRFbra/27qN6Dnd638w4iugLA\nPwBwu9p8qMc0jwjEskcQ0Y0AHmXmLzk/NaVUuBwqIEltrxxjJ/WnATzrGej2TvFzKJPPXUzjEjSN\n6VDAqhb/NoD7ATybbbwCgMcBPNt+3s19OwjcArNI08nJDvuY5g4hjqUHiOheACc8P70LwC/BqI0O\nHdrGxcx/bPdx0zsEXECweZw+AeDfMPNZLQgyM5OuwX2Bg4h+CsATzPy/iehHfPsctjHNKwKx9AAz\nv8K3nYheAqPb/ZJ9oa8A8AUiuhbNKRUeRalW0tuhjvkOEQ0BXALgyf0bSRVN4xI0pHe44Me1C/RJ\nkXHBgYhGMKTyB8z8X+3m7xLRSWZ+zKqEnrDbd3Pfzjf+LoB/REQ3AFgAsEpEv4/DPab5xEEbeS6m\nPwAPozTevwhVw+I30WxYvMFufyuqRu4/OsCxXA+ThvtSZ/uhHlfDWId2HFehNN6/6KD71dFngrEd\n3OJsfz+qhu737fa+HfD4fgSl8f6iGNM8/R14By6mP00s9vu7YDxV/grKKwXANTDpq78Bk0ZBMiAs\nAPgvMEbIzwH4vgMcyykY/fUX7d+tF8O4WsZ7A4xn1TdgVIEH3qeO/v4wjLPIl9U9ugHGdvXfAXwd\nwL0Aju32vh3w+DSxXBRjmqe/kNIlICAgIGBfEbzCAgICAgL2FYFYAgICAgL2FYFYAgICAgL2FYFY\nAgICAgL2FYFYAgICAgL2FYFYAi5KENHPE9FDRLTvGQOI6KdtRuEZEV2z3+0HBBx2hMj7gIsVbwHw\nCmbWOaNAREMuk2vuFl+FqRX+m3tsJyDgokQgloCLDkR0K0wK/E8T0UdgUsg83257hIh+FsB7YILw\nEgAfYubftBmXfx3AK2GCQzOYeuJ36vaZ+SF7nvMzoICAQ4ZALAEXHZj5zUR0PYAfZebTRHQzTO2O\nH2bmbSJ6E4CnmfnvEFEC4M+J6B6YDME/YPd9NkxKm48czCgCAg4vArEEzAvuYuZt+/knAPxNInqt\n/X4JgKsB/D0AH2XmHMD/I6I/PYB+BgQcegRiCZgXnFOfCcC/Zua79Q42q25AQMAeEbzCAuYRdwP4\nVzbtPIjoBUR0BMD/BPA6W3P9JIAfPchOBgQcVgSJJWAecTuAK2Fq5xCA78GUrv0kgB+Dsa08AuAv\nfAcT0T+GMfJfCuC/EdEXmfknz0O/AwIOBUJ244CABhDR78Ckbr+za9+AgIASQRUWEBAQELCvCBJL\nQEBAQMC+IkgsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7iv8PZgt3\nsC/XeNkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQZFl+1/f53XdmVmVmVVd3Tbe6p2c0M7sgLUIKKSTZ\nOMwrsIRYkMA2yJgAyQJ5jRTGgWxABtsYUISAsDEhCT0MGMk8hILgIYMUEmCEwWglrYTA2l1J7OzO\nTPd2T/WjKquyKvO+Mo//OI977s3M7h5N78xA5zeio7LzcR/n3nu+5/f6/kQpxRZbbLHFFlu8kwje\n7QPYYostttji2cOWfLbYYosttnjHsSWfLbbYYost3nFsyWeLLbbYYot3HFvy2WKLLbbY4h3Hlny2\n2GKLLbZ4x7Elny0+YxCR7xKR/+HdPo73IkTk14jI7Xf7OLbY4t3Clny2+CVDRF4TkbmInIvIiYj8\nAxG5YT9XSn1IKfUn36Vj+xoR+efvxr47x7Aw43MmIj8rIh98N49piy3eK9iSzxZvF79ZKbUDXAWO\ngG97l4/niSEi4Tuwmx834zMG/hLwAyKy9w7sd4st3tPYks8WTwVKqRz4W8Dn2PdE5K+IyJ8yrw9E\n5O+LyEREjkXkn4lIYD57TUS+WUQ+Ziyo/0NEMm87HzRWw0RE/oWIfJ732Q0R+dsicl9EHorIt4vI\nLwe+C/j3jNUx8Y7nO0Xkh0TkAvi1IvJjIvJ7ve21LCYRUSLy+0Xk34jIVET+pIi8ZI7jTER+QESS\nJxifJfCXgR7wkrf9bxKReyJyV0S+1nv/N4nIvzT7uCUif9z7LBORv2rOdyIiPyUih+azkYj8JbO9\nT4vIn3qHSHaLLd4StuSzxVOBiPSB3wF8eMNXvgm4DVwGDoH/HvC1nf5z4MvQE/P7gD9mtvsF6En7\nvwQuAd8N/KCIpGZS/fvA68ALwGcB36+U+jjwIYzVoZQae/v5ncC3ALvAk7rlvgz4QuBLgT8EfA/w\nu4AbwAeA/+xxGxCRCPi9wDnwb8zbzwEjc9xfB3yHZxVdAL8bbTH9JuC/EpGvMp/9HvO7G2ZMPgTM\nzWd/BaiBl4EvAP4js98ttnhPYUs+W7xd/F1jWZwCvwH4sxu+V6FdczeVUpVS6p+ptrDgtyulbiml\njtHkYCf0rwe+Wyn1E0qphVLqe4ECTQRfDFwD/jul1IVSKldKPY5Q/p5S6v9VSi2NtfYk+DNKqTOl\n1EeBnwN+VCn1SaXUKfDD6El+E77UjM+b5px+q/mdHZM/Ycbjh9DE9H4ApdSPKaX+P3Oc/xr4G8Cv\n9n53CXjZjMlPK6XOjPXzFcB/Y8bjHvDngK9+wvPcYot3DFvy2eLt4quMZZEB3wj8UxF5bs33/izw\nCeBHReSTIvJHOp/f8l6/jiYVgJvANxn30sRM5DfM5zeA15VS9Vs43luP/8oKjrzX8zX/33nEbz+s\nlBorpQ6UUl+qlPpH3mcPO8c+s9sSkS8RkX9i3ImnaOvmwHzv/wR+BPh+EbkjIn9GRGL0WMXAXW+s\nvhu48tZPeYstPrPYks8WTwVmBf63gQXwH6z5fKqU+ial1GcDvwX4gyLy672v3PBePw/cMa9vAd9i\nJnD7r6+U+hvms+eNS2tll5sOtfP/C6Dv/X8dcb4b+OvADwI3lFIjdAxLAIyl9D8rpT4H+PeBD6Jd\ndLfQVuGBN1ZDpdTnvjunsMUWm7Elny2eCkTjK4E94ONrPv+giLwsIoJ20S2ApfeVbxCR6yKyD/xR\n4G+a9/934EPGEhARGZhg/C7wk8Bd4FvN+5mI/CrzuyPg+hMkA/ws8NtEpC8iL6NjL+8F7ALHSqlc\nRL4YHasCQER+rYj8ChPzOkO74ZZKqbvAjwL/i4gMRSQwyRG/eu0ettjiXcSWfLZ4u/i/ROQcPQl+\nC/B7TGyki1eAf4SOa/w48BeUUv/E+/yvoyfOTwKvAn8KQCn1EeD3Ad8OnKBdd19jPlsAvxkdXH8D\nndDwO8z2/m/go8CbIvLgEcf/54ASTVbfC/y1Jz/1zyh+P/AnRGQK/I/AD3ifPYfOLDxDE/0/Rbvi\nQFtACfAx9Hj9LXSsbYst3lOQbTO5Ld5tiMhrwO/txEO22GKLf4extXy22GKLLbZ4x7Elny222GKL\nLd5xbN1uW2yxxRZbvOPYWj5bbLHFFlu841hXH/FM4OBgpF64aWrvlMn4tVagWrZfSwCBkccKQpQI\nOtGqgTLlIwqFUgqFYqmE5WMMy0D81+u/HElMsFxCXUJZoeYlqlZIJEgUQBhAGOq/cQJRykJV5LXi\nvBbKBUQBJAEkoSIU1dqvj6WChTnufNH8th8p+pEiDlJYVM2YBSEEEUu1QJnMaSEgkFB/Z7nQf8MY\nJcJS1SzUgmqh1z1ijiUQhdA+KOWV5NRLQSlhaV4Hoo8nChKkLqEsULMCCcSMQ2TGImGJ0sdjr6fy\nMrwl0P/cANSwqKEqoapRRY2q118XiQTpp5CmEGcsVMVSLQklJJAIqlxvZ6n0hY4iiBI3XoGEen91\nCXUNZQVLhVoq3I2zBFUv9WFVQl3BYqGoSkUQQNYLiDNFmAVIL4IshaTHggWzWjGrhXklLJdCGC6J\nguZe8O83ez/EgSIKhFBifT2Wtb6G9hmQwF3rpVq6a7RUwmKpr0/Y2W4oEEiAIIiEzXbtOJcVKl+g\nygWLWl9n+wiqJSyXEJjdh7EiiECiAEnMdY5CiGIIIwgi8wz6Wfyd62autyDNPWrv08UCFs1fVS5R\nS8W/vHv6QCl1eeNGnwC/Qi6pc6on+u5rTH9EKfXlb2d/73U8s+TzwgvP8ZGf/At6ggD3V9VzPRl4\n7wHQG7qX0ttDJT392ndbVjkq6VGrknwxZaFq6mVJvSyJgqbcxH8dmvrIqFOOUqvSvd5d9lHHr8P5\nKer+MYuP3WZ5nBPsZ4QHfRgOkNEQhgO4fANGWhzgtDri4ycFnziNuTaouZQtGCc1O3EKwHlVMK/b\nxu+kjJjVDQlMiohxWvO5eyWHvZfg9A7Mz5qxiTOIM2T3sBmTco6an8DZPSgKyAs4uAK9ITK8ynRx\nzEU1IQoSoiAhlIgs3CVGE1StSupl4cZgoWry+pyTQtzx9SPFKyPhUnoD3vx51Kc+xeJjuj1OeNCH\nJEYOD+DaNWT/pr42tZE/s9c3SpCo584BgNkElZ/CyRHq1l3UmxMWD2bNte/HAAT9GBn3kVduIs9/\nHtNgxsITKxhEe8SzC33dTs9gNIThFWR41Z1jJAmiFOrsLty/hbp1F3JzbKWepNSsYjmrqG9PKe6W\nnN1LOL0XcvKwJusHXH/fgr1fFpB+/iHy0g248TL18IBPX7zBT98f8No5vHEuzCrhck9xKVO8f7Tk\npWFBL9ITdBaKuycH0Zhe4Ak2VDlqfqLHqT+monL3dl6fky/axDyvA4pl+54aJ3pcduKUNOw31/rs\nLpzdQ92+i3rtiPr2lOqNqb5EVUCVB1RFQF0EROmS4UFJeJARXd9t7vvL+3BwRd9/gz13z9TLwu3f\nf5b85ywLd/Xza695lcP5KeQF6v4xnF2weDBjeZyT/eG/+zpvE+dU/PHwi5/ou1+z+McHj//Wv914\nZskHQIkgcaZvOvNXop5ey9Wle89NTPZ38xPETGaqLs0KN9cT7c6IqDdk1xCUnUijQE/4dsIB9G8U\nZmLUD10zGe64Y1QPX3OTvaSpfvBglXh2RpoYzXGO4kNeGd1inMzZSxVZtEMokXsAo2BGFupJfRPG\nac2vvASX0peQixPU/Ew/oGcXkESQFZDmqCrXBF2XqNkETs9Q0wuY6PNieoFc3kfVJbu7h2TZbjMW\nswkqv6N/F2dEvSFxbw/iHTdRhxIRBTN6UcGkNIQd9PTk3b2uswoB1NED/df/0F9QxBkqLll79jsj\n5HIBeUlkCIfE/M0SPeaX95HD968QD8BFfcKgv0dUX4H+GMlGqEFzbew1UCKakDDyBbmZNEuzvaIg\nzAvCgz7R9Rnp7SnDu3MunUbEacXwc3vEHzhEXrnpFh4P56/yc8c9ZmYTV3pwESme31G8Mqp5aVhw\nKdvz7oO0uRZV3nbGxxlS6XtSiVAv9PHVy5IuslDIQsVJsWwR0KSMSIMlUFAvSxaqJg36ZKNr+n5H\n39dx/y7Bvn7Wkpkh31x7GCQLCQ8OkOfGkKXI7kBbeXuHyO4hVRyCWj2mLnwicguAOGvukx2AU32v\nZilhEhPY67/FU8UzSz7OTWYJyGIdAfkwZKMwq39/ki0rRwbq8j4MrxD39oiJIL9wVpXyrS1rGZjJ\nRiWRXiXHmbYUol7zfYvhgND89YmH3nDleC+lN0jDh2Th7grxZcmhsbwmjoCs1eNbSZfSG5p4pkeO\neNTpmZ4EyhqwRGRWjWY81GTmrIbwYAZ5geQFajYhGl7ZSFRyeIAaDvTEko2I44wouWQmywlaQcZY\njZb4N11nQ0Aka251S5wA9dxNhESJ3uZoiJR1c65pqrczGmpC2T1kImcbhXwu6hNGo2vaEjRW4dpj\n9Aioa3WLfX16RnjlgvDalOjOKb3jHMlCog9cQ15+Adm/SdUfcFrc4lPTmJMi4MLjQ594DnuH9BZR\nYw3WD/VrbwElu4fQN2Lg5m+tSmpVOqK1Vo+1nKwVGwUzzqtmkQCagIqltrTGyZQsPKeOS3YGl/TE\nbwggHJ6tHyRLOGbsrdWqBntUT0A665Avpvq5SHp6nK1lvAOkOZKlzaJgi6eOZ5d81NKtfJSInpTt\nxN0lINCuJvOZJYzuJKvyBZKdEj1/AUWB7J6hDq40FlSHbJR9nZfOzQJ4pHKKMvGEFrK0+ZtELubg\nVpGdDMbdcN/s/6RxPQHMT9gdXiWShCiYcH9e8dKwMO6RXece4eJEuyWsS+L0TB9zXqKyQh9HUTQT\nteeuWDzQ+1P5wt1sYlf1Huks7pyyNBNqOJkhz42RswtH4gJkyS6gLba8PicLd6G40NvKGzeLQ1lB\nEqOOHkCWtMZO0tT74gT6Yz3RWAKyY355H0lMLCVN9bEYq3ZS+fqi63FaHZGGfSJzr22CJaBNRKqG\nJ4ixOqNDj/xffBHZv8k8rLkoj7h9seDORUrfDPYgAlC8PKp4cbdiEO/RC3ZQk9dbbibstQNkdIEa\nnsLeoZ7kjasQ1VhsNSU7cdoQjiTOgsrCXdJwyk484/68cq7SWa3jbvM6oBcteY6JviT9XeL4piag\n2aQ5aXsN4qxxkfbHzhrWA7OeeKIgbbneuliomlAi7ZUIE/38sKfdxR7k8r6+7k8BQQC9/hPmeE2f\nyi7f03hmyQeMX9jcC84qeBQBPQHEN9Gz1D04KyhrJE3bi2YzWTpSgVXiSSJNYHYlCDqmAHrl6pOL\nO1Hv+DuTm6pLetmIXv86g+i8ccGUcyiMtWZdbd0JPmvOy03mWQp5SdCPtfvLzIKShc3Y2HMzlpPK\nCudKBJBxX29nOGidv51wQonIoh29cKgf6PF4FB5FPB65W5endcWqSE9KbqU9vEplA8aqZBDp1juP\nmuR8+HEeF2M0FpGbTOOm75vdbhSkxPFV6O2heiewc4YMB5Cm2kIx34mChDS44KWR/p2N5/WiJdcH\nIWmoLRgl0lh3dizKulnU2AUNaOv07C7S2yMGYuMK3Yku6TGz5+K5juOoRxz32U32GSU6RnRRaeu6\nWAbMa/0vX9RgCChKLum4jR+Hg8bd52I5560xte7sdXCubtrfsQQqpXlWFs0zI7299rVnAkO2+Azg\nGSYfpW9omxQTeDdll4D8+I8HSVPUWJvlIbCcVU0cZtfEYLKR+627oWPz0BcFkusHXWXGCvLdCzaQ\nbwnFTLKSptpq8nF6Bpxp19dbWalZd0t+Si8bAbWOv5jPrMunBd/yMsdj3VFSFM5V4bfPbMWnLCn3\nx7CT64n07MK5XOTyfhOgNxORSnrUCz25ueuklL4266we8GI0HdLxLRnPvWkD6gBRsofWSNXQk19j\nncYzY3HFmZuQ299tw5FOOXfuLom0u2edS65LaEp0LqBEPVRcQtqORcbEDKI9LvdKLx6zMO6wnkts\nAe1u6vX2IOo1i4s0Rawlbl1b7mDKxiIwt6KY367EPPMCZccWiOKMnd6Q3d41BjszHuYnpEE7KWGh\nan1M8Q7Cnjsvl3yyWL2+dpH0VuA8AsaSV1Wuk1G66I+Ryntm38Lic4snxzNLPjbmY1ej1gpybjiP\ngNh0AyaRnjwsAfWbmA+jIfSGLgMnSvYQNfZWifahz1sk1IopmCC1qLFnIZ06q6kF68abXqwcZuu7\n62IfaBeOsm1qukHvzu98i80Rj804qufaR56mkJ0RWQvouXETn/JdiXEGe1lDQuBiPZZ0QE+YPrJw\ntx3vyTdMEFmySjr2+LzYgZ/JBbi4Rr0sGUTj1grbZbGBu07inU/MmgC1RzoubhiXOtYERCY5Re+z\nPdn6riH9xrxNDgBVThxnDKLm/a5VYM+tViUq2dWB9iprk9AObWt7Q0xNQduFbF2xPnyLc3fAzo2X\nyYbP8zC/xUnRpEJbsoyClMizBF1yQ8dlGQWpHmPPveyTv0U3E5Uq1+7j2QTuH+vnxRKQJTxzHaKk\n14zPI2KKbwUSCNnW7ebwTJNPN0OJJW03nHXHoN1Ta+EREHnhsqBsWu20fuj8y5EkRHFKHI+bhz4/\nNZaQWTmaSdFm8FxUR4QSsTu8qo8hzSExD/zUi3d040atc8W489ruJwdLNpsmcNC/9SwIN6HbxABz\nvJHtAp3ecxlEMkSPixef0oPsrVyjpGWBNKve9U9hJAlUZjVebuglZ4/Zc/O5/ds4gonf5IspxVLH\nkkAH023acBrc5/rOSMfAqgXq+HXU7bt6LHbPUH6CSNWJGRmo+YkjHWclpLk+1/mJI6AuyVrUqnSk\n5tzBa9ALdjxCvmjF+PwMzHwxdZN9i4Ty02ZjfkzIjLOzuL17zqaDq1nlstO6CPYzwukF0Ysv8tz+\nTWcF+cgX0yam5KXZ18sSQlxcKSbWBGJhkhVWSNN73SKd0zPUm5PmPG4UcPkG0ttrCJqiNT5bPH08\ns+QTELRcEYBzw0VB2krD1B+ah3jDKmglfvMIVFQuw8bFFywJmVqYioqL+oRJMdXZRJLQ27/ZrDjt\nhLvJ5bQOedmK07R+/yji8T/3icvUFcnwKvPlORflA9Kwz46pM6IomtWxb3X4AWT7f+Pbr4x7y3e1\nPMqvvw7Sj13sTNJ0lXSgvX8PUZBQL0uyUIAl1DpmEklCXC3aSSNZqq9DUazG5nysu2fyohn7vraI\n/aSKdVDQWhA9Et26pqhxVYK1LMomUcCSEDRWUJU3iTXd++xx90v32GeV3oYZC52Y0NQX2feiIF2p\nkXO1ROFq/OaxqPImS7Nzry9nFWFu3LbGtV4vjt1iUV/+4i3ff1s8GZ5Z8hEJ175fLGdu1dV6MDGr\n1/4YmKw8jKoodOZbVujsKPRksTO61tqe23/ZSQywk4OZEOtl0aqlqFVJRUWcjVA7Ng130Px+javM\njwutdT2t+a06WtP6xiZCeNsVLyBNlbcCPK1YzL1j7XazsR77na6F0wkkW9iVvPLcUnY86A90lhQg\nSUToWXauDqRLOm4DpT7Geo5UOb3+2GVI2f0MbMjIWDyAcRMeInbMPBepdd35Malmf9719hcPRQFM\nXJxshVQscZmxUiKQ9PS/TXCft2NW9bKgqO+54tBxaohuiXbreWOzUkawcV8xksSE/cYC6iLox0g/\n1rG84RU3yVvoRIl+Y7XFu1zUbavovOrUCA32Wp/bmFzX5anqOTy45x1vpIuPszPCvNSvjcvYxvvs\norTr7nu7CALo9baKZhbPLvkoxU50ifP6oXvPmfiB939VtmsBqryxcPxAvK3zAdT0wrkBJOoRW/+8\nl+XUgl/kxqr/Ol8osqimXhZ6W3Yi606oNjZla0S6+/K/v26lXuVIEqFuvbn6mTuYYpW8aLKttDss\n14WjU51yrWM+Z5qUd0b6B/0x8+X5invFj1lk4S7q9A7Upa738RICwMRG4pR436Tp+vGcdYTjnadf\nWGxjL3FvjzhuV/cDOp3b25bsHja1V72hc909LG7pc4jHOiZF476VqtcE5/PCLQzkDJNN1RDQihKD\nzWK0FqU9/zWLmnWf22yzfKGYlBHzOmZWCy8Np4xTXf9l3XqqnjfWXVm7UgLZVGiZNAW4loT8hQrQ\nFOUemDR1c3/b2iBHPLMJqp4Ts0cYRNTo45/XAZMyYpzU7HFOHZRNrNZbkFhicgoNVa4VFO4ft7ND\nk0gTYVnrVPrdQ3N917utnzSbcYu3hmeWfFgukHLOTnKJfDE1K8Pmn3UH2AcgkoTMBmkxac2YFOei\ngLJi8WCmV3mgJ8Dz09UCxi68QLUlLFvM56Ne6ip/JeJUDNa5rcBYVb5ckEHrGDZMzLbYT90/Xo0j\neW47ZZMkOoiCFHX+QBPzZMryONfujTcnegICiBLtpqsn7txsjCUazEiDPlGQ6sJWI9GjdvQEHPvp\nznQIyIshdcd7JZZhXYJeMoaaHjVxKOt2sgsMW01vEiFsirMl0dP5q3z0JGFeZ7w0POXqQE+ENYWW\ncfEPpqydtanAG8dJO8vQj6+McldUCXDuxRIt0XWRL6YUC1trE/MwDykWAbMaV4D60nDKpSzS7qwq\nbxYvppBYTWbamjEWja3230hGw8H67MLR0E3yjjS7xDM9cou7ndE1Fqo2xar62AGK5ZJxoseloJE9\ncl6CCEc+anqkYzxvTpB+jMoLTToWl/ddsoGtY+riaVs/WzR4pslHzU+QONPulkXHv9xJ71wE+mmN\ngrSxPkZmcsoLHWydVWAeSjc5m5RY5fndwZscOxpp/gosChKysHlQ3QrVFMTZhyZfTJ07JQoSXdSY\nJUa7qrEkuhZVy41lVnc2riRZqrXGNiQxOHg+fCfdY1fspQ1E1yxnlVNtkeFVivqepy2nHU7FMjDW\nj9FFq+dNfIVTPTazCbGZ8FuHQUU8bLpF++cqSmlCtfpdbpsdxFmbdFqFl0PgCLWTu0lUJT1OqyPu\nXlzw6lnGvzoOuajgpOjxclnw4u45g7iTlVYYq8ePofk1NmuKkd3v6jmwx3n9kIf5CfM6YC9VbsVv\n049rVXJRn5DX57w5D7l9nnJSNO6eC0M+tg7IxrPU/KRxtxUFnF24RAKLJXg1XH5NW9JWgVhjhap6\njlQZcZyBIcy4WqDO7zakVxQwP0OGV0mDPjBlVoshTZsRFAGFictp2Oc2CkqXlk6Vo07PHHmGSay9\nEraUwbgA/YVY15qC9anzW7x9PLvko/xUz8LUGqgVoU2AeV3Riwp24rJZrVk5FEzFvtUAS2IY766V\nAlmLjivMF24EyCK9irOTi8300SnNey3fv3VjPA5r61Bs3cTFiSs+lMv7KD+w3Ml4c/U6dhtWKDOy\nWWZaF2uJFfuMoDfU51ifr4z19UHIKDlsamh8pKkmb6/o0GVGLVeDwqJUm2z7YyTOmnqVtEP6dmFg\nsu6c1t9w0Kp9senv+WJKYYjnYyc97ueQhdpx1o9MkkKQsBNdQi70PiUbofbM2PnZgjbt28LVgnnW\nj9HtmxtrZt19qhMiTojjjFFyqGMj0YxxMl35fi9acinbY3e5jzo/aVyC56crcR6t3BGuWjvGypHU\nFAT718qH5+ZU8zOdjp6NzLZPWYEZ+yzZ5VJWMq9P6UdKu92MRqEmpgbGmasXXCaeKvs34UbhwpHr\n6sd8j4HFZ8rSCQTSdCvWY/EMk0/bxq6XpdOi0iKIbeiqbE1CTpfKCCOqONOxEn9VZUmnt7eyrRWY\nCbxLPBYrxGNW8DZG4GdIWevDKfZ6D76YB23dw2ULIFuTQZauVwewqcuWEMzvWwSQpsjhAZF12wwH\nzuefL6YrYqaXe/EK8UjUQ+2MXEqyRD2XFn1RTRjE4/a5dERDuzJDegyMUoBVat6E3eYzVc9dXGdu\nSKdeltyfV7x6lnLf7HYQwSBSjNOa53oLBoZ4VH6q3XVoAiIboSzZbFiYKEuCxoqUbEQVhxT1mXEx\niSG41LmunAVh9teLMzJDQpasfQULdXqEqu63XXxnTWab6lg94LndnhsjN642ROPXxXXhXJdmH1aI\ntuv67Y816Xoegizc5XJvxl5aOtLxCWYFnloBcYY8/3kuztjEdjbjcbI8Wzw9PLvkY2BX0edVwcNc\nP0iXvPuzS0Q6+BkwXpywSGsG/b1Gl2o0aeo9enutVVVLydqH5zrzRRub/a8hntnETRaWgKK4SQ/3\niceu9O1UL52VXlseZb5yfDIaNtltfr0MrBQ6RpI0pB5nOrA77hP2K73q7A31BFrOXAAZ4OpgwCg+\ndBZCd3z0xhPojzXx1FqqJQpmTf2HJKj5ndWJfN1kY0noMbDjVKuBtnSKB9TL0snEPMxjbl+0LYrL\nGVzrVwxi3ZpATX9BWxPWXWfH1VhQsBpq0G7CcetaqKRHXj9sZUBmobgWBVx4LSzStJnco0SrGVS1\nlr+Zfxoe3GNpasS6xcrOJViuz1wDkBcO9fW8fKP9wbpWJCZjTtLUy8Q0CwxfRNePfXY0Cm0SiiUd\ndX5HW1Cbij9NnZw7Xq+IdOX4HoP3apq1iHw58OfReaZ/USn1rZ3PxXz+FcAM+Bql1M94n4fAR4BP\nK6U+aN77s8BvBkrgVeBrlVIT89k3A18HLID/Win1I2/3HJ5d8rHN2dBZMpMy4s5FRD/SBHMpW7h+\nJ74UyLwOeJiHPIxCrvUvuNzTGVq9/ZtgpXQ815CtV3Erzs5kWJmalmI58yq9k7YFU85R8wdrNNZO\nnYsijsfOj643nDcBZGgSHypTNBdnbdLZpP+WRC51fMWPvwG6CNIIXx4e6AltpAm5XhacVwWzOmWc\nwPWdEbvhPurha1rhGlbqcawFWVFRLHUA/c4sBiquDupmjGz6dJSspix3JVs83TRou1pcllg9bfUS\n0oST6OLTReAsHotBBNcGFZd7sc7UO7sLD+7pyffsAnWtWX3Pw5rCFBB3LVE34Rmdt0gSl2AANr4h\nJiZozj0/dXEqksIpdjtXl+kF5Yu4gm1V0Pdqoza7nIJ+jE88LSHUKtdFqtZq6aRqK1uy392+9RZk\nqbZQOhaotv38AAAgAElEQVRUHGdEYdImHXsuGyC7Z3pRZsd6eU69OG6Ecp/A+vlM4C0pHDxqO5o4\nvgP4DcBt4KdE5AeVUh/zvvYbgVfMvy8BvtP8tfgDwMdpK9f9Q+CblVK1iPxp4JuBPywinwN8NfC5\nwDXgH4nI+1S3o+ZbxLNLPmbFL+WcNOwzTqZcG+iH/VK2IA2Wzr8MMCm033yOVuTtR8r59ZvJYr0P\neS3WuB1slp1PPJw2D1wrAA36gTX6U1JlEIerLrWOqKkmmrnW6OqqNvjJD/Z11naldfHIWJZRY5Ak\ncoWUvQpu7rzMTnyLUXLdSNX8q3YSwMjbhtmHSnpE6B5F4c5D9lLtdtuJLukxOrunJ1+TleayAb1x\nXteobp22nxs6SVZVMDxc9i3k0LYLqEnDkUlbbsZXFQV86lNw+RQu36A3vLraR8eNf9S6NxR61V8v\nC9OyICELz3ViiSQQG9vJ19zz081t6n2aopjqOJwlHz+OU6662OzwSD/WrrZ1Ks/+AqbbIsPPAt2Q\nIefaFpg4nLME81N3//p9pNTRA5eFF3725bWp/3ocM9e4MF8oduJZq5ndkyCSZL1F/u7ii4FPKKU+\nCSAi3w98JeCTz1cC36eUUsCHRWQsIleVUndF5Drwm4BvAf6g/YFS6ke9338Y+E+8bX2/UqoAPiUi\nnzDH8ONv5yTedfLpmn8isg/8TeAF4DXgtyulTsx315p+IvKFwF8BesAPAX/ADPpmLJVeQfVOyEbX\nXGATaAU1bRprKBHFQjczs5Lw43RXu8UkcdpdVLmzLCJJVlWzOya//U6tylazt16wo2tc7t9aJR2L\nvDDNr7xtWXiV8K02CtCqBdoIO/nZWMC6IHKXPM2EHvfHq03c/Ey/ixMO4gPU0SdRdkLxC2KzR1tW\nO9GlRurmzZ9v9xgCXQB6cAVleNF3ObprYmbVdZaPa7IWJi6mkkVaeicNlqZFQOOO7UfNmV7uxU2t\nU5WvXDd1/9hYQWdEts7Ijqff9dVTgZA4IwaiZLex2iLcvalEmtojez90xy9N9Rq3KBAgmFXrCcEW\nFHeKR6UfN6nyoK1wqwnnkQ5r2moszb5c590ubMbf6ZleeGyIG9nuovUbp9S3z1nOapJZRfTyAYx3\n29t7EqyLO3mwxON0/N47+Czglvf/27Stmk3f+SzgLvC/AX8I2CynAf8Feh622/rwmm29Lbzr5MOq\n+fdHgH+slPpWEfkj5v+PM/2+E/h9wE+gyefLgR9+5F6V0g/6/Azp7ZHFOrBps9mycFffePUdAHaH\nV3WxaXDCTqwnWfc9G18xk/zKZAdt4vEeLvsdN+FZ4jl+XbdyXuNeaPnpvWJJP57TEkdt9fDxrCh/\nhbwOj3FPtIZThLzW2lxRaNyL9bxlvbjv5qdw9xdbhOFqipJYH1NXfNQ//3JONDc1QEary052LiBe\n1nA5h+GVRuyUZrx92ZS1igR2CIiJg5goSFvdVP120TYuqC1h3QeJ/MTTWPMC2FnqrCCnTt7V5rt/\n7DKzlJeNJzRuqK6qs0p6moDWZY/5Y7c7QGEEKdak0atZhfhFooaEGO+2M9p8vTSTlm2vg5ppa2dx\nnLN4kFNXAVCSmgQG5+azyBsldGe9dvXk7h2zeDBrtROvy5j96oxeviB+XwVXvBoeg7YgadI8a5sS\nFvzfGYva6vi9XbxFhYMDEfmI9//vUUp9z9s9BhH5IHBPKfXTIvJrNnznjwI18Nfe7v4ehXeVfDaY\nf18J/Brz+nuBHwP+MBtMPxF5DRgqpT5stvl9wFfxOPIBvdoyQfk4vsogGreDmp4rR9UlcTZi3L/i\nKvOjIG3aQHtxE7/7YUsd2/vrJkTzeRSksITeItKNvu6+gTIFckDLJ+9SvNcqVDewBKSr65u+PI7Q\nbCC4qzTtw3fB+SgKnZlk4lw2WcKliCe7jfVTl6tdUL3J1mZU2RUymVFDsCnQcWbiXidru5/aZn4L\n40qKZhXhNa899vDKyuFvbGtu4Wujge5R0983GWO6/Xi+qFu1JtZK0vJCGyY3Twlj2RHktAH+cD/T\nDQmtQvrlfVcrZhW04zhbbR8+2GtrBfrwrq27Lt6x2Oug67FmuqeSRZY06gDQFOeeHLWup38dLOnM\nThPyaUiUKHp5Te/BhPA4J7q+2xRk2/3bY7Nacp5waX17SvXGlLMHCdMHPY5u1xTFkqrosZ/P2Zkd\nkbyvQl44ZB386wR04pq9VhzQuruxxHNvc3zpM4gHSqkv2vDZpwE/2+O6ee9JvvMfA79FRL4CyICh\niPxVpdTvAhCRrwE+CPx6z3v0JPt7y3i3LZ915t+hUsouNd4E7N20yfSrzOvu+ysQka8Hvh7g+cs7\n676i4QXqASeIqKIEYeyI4qmgyl2tThSksFh4K+bSTUi2FNO+b0nIvue0wdYQSFco0p2TdU/4K/O3\nQkB2+8bqsYrQRKYYN94gK7OGeB4JS+7d2FdeNIWs+QI1q13zOspKZ+kVRjRynYjopnoO/1ztfWB+\n79QEIl3QuBF1uVpQao7LnneXeNTMtFLvL4wFUmo3lBUurUyKslHPFlPo2qrbikOtmr6JhEBf9+lF\nE/w3cZkWTEv4lk5eF/59s8aKqvKAuli/0vcLsh8HS9J1pbdXzqEo9LxYzqEqAlfIHL4Vod0NsMkr\nVqWj+sV3hXwehZ8CXhGRF9Ek8NXA7+x85weBbzTxoC8BTs28+s3mH8by+W894vly9Hz8q5VSs862\n/rqI/K9or9MrwE++3ZN418jnScw/pZQSkScVi34sjNn6PQBf9Mrl1nZdMFqVjYJBnJmsIW0VrKvZ\ncdYFTYxjXQGbnQyci8z7zgriTD/s411C+1B39bLshJamTSdTWC/l04nxWAXuVjW611itC7u97mpe\nenuu7cOkmDIpI57r6QQY24NGwKVJg7fqNpOE2N1lKaE9JitAacfYKhP4mX5eFX1XIjbox9pqsO67\ndZ1kaaRTWm3UO9fI3STWfahUS87GT3128N1thiCdy8pM+DKE0Hcv+QTlFymvw/ys6QVk3Yjeyr2m\n0IMSRkT9a64NRAt54Vxkm1KqN8K6fc3xiU2ZPj0jRBelqn5NXC2piiV12VyhoB81QqPjflsZwXZn\n7bSaD02xctCfEsVTojQh6cWUc7h0o2L8/JL4fXuE10baXbkzckKhNi0fYI9zN+Nlgz1XiOy3sYiC\nFPKLRpvwzinVG0+nuY4Ej9aDfVKYbLRvBH4EfaX/slLqoyLyIfP5d6HDD18BfAKdav21T7DpbwdS\n4B/qTG0+rJT6kNn2D6ATGmrgG95uphu8u5bPr2KN+QcceVkZVwErSbvJ9Pu0ed19/8lg6goUVtzS\nTJpGP83CFgl2NaBc4yk8y2RN1lsrBuN9r5v6G8c7erI0PXNUl3Qs7Ao6KxpfOWj1Y99qs+2SwbXf\nXkle8Dt6+gTrZYlptMl3vphyUT7g/ryiWOpbKV8ooqBsKtB9Yo4zGNnMJm8l7RNg10XmB7M7kDRF\n5YVTUnCB8b7XinwNufvj3Wog6LdRt/vojAWsFtRuJKCydrGosJPG7NxpPt5KLcpM15TpfklXm8QV\nP5MPqBclF1Iz3j3Urk/QY9khnq6ETtiPjYXdkf9Zd6wHnhoEOplhOauIZsYNmijzkyXST5r07sOD\n9rU39Tmu99FsoolodwDZsZushl6nteFBSXR9rInnxnONQnUcclGfGG04O+51i4C0rFbbUookQeV3\n9BjdO6a+rV197zUopX4ITTD+e9/lvVbANzxmGz+GDmvY/7/8iO9+Czo88tTwrpGPUmqt+WcKnX4P\n8K3m798zP1lr+imlFiJyJiJfik44+N3At72lgzExC7+jonMZxaWLOzwyAO8Fx5vixGYSeNQE14VV\nTWA4aDKg1rhuKKvVYG33ePwUXgvTAM89+BsKY1fSkj3Y+pc35yEQOPmWNAjYiTfoYdljsq4kaBOf\nqRtxEjiwkXgcrPLC2LOArNXjT5j+gkBt7mALPNE1ioldJmMoUaOIblHlqKLR/FOTGfKcsXpGQ7h2\nrSmE9I5NlNqcXdUVG7WKAVEPMZZlV+X57sUFkzLiA/sRO/XQ3QtWbfwtY5NieJxBX9+HYV6a866J\n0yV1ERClS6J4SdCPdcbblf2WtJBtSTFfnpONrulrkI2cu1UAspS4HyNZyLivXbzR9THRyweayIx4\nqRrskdcPyetzJmXkREnBCpNOGafrO6RKOUfNJqj7x9RvnFLcLZk+eArmyhYreLdjPuvwrcAPiMjX\nAa8Dvx3gMabf76dJtf5hniTZoAO/f06+mEK4awQ8nwxrLRt/+10XD+tb/zpRRFMn02pSZwjIThpi\nV6fQWBJFeyW3EZZ4dkattgC2MNYmENgxacZGH43O9god6cxqfS7jRH83DftGpt9D1/3lkY5uRnfb\nNaPTmYbzJz+fLEGsnL+1eqy7tOOGdO6pNQQErJCQOru7VhGhm7btlFM9srfxKAtHPPs3W11Fi/IB\n55UWyxyMxuyGN3WR6poaL5chl6XaqjT3aTTYI5KEYjljUky5O0v4xGmPezn0oinvH10iq0udIfhL\nIZ6VAViVBlJ7IDcKolKfd3x6wdysHYJ+RLCfIeO+divuHeptuOaJWhy3iGZarbu/S8xYyyHFGZId\noYAo0datmlVEz4808VhXrVHB8NGLlt7iSF+sSTFlJ05ZBLWz0l13XBOnWxznzE4jTo+fToBXBOL0\naQWL/+3He4J8fPNPKfUQ+PUbvrfW9FNKfQT4wFvesXXLxLq5Vb5QZJSmm2VBlOy23C7WRQar9SF+\nG4NWnY+BKNVIz/jfw5vE8FbdNuZkFQZ2B84HLn7TtHUqwuZ43d9NLhx/cnbWX5t4WkrfHi73YqNK\n3SYUnX68aIozbazEr2mxGWxGYmZupIWg6aEU98dwNl9b2OreOz1brSeCtaKnPmzCSKt1hRFM7iYh\nqFd/Uruorp0hh+9fP460f6cGezoes3tGeG2kYxzjvo5HHFxB9m86hQPfWtqJU02+0aVGLsemksNK\n2+qgH5u41kQnw6ix68KrG8VpReh+1MTiZPcQNTxaX2+Dl1U53n2kQjVRAqNrKBprq14WZIMXmrTw\nJAaOiOIpQT/ScZnPvqzH4erz+liSHtP6oWv9UCxD0uCipdadJbv6XtnJ3fV2sdDhYMW9moW7rg/X\nIJ7yXE8XmTYZb82izzaOs5mrqp67OFzQj4nTOb3ekyVGbPHW8J4gn3cbSoSFqo14aCcwaUQ7a1Wu\nzHJ+4ajzU8OqjA2spPE6xFoA001efq2JTTywyFLdvTTtuJN82P/7VoZtMtclIuvuiFf7mTyKeMbp\nrntox0nlBFlBW0T5oiaL9GQUB3ErkO8SL0wnU99NlIZrJsR152eJK9bp25JHmpjtdzyrZ53L1LdY\n3MRp2krvRJcAvQhQt/8V6qOfoH7jlOjlB/CBXBOQ2VbXtWivYb6YkpnGbwIwvtAT7t6hJp7leUtO\nyT//lmLD/eNWNX83M076EalNV44ziHrO+rHX6aXhlEm5IIt2NOkGsT6O57zala5o7LrMNo947KLh\nYaFrGP3zuAgmjIaHxC/2tJssSwj27zfSPNevalVpa+1URy33LegFzEmxbD2HPZsEVOWtWGirQ66N\nE/XHTsEgMgXJvmCvL2Pli61SdmSm0HGqp5EksMUqnm3yyXQmlI33TMqIXrQkX9REgW7eli+mG7We\nWjU+vtBhnDXZSNUj7txOsWn3PWDVkjGvbQKEhStw3dQwzq9b8Qlqjf/e1xCzxGJFQHfilEG01xTr\n9SYUywWz2rrgtItjJ9ZJB2vjXF4iw7qArxUodRpxvhVndd7i0Ai6Hrm4kKt7smKV3fHo7KdmvUvP\nEc/PfJT8X3yaiyPYOc5Jywo+t9BKyZaANiggtwhofqazCEfXtCr2cuZ6L1kMonGjauERj9VhW84q\nVztT5QFVERCnNUH/mDiJtap6nCH9dinAON1lJy7dYgFM8oxNdlhn1ayLE5rxl2xE1R/wcP4qn5pa\niyB2btdL2QI4YpCN6V19H6Qp0WioSW2NtaMTAqJWy4detHQE1Fvo+EwUpMS9PZ1Mk5zpote8aMRu\nDWzPIOddAKJ6zm7Ug/6VlnK8s3o2qI9IFhLFS3q7bzuxa4s1eHbJJ9A3u52c6mXJrE6AgDQIwE5M\noc4Ysisk8G5Wr71BSzXAw+PyxN2qtSP14dJ810y8VtrfqV2DfuAsVrLUMMWmWVuJYc3E3LhQylaw\ndpzUhnjGrm9Mrz+mDkue60202nfRrFzrZePS2qR1Z33zrcSMLtH7Y2JW3NP6IRe51nbb9TuY2viQ\n7xrqwO/z47vfrJtxJ7qEOn4d9YnXKH72iDc/GnMxCbhUVOxxRGpX3M9/Hlb4cxNqVRKNrrlrdu5N\nuLoRnJZUGkR7Wgvu7O4K8dS3p62CzboIqEuhMmMdZxdI9oDItqrePSRKeutjUf6YHlxpXtvWHzbp\nwRb0ztuJHo548lt89CTh35y2p4+LGq5kEfO64sXde5BdoXf4flT/yMV25stzCmPtnBTiZaI1cEQU\nQVEGwFSrSySXjLtviPiWLrQ1/ExHVD/LUwHsjIh6Q3aN1WX7QG1SHwEdp4qeUpxGgibzb4tnmXwM\nVD0nkj2yaIdL2Zw0WNKLlm3/O3Sq4OdtNxusj00YrO3XYutxfHKxfztuuS7p2FiBFSHNwl2d7l3O\nH5lt51xeVulg73BtkoTd9vUBpEHldOxsh1Gd79FsF3AK4OC73uomqL+ma+oTdYi0/YLM+dt9WpeJ\nKwg2Ei8kEeT3XPqulaeR/ZtrzlPHt4rFzJ2z3wwv3M/IdmfGylgS7pu6FKO+XHe6qa7bPgGapEwM\nIgt3GURaxdy2ywCTaGKzHJMIssTUtsSofk00q+mPamanEZZZokSRjAKdtjwaatLqH609V3s8VvrI\nbwPetCWvQNHO9DQqBgwHqN6QSPaIgoRL2YJJ0Uwfabg0DeoWpingDbNI8frzzCb0jGVmpYqK5aKV\njebr5IFOENiJ05ZyuSveBZ2EYZW8oVl4dD0JneQTl8W5pJGDsgRm+liFB30Wxzn90baT6WcCzy75\ndHrahKL7y2ShEAWpc4NgFG1bBZZdNeiuS8kSholr2Ifb1xATxi2LwE/7tIRgg6t+QkAX67Tjuj17\n/M/V9Aj1qU/BZIrcKIxqQ9MRtavifLkXOxKWzlhIlel+OkECLJyyszunZekm4C7h+G4P/1z8zDPp\njxFbZ90JKEdBqosnp0dtmRfQsbFuawGTymvHJV9MOS3vtfZvY04yvAqfA3GacsDPM759Tvy+PaIv\neAlufjb1/jVOTWbeL6XrZRSkLijuxkqVRIO95prb76LdPwBxvqAHLv4j/Yj08z9LN3WzmE2c9WPd\nivWyJF9qN5/r+TTYM/tvst5ckznbvuPBPSfmyXDgjmk0PASOgMIt1vRzkzCILmmJqLMHjbKFmdQV\nZ5CfEmcj4rhv4qlHQJuAQC9m0mDJ5V7srG01NS5Wv+Gdl/XH/WOdgLBDm4T6tBZwuXF9QpPgEklC\n1B8Q98f6mUhTyO6S9mPC/Ufr5W3xS8OzSz4dRJKwE6fmAeq4QTbBX2H5r70b3bparJVi97UWvgK2\nR0Dd+hQLvXpsgqW+gGarvbb9/Ph1uHMH9doRiwczorLSCtJXe2stIDu5WhJeR8B25b6u6V4Wlm51\n6ZNOXp8bift0fZIBDRnb4+o2wItnF6t6cWemSVleomwNjMkIVP2xq4UBVojH9sZx+xhehff3tJr0\n0QPkxnPIi7+CeRZxmt/izXnIODlxyuZPiqYp4B0ikzHmJz20CCjTWXvRuFNh76leyOFB+7PTM9Tw\npLWYaLLIKnrRCTtxSrGcMYjaRcNSzpsJvhNzCvZnWoECiKMeo/4hUXCy2ndqcqQlgM7NhO3kbpqF\ngUp1gWzUG3JpdIMoOCINLkyPJk08vpu3F+xovUOr6deVLMIjIesp3PPuZy+dOzd9kfwkiZqSguYZ\ntR2KdblDSrSp0PstQkQ9NRfevwt4dsknMJOZWZ1FZiJ0Uv3TO43LYR2SqFlVd1sixxlVHHJa3DIP\nfkAaXLRWiDbY3Fr9d3rLSNx2yW0KbotSjegmjcabdXeJUnpSuXOH5S+8QfGz9yhPl1oNONEFjXL1\nfdDXFeqDaNzEk6pct2e26DadiwfmXKpWPYWFLzZaL0sX75iUMeOk4nJvtpGA/HNf6bjq93fxVK0t\nXLsAQ0RycgS7h5D0OK2O+NQ0phctXQpyGvZXe7z0x8j7vwBuniK7h0yDGQ/nR9ydJdy5iBmn7YaC\nj4JdzChrUVhR12tnxPs3qeKQellwsTzxuuMetdUg/OC6lebpqlWUtS7KHF51Y65bQAj9KKBYLl07\neMARkG9FqvvHurr/jVMnEho8mBvR1xTS14m5ybh/xRDpQ5i9qoVw/SLYLoymnFNlT+5BXTLev0m4\nc0wvOuHuLGGc1I7Ue8GOXgTaAltP0685Z1PfZa81QDppWtnbWJOXYbhOlcLWWQG6xsh2KPbVvLd4\nanh2yQdacRq/pQFVI4dvH6Zuu+GW5IgVezRutvnynNP8Dm/OQx7mMZMiavnE9Qq0udEtGdmVd0tp\n2W4/6bUFTf2alK4Qpm2ilvRavYZUURiRxhoItLSKUUkAXLMyNw5e7dIm2GPYSxWTUtGPmg6wVmpH\nb1v/zUJhXuvVrR8nysLdR7uw1nVd9YRKrZIA8MgGaeem8t0ml+SLmkvZno7tlZ1sQHTNTm1ImYU+\nfv+4Ae7PK+r0HoN4vPYcWmm8VnbHKlOY84rjMbmaNq7KOCXePTSBcq/Jn7fAabU1sF1MvbGqg5L7\n84qHecpJEdCPmthMP1JkoY5ZOQvICs96xKFmNXUVkGBUx1870p/fKHTsy6qk+yocm7qhGuvEEVRR\nICNdo7Q7vKpFtjhZJZ77t1YWGfZau/YMXQIqCq24YDrg1kpn/IWhvr+tVX80P3LtMezC6Wr/hHFa\nk4Z9en5CyxZPFc8u+aQ95PD9TgOqLh4AeqXeWnn6pNOttjfSIH620Hx53hIz7EeKuWk8pltwQz8K\n0EH7xhJKg76zNGB10re9XGwWk53k3EQVX3V6X6yL+ZggdIhWDoyPc+L37SMv3YAbL1P1B5zmt1zn\n1lqVen9WBNWgFQ6OM/LF1HXXHCeV63FTLAOoIQtXV5h7qSIKQlITgHdk+4geKyrpQdJD1LghojhD\nDnJ4cA/GF417ap1Y5eH7mcgZeaUn3JeGmvxHyWHTk8mikwIfE6NEXBM7W7horzFgXk/WElCtSohD\nTSY2gcKIccr+TWc574b7LddfZX7jp/Dba5svpkSxjlGQjVB9Q0LmWs/DmofzEyZlwskaZekugTq3\nsc0ky0ukHxMe9EiYI0YQFNBtPoyyuiMcn+TXkY+9HvZ62mfp9MzVKGX9Xd1t1BLPsWktcutNV+tk\n0859rPQHAk10swkKiPdvgre4sZmqUHPYO+RofgQ1zAmY1WLKC7wU7+GqusUvBRJsFQ58PLPkswwC\nHqgHULZNcFtcmYZ9di69gGRerMOuuO1k4Fk7dkIoljqV1gptdmFrYcbm+bR+ZrfK8+G5uOw0Z5uJ\n+RIiLkg/WFXd9uETUJgXuvDxxsvUwwMe5rf41DTman/KON1tZUa1tuFlEamkB+Y4oiDhcg/nZgSv\nWDBtZzDZ9OIW6TwqBdy3RER0PCMxemZVjuoNdS2NjTN0FgUq6fGguEW9aMZTE8+VVjPAtVaeLY61\nhwLE8T470SUG8UNunzfB6HUEZNN5QZNJlOh4guqfttS+LbqZgZVpkdAI0J636oTSsK9dRIaEALeQ\nsKnyFzUMbLGmsXrSYOnuPXets5GO1xhNwdAjFJv04K7DZIYWS16FcNFqPCeb1LlzIxpqrn1cZU2M\nxxLPq7eofvHYFdYuTdsJ3aAOEvP/8KBv9Ao7JFTlqLO7xL09qPSzbF2fANmNlznc0QRULJeuXi0N\nglXLcIunimeWfMqlDsRqNCvYXrSEhdZ5W6iaNOuThdfaE5Qt8DSrRR3I1IVrk2K6Evewq0z7vjXz\ne+gJYCe6pIsL55sFNF27BHTDMJst5bLIlgU1RWvlDEb2x////k193LMJDK+0iOcTp7pY8KWht+rb\nIFGzKftuL1Xki9oVpxbLwDVds5PlTnTJyBGdtN1o1tVpxVztMdPO4KtVyUVtgt1hooUoh1dhd+KO\nrclqOiOf32kdYxQkjJLDdnFhp3lcCxsyHXeihJdH13mY33JW0JvzkOeYuDbs0CagWpVgsqpWMJto\nC7eV/kzr/mrqY2J60YJxcqKtBUNCAKflESeF8DAPKRaBIx+bjdh1eTpY6yfNdcfTvHBirdbqsdbH\n4oFZKNgWCR45hQf9VqsMhoPV+JTXqRTbc6nK6cVjTTyvfxJ16y7VLx4zf/WCKtfPTlUYUjfW3JAS\nMCKjz3uF13a75rzU3MgVmXbctkljUNZkL/0yDnd0Bt+81tZPL2pUFrpZmVs8HTyzo3pRBbx6lrqV\noHsYzfMxr4Higr30nItgoh/ueJco2WsJg+ZGl8zWiljY7K80WdKLglb1v95+wHM9IZTIaEqV61fe\nXZiJUvrjFRl9mzbacmX5LhsD2T0EIzt/Wh454vn4RLio9S3x0tC400yd01p05YZMEsVOAFC0fOk7\ncdwinlad1LoCP1tzESVN1bohlIt6wv155RI47PWJjLvHEs5JIdyZxczrjOs7Fc/1FqtW1yb4iRW2\nVbSPvIDRUGd+ZVfIFzoR4WGuV87agqRFQK3Nm4WCOwZbsAwtAqqXhbN0TgqhWIY8zENXYzNOQy5l\nDQmBtj6tasDMs3oAZ/V0O3taN6uzfrICGQ1ReUnQj116t01AmE/1RuOsJIpzgn5EeNBrSCgvm75E\ntq+SiUupdSrltlnjDJ30cHrG4sGM6o2pK65tLk1z7LPTiCguUflCt664Nlq7bZeOb+SK6tvaYo/7\nd26NlIkAACAASURBVJHhgF70Pi5le0zKKb7MT76ogcnqNn8JEFHE2dMSKZUvB/482pHxF5VS39r5\nXMznX4E2Ub9GKfUzIpIB/w/a+x4Bf0sp9T+Z3/ynwB8HfjnwxUYzExF5Afg48Atm8x9WSn3o7Z7D\nM0s+gTQuiHFSr1gnFieFuMwg0IFxXWipV+O9eAcl4tSEswh24q4SdE0aBIaElFlZNTehEmlX46+z\nNqyLz2I2ce2U/Wp2K0/Tkv6Bls6ctSAuTLHqOBGuDTTxXDa7vjtLyMJJS9nBR0zckqixbQUsdGFg\n2bJ6FqomX0zpxTtadsg2qbPn7jWyc+dqjrmKQ/L6IReVngj2UrAWqx3nRWBkgUxHVZvgMa/1Nc4i\nHcheSzzGtbZi/XhFli1Y4dL+mHqx2ulSp5prbbI06K/VgXPp5L6YrEFXay8KEvbS0kyGDTTxtNt5\nazen/72AvVSPxVqLBy8dv3v+WaLbVfR1t9PANIrrme0H/QjpJ876CQ/6WkT18KAZs0eRjoUtAO2P\ntfZcXhDmJfFxTr+6cJJC9nws+qNaH4PZN1nSbg0PLpFCbVJIzwtUPWdncI3nehPe9IZgUkZOWuq9\nAhEJge8AfgO6c/NPicgPKqU+5n3tN6LbzryC7mT6neZvAfw6pdS5iMTAPxeRH1ZKfRj4OeC3Ad+9\nZrevKqU+/2mexzNLPkmgWg9uFKQm4+y8FUj2YSd2lRs3Tn6KZCNHQlGQUi8LN9nYFOIsqsnC8xYJ\njZO65YqJox7Kd8X4bqdNCgnmtR8HcqtpSzxd68KmbXcmQz1JB25ymtXCm/OQKJgwSg5b37WJERJn\nLYmalfEKEnaCxiICKJYzPdat+NSqT73ylJIBLsoH65u2Gaz7LAuF53oL8kWTurtWp88ne3/yPTlC\n3bqryefKvo6ReZDdQ53Cu9AWhyY7VrL91rltXH0WXjdcqwPYccmFErn5difQSRzWstbJG2lrjPWx\nFPgE1CWefKGMhdqRNNpkgSdxo9CdhSyO9XfC/QwxSgwrpGOg7j+mDbXtNtsfM6nvMdi/RpyNWsKk\n9e2pi/lYfTuAZBQQXd/RxDMc6PjSsCO+28FK51YvPX0Qj0mLUxe3BFrCue8RfDHwCaXUJwFMq+yv\nRLebsfhK4PtMU7kPi8jYNunE+ilNCBOzzFFKfdxs7x05iffcqL5TCAPFc72Fe3CteySMI6DJZPJj\nM1GQ6j4z1g2TptpF0RsiVY84zoiNJQRtqfkw1nIiWVhyUqxZffbH7d5Bfo3PrG32Wz05J17qxYGc\nkkE9b00kKmonD/j9i3rREmo9QVmBSICHecg4KYiCk3bQ1ah4S9XTsYuAVjDfR3dSBLioT1qFmX4B\nqj62zbUYdpt2uzZBpDmv1d9cyvZa6sUb3W1xBnOcOrKNDSwezPSDYlfUAHu6aVlRHa3flnc8foEx\neOKpHvx+UH7rDvt9oKXRtpeWm+vFAtiJAQqKpSbEx2FFWHODpSDjPpGtoULHd1wLBtPCGi8Jwykk\ngOm11Lkfkkjf+709potjXpvOuT4otTDp858HaUqYpYQHuu5I5QvCWeUlGvQaa2tdd1jYXB+E6Y1V\nFDrlfTYh6+9yudcInj5NiEAUP7Hb7UBEPuL9/3uUUt9jXn8WcMv77DbaqvGx7jufBdw1ltNPAy8D\n36GU+oknOJ4XReRngVPgjyml/tmTnsgmPLPkEweBy0ryfe9NoFcT0LwOmsw0v8UuGL+/fumrWFtV\ngtj8jcImgykKEi0V71HNSmZZZxKKBnuuX5AysvL+RKHmJ46A3Ge+tIndpomjtPrYeNCB6Mb1OKuF\nu7METNtip/wwf9AUtFYZkaknsuSxSc3BxqWAlYK/fKFcjMhiXrcr3v2kBbtdm+btk5CdlP1j8C0N\nfaHbQq6ugVzU09lQptCy/MVjlJnoIqMebVs1z60w6iMsMlfrFODUADappHfbPtSqbL7rz1meNblR\nNcNYSNpl5GmwdZQoHBFal9uTxB2NFQQ0cR2jWK0V3V9v3JWmWBVoLCTbM8imxGcj5mHN7ekpr572\nnDBpHY/Zvf4rtSV4+YjoSlP8qvq6ONg1p7MWV3+88nw80uVmURRO51EXDE+AVcXtdxAPlFJf9JnY\nsGnC+fkiMgb+joh8QCn1c4/4yV3geaXUQxH5QuDvisjnKqUe4Ud9PJ5Z8gkJ2Q3NKukRgedZbQjI\nzhdGdHKdgvUK/Op8cBO0nSztBOImmDWTYXdbdH3ya7pJuuNcM5H4bQzsJB0FpYvPzOuANNETlCXd\nnTh1looTwOzq29ndepaOJXYfLWvQxIm6x2Bh95+F4uI1dnuiFPPHCHuu049bm1btu936Y8hP9Yo8\n0ZPlElO4aidLk6xRL0zHzWgHOGecWLfq0h23b504cuYR902Vt9K67XvRYM8ltzzuHKGxuGzyR/d4\n7FhqSZzXtN/FHxejj6d8pQKviSGYwmvTQVR6HdepCe5blYRwf435laXOgjydv8qrZxk/fyruzF/c\n1THHnqmPkp0R7A6IhgPUmxOWs0qT4HhXE8/eoU6YsK1CrMyPtXpMTVJguqD6HWZ9N50/xl3yfo/g\n08AN7//XzXtv6TtKqYmI/BPgy9HxnrVQShWYm0gp9dMi8irwPuAjm37zJHjPjeo7hvwCdfz6RgVg\nH36LgLi3h0rvrXR1dFXnm1KTDUKJqPGIZ40wKDT1NDFxQ45xhrDXtFrwxEudlZRoy0sA1aMhQCOs\nuSk2A5BRkoWq9b7VurNwWVHmGGxKs+2JZC0Ou8LvpnpbazAO4rXuyYG1EL2VfKsWZ9Gsznv9MdNO\nsN92o/XPawXOLTl3xO2ncoupapcs1cdbVjrmc/2qLuDMIlgWzjqxBGQJFNqk48MmXawjZj9BpBWr\nq3Ko50TDg5Z70/UECtok1BWHtZqFLR22ixNU/pp2G3utB4AmO+1yqqVlrFo4rPT/sdaOhavPMbpw\nKl+gZjWqv2gKQY3VI7sDJBsxrR+uNC3sRY2rm4VHEqYIlrwk7FeN5bUzwvWnsmNoXc6nZ00xbKKb\n74mxwGTc1yRqEh6qTvt4WLUW3wP4KeAVEXkRTShfDfzOznd+EPhGEw/6EuBUKXVXRC4DlSGeHjpp\n4U8/amfmN8dKqYWIfDY6ieGTb/cknlnyUdM56id/El45Mrpmj9bm0q6hKXG8v1bLzfVCeVT6roG1\nfFouk+7vNq3MDQE5t1GceQWIptg00UKhMvMSpuLVbqXdY/Jf+xMVtFeDyhCcTzzdCc9qw6n5g9Wd\neXwkUa8hJCLcLWknjnoOTNdaWgJEWeImizfnNs25dMH0FXQkenwFaT8mJsOrLhuPvGi1v26dp0dA\nThh2jUvMHyOrd+e7AqWcN72h7PmbNhGqKJDLBXHUo84aK8oSrSX92rWA9/sjeW03rGr15LUmbrlO\ng80P1hsSWhHO9duBGKjpkSae+8eoiZbAWTyY68LQB3PtIut7HUgPrqAGeyyqIyZlRLHYcNG65QKm\nCBbQxDMa6rirURmRyrPMzy5WREhJYsKDvo73ZInens1cXJ6vdPDdlCH4lhEIQf/tT7lKqVpEvhH4\nEXSq9V9WSn1URD5kPv8u4IfQadafQKdaf635+VXge03cJwB+QCn19wFE5LcC3wZcBv6BiPysUurL\ngP8Q+BMiUqEdwB9SSj0mi+TxeGbJp5oq8h97jXQyQ144Rl58ETl8/1ptLr8/TUVFnI3a/Xg8AoBV\nbbZ1k/6Ky21Thb39bI2CtiOdRbvOx61u+2PXZE4lvcf2z/EnqkZUVGf2xWssLBs7spO/nQQjSZx6\nc6twdp0b0L7wJzI78fqFiN2VN6D2IBu8oOtgForb57GTkrnaL3TQPVhjXXYyunwC6rrg5PnP0zE1\nI065dtw8ArLaYU4rsBOz8ZMq8sVU1z1ZYViPENTUtA04u9CTZK4TXHqH72ceQrGYubbvvWjprD13\nTOtIZ2pI5/5xO+254z4W0BO6HQ+b5u/dd5UqPTmoNvFwdqE7rx7nLjstmtVOj40sgcv7Lm6W1+cu\nvpeFijRcGgUGo01IR9w3TTXp2OPsj93xKZHmWtq+P36SQdJYX2LP3WTbKZGV9ubdeqj3CpRSP4Qm\nGP+97/JeK+Ab1vzuXwNfsGGbfwf4/9l71xhJsuw87LsRN175znp21fRrZnZmdrlr0gRpioAAW7Ag\nmCIMr23BhEzAFmXCAiEStgEDJmUbsGGAwP4SQMgy6YVESwQsWQRoSmuYNGHJEGjDXoqksLL3wdmZ\nnp3prqnqqq6qfGfGM69/nHtu3IiM7O7Z6eWstvoAg67JqsyMjIy43z3nfOf7frPh8d8A8Bsf85A3\n4saCj1oD6WQNebmEvJVQbbg7BmoSNZUBVPOgXtRrAGDCtkZ4jkxo6zFa/R17cTRAtzWLsRaThiY2\nB2c3/Bxb7r/+0kwusNWyc116ksI3NGbzGrO3SxDh2KZ0DBj2YB10KiKUQVAFoiyGUEr3o0q5obJP\n56PvHeoS01W52+djsey2m4KlfHLPfaZxXJ1I0EQAwBoGqOdZAukQPT5yOtVzZPUozIIda8O8LAZc\nqdWqPcNUXOVMu66V17R8kVqNzPfRZElQ+S44WgNTrmUiTr6emw1H4LRozm16RsCpy2EAyuMGkMWO\nYXmpZUbqB7rBHzlHyL0Ur2p1isB18XovwVG7XX53NeYmgBIcAaPhZpQwZufGi4iVDABUBUgBomZ3\n26bkxtd82Ssr//9lvPi4seDjegrBkQ95t08lAHanbCghAbQDMo1dqzTCizEDTlzMTF2+iell76pc\nV5pS2YaMjRcaw7lqxkJuk/ZrV9h0DHhbekjmWNclSEnhA5NTqOnFc/WtbFmf8vx0gast5RxLVqXO\nOhI2mADV5/mSynsMPPoxesPAHGfodnEYAaveEyRrB7eigiy21y2oR1+hXb4NZPp9RJoDx1xK0gOv\n1vmubCieEbalObDdPp3Lcyy4mqyXyFWKbu+InqNLuqx2Lfhc7h1AHL6FWXGNk9kTnC79iutnJNdo\ne8NNoVZbNigisBXc07HPpx2cTYR9c44r7DseaHaCMpO03UV1WcscG1gBQZNWtDCpiBOovSm63UOE\nrTsI5QjjZIbD6JAM6SanVeUPG3w22GtjuvYAyuwenRkAXC8zIw9kokH8tNzIPIVF+HHCERAvoOz2\nvRI39kw4EpC3u8DBDjF2oh6VpoqqcRc7Kj6teW0rH9vZhT2/Up9HAawdlW3lC1Qa8YtstHU40s6q\nzMKXVputG8+xwNKUY67/iEzmzi+pEXznCBhWB0uFtTjXV9bI6UA91q/xlCny8udSel8BzVmN/d5N\nwNPp0+Koz0PodnG7QzJHff8YcnoJ9ehrUA8e0WR+ffHRxyF67YrxGAu2PrNEaYO/nfHpcqxtXMfX\nha1EwerhAF0f4/wC7d5etUTIkcXIPBdX8Xv42sjHKg+QFA5asswu2Grag1cFHe598NCy9IHeQUlJ\n1q9fCRt4apkzgKqyOtuP1LJaMWjBliKts93UeAmkj4DZAtifQA4PMegeot0mq3YVX20e39Po0lyu\ntLIde5h0vczgbgBQsJHtVbLXZ82FvYyPFTcWfETown1tn9JuPeSW6R6GPXyZpE6l7EY3YLMApVA0\nbW4zkpKCBtbqEbqC3kdnTLaNNmcWk/QCj1cuAmeBo3bbsM4qN4TVK9oqjInSEbWSrU1OoZ48gnp0\nhuI9miJ3Wh686QI4uKahQRuEWB3BynqiQkKd/jOod99H8d4TAKjOcthh1d7JBjoz0vx8e5dOrLL6\nLweXyhoytI7cRdfdgTp/G+pb30Lx9RMkX3mC1UzCC9fw+07FGkACwJNrovDqxTYvrhszX446rdnQ\nldl6GtbMl+6TCaUq1Hn+nuvvs8hH5uf64OzjuYuTeYikIL02O4aBKq2m9QwWgOrirVW+OUTYJ3O9\nOkjx72rn1v4MDKSkSWjNBj0FgDjrsTXiAEDeXsI9nkEcLqD2x5C9A5qz4uN+1nxOrT/GhoKqrmIA\nvubKa7Ji8aD1A6UflRszK3t8GS8+bi74eC6V27bJvTfE1iFF62f7bxbZWItBygpds4k9w+U3FpI8\nWyzwYBriZOGgLYFPpQle7T7CbnhnuzAnsLVkZprqTL1ejKCmZV08P5khOSORSACQbMwGbGRBvDv0\nlguo6wdQJ2fmNQAYCZbKUCGqC8J6mQG6HPJcIARUd6lbDL5sq/DsmyNcfxhiNXMRdQvIyRpekCPq\nxkYPTA5mut93SA3nomoTYA+u0ofTb29bR/N3wYtlB0aBgs85A74pkdYICGwtbouxcu8qKVp40rD+\nLXOBo1aOtjek7HN+Vu2NVDIGUjG3DQ9ztSQ7BlgeSflq6zW0kWkvx+U1WHdU5edYAFRcLlFcx1DL\nHOmE7wG6ZtiiuxIMPEYhobpcGdCJU6jxkkzm7NkdbFpBmKj3t/R54ypGY/b4MUM4ojkDv6FxY8EH\nrksX82RK9eosJuOuVrfckW6r+T9lJ8TlmqQgT/hIJkZiq7TRrs5d2L0X6dL/3++2MAwucLvjInDW\nugF7t+zN2DtCmxrLu9xnhGoPSZuuOwUGLbg7S/jLHKLlQ97uQtwaUFY4PIToHpJ3j45KjwigDGk8\ng7tDC7et9YXQb7QiN/V44PlACNBluQTAFMAFlKY/wwvLnfnufQCEEQGAPVwgnaSQ3tooLwO0KMm7\nfZqMHx6ac1ZXS2gKZpFtAE/Dd2GsMLLIiLt68AwI8WZDOr5mrK0RWX5PHGQ9Lo380Sp3cNzKMAjI\nkK/CLKwpZcCLDRWZzBMvyhkhAHC78LwQ6vxtuhc603L+raYEYQObmp2X/+/LrUPX4hZdA5z9FIjh\n65vC3QnpcR4U5eFQjjgpmXn117cGR4W1yam8t37MbIJ6bT0o3C6Zblzujif0XfWOTGYtsvBl5vMd\nipsLPo61rMUJEF+Q6yEOEYStrYuPKTXAyiRsOZwiqZRTiKpZBR27h1Op8VtKCNL1IcMAbY8GEqNC\nUl9Fs3h4kRb9nl6QYd2c442ylE2VzZBhkpyjv3MMqYcpZejD3RvTTXznyEyuo3+82TyfnJI3CkcQ\nQLxxz1ga0DHJskR2eQH14BGEniwHsLFD3QAh/XmYbGCz3vg7E2lObqbWoGOuUmDnGN7OPTjHbyO8\n/y2E41m1wcwT+loWBrv3zWcsLRCah3EbgedpwRmFJb/ECtosCAuUMkHSKQeQbdp7hgyLfGRZKzjY\njzzjgFspf9VLZl1SEZjlV0hSKgOvcgf7USmvo67ehzo5A8YziMM9qCwuvZ9qi69ajQjoauwzATQL\nevoSKgwg4gRy0IKrsxQA5MHDoq3DwzKj5ddOcz3k6jUz9Mx7lGoUdnaxIeVTB516lreaUpWA3Uuf\ng4DzMr69uLng0xSXBEBR6y3kbrn7JT+a2t/maTmEyA81aKbZys6VuQsuYTRYR9ddM9X0jHozTyxt\nq7jQu/dFqebb1LCv3TgZMmMe92r3EXZ7d2iGJwgg+tf0fK3TlXkuFtl5VdZmMYJ69C7Uk+uqkGMQ\nQHzqPv1co+h6ehetHjxCPRiE+PMUui7vAhtZkF3XV8sM8u6C2HD3SpdWY66HBPLwNXiHb21X+I56\nQP+49n0F5IkkO8aagcOAQVY0A8+2RcrOFux+kPZlso0BORs2zrbTR1CTKWS/h8HOPaj26wjluXHb\nDd0usBgZxhmd//KtRdhH1mpjkZ0bo8NkLUvwYbHcs4covn6C9XUMOV4Syw6oSudkMWUHNmXdBpt+\nr9lqHoBgSao0B8Ip5IAOUhzu0TXUGtAmAih7PiB1AqVLtHZU1BL4sUGLVA/sx58XdFiKJ06Afgzo\ngVUAz5Rxeu5wnlIGvIFxo8FHzXQ5yGqUCgDKC9HZva8zmBo4MLUUukmpL1A2/mpqVrMQpj13sS2V\nb1wkdbbDpIDkLEUWO4i6OYrrGPJ2F+6eBUL14IzHc3EVP8LXRj7emUjtWvqQqK2Hb0G1zmnn2T/G\nLL/CIh7j8crFwJ/hlXZAi+7ZN6EePEL+cEKZUpJA3Na7xN4BRO8ISgisihkW6QnmWYKOF2DvzX+J\nbv6vvYvicrkpaw+YBcYFDENNDGBq+uyiyZbKKi7gARC+JD2v/nGFYZisaXedyxTS9xE4u5sCo7Xg\n7ykuZhUAqgzPZounZzxN7CyeY9K/V9rziWdTOAuiYdBzqNHXqR/3/jkxtfZawJ1rYH8Hg517yFoE\nCIIFQZfjcnHvxEb6ZuXmWKTn2mCOPretXO7Bg7r+AOrRY2TfHCGdrBEsM/gAZZd3Eqh9/cdsVc5N\nfmDTO8cqY9mKCLbQrZHsASracDwI7XUPqXc3XVRIBByi5ZlrZYPcYmc5QVDNwLUkFaAFZPleW47J\n4VT3kESaQ7XOIXbuUZUgvcDLePFxc8Eny5uHHoGNZjZruwEoL+A8rUxV50ViFrunv2/NsrmJNLAl\nHN1LYVKAYzG3nhrS17X+0cavPsoEt5qdlxP39dAlupll+AZYWaMXEj36zhFw+aDx9fmz1IkK/BiW\nGe0clw0T64BxlK3L4ZMyObnSspOpPZ1fD1ul25ZC2qpGbb9OHXhYHqdredzYWmjxhIRMtWSNyld0\nfQV68eSFlj+nXkRta26zGeLFs9eGONKZa3qJk0WBq9jbUGeeZyv0/QzSC6mE25KQy7g89zpTMMf1\nrLAW+Ir8Dpfu7AZ+p8w+uReFWtXgmUrUdqRlxrNR9vXCKoOPSTeZttfeEkoITBJy+n0ZLz5uLPio\nJDdlHRNhQMN80dDIfgAuTuae1gw7x26YotM/hlAKGTLEmpr7tAY1oMsbbL+t7ZI3dLxYKbtTswI+\nugvR70H0r+ENLuHshPD1btg09c3nSkj2HyhvvGho5ldC2cFnh3O0pMKr3Qx9/4D6SdcfAJcXph/S\n7R1pMsQYAZealuOtCwKLMtbZYsNAoe/rnaz2eTG6Wvxc2xuGG8K8a9XlGjVbwPU9qPHS9I5Mo3qP\nMq64uMaTVYZkXb2sj1opOl6AtqQSFyanVNqxd+bW5zAmeR81bGqwzkJY1FJBl562RZ6WemQ8i9M7\ngOi1IbUag9i5B9UeYpydV4aEAdD7jme0CMelPQBHHXgiucbZ0sc4PcVb+68gjHoIwsD0fHB8TGUw\nHnpdagp5oGd64oayGy/yWobJfDQtxwQ/AjCsiOgqPzLGgYDOxOLJVoq1vSGxB1lNpNnGPSDCPlah\nhHSo5CVZQJZ14Pgz8ufpkeBppsculvkLGjR1RCMp4qbGzQWfuED+7iXk58qav7CHTbXSLt+0V7GL\nZR5glU9w1K6antk/P1OKg+dy7B2y3h0z+Iha6cLIxLcGEL023MH19qyNw9Ta+1B+hCIr6+ih7ODV\n7rwKPKentFCGgbaTThF1DyH9Q1oQJh8YgLRLZsKqocfFbEPUsi0HkNPLanbQa0O0lpVMx5QM93c2\nSiTIU4jwnD5TOIWrsy9xawDBGmHrORbZGMm6WlMntYNh2asZv08aZLNFtWTEumU50aONSZ5KK/pw\nT/1eLeBRs4UBA7XM6JwCpRvqtp4DAOxbSvj6Z9E7wqy4RpJQ3yxfp5psIOm504WhG8uDHYjV1PSz\nmvxoWB1hlTv4ytUInxkGGHz/j0LFE8NupMV3TkO0XkgZGkd946a/L9UuNzp2sN26CVeDZ900b2EN\nrcZJY5Zdz4o51DKjEmWvDWjZHEgfs2CNJB+b8nduLCa6BECw5qYnU6N2EhezDbXtl/Hi4saCT545\nSL9J7C73tf1yar53hFUxa+zdrHIHD6YBkvWq0dedB0frANRo2GWDjr1IDVpaSXinspMUehbD+Jpc\nXpRzDhzMBuISj0dKvU2LwQbwaAl8p+VR6Sa26OeAWeCMdpfNVvPIWiFJSgXrtjcg0czFiLKM2hS8\n2bX6Xtl01j0joKry4MEj8O1Mqb+jmVOi3zN+MIuESBTLXGA3pGO7FRXo+wdltjO9MNIrZU+pVcry\n6zKNkn7FJM/+Ho36eK2PYTJXlvEZz0yfSi0ziGVGJIogAHooSQH8fO45gPsoB/SzjJC12pikJxtq\nyyY/zmKoyRT5yQzrZQZ5cQ3cPjKZ9jIXSAoHgUuzNU1zZt8YJXijnyLodwEsK5sVstHYKTcDPNMT\np3QQbEnQO8Isv3rqkG7FqsAtiSxATdm7YW6oUo5lR1ndOyIFbZrzcfcWwB2iS+e9PTwYneIqdnHc\nmhBDUNvb2xYk4PmmPsrNjxFv/UTM5L7n48aCj1oTAPk8TKl30KU9Qbr1ojuZe7iSrhEdDZw1Irkm\niXtWLkBDFmSRFcxCrP81u7aWLhsAxMayRB25dCF6RzSdPjun3fJ0UVUpBsqMSX8e27YaIEkcxGNa\nuJLESOCvAbhxSje/rtEzM6sxfAlImllhJYeOV8qSNPYKuPwUBoZia9h1+WZzN3BaCPvHRvxRhJMy\nS2woj/D3QdT2QDfltf6YZk+Zz9rSZSqwmjPKHoUfbRzLc4Vl18ymZWbQNkkgYPV/GLjMgp6UdgE6\n27laPNTXokAkFZn7uS3aPDz8fw31nokYADbKVvRwCUBN8c5EAVhUrunQFWh71txYPWPzZUlu0Nkn\n3weNp8YapB34I3S8ZVkO3aIcAjQAj13C1CralQgCYPc+Ppy/iy+ft3GVCNxtS3yqn+GoNcIg0KQS\nPeMkssj4X/F98zQQ/aRDCPFjAH4JxM/5G0qpL9R+L/TvfxxkqfBTSql/KoS4A+DXAByCEr4vKqV+\nST/n3wHwXwP4DIAfUUr9gfV6fwXATwMoAPxHSqnf+bif4RMDn20nQQixA+DvAbgP4H0AP6GUGunn\nNJ4Abe36twBEIJnx/1hLim8NL1ij9dke5OeOIT51H+LwLWSeizi/QlIs8WRFFzNZSz9fU75+wzVl\nQQDKhaHXptq0pp+6cUq7cCsLYJonU4DNTtwLqQcQjSgjsE2/2NIYtJsMPdpdbuiGtQakQdaiBa6l\nkQAAIABJREFUgVLBpSjr/TNkBCQoVRJc6MzlYAfYI6LBIjvHKndwuvSwGxa4FV0g93R/LCL/IdWi\nXa3g8lKnb2ZQFOhirIMknVc2P5uUGZRerFU8geeF6PsHeL1Hx8A7+3mWIHBngNeFxwZxQQCEZ6Rs\nwHNStdKbbbxH+npjo8UmnQAeq5rrTJSeF1M/BKDvAoCYLiDuU0Zk3ke7baI1MGrM0AQSMQUdR6dv\n6M0duYsiyNHx0ooDKa7eh/rgn5U9uEEX7k5I9tK+B3T0xmOdYpWHWJh1lDdUJQjZmyw6d6WbLWew\nanKq/6AH7Fslxn7PbBySfGrAZVVbt9kenZUbrN9AOtQnjLwOXbdhH9i5R0PQd87hNJnZAcZmQoWB\n6Qeulxmd594B4oKo5W0JLHKFYUCAys680gmotAZAhj5Ct+zlTpJHOFkUOJkHeHvyYjKfF6VwoL14\n/jrICO4EwO8LIb6klPq69Wd/FmT69gbITO6X9b85gP9UA1EXwB8KIf53/dyvAvi3Afz3tff7PpBh\n3WcBHAP4h0KIN7Ud97cdn2Tm03gSAPwUgH+klPqCEOIXAPwCgJ9/xgn4ZQD/IYDfA4HPjwH47ae9\nudPz4f3JTwP3XgN272NVzOjm0UN8HIGzRktWL75lLjayHrYobiIeVGZ/6iKMWtxQ9NqlzL9mjq20\nUdvT+g0iGgLR0IAQ70Lt2Co6yo3WnXt0s0/PKLvQdfskvzAA2m4N4eEeDXX6knom7OypyRnJmszc\nTuYOrmIXu+EMtyJauIOwhbB9n4CvqwU4Nb3Wjg13T1h0YitLMNnhcgwlfUS9I+yGKa7iKntpkY2N\ny2fY24MXDelzj3QPydI8M3bkOttc5KSyPE4lBv6sAgDSC+B5DSAElCW1YTmzZTfiuZcStodkAbAa\n0XMDYgnaQ7NCqYqmHyanwJOvQz062xTFvNtHcbmkMqZHCu12mW4TgJqDNlxrDIIuOnKX3tOO3gHE\nfjkHpNpDxPmV9uVxDNBw2IBjA91VTPdX6M4BqYU8DTEBQHtI12YWU3m4KfsOA4hYlv3AOKUqRjRE\nrpbmWA5C+lwDP0fgds3YQ872ICrFPL+i85SN8a2Zh3cnAR4uBBYN5M5POH4EwLtKqfcAQLuVfh6A\nDT6fB/BrehP+ZSHEQAhxpJQ6A3AGAEqpmRDiGwBeAfB1pdQ39OvV3+/zAP4nbaf9LSHEu/oY/p+P\n8yE+MfB5ykn4PIA/pf/sbwP4xwB+HltOgBDifQA9pdSXAUAI8WsA/k08A3zQiiDe+kEzgMceK02l\nNrtGvsqdrcADlKU2BiEeBtyINN+UC9k7MJkAO4RyVKi1DTchg1Bj1Gmu+jEBVKR48t4eJuk58tW1\nmaJnmvJ+lKLfOoTnaQDqj2kOorbjtc9TCUIrvXiPafEOWwjdTeWEuuU2R2WiPk5Kcgb7/+hZjU57\nFwirYq5xoXR5hcooriPR2b1fAnStjKSEIOBdLzFOZjhb+jhdeBgELo5bGYZBityh7zQXPkJfN63r\nMiwWYYRYkTMUGszp+0yReylCrwvPOyqzoNp3ApQ6aur661AnZyi+foLsmyOiRt/ulllorw3X9wxb\niwdubYdQG4CaSnAtqTDwcwyCbumnw8xAewRBqxHYPdK4UIbwwddCqU/XDHhEic8xxLziLwWUNiRx\nMUd//xVEcU50f4DOtT1bxAy3NCfVCi9EkU/1Z6I/2w0Lo/4tFrRJCdtDAzoAcBWP8GAa4J2JxFUi\ncLECxvNPZJncE0L8gfX/X1RKfVH//AoAe2L7BJTV2NH0N69Ar7kAIIS4DzKW+71nHMsrAL7c8Fof\nK74rej61k3CogQkAHoPKcsD2E5Dpn+uPPz38FrFgUgKeUSIwTn0DNCwEGknS2uIY+DClHVsypx42\nCJn+RzyhHg3v3KegEkGnb+YdeNCu7ptSUdmth1cazJm/s6fq7Zmimgo2ewZNsnO8P1vhZO4hKQgs\nuX1w3Bb6NJ+jLQeIdu4BYR+qPUReY7hxsPryycLBOxOJ/TDAIMgrQBS4LePkaVQImoIB0+6NQPdP\nYlkSMdSgkjnxZiJZO7RR0CCUFEvDfELD9DoDz4NpgNOFxEUMHOSkCrAbFjhq0aJeOOQcG7pdY10O\nlJ5Ai3yEOD7F41XTVLuLQTHCICBTNs6CKkxI/pyrETC9MMrh2TdHGD8kX4Pe5RN4d7twLpdwj/tE\nPdclROm4CF2BQZCDb3UbcPhaZ+YbZwa74dBkPIoHSwOt8RbRELOtYGErwQNlprPKHYwSxwI8irYk\nQOAMi/tzbC8O0H3zZJXhdOnhdNHCcXuMzw5T7B6+RuzJenihEXRlV1KA7uPAXVeyHil8qJzUv9n6\nolC5FvON8PbEQVxQxrPMXqCT6UejWl8qpX74xb15NYQQHZA76X+ilJo+6++/E/GJg0/9JNgpn1JK\nCSFeGNdRCPGXAPwlALh798A8Xt+x8U05DBTaXjWbKFSOgd5w2fL620pjbTnUFN8PqNTDDDfoIbon\nCcR0AfQmUJ0pEPUgQSUgD6CbKl5gw0q4/tm0arIBHht09OtBRlQeinp040VDzIprMxQ68BXdwDoY\ngPcjD225TySF5RgqJ/VkASBqDXTJZAlghkhKvfisEbgOuMQTuGvshgUGfm4a5h2526yRtkWxujFY\np02XzFhlggkjZtiUNtgA1hWXyqZwhcRuOETojtGSCsPANcdObKmaaVsWA9mo1PzrHZmsg8tefF3Z\nm5pB0DU9HLEYlUKdrD5thxdC9Htw9xZYX8doTeh6cPdCOJY4J1uEkIApcBi9Duk8wjxbmJ4kacg1\nn+PAaZG0z9X75n25l2VKgVp6hjM6nu3qeAGABIHjIJIOVjl9di5bMwi0pDKzV9KJzDm3I0dq/rYl\nCSDZ+TXs7dHCtU1lIk8h0hXa3hBHbYBJFPSdapkoy7kUIFXxceqZDC10FUIXuNtRANb4teZ3+qTi\nQwAWHx+39WPP9TdCCA+05v6PSqn/+QW930eOTxR8tpyEc65NCiGOADD9adsJ+FD/XH98I3Ta+kUA\n+OEffE115K753SrPzNkInLVecAcVi2NVq4VuMxyrNPa5Xn15UXXT5L6PFs+0QQjQcwdcVrC1qBoW\nZgEYOfitMvB6MTOmcP1jjLNzxFm58+94AQaBJXSpFbe9rICaj6Dyqwq1WHViIF8h6h2ZkmDozhEX\nuck4Is0KHPg5hoFCKLulwoBNItCfofFzSr+qnlwfQLQEUxf52CgcNA1W2sOm9e+PAYO/v7Y3wBv9\nJQZ+okGnXxq2LcdQ+WXptGnN+ag8pewQ0BuVGQY+NhZ/Pg/KpoEnCcR+AqWzYTqwlD7jvddoBom/\nd63MjV6bSCqsSBCWQ8pCKez5t7Eb6MHKmrupLTgLQNuof4CNYOCxVD3ifHMkgcpaKeIi1yC0xlVc\nZYbuRx76/t3N97C/B5fOU+jOEck1bkUFAndgfu9Fw7IEx8GzUh3KFj0M0faG2I9S/VrdyiZRyGjj\nngaoP8Rx3M5x3Pqua/r8PoA3hBCvgta6Pw/gJ2t/8yUAP6f7QX8CwESvqQLA3wTwDaXUX33O9/sS\ngL8jhPiroH77GwD+ycf9EJ8k223bSfgSgL8A4Av6339gPb5xApRShRBiKoT4UVDZ7t8H8NeeeQBF\nBrEYUZ8AwDAY4/EKpt5dyVg4agu/V79xOfgG54V1G/DUflbjGaDdRE3YCsy2RpUVZjK+yevevE65\nIGWtNq5WVYkblp0xu/nlGCqfAasPoWpzLACXvEiEUQHwIrrRXSERSmJn5evUzENtZjuXVWVkW7W6\ns3muzQ68PlwbBPS3Xoi4uG4EHl70+BhYlZozS1OyrKsarAEpfQSdtAo6trimPdujg5mBDEBMVABq\noK511TA6N6KxaplpdtyCWGV1e4x7r0H4Ep6W2xGHextsPfMczoD5OtTzQEZ5AdAEl9rz62EP/TLw\n6D5PfajYVucuQcjOoHdL0dQ8LZl/sDZ3DiARkNCqJ3HbWSKoEVGUHxEl2h58ZWFQ6MdkBM8boO9X\nCTjmM9Xuk0iudVnSwSAg0CETx4bnfzshxKbB4rcRSqlcCPFzAH4HRD79VaXU14QQP6N//ysg4tWP\nA3gXRLX+i/rpfxLAvwfg/xNCfEU/9p8rpX5LCPFvgdbOfQD/qxDiK0qpf02/9q+DCA05gJ/9uEw3\n4JPNfBpPAgh0fl0I8dMAPgDwEwDwjBPwl1FSrX8bzyIbAEBOzUsBoNPepXKaPyuBZ7mgndV80vz8\nIIBq0LIyJSRenHgIrg48cWoGS3lGgae57bqwoWYOWoA9lV+X4AEa+wX1WIUS54uHeDAN8HovQegK\nhLKDvndIrKbVlMCmvkjV5ezTDEqLMAIEgF73ENLfNQrNpA5Nv69kO1xeSppB2JR5ol6ZqT1FyFPI\niLKebIyz5WZmGDhrDANVgt/CKpFpnx1PL6p2sN2BAWMGHUuE0pwb/V2aY4IFQFz5s3t3WQw1OyW1\nBcvQb73MIJcZDUrqLIgn7k0c3S2levh3tmDm9KwEdvtYtUjn+jpGcbkyrq6mbMcqEyxrVAMkvsaZ\nkGHPs9lkASk2QYgp2zTs+wB4ck3fq63Bpvue5rtg23GrZWa7/XqtQbnhsoVV9TWk4gkEANkebrJG\nvdKCw87eIrnG671E+2fdoWvlsU0i++4IpdRvgQDGfuxXrJ8VgJ9teN7/hZpNlvW73wTwm1t+94sA\nfvFjHPJGfJJst60nAcCf3vKcxhOgh6E+95EOoKY9tRHmpquBT5NfSVN4IS2umoFT8aSxD6Pl0T22\nRUakMXh31wRADTs6fnzmLHG1OjdsHtZ3C5yWcTY1EQZb3SlLyZgFqQ1MpgZ4BWCsiA1hghUenj56\nVU74szVEPza6W1iOqSyltdJIwyw1dXvPewt9/wBv9Kl/ZS+IpqeyWAE43fQnYrXl+nm0fr8BPONZ\n5Vx826Gp9hzmO7d3yE3ZCOsA2psfDstV1RyrlU2Ty6w0PzvG8ybYtOQwz6kSDGy1748VaW6ACDiF\nsgg4XjSE53VMZmpHvk5IBTwallT1MClZpFamtjV0X2wgD7ByWgjlEgN/ht1wSHbsV+9DnT2EevT4\n433Gl9EYnzjh4BML1yUdNz2jwLTaVU60YmZ1qZropE2htXfKGTPNuO/CN8SyVHgWdvZTK18Z/5pt\nMeiWnvPW7m7j5moqnbCqdTw2Dfh9PfcQyg6VQeIPaBHgEkwQAPs0f6QenVVejqVM3L0WxHhGfzuf\nGOCzjdLiYmbKWUoIYhfxzA5Tpfl8sNoDqxekOdCz1KHPL6uL/TKD0BkYkgTh/h1EvdtankX3NVZP\n6PvoHaAe9aa+6SHUdcyATeCxjqO+cTAyOpp1tciJYs67b55nETv3SKlieA6xvwPvFp1no3GnfZE2\nenijc7MgijsJcHSXBoBZfZqBR5fy+LvCwQ7cA9KWk2NryHZbpqOVoJUf6Tm4C2sOTtD1A31clr04\nZxPsCDtKBKSzJJ+i3hGBv1UVMOc/SYB3Lg1xQvV7Zg7Ls2bC7BKpYtUPnnUbpgTG+u9XxQx5fmV6\nfJXsx9qkRR7dB4GjlSMu3wZOT7F++yHSb17jhYTjVEvqNzxuMPh4ZkZhkdGiTOKhAsm6OqEPwCol\nLenGSi8rdXyOCu1WD0DSC6RVPS/9bxMg2cFOnhuR5lQaYzkYO+qA2RqQdbI1cBi4mnrqtGhhPXtI\ni3uSUPPamqEQ+zuleyposVVxQSKWLQ9qQppr/HnNYKUXbgyNKiFoYeBSifU5zWKkXStVWErN2Au+\n0UvTWaPAAuqdD0iPrn9R6uZNpsYCQtw/hHjzM5sDpfz+8YR6c0CZifA52KLDZ4NOU/bD6ugni0LT\nywNCprU2u3MCwHMhee6IM1ldfuINjkjDEhiXY6h3PkD21XMiHKQZgfTxMcnDcNYzXQAX18i+eY3i\nckXmexp4ANAC/+qrG/M7NgHBzDxZRnSAKIdINXswRNnTagIe2vBkkO0l9bqiIdQwBabvledvMkX+\n1VPkJ3O4exG8N3fI4bQ7Bfo9ul40qMgG2SMDQtpOfaWP2+5JVa7Feolak12iLIe6fmDmqZKvPMHF\nt75NmaWX8dS4ueDjuIYdNUoErmIXJwsH+2EpA3LUGqEIyrkDnhvh7GHgL8y8D0AlCDNN73Yh20MI\nZTV/Oaw5G3pxy9On1oAXaDfvEKFrljYA1UsweqI+1goEdhOeB+4ipwM1e5vM6k4ncMZEmzUGcSy/\nA9BuO80qPQPR8kjaZLagPsRqWrp1Qk/w1xlFrJ9l65qNZ9WMpuVRac0SjmTQAUjYlMVNHX0u1KPH\nwKPHUOMl8pMZissVFudAljgYfvoawXgG8bk3SUGiNag25LnpD5QkD7Z1sMRCkWbGSbUeTWKrk9UD\nPJi0rCFVUnxwhURe6J6J8AEXCG99mi4H3ugUdDyh1zU3qjo5Q/7uJVYP6LxE2lAPbOrnhUY8NX84\nQfZwhtVMoo055N1rGkYFCIh3729+BvP+czPvRASOhh27hJmBy9dpRTjBBp6rmJo2kaRSZd8niSGl\nJaHU+SWyr55j+rUVZpcewm6CweWHkLcnkHe1B5RfglCTbQOfN6Z+2yKs5NpK17VhvFn3o8ksdY+X\nwX36tRUev9vGtx48Q0H+ZXxbcXPBRzh0g69TIwuzyIF2DgSug5Ys9E1HNznt9uhGGid02lhBeeDn\nRuWA+wz5OjHS7bzD5ZA+zw4NS521+lCoTeHdDwwBAEBZngJK3xL+WDrTYdBhgzW6EYUBIBrsi8r3\niFNaULWqNZKEdMjYAjuLyeHx0Rk5ii5zuDw6zkZecVKZE+LPVAcgJQRlhmaGhM4xZxKO9uvZNpBn\nL/IsEMoAxA11XnRnl/QayVkCeTqBPLwGegekWedHEObzJ9Wyp6bAm6N+ioVFBXQ4oh7m+RVGicCT\nGFjm/D1l2HdS5CjfKwEtjIt8vDGwGxcKuyHQDfvEjBvPUFzHWE4kvIBcR4vLJdkIWPNjLGiaZw6y\nxMF6Sd+vEwTA659G3OlisnpgaN82C8+WFTqZRxgldM20ZDmr83ovqczp2MELf7KmSsIoIco1GQsS\nQEStAWV6xgpihdVUItPvlU5yiFZMm5velMqDSQJ4sdEYFNZ1nqyXiPO5pbQhwC1lntszvUf+3ur3\nGbBxPKOrHKPLFyQwKsSmqskNjpsLPnmCqJCAf4BylMjTw2iFkc7h4B3ewM+xyrNSoFDvpFgrqsnv\nnS0NDFNHl1ykKCexzXS7Hcw6A4gRBJQyIkBpPGeV3Vi1gMOmw9qaWw8mAVZ5gs8Mpxjc/gE6Ph5S\n3DsgzTY3R5JfEFOtewjVm5CEyw69n7sTUrO61y6p4MxQq/WejJEeg5DdEPYlEPpVczBuuA/0UGCc\nwK1lQXVfF1arFqEL/80BnJM5oBXBgyOfFAC07tciH1F9vzWg/k4Y0HvZnkrcC+n0jZ4ddH+unvlU\nXFdvHyHv7aHIRzhqt3G7nWtlhFQPYlLYQGPv0jn4GuvIXajFKQ2ffg4IAOy2qAznvblDmYHuEdH7\n61Osj8m/XEHeHkDcPwTuvUYySvEjjBKBYUDH4LqSeh3zS7R7e8jXKcYpgSorFLAqweu9BK+07+rj\nrtp1sPtrh9Ix8/huWBjGYeh2y3EEzuJbEjJYw0sFwm4B6a2Ncy99CFm1IUcJQIYiLwFgjtClc2kD\nqz3TRyeHfHzM4DXff702xK0B5O0lepMpDmcRkkSRxPHLeKFxc8EnS6Fm54i6hxUAsvXaAFFh8/DP\nu6GsDRvqeRgAYdRD3Kn2OZJiuckK0tv1egO00VceoJJWYP0HbM6A2MOatbp4XXcNAE4XHk4Xa/zQ\n/gMcHr9OtODWgKTx80vkqV6YhITX0tYH0wXk3UUpca8N3VgQlf14tgXX5AHdIPdSUkZO85KFVp9t\n0grQfD5sILKjuKy6qMrbHfT2CqyXGfw3dyDu3AJ6B1i5OeK0FLP0wj5UJ6Yh3zroaK09RD2I6QUd\ng/YTqhyr9Txx+wcq1hCv9xIMA7XVHZWB52zpV1QQAKAtB1Vhz94BxA+G8Abfove9fbR5HbQGEG8O\ngO5DeL4HOV7S9/Tqq8DufRIBLRQiSccUuC101y2o87eByRTyDhC0Wxj4I1xJFwApQwduCTzymo6p\nqxWtmVrvCtkIQLeiAqHsmE1anWrvtDx4wQp54sAL1nBaUrPyvJIRWGcgSh9iiYrxH6uPAyjVI9IV\nYF13gJ4TYoIMk4S4H9inazyKC+zEK6Sr4CX4fAfi5oJPmlGTHagAUF0gFECVspuuoJYjYPWkOg+j\nWVtifwfhnU8ZAErWJHIZumlF1qQyaW1rsdWBhym9mn1monewXV6kBj5ccgNQkbNf5rSb/cMnbRy3\nR3ijL5DH17XSBUnnhG6XFun9HWAyJUYXT9ZbwKOEKEuJW6Lye9519tpliYsXf+3zQwOFI6jWBKJf\nzk8x+w0ofXMAog+b9wpdyJ0Q4v4hzcf0jpDkF3i8cnErmpfAmq+MugSrXYudexjnFxjP38Vh5xBR\nNIRqndMxaNdX8/fWnMq45kl01G4/02a9FDDNcdxaGzmYyOlAoWYGGPUgvu8Htn//5o21/fqTa8r4\nDt+iRrw2SaPSq2+AR737PhCnEGGAbvT9KLQW3+lCYhhUgUd98xv0HvvnkMNDeDv3Klk/z86w4kEo\niUnGbqX2cChnjVE3N/+6e91y9sjecNmxmkJFgMhoTgsuefRU7tXx+1DLceX7YdacEsKQFCgTGlAm\npC0j5DJD+3KF3eS7TuHgeyJuLvgUa6gn1xBhYCT5c68cOGMGW+VCnmuhRVuxQA/vGTM4ffNG0fdj\n5eaGwj3wc0Qy0btBDWiwVKo567Gb8LYpWZIQM87ajVd00WxpES2yWQ87+2HRUP733YmH0wX1u1hT\ni2MYUJ3ea+2Qx8r+Du3+g6ACPKv1vBTa5GHKp4UXlg6Sdq9If8as1SZxztUp2sEAnfZ9iO6KmF/B\nmEgGGoDWFvvM1eDj7rVKp9LbR8bwLM7nuIp9BM66BNZoSNp6ABD1kPf2cBW/p6X12/gXdq9wu+1i\nd/c+IE83CR56BiYuZtgcJNoecaEM8HBvaDcsMHQVlaeWYxoYtQdJtc8SAFLhsLXxbIkigLKiewSk\n9rwMa8sN5AH1kvSg63qZkU378BztnWMEDmWYtzsZbnf6NHx99hDqfc2+s1xvI61yjnU5aGrfT9IJ\nNnucOmjeSMLLGrIebVi38bzE6n2CWHCmIsHDzNpsEQCwHxvCgtKDp/XwdBlWdKfAoEXZs8XK/Fjh\niGbm6g2Nmws+QKX5t8250Nww7EJqWfyKLs3EUOM/JVfMQZeMvPwIi+QRzpY+lrlAJB3TN+r7h3SD\naEHKSnAT3tdDhLoJzrs/23Ih9Lu0ALNiAA+f6jKC9AIk67IUxUZhwNqoTi/0f6ziuxs6OAgdtCQw\nCHJ8dpiS5bbWuBNhH6rfK8uAFvBww9xWjW7y5+EQqAk8agBiq4ZYK2bHhTJzIqHfpWMAgH0iXKgn\n13B0DwignXRlYr9Xim3mBWV2DK70+jNIf9doqeW9PeTrhGag5ArDYK3VkfWsiHZVBWDIHcy0sq+h\nilimg0YyATMnj9sZAtc1jfnHKyCUIwxaB8Qc1Dv2eX6FJD3BPEtImNRt0ezM9Ax48oiugb2DijqE\n7Q3UdXfQkbtoy1kpcyN9OleDFhwsIbQ+HPdz+PObsJvmtZKYFL7+rIlp8LNxG2CRTaIelbyCAKrX\nhrtHmWvQyuDaigtceq0H6+Bx1qmz/XydwHM863PrDMsm5rC6wXqTRCJdn85HvwfMFnD3lvCaCCUv\n42PHzQUf3oVo18hVMcM4mWkGj9XnET5QMzMzTVJfAr6k0hPH3gHE4Vu4TB7hySrDMqcbgUyzBAK3\npXerDbLwgF4IaCDSuIda7qLssGnCpmYzG05nUtLXWmuugB4u0d+4g1VOQMTNZGrSCiN3PwhyvN5L\n0PcPK+Kq4CHRFSlwM/Cw3EpcKIQoJfYTuaxkkeZj8qClF0IsrWTBTKVr63DHR+iSf05l5wzQ3/VL\nmQy+mE22021XxDa55h+6okImAbRcS232J3BauN8FAmeB253+hjClnWEw0NbJJfxZ42JWYbgB0I6f\nVfq7/btvjBK80T9BuzNAsp4iXp1WZrX4tZHFVIJ6ck2ZCADsgUpSdXVsEAgZ4OHYv0N9rMECOD5G\n1mqjyEfmuMz58kI6nwMih5iSWE2Lz+5v8eApn2d4LnkYyciYEwJEkLAHYsX+Tpnp10RETck1CIDj\nsJLtG4DLV7qHV1WD2BZ8zMauPQiAllcp476MFxc3F3yEoN1Q1IPyIxqkS6XpzRSKBjA3sp44KWm3\n3Xb1NY/umj7Bk1VmBC755g1ll2Q7Lt8uyyPbbojegZ6H0Tu31oB2v0IgL2o7NjZZm2hKqlEt3jSX\nC5w1IIHdkJwk90MHiEtGk91Y3g2HxAgsqqUc0aOFg8kJts4XgMoCyUZu0vFROGUJJi+s8pxlSw3o\nWry1xoayU9JkeSPAUQMgAJvW2A1RshmFZgQmVHKhE2r9XQtH7QbLjAYlCT7G+sIL0HyJzTycZwmS\ndXn72UQDYwMB4J2JwsB/wp8MNn3YFZLESVeXVAo2wqRpFYDs42SNOt60RFZWcXTXmARy1slRsYj3\nQsNCRK/deB4Au5e5gqdVxzkyZDQH54UEQGEA9eQaLmerrPCgCQ0eLADSM2lqmUH6HoHXUZntV4Jl\nd/S10ATGTw3f+ygePE8PXnNeBoCbDD6uSywrGZms52ROF+ataE4Lnt5VbvZi9E3JGmRhAOzfAbRN\nwTiZIVlLUksoHAA00Nn3DqEmp6Zn1ChrYgMRLwxeaKyV2fKXg4+NaMApFKZkyZ2nEEpZix9lP3Uq\nLwC0td9KXMA0lo2+1eXb5TFYCsQMPGwkxlmP/frshAoAAz9DJBMDROzNYnpqlmwRUC24CSz4AAAg\nAElEQVSJ1L1eNqIOQCxUyb/T2RSfN8psG4ZEmQ1V69nYZaPKe9rP0WGXGYVSRs+Oy098rsrzkhtK\nNc/MRHJWEUj9+ijSRnxFpfwlha817x5BPXqM7JvXJEx6O4MLGACCjEo3WN0DUZowwdR6RD3qX2mK\nfbFmoBSVORm+TgVvvBoAfsNTSqsTeFavaqGzqrY3hKdlrATLLbG5Yu+I/KbiMXZbdyBjzUo7v0R+\nMoNa5lRiZZmgsA94bcpivRAi02xKTtz53mrYkGz7fl/Gdy5uLvg4wtq9Vns90qGFgvoyDSZuoV8C\nkLa+zlptxPkV8nVK7pE+Sckb8U53kwDwrBAyArpl3b6e9QilSp2sjxCc/VTUP+EAIM+VYaCqU+C1\nJrY9wApAl8RIwRgoLQ2uYteYc9kDuQPpV+0basQEoZTR4mIKb2PYs1EagDZAh8+jVcprCvs9pPCN\nojUfT/nhv31vw1xR+TBwW0bt+1lxFbt4fw7c17fqbggz1FwPEbrAtytyaikHSC0eGsoOhphjlJAG\noDlH3BMBqorXzxEeuAzdMq+XITN9NJWv6N/2EGMtjxMXijLTsA81On/ayzeHrWbgUVYovBChv+np\nVAk9f7ZV4PdlfKy4ueADmN1Z6A8xCJa43Vnhdts1ZmNsWW1AoHsINZxAsF2CVgBYrecAG5HpXb10\nUnQ8Yoq1PQKeeX5FWnFcwqvL4TQxeuzHQTu0vLAEEpnlxMy4mnAhNcI3BxiBKgEBIMfJ3bDQxx8A\nRUOjtWGGCKDsxHX5ckoASESyXCBbUhlPnb53CLEYodGdVZ8Xdmblw8tVinl+Ben6CPvHld01oDNA\ntniun0/AAHeh8rLklXOvC5v24/bx8Gs9YzfM1tlNDrf1Ra4th8jXSYUQAqCSFQHUb3lL/8tZkv1+\nqr1r+jUSgMszPfs7VEbjslUWVhI6AWjl8DJLVPkKIgsNa4xEYX0ziFqoHLPi2ugdAqho0NnnGtzP\n43Jq7dxFTlWtOlepkaMie4xSl42ywoDm6QADCGvQfJCwfK6ozFvTcONB7TAhq4Uspswqi+FZMj18\nLKo9JPWEqAfRv4Dov0hh0RfDdhNC/BiAXwKpBf4NpdQXar8X+vc/DvLz+Sml1D/Vv/tVAP86gAul\n1Oes5+wA+HsA7oMmm35CKTUSQtwH8A0AugyCLyulfubjfoabDT7QN5waIHBauN2uNbbrjo/QSr/a\nmE21iajAYfcFeCEOXGtqHwRA3Z171UXtI4bpK/BrVMzpUvp/q3xXBx2Ash9yGq0CENGP9eL9HP5A\n9eNi75VVnqElHaxyTevVFtR9/1B7ulxUF3Rb3JL/tQCIddAMCAkf0guMVFETtdwOLleSXbLEydzD\n671axmgLndZ19/IVRBZtDnTqiIsZFvkYT1aZAQjOTnjzwcG+Np6MIFtDU4ICoM3wqhuI253MmPLZ\nOoL8ubzeEdRRSgKjAy0MqzdGhv7tdeFhWK0o6nmm8iSlRpVc+lHl++QoVI5Jdo6+BqCn5YE2CFUi\ni03/xtPHyJ8FACZpNbuRjk+9LesxZycs6dhMxfZCFPm0fH+rJC0CbRHiJwRCQKlBqJmEFekdIQDO\nxrZ8559UCCFcAH8dwJ8BcALg94UQX1JK2cZDfxZkuPkGyMn0l/W/AHmf/bfAhjv4LwD4R0qpLwgh\nfkH//8/r3z1QSv2LL/Jz3Hjw4RuOU3AzJ5DV7KjtsoLud6AmLQKUAMQ1ZP5/u0w1K67Lss56vtGg\nFtsyoHrY4KC12YTlA7ONPs5RB6CWLKr1/abM5BmflT/jMBjDLmcOA4W+fwg5vaQexZPrDQkbswPH\nJgDZrw2QDhpQgrvd6N8gBwDIiwRJsTQisqOEBGIjmSKU1KtR+el2kdcgoEVIL1b2poGB52RR4Cqm\n88+20QBwC2MDQOwTg7OHUGEAuX8H/f4xJhktuLb2Xl1tox5MlJAu9WpUFpNWnUV/Z82zQuXUX6kD\nUC3YgI0VyeNiBrjYuI4m2bnphTWdbzsyZKbcpqZngLYMB0gz0Dt8ywBQE/AETqsk/ejgzAc9zWjU\n9hXUU0vgFQX9/WRKZByWTSo/gbEkUQCdtwaxUs6CvsviRwC8q5R6DwC0VfbnQUabHJ8H8GvaVO7L\nQoiBEOJIKXWmlPpdnc3U4/MA/pT++W8D+McoweeFx80Fn7Uy6TjbAHT8XeNa2Rh6kHChfU2k45t5\nFrZF3ghuODuBKR8VKsciG5sSXbJeGiXsSjQ0cj14tNgoVWUtNQSTAVjTjZvVvCg2ZUTA9ga/ylcb\nu9j6gl8CUtnUZ98gDx5J409JuUGF9oKgFwO2VM5XJtvg+rwtIEmeMgRyzKQzfi0NH6s8FyQiexED\nw8DFUYs+r1CKjs3uc9leQ35imuG2snJczDBJSTHhZO7hZEFSNEApxBk4a4TSsq9Yjmk3nuZAZwoR\nDRG4LQOoR63UEDOeFZzRSUEAhCw2GbmtSj3waaNkAOgp6ggqX0EsLd00XemzrRLiQiF050ahu05D\nN+U03bOT2kEWeVqOK8QJkWO6Y0APFHPmyCMPxl9ndl5RHmc7DZqFSwzBxmjHxaNyJs8SjLU3NiYM\nAIUbIrjcd3whIcTzm1ECe0KIP7D+/4tKqS/qn18B8Mj63QnKrAZP+ZtXAJxhexwqpfj3jwHY/uGv\nasfpCYD/Uin1fz7fx9geNxd8lKIFgP83T4lR1rSYW8KDHugGrkjusM1yw64YKPsNTEmeZ3QxsxGX\ndHyyd05XgPfshrZI9ZQ/g6QeiBMAUWD7JCNi3zQ28PDCtsqrzellLjTdfEzGX5ZNccXJUi9sG7YA\nOpJiafoqV7GL3RBk6eC0EGkpfdNzeBrbDxqE4glE2EekF0MCxxK86zvwpzWRA4eEY+8X1N8KXbEh\nsW8Dj7GgZnM7gPoG0BRmU2Z0kBROhbIOUMlsP/LoXKkUWasLD6QUDi807DImI7D0//NEvk7hupK+\nZwckMWMxItlGY5U7GOjTSp91BJw9pAdqxAFz3mHJ1li8FNct7bEZHAuVG+Yib0ZsoghnrbI9pNm1\nTkwzRQFJKNGGgxx1h8Hc6M2Fblfb2X8IXF6Ulhc6hFZgJ0Ahqazuzj1gQWVM0T2E2rccavl6A0oQ\nsPuuXoOVuvDLodU/3rhUSv3wJ/HGANlwCyF4MToDcFcpdSWE+CEAf18I8Vml1PQpL/HMuLngUxTl\nhasdMxV0T0dHZfreCi8rIDlLYp0q1mPTitD2zTzPr+gGNTv2UldLOr5pwKt4QjfC08Q5uV5ey86M\nAVyvDfQOoPwIeX4FoAQeFrfkRWMYpBgla5MZEUONX/EC8IFIH4stXc+7X6DsPSQg8VQG17Olb9hu\nVzExtKQzhmwdQu7fAYKLCuCYm39VU3zQ1t5K9yK81gDQGaJxBRU+AbdWi/A0SNZDOj4imSBZrzEI\ncmKNMaW+KKpltjipuJayuR2BZinrEu7ex8IZI5JVckZLkmrBrahAYGW0cTFDHvqIDt+C8iPM8qtK\n4yRwW5V5oKbI1yker1wEzprAShvUsVAtEyvY1gCgXpHJ8GZWBpHmdM3o0mJ5skpAZlt0icAoF9jS\nOUBZluPNyOYxE0AaAAKov9Q9NN+VdAKTSXV0pqSuP4A6Odu0tPCrgECZ5Hub9/DOvfL0NvVXWQnC\nUqqo6C7yRu+7Kz4EcMf6/9v6sY/6N/U459KcEOIIWm1ZKZVAK8Qqpf5QCPEAwJsA/mD7Sz07bi74\nrBWVf+IUagCIKQCcQ3U2WWiNU+J10NELFaszMwBlyIy5FZeKAJjswwDP9QdGrFIBBoAqQp0MPKNz\nsxu3HUexrwfpoiEya/dvZzu2dwskgIT6Ouy7wtRoCgIgABXQsed5ImkvCmy2VwIPacdxfyWBdEYY\n8JAqUCEdKCEgLJIHVtPSx6jXpkUkX8GLhiSHAxjQqZQg9d8oP9rIgkJX6OyHwNicC5Y54oFd/X0W\npzTkS/YNGR0DZ0H7gNhROvsq+2NtDTyvdjP0/QPTO7GZXTMnBfJl7dgIpPJ1UlncbSBi4DmZe7p8\nmm0AEJcYOethMdnQ7VLP5fQU6rHevMTUF6HBXOtguBQFi/hBXyWAEoi4jAzAGCk+LSoZUL4iLTgr\n2nJI5dnJKdSTR1CPzqAejzWxwCvZnPa4gw6VJBAfvAd1fFyRFxI796qDyVbYGQ+X2LgfK1gf7vKi\n8bkfOYTzouaHfh/AG0KIV0GA8ucB/GTtb74E4Od0P+hPAJhYJbVt8SUAfwHAF/S//wAAhBD7AK6V\nUoUQ4jUQieG9ra/ynHFjwUetFTXogTIDiiUqjUgvLXdRdffR+sDedEHSINB6Y1EPwjtCXMyMA6od\n0qFZF7OzYruANAeCCwNAvGB58Kp17zihBcNPKqUT0aUyLTfpCyfHIKiahdmxH6U4WRSmD0LlIs3U\nc9Zgpe/yMwjTNwGAccNG1waeixg4COmxSEqE7hwzIdFp71p9gVINOWoNgKkmeswnpuxlF0Psur0R\n1WT6e+1vpAVAnJlFkqSGGnsqtrPqeGnUstUyI6FSWBuWJAGWY7hBeRu1JQ3qclbForSh38VcZ6Jc\nlgxdYXb6UvimZyhdvzrjpC8dFqk9XXh4fw4chHxNEQBJSSaGZeZUnjXDGFtNybL6hHpAjv5c5pyy\nbw5f7yh7IUCNzGGV4xiA2D6kSVKJw6ZV12evpPBpEFuTUtTjMfKTmWG2GQ8nG4isUEkCcXkB9GOo\n3oEBF0MaqDM4vdBsUuxSoQ08bGvy3RJKqVwI8XMAfge07fhVpdTXhBA/o3//KwB+C0SzfhdEtf6L\n/HwhxN8FEQv2hBAnAP4rpdTfBIHOrwshfhrABwB+Qj/lXwbw3wghMtA3/jNKqY/NP7+x4COkU2qA\nNbGurFKQfbHyIFxFliQhF0x3r0U3hFZOoHmFcWNjnwUtPW+HXiucEPBo2qiQEZW68llZd5Y+6Wpp\nMVMA1bkBLzSNeqxGCAFEVkmhHtL1dX19hoE/wq6+mdn0LHD7xoSrLWe17GeT+suLO1Do8l3ZfKfy\nm2uUpLex8KQTUNZilzpqn9H+Xuj7SKs7SktGRVgKAwC038scwNrIKPFEfEWIMvQhWqWbqpFY0Yue\n0TTzQhRqimRNYHuVCOyHDpK1Q+dKpQYAC5VbANLGcTvDUUvrCT5Fc4xjEHQxCIDPDAmIQleg7Q0q\nDE069EOtIr00mWnfv1sp1bJemcMLedO5ZgBajSCw2cusB5dcbfsQlqmi35fOvtv6crlKjcI4ac21\n4LBa+V6rBB3bR8kOnl1iOSotxirXeUVPcNuoA/evTL+zH5e9vu+iUEr9Fghg7Md+xfpZAfjZLc/9\nd7c8fgXgTzc8/hsAfuPjHG9T3FjwQSuC+MHv3wSaWgoO5Ii8QWXHxAubikDpfadfSrfv71ATOZSY\nxI/weOVW6LMco2QNgBYDM7TXmZrsJfNcLLRUzyDolovyakpipkCpX8ZRb5oDUHNNeNm/U+klMRhJ\nQWSHsN3FINCSJ/JWaZR3+Ud07N1DhO1Do94cyrLEYlsoKCEgh+d4f7bCydwj7Tgd44SUD5J1hlvR\nfCPzIPBK4HkdEgLlxjT3JTp9Q/4wNtgeOVIqWzrFiJNCC6xGlV16CUAUrGotuoca1M9NX4JdS81u\nmzcrWuh15eYYr2ZY5eVn+aOJwDIPsMozvNp9ZECZymWRyQqXudDW0uV3Ureh2AbS9zqfopJjEkPF\np6aHQl9WD93eEX0vju6DWUxMsb8Dd4+uvQ0RVj6HHDUAstlgdtnN7gOOEqFBTxNr3Dna3qAkhDyL\nPeYFkLc+TfdWv0fW50Cpi2aXm2uKFra9BdtxjBKBo7aWA3LQzEq1IlkvkayXaPf26J5rfdf1fL4n\n4uaCj99CfviauRHoJpoC+bRyIwFA7qVEw+YHaiCEbgQV9YAhlelWocQiH+PxysVV7BrjrmXulj45\nkgAoLkYoghz9/rFhyq3WcyzSSz1wKAHMaCfLsv/9eLNBzMfFC9BEqxyzl8nBNXD7gnpRrcHGIufB\no/5TuoKaXtIQKL8GAOxfAHsH8LqH8Fo7tPizKsByTAugNu0aHL6F+90LBM4CD6ZBpY+UFI628M4w\n8DNNguBFKUXgtEpVYi8sJfuDoGIGlhcz5EiorNUakDK2/jpEVBVUNRp3GwBEUaic1Cf8XQK9IWAD\nkPBTs9uuaKH1j7FIHlX6KhwPFwKL3DOyQlexj3EijY1FW2qGnJUhAahsfJqyg75HQ7p49LsEOE27\n8t4EKk/hdQ/R92nDYA9MIyxVqTeAp4kK3CCzVD82uxeYrB0kaTXbv4WxMZR7VuTrhKzm64u/PYhc\n6xna5y3JLwzFnM97sl7hvuZ9SJdGK8znshQ77F7bIh/BdSQ6u/efeczPFUK81Iyz4saCT7qO8e7k\nBAAM24uDMpVyd3TUIoBoe0N4WdF4AfFiyb42T1YZrmIPpwupFxsHw2BtJv41fUjPYVL9PXBbyItr\nLLIxRokwjXt0UNKfI57RaJhFshw+i9MJ1tcxsof02v6bE8jxDDi8Bo6PCYSA6qKUp6SdpV9DjZem\nNyBvjyFuXVdAyACO7bo66AJZjMHhW3A7EpEc4avXUY3IQOZ1x22BZF1g4CfoaDVipgl7AC02nT4t\nEq2ByU5ji+pNEjABPFbGbgptlWwDUD2jMADUpk1GBYBC7Rujsy/2VJrnV4ZSztlt6CrEBQHRVSKw\nuJI4CKWhYC+stx0+x8hHvk5Nf5AGdH8P6p0PkL9bWnJwL4R/Rq9tDN4Q9eD1jgDUpJK0KvUG8DQN\nOCdJSS8HTP/EznqAEkyrpoXCEB+oxJiSNfhzRL5OkLvEKDSPbYBegry4rrBJCXQijBLqY9L3ESBw\nFqRQ7gTPyH3KYEWHl/Hi48aCT1Y4Zle+3FLSbVXOjj2k55ldoK0LlWuVZwDGDZRfg//lx+sT7Jxt\nMStunJaq2Fexi4Gfo61SwOuUcygNu1RlNd3XlsikigvjikonoDbPlKfEopsuzGust4lUzidQXlhl\n+nEwJTaLIXUPKZKb5nW881/lCoHjmD6BCVuV2NOK2tz0dkqTPCZQZMiob2PHUwZw61RhoFrv53kU\nQBNRuI+gbb3ZOK7jURZXevGQQCtQvX74533r/W53iIrd9gamtwaUwqasLiCFrz2giNiCdNMyfK3N\n9NQyg+iBMiINPhsRBKUqdRPwfIRwhTRGeUzkqK4qpJwx8HP9fWdANDbD2c+KXKWYWDpvG7+37per\nOMQocSoA33S8xoYiT6ls+zHEYl/Gtx9bwUcI0QPwV0D88N9WSv0d63f/nVLqL/8xHN93LHxX4XYn\nw8ncQ+BiY2ceuOVQ5sCnRaaJRsp9Dg7Ww6KFlABrmYsK4PDrEv25nLuhJrGPIebgu3iVE1h1vKCk\nymoGzobLYxBA3D4CggCuFl/MW3QM3ps7EHeOTNaj/EjTlK0FWpfoRBAAh/Qa7h5ZhIv7h1XTvBpQ\nVcILgdaAyh+pxOlC4sJ6m7YEbrfXRiyTS2/S8TfN2myJI4AGfb0QbbnpVcTfg1lMamQRoNqnqAdb\nPVfenwkI1vsLLyyb5g6wHxHlPJISkSxLq3zthK5oFHfdjzy05e5Wt1f7cTU/JdB/hoJ53XqaiSuC\nwZwrTFrfbCvo2I+1BtRP0SXPuCYr5Qqp56VI1Zwde4mMUmi2ZGnnQSoGI3JifUYZjlmbrpBIis0B\nXJ5lKu1LqtGWwP2OwvcNV7jd6ZO80fSM2KpZrNVNyII7x+a5ZYWFFxLC2RiivsnxtLP6PwB4B8Ry\n+A+EEH8OwE/qgaMf/eM4uO9kSMfH/W6EgT/TA5HV39sZit2X2Pp6NftgANgNhwjdsVl46swwAI2U\nVHsYMpJCD2i2S6qs7uUopiDbAOSFRHrQmlcel2Ms4BkLcsW8Fb5WLs7LMVHGoc3Y+N9+D0iSKvAA\nzcBjsZBYZ+sqdivAAwD7Iak02zIyG/RcezdqEwgAA0C2KrIdlca9NUNk/y2XszgMFV0b1pmoTcKb\nQxJ+ZfaFSANJJZsNZaecW7FsKBj42FbiWSHSFWU92shQLbMNd80KBRkonTu1BJApTS5R9bixY0vm\nw1lnHXhsRQnOgJg8wd8nM/H6foYPFw8NAFEWRGWw5+kD8abOBqCmbMjOevbD0pH3MDos3Vt5TCJO\n9PcalRsKa0i27x0CV+9DsRrEy3ih8TTweV0p9ef0z39fCPFfAPg/hBD/xh/DcX3HQxQ5BvIAgdNC\n6F4gkmszuGeLQpKacMkM21gYragDUK7IToG9W5qk9jdMrNZA4eRkHe2s0ZJEVmjLYZn1PB5ru2Eq\nixkA4ia9FwJeXNKBAQKew7cwzi/wjVGC00UL/8rxCfa8PcouJlMzzKfCoKSw+pKAzI5tGQ+Hlnh5\nsspwuojwcC5wt0Pn7CCEphhvAk/THNJWnxhWPGiQRAGamWPAZp+CAYjfe+M5TQuytpWwdc944e14\nMJYcYjGCunqPei9eiJDLh62DzSxty2cE9CwT65TVwu73VGjgnb6xDs9VCqx1o52zyecJne0wuzBv\nENIFSvkcttUwslOLEfUFsxjSC/HKzl1cxY8wSgSStYOTuQdggf2o7APVv38bnLkMaQNQ3Yoc4CHf\nHMetTGeXDcCjr2ERUgmZerauoYZHhYR69BWod99H8d4TvIwXH08Dn0AI4Sil1gCglPpFIcSHAH4X\nzfumf75iXQDLMcL2EIlcYuDPsAqbFYVtZtSzoiJsubYe4983WCxXnu/SjduWQ4RyhGEwL9Wgp1Ru\nW+vBx/UygxunVIILA1MeMeGFwLE2+zp8C5fpCd6ZKPzf5x4ezgUGAfAjB0t0ZQSV5tQ3AErdLaY3\nc3+HZWdYcLMeGrRE2KfeiUUt51Lb670Ew0AhlN0NwNmwX7aVxbX0UD1YeLTuLFpZ1Ld4EAGoHIPZ\nWNgkDD6PABEyUJ3652l4Mx3vBNSfGb9fkjeSkrCggrHRqttmz1Bhl+n3fVaYOaQwKK2tmZxRLI2F\neeh3qZ/FMkZbXntbtrMtbHFdWuQ/hJrrkmVMg9DEvjtAXJzj608iPImBSHoAMsj20rAtK4BvfY9s\nMCiFb/kgZYZJCjQBz6C0ggdKBQu+huOkZIl67RJ4zt+GOjkzQ64vJIT46Dbe38PxNPD5XwD8qwD+\nIT+glPpbQojHAP7ad/rAvuOhaY92KYYXSxt47NKMmXFxu42LmdDlGt6N86Q6R2VxBUjctGHXzn/b\n9w5N6s8DgjSjcU1lFp7RYP8WS9PKyNfox2bFtWbg0ULPDf9FNka39RrgSxriA8oFbHhoFBOU9GnX\nGFtSIzVjLJ5/Ue0hkF9hNxziz9we47jtW4vBfinGyourMa1bVQHHArxtsx0suSMyPcluH5A9HKy/\nF7hdotfLEni4t1LxcGpalO2p/yUqCt+eF9Ig8HJMA7LziVGiqOjC9QBgXCoKNACQ4mtL/ytA2nY8\nCC24xAaU14FNBeesx4+QZOdm8JPvdgYgZDHQtBhaU/+x1iVsytrtCN1u6dO0UY4NTP8t9IfYDVN8\n33CC0yV5Kg2CLgbygDKNyZTcgQ/f2ngPW9VdOiTvg4iYpeQdxdYgCsOAFK4jpwM1P4OQEWVxmrot\n+pYhpJ6rA7TJ3fgDY8WwlXTzMj52bAUfpdR/tuXx/w2k7fPPdzgu7eq09XU97JIQR6FyU6+vN4nr\nzXsBAJYmlrGLrjXAN4y27FiOSfPNjiCg/g3rcelhx9Iquhb6sSQ9qVDK2xbXVAlBsytPrmkB298x\nlOLMc5Gvk5Li3e/RZ7OZdrY6de/AyMjQ+wzwQ/s52vKwHFyN36fFtOE4zS5Ua7qpyZQ0vCpKFNws\nj8s5Dz7n/Jm2mMF5rYHJVowoqf29PKeHkopQLV/xj6tpKckSa+r7MjO6cM8CoLqrJgDEwRpdHOq/\nv4CKk9LjjUtt/V453R/1DBWcFRUGfo4h5nA9WVN0QON7M+hwPE23LXI6pUcRE2G2OHayRfpRO0ck\nZ9gNh+iuW1AP/gnU196lcvLxY+CNCcTRm43gbIMQHcAYLNOzzKvSRliOqWLghWa8QHQPAb2pqmvL\nqekZSVjNFhvacS/jxcaNpVrDkRvN6qr6c7UJbt+InPJv7JhjXWbQPvQAGnfiFXfUrFxAOWzDLfXo\nDPA9iMM9AhqgJBRogKhMefNrVCjgiRaaJMQhyZuyr5WrFDLqlaQCC3gmKdFcZXgHXtgn0Aitna1t\niaAHL6HBxygfLEZQ03ImCGluekYGUPi1amrSxeVS66otAZ5hYYIFu1JaWnyQfmlTbp1zeCFUBONT\nY7KvJjtu21BuW6ymm2w6DZr/P3vvHiNZdt6H/c69577qXf2Ynm7O7Mxyl7sU5ViGqUiGkSAOZCWK\nkICxEUuCBEeSBSuOJSj/RVSEAP4jBGgEECDHghRGMSQaViQhiSACkcGYMhQgsWhRUZiIy+c+ZneG\nPdMz/aiu6qq6zzr54zvfOefeutU9y51dcjn7AYPpR1X1rVv3nu983/d7tB8/6cJZDTWrjO0moFrS\nqWaYF0RWfm7QpwRUpEa8ls+Zy0FCMiAjOf1cQhsGmgRbQHq6XeVsnlzFgeZMjGMT4CapJNSjrwCH\nh1h95Q1qBe90gGtbdZBKQ3Ei8jrYSzpI0hLqtc9h9eevYvmvDrGcSXT3zhBNFvBenAPPfXBd5V1/\nXgJA3B2jVLm2oigASKp6vA61P2dHtKlivUUmIGtOnnSsWoOiosqN23H5E656npyw6LdFPL3JBzAi\njG64iYd9YvjmbFMZjv2+TTzOQtRmWtVs56iSF0vdNgKsmOGjU1SvPjL95vCFBcT5lG7o4cC2xFoS\nDuAkHb2YpBUlm0QKdCVprnWkRfEJmUBp0ILo76HodHGeH2nR0QDSO8Kws4dAL4AmeMFzYLjsTaTm\nx8BySr3/RlJR3M5wRSLZGEyLtKpFgeo0hVqUUGkFEfsEsuBKqO1DbZrBNT8DJ8Fte4QAACAASURB\nVAGZxzVFYx83WCvNmYGZisdJPCqtNECkAxHmUNBVa5YBgYb7FnYDUq4yQ1R+ZUrcFWBGCWjvRSh8\npe5RozlIDBAgaZmJUb++cwFcK/lWL9Y8g9zr+jIrB3h10ExSSarMDw+h7t5H/tVTqEWJ1WkKuSis\n+G0DsCIUWXsEiznU/a9CvXIX2ecf4uFrCeYTD8NphR08RATACyXUTUe1otEWFUGMnlY4Z/dcrnoM\nPF2rxYvlFEjGKAIfJ+mreLD0cbufGNShWh5aYVkd6r2229sWT3Xy4UG31SjLa+6kvDsOvAAFCkMs\nBKwUjH2xsCY/svmPho41t+MZzzdUkRpJGY9VfNmrPo5oodE2yQA2zoyaMYr66AU5ric5Djp0Q+13\nuzTkVcrAciFDqO4YqdM6owqJ2m9BZ0TDf0xMtcOIKNcyIHBJoj0AIOFUNQJZT/CLO4mH0XmsqVYd\nL+ClFaDPgb/TaReDdc3ogPrn4CaglgrRfN9W5Wz6efP3TgvSVCVpbq2egdqcxvBwGsGmgwAh5qid\nlOFwEeBG10dPblN769zx8OJ5isPDgTamu56QqO3tysMoskN44/YJrG2sHjekFwFeQH87lEAYwN+K\nUSGtX696dtgEi0gR0sajNwQGXcgbPfSPLgAESAYl5I0exPWRMUa86rOI/T4qRa3FyOsQ/675ID3L\nmhdHxk59FM6MfxAA+ixDPWNkseD34m2JK5OPEOJvXvZ7pdT/+uQO5xsPIcQPAPhl0Lr160qpj1/1\nnJrel48a5Jel8NXyDEImxsQsrWY1m+a1hVbaSqK5yBkbgE0HxDeXJouKKEIwIhkVsbdDcOn+3kaV\nagYyKCHWtMwAcqGM/I4RBe37WxZN5Agz8vFJLzT2y9JLLFKPeTeaxMjHHQQxSmRWm6vTJen8fAmV\nnJH23WIC9Lvamtppt7nvI5TA7hb8a3P4emBvEg6LqbbMLFqVipvCk3ohM6g4XtQ0WEGVy/oG4bLN\nhAyp1VjmAK9R0QTifErHGE/hs7aeO5vhSkC/DxcB5VbaXTlC1KOW0nZ0k4AnZ0f1tiUaMHh+HRGi\nG4zwbH9iyK5M6jQtR9TtG5jkfFUF5CIDxdYtqtziCDIOIadzao3ubtEccQNUnWedYu9FiP4egt0/\nx9bOqxjcmyF44RrEczeBm89DDPYtbJ6fg/o9xNp9kdcBpO5GKEXXcm8IMZzTtSYtty6RK+Nka15H\nJqTcsRNDDFNqcz86hRw9KbTbk2u7XbXeCSGE/v0PgiwVfkIp9WeXPVcIsQXgdwDcBnAHwA8ppc70\n734BwE+BdJp+Tin16bf6Hh6n8vkpAH8VwL/U3/+7AP4VgEega+CbnnyEED6AXwHw/SCv8s8JIT6l\nlPripc9zBCclIoNkCxBYh9IipTYJUE9AbdGWeFoWSGPLwMEVT3Nnt7tFCzEA7D9jpF02vRcjeMoy\nNE4CakK82/glfNwMZ2X5GADrw+YG6ZLfWxza88NJCD5IJBIBEA+hBsv6XKYZGtkuhnXflZpyMWBn\nbJvCPfeNxONaPF+ZgJrhHAMAwBUyjYdQAaHdRCihuJXISLQmas9V4277UyJEP9yiimcxWYe6p3bm\n1fbcbjDCDW+ByO/bGZzeVAEwG6vLktCaCSHqUHbB5oBRRJVmb7h27k20dQc6I4jv/LfhDQcIHbSb\nEqJ9o+aiGp3XIrWQBtAhGQCDc9rQORur2GfydkPRwr1vg9Qq1n8LxWOud/8BCBj2AZCZ3K8C+N4r\nnvtRAH+olPq4EOKj+vufF0J8CGRY950ADgB8RgjxglKqIRj45uJxkk8A4EPsgqftVX9DKfWTlz/t\nHY3vAfCyUupVANDufR8BsDn5EH3JJKBS5TbxLCY1l1LjLopLElDzhmjjnTg3ilnkeBF2L3AXSaYV\nlHkHuBG63WKSxe9N+qFB4/HfZOJj006CjlH7pwiJEvma7I3x0GmJZlKblxOzgEV+BzIOEfsH61ye\ntmA3ysb5ZJfWIIitmdymuMQugyVyTALi96D/N++kbFS0+vw2P2Py7tG2A8kZsJxCxOeXQsVr/+uo\nQdGLFCp93cLO89LAtxGH7arWsBUUKwOsbaq0ArkKcgOQuSwJua/bSrTujOh9N23QN0VLEhI3vgu4\ngdakU6t+NrS3+T5eC06GtUQVAlULV81NlPx1mz7eNzceZ737CIBPal+fzwohRnrtvn3Jcz8CMpkD\ngN8E8EcAfl7//Le1us1rQoiX9TH88Vt5E4+TfG427FePADzzVv7o2xDvA3DX+f4eKNvXQgjx0wB+\nGgCeubnb/LWRVlHl0gys1WyuocW0SAqM1p/D7a5yWZPzd1tjzdYBgHWmOS9S3NJyiH4KFkRgwmvn\nXKy97yZ/hRMVi6M6CxBAizovQsaEzbQhj40uFjojSsoNroj0IvJSMSrDAUYh6XlxJWX0soJ4HW7e\nSBKlWqAq7ZzDTWbx8MDu5N3k26xC114zr6kTmGrQmRuZCvWK1wIsSswXEnHQRxBQNaCas4pmNdZm\n0b4pMbcRe91w2lluuLJB5to+nxJSkPnTun3aJM+uHdOqgsWVo56AwwRl4Fu/nKs2F/p5LDvEygVN\nxQu+BtcS0BXnYu0Yl2eEkAv65u/U2pDcOWjZ8HwTYkcI8afO959QSn1Cf/04613bY953xXP3nLX+\nAYA957U+2/JabykeJ/n8oRDi0wD+J/39D8Mhnr6bQn94nwCAv/zh59XSsW8GQEZTQWzvrTQjO2VY\nvbONr72kna4qc0PM5OBFvKk5JgIHQqqfUktYoJu+KV7Kr+nqUMED4k5/LRnVOCwcTXhwMwlp1QBO\nQkIpWriWZxYCnmUQ/Smw/4xZuNyFtYaKkkTa7QWRUWtQ04e0W3aJsfq8mPfYMCuzPyfHzF5A9gvu\nYm9eo6Uq4WG+C4yQggzs3ETeVgW5r9tMYk0+zLw8oyF2d7vdNXMteZUoK+tKXLI4bdCFFGM6//EQ\nqkNtYDHo2o0Kw+2dz9O1Dl8LvflQszkwm9MczXm/zeuMbd4VsFFhgjcQZtbY0NVba5Hpx16UJ8iq\nRR09qm3FAdgNgp6x1u6hlmPe+J5dFOryDAHGQEBkY95UuYhVcx+ANpKXcvHeZLyJRHaslPruJ/aH\n32QopZQQ4m2V+74y+SilflYI8TdAPt4AZeDfezsP6huIrwO46Xx/Q/9sY6xQYV5OavyFWv9X36Bq\nsqCbZ3fLtHcYom0W+iK1mlGRVcqtuT62JSAnlBA4ye7SYNmN5hzHGUhz8OJ3nh8ZXbHa85tVT1s0\nk5CWs6nNV86OiLX/8JQgqKMOtQ93rq0lXDpWEkhFiVriwStfhjo6Jk+Z3S1yWb1EdsQdgLNhGVdT\n42hi9Lji7tica24dcv/GNWdrRXaxxRJ/Rm3tHSdpuMjHtmAfmMjvQAbd2jFU2rBwU2RYQHpWQsYX\nkjYWGryBvl4o2yqnlurHLMr8GevPEGFA4I8gpmu22QabnxEU+tGpdW9ttK9cSkHrIt0C/iB7eaqM\n3XATT+3Y9czSvYfa3p+x6XartrZrvkgRIIYMLajIKGrweeqMqFJKxldXWe98PM56t+kxwSXPPRJC\n7Cul7usWHcuZvOn19XHicaHWfwZgppT6jBCiI4ToK6WeEATkicTnAHxACPEs6KT8CIAfvewJeaVq\nfvMAXbyBF9CFeD4FJjPiZwAQ0zn0RkjvWC3UWi3PrI12aJVyeXjfnC+4wTvAexfn+OJZgg+NX8Xt\n/q5NIM6uudnTdmHfj5YFJrnEfucI23Fe84e5Mlw4sjYO47+pAn3zau4Ra12tFgX8rQUkLPqoyTsC\naLAb+4oSz+kh8PqrKP+fV1Dem8HfiiGfOYW4OYfS9uO84LuJgl0yAWjfFt+4h2arCpE3xzi6QCYX\nG1n4mxIFt8radtlmMeWk/JiJp3ZqtSUzJ1CbPGVNQ7DlmearZelhHGknUJ3Mgs7ILpY6DHm5iI11\nuDubVOXS8F6qY53YYkKqIRnUPzut5qzuPkB1eE6Qf71hYAUM87poqW7ccKrQtJphXk5wb14B8HE9\nsTNrVsEG6puFZosUsFWqm3ialY/bPq/9XB+vuEzKSVMJ2trK3wLxOOvdpwD8rJ7pfC+Ac51UHl3y\n3E8B+HEAH9f//77z898SQvwSCHDwAQB/8lbfxONArf8uaE6yBeA5UK/v1wB831v9408qlFKlEOJn\nAXwaBB/8J0qply57zrL08IXTRHvKkJ0zgPouRzOcV4sCIsvoYhWi1gYycvfTuSWzsVIuANkdG58Q\nt3fNcbR8BS+dhfj8SYL/70GAO9eBv7p3hu8YL0jvSiO6RGM2wosf2wXfu4hwb852zmdADIJSb+q5\nNwmYzXlCFNlzcXFObRpN/lwtClTH9Dt/sgBGc3rPyWBtJgbQjjYoKqjFBOroGOW9GapjIo+KTgA/\nPCZkWHBkKigpwpq/Ci/YJ6mPrPLwKCV32GXpYTuukK1WGIWzNT0+16K7Gfy7ZgKqARF0i6eZeJpI\nMAA1NYxmsiGHzwAnqV8zPGPZ/+24MomIVZrZFZSTLL2/C2vVoBPQ2ufbqH5qiZK15pg8meb0s9Iu\n9MFiTp/Vo1OULx+jvHcBfyeBtyjgQy/eaUZgGKAmuApgLQHx9X5RnhiX3pOU5kKRt8JuEtDmxN2Y\naQQqJxW3RWq8lHS0Wo5z+7xI7bXtAHm4cjTzS+0CvPYaZd6uf/cNhILa3Bp8M6+zYb0TQvw9/ftf\nA/AHIJj1yyCo9U9e9lz90h8H8LtCiJ8C8DqAH9LPeUkI8bsgUEIJ4GfeKtINeLzK52dAyIZ/rQ/k\na0KIa2/1Dz/pUEr9AeiEP1aswAZyFYmIyj4SrwdUKUGaQYRByfyMG/sQey+iUDm6ckxcARYhZBY1\na0FN5wCOoMYwEiCbYi95DrE8wna8xLUY+De2M2KyZx7UCcmWIJStpleTjHa1o7DEaKvEjZ7E9aTC\nMNyjgX6mxUib0G5g3QU1akBO3f97tNioNIO/o100dwB/K4YYdayYpWbXuwv0WSYwxgWWYQfx4BrE\n3inCFxYoOzN4WzH8gyHEzesEr9WVEy9WJgl4IcZRDrrugZMU2I09RD5xNRK50o6gm88zu21eFu6A\nm+dcbtuzJkwKOxjn5zb/HgDEyAGskGCFyPM0v4Q3CTCGem7SZE8cwB5zLHukuOz1KOGcvEpghjZz\nss7IfA48U4m8Dunz7VwDZnP4Owsivu7tmHPPM9CmxXR+vkLUKeBtOUnFJbc2BvTAutoGA1AAUhEZ\nR7lOonutoBnXK0liXQm+xmlzEHru74RMoDoj6/rbOEbTknMVKjItALtBm+5bJdrWO510+GsFWrsf\n67n65yfYUFQopT4G4GNv4ZDX4nGST6aUygVDhoWQuIQn+W6KyLeD8K6s93ZFfw94cQjsvk4X7PUP\nGogvACtauJhQsklzmg+5ApJOAtpEDAXItOrF4Qyj8IhMr9KSZEtcbbc4AvaTjdYAAHC7n5BiwfwM\nvFDX4ioXRXcxcULJENixO1sJGA0vsbdDLHS2l9ZD5IsiwySXete/AvAQ6F1D/NwH4QFEnh31yXl1\ngzCqqzgNYC0BuU6oTSvq5g7ToNJaEtAmdes1vb6GMKk5zqYHjd6xM1SZHD5JQQOokFZkKc3XnvSS\nGoem+bqGm3NxBjV9ha6Lo2PaFP3Fv1T/XIcHmDmDfG5XynICyBESbm1C6+ppg8GlX2Jekr01As2Y\nTXOotEKRepDHKXydfFiJwlibt6DC3HYYw+3d2I5vWlTcJZ5GNYh/izivy2kznwu/Htuhb9qTuK02\nh7hbP4CwvZX4XrzleJzk838IIf4rAIkQ4vsB/H2Q3cK7OjxYm+Ou3Ka2EA8YOYKYqp3ABxqLWVBU\ntDBlGdT5FGqysH44rN8FgBOQgTJvSEKx38etnpWlV/fuQ905QnlvBhH7kHFI1UUQA76zI9Z+Q2ZX\nPH8MnkUbAsshYTZDFNq6YJiaBORr1QFW1WYVZW6rZCs7m0mkQOStIL0J0Bshfu6DELsO2m0D3wWo\nJ6C6xThVfMazxX3vQUzLmrso6kqkacfsQnoNEIRbWS4sPVgXJq2dI2cBNX9vBWMBXanSVDaxBEbR\nupeQeQ3+bNK55WU5YI/iq6co3pjB34kRAbUExJ+Bbff5iLwVYj9HtlpABmMEbFcQxLXEc1HQ4tsP\nrSBodbzEckrLRJA6nZYgJusMHaXKa1tSboWxMOp1vZ+RXoid8Ab55ejB/mXeRmvnpA25qVvcrUmC\nE1CTkLwp8bCXFf/9TWrx30AotVoDCz3N8TjJ56MglYM/B/Cfgcq1X387D+qdCE8AB50C2/HYts8W\nkxpUWoUJzosj+JWsLTYBAqjZoUV/TbXB26LQM+sFxAjk4ZJKkkTpDS2E013kGzBQ6MSDh6co781Q\nvEGtNX+nAzE8hApixNu3MS8n2qa7bwy8FOxweeOQlJn7LUmnQIFSt15qighhQvMuvUAIgMiNgy7d\n3FpFOasWmtcjsSgFlqWHs8xDVpHHClCQXllvhKSpVMznoAn1Zfl8uY20msEPJKS3QCLJB6Yrx7QR\nuNAulYCt4LRYq2mZOVJKhlPickkaRFyzQLnH1xQm5XB342hwpXQltMml023xrSU9PYtQd++jfOMc\n5b0LzI+A2XEC+XWFvc5dBHEE8cJ3ANu3cXLxMiY53dbGshoeAG2pICQQ9BFs3aLPPPCRlVNcFJm2\nXigwDAvIIAbyAqtFieUsgoxW1tsmlNSmu8RkLlstjJ0DaaiV1rfn3v8L9fIdI5uEftdqFiaNMsW9\nP5qqIAB9zs0/3kwWnIDcc7sp8aR64+gY8hV4T1z07YhLk4+WYvikUurHAPwP78whvTPRC1Z4fniD\nhqup9sxxe9ZhgovypAYHjf0+LXRHXzStj+pwXXrDCEhy8E6K1ZOXZ4ZDUFu0NClRRBFUSGKaXkfa\n1wwlcP8NoEixs/eiTpbHpDbgVjIyrNs2OP+vkSb1fKBcXTjukLR4WMHVPgK+gc0DMmu9gALZamEQ\ndwwKWJQwg/VFKTByukObbKSb36vpfaMwEOtj7nduYDsSdZtqV3JGqzyzarjrreSCGNb+bkMxGUHc\nqoz9WFFom29+He+KxwObE8/RsUGniY4EV34yWkHE2hJAhuTfo1udbozCEolcIa1gLRU6NLua58em\nRcp8rHKVQSakQed1JJJ+hSBawd8iUVfsUKWbFUcA1qWXuOUX+8KI0sa+sFbwPB/NC1tpZBnx5NCY\nUTah0k30Wm9I3kpo4WTBuc4Clk7KDQjBKJADde+eNIf62usQe3Oo3Qkl6vfiicelyUcpVQkhbgkh\nQqWeAEzjWygCL4I8PVwfXml1ahHERikXcBPPV6BevgP1YHK5y2G8Yb7iJqA2dnt/D+qAxDUlbCIT\nN51K4fghHbd7U/INyTpfWhJEOcoFQF0exrhVboAO88/SagY0E1CQGnhuubpAWl4gW/lmkO4mHoDs\nGxK5gvSsaCsfx6bzpGZHVDXyAqFljjiZK16c3Z1rHK2hrhSodbhpXsbEyFYHU1cSp9EebJKG+bjX\nYjFBoJO8GwZ6z8lmQ+JRk4VBp/lbMbqLCwRxBhmsIJ/Zh9jdgkjGqNS0lni4rRz7AtwxuygyTdBd\nGEBItrLLwCgiq+pysAP5HR9EPJ1jt3MEeWMM/0M3IF74DpRbBzjP7hq0XzOxuvMdhlLHskcV+pL8\nnNhWQ4S57RCwL5Prp9TcWHClor8XuxkwTKn127jWm9FULsFEV24bfHvU0TH97W90A7L+ik8E7fbt\nEo/TdnsVwP8lhPgUAINFVEr90tt2VO9ElFdfUKyUW/MeuXsf5RcOjb/MWpXjhIiidtQMJyB+XOOG\nEf09A9X2OYm5Evx5CfXaa/T6zQgzgCkYThVU+xtc7VSzWrXTDLOIeNTDl77mvjhVFVc9PGNYlp5G\nEVLMS4ITAzSfiryOYc2b1lgThcRW1JpbdKmjZHPhmM6h0gyC24IsH1OkJvm0cnR48XejmVDawBgb\nSMP8PBewEAz2r27htCQerno45I0eRCeFp831WLuszI/NYzjxEKCBQA880wFgqh032EwR0J/39Q9C\n/OUUERv4PfdBlIOdms/TfqfOlWuL60lFgJ7FhM5JllGLelHA7zSqn8CZ7TRbY6xppxPXalHAT3P6\nrAGbgPgPB3FdHYST+9T6SgGbPXsEQITqybcSpfHbJx4n+byi/3kA+lc89t0TeUYtrDY/GMAsVrXE\n87XXUXzhCNOXligyD51hCRms4O/EBDvW/jsIGwmpubt3hthMZAPqSUjEQ6j9Zwjl5u769IK0WhRE\n/GuasRmoqKvb5SwMDgy3zRyvGfw7X0hS/Q61iZseFperC+2SqvkojXYbB8HZtcnX5I4hSCpdpXES\nqkn46LYmG7JxuBWnx5Uht58AYzhnFqEeIfaEGkF6kSF9GiO9NmFWoLXa4a9bdfs4uH3nckh6QygA\ngTYza86AaoTIRuKpTlPj62Te41ZMc8DdLSAZ6NZpDiCoJZ6upPecVrMa+u2VKf3t7ZjOK/Nt3ChV\njuDGd5lK2k08r5xHWJTUTj3oFBqJCLRxrCK/Q1VPem7I2zwjba1+dKIxbbFGwlmdpuYaUIsCMi/o\nut/NgPFeO+eIP9/zaQ0gdGnoewzvGcq9LbEx+Qgh/qlS6m8DmCilfvkdPKZ3JlZqXRG4KS/iCIay\nO6V7wRapBxmsyGmzoxfHpmFYszppa8s4qsm1vx8PoXY1Ee74Ie3+9DFYcEOj1+1WWq48jDM8Zf7H\nZeEuVMRVAaHstH+RWp5BFDHisF+zMSZggQ3m4GzHNymJT+/QL5h7od+/gobNljm1RfR7dROPXXDs\n59YgvtcWaJXpBa2HtUgrBek1DAGb0ZTXcX4u9LlsEofNZ9GsoorUtEKlCJGqGaHhGrBtY5nA7yGt\nc/l4g8MVt3p0CjF8iEAmGMbX8Gz/oUE/uoKZQbCF2O9jXp5hks3M52ST1LZ5fFNfENc/SMcNFuOc\nI/JXiHzbTm1chSbxbKqINjqEOtVOM/i6t69REvXdOXco0qspBW8irkxQbyIU1Js27ft2jssqnw8L\nIQ4A/B0hxCfRuLqUUqftT3uXRBgAt96//vMWRrNIxlSFAJrudqTZ+RL+Vo92oLoFIna3jOBjzRKg\nGY+pFyVkAvRJ1VrE5+TyGQbUMnArHn48L+gNwUgOF7q8KQG5iYdmCCv0PKuOrM4PCZW3nALJAP3B\nPnnFeGfYTewOmOVSgsUcqjlfa3jamKpPhsQhYdCF09b0ObHoBae5MDd/Ztqe2pJiubowkGJqOWVm\nAJ90RtRObEsaLuIKDt+pRcBThglJt0Dzo/g9BmQax1bjpupUeZ3UORxQtavN6JhT5SYcwC7eAnOo\nL3wV+ECGePcm4uFzlHAWE6hSn3O9uQlkglHnGrpyjFFEsPSuvG5tRGZfpsfr81U7rzohDYM9dIc5\ndpMjp3rUfCRHTYIrZn5M7PcRxEPSAcxLSJ75sDMtI946I5rz8Tl0jsE/GJqKRcQ+sEUoUAy69Pyd\na2RuFyYOJ6+gF+l0EQS3qJ2t7xcfjWiaGra1td+LJxaXJZ9fA/CHAN4P4P9GPfko/fN3b/ibZzVu\nSBECgaqpHkSgm98kHHan5ITjmJYVDtmOo1Q54g4BGB47CfEciK2ms2zDzEfam6jJQHfeE/u8NBNQ\nM/EQCsousEIpUqR+dEp/a5hClTmCeIhhd8/K0uRLqMUZ8OhlWkDG68KjV/In4rBmRQ3ALsKDLqpX\nH2F1as9fbZcah3R8vSHEYB+z6hRZxYi80AAjgBlG+nQlg32LruNosR8w2mAtx29ak0EMsSBoNsrc\ncFlKRXybtCSZnHKVIQh65ISLqW31RREZCcYR/Ifr+7zqmBQKuPJVX3udJG/Yq4mPHTBVpgpiID2H\nlCFGGtKsWGH8fGraXGJ3C2pnSlp7+nNy24oBAmxHN40VQjOaHkB0Tc0QdLYowQ/O6b4ZoHbvGJde\nYD0B6fazGAH+CFATjf67PjKuqcxZQgsEXHoRisBHwM6rzQe4mzWXhvCtp+v2bRMbk49S6h8B+EdC\niF9VSv3n7+AxvSOhfOIqqNnR1Y8VghabeAh16/104WZZbbdmGP7VrOY/4+4AAavKPI4m6AYj9Dtb\n7fOGlhDx0OymhYvwcsOdYXE4X3NbJWZDPB81rbpm4jlJfSRSohfQDaym9+sM+7wEBhlULwXKJV1Q\nUy1C6sxs5DND4NoWLRTjvfUbnKuDQnvghBZiblpqer4l9nbIZjuO4GkiLgBTjZrzoJUXZtWpITsu\nSwsFt7EhAXHiMS2g83oC0gKevACziCc74orOiFB2un3HLU9O8NLL4Qtprq818i/bOUcRnW9nQK7S\nylR5JgHdfWCH7zqM3TZvVHRCU9FDO186n0I9mKA6XkClFeSNCcTtOYnljvfWLBsYFRgDJqnSzIn+\nVuXVZ4n0XhdU/SRjqHFOiZI/J/03isBHWp2irxMEdFKsmfvpjZXQQBwxHNQSz3n+0Hg9AY4AKW/+\nPEAOD2rnqOnTBFjvrKZlxnvx5OJxLBW+7RIPQDfGzFugt32b+CIOA1qVy1aDM0Df5LfeD6F7+EIP\nkOflGdLlIc4yu6fKVnaBW5aBIV5mFemSPTc4x26ywDDcQ4AWCX83WBJFJsDWLeM9Yga0zWNtgiec\n3/EuVnqRGZqUsK2SpojnsvQgvVCTWR+agW1dSkjHxfkaEx8AqtMU8sYC/sEMYm9u5fkbopSG3xHr\nltl0bttNTvJiZQQRRQg691F81VYHohPQxqAzQtHpYp7exYOlbxQXrLCne/lTApJeRAvk7IjOm0Za\nGb0vB/nGXB7ZaKUBTgJiWHaYoHQ075alh9jPEfkdM0dDer7++QcxcBCT8KpDaOZozv54U9AM5cLQ\n8xIILdxYTRZa7NWSOINOYD4X4+XTov7Mm45AO6EWKGjhhq18lqWHXqARkZfIvwAAIABJREFUdGGf\nNlE71+hcDq7ZlqjmHCEGem6COKeNnLGUz0vbttVq6Jx4XjoLteySNi7ULq5ulCqvJaCC6Qba6qKp\nPm6r5LcWCupKfcGnKR7XUuHbLnwhSfVZKeozc7/f9bBp2laHSU1dmlFLWJGfTBR2ADzEazPb0mte\nuEzke25ADH3WYjPJhNt2zWiB/UKGNMRuyMA0xROp77/OgWDZfazsbjVGjthXSGSOUehpm4YcXXm9\nJuFvUXYOsCKIayKk3tYCvsNP8Xc0SZHZ4/x+itS2nPg9NVuMLOPP/CWGYh8dUws0bnTwdQUQIID0\nQoxCStDLkgbkk0waNWnmwtDCkyHg20JLJ2E6h7q2ReAF97PgDUm+RBL0jNeSGfTPzxybgxRJh5Bn\nRMokiwSAEpUMt2lRbpCDDQJwmELkJVSaUytStxtrAIQwoPO7IUQUWch+HNHrxRmEFg3lpCZi3yI2\neYjfxrlJHUSlrhrKKlsziGMJJJME+BoNYpqn6kpcehEif0YafeeHVrGiGc57wOAaVJggBoAQeG5w\nhF4QIfL79JqObJELc1/zANKtaEOYrTJkK89sGN+LJx9PbfLxRH2xEjKx3h36xqhZLuvgWQkAYGV3\nutKLaKGLIwB3awnIje24MgrMfX+LFqj0vC7l0tCXA3B5W84dbDfD1SYDakmId+3w9M3o3GNuEtqO\nx1T1lEs6Rl2RAM5QnxOHI0Lqg2Y0q0VB6tW6XbaxultMLEFWhsDgmpFGqSGYypwSz90HNcisabk1\n3ju3YGI/x1m2QiLpjTYVpelfBKRzywfRNhI+oEEAG4bQRYoAQBD0bNJxDMqU5kcFg33AX08QaTVD\nwm06h8RaqhwyPKDXGhDhUeSF4Zg1E4/od9uPD1inFUQTU9n4sCAGf6dDLVWuLi7OLQ/Hgf3XQt8v\nTRFR6YVrBocqTGyibcwia4mnxYvHxHBgkxe/Pb+P7Ti3SSdfAoXdADR5Vm06a/xcYAL2VFqW7y4d\nZSHEFoDfAXAbwB0AP6SUWhN9FEL8AIBfBn38v66U+rj++d8C8A8AfAeA71FK/anznF8Aya1VAH5O\nKfVp/fM/ArAP6wP97yml2IyuNZ7a5INVuQZFNn13ZxfnessD5DIJAF1ptb0MFyg9RxAPsd25ibYE\ndNAp9C5wG0kloeb3rQOqAy9ViRU4ZZn7JOhZcqpTpdmD0F83h+UXup0Y2arI8IpAQ3MDQACsWZce\nGvc83bZokjAZaceh0Vx0/KipYPtpfnniqe2op8B+bN+PrkRrul6sqdfCTGfej9L+SyhS9Lrb5j2N\ncYG0ssKksd+ACIsQqjyuma5xleEPptT6iSxsuvk+aq6YLmx4QEmBuT4y3K4N7EuV08IY+ICen/C8\nwReS5iBFSlXlZNaeeBomb5t4S0bMNR7WWmv+jk7io45NspxkNiUd6I2bEEjLmTZoZEuM0Iq+Nq3g\ng7jm9AswmKUB+GgLRsXJEKqhWmE8rJaHVkrHIXVvIvry5pFg6T1AshTRDE9qmVTqHWu7fRTAHyql\nPi6E+Kj+/ufdB2jptF8B8P0A7gH4nBDiU0qpLwL4AoC/CeC/bzznQyDzue8Emcp9RgjxguPt82Nu\noroqnt7kU5WWZe/6kegbghcGt4XgDuPL6CGG4TWbeE5fJ8TQcIAAtwznghPQfievC2Euz2qJxyCN\nAKA3BZIxVJhgnt2l45U6AQFGYcANs/ADtg3H7qoAKR/E2VoSEgUtAu78h8P3pU1MRYtatttyc6Tn\nBdYTEIZ6sW5KAjUZ7HEEMZwYm4Wi00W5ypBUYyu8qmcfTDrk8DqNajPLaH6naOddrjK9qOTa3sAu\nkgwNF0rRopXSMH51mppZiL8zh4ojgurqc1zTIOP352wmzPviuREsWo45UrwDZ8CCkTUqL6wlQhIi\n6e8Rkm02h8+JlwEYDmLMHFMz0WsRWQbGxOHYutACVklikzQUb46caoQ3bKxgfX8R4tl+YRNPJUn0\nFVi7z4A6wXdN264ZTGHgBNoZWYuF5sasrU2or3lOQIzMNHJPBamIiyIh6D2ggSjvOoWDjwD4a/rr\n3wTwR2gkH5BH28tKqVcBQDuefgTAF5VSX9I/a3vd31ZKZQBeE0K8rF/nj7+Rg3x6k48Q64mHf6VU\nDQ0GoDaMz1Ye0qpEV+WIRR+O6hBFEKPVTwd6Z710+tmRhpBGEQ2FzfNpljAM98wcwRAxndxTg1EH\nMdkfLM80GCGipAOst1waIqem/VY1fHC0i6QZiINabWrktNw6I8NhMUZeAKl482CZw2WvN8NtaelZ\nlRRjqsbSuX2PzAGCHlkx7J0jDKznjE7K7PfCbP+m+6ip/Nxj1XMP0ZH1mRInWzgimDyQ59+77zeO\n1mHxLDwaWPVrrOh8swVDLHuOF1AfKr2jRTmddtGmRAHUKuOaiKwjq5R0RvS5hlN6rencvKaB8+cl\nbTJCCeQlnX+3HRbESKtTnGUCi1LgLBPYTTSgpao2kqg3ShO1Vcd87TqahZi2OPQ23nfzdblKK6us\nbqXBWoIX51DjPdqQBaSG0ayO36HYEUK4VcQnlFKfeMzn7iml7uuvHwBo4TngfQDuOt/fA9ltXxbv\nA/DZxnPe53z/m0KIAsD/AuC/0YZ2G+PpTT4yWiPS1RSmgxiJ1zMs9my1MDvmtCJWuAle0OOMdmNB\njLI6RVopDVWmksLsrLni0bs47FAyEC7fgV+6qCBDp18uBLXk2sAF+lhEsE9zoyKF6qyrbpuWUEQS\nOS5qi9+rG2k1A4I+As11QjSBOJ+uwcwvyhP05DYlSJdr4i5UbDc+ndNuvUns0yg1ALRondyBlKEl\nGyYDYJeOl1FoPkuw8Gvs7ZBJGvNGnB0czxW4ymjaHJgkF0fAqA95gyRuamRGbjGyxURRRxa6u28x\ntPI6bqvO1SDj1qexfIBNhqxUgHNt4TGbGxts0Qno6ziD0HuZje6mm4IrhLw01aTA3NgdrPHJGALP\nX2+Y3xllA74OGuRtM88SIcBAnsK5bmLbPmy1gZ8+tOcVqG8e4yH9Lec1AEB1x2QD4Xz2hmCbntMc\ncTY3BGEZHqwpdr+VUFCmkn2MOFZKffemXwohPgPgesuvfrH2N5VSQoh3Ymj1Y0qprwsh+qDk87cB\nfPKyJzy1yWd1lQW5vgl4ZwrAOFMCF9SqEfWZByKS9lBCoFIlJrlEVnkm+UgR0sLP7bAmsS2ILbFP\nB/OQeIEH9MD2KoImv15nRC1BN9xWBCaWNAnbCnJhw2bm5SYgvQvlNs55cYRJNkMVlYTg0wN2E6mF\n9jL3x98pIK6P6glo2DJL0UoKJgbk4s58K359s0PXvI/LSKzuALx19x1FlGhGHfigOYjY3aLj02g8\nk9TcuUOYQKhRLfm2Lp64JAHBJh+hFClKPLqrHXOzGt9H6PeuAELjMWjjMZKQC65gsU8mr/o7HRLf\n5AQE1MVtmczsXO+JXDlyO/we5hbwwu/X+Vx45uUmIXN+zKZhTMmXYzklzysAgjcx3E6G1vFrCOku\nVxdr5FP2cFLpOXD/DdvOBSC0Lfya/NG3SCil/vqm3wkhjoQQ+0qp+0KIfQBtg/+vA7jpfH9D/+yy\n2PgcpRT/PxNC/BaoHfde8mmLSpWYVae0U7+sOlxMqAoKepZIJ9c9TCBD034qVO6IbVLfmBBVEVR6\nopWa9Q3NQ/ggrlU8anZEC8kj4q+o3YnhRCghTEV22bHz7jLYulUnTmobAiKIAgjSGmufNcCA+twB\ngElAhjgZ+JgXR7g/n+NwEeGgM4ffO0E/2KL2oENkxHSO8o1zVKcp1KIk7o9GwhmkVhC3ukwKx3AM\ngP0fqM9b+Dw2Es+aI+amc9ZMFKM+RBwSmdFpMfKcwxxCAzkldWUswzElI3ZHbRyzy3ESQWyG3ozS\nUgxeYM03XeHxrMvX1Q8A2sywGoMz27ssCRkE42RmSKYAbLWnExAAm9wB28ZtidgXzvxMv+cWzTUD\nc/aizbbneiM0csm/h4ekNr0oSEuRVUZCaVBwXGWp7hjn2nfI1fGTXmTV1TWAhYm2/qKg1mIyQDw8\nwNyb4F0WnwLw4wA+rv///ZbHfA7AB4QQz4ISyI8A+NHHeN3fEkL8Eghw8AEAfyKEkABGSqljIUQA\n4D8E8JmrDvKpTT5pJXDvgkieBpHD0Vyg9KLGZmRtpThDtd1Fj3aCWBPbXAtHeyzxepZPk1mRSZFl\ntpVzRdXTBExEfodIe+eHtAjqxQZ7WjHb2TVyGCM5PXeI/I6BoaoQgOMFlJYXmOQBJplERyrsVguC\nzLqhW0UAKRGsFiX8JjQ6L03ro/5cR3JfV0HGDdb9rDa0ItusmNXsyGrvcTTPK3NhACPVw8AKFw0J\n1FUigLqgpi8kySlhZFs8XKGgnoD4Pa25bj5GqCyzRMwN4c6+gqIi0vCjU/IMSitjBQ84CYgrK042\nrpagvu5Jx08Yz6ZaV+Ay8jTqiaYZDPgp5JgWq7OjhiWD03oMJZ2rDoAgJnvw7C4eLQtkKw+jcIZR\n1CebFBdEo7sAq4Z6+pWouzcZK/WOcYY+DuB3hRA/BeB1AD8EAFqr89eVUj+olCqFED8L4NOgyfY/\nUUq9pB/3NwD8dwB2AfxvQojPK6X+faXUS0KI3wXwRdBQ+2e051sXwKd14vFBiedK89GnNvmsVF2B\nwMRjaq1VqrQ3WGMRlILkPa4nEyzLAvsdQlbNyzOM+nvArjZIGw5ICLE7xqw8oRvNz9Hr0tyktii5\nMidFSgCAvKWdw/wkvWN0rQMAOBVFYRcr3h0HMZari9oiEHkdDIO2eaV9r91ghGf7lDCf7RfoymsW\nNQaQ7fLN6xB7JcT1KfwdMuLzdzrANStLrDYZdzUVwlsQURZ1tiSXWIcrs2Z3cP+rpAbd70LdfH7N\nbM8ct6k2dPJjZeqWcwxYUIqrbcYLsWnxuNYJWQaM621XJQTJ8iwcUc0egCg1gqMqy0hcVovK1sij\nax+Qhqp368TloKigTl83lu2b1JvNDAiNJKkTEKMJaXjPZN4G4ddNPA006VUR+R105cgkSrJYoGvE\noBuZk8RSPVu3MKtOcbI8M4t95K0cCHhUr8qGA4i8hH9ABF4x0vO9eIhlNav5IL0bQil1AuD7Wn5+\nCOAHne//AMAftDzu9wD83obX/hiAjzV+Ngfw4Td7nE9t8uGo4e6vSDzNXa4vpFYldpBWRUo+QCJE\nLHvY78zMRV+ucixliXj3JolNaj2reXGEtLzAg6WPUXiGKirRDcZGBBHAuuqBozawaVfpaoiVKrcf\nNhMnB11AkxKFTEixweE0SREiSUuo8tC0+zYFJ6BuoAmFbYkxlOS6ubsF0YJ2U3f0fKsxB6oRWQGt\niIB2bpP+/do5YTjv6etQd+9DPZgAow4t6PsvbHxf7CejYguVBmi3zrMwPs+TXCLyVhhHG8zVmCvF\nM79QrrWjjDCrJpyq5ZmFsXcA9FLiLzGZtI306qAa2xKPyJc0Bzw8JHmdRVGDrbvVj5HuCZ02oZvo\n9EZAatO6prEcWcPn5mtO3OypxARgjlrFBAsKUI++Qslaw71FJ6BK2lXZGO8B27cx0W1glzVNFRmp\nS/BGwERnRHv8LLMt1jGBVbLy4XsKB29TPLXJx5bA1Zuyti31PKftxuEQSpk+di+IagluXk4gB3sI\nENT0rO4vQhzOAxx0PSzLOXaTnNqBg/211pKR4uGKxZXO0YsuJ8hJLjWnRYdOPKvTFP7OHLi5rxe2\nEc7zezVBxiQtoe5/lSqA4UOaOWmAAQfzg0qVU4uO51BtXA03oexcg3rtNfO9unOEXOuzuXMgALbl\ntfZh5HVUHb8W9A69Y4nAJvG8fAfVq49Q3pvB31qYG0BwAnKBEnlJiWeyICFLpyrj68BqgAUOsrGo\nJaDaTpvnN+dTzWmyhFUmahruSRBTFVekdobB8kOdUX0D0qLvJ+IhVHdsUIhAPfGwWOlVnjXGcZTD\nnfXoW4ClaZgvtYYidNqVaUmt2rNMGIHdZhiJIm5TFumaiK7oUPXHdgrYvo0T3WZbfz1hqlBzffJx\nlTmdr90t2hTsbkHEQ2PQ13R8/UZjY7flKY2nOPm8+edw+4R10Phnpp3CUaQGtuw+luM8P0LkdzAv\nJjjLBA4XEQ7nEg9TYFEGOOgKZKsK15OHKIMccdCvQ0JdqDS3a1iXbgEEnREir4MUF/XjZFHQhTWk\nE2kGyBCz6hT35iTIuJfsUeI5fd2CI5hg6NgDNMNddGrng5NOFNVAEyKIgddfNUoC1TEtCB6z93kX\n2oaAc2YmTesA/vuiiA0SzbhoGuIogR78nQ7EdA41PidkoBDA0iHUMpnTgXIzuournZPUxySTeJQC\nXcmLSz0B1RQidFIzx1xalQNDMK1mtOtvctAwsq/HEjVNDbRG4pkXE9pMeD2qpLR6A2Alddq8kfj3\nXGWQuGq4Pltyqn1WAKmFw6dLq5mjMO6BRgcTY4AnvciRxnE2Wjq5Gn6R9rQyqtZ7L+I4u4uvnSsA\nEolc6SpU1SR+RL40pNe1ijmKgF1bNZarzLjDvhdPPp7a5FMq4CT1SWJFlnYxdIMXNYeNnXg9A9MV\n+RLq3JHxABErXdSY+XsNWY2sWujEQ4P6hynwxgXxzTuSBvdpVaLL1z0PoTUCziLAUDtGJt8lMkHc\nfQ7dQO96H3wZ6uU71G5yQs3mENOH6Ccv4kZ3gcjvU+KZHdV307zY6B1s04qbY16eETdleEBVUnJm\nWozMBUJ1iv6qA7WYUCtuOIC/M4F37wKiI+FpS3ISjmzRKmM+xo19w6sCYHbhrsx/Wp4AgJWnyUtI\nveB6WzHE7T3a6WrrBSP7v5xqYiWRWTHqG9LqUoMs7i9CnKQ+zjIPD/WlshsDk0xiWXq40StwPaEN\nQDcYE0yd26h8TvUsb+mXmOfH9CIMt0a0NrOqwbsZ1p2MrayPfv9u4jnLBGK5qKs7a9VwEYfwAfgH\nufHI2RhNe3gnuNqXXqgT8wzw+wgcvbrl6gLnOaF+R2EJThJWbNUJnqNq9XCqfM/rBnNxqLlXe8Bi\ngp3ODcjxQ92V6NfUC9TFGVCe0HObIBWgLoUUSigAydYtICSlkvfiycdTm3zyCjjLSLV5HF3QgqnJ\nnOZm3zBLEfkSanlGCxSw1l4ysGWtYszRNNjKVrT7e5QS+m5RCNAGVNtX+wJShBp+O6cdrvagR+pY\nEbgdKb24qXIJnC/RlwnU8ZehvvRlK7UDR/Azzeg1g9exff2D9N7So3qbwzGnYyWDk+UrRpW5Gdlq\nQURVAfjdCFL0UaoFUC70++oTd8XsYiXE9RHkDc0xYej17la9xVOk1kso13YOL9QrsHLrQMvjP0Ra\n2sqvUiW6e++HTAbwBl0EtwlwgP1nzJwgLS70Kdym1taQpGyQZob8qrpjzDPS7Xv5PDBJBwC6zt2U\nVR7uXdBiPQpnxjyuO9ih5DY4M/JB8/IMk+UMy5I4Yb2ApI3KVbbGM1mzuRbC8mN4ruUkHraS4Gs8\nScZQvSnxYwA7OwIgbtJmBNq8zrWsdhUkam65jWB1hkqVmJdnhIIL+iidxEPXgDAW3pHfMWoDNfpA\nEFulDKAOvODjd00KFxOMOtfM1yo9AYqvQ100iNZ83A5HjDloyAtKaEAtAb0XTz6e2uRTlB7emAt0\nZKB3X7Yi4IThEv3oSanRF6uRG93QjpfKaYGxarTrccKzgqwib5mHS2A6iYBBikXJxxGa4b1Kz6ld\nMptDPdBosbyAYr7QEHpeUa+w1HJKiafBD7EHktNur0iBkzt2Z+iYkClWstazhpPsLl46C3HQmWO/\naxcvXnjcmBeTmrkXoJFWZ3UTP7G7BfnMvC6S6YbjE8QzK7korDkdAGzfxtcvXjYSSIBvFvTIm2Mc\nXaDbHaE/+B5g9z5EMjZw3Isi075FC2pRJWNqMfantFixMV15gkfLAi+fJ7XEA1DV40ZWeXjlPMIo\n8rEdV+YYYtlD1CMy7zy9i7NMIFtJfdwrM7RvDt/NuWqKdMImIejqkisebgk+WFZU/YR79DkOWHDW\ncb1NBvBkQmjAl16uSxZxXKLqbVrNzjXAScjdCHD0NEjh0miSlYMYCFIDvRdNJYRT3ZZmZ1btV1Rz\nHcbcVvJ5aTho1fHCkJ8BloiKkfQ3oz3fTKh3Dmr9roinNvnkmYevPpKI/QKRH2AULgHQQsmIoxJZ\nXYKDPWT0bhjAOioLAEA3tkpIeiUIYiOjz7wFIqAKLEqn6ln6mOvcQAkx0XI8Z3RDTedm8eUevQ+Q\n2KX75lyCpq6SkBe1naw9ERpyfT5dn6G470szviflQ3ztXOGzD0N8cCgxyTM82y/WqiBG771y3kHk\nr/DduxYJp1y2uhvXtuhvcavN2aFy4infOEd57wIrnaGD26cQGl77YPkKvnCa6PNcv8lHUYlJrjAK\nidsVdTuo1NRUHLz4JzIj182QDOvUcKC5IyNCJqYTvDKN8aWJwLwEnunRxuRaDET+yngFuXE4l5hk\n0vx+O14i8mjnPsnrJoOjqETkrbCrXU43RTMBufYfdpYYmFniKPIxCme16odOIM2HuAIrVxfYfv57\nIXpDAoSwhXdTxXxDEmKgDSegcpUbqLKrkeaKubpVTy10NWfANK6Onkb/mZmQK+bqJJO6MGwCj32l\n+BrTgJLqeGHIzyqtLBAljvANjIffi8eIpzb5hNEKL+yWeHG4wl/YWhry2ZURR9SK4a911PSvNNTV\n5Y8ECCDlttFO2/VyJDLDdlxhHAXYjjy8kczx4R2F54aadLfK1+HNYbAmonnl8fIxoiYfRjwJFuF0\nocwtIfp7mHkLfOk0MwZ5XKGllUKsryReMLmyo8d4+jEtYqvu8cWNdg4fjzNkFp2AfHsWJXnaRBFE\nPMSkJAXxr5xT0nFbYF0JRD6980R6uCgy0wKlBXGFBCtEnkdtIK9j/HXIXTSF6O8hrWboBiN89+4E\nQGyShesLBACvzZRxgX2k8/i8JDACJ8XtGGYD0rYbZn7WGpSfQ+vxGcJrw/K5iapiV85eMEEc3bRy\nRcMDajmmp7oC8xD5J+hv3dID/wzqwcSADehzcEz1Gl5ShjCqzy9XlHw8DAIwj2lguqUIzTUvlFon\nDJtZUGKJuEC9BRhHgGO6xz5PIvbNNW+uu/QSpOumKu+9eCLx1CafbrTCX7lW4DvHOYbhnlUWCGKy\nPG7Cr7VsC2loZes8C0d117DvgRrkWIBsEVgxW3oL9IIco3CJGz2JG90AN3q2OrkoMnTlDMlgn3Zf\nmpjo6ypGjDpWloY9Ttyqhb1X2JJaH4OvqzYxHNAO0LGl3lT9TMQUXzql53WkwjNdhYNuafr2hj8B\n2oVvx2PEPrUyE7nCKKLKj4m2td1kQ4trTeIm0K6m/S78OITXCVBtLSCfJwFR1R2j1NYTnHT4/46E\nU3FU5njddk8saSHsBXWfpgIFgQSWZwQv1zOrbjDCv7VvCbwuSote7wh3ZkvcuwiwG1MC5uPgYxhH\nBCjhhZkSEf0egOVn6bnPmoxSQwQ39vtGcYLJnsvSwzhipg70DKqA9I4w1DbS55pjBkAnhQo9uU3V\nKaMDNe9HDOrzHle4lYVam7qAJMCbIcvpGLKVhwdLGGdZIDMwaACmGgJs21sG9SQgQ+ItGdkiroSC\nlGZCwwGBSNIMwW09ywHsvcLSQJlWbohDSO2NxOg+cX1Ej20I/b6VWGHd2fhpjqc2+fSkwndtA8Pw\nJs0gHn3FKk0nAwQuqdLdgfEgmoPJfM3Fe1PoHSsnoVLliPwZRlGJ6wm1qjgmucQoWlDrLxlDjXNj\nUS3CvJ54XIFSXphCibVLPZSUOJkNrpFhrANXavM6+HVS7ZfO6rOtg26Jg05hoKzcOgFgSqtuMMIH\nhgtIr274VQQ+6cPp41VCoNALZ+xrGRpXCgcwqDahE6kczUg1ob+HZTUzkFg36QDtiYelglw9traq\nt1xlkCHxbWYaNQdAH6PWYMtTqHIGlCfmmEd7L+K5wSki7xyvTCMAnkk8+53cHoMs0QuoLRV5HhLp\nIfJWRpiTQCkL2/rlYMg96rpwjO7i547CEotS1FqQJ6mPyCP9vUqVa7OYbjDSgBqamahFYc30zAmI\nDPiiqVTQlBmi80XgApcvs86dqRB5xJFKpKtGENb+d1uRsd+H7I7rSYht5Rn5uOPwzbQBHcO+1fKM\nkumj05qbqxh1DMTfFfR9L55sPLXJJ5YC29FN4PyQ9K3u3TciiqLfhdqZmp2dG8a2l3k1jk9KWs3Q\nE8manEsziJtBjO8giBEEW1BCoCvH6AYzsyicZQKTbEZVRbhNM4ida7TgsMgjJx5DOM0vT4Bsg+DA\nkUstqcMLBy8e3IZpawsddIo1mKzrhlquMmM53gQhpNUMMtw2yY7nFKzwMIr66AZjQj4FVmqfd7hc\nBWH/GaAzMvYVi1KsJR1WWW4mngABAq+9ZWkTcWb4NrHftyaA07s0g0LdWM3MAYsU/a1buN3fRSKP\n8Mo0MsmP27u88ShXesbkX5hKqHauygs6v07CMxI9YPNAMkATnZHhosWyh6SaYTuuaq+5LD0cLgIk\n8qx1BmOqHj1DWWlOmIh9alHtSlP1zMqTtc+2LaQXIkaOyFuZ9hu3HPlrDv7M+OvIK/TX9bkRQ7pJ\nU85JQm0qJY7UkjXvK4kOIBOoIIYIJc1OtaEhdreMjfuFs/F4L55cPLXJx1cCuPt52vXcvW+G8QIw\nOl4qPace8ybIdTJGEfhIq1Nk1QIXRYYs0EKeDbXsWitJ+9OrzsguHAEBEwKfEtEw2MMwJNMvhp8y\n4q01mjdd85ijqOa9s6xmyMrN/IW0UshWBNMFoNFalrQnva71mmkJ6UWmsnB3qwzD5RuazxsrPIwi\nHwcdR+HBa4FzB9oDSb9v6YfoBREOOkVj4Vpp6HKEyO/bikUrTDdVIThckzfzs/mZMRszKt21E+bs\n9s+nUIMlpLeDXhChI9WathiAmlCtNY6r21CvacOx2jn/fe3uqYLbtHzZAAAgAElEQVTcKF2suXD2\nYFB/gNU5YxSi4cOwfYPRUMvXSagxEYWLwEeWO1JMbmXSAuiSXohdz6pCABKL0jefFSegZelhWdLP\n6Pf0GPdzBYDrCZ1vhqTzvMi1tzAgjIo2Cm2JMtH3IIbEAQPr5AXWeO5xEuzjxErhPbSbE9+U5COE\n+G8B/EcAcgCvAPhJpdRE/+4XAPwUgArAzymlPq1//mEAvwEgAYnh/RfaKCkC+UZ8GMAJgB9WSt25\n8iDSBdSfvVRDgK0WBfx14n4tXKi1AhBs3QL8PjlPaogsL65rxmqAkYRX51OCCe9cI1QcYC0B9EMT\nSCTBNajpfajpKxY+6iDthFsBNcNdVJ3EkzpOlhy+kEaChW/avQQoB9ZvpcnDaNN6a/b+14RNdZgq\nyWdI+YWpUGp24xeOFYRLCASAiFpySX8PMtwDcIRE2hmC9BKzM15TiDifQnHrse2c8UBfh0n8qVUa\nrw2k3a93SIZoE0Oe5zhuu4oXbQOz1rMPPnZ1fmhNCN3k5+7Wo4jM5MolksG+SXKxfwGgMq/LmwaR\nL4FMtw0xs/YNALWc4ggyDuE/mFAr6gO3IPZfwDKWwCprdYN1Nx1rc1NPf9YS6AU5rieciOqLstuS\nc2ckNvFUBjlZ4wW5sjnanoKr27ZrVeRLqMnrwNmR4Q0Z76KLc8Oj63bGa899L956fLMqn38B4Be0\nrPc/BPALAH5eCPEhkK/Ed4L8Ij4jhHhBKVUB+FUAfxfAvwYlnx8A8M9BiepMKfW8EOJHAPxDAD98\n1QGoRYbquIXRzdBjwEI6Abv4cYtO82uUDBEM9hF5HZRevfedVjMkQa+efO6/AXX3Pgl7pjklj11d\nBWmdNhO8GDicBT5GAEbw0iShQbduUAeszaRYjdmNyOsgqSTUyR0AgJTh+oVRzmyrh9/P4BqgB9cc\nLBhZF9us84Hc4F29H0jclqVJgsLd5bvmd9rfB9DD711qPQX9PQzDPUT+bD1Ruknn0WnNSVWkGdTO\nNWuv0NYm5ecyA35DGJh4MiDQSnmy5lzpCtICWEtAsewZ8Ebs96niajl2U6l3AihuF/OufUhJOUjG\n6AZja4/BiWx6H5i+YpOoc24BUMsJoPba87chdsm1Vuy9iKVf1o6XP0OjxQYg8AIUKCys0vmsOXjG\nNkR9tggA40i3nHNZsyOJvBV2kwBduU0VcZECWLa32i4x8QO04Kk2kXOvqZoxX0Tdj+CqOe578Q3F\nNyX5KKX+d+fbzwL4T/TXHwHw20qpDMBrQoiXAXyPEOIOgIFS6rMAIIT4JID/GJR8PgLgH+jn/88A\n/rEQQlzlH76al8g+/wj+Tqx1xKi8NxpWzWAPGM03cdt0CkA8PFh3ADXDYh13X4Z65S6yzx8Rn2BR\nQOYFkeV2HUvgIq0nnLyuOuwuPOS34qguh5klnAJ2FsSggiqrHWNXjhEs5lCnVFm5i+va4gQ07KpP\ngVs52UJoxBObz9FsITScl2y1xO0+tUTahCclaMeceD2gueA2j0Mfg/Fwgd4EYEyzMU445bHdzTsL\nd/nGOVRaQcTnRGzVUj1q0GCyM4yXE6A5B87xMIqQE09vCDHYR9G4FgBqZfb0Br9pPsdhqp2igrrQ\n1Q5zyzRhkjkpfN2KTkAISM3FcXX4gv6eOSdUQT80NgobI8tIuohj/xmIrVvkBup+ZjrJBwhIJVov\n+HaWSQaMzefw5wNAX6eyNpfpyjFieVZLQqOw1IlnRBulScOdF1hXOecNY1N0NdLcHX29164v15gv\ny8BOv08iVkqs8c/ejhBCbAH4HQC3AdwB8ENKqbOWx/0AgF8G9TZ/XSn1cf3z1s6UEGIbtMb+mwB+\nQyn1s85rtXamLjvOb4WZz98BnSgAeB8oGXHc0z8r9NfNn/Nz7gKArqTOAWwDOL7sjxaZh9Ovx0hm\nJYI4Rzj04O+so1qUEFpyRnu8Hx2bxSvoBLSD7k2N5W7bcD0IOsDsCGo2NwKaZeEBWvhTAnSx8wXv\nOH8y69ocT0MA0hh+AVCYEkqHbyadeEQytsNWvcs0bTYNuDCLsyakAqglvLbw84IGtTIEhgfIVgu9\nWJDC8725h5OMU3lkKiCehzVbIdJ3bI254uOqhxcF10J6pLXp4ojmaDKhzQDrnHHS0OeTnSorLSzq\n75CGnB8GlicyuLault1wVW2GC3UX8dAazTVQX23RJFaa2cvymN6TVrVoJp7qOIXqlKSFp68JrxNA\ndIqa7YGSIZ0T17HzzhHKe1RF86ardkxhQIAO7RxbDnYsCpIfozcP1nk1NQg81/cnCKzdOImFntX5\nOek5JQ0NwBEgVZCu5IptgkQSQpBngOriviOu62xi3C7Fhs+MoOLrdh61awy6/ZZK6+P07oqPAvhD\npdTHhRAf1d//vPsAIYQP4FcAfD9oPf2cEOJTSqkvYkNnCkAK4L8G8Bf0Pzc2daY2xtuWfIQQnwFw\nveVXv6iU+n39mF8Eydr+s7frOBrH9NMAfhoADuIEMlohiFeQwQqiE9IuctQxOl6A1XEjhYN5zfGx\nFkGMsjpdW3BK5IAPQ9rz0wzhokCQVsS2PhhC7BFfBUCrmVqrzIn+uSXNhfW5g8M54jlPM/GI+Rkl\nHrPIs/lbYBZ51oC7KkqVG0dTgAAKzFlJ5Ao3uj62o/fTAjSnBajVI4gVmfW5ME6iDcKfgFNtsNEe\nC8AWiYVnY0JW4VkGMeoQnDatgB2rns0ClcYiWyZGABTJQKtGn+v5ijSGbjU1hiwDsiOoiGzXXX+b\nRK4MfJgBBAykaL5/bl0ZVCUcEEw8NXwUNlLztnTlzteBe66c6lfEQ6heSppuow485zPl1+LXEHs7\nRilaCQEJGLUPoJ4wC5VDhpQ0au/Ege9LXG73XgtHtDarFmtty1o0teVaREKV27KNo/VExHSEKKIW\ntq5mDR9I30fvsvgIgL+mv/5NAH+ERvIB8D0AXlZKvQoAQojf1s/74qbOlDaN+z+FEM+7LySE2Mfm\nztTGeNuSj1Lqr1/2eyHET4C8vr/PKc++DuCm87Ab+mdf1183f+4+5572Eh+CgAdtx/QJAJ8AgL+0\nM1SdYakrni4lgvfvQtzcB3btIajlmRH0xGSG1aIwch2mRad3d4zcciGsHBkW6B48h2TrFoKbXzW+\nIcw9qAW3czRLuxauwOOoU0s6pufvKCwYJWknTOI5fX0dxMARBhA6CXlo0YTTj0FMSs/lKsNZtv6+\nn+0X2I41l6qpAA6szYyWqwvE3TE5ucoQiB62AwJ4jqUXuULDtqUXrXM/llMLz45PEXQCWzFe2zL6\ncDWrCGGHzGKwD5Xcp+sgol21SOVaQmT4NYIYwd6LZg4YeQViXxjbgNjvA3Pqgmx6bwhiiGAfGOwD\n/QlZPuhq0L82h8/zv02hF06RjEmtu9NHENwyVZHPagWuE6pGzomtW1BhUms3uTOdmhFb4NOmJvCB\nwJ3rFWjtV7FYKFc+rPKtKQuux5UbV2rAtUQt8QBr17ipEHWVKFwOXG9oiOXunOutxEpZVZDHiB0h\nxJ86339Cr1+PE3tKKe0bgQcA2liypmOk4x6A7215nNuZ2hTvw+bO1Mb4ZqHdfgDAfwng31FKuVP/\nTwH4LSHEL4EABx8A8CfaJ3wqhPgroLLuPwV5jPNzfhzAH4My9L+8qtcIAJ6nEO0TW17e6EPc3qM+\nd7PvD+h5z5yMt05TrBYlysJDBNCFKwm5RF7xskYUjH1hqqHz/CHmMiTtrLZDLFK6KYcDukHTDIJN\nvJoyOq6FcjOcOU8z8Zghtk48lw3Q+e8aWZ62BKQTXbaa1lBKiVzhdj/BSO1CnR6SfUJzdjNMa06b\nF5o3UirtYRTsGxkVA4t2GPWlylE14OKsy2eSUB7Ta6TnlqQ6ncMfaDM3TjwOEpBfB7BDcKNG3Wzp\n6VDOLFBo1FmydQulnyORZ4YPVQMRNEO3oESwX/tx0enSe+kvga2UHufOsRoSMUK3cEU8RBH4OJmf\noRcsqG21dYt4La4yB5MvdZXcvDLZW6ctZDiugSaYKHxlOBsuTjyz6hTzYnJ5tQMYbs7aMbnXl3td\nXyah07Qgb/DgJuVD3DnfDFx4G+NYKfXdm355WWfJ/UYjgr+hsdXb3Zn6Zs18/jGACMC/ENR2+KxS\n6u8ppV4SQvwugC+C3vTPaKQbAPx92IHWP4ct6f5HAP9UgxNOQWi5q0N68LdiyOd3TNtLsJ5Vk5Nz\nPgVSQsetFgXKwkORelZ2RCaYl2c4XARYlh624wrZaqUZ2w3IT5Xhoni5thOmw4mofeG2nIaD9c2j\nm3DClo/P2fEuVxeYFzTYZWhqUFQ1r57aTCUv2pMcsDkBaTmidHmIkzQ2LP69ZA/xxQzq7ufWZyUs\n7wNAdcjErUBhKsdeEKFSJVUJuorhhJNpq4QHS38tydN5JAM/k4SCCEEwokpqeUaJOZpAMDLQcWdl\nCLqrSzbJSXD02f5ddIMResMDSh4yBB7dJXTUo1OoBxMzRwk6980sLB7sIPYnhtwq3JlWMxzdMq7A\nlqsLzMuJeW9R3EHcvQ2xpaAG9yGa8zq+LrQCwXl2F/cXIRJJ5oQIr1ECcuzZlVHCPkR6obAdj+vO\np7Oj9WPVQTw4mhvNyzNMshl6muv2OEmINx8X5QlO0jN9rCvt94PGZ3uJ1loj8axd127wNc5AHb6P\nGPWo+Xsn6at46SzE50++9TTeLussCSGOhBD7Sqn7uiXWRujb1GXi1/gJrHemNsVlnamN8c1Cuz1/\nye8+BuBjLT//U6wPuaCUSgH8rTd7DEIKSjw3rxs0z6w6hYxDxP6BnfUEsWmvmBkBcgTxSs8LIqju\nGJOLl7EsE2SVh8M5CU52JDs1EndhUQpMMmlK74NujoPOHONIoRuM0Pe3bFuiV+e0CHeHxtpUzu9N\nODveeX5s5HpuaKuAoPGRi6hFtddpydQeGwbwsLAJKG5vhZB2WgTAtoY4YRp7Bg4ZWvtoPSPhFku2\nWpgkkq0WVvUhD3A4D2rSOZyIYm1bUSI3SagUIWItk4OFRi8Fjz9E5gQHOPYay6ndYTcFKFvEXmtA\nFLfNugHGW6Awi7ldkGeI/QtkcoGRdCr03S2IQde4ztLMom7/cNAltexYEgLTXAVBbOYr7C4a+9r5\ntJJUIR8/tNqBzQhilDpBPloWOFywmsOZVujuWLKuU61wJau6Y5wXRybhL0qBRFpSLM/JXKKy2Ry2\nVT+XxWUivJx4BvuYVac4mZ/hlWmESSaRVu86PTbuBn1c///7LY/5HIAPCCGeBSWKHwHwo8ClnanW\n0EluU2dqY3wroN2+OeEJOy/RC6CRgVc5giCGgG6z7N6E6A0hdh8iuH4Kb+sRvcSLz0A88xcxKWhn\nuB1XOJwTlJIgxuTWCKCWeEjh2B6K8e1xCHJi6xZUcmarnOYi1XDvtC8WkuGZuaGpQihXFUqVQ4V9\nGqA6r2durSIlGf1muPDqTmAJ7DxrUgqx7OFGb4nIW0F61PsXMiEip/N4ActFElu3sPRLlLo1yDyX\nZnBbR3qhllkptZSOwigsa9VPUwusFm5Vqwm9jGwTQWzsAHxfmtcY6cM3pNfz163CgG7tiCgCro+s\nDP/eDm1oBvuYlw91lUaqDZHfoeopaRAXHajxrDzBPL2LB0sf9y4SDViAOaZhsAf14Mv1hTfSQ/KI\niLMqTFAV05q69ThSiLwOQesfUbtflXmNpFuucgzDazbxHB6Sed9sDvFsw9I7HlLFaqpF+kxOUlLG\n6MgM+50Zev8/e+8aI0mWnYd9N+LGK99Z1VU1Veye7uHMblPmUrJBmpL/yaBFEAsbS0A2RUiwbICw\nYNgL+YdhizIh2oBJYA0bNgRbMEDLhCjDAkXIMETAFAhQAn/YMK0lRa/JXe1rlj3TvdVT3fXIR2Vm\nvDKvf5x77iMysrpnt3d2h9UHGExXVT4iIiPvd8853/m+yGZ+ko3vdORGlw9GpcKCTmLO2VV5aLtu\nXvB9xjFb0DnsCq4WaEWDYr3E0yXdP6Okxg8MX80yuQF99z+C+ByAXxNC/AyA9wD8FAAIIU5AlOpP\naybbZwH8Johq/ctKqS/q57dWpvRrPAJReGIhxE8C+HHNkNtVmdoZtxd8nBAyI2FL7TbJch1RlEJU\neoeWAbg3gBg+g2Q1gbd/APNgiXpdtspmMACxVwsDz6Im4zHWHUvCDg3/rc6N6CFAJRHcpPYMeGrQ\nAKh2Xl84MiY2zOBrNvYXLt3grlBBRinUV/+5/VsbEaHlGoZCeqUS87pJsk2HzQbA8ITEOp1D5AWm\nOS/lBlsguNmO/f12rFW97RPTmP1QMt7yXfJOQw9mbikMOCVQ4SpMaFvu1eYak2JuAKTYUEawTmrP\nXI96V6RYUG9KnUHEXpYMrJGGglS3Lx5B/dEfWbYdX19NsxfpUBMw7KZhP12bTY6afxnqMfWjRV5A\nVTmivfsYxkc0a+UCz+OnqN+fIryzpPe7//32PDsj5C0MT45lLfDujOSFjjuUCbn+PQC2lDYOMspO\nttQTguRmxhxnQc0eaJQSiSKWOjNsOdYk8Xqkz1cVlrXNkkbJR4MYryqUUhcAfqzl96cAPu38/Bsg\nWnTzcTdVph7s+H1rZeqmuLXgIwJhy1dRqkUkFYBrc1VkGENomwKzW5MZDSPWJfJeH2tn10fWARZs\nAJghy+ct1QHWHUvDPu2mVzOoqPR2htxgF0pBuGrPHM5juS/SpizshnJ2n0yHnZZP8GSxxtvDPvp/\n8s9AfeX3ffq1G7p8YbIyra/GAOCZoLk2D5ztbK4xXb2LbmTLOE36sWuO1gxWSeZ/A36mcyMzitl2\nLqg65Rszze7I+XhzR88vjcKA6ERQxh1TA1AsgcEhVJxhofstV0WAq4IEWldpgFVNjqaA42hrbBUE\nJkXmbVSofAsSC81rqPe+AfXojNhab4yMhQAAw9JiaZ9VHZGdQ7BBV8914fQU629Q9s4qG6wSEUWp\nBzzVVy9RvT9HeJkj6UTUHzl+02Q9vEmg745wNNkoVjWVoS/yEHd7K9zthqYcCljfIve+aXNwlSL2\n5XPaoq06wESKbACRakHYSaMcrLOeChUW1cSMCzT15F7Hq41bCz4mWDi0MUTHA5lNsULEGWpFKX1R\nX7Uu8u7NyhlPt3Glk5AJCSEZaNVOWUCXhFi0lNV7uYHufjntl9iaiblGaWxyZlwjdWmJY1Fd4eli\ngXdnCZ4sJFb1Ap/a66L/qX8FeP//I+mWG4gIbpiSF5dIqiu7iGtqNPUyyGlTBksrHrqcQNVPadBQ\ni6yy/plRA9DaYPWmRIp2zbi24F2zWl3tlmJBg/bMJToGq8JnUBmySayb1i0KB6zr5pZZSatMYlLa\nn1c1gRODjdtjWFRAVyq8PSRJGlXPoQoiv4hOhHC2IDXmKUngcEmVxTSPO/RGd3tDGtCsL2jglvt2\nLCd1PaUFms9dv8f6fIW6ChAsa6KnHy7IpmDvPvK1VUngjBS1NcpzB40XdYBMhkiCCgcZ0NWePC8i\nJRgre1ZQYOdSZ0PjBVcNtJwUi+iygjWS92imp6UMx/fZKK4x+vDM7hfGRn1kZbePRdxe8IkjiLvH\nRhomDfsYJbYEwCWqpu9L03qAbAfCna6USbhB0hgi70hixGVyo8tjVApTwJZFA1NPrVimtR5u0oFd\nOwQONk5jw7NmdOUYd3sSmbxCJhN8YiiI6bS4ol20IR/4Fsqi36VBxL37pHBcz5x+S+KpQrD9g7qe\nQvaGuNM/wv5orCnHcyimg1c5FGbU+K3aQYh7MgxCL4ok6BhRUTNV3wzOcLQagPEOwsj+vZ9DHawg\nNM1a6rIbZxompAXg/fQegMemP9UW9PuN/ncA5AQ2vEilIQHXu9MEo/gM3zd4E/KttyDdYUiHpaXi\njHpGmuWYhgJ/YpwQmQWgYdx7x5CzhR0o1fYBYnBMBnq4T6aF36/JLk/mCHkOTn9n3KyHP3ciexAA\nJTGTQQiE9tM13upXhlijLt+jisLefa/fxeHNFPFGQKvBA/BVPDhc4HGGXL2IUj3TFNusXoNaFh2h\njmgwuW1m7XW82rjd4KOH6Ti6coxFbSWQGID4365gJpVKrOXALql0nvLnIDaPTyVd1BPI+AgRyAF1\ntbk27C5mILG3SSaJilyAgJIXYAYoN1gy391dtmVNadjHURYjDZ9hGN+jLIH7S64LqjuMqGdjVmGN\norb2ArzYq9W5kXNBXjogdgn0iT1lluMWVQdjEbADhKQgEC7Wu8k4SdCxWRXvmDmaDDUGoAwWdHTM\ngyW1X5MEUvSB0T7SezSvY463pR8nRYxhfIgfHD8z3kjtEaAj11jWG5DVwPYjljXwe8+7WNVP8M7R\n90O6JSVDE5+hLs49UE5lz2fGRSnE8Sdt2fH4TYj+EbEjNY19mB4iO/4kkCQI0wThiRYuvXsMcfQQ\nVRRuadO5AJSGCvlaIcMGoxgYxQEOsoiMG5cLqMsvQH39ET3x3tTcSzyw7RkJcvbZNifGmShrIgJG\nDNgFsq1Nl3NPA6DXjXKo1RX6A56xeg1A3+m4veCjWWHer0SMrhybvgnQDjqTMjJZDvd2eMEg22IK\nzm7cYNZS8/f5eg5EfdQaeJhie7qIsKzpddloaxS7cwt2UWO/HcACD89rtF4CJ3uSQYJhfLjFKBL9\nrjWu452+pqQySLphpvdnz8z8C1OzWa1BwUq57ByWTahUdxMIgaqWrT2uLeBpi13yLGYBAib1Mzxd\nLJwBWtIFy+QFDdHKwy37BQBGu85c12Di3UMcxSZw7gWi5idhgI4MWkHoS1cZgCd4MDrQz58hX50a\ncOMyK2CBR82emowaAP3/HvWUmVq8yMnM7yKP8fbgDPvpGP2jhwQG2uHXbNZalNEBv9fGAqoyiLGf\nSpPtqKfvQ737GNVXqWQnP5hAPLgE7k4o+8K4HXQagGOUzbX6tMl6HMJO8/PYCheAdGlYzZ6iNzzR\npAiij7+q2Ch8HGnb37G4veAT2FMXTiOTGU8MQK5KM4OOS5kG7P8PU+rxjJLaOFfeFG6mwlnWWtUe\n8Dy6phv2WR7gMA3Qkbt94HmuaJwob6jRRIOcAGwDkGg2dd1dot6hur0oDi4FmqFELUe0Pl8aMVRS\nh/A1xUQaksxNJ6KeSZpAzGDVufl4YXsyQnu1uJkQZ0FcYrR9JIda7f7/pqhyqDjDtDrDo/kKf3CR\nef2YRUX//pE7G/zQ/nsEQp3D1sFRKWIgALpyRMoNstaupXRPUd/PghDNuCgs6w2S0LIkO8439d1Z\ngmJDpcqLPMSqTs3jxkmET+2tCDw2HW2f8Mz4/IiMsmsusS00uJ4uY5wuJJ7llMW/PZjiuFtjdPQQ\n6E8aVutFKykAIHM3l81mjBAv39N2Ih+g+uolVu8SiCfLCvxK4qCAOoDv3+TotAEtSussxsuqHk7W\n0waQHCJJtkVieQZpcYW0S8oNB9nylQLQ67Bxe8EHDuhwyaVe0c5LT2y7njTcQHUp0xyHKWUmDDgv\nYsc0nSpdoU90DpEEHfSiCUbxCqMkwunCNdcClrX0MiwbVObw5iK0irBgejXvEFtUpQEabow6I4gq\n9YZPRf8IqjvGaj1HrUtdTROxCBFJ3V9P9fBlvCWKGmoVZRbHFC7ouGU99iVyyjAeKUCfhxSxASFP\n4r8JBPw6N1FynX/z/EkSbMzC35XAolbY1099Z1jhbjekuRt2AC0KiDf/ZOvu+yYWIoMQnRS2QAjw\ns2XOnjpSoSPXIO9FGHWJLK9BIsTbYdQidNZ63O1inFxjP13jIg/xg2M968Muss49w2DaBKA20VET\nVU73z3ICzBeQd5eItT6ivNu3Yr7jI5q10c/xgvXX+Bzc3yeJFf/UzFQlhLexApzSKBsC5sX2feCc\nL0BrQLHZVv5+Hd9+3F7w2dT+ztjxAJHxmKbqYUtKbrbRkf6g6Em3xtsDKyjacD0A4Gc5TeJAtpZQ\nH3wZ6noKJAmyvftIu/eQhBcYJxN0pMLXp/4iflUEWwDEc0P0+k7THySQuss2moMb+jmIZi4HdxDp\nEtRqc22GQQFs727LFVAtrOkaAKQJqWJjh3LyLvM7NxogogBDE3dLKQxCnlcMYBczN5qT8Q3CgMkK\ngxgHGXBSVubzZ+LAKK5xtzek7OKDL5PdBguLJgnE0UOzCAK+yR71Etqz10xuWBTDAyHv704waDFt\nfxi/iWhpLQOMDpqmE+/67FPZw4M+cLdbYj9528+AnWslotQAkLlkLiMNjvpAI8TRQ+2o20XKm5LD\nPUNiMM+pVzuP0/QfeYhUl4E5VL2CqNJtAGqeS1NwlEFIZ0+1KlGsySKE+7rfbmwUsRdfB8UtBp/1\ndhMamvGk/IZzG5mgKynbudurtK3v2DDjUk0WaAaDDuCYhmkjN2PwNegCBzPg+E30+0dI0z5SeYVM\nrvDuNDF9gGc5APgAxJPhDGqG6sznhsaSF2ceVXtRT8zcRYHl1vyFOQ/XubLKrUcL6+A5IToRQl5o\n2OzsnQe0EDUXGDbsc4N3qFyCk3ErzbaZxbZGUz288TtenCvHeqJGaejKAIwmX1e+ATk7h5o9Jm21\ns3PUXyf6rtTHJo4eAoCZubmuCnMvFZvAy3b8YVkNKNhQaS5u9g3tz65GIJcat8IpSQHt5Si+Z0by\n0DDMOKgiYMMAEP/sMtLqkogQ1Y7eS/+IvmONUq73WVYtG4a2c+LzagaXzxwAAhwPobJuNSR0VQ7y\neq61/WJ8bXp7l8nvZNzeq7pZ2y9qs/abjSEj+nIwhboZJ90aJ50Kx92ulV5ZnCOSGbLOISpNXHDZ\nWF62E/RsA/bxB6i/fm7cKaNPkrsmDs4gD+5hNDjGg/4zJAHP4wS4yNlDNTBkBPM+XGevt9WIDQB5\npYUCxWbpLI68PaP/s/Ych+klNSmwRYOFBBCYarabONgDjt8E9h/gvHiMOi+9LBAB+R6p2VN/GLSs\nPWqtyX4aJdNmcKbXVIFQ9cqX8nevR5Q6588SO5aqziU9NUbt/18AACAASURBVDulHoYjKlq9rw3a\nOhFC9oLZf9C4tjAEEQYg3jTw+7E+HYUPNPrMPCYjuZ5eQc3etU9zF2cZWy01IQBFALR1TrVDe2+E\nGQNwFnZjItekQQMm2zLv7YJLNgbeHJvjdHs0UtBgt1hiu/zmfkb6dbc+97rc6g8qITyKtun1lBXd\nX31HisfJeialxNenEd6/fk0S+E7E7QUfpVopvhxMJeWFgheOJKTFoI3J9qGiZZeuljXQibasvJu9\nGW5+d9cMQHQ8d7shunL/ZvXfRjDwtGVqHJwB9eS+ZwbnOX7uCi6TvPPAzJKw4CVNxBeemKgUMbLB\nMS2Gu167Lmlg1PkZgD0WXYbxrBicaAMcj5oLXVZy2zBBsq0t1qRrN6PKIcoVwkCiFyXoRfxa7RP9\n/LnxvVerEt0IrVJDJnNmWvuuGSbAl2wqV4gARNGeBveFZQPuGtx8mWiWMnc8xr3OlIHt9v0x5Tfu\n1TXBLEohqvTGDYj3ei7rsal0DZjsUAqB/eQeZHAGKiO+GlXr10Omftxe8Fm3NGa4cRlZV9JVHW2V\n3Wjmxu5W602BKOqZUgPbKLsN5p3T+GVNU+ZOo0h0Imq+94YQkia0J8Ucp8sExTpAV1LZbz9RpvR3\ntxtiGFvPqAoVJE91A+bLysZrAJDXFyjW1kKASz7uLtzdXd8IOu6ClSZArssZZe33dZYT9Dt7OO7W\nrdIqadinjUFnRIvPUGdUzWHOJuA0j+cFANSk2QO2h2RKNQ4AcTbpRW8IcY/O1/0ihSdD8obSC2fa\n6XsAY3pk/HLm2GllMhI/Ue9G5lYrsQLYOfXvnb+bXTavnbvY3/DaLNNkshSWUmoBiTbH1gjR7vNr\nfq4OWca8vxAAS0WxBJZz7Iadty6QRT0Cl4SILcpx690Vw+gID4dzsqJ4Ha88bjH4bMhNdOCn3Fzz\nXasaV4XYKrnxrA1lPfZvSgjSgYOV5mELgExuzNwDoHe4+eLmnWIs6UvUGWFRPjGMO+757KcKB6nN\neIbxEQFERAKhfBzo0PnVm8JIrrizS27IIEYvsOVBznTU4tw6kLrltTaygMsmczPLKLUlkSUw7B6Z\nAV5zTeCTCEQ2pvdtKncD/qLZpN+mzvS7jLcAqOp0MS0eoytHvryLW1ICthrr/sXSm4mevQsizlrv\nvWGn9usVoipFFPWcTMMx19vFtuLrqhdxC0jO9WbCDAOxm304Q6jNrETNz4Arp7fWFI9t2rG3HF+F\nCvW6oBIssyNXV62gw1baXujPT+jHeSw5PlY+L75OVd7a4zEgpJSnluCqYigh2sknzahyT04rDftI\ns5cwx3sdHzpuL/hsNqRplW9Te5lmy2KPxTow5TaW8QdsNuPqwNWqNL0e8p6RKDYbpKFuYus5CB5W\nVEVhdbY42J46HWK1ucbzVYWL3Ge7HabASbciyRJ5SMSF+RmQDRDpGQ7AJxIALABJ0cbAY5tnUa7I\n9lrTh7emygGaxUkLO2HuLpC8gLQsrqpeQSyArM0fxo2I9OC8BRbYngHRx2UGDwEAU4DdGZwFa5VK\nTPPH+KN5hOPOGfbT0g7iNvoLhlqMHUOKHAk5oppeg6twrV9XrWjw1tiWuzbYTZ08ls3R96Vq6XUA\nLygzOSBAkjkUan5melX8XgDaHXE5GhsMzuz5XpdBYixImo9jx9k07HusOOMI6wwQe1lVcz6LZ3nq\n0lN6d8PNovj4eKOVhn0C8JcsKTKBxRznxyiEEHsg6+sHAB4B+Cml1FXL434CwN8EWSr8baXU5/Tv\n/0sAnwHl/c8A/LtKqVMhxD6AfwDgXwbwd5RSn3Ve67cBHMPQHfHjSqkbU8bbCz5K+RRLxzfHLbld\nFbz1peFRGgTcoCllwzYM9aYwjpyTMsZFHiKTQqsPlEZK/8aFI42NvTFnPYBlOXUkHctxp4QMSBVb\n1af2iyozoNM12nBkKBea8iFnczyX5AqPGuBZXVETedd0OWuLAaCFfmgX+bq0X/Jm2USzoVS9glji\nZpo1QNRc3lW3DR/q41Luz4kejDXXg2r5q7DG2eoMT5cxvj6NcJGH+NQeWRwMo4bNfUuZ56YGOwOQ\n91gdiif1HeBRE0tEabNKVwBEWVuAd8BBNYHYjQatmoEiijQTbjnx2F5MBlFO9iOa4OlcQ84oPGWL\nDYwFiTksnRlZANA2JYjomNsWdHcOyz03c2xTILEisC5xxgOehsgu/VeQkWKUtjsAFwV9pjIDVlc2\n07+ebmeG32JsFLCsPhLyws8C+MdKqc8JIX5W//zX3AcIIUIAfwvAnwPwBMDnhRC/rr15/mul1N/Q\nj/urAH4ewL8PGhz7GyDrhDb7hL+krRVeKm4v+AhhywtlDTy/BAYFkA6RdvqapUa73UVjwtz2eujG\nZgO0ek03PNsvs6rvog4wKSROuhWOO3qxG57QYWjzWQlApCHkm0OIe8fGeuC6KrCs7cLD4HeiF6zr\nqoAMzjDk/k6Uap2uKy0LE7XOKTCQkXOlluTZMbVurhE08LDSde4wixKn3OMCxEzPnAy6ngwKvWHW\nvsi74ZbX3JJLG1lEi2W6ygi8EFdRiGl+CoAGMZe1wEmnwijpIxSSxF0bpS1e0NysR9Urk8F4jrJA\nu1yPCw7DAVGMkwRIHUp6M/toDto6x+S99g3B9Gg2yTPXuTOi+9wFa+f6cRYuhoMbCRVJ0Nke7OXz\njawMkltaNQDUGW0NCzOwmdIZb86KggAbDhgDREbJBsCKCBWm9BlRibNCZZQvjFljfmWvd9OtNy8A\nTG1ZjkGnrMm76eMVnwHwZ/W/fwXAb6MBPgB+FMDXlVLfAAAhxK/q531JKeWecBd6IVRKLQD8n0KI\nnX4/HyZuL/iE4XapYbaA6p0h6jzUrpk2O0lC6vWQU6cut3EpSzPFWGl5Uko8uaas6aIgOZZ8DTzP\nyf75pFvgrf672B/cQ6QBQyQJxBsz7c1yD1Wni0V5tkV24H6Ty7SbFFQm7KYj1GqJi8UVni5jXOSJ\n0Z7jsmEzaCg1MXYLW/I6TpjsoqwsI4+zx+nMLvpVvl1eKgoqJbmSOU4JaWdUuZ8lMgAldlfMx8XH\npIqChhC556OdXd2S49sDEmjlYJfXXcoPXuns+aVZkMTB3naZzQ23P8b/P0gguNfYNNrj/zd7G81s\n53pqn/8C8KaMhAgton9kNgxsKAcAyEvU70+h8jUtCmmiddM0MDbo0jJIgA084DEMRK0UIqKUZt8c\nW4x6U6BGgbQ7NteaWW+mh+Qef25BUunrKcqaNjMa6BRm9rrlU0DGiLKxB0JmA8H3dlu5UQOQBzp5\n6WWpH2HcEUK4WcQvKaV+6SWfe6SU4g/3AwBHLY/5PgCPnZ+fAPjT/IMQ4hdBdthTAP/qS77vrwgh\nKgD/G4BfUOqmWvVtBp/AX2DMYhJLoH+EMJGetAoHKwhwuE17N+O5KgK8vxB4tgIm1xJxssazCLjI\nCISWtcDbg/dJCiW6DxWlEFdnwPgIGJ4g126kLO3BoGPLZAmuq8J77+vqTANf5vnDAMBhuq2I4IaR\n42neL0lid8g5ZTLr86UxUwuhS0TaRZOzHTWdmccCQFhWULmzcPCi6bDxtjKNJvCYg9UDk272M1uQ\nbtyyQnhoy18iGxu2oBtsNeGG8W9ywqv9M/CcnWN9OrWqDWVtzdzccDO/uPBBigVaW+eMGtEcvtVu\nquZ1uSzXYANuDRXzOfWPoKocYrgw9/36dIr6yTU2mtESdSKvFO0Bj+5tbgEPl6oiKpOKKoPojDxJ\nHg4vI2pYg2S8LFU5bWD4XLlECADP9WaGgSdNQOskXVtVlxDpkDKwuA+UK+9eEklCr9Mswc0WXnbP\n9/qrCKUEyuKl1RLOlVI/suuPQojfAvBGy59+zn9PpYQQL+RZNEMp9XMAfk4I8dcBfBbAf/6Cp/wl\npdQ3hRB9EPj82wD+7k1PuL3go8Ps5vUNrtIEmJ+h33mIg2yJ0bIGILGfrnHcKdGLEjvxH/iWBgw8\nLND4bAV88DxFvqIbLs3W+ADAYFTgoiAK92rwHMfdLkZ794F0CNW1w6m8U2eSA0uomKFMwABQ871d\nAcyupMxrUQc4SP0siPs9Jm7MekqoJWU9TA1Xy8oaquXS7hgdkOLHGqACyAU+yin7ifzJe0NrbvYG\n3GwgG9ghVJ31mEWCd8vj1DiKNsGmqdoA2LJQE4A8ssB0hvXpFJvLHGpZgZcSARAAcdlxOvN6UV4f\nZXBorBCY9m4yg/Xl1vuncZ+IF+yomhe2FJQm272hthJd43eifwR1oEujkznUskI53aDKJYLzFYK9\nJcLBjDK0QdwKil6prYW2zcxGViN3AYgHOZsRCglEPWBemtKgKQXyg1wQgs5emAgTS7i9IbA6Q/O+\njiX9vk2wVGc7m2W1JYb7vRJKqX9t19+EEGdCiGOl1FMhxDGINNCMbwK45/x8V/+uGf8ryGr7RvBR\nSn1T/38uhPh7oLLea/BpjbCxA3F5/6enUADuHD3En9p/gutqgVHSRxKMvQFOYvrEZnqd/+tIYqPl\na2A5KpBm9F5xskYnUuhK4M2uwn66xkEWoSutjLwoU3IrDWLDkMvkhlSPsTGzMdxMXdUBTpe0A58U\n0oBNV1oBTNdFlYRJuZS3Rr5WkAFNuwPYHhZkB09dbnthDLrg0dcQMI6bgbFQSKwYJDfGASoPAcZf\nSQlBMyS4YVanM6LjSxMSp1xW9D5cx3/6PrCc4M7RQ6iGlNDLhFHo5lma4QCirBGelDbrcW2sXfbe\nkK6dmIHOVVPnRf/IKES7u3/An3Ux80BKEeuwSXBolo3KWltfFNszOm0sL91XEQcFZaSdCPEwgIxq\nhHf6CO906Lx6Q4hsbNiTvOKbLJlf181QG6w8Pu5mH6htM2As5Z3ymHDlmTiYMNHWlzJZdWMgdUl+\nTfSY3EpBlbW5jorfM40RzhYIOpHJ3j9G8esA/h0An9P//4ctj/k8gE8IId4Cgc5PA/iLACCE+IRS\n6mv6cZ8B8OWb3kwIIQGMlFLnQogIwL8O4LdedJC3F3yEMLsfw/SJI9vDOH9mAGgYV/6QoZml6GOt\naqRhiZXDQKbMIsCbXU1YqGp0IyANCXgONE36E0Nh5nPU/EwDUIlo7z41dIMSSVAZlYVJSaXAMajH\nxFRu930PUtvj4ZkkAFvCpMWaVLppWJbYS6aM4obpqWyzkwSrUqex56iJnt4xzxYIB84Ovd+l0lNn\nZGdQnKBSTW4GQFWc0fxG6SyczgIs0iHUmAkPCWUhfCwc0xnU9PPA8ZuItMNlFNww3MivXa7IBuD8\nGdR8QUOjAHCwB3GwR7bVbKrnOGfyc1Fpy+eezgY6I0/DTCi1pUQhkXh0ZFRXNttxg7OdllDzBUQ6\nBcYtA5nNc8zGUOMSAjAZ3OYyJ6Xpe8fAyQnE3n3MgyVS+LMuHvU8SiEiUqVAOkQziCq/uw8E2Dmv\nqFp7/ktmILQtZgsffGK5dX/xpqPeFJCdLqQYQ7CCRme6ZVJndN76XfqsyxrBw/a3/7Cx2Qjkq49k\nyf0cgF8TQvwMgPcA/BQACCFOQJTqTyulaiHEZwH8Jujj/2Wl1Bf5+UKIhyAe43sgphv0azwC1S1i\nIcRPAvhx/Zjf1MATgoDnf3rRQd5e8AlCulF5EQGs2GBR0IKmASjqHwFYbPUfoujYgEQmC0wa61hH\nZzicjXQkjNePOxhqdtfTGR1TOkTaHaPYLJHJAkXpm49dFdYDxh2CdYkITKMeJX3UGzo+V5j0eQ4A\nUveSSshAf0FDXQZj0VXOepzwbBLiiHbIw4FVJs7GUNmVBSHAUMfbQAeAuQas2+Y6zK7CmkQz3fIR\nD4SmQ6iDGEie0Wfm1vDLGursnDK255fAvWMDFjxX0pyylyIme+/5GWXAZ+em4WwACCAL8aOHxu58\nXT8zJdgk7CDt9BHxxL8Gn2a0zhC5wMX3hGvml+j/4sKbuTLl47ykv/fsQKab9bkR8RyVBvAQQHhn\nARzu0cKrgefJ9RQH2dJT0DCA6J6Xe758XExL39EH8q4B947c12haXvPr8mfijkukdI+5mwGeM1qr\nGsVmabQVZaeLqDOCkrGlzbuD0W1EkI9JKKUuAPxYy+9PAXza+fk3QCW15uP+/A2v/WDHn374wx7n\n7QWfMKIvi2bPqLzYHvYDCIBcZhHgTJ9nxnTKbf4DlHkUayrBuV4/40RpVWQtRrq6oi+yZlCJsiby\nQZRqaZttzTXOhJoUau4Nee+hM5kkvEQSTPHuLDEsPEAhCUNkUprsx5v4d0UYWyLoRMCobxaqVVhT\nzyKMkQ5PaOeZUSNapCSP4/Y5okr3jfTEvXp+STvd6D3jmnnNEkBhiTTqm+e45UEhM6iBtormXotW\nmeYmengnRfzJCcQbTz0Qgi7t8ZS9WFxRxvP8EurxU1RfvcRGG565mVu9d4KL/BuOpXpg7M5H8RV6\n0RJJ2KFrEY9bh1Q9oz/WJ3NAx7AFudw56BLQ8w7f7Su5s0OpBn29EWhmGRy80RAAAVCuSREHexBH\nDw3wfOkqw0lZ4RPDMwNAvBETlS3pGaUB53zMwq4BeKsP5ArUAu3zP43NIcrK9GHCvKQSZyypRKj7\npqQwYg0h26IbjZAO7iDKxqby0CxXiv6RtxF6Ha8ubi/4iMDs+oCz9rmHXdHSwO1FibG3bkrysAjp\nFvCwzAkzbKBZd0UBVDmyvfuQHRI4bFowF5sAJ53KZDq9KEESdo3YJJYTqOW5GUjs7T/AcbcGQMrY\nz/LAyPOM4hoySJAEnZsn+d3L14moz3KwBwwOobpjFNUZni4WGCcKhaTFNx2eeJTa2jEx60ZjCyZt\n71GukJrSpj4vtD/eA6Dnlzf3p3Z8zq7/0c4YHALDE0yLx/hgFRrVc1cJY5UGGMUVxskE3YgcTLfK\nma8ieFFubhDy0jtHHrrkYA8p5Fe+rcgdun4M/OtqprNruqd5WDMLelsyNa6cTRoTXdoTfwV2yuO8\n6BytfC5ay78AKPPWhodutgPYEYhm8PBrxLpvlV8i5Xm5yXVbH/7Dx2YDQz56HbcYfNaqQtXpIopS\nYlw1tciA3W6XXK7ojnFdX2CtasggxjgpAdTIZKBBwhp9uQv8LuAxkRdQX38E3CsgD+5hf3gP+XqO\nbmNq25XEyYKeFoucW92wxiI73H8AdM9A0j6J8SJKZd/I6rBqszsPglwP+uUFxEDvNsuKsh4tfgql\n6DjkHB+sJIAVkmCBcWKJNi54Mmh2ozEifi+eKenb8k5UrTGKDvUCuRuoAD2Lsqdp67GEjKknpZYV\n5JtDMi472AMO7qEe3NkequUsFKDdP4AojqAmS4gHR8DxmxCDYyhQaW0UXyEJAv15k+toRyrDiuzK\nkVMubAGfJrkDoEVwcKgzMir7GjUJltwxIquTrc94s6wQjkAlOf3aMkhQr52B0OUCan7zgiqUQleO\ncbdbYlWTjNMwPrTCr25ojTYupe2cFWuR6THGgPrXiq9BNrAMuh4gWGBWz+CEh5pFeLBHJdC9+6ii\nEHUDeOj8fR8tDmNHMXnP9n6MPuAQMh63siJfx6uJW3tlq80G0/KMFgi9oLzQIoAZNLqRycDDkcoe\nxrhGvq6dRYk8W9zFSE3eM8BzU6jHT6kUUpfI0iHQ2TNDc9yfSMM+MD2Fev4l0usyMzm2RIE4oi+3\njDEcnqDOHgMocJBFSMK+zSpKv6fFxl9YzaiJzcN3WrhTMLWYzz/soxdNMCkJJIpNgA9WwJPr7YV3\nP10DINZTEnaQ7d23Q6euxtfqCpjbst3LhOgfEQClCcLRJTCZk3MqlwdTiUfTJ3jQP/DLjKvGJPvB\nHjWgRwvrtqmjJ/exTmr0olJnpbUpu5nPei3ps9aZctM0rRleTzEbAHdgrzv3e7jH0pJBGEowZ31G\ncaDr3yt6XonPcZfEkRQxhvERPjE8Q1ceWoJElbdbVbAWXnlDCc15D9Njc97TqxnIjMYP6pUFI35/\n/p5qmw7Te2vYT5geT8Pmmx1vm7017veqwWrLVPJ1vNq4teCzqgN8barwVv8Z6qhEb3jiCx5yOCU2\nbmRWqJA3gAfQHiuyBxmUSENakACJcaJogeXsxAGem3oqAKgPUtZQA/K4j9IhNUqFAKanwIxcUNWj\nM9RP5jtfJ4L9Yu8P7wF4jCTsWOVqxxPGXehFNgbYipmViHmH6Oq5aTXgrhxhFJ8ZFt670wRfntI7\ns4xPV5INOEncLHCQlYAE+fg4ul5qfgacP6NFwWEyvQwQMRFBJAktsL0hxN59TMQMj6ZT/M5ZhmJz\ngbcHJCwqlNru7QFUzmEyRSOSoGPkW/gzl0HiE0mevk9ZyKBL2Z3TDK9VSX2PXRsebe+B5UT3b2hW\nyAiLRinN9sztJoZnYswiWq8gxZgYfhePTG8NzzT4TGdWpWHHNe3KkUf9bg0GWLal2KFd6Jra1Ws7\nVyV2fZ5RCgEHBBq6b6pLQ8SultuWWzCXPKscqK7s8a1mRkbHVeNQAMRqRqaS4YcsE94Qm43A6qNh\nu30s4tZeiWVN9GNSGiC9tW40hoxP7K6oTdYFdk7EzMY0w4zRFEaOJw37dPOvZh9aqFBNZ5pOPLGi\nilFKsx96IamfzLE+3/GF70gqHR3VlMUMjqkZ3hzm5C+0M/hp6M6dkd0pRjnMNLmjMiyU8rKfP7hI\n8LvnAo/e7yLN1kizGqNeTV5EqUJHMtuugAyY6g3b/D1/5qkvu6WZl5FnNGW4egUMTzCpzvBovsLv\nnCX4vecBgARJMMU7Q4fI4LKn9IIvZNbOVtMSMwDMZ87XFdWVEfFUZt5nQtcWI0v/ZXYhL6paeNW+\nCZXhtpQQzL+nelq/ZeMxnRFY87wSb3omc6s8EUeanm1nY8z140xml63ErniB7hyi1CjBsyipyUga\nunpbZIlQX/dIW4U0gIfBx6izN+zVPYV0HlJ2GZ3sbsrPCW/tEvkdj1t7ZTcKeJYD44RKYyO3veMu\nBO5OPCqBfIrU8Ulpzk+0pf5UlpmTe2Q2ANKpb03AsUPI0eze9a6f2TyRM6UulxVE2t7MFJ0I4sGR\nLTttrlGslyigWWRMC+YddpTaMkY1s19kFnzUkvxiuABOTrZsi7tyhDeyZ1gNKyzqCMCCBl9bZp2O\nOyVGSZ9IGGwLwaGHOpXRhRvYBXIXrRfYKgmJbAwFMgd7e3CBJJiiKzP8yMEKD/oHtDOOIktj5qFM\nFwReJICqY1FRz6jf2TODl4L9aHSJaLW5RrFZbm9euOznAkDDDNALbY7G9hyApsHreTXKtM6opMy9\nrEEXmM4QuDNaznm7184lEQDwsxQGzAZYAAC6YypZOSrgDOB0X11ireqtfooBCp1B8WvKICGgduai\nTL8uoPkoV0R0C3j4+gE+eYEzR0AbIDYGV6MUtfrYDZh+bOJWg48bXBs28wZNP5HGv9Xzxx5dl29u\nGST0hYUt3V0VAjIgGnOkB/uAM2qY8uu1lN9EktBiwTpgura9qM6Q19cYpofI9GyNSBKI0bl9sksb\nTxOIt94ydOhis/TYP8V6SV/atINaLbGuZ2YXma8VjrKOPf/VDOr5JdbfeI7wzsLIyrgAJKMEqezh\nuDPXzD9p5pzc4VcGnmF0ZGdr3IhSohfnjZJbZ4T5+hJ9toLm0DtaBbRnCqBezYN+DOA5HvQPiBDg\nvh9gylscrBC9C3zcXfdVIQBMsFY1uoM7iGRGz9d9wrku19YbR1WC7zdWAm8qBDgDrBxCKWL4RamZ\nhQk6LaSG2QJIJh6ZRgwHRqJGDAd0j90ArEYZwiEtSBED7vyQalGOCAEZdQF0yWrEmYUCYDIqCdtL\n8oaIo9QHGeFnZQDsnJYDQlvA4wKQHmNAlVu1A0xpk5MWFoz5O71ebon7vo5XE7cWfJQSyNf0hc7k\nZht43KzHmYD2lJpHl5SROCAkGzMBk1IikxuT/ch431K8nUanSBLa4bv9Bs529KzBvL7Aoprgj+YR\nlnWMtwdnVpgUsAOdwNaQnDh6iPn6EuuNtfbO1wpY84JRAJibmRUAWNW0mI2SpfYMWgHnz7D+xnPU\nT0gPTOrrI+7qch0AGY+RBB30otJYP1j3V2hvI4VuNCYjN7cJzsOUbFDXG5IpnMMwnFZnJBSa6gyD\nd/VNXbEdAJSGfbwzbFFzaICOCRbprLazDyvZQ8DDQ8DZ2iqNp+EJVus5iurMc5D1Bj/r0sq9LCfE\neNPHXqHyZW2g5Yf43NLEl6FxNh6qKCCeX/qOvYOuvadZ5BXwMi4362ENNiPr5AiwuufQlvG3/Ztj\np7U8Z1SaRce25lsKI5wlgQZmlRBUxmwDnmbwfFNUktROTPp7qiisi3DLOX07odRHpnDwsYhbeyU2\nG38naTxP3JuWd6KOSrNaVrZefmdJ2ctsAaXnXXi3VmBpZkAAWpBksKQZC+1nYpIvB4AA0M2vpWrc\nbOfpYoHTZYyvTSUuCmGESe/2hugfPYTKSEW9TSl5rksdbkYDwBuQvMhDY8HgxnFnjq4cQ9Yl1HPq\nLxVPS8RaLkECZgFTg0OjT5eEHYyTCYDKM+Bj6mtP7lPGo3tXRll8OKC6O5fZNPCw/fXzVYV3Zxne\nHkxxt+cAUGOhYbWEtmhT8BbZ2M96gW3yCWB2/PWmMNc0XysUG5r7WSFAsdlgVVeok2dYBNtOsp4Z\nYZVbkzeA7jndS1NxZvoabv9FCi32mU/JyO4GGRrTcwKMAoSRIHJ3+Y2oN4WXJXM/pUaJdVA7jyu9\n/7vnyfbvmSQpJzcOghKh7qk0Kw4GWDUAedff6d+432L3Od7jm+HQvJvfQwEQmMvYZJu8GXsdrzZu\nLfhEcoM3uwp3e2QoZprE0AOLkeMfD9iasKNwawUPpamX2x0j2SFMColVzfM+trEuu6RzpdgegIFO\n02ndbKdYL/WCm+Ar0wDvXwtMrumjK9YZgCmOu2RQ54tn0gJR7wAeXhgYdJ7n1oKBxUi7kgBqUV9h\nlA6B4QDhXop4WSO8kyG806Hd86DrNeUjRIChMU+21VEKewAAIABJREFUdMzqTYnr+sL2Rg5yu5C4\npUbHIG9anuHJYo2LPEKxJtAs1rqc2fyAeYFyJF2apStjXmYOujFzcpPbbONcWFTWDhgHgISWQqqc\nVxVm2BigHmHWGRGIDCyL0J0j47IoYEtf5AoKm62wDE1LCBY25V5GUzrGLfPpn5kQ4N4vAJDCZ5Px\njFvb9Sg2dG9R2Yr6kVxy5WoADYAWiIIPP4S7047C7Ue5PSf9N+shBOp11iu//5MkZECoytaM7XW8\nmviugo8Q4j8G8N8AOFBKnevf/XUAPwOaKPyrSqnf1L//YQB/B0AG0iP6j7RXRQKS7v5hABcA/oJS\n6tGL3jsOgZNujVFMjU/RnHFJhxYYcAaRS9PXMG19R9cMGfUkrnVp7INViCfXER5dA0CAByajoHKM\nkV4ZnlihQ6cxu9pcmzLNdVXgdEmyOPlaYFlR+v5sVSMNgSRMkEmf7fStDMe56tfNHk1eX2OejNB7\n+wcgiwLyTSrliIM94PhNswh6KtVRCoR9A3zNKNZLFOslkm4HveG/CLGnJ+IdKjKD6KI818BDVz8J\nN5pJ6JQ5m7t3bnhHJJ6JboumXNNDyNllC5lZ2X5nYeZwF+diExqlA9forxkMPPz51KrEfH2JdO+E\nNAS1sOq8vkBRPN7qkXifa5QCKz5mrVHIM0FwFK9dxe3GfFDbeTHZhO3gm+fETX0AXvktdJhhmSyA\nmizfgY3pm9jh6wD5ujaK6qaM2AyH1ONlsQ0igUt8aKODq3q1lQUbtqEmpDR7Qy+rfv6yoTb4MH4+\nf+zjuwY+Qoh7IEXU953f/Qsgae8fBHAC4LeEEJ9USq0B/I8A/j0A/w8IfH4CwD8CAdWVUuodIcRP\nA/ivAPyFF71/HNCgYy9KiAZdLLak+4XMqPSh+zOcopsvyahvdvwiGxsWGQPPV6YBvnxFX7p8rbCs\nI2PfnMkr9KLEiB2mnT6kGKNSJRa6Mctf/GIjMSmsR1BZhMhXIZaVwEUOPJEBMpng7cHc+PPUzg4V\nwFbWA1DvZQVaWNxymyuCyqrYgCYm9EZIP/kngIMzk51shbPrjKIUXTk2LMCbQEjGeiErn3jHDQAf\nrEJPy67p5npjVNo3qLSCpU25GQ+EmgDkZEBbDDDAZD2TQhrhVmCDzPl2cdkxlT0kQccwuPg48vUc\nObG/sVi966hB0HGRega8BR7QWboGHlHWvseNLt+yjUNbtKl7M/C4GUyGjbm32PXWDUMa8IKzb4km\nAK1qGE3Bpuhpc9DYPVbv8wE80KlVCShs9/Ia9HXTy2Il9yiFqDKy6IhyC8aba33/vQaM70R8NzOf\n/w7Afwrfa+IzAH5VKVUA+CMhxNcB/CjLeCulfgcAhBB/F8BPgsDnMwD+C/38fwDgfxBCiBdauAZK\nS95ktPjUNGTJDogmGv0Z7999Kg8ZHajyHM9XFZ5cJ3iyoPLYs6dMp2XKJpW6SO9tjSRY6Kn4pdGg\nYkfUVU1fmIs8xPMcXtYDEAgtoppEQqf0u/10jSSoME7803/Z8gGbzXF5ZBTTapqvFVKUWNQTyL0T\nRC3S+bsiQgQp95Gv56ZU4zbe+fWfLpUpW1nQo4WkqZfXkQppKAxL0aUbA9gmi8BuHFSc+btap4+y\ntcDxNH9LX4TPg7OepXaO7UgC9FUdIIk3ngmgSwOWYYzr+sK8HmfMTPTg86ZrUWOcOBuKDWypKkq1\nrfjCZjt6KJnvzXrTLq4JbNtKMPDQRoWu+6oOkIaK+nXa9XbnwKmrGoECxUYP8zgAxK+Zr2uksrYD\ntw1fILdEBjhGg85n0UYJ3zW8y8Ot3MvK13NIuW/HCKCrHo33/TiFEGIPwN8H8ADAIwA/pZS6annc\nTwD4myB0/dtKqc81/u5VpoQQfw5k1xADKAH8J0qpf6If21qZuuk4vyvgI4T4DIBvKqW+IPw6/PcB\n+B3n5yf6d5X+d/P3/JzHAKA9KqYA9gE4vGPzvn8FwF8BgJN7e5bmW65s2u2m8ZppFDUBiBvDLGYY\nZ1hUZxo0Yr0j392kbO7YaSdYIZM202kKVlJJTAED4BHIoG7Uq3GYAfuJMr2ZVa2QxBvka4VeYBlF\nzaynGexBdNNxckzLMyRJx2qFuY6WzWBVhChFGlsfF57JYLB9uoxN74mOZeMx5PjYGITcYxNKUXbC\nCgXuEC9/VnkBDHOzuchaekAfNljRYhTPjYkgQNeSgZvMAkeW/gsYogMPcS7qibkGp4vIA/+TTmVK\ndc25IKONxmKobCcxHPgzRfXMKDvvZJg1QgYxUpQANkANzU602dNNArQMTuuAvK44w+5IhY60+nyj\nuNZSRI7COzMLb6B+mw1Cy+xVrUqPuu36IanVDKJ/RD020OdnFT6ujAK3AoztA20YXpGN9gbYvFwb\n8duNnwXwj5VSnxNC/Kz++a+5DxBChAD+FoA/B1pPPy+E+HWl1Jf037cqU6A19d9QSp0KIT4F8gLi\ndXhXZWpnfMfA5wUe4/8Z6MQ+0lBK/RKAXwKAf+mHv18x8AAOycD0eSiYFeXNYbwgOlLhT+1X6MoI\nXUk78jd7Cne7G2PH7bGdTAjwl33VAIKOLoV1pUIaKlzkCvupwmHqWzY0rba5Jp/jGmkoPJbb6TLy\ndqJsA8H/cYZGYqk+EK1VbTxSkqADGSWIou3SDomdlmQmVuWIOiPIMN4CoV5U4rizMv0FLvFwT2dS\nzPF0GXtlQN6FG+WIpkirC0JswDYooHo5HY8eFN4Kd7DYZV8BnoAmqxvsp2Ok4cRkO2xr0Y1G6Id6\nFilo6UPo3TWdP4wqeiY3ho7OYp5N11MAJlsQ6dAytorClIHbwJWzzZcBIRnE6AVALyLlBvd9W3sr\nbHHRck2b908SbHDc7W4BT5OpJhrfxTYatfuZGEM+VijXdiUASOKoyoF8arQSjUvstdUuxKDY8tT6\nmMVnAPxZ/e9fAfDbaIAPyOb660qpbwCAEOJX9fO+pP++VZlSSv2+8/wvAsh0z30PuytTO+M7Bj67\nPMaFED8E4C0AnPXcBfDPhBA/it2+4t/U/27+Hs5znmg71yGIeHBjhCLySQY67W6dDXmRXIiO5jDa\nO8MKHUmlkZNu5SxKtvHdnCOQQYlmqcKPAA96wGGqPHM63kVyacezYRYCdVSa6XsAW8DDwQAEsNsp\n/6UGsPHYThzFZmlAyBvaXE6AmVa1jlICd73os6UyYMs+Xf0lN0OMsBTcbneMXkRsN/e4ZZBAXZ8D\n11MyjuNoWirkJQ0RFgWJtaZTqN6MGHVsbteg6boeM16vz5nlkoKAtBuN8AYmyNd1Q7HhK7SwaW25\nJmHBDSqVEtBzVo7pKbD6JtJsgHpwxysX5us5EPb9zDzKzcyZb8vt2wq4GmhutP2ujbxiREHbAChK\nzbC1DGJjiMhU61ZPKwYeV+IJoNdq3As3bgoAm8mwTxbfFzxHNyigkgkwP9vWdisrMtPrnd3oqfU9\nHkdKqaf63x8AOGp5jKkY6XgC4E8DN1am3PjzAP6ZUqoQQnwfdlemdsZHXnZTSv0BgEP+WfdzfkTX\nFH8dwN8TQvy3IMLBJwD8U6XUWggxE0L8GVBa95cB/Pf6Jdiv/P8G8G8C+CcvqjXSgWyXlHY1Oluf\n7gg3AtssKg4XdLh0wiWYZq26ViWgd5rUrJUAghaLbmDkZDvUyO5vgQ4bdQkAaadPw4Jr6idNCmle\nC9jeme4CIBYHbYumFbfKp3ZwMi2oLxGlemAzMwtHpK95BKkXlrlZjJRejOTgEPvDe0jCC1zkV1jV\nAWSQ0YR7XVLWM7FSKJulDz4kJ1MRCLFFAZfiVhqE+HN0B431z4CdG3I1z+pN4QFQNwL64R7U7CnU\n88dQj58SRX/Up4Xu4B6xG7GtCCCDGAcZSJh0uYD64P+FevLUqHLLkxNERw+x2lw7emaascWUYZ25\nKyGcARb7+jcBkPtvVw2az8+9T+uNIwraMvzZHLbmTM77Diyu/IFuLpvqUBkN9npzPo3PpintBGgl\ndD207DnRlhXNQjnD3GzEh5Lm98zgdJJARSnS/QdYBA0b828xhALi1UsPrd4RQvyu8/Mv6coNvdbN\nlSUTmhH8ciZd9LodvKAyJYT4QRCx69uqXn1Pzfkopb4ohPg1UOpXA/gPNdMNAP4D2IbWP4JN6f5n\nAP+LJidcgthy31q0AM9Ob5JGdOUYB1m5laK7DKc07NOu7PqUeg/9I5MBGJFFAAiAURIjDa9pWl4D\ng7vjZ4+gJoPKK004O0QpxnpxKQyBoSsDQ6cG2OYAYN8c7ju5HjUsnMlsLW7cck8pFBJSqxZ4wpqN\n6+x9G5pDne6AL5fOohQiGyON+thPqTnflWN6j6szqLNzM/zLHj5ucB7pHodZuIb6mFZXW+y2rc/e\nGTT1RDc3/Hn3gYVe/GYLYLbA+nyJsKy0dtwzrUZxrD8XKh0mQQe1Kq3iw/PH9Pxnl/R8ACKWUNkA\n6fAEUy2xxN/gNOz7GVwjmsBjhl0bmax7HwH6/leKSCP6PmUZGwY+vi5uNiKi1NhV1JsSvSjSWYRW\nmW4CD19X5/M2f7tpQ9jMSvXvjAuvBhXRieznP5nDuCU0gEfla7rehwVElUMo5ZUcP8I4V0r9yK4/\n7qosAYAQ4kwIcayUeiqEOAbwrOVhu6pMb2NHZUop9YEQ4i6A/x3AX1ZKveu81q7K1M74roNP0xNc\nKfWLAH6x5XG/C+BTLb/PAfxbH/6NN+2g0rjRlRBWKJG1tBKiXYu9+0bkE6Ada7elPuyBDteXwaWF\nsVfXbvoDHUuXJk1/c/siAP09FFK3i0iAUbIatf6WzesLTIo53p0lOF1ILGo715NJm0XZYxaQQegv\nGFUOFDmAGqqeI8rGSOMj4xyZytrZ0ToLQMv19bJM93OQGc1XuWZigMPaokyjG42MbYF6fgk1WWJ9\nmRvBTNHQOQvvdEhwM42tMRsrKLilN8DbaSt3fkmTUNxeCi/SvDCbUm5nBMQzYNAlou6gS4QA3Y+p\nsN3EZuDB88e0CMcSiCPSbOPj1sOPeX2NfK0gg9KWxXigMjo2r+nK/zSVLdpmdwwxos32W4MQa6nx\n71DlXumM56qizgi1iM1ck+ey6zrGut85R3HBWK835nw88k/L5yLSIVQvh8gLqLyAfFM/OCbbd1fC\nSo0ATOYI73Qc5ZKO1Xf7eAZXgz6n//8PWx7zeQCfEEK8BQKKnwbwF5VSX8TuytQIwP8B4GeVUv8X\nP0aD3K7K1M74roPP91zs2GkxCKE7htijW580t3QDV8QQ5YpKR83nuqDjNMUFABzfXOrrSloU8/Wc\nKKkb8o1x93pmR6vHEer1NkX0Ir/ygIeDmVlseAfAkBX64R7U2VeA6nFrI19pVlWWjaFiaopH1Zp2\ntMttl01PQ8xlm8WZ1zvw/Ft0rDbXgFOm6sl98qc5f2YsAtbnOVSnRrDnX8/w+w9oGNjVjWPAceZE\ntsIB7zZhTw6jvixi0NSnPsc7h1qwUoPdnUNaGOMMeX3hCWVmQY/O56lLLgItloA97s4Ii/qZFjAV\nukSrj8PNJJyylws8rg175vQTGRyaw9Zb4ZQdt4BnactTSsYQFTEcAdhyLAMPZzs8f+RS2VltwRk2\nNtc3zqj0WVlWKj8mr2mWrNsZI4ruG0NB9fzS10wE6F5gSaujBGo6QxhH1PMZdGkw15HYeRURbBSS\nly+7fTvxOQC/JoT4GQDvAfgpABBCnIAo1Z/WzODPghhrIYBf1sBzU3wWwDsAfl4I8fP6dz+ulHqG\n3ZWpnXGrwadNPqXNobHZGG6Vd2dxzLZw9eHy0utNcGMTUei9j2ne6y90pF1M8/XcK6G06WrZ47R6\nYk3g4UFSLt+NE7UFOur0C9h85X1slpVRTPYyikEX4mAGpQcZSSZmsu1gmRcAa4np8hn3LUzmsCW/\nY/sLTbtrk10tJ1Dzhcl6VnOJqNogvMwNAIUnQ2uW5qhisyMsNtf03i1VcT4GGSSQ2M0Oa6MdC5mR\navKBNt/T82DojMzALZ9XFvSgLt+zxnOx/VqKvjah63eBbKCNDK9xqpl/44TUMohuXhowcLNpq7Yt\njI4fAIz0KbHfFPdgdgmyAvBZaAwgDHiNLJfLYWnc951D3f5O1NjsOU7BgP/d8wgUzt95bievr3FV\nCBxkJTnJsjtuktjeoxvudR4OiJCSk8Cokcvaftb3fCilLgD8WMvvTwF82vn5N0C06Jte64Hz718A\n8As7Htdambopbi/47OAkuDIc7q6Lp9EX1QRXhUAmNzjKjiCDhL60zx8b47PmLqutqQkAsnMJ9LtQ\nUQq5/8B4nBhv+eun1uOlXiHKxoiivVbLYHdo0y2tTEqJZS1wuvA/6q7u9dCw6wapdBhaT/8p1Nfe\nQ/WHZ1i9u0CVB4jSDWS0QdCREB2JcC9FeIca+KKsyVfItaEoGiZdgBUI1QO53PCWQWyUHgBbeuTS\nUhoKdKOR6TUJptFOZ17WUxUxqiJAfL5CsJdS+eTeG8Dxmx7oLOpnZu4llb2dw4SuIgOXHz0gfEEv\nUMgManBIn6GWX6pQ6V36NcJIGnKCcRjVVgeuRI5IEpopy0gp4qoQRjPwuFOiy/sBBgOjbRZirWpP\n9BSAIwMk8Ua2RiikJm6szKA1ZLyb/em8lxlBqPLtTDdyhEHdx+oKgAmtWu4Cjwc6LTI3Neh3LuhM\nyohmxTYV3sgch2KZQXUc0Gszc4wlWaazjUlz3OJ1vPK4veDTFk0XSR35em5Ah3ePqBsDbbxIuME7\nq4J8QlBSBrHmZngc0SJT5RCLKyQpNXsN/VQPvTWnuXk71gQcXlwmZWQWGIAYazwA6Q5CuhRtj06b\nJORrkoaQEZVmmsBj+iosMRRZIzJXpt6IWTr6d1IIAzqApfJaVpX1xik2rIY80RblTuluOADmC4R3\nlggvc0TzGlG6QXinS8Dz9j0Cnr37usdC170rx1abTL+eu8BwD8uNtaqxqK9MXwTA7sygOV3PJb4q\nJx5gRM/vyX0iJ7jhiIN6gqCdEVScoSjOzedn5qF41olBv6U/3gQegJQzRjEpDCghtrXs2s6xIW0j\nlrC+OEP44rhOz+aFxasdwANsZ8WArynH4apgsK8SAPS6+xYA+bNpMOtMpNpYT8a0EV0AaYsm4Ov4\n9uM1+HA0S0WgG9sHHgoekONFSHXHVpUY2PbSSXWvJ00gJnNIZmON+taKIJ8i69y3NXQGHoD+72io\nucdUbKjR07a4mOMNt2nlLlvOlUxBtKbp+HuFuTmifA2RhrSgs1NmGlM5i60fGg17FmUVQ70g6ol7\ngMpUXTn2ylocrkbYOCkN248fU28KRFEPoiKLbFIA7yIZdRDunUN0Iurx3DuGOP4kVJf08tyQIoa8\nPtcLLGePdieeGcfN+ZZQRbFhbxt7nO7OPI39vklbGTeq1uTrtHBU1MdHRP3mshsvgtxk7x9h7kjx\ncMZKIJ4A+WLrfdzgAVj336s6wLuzBCedBdA9Q7czhhT0OTIIbZec/ZkX2elCijF9tk7mpWJWhS4g\neRi20jp0u6Ixm2TeozlPVOVGgb7X3cda1RjjGsVm7YwFWBNHKWL6XCJtodB0qG05Dg4GoFcRYqMQ\nF+sXP/CWxO0FH7eR6M5zSGvWVa+LLeABaEiuKXViDOI4mhlUkkBMZ/SlzguIuLSeKjrU7Kl/PIDd\nSQLmy1msl9pQzupuvShcZhPL1vCivmVnzIshAJmXtgmbJtZdlW2hd9B7BcZANiYghaUWczB1t1Wm\nxdEGa5suZ8kjnmFS996BGA4gmcl0cgJx9FD3Ry5MuY7fV33wZeD0FMpd5N1z0CVOGe+bLMgtcRab\npVkk+fecrRVyiW40RoR2bTFzfRoZj0iHUHcObebUaL6rOMO6IofZTCoUG9o8JLoUqGpnwNaAgH9/\nAfTZuxkCAxCwwEHWPnjqRrPH6GWwgYRMY7Kerpf22qiS9NPMNd7OOhik2/qpHgmCy3e6HC0AdDt0\nD47ibRWI64psTOhYExrIrTTVvy63s1RzjDZe1lrjdXy4uL3g0wz3BtSL/KImoUcAZjr7IKN5hWYp\nQHXHtrTQVN2VmaGWijShevcQtiTF4YKg28DV/1dCIK/neL6qcLrIHAVlG+7cDmBBh2Vp+Gc36wGc\nnbyzAGN8BHHP8TPS5RQukdxIReUde3S8/TfWe9vxPLZiMJdl4zedJRIqPzLzCSMgG5tjw1A7h+p+\nAJfromoN9f7vQ33tPdRf11kSU7AZuAZdvcBZDTgmJ7gg1PRHIk2+EElAi/gwPvIBiAdV3eFVwDK7\nAMpudYbbpBC7AqQA3Y9cchNK0WLaaPhLEeseotXD27VReXeWoNhURuh2V1i2HCs9rwGszPfDfa5n\nHqhNFFGvNNgv9PyX7a+YHuvGqly0ugtXuSEQKABRdN+ohqzqhWf+RoKodh6KRUcFHONAGW9XPlyp\nn9fxHYlbDT5bA4U6uK9Csw+UczPocKmt2YQUShna6BYtl+VPZGwJBC8b3Bx9TkoYveEJDrIlTspq\nq68D2F4AqVtvWhcDQH+5b9jlmvr/sR6ScDK51hkd/r8uubhEjbbh152h/9YEIHe41b32Ll0b+w/o\nPRuyMoCW2a8WWr+Lej9qWUEtKwLBXGeYeeGXTVvCBZ2mIR8BfwHgjBhX2DG8al6sNJbfbhZpyS4V\nam11/u0YmzE4JPEGo3jbndMFj10A1VzU3WAtwklptemYVcwmimnY380g0xs+lwUIoH3Itzk75mR5\nmdygKP1jIwIOAVCtSiDsQ7qU7SqnDaIjp7T1+q8ghFIfRuHgj33cXvAJtPsodH1b735EZnsEXTnG\n3R5dIpfptGsIj2OrlKTp0oZ+C7SWVwBs3/ilc7M+/jowe4Y7Rw+R7C219H3ukQ2aopzNklqbJ73b\nTOcBVfeL2Vw0Vb0Czs7aTz5KIfbuG/IAAF+Kpa3M0Xi++afjhuoCz5bqRCMD45JeGvYtVbvUbpX3\n3qFy4oAWK2/+h0GnQcl2vYiamQ6rQBTrAMsaSHRC4PViHIChP2bblGYNOPl6jnp92foZcbDHzgcr\nACBWV39wbEpJxuKjOsOkmLeCyXbmm5lSsqtaAVj2pDsXNLqhOrcFTJx9ABh2j6x1QVF4tg+L+gp5\nfY06KK1GoRasNfciZymcPfePoLpj5PUF8voaT5fxzsyt3pRGEsm7H3UYuSx+D8Ma/NgOm35Px60F\nHwUF1bL7oRvNTp+bqWyAFrAPG42F1gCQppby70zpYe4v6sopvYkkIb2q6efRu/cO+tkdqCwzxAim\nam8t1Ng2DWuWkQDbyzDP19cHs8Z5s/RLM/QirnTpi8OUUliK5UUAxNctSg0ANfXqbrrGgJ2Gp0/O\nIQBkY+CtHwKG79lj2TFn4vZ7mPYN2MXftb3g4F6aoS+zsnKHFDLMceghSgAGdHjR35WRuq6prrHe\naH0FpJQVC6Ww2lwbb6liQ19xzmwAFvbse/eKGQCtV8iyMao4tPNIQZN9dnNfqBdZI0QOzj5CIdFz\n7o2m7QONMRRkMhfQDFMtYsgogYy10giTclrcg6mfRRbm7jl715GlrHYAENA69vU6XnHcXvBRaz2w\n6SyyoGa2Wej0l3HXjXjjDAQa9X2nts8Oqea5TWkQfo288GYSVO70X770BRrcHA4gOyP0+0d2UXfE\nOVmYE9kAQmZUzopSREG0NS/ker64Za6ISxJ1CTx9H+rxB1askYdOY/1/R75EDk9QozCllFqV2y6T\nbrRdRwYgB3S2+ib6+nrReAzTfvl9xNHDnYfhAo9rrMagA6AVeLzDadKfMaHsh034Gr0ky14MMIrn\nRqHcnI5T5rvIQzO3taoDrNIAwBXWCW0+3Nfi40tiv2fpSiap63MakOY+ynAAOThEf3BsWX/OeTVL\nn+1D2EutTeiSYjam+e8BZT0x1PpJKVFsNrpkXHizYDwD535f2T34qhC4yEMz/7SfYicAmfuxKY7q\nlJJNmbStH/QtBikcvBpvoD8OcWvBZ4PN1k4fgFnotvxFOJwyWVPWnRd/r3bspO27Si1s/wuQHhba\negO5/gKUlck6VF6QR008g+LdNbBNWNC/U/q1RUWZlowz9LTDaLFZmoFOwCnzbHT/ZX5GDLHHT1F9\n9RKbZYVQqwiITmQVEAACxc7IZF2sPcdEgV1Eg53h9Ilagad5rVsyI9egzAUX97M3c0YN4OH5LoAW\ns2JDumjLmrIP14IcYF08XXLjgcpYk0ZAtGlmU7rAY2wuegBQGB8du9AXhiLNShUdGWBZbzApJQCy\nUWfgaQYDjxEvdSWfHAUAUdbAdAZ1Z4aofwTZ3bd/M5syYteJwfH2hiKAZ6cwKaUBAbdvxde7KXrq\nBjvo8uvm67n3mbnA15EKk8Jmn7a06MtG8fOaAATgdRb0EcbtBR+1QV5fQwbkuFirEmnYN4sj7Xyc\nL0SzN6Nja44jSr0b2G3EezpU6znWNX3hXdpqV44RZWPPNXVLnLMZZU2GWYMbHnfD4p6GfaQh+cd4\nPi2cRV2+C/XkKdSjM9RP5lifr7BZ1iTimdryj+hEEEd3SMOsf6TVBCZ4sljjjWyCYr2kXXfUh4zb\nB/da/WEcDTBT+89bhgSbemHOuXNfIV/PsVidAoD32UsRQ4axbxQX0mPGaPq5rCGDGKO40DRlC0Ad\nqUzGouoVecVMZ76ZHeC5qaZhH8O4wEE2AbAx9GlXay2LDqlkFS0xigtk2ifKHRQ2z5NLUyZMAjqu\ncaI84MG7X/YApzXOn+k+0spkAi5gAYB6e5tGX28K0yNjsIS0PSMZxOQgqm1FAOqvDuPCU7pobgw8\n64Y1zctE0R56ch9dSRuo4858q+fp9h+942wBIOMOy6GzoNfx6uPWgk+1Dlp3VWnYN/4yXgbSonzw\nUtEZaR2zJda6ru2ypNzI5Ap3u1qXihvI0I1Z/rKnthQnhgPv+bTDltsUboe9xf0l1fBbEUpBzZ5C\nNnx0UBRQzy+x/tITbC5zrM9XKKcbVLlEuKyNwUVQAAAKAUlEQVQQOuCDwz2asdm7j1VYY5qf4otX\nMU4XCZ4Y/6EpxgmpFTTD2Bo3BgpVvbJioxrERWdEemhuMEi7I1gyRj24Q83s/NobzH0jo88+DB2N\nL8erRyLRgq72WN0+SRLOAVxpC3DAnUiVgso1ar6grDUvoUaAmAHAmXFTBYBIl0Oz+K4959UVUF/Q\n56ABtd8/Qhr3IYMrZJJKYQw6bhktjY9IiWGzNI3+VPYIeC4eAe99A/Xvv0ubhze2RVxdzTOcPyPP\nI76+swXZV5xO9eWVwFt+/4pVKtz+1N2eBZ4k6FgvH9A9GYEy7AwDSjUqq54OwJA2+PqY0L3TTGbI\nOodGiLdNEqepXMHZfSsAuWW4VxRig49KWPRjEbcWfGoFPF3G2nqaShwuE4ZnAXhI8lsJYvA8M43U\nYhPgIo8xKSQe6c101/kEDlIAKPBG9gyIYQGoLoFkAkxnVn+qEYq9b3iH3QZC0mn4u8GiqM8vbZbF\n/aW8xPp06gHPcipRFwGy8xzhXkqL2KgDcfcY4ugh5utLXKyu8IeXGb5wGeLRTODBQGA/CXC3G+rp\nfFp43Jp8JjfUOHcAyJvvcI57tblG1j+yBI0qt+DrnG89uINvLt7XYO/LDiXBBgeZ7QHwexoAAmWF\nnsAoDz3mC0SdPSAF0pDYjKeLQD9Oz95oZW81IT8ZTOZQaWGp3UNdSmx+Jo6lM3+uYjiAOphADg4x\nHJ6Y7KAn90nrbnFOWQkAZANk2RgyGiMUEmtVkyvqxSOor/5zrL/0BIvPX0BGG0RvziHv9i0INe8Z\ngEpw2ulzfTpF/WSO4mmpJZe0T85bP2REU4v1EtdVYfpTbllSBrEWUv2C+Z2X6+6yQQd85icHk1yS\nBJifQTpEHg7OXDzlCh1tAMQ/GwB6Pe/zHYlbCz7lRuB0QYvRSacC19g5ZBhrJpzNEF560jlKPcbR\n6ZIA53kOXBQCj2YCs0mCNKsRJ1Q+6EQKFxmwrBOshhXe6jvCiOXKyNUYTSr9RTSgw0oEbBedJlaK\nXx8T/593p+yHg6fvkyfOB7SIui6g1mDLAk8+D1EVAVZz0noWnQjiE/chjh5iUj/D08UCX7rq4vfO\nBb74jS7Onnbx7HiBw+MlLgoCIVbV5oFYS4+98gHIHSx0Bi4X1QSIDy0AVblvWucAzx9eZrgqAs9K\ngt4zQiYLjBJriMbXiEtCnAWZ5vzq1KhHI5+iv3cfAHDcucKyFvY8uOc2W9D1XFY00AqQxAxvEhrR\n/DyNKd5sQYxHnRz1udS1uLKMuuns/2/v3kLsqu44jn9/nUmTOjUxmpDEROqFKigWtBoEpWi1mqai\nVSz64IP4IF6olQoSzYuPXh6UaiEWCbXU1ktUFEuMlxYK4gUviZfEyxhtnBibTKVxkMEY/fuw1mT2\nmZ6TmcxM987e5/eBTfZZ+5wz65+9Z/5n77XPf6XjYvZOYu4uZsyaQ2/fIenT/s5P4F+b+XrjAF+u\n38FnA+m4PnBomL7BYWYc/RU9h85Jx0vx2IKUQD/9L7sHhvhqyxDDQ70MDabjauEB25l1QKpRqKOW\nsjt2tSSekeP+0L7vsPB7oq93bqrkkfvabqqOtD6BQf6ROniFIqx7PnwUbp2PkbNl8phqT5r+Y+Rm\nhrEJaM8U4G3GgWz6aCIzTjeRpB2kuS7KMA8YHPdZ9dLEmMBx1UmZMf0gIuZP5Q0kPUXq80QMRsSy\nqfy8/V3XJp8ySXplb1Pi1lETYwLHVSdNjKmbjF+R0szMbJo5+ZiZWemcfMrxh6o78H/QxJjAcdVJ\nE2PqGh7zMTOz0vnMx8zMSufkY2ZmpXPymSaSrpcUkuYV2m6U1C/pXUnnFNp/LOnNvO13UipwJWmm\npAdz+0uSDi8/kj19vF3SO5LekPSYpIMK22obVyeSluV4+iWtqLo/45F0mKR/SNoo6W1Jv8ntB0t6\nRtL7+d+5hdfs036riqQeSa9LejI/rn1M1kZEeJniAhwGrCN9aXVebjsW2ADMBI4APgB68raXgVNI\nhXPXAj/P7VcDq/L6JcCDFcZ0NtCb128Fbm1CXB1i7clxHAl8N8d3bNX9GqfPi4AT8/qBwHt539wG\nrMjtK6ay3yqM7bfAX4An8+Pax+Tlfxef+UyPO4AbaC1TdT7wQER8GREfAv3AUkmLgNkR8WKk35I/\nAb8svOa+vL4GOLOqT2wR8XTEnpnmXgRyYZd6x9XBUqA/IjZHxC7gAVKf91sRsS0iXsvrQ8AmYDGt\n/9f30boP9nW/lU7SEuAXwL2F5lrHZO05+UyRpPOBrRGxYcymxcDHhccDuW1xXh/b3vKa/Id/J3AI\n1buc9OkRmhXXiE4x1UK+jHkC8BKwICK25U2fAgvy+mT2WxXuJH2QK84CV/eYrI2uLSy6LyQ9Cyxs\ns2klcBPpElXt7C2uiHg8P2clsBu4v8y+2cRI+j7wCHBdRHxePKGMiJBUm+9SSDoX2B4Rr0o6vd1z\n6haTdebkMwERcVa7dknHk641b8i/9EuA1yQtBbaSxoJGLMltWxm9hFVsp/CaAUm9wBzgP9MXSatO\ncY2QdBlwLnBmvnxR7OOI/S6uSegU035N0gxS4rk/Ih7Nzf+WtCgituXLT9tz+2T2W9lOBc6TtByY\nBcyW9GfqHZN1UvWgU5MW4CNGbzg4jtbB0M10HgxdntuvoXVg/qEKY1kGbATmj2mvdVwdYu3NcRzB\n6A0Hx1Xdr3H6LNJYxp1j2m+ndXD+tsnut4rjO53RGw4aEZOXMfu46g40aSkmn/x4JekOnHcp3G0D\nnAS8lbfdzWiliVnAw6SB05eBIyuMpZ90PX19XlY1Ia69xLucdMfYB6TLjpX3aZz+nka6weWNwj5a\nThpLew54H3gWOHiy+63i+IrJpxExeWldXF7HzMxK57vdzMysdE4+ZmZWOicfMzMrnZOPmZmVzsnH\nzMxK5+RjjSTpWkmbJE17ZQZJv8qVpL+RdNJ0v79ZN3CFA2uqq4GzIqJY4wtJvTFaMHWy3gIuBO6Z\n4vuYdS0nH2scSatI0yOslbSaVM7nqNy2RdKlwC2kLzLOBH4fEffkStt3AT8jfcF2F7A6ItYU3z8i\nNuWfU05AZg3k5GONExFXSloGnBERg5JuJs39clpEDEu6AtgZESdLmgk8L+lpUmXoY/JzF5DKC62u\nJgqzZnPysW7xREQM5/WzgR9Juig/ngP8EPgJ8NeI+Br4RNLfK+inWVdw8rFu8UVhXcCvI2Jd8Qm5\nmrKZlcB3u1k3WgdclackQNLRkvqAfwIXS+rJpfvPqLKTZk3mMx/rRvcCh5PmXhKwgzTN8mPAT0lj\nPVuAF9q9WNIFpBsT5gN/k7Q+Is4pod9mjeGq1mYdSPojqaz/mvGea2b7xpfdzMysdD7zMTOz0vnM\nx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdN8CmkvbM1neOKkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us try some more window functions." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25,window = 'hamming',scale='biased')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'hamming'" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu4fVdZ3/t5123/8iMJYIIRgxaoadXa2lIkrW0Fi9hA\nxdRqLeKV6kPpI7b29CLW46Xa9oSjT4+0ojRFBKotUioaa1TQ53DRiicBKQqKplwk4WawkIRk770u\n7/ljzDHnmGOOMeeYa8619m18n+f3/Naa97X23t/v+37fd4whqkpGRkZGxsXC5KQfICMjIyNj/8jk\nn5GRkXEBkck/IyMj4wIik39GRkbGBUQm/4yMjIwLiEz+GRkZGRcQmfwzziVE5DNF5AERmZ7gM/yi\niHzjlud+n4j85NjPlJFhkcn/AkBEDkTkx0Xk/SJyv4i8XUSe7ux/iohsCrJ8QETuFpFXi8gXtFzz\nsSKiIjLztr9cRP7VLj9PClT1D1X1SlVdn+AzPF1VX3FS98/IaEMm/4uBGfAB4MnAw4H/E3i1iDzW\nOeaDqnolcBXwl4DfA94sIk/d76NmZGTsA5n8LwBU9ZOq+n2q+j5V3ajqfwfeC/zFwLGqqner6vcA\nLwVeOOTeIvJfReTDIvIJEXmTiPwZZ9/LReRHC3vkARH5dRH5NBH5YRH53yLyeyLyF5zj3yci/0xE\n3iEinyyymeuK8+8XkV8RkUcWx9YyExF5g4j8QHGP+0XkdSJyrXPtbygyo4+JyHcX9/qSwOd5nIh8\nXEQmxfv/KCIfdfb/JxH5duee31K8/iYR+TUR+aHis73Xy74eJyJvLJ7t9cC13n2/XETeWdz7DSLy\nOcX254jIzzvH/YGI/Ffn/QdE5M9v8aPLOOfI5H8BISLXAX8KeGfHoT8DPEFEHjbgdr8I3AB8KvA2\n4Ke8/V+NyUSuBY6A3yiOuxZ4DfBvveO/Enha8fzPLK7/L4BHYX6f/2HLszwbeE7xLAvgnwKIyOcC\nPwp8LfBoTHZ0fegCqvpe4D7AitIXAQ9YMsZkV2+M3P9G4N3FZ/u/gR8XESn2/WfgrcW+HwDKWoGI\n/CngvwDfXnzO24GfF5FFca+/JiITEfn04nP95eK8xwNXAu9o+U4yLigy+V8wiMgcQ8CvUNXf6zj8\ng4AAj2g55t4iGv24iHwcQ7AlVPVlqnq/qh4B3wd8vog83Dnktar6VlU9BF4LHKrqKwuv/qepSNbi\n36vqR1T1HuDNwG+q6m855/vHu/gJVf19VX0IeDVgI+KvAn5eVX9NVY+B7wHaJr16I/BkEfm04v1r\nivePA64G/mfkvPer6n8sPtsrMEJznYh8JvAFwHer6pGqvgn4eee8vwv8gqq+XlWXwA8BVwBfqKrv\nAe4vPssXAb8MfFBEPhsjRG9W1U3LZ8m4oJh1H5JxXlBYFf8JOAaen3DK9RgS/HjLMdeq6sq5x8ud\n11PgXwN/BxOxWhK6FvhE8fojzrUeCry/0rtf3+NdfNh5/aBz7KdjaiIAqOqDIvKxluu8Efhy4G7g\nTcAbgK8HDmkn2/L+xT0onuFa4H+r6iedY98PfIbzfO93zt2IyAeospM3Ak8BPqt4/XEM8f9l4llI\nxgVHjvwvCAp74ceB64CvLCLILnwF8DaPlPrg2cDNwJdgrJTH2sfZ8nq7woeAx9g3InIFcE3L8W8E\n/hqGcN8I/BrwV2i3fLru/0jPXvtM5/UHgT/hPJ9ghOEe53meUjzTG4t/Tx7wPBkXAJn8Lw5+DPgc\n4JmF7RGEGFwvIt8LfAvGT98WV2F8/I8Bl4F/M+Bau8RrgGeKyBcWPvr30SJQqvoHmCzj64A3qup9\nmAzkK9mCbFX1/cCdwL8UkYWI/FVMPcPi1cDfFJGnFrbdP8F8r/+j2P9G4IuBK1T1bowddhNGwH6r\n7/NkXAxk8r8AEJE/Afx9jC/8Yan6+b/WOezTReQB4AHgDuDPAk9R1dcNuPUrMXbFPcC7gLcMuNbO\noKrvBL4NeBUmCn8A+CiGYGN4I/AxVf2A814wxept8GxMQfiPge/FfHf2+d6NEZp/D9yLEYZnFvUJ\nVPX3i2d+c/H+PuA9wK+f5DiHjNMNyYu5ZGTUISJXYnzzG4runoyMc4cc+WdkACLyTBG5XPjuPwT8\nNvC+k32qjIzdIZN/RobBzZjC6gcx4xKepTktzjjHyLZPRkZGxgVEjvwzMjIyTgFE5CYRebeI3CUi\nLwjsf6SIvLaY3uT/E5HPc/b9IxH5nWIKkG9Put95ivwvHVylD7v8qPEuuKdudJXT1vYeh+zr9+X8\n/FpmnFL88cffe6+qDiKMPyvX6AOkDJmB93H/L6vqTaF9xYDI38dMXXI3puPua1T1Xc4xPwg8oKr/\nshjB/WJVfWohAq8CnoQZwPlLwPNU9a625zlXI3wfdvlRPOOLv3+Ua63n+0mKlosTm25+MObHu+8i\nnC7zzAQZu8FPvvbr3999VDseYMn3TZ+UdOw3rX/12pbdTwLuKqbrQERehalDvcs55nOBWwBU9feK\nyQuvw4zf+U1VfbA4943A38bMHxVFtn1OEGeZ+ME8/64/w3o+2ZsQZ2ScIK7HmWIEE/37kwv+Twyp\nIyJPwoz6fgzwO5jJ/a4RkcvAM6imBoniXEX+Y2HXZHPWSd+H+3l2lQ3Yn0nOBDJOE0RgNk+0bddc\nKyJ3OltuVdVbe9zuFuBFIvJ2TCvybwFrVf1dEXkh8Drgk8Dbgc4/xEz+e8Z5I34f9vPtUgSyAGSc\nUdyrqk+M7LuHerT+GKq5m4By5PZzoJzf6b2Ykdyo6o9j5u5CRP4NJnNoRSZ/D7uM+s878bvYZTbg\n/oyyEGScJGQCBweJkf9h6947gBuKacHvAZ6FNz26iDwCeLCY1uNbgDcVgoCIfKqqfrSYHvxvY1bj\na0Umfwe7Iv59kf5qy+ef7ZhA9yEEWQQyzjJUdSUiz8esxzAFXqaq7xSR5xX7X4Ip7L5CRBSzENM3\nO5f4byJyDbAEvlVV26ZhBzL5lzhLxL8tyW97vTHFYVdCkEUg4yQgIumefwdU9XbMKm3utpc4r38D\ns4Jd6Ny/1vd+mfzZDfGPTfpjE/6Qe48lBruoD2QRyMhIw4Un/9NK/CdJ9l0IPdsQQdhFNpDrAhkZ\n7bjQ5D828Q8l/dNM+F0YSxB2KQRZBDLGhggcHJzNv9sLS/6nifh3RfrLg/4/3vnRqvugRAy1i8YW\ngpwNZGRUuHDkf95IfxuCH3K9IeLgft5thSBnAxmnCROBRWqr5ynDhSH/0+LtDyH8sYl+7GfoIwzb\nCkHOBjIyxsHJs8kecBqIfxvSPw1k3weh500RhG3toV1lA5CFICMNIjAfqdVz3zhb7NIDp6Vvvy/p\nDyX8XQ8o60u0/ufpKwYpQrCrInEWgIzzjPNF/nK6pmfoQ/x9Sf+kpopou28K8fYVA/sdnkQ2kOsC\nGV2QibDI3T7nG33INpX0zwrhpyL0fF0k7H4HbUJwktlAFoGM84hM/h3YRbSfSvr7Lihvgy4i7iMI\nqVnBtkIwhghkAchw0WtK51OGUZgiYe1JEZF/V+x/h4g8oetcEflBEfm94vjXFjPa7RV9o/0u4l0e\nzDqJ3y6QknJve0/3374ReobO78H5jG2f035fbd9Zn8/e57uNIS8uk3FeMDjyL9aefDHO2pMicpu7\n9iTwdOCG4t+NwI8BN3ac+3rgO4vZ7l4IfCfwHUOfNxVj2zwppD/Gfba57rZoi6T7jPhNsWhS7KE+\n9YGh2UDOAjLAjvA9m5H/GLZPytqTNwOvVLNa/FtE5BEi8mjgsbFzVfV1zvlvAb5qhGdNQiph7oP0\nk+sHJ1APiN0zRqgpLZ19hGAMW2iICGQByDjLGIP8Q2tP3phwzPWJ5wL8PeCnQzcXkecCzwW4fLlt\nfeQ0jEX8Q0g/1cLog11YFTHiSxWFLjHwr+OfP2Y2sG2BOBeDM84qTn3BV0S+C1gBPxXaX6yBeSvA\nNZ/yeB1yr30Q/7akn/Js+/aiu+7nE2JX8bePGPQVgl1nAzkLuJgYs+ArIjcBL8Is5vJSVb3F2/9w\n4CeBz8Rw9w+p6k8U+/4xZnUvxazv+xxVbV07bAzy71x7suWYedu5IvJNwJcBTy0so53hJIl/W9JP\nJfvlwe4toflRkyhDz9clCDEx2IUQjJ0N5CwgY1sk1k6/FWOJP1NEHgW8W0R+CngU8A+Bz1XVh0Tk\n1ZhlIF/eds8xyL9z7UngNuD5had/I/AJVf2QiPxR7NxCBf858GRVfXCE5wxirMLumKQ/hPCHEP1m\nFr72ZJVQQI3c1xcF//nbxKCvEIQIuq0+sKsCcc4CLhAEpvNRftYptVMFrioWb78S+GOMKwKGy68Q\nkSVwGfhg1w0Hk3/i2pO3A88A7gIepFiBPnZucekfAQ6A15vPyltU9XlDn9fFSRF/X9JvI/wuso8R\neh/0vYYrFl2i0CYGfYUgJRvYlyWUBSAjgGtF5E7n/a2FbQ1p9c8fwQTSHwSuAv6uqm6Ae0Tkh4A/\nBB4CXuc1zAQxiuefsPakYlKWpHOL7Z81xrONgW2Iv0+035f0Y4SaStKLg3EXUQc4PqqeKSWD8D9D\nlxjE7KG+QjC2JdQmAtkGOv8Qgeks2ZG+V1WfOOB2fwN4O/DXgT+JCYzfjAmcbwYeB3wc+K8i8nWq\n+pNtFzv1Bd9dYQyPvw/x94n2Q6S/DeH3JfmU412STz3XnhN6VisIKWLQlRV0CcE22cAYdYGcBWQk\nIKV2+hzgliKYvktE3gt8NvAngPeq6h8BiMjPAF+IKQ5HceHIf9dWTyrxDyH9GOF3kfcYEX+fa1jS\nD50TE4Q2MegSgpA1tC8RaLs+ZAE4rxCB6WKUXpSU2ukfAk8F3iwi1wF/GngPIMBfEpHLGNvnqcCd\ndOBCkf9pIP6xST9Gxl0kPZvthohWq+oZY89wfDSNCkKKGMSEIDUb6LKEdiUCWQAyYkisnf4A8HIR\n+W0M4X+Hqt4L3CsirwHehikA/xZF+3sbLgz5nxXi90k/lfBjRJtC8mPVAI6Ppp33W60mUeL3t/ti\nMJYQdGUDbXWBocXhXAc4ZxBlNh+nCz2hdvpB4Esj534v8L197nchyH+sqQ/GJP4u0ocm8fvkGCLR\nGPmmEvx8i7a15XKSdI+YOIQEwReDWFbQRwhSsoG+ltC2mUDOAjJOGheC/PsgWpjdI/H3Jf0QocaI\nuC+5t/n1fa65XMYjfv/5fTEICQFU35OfEfjF4pgIQDMb6CsCQ+ygLABnHyIwSe/2OVU41+S/8yUX\nBxL/2KQfItcYMQ+xevqee3w0DT5HSBBSrCP/eN8a6soGUiyhfYlAtoEyTgrnlvzHJP5Q1L9L4h9K\n+j7RtpH1bC9Ry/ZC44tBrGZgj40JQWo2sG8RyFlAxknhXJL/mNMbnyTxt5H+NoQfI/pdDPqqI/bz\nGHbfPkKwdPa52cBJi4CfBWQBOFswE7udzZ/ZuSP/k1j6cFviT432U0m/KRZNsh/SFTQ+Qj+r7QTB\nFYK2YrGfDcQsoW1EYOhgsWwDZewT54r8VfpPrTrU7hmb+Mcm/T4dQQeL3RDOwWLD0XGqwPqCUCfx\nvgVrVwjaRADqltA2IjB0nEDOAs4gcsH3/CHV7mnbvwvij5G+H+XHrmURIvpL47llTQTulyYK7kMN\nqx2cJRHIApCxa1xo8h/b7nExNvGnkH5bjcAn+xDR73ItmPkEQjx26YoNh85jtwnC4sBvM91uXEHt\nGEdc2uoC+xaBLABnAyLKbJzpHfaOC03+MQy1e7Yl/j7Rfoz0+xB+iOwvJf5GLJxzjxO56RJwGF5t\n0bt4/TPEs4P+WUGsNpBSF9iVCKQIgL1/RsZYuLDkPzTqd5FSZB5K/KFoP4X0XcL3P3KI6BcdX8ul\naTPK8UXlcB2vvSwWTbHwRaGRJSTVIra3h8YSAX/aiDGKwrkOcLohAtPA38RZwIUl/xi2ifpdtLV0\nQjrxp0b7fUnfJ3yf7EPkHrpOG+YTc40YT12aNgWiIQoRMfBtojDsh48fGLKEukTArQmEWkT3lQVk\nAcgYA5n8B6Kv3WPRNjlbG/GHov0u0ncJv4vsYwS/TTHYPccn7JBAuKLgi0HIMnKFIGwPDS8WuyJg\nawKxcQJjWEFdWUC2gU4ZBCYHJ/0Q2+FCkn8fy6dP1B9CyO4JEXgf4g9F+5ZoY1G+S/ou4TesoADJ\nd1lBKbDXaFg+07owzCdaRfl+hlB8HlcIahaRZw/NZhtniunubMAiNtFclwik1AOGWkHZBsoYCxeS\n/GNoW4s3eHxC1G/R1m+/DfGHov22SD9G+D7ZNzODxmMPgr2eS/i+MLiCEBODWmbQkhE0MY4IbFsP\nGMsKyjZQxlBcOPIfUugdEvVb+CQ+hPi3JX2X0BctQgBwEKkBWNsmBctNswBs9fHIiexd0l9MusXA\nrGdRCUGwmyhSLK63jbYLgRWBWk2gEJGQCAyxgvpmAVkAThgTQXoGjTGIyE3AizARyktV9RZv/z8D\nvrZ4OwM+B3hU8e+nnUMfD3yPqv5w2/0uHPn3QVsXzzZRf8i2iR27LfH7pB+K8mOE7xN9jOBjghCD\ne/yRV+g1ZC7OsdUxXWKQIgTWFrLZQHttIK0u0CYCQ7uC+o4NyHWA8wERmQIvBp4G3A3cISK3qeq7\n7DGq+oPADxbHPxP4x6r6x8AfA3/euc49wGu77pnJv0Bfy6cLNupvmzTNj/p3RfxtpH9QywzqpJ4q\nBn3gXsOSvr2PJf2qGCy1DCEkBm1CUP52J2YD24pA33rAkCwAwgJiz89ZwJ4hIOO0jT8JuEtV3wMg\nIq8CbgbeFTn+a4D/Etj+VOB/qer7u254och/15ZPKOq36LJ7+hC/X9QdQvouGfcRAhezBFFYBa2f\nOOnb/e4+KwZ+ZhATAlsjiGUDY4mARWo9ILUgPCQLyAJwKnGtiLgLq9+qqnat3euBDzj77gZuDF2k\nWKj9JuD5gd3PIiwKDVwo8u+DbSwfi5SoP4Q+xN832o+RfozwfbL3Cf5g2o9cfF08Wlffm732qoX0\n3e31bfWswBcCsM/dzAZ8S6iJpgjYBWjsOIGUeoA/PmCbgnCfLCALwP4gIkjqsHi4V1WfOMJtnwn8\nemH5uM+yAL4c+M6Ui2TyHwljRP0uYlYPtBN/X9KPEf6str1OIgcj2D8HE/OZjzy/H4wwuILgZghV\nBqCN+oGbFVjEsoGQJdRHBGLoawWNlQVkATjzuAf4DOf9Y4ptIcSi+6cDb1PVj6TcMJM/4/v9fdA2\niCvk8fcl/j6kHyJ8n+jjReB0knGj/mANYLIuRcEXhJVD/CEhmE+Ug6l0ZgO+JZQuAsOsoF1lAbE6\nQvnkWQR2A5GxPP87gBtE5HEY0n8W8Ozm7eThwJOBrwtcI1YHCCKTfwJifn+K5ZPS2mkR6gYKDd4a\ng/hDUX6I8OctGQDAVOyDpf8BXPZ+69Za3Nch+ob/XwiCie7rmYEVAvd4v0bgFoubReJ0EahaRNOz\nAKisoNQsYEhHUM4Czh5UdSUizwd+GRNlvExV3ykizyv2v6Q49CuA16nqJ93zReRhmE6hv596z0z+\nPTHmEpGhOXtCg7hcn7+L+EM2T0wEYqQfI/yK6GE6Cf/qTKJLNlbYeMRZmiobQ2ZWHNa6aQjCciM1\ny+hgCrOJeS6bFcwnUssIqhpBMxuwn7evCKTUAyx8Kyg2NqCrI6jP6OAsAHvCBGSkkZCqejtwu7ft\nJd77lwMvD5z7SeCaPvfL5B9AX4Jv8/tdpET90O7zm+3dxN8W7XeRvt1uyL6ITh2yDxH8dDKPfu7G\nsdSPXW9MPDyZmOtacZhSFwQrBtY2csXAzQrs5/aLw6GOoT4iEO4O6t8ZFBsbEBscNpYNlAUgw0Um\n/xHRZfmEEIr6Xfh2T1/iD0X7aaRfEb5L9j7Jt0X6U4n/eq21IixL+mCI34rDerOsCYI9aiqr4hqV\nGPhC4NcI/GzAfN5+IuC2iDYHi4WtoFhXUKgW0GdcwDY2UK4D7AAiyHw8N2CfyOR/Qoit4mXhR/1u\nr37I/4d24nej/b6k7xJ+TQg8ch8j+p8Wv5JrXXnEXxcEKwbrzaqRFcwnysFEGzUCtz6wdF7bArH9\nPrfPBKosIHW94VgtYOwsINtAGT4y+W+JULE3BV2E4Hv9IbvHvG4Wd7cl/i7SL987ZJ+aAbQJgiV8\naI/+fUFw909YRoVgvp7UsgGoRMB+B64llCICzOpzCMXqAbPZitWq3nY6JAvoUwzOApCRgkz+e0K4\nlz9s+fijeP2ov5YVOF090E38oWi/jfRDhL+tDeTDJXxwvf6Y7VNth7oYmHvb7GHtCME6mA3MJpOG\nJQTtIuC2iDKjkQWkWkEuti0GZwE4JRBBEmt+pw2Z/Aeiq9gb8vFjlk9jzV0v6m/6/9V7v32zi/jd\naL8t0g9ZPjEbSFSpRtQW2HQs2usUkqdOu6iKJNg+8zIz8LMCNyOYyiqaDbgFYlcEzLbYrKPKNlaQ\ni9ji8qnF4G3rAHk8QIbFKOSfMBWpFPufATwIfJOqvq3tXBH5O8D3YaYtfZKqunNinAj6dAH1ndrB\nou/8+m6kDyER2NT69tuI37d3atsChF8je5/kV8cdn9TCO262MNcubzYrRcEKQt32KZ6PdVAIrFiE\nsgGgVQT8wnB40ZmmFRTvCgrXAsaygXId4AQwAUZs/94nBpN/ylSkmGHHNxT/bgR+DLix49zfAf42\n8B+GPuM+0Ub67h99W5dPc3WtejTtR/3QFAHb1eN6/Jb4XZsnZPHUtnnZQEn4Ltm7RB+K9LuEoCB8\nAI6d8yczSnGYLUpBsM/vi0FICNqzgbgI2O/MFQE7TqDLCopPHJc+QjjFBsp1gIwhGCPyT5mK9Gbg\nlaqqwFtE5BEi8mjgsbFzVfV3i20jPOLuEVq4pQ/aLB9oev1QEX7I7nEHZ7nEbxEi/obt40T+hvSp\nyN0SekwEAF0ddXxqe17zOJkd4BJ/KQqOIMhsUWYGISFwrSE/G2BCqwjYmoD9/pYbcWyhej3AtYIa\ncwb17AjyVw9rs4FyHeDkIRfc80+ZijR0zPWJ555bdFlDobVzQ1E/VHZPbX6eiTaI31o9vs0Tsngm\nTMOkHyD8GtFvE/1bFFmAumRfXDsoCEUWIMV508msJgR126eeDbj7UkTAwi8Ku9uXm+2yADs6GNJt\noG3qAFkAMizOfMFXRJ4LPBfg8sOuPeGnCSPV/w+Rum/5WPg2T31fvcBr4RJ/uS1A/LVoPxTptxG+\nT/JdBV8fLbaPLwilGNSE4LgmBJPJJfMYrBvZQNkptCEqArCpdQf5ReGYFRTLAuodQemjg1MFAJp1\ngKECALkQHIWMt4zjvjHGU6dMRRo7Zp5wbiuKxRBuBfiUa/5k61zDs+Vm0IIuY6BLCEKPF7J8LELW\nT31/3ee38K0eiBC/b++sjivSb7OA3O0u1gliMLXPGqglOIKg5f3dzKA41hWCwhqaTC4Fs4E2EbDd\nQbDBnbwuZgXV98fbQr0PjG8D+WMCLI6Z1uoA5RU6CsHbCgDkFcLOK8Yg/5SpSG8Dnl94+jcCn1DV\nD4nIHyWcu3PMj1ZJ0zrPj9ejTuwG7VM/+IhZPuW1nCLv3PP9gZrd43v8dnvN5nEtHjfaj5G+S/Yu\nyR9Xg7nS4By/mNevZ4XBi/bLzMDNCtxjioKxzQZ8svdFgIn5XLY7aL6elOMEQlaQQXsW0N4RFC8G\nN2ygjjrAmALgnpsFIAABZhc08k+civR2TJvnXZhWz+e0nQsgIl8B/HvMyvS/ICJvV9W/MfR5U7AL\nku8DfzoHH26037Wuro36feK3aBC/7+13kb59HSN7n/hXiS2ws2nz/MWcUhgWnhi4mYEVAtca8rKB\nFBGw3UFsVoWQhusBNvqPZQHRwWGJYwJcpNQBYoVgvxU0C8DFxiiS1TUVadHl862p5xbbX0vCCvQZ\n9Q6f1FW2SiFwrJ4SXcTvi8B6VZG0S9Y+0ffJAPxjF/PqerOp2W/FYDE3zzAtsgBHCFxryM8G+ohA\nrB4QX8egngU0OoK2tIHs676F4FgnUBaAgRCpstMzhrOZrwzArnz/yWozuN3TR6zY2wW/pz9k9/iE\nX/P4He++JP62aP94WZG1S/jFNl1vKQLuH9VD5hoynTbvZd/b4xeeEBQRv26cbGBGqwgY2wdQoiIQ\nsoJSsoA+NlBMAMqv8gQFAHIheEx0DZYtjnkK8MOYeum9qvrkYvsjgJcCn4f5Jft7qvobbfc7V+Rf\n+tV7xPxonTyffwx+j3/t+jusTzfsHtezt4XdEPG3kb5P+NvaPqFjZ1MUh+gfWldiYDMDNytwMwIn\n4q+JgCMQvghMqLIAlEoQinqAawV1ZQF19LGB2usAFm4heJtW0G0EAMhZwEhIGSxbEPyPAjep6h+K\nyKc6l3gR8Euq+lXFQu6Xu+55rsh/CFKLvhbT5WbrmT37wp3BMxVdUX+jwGtREHyN+F2bx7d4HNKv\nRfgtmYDZ3qMF1BbU3Ai/uK7a2sDayQzsfvf4QDaglvTNxZNEYNsswI4L6LKBDtd+MDBltZKS6FvH\nAwzsBOorAJA7gRCp6lPDkDJY9tnAz6jqHwKo6keLYx8OfBHwTcX2YxrzpjRx7sg/pVjb1/rpc7y7\nbuvYcKdudv8Pd/n0UAuX5PsSvxvph/z+UgQcKylAMK0oji/7qe21ZrNG1K8s40LgZwMhEbBEPAPx\nWkTNd8XoWYArAOFBYfFC8NidQDEBiCHXAXrhWhFx5yi7tWhVh7QBr38KmIvIG4CrgBep6iuBxwF/\nBPyEiHw+8FbgH/nr/Po4d+Q/Fsbs+NmlIOwFfYjfJf0I4euRXwNI+G4W0/K8cjj90coIwmpVCYF9\nBkcISmvIFQGWVTbgioC1g2ytYLZAJjMmMmU+uZScBRj0E4DGLKEJdYDa15jYCbSNAISif4sLLQD9\nCr73quoTB9xtBvxF4KnAFcBviMhbiu1PAL5NVX9TRF4EvAD47q6LnTvsslVzF9c+Op60+v5jIWj5\ndEX9rscPceIPRPqW8Gtk7xB9QwTa4BC/2mvUBMHJDqwYFFG/zqb1GoGtDQCpIhCzgo7XD0WyAHrZ\nQP4soX3swV+BAAAgAElEQVQEoG8nUBaAU4mUwbJ3Ax8rIvpPisibgM8H3gzcraq/WRz3Ggz5t+Jc\nkj90k3TIyunr+7chFu3vOwsI9fZvBVvcLYi/VtB1/fUQ6ReE4pK9LpvfgTaXxCohxeg2e57Mp01B\nKMRADqYmK3AzglA24IrAgrAd5IrA4nKZBVjCX0yvCGYBxnIdbgOZZzNTQlSdPqdfAOCCdAKJmN+l\n4UgZLPtzwI+IyAzzG3sj8P+o6odF5AMi8qdV9d2YzOBddODckv9FhztXfxSpUX8K8a8s4a+ipO8S\nvkv0mkAS9hgpiMWeL5em6HJdEwOOp44QFBlBKBtwRaCsCRQ3dLx/XdXXFwhlAWwOa7WAxXQx2Abq\n2wl0mgQAcidQH6QMllXV3xWRXwLegYkoXqqqv1Nc4tuAnyo6fd5DMZC2Deea/IdaNO75oUzBdvzY\nds9Qr/9qNWmdwqFr/y4Q7PLpCz/ip0n8PulbwvbJXg/r5NIGPTT/SzHntS43yHwSFINmRuBkA9Ah\nAglW0OJylQVArRaw3Bx22kB1MegWgK5OIMgCsHeMOMira7Bs8f4HgR8MnPt2oFc94VyTfxe2HfC1\nragsl5NaoW5XFpA7b39jX8uC6kBa1O96/FBaPTHi90nfJftQ1B/rBnJnT9RlMaf/fFITBFcMZDkt\nMwI5mKIwTAQWl6ssYAYcP1jLAirCB8qsIG4DXTnfMJ8IDyzt9u06gbIAZGyDc0/+fYl6DN9/LFI/\nXAvumrhtk7qlIGoDuZZPHxR2T0n8js3jRvs+6buE7xL9pmvtF+fYyYE9vxIFXR6XYlAJQZERFEJg\ns4GgCAC6APE7pJ2FxtpqAfMEG+jBlf151ltD/UJwhZRFYnYnAC6yAAQgjNXnv3ece/IfiiHWkSsC\nviCsVlJbytHFYeE1+wO7TAAtnZO59UIb4bdF/T7xF7DE70b7PulbwnfJfr32o952rB80/0+nWorC\n5KASA18IgEY2wHHADtomC4CyFjCZzhs2kNsNdHmWVge4mmYnUPuI4KYAuNhWAFJmA20TABfnVgDO\nKC4E+bcReB/rJ8X3T0EsM7A10K7HWW4kOn9/DJ12jwu/vTMFRTRdK+pGiD9G+qvjpgBsVtW2SUAs\nVwizhdm+frASg5AQuNmA7R4SCGcCIRGAeBZw6SooxCBkA7XVAe5bxn5v+haCm6OBga0zAIvU6aBD\n8M89d51AeWK384UU6ycmKNsUfaF/r//ROp4BrHXTMHhsIbL+YIER4CnWjxP1h+BaPRAmfkv6LuG7\nRA+wWnoq6Awgnrm1k5WUwmDFICgERT0AHBGwdhCVwdagXNcK8rMAMB1Bh/dHbSDz4SjrAHBYGxV8\n9dxMEU3QlhsmALC9BdRnPYBU+8ciZwEnjwtD/kOi/66unxBi0X2o6Av9FnUpr1UsKDIb0wYKIVbo\nhdLr9+0eMB6/Ljc1m8cnfZfwfbL3xaD2SKtiGgObDRTCMJtvSjHwhWDCqlMEkqwgiwVw/GDcBiq6\ngezIYFsHMO+XsDmqTwsxXzObTPikL3p7EAAfKQLgI9X+scgCcLK4MOQP/fz7PoXfNutnW9+/D1Yb\nwXec1ptVM9LvvFAgE+gzC2cBa/e0EX+I9OvbEmsAS2E2r77D49XUCMIyIARrrWUDrgiAVxPwReDy\nFeaYBciDh/VawBXFzQsbyO8G8usA5ajg4n2zE4i9C8ASkqaD3rYDKCYcZ14Asu1z9rFN22cf68dH\nV0eQLfoWrnRnp8/ResLBZOS20di8+16Hjxv1uz6/RYz4fdL3CX8dqAGEsD4WpotKAMoVgD0hWOHU\nCI6aImALwxZ1K+ihWhbQeLLFCg4uw6o4J1AHYDIvRwW700IspgvOkwDEcG4F4IziwpH/tt07Q60f\n1/f3rR+7Hyj/eP3L12c+CPv9R5v69g1rpsyj78s57ncAG/W7xV3X348Rv0v46xbbx8d6JUyLLMoV\ng6pDchIVgUkxlLcsDC9nQStocrXz+R46bNpAPBiuAxTvfQFwO4HCraD7FQAguB6ARaoA9LV/4AwL\ngEj1Mz9jOJtPPRAxAfBJfR/WT2xbF6zf74vA0rOA/EJvsPBr4YuBu3Ri+bB9F2Ovd/RsVhIk/hjp\nrxvk13KfJUwLUbViUApBYQ8FRWCtTIssoDavgwMBNvcdNcYG1GwgaK8DeAJQnxCOshV0VwIA1OYC\nAqLrAQwdA9DX/oEzLABnFBeS/LdFSDSGWD8w3PcPtX0erSdcdn6yJuKP/KiLJQ7HQMjysbB2j0v8\nfrRvSd8l/NWy33ezWgqzuSXHuhAApQhYS8iKAIuiVdS3gpwsYHLlot4RVJC+Xr5U7wa60llEyRWA\nQhDCI4IZLADHZUBg710XgNB00O56AMCoLaAXQgBETNB0BpHJvwOx6H8M6wdoRPxHx5Pqj9bz/SG8\nopcdEVqL+L12z7WuSsvHiMF4q5A1unwcy2e9lkb/foz4Y6R/dLSdOPpCUBMBbKBsMoHNamPqAwtq\nVpCbBWw4jttAbh3ggQebhWAcunZaQccUgEVRu7b6e2lKLwEABreA+rhQFtAZw4Ul/1Trp8+1hlo/\n0N3yeVzubvr+ftHX7/hxLR8VceyIBawKc37ETMBFW9um7+1b4vdJv28WUEdVTA1lAismzIhnAZOr\n6tFdzQYqtpV1gCsuVQdeQdn501cADqb1IvBqE/oOzbbDNVya1u0fnz/N71wlANW2bgGwGKsA3CUa\nZ0cApPibOXs4m089ElKLv27036fwa62fWPQPlvTXW1k/Id//aFPPAjasyxGm9n1Z9HWIXmYHqPX7\nZ4tqhK9dEL0FMp+2zsVvsVpOaiJQ8/mXk2C07xP+8VEKITR/JkdHysGBO5NmXQRmVN1BoSxgA6UN\nNLnKXKHKxw5rMbjCKALQ6AKaW/Ku43AtTjdY3P+3TQXmd605CtjuD40B2EUB+PwIwNnE+SL/kcY6\nbTvbJ/Rb2D2l6ydk/UB9krelExGWKxy2+P61om9Kx0+xClb5us/i6wG4LZ2+3QNN4vcJf9mSAczn\n4h3fvLYvAlB1CFkryM0CfBvICIFfBzisjwdgNwJwFOjyevgCPnHckJ9oAdiP+u221A6gMQvAXTj1\n00Fkz//0oA/5wnatnymF39Ac/10DviC96yc2yZtr/ax1A471E/X9bQbgWj7TGbX5FEbG+lhqdo9v\n9fjE30b4LprHhYXAFQG3SwioCYAdJDZbK/NIHaBeCH5oawGYOl1A6/WqFICpTGpTQYTmAro0HacF\nFPp3AFl0RfIhpJ5zEbIAEbkJeBEmvXupqt7i7X8KZjWv9xabfkZVv7/Y9z7gfkxKt0pZK/jckT/0\nF4AQUts+hxZ+/X0+lhu4FNxj97tRf0GgAevHkn7U9y8/kJMJLOal5SPTYglEMG2OiQN7+iCV+I8T\nC8CLA/HOtd956Oc1wc8CNpb4bRaAqQNMr44UgotZ33oLwGQWHAfgjgR2p4KoTQmBKfgfTGtyUqB/\nCyj07wDatf1zESAiU+DFwNMwa/XeISK3qaq/HOObVfXLIpf5YlW9N/We55L8oZ8AbFP8bYv+21b4\n8qN/IDjXDwCLDZemzdG+Lty6st/1c7Q2RDGFckDRlFnY958tihkuV/UMwO31d17Lwaw2lbNZQWv8\nyKyN+I9a/P+Dg0nt2LoQxERgQj1TIGwD3WcKwZPyiAL3H9NLADar1nEAU5mVawKY2o2ZDM4IfiUA\ny437HcVbQMvvJtIBZL6n3RaAt7V/4LRG/6MVfJ8E3KWq7wEQkVcBN5OwFu+2OLfkD+MIQO2YHUf/\n2xR+3YU/rAV0tDYkZt+vA9ZPJQaTerTviIHBsl70dV7b1bHKhdTLydLSu4V8vz/m86eSfvwYW8w0\nIlDVBvz72/bQsA3k1gHgeDsBcOeCseMAZosymXDnAnIng7OzgV45X8NyihWA5mjvqgMIqhZQdznI\n8vZOBxCMVwBuQ+i4C2L/XCsidzrvb1XVW4vX1wMfcPbdjVmg3ccXisg7MIu8/1NVfWexXYFfEZE1\n8B+c60ZxrskfhltAbfbPrqJ/SCv8+j3//iyfy2Kd2MuzetdP0PoprAdWR2Hrp6XoKwfT2jz+Mp+g\nXatyJWBZCkGY+FNbP2dzcc7zfxfSsoBRBeCBB5sDwQ7vr80FZAXA/tzQYiW2CbBZOYQfHwNQtQV3\ndwDBOAVgi120f1qcKgGQSTWFRzfuTfHiW/A24DNV9QEReQbws8ANxb6/qqr3iMinAq8Xkd9T1Te1\nXWy8kT7nAEN8x9RU1rV13D88u2+1krr103atjYnijtZS8/5XGymif4O1Vs9m55ff2FWmoJa2lr/I\nbipbRKq1eWxm9bjBeN7O+x5LYaaSeBfxHx1pcEDYaqlOQXnD0dGG4yPl+EgdgdnUis6rpbJeTkw3\n0rEZlGZHKG9WZuDaei1sjmDzwHE1i+lhsaCNnfDuaFVf/cy+fuBB0067Oqa2bnLxv6gyYcqEKdPJ\nnKmYgrB5P+NgajK7g0IEDqZq3hf/gwkOLk3NiN9LUzXvZ/a9sX9msw2Lg3rGOZ9vakLgvrYBjB3H\nYgMrGwS5gZIbGPkZ87bddBZDa3qnEPcAn+G8f0yxrYSq3qeqDxSvbwfmInJt8f6e4v+PAq/F2Eit\nOPeRP+wv+rfH7Sv692f6rDz/ZuF3vVkVNs+cta7KLKDs+rG2g9v1E7J+rGVxvKzWzi1E0/f9JwfA\nkZlOufX7nUuvAVwx4g+9Boqunuo8mwn4dYH6uroWaRmAHGxwi8A6XwfHAeh67S0MQ0H4VAXgoh7g\nt4DGOoC2KQBbZy7V/7fv29YAsOizBnDjmLNW/B2v1fMO4AYReRyG9J8FPLt+K/k04COqqiLyJMwP\n/WMi8jBgoqr3F6+/FPj+rhteCPKHdAEYsmZvKlK8/5S2T3+mTzDEX9UBTNtnV+FXRRCX8K31Y8XA\nsX7kGNP141o/i2mr7z9baEGLm4I4XWx6Td4WQtf0D3a/KwK+AFQF4Q2Lg4knMAkCcF+9C2hz/zET\nFqUAyEFFeuVcQOXC3w9W00FPZjUbzm0BHVIA9sfg2T8Ff3tsABgMt398DO3+OVX2z0Co6kpEng/8\nMkaFX6aq7xSR5xX7XwJ8FfAPRGQFPAQ8qxCC64DXipShw39W1V/quueFIf+hOIno3+/8AcaP/gsf\n2Y3+ZXaAWuK3o32diL/s+pkZojKLnhQ1hMO6COyiJbT2eR3idwm7mtOneezBgZtpVJ7/UAGYHNXH\nAdg6iPmOnPxnNjWzgbozpk6Pox1Affz/1WbaKACnjgCG+AAwu21f7Z9nBjLe9A6FlXO7t+0lzusf\nAX4kcN57gM/ve78LRf5nLfpP6fyJzfM/avQ/nRVTFTuFXxu1rla1rh+7MLoeFncvrB8WcJwwP3+X\nBRSb8M0/J3QNKwi+CFQFYfd3o78A2KUi7R51f9cWlRDYdtlgB1AR8bsdQDKZlctBFo/GxhkQ5s4B\n5I8AXm4ksBDQsP5/aG//LI8fMPr3Ikb/+8aFIn8Y5v+f1ugfqs6frkFfSdH/8Soe/a/MAia6IBj9\nl9HupYIAna6fasDUBJwpHszo2oK8OiycvvUBF5boLewoX98GAmoZQP25mgJgh0ys1+ItDlMdJ8fr\nahTwzBk5bYvonv9viLnKBmQyMy3lxc8qxf9f1hb3qT53F1eGJoCDcPuni5Ma/XuyOLvTO4xSMheR\nm0Tk3SJyl4i8ILBfROTfFfvfISJP6DpXRD5FRF4vIn9Q/P/IMZ41FbFfurYUNXSO3WajEzdCinX+\nLJeTsvMnFaHOn6O11Dp/jtaTsvNnvVk2On/UprCTWfULPVuY99OZIf/ZtIpSnddyMIWFWflKLk0L\n28d0/UwOTFTsYjZXpgutTbHsYnEwYR6wboYiJhxuN5AtAi+XWusCil+z2QEE1DuAnCUvWa3KsRK6\ndrqAjpe1jh9dHdW6gWznz4QpU5kZIcAMDJuK+b4PJsrBdMNsUu/+cdd86Or+cbE4WJ/67p9z2Pmz\nFwz+1pxhyU8HPhf4GhH5XO+wp2P6UW8Angv8WMK5LwB+VVVvAH61eD8KUtPElKgj1r3Q5WO63RKu\nCPjRlG39XK0mHB1POFybyO1wZQlfzPu1O91zJQLW/jna2PcT1ptVSfxrXZUtnxvWRgAKwpfZQeVn\nzhY1AZCpKwKzsvNHDqZl26dcmpUiYC6h5QIq5n+trb0Lxorx/fpFUai1UXkIIY8/hnrrZ9g6cruA\nrAD0aQHVo1V9IfulKwArIwBF+6eu11UrqG3/hML/P2q0fwK92z/BEPy27Z/m57AuxWFxsC5FoGvR\noiHEnmq/npgAuAFT179ThjG+sXJYsqoeA3ZYsoubgVeqwVuAR4jIozvOvRl4RfH6FcDfGuFZSwzx\nCX1idwVg2+jfEryFjf59hATAhRv9W+K30b+1f9a6Yb1ZldH/Wlfhvv/ZwgiAjf6hIvzF3AhAIPoH\nkqJ/i+lMmc43AdIPR//2ONu9sy1iAmDHE7jjAKp93QIAsDmiFACg6v+H9v5/KwBe3z8bs01UHcL3\n/i/tH8ro3xK/FQFXALpgBcBG/xZuduBmAbHo38Uue/8z+mGMbzs0LPn6xGPazr1OVT9UvP4wcF3o\n5iLyXBG5U0TuPDq6b7tP0IJdDvyy0b9v//iZgBv9h+BH/24R2IqAXQhk6dhALuFbIfCjf/OghQ3k\nRf9A9boj+rf7uqL/2Vxao/9dwa81uAPKrP2TilHtH4jaP0DQ/rHRvxWCMewfOLnBX6c++j+jOH25\nSABFL2swbCzmsLgV4JpHPr5XJXBI989pL/66c/6A7f+vipVrNX3iZQuhUp/zx073sDEtirqimgJi\nUWQ6KzNgqSz+YvrZ7fAiKaceNn3/bufPCmozRhvvv97zbwTAPPNyqYUATDg62pSF34MDKYl7SDE4\nBjsGwCK1+4dC0NRp/5T5oiqIL6ZV+6dt+bxial4v5tViOvY756AQg4Wxf2RaK/7asQBrVmXR92gj\n5VQfUP1OhLp//MnfwI3wdzv4KwWnufirstvAZFcYQyo7hyW3HNN27kcKa4ji/4+O8KyjYhf2D5xc\n8df9f9virxzMgsVfG/279o8f/bv2j2/puPaP9f5D9k8f7z+GkIAMjf6BMvoHqugfSsunEf1DtPgL\n9Cr+QrMG4CIU/TeO8ewfu63xXZ2g/ZOj/3SMEfl3DksGbgOeX0xTeiPwCVX9kIj8Ucu5twHfCNxS\n/P9zIzxrA/vo/e+z3COYPyg3qrKwC76U6FjtC0x7p58FHJVR3oSpVC2Dk8m0Nu3DRKZVr7lt/Syy\nAXP/as4ftd1ukYFftvXTDvzqGvVbj0smHB9tSgE4PlIODsbPAKoFXuz7+ghgi51E/3YUtY3+7TaA\nxawa/OX1/q9ZllF/tPd/TY3wh/b+Q/fUzzGcv95/LZsnzhoGk3/isOTbgWcAdwEPAs9pO7e49C3A\nq0Xkm4H3A1899FljOAu9/0BwW9fI3+3sn3VJImPbP7Bq2D9mxaywsFZkPCkj78WB1ATAPXaXFhCY\nzp9FS9eRi9WxlHP/TIv58mwBWOZTE/1TTILneP/l1A9+7/9iZiL/QgzcqR/WLEsbaLNZl8Xf5WZa\n2UDF74Lb++83DLQhde1fGD71Qwyn2f45axjF808YlqzAt6aeW2z/GPDUMZ5vLIy95KMvABAf+bss\nvfDtRv5C+rw/9n+TBVwyA4zsXDOAWjJyR/6CEYCiECzFvD+KP+PnDFluzEAoRwDMADAXhrDcydh8\n/98KgBWyUAZgt4fgW0RDuofcJSndgV8WNvqXYpBur+jfIfzS+y/EYIIX/evaqQUcOyO+m9E/+NOC\np039YOGSfdvUD+U9A1M/uDiLC78oWnXJnTGciYLvPrCr4m/bcT5S7B934rcSCfaPmfqhn/1jswHX\n/qnm/Keyf668bKYoBlgXf+yXrzBz2ZsHLOa4L56kmPfHFYDNKsX+gZgA+BYQ0BCBNmxD/O6o36k/\nI+vSm/en+HnooRUBO7J3XS29dmxmT21E/1fMqpk/7cRvVgym88HRPzQneIuhT/Rv0UbEed3fk0Mm\n/5Fwmrt/wBTxll5Hx2zSbv+4Uz9MpvOiM8Xx/xfugiRx/988bPWssqz8fysA7tQPsQzAtYBcn90X\nACAoAjH4xD9G0djH5ggmhecPzgR4B9Oy8CuzWXvnTyD6D3r/PaN/oPfEbxZjRP+7nPhtHwJwYT3/\n84Shxd+xVv2C5vS5XfbP0fEkKAD2D99wTfXHPp9o0ftviHRe2D+mj7ywfbbx/wF58LDu/1MUgO3+\n+ZqKXYwAzNbdBWBfAEJFYKCWBUCT3P0pnmNoG1HszxNksT4WZvO42BjP3xGBozVify9W1eypul4j\nzKuuHxv9s0BXR72i//LznNLofxtk7384MvlviX11/4R6qqFp/4QG5UBoEq9qsJdzx2JKACsAR3Zz\n2P8vIv6a/39wGVPLpyoAX64WLZ9cDZv7DGlNWLC5/xhXAOZFmJneAYTzvjsLcNFG+qlR/9DsQJeb\nuPUDlf9vB9OtV6bV1vr/UOv7t8o6nczNpG9Q1APqff/gTPjnNQNsE/3bTPQ0T/u8y+hfNXv+5wan\nbdUvf2CNb/9s0/7Z5f+bAnAV8dv/l5tD5qECsL2fLQDbuzgFYKh3AG0vABCrAzS3URMBF7HI3cJG\n/f7I4pROn9VSmtM9X9HMBvRwXRbDa9YP1Au/tuXTKfxWbZ/HZeG3ivZnoBRWkM0YKATezPkPdQvo\ncN1PzGz032fWz7HRJ/o/C/6/iNwEvAjzB/1SVb0lctwXAL+BWczlNc72KXAncI+qflnX/TL5B3Ba\n7B/f/wfzB7Zt+6dFyP+HKcztH1JCAXhxGY4frBeAwWxzBQDQhw7L13DYKQDTqXL00KQhANOFsj4W\nUrOA+nYD2xoaI37X6nGJPzTHUJ8i8XotZdHXhS6r8RBAsvVjjj2uWT9go31z/HQyZ7MxP1Nb+AXK\nQV9hz798MtqWfNzW+x87+j9pAVDUTI0+EM4kl0/DTHNzh4jcpqrvChz3QuB1gcv8I+B3gatT7pnJ\nP4JdDv6y57gisQ//vz73f2A4f6QAbNaQvVTy6nxyqT4A7NJV6OH93gAwqhZQ+gnAhBUHbAxhHiub\nlTCZVZOmGYQEAPxagAu3LtCFtrmEtrV8/KKvRc33h7rd08P66VP4Bdfzb1pALmJLPkIVfKR6/yHs\nczWvU5wBlJNcAhQDYm8G3uUd923AfwO+wN0oIo8B/ibwr4H/I+WGmfxbsKvBX23H+Rjq/y83cIk6\nqoE99T94twDMcsqV84EdQE4L6DYC4A8E67KBjo7UGQ9ATQSquYGK76ClAygW8YcsH18I/Cmqk+H6\n/uDZPWHrBw7q26hH+7UsoKXwa7bZn0Z34ded88cf9dsW/adg19H/CeNaEbnTeX9rMTcZhCe5vNE9\nWUSuB74C+GI88gd+GPjnwFWpD5PJvwMpAjDU/tnG/3fn/5nPNw0BMAduuDQ1Uz+3+f/ldco6QLMD\nCIzfbwTgsDysFAB79R4CIAerWhFYl2s7XIsUAfBtoOZUD+7PzRFETwhC8DOHRct8Qn6P/2xezVzq\nQwIBwLbQ1ZHJviDZ+hmj8Ht03Px7mM83TiYaRsqo3y6MkSWMG/33mt7hXlV94oCb/TDwHaq6EWcy\nORH5MuCjqvpWEXlK6sUy+SdgiAA0jttx//+2BWBodgBZhFpAxxAAqHcBAUyuAp1P0OXGNng2BIA5\nDRtoOlsXo2yd53ZG+8aEoA1+pO8Tvxv1x1Ykm8yUWZENTA7a72fmQ3L+JG3R17620X/I94fOrh+L\ng4nitN6fisJvqvcfQ18hOYUTwKVMkPlE4FUF8V8LPENEVpgM4ctF5BmYRP9qEflJVf26thtm8k/E\nthZQl63TtwB8TNP/9wvAY3UAtbWARscAkCgA6+oPdXK1nf6gGgUMMLlqgc4nyMGGyZEpBK/XZrUs\nNwuYzZVVuSZwrCOo/rn6oG320Ol8UxJ/m+UTW8imF+xoXwj6/uBbPTM2Wswk63T9QNj6gWbh17eA\nLk3ZSdtnH+yzRtCFEad36JwgU1UfZ1+LyMuB/66qPwv8LPCdxfanAP+0i/ghk38vdAnANvZP23Hu\nPbsKwEM7gAyaLZP3LadcPV8TEoDj9UMsplcUAjBPEwB3HiBnHEBJQYs1crxmUwpBex2AuZ1Kofi+\nalaQ/UzDESN+H9by2RZ6tKraPXE6fkLo6ftDvevHvA9bPxaXpnXrJ8a5foQ/ZuF3V9H/aULiBJmj\nIpN/T+xCANrsH/+esQJwWwdQWR9ImgK6SQJ9BKBmAc0WpgtocdmMC/DbQK0AzKbw4GF5ngKTKxfo\n3Cx9aG2grixgMdPSCvJFYDqntlBMCF0jf2s2T0H8btTvjuy1axX0RWdNwHb8dCDm+4Pp8jnyWn27\nRKANs5lGC78uuqZ8cHF2iHy8KZ27Jsj0tn9TZPsbgDek3C+T/xYYOhDMoo8AmOO7C8CLg3VNAChs\nolQB+MSx8PAAt6QLgNcF5LaBQhGtFiOBZ9NqKggwI4Nny1ohuI5wFsBCy5bQuAhAlxB0tXC6kb5v\n9Vji9wu9s4UmWz61fv9ExIq+Prp8/3J7YtdPW8+/i7aov0/h9Rx2/pw4MvlviTYBSI3+284b0gEU\nEwDoHgMA8eivSwCmMivf+wLA6rgaCexOBQHIag3TaaMQrEer0gZqywI2R5RW0GK2boiArQm4QlAV\niPvBLeyGiL98fqfQC6bYKwfFesbFusZgprt2F74filjR17yfsV5XdZWY72/R1vWzj57/bYl8nwKg\nCutNtyV1GpHJfwDGEADf/99mBHCfKaCtPVT+8UYE4OpA3A3tAhDsArJ2j50Kwr4/uAzTY9PB4heC\nAzZQVxYwQSsriLoI2KOhXhyuZwVp8Iu6PvH7dk9b1C/NYbXNY6bDRMEt+pr3zd/XIZaPxbbWz3kp\n/NbmVUAAACAASURBVJ5FZPIfiG0soG0KwH1aQFPGANi0vZhkMnkUMIQFYMO6Ng7Avi+ngiiio/IO\ndmoIaBaCAzZQVxagxQIxrgi4dpAtDMPwX3rX23dJv3aMY/e4UX8vLCKF3oHwi77Vdg1M+9GNrqi+\n7zw/Qwu/sM/oX8u1sM8aMvmPAOtb+iLQ1vvftwDsbu9qAQ2NAWhdBAYaAnDf0owEbssAjG1AbSCY\nGf0bmArCzgZaLEaiUIwe9grBs2nQBmrLAsy6uE0RsHYQC2V1LGU24ArBoiDvTQ8LyI3sLenXtgWI\nv3zWS9b6mdYsHzmYVsct5tWUDj6m/f9k/Y4fCBd97XZI6/e3AYQbbEB9wNfQyd66SDxH/9sjk/+I\nCGUBfeb+GVMAoN4C2pYBdFlAi3W4CGzbKJcbqU0F4c8FNGHK1G8FtZ1AbiF4Wu/zr9lAHVmAgVkm\n0YrA9ICyJjC9osoGakJQfvmVILTBj/B90gdj9dgBXZbQfa8/foOWP8kdZQIhuI6U5dbFhCTfv4vg\n/eke+lg/py3636gUa2KfPWTyHxl9bKBQAThFAPx77UMAPnEsXJq6/fMW4bmAlptDNsUEY9W00PNw\nIdipC3AFtbns27IADqZNK+hwXWUCxbwW0wNTPLbZgCsEUCy0jqkTQHsW4LdvukVdN9qHJvGXz+9F\n/UmIEL/MOoYNtyDW8ePD/NppZzbQ5vuHRMFv+XTRJ6LP0f92yOS/A/gC0Mf+8ZE6BiB1ENgQATCY\nsNwoV9Yi4EoA5hPl8mzlED6s16tmJ5Az4rRhA7ntoAVCWQDuIvEUSyI6mYArAva1LwTgiIGFJwoW\ns8gIXp/0oe7xW+J37Z7aZ7OWz2xWWT6LuSn2tllAPeD3+lscTKv5/Ycg1dLZhfWzq3PPOzL57whD\nBKCtA6hTAKA2CGw3AmDm0JlP1BGCanTwgyvlYHpcdZY4nUC1QrBbB3BtINsOaruB/CwgYgXZpSJd\nEZBL09IGkksEhcA8YiUG5c8wsACLD5/wy9dOtF+JQEX8Qa8/FZOZGeg1aZ6nEo7Od7nalOvrW6RM\n9BbC2NbPrqGE1sY4G8jkv0OcRQEAek0GZzBx5oavplVwO4H8QrCtA0RtIDcL8FtCbUeQjYpDIrCY\nGjvoyKyW5VtCrhAApRhYaAK5+KQdivTLfa7VA027py3qX8zNv+msfXRvQAx2jYPILJ8uQuIQa/l0\nMZb1k6P/MDL57xhDRgMPFQCgdw1gNtskDQQzqEc8n1xOWG2Eo4k2O4GcOsB6vWqOCHYIv5EF+C2h\nNgs4XlZtoaGicFET4HjdzAYKIQBqYlB+Mmdf7RNHfpY1T9+J9KttdeK3rxt2zzaYtIvCWNMPpGIX\nSzieVgJXJdg1dRaQyX8PcAWgr//fVwCq8+JF4Npxo2YALqpOoFAdwI4ItllBrRsoJQsIWUEQrAlw\nMI1mA0BQDMpP56+EE4Ef5VfbHZsH4sRvEYr6LazVU/wvs4POeX7GWGIwhkvT7oVfuoq+2yJk/eTo\nvx8y+e8J7liAXQpATWhaxgG0DQTrMxeQQZsANOsADRvI7wbysoDeIuDZQUAzGwCkIIOQGFhoF7t5\nx0OA8KG0eWoev0v8rt3jw1o+PbBhneTzb9umOJ+EZ/j0O35C6BKBXRH1Lq67Yfvv8KSRyX/PKK2Z\nHQsA0DkQzPdhDbozgOONsJjAcqPMJ2Yw2GJtWkHNNi3/N/DrAE0bqC0LKKeGsALkWkFXzJoiYO0g\nRwRYzMtsQA5mpRCU6+ce1xdS1yPbMdQvUg0Rvt1eI32oWz0u8ce8fj/qh9o2FUkm/eVGzqxdkTEO\nMvmfAPYhALX7JAiAPxncbKbB9QCWx0Xf95Z1AGsDhbuB2C4LgGIkb1MEuKLIBuxC6MV2mc1KIYCq\nwFuSvv259IkUPbKvXgdIH5rE72UBnRF/wtTOPta62Vukmtrxk1r0HSNyHz36VynWvj57yOR/QnAF\nAEieBXQsAbBonw0UUqeDqKPbBgp1A8WygGQRWB03MgFWxWIoviUERgigVQxqi6pTiUP5SSPTMNc6\ngVpIH4gTf3n+Fl7/ZslaV2UmYP4fx/+/NCvWhfbQZue0dfxsi76+f3neKfX/ReQm4EWYP7qXquot\n3v6bgR/A/BGtgG9X1V8TkUvAmzAr+8yA16jq93bdL5P/CSKlELwrAWhbEN4iuCQkdNYB2mygUBbg\nF4ObWQDVuABr+yxaRGC2qNcE3GwA6kLgZgSWcK0YQFU0LpDUk+9P0dBG+va9u88e79s9PiKWz667\ne0LEf1FhPP/hkb+ITIEXA08D7gbuEJHbVPVdzmG/Ctymqioifw54NfDZwBHw11X1ARGZA78mIr+o\nqm9pu2cm/xNGSiF4nwLgLwlpkNYJdLiu6gAVtisGJ2UBMRGwSxq6hWGICgE4awpbMYC6ILg4Dnjq\noeP81s0Q6dvj7GvX6vGJ3436A8R/nrDr6Dx1vq094knAXar6HgAReRVwM1CSv6o+4Bz/MIqIS1UV\nsPvmxb/OEYqZ/E8JuuoAQwQASFoPoLxXz8Fgtg5wqacNtNpMo7WA3iIwIyACVCLgW0Iha6ioEQBV\nZgBNsk/px/fEoEH47nX8aB+6iT+Ayt4JWz7W77fF3qN1UY9Zy5kZpZoiCqd4rp9rReRO5/2tqnpr\n8fp64APOvruBG/0LiMhXAP8X8KnA33S2T4G3Ap8FvFhVf7PrYTL5nyLsSgDc7W0C0N2HvV0doLsb\nKFQLaFpB3SJwHM4EWDQtIWiSuxPxl4umO4JgUWYJAURbNS086ydI+tBN/Duwe6wIpNgYIW4de2BX\nCk56qgfVXtM73KuqTxx2P30t8FoR+SKM//8lxfY18OdF5BHF/s9T1d9pu1Ym/1OGlE4gH7sQgFgh\nuE8dINUGOlpLa0eQS/ZuPWCziYgAi1phGHCEgLoQ2IxgvapnBVC3gKAsEJfC0IWI7VN7HSJ9+754\n3SjwOsTvIxT1b4PDtRHtsbHNQK9THMmPiXuAz3DeP6bYFoSqvklEHi8i16rqvc72j4vI/wvcBOyO\n/EXkU4CfBh4LvA/4alX934HjglXs2Pkicg3wGuALgJer6vOHPOdZQ5sAxGYBHSIAQHA6iPhYAOiq\nAxwSt4EOvSzgoLbUYTMLWK/jVlBQBFQru6cg+jIbWB1V+6AiW9cagkoMoMoMXPIO+f7l9xAQB3eb\n274ZIv3ifdnLH4n4Ac/aWQZH9LZZPl0wAh7f1xf7yg72JRjKOAVf4A7gBhF5HIb0nwU82z1ARD4L\n+F9FwfcJmO6ej4nIo4BlQfxXYIrGL+y64dDI/wXAr6rqLSLyguL9d3gP3FbFjp1/CHw38HnFvwsH\nv9/ZFYExBQDCg8EsQoXgrjrA4bpYDCSSBVQDYut/NDbiD2cBxgpas0oTAabQYgnBgScEi7oQWBJ2\nBQGMKECY4GMIkT3UvXtPBGrRvmcBxYjfIuT1x+BaPW32RcrKXhnbQ1VXIvJ84Jcxf1QvU9V3isjz\niv0vAb4S+AYRWQIPAX+3EIJHA68ouHYCvFpV/3vXPYeS/83AU4rXrwDegEf+tFexg+er6icx7Uqf\nNfD5zjxiWcC2AgD07gRqR6AOAElZQKgW4CJcEK7qAZbsXRFYs6zbROJMHAdVNkBRIIZ6RmCPKbaX\n2+z2WH/9ylmFLHaMX6gNEX5gu0/81srxib/N7vGj/hiO1hKN6EM2kD+jZ9fUDucNquMVy1X1duB2\nb9tLnNcvJBDRq+o7gL/Q935Dyf86Vf1Q8frDwHWBY9qq2CnnX3iMKQDueakC0D0iGFptIEiuBViS\nDxWEjzbSHCHsicCEaaMwvGYZzgZY1DMCKLMCKOoEUIkB7jEeFh1/Sr4gOEKQQvpAMvFbuHaPj64u\nn+NN2Nbp0+O/zXz+GftDJ/mLyK8AnxbY9V3umyL96F79IoJtzxeR5wLPBXjYFddse/tTj10KAMRb\nQYHoiODy2i020BHVQt+1OXmiWUD9c7hW0Gxiq72w3EyjImALw1YE7CpWfjYABIUAqNUJrBgA9QzB\nh19HCKCx7GLIBgqQPtQna2sj/pDd0+b1t3X5hGxzf1u8LnT+MdYgr5NAJ/mr6pfE9onIR0Tk0ar6\nocJ3+mjgsLYqdsr5Xc93K3ArwDWPfPzW4nMW0CYAQFIbKJBUB7AY2wby5wYKZQF+QdjC7wqCpgi4\nNYHpZM5G10FLyGYDDSGASgygTuRWECwaGUDHerot0X9IBFzSB2p2Tirxu3aPi1jUH+ryOVxLYFv7\nR/WxS4E46XbPs4qhts9twDcCtxT//1zgmLYqdsr5GQ76FoLtH0WfQrC9z9g2kJ8FhGoBZbEYux3H\n6jHHtItAsztozbJhCQFhISisIaDeNWQ+ZfHsdpzAgD+fSOHXJ3wgGu272ypRaBK/hTuoq9oWjvpT\nLB/X73cDg5Po9w9hHx0/qtt1PZ0GDCX/W4BXi8g3A+8HvhpARD4d09L5jFgVu+384hrvA64GFiLy\nt4Av9ea5uNA4qUIw9G0HhZRagJ0m+tK0EgHfCuoSgXpNoBKB6WRWs302ug4KARTkD0ExAEcQXKRO\nmJaw5q4f2YcifX97F/GH7J4Y4bsR/nLT7PLpy6WnRQgymhhE/qr6MeCpge0fBJ7hvG9UsdvOL/Y9\ndsizXQTsuw4ABNtBfWyTBZgHAGsFXZrG6wExEbA1AVcEgIYlBESFwGYBm01dDKASBH+7Kw594Hfk\n+O2a7rYQ6dfftxO/hW/3pET9bZaPK/wXrdMHjOe/i8Fw+0Ae4XvGMYYAQFodoI8NVF6/VgyGrnEB\nvhW03BCoB5jXbSJwtDbrBx9MNGgJxYQATKEYqIkBUBOEapXk4lNN0gUgtNhKyOaBNNI3x1VdPa7H\n70b8LvH7dk9X1J9q+ZTnt3T62OOHTOecMRyZ/M8BhgoAbF8HAFqzgCYCLaHQagW5ImCJPyYC7mt3\nnEAzG4gLQRn9O1mBhRUEqBO+FYa+CAmBT/jucSHSh2a0b7e1Eb+FS/z+iF5fELoQEgIbEGQL6HQh\nk/85QawQ3CYA0F4IBpJtoJQsoEKVBdhjoW4FuV1BrghAvSgcEgH/9WozjWYD0BQCWyMArwYAZXbg\niwJQ1g9S4U/FkGYDNUnffl6o2zxdxO8P6Kq/Dkf9fSyfVLKfH20nnKcBF7ngm3HKEMoCYq2gkF4H\ncPfFbCBozwLCtQDoLAhDsB4QEgFDbqZF1H8dygZiQgC0ikEw+tftWcDPAOpRf8W+baTvbne7erqI\n3x3QlRL1D7F8UuFO23wBJnU7EWTyP4fYRx2gdp9BWQD4VpCdS6itHmBFwLWDjjcUGYKUZA+Ur202\nEKoNuEIAtIoBYBaYp273THrZXwahWTf95RbrhN9N+vYz2+NCIuASv8WytH6qvv7Dlbu9Iv5Q1N8W\n6adkAX72mooTndKZ/h1QpwWZ/M8pthEA2M4Ggv5ZQBORLAA6isLgF4ZDIuASvysKQE0IoF0M7H4r\nCEC5EP2aJglNnfbOlDV0/UnYQoQPaaQfe+8Tv+vz+8RvEbJ72qJ+u88X/VzsPT3I5H+O0VYHgHQb\nyD93jCzAzhKabAVBLxEoxwlM6paQKwRA8L1fIwBKMQCCgmDObRKaKxJtqNoxq+/CH4HrEz40Sd+e\nFxOBLuK3sMQfs3vK+ydE/W04y34/wEbP7oynmfwvAHbRDQS7zAIA1qxWM2azwIwdERHwC8NQ1QV8\nIbDwMwL//aogej8zgIqMfVGofW+TwPM7iE2s1pyOoUn4Znud5EPbQsTve/yWwI43TeIfGvXb98kF\n4JZlGne5ru9FQyb/C4KxbSD/3D5ZQD9EWkOhuXYA1LqD/LpArEsoRvyWPO02oCEI5nyKfc3I3yfx\nFMRm4az216P8rm2haN8cZ993E3+oyLtt1B+yfGJ+/5Bi774Wc8mDvDJOPfpODAdpNpA9ty0LgGq1\nsC4rqLxX1wAxC0cE6hPHgWsJWfjZgHtcyBpy6wT+dqDct3Ii/1lHxB9DaHUtfwRuW5TvbnMj9lgf\nf8jjjxH/ajWJEn9X1B/CGJbPeZrQLbbiobP/azHrpQhwP/APVPV/ishnAK/ETImvmIXhX9R1v0z+\nFwyuAED6CmHQLwuw17b3M9dJWyzGF4EK3SJgYUXAt4Ri2YArBH6NAJqk7y496WYIFqFpfuvLVcaP\nc9Hw/SNC4G4PdfK0RfuQRvxDkFroPWu2zkb7rXEQQ8eKhxbvBZ5cLHX7dMxsxjdi8t5/oqpvE5Gr\ngLeKyOu75kLL5H8BUYvKd5QF2P2pWUA/pIuAeaDify8baLOFQjUCN9JvI/wQyUPc348hPL9+XAz6\nkL57XCrxjxn1u0ht8TxrwtATbSseAqCq/8M5/i2Y6fEpFsT6UPH6fhH5XcwiWpn8M8LYdqF4aGYB\nEO8IsvvaCsJDRMAWhn0LyY4Y9i2hqksIYkJQbatI0s8MIEz4LkF3FXxjiBaCWyZhayN9sy0c7bvH\njUX8LkI/1xTL57T7/dC7z/9aEbnTeX9rsR4JtK94GMI3A7/obxSRx2KWdPzNrofJ5H/B0SUAEM8C\nIG1cgL8vVhCGZj0gHf2ygRQhAIJiAH69oNlFZOGSdSwjiB3vIzSNQIjw7XO7z9Y4tqWjZ1virz1X\noMPH/oxd4nej/r6R/Rn0++9V1ScOvYiIfDGG/P+qt/1K4L8B366q93VdJ5N/RmsdAOJZAIxcEA60\nho4tArWppC0KDnGFoGobBbdYHBMDc475fxGxx4f2g4e6SroI3z8v1L/fFe2bbWHid9Fm9/Qd1OVH\n7n2E4YxOB9G24mEJEflzwEuBpxdT4tvtcwzx/5Sq/kzKDTP5ZwDtdQAYlgXY81OsIHOdfiLQHCgG\nvgi4E8hVJ5p7uCRedgtB+ddRF4JmZgD+tNPm/1AmsC1CUb/Pcb649CV96E/8Q+yeIVH/acGIE7u1\nrXgIgIh8JvAzwNer6u872wX4ceB3VfXfpt4wk39GDW02EIxfELb720TArQf0zQSOj3BIv35eOYcQ\n4YzAFYK6PdQuCOX5AWHYBrFANpRJhAjfv0abxQNNm8fd1kX8bXZPKlKi/jNo+bQituKhiDyv2P8S\n4HuAa4AfNXzPqrCR/grw9cBvi8jbi0v+i2IRrSgy+Wc00CUAMLwgDPF6AHR3BoVEINQiWo0VgM66\nQAFXCKJZAd2CUB5XZgL9i79dVlFjlS2PE7tIH9qjfXf7UOLfR9S/b8tno+FpL7ZBaMXDgvTt628B\nviVw3q9RDWhJRib/jCDaFoq3GMMKsuf7AuGPD4B0EeiGSzYJ5/o1Ahce2fqC4OK46OCJ1QSax3cf\nE+oxjxE+hEkf2m0eCBd3Y+dbpBC/j4sY9Z8UMvlntCI1C4DtrCB7fpcVZK5VFwEI1wS6p5B20U8I\nfHvIL/pCM0PwcVj8HxMJSB84FOLRVMKH7aJ9/zru9tBgrra2zrMc9QOgMngA3Ekhk39GJ1IEAMa3\nguz+qAgMmjguhIqI3Enl/GKxWyuAcL0gJAo+lmkTfrYiVGwMz74Zj9JDpA/bE38b2uyeHPXvF5n8\nM5LQ1Q5qsY0V5F4vRQQg3h0Us4T6ZQPlXZzX/cUl2Fa6A3SRvUUsyvf3DSX9Meyevjip9s6Nnt21\niTP5ZySjqx3UxS5FoPEsPUQgFfVCMdBYcev0/MHHRC28mHoa6fv7Uojf7+ppI/4uuydH/btHJv+M\n3ki1geDkRQDqltDwbMDidIlBTNxSFlbfhvT990OIf6jds03UP1qtQSX4HZ8FZPLP2AqpNpDFSYiA\nuWba/EHDhMAfT+Biv6IQI6I+hG+uE9/fZvPA+MTfhhMl/jOOTP4ZW6OPDWSxKxGwx6TUBaCfEMSn\nmO5GXBR2h9izhqZk6EP6ofdtXT19iT+GseyeTPp1ZPLPGIy+WQD0aw+FuAi419gmG4D+M4qGxCA8\nxUSodhBGH4FIfdbQ88TOH0L6MA7x79Lu2RXxbza54JtxwVEblDWCCISygNi1+1hC5tpVNgDUbCGo\n/zH7xeKQPRTLDGKCUPs8803jnn3Qdf22a6fMx9OX9OHiEP9ZRyb/jNHgCgCMKwLQbgeFrhETAejO\nBqCZEYS6hmK1gi6ryEb6KeSdii4B6dMV1EX60D/ah/NH/Koy6s9wn8jknzEq/CgbxhEBSKsJuNew\n1/HrAu5z2mf1hQDotIZiLaRdxeMhNYRUtN0/du/UqZi3ifYhnfjHQo7425HJP2Mn8LMA2I8I+Nfv\nKhDbZ7VIEQKIiwHEydXu3/d0AG1CE9u3LenDcOIfI+rfF/FrHuSVkdFESAAgTtQh9BUB9/pdaxOH\njmsTAnOvdDGAeiG3iyS27QrqN8V1/NjY1Mtjk37sWHOvs0P8Zx2Z/DN2ipAN5GJX4wRi127rEvKP\n9YXA3CtdDKCdbH2yHzOCTL1WH8KHdNKH/jbPWSR+zRO7ZWS0I5YFWIwpAtDPEnKv55NHyBqC/mJg\nYUUB9m8XdC2q0jb7ZmxenjGifXPvs0f8Y0NEbgJehBkZ+FJVvcXb/9nATwBPAL5LVX/I2fcy4MuA\nj6rq56XcL5N/xt7QJQDQXwRgu2zAv0fseilZAcTFwDxDfBqEGFyRSEHf1bKgneyhfSK2PtF+2/Fd\nA7hOO/GP5fmLyBR4MfA04G7gDhG5TVXf5Rz2x8A/BP5W4BIvB34EeGXqPQflKyLyKSLyehH5g+L/\nR0aOu0lE3i0id4nIC7rOF5GnichbReS3i///+pDnzDg9mC43raRiMT9el/+6MFtu4qRztCr/xe4R\nu15o6oHYOfZzhT7f/Ggd/NeGyWrT618XUu8f+wxdnz/2M2j7GZ514h8ZTwLuUtX3qOox8CrgZvcA\nVf2oqt5BfUkLu+9NGHFIxtDI/wXAr6rqLQWpvwD4DveADkWLnX8v8ExV/aCIfB5mXcvrBz5rxilC\nShZgMYYlBP2zAfea/nVj9pBFiDwb3U8dArAPpApxDG0Eva3N03Xd1HvsA7qRPpH/tSJyp/P+VlW9\ntXh9PfABZ9/dwI0jPGIUQ8n/ZuApxetXAG/AI38cRQMQEato74qdr6q/5Zz/TuAKETlQ1aOBz5tx\nitBVDPYxtiUE4wiBf17s/DaiTf0OtkUKyVt0EWoXMe+D9Lvuc0pxb7Hg+qnAUPK/TlU/VLz+MHBd\n4Jg2RUs5/yuBt8WIX0SeCzwX4GFXXNPv6TNOBfpkATBeqyikC4F/rxBJbSMIFn3IeWykkugQ0ocL\nT/xduAf4DOf9Y4ptO0Mn+YvIrwCfFtj1Xe4bVVUR0W0fJHS+iPwZ4IXAl7acdytwK8A1j3z81vfP\nOFn0FQCLsbIBiNtC/r1i9/PJK5h1tJBWyuC3odjFlMlDST/1Pqn32ytUtyq2B3AHcIOIPA5D+s8C\nnj3GhWPoJH9V/ZLYPhH5iIg8WlU/JCKPBj4aOKxN0aLni8hjgNcC36Cq/yvhs2SccfS1gVyMNXoY\n2rMB/35t90wRg9g1TxJj+e2pUzGfFX9/l1DVlYg8H1PfnAIvU9V3isjziv0vEZFPA+4ErgY2IvLt\nwOeq6n0i8l8wFvq1InI38L2q+uNt9xxq+9wGfCNwS/H/zwWOaVO04Pki8gjgF4AXqOqvD3zGjDOG\nbbMA2M4SgvGEoO2+MZLrEoVdou9iKKkEfK6jfQei4xXuVfV24HZv20uc1x/GBM+hc7+m7/2Gkv8t\nwKtF5JuB9wNfDSAin44ZpPCMmKK1nQ88H/gs4HtE5HuKbV+qqqHMIuMcYkgWYLFNNgBpQgDpYtD1\nDH0JuEssxlzMvA/p9ll05TwQ/1nHIPJX1Y8BTw1s/yDwDOd9Q9E6zv9XwL8a8mwZ5wNDsgCLPtkA\npAkBpGUFoWfo8ywhjEnuIfQl212R/jbPsm+I6okW64cgj/DNOPUYIwuw6JMNQHd9oLxuYlYQehYf\n+yj8dj1D0rlnlPTPKlmPjUz+GWcGuxABGDcbKK+/hRiEnu20oe96uqdlgfVdEb7o6f55tSGTf8aZ\nw5giANtnAxbbiAH0E4STwraLp29rTY1NpDnKj+P0//ZlZEQQmnJ5CPpmAxZ9s4LyfhFiPSlR2Jbo\nXZwW0of9EL+o7rwGsytk8s84F9hVNgD7EYLavTtIeKg4jEHyPoYQYI72TwaZ/DPOFcbOBqC/LWSx\njT2U9Dw7IO9tMTTqPevEnz3/jIxTiNOSDVjsSgz2jTFsjrNq85wnZPLPOPfYZTYA4/brn0ZBOKlB\nY6nIpL8dMvlnXCiMnQ3A9rZQCKdFEHZRxDyPxC8bPVU2XB9k8s+4kNilCMC4A7XaiHioMOyrU+U8\nEv9ZRyb/jAuNXYgA7E4IfJz2NsOzWgxNhejp/xnEkMk/I4Pd1AUs9iUEpwm7Jv0c9Q9HJv+MDA+7\nygbgYgjBRSJ+UT2z2c3pay3IyDgl2DXJzI/XZ5Y4Yjhvn2efEJGbROTdInKXiLwgsF9E5N8V+98h\nIk9IPTeEHPlnZLRgl1mAxZjdQieJfRD/aYr6AdBxnklEpsCLgadh1jm/Q0RuU9V3OYc9Hbih+Hcj\n8GPAjYnnNpAj/4yMBPz/7d3PaxxlHMfx94doVbzUtlptK6IgYvVSKNKDJ3+UEsQoInhpq55y8CyF\n+A/UXnsoOQiVCt6CASvRih4UKtZflOCPJlbRWislVGiL1dKvh3kCQ2Z2M9n2eSb7zPcFw87uPM/O\n89lNnszMPk925L9ryc4Ehu3oeRjbvAo9BsyZ2c9m9i/wLjC2pMwY8LYVjgNrw9ffNqlbkdWR/8KF\n0+ePTO3+NdHuNgDnE+0rpRxz5ZgJ8syVMtN91/sECxdOzxyZ2r2hYfFbJZ0o3Z80s8mwvhn4rbTt\nd4qj+7K6Mpsb1q3IqvM3sztT7UvSCTPbnmp/qeSYK8dMkGeuYctkZrvabsOgsur8nXNuSJ0B7i3d\n3xIea1Lm5gZ1K/yav3POte9L4EFJ90taA7wETC8pMw3sCaN+dgB/m9nZhnUr/Mh/cJPLFxlKc3qQ\nlQAAAsNJREFUOebKMRPkmSvHTMsys6uSXgNmgBHgLTOblTQeth8CjgKjwBxwGXilX93l9ikzixLG\nOefc6uWXfZxzroO883fOuQ7yzn8JSeskfSTpVLi9o0e52unUvepLelrSV5JOhtsnMsi0XtInki5K\nOpgoyw2fAt/09YkpUq4XJc1KuiapleGTkXIdkPRDKD8laW2qPFkxM19KC/AmsC+s7wP215QZAeaB\nB4A1wHfA1n71gW3AprD+KHAmg0y3A48D48DBBDl6trFUZhT4ABCwA/hi0HwJ359YuR4GHgI+Bban\nzBQ5107gprC+P/X7lcviR/5VY8DhsH4YeK6mTL/p1LX1zewbM/sjPD4L3CbplgjtrxMr0yUz+wz4\nJ1bDV9DGRYNMgW/y+sQUJZeZfW9mP6aLUREr14dmtvj1WccpxrW7FfLOv2qjFWNnAf4ENtaU6TXN\numn9F4CvzezKDWhvEykypdCvjcuVWc35YuVqW4pcr1KcObgV6uQ4f0nHgLtrNk2U75iZSRp4LGxd\nfUmPUJyq7hz0eeu0mSknuefLiaQJ4CrwTtttGUad7PzN7Kle2ySdk3SPmZ0Np59/1RTrNxW7Z31J\nW4ApYI+ZzV93kJK2MiUWawp82/mST+1PJFouSS8DzwBPmpn/sR6AX/apmgb2hvW9wHs1ZfpNp66t\nH0YkvE/xweLnkdreS5RMLYg1Bb7tfMmn9icSJZekXcDrwLNmdjlVmOy0/YnzaluA9cDHwCngGLAu\nPL4JOFoqNwr8RDEiYaJB/TeAS8C3peWuYc4Utv0CLAAXKa7Lbo2cpdJGitFG42FdFF9sMQ+cpDTK\nZZB8CX/uYuR6PrwnV4BzwEwmueYoPg9Y/D06lDpXDov/ewfnnOsgv+zjnHMd5J2/c851kHf+zjnX\nQd75O+dcB3nn75xzHeSdv3POdZB3/s4510H/A/yoxBpC7OwyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Hamming window')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULVld5/n5xeOcvJl5bwFVxbsUVFg00D4RmLYfPgZk\nNShMOyLgA5e2DiqDdKsI0iprWmahMtqOqMhI8WgVtBUVBUTBB7YjSmlry2NaEUEKKYqioO69mTfP\nicdv/tixI3bss3dEnJOZdQvyfNfKledExIm9I2LH/u7fW1SVLbbYYosttjgpJFe7A1tsscUWW3xq\nYUssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLF\nKETkpSLy/Ve7H2cZIvK1IvI7J3i+bxSR/3pS59tiCxdbYtkCEXm/iFwRkcsi8nEReYOI3GD3q+oz\nVPU/XqW+XfUJsOmDisiPe9uf2Gx/5Wn3QVV/QVUf67StIvJZp93uFltsgi2xbGHxFaq6D9wH+Ajw\nk1e5P5MhIumd0MzfAU8WkczZ9nTgb+6EtrfY4pMKW2LZogdVPQJ+BXio3SYirxSRH2o+XycivyUi\nnxCR20Xkj0Qkafa9X0SeJyLvbiSfV4jIjnOeJ4jIXza//X9F5LOdfTeIyOtE5KMi8jEReYmI/BPg\npcD/1EhTn3D68zMi8kYROQC+RET+QET+rXO+nqTTrPC/XUT+VkQuich/FJHPbPpxUUR+WURmA7fm\nFuCvgS9vzncP4J8Br3cPEpH/IiK3iMgdIvI2EXmYs+9aEfnNpr13iMgPBfr4jKaPnxCRnxIR8a9H\nRN7W/OSvmvvyNSHJzpVqmrZf37T9Z8Bnesc+RER+t3mm/0NEnjxwL7bYYhBbYtmiBxHZBb4GeHvk\nkO8CbgauB+4FfB/g5gX6Wszk+5nAg4H/0Jz384Abgf8NuBb4WeD1IjJvJI7fAj4APAC4H/BaVX0P\n8AzgT1R1X1Xv5rTzNOCFwHlgqqrsy4EvAB4NPAd4GfB1wA3Aw4Gnjvz+1cA3NJ+fAvwGsPCOeRPw\nIOCewF8Av+Ds+yngALg3Rtp5eqCNJwBfCHw28OSmzz2o6r9sPn5Oc19+aaTftu0jjET6Tc0fACKy\nB/wu8ItNv58C/LSIPDRwni22GMWWWLaw+PVGIrgDeAzwo5HjCszk9OmqWqjqH2k/4dxLVPWDqno7\nZuK3k/W3Aj+rqn+qqpWqvgozKT8aeCRwX+B7VPVAVY9UdYwsfkNV/1hV60bKmoIfUdWLqvou4J3A\n76jq+1T1DgwhfN7I738N+GIRuQZDMK/2D1DVG1X1kqougBcAnyMi1zTk+VXAD6rqoaq+G3hVoI0X\nqeonVPUfgN8HPnfitUXhtP0Dzf19p9f2E4D3q+orVLVU1f8G/Crw1cdte4uziS2xbGHxpEYi2AGe\nCfyhiNw7cNyPAu8FfkdE3iciz/X2f9D5/AEMYQB8OvBdjYrnEw2J3dDsvwH4gKqWa/T3g+OHrOAj\nzucrge/7Qz9W1SvAGzBS2LWq+sfufhFJReRFIvJ3InIReH+z6zqMhJd5/Q5dwy3O58OxPk1EqO0P\nOJ8/HXiU92y+FiNZbbHF2tgSyxY9NNLE64AK+OeB/ZdU9btU9TOArwT+vYh8mXPIDc7nTwP+sfn8\nQeCFqno3529XVV/T7Ps0zzDeNhnrqvf9ANh1vp/WpPhqjDrw5wP7ngY8EfifgWswaj0AAT4KlMD9\nnePde3Vc9K7fWxTYtv1nY/FB4A+9Z7Ovqt92gv3b4gxhSyxb9CAGTwTuDrwnsP8JIvJZjVH5DgwB\n1c4h3yEi92+M288HrP7//wGeISKPatrYE5HHi8h54M+ADwMvarbviMgXNb/7CHD/EcM6wF8C/0ZE\ndhuD9TdvdgdG8YcYVWHIa+48Rr33Mcwk/3/aHapaAa8DXtD08SF09ppN8BHgM5zvfwU8TEQ+t3GY\neMFA2w+lb9/5LeDBIvL1IpI3f1/YOE9sscXa2BLLFha/KSKXgYsY28jTG1uEjwcBbwEuA38C/LSq\n/r6z/xeB3wHeh3HR/SEAVb0J+BbgJcDHMeq0b2z2VcBXAJ8F/APGOeBrmvP9HvAu4BYRuW2g/z8O\nLDET7qvoG81PDGrw1saG5OPVGBXTh4B3s+oA8UyMJHML8J+B17Bq/J+KFwCvalRXT1bVvwH+D8yz\n+VtWHRqeiVGr3QK8EniFc02XgMdijPb/2Bzzw8B8w75tccYh20JfW5wUROT9wL9V1bdc7b58MkBE\nfhi4t6qGvMO22OKTFluJZYst7iQ0sSKf3agCH4lR1/3a1e7XFlucNELG0i222OJ0cB6j/rovRmX3\nf2FiYbbY4lMKW1XYFltsscUWJ4qtKmyLLbbY4pMMIvK4JvXOewOxZFbt+icishCR7/b23Sgit4rI\nO73tnysibxeTdummRl3r7v+0JoVQ73zB/p1VieXa687rDZ9+LapQqwmKUIVShVqhrIVKoVSoFKoa\n6lqoyoS6FupKQBVRkOYeSuRWqtj/0n0XQRJFBJJEEVESl+abkyXNb2s1P6xrUBXsY7OftTb98fsh\nA8/X9ifW3x68YyXR4G5xGg9t67XTNKTqXUezcejeutflXocK1In07m+e1+R5zTyBearMEiVPISEj\nkcR0oCqgauIz0wySDJIUpabSkqpWylpY1EJRw6KCskyom3FR14JWkNTj97u9v8332L2M3c+he2pu\nXXdfg9+dewxMGsPdNYS2SfgY5/pEuj67n8f63xvr3hj3+zw2JiQ171qSKElq/qcJpGL+suZ/Is17\nKUoqJgjpnX/5gdtU9frhuzOMfyrX6mWKSce+n0tvVtXHhfY1mRT+BuP2fjPwDuCpTTYHe8w9MYGv\nTwI+rqovdvb9S4xX56tV9eHO9t8BflxV3yQi/xp4jqp+sbP/VzBT5Z+65wvhzNpYbvj0a/ntP3o+\nldZcXKYUKiyqhIMi4XLzd7GAjx4JF5dwqYCDw4zDg4yDyzmHBznLRUp5YAZwvqhICxPOkS+rXlvF\nzCTfrXLDHMU8pc4SZvOK2bwiy2r29s2Am83Nb7Os/+KVpWlnuUgpisS0XZr/y4U5f1LW5Iuubduf\nIdg++SjmqwmD66x/rO2r/z3L6uB+MJN820ZzHUDvWpKyuY8D9xQg866vzBOKWUqVJxTzlGxPmc0r\nrr/XITfc+4gHnFc+43zNp51fcp/dhHmyx15+d9LFEXr5o3D4CXOi3bsh+9ej8z0W9QFH1WVuP7rM\nR67kfOBSzocO4e8uCh/96A7LRdqOh/JA2Lkcnjj8Zx+7P/52ey+Hjg/Bva/ud3esAO14GbrPLuxY\nDsEdS3b82HFu+59lNbN51RsHK20UXZ/d/o+NDXc8lPZ+N+NhsZezf2HZvmuzecXuXsnebsn5HC7M\n4PodZZbANTNlP6/Zz2v28opclIfe41vcTAUb4TIFL0gfOX4g8I3VW68b2P1I4L2q+j4AEXktJjC3\nJRZVvRW4VUQe7/9YVd8mIg8InFeBC83na+iCmxGRJwF/jwnEHcWZJRZVOCxhUXWk4mOWwPlcWdoV\n3m4o44gZ8KHpZOwldVEUCXles1ykzOZVSyQuwfik4mITUnGP8wnGnsslGPtSg5kw7CRlJw7b97Hr\n9GFJJdT+OvCJZpHlbb+OKihqKJpnWdVlpwjOZkZCsUhO7rXwJ9t1SAXMvbHk4t/vGGKkYjFEKllR\nt5OyjyFScc9T5Qn5oqKYGyJYsjou7Hg/LkLvmE8qxTw+LhfLhJ205uISdlI4n8MdS8EOjkUl7J1A\nP08Y96Ofnudm4FEncN5nA28WkRdjbsA/AxCRfeB7MRLSqBoMzjCx1GoGzeWye1nKuhOf56lyVAk7\nKVzIFWhUIFnN7l5HMHYFdvnibKKQOw53grYEEzvOXcVZTCUV/zch6SVEMNBNTj7B2M9ZVk8iGheh\na7EoZunKJFLmyQqZZM7kZie1okhYLBNMkgCaRURNTUVVF6SkSDZHs3hw/zxd/56uSyoxuOQCYQL3\nySNEKv4xEJZUhsjFwl5baKzZseSTi4vZvIqSS57X7QIky+qVRdQUuKRi7nsnNVnY+3FUmT5cLARQ\nzKUJiypl/wRJRQSyPP4+91BxnYjc5Gx5maq+7MQ6E8a3Af9OVX+1KZvwckx6ohdgVGSXJaI+93Gm\niSVGKhY7KSxryJNGepkB1NxxhZZc3JfATvQuwcQkgjH4k8eQCgxWV5+bYKivvgRhicYnmI4Q+5Nh\nCCHJawghcun1cVm1q2p7LQXuBCLGNlILlTb9poKkCTBvJBXJ5kaKCWCemkUGGGlyGYmbHyKVdYkF\nOqLwpZehY0Ok4ksr0Fcl2Xvok4srrQyNZft7n1xi2ERysWqw0ELD9rVPKp0aLoTFMoFZbfI2IMwS\nAGVZw1X0b7pNVR8R2fch+nnf7t9sOy6eDnxn8/m/AD/XfH4U8L+KyI8AdwNqETlS1ZfETnSGiUV6\nZLKozGerKrHfZ+24UooaZomQJzWXiposq41uvVVbddIL0COYoZcrBndimGJX8UklZuuJYV3yG+pz\nTD0WmhBD+vN1Ya/V/vev1Uy2/ftT1QXtQjpAJFaiqeqiVZUuKuGoGRtlKRRF0j6T+WJVZnWfe8h2\nsu5qPEbY/nmGSMWFfeb5smonZp9QhsaFL7n49sQpOCm1mNu+ixiRm/fWOb4hFyuxFI0jxlFATb4J\nJIH5fKLEMlwI4h3Ag0TkgRhCeQomAepx8Y/AvwL+APhSTGogVPVf2ANE5AXA5SFSgTNMLKXCx45W\nB2FRS0sqYKQWMARjpBdlJ4WdTLiU1sxnCw4OM7JMOTzI+tILYduLxdCqM3TsFFJZx67jYh0jvg/f\nqG/7C51KzMeQUdbvl0uYQ1JLvigp5uEhPSQ9qQhTXndDKmYcLJbdsxhS4UH//vgr5ymqHvf+Gftb\n+Hj/Pg+Nr2Ketvfaf/YhZ5Mh5Iuq95xCRvzB3w+QyroSrW0/5CATIpgQuVh73PmZed476V3Lc1ZV\nSxF5JvBmTOdvVNV3icgzmv0vbbJb34Qxxtci8mzgoap6UUReA3wxcJ2I3IypEfRyTC6/n2iyjB9h\naihthLNLLLVw21HSEse8GTwuqVjsuOPOIZhZYjzGds6X3NEM3MMDc0tblQXx1eIQQjrz45KKqypy\nESKVTSSsEMYmwSmSyjrk4sP1ShqFlVoaY35VL6i0pKZiUQlFLSxrOCrNdfnSSuqoknz4KjBXohsi\nl3XIYp1jfLhjwCeU0MLBIinrlqRWCMrzDJv6HHwHjynk7UpWPqmEsGrH9O7ZrOboSmPQn02UMkYg\nItNtLCNQ1TcCb/S2vdT5fAv9Eg3uccFKqU1xvS8YafcFU/p3dolF4WJBo0eFWUMoO974mvdWK90x\ns8SsZHZSa/SrWyOglV6gM2i7xsvQCxKbWPyVvf39aUkqPqH4k4rf95i0Yq87pgazE0VCvZHqawpO\nihyruqTQpJVYihoOD7LW5bwlRl/1GJjgXHfbokja+xQil6kEMeW40Jiz98e9/3a1Dy4prz4f22ad\nJT1ycc9r97sYs7uNYcXWN+DKv06bllw6r8xG9Zl17/UW03FmiWVZw4cOhJ2scyu22w1p+KTSl2os\nAeVJ5zXGkhWXZLv6cj2mXPdL9wUIkUso/uDOIJXYKtVunyqBxbySQlKKbyPyV9EhqcX1DLNqsDJP\n2t/aSXw+G+mv526sItRaGeM+xpOsaIIjj6qO6F1pBfpeacfBmDfXSvdHVHGx52lJwT/eEkpsYeCO\n5xC5HBe+6jdIjCMqu6lu2b4HZllmrZv/cpFyOClyYwsXZ5ZYqtoEPRaN19eyloYgXMgKuYBLOGYg\nXiw6cslLYLdsV0mHBxm7e8XK5DBFLRCLP4Cw95ed1KbEIcSC2WJ99PtiJxM/tsU/3lX5uNewScyN\nD5dcoFP12et03UwhrCuv6oI6qUi9WBbXcH9YGtWpNdwvlknrTOFKK67rc1r0J2x/Jexuh+nuwT7W\nVbH6CD/zsArJJZPQ97Fz99voEIptCsGXrFwX+dAYDknMITfnsEPJpC6tBRGYz6+al9mdijNLLHWV\ncHCYscjMatbMCYZcXHXYolollzxZVY+55NK0gPULK0tpVR9jOnUI69VjdohYRPpQHMIQqQwF7sXI\nxSJEMiGPpKmu0bHYmhB8jyZ7XTE9+6JKmKUVlXYSpmSN23E2M6Ti2Fdcw71dSVvpcSoxuhOdey9D\n6k6LqcQRizcKTe5Di5ohFVJZJqNkchLqx6kqwKnOBX6QqSWX47a/RRxnlliqSvjE7XN290rKsmKR\n1RgyMEFS503Q9orNxSWVPNHW2G+PC5GLGdjaIxiLKW6ibXsDKrBQoOBYkNsQqQxNPpuupIeklJib\n8BhcQ76b0sWqc+yE4j9HF1VdkCZO7EqSUeuSmopltaTQrGe4d+NvQvEUQ3C95cbSrQwhpnIaihuZ\n8nyH7BG2zy652M/+ImMMVmKITfC+Gix2vWPqW1dS9MnFPcZt199+UkSTCMymuht/kuNME8vB5Zyi\nSNjbLxqdaoFPLjvpqtTi2lrcgDmLC7nxGAPYSV3jX4pVzaxDMJuqO1xyiemjfVLZJHhvCkJSSmhC\njnlVrYMpq+ZFJezWJXVi7CgqgjSqMBWhqrr4lUVlcsdZw31ZCstF357gE/sQQouHIa+nKXaLUDqV\nqQuGITIJSVh2+2ms7E9TWgilx3H3hZxLgGB80hbDOLPEohVNcGOjn291rn1yARskaUikcIIq3ZgX\nd0W8k3bxLheLvt3FlV4sXPWY603lG0djGJrUhiSX45LKJoTnG+HHYNVhQ7+xRDQkORw5u0Iu5S6s\nwd7+t4G0Q90OpZfJF5WJ/Hc8Av2Jesj2NITB+zFBYun1fSBLQmyiH+q/m5VhKMYptn3MaL8uXOlq\nqoOMJZPjZLLwYTJtbyWWT2mIQnkgLBdG/dF/sfrkkjexKzPHGwxWJ6hYvMulxHifXWqkF5dgrFuy\nj5A+/qS8bkITz1QPmnXUNaP9mBiPEnq5Q2QzFiVuIuZHDPh2m4YSjnaYzSuKRlKNXYc14IfyqllM\nJZRNM1VPXSyEJlz3nVgnTcwQucRIzHdicDF1zLtt+c4jft9DbU/Nqr3FOM4wsWi7orx8ccb+hSVF\nkTgTfUcuNneQxZFHMBYhtZiNd7lU0AVUpn3feKtagU56sWilF05m9WaxaUJE2IxU/EhvNwWI//KO\nqcPsBDpF+vEnKqPOEgoVKjWeX3k6X/t6oCPoUB/sNfiT7MpxJ+AdB+NBjcfJT2YRsjmEJuNQjrDQ\nRO+fK5aN4Tjw7SmhtscIZR015xAkEWZbr7BPfbiJCm1+r929YoVc3NxBedJJJi65WLtL3xbjx7wY\n4lnWtDEvscC4kKHUIjahjhnA3eA3WFWBxfJXhSaUKcbU0L6p5BKDvyqfQi7r6u2rutOpu1Kpbdqv\nlWMRUodN8Xw7LmJS2pCKc2quspCHosXQhOxnN/aJLmTjsNuPY2dxpcNYW6H+Q98R46TI5KzizBKL\nW8DOlVzAkEtZCocHOVC0wXXLzEgvRW0M+24wZQyWaC44ko91bc7LTnpxE1r6UdkWNvfYcdVhrrrA\ntelM1T/HMFQc7CSlLRdTJ+bFMoG9acemSU5am1djnipZou2ioCOXVTWcOymVedLL9DuEddUt68Yj\nhVbtQ886hKHgVp9UQuTin8dXs21qc4p5wcXsO/44HCsYdpJYK23+JzmuOrE0ZTZvAj6kqk8QkXsA\nvwQ8AHg/8GRV/Xhz7POAb8a4Vj1LVd/cbP8C4JXAOUz+nO/UCTWX3RcAzKCz5AKdQb8sK9gt22BK\nZn2XZAjHu7hw1WQ25mWWGOnFEoyb0NJVj1lsspKzLrgxxFQFU3TpLsbcPteNzo6pw9aJbXExFnmf\nkELZpJRNd7ptdLaWNiFpc7/qLGmTjPrk4ZLLSSKUPXhKxgQ/sDG2b2iMjRUIs7DOIv6zGiO42DiL\nEXObmXmAXGIYct0fc9PfYhxXnVgw+f/fQ1cS87nAW1X1RSLy3Ob794rIQzHpoR8G3Bd4i4g8WFUr\n4GcwmTn/FEMsjwPeNKVxd0BZsd2SS6cuaFLpZzXXnDPV5phJL6YlJLW4+4taVsglT7pU/C3BNAkt\n3Rcuz2sOLuetrYUNJJaxyTgcfRxfpbqYkqww1qeh1XxMtXdSnjqpJEY6SfLe9oTUbKtMgS/zZ57l\nTvPG2MDLoUJsU2KJ3GNheFIbI5WpmPqsfYwRihtP5C8MQoZ1t22XVIYmffecLnGN1X3xryF2/hCO\n6/5uYSLvtxLLqUNE7g88Hngh8O+bzU/EpHQGeBWmNsD3Nttfq6oL4O9F5L3AI0Xk/cAFVX17c85X\nA09iIrFAnFzs6qqrZmdiXbrVb+dl5Me7WFJxpRifXGwCTJ9gbEJLVz1mM+kCFOW4egVWJ6nYixda\nSU4lFYsxY7EbRLeud9vU2JaWiMbSvCdKLn3pUlSh7nuCGZVYl9tj5qjBrDRrpZbY81hXrRIjmCmp\n7NcldogTSuj5hFRG7rtjyxYMEWooOHEqqfjf3YJioT7792gdUjkpMjmruNoSy38CngOcd7bdS1U/\n3Hy+BbhX8/l+wNud425uthXNZ3/7CkTkW2lqDMwv3DO6EvbLqfqxLlY11pwV0KCtZSgVjDXsX8hp\nU4Wcz433WJtzrIncPzzIyfOa3T2jeFkuZisSSFbU7fXEgiJhmqrEYmyigXghKx+bRmifBGy/bDZq\nizTJSEgblVcHUe1tz0XbZze7E7QkY0GtMEwiU13HLWILh1h2BJdQ8kWfjPNFGZyUfS/EUB/GJCIX\nvg1rStXTEKaWkdhiPVw1YhGRJwC3quqfi8gXh45RVRWRUVvJVDQ1o18GcP4+D1o5r+81BX0DN3Tp\ntbM2BQy4kovvbhyCnaQ6qaarWtm5NneR+zbn2OFB1qZdX5D3XkbXeBwy7q6rMlmHVEI1T8Zqsk/F\n0Is/JY7FT+kyT7X9A0gla9ReJZRLc1Bdto8xTTJstoT2HI3EetLR51OzJNi2Twsxj8PMW+X7pAJd\nhmlYLbgVgn//pqqnQg4S6xDCcQrbbYqTNN6LyOOAn8Ck8/g5VX2Rt/8hwCuAzweer6ovdvbdCNj5\n9+He7/534Dswg/4NqvocEXkM8CJghvFn/R5V/b2h/l1NieWLgK8UkX8N7AAXROTngY+IyH1U9cMi\nch/g1ub4WJ3nD9EvaDOp/rOKjA5EqxfuudnmNVC1HmM+uVhPMZdg+kkrzeRmt3XqMcgTaUhG2sDK\ni0u45lxHLi6GKlQeRw+/KakcZ7ILuRz7pLKOq3G/Boq9v2ZflijztG4lEmu419KovYRVz7DWxtKo\nMoeuNWYTCGGorvxqWpbh1CxDWMfl1sUUKaXt/zyjmKU9h5G1Cq0F2nS/w8mqqKYk7LwronF4+ing\nMRgNzTtE5PWq+m7nsNuBZ2HMAj5eCbwEeLV33i/BmBw+R1UXInLPZtdtwFeo6j+KyMMxlSuDWiGL\nq0Ysqvo84HkAjcTy3ar6dSLyo8DTMQz5dOA3mp+8HvhFEfkxjPH+QcCfqWolIhdF5NEY4/03AD85\n2r70B9YU419ZJhxctoZe1z23Ixfrimy/++qw/bxuXVjLur9/PzdSS54kQIKVXC4uzSq5LKsVe8sQ\nuWzy4oyRiq+OcUklFKntwl3hu1UHQ+QQc6n1Efq9my7f9s/GH+UNqawY7uuys7GUS5J0DzCkM0+N\nJBMMgPUM+FODPccIxV5HLDvz1DgUt5/rSldDUsqQs4GVHIt52vZ/ireZixCp2O/2fvlSyxQMvROn\nKQUCIJAOlGFeA48E3quq7wMQkddiCKElFlW9FbhVRB7v/1hV3yYiDwic99uAFzV2bHsOVPW/Oce8\nCzgnInN7XAhX28YSwouAXxaRbwY+ADwZoKnp/MuYm1cC39F4hAF8O5278ZuYYrgX6Q2qhaP7jwVz\n+cZ8gN0986LtpMZbbJl1aWCahgA7oWlLKkD730XW8zRLWrvATibspGVv8rZqMWsAtdewycprit0j\nRCp+ZcRQnIJFLPeZJYcxCSWGXrCl00fbh9m8ar255qkx3Lv2FfE90xuCSZOcVHOorrTPxQ2Q9fsw\nZYILEYovXXb3dtm7Dhdjk+AQsccm+lg8R76selJKyO7hSit9FdhytL9jWSVs21bNdrJEMi5tn2Zi\nzAFcJyI3Od9f1qjywUgLH3T23Qw86gTafDDwL0TkhZia99+tqu/wjvkq4C+GSAXuIsSiqn+A8f5C\nVT8GfFnkuBdiPMj87TcBD1/9RRyS6OpgajN7rBY06qrMrb6wu3sld1xpVFYlTWZj5WIrSsiKOszH\nPI29WLY9E/eSJzXz2VEv1sXWeekCzU7mJRnyPLL3xJ283f+xdnypBQjWS4+178ON5PfbAaO6bPuY\n9NWSK/YVa2Mpl60B3xyXME/rNkgSjHoty+rWIYGFmexC8Rzt9YzYvvzKjf69ba95ZNXrpwWC1XEb\ncqZwCX61zLI7VZS97a76yyWV/QtxYnT7Y93ofck7Cyw23O+uyi1mS4wRSffdaS/Sz5OSZEQgm002\nGd+mqo84kYanIwPuATwa+ELMAv8zbEygiDwM+GHgsVNOdCaRJNp6WY2pE6ZELbvkYuNcrM1lJ+1s\nKYtKViQVSyq5KIVKgGQSZglcLFzpZcEdV5KVaP2QimRKcNwUb62Y6ms2r6KTnS/BhNqLEchQOV2L\nUN32kM3H9dqbpxq2r7juxo0B3/cYM+q07rudoIu5MSCPuQm7fQ5NelPu69SJzn3uQymCbJ981aRN\nUeMTjUsyIVLJ9rQnbYXGnJ8Pz96PMXIZkvjGnBzcz2NS4JDkfRdAzN58XNwMvK4hkj8TkRq4Dvho\nExrya8A3qOrfjZ3ozBKLSHgCmrqiHyMXE49iJJVZ0rkXrxry6zamYp4qVPTIxarPLhcJO6m0gZVW\neinOGYIpS5NAc2+/6EkxIfhEM+WaQ6TiSgX+PXTT0rhtut994vDVeEMk6P4GuonR2lfcyXk+q9uy\nxOZ+1mGZdkNkAAAgAElEQVT7SiOxaLlAyiXpfIe0zkiTjFyqnj2sC5BMWjtLSB02ZdLzc7W5hLK6\nqvZXvBHnikBKILddVyUWii9yyz6HJAeLMKn01aN+Ua8xD7EpkmqIVKbcW39/DKdhbxGBJJJnbk28\nA3iQiDwQQyhPAZ52Auf9deBLgN8XkQdjvMBuE5G7AW8AnquqfzzlRGeYWDS4Ggzl6YpJNDFyOapq\nE4eSmRoey3oiqdCRCwBpDSTs50YNc7lImKfCHUtpbS9HVUMwdT8df6hape1zTF0Vk1pi9hR7v3zv\nK3eyc9sfK8nsexBN0XuHJJ++GqxfoC1LlFSSsH2laiSWRnLpSTVU7SJhx3lrQuqwobiT0GLGV3mF\n72kY/v6yDHusuYlNXUxRibnJNX2JwXcpjpGKva4x2NgxX3IJ2VVCpDJE1r3znYwR/apAVUsReSbG\nOysFbmxs0M9o9r9URO6NSZV1AahF5NnAQ1X1ooi8BhOEfp2I3Az8oKq+HLgRuFFE3olxK356E/Lx\nTOCzgB8QkR9ouvFYa9wP4cwSS5JsHofgrr6jE2UTQGkkCyu1CEUtlHWnDitUVqLALXJR8qyiUCFL\nklaVlicJRS0mDX/hZEwmXq2y82Y7HoYklamY8puTXDH66qsVuPYVC8eAb1K7ONJK0kXfuyt/l0iO\nG3sylO49ehmR9DJDUov7OaSKchGa2ENxKiH1V6j9IVibi6uiW+nPSBXUGKlcNYiS5ScTlqeqb8Sk\nr3K3vdT5fAv9MAz3uKdGti+Brwts/yHgh9bp35klFpveeMzY7MNP2DeFXJa1cUNe1sKiSllUwr67\nYkrrqL19nipztLW/WIK5XFiXZGnrvbQR+5FqlQeX80GpYZOa5TFs6kkzZRIIZVq2KpzFgEecdTUG\nz3DvoyEZK80YldmCuRe5P5tXPfWOb4Ceouv3r8ues8vyIKNSiz3OPQ8QlFZduGM/pBZzEZvYh1zO\nY+q8UB8seuNzbvoWI7sxQhlre4vTw9klFuhNujHpJWQE91d6Y+Ri0+QfVXBUKWAkjqK2BJOAoxaz\nsPYA8xkWVeIQjAmyzJOkIRlWqlXeccWeqZNexsjFR8iAPjRhhFbNMSPyOhgiqlC8zdD502T6sLfq\nMNehYifVNvrel1pgWEoJ37N4VUVrv7EIkcwQqUwh+JDNBQgSjItYcOzYs43ZiUKqW6BX2tnvt/95\nKqm45G2/W5yWmuwEbSx3eZxZYkmad3EKuUC42NVQTIA9N2Akl6VVxxhvsQu5YF2JQ+QyT5XdDNKk\nS+OfSsk8bVbmVcI8TZinaUNACXcszbnbei9JzaWiS2bpksvK/XDTw3iTidWduyqOKaQSmiRiGAuu\ntFinXoft91g4TOsRtmzWxufoqcYsuWSJjcDvXI6Xi04laqUWt/114UstvkrM3mN33NrfWYRIxd7T\nmBuySy72t2PxUK5NJXRue0y3X1e2GduPYl38153UpxCK7zxgERufPulssT7OLLG48F9SHyFS8dO9\nhAjGrWfvptwfVI015DJvDPd2UqsbUkglodI6EvdiVGO23ovJBAA0UfuQ9iZC/5ospqYgj2FdNdi6\nLp1Ti0C5iBZj820rG57PGvE3hSu1hMgFCBKMPd5iiMzXuc9j9seTUjGFbD1Dn4+DmEQUgj1uSzCb\n4cwSS61xFYINNrTbY6nF3Uh9X5KxE4WdHHb3SsrSrPpN7i83cWV/sOdZxaJK2M06QqmcGAtLLmAM\n/Fmijs2mI5dZAuebtHGLgYnPSitDifzWCqz0VsxjarfYfv+eun2FcLLEpKxbDyjrFVbUJUfOPFjV\nJa1gkc2QbI4mGcwcSS7rJMV6IODUv4ZQ3RF/hR7DmME+tpJ2J8uQlBL77rcd+hzLRuEfaxcrlmBd\n+1O3Xxopry8Z2fcwdG/G1LbHIZyx3/rXcFyYJJRng6jOLLGgElzp9SPYzffR/FnOZ1cV4hPM3n7R\nSEcVR7slIXKZp8rl0thE5mm1UiPEwkaDQ0Kh5n/e2F12UuMlVtRdOV0/11gMllxcqSU04cXOMZVM\nQr8Z2j5GKFNQ1MKiSoCaSkuquiBN5oZEshmkzesQIZWy7hYiRwNc444Xf9ExBle96kqWfoDpkNPJ\nOvfePUdsAWW/D6nGptpyXHKJYapkcVyJJlaeeWvwPz7OLLHUdXxl7UopIbWLO7HZSbhFMyF3q7BZ\nO0HYQbu3b6lolVzmqZE+CpXGjmISJg4hF21iXlzY3yjLzKjEDkbvyjhcnby5vjS4/6RWku79H6so\nOAT7yMpaqLSmpqKmQkWQJIMk6wil+a4i3aOZ0N/lIiVhdUJeF3Zx4q/s+6qwk1lJ+6Qytb9jLswx\nuOQCcRdp/3z+ue2Cb13i9uH/9iRUblFsjfef+lBHYplCKLFVcmi73VblTdBcma4QzHKxSi6zhNbD\nK2uqHM5TWrWXTzAhwpmnSlGbv1llpBWTI8useqe4rkI4+tmf6Cx8Mom9nENuti6GaqtDJAniBIJZ\nVLbuTcJOWlBJQZ1UpI6EMvUcMaxj9xlopL3/ZSk91drU1fRonMiImtGF7ctJSC0dNr9PrhYhRIQx\nL7LYuSySsiahbu/5VnrZHGeYWOITYmiVbDFWgCgKj2Cge/l3UkMuXZLD/svbReV3fensLMMrV5On\nTLmItOowNzEjsBJ/4afHgLgHXOje+at2GFcJ+ROEf++HSMXut+Ti6vjL0rp5C0eVCTBdVEJN1anD\nSDs7CyCZUY/VVFR1QVUXjQrN4KghF1etuMlKd6pKL6ZqDSFE/DHpcqqHnasWjZFLSP0Xc8cPuWi7\n8NXS9vMYAUJX/dXvyxD867fnOK405ENE10lC+UmNM0wsMkgoQHBiWwfub6xR3JY8ns2r1u3XVqOc\nJdLaRSxhlLWwl1fkoiyq1KvvkrCopFWbte16thYwaUisOixklHTJZcxQG5IwQmTiHzMFQzXPp9SP\nzxdVGyRp3VcXy4Rlk7/tcpFwjx2hqkvqpFGHpTuItbOA+Z9kVPWCSsvWzrKopLWtLJbdPXIN91Mx\ntGCxFRGhr2oNTZo+xghlXbuVX0/enXTtOXrXsahM+TtvUo6RS3vNAQeETrpP2zEWWuy5ffVd5kNE\nGHpOLlG152i+f7IUALsr4QwTSzyCewqhTJnkQnAN4tZz6fAgZz5btFmRP7YwrsiWXBaVsJcbF+Oi\n7FLA+IQCRoXmq2tcRy+rDgt5F62jQtjE5dcilJHYxaak4vbN9fIry4SjsuaoMgb8gyLlMKvJE0cd\nZu0s0NpXau3aX1QmoBVoydpdRYfsK0PXZhEaX26J6RjB2OuE8YWAj1h9eeiKZ1npr6fWpZNeQoTi\nfnYn5SkOB+52X0pxvRZ9yTVUaMx3Phkj/BC5uufYxE4Wggik6VZi+ZSG1jJqmPdf+kkr5gmSTQGt\n1GLVNQeHWZsCxqbct5JLnmgTpd/kGGtUYj6phDBLjAeTtbO43mExTFFZxaS6KcW6fEI5KXVjvuxy\nSrmqluUipahNBgSrCjNEsSBPdow6rHE7Blo1GNCow0oKbc5bw1FpJr+QGsyfnGLXOTa2bGVEiBMM\n9KWYoZV16LkNlQC2BBNr318cBKuAetKNvU+hlPkQJpT5omj7GuqnHXPu/fL7EEJsDNrzhbwjt5iO\nM0ssqE4mFBgnlXUmQ6uucaWWFgFymSXCNTNtAymt22uoAmVZdytr6FbX53OnrG7Thp8F2Y8ZWMc7\nK3Qf3AnptOBOgGCeoy8V+naWojbqw0qr1jsM63YMjeRSt/aVSmsWVdZThQ25VU+tfOlew9B1xQgG\nVu0fQ/Cf3ZTyv5tek48hm4o/5nwp5dxB0SeTRb/QmN0XKvwVQ0xqdq/bJZcTgZhhdhZwZonFTcs1\nZfJzU4eHMOSV5A74lX3OyreXAgZ6ZY6XtXAhN6SRt6lFDNx0/EUtXC6M7eWil71vJ1V2znVlju+I\npNm3KWD89B4npRIYg71X7mTiqzzcZ+GTi1XFWKlwuUh7dhYjsZjjq7qAFON27JzfEErZi2OxhG2b\nDk2Sm0zAY2MLwtUn18FUUrFtudJKrDqj3eYXCJvSP5+Q/bixfFGxc1CQOZKVSyih/k4p/AWrheL8\n/rsYChreIo4zSywW66hh7Mu2jr7fnfBiL2i3+hXakHAneeUsMZ5dRxVcyIWd1Br5nX7bNPy1qdey\nDHQxT8ykeKGVXkya/VAdF9OfZHCledoIlci18J+FJRdXHQbm3rp2FhfG7bghl4TWxrJqX0koa6s+\na9ofUCWuXEdg8hq6tpPEVNVX21eHwNx6Ky78Qmuh1PaxSR1W3aZ9Utm5XLTkly+rOKE0ZZFduP2N\nqQaH+n/aEvZZwZkmlk0H0dgKc6jWuQ93wjYTusnpBSYNC9RGYsk6gskT2EmbxJltU9IU/iJIKm0b\nDrnMEkNAR3mXrNISDAxnyL0zJkUISy8u3GdhyaWdvDFSi9t/a8C3ROHaUvyrtPYVa5Mxv+/UYWNB\nin59lnUmr5BRel2sSypu234Rrxj8NPuuam5qzEvMnmJJJVhkzCmP7PfXbXssdsqvnmnJ0X1GJ0Y2\niSDzk5lyReRxwE9gJoufU9UXefsfArwC+Hzg+ar6YmffjcATgFtV9eGBc38X8GLgelW9rdn2POCb\nMRPUs1T1zUP9O7PE0qsc2GCdyXLsxR8qT2vhr9w6l8uOXO64YgzuRc0KwbT9bn52sQgnW4wmYLQO\nApk9zi0UZpJo7u51+jQ/3sVHSDd/UhgimCmqJNeAD/1Ax0qbFXFjY3HjVyqtKTSjqKWXxmUsGHRd\ng29sPMVUYEPnH3LZds8bel7rkMpJIOT1FZNUWo+1ZnJ2VWBDpBKSuMc81O7K0ouIpMBPAY/B1Kl/\nh4i8XlXf7Rx2O/As4EmBU7wSeAnw6sC5bwAeC/yDs+2hmPLHDwPuC7xFRB6sqtEJ88wSSwhT1RNT\nJs+pk4CF6xFjkw2WpTTJKxMOMN40pn475E3ef1smt5NcVgnTJxb73ZzHpNm30gtL2kJhpl82TXvd\n2SuyPOiyuu59CWHsZR6TYMZgm58fw+3TjWGBiES3hit1CENleMfgS0fuuHZViK4txW3TJ5WpxfDs\nNbtuui4xratOLeZZj1yGSMUiVvxrnYJ+p0YoAnIy9ppHAu9V1fcBiMhrgScCLbE0ZYNvFZHH+z9W\n1beJyAMi5/5x4DnAbzjbngi8VlUXwN+LyHubPvxJrINbYvGw7oo7NlGGJoCheIOxDLg2cd/hQb9S\nnyUa6Oq97KQ6WINkFtxnpJfzM0wVSmqgaAnPNeyDkV4Wp2DQn7pS9AlmTGoJ1WWZSi7W0L+s42rG\nKfdhneuyiC1QYgGKU+Ea5/22QqRiP08lhxi5+HClFRetRDXPMGmPCJJKe/yEuvdtzZyBa7gLSSnX\nichNzveXqerLms/3Az7o7LsZeNRxGxSRJwIfUtW/EunZEO8HvN1r735D59oSy5oYqr3tYhMVQshT\nJlQX4vAga8hFW6IB8wIVdc35mTQGekM2R1UnpcySuLrMSi/WLXmnqUK5u1eu1KxpY0Qcgpnilhm6\nV/7vQnru6PkCq3EfK4WfEg26aodgSWUsRxiMSyntcSNGcxgnFP/7GMHEFkx+O7HJGcIuw6H4mFgw\n5dg7MSTFxUjFdy4YKlPsVi8dIpfTsh+KCLIzecq9TVUfcSodCUBEdoHvw6jBjo0tsUyETyhDL/sm\n8KWWmDum3edWc8zzuiUaY7Kusd5k1l0ZOlKxK/VFJUGScQ37bhVKa9g/PMha6aV9See0KrIx+JNh\nLKZgHenFjfVwVTnuPd3JwqSaSvg1GKvDEpqcxvo7lpl56jjzJ8fQPR1yFpjqweXCL2Hsw7YTC6Yc\nS0fjq6L7UkvcrdieL0YqrhpsKrncxfEh4Abn+/2bbcfBZwIPBKy0cn/gL0TkkZu0d2aJRWW6u2js\nZfdfjk0GayxjsLs/9hu3Vke/CJQhlzwBZibupV8/JFxXZJaYv2VtAiqPKihyE/dylBtp6A6HTFyC\naYlwPl2XPiU2ZqpNZigwzk+6aUo5mxQ5tkJnQgrlkfmc7rXb5mm8wuTU572uhAKrkl1oIh5rP+QG\nHGpj6sIolFsv5CjgX9tY9LrdZ+1BFpn3PRQPNtVJYop9yPWeOxWInJSN5R3Ag0TkgZgJ/inA045z\nQlX9a+Ce9ruIvB94hKreJiKvB35RRH4MY7x/EPBnQ+c7s8QC01bEYys7X82yjpHQYig9d+g8NpFl\n6HdlKU19+4JrmoDAS4Wxu7iwrsn+NnefSzKXCrhYCHnSJxi3/PK6q0E/8NJOhOvAfT4tyTjSiv2b\nz+qWOF2kSU6a5PhIk7zN7G5ISCO2qVWsY5gfIxQIL2CmInRPp0jbY/m8fNtIKM1KLLjQbdN3V3ad\nDVxHg6Eg4zGMpY25U0jlBKGqpYg8E3gzxn30RlV9l4g8o9n/UhG5N3ATcAGoReTZwENV9aKIvAb4\nYowd52bgB1X15QPtvUtEfhnjHFAC3zHkEQZnnFggTi5jUopv1HQxJoXAatbVoeNctJNEswr0E0fa\nWJiyTDiqamOIz6BfUKwPVz1m4c9vs8RIPkXeEYxVkbnqMYtYSVk/4+1JRvX7KjDXycFcp7a2pFy0\nrWeTkBr386Zap3VFT5OctF5498E4TISw7uQ05jk4RZIIqcT8e3kcG2BoLA8lhYRhV/yQp1mMXIAe\nwbgIeYJNhU8qLoaSWx4bCUjc938tqOobgTd6217qfL4Fo7IK/fapE87/AO/7C4EXTu3fmScW6JPL\nkHHe19n7hOKu2CGeHylUpCiWdiKWz6ztG/2sxKH0MEUN52fgk4trc/HTxPjIE2EnTTiqaAlmJxMu\npTXz2aKVXtyysv61u/fGRWhy2RQ+qVjbk32fjRrM/KVJ1qrCTAc7tVdC2u7LxZYh6A51r8OfoELe\nab4X1hCpDE2UU6SVIaKecm5/vE4hlCnqPr8d+zn2/H3VmMWQetS3U7oLC7fkuAs/yaW9rlMhlzOC\nLbE0iEkuQ/aUk8RxV+zuC7O7V7TpYbKshlkNy1VyGVPtuGSTJ8I81abCpU0ZY4z8F53Yl8OD3CnL\nnLZ2n4PLec/t885GnhB0wU4la9ReJVoa6UTqkjQ1qrA0yZinZXsfjEqxb5+rswQWqyv3KTiJzLmh\nxYtvzD+ug0koiBEmZvOOuC/7/R+Kgo8t+MYi7EMISSuWwHyJ5UQDfkWQ/JPWYWAtnFli0YDtfqr6\nKzaIQ5mBQ66Z68DVkYf6N6RO63J+VSax5ZKeQd/GZITmNksqe3kzYSZJm1U5T0yiy1kCFwsz0e5k\ntNLLYpn0UsNYoimKLqOz2b4q2QxVBtwU7vOyrsZBw32jCqNckqR7pJL1DPjzhlSs5JJldVSFOYR1\ngh1j1xHaF+pLjFDGioC5iI3boQSWoej92PvjSvZjkmto+9B76UstIbiBpO51uPu3WA9nllhg2Fh8\nnIks5D1zHMT6MlZB0H+hFlnNNedqI2E0ksssMW7HbobkPNG2sJgtKmZqwCTs53Ub9T9PBRuQeamg\nlV5saphONUhrh/H7OBUnURfDV29bw31rX7GqsLpEVM1+zaG6QtZU5bTXbklzHU/Ak1z9bpKmxD1m\n6Dwu/HIJg7EmA9c3NPn7bsyhJJEhrCOFhaRkf9Hmk8uWUDbHmSYWmO41MyatWIyRil+kaQybqjBs\n+7b8sU0PY3OPgZlol3V/wt3P63ZFn4tyYWb6u6gSclEKFbIkadViVnoBm2G5iX8pV3OP2X64dhi3\nr2MYIhf3Obn2FSu12bg062qcStLZUSypOBILdUkiZn8qCfO0u2dtXJBXbncdHEdaGUtTEtq+ibQT\nqxIaUvfZCTkkrYTenZjU6vd9SmzN2PW5nmAWvtoNOnJZNx3TZIggZ6Ro2JknFtjMzTWEIVKZcv6w\nHWc41UusH21kfPObvlG/YCetG+8uI7Xs5/26LrnEjfnziPRyx7IvvViCKWqbqRkgZbkInjaIocJW\nx0HapMg39pW6ta8AaLlA6FyO0yQjl6p3P9bR6R/XCDzkMGK3hcbGOn2cElE/ZqCfSipDfYBpKY5i\n54x5Iw7BDdANqSm3Ne/Xx1UjliaL5quBe2GsyS9T1Z8QkXsAvwQ8AHg/8GRV/Xjzm2DqZhH5AkzG\nznMYF7zvVA2kL+53YK3+upP10KD3SWWKqm2KC3OsTz5su7H69Xv7RRvnkic1lxKjEttJ7cvTxIKo\nNJxmti8qU3XRRZcWpW6KYCVt6pOV5JaY9DD2/rkSi49YwSUIl+adct1H4ZIeGyOYeHLNKqJTCHLq\nxHzcSPIxUnFh87K5UgqsZj3wr2EqfKllCsm0fRshlbGAUhcnTigJcErZv+9quJoSSwl8l6r+hYic\nB/5cRH4X+Ebgrar6IhF5LvBc4HtHUjf/DPAtwJ9iiOVxwJvGOrBu/MRQOouhF9OHTypDqoIpffLb\n9T/7k+3evkkueamdMGwApUsuqTHcN13ySWWe1iyqhKwxhruGfUja4Eqb3DJv4j/KsgKMt5jf97Gy\nx7HSvL1jnOu1xnXTzgCzWNuK425MuYR0J5ruBaZJkEPSyhi5xEjFd6F1j9+EXDb5jSWXIe+p43pO\nrqPSGwoy9s8xhuOQ4hYGV41YVPXDwIebz5dE5D2YjJlPxESFArwK+APge4mkbm5SD1xQ1bcDiMir\nMTUIRonFRUwdFgpkjOm2xwjFtmPhxlzAam4j6Dy7iqIf0R5amUWJjPhKnt3SeHS1hVYC5BKBtTtY\ngrGqMWt/caUX66K7cDypQjYKl1BirrsuwQT3A8zjHkHWIaFHGnUZ/jyC4+abmkouEF5shGwV6/Rr\nkzFsESsHPGWl7z732CJq02tyMcXrDYbDCU6KXGRrY7lz0dQG+DyMxHGvhnQAbsGoyiCeurloPvvb\nh9ts1Di+1BJ6ycei5Ke+jDFS8QnFkok/oF1ycV9G65cP8SSIbg1420aWKVlWcyk1SSu74Mk+uVhj\nvkXrKYaRZLp9hmAOCtf+krSFyZaZcM25GpOOX3oVKhNq0qLukclxUmwssi5NS1maksJH1WqW4iRG\nuCP7piBU6ySEELkMSSlTMEV6iY3jGPxSBbEMw34/Yghdk9tv314yRjBDi75NXLHH+r9FHFedWERk\nH/hV4NlNHpt2n6qqiAzbStZr61uBbwWY3f2ek33nYZVc7DaLdaQUIEgqbmr8qTaWdfIdFcDlizP2\nLyxbb7FuzxC5dN/naU2h0nqIuXDJp2xsLub3CedzAOWoFOazmt29siVII7mYc1kVSy/3VKTm+RBs\nPrXTnhjcibCYpSsR21PcV4cyGJ9U39aFb9B2Fyz+NQ29NzEVlU8qoWh8e9w6xvgphDIUNHoctfQo\n5ORKE9/VcVWvUkRyDKn8gqq+rtn8ERG5j6p+WETuA9zabI+lbv4Q/Zw40ZTOTaGclwHsf9qDRwnL\n96ffNMDRPZc7cEOkMnUyWdfzpVcH3nNFpt0zTC5ZoiyqpCUXH6GYF5dcjiq4YKr/ssgMuRRF0qTa\nmK1MvD5J5ovSVBWckOQxX1QssqTnGXeasM85ZnNYh1TWDfQbGgtD5OLvi+UZm5IheR241zFF7TsV\n6wZ4+vBJ5cQI5QzianqFCfBy4D2q+mPOrtcDTwde1Pz/DWf7SupmVa1E5KKIPBqjSvsG4CfH2zf/\nfakFju8NEvMu8e0prlpqKqG4Ls3rSCuhc4B5ibsMxXFyKWptY1wsuVhYQmndcStWyKWolQu59FRi\nZVmxt1+0fSrKdGVlHCKXIdjfnGRwm1GJhd18bf6zNrvABoQCw6Ri4ZZJ8LcNYR0bxVgSy3XisGKe\nlG6fgKCk7qt9Q7EoUwI7h+BqIWKkcqISrwDZVmI5bXwR8PXAX4vIXzbbvg9DKL8sIt8MfAB4Moym\nbv52OnfjNzHRcD8U8etjigfZ2GQxRipt4sgGbsXG/vb1Jk23Rka+qFaM+bt7xSi5FLX5bMmlPbcT\n7+LaWlbJBRZV2lOJ7e2WbT6x3b2CTyx2ehPxlLxb/jE2G25aNBLmfPQUa2Mn6z9LO3YK4nmtYL0M\nCkOYkqYkhJAUENo2VJXyuDFEfr9DknqIXKZgKBgZ4n0fIxWX+LaYhqvpFfZf8bP5dfiyyG+CqZtV\n9Sbg4eu0b003/orkuDppi+NKPTFSgb60MqlvDanYSc8lF/fFHSKXWWVtJrRSSOcVJqPBlHmiXLtj\nXI0NGk+xu/ejJT/BDvODghCstDJEOPmipJilJ5s80EEocad7D6fUV7E4zhjZNOJ/KrnAqip4EwxJ\nKyFScUtg+xka/POG+haydbrjHobrKp2q+ksEZqu1fz4VcaZDSk0tkW5wx/4spk4EUwywbkR850Is\n7Z9/rD1uaELZZDK15+z3wdhDjko4qoRLhYlJuWNp0rdcLhIOioRFlXC5TClUWFTCokq4uEy5XCYB\nw77JtbWf11zI4Xxu7C3nc7j73Rfs7pXs7Rfc7R5H6D0SjvZzilnKlb2cK3vmsy1ROxQbUswzyjyh\nypONMt8Owc1MAGEVTtePNFoHxf6FYBcN/t9xMGQoH9rm4qSDBWOkMrU/FjFSSYu6/RtCrJ27ujeY\niDxORP6HiLy3iffz9z9ERP5ERBYi8t3evhtF5FYReae3/atF5F0iUovII5ztuYi8SkT+WkTe0wSq\nD+JsKPwCEOlWaqFVih+UdRoG4ClR6MAkUvGT6G3iquvrtXfSuglyNJLL+dyQi1VvHRRJI6kkRu1V\nrQZSQie1GLheZk4Kek9yOSTniDy4As0X5eQ0KaMTJtUkp2JfInMXJPa52PT5J1FWGPqR55ukbHHH\n9VBGaf98sX5NDSgOeVD6/XHb81XArtTi/tYf/0OkEsO65ZjvihCRFPgp4DGY8Ip3iMjrVfXdzmG3\nA8/CxPT5eCXwEkzmExfvBP4N8LPe9q8G5qr6T0VkF3i3iLxGVd8f6+OZJRaLsZdzXUKJSSvuZ1dH\n7hjniaQAACAASURBVJKLuwKeogIYwvHKuJrJ8o4rAHWvjotLLiZti7aqsQV9l2NY9RQzmE4uRWTa\njxnxrRospoIaKmY2Fb46zE2fP5RjKqYSWjfeZKU/a8S8uBN0rP2p6uGhzBIxcrEekDFSCWGMhMdI\nZcyR407zAhOB7EQWqI8E3quq7zOnlddiAshbYlHVW4FbReTx/o9V9W1N7KC//T3N+VZ2AXsikmHs\n2Evg4lAHzyyxjIXH+PXb/cF9UskQIS65uO2dVnEs/4W15GallqOKlSJhllx2UsG6EndFwbp4lyGY\nY2uOqoTzuSGXojaOBC7KecLli7PW7uLW+whJZa4ks5Y6I7l6r0Js4hyrAhnyujqNyfG0JPYpCNlZ\n/PfQYkztNVRe/C6I60TkJuf7y5pwCTAB4B909t0MPOoU+/IrGOL6MLAL/DtVvX3oB2eWWMbguzeG\nBrNvDIR+8FUsEthVn8DmBaNCqb+HMMUFt4ttqdpklQvgqKo5n8MyE44qOJ+bQmFHVcJOagz6Ra0r\nBIOT9qWspZfmZVFJm7q/qJXzM0tURa8/s3nFgjxYo9wiRDIhw7FNplnVJVVSUtUFadYE19j/SQbZ\njJqKSktqKvO7Jh/asu4T/VTSjwULTjFEx8aYj3U9xjaVlsaM5K7UMpbHawgxyd0dC6mXrWFqTRWf\nmEOahKE+rI31jPe3qeojxg+7U/BIjJ/nfYG7A38kIm+xElMIW2KZAPtyxSa2GMHYl2oIIZI5bbj9\nDKnoDi7nFEXSZkK2fVxkNfNZ3ZCBMEtMqd48GScYl1Qs5qlRpc0qk6RyltAmq3TJxfZzuUhZZIZg\nqkUyGLvjB0geVSZ9f1EbJwNLGAAkGZLN0UZqkWwOSUZVLwy51CWFmtxny7rLlOw6XsA0z6mxIL4o\ncUYk5NCkHYp38ffF+jIlNiSW9dhui5FLey2OyrcsZVQdNmRfHEpaelwchxBPGbFg8dPC04DfVtUC\no177Y+ARwJZYQhhyZ4TOQwfiKyR3ReSvMEMTzRDZ+CQzhJB6wk+94e+z/bL9GII9t8mEnJFl2rzg\nFYvMFPAyRa9MWWJDJoZgrplpQzCy4knlI0+UnVR6mZAN+uRSFEkb/xMimBDcOJbFMuGoqllUtJmY\nq7qgTitUBMlmncSSzVARaq2o6oJKaxZVRlFLS1CdF11HXgn12ipSX0IZen7rntuXXoZIZWwBNIVU\nLHxy8WHfuXUn7VBQMPRJJWZbnBrM6ZPyiZKLCJKeiErxHcCDROSBGEJ5CmbyPy38A/ClwH8WkT3g\n0cB/GvrBmSaWGIa8T/wXairJhM4F4azDV3OV5KsDgCbFvd3flea1aWmuOVdzVHYEs6yFRZW2gZGw\n6qprjeg2BmbWSDNFrTBbJRe38qQlmMsXZ4QjXjpYV20X1jV6lhriqJPKFP6ydpYkaySVolGDJS0Z\n2cddljJpMo4ReEjltc7qe8hA7iK0UAmpd2MY6mesr/7kPhaoOkVqiWHoXh0n+0LoPbirQFVLEXkm\n8GZMYNiNTQD5M5r9LxWRewM3AReAWkSeDTy0ycf4GkwG+etE5GbgB1X15SLyv2CyllwPvEFE/lJV\nvxzjgfYKEXkXZuX3ClX970N9PLPEoiqDRkE/CNFXUfgZXmEaybjwJ4ehFBhTMGa8dOHrv9023VWb\nH0dhbR5AEzFfUpaGYOYzQzBHFRxV2kov1p5iycR+L2ppVFNWYrFlf5Wdc7CTCZfSmvlswcFh1rqh\nupKmSy5WNeZPbG2sTt04I2DIZdezs0jWzH7ZrJFUyvZY+we053DP76+iIS61WmxCKC5i5RximJoO\nBeJR7GOkYuFLLb6N0e2DTYljycWStutmH5JWNlF/xQz3oXu3aYaDKE4wQFJV34ipPeVue6nz+Rb6\nORTd454a2f5rwK8Ftl/GuBxPxpklFoh7XcVIJTQBhCYy99gYXOKZsvIc6vs6cNUTY3ag2GTlEo91\nkzbSi7LYKyjqmmUtrfQyS4yR/nLRBUqCsXfcsexIpe1jcysu5MosES4ugd2y9dRz4xyWi9RIfYv+\nM7Eo6NRVR2XZOAo0BnytqDF/JPOe8b7WZWtfseo5Q5idncgNLHVhn/1QepfQBO1nRo7BV+sMkcq6\nKq8QgnbFwKRu+2/fidj1+/aW7nvY/XkdUom9jzGMkfFpeWN+quPMEotqWOccM9QPEUVIepmCKTpz\nP7Atdp5N2/W92HyEXK1d2OwEbvr7siw52i1b6cUa+HdSkxrGuCmbidonlV4/k65I2E4Gl1Jj28my\nmsODnL39oosfKVeLf9nvZtXbr8myqEzmgJ20oJICzQRpVGEqAkprXyk0az3CwNhrVty0J66i/f1+\nehr7PUQw7iTtL0SGCGNdMolJWaGFVaj/PrnAarE53+PKryjqBwWHJMKpGMowfqfiDKV0OcPE0teR\nu4QCcf/4oYljXdF8Ux2w31dYTw0Gq55sQyqbshQSVqW3Kk8oypTyIGsLl5nVpZnwrfRiDfwXckMw\nQ2SyE5gDd1LlUkErvew46rHlwijCbAJL+wzcia0kWfEMs15qrkuxdTu29pUQ/L73JNtlFSWKGGI2\niqnSyxDW9VgLYUhaj12bTy5DfYu59PoqsPmiex6uhAfDKX5iWIdU7mo2lk8GnGFimRY/4E/Yx0mZ\nEoIrPYytpEIDfKq0ElNLhFylY+d1V+R28tg5KChmqTn3gZngyzJp6qwY6cU38LtuyhYhQoEuyv18\n3kkvyxpY9mu67F9Yclhmweu0UpXxYuu2rxuF75KK62psV9J+gbKpcLMI2Hoz7oTc3l+GS/+uE2Q5\nrV/jHmBTEJJaQoZx1/bi21XseXxSsZ/9OjghL8ipksqpEYlwUpH3d3mcXWKpZTTNNsRdeEMrsamT\nSm/S8CaKWEyCj5D785hKbkjn7yJGKhb2pQ6tWOcHBZeZ9bYZm0jF3m5JUTeT+8xE8dvuGJVZ/1yz\nJEQ4yqVCmkwAqzVdjjCqBveensuO2N0rW3VcnmhbbjkhJZXM1FwpjwBI0j3SJCfVnLRetGlpQpmN\nXWnF3Ls+SbiYWglzE1KJ9WtTTDHW28ncHwexSb53TCDWJuY846sZY+3FECKVoZo2VzPTwKcKziyx\noDp5tT8UH+JiijQTe9mmiubuywbrORS4x69Ua5xg7/HbgE5t464a5wcFh2XWTg4mFsbYKGyQpbno\nPrm4sKRijf3zVJocZeCSy9Fu2d6X3b2CQ7rMAfae7u0XZFnNhZk57zw1pJJKYggkaX5Tm3OJrkoy\noXgcG7viSivufdikpLKFTVsTI5WhPGOxBdPUGJh1bXabOBy0vw0EB29qMA9JKzFSce/fWPnjLcms\njzNLLG1uRI8wYit6f/tgBtVIHit/sh+TVlz4br9uH0JtresdM4SQtOK2E0NByiE5ZZmwu1c0k79x\nT6YhhBC5WFLZz+ueuuqaGavkkncqsRBm84rdvZJrztXspNpKLLkoaWIklYTUkEm5bH9nt6dJxjwt\ne/1wJ6F8UfWklbH8ZUPwJZxue3yc+KvrodokY4sH//iptsVgnzcYe74zzRRpJdp+gFRCVSHdbN6n\n7gG2Nd5/6kNUoykpYNywPibF+NLLUP6idQyJQ1HHvsF3THLZ1HkgpPZxYfuRFiYy/vLerJUobKoY\noCWXZSZcyM2k70oqIfRVY9p8r7k0MxGcq5l+ld29gvMzuHYO1+5U3GOn5MKsImFGKpmRWBaHaLkw\nsSx1SZrmpHX/9XDbthOf+xwyr/6HvffuZDhGMm6SzSpPjhXFH0JIehlTfY4tkvz9U3N1xRCTEEKk\nMoW0Y++XjYcaIpettLIZzjCxDNskphLMGKbUQA/FIYR8+cdIxf6fSi7RPs87o7Tts22zVfMsK2No\ndsglX5SmgqO38p4fFCyIrNQacpklfvqXfl4xG0hpgxNde8f99pSPLYSddMEdVxp13KybhK4/B/fb\nVa7bqdnPa/azmlk6I092yJMdUk1aNZiWC6RcQrrTa99t20dW1EGSDd37TTyZ1o1xGkoQOXZM7zwT\npO7YNlj/3XFd/n1pZaqkEjuvm2TSfvdzvYUSzx7XVtWDCKRnY8o9G1c5gikEMwVjUkzoRfMj70Pw\n7Spun4/zwo3BzZpcOYTikksIoUk2Keu2FDL0ExG2ajGkzTm2rE3MyzWNH0BoYnfJ5dq5NuRUs+ON\n6mvnyvU7Jn/Z3WYluxnkyQ6z9JyRVqrSqMHqrt/JQPkv67XkqsFCGCL047gTuwuRkOu5Dzdgcwyx\n6xlaIG1SAyV0DaeBsTgsiGcyH0sMukUcW2JxMCWZXQz2RZpq6PfhSy2+3tw11o+t4DaRWmIqF196\nce1HrbovtFr3t12Go/2cyxdn7F9YOun5G3hqMYvOptJH2IPM1Irxj7l+R7n7vFOB5ck5cpkbG4om\nUB6h5aKzsdT9vttULm5mYwjbuIIeUHkyugCI2VeOiymBvWMYU23ZbetK+bGA3JOUVqa26e87FVIR\n6bI7fIrjzBJLyPPHxTrR9P6LFCKXKS+bP+j9Veim+ZHgZIz5vkrMvvCuSsxV9fjkUi0SE8tgo+UL\n63LaPIvGHRlMSv6i7ojClU5cUvE/X3CIxdpp9vOaPUcFZj3BWmnFEkldRgt+uZH3NpdVRhmd9Oy9\ntgQfIpfjSi0hhGKwxsbMVPdddwyHbDTHURufhtQylCopljdtnSzOW8RxZokFpum7N03X4mPIWB56\nAWIDPOZx5iM0aZ2kp1isTb99l1y6QLmU5cKs3DoX084dGWqjDsvCHmMxuHnI3G3GrlK1cStWWjHq\nLmfiGKkiaSP3p8Dea3sfTlNlGVKDDU2IY30JBRyeJKZI5zF7T8hmFXp/3XowoQziLqYk3DwZyFWt\nVHpn4mxc5QjGXjSbnsLCH9xTB2DIgOonhJzi2TP2sscM+dAnF7c/Y66oU6tUDsFPDnn5oiGXzqha\nNEbWspct+cIMOg+wMFzXZJ9csqbomC+t+C7GIbhFvja5Xksu/naYnrrFHROxBQgMJ4tch9jWkaLW\nHRP+Imoo7cxUNZibQsZFO743GLdbSeV4OLPEohKeKIakAd9ovclqztdDhxJC2u2bwl0hh6SydSQX\nOwkMp38fDwQM3tfm2g9vN7nGfIJxsyUbL7GOMCzJWCnFj3nJHHJxpRVrlDf/m2MC5GJziB0XU1WX\nvjddj4QH6vl0v4+rwE5DWoqNz6HUQe51xNS+m2Yv7gWmTgwWdjHmjHAi2NpYzib8wRybMHsutyOD\nNkZCQ9LCFFIZiiOwffRVU6G+D6nohtxc1022GDvOXVUeln2CcbMlg01fr606zCeVvdx7fk0UbE9a\nselbYMVI38JRV7jVI4u6ycjcBKtmbEY8oVgXFyvOFyOR80O57Y5DKuvGo0wpFwCrUkusOuu6GEqK\n6cO9v24W5k8WiMjjgJ/AFPr6OVV9kbf/IcArgM8Hnq+qLx77rYh8DvBSYB94P/C1qnqx2ffZwM/S\nFA4DvlBVj2L9O7PEogJX9vLeqs63X9gVpG+IXeeFi+13Jwl/Al8MTOihFWu1mJ4VAIYT9bno6cFJ\nWTSqOrfevA3mG4p58FUrfvCo/W8TWh6WOXVmEkuala0dv4ZcbAQ9dAZ6V0KxhGL3u9JKmuTkyQ5S\nFUZSWZrASJaHHdEsD0nmeyZ4UhLmaW2i9Zu6Mrt7JfsXlhQHCVf2cuf61ssFVuZJb4yNJVKEMNkv\nHBWq7yLur/6nSqqhcTsWrBnaH88sER5btv+273ZsrevkMDlCf+Be31UhIimmquNjgJuBd4jI61X1\n3c5htwPPAp60xm9/DvhuVf1DEfkm4HuA7xeRDPh54OtV9a9E5FoYLt4aJRYRuQA8D1OF7E2q+ovO\nvp9W1W+fdBfuoqgTocqTSQP4pAZfPC3HsJ4/BqtOWGTGFcqfXMa801Yzv/ZzKrloU+KTtiPKdTN1\nSRqGExD6GHPXBYKV/KwtxVWBhUilzQkmmSEVVUMk5RJdHnQxLItDAHRngVRFQ0Jzclmyn9dcyBPO\nz+BjTXqQw3lfrWHHUEzS9V2Kp5DJ6phZfUbLRdqW/l0u0nZhYifqI/JJueDGMDVQc2hsh56jG8/i\n9x9WF04uNqrP4txr/x3IGvXo6dRqOTHj/SOB96rq+wBE5LXAE4GWWFT1VuBWEXn8Gr99MPC25rjf\nxZQ+/n7gscB/V9W/as79sbEODl3lK4C/BX4V+CYR+Srgaaq6AB49duK7OiSFxV7eWyW5iE3AMG3Q\nhdKBu4kRgWDuIoteAKHth1ezwv+9648fWk74E4tLKKGsryFYgnHJzJ7XTgChFfaUCGaXYEIpzvMm\nVgXCKV9CpAK0OcHyZMeowRoyaUlleWjcjg8byeicIZ18vkOa5FyYXeETy6xNObO3W7K3X3B4kLPI\nzBjictePIanAV8GsSySh5+Mmb4x5W+le0k6aMYy5/A6N+9VUOuGx7Y9rP6VKqP92rPlwx946CWWh\nn3/NlFVYrrR/lXGdiNzkfH+Zqr6s+Xw/4IPOvpuBR00879Bv34UhmV/HlCK+odn+YEBF5M3A9cBr\nVfVHhhoZIpbPVNWvaj7/uog8H/g9EfnKiRdwl4YIrarFTsShidfCnYCnZGENDVD/ZXNfsj7hjNcJ\nKUtpKyja1BQ211FXcKtTMYTVXH1CGSI4n9TaaOZ5t22R5YOrPj+Rpkt+VmoEe98HJjGnK53U0t1L\nV1IB2tT4aZIbFdjy0JBKI7Vw5QqUFVw+NEkCl4ewPCSd7ZLLnFQS9vKK/TzlfJ6wk0qT3LJJ10/K\n0X5OtTD1aUJYRyIZm6RDk7O7397jdeq1+6Tknqffv1W47fh9DL8HbkJP6R1vr8WO59A52n55UtrY\n4sWXTlwyseW1TxWSmFx003Cbqj7iNLsTwDcB/7eIfD/wesCKmxnwz4EvBA6Bt4rIn6vqW2MnGiKW\nuYgkqloDqOoLReRDGFFp/wQu4qoin1Vcf6/DXrCeX9WuPTbwkrh116fCvlD+6tPmtfLdaX2tkC/1\nH1WmTK5be90G7/nXZNGTAJzrcl/2sSzLtp3Q9lASSPd4S4T9cyUsF1n7+3PZEXv7nWfY7l7BdXs1\n9zynXDuHa2bGYJ8nyl5eM09N8GMroUhCmsw6m4rM2cnOk1Y1HH4CPfw4XLkIy8JIKcsCvXJkyAWQ\nWY5mH0WyGbvn7kalJffcuYNFVVLUuTHiX39ElimHB0WvjO6VRXjiaCWwzPw/FyCQ2ELD3schqSW0\nyAlJIEPk4T7TdaQXf1y7fYyNbQubpmex7Prvp1iJjTWL0HjyjzfjatkjPju+7GJxPqvbfsbywt1F\n8CE6aQKMueJDx/2tqv5/GLUXIvJgwKrRbgbepqq3NfveiHEK2IhYfhP4UuAtdoOqvlJEbgF+cuJF\n3GWxkyufcV+j+rDePsHj1pzsY7C/s3msZo5ap93nteWuzN3qhbavpt81y7rmqCydbWa/JR0Lf0Jy\nXyS/f377XR9MO0cT7NTuuezxfv+AHjEC7O4Vbd/yBO55zkTg23xfJpK+Ihf17CgdmbhSyjzZM5KK\nJZU7PgafuNSRyeEVdFGil8wCLQFkWaCAlEvOn7+eVDIecP4O5umCPJmRJwkfO7fg0nIRJHgXIUJw\nk2Su3LfImLPVN80xfan2qAqdr1wppbz6TPvPswiMs6H+hca127+Qycz9fTeWq+a7YINW/b7F+ueO\nIx/ugscnjzwhWtH0VHBy7sbvAB4kIg/EkMJTgKcd97cick9VvVVEEuA/YDzEwNhaniMiuxgp5l8B\nPz7USJRYVPU5ke2/DTxo4kXcZbGTwj+5mxn89uVzX6ShYDwfY6sbey63IqIfzBeLGrewAXpuapFF\nJVwuEuMC61xD0X42UezLenVCCZFaLG3KPNWNAgRd2HvU76edTGqWdclRufqi76SrhGKlE0MmWZBM\n7LZUE1gcGEI5uggfvx396O1w8TL1xQUsK+rLS/Soor60RHYyMiBZFoZc7rNEgL3968x5dz9OLgvm\n6YyPHaVcLLprsddh0b+fjoNBZAKzzy0PPAd/7LhjxYyJuPp0UcmKTcp9nu6z8cdyaOHk92/mLYxC\nY3sM/vi2393+xBZXULWE5BOpXQj5Y8rts3s/1y1XfTWgqqWIPBMz4afAjar6LhF5RrP/pSJyb+Am\nGvdgEXk28FBVvRj6bXPqp4rIdzSfX4exs6OqHxeRH8OQkgJvVNU3DPXxzLobz9Oah91jSekN5Knw\nJ/h4O91L5rvGztO6F2tht1lYGwGYeArTVhcFXqiwqBLKJqX85UYl0L2c5rd+2d/Yix96ubJA5cRN\nYftp+7io/n/23j3Yku2u7/v8+rH3mfOYe6/ulZCQBMhBmAhIUUiRKFdsbF6RIS5hjJFCindJlkER\nOLhAWBWilE0FAQaDobh1zSsCY0GwKauwZBlB4qQIAl0wLylgBAj0RLqvmTnnzN67Hyt/rF7dv157\nrX7sc2bmzj3nWzU1+/Te3f3r7tXru35vaSdFV7243zWyq/V178I229rPrDPeOeJTsUNYk0nbuGtt\nQ4jN6eNw+gQ8+jjm0SeoP/IE9WM3WzIxRU11vaSqBChYrkqydUVKkzlTlVCu2bv6cST5A6TJNZbp\nMfcuM06KpHct7vp6kWrqHup77U+iPkLPxbVU3hXrqs9qevyH5NHjfOhaQmMb2BrfYZnU+YyTIdmS\nz5epT0bDix89pnx5taznsYiKQs6vpIsx5q3AW71tD6rPH8GauSbt22z/AWx+S2ifn8aGHE/CBSYW\n+KQjqGrrbHUTdwz+Cxl7GfyXXr9YfR9ABiTtZAj9Uu1uwtSoTNkmAVZ1YbPD67JJ4ks4bkwBoZfS\nf7GHJgAtZyvPGV+IqlnJO1lD5Khl06R7dVGRSkKeLFufiSMQK1v32eanrLr8lLqEG49Y01dDKtWH\njqkeW2HWJcWpsDlNKIucTdPL5XBTsF9ct8cuS6gqq73UJYvDp5MuHyAhZT+71rsedy2h++rurQ99\nH3wMjZ1YWf96IOjBh/9MnDxaFn/cW3nGx4yWsW39rOC+c/K697C/rZNPyxK6Z/6Y96HHVN982r2H\nIVm1XJeYjgtLLKnk7Kf3QEpbumPopdxL+wP/qPlsB7/pEVNoQvYJRK+0/e/d3xr6BayprNx1QZWU\n1FTspQVHC0c09npCkwKEtaKYnPY328MkNFmE0L6YzX12srprCsnbf+khTw5ISFmkV7a1ErDKuTuP\ny0/RSY/OOX96E3NjQ31j02oollQSNjcTbl7rrrMuSw7Wj5EXFenaHkPKCrM5JT18OkdHT2eRXrHP\nwJQU9aq9HjdZ6XsYg55E3RiKPRP9PKbe/+CzcIg8EycPECxr449vf1KOydlbODXb9fjQ758b21qm\nmIxaTn/MxwjZv59aJo0kPc+EycuSLi1E5EuHvjfG/JvzE2d3jJU42Po9CQfpPW3NMH9Q+6jT/sqq\nfeGSMCGFBm3oBWwnx7qEtVchQb04aZJBtiAlhcRGHplMmsmsoE6rrZfxIN++Fv/lGZNTTwZjrQaC\naHY30snqJhFfXjdxaH8J2KZcPTKpSquVBO5TND/ldEV9fU19Y0N9vGF9M6Euhc3NlM3NhPVJyrXH\n3XPMqEuhLBKO1tdYrCrSdUVSNppLubGmsf37YHFPe21FvV3hIrZAcHDE5I+jITMfnP1ZaHn8ZwJs\nTeohhAhkdIw7NGM9BTXZpq2pyGT993JIRv07vQD0Sc2XM2Qp2LqvsbI/lxjEFI3l64G/AvxK8/ff\nAP5f4GPYteIdJ5aJJQ76KDdw/IhtgJst7NBqBnVvKnCDXk3mEFbhNfxBGySQumwLIJpy3W3z5XRy\nNPJJtoRsgWAJJ80WkCxbonHQL2Ns5RyUs5Wr6uTxCjW28gYQitWX5h47gnTyAj1ydLJsmbeG7pmG\n+16Riq+t1GvY3EypS+H0Wsr6VHj80YKT4yYaaV1z3/0Z5UaoS+GwOmF5Y0N2Y0N6ehNurpD7b2KO\nrsNiH5KMdO+ouzYHdw8dsgV68oT+4kBjSytz40Zd/9hz6N//7pm0tJIt7PhxsnnPBIZNQSFtpB0/\nVd3vyqmfWWiyVvdEsmX3Xrp3Ur+HabdQcXBy6jHkyzq4kPMWJw5T7+8knKOP5cmOKVeZY6MJPgwg\nIs8CftIY87W3VLJ5GC1xsIW6xDzxQUUc6lb46mqStS+mNBO8exlTPYCTrBugeiKE8IulOxa6z9XA\nCim1E5dx51KyS7ZsJ2/8l3HIHBOQs5Ux1FFxpMw8ROKTHDE2//uThyPH9nxuEvVlGpIhW4STHpW2\nYoqa9U1r+tqcJlx/HE6PSx57tGyJZd1UENhfp0BKWUjrdzHaNHa6sgmV+3uY40csybh7HpJxdHGQ\nbV+/u3a33U3WE56DRvtM9Nh259PPpPl+a0IPwZGHw9Dz0p9HxrhRMvVk9t7D4FhPlpHFWbW9KIkt\n4rxrucR8TIncfq4jlQZ/AXzCLZJnV4TKFDzb/5GIvEpEHhaRhz/2aFODY8rkWZf9lUts0I0Mxt4x\nQuf1X7hN0f0Lyeafxz/m2EsR+P3WCm0mqYyimWS2zuMmH3/SDMnkyzVDPjNQ4r8sDGURNzGZdYlZ\nVZh1ZUnLPRf3v5M9Ni7U514rZCd76Pr1fud1/0Ny+TLNnVhjv4+N19DYhv47EDhmVIOItJUObZ9N\nKkNEeIkgpmgsv9zUiPlXzd8vRyVN3k1oau08BPCiz/wkw+ED7Xc9883Aqg76anjIVJAu9+yunhlM\nYis4Jgx2T7NyK952myefQ8hGXtW2wCLptpxbMp6TWSAmr/ZxuXuZLvd6ZgsJkZvb5psW3Cp/v/Gz\n3Fcijz9GkqXIMkX2UpKP3SRbbDh+NMdqc32N7mn3Z+wfply9D/bvqUgyQ7YwJIcLkqMFydUl7O/B\n4T5kKVy5Yq+nMYtFrx+2NLfY9UPnnxBfe4yR7URsjXVP+wW2fI9Rk29orNel1UbVGNrSuq4EubqI\nQQAAIABJREFUDhYa41pG7/OQf7Q106V74fdwiPxvlSkMon2gnmoYJRZjzGtE5G8Df63Z9JAx5hdu\nrVizMb/EQbpArn5cf5u2fQderNpses77mGMzqcLRJok02wMvo8RWfP4EGpgAOhntS1CbSKCBOyRV\nK6Mvp5axZ5Omsc3v6sxsJtGt+1n172dCCpXnEBad6t2PnvPDVBOW5FfuQcwDTUTYKWaxj+zvIVf2\nkIMnSA6vI3snpOkpsCBbJCyXGYulVeAPDhMO7q1ZXKlZXLHEku8bkqMFcrSA/SvIlT1LLmnWmcCS\nDNk7oofAczMiNoqsuf6tqMSq72xOJG2vuyWbXZ6FR3ohUquNHX/6ufRk81FtB4DkiR3fegwFF1VD\n8g0t5ExlZa62x7ceQ1om6L+H7h0MiqHfS7h04O+AqZ6k3wJuGGPeISL7InJkjLlxKwWbidklDowY\nNuK9LM2AtZ/ZIhE/dySGrXBRRzRuYIeIR5oBncdj/0FNpE5WoyKLCIQl0w/LbI9j6kE5k2o7JBpQ\nnt/xUFoNPYmOyajlCd4HN/8Gch+043+RXiFZLlnsfSImySDNkEVOssjJFimSJ9y3PObah+05sube\nLw+qHqksr9Tb2soih+V+u9qXxUGntbQ3qL+y1mRSmHVvPAFbIetpkg0/k7mLX9MtWvS985+Jvp8h\n2aCfs7UVflwd9+R15Oi0ZL1g8Vfw/sID2Fp8tN/3NJVAWLQiqnbB4sZTNTx+z3SfozCz8ozuZkwJ\nN34l8CrgacB/gfVdPAh83q0VbTpiJQ6G9qlNxWl1Lfhd6OXqJ8IlrKv4resSyKrmbzfo18FEst6q\nzyOfoOye6j+UUGaTyWQrAW9dZVE5l+nNqHxzkSZ5737qe2nlcMlu3eSk5VmmN5XM40mquVQsU3uf\n0/IaaZKxn97D/n3PQfaOrPayyHumsXuXJxx/sCBxxRSv1GR5zWK/Jk0N6dWsr62kqSWXxGorki17\nWsuWJmDs5011s8132VSb3nhyz6SsRSXzVUDVJPT1n8nQ+BjCdrjz9pgJPRc93v1kVuiPeffcFmlT\nu81sL6jaCd5sk5yW0x/foQoUWk4Hm7zpxpHBlXbR4ymVJLhAPK+xf5ExRWP5RmzU1a8DGGP+SESe\ncUul2gGxMgUxlHXNY6vj4Hd+VjhkbTmSfimSMGKlUvS20Atp/16r38a1onAWctLLYo/VX9IIlR5x\npUP6MnSy6GzycXSrZHs/s6h8PrQ8QyU99Da/bMdBXnH/8mMUZs3RlQdIkwyTLZBG68iWGZKnHHKd\nJLMTXLawpi9ZNoSSJ6Qff0jytAPk6ACe8TQ4esBqKYpQKqmtOdKoPB2l7Rb1msrUXN+kHJeLthyM\nuxY3tvzaVeESJOfTStcRxtiY8Z+RLl0TGu/u3juit9/7lScs+omO2wTXVbYYHzt+lYnQuzcF/fF/\nPvfaYC5MJv8UYlkbYzbSrMKaNpVP/kptI1hXwp8fb4dShl50oC306Io8riL1hGyxQQlWLPaL9cFw\nnS6/KOWQrP7fftFHdw1hmcMyjr2IY/JBdwy/FtWYfKEioPr7fpXb7ln4hQbvWWQ8tsz4hMNjqrrg\nKH+Axb3PxiSZtXCkXcD4QW4XGrKXkRzlSJ4iRwur2dx3hNx/L9x/H+zfi+zfB3tXVeLnmqKyodsh\n0+lp2RQNbQjl8XXKtY1sjSlbMFR6RUKHipieB2IFKfXf8fsNbrz7ci7TrEf0Wm5dg66sO3PnELH5\nhSn9gpNue2g8j0EfK1ZU8xLTMYVY/qOI/CPgioh8AfAN2JL6dzXWtfCfr4Uv33/RV6WuGDytHD10\nA7NXDXarLL00v42X0F8k2y+RlhX6ZNdOCsrsPFbePyTjIunLFiJTv3x77Jjd/ZOd5NOkMlQmXZdG\nzxO4uhCevmdJ7TkHG2r+gqP8AfbufbZdHaWWYNIsQ5YpZl11ZHKw1+apyD1HcN/TYO8qsn8fZnnQ\n+Ey2NZNQDbd1lXBSJBwXCY+sEh5dw/VC2rG1quDkNGt7h7jrsPe4u5/+s4H42NCIVVrWz7RH8t6Y\n9++9g5bRL+9vt0mPcDoZ1Lm8BU+4Und8bEN//PjVo909C7V6iI272L0+Ky59LB1eh82+/z3g72HN\nTT96K4W6HVhV8AdPhAeM318j1DyrLJPB/t2x5mCh34b6dIRIyWFqT4pYo6QYQs2+/GuMTeY+Qv1G\nNCHHGkz530G/e2WsmZOWRXcE3D8oefSoZFWlrKslhdlQ7X2Eo/x+63fJlrbvyiLvkroaM5lc6YiF\nK5ZQ2L+XKk0o6hNW1XHQB+Ds/8flold5+rhI+OgKHl0LH7vZEcnpSdYbV/o6INyQze8Wqe9lqANp\nqAmXD3/s6OZs/nNwiMnmE7yPUK8eB5/Q/LE9Nq7HOrD619Wet7k+3U1SN1i7xHQMEktTKuVNxpj/\nAfgXt0ek24OiSHj/R7qQQ93pULf7deTiBmFS1m1/7UI59UJ93vWAjLWb1d+FOggOvSSxF78/aYcn\nYLcyDiEkm39cjaGWxhpj8unt+rNrOevue1rUxKyxN/OU68sFdZZweNW2nt183E1gjc0HXgAb0sQG\nbhwcPmBL42ObewHB/BRZHLSksipvUJg1Rb3aIhNIKYxwUqQtoRS1cG0jPLqGj94UHjlJuH5twclx\n3hCL/X95UpAWNVWeUGCvA7bHU+h+T3k2IbKCbcLod/ZMJx3fb3Ed607q7xc67hChjS0sNGKLotA1\n6bbG+n6fJ6kYc+ljAcAYU4nIJ4rIwhgzMQX37kBVCSfH4ZBen1CSsibBEko6pWXkuqJY2hWfG6RD\nLYL1KtV9VxQJeV6zieRnTXnZhtrL+v3ntVyhiX9oYgmZBf1WxSEZQ0TiXvDlukl0a+53vlET5MAz\nKF1PeeD4+oLFsuL0pGB135qitrb6kyJlU61ZJiWV1LYcyGLfEgqEkx4X+5g0p6pXbTXjbVKxcI5n\n7ViOmavc/WjJc7M9kRXtb92E2/cNxnq919l2u21f0w5P7NuE4p8j98a4W6j4WpfWAjROT+JTz9AC\nZKxlsob/29gY24K6ts168aTUWMaK7orIp2IbdX0W8HpjzPeO7SsiPwv85eZn9wJPGGM+U+33Cdgy\nWW/QxwthiinsT4BfFZG3ACduozHm+ybs+6RFXQunJ9vE4msnQxPcENzKs+225aEo9aRqJwr98kPc\nZKF/42T2r2EMscnINy+UAxOAPVc3yfmk5JPOkEbiiBv69zqbed8B9tTKf03OyXHOyWnG9Ssl1zZw\n39JG++2lK1uFwEV27TcarEp6bPNTskVbwdj3oYTCnjU6p7P0zJix5zR6rWpM6YWO269Y2ONWjmSX\nKRvSnpY6pMnq/7WG7p9Tj3GfZICG1PNBbT2E0Jjx71Vo/LpFXOx7f3EYu8/FIlWa43RT8hgMJtiG\nYC4mFt19DHgt8CVT9zXGvFz97p8Cfj7G9wFvmyLjFGL54+ZfAhyN/PauQV0Jx9e7SVEPxOW6mL1S\nDmFognDH1+TjyMatkvREMEQe/kuUTAiP9CcLLdMc6MnLvYAxLa2VryESLUda1O390mSSr8tZ9z3P\nE06PupIly5OC8qqd7Fal7QFf1MJxmXC0sESRZ/ciiwPM8rQRcDvp0aQ5RX1CZcrGWT9MKkOh1CHN\nMqHeuv+h8eNvCxGv21bmSX+SbAgmhClEH5PJ/aY3lpdpVMMKIWZydWNbyxPFwPf++5yp8eaI2CEr\naso8Id9U3XU9uTBadNcY81HgoyLyxXP3FRsC/OXA56ptXwL8KUq5GEKUWETkp4wxX4lVh4LtKu9m\nSG3Yf2K4DpA/0Q1hLunolx/6qyTWFUWZ9lZ/Pnn4arx++ae8CLHJYu51OPmDRLmMrMhHNJO8KRTp\nXv6517Z/Y02x7Ib28fUlp/euuVGsuVHAcZFwb5WwqTYsm0Zpqa7zFUh6tKYv66h3zvoxTUVjkcBR\nbtjUwmrfXt9mXfTMPqfZkuVJX0Nu71lAe9P3SeMKDakss+Ak6caWgyZ6e9zt5+Pgn8sdX//OjeUY\ngs/wpBsvPomEjhUjhdBvfNn9+5evy954GTvObcIDIvKw+vuhptYhhIvuvmTicafs+1eBvzDG/BGA\niBwC34bVcv7hlJMMaSwvFJGPB75ORN6EV9jAGPPYlBM8WRFqlFTlSW8Qu0EbG7yxARebnPXvQ8fU\nq38fdZZsObFDst8JUvFNLxAnFf+7MS1paOIYQ1bUFIu0dcK6CKU86VrTthioX2VEbIa401bqskly\nDPgnVBSYzr0AG+l3/9LmOe2ljlxS8rxug0VOl3nr14PtZz3lGZUzVtgxkyh0Y6pYpO04ccfWcmhy\nge33wn+GoXHqj5dimbbX7r+XoWOG4H7jyz5lHwf/2s6GWSVdHjHGvOicTjwX/z1d0WGANwDfb4w5\nlolFNIeI5UHgl4G/BPwmfWIxzfanDNxAn6P2+gNeD+DQBKBfUH+7Typ+JJA2D+iXbgzueFN/PxVT\nSUWvjCE8kbljuHtWLLN2NRn7rcNZV5OpRPrHqwrXTktx/05Lq6GUHnE4hEgFujwORy4claz2S+X0\nlvazixRbqwUFdGR51useIpQp8Mf40AScb6pBIvDHi5NtjFymwr9f50cUdwzzi+5O3LdJgP9S4IXq\nNy8BvkxEvhvr1K9FZGWM+aHYSaLEYoz5QeAHReRHjDF/f6LQdyWGVtr+xKiRlHU7+N3KDuyLFCMX\nDX+Ax0hFyzK2wgwdbwqmaita5tBkMUQq/jZnzItNGO4eDk5KO0yyy9SQi+mVFQkiW2BEGi3F/rM1\nvlJOipTjxozlE8hxIN9jL+1nht+/NCwSmyy6l1qCWW8SssxsEwxpFxk2YVwBw6adxtke33d7QvdX\n/04W6MbOmFxTx8sQuUB8vOjxP6ThTNFgfNI8D5xjSZfZRXdn7Pv5wB8YYz7Qym3MX3WfReQNwPEQ\nqcC0svkXglRiE+JQqOGGtCUX2B7MoUnAf7mctlIs08Hz+hFX5wF/kgi9QFNWd7fbuallmrOC12VH\n5qCmajPrbSZ92iY8OoQ0lxD6JUYMRW0zu69vYC+tWS7WnJxmZJlpQ3IXy4rj64uWXPYaP4zT6vSz\nu9Wr8dC9nkp2TnOJaecaQ4uokPbij8EhDSdEMj78MfZkQqzoroi8uvn+QRF5JvAwcBWrYXwzthPw\n9ZGCva+gbwbbCRejAXMARmTU/KQ/xyb1MS1iF5xX3HxoZTpkThiblIb8QjBMzruS4tCkNRaK7K7H\nT9KbUuOMJOs57Yt6xabacFxmbWmWj636ZLKquhplMFy2ZJF0pXqsPFZ7yUugce67qKqT45zDq5uW\nXNwzPD1atsEO/rOLOaTPI8ppV1OcTyqxhdTYWNnVJBaTCYZNqnfIxzJ8pEDRXWPMg+rzR7Bmrkn7\nqu++ZuS8b5gi34UlFphGKH7M/XlpDS4UVGsrIUKZOimHXrYqT0aja3zMcZZPmaB2IcmYf8UhRjTa\nZKN9P0mTpe9qWEGgsKDqoui6XRoRalM1WfZrrm86E9jHVtISi05+vJqbUc3IFfjsazmmyXGxuS7r\nrGb/wN4HFzm2WFZsSIP3PXbPtNlH+zqGzGFT/HEhv8WQxqvH1dB4h90WIjoqcRfimUIwl5iOC0ss\nLjo0Vr5BZ8E7lGXS02BuhXnKP6f7e+g8sRcptn0sagfipNELK44gRtS3QmsZQhsUoEqZwDap1FTW\nfe+1v7Vaiu2hclrCcZny6CrlQ6cJHzwVbmy2NZEbG+H+PdAlZ/zii67ar41Os07+RQLXC0tMNk6m\n5tpNW9Ln4LBvl1+Tt2HJGj65OK3F9yk4rSUfCQs/K/yV/pRFFHSLt5A1YIw0zqrN3EqCMSbckOyp\niAtLLIj0BrivoeiaSkWRBAnmLBNlSFvZZXUfCx0OkcUQocSIwo8qG/vdVMw1H8bIJRhlp0xAxTLl\nSmN+WHiaRC8aTEWBtW2UTdUzgT2xTnlk1WgrN+Hxx7tETGe22j8oWVUlT78irfaiz+33V+mgtZ+O\nXKDg9CSfTC7QJxhtEmuj7nTOFOPO/BhiWksowGPuWA+9X6Hcnika9phmHSKjs4S5X+IiEwvTzDSh\niq5TsaszfCqGMqLHVlxDpBKaZIbClsciwWJw0XQu+W9M5pBD1Z8AHGmXeUKVJ+1EFioj4pzyDpI1\nRLHYb7WVmorrm5THVhmPrlIeXcOjK0sq157oyKgrPVI0n9esSuHqApz2MjVwIE/6mgsUbba+Lu54\nzKJHLrtqdnC+5KK/A4LBKWdFm+Q4kVyGMBRNdr4wgy3Nn0q40MQSgl9uI1REUdcvCtVSGkNMW3GT\n35TKrRpz1fbYizhlYvFzaIZIJVZBeUhbGfOvOPgE7aLD3OrcfvbK4NRNS4TKmp9cfaKqLkiTZTB3\npapLCmPzUlaVrfe1qmwRRb/WnK6RdXKawX7JXtZvc3BVpYO5XBfXRK53HzxyWVU1WVa3tbdOjnP7\n9zJndZJSrbd9C6HoLYez5Gv5CDnzQ/lNML1isE4SheFafWNZ+DH/YwhPwvItdyUuLLHISGSQqwLr\nV+WNkcqUIpVTtRW9ug6RTIzI/NXqnFDhOavVWGWAEHxflM4o19rKXPhJlNpJ7LQVGNZKq7qkTiyB\nGBGk8bEYEaqqUDXBMtZNg7JNbfuoFEXSqzXnru2UvGdWvZHWgDQkYbGohL2035k0BE0ueWnDkZ32\nosORT8l7LRwG79uUjPVAAu5YDokml1ARzKnail91e0rRyPa3M7SXsei4W+F3qttW5099XFhi8RFa\nXTtyiZHKEGKT/JC2Egpt1ufXCBXVi8kQS2rchVRCGJs0hkjFIVppdiDRL/adu0YrV7VVsr2obR/1\nynV/lII6qWz5fLbzVspaWo3lxoY2cTGkra6znNOTnDy32sVysYYNgDRO/P6CJkQqOpnSkYtLptTa\nixs7i2XF6TLn+Poi6HeZUpZk6hiYmh8SIpVQcEys+vVWmf6JWvlQxWIfPrnMSY6+xDAuNLFMUcmH\nSGVIW5mSHOlk8KOWfILp9c9QWdhnsQeflVT8l24sD2GIVKBb8fpkMdd+7rQVd127BETo7OheocnG\nlHZ6Yjs/7h03iYretRyz6AeB7JewgaMF3ChcW7FhaH+MrXHWJVNualjlNTdcxntmyPO6NY2dri3p\nVet+FBhMf95DPrWpIb2hc8WeR6g8/nmWIQqZy0Kk0ifBy9DjXXFhiWViLTUg3hNiDDpKJhYd43fc\nc9CRaEPndRPyFMdtzO7tMHeFNnfSjk0UQ6VbYivtobprMfkWA5eXkEK5AiBd7pHWtobYMi3JEhce\nbPu3u+OGJti0qK1JrPGFOHPVOrOaxlEOm7ofMeYQcu67aDIn+6Y2thd8DnuZtOVgtPYSalQ399nq\nkiowb5IPja9dCF6b5OYsMKZoLTFSGerSeVYYpldouNtxYYllKmKd9Ka+aL7DdCjkUhOJIxo/1Bms\n1sK62qo+Gwr3dJhbLHIIMbmd7H6oaMgJ6yNWlsSfUCrvfvqRcf0IpG6SWC7U75KmVpgkpElOmuS2\n2nWTY5CQ2u0mZ5neZJnafV11ZNcH/VRpVz2z3rpqTWIOtgZYxTqruedK3UaM7aUdwbjM/fa+JnDP\nost3AdqcF5ex35aDOSrJsrr1vRRFEjWvji1YNut0K4dkTuFTjdi4mhqgEiuXNLjPSGUA/x0I5bKN\nNSO7xDAuLLGIDJsjdslRGateHPOr5HntlR3ZJhhfHvei+5PrEKn4+89ByFQX+12IXKZMSj6hTCnD\nPzbh6QliLzW9iTtNrFaSkFpSKW33bTGm3Z5KQi5d3sle1pkvfbn0s0/Kuufcz/OaspSWYA5cT5as\nc+zrR+dI5TCvGzOYNL8RDvMuosxd06oS8qTmxmLdq5a8WactyYTuTajpWEs89BdTu1TVhvNZ/Q85\n2ofyUIYixkKLvFBi9HnBGEb79jxVcGGJBcIORBjvlT0H80nFrW6lNzmHfBi+qWDMwRmzs49pK3PN\nA6EosKkIFSkcklFXmB7SCB2hLFPT/gNbNj9NclivMKVt/CZ1SZrmpHVGmmQs07LRDuwx3LPbWtUH\nJi/tJyuKpCWYzTplfVBwzxUbNeYc+87s5TQVP5nS1TkrakswyzSxWkth99XmsfUmaU1i7pytrIH8\nrFhliTn18M4arqvPCfSKvDrEItYcQj2V/N/GSMUf476J+hLTcGGJRftYYpFXcLbaYOeRvRvKQHY1\no9zL7pc2D2HOZO3OEft7LBxaw01KvoYVk3VK5dsQYqtpTdpu/smaRl/O5NVqLK7cRrkhSQ8Al51f\nskxNz9cRgiZ23a3RtZp2UYaOYBrJgdrKtpCWwNaVtCQSssu776xGI+ylCdeLzjzmHPxFXXOtGd/u\nPviLFk1+c3Oozgs+oTnoVsq+30dDP/tYaPRQ+PPtMH3VcBlufBGgXy79Us0p1zJWUmXXsi1Oa3Hy\nxCoAxExiGnMm6zH5/BdwzmQ0NQETphOK37sDOlu5Nmu4wpC6e6QjFTHGmsEaUxh1iRjT87Nkjeaw\nl8JyUbeapvN3tfejqLf9XE2raU0w+wcFZSmNH8ZqLrZ0fheCvExtmHOoGrPTYmyJGGm0sKQ1jzkH\n//XCmsiKut7SYrKsVH3p488mFgUZQig/JBTKH5rItcbk76e1mJBsoSCDkPYU86lc4nxxoYkF4uQy\nhDE781j0VUjlDv+uIxdfJdcmihC5xMq0hF7OKXWbhuUMmxRjBD0ne38sjNmHdtpDd99cZWPd5Mtp\nLFSlNYMpjYW6JJHOz7JM663IMHd9xTLthZwXi7RHMG3FZforcICDw6JPLkVfU8mTPrEsU9NqXPY3\nSbs9TwzHRdIWtlxVTZhybn0wrueLy4Oxzytt65BZstnO24Lz70AawlytwTeZgefz8mSO5dQMoa9d\nnhFN19GLgIuhlwWgnfchM88Uv0KoS92crOOzDFgnl3/sSmWdt3JF8gnGVmz+92Mvfuz70PUXy7T9\n537j9+cImeOma3wdeWdZ3ZqwnM/CEkbTlrghEqe1mHIN5cZqLJINdpoMyZNvqvbflZOCKycFeycF\ne8cFy5OC8kQ4vr7g9CTn5DinLIWyTLh2M2FV2lwXXTXZOe41qeRimqCCmoO8IksMB3nN/XsV9y0r\n7t+ruGdheMYe3L+Eo9zwjCuG+/fg6Vfgnis1B02YsqugPOXeTo3OcpP6VN+MHo/6ubl/oe/1Z3/8\nAL3xFQomuB0O+1sFEXmpiPyhiLxXRF4X+P5TReTXRGQtIv9wyr4i8gYR+aCI/Hbz74ua7V8gIr8p\nIr/X/P+5Y/JdeI1lDLs4oUP+jNCgPc/V0K7hoOcJrbH40WF3exZzHoki3KxTEppExaIO1jpzFYad\nBuPMRcf0S8LsH5Rt0uNeasvoL1MJVELehtNg9FrR+V9sqLJwvQBXOdmtPdattpm1Y9F34p83Yhq7\nH2J/XueOmWDd+NTlm2Lv6XnA+ljOrrGISAr8MPAFwAeAd4nIW4wx71E/ewx4LfAlM/f9fmPM93qn\nfAT4W8aYD4nIp2O7Tz57SMZLYvEQMgNoDNmZp4THOsQGcV+Wzv5dFElUJt8kpjH0UvnYypfxZHQv\n4Lac4Rdv6PrGJg0/Gi72e034Nn8kaWXqmdHm8PfMnhn5uhqvYxUgnOVJwWmZtYmMm3WT8b9fYotP\nuiKUCYe9BUgCafiClmnNMoUssaVo8kQ4LhLuWUCPXBbWNObye7LMsLFBcdNNwiPFH31MjbjSrSpC\nZmo9FobKwMTg+26myvskwouB9xpj/gRARN4MvAxoicUY81HgoyLyxXP39WGM+U/qz3cDV0RkaYxZ\nx/a5JJYJmDJgz5p46HIc9N+wPfBjL7wmlyEMZWGHyM6f4N3551RiDvlJpvpOhsrDaPRML8tuXxve\nmwDdPueV/ezLFiuo6Rz5scrNBSmn9CslTyGXpUcuLt9mXUlDPO7Z1I05LcEnF/d9WVaUpey0Oh/r\nA6ThV5oYmrzPW3PR2Io+886hC9DeITwgIg+rvx8yxjzUfH428H713QeAl0w87ti+/6OIfBXwMPAt\nxpjHvf3/DvBbQ6QCl8QCDGcga8TqJmlMiXzyV/56kDtCGZLrrBgjF5imveyCsVXgVCJxCD0TLas/\nURYznKfJQMVgbSJNG0d9jDh0lFjoN2lRsyIPkstetk0uvmnMEUrPHFYBSns5KRwx9cllk3WtkF3N\nMf8a58CRTCxwRedu+dDh0NBpLjHsoq3osR8M4w9c83mFIhsza/w9Yox50bmceDp+BPjH2AH3j4F/\nCnyd+1JEPg14I/CFYwe6JBaFkKodK2sxpyrq2Kqss22HSSVmBjvLak5fV4hkYtrLXPPArj1mHGIT\nRohQ0qLT2FyEk8Ysc9gA/HbEDtaPstna7ldD0OTSks4xVOtkm1zY1lyAliR8rcVhmRqobKa3+00X\nkWTJJdStEroimzoDv4Be5OHUasOhfkM+tKbu4CcHTwmHPiti79idyu0ZwAeB56q/n9NsO9O+xpi/\ncBtF5F8Av6j+fg7wC8BXGWP+eOwkd4RYROR7gL+FLSj+x8DXGmOeaL77duDrsWuu1xpj3t5sfyHw\nk8AV4K3ANxljjIgsgTcBLwQeBV5ujHnfmAzG9E1NY9n3DkMayVwHtW/r9e2+/mpt1wE+1tvcvZhT\nGnXtQi4wP/luq2z6QGBCL5co4mdZnWOrcb9YZJUnlHnS1mubAkcu2nSUFjWrk5RymVAUCacnWa+n\nS54Yrm0suXQhyI2/pWo+N1hXslU+JEuMMqclyiS4TS4AJ8cdyWlycXLPaTA3tOrXC6r2fI1f0X3W\ni77Ywi8Wwu5jSGN33+nAk/PytZxjEcp3Ac8XkedhSeEVwFecdV8ReZYx5sPN7/428PvN9nuBfwe8\nzhjzq1NOcqc0ll8Cvt0YU4rIG4FvB75NRF6AvdBPAz4eeIeIfIoxpsKqaa8Efh1LLC/dnPY1AAAg\nAElEQVQF3oYloceNMZ8sIq/AqmovHxPAmDCp+AN3qJzFFCLRgzLkCHfnyvM6SihD2srYak6/bGOO\n/alVcKe+bHOTKWMReDFSCXVMrPJky89ij3uOzKJQZ4lNgGxyV4YQjBjz/BP5umq1LdfTBQpbByyx\nmsteah3ynd9Ik0tzLI9UlmnNukq2yKXraDlOLiEC8BErYQTTneEhUvGrBMQIZVeE3vEp79edQDNv\nvgYbnZUCP26MebeIvLr5/kEReSbWT3IVqEXkm4EXGGOuh/ZtDv3dIvKZ2MHwPuDvNdtfA3wy8B0i\n8h3Nti9sAgSCuCPEYoz5D+rPdwJf1nx+GfDmxjH0pyLyXuDFIvI+4Kox5p0AIvImbBjd25p93tDs\n//PAD4mIGGNGYzRjTYZi2CW5cAqm+Hh20VZ09z2NqrX3b/c598klRiIxX4xD3OwxTC5TJoxYtQP3\nXbFMz2WlWQ/049DHdgmSc7UVjUwltjrZiyJpc1xuFHXb5tiFIR8XCUVtOt9JxCyWi2lNYj655Eln\nXhsjl816sVMvoKk+Cn9hpUnlLISix7Pb343zEKHs0mZgCoyRWT6+4WOZt2IX2Hrbg+rzR7Bmrkn7\nNtu/MvL7fwL8kznyPRl8LF8H/Gzz+dlYonH4QLOtaD77290+74eWya8B92Njr6MwJuzPCE3yUwjl\nrHH/QyGQQ+G8Q2HRfja4g87OHzOTzZF7KqZ05Yz5UNrvPULR2kK1TlhnSbvyD2GINEIIVaXVARfn\n0Ss9K+q2n4t+rllmgiYx297YkkrM5+Lyb+LkkrTHsNgmFzfRuxI2Bd2zCBV5nFvCKEQoQJRURitf\nDERl6kz9WHRhsUy3TGKXmIdbRiwi8g7gmYGvXm+M+bfNb16PtVH8y1slhyfTq4BXASyf9oxRQon5\nHmLmLff3kAYSiqxyk99UQhmSOdbVcmpI6JzAAy3HnJdvij9rKOFTX8uY+elWontuC7W+D2PM/zL0\n3elJxmJZsapq8pLWJGZhtRbAK/3STPxGWlLxv3OEZLUW+7eFYVUKy4UNQ3YlXxw2pKwOcxtwMCB3\nnxzrniam4RMK9EllqpYSI5TQOxnSVvxja3I5D5xXguTdgFtGLMaYzx/6XkS+BvjvgM9TZqtYxMIH\n6at1OgrC7fMBEcmAe7BO/JBMDwEPARx+wqcYmB+yOEQqU6DPF8oN8SfdqVFVfjMtN/nO6Xe+C6k4\nhPJdxpIpx17Ys1YTmCJ/TWWDinXZFvW5Mp3ZyhWhdM2+9Hl0y2iHUPn2IYLxe9BAl4vT3qv9smcS\n29SwqPoOfRuOnDSf66C2lYshzyqOS/cM+pn7beTbfslmncbJxR1Pab4hDd8991Covf8bt30XUvEJ\nxf88xX8aMhFfYh7uVFTYS4FvBT7HGHOqvnoL8DMi8n1Y5/3zgd8wxlQicl1EPhvrvP8q4J+rfb4a\n+DWsr+ZXpvhXTC1bKvZUjE1Y/gppKDdEb9/Fj6LP4/eTd6v5KeTiY1f1v5+TEydM3xkbwxC5TNFW\ndjZjZIvBr0NmHk0uLjR3Lvzulw621D2sN0lrElskUNSuA6UzjaH8LjCUSGkRJpdVZU1iRQ37B7ZQ\nZohcoN8zJRRZqOHCd6f0QJpCKuFe9f3z6WPOdcafp7/FmHio+lMNd8rH8kPYuJ1fEtsY5Z3GmFc3\nkQ0/hy0vUALf2ESEAXwDXbjx25p/AD8G/FTj6H8MG1U2CXNDFccmqalRT/7xxhzhY8dKyrpHKpnn\ni3ARS36bZBhf6e2CoWTKMfNjCLM6FwbMfLHrabURRyIjZOKw17w1oZIkbrINmcY02cSqUIfgZ6Cv\nqho2tD1cwLTay6pKuGfhm8Y6cgkmU3rkUtTC1dwed1N3/pYQuQCwnFY9YcxMrHFWUgk986mRlJc4\nO+5UVNgnD3z3ncB3BrY/DHx6YPsK+Ls7CAGEB+1ZHdoaU1+40N9j+7lV3RCpuP/b0u2BDo27rMjG\nZI3lwIQ+325o01BVF6SkSLZsvRaSLdvv7P8l51EIPJZgOwX2flVAE5DQ1Pi6voFNtq29rKu00Vri\nmksrl7ofrv/LXmoTKK/mnb8lRC42HHrONWwjKeu2kOcYYsnIc0Oax6DNYeeVgFlzfkm6T3Y8GaLC\n7gjEhAtK6hfejxCBfqltXzuJaStDA1M7B0PJkmMmpBCp+BFTxSLdMoUNkcoQaYRMFg5DyZRnIZIQ\n+U912us8llVlnafrKqGqS+qkOW6SWW3F+Vaaz7XZtNFj66pLKBxLthx63nP9RtvVICpOT3LKsmor\nEy8XdeP7Ea4uwGoaYB370jjoDWUtHOQVVLCumoWGsffjpEi2QmEXidWKrraKnCUXJ5OuhtyXcfr9\nmILYAm8uqczNhbn0teyOC0ssEA9fHVtNjsXlj/kPtEakI898k0FsxT/kGxrKhtbJa+6cY9cxhxhC\nhBTa70wkMyPbW4cbu0ftJs/K1FR1QZ1WGBHEkQtAkmFEwFitpTLdfe71SSlcP/lwBFMMU8nFHwMn\nx3lbAsgVLXU+i3VWs1zUFDVsarGaRkVj0nKO/RpIe43CTorUZunXfkKlYVXZpmZFbWuKQdcoDLoA\nhl6GfsCkNWbKmouQ2fYsmsrQs7gkl91wYYlFnCnMc3RruDyP2MCa4pQeerGGCMYnl9hxtbYSmnRj\nocWx3JwhjURjbpXksePFMKUd7hhcxnhRW42lrO0qfZFWllySitTTWGqa76hYV7YEvZ58z2rKm9NW\nQUdS9c2J3bXZbqNOi6lZlVp7sT4TX3sBgqTi4Nok54k1iS0SW2ofaKovq+tRIcShMaoxlKA7hl19\ngbFFmf9uhlorn1efo0vn/QWAmDCpuM+tT2KgA2QMMVKJZcH7BOOTiz7u1CQxfQ2uPa5OXothTsG/\noUKW55FYNveF1uY+V9bFEf+qsu15wTTmMGG/LqmS0vpZkmXrWwGnqWzbvIq6035uJ3SEndOOdE6I\nLf+SsX9Q2tyTZuJ32gv4YclOkxvOq1j0Hqsttb+pgQ09cnF1zRx2Id5Qhnzs+56MapwNLfb8Yw9V\ndjiPhNeLjAtLLBplnrSEonuUa4xVaIXhlylU10pDa0ehrN+hY8e0En0tPqnM0U5g3E4+JSxzjg0+\naPNW98w9s1gYtQ7Z1eddVXYytQ5rQ03VZeErUximarSWsiUindxWlhI0g51ldaudxaHEPL/Srq/J\nLJYV155YcHBYsFmnrA8K7rlitZdVBXup1V4WSV9L0YmVYO/PuuraI2+RC8LRAtjoDpTbvVxCuT36\nOiFOFn4v+6EK3NoEO5QnNbQw89/PW0EuhjuzKLkTuCSWBppcYHppiliIsZ+wqOFMV64irg+fXELH\nHLoGN9mGtBQ/JHNsZTmUnXzWLplTCGXIBLYVkOD5kDTWmwQOPJOM8p0Yka4cowi1UdfZ1HhyWo+b\ncM+TVGA7EmksJ8RtC5nMOse61V6K2jr3+wRjj+HyXxxC5poouVBz7SZbvVxa+TxymVpvz13r1MVK\nbCyH3p+pY+xSc9kdl8SiEDIZaVLR2squsfA6ektrSS4kuK3BFCgOGYLrj+HKmOtrcMeJRc+MxfSP\nmQx8G/mUBmJD1zNkNpzjP4phU3fhnuvKylnVBZUUNppYZ9zXhXLcJ71jrDfxMh+xCMOp8MllM9Bs\nrJXJ02wdwRRF0movi2WYYPKkuyeLgLh+i4AOllzyhLb0C1iT2BaWWsZp5Dv3/fIXMbEF2Zhp2sd5\nkkttnDn2qY9LYlEIldQIYarvwJ+QQyHBfrn1tvTHuqIgvmIL9rf3zF4wHJIZSxib+iKOBTfEMKQF\nhV72Oa1vfYQmJ2fSWldJO3HWNA58+gUqbZixDTV2E3BZJm1EWCiXyMk4ZeIaG28+WccWGM6Jr7sj\nOo3q4LBoTXfOnFvUtkbYXmYd81qMTpOx/3dZ+v6kqNobN/4Wv/uj0+j9d2aoVNGUhMoQ5iRZzgkG\nOUvgyEXFJbEEEJso/R4qbhvEQ4x1MUgduZWvS4pltlV5ONba1bc5Ozl1V7/Qfg6hSLMQfC1l6KVy\nq7lQMlms/euc1WMoHyeEocl51wCCypRbFZBXVT+HJUQqWu4pJDgUhRRK0But7Iud3DUZXXtiyf5B\n0QtT1iYyF0HWJVh22Es7Il5V/QQ/+1vD3hXYy4S9tGyJxD13R2itfJFWw5pgdrUGTOnjcydJwnCZ\nIPmUh5Hpq1/fOeivtsZCjEOkEsOYTD7BaHJpjzFQt2nIaR8KD43ljYzJ6RPMVEKZkqcyRCRTtCe3\nAo9lovvwQ40hHojQ62/vLRpiiJlbNMFM9d+0++Am9UXPlKtbYYN1vt9zpe5l8HeVk/vQk+JeaonG\niW0jz4Q8sdrQqtFg1ptk6z3RDcP8vvZT6+VNDfh4qmobTb3FH8A26/pRY8x3ed9/KvATwGdhK8p/\n79i+IvKPsf2tauCjwNcYYz7UfBfs7BvDhSWWEMbMEm5iDkWehJIWQzkm+bpUpq+w1hJzQGvoCXvO\nxBOKNPMJxS9LP7eApcZUs9cYoWgz3xiiYalJZ+aZSip+mfOinhdKO1V7GbLln8WMw7qiKNOWYPoL\nI2H/oOTaTZqSLUAGNwphLx2t49qXUeW6bGo4wmp3R7klGoDVfhkgmr5fRJvOxgJXdrkvU8fZrUBt\nzqdFtoikwA8DX4DtTfUuEXmLMeY96mePAa/FNkScuu/3GGP+5+Z3rwW+A3j1SGffIC6JhXlO1rGk\nRdgusxImlXG44AH//P5vNLlMWbH7L2ysKrKDDjJw0MEGU3wtuxIKbJNK6Dz+JOPft3biPAOmProQ\nGU8hmPNcXfvHKqAXCOCy+MFl0BfYApT94pYOISe+01oc8qQLXS5quNok5DuH9aaGVUM0q6qLqLSm\nOSHPa06O89FirjEz7ZyqDNFjT9Qy7zBeDLzXGPMnACLyZqym0RJL0zb4oyLyxVP3NcZcV787oBsA\nwc6+2IryQVwSywjGypTMIRXYDmuGrpZXKCLNx3lWZo0VsIxFYPmhzDCsXQ2ZJoY6QJ5FQ9IIBSzY\nmlqGXAypJKRJTprkJKRQrhoh94LHyxO2fBAxxDS9Of6XqRibUPNN1S4AfO0F+qHJzgmvTWN7qekI\np4EjGp9wdGSZM50dNeVlippWo8lLWx7m2k3360570SVi9HiPNbFziC3a5oyn0HM5r6iwmXksD4jI\nw+rvh5p+UqC65jb4APCSiccd3FdEvhPbluQa8DfUPqHOvlFcWGIx0pk4/BDRUPHJKcmDsR7zvk+l\nnZyX2SipjCVI+s72oVyIkFlqKqn05A5USJ6CqSvy2KTsa0dTzH/O7LOX0pp3bNl4Q5pkllBCskrW\n/taHC0HXDb5C1zZkRrwVBBND7BxuTGnTGNCrO5YnlmCu5n1yseHK3bEWCW25fg1nSlwkrjyM6RGM\ny4OxsOQSKg8TwxQLQEjjnoo7mMfyiDHmRbf7pMaY1wOvb3wqrwH+l12Oc2GJJQZ/8hoqW+I7pGMR\nYCH4pLI6zBWhbCdkhjQVnyi07PYc4aKIeuWnZbyVpDKEsckhZJ6Yk4zoiiXmiSUKXYQRICFta8e5\nv7v/S7LEtKXk9zI7Eed53Xsm/gQUylWaem23AzqQIzR5uwKXLnIMutIwPhypHAYSJF2TSVeT7NpG\negRjQ5j75NLrmOnBf8fmYOxZ+M/hSZwcGeu0e577/kvgrVhimX2+C00sOkxXI+Y3GJukYTwCrFja\nW+5IZXWQR7UUnZA5ZnN259dhx778MT/HWAHLUCb/XMz1q4xpLbFz+LK5e+l20eVLElJSyUiT3Nop\n6u5ZpUkOlXXy23+mdf4vF3XvWYW0Ft/kOWTqu53aC2yXjFksq7aviq495kKF9w+s/8WRixb/am7J\n+jCvOcxrsub+ll4UXd6UkckT4bhIWg3GJVpCVzVZl4fxzWAwceE2cC+nBKSEoizPinMsQvku4Pki\n8jzsBP8K4CvOuq+IPN8Y80fN714G/EHzOdjZd+gkF5pYoE8uYyvj2AAL2XxdJrwjErcNdsvwD1W3\nnYKhyJmQvL6c7u+pzcFCeTbQv8/6XDHMMVvETGzunrn7upfSdk90/pUWdQmlLd0rxpCQkid7FPXa\n9odPTGtOcyVQ/GdSeSV6Qv40mGeaGVo16/sJ8UTSUBUGjVBelg5NLkuhLEtW+yWrUnjGFUsuC0XW\neWJaUgF6n5dpTZbYH58UCcvUcFwkKuKuIZemsKVL6nTyzB3zYwQdKgXkcCsI5bxhjClF5DXA27H2\nwx9vuu++uvn+QRF5JvAwcBWoReSbgRcYY66H9m0O/V0i8pexq4g/A9zxhjr7BnFhicXIdoJhKKR1\nbHANfe8Xt4S+03t9kDeEYic0fyJ08MkF7GSgI8JgezXvy+a3xh0qXulkndtt0vfpuP1i53ZlaCC8\nkpxinvDb/YLSVPKaLKvZy9REKNa/AvQc96ZcAyB1SZrmpHVGnixZpuvWL5MntoyJ7oVi/5dW3ika\nmb7O2MQ2hthvp+Q0haCrJvvIMmPvY1qzqmyXyU09VPLFYpnWlpizqu1UWTZdKm1ukDtARy77B7ZT\npXt2i6UNmW5NvDtqdiEijxEw7NZZdQi1aWrWnQOMMW/Fmqr0tgfV549gTVaT9m22/52B8wU7+8Zw\nYYmFxnnvk8uY/yDkDI8RlEMoXFZrKSFCCRb08yLUQuQyJPuQBjEkq77usfBnDT/XBqYRjC+Tw9ik\n674Plq+JmMJa/0pddqawckOSHtiIMZOzn623/CyLZdVOfO45MNHvE7rOs66U9X3ddWJ04zlUn0wn\nNW5qG93kk0pZy5amkovpElKx0XiFEbIkUeYyj1zaTpXWJGa1lkVbzHJoUTQVUwnlvFodXzRcXGJh\nOwckRCpDL6fb3+3jZ8BDeND6WopeXcegv3PmCqfJOBnHqsj6yZRDq//t4pXhF2ysW6SWxSdAh7GJ\nYhcnqiZrl8PSmcJM379SNWawxhRGXbbmsISUNMk4zCpO8oRFYv0DB/slpyeZmvhSimUaNcs5+Jqr\nvr6p4y7k6xuaFHWQwVB0oc7a98nF1htLWFU1ednlqIAts1/U0qto4AjFT0Rdprb+Wi6OgFz0XYIl\nFUsuq6pm/6BsNXXty4JuzMzNXYlpwL6ZMGaaPhOMTK4scLfjwhKLJKYdrMBW34gpTYX0pB6bNPXx\n/IivGKnEyogPEY+WZUgGX3vQGCuxP4SxGmTQn6yGSOYs0Tj2PluCsBqFncD2UtOb+Pz8FWcGAyzB\nKHNYQsoyLVmmRoUtS1sq3j3HMXNYyBwKcQ0jNg7GGrXp/2OTYixJ1sEnFzvBW3PYUd6ZwxaJJYsQ\nnC8rtN0RzEGur7Ejl1Uprb9FX9tmnbLO8jO3KRjSyP17d6m1zMfFJRbxSIL+AJ6yQtcImQ90vaxd\nB6ebGKeWGx9zdPpaVuh7mN9LfMrveiHTy07W9YhMtw2NKcyUa8Qzhy1TGw+7bEhlzLcQ0sCmEMrY\nfRz6PkYmul9LqFRKbIJ2ZfsXy6rRzLoWz84ctqltKLH1PfVNYesqCZKL+9vXZtaVbaFsYdjLBOgI\n31VL9gkGptUJ8xcssZYSPqEMLejmoDZnb2l9t+ACE4uJ9lcZenljK0D/hdUry5Bfwu+JMgZX9mJX\ngpoyoHclFYcpJgNdwDNGNHPgm4V2kt35V5QpzDeHQRfpNEehmhKdNYVMQvdG7ze2utbkMhWhBZE2\nhy0SrbVYc5j1myTk2fj9T8USz7qyhNTlwTgZnc9l3YREZ71y/DoPRy9OgKBZGsLmxpiv0xHKpcYy\nHxeYWMIDZmxyvJ2DzEUeQWeKCJGLX7zPbYtBay0x88uc6/QJWkOv9nRGtY50831GU+GbImPQ2kXm\nOe/bxMhyY30t7rMyh1F1q2zr/J/XrCnmZ3OYqu2FoCfDoZW1X65e3+upVQy0OWwvrdnUtmBlRwD2\nHId5bSPAKoCI1tJE5VXVhmVqKIwvu08uXUn+GMHoxUmoJbJDTEvR97BP2vMKckZhpBcE8VTGBSaW\n7VaqU17wuWrx0ESpK826nIHOnGG2Jh+fXGJ+lykEM7RiDq2E/eP7303xFfnE4SYHvX2sAKFvc3fb\nuuupJmlOvVIuTlPZNNPRsrTmsOZr6+TPeqabPHFtFPqRSzH/kG92mbKo8e9DzMS1y8o6NC7G8l20\nXE5rIbMmsesFaHIBOMgrloES/LqUjtZaSOtG4wlrLqu85kZRRwmmV3Xc8+fFghp8Ytbvn//7S0zH\nhSUWB78fxN2EuSv888RcUgltd8Q4l1xuG8pNtCDlHMQCIs4TZz1uSGsJHdMualw+RjMpJ1Zr2fa3\nuOivsNbiIxedZBkzi3XFK/cPwjXo/b5DY2bHS+I4f1x4YoFuQvQJJrQ9RkJdE6Nka1to8te+Fa25\ndKjACwjw1ejQcf3zuy6HCeFVvF/aIySbjyFS8V9S34ygr8Enxl2I0ndEO2ezk6kspS2jsa6kzZ3w\nu0NaAZoY2iRDsiU0rYpDcH1ZhuSNlZeJYRcynaJB63HoQqNDcg/lv/i/d10oaWqJHTVl9lcVrKqk\nDUEua+Egr1hXOhx505LMaQnrqju21QqTpp6b+5e0/pwbqnilKwETu2Zfa59jfnTjNMvMuS3e6vrS\neX8hEXtJh7SaUDmMoeZfvX0jlXW7InxVa/oagz9gNakM2c+dLdonmClBBUOkErNL6+1+f/T+77a1\nllC7Ati+v8534zSh9SZpJiF7bhvmqshlgEAcqrpkXYVfl6FJGqaFEQ8dL7QACZvSmjpdgfESGr9D\nfikf26TXLXzWWQ3UvRbHm1pYVynrSlpSccU/Ncn4jdRyMZB22sphXjclYxL20oS91HCjMbvlJW2Z\n/xhC43goFNsnIdfK+RLzcEksZ4BPKrE+LbGJPZSI5vbtXoZtR33vGIG2rj6pTClX7xNMjFyGouK6\n30x7Ee3vOl+RbxKLIUQqOrmPZTi0dlV1E1lVF5Da9gkCYXJJMqp6TWW6yctvUewjRihTzC2x6x4j\n+aHvNut0lql3zLfShyUXK3fRJqJusm3tJW+ivlx2fmFqlSTZYZmabsg3+S6uzpjFtmlMk0vXvCzc\niXKq2UsTzHk53I2Ru9bsPheXxLIjfNNXTEuJdbtr0VQgdgQzNfzYl2WIVMayk0M9aIbIBeIx/rus\n7uaQSUgL9O/xOssbWerGHJawqbfvf1UX2tesLmIxagY7pyq1QFwTc5iqQY4d97z8Vm6M6YCT05Oc\nsqxYZzX3XNnWXq7m1jTmNBBHMC5LH1CmMmN9NU35F4CD3jjrk0tRW60p5HPRgSy7XuulD2Y+Liyx\nhFYPY478KWYv6GspU8vFO+1lbJL1w3f9yUOTyt5JMdizolTVeKeSizPHuG1ucnF/69XdEMm437Xh\noepahvxUQ4SSb2zuQlLWrdbSaxpVW41jXUlrBqupbOhrkkHafx2MCLWpqKmojF1ta9NNr37Wuqtm\nEGq05psZNaaQaswf567Pv/daU4ktPELwI6h82UPmSV0F2fleDpTvxWouhqu5NY8d5jVF7fJWEmjI\nxZnI3D0ujLCuIhUwEtoKy0cLcD1dssxwcFhwcpyP5u5MJdrz0jLMZYLkUx/6IbsBONS5LmbvHzLL\nhMrpD030mlz8cw7J6Mxw5YmwXBfB1shb5/JaDYcanI1pLuMvyfa5Y6Y87Vj2f+uCD2L9ZPQ1up4s\nvvN2VSpzSbMKbk1cTjtx/zuicVdRF6yrrsz7qpK2Sq0LNXZywja5AFsE42PI3xELsHB/hya+2H0d\nIhUf/jP3TUruuh3ZaYJx+15rNJhNLRS14Si35jHXbTJELhAnlWVqKGqrqdiFgv2cJ3DPFVu88vQk\n5+CwCC4E/evTCAfRXGIXXGBi2V5tauzqOI6RSjZTc4Hu5XUaQgiaVPxWw/mm6jUa071hdO8Z93ms\nTlenlfRfwDmrMH8SDK2mYR6Z6HtbLGzY7LqZjLWcfR9LSZ1UVHVBmiyRbIlpyMRFhNXY7wFFKrS9\n3LW8m3Xai7zTXTzd9QzB98P5Dea0FqHv/5Bfxv3Wv69j8DWtkCkopHXp/CadF6J7uawqOMo75z70\nycUhpqmATVJdV9JqLWCsX6ek8fMUTeOy7aoBIfmnmCLPA+ayCOXFwNREPH+whcwxGrH2qaGukk5z\n0AiRy5CcmlSunBS98/SPvU0yTmvR5GK/39ZaNLRMU5uQxbRAbZ7RZDKFSHz45jB7HsHtYk1hSaut\nBCPDskXPce9+U9TSkoo2s+nr8sl5aqHEoQALRzK+1qLha2gxsg7JNVafberCIWQys4siqz2sDwqK\num58Ls5MaiPHQm2NfVhtRdrPq6qr2WaP5xaLllx8InEO/ZC1Ycp1PZkgIi8FfgAbmvejxpjv8r7/\nVOAngM8CXm+M+d6xfUXkacDPAp8EvA/4cmPM4yKSAz/aHCsD3mSM+d+G5LuwxDJm74xpJWMTRcj8\n5UNrDiHk6yoaMQZ9c0iIVPx2yKHzh7pEwniJ+jGSGUJIC9STnh/BNkYmQxWEQ+f0D9GLDEuyHrn0\n/Ct1SWGUKazcDt6AbW117F4OdfP0CSqktTj4xD7kTxkbv1N6uAy16AYoypTN2t5LRzJdEcsNrs0x\nbVZ+d07nwNeld4At/1bbGye1fpbrhSUXm6wJLsHSRR4CnBzn+JgTcn1WnJePRURS4IeBLwA+ALxL\nRN5ijHmP+tljwGuBL5mx7+uAXzbGfJeIvK75+9uAvwssjTGfISL7wHtE5F8ZY94Xk/GOEouIfAvw\nvcDTjTGPNNu+Hfh67Gh4rTHm7c32FwI/CVzBdj/7JmOMEZEl8CbghcCjwMuHLtjB1DJo7w6ZNaZA\nN/tyzavcpOiXU/cn93b7SEkNveLSPpUQek2lGkIrFmmwL8gQ/BXxFPPAFHNiKNBhqnbiw11LyM/i\nJ0muq4S91JJLnVSWwp1fxfOvVKZmXWUUtTXlOJGGTKJOjhC5+NpJ7NnF9vfvfyVlD0wAABmgSURB\nVMx/MIVUpvaAcRg6Xu+6vGhHF6FnTVQFjlycY3/VmL6sz6Q5vkcux54Z1ZGQ01Q2tV/LrW8WG/Kh\nxq7pSYoXA+81xvwJgIi8GdujviUWY8xHgY+KyBfP2PdlwF9vfve/A/8XllgMcCAiGXb+3QDXhwS8\nY8QiIs8FvhD4c7XtBcArgE8DPh54h4h8StNf+UeAVwK/jiWWlwJvw5LQ48aYTxaRVwBvBF4+KoAx\n0dXKrRxcPrnMneAd/Ekj5FPpnXdAS3GY04Fw7sorZk7UWspcQplDimCd7tA5iG20V+fAl2zZfu77\nV7puh04sHdXm+1c0NDmEzF0hUtH+L+gHA4yResjME82jmkkqPRknRj3qgJS+xmDJxd4ap70kbTM2\n2CaWLRl63+tWBn1yKUubb6MjKt390QVZfUzJ/5qDocVsAA+IyMPq74eMMQ81n58NvF999wHgJROP\nO7TvxxljPtx8/gjwcc3nn8eSzoeBfeAfGGMeGzrJndRYvh/4VuDfqm0vA95sjFkDfyoi7wVeLCLv\nA64aY94JICJvwqp4b2v2eUOz/88DPyQiYowZHJVipvVwcNil+VRIa3Hbdz1HyHQU8t2055qgpZyl\nsVZMPh9jYcIwTzs5qzzrStivS0hoHfidsNv+FZdBDp3242sK7ln49zc2puZ2P9SYYsYdTM49R1IZ\ne34FcHx9weHVTWsSK8uEazdtJNf1DThy2dSwqFxNsM6f4pOMztzX311FmjbU4QTK0xP7PvjpAu66\nzptMzoBHjDEvulMnb6xB7sa+GGtB+njgPuD/EZF3OK0nhDtCLCLyMuCDxpjfEelltT4beKf6+wPN\ntqL57G93+7wfwBhTisg14H7gkcB5XwW8CmB59RmTTBLavBLqSx56cf2e7n4/dx3mG2r+FKqCOyWy\np1hm5Ouy58PRWsqYHyXWq2IMoUluLFoOdjd57YL1JoGDujFldWOupgo68N12W8qlI5RV1c+/2RW7\nkEoox8RhKMBkCKHnPGVxoBc0WUDj1EiLmtVhvhWlZ/0fKmO/tqSwlxryxJq2FgmNk16iBOOXhdlL\n6UKRFx25dL2AXB2w5rx02r8zZZ+F9G8DPgg8V/39nGbbWff9CxF5ljHmwyLyLOCjzfavAP69MabA\nmtd+FXgRcPuJRUTeATwz8NXrgX+ENYPdVjSq5EMAR896voERJ3tgIvYjaEIRNbqnvO7n7s41l1Qc\npmSoaw3FnSvWuTCEs1bhHXLsDgU2+Fqd2zaGGCG5AAiWKqej7kKFCyNUptp24GM/62rvhZHRUi4w\nT/PbpV+7g+/v8jHUVRHGG40NjbO5ZmKtwfW0g7wGuox9V8wyT2CTWYIpakswnYkr/Az0s3FEs0jg\nKIc2FBnwo8V6pjFSCvoNws6dXAbM7zPxLuD5IvI8LCm8Ajv5n3XftwBfDXxX87+zJv058LnAT4nI\nAfDZwD8bOsktIxZjzOeHtovIZwDPA5y28hzgt0TkxcTZ9IPNZ387ap8PNM6le7BO/EGImUcqc1rm\n6hLkjlz0MTVipOIQq3kUklVDk1foGmIr36HeLHNX6aEclKF7PoVIQvsMaTs6UmrVvNTWrNWdq+fA\nV9uc496v++KSI6dCjwGNKeQylLjqY0r0V2yc+c95aLzpa5mqaepIR5fU6SdU7h9Y7SVEMEete0ba\nsOM8MVHCd2TkyEWX3HdVkf3KELeFXM4BjWXmNcDbsSHDP26MebeIvLr5/kEReSbwMHAVqEXkm4EX\nGGOuh/ZtDv1dwM+JyNcDfwZ8ebP9h4GfEJF3Y2/kTxhjfndIxttuCjPG/B7wDPd34z95kTHmERF5\nC/AzIvJ9WHve84HfMMZUInJdRD4b67z/KuCfN4dwLPtrwJcBvzLmXwEQY0ZXyFWebBGKPyHHzVJ9\nctHQZjXfUa6bEDn4lX61w1FPWr0IsAChTC2KOLWXio8hPwrMf0mnOOdDPiwtQ4E2I5a9Gl/rKmGR\nqg2NKSxYUn9HuGcQc+D72uwQfHJxiJkdfUwhFff3GLn4OVpz4I7pN7kD2npjPsGAUS2hpZfT4sM3\njzlyWbiS+xt6pjF93cfXFy25wNk0Sx8xv+4uMMa8FRvEpLc9qD5/hP5ifHDfZvujwOcFth9jQ44n\n40mVx9Kw7s9hQ99K4BubiDCAb6ALN35b8w/gx7Aq2nuxsduvOIsMWlOZEh011Bo31vJ1CqmESkv4\n5g99fPcChOQPnSN03BB0j3p/n1C4bSxT3sk4hJDjG+ImplhYt65/pmXXSZIuL+IIW9qlqgvSQN6Q\nLeWyW3DDeQZF+JhrUgmRSqxytdaQ3f/nle/heuaEcO2JBQeHRVtvzBW0tHm9NqnyettzuHPsx6Bb\nUh/lNorsRiEcLSAvrfaCamJ8cpxzeHXTkgucf2TYRcEdJxZjzCd5f38n8J2B3z0MfHpg+4qZbOrg\nr/BhmFCGamUNhS1OgfapxHrIh/IVQia62DXEJpQhxJIfx7KXd3khNakMmSBDZkYHHRgxBj0ppUkO\ngcZRy7Rumk91ciwX9aR76Ad8zLknmmT1cXTocQxD3w+NgbEmdWNRU0MLB13RwT+HD13Q0jn37e5d\nxJdz7Gu/S6jHy97WKQxFTae9ME4u5wUx5sIQ1R0nljsFo6LRfLPRVAe2v2rfhVzqLNkye+njR8+r\nIlmc5jKmCQ0d8zww2iJAYcpq3ncy6+t1GDqX/u6sPTVCORVDNdy0DDEfi0bI5BIjl10wN6RY47yz\n03WnT33/tu9nvxz/qqo5ymlLwujIMYu4aczluSySLpHSkdXtJJeLggtLLDBOKFOK7+1KLqG2tUPd\nAWG7dIc+lyOXqT6bIYyVaPFXs1MnnqkTo76Gnl/HM6EkZR11ssbMaqH5PZXmNSg39rjpAWmSk5qc\ntF63/UL2UhsKG5vA5uaxTEHoeFO0Fo0p41pjTpLlXMSSPUNFLbXvxdY/C/d76UeO9T+7EOXO0d8n\nmM6xbxMp3QLkVpDLWMDQUwkXlljqRFqTUezF8ydgv2mQLrq3S16DmziHSCWULewfw1/JTyGVoXDV\nmF8l9nsIaytTtRIfsTyeLVNkE8UzZg7rTZDNZleLKmnIKonY/R202WzbvNJHjNQcdjWPzTWJwXxN\nZc6iYSgib8wc6Ue3aZ+OX9H79CRrnr39+9pNWvPY0UInRHZwGfx5YiJ+mO1M/VWTSOmixUJFRi8x\nDReWWEwimKclZNgidWP+DZ3cdatKX98qM1VwUh54Wcb8KvpzzBwXwthEOESIu5K32zfLupVt3nQu\nXKa11UySHDEGajuxiDEkpCSkpEnGMh0u6gnbK/oxcgkhVkvOYZfQ96mYkg8TChkfC/eOYSxC0ff3\nhJqJrbMaXRbGaS8wTv6hfBeruZRt2f/Tk4w8r4PFK3dBKBL1qYoLSyxJatg/2FZyB/0aKkwyllsy\nJ5cglAS59dsduteFyt37q0GNWJ8KH3Mn9l1W1DGtcSyXR8MlhTqN9Eq2YbGs2MusCeQwt02lFumi\nJRDqsjWFUZcxaxewXdKlnYCbENxSmed2IRcfoQTdoXDjGHSUV+xe+guGKSYwn1xiQTFafhjOmWqP\nNUAw+wdlryzMJuvK8fuOfSAYnuwIKE+60vs3mlyXLLNFM2+lX/KpiotLLIlpmxGNQbd/9cklBr3K\nGzMJuRXSWTFmHtHkEvpO/z8F/oQWO/cUc0yMUPyouDmaiybwLKubciF2tbpMrVaSStZGhJlyDdjp\nKE1y0jprTGTbGovLjdEVpnXHzqmRaUOO/TFCcRjKrfJzXobIxN9/KHTcxxTNJeY7m1sp2xEMbJeF\ncWHJm1aU+ApB57v4fV1cOPJysZ6dEBvDpY/lAiDNau65dxONFtouP2EJZmhii5kOQgmRIfgkN6XM\n99yIHd8sNmRTP0sk0Rwy8f8OkYr7PGaG1NqKm8Dy3Cbc7TWEkjWmMGcGS0ihXLWmMMoNSXrQHnOp\nOhuuvLpUWltx0OSyi9YSKyE0FK3oB5Bo+Yb62IeuBeKkMqdyQqgk0lgIv4+QU18vjg4OC68UP7iC\nln62fgy+2cz1ddnUOt/lEnNwYYklSawpLFTltCxl0Lmt4RNNyB7tTywhp/15Y6j7Y8xX4ncVHOvD\nvgt5uHPOWbHmed0jWf+e+xqhM4G5e7xYVo1vpfOvpNKYsUh7/hV7cfaz1WS25VlvbDkSVy5fayu6\nCKjfnTOGsaKgQ76nqdqbe5ZjlSMGe6zMwNQ6eKHxH+p+qeGPn25B1pGLbfjVJxcHTTJOa7ERf120\n2FFubMHSfHsxcYlxXFhiyRJrm11VNetN4pm20laTGTO9uME/1rAK4trKVDOYv1oPrTB1r/WhulL6\nGCGz3VDr2iFCmXItY6Sio4IWy6qdxB1C97yVdaHNLRuyrGb/oGwd98vUkIshTbLRSLAp2CUMd4p5\ndKwgqY+pJsI5PYhuJakMLahCZmZf7g0d6eiqxfsHJeuspqhrjha2kdhRbibluwAtwQBcza0/bVOP\nVoiaBKnNaHfXpwouLLHkCdy/B9c3rjCdDWHs7KnD5OJ6Z4dIZchcEHPaT/H1QHgVF2qJq+tKxRAj\nwl0S8aZqIFr2od/5Iadu29Dk6SY0p61kWd2UCKlbx70LP+37VxrHvXPeT8DcMie+1hIjF98PMSX/\n6Kxm0jmkMlY7ayqpTB0jMbhrO76+aI+l/S5lWbHaL7cSKmP5LhDu+3KYh53+lxjGhSWWTOxKZi+F\n64V11hU1sNAvVLrlg7GJWn1SaX89s4/D0KptLBos5s9xnzW56N9pjDVqmpIzMZR0p6/PrUDnBCno\nCDZNKkOTeudb2bQT2XLRd9xPgQzUMR3y8+heOD7GTGIhUomNEbfY8ZNmHaYWpgxhrqYyFBYdI5Wp\nCykIE02rmdMlzupy+K5i8vqg6CVUhvJdwEYKhogFpo+ZMYi59X2Hniy4sMSSCjxjD64XTXE6Xfl0\nhFx8+J0cbxeG/DmaXDSG2gCH5PdX1UNlYsbMGzA/B8j//Vg2uNZW8rxuk92c4x7Ydtz7bYWV5mI1\nmpvjcu5QZj2ktYQ0lSkh8EM+wamkMpVQpviLxkhlFz8RhBdSBTREsmCztuX3/YrJB02/F629QD9K\nUCdTZon2w1wMMjhPXFhiScRwmNd0vTa6yqdsYB3ZL2QCc6TiJuhQ+fq5SW06Ei0GnZSoG4o5xPqt\n+5OfCxXV+/c+T6g9NlSNGfql0ofIJWYq0yZAfzV+5sJ+5caGGnsO/EQ6WbJ20pF2gqyzpC334e7p\nrhWcQ+Njahi6vqeObHTVbf/YMaKJlfafCz9XZUxTmeofimnn7Xnpay9+x0j2S7twbEKS91LrQ1mm\n/RbHPqkcnlOAjRhzYcKNb00K+V2ANLHEcpjXXM2to+4oN40d3vpb/BdbD/5Qz/mzIEYg+kV08rhJ\nDbqX+Kwl2h0ZTmlh7BAKD9b/Qr91v58SDadzRWKJe6P5FUrb9FvYbv9405FMA+uL6e7DXmpYLup2\n1d0+h0UazF0J9omJjBc/v2MKQiSvt4Wi94pl2v4LYZexVOXJVljxkKaVZabXaGuXPK58U5Fv7DuY\nFvZ9TMqa8kQ4vr7g9CTn5Nj+Oz3JODnNbHvp0pq/V4FTalI5zCoOs/pJqbGIyEtF5A9F5L0i8rrA\n9yIiP9h8/7si8lnqu28Skd8XkXc3DcDc9s8UkXeKyG+LyMNN80X33X8lIr/W7PN7IrI3JN+F1VhS\ngYNm0l6mhuMiwcW/d1Ej4dW1ToqL+SdgfPUayoIPQRfic1gsuwrHfjmV2IoOpuchTG1ENlY4U8Nf\nmfraS2zVGgqJPsuqel0lHPhVOmovWqfckC73oKIp61I3xQybIoYNeW7W/Ql6Fxv6UEFS6C8uYgsQ\nvxqEbxqL9Q2K+eDmaC9+3o1friVmArNym60gmTwfrxqtoce009JDvhdLZrYMDNhQ4k3d11bAaim5\nWA11P4M0WUyWZRDmfPq7iEiK7er4BcAHgHeJyFuMMe9RP/ub2EaJzwdeAvwI8BIR+XTglcCLsfrb\nvxeRXzTGvBf4buB/Nca8TUS+qPn7rzedeX8a+EpjzO+IyP0wXJvzwmosgl2RHOR2wjjMa+5ZGK7m\ndlW6l1n7q11dd4POmcDuhE8Fts0jvuYC26vHOZhiAouRSp7X0X8Oc1amvqZyHqQShCOVqrT/FMm0\nlY8jaE1izb0q86T95zCFbEIh3KF7Fbqn7XkiiaVjGgzEQ+HHxlEsmXMo+CDLjJfLsq25nFWDydcV\ny5Oi1V4265TTk4zTk9zmIdXbWov1tfikcj5h6eeMFwPvNcb8iTFmA7wZeJn3m5cBbzIW7wTuFZFn\nAf8l8OvGmFNjTAn8R+BLm30MtpUx2BbvH2o+fyHwu8aY3wHbaVI1YAziwmosv//bf/bIC572yj+7\nTad7AHjkNp3rduGpeE1weV13E27nNX3iWQ/w2BN/+vaf/oWvfGDiz/dE5GH190PGmIeaz88G3q++\n+wBWK9EI/ebZwO8D39loHTeBLwLceb4ZeLuIfC9W6fgrzfZPAYyIvB14OvBmY8x3Dwl/YYnFGPP0\n23UuEXnYGPOi23W+24Gn4jXB5XXdTbjbrskY89IngQz/n4i8EfgPwAnw23T1Jf4+8A+MMf9aRL4c\n2/b987E88d8A/zVwCvyyiPymMeaXY+e5sKawS1ziEpe4S/FB4Lnq7+c02yb9xhjzY8aYFxpj/hrw\nOPCfm998NfBvms//B9bkBlbb+b+NMY8YY06BtwJtMEAIl8RyiUtc4hJ3F94FPF9EniciC+AVwFu8\n37wF+KomOuyzgWvGmA8DiMgzmv8/Aetf+Zlmnw8Bn9N8/lzgj5rPbwc+Q0T2G0f+5wA6UGALF9YU\ndpvx0PhP7jo8Fa8JLq/rbsJT8ZpGYYwpReQ12Ak/BX7cGPNuEXl18/2DWK3ii4D3Ys1XX6sO8a9V\nZNc3GmOeaLa/EviBhjxWwKua4z0uIt+HJTQDvNUY8++GZBQzULriEpe4xCUucYm5uDSFXeISl7jE\nJc4Vl8RyiUtc4hKXOFdcEss5QUS+RUSMiDygtn17U1LhD0Xkv1XbX9iURXhvU3ZBmu1LEfnZZvuv\ni8gn3f4raWX8HhH5g6YcxC+IyL3qu7v2umIYK5HxZIOIPFdE/k8ReU9TZuObmu1PE5FfEpE/av6/\nT+0z67ndKYhIKiL/SUR+sfn7rr+mCwdjzOW/M/7DhvW9Hfgz4IFm2wuA3wGWwPOAPwbS5rvfAD4b\nWwDgbcDfbLZ/A/Bg8/kVwM/ewWv6QiBrPr8ReONT4boi15o21/GXgEVzfS+403KNyPws4LOaz0fY\nkNEXYMtwvK7Z/rqzPLc7eG3/EzZS6Rebv+/6a7po/y41lvPB9wPfSr/Zw8uwGaprY8yfYqMz/v/2\n7iVEjioK4/j/g0gCSgJKGINZ+EBdBAUhujFIYqKGMfgAxY0LcSE+UFw7G5eim4AKCYRgxCDIiCiI\nJEQXghgXhijCICQiwRiNuogiAVGPi3OHrh6mM52esmuq+vtBQfWdqp57pug5XfdWnbqtlFVYGxFH\nIz8BbwIPVPY5UNZnge1NfdOKiMORJR8AjpLXwUPL4xpgmBIZK0pEnImIY2X9D2COvLO6+rc+QP8x\nuNjjNnaSNgL3Avsqza2OaRI5sSyTpPuB01Hq6FQMKqlwVVlf2N63T/mnfg644n/o9sV6nPzWB92K\na96gmFqhDC3eAnwBTEW5XwH4CZgq66MctybsJr+kVYuMtT2mieP7WIYg6Qhw5SI/mgFeIIeNWudC\ncUXE+2WbGeBv4OA4+2bDkXQZ8C7wfET8Xj0RjIiQ1Jr7CSTtAs5GxJeSti62TdtimlROLEOIiB2L\ntUu6iRzb/ap8oDcCx5TPMRhUUuE0vWGlajuVfX4oNymtA36rL5J+g+KaJ+kxYBewvQwpVPs4b8XF\nNYJhSmSsOJIuIZPKwYiYL8Xxs6QNEXGmDAmdLe2jHLdxux24T1myfQ2wVtJbtDumydT0JE+XFuB7\nepP3m+ifWPyOwROL06X9Gfonud9pMJadZNmG9QvaWx3XgFhXlTiuoTd5v6npfi3RZ5FzB7sXtL9C\n/0T3y6Met4bj20pv8r4TMU3S0ngHurRUE0t5PUNeqfItlatSgM1k+eqTwGv0KiCsIYu/nSgfjGsb\njOUEOX59vCx7uhDXBeKdJq+sOkkOBTbepyX6u4W8WOTryjGaJueuPibrPB0BLh/1uDUcXzWxdCKm\nSVpc0sXMzGrlq8LMzKxWTixmZlYrJxYzM6uVE4uZmdXKicXMzGrlxGKdJOk5SXOSaq8YIOnhUlH4\nX0mb635/s7bznffWVU8DOyKiWjMKSauiV1xzVN+Qzwrfu8z3MeskJxbrHEl7yBL4H0naT5aQua60\nnZL0KPASeRPeauD1iNhbKi6/CtxF3hz6F/k88dnq+0fEXPk94wnIrGWcWKxzIuJJSTuBbRHxq6QX\nyWd3bImI85KeAM5FxK2SVgOfSTpMVgi+sWw7RZa02d9MFGbt5cRik+KDiDhf1u8Gbpb0UHm9Drge\nuAN4OyL+AX6U9EkD/TRrPScWmxR/VtYFPBsRh6oblKq6ZrZMvirMJtEh4KlSdh5JN0i6FPgUeKQ8\nc30DsK3JTpq1lc9YbBLtA64mn50j4Bfy0bXvAXeScyungM8X21nSg+Qk/3rgQ0nHI+KeMfTbrBVc\n3dhsAElvkKXbZ5fa1sx6PBRmZma18hmLmZnVymcsZmZWKycWMzOrlROLmZnVyonFzMxq5cRiZma1\n+g+lRR1J5URuGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQLdtd3/f59erdvWf2npnzPrrSvUIYRCoYUmWbEiRO\nyjgubAyyRVIJBuIyUGCiABUnxjGPPKzYUFGBY+yyMILwtsNDRbmC4ohAQYxNHMsgiGMb8QcCS7r3\ncnWe98zM3jO7e3f3yh/r0Wut7j0z596je66Z/Tt1avazH6t7r+/6/X7f3/cnWmu2trWtbW1rW3st\nLXvaB7C1rW1ta1u7fLYFn61tbWtb29prblvw2drWtra1rb3mtgWfrW1ta1vb2mtuW/DZ2ta2trWt\nvea2BZ+tbW1rW9vaa25b8NnaJ81E5L0i8t8/7eN4PZqIfL6IvPC0j2NrW3tatgWfrb1iE5GPisip\niCxE5GUR+T9E5Dn3vtb6nVrrv/aUju2rROT/fhr7To6hteNzJCL/XETe/jSPaWtbe73YFny29mrt\nT2mt58AzwB3gbz/l47mwiYh6DXbzT+34XAF+EHifiFx9Dfa7ta29rm0LPlt7Iqa1XgE/DXyme01E\nfkREvt0+viEi/0BEHonIQxH5ZRHJ7HsfFZFvFZEPWw/qh0VkGmzn7dZreCQi/4+I/DvBe8+JyN8X\nkXsi8kBE3iMi/zbwXuDftV7Ho+B4vldEPiAiS+CPisgvicjXBtuLPCYR0SLy9SLyWyJyLCJ/TUQ+\nzR7HkYi8T0SKC4xPB/wQsAN8WrD9bxKRuyLykoh8dfD6F4vI/2v38byIvCt4byoif8+e7yMR+VUR\nuW3fOxCRH7Tbe1FEvv01Atmtbe2xbAs+W3siJiK7wJ8BPrjhI98EvADcBG4D3waE2k7/GfAnMBPz\nZwD/nd3uH8BM2v85cB34PuD9IlLaSfUfAB8D3gK8CfhJrfVvAu/Eeh1a6yvBfr4C+A5gD7hoWO5P\nAH8I+DzgLwPfD/xZ4Dngs4AvP28DIpIDXwssgN+yL78BOLDH/TXA9wRe0RL4cxiP6YuB/0JEvsS+\n95X2e8/ZMXkncGrf+xGgAT4d+APAH7f73drWXle2BZ+tvVr736xncQh8AfBdGz63xoTmPkVrvdZa\n/7KOhQXfo7V+Xmv9EAMObkL/OuD7tNb/TGvdaq1/FKgwQPA24I3Af6O1XmqtV1rr8wDlZ7TW/0Rr\n3Vlv7SL2nVrrI631bwD/Cvh5rfXvaK0PgZ/FTPKb7PPs+HzCntN/ZL/nxuSv2vH4AAaY/i0ArfUv\naa3/pT3OfwH8BPBHgu9dBz7djsmvaa2PrPfzRcB/ZcfjLvDdwJdd8Dy3trXXzLbgs7VXa19iPYsp\n8I3APxKRN4x87ruAjwA/LyK/IyLfkrz/fPD4YxhQAfgU4JtseOmRncifs+8/B3xMa908xvE+f/5H\nBnYneHw68nx+xnc/qLW+orW+obX+PK31LwTvPUiO/cRtS0Q+V0T+oQ0nHmK8mxv2c38X+DngJ0Xk\nd0XkO0VkghmrCfBSMFbfB9x6/FPe2tY+ubYFn609EbMr8L8PtMC/P/L+sdb6m7TWvw/408BfFJE/\nFnzkueDxm4HftY+fB77DTuDu/67W+ifse2+2Ia3BLjcdavJ8CewGz8eA82nYjwPvB57TWh9gclgC\nYD2l/1Fr/ZnAvwe8HROiex7jFd4Ixmpfa/37n84pbG1rm20LPlt7IibG3gFcBX5z5P23i8ini4hg\nQnQt0AUf+QYReVZErgH/LfBT9vX/BXin9QRERGY2Gb8H/ArwEvBu+/pURP6w/d4d4NkLkAH+OfAf\ni8iuiHw6JvfyerA94KHWeiUib8PkqgAQkT8qIp9tc15HmDBcp7V+Cfh54H8WkX0RySw54o+M7mFr\nW3uKtgWfrb1a+99FZIGZBL8D+EqbG0ntrcAvYPIa/xT4O1rrfxi8/+OYifN3gN8Gvh1Aa/0h4M8D\n7wFexoTuvsq+1wJ/CpNc/ziG0PBn7Pb+L+A3gE+IyP0zjv+7gRoDVj8K/K8XP/VPqn098FdF5Bj4\nH4D3Be+9AcMsPMIA/T/ChOLAeEAF8GHMeP00Jte2ta29rky2zeS29rRNRD4KfG2SD9na1rb2e9i2\nns/Wtra1rW3tNbct+Gxta1vb2tZec9uG3ba2ta1tbWuvuW09n61tbWtb29prbmP1EZfCbtw40G95\nS1LSoTvQGl8KorV5LTTJQMQ9MY8lQ9OhdUdHR6c71p3QuP/abFFr6DS02nxtkoESmAioTJOLNq9l\nE0QD7Rq6FpoW2hbaDl236MYepwiiBJQgKgOVgVIwySEvIMvpdEOrG1/c0mnxp5KJRgDBviaC+weC\nYUVL/344Pnb/IJCp6PzRGvMP2k5IRtDs2+yOTLQbyQtZeKwZGUYezh5j9xi1pu7ahufjLpAe+S8S\n/1dZ/9jdB5nqtz02Xu51t4+uM//bDr02j3WHed5B1wm6FTYFJyTT5BONlAopcygmMJmAmqAzoe3W\nrDuo2ozOj7nZWCaQiybPNJkoMlEImT3mztx32h5fp80XMtX/l4xOt4Cm0y3rDhot1K2YobD7yuw1\nLjKNkgmZKHOd2jWsG2gadN2gq5ZuDV0jdHbYzCFo2s4Mb54LKocs12SZRnJBJgqZZOaen+Tm2FRu\nf6f973JwF4mMn294nQL7tX/14n2t9c2L32BD+2y5rhesL/TZj3L8c1rrL3w1+3u926UFn7e85Q18\n6Ff+TvxiW5u/TQ1NjW4r83jMclM+Iqo0j/MCnZfU3Sl1d8Jpc8xJ03BvNeHeaU7VmkmzaoVVazZx\na6djv2jN/0nL3mTKfHKdsm7Qhy9BtYB6jb5zHxYnUK9p7y7p7p3SVQ1ZmSN7BdmVkmy/hPkucvUA\nnnkTMrsOs2tUesVi/YA2KKRvtfkBKJmgkvpMlZnXimwXJTk5uRmXcExWC/OaKvy5S7kH5ZwGA3at\nXtv/DW03/MGpbNI/Do7Bfb7dIFqgJB8/xuVD9PJBfw2dueuXj5T7NDXUybG55/XajP3a/KWYIJOJ\nmeDnu+ZvXpgxmM77+yDYp79/mrofQ7td6jV6eQKLE/TxKd1hRXdYQd3RHla0Rw2rpaJaKpq1kE/i\nCTEvOtREM//UnMmnXyV7yy3kuWeQa5+Cnl/ncH2HOydLXlhOeH6RM1VQKrONUml/392cNuzk++yo\nfYpsB2nM9fXX2d6DFBOYXTPXeTr397q7l06bI+6vau6tzLXcL1rKTPvH88k19tQ1c52qY7PdR4/Q\nd+6jHxzRfOQR9fNLlo9ymjqjWQttLWYMqo6yzJhdbZhdaZjOWvJbJerGLur2LvLMdXPfX79l7vu8\n8PdieIzm/pmgZBKfqzuek2V/rolln/FtHxu9IR/DFqx5l3rbhT77Ve0v3jj/U/9m26UFHwAtgoSr\nHFUMJ69NtloYwGlqaAuoDBCV0zlFfp0i22UnP2E3P+bm9JSqzag6B0AZperYn7Ts5jmF2qXIdiiy\nHfLlkZlEq4UHnHCCzA5K9KolKzKkzGPgme2aidFNgm1Nke9QqJ1kMt/xgBCCANjJ3YJSTm6OIwTi\n9EdqJ2FtxyMv98jzAhDI5+Y9uahfY4DRAPjpALQc6KQTiF6+BMuH8OhR/+EQRJy5SWVkchmYPTep\n1zAJzrWYwO5sCLzQj3teQFMbH02VaI5HdyH1BF1MkHKNTFtk1aJpUAclALtlQ150NHUfHc+Ljnyi\nyUpzL+TP7pG98Spy+wYcvIFmts/CAs9vH5XcPc14VMOVAkA8AAEeHPzxuN9CXiCA9rriCyjn/nxR\nPZArMWO5k+9ze/eUUh1TKu2vkbtm8/w6rI6HC7piguztkN2syKuGvbKiq6BZm3umqTPataAmmt1r\nLdlBibqxb0Bnb8ec97UDOHiDuQ7JIjC0UeBxCxZ3T7v/81229sm1Sw0+MAJAgYkqTbgq/LG4VSz0\nfytAFWgWUB0j5d4AhIDIC1DZ1AOOkomZRI/uoZcPzT4s8OjlSTSBOsDRK4VM8yHw7M4G51Fku3b/\nwUSc7UTPW934id0dE00VezsOEBcn6PXaeAIQTcy6eGhecxOxKuLnqeWF8Rrs4xzIyz2KbMeDkLNx\n4HnggUe/fDjwXAB01fRhqQSAvDcTDdgkfhz+t6tqf9wjE3J4bgaE9tC5HcN0P2sLcmWDTE3YzgFQ\nVykKKvLKuMpZaa6/TBXZXmEm4t93E3nuGbj5HBy8kcPqBe6van77qOSoNsBztBamSjN9zMYKokp0\nXgPz+DoF18MtapRM2FET1DT3z90iRskEWR33XiD4vzIxAKxuzcyiqjTfL4Cu6hdMzstXt3eR6/v9\n/e68nekcVGE87wsAj14+6D14Bzzhfb04ie+XJ2CSQTm94EJs+cR2+7q1Sw8+MAJASfjEWxg+ceaB\nwd4txcR4QwEIleqaX/2HIS/RGqoFurpnv7M4E3icSWlmkQHwFJN4EmxqRBUU2Y59Yce/ZY5jxz5u\n/GtFtmM8ntWxCUeE3s7ixIeKqNdo9+NcEk/mztJJPDUHWG7ydp4EkJdzyNzxrYeT2RjwPDxE2wlL\nVy161aBtjFOmBqzd+Dkw0g4AOAOIwhCb83QS0Bl4d3lprq8qIK+RlfUkQgAqJgPvx5mmISOHA5BV\nawCnzKHIyA5KsoOyX/k74Fnf4cWTNS8seuCpO1g1cGRvoytF7P04zyU+9uD+D7w53VY247ZA8oJc\nFQPPuch2zHm3tUl0Nitg1d9L4eLNja8FYHV7ly5ASAdkQBxWdous2TUDPA509MqHe0NzoBPd1ynw\nBCFWTZKDfIIAtLXetuBjzQNQGHpz4QcYAlEICuFqu5iYv7uz/ia223Ere1RhvIowtu4sL6Aw25N6\nMqqOKZgVcAQ8zlrz49Z24pCmRkKvwz4OL3yubHxFphYMA9B59KgHHfcjrUyCWMoGKYNzLiZoNxbF\nBNaBx1aPhLxe4Y9atDZjtlrE4RJrumo3f7ccX/574Em9oxQYHfCoOJyYTnjOlEwQlxdKAahYD72f\nUqGnLXqlfHiVvd7jlVIhezv9tb/9LLL/DMfNAx5Vx9w7LalaAzBTZfKLU4NZXClgv+goVRcB0MBS\nT79aGO+eQJVVDe8pZ6NbTkEHzH27OEHYNb+VYoLaC+4f+zfKte1dNWM5Ajqhl2zGPo+Bx93bKfBY\nk0nwe0s93q09cbu04KPpRldIgJksYDPZIM0nJJOfMeMJ6aY2IQHweSFIktGp7c6gqM0Pb3Ficg6A\nLuL9DoCnXpv9FhP7Yy88CAHmb9V/PA2jDPI6Dw/7pLgFnKE34UAoj5O1yXh4L8kCkkwm/WeCySsl\nLjgLvR6fO2iTBL49Rr+t6fjt7YDbT2wwTiQIxk1U6UM7qZfj7iNHtHDH615TkpO77bXBBbD7dAsc\nz6Es17BfRl7cAHTs6l8OnuGkO+a0OeZorajaPj90ULitat6wMwSeUhkOXEo6AUy4tTo2nuXChrDG\nFlzhuYSP0/xaGnZ1z6/Y0OR8N/4dpaFOVfjwms5LGr2m1Svq7iQJZ0/s+I8Az/JBf3+nv9kwxxdc\nm40h1VdgmQhFecHqlm3Y7feuaa1HGVVKJsYLCm+4cMJwYDHGigJYr80q3//46p4ZBiYvZHMB/fZH\nACgv4h9sve5/GBaMRpOi7kflvBEHRm6bEB9Lun8XXnv5EBYndEcV3SNz/rpqTBwHIrZdD0IKqnGW\nmveQ7LFoMMB67WBwzlrEL59TppI0Vb96tStXHy45y+OZ5jElOVxRhxONS6xDzGAr52d6Oq1u/ERo\nciH9+0W2a+jzeYE0No+ShJ7c6j8EcLFrFnGfmdjjnO9CaVb/jcqom1NOmoaqHa7QDwrjAYVMt3Mt\nBB63AAnud318OjrWzqscgHs6xs5UcD+W9GMSepojbNK2PRolpITmgaftYPUw9uZtfseNfWQh6Lnc\nniOUbO2J2qUFH9AbQyUQhEvATBhpniel4rrXi0m/ivVJywQEKjYn4FNzBIIiAL2RPNBGynBom9he\n4cSyPIGHhx509HFNV/XeDtCvyMsWqRqyvcLnJZy3oVcxCPUeUr+y1PNdA6i7+B+5zsueop1Qwh1D\nabB6dV5PsE+f35nm/nUPPPPdfiIPJ5rpPGauJfmcsftljFbeEq/C6+4k9n7cWia5B4TdfmGRXic3\neQfHqad7nDYPqFvLpmzHk9ml0vZ/Fzzv7NgmU0AKPMEiRK8aQwk/rtGrtidyhOdgc1NpCYD3Kly+\nxoYiU0tJHFrE0qUr6vUjT8M/q1zAM0fbLqZSp/lUbDg4XMSF3o67H8qzegVe3CSDsrw48/P3ul1a\n8NFo6u50PORgzQNQXhg69aYwHIxP9mdZGA4b7DgO+fjPNzXktZmswxqVx913aCnwuBDbqkFXzUbg\nibfRmZWr+8xq3Ptxq+V0wgL8hOMmcWeOaJCTYzofcPZ1CI4hBCApVezxOA/CejuufiUMq/lw2hnF\nqy7XMDYptq35XqEMc0+pfZ/7o0rOI10YjIWtXJ2Nq2Fpj6hbV8eizvRuXLjNAU+ZmceGCm28BBYP\nTGjq+GUPPN39Be2dJd1xbYDH0qAN/VsxnTVkcfTWFLQWmclblQpx4eKJ88r7SMAY2PgxbRfGo7Tn\nGIJr1Sp7Xg2lMoSUQu1E9UqjjLYxc6CYejs2xHfWInVrr9wuLfi4Svk09BbH7E/NTT3dM0l7R70G\nv+J2dSA+HwPxqhriFWxKQU5fT6jHgFm5hUDlwhM+tJY8Tm1Tkj/NWXkvojWAU3cR8EAMHCEDy3k9\nGxP6YcgLDGvp2gHsXfUFsWGBqjM/MTZBfUhe4Oi/JmRlP1vG9NrBGLh8yViYzY31GV5OaCnomLBX\nRmlDXI6hF56HtzDXdxEP1QGknai1CG3XeKAOJ2Xn0YS5n9QM8HTeayiyHWR1jD56KWIOtneXNC8c\n09ytWC0V7Tq3h5/5Opx2LZSz1hfBZtjfU2nuHT1tfchVr+3vZdFfJz2NmWUu2qBkcuY1CL04JRN2\n8j2KbJdSpiYneE5+R1zzWuf5Bt5YWi+0BZ9Pjl1a8AGJ6hSA0cdKzI1X5DuI/aHovIB8YVZwIQg5\nS1kyY3HuhIEW5RcSgBIsAKXbaOo4wX8WK2fTeynNNPV6qiBkFVgEPGUe5VSkzAceUpRrcXTZc4AH\nTFhoUIflcmaq8A2wxdGm3TmNnH9ESQ+p027s7bheBHhOG5N3qFqhajOO1hOO6oxSaW5OG/aLdgBA\novXZwDN2jRK2Hcp5h+vA6zHTt/Fu3FQeS8pEXo/1gpynkLedUdS4ew/98qFRHPj4Ec0Lx5w8VCwf\nlbS10Kx7QGtqCz72LxaAugrc2sncSyPejzv3vDZhsQSAVF4OFoVpSLEvZM2j8/D5nWqECTm2CNsQ\nZnOeJZx/P1zURLg44eAS2KUFHxGJGEnARlmXVplJsVA75LNrPQA19QCELgw6aVI7oe+aG94cS17O\nbbV8barlQw8gBSDYDDQbvB69Xvex8MTr6Wx+IqOP7w+BRw09m7F9O8/j2oGv0dDTvd6LSCbrqNg1\ntXBsd832xXl/rs42XRCcBTwXtLo7oW5N8etRrSzDTMxjq0RQtcKzGFmZzRs6Z0LbcJzO6zHjNbxX\nNxEKHPDsT1o/cbu8iD58CR7cRd+5b8Jszx9TP7/k8G7B8lHOy/cMkNUjIdf5gaJZF8yuNMYDKjqy\nqqGrFFkxHFe9Xpt7w5FhdhkAkKjCs9XSc3Tn54DHSQNFYbaQVBCQgYTd+DcwEnYNvZ2tx/PJtUsL\nPun0mMbsIVxtBfUDmQWgamHAIC+s1E5tQGgMcGAcdCDKM9TdKeiRlVa2Y4ouWYznnjaBznn1CSlj\nL/B6Ntko8DhK8xjFNjgWuXoAV654ppaeDllEptB1ty9WDMNtrio+VJ4YC2OOUYIT2u5YsajLN6Tm\nPORQs+9onVvAUYGSgPuGGY+bnXBzukbJnskttlYtwk2OwdikYzXweBKvJ2R6mQnZSYe6cFS8yTIz\nem7hpL2rSwM8d15AP/8S7QuPaF44ZvVizeHdkuXLOb/7fE1ddRtX7MVKU5YZ1TKQAKpaOIwXDOLo\n4mVuC3vXPd1+vmvGppxDO1Jk3K3ZzWNdv4jN5nJViSSVZ6CmLNGQvJHkd8ZkeZ6UZbIlHIR2acFH\ntLYSLnGFPxCIgLofVMMAgMo55DXSFP1EqAJQ2FDXEOVzbFzZTCbDkBP0CXc/CacilWN2EdCx3w3Z\net7rCSwr8d7PJuDJ9sthqNGar6OZ7xrgcR5P3mepnTSL83w2gc7AUsr62Hlu+t4FvR13b8TAY0Dn\n3mnOYS08quHuqblnrpSxdpphXu3a6vqHZqGyibHoLMkRjnlnKjOEBucp7uZQqvj+9cfhPB01i5hg\n+sHH4KUX0Xfu03zkAc0Lxyxf0iwfFTz8RMaDuwZ4gFEAKkuhmArTWUs563rPx15aJ5aaHdeGERl4\nzjJdGDC6vo/UBxYQzGJCNzXS1OS50QpUk7h2xyuDLF9EB+obEeCMjWfo/YbsxiDMtkkdYWtP3i4t\n+KA7cnJamaCkp8emwGPEQDPGAEjlpW0+sGe9oJHwkLWxnE5KKx5LUm9U372onTVBhyCUUJUdiQDi\nkBuBoGkUanP05bG4ukvoBnIoo4dq5U+AcxltokrjRThr69iTC/+mx3MBCxckJsfTA8+905x7p7n3\ndh5V/WRfZE412iiWF2qnZ5K563cW+LjQ4RngqOw9O1Akt8+LxElR2aQHnVAB/KUX0c+/5PM7y5c0\nR3cn3PtdOD5qqKuOqrIMumTFXpbC/EBxcE1Tzjrywv6fDMN+3WEVLWoiqaDDCnXL1Ht5KnZTG1Ap\n50hTUzpKdrMyUlQutPbwsGdpBt67K8YNLcr3OeCxi6BN3k5UpPo6MxH5QuBvAQr4Aa31u5P3xb7/\nRcAJ8FVa61+37/0Q8Hbgrtb6s0a2/U3AXwduaq3vB6+/Gfgw8C6t9V9/tefw+hvV18q6FqoFhc05\nqKxB6QaXZwEDPAaETEijVGvaLqeVnLoDJY0hIqgCWGzuSTNCJHAhnrROxIGPBx6bpI4UEcL8Emye\nVMP9hknukbDEuNeT+7S1E7McyLyk9OXweMLwUSCJkioE9Bp34+rP/nOJIkNkqSeYAtAFJvWU5u0V\nttvTAfB84tQIdo6xyl1+pchMIlycIkMAPOEK3Y9GxF60hIqm7jP4gRnF6LEi6Tz6jPvrGW1OD+8T\n943H8/Ej1r/9Msd3cg7vltx5oaGqtAce5/lARmEPYwx41BjoRLRs835edEAL1OQTTX7L1AypqoHr\nlrjji1ItCFVOISSQe7Iisq7+yNUdAWQHFerW2hcwR+xTG/JlOjcFutbb6QlGDsB3+4VfkwjCvkKT\n7DEUDs7ajogCvgf4AuAF4FdF5P1a6w8HH/uTwFvt/88Fvtf+BfgR4D3Aj41s+zngjwMfH9n13wB+\n9lWfgLVLDT56+QABinInyfVkHngMm0mxX7TWKzLej8oaisyUuBTZDmLDcGdaQihIgce9HuU8Qj2q\nQFUaGDLcxkBoU5uIkHCQej2BOQAaBZ7Q2wn/J/mKMWmaVq/jlg3V8dnhNawqQhi2dIAcyuyE55ae\nrxsflytKiR7B/OnUCjYBz91Tq5sW5FamudNPc31yrpOT99fPAmQqGOt2G4EQmPMK67wwTDD/sdTD\n8WCTR8+lqdDHv2sU0wMqtfN4DPAUG4GnWpmcUl2ZyXN+oJjtiQ+zqYkmbPVQL8S3Qghp2f5yBkA1\nW9eUFjhU1ZLd6MHHA9G8jlU37i9MAbRV3Ehr0ZwKhwIDQO6+dHVSll152h6NkjYi4Fmdvyh6CvY2\n4CNa698BEJGfBN6B8UqcvQP4Ma21Bj4oIldE5Bmt9Uta638sIm/ZsO3vBv4y8DPhiyLyJcC/5gkK\n/1xe8Fk3JvyQF+R5QZHt0ioXWmtwyduqNcV7Ye+TVjco+joED0DnaECFCe1Qit7VNETAE/YbCdg7\n0cTlalzOolmPeDwhw81JpRglgLgIVFsvMCt64Ikq1l3NTAg6Y+0G/MDVfoLNIZY9CdXCA9pzdA7Q\nK01URGrbYdX62FjIWK3VBnOMtrB+x4VhnWCn41hMc5gq7YU7n5s3PDurmU+usaP2YWEZWMcvD1TB\nx3Jk0bWyHqvOrZp0UyO5zYWoKXokFxHR0h1LMBRhtYuX7sioV7RHDU1deOq0MxNmy6irjnJqQKco\nM/b2x4EHbA+eNRHwVMuM1VKRF9bzmXQ9PRsoZxmFBRG9auJFkX0si1308gT94Mjnkdp7sYjoqIUe\neQA8ldWEq9tEiDTrldOdeK1ePoAHd8/f15O3GyLyoeD592utv98+fhPwfPDeC/ReDWd85k3AS5t2\nKCLvAF7UWv9/EkQnRGQOfDPG0/pLj3keG+2pg491IT+EOem3i8g14KeAtwAfBb5Ua/2y/ey3Al+D\n8dv/S631z9nX/xDGldwBPgD8BYv4m61tTczYFo+Ws2u0mVuN9gDkOjK62ogxOQ8gyteM9Qc6r6Ha\nxkZX4aSVyMlImaMdEIQbcxNb+Dep56EeanRJ0vDFPfc1PKmw5VmAo2LQicx5Oq76vEk8F6dmkoK5\nAx73HddbyI6NPjaTSRgO3GRhbc8wBBoSUMICTlMrc9vO+c7zmSqjobZftDw7W3Ol3OvDbeE1dP2G\n7PWjahBH+HNFmGFLiqYPvUXekVMs33h2xIDtck12rPTxKd2jivbQFI82a6EKvB0XGipKqG0+ywHP\n3oGinDWWZDCkkqfAc/hQqO2ippgKpaXhOTCqlsqQFA4a00yvavrzcvnIeu29nfb+Cd1hxclDs53d\na+1QMaPIDAPTEQx2Z55dWXennFpliI2yPGFezFLQn4SJmDG4oN3XWn/OE9nxBUxEdoFvw4TcUnsX\n8N1a64WcM489jj118AH+AvCbwL59/i3AL2qt3y0i32Kff7OIfCbwZcDvB94I/IKIfIbWusXEM/88\n8M8w4POFnBOb1HWDvnPfFCeqAskLdqb7/n0la0plajlC4LmIndWgbszCMEnUpyZUlg7p0FZdWqYt\nGeB00kjqpdLyAAAgAElEQVQnLxjW82wAnjGLQCcs0gw1xhLhxz582Ycz8jD019S9N5e0lfZguTiB\nYm1qQFIQS/W5Au/NCaBmVdt7aM5CzbQRC0Og7rkz14EWeiXoK4UJuznQ2S9MDc2NadEXboZSNSPX\n0NhpBEDe3FgkwB15fmMe3FjoMgAeFmbydl5Pu84jTyQ1B0QOeKa2mHQsx+OAx7X/Xh5rFoctx0et\n30ZdaoqpUFVQlpnPCXWHFdleEd2T7rFemdbxrr348lFuFBdqoV0LsysNaj9g0pWGgenuV9l/xujg\ntUecNkeJDJLN8aidXsap6j0e/fxLdPefTM7nCdqLwHPB82fta4/7mdA+DfhUwHk9zwK/LiJvw3hV\n/4mIfCdwBehEZKW1fs+rOYmnCj4i8izwxcB3AH/RvvwO4PPt4x8Ffgnj8r0D+EmtdQX8axH5CPA2\nEfkosK+1/qDd5o8BX8J5ibGmo7u/ICvu+6JRyQt/E9ZiQjj7xbBHyEXsPACKAMd9zjW6GmmQlrYz\n0JVZKQJGsNMyhfweAyAKQWc4+Q3N1e0MQmxhE69AgsR7DbYivD9Hm4PIrGfm4udOpj8FRnfcXuxx\n6RUMRpvsBarbumrojms/NnrVkDnhy1T9+5zanrPUkp2VSnNzpwed/aI1BIN8n1KmfWvvxGsNE+S9\np9kDkOtr48YlzflEYLSZXBlb4CV2RzZsdVj5ib9ZZ9SrLmC39d5PWZqQmwOekFKdT/Sg3XUIPA/u\nNhwftRwftpRToaq0315ZCnWpmc4MgHQVdMe1bRMfEAhsTsd5O9XSFL4uj82d3qwLmjpjtl5TXrei\nplPVL5Jm12B2jYUVYHXAY/K3DXuTPNa3Wx33RbdB7dOTMCMs+kQUDn4VeKuIfCoGUL4M+IrkM+8H\nvtHmgz4XONRabwy5aa3/JXDLH6uZVz/Hst3+g+D1dwGLVws88PQ9n7+JSW6F1Ya3g0H6BHDbPn4T\n8MHgcy6GubaP09cHJiJfB3wdwHP7U7pHFdn+CVxd+5W4yvf6fEw2QdmbNaJAB4VuUZ8ZxkNuoYWa\nVRHwuFX9hgZpoYVFoHrVbNRTG615OMMi0BnTQnOgE1aCW7aQ+2Gb83I/6H51mZ/XI2mTbchZhUrL\n5v2un9DrUFdswy2en8E4zCYmp9flKLEMyEkb0e+rNotAx90TO2rf0MVH6nnS4l1zvOf8BE+WRIrm\n4VhsqK2KPKKz6sHOMcdqK8uMvNCoQntKdTG3ORz0gFAAUK/i30G10p4tF1oo2eMsZV1CX2sW7qte\naWZ7yb5tp1eZmboymV2n0itOm+MAdMTq8HW0uqGQnViM9PhlL6ra3Ttl9eJj3rOfZNNaNyLyjcDP\nYXgVP6S1/g0Read9/72YCNAXAR/BUK2/2n1fRH4Cs8C/ISIvAH9Fa/2Dr+1ZPEXwERHHM/81Efn8\nsc9orbWIXDx+dY7ZhN33A/zBW/taW+0yr8vW1IjWG6U93KS6yc4CHveeDmR9vFng8Q3SYNRLSSeq\ngbrAY1gKWH0dT1CzE6weB1XgIyvJqs16SRlbcO/UAXLJe4+jLfBdPO259pIrxPkkiMJzAw06N1EF\ndUle6DRQsvb/VXE2ZTswB0JKDCjt2iFyiwcHOl4GCPp+Q2mraCv/I2HOx437WO+b8HoGVfsQFwZ7\nnbxwX6G5MXTH4PT3popi3gAOmHJg4nM+Jj9jQKecNeQTTTlrmc5a1H7ua3W6qkGtWoqqoV6IISBM\nNJDbbUjk7bhtz/aEfNKxf6ti91pLfmuGem6PzDbRM55+3801B3ataoLb/mzPhNxmV43Xo27uoG7P\nkOv7XsKJck7dPhxc21DfLioCdq0kXnpAe2dJ/fyS5csXl196rUxr/QEMwISvvTd4rIFv2PDdL7/A\n9t+y4fV3Pc5xnmVP0/P5w8CfFpEvAqbAvoj8PeCOowSKyDOAo5psimG+aB+nr59pWhs3X1etSfSe\nsSJPSQZjXo/vW79xI1bhQGtPPvDfCanGjo57Qa/FF3pexDbprrn3UvHNoDBU56VJ1K4feUHLo9pM\n9lWXB2ywzkrcx8ekRYwyeF5AU/Sr+eC4vKW5jLR+px5vHJe5CnovdBocQ6q3d8HulEpylBof39F7\nYPVws3fnQKVeG6HNsEZqkxfjwnbhuQf5uqxeG4UAd83cWIVjWM5hvvbAl1V9TUxBRQhATW2Yafmk\nQxU96DhvJzsofb8ewLf5pu6QsqKoGu8dlTNFWU6YH9j2B2VmwKvoPGGhvK7In72Kur2L7O0YMF2e\nIIsTdNBSHMz13WXp2XXAAHiyG3Ozjb2rSLkXCdamyg+hqrdXwratJNo7J7T3Tlk+yjm8+3gLu00m\n0hMttvYUwUdr/a3AtwJYz+cvaa3/rIh8F/CVwLvtX8c3fz/w4yLyNzCEg7cCv6K1bkXkSEQ+D0M4\n+HPA3z5v/10nJjTj6J31Gt1WSFuj8hIlja8ij8JwZwHP2KTjJoGgS+Mg1Bb+T+pV0kk29H4GIZuL\neD9hPiEsBk3zOoH+2kkAOq7mpWoL6+2kUDaxemYNdKCU6+ppKGKibCdPT2lLbBOAn+X1YADHUcO9\n12PPzU/uSbFvWlTqLL3GmyxedFTjxcBjNkZTd8cXfi+hZmub+9CrFn1cQ5GhVw2qXsNy10y6KYC5\neqtgP27BktUdumzJKyMK2qyF0oqyTmdtVL+j9nPUQdmHtSwZJcxFKlv4JmVFPmm8F1QtMxOym7SR\n96QOdslu7qBuzYy3bb04p1AutQFMfXyKTHO6RxU5IGUPmKPAc+3A1JWVc1q9ou2GwGMIRDlFtjsa\nbmvvn7B8SXN4t+TB3VcWttza2fa0cz5j9m7gfSLyNcDHgC8FsDHN92EKqRrgGyzTDeDr6anWP8sF\nqnB15xLT7bkx8VTQcCPwjDWIi3rQMHzPTVgQT7xnHNNod87HDLv5z6d5nUB6pFEZp82DRNOs4KhW\no8DTNzNTgAlTOdWGVq/7Tp7tyFhYqrafvKtFP0ZpjdI5LL3oHMOxCZv0bbCN13jMXB3NORp0EQMx\nPJ6xolxVQx3XBHX3F76LKHVHa8NPIRU+Kybo5QlSHPREhVSY1IOPTcpT4IKvUwvc7dqEzqazlqzE\nf3ZQZGzvOynXEIXKGhv2rNk9rKwHZLziHnRmfadTBxhO+6+cw+4Cce3clycmXGkLqztMkqO0bItR\n4HG9j9w1zSaU6nQQ7vbSRycPogLu7pEhZVRLU//k2Hqv1kRMndPWjL0uwEdr/UsYVhta6wfAH9vw\nue/AMOPS1z8EDDSKzrJMYUIIVwJGlypj5eCRVTHYBDp5LPYJxnOCjaKiYVtm0boXG8VWubtwlF0Z\na0A2KEz7CSDNF8AAuPR6QxFqGmZz0iOuEK9dcNoc83LV+X41Dnge2Xk2LA1atQKEuSTjPfopOdtB\nucZ8q8VQdgiQlav4n/eTuXOS7HlIeY7q9kHZT46TGIDGGrJB3EQwAh53jdPaJeifB1RyyYuecegm\n/NTLDLcVFuK6Ylvo2XGumn+snfmqjag6HuRsbitU7g7rhDTmKumqoZsqKDLUQYc6rHz9mEzLgRho\nOK4uL+i8UZnjw3ou5JntFWS2A6qUCehYJmXY28m3B3fjY/NkLE7QmLJv6AEIsMdknjmgopgY9ipQ\nzK+bazsy03mvx4W8g9+NlLkNH+ptD55Pkr0uwOdpWDYBdWO3XzHNrhm9JxorNNh3qTQTUSDjTh55\nO95zscWAkoJPADoQTHR5GenC6an9fABKGy0FnCCfkIKQ73PjbJJ8xwIP03kwBqGKcw88h0lNiJsL\nHQj55mq1a3N8ahiD3Zo6O/WhjmJ+ffS0ZBoCUHi+a+TqgRlfQMo12k06CSEjBOXIuwgWAf0CY+hh\nRsCzWthFxZ7/rrOocNhfS3v9yz1zP5RJ/6VA3TwSRnVmadG+ot8WVoYUez9WY7m+tFWA61dji6m1\nKsz9MJnAeo3aO0HdMhRwl8cJPSqzHxV52GHI0BNF6jXMzEInK07I9kuzTQtCgPFQHOi4RY9rsREQ\nWvxiLLRg4SFTha6y6BgjJuDixANuWr8XmpIcmlWUZw3HV9l8197+OJt0a6/OLi34SJ6Rv3nf95iR\ncs8IDQbA46yX3bDtDVbHA9CJ/qo6WtWnoBN6VEomXhdOVhaAVgvzowyVC1LPJQ3feFZTsHIOQWfM\nKxoJtem8pLYV4CdNw73VEHhGmLCRzplrruaszDpKtfKhj1pOKdSOP/9wLHzH2BSA7Hk5APJJ+3o9\n7JyaJvKduWLYxOsJ9+/+e0FXq+ulOUaaXqNuzBpXWKsyVL6HaI1M58PQqwOp5cMYgMIQoy0GdRX9\nY9Yz5tQAZEPgaWjMQmdmatm09cikXpsyg8UJ2bU1WSj7k1oKPK4RW9KV1bSVn4yAUKKQYcNj4X1n\nWoucxm3r3flga6DqNTJtfY3bYEyc92OV350H5AAo/A2a6MWINiAGgPPCiJ/uHTyZaVIE1JZw4O3S\ngg+TzPyAgh/BKPAkXo8Lw0TAE8b6nRZXMtGk9SRm2xOjjO104abzHoDG8gfpRDrWrM71FMrtcaWg\nEwJSCDzlXiAvbzt1rvMLAY+z/j3z2d770bC2ShEOiLrTKKEf1gUNACjJpcnVA+MdFH0eyHt3Y8Dj\nwlDBOG3qUul1vZygq9edK0y3zRUDAAqvbW/2/FQOahp8tgG9MuNimxJG+7FFtK4YtDusqBe9hxWK\ncmYhYzzwYFPgMcdmPXg3sZd7/X7nCwMas4BVl5rbftD904NPU0OJOX4XNg5BaG6ByYFOQGjxx2jb\nGrhxLNQO+XTee0Hz2pAP6jUZDIRwQ1kevTwxj4uJ8VzBh8NdvZnKJtBUfY5xJJ+YW8LFdERGaGuv\n3i4t+MgkR27fMJRMm1yvm9NBK+0LKRqEK8CE4uo6lIZ5JAduhXUOTHsGW4g5ndsGdcdEjLANbbgh\nbjWg8zBHEeQQwmMMacdBQy3X16RuT32XTqfs7SzO8QyHYgyAjCQNlErsXx0DkdIoOzk6iwBoTC18\nvmsnuLUBIRh6eaF36LwBVXhw9UN70Wsc/N1UoBrbabT99L5SKjct0pu6l82xltZhpX1yPBnA/XdF\nlTZ8hSp8CDld7CiVo+bXjVe2WqCdd7a7GBb1QqxG4aSPwOQoQ5Zn4LVBXI+U1lqF9+94Td0EqPpW\nFIFSRHvXyO10VTNobgigbq1jpQj3WwjHVwXAGdRCZftGYSErc9R+S7l+gsAjerTf0WW1Sws+FBO4\n/Sxy8AxV1rGo74zTblOl28DrMQQFM/G7RnJh+wDTHTHOH7l6A9+LPjNJ+SLbBSFqUBcB0AawSckN\nPXlhA+07fD0ANBOKWvtwW9XFk990Q9g7BSD33IThhKkSSmXOt2pNHVDVCvsFhK2fd5M78Vx2XHjO\n1uvxSfWwf0uyyq70ygtLutCfHw4bAnQ1SeYa0At5OrKCDRH1i4pmsGjpt5n3mfKRfY2ez2wX6jXq\nduupy9DnYnwjtoMS9ewVs4i6dRPZf8a3C6i7Y6884YDWEyksc3OeX088zGJ43yxOhtJH9vXIi65j\n7cDInEc6mfTtQDwgLJBy7ruFtnptRFlDjcNAaqq9u6R54ZjmrpEHyidVzMorjTp7DpHHo8G06G6C\npo7hudrFjAZUMUHdmpHdXaJuVpQXUdDe2mPb5QWfvECufQrH7UNO6156YzdPi0nzMycKZ2MCm0bI\n8NjL8kNfkFmqjv3Jit28oVA71N2JDe31RAQBNrbm3kQZTiePtJ9PAkApw6/uTqlaFbQQ32wOkDYB\nkHvcg5D2LSqOatgvoMyGK0sjZ5T3INCUwwS0s2AC9P7ZBYDnpDHtM1IA8ubyMnbf4aLCN5lLFhUQ\nt7AulTbnopvN+wmvTXjt3Cr8pqEuQz/BesHX6/sGeK7f8izFk+7YH1fdWQ92Xdjj6Siz2nubgAGg\nvLb6hrUB+sCTca03nGnnTYRdXc7RDJRSQdX0OcxiAvmiBwQMMaDId2h1fi7wrF6sWb5cWPAxoTFT\nk1STTyryW2YRkIMBPHfMTYHO6548El7rojYABD6ca0Bojbp9URG9rT2OXVrw0SrnUXO3X+m3yqoX\nNx6AnNcDdqXanHET2ji4C7O5Sc7RlPv23G5ycpO7mQTNitRpozWbG9SdVZlvm49FbCEny58CkPtr\nvZ66NR07q1a8irM7VjdRjVufCzrbC3IghPX8LBgpoVQ94PhTCbq6Ds4pPI9kwvZ/AwFUJ6XvQoqu\nZslRwZ0M0KjZfbscW8iGdEoPbqxcE0KAMjOenhm/8BoHeS4bWgKG57E2k2Z2YLxcDziWyefZYref\n9cXATrU5BB2XszPH0bcGKZXm5vRl2rJhXl4zE0Fb9N5PGEJLFSaspYK3Tgg0BEtz7BYwLWU66q3E\n3JA52EMwE9J5wHN4t2D5ck5VdV4CyCgymLDWbF0ztftVBIuSovb7G3jTeeGDDGKZe+58s2tPpshU\nMiJ1hstulxZ8Wr3mtDkyzKx1mttoIg/oTAsUksMw22lzxL1VzlFtul/CcFVsXnMClacUQA2+Q2oo\nyJn2A0rFToGomZ1AnEdw740oCIQ5C++hDZQLeuuPfURQMvhtrYL3605H/W9SLVTTFjo+Hx96C8/J\nPRkDHjcxbgCeuFi2p4IXmBzTxqLSEZac8XjWEei4e8iFGP14+UUNXvVhozdtz0Mmtsp/D1RYW7NB\nhcIBz/1VHYHOYR3WZAlTZQs+lbt+hs13ML1tck8Erb5t75/2zsngMEPFaRiKgcpUkdmbQVeZ6dWz\nakx9EUR6ipRzc6+60OZqMQCe7t4pzd2K5csF1VJxfNiaTqsHYBZyrt09vkVDt1cY8A7qf3wIsLRI\nk/4eUgV0RkontvZE7NKCT9NpCw7KTyAmH5FRZZpSrWm7nFZyv7pVKidX834lFYBOq1c+HNMDj2m9\nXLUy8ArGhKjjVbGdoOxEGAqTmvcT4Bmrwk8naIjyPL7Blg0PGi9NcVRnQQtxOcfzGc8H1Z3p8Oms\nyIaN11yHWCd14ixijUkfhqQECdUkSmLWoV2tRq2SrQBq7w2YcQu704ZU+kijL6HQiyp6BYSsQWmr\neJ3YpkVGqXqar7lXemIF7jzy2gBLU5uq/lDBOgSdoCvn6fpOtNgxZJGMRzXcXQmrBq6U/bUIr5cb\ne9E6bjr38iH6wZHROLtvCQRBrVGXBAFCtel8osmqBl26+isDRK42J6uaXky2mMC8BwRN3/U1bAHR\n3F3adg0Zy2PtVQcK2+I7L0YWS3VHd1ih9mLJqgiENoWyx4qAX6WJMNoH6bLapQWfdSe8sBjeVFUr\nVMpMukoan0R2ORlfpW8FQlMm22lz5JliDtjOoieDicWn9S6bLBQmdc8vbEG4TVTpGW6nzZEvJnVg\neZbn0x/3Zg/IeW/OUuBxfXDCc98IQIF5ILLhSBnRiDP1Wsf+3MK8R3z8XUT3Hmj0pcA9ovtXqnXk\n5aTAY55nlFlrc4qmX1DrGXC5rcG5HodKS+LVuWNCWmaiIxWcNkccr1fcWxlv595pzqMajtbwqBIf\nDp3mvd/owKfvzDuJGvU5WZ/2zgnNC8dUD1p7WAY82nXuH6eWFx0VGDFS6xU5IHKECb1qex0MR8t2\nIARe3LO7v6C9s6S9d0q9EKqlGuk9BHso2ycnQxVt3x/I9rzSx6d9KBMMacJTxxmCjqstcgSTaZIj\n2toTsUsNPsNJM6NU5ofmVqptl7u3+hqEzLjmLvTS6iZSejZhPPHAExZgpuZoyGPkhmgVHoafLABd\nCHhGpH7cBOYT8Lam596pqetJLfR+zvOCQnMA5LyeyONRXdAhdrxVhQP1MO/m6lVQWfLZ3gM5bR4F\nRbLFmd5br+WWjwKPZza6sQtabjjvp1SGHRh60G7c/Bgmua2+Vbc9t7w01wUM8KRmiSxVd0rdPvTe\n3L1Vzr3TMgqxHa2FR5W5744XblzXvGFXKDId3Y9e1Xl51OubPTyk+fgR7f0Tqgcty5cnNGuhrYVm\nndHUpu024HMuAPmk8yKiTZ31RIB1R16ZkFtHTQa0d07IqtaQESz4uFCcfvnQt/rubMfVaplHXo/z\nfOpKqCuhqmTU+3F5KQk8SF2vDRAt7XUNASgs0M0LqqzjdH1n9N55miYiXwj8LYzS0A9ord+dvC/2\n/S/C9PP5Kq31r9v3fghwLW0+K/jONeCngLcAHwW+VGv9sohMgB8A/iAGM35Ma/0/vdpzuLTgU3fw\nsYVwpXA5iOHk5LwfwIWTITNeEBCBjpl4lA9bhV5P6PmkIY/wb2hhyM3srB4A0ONaKGFiwj4mAW8m\nsNyHasJjDMem/xsmTR0IjHtKZ3k8pdJRI7ZNVnendsIOi38n0fOQ7pyKoB7VGaUKgU+zP2nZzXMv\nLun7ucBQuQKbp2hMmNXXy4gjScSht7C9RPiaCee2BkCZ2OMOzsl61BDn+Dytu1lEIcR7qzIKsR2t\n4RMn4kGnrhR1lVFVyl6Ltb8e7joUak5ObkJurp3A3SX6uKa5W/lJPwQd53kALGiD/j/KAlHwYwno\n9BzFANQ9wmgr2k6ump6+7Vp961U73nHVNqsrSk1RaYqVNkA4ER9+7Q4rS71ujPeDkWUyX7Sg7KSm\nrhQDmZ9F84DT2oSjn4SJ6CdCOBARBXwP8AWY5pm/KiLv11p/OPjYn8Qo/78V08n0e+1fMCLM7wF+\nLNn0twC/qLV+t4h8i33+zcB/CpRa688WkV3gwyLyE1rrj76a87i04CPggWe/MKtw99flAmAk/NNB\nSxy7j0Mtna1hcZNQNtA/iybCTEfJ9vNk/B/bAi2xqBmcTcC/XHU+TzBkp+Ena3duIRCZ83aTC4AM\nPDw/2Rem66cBHnPOpmX55nMNvZm0hsZ7DkF9Te95DiWBSuW8WXMMV8uMnXyPHbVvgGf50EvpnNka\n44xjTHNkoRcUfsaF3sbqf/x2E9FTt9AxwJoHod1sEGZz3k5RtuZ/1bE3X3OlhP0J3N7R3NxpzBio\nfcMsWz70BIO0zTZg1ZjDxL55vZja8R1hnbmJtl2b0GM+MYw4322WhsjNs8oUupgYdtxegVQN+aSx\n6tgte3XuQ2511VGWwt6+itp8h3mV5u7SMOh82/LK6sEZyR9Hr/ahTuthngZ50Hur1900+TbgI1rr\n3wGwrbLfgVH8d/YOjIeigQ+KyBXXJ01r/Y9F5C0j230HpsMpwI9ixJ6/GbP2molIjukcUANHr/Yk\nXnej+lrZJIvDQPtFG4EOOPDofL1GamPA436cpprfAFE5koAOQ0/uh5zmerRI709sELQceEDKyu7k\ntVmpu4k0qFFxxYe9aGicmwpBMqTnhsdtLLMgpH3IKTT3udDb2c3zAeU4PPfRce7G8z/m8ynwqAHw\nuON2ALgReFwbh9BC5QpVQ17T2pCf27chZ/TnvinMV3VJ6O0MAAplmHqvbu1rsNKw7so+rkbCpvO9\nmisF7E80Vwq4udNwc7pmPrlF3naG2uwS/LZtg64amjpeSeSTjnwCeZHZHAuEjefMZ4ar+6bO+tsQ\no8vWAVlRDNvAW2KFOwttO6XOXMuHWrh+y9wrVaU98MyuNn7fedFF0kPtYWVYdscYNYRVT4RQeycw\nixluoeisqcs7P/95ETMtFS4csbghIh8Knn+/7cQM8Cbg+eC9F+i9Gs74zJuAl87Y522ttXv/E8Bt\n+/inMcD0ErAL/Nda62F72Me0Sws+SvowkCn4bP1qPp5IegqnLxq8QNFpP/kYcAlXwH5SD5heqQfg\n95PU9aSU6425nxH5f1ej4mtBrHbb2I/roOg9lv6Y7ThYkC6z1ta1hGL3Q4B1IS4lRdQXaczScNpF\n7DzgMR5cx37RcnPasJNfGweek+XmneQLK1I59/t0gAB9vuci7EDz/eZMAArlepx352qwwn2tjAgC\nq2Zc7qgoWg52Oq6UmjfsOOBp2JtMo1yPz7McVnQjbLZoKCwIOQ8HNtevrJaKthbz2bXQrIUs8H6A\nuP2FK/TEdGntNdxOPQABXL81oao6ZntCOWsGze9C01VDc7fpJXiOaxOOOzYtGZifIPNdE67LC6+F\nlyq0v8Z2X2v9OU9jx2DacIuIG8i3AS2miedV4JdF5Bec5/VK7dKCT56Z0IMDHSfvoaSxDKYehHow\ncpPreDV7/5k4NOFIDOHnnNdzESA7z84EIAtCA+AJtNsgbo0QAk+vwzYMvZmJFqpMW4Zg0Eo76z2m\nMK9TZLsefNKcjfm79u+5xLzKJgPv5yyPp2rj8N9+0flJdyffN8DTdrBKgGeR1LOExZBFPRqOC4ty\n09fH84g9qWUTAIWg456f5fWEVteKwi0Yio6pgisl3Joa4Hl2tubGtGA+ub7Z67EbbS1YpBaG1VTg\n6eQT7UN1rfvrSAr28qmJJq+sKnXa5twVB2PqgPR8l3jajwFoOsO3+A6BJyvx4BlRwKsGjhqykp4G\nfueEfG/HqHubk6Ptjm3302zj4uwp24vAc8HzZ+1rj/uZ1O640JyIPAPcta9/BfB/aq3XwF0R+SfA\n5wBb8HklVirhzUFBmfM86vbUvr8GOl9AaCrWXS2QRLmQeLsu4doDUMR6SialtLLfvNaLbKaeziYL\nAWjsO2kLARMCMgBstNZ6plYYhgzBxgBlP0s6PbYQjEP6rsqMErhXBPdU5hWw6m++vCB321U9rTVs\nRZEqggORwkBo+4VbJPTn8oYdYSe/ZuRkVscGdFYLAzwPD88f4KTeI/RMzLi5sZLgsY7Au2f3xdTy\nUaZfksva5PWACblNc5i2UBWtBx0DPJo3z4bAU8oUvXypr6lxVmTGOzjq22D7IUgAx73ntNUAOGqA\njnatDBBZooJjxLUjYAaBHl8gdeN6+DiVB+cpObHPiFEXeF5d1YNOU2dUS2Xen7X+mF3TvDFTMmEn\n3+fG9AgYyf+9UpNEifyV268CbxWRT8UAypdhACK09wPfaPNBnwscBiG1TfZ+4Csx3aS/EvgZ+/rH\ngYbgJVcAACAASURBVP8Q+LsiMgM+D/ibr/YkLi34KMlNsnXENk1qzjay09hcnzJmbhXs3Hz3/X5b\nzQCYxvaZ2iYQiujBWefDZi7k3mvOhaSAWbSNsfyLO8YiY+Dh5ORmgm8e9PL1sLm9eCqUqkpyIJ/O\nQe35njlhon+/iIUfw0l/f9KyN5myk++zm+3B6riXb0mlY0ILvR7besK3Fg/04YxMjzuOPux4FuiE\nY9YTTR7/p+hCbs6ulAAWeHKT4/mUubbAU3OlNHmuUqaeZOD127ASPqsWZRvAqXunTI9qP5E7r8KE\nr4qBqoEzk+OxXo+nZWeUs+SDRWaS/2HjPy8ke9KTD0rTw8cBYzFvaGqNmrTD/FIAOu1afNivWtrF\nzawlR58LAiEAlWp1/sV4DU1r3YjINwI/h6Fa/5DW+jdE5J32/fcCH8DQrD+CoVp/tfu+iPwEhlhw\nQ0ReAP6K1voHMaDzPhH5GuBjwJfar3wP8MMi8hsYrtYPa63/xas9j0sLPtJ1lF0Gqhj3FLQLv/Wv\npcwlYHRC8V5TNx4rTgsPfT1RFHpZD0JTY/u9aEFqSFVWkrNfnPqwmTefm5lGXos7HsAXR246pqjv\n0eoo6YkTNx7baMHE72HeTv65JU6khAXTI8ioZYd5pkLFE65ePohX+5t61zhznTaDRnutbjYKsKaM\nyRB4UoB5HOBxpIYw5FZ3sYQRGACaKs2tKdza6Ty5IAUevXwAjx4lraNV0MXU6Mip47ovFk3aF3T3\nTmmDRne6akw9kA3XNevMUrNNNGBa9zRot/1svxx2m63oX7Mad1IaTyWrO3TZMp01oyHBMOTnKOLL\nY+0JEk2dMbu6NgA0ok7hrofTFtzJ90c901dkmWz0th7XtNYfwABM+Np7g8ca+IYN3/3yDa8/AP7Y\nyOsLDN36idqlBR+aGn33twbNt4psB9fMqm6hr1kY2lhlfjjJmwmoz/2ksWOXrHfeT1QewfmeT3oc\nY5YqIijJaTHA5sJmcUO3vnFeqHOmA8n7UMU5agjnWk+fPIhzKa7AzxURri/uHYqrw5ifoKtF1Pwu\nL+feezXBupUH0ELtUWS2hqftTIhp+dAcz8NDU8UPHmj8fkILgcdrxPUCrKHXA/3iJPV2ovsjmcjG\nGH+Aj9qmFPM05Jba/iQgFtg813xyjSLbHQIwJOCTGw/DPZ/mcKUks0n/SNzUvV9ktEHLgdTr6WuC\nepDOSgNk2ZVyvOOsC70VE6Se9K0ybPtsmSqyqiFHRwAUejvVUtHUwvGhKUgtS2F+oDggAybMrq4p\nSm016uy96RZJQQGzU5rf2pO3yws+bWdX4q7T4R6wgOmenTAsgKiYrRbnP8bNvDe+qhoz5/14C/Cu\nZX3mhAUjsjAQ9//BVNB7xQFlQovpynsAOoGKt2nvUJBjaNKtDgDH7X/1YJjAD/u8wGi/l6gFdnhe\nZd57PusDU6U+X0Nrmq9JU5NP58zz65zKkT8fDzo25KerY6+S7PvTJO3E9XrdA1AxiYAnbLQXUp4H\n7L8IcIbe2ZidRzhJ8z0QK4g7/TynIuFqeG5ObR1PHgBPtYjbdo94fSG4eLsx78fFgQWQzU/859v7\nJ7RHzUaSwsCKLKZY12tD4k3aWl9koZJ6O6uloqo6FoeNl+CpKs0caNYZJR1NnVEwguBNjcr3kuuy\noR3G1l6VXV7w0drc4K4zZWtaX4esMafdNeb9hCv/YQGkZSYFSsepDUJe0fdjj6ft1hFQhIwx09Y7\naMUMPnQRNp2TKUYhOtvpJV2C0J3bn+lrH0xQ4TbbUGAzAKim7id4Czqu62TUbCzo9+Jk+CEAH5fA\nSPrXgAlsaydGac30g6kQVbI7u+YZixHoNLUBQws8gM8lmH0lno9r87yhHYMLx5g2Cf2ixHhbM3+N\nvGbaGbYppJo2p0tDbjBUoZiqOMy2N5la9YZdMy6rYzume0ZBenfWK2gvTnzLa682XcTHHgEzRG2n\ndWWu5WqpvNcDpgbIFKEaBQRlyQEpuPn9niyN1xPeQ4u+8LU7NHI7rrV4mtdxIbbF4dqDTmqmWNZQ\nw6XMLdXa5pzsAi6StYLxouNXYiL+ft7aFnyMe6/qyFN4nOTv2ATSr1TjCSM0U1PUM+JM6C0mG6TH\n4oDH51Sa437irxYxUKiibz+dF8gKmM7Jbb4k3Has5jxOKU5f81XhTW3COJY1FoFOADiuXiPs+9JV\nPQC1R41vDhayp8LulOp20+/b7T8v0OUc2orcaqNFoNPUhs12Rm7Hh32cavQZwBNeP0eZLrIdP9HH\nvXrGyR8xxTylkMfvjbHc0vnr9o5h9IV0cuf9KZkgFnj8tXMiprZo1oPQWBfSDea8R70y19J4PXmi\nbt0x27P0+9IoHORFh0yLGIBsO/SwO2oIPOb+ab1KtRMZTUGnXnVe8+0sc0w9dVAa8AlzjG2FuGJj\n17X4SYHP1iK7vOBzjo3J5l+keDDtDxQWqI0RFsLvbSpiDRlkfTLfhlAcXThkbrlkrUvi+g6OWOHE\neU99Bu+9bGSgpeZAx4Ge673iwmwXABwny9+srVpxXUSsKienkk8aoO9O6UbTy/EX6x6EVnbSaOvR\nXFNkKfBcO+jzSY5csAF4oAcXpw3nw3x+xRxPWmFDuhzTpdV4zblvc+0sLCp195KrXwrNeTuueNaF\n2Vz41OjVHfvxCU3KPd/63UjL1MPQbThuIR07XFisWjpLNAi9Hmf5pKMsjfTNWAGoM722Xq2tOQo9\nq+5RZbXmlh54li/nnsbt8jqh0nVZCkWZKG6UGaowFHK1b+V70hBjU5tmc+73kI7JqzDJLGlja8Bl\nBh/n+dRro+nktJ1egfVdSvuiVAc88YQxFJx0dhYVN5rc0hoV+2P1eQybpI0k490p55WdBGvTliBR\ncfb5ABvK8jbSF8iH2dxkEa1SHwd0suBxH64pZ21Ux7FrRSK7qUKVtiPm1YPhxUi6cI7lDGQyCYgM\ntjmb9XZS/Tsn5GmuSXx9wrCWWRAkwqTueOwYSlP2Wnt5L1JaWMX0ujtJansc8Lj7RnsVDhBTJF10\no2G2MA+o26q/pqF683RuO90GvZHCRUhJHH4aycPowHvdlOuZzlpUoVGTEYqza6cQPPdeVdV44GkT\nj6cPsTVe5+34qPWCo/VUKEpNWZpjckCUT7Q5noNZTHgIzY1Btdi8eNnaq7bLCz4i/QTtrLFhCDVO\nbxnP3VjA6XoACoHnsJaBanZIx+31zgoK5VQW4lxMlMPYBDrhD2SMuTVmToLHN0tLZoYNHlDYdMyv\niIsJcGoT0MrndmSqjLowOe15jY3cbicxOLv4fL//BpkzIA0AxnvJa2BppFrCsUnyGBGxwDZni3s0\nbabiDoFnMRQmjfIGNgza2j4xrnNnOR/S5jMoSOuXusH95zyeItvxobaoE6vtTRM1P3QhWRsGjHoj\nNUa/LvKI3MKjqEfbabu8XD4xEjerQJMg9HLKWcvutZbsoETd2EXd3kX2dmISw3w3yRGa+6WrGhOW\nrZUvGjXA047mdspp7PUUZcb1Wzmzq42hWd8qyW7ukN2YmwWMW4DY+6BfhG07mH4ybQs+wQSr2wrB\nTQbmh29i8EPRzBBszF/xf89qItcrO/fSM0bdeRJI/EwiNYBR0EkS+i5pL+XaFOal1NWgOdZg8nkM\n2yhHU0zMZAImf1DmsF/64+runfbJVvuamujeMZjEdFygr153k1jIea3X6GIdn2d4vntOWnxELLTf\nQe/xlPORolxTe6WC/NvGEGiad7PH2NvSdii1IORAwXqhrk2DNwtAV0tXb5ZBcqr7RRvld3LyuA0H\n9GActGOvu1NfLKxk4tt6OyASW1OpYXOrcmsyVagbu+hVS7luvaJ0KLnjcnjq5h7q9szU9riW4OEC\nMNm+aYVgCAbOO66Wmadwh8BTlBlFaUobijKLPJ43PldwcGvNwa2a4rkZ6rk9Azy3bxjQ2btqwq12\n8SWqBFWi88L87vLY63/FJhLfw5fcLi/4qMxMBunk29SQxx5AJDSaMNjSkNtRnQ1AZ9BWoGhxLQUi\n+RmXe2HVJ82d+x+CzuIkYo4BPtQl05asMOylaKUfhFu0SMTWOxeAXGO1M3TQxhhkADKHjCP0qjVN\nxJLByYuOJqmXSQUrs5KIJaSr1vRlcYlqN2mNqSXk1zafl20cFnaqHCOQeAUHu0iIC2kXDGqaYPjX\nj01tV9RzEzq0RBDXojsyy0fZzYmo+M5D2skPEgKKBT9biBsMqG31blh0Ifj052QYliovTVvvpvYC\nn2ZginHPZ2rJIDd3KDklt9ppzlNVByUUmfF4bs160HEMszPM5ZO6CtvF1JALXI4nNQM4mc/3lKVw\n+9mcg1sVsytNDzxvvGo8nmsH/eIDhnkxgFkZh1G39sTs8oLPBTXTnKXstTGP56yoUtjPJmRH+fi8\ny+WMxZsD0OmOKrpH5/wYbNw8Cre4v7atgmnQ1od7PAC1I6u8kPUT1O8MbBM9F0MUaAGpGrKqgeDr\n+UT39NyACuu8no1V4c77CfMG4QTivL3p3J9HZLZ3i7ONahJjxbdjwBOMi8+LuHFa206d811DkgDj\nBU2JmIiDnnwZtvFcX2vSyxltCPu1VeTNha3ew2Z0YEJ7ofetpKHId+z9sOgBKLzlRrwfMEDj2IlO\nCSG7UsaejgMdt/BLE/rFBJauA+mQwr08NvkdRy5wHg64vI7xfPb2FTffCLOrNXu3G/Jn98jfvI9c\n3zfAc+vmmcDjX2tqk597EiZPTuHg94Jd3pEQ6VeHmxqFdeuAcRTTXccK/tJ22XEHzzbSGdtR+zHo\nrBZDlhYMErCPbWk/ehHabtikzYf6Ui+otXF/t/pL82SBRSGwwAtyr2dBTYiRbOkFWE2yum9Epmxi\n2Hk9WZn39GtXIBVWxxeTYXjRTr7ey8t7Dye1sHfOK7ZXoODgzU7AyoKhUcqYRGKqYe2QB52TBz3r\n0S0cAm8v7FhrJIHEN6MDs6jan6zY1Y1dELnW5ztIOQcW5tqrAohbTgwn0gK1V5jrdVCaMOx8t8/n\nzHf9dXGTfkRyaOsemIPt50VHtTTHW5YZC1scOgQe2NtXzA8U197QMbvSMHtGyJ+9Sv7mfbh2YIDn\nyhVk/xmYneEVO3vMsPTWLm6XGHyymPkTTFheRqU75d6qsLLqYw28Nm9+rHX0QOAyBZ1Eb8xPYpZJ\nBr3+lmMYpUVrrmjOrzJVEXUxPUv41OeBwryB/fFJU/qEuZ8gxsDGjWn4o7UAlLnjDzTDHANuVsV1\nPtlBSVZOfYw8OyiRaaIFFv4PaNIup2V67gzrpVI7Twy27dYoldvPmiLTwaQ0BjzniZaOLHpED1mP\nfVFw3i8S0vsHYtHWkmih4dto2IVU2qOmajv2iyMwTguttkQXy9LTeR23O7DnJ64TaHJ+/v7bnQ0k\nrLQIjV6Tk5uaGkdycMSX2QnsnZBVLeq4pqiWwJpylqEeafIiZ36sqFd6tJNqOWt9fie7uYN69orJ\n7zhvJ6DSn2eP21tqaxe3Sw8+HnRsSMr0vTnhtDni3so0W7t3mg8Apx4p2XG5RFdxvhF4nL6WC62F\nBILURqiepg3w8LmUCtnb6X/4eWFCTgHwhJ5OaGF90Wh/oLxA2OtzAEVc0GpOfD5kzIFJ3LoEezEh\nL3O6o8prhjkAKsySOyowTc8tYkeFhaHTXnW61aug0Zu7Nruj5z1mfSfL2EMMRVbdxMzjpANSEkhq\nnnVo3nP1QO64B+FZR3BIczGz2PM5bY5Hex5B3/rbKXIrCSbkbMeEAp3SdDNsdwCJ+kEKONM5jcps\n6K+G9qHPPRVqh/n0OtJUyMoRHAqzjeUuWb2m26vIqoaybCmqxntB+cTmlDyxofW1YcVc92G2Z64b\n4Ll622v0Vd0pbXs0Cj5ndc191ZYNF4uX2S4x+Egf7w3CM653+1GtuHeac+805xOnPdisWsE1Vwwx\nYBpQqQ3wdB54TPFfADxHLw1laCyJwB9eQi0eHH6wc6/HVQThDesNSLnn8zyPY5sa1Em511fHQx/W\nSxhj4XclLwwAqcKE4CYTsnng5Q0Ye0mTMfc3DbO53IFdzbp2B9BL1IR2EQAKhWGhL/hUTILwVx63\nOHdjdpFwW0ICGQPrMO8mtijVFYsOuq6OkACoFjC7bjal10G79L7L66PaLZIEopZtLVfLU+9x5ZJ4\nP9bzlbD1tLsWjjVmPYuqO+W0ffT/s/f+wbZkV3nYt3r36T7317lv3ps3o0EjJEKEE6BSsZGRK3Ec\nbCwKVJVMYqpkQgrzQ2VCYIqknIolrApJla2qyS8S2SHIY4WAsDGQAoehLKIKoogrdoQFSogjcBkZ\nI2vEzLzf7/46p/t0984fa6+91969+9zz5t03M9J7q+rVve/ce87p7ttnf3ut9a3vQ9uw/UQ6lnB1\nzsO7++VllPN9UFc5yaQWtHcG265RXGr4vqgHDI1BXfPgsVE07rIaUO1zb9Ac7oIOKgaeJx8Hnv4y\n0OIp2P0raIYl2u4mz1RlbFOmTONSpusbIYjomwF8CPzH+4i19rnk5+R+/m6wpcJ3WWs/vem5RPSz\nAP6Qe4lLAO5Ya/9VInoX2G6hAhsc/afW2l+933N4eMEH5BvOUp6R2vjtZnBZj8HLS+DaMvR39Ne5\n6/EIDswNcKkKzpkBeFjOHic3g5S9Ah4ZzrznM9CgI4vzXgAeAQZLpGhL05GqK3gA0rt0mf2QYUkH\nOpwxHo9ew9AM1fzADVXWfBjVjPXEgKi3tWkxH4EOkAUeUSPYZEVRFdtlQNG1yZXeXm0kxnRRpKQI\nrSaRMB83ssW61hMMJOMZm9Dx17nvZbIjrVYut8VOUGdIsx+Aj0Ea93uXg2Nucx3H6xWO1ryJO2rH\n53vUGlydn6Kfr3lzVh8wwWF14me0isWZ1wEsqgKoB9DcYM9lyxpwfK/pigOeK0+ADp9CU5VYrl/x\ngBMIQyZyoY1YrW8891IfRGTAHjvvAvAigE8R0QvW2t9Wv/YtAN7u/r0TwI8BeOem51pr/6x6j/8W\ngLgs3gDwb1lr/4CIvhbsI/Tm+z2P1w18iOgtAD4K4Enw0vi8tfZDRHQZwM8CeBuA3wfwHmvtbfec\nHwLwXjBx6gettR93j38dgJ8AU4I+BuA/cn4Wmw4gKkUJ8PAHZuZ3iOyZEj9VymoAA8/cWCxmAXiE\nXKCBx7tnOi+ZHGXarrpRSQ0YZ0HScB8BzyxZnAFm67g5kk1Clvr7nMy/pmNHLDoPPEtF4V0qJe6l\nt6go9y5zFnR6MwwvTlGT26AyPcoo0qn46FjjUkqQLdKGfePnamUBf0+o3bH2eDFU5m3L05jSjtM9\nELmOQFbGJdcXlHsHcCoP51CWgeCwy35HPPwMxJbpERvT/WPxWFcOrA/C/EvtjlVlOlw1OFKgU+P6\nssQddVq66lQb4957CTM4SaB6H3T4VLBRAGAclX44avgzIsoZQMyoc9eYHjv0wNPVcyy7W1h2Rw50\nzMYZvQea5RSU/Xy/ivh6AJ+11v4eADi30mcAaPB5BsBH3Tr4SSK65Kyx33bec13W9B6weymstf+3\net3PANghotpae18c9Ncz8+kA/CfW2k8T0QGA3ySi/x3AdwH4hLX2OSJ6P4D3A3gfEX012C72awB8\nGYBfIaKvstb2YFT/8wB+HQw+3wzglze+OxUj4GmHpWMCsaTJnXZs1gWEbGdurJey18Bzdd5hUfWo\nzB6qYpf9ZJQcjaZNA2FGR77fdIOOSlIp8ERXWERTWw8esogC06KWOUXm7DyQYs+lbLG+V4A2rNGb\nNVODXRZkT2+6LMoNgVYJEInAZK6Bn6pSOBl8AR4Bz96us3p82ro8vRYp8GjwMumUZ+rKmomI6SWk\nCE3/nopUMDaZ85J7pwACwWQiguUDAxDvXYRq3XvFDelN6nmmSOEc4BJceSWcs8t2lt1NLLtjvLy0\nOGorXF+Wvrx3tCb/WdGM0MAgJVSFo/+bBUgASLJr8Aak2A9qHlGJ1pWZfa/z4LEAPC4b9kzVjNJ8\njsW6jY7j6xhvBvB59f8XwdnNeb/z5i2f+28AeMVa+7uZ9/5WAJ++X+ABXkfwcX7iL7nvj4nod8AX\n5hmwxSsA/CSAXwPwPvf4z7iT/mdE9FkAX09Evw9gYa39JAAQ0UcB/Ds4B3wsZDcczz7IP+8Uqdot\ncYmNsx1htaVDpEKnrmnOml8KeOzNo0gDbVPc01yAFhOV8+wblk0BUDpCRS7EJI2lY/IvPwIg10vy\nZZqkyS/hf266kAUtnmLJIJkiB9xxn2aJF5HfjkRGj88Us2h6P+3foIhtMFLQkR5PXJ4ZvPFeeLEx\n4JCzJZDvo2zHVN4ET8q9I+l+OVetaJHOed04Yb2zRsgaHcwTa7abkJJrcj2A1mvCyaK6qHr3lUEn\nHnzejbOenOCs0sCTjOfF0wrXlzNcWxYedO40wN1lgcOdwbusOl6JX+yP1ga7Zefnz4Tm7WeMqlmQ\nSZJ/+jons0O0dwVdPff3tNidbzMcrnthF80NIKLYw2hzPE5Ev6H+/7y19vmLPaLJ+PcA/O30QSL6\nGgD/JYBvuog3eUP0fIjobQD+MDhzedIBEwC8DC7LAQxMn1RPEyRfu+/Tx88NZgIdeeCRPk9uYHQq\n20nVC0TSfscsvI+KPb0ZqNQnZ+cCj1crqI2vawPIa5OlWU+uBKNUjVPLBgHf3nY461jKRUpvqdac\n9HMEgKZmhtIPNgDnf7PMZkEwdehpSD8hY/rGpn9J1K33YPEmgG4wUxMOtDSOnIt89ddiiF1a0xCq\nM3seqQHTRHBzcq7FKQ/I4KdXFFAgtAl47PEyEtoMltclCn99doGzU9j6GKXzOFpUTMLADFGPoy74\nvq2KnUg2yJcVlTBpRIyQUqsqs714WuPFk5nvkd5pgaYt0LYGJ0cznNQD7h60HoQAi1Uf7hHdZ9Jz\nRgTHlkxUpj0Ypde4rNgKw7HZQjXDZO9N0V9c9cDRGrjTUFRKl83l6xA3rLXvmPjZFwC8Rf3/affY\nNr8z2/RcIioB/BkAX6dfjIieBvB3APw5a+0/3f40puN1Bx8i2gfw8wD+Y2vtESnlAWutJaIL+8sT\n0fcC+F4A+PIvf8LZJsyAhHJZG4u54RtyXo5BBxgDT20s6iLYJhsqQV3Di0nfZnfzm4KbrEkJTgOR\n/l2oRXlKZkZF+JCHnSGXJAwW6FGbUJaKxCr7FtoqgMoKtZmji4zvShiSBXxA0xdexw7AyJUVUIOG\nx7djNWpl0SD9LVvNnFqAW+Bd9kRlhbreVxbka2ecNy4lpiU3+Z7vBe1z1GG3BAxVXkOt7AdgdWvs\nYSTXHgAkA8kAT4fOk1s0+SHb3s5YQmgraWAiMz45A9oXYbsWu1feClM/jf3ZWXS+ch3S6zIpTKpm\ndETxe9kd43Yz4MVT7u3881Pg5TP+3ByfxH/nqubdHGcVFk/Mg/ld2mfyhoYCOBp45FhKR3xISpmS\njcmmKi2v8de413NYWcBbQcSby6s7HZ7ee8PN+nwKwNuJ6CvAwPFtAL49+Z0XADzrejrvBHDXWvsS\nEV0/57l/GsA/ttb6DT0RXQLwdwG831r79y/qJF5X8CGiGRh4/pa19hfcw68Q0VPuQj0F4Jp7fArJ\nv+C+Tx8fhUtbnweAd/yRr7SVW5z6Yo3arByY8NT93BAuVYCmiQnRQFSqPegY60sX0ufhermSy0n7\nF1tGmiGxrplbePTj8n9vkOfq5bJjVTvu3q5xsr7lQedozQuFWD0IKFfF7mgh8DpXXpX5AGW9DzhR\n1N71lASERJNsSsvOnt7knb4mYijq+XCX34/mPajuWNPNgZAmPli3SFZep02AR8vSjPtYvU2UBFS/\nuSJ+ri9DCWlkkyV3GsI4TMgtWcZcushuiKwvjMgNue/RfgG2b1FffivqeotpfmCjMClnO0s/O8TA\nM8PnT0pcW3HWsOo549Gxv1ijqnqX9XBG4QewZ71zgY2tzyNJp6lrkkgp6cgpVQQ7inEcVhZz5RJ7\nWFk8vb/G03stdsrFFhdui7ggeR1rbUdEz4JZZwbAj1trP0NE3+d+/mFw7/vdAD4Lplp/96bnqpf/\nNoxLbs8C+BcB/DAR/bB77JustddwH/F6st0IwP8E4HestT+ifvQCgO8E88q/E8Avqsd/moh+BEw4\neDuAf2it7YnoiIj+GLhs9+cA/LVzD6DvQKtjVPUO2mKJ2nD2E5qy7JlyqQpNUm2NkAJPbYZ81iPl\nE33uDjy26fnYFbs4RsKaKiMaAZC8l8jiAP6rLLAn61u43QwedHSwr1Dpd6E4uRkDjrYLcHMZBKCs\n92HMIuiIUYm2DwQA8SVKRTm1Wre9fTeintuVAh93DTQIWThJH2e/bIFIh6sEEpr4uEdqyvGcTdbS\n4uRmAJ7UsTUNeUzeu973mebW81YTgEbzktlebcsDuWljwqkP0IwJG7h2nW2z6wzBQVPmdVltQphU\nylgygH19mQeeNlFPCMADLGbsvCquq8II9RsdbX+emrmdp7GmepBpbAIe/TtP7vDXp/dbvGmHsD97\nkufz3mBhrf0YGGD0Yx9W31sAP7Dtc9XPvivz2F8B8Ffu43Cz8XpmPv86gO8A8I+I6P9xj/0lMOj8\nHBG9F8DnwJQ/OGT/OTAlsAPwA47pBgDfj0C1/mWcx3QDgKGHPb2JsnwKO2aBflhjMWtxvedLEtgu\nsR+PZEcp8ITd267vCeisZ0qpYJTZJM2mbfTcoo/UbD0uvanFQ4Dn+io9zxCyC/UAqneemh7tVA4s\nAOpa0HwfVbnjswlDMz9FHtk6ixCmLl05J1TJduyqZzl9d/5FO3C5SYFQAYQMyPW6/F8tN7yZhsuW\nxFq8HaA2EK78pH2Ujm974LE3j7baxVJ9wBmnom17YgOF65S1bJ4EIFd62/D+nqDRrtlG3I9sJOH6\nhlbKhKaKhEkBRMBzpznG9RWz2a4tiwh4Vj0i4KkcqaGuGHiemFsPPNIjlUpBTfP4WvfJZwcY5QWs\nyAAAIABJREFUyzptKfhZFxYyRiebSym9pff/ourx9F6LS/UBD782K9i7OdLXq4iCtqLFPyzxerLd\n/k9k+scuvnHiOR8E8MHM478B4Gvv6QCGwOQx9dw/vM0OKfzu4J8DwGc92XC9im0ASEIDj036PZwN\nnfPnU0Ombc87VgGe60t+rs7gpGe1Vch5lC0DyRygjhdznU2I5FAEPN5ds00sk8V+u98KdG3TAS/d\nBA7OgNMzZwzGzLkRpMrQrVwXgBdZ5y4q1uKAU2eQ49TAk8zYpH+TKGQxL6so48kpL8gxBRWBNryG\n7vfUZTDpU+8rxBQ0HegAQTFCH4tQkc+LxHpDO7oer1e4vppxf+ekwNGaRxGi23Cf39vPwTmijgCP\ngM6bdgg75WXsmEXoox29xOXMVFQXCastvW6JaK7OfPjzDLdhDE8T5pvfTDpjx4PZHPuzN6MeCthb\nX4A9vQW8fOP86/Yo7jled8LB6xbD4HdXZn4AU8xQmxWwNv6G1aFpqjqk3BbNRkjdXMoal5w0u5OW\n0dRRGRqVMpMWDQUQdH2qYiQ/Y1dh4DQntEmm9kKpYfhv5hl9fJ4FarNBXUGYRjqiLO4U2AUDEADC\nwSibABADjyzouhfmnCs3liLbATZDFbfNCeh4yaCwn19gvWNl6ab03bkFssZJKNlNqAp4RQoHklna\nrGK5UX3ADfDupmcUArGCdktLVGaHF2EZwnXNfTQnXpRVQK9YALY2sHMBofgYRIA2jiUDF5AHIJX1\nTFmJC/C8eDLDK0vJdMImTYg5qy4eRwB4A8JzcD2u7nSunHU5DF+f3uRy5ss3Yo1DzXSUDFcrKygL\n8FzIRpCZlnEfqi561PPB29dXhvt6O2YBOrnJQHjtOuztuxj+4Hb+DR7FfcXDDT5np7B7jaPpTl+K\n1CoBgM8UpEcifRIdZGpYXTvfR7yYtGtQtfbOn7Y2vscxChmOQGbHnU7SC+jNmRK7dLRTGaAVKnm6\ndjKQZkoZsiinnvYyDKqGLS2OQThw518l2UTCXErKkSKjslXWk5YnVx2o6RmE5DG1gyhOzmLL5LIK\nfSuxt+54FfPlLz3gmSmdMgCpv4NWE3csLGEUip0BADS9swcwgdreW7bDrmqe8vczUPU+UN3ie8Zd\nc0Js5Jeeb66UW1yqUeBuDEB6LszEIrQpo01KbQI8OWHdubGYG0SsUOmVXt3pIuDZLQ6C3NTNa7C3\n78K+dHPy/qd5iaJdA2tniyDHv0VIqS18L+XVyvciPRDe+Cew6nj6V87Q38hf73sOelR20/Hwgo+1\nvKgcnAB7LQzNfAouiwOw2TZBgmck1E2lmTmRkRurDXiPm3YdNa4JzOoCxosrgDEAaUSUhUR70Ze1\nmzw/UjNMRbasKCXE+MS4pGFzfQilQhDiBOzQeRyVswAEBlOTYQDeo1eRgK9cI//c69MS+cOdBubJ\nJet+neyyi2WilGDLAKJZMz8vgNqPafB6wj7NetwcWaojVg+EureoTYfeHqEvkhkoDULlLd75n5w5\nosU6ynLkmKJr4hBi8MZsHQwwBiAZgFUyOZIty/ybBh4dOruJZKcScs4IeERg99p12FduYLhxgv7z\nx+g9uzGxCqlL2Kvq+CdkhfJOtDM3PjCL5r0MzZTK/D+BlZ7eKzfQXztF9+IxumsNTu88vMvkg4yH\n96oO0+NDGoTkM+D7IiZWq+aGaWimjyKlg8pUfqlKcSdnsG43S3WwGQAQGu6bmtt60FQpTGuF7pwf\n0XyilHhupACkQw20AoiAeGRHnPS/soC7ITzotAMvsMrjKH0tA2CYG5j6jEs4adZmVMlNjjlDEsmC\npIC+An/sXfbX//qqzIJ+03OJtx4IWAN10Tpn0WVQGhA5IjnG6rab/D/z/Z2gdtBH1wRAuC714H9O\n7ZqJKcp2w29WFPDIhkWkcgRc5NIunLK0Bh35nPD3gZjDw9eXRwK79vZdBp5XTtFdO8XQAEU9Vjgf\nAK/pRmkGKioeZR2L2ppSUa53orkmz2I8Db0me/sucOvuCHhOb1/QMvko84ni4QWfc0LmeGQyWgPP\n1fnaa2DJDAjApaUOHWAKmPIAZC0otQk2gSEGnDCDR8gIAM+xIOz8CtXzkaC6jNwi/Y5blXuEodTb\nNZqhjPSrZJqbQSjVtBJ69Iz9XPYuu8XuOBjJ7e8G4MmUbrRHkthUM3H9gF8H4NdyRmRCES8uubLX\nSqjoPcxBtbmx766PXfXojzrvfDqiIFcFZyoJUMsgpTSuvamZiQFISqXkgMseL72umL/+ly5x1nn4\nFBq78gSPo7bMqj6Eey0M4Wpn0ZEckbkV5GaE7n1y5lk7ct4MNryAF1XFStAHFYpLyf2iRE7t/CDQ\n5J2Dr47UoTcceww2uccWs94N6e4GBuXx7cBwXHXZOp7+mxfq+CPxXNWno66J2JYSoswh4AO4MrD4\nain1keGo8WxLdtd9FA8qHoFPEizCOKi6fPgQyWxCVez4ifdoIrxvYfwwocx6FICZh99zzVECuJxV\nuTJcO4N1C3pUfmt4sUoN1rxxnO5jCKPLVBBDtVQ0MZjiSe3e4k5LuFTJ7rzA1fmKT8eVgGoPQBKn\nsZyPsm/was3KTRRgBhwZNy1v2oiJJa9dVK60tXAgJDv6DBFBZzZSVurWLoOo47mooi7ZGXVRh2sl\ndgxCyZbj7yq3cB+7qX4l6eJkf0TWJSsaWh+wvUN3Z0TwAMJUvbczMABQBPBxfy8eWo5LcbVWBQdG\nfaDi0PWhfDmwDlJN8xLF4/uj+0Wy5EijLxnQTLPjMIwdjyDwV/d4EUYSZLarpjns6Ute51AWe7vq\nMTQdhgbsZgt2s5UwhzVvuGoz3jzoUAruOgPqraLO64Hp05sRi1Hki4bjlu+n1qBrx5uFR3Ex8fCC\nT3H+wBnH4LOgVLeNrOXekZqBSZWfZTeZypiUe5cBKUO1cfbDBASnYpDYZRfug4hqlgUemSsRnbIA\nPCHraQfgjntrNhNjEOIsaIamJzy9x7tvlAAKjAFIymsmAR1lzKdpr4Y6r9cFnARXVNMCl5GAG4cM\nzEqmEVtPmKjcNDTwC0V5xL0BmhsUdem8XpIsRTxolBOrJQKc1hopPTFPQKhbBq2z01C2k+xh74rX\nPDtxEv6a4JH66OiqIP9pBZxKNP3Az1FZkPwdqvlB0DvL9IEkc/bhgHx0vygPnhxFORd6xk2ESYGg\nms2/o6SUXLYhbD6sHMvRDRTb4yX3qVTJNA1zWEdZ28gyxIXtmzFr0UUJeLWRSDVBDzefnHHGc9z6\n++nCg2gsjvsQx8MLPpngxqTQMgcIPTNMYl8OA3Eq2wEQT/4bfp7UzkWoUwtbMrX2Cmc/u3sMOEn2\nAwTQ0dlO1NyWur3q9chAoA6d9ehp9JWzIebsB07scebPGzhGbzrAJABk2lG2o435UitqQwJCJbO5\nyjaU87DPAKQXlXYN7KnvnQGdVnMG4qynd2WSbk0ohJDhVACKRT0CHuukePxxiqSZE/z0QCSlU1m8\n6v1IXiin8Czq6E1feOFKbcEujrjzkkugEqvejkqhPFN97MtwO/NF6AMBKnucNphLS7P+uGWjkABP\nbawjQ0i5OXwvWY38no5IJ06JlZK1QfHDa/bxTNdUyY3mxgOP+PVEnlVGjQGUVQCgnC9SKtXjWIxC\nJJFyW5RFP4oHGg8v+CTNP9ml1Wbt517kw38wmwdhSdGeAngRMlUsZWMqQOjNbj4CALNtlFp0bzuU\nZs6LYNeGQUDswlZrX8svHKt05Fuiey16gFKF7vcACDYRSgZFT6Q3VQ9gwNxY1EuZkWjhDdo0AJVN\n6O0owcmxxQKDRGV2vJgmih0uw83hX2sydM/FARDVa7U14CibBt3Mekvl4rBGcVDBPLnHC9flQ/73\n2JNBct9bboeFV2wYDHWhR+BKhihbLsuZNpy/Ax5p1Le9s+ZYc6lNpPoFYAR0UjdRiVVHLgsN9tZS\nhnusDhsKNue7EogICL43o911yoTcuxLmerwaeBe9dj+UWFQiOZUvpU1Fyijji6wkctznrnBZ2eDP\nFLxpqMso4yke3483XJ5leRJR5gEExmIakSzU+HfEFbhoB9i6R9l0bn8xXBwQPSIcRPEIfLzVgPvA\n+J16yYrDeg6ga7xsju0bZwcQyjYAwlyNn+0wWRpzNFckH0iZ13HDqHa9DlptKegAvuTjp7wB7juZ\naaUF6fWcHFdoXT+pqgf188FlP6FBXps1+qFES2ehBNecRNmOnK82YQvPH9DbIyfdL9e3Q1XuMAB1\n1ajkJufi1YsdFV16HAUALGoUhzWGuw2KgwrlMS8qxUGF4rCGeWIvOFtePgQO3wRaMBmgdX8j/1YK\nJIVAErI2d71TN1ffX1v7Rv1Z16EZBHhMlPGkwJP/+3BmKlKxUoZzR8n2CO5Pa8oFb17kWrVjK/K0\nN+eBR56jTAajKIAKwGM1W20AiEBn01ycBh7Z1AFDmHvb3wVOmbRSVDMUixrDUQNy5JLisPZkmkid\nIR0gjqR3BFxiWSkfGnQyQ6xAkC0yhzVobrB7t0F78igDelDxCHxUxB424cNT05wblauTWH9rdQLs\nBbVgr4Glhgp5tiOoCIxmgsqKPzBlFZhvgCvDqdJTyiwDJjOecD4zSC3Jl906znqOj8IxNI0jV9QF\nDvbXvgoSN8nDQm1MCTM/cAtumIIP8yxlJFsfVL+XCtz5g1+VO56IEAGQpmybFsCJYscFJQOq1jCO\nUCADisVhzfM8e26e5+AxnmHZv4IzRSXOyyiJFl3Gx8jaeEGLJF061WOL+zy6zJbLeFJi3qp31gQ1\nl+E4x9MfVQYgQ7PQA+paYD/Z0Sf6fhHwqJDsJ41AVY4FYs+LsVXDDEATjknAZMb3t7iUFo+vQ/9T\nCB36vtdxkgx++p+r0mOVXI+MVh7NXEZdr1m0dtXDokOBEjgEKjQoZ9vPoD2K7ePhBh8g+jCGnZqa\nA+jbKNvxoodAUFGWspNbgHkRIr8Q1UWPpifvhpktWZgq/rAoEIpopbL4KUXiKLylNIduBkvJrW0N\n2iaU3CrVPG7awmU/1tsOixKC2EvLOWjLaXaLDGZ8KfiEBjovZnrnLH2gCAqEku5ng5ioIACEmRv4\nrAIpwRy476WxfukS93f2rjgG2k1fCj1aB4AE9JBtWGyF3S7HaoliAHJZTzucbcx6zi21Rcy3EEwK\n8VxAjABIjr3eB3VtPAwMRPeHJ1ekEWU/cRlaypF6Q6Z/7l8i6RfFr5NZYtJMHxjPjmkdNyF/yO9I\nz0iXGDWw6GxPf5WYEmytA0XfgmnqRV36wdf7jkdltygegY/TJCv3rgAmNU5TcjAbIggwLr1opLdm\nGMirXkvwTloJQxonKImM7L1QTjd4lwBhkZYFfFNNvm3yVr513aOuxiVCsZIWb562X8IU3NPx9uNr\nFpzMMbvmhvzjgUasMimZKdKy/652r3ss+nFZQPzCpTNEIRXsXYGdH6AZllh2d9D2S28lwSw0UTbm\nDtKiGoBZjAze/gH5BUgyHp31aDdcsWKfAh4dORmnHABJxmbIuaGaMsxjyX2gVb2nsmMliyQMMdHk\nS/tg9xKSKWZDtPUmNPii3ml03K7PKsDjDPx0thwB0b0u8tWMhVnFqsTNS1l0MIdbKKS/xkFE3wzg\nQ+B22Uestc8lPyf383eD/Xy+y1r76U3PJaK/DOAZcBvumnvOH7if/SsA/jqAhfv5H7XWru7nHB5e\n8JGQWvDqhOnP4vmiPpgSZGrYeXgsnZGQCOrWS+cMGj4iIqXfDkAvZZOuOb/xnoscKJo6zB0lIRIo\n+wctjo9m3l2ydl/3F2sWgJyF5wvwNIPxUjBCnujt2jfXhVIszC5gekevQ0zVvJMoELILReTw7C45\n57SkIuEyUQEeTQTg7IyB56g10byKDA9rYzPR+5r0k1ElOCF3aO08PU+Vs2XX10giB0Crjn1wVj1Q\nSyl0INeL4aHdHbNAOd8H5TYwuVidxNcsAaIAQuWktbh+LGfeFoUpGCCbE8DUTBXPRe5xJULrJZmk\n7KbKcpECNjANQjojygwQe/HYee8Hni8kLshSgYgMgB8F8C4ALwL4FBG9YK39bfVr3wL2PHs72Mn0\nxwC885zn/tfW2v/MvccPAvhhAN/nrLX/JoDvsNb+FhFdAbCZl79FPLzgo+d8vCDm+UGmBmRX6ZQE\npj6cPIQafyjTIb52QNi55pg42j00eTwXYd5BSh6tnzifG5a/r6sBB4s12qZAVQ8ehA7210qRePza\nzUARCDV9AJ6j1uBuS7ijZeBcEiVSPgJk+loYzPxOWb5G5S0NQDhwWVA1nY2W1UijLABPXBKUELmk\nHPDY05uh/9RXSUbRpmLJ0XU4WucJBlqORq6PjhwAScn0EGEQlQtvMQBNZRykjfQy9xigsialy7ep\nvBYed2rd2iqi0D93mRABRjZb8jfMDIqO7ncRoVWWFkFZ3LnbKrVru15HHk/bgJCXuRKh331EQPQG\ni68H8Flr7e8BgLPKfgbsdSbxDICPOlO5TxLRJecM/bap51prj9Tz9xASy28C8P9aa38LAKy1Ny/i\nJB5e8JFQH0SL48kSxaiMIUyvxJ3SFLPoQ2ioHO0K296VS4oOhtzCSzNU5Y6fLQHgF17qqvhDqReP\nXJ2/bycbw3MHQlXd878qlNouVUGZGAh9kLEkzOB6G8UIeALgBCivCp1JEaAOrR/WrrG9dtcqA0Dq\nWvjrYdR5JyXJzhTMZkuAJ/SjSHm5pBboO2Opf1m8yorZWjLfo7ygpM+TK7c1beGvcQo895IByftw\nec+iNoGNuOwYgOImP9z3PLekASha4JP7yZatUyY/OTcLSoFHZtr6YQ0U4f/8M0dhNyVKs+9LypbC\nvULWgsRUTo4tMWS0x8uR+jVFRIOkD5QCTyrNI7G/G0g+7TrqJ74O8TgR/Yb6//PW2ufd928G8Hn1\nsxfB2Y2O3O+8+bznEtEHwW7QdwH8SffwVwGwRPRxAFcB/Iy19r96NSel4xH4pDG1o9YyLGqK3//Y\nM6PGu6QcAPW2Awagx9qDkNagAuBN2fzAKTYsGvoxtyhWZgeLaomjtXET6QYAs6hwyMfuVYjdnSCl\nuUUVJtVZZDUAkOjdZRfcCSO+Vc/FYglNwNDXJAtAQMwyA5K5qrCAiV31OOPR5IKgtuwdNYtMxiMy\nML4JHt7elo3vk7CMEZfb7rSh3CbnnQu53qIapAU7t4lGZZIMpAxAQg7QpI6q4KygNFWwiUgt0ZMQ\nLT9tjyHlUUAN5iIGHv3VJ7nF+G/b64xqiD9HnsEnCui63ObtN8YXa2Qpn1MTSIFHf5VSrlKZh4iw\nXkTcG+HghrX2HRfzxtuHtfYDAD5ARD8E4FkA/zkYJ/44gD8K7h99goh+01r7ift5r0fgoxlk8n8X\nqe5XpFdmMdoF6t6F/kDp39P0XpF5l4lJ/oAGKR75wJbRvMKGvpBSWyjrfVTFLnbKDlfnx6iN9DgM\n5qbI7qrF9Ouw0lbhMsmuiQhhIRfx1bmRXk/IcjQQrXrgqA3WxQxEHXbLQGDQ7DINQADiPpa6Hhp0\nooVxkD6cvt7WMe9sRAHXWn1e+FIsFXRvoV2PsixPNhjI9b/4vO8042HequqBhNBxHvVanEBlUzDS\nUitiKRt/iXIKztqmulE9n3RnXynyS5Rh1v5vIzEGHn3fO6Dpw+wcZ1Cdp9qnmzK+B5QvlvZ9ArhE\nVq/Hyh9OcipL0Rb9QWAMOrq3K2Ve9z5525A3RHwBwFvU/592j23zO7MtngsAfwvAx8Dg8yKAv2et\nvQEARPQxAH8EwCPwuZCQUor7PvpqKlarRudBB8hTTDmDCR+o3vKQngiVNgP5wcu6t1hULuOR8kRG\nx9AUM56w79qxv04mbN+A+tYp/K5xMFujNktvflebAnNTZnfah5VV1tpDRNUOoba04IXwsAKAuOeT\nqrWtegBtgdrJDwkA1WaNCkCLMb3Zv5LOgrYMzkZlQDKUEHW5Tfd5yn7gjGd14pWOfRM7pbwDgKnQ\n9rcc8aJ2ZIsAPMcnM88srOo+qEkoAJoiIuiMVEqhaTlUwmupKfkmAR6vQZgCj56TSRfX/V14b6ay\n8QO1cv01DRuIPw9HSjGDj7NT/18Dw9ID4rkzQ7rkJuHApHAMNA86qQJCov7hP9vuXEbvUSsJHtPG\nthoXRY8m2jiXdw/xKQBvJ6KvAAPHtwH49uR3XgDwrOvpvBPAXWvtS0R0feq5RPR2a+3vuuc/A+Af\nu+8/DuAvEtEu+GP6bwL47+73JB5e8JEbQUnqR7MzKsvpM4zCXMlNdpu6/JCWfYJml6P2QsQY3etF\npTiplbud66ZGe1o6cSKnVbGD3r32Y3Xn5IM4C9LlM4ngW2QjDa84BCE5ZROq8twEfbhcyOPRAuUM\n1fQAqnKPiHoXUwB0riBmYb2Rm5aKCX2eXb6+q1thcdbOpe2a7c9VeAFX23kdN1YnAO4uCz9LBcAr\nSUSRobRH7p/Kilo7g2rmJN83g7tO5SjbyVqXC/A48BFwjc4NcJqBzAK1c6G8xwtnnN2vx4Z5Q5xe\n171kbYExmYJQUJ9uxyU3f+1mQUA1BZ5Ll/xnWovddhn7dUMzL5sEJLR+zQZ8g4W1tiOiZ8GgYAD8\nuLX2M0T0fe7nHwZnLe8G8Flwqey7Nz3XvfRzRPSHwB/szwGQ17tNRD8CBj0L4GPW2r97v+fx8IKP\nhPJySUtrIhWjI2UTpXIj/H+eYentejR4qZvd8v9F1cc0ZlWK49eZcfYjx9snIJSKmyr2XlnvexYU\ni40uEbIBLeNP/jHJCtL5JDknrX13BGBRAUctf0VGgj4Fo7tt0C2rTTC0Y1HXdMAzvt4agHSjOg1T\ncLmHrzNGGVxtBt/nqYodYHXMC3Q/0WMQqaNd+HtG5ro4myUcrWPgEdBpfPYzjGasUiJCDnTkX6oq\nzX8jy+fgvKVi0FFKzgnwyJxMLiyCRxB2EbKBUixD4sxeA8+0Uy7/HQB487zFLGS9k1lQruQls1xi\nbZHxJ8J831cs2uF4JLQLiITWrpOjmkX6fYHW/8YEIWvtx8AAox/7sPreAviBbZ/rHv/WDe/3N8F0\n6wuLhxd8iOKUPNEpC19z9eoANIEmHBqqAMLwZRuzrLyLqCFvZwDoPkicBXEvaM3Zj6j4ps1izQbC\nGcuslBVs14K6FuV8HzA7nlFWmzWDXdFHCgZSDkwXNS0zI9HbDlWxxm7Z4axbYzErcLQ2qE2B68tx\nSW+UDTkAkoW0MSJDxDpyfWr8lfsTJmUgIXakGwIGtRCiUTaSOpKQ3XTL0isRa8pZi8NU6N2ipktu\nWqiVwabwc1T8WGAYRrbT5SbAGYMOmxkufGnNq3GsjmD7Jp6JEvuAW3fHWUTuukrPZIsQHT8BnqMJ\n/xvZcHHw7xwBWKAHsPQA1Ns1bLETbBFEBSElD8xmzErTSt17VyKF8ba/5VVHsvJB7n6RkQjdXw3G\nh/vnDplvHzQmzjzE8RCDTzFKyzU913+o+iJ4lwzwAKQjXZRFUl9siEXZODd8qbMOWYDHAKQasClD\nyUnDy9Q3zWZ+RwiRXOkblHtXPOsJABbV0i0I4aUbV4oyNPMeLJV+78y5slL1ErtlKOk1feEzoFQx\nP5r9MUp6x8kQjf5M2i8pF0qZOY3KMJkhZdUBehB4gsygHWa1qGtZRU6xmu2n/e6qenwuAjyHO4PP\ncrYBHG9r4HpUO+VjPFQqgHN6FJhh+lppIU0lSZONqTkYXZbWIqq28/qFUlbOzVBJMGMy/L032bf3\ndo1S5rWm/vaqpyOZTmcKnu1qriudQULTV7g6X4feWHKvaEUGS+Q9uSLn3Udx4fHwgk9R+tS8sSu0\nwxmW3bEjBxReHFN2dVfnAQykRBCVHxTrJ0z9M/AI/TaNVQ8/q8GUWe0jFACIF/wEgHS2o3xJLBDm\nFaQ00bNzaL14KrDqbBcAzsVuWcBQFdtHnKh5srIKN0xZoTRzGMOlCwEhseF+8aTCahkWooj55unF\nLBlzdSen+u2a55lelj4e0SYja2GJRkORppjpudbw+oVWXFavJ1G1QUdOrqVYTpe1V8WWHf9UVHWP\ntjGo6p6HeB3AXKrHoMP09tiKWoNOZQ6wYxYsdHt6Ky6naWaef3M175Lpm0wf9HTmI2W22CU3lJN1\n+VaHZNUxAMnjfTRwDOwE0KsTxYbE9lxApx2WWLZHuLFqHRjWo1L31XmHRdXH/VqErD6nQ0emziuu\nv5q4OMLBl0Q8xOBjoin4ZXeE66sS4uSpb1yJxYypwbnFTD6UvBMUCZfCTbrHTXQd4fV5cDA2smMA\nEjpvSSUvOJmJbz2JTe0adn8XEOFFKRuZGvXeZcC44U5NzXWA6l1apQciQqoZOjrVByjLCmW97+vm\nZpjh6vzIXbsZVkvywppA7OI5XxHmjvhQG+uHT+VYvBryVNkjeZxcv86fkwBRjkG4wRJAn6MH8GrG\nm5X5vp8l4o3KLCqn5kIDz6WaQXcxG4NOlPEo7xyhgocZpM+F4VetdSabET1seQ9MrVFpK+mHWiI1\nYiCbNJr8vEhsynJ0hIFjHlcgVxL3z9a92Tpkn8v2CMfrFa6vZnjxZJ6VeJK/09WBnEli/J46dPYD\nYCvlk0dx7/HQgo+F9a6TfONWflofCBYEHKX/cLH+V3id2LvGTEq4SEyVV3Lh+y7Fjt/tYnUC3LkT\nZzvKYpp0HS09Zy29o2aRZLGX9yLlc+8zj9wgogxa9tyI5rp52FXyokNROWrqPGXYM7IpFwDcEJHy\nBHihKE211YrhZf912S23MxUvHOn12BX6Ye2JGVd3COz+ajFX2aQmD2wLNnI9+Niq2E8qHX5V90DU\nmL9HevCk+VwS2rcoGBUWClwGJp0A0blI5EAoYuulPTjDJU5PtHF9Wenn9LbDneYY11czXF/u4Nqy\nwD8/Hd9vUt70s26+vFyqDPiC6NSPYuuYBB8iWgD4IfAQ0i9ba39a/ex/tNZ+/2twfK+I27NYAAAg\nAElEQVRpyM5t06S5yJmksw6yC5Rg62FAtt3xnEZc0w+PxTteKX/tmAVwcpMXnuPbwXfe2f+OQjdp\nE5Vn3i2exTpcEObPjqe5RrbDOqTUBSgW1PalBM3qemJucVhZXN3pcHXeYX+mbMo3ZV4qbNmONdeA\nRBImnUvJqy6TqWMFCXlP0SDT9hvOeHBRrRWQzGISgdpgpLNTsSMoASAPNtlZnQR47O27QX0hjQQ4\nfL8qF1O9npqzPE3Gad1mTfopOuQ8dVlA09oBRJ8PeTwmf5TjUigQjT/ontOyO3Js0lBlyAHPE3OL\nJ3f4PosULRyZRlPTAdVnFOv0czZAWwcVj8puKjZlPv8zgN8F8PMAvoeIvhXAt1trGwB/7LU4uAcd\nchOn5l/bPhfAZJYjH8RFxXRieSxX0wfCB1Tozbrh7xee49vArbuwt+9G2U42ZPd6+ZCBpz4IDVnH\nANJkAqbpzljVO816NNtLg5HYSXeVk1/ZLpGel6yc/eSOxdP7a1ydr33GU/YDsLoVVAb8kOFpOAYJ\n9UFmN88mAiGRhNGhgWfyeNPp92TBCDM1wqZbu4b2gEVVbiyfmWIeLXRppDNjZC0D8elNT5W2t+8y\nc21T6PmXy4cbFblz5z+iKwsZR5kkjgRanR1FmvXIRk2728rvhYW/HIFAWv4Kxn3rYFfeGlxflkHI\nVWniCfBcqpSU0iwQamKn1SQ08DRvTLr1F3tsWi2+UvG+/1ci+gCAXyWif/s1OK4HHpTUZXSzdFNI\njVuztORxeR0J7+mTyKKkygH6w6pnNnwGkCw8w40T2FXwHhlFNeOsR1FQ7fwAbX/kWUpHrcFjdRct\npJRza03LOTrKMB2+TQjozA3L+HDGs8al+gD75WWUzSqwtpqgMpCeW/h+zcSAvmKPGGe7oP+KAkBp\npjqKUilI9M14sR4B0Iwtwd1GvzZrXDWdB5vdsswucrFflLxY0KeLRGX1nE7D5VYBHsl4dZmV6vh+\n0PcA5qFxn2aJQKwZKFYh4lMlPS5xf01N+NJMzhCfT+jdCaWZN3u1WfvPUFr6mix/KeM+0ey7vqo8\nrf9oHYRcdWYt99mi4uOUjV0KPLmsx9+LF0W1Jspe+4c1NoFPTUSFtXYAAGvtB4noCwD+HrKuZ1+8\nIcARNcMzpRMgP6zINGGeol9oV1Av5TJEmQ1/1bTPwn8Ipe8SZQCnt/yMBto17KobCSt6EyylcYXd\nPZ59qPcjsU2hoArDJ3zop72MNoYCICkTLWYtjtoCc1N4ZherZvO5X93p8PReGwOP2BfoYcjUo2WL\nyAHQmAmn6jM5KwsJnQWpQUtDTouu2Il05XZKNbyo3XDXLdCdhRkcf2x1IHBk9Mai8qf2mnH1pdwm\nhGTwUlmIa/DJZT2UgGGHDv3Q+cVe5qeYIemULYpeAW0VzYQBGUpzEUpmVcF/V3kOz9rM8jNd7u8n\nxyHkAl36qwrX2+mZSbiYAU/uSC9x7NW0EXhWJ/EmKN0APYoLiU3g80sA/hSAX5EHrLU/QUQvA/hr\nD/rAHnRYtQRI7TnV1dL1+kXVq0Yl36xCPBDK8ihz8mWIMIeS2xXy16S+r/sdura/vwuSXa8HHCey\nWJfA5UO2kb7yBGc8+1d41+rKbezkaTztdcTCcw1eP2B33oR3xs7bFDM8VncQv6m5KUfX8uq8w065\niIFHMbj8BL4oDACBubdtMz0yAqz8dfbHObXY5V6nrJwCQgOqD1DX+7AOeIQG74Vgvf26yuSS4/HX\nLt0JJ30mAnhWq6xCKe1gB5QQTHzWo0ttAjx7lyN5GZGLitiOZa1+vg4Zjxq0lmu2W0JZwlcjAJkK\n3X/r1aYn9Bqb0F+bKAsK0SNICxV4YsfisCLcbdl07007zqNJldp0KXv6ACeA540nLPolEZPgY639\nixOP/29gd7wvueCbWn8/ljLJ1YiDdP34NXMgE39Vjc6uAc5ujm9+vfOqZigWNawo+brHRovO4VPe\nyVOaxEwl18KPymHVrpkl1rcMQLLYpqF3yMIAUzRcfU0W1RJXXVYpDK8wKHkZ++UV0MnNUXbnZW00\ni2t/d1omPxM26f/k5oE2DrCmgCGLopIuIj33BKBEEQOO9Kymopcy4YEHcN/nUArLhAMGIDe/Zds1\nioU6N6Xe7O8BRzBBve/n2NLQ92IsmbOOgCdH0GDAKT14iGo2OudHlorzIpBAgB1fAi1Rxn1Gudau\n3zQ65mIGDFokt/czQ7UpcFhx9eHqThf0+1Qpe+oa+JKz/tul9+B9x6M5Hx0PLdVah6a9pv8XjTMN\nPCmg5CIHMunPQn050eDq29DvSG58ms1g93dBlZKYF20rzWqr51h2N9H2S08l3yqi+QY1Y5Frvmey\nHjnXHrxgXZ2vfU9AJGGqYpd3u8Lgc9IvwuDT5+xnl3AWAMid91ahjzsBoNHvAHnX2NzvdTfH6shA\nTJJI/34phblac0lJeQMBGBvp+eOvIgCKnDiF0abuAW0jHnnmqCFpLQmlZZQ08OgwVEaZzsiqQZiJ\ncm80sTWJ0Kb9Rqc7icuL8nsr5IdM3XGyDmJsL8EGe7EuoRgEbsrIvPiqHIMe2pUZqkdx4fHQgw+D\nQufT+JSpJGW20BjNM5Xics6ELpnfZcc7vaiuv+nGzwwP+p2uUGP3rnhW27I7dmW28fF6H5gpQUe3\n+/Z2x0Ydqwu/qEzuUPn7x2r4RUArJ3gm0a27YVgWAXD4+9Db8oB7D/0fH5K5KAAa/Tz3nE2vJYut\n/t2TMHfjZ3AkJDvR2mnSb6rhm+qA2qCI1Evtsh+nvADdC1P6Zt5GPMl6taSNicpoLiNXslE8xxN+\nR4z/dL/Ez4OtbkWEGH2eXqi3lGuvstGpvlbfAl3FStp8QUcApD+zEnXBQ8qaWahBEhh7BwEIowVa\n9Vu7pq4vMvN5FDoeYvDhD6K+IXPAw/TYGHTGytYTWQ2Q19pS30c7bdndArGZlYuo5KRIBV5UUUos\n/YkCHjOSPAnN171A557qfSTA4t1Uu1Y19k9A9b77oCstNxFrQABkT+dOr4d+D1dOtE0X9zRSg7D9\n3dgWQ64hEiPAzPmM7BlydhVTFhb6NWUHL7+rJW3S7zXwyD+VJQiVOM1GSH5nvs/vVa150wGM1ZzL\nKs54bKcYamGuTINOGqaYBdmZoURVYJzt6L7k8e2tFuitmF7p37Ksxq7BxQy7pfPXUqGrE7ky27hc\nnhktSIzrsL63gd2N8UheJ4pzwYeI/symn1trf+HiDufVBxF9M4APATAAPmKtfW7T71s7KAFRkfcf\nA4+mZQJ5oPHHYC1Py6e74fR7OYYUeLqWd3kyuFnNYv/41KM+p+TrNOpuN0My9JqKUx6E8lcOKHOR\nGT6NAKisYMp6DECAXxSiIVZ9XqcYfcgpyfSi0pLb5XvJFbmG+nrqSOy25XuaAlf5e+ivOjYtIl4V\n22Wwe/HjqGYxYDhCAFPh19H9JteOygrU1bBpGcq9ji9z1fujUlmg/Mel423mskR6xt8rku1I1nrn\nzrmvAWQ2A37T0IJEOdrdF6LZFntqpa7BpSf6RP1Td14CPJvOMTtQnXzeCLuweOOV3c5b74iI3M/f\nDfbz+S5r7ac3PZeILgP4WQBvA/D7AN5jrb3tfvZDAN4LoAfwg9baj9/vOWyT+bwXwL8G4Ffd//8k\ngH8A4Dp47XndwYeIDIAfBfAusOXrp4joBWvtb089x8L6XSEgZagx8AhlFojBxgONDg06uczmvEgX\nT23rC4QsRBZdN4+RKnJPAc/VeefPy6sibwM8amEYDaAipjYTMAYgYJz1JEGzGeei6S4zdahMJu9H\n1yaJ1PMn589EOntR5+JtCTLN8+z/5Tjktao2zmBTd829K9GmQfosfN8lbyUZgcw0VYoVVipbEDWI\nqSPNCs6Tk8mVkalrgtOrLrOdp7KQXj8px2nw10CkQWdQ1ui6XFjMoK++log6b4jYn5vc+zrryZwH\nYUxUeFVBxeR9ek8vs9169y1gYtjbwU6mPwbgnec89/0APmGtfY6I3u/+/z4i+mqw4+nXAPgyAL9C\nRF9lrd1yJD8f24DPDMBXW2tfcif+FICfsNZ+9/288QXH1wP4rLX29wDAWcc+A2AafOzgPqBqkc4A\nj9SLR2CzbTntvLJNLvSHVC1+0e5R61ypheus60YOkotZ0E2L+i7puaSK0SrGdfn4vM4DoGghyAAY\ngKQZn890ZPJevJfUi46voxyYnGZS85fylgcgHTJwmnlJXT6aHEjtWr+gRkAhwJnZNJx1cnxMEKhM\nUKAwxQxUCw1eRSKBI0w1fY7yNZawmQaf7PyLHnbWZJjzSlIbgGe0EXB0bwGdVBJpdJzFeFZnCniy\nVQp9H6s5KgCje/ENFtusd88A+KgzlfskEV1ya/fbNjz3GQDf4J7/kwB+DcD73OM/49Rt/hkRfdYd\nw/91PyexDfi8RYDHxSsAvvx+3vQBxJsBfF79/0Uw2kdBRN8L4HsB4M1vuTyay/FyH0puP08YUJFr\nnOrHJVJmVAaARjXxsgrqAcmHtrcd+sR/iIdHFZW6sFjMMv2drmGW0dS5JN+PCBGAUsq+wBq21qRL\nm+gKdNphiba7OXr6eUSQTQoHnnqdKcNtigiI9A/0xqHGOFN1RnT9sFbeM+yLw5sFtqYwBQ+zeit1\n/fobziUFoBR4tmFqAgkFWcpsmvqfW6z9C2U2TQnw6A2BdhvNgs0EoGxdEvcv7u5tfV6KKPIGAZ7H\nieg31P+ft9Y+777fZr3L/c6bz3nuk2qtfxnAk+q1Ppl5rfuKbcDnE0T0cQB/2/3/z0INnn4xhfvj\nPQ8AX/uH32ZTbSov95FrjudCA48eJkyzoglKcgQ2E7/jIwEeIP8B1QoMaRZX05zPRyR0tg09syKL\njXxI+wRI3QKjBxX5WN31lDIRDmCFMSb9LVnUVBN9VJ7qbrJEUL8cNc21yywwXoQlpkAoZZhF579F\nyY265DG9l1CgI1TmYMYWrNYXVaxwProXZROgNwc4BuHAZ5wA92hkmFOuy6sGHs1mU6oTAMaup/K3\ny2R5ve0Apwi+UepowzHlHs+ySzdVKfRGURTCFbttROW/QADaZP2exA1r7Tsu7I3vMay1loguzMoo\nF+eCj7X2WSL6dwH8CffQ89bav/MgD+pVxBcAvEX9/2n32NZxbtYzFV0bi2AC49qx/L9O9LUypQj/\n8+S9p4BHz2+I1A8APFYXY3pzczLWq9oEeBpM07KEfJ8BHlloZJHVUSmLZAKAvToMsyoixabylIhU\nenXxXoGOJziUGxe4YI8+BqhcH2iKwJA+NtVj6t2g5xTobIoRUSNTsswBUHpOm6Rv0ohUNnIW3HIf\npAxMTaRIiDAplXubmblciXBrdikwyuazYw0JrdoCTBaR+/GNx1DbZr2b+p3Zhue+QkRPWWtfciW6\na/fwfvcc21KtPw3g2Fr7K0S0S0QH1to3kr/spwC8nYi+AnxRvg3At296gl7bwxBpJuuZ6tnobEfq\n4LmGpW82t4HFpv+pjIZ38+M6NoA88GTmFsIw586YoZQ6X1azQO1OF9N0t5gCj3x1vVgBUwEe3YeS\nY+VzKLl5rsJnQe5a64VrmS0tlr48pYcNAQRFfwVC4Rqm9ufj67exD5Qw5rJZ1ZD+jfjrFOik2XfT\nx6Z6WZCY0qJzs1ibPI3OY7iRtWGTcnor6u+MgEdHNQMuXfIK6nrTILNGfH5B2bo2K+yWbuOQ+XtN\nZWoR4GzJLs32LFN7cX2P7yGmw19AMMnpQmaGtlnvXgDwrOvpvBPAXQcq1zc89wUA3wngOff1F9Xj\nP01EPwImHLwdwD+835PYhmr958F9kssAvhJc6/swgG+83ze/qLDWdkT0LICPg+mDP26t/cym5/SW\nZeHHniJbZD1StkosjO3p2bT8S7vm5nOp3BgTAUfeDcZU2/Maw+L82A8lDHV+EHA0j5H2a3ILiHzI\n0g9zqmydq/P7ctvKn4sQIDiWbmHn6xwt7GXFJSsBZ7dwaYUGXqSNl/JvesIRDFipix1fhRyS203r\nXbc/XTdYOZUlpX0gDTqpHE38Nd7ha9AU0Mn74Qz+K7O2yrHIrG74V7Mg8VtWkVkglJ3ElH9RNmRh\nXrlMfgp40kVagEeVSEVP8KzrcLTmv0WkiD0Qmn7AolrCOJZfOtYw0t/rW0wJ4J6rTiHAIxtFnfFo\nNQphKLrrGomyvgFiar0jou9zP/8wgI+BadafBVOtv3vTc91LPwfg54jovQA+B+A97jmfIaKfA5MS\nOgA/cL9MN2C7zOcHwMyGX3cH8rtE9MT9vvFFh7X2Y+ALvlUYspGCgV60Dc3GNGoJXWZzi0BkZa0l\nVKSBDkRZAh+AU1rGLFokgEAX9WKL4D9UaeYuSyrd76vMqAjPDTpbKjvbxCzbNB8jj8kAZaK3BhMa\n6U1SWjpqDY7WM7eohsyut2WcWUh5y723ZE+8IehQmyVqo9XCw9CsDAHnJFQ0+Iiqt3ZwnYpRdpDR\nhQNCNsffB+DRoMPZjfHU91QShr+PNQQPZvNgm60liFLL7GrGs1DpLJL6GwoQtsOZLzFus7FJw2+q\n3FdbqXtAAU9nCr9pCHqC4/fRM2ciTpqdO+tcgWUTi3RKiUJHWjqW3pUGIZFyqtZhNusNGrn1zoGO\nfG/Ba/dWz3WP38REUmGt/SCAD97HIY9iG/BprLUtuV0fEZVAloH6RRVEGAGP7LqmBCejGri2MT45\nQ3/tFHbVg+YGxWEdTeR7GrLIqGSiKnY8qHixRUUMkGyJysqXrUq3SPKOfMeXTDaCDpBVT5AGMb9w\nspgJbRjg45fXTJQVRM4l3eUvKnj/oHZYRotfxDDzjqWx/Is2veNrhWiYMFKS1mHU7e0lVta+xCOv\nL8cSPTW9DyYAyL/mPUTOVFD0yEbAc/TSyDZdHGy9+sOT4I1N10KrZGtglExUlxXZ9nza2E7Crtej\njJ5mMy9iK7JOTTFg2d3x98DRmq3pAURECj1zFtmEdw3QHsdAk7JHcyW2qUgZpqlsVQI6wYreEQ/S\nDeN9h82Weh/W2AZ8/g8i+ksAdojoXQC+H2y38EUdBVkPPFqdd6rcFkmJKNAZbpxguNOgv3EWwOdu\ng+KwdiDkFvm9Xb7Z62kAkkE+dGNigLeL7sbT/B7Y5Dg1M02XEmSXLP+X1xFmkpQD1SKWnWOR960P\n2KTOlViW3RGur8b9jKOWFxye3yh9libnDMCDkFbHlp9VqkKl+wCT1gWZuaiyrGDKxaj5vVUIEG8A\nIGA7EBJSiCzGaQawUy6wWxzA3v0D2LsvAy/fiCzTxcuJpYdKlHUZmv4mUPPlOnrgcdleDznG5UiC\nZgRCU5I54pArm4+9y2jsCifrm17E9qgtfHmUzzMI9y5mGRamLg+nmyZd/k3LflPHB7Bwq/xfW3XI\n903nAccq/21bm1hZ5FE8kNgGfN4PVjn4RwD+A3C69pEHeVCvRRQgDzznycykw3X29Ay4dRf9tVMM\ndxsMxy26aw26NaGcdTCrHmgH2FWP4lKN4vFZ9sMyAjrxE0nVrQEPHDaadM/sCnONVGCsKaaEHz3w\n6MzHvS5NleEATwhYdkfZRScsPCxqWRfWZz8ywa9pwBK5LGTkAro6Gl+nREnAKkUIqg9Ac6AqOQPS\nFgM6Exu9z8TcFmWYbZtCzAb5egTr9FTGabc44GxHgOeVGxiOGgx3Gt6htwOGpvMbHZobGCm/7e65\nvs++v7ZBoTq/mLKx247LvNcjMoj3U5LsR8psyiFX7oEbq9a7i8rfXjwPa2O8c61kd9l+VkrnT75m\nSQ+pLFM7i7P7VOj15Mw7wUag4w7WznsGnwsGIGsvjHDwJREbwcdJMXzUWvvvA/gbr80hvTZBVERl\nm2x0iZXuBPAAQFEDSO4rmpvI5hhAUCdIhS3FuldTaUdzNWsApwE4UkKAql/7Y5Bd8SbgURPy0fEn\nC1HK8moj4JlFiw4Q+hre1Kvq/bDreJGPyZOl/qqui93UNHbnTU8+PvbazWSbaRlqMiZKPMIqY+JC\nbJSmSSBTZoNpv6OmOTPMnLeRvR3uMwGdjbFNKUodh6EOBu6YrVN/lgwECPfKOcBzsr6F282A66sS\nL57MkJjs4rCa6Gelcj0TjMpIWToFhf3d85UWqvzmb2O88VQNvuRiI/hYa3sieisRVdba7e7sL5Ig\nkAeeiFGjp5+1v8cG4JEoZxZF7UDnoALNS1BdsrOomLylmmQSeniwa8dlMyDeyYnY4TZliDQco8wf\nS73PNsXDeIeckiH098EraOZr+zq8ptxOF3Tl3D8uLx7HgJsunrq+nwwCanaSLp8A3NKh1l1zF7Zv\nmFGXmYHR5zXaiHRt3HfTmZAv71XZbE2DUG877/4pETETJQM4egm4dh329l0u6V5fng86QPz371p3\nTKXP5vQ5jpStheGZjhbI8C9imSMhmLTDEsvuyLHZZiMG39wER9Gr887Nnrn+joCc0LkT4IkynExv\nRjIWA/BxuYiGXtOMaDZjHyT92Hy8BFJtAvA+igcW25Tdfg/A3yeiF8DawwAAa+2PPLCjeg1CMp9o\n0ZgCHiljuXQ9BzxUlyjAdfiiLrn3s6h5AZSp7/l+yDh05LKeTBYDICqD6P+nvZ0s5Vs+UMkQoJ64\nP48J5g/Z0aivr2bZIclF1UcMrqrYCTveXH0/zfLSjKZdwx4v/cIz3HWsJ6VeOjQdirqEXXUwT7uG\nsQBQQvbwfZAinu0Rlp08R9N3UyqvPuscAAExCMWP870XZQCnt4A7d2Bv34W9eYT+lVP0dxv0Rx1v\natx9BcB/3Sa0t9L4+MrAkJReo/9hxfeu0LrVfSMEk+P1KrLtkJBsR+6Bx+oCO+VB+PvrUvbE31sA\nR/dlfGlMAbIHoJwqgc72k8+SXXUR+ARb+nhZ3MoKYqt4VHbTsQ34/FP3rwBw8GAP5/WJqPyV67m4\nEshw44QXhOvL8WuoRYEOKhSHNbtO7gWNMm057QcZtYuivKfKeiZBRu36+aswddhe27qd6qjXo2T8\nJdtJJ++3DVl0hFwghmV+0ckxuPTC0yUgqxcf1RCWfsdw3Ppme3uSP85y1qB018S0Tirl8iETPdyu\nnokPrgGvACiKKeFYFVpMFQgAFCjNAXRy9GbfaJfrEQHPGfrrSzQ3ezSnJczMoqx6lLMxEE1FYLTx\nOfZDyOx62zmm2S5koDprm16rPuCclSc6UzjPqCMcrctRj++JHWeZXg1K1PYyK6n3QwDaNJvNgI4m\nWADIlh9pXjKBcX+XyRcp8NxDSNbjPzcXqV34KKKYBB8i+ilr7XcAuGOt/dBreEyvUSSL19TU+EQI\n28j/X5hudYniUg062Akuo3uXI0UDYSBN9hk2NFz1V5spx9imD8fVrgMTSgDQ+f/w9Pkyox6Qm7qn\naC4FCE3zRaXnb4rIwlj6GbLoIDOzMrXwDHebsOi4BWe422BogNVpWHTLRAutWxPMqg/PFcpsJlIt\nuFHvJ6OjFr9Zqxw3OaRPpgEoDf9Y32KqzJr+bfs1Taq82ONl0MYrb8F2LahrQfN91GbuB5FhYvq1\nt9UQAJyi5mfeWEDVW5EYwqLqHZOv9xlvsHIQ1RAHcFuWiVPgSX+GA0caWLjsJFdyKyvul4pvVCZG\npoUPIOwjqnUUmzKfryOiLwPwPUT0USSrtbX21gM9sgceCdPMBIZXFNUMeNPjoGqGopqNCASy0DPz\nqPSlNnryce7xKLO3Zliid8KSMmxZGkUcEDqvZuqIk2I7/ppz/PTHnCMYRAC4ikoATU8R8KQZkPxf\nLypp8AJTjV0vT29ND0omC24KOgDQ3218ttO53lK/JpiZRdcWIwDyWWhdhka527mL4KlWUMaAfPYj\n98M5XkdpBiR07M3qFDMAzdhUr5qBDnZgnmTGZNWcAuhDP1FlPIX/+/fAzSPXnwGw74gZzTGoPkA5\n30dp5nJxPHGEy30vjZmVuahm/HumRjnfx45ZuPNgBQNh8+kNiPYQyr6eCm8VMerJqPva4UshXh11\n6UcaoiqDHimQz7XIQAGw1QwF7saApUBLbxqlSvAoLj42gc+HAXwCwL8A4DcRf76se/yLNpj2GEoi\nvvRWVoCebRFguHzIdNZqFl00PUzqb/5k4rsdlui7k2jewhQywc8ulYjbCeeH+vCOClC676P1qRTT\nTrA3KAyL5tZ02U2Ah7OaWFFaz0r5+ZvTo5EUf1pWAzAuryg6MQD0Rx26dQw88nUjACngpfqAZV/6\nI/QDZ3mivDAFOrZv8hmx7q/hBMB+AKAt5oEAeKHQ0eOzGS+Oixr2aocSANWNP6dC9yOU45xteuAl\ntplgUcwzYH8XtjkBmv1o9smb5WmlDr0RmGjYo2T2JwGo9y4DRv7uS+yWzktKqYYA7ufaqltvgtJz\nBwOD/77JK7hQXQYgOlRVBq2ord9PYhceoD3QpZ8TEUd1wGPnB4/6NA8oJsHHWvtXAfxVIvoxa+1/\n+Boe02sUdrIsQqbmnSMQg9D+brB2RjI7I7vrBHTabhnNWcjiLoKKPCyp3lMyIcluZjNesNPsR0e6\nSMgHSnaBsgBvaJxy3X5cbgMQEQfYGygM5o4GPk+PYt07LcMvWU8TCANpliOgI8A0NBgBTxcx64KS\nqAYgmodNgahk66ynGUo0g8ECPQx1PvsBVA9Ql8OA6VKRE/SEZsMBEQD549pGKd0dd3FYw656+L1/\nYm/qM1/dOL91lxld1SwoM+8HZp5/d1ONy5+njkHpLM2pTUCoagGceKCt9y7DGL4PWLlijdok4rjK\nR8gft6nDDFYaa/d77RpUm2gOxz/fVRmoNqCDneD95Gjgo40jEIOQbCTl+ujqQEaR+6LAx8JuTeh5\nGGIbS4UvQeAJCrOij2ZoFmcQeo5G/u++klgsqYVNhjQ16ASpGcL4Uncw5D6o5QJUtpPZz0YAytSn\ncySDcc/p/A9BNKejgEdr4EWSPilRI5GE0Wy1qSxHgw4wBp40dNYj3xd1Geiy+2fA/NwAACAASURB\nVLvZrIczH4umsD77kX/olX6fFpycilJUKJqQ/QBRBjSKqVKeKrVSvUZxqYadG3990pBeoyzStukZ\nQysn6yQAgrPkXjmNQUcYnfq101IU4OanAgCVe5e9dFELwKg+WpTxpDGlmoFdWDnWphtRoT3oSMVh\nf5dHGTQNXFTn9RO1XJQ/DwT2aRmsyL3/0KtRw3gUW8e2lgpfciHNv3Y48xIjpqy5YVy2oBVg58g3\nmx0DSHZIok6tMx1R8k1nH4BAQxYV7agEU1bgT8ZJoLkilNb8B2qiKeqBJ619S/QtTFnzbh9c/qsA\n75zZmAxtOgM8Xn+uS2jiQJwtSEhfR4DHUdU18OgoagagcsYN7a4tYGZ2BEA62ymrgX+/Krg3srcb\nZT1C9NDq0drHqSp2XQP+FoOoAKjWNruoZrTLcMnUXjpJ5GCoZeBANUOx4KSM5mUAGN2EVyFANAAo\nFmBgAaalYhKmoUz9h3Dlvtrwfbg+5NdyczUWAJUVzPzAs+oiAsewjgDIKyiIQsdEMADxPU/12ue2\nEeikpW7llSX3YZTpmzpIRWnavVQE3OfY25u4jEeMCy8k7CPCgY6HF3zsELthaqHFsgb26/HQHRAt\n5j4tV5bIve1wuxnc0F3hfEuGSM24LjY3oz0Aleq9ZXo/t5Dox1Lg0eUNt/vjZricN9NwBYDG1uI2\n0uHyJTad7chrA2FGSR+XJxSE7Ebosrm5DYlCpNkQA5AeWuH/B+Axi9I3oH0p1FTOQTS8R20Gb6ch\njDxRGNDkCMkKRK0821/TkdnR+wZ/mgF5U70DtalwC6cDDrRrFMAYGIT5VRXRtbNNhwJOnwyu74MJ\nqw/FNLTHy2iORr8ewCU+03TAlXWQntlvYZ3YrZTfgPFCLTI/hkpW9ihZo3CUD5YVn3+75rLYbAZ7\neoYiQ52ONlkKeGzfTJaX/ePa1jvx1GI9vM4Dz6My2YOLhxd8EE/qMwFg7T9Ahmb8gSp5tCme8Hcy\n9c7SuR/Wfkam6QscrU0irFhElgBMUy5CmScXaVO2SqR09PeZnk8EPJkFcTRQ6QBIMiL+HT62jcCT\nap/lJH/gVAhkcXO6dxI54NFR1AGA/MGqKKsB1b7lBVLYTwIW9UFYWFREumrun5eWSYBHN+KtzE7p\n0Krf0UUeyxNFAKR+7gHIhOtHADBz2YsH6+RatePpUbvqMaBBcejsATCeSUI18304e7xkGruT8QEw\n2hx4hl3To3h8HSjsZcUMuL3L6M9Rx5bPjWQ/BHBGUmYULgRkqlnsk5Uw07CbeB8I+zAFoJxtiKtY\nwHlq8TEKFT22xvhiCiK6DOBnAbwNwO8DeI+19nbm974ZwIfAc7ofsdY+t+n5RPT1AJ6XpwP4L8TV\nmogqAP8DgG8Af1A/YK39+U3H+dCCDyDzK1yOkVq1KWLzszRSo7CzrmOQGfh3pZ8gQ3erHjiswqxM\nmH1QTdhNVF7Z1cmiVKpFXoOOBqJNtr++JFGNz68ADMJrevDZFnj6DEC6/2ezngR0hiZkO0A8aV6g\nQwnL4q3V4Ps7moJsDmuWNZKSmwPwEfAYBrKs6oIiScjCzLNThhfLk7M4C9LsMIkN138EQOr3GYCO\nEWW9AkLtGoDLTtQ1zAVDc8UCmXU4d/2u/jXbtQcePcSb9tzme0yBN+59CynpnZ3Cmpuc/dTzSb8k\nPUMl2Y8+Fn9sZcX3et9y9VmyICDPwstk9iMA0hs5leXocYN0c/kgMp4LdDI9L94P4BPW2ueI6P3u\n/+/Tv+B0O38UwLsAvAjgU0T0grX2tzc8//8D8A5nSPcUgN8iol+y1nYAPgDgmrX2q4ioAJuPboyH\nFnx6P9Mi0vbuJuzHO38gNg7TVsDNYML3DnAks+GIGWO6xyCEh9LMR3XwdOdmy6S8ZZIFP13wprIe\ntbvMimK6c5wsC2oihvb9SXetSSmQ6i7LXNJRTJPx/M+r2rqFMQBPcVgzyeCg4h26lB0d0cIb0zkW\nFis5r8fAo2yjPfNrUyQzVN6SAvDXP6d8HZXhTBXM9OAAqHTEjV2EjHfNIERND1r1wPGGDUvCiksn\n/XXmpgc47aqfpLWvTg126879nhrqVH9nz3Iby/zxa6mFtzRVOHdw7wgmljOC67/6a5D68wDKA0o9\nnmY5qrSmJaRSYz35vh3OvCLEF2k8A85AAOAnAfwaEvABG4R+1lr7ewDg7LafAbuVZp9vrdUfijni\n/cz3APiXAMBaOwC4cd5BPrzgYwnXV2VoPPcyqR36M/Hvx8AjEUvl6+cNqA2ink+w7A7lNrnRq/lB\nbF+gP1B9y6KYKYMnOsCY4gsgZuhpMFMZi5jTaRDS5wsEEO7Q8aIx3+fjAQII1k777NTNHstit85Q\nw11QXW4suW36mc54irpkkoEY+e0pna+uhann6lwYZFEkApeaYKCAJ9X5GjW6d/ciem5n3KJtV/x1\nWENTj+UYAJUFaQBKB45H1yweMB2FI1sUl2oeeJbhy1x4EkiPoenQ3OzRtcYDjgBQtybM93oMjdPP\ny73WBnWQIOmj7gP3MTJlDZQ1X4caoOaEQajM9FvTY2/XTNLYxWYZHGVXH9/XY8tu+X7ZHynvo4sJ\ni81zdEk8TkS/of7/vLX2+cnfjuNJa+1L7vuXATyZ+Z03A/i8+v+LAN553vOJ6J0AfhzAWwF8h8uC\nLrkf/2Ui+gawHNuz1tpXNh3kQws+3UB+0JB7Ms5REkCaDQH5m0aMwfT3tbGJHE3QuNJZjw6mc65R\nmeDYKYsXAFTlTmDh5UAo13MoEwBKwjbHESAR3EJwTngASt8HALlhS5zeiplbjjZM8x64GzfOzwOg\nXESlubkJ7LZ5yXMfyU4/Z69taBYDjzYJBMaT9rlhYg08e5fRocOyPwIQyrP8fusk8wrZZRaA+jHn\nXoZPgSVTq5sxBAhQjoBHbAd0KBKIzF01pyW6tkAnQ7xtuOdXMKj3+ki6yJNfJHs5R9WBr8vaZxzS\nd5S/CQCY+QGocwrkGoSak/AibpMQ4nQEQD4LLQMTVUc0i6Qt67sWZb2PqtjlYxvu3an2guKGtfYd\nUz8kol8B8KbMjz6g/2OttUT0qp2n0+dba38dwNcQ0b8M4CeJ6JfBOPI0gH9grf0LRPQXAPw3AL5j\n02s/tODTW+DassDcBOBhAGGNKtGs2iYk+9EAFP3chIxqimTQ2zWW/Tp5LDRBDc0YhADOZKZAKNdY\nRaLI7HaU7I3j3FFdA1iARcqCuejQRUAVlVP2rqhjct5Da1XyqctRyejVAJA8j2d61E5fl8JUjGwz\nugngyWRpEfDI8G4CPKLyPEXL5cHcdaD1KyXtCICEfq0HjpNjobkrvenHvbBtOQYeAR8lZSTgbFcs\n2NqeEFanxgNOtw7g1rWEOXp0bYGq6Tb+rXIWHLnIzZp5xqkpURoeN/D9oK4KahNqk+CN4wAuz2nK\ntfOoavujTImtHIGO9DKpa72CwxJHwHBBVOsLDGvtn576GRG9QkRPWWtfcr2Za5lf+wKAt6j/P+0e\nA4Bzn2+t/R0iOgHwtWAFnDMAv+B+/L+ADUg3xkMLPmsL3GnZc2RuCABhbtjemAFoQD0QFrP4Qz4G\nlt5lOq7EVvDvh1KciC/mIyUwxD9ztemCsyLJjkr1Zwsfznac5aRli5QYIH0JjCV6RKE5XSACIHbq\nMVXKKBdsNCYPtGuV/bhmdV2iTxfPDQA0RUTwWY+Y9qUlJp2V5Vxqz9Nt06E1vwR4nKGathHPzXVx\ndh3T+vlrDECA633k+mgTIdP+fF3cHEwKPPV+6J2kIJSJFHgkckO+ErZvQH3r+z25e8e/jrrn41i6\neasd9DTjUnTX8Mxd2cY0/qmQ7HFioNorcvQDvJ9UouZtAVDfOvp4eW42t20Mdiza+4DiBQDfCeA5\n9/UXM7/zKQBvJ6KvAIPOtwH49k3Pd7/7eVdqeyu4x/P7Ljv6JXCf6FcBfCO4d7QxHlrwsZZZpe3A\nVr8MQvBAkkYw4ErNuYJJ2G453RsKjy29mrLObJqecLTmNw5gxf9/rO7GKtjpcOd5C5U2ZvO7Xzfc\nKOWyvuEsyNlpSxlFZh6il1NDm/4xt5jslAumOHctS7sggJsB0MvXLUtwU8AjWc+o3La/y8oCigAw\nKm+Bh4RHDLCZuzaOwettyGUxP3iMe15OQmnZ3cSyO3azXWwjLpm0RD0QgOBoaooOVRHuFT/w62bM\naA5QV8UMsIqtsm01Q1GdxSrMQH7w0oEkyoozPB0iwTPn7LGcNW6gFzBV7zOgcsZgZCqLeo8V00d9\nMBW6rKhDM8j0fR+e5+7tAeiTBT8rvtrOgt2IZD5aHscZJBrMXAltHVQ5dLk1OkjptwWi1hcj1RoM\nGj9HRO8F8DkA7wEAJxT9EWvtux2APAvg4+CP449baz+z6fkA/jiA9xPRGlwW+n5rrRAL3gfgp4jo\nvwdwHcB3n3eQDy34rAfgTkPgTSN/6FY9IuARgoCET9dVz0ZTkwGgH2R3GwOLBH/PswXMliM0fcXg\n48Uuw/vWZuBFfii9jMnIfC7NaNLQszepgKS4QHa8W7SAIhPk+0W9XWPZHWWzHzNwLb+u92MKLbYH\nICBPNkiBJ8p6tEDkSME7KW8B+QHPNITmDPB1UirHZ8Mxlu2RcnJlG3EAURmX/+8UwdEDWKICS9EA\n8WItZSfp8UVZLeABaORZg4zOYCL7ZAFebNVr8TXl7LGogXqvB5xdhQBRtyaYqsd8j5W1Rx5CW1gj\naJUA+TxwBuA2W2YAfyYwcnv1MSHCGomBmirosimWYVXsoLdlbB9xeitPk594r4sIa0NF5EGGtfYm\nOPtIH/8DAO9W//8YgI/dw/N/CsBPTbzn5wD8iXs5zocWfPqBcKcFmKbBH/NVD8z7mIINjEFnUyre\nK7MuMe8yxPNAOtiIrfDDqEdtwcdTxT2o2pBzApUFfmc8ZwPk1ZeBeNhT63gBwFpN7FctRPDK4hjk\nfAND+S2A6bI7GhnPNb1x12bp6bZ1vQ9K+lIagAZXNpP5Eh0pCGWBZ0PWoxW8ZYDQA5DKfrjXNQFA\nUsEThp9TOT7pbuJkfQvXVyWuL2sctQavLAlH7rIuZv8/e+8fI1l2nYd999337quqrqrumdme3eWu\nSCoUFUiWAyUiKP3jRIDimCYSUBYkilYC24liIbYEG/llUfY/DGIBK0eRo1iGbEIWLAVyKMKAIiam\noFiyhfwj2iQEJRapIKYkcrnL2fnRM93V1V31ft78ce6599z7XnX3LGe5K/UcYNDVNV1Vr17Vu989\n53zn+xQOjAqgYzpfjmMA4rkyyajiQWc61hy5A3DoOh5ABcZnX0bEMZliHGd562jh5Wwmd95Msrzm\nmeNMa3eWDlH2IzyJdE5SO3JYk+WmAPqeVI7sAzig7pXP9mnuro2+66M2J+n71iayL0kjsvY4fQQ8\nPBk+n8+gHEg7G4rHMVh8GlePaws+fadwdDRBtaixP+1xUCqYLGQb/NNkU6/MCwR65i5lAp6XARBM\nvHq6qMYUEFZ1htc2wKpROK6AgxJYFsCBUdg3xJpbGe1UsAunqRYu9oEFNTC8PWLYBiBIr7jbfrBR\n9htE9iOBJwimIqpjU2npFMjp/ecTkQH5bAOAKaDLwFjqMQQgIKY6S+Dh33dlPUqXO2v+0fvioduk\nBCctCACQdXTWY9PcxXF1ilfOStzf5DipFe5tKYs+dqfswACr0joQghcx9eeos1iaEXHXfkNKC3yc\n2RS569couFkvzujOz+JykwBcWXbiuZbpZEnP4Ugmno3owETvl8hXZwD6UYJkXlhHvLhaz0LqooVB\nbCUGsIfOt0z4MVkTsvxdwe9dZHm7gCe1Kcf6HPbRSXiepgjEBVPQpqOtgXKCrm++Wn2aaxfXF3xE\n+kv9HosDA6JFmx6HkwaLYuKN0QYMmZHgVD+YxcWLiwSeVa2jhWvbASebDBPdQ1Y2DqctDictjF7S\nwlStg/ZYktVI0Inst3c1mC+bzne3eQGXwHN/m+/YERY4nDgAAsgtc+9mAKADhP4FKAMipeLci40C\nGEzwR6DDu2+Z9Yjmutq75ZWJ2UIh0J3b8DnKeai29tnegKaujWezHVenuL+lEhtnO8fV8Dxsu1B0\nnGjlSC3wZBZPSEnIKCzw6pU2smnSB3IKCPLY5YCrAyKea5GqzB6A3GupG6RSkDlx1/x2i0yUQXtR\nEc1KkIKEyzYHVgRCTUICD5XZ9GDDxfuMfQ/Ovc8US72B7p03lCyhtjVlf3LwVLjzpsGK66lN+UCp\n/BKx2CdVKuuBp0Am4tqCDwCYskNpekxyyjb2zdC3ZqqXAXAcRTdWoIa/zVTlLgGezrbCKZR2fSc1\n7ZS3ToJn2wGlU2g2GQEiH4vJghX1QOqf5zWaJgYj9/MiWqzacdH5hUyodafAwztYGaW2WNUAUDiW\n4Kl7PzOUezehcgObyqqIBnrvUNduO+iFIwqIspukE0uFY99g37sJtf+8F3xl6nOYK8kjfxmv38dA\nlMfZXtCEo0V8066wanKf8Wy7GHjSdggAyGRu66j9VdeL7FpkRJoo+4eTtC8U94H8/Iv8rNIpflZm\nTliUHoA4s3Pfgdyd377MvdI4J33eMl722GRomWluxes2g+9L1YUMkQk+9N7D03H2s+lWmOe3CFxY\niTopOfvyoouI1bhdB+WKhydUchaeUkCQGfKMT1O8YT2fpxHHtQWfLLMwpqNsp7B4dmp9lnGjzDDN\nF37B977zaa+lQijPtKE8Y/Ip6pHhNC41cH+HS20yJjl8BnY45WNxWc/5UXwhAXFWIy4q6ZsDxJRc\nDlW6x0ptRrHrt0qh7jY+e5ALyb1NvIMLTEHpiNqisw8xzVtAOxUHuJ23DgwubqDr0rmb7sO/h6B9\nH6b7fSlOUood8FRZj7o98se9qjVWjUGpeyyLbWR2xrRezoag+T0Ru5AUjjnrO410+7YdfX7pOeDP\nMA0GIdpoEAgBAXykdxIAHE6oLwTQZqTuqXGuuAzHM8iux+P1ykS2IwVvpdp0lAExoBUFtGO/qeMq\nsrwYMAsZ9JNSJ31fzv3r0rnX7rxlfpOVVld5TAGgOTnyWKLj3agVpvkyVkG4iB7PZJx0huvRSShB\nV23kkqqMqABcgUDxesNa9bR/JOLago9ScL0ei+emLstw/6b5fgCe7TpmlcnGfm4IgLShOYTcQG0B\ntWf87pqbp1WnPaONgSeVOptoAsJ9YwflNsUsnfOzaAcHILqYUqM2DnsK0aR3GUapoWS1QpRyOHvg\nrEcuJPc2md+98nHzgnJgVNTjoJ08mbhN8yUtfE4J2fKOXdCIlQBStcB4eUT+vLkPLG4I6vMx6m4T\nUZ9Z4shLHWU9Sr3FLG+950xKIkkl9cmfqfDl0lWDwecHBOCZaDtoj0gACudOOdCSoE2xLFowaERE\nBEeA4M9MZjudbVy2x987JtCE5wLgPwfpD6VMgcwUyJbn6FcV+uMKWUC+qMc2VnajY2gj4Lm/yf1m\nywmaD8+ZyH6qTqHStEhrFZQJ5GejdaJMkMxu+TLb+VnYqCXAI3UGeRNmsbsa8DSefFxb8JmaHl+/\nb/H2eY8X5zUOJy3mxc1Q3lrdp+ZsCjjpzugiBWmE2ZdS91iazi0GObadxTL5nk80/PE8N1WY5u54\nqi3syR3g9BHs3QfAwxPv7yKzmxRwohhpFPvJfcAvIkqXQDl3wHOOutv4kiG/j4nOPODIUhPf5gVU\nNpcPJ07rzDahD8RlOJkFySyuaXbW5r3SwOIG1P7zaMsJ1u1DHFenDiRDqeekJvIGHb9TsBgpkUlh\nyZhG3qLUFoeTxvUmckx0jtuT8d7fmOko30dzZQFg6t5i1YRS66QLpdkqs7upxyJ2zaH45+lpdo0p\n+7xUT9OB4HkzLIU6xeuLsh4yxCvRuTJn2KhkO4FH9sTo3KiR7KdB7c/lUGWeS6cmn3oQstVp2Cg+\nThaT9D9tV3kprDJ7WoZ7I+L6go8Gvulmgxf3ahyUC8zzm7TIn92HZSto+QUe+yI/xi6JdOM6f7vU\n+eD/S93jxb0Gz0xMrLicAE937yx2sxQeLDsFJxH3TfTtPfKyv7EPHBwMNMoYeDhro2PscTjlFeTi\nrw7X95cGvg9UdTVulFxKmgUx1XJBi0a5Dv0szoKK5LxLsJzPKAMo56j7UweU3NQOPamJlrM3Nurp\nRf0fYSHhWXKOdc+U+VI3WBYdlqbHqh5vHsvSnIwdTtgBeKLjZJdVI47RZWetU712Gx8pDFv3gNHk\nUUXMQ6mwHkdnm/ApjthhSCmf0azHlTuxd9NnyZ1tUPW5yLji98kANBG9Lj4vpfO+WtXwG54y67E0\nq/EZu3TcQW4WL1Fx2BnicWy6yKXQrzQeU1j0j3xcW/CZ5D2+fr/HvLiNWbaAXd2BPXltOIjJMQY0\n/P87hDY5JPNtWXQRw0kOky6LDgflIrhqro/8XILMeNh7BRg6gdqyC5TkHaFv70E9+wwtHgcHYXjS\nMcS4UZ/O8nAcTnlmI15cgtVEeAxN/I/3gdjC3IOQLMW1OxYQCT4OMJkUEUpjWXQMYTGn7GWW55jm\ni50sxoHNhFOjoIHiKUzWYJa3OG+HAqAA3NBp5odOOUPcBT4cEfhkFrM891brfjrfAY/tqkiRguex\neIFne3QqtbGuYFxWBBI686iunQ7MQknwuLlP35u9W9FmhYA32IukIQGIg8/LxH9/tBfoZWbgsiDg\n5/koADEdmzeLSdbjWZ/p+3K25APyBIcDMfKyOh3/m6fxFcW1BR+TaRxO3gm1PoJdfRa4dz92rhw8\nIAyheT8UTtWFH0saOiu8R1BQvO5xOGmF2KhbYPQylP3O7nh/GXv3AbCmOnx39wzd/U1k+AXAKxFj\n3cHM2xiERK9Hv3hA2Y7rlfDwZERNdj0DAL5sk8bhtBVOrUGWiAEpVXVI+0DL4hSzPEenBQjNb0FN\n5gS423WsRyZnWgA/+CmzHkljl0GzJL3PeKb5whvkDcQlgchmghfKaJedkc7edOTqIbmlDR5VDZam\nJwByzfZQorS+9DbMevpB1jMKPC7zsQCRD3JnZ52XvsJaA9A2yPrw8aEPfZModllfOHZhxCxkbTsn\n3Omz5B1ZjwTfMQACWGtRReQV2a+jjFO+lyAW6kkGV9B/U6Umg8CUGVI3RH6pmzA0W04itfmn8eTi\n2oJPhgw4+gLso7s+q7hqWCQAdEnfBwiLF+u/lbqLBlh5d0vAcxT8ZR7SXEL/YI3u7hn609obfqXB\n7p59Rc6fAAAps//MfAg8bgEB4P1O+GJj07VU143jUdW55nCwkpBlnphWq/xMBy9OZDMRQMgLpy6f\nB0o3n4F1DDjSoyjJeqquGKiKU68tntua6iUN6ybUedYQk9kES7MMI16Q0nN0o9wA4FQnR9kpTFwp\njs6J9cBzYILZoATJYF8+Ajwd9yId2cWpk6uJUyYXWQFLPgEYUM39+x9TEUBQpGDBUt9nc7NUgejQ\nJtkmfQ+qTo32BznS+5gNR48Jgr9V10eluBtlADfaPCRZj1TzGGG5pcaGTDSwbA/u+kdkr/BkwKe3\nT+d8ZLwp4KOU+h8A/EegzdnvAfhPrbXH7v9+BCTH3QH4K9baX3X3fwuAfwi66j8J4K86NdUSwM8D\n+BYARwC+11r7hUsPoq2AL/0B7N0H3irZbtsgST8WYgfuv6SyCe5mLljShRq8w11YOnMS2VRvHwaK\n6MMT2EcnEfC09yrvNJmbePvIv7PJGqs+62f3YuC58WzQwBIT4bTDvvpXYpqvcLR9hBUQLfrVCKuL\n7lcRMFwauSHNOfm7VB5wWY88xzw/Q7dpQT+ctLFldlsB24ejNhMABtlE5F8EDDX0tEHuzluYDQKW\nZuXfNwNu2dHAKSuq7xsbTfnLsqDJZsR0HAMeVjhgxQIHQmy5kZdzGlBVBWpFtPzUUkC1VZgbk72e\ngujv1tCireagrOfGPnDrdpCxUcrPEWmVo9QNyk7qIfZYGgB1Nig7XlaG3AVW9LlyVkgbNqQW6Anw\n8PUNJGxQCL9hYTeOoqHzqw1QrjGdLHcf6NN43fFmZT7/FMCPOGXVHwPwIwB+WCn1jSBp7z8G4G0A\nfk0p9fXW2g7ATwP4iwD+BQh83gfgV0BA9cha+3VKqQ8B+DEA33vpEdQN7JfuoF9V5GlyUgF1D7Uw\nsNuWHDF39U12CRJeIcYGHU02DdPY4iKyZ5Tx9MfU4+lPCHiqM74qRwDIyaCoiUa2MAQ8b7sRgIf7\nOyNSJKqtwhdCqmaPhNIlFns3oacFSn3XKR6M7+ouXkjsOODltJO3eR0sBiTwTKhMKJle8ZR8WMi5\nnFmqSRCWvGSQcMxmQmYIPkviSUw+tpzIIgBZYZR667Xd2H6DgDrovvmsJykLRsDDLC4GCikOWzdg\nhXLb1pS1AcjLedKgD3RyZS2VdlNlZxEMQgAo45HAk5ejLLtS907Fm78LBEChLBsP5Y7N/XCMfW9Y\n7Jeywmmc9aQZz/o8olanJJ1eAJAttR8yTbMfdYXKxlXi6ZxPHG8K+Fhr/0/x66cAfLe7/QEAH7PW\nVgD+QCn1eQDvVUp9AcDSWvspAFBK/TyA7wSBzwcAfMQ9/h8D+CmllLJ2hwYOR92gu3fmQYenulXV\nInPT9WrS7c6C0rjAQwQYBx2f7bh+gwcel/HYoxX64wrdg3P0JxXqNWU87DbJysMMQN5a2gFP/vYl\n1K0lkQskscDN8XAw8EVDtO732DESIfMDgMUNzG69A7p8EVrdxWsbdoXtPUOOKbZyIZGKz9H52eWb\nIlURxPF3Pc+zhBIKs9mWpvPZDpczsX0YZkD4fUWCkvEiE5ntAcN5LwCWS4Fu4JhLX0ZP0ekGM0sK\n5gBEeTK43crjpb7f9OrAA8QbIQYh9/motoZyQ8/+cxbGadJOfWefZD7zqtFexkaz7NLQlpqzn5hl\nt5txJyH+Ior6EuF7wz0wrYpB1jMGPP1xNQAdJur0CJuQbF8MnHLfZ7sGP3sDdgAAIABJREFU9BXX\ngLdIKKVuAvhFAO8E8AUAH7TWPhr5u/cB+EmQytXPWGtfuujxSqn/GMB/K57i3wLw7wD4/0AGcu8C\nVaz+d2vthy87zrdCz+c/A71RgHzFPyX+7xV3X+Nup/fzY74EAC6TOgFwC8ADXBC26yPg6U8q9JVT\nW3ZfSL8juoA5BiBiu1mlvHiWtAgeAx5Pm5UT2ednfnHpT2jSXApudo1C26jgt9LQLjM3vS+3XQg8\nQnBykHFt12GB4wt5bJFG6HnZ3KC8+Q7Mi5s4tJQBlZoWVtYzA9KGOrG5eMFlRtdo7AKeEYAHMA48\nrpwZlWbS9+UzCHEc7AU0NmQ88ERCKH3lBtplL9TLWlE5KusceSOoG0h7dd7Na5X7Hb1/bUmFvoxG\nnDtpGacHF6l4pxntLrUAATpeMVpI+FzkcRP6PWP/N7YnVBcyAum7E9yAfdYjy4ZSbsoBT39SRQPX\nEnQi2amyp7+bdLHqR90A+e7s/y0cHwbw69bal5RSH3a//7D8A6WUBvB3AfxJ0Hr6aaXUJ6y1n9v1\neGvtLwD4Bff4Pw7gf7PW/rZSagbgx621/1wpZQD8ulLqT1trf+Wig3zDwOcij3FrLTvj/Q3QtvAX\n3qjjSI7pBwD8AAC8/dYesv0S/UmFDDlsSVpWnDWkQ3UAxn+ODGdKXS0/oe3q4iybz43kyDo5r+MF\nfkJMNb1fojsB8qpFW1jk/M/00IXFZK8jufv9EvqZGfSzM6jnbxHwcHNYlErYYgBAWEy362hhto27\niE/p+JXT3Bz0vPg5RDUhqBRnKLX2lFmvIuHKS1oZv9OX4W0PJvOdMjI8VyJnkaSTrCw3RQtsbgCc\nDz9Lvi0Voq8aqYtsWw/EZ5mxlcauAVBWtPZK1P4YL2Zi+kiPXwIQqFzo7akBctNw81USdLwnED9f\nV3taN8BjBHHzfhdDcvDeR0pwMpgFyGK/y6JzG4pZIOYkStWyf8ubSwAR8MgYuOGm6g3lPJRWv8Lo\nk/f8BsYHQK6iAPBzAH4DCfgAeC+Az1trfx8AlFIfc4/73BUf/2cBfAwArLXnAP65u10rpX4LZMt9\nYbxh4HORxzgAKKX+AoD/EMB3iBLZqxj3FX8V8ZuRfuP8mFeUUjlIGexoxzF9FMBHAeA973rGZvul\n5/tLxeTsoKT5hoVjuSQLVWRiJYYzz/tTvyCyjPyqoYuWZF1qlHqLUlvSO4PQ68KadtBObgam8OKZ\nFi304RR6v4c+qTBZ1b7sppc51KQM/R0mFjz3jJ/DYBp1J7zo/e56ux5kBJzx8O4RoL26KpuwI74k\neCBVzmsMy0vT0YzHW1I4NWf6JVZqZjo4zfbs7jfR8yc71zTLkTIx0ppALDqRqZsM+Ty8uIu1KpQT\nZWkwLkOtGo0lOmhFNOhN36DTTTwDxZ8TEOjn8v1EbzpWuvYW3QlxQgGwEwi1aBOAlL/XaTAd3QMQ\nKQ+wL1Gg3mcR0eKqi67s8UgyxrLoiK2YTVGqSTSKwN9Ze7q5MNuJ3ntSzfAbzfmMrh9pHviEej5f\nxXjWWnvH3X4NwLMjf+MrRi5eAfCtj/H47wWBVBRKqQMQmewnLzvIN4vt9j4Afw3Av+dQk+MTAP6R\nUuonQISDdwP4l9baTim1Ukp9G4hw8OcA/B3xmD8P4DdBvaN/dmm/hw7Cm2jZMohuSrXkC0GHd4fO\nR6SyW2xacrYko7gimjnhktPS9G6g9NQvUgxAqq2phzCfAWfnkSIBPQmgTQY1qZHDGXstDM3v3N4L\nF87tQw88rNEmwy+I21MqKXC9nMUX10Hbiy9iu+2Irg0E91Oui18QPB0e6MN7nuGXRko86GwDzTRw\nziaddlnQDyviha2IWV0A4mPUhhbv9PN1C24EOnLR6ZyXzkVusaJMp7p6MEvjy1EjWQHrr5WaZlc2\n7WlMP5dyRDwDtSukJYTrQfL5GABQboJKNitHJ8A7GiIDCsZxLgMV7+8y4Nn1f6wwz+Bzo8w8TR7r\neBSBN0ssBSTJBJJkMFY+94KppR4I1UaOuE8grL180FjEM0qpz4jfP+o2zwAurizFr2mtUuoxKKZx\njD1eKfWtAM6ttb+T3J8D+F8B/M+cUV0Ub1bP56dAX/N/qmhX9ilr7X9hrf2sUurjoNSvBfCDjukG\nAH8ZgWr9K+4fAPwDkHf45wE8BLHlLo9MBVAxRRCxlOACMc+T7pI569m7hSrrsW6O8GBb4/7WRJpi\nfnpb07zCqqbdHKkEnKIrGsyLWwRAkzlQnXrtLMsqw5ydgQ3UhKvnfkm9Hd6tcZnNyeRsWkoCfYPW\n3fb1crF75DKbb9Ke1kFeH8HbNZPnQwQ9v00UHFydPpt6b6Q047mof8DA6Utt3SbKdi7bUe/yXkqV\nEga+OED4yWXRq0jt7wCnMAcVhx+i9L2gYCnd2RVqtfGLbqQEwVnQ2DElWY8ss44BEBElTOSUeuGC\ny0DrAJYzIADONmSocLCLZi/PC++z/AZNZMvMWFRMMOBRBAaeVTUgDzHo8DA2z75FIGQyqnQspkG5\ngTchnPXssJN/g+OBtfY9u/7zosqSUuquUup5a+0dpdTzAO6N/NmuKhMAXPb4D4FAJo2PAvjX1tr/\nadexyXiz2G5fd8H//SiAHx25/zMAvmnk/i2A73nsg1Aq7ODl3YVYVNN+QFKeSYHnlTMyGWMhRalc\nPclZ6ZjmPGggUuHFvS2AI5pByZfkqNnWwPwcaBoo7rlIGZD9MPTnL5hkaHTTrbwiNQC/+LNumf/g\ntQFwFt5/mUdy8wDi7Gvs3CDMjiwLatLwQsODtCYLZTbPunIX9ZiaNN/mn3GZLVgbPP7cUNKfSYEn\nNSWTjqc8d/Q6/F4u3v0HVljVu0w5s6g6oHSEBVYF91mQP/5A+w4lsdL3+DhbjN4S063loir9jMRz\n+dsXgBE/v1S7kOW2VHaJWX7+LQiJKQAjJdo9ob14BDy6G5WHeVwiDfoujw9Ie2+o0s31zQXwsOqH\n8LT6QxZcDXrJ/fzlkb/5NIB3K6W+FgQ6HwLwfZc9XimVAfgggD8hn0wp9TdBLY///KoH+VZgu705\nkeeULchId/Mp84kbsI41dt6fYl3fxRfXCq+sJ/jiWnmPnm0HVHWGutYwpsP+tKfsJycl44lWWBqF\nVaNR6g2MnZLj5t4SuSuvKFYPTo+Hf3JdOnHu3FT3hdV1jmVB/QSmxmqVw+ZlsI52kiQKgD07990I\nO9GA6/lwL4wvVA96TL21W1IAHvHLGYCOpPjmxi+CVqlBAzs25Qsip2MxBkRWKcoWpA1GJ26nMbbQ\n8ufeCguCPCnlSeUFtnfoVti0p5GNdNoL4Ui16OhnWIy9KrjrBZV7N/3f+0cy/ZvtMNqjiHEZvSVV\n0LmRmWFCSvDnIw0uLwq6e91vsGryyPNIiqtG1WPBehzcJ1iQRu/5748HnrOHO4GH+6MZcq/s0Vca\nSnhaec1DJzmln52FcrUro6u9W5FVxZOKHo9VdvtK4iUAH1dKfT+AL4LAAkqpt4Eo1e93zOAfAvCr\nIJLvz1prP3vR4138uwC+JMtqSqkXQeW+/xfAb7lq1k9Za3/mooO8xuCjiYJ8UUo9QvNFyf2deziu\nTvHKmcEr6wIvnwFfOFU4XReoK426ylBVGnWlsVjWqJcNFvMGk45KcCaz2Hd6Z+RWugn183KKvHwH\n1fdnzultzDZ5MkerM7fQ3BMlKQ0gNOFZnr7rcyeS6Upwkk114N4nqLnONHMOP3Qr6+IJE8jrkAnl\nBj+vMiZjk/QVlM+E8oGlwS6JH454wR4hH+QmvNdUCPYqPQ73GIVFTD6Qg6/uuVLgoR5gDDrSSlr+\nJOsc5Zhe9D72jfVZ8sy26DSZ8w2CNd0c6EgXUy55pjEAoF2RgDIzJ1NBUWkcx+9pDHi4tAbw4GjQ\nOZSgo1URvKwSR9JdGY+0D8mMAQRvIrJgL3VcshZ9UmaF7qL0v5XDWnsE4DtG7v8ygPeL3z8JGti/\n0uPd//0GgG9L7nsFIzPZl8X1BR9dQC2f3/3/6e7XKz4/xKY9xWsbi1fWU7y8znBvq/DF4wx3Xt3D\n+tSgrjRaZ69cVB3WpwbzVY36cIv5osbW9JjkCic1UGqNlaHsR/e0aNc90KkCZv9tgXGUzFgQ1fgY\ndbVJSlHjiyjNkoTsp7NOVNPVti0AzF3Zho3d1iELUospAQ/76LCdQXKeBkOS50eDshDflppkUr9t\njL4LxEwqek8XL5peuVknmQ/fHul9RJH+vwAg3x8Rw8X82aTAI/XsZC8wDOBSeVbqmklX1GUNUaZt\nvGwPgIF8kyxZxqU+2sHzuiyBKAKgkezHdlVMwnAkhojZ2Qf/nlS1gN+T1K/jLKfUvafdDzLltgK2\nR6E3KZmYp+MZya6ZvAhwBKEoVf6QpcpQ9n0yZbf+8QgHf+Tj+oJPlhOjJQmmpaax6VZYNw/xqOpx\nf5vj/ibHF9cKL68VXr03wdH9Cc5ezTE7rVGggRF9k7PK4LgqUdcat57JMF82mOgGywKOhKBdaWwT\nzQJ1toF2JbbOVqjb48gaOVgUT6PdplQS4Ci1BuCeV2Y/TMvlHX1ugPMznwH5syEzHjn/4JraRhEt\nPWjUnYbB1bEmfFuDhkuGUjYs6MnKx6wdRsZqLZYAVggeQwA8yYHlejgLk06XkQX6V9JElgwo6STa\nSyfRMHvEqt4stCr7gdsOONlkbtNC2XJZdjBlD1N2vmRb9xbbji7XQ+cOGzf0XZbrmWbh0l4WwxUv\nUoRG+N5HWdBYyc31QIJ/T+sznqqLgccDqJ/VSee8CmFlLqwtGHRYy04OBrN229gEqwjf02FFbiBm\nsXJJmzN4V0pnE0UP4iPajE/jycS1BR+LfryRKK49/gLW/bnPdu5viFTAZbY7X57h6MEUeKXHwchu\nrC41mlJjtmwxX9QwZY/FvMFBGXaDALOe3G6rj/smAAazQ0zjPqlpQeMd9LKwYuccJFzke+Lsh0o8\nYc5IYTF0FpXaXu5CjQYPxSI+UExgJt2uafy6cWXF+YUApFUDrZ2njmpQ6s1AnkcSHCJlAykbxDpm\ng6FTDH8X7yv6nui4pFf3pxFJgs9xaK4HvbnIzbQldeuqDsBzujKoaw0gXvS3psdxRaXaySa+ZNO+\nUZoNxgrZqRL3kIjgB3z9m6+jkqIUzQ3PoX05jV1uQxnUDkDH6MUQcHiT0J7GckIs8cRZD2J1AmmL\nEN1OAQeIQSclEI0EA8+TynyeRhzXF3yspQb/DlkXvriYMcbZzpfWOV4+C2W2hw+m2Ht1C1N1KKoO\njeiT1KVGYzTsMoMxNcqyw3xRO3CwUS2cmtFy+SVNsFJvQp+gCbNDdzcKqyYu2QDxbhPYXZoK789l\nK+UcyGtHuS1hJ3NyFp27BTulnyb6cABiLbJqDRwf0+yQ/JtdbMIdAMS9Iz+r4mZntJL04fA1HgUe\nXsykxAwwzn4DPPBwRlP3ib6dP4fDRSnYplsvL8MbgIkeupvWdegP+vtc9sNR1Rm2useq4Xx092Ur\nP+9AU967ki3ARfNAY7qFqZo4WZT34nc7Cjr+8+lqoN0C2MZSQqmOndRsu4JXz5Xm9HYEg+EbATgW\n4z5G1zWuL/igH935pfReGhrN8cra4N4mi4Dn3qszHL66RuFWmaJuPfgw8JwvDWZli8WyxnzZoDQ9\nDsqoJzoavKNdNaFBzZnOvS3w2rmKGHUhGrx9bncqSbOMi+zJk130lBQFHOXWgxA31AXocKmJw+9a\ntyLj4caw9EkyBSWWfPE3RdylbA3pkYm7cm0AxSSEwg1dxrp58vMbBZ7KASiDjlzAuB/EPY0R4Nm0\nwclSfmcuW9BpfkeWB+mkbzvx2TnQqSsdfY5VpWHKeKWi3rpyFtT5KF256oINN2vcjR3nZYvrAIB0\nPDM0RgJhsAFwMehUQiwVCD+lbp704bkC8HjQEQocg43OGOhEg8T1ILNlev/TePJxbcGntx027alj\nAeUR8HC2wxP09zc5Xl5neHmt8KWHBe68soezV3McPghy9EVNX9Ci6nC2NDhfmPFymwlZjyxPAEkJ\npVdRo3pVZ3htA9zbUJnt6Ggy2DEDgDEd7uket6eB/RWX9oRIqVg8KANyFsU6g84XUNbS4CsQNdQ7\nuwXsSJmNfYhYZ+to5eV5qPbOlFi3iMxn5J3CIp8zEGBgCECBhk0glAaDULS4cb9J9i6kGjRAlOlU\nzVopPydVdxs8qnr/mchLhuSSuGEeSqTsXEt/Y73eXNX12HaZAw/nZFp2qKsMRmQ6puywWDa+51Mm\nthkrd+gs3BqcP1nKKPYw2inamsTYZkwCUFxqC3+zNI1T8uhRaoyW14JK98PxDQHHY4IOAKL/c0lt\nbzbIeAa3LwgqBbreKJpL6f2PE6Rw8NRSgePagk+mNOYFEQ7kxSmpo6tG4/4mx70NMdrurjMc3Z/g\n+EEZAU/j+jpRtrNssWcqv5DcurXFgQEOSotlQe6VaROWF4+YmhsDz9019QiO7k+SjAe49Uzcc0r7\nPQAtUlq16LrWa3LprPD9lKCCEICIoo0m5QOFug7ZDpfZnPMqe6gAcT1+ELwrTUs9YmFSAKANcuTI\nVT5skHNJTS5uUn16tke/pwuS0HLzs1IdbT6ChE9qy937zysdogWAOts41fAGs7xNFvUcjsiOie6x\n7WhTAoQsdjFvovJpGFBOmHA6fMZSEeBGmWGa3/QmhRyXZTtSeWIwk5Ubn4WabEbW5+x42+e4UYb3\nKQeaYxJBkvG45901tKuKAjbyLKKfktEmsx1PIODPVv7kkEDGFhR/uBwT/sjEtQafy8omPJdxXAPH\nFTyNeizOFgbnS4O8tDhYEOgwa2m+qC8FHr97Vq2zDI77BjLqKi21UcZjyh6l6d1iFS9MgOsr9cR6\nA4BSuwuRlbcjh9VG3BdfwAOvGS6ziWxHijlSgzi5wpk9lzZ905mbdNLeRTQ4OuZDlO6YTZLhjAwN\nE5V+5bXjxgzySt37rEKCji/1AcjLBWVpGaub51gauTEgADKOocd9gG3XA+hdZhRKsww4sR+SsKfY\n4WEUGcclLM60bLlzCBiOau3o8NKgzmdC7jn8TNHIYPHAwE9Sui8AoFGrC4jMOGWu7QIdYAg8HC1p\n2ynMBw8hj6KnZbc3Iq4t+ChktGAkYbIZNqAaP4PPqlE42WR+0S8kjdqV1+wyG4AOl02enfceeFJf\nG8lG4uHKpVk5AkIMMNuOGtRVpXG+yjFbuovddFgsa5iyGyUzpLFqtJdviaN3qtuSbdfCZFKsMw/A\nc3Y0sPvuj6nMlsqa8DCgLJHAiAVjh42B7SoS9UyD7xrz2Rkr1azPCfU5EuCp7Nb3d1LtODnAejhp\n/eI+6GEwm24yR7l3C9aVvGp17gB9A/LaAkqdYd+VVTm2XchSh4OZserBGOhEM1bWUp3HLfAKoXzJ\nKhcc0tAw8vqR4J7XNN+ENVRuYPIpOsugM7I5EUA22t9JgwFIGuONhQSXugmzZ4km44WRmvHxXqet\nAUeiIRp4G5VQv9LoLTA2E3td49qCD/qWduzJbpiEEnNUfYOqy3zWw4s+R11qnC8MMdnKDvPFxtfp\nAfha/YGhsgmXTFitl0sk0hyL+05d1mBZbL3oJJD53XHtVBOKqkNdaQI4BjtD4MOvxQZcadCiyrfj\nHbEv4RROYdntZqfaOa92/RB47j4IrrDAKKXHbrtQekvprlJJQpfjQ6ljv+8CnGThsk0DhRnRvqVP\nzQ7gub8tonNTdQqHkxZLQ34yU03go+Qsk3RHna9ht2uovVsoJ3NovfQyLTfKjcs4i9GS6FhI2jL9\ndLI7bDOQgk47BA+vxIAAQoBjKLaJi60kAIhzTVJMNBOmAK84LjPj1C01mq1Kg8usYxmQJ6UkIJSU\nTXfSpne95hioSZ8ja90mUDL5Xrco9NO4IK4v+HQNlROAnTx/ynoo46Dsgr6QD6spTsopZssWxtQu\n6+ijpvEbEdtuWHIzhjOtYWM6fi+Zf0+pUgDfD8SMpbKzuFEy/TSPDbzu3fdltu7uuVfAznZMmIcD\nTjIeIJIO2qWG4EPSpVNWVNPEDCcXkTK5AB47WRC5xJXaHlU9Vk14PC86oY+yj6le0nk4/TKsBJ2R\nbMs6SZ98Mod22VKdbWD0BrN8g87WA8DZ5UskMx7OSo1exmoS9VDCKJy3CqiCpJFifTbOSrhkCYwv\n0KYYeP5wv23XYPZojJXYxjTlXKiiwK6l/8KMJ32dXSU37vts10R0cb2tPFtgqpfo8ubSXtlV46uo\n7faHIq4v+DQtcPIa7P5zAYDaGjpfuJp2fAGWpgcW4cu8PjWYL+qoxCaDAeIYPQ4QnBonXmbFAu56\n6fpG1M0bPzXOhAOaileoalqYjOlwXpaYla3PeiBe4+W18hPxKcDwYjfmGjkYUDRdvOCeHQEnrwGv\nPfBltu7uGXph9d1tO+j9pL+TOEVGYMBCnzosaqMlmktAh056A1s31EtKYz4LOm5iml0CD7mKxgDO\n2YWfH0oELr3rq3t9IGbqMa9NTehiyx0DrNNkijfn74AcUh2Zquc+i7RiL9WEzgtLGMmshSNl8vH/\nV4jLlRJAd7HE8jqmpbsY9JQEcYQnk0aP6TJ18EtYbpTRvs7nTl/HWY9DWGowtzF/Qn4+TyOO6ws+\ndQO89oAWrBvPUj1bfMlId4otEMJiPXcAlIKOMWE1Z+Dhn1vdY9sp32Dm4MFS1lzj4bbONqj63Mmy\nOMmSZPOVlzZ6TXkboDmgIBEadMNYCUGyp/j/D0xQRCgz60tMA+C5+wDtyyvY0xrdSejx9BWQlaQk\nnCWMJO8UeVmMzX7I/3NDhynoyMzDpmrgUhJIlNok8KSR0oW9l8zJnVBubMb7S9Y0UFyCy50SttBH\ny3ODPDco9c1o0d6lJcZSOBFzrKlhqztDkgUQACPfnVFEIC5s0/3j+Rzyc85nlCE44zmaAxMgcwkA\njYYssabHxsdxCQDtfKyMHeXYscfZ6pQcheVzvQ4LjadxeVxb8LF1B3v3AXnmALA3AJXfuvAxpelR\n1Rnmixp1qaMFPy15SQDamh7bNmQmpfQ7yazTLBvOWbBWFgFGfCwMeheV3HgQFUAkXMkZFBMhmFW1\n7YAlqMRzo8wC8JzcAR7dhb37APbOEdqXV+juUw+DQadt3BLTAAYVsE8ukWnWc6XGcAo8u7Id+XvV\nwlYdDRuuz2FlI1rqd00C8PAsV/QZO0l/2cAv1QRYH8Gu7hCd/O4DbzM+Fgqg168b6jMBNECLQM+X\n+nASlAB3UUqZH85wtivYrqLsJVUBkCDoz+95fK7TvpiYpWELakDooS2mAYjW7rkucFAdqGOP6efJ\nLKKtPWsxeiQv/i4LU0DYaCQxmv28HtASxxSdW84In0A8ppPpH/m4tuADa9GvKmRz9wWbrQHhWc/N\n+onOcFCGzIOymCHYjAVbKwDAZL/BtlM4rq0zkwulN6k60PVNJERJgBEuL5ltLZYX78i2HfDaeZgf\nkVYPALBO5o/4fS+LDtP8Bko1gT0j4MHDE+DhCbq75+jub4agA6CtM+TuvNhtB7BF8UUzPleNS4CH\ngwBILBZcbnN2563OUHdr1N3GMdnC51i60uOAzXb2MAAPzzGtRnbsLlTpjq3gMtZIj4MXudwQmOQm\nyo7S3bbXphspk6VlPzQFVF0MacoyO+RzKKwJ7GBl3JDDL0Aaf3XjB4GvPBujTfwz/T9m40kQSgz7\nBu9P3h4xhHxssPDlRvdZcWbNQ67rcXmlt2oopW4C+EUA7wTwBQAftNY+Gvm79wH4SZBBx89Ya19y\n938PgI8A+AYA73VGnvyYHwHw/SDa5l+x1v6qu//PAvjroHLLlwH8J9baBxcd5/UFH6Xi3bi7ODj7\noMZ7j2ensVQNAwELQ6YxutCvuCzWg+VRSs00bnriG2UL9FRyoSHTsKhPWBdM9J1Og6o+6koTOXze\n+KzGZ16JtxDfP1/EB28yYuIdTltiUGUz2v2dvBYx2roH5+hWbQQ6HLkAZOVod9IxcpTlJn2KXk/w\nzlhmIanluXazQ9oAaH0Jy885RedhOgSes6MIeHZlPABisz0WYx0RK90VbF8QlaNGduN+YQSGi23d\nwJqCQKgoor/xoANc+l58mZSzR5lB5mYn0eCyDGgwILyrz8fHLRf/EQq9nc/i7GdXVj0GxmOvlWSE\nlyloXzV6G6oOb3B8GMCvW2tfUkp92P3+w/IPlFIawN8F8CcBvALg00qpT1hrPwfgdwB8F4C/nzzm\nG0GOp38MwNsA/JpS6utByf5PAvhGa+0DpdTfAvBDIADbGdcXfDLXiyjEQpibqN7O+lgHhk7TtgOW\nhXU/AUBFAJQCz+nKYH1qAhnhmS1oiJAeC2ELcN4StZnKceHimWiSU5nkwKQDYHrUZYeyDF/iunIz\nSJE4ZchwUt0wDp4LOiitG3ylgVejly7r+aKf4enunaG/T6WZtlGozjR0YSPAAYC8sIPezmjJjYEn\n3wE+bPrGpbcrlFKk1bj/XMeeG9TAT+8dDI0y8DjJoJBpdbDbdpDR7QSex7RviBh/TApgdXDhaeP/\nPgEQef4tEOjKCVhxqXLcgjp8ZpF5oCtdsuHa4xrUXYkZ14UyqwRZfp8SDFTZhjKnfI7LpHVGBlf9\n67nPendG+JaPDwD4dnf75wD8BhLwAfBeAJ9nR1Kl1Mfc4z5nrf1dd9/Y837MWlsB+AOl1Ofd83wG\ntKDtKaWOQNX7z192kNcWfJTOQiN6tidq8LSYalWgzGgQ9Pa0R9Up7AMJW4y4TAxAda2xXhU+yzh+\nUGK2qnG+NACcmoIDIMwomymdnw8ALNH5rIfZbgBlJTL7qkyH+RJYr+KLR2Y4fDw8CzQWPBe0LHj+\nqCdml14Sm+vR3TA8elKhO6nQV0B1prE908gLi65RKPeGz5+Jktto1iNlbSCcQGX9nwHoCg1oVeZh\nEY4YWjG4Se0uFleVU/4mm7pZpofxLBPvhGWJTwDQhRnP64mREpue2t/8AAAgAElEQVQ0UvMzVRhK\nF1HpsaXy346eDwNPeC8j35EUePZuRcATVBIeD4Ci4A1GOtwqsw9xrAyUfLzZQQlgMwSgXdRref8F\n/S9bdeiPKyovn74phINnlFKfEb9/1Fr70Ss+9llr7R13+zUAz478zQsAviR+fwXAt17yvC8A+FTy\nmBestb+plPpLAP4VgDMA/xrAD152kNcWfKDUeFnGbv2fcOYDjLhodgoAU5pZAYEGUdenhhQIVjUO\nHmxQ1B1OMIUxbjF6ZouJ7h37LbhyruTzex8YYtvVfRCj3LpsY74cL6ulTqoNFJpSE0POqS4slg32\np73Peg6nLQ4nDYyeB3bb+hz2aEUXfN3DVi22ZxptnaGr+TJ3x+sAKCvjktvOrCe1r5ZABMQAlJuL\ns54Rza9o0WUQ6OIJ9rGfZIQXZzxpz4F3w1xSvLTUNgZCY1YOfP8uSwHRn/HkgDKPgEMl0hbR3nUE\neEazHrFhwHwGLG4E11rhYgowE6/1TDwZKQClzL4gvzPCaIx6et0AdHgT0B8TAHGfzYKceH1mk5Z3\n+TX4u5ECuzs3EnieVOZjrRqtQOyIB9ba9+z6T6XUrwF4buS//kb8mtYqpd7QKVmlVAHgLwH4twH8\nPoC/A+BHAPzNix53fcEn12She3BAF9beTbRwFtNuzmKW52AdtDCkaV2jGqi63NOVTwBf+mIFAgCR\nvw9AhAFe9CPFAyeTErx7tBcaLbXGRBNZAVA4gCM+mB6V6Yh5V/Woq45Kba5JzBkQS/7w65uyw2Le\n4LmZxdv3CHiWxlGLsxlQ16H04Q88gypz5KajkpuxyF3ZTRdOi2xOJbdsYZDtl8j2y2C/zQvzbC8q\n3wAYLUtFANTVl5fd0gUHCM3+tva21+wRFOjLYX6GX4skferwHPz88xkUzpHtA3biwPaZ+fD9XVZO\nlPePAZB87RHgGermhVKbBMUoknOnSk0Z0ggZRJU6vCd3fai9WwMX0zHAiZ4nyXwkHTsykJPnJj3v\nl4Tf4PDvY4oH5VCzzb+G/F6ZYPGRHZQEbAB6vCmZz4Vhrf33d/2fUuquUup5a+0dpdTzAO6N/Nmr\nAL5G/P6iu++i2PWYb3bH9Hvu9T8O6jNdGNcXfEwBPPsi1N4ttOUEnd36HZ3s+8xyakxzaazSoSTG\nBmHp9WvKDuduMahrUrqeLZ2nz6LGQUmlrmen1mUcLW6UmTP9IiVk6v8EECIbbFZDBo4rN3+UgNAc\nw4tWyvLzuvTczOL2xGU809b1emimBe3RoPGryhx6v4SpzgA0Uc+HQUfvl1ALg+ygDNnAjX3g5n5w\nQBUinv48R9nmJLwol2G0KJmYIvQw0hLKrtp+vvZqA8hr6LwcmNH5RbQVOmRiAVRFQYyvvRnR83mg\ndG9G70+CaipgKpvpLtPbOd/C/ySTjXfkDnhsRZkonQPaFNmqvdoclYho0Za3F9Poc1PlAjYvBxbT\nO5/3gnLbmMhpVHIDRoGHQVJNclfulDbZ+XjmyQaIu+aJTB2+N00AIeVKxtmypOznZDez8XHC9mqn\nMPETjk8A+PMAXnI/f3nkbz4N4N1Kqa8FAciHAHzfFZ73HymlfgJEOHg3gH8JKut9o1Lq0Fp7H0Ri\n+N3LDvL6gk9uoG6+A5Xdous3voYtp8tDLyBIxledQpVZB0IKJzX9TWn6yPwrLy0aaDQVWSzcXpxj\nvmzw7LzH7YkdAM80JyVkZFO3K99EIMQx0WSvcFBSuW+Suxke3QPTXvyd++nk+GWYjDQ2b0+DDD9l\nPaQNxhcql5vogu8AkyG/vQfgDHnh6v3LHGqiB9mOurFPi8Ct21GvoOo3qLuHqLuNn9qX5xpZACDV\nliL7MWHuoxaSK+lgJTCU2GmdfMoEUK3x2U947SIsmKmiM7PDiuT5WUU56Ye0OhtmA3lJz5+H5/bU\n4oEMTj3IeHgB9MAjg7zQ6VgdAKVlorRtHPXHkvthivDZufdlJwtsutXALnwsRoGHsxmX4UYAlJbc\nrjDQObDLlpJNBwdBQknYfyvM6Tsgz3dniF5dkyyTHdm8KFNALy53gX2LxUsAPq6U+n4AXwTwQQBQ\nSr0NRKl+v7W2VUr9EIBfBTGfftZa+1n3d38GVDo7BPBPlFK/ba39U9baz7qs5nOgktAPWms7AF9W\nSv13AP4vpVTjXvMvXHaQ1xZ8bJbhtHsYAY6UmScV4rAjZml8rQIrbVVroSI9zuJhQ7nFssHhfhMz\ny4y0OZ4FPxhn7y1BCGhdBpQByHFcAyazqHseXmVjsdj3ZZe6tbd0iFS1i1isUwTvNC1aAhhX3snK\nHGphoJ+dxSW2m/vA3k2/eNX9BnV75O0KVrV2Ctp2UPrSOifvGJetWCYeiJ2qHzy8LPvh9+GlYWqf\n/fj3Jso/kRCmOAeRbpwAHS5J+cygW7v3IoHVfZfcayo53wIM2W2y15OQC+i4evQOPLIyHwWgxwlp\nO+2zh8UNAtRy7o31UtkftjTfGam6Asso4YJznsTFVHAdvnMSMBOrd99fcpsP61Tr0brv1K6SrlR6\n+EMU1tojAN8xcv+XAbxf/P5JAJ8c+btfAvBLO577RwH86Mj9fw/A33uc47y24NP1jbdHTp0ZZfDv\nJiPfEgKrHMAGhxO+MAoAFttbW+dMGZMAbh1u8cLtLd4+t3huGkpdLM8/ddRmViNmufq6h7eMXhoa\n7CGnSlK6jje4tOMc8/HhkBkUkymkvfNVQpU5/XXZD0tsDDq8cO3dJDWB5i7qbuOsCjRWdenAhzKv\nUvdOWYCyobrfANkUeTkH2ofhxfOwUwVChmPHynCvJy7bdZtitIRY2S3q9gib9tR/l6Q3EhD6IxKI\nyCV0HQPQE4wxMoEMCToeeEwR+qATVvwmR1eZLQLwklBvZFCWJqnVYm4MiMttezcHVHCuamjVwuRT\nKO02NJUDIP5OcekNiJmZUgD3Kwxr4YfOn8Y1Bp+mB17buKn+zFGdE300Xijk751tUAMwAJZmg6pX\nOJyyBKHFsWmw7RovY1PXGof7zeXAw/pcIDUVnZcEeLYg18hs6l+PoxReM0CwzJbS+6XTkyMduUDf\nZv02ICgs1OocyGYo958PgphFMbAzZkbQKMuLS1AOeNbNER5s6wh0+BiWhggc5a4yuNw5cx+FB9oF\nTVali4MkHYims1yYLmyY5wbAHJg76ZaiCQtRPlTFlnYMVafd5+CyaecYO4bvOfJxlWdRRlJwnT5H\nDrBbDbvtkLlM57IshwFIjZxkW7X+3KXK39zn6brVaGWAY8x6O7zBcRkED9AOgMmltnYZiWPVcXYL\nIBub2eHjZtIQf+/KOaxSrnc7ks1wZi/JDbM9ei6APmsgHsPYRVh4Gl9RXFvwqboM9zf5wCtlaZoB\n4KTBWRAALIut+J88cqfcdj22bY/bU4t3zK1nlY0BjzTc8irIwrYYcBlQwew75eVgvDldFrKdUM5S\n7rFEmmDCRJoVkaCp62tlBcqb74DlRWCdTNO7hnsKOqwYbee3vHbag22NV84KrGqNk1p5fTnK0ILG\nXZl1g1JVcIzj0ysASDaLBx+QoFhz+S7dESeGagCGTDS3KPnXme353XVqx0DAk7nNAXGkIgWFJMHU\nzgp8VJVZ9rZMAbUgyR4qqWnYSQe7dWXQERpwynbblQF5QJIL+mzP06pHF29wxpMTKCXvaddj5GPp\np8tGsilUOQfymsAmj0twnjbNkapXOBq4ZON1fWpdjuFnnYb8rAG/0VDL52HnF2s+XjX6XkWeYNc9\nri34bHvgS+sc+yYuUZW6p7kFFFEjOl4Yc+/eOLPUj+EoddjZbztSQ5DkgtSQDNKQjGvggLd5yMs5\noNwApJ4C2KDq4nJVqXtnw11E0vvyuOt+A+NsnZm5JwGIsx8G1VblyJeUAWFP7BTbmphedTMAHV7c\nN90K6+YhXttYvLIu8fI6c75IQZooWH3H9hLpuR6Uo/w80HqcxpzO1/As0WQezagQAInZnrHgHS9b\ncF8CPCyVxEhDVugChAQAdVbYkztdNx+CNq4wg3UCocowG6uBdVRpf54umUXxGZBo1tuqC9ptO6SI\nPBEnUTNgAJJxERlBgkFQ7+YSpevxTeaiJzN3fb5ioLYtP2NJZtmZ7bjgmaKdPabZHrwOXzmH2n8e\nbTnBurm78zmfxuuPaws+m0bh/3mo8NwMWBYKz065HKUxy+mCYHAA4M23ctcw9T72uoUEBACivCVK\nXA7ggr99HjOsuBwABNl6IKIGa8W6cz3KXnkFZtlfkKATAybtUrVtsTTNQM0ZoMWj7jYw2jF5syny\n5fNRqSLyjRnJKGoBPL93UuKLa4WX12qg5jvpWFkh3vtHC9pFPZi0FMKkBCAGHQYrtpDueefdxtnP\nrtcq595ELQWeTbuK5rLCILIWG5okC3J30aLuFt2x15bsPcwCuYJByTSjIHRZjMkC+f6GyHr4XEU+\nQzvkdK4OOu7cuzIe9ffOKbNXrgwHkL2JuwYA7N5QuHIql9kkDTy9DrQqIB1Wd1pNcIl2/3lUWY91\nfRcPtm+9OZ8/CnFtwad3qgSsNOB7IZn1X9Zo+louEI6FZSYLf3FJQkC6FrAvT6k1Sr2B7t0FnE2R\n86IG+EFI38x2bJ10l039E42l6Vzjnhh4BkCHBjor3M40vvDrbhPKb73CqilogXR/RnJCW8zcrrbO\nNt5aINeuNNIaOs4SEaOIL372x7m/KVB1auCoLeeMUtafVrTI1D3tdM1k4fsBO6VqmBKdC7mZBHSA\nMF1vsqknh3kNt1TexX3G/vmFAR1lTudefZxLbWzUxyVNKotST24JIAWgTuUB4Mt5GKplRl6JiHno\ns03Xk7CG2HCRcd0lBIM0uGfn+1nC78gv5n2D87ZFIGy3vkTdWbJZ556WL8eNGOPJchuHti2MnqLu\nz520EYZEjAmicujYhoLVFoZl29C3VW01pFr7P47nstTeLbQ6w6Y99mXjJxFEOHhaduO4vuDTk9TF\ntpOS+rRbZYFJ34tJw31/FYDphJaWLmtQ6q1QKQhfspOaRES5ya/VJjyXniLfuwmVG9jqNCoRtWix\nEfTk+9scq9r4pj0DUKktlkWHUm/d+9gM6Mtcbqv6PGr6U3koFO7D89UERPkGRpOZGrOFPG1ZAE8o\nz7SeFCGzHT935IRMl0WYM/KAL+Z+aBfb+PPLkTITmbKrMI97NheIeZqM2ITRbnhXCCUCmQ3IBTao\nX2T+syd1CnggImYkAZBcoFMAYuCJ6NdlHQERg5EFHhuAdmrRlfEAMG8k6n6DqqPNiievdLJkSxsf\n9JtBVsSfFYMyAFR9WHKof0nED862TeY+V+4DbV0ZWoIOMFChB3bQ2/0mcr3b7ZUjly63p+T31Bjc\n31zbZfINjWt7Vns/bcylLOv/eRZUuwq+9iNhcwOVGxg9RacbzGyLqguMM/bjAcg+O5S6iDrdZQ06\n3ZBhWTmn0p6XMDn1FNdHVY9VY7CqM9+4P67JeZSVFvgnZzJlxj0sAqRVQ5baqzoTi2QMEkQEyJzk\nT+ZsJTosi1N0ReN9bnh3KllFPAdCg7gmGYyln2xcd2CCrBD7JmkVD34CtLBsutXgPl64qXxZQGu3\nyDyGerR3BL1CKGGtLPsVvCiHrEe5jQb83BdnPwA8AGnVRv0fCUA8iKogyoptHQgp+dr3JXy2tD4H\nqtDT2Ukw2AU8rN02IeDhLDtsWJgpGUCn6l3fMLPi/hSQ9YBlSf8XdBKXRYcbZVzu9UQE0QcCMJrJ\nchmVQ266/Gd8leFVUUJmCaFVrXF/k+O1zcUPvWo8prbbH/m4tuBj+8C559mYZeEcLLMZVFtFDLSd\nWlO6RL53EyabodMEKrwgyVkc6WDKjemlEd/qjIb2Orv1u87TZotVo3F/U0Sgs2oUSOvTqRxoFYFP\nxOBzryUN6qqOnoePja21jyuQ9E8NTHSOAwOUOndkiRo3yoeY5gtSvQY8q4iBR5IZ+LyaLAYdf65d\nhsV25btCDjdyn4bfD2dl1J+bDUgWQJi49/21VEuMy3a8KxblvUj01JEVpPYfHUfmzy2z+fjzpnOg\nogFkAqCW3GtHAEi73lkUekLAVJFMkD9uRwW3tev/uHovg0wKQqrUQyka1+fhUhNveCjjUVSeFZ8p\nZ/T8mXGJuezj3p3c4KTgM4zOXwtGh/MRz0NReNDZQSyIs50APFHWIx1yRwgztevn3d+WuLfJcG9z\nBRuIp/HYcW3BR+cWN5/Z4rlZkLohmRtHf94+DMrCO58kXBS8KIWLTVpg8x41ePjwhb0sqMfS6VAv\nD9lOgfubHPc2mQed4wo42dCKdVz33oV02ykcGAK8dNYHQOSMelzTcR1Xgfpc1RnWpwYni9oJnwKr\nxmJZ8AwTQDtbKkOabJZkPK1/vUOXzRCVnRZlySrk46NSIZWljGeBhaa0p36LnXLV5z6rol0zAVBn\nG68Q4afn5cIjQkl9tXRHzD0eke3IkhsHf35yceVzycG26ZL5XPXKzzV1diQDQlCL5r9hcDWTBWXH\n2zUxwsR8CuujS0UAplJ7e/ExkVenQtHqbDTjWdXaDwRzcKYtg0uN/twwEaNOh6FDMNOxGlEHiUDk\ngthJoR4jychIerjpBkNWBp7GGxNvKvgopf5rAD8O4JAtVy+waf0WAP8QZIzzSQB/1cmFlwB+HsC3\nADgC8L3W2i9c9tp50eMdB30Q15w0MNrt6pn+LGVmdk0558arYVNfxnjAuLcFXjvnL3AAoKrLsTR9\n1LdZFqeY5bknFHC2c3ejcG8bQGd9anDqfHwWywbVoqZ5opKo3UDYbdOiRysbL4xMeebnG7PXBmoA\nPQ5K5ckYvNhy2YuZRRJ4KOOg28uiQ5lZ3NcWS6MQypq9/38ZQaI/NKa5f8KlGyCUbCSbbKzE4hcc\nMbzLYGK/AvdU2e+Ru/sUeDgoexSgm2R6nW3RdbGsUypjM2DH5YZ0yVrjh265B8R07Jgth1g6R4qg\nsgpFeywILXGJ9qoRl9YuznYYkEMftHBsTcFO8ycpaMOxLlyQnxrRY9sFWCmrlJ87kV3SqvDf14nG\nQDj49QZVW56W3TjeNPBRSn0NgP8AwMvivlGbVide99MA/iKAfwECn/cB+BUQUD2y1n6dUupDAH4M\nwPde9vpGW9yekFHc4aT1JmpRjVhM9dODkklr4X5ad0QISIHn/gk9ZjtvgBn5/ywLYNtlmOjMg1Bg\nSVG2s6pJQPTlNT0Hm9StT00wi3OgUS8bbOcNtoaERqkcR4cZ7L9Due64Bk7XBdlvr4rIBwggVe6t\n6WkeR9PfL03oFZmMaNsSeDjiElqPF/dI3SAdgAXSxUqh6rbidy2M9RR2leYYeDhbjUDn/Cw4kKaq\nB/Iz3OW5Awx2xIDo94yUlLhpzrp6UYnRZYS7orMt6jZuMGhVeHacNySUxwZQD+jmPoHMnvj/dCAz\nAR3q7zwU6gwZVk0R9QVDZIPsB8AowMj7JCinOoPxbJ0REkROwTq1XHDacBKA0hjNesfo1V7zzwwf\nDwwA6Gk8+XgzM5+/DeCvIZb7HrVpVUp9AcDSWvspAFBK/TyA7wSBzwcQvML/MYCfUkopay/O1/MM\n4+W21jHcugvAxy1aLEGyae7itNnilfUUL68z3NsqvHZOC/zRfVJopoV960pj1pdjGIRWdSApnNQK\nL5/RcxwdTXB0f4L1qYFa9SiqDnvumM4WBnWtvYZctahRmt5nPQxEQCixyeyJQed8laOoOpiqwUO5\nwM0bAJT9EFU80MUNxuc7eEHobBMa7Zo1wLJEPSIuqwFwgBMyijAQG/ez+L4BM1GAjrREjjTMIs8X\n5/nTXQJCSEqrvRossmO0cklkYbYYL7DpDI1kSUo22SwPGZfOinFVBICyGo7USI37Gg50mNCyaVdU\nWmuKqC8IjAHLUBljrATHIQktcgHn88LvM3yOs/Fym8xcBQCNxi7gSZ9LRuvm6lo6V/z5lLpx5eGn\n5bc3It4U8FFKfQDAq9ba/zvxCX8BIzatIEraKyP382O+BABOJvwEwC0AD0Ze9wcA/AAAHL7tFl6c\nN3jH3GJe3KRyW0oySCOVc8mNb9De3xYu46GS1kRzd4RCWlnLnTHAO8NABGDwOjqa4M6re2juKygQ\n8BR1B8NGdabD+crAmA6njhRWlx1OETx8uNm97QgM16sCpyuD9alBWykUVYdZVWPvtEZRdTgGsC4N\nSud4ChOyFVkiAUKZaDyuIEPv17EgTZMCD5e0JlphaehBkhwy1cvgvProbmxF4OyQASATjO3gCcsf\nyOVzHKEcGJsLkjgqIHVmIpNAp0RB/S3r+1JATIOXM0MUWViY3cCzB+7cEN0/BUomyKWA4wYnx0CH\nqfd8rk/qeKFNhWrHRGvJWDEtz7nzUmc4MMPnYpmpVPEjIgo8yUizHr+pPPPsQf5elOUcXb7Ec9OH\nqLoWVfek5nyUdxh+Gm8g+Fxi8/rXQSW3r2o4D/SPAsA3fPM7LQOPyaZ+CC2oDJhot5zuJL3PSXPX\nDVWWVGIQycDhPn3BjemwP+3x3Mx6E7ldQVkLWTSYssN8UeNhNUVbkRV2UXVoTIem1LDLDAeLCotl\n7R1KOTyl04EHl9kql+20lcJsVcdgVmp6DViYskdpgs22p107C4gxUc6LFI5TSRUAVLrrWj8TI4Nf\nj5rdIfNh/yGZrdqzO8Cju7B3H0Sgw1bIADG/9G1XkxoTquTYMcgIO8z0QhbW43Dagwz/xKyUsKzQ\naoJdQcDCMk0SdEhSiVUx+PzlTviTTrobSEWYDdo1iCkFUFdNmPeSIC9jWDYcaggG0JEZEQMzPWEp\n+nRyLo0+w31vJ6IeE3RSm+5LY8Si2w/YgkYqGIBMOcU0X+DFvYd/6IgHSqmbAH4RwDsBfAHAB621\nj0b+7n0AfhLEgvoZa+1L7v7vAVWTvgHAe621n0ke93aQp89HrLU/nvzfJwD8G9bab7rsON8w8Nll\n86qU+uMAvhYAZz0vAvgtpdR7sdum9VV3O70f4jGvKKVyAPsg4sGFUWbwwJMjj4fQOGaigJ6qI+/d\nxLo98oNou5rOh/sNJhq4PbXCwK3z5Qo5gAcQ+HBmZAzZX5uyg3ELTF1p1O7ini/qCHiM6aI5gui2\n6++sTw3OVzlmK8p20mhKjRuLc5iyIwWCIrb6DvJAQ8VvjrEFwWbTyKcoPC53Jbo+zI6IUg4N7WYe\neA4nDWZ5Hijf6yPg5DXYuw9g7xzFpmvC9wYgCnL2TBHM4UaAJ7rNkjyi38NB/bmYdnw4bf0xs/SR\nyaZBiiklEojQKscsB2gItXCDl9OIQu7PpVJe7imihnPqI2ew+lMnexRYbLKvw2y0sb5M2HAEHUF+\n76Fs1iHYygcg4t956JrOS+/t4rUq/GdI119QIIiYhpfElQBoJOuxZ+funIFKs+K7YAHkuYHJZpjm\nLV7cGxk0fx2heoviMaSQvoL4MIBft9a+pJT6sPv9h6NjUUoD+Lsg19FXAHxaKfUJa+3nAPwOgO8C\n8Pd3PP9PgFoeUSilvguM4leIr3rZzVr7rwDc5t9dP+c91toHDjUHNq3W2k4ptVJKfRuIcPDnQE57\nQLCM/U0A3w3gn13W7wGATOkAPImqtA82MAMC8DjZdmIInbqSRYaTOpaS4Z7LRIdsZ2k6b1nNCyz3\nOFY17xaVt+Zmd1QjrB74tikZmALwlIayFbZyAAIA1VWGutIeeA4ebNAkMvt1qZGXFmXZYTEfGt+V\n2vqdeFSX72oAF9NZVW5QOh2uzoZ+h85aaCfOygOLHGF4tvfnjYHHZDOo7Sns6g7wGgFP+/IK/Wnt\nRTZt1aJnJ253H1GOETfmxfDi4yx8fIwyeHFl0OFz1dnGu9SOyc8ATJ4Ixn6R/I8YruTsh0POvhAD\n8VTcbnxZj7Md/s7uYugBw7IhZzuckTEgdpZ7Us0IEAUQ4tIjGRfu+U0MX39ykNbm1IOL5qwuiAiA\nUq08KY/l+n/eIgRJCVaqt+sS5d5NdFmDRbF70/AWjQ8A+HZ3++cA/AYS8AHwXgCft9b+PgAopT7m\nHvc5a+3vuvsGT6yU+k4AfwDgLLl/DuC/ArU1Pn6Vg3xLzflcYNMKAH8ZgWr9KwjI+w8A/C+OnPAQ\nxJa7NJTSQ+AZS/n5iy8UjdnZkcoXtGOSmmWyp8MXMS+ei2IC7SwSTNag1LQwLAsSp6TFjD8WBSAY\n1KUhQWdXMCOO+zyc8cxOKzS1RmNyD0Inz0xx+5lzN/8E3J4AL84bYfV90/dY0MZgPaqZJcEHCwBr\nqHIekRIA+OZukKPJBsQC6bhqspkrt30ROD6GfXSC/qTywMOltr4C2oYuoIwzoZNq3BaZy1SpEKlQ\ndU4zF+n/xFlBCjxcLpMEAwYjJhDw//P/+UUZiP1ncrYAJxtxX8rsW5+dpYDDs1GyxCatLdLg7+xY\nmU26znLw++L3JDcMEoTiz28EeGTVoQ09GPruYABANlkY+fedWZC0BJE/IQCIs5+OgFDlZiDv9FWM\nZ5RSstz1Udc2uEo8a629426/BuDZkb/xvXIXrwD41oue1AHMD4Oypf8m+e//HsD/COD8isf45oOP\ntfadye8/inGb1s8AGNQRrbVbAN/zuK+roGLttouotk5skO0CNi2BD81DEA34xXmD0tkKj/UnjJ4N\nJvF5XsZkZJVNCzDL2mQ4MDmWBXDPNACawfT8ZSHnd5gtx6W2piTgASjjOXlmitsvnOP5F87wb97q\n8PY9Ap53LasLvYeuVKPPDZVTmK20w2SMS28xo2rYeDfZlMptZw/Dbnbb+Ywn23d21duOQMfdpxaG\n/k/28NgsLBd9lB2hs8L3qMrORnpnfMyx7QDZNqTMNv67C7XIRs6hjNgaoh0M5cr5KAYdznZ4YBmg\nzBwYkmDi0lq4vVvZejw7YBAaBZ505iY3g+/TLpHY3QoHTheOhUmdXJGvYJgCkPbrkv2YRltDtZWz\nMvnKQ9nHKrs9sNa+Z+dzXdxT9+FmIR+jMXZhfATA37bWrlLxgBIAABhpSURBVGVWpJT6ZgDvstb+\nl0qpd171yd508HnTou/GRUNlCC+YVmdedkPuKmUcTlu/S+cdsNHz0FD1Mwg0z5LnBlovxcBcACGi\nNFssjcaBCSUSLu3xoGgKRFxyk8Dz8MEUatVjJno8nPHUpcbZCxN8zQuneP5t53jnwuLte8C79mvH\nBHwWs2zhQOdO8B26ihgnEMogufg5Ejygyos5wGoAQXiUFy8vfVQ3sE3jnFWHtG810VATjazMoRYG\n+tkZ1PO3xoctk2NOs540pP14Or8kY8zHJrxfvi2GZFHFoqh6/LhYjSCVHCLWZBbNSMneDqtbsKeS\njGjwk4Enu3jdSkF1rDkf9BKDlTj3eDiULmHl92OXJYZtRskf8ni8QR3WUFgIxfN17JEEJLR795m4\noVObV1BbIN+7eeE5eDNiV08dAJRSd5VSz1tr7yilngdwb+TPdvXXL4pvBfDdSqm/BeAAQK+U2oIE\nAd7jWig5gNtKqd+w1n77RU92fcHH7i5V8QUgVX6l9Ejo1cTT9mlNe6qXUNtToD2H7R7RxSUX7ckc\neblAXi7Qoh2A0LKosTIaSxOosIHYQL0kltxJQWgMeIzYdTWlxtnCAC9meMcLK7xwm6SG3r20noK+\nb55F2WfUV9mug9xQOv8EJAyyEYfRtgb0MOPRKkcnxF2ZNUXupqKUpfdgshly5MRuq9Yh67lgN5m5\nbEff3qNBzERMM5XRuSykW2cKOikJg2MMdGSZjZiWR770JOnR4YEx8MjBUBbw5JDZjvzOpLJKQKw2\nzu9FDn/K9zf2fsZ+HzsnXC6NmKVpiA1KCjwt2gh0xkgg/HqsC5dLZWzXRwIb8tXJAO5Y8Hf2AnHh\nxwllgaL+qhAOuA/+kvv5yyN/82kA71ZKfS0IdD4E4PsuelJr7Z/g20qpjwBYW2t/yt310+7+dwL4\nPy4DHuC6g8+YvhPgs53UpybVvJKsJtqZL8K8wvYU9vgLsPzFHRMordawezVUWyOfzKHzpWeE0U/q\nCS2LDiszHL6kmQyqWDMAcdYzlvHUgmBwvjDYe6HF8y+ucLjf4O1zsvp+136F56aKgKduYU/uxKCz\nPidjs3Tm6cztIoF4J8l/p8Mgn9Jm586VQ5beuA/izf3amgZJJQjWvc9+2EZaPzNDdlCSirMEHhbT\n5DLbY8rs0PR7Eykv7KKZyzLVuOKykHJy3xXb1k7NuY5ASNKlWfuPY6gWkfm5HZk1bxNW5rZTWBYs\nyySHP+Ny4q4YsgCHQBxkc/LYTXQsdgDPGOiMfYfYxyoyqJsIBXAANNszonYhf7qwXTUc6n3rx0sA\nPq6U+n4AXwTwQQBQSr0NRKl+v5uJ/CEAvwqiWv+stfaz7u/+DIjQdQjgnyilftta+6ee9EFeX/CR\nIemq0tPEEQtSxWYGHDk4KBvhWB+FaXupD7cjbBcWZb5gTUYKa3RkG5QdZQWS3stKBnVPt7ddYMMt\nXJ/0IaY4KalmnZeuvl92uLGo8PwLZ3jHQY+37zmZoWmL56YK8+ImZTyp0oMrc401bQEHg8WOXSRC\n/T7MzQzlecZiVDxSKhaUJJ+typzKbC7boT7PDjHNKwJP2sgfip0SAI31Qsaspr10jJBx8iUnzT2x\nhPINELvSZd+Pqh73t/kFygIxhToCHne6ub/DPZ8wANoPqNW7zkv8muFYQn9o+P45lC7juSQZDnAH\nhI8EdCQBRH6PYvLGLgDCcAPFt+X5b2s8qYbJVyustUcAvmPk/i8DeL/4/ZMgqbL0734JwC9d8hof\n2XH/FzDSmx+L6ws+KhvK50eT4BuvXsDunzJG2TtdT/piZ0ex+deuGFn45AImAWhpNm7gUhp6BdCZ\n5GRNzUOlxnSejn26Mn4AlenZt25tfX/ncNo6cdU29HjOHoah27FS25jskBe3HNHAc/bMkTXBjgVd\nBkuvDBrxuaFsxr1WDpBdAEDZzjNzAp3CDRE6w7Qo4xmLpN8DYPQ42RYDQOQEuzQbr8fGjrLp58pz\nZREbsFyQUjUTXET2zexKkvnPnUvsbsFPOXOWAs8uhttEh+HYy4CHX+OiYDBm5e7a3efVuVsnZ5Ne\nA/L89xeDTipPxMdVavqsWO2cZoqWQwASakTpMaQA9CRC9TYqfV/3uL7g48LvukbKbLzYSOBh5g/T\naX2Zra0IdGRDfp2wDi+TcXFMsDEA0rZFqVvnm8IipNI7JwCRpF7Pl4hmgfanvR96fcfcetCRVGqv\n6t2F2Ygo60kBNf29SHaU5TzKevyichXgSctZ6UIwn0HhGcAUyB34RJkOZ0g8o/UYJTbp35MCj9RA\nkz0RsskQfj0gnyaOi9xTVbmgLFhYqDO78rT5/9s71xhJrquO/09XdVfPzms9u8tm8Vp5CZASBQkI\nFhIRSkhIjIkIQSD4wIcoHxBJlIBAQgZ/4SNJPhDxkBwUWQQRSMAQgRIFhwASEspDIcQhxCReJ2Cv\ns4/xrHd6Z6a7q7vr8OHce+veW1Uzs69ud/f5Sa3prp7pubequk7d8/ifAbYHnUozwLokB19Tze/V\nFNNNyyw3We2wcyXXfV71/zQZwKKyGpwUIkbrWqSbrrh+yrQYkHElddy9f4TRsfJE2YSRJWNMuGe+\np6b5oN81OM6si13wyl1neY0PUWW1M4kMjwR0Q8MjUimpay2dIpWL9f5O6GaLVwtH+JZdoNUo9gII\nXHBCH8AYPZQdMkvXm/xGoMBrik67myOczMqCVzE+hWslsd7uunTqoImeN5eK4TlkRcedUeknj2pn\nglVPYyZZGDdo7NliLyBrJ2QFZF1+1uicWK1qnMX4GVZea2Y7tvhc8HvcNCk6Dycto8QQ1sG4mMfA\npKv7MUZDs+Fpu3bOYeIJhcccza42H+tyK+t6ioohOyzeExsem/AghcK2wJSDWi6LNUAJpa5Hki+/\nVOdWk/fC37X7wo7HHpssYWTOCA2QJf3yShe3LIepUbPnwJ3WlPMgxrQUDuaC5TU+gLiCXNvqfhDf\nCe6kTJFdreHxa4WmwIk0he2Zk5leOWeidNo6jS5bOCh/V0rVWMPjVhj+l6/BwFjtNNcZs458JEYg\n6dSueqw7EwgvIEcFuCtYA9RpA1ub9UrOx7mT9WtI3J332DM8LbPiCWVpaj7I/Gw7A9QhUSxwtS2W\nKLXY/hwnLfTHOy6jbXvQNqriRSTFdPiU5KalrOG3iht2tSPqFaV6hE2cKWv+61c2vpoBEGYm+vgr\nM79xXkIp8uIgKLYFqisbP2EBQLmSDOqmQlFa+39l7PIP5Xoftq3vdNdd6YNr0x3Hd+6iIVKW2fi0\n0uO52YJstmp1dlBwmZiLXoZqzKfpomjucseeNApQk87q3QWeSK0iQPnlB1DbdM3NI1IitmoL1vBU\nVhf2IhmtevhG3+mnUTdBaxMVA+RqJ2ysxzQsy8c7UdZg3elX3jXLfihXSNxaAXXXgMkQwFq43wHA\nFhTaolE/a6oOz+3jLoKMILvR1cmMyv49TYYnUG1u+3JEkmJs3W2HZXpxmmFS9APXklXOlov5pLbG\nzCebELpe3KfTKle8ZXyncLJJZ7pj50ZuXGUaZFySwNJpyT7LkupNRHkeAllib5ZGRkrJGpawgaDd\n7o/BSg0BcPJE/lhsRqh8Z8XYxDEr6RfUdn9jG/Ml1A5adAOR2rmXFKHceZbW+DDYBXLD1U6UWNBk\nePav1bfntfiGCCgDycbojJOW+SIMMRnvuaC2+3OvVUHctM2tvlJ5b70hlBRnkvmvbYbeocQJBvlI\nZGx2hya1WS4wdQbIBvhp9RQOihulKkSeOCHWupiJSNZYAxRmkPmKzi44D1Q6lTaueCI9ND+obT/f\nNga0NyGxSsBRgfay7UDhibCmZbLEERX8olxw4M4Fq6bg99sWCRsvzlS50TCrEc8Ixe0MfMXtjolb\nWh06uy9iKudTaxS4Jq3Gm2RllsbRj8XIca0e2xhrCK3hLsezEowjJ3HhbXTM9zdSnKjDKk8AqDVA\nPncyzZqY0c6Pzu5cFpbX+PAE/XEvCCT7X5jDEguCjpmHEWUu+S6+fl7/v52UTG2jtlJ00n1xkzC1\nNMbPFIoL88qWxdFp4Gu2eaueydX9QEONPL+PM0BWot4YgGGrwF5+LZDxt1IvsX6bRbKuvDkUI0wo\nxYSl1TJZn70da12qbhTHcfMxRsd3+9Vns9n4Shncj1tm1zVI8/ve2Cy9WimZmMR3S8atG8wdfUuW\nW6L8UL4fXujtnikCI2RFQmVFVhijs17VWYNR37D70duHqXeeyIqxzCaz+1TGO4If2qgUZBcEjICN\n9rg2qaQirDoeyni8ccTabrKvJSYa7rv6rL34e0DMlXNFubssrfEpUASrHXuHGzf+qqvMPnQp7qsj\neG41qUy/5tw5UqfRwnAiF07/yykZR4UTrrQrL18bLrigjQ+qvVzscMzzNOmCPVXlJm2sWnIjYWOi\n2DyYYNIbS3Qjk9fcnZSrn04bWN0Cr51Cf3QFl/uMXt6p6IsB5LmCqveYG5hI1pghcJfUqRLE8j0N\nK528OKgYHHsM7Lkgr8NW0s64mBVFsM3caVs3VqCHV9dd047Lat65+Y3kTt/T/+u0wtVtdUWbu/G7\ncbsVW6kS4Stw+KuK2huqtCMN64BadWm7V5LuumRkFkAngTPqWVIEiu3+zZW4xiQxQb5rY1e2sJJs\nlOe3dWsP9iqxMTumbHULSWKTOlIk1K/sH6ChVszbl9YAHrYKul2m2FJhLlha48NceBd869K4ScMT\nu3WiOIMzOl7wuDdKsN3v1jbwsr54AK6Rmrj9fF2sFOl+r9qb3sSX2BZR2nHEcRFDk0Ckoy4VuJuA\nhy2J9QzHsvLpyGsp9GyDzp4G7jkL2jiH66MruHKwj4t7GXp5C9dzWTH0RuS0xfKibCneTSRe4ZI9\nWuziCfmkLxe3Aq5wEIhUjGtWOXauLtHBuFljEU4fJxbamgBmF/kGSX6WwXQnQ2Pig7EQa2NLZ7Of\neZwDwxtOaikefxNNq9oyfpm7fVlqDZYrZ7+BW2Ul7xtI+9ye+kFRticBZIhbhYQ1cqVQrL8KW0nX\nsZaeEmWQ4QtgK+e0d1CWLHiFxWxf2/3WXUMnPYW81Xf7wk9kCNzYgQs7rMWq9AfS1dBdY2mNT4xV\n3z2W4YljDAY/TVbcEGGqbC/PsN1PXavsmI02I0vKi2/WkniTdd90WitIhwPRWrPyMkDYHKu9C7wk\nB69uSRuDihpymcnlN3YL4hIWL+ZDWYrWpt1eAJtAK0sDJQG67xxw9jxo66W4MbmG68MbuLif4Zm9\nFnqjUlPMGtyT8snw6867k/KOfZjYWpaqAUpo7AxyE3F1vB/PqTU6NXEC3y102GrRZomtpJtBJqTf\np0Y+pMb1NsmBcccZoQoN7roEcs6laQeiFJ6Jazcpszc7rRFOpGOnN1hRz44Nov/cjjU+34coL8qr\nOZC0zP4ZG29CaHh2c8Jmp9oiw8ZT19pbONFaB+9+F7x/Tc7tvQPwC7vA3gGKnlnV2+xKX91idRe8\ntelUK7LuGtjIVNnjbldGddTdhN10h1TlllDj43HLrjaEsjy2XmhvdA3bgxQX91bQy1u43Je7/ssH\nwM5O1xV+AlIYOuiQiR0Yd4kN65hWAulwIFprV7fLhlg2C204Bg8nomM2GoHOjsDruRRWAkAW1VIU\nI1FPaN1E0gGkGyitd9BycjZpreHZGbyAp3sZntpN8a1dMTp+kzsAwNqoYoAGk+rqxyYfAGKAktbY\n1T75Ei6xkbAtK3wXm1+vU5ceXKkxOkYGmE8lBd/TbDs05jPO5aLur1aPUVfFtqbJy6RMs3Wkq9Kl\n116E/VYezvDUrcp8gxO3m4bX8dO2KBjsIVk7BZu5JgklSWB4rufiVvV14wLDwxn42v9VWqFPrhyA\nb+QYX90vpZOyNJBSSr5nFdg/AN1zAD55Ehiu1Roh/0bLZlDafVG7X++CAdI6n5ClNj5xMLLJ8ATU\nZSt56gjiZuvh+UGO7UGGi3ttXO4DV/vyJdzZ6WJnu4u9GyJ5s7aeIzPSN8PTA3TTAic7Zb2L9c2n\nk0IKWXeuujtCa3B4MJYMNADF9SESK7Bp5W6sAYKX0VX00QFcbOE4F1hfvoYHibSl/t57xNUWGZ6L\n+x08u5fimT3Cc1e7yE1m3NA0xctMg7zheo7NlQInMzFAg0l19eNnv8kkjeoDNfWWKVc7fgq97w6y\nbrOmLp1+F9K6fdO0GgpjcXlZeGypMyJBVuGu23aswl5jfJyMUKcNPrEHTIaBYrods6x2yhV8k/s2\n1vMLVKDtz05bmq6ZlgP5pG8KPUPD0xsRugnj7ApcTDUwPLuXxPA8ewm80wuMTr5H2H+hg7RTIGmP\nkXZypG1GsiHGhwcTOd/zESgfAWv74PUcMEoRWdpxRig+R+pe++fTkQ3qlNuCjtFxeiEhom2I4us0\nOA3g+Sn9r2mxiHMCdF7zxDTn9FJmPnM7H0BE/wgZ83F4npkfuJ3/92JnaY3PNCGiLx/WlXAeWcQ5\nATqveWIR57RMNJdJK4qiKMpdQo2PoiiKMnXU+EyHP531AO4CizgnQOc1TyzinJYGjfkoiqIoU0dX\nPoqiKMrUUeOjKIqiTB01PncIIvotImIiOu1t+x0iukBE3ySit3jbf4SI/su894dEUs1GRBkRfcJs\n/yIRvWz6M3Fj/CAR/Q8RfY2IPklEJ7335nZeTRDRA2Y+F4jooVmP5yiI6D4i+lci+gYR/TcR/brZ\nvkVE/0RET5mf93h/c1PHbVYQUUJE/0lEnzKv535OSg3MrI/bfAC4D8DjkKLV02bbqwA8Aeno83IA\nTwNIzHtfAvBjEF2ZzwD4abP93QAeMc9/GcAnZjinNwNIzfP3A3j/IsyrYa6JmccrAHTM/F4163Ed\nMeZzAH7YPF8H8C1zbD4A4CGz/aHbOW4znNtvAvhLAJ8yr+d+TvqoPnTlc2f4AwC/DQRdeN8G4OPM\nPGTm7wC4AOB+IjoHYIOZv8DyLflzAD/n/c1HzfPHALxxVndszPxZZqdB8gUA583zuZ5XA/cDuMDM\n32bmHMDHIWN+0cLMl5j5K+b5DQBPArgX4b7+KMJjcLPHbeoQ0XkAPwPgI97muZ6TUo8an9uEiN4G\n4DlmfiJ6614Az3qvL5pt95rn8fbgb8yFfxfAKcyed0LuHoHFmpelaU5zgXFj/hCALwI4y8yXzFuX\nAZw1z2/luM2CD0Fu5HyJ8Xmfk1LDUguLHhci+hyAl9S89TCA34W4qOaOw+bFzH9vfudhSHvIj01z\nbMrxIKI1AH8L4DeYuecvKJmZiWhuaimI6K0ArjLzfxDR6+t+Z97mpDSjxucYMPOb6rYT0WsgvuYn\nzJf+PICvENH9AJ6DxIIs582251C6sPzt8P7mIhGlADYB7Ny5mYQ0zctCRO8A8FYAbzTuC3+Mlhfd\nvG6Bpjm9qCGiNsTwfIyZ/85svkJE55j5knE/XTXbb+W4TZsfB/CzRPQggC6ADSL6C8z3nJQmZh10\nWqQHgP9FmXDwaoTB0G+jORj6oNn+HoSB+b+e4VweAPANAGei7XM9r4a5pmYeL0eZcPDqWY/riDET\nJJbxoWj7BxEG5z9wq8dtxvN7PcqEg4WYkz6iYzzrASzSwzc+5vXDkAycb8LLtgHwWgBfN+/9MUql\niS6Av4EETr8E4BUznMsFiD/9q+bxyCLM65D5PgjJGHsa4nac+ZiOGO/rIAkuX/OO0YOQWNo/A3gK\nwOcAbN3qcZvx/HzjsxBz0kf4UHkdRVEUZepotpuiKIoyddT4KIqiKFNHjY+iKIoyddT4KIqiKFNH\njY+iKIoyddT4KAsJEb2PiJ4kojuuzEBEv2iUpAsieu2d/nxFWQZU4UBZVN4N4E3M7Gt8gYhSLgVT\nb5WvA/h5AB++zc9RlKVFjY+ycBDRI5D2CJ8hokchcj6vNNueIaJfAfD7kELGDMCfMPOHjdL2HwH4\nKUiBbQ7gUWZ+zP98Zn7S/J/pTEhRFhA1PsrCwcy/RkQPAHgDMz9PRL8H6f3yOmbuE9GvAthl5h8l\nogzAvxPRZyHK0D9gfvcsRF7o0dnMQlEWGzU+yrLwD8zcN8/fDOAHiegXzOtNAN8H4CcA/BUzTwB8\nl4j+ZQbjVJSlQI2Psizse88JwHuZ+XH/F4yasqIoU0Cz3ZRl5HEA7zItCUBE309EqwD+DcAvEVFi\npPvfMMtBKsoioysfZRn5CICXQXovEYBtSJvlTwL4SUis5xkAn6/7YyJ6OyQx4QyATxPRV5n5LVMY\nt6IsDKpqrSgNENGfQWT9HzvqdxVFuTnU7aYoiqJMHV35KIqiKFNHVz6KoijK1FHjoyiKokwdNT6K\noijK1FHjoyiKokwdNT6KoijK1Pl/Hws37LeDaxgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Another Window demonstrated" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag = 25, window='triangular',scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'triangular'" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXmUJNdd5/v55VJV6uqqrla1WnK31m7JqIXxNkIy8ww2\nCHkkgREeNttgbI8ZjeYhBuY8FjEGGw7MjDzmvYd4NtboGGN77MEYsLAeCK/gBR7ySJZl2Vqsvd1q\nrS2pVd0lV1Yuv/dHRGRFRsZyY8uMzLyfc/JUZiyZEVlV39+9v+2KqmKxWCyW2aI27guwWCwWy+ix\n4m+xWCwziBV/i8VimUGs+FssFssMYsXfYrFYZhAr/haLxTKDWPG3jAQReYuI/OO4r6MsROQBEfm+\njOd+TER+q+hrsljisOI/o4jIvIj8iYgcFJFjInK7iFzq2/9qEemJyHH38YiIfFxEvjfmPc8UEfWd\nc1xEvp7h2n5HRD4Ss9///j0R+Y7v9c+m/bwiUNX9qvrP4/hsiyULVvxnlwZwCHgVsAP4LeDjInKm\n75hHVXU7sAS8ArgH+LKIXJTw3iuqut19vKToC/e993bg28Brfds+WvTnWSzTiBX/GUVV11X1d1T1\nYVXtqerfAA8B/yLkWFXVR1T1HcD7gXfl/XwRuVZEDonImoh8VUS+391+CfCfgJ/JMXM4QUTeKyKP\nuTOWd4tI03t/EblfRH5XRJ4RkYdE5Kci3udSEbnF9/rLIvJl3+tb3OtFRB4XkVe6z68RkY+KyJ+5\ns6o7ROSlvvMuEJGvu/s+AswFPvcXXTfS0yLyCRE52d3+LhF5t+8eWyLye+7rZRHZEJHtab8vy2xi\nxd8CgCswLwTuTDj0E8DLRWQx50feArwUOBH4n8BfiMiCqn4K+C/An+eYOfwu8GLge3CM2auBX/ft\nPxNHcE8B/i3wIRE5K+R9/gl4sSusC8DZwNkisiAiS+77/1PENbwO+ACwAnwe+ENwRBv4JPDf3Xv/\nO+DHvJNE5DLgt93z9wJHgP/h7v6iey8A3wc8AvyA+/qVwNdV9Xjkt2Kx+LDib8EdFX8U+JCq3pNw\n+KOA4IhaFEdE5Kj7+NWwA1T1I6r6tKp2VPX/BOaB78py/SH8LPBOVT2iqk8Avw+8ybe/A/yuqm6q\n6ueAzwE/GXKNa8AdOML6ChyDdYv7/JXAHap6LOIa/l5VP6uqXRzx9kb+3w9sqOofq2rbdVPdEbj2\n61X1DlXdwDFaPywipwD/iGOMlnBE/33AC13D9Coc42CxGNEY9wVYxouI1HDEaRO4yuCUvYACR2OO\n2aWqnYTP/VXgbcAe9/2WgV0m15zwvoIzoj/o23wQ57o9nnKF1b9/T8RbeqPt4+5zxRHaE4gX28d9\nz58HPHfMHpwRux//te4B/t57oapHRWQN2KuqXxWRb+AYkB8Afs39eaF7Tb8Xcz0WywB25D/DuEL5\nJ8DJwE+oatvgtNcBt6nqeo7P/X6cEe1PAztVdQV4DmdGAY7AZkKdNrWPA2f4Np8OHPa93uWOlv37\nH414S0/8f8B9/kUcoc060n4MODWw7XTf80fxXbuIrOAYRu/6vwhcDBwAbndf/wjOzGJqU2ktxWPF\nf7Z5H46IvFZVvxN1kDjsFZF3Ar+AE5DNwxKO6+UpoCEi78AROI8ngDPdWUkW/gx4p4isishu4O2A\nP3W0Cfy2iMyJyA/hiOlfRbzXl4GXAC8CvuY+DgAvI5vYfglYEJErRaQhIm/AiU/4r/3fisiLXAN1\nDY4LyZtJfBFnxnSb61L6AnAlcKeqPpfheiwzihX/GUVEzgD+Hc6I8fGIPPk9InIcx+VxC06A89Wq\n+pmcH/9p4FPAvTgujw2ctFOPv3B/Pi0it2V4/3cAd+EEr2/HCcr+N9/+h3GMz+M4Qdm3quqDYW+k\nqkfd9/qaqnZVtQd8Fbjb3ZcK18i+DvjfgWdxRu3/r2//3wD/FbgRZxZwCoPxii8DizhGBPf+er7X\nFosRYhdzscwSbmrme1T17HFfi8UyTuzI32KxWGYQK/4Wi8Uyg1i3j8ViscwgduRvsVgsFcBtPfIt\nt/3I1SH7d4rIDW67kP8lIi/y7ftlEfmmiNwpIr9i9HnTNPLfvnNJT9xzUuwxIrG7IynTSma9pnFR\n1p9ML+N5wevpKrS60N6s09kUmu0e9XbWd7dMK88cfeiIqsYLRgLfI6t6HJPyGHiYY59W1UvC9olI\nHSf77WKcIsBbgDeo6l2+Y94NHFfV3xWRc4H3qupFrhH4GHABTrHmp4ArVfX+uOuZqgrfE/ecxK/+\n+WCR40I9/fvMFaD0WT53Wtno5n+PzRTa7X3ew8eEQ48vcPjbS5xwqMWeB1NnZlqmmI/c8KaDyUfF\nc5w2v1O/wOjYt3Q/H1fBfgFwv5dyLCIfAy7HSTP2OA+n7gNVvUecFuon49SdfEVVn3fP/SLwrxlM\nbx5iqsQ/SJIA5xH5UYj7fL0as7JWN9/UxOS7SjIQUb+rMKPgfd6ZS0qztkGjoTw2v8jBuVVOPrTG\nwrrZSM1iGSF7Gax1eQSnbYefr+OI+pdF5AKcSvBTgW8C/1lEVoHvAJcBtyZ94NSKf5jgZBH7okS+\nKkKehazXnsZoxH3PcYYhzigs1GH/srI812LbYpuDjWUeba6w+9Aa24+2jK/NYolCBBpNw7/zLrtE\nxC/K16vq9Sk+7hrgWhG5HfgGTrV5V1XvFpF3AZ8B1nEK/xLn21Mp/n4hSSP4eYR+1OLerJXzee1e\ncQEIk+/ExEBkMQz+3/vebcpCvcv83FEOb1/k8PxOdh86xs4nMrcnsliycERVz4/Ydxg4zff6VAb7\nUXldZt8K/b5cDwEPuvv+BKdPFyLyXxhuHjjE1Im/qYBnEfoiBb4s8c5LEdeVxoAkfadJxiHq9xg0\nCqvz0FxRFurrzM13Oby4RHuuzu5Da8bXarEEkRrMzxv+vW/E7r0FOMddV+Iw8HrgjQOf5TT5e15V\nN3F6bH3JNQiIyG5VfVJETsdxDb0i6XKmTvz9hI36TUU/j9BXVdhHRZr7TzIUcb+HOMMQ/D1vdGG5\nCS8+MRAHWFzl1AeetdlAlrGiqh0RuQqn71Ud+ICq3ikiV7r7r8MJ7H5IRBSnb9XbfG/xV67Pvw38\noknfqakW/yBRwp9F6IsW+EmOCfhJGxxO+h7jjEPUdxZ2Dd7vfqMLB1acOMDcfJfDje0cbK6y58Gj\nNhBsSY2ImPv8E1DVm4CbAtuu8z3/Z5zV9sLO/f60nzdV4h+XL+8X/jRCm1fkp0XUTUlzvyaGIu77\njzIMYdfgfdZC3TEAe7cpC6e0Wdx2lIfnlzg4v2rjAJaZYqrE30+WzJ6sQl+GwE+i6yhtsDhvQDjq\nOwq7Du+zWl3pDwT6cYCzj3Foe5uHGis2DmCZGaZW/P2YjPpNxDavyE+ioKch7f2ZGIssPv+w6/A+\na76uA7MA8McBnuWx5UUeba5w8qE1GwewJCIC8/OT2SVnJsQ/iTCxqEIcwGMSXEdZCsHy+Pshnc/f\n+6x2T0JnAUNxgEUbB7BMN1Mp/qYuH7/4jDIOkPbzJoG095PX3w/ZfP7NmkbOAsLiAHvvf9YWhFki\nqQnMmaZ6VoypFH8/WQO9HlWKAwA0Kug66mQoDDP9fsrw+cfNAvZuc9534exjPNDscaixyurh4zYO\nYJk6pl78ozAZ9ScJfxECX0UxT0vWezAxGmX6/KNmAbsXYLmpNGvrbFvscHB+mU6zZhvDWYYQgWZB\nqZ6jZmbFP4mggGQV+rLEfb5enWBkq5st4GXy3cQZiDSGIWq0HzcLeNmqFwd4lsOL221jOMtUMXXi\n7/f3Z+3V4wmCqeAXIfBVEvO0ZL12E6OR9N1GGYfg7y5ptB+1ff+SslBv02isORXB220cwLKF1IQ5\nm+1TbfxiEOXyMQ0AZxH7MsV9vgKuo1Ymv7/ZdxJnJKJ+F0GjYDLaj9q+dxs0d3fZccJWHOCUh56z\nBWGWiWZmxL8o4oQ/r8BXQcSzkvXaTYxG0vcaZhyCv6dOitF+2PawOMB3Fps2DjDjpGrpXDEKEX8R\nuQS4Fqch0ftV9ZrAfnH3XwY8D7xFVW+LO9ddsuy1OMuSPQC81aRZUVkExSSL0Jcp7lUoIMvSDtr0\nO4kzElG/C79R8H5/HcPRfth2EF62qiw0nDjAwfllDs7ZxnCWySS3+LtrT74X39qTInKjf+1J4FLg\nHPdxIfA+4MKEcz8L/Kbb7e5dwG8CvxF3Lf7xX5ErbTUG3EHJ/+R5Rb4KQp6FrNdtVOkb895RhiH4\nu2p1azRqmnsWcGCHstxs02gc5bHFRQ42V+0CMTOKU+E7uyN/k7UnLwc+rM5q8TeLyIqIvAA4M+pc\nVf2M7/ybgZ/MeoF5/P1xwp9V5MurBK7G6DNt9o/p9xFZ1GVoGObrvb4BgHyzgL3bxBcHsAvEWCaP\nIsTfZO3JsGP2Gp4L8G+APw/7cBG5ArgCYHXPaprrzkWS8OfvBloNIc9CWdk/WSp+/b+nVk/611bE\nLGD3grBQd+IAdoEYy6RR+YCviLwd6AAfDdvvroF5PcBZL9pXmr/EL2hhwp9G7MsS9rpUK+Wsq+nu\n0+R7iTMQSe2f52vanwkUNQs4qe4sErPQ2OgHgu0CMbNDkQFfg9jpDuAjwOk42v0Hqvqn7r7/iLO6\nl+Ks7/tWVY1dO6wI8U9cezLmmGbcuSLyFuBHgYtcl9FIMU3pjBKdvCJfNTFPS5brTzIYWTJ/YGvU\n7hnusFkAbBmBtLOAAzvoxwEONpbtAjGWVBjGTn8RxyX+WhE5CfiWiHwUOAn4D8B5qvodEfk4zjKQ\nH4z7zCLEP3HtSeBG4CrXp38h8JyqPiYiT0Wd61rBXwdeparPp7mgqH4+efP7w2jGxATiKEPY67Vq\nTuS6vY7xsabfS5SRiMv8GRi1h8wCgL4rKMssYN8SNGtbC8XbBWJmAIF6s5AZnknsVIElN3tyO/AM\njlcEHC0/QUTawDbg0aQPzK0WhmtP3oST5nk/TqrnW+POdd/6PcA88FnnXrlZVa/Me7158bt8TIQ/\nj8hXVczTkuU+kgxG0vcaNA5+gTeZBWSNBZy2qCzUYalp4wCWIXaJyK2+19e7bmswi3++B2cg/Siw\nBPyMqvaAwyLyB8C3ge8AnwkkzIRSiLoYrD2pOFMWo3Pd7WcXcW1FkNV9kyRQRYp7jQJzW0ukR9fo\nONPvJspIBL/7rvYGBD5pFpAnFnDSgvbjAN5C8XaBmOlEBOoNY2/BEVU9P8fH/SvgduCHgP04A+Mv\n4wycLwfOAo4CfyEiP6eqH4l7s+kYWpZAmhYOYcbBE588Aj8pgp6GLPcUZzDivl+/YfB+H54RKHsW\nMF9XXnqiMldrsW2x7cQB7AIxlmhMYqdvBa5xB9P3i8hDwLnAGcBDqvoUgIh8AviXOMHhSGZe/MtY\n0MVU+IsU93qtWdh7jZJuL1kITb6nMAMR/P67vQ51qZU2CwgzDOet9Fhq6kAcwDaGmx5EoD5XSC6K\nSez028BFwJdF5GTgu4AHAQFeISLbcNw+FwG3ksDUiX/aYG8aknL7/a6GoPBkEfpJFfQ0pLnHOEMR\n9/16hqFea/QNABQ/C4gyDF4cYKHuxAEesgvEWAIYxk5/D/igiHwDR/B/Q1WPAEdE5C+B23ACwF/D\nTX+PY+rEv4rECVMRAj8t7qGkeIDJdxVmILzvp0e3b5TLmAXEuYFOWlDmToSlucGF4m1juAlHlEaz\nmCx0g9jpo8BrIs59J/DONJ9nxT+BpGBv0v4wYTYV/FGIel2K/xPoqnlqp5809xtlKKK+226vPWQE\nsswCgimhsCX2ScHgHXMMxwFsYzjLmLDiH0LexVnifP1Bccor8GWId16KuKYkA5L0vQWNg/e9e0bA\ndBbQH827s4AiCsP8cYCH55dsY7gJRgRq5tk+laJ6yjEmigr2RuEXfVPBL0PYxxlHMAnueqS59zBD\nEfYdO4LfTDULCLqBIHoWkCYYvBUHOMah7Qs8tGgXiLGMlpkW/1T9eFIEez3CBChK+LMI/aQFhPNc\nb5zhSPruPOOwNeJv9t+vyFlA2mDwSQsMxAEOzi/bgjDLyJg58c+a6VMmYeJVpLBXPSBsUvhl+n2E\nGQnv++1qZ8AAeMd725zPMZ8FFBEM9scB+gvF28ZwE4PT2G0yf08zIf5Z2ytnCfamLeryhCmN2Fdd\nzNNSZOFXXMC3Lo2+AfDeI84NBMTOAooKBntxgIV6m8VtW3EAWxBmKZOpEn/xdVat0gg/SpCihL8o\ncZ80t5CfpPhA2sKv/nfh2uukWUCYGwiInQVkDQZ777VvCZaaThzggaZtDDcR2IDv9JCU6VPUKlxh\nwm8iaKMS9KIMkGkvnyBFFH8F78E/0k87C8ibEmrqBvLiAP2F4hdtHMBSDlb8CyBvsDf2vVOKfdVc\nQqMwIqbFX8GAr2ksoIxgcJwbaMccvGwVlue2Foq3jeGqiYjSKKa9w8ix4k+yiyjvguwmmBSDFS3s\nMvr1cUJRv78ugrwFYP5RfVDki5gFpA0GJ7mBmjXlvBVhoe5bKN42hrMUiBX/MZCUmpilJqAqQp6F\nrNceZTTicvzdFwPb4mYBYSmhYcHgstxA3gIx3kLxtjFctRCBeoXii2mYWfEvY4H1sEyftG6bOOHP\nLfApVtSqBAmZUybfh2cgokb1cbOAqriBTlt01gn2Foq3jeEsRTCz4p9EWYus+4kzDMbCP0pB72xm\nO68xl+28tPcWYiz835uKDI3qw4xCFd1AuxaUl63W3IXij3Bwedk2hqsCArX5cV9ENmZK/MeZ/pnV\nXx8q+mlEMatgF0nR1xBlTOK+l1oDUe0bAGeb8yNsFpAnJTRLTYCJG2h7s8dLT5TBheLnVjn50JqN\nA1hSM1PinxdTV1FaoU91vF/gihTVqriETIrkTO/bbyTc+xP3/cucBWSpCUjjBvIvFP/w/BIHt9s4\ngCU9VvxzkmeB9qH3iosPpBH9qgh5FrJee5jRCH5PjTnn/QOzgOhRfbZgsElNQF430L4lZaFeY6l5\njAe3t3moYRvDjYWaIPPFyKiIXAJci7OYy/tV9ZrA/l8DftZ92QAOACe5jz/3HboPeIeq/mHc51nx\n95G3lbMJuTt1Rgn/pLmCshAXO0i6/1rDue+AAQCoyeiDwUW4gfZs67HcrLkLxTv1AN9ZbNo4wAQi\nInXgvcDFwCPALSJyo6re5R2jqu8G3u0e/1rgP6rqM8AzwEt973MYuCHpM6de/IuqyM1C1mrc1PEB\nT/hKFHXtlONSkEaKaFna+wu6fTwDAFt/+RGzgKq7gYJxAGeBmKc5uGgXiBkpAtIsZPZ/AXC/qj4I\nICIfAy4H7oo4/g3An4Vsvwh4QFUPJn3g1It/VTExDEapnYbCX5Z456WI64o0IENuH/dnxCzAJBic\ntjK4LDdQcGZgF4iZCHaJiH9h9etV1Vtrdy9wyLfvEeDCsDdxF2q/BLgqZPfrCTcKQ1jxTyCsureI\nbp6FEBD+XEJa9ThBzPdrct/SmB8S/IHXmAWD/UYh6AaCsEri0biB/HEArzHcIbtATOmICLJg/L9/\nRFXPL+BjXwv8k+vy8V/LHPBjwG+avIkV/zFj5OIJE2ZT4a9KHUDWXH+PLPfhMxjaaQ0bAADvbXME\ng4twA2UpCouKA8zVaizNuY3h7AIxk8Jh4DTf61PdbWFEje4vBW5T1SdMPnDmxX8Uuf+F9eRJ6/OO\nEsxxBHzL/EzDvH9vtcd+U4ioWUDKYHCamoA8RWGmcYBdCz12zEl/gZiD88t2gZiyECnK538LcI6I\nnIUj+q8H3jj8cbIDeBXwcyHvERUHCGXmxb8qpAoOm4yC8waBq+YGinOrmdyjT9hDZwEFB4PLcANl\niQMMNIazC8RUFlXtiMhVwKdxUj0/oKp3isiV7v7r3ENfB3xGVQd8eSKyiJMp9O9MP9OKf8GMtKVy\nlMsnTPirJuZpyen2CQq9951tzQJ858QEg01rAnAnlEW6gbLEAb5rh7LUhHtsY7hyqIEsFPM/r6o3\nATcFtl0XeP1B4IMh564Dq2k+z4r/CDHJ8c9lPLKK/qTm/fsJc/0E773v33d/Js0CCq4JSFMUVmQ6\nqBcH8BrDHV5c4fkHv2PjADOOFf9ppkiff3fMM4d6wp9q0j3FCHtyMNj9mdMNlKYozDQdNGgABs4J\nxAG2GsN1+gvE2IKwnIggzWotoGSKFf8cFNnaIUhp/fk9kRy3mKclz/XWQ/z5AWFPGwwuKhtoKzbQ\nKD0OYBvDWfxY8R8DY1lY3UT0NydcAOYivlfvnuvDQm40C8jhBkrqDZSmRXSRcYBmDebnjnJ4+6Jt\nDDejWPGvOkUEaoPCn0fkx2kgosTdI+7a5prO/Wc1AJDJDRRXFBaXDgrDK4VljQOE1QPsW+q5jeG2\nFoixBWEZEEHmrdtnagir4E3bI6jw0f0ogrJVH/kXcX3BuHAF3UBFxwHiAsG2MdzsUojTWkQuEZFv\nicj9InJ1yH4RkT9y998hIi9POldEfkpE7hSRnogUURI9HZSRsrnZHhTWTneyH1H36P/pzYI8oxrM\nlHJf99NoE44TVUSVGvW+sHtGIPi6Lo2+Kyjs2K1tDfd45990vr4VC/AEfb6m/ViAt69R034swF/E\n2PRt87Y7cYAeLzq1xYHveRo5t8bBc1fpFlO4NP3UgLm62aNi5B75m7QixSk7Psd9XAi8D7gw4dxv\nAv8a+O95rzEtrW5tJMs45krrzNrPJzh69l5HiWbS+eMkyg0Udy9zTecexuAGKiMd1DQOkLQ+gG0M\nN3sU4fYxaUV6OfBhVVXgZhFZEZEXAGdGnauqd7vbCrjEGSBiRBob6A0Kf5WE3YQ01zvXDDcKI3QD\neW0gsqSD5o0D2MZw5SAz7vM3aUUadsxew3Nz0e5Jan/9TGAo/No1nBFUFKm7/5jeaL/ThUZ963UR\nswCDFtFJ2UDjiAPYxnCzzcQHfEXkCuAKgF17UlU3WxIIFf6qzg4iXED+e5C4mHlRBgD6/1VJLaLz\npoPG1QOYrA9gG8MVgBS3jOOoKeKqTVqRRh3TNDg3FncxhOsB9n3PvtKG+GXOIMaS959AXzTziL1p\nHCGJhsG0Ouk655pot+vMBMJmAf3jgp/t/kx0A7k/Dd1AadJB4+IAUX2BTNYHiKsIto3hpp8ixN+k\nFemNwFWuT/9C4DlVfUxEnjI4t1RaXWEUbZ0nCe120weCy6TAa1BX3GWTsbmB0qSDZm0PnTUQHIwN\n7FuCpWZ3oDHc7kPHbBzAQ4DGjI78DVuR3gRcBtwPPA+8Ne5cABF5HfD/4KxM/7cicruq/qu812sJ\nwRX6odF+mOhW1e0Tht8VFBB57XZH4wbKURWcJw5QZCD4pAWYOxFfY7glGweYAgoxWUmtSN0sn180\nPdfdfgMGK9BbRkiS8HfG0C8obtSVUPE7EjdQxnRQkzhAXF+gIgPBzZqya0FtY7gwRJIrzyvKTFVy\neFNci0sad8pAEVgn/DEOoq4l7Nr8Mxq3sE273XA31wiKwiC6yKteaw4UhcUd62wzKwjz8BeEbW3T\n/vH+gjAPryDsxae02f/Co/2CsI3FyRS/qpFULOse82oRud0tgP2ib/uKiPyliNwjIneLyPclfd5k\nOqsiKKsR5tSR1nUTFH5AW5PVFXTA7If4+iPdQFMWB8jaGdS/bd8SNGtd2xiuQEyKZUVkBfhj4BJV\n/baI7Pa9xbXAp1T1J92F3LclfeZUif+kM9JVwEwJCH+Y6GurAkHhAMHCG211nJS8qBlKlBto6LjA\n6wbZDQBb6aBFxgHiCsLyBIL9205bhIU6tjGciFk2WjImxbJvBD6hqt8GUNUn3WN3AD8AvMXdvgkk\nNgOz4j9L5ErbHBTN1IK/WYKBiOmXEnd9Ak6sIETks2UDuSenjgOYpYOmjQNkCQRnyQQ6aQGWm9jG\ncObsEpFbfa+vd1PVwazg9YVAU0S+ACwB16rqh4GzgKeAPxWRlwBfBX45uM5vkKkV/ywpnJ2eDPhA\nk+hqr9AFXXp0qzP6T5teWYa4F/mZc3W01UXm684sYGBfdd1AafsCZQ0EZ80EAnjpidovCDu8uJ2D\nczNUEJYu4HtEVfM0qWwA/wK4CDgB+GcRudnd/nLgl1T1KyJyLXA18NtJbzaTmBZttXx+0oml7FW7\nXBGuovvHwxN7hS0DUJQbaEQGAJL7AhVZEWyaCdTuSb8gbHGbbQyXEZNi2UeAp90R/bqIfAl4CfBl\n4BFV/Yp73F/iiH8sMyv+ZdPttStZuVsEAyIfEH5tV8sAeOureqN+Nrv4TXnfAMS4gSLTQfuzgMCH\n+t07BdQD+CuA8waC4yqC8xgAwC0IY7Yaw4ls9Y/Kh0mx7CeB94hIA+ev7kLg/1bVx0XkkIh8l6p+\nC2dmcBcJzIT4z2xztywLwKSJC/iEP43o60ZxBkIW4v/xwq5LoO8GGtjmERD5gTiAh2lV8IjqAUwD\nwUVkAkX1BAoWhNnGcOaYFMuq6t0i8ingDpwese9X1W+6b/FLwEfdTJ8HcQtp45gJ8beMjyKFPs/7\ny0IdbXeRpuv7984nwQ0UjAN4swA/Y44DpAkEjyITaMccvGwVludmoDFcgUVeScWy7ut3A+8OOfd2\nIFU8YerEf6PrpKCVyagWe6kaaXL7PVHWCv6z9w2AiRvITwXjAGkDwWVmAvm3AZy3ov3GcAcby7Yx\nXMWYOvFPIiwLKHxbNoHPkrEzbfEBv/DrRlWKwRpIszY0U/AMQKgbqOg4QAUCwVkzgbIYgHZP2Lek\ngwVh09YYTigqz3/kzJz4W4olmOFjIvxlzwYkZP1Z51q2/tw9N1D/NaRKB80WB3CPi4sDlBgINskE\nSpsKamIATlvUQEHYio0DVICpFv+qt2uuUl5/kSt2xYn7KNxA0Z/RQRYaQ/srFQfof0b/kgdfZwwE\nm2YCpU0FDasFCNt20oIOFIQ9trw4HY3hJrix21SLf9HEZQ11e52+P9USjie64+gLJPOe6G+paZwb\naBriAFkygcpKBfWMglcQtm2x7cQB5lY5+dCajQOMgZlRqzDhDtuWtso3C9Pm4zchKPy9Edf+1IZE\n39wNNLDH2idSAAAgAElEQVStqDhARTOBklJB8xoAwC0IU+bn3IIw2xhuLMyM+FtykLNds1/4PdHv\njrq9dkupzXvGZ8unktoN5D8wTxygv79/KZXIBEpKBY2qBUhrAPYtab8g7ND29uQ2hrNun2pRdLpn\nXIuHNP19utrpj8JGQmMuW6FXCfhdPVHC39ksxiA05oZ/V92uQMvrod9JdAMZpYMOfGgBcYCQQPCo\nM4GSUkGjagGyGICTFtQtCLON4cbBVIp/EqbpnkVRpcBuVSlK+GPfaw7qdaXXinYDmaaD5o4DGAaC\nTSuCg62hs2YCJaWCJhkAGK4GjmoH0e4JO+Z0uCBskhrDiTi/wwlkMq86BXlEPS7Xf1YLvdJikt3T\n2RR6nXLdQLWGOkbB87sH3EAjjwN4VCAQnDYVNG0xWFw7CG/b/iX6BWGPLS7axnAjYKrEv2pSPEmB\nXanXC033NMUv/J12eauKNty/Dse1rkNuoJHEASoYCA4zAM53Ep0KWkYx2Hxd2btNaO7usuMEpzHc\n4fmd1S8IE3G++wlkqsQ/CdOMn7TvEaRybp56o/y2zhlIEv4iZwMdajSaPXod6XtMgm6gLHGAVPUA\nFQsE56kFKMsA7F4QFupKs+YUhB1eXLIFYSUxteKfJ+g7inRPSzRB0e+08xuBBo4BcJ73BtxAeeIA\nmesBAvuMA8EVqQWIKwbLawCWEV62qm5BmPLYvFMQdvKhtQrGAcT57ieQ8ubZU4aX3xyHlyZXKFX4\nw2qM7hr8wt9pSyHC772Xf5bR6zivO5tCt+s8vDRUbXW20lM3nOdOu4qtNQu05TwG2lq33DWOvRmA\nJ/Kdbv9537UW3Oc9YGsG4GVq9Xyvex03ENyKPsb3ut8SwhV2b2QffF2XRj8TLfrYhnvslmx4RsCb\nDXtZcfP1LQPR6G/bMpVNg20HdigvOrXF/hceRc6tcfDcVTYWJ8ONOglUQFnKx7yZW7bgcJ7lHD0X\nkRcf8F6rSP8fF9hK26w1tv7Rp4yg8AN0C8wCAr83ZdANlDsOYNIXyKWoQHBoJtCIagGyVgOnmQG0\nusL+JWWh3t0qCJuvWEHYBPv8p27kv1nwrNCbvhaNF1jLTJY/uAkpRum0he6m++gU8wDHkHhGpdcR\nOu1afxbQ2dyaBYBTgezVJnhN6rxZADgN7LxMoP4MYLO7taKZV9fQ6QyO8sEJBHe7ziwgZF//Z7fj\nPBJG9wOzAHdmQGdz4LWoIqrUqFOjTr3WpF5r9l/D4CwAzGYA3qAnagbg35d1BrB3G7x0VTn37GOc\ncWCNQ+eu8uRpy0wbInKJiHxLRO4XkaFlGEXk1SLynIjc7j7e4dv3sIh8w91+a/DcMGZi5O+nyFW9\nsqR7Fl3oJY35rX/+GaGbKSto+PfkDJSVTrtWfhxg4IMzBoIrkAmUthq4qBnAchNefKIOFIR1mrWK\nxgHSIyJ14L3AxThr9d4iIjeqanA5xi+r6o9GvM0PquoR08+cupG/H9NFpNoh/vxOjI8/7PgovBG+\nVzxTGlWIDYwAT/g7bU318M7rdrZmFV4cwJsFFBEHAIbiAM4F++IAnW50HCBsBuBc+OBoHuJnAL7t\neeIA8cdt/c2NYgawUIeXrSov3NPinAPPIufWeGT/zjHHAdyAr8kjnguA+1X1QVXdBD4GXF7mlU+1\n+I+T0sU+D3Hunwq7hrrtWl/MW610D88AdNu1WDdQ/7kbawgzAP61CkoJBAeMQ2gg2O/ecS7aeZ8p\nNwDgBIJffEqbM/atsf1Ah0f3rXB8ZZ4JYJeI3Op7XOHbtxc45Hv9iLstyL8UkTtE5O9E5Lt92xX4\nnIh8NfC+kczGcJFigr5xPX48xt7auUL9fIrEE36AVivQibUd/jtpNLdmaIPn1Ai6gRpNdYO/W+mg\n/nqAqL5AmQLBaSqC/VQgFTRrP6AsawLEuYX2boPm7i7zc8c43Fzk0OKYGsNJzfmuzTiiqqnW2Q1w\nG3C6qh4XkcuAvwbOcfe9UlUPi8hu4LMico+qfinuzaZy5F900NcEL/PBUjx+H78n4n6XThRB14//\n3KAbyEsrDaaDAsUHgjud2ECw9zy4b9ypoHHHOdsGU0HDZgD+VFBgoJ7GMwKmM4DdC24g+Kx1zjrn\nKM+cu32SA8GHgdN8r091t/VR1TVVPe4+vwloisgu9/Vh9+eTwA04bqRYplL8/YT5/cN89nF+/LIy\nfkrFZPYxoWuPhrHZ6iU+/O6iMAMA4fUAwFAcwHPlBOMAznPHAATjAIVkAnmPOAPgvtZOyzECFTIA\nQKEGYLkJB1aU807f4Ix9a7QOzHHw3FW6IUt5loKX6mnyiOcW4BwROUtE5oDXAzcOfpScIiLiPr8A\nR7+fFpFFEVlyty8CrwG+mfSBU+X20XiPTGpMKn3zZPwEc/sjc/3z5PZndQM16kNuB5lvjGUVriQ2\nW873346ZBTj0gBqNpvjcQDXfvi0G6gEi+gKlaQyXKxOoiJ5A/hsbY0O4LC2hk1xAC3U4a7syd6pv\nhbAJawynqh0RuQr4NFAHPqCqd4rIle7+64CfBP69iHSA7wCvV1UVkZOBG1y70AD+p6p+Kukzp0r8\nkyiysCtNymhQ1DNTwUIvx5cdHdyWZq3UdXs3W72+6G+2on8fc/PiHucYgGGcOEC9of1ZgD8OkLUg\nLKkzaGhLiNJTQRlbQ7gyDcDebYMFYSNpDCfFtXdwXTk3BbZd53v+HuA9Iec9CLwk7edNrfhv9mAu\n48wvb9DXo/QGb2lG9XHN3TwhmTCCwt9qxRkZ/x9Dj7n5rQDy/Ly4z4cDwTDcF8ikMZxpILi/D8x7\nApk0hTMxADDUOG4UDeHKNACr89BcURbO9lYIW7GN4SKYOvEPa+gWti1tsVca986oM35msdDLlK2A\ncI/5+ZpvduD9LoMjhBr1Zq+fDlqfUzptMS4IM+4M6u4dag0dlgmUqSkc5sVggWyhrAYAMGoIV7YB\nADh3ZVQFYTPe3sGgLFlE5I/c/XeIyMuTzhWRE0XksyJyn/tzZ9J1xA78DEhTvDXwud2tRa/HionB\nSZvHH3K8zMfPZmRUwbYE/KmhTrC3R6vVY7OlvhlDb+g4fz1AsCDMed/ogjCTQDAQHQgOywRyg7yR\nTeH82/LWAvjaQUD6IHD4saMNAi/UnVn/gZWqFYRVi9z/pb6y5EuB84A3iMh5gcMuxclHPQe4Anif\nwblXA59X1XOAz7uvY2m1atxzVPoZPmEpn94IIWmbR1GVviMl40hE6tOT/ePP7IEtYXeebxmAdltD\nDQAQWhDmrwiG5IIwKD4TyHve32fSFTRDMZi/HxCYGQDTjqCjMADgBIJfeFKnXxB28MBqsQVhns8/\nf4XvyCliiGZSlnw58GF1uBlYEZEXJJx7OfAh9/mHgB9PupB2q8bDDy1xz1HhWE4XdpxBMGnvHIU3\nPe66LRmD7R+Cr1VKMjAVruTNSzCn35/nv/W813cB+Q1A8LgiKoLBrCWEVx2cOxUUog2Arz1EmlqA\nsIZwkK8ldFoD4JHWAOzdprxkd5czzzrGC/atT21juLQUIf4mZclRx8Sde7KqPuY+fxw4OezDReQK\nr1xan3uW5+6f4957VrjrSJ2nNraEs4h8/ywERT0z3sghzag+62gjzDAk9PSXZvVmDXEFYB5xGUJ+\nPAPgvK//+da/kH/h+J4vBJOU7RSXLeVcZMq/HZPjC8gWC4p8FsIMQJCwVhBb55ttW246cYD9ZzgF\nYcf2nZD1kqeGajhnE1BVBUL/OlT1elU9X1XPP6G5xJ4Hj7L5oPDAvSvc+1SDh44PGwD/qN4T+zh3\nUKd/jK/S1N3WDuzz/P7+hV2iRvWpR/9+A+BNJV1j0C8xDxoJ3zHU3X2euM81twq93G1910/IPhoN\nJzUR1+8/5zy8GIA068iC97yGLDS2ns8759bmnQBpva405pRaw3k0mj3fc6U+5z4aSr3pjgKbwvy8\n9J/PzddoNoVmU5ibF+bnawPHNZrSb/EQPLfqGNdTxAm9wdKd40oUyLr+RR4W6nDmkrJvj1MQVhQq\nYvSoGkX8BhLLkmOOiTv3Cdc1hPvzSZOLWVhvc+oDz1K/v8N9d+/krm8vcPdR6fv/TQyAf/Sf1wB4\nRqAUA+C9NjUAjbloA9CoZzMAkGgAZKHRDwJ7BgDoGwDnEh0DsPXc2e43APVmry/inrjPuYLvNwDz\n87UhsQ8agzA282YMpCDYDtqIYK+fIhlRP6g0WXBx2XVhM4WwbcEsv4U67F10AsGzThHin1iW7L7+\neTfr5xXAc65LJ+7cG4E3u8/fDHzS9ILq7R57HjzK0oPf4aH7VrjnoUXuOSqsuYOkURoAYHQGoDEX\nbwC812EGAOINgG+fZwCcR7QBkIX6lugXYACAvgEABgyANwuYm/f21YYMxVQTZxjSCHvQ75+TsBYQ\nScTV0WQpyAzi1AMU1Q5A6dE1elSN3CFow7Lkm4DLgPuB54G3xp3rvvU1wMdF5G3AQeCn017b7kNr\nbDvW4nBnJ+12jef2rnPeri6rvmC/v6DLy/33tvlrAbxtXssHf96/V/i1db6zz7+8o5f7H9XKIXPL\nh2DVb2MOwZ3OxxzTZ47BgiFfvx/ZdFsNB/dttp0YQKfTnwVoq+sYAP/fRrvbnwVou+e6gbaSyvsL\npbS036rAqZX12inUIv5Ah6t0O211ZwH+0WJ40da40I1O3xUWyqbzHZaGV/2b4Zw8uf+m+HP/0+DP\n84/bNlcbT9PHqlJI/pFBWbICv2h6rrv9aeCivNe2/WiLM+5+mkdbK2y26nQ6x3nhSR23FNw5ZloN\nAOCs8xplADqbziwgzAB0HNGPNAAeIQaAzW5/FuA3AA4NRwSbNed5q+PMAlpOy4TGnOJcstBo9uhQ\nc5+76Zeb4s4CenTbtZARfZgBiGZu3okZOM8rGALzWj/48X5XU4JX3BWHv/CrCILuoKwomj+ZY0xU\nL/m0BBbW25xxz9M8sb7Mwc4ym6111na3OLAy3QaAzqZb/et+EQ3iDYBHiAEAp998cB8wYADAjcz7\nDEB/+0Z3S/QjDAAAc/75Qc/XWiHIYJVuq6WuMaix2er1RT2Opi9uMBWYGAavunfM+BeBjyLOMITN\nFMK2LdTNV/WbJWZC/GErDvBke5n71nbS6Ryl3dvg3BVl2f1fiWv8VoQBAPcPfiwGwHUDxRmAbmdY\nODpbo36p1xMNgLY6TrsC6BsAbXX7qaBRBgCc9gi9lhMHYM5Jnaw11DEA7Zr73Em1rLtxgm5H3Gyg\n4TYNDvHiMlXCn5YsbqAC8K//Ow1U0Z9vwsz95e8+tMYpDz3HwbuXeeDgIrc/LRx+fmt/XMA3KQjs\njVCigsAwnApaahDY93ogEOxl/gTPMU0FnWsO72s0jFNBvUBw2kwgLx200fSlgza2soGCgWCgHwz2\nHn5GIfxltsDuV/uGkaI2YFTpnmUGfU23ZW32OI3MzMjfz84n1mm2OjzZWmb9eJPWvjU2dvbYvzQ4\nsg8b7cfNAJxtzkg/agYA9N1AY50B9Le7X4o3I/DPAMJcCN4MoOsf9ftjAg0n4OzNAHyBYG8GEBUI\n1nbPMQARgWCTOEDYeMZf7JVG8EeRIaTtbnUK5Ap2B4W1fE4iLuhbtN+/CFQn1+c/s3Zw+9EWZ9zz\n9EBB2N3PyVAaaLsnqdJAnW2jmQF0e+18M4DgcXG1AFBIKqjM1/ti158BeLMA77k7e/AKwpzLdArA\ngMSCMH89gHO8pHr4Zw5egdnEYlDoNUROl4zX5iENaRdE8jDtzFtUgLdMkhpk+o77XhHpiMhPBrbX\nReRrIvI3Jp83kyN/j3q7xxn3PM2jmyvc19rJ86cfY2PPBvuXnThA1iCws62cGQDQN9nesf3X4opq\nX9jdGw1k/ITPAEJSQYMzANNUUI+EQLA3A8gcCE4dBzCj0ZSxir634PsA48jwybjYS9GYZAP5yZoy\nmgVF+wO0PPiaXF6M0+bmFhG5UVXvCjnuXcBnQt7ml4G7AaPGRTM78vez58GjnHjP8YGCsCc3nH1Z\nC8GcbdEzgKh2EHEzgJG1g/Be1xtuJlDIDMB9LfX6VhwgsM9LURyKA7jPpVmPrQj2t4SA5IKwqDhA\n2sfEjfYncCEej6xtHvIUe1XU72/SIBPgl4C/ItDxQEROBX4EeL/pB870yN+PFwfwCsI2zjpGe1nZ\nu62cGYB/n+kMAHKs/+sf3bu/9dS1AB7BbJ+kTCD3swYygfrbhn3eaeIA/oKw6DiApSrpnR4mGT/e\nIi+mmBZ7jZFdInKr7/X1qnq9+zysyeWF/pNFZC/wOuAHge8NvPcfAr8OLJlejBV/H15B2BPHl7m3\ntcL66cfZOKnD/iVNNADAwLYyDAAw3loA01TQkH15AsHehZkUhHm3UAaeW8kzMJb0ZKn8rTaa5n6O\nqOr5OT7sD4HfUNWe+BrFiciPAk+q6ldF5NWmb2bFP4DXGO6Jza2CsM09Lc7arkC0AQjbVqQBAEZb\nCwBDsYJMmUC+fZ4B8EhqCeGQPw7Q3cw/8qvP6XSI/thy+8vL+JmSYi+TBpnnAx9zhX8XcJmIdHBm\nCD8mIpcBC8CyiHxEVX8u7gOt+IcQVhB27BS3IKxgAwCEVgMHDQBQ3VTQQN+fAQOQ0BMI0lcEQ3xB\nGMT1BcqGX/i9rCNLsaQN7OahKL9/ge0d+k0ucUT/9cAbBz5L9SzvuYh8EPgbVf1r4K+B33S3vxr4\n1SThByv+sew+tEZzs+vOAOpsdNc5d0XZvZDeAAAD1cCeARg8PtoAAImZQOUZgMFYAVBYJlCaimD3\nxMz1AEWQVvj9Rq50Ot3h7zny2NHEAIpy84zSMIwDwwaZhWLFP4GdT6xzwvFNHm2t9AvC9u3ssX+J\nVAYAGGoHkcYAAGMuBkvRFdS0JxDZA8EO0XEAZ+9WHKAsvJoDoJ+JZKHf3dPs2OQeP2GYBnjLDfqm\n8vnHv1NCg8zA9rdEbP8C8AWTz7Pib4DXGO6R9k4e6KzQ2bfGZq/DgR2jMwBA5mpgwKwWwPfaqC10\nWCaQR8pAsEdhcYCAG6gsJl74C44BFJ3rnzbjx2KOFX9DvIKwJ9eXBwrCDqzAjrn8BgAotCMoMFQM\nlqstNJhlAmUMBJcRB4AtmxZHr5MsLnHunokVfh/aaW3VfmQgi3tnHA3eig76qjLyeyiK6XWilcTu\nQ2sDBWF3PCMcWo9fEzhsW9pVwUZWDBbyOrIpXNL6wLDV9sEtCIval1QQBuZLRAbbQiThtYqIe4TR\nmNPRC3+ZSzmC8QpeRSzeHofJgu5Jx5u2fphV7Mg/A/3GcOvLWwVhPdi3lG8GANEtocGsHQSUWQuQ\nIxA8pjgAEO6WKpma4SA6dVM304BuXjx3UESLhzxMV66/ZopXVAEr/hnZfrTFCetOHKBfENZ1CsL8\nlb/eaD9qW9EGAKhOINgjriLYo+A4AATcQCPEE/7+LMa3jrFlPFSs0rcS2L/GHAw0hlvfyWZrzS0I\nc+IAaVtCe26eqIZw3r7KFIMlBYJNKoILjgO4HzKcDjpigsKf7twJaEFZEnEpnabpnqMU+p7KxKag\nWvEvgD0PHuXZ9UXua/kLwuCkhWLXBPDvK7oWANJlAkEJgWDTegDSuYGSyLPgSlwefxbhn2bK6PqZ\nRegrXuk7Mqz4F4QXBzjY2cn68SYbZx3j3BU4bbE4AwDx1cCQrhbAPQEg/ywgzFCYVARD+jhAQl8g\n7wI8N5C2432yRRdiWdG3TAJW/Ask2BiutW+NYzt7nLfSK8QAQHG1AM6xIwwEQ2xBWJFxgDA30Ljx\n/P1b/v/Zce2YBHjjCr3y5PqX3dtfodT3LxMr/gXjbwz3QGeF5/eus9lrcWCHI95hBsDbnrcdBJjV\nAgDjiwOYFIQVGAfYcgONHyc9dXZE31JtqvFfMWX4G8MdbC3T6fgLwpxjyigGA6qZCjrmOEBVSBT+\nuZj9o17Fq+KYdvcsG1UmtgLZin+J9BvDrTuN4dpnrHPm0mAcYJS1AJA+EwhyBoKDx40gDuAxHAdw\nt48h2jeSEf+oagAMSdPfZxTYdM9BrPiXjL8xXLtd47m967R3ddm3VLwBgPhUUEjXFhoKCASPMA4A\n4W4gbQ+KfVVcL/2F7Gc4tTOOcYzk09IDm+ppiWagMdz6Cp3OWr8gDOJdQDBcDOZsKycV1D0o8thK\nxQH6x06mGwh8wh/n8plixtHfx+JgxX9EBBvDbbbWWNvd6scBoqqBoZhUUEjOBIIxBoLj4gBErA+Q\n0g1USZJEv2HwL2rjAUMkuXgKm/ypDMUeJoXJnK9MMF5juPvu3tlvDPfUhgxMb70/2rBtnYFtzq/P\nH3AKawrnEdcUzt8YLrgv7PVAU7iohm+NOaQx7zSGizsO4hvDua+lXneaw/WbwQUbxTWQee9R32oO\nF/UYF1W4hgnFc3sObpuOBm4icomIfEtE7heRq0P2Xy4id4jI7SJyq4i80t2+ICL/S0S+LiJ3isjv\nmnyeHfmPgbDGcE5BWHgqaNgMANKlgkJ8JhCk6wkEvkBwGXEAj6g4QBo3UCsiwFtB8e13MB3lCmCW\nzDg+//wjfxGpA+8FLgYeAW4RkRtV9S7fYZ8HblRVFZEXAx8HzgVawA+p6nERaQL/KCJ/p6o3x32m\n/QsbE8HGcP6CMJNaAEiXCgr5M4GA4iqCs/QF8pHWDTRJ9IU/weXTb5FtmQYuAO5X1QcBRORjwOVA\nX/xV9bjv+EXc/AZVVcDb13QfidMhK/5jxN8YLlgQNl/XkWUCgVkgeOxxgLj20B4J2UBZyNr7J9fo\n3S/8QSNoffypqFDW0C4RudX3+npVvd59vhc45Nv3CHBh8A1E5HXAfwV2Az/i214HvgqcDbxXVb+S\ndDFW/CtAvzHcmtMYbmPPBvuX4aSF9MVgkC4TCEoKBEO+egA/ed1AUXTMRH0kLpioUb4V+kqjmqq9\nwxFVPT/f5+kNwA0i8gPA7wE/7G7vAi8VkRV3/4tU9Ztx72XFvyL4G8NttuocO3V9IA5gmgoK6TKB\nIL4lBJhXBEOBcYA0bqCoqmD/LCAMk0yacRF2r0UWcQVWbcuzhGPRmLZunjIOA6f5Xp/qbgtFVb8k\nIvtEZJeqHvFtPyoi/wBcAsSKf65vWEROFJHPish97s+dEceFRrGjzheRVRH5BxE5LiLvyXONk4TX\nGO7I3Qvce88KX3+yzoPHxJfBI4VnAsUtDxm2RKS3z9veoxt6bKYlImOOM10mMjIbaNIeQQKZTan9\n/cHvNem4CSVp6caiM4OUrf/LpEcCtwDniMhZIjIHvB640X+AiJwt4vxjicjLgXngaRE5yR3xIyIn\n4ASN70n6wLzm9Wrg86p6Dk4kOiw9yYtiXwqcB7xBRM5LOH8D+G3gV3Ne38SxsN5m3zeeQu/p8cC9\nK9zxeJPbn6lxvO1b6zfBAATXB271JHJ9YCDUAMStEextz7VGcNp00MacYwDqjdh0UGBwreBGPf1j\nlKS5pjTC73039YyzmyQjYSkUVe0AVwGfBu4GPq6qd4rIlSJypXvYTwDfFJHbcTT1Z9xg7wuAfxCR\nO3CMyGdV9W+SPjPvb/hy4NXu8w8BXwB+I3BMXBQ79HxVXcdJVzo75/VNLF5juPtaO3n+dK8xXI1d\nC25QN2UmEKQLBEP82gBgHgeAsL5AJVQF+xjIBgoS5QbyqFiPnIEMpiThLzpGMOEzgbJRlcKCyap6\nE3BTYNt1vufvAt4Vct4dwMvSfl5e8T9ZVR9znz8OnBxyTFwU2+T8mSWsMdy5KzVOWiguEwjSB4Ih\nZRxg3NlA3UCe/wQGURNFv2oGy1J5EsVfRD4HnBKy6+3+F27hQWaHWtbzReQK4AqAxRNWs358ZQk2\nhts46xj7l2HfUjE9gWA4EAzRBWFQcj0AGbOBEprDFcGQEclBYTn6ozJk1g0USlFFXuMg8Teqqj8c\ntU9EnhCRF6jqYyLyAuDJkMPiotgm5ydd3/XA9QCrO/dNR513AH9juLvWT2R9n9MYzisIy9MTCIYr\ngiG6IAziO4NCinoAGBb2ktxAsSS5gVzGVlSVJPBe0HsE9OM4FSCsp7/FnLzm/EbgzcA17s9PhhzT\nj2LjiP7rgTemON9CeGO4zV6Ls7ZraBzAtCUEDFcEQ7aCMEiOA8AI0kEj1gigE9XmYfLcQMBwb6OK\nUaVe/mWhOrmLwecV/2uAj4vI24CDwE8DiMge4P2qepmqdkTEi2LXgQ+o6p1x57vv8TCwDMyJyI8D\nrwn0uZhJvDjAfS2nIOzYKRucu1Jjz7biAsHO+xQfB3DOz1YVDBmLwmBrZF+GXzzKoMRR5HVUVPgt\n1SeX+Kvq08BFIdsfBS7zvR6KYsed7+47M8+1TTNeQdij68usn91k46xjbHRr7FsaNACQrSIYiosD\nAOnXB4BhYS+4RXQkhi6gPqMKtKa5h2CaZwkZO0kLss8KPWAzfN35ymOjOBNKaGO4tgzEAbJWBA+e\nEx8HgHxuoNB00LKrguMEfhJH0mHXHCb8wXqLijKD1b1jwYr/BBPXGG57s2cUCIZ8cQAIrwcAMzeQ\nf1ZQWjZQN+B7LkPg08wYyjYwpiP+Alo79H+PlonDiv8UENYYruiCMOd9zOMAEL8+AGR0A2WdBaQl\naDCSGNWMwfResozuS5oRlOUiqkKmzywHfC0VIbwxXHXjACN1A0XR2Yzel7UtwrgpQsBHmNNv1+8d\nHxP6F24Jw2sM92hrhfXjTVr71mj3YN9SfEUwVCMO4J7YP78wN1CUwBQ90o0zJnGMwgcf1TgvjhTX\nNasBYAXaNuBrqQJeY7hH1504QKfjFITtXxpNHACypYP295VVFJaWLCPSUQdS095XGuHP8zmWicD+\nVqeUgcZw68dYKzgOsHVOuW4gyFEUBvF/4XEj9WkQvDBjlOO+TKp74wLA0xgc7ilsTGt7B8vkEtUY\nLlgQBunjAIPnlOcGMi4KA4ZXCvMZgbCRfFEj9azunjiKnkVMgzGzFIr9i5hywhrDHWvXcscBoGpu\noKtzMiIAABJUSURBVJhZAKQXvzRunyrkzWcU936aZwqX0Kz698NQbJGXpcIU0RgOyJQOCuHLRMII\n3EAQu4B73zCEMWUj5dhc/oyxgFgXT8q+Pp7b0E9FFl0fGSJyCXAtThuc96vqNYH9P4uzXooAx4B/\nr6pfF5HTgA/jtMRXnIXhr036vOn6C7dEkrYxHMTHASB7OiiU6AaC4WAwhLpm8hQ3xRqOkil0vd0o\n4S9xNlPmzGHUBqOnsFFAtqpvxcOLcdY8uUVEbgz0M3sIeJWqPisil+J0M74Q5y/+/1DV20RkCfiq\niHw2qReaFf8Zw98Y7vn1YxwzjAPAeNxA7satfVlqAiCdmBn48Ku04HkkJvecNNqvmBtoils/xK14\nCICq/n++42/GaY+PuyDWY+7zYyJyN84iWlb8LYN4BWFPri/34wAb3RqnLUbHAWD0biDIWRMAW7OA\nMEaV/19VRuDamvb4QMo8/10icqvv9fXueiQQv+JhGG8D/i64UUTOxFnS8StJF2PFf0YJbQy3sxcZ\nB4DRuoH621IGgyFkFgDho/lR5f+PiqLEPMQVlDfNM/z44e9yikf2AEdU9fy8byIiP4gj/q8MbN8O\n/BXwK6q6lvQ+VvxnGH9juLvXV3l+39pAYzgYjxvI2ZYxGBw2CwDz0XySy2fSA8Gm30PEfWYdyU9j\njn/BxK142EdEXgy8H7jUbYnvbW/iCP9HVfUTJh844X/JliLoN4ZrbTWG278cv1A85HcDwYiCwWGU\n5fIpI+c/SFluqYjvKmzUP0oxbyUEcce5hm6Bjd3iVjwEQEROBz4BvElV7/VtF+BPgLtV9f8y/UAr\n/hZgsDHc+vEmx846xrkrcNoiRumgkN4NBMNFYWDeItrduLUvLiU0SJoR/KTl/Acpuao3yCws31g0\nUSseisiV7v7rgHcAq8AfO3pPx3Uj/W/Am4BviMjt7lv+J3cRrUis+Fv6eI3hnji+3I8DtHd12bfE\nkNgH4wAwWjcQpJsFJBFqIDwm3dVjgMl35BlV/6g/rRso7PiwHP8ksrZzLnqW0FNobRYTpwhb8dAV\nfe/5LwC/EHLePxJf0hLK9P9VW1LhFYR5C8R0OmustTsc2KHM14tzA8HogsF+aoQvu5hlhBtrMMZM\nlvuJwv8dpnH35Mn0KTJff9aKxUyx4m8JxWsMd+faLp4/x1sgBnbMFeMGAkYSDPa2eZgKUpSR8FOk\nwI6LNAI9a03bjFCh05nMDCUr/pZIdh9aY9uxVn+BmPYZ65y5tBUHgOLcQP79UTUBkC4Y7D8+Cr9h\n8JM3P93EeBRFWbn0RQl62PtkWcQlTRroOIPAk4IVf0ss/gVi2u0az+1d78cBYDj3v0w3EKQLBgf3\nh5FG4KIMRRhVL27KK+xR95cn2Js3x38c7p2ewmZrdIa+SKz4WxLx4gBPrC/zwPrgAjEQ7gbybx+1\nGwgGZwFgJsZJo/UyXRtxhmUcLhVT4+W/tjKyfJLSPC3ZseJvMaLe7g0sELPZWmNtd2sgDgDFFIVB\nscHgoXspyNVTpGtnVAJf1IwkSfTDPqeoTB8/Y3fvqNDpTKaBsuJvSUWwMZyzQAyctODsz+IGgvJn\nAX5MhTbJzVN1105W0hiiMkb7Se6brGmelkGs+FtS018gZn1rgZj9y85C8WGj/aKDwZB+FhBF0DD4\nyTIaTxMXGBVFzyrSCH5RwV5L8Vjxt2TCv0DMva0V1k8/3l8gJir1s6hgMJBqFuAR5qYxFbI4IzHw\nflOQ8phnNJ+1JiAp2FtEwze/i6iglgz0ejbga5lB/I3h7lsfXCBmh9vlIG9NAMRXBkPyLMAjyU0T\n58PPI4imhqNoymqzYOLuCgp/FhdZ1mCvX+RtgVc0VvwtuQk2hjt2yoYbBwgX+zg3EJQzC/BTRMA3\nTbB3knrd5I1jpIsXFLf47bhEXlVot22Rl2WGCTaGC4sDQLIbCPKlhEJ4YZgfE4EaVbC3yIyhUQWg\n07q2Bl1B8YYwjYiPPdNnwrHibymMYGO4YBwAkmsCvO1FpIQCA0YgSKybp6TiryBVyhgqIl5hXB/g\nG/Wn8edXLdNHbZGXxeLgbwx3sLPMZmvdFwdINwvImxIKDBiBIEUUfjmfMflB3jRkMVj+EX9ad8+U\nr+41Nqz4W0qhXxC2Fh4HgPSVwZBtFgDx7oYww+AxzsKvUVLkDCTuuzYV/iIqe/0upLJcRGobu1ks\nw/gbw3lxAGeBmHiff1RlMGSbBfjxjIEfk7zzOAPhp0punLLIkqdvIvpZg7ZpRb6oNM+iEZFLgGtx\nFnN5v6peE9h/LvCnwMuBt6vqH/j2fQD4UeBJVX2RyedZ8beUir8xnH+h+P1LGuvzL3IW4CdOhMIM\nQ/+8DIJnajCqQJGFV2ncOln9/VUJ9hbl8xeROvBe4GLgEeAWEblRVe/yHfYM8B+AHw95iw8C7wE+\nbPqZuf46ReRE4M+BM4GHgZ9W1WdDjgu1aFHni8jFwDXAHLAJ/Jqq/n2ea7WMj4HGcJ0Vnt+7zuae\nFgd2kJj5U9QswE/QIHiYiFacgRh6vymtZM3fj2f4O4wa9c+Qv/8C4H5VfRBARD4GXA70xV9VnwSe\nFJEfCZ6sql8SkTPTfGDeb/Zq4POqeg7weff1AD6LdilwHvAGETkv4fwjwGtV9XuANwP/I+d1WsaM\n1xhu/u5NDj64zF3fXuBrTwtPbQwW5Hgi0OpKX/CjpvWDI0HnT7nVk/5MwP9+flrdWuwjjq72Uj8m\ngaLvx/T7DfsdTVInT+0Jm6260QPYJSK3+h5X+N5qL3DI9/oRd1tp5J2XXg682n3+IeALwG8Ejomz\naKHnq+rXfOffCZwgIvOq2sp5vZYx4zWGO7i+zGarzrFTncZwuxfiZwGmhWHO9uFZQBjeZwQxGW1G\nzR7CmBQDkIaq9N6PGhiMItibgSPuguuVIK/4n6yqj7nPHwdODjkmzKJdmOL8nwBuixJ+13peAbB4\nwmq6q7eMhX5juNYK68ebtPatsW9nj/1L5m6g4PakWEAYcQIUZRg8sohfGoMxaspwr2QR+KhRf1H+\n/qoGe4HDwGm+16e620ojUfxF5HPAKSG73u5/oaoqIplXtA47X0S+G3gX8JqY864HrgdY3bmvuitq\nWwbwN4Z7oLNCZ98am70OB3Y4+9MEg73tcbOAKLIYBj9JRsLPtPmv847e434vE/NdqVLrFGLUbwHO\nEZGzcET/9cAbi3jjKBLFX1V/OGqfiDwhIi9Q1cdE5AXAkyGHxVm0yPNF5FTgBuDnVfUBg3uxTBhe\nY7gn150FYp4//RgbezbYv6wskzzaN50FQPSoO4th8JNFANMYjFFSRn+cLP57v/BXraK3LFS1IyJX\nAZ/GSYz5gKreKSJXuvuvE5FTgFuBZaAnIr8CnKeqayLyZzgu9F0i8gjwTlX9k7jPzOv2uREnIHuN\n+/OTIcfEWbTQ80VkBfhb4GpV/aec12ipOF4c4KHWCputY24cQNm9kDzaN5kFQPxIMothGDg/pZhP\nU6fJvMHZuN9LmPCb+PVH6e8XhWarGF+Sqt4E3BTYdp3v+eM4g+ewc9+Q9vPyiv81wMdF5G3AQeCn\nAURkD05K52VRFi3ufOAq4GzgHSLyDnfba9xUJ8sU4jWGe3J9mXa7RmvvOuft6rJ3m9loP24W4NHI\nEOA18dNnEcC0BmOUlJFtk9aNU8aIv8L+/rGQS/xV9WngopDtjwKX+V4PWbSE838f+P0812aZPLYf\nbXHCuhsHcBeKX1vtcGCH2Wg/artHnKBkMQx+0gZzJymd0YS8PnoTsS+yT/9mQbF3UaXerm4gP47J\nKUG0zAQDC8S0drK5b42NTsuJAzTjR/sQbQQ8/MbATxbD4Cet+FU588ejjKBrlhF98Hc4VBdQnVTO\nicKKv6WS+BeI8RaKP3NJ2b0QLfQQbRw8ooQiyiiAmWCZGIjB65iQbJaU5HXXJAl50oh/1Pn9otDc\nnEx/khV/S2Xx4gCHOztpt2s854sDwLDQQ7QryCO6sCteKOKMA6QXvbTGYpyU4X9PK8x53Tx+f39R\nLp9Jx4q/pdL4F4g52Fqm0znO2mqHs7YrC3WGfPtRgV+PrIVdeY1DkGlPYcw76jYV+3Gv1yuqNKzP\n32Iph4X1Nqc+8CxPbC47C8XvW2Nj91YcAJJnAR5xIp2v4jed8KQ1FlWhaFdKpirgkGuwcYD0WPG3\nTAReY7gn28tDcYDlJomzAI84UchqGCB94dYsiVOeEbnJ95T0/mWmeFqfv8UyIrwFYoJxgNV5xwBA\neEDYI6trJ2mknkbgqlrhm5ai3SxZDGLaa7D+/i2s+FsmjrA4wJluHAAGjUAVff7TVOGbhnHEASzR\nWPG3TCT+OIC3ULwXB+gfUx8WgiyuHZORehrBmVR/fxxFCm5RcYBRVPRKT2m2JnPRHiv+lollIA7g\nLhTf7m304wAb3a1ZgEeWPP8q+vuLNCDjGimXGQsIE37r8hnEir9l4ukvENNZ7i8Uv39ZWZ0fFoGg\nMfAYhb+/SF9/1V0bRbm2stynyYi/qFmBKDbV02IZJ/3GcK1l7m2tsH76YBzAI+qfPsooQHH+/jyC\nOK4g8ajiE1O6QEulseJvmRr8jeH8cYC9i9oX97mIrgpZjIKHiXDlddNMepC4iJlKFpEPc/UUaSxE\n1aZ6WixVwL9AjJMJdIz2KU4cYKEeLgZRBgGShcLEOEA28atyYLhMt1MecU7y61d5liAilwDX4rS+\nf7+qXhPYL+7+y4Dngbeo6m0m54Zhxd8ylfgXil8/3uS5vevs29ljqalDgh0lGHFGwaMo4xBG1f36\neShChNMGcEsRfqWQls4iUgfeC1yMs875LSJyo6re5TvsUuAc93Eh8D7gQsNzh7Dib5la/HGAzVad\njhsHWJ0fTAeNIk5cTAwDpBOcPIaiKpQhsFmzdKo8yg/hAuB+VX0QQEQ+BlwO+AX8cuDDqqrAzSKy\n4i5/e6bBuUNMlfg/c/ShIx+54U0HR/Rxu4AjI/qsUTKN9zWN9wTTeV+jvKcz8r7BM0cf+vRHbnjT\nLsPDF0TkVt/r61X1evf5XuCQb98jOKN7P2HH7DU8d4ipEn9VPWlUnyUit6rq+aP6vFExjfc1jfcE\n03lfk3ZPqnrJuK8hK1Ml/haLxTKhHAZO870+1d1mckzT4NwhpnM5IYvFYpksbgHOEZGzRGQOeD1w\nY+CYG4GfF4dXAM+p6mOG5w5hR/7ZuT75kIlkGu9rGu8JpvO+pvGeElHVjohcBXwaJ13zA6p6p4hc\n6e6/DrgJJ83zfpxUz7fGnZv0meIEji0Wi8UyS1i3j8ViscwgVvwtFotlBrHiH0BEThSRz4rIfe7P\nnRHHXSIi3xKR+0Xk6qTzReRiEfmqiHzD/flDU3BPqyLyDyJyXETeM6J7Cb1G334RkT9y998hIi/P\nen+jpKT7+ikRuVNEeiIylvTJku7r3SJyj3v8DSKyMqr7mSpU1T58D+C/AVe7z68G3hVyTB14ANgH\nzAFfB86LOx94GbDHff4i4PAU3NMi8ErgSuA9I7iPyGv0HXMZ8HeAAK8AvpL1/kb4+ynrvg4A3wV8\nATh/lPdU8n29Bmi4z9816t/XtDzsyH+Yy4EPuc8/BPx4yDH9UmxV3QS8curI81X1a6r6qLv9TuAE\nEZkv4frDKOue1lX1H4GNsi48xTV69EvgVfVmwCuBT31/I6SU+1LVu1X1W6O7jSHKuq/PqKq3fNbN\nOHntlpRY8R/mZHVyZwEeB04OOSaqzNr0/J8AblPVVgHXa8Io7mkUxF1j0jFVvr+y7mvcjOK+/g3O\nzMGSkpnM8xeRzwGnhOx6u/+FqqqIZM6FDTtfRL4bZ6r6mqzvG8Y472mamPb7myZE5O1AB/jouK9l\nEplJ8VfVH47aJyJPiMgLVPUxd/r5ZMhhcaXYkeeLyKnADcDPq+oDuW/Ex7juacSUVQI/7vsbeWn/\niCjtvkTkLcCPAhepqjXWGbBun2FuBN7sPn8z8MmQY+LKqUPPdzMS/hYnsPhPJV17FKXc0xgoqwR+\n3Pc38tL+EVHKfYmzcMmvAz+mqs+P6mamjnFHnKv2AFaBzwP3AZ8DTnS37wFu8h13GXAvTkbC2w3O\n/y1gHbjd99g9yffk7nsYeAY4juOXPa/kexm6Rpxsoyvd54KzsMUDwDfwZblkub8R/t2VcV+vc38n\nLeAJ4NNTcl/348QDvP+j60Z9X9PwsO0dLBaLZQaxbh+LxWKZQaz4WywWywxixd9isVhmECv+FovF\nMoNY8bdYLJYZxIq/xWKxzCBW/C0Wi2UG+f8B+dVD8sNSwXQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Flat Top window')" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwbVtd3/n5zddaZ784nAsXkHsVFSwDtNFo0E66uo0G\npCIGoxUkGtGK0SZKKx00onYI3WIXRqNt+UKiiHRUNK22RLB8P6LtA0QsBEpFcpH3fZ3jft295mv0\nH2OOuX5zzDEfa599PQf2+lbt2mvNx5hjzjXm+I7fW4wxbLHFFltsscVFIbrVHdhiiy222OIjC1ti\n2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYtJiEi\nrxCRf3ur+3GZISJfIiK/fIHtfbmI/M5FtbfFFhpbYtkCEblHRB4SkWMRuS4irxeRu91+Y8zzjTHf\neov6dssnwKYPRkS+29v+7Gb7qx/uPhhjftwY8wx1bSMiT3y4r7vFFufBlli2cPg8Y8we8DjgQ8D3\n3uL+zIaIxH8Dl/lL4DkikqhtXwb8+d/AtbfY4sMKW2LZogNjzBnw/wBPdttE5NUi8rLm86NE5BdE\n5IaIPCgi/1VEombfPSLyTSLy9kby+VERWap2niUib2nO/f9E5JPUvrtF5GdF5D4ReUBEvk9E/hbw\nCuC/b6SpG6o/PygibxCRE+AfiMhvisi/VO11JJ1mhf/VIvIXInIkIt8qIh/f9ONQRH5aRLKRR/NB\n4K3A5zTtXQP+HvA6fZCI/GcR+aCI/LWI/LaIPEXtu0NE/ktzvTeKyMsCfXx+08cbIvL9IiL+/YjI\nbzen/EnzXL4oJNlpqaa59uuaa/8h8PHesZ8oIr/S/KZ/JiLPGXkWW2wxii2xbNGBiOwAXwT8/sAh\nLwLeCzwaeAzwzYDOC/Ql2Mn344FPAP63pt1PAV4F/M/AHcAPAa8TkUUjcfwC8G7gCcDjgdcaY94B\nPB/4PWPMnjHmqrrOFwPfBuwDc1VlnwN8KvAZwL8BXgn8c+Bu4KnAP5s4/zXA85rPzwV+Hlh5x/wi\n8CTgTuDNwI+rfd8PnACPxUo7Xxa4xrOAvwt8EvCcps8dGGP+x+bj326ey09N9Ntd+wwrkf6L5g8A\nEdkFfgX4iabfzwV+QESeHGhniy0msSWWLRz+30Yi+Gvg6cB3DBxXYCenjzHGFMaY/2q6Cee+zxjz\nHmPMg9iJ303WXwX8kDHmD4wxlTHmx7CT8mcATwM+CvgGY8yJMebMGDNFFj9vjPldY0zdSFlz8O+N\nMYfGmLcBfwr8sjHmXcaYv8YSwqdMnP9zwGeKyCOwBPMa/wBjzKuMMUfGmBXwUuBvi8gjGvL8QuDf\nGWNOjTFvB34scI2XG2NuGGP+CvgN4JNn3tsg1LVf0jzfP/Wu/SzgHmPMjxpjSmPMHwM/A/zTm732\nFpcTW2LZwuHzG4lgCbwA+C0ReWzguO8A3gn8soi8S0Re7O1/j/r8bixhAHwM8KJGxXOjIbG7m/13\nA+82xpQb9Pc904f08CH1+aHA972xk40xDwGvx0phdxhjflfvF5FYRF4uIn8pIofAPc2uR2ElvMTr\nd+gePqg+n071aSZC1363+vwxwKd7v82XYCWrLbbYGFti2aKDRpr4WaAC/ofA/iNjzIuMMR8H/GPg\nX4vIZ6tD7lafPxp4f/P5PcC3GWOuqr8dY8xPNvs+2jOMt5cc6qr3/QTYUd8frknxNVh14H8K7Pti\n4NnAPwQegVXrAQhwH1ACd6nj9bO6WXTu31sUuGv7v43De4Df8n6bPWPMv7rA/m1xibAlli06EItn\nA48E3hHY/ywReWJjVP5rLAHV6pCvEZG7GuP2twBO//8fgeeLyKc319gVkc8VkX3gD4EPAC9vti9F\n5O83530IuGvCsA7wFuALRGSnMVh/xfmewCR+C6sqDHnN7WPVew9gJ/n/0+0wxlTAzwIvbfr4iazt\nNefBh4CPU9//BHiKiHxy4zDx0pFrP5mufecXgE8QkS8VkbT5+7uN88QWW2yMLbFs4fBfROQYOMTa\nRr6ssUX4eBLwq8Ax8HvADxhjfkPt/wngl4F3YV10XwZgjHkT8JXA9wHXseq0L2/2VcDnAU8E/grr\nHPBFTXu/DrwN+KCI3D/S/+8GcuyE+2N0jeYXBmPxa40NycdrsCqm9wFvp+8A8QKsJPNB4P8GfpK+\n8X8uXgr8WKO6eo4x5s+B/wP72/wFfYeGF2DVah8EXg38qLqnI+AZWKP9+5tjvh1YnLNvW1xyyLbQ\n1xYXBRG5B/iXxphfvdV9+XCAiHw78FhjTMg7bIstPmyxlVi22OJvCE2syCc1qsCnYdV1P3er+7XF\nFheNkLF0iy22eHiwj1V/fRRWZfcfsLEwW2zxEYWtKmyLLbbYYosLxVYVtsUWW2yxxYXi0qrC7njU\nvrnro69RGaE2UBuhUv/LGgoDVSXtX10LpoKoNogBI7YtY9M5td8HEa0PEDGIrP9H0fq73b/+7GCM\nYIz9b79j+2T6+6g9SbS5trueDy24hvaHjgsdr9t39+S2+8e7/laVqHvp9t97BIjqgBFZP/NIOtcw\nRtbPIBKSpG7+DKnAIoZFXJPFEYmkUOZQNA5a6QKSlNIUrCrDQ2XUjoe6tv0sy4i6FnU9utd2UH3w\nf/Pe7zZybBT1n59+rnqbbreupdNPH/6Yace1ep5+2/59+uPUhz+u9bgY6pMb10Cw/1Pn6+fpumcE\nJKYzPgHi2CBi2n4lEcQCidj/IoZ3vvWe+40xjx690Qn8d3KHOaaYdew9HP2SMeaZN3O9W4lLSyx3\nffQ1fvrX/y0nZcRxYZPjFjUc5jHHhXBYwL1nwgNncP1GxvUHF5yepJwep6RHJXFRd9qr0ohiMZFk\nN1u/DUlaky0qksT+XywqktS2mWV15xiAfBVTFhF5boXMsohYrWK7vYzIV3G73Z6wftnTVWX71lzf\nXWe0q811Ndw19HV0W+5+3OdF00bovlwbeR5xcpySr2JOT9J1/wP34KPzvDPptOvOTVcVxX7CwdUV\nj3ncKY+8mvP4Xbhrx/AJV3M+/iDiEdljSI+uY+69BwB57BMpdvd5cPVe7jmK+fMbGe89FY5yuO8h\n4fQ45fQk4egwoyyjzrPp9F9B/97u+ejfTvfZ3YseHw4L9XnsuZ6eJJ3xMQR97XRVERf1eiyrZ6ox\ndI9D9+3uNzTWhxAa36ExN3SuHju2AxL8DRx29wqyrGZnr2A/M+xncOfScJDCXmr4go/70ndzkzim\n4KXx02Yd++XVrz3qZq93K3FpiaWspUMqAGkEi9hQ1kJew0FqKCphtVe0E3q+iikWcY9Y9PdBgslN\nh1yGkOcRWVZ3XmA3CQ8RyhTSVUWBnSymJoYkrUfb9fvVO795cVermMWioiyizmSgv4/2xT2r3EyT\ndm4o6ZKqmyg5Kin37GS7s1dwlBvyJayqiKI+ozYVZDuwvNLcQGa36a5EBhAWiSGfQcwaeoEwC/pe\nZsA9z6lFx9C5mlTSfN3Pgnijfrh2YP0OlLmMjvk5i5wkqYOLmrF+dM7fNWSLMkgoDifHKeWiIs8j\n8t2SfLcEhLPKkI9IfFuEcWmJpYYOqTgs4ppVJWSRsIzhjmUzSK9ZNUm+ijksFlRpFCSXKo16L9d5\n4CYJ/f28pOLQkgt0Jm0fbjLxX/qQNNTZnwuw7lO2qFpycffgVtebrHo7E9PAtf19/kR5epyxs1tw\nepxyluXcyOG4iFhVQlGfscgOYNFkRMl2qMxJQy4xy+aW0hicJkOTxZBEoFfrsCbcuRh7Ru7ZOujn\nvOkYcc/qyklBmlckRc1DuylAf7yEoIh8eVJQZHH7LtgOQbHfn2pCi47QfeareP2sByTa8MlhyU9L\nff4zXHWeV0lR2UXmRUAEknQmSW2wDrkdcXmJZcQg4qQWh/0MwLTkAnDIgkKt9IDOas8RTI9cZkot\n7eEDq9DT43TWas9XIbV9GlEzacmmJ1moVWkIRdYdUnpCcKtqRy4+ec6C/+y8ycX1zZHKlRPLBGe5\nIV/FdkVaQ14Lq0o4LmIOsoeok0cQLfZtI1FCXXbvcRnDYQHZQJfdBAh99eDgrXj7SvoqHD2RZotq\nUq2lVWxD7XRPMi2pLE8KslUJezZ7TpmuzynwxrFamGgST4qapKgp04g0ryiyRs2spLApiXYWcsPy\nuG+v8NV42aJiZ9ce56tmHRyZOHWsVbvl9p3bKzirtp6zm+LSEktVC8fNy7aIG2JwC6zKvjRupbqM\nDVlkV6yL5Iwsq9sX+PQk5axIIDeckQYncvCkl+YlywL6cg09GfikElKXhNooFvGFSFBJ2qjmMulN\nMmPt+ytmrbIBRu0AgxLTAHxSAdqJzU2EjtSyyLCI508YZxMrSG0DCEFLK9miYnevCB4/JC32jhsg\nGH+7G6d+ey0B5UKVRpRpRJVG5M2UUKYRRRZ3bHNBBMYDrJ+7P9G7Sd6R4LnIZWBx00pIAXvKkL3P\nbTs5Ttvn4kuD7M0zuE9BIlgsZi4q5xaCuE1xaYmlNPDAWcQyXhPJIjasKulIK8vY/mWRJZiDFA7S\nnJ29omfEzVexXbEHBn5QevGQZXVwFT+o2vCkn6GJrXddT7Xk9vt99F/09nvavZaeWMYmB61qWDQv\nryNnH6F2xuwyIVIBO0Ge7Vrpbv8gJ0lrDlL7my7imjQyxJIQEWNKK5H6r74jlaKCvLbXtwbytEso\nze8xNkk6UsmyujO5DWEj28wGbTgvuVNSCqzqKmkk7yKLKbKYs720tU9o+IuFkogiSyhyQ7Wyz6Id\nR81Y29krNlYFzoUjFF9S0c4CECYV987t7hUsFhVHh+tcp6vV+Rdilx2XlljyGu49c8QhZBEdQnHY\nbQZjEgnLWDirLMHsZ3BflnO0V7CzW7ZeOG6yKYgnpZd8Fd/8yxZSrQ3pnj2vNCeBuHP0ZODbBzrN\neyvgruRkeueE9PxDNoDQytpvY4hgfFIB2lX3wW7eTjhps1iwzho1saRQl1Dl9qR6uCzMqhTyPOLo\nMOt7c8GoqlOTyo5aBW+sBjonQsbrsowoi5QqjVq7ykO7aUsqO7tF7zdIkjooMTmCaa+X1rjxcN5x\nPmYjqrSqboRUOqpJT1Ipi6izbf8g79ldLgoiQracqf796wu77C3BpSWWsob3nQj7mfX+WsY0nmB2\nfxIZDrKqVY8tYutF5AjmILXSy71ncNQQzI0HF+2qp1ysVVZB6SULP3q3gnKT5qyBrdxUg6TiEYr/\nuSWYZlL0XUQ7z62MesSh7Qtz4LvoDkFfJ0QwDu75djyalCrGrrorsqxmkZhWAl3ENYvYEEls41ja\nDuZEsT1/VTV9re2iwpFJWUaUJwJ0f9/WG8rZlBqVj08qi6T5nfYKOE4hsGIeem4OoWfh/za+Cg66\nxut8FVvpmxSOyh6pOClPnzc0Jn1Du09kc8eIv2AYsyv5bvQhF+22f55btvvsrqf3O5smbCWX8+DS\nRt6XZcQDRwkPnMEDZ8K9Z8KN3Bpop/TpSWRaFdlBaqWX/cyws1uuVS5JsyrNJKwCawhg7KXRRsVg\nvMNAm4P9HjAqt9sVAQ2pYG5GwirLtfro9DhtVUrub1Mkad0+3467t6/fVxgyvo8hr+2YcGqwo8PM\nxjOtqrBUqn4Hn5xb0lb9uEiJZWjy9knFXzwkaU2xn/QklSStgxPy0PiY66wQIrnZ99X85pP2H33t\nGWrHWdfeYhYur8RSCvd96AqnewVHuyX7jd86GK5mVi1mV6uNB0sVtbYYB2t3sRNOEdO0AacnSevB\nk6S1VREEVGNtwFdSty+YllTGBnTPk+schvmQpNFZzSX15GpzSM01dOyaGPsBbH4AnF79jrULXbWI\n++6eSacNRRLuN61NBcmuPSDObBxLfda4Itvji8qqwU5PErsYaLyppvqhr+8MxABHODfotJVQdcCl\nhq96GnoOPjm3YzBZS07aWK6xs1vYAFUiskXZsU2E0AaEDvTLv3YIfvtDzirB4NMBQsnVedr7zBng\nXXxYSJ3qe2C69sYWf5tABNLkcsTEXFpiqWtpV88nxxWnewWrayvYW3uBJZHghDqfVJLIsESaicqw\n7wb6bmlX4AFX0hC5gH05jw6zjVUGGiF1TO86zQsVNOZqlYC3yl4ECGhOH3tGXi8ivtNfpc7TL/7Y\nClzvc/fciRxv2tNYlUJRGUsWDblUpoAosaQCECVUVdEQT8RZZSXZ0+O0nfDSVdVxpx2CL+E5cnHP\nWmcecJNozw15glT82I6SrhpuiFz8Z7mzW3Qm5LZJNeGG+jW0uNDX1pgirZCn4KYSbYhgdptAZz/4\nGML32PHC3GIjXFpioYTTB5PWprD27nmoOcBGWk/BSS1gSGMhq+gYZt0A9yUXF6y4UWTzTAzFpQT7\nP2If0RPAUHyEfzyMEYrpeG8BnYBS3dcpzyoH91wdMY2RSp5H7GAlkLPKRd4LlSmpqYgSWzCxpqKo\nV5yUESdFxGEhrdHejZNlYaVT31lASyxDaiE9eWlSOVWkE1oABJ9ru1NFvTfjKkQuGiHbwZB9Qp+j\n+zEUEe9nbxhK9eNP8H6fhty4/UwO7r8/ZnKPpNrxHIil8rUF2rX/IhAJZHPdjT/McWmJJaptgJWb\nCA5PtBpiTS7LuDEMqiSALv7BeZEt23fBHr+MDYeJNXq6CcK51DpyAToTn/a42RShvGWbQMc6jBk/\ndV/H8ja1JORF6oektZA6yT0fNzn6bfvXsV+8eIqBvGj5KiZPyjZAMq+tKqwyJVFkX4eiXlGZgqKO\nWzWYNtq7+3HuuWXgeY951Wm3a+durVOrFIvpBccQqbjnOUQurk9TBukp24fv0deTZtT4CI3t0LiZ\ntCkO/KYhkmnhbJlF2ra9f5B3DvEdZXxSGQsI3iKMS0ssLvBeT2ynDyYkSUaS1iySM0BatRiVtARS\n1kISmVZXD+t4lxu5VYulMWRRufZGct5iXkI98HJnld3o5HbSVy+lr1bTRBIXdeee2n0TEf/ak2dW\n7MREzEbHpbWZJEOBdCFiGYr5GXQoCKx8df9C551VYffyWdCxQ9rlVanFrMfYtDu5dfeNghPY0LMN\npTVxzyuUbDSUUmYxQi6OCHTgop/5YbQ/G2SW8D2wplLR+PcUshH2bDHNM3LHhu5bS2K+pHIzgcUa\nIpDOTenyYY5LSyw+3AR3epKSLSquZzXZtZx7YyGL1u7IQEs0fg6hLIKrTfqXs8q6Lh9m1h35gUZ6\nuf7A0h7rreq1fcPHkLrKH/DpqurlMGtXsDNejjmksu7ztHogmLKkgSaZELnMhZa2eilRmknOEbOb\nKFeljPY/kphYUtLIc91N60GiKLK454VWnginpJPS39x77J8cdi0PeW+FYlhC5DJkcA+RSq9frj8z\nyWUoIDh0T52vQ1JrgyC5uC6u+mSvCWXS83KLWbi0xGJEgokkXUT1YlHxQFoDJcvYxrvYXFFrV2ON\ng9Sqy9wq2NlelrFTj5Xc10gv1x9cBNUImlxCOnG3D+hl8oUueWwyWY+tqp2h159UdLbkKYQmVl+K\nmervHCmqJRfoTnI3YXtdxjaVj1Vndl8XJ604UgmhPBHKop/XracupJt+x91Pr72hRKADUkoIQ2qu\nMUlhrkNJSNoMBSyG3H/nSivt98ZbbiiIdsjg72d60E4IPVIZKB1wHkgkZIvLEeFxOe4yAKcK89VI\nNMkKjw4zDm9kPHCUcN9Dwn0PwVEOh4VwWNiYFwdHKovYsJvWJJFhrwmgvHNpa3/csTR81J7hkVdz\nHnltxf5B3okVAKxHT7Fh1uJM1n8K7r7SvEkQ6MVXwDqtB9AG8YWw8klwJFFiCP413D3rOJRN7UKT\nUM8k1L+iMeAXG6jDXI64JG08z5rUJ52UIiHkpiGYdbxOyAY12sZgp6Sd/JyNbNMYkyGPv16tmTG3\nW52MMjDWbhZDar2xRdEYIZRl1P61cVUnQnqksi6oSP7bDSLyTBH5MxF5p4i8OLD/E0Xk90RkJSJf\nr7bfLSK/ISJvF5G3icjXBc59kYgYEXlU8/3pIvJHIvLW5v9nTfXv0kossF4hasnFRcWXpdX7Ht7I\n2NktyZsBtp8ZG7OSCTdyG/NyVsFe885pt2Rn8F8iXM3Wkf0r5TXm21503YiN4E1O7r70NjvRNobn\nZrXnrhVyc+1dwpuA5kotFxUH8HAgjcYnQBsMa+uwnDbbskXF6WL96oyRQSeNz4RdqlfLREXvu+9j\nmPP7DXqqKTVQyJts6jecW89lzClgTFrx+6XPGYOOVwm5sa/tW5ZQNlEdb4qN0uaPtiMx8P3A04H3\nAm8UkdcZY96uDnsQ+Frg873TS+BFxpg3i8g+8Eci8ivuXBG5G3gG8FfqnPuBzzPGvF9Engr8EvD4\nsT7ecmJpHtKbgPcZY54lIteAnwKeANwDPMcYc7059puAr8BWK/haY8wvNds/FXg1cAV4A/B1xoSK\n6PYRmoTTo9KmuFBwonWe1m0g5H5mCwEN5RkD60G2iA1nVcRBal2YzyrTBmzlecQj7zhrA+R8hFaT\ng+qQifvyM76GJoy5qzNdb+M8q7qhOBQH7Y7tu66OujX3LhRWZbh8Ye39SNLmCIslIZKYLOrmDEvS\neh3TM5DV14df5dK14/4PJdT03a57xw2k6RnCkO2k54FF2GkgNFY2sUe467p4LRfnNZRgNeQQEHpW\noXHhb4f1sx4j55ux9f0N42nAO40x7wIQkdcCzwZaYjHG3AvcKyKfq080xnwA+EDz+UhE3oElCXfu\ndwP/Bvh5dc4fqybeBlwRkYUxZsUAboel5NcB71DfXwz8mjHmScCvNd8RkScDzwWeAjwT+IGGlAB+\nEPhK4EnN30a1okOrk/SobLIXpxwdZpw0mYxPTxKu38ja1C/OMyyUBsaSSs0irlvVWBapFDBNAkv3\n98g7ztg/yMM2iVBm45n3FUp9Mesac6AnuLau/IYv6IDE41Qq/oTgYhPafp8zJYxDJPPvuSXnTfXu\nM8tCa8l57So7fG+b9GMsoLElCDWuNhkLuh6Lr37tqP+aMeZcrmeRivuvnoc/BnyMqQQ78Goq3UZ4\nlIi8Sf19ldr3eOA96vt7mZAgQhCRJwCfAvxB8/3Z2AX+n4yc9oXAm8dIBW6xxCIidwGfC3wb8K+b\nzc8GPrP5/GPAbwLf2Gx/bXND/01E3gk8TUTuAQ6MMb/ftPkarPj3i5v0xTecwlpySdK6zXPV8Zy6\nmuPSwNy5XLshA20CS1frZVVFlLW0XmNFJZAZ8qRkVYqdrJQqQqeV19jUY8WRSyhGpXUEUBOOjla+\nGd3yHPWJ69fYxKmrXoZqlWxKKNaVXOXymlCFrY/zvi8qIA5PghAkyzES0JObrkQ6q4LjCNz40b+1\nllz0pB4KsJxqV7tJJ0U/u7TfXm88D6VsCRSi0xka/LHg2150zM6YR93fJKmIbFCPBe43xnzaw9cX\n2QN+BnihMeZQRHaAb8aqwYbOeQrw7WPHONxqVdj/hRW79tW2xzTiGsAHgcc0nx8P/L46zrF00Xz2\nt/fQsP5XAWSPuLO3f4hcikXceva4iXfhkcuyCZrciwgWkFrENSdF1HFJdhlzLdHAWVZylIvNdqsQ\nWp3NSeHSQtlWhjAU4TxGLg+HHnoUIyqRKfhSxjLuBr0CbT2WsTZ8z7DuAesM0eeFSxPTKe17jvZC\nKi+fXELuta2NYSD7tm5bu52nedV6ybkiYX6RLwgvZtZtuQuEq5tuYq/aBL7jyCbJLW8R3gfcrb7f\n1WybBRFJsaTy48aYn202fzzwscCfiIhr880i8jRjzAcbIeDngOcZY/5y6hq3jFhE5FnAvcaYPxKR\nzwwdY4wxInJh7iXGmFcCrwTYffwnBNsNkovT9+drT6PrDy5ZrRojfEMuZ5UliywSlnHEblq3+ahO\niqhVl/nxLmcVkEJeW4K6D5tKXb9sY6lXRouIqZfa10cHI5yb+wutLDX8l9FJOJuq0qZI4mZLO0M/\n7iGLaCtIdgp9NcdExNbmQpdoplKqBD/r40OaZ6+0r0NoUg49qzl51ebC9aGtvqkWVPp6636XwcJq\nPqnsbFKBMZCloUOyeOW11UJDZxcAhtVr0C4CRovgBdq5GUgE6eJCmnoj8CQR+VgsoTwX+OJZfbCs\n8SPAO4wx3+W2G2PeCtypjrsH+DRjzP0ichV4PfBiY8zvzrnOrZRY/j7wj0XkHwFL4EBE/hPwIRF5\nnDHmAyLyOODe5vghln5f89nfPo5Iueh6E8EguTSDOThBXM0pmqDJLHLeYhHLOOrZX3QczEG6ts/k\ntWlVLvfRfRn9iX3wZdMIGK47L1soIEwlMfTPC6nhfMN9iFx8dUwPnp7brwioj2v/DxU3G8sucDOp\n071T81U8SCAanXG0Cjsp+Cn//UlZqxWHyAUuNv3+8qQgLmrO9lK7oGr72/WeChVWc/131Sd99ZRD\nT1rxsg/oazhJrnWjHyGXUULR8MaKfX6mc85FSEQXDWNMKSIvwHpnxcCrjDFvE5HnN/tfISKPxTpF\nHQC1iLwQeDLwScCXAm8Vkbc0TX6zMeYNI5d8AfBE4CUi8pJm2zMaB4EgbhmxGGO+CfgmgEZi+Xpj\nzD8Xke8Avgx4efPfeSe8DvgJEfku4KOwRvo/NMZUInIoIp+BNUI9D/jejToTmLyGyAXCbpRg3YjP\nKuue6gjG1mxZH7OMbVVKbXtpCvexqoSDdK1Wu4+ijUzW6rBQIke33a8CGfKgcp+H1F8h8hzyuJqj\nYtOfz2O3ae0weiEwVpMm4DHlVJeu0JcrTdxWkJyJuXFGfqnkoSzIQxO0IxVXI97Zx0IpgXTfYDh/\n26ZI8wqO6brj52t7ip8jrU8qFTu7RadAWCglDND5PfW1koD9Y4pcYDrNzNwcdDfjFBJCFFCTnwcN\nEbzB2/YK9fmDdBfcDr/DjOy6xpgnqM8vA162Sf9utY0lhJcDPy0iXwG8G3gOQMPIP411iyuBrzHG\nuNHw1azdjX+RDQ33HagB6LuTtpUKvczESdJE0+cR+a7ND+YIZr9Rebk667tpzZ4a1Gmk8je1l0uw\n2ZJhkZz41rSrAAAgAElEQVRx/cbaDfn0JB1Ue4VKC7e35U0socnRl3r8bLXt5K5UCH5Udaj986hr\n/FKznT4NSJo+Wrde517dfE9DXdCliRuMxbiURdSu3oegPaV8uMnRTdqd4mT7SSupuEh1f4LbRO04\nmGPNcz+u0qhHcE5aSAIE6AjTV3/5pBLMIBAgF18lqD3MQvV2Ohiyv3lSbigzQciLUUf1X5Qq7DLh\ntiAWY8xvYr2/MMY8AHz2wHHfhvUg87e/CXjqJteMIjOp+/Unx9agqVZALgWMRllEsFeQt95HKjAx\nEhYx+O8FrLftpjV34gyjAle9TMmLdLBGhBPnp+Bqb7T9dXEZI26xra6/IVQ3+elUHZtClxNwCNUv\n99EhGAf1uwxlwHWqxnXNe1WauGqIoi5bKWYRG7LIkEX9GJQ5zgu9IFXo9bvwvMncc7XZGWyfsqwO\negsGn81U0GCgXHFJZFV1nmTlJvkyjUgaAgx5frX3l8lokO9gOhlvDPTa9gisvV57IwOL8M54MMGE\nnFPS3M1UTdUQgSS7HDnIbgtiuRUQMZMDppNRWLtFBtREHXLZK0hWMVBxFhnSqqsOC8GpxjQ0ufiZ\nkrXefZMV1ZgbccidF/qrY991eSz/k8ZYDqh2YmkJpZzsb6j/oQSM/n9d894lnKQuaeveNzXvnarM\nhXs5rzD7P117gQ3AlyCThvDdvYWei5uUXa1596xbO5VHMNCfrIdUTqFElMH+NtCS1BDcZH+2l3ZI\n0ZdgNfR2netrjFzcdYJ9nREjNJaMM9Sv1TnVtltYXFpiiWPTq8swhtUq7sVm+DpdRy4L5ZaaJ2Wb\nl2oZhyP0F3FNGtmVcV4LYL3JAD4qsun67w3UeXHpxoeion34ROAmp6GYE1/vPNaWm/CmMJpgMAW3\nqgwVhnLQk5FudywBoyM9SypKny9pI7GctpH31CXEXbfxZQxHTTsnzTVG1XKeGm9sQtPGbU0qO41a\ndZEYFk28k0/w+t7c99OTpP1t3Zj0r+9P7q7PbmL3szYMYYhUpjAquWRJ36FGqQo7GCGVkLordP+b\n9O9mIAJRspVYPqJh8/aMrHC81ffYRKxTYbgyw/sHeZui/SxyMSvW1rKqota2okkF1pPe2g4TcW1h\nV9iHKaRna+nl9Dht+wX96n6d/s+ULoYM7EPlZTWpjE0oLl25NkCHMEQq7tkP5YmaNZklXaLo2FDq\nEvJGNVrmxNkOYNVlzoPP5QtzaV06bsCew4CTPEITmT/u/HvTpLKvVSeJwWYzUps8MnX3GLJrDU2q\nfq0fIDi5azj7iiOVJJ3OuOC7LY/mDQtILz0VWIBUhmwn/r3fbp5eH2m4xMQy4c3U1MZ2n3UxIoex\nyWzlJp7jFPaKtmDYYTFuZ8lraTPu7jWG/uMiYhFb1+VlbLjR1Hl5IMk5Okmsp5Kqa5F75HezOuKL\n0jHr9uYQTHv8RHT+JtCG+ywyjSqs/xpEEhOJVYe51PkUE7anYl1S2C+qNYSh+3IFyqx34cybg6bW\nzHjbGqMr87Tbhp7odfDmeXLFOdtRktacHIdr1gRtb801HXxSmavq2uLhxSUmFiYLDYX2aaOpThvh\noLMFAzbZ5HHK+1Y1Z/tlm1esrJM2gFKnfvGRRoZHLiqKumYRR+ymEQdpxL1n1uvsvqjkgaP+z+iT\nS+je/KqA2g05ZOR0uAjd8xwvtYuaCPx2QlH3thONxNImo0yBuq2t4yb4odXulCeegz/ha0mzVbFB\na6ejkUKcKizkVqslFLfQ0L+t8wAb6tPU9nwVt0Sj08x0pJBADaHeM/Gk2yTg1jtod5kglKF7CI2j\ni8q/thHEkKRbVdhHPFpVQYBAxl7+9vyJlXy+invlXfOrOUepVYvduYzYS4VFbChqOm7IYEllt7lG\nUQtpZFqCSaKY5Qqsx9k4ufj3cTPYlFT85zam497ECWHIpjToWjswWbRR9146F5fhOI2q1i6zjKWT\n1mXMjddhjBx1OV7/PkCPwXlxFW2yxzzi5DjtLRjmSJ5Dx3QWKelmgYNa7ZqkNju4I+k8sSQ+lipH\nO8uEyNtX896sdHs7BkV+uOHSEotThfnkEiIUGJ/0xlbffpGsPI9YXVu1WZHvXMKBqtHgyGU3qdlL\nK64ktj8PlRWrKmoJZi+tWcQJWRQ1K+qS+x7q5hkbSmTpqkL60srUC6Xvc0qacBKRf752S/a9m0LY\n1CHAX5V39OwRKjjSDMapmHJF1KySs8i0NVlsXJFpC36FpMEpzysHf1yF1JZ6wTNnsvTH8JjbsZ6A\ntY0nJNXo/ectteCklEVi7YxOJXmU05ah8DNYjxGhlqh9e9+QJkK3Pzbm9GLwIiERJDeR/eHDCZeW\nWGA8/cNqYBUZamMMIfXS/R+6Qn41J69LzirhzqXhoIq4YzmsFrMeStb1NVfkYuHckmnzjLn7cQQQ\nIpeh9Ok3G7m9aTLLTTC0uv9wQWih0nEE2bAoWoh89G/rFgx+BgbtWagRIhX33/V9jqQetHEkpmcv\nWsZ2gZV5k/nUgmMKY2ruscVi1lz34SKXy4JLTSzupfON80MvvY9Q4aTQee5F06n3oZkIVOp9XR4n\njQyrKmIRNx5fldhklqrdRVw3KjQhr6XJZ2U65KL7MJSyfJ0DrJuE0o//0HDParWKKT0VhK+K8fX7\nWjU49uz8CaqXNNPD2CRQFlFr3zqr7PMsaqEyJTUVUbLAZPaZSbKg5nxE2Aadevc9d5wM9d2H//z8\nhVDI/jfUZmjcu/OGFlhD+b/G3pejJgYI5el2WFjb0elx2iOChRp/obicqYXFebQP+v28aAgXl9Ll\ndselJRZjpEcq/uCdGrhjxlBfEhpNa6LIZRk36om4pqilJZSilibGpQsXPX6tzZpq2zlUHmMQkM7K\naB29r5L/zanF4cMVbXJVAV2pZX0t97Lq1aD7PpTHzHct7hDKQJbjKcnIxRSVzfOsTUVlSqIogYZY\niBJLOKYir2WwOqiPUPLNIZVZ6DzfEL8uVz1M7GPXd/C91Jztb4iM/HOH2oRhW9cYjqjIG+nFkcoQ\ngvE2M6435/mE3gmtmny4COYy4BITy7hnFNx8ArrOJAidLLF+6eNO0TCse7FGiFQcXHS4IxerbhDY\nLTlqjKKleolaUvGyCrfp0lUtjk1UWJpQ/NXv5Ao64HrsS1lOsnJ9dnm1htBzXCgF0nVMkZVYCmpT\nQZJB1LSVZHabQqhCqN9Xv/SA6/NQnIU7z7+3YtFNcrqp2/hQxL1GiFR8O1tIIvedLzQh6fP1WGsJ\ndqHT/lSsoCUVLa2E0vS767mAz9C13PY58H+H9v5PpFcq4MKwTenykQ8nsThSOT1Je0QQyrnlF9jy\nPVZCNTr8LMlxUVOtog652IFcslaLJUA5mghRw5HL2hGgyTPWkEubZ+zE5hlLj8pgxtq4qCma7MZz\nSSVEyv5+X8c/5FjgEEomqOt/6Oy66xxV4f6uVnEbN3FW2apyeW0DVWuTU5kCohQWNijSSiyF3T5R\nvTtEDK6Mi4u70HV8gvfZqCE1yTvJcSqB59hvNEZEoZW660tnTI8EGeptLZkNlZVQOFWSNIS9Mtvr\nqwleByeH+jqEKfd5vdBaHhdtMk1HMLdjahcReSbwPdi0+T9sjHm5t/8TgR8F/g7wLcaY72y23w28\nBltA0QCvNMZ8T7PvnwIvBf4W8LQmByMi8nRscuAMyIFvMMb8+lj/LjGx0Ka8mLPK8cnBbdM+9n1i\n6kPX3nCR+rYf7qfwyWU8zkXDHWPrwMB+ZidSZxh1UotOoHgzZVmnbB4OelWpV8H+qnYwM20DP5dV\nkcWdbSH1WRtXlEckq5g8KVs7iy3CJo3Esqs6nIGxMS2FkhSLkfnFT6aZrqpZJXUd/NLEQJs7bejZ\n6ucaDDCcoc7xScXP3O2eqbYXOXWm29/9/Qw607AvUYz2ZUJD4K6lpW1dtnrM2K7VksHSzE17OsHm\nUHmM80LEXEhKFxGJge8Hno6tmPtGEXmdMebt6rAHga/FlmnXKIEXGWPeLCL7wB+JyK805/4p8AXA\nD3nn3A98njHm/SLyVGwdmGCVXodLSyxVJcOkMpFc8Kauq2pbwNqt0uUXK4uI1V7R2AIMZ1XCXmpY\nxFGT/mXdls8Jdl/dGvPPKsN+UzMlVwkN7YovhZWqbaFKy86Br5IYfF7exOjbHQbjMwba00QSymXl\nT7TuOs6usyqFo3ydWmdVRY3EkkC8Lk9Qm6pRh3nedKV0auRoOHIJVibU9+UtQvx08X7ixyFHhzle\nS3PsO5pUlicNoXoVU4dsPZpUnBRcpVFnwj8vfHWd0ypoadth6nqO4DS5tPfQEOLNLLL+hvE04J3G\nmHcBiMhrgWdjS4oA0BThuldEPlef2JR9/0Dz+UhE3oElibcbY97RtId3zh+rr28DrojIwhgzWMv7\n0hKLMRKeGNwL7CUX9At/uRfILzYUmhD9c/0J0UktLY5TVUHS2gQOUmvIX8QmKL2spZqIRWxalVhe\nQxHbWAEttfj98tOhj638gob0Iah9oZd+LqFouEnbn7yH1EYhqSVvHCN8zzDAkoy6/ZB9ZWgV3pLL\nzHu5lQiRSlLUbfVIRxD6dwstDNxk787vqCiH6qRs0kdl//DLIbucZW3NltVaNaqhpafQwsa9B7p2\nzpyyCA8jHiUib1LfX9mUVgdLBO9R+94LfPqmFxCRJwCfgi2QOBdfCLx5jFTgUhNLeHtvdRggi/Os\nbNwg7ahHFHoTlUoDc1jAQWq4mgnXFrCq4g7B7KW1ssXUrYoni4SD1HBWCVll66fkubWd7OwVnB6n\n7UrPr0YZQo9UBiZOX23Y3qunDtLbNsXQS9+mQ/FSjbjcbW1i0Mp0PMOGsKo2nxD9ujW9e1SLkJCK\ndRYC6qY5HoqhdhypXFGEojEmDWhS8c93pY21Q8OY55rfX3+sLY/tYsvZ2BypODLrVOrUZaBV7ST/\nWbm2HVlpyT1dVR1HlpvFVOJbD/cbYz7twi7e64vsAT8DvNAYczjznKcA3w48Y+rYS0ws/VVUUOWg\nJgW3wvfVWR2pZQKhKo9jL/6HHsw42isortDGYaxru1j1mJ386o6hv2zjWppo8yuwjA2LO8+4rmq6\nnJ6kFFlCkRuq1drLqiykE4ntk0p61K+eWOwnPTVQcOLchExmVosMeWO1TTT9XyxsPZt8FXOUlY2d\nxZ5TmfW0WVNRmYJVtW7PqhbpSmp+V73JsR1PI0WoCvolsCfhVUUcUomFxpXfdycB+FUuXVEv3Vfo\nT4zOXqfbKLK4k/nYHTeUmbrXx57dpyulAO3k30pHXlr9qYSVeltJZPt6vL5vZ8C/TfE+4G71/a5m\n2yyISIollR83xvzszHPuAn4OeJ4x5i+njr+0xBJCyKNrDHqVPySJBBEoHdxeNkQyjWrM2lzsajuv\nrUSyjCOSaG2DWVURJ0XEYbFW4bg6L/uZTaWRXct5QNlcnK3JX50NrRxDJXmLRdzWVNHSzLlfTm8i\nc7aLUYT2Z9LasZzUMnfVaOOHbBDfUQ5H+dqTcMp2MTcB5RyMjktPGggFY865plvxw7paoy41TFuk\nLHRfMWdZRpVGLE8KznbTwdLSg9f3VGuaUIBg1cqHdu0Ka4xMHIZcvnWyyyqNeGg3XZPK0ILgvIgg\nWlyIM8AbgSeJyMdiCeW5wBfPOVGsAeVHgHcYY75r5jlXgdcDLzbG/O6ccy4vsdTmpnTgWmrxCWZ0\nMh0hFd9jRXvfcJySpzX5rvUas+nUTZP7ytpgToqIs8pOhL3LttKMNNJLyeFu2UovLgZFr8j1hNRx\np/Wg65y3x5/XzjCwwtSGcYdZZN64pLqMuS5YNa9pJbrK9B9YZcomQDVqvcjyVUyeR734GugHIfpx\nO61XnPfb+6nhexOolsS8e9f3HfLA0hN0sIzvQDEtV60x9Lv6XmY6E3Gxn3iEUgafSXtrQxKV59Cg\n7TYOLXn59+RhbsZp13+Oyh6p3Gw820XDGFOKyAuw3lkx8CpjzNtE5PnN/leIyGOBNwEHQC0iLwSe\nDHwS8KXAW0XkLU2T32yMeYOI/BPge4FHA68XkbcYYz4HeAHwROAlIvKS5pxnNA4CQVxeYjknfEO8\nRs9TZaB8amhwD7lD+rABj2WTUFEal2LTVqgMGZqXnabsZHLHEtJYOtLLyXHaqZPiJmHbwTWpaCKd\nqnO+EcF4UspQjQ6/rSlVUkHc8b7TcRNWjdg9X0fdW+lPWmll7iTjT6hDv/mFYEgN6AXAApMqW6fG\nqtKo97uOBbe2+1Lwy0r7hehC0l5I7ZV40oquee9UtmviMEE7jUaIIDsp+ovxgNubhki3INBNwBjz\nBuAN3rZXqM8fxKrIfPwONp4h1ObPYdVd/vaXAS/bpH+XmliGJqTRlZCyIWiSGSSVGfW4oZuttXM5\n7wVx2QJc+nFLKDbzriMQJ50sA2PYbbP/myDK/TI4abS2lSLq3Kd70Z0KYihp5Sw7w4YYcumdIvsi\nSzpGfIex+KCisasc5WtpxanBtJPATQfQqZLA4DlQ6OemPrsYF4feb+Ct+rVhW6/IQzXm3cQ9t9Rw\nKOPxWN17d7weXyEpxY2zWNl7tO1jbAES2hYK9oRpl+xtIsrNcXmJJZKg9DEpXnvb3Ivp2tqUUBz0\nCzyW2kSnxnAEo9OR72c09pe1FOPDGf+vZtCSC6ZRs4Wj4ov9hPSoDHqN6ey5s+5VFaQKIeS903Ef\nDrj0DpFMaydI61ZiyTJbvMtl2o0l7VSRDFWUfLjgO4x07AXeWOuMpRT8zBCdyTL3xqk2SCt1rKsx\n75w33LXd8/IljhCmVFyhTMW9gnh+myq+qvIM9JtWrZxbyuBhhwgSeiE/AnFpiUXEdFaKvRXvXGJQ\n5Vud8dueMyya+66hY6s7/3yfZHQditVeAZgOuWi4Koh7TRW7dXJFQ1FJpy6GrpXSeo815HIeDBlP\ng154M6K2ByUhJcmEpBhnvHfvd9qUJwZ6xb7mptMZc/UN5U4bQmdxMjD+Zk+OASkoZFBvpQZl69F2\nFV08ayyVvQ501X2eyuOljee+rUmTS+kZ6GfVgFGLtcn6Qa5vnlpxK62cD5eWWKCvVvEnorl1ScbE\n7lYlNFDj3S9UpDG2QvTzc2XOdnBtxVllePQVe6yTWjSpuBiYwzxuPMuspAPAbsmqFJKAW60jFwKR\nz2MTp1ZZaHWEI6xeoOWEG63fLiiCUnFH+jfNFlVnMk3bZ2KPjYg7639LNiOTkYrJGXPGgJm2lKbf\nWvIKqXpCqqnBVb83WWtS2dkteuc6KdDZVTrXnUEuQ7nGQo4Oc/rrZ4PQqteQE4G+pruOI5SxcdTa\nNwcyZ1+UpCMCckE2ltsdl5ZYXNaCoM7eWwVvpOYJiN1DE0Go+p2PTgVKP1ngSdJOFjo9jVVplTz6\nirSeY656oiMVl26/VHVcWpteajhMGoJpJpTrD9qodE0uYy6ZY15TIf22e6n9TAahgMeQJNhRrymv\nJ91HpwZzCNa9h7Z6pIPWXoQ8wkLouc+yweo35C7rPbvZK/AGeqXfq0s/kE9Mj8s8j4LkMpVrLNT3\nUP/9/upUQ9BVg4WSw/r3MLRYAzpjwKlxNy2wtsU4Li2xOOhVeS89S4MxVYeGk0r0Kk3bCLSEMTY5\nuT7pwkShtBZ+CovDG64oy5lriUdfEW7kprGnQBIJNmNvzaqS1ousY8zHOq8UleEsK1u33B65eJgT\nVa0nRqdm89Nq+K60/uRwXm8qneUYmF1nxT2jfnBhdxLVnkahHGhaAtPjoqPWG/DY8guHjdUb2XSS\n7NTOKdb34l9Dj8tQFoaOxD8guQzlGxvtn46xyY1VP08U4HP9hMD4USWcO4lodXZj5RxxYd57lwiX\nnljGMJR7akz1FfKQCa1exxCqh772zupHIduTLMG45JCaXPYzK5UcpOu8Yy7mJVfv3JpcGsN2iqoD\nkwNdcunFuTC8KtcryqnV9hipTKGX782bqPM8YofxTMWh6pGh381Pcb9+9l33WeBcbqybZgeeA3/B\no7drVdbpSdqO27HaLaHI+KE8YyFi7N3bSDaCNK/gGM5IGaqZoqWPIQL2F2yujMTSe68uOrsx0dZ4\nf7kQCjwbUcXMlWBgYPUaypml2nbn6W2h3FyhaOQiS3rkku+WHKRwVrncYWFvMe0p5TzH8nodWJlF\na3LxVVjt/Y7YRaaeWcfOdRPuyT65BCWeK3bCHyugNgc+udhG14TS7veNwp7L7Ry37FE71obVDoez\nKgyrssYIxU8J4zDUVvAeAimV/OSoLbnspb1aSO6+psjF1wAsj/OOi3NS1G1Uf8gde4tpXFpi8ZNQ\n6hVSSCWmB7zvCuu7CmuppSOlBNJx6LoXobLIQ+nV3Yus1QSAtX3sd8mlLGwq/kVivb/S2EovzqgP\naxvMkN3BQuBaTpLWHN6w0foh47s2aPtk4htTe4ZTBe291IsoV8eE4E9S/oTmoumHMJaY0kfcFEjT\nrtihCddNhq7PIenWR4ioQ1LHJiW1g8jDhcZ0e0OEoiUV6CcyDa385yzM/Jx8Do5cdEyLrnMTIhd3\nH36+u2VRc+WkIM3tvWerEvas3niTMhKzICAX3eZtiktLLB144vdUAjs/mHHIUD+p6/ZWp6MTQtPH\nYhFTrfovXOvr3yaRtGlMrj+wZP8gtyqg3ZLVomI/s7YUZ7R35OKTyiI27DX3vYgjsihqCKiJrE5r\n9g/yTjoY+wzWdowpD51MbXMxFe576Lnq1b3fjl5Zdx6dsutkmW13P7MecllkbNxKXUJ+CkBUG9Jo\nQRadtOTr3JTdhFUWqU1cqDAnmaR/XzqeI7Rin/Jm0ven77cdS87tOOCQ0hlvyj15Tp4sTZpOqtDx\nJqG4mZDjgH6X2t8tbVz3m4WKTzC9WKpAxgZ9nSmi1QSSN1Oii/Jvn8cWG+HSEkvHK6xRQehqkA5z\nCcXHYDoS6EhCQ95OsJ5sWjQxMy6grXvB/kTgXqijw4z9g7ytUpknZWtjcJKKj0VsuGNZspusiWUR\nRyzjhGVsAJtr7OgkYWe35PQk6QVV+l5AoUlS21uclDWUhSCUGiUkNfpw+xw5LBLTesjtpRVptLSk\nUubNhXLiKCWNDLtpzX4WtzE+Gr7NrE3iqTNi66y7jUdTKBhWT/Sb2JWG7lmnKfHTCe3sFiwaotfl\nfk+PUy8Wq9++dgl2RcGgOzm3mY0hSCpDvyEME0xwcg+kSRoiLlhrE1rX/zTmrEg4a4z2ZRq1arBO\nduOLSkYpgiwux5R7Oe5yAGP67aEYAn/bVPvuvI7nTaA87dz4mHYCSv09Zh3sFkgi6ZMLuyV3NO/N\nWbW2rQAcZBV7ac3VrOIgazy1cvdilySR/bxfCEeprRfjnqFLOeMjNFn6K/ShyaE9PpDfKRRcGoq1\n2N0r2Nkt2W/sTQeplcauJBGxpFCewtlD9uD8lHRnh4OsYhHXZFFkC6cFyCWoqmsm304htSaafcjx\nYyifmL7GFEISm5+hwWUfCP0eO3tFMHjXRy8+xkM3ut+01x1zN14FrqttUGGY3piZu9hzfXKS9lmW\nceZsTL3SFrd3wbbbEZeaWDR89coQoYQ8moYCxvx2Njlm1Mg5sS+YRFL18/QkIVtUFJUhj6WRQCwO\nsopHLip2k7qZWG0t+KuLM6AijUxTAjnmoIDDtEswq1Laa+tkj+d5BmPxP/oYPw7Iv65WgWWRDQY9\nSG2esFhS0miBye+D0zNIYkx+Qrr3SNJo2RCszRidVaztQXtFp18+6bln0JWCTZAIfbvcpgF5obgU\n3zHATaT7B/lgzFSovbnBjOsTuoTi2hsjFX+bWxi0/R+wRU3F9gy9lwt1vJbY8lU8mj3jphEJsrwc\nU+7lsCTdBOashKbcZ/22po4JHZctqll/+ngdNJg3/vqrZsI7PU47NVvAqobSCLLIBlFGEhNL0vyl\nzerdtMfupaZd/beTdWLaa2fZ+ATWXvecL+8Q0QNtSprOdRLTUfvpdC4tynB7ztaySEz7XF37oyv8\nC4jgHhoTm6LTzxnqttn9zaT98xdmfr8XG/ahPbZ5BvpvCotFX5LVdj43RnybzIdDGhcReaaI/JmI\nvFNEXhzY/4ki8nsishKRr/f2vUpE7hWRP/W2f7KI/L6IvEVE3iQiT2u2P11E/khE3tr8/6yp/t0y\n+hSRu4HXAI/BypqvNMZ8j4hcA34KeAJwD/AcY8z15pxvAr4Cm2vja40xv9Rs/1Tg1cAVbCrprzNm\nqPhwGFPxJVMGwEkDoed2HFQNDbwsm0xIPfdmJ96rOIp8FberudVeQVHB2dKwXme4YyvgmFhSjosV\nx0XMg6uEY/Ws1hP1OrjyEINLhzKWaHIoXqe1D5TrYL0hR4jO8Z50pn+TnSZVzVlk2Ffnz/X+cl5k\nq3KdPv/oMGv3++lbtHu4c+ENjRHtDRja76fA8VGWUec5hfriPuvznUrU/Q66H/q/n/5/yPV9Cjow\neGo8h8bFEPzYmLGEmW7bYrH2QhxL5X/RkAvyChORGPh+4OnYevdvFJHXGWPerg57EPha4PMDTbwa\n+D7s/Kvx74H/3RjziyLyj5rvnwncD3yeMeb9IvJUbB2Yx4/18VbKZSXwImPMm0VkH/gjEfkV4MuB\nXzPGvLxh4hcD3ygiT8ZWSnsK8FHAr4rIJxhjKuAHga8E/gBLLM8EfnGqAyGX3rHcT/qc9iZmunlu\nEu/hsAmhDAWuOaRNChYdWHb9wQWnJwn51Zyz/bIpfhVxbdFEHNfCblWziFcNocQdUlk0KrRlW94h\nTC7QVU/5k5k/GZfF2oA0J0AwlIPN35bnEckqhszFr6zLEgNIssAkcfu5NGVTnji1JYwre06+6qbP\nD7pBB6pstvEhRcrOXjHoWj6Wn27Ocwi16aCDHh1Cv4NG7/68ezuPx9QckpmbRWAsI4F/P9kI6XyY\n4WnAO40x7wIQkdcCzwZaYmmKcN0rIp/rn2yM+W0ReUKgXYMtDAbwCOD9zfF/rI55G3BFRBbGmBUD\nuERQUAoAACAASURBVGXEYoz5APCB5vORiLwDy4LPxrIkwI8Bvwl8Y7P9tc3N/DcReSfwNBG5Bzgw\nxvw+gIi8BsvSo8Ti5JmhGJPQoB8ikWCG3v4Vu18nPE1unlS6sQUtXIQ+aW9Sz6/mTeljgJiimXzT\nKOL6Km6KYoUxJrn4Efo6jYZe/S6PrVeWTh3fpn8PpJD3V+Qa+nc9JbWqwqwmr7vqv8oUnXr3AEQJ\ntamoTUVRpz1p5eQ45fQk5fRYeVDktnyvdjn2XWQduZwepx01pW5jnQhyrWbTNgf/fkPSXDAgVwX7\ndo4ZSD/Tg7q/XrzKOZI2zpEQxo7xJdtQssuxNvzYltsQjxKRN6nvrzTGvLL5/HjgPWrfe4FPv4Br\nvhD4JRH5Tqz64u8FjvlC4M1jpAK3ifG+Yc9PwUocj2lIB+CDWFUZ2If5++q09zbbiuazv30SfvAh\nrIO52hd/zktLuGTvGPzrzCmoFMIUqegkfp1Kgqyll7KMODq0iQZX11atK3JZJ6yqmkVcD5KKTWpp\nWFXSkVyyyFaoPMqNNXQfp61LcjspD0RvO9fVzgS26sYXBSfBTgYFtarOkrWkUQpFZY/rVI+MEsi6\nrnarypYmzptEndZO1bS1ijvPWvd3EjqPlp/1gbXHXygNjlttd+J6QmmERjJGt90IjOWxcTxUf94v\nvDWGniS5inv2mNBEPyZNudiioTb8gMkhEpp7D+fGZild7jfGfNrD15kg/hXwvxpjfkZEngP8CPAP\n3U4ReQrw7cAzphq65cQiInvAzwAvNMYciqxXPsYYIyIX5usnIl8FfBVA9sg7hw8MrBxhQBURSHc+\nio7v/To9uW9o9lPCDyUdHEsEWKVRsDCXXyu9LCJ29gquP7C0G6/ZxchZZfjo3YhVtf5NFnH451jE\nhoOsYlVFLOOIwwJ0ETHtReVwepxCs+7REdy62qG+F03+PsYm+CI306vSuu9K7DJBE7iey9vm9zGE\n4NgISLXrwMQmX1tgXPiu1FqyCUptLl+aFzeljw3Gcs1AqHDY2OIoFAnvx7csFlUbcOswpgKcq1Xw\nSShEQPoZzomPuoV4H3C3+n5Xs+1m8WXA1zWf/zPww26HiNyFLVv8PGPMX041dEuJRURSLKn8uDHm\nZ5vNHxKRxxljPiAijwPubbYPPcz30a3tPPiQG1HylQD7H/MJJhTp7GfWdfAHdy/Z4QTWRLGeNOak\nzQfa7VPJAH3MiaB2OD22uv+T45QsqzlMctJYuPfMcJBKL4jSJ5hFXLOX2r9FHJFErtaLYdm4NN9H\n4T0LOM0T4qLup6Zx95BNT3TnkhoIlCXO++QH1ksui/oBrWNBe+dC3h0bDqFxGuzniGuwayd0nA7E\n9VOvaJWdDlbUBcnGVvluEg8Ru6sJo98BoJPN4SKg8/350osP38NvzPNwcwgkF2LfeSPwJBH5WOxc\n91zgiy+g3fcD/xPW/PBZwF8AiMhV4PXAi40xvzunoVvpFSZYUesdxpjvUrteh2XOlzf/f15t/wkR\n+S6s8f5JwB8aYyoRORSRz8Cq0p4HfO9F9vVmxGb/JfZXZ5pQxtpL0m4a8xCpdFLSzKiA6U9Wp8dp\nU3wrsf2KSpZxU7a4bqL0G3WXJhZLKDb2RRvEbaR+1MTJ2HYOk5yjk66HWrUKk0oIY5LhGKkMedzF\n0os0hbokkphIYtJI5VNbVK03VZLWPftPKJjON7yPEsTIJK3JJRQAqt1o9X4/e0NI7dRRqw0E7erA\n3DY+x+vvILF5k/jQO+DbnabIZUySCHnnOdXzlGfa3AXfrYIxphSRF2C9s2LgVcaYt4nI85v9rxCR\nxwJvwhrjaxF5IfDkRiv0k1g79qNE5L3AvzPG/AjWAep7RCTBZrD9quaSLwCeCLxERF7SbHtG4yAQ\nxK2UWP4+8KXAW0XkLc22b8YSyk+LyFcA7waeA9A8uJ/Gej6UwNc0HmEAX83a3fgXmeER5tDmqBpI\n1T3kWTLZ7khqCaD3Qk21WxYR5WJdiz4kqfgRw/7Kt20rUH8DsIbuJq3KesIo26zIWmpJImlzie2l\nFdcWZUs2aR6TRobjVgCI0HYX+/PZa+/sFhwWC+KiJilqlidFT6U0pGICgvYk8CQdT4rwi/jNqXG/\njOEI2kDL05N0VkoRBz9ocSiRZkiS1cfp8/zca6EJMCQthFyY/ch/P0iyZ8tJQZPo1PgNBV2G3oFF\nYto0QWDJxT2vOSSm4auHtV1ziFxCpHJhdpdIena888IY8wasB6ze9gr1+YN0NTn6uH82sP13gE8N\nbH8Z8LJN+ncrvcJ+h7ZkYQ+fPXDOtwHfFtj+JuCpm1xfxLCzu3b7bCOJH6Y0DnP89+e2Y5Mgnk9N\n0JtkBtQsbaxGbiWNohL2M2t3uZpBWUtHallVEYs4EFHdqJuSSFrVmE3BrwpulRGnuX3hSpXI0EFn\nDg6pKmOVDFFjjJDmwAWFLmNLRovEcAptUF0IfuxHCHNW2hpBD7LbAHNc5n2ESEVjVTau7oGsDXOv\nNxVro+vc3Ib2k48I3HLj/a2CyICoP5DGQfveu+PHEJpgpuJcQi+Nm0ycR5VTgU3ZhzaZhLR+3WUm\nXjXXSFYxR1Tkia3jst8Yl88quDOQuKGohZMyar3I7Nxe44IvnWptqSQXiyWnpHAc7mNIzTWU4Xno\n/to+Nj/dqorC7sYeXKLOLFq35XsWhQI7xzAUm+J+N21DG3MgccF+SVr3KiPq63Sk1EDg41Q/Q84B\nur9D582Fa0efF3JY0aQw2taAJA+3MLJeLk5iud1xaYklitaG0qGXBoajvuesdkLkEgpQKxf9pID+\nis256c6C8gJy/ZwKroP+C9fNNVY1Dlxr6QUMB8oN2dlXfNdkTS6L2HAn2u5SNhOhTYB4RhpUSWoS\nCZFMJxutf1+BxUKwFkvgpU9VKYFlvE6V4wzAc55rsE8j2QR6wbQbGLEHbTQD1wu55foI2XQ6k3eg\nIJ5+Lr4n1pjtwkkbbSLVUJ8nFmFBSWUDUjnvb7rFGpeWWKAbGzBlzINwUOQcchna3ls5BlZ/68SR\naa8PtgPd8ru6SJnWJ89ByCajV8FJWrfSi4VzjbUuyQeZI5E11p5XEWlU4zghiWTdxrW8Pf4Gy04t\njsEStXRT0o97wI2rNWtT2TiWAVhpxRLhIjFkWc0J07nfhqRb34U1ZGh2k/WY5OlikPSEHXJN1zYS\n6KaB8ftwLvWQGn9jVR2nsIlqzR07Kzh5A1KZo8o8NwRILseUeznuMgCR8YE2R9T2Y12mKgL6nkFT\nA70Ta+ClVh9Sh3UbMMEX3WHoZfddLPM8IsvqdqLL05rVouKsUnEqCBC3sR+aYOyq3wZZphGkUY0V\nLuz9nVVCftUWI/PdqP24CietJEUdLCYFfYJu1TneCrmoN6sUmcbQeEyzCBm0GR83PqGMxkiFFgse\nNqnHrqXWuX0eJQMvZqrt34gU02l7wNNKn7PSZDhgB9T96V6gn6mh14e5DgBbbIxLTCzrgagHXVCv\n63tR6RWaklymVBbtylFdb0qa8COsXX866q2xIE2vvLLvgRbyXgvV69Cqubbmyl6BtbcIZ5Uhr8XW\nLQFgTS5FLUH12EFWUdYJdy4tMa2awMwTnSpFu7c2cBUFqzSi2E96zhZjxu5FoiZsvTvJ1qowJb0U\ntU1xk9dCUa2Ny87e1T6Tkcl50zo+PuYG385NGz8FX43Vi58qIsgG6sHfRByPG5vtAkzdz85e0U2h\nM/O65yUU14eLi2G5XLi0xALdVVOer8Vw/4X0VRWdCPANX6SQvUOvJP1j5wzsToT1CLTh2b+Ow1AR\nKB+nJ4mVMHZL8t2SolpHjK+zJNeEKjNYicZwXMTspjUHVcRZZSiuANdWZFndj8BW1TNbEp0IzvNj\nPxzSOFw1c31iRm0qKlMAcVPC2dplXGoY35nDxxCh6H7Mmvj1+Br5fYdsI/o6c21tDjpSfjKn1k1W\nWdTuxi7Nzo5XWG2SXFRbg92c8z4pddiFJqzcGu8/8uFUYa3EkYWlltYdOZAyReMiXBf1gB6SHAbP\nnSmyay8fh01qZOjMxK3HURHB1RyQZhLWKfi7arFFXLfljvfSiqKGvVTafFxnVTf9i05N36J9N/vB\niKEMCVP3ZglEOpJKZQpqU7XZja3Usn4GME0qUwsDty84YQfsAiXDLrQOIWktZHwfNOZ7rrg6hf5g\nSqNzwKlXXZ8dqWQRcE5y2SRb+FBeMj2ut+7I58elJRaHoRdxKrmjw5ygKx9DUsuoA0Eg8nrIZXXo\nfD3huXb8Y8ZQFlErRegVrFNZrPYKz+7SJRcnqWhPK7vdpkw5SK1abRnbCP0ktcFpJ8fpZBJChyC5\n6OC8If6NEqsOc58pWFVCUdOmzXfZjX01mEaIVELedn7/On0eyb3lyCVdVetqh0k/c4M/rv2qjHMw\nlf5kjh1jasHTIxVoySVfrY9p2yuV0T6QAy2UrsbfPmSc96XQi5daBIkvh8fZpSUWY/qD3tkR/EJD\nQ2gD8zxyOS+GVGLQ7avu31xX1JBBW78wuvgR9CcJN7mXZdRmJi4Lu21nt7BSTKMac9H6dy6tO/Je\nKhxkFZZo1mlf8tpO3KvKSiuHhd2exnBHDFlUWnfwzKaZGUrxMRVfoaXO3Hu0q0qsAT/Zhbh5HZKM\nojpiVUVtdmNfDTYUPT8UZ+LD/w1Dtju9WPGv5zz/SNc2tyFPqVCOuTFo7yzfXT1oMFc2vKH2HHpE\nqdzZacglr7uBklpKbs8JZG2e+/6NxZht0s4Ww7i0xFLX0uZ90nADOBQz4pLvafjksglCK7yhAR0q\nYNSRqGYgNNlCd8U8JjW16hAnvTUrysOTjGTXpoPZ2S04PSm4em3FUQ6PvmJLFh8XCXupYRFHHDde\nY0UND54l3HtmScWPLdnP6EgvMJ4/qiwi0iOrOklZP9tTbA60JK3btPk3cjguojZIso6EaGFrS9aR\nUJUlJ2XESRFxVsFR3nX/HYrjcGhJ+CQdDEbsRoibjqv44GTpqcLGSMRdw79uaL/flvbO6pGK7wq+\nmnYwCL0bOrDTeRtqEnXbO1LyifSySjtbpybE0DsxV62lz71QddgFpnS53XGpicUvXwsjumQF55Xk\noMllDtwEMlStckzt4/rotm3qDukmxyHPtCE/fr1KT1cly5O1HSQuaqpVxOki6Rx3uluSX805SoXD\nzBKMzZQckUSG40I4LMKk4qClF7ATnUvv70+K6VG3X66+yzFwmtpiXzu7JWdZSV4Lq8pmCSjqlY2+\nz3YAKOoVRX1GUccNqayllaAazJ/sUeTDcNqcoUqTsB5LnQl5JEUJ9CVdPU7OOzkOxYn4amG/qJkP\nf+Hl+qTLCbcEo6QUvyCcf11dQA2Gn1eoDMbgvaqklVucD5eaWEJSySCpTHhdbZKuPS7qtbvsgHdT\niPD8/aN+/LrfPnKzzszrQRf/0vYYra5xCSMddIGus1XK4UmmpJeEo6s5+7ulIhib0uVGTqtm0miz\nCUf6ngT2y7Y/J8dpR2JbPphz5aToEIvG9cUO+a4t1JUtKvYzQ1kLRS1UpqCoz0ij1KrB6kMeKmuO\ni5TDwqpm2hieVbjIV2fF7v0WclR3JKipsdJOlkp6mVNjfqw0sb+YGFZJBeDF1Pj34GemDtXTgXGp\n3hGMVntptasrCOfDvUed5+X11b/2VHyO/3noXdkcF5Y2/7bH5SaWCdfF1j1X5dLapBBSCGOTylhi\nQxhWWww36L0QI9Hs0FdnhNQn6arqFOTq7GuqQD60m1KtIg6LBacnKUeHGY+844yj3bIlGD/DMPQJ\nZRmvc3QtY8NBCg/EsLjzjOuZsmm4+8orslW/YJebeE5PUvYP1lH+jtA6QZJlThTbQE+XMn/Q4O89\nF43Q7zynNICr9NmZLGFWnEZYZWU6ErJ/jh9bNTWunDrYl9p9DJGLxph67vQkbRcyy+OiX7VSZV1o\nr+kFknbGs5fx240DX2sxx/PudoCIPBP4HmyU8Q8bY17u7f9E4EeBvwN8izHmO9W+VwHPAu41xjxV\nbX8pNnX+fc2mbzbGvEFEno7NOp8BOfANxphfH+vfpSWWKYRUVC7F/ljFyKkSxbqeu86kHEqn0l53\nIqJ/ThoLHesyqA9XL5+7ro9iEbcSS2jieGjXqwPfGJevP7CkLJpJfbfkgH76euiSykFq/yeRlXAO\nC0sw6ZmQXVvbXW6wpFpF3Wuzntwf2k0pFjE7i7Lzuy5jGi+1JWm0hIeOAEh390mjJdcWJdcWMY++\nIhztFdZFdlH1JN250qr/vKaIpljEJLumTQwK8zwAQ+04jJVT8IN3W5LxSM1fXA2RzNhYb/vjxfos\nfAnZvxc/jc8UvNIGO7vFdJ2Vh8sMckE2FhGJge8Hno4txf5GEXmdMebt6rAHga8FPj/QxKuB7wNe\nE9j33ZqEGtwPfJ4x5v0i8lRsHZjR8u+Xl1jq4VVJSGXQemwpcgmtIt1LN0Yw+kXbNDJ7LPXHutP9\nOiEOoVrrY3VFtCosSW1xqyqNKNOoV6Peh3aJhXVMiot78cnFJxVr7LcpYlZVRBIJx4V1R76R2ruB\nh4Amx1jR/EYqjX67cs5knVMrMS1hZZEhkphYEkx+Yvu99yiW8R576QMcZBUHqfDoK5Dv2oSZ2aKi\nPEk2Un/66Ky0PYLRKlJXvtrBj78YJRqtQvPGWyijg8Ygybh2oZPTzXdsCUkLEHb7HXN/d+PNoUMo\nMyu3+i7gO7vrBYb77AJyP0zwNOCdxph3AYjIa4FnY2tVAdAU4bpXRD7XP9kY89si8oS5FzPG/LH6\n+jbgiogsjDGroXMuL7FAkByG9NCdXEuOXAhINioFiU8ufmXHuYF0vW67yWQDUtEqj1Z68e55TFLp\ntL/qrr5HVR5evjL98q72Ch59xXTI5WpmVU97qeEgq1T8C21+sbKWRj1lgJKysOP7/mIHHsxbQgFL\nelW6TmWjV6lW3WXIoitEtcHkp02fT0mTJVeSiL205s4lHBawv1va6pqB5zNYZEyhs4KnOxlr9WKV\n2t9nZ69oV9jQ9fjSiSW1w8kcFakbb34s1FBVSRiJcUrX1+xIMiPjC8Kk4qv18lXcjjcgYJM0wXvW\n13PX2T/IWyklSWv2m8DLVSkkK2t72z/Igw49twiPEpE3qe+vbEqrg5UW3qP2vRf49Au67v8iIs/D\nVp98kTHmurf/C4E3j5EKXGJiaVOFDUgeU5hMJRKyx4xIElPt9oK0RvTAU4GOjlzGjLm9c5RLslOH\nhQpr+at457GjyeX6g0ts5VO4jzW5OBvLMl6XPnZBlTb+JWokGBt8eecSbG0XpRZLl5RFxJmyJxX7\nCQe7K3b3Cnb2CrLISkeLuGYR10QSQ5nbP2hKEy+IJSWNqkaygSySnvpEE0ri3btvB5ib82sIYyla\negsHjYGKojoifyhJZSig0k+e2VmseO/TeSQVfR13L6NlESbygXWurd49HYjpftepTOc3hc1Sutxv\njPm0h6cjg/hB4FuxjP2twH8A/oXbKSJPAb4deMZUQ5eWWIC+580IxlYxoSy1HZVZu7NfJ8VBe8UM\noRu3MkAsnoQwFJ0f8kLrqL0m6sgMFdVy5OITjO+Vc3SYtZPafRTsZ6YtApZFNGn1o7aWiwtWbPsf\nGZYIH71LU9ulJFsct5OlzpxwsLvikXeccfXaqlWDObRVMOvS/gVQ1jbljA9fhaVVgpvaArTarlg0\nRdZmpOXXv8tgVL03Jvw22v7fRH0Z/3p+4lN/vE+RStu35v1pXfoHnuVYcC/o8hNuyrP1hVrX+KaQ\n3m0irUzhfcDd6vtdzbabgjHmQ+6ziPxH4BfU97uAnwOeZ4z5y6m2LjWxhDAWdawxtKrpHe+7ig7U\nSfEj4X10or11IsyhjMZs7ocfincIEZKTxqYcFRzWpYPXw81NiNcfXHQi9rtp+K36q6ijXnZkRwhl\nLdy5bIz6MSySU45Okk48RJLWLalkUajmfdpc23Uup86Sxg05bnOFHeVi2yyjcRtaqE5MQMJMV9Wk\nncapiNzEOZV1oZO/TaNxMdfu5O2uATXa3Dx1QXjBo6G2fFLR96j7N/WM5sZyrVZx+/zafG+ByP5O\n2xsUWZuFkbo/G+CNwJNE5GOxhPJc4ItvtlEReZwx5gPN138C/Gmz/SrweuDFxpjfndPWpSUWMcOq\nJJ9cfEyJyoP2jEDKDqCjdnAIxbH47pduAhtcEauV6txJQueHmloxj63E3WTgVvVVGnX6o3NQWcJ0\nbsA+ucRrqULBFhBbv/QHqfDEfSv1nC1LjvKGCJr7caSi1W0doavM+f/Ze/dY27azPuw35nPtvdbe\nd59zrq8N9xoC2C41lmjABVSpTUhqC4m40DoRjzYEHIU4cOvyBxC7LpdKNZIpKBIJNFe3YBARgUQt\nUEeYJhCqINGQ2ICU1CgtNhB8L5h773ncvfdaZ635Gv1jjG/Mb3xzjDnn2mefcx/7fNLRWXut+Rhz\nzDHGb3yv34dqmANjKF36csaUy6IQ7psQqHCf3FQoa0wTnCOxonGxfA7vOJYrsl3lAzaB2PiZ5B6j\n5xUWoLms3fmuGYYax/JhxIYqNk/X53nPbzcDUF5pWozWulFKPQkTnZUC+IjW+pNKqffa359WSr0B\nxk9yDKBTSn0XgLdqrU+VUj8L4M/D+HGeBfD9WuufAPA/K6X+I5jJ94cA/qa95ZMA3gTgKaXUU/a7\nd9oAgaBcWWAhiZnDYrusfe2vns2bAwybuDGiv8HgtpoK5YtwGQMXAF6Wf8g8FuISk+DiLSIzkvao\nnQ3zvXCthT+jH5HTg4sxjxnhfhf6v0z7UsgLKDxxqFF1wJ0cOC2As6JB1cGBiqTMT1R80TD5LYzd\nmO14KeQ6FBEXSnyVvo+QtuJ8VgUvQdDLmLYiNwH8fqEs9d5Mq11b6H3lVYutDdGWJuIx3+CoGZeN\n9bE5RAv9Xou5yM+SY2zsPsB4Ps2+zBajopKe6PQeRWv9MQAfE989zT5/FsZEFjr3myLf/9XI9x8C\n8KF92ndlgUUrNc1vxCg5SPalx4hRYoT8LZMDnBVX4otF6DkGoZ/CBCefIeTQlxUP55gF+IJZF6m/\ng3dFucK7wNu3FsYMUu9QnVTYLswCa2hgzDEx7YW6YNcafi8jRuupWx9QisT3szghx2pWWCp9OHZj\nyr4noZBrklDCXkwmTWA2/4dEcldxX8iYX2yszIM5ud8cyM1KWnduXI1FDcaKzvFnBfzFvmI0LsAw\nMMWNMwplHvNXhTY3XFPP/LnLrx+by/tE2D2UsFxhYAl8GeNiqtSocz9mwrqMgTlYgAtlJulZMwqM\nIcJMalOMvVWGafIw6Kn8mbEFTIIK3YNfs2K78cqGf56dVDg7avD4Uhs/CugdJE5r4bLKO6zyDmZY\n9+BSWa2HA0phw5hdQa/isLd/Jxk6vcWuHVa+5DIWZk0knb6PRc/yqwCWQqYxBIxcw7wsBztnkwiF\nj1PI81TCrCyZ7UWHcbGLfcFMUFL4GGjW/Xybax6UtDpNpbBBPprzE+vL+wIqCj2D9mtcrsZThiQZ\njwIb5KCw0GHptwjaaPdgHI7Zr8cWkPrIvrpLpp+QoDJmPgP8fpIL5hgXmhTOTExcY2enBTY3tqge\n26LqYGj48zC4rPK+gBgWDco0AQ1vUyPG/pT6/zvJCqA8tJ1wiLY+c6DCI8JKa8rZlH6CZGzxI9MT\nBxTyGUxRnlyEINUdG4kc5ImXPHycC723sSz9mMjQY7nBkQErIXJV3nZ+/oCPbUaaQLM2AQtz2u3O\neaip3LNcWWBRSiNbap/+HPGFkvibgCHzrFw0owMzsIuLTY6p8OC+wXFzG03KGB17TDioUHx/w0wu\ndD9JSMgDCsZAZcAGsFZYnBsSScAns6T77V5/F9sW+LxlDy6ldcCv8hbLrLM1X4C8or5rkCUpzuth\nH2eM4LLTLZBmUESbjxatblBbBuSYzN1Jcx+G973g0wpdL6TVkQz6cSTgIvQ+nJYhcq5634qeBSpc\na4nm0gQkZJqS89Fr0+AC8zZVtGGJXi9Q9uD+SAKkr5rs/nuSKwssIeELZYj0LsakOjusV5oIRnby\nU4lpJPtMZC4h/xEwkXUfELkLB/aLbDKgUjtm4mLX4O6qcI7x+jzFn+6Wxtn6+ruoWzKNGTNVnuwf\nEkvaSm7pXO6HjLH/AnDPN0bWOGa2HCMsHdNqYlrI5TH49veheUH1UjytYEa486gEIi25hOZyrJ8d\nqM7QrB/KPIkCi1LqGMAHYCILfllr/Q/Zb/+L1vo7HkD77qvw3VFsVwkwmzNGdk5zs/cnspK9Q/cI\nEpgCl7nRb2MOeh6tI30FnEYF8PspVv+Fh5NyZmK6LjnHKcR3s85wumxwVFunfpu48sG1pcAHgHWT\n4LxOcGtrhvciNQ54mRhZJBqpyg24dA10M8pSAcD3DXAtNiYxokl6tqg5bGRMxXx63ngRCy7XQujY\nQb7Vbli4brPOL8ZhB9+PM8Y2wY+P+mj2kJDZMSacd0y28dLDjJWCysrLveYrVMY0lp8E8HsA/ncA\n71FKvRvAN1uOmK96EI27n6K1ujio8AkfiPJ6kDLgMJsLLoCXHU3nxyaTl7QWmfS8r6RMmd9C4hiU\nK+1MYmfrDC8kw1wX187WgMpa9AOBCpnAeqoYmyDZVEBrcmkS7k+z9WJ2jXKlq6sJcLkI2/FF+42/\nf3/n378jfm1Jeso3EkTVcy9VUUMyB1T4sZOay8g8C4HKpHYYoLzhAQkPZX8ZA5Yv0lq/237+RaXU\nBwH8mlLqv3gA7br/0umBuizzEmihlIASoqIHMBtc9uHoAuLmqSifk20Tfz5aXLyaFQGACWkW/DMt\nWhdh9r0IuORVi3aXuBwSKtRlaFwUtq1G1Sk0XYZda64tQYWkB5V+0U1UajWWHdBaW3zXIFUZHPsh\nMFi8pS8uBAxyYeMy5bg3NxuOJxmhJTXMmI9CmnmI+sZdpw6DY400GhU5513OGd/BJMuY1iLnWutG\nsgAAIABJREFUIKNNCm0QZb4XlxDLeKi9l559fwVkDFhKpVSite4AQGv9A0qp5wD8OoDVA2nd/ZRE\noT7KBo49D0zsoMtEDQkSGSk1N6lSJh1y2YflOJQ1TJO0QTKgNe8Pms/oLNtzuKpR7VJsZSq1MPFl\nzuQydJzyRXEDk4hHOS+0q2zypH8XRxkOS8PyS8EEpzZJPrf8YtsWOG6TYH4Kd9QTqFwrW5yUwCJd\nIdcp9OY2wNmN8wXy5Nyeq3BkKfOPjivT7qM8GvJN37W74YI00HonF0/tgYnk2PLAgRZA+2qaOnH5\nI4erehDtx+niD1c1Nue5yboPyQzT3Ni4HhPOrMyfw0WtFTxUXQ/GKDn9yVfCyVBDWqEPKI1Xo4Vk\nuaoHNDr3LEpdFqXLK17GnvKfAPgLAH6VvtBa/5RS6rMA/t79btj9lqJo8ejrN6hOjInn7q50wFCU\nLQ6yKriwcqEBd7isJx3t/DreQs7YcmOgFAtnPlw2juuIt4ez01a7FHqZeOA45qCXEWFcOyNTUFMn\ng9oVoYUk1HcyrJP6brPMcZsKaAkW6EeWG8NMvGw8ehbJiAz0VSGl6QuAq+1yrWzxOYc1ltmjOEwf\nAc5fBDZ3gDum0BdONsjLazgpgRsLU4+lbhVw0rMoZ1mHTZ7jkAFnaHH0nj3rcAA/85xn0fOEPW6u\non7kUXqe1gwExwFdExjSxvN3kOUd1ue5eSZWxGwMHGK095L9eU6YObVffseZBnhbZHIln3+OqBWJ\ndy3uz+Rzm/dJjCfvYfjx/hIFFq3190a+/z8BvPm+tegBSZZ1eN3r73pkhcQwHBpsocTHQ1vToaoS\nt8MZhNYGgMObJJnd2bOxO9h1H5j70KJZ2UtSLQlqE10/tJuVO125MPE28mc/KvTgntUudc8un21M\nYlFtshZGaLE6XNUOUKiPTNngYRb90J9i/l/lHa6XDW4sGhxmj+AwewTYnkKfvwCcnkK/ZIFlcxv5\n6lHkyQKrvMJji8w9P+xzZ3nnlTme9fyBBWxznjvGXQ4IsXHI+8D1YWfeC/UnMFyw+XX4Nc4qM4aK\nonNmRiljmyvexiM2JuaUc+btB+LPMHZv+ZwxcI0BiRxTJNsWQNF47bt3UZdG6fJKl6uhlwUkT4HH\nTxpH10ELpiQsJCbc+qAJLuwAcIjxHAMJHi7cNZCsV7AdthzolKhH7ahbja3lwpIgA5iJt1z1xIp8\ntzpITmPnEKBwbi1+T7C+kO3k7ZPCj8tTQ+y4LRocLRvX/66trP8I3GS/jd0jBCqvP6it+esRHGYn\nSKpdbwLbbIGNqUaJ85eAkw0W+QrL7EVTdCwHAIU8BYqk8fov9K6lyPFE7Tw7qHB6UuH2naJ/N4GF\njz87Aao/HrQhyjzoxzTQj9HQdUw7NE4z0//7hq3zNh7nQx62/tnjEV6VDY4A7NiCGRPmt9lNcc8J\nhDeBof6U7eXtlHPtoewnVxZYDlLgPzwxhIXblmz2ZkDTLthMYHM8HUcLPE1mAG5Cc+GLH+eo4n9z\nehH+dxaZiA3jrQJke3QU/Diw8cUNq8ax9nIT0lHR98ExL2HPJro0OXGRk5GH+kqw5O3dto3j9fL7\nx+8Pfi2+WEowocz8a2WL62WDVV5ika5QpkvkdWs0lfMXgedvQd+8je5PjcaSnNwBHvlTHL7uzbix\neAmfu6wB5Diu4RFc1gdN8D2TyE0Cb2+WaDSdwmkN3KmAG4sKZxWChJl8PJrr0mc9eN9b8T75O+Pa\nHTcdHtXD8TNHxsZKqD9I+PimMU1tHbZ/bqRl3xdYmbnIxzb153E+nNuh9nK2hkvTWB76WF77cpB1\n+LOPbrFuTK2PujOhqlQGF/BDUk0Wdn9cKCO76VTQUUzXAuBd2/xNi772/ubHALD37gtO8fbQ77tW\noWETkYMfX3x5u+RzkB+CMtrloj5/osPllYzJeZ0M2k5tlH1m2scSDwMAXCTafW/IKTXyZIFF+ogB\nFJ0C6zumvv2tP4G+eQd4/ibaPzlH/QcvmetuG6Sbu8CbN3j0sTcjPznD561ewmmVYt2Y90DtDkno\nXYfec90pl3NzWhmGAA4sy7xjZZn78RLTAPjYABCoYeNfo7K5PzSOTqvUGz/0LkhCv/HxIsc0fyck\noXdG7a1YLhK1fSz4MNb/fEyHxlRf7npersyYxvVyiVLqawD8CEys/Y9rrT8sfv9imJSRLwPwQa31\nD7PfPgLgLwF4Xmv9Nvb9DwF4F4AKwKcBfJvW+o5S6h0APgygsL99j9b618baNwksSqn/aux3rfXP\nT13jQchUR0spkgxvXC3R6gadblF3hnSwTPtsbJc8Bziywk633sANDW5JkEgLOc/yNsWlzHcmtNX/\njh9HTLvUBmoz/57axNvDF/Y86RfqKWDJk4VtV+n6wFDIG6H7cqG2y99bHa7KyJ/nbtM54ORtpXfh\n9wu9m8y7NrWvf3eZa3ueLHxA2dwBtneh/+QF4MXbaJ49Q/X/3cGdz5rktZPzF1HsGmRVDWzv4pEn\n3opHDl6PRxc71N0W2/Ycdbf1+oT6kb/rfvz075j3lykkZq55WqUOaJZZ5/rgIEvsdXL3XLK/uYT6\nvtOte5+hd1V3Ozu2t6MUNuY5+/HFxxOfMyT+OO7bLdkOqB+p7TS++Xe8r8PtUuLv4bwkyh/+bmLX\nlePoUkRdjo9FKZUC+DEA74Cpd/9xpdRHtda/yw67BeB9AL4+cImfAvCjAH5afP8rAD5g6738IEyC\n/N8G8CKAd2mt/1gp9TaYOjCPj7Vxjsby1wH8JwAIob4awP8N4AWY7fDLDiwzO9qTRGs8oo+ArECX\nKG8w88WekuWIP0oO+JjIwRiaZC4Rr2tsgp5fxdCIvU9WAMkCyI4N+y6oHf3iMbdNsYkNAHlSmnZ1\njfE9NBVARa1oUiQLdnIIOLKhys8nlP3NcXLlW6/9HBBSlfXtIWkqM/KyItgX3jlNBdw9g757G9ht\ngO1d4M4Z9N0t9LMvov6Dl7D9o7u489kFXnyOHMALnNSnWJzVKDZb43+5fg1ZeYi8PMLh4hqwOHTt\nl31I48drg9z0Ws6oLleoux0eKWrU3RatNjk05tnz/n3wvqbrxfqe9TEAIC+G59D4Ko6A/AaQZKj1\nbnIBN/3cj7MpIAHgv7+m6vvENVmMK/teAXh9LCXUVjkH/Dmd++/GXr8/NzJ+dpvg/V9G+QoAn9Ja\n/z4AKKV+DsDXAXDrnS3C9bxS6mvlyVrrX1dK/ZnA9/+M/fmbAP6y/f532PefBHCglCptsnxQ5gBL\nDlN57E/sQ3wOgJ/SWn/bjHMflEx29EB2W+g/+jfA4gCqPESWFlDF0vzG6D20zcZWaYE8K/sJG9p5\n8MmCOjjxOW2Ibi2Y0Hl0PFUy5BUNi9z8SzKgPISyC1POKSLG7LddA+DuoA0DaSvo1oJKVWNQVZFq\nlhT58Df6u8iHx/O22b5TaYa8PEJeHJpFpbjuAZqu7gDVxqzJso/c9Q+hLIFkQveg90f9W22Ac+Og\n13e3wJ1TdLe3qP/gDu5+psadz5Z49tMdPvPvTf809QJdU+Kk2ULXLyA/q5G8/gg4PAAOFsDJkRk3\nWYEszYC0MFQd/P67s74fuYjxo4pDlMXS/F2YBR7VBqgboDqFbnbQdI1QH/B3EOp/+a5C77PIgeLQ\nPUtMHB2JN84CmxnbPjmHsNvY91sPxzb/n/WRSjNkrE1BSpSxTQwtcU0FmpO62Xnzmq5L40dXa/M7\nbUQClUUvJnv5WB5VSn2C/f2M1voZ+/lxAJ9hvz0L4CsvoYFc3gPgHwW+fzeA3x4DFWAesLyR1UEG\ngD8F8Hnz2/dAZFZHK6W+HcC3A8Dnfc4j5suuMYtPWgwmhFuY0swsuABUBjM4PBARIha/4EIeApXQ\nItG0QCa8oEyzoY2wysrIDnaiHWNtqmpzf5IsNd+NLVT8O34czXXqOzv5dbODSjIzEjvRH7Qg0S43\ndH17vG52oE1y7Dl12wIN67tta+rACwLGatehqVL/e/vcum2hqA/QL2CD+8t+pPa6nTtMH7QV0JXm\nWk3l9YMDR+oD6hd+TflZ/h16V43Y6bN+BBAFF+pXNWPV8OYQ4GvjJDS25ZgqMJxjaT9eSBzIUJ8k\nHEQCwjccvE1p4b0/95t7Vy9LaNiLWuu3vxw3tiwrDYCfEd9/CYAfBPDOqWvMAZZ/rpT6pwB+1v79\nDWBJk68msYj/DAC8/c9+oVZPvNUMRmFS4VxRfNB2aNEw/0bI9irNTNK27o6TZjD5md/b3p+bCLzP\nCKv0wND3EGsTmWA8E0C1GbaB7s1lDGRJnLnDbz+ZX+pui7a9iTTJkWcL5IvXIcEbhm3gIt5dw57b\nMzdWG/tv7T6nz99CmSdQi1vIih2yokBRGlPMY08AJ2/Y4eCNOYq3XId6wwnU0Qo4XACrQ6MlHV6D\nKw4WGj8OACIai+2DLlFodGN9Nlug2yLJU6TFIfLVNf99kMj+kL+FdvAxjY/ab5+FjyMpoXElhfsm\ngMA45//LdvD2Bsa5bFsjTGRjZjzeLu/9sGs33BTW6fAceGXIcwDeyP5+wn53z6KU+lYYx/5f1Fpr\n9v0TAH4BwLdorT89dZ1JYNFaP6mU+i8B/Gf2q2e01r9woVbfP9m7o7skwXnWAGjQtmdom+Hg4Qtw\n2zRRB36oXO4YHbu0SzvHZpYDWcImwaHnYCQHKwC07RlonoUmPLUTgAtKmCPct5EuciTqwDma+2vf\n9Z8lSyafGdC2/8y5vD+58z5PNI6L1rWjSA6QpGEna6vveteh55fBD4lKUSwOkB++zvgsOg2cvIjk\ncIFy8QdIjl5Ckp0jseB38oYKB29ZIf+CR4BHr0HdOAGOj40JsjwCFsfoirJ3endbtG3veDb3Ze/U\ntVc41hu4IABerZJHs7nxwZWqlPU94I0ZCKod028Nkjx3v/PxZ/w6d9E2Zw7ggfC75OPJ/D+s5BkL\nfklVhjTJkaQGNPn1h4EhGp3ems9tP1ZC/SjHhQyiIJFtovdD857Pbd7v+cECqToc9MXFRI8C9x7y\ncQBvVkp9Acw6940AvvleL2oDoL4XwJ/TWm/Y9ycAfgnA+7XWvzHnWnMNfr8N4Exr/atKqUOl1JHW\n+mzfht9H2bujq67Bc+vbEyGxO3ssD8vMsWvL4GIdKpc7xqpuju+QJ2Y3yUNRZQTXVNQXtZO+37W5\nbWsSnWyDp20VjosWedKiTGsss7UXbi3vYdq6GbR9+Izwor6G/WnYiCnfYGlLDK/yCstsizLtWPjp\nsB3mt9yGpg61yDxpscpfwjK7bZ9vgcPlIzj8wi8Fihz54R9B5QmK1SkAIPv8Y2R/5gR47IYBlUdu\nQB0YDaUrSmzbc2yr29i1a9dvsn2cwJK31z8G0fe0cqHGLYpkN7gGSSyUNzSuZSg7D2E/r1MbSn/o\nHcNl15bueXnocYg2pw8/7mx4824QBu5f24+0jI03/10DQD5aPpo/Rx9m7Pdpf23zLsxxNZbZDnly\nHpzXL6fYqK0nYaKzUgAf0Vp/Uin1Xvv700qpNwD4BIBjAJ1S6rtgfOWnSqmfBfDnYfw4zwL4fq31\nT8BEipUAfkUpBQC/qbV+L4AnAbwJwFNKqadsM95pAwSCMifc+G/A+CWuA/giGH/G0wD+4n7dcf8k\n1tFj59xtEvybmwfu77F4fUpKpIS+U1GRsE+sSveKeecJWTL5LcTECwzDKkPtPa39ttZskySz1mux\ngcrTxCa76UESmUxg2yfRk9oo+5KSTeu2v+ZRkeI4T3CcZ1jlJv+AL2b8GiQysU8uwsd5huMcJou+\naHGtvIUvOj7EI1/4dmBxgKzIoUqrZXz+Nagb14DHrgOrR6FWrxsAys1thls7YzrjuUTmf+WemSe0\nhtrJGRVITMJhEkziiyXrzaVQCbEk0HipOoWziieopoNjZUKtOY6FtafmPJlkLPOo+IaDJJR/IhOC\n+f+y32JsEEWSuO9ke+RYojEok1kvQzTGw+/3upbWHwPwMfHd0+zzZ2EsN6Fzvyny/Zsi338IwIf2\nad8cjeU7YaKu/pW9ye8ppR7b5yYPQkIdPSZ3W+BTZ2ZgFgnV9fCF0zrUdgIS9Qjn5vIpPfxr8Mx9\nKSF+sH5SKzs5ZcJjXKi9Z5U59qxSQQJLkhB9B3E+vZCoAaULLf7yecJUIQCgHNDKvpRUOsTZxnmn\njnPgxsJcRwKQbAMXSe9hKGpMlvhxDpwUGU6rFNfLU+QHCxyePA688S7Sc6v9nxybyK+DY6jDa6jz\nFJv6RWzbc9zZAXeqAjdtETEOIvR8YZYGI3xhDnFkGdqRAEtC4Py+n6clxhBgxon/LrgMCDMDHGTA\nkAdPPoO/cVJAoM4L76chfZF/jOw73sYhxY7yNj18jIbG45D25cHXWXq1yxxg2WmtK6saQSmVYRiV\n/6qTVgMvWFcBDRzirwKGE5/IEgE4wkogzFosJxtJbCEH4JEMAgQ6anLhGO7Uh4v1HP4neh5Opnm0\nbFC0wBmGfcGvGXqGfiIPd56yfUDfp2uYPt2sM5wtG5xaYkO++PLzAAwYdSUhYZZ3wPUdqDAYZbff\n2mW4Vm6BwxvA4sAACgB1tARWj0AdXEO3WDpQeeGuwq1dhvN6qJmE3gVJaFE8W2fB8UTvQPKF8T6g\nfthH+HWkFnq2zgZ9SkJtpHYCPsEjvS9AkELatleZdmMI8OcaidSaQxuHMYJK2e7NOnNjYoN4WYgy\n08G5EiKqvBzRs/KEXgsyB1j+hVLqv4dJinkHgO+AodR/VUvbKtw8M2yuNOhpoAEYDDZi3o3VFB+r\nmcFF1naQbMNTNPpjIinUQ/VagOnyw0Sx3tQJDi2JZag/Ys/BgZWzQ8co3jl1PABs1obCfX3e4lRQ\npHN6dGC8BIA8plo2qKwmdJoD53WKbXuOo/xRqMMTqEdumxOPjaaC1aPYNLewaV7CzW2GP72bDeh8\nYqDCtRUJqpvzHLdvlY6i3vWNrXmyWZvaKZzqXi6esc1CrHZIqBQCXWdqvMj+pDZL5u+ibB3QZHnn\nFvgB43eELVnee4xSP/Sssh303CHh7N58DG7Oc6/wF2ewfijzZQ6wvB8m+/7fAvibMOamH7+fjXoQ\n0rYKp4xRFoCbwCEgoYmf71oo9OVbXfEgKK+AEIBBqVNgOHmmiiRNFf6KTS4JgFGtRRSaypamDPDh\nskZTtt6kXp/ne4GrbDuvryH7YxarLmurVwkTwKAIFX8uVyHTLhLLBke14fu623TYtuc4PLwGfWjT\ntQ5PDKi0L2Hd3MafbHLc3qVRUJHC7fW1MPmd3ilwdlrg9E7pisxldYMDVsG0LlKcrgpXb16CZ2hj\nMNWPWd7hcFkP3osE61jtn/5GzG+2zrzxLt8pB5p9JVRTxt1XPL/8nfqNPo/Vyal2KZq1ctUnj6q7\npuhcnmBTmve07wYvJlrrSXaM14qMAoulSvlprfV/DeB/fTBNejDSNH2xKhqEayAKJovaLAK83Ky7\nlgUXKlFLC15T58O6J6yMal2mbnIC/S5KTowxmWMSGSw2opQrly1yNHW/k6aF6Oy08PqFFkW+uNPz\nGrNhPgqssj8APSj3y4WXmwXglfulKoG8PDA/v80TbGy4LfXxdtFgXSc4r1NjDituACuTNKsOr6FW\nLbaN8amc1z6ohADFd/KSCVPjFArHAF5ojInm7NQARn7WYLGukdlSumndodiZPr27KpBXLba7HJuj\nfKBheMLeJQA3TqVsVzlO69IDGGAI8mEQ8d8N9W+bJ8Cur8hIZiQaN7HNlJQpDTr67METtD22nzdj\nc5BAneTAvpPGVqH0SpM/lNkyCixa61Yp9flKqUJr/ZrTCUMDOgQq0fPZQuaVNObHRHZ7UyKdkKHf\n58pgx2XnXF1kwFkTrF/Py8Xu5OSeUVPdHS/MJ7xNTZ0gWtucN7ca9oMEFSleedoy9SpoOs2KR/sk\nmWFYsJ+5LdyE4cZBBehDpAGgTE34NGDrnVha+mrZoKltaeMyw2K9/+5135opQA+4ZOIJaZPObMiv\nz8on07im+eCV+bXHcK1Rjt+L1I3fG1SozZXux5QFPNdG9gypBXUud5e5m8tAD5qXIw99LFx+H8Bv\nKKU+CjjTJbTWf+e+teoBiNYY7KwAYe8ekbHdcn8xjdHa5uK4UAXK4OEiKi0mc+qO10cZagugEmCo\nX6iP9nUYT4FjbJHk7QiBSkhC/c/BxYFK0aHM/KqTrW7QoXW8UcgKtHptEwZNjoosR8DPX+Ydbiwa\nLLMeWMo0QZYYKnxTK0ThzPoeCLBp7Mx9RpI5/TaQwrSD7h0bO9UuHV6fgX9dpuObLTYuQ/PrIrJ3\naWC+WRHzjoNKSAYbxEsDlaslc4Dl0/ZfAuDo/jbnwUvQYSh2NlzqInULgQSVe1KZZ4ILB74GgVLI\nPEptxLHNpUGCGv2OtC78YeH1EQMht5hbbeXCGtaE1sLNXlxi2goXDjhTtn5Ostg1JhO76vrzZd4M\n5cSs8g7LzIALAORVijzRNjk2BWA0lrPCBBCsz1tvwXLPsQOqMjM2/iI1mlakPDZf/Pk4zavW6xe+\nSHJtZRBJJ97PwHwktJcxcJmSWKXQ0DHeJm+fRV6MKQkoEsz5XOagcln+lasmUWBRSv0DrfVfBXBH\na/0jD7BND0yiOyE7gPliyxeovYBkD/MX4IfuSqejNNHVSNEg8c5z15kBKlnWhRd8C1r8Or39PVJ6\n17Z3zLHMj6XvL2LaGdUSJ2SfhcJoLCl2rYqGEpPEikaZGiAGXBapxiLtWabv5Ats1zkW57Vz2gPG\nHLNd5ciW88dOaAe+T/+EwAsIAMwMCWktoWvz70IAM7AcTADMwBcV2LCQFksbRG72Au5xczghGg+d\n9wDw5UqpzwXwHqXUT0NkEGqtb93Xlt1n0Xo4OGO7tBpisM0xb/FjI+q4PI6HOc6WiKbTNMnkdRwI\nBExhpLV4QBExmXGR4BICFd4u+bu8Nt997wMo3rN4AQZMg0lNtUkiJtQ7E3iuuke9azWdimTPK0CO\nDcBWhUxdRn6ZmjLEJqNbI08bFOU5lqsat28usFnmDmDaPEF9lA0AMKZZD99bOto/dJ1YuG1MYhsA\nLzov5NdAGJRiuSUDkfNnBqjwv2mDNJjDwDSgsA3WQ9lPxoDlaQD/HMAXAvgt+MCi7fevGeEDM7Tz\n8QeucQRvzvO9wcUzW7BJSdE67pTAZJOLizufgUvsXC7DKCDtOTLbPBlMqqZOkO/CEUdztQACFZnN\nPSVBk6Pt01C0kpR816LapdjtUhzahMuC8ValKgeqTU+j3lRIGJ0J5aLQZwA2M1zb//1nOBcLqeHl\nMtPnOFd405Hx8TyXbVEUJt/j9q0FNoXx8Uz1J4HK4ny4+x3Tprl2EMojmuVDs/0+ag6LBHcEL3cB\nH1zoOHm9AYCysVwX2XxLwp4WhzG5TEqXV7pEgUVr/XcB/F2l1N/XWv+tB9imBy4hahagN9Xw3/hu\n+3BVuzh4oAeNKXVa5sCgUCjKZnD/UizA9HuDRHIceoEC3Gkay4GQZrXc5lHw9nFT271OMA4q0tex\nWeeDmihSnO2bhWaTbyi0wHEbutzBU+Y5L3/sCowBQNc4VuJdmziKFklLQ74TQKHpMuzaLkpYyDnf\nFlB44tCwExznFV5Y1cjyDrezRXCBH0RHjYBKcOyJRZ1fT4JKyMdXlO2o2XKQUyR+c2G7R/5yMye4\nZEpims/k5iqmiQTG+b34k66qzKHNf82DSmwQcrPN+EDtwcW/gP8dTTJPM7BtoPvEHMwyumZMdee5\nBCRjCYmxnBGnDUWkX+hFkqUwh4U0FW6DNwepIVhakQsmnSvBJRQ+mtUmmVX6ohZpzzydqhxobMVM\nwNThKDJHtR4iyyTTWJ7y50881msOMsQmTL8toPDYgkxjQGm1l9u3yqCviucP8ecMOp0nhF/b+2zH\nxFgACfU5D0EOCX8fXs6RHTNyPkl/IoEZgF7jF/NptjkNcU2GP7d3L/EclyNXJ9z4yhoQldIDUMmy\nzvt3uKxxdFzN21kVJvN+7zBFO8lCO3ku3Iwxy1RCn5tkPFGtUNheL7Bd5ri7zHF+UuLs+gLbVW5M\ngEttnMj2+QCziHEtQO5iJahwiT4jmQoFMNxrglrD2kr3JvZaYLyGjHHem88hssLn7mS4uQVubhX+\naK3wR2vgvFZY14mj0u8Zj33fjsl70TjOgccWGjcWwLWTCteu7wyVS8Q/VpfjPpSgsIVy4JxnGycO\n2GOS5Z0Z3yNjnNpZF6kLTCBQOVzVg7lGIn1wXlt4fgouEIY89jxcCt8C8UoUpdTXKKX+X6XUp5RS\n7w/8/sVKqX+plNoppb57zrlKqS+15/xbpdQ/UUod2+/foZT6Lfv9byml/sJU+2YXYH6tiVLDQcyl\nKFuPDDDEj8UlyztjzmGTzdsVsZBeEgonnZLgfWckFo7lkchABcpn8SlpfHtw6Bn4vWIitZWYzNoZ\nSocqc2CP5YPQwlmULfLUmMMGZiuquS4qZHL/CoHKnVslmjox/pGiw+GqNuHEHfDEocbCc0kOF0Bz\nb/qetB4FnFSu/4ntgNoPwJkMZaj1WN9NATNpSHM5vADhu4iMQ35ft1Gx2vnYeJA+OK4lmS+H0WEX\nSSjmWlHIzEd+pItEH4bksihdLCPKjwF4B0wZ9o8rpT6qtf5ddtgtAO8D8PV7nPvjAL5ba/0vlFLv\nAfA9AL4PwIsA3qW1/mOl1NtgypM8PtbGKwwsOggqpDkYZ7rxexwCjpwuBDBugEZAJSR8sGZZ5+4J\njBPt8evLBfYi4rUz78FEmgCzrDO+kMhCEgsciC0iU0ANjGgrAVPFGKjUZYqDrPKSI40pTHtVDr17\niwWAGHgJVG7fXDgfVlEaNuY7eYez6ztsW+DzlhrHeV+4iwsVwsoTAy598iVRvNt3kHcePxsAozla\ncJ9rouGh6dJnuG/SK4lnZh3xwzktXuQ6jWnnOwESA5OY+yGcy8Ul9nychWEMXF6h8hWM+gy3AAAg\nAElEQVQAPqW1/n0AUEr9HICvA+CAxRbhel4p9bV7nPsWAL9uj/sVGAD5Pq3177DzPwlDSFxqrSPG\n6ysNLGG7LNdSjpYNisTa01c1sl1PnR9aFOdoH5I4UWoFIQmF7A6cqTM0GCmxZMoxEkyZTxNqa4jp\nOXQtuh5FnO2TgR6i5aDgA0m1w6VITETYoHgTr7OeZABqj3CS6tsQqJzeKQc75/593EXdAo8vNR5b\nYOB3WeWmqmLdKVYJ0QQJPLawmsuRH8zh+VwYuJCk1pdEG5ZB2Db3UQU2VFJrkQEDc5zkY9oLD6Uf\nM+c2dYKybL355bS1UG5KwK84BZZzTduXkQzqy14+lkeVUp9gfz+jtX7Gfn4cwGfYb88C+MqZ1x07\n95MwIPOLAP4K/HLvJO8G8NtjoAJcYWAhShcuFIZJWcm7RgFZ2KYrI2vk77GJI7PWOSeXlBiN+Vzi\nSZpslyljoCJJCOl4+rzbpbOYbmX2uPs+QlJJyW5jgDJoK6NocZOdmcBMHfrERoWZPJbNeY71ee6R\nSMp7PVcfmff2+rsAGgBDzcX4W/r2SwADTFEyQAPXd4MsebfABqZ2KBCjLlKPUWHM7AUEotAw7tDn\nxwUlEOBB15ujIUjmB0BEYApwCbXtQhn0DFxeBnlRa/32B3zP98BEAn8fgI8C8PghlVJfAuAHAbxz\n6kJXGFjUvIQwCim2dStC1PGhyRFioR1EmFTaEUJKDShUewQQIFZp0IR1i+6u353GQioHEVkzZCqB\njl937No8CGGzzqO5QCHtZdSPMAUkjfGH3Mw7LNIGJ4XGeZ3ivN5hkW5RFsdAYeu9F4eoqtuWJ4zZ\n8ateW1vUjdOQuKbUnjW4ky/sGQZctguT73KcK6e90KOcVoZPrOqAO4Lm1YGLrYlDLNObdY6mToK7\n6VC/5VXrcpMQIcueZDgOsBcPjp/IX4mNiZD2H2IZD7EsO4DhofGh55vBBhAEuQtYAh6APAdfm3jC\nfndP52qt/x0saCil3gLAmdGUUk8A+AUA36K1/vTUTa4wsAwHOh/MRdmaCX1uZuJmnQ0KAvUnTrDz\nCkDxwnnh7yB5zRL6jbcP8LOuSYKL7m5oenPnM+E7PR7WzClfoiawQBiobG/IseqAmQEu52Hj/XQZ\nQgmSm3WG02WD57cK18sU18sUx8VddNkjSIolAKDWO3S6RdUpV7eeCsA1je37qsViXXu+MmrvWbnA\nHSwMJxctYB2wbY320jDAOq+VqzlvjvP78qgwIckvwPf5kL9L5vFkEfBN686UaaiTgbkolNs07EA/\nCdedOxNU3GXYOJNjfaw9U+aofNcOx7sQ7o8JMhnE5JKIKDV87fQe5OMA3qyU+gIYUPhGAN98r+cq\npR7TWj+vlEoA/A8wSfJQSp0A+CUA79da/8acm1xhYBlOkpA0bMHfrPNZ7MexbPAg/Xtgos8FlRgL\nMDclcbObZ5dnkyXUDyHWZ/mMs/Mmar88sh+ksB9l/phmMhW9U1lT3O07BY7zyoQGNwl27doU+7Ia\nS91t7b/C4wjjpI8H69rUT7HmqKo0UymrOyzOa2yR4/Yto7lUJxWOlg22C5NQeVIARaJc4mUMVFwf\npMDrDjROM1+lkYmledUGxxgBdrtLBgSjvG/GFnEvp0kCzB6Z9vx+JLGcHbr2gPR0RGIAJE1mXF4l\nDnsnWutGKfUkjHM9BfARrfUnlVLvtb8/rZR6A4BPADgG0CmlvgvAW7XWp6Fz7aW/SSn1nfbzzwP4\nSfv5SQBvAvCUUuop+907bYBAUK4ssKDTwQkh1enYjl0OYFmvQi76xFhLEgq/JKelc86LIllzQEV+\nVxepm5QxXifv+SMgQ8KTEmWBMg6Q/k5W2NcpLJv1PycHHJOxxUW+gzE5rc2/c5tz0ukWyIzGgkhI\nKD1nXZp3mZbj06fapQ5cmjrBblWjPjDay3GuPdCqIiWOj3MTxbZtgaNCoUgqnK1qHC4bRwVT7VJs\n1ylw7mssfFy4PJIZEj0uBBYzzEQhZouxTQu/Nh/rc8BlMuyaE6zOzNu5LOm08vKZ7kW01h+DqebL\nv3uaff4sjJlr1rn2+x8BMCAc1lp/CMCH9mnflQUWlaKfKJHJISlROKVKjJgyFK0T4rrKlhpF2Qxq\nm5NvR0bGuDYF7s3rjoRkwB81sZsMRQANnL05AFY8y9X5sGHJo0L3F5E39BxRcsCxdrN3OFgYGWVO\nlps+LhITcrzKOxxkCfJkAaJ0SYscebJAnrRY5RqLVKHMNIrCJM1WuxR3l+FnvLvMsb3ul7w+Oy2M\nGbVKgOs7bFtTn2VMFqmJXjPZ+ea709rQwJwWwFlhAIZCkjdljk1RYLvKHd0LD2Zo82Q0j4SiwiZ9\nDlxioCLC7kN0SNLHEWRVzg2vF9ULmgOMNJZinHFj19ibAPahROXqAosSVQytTO1ePL6u4AHDxZJE\nZh6TlnK4bHyaEhsoEIuaiSVbApEaMgJQonQWM0VOwJD/JHpt0QbOPsv7K5T7EBKnIYXeh1j4qA5J\nUbY4KoDjvM9lyZMSqE4BAPnidUhUimVWo0w1isT4Rnar2jnwT1d9BJn3jgUzccjEWS0bVMvG3D+w\nzi1So6k8tugrU9YdkCUpjnOF01rjTm4A5qjY4uZZg826xnppItY2RQFUGu1OVNHM4xUkgf69yqRM\navu+Y0WydU+FnscSMRvETXghCeX5eBuWgF+wKFscLutZUYsXFa2BOmLufK3JFQYWjcNl7Zu4Zspc\ngjvp0zATrXEDmGspR8s+n2XXKGSsTSGwiwGbm4ByNxkAFf536F4xPqepJLdotBxrwyAXh+dmiL6S\nQvfdWXPhgFuK7s3ul2Wd01YoSTJLNJZZhzw5RNJpR5ufdI+iSA5QphuUaYdFmlg+L+2AKVtqbIti\n0LZofoZdrG/fXKCpK2caOyq0jf4yskhNLstxDlxfNK6IWNUprPIO53WCZZ7gOE+wbTWe3wKLtMHp\nssHtorMbldr5A7frvk9JQx5rZ0xT5hrNXMZhyRHHx0vs/mNZ/nOFb7wG4dcBrYWDijPbFQ81l3uR\nKwwscYDYh3U1xojsJXOxnXcMVAo+VzMNgO0WqyScXBiJz5damLtswNY9J+t4DFBC93emD7vbzM8a\nrzyAzHqWiZ6G9aAe7KxD96KFUJpUOGDSLp1A4Tg3ZqbjorVZ8AtDPClo8029lt4UVSTmujzaK/Tc\nsm+5NE0yMI0BPbgc58bcRZqKAT5TN2bdJDa5sie1XKQJFqnGUW38LzdzQ8NPoclNaSIYuZa8XPlg\nPbVwy0x46tcxuQio8KJyoevNEU4BM4ehgNrJ5+RYG+9FNOIBGq81ubLAkojMa1rk5gzgkHmDy4At\nNXAuH7iUiElZ/hTaOkdm2cFDIBPZ6Y9eKrLABMEtxMQcKZw0V1sMHTdVT4S0FVrYSpvwSuzGjm6l\nawy40OdAl1Qz15pQGDsJRdt5zmtmGtu2pm1EYkmgQiYUcv4aq45p0GOg6DoFwPiSKByetA+5I49J\njE5okFeyRx9QaDG9gwsnLM4QbzwHGAqkiZXAbLfzefvGrAUPZVquLLCQOJ9JJPkvFAo5JrFJF/ze\n2zm2QKaxa9Rg8hbFBTiMIo5VuZPk4DJmxuE+FZlBv1fbQuASis5j/S61tdiCNybcaZ+nZvEu0w6J\nSg1tPnxqHfPdUGRlxKmkUBeaznKI5DncNGZEo0gUyjRBmXZYN4lN1vT7TYLLIjXgskhNaHJmtRcA\nAy0l9mzSDHZR5oa5Y0KyS8S0lrmbPkBQwDDhoMLvFWozaS6XGYqs8dDH8poXpXx78pxokEntZELm\ngMtFnKSezAj/lJFeUxn13uXtBOcLkFz4JxejPTOZpzKzQyL5rMgMRgSUZHp0JJTNxmgqAekLew3b\nM7b7JlBxJYcpIZaxYNNz7HYmMKB8bIs8NeCwSBOUaYJQhC0xM9ed3VknRB2jLXga7WWucFCZTFic\nkkAyJU+2HUuOpGNDv+0DLk4CvjtqgxS3FuSdMVPioa/lonJlgYWEFsWpxXAyU3dGXe7geYAHLhcG\nlZHKdzUovLlX/XnOjLvEBXenNCFjjt/LFE4tM2WLl8XTykxbynzt2I2ddA1koS8A4Ob5mIlSmk36\nfKO+KFdetYNk1ZBZ8HbRAScVFhZcsiTFcdF64GL8QsY8RizJZWroYYiXjDMlc9MYALdo8vbHKITc\nOaH3GqA7keWyo+fKS4lxyMGF9+8UuPCotpDvju41xs/nrsUA5qHsJ1cWWKjQ19RCPqmlXIBHyFO5\ny/bCYOItZIGcHD/MONzOOTt+wDeHjU3uYJDBVD25kT6ke8lFT7Y7RHoZKs1ctxjwZaUqPg2ktjC2\n0ISyxaV431kKEuof7n97IWksE7Mxie3anm4fGJpU8gS4sWhdWHKRKGcaI76xgQZQJUFQGQOCgR+C\ngUso1F2SoZKPiaL9QuMltkGZo63wUGnuyJ+SkDZFcll+Fn2JCZKvdLmywBKSUElYKXO5kfaljaAI\nsdCxocWML7ZBgIm1cawNgQAGnv0vOcRieQlj5ZW5uN1ooN/cs9l7yfcyFtEnF0ZyzO4aBeTalhke\n75tEpaPVJYnnLCQSVMbYBIjjCjAgQxxjRgw7MpBglZv/gQ51FzeP9ZG0KQhUSPs5zZqB1uX5jGb4\nqrjI6Mcpinl6Z2OBBEUx1BJC81KyUsTuF/Mdyk2Hy71iNXbut/b9WpYrCyxKDe2nsx3zEVAZ29mE\ntCOeU8BzO7w2sV0lPy9UOyO4m0R4xxWbNCFQkRLSBPh9iDmArieP5ZnYYyzRFzXNyWtkWYel3bFv\niwZH9reBI5VMYRFfS6hdoYVUaipTzAh0Tlp3HscYYHJUgCE7MtANzGNL28+9ia8HF0AhT4GzSuOM\nhbJneTfpM5rM24ptmkJ16jPKten7+F40gqnNYHBO2U3RnMCcywQY47y/lEu94uXKAsuFhfGEcVPT\nWGLhWK6I3N3HIlrGJJZLE7uONC+FRIKBnMDc5CBzAGIicxnI5DG2OITMbmOAR22SJIfUD0T8OCd0\nOFW5TZAM3Ks2xcncsYEVg7MIyN18kHKkaoFzYFMUg9whzo5sJLEVKHtQWeUtylTjtDINNuHUCWAj\nxgwtv9VeagAwZti1vSJpYWNVGaN9P1Lkq6kTl0dzdFw5polRX4mdK6E5M6B/mQEu8rzQHCDfWFPn\nk+17KOPyEFjuVWbQjkizlZwotCCXNtyYJKStzGpSwEz2cguBCm9PqG1jQRJTEz20wND5O+YE5hFe\nra7R6qEVXvpdQtQrMSLQukiH/GyABy5ci8mrFpl18mfWwX+K0jxT3qFaNrhx1GDbkgmvBxeqRpkn\n2qtSuWb9sMo1zmuFE0vBf1r32kuV99qckwi4zImcDHFxhfjJ5s6Xi/w+9zxPU2b1XqZqu1xUOo2H\nPpb7KUqpHwLwLgAVgE8D+Dat9R372wcA/HWY1PP3aa3/qf3+ywH8FIADGGbO/05rrZVSJYCfBvDl\nAG4C+Aat9R9OtUHrofMytOvhux2Z0Ttl/iIJEuyhz8IGgMNlgzObc0BcYdKxSufsc7/Qbm/MDCBD\nkKUte86E5ot56DeuTckExyA3mv1uLLQ3+MzErJyb36sqcX6WbUuTPLzAtdo3h9XyMLE7536UEKhI\nCYEK/U2VKTd57kdLLRuQaYtMYyFZN4ktYtb3JQ+z5tpLtWzQ1AmOjiur2fWRDTFNIcghNqLJE/MB\n0Pu7shlm57lz4KImUwk0nlmT5Vu9EjUXpdTXwDARpwB+XGv9YfH7F8PQ3n8ZgA9qrX94zrlKqf8W\nwHfCTIxf0lp/r1LqHQA+DKCAWbO/R2v9a2Pte7k0ll8B8AFbV+AHAXwAwN9WSr0VpvDMlwD4XAC/\nqpR6i9a6BfD3AfwNAP8KBli+BsAvw4DQba31m5RS3whTOvMbphpA9VjOTotZi3UoymQsJp5k0m/T\n9BrJ4bKJRupImR1owJhhef7E4DghoRyXkC+Eg8JYP1xW5nVTJ8H2eiIWfdnebdGY3JQOozXIW10j\nlII/1u9jtO771E5P6w7bdYpNKRM1G9St6k1jraH9rzvY8GM9ABXHLgBgAeUBDKBcYuZuVwfBffRv\nG1ZNEgKVUCLi2DuMbfgmQ/4DEhtnY2N1n1pD+4iJCrv3BEmlVArgxwC8A6Zm/ceVUh/VWv8uO+wW\ngPcB+Pq55yqlvhqm5v2Xaq13SqnH7GkvAniX1vqPlVJvg6nl8vhYG18WYNFa/zP2528C+Mv289cB\n+Dmt9Q7AHyilPgXgK5RSfwjgWGv9mwCglPppmA77ZXvO/2jP/98A/KhSSmmtR8N+2lZ5oBLajQH+\nAj6VoX5R4TTzPHEstoCNmSSkej+IUEIaqIfSd5U0AUj7tMw8lzJ3dxeKRupNEvvJ1ILtar0zPwuX\nTrdAkgHFMNt+H9NFlO4/IrEKmRlV09z5+SeAfYYTKvjVO+Y5AIbazMEFMAADGHCqD4AX0DM3U+lj\nJ4FclVERoCLHhKRPGTwfhlQ94faMjBVRLXXOnA1FtV1m5v0lylcA+JTW+vcBQCn1czDroAMWW4Tr\neaXU1+5x7t8C8GG7/tI1oLX+HXb+JwEcKKVKOi4krwQfy3sA/CP7+XEYoCF51n5X28/yezrnM4Cr\nrPYSgBswKBuVrlPB8MoxZ7Hk1hoDIbpWTOS5xEZL96Hz+e5e7v5i95OgQgl6vOgXIkOCzHxkY4+b\nmOhB1AAkQjTpwJAKRpo4uHbFr8/vGSqkFpKYOaoHF5NTENxBJuPTgr+DUTARod+ytAFVdmyEluP9\nXWn/HZBJaVW7ui7bVtsyyhmyhPws4UW398NomJIyCdwCfX3Xmx3Zgj7V51JLGwMVkvV57rFUcxkA\nSqTePbUnpCVKZnGaR7I9TjMfCT64LNEAmvmULo8qpT7B/n5Ga/2M/ezWPCvPAvjKmdcdO/ctAP5T\npdQPANgC+G6t9cfF+e8G8NtjoALcR2BRSv0qgDcEfvqg1vr/sMd8ECZY/2fuVztEm74dwLcDQHn9\nscHv0kTDJwbPBuYyFj0lbbixSRa6hjznXgoQhQqNRYucCWr7YBVLxtpMx3IZ81VJcJH35v4rfu2p\niR9c4O01DleGKflw2ZjPicm+N3kf7JpVbbQWFm5M1ClB2nzKtIyGdWsv89u1zxavAoB2Z37ni7aj\nfxE7f4q+q6oEOM8tYwNLggRsYmTfghDAlKlhTjafEyzSDItU2wCFu8hyUzyMirbVR5nr+xi4hNo7\npb1KzrcpkcA9Vemyfx96dLPIz4uNv5dBXtRav/0B3zMDcB3AVwH4jwH8Y6XUF5L1Ryn1JTCuhnfO\nudB9Ea31fz72u1LqWwH8JQB/kZmtngPwRnbYE/a75+CX2aTv+TnPKqUyAI/AOPFDbXoGwDMAcPT5\nbxndnsRyL0IAE5tAPNdk6j736iAcmKommF3dLtWujdxkwMEs1K5QjkzwOJGtT8eFzH3ezjFyXQqc\nkAXU+LOR0DPSIre01RapFguxG7tESAITm8uSqswSUTKQTyRtPj1T4/qLnntSctOPZKarhRZo3kN/\nXaoyyqXapTYnpQeXE0u/v4By2guXMu1wrWwHOS9Z0o+VMtvibNng9E7hnqfapV41R4+e5gKgIp+D\nC++/WOb8+ILvA8mcTZmkf+H3eAU672Pr5L2e+yyAn7fr8b9WSnUAHgXwglLqCQC/AOBbtNafnrrJ\nyxUV9jUAvhfAn9Nab9hPHwXwD5VSfwfGef9mAP9aa90qpU6VUl8F47z/FgB/j53z1wD8Sxhfza9N\n+VfmCuVokITqUpBwtd75YiYc7HMLZ5FcJPpFmpVimgjPuufVLWlySZoNaaLjzzP2zFPPEDL70efN\nOvfAxT2f0LLctez5R8eV0zSI3ZgkVTlSlUE3O6Ax5+rG1/KpjPEZtSXvHCVJqObIwMQXERld1X/f\nDK4bzB63C+EYuAC91rLKTa7L9bLBQUbviAAGAFILugpneV/KmbSXpjG1XfiG5bJBJSR80ZcbnzGJ\n5ZOFjrtIYM6+0mmTQ3UJ8nEAb1ZKfQEMKHwjgG++hHN/EcBXA/i/lFJvgYkCe1EpdQLglwC8X2v9\nG3Nu8nL5WH4UQAngV5RSAPCbWuv3aq0/qZT6xzCOpAbAd9qIMAD4DvThxr9s/wHATwD4B9bRfwum\no+5JQgsrzybnpItSOLljzHzGZQxU6P40qfjivhfIsB1wKJ+AX0s+O1HNEP16rP3S9wP4NDDyN/o9\ndD0OKLJfvMUtYrbj7aLnkNoK0eZjJF8hUSnypL//IgUqaw5rAos+LxI1BjLBhFbR9lDej3dOlbj7\njWkuK/t4q7zD9bLBKm+xyktTihnASXmOMm1QON9MgiJJ8HxC5r8tbhfm/fOxR5oWH1ehZ4tJbPxG\nA1bEO566zxQH2Rw+tFegpgLA+ZKfhInOSgF8xK6d77W/P62UegOATwA4BtAppb4LwFu11qehc+2l\nPwLgI0qp/wcmrPiv2ZSOJwG8CcBTSqmn7LHvJOd+SF6uqLA3jfz2AwB+IPD9JwC8LfD9FsBfudc2\nSQf0HBn1F/BrR8KF921XTIKUKJfoiLzMyJh9KPpDMrYghKhmQhFIc3eNoVDkEMNxLHz6vjM9V/3u\nWoJL1ZlqlIByGgtVL2x1jRyll6tTuUJi5v9FaqLnyPwnOdyAYdjwRUtPuOvd49i4bJkKod9XTAXJ\nS7qW1h+DSbvg3z3NPn8Wvvtg9Fz7fQXgvwl8/yEAH9qnfa+EqLCXRbRmyV2An+9hKR3m5mdI4dFd\nsYnEExXlhAyB1VhxK3qG/CzMcTWVSTwn+ZHyCih6jbPWhp5j7iIRuie/Viz8msgbiR041B4gsNgt\nGxwDuFMB53WCutui7nYoiyX0oeHoUsUSjW7Q6hrndY7TGjirgNOaJVpaTYSPD77IhpJux0rvhp57\nbNPCk0bd9fMOm6LD2arGUcEjxhJcL3tAXLYdTspzdLrFaZVi3WS4vUsdFQyXo4ISM4HNOsPRceWS\neun+9I/mzGVILMmX9/e+85JfV455GUb/SmGseLXKFQYWFQzLJaekBJgxFTyUFTykixDCQiDpvLk7\nvkFsv30Gytgm4dngY+ASy3jnIkGFns0jvhzh+5orEhhkf1N/jtHPc3t8MB9o2eCo6MONW10DWdHn\nsWQF6m6Lu02H8zrBaa2wbYGzdYbNOjNZ4eK6fMELLV5jYMePGzAgBBa5GM3PbpdiDaPJEMCcFQYQ\nty3QdBnqBZFvtqi7zGbpJwNQWaRw4czHObCz7dmsMz+gQizIwXFkIwiDbMZT82kibyp2jdD1YqkA\ngzB6NjcvU2u5RB/LK16uLLCg026Hv1jXyOoOi7Wp9Hd3mQ8Ahkj0pmzDwwU/wpQ7stsmCTl3ZXw/\nB8UDCywEKFndeTkRMXAZZOjb5+XCkzjp2XgOy9QCERO5WMh+GGh/tiIjPWuTJ+55ZRRcU9EuPXXh\nuk1taF3OKo11bahPrpVboLgBFIfm8OIQdXvTAc+2Bc4q5RbOndAYB880shseo9PhOSQkAx/TCMUJ\nfbdZ5zhc1tisM2yWDc5WtaWk0TBTvh+TN7fZaDY4hS4fFT4rMonkvpNaM881CUXuTWnJ5sEEkwKb\nM1PaSyxzP2Q25oXxxor1PZRpubLAojTcgkygUuwaVMhwYIGGFuUaKTbnPbhwiZZtZdxJKeOC4uKB\nV4RuxdsdRkDlYF07bcu77kgdEAACAPvz+fNykffmEzC0s5OBAcF7B76PaXHmnLDviGswMtdiixwb\nUd1rW1SW5VgZX0OSAWkGpAWQZGibxu7mFc6qsAksxqUVesbY5sHv0wZ16fd9KcxssaJc/L1sjnJ3\nn7NTE6pcnVQAGquFZLixsCY3ASo8ge+kQE96SQSWmQGOougDOihTPz9rBmM9s++isaSbHGCkNiY3\nE+aPftF3EY6Cjj+k3YYAJapNYZh4S5uwKfDbRzQeaiyvedEK2K5ytLsEi3WN7TJ3izHtgrerHCiU\nA5R98lUa2BwFyrg+D1N4uIHMwoJj6re3yDIyzLvLHE2eeBoLPcMw2a7PjXBAxa7l57rMl1jfxEJq\nQyzPXKTvxp1bKLR54mkqvJ48yVRmflDSIvi1pM0PMSiH+otHFPLfozvniHBQ4W0Y9CcSj74m1K7t\nUV88LCbcwWwi6AxpJ7EiF0mDs8ofI5t1PngHnFUgNBaBeFThZp334b+MtSAWWh5LSubfBUtJiCJl\nobH0UPaXKwssSJSXREgL0V0CmKPM5itU0ZBgntci6V7cpLOJcNtVPgAXolnhElukQuHLHtMykxig\njPmJ3LUCuS4h801I5ka68T4amCQC9m3nm7DH10f9sJV5LOb5/US+e5FQLRZgCAhjDt9JkGamnnzX\noi4y966lE38qTDbUroEZE42N+DL35c8Yet7jHB4rMlWk3Ba+2WuDPDge5YZqKjx8xzQy09pkcG5M\nQv4Uuv5gbmIE2JlGdFk+Fq376LvXulxZYHE178XOn2spVEIViC8OIXCRUpSGTDAELp4IFZ/nM8Ry\nYyS4xAAllGw3SHrEkE9pkPw4M/R4zmR0SWkXCGfm4BJabGKgS8fPEVp489SCa90XxQIweF/7iueb\nmCB2lNpKTPYBl0VqNBDSUCTQFImp5UK8Yus6QZEAp7W2/yvgqAcXot3n/Z5aQk0al9myZ0OQG7Y5\n70VueDiQkHYb65+QqU1qRfswUD+UuFxhYGF/WM2FFmQOKryE6qAWd+6HxI7t2GkAEw3Gwbr2HOuS\nfDF2rSlwiWVCy8nLqz2GdsH7ZlCHjg+xFkwyEgS0Fu8+e2Rhh8CFnj+miUxJWbb+Is3AJaS1xEyB\nMcc0HwO0UQkl9U0lXQ7C6I8yr93U1qNl45gF8lRZkNEsiVRjlXespK65ruk/63858jUX8htxzZEs\nACFQCY1JKZIVIvrcM0tg0DX7L5VvcsPLyhP2qpcrCyxTUlkThAQTLjLsM5SzEPxpmvgAACAASURB\nVBKpsXDeJXktqVXILHl3fMSURZNoYFKphnb70D1iC6OUkOkhxFobOnZfGbPPx6Qo21Gg7NBiSvcg\n5z2J2wwIcOFtjPWZs/dLH4KVpu5Nq3JnPgUqfYN7c2BtC1fx4nIE0jRejgoNFD2FDQmBCjn6qbwz\n0CdhcnCRlPd6meCwHAa+0LHUFj7XYsX3pKM+FB03JWPjmG/wYpubi0qHh87717yMsYlx+3ZMpuqm\nBEvkivwLipghOntgGBIc2q3KSeVMcSO1yvm1AH/n75z4a7u0Bsw7rkZHIIJMhjCHwrInizVxyvw9\nTEyToBK5Dp/gMsO+s2G1VWdCjeu2b7fLNZHRSiwHwnsujO98PZJF8dwUHTa3eucwgq4XiuKja56d\nFsa8VzLaoABbMtCXFjivlQcqJtfFOvgPAApjbup49ceQ7Hapt/GJgcoYiMjIr7naRkhzdBGPmJ5T\nDyUsVxZYgEB0CP+NaQxAuGYEP25M6Fiy31Ip2rpIR8ElFuHC2xVqw1RGssvnEKGzlHPDwSIUzspD\nSkMRNHMXQgkq1Eeha05FycWO38d/ozLDn6VhwKbuqBjWSPKfbHOgDMGYiczzM4UA/TwPRzNhP1NN\nKJScM0sQ91kIXI5zZUOzwzvuIjH1YF5nwaXqTDIpPXeIN01uiuh3+m3M+T62OaE2x8L3gxJIYOYb\nhjHWin1E60CJ69eoXGlgmSMhjeFCKjftcCsRLy/AJXR+jPJljPJjbNGVE5jnIFDbBgltAVAB+t1d\nNPFySkS+DzcJyiS4+yG148/qn6C1dC5AiqozCyqZwVx/7Rqvvdzp6wGjfe985xsiAR0LYrhIcEOW\ndy5BVJpeCVyiwBQAlykTDgeXbWtCkqvOcKvRxiUEMqHNx5z5JcEkOIZ2E8XX3PlGpOPeS5h8KHvJ\nlQUWrad3M3yAj1WGDLHVuvNqWngazwzGExhjOSfyWiGCxYsKgcrmPHcmOp7NTjKgSGcSyqYO7R6n\nqkICwyTSy8x+zvLOZd4Tff5RQTVZ4jbRXZsMFtQsM4SMY7kOcoHiO99ZWsYcAtGIJkTCk0ljibKS\n48sb1wFwCQU8+KHKVGzMhCQbM6IJSz6rlClOJuQifjdJkzSViEzimSxjv99HeehjuYoibOQ8SXGq\n3PA4VcRwp08L9yDJz0bOxLLLJfcUd5C6yTZjMfZMVZYihZcvHggDgrpMXVhmKJnSM+tcEsNyqM9l\nbo0E3VDOgqTPzxKNItFIVIpUDadCmXZ96K2lynemozqcs0ESDFtlZhXPIR+gF5kUpgkNfrLvlbch\nVJSL7i0B5uy0w7UbW1TLBtWyQd0qHBWAHJcSaI7z3u9SdSapktgNTNZ+5Uxksr281MIkW0Mgki5U\n/A3AQKt8rSQ/2ppWPwJDff/jWusPi9+/GMBPAvgymKq9Pzx1rlLqfwLwdTAY+DyAb9Va/7FS6h0A\nPgygAFAB+B6t9a+Nte/KAotSvCRtv/hvV7m3s5wkruMSqM1NWorcSY1pKWOmH5c0xuk81sozzVCO\nRyyx0T+vdbQ2lHPgCQcqUV4XCNv5pVknqK3QZ7FISK0ltssfBC5MaJQF01aOcxPNdFy0yBMdBBXv\n/KQHJccGwExNIYkuYMJmH1ssZ0ulB/4E7i8DwqASIpKU2fpNXRlf3KrGttV43QHLsRKa3mMLYJl3\nKNPOcaw1NviB8l7yVAFocBap7cMBJuhH2UPbuFBi7H3mBzMJkvd+HaVUCuDHALwDpurjx5VSH9Va\n/y477BaA9wH4+j3O/SGt9ffZ494H4CkA7wXwIoB3WZB5G0wtl8fH2nhlgcWJ9B2cw4ELEAlrlKDC\nIoRiQMJlKjN+yiwgHeqkcRysa9xdGnMDTyCUQQDSEZ8xbco55Sd4xkIcT7J9A+AQBIRzfQex43go\n6BgY83rxR4XGUWF213nS17SXQmWJC3Hr0vZltRsx1U2BhHQIX4Zmx64ZKp8Qym8ikRpTUymc1uVQ\ne+ka3FhQrRajhSxS05fLvMONhbnvKjfgcl4nyBLlzGLGVKYcJQyZxvhYCPpcJkBl8JxMUrthCmkz\nAO47mNwn+QoAn9Ja/z4AKKV+DkbTcMBii3A9r5T62rnnaq1P2XFLWBVVa/077PtPAjhQSpVaa7/U\nKpMrDywhdmAOLsFFmSRAYEcLc8YAhri7AASykOdV3wtR5QM+qHA/CQBnWhuYXCYmaZMnHmdSzI4/\nuphLk9gFJrBHdBloMy8jOxmKaxfURervtstUI1U5khAVSdInClLmPeWXBMPJSeaYAeeCScAfBURM\nbdZZHXJYh1gYAPTaFwvgaPPEOfjpmGvXt057ed2BtqYxq80lGmXaCX+VSaosU+OrIoBZpBp3cuBm\niqhpzHXRTpCe7mHG4uYxDi7edcSYvN9hxVqHC8VF5FGl1CfY389orZ+xnx8H8Bn227MAvnLmdUfP\nVUr9AEzp95dgyhRLeTeA3x4DFeAhsKAuUy9CixZ+wE/EC/Jb2YEpKVXIpDRFwkd100OswGPCF2wi\n0gTgNJbtMvcynQfn2wU5RGJ5d5mbftjDPCdlEOl0wV2hDAwYiPAz7LMw9KWJh5KqDIlKUSQNskTj\nqFA4rTUqaw7bWZONpAYBwtrVXotibLHL/Y3BPtcLJcwOxAZweJq2Bapql3pJlY7h2CZSNp2pbVN3\nfX/u2r4fqAR0mWpkiUKRGIA5qhVeSBrcPPOXIblJ4KHowISTPQLqQY1FsiSP8PS9DPKi1vrtD/qm\nWusPAvigUuoDAJ4E8P30m1LqSwD8IIB3Tl3nygMLMBx0tKBxbQJAGFyAIMCE7iG1FD5g55Q45sLB\nhU80CSpjYcchyhPO6ny/Q333kjEtIBDS65065xm6Broxm7AExpmfJ1uUqXHwF4nqtRbmxAcwABgJ\nLiEG6+DzCQlyoEmgjvWJ2xQMubmk8AgyoDeH0rxoapOxb4q9Wf/dUWO4wqCt1qJwXifIE0C6N/IE\nyJNegynTBKtc4bgmcGrwwt3eNHZ0XOH2rYV3jVBodzSUOMBY7LUnlHcU2cBMzaGXSZ4D8Eb29xP2\nu8s892dgyhd/PwAopZ4A8AsAvkVr/empmzwEFiFSWyEZKysrd5WcLl9GTx0ua4+7KyZzdt8hcKnL\ndN4Ola5hwaUuU7Q76feZAKY5jMcRX0rouwENvohekuAyWGACIb30/EVhosGkJCpFosQ77RqkKkeZ\ndjYyLDF+hazXWrg5LMg9ZYVMle4ZQ+AS0FJidDUuGlBozVL2GQPeebYOkQyiIMc6JdeeVUbrqFKj\nzS1SZbUUv73cj0WPnifAKjcAY7jHzHt5AXXvdwmwN4z6Su5VBEcd0IPK0XF1KbfQWl0WPczHAbxZ\nKfUFMKDwjQC++V7PVUq9WWv9e/a4rwPw7+z3JwB+CcD7tda/MecmVxZYlGI1LGSuBtNWvAzpEWJI\nKZ65SdR0WYoCWjEZI+Ubuxdv+yxNiAAxQpsfk7FgA5lZHmx3zaKVMB7JI7m1vObv/EVwLF8kZ/Pa\n8wk0FdD6C0iZauQJETQCRdv7WtYYPr/M9ucRd1zGTHyy7y+iMd7r+Vx6M3HmtJYs75DtUpxmja3P\nYsofE0ElAQmBiswVyhPTplXeokxTLNIMi1QjT4GbWYXbdwq3mJ/eKaNtG/OXSK1lljDTWFG2joj2\nlUbporVulFJPwkRnpQA+orX+pFLqvfb3p5VSbwDwCQDHADql1HcBeKvW+jR0rr30h5VS/wHM7uDf\nw0SEAcYk9iYATymlnrLfvdMGCATlCgOLdmGo1S51TKwcBEIiCxKFfnchwXaXzUOXaWGaGqwEKq6K\nYyC5DBhSgsh7kYQYBLKs89vLaPPlwjQnQ3qqPwbPyHbf4UJjekCCmeWdrxm6H3uTxj4mvFTlJgKs\na4DWRlM1FfJsgUSlKNPO+RLqFDiz51F0mBQeEUfPtFjXvYmRtXFKQvQ9PAouxB+3r4YC+MzbwQJq\nbE4QOWtTJzhbZyiSBpRESSYx40+ZGN8WbEwEWYfHnOaigJMe4JsmMXVeRkx+9AwDERYEfnyoD4xo\nz6qQ5d3sDd6UaH0xFoXwtfTHYExV/Lun2efPwpi5Zp1rv3935PgPAfjQPu27wsASWAhzDPwqQHhR\nJcf7HJnLECwnx+Gq7s03qxoZs3G7c8TCHbtXjC1AamKzTWgzQMWZoSLX8qLtBDtz6LwQXbq7Rj6f\nAkYm9iUqBZoNUG1swzZI8iOkKkee8EgyhTLT2LBzR82BhXLgFwotD3GqybaHNE46lx/LNdS5jAxy\nTFAgi1dF0baZv98d00JvnmWolj24wHFEJ8iTiIafaKfF5Imh5QeA4zbBttWoWw4uW9fW0KI8O7jE\n7cuGABXrRwKVV5rG8mqQKwssSaJxdFx5tVRkjXUgPOmDkz0SFRRj+SUJXasoOgcqx3ZCnEID6E0t\nxLs0tohMFTySn6WWItsmqdunotnmBiTwMslSS+HtGjs31oboeTLrvmuAym4WumYQGUZFsTCyn4ht\nGvpgCj+0XGodnBvOey9WIy0lmCK+EMqSDpP9wbSWWH4Vbyd/tybh0WToc3Axjnr/PgQqx0XsPQ01\nl92uHrxnmb90Lw720Li/H6CitRotw/FakisLLORjmSNyoR0w1e6pKo+BiwQV8gkcA9gmGmeYzsqX\n30mNRBbgou9jbaIQWykELmPVAEN9Q5NrChxDpWtl22YXEBuRBKmJCLPAopudFxlGsrD+hKlxMxgf\nwrRICxeBRYxantv3eRAE1wT5Ikhm04yRPsYARm6Y6G8OgkDYtFbt0sE1b98psHO+Q6vdpYmNCDPn\nL7POBkRoFzBRph3qTtn/gVWu4Gk/Flw268wz54Y2ghf1R5HwsUug8oqJinyVyZUFFpK54LJvOLAU\nuXCEdvzA/iDlziPH8Qi1ydSuLtQm6h+5Ww75iXhQwthzBMFGAEPI+Xyv7+CiUqZGYzmdb/10EtMO\ngf3YB6ZkbByPFYsba8+YeS14jfPcRHYBNis/ccAxRvZJsnLPkLpkynyrUFyvcDPvsBlJptxXYlr5\n/TR7XaaP5ZUuVx5YAAx2j1Lk4BsbHLzOSYxQb87gqvIOWDYgi4GkIJ88n93Xq+kxQvIXkjE6Fa6t\nLFf1bFCkc6td6rQXrnWQjJkeucxhyK2qBLtGGbbd1iT1VZYyf6x6ZN0p7FrFCBUZt9ZIzZA5O90o\nTX7kOUKazRzn8hxQ8a7H3isv0RADF686KQOXbauxbTPcWHS2vLFCniQoEo1Vbo4/r1Os2fPmCXBc\ntNi1CT43UVikwJ3c5rqUrRvLNF8pcXPOs5GEoiUloHCT1UOtZX95CCxWpB17H6EFQtY5maKC4XxR\nsUxu7qR2fEp72GmJEqNBEtQyQlLYRSTWF7T488WH26PHwIiub4ISWu/Yuf4sklBZ6GCeUdY5bYrY\ndreteQdUPVJlpXPrqqxEhxatHnJuTUloEdrH/l+JZ+JM1vI++47Vi+ZQ0HubMqk5Oc/x3K7D9qix\n9WwSHOcJlrkBmDLtHKhTPRwSYyqjUGWT61IkiReOfLbO+kRN0TchUI5GeE7Mhcv2h3SduqdSF68m\neQgsTMYGmlwsxyaZxzw8wi0WK5BFwlX/0CAPRsnIcGeiT7f0HHMBJrZL45oFLW6HyyaeJU7tsr9T\nlFuRAMi0qfthQ6lj9u6x55XO79izNbV9J0XjNI+6U2h13Rf5KsIh3cTSy+WyFojYdS4pkW70ejLo\nQfrMuP+mqoYaPTdbhq5vqFoabFuFxxYax5b12GTed4OQ5NwGVBjQ4QDTYVWllrfN0MAUVntp+MaL\nzTs+lrgvJvRco/12RZztly0PgWVPCeWDAOEdcwxUeCIgBxeeze3uNTOZkgsn71uci/MJYIjyfYLH\nax+GgDLT2DWqB5+ID4EYg4sE2NlrhCbwGPjJBY5rdPS/PL+pEwMo1qxlMsVbo7Uk/lRodYNOt25n\nDVxuWdmYpiZFRoBd2v0vEOQQO58W7hi4UE2XU8sqfZwb8+Jx4SdRUm4L/U/ajDlG2xLJffGxKu9w\nuDRapdzIhULPQ7kp9P8YgDwEl/3lygJLyJE25UyN1eQe9aMEGJCBcN0RKUXZYn2e7+VgpNK5pKmM\n0febh/JpRojReXCYAFRvYbLgR3U2pJZVFLxfW6OpWCFAcBqFuCcvZcvPoTZwEPVyFCw9h2zrrlFA\nTgtXbwpDVvQaiwAZrq1MsdOGAiD4whszM475vkJBGLFjvZ268PdNtTt0r6lrhTZYXGsoyxabdYaz\nZYMbR0Z72baklaQoU3pndqG3GkvdqQGR5bpObCExE0xRMK326LjC2WnhzWFeX4ZrNEXZomGReQ9K\ntL58TfSVKlcWWLi9kyb5lLmLT6qxARKjp+egMqD5mDCLzXFg81LD+a7FYl0P7iOFqMRdO4pscoHj\nxcZosh4dV0Efy26XuknM7tq3uU5cKKlnQrT32KzzYDKhLB8wbKyfaU1JfYeAc8QDwK415jAkeQ8o\nWYFOt2h1jbqzCy4zh8kdbCjib67wBS+mae1zXboG9emYiUheM7bIxjZUseu4xZsv5HaRP1vVqA/g\nCl5dLwG4cW/pYwSokGSWDBQwYfhHhQm/52HYnhk48FxT/fFQLkeuLLDM3T2EnKnAjMiuAFki4IPK\nYNFnfpCQhMBlsHiIAl50z7pIBwSDdZEO+LlqWYQKvoM0litz+9YiaqoJ7RLpf1oAN+vcgSIANHXY\n39FrgMYEMkkfX2nnE1quaudnAXpqd6O15EZrAYAkQ6trdLrFrs1RdT0Q8Z39YLc+ErQw5uPgWhfx\nX2XLeHju1Lgdi0wc00jMAX6gB/dPzDGfSXMkAEe+utuZKMBq2eBoabQXwICLeY0JgC4IKlxMoTFD\nsUPEoACcv2XwTOy56HseJfmgRGv1QO/3csoVBpZ5L3l8p4ywjyIAKlTrIpM1LwIypr2EwMXteG2p\nYV5XI6/aILmjZLAlaXeJu78XkTZS4jj2N0loV1hViVsACVSo0BQQrp8hzYgEjGOMt3U59L2YSCWr\nybSJ0ViyYyBlGku3xa5VqDmo2G6UABLTUN3vkXfpA0oz8L2NgcuUydbThNa+Py0YEMHbzph+50rM\n9EtyWpc4tMBOJY9N8qOy4d8Zri8aINJX5GcxYeLGHJanCscAsGyiJkoPsBnZLPkY+Qbm/2/v3INk\nuer7/vl1T8/uvbt3Wa5eyBIxwggnEk4lQZGpsuPCgIQs25HfyKkY23GZIkAcVxzbsqmi/IepEnYl\nJrYpywqmDH4hgq1CBVaEMUlcRSGBEMhYYMIVL0sIhJ67d1c7z5//OOf0nD5zuqdnd+7du7vnW7W1\nMz3T3ed095zvOb/H95ekWxaHI0wss2d+M80EQand8nuR2iFTNSG8ypK+6F8dYgO7G0DqSMUvMua/\n9tsQIh+My1WA639sJTJPfo4/+3WrFxdh5K9UpgpN0XxN/M+bVi51A0Zv5A1GWQfyyYolUH8vHfeh\n36bV4OtNQqZMNC5qL4LQAR0LRy9PEUbHeea1ojc018cjjONeUIjfprqiZLFQ8LAfbn+HyoRmc8g2\nxfS9sORizJkdVlxCbkTE0uUTdTO4cNkkYe6MoMhNftJGp8/x1QFPPVFVRHY6dE1VN8GSzRksVXyU\nfCz7ui4TkV8QERWR871tvyIip0TkcyLySm/7i0Xk0/az3xYRsduXROQ2u/0eEXle2/M7u+/26aIc\noP0/93kTqXSKqp5Q+doV//J+pCNLIsMiK6s2hqTSJKk+HGZsbxVsbnQng/JWESWVch97rkE3Z2el\nYFRk7KwW5s9uXxTCa1Fph3XOuwFvc6NbIZXYj97pVrm/nVXbfttu//O27WuLkQ7ojTJ6o2zijxlO\n/DWuTxXEpNu73mDVV8/UN/9Pz+mL+e9nIrKKil6HyPNaV9Ml/I345wif99h2v2jYk091eXwHHt0R\nHt2Bx3cyHt/JeGKnwxM7HTb6ORv9nCd2OpweVK/vWgHrXbhwWTlvWTlvGS44pqyf7PHsk71SpbhT\njI0gaM1zUnn23D1qWzp6nyAi19kx8pSI3BT5/J+KyEdFpCci/7XNviJyUkT+SkQ+b/8/226/RkQ+\nYcffT4jIy2a1b99WLCLyXEyJy694267AFJ65Evgm4EMi8kJVHQG/B/wscA9G8vk64E7gZ4AnVfUF\nInIjpnTmq+ZtT9ycUV+r3f9xxn7gbVcuUz++wFwRPbbnNG8ilUo5ZJg6dlkq4HR89VKHWbOuumgb\nP0qn9Nt4PiHfxOWLIVb65Mvrz0JZW2NYHZC9poUJenWoc9zXnTO63T0LNf63NpMLaFaLnk6orUbK\nhWURHCrPa+R7sUJ3Iak4+DVQ6lac5Wq4GFd0xlziqlOgXs6lcr/cZ25l0xtJmWc0WcGYRMoQfu2l\ncCITXaktmFxU5zMv1kFEcuBtwDWYmvUfF5E7VPUz3teeAH4O+IE59r0J+GtVvdkSzk3ALwOPAd+v\nql8VkRdharlc0tTG/TSF/RbwS8D7vG03AO9W1R7wRRE5BVwtIl8C1lT1bgAReRfmgt1p9/k1u/97\ngd8VEVHVxqeiLPTlEUr4sJXmA4iavWLKwL6cuTu2e2Drfmy1xYpqEDp7ff+Nb/LySwyb9k6EBV1b\n+72cHQpGvWzPFfoqUvwNWfjlKjB2zQNSmcpFqVtk1/i8YoKQIcIMe5d17+Rc+tauv2gzxqwCVLux\n+cf8Yb55E+LCkjAhl7qVSuUcNaTi0LbAVvl8nC74KgM2u5PCasu5KSDWzZT1LmVdHD+DvzfKGIxh\no2/0xRzBhHVdyvN5RfFakcu5iauBU6r6BQAReTdmHCyJxRbhelREvneOfW8AXmq/907g/wK/rKqf\n9PZ/ADgmIkt2nI5iX4hFRG4AHlbV+61Fy+ES4G7v/UN228C+Dre7ff4ByspqTwPnYVg2PO9rgNcA\nLJ28cPKBN0CH2MuD5qTI3TlCgqkcu4a4QhIIiTAWFPCMNXmFx6qFV5TKvY/NWNvI8LdGbKbbwixX\nm3sQWR3OgzEjso6xzftHCbPunUmvLclUHOXes3C2EA6es0od1G3bDcLn3Uf0WTpd0PcUGhyRFLnx\nwaxb0nElo324fJhlzCRgrZgml0p5hsKs2IvN6qTijJLLeC4T2/kicq/3/lZVvdW+Lsc8i4eAb295\n3KZ9L1LVR+zrrwEXRfb/YeC+JlKBM0gsIvIh4DmRj94I/CrGDHZWYW/MrQAnvvmFjXc4ZkIK4Zse\n6pLGypl7hGBixw5Jpe5HHpZULrdPmVOm65uEcAQYHi9WmtmtyGKJgHPB2fTtzHFUZNNFpiKIqRlU\nEGxz190VZuv3cvqddhpgftZ9bzi/GSNccYTPQq1D2aKttlusjtA8qH3GvJLLU/k2Xmj0LMRWn75p\nLRaO7gim31ErxGrUjruZWZ2AiRRzq5XyuDbXZb2LJRhKM5sLbfef422Ks0su7fGYql61XydXVRWR\nyo9JRK7EuBpmjt1njFhU9RWx7SLybcBlgFutXArcJyJXAw8Dz/W+fqnd9jDVMptuO94+D4lIB3gW\n8Phe2l4xB80wT80aYKfkTfyZdWSV4vZpqllfHs+3GQf+iV2jprRvWPNkL+q9QOV6+OTS6njzzPht\n/kK/Vy+qGUOZkb9LhPcznGyEfY+1e54IpbDcQHmM8LC9PEpCsQmSv0/YNtfmVoOw14+Yf8edo4lg\nlnNlY2AmSsu52MCKILLPwvlnylULyjcY0LHS+34NnOOrg3OZXOpQN07udd+vi8jFqvqIiFwMlDXt\nReRS4Hbg1ar64KyTnHVTmKp+GijtUNZ/cpWqPiYidwB/KiL/HeO8vxz4mKqORGRDRF6Ccd6/Gvgd\ne4g7gJ8EPgr8CPDhWf6VNqi18Q+mRRz9LN5YRu9UeGbgJ2gilbZZ2DEzUl2holCUrzxWxL7uS6qE\n5NIKDSTaZoD1kyn940XNiRG4/IXW4cFZp+Jz2RnFNcJKH0ODT6fuGaj4oCKhsHsZ1KomU3Ot2k40\nXNRZmBTsry7ccf18o2h7I9cldj3C53h7q4gSzIZ1xnczbF2cjE6kxkspETOSUv7lhF25b3SGZf8c\nwTgZGOcTmtmvPUB0tl+tJT4OXC4il2FI4Ubg3y1gXzeW3mz/vw9ARNaBDwA3qepH2pzknMpjUdUH\nROQ9GEfSEHi9jQgDeB3wh8AxjNP+Trv9D4A/so7+JzAXam64Bygsy+rgR7HEyMX/Tqlh5M3MfBOS\nP1DOIpVZtTZCE1Y1mirOrzG/ySyTi5vlxSTcfcxSJvBNfeG1aB3pZcml6fuhz6zfM1UPnWihX5PF\nyLcMyQKNsDBirN/PSumZvaDpGsYCKGKr4lbkHiHsNitNv31T5/FXK/2ayK9d5IL4hBjmPJWSQCvD\n0t/SzYw/BSgJZqI7NsnOX+/CU31DLkWOzXcZTt2DbQoGTJQo3H04F1cu1pf8Bkx0Vg68w46dr7Wf\n3yIizwHuxRSfHYvIzwNXqOpGbF976JuB94jIzwBfBn7Mbn8D8ALgTSLyJrvtWhsgEMW+E4uqPi94\n/2bgzZHv3Qu8KLJ9B/jR+c87HS5ZJZXqkr0pIbA2dyOwfbeWg5kXnvN9VqhqucvSdGEt90Nu8u20\nJpW9OqiD0OjKNbaO19g56sQ+dwZGA80V/Koj3cqxghlxtztm6BNiP27W3Ctc250Cgi8J02Sy8jEV\n5BCsvptKQocrlgrss5YPxuUquWyvG4DnvCbhOfyJ25SM0nqfwWjizO9mlKuTcv8g4GK9a1Yu3Qz6\n+YRgdrrDUv3BiLdWZYR8clkERDUaILQbqOpfYtIu/G23eK+/RtV90Liv3f448PLI9l8Hfn2e9u07\nsewXVIMoIm+VEiuL26Q+GzON1Q0AdaQy01nfoP80D+p8N25FVecEbjUIlYQSDNoRKZHKPhaheavO\nlAeeQ3lrevCKKUjvFi70Nd6I6dwURwRNaHPvQnKJnr6lz6gu1LiuKmSbOdXQCwAAE/VJREFUFZkL\ntphqrz+7935ffmmIEKHfLqY35pKC+/2M3skeOyNjElsrtFydOIHKfuTyL9vwZUcwFLAxEPrrfaNf\nZicLdf1KmA9HllgYT5OKixzyf3gOvvigeVG1rzeRS2U/t6897yy0rgXhVi3BMf121JWbbTtAlTPH\nutozsVVKQ0RdG8yOdqqSS5go2vFm1q6kQL+XMzhmCn65Yl+zsGTFDh3ZleUJImHO7lnYa+RcOaj5\nsiM15RVq4bVvVlvakgqY9sQG3djsvk4ipq49ddL3vrmsv94v67yc6DopfSorF5jkvvjv1wpDPi7f\npXfSRM4OhxnbS2ZIPBOEIrqYyc5BwJElljKQriscXx1MzeSgOsN29R4giE6aQS4+Zq1WQrQNN50c\nqJ6o5gkI8H/ws1YqvoiiQ2wgaduP0Bw5K+LOYKJAEJLKpMHNpq9KXZYA4WBVHj8W6efpccX6XKc/\nV5dQOKU+7Qsp0kxgfvvarKJ8v0YjbH9930o+GFfa6n9WBlA0leIOQtnDgA23r2tnr5ezvTpg0yol\nrxXTBOMnVIKJIFu1hxyOhbUCQE1wxsmenXSslNd4kSvfo4YjSywqtCIV33nuyOX46sBoXDE9YNb5\nXUJ7t/uOTyp14cUh/CidWIb7LLmZWQgHl5jJpDIAxET+akKpwzaVJi0XhOCtHn0i3DpdI6OP6/s0\ncQyDsPFOZ7LicJndRabkUpCJ7d+wT768QiY53Wxo8yKMmaW7NCprrVcv2HTJ6RjJhxONSl5LmN9k\nUTtzDsiiiVyg+TkIzauxCcYs7CnE3SLq0wxKa/vX1axejFJyb3VQiQADSimYWEiyc/ivFcLOsnnd\nt8mUTz6xbBQpBsaPN+otxicqqjPrIx0WHFliIYuTSmVQ7k6/PrHWry1P7GOWgz422EYl8e1xnH8l\n3CeMVouRSlNOjH/sWKLdUoQEorNLPzqtwafSmOldUPq4uksjVlYHk3uwOpgil1gGfBh2XfRNfky5\nAuqOWeqYWW3HlsMtsiUKWYLxkwBk5OTSoch2WMpN3sRyDpuY52DLHrtO1Rf/c6r3KQZfoSHUsppS\nb264tjM13FokUfrP0KzVi0+Ei3BwR0PjvUlLbOXjCrh1bOLrYGQc9Mu5WnNX/Fwugmw4Fi5cBlBY\nt5JHdiLjQp8H3aM7TO4WR/aKZZnWkopPKP6S3G0vI5UilQ1rJUcimJUI6RAjlXCQ8Fcv7tgxNJlE\n/BDTulXLLHJpOkcbs1ZIKqUD/3QxRS5t/AGDrlE/Pr40LO+xqbuurHVHrBYjcilgPESHxtYu4yG5\nFKV0yHKeUeTGz7JduWDxstNQXbXEBvwwjyM0q0VDXCu6bzX+uwjC6+5/PxYM0soEG/iWwvbOQzQx\nn2bYTv+4PrlMkeXKkCKfrFa6GaX5y2Ep11ISpjcSljGZ+o5cvuEmIEuT0g6LQPKxHAH4agVNpOL/\nHw4yut0x/X7GyuqgksHrEMtSNgeeVi0Oo8BiZq2YCco/V5PMSiy6rTyO7Ydrv5PfHw6KciXnt2s4\nyKZMYjFyiSGWg1EHV+K42x1zfHXAUsdev9VBhVzqBtOoScYzg52wA48xg5lBJpMchn0YWV2pYZ8s\nN/XYi2zaAQyT+xwWcqttQ821iK06mxS1YzlSYZti56n7rk/OsQlRv5fH2zgDbVYzdZO68nfgklr7\n1evhk4v7zpI1U3aXRmz2Jxn3y7lZlfi5Lkv5GHeL1rojNvp5KQMDSpHDZrfPpjV5z6PYkGBwhIll\nd/4HmAzK5fu63AJfT8lz9IfnbTJRQfsIqnn74yKkHKksnx4wKjK2MeQyK9Q3du7dhkGHqKy+MujZ\nbf51nzKDBQ5wP2z5xFqf4yvDkiS6WaSY1Gg4qSJp4X8nlG+PkYp7D9U8lLZoIue96IE1YSpiMQg+\nmOueRqLkwoAMHxVTa5AMHDr4fThycZ+738q2nXws50o/F3ZGylpRJZcY/Iiy5dzss9GdEEzCfDiy\nxJJ5D1mvZ7Ky3UPuHnD/x+VmabHwX9+cELO7x7J3w0Gi7eBTF/IbBg24kFj33dC8NVwalcW2HKmU\nemO2Trx/ffxz+ecP0YbcmkxYmxtdTqz12d7qmD6tDujZc29vdcrVir9SMieOmJAskR9f6ZeDmiGV\nyADT6UZLE/dGWVnzfrMvZc7DcEtYblMDJ0DoGG9jxpqHUJoiD5t0wCrh4kFp4qmVdF2EnVtpzVCa\nDs2/JYH1s7jSRI3kj3Pqb58wz8TxlUFZQGx7Zciz1/tsFsLGwBQD62amdktvJKWPxdVzcVgrJivU\nZetfO9FdkBr1AhMkz3UcaWIJTTv+a59cHByphA71mOorUNEdimG3K6Y4iRnH46zMe5+QQlI5tmVn\nZqdhhwKoZubvVcqkDuHgurnRNdfGmb8w177OBDYV9htE3flO+xjGOjKk4pUmHo0GZa0Ppxfmrvn2\nVjEV2gz1AqCxSMG6UPTQT+Zyq2JoMsHOMlf5pBwmqYZ1iHYl/rnHMgYx1IVkF5um9PLGYInjqwP6\ndqK4vdXhSUswOyNhrXDZ+lUy8dHJlNXMrHAMwWgliz+hHY40sTjdqHIZbaNATqxNajg4gomRCkwP\n8nV1XRaF4TDzyvma9vvx9hXpec/ZGw485azbI5V8MC7JZdTLGHQ7bG8VtVFNuyXG2LFqB0Jrhmjy\nq1QbNS3Js7JqlG272SSLPhYtJLYeS7XQlylNvDOaqB8MBxnLg3rp/brVSqtQdKr+t5VIbfq63KIm\nKZ0wsGKKVALF4rIfNcebWoV7ZF4e0y/JHPSrzvwbWgS6S6OpfB+/jX576MF2v1N5BjY3jKLx5nqf\n804My1otJlN/8hx0Mg2c+hkrxfSKZi/IxtDttSvZcNBxhIkFjns/2s2NbsVe2+vlrKwOKg96+MN2\n4a6tSGUOLamYs9wnsGJzWLHrd2oSuabkQIJBws26Oza5rdsb0qdTvh/YxLTYoB9LzKsz2dTVqonV\nVqmTL5llhvPDrcM8Gf8/1IegxuAqSDoz2PaWIfVjW4aQB92cYZHNNIH5mBmKHgy+MfNQKAgarpan\ndzCDcvT6tiSPthUXfeIMEzRnJemW+wTHc7k+DrHVi5+kOSoyBgjbS8bcayYEPfrrfXaWpZSCAVc8\nrOrULzJznNXC1HxJmA9HllgKgQuOmToNPvwBaOt0wcrqIEooMXNU3aAyODH/ZfbJJXq8zWGpa1RK\nloQDXEhmwQzStXd5a8COrTo56OaTCpQtMrYdjq8MKhL7bTE1yHpZ1mWz62a3EVOO2x4Nse1OlI19\nZJKbcOPepnk/Pr+Sx9LNlBNd2O6axM3t0wXPrBSV6w019z/Qo5sXYS5Vvz/x+/lyPC5pNyzWVhn8\na3Jgwhya6UZM/Fex4Igm+KtHn1RCS0Ar1IQ4NykW5IMxo17GU5ikR6c1NjgG5y2rt2IR6rqzOo/6\nRQNENYUbH3Z0MvNgAWx0jHM3luHtzB9QdZyHpAIYJ+OMZKrhIKs4bpvMSTPJJfix1xJKCO/zUL7C\nkUqbQaMc1CypzCU/42EetWffR9Rmv74XlNEf29oqxYRcMslNHsuwDz2bpTLsU+TLrHWfZrUweSzL\nuR28tzqlWCHUVBqt8y2E21sSTV2Ir7+i7XTGFUUIhzZJqxUFgDrUkMss1JFKxd80D7lEED6rodUg\nH4zZ2coZLhk/Xbc7ZqPTr5Q8Hlqzp1upOCzlY1bOUDTeXiAi1wH/AyN9/3ZVvTn4XOzn1wPbwE+p\n6n32s/8M/CwmJvt/qupb7fbbgG+1h1gHnlLVfyEi12Ak9btAH/hFVf1wU/uOLrEIZcatecDMbLbb\nHZclTGHWKmVayLIOlSAAbzCY2c4Gcilnmo7MWlQdjM1W3eBTIZWa8NDKsWpmoWE4dgwuBwcm5pK2\nzt62pOIrCVSu/7gqm59JDv1N2HnGfmGbYuUERbbMUm4SKh/NTYKkk5vZ2DKOfp9UQokWh3AgrsjL\nN+m7effKPQf+qsV/Ltz1dM7r8hpEklbrEiZnTQzallT2zxNOOnxSmWrHAgjGL3Pto+iNpkiX9T5+\nyeMVa/Zy5rDVYsRKZzwdlr5b6GLELUUkB94GXIOpWf9xEblDVT/jfe17MIUSL8fUtP894NtF5EUY\nUrkaQxL/W0Ter6qnVPVV3jn+G/C0ffsY8P2q+lW7/13AJU1tPLLEIqKseqVLzf+hrdVBZfVSF/kV\nDip7UbJtynYOZ6y1hGRF9fxjuv0dphIsAzmWtvVc3LHqZqHlOfrVkO2YYnTbpLtZ5QJi53eChcdX\nzL3dyZQT3ue5FOTSQftbsL0DgPa3KFbPJ5OcIhtVRA27XXufvRo4TZOK0O/m1/cIo6/aIiQXqEZ5\n+SviJp22cFubBEs3Cag1mxFfpbh21/nAfNJs7nzzBCRGLk7WBxtG3+mMy5VnNxtayR61YcjmOI5U\n1rqjiY7cuYOrgVOq+gUAEXk3cAOmQKLDDcC7bDXdu0Vk3ZYb/mfAPaq6bff9f8APAb/hdrSrnR8D\nXgagqp/0jvsAcExEllS1V9fAI0sspz79pcd+6Pk/8eWzdLrzMax/mHAY+wSpXwcJZ7NP37zXAzzx\n1Bfv+uPbf+L8ll9fFpF7vfe3quqt9vUlwD94nz2EWZX4iH3nEuDvgDeLyHnAMxhT2b3Bvv8G+Lqq\nfj7Srh8G7msiFTjCxKKqF5ytc4nIvap61dk639nAYewTpH4dJBy0PqnqdedAGz4rIm8BPghsAZ8C\nwuXpjwN/Fu4rIlcCbwGunXWeM5PxlpCQkJBwpvAw8Fzv/aV2W6vvqOofqOqLVfW7gCeB/+++JCId\njGnsNv9gInIpcDvwalV9cFYDE7EkJCQkHCx8HLhcRC4TkS5wI3BH8J07gFeLwUuAp1X1EQARudD+\n/ycYEvlTb79XAH+vqg+5DSKyDnwAuElVP9KmgUfWFHaWcevsrxw4HMY+QerXQcJh7NNMqOpQRN6A\nic7KgXeo6gMi8lr7+S3AX2L8J6cw4cY/7R3iz62PZQC8XlWf8j67kWkz2BuAFwBvEpE32W3Xquqj\ndW0UEzSQkJCQkJCwGCRTWEJCQkLCQpGIJSEhISFhoUjEsiCIyC+IiIrI+d62XxGRUyLyORF5pbf9\nxSLyafvZb9uEJERkSURus9vvEZHnnf2elG38TRH5exH5WxG53Trw3GcHtl91EJHrbH9OichN+92e\nWRCR54rI/xGRz4jIA1amAxE5KSJ/JSKft/+f7e0z133bL4hILiKfFJH32/cHvk9HDqqa/vb4hwnr\nuwv4MnC+3XYFcD+wBFwGPAjk9rOPAS/BpPvfCXyP3f464Bb7+kbgtn3s07VAx75+C/CWw9Cvmr7m\nth/Px+gh3Q9csd/tmtHmi4F/ZV+fwISMXoHJoL7Jbr9pL/dtH/v2XzCRSu+37w98n47aX1qxLAa/\nBfwSFfEwbgDerao9Vf0iJjrjaiursKaqd6v5BbwL+AFvn3fa1+8FXr5fMy1V/aCquuIRd2Pi4OGA\n96sGpUSGqvYBJ5FxzkJVH1ErKqiqm8BnMZnV/rV+J9V7MO99O+uw+RLfC7zd23yg+3QUkYhljxCR\nG4CHVfX+4KM6SYVL7Otwe2UfO6g/DZx3Bpo9L/4DZtYHh6tfDnV9OhCwpsV/CdwDXKQ2XwH4GnCR\nfb2b+7YfeCtmkuaLnB30Ph05pDyWFhCRDwHPiXz0RuBXaSFxcC6iqV+q+j77nTdipJ//5Gy2LaEd\nRGQV+HPg51V1w18IqqqKyIHJJxCR7wMeVdVPiMhLY985aH06qkjE0gKq+orYdhH5Noxt9377g74U\nuE9ErqZeUuFhJmYlfzvePg9ZaYVnAY8vridV1PXLQUR+Cvg+4OXWpOC30eGc69cu0EYi45yDiBQY\nUvkTVf0Lu/nrInKxqj5iTUIuiW039+1s4zuAfysi1wPLwJqI/DEHu09HE/vt5DlMf8CXmDjvr6Tq\nWPwC9Y7F6+3211N1cr9nH/tyHUaG+4Jg+4HuV01fO7YflzFx3l+53+2a0WbB+A7eGmz/TaqO7t/Y\n7X3b5/69lInz/lD06Sj97XsDDtOfTyz2/RsxkSqfw4tKAa7CyFc/CPwuEwWEZeB/YZyQHwOev499\nOYWxX3/K/t1yGPrV0N/rMZFVD2JMgfvephnt/U5MsMjfevfoeozv6q+BzwMfAk7u9r7tc/98YjkU\nfTpKf0nSJSEhISFhoUhRYQkJCQkJC0UiloSEhISEhSIRS0JCQkLCQpGIJSEhISFhoUjEkpCQkJCw\nUCRiSTiUEJGfE5HPisjCFQNE5EetovBYRK5a9PETEg46UuZ9wmHF64BXqFe7G0BEOjoR19wt/g5T\nK/z393ichIRDiUQsCYcOInILRgL/ThF5B0ZC5lvstq+IyL8HbsYk4S0Bb1PV37eKy78DXINJDu1j\n6om/1z++qn7WnufsdCgh4YAhEUvCoYOqvlZErgO+W1UfE5Ffw9Tu+E5VfUZEXgM8rar/WkSWgI+I\nyAcxCsHfar97EUbS5h3704uEhIOLRCwJRwV3qOoz9vW1wD8XkR+x758FXA58F/BnqjoCvioiH96H\ndiYkHHgkYkk4KtjyXgvwn1T1Lv8LVlU3ISFhj0hRYQlHEXcB/9HKziMiLxSRFeBvgFfZmusXA9+9\nn41MSDioSCuWhKOItwPPw9TOEeAbmNK1twMvw/hWvgJ8NLaziPwgxsl/AfABEfmUqr7yLLQ7IeFA\nIKkbJyTUQET+ECPd/t5Z301ISJggmcISEhISEhaKtGJJSEhISFgo0oolISEhIWGhSMSSkJCQkLBQ\nJGJJSEhISFgoErEkJCQkJCwUiVgSEhISEhaKfwTznfSwP1j3gQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_mag().show()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmwbVle1/n57bX23me8w5tuvcx6VVlVUIqiHTRQ0I0d\nSBgMYmGhHa207YDh0Ah0a0iLYA9BKxVRDdHShKhQrTTQiEjYqNVSBLYoTm1JFYgKFLRFmVlZmVlv\nvMO5Z9jj6j/WsNc+59w3VL7Kl/DO98WLe+85++xh7X3Wd/2m70+MMeywww477LDDa4nkSZ/ADjvs\nsMMOTx925LPDDjvssMNrjh357LDDDjvs8JpjRz477LDDDju85tiRzw477LDDDq85duSzww477LDD\na44d+ezwKYOIfLeI/I9P+jxejxCR3yoiH3/S57HDDk8KO/LZ4ZOGiDwvIksROReRYxH5MRG54d83\nxnyNMeYvPKFz+2oR+edP4thr59C48TkTkZ8TkXc+yXPaYYfXC3bks8OrxVcYYybAdeAm8Jee8Pk8\nNEREvQaH+ZdufA6Avw78iIgcvgbH3WGH1zV25LPDY4ExZgX8beA3+NdE5PtE5Fvd71dE5O+LyImI\n3BORfyYiiXvveRH5ZhH5RWdB/R8iMoj2805nNZyIyP8rIr85eu+GiPyoiNwWkbsi8l0i8hnAdwP/\nibM6TqLz+asi8n4RmQNfJCI/JSJ/NNpfz2ISESMiXysi/15EZiLyF0Tkbe48zkTkR0Qke4jxaYHv\nBYbA26L9f4OI3BKRV0TkD0ev/w4R+dfuGC+KyLdE7w1E5Afd9Z6IyAdF5Mi9ty8if93t7yUR+dbX\niGR32OGRsCOfHR4LRGQE/F7gAxds8g3Ax4GrwBHw54BY2+m/Ar4UOzG/Hfgf3H4/Cztp/9fAZeB7\ngPeJSO4m1b8PvAA8BzwL/LAx5sPA1+CsDmPMQXSc3we8G5gCD+uW+1Lgs4HPB74ReC/w+4EbwGcC\n/+WDdiAiGvijwDnw793LbwD23Xn/EeAvR1bRHPiDWIvpdwB/QkS+0r33h9znbrgx+Rpg6d77PqAG\nPg34LOBL3HF32OF1hR357PBq8XedZXEKfDHw7RdsV2Fdc282xlTGmH9m+sKC32WMedEYcw9LDn5C\n/+PA9xhj/pUxpjHGfD9QYIngHcAzwJ8xxsyNMStjzIMI5e8ZY/6FMaZ11trD4NuMMWfGmF8Afh74\nB8aYjxpjToEfx07yF+Hz3fh8wl3T73Kf82Py5914vB9LTL8OwBjzU8aYf+fO898CfxP4wuhzl4FP\nc2PyM8aYM2f9fDnwp9x43AK+A/iqh7zOHXZ4zbAjnx1eLb7SWRYD4OuBfyIib9iy3bcDHwH+gYh8\nVES+ae39F6PfX8CSCsCbgW9w7qUTN5HfcO/fAF4wxtSPcL4vPniTDdyMfl9u+Xtyn89+wBhzYIy5\nYoz5fGPMP4zeu7t27gu/LxH5PBH5x86deIq1bq647f5P4CeAHxaRl0Xk20QkxY5VCrwSjdX3ANce\n/ZJ32OFTix357PBY4FbgPwo0wG/Z8v7MGPMNxpi3Ar8T+NMi8tuiTW5Ev78JeNn9/iLwbjeB+/8j\nY8zfdO+9ybm0Ng550amu/T0HRtHf24jzSeCHgPcBN4wx+9gYlgA4S+l/Nsb8BuA/Bd6JddG9iLUK\nr0RjtWeM+Y1P5hJ22OFi7Mhnh8cCsXgXcAh8eMv77xSRTxMRwbroGqCNNvk6EXmjiFwC/nvgb7nX\n/3fga5wlICIydsH4KfDTwCvAe9zrAxH5Ave5m8AbHyIZ4OeA3y0iIxH5NGzs5fWAKXDPGLMSkXdg\nY1UAiMgXichvcjGvM6wbrjXGvAL8A+B/FZE9EUlccsQXbj3CDjs8QezIZ4dXi/9bRM6xk+C7gT/k\nYiPr+HTgH2LjGv8S+CvGmH8cvf9D2Inzo8CvAN8KYIz5EPDHgO8CjrGuu6927zXAV2CD6x/DJjT8\nXre/fwT8AvAJEblzn/P/DqDEktX3A3/j4S/9U4qvBf68iMyA/wn4kei9N2AzC8+wRP9PsK44sBZQ\nBvwidrz+NjbWtsMOryvIrpncDk8aIvI88EfX4iE77LDDr2HsLJ8ddthhhx1ec+zIZ4cddthhh9cc\nO7fbDjvssMMOrzl2ls8OO+ywww6vObbVRzwVuHJl3zz33BvAuGzfYAEa+7tp6ZWEeHksSSBRGLrt\nrfVo3L+W1hiaVmiN0Bi7l9aI33u3S0CJQcSuAhIxqMSQiCAkCAIIiQGaEsoK6hqzrO05ikCaIEpA\nKUgSyFLQOUagbCoWdULZghJIE0Mi7pgPGB9/7o0RlBhyZdBJgpIU2hraxo6FG4/WNLS02OzphMSd\nu82sBmNaWgzGtNSt3b+480gE93v/rEw0WsYIrRtL4z6bKVCSIm0LtRsfsOOilRuTFBJl72d8j7dC\noK2gaaCq7ViXTZcQnrh9J/Y8RbvxTlNQGa09O0SUPafW3q9wr5LE/hdlx82Poz9W3ULTQmMwrX0O\nTQOmFdrW/mxqaBtD09pd5gNBZy3JUCGDFPIM0gGNtBRNy6JOWLhTUIl9Duyz0D17SgzK3QMlikQU\nYgc6utcCibbPvoi7n/Z+t8ZQt0LdSnheJHrOErHHTlDR2NTQ1FBWmLLGrGraEppGwNhDNo09h9bd\nrjQVEg1KGxJtEK2QXNl7nWrQ2p2jjp4f//1cu9Pink//XW9raFv7v2m731t7L372+Xt3jDFXH/C1\nuS9+k1w251QPte3zzH7CGPNlr+Z4r3c8teTz3HNv4EM//VfsH01pf9Yl1CWmKezvYB9KgKyrQxSV\nw2BLUbvKMCIsmzOqdkXZLlnWFWdlX9exbIUsMeSqZZqCSjRKUtIkR0nq/tvXxBjMvRfg9stwvsAc\nn1L/0k3MqiHZz0kOcuRwApMRcrgPl68hhzcwOue8vssLszNemqfsZS3TtGEva8jc5DmroGgebPzu\nZQ2H+SFTdQlz9gosTuz46Mz+z0ZIPsUMpjSmsuddF2E8ARhMMDqnbJeU7YJVcx6uM00G4Xc7Pksa\nU9GahsYJADSmYllXFI1QNAm5ark2nLKXXoO7z8PtlzEvvuLuVQpZioxHcLgPo4MtV+WguzIgUTlm\neWzP+fZtzM07tK+cYlb2HGSgkYFCcg2jgR3zN15HDm9Qj/dYNmf2MZCUUTKF+T3M7CYs55agBpMw\nVugMVuf2eHdvYY5P4dY9TFHTnhSYosasGtrTArOqKc+hXCTMTzTFXHF+Zshz4eitBXufnpJ9zrPI\nW94IV5+hufQsd1Yf40O3B/zyacJ/mNn7fZjBQW54bgLPjKve85CpIWmSM9GXkdUsjIkpZvZ+6wwZ\nHsL4EjW1e8YLGmMn06atmVVwZ5UyTZveEPvnPFNDBmrSjc3yGF55CfPSTeqP3KF+4YzViVCXQl0l\nNKWwmiuaSlCpYXxYM9qvGTybo47G9tk/OkSOrtjnfnhox9h9DxtT0Zg6nGMMJSlZMrTPqb8Pq3OY\nLywhup8sVpjZEv1VP/DCA78oD8A5Fd+i3vFQ235185NXHrzVr248teQDYMStfFRmCchNRIJbG/uJ\nM+kPk2kKmG8hqLqEbMRofBnyqxRmxUAt2M/6X0aARFT4AniSoSmhKoEa6kW38elt+4Wo7Jco2R9g\n8tpOhtNhN9FmaSBJMYaJvsyNScNedhYmGCW6O7Y6p2yW3FldTEBXBi3jdI14Tk86KyNLYTzC6BPI\nRiidQbnAeOKpKrvteASjA/J8Sj6YMMkv967ZFMeB0Ebjyxi9R2MqytbqZVbtCpWmDLUloSwR0mSA\n1AWmXMD5AhZOqq1u7KRxvoD5Ajlc2PMESwIeOrP3LqyUI1y9alftYPebpXaF7cd6MoL9A+TwBkWm\nKR3xgCXKRTtjNL5kn6VsZidvTzrR8WV4iLkMkqUYQMoKdVjZayirQD7qtGCwqpmcFoGIdGYY/7oR\n6WceWeK5/hzsP8Nx8QK/dJJxc5mwaizxDFWfeN4yrVCJJkvGpMmALBmi0RARDzhCzkb2vAcTO6m3\nm2pGKtEc5JCrkqLpW7C5MoAlA7/oyP3YXLfXrrUl9eTm3N6LosGsKqCiLVqSPEEdjVFHl0iuTmA0\nsPfh6ArsXUPGl+33GDaIx5OPkpQL4b/jfuGSpXaxBw/0EuzwyeGpJR/v0tkgIAdRuSOg6EN1aSer\neEVfVfYhnVuykDTFXLoN00Py4SH5YIJJc3sMj6aMrKzz/mTtEU9SZbRyy1KS/dw6t/bz7ks4GcFw\nbCe4CHvptQ2iA0tOWTJkmZyhknNOijpYQX6lOtRT0mTAyOQ94jHHp3ayd19Ujk+RNLXnAHY8POl4\nQhgNkPEdjJu0yUYYP5bLud3WXac5vAWjA/T4MjqfUlOjJKUxVSAhgCwZwvwMlnPMfEF7WthrG3Q3\nTTwJ+UklTTsicsQZLDj/MZ3Z8zrcR8oKMxl1n3PjTDZC9q+zkIKmjRYK/hbHBBRbyW6C7C12hofd\nJOfHwS02kgP7u6obzGyJWTXo0xWDk4LkIEf/+iPkbW+Cy8/S7F3luHiBj5wKL801qwac0cZBDm8Y\nWuJ5dlwyTg/JklG3+p+fWSvHkXEgSp0huN9VFiZza5X2LQolKRO3QGjamrI1gYjK1pBRQwKrZgaK\njoAuOxc0oI7G9hko+gQnuYaDafesj0cwmCDTI8gtKfpxx7BBPA8Fndnvs382JiO3eLgPaT0CJLFu\n0ofC/LEc8nWNp5Z8gOAi6hGQhycCPxGVi450YsLxE2xZ2S9MrsNq2xyew+jAuqTWXXl+X34fkWWz\nMUHCFgJig3jIRj0CEwCVMVWX7GRXrKDuVuhaZ0wGl53L65zzasFQp2TJmIGa2olpNcPMHfEcn1ri\nOXGr48giMFnaXcvaqh0gOchhurJjc76w5+yvO/4cdONXLgIJKT2kMdYVWbrJXqPthOn3444Vu8nM\nqoHTIrjLzGjQEVHpx7iCNHIjhgHK4OgKMnfkNRx393MwZdGc3Xdy8wRkLc60vwCJnzEcASW692wI\ndJZjWVkirCoS/8yNBsiN68i1t1KP9zguX+Yjp8LL85SVG8qBhusanpsY3rpniWc/22Oo9oKlY+Z3\n7fPtFwHjkR37yKUaj4uSlEYqBmoS/o7dpvHEH7vm/MKnMfWFBMT5ont240k/Jn1/Po50YsKJxz6c\na3SP/Dko0fZ+eDe7R5puElD5CAS2w0PjKSYfOxHED+k6AQn0H0yPT/Zh9ESWaDvydWkf8Gh/EruF\nvGVRVnayBExZWfePVvYL6d8/PYFxaa0J6NwIftKIrap4m2LGSOWMxtcZ6xVKtJ2U5vcwzbGdhGbH\ncM8Rz+IBXQiyNJCIDFQggq2YjOB8gTDCsAifl7Fb2fqJxt0TP7lkibOwCms19ojrQefm0CP4NO2I\nJ7hfovHzsZrxZYzOg3vOT7oPWl2X7RIltSVz72pcnW9s563W8MxtWayIJyN/PZefxUwu99x+lwc1\nk9SusKvWxsjesldwYyJAGsbRiEvx8O7HdIvl7a1y97dWOVpn5GTd8+wteHfOSmddXDS91IuDdjG8\n2i4ikj4BsV/2j59oa335/amMmtrux6wuzB2JXWwxMYZ45MpZejHihYdHmtrFyQ6PHU8t+Rhjeisl\n6B5YWSegeOL2q6KYgLQK2wbCyKIJTWfBbxy+KzUuaeG8m4Rja8dnUenMTQp+RdhN1D2iKisoT2Gy\n9kWJt9kGnWF0BsWM3FloplzYydFbeLG1cx/IeNS7RgFk4Igo1yFm0oNz1Ym3hLLUuuVGB2Gyb0y1\nEWfIkiGmeLmf5XbReQ2UjY3FMRvvQouIJwSstyAmHQCpC3ISl0TRvb5tlW1/d181RzymmHWT6vr5\nute642VhEmZAZzW7OJKhC6BfGcx6SSQ+ueVo1L3mY2lZAjqfdDFOAF1uTsLlwv5nba6PXc9lnxRN\n/PzqjNHwEDO5xll1y51DTWuaTQJyxBvGxX+HAuk8bAsmizhxx479XWctO09GnIySaLvoiJKLgG6x\n9iqRiJDlD1ndsnO7/VqGoWwXvQmiMXX3sMYuuCaDMnoA1yc7v9p3Lqiwqo6DzG6V2COhdQKKV7Rp\n2nfZaRfoxxFQVfUncu+2m/fjDxuW1DoiwjPpyWa2Txy32fbZeEI/ugJV1ZvMkn3nv/eEehH8+9PD\nkFUVB45jKNE20cC5QE1sDfjrHmj38wHEM5h0MQ6XyQV9F44STZyvKHWBOX0l3N88n4TPbUN4pnxm\nlZ/82hqTlP04ne4vfDzseDpLI9OdlRZtn4jiINeBqFVIlNmMM1gCApLhJgHFiDLAgC4uFxOOtzqd\n61ly3Xs2yFKbdXj1GfZdnIy2e6Z6BOTjri5jzZ/rqyKd1axzry1OrHvxnuvnd6mC/SiD2n9noe8t\n2OGx46klH4OhNRe7amICkjrHJCVW/HgN3u2lVUdAnjxclpDR+Ya/v8uooyMg6FaLUWzBugNza6Hc\ntStHccfdOgl4lJU9hp/0nYXWI4J5f/uLYjbxZB6uIU5pvuRSmt3EF09m4ici1txdMbw/f3wZ3GTe\ntPVGvCC4rlb37LHiRAU/8fnj3o94huN+TCOfUJgVZbsIz4WPXShJ2UuvBgIxp6+E9GNTLqCYod0+\ntqVGbSWe5TzEmQxst4JiIvIuLm8VNYXdPlokeesnUSqKbViXUxyHaU0TXWMKsmYBeatgOe9im+eL\n8Fz4dHA/5mbVYFY1pvBWruqlpctAk+zfQ84XmGcXjKZH1OND5vVxOHdPQJkeBrJpWpfG7Z6B4G69\nD3qk48e8Kew1zY43Lfn5wsZ0Ll/rFiG5s343jdJXBUkgz3e5cx5PLfkIQiLdRHpRLYAoZ7VsCf30\nsO4y2+Y/juFccT0Cci4P7/6pVcKyvmvrRmK/uPsS9eAmhq0oq4utjm2f8ckTEcyqDgH8HgF54pke\nWuKoy57bzXir6SLLJw4iu1qgOMUaopoMY6JC0Qhr+w0Tnycen63mY2SeeBJtJ3Dt6kLaqkc8MaxV\nvHb+9RYX1YPg4zeeNMfdWwZHMtuwlgwhdbb12PEzfb/UYn99Zbuwk7ojIHwcxBOPm6jj+qNwvi6r\nYT2u50mo99pAWavYWSAaHc61732oWDZnocbLu1xVoqnaolcLd180Zd/a8eUBFzzv1CUyPcQMpr1n\nb4dPHZ5e8pHtvteqXdFIt9pWkpINpnYijSeA84V9rbr4YaZcgMoR76dfh87sZKPclyT49V1BpvsS\nAtTU6MEEmgKGaxltUXouF50TkQsunqyjyc9Wm592yQ2riy3DEMMBa63FtVBucvVWmSlqZDTo78DV\n/cTursbUNFHgHOjqT9ZJZzBBdIZJtLWs0hTtr8tltPWuN06r9ueYaWtBrEAGtgjSI57a4hR1o3Mb\niwrj0JHm0mW/rU+OWyfK4GJ1P32qt+rubZzsEtKdPXRGrRIas6JsFhtWfGsaKjpXVTyRl04yYJKO\n+gSwclbZ6jwQj7l53Ct6hT7ZWKLvTyPrVo8MFHI4sQuVyMKLxym2WLJkRNkuegsAW9tl/26loZFq\nY1y3Lg7KxUZdmmT73f073IerV63VPpg8enr2Dp80nl7yIQkPuUfV2i+7f+grihAozgZTRxQu8Jza\n+hZ87GV9RVVVoC2pSP0QVpAjIe+m81X+cXaQ0kPriisXMIw+H/8ep+hCP47kcVESQlWFJAPKamu2\nWrB64sSK6DoCyZYd8ZhVY10bfvvJyBYG7l0PQeSyXVC1RUjfBTuZ6KaF+jwEnbs37d/iEybStJ+w\nsX7Nw5hlHdoaamdxrEAPJii9112rD1I3LSb6phi3GInv1aq6xWl5RtEI14bToJros+E0dOn2W2Io\n1urdkukWrrdvZdUqCRbCg7CsZ8zcYYomofQZcNOlc8lVwNC6BF2Mx1s8zc05zc3NOqYwRgO98Xvf\n3ZZ393wy6l1DlgzDGIXYDJDnE0oW4dzK1nBWKvayBlgGRZBWmh55WuKPUqiLGcyOMb4OLc52PNy3\nvzgFDMmn1ur+FFo9Ijx8wsFTgKeWfGib8PB7AtqWVeXRmIpMDdGDyDd+6FxLPsi/za1Ul73VbA/r\nbhOXSuolaKq2oGyWZGrokiM02sUpepaGL1ZU+fY03XUkF9z2tra1JGDdeM7FshFL8b+vZ/Wto6xC\nbACieM/+VWTvOot2FtJvy2YZVuSegHIZ2BqjKLMrJiEjgqjMVbe7mNi2cX3YwLEnbp8+7IsugVhC\nCAhSQmVzxrw+5uai5fmZfZ5m1YIbk2VUB7M23j6hI0u7mief5uxrfdbO3UAoVjU6Z1nfpWqLzX3H\nh3HyTndWOkg8FY2E9Otp2vDMuCbFEq0pFz3iqT92SnNzQXHHno9O297+kzzpip39a/v5drfneNS3\nkJsS5WOhcUKAuwfDfC/EhM5KRdkKZ6UiVy25slaQJ6F4DBqTokV3skD3nNswPg+PSWR9553V463X\nHT61eHrJB4PUBUrZB3jVnPdcEn2JkBmNsm6LodpD+/gLdATEYtP6cZNmz32yJbXWT6hddlfVW9E2\npiL10U/l3BYXpKL20kofNVunLjH7pSUgV9QYB7uCrtmWrL4NRAkQpqi7ZIz9A6sM0M7C5OLH/axU\nDLUdw1EytZp2PkbS1k4FYNrLhDIioHNknHXxknrNdeWLb/2+ouu19VZ0CgN+ElwvKh6WISYTa9Qd\nF8e8NM/46NmAXzqx5/TrDxKKpuIt0xPG6QFK9qCebZwbZWUn5LKy7jdfb7O+nY8t1SVmMOW8vsuq\nOQ8yQ/EknIhyKcxLToqaWaW5vdRU7brkTUuuWtIktwoWd36lpzEXE4+X8ilrRaLt90OnLW3RogZd\nPDBoDfpnJHZ/Zqkdx8WJrUVzCRPBGowI1xQztM4YqC7+YtPHrWhtrpqNaw4u8mSIOX3Z3r9qLSEn\nSyGtOoUETzwh5tcluDyUJM8jIpFdwkGMp5d82v7kDoQJ0P7ePSRFY9jLFmFizJKRTQt1MQdwE1da\n9bOpsr6Pe2OS9n9HxFO2SyqXhqpEM9RTElFdRfr8Xrciz0bOXecmY9OpNoRU8UdY9ZtiZgPN0HOp\nBd/9thTa2IUXq0JMRjBfkBzkmJUT4jzcR6ZH1CphVXVFlirRDBOYpCljfUhe1pj5mo6jTw5wuHBy\nWCceh14B55qMkU86CH/Xzr0aT4wuE69WCWVzxqqxihAfPcv5lTPN87PNScVqp42sSoQP5I8ObOA9\ndkPGEj+hODjakbd28wllu7TB+DWLVolmoKYhs83qta04yJdcGawoGnEaawSdv8PsbXD3ecztX+6y\n2iKLpzktaeu+KG4MfW0YyKZHOnE9l1vIUFVdDG5irT7jEz/WUdtaqHx8ibE+5Gh0zF5dOvWNUdCi\n26aJaObPd0Q2PQwLqZ7QrC8ajgpX1xUR4mzBHT41eHrJxzgZfmUD4Y2x6tOzavPLVjSWjKZpzTQ9\noVIFjZowHOz1ExHW1Yv9pHa/jChHHD7GU7X9eoZEFFkyssRTnPcL5OhW7JJ3UiePavmYYtYFZ+OM\nIK0cebgMt3XiuSiDLtHWwvGyMHVjfewuqFu2S8pmGdWhWP//XnoNOb/brzz3ahAeLg172ZwxVHvE\n2KhY34Ke1Qj9+6OinzldzQnW1VW0S1b1Kct6xp1Vwp3VJvEc5Ib9rOXKoCJLptZ1WLzSP97+1Y60\nXZ1ReK8bkf55O4279bonS3BDBsoei6ZEqwEmGdrXzZSBsm5hbxmERczHP9gpVzjtuPakCMRTV9vj\nEzpt0deG6DfvdzGdOI1/HYuVFXoFu513OaanQaC1fwCXSl6cM8qnoGGgqp4WnTm7bdUXoHvOIwX1\ngMvXQkLK1u9lrJjgx3QtTX1HQJ8aPMXkY4OSyvnwrSR8uqHIC1aVt2gS979hL+sCsFk+RPtajdjS\n8V8AdR/igYcinlwGfeLxGlweKgcd+dBjrBNQPMGtu5jW90sX34nrZXo1M2v76x3n6tVOF+tw306g\nKqGqV5StYejmtrE+tG6205f7ahLr5+1UlctmGdSRs8RNFsX5fcnWsObydCve8L5scYd4dQVTUzpX\n10lRc2eVclYmfHyuNiyegwwuDxqmKQzU1Aqylot+Qair4+qlTm9zx8bXnk9s7UuUiWUtgYh45vdC\n/Y8AWmdWCsdr+y3PMctbmNkx5uYdGwtxhONTqJubi16SSV1215dog05b0jdN0W/eQ44O7Rtrxc69\n3xerIPgK/ToxXGsKOV/YdP04KSTESi0BGRGnM/g8xukMbs3uLKsug82Pry9cjggnHOZC4onkeB5X\nt2cRdLpzu3k8veTTtphihowvOR+54axMqFohTezD5t0UfUJSLltoyUFe0SgXB9q7bifAtfgNbD7Y\nMXzswPvpfRJET+a+OO+LP55H8SWd2evApgsHde64N5GDqLyzmLxLyRPP/IKMpiztikTXieeirDmf\nNqyxkwpEqaz2y1400rnZ2sTGHGbHXZGt349rDuYLKst2GUhAiSWgTmB00X1u80K691zcppdSuza/\n+NTkuC/TnZXm9jLnvFJ8YgmfWPQnkoG25DNNG4Z6aq/LV9RD3xU7vrx5irHbMv7pVucxNiwevzhx\nqgn2IqL6tLNbPWHY5ua8VyAKvo1BTVu01FVCW/evb5145ChqOeOfx9QlU7g+OO1J0SOfdaijMcnC\nCc4e7juXNdb6KWY2xsc5zO8G0olrj7aitCobnoDk8Aa1iq24WIB0S3uIuFDVGPu9fp1BRL4M+E6s\nGPhfM8a8Z+19ce9/OVab66uNMT8rIjeAHwCOsE/9e40x3+k+818A3wJ8BvAOY8yHov39ZuB7gD1s\n8O1zjXlE2Yk1PL3k07Q2GyafMh4fUrZLrg7r0KgsCwTUZfjEmlm5Mj2VXi06VEbHq2gv2XMRYrPe\n/wzE07SY0xc2SCeoX5dVmNiMj1VErRnWRVF7mXDbLKhtskHx7zHxBNWE7OLsOYDpoc1gyqdQl+RA\nnl9noGbW2jl7BXN2q0s/zlJbe7QtE7ApyUlQ6VXSxLrddLHCzH4liJ8CVuZnrSYmqANExLMuobOO\nbfUeuTI5zOQRAAAgAElEQVScu5cPcp+d1/1/ZlxxNEoY68PQ7iG0nyhPILOuWTNYXJjZFgiKTnZH\nqwyVeDeQtZRjqzhgmwvvIdyvMfGAJZqaxOnfirV6rg1RR+PQQ2q9xCAoIThrp7k5tz9P7fGTPOmn\nZueK9nRlE1kWK4xf6DDHS2+Y1CpJhFYeJzPa2+fUL9h7rd+837emYugsxBjjRn+P5EYrzjHHLz78\n9vdBkjyeVGsRUcBfBr4Y+DjwQRF5nzHmF6PNfjvw6e7/5wF/1f2sgW9wRDQFfkZE/h/32Z8HfjeW\nZOLjaeAHgT9gjPk3InIZHrIl633wxMnHDeSHgJeMMe8UkUvA3wKeA54Hfo8x5tht+83AHwEa4L81\nxvyEe/2zge/DrpneD/xJs613boy2tWmlg2P0YMJYH/LM6DZlW/cyiDziNOyyNQy17Tzq/dD4OAud\nMOlFhYbejDciwXVkdbYiv3zTWhmX09u9fkG9YlJ8okMa/N+9dOsYcer17Pjiam/orJ20wmQubhOT\njk9XjYP0kavRBuyjjrCZ7k+GxTmjusLMPhwKAMP1zb0czxp5RNBNy5QJ5t5LG6thn1UlR1c6Kyou\nKK2zvm4f24lHiU0WCASkcXEc/1jZfjkD1S1Q0sTYXjn62ka7h416q2zN0ozvxWQE08OgJi11HmrB\ntMpQas/VDuk+8VwUW4wJzi8iBnrDcvAWj0+p1mkLKSQ6IZvYthhhoi+r/mKorCwxnBa0pyvak4L6\n1pLFqaaY56jMMBg3JLpGp7Y5nM+Sa08KVK7t/rbJL5WVLXg9Pqd+4Yzm5pzzWwl1lXBweov07Zds\ny44Y0eLIJ2n4mqCHSaUWZ/GY4xfh9u37bvsE8A7gI8aYjwKIyA8D7wJi8nkX8ANuHvyAiByIyHVj\nzCvAKwDGmJmIfBh4FvhFY8yH3f7Wj/clwL81xvwb97m7j+Minjj5AH8S+DDWnAP4JuAnjTHvEZFv\ncn//WRH5DcBXAb8ReAb4hyLydmNMg2X1Pwb8Kyz5fBnw4/c9atPY4rPxCDO/y3D/GSq9InOWio+3\nhM2jFOgsEiANRW3rAX6VIcZsJZ3475iAGmP3Z1fzN23q68073cS0RbuN1ImJOgukU81eW+22dScS\n6Zq9Xaiz5uGUDsKE4MU4oZed5YnHuza0slJBnoR6qEvbsti3aVjXptMK0lM48pN0P8stZOXFje3c\narg9tV4A/SaXKn64b7Ob/PmyOTnHxNNZslV4z99nO3GdEy/4fAaZ/W+t5f1szzW5uxcSOExc8Luu\npbcNc9dDxjVMM0kZXGiicktCOrPFtxG2Ljy2KmsoSyKn3UtmVQdXW03Sq+nJJrZ+J9nvq1Sst5q2\nyQrW2lmdCKt5xvxYszoX0hyKcUI+bi0JVc6zMLC9ltrTgiRL7T6rLlPO98pqbs6pP3bG8hMN8+OU\nk5uaojA0pXBY3CF7+0FoRBee6UTbTLbmfGtc5yJ4tQdz/CK89DLm9r37bv8pwhUR+VD093uNMe91\nvz8LxObYx7FWTYxt2zyLIx4AEXkO+CzsvHk/vB0wIvITwFXgh40x3/Zwl3Exnij5iMgbgd8BvBv4\n0+7ldwG/1f3+/cBPAX/Wvf7DxpgC+A8i8hHgHSLyPLBnjPmA2+cPAF/JA8jHNMautI5PrVTLasYg\ns26O0NPGE4rOQE17yQEQya7URc/d1bvGbQkHkXJvTEBKUhtUjYjH3Dze/LzfN876ydIurrANkdsu\nFok0ceYaF4h+xplt24jHycvEro0sGZHpYV+VeZ0wIqFK+74TJM21db8cn1qfvTteiHnFFfjnC8zx\nuZ3w3Erbrqgb1FFB4muVLu2Ddn2UVBmSM2LcTw6n/3efgGy9jAnWcpoMOqvHdVjddq33ky5K9m33\nVRsDWdhsMNdh1NSWiKTekr6vs+09qHytUgTJbeq8WTWYoqEtWsqFnQ40BH2hJE9C/Y7/HNAtGBar\nQDjexbY41cxPNOf3FLOzhvm5JbLDy5rJnuqRUHNaWiHSXGNmS0SrQGZm1fSsqLM7GWe3Bty73fCJ\nl1eURUtZ5NTVgMPqjOGqQb/ZrWGd9WxEel1XY+27dVhXpmug6InnpZvUHzu98DOPAnm0Op87xpjP\neSwH3nouMgH+L+BPGWPOHrC5Bn4L8LnY+NFPisjPGGN+8tWcw5O2fP434Bshcm7DkTMNAT6BDYyB\nZe0PRNt5Jq/c7+uvb0BE/jjwxwHedGnUWRKONOIMl56WWF2GDJlOjuTxw8uCxMKTfpK60K8N3UTg\nu3GuY73nTbjuaALcRjrxzy2JAOvEs3INxfyXPVNDawXN721c10XN30xRd6RVl5CNumSCyHLz+wh6\nY07Msi1aEp+tVTfWwrt45B4adqHhn4+CLLHFj+vuWSWpXVzEitvRta4H+bfCKQaEc4/69wDWxerv\ngf/qxC5QttQzPSTqKkFn9nxj4rG1XmvPYN2sCY1a66muEuoycfszlEVLlieURUtVKFRqySeG3Y8j\nVE/ScdZdldC4zDu/T/97XSraWrrt3UJJVE7tYntNa1t4KxN9x9fQS15xi6Tm5pz6hQfNza85XgJu\nRH+/0b32UNuISIolnr9hjPnRhzjex4F/aoy54z7/fuA/Bn51ko+IvBO4ZYz5GRH5rdu2McYYEXlM\neY7gzNb3Anz2mw439rtumstaKq4PUm88uCrrTw5rdSOhTXe8fQRv/WwgSx9MOlphMl+0aPXkNrDe\n70ZH+/QxgFj1eVvG2XqxrAvcL5szVpUtuDwrFVcGLY3UJE4vLGzfOGvJJS2E0XCCo74Rn6RpUMkO\nwfM14olTa720S2xJJAe5fd23GY87lbpsxO5e+tbP2+MA8X1TkjLRl1k2ZxcmkSjRUK+6++P/jwbW\n3TXySgoR+a7VyHRZX86N5C2XnvXiEhfoCmgDBhOEqNZldY7hpo3dlbbRmznuXHaSK5LcqhhAG1QM\nvGjohUWkkxEyGqCmK5KDpZXW+dgZXTaZZlTYa9OpMN1TDCY29jMYNwzfoEj2Rzbj7erE3q/DfYxr\nta6mQ2sN5Rr7lBSozBDLvl57RrN/rWD4BmWTDw4nXU3Z+BLL5h5ls2RWwTStKbEZpdvutxIXQ1uc\n9Kzq81uPR49NEkgfT5uGDwKfLiJvwRLKVwG/b22b9wFf7+JBnwecGmNecVlwfx34sDHmLz7k8X4C\n+EYRGQEl8IXAd7zai3iSls8XAL9TRL4c259xT0R+ELjpA2Mich245ba/iMlfcr+vv35/tGwNuq93\novQEtK2pWQ96jYAi4vE/71cvsPGeJ4V8MzC8FbH1s+09f5zUdZmMjhOIx8UYemTjakz8NfhxaExB\nVZ0G0cpZpSmahL2sQSVWDihkAcZjNB65VNhR7xziZnK97Lk4VnVBZp4M1Jq+2KC/zzg2FUmpQLfg\n8Bbt1njAWiLJUO2FSvh1K9i6Yc86K89ZB5I1fdJ3E23v+mPSj7G+eIif2yM62aEtdSxGhGacoIoZ\njMsQd9rm9ku0QWMTDdR+5vryqE11C9+iwsvVjEcwWqCmK5fNdo+2bmhKoak0oMhzYTAxjA/rQDz6\nTXs2TuPHwrfmiC3caL/DwRz9sZk9vzSjqYRLzxZM35Sg37RHcn3fJppcvobsX6cwK6q2YFZ18jye\ngOwF9y2gnrvUWT2rlwpObw02xupJwhhTi8jXY0lBAd9rjPkFEfka9/53Y2PfXw58BOsq+8Pu418A\n/AHg34nIz7nX/pwx5v0i8ruAv4SN6/yYiPycMeZLjTHHIvIXsaRngPcbY37s1V7HEyMfY8w3A98M\n4Cyf/84Y8/tF5NuBPwS8x/38e+4j7wN+yA3CM9gUwp82xjQiciYin48NnP1B7AA+6AQ2XrpwMoEL\nBUehE7jsPtQnnt5290vCa8pNf70P+sN2EvKxBK8RxsUKxPE+PQLx7B8E8cz1WpiynYVki1ia35KO\ncsW39izPSkWW1LRJ012zy9gyiSPnbV1bBxNkeLipUhATT7mla6kbnyTuhuytngckVMRk462g+DWJ\nMhjtRo6EgNypCHRk3D07PZeXc51KXnXkMxnZyXb/oG9ZunR0M7vZHTN2VcbXv1hZSwo6AtJd7ZBf\nKMyrY8p2yZXLz0H7kV6WXfw8yUCji5KaxKZE56rvblsnHm8lu3shLgsy0crZJffwFpBKFWCJZ7Rf\nM3g2t+oIVydwMO3GwrVOZ3WOGRzD+BxxJJRoT4SK5IUzcI0dJ9da9JsOUDcOLPFcvdpJONWnzupR\nUZlER0BeEw6sWzW0lLjXZdbNbqfcfrnvInw9wBjzfizBxK99d/S7Ab5uy+f+OVtbHoIx5u8Af+eC\n934Qm2792PCkYz7b8B7gR0TkjwAvAL8HwDH7j2DTCWvg61ymG8DX0qVa/zgPynRz6MUXdEYsovko\ncZ3HVgEdn4uzSEy0WhYuIKBHRK+1tq8sj9R9fWJF6ZST4z4wRWMVkb0ahCcdL1yZK6s8nCkv0rjm\nemtr+5K30BzpML5EYVZkk8uukv2u3faC3kQb15TrjoDWkyS2utzsfrcRENDLYDTFrCNlj6ZEVLYR\n7xFjgktxW1+l3grfV907yaCyXaKyEfn4M6wywuKkS66IMr9CmwpHCnJ86hYLGZJfx4gE8VGvyKAO\nXubS4Q2bsHB8ujXmlOQJmhYZZH1320VN+dIoCcV5CGUyIoFNAspMn3i8leJbGowvYwZTFs0Z2XjP\n9q6KScjdT+0SHqYDq8SQvv2SJZ6rl4J2oLXUu+uz6fFtSA4Ba/lWUoTSBqmL0FLCzBe0JwXlOazm\nivn5q//OgU04UOljnit+FeN1QT7GmJ/CZrX5HPLfdsF278Zmxq2//iHgMx/poCKRK8FOSlVts1ri\nmoBtiAtDe2nWa263RyYlp1htkrKf3uxX+qNBJ1cDFxd+PiyytN9J1E+CjZf7KYK/3PeB8bC1LUlP\noh+gaFq7bbMkTazlpHRuWx+AFewsZnixzCDW2c6ssriqOs28+d1ucvPxEG8BRNaQh48bBatnrX/M\nOrYRUC+WU5c26+n0BHP5mp3YHrC/AsjHlzF1iRwuMGVF4s/Jp37vXbOTre/b1HbWXm8FfnrSyeA4\nwmlPVyFhQQaadDq0bi9vaTUl6DxMqrk6Y5o2KBlQqwQ9PYLDE9TRvY0Gcf7vkGSwLqm03g12ZNk+\nToU3I6u2kWSpbdWQn5LogmwC+s3WzRbUEby1s2ddZKvqlhXWTVYM1NQuRHRfvNeUFeqoI4PkIA/q\n2dBpwmmdsa+v2oJtde7udX+668ol0k51PFow6LRFZ+1OifpThNcF+TwRKOke2mzUddLcGojc/DsQ\nS1N2feLjNNgt/vd1bHXDeQthMIGJy3ba0gdta/rz/ZCWXeM7sJO27yy5JisPXcaad631Dp10dS2e\nfDyKRihboWwNWVuE7pMAajBFjLF9aeqyJxLqG/mBncR1bK3E1+YMKTl0K/g4FuSsRBm7xmWPgM7S\ndQdorPvLPP+C7Vrr+hzFBNSPgXVEViQp+aU3d2nwvmfP9DCszAuz2tq1dVuqfXNzHggnViJI8gR1\ndE4yGlj31GABTrZHSUojFZN0RJYsu8XUYAKXr8G1U6SMMgHjWrJoMvdYJx6ZHlGP+8KuAHp8yVpg\n4xFJlpLt5yQHp0iuOwvl6MqGtbNqzkNPpyZx38V4IdLWMKlsDVTdkHgC9moL4GJjrtjafQdHOmeY\n7YUus3GrEut20/0s0whJnqBTw2hyn6SfR4GAzl5/LrwnhaeXfBIJ1fqST3sNzYZxvNs0vcDkelFp\nTxEa7MOfjSwJxRnkF5DQNgIK1s+27puxG2lLQ7mt8BaZz4Sry57Kb+yOAkJrh2VdhUQCX8WfJYYr\ngxaVaJZ15XTuBGg5LRNyJSEGNNSVa4Lnx865YJQGNaAxK1bNbHsih7cCs1G/Qt+vgqdHdpLLTrp4\niG9JvU7MDwk/MYkxVl3ihecxL96yFfiLlSWgN3cEtI14PAqwBKQzmC42rLyqXZEmXSA7S4a2uHh+\nN3TfNDePQ0V/rLdWlwl1pdFpy94Lp2T7uV1I7Ntn0roDdSiS7ikzq8y6+46uXFzkuu11P6bDMXJ4\ngyLTzKt+5X9jKgZqwmT/mS5ZJU3Rvq+PTwYYHnYp+lFvIuvG7TqW+n0O8z10feisSVtAnOxXmIHq\nrFwPLy2VlPYmuMSZ0WCC0XtBS9GOi7d6Crt49OnxdJl++bhhsvf0TpOfSjy1oypK7Ap5MHESHOeu\n1bAA/U6JibOGesWnsbXjxTmrqjfhGWZdFlJTPhwBrWfNxfCuqvX4w4PqObzUjdcS859dywDz/YCq\ntqBpa85KxVmpKBphzwlm7mUNmRpZ95S26atFk3B35TtlJsH11rQ28cBP6hU2BdmvwmNrx2NrnKgm\nnHMclxKdWXJyEjvB7faI7kd/foEE5/fgtq1sr375Hu2pVX3WTnbIJBrZv34h8fjfCyDbf8bGE1xL\nhrI5D+7MRtUM1KSTU4q7b96651pYz1mdCHWpQ61LXVkC0lnL6NYSdXOOOlggyzlMuyJaXxaw0Wp7\nMLFtHVzhahhrD5/aHid3uExEObxBkbScVbd48XzTrTxNT7g8KNgbX7Vq7zpDLjnB2Mja8Sn6nVvX\nC/Za922uWqZ0Bd2TyWXwnU7HI6tgkW1T/PDfhU5OyrAAF7fLBxNydSl4OoLVAxvfI8kVOmvIxw9u\nVb7Do+OpJR+SxLkRRhid01abVcxK0jA5KEmRurCSJt7i8fCEEf9N5Au/IPstxjoBhU6pDoFwnKsq\nThFWetpZY9sITpfIyu2vxk5wVWXTmiM0pnZtre0Xfi9rQpxnmjYc5JosGQfyUJKSq8p1xLSTxqrp\nXG+zClSy3JCtWUdsVfrf4yw5tvRF2nDN+cwrL076EIiz9/x5aHSXEu77GRWNjQ+6oLvPBCzru719\necQaYl6zr4mELXGJV/7Zsm+s1Yi5NHsZaKuHZo+C/7BOG1RmbEr0QHdxmAvQncsQrTJk/3p0A7rO\nsLKaRc/deVDFCPVSq3PU2EoIXRl4RQv7WZVoBuqAib5s+zItjy2J+QVZW9vkDZ2RKZ8pWAEXB/Sz\nZNg15PNtvr1qduHavi9WXdfUbe0Z1hB3LTXJ0DZkdFaSX7z4uFd2a0k+fjxuNxGD3iUcBDzd5DMe\nhSpoYKPT40BNGKo9RzqzzsXm3UB+1Zhou5r0XpSoS6Kt/t/UhlpX1w3V8zoPfvgeATniib84F9ak\nrBNQvLIrFyFWIoDJRlaDzcnNhGpwNw7PjGy7iUk6Cpp3/ritNGHiiVG14lKujT1XOkHWGEPdP/94\n33Ywsu2WYFOicQkJvmVBJL4qsBnzce5FP34+xhBjkLrCzHyCXH0bVBUaUEfnNkh+4zpy7a3U4z3m\nLji+rVBxw9JYg5KUTI96yQ01NTqf2my0oysItoDDFDWDvLMQrZKDwaxqkv2c7DdfQ549gjc/Z91Z\na/Au1Ka1lvxKzoMgbnd820dcF6u+mkTcvmDUxb00N9ibXOu1rw5egfk9zPIjmLUUeTupL2A8wpQL\n9PCQ6fiS+6wtUi4aCfHEaQpDPWWsD61VGGsdum6rEHXZHSyR6RAT0s/7NVNejSPOdmxMxXl9t9cS\nxSQaGY5hPLKWbq45/NjrTuHg1wSeXvLRKvSYiZElwlBPuz4pqzXSiQOTcRfKyH3hXUOFWTGv7vYm\nOd+9c73/fC/jymWHeYsl1N2EAPcD0o+3EFBoGnf7tv0Cu86SMhzjO3turXNKNPt62Jto7Pm7mphE\nkyVtIG6PohFmleq1pAAJWXM2/bViqLtr30qmF8gF9RrrnXerYYjUvj0BrVlMZbvg7mrJNK61VcOe\nkCz5BLn2VnvW904tIRzesMRTH3Na+lV/3evIGiMRtbFIiFN7oe33Fcon3YLjklU00G+qaPf77kmv\neiHTIfKWN8LVZ/oqB9EEW7UFJ0XNrFLuPi2ZpktWyTl76bWepJQpbndk7jqcmuNz2pMCGRQkRAui\npmDqe1jVC0zhLJPTk06FwrvsAvmkToljgRmfQzFjtH8dFRYhC2wdTkQ8Pg5291avF1Fz0y00clcE\nO1DISdFp0GVppw3on4EtXUsBp1iR2uQGryN4PUOyFDUabCpmf5IQwSk07ABPM/kkSRRot5PWBvHM\n71nXQWw5rBc5RgQUr64W7Yx5fRzqLLqAvf1pJwE76bXiYg5SBYXroK7gyHG9B80DZeFjAqpLO6k4\n4mlfsXUeKkvta9kIGV+yH2u7WFdMjv5v6NxkWTKiagtytSRXhoHybreENGkCAWWJCe67uCDV7sMf\nb/NR3CjejRvk+dW5J5447VorDIuOgHwcQGWU7Yx5dcKdVUrRNFwZ+HYIedcaw2N8CbkGZnqMTI9C\nkP3uasmdlT0vGwerOgvQ3bt1qaZePcnsZTtRO308PZhgtLXAdT5B6hIzrcNEn4xcMkukt+dliDxB\nbtx+50I9rxa8NM+DAjdYC3+aNjC6FQhI6sKekyee2/dob58H0VCvIOEJCLDbewsp6uUDm/VovqzB\nOCKSsrIutLYmnx6h8qsoOWZZzxinB1GvppshAcMTT/2xM4o7NW0tJLommxSuLklhippk1ZD4tiCX\nr1mrd81rEGe++UXCVitoPLIuxx0eO55i8lH3b128ji3KwFROSy3rRDaNzjmv77oJLuGlue18CbjY\niJfgNxRN0yOhDbeTx5Y4zsZ2zcVJB9v6+5iiy+zxbsSqXV1IPPeDbykwSRugs3Z8QWrRbG4fw3fk\nvG/r4ph4/GIgvh+RyKVkzda4T411t80qOHPCl3tZ49ogjLbXZY0vBWLGrFCiN87/rFTBVeQFLD1i\n1YReSm9dgqbXY0iJ02obTGxwfWizu0L/JN/Swi14NjTdIpTtgmU9485Kc3dlew+B7T8EthgYStT4\n2FoYtSOLuAUErv5nVdMC7WmBOl1ZN+TcNchzGmh22/u7G+O0bhN6RB07V94R4/yQRNQm8bz4SnC1\nNTcXLD/RsJrbZ2UwbmiLhsS5ds2qgX0sCZ4vYHxuyacpgzKFbflrFzdn1a2em3ReH5Mmg84K0tmG\nd+SThQi9VhVPO55e8tE5i2FKVd8O+mQWLpFAQT6+1FcI9m63qDp/vUDTp47eWSXcWWmqVui+k1Zf\nytbFtORK2MsMKrGN6bxmmJ2koq6jddk1EktSGzh2CIkHOt8+eXpSGh3AVTsBJEBydWJrLq5eRQ5v\nMGvucVqe2RX8Q+ooxm66zJGq7fPXIV5xe9iJ2iYwDNReiD/0WhfHUK5eKgeJW4RnI5gurBbYeBRa\ngYc6H19AO75MkWnOypc5cQT17LgKxOM7x4YxvwC5GpClQzs56WNuLvpdbovGkllG54rz96dsF5BA\n7l1rXjvPLVg8xBibDr13HfKpvcZy0WU6Rp+pL7B+l80Z8+qElxeKl+cpn1h2nVZ9A7zUxVYeBBlo\niNpgNzcXNDcXqKM5yf4gFKf2PuPiMOuvhQWBE1U1LFzTQptBqPX1jnh8yvmLr9C+cIfm5pzqYzPX\nnE6zmndJAFaTrkW5mGtoC15VliT1SXAt9xZidcn+pTdzWt/u3Svb/8d2is32n0FWa5JPOzwWPLXk\nU5uCO6tbnJUKiKv3G8r2jCatadSE4eTyhoqBf4DjicDXD3Q+9rTnXgIcCfVrZsDHAUY2YFsXfTff\nGkRlQZW3c8FZP3aWDLdbDB6jA3h2hExGdlV49Spy9W0spGBenvDSPCNXLc+M6q0E5Ffw/mfVdi3c\nc9WylzXcXvYfqXXy8enak3TUzySMCfd+hbk6D8kRvtskw0PM6ADxtVZ+QeASPsp2yVnxcrTAwFlq\no0A8vZTbi8ZP226iIzUly4ZkyTG3lrNee/WzUgUCWnfBrZoZKMgGU5thFWWZbUU+sduFnlJZkOGp\nqtOeHFCsyBETz81lwkkpvGFoAvHY699S3AxbLcZ1IoGOhLYh2c+te859bqsye91YazXWLgT0+LIl\nntPbgXjqF05ZvVSwOM0o5gnFXHF+1nWU1WkLI5ugEeDdsK6FudFr7nO3UDFtzf6VtwUCAreoapzC\nR7JgmG8W0+7w6vHUkk9RCy/Nt09yRWMomiUHeRUm2kwNQ0qzOGsiCG82Zy5Fuea8WrjCzC7GEcMT\n0CT1BCRdvGE164rkmsjygV7BaqwpFscWynbZJ6D17qpgJ5nLz1qLYXrEQgrOytthsvLE+MyoRimX\n1bYle2ubyneWGPaytqf5FuPKoHLB5D0rnxIm/agZ39pkC5sp6nFDP5WlqHyAHl+yROTSoIt2yao5\npSyXwdqJcXkwJE3yXqFhPN6wxV3ZFKGbqAb2x1dJRorj4tgtYuDOyn6l9rKGYXTrYwLyvY7U2nVt\ntVxVFgi0iWqEvOSRj7fZ8bf76xMPrGo4KeHAPe5e4yxXBt+tFdoudulaNazDrGrKcygXlgAA8nGD\nzoy1PtZcSjEB9UgtaqonWllXouvGa6BHPNX/dy90L13NFatzoSgMi/OGojDkeYrONDqrrMUTqZv7\nwmMpq651/Fpyis/g27/yNmbNvVDjBtBQh6SNxwLBta3YAZ5i8lk2wkfPUvYzG4cBvxq0rjFIOClq\npukJKtFUySq01lbKDlvpJDu8+OayrsIk5CeEqu1qM9ZhBTiHvXjAulvAwzRFT4p2GwH5Wo6QTbW+\nP+gqz8eXKZKWeXUrTFbPn8NAdbKQVwYLJumDg6120jMUjbVsvMoBEEjoyqBydULWbbWRYBCvSuO6\nqcgK8tZlaxrK1jVzi+NTaQoUrEqbYehdn+fVgMuDhiuDilwZhjqNiEd3k/4FxN8rxgSbDo11YQ7H\ne7RZQ9HMuLNKOa8Suq9VxVD343ONqcHVUm24G5v+NQcrp10FxYmzUjGrUs7KhKqVXgzR4+5KcVom\nrBo4KYTjEgZaWDWGgwwmaevkkaInamOR0tkRnnTaWljNVbA+wApvDsa25mgwbki0IVnVmFxhXDsG\nexaZFx4AACAASURBVPOq4J6LY0PiG/6VVXcO91xr9NMVzWnJap5RV0JTdcQzO7P7mJ01DCYJq7ki\nG5a2keB+boltRGf9QFcf5LqkmlWN0soWDmcjJvvPcFy+3C8JaCvizrWvF4jIlwHfiTX4/pox5j1r\n74t7/8uxaYRfbYz5Wffe9wK+n9pnrn3uv8GqYTfAjxljvlFEvhgr+Jxhq3f/jDHmH73aa3hqyScR\nAvHsZf7LuJ4ubIkoVxVoO6mX7SLEZrIEGpMGF5RKU7Jk2VN/zpWiaLoAvMde1my6PugKU01T9OsU\nPGnA1jhQVyi5OZmGz7tMPJ+yvapPOSlqisZOjj4uUDRJcJ9lyZJMDcN+vKsndvP4Op5cWWWDLDFk\nrqVCrmxa9TTdTJLw56x9Vt+aMGtILW/9CnQVSAfo1RD5RInGVCG12CON7utQp8HVlyXDTrHiIpze\nthOYaznRg86CyxO6BIs0MeH4WdK539ax0TvK/R63a48tzCwRctVStkKuvIq4CceOr3c/84sem3h+\nkBneMIRJ2ri23waVRHVb9ZmNLfmEg6jZnQw0GTXteuYIoFMTrJ9s2KD2M+t2i1pv24l+87M9d5wX\n+M1Gtkh0vkAVNfqkYLCM748idrBN9xSDse0RpPYz20jQi6J6sVHnYltvz+1fsy66BWIMaZIDiws9\nF68GIiY06nt1+xEF/GXgi7FdRj8oIu8zxvxitNlvx7ad+XRsM7m/6n6C7QDwXcAPrO33i4B3Af+R\nMaYQkWvurTvAVxhjXhaRz8T2EXr21V7HU0s+WgyXB00IftsvpESNpywsgXRfnFAFbwwa7SZ+O/FZ\nHTNNZmqG2lpCfkKOU40BN0FLsAB8Rb+HxERzkW6bX4FHVlCYTO8jueMLD8t22Ut9PogO45WqZ1XD\nQdIPbFvLxRGey5DLqDey2vx1Xhm0awRW0ZjIGvDxkXzg3q9poh5CQI90tl5TRETx/dvLGoomCS4/\nb3ltJZ7Y4qpLSzz3uoJcLkd6eq7ot3SdMmNZmBhlaxgm90+N9+Sio8aFHkrSkIpPYuWMfFLHgybG\ngfL31Fo8nbvNLraU5MHq6qSiqn7auoMMNGoAw33ITktKV/WfaEM2IZBNsj/YiPE0N+eu4d+Wpmxa\ndX2XshHi9PD8aykwHpyRfWzGItXo1KBSRe5aK0wuNbZB3YFBHdmuqDIdhg65AWvE07VfrzurqzhH\npSlDnVI0sTv7dadq/Q7gI8aYjwK4bqXvwrab8XgX8AOur88HROTAN+k0xvxTEXluy37/BPAeY0wB\nYIy55X7+62ibXwCGIpL77T5ZPL3kk5ieG8a7YDJVh5bQQBDO9GKjStJucncyON76sGm13SrdPsj9\nXjjeurIdP2N3jJOL2TjRbJNInDstThUPBHRRG4dYibm1NSDLuiJeRa7Hhc/KxPXnqZikfQmc0H7a\n1SY11G4V3k2+IRah+haDV8z21735XqSZ1m4v4lSSolS6oVIwqzYni2nabKSzXzRWYRL2xHP7nrUG\ncIWL+7ZwUfJp6JRZtmbrBOWfnW2FqNuIKMS21k6r197DEVCu6t4zuvYJ99Omvh9k1sq37jYTMhOt\n+Oiwe56r7cSzDrWfMXRNWH3TuWR/YJvDadVr0e3rhDgltGvoJTD4tiHTQ2T/OrPmXk+YVNKUdDok\n2c9RHzsju1ORjxsGjvw64hlb4jmcbCZNrLna/E9wVtl8gThvQpbvsZJzclX1GiQ+AVwRkQ9Ff7/X\nGPNe9/uzwIvRex+ns2q4zzbPAq/c55hvB/4zEXk3sMI2+Pzg2jb/OfCzr5Z44CkmnzSxQWclOqzk\nwabETlKAhRPVTIJMTKKsBDv1alOEECIXWOcCqtoVjdSoxPr/PRFtxQUBdlGZDaZDr9YlVPLH223J\nyov37yv8rdUjzoVjXJKF3SxevXuZHO9+8/EajQbpVuYq0dBWveC3JeSOtGJ4colFPb2qeOzyKFtb\nmb+XNUGOJ0ssibTGHjcm987d5eN4bsJVoyAr0ykMRIgtHifuaY5PaW+f29gA2HRul77trZ5tahOx\nO9Vbzhk2gWPdZdmNx2ZSxLryRUACGbVTf2ZtvCT0WnJ7JlddbMha+TbeE1xuq7vW5eaVCRy2NZyT\n3KkrDHQgktCRNPSVsq0gzKqhubmguFOHZASzqgNZAZ2yvEt++cT8hGvDhvH4sBMmzVKU09lLXjiz\nrbRd4L5HPNNhv/+Vb2MeEU97WoTWFOEafcHrnm0ulyY5Q11xVrbMKuXieK8ej1jnc8cY8zmP5cAP\nDw1cAj4f+FxsU8+3OusJEfmNwP8CfMnjOthTiTTJ2UuvbryuJKVyHU39ytX71x+k2XU/BDfVfbBO\nOrHgpeSTvjvtfi0UvLApUfDcyfOUzTJch3XB1O4aVchU864Zm71mJ/2Bi3Ntg03EGNIkXfzFn/dA\nTXqW0vp4eCvHKodbl+UkXXc9Zf3MNCyZeVmUhrpHPDE6y1b3iWd1vrFtGNNIYDK4kLxats5s3ZBZ\nhXEc6pQrg04f0I9dID6nFQiWZC5qVLguw2NhP7dszrY+fxfFJuyxCe/5FHcb8xpbFY82wZy+jDm7\nBb5bqr/WurGqAUWNrCIJm6ClpoJ7KzTJg17hb3NzTnNaUi40jCBZ1YG8wNUDjUewd406HzAvX3bp\n/la6aJwf2lYKV0trdU5OSV1bb3XTdjL1xNNryR3L+5QV7UnRa5y3FVtSzI9GCSyarZmbTxgvATei\nv9/oXnvUbdbxceBHHdn8tIi0wBXgtoi8Edti+w8aY37l1Zy8x1NLPlRL9PwMxpd6k76S2k1UnYsM\nnO8eO3noeJKCnsUST6hxEsDWnjUPQDwZGRHQOTLOEG8FrdWKhK6hkTspXFnUr8fDZztlCYGEgN6E\n6S3DGI2prctwzYDzSsWebIJMUVMCbd9arM/QOrNjqabhGrcR9FbFA2Co9mjNce+1uPeQX+HHcR6p\nC1tH4uRtekkd4UJGcP1ZWw/lpGDkcN++5loKlO2id089AXm1Az+GsfXnUbXFRhKCl7jpIRqv4WBv\nI739rFQPjEfYmFsZSCdNBlYsN2paF7LBqoh8spRkNCA5mWFc59CNzqa+mDfup3Mv1l+bUy4VdZXA\nArJJt+qXgYKDqW19nU+D+GmuLlDT8G3lD6YoTyT7eZ94Yhkcb/UU1tqJEbv9giI4BJHhmOSPRgn3\nU91+JCS2Qd1jwAeBTxeRt2AJ5auA37e2zfuAr3fxoM8DTo0x93O5Afxd4IuAfywib8dmt90RkQPg\nx4BvMsb8i8dxAfA0k89iifnoz4cKf9v3fdM9BN2qMsQi1HTDRdaYyvXD6RPP44YRAdcRtHdsIrUD\nrwu3/jk3fwd3S/Q9GCadzpp3awVLwZiQ9uuxrc7Hj51Xa9BNi5m/0k9Z9ogTKRwJ+PqZbenmBjay\n//RgYq8l0UAdkif84rpzt20hnlVE4F7xOj5uomH/qhVeXc7t7/vXA/Fss0LsBF9viMfG98ajaotQ\nR+W3pZ71CCdO+RYgy0YhXla25gJLr5vgrwzqHumEvkGnL2O81p/PBFtvz+5/XrvkxEDTLjFgnXA8\nbt7B3LZ9iNqTgvKckJrNGNqitrU/ue6sntEB5BOa5t6GO3rD0s5SqFLkcIJyVsz/z967x1qWpfdB\nv7XX2o/zvqfuraqpKtd0z/SYxCY8ApZtCSGhoCDHQkxQIEosktiJEqzYvBREHkiJpcTCisBgJcaj\nwR4HI2KIMIIBjWNhEAogGWwsEzwexunp6ZqeruqqW7fuvee9H2sv/vjWtx777HO7urt6euJbn1S6\nt869556999ln/db3fb/v90tmuTeU62YvnPXY8uEe6MCCIBsPdtiLHARA3zxhjGmEED8MYp1JAJ8z\nxnxRCPGD9uefAfAFEM36dRDV+gf4+UKInwfwz4H6Sl8H8FeMMT8D4HMAPieE+E0QpfpPGGOMfa1P\nAfjLQoi/bP/Mv8CEhPcb1xZ82mWJ5le+DPmJp8D9C1IGnt0BZBIsaKF8CjlzalNHmVJ34f8wgSeM\nBt764GC20AGgWOxS7X+fIGaClSuY8iFNntvFntUcDoGss6HYLb3lQR3U4DlC3x2mxPKCFja+q3g3\nztbfxpI9BqOpHQJs9oZbeZ6HF13sVgQ8y3M3+Y6s9kDYpVID9NjwCGJ6h6yv7c44JEVEv26zRSC2\niEiC59F74QeYnbBnuYyBOuhDGQB5/goqQWDBJn99dH1PsBjGZnWLUwKdywsS6uwSC8JrbUOkKZXU\n2C/IOuiKfOL9egBnv9CertBelvSvEdFMUDNLkFqHUBxNSBg1n8AI8Xwl7SyFqFKY8RDJTU3HG/Wa\n4kFWdxw28xGldirY7vxyRedoleO1Kb8hn98PGsaYL4AAJnzsM8H3BjSv0/fcP3rg8QrAv9bz+F8D\n8Nc+yPH2xbUFH6OtUKITILwA8gnk+Phdnxu7VsYAEP7sg/SIDr1u9/WA/fLNoTJVN6sLTeGkSKlE\nVq5gylNSLA7CZHACmDTv5Ic8+asDnYs3aZFjtWnAT7WHYqBr/21ohWy6yuEA7XgxBNVvamAAmHIJ\npTKMsjl0XmNZa9ffOC7Ij2mYTGAWj+h4rGIzvwb9PURmZ2EWFs5FlcHcTXxNQwp6Hl2PQ8GeSW2i\n7bDpAECQdXWAxz2mK+pxtSTftKoTlNoPSE8z7bIdAp1Oj4tVJPoYbV1qdWozHHb7ZV25wFdKFGOy\nG7889QOcLERatmiqwK/ICrmGCtkAYLbnECpDkU2g0wb3RhvMsimm6S0ypFs+3j/mqqbyn5KWibih\ne2m9odLc6TPoty5IAfuJz9aToHzGfauwl8fBBn/h5+OFhBC9UkXXNa7tlRBKuJQdY/sBK8bR4hLP\nRfjFPNTU4riKUMD1bM/koh2rbhto0SDpzr0EGcqhBc85YCLoibjeyr4QIrPxQnoc77qlSG2m8iAu\njXF0aMJ95zk0Oczp6zCcVXTBpgNC4RAjWSA8R6T1XmnFlEvkmGCe3wXGD6HbGqM0cNNcfqm/vOTo\n07PoPMXouOP9soNu6yjj4QjJD06c9DmDCQjsHDuQU6jRcS+tHgAwuoGlfobz3TneWOQ426mgt0XA\nc3eoMVDTOHsNyBUin5BKs2WQRe/JyL9XXWFWB8bueFY0h8aZ5Moy5Wx/xZQ08JnVDZqajlGlNA8E\nAM3XFsSSs/0001TIJ7eRje+ikAvaMJzZDQxvRDokguj+4e83O7TLLYHOgwUBYM3Or2G/Sfm5I+5h\n2XPL8sHee/vCwOdlRHF9wSdN7FzAjHZ32dB5+7RGu5LW8yj/coQAxFkPK2bvDwS2ViGhhjTKDqju\nKwDUbWmnrn1EYpyAW2D6rBMARPNAXTq4MMYznlgmf7LviBkpLCBm4uWbDcz5G1Tz75qIcfACEcis\nHAqR99+WTqcrCzIV0ByUAjDP70KbhlhcZ2/CnD50xnlRhMc1GgKh47Ld1YcKA13QCYOJFaGkEfcP\nrxQNDaI1Glu9ILmdYNAWAJCRJcOufoSH6xJvLge4rHig1R6yNDgpGozSeZztNCtn9873gJA5MLnt\n1bIDqxDB1yXIdnqD+3DlkrJJCwZhfwUAsjHQ2ve9GOlo1988uERaSGC1gVhtYG6syVxudAyz/IrX\nYrP/TG1lchq9dw+5gdFd47IdAh2bbTUCDRJkeUAVt6y5yPG2qaDyMRB+vnRFVPQXECIREdvvusc1\nBh/LtrFZj5C5HcDsqeMH6tPvJRh4wsZwl0GXgbKfbrRGWz+WBNOMShFhGUAEYpymXMalmrCRD6tF\npjOIJrfnmvlshz1TrD0xlISYX5LECYNQADohcWEgp8DlQ5izt50QJABHyQ2Dqa5uuO8KAArpvO6x\n7EAJM5h3UgBUU9E5vf0Q5u3HaL52aZ04VTTgKApJf9MZ0HkKdTfT6Zu14XmdLBl6x9u1XaTKJYTM\nyZfH9t367p2wLNsaTarXNlxPrW2wrIGnuxQP1wV2Gs6iYwYGnhqzbOpIHqiW8X0BwCRV5P8j8gkw\nOt536bXX4iDwBNfdyfGsNzRL07VWKBSKI1JkyAY08MphSo3mwQJyp5E0GrD6bs7Q7lC2Y4EnvJe4\nr+M16PYX+LbxpvTCas6JySAiKhhdQuiKKgS7/Wv4Ml5sXFvwgUx8oxLo7Or3b7ZIhPFdgoGDF424\nMRxryHUn31k0k/XJTrcKT3cKn5wuMMumGKk5gQbbSO9WsbtqlgJYO/aO14MDeZqwJE9Tec8UCzzt\n6cpbNPMBdQBINCWUzKBsaQSnD8lu+fE5mgeXEWh0fV3Y+yVcOPpCFNrOlwQgVNXAxTIerJ0EoGiF\nV83yMZXZLOuqebBAtQKyMS1QPJEvdgoyV7b3AyAbwhQTVM1ZBDqhwjHrxwHwpmdQ5HjL7wcAVBsq\nb7EKhbVi6PNjCods+fWq1lgBUYlSZ1jVict2wlGVNDG4N6psf2sCVdoMr7shaSqy/uDjsVYTAGin\nryufOXfknESfD459DbYwdyXWXv02AiBRBO+Vfe91cA94FTobIfBY/bXw3uHv28sS+rJCUyeU4VT9\nn9NQTVrktBEJxVPRVLRZCzd0DLBXSFW9jPcf1xd8hHBOjIC98ZsK2Wjqyi25rCMPmG70gRSDR1+p\njYcPT4r2SsfQNClQyBq3jMbd4RIyUZim96ic9Oztg818AJ4K243OUKopJgRAgw3EnJwlk1ntnx+a\nseWT+Pm6okbz6UO6lKMhMBlA3qb6VTiQiCx1E+bR6/cJwQXR6wFT1cCTZzDDDURlezWTOQErg+P8\nvlvEJCjDkju9PyCZKz8gadlsh/pOVWuizYejkofAE2YOHE1FIMSuoxaEclnAWE+m0B4CAJB42vtJ\n0UbKDUwlZ0bfvVFtDfnGyEUBU9IYh8gnEJgQYPAsk30fTTHBVi9QN16lPVMDCFUBzF4rxhCD/dJr\neF6RIsJ4CLHZ+U1Ht6keEgw6g6YsQoph4TeDHfJDJI0TAFB7WaItuafUoupkPAw4bPeQzAZuKNWx\n5Pg+VxnQNjDrM4jRMb1f0r5/HfLN+46XhIMoru+VCOvxdvdmjgGlMj9PkTQuS6lag+yKcm2oQEya\nafT3J4G1NFNgB2oSAc5+U3PgFiTXT2Dmz+npPk02bMLXVh2ZAUh1xDCt382qOcN4fOysggVge1+B\n1tZgDoxu7Kk+h8DDry9u3vBFFUW1dMeYevwUeHweZTtXZj65dGDV+2Hd7GC4VJOmNCviXjuDuPka\nML8P3HwL6b2AbICYVYfxkCj2N15x/Zk+nyTAq2a/F+BxX1UG02HSiWJMmZCcOhBKbP8PAA0kCuna\nUbfspmbbVE49+/YwwUjNqfy5OvOLZJBtgdf9fIzS7LCrnzgCzCil6+aM9JgsMiYyhmO4hcHZ9noT\nXVeEw5+dCDcS3Z9HygQ8JBre25sd9ON1AD6+v8PA4/6WMlD2K4dKW8hZFouO9gEPR9vAlMtos4Ar\n7MpfxvuPl+DDUdXA2ROap5jfh04KVMkW4azPoWDgYaMvXhw4ctkGA39+2n6PNBCEsouXAmCWr8Oc\nPSHQseWx9nLnFIRdf8XuGp0IZprSopIpV/4xKseifoLLiuRaRvkcSt2HSRTRzVVGmcDoGEbl2OoF\nBmrqpu/N+syV2qKy5Xhoy1fBPA5TdGdHAF6H2FFPyOz03sIRvTWlvnKHaMoG5rJEUtV0jrdBACRz\n7/8jAxAK+xocTeVVlIN7gWjkCG2dSJft3YAnaNzvBRM50pTKX0nlSnJCZVD52IGQHxRWcW9PZWiy\nOQq5cPcZWZAPfBnWstpMoiCUHxkwxQSr5mzPiG6gLBBoW2ZiBW9e/AcVTAjsAfBwxcBfOBr+FB0W\nI//MvbddSvd8Rv1FZta1DV3HLAXWG7rXL4hB5yjcNRMJZGRip9KWragAkJqAvD0hUVLOduYzPyRb\njONz4PcRiAEn7/ze+43kQEZ/TeP6gg/H3uDjOUw2xGB2F3W7Qy6XPUw1H0481Apj9pXpDs5eILbM\ndjX37oJmRS7N+SqikSZ54sUdg6+unJgFfZ8O8JCL6wLaNBipOfLZHfrA2TmO0uxQNWfYWT/7Cca0\n8FhygTlfAeEuMkujRYQa2jfQoIGa3gGaCklVo310CfN47RaQvmAzsvCD6gUhm4jdJLNnBLR2hxox\nzFSOKmmh045dd+BE2y21USZqG9mBlQGLkvrh2x7g6ZZBu7M04yH9nu3HmWxoiSCVy4SU4L9/Tr0j\n7ukNRpDZEJPRMUxx7HTtlG59v4lLsbxbVxlpptVPItZlZe0yts2SpJMaAWwu/KwObN4+5j6iBYXd\nioZJQ/AJhztZ1JPlapxVQjz8GcV8RiDApUmAzhkg6vTlzpXXqK8jXV+nqROotEWbiQiEkjwhCwjO\nduZjDzq8KeJyJGeL3MPi/hXfw/kYm3Z/dOFlfPC4vuDT2p03fzCCDwVrPHGwfpYOyiKhdQKXMRh4\numBFvj2+xBYKW0aA0yd22fMBFoVCgiaWCMGBXRVbKdjd70GNuUANIWS0hT+nRa4HXTnT4YypmJCN\ndXMKgEqH+fw+8FqNpPkq8OCy9xB48RBFRr2ZXKGPOQcE5RveXbsJ9Zp6GnaXz5ItYdbJmdyelpo9\nz9Augma6eliOKrOSX51yW99QbVUTQIc08fBcdAmsy4jOLmROGVJYEgrOEeCh4dYDoO3BiLndyIyP\nsbabjac7FfWM6lZgkmoM1A5QMy+myscYDl+qDKiY+p1Gw8FhiDT1pdtAsmZPBDcsUfIckV3o2Qr9\nUHBprakEVNpGFt4MOiKXcW9nPgNu3vS9Lx4gBgCZ032tAKSe7Sdk7j4z6/ri4PG8jPcf1xt8uhIv\n7NcyuoGqXVqqM1kWLyppJ8gXqNQWUqRRCeMqq2zqF1AZRUEBu56SDe9a+3Sz5jPa3Wcp1GQJkV+Q\nCVaunFtkVHoLP/x2cLJst86LfpwOcVJsMU6HlPWIgspI23P6fQB5PnZ24QM5pUUhKFuJXCEyAivG\nEPkETV5gaxlj7hqIAkaf0/EcTSBvj5BbqRMg1tlKZoXP3oIBQFHVVNIJWE/JLHeKymIwhykmbpcf\n6oQx+DtRzdWZm3+JBiitd5IsJg50WhHP+BghIhuLyG8pHGDteOMYbGigtfKZTzeMLqkc5/oNx5TN\n8WM2I9X2fXR6cG3jezDWHgBT/3dLLZwcTx2YGr65zFC1G7w6aTC/8+0Q2ZDkkJhwEFLsHQvOqgh0\njt3dBzdvxoOpfeATnrPKAzAV5Kvjrq0nicjCEkh2DQDjXFUZcNxxWPmc5Cj3hJKbNyE+9m0uK26C\nGTUxor6Ovx+oHItibC3MyytJR+8phDg4w3Yd49peCdO01Le4feIfnB25WY+dXllgoQ9sbe0VFpXE\nSdEAKFG1PtNgNeWuFTeZdqV+Aj6kSQegEy4cUfMVoF0aT6Wn5G0STXiHwYDA80v5BEbl2NWxBuBx\nMdgHniUBBDP/VDF2PQ5PPbWAzYObDHLZEMbutMNIkyIiLIjR0LHiAOyxzxxRIQTRzsyHA6JhQaW+\n4REwuuFKimGwOjf3a8TqLDpXV/4CqAQmc4imRKao98PZT3yNaWbK9FFwu8DT6DgbCjOfcFFmBhng\nCAPutSw1uuqUf4Qxvtez2hAVvWwg5jE9mDMedqcNH//qIseiavC7j76Ckxsfh7I9MNN5HfBmqaPH\nB8TAI+b3nUJEV+W9G1kyAILHnaNq+Nq2lOzEQe2G5VDRNrJ+4I3Jx74NS/2MLm0kRUVKJbKYELFA\n5g7oG5lg11xiVW+wrK/tMvmhxvW9qnVL9e31hkoilnLLsx6U1choxqKQwKoGVnWC1JmVhcZhlB2F\nRmZA3Dw25dKLba42vn6+2blsxrCE/3zm2WoKZO1yO4XIUg9WfXI1ASBgdANbvdiTBEqTYh94nl36\ngbu2AXRpJV8CXbDwNfifpSovm3gS3AGutiVOLu0cTTwzLkv9DtWy7FwwS69tgNEKIjhnU9tSlnXA\n3LRLXFYLl6FyyEQhTfJAbuexE9bcU2m2ZAABQIwy97653o/7o3Y3H66T4SR+ZzYFAAR2MBm9d5Gi\nQjhLYp9rVAYxue2uWZm0LtuJQvus2Zxfur6YWG8gLJBp09j72G+UuGLJVdqzncL/cybwbfMHGKdD\np6gR6tTlo2MCW75mXHrje+DOPYjJbTR5QWVovep1pQXgstJx6oVP3fmEYf2U+F8YIlcHB5WTWUED\n5LdPIL7ln8Bp9TVclA2O8n4XXikaopuPMghdEdGmOUPVbrGo5ItzMk1eUq3DuNZXwvm3z1PXryiD\nVJudTC/2NrgJCgn3L5etc4ok51MdeboQrdo6oFYbBzzh7jhspAt+vK5d1oMGQGabpDcziHnlWEdO\negSghZTLYKzaYGoU0jN2wg+g6zmFu/O69uWHQwN2StLiH2SL6/qCfI+U155zpaEgxGhoqbxpBPxi\ndBwzi3gxairKTgo/VCuqmhwwB3PapdYrN5gJeF0+7rW5XXUgUuka607lgJiB7rXl/v5am5pKp0Dc\nC+HoEe00O71fbuGBRi5lhoSFYDCUd+CAV8nOkgFUuYNZvgU8eptYkPBDvPx3hDHQhjyG+nzUdtoD\n0KqW+PtnAxwXDSZpGRjPDZz1g8gntCnJAur6fAYc34KY3EaZKazr0wOOtAKlTu3/qYpwc1Dh7vAU\nAzXBSPXPFbH9AoC9HifzyLvKGcksh7h/B+LOt+FZ/QhffJbgbDfEcdFgmlU4KTbWYNCWVUXQQ5MJ\ntF0Dtk2NZZ29MCfTFxlCiO8B8BOgauRPG2N+rPNzYX/+vSBLhe83xvy6/dnnAPyLAJ4YY35P8Jwb\nAP5rAK8CeBPAHzbGnAshUgA/DeCfAmHGzxlj/oMPeg4fGfgIIe4D+DkQUdaAPMp/4tAFsM/5iwD+\nFMic/t80xvySffyfBvC3QLnBFwD8W2z9evD1cwlx/xaV3Y7vQUxp97xrVjjbbfF0l+Jsp6IPR1O+\nqwAAIABJREFUKEcf6HQdLCcpAIhgmDQFmsWeQi8vxEJJiM3OZwEsb2MbpAbwU9gKtPAVY8oI6hoY\nBT2j41tuSFA0JWmGRRYKtAg0pgamN6FGxzBDa3/ATVlLtW6stIwXJwkWbFvyavICu+bcKjpkllq+\nwEDRAGWWDZHnxKYz2RAYXdAxpx70u0Os4PMF4jJlWNLKalK2LsYo5BgnxTbS4iu1QJZ4VeNhMEgq\nuGzUYT+FCgBU8ydCCVGwN8iSISBIGSC8JrDXxAmVMpBYBYUIZPMJvWaoxzcANbzr2vUcAEDpFoU1\n23OeRM/ehrk8hXkr8AbLUiRHOcxO0T2gssB2Yx98uvc038vuz9k+mTME3FHZSgzmMLPKU6Yt8PA9\nsKo3LlNgVl2phVvA4xEEgywxuD3cItGSstOR7XMNjyBukv2DvNVj/xBcYxHoBgIAbt0AZjfJe6ne\notR+Voks4YXbHLE6+06v3Kasard4vGnxdJfj7bXq2Xx+tCGEkAB+EsDvB7mP/qoQ4vPGmN8Kfu0P\nAPhW+++7APyU/QrQWvk3QetvGH8BwP9sjPkxIcRfsP//8wD+VQC5MeYfE0IMAfyWEOLnjTFvfpDz\n+CgznwbAnzPG/LoQYgLg/xZC/E8Avh89F0AI8e0gx75/FMBdAL8shPhHjDEadGH/NID/EwQ+3wPg\nF6989SyFePUV+uCMptjqZ6jb0gHPw7WvDYcfVP7+EPBQ2c0OLAbAE+28mZVkiQXCilsa7nd0gMdF\n2Nx2BzQGChDF2TaFo+n03Qr56EbnytsFz+7sG5kQCE3vBKKaJXRDpZM0KTAopm4gFSrzBmvTO6ja\nJap26xYaILF2yC1OinMM1ApZMkCRTZAVr0KMltEgXxShVTjTzxl4+qT1LWljUEyh0xpVex55+ixr\nYAJaYLSpMZ7dJTAfdggHfF5WzZoZc7yYnhRLZHLgrgeSwT4AjYMFkt9bft8YdPKxVctukI2PIXbL\ngHGVAQUiDTYA3g12c+Z1606fRYQMAKRVlttyZDYk+n975R6M/r69l6dZi1y2dA9bLyAuzYYhJrc9\niA/mRDLRC2ybZSALJKI+U1/mVWqBqhXYNjWkKAnk1QBQOdnGT+8A8xVw026MuqoetnxpOvNV4vYJ\nxOwOqnYVnT9/TmXiVUW6BomreoO31xnOdhkerOi4L8oXY6MtEvGi5ny+E8Drxpg3AMC6lX4aQAg+\nnwZlKAbArwghjoQQd4wxj4wxf08I8WrP3/00yGQOAP5zAP8rCHwMgJEQgov/FYBFz/PfU3xk4GMt\nXR/Z75dCiC8BuIfDF+DTAP4rY0wJ4KtCiNcBfKcQ4k0AU2PMrwCAEOLnAPxBvBv45DnEzddQJi12\nzXmkxRYCDwdnOgAOZjtcZgMQyedIofyiWvu+gEE8ce+mrkPgYeotevS1wmCp/D5ZlLJD4eYBVjuH\nw7HUz2iup1Ob5wyGZf/d9Lstt9XtDtumRtXS7eTLLdL1YCbpEpN0iYGaWBC6uzdY+1wzTxzcvLc6\nXCKnGapxWiJL4nkrBiAWCx2N5lCBV49B6Me0Q9VusNMrq6+ncLpVqNrGlWtgf38gpzEATRBro/Hs\nyuiGM6LT+pnvhcgaWT6AsgoT7v0Nhx8bq7u2Pach6LceoX10icbS1UNKMYaFV5eQnkVW91hthxm9\nv59bS79OnRdSxIIMhUltT8qMj7G182AsoruoEgc6FxVwUflqQRh1kBkNVI2qjQdXtalpaPToBoY3\nXoF59oA2Itu1vwcAP9zMMbsJo3K09WVgDd/ulWL5H1+ni7LB22vKdt7ZEujsNLB9sbZcLyLuAXgr\n+P/X4bOaq37nHuyaeyBuB1bb74CqUgDw34DW30cAhgD+HWPMs57nv6f4puj5WBT+vaDM5dAFuAfg\nV4Kn8cWs7ffdx68OlWMjSuyaldvdPt0pnO38JaGbFRG5gAkG/aAjIvFJ9nlhenXofQKAACiUoRn5\ncguailhP9vtoMe5GB6gOSr0gBjBh+xpVu8W6OcfjTWt7JjH4nhQ1jnICsIGc0tCobcxqS2YIgz/w\ndStwWSU42ymMU41p1uKkIBDK5CBy2XSCjl3Q4ePvuJsa7vswMOkKUirXLJ/A9x3onDRyWQMK0HVD\nPbB237UyFHal0qvEZbCYnhS1A9Gq3UJKyghFY+dybF+Oy5YbvcCufhTNHHFoUxMAJUPkoxsQ5cqD\nTbjRqDYR8NS//QzbdzQSZZCX1C+UZQMxH0dUfeoPCYzTfTUJBhwmyPB9PFApRmpOwMPDtDuavTEI\nsjI7jMwZIvVHFBZVglUtHejstMBFacFHAYU0OMro/2mHGUrX3luUk5xQbTPPU0yPbmJo7pC8U7Wh\nPThHCPi2d8v3JX9us8TYXk+8MdSmxuNNi7fXOV5fSLyzETj/MEpt4rBdSE+cCCF+Lfj/Z40xn/0Q\njqo3rH02v0HfCWp13AUwB/C/CSF+mTOv9xsfOfgIIcYAfgHAv22MWYhgQr1zAV7Ea/0ZAH8GAD7+\n8VvRzypLpQ5r3+GHk/7vzbvCDIcjBB0n2pgMgFCXjfWwuE692tCumRfTbOMZZ+lF/4xE1zoBVjIf\nfme6R1kN/Vz4z8gE6+Ycl9XCnjtdh+5iVMgjL9df7iKPmOHohvsgZ8kSWWJQtcLV/WeZv2aTVNO1\n69g7Y9dRDAjP0V6bPW+XqiZzuSsiSwRK7W0s/LxP3vv7vOhlCTfet5ikGstaWtAhXT7XBylXMKuH\nxAIL1Y+ntwCZ+Z5RD/B0B49Rrki6qG9zwcPH4yFEsUIyy5Fd2vcgl74pzwSOYgyzPUdWLnH7+DVk\n8iEqbZ1n7f0akk7YqgNA8D4H2XJ3VsfaqW/1AjtNm7ennU3bUUaknIuKaB2FNCgkcJTRPXF3VGOS\nahzlClkyiSzHORsh8GzccUuRAkkGMbMAFB5fJ7JkAC1rHOU1Sk1/46RokSWjvd9lYgFniIUC7lig\n5GP+yf135cOOp8aY7zjws7cB3A/+/y32sff6O914zKU5IcQdADw38X0A/q4xpgbwRAjxfwD4DgD/\n8IKPZVH8AoD/0hjz39qHD12AQxfzbft99/G9sDuHzwLAd/zeT5phMqHyiaqRJW0nszFuwfEfWKag\nHr5sESMJygPP5UU8+8HB318sYVgSpytPAuzLlABeqqUrXslxaLhPZdikBuvqIS7KBoGQPe4ONWSi\nkCUjP5S5W8KsT/cWWVNQySkf3QCkPfdkhW1Tu0WbG8yTVOOkaDFQ03jxDskEvHgf0kjrzNCYrCbi\nQhBU0vKP0fvZuveRZXIyqyqtTb8DLTMU745INmkPdNYP9ma1Qm8gyBzZ+JhMAhNF+nCdjYoD4HJH\nwHN56suJ4SBq6DB6ew5p2V0kITPy4pyh1h5AQHb6Om6cvIYmbToGaYGSQHiflLHxnmO4cdnNAk8I\nrCHwTLMWiypBmmjkUqCQiVvECwkcFw1Oiga3hwmyZII0KaJNG4c2qdsoZLL0lGzmEV0xuIqmgjDG\nAdBJQQoFA+U3Z77M6k0j0ySxYOOP95PTGvdG32SMA+BXAXyrEOIToLXuj4AAIozPA/hh2w/6LgCX\nQUXpUHwewJ8A8GP2639vH/8agN8H4L8QQowAfDeA/+SDnsRHyXYTAH4GwJeMMT8e/OjQBfg8gL8t\nhPhxUPr3rQD+L2OMFkIshBDfDSrb/XEAf+NdD0DXMItHGM/uojUa02zhaLq8UPJwYrgj2/szByyu\nndjjhhg7e8ZYPWGW2ygtN85rSPpdbXfIjxeruia2VLighJtozniKMZZY4XwXN+ZzaTBOh65U6Acy\nX/f6Yt1m/3gDMyORzHx0DCmn9vyJIZbL2r0GSf97wzOzfhSDDtPFuwDLQ6ZXDW+696JxUkfu6Ql1\nZGTitfVyUQBNSaRBWaARyikahO+nFClSACM19+/p+oFvfofvKV8TEJPOWEXkQT4lQBReMBSAzYxj\n4DGPn3opnnD+KAgxGiK5M4MCUY6dblk4d9UJ8/QrNFfVVDCBURsAX+4NsxvWNeP7KCjrMvDs9NKZ\nHYZBhAVfemUQShODmwMCnlk2dWrtALy4bhAyScHq7lJs6X4Mfk/YgdAoeFMEKilLRZ/dEHQ4+jYc\nuS0J7jRwb9Tgk9MS83yOsfr43u++r2Ablw8YxphGCPHDAH4JRLX+nDHmi0KIH7Q//wyIePW9AF4H\nUa1/wB+G+HlQX/1ECPF1AH/FGPMzoDX37wgh/hSABwD+sH3KTwL4WSHEF0E71Z81xvz9D3oeH2Xm\n888A+GMA/l8hxG/Yx/4SDlwAe3H/DojR0QD4Ict0A4A/C0+1/kW8G9kAAOoG2FxA5NQA1ynNN+Sy\ntaWAUf8HJByEkxmM/TnfzC7b4R29zXjcImUzna5A5p4LZKc2nBzlwGTnG8pVGgMQYP/PCsqVX1B4\nxz26gaV+hnc2F3hjUeDeqHalxH2pnddh7OBptMCGr8dGbE0F01RQo2PIYhooOhAI8S7fZ1FnMXWa\nLS3qGlgHJIzQ26XqAR4l/c9lBt0uI+DhCEVdw4yLF1SlMgIh+EHcSHG8XMGs33Q+Sub8MrJ05vfT\nRZZCjIcwiYLKX0GaFEgCSRcuee0Bz5Nn9HcmRLkHD0B3NhxiPnMT/nvAMxjFBoMM3Cwaar1x2kvK\ncJycEatLWNKLYauBsJ+Yj/eAp+ohM9A9ldi5NzJSvDeqcJQrjNQtt7GhNbETTLCxX9m4EN3PX5ek\nwVlzYK0uZOYy3FDuCcDe/7k0O041/vHjEsfFANP0Faj1Aub8N/DNFsaYL4AAJnzsM8H3BsAPHXju\nHz3w+BmAf77n8RWIbv1C46Nku/3vAPbvXIq9C2Cf86MAfrTn8V8D8Hv2n3FFdJxJ+3ZC0WsIQYuR\nzPYmsVlCxJUNutPvoAXVdBZMUQS+NcHEdhd49qaiVxsiKryHXZQZH2NRP8GT7RJvLHJ8fS1RtwJ3\nRzXuDjXSJPfAU16h4suLPcvrMFCwL5DKkKkBtPHHzLv8vh1uBGps7MfnVafxzwJtNwDUl9h8FWK1\ngak2GM7vIytol8pZKknDrGDWSwDlvmFcUO5TDNZNBWAXzxmFwHOx7AedA9G9t9xGJSgdiTQlBYTg\n93pBmOPQe98hZzjvJ6uVJ3IV3XOikA64ojIvEPtAsR9QADzhQK87LNvzez9hlo+JyRYKkobzV91S\nmwUgAPEcXBCHhHSdn5ak0t4s07g9JILDPJ9jIm/APHsAc/ownqf6ICEEIvfUax4fOeHgIwsh3A2u\nTWlVqVPbp9A4KZZUxkkOuxjKNl4AtKn35z9mcAuCsJLzzjOl4szhwA46PNzJIL5xueHeV6YKP7yW\nEr3RC1xWCyxrhboVKCQwTplaOyHx0BB4EuWlbh4/jRdAq8gQScZs167XIVRF9szWxgCwGSHTzUMp\ne3suZr3x/a/u0GAHdPYMy95+TGWw+2vI2c2Inu1mQGY3r+4TwILMOtxB2+haCYQA2Bf2PRD5BA0a\nJ+gqhUJrtGvwbwSQ3bhH9PXJY7o/+t7DpgKwjgHogt4nJ8UUXMso27lYor0sqS80LOww6oS8kIAo\n23GvGbrXMug0pwHodK3h7WFbokrVknki9/tCf6tDmzxz/hbMG1+jTQ1n95z1jYY0XzY82gehMFMK\njPMaNKjapbM76fZpw8FrbegeLeQE0xTIqwbm9EvA2w/RvvE26i9/YFbxy+iJ6w0+2RBG5ajrSyun\n4z8sVavtXIf/sIQlnXCOhyMR0hqRBQDEiwc/t6kgxuu4jAREopkRISHYtUZR1aSUjE6TuQd4yqTF\nuj53ckEANVNp/oY02FS5c/Mc/oQIgATvoG2Y5RbtRYnkCBCbnd+xpymZ0mnakap8bGv3oJmeQ1I9\nfD7LbfQQZ4DdEmUY1HjXEFZWRswvvdxQo12ZKXnlBOKTHycmWk8YtpAG9gkPPRp87UXZI/cShFWg\nqNotznZbx5DM5ADaNE4vTpsaMk0xuPkpUg/QsbUCVEalua33MTDrDdpLArQEdpMzHtK9wNcy8H9q\nL0rIXQP5uz7mjy9LIe7f8U6eHYUH7u1UdvaLqeehjTcQaxtyBtTNfuqWhkl12wCdS2V0CTx6E+at\nR2j+v8fQjzfO/C0ETFKIqIjkEs6ydTYUpiAKfNVuUFsqvW6bqO/jNAdBmbHiz7CuYNZnMNazSn/5\nHdS//QwXb1/fZfLDjOt7VZPE+fZo06DUfpajblu3WyMbbIqq9Ys3DeRtnVhhGF0AQg5fwtElnDlX\n0GwX4Y41rNf3pekBOJmsdnYLof8KW2BzqeSibOzx06IwTnWU9ZiLN73SM8vNAPR1dkQAVBEAkbNk\ng/YCkLmiRTlNKftQGVkRg2qqwqoG7AWrJIT9iE5G0wc4hzIOs2uAixLi0SUZkF2UaC9LVCugbQSG\nr1wifXyO5JP3gFdepfeA34/NBR3Ls36fIQdmAfCYsnFCsBzOV4nVslWOXXVm1R6MJbJsIRPlqMTa\nNKhRom53SAcFpBh2Xr1FPr1DTMPTh3RPXCyhH6/deUs7CedgwLrd6sdr6MdrVCsgLzWSoxzitpVd\n+uTHvQJ1oEJtQPM1bCRIg7YSp1tKK7oDqww+WSS027p7jT9HpO/WYBD0Wky5BN5+APPVr6P+7WdY\nf3mD9blCPtpi+LUl1K2BG6I1Q1stYJJLSIoAfLZj6d8MOkxxl1YiKSoB62Cmil1azy9h3n6M+jcf\nY/uVNU7fLPDowQuaMn1BhIPfKXF9wQewJTdS3a06cvMAZULhLg/wLJ5c8tcaAwVnVMZApE0DCJBc\nuzGuJCAA3zPiGz8cqtyuHRCZrpwIcNhKAXBZDwPPpl26OYxSy73zy6VBIiRJ/7RekNIJbKrMWjJk\nwJz0vMyGShAslmnKBmJICzSTD1ypSFZ7O9OropvV7P38EPCwGnjZQD9ew5Qa+rJCtZXYrSV0JZAN\ntkiO1hDzS4gb58CxXeQD2Z6uTIuLoNy1B5Dcpyuol+J7KENs9QJnuy3OdkNbhqKMepI2mKSARnw+\nW1ApLZzFAQAtxxiOjmHskDJlgt5M0JQNRBZbN5hd42yn20ba/2vaENy/AzG/j3JI10CbEghUs8PZ\nndNtjqc76RQROMnjOZ2usgdcwZmu06KSqNvWDmULV3I0uiSihVXj1o/X2K0Vdmv6ucoMksvSWiQo\nJFbJPSzxGl3acpt13rXKFPtsR8R+Tk0JoIrny6w9uGHr7ssSm0uF3Upgufjmkzj4nRDXF3y0hlmf\nIc9fsaKU585wK5z1CYPLCpNUu4FDTuFZ6bg0fk6CgC0o1XF6LxP6/WIM0WQwWMK5YqZpVI5zX8fB\njjgQJXWU3E75xHup1E5DC/Dg+XRHKsa/6+gC7UBjass+AFzZJWyMm6YCxmTVzAZ2yVFOvSiuz1s3\n09CZkg28RJD9CAAmAzAgEKasqkZy1DGrAyJG31XlN4AyMnquhLo1QHJZIlEN2kZA3RpAfXxG/ZHJ\nnAQs+VjsYiUCkNmjtD+7hMlSJMPCZUB7x2l7FbhzD3p6E4vd11DqBGM7XAsgkOePFzRWfqZMu7EL\nemNnrgYwRQpx8zUYUKkt5dcOPZBsmCyFzFK3cMvLEvI2UbTF/TsQtz6JZjSFbuMyJ9OZtamRJVuX\nzXRbbHdHNT414yPZV3weJLDDof6Jk1QjkwNkyZAYj1XQPwuAVGUtpHUndd48hfQ6dtwPY3KBrABV\nkSYcLIstOCQGOzc8G0o6qQzQVplcZUBGeovJLIfIJYpRhWKsMJnKq0VpnjdeZj5RXF/waTSVW/IJ\nBqMp6rTESVFiWcuIvQOEJYXWzqscOZM1lCugWbhGfT46RpnFl3Wnl+5D4Ep0yQBK9giFdudG+jId\nroGHoBOGynobu6HE/U4Du22Cy2qIe6MSv/voKxgVRwCA1lySaJGNkZpTU7zyRAlpJ+qdTfFoCExv\nRaCjTe1qQVKkPQBkAXVcx7THYOFnBhaTNLgnxn0njvay9H2QWe6+FrYXr16Zkdrx7ROS/09aojsX\nATkklMUL+2Yyh5mcQyzPXf/HARUfI1tZDEbAzU/hvHzg9OWmWRtl0GS74Tc2nHVTpk0SPu5SBKQN\no3Jy5MyGSK5YxNh0MDmaILm5pPmx+RjitY8Dx/ecU28YTINHU2E8Pkbdlsgl9aoK6bXgPjEtcX8s\nMM/u2mP3mnkc2jRAAkzSBrlskCXGfm5IqNSUj7xIbHB/FyMNzfbYaduv3hBG21D202QRrZrDUdqZ\n7NJ3rZxdOWg8wfpLydsjFJclRusG89VLwPgw4vqCj9ZU3y3GTpJ/mvUz2zzoTEn2nSf+eVZl65lI\nptogn993AMTUVCYohMZkkS5Yx6xtbyCViQcI5PlDAUqODhDptonKbXVLYom8m6XvSdPuE9NlJK0D\nwJVKxsUxZTVcfmN67nwGzI6cNUIjE2izwz6neR+AoO33FiDc8hz2sCZzmq7vDHYKJZHAZzvc3wGA\nvPAW3QCJbyZ3ZmSfMb0FU0ywq58gEdKKpd4gAAqoxV1rheHoNWDwjEDIlmgiVhr3IIoxnlUPsW1q\nd0Y89+LBX7iybWg5cGl10ej6U2YVSt8ARPnH8av0mtyr6htazlLneeTccY/vRWKwaVLY99gO0C4f\nEyFGZRhlc1Tp1t0HRxkBz6uTDNP0JuTiFAAwzCcwxbFr8keRABkaK1E1oiY/69dt13vzY4kykJmh\nkpu1x3Z22JzlM+jyZ4WzH6ysuCxlQA5wdgunGH7Q1psHslVGm4hzsqdIZjmGqxLl+gX5+QgRZajX\nPa4v+LSGdrC7FbBbQQ6HVrE4/iBnifDSKm0Cc/kQZmEVfzrOmsxWM9kQWfEqtpbe/HSn7C6wJk0v\nK+lOxmR8PLaM1Bmm3GtqB4s9gCsZZOFulBc5l/VoEn3keGcLvLnKcZQBtwctxinLDbW4O7yAFCn5\n4TQVcCMgOTDwTO9Q3V2v9o4jti72ACQwoZJj29DfAfyCzqym0Q2asRotyXNodEGOpmkKNBrCDkya\nHZXXAMuAy2UkPyNun7hy28bK/3NvxQl78kFa0NnqBda7Cyxr4LhYYTScIx/dgFk8Aoa2ZBhIzpTt\nFjtN1svxPURN+Fx6Pxv/fgisakkqypXAUWYwThWVqZJ+VQ0A0NYCI3Ki7UYwlIrpLSd2qjWp4WtT\n+80UC4jWNUx2hqx4FZkcYJKWKGSKu6Ma98eCsuD1wn0GTLGBaCrkxRiZOsZWLyBFisTUkEZBiwYy\nqb3ALks0rTYR8NBmoUEx0sgGGslsYMtf6qByg5OV0qW1rqiomqArYPcsJhKwHUjie5l7oTIgrQjo\n8iWSoxzZZYnR0dW9yJfx/uL6go/wrKSrmuIksVN4Qy12IuVdZRZQpNOa6u/5BGW7xaI6xdOdiur8\nWQI37U8yM2d+5sXWnYk2C++0CfRmGdzU9w6dLFpaQSor1pgoAHEZkYFn18BJxpcNqXJ/bGiw0wk+\nNkisDhcx4rJkgAYNld/axpMbJrcjVh37o0SLpt04EsOLZi6kyqn53eTU/wE8ANnzY/FKANZ64I71\nE7qg6+H/NJJZiWRVQqUtktkgshoQ8xlw82bkerqsiSwCrNwxsu8RubLGluB8/I1QbtGHyjy1tzlD\nazS2zRJZIlC1xjG/AGJKhhECz05TZgGQvMuqlnhjkeOT0xIDtXOyP9rUjj4MUDl0MD72ZcOzJ1b2\nKJ7ZCRdb0ZQYIkejbJ9y50ViTUDv5teYZtreBzWkGFypa8jvOzP5GIRS5DRHZgxl6+XSqnT4Xp8p\nG1Lo3jX97194ToDXSpwDSBR9VhrLrOxuyDqfbyeuyzNCfP04+7Glt2RWIpmVyFZXWJm8jPcd1xh8\nhKcm52NU+pktlfhgWZaBnALh7pB1sWYWuAJpdzanW1QP8XSXOODJrIR9Jof9wONedER/zw5v8rS/\n27kP5v3lttDnJCeGHQNALls3jf48wd5FJ0WD42IQWRybYgLRVFSiUtke8Hh6a9i32CKTtHBpwQtT\ng0wNIApY0gUcvZsYdnlv38otkmlF/ZssRaIk0kJCFARULtu5ecNrlw2PXK+DSBgJSg17nARAUvpS\nqTt2OcBRQjbkrvciBLGsgkVNihSt0T6bQuMAiBxV9yf/uQTKwVYDAAHQly8KlHqNk2JfcUJ2Jvmd\nSeF6QxuWcPC0J6j53lGuZqAaHTuiTJYITDNtfXACxQM+9+5xYD/TBQJ5KmntJuwGRoyHwPgSarJE\nMlsR+BzlXrOOjRU7gMLKDc6sD3Dkg6tP/F3Ylww+WQpRSJf9vJBIXhIOwri+4JMktkk8hBECrdHO\n+AwI9cCsdTFrtVk6JgAaFh14iXYGnnOrFr2sU6zqxJawWueVonRLkvB98vkcg5H/cAIx8HDfJLQf\n4AYu1jDZEqKgAU8pUuSydn2HdwvyXAGOCxJXLWQMdNrU1CPpUFzZe4X6Gp62zhYN02xjvVRs3yuh\neahMDSCklUmR9nzysZMs6n/vlKdzz2e2BPgUKZcnw93yYISu8R1Rcf1AcZY0qEUJKdjxNH7dEHhc\n2NmYPmFZbWqnZE3hZ1/4NcOpf3oNz6YMS3NfviiwHNWOhOB6caARAeeQu137eSlWnZjtKwGw+R6q\njVeq5gzAZtNhaQ6AM5iL+k+hgG0EwspdPwYr1V1meAA7GwLFxjElk2HhMrcoy88nrh8FgLIeK3Fk\nYAkWMxroFk0n80kUgMozQQ+Es6qvGg8+kwHERekILC/jxcb1BR8haHGXVKuv2q1juk1SasJmydD5\nzbjMIuzJjDYOfMT8Ppq8wKI+dYN5fibIYJLCs30uH/QDT18jtLCHGwAPCWCmXljRgiJWG1pw7cyQ\nzIuoTJJLg1W97ygZxlFmcFJonBQ1RukRmYrpyg0halPT63cnydsmMG6LexoALI24wST11gJasNim\nIjkeu2s1QvQSFqJh1fBajWh2xYTMs9lRRAQIje+qNsxCEuRSA4hpx+zJxOUjfiw8lu4IkmA8AAAg\nAElEQVRxUh+viQBIt03kK1TaTIeHNWdZbMcOAIvKYBVkqr91nuL2QOK40G62BjBw2x6b9bBwqFCS\nSlQ2sxdy4mdawvsYgLH+P2Iwd6oMEWMsUcilL6PRtdhduZBHYry6AlDtv3/52G5gJhaEbKaz3rhM\nVYyO3QYnn9yGOX+LwPH8Eu0pZUkSiDXxbEktUrx+nmynqTzzDVZrT1Hm076ozOcl1TqK6w0+9qYk\noBlgkq7d/M5IzW2DdL+BTk8KPtzz+86Ou9JbTFI4imkuJe6NKgzU9PmPjXf2QMzQ6VnwukOSoo/5\n1AkaFvQdpUICu4DVNM082+1QhMDDZmk8yMrsLSY3cNCOvsZRDme256iwHDKLSoZ70Z3NCGyrxbfc\nsSc49mrMHf8ZnnsKg7If+/IB6DDNeU8QtU8g9TmDZ8Sm2f5Qcxh83S4q4J2N726VmstgzZ4yM9AR\npU3TOEu8InzTnq6lM91raWaHHT+1qb0AK4L+SZ+KRd/rBGaRWiaQagKRj0n8NRsCw8pZj7M+mzY1\n8vwGlQUPsfv6gs+ZvYsUgKohgNHEMt0LlXngzlKIXL3MfD6kuL7gkwhXghDFGIWc4PZw6z1n3AyP\n3QkN5sBgTlRbLoXNbkLM7mAjStSahkt5V8+DdtNMY5YR8LRGY9MuMZzdic3T+qK7W2PgQSD3f8hW\nu/N3vcQJObXudGKzH+OyoJ0mt8lZ5qfRw9cOg1Uh9o3bWjuzIpEGu3wqKXkKtyNcuPmLKi4hKprb\nCNUitGmg0UDmBS1++SSWLArOmRloYbbGZTwqDUosKmkHOYM5E1teY5tl0ZRAs/QAt5eZ5vb4anc9\nSE3C06gPlTpPCsoUn+5ikC21iCRsQiLCOG0jZ11tGrqfbrwC0zaUCTOtOiCmGJVDNKVvrAMA1l5K\nKZAaEk0GJcekzmFLpHxPt0ZjqxeWnn7s7o0GDYDGKQuEQp5S9S/cwhgo3aKR9v7JC8p+QQC1Dcp+\nWTKkz2Lb7LHk4vejBwCZIBT6XQUg1GW9CZkD8/ukIWf7hXLYL7v0UYYQ4nsA/ARILe+njTE/1vm5\nsD//XpB3xfcbY379qucKIX4EwJ8GcGr/zF+y1g38Nz8OsrT5EWPMf/hBz+H6gk8YuxXy0Q1iD7Fp\nlQUeTt+dDfVg7oYjxfQONlY5lyNqtsoUWafEVbc7lDJFVlj2UZ9PUE+EO0b+fVdaCGeCOtbSrFsX\n7vZDmRT/GAFRmpDXPS84bCXhF/EmWsy7wcSKbnbB2mbj1BIuQsfMAyDcBSD+qhNE10/oKv47wZAr\nL4hh1rOsJVY1l9vgiCAu07GgE7msdlhjUFmUETHT7e01LYDh+YeAAZCd8yidozUauVy45/DzuhnR\nxwbkAEpgaVxviNhvO5QiRT6/D9NUEPPKg05BrMuqOaNrHg7UujcsHtw05dKJwiIZoBshANEx7PZ+\nh98n/spgziGa0om4KpvhAHBf2fLbHWIygCkfXr1Zc8aLQZbXNpQpMUEoS4lN6kwXK+oZdWnXVqLK\nJIpK8y+qVPaCym5CCAkyePv9AL4O4FeFEJ83xvxW8Gt/AGS4+a0gJ9OfAvBdz/Hc//gKYPlxPI9X\n2nPGS/DhKWlNpbE94OEbWfodnMgnMMUES0uvDSMs29D/6WvVbtzvEjNsExmLQSb7zKAD4bIeINYl\nq6y1tP29ULeuGww+IQiR0nXryAkHZ0yCrKfPvA2gBb1uKcuijKe1ZmJzb6J2oBYfedr0ABAAtzMm\nTxbeZU/c8em2CaySfdazrBUWFQ10kqUEMboKOXbUYwc6PEwKABmRS0y1oZIeJpZwQK+zbZZ4uJF4\nuN6/ZqUWuDeiY7k9TDBSxxjIqTu+LKHnsrgtqwl4oz8/c8URZqZVuwGSIfL5fbofeDhWL8jq2tLf\nGYDQdQDlcPc6scbICbSBFrGCQWs01s15dJ/zexFGeP0H0t7bFnhYU436PoV7f3d66YZf6Twt4Scc\n5g5VP7r+Qww+TeWYqY4gVPlyGoGQZS8C8RAq/18dU0+qj1360cZ3AnjdGPMGAFir7E+DshKOTwP4\nOWsq9ytCiCMhxB0Arz7Hc/dCCPEHAXwVwPqq33svcb3Bp66pyZ0oYLeCKBDvrrisFUy+m2KCrV6g\nrmnILpTN6VoshMEfTFq0G5oHsfRj39iOfUe6H+YIlHiu511q+QCVf0K9OmpwCxR7QqNt39P3sh4+\nh0NBIppxapUlBlJkdH7Nhq5r1ew3rgNWFn8VKnPlG+7dsENq9/pxVsbBiyZnPeECz2VI0hwbOIfT\nCHhYUYGlXWwyYECK3VrU2OkVnu4SPFyneCfetFtwl6jaBpNUQ4rcZVdKZkiTAlWyxSTl6ylxUugr\ne2550K/TpnEDy2WWQuYFUd517fpxyxo4yinT4JKZY1tWwfsY2lADEAWcZhpvnnxGw2QR/x50I3wf\nKqsq7TZ1gao7k1fWzTlW9QYDtY1n4S4fkZrDahNZe3A41QD7N93fZ6FYJlcg3ti4UBmAgL3X+Zk4\nsEl6z2FJTs8ZJ0KIXwv+/1ljzGft9/cAvBX87Oug7CaMvt+59xzP/TeEEH8cwK8B+HPGmHMhxBjA\nnwdlS//u857Au8X1BR/d+nQcfjFxwY1tHjyzjWvAs3mi/oBl9hiV7tFvWf8qXAxoAaH5F/qbwz1t\nqvADHgVPtXMvIqPF0cBK77j+RAspUkxS2umGki4AcLZDVOKh8hyZgOm2Qd3u3DmGGl48z0PnZuxz\nhRPHZIFWJhwUOrGlrg0KuXXln4PR/bDvVpFBHUfIRvOlnQG2etE7I8SlPz7Xm4PG+hkRIKBZRDYX\nobJ4tHANQKDZVJBZ6owIS53gohKWzOHLm8cFXStiU25spjuBtqrjF2Xj9N7GaeuONQy6ntSnYgHS\nSUoaatLEH+PwXqP3x/cKKbt7Blye+id0F0RWDWi496bcdU56LKm5J9cKb5S3p/VmIysmvvSXKOd5\npA3NUvHXCHguT0nYlYFHSe+hpCRtDqyth9MLzIbAhM5tT7YpcN8N9fuiMYaglGvW+wPH34B4aoz5\njm/wa/4UgL8Kenv+KoD/CMCfBPAjoHLcSnTL/x8gri/4GBP0SaxMR7mM6r8in3hbgKDpTkyooPG/\nW9IN2jZWEiZmtrG/CM/BUCbiP5zOY8Tuhhsczirc7jzMeJjuDbjZJcgMMDtIoTDNNnaXT78+SfVB\nAKJeCFHOZbKNFhPX7wl8UsIeBQtkhpP7dP70e4tKYqDOIdNbTk0gCnY6Dd8m/uAHBnWhQ2oE/lax\neKCmvVpjWSJcdndciFhpOZzlsn0CnpuJds5Z6nsGjbWegD/PMApJVGqeHQOApzuFUi9xlBOAP93F\npITwd/vYcAxCzBycpA204LmadE/kk8PRpMsVzPIxzOOnsW12Xy9C5q78liUxiCRC7mXAXRX3MOq2\ndMeVFRPa6DUVaQEGdg40WzeMgMc8fhptFIEOq49jvSH1C5aeyoauVwegdzA2dGzl/mYY7p745oq3\nAdwP/v8t9rHn+Z300HONMY/5QSHEfwbgf7T//S4A/4oQ4q8DOALQCiF2xpi/+UFO4lqDj9sxhQ8D\ne7Xf0BoA8EwdNEuvUsDGaKMVFO6jsQC01QuX7ZRaRtYGBGDKLX5MCVXWGAvghq1dGHQVN8H5+AA3\nlIpi7OmvNrLEU4k5JmnrFmIGIFo8EywqYwGohhSlPQ4POn2DpF2tMq8fR6/nQK2sIcU5dM/gppQK\nCr5hHH3wA4M6pTJIFcySsEsqMxN7ykVSpNDWqgBoAxfX3JYCd74UFFhQOydUPkg3P8OEj6EjZ4Tg\nU0jSyDsu9oFgWUssa4Ms2S97hvpvsSxSTBoh113SIpzYDDrpyZr5OXSfDWDWbwKnp3RuANiqwJUV\nuR+iKkc+EIVnrRHlOu1k6M3e6/b1C7mno01NJWc1QRWw2gCrs9cmMfBYy/DIWJFnewLLDYR27iGR\nwg6q9obKXEXDWYjYZdGsz6jcd3nR/9z3GsF4xweMXwXwrUKIT4CA448A+L7O73wewA/bns53Abg0\nxjwSQpweeq4Q4o4xhs0j/mUAvwkAxph/1p+C+BEAqw8KPMA1Bx/KelJ74/r+T1SCCz1pQmYaN027\nastV7ZSyy6R1/YCuWV2WGEzS1mU92JzR3wt2+A2YMACrLdcZdg13q1xC4F2dJo8TbWr3Lnd3pUdJ\nDZbBOdsBF9ZGfJzCSvxLZAk1McJMh76+O/CEEZb0QuFN7nFFvisMQGEJLA37ERMSJ9X+d0JyiAAg\nRr5cxDtuVh0oNWV/3go9KLmxa6nNitm1FAAZmgUlnvD4S23VwhsCnqMMtrfWukyTNx6LSjrli5AJ\nx6ZsnBWHWWWWaORSuOdeVomjZOey2mNVSpGSXp0Vsy3khARENxfOMA2w9hONhrH3k8DQO9Puld8O\nEVB8H2jb0OtpNHumeO53LfNwb/NhZ6vM8iF9rp5dOldWAOTtE/ondbM1/kyw1w+TCKw4bf+x10CH\nualEIID6XuaKvkFhjGmEED8M4JdAdOnPGWO+KIT4QfvzzwD4Aohm/TqIav0DVz3X/um/LoT4J0Ef\nszcB/Osf5nlcX/BJEu+Jw30SlsW32Q4t/jtI7Ftlg1lDzIRhnSmW7FE5dvUTXJQNnu726bcAlVgG\ntoeS27/HWRcN2FFzHQlgksHVjc/QjqFtgO05kCgM8wlQzFAmrStDucVYKBwXDY7yGifFDsdF6hbL\no1whS0ZO1y3s+XD5DYDt/Wj7OwaLSuLNZQZUSVR2u6iAXCYAlF2EN95lMlFBGW0LqaYQfeKQXXLC\nIRHJYFCSykXB4mF9ZqrWuDJVNDjJni5rWH0vqzfHhmZAoByQB7JCBXYaOK+AQgnstHG27FlinOIF\nA8dFBRxliR0aba2KNV2PPmFS/jsnRYN7I2K/jdMh0mSEgbzjKeIATJq7siPPMeWigFk/cE140eXa\nh4t5lnoyDnw/VASzZt2Iy8r0GAMfp41d1mJr9J7PVdVukecTmGLjzAtFsfXq1gBCYzkRDIQ6PyUr\np+Tkn/SzPfYpbxq6BAptasrAOXsaVC8OfF5c5gM7f/OFzmOfCb43AH7oeZ9rH/9jz/G6P/Jej/VQ\nXF/wKXLgE5/aq/mWTA5oTt0iO1LzuMdjd91idAyMjikLKsa0EA6PgNldLOoneLKluY9VvV+7X1QJ\ncqkALIAMkGoONb0DIwQtHHrlmsZQ9No5fyBSq7rQbRTzMF3AhjTpBaAy5JPbkKOpY4nxhy0REtIQ\nCE3SLWQSmOXpFibwbUF+wwJyg76GPgDMsh1yucSXL4o9AHqwSlDIBLcHpH5wb1TRLrm1jXO3OAVg\n0PnH75fLRq0sDyka+1JkuEjubRyszwwAR6BQuRVMBZy5nQGQzGqYQnrH1mCA04yPsaseWqto/3qP\nNsCuEdhpOs9xSlkKg05fUI/Nfxy7wqShx9Ism2Ka3vK0ZX0KVBuiIwPA8Ah5PkGe+xkas/BagiJN\nAc4ghkW8kIcReubsVkCnT9el3IfySgCwrHnui4gdh6QFma3HUWYp8pPXYLIhxF5JMADIUJWeN46h\npXb1NQeIx8XAERoOqmfYYFuIwewujVV0ZqFexouJ6ws+6QA4ftXqum3QNqeRKnNY8rg9PAcU9gGI\nY3QDwoKPKSZY1E+sj0+Gs51ycxsc3GvxVgtU906TYo8VR86WNPtg1DSWvg+DvYU4gtkfOokLyJt3\nMbzxSmT1DVgpFVD/IwQds7mg/gAAY83r1GBOsyIyqKGHQ575TSRDCeACbyxyADJacBmELqvEzr9U\nmKRwAESZSAolCzrXbOjo7pwVslyOIxt0pV06/+9dbIKFUJua9MM6Q5iCWW4sdhlYhYvpHWz0Aqt6\ng2Wd2Z6ZB6DzytpWaIOjbL8U2Xc/8LH2C5MC43SIaXqT/HTe+Y3YcDB878cXMBYgle11RGaF1jLA\nfR9mEPxYGNWGRDt15VQdgICE0jbuXu0ONNP5GZRaY5p5PysGAc48GID4/EsA2ewu3QODxzFZoCs9\nZasUW71wgLOoJJa1xKIqsKqldWA9jxTarwptaqyaMwzyKZS681zPeRnvLa4t+DSmxtPygdsZUVkk\nQakz9+Hh3WzV1rg7PMUopYygdzFTObRMsG3OcFnR1DrPfTD4sGQ+gZovpxAILTBQHvwWlXS0Zarp\nryj7KcZUUgMiSjD3nLDaOJtpY43WAEB9agex2jin1Sb3lOWIKh6AjjmnmrspGydxb26cU2kjNLML\nZjagMkxuvgY5SpHLJ3hjkeOiim+zi0rgoiIHVR7APCnoenBJ0NkWWLq7y1CtknTXLjkEoG5p6N08\naCj72UCGQ5iDCrjBdt+1d4+1pmyl2WHdnDtaebfHBZBP0leXAvOM1MI5Cmn2fp8sC3xpKBQmHagU\n0/QW8qqBeecfoH3zAfDkmetFdUNMBsDRJcTcg9CeDFOPVXn0OAfT+asNIHOIEV3ncO6Ldf1osU+i\nLBAAVjWVnCOKOOCy3S4A+etXIxvZ9wRwmwp+fxtTU2m6OcW2WeLpLsHTncLZbuRKvTsNXJQCO50D\niAHo3e4LOobFu2ZKzx/iSkHW6xbX9kq0RuOtlcGiyl0dvm93SpIzyjaFL9AajZGaB/2Cxsmc8PdM\n6Q1tDHinm8tYxZhVignwvCVBSFCIKLe8yLOZ1hX1aLMLFpzw95rKTZWHHyzH7tkGZbtggfPCpcGQ\nc9+Qa1MBqZ/CLyQtBBdlvCjtNAF81VKPYyxTO7ujYsqrit0qefI+olkDbnFiOSA+v0Mlwm5Ure03\njY69BM3YnvN8FlmFs2PrNNP2vRIA5J5iBH/tKkrksrW2FbXtr02jQU03u5NQRpy3Cb0/lzRs2V6W\n+32bvjikIRiW2a6iWx+I8Jry/V61ZA/eNyB7Ymed2EdpmmnK7DqlOL4GnAVV7RY6sZ81vdqbH1rV\nGzzdKZxuczzdSby5IpPEvqD5NWtNIVgufp+I040XBz4vI4yD4COEmAL4iyAe+C8aY/528LP/1Bjz\nZ78Bx/ehhRTSijsmKDXpmnXLY7xoeMkZH12dM/93iWV0d0g3dJoorGqJcaod4JBwp4nq+LRQEyWa\nmGXa/g6pGKdJ7pvGp6e9oCPSFJjPCCSGBeS8pjkVAOLebTJfs55DbuI8jBB4rNMk5rX/PxuUMQAd\nmtZWGbQht9BVneCd7f6C8LGhwSvjFndHNU6KxjbP81hwtCM2anQJrEuIfILcilAeUpjuAhC/Zxxh\n7b/b9I5o7KFmWEBk4H8DRe81a9oVUvVuMLrBckNZMtmTqYmOBXaoeb1wU/4sL2N2uh+AlPTZTDF2\nNGNTWspyqFfWBZxwAJO/su+PNQ50NhpMq04UjnImGDBzzw/LZolwZTmORSVxUrTQbbNnjNeV7PHk\ngJjezaoV3HPryz4LBbw6NvjktManZgYjddOZQ6KpoEY33PRw3yZlrI4hVi9oyFQkL4xw8Dshrsp8\nfhbAPwDwCwD+pBDiDwH4PmNMCeC7vxEH92FGIhRm2RSlXgJIbakgNvcqJCxo0AfJ+dCYpjdlD420\nAODuUFumU7sHOF6bS+x9+DI0yBIglxqlFk6ME2uaTDfnlwQqw8I3Y4MQqW3GjgAzHtL/b5+Q59Bo\nikV9ilW9we3BPXvcKf3tbUe26cbMT4ePO6/DWVc4MR5Ea7TrAbwb8AwUyfdnyTACnkhbLwAEUy6J\nDdfV3Or0ekIAerfgRW5PV6+vCa/yaFFEQjv7XFZRNsv2HF3pGd69p0nRAzr7C7FoSlK0qAMNv+Ci\nhgAUUZHTlAgqliggVEb9wmrz7osgswuZ5GEb+TSn058pDFRK9guJsjJCXvpolNY4L8+DPifwdJe4\ncmt4vvzVKWN3mGp8/Virr9TCVy6CQwvvs/tj4YWDWb+vqWiswQJQdxM5TCYwZ2/ChGoQL+OFxVXg\n85ox5g/Z7/87IcS/D+B/EUL8S9+A4/rQQ7QtRmpupU+27gYGvKhjmhhMs9btajliwcr+kg7X608K\nnuXYpxUfDIuBbMtQyDGRAJaPSWbk8bnd9W6BSQeEOjtZloUPgefNZYXTbYGBeoJ5dhcAaHHjgdsQ\naG7M9ogMzjuoS3PlhVpm0DUZ6l1U1Hyf27Xu1YnB7QEtCOyQycZ9pP1VHi4VAX4AtakiajrJIVXu\n9d3595Tg+hbPPR09NhbrTsfbvymFQpoUSEwNaRS0aHCU1JikNEDJEjFit4wzKZXRTrvTv+iGN2Ir\nqdzGhnGrDUzZ7PV7HABlqaX7+6yntEoXkpUFZO6zIGC/HxTYmYd+SCHw9Dm4AjTcy15NrNqBugLU\nGLJIkSWnbu6N+5mTtIF0JVdPhXYlVevv5LX7GlR6G2n1Ab5kztnOvVGDk6KxYq4WeFjJYkODo0wj\nV/kY2t4fWTKk/tr5l6j3+fhp73v0Mj5YXAU+uRAiMca0AGCM+VEhxNsA/h6AbzqZ1/cchnTP0iTH\nJN1immlHiQ5LJty7ifxtcPUktysT2A/LWPoPVJ8AYzdSBAoFEhianFwcL2lAkIkECQqIvCZ9q6yO\nG8fB7BJUFgHPVxc53tlSOfHb5+eYprcCG254R1SAACVNI9sGt/tGj1CjpTnTdS0BpBhI2oV+bACb\n7dQuK0iTwi0KqJZxxtMhMnRfZ88YLBQlDcEC4YS+tfEO3g82taNhUzsr03XC5MHFQPGZZoh8SU+b\nGlKlfnd98SapYId+QIFIrZA5gQEfa4+umPv6HAKynPWINKX3PxvCFBNUDZWNsmRIMyxsgx76IYWv\nF2Q7DRqnjh2CdndeZg9wNiuY8rHvnakMw+kdq995iq8uUwcek7SFFMoxLSlaAP49EIAbmub3jyNN\njKtUhMBzb1Q5irWzSgmHl8P3VlVOFSOvGtroWeBpH70gPx8h9tRHrnNcBT7/A4DfB+CX+QFjzN8S\nQrwD4G982Af2oUdnx5klpPYMAF0ywCSNS27Jgensbm8hMbUDkr5ywlXhdn3lCub0S07aX8xnSKzc\nSDLLiTLLNODx0BuEcZ3eUlHXzSnOdlucbnPX2yIGEs01yWy4n8XYv4O2sQOHa3qt1YaApy/zGR45\nCf9XJlMACxxlhQOdo5zmiLJkSE3fcgVsz/YBp2tZzrt5gF7HLeiIQYg/3J3FWhSAkpkTJuX3kKfq\nQ5kep53XzQiqjVd8tkKnyr6Xhq2jmxLm8iGBzvK84yUTzKa01sxMHUcvYYTwdGaVk18R7OBwtgG7\nazqgKRRN/k8GNHw5HlK2GtDBd3rllB7SpACSAWnk2ZfZ80MK6Ozc39m/Pz3o8DUkq4w3ex3QAQDl\niubFMuATk1Ortq0wUsdU4nr2gK4bW2h3QhjTYZsuAdRWCsoAUDjKfMZD99rYeQ8ZIQAWNrWgw70s\nzkBdX3V57rT9zCEGw8v4QHFwFTTG/HsHHv+7IIOif7hDJKjarasf57LFNGvd91liXLks7MloW2bp\ngk8WiF0CrE49iPpD/PMr/XqcZMyCSmHL87jslaXArRtIhhuvydVRaYiGMVWOrV5YKqo/ZnYXJd+b\nBiqf0CwPEA/t2b6KuWTJp7UnI3QXVDtZXrXeevyVyRS5vHCg43a3dmccZTeAn1cKFKXRaJp0H3UA\nsutO2cAPWu5dVyIqsDCpNvuK5HvA0804bL+EgGAYqTDwVmZPconPgd8rLouxmK3KyBtIeQpzdNjG\nurc2c5hZRbNHVY3kyA6M8uQ/l17HQ+D/Z+9dYyzLrvOwb599Xvddt6uqS92t1gxJUYop/1AsRQry\nw1EgC1GEBLSFmFKUhyQTViSLcJD8iCgrP/ISME4QAXQsSKEVwZIRRyLsJCISGYxJQ0mQiDZpQ4FN\nKrI5Qw5nunu6q6vrcV/nvfNj7bVf99yqmpme4ZA9C2h0ve695557zv72Wutb3zeZQ8xu6R7NEg/X\nHabpGuNkCLDxoUs2YS8pR+PMzXbCwUzfxiKhBfviAdTFI3rfehZqK3SGMYinQAoM4gK5nOhM40Xg\nwT1yYh0dQ91aQ0yO/Iy3rSBk6hFlZLQxRIdMKlxU0XapbUneUUobEKp8QiDU0xNUF9a+YVeJ843H\n01M4+EaIZ5ZqDWHJBQQuzRYpYBBvZzP0tZ/9pNGAGuWN3SHGACBTszPm+v2l5RMuOVVr4OSRmbMB\nAOxNDNtMzGe04PeBjpaGNzvX5gR1V2qzMmvR7JKkWlUTyHADXwMPexcBIKvmCw1ASQVjxhVMmDcy\nYrUdE3dGh7YUtdJzRO6MEoOrOxi7LsyskioaRHuZ398Ktb3c0pb7M44eYVJPlJT/vi/jCV+Dy1WR\n87f8HJoKbUBnXdCcVBZb/TQG7rH+7FwhW/iSLwwA8/Ftmj8ar4DVEIIN1XS24wHP5AiNjFA05zgp\nNnhcpEbSaBDv6jdaIyIXdAAaAJbSPs4Dni6COn2RrteHjy0RZn5u6Onm/MjMNPkH8ZTum9UF1Okr\nUK8+gHrlEbqzEvJoRCB2dArs37EZvA6hlAEgOpYSabTRVQoiMeRyaoBHaakp4YiIAkCDBhL2fbH2\nHVb682taff310OjejTcdzyz4KCgPUGgKWzllNiolGBqu8rWgWCnZAI92PwXg9x7cCGvsYTQV7boe\nPoY6PYc6XaJ9SAw0ebQBlmsCHi6taB0rF3SgLRlcF8tNUwOIzXuc6QyPxTXpBXxfk0YPzK7qM/qb\nGCQ3IjO6mePKp+Ey4LUXSCPqF5nMoikBXgSKJXB6boGGgwFIWxh05yW688KAjyobREVLcjesOIAd\nsieXAPwuYdKtz+UywgMDUKMzvEBpwJRrFhsjTCqyGNFeAzEZUFmq1qrMSQKlF0bXGbVVtef1I8Uj\nzKa3yCpbZz8A/MxXqzerfGKGnVllY1lHWi2jxl626X1rLuiFfk0yqk3J2CuzLR4a4FEPT9GdlbRR\nqPR81HhNckSBRI1Qagt46j96oj/3ErHONgQANTukMlyQNWz5akUbPZQ78VltiwPQtKwAACAASURB\nVFM6z3EKzG6jVTVWzSmqbuMTEZjY4X6W75bc3rJ4ZsGHw6hKxwBg5T/SaIAkyrXB2/Y8j7v72zVr\n8rqDd9HjIVDXEOuC6vt5bLTFkCa2rBGADjuOch+HpU/KlifLWxzk7Gza4eZgQrbWcNhNcUpDlE5J\nki2pW1XTtHm5oPPFUifBohBKp8TcSOe/TxNanJLEApD+Gcu+RLoC2KGAyCWiWb7d4wrLfhy7wJ8l\nejjkjiyJn6MPgMLXaaoejT39/rIYQlsqiFz3abQ4qemXObp1Sgi0nc12pEiwlxGlOIl0f4zPFQ+J\nBsCD0Q1rmx0nmCQtxkmEadoZogdf2/xZAbyZsqMCzNZ0iTbM8OPrXpXH9Jny8ej3a0qBfK26njpu\n6GxbjIbAZEAZD6iXKSYD+vlg1As87jG5PdRWNMjlRJcRNXlBXx9CZlDQNid6U5ZGhd5AOp+pU9qN\n9rKnV3Z7isKi3whxJfgIIX74st8rpf6np3c4bzyEED8I4GMgmfBfU0q9cPkjfMCg3VzjAQ/viGKZ\nQ0UDZ1G3u0ATuy4qdxHjJqfMtrMft78wsjpicviYbuz5jMoY+dhmKI4gKmAHXzmSiBbaiVNS4Uwn\nl1NMZGDopnffAC18raiN06q1HlhgK9jKQNfj+TyZYxIJ0vG+nTMBLAA5JTdexJUup0U3gcihfxvA\n8dxaLwn3906GBked2ZXlMbpufAr77g5XYwywO3reOBRLbTiXQKUJokCJ2e/7JLbEqcuk4WcoRYJ5\nNqaGfPmASrLhgHEPHRwgkDkaboyFNzfgDa0d/rA0AEsdV1Rqc1mdLrlANKXtr80OrRDrcO0LsO4C\nHgCQKcTB+4DBHJjPIPceQL5HZ/d6Lg07pHXCSD0iiW8Wp3iuKRgSHsToZ5/O9qyO3+k54slg+2++\nxnHVeifIcvRjIFuFNYCfUEr9o8seK4S4AeC3ATwPslT4kFLqVP/u5wF8GFRU/4tKqU+92fdwnczn\nwwD+JQB/T3//rwD4fwAcg663rzn4CCEkgF8GeYy/CuBzQohPKqW+eNVjvUlyOYAUMXI5oRtMp+1M\nic2yMRptpnWtcBeFkNrphtvgdmM+ozkdAJjMfdDRQMHZTt97avWNaAEkNtlcfM2k1yVLbBEluoaa\n/OCG+xIyn8DtH9i+RY00G5BatcygUsc1FPB6P8Lt5zAJYjTcYvGZWZWraMg9GeIuYVILQJpaHZ4m\n1yemJ5ST3QkNlN5MFIOOS+rIxmZT48rHcGN/HO8DyxO7QemTVIqdxdn5mKRIcHtIZnOegkRB5y6O\nU8QyR2NUBAhwQrtsHgI2VOrCkkoAGADCvPYJB7EjArorRjcgRjfoMS7b7QrA4ffH13+qiSRb5yW1\nmxULptteQ8xCNHF4SPdfYDj5hkNEW4PQb+hprrfe/WsgYtj7QWZyvwLge6947EcBfEYp9YIQ4qP6\n+58TQnwAZDr3HQBuA/i0EOLblOqxzH0dcZ0VKAHwAXa4E0LcAvDXlVI/+WZe+CnH9wD4klLqJQDQ\n7n0fBHAl+LjBNxgZt1mXUsW9jaZCnI8h9bzBzmHRvp1eAEAC2KYX9wWDjiOs6WY6u3mtFJGQPuCU\nS6jymHatvIgGWQSXzEKGE4ArF3rRlEilzX6KdkllO0m764GcmjkTxa9bOOUkDi5lcabnvH+2CYiz\nMb0f9GRjfDwBWDdoTBnRfb8hAIGz07Di4jAJ6cGBqkI+JpuDdAEMCFwNwcAlaLi9MiFQtTbr2dok\nFAs6lq4xfjy94S2u/qaKMp4BMQ2LJxa49TUQa2CWUYJWxVsg5ClAMDEmjNmhUSD3CAIMPFdkquLG\ncwAIbBpVw5x8dX19NTOvBVitP3Yx1Vm9+7f0fwJ3psg71klqbOrfQXGd9e6DAH5T+/p8Vgixp9fu\n5y957AcBfJ9+/G8A+D0AP6d//lta3ebLQogv6WP4/TfzJq4DPncda1UAeAjgW97Mi74FcQfAK873\nr4LQ3gshxE8B+CkAuPsth71P5C2yLiik/afKTqKjfxjSHRzc1UdwI2CPMV1agUskBaBwOfh57ycJ\ngMexpnbmY1DahVrEKTKn1ChF7C9a6zNaBAejneclbJgf5Bt9PBtIOfWHU/MxkMOCkAs4xtSvQatK\nIy7ZqoY2C+kQaX7bVxLg88j/OxliX/+Oz5OQuuwYV4aVZbKgAKhD62UjKisH2+DK14WbNTnPw0DN\n8zQ7B5F3CIS6PS4ZT7YUHLxFtllYRqX5g0yz0fyyFGDLTVQF0JsWNzvQZcdegLnGYKzxr9J256w5\n6Ort2c1QT7ayI1z6vIlyaaj2nDF5ZAN3IPiKDPdtiAMhxOed7z+ulPq4/vo6613f39y54rFHzlr/\nGoAj57k+2/NcbyquAz6fEUJ8CsD/qL//ETiDp19PoT+8jwPAd37Xe1XR+qUDc9O3zpT9ak204qv6\nC2yr3fpzGybCdDtOIfqEIpzM5ioag9tX4eiCTJim9xMjpLg9LV+Z3aoCaB6m8UHI2Ibz3NGTcyol\nzWtgP7WlN6dn5AYbpVFmObD01zBC4OUJe+3oaoBD204MYmtmlmZ6cFJHWKoxsix6kds+l45Kdk8W\nZI5P99jCXgn/v2l1CSgExTD7Ug2qbomuPvd8pNKIsqBUDozUS6plcRQfAwuDpolfjm0qiKaElP5t\nzZmLmfB3y52xVgyPNfsv9hdboSsAyt2IuddPkOWY8+T+z+FtAnyBUmbXcYm4L/gzcjde11Es5yxN\nAEDzBHE+Nn1cw4hj4Ak2m4olnJ5SXFdrEMBjpdR3P7UXfp2hlFJCiKfEpOqPK8FHKfURIcSfAfAn\n9Y8+rpT6n9/Kg3oDcQ/AXef7b9Y/2xm8aAGX7KR21NfdpjDN91T2Au4aosNyc7utfOAJQMgtoW3a\nC4yFP9nNfRb3ou3buXeqxaZZYBBbkzdm8gl3cn9nic8BocbPhsxOmYHn9JxmINg6fP8mtG6KPr5m\na4GnDGxoNerOz+ziycHlKDaN0+Wool16oMNeR2nUYZqSD1Id0cCiPbH+u3N7Km5m0KkWrQiHKHsM\n6oIMyiVV9IFZ1a3JxjodQma5l7mxWSCbFtogC2qa1ndtyzmj2qdyoMsyZODhaCrEctwjlBn7myru\nYySJIxsUvOfz+zQ4enrul0Tdr3UGpbCjrxMATtvVJsurWp/yTbqHvgRVeI+6AOSGYem5JKBgs2VK\nzQVs6Xt1Qtd9sbSU+dR57ncmO+06692uv0kueexDIcQtpdQDXaJ79Dpe73XHdanW/wjAQin1aSHE\nUAgxUUrtLrS//fE5AO8XQrwHdFJ+FMCPXfaAuo3wcN2Rqi57zCun5KaHINVqDVElwKzSu6AbdBM5\nrBpvql37yJsmfKi8DGz1bKpug4vqGPfXEreHZ5imh0YS5KrgUsVZ2eBxkeDO6AKzlB5rZmyKpe0Z\n8HCndzJqX7IGMMrHCnpHeH5mhl674yVU0UAejaC4sT6LgQyGLgzA7GYzqawlxOmL1qiOBy6ZTABs\nlaPqrjALtWuwR9bSShuUNZgkC680w8ELmQs64aLcBx5bABQAT6h1Fgb/ru5KQ2F238eitgt4aNdR\ntizz1CCT2mRQasFLp6TXu9hrFQH2PNr6nc56FMs1aQFS8kuiz4Akgh4Ax/dpcPRsoct7eqDV1RAE\n9DUTZDsOWcBliTLoPC4iAL6qNTPq+s9nvQVA4bn2H1D5Gy5zDjQIcYvHBR6XWMDKGQ1s5vsmI5wt\nfBNxnfXukwA+ons63wvgXIPK8SWP/SSAHwfwgv7/d5yf/00hxC+BCAfvB/AP3uybuA7V+s+D+iQ3\nALwPVOv7VQDf/2Zf/GmFUqoRQnwEwKdA9MFfV0p94bLHlJ3AvVWCRd0ZzbFISMsC65ptAzYn6GaY\nEgupWhs5Ffem9AAoJAqAbppVc4r7qxL3VhleXUkcj1q8d3qMm4OCBD95tiOfeK/PC6YLPBdVhEzG\nGMQ0PDeMJtTn6bMm4PfGxxsCktuf2qyM3AgP3pGZWUzU2tEamPSrHQOg2SmR0HsplmYI06VXe7v4\nbGz6AFXHduK+U+Z5FWGWdkacsmxb21dylMP7AIdBMTQyC8MAUFv1As+WjxM/v6MM4FqyL2r6jJa1\ntRbfS2G8nqYpf6bC+OKUrUAaNahFCSkSNCImxmC5e1hZNCmETL0MgY5PS+uEJoRNZXs3ShlTQd5s\ntA9X9FnPMsp4hzkNybKSOjMDeZF2gbq1GdymWWBRA4ta4njDSw+52LLI7GWfBf1/dd/HlBfd92ci\nYJ1yad1Va8dQl9qrnT3Nr2XsWu+EED+tf/+rAH4XRLP+Eohq/ZOXPVY/9QsAPiGE+DCAlwF8SD/m\nC0KIT4BICQ2An32zTDfgepnPz4KYDX9fH8g/E0LcfLMv/LRDKfW7oBN+rdCD246/zoAorUoB2Rii\nqUhLC9DaWSTUCJD4oJQx1Ys3p9vSIlUNjGtgVFGtvC0hRvsQDgABdCON4jmem6xxkJ9hmiZ4z6TG\nND2kuY7z+yT3AUDM70Lm283kNBrg5gDYyzY4K0vs5wNMk0PEZQE0T+iP3CZxnBLQ9DHLwtkZ12do\nXNPjmpYm2KGFTcd6wj4datBYoO4Kb6EBWgziAiq/Sedx7giTjodmHsQQLISARIw0GqJTLSbJApls\njXzKopbG7mKStJimZM2QS5vxhcFqD4AdoHQ/B3do2FNm0AtUrzCp2n37tIpssFM0oG1I5xx/h3FC\nyMdGhRMNQL71RuZTnIsF1OoeXROn53Tu9v2+L4N32CvbtBcYZhN7XTP48ICqdmiVodZZSRuNCIDK\npTGhM5+dVtlwVS5C0OGBTi4x8sCzq2zunvddYaj+LFWlg6WsTLhqI7uiqTzxWiOHBACJBud33niP\nib71ToMOf61Aa/e1Hqt/foIdSYVS6hcB/OKbOOStuA74lEqpSvBQnhAxru6Fv+NDChjl6nEyRC4n\n/hwLlzdYvkYDD4eRFlmc2nLUeUkeO3NaqA0IDSpabLMJRDb2ZhNYSj6NhkjlKUbxIQktrl4Gzo+B\nJ1SeUrpGneYTVB3QCn8OI40G+KYhzYRwk9ujcpsDT6mk4L2ZgP4bhAKAGczwJOJzyMlAa3jNaMZj\ntI91t0DRLrGs17q0RJkKKSpcIBISkxvPQXUNPZe7cO1oUidRjlY2kFGNNGo8ELJuoCMSqNTWyGF/\njM4zlXS4wc3ZkQs8LA5rNN8KJ2t0hEmlnHo9nzDcQU1EMOaAVae84wfgqab3HU+MGFg9IXsCDTrq\n4WOo0yWpAHw7fADqcRs1ChWyxni8b1WdAYjB3D6mXRIVXisBALDyRrmEkcEOyQ6B/YILOm3XYFED\nofnGNw33LKjuAJWt6JFC8kqPfWxSnt0Jf87ZvKsnqEVsFbQPFmeET63voy4t1T5rcR3w+T+EEH8J\nwEAI8QMA/gLIbuHrOiJBZY5JAuRyjKyLgOKJKZEBoAwo62GklUsqTSxOKeN59ATNV8+NrlVUtIgO\ndUO+qqlgCVuG63tOKWLM09vEBNMNeXV6Djx6Qr0RfnycbrGZzExI25GGmltm6xPJdG+mYOakLwzl\nmBcsgMoToyGwfxNitI8y6lA0S5wUGyzqGBeVNHpiAHQ5kKT9h/O7UOHArDkR7rwRqzGMUXcFLeSq\nwSCmBdUzbWtKqBWxRM3zgoYoAUDGzja2c2wv+oBH75w9goYjTCriVHvL+Hp/u4KVAga6zJdGDXnY\n9Dh+egoCF8fWmkETPboH52gfrkwpLAM8AGK3UZdBR/2xGgDR1EejOZ2XmKWUFiYzlCIx58wtsQIg\n+Ru26J7PSHVas/9CujSDzqKWRlOOrgOFg/wmhrUAmjWoInR1eJ5DzjWtsLYZers9W2RMAeGAjwYe\n5ZTb0LT0fsuGYLKqgXfceM83VlwHfD4KUjn4xwD+fVC69mtv5UG9HRELsrkeJXtU4rp4YHe4erpa\nCYFNe+ErAjDwnB9vAU93XkKVVgU3mjmGawEASS3p7s4IqVIrPp+fmUavERaNpQGBeH7XGKBtDY4C\nuxltfdlFsHPlcMsfIteAUy4MO01UNcmQDOZoshxFc4plvcbjIvX6MnQqyG/lrKwgxRKQIGOxHSGU\nQoyYym+Chh5djT0AdmC17Wx5crOyApLBrIbIYczC6BzZgUT+1ws8wSS/ESYFPIM6Pib6vm9I07nV\nNAjtKvWphe8HxJlO8/IFuvMSm9darE4TZKMW0ewhkmEOMRhBzO+iaBfYNAun1yS1onULoAZioK0b\njNI5gA5Fc+6RIdKoAOKZuUa68xLVEshyuq4FqzQM98iortt4enQ+qUKaHhfpCnaYZ3cosz9+8fLr\nsi9cKjT3KN2SsenlxYbZ5v2OS209wMMK6gAgMk00YtXxvg3oGwilnhrh4BsiLgUfLcXwm0qpfxvA\nX3t7DuntiSxWmGe3SRKerQI49AXeykg3mUGDkax6cHwf6pUHZhd6pfJt6twg+vm9Ibhdw4NcX89j\n+xwP7kE1FbL5Xajy1A798fNct0QQqlHrnSuHa46XxgMCoFhL2kz0ORruAaMb2LRPtF9QjJOCdrqu\nCn2oSO/V9due985acfprqXe9ccA6UpuXodjvaLm2MjY3ZlSvZ48f2Cb8pcEMqV2q4+7xxekWDT4s\npxLgDMx8EdBPy/aAh4cde4CHr7MoVpApvbZwvDFUPkFVUp8vjQTSCMhka3ot9D+VLzkYLDgiIcEK\n50gTRLMM6XgFkUkS/ORsd3YLi+bEsAhd6viipmWFPLJgvh4le9asjRd/17J917lmoHHVpvXPxHxG\nfSvncwljK/vh59GkF1U2nm2CKhuI5RpIzmkzc/kRvhtvMC4FH6VUK4R4TgiRKqWuHlf+OgopUmTr\ndf9Coxe/GKlxThTFgsphD+5B3XuI9pUzk5WEIXJJi4JrfOZIdKi2JPfIEHj45hkNKdOoaip1pA6z\nCCCqcnhT8v+u8KYbAZFAjPa3bJIBS2PtVIsaBSIh7ZyJHOtBUpr9EaN9lKpA3ZVY1NAUaB942N6Y\nS5xMub6qKezNFun35y0CbpPYLZtokzkxp8yMAQjXYcte1aSO+m8X15Ssr2HOmQ0THvyfJx4lHtWa\n/t8BPCKTSMcNuqZFOmgRzdjfqH8RZxBa6EuEsiEg67bLXQNtAQ4AYnYLeH4NWdWG6SbuHAHPPQ8x\nv4sFlljVZx6bry8y2eFw0GE/H9Bzr54YszZiliEwBwzYlyHgOKAB0D0ijg6oRHadjZdj3eFmOxzm\nPK8LGiN4+Pjq57x2vJv5uHGdsttLAP5vIcQnAZjVVin1S2/ZUb0NIdrmWjvcWI6BprTA8+VXUf/T\nJ73ZDsnmS2tzzPVxlkBxFy9dzuk9hjgFRrSrMwuuN9hXQ736wPsezt8J3lH2aVJp4OGSCdfp+6b1\nzVNGzrR9PIAYpRBtBRVnKOpHqNqNpjv3T2+PkxZppJDKAXn9cOnSfb8cDADcXD89p8XGfe9a4p6b\n4QDMz0QWQ2q/G1HVJEzKczHZ2JS/PBVnZ/rf65fxsV1DJqbPFdOU8QBtYDf1MkxPL40VMrTfUVhq\nE5nNcKJZhhwlRJ4S41BfX30LGxMZJtgYAAJg5qQ4CKS0G6/O6MT8LnB3hQjaN0gDz1qUWFVnuL/e\nIQPkRBopbe42phJpuSCzttNzABo8QnNAvp41QLmZiiob45Gkihbxc/pzZ9V3LrHpe830/0qYoXG1\nWntGhTujqqGwhtDH+m483bgO+Lyo/0Wggss3RnSN1bfqkwjhLKStoE5fAV7+CtS9h6j/6ROs/miN\nphKIU0W7zyyi0hg0AHGZjGnILgjo5+21VAhjPrMcocCkTBWtKbmIzPkY08QuvONggDNwKO1zrDQv\n55Ri2oia+2baPhpAantuKikpLGqJuhNbJTYAZobFDJquXiZwAegcs+Q9YBdfZ8aEFxoylaP/u5KG\nE6PM33GLPIYqG8iS5rSEPo/Uz6sAGZn3yu6c4WDqVoSkCMB+Xq4Uj8vaaiofzGISJM2yMaSMrWae\nYbNphYwAeOqvLlBtJKK4QZx0kLPUlMCiPcffyClJhsw5+x4XBoAeFwky2eEgp898EE98hQgW5bz5\nXspG8rEBHh6IPt6QQSH9s8Oi7AbMLL40GlHWszyxFtW8odBKGWTNnhirDcVDnzqjdc0Fu/PSuwZk\n0SIynzV2EmcAWBC7AnhU2UDouSseyH03nm7svOuEEH9DKfXvAjhTSn3sbTymty8YYLQ1wM6/aSqo\nmmvDDZpKoKkjxGlL/6NDhMYBILmd9byecHpD0JLu7g6QSwVhycADoTDSIWU8rnKAZiUBFmxsf0Dq\nn9PA4zT1LZgHMjEeKgBwZ7RGJmPs55ZCzIsQzR49p50r/9/LlZnd91k2O4Gnqel1YvjqABH471vL\nWgpejxhZCjKqkVynHsdA4/aQALM52SWTv5VFOdE7z+L8bbg4do2A4/hszOnU6RJ4+BhIEsTx+zBK\n5gZ43NdpVY1cTjCIF7r8VyOTSo8ZjI3zJxonI+XXmltlFSkS7QmltoDHtaB3TegYAHnDxf0aWuCd\nbCfxs3tzLhwzNz4nDDzmHGmQ8o7bZVMG9yC74wJX3DdPMRRUb8/vWY3Lzvp3CSFuA/hzQojfREDU\nV0o9eUuP7K2OKLaeI1eEmBwBz9NgXQJgiidQZQuRpbYezhPgexNbAmB3yR5DLE/2BnAABwSG7s0y\nn20blIUKBRxx0Gty9dJAu3OW7Oc5lDagY3P9vuqolp9G9oaJhCTlhGKhvWDI+yiXG4yTpZFB8WwB\nygLq1S9YAA3DlfYJ7bX5M+CMcpYhKhpE55w52syHFyT6e+c8TOZmiHLVnGLTLHBRSQBEPwZAzLl8\nDKx6MlL3eAISw9aiJoQhNghMAFlZccqY3UqJgJBGQ8QitmWhODXZbqRfSuQxpH6v0WxI1xjglR7x\nyiNzXofzu0TlhM94jOMUcZwiTW5qILog2jurYJx9xQw0s29S+N5EAWRxioP8OaTRI5xXF1ufE4GO\nX36suxJVt0GWTaByMotTyzXEEL7BHv9bro0bLABTxhY5lbTdMqQ8GiE6HAN7EyKaTG96XkDm2Ef7\npoQtQKP9pkdqTpIuI/aZ/r0bTz0uA59fBfAZAO8F8A/hX1FK//zrN6Kr69Um4hRicgR1hxaFNKPS\njshiKnvwxcrT+gw6zqQ5AGMHANBsznB0A8JpvKu2tHpSIQCNYAzKlAs+YbjH4tpLO89F4ECWBOiA\n1kn7yjbS1FyYPs4ksY9LoyGViTanZoGKswniOEOaUCZk6N/rBbB+Fer8zD9GFzjNVHnSmyX07UpF\nLhHtZWgfrrdKJ13ZIdaLFC8eTAfftBealRfhcRGj6gQO8hpSlJBiA8gB4mxC/kAupXfLORRa88tn\nV7GkTK8ytp4f8wVOa1JW5p05l4H1ZiNKE4hcojvr70169s4PtUr43XrbVhzwqOexzDDJx8BmCbV5\n0ZY6NYFDjIa0kE/mXp/Sqp5XmOUzJHneKzXkbmbaTm9wVA24Cguso+babTPo4RiCySMc2pZcHsWI\n9jJzTuTRiDZ8Rwc06zS73ctOEzLVoJRR/y/cwPFrMTnIlXu6rIz3OoJsUd4dMuXYCT5Kqb8C4K8I\nIX5FKfUzb+MxvS2hBEi1YPXkauKBDjE5gnqOLlxjEOZKjGgGGU+Yd83xVmmLmUEH+QJtUmOcW0UC\noyAdApAryc9y+oE+l6GecqkvSbwFx3sfShkSQSdaKqN0JH8SAs+yjjBNBdJIUM+mi3xV6iSBis+A\ndAipX8fMKum+Dara9iZcUUo+h+7ivgtU+dgzWnx4N9w+XJkhyKaOECc6+2EQnsyhxvvYNCco2qUZ\nfFzqsh1pqDkU83xKC6SrgdfrHKpZi01qdtmu2rkHQHHqWSnw30UaiGJoOrBbbh0NIe7eAtIEcmLF\nXC8L9fDU0JdF4iymgSK14mtjs6LhVd1L7I4pC4xmGbBaQ8zX1rodMKVpEuZcYJhNgHwGlWSmhwgA\nrbDWFwABUN0VaKIBZZflgsCNRWXj1G7Y4tTLUEjYtvXeg0gTSN6UMPDMDiGmRP/mQV3zmYrEZqT5\neMunyZsJczy0rJbfu4SDtyKuY6nwDQc8AC0Ui/YJBiM9qLjarnV7oUFADOZQd2LDqAkBp6i+aqa7\nOYso28Sbtag7gcdFhzujM+znJUbpnDoPlwGQG7PUloP04ijSYLFx6tymGe00yRmA6Fw0SKMGZVCO\ndtlrqSTtO3V+30qTmF2r/qOu8abx1elSz0G1ukG+BLQsD9KEFkgXgMISog7OfqK9DGIyAKsryzSB\nyGMz8e/9/TA3U/jr9sIY27EA63nF5Tq+BSwDLRvdANoSWK8N0UMgoDLr60FhQYtZPtntkKqFSdkE\nkLMeluCJpRbUdG27m4o2GkcHQJIgGuZGwikEIUMPziU18psWisuvK9hz7Z3ntR221M/LDX1VNJCA\no9BRa9KMn5mqam1kh4bZBKVIvFkxrogaENLvVWQTqElj5GtCXbh4dstmL7tKtUM6ZwZ4bjyHRfsE\np+UpMfcc91YvGICCTZ0LNq1aoq5OULUbcx+/G08/3nmSrW9TCERUQgKg4oxuANNYDkpVZgerhx/1\nTlDFGdbtBdrWtr9c4CFpEbFFQR4nHe6MKuznA4ziOWUTpTUdM2BhrJwDYVAO1mkbwe9LcNkAIFkY\nNrlzQShOjex+EtHPJ9iAJuEpI5gkLapO4PawRS7HNASp6ao7YzAyIqSiaREVLVTW+MARRjCnJEa2\nzm52uGlCWnJ63kmdnmvWX0NluFmGuNzozyfeInpIkWCSNChben91JzBOOkxTK0xqBkOZrbZZUfZW\nsVLF0AJkoxWPHQBK8wlaFfv6cCxMGlfGRZOD2WUNGsoI2hKA3oWnQ/rMNS6JlIYdozShLMgpuTHR\nxZwnBh79vZdthpsUBqe8Ac6D51sXllwx9un89uvh1gxVOM+UyoHp/0EpanoG+wAAIABJREFUyqTK\nBZD6sk7Uj0yAQnvsJHQtqGr7tc170gOvaCuM4310qkUkpJ3P488h9NSSqbEAqboN4Bwzbw6oUiG1\nOO7TiO7dOR8nnmnw8Si22RjcfOYyCQBdKtG00GADVAXMICkSDOIJqu5iK4vgmKZk4WCAR+SkKcfD\nhfkYGNi7WciMQCj0JXEBkndwbhnBDc3mY5M4Qz4AtEaZLb9NksYIYHIM4qmlyoZace5CxDt3HpLl\nU8Zlt3BWKTw5VW2l+lO96+8BOlUTXZbnPQBaMF3KuxtGviaKMdVGYWUr9OBraywfWO4GhVYZWFpq\nu2DByVCtgo+pJACKs7FxjfXYbm1qf8/zNDpa1QAyJrO4prKLOfcCoxio7tP5WxeU4QSVIG7Gu4ST\nnaDj9IQEz0RxU1839k1oAAKrR4TPxe9f+ziF7sBSJEiizPenklTeUm3p91PaikqebhncVfoIS4nB\ncK1oSrIh0V+jWdjz2COTY4AnOF54SfHXH1gIIW4A+G0AzwP4CoAPKaW2rIOFED8I4GMg/sWvKaVe\nuOzxQojnAfwhgD/ST/FZpdRPB8/5SQDvVUr98auO89kFH+EjiRLCsYHeNsFyKZKtstkCB2utAcAg\n3qBsG5P5cExTynjGydACDzfv3Ul+V11aN6qNttplQqF9syhuNqdLeaZxjAmETL3SRIWNEcDkBZIV\nvy+jDpvXjmK7k4V+rV2ZkpvxAJYuGy6azIDi0GWiMMyQb769U7UCoo2WfbGy/rQzz6zETbkwWQ/3\nWiIAIpZ0bDdm/pPz7Fa5sIunK3sEeMKkNHA68BY+BiAZ+6N0QimSNarWBiiw0BleFmsWoLSlxrCv\n5vZ8GHTcgefAKkMV7TbJQ8/kKH4+bYQnqgTYd8gFqsamqT1K/hbwcMRk0x6GqQBwMIi678UhBYhR\n4PzrAj9gn6vUGZwGoH7giY2WIBNH+Hp5GqHUNrP0LYqPAviMUuoFIcRH9fc/5/6Blk77ZQA/AOBV\nAJ8TQnxSKfXFKx7/olLqO/teVAjxwzA7+KvjmQUfDm/eoscEi2XpAd8cbJJsMIgnniqyUAqIBqij\nApm8QCY71B15zxwOGhzkDWbp1Mr/83ChllMxi3CcArrx2cgIrSqsgyUPI7rhKifwxc3As2USB6Bq\nHOtk63rZChogdd0kTfNW39ToK7uF4Nfor0f6hnfnlDgCwHFnLtR4SBmGLqtQGerYNMe53OaxvQAN\nPHr3zgtWU0Fm5BfjZncA+efIyIp6ptEAKAs6v09IWaE7txlWnMXWuTVJ0Cdp4ylhu+df21gQRdsK\nnbokBRrY3Ww9Z5oNEE+OKHNdra2ChnnfPcATgg5/PmwRwrYJo8pmP7z5KXsWyHJJr8MbBF0GFMUS\nmByZe4Up7IOYzidtyjRYuZYloarFZSoSrv4bs+KYieYqhbjP4d4H+vVUuTAbTFaa4NK7GfhtSsg4\nMz8H+qWI3uHxQQDfp7/+DQC/hwB8QB5tX1JKvQQA2vH0gyDDuOs83gshxBjAfwQyHv3EdQ7ymQef\nLS/4oGns/tzXseogo42VJOkJblTWmkGWRgKRkHYxB+xO1Js38AfjTHkwC5g6/LewpAI7Ue8cSAhA\nUWx6QQLwFJ+rnhutVbWR4PeO1S3hpHbKXgH25tdkBFHVQOKrNFwWpsnPpUhulNeJXnjLrR26cCnW\nDumCqeVSJkgiogfzZ8e9CO4PqNUJESr4ObMYIg+ygXBwOPy6wfad5WYbTF4BEMsUMko8EHKDtd9U\nW/YO55p5JvfY+F9oEsgZtf6e9APt583SNX3BBoK7gll8RLARGMScbcY+6Jg3ps9Z61zHfV48HM51\nBoCym8BewR5s7Jxr+zMqYacoVeHZcntKE5pAwRuWGqU3MPs2xoEQ4vPO9x9XSn38mo89Ukqx/tZr\nAI56/uYOgFec718F2W1f9fj3CCH+AFT4/U+UUv+X/vl/AeC/wXU9MvAMg49SnXez90mscP1Xqhit\n8A3NWAuLswSizG4/R9lGRtuMZU+MQyY0aEyOiGbL7J/Rvrnx4rbzm6UagCD7LRPodwEQhcE7c4cu\nzLbLrjIzv69Nq+0LnEE9U0d32EqNjMhBtS31ze+Ln5pejS5lccnIC7ePsFprSrttcIjREGqvxmUt\nYHF4Azg89DITO/Ef6z5E7mes/JlUzvzJMLeurVrKxgwf8gLOJA6318bnvEdexwtzDaRbGxijdK0U\neTRdPPKzYzeqmno9GuB7WYNMued/MrXHVtkeGpczw8+lOwOiPafnBd2D6SmdZVJ5oqloNKAFg59K\nCCDOLCU9gxXcDc9fGOszK0S6ayPgvG8xvUWg0y3Mr7gXaIBnc0qD3/kacfY+tI5SxNMIBeXJVl0R\nj5VS373rl0KITwP4pp5f/YL3mkopIcQbFuYOHv8AwLcopU6EEN8F4H8RQnwHaObzfUqp/1D3ha4V\nzyz4tKpB0S7MImRLH/7NzTeQcafUIBQuFq1qaAfbNb07WJKbGSGNBlAXx7TzdRYjMSCfnGsNtPXc\n8H2/E7Fm9IR1dM3kYptg04vQzfDKMVvjXlfV6SFMBiB3QdVU86I5xyibg8RXnPIgA88ZzauwDYXI\nY8ijka9Rpym0HKrWzDlH1VuMhrtl7tMEODqwmVicWhaVDvqaDNtQBeQAt6yYJhCTAfV7JgNfq49B\nl8+5U7KFzA1weIupG8HPXADaclPdnFoLAqdEea1wAEfI/uyFS6Kko6c9bQr9mXgEjuDxHqXfSuwQ\ngcNl/W3r4AHb9xr9TWT6XkIp2kyFQrTrMyOsa+y8XdX31C1JTqDG+1i3vhrDFvDw7NpyDdyoodIH\nSGe3eysB74RQSv2pXb8TQjwUQtxSSj0QQtwC8Kjnz+4BuOt8/836ZwDQ+3ilVAltNauU+odCiBcB\nfBuAfwHAdwshvgLClJtCiN9TSn3fZe/hmQWfugPOqwuMkwa57HMWtSk52QxYczCpHSzd3gjAQ4aW\nTcXBGliRkDRTVK01RRf+bnh0Y9vfpnAYeEyI4H+OEV1v6PkFEad083KZgr3roQGor/9jFK6DMqQc\nIJ7eIrVm3ZPatE/MHM1+3mCaHSJuKsrmqjMqtS2pV9OdF+jOS7TnlREFNQDE5aLAJgEA1HBtadhp\n4tOeOfjxw70t1l9o3LfVlOZsMCxtDXNaADnrGdmeSQg63CcEnOsnSpDmEy/bdV/bLegImdJiyE1z\n7h9pMorSxIDe0IOYiu3bAxaip3OmjxmAmaPhYd1qCcRJZz4bUbZGyobICLXHqAttJjJJDq1ccoMH\nvkuv4d/XfKfzt/HPYZYjbia236lNHAGQCsJqbVU92FpBlxib0RSr+hFa5d/nDDzq4gFlUWzguC4M\ns09kE6TpEEV07R76paHU9tjFWxSfBPDjAF7Q//9Oz998DsD7hRDvAYHOjwL4scseL4Q4BPBEW+28\nF8D7AbyklPo8gF/Rf/M8gP/1KuABnmHwKdsIL11kOMhLHA1r5HLs7Tzpf1uqua4sBu+oJglQti3G\nSeTMkSTWlIbLVoAZsNu0F7RYcSmo7L/olRD9dXTAW1yqboO2vSAvntE+AZAenMRyrSV4rMq2W35z\nG65SWZ02gOjnUlsyFM25I1mTAthAilNMxzf13Aq/39YIfqqiQVNHSDMt8KhndVDVRhFhi0zACsOp\nVi8eD7f7Gvx/3y4/BJ5NwDztaXqLhBTCt8ptumnPqgV95BT3GuLGtgdC7ufPr+9+xiFb642EW2Zz\nwbilfpNanxGx4mxB/Z6yAxBZsVwNQKpst2aJPEadfp9pNECmNeN29UEBK0MUWnhwlh3ea7kc0xzU\n5pRAonYIKgAQS7ouqhpIayAnLbcyjbGqj3FSEJgxSSiXE5PxgB1we8kwRFb5OowXAHxCCPFhAC8D\n+BAAaK3OX1NK/ZBSqhFCfATAp0BU619XSn3hsscD+JMA/nMhRA1KdX/6zWh8PrPg0yoYOZlNUyON\n2ktvmF0R2iADpNvWygYH+QZV12jZ+gSr5hQyuYlsMIdy7A2qboOifoRNs0AqB6giZ7EK3DIB+Lvo\nne/P3titShDz8EJTURZyek71eyYE6J0xS8BwuBTy8Pm5Sc7zM1VHOnBeRpgmxm0yGuakdDDLEGtt\nPHnkmOyVDdBTUhLuoCmHISDUvjBpU+lMrqfE5AJPsfQXZPP10j4/v6b7NQObo2rBoLNpan3OxNZM\nGH0ewbR9U9njdDYNJM2pNeY4tKySAlG+JRMrwrkePk6XCBLQkQFAnT8wEkikmrBbbdn1EjLnZqT/\n1xmj1MxPHtal96zVG5xzbLLEbrM1ExSGFLFhhqonL9txBD2XpMpme6ZpMoeY30UZdbioqdo0SUja\nKpVDu4kqFnQdMLnEyboFS/7kY08e6+sllFInAL6/5+f3AfyQ8/3vAvjd1/H4vw3gb1/x2l8BcOWM\nD/AMg0+niIXGjDTW2uLy2hsBIiAQ7QRwkPtWBKvmFHJ0iBgxLV5ac4ylXw7yDSbJBrUsLQg5czie\n8diuOr6jNeaFLiuxQZvxqc/t48xALXRpou2ApiD5mJAZqGqdFdZII4FJ0lpShVKU5DkLokgTYD6D\n3NOab0E0L19otYJ8m4hwmTICv06YTTjngkOVC2NRjTTRbqfO3+R62JiBrq599pieYypVgaIle4JN\nU+Oiknhc0GdxZ1RpOjeIsOIY2F12w3G2msYDEsIESBUbsBldmgCjtfGY6R0k5cWTNzhxRhsWfp0V\n+epwmYmzz9cTxoWUFRyUJRm4mw8zPwd4EjZFu+w3v3MyRnckAeszX2cvTUzWYzQWZ3vW7K62ma2M\nYgwimjlKowG5Eq9ObEmbn497iamm0csUrdYDfBrRqXeletx4ZsGnVcB5FWGcdJoaans5VwEPZwbh\nPAy7WXIW1IkW42S4xR5bNaeIhETdlVjWazwuYhxvMjwuJE4KidujGpPEghBiWAAqdQNa9ynImx47\ngcjzD+kaZ36lRJQuSDhSP750gMfcpIuH+nUXVLrTC4jPFCRWYCZrr+TiiWUCtHiPQIA3n0Hde2gW\nE9ZnE3nsaMHp9xPOrQD9mQkHlxGDspYqF7SIae05jEmJAfs39XM5TWvdCxFJYi0eNMGCHVw3zUIL\nlcY43sR4dSWRS8qo74xqHOQdEVBEg60rynHb5KzHdzmNiQCCJWVBzCCMUysuy+8/DBd4tHHgUE6o\n9Fgs6Rw8fOx7JjmSHEacNQhVNMDMucaq2vSvRFshlQMjLsrRqhqx3M54lvUaF5U0JWk3QuBRi4e7\nNd64Dzjbgzh8HwFPszXMb2aOjJsqs+Xc4OthTOeuQYO6K98FjLconlnwUQooWuAy/3k3vNKT/nMu\nSfFwGmBZSzy0CWxnIBst+0F9kgwnRYzXNsBra4G9LMJ5leEgb3FnVGOars1rZyK3Q6mrtd3hxilQ\naSBqU4imQjy6YXTE0mgAtbgPnDyCOn5i3EGjWUYZwIwyhqpbkkSQnEIsT2yWAAADTZAY7UNqQ7ow\nmOXkRZiJxCkwjIGZ1it75YEBw2oJxCXr50moQnskcdbD5AP9VEbd2xPM9F+Ly5VkLLcmC+eVVkpe\n6nOoZ4mY/KH0+wVAYA3Y3XA+3rJmcD8/AHh+Qq6uVVfjICd2ZG/ZjYN7R7qEBzCgDwiA4kqrZ2ui\nQjoEcs3C6iu/snGgBp6ipc81Q2TVG/Q5uKzcdu3gHpbMe0g4jZG62HgCr6kpe0+Sxrieuj5QKBbb\nTE3vfWrgOTw0Gc/jgkptaSRMFs4qC3FZUMZzfnypJQmrJ7izS08jFPDUnusbIZ5Z8GkUcFYBe6nE\nou5w0NVoRd+QX+x9Td8PnHmdwr854hQiG3s9ICkSVC0t1u6garhwvXougVmLXCrMUoFFLXGQd3Yw\nlW2Itdgly+czacAYnTUV0JaQAIbZBOrsK8Dxfagvv2pk8wHdY1mtITYrqPMHGO8/DwAQyxPzXtyG\nPg/pUXPdOqG6swtVdYE2adDKMQbjfcvmctl6ANXwtW2AeuUBolmGdLyCyFMy58s08ISacIB9730l\nJ5bmH93QZIALtEpbVzQV1L5eC0/PaeGaWwOyRkb0ucICHMa6kT2j521khKJe4nER4SuLFA83EV7b\nCHDVKo9pU/NwE4GtRydJg72MvJxyOSG1Cn1OXEvzTbPQ9hbQHjgJIADJszAMQk0FxZgeqiw0lQGe\npVPSlYMYMp6TX1FyRiWmlNSyo7MFolmO6OEKcdH06uOJXPb+3ISzyehUS+KcwpaxW1V75WUOMisk\nLcFBuAcMiRLa1VfAodrfIOVyABiqDPNsjk61/vBwsYA6vwfFoLPLJgO2nKjSIbLsOeRyjIN8O5N6\nN958PLPg07YCZ6VAMSAwWNTAXlRfOVRmjNLKY19pwDwx1eplPoHUYMayLm7jkifBzyrgrBI41U/j\nbkQz2SGVVC7wNMc0ddktEzgHqF9AO11Wa+DBPagvv9o/H8LMt8Ha6GJxeGUzzfBq0GDTXuDRxu3Z\nhLu5NZb1GoP4FKPBnNwyvXPkTKZrQoJcF+b45NGI5moYeMKFYl1QyShNIFJHZ20yB/afx7q9QN0c\nk1yNBv26K5EPxhiMv5VmqvZPTYbQyEgzA2mxHORToqfz8zYV0bdHN7Bpn+Ck2ODeKsPLy8hkOxx7\nKT2KASiJYu2N1CKTC0ySBQbxBMkgB6BQVPexrNdmQ5LJBnsZMQx9+ZcegzpgO7Mcafq7AzyLWmKS\nLBAJiQnbRXDPpqqBowPIqka0WgOPnni2Da7skUuHF6F6QhCUNTSoaSwEVbvB4yLCorbAwxbcfdpp\nraoJdLMJbabilHqTgxGwWVHpFgBmh95w7yS7QV/rexTVGkqb5ZnMOSy3BRqDlOEPgWyCwWiKIn46\nVOt3w49nGnxOK8p+ZmmEso1MfR7Y7vuYHRTXi/ua2wAtqpIavGmsBzaFvdh5kbmoJJa1RNECRQOU\njcBykeBgzE6nZGnATVKsHaVlNmhrWqvJxTMODB5cI1+uoe49pLq+pjm7FsxmAdqsoNKT7Sl8Le0v\nZEa79OYEr63P8EdnOfbzVg/P+rRvbh+UbYOz8hg3BwWmyU1LDw9pzeMhcPOGvRgDnTIFZ7JfS/Oo\noiU7ce5ZDUbA4bficfly4KckUbYRJkmJabrGOFkaEKIeyxJd05oSC3/uaTBQK0b7WHcLrOozPC4S\nvLqSW8ATJgZFCzwuqAR3UUVm3muSrDBNaejxopJY1Km5NqZpC6DBXrYxhn8cIQB5159Dr3fp74ua\n/ItIYWOJNBoiG+1bszwnBAAcHSN65QHUw1O6PvLYqlGwara5NrYHrcmOYFtslN7nNmmErx1XwoYZ\nmgAQO8oQpu+VDs0A8xaTj/USq7U1NHRdU8Po0RgUTQuMhlDDPcSjG71zgG8kaM7n3f4RxzMLPk0T\n4fQsxWtphb2UTN+qTkFGdDFGzkIUtx1QnFiKLu+ieuXqK1KlBiBGVrJGisTYVbPaddHarKepI1Sl\nxKYFckkK2JMEprznKi3z4ivyxpSIzK3LU/A8Ee9kFP0norWDidXa7vZdCjJSveu/wGl5ipcucvzR\neYS9TYSjQdcLQlUnzMK3qNe4O34Z8/Q2DfaVAdNNZz+K/XxccUyQj46qtK/OYmNkYEQu6X2PhhCH\n78OT6j6+dC5Qtqkx7eObfZxQmXOaVjjIH2EQn3olQx7+Myw1wCg6oKlMue3+WuKliwT/35nApgXm\n+jTtZQq5pM/OzV7PKqBoIzB5L5dAJklsFvAZl+5xZLIG4u1BZgNADggx6FTtGp1qHeAhAsu5Ab4K\nabSg8pu7aLs07xvPAbOXIeYv06aFFbRdDbmA/MHlWDiEFQYdqirEvYsuZzyZpCvYt5mgKoSKSYQV\nAJUcme/Am6RQRdy1BNeKGt05HZfrgmuOn0kXemMG6Jbuag2xPjPZz7vx9OOZBZ8sa/GB2xX+uZnC\nt+8VuD3KkMsbhlXmKfE2y94F0/ufw1u0LTMul2OS7Y+WAGpkUiKTCrM0wvPjCK9tGpzNVvjOfYX3\nTEs8P0mRy73tA+/bvXHsqGPzTERIXxa5BGJpF/tQFcCZQVl3CzwuHuGliwx1J1C0XmdE1+07495K\nmZ11DE2jGsB9TJObyNxyniMoKY4Ott9fkgBYa1Oxcysq6oiIisP3YYEl7q9KvHThDwVaIJCoO1ve\nmSSNXvQo+GsZJYYmz5JCMqaML4kyvG8aI41WyGWOQm8UxklrshoAuL9KcOaUUfkfAA1Qu3e/mbSZ\ncRo1qEW5NTPEWTiDhj+wuQ2oTKx5XCSm/DbO98175OwPoBm14Wgf6nBNwH7vIVSx9GatvHkifc2w\nnw+XOinzlOZaCBU/KCKkUYuyFUijHpFfnf3ImK/DzGbPGax6gjvMHKd0XCvQtZ1LiIKO3etZxXK3\nWsRbFB185ZNnPZ5Z8BmlCt990OCPzQvMszkm8oZWFCj0AuzMRTDwMNV1PPQzH8cnRQzmRrGAGWHu\njm4Uz5FGBSbJAgd5g4uKbtA7I1qsv32vwM3BBEnkLKIy9Zr/vBB45mEcLgUZMDcYU3MFV9W0FbWY\nz2jWhRv1zi640ZTqVtUGeAByYn1+HGGWUtYzSVpdu6fGMVNoM6mQRArTlBb9s7KBFKdIx7ctDTqc\n7Hc9i/h3s5SymzSBWq0huQ+0NwH2b0LlE9TV/V4mEWcjmeyMc+lB3ljFCSeYaeVGOG0fCYnnJlMc\n5GdY1LSQuswqAJgkBb6ySB2r7u1jcTMfN8ZJt7MPYvTSdCYsGhoMZk0+XqwHcQ3AKkzv6VNNABRB\nRktzrC41mh1A1dlXTG/R2Ffk0hMVpRmpwy1WHTuAci5OmxLlLbqupXzZCmRSYVF3SKMO03RtSnC1\nLCFFbE3+4N9LaTygCkOj7SFYTXz/JsRsDzg/g5ivIU5dxqIFT1VTWVqkJBukckkVhcmAej752Aya\nvhtPP55d8IkV/sRhi2lyB1nVQB3/oRbbHMH1PAHgL5DpkL4PG64sNKkn39FzwZobJwKiRGKgWowT\nWtzbrkLVKRzkNy89bpEk1GgHds++uBEOZ/INGIJONjbqBm23MAZ6zGhj4OG4M2owTVuT8fAiDADT\nlHeztMC6C+myXiOJTjDIdClDy5fwIp+NbhhpezMHw2A0n1GjWc/eiPkMYjBHqU3/+ko7LvAc5HTM\n42RozOM4wpJP39duzLPbOMjtXJgrd5RMnmCanuKlC6LRu1lPmCWFizKdR/tcraqROIKePGRMJdI1\nXXeAMagD9GxXDG0b7p+TRS2RlTWkWHrkGgYesTwhkspS6/EVrS5LxbRx4Wtutgcxu2XIDazy0HbN\n1vgCmfcBFwEY1x2XRsnzlkBImhJuJjdb4M7HzOXINB5A5IAoYAGIfgHsp8CsomvGvU94E1fXQKJL\ndLE0IMQ9R1LKoEHTd+PpxzMLPnkscJA9B5zfh7p4RCq5Zwur4zUeQs32tqmsgF9ai6wPvdox/8LB\nNw6X9txSift9XxjmGUuqAB6wKNfmmKNHeNPQi4d71KzVoFN1C9RdYTIdW6+XuKh8YgU1zVsPdGTk\n7EjRgJaC/mFFllVxtbx44UrlAKPhHFk3JiWHtgSQ+o3mowRitabh0HyMqlvq47WLNIMOgC3gyeXY\n82EywMH6b3JigViXtFhpwpBOKk2/Zatr5/1N5neRDu5gED/CK8sSX77IDAAyw4sBhqRfOBOIdrpm\nmuFdfn1nOj80qDPHkSxQtq3JMDgeFwkyucY4GZrMYiCndgDTmwPS/ZCssSXaOdGbGxlh1Zx6n5+b\n9ZjrIaJrgUqKOqvphJcZ5hJY6sufM0MGaTpfHTK5wURfZjKKzfWzBUD2lemaGfaUrwG6lpIEgntE\ny7WtJGhhUR40fRqh1LtlNzeeWfCRKgIefBG4d99jg0Wz2jbwTV+nB4A0/dbNdqqG5mNCYUUrUKp3\nyJrSzAZtscz1MOT2EKJQyk55Hx8Te8dRe3ZDAdsAxM8zn3mgo/IJym5jmsStU2ILtaw4w6H/eRe6\n21ysxW6CA918NdruDICdeyISRoJJUuJo+AijeI7h6AYEZ0EcnGnmY7MzlV2CQZyYjAuAt3BxmS2X\nU7PIYnXRc3T2NWL+XPRGQTQlsHZIJ8ahdPt8q3KBNL+NNBpgkiywnzfOMXUauJVzrPS4MItM5cCI\nvGYiJ18ftlxnBte4pgHgOCVr9GyCLBuDDY8O8gWABlUntp7fDF+2HdTFMTHgWMYGsNRjV9lgTIu5\nGu9jVVulfla54I1HJttgoY1wkDe6FBjhoqKyLWdI/qxrhLK1YATYjJGvxYO80bNQ/vDulsqH28cM\nbEVUxJ5UCURFFQXA3kOqLb1s6914uvE1OatCiP8awL8BoALwIoCfVEqd6d/9PIAPA2gB/EWl1Kf0\nz78LwF8HXWm/C+A/0EZHGYDfBPBdAE4A/IgWt7s8yjXUH/wTw54CYJrygoUTgW06taZwkoFXqoUe\nU0hpTyXvll0QMmDUVgQk2jiOJVtCKRj+X5ULmsh+cg51/MQw3VTRWOZO05osiAHIgBCTCQLgCTO0\nNBpiIKdbNFn3fXgeLQDW3WJLHLJqN94gbdXZ2r8bUpfUBhGQRg0mSYtF3WIviwl4oomlzbLdQXh+\n8jGweoLBeB+tqnF7eGZei4EylQMk0cQDHU9YlBWqnTCaZXFqPxf21WHgYW24HvARMkOjs1i3xBYy\nAl3CA33fmizSdVmN2w5qZaX/sXS03aoaSFmhnIzQRFNR+VJqN9FoabJKV0HAgI62+HDVnVkMVg4f\nk/jrMIe4ewu49Twwu41Ne4FISHSq9dXftd8VfQ6W/JBJQheyoG8xSSIv43P7QGEfzD1fBDwdRske\nfaauBUWf8VyYtLj9xM3Knktn8FSlNWXWOc2+jbJ57/G83lDY7vE9y/G1gvS/C+Dntaz3Xwbw8wB+\nTgjxAZCvxHcAuA3g00KIb1NKtSC/iD8P4O+DwOcHAfwdEFCdKqUyb8BAAAAgAElEQVS+VQjxowD+\nMoAfueoA1LpE+8qZyXg4urMScrJDBsWdHahqasDGKZBNIOOJmebmsPL6miDQlKQmfPLIqhMMRmaI\nzrPCrtaWNnpKQpzdeYnuvDDHSxI5OVGuGYQAf0EMgAdZfwOVdbTcC8LK+vskAJ59GUxvIp0e4qI+\ntqcoAJ7jDT3j4aAB1fU7LcPjZIaSvt6XxAocRhM9JKhnqoBeC2lgSbT2fIyBnKJTLW4PSSUgjUbe\nImtAZ3FKQM5lyhszGk51fGkMJLQlNfWBbeAxxI7aP9/52AOzNBKmlNbXHzPnwOlpkKKFznbYSG19\nRtJAPLeypoxVrQvqUbCnTbqGmhEDLBvtQ0rdW5PwS4erewQ6DDju1D8PcKYJAY6+VsXN96IZTVE5\nxmyhvmECmH4hA5GbSaeR3XgAbE/fOOATeQw5Xqy51MvAM473KRstnvhUa6B/o1L72Zw3juDO+vDf\nVDVtOKIYcXwLX08hhLgB4LcBPA/gKwA+pJTakmkQQvwggI+B8uRfU0q9oH/+ZwH8pwD+GIDv0X49\n/JhdycG/BeAvgW6f+wD+HaXU48uO82sCPkqp/9359rMA/k399QcB/JZ2zPuyEOJLAL5HO+RNlVKf\nBQAhxG8C+NMg8Pkg6EQBwN8C8FeFEEKpXYY3+hiKBs1Xt0sv7CtjVHs5usYCD3vOaKVmFcWU/UTJ\nVt+GywJCKQKe4/ukJlzVwGoIMVpbENIDnR7oaNtpBh1VNI7VsRXhFHmLiIf9R3bx6OvvuJ4zrFyt\nzl/2xRZ5QDUUdHS+FkfnkHcqzPefx2l1H4AdouUZE5KZocXjQJefWMOrb4bFAM/qxGix7dThGtvz\nRcOAE7NwpxE5lZqdvS5VuUAezTLg9Bxifm5BCIBbNVSh0ZwGHnN9GF+kxPQAw0zKJV64DXT3fbus\nroGc0rGvHtA5cI9dD9lyti7yGNGMmJeKVS+qGphXUE2FeLRP0kJcvt3cg+Ln27H4bqlmHB5CTI5Q\nDodonY3LLv+rVvnGi65sVchea1WNgbJDvgC0xYnyQGiatlqElEqnwtV9czPjcMjazWjca5nNCsPQ\nluRqtTabS89F9esjPgrgM0qpF4QQH9Xf/5z7B0IICeCXAfwAgFcBfE4I8Uml1BcB/BMAPwzgvwse\n05scgC6ZjwH4gFLqsRDivwLwEdh1uTfeCcXMPwdCaQC4AwIjjlf1z2r9dfhzfswrAKAzqXMA+wAu\nRd2uAhZf7RCnClGsjJJvNMuo/MZ/yIsE19mXazthP1wDI5KmYeOpMPsxqtKrJ55CAU9SqyoAuc2K\nduZ6SI5FQFXRGtmTruzI8Ku0O7wIWhLsMLG7el2f94kF1m0zjQYktrh46GUEWOpms36fuyJqWnOD\nTqeHOK3uG826ZR0Z3bNcKpwUsaY5Qzf8WTYmuARbx8HT3ZX3RaCqLGXslWIMgPE51Ys3u3Z25wXk\nkWNKBhAAhf4tgb02L2IKjrgpsAU6LriGwOMCDp0HW9oU2j7bZL8OULhDtu7nbrJfwB5XnELp0qHJ\nnrhsx71DPo+wUjoYri1DbHYIMbuFtSiBHVYjro6hUEpvwmJUDneCASf0vvJ6jTpjIhX3xlgZkEIF\nk0Umugx5sg06AeCout4G1/C9wvGLMp+3c833mAy+0ejePoWDDwL4Pv31bwD4PQTgA+B7AHxJKfUS\nAAghfks/7otKqT/UP+t73q3kAMDnQbfQSAhxAmAK4EtXHeRbBj5CiE8D+KaeX/2CUoptWX8BtM/8\nH96q4wiO6acA/BQAfPMo94AnyiK9i8wg5mMqYQxG9gJ3bIzdaWgA3kApM8Y4WlUDDTAd3yQ1giO6\nSQSbVmkfEpaxAVZ2SA7+YFyETGtONkgzWBFOLfrICtBuOck1rHMzHgM87GvCWY4Gnp0Lft95lZmm\naDfazZQYZuOkw/t01efOqMLNAblIslNr00NMUKznBZCydJ9aNX8/GBlwJTvvC1IajxLq1cQpndOk\novOsPz+2ahB5TBpy46HJPj1b6LDfl+p+SJVYcoczKY/qDBhVQDZBPLpBC20UI5P++wwznTBzaGSE\nOB9bgdM5PCULXr5EHnvDttz3c4eGWX3AaKSNnHNqxFiJ7s5SS0zDF5MjKiPKFKl+1RB8Nlq4VYrG\nZj6dDyZb9huXBF9HZFVB74dIGo6wb1O8PuBxpHOuFa5zraN2/nUUR0qpB/rr1wAc9fyN2bTreBXA\n917xvL3JgVLq94UQPwPgH4NWrn8G4GevOsi3DHyUUn/qst8LIX4CwL8O4PudEtk9AHedP/tm/bN7\n+uvw5+5jXhVCxABmIOJB3zF9HMDHAeBP3JyqfE9pzSqJaC8jQcujOU3azzQ909318oXtAk+a0IKV\njVE0xzivtkt5bUQZR5oNML37nRDTm7ah7bBzVFv6C26agKb5YwKhGWVmtuxGxmvRLLOLj7OQisHc\nyOK4YZvYtpcQ3qjXCqalxjRl32e6dZA3OBpGGMWHppyESrP98jGaYNq/6jaQWU5MQKaXs45exMO1\nE6MIHeqzmfcYD4hcAZhSmDAOn+fU14slLbQ3ZhbIeKFh4JEpZWPn+l5OtBpDHyhWNVCdQ+VjiDhF\nmg1QRwUyeaHPu/Ca/iGTys0GGhkBoylZY6yeQA33SO5ltd4enOyLwPiOzuktOp98LszJCoalOVvm\naCvELOfT+B18LjW7KgvhBsyN7bK0BSr2t+LBa3N4kYKM7DlDo6/nPh3DS0CnL4vfMi28ecOQLczG\n5ilZaSuErL5L40AI8Xnn+4/r9QvA5Zt77zWJlHVpC+LNhhAiAfAzAP55AC8B+G9Bffz/8rLHfa3Y\nbj8I4D8G8C8rpdbOrz4J4G8KIX4JVFN8P4B/oJRqhRAXQoh/EUQ4+PdAb5Af8+MAfh/UO/p7V/V7\nAABSGMMykcWQd/eAvQkBz2Dk/61zQbP5lomU5gFKVeC8usDjYvuUUqO5QSbJB2Y02sNAHtKN5Byq\nKJfUn9BT2ErLg3jnzpG2F7mknbtrpTwamhsHoxtYd74skBSJ7vHofoLOdtRqbdSiw9e71PNFL1h1\ndx4MFircGVWYZ3PbHF6e+M3htkQ8vWUyoKrboO4KsiGPErIecMFHqy+wsnZd3e+lhpvzrgEIxdK6\ngbId9WrtEw7YA0eb5QG8C18AAhjeeA7q4oERtATW/otxKQvapygdIs7GdhjSlNscvxr4mYDouWwb\nNGiHQ2KvjfahhifATJfFeLEF/M+Nsx5tfLeq7ltaNQOym9UxOLPCxdZBVAh7KqotIWSGdLyPTWtf\ne9WcXprd9PVEXeDpu38y2UGKzDAtPVZb0Iczmbs+Jy6hqM+t1bu/GHj2b5rrYS1KrHQ/822Ox0qp\n7971y8s290KIh0KIW0qpB0KIWwAe9fzZro3+ZbHrMd+pj+lF/fqfAPWZLo2vVc/nr4LUmf6urit+\nVin100qpL+gD/yKoHPezmukGAH8Blmr9d/Q/APjvAfwNXX98AmqIXRkiiSCPRgQ+R3O66A4P+/84\nKLkBzi4qodS8aM9xb5XipLCikSGVln+WyQUO8lMz8Gga/9kYKBeU/aQahMJ6NOCXWRz1ZwBen6dU\nhXF1HMXUTM9EbhvZTDXd5RJ5nWB9sboxC8dB3uD2KMM0uaVLe/f9xj2XSQYVIDPI8b4BHioPkg15\nK2qk2QBSW3i3qkHRHBvhTBv264M8oJDzAGKcWpmkOYxSgsl2dBbG/j9cLmJLhjapMZ7dJgUAfnLu\nw+gBRXWqaefjc4jRIyCbIE2HGGhJfpc+vTXgCjhDrtbana2602iAPJ0gy54jQsZwD1ifQXA/y3vT\nCZVxRzewbE6wrNdIo431E5reoh4kf35eP3BpaemApfvrr01oF12Rj032wxYOmaxNludGp9oes7k6\ncPSNMU2tvBDRsp2SG+u5NZWXsRvyhJPthCruwHZ/x3x/8wZtPCdziMEcaryPRXOC0+IU91Y9gPzO\nDt6Qv6D//52ev/kcgPcLId4DApAfBfBj13jereQAVNb7gBDiUCl1DCIx/OFVB/m1Yrt96yW/+0UA\nv9jz888D+OM9Py8A/NnXfRAygry7B3F4w/ZHtCnVFosmyERYqJBrwo2M8GixwP3VEK9trIZXmNG7\nApN7aYb9vMFBfoKjYYRcjilDYLl7zVpSmlJr1AxCPxXXYloDoRjto4w6rJpTnJkb79QAED1fSiUk\nd8Buh9Ciuzv0siANeOwWymA7TVsrX9NcPszphu2BMGuq1k1rsl5mwcrHRYKTgo7JVQ0AgEUNTNAD\nQADZUQO006/WNpsyAp3FpSoTW8GAz/05FnDl8pV+D23XGHYb2wUw+BinVaWMUnWrCgM6bL52kC+w\nl22QyzEG2RQxNBMv1SVWDUIASAePNx/1Ge6tUk1TJlFRKWO68TXwlKowLqr8/s3wKZM2+jIiJ4p2\nqX2OUkcBgxQJUjlAqxrvc+WouxJVuyGwilxFg3BWK9dEkid0X4bU+8D3qW/TtjM449FrQJPlWNWP\n8GizQNlKc6292ejU6yq7vZl4AcAnhBAfBvAygA8BgBDiNohS/UOanPURAJ8CUa1/XSn1Bf13fwZU\nWToE8L8JIf5AKfWvXpIc3BdC/GcA/k8hRK1f8yeuOsh3AtvtaxJCCqvhxP2RbAy0FQQm1rKYZV0m\nc4ijJcRK19urGuIDH0B78Bzur1/GvVWG1zbbCsZuuBde+Dt3eFPMbgHZBGpyak2zAL82D9iF06H3\nusBzf1ViUSeYJC3ajsgQTaRtAmRG1O4pyK+ma4DFKdSLXzUzJLyYeueNG9zQhltxSgwnEeMg36Bs\nIyPaaUokgNe0dX/WZLmh7zIDzo0+MCCpGlfJwJ2jsfIulL0Q1R3Sqmd78yBRDMgKiCsjTcODtZGq\njcL1ON631uKcuenPRBwdACMqXZInzoFZxIr6WGdpHabpBdJIoJYlqsiW7QwjEjDZFlt0l22m1RBs\ndidFArVyKiTpkP7xdTG9qRfQY60uLRyb6oRsLTanJA2lB1KljCEFkVIM8Jw/sM6546GlovO1oMt6\nVXOCqt2YYdGyDf2LShzk3RYI/f/svWuMZVmWHvTts/fZ59xn3HhkRWVmlava3TO2GTCSPW7zA+GR\nBmzTArVBeDyyZMAesBCMQDLSPBghWQJLbbCwgbEwLWPZxsB4DIw8lns02G1bCMHADBYDnu42dLer\nuiszKzMiMiLu87w3P9Zee+/zuBFZVVn9cOSSUvHIG/eee+45+9trrW99X/fzPUkbAJWlVMe21Ka8\nk28dDJKGLDardWh4EzZO6f4c88Bwn3DgNlG8kZvYc5hMsauf47pYIq/pJj1Ov7Xq1x81jDEXAH5w\n4PePAXwm+PkLoJnJ7uN+DsDP7XnufcnBnwHwZz7Icd5Z8EEU+f6IHvvGrFRQcgpnWSx9qcHoMTAu\nII6t+Oe9T+F89zVbblMWeHyjlI3igCGjMYOezlMdlDXSKUQ6pdfsRGh14L5aJeptvcSmvMTTbeNU\njRNJXkXaUK9kqo6pFIXAJEtq4JAEU83Xv0GzTNizg+SSH5MtQFkLq1rraEI7+/D9dI/fZozdxrSO\nxiia7eDfAbAL8bBqwD5dtNqUUN1LPTADNHUOUWkIqX15BwDLtkgRe+AJBzP5XACUqfJGYf6ak5+5\nyHaOAUiOopwReFt1AJ3B3MQbDdbAQlM2WTcVpLKq1pyNhOw8q2Em5vexq5+3AIH7JjoaUcltdUmf\ndUNjBSqdQqo5nasQeJ6eU0mLe2SpvWYi5cgsZZOjaEgUNJzgLxuBdUmCokVT4STdYqSYVGH1DDv9\nutNx1AIdZgO6rGcf9VnH5PtUtj8XJ5Wz2RJJxAKRu655A8oVA5Mhq9dYFn53OItfDvh8CzOf74q4\n0+ATXnSVjJBV135IUY3ItEsFttK8WNuF/jx/F4+3EssisqZhAlnVvsB29vtR56JbdKoYRD7oH6aY\n33elGQ5+mJ+RyFHXa6dC7YGnbVI2UqW1Z9515ICosV6aDAdv/OO0wLz7DszZ834jG/DAE2RlRN+m\npjotGgpOWLSi3g79rWepwTTB3yvakQtBMi2mciAUZgYAgUxXtucm4KlNDDWkz8UAVMFlP0p2Ppi6\nICNBBh7edbO8TlctOZ1CzO9jWy9tbyrGhS3TJrJxGQE5lqKVLaxLaa8juI1MVgGvjw0eTCLQUDmI\nGr/bANi01RmUdo6rISC4w4sSn/U8v7afIc0rsS6cUroNPFbSScxG9P4eavc6JLqZoah3Lc+erl5b\nVnvTvJO0xCyu2kO2nbmnLv2cyrc5ZT1cchvqUbLau/3efZ2MScH6uVewdgO1dgMqRocklFpe2FL1\nK8fRjzvuLvjIyGU9Jp2hqJe0KIvYlWt0NHJGVrzQF80WTeUX+WWhWnbYWU2Ak1d0G1QlXcS5HWJN\nlMFooOQWLtbMuCqaHcrq2u0SuwOZXTXhcPfMCwDrYYXkh6LZupu7bDLsqpXrpfyGxRPMT96CjBSE\nJjdLFyGrLiz92fcQCmG6naq1HDdNRWUedezOp45G9Li6oNkNoGUP0AUhLUeQUQkdVeCFuEvq2Kce\n4BrVPLhZlrSYVgWgbPaTwe/sObq77O6UPOBAhxlSucksecI4x1oKL5i5ttfFtd24XBUCV3n72gnj\nIpN4OCmo5FavPR2/KgCt3CBxbjKUdWazHoGTlIwLj9MRRnLuzwMfvx3UpXEB+F5n6WdlTGb9bsoS\nwgrqcnkqlGpKpGmJgQKwbr1koEfW8BFmcRMQbdrMuJ4IL+CVvAO1h17m6S6AoAca2KOgKqi83tHG\n4w0ojQtUe605XkZ8QKr1P/Rxd8FHKYjDN2Es04oHL+kCrFBbY6xwkQ5dGlelxNkuxnkm8f4OeH8r\nBhcOFTcOcFJJ5bdUGrw+8gtnUe9QyJ0rexT1svd6YYReMAQ20v7cv2lmcd3ysAHa9N44SgEFyGgH\noERsS2YimcHcu0f1fsADDt/YwRxEbpWxmWSgoxEtGLtLL8Jq2XtmewWkU4xHhwDKtmK1DVElEKro\ngRAxozLUosLCaYbt10hrabtla9+v4eASjV2cyJqAmvD+CTVMKoCppYsz+4vdV+2iH0bdWLfQeIyH\nE1qcLzoU4ryOei6n7vNVbUBNFfDuOrLv5zFO5r8OkufE7BDxtl6irM5Qmwrrctsq6b45FZjHxOSs\nZAQ5XgBHliURzDcZyypUOHUDrQZApK3VyOkJPXZ+H7nJWhmpz+SEY3tO7WX2xoS0/U7SCgd6jok6\nhMqZSBO1LMHpBBYAcldia5U7Q1o1MDyvxEZwbHeiNAysagZfv2Xc03BL1H1M1CFO0rMOm/JVfBxx\nd8FHxg54OFI5Q1avXKZRNjlKK4vLas3LQuI8U7jIFK4K4P2dwJPt8G51CHSYBccS8QDV/UN1aKYc\n76oS55lq1Z+BLvh4f5TQNZQe19hGrweeoYijFJGQWCRr3/Rng7zDg/bQK9/YeuwWIQ4dkT+MYGmb\ni2dexy4og4g4hpk+8wy9kEmlNEnd19qDUDJ1ki0sX1SbEk1Uu88v7B20gMdmYK2yWZcpZbMfV34L\nTpURAsvAOiBSElAJdHTYkokZCikUjtMRcguw6zK6cVfdJaF0472NRCI1vu/oMQ6PSF2K553amxR/\nLS4ShUP9oPU8Yn6fmHKwRJDJEc1OVRdoTI1Jcgil3iTNQoA+8+mYpHaO3urpA7KVwlzXPTdZFlM9\nTkdI5RHG0Qzm+bsw11aMlmesZNKyPmjNg2VrolUPjQXEnWHf8PoMn/OmKEuijm8uMDp4gDouIaM1\nnm6HS7mv4uXEnQUfE8lBdec4SlvOhWystiykNVaLWtnOVd4ur6mgvHaogUVCQBHSr8nojIFHWNfP\nnS8zOUoxzQ117ZiHIqv98/Jzn6TVrcDDIUVsSyHKlzvYMhzwIMHDmOwH1AlHz70m7yHz9JLKNuHK\n2mn2OikTHQPYuDKWB6ECouOxw2VJlvWvReUy1RbwhLYMYTAghkDE5Tf7IwMPUW79Z0DeOEs8mCSY\nqMO+Pp0Nnmk5HZdIZGGvH9nLgujUUK7Bn2M3ODt6tCGU/L6jxy0ZmryOnQAnN8gXicI8fs2RLXiY\nt0JFjEelYVTiLLD5ujtOK0zUIZKjt0gRYXRFn7sDHg8+3eDXTqSxjDWNOEo8W3D1ZfLQOrNzRotz\niMkYxgrguhJZuFEIs51QvQBw4r7u+vmgwON036j0KNYXmE6P7edGc0svqwxHhINXlgocdxd8bF+n\nK3RYNFQ+4pmHq7zCqlRu0WDQeX8rUJURityvFDqpHeikClhoWsQX2jtr9h0affYjrWU102z59a6K\nF7tgKbNSeDApMYtra6A2vf0PbQzu4meHXgrIyvWwcV63Zu8GWLdXlPFcrdBc5URxve4/tUg2iBZr\nYDZqOchSrJ02W5gJsceOkhpSzlvClKyO4EttHT+gbv9mSCLHPqZChU15iWe7Fb6+JPYZgFap7K1p\ng7dn77dAiM7HriUwK0UMkpPzALguI2R11AEag0XS/qxT2d68ZLUHIEC7bIqP6XQU4e2ZsUO+96A2\nS5j6EkImJFlkB0qrJKWNTnXhhkPPs9hm0jvUSUm+SnOi/bds1jvAw9nPKAJGylorBCVYBQVz/ZhK\nrhZ42M5Enu6Awykx0Y5Kf711rB56IqHhZ8iCJLbHc6MW25DZYlHSzJvSlvmYO4sOcoPd/3Sv4sPH\nnQUfISI3aS6McZpVIQtsV5VYlTR1fZ4RE+n9rcBl4TMdndCVeTKtsUgIcHhBCb92gSe0oR6pGBN1\nCB2NqP8UXSKRhX2sRLqL8JWrmwEolW0G3VzXTpIEuNmiO/z/ogEQjaAS0ieDTOiGtIzAoiPXA8DZ\nFyB7DiyfAU/PvdMmn+/uZDkLoQ5lP6NJm0bcVEDlhTUBkFimMVBQ1sJ75D/Prtw+0Crp0EF39MyC\neSkjBDblJXbVqrfr9ZlrgweT0urWHRLwLkn/bWTN1roR0sTzun+dEIAMK0OFrwt4O+Y4MoijGscp\n/R0LuM7j1yDWHYnDIBNgIkfZkFvncRpjFlNp+UDPSQlBpNR/Udrpu8ko7qlVA0Ac1Cq5/Oo2JqwH\nx5n0ZotokcBkA8KuHHFnaDSOh8ig7XLwkONwN4bkiAaCS+9FY3qlxA8bxvjRi1dxl8EHEe2Oq7Z0\nCKsRl4EFYtmIwcYwQGW218cGb89Mjz7NwcDDsiFcB6fp7zEtXk0EszzDOJlBJw+go0skcolEKsSR\nQlZLvLPyN8GuRos1Rz0l6iXN4trZJLOGWG0p1mF0AYl7XGWTecq5LUFs66VjTgN+gXH2BWz8dnnt\nmURAoEMXqHMfJG0Bx9DqOOpckpy12M0+O8eGM0R8VpTU3kphSO/NKRoU7d+xtpkt1eRW4oc/Oypj\n1j1r7gM9d4u82T0ik0AAqAqMjt92ANSdZaLnFCgbf0LjyLgG/ZDbZVeyKZxzArwMzVzfw9gkQAA8\nPWtpeMO3MLQcYRInXouvWnuw5iFmqS0xR6E2faZai6XGoOMAfwzce+DKZIIVtLslNwWnLOKisDYh\nPLfDCuOBCGhrg7FPo84+V8u1lP8/Uk4FvG5IYYIGZl+OwsGraMedBR9uMAJolWOE0pD2omc22XUw\nx8PBLLZPzIi59nBCDdeuJTCA1qI1s0QDHQmM1IyYP5sleepcX8FMxpDz13Awv484SjFSl9BRaQEw\nwvtbes7LKw0sCgdATGZw5Tw5go7GtIjALsyOzdff9bHMSdF4z5myyZGJFTHiguByinOSZJdPNsAL\nd6x2W+++zkYQD0+B+w8Ha/M9RlpYLgtJAUPBjLYQeDqLZ+v7DuhwDyQrn7XOETO52MJZyxEm6pQ2\nDBfvUDnp6bnzyOGrZHz0FrbNCo2o3fPRjJK04BGSQ7xSA9BmLtKQaBtswvmmRaKQSmsrvVmC7K+G\nwwjRmyfrMwMDW2oOdnVNp3YYl+dwAo26kKUWvmYeZMtKA8cP2/5JNmMRMrEuufCf0R5KteiwLl84\nwownlJMKBraNEG6EIZzTehUvN+7uWW0qr1Ac3CxGacjEC4zyACkHZz+vjw1eHxu8NaXyy0laYaRi\n1E3ZmrlZlbKX7ciIejEzeQSzfAJz8cj1SIjSuoWpCowP7kPGr0FOLlE0BfI6QVYD7ywF1qsYOqkx\nmtauJHOgG9twhs96thZg0ykBkL3reTHkwVQmVfjhzQaJpEyJNcW4x5OItG/WFqg60zm1Q3wsxZMo\nUg1/8z5w/BA4eGAp7u1LULHxGZfMdpv25xaQArzNdzEMOPtiD+gwzT0suQACs7i2C/zM21tvnvsN\ng/3sqm9c8yGSLh8IgK6brPXyOjLI6zao+QyLIhzYnAXrLoNPIo0TpnXOnteP3DwVHQhnK22A5w1I\nJKT3V8pWMPmZs0h3wec1UpR1Zmj13VAFlOgB2vzeOH44eGwipEVz9tMFoLBkysDTzXT2ZT+AEwnu\n2Yfba4FEbnOcZxGWRYT3+7yaDxUNXs35hHF3waeub12k8joKSm60GCwSIK2IxbbQvhzyQcPXw/cc\nwx6bAHdsAdFhkVD2dZzW1qpauEFZxaWMTrCasJ9bUoEUCy2ORSNwklYOdLx98RM/rBlmOi1XT9kC\nIPHwFOA5kckxtlY9uns+pJpTw1gWlFHFcZ8aXWyJhMDnKVTK7lK3w7gBdOpm54ZZ4yiBNAoyjjFS\n9No6GnngyW2GFcrsDEWxBTbPkY5ndqH3ag3dweGu2nPTsZb25ylxf+f6MusLOleAGzrthT1HAmsk\nSiNJjuj3+Romf0xyPTfdDwoAPry6c0sSyspBDUZdQFQJfb5K02cagk63R/cioTRwGy4G711HI8hY\nIZ4tMdeXSAbKlq/io8fdBZ/S7qo73j3OldOUTimgS48kJhtlGkO2CQACpQH2nmyQSNpNj25jbrJm\nmtQo6ufWYCuh0l9FNO7ZvMBkRCQHAp4KDycFdETHurO9rL0wcB8AACAASURBVElyCCQpyeXXa8fi\na9N02z48nKmdpA0m8WEgNGkXqWDuYvDYGYQCd032mAHg5im6PShnIQ04WnerbBaCShd0wh1st3kd\nBAOPSWdYVxdoSp+tdcuLkZCQhm4Rt9Az8BR+yl5MxjBFiejAHvs49Yrf+coJd9J79GnMkH8PAF/2\nYf2zIZAWytLan3hacniublqYqwKoBmaf+Byy3QTHEJhbiSkRgMhgW76jP/ixRJg5hZkUf33R12WA\nlhoKClN1jJGc40BfvpTDbIyX23oVdxl86hrm6TnEKfxCZRc4XpzzOh5Mkxe6n/XQrI6XuSka4ejZ\n07jGXHN5JXjCPcKbfCxGCJv+KydcyjGdlTjUwOsjg5O0xsNJYct+PmPaVX5glvs5eS3cXEg3wub1\ncTpqESFuBZ1udEskTKFuiCIsshV0OkCJrXx/QLCT6VBJpbNgOj+XUN8r/FxZ+VtpVEmKZfF473wO\ngFZPo6XaMCQuat9fdGAlgiZjf5xKA5vnUOnUHveSylPFts/eCspliqnRSgMyOE/umgnsDsLzARCh\nwmY/bjEOS8tMDgn9cMLhzc22Q3sPji9Y3HlUQexb3G9a/MNr/8OCUlhiBFoZbfi8BJL2Wtrn/MpR\nFY6QIkC90gO1x+frVXykuLPgY6oGuFpRHZsByC5QtVkP6HL5pv5Ct2vvHF6hOGrNBS1qVny+gbIZ\nlq5i647a7FDUO5ztEic4yTEZ1Xh9bHA6avBwUtqexBRNVLusB4CT51+VsVNEYDYVe+FwcLbjiBB5\nRn2NcMI8NO0C3C5fxIHeWze4XMJRFTBYeZC4aRhQjwP3UHhdti7o8DFtszYlOwAgtnBYlmd4vMkx\n11tM43FLT6wbjsFV5R54svVwuW08bLds8hWZBIb9McsIbPky8Vcdw7BeXGCXwefORVgqC8Ej5n5H\nkAFwT2Z7RX0qLpeGn2VwDZqi9FbhDEIBldkI4TY6gwAULPwOpPYZDDsTvY9Y1gtKeizGW5sSMNRL\ndDbsXdp2UTqVAwDtHtZt5cjvwBBCHAH4ywDeBvAOgB8yxvTSN+so/Z+C/Hz+rDHmc/b3vxfAHwXw\nmwB82nqp8d/8ZgD/JciMpQHw20Clnb8C4JMg0cW/Zoz5jnUy/fZHY/zNt97S4qjHdAPYezEEnxB4\nUgk3s9MNzizWpReMzGoa/qReinCDeMODC3A3UVZf4zyL3IAjUblpaeXSX2yb1eFMj5ajAHTIDIsH\nEUMQW+gIp6MG05iICsySS+XMKxWsLt05Yqtts9o51QIBEAh0BUeB9oLaURJosdZuaA4LmcBotBeB\nbqM4kMp3P8f2/0dwGl+5VtiUZ9b0LMGqlDhJdzhOR4HuXfuWYOBBZmnHe7I/kgziRboNtI46HAKP\n/XvDjy3tuWst+Ot+qZGDQZjfbxhlSbt3zlQAv5CyPhoff3De2P0zOgCgJAy2EBjb8xm8J6mt62m7\nHBgCUMgYI/Cp+lTsbuyrBISfq44B7YdCWxR8oEOsKO3XisAHGB4yBdwaYCIF7Cp/fkMR048YxgzL\ncH0M8RMAvmiM+ZwQ4ifszz8ePkAIIQH8aZDr6HsAflkI8fPGmC8B+HsA/kUQyIR/owD8JQB/wBjz\nq0KIYxC1MgHwJ4wxf1sIoQF8UQjxzxpjfgE3xN0Fn0jQYsklko31R8nX0HoMHV1hrhukUvaAJ9Rl\no2yChT2NW+yf7qJA9y1CVhtkNWcfFeTkElCHSA7uk6fKqb3Qjw4gZqfYihy7coVV2S790TH4AcXz\njPS+gB0Wie/lsNunp4nDSQEB7C9EJmXTmMttgV1xlVlGYNnW1CpKp1ogMgXZGR5tLSu8OG7QL+Mw\na+1FmrlhL6PLgApfO6/aw6zOAoJ6PFn5DFIoLBKFe6PKlRf3yQ+FwOOynjIA4g7Y9txlw2MHXBbG\ngp37sp5QymgwGABvWhRjel23KHP2GIrDBn9v8sp/rqmE0HUbRDmrSKeDdG0A7dmrgI7t/tuK9upo\ntL9UFwKQta9ozY0VnXMVnC+jx0QJlwkEsztB7FLH+uS/VRKhSjsAIs/wNcuSPred5+/M+CyAH7Df\n/wUAfwcd8AHwaQBfNcZ8HQCEED9j/+5Lxpgv2991n/d3Avi/jTG/CjjTOgDYAvjb9neFEOLvAnjj\ntoO8s+DjnEy7C0VVQCYptBwhkQUW2ht6Hej2sGg4fMbfr8uoBTyXVxpFEeGrZYmrvMZVofDWNELR\nFHhz+owkTE4+STuugy0wXqCazLEpHjuqZze6Ft2PNgp5LXBvRH0qBr+rggBnqG/FM5/h3IiMaN7D\n2V/zzc87wG2G5jpHc53DZBWEdXiUp7a0NQQKvKuGXQRDAAp25gDaQ4I2evRdfsxNAMT/b7NZMTlu\n6dDpaIQH45WzgAD6JTevfFG0s4bndpZpm1F5ajFrZ3tTa1AYRpjZjSYk7T+1FPIbXGlbfx9+vyFa\nu1MZH4qyhJMnCs9hOgWmVFIzRVvziD/X6CCFmKG9wLNsjdSD8jp8rsL3GgJQOGjbpdi3SBjuYOzj\n1+0s02WKG3jw50zRvrYDIato3QI67vtMx35wNYwu6Gyznpvvhw1jhFNGeYE4EUL8SvDz540xn3/B\nvz01xjyx378P4HTgMQ8BfDP4+T0Av/2W5/1eAEYI8Ysgi+2fMcb8R+EDhBALAP88qJx3Y9xZ8HFO\npmFstjDjlVU5UJjFOxri01ELeFg8ca7rFgCtSz+QysDz5NEERS4xnRcoTjJc5SWuCoHrIkJel/jE\n7Ax1XGJ29BYxqdIZlsVj7KoSRTMkQNmWY+E4zyTOM+lKa1c5yQBtdhIqbpzA6VCwuRmX7gQbd4V2\nxVWN5jpH/XTjwceKXpFUDvxOslMGM3kFUdW+jzAdOz0uA9ysxdWd4XHgU7bLedZ3BkC7lxQMjoYx\nUvSaXYozECymIbMtLJlZEBZpBaEkzHTsF8HuNdUqNwaLYCghFNK/B96/m70JSndYW8JCWO7co1PX\ni9EEmNo+h3Wsba7oMzV5jeY6IxWK4PHOmsBmPaEuohswtUAd7pf3AdDQ91Kotpnfxp9vFxb0+Xtj\nrznXn9IxMLEgVBX+uEMA5vMVnrOQdLHNKMO/5nPybdHEOTfGfP++/xRC/E0Arw/810+FPxhjjBDi\nw82D9EMB+CdBfZ4tqLz2fxpjvmiPSQH47wD8Z5xR3fZkdzOiaHjX2FRAvkaqZ5jFKxyndQt0eBhQ\nRwLnWeT6OAw8LDzKwLM+jxHnNZ7nIxS5xGxeoCozZFUNgMpwv35+CSSA1mNk5TNnBMZzRl1dL8+y\nkw6AQkOyq1xgu45RFBFWS40kqbGdlRhPyx4Icc8ICEpuaBx7yhmKrXZ0I2YV6usCVRlB5QVEItFc\n0+IQ6XiwhwAAIimpj6C5kV32F9tw4bltaHFf7b4TTNwYAhn3soH+nVtM88D/xxIMQuBprjNfdtTB\nQhYyy7ry/w44x44AEVKQuUnu1QJssIMnZ16bbXs6n3tuZafntu8cKU3unUUJwzv9vKL3lTeIDhKf\nQU69zTwfZwgc1LsMMkT2ReIHsCK5HXAO6eOhX5Z7vsiyFYONT2/xD34WiQKqmoC4jIOynM+4Udvz\nHm5ibOYzpJbNPc3mOoPJapjvQEE2Y8w/ve//hBBPhRD3jTFPhBD3ATwbeNgjAG8GP79hf3dTvAfg\nfzbGnNvX+QKA3wLgi/b/Pw/g/zPG/KkXeQ93F3y69d4gzOYCSTXD4fgBgMctyRkgcjdMIneWUk0D\nmizBs6tJcHQ2L7BeapRaQSc1dFJjOisdU+1AN04ZwdF5QTdo0mwxi+uWKRgHe/cAbativkcWicEi\nKbCrgdPXsp5z6q3R3TEHC51IFaIkgkKDKKESgkiUt0wYp262R2hywATgSh2u9xMOCyrdM3ADAIEZ\nTbtXGM5+pmPqn9hFQ6SVfy0AODuDqQokh29CT49bCtjupQbKbeHUPq7P2vM8IGqPSCUtfKzGfXTg\nLa2dRpmm3ktZ+kyHy1f2/XYt0snMTbnPwdGpmaG2L3gh1TGEPqDflQMAz+HKbwcwVQ2RkNCryC2R\nZDai9zWakIWGU4DYtbKeMFgep5fFsW6iFSbtAk/4XI5V+EEYZiq4wLt9M84qASKuMDU7LkCbd/hr\nyD6XmI0gkhIilZQR3ma09IJhDFoq+B9j/DyAfwXA5+zXvzrwmF8G8D1CiE+AQOeHAfz+W573FwH8\nmBBiDKAA8DsA/EkAEEL8hwAOAPxrL3qQdxd8pOyXSDiaioYDARyOHyCrV4M751m8cyrFoX3wSJJt\n9nRW4ujezmU8RycZTqY13p4ZK8dfOFXkcTQDshWSZIra2SBs3aBqV2ySlRc4mAmX1aInww8A76yG\nez9DIpZ8DrqsMpEqiLyiksx1juggQbSgf2I2grh3RItwl4kG+F5I6LeSTmFU4nrXosp99iMpIxBK\nD2u2KU1MNgQNfIAWj/BzvbymnW2+gjq4D6lYFHPYmtz1eXgWxmYa4vSEyjWahDDFmggHLIrJjqZG\nCOd42jJF40wnANku8ADwtuLZuq2ZFzTd9/W7UNW0cw8ByP3NuL+gzw6J1g/i2opUwWQV5OmEPst7\n9yBmp8i1QlG1FbJDOw0jBEQyBbCmz6t3XH0igo5okxWqXztWIRM7eG4rUbeXvriUNh27TYBIZi5j\nM0K4jBbJjD4XRbRzABAYk1gpl+/GKZ2XoW7Jd358DsDPCiF+BMC7AH4IAIQQD0CU6s8YYyohxI+C\nAEUC+HPGmF+zj/sXAPznoL7OXxdC/F/GmN9ljLkUQvwnIOAyAL5gjPnrQog3QOW+rwD4u5ao8NPG\nmD9700HeXfCJFF2YfGN0b8wAgPT0NQB9FejG1JjrpdNvoz0xRaIMqqTG8UmGooiwOMrx9tzg9ZHB\nG5MaDwM5/nE086Zn+Yo8VOzrzeLKyd6sy1BsMuqBCQNQ6JbKzqanI4l31yRM2v07VjhgNpK7KAb8\nU6KDlOi4AAHPQeqBx8rn8PlrnVfe8QeLQS842+hmQZMj0vxiIdgQhOyCIxA0o4Mwmy1weQ2x3tKg\n7HgBNb9vbRh8uM+2DoDn6TmZnlmdNnF64v/g9ASYv+ayAraxBkgpQScjyHTmS2gddlf3/bf6Jvz6\nYZnt1uHI2pWohLIbK8eiG3vRzvBcAwTipycQsC6tVQ0sZvS72Sny8RjL8hl0NGptwLqg7QAoX7d+\n7wC4ziFAfTYGoBboMFjvLn3JjcMODg8CUNjzYuAJsssKlbMBkSKGTFL/ufDgqR0nEDxyET53+PUj\nhjECxQsYQ3701zEXAH5w4PePAXwm+PkLAL4w8LifA/Bze577L4Ho1uHv3sMegYub4u6Cj4whZqe+\nobwn3ICgnToPB9lIdXqHWVxjWUQtQsCuhnM1PVwULfXrk7RywDOSc9LmWj31cj8ywciWiRbJGnld\nuwHVMAvqVgNCwDlJS2vZQOnBRbbDcRrj8SZ2fakw8lo4SX8AASiHJTdp50ASGFt2iu5NHfCIwzeB\nydHwvIbUdiEgmZ/G1E7UEggWIIBmVOxizQZmOp3ZBSgow4W7bAtAAPwcje3P0G5+RZP7h1cwxRZi\ndtoCOVd+yy68NcTlNZqzNZrrjG4UZye9gLj3SeRRg6JZI8vfx64qXYl0FhOTzhmqyRHkANi6eZfa\nS+OYzYVTHzCX1zQIvdpRia8rVxQQO7i/ZrIKMlGUrU3HLTJDeARePdr+4vSElKKLkuj+h2+imsyx\nLB7jm2sDHW1wOo6cOeHQQK4DIH4/YeYH0GBxYAgISaMNrcftK7d1AMj1EkNW3sGCDA9tRl1Yvb6y\n8b1DKVTLLkQoTUzTLWVALYNBHQOzQ3rOV/HS486CT2NqVEkKlUz3Wy2/QEgR4yTdoWgqCwqUkaRK\nIKsMspr6O0PAM45mbeApSqC4gqkKoM4xm9+HFDEeTNZYl1voyDjZHvZ/Cc3p5prcS3U0QhwtOnX5\nMySSQDaREqmkAVMSIyWFBCmUBYPVjaoDIlXODC4EHjM9Jg+bgT1QqCvHCzWrZY/kvH8hWgCTiur1\nDE4t2f2uUdzhAc1qBNFqFt8yr/FC/Ybj1yBOPolV/Ryb/ApFY6wauHLMR1IWp7krNrjrxqBrbMjs\n23esVd3ucQTRe69F2X4vXaWD7vs8PKBy1/FD+iyrC9RNhWWhMdc16qZCE9GmYSh6cjsvQxmgU2Jk\nAOKNkCuzsifQ5Ig2OfUSpVUT52FXGUjxUN9JeQkjpR1JgW0a2C5+O2AM+Co+etxZ8KlNhU11Sbvv\n6TFEOh309wHQXogD+Q5nkxwpnKSlK1/ldYSFNm648/URcGIVp0PgMcsnvrzCk9Q6BrAFykfeVkGR\nLfFIrbGrSgdCOiKKdOgN5AYjywKotm6Q83D6AFI8A7AEy66EVhA6ImUDUeW0M52dElUVlEkIu5gR\nE4klEmbU4wmNvHrnucRlfunsGqiEmFjQLCBFDil2pGY9oE4jqhwqa5dyhEwIoCPVvoKrgvox0zEw\nIZquHKeulCROT2gna/sYupuNcL8BoOcBFVLZ/A6nJxCjQ1cyk5GCRuUo96Fn0yyGO6dkvtYGkxax\nwIZj9yntXt8UJZXRgHaJCYCxDfMuUDmmmgWflgVFVXhdN6Df94xjypSMgY7GaFSNk3RjNzbznvhq\nGD1AVZqYevb7IQkckUwBVUBkwdwqs+sma4jNlo4xfI+lvxbF6QllPLNTmOkxKlNaSwRPz9bRCIis\nUGyg1Se6tiAM2Nq/FpMjXkY0zbeMcPBdEXcWfLJa4LpYoo4rFNGWdt/z+5QFDTw+ZPAYIZznB8dI\nxThJ6SLN6wZ5LZBKokKT8Gd5K/CYkmYvBOyCcH0G01RIZqfQ6TGVCqIVRmrndnI6mngdtuUj6lWF\n5YuyJJ2wOsf84IE9WnJIDYGHzcTQBIvF4ZvU65gGNyYfJ6yL5OzQU4Y7UTYZvrne4J3VqNej4pLh\nw8nWZWcjNfeq1oBnezWVJylwuIFU9EtwStMiakGIS0k4uAdxcB9bkWOZP8Zc36Oyp41e1nN4QHTk\n6ZgWuflrQDr1mw4RAxGgUbWM4GYxzRE5Jewqh7JlxzBcE9y+116WwgC02Q6rIQRNeaYfU1kq8Z9X\nWcJZUDQV9TfYe4nnYw4P2q9rg0tUp+MIOprcSFffF71ekwWeymriuEwpnUJUmqw06hyA9n3Z7uYj\nnJ2ymwmTzlyZrevQ2gMdY/p+VF3JJnustal6z/cqXk7cWfDZVQJfvkzxcJLjdFz6HsSULIRdFsQR\nDCx2da04FolCIgu3y5/rBssiGgae5bOWdlSoKmywpXkFluWvCmC8QDI5hlSHiJsUZZN50Ll6F+bi\nmafiDpRsxJv0u/nBA1vzvoKW45aLZWvht+9ZHL4JMw6k96uCbv6iBA4WbmalO/me1Wu8syrw5csU\nX7nq1+EWiUEiJRKpoKMVYPXuEiZtMNuLral1DDOauGaykIllLGm4NT28mpWm3tFoQsc9XjjgOc+e\n4evLBL9+/gynI+/KaoZ6f6cn9H4P7gUT/lnvYexMmkgDLceIo9SbztnsU9leRO/aGcq0mao9HVMv\nhiMwUiOVgrI98+Oes4Yp7UxVVQAoPF17vYW5XBOLbGGzWQagjoo4L9jhAn6TGvi+cJs3rhoEmm9d\nuR3HmLPaf2afzBAAMTlGJSNrAkgeVeHxsWJHC3R4kzEAPO6c2aAy8WropT9wGCNaPlx3Pe4w+AB/\n71JiXUqsyhKfmJH9QC8LsmUDk68gMHMe9kVDpmONqSGFp+7qqAqUDxrMNZzwp45G1GAt2uWS1pBb\nl1lTlAA29sZNoCZHgO0jhOKf3JzeG+stMNtCVDktIJE3MfPMowB8ePBRJUA6a2ucOZfJ9qJAz7HD\nprrEV68FvnSZ4CtXAv/vOxOac9INdFI7IsbTXYQ4UtCRwYOJnb+RAfOP1aM754VVEdz8BkDH0/Ww\n0V6qRszvY9ussCzO8Gij8bUlZ1vPcKgf0I0wBAJKAyl6E/7dIB8lOw/GvbO6M3hZeakXvl649GZ4\nkLQbo4nTaetll1ab0HQ2GyarqREf9n2YhMGSMVlN5BEdW2p27DcTQUgRoxYfoewUEh3s+ePNG4Nw\n0dgBZ5W0pXBsoiv2qF4bIVyZjYGHn9ORPey9EjLqHPB0Pm8TqGXw65XVNVYvp+r2KjpxZ8GnaQTe\n3wostMFxKrAqgWMZ1K35gg91xqoLYr4BSJIZdHrsLvzIKeiWQOOvVla5nsU77KIlZskRPUdVWIkZ\nUg529ftQKoXlWtIpMW4mR8hN5hk8oTCppQNz9DSr7MxGJSNkJfWOgBI62qGUOYpo26rZ1zWVOlxG\nqEbUk6lzYEtDj5hQRgFZUJahEgdkszjH6UjiqohwdX+LRBmMLAU8VehRzlM5dZRzgBZ701QkA1OU\n7RkhnpexTCkAbWUBpy3m3TMr0A57ru/hEzOiRH9iVmIeP/DAy4t7IL9/o91DEGzBsSwinKR0jaRy\nhmR+n44zyJrZMVVHY5roV7rvtNktIw6Zw02K1iwMkLcHfq0qg9Cx00dzxnf8HDwkO2kz4zhqUzpX\n1UbUqAUPmO4n50ihABkBMnVSRQw6RXXhQIKZju5v0ClFuv/sfwYhVZ16anZg1Xg2W0tFO7w2aj0I\n9E7B27IEmZ25Kl9lKx9H3FnwMaZdCkqkcRcrTbmv+rtR3jEBMNsrVwqrJF38fEPVUfvCXhYSs7iG\njNaQIsZ4ckxAwRmQtqWPONCn0jHtei3rppIRimaFrF7jIqMboiVMqscQB1fDb9YSCHKtnG5cqEmX\nyB2A3V5X1jhN4SY6AVe+EQVN0BtQqYTmN4g1N9dbHKc13q4jXOXGWkD4GaRuH4wp52GI0aHPaoI5\noUpG2NXPMU2PIbKVb6YHi2bPttlGCEBzfc/L6QC062eDshcEnTDYvZZkl1Y4TivUcgqpY9QmR12t\nW/0D2qWP3PG6DUgYkaIBVj4PNtz7Da4XHhIF4HfvVgOuJ37K54np46yiHfQ1uTTGjrPMZmMQ+iDR\nmJo2avZ+KhoDKLjMhAZOg6HVfbYLfNz2/8MNk47G7hgdhb8rVYTApgPw5VlYodfAT4uPd1l88Gth\nKMwrwkEr7iz41FYGh5vgOhK2BKXaCr1hs7Pr73G0gSm2UKNDqMkRKqFa9fy8jtxg6HkWW3bXGlLF\ntCN25Ia115oCBrOdrLrGrlrh8Vbi8Sa1rDEvTDo9eLBfoFNpbEWOTfnM0ZyLhueGIrez60r5MBiN\n1CV0NPKlqfWW5k+K0pZrAGNnN6RK7M5TYBbXmMYR3p7J1uBrIg1O0gonaYNUzjGSc2Ie7S79ZLoN\nN2OhtGsqb8oLrEtqLM/T19oAhAHgkRoImv0MQI4GzQud0mAm4AeJrnstQHTrvM5xku5aFN8wIiEt\n621PWEVuoxK6JhO4GRqhNPWobKZslHQZT8tWoqoJgFj8FB3vIbYcDwkdtn/nSllN5SSmahDRZZAq\nHoTz0mm8uy/gB5opSsg4RjSg8fYiAAS0QYhALMh2BqoXAFwp0Gj7fwq0B2AppHQKJFPU9XOsSrSG\nu1/Fy4s7DT5k7ERzMnxDsbZXK+vZ9GXWARAzrShhDmguR83vQ0djZNEaADHeru1EMwl4KujIyslL\nIOHJ/UhRFsS1/WDGYF1dIKvXuMorPNpoPNqQO+pVLnBVkDDpw8kVXhvVSLVftNtN7Ryb6tIBD9lo\nR25BCNW4AS/Lw9WbWZxhonZQSIg5dXlNg48AARELaiYzV3rTcoS53mJVSrwBP4/EVOREGozUHDoa\ne4JHZstTIbvN6r5VqLCrLrApr3CeRTjPEjycUHlrkhzShRwKkXYovd0+jesFBAuc6yHdJGjavY6a\nyp3TZUEmgnFkcLYj88BVaVqCtP71BZqIyllK9unLPCxZyQi76sKztZRtzte25xavfeaT3HA7s0pD\nAEBO8ijMDrkvUxNduTYlViWQ1xLevZdKtuF7ab2UBRvKBGUry6a/D8/DzvZM7dzNiy5JnT4Ql/YG\ngadTjuXvWZYJFXx/UNF5ZQt7vldeRjRGvMp8griz4KN1g7fnpLF2kpZI5cIzvtww437lg1YE4oVF\ns7W7PVqI3rc2MqmUVg3b4CQlckMtpxilcy8dwxpgk2PkUYOsfIZdtcJ5FuHRJsF7G4l3VgLvXUsU\nuURWFwCUBZEVFslu7yF2gWdZkGI2gw4rYtOxolUmo4X1DDr9dZCayjSiqr0fkt05s2KAFLGbhH84\n2VrQNS06so6oBxAJCa2OCWxtyctRty3o1CbDprrEutziPFM42ymUDffSVoijFCqZuX4cy7kgJ0AR\ngGOaAX2ZpPBzBCzbiqfyw9mbPUFATlkufU8kk7IRyGtaiHkQ2KmiW+WJrF7RRiSdOvAUyQwmnWFX\nL5GVa1dKiqPElXaVpGvOWIFQsLmdO8E2kwgEdFu9RP7cQrHTDpuzaHbYVSVWJS8TvAi3gZTt4/35\n8GBMslA0csDK7OvSq6kXjYE2lc1+5j4L/VYEkyGYOWkVH4RMUL3E+Z5XMRzfVvARQvy7AP4EgHuB\nTPdPAvgRkJn1v22M+UX7+98K4M+DEuQvAPh3rFdFAuAvAvitAC4A/D5jzDu3vbZSDV4fGRynPBA4\npl1XZctsXAPfRwyA3T1OvOT81vZkqDQW4911hH+wcqIvyGplyzMVZvEOs3iHTK5pyv/ggdu9raoL\nZCVlO+xIyrps711LPD9PA8pmAdIFTPBwUga70+EFYR/wZBVJAnUVsFPJfwtoeYajo7eAt5lwMHYU\n5t7gbQBAGABx1lbL6jWyeo1JfIjRvU/RsfK8RnXmVKjpXGhnrhdHxhngSRG3JGrCMKwawOZiydRr\nioULXXcq3wJQa7YoKEdRE75E0Rgn/sqzTF3ZI874+HtSMfe3XlavUAiJ0fwefaLNDlnxGEW9cwv7\nSFEzvVWeYiJCHLDehgZSuxlO6CFktfZYxqi2ygBFmIVAowAAIABJREFUs8NVXmFVkmJ7uHEA+tlO\n56w7wd2wlEslbg9gnH2PVIlUTIeeyD9jtwx3i1YeODu8KdTQZw433/MqPt74toGPEOJNkC3rN4Lf\n/SMgae/vA/AAwN8UQnyvMaYG8F8A+NcB/O8g8PndAH4BBFSXxphPCSF+GMAfB/D7bnv9RAKnI8p6\nRspqjGVtqjI1Jm1tfAiAprY3k8wci+zptsHZjoDnnZXA02dUUsmr3FppS5SNwDSWToaFQSiOEpRN\nHuzwE6xLifd3pEr9+ELj4jzFeqk76TsBED1vg7muCSyicHcq3E60bPxCyVYMlwVcGTJcPPn7vI5Q\n1DtcizMc3PskjH7SUnLeFwxAYQ9gKDbVJbJ67aRQun2C80y3FjJe0KXoWGB3CSIVWxoUpNhQFRCT\no73H22PNBd9zE56DS26c9bCiBQm8Rq1SG6tRhEO9DGIANeQ31SVqU2Fdbt3zcuioQi0oQ6hN7H1v\nGFCmY5f9AJ2y2njhs0k3QxPQnptVi9VW1DusSrTKs4nk8+5nmcIIswSN/Qu3HzSOQPvLTtwgwrqv\nD8T/H258wscN2rW7XiDFEGkFQC9j/yhhXpXdWvHtzHz+JIAfQ9tr4rMga9YcwD8QQnwVwKeFEO8A\nmBtjfgkAhBB/EcDvAYHPZwH8Ufv3/z2AnxZCCGNuzt/jCC7riaO0I2zp69/kKWMjACBH/9VjmHSG\nTfkMF9muVR5750mKd79Gw3tFvgawRVYBWR1hoSPbH1DWqC7HXG+xLCTOs6Rlx32Vow08qwhxXmGd\nkFHcY3qF1vNO46a1494LPDWpXOcVWfwmqrbadO0dfNFQ9iOjHbYqxej4bVSmBOykOkfXaKw2JVI5\n9QttBHQ9dQBYBl5jFzw6/0NeRhzcQ3IGeFXm548YcIrSWzBPS2BSEC0daJmj+QO2u+VwRzxQbmNf\nIDpGyiQ5i2RLi/Dc9XX3UkcPzmq/4bkuljjPlHv/fA74c1xEJWJ0VB5y+zUuiLnGM1FW4ZlJK6yu\nwOc+pNK731lg7QIPA6GOCCy6mRuA1qwbIiCRFYpGIJECZdMg6/RNsho9gPUnuA9AHF0A6gJPyJoD\n0CqfiuC+5hKs2AtALwdwvh0hhDgC8JcBvA3gHQA/ZIy5HHjc7wbZXUuQ1cLn7O//Y5AVdgHgawD+\noDHmSghxDFpjfxuAP2+M+dHguTSAnwbwA6CT91PGmP/hpuP8toCPEOKzAB4ZY35VtHfNDwH8UvDz\ne/Z3pf2++3v+m28CgPWouAZwDOB84HX/MIA/DACnbxzjE7MSk3hBNN8w6wkXHZ4L4LAABB1T1jM5\nxrZe4rpY4tEmwXnmmV08VAnAfeVFPZVc9+YdvrQ3vMBFpnBVAO/vBJ5syQobAGZzupHW0Ci0wjQp\noJMa4yndeAwoaR255+YIgYd36Jz17Dob0G7ZyC8+BruqhBRrlE3m5FZCefxueCqtp+xGpoS0njos\nNHqeKdew54iDzK1bRkxkAx0J6vdA0VDqxbNhd0rAyhZRkLtl3pcF2rPg3RRzXaNohPVXipDVBgtN\nrL57IxKSncZjpHLammuh80a3H/dWHm00LjLpPruQFchyPd0QMiHpHM5+WHmiQ9En8kCFLgsNQCvD\n5NCRgY5ITT2vIweg03i8V+EgjiwwNsAsrgDUFsDIONE/jl63J7Kbrdr33gt8Hlyq7kVg6+3GIywQ\niWQGoezrZGuveWfB1wDQBw8sK3KJafySgKgxQPEt6Wn9BIAvGmM+J4T4Cfvzj4cPEEJIAH8awD8D\nWk9/WQjx88aYLwH4GwB+0q6nfxzAT9q/zwD8+wD+UfsvjJ8C8MwY871CiAjADeUFio8NfG7xGP/3\nQCW3b2kYYz4PsnrFb/4tb5lJvMBUHfdT+c5u1+lTccmFhQcjRX2AuuNhAuA3LgxSVUAntOF448Cr\nWx+npILAEZbHAIlpXCOrJRbaIKsEAFIF0GWE6azEel6gyCWOTjJMRjXuj4kcsNA0PzPXjV2c24t3\naByX1cSY8+U2QMVNq+fDABVaLXCtP9T5ammdhe9EKKi6AaoVVDKFlHObNcRuMFcaBRnH0BFZU6xK\n2TluuvF5hiY8Z1qOvGrE8hnM03NvMwC0LJiFtVomLTP6bzKgCwAo7BG8gCIzC4s+GNfQkcE0pp4e\nW1ocpyNM1OnexTrMEnUknDYgf3ZzXeNAzwdBp2h2kFJBMWOSS2osJeSAZ9cCnnDOZm/mEYSODGYx\nqZ7raOJ+P6Tz5j7/iK6JRJaYxfRZLIuox3hcJMoDT2hbXmvn/QOpHcC07tOA7SaMcRuccFTC2aWs\n7KafBVmLbb/fE2bLB1SmTPUMhdrhJP2u6/98FpSBAMBfAPB30AEfAJ8G8FVjzNcBQAjxM/bvvmSM\n+Z+Cx/0SgH8JAIwxGwD/ixDiUwOv+YcA/Eb7uAYDm/9ufGzgs89jXAjxjwH4BADOet4Aud99Gvt9\nxR/Z77u/R/A37wkhFMjKtSPM1g8lFM2XDAyh7Q3u/8R+B2WEQGNqV54I4+2pQSrpwg0tFU5Sv5MK\nmUJ+BypwoKlUsUjInXQkDZDUzicoUQaHGnh9TKBzoBvX7wnr1JwxrEqJdekB5SoXPU+fbnB9vut2\nOrSYdgGIgYdZfMLOpqhkaq2UlZtKr02JOEqgZY5FUgIQLSCTQrnsgM9RIg3iKKGsZ3MBPD2n2aPA\n1wbw/i+RNcBzjqcMQFXR74fcADw8iNwIIhzwDM9JWiGRBfI6wknawG1s1hdU8rEMtrDc2BUoJeNA\nn2FM1CGSJoJZXTgGZPucV4AAmaNZ+SVT5y8EPF36cxjhtaMjYf2I1F5h0a7mW9FYJWkF5HVldQ7R\nVvyWI3p/IvXAw0PXlfX+6QAQvenh2R02qKP/y/1AeLb2pVfAq8aH0RXMLUoYPUaSvIVUTjHXvYrV\ntyJOhBC/Evz8ebt5fpE4NcY8sd+/D2DIj9VVjGy8B+C3DzzuD4FKeHtDCGEdJPEfCCF+AFSq+1Fj\nzNOb/u5bXnYzxvw/AF7jn20/5/uNMedCiJ8H8N9aq9YHAL4HwP9hjKmFEEshxD8BIhz8yyCbV8D7\nlf9vIIT+W7f1e+h1ZXvA8LbHMx2TlXYBy4qh+v++HSTbKXRLMLxTCxcHHVVIZO3YUwttG9hBmX8B\nIKsMFgmBTlji4fkZIGQj8WLdgEq79JyXA+vrIumfi6wmNO8G3+jdxZQXIQc81jfG0ag7IER/R1N+\nOqrcc9Br+MszNTOkkmSFinoHGcXQ0ZjkeK7PYC6vUX3jugM8Prtk87EI1qYAoD7QaGLLcMFuO4yO\nBfTQOQAAKWMsIjp2BxoX78Bcn7khTxzcgzq4j0qyc2yfykvAdYiZPIJZPoFZPiNju8Nn0PPXIOb3\nkVth06LZOqkblwXVhQMevja7JI68li6LbGfdAaEgEk549jbQ4c+Kv9f2VqhN5cpvIejEUUL6iXUD\nVAHwcL9OkfyNy0wB348bch5W9H/u82ENwiEL8k3wBkKr9zBbXpQQ0zMgmWE0maOMX3zu66YQBojz\n+vYHUpwbY75/73PdXFlyYRnBH6rWJ4T4KRD/77+55aEKlBD8r8aYPyKE+CMgFvMfuO2PvmPCGPNr\nQoifBfAl0Jv+tyzTDQD+TXiq9S/YfwDwXwH4ry054TmILXdrCIiWdfHgIBpHjwHlf8+lk5O0war0\n7Cb/tQlA54iyrSoHDGDUvA1CooKMSjwYV9CRwXlmkMgI6a4PbKn02Q7PD3WBJ5ys11GDODIu6+E+\nEot8JspgkQCpfY5UwpXxGDi5BMQLTVhCA+DKHi3g2fHdviaHSestA+UXi7BkwoDTZSyFttcs6JqI\nFGb3iKymL9eon7Z3tKG5mkkkmusMIpXkj8P9oLjwn6nsEAxuyICGy07K2SiYjbXMeH5NSskAEF/B\nKA1lAYSZbu59R1YPrqhgLr9Gr28dVVnKCDKBtqZ9jamJMGD11moRQ0rlgIfp4G3giVxvEfCsQc6W\nZzEssI+cRlo3woxt6PNiQOQeUNJsW2QLdw8wSPC55tIX4O85/kxuqk6EfSIWc20qX0YLQab3t7UX\n+OUS7TazJdsV1OTI97K+g2JfZQkAhBBPhRD3jTFPhBD3ATwbeNi+KhM/x78K4J8D8IMvsJm/AKWT\n/6P9+a+AWMg3xrcdfIwxb3d+/mMA/tjA434F/SYXjDEZgN/7wV+48X7zt9X3bUlGoD2LkEcNNhWl\n5FqO8KmDEruqIGXjiG9K3Qad9YW74cTkGDIhyi1JrdDFLyOF0zFwkhY4zyJMY3qu0EI7JBQQI0oE\nZTs+Qr/4nmca55nE+zsqtxW5dCSIRBncH5PY58KWR6YxgeaDSYKJOvUDuNu1G7xU1iYAcuZmfBzw\n8E6Wb/hQWyzUDzMlYNr9D4BZS4HzZFM5QU6AFmmzfOIUvZur3IFNdGCZTIkHCHk6QbRIIA6n5EN0\ndOCHY5Ue9iTqkBF4FoY+1xiNqXsgxMdMZbYtMN1CrLctWj5RtvsL4Tx+jcp0q061godC7TGFGfNN\n9gbhOe0CTwg+HJyZsM3GPhJJv7fXVhVg5XeOkSpbLL8e8ABtNe1gFqlLie5FhzoOldDAMgCMCmBK\nwG/KAeBxzyGBqvYDujw8vef9ftgQxnyQzOejBFeDPme//tWBx/wygO8RQnwCBDo/DOD3A44F92MA\nfocx5tZJe5td/TVQn+lvAfhBUAJxY3zbwefbFqHSLQJdMKAnw8G0TMDv+opmh6xqEw1SOcVExf0d\nYbaCWT+mRme2drs701RQ6k1AkkVDibx9oUdwIEQSJ1HgBtruw3Rr+GEZMK8FHm0UvnJFwFNZRhn3\nju6PqT/FZIVZXON0HGEev45ku4W5fkSls3BnWpQwdoaEF2/FSg2d90m09M7pv8EXiSMEmzCkiKms\nVWyB59fANkNznaNY03vq5onqrQNE96bkZnp44KwDxOT4VmZVSOVlth5HyPYLjw3G0DkZHZL0klUT\nEKNDIJn23nccpeTzdP2YBGvDmI5tiXDsVCSKZuU8Zlgpga85zjrC56esR7aAp2xEh03YuJLYTezF\nMFqq0Z1eDIvM6miMxtQOeFTdeK8moK3WzcKmHZWLFpuNde6k38C4z6em8zqScygGIKUBfQmx3rYV\nS3hTFJrz2QFdMRnTZslmXGHW/V0SnwPws0KIHwHwLoAfAgAhxAMQpfozlsn2owB+EVSP/3PGmF+z\nf//TICXBv2H78r9kjPk37HO8A2AOQAshfg+A32kZcj8OqkD9KQBnAP7gbQd5d8EH5nYNLws84VxH\nuOvkkIJYO6puWvbVAEgLjRfi0DgOtrEZKaiD+6ijuDUrQbvPxC0CI5W1mu4MRCHo8PcMTCG1+p2V\nBx7OekLgYTLEXNc4SV/D2CQwT7+G5p13+w6PHNMxxOQaODygXb4e+4ynW/IAaFGRiVuA94ELAFeS\n4t19uNCP5Bzm+jFlPZstmuuc/lUCRSXbnnJvHSB664RA5/DAD1xOjm4cju0OxQ6BpO939HtUsO6c\ncOrTlPlw1sPvL5UzAtLn7wJnNLHFyso0vxO3lJYrVMjqNc4zgtjTcdkrfXUzRq9u4YHnuohwktox\ngMjYebdksMzm3+8ty0XYjwkIAIPAw/cEZ58cDDx2DitUzRgKVt7u+vnoaNwW741jZy1hyrLvm8Xn\nHfAq3y/6vl8whAFk9fHPDxljLkDZR/f3jwF8Jvj5C6CB/e7jhths/H9v7/n9uwD+qQ9ynHcXfLpl\nTB5Gg9X26uhc8cVd1Dsrmd/gOB154Mkzb/k8MOjYmjuxzU0D66+iNJL5fdRRiRjtXSzX0atohLhJ\noaOsx/wKhwHDIVKe5+ky29jQLcx4eObiUL8BtVnCPPv7MF/7BqqvPCVzskAxWaTWiO4ggxlvqR8x\n3VJGEZxLFx1rYvJJ2fZcJ1t/YuXsVyWVhg703PYgRpRJFlvPUsoqmKxCtlFQcQOT1xCJ9MDz5n0/\ncBlYMgBwi21rwQ42Gtw7YdO9MLqgM5QtiMkxYGVs+HriaF03Z489VZwVqHlYlL2MUgJtUsCw/RRZ\n4DitEMPbB0gr7loiR9EYK5HTBp6s9ixGzno+qEtpK+vp9k0tAYAzMZauckQARwJgKwP6HPYBz5Dc\nTfj58D2xLCRO0is0qgYkyJlYaVIqUVckORQq03eDS5wt8Pmuy3y+K+Lugk83ulpeLVn5DLtq5Upf\nYVADPgbNX+0JK/jYgruq9h4rVQFsnkNP5vTSzgAr981U2ScdsKAliTdGrQHSq4IWFlJUCJhsts+z\nSDzwPJyUOEkb6Gjib7S4rZTsvqb8VfrFkU3vbvLA4b5KMgX3oroLXSSkn7h3TXJyhC2aXaAVB1qs\n7OtHizWigwTpVYFIGYgkRvwbjiDefA3i9AQ4fhi8Nl30I+nPNdDWeatRtRY2YoxVtiyqHBDdlA3R\nD7ZRHqgpUC/EO9G6BTvs64Q/2wxIjA5RyQib4tKqIPiNR/c4+Nhr47PkcGMCsMJAhLxuWs/xQTXN\npIipFCatIrS7Xm2PjAc3hWg5mjq6c9ALHAKem45Hitjp0DHwsD2IF+8tvXgvv3YcA2w5z+c6/BrH\nrhxoNhfeT+lVvNS4u+AjRF9CvyMrXzcVyibDdbHs9VQWibKU6eAUsh+Ma5YWxKbStEMnt1HvWOrS\n+6aCqXNajKT2oAO4r1LNAFhTr6ZyN1ooEupmeAqf5aTB4fH3qTQtJttc19ByTDJDvAin1JiXp2FT\n2NfF2cK51bh3j1PemI3fx3jRknnR0diV3YZ2ljzAydTfrqCmqBKY44cQowlEHEMnCtGCFhT1qROI\nh6fOvXVISkflvFnobxqSZOqMRX35L2T0UVYxFKxk4DYQnd6Eew2RAlng2npgB2DtuUVMChpchjLT\nYyyLx7jKK+Q1nQsvnxS51xAd7yKOrqwSQF/XZYRESiQ5KVd8mBKTs2KPYkAr1CbvDV5LoaCYQNBU\nLQJF+M+VufdoAPJz0dc4ACgPwB6AfJap5QjKZqFmj7+Si3DmCwRALyNEY6C/NYSD74q4u+ATREt0\n0O7auCexq1Yd10+io6Zy3t412wUR4AxnAIRYFy7uNDsBb1w3IOcfLlu1qWwpReIik70SWzagh8ZZ\nT+jTE1KoRyq29f6RPweRAu7dc15GTiGZj5uznfGi93ouIuV8UsTk2AEPANeM7oYUMYpmCx2NUGBn\n50SE+78whEyA2SnMJ8YQ0zHU+Akd55v3gYN7Tvi0G2ZpadD8XvlY7c8CHoBCx84QgIC2RA1AvbZZ\nvHOSTYNlOC5TZe3FWSQzmOPXfObAfka2XLeuLnCR7VzmwmoBQ+elNhVlbE0VlGSjQNSTgqWYloUB\nECOR21vUqim6FgpD1P7ucemoglQjep9V4TOe0NLB9gL3RY/WbZUN6FpqHzcD0FwHfUU58ooQQN9K\n22Wh+/ter+LlxSvw6UbQk2DjMo5ENlZmZNRuNnf6R750Fwym8iKny2H6MQIfGo6wD2VfozZUXrjI\nZCvbGQKeUOByob2fCishzGIvdkme9zFlXfY8oKmoUc8RNsIZoG45l8xaqgbKhvt22a1zGw08VrZ3\npgIzmPtvUyamyDKcs6yiWRE7TqQ0A3L9hPorl9d9fxv73lgFIUmmQGQ9moLyD/eiGAhCBiIRNi7R\n6Lo1ExWCjtMbC60NYG3DA8057hEV1kSvKzHUNagD0DLOC+0eOLoABFBWRPI3alDaCGiXm0MX3Lbi\nM8+b8XGVbuyABmKD7CcAfSah8H3XZdv1QCeoDGirGlFEOySycsSKRJqAkEMARIPcYyTJlLYzrP3m\nQMdvQNzvbsjAPmh8wCHTf+jjDoOPGO5RSI2iWaExtd3J0c3F4o48/9BaVPLAA6j7KkoDsghKe4WT\n57kxwqZ9VcA8fxfjg/uAOsTp+BJFU2Iad5WqfYaTyMZRaeea5VK83hurLN/YTI2UJxEMRTHAVrP9\niW4Z5YMGAw8LkLrSTgiQ4WsqDdybuZ/DqE0JiLQlHgnAD38C/Sx0z1zhTaZ8ZKeg7EK9RB1XRCqA\n8tcIPz9gy5J2c2FdW0VATMjKZz1yyU3BJcGu6jYTC0J3Wr4+OINi4VCOIbHREPj4990eaF4zGHsQ\nm+sSUuSQYgep5qQWYj8j7vMQ8OxQNjlJF4myBUIfpulPx9Y4ABopyzKUBFrCGIiALOHu0Y8BeF5F\nP+4u+ERysCSTmwxlQ30AHY3wYEIXINNQW6AT9mZuCl4cnWNiWxrE2UUDfvCOd198A0QK5voJxskM\nevIAen7ZYoTxrpjBJZRJGYrQj4VKeQQkWo0gYLMJ2GPpgsxuA6zPBp6UMgijx/b90nviUspNCwjv\nbruWDADcpH3oNDsYXLKyi4lSmhY7zkztjtcARLsNszjAZyJWh41Lr0zh5aZ21xspzEDdqYiEL2WG\niunK2nRwSZU/+06mk9Vr7Ko+aIfMxrMd377h57NDVq+dJ9QQaHXlmCj7nbiNVfieu6XFfRG+TheQ\n6FztcGzdwkeWgcafSW4yFNZUsG4qN7sUBlPupYhbMkeOXBGUGPl4ullh+2/6z9VSPQd86+wVCH0s\ncWfBx6BxGllhdGdPGHR0NAqG6V4QdICePYNQ2u+qu9PZsJ4i+ar3NE7ufXcJma9wcPSWm7ifa8/M\nAtCiBXc12Pgrs7g4ysZnEw6AKqvmHYLP9RXMN58A26xHQHB9odkh0YsTPxdFCg599Wt/fMM3OO9+\n3fkPz+tQdDJGJ50v/WLH1FtXHh0YKt5ZR082V2Mxzn3Aw0Gg3ziH1f0+UWhN8BshyDbbAsdQhJkH\nZzO+H7l1mQ8DDx9neGzHaY2TlFSqpRi1r+9sBVRbJOkUVTwnCZ+ohu7MtHWjNpVTPg9BOoy8jnCR\n7bBI6FodJdQT4/O8q1YByO0GASgMaQe/i3pJIxBBiXGf/QYfKxvy0fuJe5p9PRDCDSzODxDCGMTF\nKyDjuLPg05i6ZeTFQ4y8gLvBOCgCnMJrULV2rUC/3NZdGLumZN3hVZM5uZVROt8PQO7gK5jzr9EC\npwI75FADq+RSApV7fB9h7l63OzDbA6AUEFlwE56dwTx6ivqbV6ifbiBSheggcV8BwIxTiKNLWtzB\nWdXuA8+QAAPzTkMlktuizoEcLao1pIaY3+8ZkXHsqovezv824GlnPQZSWImZzdLLKYX2DQHwVKiw\nqwh4rvIKSXvd7sU+K4RZXCGRZQt4uCS7z19I1Q1JJu0e+WHo0QRyvMBscoxKRS0SQPiZ8LkL56Lo\n/WfQ0cr1Sz1oRrjKK8xir+LA2U6oPUflv2EACoVn/et7SrmfXfIOsvS9B2HWvAvfk5DaU+Nt3F7o\nfBUfJe4w+DROosTrsMVgXSsHPPm6xz4LiQAAyJisa9M7FAHoFPWyla2EO38HQFgBRUBX7sjbAKAy\nV7d8NJAVGAuALIMjFUn6SEk3Mpda9sajxzBnz1F99Rz10y3q6wLyQMNkFaJF4r4KbYUa7TEQY5AU\nuzkbGNIkG8qGPjDt96ZsVBbUb+PF3gpzAn2R0CFBTo5wV9013QNIc2+ua2/3kK+IWccMqzrYLATH\nwsBDLK26Z2dQNDsk0mcUvMiysCxHXouWyGwijdPpo77l3KsqLM9oWHd16W0HihLQW2C6gSm2UKND\nKKsG4TcAGUx+BiETqMlRS528NhVqUULLkXPm5WMmUKE+DHAFGSlHqabMxCCRdet9hxpzQ8O8LN8z\ni1fI69qRPtgPiZ5XuGuP57S6Gw7HXJXtTeILVzheIETzLdN2+66IOww+AWW0IVYOopsXPGerMPB7\nAP0MiPs4DDjNDmV5PahQAHBZhP7UAVBVgNxs94STsLGLxw3DnuEAbTeo9DIO/FWsFl1VUMZz9hz1\nN6/QXOWorwtUZYRw7XXDp/eOyIzr4D62zQqX+SW+vkxcUzuRu1Yvagj4h8KJRtphRpFhf/bTef9C\nJo79tqufu912+NqAd+JkJQVEgGx20FGFWdz0nD9pzqqdYcx1Y3soY9q4FFuiq+vSZcBGj92GRSmN\nmZpimhxjopauRNntLxohsFNLHGgaqnw42VlqN+zCqt3xsxJH6NsTuqGSavY3be9uj8QRS0EdFI6B\nabgHaRUKjI4hHmiIjv4ag3co60OOvZF1RzWYxGSoJFVfNUIK5SsOu7XL3ociSWZIknuYqENM4iVO\nx2uQH5Ru3ctDKuRDAORnpeAt1V8iAL0KH3cWfGrTbkoWjcHoZlNHH0OLe5h5BIOFRbPDpnjsauFc\nErnIJr2nmMZUbugBENDuuwxprVnNOLHe+sHPoeO1A7TdeQonW5M/8cKgmy1JAzHwWA21qozQVIKy\nnYPESu5IiDdfA956G+LwTaywxmV2iS9fpvjqUlqLhthRvf2AJNNzd3aXXjm/o6FgEMI0cUZtLlxj\nOGgiywTVZI5NddaahC8aiQfjanA2hVXG+byQM2cFbdevA0vJPU4rXGQ7B0JxRAArBRENTP7YL/CO\n0t0BoRyOdDJWGlAHtrS4dZRsAwCRwjiZAZN7qFBhojyJw4GUZQFW8RyFJCO5kSJSykjNiHm3WRLw\nPLVGk0MaZ8E1hbMz4NAuvnw9bLbU8wNIM+3+b6LPBF6AdVeVTtZnXUoksnL9sGk8dnNQLVHSzAJN\nVfiND2si7jlWY6WHpB5jNjnGNDneOys0pCW4F4B4QLgu9m7mXsVHizsMPqJV4gCsiOSLApCNkK0U\ngg6BzRKb8gqPt7Q4rcsRnu4ivL8TeLIFRgH1NVXAQksACfI6xwOLHS0A4giAx/AQKHuQ6BgoS4jJ\nloQ0B3oMXCfnBT4RqVdUtotl+Lwh8DR5g6Zq7yJFqiBODyHefgvi5JNY1c/x/vYKf/9qhF99LvHV\nC4nJqMahBhZJhFRGrbmjkPL7cEILBEvpkNhqVz6G+lWj6XEbgDq9NZHMkGvllAFoF66xLOhD1pEh\ni+TIExvoNfslwBjtciCDVBwtsajXuMoLnGcLY/KZAAAINUlEQVSxK7mJKneq22azBcoYogiEK3XZ\n2lGbcIGrCj/cy5uKyZgM6UZPIccLAiLAgxQv2AD9/+QYxpIGnNKzBR7z3hOYb5LFizicWoFYy34c\nAiM2ZFsT6NRPN2iu6ZzHShJ43vskICNLHihduW1dkuTTNKbMiAa0p6QwUS09+7PYeqAuSn/9VTXM\naufknbwygnTnUkxIaskcXOH/b+9eQ+Q66ziOf3+7m53NZnNPiCGptikqtCioNQgWaW1tYyxWRdEX\nvhBfiFa8oCDRvPGlbV9YvEAqJVix2mq0KJWaWhUEsS1ak1ib1ia9mUvNBbKby2Z3s/v3xfPM7JnN\nbJK99Exm5veBQ848M3P2+ecw859znnP+D739VCpTxtYgFTotzHUENJwSo/q5qEtA88T3+dTr2OQz\nEcUq0NUJtdIXW+3jV5w5MSueepuaeKpJZ3Q8Xe56/OwwB0/3cvB0DydG4bUzqcDnkcP9nBzqTZWl\nK+P0Vsbp7Z1g+bJRzo535/P5UxJQdTbQ6nhTITnEyeHaDJ7q66GrOhsjnJeAQqqVnq/efBlDh6E6\nY2aj7Y6cqxXvrE7HcG40pcSupRW61i5FG96IVl/N4LmjHBk+yZ7j/ew6Lp470Mcr+5eyYvUwi5eM\nMrB4rJaIUsLtqqu8AKksyso+zitfVL0kvHYxQIwx0CgB5ekSzmiEoZFDvHRyAUOjFU6NdZ93STSM\nsSZ/7zYs8zP1BseRU7Uv/J7KYgb6VubEdYpK95nJU26j+YbSsSk/DKqFLRt9yVcnNSt88aZJzc5B\npSdNCbGoHwZOEMUirsWitaNjsCKN12jhcvrz6capiefcK0MAdJ0YoWvZKVi8cHL7hcrrtW0Wks7E\n4Agjx3J9vjWDdC8/lI7iVqwjzeqrPG17F4OjKfmsX5SSfW/3wlSV/MTLdQmnmNyqU6FPDJ6tm5lW\nfT3nFbhVX+57f19t3qTIU1jUboSujnVWBqBrIeOxoHYUNBH1yaD6Y6eagKC+7p/NH13CjNNtSdJR\n0lwXZVgFHCvpb5WlHWMCx9VKyozpTRGxei4bkPR7Up8vxbGI2DSXv3e569jkUyZJf7/QfOytqB1j\nAsfVStoxpk4ywxEOMzOzuXPyMTOz0jn5lONHze7A66AdYwLH1UraMaaO4TEfMzMrnY98zMysdE4+\nZmZWOiefeSLp65JC0qpC2zcl7ZP0vKRbC+3vkvSv/Nz3pHQ3m6SKpIdy+5OSriw/klof75b0nKQ9\nkh6WtKzwXMvGNR1Jm3I8+yRtaXZ/LkbSFZL+LOlZSf+W9JXcvkLSHyS9kP9dXnjPjPZbs0jqlvRP\nSY/kxy0fkzUQEV7muABXADtJN62uym3XALtJs/dcBewHuvNzTwHvIVVtfxT4YG6/A9iW1z8FPNTE\nmG4BevL6ncCd7RDXNLF25zg2kArD7QauaXa/LtLntcA78/pi4D9539wFbMntW+ay35oY29eAnwGP\n5MctH5OX8xcf+cyP7wLfoL4E2+3AgxExEhEvAfuAjZLWAksi4olIn5KfAB8pvOf+vL4DuKlZv9gi\n4rGI2jwPTwDr83pLxzWNjcC+iHgxIkaBB0l9vmxFxOGIeDqvnwT2Auuo/7++n/p9MNP9VjpJ64EP\nAfcVmls6JmvMyWeOJN0OHIyI3VOeWgf8t/D4QG5bl9entte9J3/xDwIrX4duz9RnSb8eob3iqpou\nppaQT2O+A3gSWBMRh/NTrwFr8vps9lsz3EP6ITdRaGv1mKyBji0sOhOSHgfe0OCprcC3SKeoWs6F\n4oqI3+TXbCXNZv9AmX2zSyNpAPgV8NWIGCoeUEZESGqZeykk3QYciYh/SLqh0WtaLSabnpPPJYiI\nmxu1S3ob6Vzz7vyhXw88LWkjcJA0FlS1PrcdZPIUVrGdwnsOSOoBlgLH5y+SetPFVSXpM8BtwE35\n9EWxj1WXXVyzMF1MlzVJC0iJ54GI+HVu/p+ktRFxOJ9+OpLbZ7PfyvZe4MOSNgN9wBJJP6W1Y7Lp\nNHvQqZ0W4GUmLzi4lvrB0BeZfjB0c27/IvUD879oYiybgGeB1VPaWzquaWLtyXFcxeQFB9c2u18X\n6bNIYxn3TGm/m/rB+btmu9+aHN8NTF5w0BYxeZmyj5vdgXZaisknP95KugLneQpX2wDXAc/k537A\nZKWJPuCXpIHTp4ANTYxlH+l8+q68bGuHuC4Q72bSFWP7Sacdm96ni/T3etIFLnsK+2gzaSztj8AL\nwOPAitnutybHV0w+bRGTl/rF5XXMzKx0vtrNzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj7W\nliR9WdJeSfNemUHSJ3Il6QlJ18339s06gSscWLu6A7g5Ioo1vpDUE5MFU2frGeBjwL1z3I5Zx3Ly\nsbYjaRtpeoRHJW0nlfO5Ore9KunTwHdINzJWgB9GxL250vb3gQ+QbrAdBbZHxI7i9iNib/475QRk\n1oacfKztRMTnJW0CboyIY5K+TZr75fqIGJb0OWAwIt4tqQL8VdJjpMrQb82vXUMqL7S9OVGYtTcn\nH+sUv42I4bx+C/B2SR/Pj5cCbwbeB/w8IsaBQ5L+1IR+mnUEJx/rFKcL6wK+FBE7iy/I1ZTNrAS+\n2s060U7gC3lKAiS9RdIi4C/AJyV159L9Nzazk2btzEc+1onuA64kzb0k4ChpmuWHgfeTxnpeBf7W\n6M2SPkq6MGE18DtJuyLi1hL6bdY2XNXabBqSfkwq67/jYq81s5nxaTczMyudj3zMzKx0PvIxM7PS\nOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyvd/wEF11Qp3r+cqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_phase().show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/CrossCorrelation/cross_correlation_notebook.html b/notebooks/CrossCorrelation/cross_correlation_notebook.html new file mode 100644 index 000000000..685243ec3 --- /dev/null +++ b/notebooks/CrossCorrelation/cross_correlation_notebook.html @@ -0,0 +1,871 @@ + + + + + + + + CrossCorrelation — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

CrossCorrelation

+

This Tutorial is intended to give a demostration of How to make a CrossCorrelation Object in Stingray Library.

+
+
[4]:
+
+
+
import numpy as np
+from stingray import Lightcurve
+from stingray.crosscorrelation import CrossCorrelation
+
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+
+

CrossCorrelation Example

+
+
+

1. Create two light curves

+

There are two ways to create a Lightcurve. 1) Using an array of time stamps and an array of counts. 2) From the Photon Arrival times.

+

In this example, Lightcurve is created using arrays of time stamps and counts.

+

Generate an array of relative timestamps that’s 10 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset of pi/2 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve.

+
+
[5]:
+
+
+
dt = 0.03125  # seconds
+exposure = 10.  # seconds
+freq = 1   # Hz
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000  # counts/s
+signal_2 = 300 * np.sin(2.*np.pi*freq*times + np.pi/2) + 1000  # counts/s
+noisy_1 = np.random.poisson(signal_1*dt)  # counts
+noisy_2 = np.random.poisson(signal_2*dt)  # counts
+
+
+
+

Now let’s turn noisy_1 and noisy_2 into Lightcurve objects. This way we have two Lightcurves to calculate CrossCorrelation.

+
+
[6]:
+
+
+
lc1 = Lightcurve(times, noisy_1)
+lc2 = Lightcurve(times, noisy_2)
+
+len(lc1)
+
+
+
+
+
[6]:
+
+
+
+
+320
+
+
+
+
[7]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc1.time, lc1.counts, lw=2, color='blue')
+ax.plot(lc1.time, lc2.counts, lw=2, color='red')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png +
+
+
+
+

2. Create a CrossCorrelation Object from two Light curves created above

+

To create a CrossCorrelation Object from LightCurves, simply pass both Lightvurves created above into the CrossCorrelation.

+
+
[8]:
+
+
+
cr = CrossCorrelation(lc1, lc2)
+
+
+
+

Now, Cross Correlation values are stored in attribute corr, which is called below.

+
+
[9]:
+
+
+
cr.corr[:10]
+
+
+
+
+
[9]:
+
+
+
+
+array([  201.553125  ,  1412.10121094,  2828.54304688,  3948.95050781,
+        5370.02359375,  5750.04355469,  6222.50101563,  6664.92722656,
+        5969.0503125 ,  6770.80464844])
+
+
+
+
[10]:
+
+
+
# Time Resolution for Cross Correlation is same as that of each of the Lightcurves
+cr.dt
+
+
+
+
+
[10]:
+
+
+
+
+0.03125
+
+
+
+
+

3. Plot Cross Correlation for Different lags

+

To visulaize correlation for different values of time lags, simply call plot function on cs.

+
+
[11]:
+
+
+
cr.plot(labels = ['Time Lags (seconds)','Correlation'])
+
+
+
+
+
[11]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png +
+
+

Given the Phase offset of pi/2 between two lightcurves created above, and freq=1 Hz, time_shift should be close to 0.25 sec. Small error is due to time resolution.

+
+
[12]:
+
+
+
cr.time_shift #seconds
+
+
+
+
+
[12]:
+
+
+
+
+0.26645768025078276
+
+
+
+

Modes of Correlation

+

You can also specify an optional argument on modes of cross-correlation. There are three modes : 1) same 2) valid 3) full

+

Visit following ink on more details on mode : https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.correlate.html

+

Default mode is ‘same’ and it gives output equal to the size of larger lightcurve and is most common in astronomy. You can see mode of your CrossCorrelation by calling mode attribute on the object.

+
+
[13]:
+
+
+
cr.mode
+
+
+
+
+
[13]:
+
+
+
+
+'same'
+
+
+

The number of data points in corr and largest lightcurve are same in this mode.

+
+
[14]:
+
+
+
cr.n
+
+
+
+
+
[14]:
+
+
+
+
+320
+
+
+

Creating CrossCorrelation with full mode now using same data as above.

+
+
[15]:
+
+
+
cr1 = CrossCorrelation(lc1, lc2, mode = 'full')
+
+
+
+
+
[16]:
+
+
+
cr1.plot()
+
+
+
+
+
[16]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png +
+
+
+
[17]:
+
+
+
cr1.mode
+
+
+
+
+
[17]:
+
+
+
+
+'full'
+
+
+

Full mode does a full cross-correlation.

+
+
[18]:
+
+
+
cr1.n
+
+
+
+
+
[18]:
+
+
+
+
+639
+
+
+
+
+

Another Example

+

You can also create CrossCorrelation Object by using Cross Correlation data. This can be useful in some cases when you have correlation data and want to calculate time shift for max. correlation. You need to specify time resolution for correlation(default value of 1.0 seconds is used otherwise).

+
+
[19]:
+
+
+
cs = CrossCorrelation()
+cs.corr = np.array([ 660,  1790,  3026,  4019,  5164,  6647,  8105,  7023, 6012, 5162])
+time_shift, time_lags, n = cs.cal_timeshift(dt=0.5)
+
+
+
+
+
[20]:
+
+
+
time_shift
+
+
+
+
+
[20]:
+
+
+
+
+0.83333333333333348
+
+
+
+
[21]:
+
+
+
cs.plot( ['Time Lags (seconds)','Correlation'])
+
+
+
+
+
[21]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png +
+
+
+
+

Yet another Example with longer Lingcurve

+

I will be using same lightcurves as in the example above but with much longer duration and shorter lags. Both Lightcurves are chosen to be more or less same with a certain phase shift to demonstrate Correlation in a better way.

+

Again Generating two signals this time without poission noise so that time lag can be demonstrated. For noisy lightcurves, accurate calculation requires interpolation.

+
+
[22]:
+
+
+
dt = 0.0001  # seconds
+exposure = 50.  # seconds
+freq = 1       # Hz
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 * dt # counts/s
+signal_2 = 200 * np.sin(2.*np.pi*freq*times + np.pi/2) + 900 * dt  # counts/s
+
+
+
+

Converting noisy signals into Lightcurves.

+
+
[23]:
+
+
+
lc1 = Lightcurve(times, signal_1)
+lc2 = Lightcurve(times, signal_2)
+
+len(lc1)
+
+
+
+
+
[23]:
+
+
+
+
+500000
+
+
+
+
[24]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc1.time, lc1.counts, lw=2, color='blue')
+ax.plot(lc1.time, lc2.counts, lw=2, color='red')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png +
+
+

Now, creating CrossCorrelation Object by passing lc1 and lc2 into the constructor.

+
+
[25]:
+
+
+
cs = CrossCorrelation(lc1, lc2)
+print('Done')
+
+
+
+
+
+
+
+
+Done
+
+
+
+
[26]:
+
+
+
cs.corr[:50]
+
+
+
+
+
[26]:
+
+
+
+
+array([  2.86241768e-05,   4.71238867e+06,   9.42481318e+06,
+         1.41372717e+07,   1.88497623e+07,   2.35622831e+07,
+         2.82748324e+07,   3.29874082e+07,   3.77000087e+07,
+         4.24126319e+07,   4.71252762e+07,   5.18379395e+07,
+         5.65506201e+07,   6.12633160e+07,   6.59760255e+07,
+         7.06887466e+07,   7.54014775e+07,   8.01142163e+07,
+         8.48269612e+07,   8.95397103e+07,   9.42524618e+07,
+         9.89652137e+07,   1.03677964e+08,   1.08390712e+08,
+         1.13103454e+08,   1.17816189e+08,   1.22528916e+08,
+         1.27241631e+08,   1.31954335e+08,   1.36667023e+08,
+         1.41379696e+08,   1.46092350e+08,   1.50804985e+08,
+         1.55517598e+08,   1.60230186e+08,   1.64942750e+08,
+         1.69655286e+08,   1.74367792e+08,   1.79080268e+08,
+         1.83792710e+08,   1.88505118e+08,   1.93217489e+08,
+         1.97929821e+08,   2.02642113e+08,   2.07354363e+08,
+         2.12066568e+08,   2.16778727e+08,   2.21490839e+08,
+         2.26202900e+08,   2.30914910e+08])
+
+
+
+
[27]:
+
+
+
# Time Resolution for Cross Correlation is same as that of each of the Lightcurves
+cs.dt
+
+
+
+
+
[27]:
+
+
+
+
+9.9999999999766942e-05
+
+
+
+
[28]:
+
+
+
cs.plot( ['Time Lags (seconds)','Correlation'])
+
+
+
+
+
[28]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png +
+
+
+
[29]:
+
+
+
cs.time_shift #seconds
+
+
+
+
+
[29]:
+
+
+
+
+0.2495504991004161
+
+
+

time_shift is very close to 0.25 sec, in this case.

+
+
+

AutoCorrelation

+

Stingray has also separate class for AutoCorrelation. AutoCorrealtion is similar to crosscorrelation but involves only One Lightcurve.i.e. Correlation of Lightcurve with itself.

+

AutoCorrelation is part of stingray.crosscorrelation module. Following line imports AutoCorrelation.

+
+
[30]:
+
+
+
from stingray.crosscorrelation import AutoCorrelation
+
+
+
+

To create AutoCorrelation object, simply pass lightcurve into AutoCorrelation Constructor. Using same Lighrcurve created above to demonstrate AutoCorrelation.

+
+
[31]:
+
+
+
lc = lc1
+
+
+
+
+
[32]:
+
+
+
ac = AutoCorrelation(lc)
+ac.n
+
+
+
+
+
[32]:
+
+
+
+
+500000
+
+
+
+
[33]:
+
+
+
ac.corr[:10]
+
+
+
+
+
[33]:
+
+
+
+
+array([  1.12500000e+10,   1.12499978e+10,   1.12499911e+10,
+         1.12499800e+10,   1.12499645e+10,   1.12499445e+10,
+         1.12499201e+10,   1.12498912e+10,   1.12498579e+10,
+         1.12498201e+10])
+
+
+
+
[34]:
+
+
+
ac.time_lags
+
+
+
+
+
[34]:
+
+
+
+
+array([-25.    , -24.9999, -24.9998, ...,  24.9998,  24.9999,  25.    ])
+
+
+

time_Shift for AutoCorrelation is always zero. Since signals are maximally correlated at zero lag.

+
+
[35]:
+
+
+
ac.time_shift
+
+
+
+
+
[35]:
+
+
+
+
+5.0000099997734535e-05
+
+
+
+
[36]:
+
+
+
ac.plot()
+
+
+
+
+
[36]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png +
+
+
+
+
+

Another Example

+

Another example is demonstrated using a Lightcurve with Poisson Noise.

+
+
[37]:
+
+
+
dt = 0.001  # seconds
+exposure = 20.  # seconds
+freq = 1   # Hz
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000  # counts/s
+noisy_1 = np.random.poisson(signal_1*dt)  # counts
+lc = Lightcurve(times, noisy_1)
+
+
+
+

AutoCorrelation also supports {full,same,valid} modes similar to CrossCorrelation

+
+
[38]:
+
+
+
ac = AutoCorrelation(lc, mode = 'full')
+
+
+
+
+
[39]:
+
+
+
ac.corr
+
+
+
+
+
[39]:
+
+
+
+
+array([-0.00487599, -0.00485198, -0.99992797, ..., -0.99992797,
+       -0.00485198, -0.00487599])
+
+
+
+
[40]:
+
+
+
ac.time_lags
+
+
+
+
+
[40]:
+
+
+
+
+array([-19.999, -19.998, -19.997, ...,  19.997,  19.998,  19.999])
+
+
+
+
[41]:
+
+
+
ac.time_shift
+
+
+
+
+
[41]:
+
+
+
+
+0.0
+
+
+
+
[42]:
+
+
+
ac.plot()
+
+
+
+
+
[42]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb b/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb new file mode 100644 index 000000000..1c2056f6a --- /dev/null +++ b/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb @@ -0,0 +1,1121 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation\n", + "\n", + "This Tutorial is intended to give a demostration of How to make a CrossCorrelation Object in Stingray Library." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve\n", + "from stingray.crosscorrelation import CrossCorrelation\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# 1. Create two light curves\n", + "\n", + "There are two ways to create a Lightcurve.
\n", + "1) Using an array of time stamps and an array of counts.
\n", + "2) From the Photon Arrival times.\n", + "\n", + "In this example, Lightcurve is created using arrays of time stamps and counts.\n", + "\n", + "Generate an array of relative timestamps that's 10 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset of pi/2 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 10. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "signal_2 = 300 * np.sin(2.*np.pi*freq*times + np.pi/2) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn noisy_1 and noisy_2 into Lightcurve objects. This way we have two Lightcurves to calculate CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGICAYAAAAnExYOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4LFV5Lv6unvZ89uEMiIBwGASEAKIiKjhg+MVMKsn1\n5iFyEwSMyVXJdUg0RjReImquGm+I8wAkGg03GEEc4uOAwGGUQUEEZD7AGfc5Z++zhx6qu9fvj1Vf\n11erV029u6qr+6z3efbTvXuqVVWrVr3rfb/vW0JKCQsLCwsLCwsLi+FGYdANsLCwsLCwsLCwWD0s\nqbOwsLCwsLCwGAFYUmdhYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsL\nixGAJXUWFhYWFhYWFiMAS+osLCwsLCwsLEYAltRZWFhYWFhYWIwALKmzsLCwsLCwsBgBWFJnYWFh\nYWFhYTECsKTOwsLCwsLCwmIEYEmdhYWFhYWFhcUIoDToBmSBDRs2yE2bNg26GRYWFhYWFhYWkbjr\nrrvmpJQbk35vvyB1mzZtwp133jnoZlhYWFhYWFhYREII8WQv37P2q4WFhYWFhYXFCMCSOgsLCwsL\nCwuLEYAldRYWFhYWFhYWIwBL6iwsLCwsLCwsRgCW1FlYWFhYWFhYjAAsqbOwsLCwsLCwGAFYUmdh\nYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsLixGAJXUWFhYWFhYWFiMA\nS+osLCwsMoSUg26BhYXFqMKSOgsLC4uMcM01wLp1wE9/OuiWWFhYjCIsqbOwsLDICDfeCMzPA7fe\nOuiWWFhYjCIsqbOwsLDICCsr6rHVGmw7LCwsRhOW1FlYWFhkhOVl9dhsDrYdFhYWowlL6iwsLCwy\nglXqLCws0oQldRYWFhYZgUidVeosLCzSgCV1FhYWFhnBKnUWaeCJJ4Dt2wfdCos8oDToBlhYWFjs\nL7BKnUW/0WgAp5wCHHgg8NBDg26NxaBhSZ2FhYVFRrCkzqLfWFpSZXLq9UG3xCIPsParhYWFRUaw\n9qtFv0F9yXEG2w6LfMCSOgsLC4uMYJU6i36D+lKzaZegs7CkzsLCwiIzWKXOot/gEwQ7WbCwpM7C\nwsIiA0hplTqL/oP3JWvBWlhSZ2FhYZEBGg2g3VbPrVJn0S9YUmfBYUmdhYWFRQYglQ6wSp1F/8An\nCJbUWVhSZ2FhYZEBaN1XwJI6i/7BKnUWHJbUWVhYWGQArtRZ+9WiX7CkzoLDkjoLCwuLDGDtV4s0\nYEmdBYcldRYWFhYZwCp1FmnAxtRZcFhSZ2FhYZEBrFJnkQasUmfBYUmdhYWFRQawSp1FGrCkzoLD\nkjoLCwuLDGCVOos0wPtSozG4dljkA5bUWVhYWGQAq9RZpAEbU2fBYUmdhYWFRQawSp1FGrD2qwWH\nJXUWFhYWGcCSOos0YEmdBYcldRYWFhYZwNqvFmnAkjoLDkvqLCyGFVbuGSrYZcIs0oAldRYcltRZ\nWAwjnnkG2LABeN/7Bt0Si5iwSp1FGrCJEhYcltRZWAwj7r8fWFgAbr550C2xiAkbU2eRBqxSZ8Fh\nSZ2FxTCCRu96fbDtsIgNq9RZpAFL6iw4LKmzsBhG0Ohtq40ODaxSZ5EGLKmz4LCkzsJiGGGVuqGD\nJXUWacDG1FlwWFJnYTGMsKRu6GDtV4s0YJU6Cw5L6tKElMAttwCLi4NuicWowdqv+YTjADfdBDQa\nnct/3z71llXqLNLA0JG6e+9V2fsWqcCSujSxeTNw+unAe9876JZYjBqsUpdPXHEF8IpXAJ//PG6/\nXV3+73qXessqdRZpYKhI3fw8cOqpwNlnD7olI4tMSZ0Q4lVCCGn4m9c+d4AQ4stCiDkhxLIQ4kdC\niBOzbGtfsHWrety2bbDtsBg9WFKXT7BrnsQIuvytUmeRBoYqpm5uTrkLTz896JaMLEoD2u5fAvgZ\n+78zxAkhBIDrAGwCcBGAvQDeB+B6IcTzpZTD0xto5LbTcot+w5K6fIKudcfpnCJ6ySp1FmlgqJQ6\namCtNth2jDAGReoekFLeFvDe6wCcDuDVUsrrAUAIcSuAxwG8B4oQDgdo5LYjuEW/wWPqpASEGGx7\nLBToDttshpI6q9RZ9AtDSersZDQ15DGm7nUAthKhAwAp5QKUevf6gbWqF9DV1m4Pth0WowcaHKW0\nDCFPIAbHSF2zqf54Toud51n0C0NJ6mo1NXZZ9B2DInX/JoRoCSF2CyG+LoQ4jL13AoBfGr5zP4DD\nhBDT2TSxD7D2q0Va4KO3nfXmB3TNa/YrqXRTU95r9p5m0Q8MJamTcggaO5zI2n5dAPBJADcA2Afg\nFAB/C+BWIcQpUsqdANYBeMLw3T3u4wEAlvQ3hRA/DdroC1/4wlU1umdYUmeRAn7yE2DqZgen0Qu2\nrEl+YLBfm00/qatWlXjfagGlQQXAhEFK4B//EXjxi4GXv3zQrbGIwFAlSuiT0UplcG0ZUWQ6pEgp\n7wFwD3vpBiHEjQDugEqK+ECW7UkdNqbOIgW84x3AH9/HSJ1V6vIDZr8S1261FJEDgIkJReQajRyT\nugceAP7qr4DTTgNuCwp9tsgLhkqp4xPQWg2YmRlcW0YUAx9SpJR3CyF+DeDF7kt7odQ4HevY+6bf\neVXQNl70ohcNxuiwMXUWKWBpCSjD2q+5RID9Si+XSkCx6H10bCz7JkZiedn/aJFrDBWps2EjqSOP\niRL3Q8XV6TgewBYpZZf1mltY+9UiBTiOJXW5RUCiBL1cKnnqXG6HBeswDBWGltTZsiapYOCkTgjx\nIgDHArjdfenbAA4RQrySfWYNgNe67w0PLKmzSAHNJlABszFsTF1+EFDShF4uFv1KXS5hx62hwlDH\n1Fn0HZnar0KIrwF4FCqujhIl3gfgGQCXuR/7NoBbAXxNCPHX8IoPCwD/J8v2rhp2cLRIAc2mVepy\ni4Diw1aps0gLVqmz4Mg6pu5+AH8M4B0AJgFsB/CfAP5OSjkHAFLKthDi9wF8AsBnAYxDkbwzpZRP\nZdze1YEGRRtTZ9FHWPs1xwjIfuVKHZE6q9RZ9AOW1FlwZGq/Sik/KqU8SUo5K6UsSymfI6V8i5Ry\nm/a5PVLKC6SU66SUk1LK35RS/iLLtvYFdnAcDO64Q62kftddg25JKtCVOllv4NxzgYsvHmCjLBQM\nMXW6Ukf2a26HBavU5Q9vextw0UXGt4aW1NnJaCoYeEzdSMOSusHgtNOAW24B/tf/GnRLUoFO6hZ2\n1fH1rwP//M8DbJSFQoyYOqvUWSRCowF89rPApz9tdH2GNqbOKnWpwJK6NGEHx8FiYmLQLUgFuv3a\nXlEz3qUlu0rBwGEoaaJnv9pECYtE4IsGG5KirFJnwWFJXZqwMXXZY/t27/lxxw2uHSmh3VZ/PlJX\nrXfes5PfASPAfuV16myihEUicFJnuMCHltTZwSoVWFKXJuyMN3ts3uw9H8HjTrvkI3V1b/a+NDxV\nHEcTMRIlrFJnkQic1BnULd6Pcl/dyCp1qcOSujRhB8fswUld7ke45KAx0ZcoUfMGR0vqBgxb0sSi\n37BKnUUCWFKXJoaN1PHBY1jBSd0IzgSpS/lIXXW0SN3KyhDHBtriw4NDjPGrVhvCaJgIpW5oEyVG\ncHzOAyypSxPDtPbrzTcDa9YAl10W/dm8YnkZuOce7/8RHDSMpK4xOvbrnj3AwQcDb3rToFvSI+wy\nYYPBpZcCa9cC994b+JGVFWDTJuDss7NrVl9glTqLBLCkLk0M0+B4992qnZwUDRsWFvwE2tqvQ4fH\nHlOncWhLDBqyX21Jkwxw113q4rjvvsCPPPMMsGMH8POfZ9iufsCSOosEsKQuTQzT4EhsILd3mhjQ\nj/N+otRhhEgd7V+1Oth29IwExYdze6kN02SUQBO4kI5Dw8Ew7RaARIkSQ0XqRnB8zgMsqUsTw0jq\ncj8qhGB/JXX10SF1dAqHltQlWCYst8MCDxsZluDGGKSOhKFhiIbxIUKpG9qYOqvUpQJL6tLEMMXU\njQKp04/zCJI6o/06QiVN6JIZ2vHeYL+6/wIYEqWONyy3zFMDkbqQjkPDwTAMxz5Ypc4iASypSxPD\nZGOMov06gjF1RqWuYZW63MBgvwLe/WsolDresNw2UkMCpW5YdqkDG1NnkQCW1KUJa79mC2u/BpK6\n224DHn88xYb1CVypGxbnzweD/Qp4p8ik1G3fDlx/fXZNjISm1N13H/DLXw6uOYHYskVl7QOJYuqs\nUjdAWKUudVhSlyYsqcsW+4H9aiJ1IqKkye7dwBlnAG94Q9qtWz34pTKUp89QfBjwkzpdqXvLW4BX\nvxr41a+ya2Yo2EloOy288pXAmWcOsD1BOOcc4OUvB7Zt8w5wiPozqkqdLqzmejJklbrUYUldmhjG\nmLpRsF8nJ9XjCNqvppg6br8uLnZ/Z/dudWj4srh5Be9+Q2nBRih1puLDzzyjHnfuzKaJkWAnoVlv\nYe9eYG4uh8PY1q2KwezaNdpK3fKy9zxCqQNyPi+3pC51WFKXJqxSly1otJ6YUI9DKfWEw6zUhduv\ndEqHgePyS2UoSR2Lo3UanmRCx96k1JEQk5v5FDsJzXrL9HI+QNd3vW5j6hhyPYRb+zV1WFKXJoYx\nUSLXI0IE6Djvd6Qu3H4dJlLHb1BDOZFnOyAd77kpUYI+mjtSxxrSarRML+cD1EEajVjZr6Na0mRo\nSd1QXuD5hyV1aYJfbXkfSUbJfh1hUqfGRIkyvPMkHKvU5QZsBzipo/uXKVEid6RuRJW6obVfEyRK\nAENE6kZwfM4DLKlLE8NI6nI9IkSAjvEIx9Q1m0AJ/lF8lOzXUVXq6NibSprkjtQNg1InpddBOKnb\njxMlqF/legi3Sl3qsKQuTQxLEU8pw0ndF74AfPWr2bapF9AxHh9Xj47TIXq33AL87d+GD3hSAv/7\nfwM/+lHK7VwFmk0tSQJAISapa7cz6oaf+hTwzW/29NWoRIlWC7j4YuCmm3psWz/RbALvfz+webP/\nNRcm+1VX6qQ0k7orrgC+/OW0Gh6BYSB1dPAAq9S554UMiqEhdVapSwWlQTdgpDEsRTyrVW+k00fu\nWg1461vViPEnf5J925KAT1krFS/WZnwcp5+u3nr2s4GLLjJ//b77gA99CHjhC4E778ykxYnhON2k\nTjTjxdQB6nDQ4J8K5uaAd70LOPRQ4L/9t8Rfj7Jff/Yz4NJLVXmygdd2u/lm4CMfUTMGakzAmk1B\nxYe5WMHzqi64QD0//3yPBGYGbr/mldTxA8dj6mIkSgBquCsMi6QRM6ZuYkJlvw8NqbNKXSoYlm49\nnBgWpY4zAX1EWFlRI+Dycv6nuNS+QkGROqDLc3zggeCvUzmQfftSaFufYFTqYsbUARlYsHRT5WUY\nEiDKfl3lz/cXe/eqxx07vNcSKnX8fk1f5f1vIMMGV+ryGlPHVR4ao4BYy4QB+R/KfIip1HGDIrew\nSl3qsKQuTQxLTF0YqeMz37wHZdFdp1gExsbUc23gCFtGiz7Kx9C8Ifekjs5BjxuKUuroMspFV6SD\nPTfnvcZ2oAgzqeNKnYnULSwYfy47sI3m1n7l5I0XZ0yg1A0NYsbUDZ39apW6VGBJXZoYRqXOZL+a\nnucRMUidqTgvgXYvFypQAEz2a4HZr47TTXgyJXVsQfvVfB0IjqkDckbqdu9WLEFK33XOz1NQSRPe\n13JD6thJaDujQ+r4UJDn4bgLIUqdlEMcU5f3+8mQwpK6NDGMpC5Mqcu7XG6yX0dYqWuUVZZvsRm+\njwMhdY1GT+sV8cvENObnktS128qK1eSfUoBSF2W/clI3ECI1DEodv655h4+R/QqMjlJnGvJyTer4\nhVuv53xNs+GEJXVpYlgSJeKSurzPrExKnXb3DyN1vJZprm5gDD5SV5kGABSdHJG6Vfb5KKUul/Yr\noCxYrdOYSJ2eKJFL+3UYsl9Xab/meTj2od0OdUvonBSLQLmsnuea1OmNy8WFPFqwpC5NRMTUPfoo\ncMopwLe+lWGbTIhrv/ZBqXvb29TC8qlM0Pi0tQf7lX80r4Vvuf1aL7ukLo9KXY8bi4qpy6VSByhS\npzEFOk9vwhX40r0vxjrsjqXUzc93v5Yq3vpW4JxzvItSI3VX4jx8GReGEqG771Zj2Y03ptTG664D\nXvAC4JFH1P/8YuUXda0WOLisJlHi4x8HXvGKAcxr9YvA3YnFReBlLwMuu0y9XCoNKanLu/szhLCk\nLk1E2K/f/S7w858D//7vGbbJhIyUOscBPvtZVcKMEgf7ij7F1AH5tWCbTaACxWga5SkAQKHlZzj6\nPmaacBZQ0iMuorJfc03qApS6P8Y38BsrP8NLcFs+lbqvfAW46ipvw2yj7Wod5+FfcSEuR7MRzIS+\n/301ln372ym18ZvfBO65B/jJT9T/vHPos5iATr4ape4971G1EVPbvyDoA5G7E3ffDdx6K3D55erl\noSN1QqjHvLs/QwhL6tJEBKl78kn1uHt3Ru0JAh8UWy3/TLePSt0zz/g303dwUhdQ0iROTB2Qb1JH\nCpBTHAcKBRRk25dpOcpK3TDar0TCS2gmjqlLndS1297BpKwNXpal5l0UrZXg65+GidTu0TxWEwhW\n6oBAmb0fJU1KWVd21bO23J2gw0G7PnSkblq5DFap6z8sqUsTEfFFW7aox127MmpPEHQWEBTYtMoR\nm/YXSGngiWG/xompA4aD1LVEubOfYwguazKwmLpRV+o4mQixXzmpS6rUpW6/8gNJHYevX8tIXbsa\nfAOmyyy1sAXqS7ShoJg6/b2Al3sldcRFMgN1EOo07k7oNQ2HjtTNzKhHq9T1HZbUpYmImDoiObzM\n1UAQxgJSInWp3JRD7FdSR8K2OwykjsfUNQseqSPiAAy3Uhe3pInj5CBxjh/oXbuGU6kz2ZgBSp2s\nRmeWZkbqVqnUJTmu/PqhAr+ZgTrIAQeoxwClbugSJYgdW1LXd1hSlyYi7FdO6gZ6gwpT6vpov6au\n1JnsV7fNcWbYw2a/NkW5s5+jotTFtV97/Pn+IiJRQid1ZTj5Kz5sKg2yCqUudfvVtCG9wweQul6V\nuoGu8EEdZN069ejuhN73h0Kpa7e9A2/t19RgSV1akNI/cmijQa0GbN+unjca4bZg6giLrB8mpc5k\nv7ob4qQuiEDrSt3y8oCzYPfu7eo3ubdfkyp1tZovbihoPkFxp/xwpLYve/bEm2VFxNRF2a+6Ukfn\nKVP7NUKp4zfdXCh1dNJ7sF/rdWAG+1CCk4icZXo+9L6nkzpNqSMMBamjhpVKnuQZ856ye3cOlPkh\ngSV1aUEfNbSp4dNP+98eqAUb134dJqUuwH4FglU4XbQ4+WRVpmEgg8kzz6iB/NWv9r0cZL+Ood4Z\nJ8M4eu6Uupe+FDj++M5dyqTUXXUVsGED8OEP+y+jVPblppvUxj7xiejPJlTqcmm/JlDq+POgn8mz\n/VqoLuNxHIHv4vcSKXWZlZi59VbV9y691HstQKkLI3W5iDc1gc5hueyRuhj3lOuvV4flk59MsW0j\nBEvq0oJ+1WmjMyc4QM5IXZBcskqljrJ9gQyVOnfQ4Ief3zQ5+O7t2KHqCD70UErlV6Jw/fXqUSv8\nFWS/VtAIDFPJtVL3y1+qi8G9AEwxde9+t3r8wAcyUOoeeECx+Pvvj/5swuzXMpz8lTQxKV6rUOoG\nYr/qHSGA1K2tbsN67MHJ+EUiUpeZUkd97557vNeog8zOqkfHAdrtrvnSUMTUcVJH43OMDnPnneox\nziVpYUldekhI6gaaAZuBUiflgGLq3AGfD+JBpI7v3rZt3nNORjPDQQd5z1lf8pE6+JW6KVW2Lh9r\nv+obNqHd9j7vkjrTMmF79nivpU7qeCZGFGIWH16NUjdo+1XU48XUZm6/ho1FAUShXVe/MY2lnu3X\nVEm2yX+nDjI15VO3htp+TajUkeBhcyriwZK6tBBB6nSikCulLmjR5VVcVfPz/s1knf2aVKnjpE4n\n4JmA+8WsMT77VZhJnT5ODsx+jdoYb1iIUkePxWIG9is1IIpNNRrqr1BQDVtY6PL1TfarrtTxMmR5\ntF/jKnWpJ0qElTTRYWCWUgJw1HmYwgraTvwDmxnJNnUA6lOTkz51y0Tqcr/2a49KHd0bbU5FPFhS\nlxb0q07T+4koTKo12fNB6qjKd1BdiVVcVToxyrpOXRxSF6TUDYTU8QPEGuArPiwqvpIm1JcGSuqS\nKHW8MQalTr83r1uXI6WO2NjMDLB+vXq+Y4fvI0TqKImFsl/DlLpms7sWeKqIUuoadfNnA34mNaVO\nt18TKnWNhnfdAIBcjp/enhmpC1PqJid96tZQZr9apS4TWFKXFvTROMB+ff7z1WMuSN2aNeoxhexX\nnRilrtRp9uvQKXX87hFI6vwlTYjUDdR+TcK6DKQurPjwAQdkQOqoAVF3RrpmpqdVFDcQSOqSFB/m\n5TN4c1JDhFLnI3UhN+CBFh/WYWhEreav5Zik3EBuSF2EUjdUpM4qdanBkrq0EDOm7gUvUI/Ucffs\nAa6+OuMMJhrg1q5Vj0H26yquKt1uzjr7lQulPJuNI4zUPfww8IMf9LGtUQggdT77VYupMyp1W7fi\npMeuAaBSeDNX6u69F7jhBv9nfvQjlYGSUKk74IAM7FdqQNTdm66ZmRmP1FGNIhdlOCighSJUo+PE\n1OkTjtSUOjoHCZQ6X3wdVBzwN7+pPp56okSSmDoDqavXNaVusTdSl6pyGmW/hsTU5SpRYvNmdd3r\nMCl1CUhdan1r3z7gP/5jwPWr+gdL6tJCBKmjkiannKIeqeN+5CPAf//vwLXXptw+Dp3UpbBMGF/3\nFchn9iu/T/DElSefBI45Bvjt31YZsZmAj8yMEXdlv0aRune9C++44Q/wEtwGYABK3cknA696FfD4\n4+q17duB3/ot4Nxz/Y1xD/jAlbq49itX6sh+3bnT95ESmj51SC8+HIfUpaIM0Tl44xtXpdR98IPA\nG96gJjupK3Vh2a86DO/Van5SJ5YWuz4ThMyVunrd20+y+Tmpq9Xya7+urABnnQWcfXb3e5zU0WAV\nNMNmSF2pu+wy4I/+CPi3f0tpA9nCkrq0EBJTJ6U3mG/apB6p4+qPqYMCeYRAJ9I+BftVrw2XtVKX\n1H7ltel4Kn2MMag/iGO/wrNfy3DMpM7tSM+CsgYHFlP34x+rR6oiunNnpP1arfrPydRUhokSUR2U\nyn9MTwMTE+q5ZunppC6O/ZqJUrdjhzoH27dHKnUFJ1ipI2GS/0yrldK1vUr7tV73269iOYf2K/9x\n2ig9rlnjG9PCEiUGWqducVEdbNMNjJO6k09Wz2+/PfTnmk2vpFRqSh1VNh/4ep39gSV1aSEkpo4u\nulIJeNaz1HNShqjfZzbbokFyfNw81euT/apfkKkrdT3E1AXt3kBW+4hhv3JSV0HDXNLEPZfjqHW/\nlwaCpLSf/Uw98kD3CPvVcfziV7udoVIX136dnvZuttrMpQyni9Tlwn4lQrqyEq3UOcFKHbVd/5lU\nbr5x7Fci1wExdVypQx5JHR93afZIG5+d9Sl1JlKnzWMHg7BJEb1WqQBnnKGe33JLaCfnC2yktl9x\nr/khgSV1aSHEfuU8isJxaJIQVyjoG6gxY2MeqUvBfqXNpJp2HzOmLo5SF4TMrvs42a8aqTMqde7v\nUAbmwIoP04w8gtTpx/epp7znrVZO7Vfq1IaSJrr9mlSpS6W/UduXlxMpdYWG/wKhtus/k4oFG8d+\npQK9hvd0pa6QgNRxdT6TOnVAt1K3dq0vucBUfHhoSF25DBxyCHDEEWqCYYq/c8HFs9SUOkvqLGIh\nhNRR5xwb81Z/2bPHb11k1r+oMRkpdTMz6jGPderi7F5mZFu3YtxGh5E6Y50693cyU+p4u7nEed99\nah+oAVTnjWBQ6oBuUpebOnUxlDqT/ZoLpY7a7jj+cxRlvzb8FwiFe62sZEDqwpYJIxCpi6HUDZ39\nypW6PNuvdJ5are71FTmpAzy1bvPmwJ/LhNTRoDLwDJP+wJK6tBASU6c7nmvXqrfn5wdov46NeRJC\nCjF1OqlLvU4dG+H0JYGSKHVU5YWQGdnWN+Sqddx+bQQodSb7NTOljrMQviZnuw3cdluwUmdIlAD8\npE63X1NRJHpR6ojU8UrCMNuvXKmr1fz7mzmpA/xr4Bns12IMpW7fPvNKIH1FHKWOLtYYJU1ySerC\nlLrZ2ciSJrlS6vTnQDepe/nL1WNMUmft13iwpK6f+Pu/B772NfU8hlJHEy9uwcYVClYFKYH3vQ/4\n1rfMSl2fig/fcANw0UVqE/RVGnezVOq8Qy/xYbwfpz55tfHrpt078UT//wOxX4EOqfMpdTKG/Zq2\nUnf11WpRVpqV8wOkL7R+001e49ptv0xVrQIrK10khrLEgRzbrzGVOr34sKkmXab2K+Bfg82k1DWZ\nUuf4LxDaXX1t5FSVurCYugj7lSt1hZUhJHURxYeHjtSRUnfTTWr8+OEPgXe8w/e9TJW6oJN7333A\n//yfA17LMz4sqesXnn5a5fj/1V+p/0MSJbj9CqhSDYAaHDNR6h5+GPjYx4CLLzbH1PVpmbCPfQz4\n9KfVmvSZKHUBpI6u2SPxGN6Pj+DtT72n66tSmnfvrLP8/w/EfgU6qYac1HGlLrCkSdpK3d/+LfDh\nD3txf0FKHaDSiHkD9AyUubnImLrc2a8zM7Fj6nSlTj88zWb3a5kqdcvLXXJosRmt1GVK6vqk1MUl\ndY7j/7lM6tQBisy1WupcCaEmDxGJErmyX/Xn/H+6zxx3nNqvbdvU/n74w8A//ZNKnnDBSZ3jdC3M\n1B9ETeQ+/Wng859XIsgQwJK6foHS9ChdJ2aiBOBPHsiE1NEotbTkV+qi7NeEU0AKMF5a8r6aakyd\nyX5lSt0BBSWNrG/t7Do9Qe1505uAu+4CXvMa9f/A7Ff3APaaKJGaUqdXnQ1T6rhka3p/bi4ypm6Y\nlLoyHEyVumPq6DIzKXX6PqVO6rhSByhix84hJ3VFx0zq9J/ou6LSbnvXdpyYuj4qdZkopwRdqaMO\nsmZNV+0k7F17AAAgAElEQVRNU/Hh3Cl1UaSOyCqg7jPUL1mH0quMpBpyEXRyqeTJQMogJIcldf0C\n9T7H6Q6WAXxTDF2p4wJZJvYr/Xi1Gp79SjXsCAlHa7oGeL2xzJW6RqPz8tqKugtNYxnbHvPP5ukw\n0PK3hNlZteoHVUsYmP3qNtBX0kTGKGniNjg1pY4OCB3kMKWOF1U1vc+UOuLkQ2W/ajF1JTQxXUlm\nv/JyR/Ra3xGk1NF7QUods1/bbW++l7pSZ8qoDst+7aNSN1BSR7Ni2q+I4sO5I3VR9ivgL0ND540d\n9ExIXZT9Su0ZkhUnLKnrF3jvW1hIpNRxUpeJUkc/ztmWKftVHzhXQeoyVeoCYuqmC56SsvW+3b6v\n0q7RohoEcnRMImaqCJASffZrnJi6tJU6ndTxduusJYFSRxN4vvJWLu3XiJImU5Vg+5X2lboqJ3V0\nLlOtUwd0y2xLS759L7XMSh0fCvSf6Pu9T1+8mMdK0IAChNqvulJXrOaQ1AVkvHdIXUTx4VyQuiT2\nK5CY1KUSVxc1kbOkbj+FTuoSxNRlTupoROA3WW6/ciWPI+FoQfe9Wi1jpU6zKogITAnvprv7If9o\nQbs2NeXdo2dmPFUlVeXEhBj2axJSl5pSpyt0JqWOBu5azd8AndTt2tXZbSJ1+qZyrdRp10cZDqbL\nwSVNCMRFTKQu00QJQJ0TdpBLPvvVe875a+r2q2mCo2deAaH2a5dS1yOpy7ROnU7qhiGmLon9CvjX\ngKXzxg66npswUKUutUyN/sKSun6B975VKHWZ2q/NpjfAmxIliNTRaNFH+zX17Fc2wtHLnNQtPOIf\nLTjRphsqjaWAOTE4VdCGiBAZ7NeG9NZ+raDR+ajjsBJRWvZr3wfFMKWOSBsdyAT2q4nU8dAqYMDL\nhJlIHcHtLCU0MVUOVuoIJlJH5zL1mDr9IGrqqk+pa3rXPyd1+k+kqtQBqg/RBctJ3bArdVGkLqT4\ncG6UupTsV14GqO+IiqmzSt1+iij7NWZMXaZKHeB12DD7ldJzQ0aLm29Wi97fcIO3CR5Dr9uvqdep\nM9ivnNStbDErdePj3hK4nNRlbr/ShjT5LUypK5cNs/XV2q+XXAK88IXBA5o+Cwkjdbr96pIL6UpX\nj9y6q3OuuKtGyFSp66X4MMGdrZXQxGTJHFP3JbwZ38PvAJDZkLqnngKe9zzgK18xB3zTta8tblxq\nc1JnVup09P3Gq1901P5SyTtQgBc7ESOmrpRHUhdlv5IK8KlP4WM/fCHG4e1nbhIlQuzXW25Q/1eb\nBqWOz/wNpO7gg9XjQGpTWqVuP0WfYuriCgWrAv9xinLmxYd1+5UGy5BO/cMfqkopP/iB+p/HjA9E\nqYsgdY2tflLHQwtNSt3A7FeSrAwxdfW2n9QZB/bV2q9XXw3cfTfw4IPh7QyzX7lSZ7Bfd4kDAQB3\n/Xhv5+d+8zc9m5L6TC7tV+7XE9wLuwwnUKk7B/+O38F/YS3msXGjej9V+/XWW9U5vPpqM6lbv149\naiyGK3WlAKVOR6qJEoCnJo6P+wk17cO+fV2rGXQpdbV4pI42VSiYm9JXBCl1NP6edprqGM0mjlq4\nG8fBuyaHwX69+XrVsKe2G5Q6voCwO7EgI0kIdK6RVHhVmP3aaHgbHUWlTghREUK8RAjxh0KIc4UQ\nrxFCbFpNA4QQ/yWEkEKID2uvHyCE+LIQYk4IsSyE+JEQ4sSg3xk4OKmbn49VfDhMqctsRkgz8zCl\njqSEkEJB9JN0XfL7hilRIvXsV1bShJo8CXYnmjMrdbmzX7W1v7rsV0bqjAP7aosPm8iaqZ0mhYv6\nT5BS55K6bU01Yh8gFjo/c+GFqg8tLqrapLSJzOxX3evVQaxmaiq2Usdj6kg1KsPBUUd5m05NqaNz\nMTdnJnVUAV1T6spt1n6m1GmJvj6kbr8S2Rkb8xPqAw5QB65W62KdXUpdTFJHh4rMioEqdS95iZqE\nn3YaAP94lnf7dedOYH5OncelhoHU8X7n7jf1selpf1hu3xGmzvNJzpCQulLUB4QQRQB/AODNAF4J\noAKAF36QQohnAHwDwJeklI/E3bgQ4o8BnGx4XQC4DsAmABcB2AvgfQCuF0I8X0r5tP6dgUNX6rgt\nAOQr+9VE6sJi6iYn1fsUE6XvG/tJuinx+waVvhIC5qWs+gWT/cpi6vggWJyfg5ReCROu1NEkf6BK\nXQ/2a5dSx4hJz0odHVMTu5Cy+33T54Ji6txOsguK1B08vdA5vsWid33wbNHMlDpAHWxdhSMQaaBr\ng8P9v4QmJop++7VQAEpFiYp7DstwcOSR3uZSI3V03HftMg8uAUodR6kVT6lL3X4NUuoqFUVOn3pK\njcc0IUL32q+lqhbPGQAax9auVeXKMkuUmJ/vJnWA2kd3Zpx7Usf2Z/Nm7/gv1w32K8+2cfebRziw\nxTT6jzB1nl8Po2C/CiHeAOBBAF8DUAdwMYD/D4qIHQPgJQDeCOBqKOL3gBDiS0KIZ0VtWAhxAIBP\nAXiX4e3XATgdwJ9IKb8hpfwv97UCgO7lAPKAHmLqdFLXaAzAfuVKXZD9Oj4eeVXpBd85qeOb4IWW\n+46gRImmYmlT8OSFWWfOeL0GKXUDK2mSwH7tGthZY1NR6vhrYbPdCKWOSN2atqfU8WQCsmEzJ3VB\nJ1tKj9VMTATarzqpK6EJIdQjIYjU9d1+7VGp4yjHJHWZ2a9jY2ZSBxiVeJ9SV1+OtTwBJ3WmpvQV\neumWHTvUcz4QAZ3O4Zuk+ktzDg4BMXWc1O2rGZQ6XuzQQOpYjkj/EWa/DqFSF2W/XgbgMwAOklK+\nXkr5SSnlT6SU90kpH5FS3iGlvEpK+S4p5TEAzgCwHsBbYmz7HwD8Ukr5DcN7rwOwVUp5Pb0gpVyA\nUu9eH2fHMoWUiWLqcmW/8pi6IPt1YsKfeh7yk3TP5omNfBOpxn3wOnWFQmd/2jW1MT4IbsAcnnzS\n+ypXT+mGymvW5cl+pZuTSaljrrOvsT0rdWGkzmS1mD43M6Mk0WbTPzBqpG6y6VfqCJzUZWa/AsGk\nznFUY8pl9Rdgv5bh+JU6oX672PZ+NzOljq7b5eXu+oGAR4ZClbp4iRKZ2a98lgiEkjpdqRNSxmpo\npqRO/3Faei8GqSuV/MN3KstpxUGA/cpJ3WLVQOpClLqZmYyUOtPJ5ZOcUVDqABwppfy/Usrg6RuD\nlPJ2KeUfAvh42OeEEGcA+FMAbwv4yAkAfml4/X4AhwkhDAUPBgidxC0soL6cw+LDTz+trvagmDpd\njqJBb2IiUtsPi6kLC9vrK3idOqAz4Mu6mdTRmAnEV+oyt181UndE4yGsgbophyl1jQb6o9SF2a/8\nYIQNjNwm42xfs18nnZwpdfq+7N2rCBG3XoHQmLrxgt9+BYASi1MbQwObNnmbS91+DUIflDrqqpnZ\nrwalrj5jIHXPPAOn1vIpdQBiLfuUCqlrNoGtW7tf1/czIakTwj9pfuaZDMcrgmFStLQEPHXXzk57\n91UN9muPSt3evd2VkRKDxjjDTWn+yRFT6qSUPV2eYd8TQlQAfAHAJ6SUDwV8bB1UHJ0OovMHGH73\np0F/CZufHHrZ64UF/NM/9lZ8ODX79fbbgec8Ry3AbrJfTcuEmezXgBGbftIUU8c3kapSx+1X2iCA\ndlXd0CZkMKkzlTThSt3A7Fe+9tc11+DexnE4Co8BAKrtsfCYurSVOpP9avrc2JjXf7gS5I7Ge7AO\nbQhMtpchHVfNMih1mdSpC7JfWy3gxBOBU0+NJnUsps5H6gxK3cEbHd8SdKnbr0GgmLoQUhel1IVU\nFFkdYma/1mUF//I9l9RR3dB77wUOPRR/cvc7fUodgESkjnhVX0j2294GHHoo8JB2+6P+RtlktPBx\nTFIHeIfjnnvUJv7yL/vQ3iQw2K+/uvpXeLr9bLwdnwEALKxE2K/VKuA4kTF1zSZwwgmdvJHeETAh\n3bUL+Ou3jBip4xBCHCOEeDH7f0II8VEhxHVCiLcn2OZ7AEwAuDTBd/INA6nbvSM4pi6OUtf3GRYN\nIA8/nDz7lSt1Me3XKKUu9UQJ2iAAWVVtnmCD4EbswpYnvbIHnGhfeCFw9tnAa1/r/XQe7Ff5oDqH\n23AQrsCb8DCeGzumbkLUOj+byJqhD5u+1ItSx60/txPUMI4FqBvXVEu9PzClLqh46vKykj5+/WtP\nGiDmFVLSZEz4Y+oAv1L3nIMcnwo8MKVu3Tr1GCJ7lKXn65lIHWWIpm6/cqWOHfs9SxU8XdOUuocf\nBgAcvPRQfpS6Bx9UITuPaDmF9OMnukUeaL8TkDo6HPfdpx7d3c8OhutH3H0XivDGj/nlCKUOABYW\nOl0xSKnbswfYtk0dzlXZzQFj11NPAVOtEUuU0PBpAG9g/18K4N0ADgbwKSFEkJXagRDiMADvB/AB\nAGNCiLVCCNJD6P8ilErXpcZBKXiAQcWTUr4q6C/uDvYMGkBYXAopDh3EUOrq9VAleHWgkZbLgUB8\n+zUiqCEOqeNjcOqJEkDnzihX1H5wpa4CBzsf9W5gnGi/7GXAt76lZrqEPNivtB9fwp/hAlyBZrsQ\nXtJEs197sr7jxtRFkTrqP4Z4rgYqHVI36ahBlJM64ugDTZTgLIZUoCClzu13JTQxLrzrhZQirtQd\ncqDT2b922xsb+r72a9QNicoWRREd90IJU+pSt195TB079stOBXPQSJ3bmHKzuiqlrq+kjsZVvQPT\nfp55pv/1mIkSgHc4iCNl5iwQDPZrad4veuxZZpMgk1IHAPPzkUoddYOY4ZHBCLjptlrALEZYqYPK\neL0ZAIQQBaiYuPdKKV8I4MOIlxxxJIBxqGzavewPAP7KfX4iVOzcCYbvHw9gi5QyXpGhrEADyNFH\nAwDkwgLQSh5Tx/tM38kDJ3W889KGTPYrT9ONqdSZ7Fd6L3WlTid1pNS5bZ5o++9Ei497g41OtHUM\n3H6t19FeUY2sQg2ErRYS2a89ZcclJXVB9itt3BCIz0ndtDszHliiRBxSt3Oneoxhv5qUumLLe+3g\njY7KiC35N8Mt2b4gTKkbG/M2GBWg5F4oebRfV5xyJz5T7nKvbXe/y61aR6mrwh14B03q9HPSA6mj\nLqjbr8SRMs+ENdivOqlbbpS9/mNKlACAhYXImDo+lMQ4lcEImJDuD6RuFsBu9/kpUEra1e7/P4Ui\nbFH4OYAzDX+AInpnAngEwLcBHCKEeCV9UQixBsBr3ffyBY3UYX7eV7YAQCyljveZvpMH2qiu1BFM\n9msCpS6spAnfRKpKnW6/dqqVq/0Yd5U66Tai9rQ32OhEW8fA7ddGA213P4jUtduIbb+OyRoqZUk/\nFR9xEyXo+SqVOiJ1ubNfw0hdiP3qK6Phjgmi6Z2XAw9wb3zu/tLhTi37lcADRsfHvQ32QanL1H5l\ng+hKVXSUuvYuv1JXaXlK3R4yfGIwAeK4tG99OR90LvSxlPrbSSd5drgQ3Qshu2PCJFY6fE8ndeSO\nDFSpc5+X9/lJnYMydhOTCLFfTUpdKqQuoKRJF6kbQft1BwCXteC3ADwqpXQjOTEN6CymG1LKeSnl\nT/U/9+0n3f+XoIjbrQC+JoQ4RwjxGvc1AeD/JGhzNiBSR6XhFxY6A7ik6rYxYur4QJmZ/Urgy4Tp\npC5GokSY/co3kalSxxeLBjBOSt1hhwFQs3k9fDCI1OXCfl1W+9EsqkaalDpfSRPWiQqQmKyoxvdN\nqeslUcLABjipm4W6GxXYyJSLOnW83VQ/LEb2Kyd1HfuPNXzjWj+pA/y1s1NT6p7FSokmIXUxlLq+\n3/vClDrq8JUKVlbg2a8aqRtrVzvnYi9F9vSQKJGJUlepAKef7m24oN2m3X43heWOa67H1A1MqTPY\nr5WFblLXCUMPkqQDlDqT/Qr0SamLsl9brQGw5ORIQuq+DeCjQohPQMXS/Qd770TATcnrA6SUbQC/\nD+CHAD4L4FsAWgDOZEQyP6AeesghwNgYRLOJGagpnqy4vdGg1GVqv3KlztQxuVKn2a8PPTWB3Uvs\nqpIS+MY3gMe8Ux6H1Oli4MMPA1dd1bVMYzSWl4Err+yW7HmdOtog2w+yX4VL6tZjDs884/tIru1X\nSvholj37VZbN9mujga5ONFPuoaxJv2Lqgg4sgDrGGKlb8BEcICd16sKUulLJf+NlpK7MSF1Rdqe2\nb5jtJnWVin+f+wKdaR14oPeck+6ogce9wGkJJz4JClLqvvc94M47E7aXI45SV6lgeZmRut1++7XS\nriVW6qRMidTRudA7MP14qQS8/OX+DXMw+5Xezk1MnSG0Z2zRT+pmsdAJSzWtTgTAR+pmx2o45d5/\nwUbsHKz9CgyFWpeE1P0NgO8AINWMZ6++DoqA9QQppZBSXqy9tkdKeYGUcp2UclJK+ZtSyl/0uo1U\nQT10w4bORbjedarbJXfqZIip0+3XgSt1AfbrP352Aj+5hRGkO+8E3vhG4J3v7GqvKaaOb4IH8r/9\n7cA556iqA4nw1a8C558PfPrT/tf1OnWaUjdGSt1zngNAnSMqQBxlv2au1BnsV+nuh1PySF2r6JE6\nIYLtVwCYLvdQ1iRpnboopc4Av1K34IunA/wlTQZWp44vdqqTOgCSk1b3eRmOf+1UMjNYw5+9ISNS\np6tCnNRxpS4KmlJHuWGAOfv1/vuB3/s9VQmmZ+iDIU/uYqRuZQXYDVWapbBnzpd5wpU6+kxY+Rba\nDyn9RkUmSl25DLzqVer5wQd3f5+RuoMOUi+RYqfbr3lQ6saW/KRuHms9pS5oXGCk7oSH/hOv+cab\n8Df4WDpKXVz7FRiKuLrItV8JUsplAH8W8N7L+taiYcQf/RFwzDHA8ccrUrdzJ9a5JfVMpC5IqRso\nqTNlv7pXyh5nGvvA2AIFRLA4iF6Uuu3b1fNOfEVc0Iigl5IJSJSgA96xX9070SRWOrXqopS6zGPq\nTMWH3Zi6VsWzX5uFCkrwVpkIJXWlfCp1olLBQiMnSl2SRAm2tqgsVyB4uAIUiSvxRAnZXVl87ZSZ\n1PV9EhFXqYv5O3Q4Nm5UNc0Bs/36/e/30FYd+kGggWP9+i771UEFC1iD2dY+ddc3KHVPYJP6DjU8\nANz+4+sPrwo8VZMzFCn9St2ppwL/8R/Ascd2/wYjdZdcAvzWbwG/+7vqLd1+zUP268SSEj0+/8c3\nYO3W+3HtDa/HK3X7VQcjdWsa6sMHYTvuTVOpi7JfgdEidUKIxwD8gUktE0L8BoBvSynjJEuMHs49\nV/0B3Upd2b2ZGdZ+DUuUyNx+NWW/ulfKEqZRAyNIdDdljQxbJoxvgit1dCEmvjnTvug3qqBEiWoV\nJTiqzlax2JnWjqPWIXVxlbqB2q/u/rbK3kDotIsoo6DqQLVaqFQUAzLZr1OlHpQ6GvBMhaB6iakz\nQIzFJ3X851NZMqgX+xXqOifbo1kaRwndMXUltNTNm58AJyOlTr9WNm70nidR6rRECa7UmezX225L\n2E4T9IuOztGGDV1KHaAs2FnsU5M+mtBJT6l7hELDefVxAzipo/Ox6nHZcbx4E94PuMtA49cb3gAj\nGKk76ijg5JO9t3KV/eoWxZxYUffCrYe/FNuPeQVaNyBYqZuZUTcPRuqoxuY0lnzXPBdaU7dfqV0j\nZr9uAhA03R4HcPiqWzMK0Ehdq9QdU6cTCCI6A1fqdPs1iNQZ1jKLY7/qm+iZ1NEB1O/qAYkShXoV\nE3D3f3Ky8/oEqrGVuoHbr/V6Rwlqlcc7u9hoKPuSPhOm1E0Ve1Dq+pX9GqLUoVLBPrdcpcl+HVid\nurjZr2CTNwBLTS/7lZcv6fy+qexD1vbrmjXeAMRLmkTBoNQRKL6rVvN4SyqkjsBJ3diYj9SpJ3Od\n/S5AYhpqwElK6mZm+nj9c8bLzwm3XqPASJ0+ARp4TJ0+KZqfR0G2MY9ZlCbK3Uvz6v2O/GRWp268\noI7TNJYGl/1K7RoCpS4JqQOAoJD2FwGItT7syENX6orB9muuYupC7NclTKPO7dcYSl1QTB23MSje\nuW9KXYj9OgU3JkojdXFj6gZmv46PK1YjJcSyOqhOaaKzi/U6vHPTaISTutUodf0qPmzaRLGC5VKw\nUkekTsqcZL9Sgg4ndSWvrMlC3SV1oolC01BgNoZSl7r9OjPjtT/i/ABAG24Wf4hSNznpz76em0Mn\nEUlP4EyEoIOwYUOX/Qp4awlzpQ5AJ3ntUbhVChIodcNG6oinDDymzmVvc9iAchnRpI6ystmKErRu\nta7UpZ0oIWt1TKAGByUvYHTYlTohxDuFEFuEEFugCN119D/72wXgMwD+K4sG5x4uqaOYupaB1A2k\n+HA/7VfDWmac1PGsMX6vGB9XZZdoM0FJYLH3Jab9KmpVr/o6I3Xcfs2tUseKzxUW1SjWLE+YlbpG\nw1/SRGvsZFKljqcl96v4sAHtUgUr5eBECSG8U8q7bqPRQ+Z0FOLYrwRG6jqKPIC9VS+mrovUNZuD\nVeqoxNL0tJ/UFYt+QqGdr2W4inFIogR3catV4Oabvfdosz2BjpfODDduDLRf1RM/qaOlqnbgWWiU\np9SsMiRZIhVSx8csfSFTAF0szYD2uEfq9GtFL5k48Dp1jNRVKgZSp08mSBFj9uuY9EhdkFIXVTM7\nFAErStB4u4BZSC3pLs+Imj89BuDH7p8AcCf7n/6+CeCdCEii2O/gkrqym+nWLMWPqUtLqfvc54At\nv45vv8qGg7/4C6A2F1+p00Mp6ILUQ3eA7oEnFsm49VbgvPNUVkVC+1XUNVLnNoTsVymBF2+9Bp/H\nn2O8ZB61U4up+8Uv1CKzZ50FXHKJ97qR1KkbULsSYL+6St0F+Ape+b334rJPakpdoZvUXXst8OY3\nB8SnmWLmOPqk1LVLFVQrwUodAN/+EnTlri+IY7+6cMqTuPBCVbKjWfRI0O4Vl9RJB8JE6tKIqavV\n1KLFP/hB8PuAd9PkpI4GIqaaVKWf1C3BLYAbotTx0MlaDdi82Xuv1VoFAaeLTi/CGxJTp57MGTt2\nAxXMz6qyRp/9m2617uc/B/7H/1DL/NJmucNw663qfT1PKxY4KTD0gzhKXWvMI3U6WdbnTjTxec97\ngK98pYf2JoU+YQlQ6u68E/jDPwSe2BGs1NE9pCJTtl/pIpPSd58mUjePtZDjbjuvvlplJv/TP61i\ng+kidFogpbwWwLUAIFTvuURK+XgG7RpekEzrojPYx1Dq+H2Dblj6TKwXXHwx8JI9VRwGxCo+XFtq\n4gtfAD5ZMJC6gJg6/pPVqrcv69erhZFpE0D3uBWL1H3uc6qUyVlnRSt1mv1aqNeMSt10qYblZRV/\n8sYnLsVv4E489NQFAE7r2nxq9uvllwPf+Y56/uMfAxdcoBad5YO8y4KLy8qvbpYnOqJFvQ6UNFJ3\nCT6IQ+7diu/j//o2NVHotl/PPls9vva1wOtfr7UtitQlSZQIUepk2U/qTH2+WOx2LgH1fwxxIz7i\n2K8u7n98Epdfrso1voSTukUqadJE2zGsGhBDqUusDG3erPrS008Dr3lN9/s06LzgBcB3v6sKpXOl\njh7dmIilRgX8dsuVOin91zdBr1H+4IP+JjSb8dzFLvD4Ur4iyfr1wBFHqOebNnXa1CkuvGeP0S5z\nUMb8msNw4NwD+N4XtuC17z+JqhwBAL74ReDf/s0rtaQnSrz2tWpuOT/vXbqx0Qf71SlPogz/2q8E\n/TJrt1WX+PjH1QT7wgsTtjcpdKXbLfdFSt2mTWr4XVxU62ufdsoE3su/T1nZi4seqWtlZL9S+93x\ndmLHEwCAnTgQR7gVB3DffcBNN/mzU3KGJJEOfw5gp+kNIcSUEKKXy3X0wKeuAFoFv/0qZXCduqBa\nlKtFrebFJZjs1xYK6i7ClDqBNibaKg5tBZMeqeN3VoP9CnghR1NTPodqdUodDYbLy9FKnW6/6kqd\n+/oB4+o3n3wSmKyryOKD1hhsNqRov+o3HfKsDEqdcKWOViXYfh0b8wb7NfAvyTWpKXW0MAIQIKTx\njNd+LRNmQKtYQW0snlKnK6V9jxmKs0yYi20LqnMvLanSMoS5fRV1TQEoNLTzGyOmbmysR6WOPwa9\nf+WVwEMPASecEKrU1RGs1DmOale57K+Ny2Nmde4KrELl1sv7ACrRo1JRpaQefhj44hc7p6hDQFdW\nusaItihCooD5NSqv7zBs8QrhuiDe+NBD6lG3X6kE03e/28O+9MF+bYoymiiigu6xXB9bAY/87N6d\ngrLd1Tiz/boLG1EuqwzpX/1KzV0BYH657Pfm3Q4lHadzPkutjBIlAN/xXP+AkppvxUvRJqWOFArt\nPp8nJCF1X3L/TPiC+2ehneymRupoPC+XPe4RNDnrl9XXbMLL/jQodU5hDHxVcek4mEAVBUi0xifR\nRtFHHMJi6gBv0Jue9sfBrkqp4+t5JUyU8Cl1U1Od12cr6pjcdx+wpq2szTUV800xNfuVfpAUh5tu\nUo8GUkfg9mu93h1TRwSeAsMJ48Kv1HF7zGiN9WK/9lDSRJYrqI9HK3VABqQugVK3dX6y85ZTYErd\nfBFN1wQpVJf9X0qo1MW+CRuuSR+IQKxdq4gQ4JEkrtS56PQpF1ypW2HzI33SxsmP3pRVkzpuv/Jx\n9uijgYmJTrtW4DZqZaVrjGgV1eCzZ0bZr4fjya6wOj0rXyd1J57ofdZU6ScUfbBfmy3h30cGkyBO\n+9NuR9ZbXj1C7FcinJs2eULX0rLw3ySI1NXVsZmaAkTdXb8XDto175ilptS52PiQGiA34wy0x9w2\nUubPiJC6M+FasQZ8G8Bvrr45IwDtZDtky7hXv2mN0aDruF+qkONoSp32w82S5gOzZc6a42og9ZE6\nGowMJU0AT6njCzEDq1Tq6EPVavCC2AGJEoUApW7GLcZ782bZSV0XDXPxs9TsVzpwr361eiSmZbBf\nCaExdRWJMXgzWw6q90SHjZM64zngg53p7hUWU6ezlDD7tVSGMzaNFgqYxjLGit0H2RRTF9ju1SAB\nqc+whr4AACAASURBVHt6j5nU7dpb6pA6UVXfq1KiUUBMHR8DeExd7P5mCInooNlU+1Uo+M+Lbr/G\nUepqtc7iGpOTfvEsitT1fO3o5X0A402V2uUjPLpS52Yp75lWpO4wbAkkdQQ9po4v8kBqXmxEKXVx\n7FcHPZE6oMc4wCSIyH4lED9fWoL/JuHWECVSNz0N33Eqrqj7Uq3mP3x9U+qo/Y6DDY+qejybcQba\n5XFvn4CRIXUHIsB+BbALwLMC3tu/oJO6gj+mTrdegXSVOgpQ7ih17XbXnbCTuec2RDSdDiFoTswA\nQH6UumrVO4hRSh2RuoY5UWKyoI7JnTdVO4ktQfZVavYr7dfpp6sDc++9agoaoNRVMY5SWQQqdeNF\nBwW38pBO6sKUOmNfi7Jfw2Lq6MSPuSpwgFLXRBGFchGVMYF9UAP6rNjX9TlT9ivfl74hgf365C6P\n1DUEs1/3FuHAvZZcUtdRuvTwh34lSoSROtNMEgi1XwOVuno9UKnT7de+K3Wc1PEMLBdG+1W7ntsF\ndV7mJjxSp69oYyJ1nGRzMsGvoViIiqmLY782h4TUGbJfCTMzrG0GpY4u7Olp+M5hua52ZkFb6KFv\nSh2dh3vuQbmxggdxLOaw0VPqCCNC6nYCODHgvRMBJF3saTSh26/Cb78mUer6QeroGuuQOqArLbtF\nsxB3QPGRurEQpS4hqeuLUteL/dowJ0rQMdn6IBshApYpSN1+nZkBXvQixcBvuSWQ1NUwjnIZgUod\nqXGAidR5MXVLS8A993jvRSp1SbNf6cTzArcEjTwUi6pP8PVfdeRRqXtsOyd13v7t3MOUOtfX7tyE\nY2a/Jp5EhNmvppkkYE6UoK+EKHUmUlcsqjanotRF2a8ujPardj23XKVu57hH6nSiE6bU6aePoiVi\nox/2awipM8XUZUrqIrJfCT6lLorUsXNYqqVM6qiTuid2M85QH6mMJqn7DoAPCCFO4i8KIU4E8H4A\n1/WzYUML7WTTDP4H32thxw5zPbQo+/Xd71bLyppKZUXBcYACWiqo1sWdN/l/qFXUlLpWs0MIGiZS\nF7KiBOCRupkZP3ntu1IX034t6kqd+3qlrU6Gj0QEKHWp26/lMvDyl6vnmzeHKHUTKJWCSR2pcYCB\n1Lm2bL2uKv0H8ZcOkiRKhCl1gNFiAVTbSyV1M5qHWlViraGOuR5TRz/H+86f/znw/OevYvkwraRB\nFKl7fAcjdYwE7at6pI7QUY/SqlOXlVIXQOroJ1JR6mLar3Fi6tpuTN2O8qFoQ+BgbMXeHQ3g7/5O\nxbXOzUWSulUpdbr9et11ys+98Ub1Wgr2K6/hpieF9B0R2a8EInWLizCODcIxK3WVhp/UUbJs3+1X\n98TeBDUmd4QPwoiQug9CrRpxlxDiFiHE/xNC3AzgbgALAC5Oo4FDh0oFtTHvpuW4M/hatY277zav\nXBCl1F17LfDAA8AjjyRvji+ezkWh7lfqHC2mrtjylDqnMsRKXcd+rRnt13JTHYc4pC51+7VcBp73\nPPWclrmgdSDZAathPJzUsXPdlSgBT6nT1zJftVKnZ7+GKXXkvcCv1D3prjR4dP3+rk3pSh39PG/3\nNdeosn96KY3Y0Pcxwn5dkurG2m4DKy1v/1oodghq5+t0E465okRfSV3QcilnnaXq1tFkIiSmbhHu\nOavVOmLT+Diwbh3wspcBv//76jU++cksUcJFLFLnKnXVZhmP4GgU0cbkw79QNSKfeAL48Y8jY+o4\nqXv88YSLDOj26w9/CGzbBvzoR+q1mParz2JmyJ396jLKBczGU+pcUldoOgBkl1I33lpCu+2RukMO\nYb/TK0yzWzfL9QGoMXkklTop5RyAUwF8FKoQ8fPdx0sBnOq+bwFgadw74XWX1BXR8o0xSWLqqMP2\nokD4Ml9d6P87Bb/9Wmh7pK5eDlHqYpA6U6LEqpW6qEQJzX4tBSh1hUYNhYJG6gZlv5bL3uBGU2va\nqKbU8czprpi6MKXOfa9a7S6MbtyvftqvvCNopI6UOrI6Tlnq9rR0kmNS6migj1j9KRj6PkYodR3y\nAGDJ8Yh3EyVsUVUhVRtR7sTYpVanzjDR6iBouZTXvQ7YulWxMiA0+3XRjXeUyys+jlgoKFHjqqvg\n249BJErEsV9JqWs0vP72ol9e6X1g/fqu1QlmZrzrrd3uJnH6BCkUOqmjRlPnHTX71d3fKiaMSl0X\nqZuY6ByDChpdSh3VqjORup6LW5vs1xV/LGwnmRBQFnFPBRezQaIV+aSU81LKD0opXyqlPEZK+TIp\n5YeklN1BMPsxFse8AcdxB0cidUmUOupfqyF1JqVOL1rZSeYgpU62OipPtRii1LGS/kHZr6ZEiVVn\nv9KBaLXMxEK3Xx0zqRPVKg45JEdKnU7qqGOE2K86qaMldQCP1C27NwB6z0TqjOegX4kS2j4E2a90\nkz1pX7enpZc50ZU6ng1HQmdihElLy/7SJFIIb+k8AIt1v1LnJ3UVz45Na0WJXpQ6wF8jjF2sjtCU\nuoJbamJ5pcvN5T9hInXUjfuaKLFKpa5e9/rbWU9d7m2q2uy6FoiA0L7RdqhgcaL+xtvTaHg/RsXx\nRin7tdnsDDQUC0wIzH6dmOjcICpoqPmfRupqNY/UrV+v9llXUBPBZL+6x5WOc7PMbmQ5VumAhKTO\nIh72VZhSp5G6pIkS7bZ3P0lNqSuy0dm9m1Bc07LQSF297h+dm0202/7rIsp+7VudOmoPIcB+LTqa\n/UqsqNXCEYc6sZS61GLqeOFCOkC6UpfAfqVyJoBH6ijIfcwl9/ohBDJW6qamOkyA26934YWoYhyb\nVn4FPSVRJ3W6UscDp/um1JnsV5dYOOVJAB6b2cdIXbdSV/GUurSzX5ModTrYOZIVLVGi2K3UmX7O\nROqoK6Rpv/KbeofwLC11bVQypY7ipcbZRKi+3H38gkjdc5+rHhP1tyilbpSyX2s1dX+AQAOVaKWu\nUPCVcOoodXX/mMZJ3eys9ltJERRHO6qkTgjxbSHEKXF/TAgxLoR4lxDiL1bftOHFQsk76RRAXUDb\np9TFtV/5NdtLpp/jRJO6BquxRYPKAVArLBAhMCp1ANBsdt14guzXvit1gJ+d6IkS7saLjSqmwIpr\nAZ2B5KhDaomUutTs10olkf0aWHy43R1T1yF1Mth+7UudOj5Ahil1bNkwrtQ5qOB2WqKNrwaPaKUu\nFVJH56bd9g6YG5ldL0z6PrpQ8zp1C8VOfCDQm1LXc/ZrUqWOg83AxJj/Il0hUrfSrdRxhJG6Vduv\nnNRpJU14f+4QHkOl3XbZU+oewdHYgQN979eWokkdTbKPPlo99pXUjZL96o5jNTEBQPh2jYbh5WVA\njrGJnxDdpC7EfuWkTrfNY0H3bIOUOm6/DjOpA/AEgNuEELcLIf5SCPECIYRvKiGEOFgIcbYQ4isA\ntgG4ECp5Yr/FPCN1NWmOqdso5oDt2wGE26+8o6ZlvzYK3bIhKXWLMiSmzm2kfh9JValbXPQTDE7C\naCm2QhEPPIDOIswl3X5ljTnioGqimLpU7dcgpS5B9isndZTtSqSO3uNKHW2yL9mv3P6mu4tJqatU\nOu9zpQ7wLDG9VkQmpC7IfuUHy7WOV4Sf1M2vhCt1PlI3qOzXKKWOk7px/2eXXVKHlZVQjmgidaF9\nLA5i2K+c21Rp1VrDRIQrdYDw+puL2mJ3MWid1FFzaGGORP1tFfarlCoJqFbrPfs1U6XO3XBdqA7A\nCWex6A3FpILJiQmVn5ClUmdS59nixnScndKIKHVSyr8EcDyAOwB8CMDPANSEEHuEENuEEFUATwH4\nTwAnAHgHgJOklHek2uqcY0+BK3XmmLp/uPElwEknAc1moOLuOP6O2i/7tQh3dQtXRfTFz7iDCil1\nC+0Ipc5xuu6FNEFOJaZOn30b7Nevfr2I448HrviGmyjRrAUqdUc8O55Sl0lJkxgxdbr92qXUye5O\nQpmLZYNSR+FtUUrdvr0RMXW0agGAjvTG265LtgalDvAsMb1WREEbqejn6PRzUtdzTF2Q/cqtV/cO\nstRW/egAd+34fY2YMXVpZ7+G1amLUurY+4VxTakreaQujCNmYr8Wi2q5M94+xm0kCqgXzPtKSh2d\ngk5/c0H26zHHKNFICI9L6hMLsl8T9bcgpY4UoxD79brrVIL8pZcyUqfFeubKfvUpdd18lU4nEaY9\n1QkcdRTgFDxSNzUpjTF1dBtYu1YrZJwUJnW+XgekhFMcQxtFXxsB5J7URRr4UspHAVwkhHg3gJcC\nOA3AwQDGoQoOPwjgRillr0PpyGF3wbMGam3VQcl+rdWAEhwctPQosARg716IjRtRKpmFAt5Re7Vf\ndaWOsIgZjKPuHwA1+3WhGW2/NgOmBtPT/ptxX5S6vXv9rxvs1y1Pq40+/ITyKQutFg6kxVDWrVOP\n7p3md8+s4pdHLgCPub8xSKWO7hp00g0xdbr9qit15Vb3ue4oda3uRIk1a4CdO6Nj6uZ2trBGf19X\n6uj/YtE7yaaSJhqp40rdrXgpWiigeOed6obnknD9hjrllU0D4Cd127ap42KyokIRZL/ywmzunYhu\nqgceqLokLwHSRAk72AI7EoX0s1/7oNS1xyc6s/zipKbUlVSihBi0/XrJJeo8aB1C4zaoFSYx1u6+\nFkipo8v8CpyPk3Avzn3OjRh76tEOqdu4EfjYx9SmqR/pfOuoo9TjqpQ6veEhSt3DD6vHBx8ETu0x\npm5hQXWR1JI3+Ul21UdKKNKvx5kZNfY0CuOYBLC3Og5HAvV2BWUoUrd2uumzSKexhMXFPip1uprb\nbHaOqVOeBNwhoRN3Dgw/qSNIKRsAbnD/LEIwh2D7tV4H1oAtg7SwAGzciHLZXAJgtUqdKaaOsIgZ\nbMScrxq+rtTtdaLt1zBSx0MWslLqGi014K+sQN1RlpbwHKi6Q50L0r0jrZuo4hUnznukblAxdXyN\nV33WrtmvXMnpInXt7k5CpK7UUu9x+zVMqauttDv5nRPlBPZrlFLH7Nc6xnwfX8QabFl7Mo6Yvwe4\n4w7gVa8CkIzUSanW3T7iiO4mhyLIfjWQuqp7U+0cP1YCpImSrxjxOuwOjqlzn/dNqaOsJT6bCmNh\nDK2yR+r0mLpq2d3RavJEib7Zr6US8IEPGD+iV5ypFSYxiz1dn5OaUrcPs7gQl+N3jj8fz37qUTRW\nVKOnp4H3vMf/Xf0cHeaKsVu2qD7Hs4ADoQez6ksjhCh1tI979/YeUwcote7Zz47R1l7AT7K7YbLD\ng5S6WkG9vyLVI1fq1k36x+NpLGFhIWX71SXaTnkSpIc0uFJnWKIuT7DZrylgl/RI3XKzO6bOZ/e5\nvdM0c0rLfiXQzb6O7pi6UFKn2UdBgzW3X/la4qtS6vSL0BBTV28yUkfkzd2fDqmjhvEADf33GIpF\nNWjryVKrhsl+JQTYr7xOnU7qik53+8l+LRmUOlqVx3QOd2z1jrVsxiB1PSp1nNQBwEMHunFOzIIN\nInW0H/q9sae4uij7lSt1bkwdWT9cqWvB39j12OO3XxPE1CVW6kxfCmNhDA2mRvCYujZEp16lWFnu\nWalbNakLkZdWtJDZqhbzSJAlv1JHqDqq4Y1ltS2ek0Hg52hsTJ37Aw5QvxV7pQad1OnOQ4x9XFnp\nPfsVSNmC5X3PnZxWXbKmE046xnXXniXyR2XAKmhg7YT/RKVO6lh2YqPk9SGnODz2qyV1KWBn2zvp\ni/XukiY+UucqT3FIXb/tV1pAnQJZAUAW/fbrXF3dtUKVuoAbD18mjBKbgB6UulYrmEnx0dn9jNNS\n3bqj1FFTixVvBKDXq1U/IwhhzqlYsGGkLsB+5Tf9ep0RikYDBSdYqSs2k8XUbXvGO+ZtE6nTS57w\npc3CEiUM9iu/GT18kBvnxJIldFLXmeUblDqgx7i6BErdivQrdbr9WqlArdZAP8Xt1wTZr4mVOv05\nEFup4zcuHlPXEqVOMHuhuoJ6Td2skyp1q7ZfYxAeiq4IJHWaUkdYdtwEiqqn1OngfZD2/XA3yTl2\nf9MnjXpDYuwjMCSkzkVVuiv4BCh19D7ZtA1G6mbH/MdrBov9JXUh9isndb5kQkvq9j9sb3onfV/N\nH1NXr2trW4YodVnYrwB89itVXKc27qrGiKkLGKy5UhdWwiWS1IVN8Q1KXZf96mJlcoPHLOlOo5O6\nkDV/UrFgOanTR2SD/UpKXVCihKn9HVLndGe/EimJVOqcGMuE8TqBuspYKnnHPkKpe+yg09WTW27p\nbCOuUkenNXWlLsR+baGoPsZIXWbZr/pzIL5Sx25chQmmPIoSRKnYSaxqLavOk7lSF8OapMSVzjJa\nUIWiO88DlLqVuvptZyWY1OnnCPBbsLGgK3VhG9EQh9SZ7Fe91EeqpM5wklcilDp6n5S6egipy8R+\nNZC6esEqdfsVvv51FX/x61+r/3c6B3TeW6qq0TnP9iuvjN9ySd2Eq+4RqWujiBYK3evkRNivQRUt\nOCL3K4z1GRIlTPYrAFSn2MUYZL+GNEbPgL32WuCG1UaYclJXKJjZb4KYOlP7dVIXV6nbuc0b8Nqt\nGHXqwpQ6IfyL/waUNAGApTUHA0ceqTr/vfeqtkeQOgq1PP549dgXUhcjUcJkvzZRCiZ1Me1XTo5+\n/nPgX/81ou1h9mtMpa7BlLrihF+pK5W8fZbL6niEKXWO072kW2ylrloFPvMZb/2tBPYrKXXLklln\nk7Od54FKnUvqmtX49ivgkbovfUndByIRRepSUOr4ZQlkr9StuGRN56t0jB/f7lfq6m22okQlZftV\nV+q4/Vq0St1+i6uuAj7+ceB+dx3ylbp3B5qruTdUtLC8nIzU9UupC7Jft+JgAMB8cb23zbLfAtyx\n7I1uHUWPNypCqVu/Xt3P13ub6K9SZ0iUCLJfjaSuB6WO6ge+4Q3AOedEtD0K+g2L33iTFh+u10OV\nOrJm4yp1O7d7A16kUqcnStDdlZ94Xog4RKkrFuEtMu/G1cVNlHj+89UjTbASIY79+iyV1UpFa032\na0epe+1r1WcLByW2X7lS99a3Aued52U/GhFHqYsgdVR6AvCTunYAqQtT6miTXLSNrdRdcw3w9rer\n9FMgkf3aUep8pI6VPynzOnUe5pdcpa4WT6mjrky16n7wA+Dcc9VSuqGgDhukyCUldSElTXhZP8Cb\nY2iLtfQXhpsBuQt6Igkd41sfUdfSHFQCQo2TurJ7vNwSNtNYwo4d6vxRaU/az34rdfWiptRRSSOt\nnE7esGpSJ4RYH/2p0QYRd5oB1evAqbgDv4vv4vEVdRMgpW5hoXelrl8rShAmP/RenI/L8aMNHjNZ\nPPoFvs/sk4zUEXngA0kIqZuaUvfAa67xKw2JY+ri2K9sxtVoMlLnU+pY1hK9vmePfyCKEVPnOGpg\nbDb7MEDqpI7H1QUsExaq1BlI3TkXqFFPOOpAx1Xqdm1fRaLEn/0ZcPnl6pHAkyYCSpp0dvsMfxFi\nnswphJ+TAx6pO+ss9XjHHT3YfXHs13PPBS6/HJ8uvRNAcKLE9DSAv/gL4MorcfazbluV/UrjimGB\nhK7f6XoOxC5pwmNrSxMlpcwDaBX8pE5Uo5U6zl0SkzraYco+SGC/0lyC6ggCQIOROslWlACUIAwA\nT25TjWyGxNSZ7NcLLgAuu8y7B+ixnV3QM5TCNqKBkzqaqIWROp170LHRM4X7BinNMXXuRFQHHeOv\nPPPbOA9X4l+P/BAAYNGt+ThdZnU33cnhNJY68Yuzs2osoH3u5f4Yl9Q12wXgO99Rf/oMM2eITeqE\nEH8mhPhr9v+JQoinAewUQtwphDgo5OsjDcpwprGoVgPuxKn4Pn63MzBSTF0cUkedNG379ZhXHIQr\ncb5vVrvrOH+FdR6b0iEPvFEB9uvEhNf3X/c64BS22BztK13UkRdj2AfooLAlwnwCCyNJtWmDUrdj\nh//3QpQ6br/S4K27aYlAS2uxNXd9pC7Afg2rU2fqJC89K5rUmfZhbkcEqdMTJbhSNzsLnH++twG+\nH5r9qit1pRL8Sp2UvnG0WAwmdUcfDRx7rHr97qTr2sSxXycngfPPx662uskQqaNz0IaAREH17UIB\nOO887Bg/PPEyYURiWXH78OskTvZrAqWuPF7qZPG2RQnFYrflF6bUmUhdbPuVdpiCwXqwX5daTGUx\nKHVUNejYY9XEc9+KanirFmy/mhIlpqaAiy7yVLDIfYwidTGVug6p0+Qp/nWd1JGKmRqpCwgApYmo\nDjrG88tl/CvOw7NecIj6v6o+PDvBJqkua57GUie0gg5h4kkDR4j96iN1TajySq98ZQ8byRZJlLqL\nAB87+EcA81CrSMwCuKSP7RoqcKVOSv/gSwNjEqWOF+tMY5kwAIAQKFXcmTi7Frce6VVYr6OCFitl\nWJfM5iMEKHWmQZFAFzgNwH1R6liQvk9gYSSpPsNIHd2R3KXavPz6eNmvfEYeFSYTCNPNKob9mlSp\nI39CNBooFtU4Rv0qSKlrt4G5ncx+TarUmRBTqSsWoXytDRvU+Xn00S5SRz+l26+zs13ObXxE2a/M\nz6KP6vZr211Fkff/YjF5TB3n+STGhN60+qDUcVJXmSh2xq4gpS4uqUucYETHmwiLHhQW8hVSb5bY\nRLU+3q3UEcpl1V/o/DTryexX/jtAjH2kA9MvUqdlQRQK3k/om0id1AUw2iiljnDSSepxfoWROhqP\n166FLBQwjjq2bXHoJQDe2JGqUtfvovMpIgmpOxxq9QgIIWYBvBLAe6SU/wzg7wC8pv/NGw5wUqdz\ngrikjt/UeLZYP+3XtmCnu1QylujYNXEYqm7A6hj8G+QZfh30QOroAo9N6uIodYzU+e7F7M7jI3V0\nkInUubFScbNfuRXW8yBpInUx7Fdep64r+9VESql4V6PR+XlOgnhTCDt3+suYyKi1X/VlwkwIIHVG\npU4Iz4LdvNlH6gqFYKVudtb3tWTQ20/7t6wtMcc+qtuvrYKZ1CWNqaPvAd4YEFup67GkyUrbe788\nwZQ6jdQVainbrzqpS6DUTU2p3eyoigBq491KHW/vGWd456fVI6mLRVzbbe/67Jf9aggko7YFKXX6\nIhZ9A+28JsvRRFRHEKmjmLo14w1f321Pqi+UHbUDqSh1jNTVCqNP6goA6AicAUAC+Kn7/1OAGzm8\nH6IfpI6PNXTv6Jf9SkpdtTTjvVEuG0nd0hJwD5hXytAvUpeKUrda+/VAt/v2oNSlRup6yX4NUerQ\naGBiXPlOZD8FKXVbtqiQgQ76odTFtF87XyfJ7aabApU6E6nTnNv40NM1TfYr/AWoOyEE7jmQhaLv\ndUD1myQxdbwKDH2FN8eIPhQfptISgF+pCyJ1qduvulIXs/jw2JhG6sYYgdLYRankV+pkXR3HmRl0\nwUS8CbH2kZ+HIIIdU6nrhMWsrHSpTdQ2nTcSyUtdqdP2jSaiOvRjfOKJ6pGupZmxhi90QE6pi2oa\nql/Q/vVVqWP2a63YrcwPA5KQuocB/J77/BwAt0gpqXscDBjWZNlPQKRu1y5vMKNO3GYxdVIqDpHE\nfu1nnbrOotwAUCoZq9YvLQE/x/ONv2UidR+9xMHOnd2fjaPUkVXSbgeEY1xxBfCnfxrubxqUOm6/\nynHvRtVYE2K/cqXOxASuvBIf23E+BNpdpK7nmW+E/dou9lCnztRJxsbUF6TE1Lh3oAsF/wSCY8sW\nNREhGJW6sOLDJiRJlAB8yRLFIvAmXIHLcT7KhZavIk2t5q31Oj6ulgd79rPVJOvBB81NMSJoXSuN\n1PFyfMSXSamj4t2h9mtCpY6QWKl75BGVok1p+VFKHSd1k36ljsfUFevJlLrE9itdULpSF6JicTFV\nV+oaxYmO+yANSt1JJwHFivrtxflkxYf57/CmGkHj2MREIMH+8r+UceON5q9zMiZRQL081f0Ga5tO\n6oISJdpt4MILga98JaTtcUDXDw8KRTylbmbGKw/jI3UsdEDMmEndqpS6EPu1uh8odZ8A8A4hxByA\nNwL4Z/bemQDu7WfDhglcqaM+SLMQrtQBKgQiLqnrd6LEctFP6kxV65eWgM/gbQCAa/E632+ZSN3t\ntzTx/e+r58ydCiV1Rx+tHp/3vJBZlpQqteyrXzUXg6P8eF2pY/YrADTL3o2sMcuyX+kgb9umHjdu\n7BAf4+jwD/+As+evxHF4EI6TjVI3vxgdUxen+DCXwtaMewd6YiL4+G/f7id1iFOnjrMdE445Rp23\no47q1IJ4GM8NVupOOUUdm4cfxris4oO4BOfjSjwPvzJWpKFBXgjg1FPVc+IzsRBUWI3S7dwMPL6b\n1Of3YB3mS+uxcpBa5f244/z747NfY8TU+Y6D/6NmmEjdF78IfPObwK9+pf6PUupa3vtcqZOaUldq\n9KbUpWm/8rBBXambWxrv1EATBqWuVAIOPVL9thMz+7WnmDoidePj5irBAO78RQlf+pL56/o406iY\nLdhjjlHt37TJ//mgmLqHHlKJ6h/9aEjb44CfJ3au4sTUHXaYOr5TU954Nl3x26+FaXVOp+C3X1el\n1IXZr2LESZ2U8usAXgHgowDOlFL+J3t7B4DL+ty2oYHJfg0idQCwNmKZsCD7dbXLhC2LePbrr3AC\nTph9Gn+E/9d5XQgzqSuhiX371HNeFymM1J1xhlKC/v7vQy5IXpTLpBKRb6gnSjD7FQActhCzM2uw\nX+l7hx3m3aVM7Nk9EWU46dqv7E7ZLLiva8uEhWa/mkhdudz5jZkx70CPjwffjJaWNPs1KqYujlL3\nuc8BTz2lUg7f/nZc+pYn8S38YbBSVy4Dhx4KADio9gQOhSpGOy1WfIkSFN/IlQkSXhMVWqV95LOq\nVkutbAEAL3uZb7c5qWtgDOed9hDW3XcDnngCePOb/fsTmP0qJdBqGUmdfhgTZ7/qa1dFKHX1hvDi\naaeYUlc0k7o4Sh2/v/dkv/IyGSGkjn9EV+qWnLHOagWmmDoAOPK56kkZ8YoP92S/0kEJUeocWmOt\nxQAAIABJREFUlI3jSbvdPc44Y2ZS9/3vA48+6ilzhCD7VU827hn8+mcHKyr7FfBUutlZjdQxy5oI\nOZ2jVJQ6x+nIviMfUyeEeAWAX0gpPyml1AXijwNIK/wy95idVX14cREdgkMd1kjqCoOxX/cJs1Kn\nkzoAqG84BA1We2tmxkzqynA6gwEndaaYFI7nPEcp9IGkjke500HloCs6xH4FgAarveWsYSUV9Rvc\n4Yd7A62JGLkjXxGtzGLqWsJsv4YqdaZOwqQwTurClLqlJV2pS1h82IRSCThElS2AEJibPExvHgBN\noXJH++fuuR1lqO1NiqpRqeOB4XrtyFig/eE1hX75S7WBww/vEEy+m1ydbsysh5iewuGH+wut+uzX\nRkP9gBC+u1EqSp2+rEZU9mvNq+o/NhkcU1d2Msp+pXouUQow/OdEV+qWmp5SZ4qpA4CjjlVPSkgx\nUSKG/eqgbIw2MQ1JToBSNzGhQoR1IhWk1NH2eirey8FJXQ9KHeAndZMlv1KHAFKXVvZrddSVOgDX\nAzg+4L1j3ff3Swjh3USeeUY9Tkyovs1j6ghrpLYsVb2eif1Ka70CCI2pA/wLAQD+i42jhKaR1IUp\ndRyBFyRbzD2U1IUkSgBA3V36aBHT/rsQT0gAopU6Ruqysl/bBlK3WqVuuuIndWFKnY/UtWNkv0Yl\nSmjg92qjUgd0Rvvj5jySPyFqofYr0COpM9mvNLmg7AuY7Vegu0sRfEoddRYuYcUkdYmVOp3URSl1\ndW/9TR5TJ12ljoLzidQlzX5NrNQBwN693g/pSxIwcD4RqtRVzErdEceo10to+opbmz4LBNuvofsY\nw35tohQ2p/TBGQ9fH0snUkGkjrZnyLlIhhD7NUqpO/xw9dhF6nhyifubFbcqQ9rZr/sDqQu+ooAx\nAKvpDkMPuonQcoXUB3WlrgQHk3JFjdikjy8sGO/rjUZ/7df5NlPqAuxXImgDJ3WrUOp8pM6tvTWH\nDf6bpInUBSl1bL3b1JU6duPtKHWa/Zp07dcgUsfvLSalLtJ+DSs+HAOmpWK7vu6SumN3eiR/qlD1\n2a99I3WmFehpckFJG/BzV07qgjiTL6aObuyVSiSp0w9jIqWu0fDiRaMa6KJW80hdoVJCW3gxdTxR\nYqy5HPhzfY2pAzxvPcR6BfznRCd1C/Xxzn6ZYuoAZTcDSgWanjbzx7BEiVj7GNN+NSl1pjGmGWC/\nEpIqdUHbiY0Q+7UXpW6iOACljmW/DiupCx19hRCbABzJXnqREEK/XU8AuABAL0tojwx0pY76oFP1\nk7o1cAnKmjXKL9qzxyV1XkUYuqcsLvoTMVdrv8634iVKAN3xGGvWJLNfV0Xqtm9XmXuEKKWOp89q\n9ivZLl2kjt+RhFC2YJBSx0Y9InVZ1KlrUUydIfuVksu6SJ1JJWOsqVelTiSJqVulUmeyXw/a5y3m\nOgGz/cpJnb7KS6IGcfuVSN3/z96Xx0tWVed+p+aqO3Xfvj3Q3dyGViZlngnghIBDRBBMMEoMoj4f\nOMT4jAMxaBKjEhVf4hCNitPPKRoTeY4YZRYkoMwCMvRA03Pfueba74991jlr77PPWKfq3tvc9fvd\nX92qOlW1zzl7r/3t71trbQNTR1JfJiO7oB9Tp8ivnKmjE02bqWs25epSz+IO2yas7o4XZLMS1AmX\nqXNAXbvH2a9+TF2AcTxRLAJTDNRN1YssUcLM1NE/ObR8fVdQTF3oOQrhOo1SSb141IEQE9Rxpo7u\nNUOjOpDyi6njvzczEx4642sB8mvJwNTx+cII6jJ1oM7Uij4zdXxhkHjXoHmwsCX16yELCwv771+g\nMnbCft4C7JTJZ6jpTB0Fodc0pm4ZWFQ39UqNqaPVP/kzsm7l130+oG7BMXW33qoeFATqHn1UBpCc\nZ2fqavIrVcnfhZXK/qHKDHzAAW49DMDL1DEv2M+YOgcI2BNAGxk0kVeYumaT3Zd6Xd0klYwxdQP5\n6DF1o3Hk114xdaTLMCtbNeRy8lTbbXf/3dTl14kJ+Tc6qqSzcjBqWXK8zszElF952QcN1NH/iZm6\nVsuVXo88UsYFAqFsF2fqkM3KmnsdL6grYw65nP/6gb6Lnqciv4a0nXe9Ugl4mm1vyJk6v0QJej0q\nqIstv158MfBdO/FMZ+pGR52OGkd+bZXthk5OAiecAKxdK/cmtU0HnhzU0e6EgOruuoqr8wF1NZQw\nZLh9dK9qNTOoK2YaQM3uZPMQU8dB3X7D1AH4CmSBYQvALyGB24PaMXUAjwghnrF16gCz/FooeGPq\nnHImAaCOJgfyZ9ms7HtJQF271sRy7EMHFrY1WUkPA6hrt4GHHpL/H3aY+j1+TF1PQJ0uG5lAHXko\nKkR27bXyMZtFk33X0wedhhWDh+L7Mxfi5X5MHQEHcrT6hdZAXS9j6kSx5KyaHPm1UgH++I/xw/8e\nBqqWQvIALFaSp6/lcmpKoH2hK3lVfg1i6saY/GpFAXUJmbooiRLcyqg6cU+zs26pwdTlV7Jjj1XA\nsn6aBOr81M1XvhJ47P48sA0qU2cAdbRFGP9+slhMHYG6o48GTj1V1q1YuzbgC+Tk+j1chIPXNrDi\nqKOcQsoE6qbtSa6COd9zXShMHZ+QJ6pF/AAX4ITVW1E/5mRje+mfseEmLrrI/BtdlTT57/+Wj8PD\nskPwPafHxpyOGoepaxOoe+wx4Le/9dTv0XEw1Tym2o76rixAl6CO+zN2sfxi6gCJdbdulYlzgHTr\nTxOosxpAPeM2XmPqaAroVZ26/RLUCSE2AdgEAJZlvRDA3UKIbhOf90vzY+r0mLokoG7FCrltU5KV\nSGViG7LoYCvWKfshIp/3JErce6/EBc96llrjiLL8/ORXGhepgTp9dAYxdbpp8uuewQ24/EUP44c/\nBM7zi6kj4LAAmLpOsQxqZsuyX7cs4Lrr8L/XAKhCYeoAoIoKmvky8rWqezNHRlwKi6GmgVzC7Fdd\npgBUh8gTJWIydYGJEuTtmVGMKIE6mh9TY+r0GVtjC3VCkph1P6bu8ssBrMoBr4bK1BF600AdWVfZ\nrwTqxscjFyCr14GP4b049O/fizcMy1g6QII6HlNXwZyvkpt6TF1Epi4oUWJftYTv4nIc/cHL8QJt\n3yMd1J15Wgtn/qP5N/j9iC2/0hubNkk08vGPu+9RZ0U8UNchUPfkk/Kx0XCrcGttpO5Wqch7Mzfn\n9tdeM3V+2a+AuxYnGxkBNtnzTAENONuW94qp0/0ai6lbrKAuTp26G5cAnb+FM3VSwXZA3bJlkeVX\nkkKTMHUjE7JW1WaMu8HagDGmjseE6w6hXPZn6siSgDqaHFIDdZr86lsRwQTq/BIlNFBXq6m7SKQJ\n6lo5VqdOW3PRNdKZOoDta8tBHRln6nIqU0cSol0uzbHpaTVRIhJTF6H0BLdITN3goCfAs2xVnfYD\nLrHLT3lwUH7n7GzwhiTGBumIRWML9dMMA3UA3Fk/JPvVF9wiZvYrB3URTd8iVtgnKHKq/BqXqYsl\nvzab6rnEBHXZLJS2AsBcp+h8hd41dfk1qJFdya/6WOdfwEBdHPm1rYM6QHFM/JLRz1Ff5d+XGlMX\nIL/6MXW6cflVgjpWVboXMXX7IVMXp05dwbKsqyzL+r1lWXOWZbW1v0V02ukbjUuetS47m4W2fZmz\naMdi6iiutitQNymdexCoow5LCadnnKH6HAo3CwN1tBsV0COmjkfwRmTqOKhTws34rKQzdSHy6969\nvm/HMwOo48WSdVDH98vWJ6fa0Er1hWEWP8mosHJWZero+wD1HuhMXSaO/JomUwd4gElZVJX2m+RX\nXmYoMlvnk72n/75+mjRRBiaX0j3m2a900s2m83Yipk7fZ09n6iKaZ4tYW35F1gvqwpg6Os3Y8quO\nwMkJxpBf9+zR9n61kyS44q23N0oju5Jf9bHOb3QMpo67QNrgXgF1DJXxn+gLqAuQX0MwuWMc1OWF\nuvcrZ+p4CHSvdpSYFYsT1EXzvtL+CTKm7icA/gMylm7JbFupzanE1AGSrcuigww6sUAdDTy+8T0P\ncI1iI1M+oE4raSKEmujH5UWaf8JAHTEu1WpKoG54WAI6Wq0ND7txY/PI1OkgoWegzlI9YRBT1xhy\nJwbk8673pvpexNRl3WFbZrHj9bqdKW2/5sl+FeknSvDD+Uc8RN+GDcDvfuc85fIrYJZfATlXbtsm\nQZ1BxfVvUDYrLwqdX6+Yupjyq++kpSMJDuoMiSZ+pjN1TgMSMHWUjBlbftUHU4JEiR07gBbyaCKH\nPFrOvryUXGNqrzFrDD7HImbxYdOuGD5MXRN5J5KB/x5dllWrXBcoBm2ER6saQEFlUZm6fsivSZi6\nTLMBtOwxwgKAC2h4hAggJaauWpVflM2i1nEbvb+CuosAXCWE+HCvGrOYjY1LAGoQehtZ5NHCc/EA\nTsKd8kUO6iYmkGcKE699RYdSskSrFerfFBud9mfqyMEJISuIbN8uwemhhwL33OMeWizK94/xianb\niMcwiwHk82tQLKYI6oaGVOl1eNitGeMD6oRWp25uTtkW1jVTooTO1G3eLCdeDdRRqBr/jUgmBHDH\nHcCuXXJ3AhOoy5rlV74lrRHUDbMOyEsmaMwAZ+r8VrpCeOvU9SJRgh9OuLPRCGfqSlDlV2JO+Y4S\ngDsmd+6UmPCoo0Ka5ocyNWBkSpQAYoI6Pss1m8iVvS9Hzn41gTraIqwbpi7nyq9xY+r481jya0JQ\nx/HEzp32V6GCEUwpTJ2v/BoB1AXF1AWeo97RgUD5FZBAa3BQ3pP77nPB1qpVMi8CADoDBifrw9TR\n/z1j6u65xx2IBvk1CVOnTApMfs2jqbj/VLNfab6pVNDuuOzJYgJ1cYoPDwL4da8asthtlRaAOzDg\ndjZKlvgtjscl+IZ8cXQ0lKkjGxz0T8wMs+UzEtRtwgYPqGMPyvaWluWVX/1KmgxjCr/DsfgFXoxc\nzo2r8yPSdAtl6pQfY899fmC25i+/Kg49k3E9nClRotMBTjxRZg6yOBUTUzcbdYO8m24CTjtNll85\n/njprQHFAdIOGADQFO4M2W5LsJXJyPPQGQdlX1tKc+PfbV/oUsYrv+orXTr9YpbJryamLsXiw6yJ\n3o/boKpu97+SUJk6MhNTBwBXXQUcdxzwzW9GbJB+ge3twcj00yRJjMeUekzXJbWYOrpd/JwSM3U7\nd8rfGR72jqEA05k6ywZ1Vj4+U8efx5JfdVDHgUKA8Vu30a6sSlnhzk4YQfJrBLonMVNnKl0UIL8C\nbjf58IeBk05y+64yz4SAuiCmjvssDuoS7f96//0yQ/zSS90fti9IO5NDG7nITN3oqM8OOUx+LaCh\nhNmmWqeOgzotD2yxWBym7joAz4MsbbJkmq1fLyePu+6STv51r3Oz2NtwvfNeLId4ycuw4uKLgRtu\nkC9Wq8ZECbIDDrDT9OckqIvKggHA2KybKLEKO903qC6TXfmC2CeqeqCDug99CLjj3gKIaCRbhZ0Y\nwgwOwpPI5YCPflSuJEOqJyjfDaQH6urNjFJz1TemDgA+8QnpBKnUOkfO1apk1ABwao6DupERKVNH\nZuoefdT8nN38RoaBOia/8ng6wDvhWyt9mDoNMZlAnX4PaF6oFNuAfW6hMXVdbhPG2+H5+Gtfi//5\n5sP4+d1jeD8+gpJQmToyP1B3xx3yUav4ENwgHn+goUe93e96l/ytc88N+G6dqigUXI2y2cThhwPv\nfrdcVJFFjqnT3yAgFHVlZRsPXwKAA9Znge3A+Mb4MXX8eVfyK42RNWsCP8YXCF/+sgRDN279GB79\nyaN4Gmud97ph6hLH1JlAXQSmDnBrsN91l3xUQJ1pIgiJqaOFR6ry6733ykc6T3bTW7kS0IiuLh15\nJHDxJQXg63D3SaYTsL/kzFOaOPMq9zN6GFGc8CTl++t1d9w/Q0DdvwD4mmVZHQA/BuCpSyeEeDyt\nhi1G++AH1ec8po7sdpyKZ//fb2DFWrjeUwN1ph2sElHMQmBszpVfl4NVM9aYOlq50e/ooG7dOuBV\nF3tB3RDk0q6COeSyAq97XZwRFUF+5cYnKZ8Jqy1Urx24H/hb3qI+50wdX76yunlcfj3ggJigjgMF\n/px537rF5FfG1PF4OsB7LsV10Zi6ouWVX/UJiRx7qdBxQF0vYup0pk7HoY6tWYMfv/IL+O3dP5Dt\n0hIlyPQuoce56pffY6b2G8CEjl1POUX+BZp+Uvm8AuosC7j66uCPRGbqiG4J1IO9xhMNAWBwWJ5g\nebA7pi6W/KrT3rSwCpGR+a1bvx74wheAa699LT70E/eYSIkSEUFdLPk1DNSxjqozddRniVCKA+pM\nxGBP5FeS+skUUFcGGt7r5WeWBbzj3QzU0bVjTN1Lz2oAL1U/k8+7idNRfwtAMKjT1qyLxeLIr78G\ncAiADwK4A8Cjhr8lY8Zj6sh2Y8yN/WGFgvgA1B0m35Y0lvw6MYFKewbTGMQElgXKr3qojykewzRa\nCNRlIFCy4ufOxGLqOMjz0bpaBlBnjKkzGb/IfPkaAOroNyKZH6jj8mvGLL+GMXXlAzWmjjpRF0xd\nucDlV0OdOt3TUSMTlDTh7TB9PJt1sxiLBvm1WPSyJ3qcayioMzGNdJMD2h3J9IO1vV9NlpipSwjq\ndKaOJ0pks1IWayODApoYKJgbk7r8ShYC6kyJ17ofNYE6Z+j1W34NSJQAvKCOTFmoJGDqepIoQUk5\nZOymN+xg0Thx4IpD4oGeAfeI3oodV0eTA12gZ5j8+gbIbcGWLKLpMXWABHUOo8BKelOn1GJMAciQ\nokSgbrPL0gGWJ/sVcP22Dup0pk79xzUCdQBQ6swB8FnC+xh9pXJeUeRXH6qgJVSvPTsbo3xaRKaO\n5NdegLoau378foUxdYMHRUuUoBpPdBg/RGfqVFAXElMHuDcxQUkT1kTjx7NZdwurokF+NRG3sUGd\nqaMY4ghiluOTpg/qfN6dUCKCuthMXWCNFa/pTJ2e/QpYqFoVDIoZDOWqALwztX6aiRMlRkeh1A4K\nyeI1gTod03Yrv/LPdi2/UmfP55XOq8uvep8dGXFJpcxw8pi6VJk6HdSxeFFK/IrFnnFQZ4ipMw2E\nQkGeU+y4Or02Jf1epYI2i53eL0GdEOIrPWzHfmkmpm4iO+Y6BIP8yuOnAXev+UTy62Y3SQJAIFPH\ny2cBPqDOEEjjBXWjnmOCLLH86hPUY2LqfGPqdOMDm3u6bducf6n4MNAFqKNSLQZQ5+xRCaDRicbU\nVSpAaX00+bVgeZk6fZWryK+2ZRAivwIuqOsBU5fJMFDX8cqvqYA6EzIwMHUxQwe93wmooM5nUCfO\nfu1SfvUraQJICXYQMxjOzgLwJmGkFlO3apUK6iIydfye6Kefpvwaq/hwEFNXqShB1GFMXaUi3WK9\nDlhD6TB1qYM6dtOb2QRMHa9Ibyg+3FOmjmwRM3Vx5Ncli2mmmLq5CptpDPKrXk1hzRpVWnrgAeCf\n/slbSg1CAJ/5jBqMv8lNkgCCQZ3O1BkTtZiXaGbk/15QF8/oK//wB+BjH7PZ7zCmzrTktq3VUbt0\nYEydbrykSYD8SkYkTmRQR4VUCSiYmDrLLL8GMXVjY1B1mYBECc7U6fLrY4/JRBc63VI+hKnzA3Ws\nA19/PfCXfymTAB5+2PzxqExdkPw6H0xdv+XXXsfUeUqaUANYTctZIcMeBrPmTp+a/Lp6tfp6jJg6\nMp2oDGTqYsqvsbYJCwN1JS8778fUDQy4qqs1aAhB0Zi6I/Ag3oWPo5xrOj8HpCi/CmGOqbMvCGXz\nJ2bqDMWH/Zg6oAumTm+gD6i7/XbgiiuA738/5u/00SK7JcuyvhxyiBBCXNZle/YrMzF1ykxjkF91\npk6vi3vllcDjj8u0/QsvZD/2y18Cb30rcNZZwC9+IV+zGaansA5APFCXybjBpyZQV8tUkO80UgN1\n//Zv8nHHDuCTfkzd6Ki8ZpStarBmx8vU+W2Q7jE/po4xBiZQV63KBV8oE0geeu1aiXB4IVrbqoI5\neENMHR3Kf2vlSrjbjtB5+DF1wl9+/ehHZbmp006zv4Yxddkgpo6KKBpA3etf74LErVuBb33L/bg+\nERMu5afi/H7Wy9SFya/r17u7oXBi1NdMoO5FL/Icloip01PaOW3kMxN1zdQllF9NTB0NjVk7WWI4\nY67jk1qdOp4RkMmEptNHkV8XFFO3YoV0TGvWOI9zO6ZQFbLR1arsjvoOiZWKvBRPPgmsWJ2TN8sH\nlWUywN/jb3Ehvo+r9x4G4BXpM3WTk946KGwSa2TcGoGRjSaFarX3TB2NeX2sDA4aQd1vfgN89rPy\nf2X+XUAWZ635Inhj6kYBDAGYsP8CzbKscwG8B8BzACwHsAvAbQA+KIR4kB23HHIHi/MBlCGTNN4p\nhLgvRnvn3UwxdW/7kBb7BChMXRioo0XRTladBIA7c956q7upsz1yZyCXdnFi6ug3/UBd1apgCBOo\nwPUIhVZyUEd2//0ASgGJEtdf70yQL1j1IPI7t+J7a96Kke2PyHM0gDq6zImZOmYc3IyPy4mDfI8+\nb3uMUIUu6XFQ1y6gAwsZCNSFN6bOJFGOjcGNzZmcNMfU2c/zwp+po32LqUJBKeeeaxZttNvaNeTx\nKHNzbiPtg9pttdi9XrRZB0ef/7y8/4cfDo9xUFfoeJk6vfAwIK/LDTfIye3UU12i1Nc4MnjsMeCh\nh4DnP99zWKKYurVr5QROF6RQcH9vATB1nY5X4uegbp1cF2LKllyHhBkhp8bUcVC3bl3kOnVhoG7B\nxNStXg387GfuVic//jH+/GVzaG6XF79aNdeMq1SAr35VCjLj45C0HfdV2ofWWDsAAayrPeZ8HkiR\nqdOlV0BB8pT4lYipo0YuX67uJZgmU+cnv65fbwR1CXbf67vFiak7yPS6ZVnPA/CvAF4b4WtGAdwF\n4LOQgG4cwHsB3G5Z1lFCiE2WZVmQNfEOAvA2APsAvA/AryzLOlYIsTVqm+fbTEzdhhOCmTpdfqX4\nYAcg2h3NwzrQC7UacPfdchazRyvJVnFi6vj/JlA3J7wIptSOWoXX+xtka9cC2OED6vJ54PTTnacP\n4QjsxBGodoogoqbVlkvxoSHp3+bmzOyW0fwSJZjpoK5SkYfOzaUD6uoNC1WUMYA5NA0xdb7yK/1D\noM4n+9UE6ug7iZCkqhLFvArq7N1zXCNPRwsIjanbuxdKzUB9wtAn4oMOkn8m4/JroR2NqQMk60hj\nZnoaXmDKjaO1jRvdKrY+h8WSXy1Lbqr8ve/J5/m8sk2YyRJnv9JkGIOp49KrU+eLgTqaxCYg0fNw\nJzqoSxxTRxaSJMF34eLXzCS/plV8uGv5FQDOPtv9/7jj8GvWtlrNzCxXKsCzny3/AEhQx6uha4Ns\nxJoEBLCqttn5PJAiU+cH6kh+tRLE1OkHk4PrJVOn39Dx8UUL6rqOqRNC3ATgGsg6dmHHfksI8W4h\nxPeEEDcKIb4O4FWQbN9F9mHnATgdwCX28T+1X8sA+Otu29tPM8XUKfJrhEQJnakj8wV1gLuJqz1a\nieGII7/y3zSBulnhZQHSYOrWroV/TJ12MA3g2ZbrvRs2U0cfjRVTpxcfNhjtdZvLSWxmcpK+FgHU\nNRoueOGJEqFMHf+HB2Fq8muu479NmNB4+GJOlV8Vh9npuKtcfQVtN07feUOfMOIwXib5NSymjn+W\nlPzAivkR0Voi+RWQoI4sQkxd4jp1ZDGYOk88HWAEdZP28mmwHR/UxZJfKc0TCJ1BqRtalgraFrT8\najB+f6tVf1CnGHVsilnQQZ291/hYtUegTo+nA5RJjOpuxmLqslmzg+tlTJ2hjpgJ1CXYfa/vllai\nxOMAjkv4WRJlaDicB2CbEOJXdIAQYhKSvXtl4hbOgzljmJe45vub8ESJnHA+0zWou+UW53sBH1Bn\n/0hSUDfT8dJSaYC6chn+2a+aU6TDphvuxWm2pTOgST5WnTrO1IXIr+vXy++LDOqEiMbU1d37Ve+4\nr0dm6ug8fGLqOKjTmTrdikx+zaCj+lLTPqkaU0egjmLew5i6IONMXb5dA4SIDOr4+4FxdRHRWiL5\nFQDOPNP9nw/0tOVXshigzhNPxxuQy2HZMjkck4C6RPJrpeJmBCRIkgDMdep6taNE4DnqWU4+lgjU\n0TUiilsbZMO2TL5iZpPy+SD5VV/cBRpRV3wrPYbka0mYOkCdGHrJ1PnJrxs2PHOZOsuycgD+AkBk\nWdSyrKxlWQXLsg4B8HkA2wFQCPVzAdxv+NgDAMYty4qxSdb8GvVLWi0BUD0DebxOBwWrqbxERp1H\nBz+BoO7WW2VntZdgUeTX+Exdb0BdqwU1uMdYW0UaDeCJOmPqbPm1UpEOvNVynVbkkiYBTB2BOrov\nkUFdtSobUyp5A8A0UOfcL0P2a2ymTpNfs21/pk63ohJT10Gjzrw9B0DUGK2kCYG6gw+Wj35MXVRQ\n10YOTeSQRUfZLxVICdRFRGuJ5FcAOPpo9//du3tXfJgsgfzqB+osS/Z5AnUDrR7LrzFAnd/iwFSn\nTt9CyvkMnStnoOFzLMxlB4EQ+TWEruKAhMuvPHEoFqjrdDAkZKbF8mkzU9duy9+l/b6FiJHND7go\n5/jj3dfYJFZFAqZO/0A/mDq9gQce6AF19boMic1mo2+DOR8WGdRZlvVLw98tALYB+DMAH4/xu3cA\nqAN4BMDRAF4khKDQ/1GA72flGKUgGlMfLcu6we8vRrtSNRroy4TpdGyzvShtfZQKU7dnD/D733vk\nV2ejZMAZdOTLYsfUwQvq8imAumYTKi3FPTO7MEIwpq7JQF0r6xxKDowkt8TFh5ll0cY5+Bn+5dGX\nADt2+II6IYA//3NZfgaAe39GRsyZkNT+BmPq2gli6ug8fJg6q9lwrnkYU5fPqZNbo8aec2SjgzqN\nqfMhEWLJmATInTp+tVospo5wdCRQ54PW3vEO4P3v70J+5d97113dya9vfSt2X/4BnHMWnw73AAAg\nAElEQVQO8OiD9uf1VUsCps5PfgVUUFdpTsqM+/PPd7fyMrQ5sfyaAqgzMXWAet+cz1iW++SGG4Bz\nzpFlBpixCi++O1M45ygEcNllwEc+0rX8ytcCsUDdzAwydm7j0NxOoFr1+CvO0JIwEkuCJVB3wgnu\na5ypQwpMHaXFx2DqrrsOeOlLvSEgHjMxdaOjwOCgZ2trSiQjlWahWhymLgPA0v6mAfwHgLOEEP8W\n47suAXAqJBicAnC9ZVkHxfj8ojCnkC/VBjOtnG3HO76qhlIJOOII+bmhIdlRSa3VQZ0nk49eIMf0\nyCM9lV95kVznKxs9AHX8mrGD+YCrg8uvGeej5MDISYUORJoE5+YC5ddLcS2OfvpnwPXXO7+hb1m5\nZQvw9a+z/Tw5qNO3ONOYuvtwFKooYVvhIOf1IKbOKVF34ony8bnPlSmkmYzsUPyDjQaOOkomFBLQ\n8WXqsmoZk0bVoEeYQJ3G1B14oJwzqUwDWVymDmA7blSrfZVf9+4F/vmf5RydWH4F5E7zgESHSZm6\nPXuAz3wGI1/8BK6/HrjtRvsNfcaPwdQZ5dfnPEc+HnYYABXUlRuTsi7mf/0X8JWvOB8Jkl9pw/VA\n46Du6KNlg44Ljuzxu23ZrAomTAlTSnvpyVe/KrPs//3fPecCmOuee+TXp58Gvvxl4JprIoG6dlsl\nCDlTd+ihMmfn0EMNX0GIj6R9jsj0SWLrVl9QVy67+DAyqGu37XIFkIl5ZPm803f+UDoSQP+Zui98\nAfjpT+W6I9D0HSUAZxGhM3WLIZ4OiJf9+oK0flQI8ZD97x2WZf0EwJOQWbBvgWTpTGwcBaMZaa+g\n9p144onzsr2ZZwCa6qvZM9PKwSq2bZMB/pYlS8xls65cEFl+XbNGLimqVY/82kHWKZcRR351+nsP\nmDrdQbZaUGNQfJg6Pg/yrbXqNlOXy7lzHE0koZMwebXZ2UCmLg/7x+fmfJk6+vjevXbGJTnYEKau\nXgcuwdcxjCmcmnX7S1CdOoepu/hi4MUvdl/YudNdFTCHeMst8vvo3vsydVmVqWvWQkAd3TeNqVu1\nSl7a6Wk5YRDAisN4OYwyLSaq1b7Kr3xzgzixgB573/uAN71JInFC/HFj6uwLS1J6u8ZAHZ+Ru02U\neOc7Jd1s96fxceBBG9SVahMuQ3fzzbK6NMygzrLcUobtdsh146Du61+XN2w0eJeaoMVBuexeXno/\nFNRRcTgtszMI1HnwOckDtVokUKfjFM7ULVsG3HefDyC+6ipZn5TuNb//emffvBkDBx0CwL3M5KcS\ngbr775fXasMG4Jhj3NdzOeDVrwZ27cJ1r5B9p98xdeRuQ6VkH1AnhAqyW63FEU8HLIAdJYQQEwD+\nAICStB+AjKvT7TkANgshkmxkMi/mWZ2YQB3LgKVyPIAcYPqG5dx8QR3fu4rJr/RdDlungTpTaEFs\n+bUXTB2/COxg7gQ5U0fZr5ypIwuNqeNeLQDUOWVNAkAdrYA7HdvBRJRf63UJviewXPFdkWLq9CdU\n4JR/sNFQpBb+lm4FjakzgroIMXVjY+YJoyumLqb8GgvUGRrEa+zF3A1NNcuKJCeZmuEcZl/YTKcN\nCx20CNTpIK7bRAnLUvrThg0uU1esT7o3mGJ4IccYj1vTFw6hMU80kAYG5AUOAXRAMMg2rQmN8is/\ngACZD6gzjReP/EodvV6PBOr0Pb2rVReYkMvQCX4A7j2qVLx0uAHUBcmvsUEdVVk480z1PpGjHRvz\n+K3I1iVTR6ceCupM8uuGDZ6wyv0W1FmWdZRlWd+zLGuXZVkt+/G7lmUdlbQBlmWtBnA4gMfsl34I\nYJ1lWc9nxwwDeIX93qKxOEydn9xHFhvUzc4qdepoMDugTis+TBZVfjWBumyv5dcITB2Vj8nnvU4w\nMlM3MxMov1JZkyBQx5307t2IFVNHxs9Rnxf8Eqp9LcAh+jN1AaAuRvarH6hLk6kzFR/m1q38ymNz\nCO93HVcTUX4lF6EzdQCQRxOdWvfyq5Gp02x83K1TV6gyULd3r4zhtU3PBeOPoaCO4hhCiz66FgTq\n+CWIzNT5gDq6H5HkV+rojUYipo7Lr2ELFgDSIXClAfB29k2bPOEinKmLHVNHVRbOOEM9NxaLEjGc\n0GtdMnWRQZ0PU9dWXZ8C6kLKJs67RRYQLMs6CcCNAKqQ4Go7gDWQYOvllmU9TwhxV8h3/ADA3QDu\nhYylOxTAOyHLmXzCPuyHkDtIfMOyrHfDLT5sAbha/86FbJ7ViWn2ZUxdkOmOZHpa25qqS6bO1Oa4\noC6XAqhTsl8TMHVU6JnLr2SRYuosS3pUH8+mgLrZWQc4+jF1gJz7DuNaSghTR8bjBvUVL6+3Fslh\nRljl6hZbftVAHalzYaAuDlPHQV2ZbXcblakL3FUiQH7loI7ubSL5lVtEUDc05BIwnQ6QYY0poKHK\nr9y6Zeo04zF1hdl9Kn15881OHFUu55U8IydLcPk1ogUtDugSZDKur/Rl6ugJdVKtBlss+ZV3dMN2\ngLqZ5FeySKAOUGMchocjMXX0O7GZOiFUpo7bPjdCatEwdfz3tN0kgP2XqfsIZKmRg4QQlwoh3ieE\nuBTAwfbrH4nwHbdDbv31VQA/AvBXkEDxWCHEIwAghOgA+GMA10PuPPEDAG0ALxRCbInR3nk3zxg2\ngbqITJ0+KIRwJ3bRasuRaFluUbC5OQiWKEGOKA6oC5JfTYkSuXp8UKfHiXTL1BGoM8mvoaCOr3Z9\n0qZSYepMVVENnwti6niMVySLyNRt2ABY6CCDNvKWxtTVbQfYaqnxc3pMXUz5NQ5Tl7r82my6nTAA\nZZpAXc+YuqZb3giQ/VhhgnSmrt69/BqFqVu71gV1pZ2b1aAjYm1gZur0U/Vl7Bio4xnuQRaFqeN9\n3Jep0+XXyUmlwySSX/n/CWPqYoE6/nv2FzyBg+TzzZuRz8vzaLXktaW+PFhsYnBAeJpOxocJALn5\n7LZtck7T9/VjK6f5YOo6HTcsUk9g85jJCa1dawR1iyVRIg6oOxXAR4QQSk12+/nHAJwW9gVCiI8J\nIU4QQiwTQlSEEIcJIf6XEOJJ7bi9Qog3CCFG7ePOEkLcE6OtC8I8g58AFze2VViQmZwtDfrXXyB7\nsBgacgc2Y+rauZI7HhIwdc6ADJNfE4A63YF0G1PH5dfYMXWAe/1YmQZufjF1uvPgGH3XLqgeOpdT\nL3QE+VVf8cYushmRqTvqSIHbcSpux6nI6aCuZke6H3OMuzqPkP3aK6aOJuxSKZwJMIK6qSnpoS+5\nRD6PyNTRUO0JU3fttZJlueUWpxn8/HRQV0DDBXUpZL8Ggbp83gV12ard4ekihIA6DkofeEAS1leb\ndBcCdeUyrrhC5n3pewbrFpYoQW0nC2XqCBEAMo1dezuS/Mqp9ASgLrb8CviCuvtgR0dtUgsQU+jw\nIKbxvf/ZgLfeIccBP31AdrcDDgAuv5y9eOut8vGMM7yOlYH9iHWXvcaDh/U0/RCmjhdQjiy/8nNY\nt84TY95sukwdbde7UC0OqAvLIJ2XDNOFbKefLmsy3nHZ52W5ife8x3tQQvkVcAf9A7fJf1oVFq81\nOwvL9tTtvAHURYipu/BC4NhjgRe+0H6BeUATqMskAHUvepH0C5Q8FSi/xmDqEsmvQCioW7uqjcM2\nukydn6wXyNQBauMiyK/6iveyy4CTTgI++9mQ8yGLyNQ9+4BZnIw7cRL+RylUDACteltmVj/4ILBj\nh3yRJ0oQsi2VUK/LeS2Xk6eszzc8uyxOnTrO1K1YIcukvfGN4Z83grp775XVRG+4QT6PKb92zdTR\noOb35I47nP2beUydEjOkMXWi0b38Sk0Iw4Hv/pC2ywsN3M0ucxfE1LVawJ13ysn2ppu0LxdCqbFx\n222ecD2jRUmU4O9Fjqmj87LtmGPkXsKvNexyvpCZun2rbCZtpywFSyXt7rtP/s5heBgr6k/jkL23\nO69zu+8+Caxvv529uG2bfDz0UPe1b35Tlp/5wAeU8wBiqenSyF+NjbkBxBGZOj7GI8uv2SzwlrfI\nSW/jRk+oHbGapZJ398qFZnHWmncAeL9lWb/gbJ1lWQMA3gMprS4Zs3XrZI1R4M32n8ESyK/Ll8uw\nBeq8uVn5T72yDHkaPXZcQw1FZPMZdyUZg6k7/3z555hlQRQKsBoNM1NXS1bS5OabgR/8AHjVq6LX\nqVOqr/skSug+NNIkTNHCNHGSVmHbn1zYBn7bkhvjzc05yoCu1uoxdUZQR0gwgvyqM3XLlwO/+U2E\n8yGjD+ppdlDv+ZqcAb1Qe2pt7wbePFGCJpNKxWFXyCfrQdh8gaxX+TeZiamzLNlvopix+DCdy+7d\n6q7wBnTAMX7qoI5fZ2pDo+E0o1wOZuocUKeDuBhMXdTYpyv/Ngt8fMgFPgccIPv05KTsz6OjofIr\n3QNfKdyu7ktdNWxiDoqpSyS/clmZ9feBAeC228xtCIypo8VOBFBH7oYzdWFJQI75gLrXf2Ac+Mus\npOAaDZxxRgH33ivJ1Y0bgTHI/lTJyUZQqBwZdTcFeNJv8DT617xG/hkOo6ZFNg7q9NdCmLpYoI4v\n5D73Oc/L+niIfC/m0eIwde+HLDWyybKsr1mW9THLsr4KWWPuSABX9qB9+78lkF+f9Sz5ODkpO1+x\nLntxrciYOntWraGkAJw4oM5kln2AKaYuUw0LYPA3ZaUbk6kzJUokiqkDvI5Rl8zbbXcWCQB1aTB1\nQTF1sS0iU7c6a9AZbWvVfUAd32IJACoVRXoFvJc17lZbJlAXx4xMHZ1LvS4n3n7Lr4Q4TPRso6HI\nrwpTxxBmHk2IZnpMXaSAdk4djY1BHwRh8qsvqNOyNahNUUFdVKYuVH7lZtqw3mC+2a/8/wigji5t\nKkwdLRqXLVPuEUVO3Hyz/B0CdQU0UC5LZpQvYgJBXQBaazZl185kYq0vpJlAXS+YOpP8CtUV8G4R\n+V7Mo0UGdUKI30DG1f0SwLmQSQ4vAfArAKcKIe7sSQv3d4spv1qWu5fmxISci5ZBDt7ZHAN1diR9\nFWUzqNN2lCALder2ASamzkrA1JE59fIabblap4ql5JWzWWXg+TF1QfJrFEbI46TWrFGfUwVVIB5T\nx4tOAb6gjp9XUPZrbIsYU0cOHoCHqWvV295JjoM6sgigLu5WW6ZEiThmBHX8XHbvnj/5tUumDv0G\ndZyuiAjq+KLNF9Rp2RpRmbq4MXWh8is3fRHjY2nJr9RPZ2YkGcpZ7lDzYeowMuLWRty9G2ecIf+9\n7TY5f9CYtxoNnHKK+x5ZUlBHBOXgYETfy60Lpo6HwsSSX5k9I0AdAAgh7hVCXCSEWC2EyNuPfyKE\nuC/800tmtJh16pYvd5NoJyftCv2Qg3fa8jJ1VZQVhaxbpi4I1GWqyUGdo3zUNUrKpJ/An6nzS5SI\nKvNFAnWMqWO+UrFI8ivZAmLqRjshoE6f5HhMHdliY+oASU1EzH5NrU5dyQBQozB1Wkyd1eyf/ApA\nndlWrnQBg03vpMXUxZVfo2a/hhYf5hYR1KXF1FG8lh3+hqGhiAlegDvIePYuIO8XA97r18u4uqkp\nGd+4ErucRhDg4xKsEdTRbwSAusTSK2AGdbTFkhDQ01OXmDrXAruLZVkZy7JeYVnWkQHHHGVZ1ivS\nb9ozxIKYunYbuPFGoFpV+jifoKanXVA3gfjyqz4xhYKGMKZu82bgnviJys7v6uiFJipttonL1EWe\ngP1AHSFCDdStWCH/pbAsslD5lVdGThBTF9siMnUjrXigrpPpL1PngLqYTN3QkLyF09NsPuDnEsDU\ntdtqCZnU6tTRSi1EfuVM3cQuNWiogAZyCGbqNm/2Br/rlpr8unUrjmr91nk7KKZuakoNX0vK1KWe\nKMEtJlPXbUwdXVq6LrFAhB646gPqADjg7frrGTvfaDjSLEtmdqTYuExdKqBu5Urz65ofix1Tt2+f\npCOfgUzdawF8C0BQOcJpAN+yLOs1AccsmZ8FMXXf+x7wghcAV1/tDIzVq9Wgb87U7WuzzeLtEaXL\nr7Ow37cnAN5h8/kIbJbdECptoNjcHPCylwGnnOLNiw8xpx06qAth6gqFaDF1iUHd+vXykS66Buoq\nFfk7FJZFlrb82i+mbrhmyAig9jQ6nkluy/ZgUEeg1w/UxWXqHAAfk6nLZNw5b3oaEoFHlF/37VMB\ne2ryawhTR65haMi9R1e/R63vkUdTSrCAb0kTGpLT0/A1AlBdg7pXvALffvIUjEFl7UzyqxBaSaMu\nY+qSJEoonzFRjE89FaFicnryq55ZGSswnwYZ+d4AUEfg7emnGahrNnHqKQKWJRP86FySyq+mXIrI\nRvOYHtPsE1cXm6m74gpZnuIue7+E/QjUhbnUSwBcq9eR4yaEeNKyrC8BeD0kAFyyOBaUKLF1q3x8\n/HGccorcC/wlL5H7KANeULer6d2Cipg66pgfwlV43v85GQU7eIJ32EgO/eqr8X8v/R0e3XWI81Ib\nGQhYyDWbstyFENITxMj9pkHpZPJFZOrOPhs4b7AEfEc+D5JfI5nupF7/ejkbDg0BH/qQJ6YOkP5y\n82a5oqWPK4zb5CyAffIcCOXElF+7ZuqcoEW7/cyJ8e+sVAOYuoY3pq7WzHmRWaWixNPwRwIWcQoP\n8+OSyq92szA1JW/bMkyqKGf3bl+kqUvrqcmvIUzdBRcADz0ky9fQ3LP3EbUxBTSQh1d+bWYKyNud\n/qmnZJu3b/efYFNh6nbsAB54AHnRxKF4BLuxMlB+BeT/jptgTJ0Q6TJ1JvmV1DzH+EGDgxIRbt8u\nkU9IcTIK7yBlMJsQ1FGhaTonqhgTydaulY9PPSUfIzB1gBpHO1xuYmiogKkpuUgdGXH7v5I432um\n7oor5A26+GL19bSYOqo/SP7smSK/AjgewM8jfM8vAJzYfXOegRYkv9KkOjmJXA74x38Envc8VX7l\noG5nzQvqKKaO/MktOBP48D8aY+qCCo869vKX46vrrwRgoWmvCaoou3IsURqhpbxVC5VffZi6gQHg\nzW8L3yasK6buE59wtkDSmTrA4y8BqHjoQNgO5MADXefRZZ262GZZ3r10vD+P8ow/qMtP7PZUi25B\ni6mzaWFWbgxA90ydqU5dXFNIcV1WC2Dq/OIlU8t+9WHqRkeBj38cOOII9x5l96mNyaPpgjrWpxpZ\nF+Dp+2GaLBVQ98ADTt8ah7y+QUydp02MqeNdNI1ECZP86jmev1AquZt8RsyAVUikhKCuUFBDIzn4\nCjXa6oBqBtKiZXjY46SOOMJdXyrJUfW6Z5ec3S6R5zLWEWi4rkDdoYcCn/ykGlMHpMfU0Rv0uB8x\ndWGgbghy79Uw22cfu2RxLUh+ZaCOmx+oe3rODOo4Uwf4Bw1HZYFoLmqZQB1ZaISqaqHyqw9Tl89D\nCQhPVX7NZtlsan+BDuqEMII6Ds5oglN2gu43U8c/7LPKBYDCtD+oG9r9hOcr29DkV/u8+J6SwPwn\nSvC2VKsIBnUhTF3q2a8+TB03pz5hJxpT18i4Y6JvoI7oRPiDOj07UWkTY+r46fcqUSIQ1JXLKkiK\nYIoEmzCmrlBQ81sSg7rpaYnAhobkCdM9sgPkLEuqj4AG6hoNzy45vP97YgZ7xdT5WVpMHZ0cPUYE\ndftDnbrdADaEHAMA4/axSxbXguRXcnIRQd1TM/7yK/mTXE6VHGLLr4BnH9kqyqh2CeqSMnWFAhSK\n0U9+TQTq+JLZBOo6HaDRCGXqHFDHNw2MEFPX6bhxvF0zdYCvQ6TvtCyNCdL65PBeG9QtX+681vQB\ndVGZun7Kr8r6idgXOhee/ao1St9cpF/Zr9zoHo0hgKnL5x32vGbJk+103K9MHdTRFk40ANh+Xjqo\nC5JfHWNMHce53cTUBZU08YA6flCpFBvUKRmwXNqn84oI6nh/O+KISD8tjeJ/t251M3voXhmc1Jln\nyn2eV4DFaTJQNzen7DaptDMKYouQIBvfYjJ1tZqWjENGnYpO6Bkkv94CGSsXZn9hH7tkcS2i/MrN\nD9Rtr42g1s4r3k2XX3W/kgTU6UxdDSVUrXRAndWKF1Pnx9TlcmqCaaKYOr5k5qCOp9PPzoYydRtg\n2Ak6hKkj4E0TlgJik1rIKnd4GLD4SWjecNk+G9SdcILzWiuEqfMDdUmZujTkV4Wpo3OZD/mVM3Wk\na9EN13b+cLLfEcDU5fPumLRBHZ/7UgN1RFesWCEHli6Rwe3zOlM3N6feOj+mjp9+WCRH0uLDvWLq\nPPKrfoDBTNf/kENi+C1A9qc1a2Q/fugh+VoAqDvjDFnjNAfmzzRQp/f9RgNqhgt3spotBKYO8Fn/\n6fPTM0h+/RSAsyzLusayLM9wtywrb1nWpwC8CMA1vWjgfm+6/PqHPwB/+7eyZ/owdX7ZrxNYht17\nLAUw6PJrL0BdFWVUMz2WX4OYOga++srUAb616uh2rlwZwtRlMs53t1oSR/EK7HSeiTfG5hbC1C0b\n7hh3Txc2wlwx8bh84fjjnfdaQkuU8JFfebWFL34R+O//ls9TZep++lPg05/2/Q6j/ErnEiNRIjX5\nlQo3czothKlzaorR6x6mTh5YE2oGKRAN1EWKq9WBggHU+cmveveamACuuQb4xS+QmKkLWiAEZb+G\ngjoKl4gI6kq5Fq7EP8C68zfmRscEdScmiVKnNt97r3wMAHXHHw+sL3pRWyioazRkPy0UAieNnoA6\nuob33SfnSftH/Jg6AKg98TTwN38jE17I9mNQF7jWFEL82rKsdwH4BIDXWpb1c4BoB2wAcDaAFQDe\nJYRY2vs1ieny6zXXyF3aN25UmTraZQEuqNu3T/bp5XbY4yRGsHs3sL5ScbhvXX5NA9Tp8mvdKkEU\nygCfZ5MydW0N1FFGl5baroCcYo9KmkQEdUHy6/r1wPiugJg6g/RaLHqLmabC1Jk2kAewapV8fM66\nSWBLG7p1snlkWw0sm5HZ2J3DjnBWg1a7FUt+3bEDeNOb3MPjMnUz0Mo2cHvb2+Si6FWvcvsNM2X9\nRBuSU3rh7t3e+EnbeI06IL50HGilkqSi6nX5+2ExdfZYb2dyyHZaCqjrZF1QN2eD37igLlL/on68\ncaPdqOUSKTFm109+1UHC7bcDX/sa8NznAve/ywV1acXUUTegPg7ESJSIydRd1Pgm/gEfAP74A+YD\nAi4uv/4bNwKPPw5cemmkn1VtfBy44w7g17+Wz8k58ZWnPZcUCsCLj90td3VnDeGgTt+Rq9FAZLTW\nU6buwx+WwO7gg4FLLzUydZSNXHr/XwHXfRv4r/+Sn+l0vIvC/Uh+DXWpQohPWZZ1N4D3ALgAcDb9\nrAK4AcBHhRA3+3x8ycJMj6vh1cBpudpqyU5oj7ahIdnRZmaAPbuFExOxG2PSaWpMXZD8mkaixOHH\nlZEdrAA3sYMSMnWWztQdcYSkdQ4/XDnej6nrOvuVZ3P5ya8+oI7HwtCtW7cOGP9tAFNnkF6LRdfH\n6HN8L5i6Aw+UNa6fLXYDL/B+rJMrINtqoNiUXnrWGnSyosqNCSC7wj3Yh6nTS6iRxWXqtoLFDelG\nY8ckfUFbP9GxBEz27HHTAbVGUVceHFS/umv5FZA3e3ZWjv/BwVCmjmrS1fODqNQnFPm1Zbnya7WT\njKmL5AOOPFJSa5QRnsnIa8cGwDJMYhiTyOVGlPbroO63dp3ivXvhK792A+pOP10SuCxiwF9+VdLA\nmfwaMft1FXYGHxCRqbvpJrn/6llnRfpZ1ajNP/mJfDz5ZPlYqchzqlblBbVl0795SwJQ14kWLNdT\npo7Ktjz+uPIyZ+pWrZKLyMzjj8oXqBaYKXRjP2LqIin2QoibhBAvh8xwXWP/DQshXr4E6Lo0namj\n0V2rqZ2PpYxZFisN9dgMimhgBgOooWwEdWnLr0T40AQyvKqMgZU9iqkDgBe9yMO8+DF1qdapS4Gp\nO3BdRy1pQhYA6goFbzxwL2PqAFkqZ21+l+d1QII6ACi2ZHDTZMO9LpXGRKSYukzGHH4Tl6nbhrXo\nWBkppejnQc+1eDQyRX6lGWf5cumpOx33BmqNoq6sO/TUmDrA7TAhTB0BuHq24jznoI6YutlOD5k6\nQCKOAw5wnzMJdjov9zE8EFs8i0ldfqXQr5kZ9CRRwrKAc89VFeLI8uvoqFvcMOji2bavsCr4gIig\nbt26hIAOcEEdOQyqMgwYJdjRTgL5dSEwdfvsohw2i0ov1+suiU+bAc08+zi1UaYOtR8xdXH3fu0I\nIXbaf16dZsnim54oQaO7Wg2IKHbZ9Jkn5ES8NyMHrA7qeiG/6kwdSiUvFZMQ1GV0+dXHFJDDtsLg\nTJ2JaAu1uIkSPqCOJqVDh7ejgCYm8itVkBhTfu0lU+eY7sFtEzn5ozkhG7Ov6l6XgaYZ1OnyK2AG\ndVHvC/ncNnKYXbZO6io6WxcC6hT5lc84NJgoWcGHqesJqNPLmoQwdQ6oy8mLyZm6JlxQN9PuMajT\njQZBsYjHRyUtNo7NofIrne7MDCBqyZi6pEk3ofKrZcWKq8tmQ7bjiRlTl8i4GpDPAyed5D43SQp6\navdCB3VOlXp7rNr3hV7eu1e+NTjoii5Nwe7rHXeYO9Qzjalbsh6anijBmTru2TSPTOOztlWOutkS\nA3Vs9uxF9qseU4dyuWtQ58ivJqbOYArIsSynUTymLpNxL29qMXU6IAph6g4pSqezLTeufo7ukY/8\nqtS8Qu+ZOgD+oC6v/ui+mntdhlr7ItWpA9xNyrnFnYgBYGbUJ9YpCVM3OOgN9I8I6lKRXxMydbWM\nl6lrCFd+nRMltFrzAOrGx7FnUAKhDdjkUQioi7GqOADkRNycST+mzmSRSprQ2I8RV1fOhGRk9xvU\nnXSS6sNMjsqA2hY0qNMvkMbUEUYdYdW9OlV2X26+OTaoo9tWqXS5qO6TLYG6+TY/+TWEqaPxSRuw\n14fkC7t2wcjU+cmv3cTUdaycew4pMXWeRAkf84Acu1FcfgXcZkUGdfw8TKBOB+zgfesAACAASURB\nVAxzc04o1p49bqw4HXagHTD+pF7uMSSmTpdfFwJTR7Znzr0ug60JY/ariakzWRJQN7vCMNEK4b1Y\nmjnrp6pWkkEHdVqjqKTGQmLqaplgpq6KMqrVeQB1GzZg36C8P5yp00HduLbGAYDmdPoxdSaLnCjB\nGxoB1JUs82LCsX6AOp6MpVcu3h9AnX4Nt2wBOh1P/+KgTlTZfbnllsTy62Jg6YAlUDf/FiS/RmDq\nqG5VZ9Qsv1JMXS+YunbGIL/yglSAHB3nny+zlQIsk5F/vDxDkHlAjsbU0XnxyiGRjAd/meRXA1OX\nz7thWRT6SKBmTV1OBo81xvHUUzJw+z/+A6ExddT+H/4QOO004NFH3fcSW0JQp9+L3TMlzEBeoyw6\nkWLq/CxuogQAzK4wbN/EI7pD5NfWdNVOiyvJC52QqZvPmLpZa8B5zpk6p6QJSpibU7+G7+SgW5pM\n3b4hL6jT5VcjqJuJFlP3+9/LcXTjjfJ50kLWoTF1vKERkiXKVnKmjo/9roziAAF/UPeOd8is0YMP\nBr77XfkaFcbUQN3p93wWP8M5KNulDUygbnpahj1/+ctyWL3mNcB73xtpJ7H4pl+gZhPYscN5mVRZ\nBdRxcuTXvzavbiLIr0ugbsmiGTl1KkDqlygRAuqya/xBXa+KD7ctJr8ed5x0DGefLV8jT/zEEzKV\n/HOfC/3eXC46qOsZUwe4S8uITB0Aha3jhw3MSc1xa3sNvv994LbbZJ02HHywdMDHuUG8PKaO2v/X\nfy3LPpD1lKmjqPVVWsC31jF2TpdxGb4EALhq9eciy6/veIfEzHxCT8LUzY0Z2BN+X0Lk1/akRiGc\ndpp70OGHe86XurK+RVBq2a9AbKZuRrhMHWXENlBQt+6b6yNTd+qpcvw/73mYHZIR6quxw7lGFLZI\nLm2DYZ+i1qx5m7BmU8XsP/qRHEff+Y79uYRMnWcsmeTXdevkI5XACTCdqetAi7HrB1NHPnj9epn9\nxI36+d69wJNPyr+5OTkwKD1YA3XnbP0SzsH1OGvZXW47NVB37bXAr34FXHaZvEzf/rbctpUSFnrK\n1AHApk2el8fG2DTI59G5OeCxx7zfsQTqliw1y2Rcx16rxZZfCdSV1gcnSvSi+HAnw+TXCy+Uo/iy\ny+RrNBPSZOVTZoJbPt8FU2c3isfUAf0DdXyXD4DtDFST5z2NIWdrzM2bIbdv2LIF+Na3nK8yya+6\n9Yyp63SAW2+V/7/whcpbmaLamJ1TJXwXf4oBzOAbA2/xgDp79zQAajHba66R14eqLADJmLrqSgOo\n4+cUIr96dKE3v1nORo8/Dtxzj4fWXYhM3UzHZeqIRalnyor82ldQd955cvy//vVoliQ1M4BZx7/8\n0R+ph5uYuvasmakD1LJi9H+3u5NEkl8JjRqKcutWgsrU7YMWONgPUAcAP/iB7Mt6h33Na4Dt2+V7\n/G/HDuDQQ52GkFAxN+fGOI+PTLrt1Cg4vu0kMbHNpnRvQI9j6gBg82bPy+PjbBrUOxMvQky2H8mv\naaw1l6xbK5Vkx9NBXQz5dXijdD79lF87WSa/AnL0co8AqKCOFVA2WRxQ52HqQuTXRKDOJL/GBHVZ\nG9TNYBB326Bu0yb7UmhxiCb5VbeeMXUPPijLBBx4IPDsZytvZUpqx9i2T6KjOQzIr9JAHatModxu\ny5KXljvHJExdKKgLkV/FtEEX4uU5NOspU8eZeiAyUzfVln2ngIYL6qxSoPxar8s/064RqYAKe9y0\ny/JxEDPOXHnCCfJUeVFu3dpz9jUolVDXasPOzcl1EOB+h76PcKoxddRZTHFoPlaC2u/2YAVWgFWu\n7heosyz/39KKuDvGfANn6qgawdoBA6iz7zcfz/wyETDqOVO3eTPyZ6ovjY+7VU+suiaLm1jXAKaO\n3losoG6JqVsIxpMlyLlHlF9p26Dlh7hMnSh75ddeJEq0M0x+JSOPQNHldD7ttu9kSxZHfvVj6vzk\n11h7KAYxdYaYOkAFdbyUXWbOBXW8JpeJNTHJr7r1jKm72S43ecYZnh/Jlc2gDrDBNe9EAwOh8XTc\nOSZi6laxmDoKookA6qjfWjPRdxon6S+b9ZZkSTVRIiZTN9lymTpiiGpWOVB+BfzZujRBRavkgjre\n/lNOcY8ZHfVefjFnXwMtUQJQ4+p0pi4uqItcfBgwlwHxMZ2p24MV6gH9AnVJzADqZmaAbEf2t9Ul\nf1DHx4VOgllWeFxtonZyMzB1Gza47co07M5ErKuJqVuSX5csVePJEhGZOuqfXH4dGJAfb+R6W6eO\n5iGhM3UAlGUeoM4qIRJsmkxdKvJrFKbOBq8c1NVdwgHWjAvq2C5KxmS6KPJrz5i6W26Rj2ee6fkR\nLr8Ky8L2PVptPS37NSzzNQlTx0G5GBqWX1KturJYDKaOgHYUUEcAwlTOoCfyK8/gJcAKA1PXlB27\njCoKaKIDC7VOIZCpA/oD6jhTx43H7Y+MeCdJUXUpXp+1EwB/UBe35mEk+TUGU1cUKqjbi1H1gEUG\n6nbuBHKQF5f2FzeBOl6L/eGH1a8dGIi5oA4zP6ZOe5nLr5mmfV8oVng/l1+XQN1CMF6rLsKOEoBX\nfsXYmPPadLu38iv5OwfUmZg6XX4FIoE6CvoOa0xYTF0q8mvCmDoOzmg7KmfPUtvCQF3f5dcApo4/\nF6Uydu9xNVWdqatlKsYkCW5JmDruczMZeEtNRIipo/YQqCNGKcioG5tAXU8TJbT/daZuwmbqhiGj\n0etWCY2mFRhTB/QH1HUqGqirVoF2W9ncYNkytx9QH/ArPgyooE6XX+PG1MWSX0dG5OvT0/5Kg72w\nKxrkV8W0DlStuiWQFiKoe/ppt78Ndhiom1aZbp7E8vvfq1+bqvTK2wnIZDMA2LQpMKYu27TvC0nP\nS0zdkvXcuPxKo3tmRt25QPPGlG0ZBdT1Kvu1kw2QXxOAul5kvxIFnxqo080A6nhMGRhTx81UIcG0\nTZhuASGJ4cb30uG2ZYv8W7ZM7qyu/zh73imUnKw2AJ6YugteW3ESQtJk6izLnYyzWXhLTcRg6nJ2\nnON3fjSIJ58M/t0gUJc6U9fpQKFz2TnpTN0c5DgbseTNqFllNBpQQN3sbDRQx5Pu0yiuKkpltJFB\nGTXZ/zduBF72Mpx2mnsPR0bcGEUnhLPunyhB0RxAn+RXR6tnezKakiV++lMZ7HfttR6mLgjUzc5K\nifBVr5LPFzyoa/kzdRzUUYgJWeqgjt+jo4+WjxpTl8vJLcIcUNfSmLrt273fux8xdUuJEgvBuGOn\n0U1RnmSaN65UgMFyG6NVOxB3dNTxPZNNVX4dHgae/3yprL3uderXJompO+UU4AUvANpHvg64Z5d8\nwhsG9Fx+9UxCl1yCrQ9O4pbHpMaTuE4dAPzZnwF/+IPcNJIsBqhTmDofUGdi6rhsqZ/+xRe7knti\nI4Sr3wcqgnfkkfJC6R2BNaaZk8hoxQo5xzWbgMhkneINU+2KU4IlTVAHyFvQ6dj3khIbaJuKGKCO\nklcmO4O4807goIP8f7PnoI4zdW1t58VGw7lnnjp1dp3A5dkpoAXUIEHdd/E6jGIvbsTzcdacdxFg\nAnUcFKUhleXyFmYwiBFMyVl++3ZgdhbDw8CVV8qna9bIRPlCQSZRPPwwYDWiMXXdgrpYTB0gQd32\n7VKC1fagxj33yE55993IC9nox079Myyf3oKfPXAu3olPuceyDrR1qwzTowXQQgR1zaYrvw5EBHWP\nPKJ+bU+Zuo0b5ePEBLIZAdhe6IAD5Nik88i1NaaON5gsgKn7kz8BHngAeNnLUjqHHtsSqFsIxh07\njW69UqjBG28cnUD2qQ6mcssxnM87oG5fQ90mbGxM+qKbbvL+dBKmbnhY1iUCLrD/mHUpvyZm6l79\naly3+9XYdbn68UTy6znnyD9uSZm6vSqoy2TkHGACdXTJBgbU+5LJAN/8Zpcsnd5IbtQYKh6mX3vW\nMWqWnOxWr5brjk4H6FhZ0NWZQ8VRN9KUX+lYSlrwxDrFkF/zLCO5GrJRQM/lV76g49IrEIupq0LG\noX0fF+H7uMhpu97moASdtABFLgcX1NH+vLZ8+Xd/56bevuEN8u+Tn5TPM41oMXV+2a89KT4MBMfV\n0Y/PzaHYkQ175KTXoXHWS7Hl/Ad8v5/8l772XUigDnD7W6UZDdTpeKmnTN2KFfJ5s2k3TPYtWu85\n9d2JqfPL/AUCQd2LXyz/Fostya8LwUxMHY0OcgQGb/ysEelkpgrS6ZDv2VtTmTq9YD63JKAu0LiU\n3On0TH41yUW8VENXoM5kIaCOpKQwpu7YY+V7QaBOBxCDgykAOiA6qAtg6uY6sq+uXOke1rbcTjSH\niqNu9IKpcx6DQF0IU1douPckbKOAvjJ1AaDOj6kbFvJeznXKRiAURX5NbTcD2wjUAXBBHeBb640m\n/kwzHlNnh+r1dpswIDgDlqEzYuoaGSkf1+E6JJHLKYN4sYA6YurKjWigTreeMnV82wjWQXRQl+vY\nnUkvqs4tQH5dbLYE6haCkWOfm1NjagC3I05OKtlwAHDQgHQyMyXpdEie2z0ne3MHFhoo9BfUZTIq\nSOXemQJsfawrpg4qqOsqUcJk+hfQc42pm5hwmYSBYguo1SAyGVQhEQVlAJrARBCoS8X8QB01huLU\nApi66ZY8j7Ex97AW3Gszhwp27JD/p1nShB+bySA1UBe2pWdfY+oSMHUD7Sn7eVmJOwOig7peMXUA\ngKeect/wySCl/p1temPqCAeZmDpAxqallihhKmkCBDN15IhmZ1Foy4bVraIB1OWNH6NQSlOx7r5a\nCFNXskFdvY5IoI4uX0+ZOh9Qt0ZuaIJKBbDQQUHYFzcI1AUwdYvNlkDdQjBy7DwCnWxoSL7fbns2\nQVxfkk6mWlGZul2z9qbqVhmAFRiLlSSmLtT4QIsRU9ctU8fb31WdOpPpo5sqoQbIr8vycpYVA4Og\neI/TTpMT1bZtXmdIk3Klok44qe2dGMbUEagLyH6dbLigzmHqhArqiKnzk195Ed/ETB11amJPYtSp\ny9XSAXWpFx+OwNRRdjgxdTRh1VDy3FY+/Cic0rT/a9qAIimoc2Kf2DZh1GVNTB0g14mpJUp0Kb8S\nU1eHl6lzksps42Of58fNO1NXr7NxK5CDRDelejym7phjlEPSbycQialzMpKLRW/1cG5LoG7JUrUg\nUFcq+U7GawvSydQGVVC3fcref1PI712hJWFxS52pA9SBljCm7oFH8sbLcdddcvODMKau5/JrAKij\nUx7JyvO1hlzP9qxnyfhGIdT5jn1V/5k6HdQFZL9O1mSfUpg6DdQRcIjC1MUB20r2a4KYOoepa6qg\nrloFfvITL0kO9FF+NTF1c3PAj38MTE0hnwcyaCMDIWvSQUXMVZSd6843daG+SBh4Xpk6nwK+tGih\n2Kd7H3GZuuX2Tlt+oG5mpo/yaxBTNzeHvM3UNSwJShtwL2jL8gd1HHzPO6hrNJDJyLFC0isAlGqT\nGMEEjr7n655NXXVQV6nILZSBFBekZBGYOl9QF5S+uiS/LlmqRo7dJE8Wi65no0w/29bkpZNpLVdB\n3ZZpuSKZxAgqFWXXMI8tVFD3z/+ax0c/qr5fr8ss3nPPDY+po/OixVnQNYhk+ugmB2HfMyNTl7NB\n3eCgA6wPOkjuxAV44+o4gOD3JXVQx+kaIWIxdXMwMHVMfuVgw4+p4/csZJMRxbqVX53d7ODux7tn\nD/Ce98jMti99yfuZvsmvJqbuW98CXv5y4MMfxtCQOzaayDulS8iqKDsJ89TnOVgg5UlPqgcWjvya\ntxMNznp5yWGtTaCOy68c1HWdKOEnvzpxLcGgjpjGmoGp0++XDuqoy6ZRUiaRaTUsKxWmmgAo1Kfw\nIVyFS67/c3nBy2XH4eprqLExuXgF3PuXejsBX1B35JHycXDQ3eVDcHLEZEtM3ZKlamFMHXHZd9yh\nvHXywdLJHPVCFdQ9MrUGez70aVyBzwTG0wF9AHUJ5dcm8p4t+qanpUS5davr2MOYunPPBT74QeB9\n70twHtz00b1ihbw309PA1JSRqRvOuDLFF78IfOELcn6gJCx9jug5U8ezOch275YXc/lyRpn4M3UE\n2kxM3SwqANxg8CjbA+lxYEHWbaJEoWDvPws1eeVrX5Pv//zn/u3refFhE1P3+OPO43HHAR++So6N\nlpVXWCBA3pcgUEd1WnV2GFgooE6gaMuXe2YKzvqVnwuZztT1pPhw1EQJLr9STB28MXVtjanj3XV6\nWt25ZF4sBNRZQuAU2PPPS18KfOUrTsCjztSNjQFvehPwN38DvPnNKbdTZ+oYLf3znwOf+hTwR38k\nX1q5Elg/JvtUK7vE1C1ZPy2MqaNS7LSVk22VOekklz1briT5PPfEy67AT/HS+Qd1CZm6JvLKihxQ\nV+iUSGeKqbMsdzCWSsBVVwFHHRX3JDTTR3c+7zJbW7ZIuSInT5cw00jGrbx+/vnS0QHecDCyvsqv\nlHSjJ0kAakfgFxNwEj44U0f7jVLwPlkUUBfSJRRTmLqhIXmRZmfVoCTAV36lfSh1UEf36+abPblI\nSpmZvidK7LVrUO7ejUwGeNfbbVDnw9TR4SZQRwV+TQk6PQV1HLUHgDqKFayjAIGMA+riMHWpxdRZ\nlnoxIsqvxNRVhWTqBDJo2mMjSH4lP5D6llpxzADquPwKAEfifvnP1VfL4m22mUDd6tXA3/89sG5d\nj9oJeJi6s88G3vEO923LAk4/QXaWuU4pWAv2YepSWbj12ZZA3UKwMKaOUiZpKycycjK20xm1txrc\nuxdOBmIYqOt5okQXoI6vyAF1hU6DzsTU9WQgmrJf2VZVluViJpqQnG2SNFTmN0f0XH4tleQFazbd\nmVGXXgEVvWSzRlC3cqV7WLMj39dBnZ/8yi0JqMtm4a30H4GpozbpoI5sxw7gscfU4+e1pAkDdQCc\n2bOV8TJ1YaBufFz2qZ074RlXPQV13AJAHcU+EbtFQEcHdUL0MKaObnC5rNYQigrq7JjAqnDr7DUt\neVGbmYLxYwDzF2knFcQxDdQNDKhMHQAMwgbo3FfADOp6ZnwQDg8b5VduJx8j+9VUoyQHLAd2/IIv\nya9LlqoFMXWlkgwSGBmRy+wtW9z3yPPZoyifl06w03E3CZgXpo5HanchvwaBOjJTTF1P4lL0JXQu\n59Z1s4GRDuqGrOSgridMHW8k0VMmUMc7QjarnDuXXx2mTphBXU/lV2oEIC9kRFBXLgNDMO/HC3jX\nTfNafJhQGo3zpiu/6kxdDaVAUFcuA+vXy/956Thg/kHdwIAb+0T9i1yFDuqaTTWhJUlMXaj8qq9G\neD/TqVwmv2ZbdkydcOvsNTPSKQXF1C1EUKfLr2Qz+WVukphtfQV11E6q0B4C6o5/juxX++bsyYFL\nsMSCAEvy65KlbEFMXbEoexYFCnAJVmPq+L+0sXIcUJdajSQaaLOzPZNfyUxMXc+CjfkIz+U8+4+S\nvyCWdEAsIlBHABVQfzyT8ZVfw5i6nsqv1AggNqhzGNQB98LSTndahMPCYeqEcGbPdghTx4EQB2za\nGsSxXoC6aRikLp/s10IBGMqrTB2ZDup0H9AT+VXvuJWKfK1e965CCNHU68h2Wmgjg3o75wF1rUUI\n6nT5FQB2lsY9r+mgruvtDIOMBiH5MT7XGOyQDfJGTNZLcqcbDup4FscSU7dkqVoYUwe4cXX/8A/A\n294mvVkAqKONlRdcTN03vgH8y78YPxZHfiUzycc9i4PwA3X2LEkMSRqgrifyK5CMqWPnXUMJpZJs\no87UUe00sijya1dMHc9KDIqp27QJ+Ku/Ap56CqWicEDdQc912/ue98hHAnXXXw984AMu6JyX4sPU\n4dtteb8YqDMxdXS4iakrFj3dFY89Brzzne7z+WLqAGC0ojJ1ZDqo031AqokSXH7VzW/QaoimjiKa\nLcu57p2cvKiNRQjqTEzdjmI4qOuL/KqDurk54Gc/k5kSjE3NNd3klVtvhTs4dCl2CdQtWaoWxtQB\nwNlny8cHHwQ+/Wngu9+Vx2ezyuqDavT87nfycUHF1E1NyXSot7/duGVQXPmVshnJRkflpaRrkLrx\ni6XF1AFepq7SMYM6vwoJfqxQqrWedFAXlihhYOrGxuR1pzbODssLvgUHKj8VxNRdfLF8vOSS6E1f\ns0Y2x2ECojJ1X/wicM01wFe/ipFSHTm0UUcBJ59RQKEAnHKK3NuxWJQbkk9PA+9+t1w/3XCD/Ip5\nYeq47d4dytSRERCamVFZOI1Yxj//s5wDv/IV95g07IADAkCdLl/atqxsZupodwBKojWBurhMHfkH\nj59YtUp2bNKp9fcAOJW1ybR7VkMJrZbbBds5W34V+weo2573B3XkWigppye2dq183LhRPvK55u1v\nl6uUu+5yj6+7ZWbuuYc1cmBAXXUuya9LlqqRY/dLlACAE08EbrwRuOAC+fx//kc+rlihdMhTTlG/\nKowK72tJkyefdL2yIQ0vrvyqT7JDQ8BvfiPrtfbEQpi6qKBuQcqvMRIlqP3UX/aOH4s/fPVWvBWf\nVn4qiKm79loJmK68MnrTv/1teX+dyZiXmggCdXSh9+zBaMFNkjjiCOn///M/1RDJLVuAJ56Q/9Mc\nrt8Ty0opUzGIqdPPwZ49OwamjoM6ChWanTWDOrrldI5PP+0ek4adcALwd5/QOi2lhvtQs8vLZqbu\nmGNk/3/iCdnOIPk16gR8xRWy73kWFGvXAnfeKesD6kbFJXlMM2Bm6ppuF+zk7VpuixDUmeTXbTl/\nUPfJT8op6qyzetZKiRjvuEM6EGooIJ0nyfs8MLbmMnUTE1AZPu6gtM4Tt08tJFsCdQvBqHP5lTQh\ne97zXMbu7rvlo4baKFGWbEHJr9wjG/Zniiu/mtp71FGu/03ddFBHP7R1K9BuO/6CSMhSOxjU8RCj\ndlteHsuS3aEv8mu1KmeUfF6lLULkV2o/gZxG08Kew/4IE1ArjQYxdaWSLCQdRypfvVoCBsf8mDq/\nDU8nJ52C0DMYxMiIzEEiNohAz333eddXOqhLTeIPKj7MjTN12TwEMsqeuxwMjYzIflSruQsFE6ij\nR+qHaY1/ywKeczLrtIWC2798JNiRksuocKtU5NZ6gJTG02DqikXZ94yxtyec4HYIbvrFI9NAXQ0l\nBdSJwuIFdSambmt2g+c1OpfRUTlFcfWkJ3byye68x2PqaNAaQJ2zjR4HdXxuXZJflyxV447d7z0y\nci733CMfNdR2wgnmupl+1ldQx80A6nT5VV+V6w6979XXdVBXLMoJoN0Gtm3z1LYst8ygTi+xBqjF\nR7m0afh4d8ZBHaVBrl+v0k4hiRLkT6m/NJvmeMcoiRJdWVT5lXbQMIA6bjS09AxYwAvqUnP2QcWH\nue3a5cyewt5HlLN1nKkrFt0+QwWJTYkS9EjkWapbVPFOOzISXBYEwLKSy6hw08t06j5herpPNcXo\n4ukKg3bP6iii1XK7o2Vf1HoAqCNmf6GBOhNTtyXjz9TNyxZnNNfs2uV2hFtucWX+uivre0Ddkvy6\nZD2zoLRT/T1yLuTdNNRWLMqFDNm8gzqfQrBR5FcdKOgOve9ORAd1gLKC10FC0QfU6SXWAFV6BfoE\n6kzSKxDI1HH51WHqGubM5CiJEl1ZVFBHTN3EhLPLhwnU0dDqK6hLIr/aoI7H1XFQVyi4fYYyYgsF\ndXu6qSnvlmF9AXU+GbDDBbP8WiioZTrTYOoSWUKmDiXpv+sdf1BHAk3q+6TGsYhM3WbhD+rmZYsz\ncpgUQwDIPkY1vZaYuiWbFwua/fyYOjIDaqOVLQBnz1E/62uiBLcITF21qsZVLyimjv4PAnV1d0cJ\n3XTiQgd1PZNfKftrYsIf1AXE1HH5ddEwdUx+Hcm6+776MXX33ef9KT0jOTUAwRMl9DRCbhzU5bxM\nHQdDfqBucFBKZPW6G5LLraegLmj/VABDBbbxOrNiUcYJ53JSnNClyoUG6vSYukwEUEe20Jg6HdS1\nkMVTHW8W2oIDdYC7Mlti6pZsXiyIqdNB3fCwWmvHAOpoZTsyEj7QMhk3BmJeQd2PfoS3f/EoPAey\nFgtNWHyujhJT11MLYepWYSfuxIm4DF+U7WvYTJ1hCa7PcfPC1JkyXwF1dsxkFIcXh6mbN1AXEFMX\nxNTRZTAlaJIsTpcmNWefzcov1bdK0I2BOpGLztQR4KGxEiQx9wzULVvm3qvLL5eZpOvWAd/8pnPI\nUF52oPIy19/ReqJSkWElnQ7wy1/K9+jrkiRKJDI/UBeS/ZqpSN9eay9wUEdzkEl+td/bivWoNrJ4\n4xuBt7zF/eiCBnWMqfMkSrB596BnZbFqFXDRRXIoLoG6JevOgpg6E+DjhWJ9QN0hhwAveUm0nz/t\nNOC441IsPkw7SvCaCnqqoO4c//RPsXrn/c5TAnV8ngvLfu25mUDd6tXycfdunNz+NU7EXfgLfAUD\nA8Cgz44SQDhT11f5dYMW/MyD+jSmThRKOPVU+X8YU9dz+ZXSPPftU4Fcp6NOthzUdWR83RSGfUGd\nyfT7kqqzp4EXVLTPAOr8Yuo4qOOvAcBhh8nH667z/kSqoI7vTD8yIuWDTEb6hF27gG3blCzTww+W\nKOiAg1wnxNtz7LHy8d575SMtipLUqUtkq1bJ+7Rnj3qfDPIr34o4W7Zj6hY6qNOYuhNPBAbydiOP\nOQad5aP4Oc7B7t3Al74EfP7zbpmZeQV1fPciwHU6jz8uH1lJk8lJyBOrVGQxf+agNm3JYNcu4Pvf\nl6EJS6BuybozHU1xAGSaGfnsY6hZMjgIPPywLAERxW6+WWbyp5a1RN6J7yjBt2QBZK0IzuJpHtkE\n6hYkU0d0VLWKNcsk6jxt3Wbs2gUUG8lBXV+yX/3kV8C9uFqixC9uLeP44+X/nKmje8O7bs+ZOtqj\ns1r1dg6nUFjbDVqanMSylrzgezIrPe0zlSfjPwW455wqgKAxHrS9Bgd1BMKp8QAAIABJREFUeSpo\n6w4AP/mVvwYAp58uH3kpL/2YVCyTcRsxMiIpkH37ZFbA//t/8nUmxdLG6+OHuufB3SKViaPcHg7q\n+iK/ZjJqUCKZIVGCu70cMXWdvLK92YIDdXwwC4GTTgL+/Zt2I1evxvQj2/G/8Hml3VSoe0EwdWTk\ny2ghx0qaTE0B4tDDZOjJlVc6HaytwaBabQnULVm3ZpJYyUz0GZ+EfTIh4gA0bd7u3njAiw7q8nlz\nzaejjlK+gkAdZ+cWVEydvk9kreY0MPv0UyjnW+4k3QVTZ1lev9WVRQV1PkxdflhlhADp1Ok+0eQL\n9AHUZTLuSl2P+ieqhJcJqtWwvLYNADBbGvOMkVLJJV4Bt4hqueyC1b4zdfTDLPsVXTB1eskjUzNS\nMw7qAOnXVq2SMgKgxtfZfqIw5DaCt4fGC6lsfQd1gFmCNTB13O1lyu7er3wNu+BAHY1zpj068ms+\nj8JAHoA6YBYFqLMvejtfQrttDzFqqO2721AHc7W6BOqWrFvTvSnXhcKYup7uyZLQTKCOMjYOPBA4\n6CD5P3eO2uiJIr/OK1NH/zOmzmlspyPlpQigjpIB/UDd4GDKdZ+obwUlSgDuxdVAHe+PJqaOg6Ke\ny6+ANyOAjPodOXfbxiYeAwBUB8zjhpRoy3K3W+bzRk9AXRBTR/QhY+qoEUExdXoYJ93Oo4/2z7JM\nfTzpoI7MVN7EHty5wZJzbU2gjtgucie8wHLPJ+AIoK6Ooi+o475swYE6wCPB8v5m6hsUtragQZ3d\nr+g+KO7AYepkx6HyhEugbsm6N332404wQUzdvBsHdeQgyAtv2GB2jtqEtmiYOg7qeGOfeMKL1JiF\nJUrQ16fu6KlvPf64nHlWrHDZLm50cXUal9FvdAiPqSPHmM326f6EgTqqUWfb6N4/yLeHzOOGuuba\ntS5TZwJ1qbJCOlPHZ9ADD5QIc98+9yLno2e/8tcAeV8IrALqgqFvoG7ZMtmvJiZcRGDfL6tUdA7n\n7dHdXKXidluqOTsvTJ0hUYK7PaskT2JRg7pcDtmsNyz63nuVLYkXBqgjFWhqSq4A7H6VrcjxoYA6\ne97tIIPhYdd3LcmvS9a9Bcmv+xtTNz7urYJKxzJbNDF1BvkVAPCQzOLFwIBxP6mo8mvPQB2ZX3ZA\nBKaOzwGEZ8kx9oWlA7xVdslqNXlxNaZueI8MoG6OBIO68XH3/74zdXqSAYUuUJVaA1PXzgfLr3zC\n5RIskeb0uVTND9RlMq4/IDBOHahUcg43MXVk5bL79YRBeg7qTH4rhKnLMqaOr/kWBahrufIrf5tM\nCOC22xYYqKNFaqcjx5N90bMVl6mbnLRBG2PqNmxwh+ESU7dk3Zs+WqLKr6VSygFXKZmpiBRNTHy2\njAnqFmT2qx9TR8XOTCwYwuVX6hKpO/pSSZ0t/UBdl0xd37olXSC9Dsnb3ibjtyjwx7ZcU96jzmgy\nUMexbmoWBOoGB11ad5uMB7QKXqYuN+jP1Om4nOpYrl6txkCmDupI56XaiNz0AUBjp1g0gjo9H4yD\nOrKFEFPXzJaU3JzsgLwvDRQWL1NnAHV0b+Yd1BWLKt08MuL2t8lJp1/lh+R9uO02ifuuvBJKTN34\nuOrKFzOo6/UwWLIolsnIEUODKUx+XbcOePObpUbU8432Elg2K0cIebFiEXjNa4D775ePxGLRdgqA\n4wW/hDdgCsPo2HEOQfLrgo2pA9yaEVRDQrO1a+UjlQUg5Y3m82OOAc4/HzjvvBTardt73ytz9wsF\nteAUNxNTl8spM6eJqTvkEODSS4FDD+1Bu02mz4SVikTIt94qgd711xs/9srLzKDugguAH/0IeNOb\npEx5/vnAK17hvt+X7Fcd1BFzb7NaBOocpi6XQ3koB7Atwfhl0cfJ6acDb3wjcPzxwH/+p/9xXdub\n3ywfX/hC73srV0o/QFQ1daBy2Si/6kXUSyVgubrVcO9BHSFL7rc0+VUUigArmp559YX49Wdux/en\nLsTLFiuosy8svx/PeQ7w29+qJSLnBdRRJhk50JER+ffUUxLU2ZRp3k7A+dGPJGD7zneAj54sX+sg\ng/Fxt2znYpdf+wrqLMu6CMDrAJwAYAzAZgD/AeAfhRDT7LjlAP4JwPkAygB+DeCdQghDrff9xIpF\nd3SEya+WJQsFLWQbHHRBTqEAnHQS8POfy+c24+DEOwnhTGhvwb+ixbP6DEwd4d++OxHTlgJ+8itl\n9vLtPZitXClv+d698tR1pq5YBH7wgxTbzu2DH5R/QcZ1RpKPtb5oYurKZeDLX06tpeGmz4RDQ/Ji\n0gU1bQ9hWXjxn4x6X4ckY6ibAt570Hf5dXDQfW5LyR6mrlxWLkM+Hwzqcjng3/5N/n/DDf7HdW3n\nny//TKbHH1AHKpUcooWvZysVF68Dsp/pkmzPJ2CeZESmoTNRKAFVtz3Z447GXx/9M9yn7VtrAnU+\npH7/jDoAaccB8uv69RLUVavzzNQBZlAHKExdwWbqqM7hk08Cu2dKGIPL1FF0w2Jn6votv/4fAG0A\n7wPwUgCfA/C/AVxvWVYGACzLsgBcB+AlAN4G4EIAeQC/siwroJLUIjc+YYYxdYvB+Kzil93LM5Q6\nHbTzRQXQAeaYOpL4FkRMnZ/8SuZTQ8KyXDVny5bAnIr5MVOdOq1GCV/Yc1DXVzOBOm6cVSEbHU3s\nrXsC6uiikWbHZ/ehIV9Q5zB1pZJzGYhYDQJ13Lir6et40kGdganT3QYHcfMK6nicpo7OSt6SLDxW\ny/djpT4wjWEWQ36lfIRabYGAOjId1NkAtTgsbwZ3B/c9ojJ1NAwXO1PXb1D3CiHEhUKIbwghbhBC\nfArA2wGcAuAF9jHnATgdwCVCiG8JIX5qv5YB8Nd9bm//jHuwMKZuMVgcUGczFO2SV38wya8E6hZE\nTB332Lo+bFlyuw4fI1C3adMCBHWmOnUaYuNMHYtz76/pIC5KvY4ukot6Ir/qoC6EqcsU/Zk6Uyzm\nogB1bFVgkl/5RwDZz/hzbTe73hj55elpGYjf6XhiOS02AMjtcbBApoM6v27bV4shvxKoWzBMHZkP\nU1da5nVMv31IjalbSpRIYEKIXYaX77Qf19mP5wHYJoT4FfvcJCR798retnAe7ZnM1BGoK3tBnUl+\npVpoC4qpq9W8TN3RR5uDxG3jcdcLDtSZYuo0xLYgmTq/wCSahfD/27v7KLnq+o7j7+8+b7IkbBKg\n4SEJJMiTkqOkEEEgYH0AA6YY09I2Fage6KHaWquW2nLsg9pabRTFh1aPLQekp7VSsNaCFBSx2IKo\nBRRbsBFpVYIJNAmUp/z6x+/+du7evTNz7+7OfZrP65w9s5md2f1N7sydz3y/9/e7zEuoK7P9GkLd\nVKVufHwqFNQ21HWZ/Rq/C8ys1BVS5QolUOd8sEvpodr4zNnhWSp1pR9PB7lmv4blE/fubeXa0gJQ\nhkpdWqi7855WqFu5sjkTJaow+/X06DI6ep7jgHtTbncfsMLMqvD0n3/xPVi32a910OldJf6iix1P\n99yCzqGuUpW6bhMloPPy/UxfISGEutKPqwnSZr92qNTFDokqVvLdMF7ljpunZYAKab92CXWDY4lK\nXaz9WrtQF2a/plTqkqEuPgM2GeoKe/ON77tSQl1Y5BZmVuriu4f4qYqhoqGuTfvVzM/Vg9YagcPD\nJc7Zi79eFi1KrdQtmJz+ZBoehnv+s9V+Xb68Oe3XUrv4ZnYI8AfAzc65u6KrlwDbU24eVhedBGYs\nvW5mX2r3d0444YQ5jbMQyUrdyIh/5pV+oMUsdarUjY76r6ee8nu6KNTtS6nUpbVfQxhq9/7dM1nb\nr4sX+x3Khg0df11tKnVtlqZIm/1a2UrdPIe6nrRfu1XqooPB0yp1tQ11Ke3XUIlvdyIKmNl+LWw3\nGZ9ZmbIDGlgwu/ZrJUNd4vxr4ceTk63xhs8hpbVeofVJeMECP5CUSt3Cpa3t8lM/BatXw/av+v3Z\n08MTDA1N35WHh65Ql0NUcbseeBa4sKxxVEZyqte119Y30EHnUAf+hffII/6FF0LdwolpdwmZD3xB\nL+wUL77Yv3a3bu3V4NtIC3XDw76a9dxzrTflD3zAD/y88zr+uvgxdUFlQl28Urd2LVxxRets8Imb\nJGe/Fiq5IFu7AVS5Upcsb7YLdZEZlbouoa7TERyVCXWx9ut55/lzvG7Zkn4X8Js5XrkrNNSB32+F\nlkHM8ES+iRJhRm8lQ12bSt2yZa3HFK/UlSa8PsKHzpRK3cIlre2yciVceSVcddWhXPutT3DMq/36\nS/GKauU6JzmUkhrMbBx/jNwRwOnOuYdjP96Fr8YlLYn9fAbn3IZ2f2/dunWu3c8qI75jHx3tGggq\nL37kb9q7xf77zwh1LtZ+XbrUr3wS9vXPPOOPSx4a8juVt5UxZSYt1Jn5vcHeva2zGqxdCy98Yddf\nF6/UhTesyoS6eKXOzC/m2+Ym8Updqe3XkZH2CabKoS4ZRDOGurTZr02o1C1cmP76rkSlLr6wbQg9\nCxdOVVGTi0BDevs13HXx4nqGuuQRA5UIdeHJHF96JqrU7XdAa7usWOF30e9/P8CvTF0fr6iGz+eV\nmMCSU+HH1JnZMPAZYB1wdsrac/fhj6tLOhZ4yDmXctbrBoi/GxY+A6AHslTqYHqoWzg91EFrR1ha\nJSgu7Zg6aG27cMqjjIMMBxs//HD64VSlypBeKlepKzDU9WTx4WAeKnXxCkOn3Um8o17obid58uMM\nB2WWPlECpgeG0KOLtWHTKnWd2q/h11Uy1LVpv8YrdZUOdbFK3X7LWtul3Ul04hXV8LgqsV1yKjTU\nRWvRXQOcCWxyzn0t5WY3AIeY2emx+y0Czol+1kzxN6M+DXXx+yRDXWmVoLi0Sh209tphUdKMgxwf\n96dpevZZ+J4/JWl1Ql18nbouN6lUqIu/duL9uXAgJtS/Ujfe/Zi6gYFWsKtkpW7hQr9fCAtFZzgo\nMxnqlsTWjy7sIP20iRJjY1P/eeF0VJCt/VrpUNemUnfAATM3UyVD3a5dU49h8QGtJ3e7UBevqKa8\nJdVG0ZW6K4HXAu8H9prZ+thXWFj4BvwZJK42s583s1dE1xnw3oLHWxxV6nApoS7s6ytXqUsLdWFu\nf45BhqwRP8amEnJU6irbfg0TpOLT9WDmiURz6OlEiaBLqBsa7z77Ndw1eV1SaaHObHoLNsMLPNl+\njW+D3btn3r4n0kLd8PDUNgqL3MLM9mvtKnUZ2q9BJUPdI4/4y9FRFi1upf5uoW7PHr+twpE1dVN0\nqDsrunwHPrjFv14P4JzbB2wEvgh8BLgOfxaKM5xzPyh4vMVpcqUu7fHE2xhRqLMOlbpKh7pkkskx\nyOQOpjKhLkelbu/e1vGOhc/tyRLq9tvPV4bC4KpWqcvZfh2OQt1zg+0rdeGuyeuS4hM4C9/txJc1\nydB+jWfx5M1KCXXxddyibTSyuP3s19pV6hLt1/B44u3XoNKhbmwsvommFe3jwmMKRwRMTFTz1Ord\nFL348CrnnLX5emfsdjudcxc555Y45xY4517qnPtWkWMtnCp12H6t+4TWSq3ar0GOQa5d2/p+2bIK\nhboclbowA66UbdOp/friF/tts3q13zuvWeMD3vLls/5zhbRfx8b8GA88sHXS05jRiWEmJ+HJpdGC\nyitXcsQR/tv4h4QsoW5oCA4/3C9TUfhMv/Ai/9GP/OXISMcPEUuX+q/DDmvdrMPa3r2RVqkL/4nD\nwwwuP2jqplnar8/zEy+ntl+pwvMwnEc1UakL63cffbT//48/r0oNdatW+cs1a/xleFKEHVP07zVr\n/HN89er0XxMefjzU1VGN18xomCZX6rKGukWtqUaVb7+mTZQAv7fLsYd7+9t99njySX8CisqsixSf\n/drlJmHfWcq26VSpO/JI+OY3Wzv5W2/1b1hzSM6FtF+HhuBf/9W38wcGUtuvd98NI0Pnw4+PhuOP\n5/hh/1Djb1hZQh3A7bf74kzhVdYwtTAsQNzlCTQ0BF//+vSn5P77tw5lLUS7St3118OjjzL68NKp\nm2aZKPHWt8KmTZkmy/de2OmGE6QmThN2+eV+UYYXvchfPT7eKuqVGurOPx+OOqr1CTm5fuD69QDc\ndJPfV7Vb3zTsxsPTUaFO5qbJlbpO7ddYqBtYVNP2a3xQ4+O5avYjI/AzPzMPY5tv8XXqutyk1G2T\nnOYZD3XLlk0/mj5lXbG8Cmm/Dg1NP61ZMoQOD0fFiQE4tLWwerzqC9lD3cEH5xnsPAoDDKWRDKXe\nZOtschK2b5/fYXXUrlIXlREnYgEzy2nCxsdh3breDjmz5IzkxGnCRkdbRzSAf1zhTI+lhrqBgen/\nieF0bmG2Q3Rmn4MOap1iMk3Yf4VMW9dQV4XThAn0d6UuOiBmYPHM9mv4dFub9mtdT+uWlKNSF5Ty\n0AcHW6En3n4dHOxJb66Q9muyZJYS6rLIGupKEwaYsVKXZjJtRdNeajdRIpK220seU+fcjLxUDcm1\nA1MeX1x8c1XqccD0GUCnnprpLsn5bgp1MjdNq9TFV23M2H4drGulLr7t6jhdKk2OY+qC0h56PL2E\n59rSpR2rjLNVyDp1/RrqZvGpoNRj6lKSWdpuL9l+jZ+CqlIH4rcLdW2e7PHNVdlQt2gRPP/5me6S\nfPop1MncVPoVMguzaL8OplTqkqGu8pW6poS6HLNfg0qFujnMcO2klEpdcgZD00JdCBGzeAKVFuoe\neyw19KTt9pLt1y4FsPIkQ12XcmItKnUnn5z5xZp8+tXxbBKgY+qqI7wZDQ9X7OPbLOVpv0YfYYf2\nn1mp+/GP4cQTc5+soTfaTZRoYvt1FpW60h56PL3EF9PqAbVf51HOiRJpKjH7NWP7NX7Kw8TdqmEO\n7dfKPcfCdsrYeoWZTz9V6mRuwjti5V4dsxSvLmRsvw4smmDDBjjttOkzlO68Ex580H9fmVDX9Pbr\nSSf5d8wOO8Xkvj6+vm+h4unlhS/0nwhe8Yqe/Kn16/1/S3Ts9fzo1n6d5aJgp53mX2YnnzyHsfXS\nPLRf3/IWn0Uuv3wex9VJ2DHt3j11XtH49hgZaf2z3TF1lQ11k5O+oLBrl6/S1bn9unGjnwG0ZUvm\nuzSl/apKXVWEPUBTQt3wsH9MTz2VHuriJ8bet89/PzHBLbd0/rVqvxZk3To/DaxD+9XM/zeELs28\nBp084qFuxQq/6GgPjqcDOOWUrv8t+XWr1A0M+NuEVJDxHfTss32Fu0f/FXM3D+3Xgw/2m7uw5sbg\noK8w7t7tww/M2F4TE/5H7dapq2yoGxrywW7nzlawg3q2Xy+91H/l0JRQV9WXe/9pWqUOOvd/Uma/\nMjGBGVNfaQGukpW6JrZfIVMaiG/aSoQ66HmKmfdf361SB9NbsDn2EZUNdNDabmFdjFm+uAs/WiXs\nu0IYTSSa5NOxNu1XaC1rsmNHvWe/zkLyPUehTuamaZU6aL0q0ip1IyP+FfTss/5raGjGY48v1hlU\nJtS1W3y4KZW6jJ54ovX9sceWNIjKHzzWhdn010i3UNeEd1CY+a5Zlw9EGUNd7dqvMP24usRpwpIq\n3X6dJYU6mT9NrtSlhTqYvpZQxhPtqf1aTSeeWGJVqNvzrA7iz5t+DXV1ee2E/VZYpTal/Qqtp+PQ\nkH9thM+vtQl1fVapg+mPSaFO5ibsAer8xpTUrYKSDHVtbN7c+j50akqRZaJEXaoN8+zEE0v843Wv\n1MH0502/hrq6vHbCfitM8OjSfjWb3oJtSqhTpa6aFOqqIuy0mxTqwkyxdp/A48vBd1gUKH4arXCu\nwVKoUtfWhg0l/vHwPKvza0eVuvq8dpLt18T2StvtxSdL1CbUdWm/qlJXTZr9WhVr18LWrT1biqEU\nb3qTD27tjqB/y1tg2zZ/XpZLLpnx4099yp+D/cIL4XnPgw9/2P/K0vTbRIkMPvpRf5L1TZtKHMSW\nLX4Qv/ALJQ5ijhTq6hPqQmoLs18T2+PSS/1VZ5zRum5iwndr9+6tUahT+7WWFOqqYmgIrrqq7FHM\nr40b/Vc7r32t/2rjggv8F/gdZHwnWQpNlJghJYsX78gj4bOfLXsUc6P2a30+EIVxP/aYv0xsj5e9\nzH+l3WXPnoqHujD7Ve3X2p5RQu1XkazUfpVeyVqpGxio+DolOYyOtj8zS5WFhNZmnbpOd6l8qFP7\ndUpdK3UN2TuIFKCfThMmxcoa6pry7gl+BkG8HFK3UNdlcd60u+zZ0zouuJKbUu3XKQp1Ik0Xgtzg\n4PTlV/q4/SrzJGv7tSnvnkH8nbMuH4iS7/Y5Q10tKnUZFh9uevtVoU6k6eKhLk7tV5mrfqzUwfR3\nzrq8dpLv9k1sv+7YAc8957/v0/Zr/DDWOlGoE8kqhLnkTk7tV5krVerq89ppcqVu0SL//Nu71/87\n2ZWIaWKlLuzKFy6s76GrNR22SAnahTq1X2WuVKmrz2unyaHOrFWtg46DbGKlLuzK69p6BYU6keyy\nVOrq8sYk1aJQV5/XTpPbr9Ba1gQ6PrYmhrrwmBTqRPpBlkpdXVpIUi3heWOW3vfph1BXl9dOkyt1\nkLlS18T2qyp1Iv2k3USJwcHWXq0u1QaplvC8aVcZ6YdQV5fXzhxC3e7dzQl1Ta7U1XXhYVCoE8mu\nXaUOWnuDurwxSbUo1NXntTOL9msICbWr1Kn9WjsKdSJZdQp1oW5flxaSVEt43vRzqKvLa0ftV0Dt\n16pSqBPJqlOoW7PGv/EedFCxY5Jm6FapO+IIf7zdqlWFDakQdazUjY21P2VgG7UNdX1WqVuzZvpl\nHXV/NoqI1ynUfeEL8Pjjfp0nkby6VepWrYIHHoDlywsbUiHqWKkz8+N+/HH/b1XqqvtYcjrjDLj/\nfli9uuyRzJ5CnUhW7SZKgA9zCnQyW90qdeCrdU0TDjYzg9HRcseSR5NDXXxJkw6DHB31m825Cj+W\nWTjqqLJHMDdqv4pk1alSJzIXWUJdE4W0MzbW9swFlRSvMPZp+9WsVa2r7GPpQwp1Ilkp1EmvdGu/\nNlU81NVJPNTNslI3MtKDcc2HjO1XUKirIoU6kawU6qRX+r1SV5dJEsE8hLrKBqGlS1vfdxlk2GyV\nfSx9SKFOJKtOx9SJzIVCXbnjyCtn+3VkxN/s6afhiSf8dZUNQgsWtJbQ6fLYFOqqR6FOJKvjj/cH\nq591VtkjkaY56ig45hh41avKHkmxjjwSjjsONm4seyT55KzUhQmzALt2Zb5beUILtssgzzkHjj22\n3rNFm6bPPhaKzMHSpfDgg2WPQppowQL49rfLHkXxxsfh3nvLHkV+OUNduMtjj9Uo1D30UNdBbttW\n0HgkM1XqRERE8sjZfo3fpRahLixr0m+HAzSAQp2IiEges6zUAezcmetu5cjYfpXqUagTERHJo+mV\nOoW62lKoExERySOcCQMyB59wl927c92tHCHUqf1aOwp1IiIiecyh/ZrzbuU48EB/WbdFoUWzX0VE\nRHKZQ/s1OOaYeRzPfNu0CW6/HS6+uOyRSE4KdSIiInnMsVJ32GGwYsU8j2k+HXggXHVV2aOQWVD7\nVUREJI85hrqXvGSexyMSUagTERHJY47t11NPnefxiEQU6kRERPKIJ7SM54JWpU6KoFAnIiKSR0ho\nw8P+xK4ZhEWHwZ/uVqQXNFFCREQkj8WL/XIfixZlvsuaNf5yYgIGVE6RHlGoExERyWNsDD7/eRgf\nz3yXzZvhmWdgw4beDUtEoU5ERCSvM8/MdfOhIdi6tUdjEYmoCCwiIiLSAAp1IiIiIg2gUCciIiLS\nAAp1IiIiIg2gUCciIiLSAIWHOjM71Mw+ZGZ3mNkTZubMbFXK7SbN7BNm9qiZ7TWzm83sBUWPV0RE\nRKQOyqjUrQG2ALuAr6TdwMwM+BzwSuCNwGuAYeBWMzu0oHGKiIiI1EYZoe4259xBzrmzgb9tc5tz\ngVOArc65a51z/xRdNwC8raBxioiIiNRG4aHOObcvw83OBf7HOXdr7H6P46t3r+7V2ERERETqqqoT\nJY4D7k25/j5ghZlNFDweERERkUqr6mnClgDbU67fGV1OAnviPzCzL7X7ZSeccMJ8jUtERESkkqpa\nqRMRERGRHKpaqduFr8YlLYn9fBrn3IZ2v8zMdpjZ9+dnaKmOii6/28O/Iflpu1STtks1abtUj7ZJ\nNRWxXVbO5k5VDXX3AS9Puf5Y4CHn3J6Un7XlnDtgXkbVRmj9dgqWUjxtl2rSdqkmbZfq0Tappipv\nl6q2X28ADjGz08MVZrYIOCf6mYiIiIjElFKpM7PN0bdhBsNZZrYD2OGc+zI+uN0BXG1mb8W3Wy8D\nDHhv0eMVERERqbqy2q/JRYc/El1+GdjgnNtnZhuB90U/G8OHvDOccz8obpgiIiIi9VBKqHPOWYbb\n7AQuir5EREREpIOqHlMnIiIiIjmYc67sMYiIiIjIHKlSJyIiItIACnUiIiIiDaBQJyIiItIACnVz\nYGaHmdlnzOxxM/tfM/usma0oe1z9zMw2m9nfm9kPzOxJM/uumb3HzPYre2wynZn9k5k5M/ujssfS\n78zsbDO7zcz2RPuyu8zszLLH1a/M7BQzu8nMHjGz3WZ2t5lpJYgCmdmhZvYhM7vDzJ6I9lWrUm43\naWafMLNHzWyvmd1sZi8ofsSeQt0smdkC4BbgaOB1wFbgSOBWM1tY5tj63G8Bz+EXqz4L+Cjwq8AX\nzUzP94ows/OBtWWPQ8DMLgauB74O/CzwWvxaogvKHFe/MrPjgZuBYeANwHnAncAnzexXyxxbn1kD\nbMGf/OAraTcwMwM+B7wSeCPwGvx2u9XMDi1onNPHpNmvs2Nmvw78GXCUc+6B6LrDgf8E3uac+7My\nx9evzOwA59yOxHW/DPwV8FLn3C3ljEwCM5sEvgO8Gfg08C7n3O+WO6r+FFUevgNc5pz7QLmjEQAz\nezf+w+mS+HnOzewOAOfci8saWz8xswHn3L7o+9cDfwEc7pzbHrt3nR5WAAAHWElEQVTNq4G/B850\nzt0aXbcY+C/gaufcm4oetyoXs3cu8LUQ6ACcc/8FfBV4dWmj6nPJQBe5M7o8pMixSFt/AtzrnLu2\n7IEIFwH7gI+VPRCZMgI8DTyRuP5x9J5dmBDoujgX+J8Q6KL7PY6v3pWSA/QEmb3jgHtTrr8POLbg\nsUhnp0eX3yl1FIKZvQT4ZeDSssciALwEuB/4eTN70MyeNbMHzEzbpzx/iT/P+RVmdrCZ7W9mbwBe\nCmwrdWSS1CkHrDCziYLHU9q5X5tgCb7XnrQTmCx4LNKGmR0C/AFws3PurrLH08/MbAT4OPA+59x3\nyx6PAHBw9PWnwO8AD+KPqfuwmQ055z5Y5uD6kXPuXjPbAFxH68PPM8Alzrm/Lm1gkmYJsD3l+p3R\n5SSwJ+XnPaNQJ40VfUq6HngWuLDk4Qi8DRgH3lX2QGTKALAfcIFz7rPRdbdEx9pdBijUFczMjgT+\nDl/tuQR4Et/K+5iZ/Z9z7poyxyfVplA3e7tIr8i1q+BJgcxsHH9cwxHA6c65h0seUl+Llvp5B/B6\nYNTMRmM/HjWz/YHdzrnnShlg//oJftb+FxPX3wS80syWO+d+WPyw+tq78ZW5c5xzT0fX/bOZLQU+\naGbXZjzeS3qvUw4IPy+Ujqmbvfvw/fSkY4FvFzwWiTGzYeAzwDrgbOfcPSUPSXy4HgOuxu/owhf4\nmX67gNLWdupj95U9AJnhBcC/xwJd8G/AUuDA4ockbXTKAQ/FZy8XRaFu9m4A1pvZEeGKqGVxSvQz\nKUG0Ft01wJnAJufc10oeknjfBM5I+QIf9M4AHki/q/TQddHlKxLXvxJ4WFW6UvwIOD46BjXuJOD/\naB2vJeW7ATjEzMJkPMxsEXAOJeUAtV9n7y+AXwOuN7PfBRzwh8AP8AeDSzmuxB/o/S5gr5mtj/3s\nYbVhy+Gcewz4UvJ6v3Yn33fOzfiZFOIfgVuBj5vZMuB7+NfPy9FxqGX5MH7x58+Z2Ufwx9SdC5wP\nbEup4EmPmNnm6NsTosuzzGwHsMM592V8cLsDuNrM3orvOFyGn7383qLHC1p8eE6i44S2AS/Db8R/\nBn4jvjihFMvMtgMr2/z4951z7yxuNNKNmTm0+HCposrCe4DN+OOD7gf+2Dn36VIH1sfM7Czg7fjW\n3hh+VvKfAx/XcafFifZPab7snNsQ3WYJ8D5gE35b3QH8pnPuW4UMMkGhTkRERKQBdEydiIiISAMo\n1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiNSSmbkMX9uj2/5l+L4qzOwK\nM/uHHLcfN7MfmtmWXo5LROpL69SJSC0lzhYC/pRX3wLeGbvuKefcN8xsNbDIOfeNosbXSTSe7wAn\nO+fuynG/NwOXAsc4557p1fhEpJ4U6kSkEaJK3O3OuV8qeyzdmNmHgPXOuZ/Oeb9J/LlBtzrn/qYn\ngxOR2lL7VUQaL9l+NbNVUXv2EjN7j5n9yMx2m9nVZrbAzNaY2Y1mtsfMHjCz16X8zrVmdoOZ7TKz\nJ83sq2Z2aoaxjAK/BHw6cf2EmX3IzB4ys6fM7BEzu9nMjg63cc7tAm4EXj+H/w4RaSiFOhHpZ5cB\nBwOvAy4Hfg74GL6V+3ngZ4F/Bz5lZseFO5nZi4B/AZYAbwBeA/wEuNnMTqCz9cD+wFcS128DtgC/\njz+f9MXAN6Pbxt0GnG5mY3keqIg031DZAxARKdGDzrlQhbsxqrRtxbc3rwYws7uAc/EnvL8vuu2f\nAg8BZzrnno5udyNwL/B7+JN7t7MecPiwGPdi4Brn3Cdj112Xcv9vACNACJYiIoAqdSLS376Q+Pf9\n0eWN4Yqo5fkIcBj4WajA6cDfAvvMbMjMhgADbgZO6/I3Dwb+N4TBmDuBC8zsd8xsnZkNtrn/jtjv\nERGZolAnIv1sV+LfT3e4PrQ7lwCD+IrcM4mvXwMmzazTvnUMeCrl+jcCHwcuwge8R8xsm5ktSNzu\nyehyvMPfEJE+pPariEg+jwH7gCuBq9Ju4Jzb1+H+P2HmcXI45/bgj/G7zMxW4tu9f4wPlG+P3XRJ\ndPlo7pGLSKMp1ImI5OCc22tmXwHWAnd3CXBp7gdGzOxQ59zDbf7G94H3m9kvAs9P/Pjw6PK7Of+u\niDScQp2ISH6/iZ+FeqOZfRL4IbAMP3lh0Dn32x3ue1t0eSIwFerM7A7gBuAeYA/+uL21wF8l7n8S\n8N/Oue/Nw+MQkQbRMXUiIjk55+4GfhrfSr0CuAn4IPACWqGt3X23A/8GnJP40W34JU2uwS+nshl4\ns3Pug4nbbQT+em6PQESaSGeUEBEpmJldgA+By51zT+S430n4ZUyOcc79R4+GJyI1pVAnIlKwaAmU\ne4BPOufel+N+1wG7nHMX9WxwIlJbar+KiBTMOfcscCGQp0o3jj/DxDt6NS4RqTdV6kREREQaQJU6\nERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpgP8Hd7IbZv/UczwAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Create a CrossCorrelation Object from two Light curves created above\n", + "\n", + "To create a CrossCorrelation Object from LightCurves, simply pass both Lightvurves created above into the CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr = CrossCorrelation(lc1, lc2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, Cross Correlation values are stored in attribute corr, which is called below. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 201.553125 , 1412.10121094, 2828.54304688, 3948.95050781,\n", + " 5370.02359375, 5750.04355469, 6222.50101563, 6664.92722656,\n", + " 5969.0503125 , 6770.80464844])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.03125" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cr.dt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Plot Cross Correlation for Different lags\n", + "\n", + "To visulaize correlation for different values of time lags, simply call plot function on cs." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEKCAYAAADJvIhZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmUZFd9JvjdiBf7khG5VmbWXipJaEESKiTZgNmMYTjY\nGA8wcvdpwE0DPdD2zHDsGdztbmOf4Uzb3dhtjKGbrQ222xhju8E2yMbC7FpcEtpKsqzaqzKzcot9\ne+udP967L15mRsTb7o3KrHrfOXmU9TJDNyIy3v3d3/f7ft+PUEoRIUKECBEijAOxq/0EIkSIECHC\n9YMo6ESIECFChLEhCjoRIkSIEGFsiIJOhAgRIkQYG6KgEyFChAgRxoYo6ESIECFChLEhCjoRIkSI\nEGFsiIJOhAgRIkQYG65q0CGEfI4QskYIecZx7cOEkCVCyBPW1xsdP/tlQshpQsjzhJDXO67fTQh5\n2vrZxwghxLqeIoT8iXX9EULI4XG+vggRIkSIsBXSVV7/9wF8HMAXtl3/bUrpf3ZeIITcAuB+ALcC\nWADwd4SQGymlOoBPAngPgEcAfA3AGwB8HcC7AVQppTcQQu4H8BsA/rdRT2h6epoePnw45MuKECFC\nhOsLjz322AaldMbt965q0KGUfsdH9vFmAF+klMoAzhFCTgO4hxByHkCRUvowABBCvgDgp2EGnTcD\n+LD1+C8D+DghhNAR3j+HDx/GyZMnA7yaCBEiRLh+QQi54OX3dmtN5+cJIU9Z9FvZurYI4JLjdy5b\n1xat77df3/IYSqkGoA5gavtihJD3EkJOEkJOrq+v830lESJEiBDBxm4MOp8EcBTAnQBWAHxU9IKU\n0k9RSk9QSk/MzLhmhxEiRIgQISB2XdChlK5SSnVKqQHg0wDusX60BOCA41f3W9eWrO+3X9/yGEKI\nBGACwKa4Zx8hQoQIEUZh1wUdQsi8459vAcCUbV8FcL+lSDsC4DiARymlKwAahJD7LNXaOwB8xfGY\nd1rfvxXAN0fVcyJEiBAhglhcVSEBIeSPAbwKwDQh5DKAXwXwKkLInQAogPMA3gcAlNJThJAvAXgW\ngAbgA5ZyDQDeD1MJl4EpIPi6df2zAP7AEh1UYKrfIkSIECHCVQKJDv5bceLECRqp1yJEiBDBHwgh\nj1FKT7j93q6j1yJEiBAhwrWLKOhEiHCN4LELFTyzVL/aTyNChJGIgk6ECNcI/p8/exr/6W+ev9pP\nI0KEkbjaNjgRIkTgAFU3cH6jjVwquqUj7G5EmU6ECNcALmx2oBkUza56tZ9KhAgjEQWdCBGuAZxZ\nbwEAGr0o6ETY3YiCToQI1wDsoNPVMO42iNNrrbGvGWHvIgo6ESJcAziz1gYAKLoBWTPGtu7Tl+v4\n8d/6Nj71nbNjWzPC3kYUdCJEuAbAMh1gvBRbrasAAD724AtjWzPC3kYUdCJE2OOglOLMWgvlbAKA\nSbGNCz3VzKraio61Zm9s60bYu4iCToQIexzrTRlNWcNdB83RU+PMdDpKP8CdWm6Mbd0IexdR0IkQ\nYY/jtEWt3XmgBABojFE23VF0+/v1pjy2dSPsXURBJ0KEPY4z66aI4K6DVtDpjY9ea8v9taKgE8EL\noqATIcIex5m1FrLJOG6cKwAYb6bTtTKdTCI+9qCz1uzhUqUz1jUjhEcUdCJE2MN48lINf/74Zdy2\nMIGJjCkkaI4z01F0JOMxzJfSYw86v/6Xz+ID/+Pxsa4ZITyioBMhwh7Gp75zFlI8ho++/Q6kpBgS\ncTJWIUFX0ZBNxTGTT4096Kw2eliuRYq5vYYo6ESIsIex2ZZxbCaHA5NZEEJQTCfGSq+1FR3ZRBwz\nhRTWW+MNOrWOimpHgWFEbgh7CVHQiRCBE15YbeJffPYRbI5x8611VJSySfvfE5kENsa4flfRkU1J\nmC2Mn16rdVXoBo385vYYoqATIQIH6AbFT/yX7+C7L2zgsQvVsa1b76ooWbUcALj7UBk/OLMJZUxW\nOG1FQzZpZjotWdvStyMSlFLUO2awqbSVsawZgQ+ioBMhAgd86/k1MM/L1TGe+KsdBaVsP+i8/tZ9\naPY0PHJucyzrdxTdDjrA+GTTXVWHopuBNQo6ewtR0IkQgQO+8ewqcsk4AGC51h3Lmj1VR081ttBr\nLz8+jUwijr97dnUsz6Gr6MgmJewvZwAAZzfaY1m31ulTalHQ2VuIgk6ECCFhGBQP/uMaXnXTLA5O\nZscWdOqWYMCZ6aQTcdx5oIQnLtXG8hwYvXbrQhEA8Mzl+ljWjYLO3kUUdCJckzi91hqbAeXp9RbW\nmzJeddMMFkpp/PBiDb/1t89D1cXWVaodc7MtZZJbrt+2WMRzV5rC1wdYphNHIZ3A0ZkcnloaT9Cp\nOxR6m1HQ2VOIgk6Eaw4XNzv4qY9/D2/5vR+MRcm12TI3vcVyBgulDC5WOvjYN0/jey9sCF2XnfbL\njkwHAG5bnICiGXhhtTXoYVzRljVkkxIA4PbFCTwztqDTDzTVKOjsKURBJ8I1h1//q1OIEYLNtox/\n/QePQdZ09weFAJPsFtMJLExk7OsPPHNF6Los6EwMCDoA8Myy+ADQVc1MBzCDzkq9N5YMk732RJxE\n9NoeQxR0Ilxz+OHFGt704nn857fdgZMXqvjs984JXY9RPROZBDRHo+LfPnsFmkCKi532nUICADgy\nlUM6EcPzV5rC1gYARTOg6tQOOi85ZI5WOHlevGS8Zr3nh6ZyWIuMRvcUoqAT4ZpCS9aw2VZwaCqH\nN714AbOFFC5siDWFZA4AxUwCP3vPAfzYjTP4t2+8GdWOiiWBooLqEHotFjOdCZwO0CLAzD6d9Fo2\nGccjZ8XLtWsdFcl4DC89XMb3Tm/g49+MJpfuFVzVoEMI+RwhZI0Q8ozj2iQh5BuEkBes/5YdP/tl\nQshpQsjzhJDXO67fTQh52vrZxwghxLqeIoT8iXX9EULI4XG+vgjjx4VNU7J7aCoLwAwEdcG2MI2e\nBkKAQkrCoakcvvAv78GtCybFJdIbjG28mUR8x88yyTh6qlhasW01grJMJxGP4e5DZTx8tiJ0XcDM\n8iayCfzaT92Glxws4YFTYqnMCPxwtTOd3wfwhm3XPgTgQUrpcQAPWv8GIeQWAPcDuNV6zCcIIexu\n+ySA9wA4bn2x/+e7AVQppTcA+G0AvyHslUTYFbi4aWY1ByfNoDORSQi3SWl0VeRTEmIxYl9bKJm1\nHZHy6XpXQTGTgHXG2oK0FEdXcNBhtFY2JdnX7js6hedXm7ZbgCisNmRM5ZJISjHcPF+MjD/3EK5q\n0KGUfgfA9mPRmwF83vr+8wB+2nH9i5RSmVJ6DsBpAPcQQuYBFCmlD1NKKYAvbHsM+399GcBryaA7\nNMI1gwvWfBWW6UyMI9PpqvZYAYb5iTQAYKUuLug0exqKaWngz9LJOHqquHoSpRS/9Y1/QiEt4WXH\npuzr7H1fFSwmWKp2sb9srrVYyqDSVmy6L8LuxtXOdAZhjlK6Yn1/BcCc9f0igEuO37tsXVu0vt9+\nfctjKKUagDqAKUS4ZnFhs4PJXBKFtBkEimlJfKbTU1FMbw066UQck7kkluviNt+2rCGXGhJ0pJjQ\nTOfcRhvf+ad1vP9VN2Aqn7KvT1qiBiYjFwFKKS5XO7YLwqKVVYqsn0Xgh90YdGxYmYtw33JCyHsJ\nIScJISfX19dFLxdBIC5W2ja1BliZjmCqp95VUczs3PznJ9JYEbgRtmUdudTOeg5g1nRkgUHn1HID\nAPCK49Nbrk/mzaDDGldFoN5V0VZ0O+iMg8qMwA+7MeisWpQZrP+uWdeXABxw/N5+69qS9f3261se\nQwiRAEwA2CGtoZR+ilJ6glJ6YmZmhuNLub7R7Kk4eV58UdmJC5sdm+IBzKDTlDWhM1caXW0HvQYA\n8xMZobWGlqwhPzTTEVvTeW6lASlGcHwuv+W6nekI7J25XDWDSz/omFRmFHT2BnZj0PkqgHda378T\nwFcc1++3FGlHYAoGHrWouAYh5D6rXvOObY9h/6+3AvimlT1FEIzTa0287re+g7f+14fGZj6paAaW\na10ccmQ6xUwClAJNgfLhQfQaACyW0lgWWNNpK8PptYzgms5zKw0cm8kjJW3NtMo5K9MZQ9BZLJl/\n57liGjESBZ29gqstmf5jAA8BuIkQcpkQ8m4A/xHA6wghLwD4cevfoJSeAvAlAM8CeADAByil7Cj3\nfgCfgSkuOAPg69b1zwKYIoScBvBBWEq4CGJBKcW//YtnIGs6jk7n8Gt/dUpokyTDUq0LgwIHp3L2\ntaKVgYicpmnSazuDzr6JDJo9TVi/zMiaTkJsTee5lSZusUw+nUjEYyimJWEuAWvNHj7/g/MA+plO\nIh7DXDGNpUjBticw+BM7JlBKf3bIj1475Pc/AuAjA66fBHDbgOs9AG8L8xwj+MfDZyt49FwFH3nL\nbYgTgg/9+dNYqnVxyBEMRGB7jw4Am/aqd9Ut3CwvqLqBjqIPpNdmHTNmhgWHMBhJryXE9ek0eiqu\nNHq4aV9h4M8nc0lhQecz3z2Hh6zmU6e79mIpg6Wa2CZgwBwncf+nHsZ7f+wo3nj7vPD1rkXsRnot\nwh7H2Q3TaPI1N8/ioBUAlqriqY+Lla09OgBs2ktUptPsadY6Ozd/e7CZANNRTTfQUw3kklch6Fjv\n5eQ2+x0GkUGnZgkUPvvOE1v6kxZKYutnDEu1Lp64VMP7/+hxfOnkJfz0730/Us35RBR0InDHlXoP\nMQLM5FM4YPVSXB5D0Lmw2UE6EbMzDKCf6YiSTdcdFjjbIXKaZtvqSRmqXkvEoepUCK1p298MWXsy\nlxQmJGgrJmX72hfNbbm+UMpgpd4VKhgBts7x+b+//BSeuFTDU2OaXXStIAo6EbhjudbDXDENKR7D\nvgmzyHu5Kp76uFjp4OBkdssJmDkwi2oQrbTNgDKZ23nqnxUZdKw60XB6zby1exr/oNO2PdeGBx1R\nQoJhdazFUhqqToWPsmAmqx/72bvwshvMlr+NyOXaF6KgE4E7Vupd7LM68hPxGPYV07g8BgpivSlj\nrpjeco3RXo2umGJ+pW1RTQOCTjmbRDxGhAadoeo1y49NBMXWkZnn2uC1yxa9JkIo2h5Sx2K9OqI/\nZyzTefHiBH7/5+4BAGyOYWbTtYQo6FwH+JX/+TT+8snlsa13pd7bMldmfzk7Fnqt0lZ2bP75lIRE\nnGCjLWZjGJXpxGIE0/mkkPkyLZdMJ2UFHRHWMB1G7Q0JOlO5JBTdsDMinmjJ+uBMpzyeBlEWdErZ\nBBLxGMrZxFgGBV5LiILONYzf/sY/4ZPfOoM/fPgiPv3ds2NZk1KK5XrX9h4DzA1hHEKCQUGHECI0\n6LFMZyqXGvjzmUJKUKbDajqjMx0RA+yYu3RmCL1WtgQGFQFWOGams3PdcbkS1Lqq6ShuCVSm8yls\nNCN6zQ+uqmQ6glj8zoP9GSNPXa5jtdHbQT/xRq2joqcaNr0GmP0UX3miC1U3kIiLOefImo6WrGFq\nQMZxYDKLSxUxNaVKW0Y6ERu6Ac/kU0LUay1561iB7UjbmQ7/mk7HRcQwZVnhVDqKrV7khdaQmk4x\nnUAhJQlXsNU7CorpBOKWo/hUPhllOj4RZTrXER58bs39l0KCdeCzkycAHJ3JwaDA+Y22sHWZRHdy\nQMZxoJwRFnQ228rQLAcQmemMptfsmo6ITMetpsMyHQGU5qjepH0TaaGu3oCZ6Tj7g6bzqasSdC5V\nOji73hr7ujwQBZ1rFKpDKru/nMF0PoknLokfI8w22LlifyM+Pms2ET6/Km58MnM1HlRbOTiZRbWj\nCpFNV9sKyrmdcmkGc1NSuEt5O8poIQFTr4mo6XRd1GssCDPqkRdU3YCiGUNf82xRTIB3or5tjAX7\n+44bv/TlJ/ELX/zh2NflgSjoXKNwNkO+5GAZR2fyOLsuLtNgGJRx3DCbR4wA/7Qq7mTG1mXUjhOs\nWVREtmPWkYZnOqVsArpB0VL4qudaVk1nlCMBIEa91lZ0JOOxoVQpc5rmnem4KfZEUZlO1Dpbg85M\nIYWWrAmf0uqEqht44lINL6y2hPcliUAUdK5R1Kyg8wuvuQH//k234NhMHmcF0lsMdtBxdKunE3Ec\nmsrhBYGZTj/YDa7pAIKCTkcZWEdisG14OI9XaMsaYqSf0WyHXdMRIZlWtKGNoQCQS8aRjMe4N4iy\nOlZhWNCxqExRnr5X6j1U2gpKjs/2tBVgx0GxUUqh6gaeW2mgpxqQNWNPuiFEQecaBZN2vuRQGTOF\nFI7N5FBpK0LdfwFzjko8RlDYZgtz41xeLL3GMp0RQUeEgq3SUuwaxiCIckRgBfVhg3BZMJIFOE13\nFH2oXBowFYMiGkTdFHszhRR6qmEHJ57QdAP3/X8P4mKlg9K2TAcwx2eLxie+dQY3/crX8ddPr9jX\nxnGQ5I0o6FyjYJ3T7FR2dMY022S+aKJQaasoZxOIxbZuhjfvK+L8RlvYQLVKW0Y8RgaOGCimJSSl\nGHfqpafqaCv6QErPXjsjxhHBHFU9vJaUEZzpDFPrMZQF+K+1bHpt8NqzBVMxKaKu4wxkmtEP5Eem\nzXlC4yjqP/DMFRgU+G/fPmtne3tRTBAFnWsULNMpW0qbYzPmzXFmTezJqNoefPJ/+fFpGBT4/pkN\nIetWrHW3BzvAPHlP5ZLcRyiz6ZieMh3uQUfdkU06IbSmI+vIuQSdKQFBx02xx7KONQFBhxm7AsCR\n6b5b+oFyBkkphtNr4jd/QszP0y+85gb89597KQppaSx1Wt6Igs41CrtzOmNuiPvLWWQScZxargtd\nd1CDJgDcdaCEQlrCt58XMw58rSHbm84gTOX5b4KjFHMMEwIzHW9BRwS9pg2VSzOIyHRchQQCve5Y\n0PnwT96Cf/myI/Z1KR7D0ekcXhhD0FmudfHG2/fhgz9xE04cnsTR6RzORfRahN2CWkexOqfNGzQe\nI7j7UBmPnBM7PrrSGRx0pHgML79hGt87LSbTObvRxtHp4fN6JnMp7oVtlumMoteEBR1ZtbviByEe\nI8gk4kJk4h1FH0pxMYjIdNysf0QarDat9/GG2QKkbaq9G2bzeGFNXL0SMDPWjZaCeYe91FwxLVwi\nLgJR0LlGUbP6CZx0071HJvH8atOeSSICZt/K4E34wGRWiMpH1nRcrHRwbGZ40DHpNb5rs011FL2W\nT0mIx8jYMx0AmC+lhdjCdBQdGZdMp5RNoNHTuI5WcAs6E5kEEnEi1AFi0Ht+w2wel6tdIT1RDFfq\nptOCs+l6Kp/CpiBPQZGIgs4YYRjUbuoTjVpH3aKyAYB7jkyCUuBRQdmOYVBUO8rQ4V6ZRByyZnDv\nLbi42YFuUBybzQ/9HRGDxRi9NkoyTQhBMS1dlaCzWMoICTptWXOt6bDA0OFYU3Kj1wghmM6LaRC1\nA96A9/zGuQIoFdv8zP6OC6W+vdS0RRnre6xXJwo6Y0BP1fHouQq+8NB5vPw3/n4sjWS1roqJbZv/\nnQdLKGUT+ONHLwpZs9FTYdDhNQ7Wwc5bUXXGUvAwscQgTOWT6Cg619NotaMgRjBwVLUTE5kE6hxH\nK1BKLSHB6HX3lzNC+ji6iu5a02GBoc1RvtyUNSSlGJLS8G2rnE0KyeQbveGZzp0HSgCAH14U5/jB\n/o6Lzkwnl4RBIZS5EIEo6IwBv/+D83j7f3sIX3lyGZW2glPLDeFrrjV6O07gKSmO9/7YUfz98+t4\nUsC0w80RDZpAP+h0ONMQZywFz5ERNR32XvCkIzZHKOacMIMOv0xH1gyoOh1KMzEsTGSw0VK4HnIo\npWgr2lALHAb2c9ZbwwON7miZOGAeLkRMLW2xoJPauf5CKYN9xTQevyhugijrMXMa6U5bNayrYcMT\nBlHQGQO+aRlt/tD6UIo8EQHmSfSFtRZuXSju+Nnb7j4AAHhcwHNwU3OxOgBv7vv8RhtzxdRQ2sV8\nTswPjN8NWmkNFk1sR5Fz0GFKqqIbvWbNmOGZ7XQUHQYdTDM5YdNrHOnkZk9FMeOimsuKmVra7KmQ\nYmSoA8Tdh8p4/IK4+/rxi1Ucn80jJfWDPfO422tD5KKgIxj1rorHtm3wPxR4IgKAU8t16AbFi/eX\ndvyM9e2ImKTJhpUNG5/AGhY7Kt+1qx11pP8Z0A+EPE/Blc5w0YQTE5kE1z4dpqRyo9cWBcyYYS7O\nznlJg8DoN66ZTk9zfc0ianeA5W6dHu4AcdfBEpZqXSFCGUbPv/z49JbrtgXPHhuXHQUdwfj+6Q3o\nBkXSklkmpZjwTOfJy2Yvzh37J3b8TIrHkEuKkdIyK5DZIf0youi1Rk91PfWzG5TnYLFKe7TvGgNv\neq05or7ghJ3pcLT/WartVFENApNU88x0Gl33v/NkLolGT9viss4DbsIN9n6ICDonz1chawZesS3o\nTOWjTCfCAHzr+TUU0xJed+scAOC+o1NYrve4Skm346nLNcxPpDE7JOMocj55M6w1ekjGY1vmjTjB\nrFN402uNbXbzgyCiX6Y6pBF2OwrphF0T4IF+0Bn9mlnGydMXjAWwRZegY2c6HP/WJr02+jWzzLPK\nubje7GnID6jnMLBakwgG4R/OV0AIcO+RqS3XSxlzmBxvpw3RiIKOQFBK8e1/Wscrjs/gviOTyCbj\nuPfIJIC+C7QInN9o44YR8uFiOiEk01lrypgtpoZSEKIynWZPc92M2CbISzlny8M9BJ1cMg7FmgXD\nA316bfSpPxE3lV486czlWhfxGBmazTLYmQ5H9Vqjp7lnOpZis8p5lk9LHm07JKoJGDAbn/eXMztq\nlrGYaay613p1oqAjEM+tNLHakPHKm2bwz+49hG/90qvs2S4ieGeG9aZsmx8OQjEjCTmRrTZ6Izcj\nUZLpeld1VTUlpRikGOEm4W32NBgUW2zuhyGb4iug8EqvAeZ7zjOzXKp1sa+Y3tGVv3Nd87nxdHxu\nePg7s4F6vDfiZk8bOlIBgC1wEMEgnNto2cai2zGTT+GioKm4ohAFHYF44JkVxAjwqptmrNNh2j4Z\niwo6lFKst8yMYxhEZjrDRASAU73GbyPSdNPK3k3VZK4f55ZlNWVv2QbgyPA4ZRzsbzdIvrtj7USc\nazF/qdZ1pdYA2M2jvN5vWdMha4ZrRssUXfwzndE1HVGZDqUU5zc6Qy2eXn3zDB46s4nVRo/ruiIR\nBR1BoJTiL59awY8cm9qSdZTt9F9M0Kl2VKg6HZlxFDNigo5rppPgT6+xk7TbCRgAckmJW2HbzjZc\nemUA/j0rbG032TJgZlldzvSasyt+GKR4DCkphjbv99vlNbNMpyKipjNibSYR531frbdktGRtaA/a\nW+8+AIMCf/b4Za7risSuDTqEkPOEkKcJIU8QQk5a1yYJId8ghLxg/bfs+P1fJoScJoQ8Twh5veP6\n3db/5zQh5GNkWMGBM55baeLcRhtvevHCluvMHFJEAxvQly2PclwupvnTa11FR7OnDRUvAH0hAc+g\nw16Hm5AAMDd/XmuPskXZDjbwjFfAa/RUFCxPNzfwfM2UUlyp97Bvwj3TAUxXgg6nQMtoK1d6Lctf\npWgY1JXak+Ix5FP87Y7OuTQ+H5nO4ehMDk9fFusezxO7NuhYeDWl9E5K6Qnr3x8C8CCl9DiAB61/\ngxByC4D7AdwK4A0APkEIYV1UnwTwHgDHra83jOOJM8vxuw5u7ZVhyi5RmQ7znRpd00mg2VO5eqC5\n9egAQEqKgRC+6jV2k7vRLoAZ9HitzdRobq4AAOzRzrwynXrXXcXFkEnwCzptRYdmULvXyw3ZZJx7\npuNGoybiMRRSEmpdfvfXRkuGZlDX3iSzH4vvYY7tI6PcNorphJBpqaKw24POdrwZwOet7z8P4Kcd\n179IKZUppecAnAZwDyFkHkCRUvowNQenf8HxGKFgev2Z/NaMIyXFUUhJ4jIdl14ZwPyQGhTcNgTA\nvUcHMA0Zsxw3QaBPZ7ipmgDOm+AI1+Gd6zLlHJ+16x13iXh/7ThHStF7gAcsOpNXptPzlukAZvbJ\n0/Nt2XJ4nnfJ8AoCjF0vVTuQYmRkwMun+L5e0djNQYcC+DtCyGOEkPda1+YopWxA+BUAc9b3iwAu\nOR572bq2aH2//bpwrDfN8cmDbO/LuSSevFwTYkXDpiaOFBIwpQ3H3hEvmQ5gigl41hgaPjKdbFLi\nqCDz5goA9IvqPDOdYb1Q25FNSdyCPDvFe9n4zbX5BXm2tpf3O5+SuJ78VyxHh3mXWtaEgFrp5WoX\n86XRasFciq9YRDR2c9B5OaX0TgD/C4APEEJ+zPlDK3Phwg8RQt5LCDlJCDm5vs5nsuV6U8ZUbrAZ\nZDmXxA8v1vAzn/gBl7WcWGv2kE9JI12A+41s/G4QlunMjQh2AN8aA9A/AY+9puOLXuNb06l5aIa1\n107woxTtbMODUhAwMx1eJ3A/a+dS0pbx0mHBMp0Fl0xHRNP1UtVdLZhL8g2yorFrgw6ldMn67xqA\nvwBwD4BVizKD9d8169eXABxwPHy/dW3J+n779e1rfYpSeoJSemJmZobL899oyZjOD96AnQ1zvO06\n1pujxzYD/ayA5w2y1uwhKcVcN0PefSN+azo8hQSEwNVtGRCT6fij18ZbzBextp/MspDmuwlfqXeR\nTgx32mDg7bEHmJnO/nJ25O/kUvxUmePArgw6hJAcIaTAvgfwEwCeAfBVAO+0fu2dAL5iff9VAPcT\nQlKEkCMwBQOPWlRcgxByn6Vae4fjMUKx3hq++Vc7/Q/mGueBU9WOux+YnenwpNcaMmYLw90IGDLJ\nONfm0EZXQ4zAdagYwF8ynU8NN4B0gqcbAqXUDDq+6DXe2Ya3tfMpiRu91upZQT7h/nfOpySutkPL\n9R7mJzKuf+timq/HnqIZWG32sL/s5nMnRfQaB8wB+B4h5EkAjwL4a0rpAwD+I4DXEUJeAPDj1r9B\nKT0F4EsAngXwAIAPUErZX+H9AD4DU1xwBsDXx/ECNprDM53PvPMEfuIWsxy1wnnIVrXtzveL6J5e\na47u0WHgTa8xJZe3zZ/nydt9tgsDTzeEnmra6fih11Sdcsmo+zUdb/RaNhXnJiRoyTpyScl1dhHA\nv7C+UusEOoDWAAAgAElEQVS6KtcAM9NpKzo3X8WVeheUuvvc5VN8bZZEw9unZ8yglJ4FcMeA65sA\nXjvkMR8B8JEB108CuI33cxwFSik2WsrQTOfOAyX84utvwt8+u2rzxbxQ76p40fzOOTpOsM2yybHo\nudqQcXyE3xtDJiGh0uYXaCseTTcBM8uSNQO6QT31uIxCS1Y91XMYeAU8dpL2GnScvVETmXBnTHZI\n8UJxAVZNh1Om05Y128/NDfm0ZKsLeWCl3sOPHpt2/b0J6zBX76q2A3QYsMFtXug1wHyPkpK3e+Fq\nYrdmOnsaja4GRTdsO/1BYBMAeWc6tY7i2kfBZL486bXVRs9VuQawXhl+6262ZU/jBQC+TZpsvopX\n5Didvv0GnSzHwXmNnop0YvS46O1r91QzyIdFS9Y8B3mmXjO1RuGg6QZWGz1PLgy8J3kOGlE9CCzo\n7BUxQRR0BGC95cUVIIF8SsIKx0xH0Qy0Fd2VXrNn6nCi15gbgZuAATDn2qw2ZG5UwGZLsf223MBz\ntEKr530TBKxMh0NNp2bZu5QyHgMta0zlEGi9jIsWtbbfoEMpH+eLtaYMg7r36AD9njzWPhAWzJ9x\nujD6b83eF559dyIRBR0BYA2abpvw/ETansTIA6wLe8KD8zFP/zW7EdZD0Ln3yCS6qo6nLvOZnlpp\nK5gckVE6YXugcdiM3IZ6bYdpCTP+TIdNa+WV6XgVEQD9LItHXcek1zwGnTS/k789KdVDpsMsoNY5\niYOqbQUpKWb/DYeBt7efaHj6KxJCUgD+VwCHnY+hlP66mKe1t+E1LZ4vZbhmOnVLFVfysDEU0/ws\nO5i7wig6keHeI1MgBPjBmU2cODwZal3doKh0FEx7pNf683zCv+6mi+vwdmQScS7BLii9xuPU72VC\nqxO8M52DudG1DYa8g26ac/ldNyzXvPXoAP1DFy9FKqtXuolk8o6azl6A10znKzCtZjQAbcdXhAFg\nH9R9LoqX2UKK26kI6EuxvXSrFzMSt0yH+cgNcl/YjnIuiVvmi/jBmY3Q69Y6CiiFZyEBzw3YL73G\nq5ciuJCAQ6D1MCzPiRzHTMcPvcYOAzxk034yHbMpO84v0+konu6p3B4LOl7vmv2U0rEYZV4LWK51\nMVNIISWNToun8klsthRQSj1Jft3A+H4vH9RiOoFVTtwzy3S81lZunCvgH85X+K3rUSnEa3KpblB0\nVd0z3cPW5hHs/Iw1ABwTPHlkOl0Vh6eGG09uR5ZjpuOHXstxHCC3XOshl4x7GmEBmNkO70zHDflr\nVEjwA0LI7UKfyTWE5XoXCx4GXc3kU1B0g5uKrObjFFzk6IhrZzo5702DPG4QNhveq3qtLyQItzbL\nGnIjrIa2g5clTFfVkZJiniXf2QRPes1nHesqqQXZ7/GwwlmpdzFfcm8MZTDZCz6HuWpHRdnLOPQ9\nlul4DTovB/CYNavmKWs+zVMin9hexnKti0UvEss8k1jyORnV/dBraX702mZbQdKaJ+IFzAU4rKSV\njST2mun0T8DhNmBWlM94cEFgKOUSqHbU0K+5o2ierHcYeAVaIIhMnE+BW9Z0qDr1Tq9ZE1V5bMIr\n9Z6nxlAG7pmOh3u5Xzu7hoQEME03I3gApRTLtR5eddOs6+/aA91aCo5xsHyrdhRIMeLp5mTmhDyo\nvWpbQTnnzRUAMDMdVaeQNQNpD7Ymw8AkpV5rOv33O9ymwG5uP5v/dC4FRTOsscfe6yLb0VH0kWau\n28HcJ2qdcAcMzep4Z5mTF7DnGXbzZ0HLi9URwFe9tt6UceNcwfPvzxbS+O4L4euVmm6g3vWW6aSk\nOBJxPo4X44CnTIdSegFACcBPWl8l61qEbah1VHRV3RO9xjvTqVmW9142//5MnfCno822t4InQ4HT\nprDRUkAIPA8VY4Ve5ogdFIwu8hN0nAeMMOgquq8MKyXFUUxLoT9jrMfIz2tmmWXYz5jt6O0xWLND\nFw/HjZZPSnGmkEKzp6EXsieLUeVe7ytezcfjgKegQwj5PwD8EYBZ6+sPCSE/L/KJ7VWs2Dbo7ik5\nr5M3Q7WteFY18fRfq7Rl+7V4gV34DMm5N7qmFc2oWSNOEEIwW0iFbt7r02veNyNGATJKMCjMTMdf\ndjhdSGE95GeMveasRysa5++G7U+yR4N7XDspxZCSYqFrpZRStBTNs4gA6NcXww5p7NdJvd1X+4pp\nnN3YG4JirzWddwO4l1L6Hyil/wHAfTBHQEfYhnUfjZKT2SQIAdY52WZstr135/edpsMHnWpH9ZXp\n8FLbtGR/GwJg0h9roTMdf3QP0N+MwlqkdBXdtVlwO2byKWw0w63bCUApJuKmZU7YTIep3/yoBUvZ\nhF3jDIqOooNSf+vah4uQQZ61P0x6vK/uPTKJxy5UuY9KEQGvQYcAcH5ydOtahG1gGn0vQUeKx1DO\nJrnRa5W24jnj6M/U4aEi8+5/Bjjpj7Bcv3cZLcNsMXym0wkgJJi2N6OQm7/qT0gAmJlO2M8Yo24y\nPmo6gBmYw6rX+pmO97UnMgnboSP0uj7oNV40KqtXep0Qe+/RKXQUHU8v1UOtOw54DTr/HcAjhJAP\nE0I+DOBhAJ8V9qz2MFjQGTbWYDum80lu9Jofx2VGw1U74W4O1ZJ8e6UBAH6FXr9qKsDKdJpyKBUZ\nG7ftp6DP/i5h/9Z+hQSAmemEptcC1HTM3w8/68XPlFaGUiYZerZNM8C60zk+dVpGe3u9r+45Yrp7\nPHx2M9S644Cnd5NS+luEkG/BlE4DwM9RSn8o7FntYWy0ZOSScc8n8Ok8H1cC3aCeBrgxsMFQlyqd\nUOuyG9trsAOc9Fq4TcFPlzrDXDGFjqKHUpGxTdTPBpyUYlwK+n6FBIB5sGHF7aBqwSD0GmDKecNm\nOizL8pPVFjMJXK6G+2y3A2RYdqYTsqbTsCelet9H9hXTOLu+++s6IzMdQkjR+u8kgPMA/tD6umBd\ni7AN603Ztjj3goVSxvZqCwO/ljClbBLFtIQLm+FuTCbF9SpgAJyZTvgTsN+gM1sM748VpE8HMDeG\njZCbURAhwUwh/Om7q/jP7tjvh81o/Vr/ACYtFVYkE4TWyybjSCdiNj0WFI2uCkKAvI/3e24ijdUG\n3/lcIuBGr/0P67+PATjp+GL/jrAN603Ztjj3ggPlLFYbcmiJpd2z4mPtw9M5nN8MdzIKsiGw5r2w\n6rVAmU7BVBWGERPYp36fWcN0PhWaXguW6YSf8xIu0wn32a52VCTjMV9rmzUdPkHHT4ZFCMFULnwN\nrdEzRTJeJqUyzBVSez/oUErfZP33CKX0qOPrCKX06Hie4t7Cekv2JCJgYDTXcshsp+9/5p3mOjSV\nC53p1Nk4BR9BJ50wbVx40Gt+hQTTHE79HVUzR1B7lGozTOaSoQrMmm5A0f01aAKOoBMiuwvSEAvw\nsf+pdRRMeOw/YyhlEugoeqi5TexQ5KdPB+h7KoZBo6f6pn/3TaRD96CNA177dB70ci2CuZl5FREA\nwIFJ0679UjVc0KnY5pfeg87hqSyWat1QMkuW6ZR8SKYJMV0TwmQ6lFK0fY4XAPhIxbsBKC7A3LzC\nUE1BGjQBZ50hPL3mN8sy3bVDNkp2VM8NwAwT1u+HERMEodcA8+AXth+r0fXn6A0Ac8U06l01NGsi\nGm41nbRVu5kmhJQJIZPW12EAi+N4gnsJsqaj1lF9ZToHJvkU9Dd9WsIAwMHJLHSDYilEwAtS0wHM\nGznMHPuuqsPw2UMB9Jtiw8i1O4rum1oDzGDRDbEhBK0l8RhZ3afX/NZ04qFrOtWO4nlSKgP7PPII\nOn4/Y1P5FJdMx8/sIgD2uPjdTrG5ZTrvg1m/udn6L/v6CoCPi31qew/sg+Yn05krpJGIE1wOm+m0\nvI81YGBZVpi12U3t9wYJm+kEkdEC5jA1KUZCFZmD1FUAIB1yvEHQugprJu2FoJq6ij93a4Zy1pQu\nG0ZwiXrdsnfyg37QCb75t2QNiThBSvJHo5qZjhJKlt/o+pvSCpjKTAC4wnEwpAi41XR+h1J6BMAv\nOmo5Ryild1BKo6CzDeyEsW/Ce9CJxQgWSxlcCinv3GzLmMgkkPBRZ2ABKgzVVO+qKPiwomHIh6Sa\n2GP90muEEBTSUqhMp634ryUB5pgBRTOgB9yAg3i+AbA3zTCZTtunuzXDZC4J3aChMg6vw8yc4JLp\nWOpIv4a4xUwCimZADhHk/Y5DBxyZDsfBkCLgtU/ndwkhtwG4BUDacf0Lop7YXgQ7Yewrupt9OjE/\nkcFqyNPJ5aq3GT5O8PBfq3f8n8gAM0MJ05hqUx8+6R7ActgOEWg7AaxoACCTtDZ/VfedoQHBPN8A\n82CTlGLoaeGyLL/UGrC1b8VPAzEDpRTVjv9Mh9UYw7hrB3G8APpZf6OnBu6LMuk1/zUdAFjb4/Qa\nAIAQ8qsAftf6ejWA3wTwUwKf154EM/t0G1O9HZO5JCohnQEubLZxaNLbDHkGHkX1INQHYG78YbKN\nIBYlDIW0FJpeC3Lqz4SsrQSl1wCTYpPVcPRa0EwHQOC+lZ5qjlTwI1QB+plOmKDTDCDJB2CrzoJ+\nvg2DoiX7FxIU0xKS8Vhofz/R8MqJvBXAawFcoZT+HIA7AEwIe1Z7FKuNHpJSzLfSZjKXtF1lg8Aw\nKC5Vuzg05S/oZJNxxGMklP9avav6FhEA1hC5kNQH4L+mY64dLuCZg9T8r8uyo6sRdNKJWGghQbig\nE4zyqdoj2H1mOpkEpBgJJY33O9aAIaxYpSlroNR/nZQQgkwyzmVgn0h4DTpdSqkBQLNcCtYAHBD3\ntPYmVuo97CumfXPA5VwSta4amOu/0uhB0Qwc9Bl0CCGhJ4jWggYdi+IKWmwNKmcFzKATVjIdREjA\nNu2gCrYgnm8MmUQ8FL0W9DVP5cI1ptZ8TMN1IhYzx1hcCUE1Ba3d9TOdYJ8x9ji/9BpgfsZ4jCYX\nCa9B5yQhpATg0zDVa48DeEjYs9qjuNLo+abWAGAymwClZhNcELAGz0OTOd+PLaTD2YUEpdcKaXN6\naC8g5RPEj8u5dqhMR9V9jTVgYJt2UC+ycJlOnIOQwP97Xc6Zn42g9Bq7J/zSa4BpCxPGeSKIzRLQ\nF7cE/Ywx5oFlTH6QScbtfq7dCq+TQ99PKa1RSv8rgNcBeKdFs+0JEELeQAh5nhBymhDyIVHrXPE5\nT52BFViDFtYvVkwrG7/0GmB+sIMOu6KUBhYShK0nNQOq14D+qO4gYE2p2QCbUVh6jZ36g5yAU4l4\naMl0kGCXkuIopKTAQacaMNMBzHaEMJlOM0DzMRA+02mEzHTCHC7GgZHvKCHkJaN+Ril9nP9T4gtC\nSBzA78EMlpcB/AMh5KuU0md5rkMpNTOdov+gwyiISjvYh/RipQMpRgIFvGKITKer6lB0w3fjHtCf\n59Psqbbqxg/asoZ4zH8PBWAGqraiQ9MN31JvWTOg6jTQZhSWXltt9FBMS4ForkwiFqpTvSVrgZSC\ngGULEzTT6frvP2PYN5HG989sBFoXsNRrAV4z+2wErZWyfr+JAIE2m5BCu3qLhts7+tERP6MAXsPx\nuYjCPQBOU0rPAgAh5IsA3gyAa9CpdlQomhGIXgtLQaw3TesdvxsoYAadsxutQOvaJqO5YEICAKgH\nvDGD9lCYa1uGo7Lmm7ZpdIOfQlmmE5RzNzNpf7J4hnQiHvjzpWgG1lsy5gJ8tgFLnRlQSBDU8QIw\nJcTNnhZI+KEbFB1FD6SOzCclEBI80zln3Y+Hp/zT5ZlkPDBNPy6MfEcppa8e1xMRiEUAlxz/vgzg\nXt6LZBJxfOKfvwQvmi/6fmxYWWklYA8EYNFrATf+apvN0vHeDNtfNxy91pKD9bpsWbsbIOgENIEE\n+jWdoJnOlUYv8MafluKBM52VeheUAgfKwQLeZC4VeLZNta0gk4gH6ndhHfqrDRlHpv39vcIIVWIx\ngnwyOG19Zr2N+Yl0sAbkZBzLtd1Nr3nt08kSQn6FEPIp69/HCSFvEvvUxgdCyHsJIScJISfX19cD\n/T8yyTjeePs8jkz7P50w6iBoTafS9j68bTvCKLlYb1GwTIdt/EGDjho46BQczXt+YfPtAU7eYWs6\nV+o97Cv6D/CA+fkMGuyYTdL+sv+aIWDWY4I6A9S6/s0+GRjVHcQWJsgANyfC9KGdXW/h2Ew+0GMz\nIdRrv/nAP+LDXz0V6LF+4GdctQLgR61/LwH4f4U8I/5YwlZ5937rmg1K6acopScopSdmZmbG+uQA\nk/rIJYPTH+EyHdMCPojTNOstCsK3224IAW/MIKOq7bVDiBjYRuK3hwJwGG8G2PxV3aS49gWm12KB\nlYIsS9kfMNPJJIJnWbWOEki5BsDOCoMYYIZpPgaYQtL/54tSijPrbRyd8X94BcKZyj52oYrnVhqB\nHusHXoPOMUrpbwJQAYBS2gHgn0y/OvgHAMcJIUcIIUkA9wP46lV+TjtQDtEgGi7TCS7vrARwtu6v\nGzbT0QPRD0C4Qm+Ymg4TPQQ5ia43ZVCKQEIVwDzY9AKegC9VuogHFKoA4bKsWgALHIapELR1M0Tz\nMRBclr/elNGStcCZTi4ZXEjQ6AUf4e4HXoOOQgjJwBQPgBByDMDudpWzQCnVAPwbAH8D4DkAX6KU\nis8hfWKmkMJq0/+JTNUNNHpaoGwDcNY3/G/+1Y6CGAm2AacTcSTjscAURKtnGo0GwUQmuKS1add0\n/L/mWIwEPvVfCWAm60Q6RHPo5WoH8xPpQEIVAEhLZpYVpBE4iNknAwsYQT5jYem1QkDa+tyG2f5w\nOABND5gBvqcGM5U1na2DvV4/8LrCrwJ4AMABQsgfAXgZgHeJelK8QSn9GoCvXe3nMQqLpQyeWar7\nfhyrA036GN7mBAsYQTj3StvcEPyM1N2ydia4G0Jb1pFLBTNT7NNrATIdu6YT7OY0O8b9r7sa0EyW\nIS3Foeo0kEz8crUbmFoDzJEOgCk39ysIqHXUQNJhAJDiMeSS8UCHCx702uk1/39nNmI7KHPhlOX7\nDZjNACajQeD66SOmJvUfAfwMzEDzxwBOUEq/JfSZXWdYLGewXOv5njtiU1wBT4NMrh1ExFDtBK8l\nAeF6hFqyhnwq2A2St+m1IJmOiriVsQSB6Qzgv7bCNqNyANEG0He4DtIgut6SMVsIRq0BwQUUlNJQ\nQgIgeMYRxtvPXDdYTadfMwz6dzafr9+DjWFQNGUtUK3SL1xXoJRSQsjXKKW3A/hr4c/oOsX+UgaK\nVSz20ywZpq5iPo41pvoPOpW2EjjYAUAhE0zVZBgUbUVDPmCmE4+Z47KD0C6NrnljBukPAlih1/+6\n9liDEMEOAHoBTsAdJXhWuWVtn/ReU9agGzQwvQYEr62EkUyb65rqNUqpr88KOwgFkeQDsCfa+g3w\nbcU0Gd1NNZ3HCSEvFfpMrnMsWvSF3yme4YOONe8kgCFjta0GPnkDpnNwEOv5jqqD0uDUB2CNNwh0\nElVD3ZhBJa1sww46nyUtBZdr9xQ98LpA8Eyn1g7eGMoQNugEFasU0wlohn9vwWaIPjCgT6/5/Ywx\nqnkcNR2vQedeAA8RQs4QQp4ihDxNCHlK5BO73sB6IPw20VVDBp1iWkIiTgLZlFQ6SqDGUIapXAqb\nAazn+9RH8M3IHG8QpE9HC3VjZgIab/YUHYQgkO0P4Kyr+F+7qwbzXbPXTvSH1/lBGAschkLAv3NL\n1pBOxHxN4t26LhMx+Fu70VORTcYDizYyAYMOe57jyHS83j2vF/osImDRmvq5VPOX6TDL+KCyUkII\nyln/NiWGQVFtK4EaQxmmC0lstBTfFET/FBp8IwzqxNDsqSiECHaZgP1YPc1AWooHpvXSVrDye/JW\ndQOaQQPTeoCT2vO3NjP7DJNNFzMJXKr4d0NoBRzgxuBsQJ71QZeHLeZnAw4KtJ2td0PQsQwz/4ZS\nerPwZ3MdI5eSUMomfNNrV+o9zBRSgU9kADCVT/neCCsdBZpBMZMPnulM51JQdMMqYHr/sLdCOEwz\nFNKJQE2DzZ4WyM2bIZeUAm2CXUW3M4YgCGrBw07MPOg1v1Jx5iE2EcBQliEojRp0rAFDUIVkoxvM\n2ZohG3B8Rj/T2QX0GqVUB/A8IeSg8GdznWO24J9uWq53sRCwaY9hKuffBZjNKfFzituO6UKwepI9\nSyeg6zFg0orBhAThajq5VMCajhqurpIOuPGz3w8yS2f72r5rOizTCaVeC+aBFsbxgq0L+O8RasrB\nRoUwBD1chLF38guv72oZwClCyKMA2uwipfSnhDyr6xSlbNKmFLxiudbFjXOFUOtO5pK46PP0vWY1\nss4WwtV0AGCjJfvyrLO7xUNmOoFOwCFpl1xKsjM1P+iqejiKK6CQwFbNJcNnWX7Va1U70wlXu1M0\nA7KmIyV5f//CjHIAgs/UaXQ1TAXsuQOCCwnCChj8wOsK/17os4gAwJzrzqaAegGlFCv1Hl5542yo\ndU3reZ+ZTtPKdEL0b7Cby292F7ZbHDBrOkEkrZ2Aw8wYckkJbdn/uj3VQCoMxZUMVszvhJRqOx8b\nJNMppKXARXVga8aRynt/DbWOEmi0wKB1/aDZUwOZBjNk7T4dvzWdXUSvAQCl9NswG0QL1tdz1rUI\nHFHOJn01ada7KjqKjoVSeHqtJWu+lE3rLOgEdD0GYNeD1n3Sa2HlrIB5AmYzU7xC0cyieph1cykJ\nBvVfVJc1HZkQNR2m9PObZbEglQlx6k8lgjWm1kJY4DAE3fzXm3Koz3YxoNWS6X8W/L3OpySkEzFc\n3Gy7/7IDzZ6p1vOTDQaF19EGbwfwKIC3AXg7gEcIIW8V+cSuR5SyCdS6qmePquWaSXEtlIJblAB9\nCx0/2c6aNcUyTJ2hnAuW6Wy2ZMSImRkGRSGA0zQrzobJdFhDq+/NP2SvDNvIWj43X1bT4ZHp+DUc\nrXWDm30yMKWhn81f0QxUO2qoLD6XjCNG/AU7SqmpXgvxuY7HCO49MoXvnvY3MbURsv/MD7wenf4d\ngJdSSt9JKX0HzGmcEeXGGaVsEopmeD4FL1vy6rBBh2UcTBzgBWtNOZSIAAAS8RjK2QQ2fAad1Ubw\nSakMrNfGz6bQVlhRPQS9lgpmU9LTwgWdbIBNEAjvhAA4hAQ+qb1qRw081oDBObDPK9jncSZEvZIQ\n0/XCj9VSTw0+Ct2JVxyfxtn1tq+ev7CqOT/wetfGKKVrjn9v+nhsBI9gpzqvFNtK3Qo6IdVrzA3B\nT4/QWlMOJSJgmMqnfKvXrjR6gcaCO1EIMFqha2c64eg1IFimE2bjZ5ugX7qno4YXEiTiMUgxEkgy\nHUa5BgRr0uzXK8N9vpkVjlew5xi2V+YVx82ZYA+d2fT8mMu1LhYCzmryC6+fpAcIIX9DCHkXIeRd\nMD3YdrVr814Eo4u8WsNshnQjYAjihrDW7HEJOtP5ZIBMpxeK+gD6NFfbB+XTljlkOlbAYv8vrzCF\nBOHOeYV0Ak2fwa6nhK/pAJYTg++go4aiUAHHeAMfr5vVK8NkOoB/uXaDU6/M4WnzfvbTh3ap0sHB\nEP1nfjDy1RFCbgAwRyn9JULIzwB4ufWjhwD8kegnd72BUQk1j5lOo2vKd8PQTIApSS2kJV+NqZVW\nOAschql8Cs8t+5tWuNro4cThcqh1bZWPj82ozSXTsYKd380/pGQaCOZD1uVQ0wGAlM85QrpB0eiF\np9dY0PHzd+63A4Q72Pi1WmKHzTAScQBISXFkk3HPh9dmT0WlreDg5HiCjttu9V8ANACAUvrnlNIP\nUko/COAvrJ9F4AhGr9U8Uj6NnsrNinx/Oes56BgGRUfVA7s8OzGTT/nKdGRNR7WjYi7khmBnHD4y\nHVbfCGO/wzbBtt+aTsjmUMAMOn6FBDwk04BJz/lR7NW7KigNbu/EkA2Q0a41ZBCCUP0yQF+W73ld\nDm0IDKVMwnPP36WKed/vlqAzRyl9evtF69phIc/oOkbZznQ8Bp1uOKWLE/vLGc/0WtdyeQ4jHWaY\nyiXR6HmXazOxw1zImg7bjPwU9HkKCfxkOpRS9DSDQ6aTQFP2V9NhmU4YCx7Av9Epy/bDSqaTVj3J\nz995vSVjMpsMZS0F+G9AXrPosDBSbYaJbBL1rjfG5GLFlFfvlqBTGvGz8VSdriP4FRI0OE76M4NO\n15Ncu82hT4ZhKu9vng/jqf3MHBqEILUVvkIC7+uqOoVu0NAbfxB6jdF6QY1GGfyOy2an9LCZDiEE\n2WTc1995rSGHrucA5md0tdGDpnvL8NaaMqQYCTWjisHP2BDmRjKumo7bp/gkIeQ92y8SQv4VgMfE\nPKXrF+lEHOlEzPNgs2bIRjIn9pez6Ci6p5Q87IArJ6YtCmOj6S3oXGmwsc3hgk46EQMhPjMdLkIC\n/zWdsLN0GPIp//RaV9FtG5swSPvMdHha7edSkq/3e73FJ+jcMJuHqlNc8GgxtWoFu6Dj350oZROe\nD68XKx2UsomxOEwD7jY4/yeAvyCE/HP0g8wJAEkAbxH5xK5XLExkcHbdWzdxo6eG9l1jYJt/taO4\nquE6HGgmBpbpbHgcrbBh8d7TIfl2QohlSeN9I+xwyHSkeAwpKeYv6HBwegb8S3gB828dltYDzOde\n9+G20TcaDb92LiX5cp5Yb/RwbGYq9Lo3zOYBAKfXWjg2k3f9/bVmL3TvG8NEJun58Hqx0h0btQa4\nZDqU0lVK6Y8C+DUA562vX6OU/gil9Ir4p3f94cThMk5eqMAw3GkuNjqZB/pqLvebk2emwxpTWTBx\nAxNZhFX4AOaG5ifT6Sg6EnGCZMBBagz5lORLSMAK8DyEBIpu+LI76ql8Mp1swp+7Nq/XDJjZpdf3\nm1KK9ZbMpZh/bMb0UDu91vL0++ucet+APr3mhS6/uNnGgd0SdBgopX9PKf1d6+ubop/U9YyXHp5E\nraPiBZcPqmGEt8xwwpbyerg5+dZ0LCscjzUdHiaQDLmU5EvVxOvUb9I9PmpJnGTLQXzIwrpbM5h0\nj/8Vt7sAACAASURBVI9GXE6vGTAPVF4OU4D5+VJ1yoVeK6QT2FdM44zHoGP2n/EJOqWsOS7b7fOt\nGxSXq7so04kwftx7xEzrHzk3upu4rWgwKL9Jf/3CuvuGxMNw0143JSGTiHvOdOoc/LgYssm4r/6N\njqJxe81+HAl6nBRkQYJOR9G4ZDqTOdPM1ksGD/Cx32HIpeKe3+/1Fh83AoYbZvM4ve4edJjfW1iB\nDEPJGnxXdTnMrdS70AyKQ1HQuX5xYDKDQkpyreuwjYN5iIVFzkc/Q4dDv4oTU3nvQ+RqHcW+ocIi\nl/RHc7U5FdVzybivmk5fthwy02FO074yHYMLxTWZS0I3qOeAx8QTYV0YAFbT8bYuk+TzyHQAYH4i\n7elAxTvYsYOZW13HVq5FQef6BSEExYy7vr/ByaeJwU//CE96DTBvEK9FTx7OwwxZn1M8OyEHezFM\n5pK+/OZ6nIJOPoAPWVfRbMVdGPRpVG8ZbU/RQQiQClk/A0x6zSuNut4KP5zQCfNedr+nVjn26ABO\nd5PRf2s2On3X1XQijBde+imYay4vO/JsEHqNwwYMmKIAr0Gn3lG5iAiA/kA1rwg7wI1h0WrE9TrC\nol9UD3e7skZLP6PJ27IeSq3HwCyTvPZjdVUdaSl8fxBgZpZeaVTemU4xnUBL1lx7dezx7xwEDEA/\n03nfH5wcaeR7YbMDKUYwH7LZ2g+ioLMLYQYdl0yny2aac6LXfIy5bcsaMok44hz6CQDzxvTq9lzr\nqqG71BlM9Zo/IQGPoLO/nEVb0T037/GQagOwh/0xd3IvaCsaFxp10mfA66kGFyoTALKWYMRLPWm9\nKSOTiHNRZgL9+9OtpmT7vXHKdA5NZXH74gTaio7vvbA+9PeWal3sm0hzEeZ4RRR0diG89FPwptf8\n9I+0FZ1bPQfwnukYBjVrOhyFBP4yHQ1ZDpvRYsnfKIk+nRm+T6eQluzhf17QkXUuNCobFOhW2Gbg\npZoD+o7iXlyu16yJoTwyLKB/f7rN81lryIjHCKY4mOgCpunnl//3HwEAXKkPpzRX6r2xjTRg2HVB\nhxDyYULIEiHkCevrjY6f/TIh5DQh5HlCyOsd1+8mhDxt/exjxPrEEEJShJA/sa4/Qgg5PP5X5B9e\n6DXWmV8OOdbAiZzH/pG2zEfFxeClhgUALUuxx4tey1pNg15oLt2gWK7xkbTut+YXefW6Y5Y5PE7f\ni6WMZ2NXRTOg6Aafmk7OX6bTVXUuIgLAQR17+GybNUN+95Q9RM7l873W7GE6n+TGHgBm4JnKJe29\nYhCu1HuYDznu3i92XdCx8NuU0jutr68BACHkFgD3A7gVwBsAfIIQwu6GTwJ4D4Dj1tcbrOvvBlCl\nlN4A4LcB/MYYX0NgeKHXfnixhiPTOW4bMMAkxN7oNV71HAAopiX0VPemxbrtx8VLvRaHZlAoHryx\nzm200FV13LowEXrdftDxtvl3FA0xwkc+vFDK2BNn3dC1nSfC/63TCdNu32tNR+aY6bAM0etnm4d7\nOgNr3najj1cbfBpSt4P5vw2CYVBcqYcfiOgXuzXoDMKbAXyRUipTSs8BOA3gHkLIPIAipfRhah5Z\nvwDgpx2P+bz1/ZcBvJbwypsFgtFrw07glFI8fqGKuw6O8mP1j7zH/pGWrHHjvIF+5uJGQTAvqbCD\nvRj8uDA8s2TO/LltsRh63YlMAvmU9/lFLSvI8/joLpTSWPZY02GZAS8qdTKX9CUk4BV02N/Zy2e7\nLWtcgiyD90xHxhyneo4T+ybSuFIfHHQqHQWKbkT0moWfJ4Q8RQj5HCGETetaBHDJ8TuXrWuL1vfb\nr295DKVUA1AHEN5USTAKaQmaQYfOH7lY6WCzreDuQ+EGmW2H18J6R9Ht0QA84PXGrHFyHmbw48Jw\narmOpBTz5KHlBkKIL5qLJ525UMqg1lE91bJ4CRgYpnLe+7G6Svj5QQwsK/fy2eZ9oCp6PFCtN3uY\nGXOms2LV9q6LTIcQ8neEkGcGfL0ZJlV2FMCdAFYAfHQMz+e9hJCThJCT6+vDlR7jApNBD6PYnrhU\nAwDcdYBv0PFa02kJqOkA7o1sPH3XAEem42EzOrXcwM37CqFnrDCUc94Ve22ZX5BnIgYvCjZm1cMr\n0yllk56n4vY4NaUC/g4XHc4iGZteG3GgUnUDGy2FW2+QE/uKaWy2lYHUNfsMXBeZDqX0xymltw34\n+oplMqpTSg0AnwZwj/WwJQAHHP+b/da1Jev77de3PIYQIgGYALDDX4ZS+ilK6QlK6YmZmRmeLzUQ\n+h/UwTfJmbUWYgQ4Npvjuq7XvpVah98cH8Cp8Bm9CbNOel69SV6DHWAWXHk20OVTEpoelXM8T9/M\nZmWUoomBx3huJ/I+3J55GY0C/f6kdQ/OALwPVLmkhBgZ/dlmjcK85NJO7Jsw/5+sD8iJlfp1lOmM\nglWjYXgLgGes778K4H5LkXYEpmDgUUrpCoAGIeQ+q17zDgBfcTzmndb3bwXwTeq1I+8qouDSOX5u\ns4P95SxSEr8TGWB26LsZUTaseeqHOA58mvC4+besqZd5Ts7atqLKgztAS9ZQ4LgZ5X3MeOEp3GDv\ntRdXAlbr4rV2xkeTptkcymd7WixnEI8RXNwcrRZUdQOKZiDPsaYTixFrgujw183GtU/n+QcddsgY\nRLGt1HtIxIl9H4wL/N5dfvhNQsidACjMUQrvAwBK6SlCyJcAPAtAA/ABSinbId8P4PdhTjP9uvUF\nAJ8F8AeEkNMAKjDVb7sefXpt8Af13EYLR6b5ZjmAubm4eVSxG5enQSBroHOzC2nJpjVKlhPtwqxZ\nvBS3ecvE/QwWa8ka9pf5vN9e62eAI9PhRDflknF0PPTKAHwznUQ8hsVSxnWYGm97J4ZiRhqd6Vif\nPxGbP8tiBsmm15syZvJ8hsb5wa4LOpTSfzHiZx8B8JEB108CuG3A9R6At3F9gmNAYQQPTCnFufU2\nThya5L6uF8v9CyzoTPELen7otVxS4naTTNqZzmjaxbAs4nluRl6VgoC5+fOS8fYlvF6UXHwznWzK\n+4iBrspPSACYHfoXNkeb6PKcE+VEMT26D61i+dG5DU8Mgn02nboz6Gy0ZEwLqCO5YdfRaxFGZzrr\nTRltRReU6cShWBTDMJy3blye9Fo6EUdKirkHHVnluiGkJNPuxE1RxU78PPs3cikJsmZA9dAj1Obk\nCgA4agxe6DXOmU424f75AsyDFU8hAWC6KF9wodfsceQc/84As3kaHuQZvcvLjcCJiUwCKSk2kF5j\nmc64EQWdXYjiiJrO2Q1z0xcSdFLu/QwXNtuYKaS4UxClbMJ985d1bvUcBi+9I23bEYCfeIIFT6+u\n3ryCrV1j8CCesDdhXv0y1mvouogJZCso8erTAYDDUznUu+pI9RzPOVFOTOaSdt1mECptBVKMcPNR\ndIIQYvbqDBASbLRkIXUkN0RBZxcil5SQlGIDFScPPHMFiTjBrQvhmxS3gwWyF1abQ3/nwmZHyMCn\nG+cKeHa5MfJ3mpzrKoC3oNPi5H3mRN5DgAcATTcgawZnibrkyW6/o2hISTFuZpC2qaw6em0WlMK6\najtx0MrMR2U7HUUMvbZYzmCp1h3a7F1pK5jMJbn5vW3HXDGN1W30mmFQbLYVbm7afhAFnV2IWIzg\nRfNFPLNc33K92VPxpycv4SdfvIApAScUFshOjdj8L1U6QgY+3bG/hOdXmyNPwa2eylVBBgDTHgbI\ntQVw/V6ySnNt1ivD03bIY6bDaVIqQ9bO7kZnOmyAG89Mh/UnjfIhs4UEHNVrbG1ZM3txBmGjpQip\n5zDsK6Z3vO5qR4FuUEznx6tcA6Kgs2tx+2IRp5YaW+zYHz5bQVvR8faXHhjxyOCYKaQwnU/i2ZXB\nQUc3KFabshCDwDsOlKAbFM+u1If+Du9ucYBlOqOFBCJoF0YTutFrLQH1JLfCNkNH5jPKgYHRdG4K\nSXtUNce12aY+KqvlaazqhJvBa6Ut20pKETDptR4opegqOn5wZsOeVCrCBcENUdDZpbh9cQJNWcM5\nh+KGfWhvmA1vxTIIhBDcsjAxNNNZa/agGxTzAjqY79hvGmk+cWl40OFZUGeYzKVQaSsjnaZFqJpY\nEGm5nPpZUOLrByZ5U68pfI1dWYHerUGUjSDg2YfmJejwGiGxHYvl0aMsKm1FiIiAYa6YhqIZqHVU\nfPJbp/HPPv0I/urJFQCIMp0Ifdy+aJp5vvaj38Y3nl0FACxVu0gnYkKbuW5dKOKF1aY9ItkJNodl\nQUCmM1tMo5xN4Ox6a+jvNHuqLSfnhalcEqpOR7oDiKTXXDMdAWt7zXR42u8ATg+00a+ZNQnzfM3M\n5XpUI7AoIYE9P2mI195mWzy9BpjUIqvlfe775wDwm5DqB1HQ2aW4cS6P19w8CwD44cUqAPOktFDK\nCCs4AsCdB0rQDIpTyzszDubVJCLTAUy7kmGuBJRSIfQaozU2RlikiGgaZBtwy6WgL2LtYsZbTafZ\n4ytRZ1SdW03nlOXofdO+Are1AXcqtS1riMcIUpycEBgK6QQmMomBBq+ypqPZ04QeJFl7wwtrLfsw\nybLNqE8ngg0pHsPn3vVSHJjM4JL1YV2qde1Tkygw5+qT56s7fsZcaUUZBE5kh08Q7akGDMr/FMoC\n6KhpmiK4fpaxuQkJzlsSeUbR8EAxnUBb0aG59AhVOgrXzZAJCdwynScv17BYynA/hbu5XHcUHblk\nXMihznQV31nT+drTJs11iwA1KsPN+wrIJuN47HwF600ZKSmGN9+5gJ972WHuwhwv2HWOBBG24kA5\na39Yl6pdIVJpJ6bzKRyeyuKxCzuDznK9i2wyLqSfADDn5AxT+DQ5+64xsCLvqMFmLVlFjPCV8Hql\n104tN1DKJrDA0ZSR/f2aPW3k5NlqW+U7mTbprabz5OUa7jgQfljedkzmklgbkdGKyKQZDk1l8fy2\nVgRKKT724GncMl/Eq2+aFbIuYB5g7zxQwskLVcQIwX1Hp/A7998lbD03RJnOLseBchaXKl10FR2b\nbYWbB9co3H1oEo9frO4orq/UepifSAuj90rZJGrdwUHHdpjmvCnsm0iDEODyiKDTlnXkU3yGqDEk\n4jEkpZhrpnNquYFbF4pc17Zth0bUdWRNR0vWMMlxdLOXURKVtoJLlS5evJ/vgELAFI1UR2Q6tY5q\ne9PxxpHpHC5udrY4UNS7Ks5ttPGWuxaF+5+dOFTGcysNXKx0hIxQ8IMo6OxyHJjMYKMl44xVYBdN\nrwGmmGCjpdhUxDeeXcWfnryES9UOFgSuP5FJ2COpt0NEvwpgbv5zhfTQIi8g7gRccPFfU3UDz19p\nchmR7YSXwWJsYB7PTCcpxSDFyMjs7vSa+Tm/mXM9BzDrd5sjlIqbbVlYYf3oTB6aQbfUddj9NV0Q\nryC7+/AkDGoGuqshHnAiotd2OdgMl8989ywACKfXAOCYJck+s9bCdD6F93zhJAAgESd498uPClt3\nImNawOsGRXzbyc+m1wRs/ovlzEh6jbfDNIOb0/TptRYU3eD+N/cyWIxJi3mrqtym0zIqmefsIobJ\nXBKyZliD2nb+PTdashC3DaDv9nF2ve8QX7XfY/FB4K6DJRACUHp1FGtORJnOLgej0/7nE8t4zc2z\nOD7H/wS4HcdmrBtkY6srr6pT3HmAP+3BwMZQD1JWsWu8JdOAOcJ5WA8FwH+wF0MuJY3s02F+Xbyz\n236mMzzosA2xzJFeA8zXPEpIwDJOERm9W6/OZksR4vQB9O+pc457SuRIg+0ophO4ydo7Zq9CQ6gT\nUdDZ5XjRfAH3HJnE0ZkcPvi6G8ey5sJEBulEDGfWdvbMjCPo1AZshkt2jxD/zWixlMFKvbvF/cEJ\nsfTa8I2fUYo8O/MBbzN1KpYxJu9O+UwyjvaITGep1sV0PsXVYZrBHto3IOh0FA0dRRfmDFDKJlHO\nJnBmvR90WPDjSWGOwonDpjL1amc6Eb22y5FNSvjS+35krGvGYgRHpvM4u9HeUvjcV0wLHW1bypg3\nn+kEvNVFe6lqKufKWf6F3oVSGqpOsdGSMVvc+fqaPQ3zAl53LhUfqtYD+tJi3l5gXmbqCMt0ktLI\n6aGXq12u8nAn+pnOTgUbaxoV6bp8fK6AZx39b5UxZjoA8MobZ/En/3CJ61iSIIgynQgDcXQmhzPr\nLfvGuGmugH/9SnH1HMDs0wEGj62+XO1gUVBjLNtYB2VYgOWEwHGsAYNbTYfVPnjPd/EyU6fSNn9W\n4hzkS9nhsnjAzHT2Cwo6zGpmkCtBf2S0uABw35FJPL1Ut9/3SltBNhkXktUNwutumcPJf/c6e4T1\n1UIUdCIMxIv2FXBhs2Or5v6v1x3Hu152ROiaE5nhQWepJu4EbNN6Q5RzzZ4mpJaUT0kj7XdEZTpe\nZupUOwqKaQkJTmMNGI5O53Buoz1QQWYYFEtVcUFncsR4cpGD1Bh+5Ng0DAo8erZiPw/emaQbJgQw\nBX4RBZ0IA/ESy5ngb0+Zvm/jGPZUygzf/EWegLfSeluh6qbaiU1z5Ym8S6Zj13QEnITdZupUBPmB\nHZ3JoyVrWB/QpLnRkqHoBvYLkuXnknEkpdjgoGNRbiLdnl9yqISUFMP3z2wAsIw+r4Lh5tVGFHQi\nDMSdB0qIxwj+5tQVAOMJOizTqW7b/FuyhlpHxWJJDBc9SsDAmlJFuDCYSi59qICho2jIJOJCGgfd\nZuqsNnpClFxHhygjAdi0m6hCNyEEk9nBVjgbY8h0UlIcdx0s2W4fogL7bkcUdCIMRDYp4daFIlas\niYPjMAaU4jFM51O2xxtgzvD5Tw/8IwC+/mNOTIyQajeZE4KgTAcwRwgMgtlPIobvd3OavljpCCk4\n9/tVdgYd5kYxkRG3EQ+bFLvRkpFLxrkrBbfjJQfLeHa5gZ6qm0FnzPTabkAUdCIMxStvnLG/zwm+\nGRkOT2Vx3jFD6OGzm/j8QxeQTsRwm6DG2EJKQjxGBtJ6bGMWUtNxMf3sKDrXOTpOjJqp01N1rNR7\nODyVG/jzMGBy/HMbO+X47P3nLV5wYmrIpNhLlS7mx+D2cdfBMjSD4hf/9EmsNnpRphMhghPve+Ux\n+3uR4xScODSV2zLH/snLNQDAQx96LY7OiBteN5FJDPR9Exl03Ew/27LGdXKnE8V0As0hmc7Fivn+\ni8h0YjGCw1M5nNvY6bhsW+8IPP0PG29wdr2FGwR9vpxgfW5/9dQKThwu4/57Dgpfc7ch6tOJMBT5\nlIS/++ArBxbYReHwVBZ/9ngPPVVHOhHH05frODSVFd5AV8okBmY6jF4rCqHXRk8PNTMdQUHHshwa\nBDZOQUSmA5gNvmw2kxOslicy05nMJVFtb/07K5qBC5UO3nj7vLB1GWYKKdwyX8REJoE//Ff37rB7\nuh4QBZ0IIyFqNPYwHLI4/4uVDm6cK+DppTruEOiCwDBslo/IoOM2yK2jiLHfAczX05I1aLoBaZss\nmtGbooLOvok0nrxU23G93lWRTsSE9q1M5ZJoyRpkTbfHYV+stKEbFMdmxbze7fjKv3kZpBgZG3uw\n2xDRaxF2FZjh4vmNNqptBZerXdy+yH+2ynZMDMl0RHq+eanpiJBLA3013qC1z292UMomhPV0zBfT\n2GwrO0aiV9uKLV8XBWau6RQTnF4zg+yxMdBrgOlsfr0GnP+/vTsPrqs87zj+/WmxFtuSdyzLxsZL\nbLwQAsZATIJZAg7QkKSspSlpkjId0gLTdCiQTkjbZAJDhzBpFso2DQWaklBCCmUxQwOEOIADNl4x\nBoL3FduS0eIr6ekf5z3SkSwvUJ1zbN3nM3PH55577rnvkW09913O84AHHXeYib9dr9jUwKrNUdGr\n6XXpZ9Yesp85nbin09fF4yCxem1/czop93Sg9xtxtza0MjrFu9bjVEpbG7rPrexqLqQ6tAZ01pKJ\nK8VubWzhkdfWA6Q2Z+i6yyXoSLpY0nJJHZJm93jtRklrJL0p6dzE/hMlLQ2v/UDhq4KkCkn/Gfa/\nLGlC4j1XSnorPK7M6vrcR1dbXc5pk0fw4MtrWbGpAchmiG9I9YBea/k0thSoKi/t8zvzIbGQYH9L\nplvTm9OJf/H3ll27saWQynBiLC4R3nNeZ1fT3tSDzrS6KNPyyvBv61+ff4dnV27h/Fl1qVUNdd3l\n1dNZBnwReCG5U9J04DJgBjAf+LGk+H/dT4C/AKaEx/yw/6vATjObDHwfuDWcaxhwM3AyMAe4WdLQ\nFK/J9ZGrz5jEtsZW7nz+baoHlKaSbLOnZC2fpIaWQmrlueNfco37ndPpve5LX5gwYt9U+7E9remk\n/YnFAW9zQ0u3/buaCqkPr9UPqaK2qpzlG6Og8/rancweP5QfXXFCqp/ruuQSdMxspZm92ctLFwI/\nM7NWM3sXWAPMkVQH1JjZ7yxK2nQ/8PnEe34atn8BnBV6QecCC8zsfTPbCSygK1C5w9ipE4czpraS\nbY2tTBo5KJPx7zh7dc9sCFHetXS+fVccoJJme4fRXEhvTqeuppKKspLOlWpJjS1tqQwnxuKgE994\nHNvZVGDowHR7OpKYXlfDik0NFNo7WLaxgY+nUBrb7d/hNqdTD6xLPF8f9tWH7Z77u73HzNqA3cDw\nA5zLHeYkcfrUUUBX8au0xRkXemYg3tm0tzM9T1+TtN9M082FuDx3OkGn636Z7Hs6gyrKGFxZxuZE\n0DEzdjfvTTUbQWzGmBpWbWpg+cYG9rZ1ZLI60nVJLehIelbSsl4eF6b1mR+VpKskLZK0aNu2bXk3\nx9GVDSGrJdtdae+7T26v3dHE0SmVMIZoYvvZlVt5b0f3X/5xzZm0MhJAlJKmZ9AxMxpbCgxKoZRD\nUl1tZbc5nQ/2tlNot1TqJfU0s76W1rYOfr4o+k6aZmFCt6/Ugo6ZnW1mM3t5PHaAt20AxiWejw37\nNoTtnvu7vUdSGVAL7DjAuXpr611mNtvMZo8cObK3Q1zGPjVlBPOmjuTMaUdl8nkjB0ffsLclgk5L\noZ2NKaWDid128cfZvqeVe3/zbrf9cS2dtHo6EM3rrH2/ibZEob7Wtg4K7ZZqTwdgdG1Vt57OljC/\nk0Vi2RNDBvWfL1rP6JrK1LKXu94dbsNrvwIuCyvSjiFaMPCKmW0CGiSdEuZr/gx4LPGeeGXaRcBz\nYd7naeAcSUPDAoJzwj53BBhYUca//fkcpqeUb62nuKeTLDAWp+OZMCK9ns7x44YwZkjVPkko92TQ\n0zl6WDWFdmNrosxA182w6QaduprKbnM6aabe6Wns0CpGDa5gb3sHn5w8vKjvmclDXkumvyBpPXAq\n8ISkpwHMbDnwMLACeAr4upnFd5BdDdxDtLjgbeDJsP9eYLikNcDfADeEc70P/BPwanj8Y9jn3D5q\nq8opK1G34bV3U04HE6up2jcbQpwVIM1v4fGqvOScUhzs0lxIANFigm17WjvLoa8LQSfNocyYJE6a\nMAyAuZNGpP55rrtcFqab2aPAo/t57bvAd3vZvwiY2cv+FuDi/ZzrPuC+/1djXVEoKRHDBw3oLFvc\nvLed19dFdU/i5cVpqanct6Da6i17KFG6d8nHaXg+2NuVGSBOAppGee6kutpKzGBrYyv1Q6pYu6OJ\nirKS1Grp9DR38ggWrNjC3MkedLLmd0M5FwwfWNG5eu17T67k/oXvAaS2ei1WW1XOhp3db5Rcs7WR\no4dVp5qHLL7xtCnZ00kxA0NS5706u5ujoPN+tGAjq6GuS08ax+lTR3a2w2XncJvTcS43IwZXdPZ0\n4oSUV8+bdKC39InehtdWb9nD5FGDU/3crowIXT2dhs6idSnP6XRmJYjmdeKgk5XSElGfQf0cty8P\nOs4FIwYO6FxI0NDSxvnH1XH9/Gmpf25cxTNa/xKl2v/D9g/42FHpLhePq2Q2JdLwZDW81tXTaWHx\nul2sfb+JcRkGHZcfDzrOBXFPx8zYvLsl1aSXSbVV5RTajZZCNKl+72/epa3DUl+51zmnk6jnEy8k\nSLunU1NZRvWAUlZtbuSSOxfSXGjvnNx3/ZvP6TgX1A+porWtgzVb99BcaM8s6MSryBpaCjS2Frj1\nqVWcN2s0n52ZblGx6oreejrZzOlIYmZ9Lb98fQNtHcaDXzvZJ/WLhPd0nAumjo7mUJ5fHWWlOCqj\nSeZkmYF46fAls8elXlWyujwOOt17OpXlJalk1e7p3BmjaeswBg4o9V5OEfGg41ww9ajuQSeL7NbQ\ntTquobnAhlDnZUwGk9xlpSVUlJV0K63Q0FxILcFpT+fOiLJNnDppOAPK/FdRsfDhNeeCoQMHMGpw\nBS++tR0gw+G1EHRaCmwM9W2yCngDK8poSszpLNu4m8kZFTMbO7Sam86bxmzv5RQV/3rhXEI8xAYw\nqiabGxXjlDO7mwts2tXM4MqyzHob1QNKeWPDbn7y67dpbCmwYmMDJx2TXRC46tOTOOFoL3NVTLyn\n41zCcWNrefGt7dTVVlJRlt6NmUldw2ttbNjVkun9IwMHlLFk3S6WrNvFmCGVdBjM8Z6HS5EHHecS\nrjlrCmdMHZVZOhZIDK81F9i0uzmT+ZxYdSKL9eNvbKK0RHziaE/179LjQce5hIqy0sznGMpLSxhS\nXc66nU1s3NWcaX2XgYks1gvf3sH44dWplch2DnxOx7nDwuzxw3hh9XZ2NhWy7ekM6Orp7GltyzQV\njStOHnScOwycMnEYm0Mhs7hqahaSQQdgvAcdlzIPOs4dBk6ZOByIFjLMrK/N7HML7dbtuec/c2nz\nwVvnDgPH1tVw9rFHcfmccQc/uA81tHTPbj0+5YJ1znnQce4wUFoi7rlyduaf2xBKKowYFGXY9jkd\nlzYfXnOuiMVF4o6tizJae9BxafOejnNF7I7LjufJpZs5eeIwPjVle2eNHefS4kHHuSJWV1vFV047\nBoAZY7JbwOCKlw+vOeecy4wHHeecc5nxoOOccy4zHnScc85lxoOOc865zHjQcc45lxkPOs45/L4M\nVQAABt9JREFU5zLjQcc551xmZGYHP6qISNoGvJd3Oz6CEcD2vBuRMb/m4uDXfGQYb2YHrcvhQaef\nkLTIzLLPGJkjv+bi4Nfcv/jwmnPOucx40HHOOZcZDzr9x115NyAHfs3Fwa+5H/E5Heecc5nxno5z\nzrnMeNDphyR9Q5JJGpF3W9Im6TZJqyS9IelRSUPyblMaJM2X9KakNZJuyLs9aZM0TtL/Slohabmk\na/NuU1YklUp6XdLjebclDR50+hlJ44BzgLV5tyUjC4CZZnYcsBq4Mef29DlJpcCPgM8C04HLJU3P\nt1WpawO+YWbTgVOArxfBNceuBVbm3Yi0eNDpf74PXA8UxWSdmT1jZm3h6e+AsXm2JyVzgDVm9o6Z\n7QV+BlyYc5tSZWabzOy1sN1I9Eu4Pt9WpU/SWOB84J6825IWDzr9iKQLgQ1mtiTvtuTkK8CTeTci\nBfXAusTz9RTBL+CYpAnAJ4CX821JJu4g+tLYkXdD0lKWdwPchyPpWWB0Ly99E7iJaGitXznQNZvZ\nY+GYbxINyTyYZdtcuiQNAh4BrjOzhrzbkyZJFwBbzez3kubl3Z60eNA5wpjZ2b3tlzQLOAZYIgmi\nYabXJM0xs80ZNrHP7e+aY5K+DFwAnGX98x6ADcC4xPOxYV+/JqmcKOA8aGb/lXd7MjAX+Jyk84BK\noEbSA2b2pzm3q0/5fTr9lKQ/ALPN7EhLGvihSJoP3A6cbmbb8m5PGiSVES2SOIso2LwK/ImZLc+1\nYSlS9M3pp8D7ZnZd3u3JWujp/K2ZXZB3W/qaz+m4I90PgcHAAkmLJd2Zd4P6Wlgo8VfA00QT6g/3\n54ATzAW+BJwZ/l4Xhx6AO8J5T8c551xmvKfjnHMuMx50nHPOZcaDjnPOucx40HHOOZcZDzrOOecy\n40HH9WuShieW3G6WtCHx/LcpfN68rLIDK/KcpJosPu9gDnbtkkZKeirLNrnDj2ckcP2ame0AjgeQ\n9G1gj5n9c66N6jvnAUuOlPQwZrZN0iZJc83spbzb4/LhPR1XtCTtCX/Ok/S8pMckvSPpFklXSHpF\n0lJJk8JxIyU9IunV8Jj7IT7rW+E9yyTdFe64R9JJoRbQ4lAbaFnYPyN8/uLw+pReTnsFEOeeGyjp\nCUlLwmdcGvafGK7t95KellQX9k+W9Gw4/jVJk0LP6bbw/qWJc8yT9GtJv1BUu+jBRPvnh32vAV9M\nXO/piR7l65IGh5d+GdrtipWZ+cMfRfEAvk2UWiR+vif8OQ/YBdQBFUSpZv4hvHYtcEfYfgg4LWwf\nDazs5TPmAY/3sn9YYvvfgT8K28uAU8P2LcCysP0vwBVhewBQ1cs53wMGh+0/Bu5OvFYLlAO/BUaG\nfZcC94Xtl4EvhO1KoDqcYwFQChxFVJOpLlzTbqKcbyXAQuC08L51wBRAwMPxtQP/DcwN24OAsrBd\nDyzN+9+CP/J7eE/HucirFtVwaQXeBp4J+5cCE8L22cAPJS0GfkWUkHHQIZ7/DEkvS1oKnAnMUFTl\ndLCZLQzHPJQ4fiFwk6S/A8abWXMv5xxmUa2ZuJ2fkXSrpE+Z2W5gKjCTkCII+HtgbOh11JvZowBm\n1mJmTUSB5D/MrN3MtgDPAyeF879iZuvNrANYHH4m04B3zewtMzPggUTbXgJul3QNMMS6ah5tBcYc\n4s/M9UMedJyLtCa2OxLPO+ia+ywBTjGz48Oj3sz2HOzEkiqBHwMXmdks4G6iXsJ+mdlDwOeAZuB/\nJJ3Zy2FtkkrC8auBE4iCz3ckfYuo97E80d5ZZvZRS18kfz7tHGQ+2MxuAb4GVAEvSZoWXqoM1+SK\nlAcd5w7dM8Bfx08kHX+I74sDzPbQM7oIwMx2AY2STg6vX5Y490TgHTP7AdG8zXG9nPdNYGI4fgzQ\nZGYPALcRBaA3gZGSTg3HlEuaEXpH6yV9PuyvkFQNvAhcKqlU0kjg08ArB7iuVcCEeM4LuDzR/klm\nttTMbiXKih0HnY8RDSm6IuVBx7lDdw0wO0zsrwD+cj/HnSVpffwAjiXq3SwjyhT9auLYrwJ3h+Gv\ngURzJwCXAMvC/pnA/b18zhNE8y0As4BXwvE3A9+xqLT1RcCtkpYQDYt9Mhz/JeAaSW8QzfuMBh4F\n3gCWAM8B19sBajGZWQtwFfBEWEiwNfHydWFBwhtAga6KrmeEdrsi5VmmncuRpEHxEJ2kG4A6M7v2\nEN9bB9xvZp9Js419SdILwIVmtjPvtrh8+H06zuXrfEk3Ev1ffA/48qG+0cw2SbpbUo0dAffqhCG7\n2z3gFDfv6TjnnMuMz+k455zLjAcd55xzmfGg45xzLjMedJxzzmXGg45zzrnMeNBxzjmXmf8D2liS\nG9l3gP8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr.plot(labels = ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given the Phase offset of pi/2 between two lightcurves created above, and freq=1 Hz, `time_shift` should be close to 0.25 sec. Small error is due to time resolution." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.26645768025078276" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modes of Correlation\n", + "\n", + "You can also specify an optional argument on modes of cross-correlation.
\n", + "There are three modes : 1) same 2) valid 3) full \n", + "\n", + "Visit following ink on more details on mode : https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.correlate.html\n", + "\n", + "Default mode is 'same' and it gives output equal to the size of larger lightcurve and is most common in astronomy. You can see mode of your CrossCorrelation by calling mode attribute on the object." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'same'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points in corr and largest lightcurve are same in this mode." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating CrossCorrelation with full mode now using same data as above." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr1 = CrossCorrelation(lc1, lc2, mode = 'full') " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYZVddLvyus88+U9Wpoauq5+50utOZA+GmScI8CUQu\nCH4fSrgqPF4eUEH0+/S7XvHKo1fBR7z4oegVRfGDoDJFhSgkCgmQRDLQCYTMU3cnPdc8nHFP6/tj\n77X3PvusaVdXdw293ufJk6rdtWrvOlVnvev3/n6/90copTAwMDAwMMiDwmo/gIGBgYHB+oMhDwMD\nAwOD3DDkYWBgYGCQG4Y8DAwMDAxyw5CHgYGBgUFuGPIwMDAwMMgNQx4GBgYGBrlhyMPAwMDAIDdW\nhDwIIX9LCJkkhDySuva7hJDjhJAfRv+9KfVvHyKEPEMIeZIQ8sbU9WsIIQ9H//ZJQgiJrpcJIV+K\nrt9HCNmzEs9tYGBgYLA8FFfo+3wWwJ8DuClz/ROU0o+nLxBCLgdwI4ArAGwH8C1CyMWUUh/ApwC8\nF8B9AL4B4AYAtwJ4D4A5SulFhJAbAXwMwDtkDzQ+Pk737Nlzhj+WgYGBwfmFBx54YJpSOqH6uhUh\nD0rpnTmigbcC+CKltAvgMCHkGQDXEkKOABiilN4LAISQmwC8DSF5vBXA70brbwbw54QQQiXeKnv2\n7MHBgweX8dMYGBgYnL8ghDyn83VnO+fxQULIjyJZazS6tgPA0dTXHIuu7Yg+zl7vWUMp9QAsABjL\n3owQ8j5CyEFCyMGpqamV/UkMDAwMDGKcTfL4FIC9AK4GcBLAH5/FewEAKKWfppQeoJQemJhQRl0G\nBgYGBsvEWSMPSulpSqlPKQ0A/DWAa6N/Og5gV+pLd0bXjkcfZ6/3rCGEFAEMA5g5W89uYGBgYCDH\nWSMPQsi21Kc/CYBVYt0C4MaogupCAPsB3E8pPQlgkRByfVRl9S4AX0uteXf08dsB3CHLdxgYGBgY\nnF2sSMKcEPIFAK8GME4IOQbgdwC8mhByNQAK4AiAXwAASumjhJAvA3gMgAfgA1GlFQC8H2HlVhVh\novzW6PpnAHw+Sq7PIqzWMjAwMDBYJZCNeoA/cOAANdVWBgYGBvlACHmAUnpA9XWmw9zAwMDAIDcM\neRgYrDJueegE5lvOaj+GgUEuGPIwMFhFPDvVwK984Qf4bzf/aLUfxcAgFwx5GBisImabYcQx0+iu\n8pMYGOSDIQ8Dg1VEs+sBAAbKK2UzZ2BwbmDIw8BgFbHYicijZMjDYH3BkIeBwSpiLpKtamUr91pK\nKQ5NNVb6kQwMtGDIw8BgFcFyHhU7P3l8/eGTeO0ffxfffmJypR/LwEAJQx4GBquIuahE1/fzN+ue\nXgyT7Lc/cXpFn8nAQAeGPAwMVhEs8uh6vuIr+zFRLwMAnj5tpCuDcw9DHgYGqwgWeXS9IPdazw/X\nTJsyX4NVgCEPA4NVxExj+eThRuThBRvTn85gbcOQh4HBKoJFHs4yyMOJ8iTLWWtgcKYw5GFgsEqg\nlGKu6QJYXs6DyVbLJY8nTi2i7eS/r4EBYMjDwGDV8PDxBTgRAZyJbMW+Rx50XB83/Mld+OAXfpB7\nrYEBYMjDwGDV8G+PnoJVIHj5RePousshDxr9f3nkAQD3HjLTnA2WB0MeBgarhJbjo2ZbGBssLUu2\nYnKV4wXIO9StE5HVRh0GZ3D2YcjDwOAM8bHbnsCXvv987nUdN0DZtlApWmgtI/fgBSEBBDS/7MUi\nD1OoZbBcGDc2A4MzwFzTwae+8ywA4B0v3p1rbcf1US0VsGO0iqlGF23HR7Wkb1PiprrSW46fy+Kk\nE0U6FIY9DJYHE3kYGJwB7olyBsUCyb224/qoFC3smxgEpcCh6Xyd4ukqK2btrn9vJlvlWmZgEMOQ\nh4HBGeDZyXDD3zZSyb2244bRwr7NA+H3mmrmWp9OlM/lHGPLZCtDHgbLhSEPA4MzwKHpcMNfjrFh\nxw1QsQvYPlIFAJxe6ORa76XueTLn2pg8jGxlsEwY8jAwADC11MVTp5dyr3t+tgUAOLHQwcEjs7nW\ndrww8qiXi6jYBZxezEcArh+gFuVITs63893byFYGZwhDHgYGAN7xV/fgDZ+4M3fuIP31b//Le3Kt\n7bgBykULhBBsrlcwuZTP4NDxA2wZqqBkFXAyJ/Gw0uDAsIfBMmHIw+C8R8vxYvnpn39wPNfaM/GV\n6ro+Knb4FtxcL2NyKX/kUS4WsHW4gpPzy5WtDAyWB0MeBuc92FAlAPjHB4/lWpvtr2Cbsg7ablJe\nO1EvYypn5OH5FEWLYOtwBady5zyMbGVwZjDkYXDeY6EdmhMOV+3cszG6no+X7B2LP89DAJ1U5FEu\nFnJ7VDl+ANsqYPtwBScW8uY8EpK751ljUWKQHytCHoSQvyWETBJCHkld20QI+SYh5Ono/6Opf/sQ\nIeQZQsiThJA3pq5fQwh5OPq3TxJCSHS9TAj5UnT9PkLInpV4bgMDAJiPyly3DJVze0x13QCXbqvj\nL37mPwEAGjlyJh03QDWKPIpWIXfFlhuRx9bhKk4vdhDkaBdPR0w/PDqf674GBsDKRR6fBXBD5tpv\nAridUrofwO3R5yCEXA7gRgBXRGv+ghDCWmM/BeC9APZH/7Hv+R4Ac5TSiwB8AsDHVui5DQziyGPL\nUCW3zUfXC1CxLQyWQ7MG3YQ7pRQdz0e5GP7p2xaBm9MrpO0GKFkFbBuuwPUpppv6UU/T8VAqFmAV\nCJY6bq77GhgAK0QelNI7AWTrFN8K4HPRx58D8LbU9S9SSruU0sMAngFwLSFkG4AhSum9NHRruymz\nhn2vmwG8jkUlBgZnCkYem+uVXDkLP6BwoqT1QEQeupGHF1BQGspVAFAsFOL5HDpodj08dmIBl22r\nY6jKiEv/2RfbHoarNuqVIpY6+SrMDAyAs5vz2EIpPRl9fArAlujjHQCOpr7uWHRtR/Rx9nrPGkqp\nB2ABwBgMDFYA862IPIbK6OZwqGWVVuViOvLQ28BZd7gdkYdVILnGyT50dB6uT/Hy/ROx9JVnsNNi\nx8VQpRiRh4k8DPLjnCTMo0jirNd1EELeRwg5SAg5ODU1dbZvZ7BBsNB2MVBKCEA3cc16JcLII9zA\nG129jZgRT8kK34K2RXo6xlVgPSE7R6txxVbb1Y8gFtsu6hUb9bJtIg+DZeFsksfpSIpC9P/J6Ppx\nALtSX7czunY8+jh7vWcNIaQIYBhAX4kIpfTTlNIDlNIDExMTK/ijGKwHPH5yMXevBBBGHsNVO5aQ\ndPMe7OvKdiEmnoZm5OFkIo+iVYgt1nXAqrrGB8uolcJ7tx399YsdD0NGtjI4A5xN8rgFwLujj98N\n4Gup6zdGFVQXIkyM3x9JXIuEkOujfMa7MmvY93o7gDuomWJjkMLTp5fw4396Fz74D/nHqi60XQzX\nSihHJ3jdvAerzCoXrTjnoZswjyUvFnkUCFyfaktm040uSsUChirFRLbKka9ZimUrG4tGtjJYBlZk\nngch5AsAXg1gnBByDMDvAPhDAF8mhLwHwHMAfhoAKKWPEkK+DOAxAB6AD1BK2V/9+xFWblUB3Br9\nBwCfAfB5QsgzCBPzN67EcxtsHNz8QJguu+/wLLqpKiYdLLQdDFeLSeShWa7LZKuKXYBtFVAuFrTJ\ng83isIth3YdVCO8dUMDSKAWZWupiYrAMQgiqpXCtLnnMNh0cmmriugvHULJ8E3kYLAsrQh6U0ncK\n/ul1gq//KICPcq4fBHAl53oHwE+dyTMabGzc/cx0/PHkYhe7NtW01y60XewdH4xzB7llq4ioBstF\n7WorljAvWazPg8TXrYKa+KabDsYHSwCQ5DwcvXv/3b3PRR/RZSXMJxc7eNff3o8/ufFqXLp1KNda\ng40D02FusCEw03AwVAnPQnllmGzOQ1e2Yl/H1g3kIA8mW9kRabD/61ZcdV0/ltmSnIfec/vRPX7h\nlftQr9hodL1cs8wffH4eT5xawg1/chc+c/dh7XUGGwuGPAw2BBpdDztGw2hjsZ1PhllouxipnUHC\nPEUe2jkPFnmk+jwAaPd6uH4QV2olOQ/9tcUCwZ7xAdQrRQQUaOYo801PTfz9f31Me53BxoIhD4N1\nDz+gIXlE0/zyRB4d10fXCzBUtWP5ieUyVGAnfTZ3fLBs5Y48GAEUc0Yerk/jaIWRl27Ow/GCmLTq\nFRsAcklXndTrs29iQHudwcaCIQ+DdY9mpPWziXyLbf2NkEUKg9FAJkA/Yd6KNutaKcl55G0S7I88\ndMkj9LUCgEKBoGpb2jkPx0+TRyh55UmaM0feS7bUcxUmGGwsGPIwWDNoOR7e89nv49mpRq51jU4v\neeTZCNlpvWpbceK5pSnhdBxWbRWuyyVbxTmP3sjDzSFbsR4RIIx+ckUeVpY88kVrADA6YKOlSVgG\nGw8rUm1lYHCmcLwAV//Pb8LxA7QcH1943/Xaa5lUtG04v2yVlp6GqvkknDTxAGHksZS32iqOPPLL\nVowA2DPoNgmmZSv2M+fJEzHy2DRQwqGppvY6g40FE3kYrAk8P9uMk8h5T7Nssx+u2hgsF2OjQx2k\nCWA42kh117dj2So8g+WJPLp9kUf4f1+zyzyUrZLEdcUu6Dc3pmSr5VSosWffNFDSjtIMNh4MeRis\nCaQrRfPMxAASmapesTE6YGOu6WivZZtfrWRhoGTBKhBt8mBr09VWLcfXmqvBmgTZWrtAeq6r1wcx\n4YTPX9Qm3bRsNZDT0BEIIw9CQrJuOfnKfBnmWw4eOb6Qe53B2oEhD4M1gU4qSZ13pgbb+AbKFsYG\nypjJQR4seqiULBBCMFy1tcmDTQIsRBv/YGSO2NTYxPtzHvkS5mkCACLZKkfOg5FWzQ7JI0+013F9\nVIoWaqWwzDfv7wsAfuov78Gb/+zuZRGPwdqAIQ+DNYF0+edCK1+TXywf2UWMDZQw08hBHk5vxVQe\n8mg7fixZAUnuo6NRrSXOeejKVrRXtipZ2n0e6ZwHKzPOY+fecQNU7EL8mi1Hunp6MiyKyOPHZbC2\nYMjDYE2A6fU7R6tY6nrxyVwHSfRQwNhgCTM5JurFCfNo4x/KQR4tx4/XAcjVJ5LtMM/f55GU6gJA\nzbbi6i/lvVM5j1KxgGKBxGXHOjgy00TFtjBQyh+1AEmHOxD6bBmsTxjyMFgTYKf1l+4LZ3zNt/U3\nlU6KAMYGy5hpONpySCtTMTVUKWJRs9SXyVYMZZvZm6iJL7ZkZ7JV1OehU6pLKYUX0B7yqJYstDTn\neWQlr1rJ0o48Hj+5iLuensbJhQ5qTKbLkS8BgIt/+9b44/mcUabB2oEhD4M1ARZ5bBsOezXmmvkr\npiq2hYnBMryAap9oO5ku8YFSES3NhH3b9eN1QL7II2ttEntbaeQ8WFK9lOrzqCyzVBfIl2xPR2Wj\ntdCYMU/00PV8E3lsEBjyMFgTSMgj7NXIs6m0XR+2RWBbBVwwFvpbPTfb0lrbyshWtRzNdi3HixPO\nAOIoRCfyCG3jCwhH14RjaIFeSUeEeIRtKudRtS3tUt1QtkpIr1aytPMWQSqi2zQQksdcS/93lW3g\nzLPWYG3BkIfBmkAnOonvjMwNpxr58hasy/uCsdBr6bkZvea1puOFun8k41RySDhtN0BluZGHm1Q8\nAYl8pSNbsa9hUheQkJ6OXNdXqZXjZ2YR02d//sUYi8gjT3UbI4/f/s+XAUCusmqDtQVDHgZrAt3o\n1Lw3Mto7PtfWXttx/bjyZ9emKggBnpvRizzmmg42RfILECaedSOPjuOjaqelI31vrK4XxJbqQCJB\n6ZS9ZkfYAiEB+AHVmr/e7ZOt9CMPlugfHyxjNCKP2RzVbayhc2sUYeZx8zVYWzDkYbAmwCSXscES\nhqs2js/rbf5AlHuINuJy0UK5WNDeDOdabrwJAvlO8C3X6ynVzZfz8HsiD+YxpdMgGec8UrJVPItE\nI+/hZO5dLRW1q62cVK7GtgqoV4rLkq3GB8sgJF+JsMHagiEPgxVHx/W1tPveNQEICS3Kd45WcSxH\n5NFKyVYAYBcK2gaDcy0Hmwbs+PNKyQKlenmLthP03DeOPDSih64XZMiDeUypCwW8TKUWkJCHTuSR\nLtUFomgrR3c6kERK44PlXBIjizzqlSJqtn7EY7D2YMjDYEXx5KklXPrh2/ArX/xBrnWsa5kQgn0T\ng3j85KJ2uW0nU/VkF3OQR9OJq4aAcCMF9JrXOm6mzyNuEtTNeSRrB0oWCkTPEdjlkAfbzHV+bl6p\nru4m3s2Qx9ahCk4tdLTWAojLoIcqNmrlItqa5cVp5G0iNTg7MORhsKJ445/cCQD4+o9O5lrXdHwM\nRH0D1+3dhNOLXRye1kt6tzPNesUC0bb5mG05cdUQkJgcqkpXKaVop3ItAHJNIux6ftwXAgCEENQr\ntpajr+OFP1uaPHQT7p4fIKC9Zb55EuaOx/y8wp9720gFJ+f1o8TEh6yYi7QYHjo6jxf+3r/jX390\nItc6g5WHIQ+DFUMeN9ssJhc7mKiHSdRLttQBAEc1patsp7dtFbTkmyCg4Qjaaq9sBai1eMcP4Ae0\nJ+Kp5Ik8MrIVEG6oOpEHy6mUiknOQ5c8suNvgZwJ88z6bcMVnF7qasuUpxbaKBcLGKrYqC5Dtvre\nszMAgL++81CudQYrD0MeBisG3fJYHk4vdbBlqAwg2YR1LUqajhe7wwJh/4NO5OH4AShFT7mtrmzF\nEtMVmxN56FZbZabw1Su2ljV6I55+mJAeIw8WlYiQNWQEwoR529VzA86Oz902XIUfUExr5j2em2lh\n16YaCgWSq7Od4QfPz4XPoRlZGpw9GPIwWDFkZSZPM+8AAKcWutg6FEYeifyjt7E0u36GPPRyHmyT\nL2ca5gC12V8yy6M34rEKpMfkUXxvnxt56FijsOhkqJr8zCwKUUYeXn/kMRD9DDrPnfXkYlViunNM\nnp9tYfemsJcnT2c7AEwtdXHHE5MAgAXTXLjqMORhsGLI9lbo1vC7foCZZhdbYvKISl41XWKbXS+2\nQwdCe3OduRjdWL9P+1PpSU9s00vLZUB4IteJmJxMnwcA1DWHSSUVS/2Rh4o8YluUTMIc0POoYnIb\n64zPk+cBgOPzbewcDS1oqjlzHs/NNOEFFJdsqWPOJM1XHYY8DFYMRzKRh65dxlLHA6XAaC3cDMs5\nSl79gCWuM7KVhrV51l+KrQXUHlNpP600bItoEld/zkM3YmIjY9mpn60F1KW6vJxHNXrtdCSkbINh\n0tui97ta6nhxdVvehDnLqV0wVkPb9bX/vgzODgx5GKwYDs80cd2Fm/A/3hRaT+huDOwUzwggj2zF\nBi8NLke28voJgG3CKvJhfSBpV10g3JR1791HHsWCVq5mqeOCEGCw1E8eKuLiyVaxVKdRNuv4vaSX\n5HnUvyvWw8LG/Q6Ui9rz4oGEPPaMhy4EN91zRHutwcrDkIfBioBSimcnG9i3eRC7NoWyhG4ylJ0g\nWeVSntNsK54imGykxYLe6b/j8iIPdoKXr88Oc0qv1823ZBPmdoFoVYktdjwMlorxBEMgSWC7itcs\nm/AGktddh+yzPSKxzKfxu1rIkMe+iUHMtVxMLekl29l6Vlr9B994QmudwdmBIQ+DFcHpxS4WOx4u\n3VpPZBBtd9peZ9tSjqolVnk0kMp56J/+I/LoiTyixLNiM4zJw+KRh6ZsZfev1Ys8vB7JCgDsKGG+\nHNkqrjBblmylH3nMZ8jjiu1DAIBHT+jNMmfk8aYrt/V8H4PVwVknD0LIEULIw4SQHxJCDkbXNhFC\nvkkIeTr6/2jq6z9ECHmGEPIkIeSNqevXRN/nGULIJwnL2BmsOB45voB7D83kWvP05BIAYP/memoc\naz7yYPKJVSCwLaInWzHyKPVGHjqbMNvweJGHSrbilbyGn6ujhyAyMMzKVkWLaJFeo+tiMEMeJd0+\nD65sxRojdavElmfJwjb/kSi3xezzT8zrdagvtF0MlovYPVbD267e3lNtZnDuca4ij9dQSq+mlB6I\nPv9NALdTSvcDuD36HISQywHcCOAKADcA+AtCCPtL/RSA9wLYH/13wzl69vMKjhfgzX92N2789L3a\ncgKAeG74lqFyTB66OY9kjGyvvbnOhsRyHrVyb94iV+SR2kjZOFhd2aqfPApq6cjvLxFma3Vkq44b\n9FV5JX0e+ckjnmOuQfaNbm/Uk0dizMpWbK2ulcxC243XDlftuHDAYHWwWrLVWwF8Lvr4cwDelrr+\nRUppl1J6GMAzAK4lhGwDMEQpvZeGhkc3pdYYrCAOPjcbf/zij35Lex3bxAfKRVRL4Z+VrmzVzkQe\nQLih60QebO1AafkJ8/Qmrp074Ezz0713l5NrYd9LK2Ly/D7iSbyt5Ou7nJxHbKqoQQBLHa8n6kkq\n49S/qyx5xBKhJnkstl0Mpcmj42o1NhqcHZwL8qAAvkUIeYAQ8r7o2hZKKTM/OgVgS/TxDgBHU2uP\nRdd2RB9nrxusMO4/PKv+Ig7SBMCql+54/HSutdVMt7ZOzqOdSbYDYfTgaWwqSc4jv2zlcjbhcL06\nWR+TVibnESb6dWeB9JMWoN6IXb+fuPJUt4WRR5JrYCSm40LMGvsYAeSZYQKwyKMYfw9KgSXN5sTw\nPj7+7t7n8LzmrBcDOc4FebycUno1gB8H8AFCyCvT/xhFEityfCCEvI8QcpAQcnBqamolvuV5h0dP\nLOKizYPYXC/Hncc6YA1mtVIx1tC/+sMTWp5HLQ4BlG092SqbbAf0pCOAHwEU49OwouQ1HsjUm3rT\nkZ4SuaxfevICqnQTzk4hDNcuv8OcPYd25FFOy1b5Io+KXYgPF3ZB3wmYrWdRCyMgHQt7hs/f8xx+\n+6uP4C/vfFZ7jYEYZ508KKXHo/9PAvhnANcCOB1JUYj+Pxl9+XEAu1LLd0bXjkcfZ69n7/VpSukB\nSumBiYmJlf5Rzgs8P9PCnrEBvPPa3Wi5vrbFSMvxUC6G9hzpjVxnuFHHSYiHQVe2ypb5AtHpXyvy\n6Jet2Iam2khFOY9QelKRR3+inq0Nv7eauHjEw/5NtTZ9r/THOmS91HExVOGQh07kkdr8AaBQINrR\nVnY9azTMM+v+4JHQF+ueZ2e0rW8MxDir5EEIGSCE1NnHAN4A4BEAtwB4d/Rl7wbwtejjWwDcSAgp\nE0IuRJgYvz+SuBYJIddHVVbvSq0xWCFQSmPvodFaKAvoOuWmzQnTm6IOefCih5A8dAYyCSKPXKW6\nyfOyDU232oqf85Bv/rz+EiCUrQAdixFOg2Gcq9FsEuTMAlERgOMF6HpBT+RBCNH+Xc233L7y2lJR\nz84F6CWPzfXQRHMyR1HHw8fDkuDD00184ptPa68z4ONsRx5bANxNCHkIwP0Avk4pvQ3AHwJ4PSHk\naQA/Fn0OSumjAL4M4DEAtwH4AKWUHRHeD+BvECbRnwVw61l+9vMOU0tdtF0fF4zV4tGsuh5CLSeZ\nbVEoEFx34SYA0Oogbrs+SlHUwlAuWvlyHj3zPPQSzx1OqS7ASmZV1VZsFCwv56EpWwkqplTP3nX7\ncx5WgcDSOMXzSE+3NDp2882UCZeLBa2y7ND+vtRzTbcvpuP66LhBTB7MB21ySa/M1/ECnFhoxxY4\n33t2WmudgRhntVCaUnoIwAs512cAvE6w5qMAPsq5fhDAlSv9jAYJHju5CAC4eEs9ljfmNd1LW12/\np+LpA6+5CPcdvh8NDZfYtuP1lZ6W7YKWSWDbCU/h6W5ru6jXqd12fVgFwm300y155ZXqqnMefNKy\nLb1GP56dO1u/nHke4bNYyp+5EQ9y6o0ewvyUHnnsHK31XCtpRi1Za5PxwRIICZtTdXBqoQNKgQ+9\n6TJ858lJPPDcnNY6AzFMh7lBjEdPhORx+fahWJrQdcZtOl5PrwXrBdAZbpSdyAfkkK0yI2iBMG+h\nk6tpOT5qtoVsv2nJKqirrfwgPu1n12pHHiLpaRmyFVuvm6zPEqbOJs5mjaRlKwDaczmWOl5fY5/O\n6wUk8ilLlBetAsYHy5hc1Is8js2HFVY7R6rYNzGIyaWu9phjAz4MeRjEeH6mhYl6GcNVO44EdP2p\nWk5v5BGTh2bOoy/y0GwSzI6gBcKGwYCqZ0y0Hb+nMZGhaBFl7sD1gzhSyLuWN0cE0JOtKKVcR97w\n+6k3YuZNlSVMnQIFJlsNVbLkUdQ6ZPAOCbo5j2yPCACMVG3tnBzrYt82UsVAuQhK9ZtYGSaXOvjd\nWx7FaU3C2ugw5GEQo+Ek3cPsNK9rMdLsej0RAJtyp5Pz6HCiB91qqxZnLZNGjinG2PI2M0Av4e74\nQZ9kpbtW2OehIVu5PgWl/fmS+N4aCfOsZAWEr7eubJXNeYTW6hpVda6PSh9h6lVb8cijYlvaf59M\n9hqt2XFhh+4AK4bf/udH8NnvHcHv3vJornUbFYY8DGI0Oh7q0RurqjmOlaHpJGuBfLIVN/Kw9ZoE\nO5y1u6JhQ0dn5c1gvPsCkZSiKPXNussy5OvzyEhHGrKVKF+ie2/H97nkoSNbLXX7h1ABenM5KKXo\nuD63uXH55FHQak4E0pMfi/HgMJ1KQIappS6+FTW93vboKeXf1vkAQx4bGDONrnYNPRCexAay5KEZ\n2jc6vXPE8/hb8fIW2rKVyyGPaMzp0Tn5G7zt8COPUHpS5zxEm7CyWkpS5gvIZSvR2nC9ulBARHo6\nr3cceXByHi3FFELXpwgo+iIP3YS5KPLQH1XsoVggKBULsbyqMzmR4anTSwgo8OuvvxiU9k/NPB9h\nyGMD4h/uex6/+sUf4JqPfAsf/uoj2usa3aR7uJLTn6rZ9XvkjELULNjSrJjqz3loeltxiGdT1ECm\n0sNbjtfTmMigcxp2fSqQrfTLZctW73PryFaiqCV+bo0qMZFspXq9F+Nqq97XbKBUVA6S4g3eip95\nGQnz8Jkt7cgjXUrO/sbzRB7HIwn0kq11AHpy7EaHIY8Nhtmmg//x1YfxtR+eAAB88zE9fymglzxK\nVgEFopfz6Ho+HD/gn0g11suqrVQVMTziKUR9CyoNv+0GfcQDRBuaSrYSJMyZxYjMsI9VgmWtTbRk\nq+j1FEVqaaigAAAgAElEQVQ9OrkaLnnYGjmPrgfbIn3EVSurIw/R5EWdXAsQksdAyeoh7IpdQEcz\n8kgfFJaT8zg23wYhwP4tEXnkzJdsRBjy2GD45O1PI73fbh+paq9tdBPHVELCyEFHtmLhf9YLq1bW\nW99yOLKVbYFStVUHL/IA9GQYXn8JEG7ijmJTcjx+wpydrGWbGtvgi4VswlxNHuz14Pd5qBvuRLJV\nydLIeXTCeRrZSq2w2kq+mcYNmdzIQ10ym7U2ASLZSjPyaDp+XEoek4dGkp/h+FwbW+qVuMlQp39p\no8OQxwbD1354HG+4fAs++c4XAQibqXRAKe3JeQDhG+5v7j6sDO+bcedxJpFqF/WqcBwfVbu/axlQ\nG+7xIg9ArwS0Jch5VDT6FlzOMCcgNQ9csp5tltnIJR6sJNkQE+LhRT3qnEd2EiCDTkd/q+v3/H0w\n1EqhfCQzwRT6eWk0ZAK9duwMYcJc3/b/jGSr+RZ2jFaXtXajwpDHBsJCy8Vcy8WL92zCT7xwO669\ncJN2LXvXC+D6tE96AoA7npjkrEiwFCdSezfiqmYVTlhu2y9nsOeSoe36fTo6wE7SCuIRRC2DZUvZ\nt+AKSnXjQgGJjOP6AYoFwj3BA/ITceLmu7wyYWHOw9aoEhNIXmxTluXHEtkqE3lojgzmRR5hzkM/\nYc5eX9aoqNsjAgDH59vYMVJF0SqgaluGPGDIY0PhyEwTQDLec6hix0lOFeLogUMeI4pZ0elBUGno\nlHC6PoUf0L7Ete6EOlHFlI6G33UDLvEMlIpKPdz1+AnzeKSrJIHsBfy1bA67LOrxBJ5a7JpOzoMX\nMZWsgnIOuUjySsbYin9mUcK8XinGs81l4MtWBXQ0TRXDJlYrft56uYhJTWsTP6A4Od/BjqgEfLBS\nNAlzGPLYUGDkceH4AICwE1h33gHLW/DIQyeRyltbKxWV5ME2yuymEk+ok2xorh/AC6g4byHZSCkN\n54jzNsOBclF5shSewstq2crxgriyqmetrbaEkctWmk2CvFJdW53zcASd7bFUJ4m24sgjs37HSBWz\nTUcpb3LJo2jBD6hW5JKtrNs6XMHJBXkTKcPtj5+GF1DsjMijXi5q9S+l8ed3PI1vPymP4NcbDHls\nIByZboGQpM9hqGprn5BYA1g6erjxxeFoFVVFi6z+v63YFJLmrf5qK0AeefCmCMbrFU2GIoNAIPw5\nml1PWunlChLmNY3+GC/gb+DxLHHJa+ZKZCutaitZzkODPGTRlkxuEyXM2YZ8XOEGIEqYp7+3CEFA\nMbXUxXAtWb91uIJTC3o2I//04HEMVYp48wu2AwDqVRtzmoahQHi4+vi/P4Wf//++n6vvaq3DkMcG\nwnMzTWwbqsRvqu0jFSx2PNx7aEa5lkUe6Rr+97/6IgDqEaNNgVV3raTOHbATZz95qHX0eJYHhzxU\nkYfIUh1IvLFkm2nYJMiJHmIJRxI9CCSvUrGAklVQRB5Rsr3Az3noDIMSlfkqnYRVOQ/Jc4tKdZmV\njKyhs+v12rEzsOj0KweP8ZbFeHaqgcWOh6t3jsTXtg1XcHxejzwOTzdx3d6x+P57xwdwaKqptRYA\nHkw5+LKZIhsBhjzWKD55+9N405/ehSPT+n+kR2aauGBsIP78567fA0KA7z2jnl3Q4EQe7I2uOtkx\niac/51FUNgkycsjKViypKZPdeIOgGFSdy6JhToBeNY4wYR5XW0nWBnzZiq2XvWZJ5NG/vlTUa1Dk\nd5iHxCPrTxF11bNcjYz04pxHpsSYVQPONsW/58V2+HqkIwcAYK/An94uH+zENuwX7U7IY9/EIKYb\nXeXIAT+gODzTjKVgANi/ZRAnFzraUf2n7zwUf/wP9z2vtWY9wJDHGsX/+82n8NjJRbz649/BI5qn\nldOLXWwbrsSfV0sWRmslzGiM6mxwch5lTVkgJo9M0rteCd1WZSWcjACykcdwVd0lzhsEFT+7QoaR\nkUdiXyGpehImj9WncNen3LXhveVFBqLxt+yaqmei6/UPkgJSc8wl5CP6mVmZtUxuE1VbDWo07ImK\nOf7Pa8LJ1C+7aEy4FgBORvJUepbIpduGAABPnFqSrp1a6sLxglgKBoBLokZB1Vq2/u5npvF//9jF\neMsLt+PmB47hmMI2Z73AkMcaRFY+ePOf3a1cQynFdKOL8Wg8J8OmgZLWnGde3kI38gjLIK2+2Ras\nLl92QuONoAWAkeiUqUMePFt1lQwjGuYEpDuQJUlvn3LzDjp9Hp4vjjxqZXmRgUq2UtmTiPpidHJM\nonxJHHlIE+b8Po8BjSivKZA2a6Uirtg+pOxPObXQCccMpNZfvGUQAPD0ZEO6lr13JlL9UlfvCiOY\nBzUGSv37Y6cAAK+7bDN+5bWhDHzX0xtjiqEhjzWI/+tLPwAA/NeXXRhfk53egfDN1/WCvqbATQN6\nkQcvb5FYlKirrXjNY0wjZrIDD6KkN1s7LxmDG0ctgs1Q1ufh+GKbj5qO9CSo1Kpq9DyIJC8gjDxk\niWeRtQkQkkdXUWHW8QR9MRpNmaIGw6Q8WUIeglLdcrGAYoFIySOJTvv/xiq2pSzoOLnQ6YnIAWBz\nvQKrQHBKUXHFEuOjteR9NTZYxu5NNfxIQxH45weP49KtdVyxfQgXbR7EtuEK7nxqSrluPcCQxxrE\nQ0fDP8r/ct1u/PFPhVN8D0/LT0jTjfCPfHywN/IYGyjh/sOzyr4FFtqnN2JCiNbMhEbX55b4sqFB\n0uhBEHnYVgGD5aIWeXAT5srIQ5wwZxucbL3QVddSn+Bdn8ZWJLx768hWWWuT8N5hzkNUJeb4ASjt\n38CBVOShqFCTSXWyXE0nHoDVu54QgoGyvK+G5VIGyv3PrWPLfmqxja0Z8rAKBBODZZxakPd6sMhj\n00DvoWzbcAVTGn0iJxc6uGL7MAgJm0JfsX8c//HM9IaYYmjIYw2CEOBtV2/HRZsHccWOUJt95Pii\ndM10I/xDzpIHwz8+KK5I8fwAXzl4FBeM1XpmgQPhRqNy1m2mDBXTYLLVokS2Ss9ZyGK4amO+LY6a\n5DkPBXn4YnfakoaEI5okSAhRNuuFUQtftgot3WXPLSY92yqA0rAJkYeOw887AEl+S11hJu6qVyXM\nS5lZ8wyDir4aRkq8vxGdLvNTCx1sHar0Xd8yXFFOBYwjjwx5jNfLmGqoyWO+5cQSLABcuWMYix1P\ne/b6WoYhjzUGP6A4tdCJDQ33TQyiVCzg0RPyEHkm+kMey8hWv/pj+wHIq5YWOx6Wuh5+5rrdff9W\nKapPduEsj/4NKZGt8uc8gJB8pNVWgkot4MwS5ipfrSCgQkt2IPSYkhGA51Nu5ACEJ2KZRCmTrVTT\nHxPpSBwxqfJEPNJi9vuyhHnXDfoaBBkGdSMPrmwl97dyvADTDacv8gCArUNlnFKQB4s8si4LE4Nl\nTC/JCcDxAjQdv2ft3vEw13JoSq4krAcY8lhjeGayAS+gMXnYVgH7JgbxrKKufKrBEnu9kcclW+oo\nFohUCmEbNC9qqZTUmnJDEXnIZKtOnPTmyUfycltRpRZwZglzVfLYDcRrAebXJCYAxw+4yXYglKNk\na2WyVUXRoBi/1hxH3rijX5YnEuQ82HrZ7yqcIth/XyCUo6SRB0uY82QrxUwPFllkcx4AsGmgLJVF\nAWCmEUYOWZlxol7GUteTEhf7u09HHnsnwpLfQzlK8NcqDHmcRfw/X3ko1zwNAPi7e59D1bbwhiu2\nxNcm6uVYlhJheqkLQvq1WUJI2KwneXMyWWmo0u9hpePz1HT45KHTL7HYdlEuFrgW4+WivEtc2mF+\nBgnzWMIR3DuxRRcTgKzkNeww58tWtkXgBermRp5kpjIoZJus6PUCxIQZBBReQMXkofhddVyfG/EA\nzA5G/LtKLP85spUtjzBZZLGFI1vVK8W4v0mE04sdbKn3r2WFKVOS6GMhklzTbsBbhyqo2pZ2k6Ef\nUPzdvc/hv9/8I7z3poOYVERK5xKGPM4CFtoufvqv7sHNDxzDe286mGvtU6eXcMX2IWxO/cGOD5aU\nIfJ0o4vRWombiB1UvDlZNVTW8hoIT01zitNZdgQtQ1WjT4RnO8FQLlrS6qHYF4tDPCWrgIBCKB/J\nEubxRipY60qilvB7ysfYup5Ytipa8jG2IkdeQD36N5H5xH0eoo3YkfSXsPWqCYi83xMQkoJM8mo5\nHgjhP3fFlhs6zggKSYDwfdFxA2l+6vRiB5uH+teOaEyrTCKP5EBXKBBcOD6AQ4oCGIa/uesQfvur\nj+BLB4/im4+dxq2PnNJady5gyOMs4H/92xO4//Bs/Pl3c5TmHZ5uYk+qmxWI9NWGI63QmG50hbM7\nVNUsceRR5Tjq1kpYUHThpodIpVGKyjBlCff5ltsT1qcRnmblvQMVm5+EZSdk0YYm87aKE+aCe6s2\nUpXNuBvIZCsiTHgD8jJfVZmwTLaqKXy1ZONvAdbRr/pd8cmjaBEpYTa7Pmq2xSVMValuRxKdMise\n2WCn04tdbrKdRemyYhCWFN9U631f7p0YwDOK/hKG2x49hfHBEr76gZdh+3ClZ19ZbRjyWGE4XoB/\nevA4royqpADgywePaq1d6riYXOr2WCEA4anJ8QOpvfp0wxFWWtXK8klvLOfBk61GFZGH6wfoegEG\nOZICgCiRKt5IpZGHbUnzFi1BwxugLj11JJuhSsJJ8iUi6Uk+xtb1A9gcwgMi8lB4conuy6qRVDkP\nXu6BSYwit1hXQraAjmzFd+QF1D5kix0Xdc7fJhASIbP1599XXFShklX9gGKq0eVKXjr2OQePzKFc\nLODirYM916+7cBOOzbXx0NF54VogTNY/fGwBP31gF67eNYLr9o7hvsOza6bM15DHCmJqqYuf+PO7\n0XJ8fPC1+/HUR34cmwZKWqNYAcSnihftGum5zipFnj4ttkOYbnQxJiCPwbJmzoMnW1VtLHZc4Zuz\nKfC1YqiULLQlsy3m225sRZIFm2MuQtsVk0dJYbchS5irejVUG2mxIJetPEmlVlGHeESRh0K26khK\nm1VzvePqNJFUV5QTgKg5EVBHHrIDhsoFIYm2+p+bRR4iwmx0PPgB7SvTBfQaYH90bB4v3DnSl8/7\niat3AADuelquSPzVnc+CAvjJF4Vff+2FmzDd6OJJyT5wLrGuyIMQcgMh5ElCyDOEkN88l/c+OtvC\n5+85ImX9f3/sFJ44tYQdI1W8cv8ESsUCDlwwijufmpKeJhnuenoaFbuAa/aM9lx/zaWbUS8Xpb0a\nMw1HLFuVilLriMW2hwLpn0EOhLIVpWJtt8HpTE9DNQd9UZrzkEshbdfnWpOwtYAs8hAnzAkh0nvH\nkpdkI5XJVmHlkUS2UvSILF+24jvbAmpzQ1lpM6COPMLBW6LSZvnrJScPVXmyuLdlsBzNIxcQZsPh\nT8gE9CoJZ5sON18yXLWxc7SKp06Lpaub7jmCv/ruIewZq2F/5KX1uss2Y6Bk4f1//6BULjtXWDfk\nQQixAPxvAD8O4HIA7ySEXH4u7v2PDxzDK/7o2/jw1x7Fg8+LQ83HTixisFzEXb/xmviNvGO0Ci+g\n+LM7nlHe586np3D93rG+k8pguYiLt9ZxZJpvqNZxfTS6nlC2Ug03WuyE86F5mvLoQPgmEc0vEA2C\nYqgqmgznW448YS6rthJMEQTSOQ8FASxjM2TXRQQgMyiklApLm4HoFC6NPCi3xwNQzwORSTjlooWS\nVRCewlWvV0lV3CDJeajIgze/PHnuKPIQRHpS2YrlPAQVV7KoerBURIHIcx7zEtK7ZEsdT0kiCCZ1\n/5frLoivba5X8DtvuQKHppq4ew34Y60b8gBwLYBnKKWHKKUOgC8CeOvZutlTp5fwGzc/hD2/+XX8\n+lceiq//y0MnuNEHpRTfPzKLq3YM9yRw3/fKvQCAv7/veal0dGyuhUNTTbxi/wT333eMVHFC4MPD\nygWzPR4MIzVbekJabLvcfAcA1NnpTLCpqGSraslCW7AJs/nloqhF1TsgMvkD1F3isnke4Xpx9VCS\nPBZthkS61vWp8PWyFdVWSx0vPjFnUdOsthK9ZgMSeVMm8wHq4oa5ltNXRs5gW0Ta23JGkYcbOgFk\nTTsBtWwV/21z8nmFAkG9Im5iDQLa112exu6xmnQAVqPj4RX7x/HzL93Tc/1tL9qBUrGgZcp4trGe\nyGMHgHTm+Vh0bUWx1HHx4o9+C2/4xJ34MmfIzGe/dwR/+x9H+q4/fHwBT51u4C0v3N5zfdtwFTf/\n4ksw3ejin35wXHhfdpJ45f5x7r9vH6ni5HyHO28htiap89+cE/UyGl1PaPS32PG4lVZAqiJFFNrH\nVu78DalqW+gINrOuF3otyZLeshkTstOsKundVSS9ZZGHLNkefk+xxQjbkOoCwrQK8j6PxY4be4Zl\noS9bichDHKGqIw9xzsPzAyy03Z6S1TRsqyD9mc805yH6eeuKIoG4v0RA9EPVoljOdTwEFBgR5PNY\nkyFP0p1udHFkpoXr9471VRKWigW8aNcI7ubM6Dkx38Zv/fPDeO9NB/GHtz7Bve9Kgv+qrFMQQt4H\n4H0AsHt3v9WGDvyA4rWXbEatbOGSLXVsGijhRbtHMVEv4yf/4j/wg+fn8cnbn8ZPHdjZc1pnTpk3\nXLm173tec8EoRms2PvzVR/Cfr9rGPYE9dbqBWsnCRZsH+/4NCKcCOn6A6Wa3pwcESEwRxwb4kQeL\nSKaWurhgrP9XLos8BnVPZ5LIQ9RIlZgiinsHgHDjqhT6N4CO62Nznf8zx7KVpGKqZBW4Uh3Aoh4R\n6YnzJYBctlLJfLaiVHex7fbMluh5ZibhCEhPZIvOIPOYiglTGnnw77vQdkEpsElwCi9GrxeltO/3\n4foBWo4vrcgDZIcEMXkMKg9GfCt4huGqLayAXIgqFLMDrBjYe3hqqYvdY72/z28/Ec46f9XFfBXi\n9ZdvwUe+/ji+fPAofvrALgQBxe/962P45mOncXw+jGZqV/OfeSWxniKP4wB2pT7fGV2LQSn9NKX0\nAKX0wMQE/4VXYaRWwsfe/gL8zluuwI3X7sYbrtiKiWiD+qdfeilu+eWXYaHt4r2fOxif+FuOhy9+\n/yiu3DHEJQZCSFzu90t/9wD3vpNLHWwZqgg3M/Z9eXYKSeQhII96Qh48hKdZ/h85uy6aySEaBMUg\ny3m0JDX4gDrp3ZLkPJRNbxKrDbZeFbXIZCuRhs9IWES2xcjcUFTdttTxhBspIUSacO94PsoCc0Ig\nIg9RzkOZMBfLfCJzQQbWbc8jzVZ8+ue/1qxnRRR5tB1xZ3vVtlAgYkm25ciJfqgiloP/PpoYmPXE\nYmDvycml/o7xWx46gR0jVVy+bajv3wDgZ6+/AFuHKrj5gVAZeW62hc9+7wiOz7fx5hdsw7d+7VX4\n0xtfxF27klhP5PF9APsJIRcSQkoAbgRwy7l8AEIIXrBzBIPlIu47PItf/3KYC7n/8CyOzbXxy6/Z\nL1z7v97+QlyypY77Ds9y67snF7vxHxQPw5LqjtgUUfDmZKecSRF5tMWylaoWXivnIdLgY0t1/lrV\njIm26yuJRxh5+L6CPMT5FvY8MtlKtJHGspXg9WLavIh8FiRRIiBPuHcc8SkcYPmpM6m24q9lfUKj\nAtmKuSLwfuauL054h9flB4yOK+5sJ4RIoy3V3/aQJOdx8wOhwi5SEljEnHXX9QOK+w7N4oYrtwpJ\nvmJbeOMVW/DI8QXc/vhp3P54YoH0i6/aJ7znSmPdkAel1APwywD+DcDjAL5MKX10NZ6FbfLffWoK\nh6ebePxkWDVx7YWbhGuu2jmMv3n3AQDAW//3f/RVS0wudYQSDJBop/zIw0G9UhS+wWRRCyCPPAYV\nXbgtyawFICz/Fb05ZX0HgDpvIdsMVbKV64lHwbL1os1QVW0ls2RXlTbbklO45wdodMVED4QTBkX3\n7kjKZQG5jb3ankRMtnPN/oFKPc8ck0f/z9wVzAFhUJfqygmzXrGFFVNLMXnIZCv+WkqBd167C3sn\n+Bv5BWM1FAj6ejZOLrTh+IGSAF560Thajo/3fO4gPvL1xwEAP3Pdbly5Y1i6biWxbsgDACil36CU\nXkwp3Ucp/ehqPcdf/dw18cev+fh38LHbnsBIzRZWkzDsiJxyAeD2J5LTQtvxcWqx05fLSEMWeUw1\nusJKKyBdVdK/lmnKolJI2yqgYhekurBtEaGEU6/YaHQ9boWazI4dUM9QlzUJqmzVQ2db/smOrVda\nmwgb/cRNbw3FaZZ5Xvmc9WytMvIQ3LvjiV8vgEl1/NdL1RjJEua83zMro61ynJOBhDC5kYci4onJ\nQ/DcMkNGIDJH5ByMKKX48zuegRXZzfMgSpi3HR8zTafn/Z5FrVTE/s11PHysV4V4biYsx79gjJ/X\nYnjD5Vvw+2+7Ev/1ZReiZBVwzQWj+OhPXiVds9LYUAnzc4WLt9Txh//HVfjNf3o4vvaLr9qnXJcO\nQxdSUcBXHjiKjhvgjSkn3SySsaz9/RbTS92+OR5p1EqRtsshAKbBiyp4gLCZakkS2os2QiB8g/kB\nRcvx+74uccWVd0zzEsCOF8ALqLrPQ5EwF6FctGJTvSySyCN/34Iq2oo3Uk71EWvgE2nwAGAVCkLZ\nqq2QrWQVU/EmLok8KA2jh1KGlLtxol78egEi8pCvTaqt+M/ddgPF3zZftmq7PlqOj7e8cLswDzlU\nsdFxA3Q9v+f5WNJ6x6iYPIBQjfjOk5M9hQLMqv2CsQHZUhBC8HPXhz0gv/jqvcKo7mxiXUUeawk3\nXrsbX/3AywAAP3v9bi3yAIBfee1FAIBnU8NgHjuxiPHBEq7bOyZcV68UQQjfSyc0RRRHHkzb5VVM\nxb5WgsgDADYN2MJke6PrCZPl4XOLDeSSaiv+etkscdkgKECdMA/ncUtO4RrVVtKch6K/pCgoEbai\nyIMXPcRuvpKISTaIquMFQsIDzqw8WWZEqTJVLEaHKt7PHN9XUZEnik5nGl1hLhAI5UMeeTDbkZdI\n3pOsAODkfG/SmyXBeZ5Yabxg5zCmG048AhoAvn94FpvrZWznzB8RYXO9IpQTzyYMeZwBrt41gs+8\n+wB+602Xaa/5tTdcgncc2IVnp5rouD5OLrTxxe8fxW5B+SVDoUAwXLUxy4s8JKaIDPWKzScPySwP\nhgvHB4STz8LIQ7whxe6jHA8g5nklSnrHw404G4PMLRXQk62WnzAPUCDJppdFSTIMKp4EKLRkF0s4\nriLvwNYLE+auLyyLBhRSnUa1FcB3InYU1WlnQjyyyINSislFvrEhw0jV5ronyJymGV59yQQICauj\n0mDTB1XvyRfsDD3svn9kNn7e7z07g5fuGxNGO2sJRrY6Q7zuMrHUJMK2kQoaXQ+Xfvi2+NrOUTl5\nAMCu0Rqen+3tSnW8sAFLTR5Fbs5DNsuDYd/EIG5/fJLrq9Ts9stRabA3H+/ezG1XJOEkNuH9G5Js\niiCQnqonSpiLBzIBavIoFcU9IrJSXbaxW5JhUAC/VDeOWgTEA6gS5r40L1eSRR4aOY/016XRVUQP\nRUm0pSqLlpXqLrRdOH4grWLcPFTB5GK3r8dE5jTNsHO0hku21PHg873d3kzuVOVAr9oxjK1DFfzL\nQyfx1qt34O/vex7TjS5euo/fKLzWYCKPVUD2jfCqiyfwoTddqlx3wVgNz830TiCLTzmC7nKGuig8\n1zhh7RkfgBdQnJjvt1MQTRFM7iuWrZgcpSQPzsbAku2iMkyrQFAqFsSlp8rIQ2wH73iBcDMDws3Q\nCyg3eczIQxR5xLIVJ+eRJK3FpCdNmLu+8PUC5AlzHXsSgF8yGzdVSma+A4Kch6KxsVAgKFkFbsKc\nlcHKIo/N9TK6Xv+4A5nTdBqXbxvC4ycXe67NNMKpnqo8hFUgeMsLt+G7T01ivuXgD74RVk29XOAy\nsdZgyGMV8OKMa+6H33w5tg3Lk2sAsGdsAMfm2j1vMqavqiIPZc5DcsJiw3B4fSJNRc6DJSt5slVD\nUQopsxhn80lkUU/VtoRauDphLs95iDYzIDmF86QrJluJch523OfBIx61bCVLmHfcQCjzsecWTV90\n/QBEItXJckxdL/SXEvUtyBPmctkKALYMl3HbI6f6bGxizzdJ5BE362XGu8YRuSTZDgAXbRnE6cVu\nz8FspulgU63E9dPK4g1XbIXrU/zrj06i5fj4tddfjO2SKq21BCNbrQIO7NmEpz7y4zi10AEhENpN\nZLFnfAB+QHFsrh0PjDqiWdo3PljGD47O93VWL2gkzJmt9GnO/ORm10dNkvNgmzuPABodD7WSxR2d\nC6RdYjnkoSh5BeR28OoO80LkvdVvmdF15WvTJ+ns1yXSk2AYVPRa8GQrNjpXKltJZqCrylbTfTXZ\n34nKzkVW3aaK1GR9Hqp8CQC848AufPzfnwq771N2ICw/KJOP0g20zPocSN4Xom5+BjYlcLHtxhH4\nTENsApnFzqgiizX6veyi9RF1ACbyWDWUigXsHqtpEwcA7IkI4khKujrCSvs2yUv7brhyK+ZbLr73\nbG9z4mzLQckqcGd5MGxhb7DF/shDZi8OJLISTz4KHWLlm79obVNhWwEoOqZ9VbWVFZeeZtFVSF6y\nk7QfUFiCGeRAQiqyhLlUtiqIZau260s3YRkBdDXINvy6/tdbFanFjZHLyJcAwKbI0y37u2Zl7TL5\niB2MsjYhrKFWNMGQgR260rLsbNORls6nwRSDbz8ZeuOJLEnWIgx5rCOw2eaMMNjH24YrUjkCAC7f\nHv5RnsiUFc5GpyRZdcdIzUbJKuB05g1GKVX2eZQlrqdLXVfoLguEp/CSVZDLVhLJrCLx1XIiKUWE\nZJpg/3pXIXmxUzsveewGgTDqCNeqZStZ5FGU9Jh0FbKVXHo6A+KRjKBlzwyIku3ynAcgLumea4Yb\nusgWHUhsQrIHo8mlDkZrtpQwAX414XRTPNUzi6wEqXofryUY8lhHGBsooVaycDRVcXV4pok9ioYi\nIDQ2hPMAACAASURBVAndmQ8Ww2xTHWITQjA2WOprmutGjXqy6KFcLIAQfgnnUsdTnuyqJX7eQk+2\nKohzHr58Q2Okx9tIvUA8RhZIGf1xcx5USh4lSdTCZCvZvW1Bqa4f0NCdWJowFxNAs+sLbffTa3mv\nl6o4gf398BxqVdVWQLLhZg8Zcy0H9XJR+noNlouolay+fN7kUr97NQ8894bZpiPtLRHhD85xh/iZ\nwuQ81hEIIZiol2MXXSCMPG64cptybblooV4uYqbZSwAzmiH2UMXuK7dtKcpl2TNXihZ30ltIHvI/\nwaptcZsEVZ5agNqUUdScCMg30rBkWdaoJyYAz+/PJ/TcN7YY73/uJGEuvneYMBf3xchyHjIjypbj\noSaJ8mTDt8LIQ/x72rUp1P2PzvZPylT1lwDiqrz5loORAfnhhBCCzfUynzw4I2SzyMpWrh9gvuUK\nxyPw8NfvCj3vXn95/rL/1YQhj3WGicFyXEWy0HIx13Jx4bhe3mRssNRHHrNNR5lsB8JS3mzFlM7p\nHwg3LN4mvtRxsX1EfrqrlS3u/PVG10MxKtMUoWpbXDPIIKBRifHyJByHk1BOQ0oeAdWSy0Sklf7+\n3HsLLNlVTZWAPHpQ5baS10uQ85CQVq1UxPhgua8MnT13scCfBMggqsqba7lath2b6xWcXuiVZKcW\nO9g3Ie4uZxjKzLthDYebNHMewPojDQYjW60zjA8mkQdLnOvIVkAoXc02kxMWpRTTja7WKWmI4z6q\nGmzEUBGUzC51vHjMbZ77AkAryrXIcjWinEfL9UGpnPTYSZf33K4vz3nYMQGIZCud0z+PPOTWJuzf\neHIZi/xkspXs3i1HXlUni9S6nlwiBMJqwec5kYdWdCqoytORZAFg3+YBPHl6Ke7LoZRiqqErW7Gc\nR/g3enpBPhJ6I8GQxzrDRL2MqSx5jOuRx9hguSdvMdt00HL8uFxQhiGO/TQ7ZckSkkBEHpxNpe3K\nN6TkvrweEV9aIQaIR+DqREyMHLgeU748epA1vblBID1Fy07/cbWVIlnPM1WMpwguU7ZS9fNIcx6K\nUl0gLInlNbHKRtAyMDmN2d0wzCg83xiu2D6MhbaLY9FM8bmWC9en0hEJDKViAcNVO/anSt6T+lWU\n6xWGPNYZtg5XMN9ysdB28exUE4RA6YvFMDbQK1uxN4tOufBQpV+2YtUsqtNduchPXKvKP9l9lzhm\nkB3JICgGUamuTsRkS+w2eDYtPWsZ8XA2cV8hW0lzLYoub4DJVv2E11bY36fvzVsfuiIvL2rpKEp1\ngVDa5PlT6ZFHv2wVRtV6+bz90ewMtvGzsl1Zc2Eal26t4/GTi+h6Pj74hR8AUJfObwQY8lhnOHBB\n2J3+nScncdM9R7B3fEBqs53G2GAJc00n7sRl5KEbeSx13J4uXiaBqciDVzFFKdU6kfIiHkDdpwGI\nR+A2dchDYVBoS/sWFLKVYghVuJafLwHkspVVKAj6JeQuxOnn5v3Mja48YR7Pm+dJXl0fNZW0WeQX\nNyy0XaVFCE+2Wup6cPwA4xqSbLaRlZXt6kQeQFgG/8SpJXz7iam+Z9rIMOSxzvCi3aOo2hZ+55ZH\nMd9y8f5XX6S9dtNAGV5A48342FyoMWuRR8VGQJP+CgCYbcrHizJUiv3koWM7we672O4fJuUojA0B\nlmsJ+mwrGoo54oC8ZNb1aWwjwl1blBOPtFRXUfIKLK9Ul53ql0MelNIckQc/0pMVJwBhlRlv7aJO\n5MFJmDN5VuX5BqTJI/y7YJVXmxWW6gyXbRtCy/Hx374SjqX+x196ida69Q5DHusMpWIBF44PxFVE\nBzI+WTKMRyE8k66OzrUwUrOVvRZAYpyYzj/MtRwMVeR19ABfktAmj2oRjh/0baYq6QhITn/ZtVqy\nlZQ85PdmCXFRtZUscpBVWzE5aTmW7DqyVRwxZWSrrhfAD6iUbK0CQa1kcf3TWo4vjVqAM5Otipxp\nl6yoRKcYJCt7sWpG7cgj6gpf6nq4YvsQrrlAPI56I8GQxzrEr7/h4vhjHSt3hqRRMCSPY3NtragD\nSHfS9jZDjWpUs/CqreLOYYXkxrsvwPeNykJkb5KYKmpspBzpSVe2EpKHokPcKhA4Pr/Kq0AgTbgX\nBZbsqnGuQCrayhBX3FOjIIDRWimeV85AaVgWrVXcwJE2dcgDCEkiXQzCmmF1ch4xeXQT8hgoWcoS\ndIb9W5J54wJPyg0JQx7rEK+7bAvu+PVX4TPvPqDl3MnAnHuPz4dy1bG5NnaO6JFP3AyV2sSXOq7U\njTdeW7Exn9n841GuCgIQNYCF9iLLJI/YF0tWqiuTnqi04ilZy3fVlSXMgXAT5/d5yPMlAJskKLE2\nkVWJRc+dLRJgOSJZMyjA7yNqR2XRypyHbcELaE++pun48AKqRR6bBkqYSZWhTzf0BjIBSbVWnPNY\n6mgny4Ew3/OVXwylKp6TwkaFIY91ir0Tg7kHUe3eVINVIDg0FVaVnF7oYKvmuMs4AkjJEuEgKHVi\ncPtIFVNL3R5NW1e2Ep3iHV9uEQIAFUH9f9xtreX0utId5lRJ+OEIXP59ZaQFiL2tYslL6sjLf24W\nqan6eUZrpb6pfDpEDaQmAqZ+bl1nW4D1MKUjD72BTEAy+6UVlfpOLXVzkQcAXLw5dOS98dpdudat\nZxjyOI9QKhawa7SKQ9EI3KWup/0miXMeqQhCNb+cYUckjaVnPSeGd3LyEclHjkb5J4s8hMl6Sc+D\nijyW22HuBuqISRx5BNLIAQh/5uwJHtCMPAT5FkYAquhhbKDf/6wVG1jKf8/J5Mfkd7XQ0iePrPfa\ndKOLkZqtPdt7oGQlspVmg2AawzUbT/z+DXjvK/bmWreeYcjjPMP+LWFNOksojmvaKLDIYyFFHi1H\n7qjLsGOEyWWJoaPOBg6I5SNVox4glq06rg9C5FGPKHlMKY3uLU9a89YCYZ+HrNoKCEleJFstV6rT\n6U5PKsx6n1uXAEYzp38gRTyqhDlnnGwceSiaUAHWw9SNq/Jmmt1c5oS1UrEnYZ438gBCAlwPs8dX\nCoY8zjNcvWsEh6abuOWhEwD0NGEgcQ9N91w0FPPLGSaicsm0oaOjKVuVrHBT6ScPjYR5Kfx3nmxV\nlswgD+/LTx6zjVVWJixay9ZbEukIEM9P15GtKoIcEYtEZLJVMgGRn/NQ/a4Hy0W0Xb+nNFpX8kpc\njDnkoRV5lNFxg5gAphuO9t82EOZzWo4XRuQd/Yj8fIYhj/MMV+0YBgD80W1PAtAnj6IV2jCkCaCp\nUb8P8BvIdKy2gaRZL3sS10mYV4SRR6BsrLQFEY/OKFjRfQHNhHnR4lvBa8hWNY78Ez53uKFb0gZD\nggLhkYdetRUjgHTCnRGP0g0glhiTtYs5cx4A4shnWtOahKFWstDoevi3R08BOD+8qc4UhjzOM2St\nTHZoluoCwIXjA3Gy3Q9o6E2lkfPg+R6xqhRlwlxgE+Lo9HkIch4d15cmywFx3sJlo2AV5FEqFrid\n8WGfh+q5C30+TeGzaMhWosgjUCfMgfDnzr7WTLZS+ZDFzropAtCxzgcSwv3HB4/F13JFHgO90e2M\npjUJw7bhKu56ehq/+sUfAgAmNOzYz3cY8jjPsC1jgZ7ndLZ3IiEPXTkC4Ftu6FZbiXR4VzHMCRC7\nrXa8QDrXAkjGwWbzFmxjVXW3s874LFw/kHanA8BgxY674LP3VuVLqqLIw1cnzIHw9XYzxQkN3ciD\n02Wu2yNyWdRo9+iJxfjaUscFIeq1AOLJfbNNB44XYKHt5vrbvnr3SM/nJvJQw5DHeYa0THRxqrlJ\nB/smBnFqsYNG19PWwdP37C5LthKU6p5Bn0fH9ZWyFSHhrBBeriX9XCIMVYp8Ty4NM8h6pcjt1Pa0\n8jx88ogT5grysYuFvgbFluOhQOSDpAB+hBlHLQrZaqJexusu3Rz/XQHMObmIgkYvE4s8ZppOXC6c\nJ/J405XbcN2FSWe4zoyb8x1nbRgUIeR3AbwXAHML+y1K6Teif/sQgPcA8AH8CqX036Lr1wD4LIAq\ngG8A+FVKKSWElAHcBOAaADMA3kEpPXK2nn2jY9emKqq2hVt++eW51u2bCMnm0FQj3iB0bauB3shD\nVwvnGRT6AUVA1Ru4OOfhKzvb2b2zSe8lDV8sAKhXbS4B6NiqhMTDl620I48+2SqMWlTVQOHP3Bt5\nMLJVreVNQdTt8wCAwUoRjal0H5Gn1UcEJEQx3ejiRFTVl6fcdvdYDV/6hZfg8HQTVdvSsuw533G2\nJwl+glL68fQFQsjlAG4EcAWA7QC+RQi5mFLqA/gUQsK5DyF53ADgVoREM0cpvYgQciOAjwF4x1l+\n9g2Lu37jtctad9Hm0Gb62alGPL/gRZlwnwerQFAskJ5N5eRCB7ZFlOWUbKNNn2Z1RpMCyfz07EyP\nrhugolgLhKfwbOTB7LpVpBla2PdHHq5PNSKP/pG/4Vo18fDsyQG95kQgfL15UZ7qmYEk8ui4vZGH\nqiyaYaBc7I08NEvBgbDU1rYI/ui2J/Gul1wAIJRZ8+JCzdk4BqsjW70VwBcppV1K6WEAzwC4lhCy\nDcAQpfReGhZr3wTgbak1n4s+vhnA68j5VFC9RrB70wAqdgHfemwST55awo6Raqw1q5DtXTi10MaW\noYpSkihzykcTd1n5WkII15a946llq/D7F/pyHlOajqtCK3kNua1eLqLrBX0VZjrkIYq2wvG36rd7\niZMw1+nmB0SyVSg96bxd6+VeuU41gCoLJs3ddM9zKBaI9pwbg+XhbJPHBwkhPyKE/C0hhNm/7gBw\nNPU1x6JrO6KPs9d71lBKPQALANQDhg1WFKViATe+eDdufeQkJhe72JyjIiXbu3BioYPtw+pKL5vT\nMxFP1NM4zXLJw/WV+j0Abs6D2XWr+gB4w7MopdEcEnXOA0Bf9KGafw4kMmC2wkynzBeQRB5a5NEv\nW7UcT5nvYBiISJPdP49slcWe8QHt7nKD5eGMXl1CyLcIIY9w/nsrQglqL4CrAZwE8Mcr8Lyq53kf\nIeQgIeTg1NSUeoFBbuwYqSKgwPOzrVzVLNnI4/RiB1s0fLXsOPJIIoBYttLYHCq2hbbTuxnq9HkA\nYWSTPf1PLnZRK1lac9uzJnk6DYZAMhc7mzPJVSSQTZgr3HwZSsUCt7JNS7ay+yOPZtfXJg/2mjLp\nqtn1tar5ePhPGnKqwZnhjHIelNIf0/k6QshfA/jX6NPjANLuYTuja8ejj7PX02uOEUKKAIYRJs6z\nz/NpAJ8GgAMHDpxH5sjnDszj6vh8G6+8eFx7XbnYO+xntuFo2UfETYKp07DOPG4G3hTDcIKh3kk6\nO6BI10m4ZBXQXWal1mAUeWRneuvIVqLqNJ3mRCAkn2aXR1rqtbFslcl56PQCAQl5NLoeRmql0Mp9\nmeTxkn1GmDjbOGtxXZTDYPhJAI9EH98C4EZCSJkQciGA/QDup5SeBLBICLk+yme8C8DXUmveHX38\ndgB30OxoOYNzgvTGqTNoh6GUkq1cP8BS11NOIASSprZ0BMBO5DqbOE+20pGOgNDqo+1m9X+9taUo\n2Z7+M9VN9Ffs/tJmQE+2SqrTet8e4fhbNQEMVe0e/7Lwe+kmzHmylZ7zMtBPmqFspU8en3/Ptbhs\n2xA+8Jp9+IkX7lAvMDgjnM1qqz8ihFwNgAI4AuAXAIBS+igh5MsAHgPgAfhAVGkFAO9HUqp7a/Qf\nAHwGwOcJIc8AmEVYrWWwCkjPk8438yCRrdgUxNEB9eZfiCq10idplohWzbYGIvJw+iMPHT28Zlto\nO/2ncC3ysAqgtHfD1408eM12QJj3UXWnE0LCcts+WxU92WqkZuPRE73kodPN3/vcvTM5RjR+T0BS\nzssin3B8rf4W9Yr9E7j1Vye0v97gzHDWyINS+nOSf/sogI9yrh8EcCXnegfAT63oAxosC+nT/ptf\nsE3ylb1IRx7zURPXiEbkwdb2kEdbP/KolKy+klnd6KFasjC5lFmrKXnZqSqxbLmxTolx+usZXM2K\nKV7Sm/V5qDDCiTy0E+acnEer62G75swYRhRLHQ+eH6DjBrmqrQzOLUw5gkEusJwHAO0yXaA38phj\nkYeG1TbANsNEhkkiD/XGUrULPTkPSmlIABqbYbVk9fVLaMtWnNkYcZWYMvLo94hi63VyD9nXK1yr\n9tQCQh+pluP3RD25ZSu3V7bKm/Nodn00NT2xDFYPhjwMcoFVAm3TPE0ylFLJZ2YfoZPzAMLNML2Z\nsUhCN+fRTElPccWTbplvtsFQ8xTO66p3NEuMefbkQJi30Is8SF+vhm7CfKTWP7fF0bCCB5JKrzTh\nhjNf8uY83Fz2NwarA/ObMciF0ZqN/37DpXjTVVtzravZFk5Em8rh6dBccfuInqPvpgG7Z0rcYseF\nVSBaJaDjg2VMLYVDgggh2hs4EHZr82ansz4MGeLII7WJM9sP/ZxHf7Jeu1eDk2zXka2GI0JfaLmx\nvYfraTYYFguolawe4mk6vtKChmGwxMjDN+SxDmAiD4NcIITgl169DxeM5bNx2DxUjruzf/j8PC4Y\nq2nNlwZCjyLWnAeEOY+hil7X8tbhCjpuEOdJ8vSIcGUrzZzHGUUeHCNJQG8YFMDPebh+oJUwr5f7\ny4QdP4hzOCoMp3Imrh92yevmLViE0uh48f115sUYrA4MeRicE2yul7HQdtFxfTw9uYTLtg7lWjuV\nJo+Oq1VpBQBbIhuRU4uhJxXbzHU2w6ptwfEC+KnJeHlKddnXx2vZvZXDoFi/REJcfkBBNcwg2fd3\ng96chx/oleryZonrJsyBXvJgxKvbJFi0CqjYBcw0u7jjiUkAenbsBqsD85sxOCdgXlAnFzpY7Hha\nZboME0O90tNiW69RDwgjDyAkj0u21nNFHrXUYCWWzNXdSBNblWQT10+Y98tWbO1yZSvXp/FYXhlq\nnGFSIWHqWckNVW0sRAUR7Zg89LeZwbKNm+55Lv7cyFZrFybyMDgnYBHAOz99b67NHwhlK8cP4v6Q\nxY6nVWkFJONJ56LxpHlyHkkCOJFwup6fM/LoPcHr3FtGHrrJ+qxspZvor3JceXXlMqC31JcVKuSp\nmMrKVMu1JzE4+zDkYXBOcOX2UKY6tdhBVzPpzMDsz1neIw/5MBmGleuyDVwnb1GNTsx9Ek6OUt0u\nJ+ehkp4IIVFfTHLfrqe3FkDUVJl1A+5goq7OMfHmgeg2VQIZ2aqbP/LI9v6oRt8arB4MeRicE4wN\nlvH2a3bGG69uzgJIk0eYt1jU9JcCEM/tiMkjR+SRuNumksdegJKl3tCYzJPexNmmqvOzl4uFnj4P\nRmA6lUvZOeSuH2C64cTRnwy8SYS6fR5AL3kcmm4AyFfWvT01Jvlnr9+N8RwWOAbnFoY8DM4Zhip2\nfPLPFXlEm97kIos89GWrOPKI7pvkPNSbMHvG9FwO/SZBq+d+QPL8OvOxQ1PGfjPIqoYbcFa2YhHb\nVg3yyOY8KKVwNftLgLBPpO2GTYb3HprBUKUYzyfXwbbIpn+0ZuMjb7tKawStwerAkIfBOcNw6sSd\nL+eRyFaOF6Dt+mcsW+kQwFDGGj0IqNYkQACwo8gjTR5TjQ5Ga7b2VL60bNXOQR7ZUt1T0dRHncij\nUuzNebCpgDoOxkDyO15ouzg218beiUGtCYYMrPcnK7sZrD0Y8jA4ZxhORQt5ZkQPlIsYKFmYXOrg\nf/7LowD0ZS+rEBoFsk2QJbB1uq2z5MGkIK0+D441+uRiV9tMsmz3Ds/KJ1sReKnNdzYqFmBzvmUo\nFAgqKUsXVixQ0yAtIPm9LLZdtB39WR4MzAcra0dvsPZgShkMzhnSG76OhJLG5qEKnpls4K6np8PP\nczj6VopWKvLQtyeJZatIw3dyVjyF90tHHjnIo2j15jyi59cfn5s2kgyff1iTcNO2LHGvhmbVE0t4\nz7dctF1f+54Muq4DBqsPE3kYnDOkN5Jdm/JtEhP1Mp6fbcWfb82RhC3bSf6ASUGsi1uGwUzCPK7U\n0hxhC6BnIFSr66Ne1ttMs7JVrpxHRraKjSQ1o71aqRiTBiMt3QgiLVu1XX1rEoZtI/kOFQarBxN5\nGJwzXLF9GFftGMbrL9+iZS2SxuZ6Gfcfno0/z0MeFbsQd2sng6TUf/q2VUDVtuJZ4nkaDFnkkZ29\nrmvzkZ35Huc8NDbjokV6mhOZNYtukUKvbHUG5OH4WmSXhqmuWj8w5GFwzrB1uIJ/+eDLl7WWmfQx\n6FQsMVRsC53oFJ9nkBQQbrjZyGPZ9iR+AFszeVy2ew0G2Rz25STMFzsuaiVLy5IdYJFH+DOz/1dt\nzabMSLaaaTjLijxYddWBC0ZzrTM49zDkYbAusHkoIYurdgxrb4RAeIpnCfPFtoeSVdBKegO9zrp5\nekQSe5JM5KH53GGfx/Kqrap2r6Fj3o7+9OjepNFPN2EeFjecWGgvK/IAgMd+741aJo4GqwvzGzJY\nF0gnyP/nW6/ItbZiJwnzpY6LuqYjL1vbzpb5anZ5E5KxZPdpXMKrQnp4FpDkPCoa/lSjAyW0XT/1\nM+v3xQChNBYnzHPmPAgh2D5SxdHZNrpekDvyCO9V1G5KNFg9mN+QwbpAWrbK67Sa1vBDX6wcp/BS\nQjy6Y2SByGLE6iUAN4fNR7ZJsO34KBA94mJDttjQrcWOm6s0Oh15sBnueUhg+0gVh6Ya8fcy2Jgw\n5GGwLpCWrfL2DoSluky2crWS5QzpslVW/aR7Ki5lSmZ1J/IBrM8jkZ6ajodaSS9iYuN955rMoDBf\nv0UtNcektQxn3B2jVRyKBn4tJ/IwWB8w5GGwLpCWrfKSR71SRKProeP6+O5TU/kiD45spZsvKWWk\nJy/Qt/nIelsttNx4RKwKowOs1yKMPP7/9s41xq7quuO/NTN3HvYM47cZbIxxcEkcV1XAcRwEKS0I\nYysKEIXUVaVQhQZFfahRVUVQpCQq4gOt0keiJlXaoBCUllRJKSgNSnHaiE9ACDKvgPHwSINr/GA8\nNp7nnZnVD2efuWdu7p05+86cmWv7/5Ou5tyzz75n3X3mnnX2WmuvNVaezLU+JKUzM9uKjbYC2JBZ\nq6GZx7mLlIc4K8iuEYl5CoZk4drg8DhPvHocIPdCPUhupL/q88h3Q8wqj8kpZzJKecw0Ww2ORCiP\nYLYaCMpjtBznuF6WcbifHi1TarXcChNmKo/YayXOHqQ8xFmBmU0rkM6ceZZSertKnB6dmK4m+Pnd\n783dt6vUyuh4fLQVzAyZjSnmBMFhPjnFVKgIODg8zoqufGV7U7NVWv9ktDwVNWZdQWG6O4NDZVYt\nb49al5PNovuRX1uTu584u9BjgThr2P9nv8krb5+OXmCYPrG/fjyxw+fJ8ZRSy2yV2+fRVvF5xBRz\ngsoq9vHJKTpbWhkcKdOXM3VH6hxP80ONTsSZrbraW3FPAgQGhsenZzJ5uWxdNwD33rI9ylEvzi6k\nPMRZw9qeDtb2rI3ulyqP/mNnWLGslNt0BJWncIhXHqVMtFWaJTZPQkaopE8ZK0/RWWpNfB45fTWd\npRZaW4wzYXHjyHik8sjUMT85ND5djTEvq7s76L93T9RaHHH2oasrznlSc89rx8+wJmJlOqRrRBLz\nUUxiREhnHonSSGceMelJIInwcvcon4eZ0d2RBAm4O2MTU9NFsfKQrekxMDw+7YCPQYrj3EdXWJzz\n9Iab7pFTo6yOvBGmT+FjE1NRiREBOlpbGJ+YOWuJibaCxF8xNjHF5JSzPKKed3dHklYldbp3RkRL\npec5cmqE148PRY+ZOD+Yl/Iws1vN7CUzmzKzHVVtd5lZv5kdNLPdmf1XmtkLoe0rFgzYZtZhZt8N\n+58ys82ZPreZ2aHwum0+Movzj63ruklTSq2JiLQC6CpVytiORawwh6QgVKo0JoLjO2/f6RK4Y+Xp\nkN28fdP+Z8bKlZXpObIIp6QLMv9u/yEArr083lQozn3mO/N4Efg48ER2p5ltA/YB7wduBL5mZul/\n79eBzwBbw+vGsP924KS7Xwb8LXBf+KxVwBeBDwE7gS+ambKmidz0dJbYdlFSCnVN7MwjY8KJSU+S\nHleuNlvl7NvbVamLMRYKWHVE+C1Ss1VMHZCUtNbKz35xkhXLSvz2e9fn7ivOH+alPNz9ZXc/WKPp\nJuAhdx9z9zeAfmCnmfUBF7j7k+7uwLeBmzN9Hgjb3wOuC7OS3cDj7j7g7ieBx6koHCFysXn1coCG\nfB4QlMfkFKVWy11XO7vOo2K2ytd35fJKuO20uSxi5tEdsgGnK+tjQnXT1fzD45Nc1KviTKI2Rfk8\nNgC/zLx/K+zbELar98/o4+4TwClg9SyfJURu0pDRGL8BzIw8Gi1P5ioilZKt6Bc788jmp4qN8oIw\n8xidqJitYlaYl1qn14qosp+ox5y/JDPbD1xYo+lud39k4UVqHDO7A7gDYNOmTUssjWgmujuSm2da\nnyIvqdlqtDzJqZFyVFnVns4Sx06Pcmq4nAnVzWu2Smce41EJGSvnbuPdsYmoCoRZ1l/QycnhMhtU\n2U/UYc7/Rne/3t2313jNpjgOAxdn3m8M+w6H7er9M/qYWRvQC7wzy2fVkvUb7r7D3XesXSsnn6jw\nB9ds4ar3rOZ3Phj3UNGVMVsNRuSXAvjElRsYGp/kJ68ey8w88qeC7yq1zjRbNTDzGIqsx5GyPvg9\nNPMQ9SjKbPUosC9EUF1K4hh/2t2PAKfNbFfwZ3wKeCTTJ42k+gTw38Ev8iPgBjNbGRzlN4R9QuRm\n/QWd/MtndkXltYKMz2N8MkkREqE8+oK/YDTjbM+7zgOS2cepkXJ0WhSA7o4SI+VJ3hkaSz4rQm6o\nOM2lPEQ95rXC3MxuAb4KrAX+08wOuPtud3/JzP4N+DkwAfyRu6f5pf8Q+BbQBTwWXgDfBB40s35g\ngCRaC3cfMLN7gJ+G4/7S3SvFrIUokGy01eBw/hQhkF3oNzVdUjbG7NVRSnJjNRKq2x1Cff9vKeN+\nJgAACIFJREFUcDT6vADre6U8xOzMS3m4+8PAw3Xa7gXurbH/GWB7jf2jwK11Put+4P75yCpEI6Rm\nq9OjE7x+YogPv2d17r5paG125hGz4K4UQn3HGwjV7QmBAYcHh4F45XHZum7aW1vYvHpZVD9x/qDc\nVkLMQqo8/j4smIshTQkyVp5ipDxJW4tF1RJPo7Vi15dAZeZx+OQIpVaLdph/9Nf7+ODmlayODG0W\n5w9KTyLELKRmqxNnEt/Bnu19ufu2tSYJCscmphgYSnJE5V0jAtDeaonZqsFQXYDDgyP0dpWiMxG3\ntNi0z0aIWkh5CDEL2Qinvt5Ort4aV5+ioy0pJ/vO0Hh0jqi0HshYI9FWYebx6tEzUZUThciLlIcQ\ns2BWMfnELjCE5IY/PD7JwbffnQ5/zUuptYXyhDcUqtuTkXWDnN6iAKQ8hJiDNElhd0PKo5Wn3xjg\nfweGueUDcYkRSm1VPo8I5bE+U83vL/a+L+q8QuRBykOIOUjzYTWkPEotHDmVhMtuWbs8qu98fB5Z\nx/wlipgSBSDlIcQcpGVrG5t5tEyXg40tyZr6PBqJtsqyrF1BlWLh0X+VEHOQzjwa83lUQmRT81de\n0nUex8+M0ttViq7O9+DtOzl6eiyqjxB5kfIQYg7WTM884tZKwEwndyPK440TQ7w7Wm7I6X3NVuV3\nE8Uhs5UQc7BxZeIzaGTBXJobq72tJSqdO1SSKJ44M640IaLp0MxDiDn4vQ9tYvuGXrb1XRDdN515\n9DRg8souKNy4UspDNBdSHkLMQVtrC1de0ljl49RPEmuygkr1QaiYzoRoFmS2EqJAUnNTI872sYzy\niE1sKETRSHkIUSAXr2pceYxPTE5vK8WIaDakPIQokLSC38rIYkygmYdobqQ8hCiQ37p8Hbu2rOLO\nPfEpQtIiUAArlsnnIZoLOcyFKJAVy9p56I4PN9R3LGO20sxDNBuaeQjRpGT9JMvb4xcoClEkmnkI\n0aR8+ZO/wVd/3M+6ng7W9qiin2gupDyEaFLW9XRyz83bl1oMIWois5UQQohopDyEEEJEI+UhhBAi\nGikPIYQQ0Uh5CCGEiEbKQwghRDRSHkIIIaKR8hBCCBGNuftSy1AIZnYc+EWD3dcAJxZQnIWiWeWC\n5pVNcsUhueJoVrmgcdkucfe1cx10ziqP+WBmz7j7jqWWo5pmlQuaVzbJFYfkiqNZ5YLiZZPZSggh\nRDRSHkIIIaKR8qjNN5ZagDo0q1zQvLJJrjgkVxzNKhcULJt8HkIIIaLRzEMIIUQ0563yMLNbzewl\nM5sysx1VbXeZWb+ZHTSz3XX6rzKzx83sUPi7sgAZv2tmB8LrTTM7UOe4N83shXDcMwstR43zfcnM\nDmdk21vnuBvDGPab2Z1FyxXO+ddm9oqZPW9mD5vZijrHFT5mc31/S/hKaH/ezK4oQo4a573YzP7H\nzH4efgN/WuOYa83sVOYaf2GRZJv1uizFmJnZ5ZlxOGBmp83sc1XHLMp4mdn9ZnbMzF7M7Mt1L1rw\n36O7n5cv4H3A5cBPgB2Z/duA54AO4FLgNaC1Rv+/Au4M23cC9xUs75eBL9RpexNYs4hj9yXgz+c4\npjWM3RagPYzptkWQ7QagLWzfV++6FD1meb4/sBd4DDBgF/DUIl2/PuCKsN0DvFpDtmuBHyzW/1Te\n67JUY1Z1Xd8mWQux6OMFfAS4Angxs2/Oe1ERv8fzdubh7i+7+8EaTTcBD7n7mLu/AfQDO+sc90DY\nfgC4uRhJk6ct4JPAvxZ1jgLYCfS7++vuPg48RDJmheLu/+XuE+Htk8DGos9Zhzzf/ybg257wJLDC\nzPqKFszdj7j7s2H7XeBlYEPR510glmTMMlwHvObujS5Anhfu/gQwULU7z71owX+P563ymIUNwC8z\n79+i9g9rvbsfCdtvA+sLlOka4Ki7H6rT7sB+M/uZmd1RoBxZ/iSYDe6vM03OO45F8mmSp9RaFD1m\neb7/ko+RmW0GPgA8VaP5qnCNHzOz9y+SSHNdl6Ues33Uf4hbivGCfPeiBR+3c7qGuZntBy6s0XS3\nuz+yUOdxdzezhsLWcsr4u8w+67ja3Q+b2TrgcTN7JTyhNMxscgFfB+4h+aHfQ2JS+/R8zrdQsqVj\nZmZ3AxPAd+p8zIKP2dmGmXUD3wc+5+6nq5qfBTa5+5ng0/oPYOsiiNW018XM2oGPAXfVaF6q8ZrB\nfO5FsZzTysPdr2+g22Hg4sz7jWFfNUfNrM/dj4Rp87EiZDSzNuDjwJWzfMbh8PeYmT1MMkWd1w8u\n79iZ2T8BP6jRlHcco8kxZr8PfBS4zoPBt8ZnLPiYVZHn+xc2RnNhZiUSxfEdd//36vasMnH3H5rZ\n18xsjbsXmscpx3VZsjED9gDPuvvR6oalGq9AnnvRgo+bzFa/yqPAPjPrMLNLSZ4enq5z3G1h+zZg\nwWYyVVwPvOLub9VqNLPlZtaTbpM4jF+sdexCUWVjvqXO+X4KbDWzS8MT2z6SMSsUM7sR+DzwMXcf\nrnPMYoxZnu//KPCpEEG0CziVMT8URvChfRN42d3/ps4xF4bjMLOdJPeKdwqWK891WZIxC9S1ACzF\neGXIcy9a+N9j0dEBzfoiuem9BYwBR4EfZdruJolMOAjsyez/Z0JkFrAa+DFwCNgPrCpIzm8Bn63a\ndxHww7C9hSRy4jngJRLTTdFj9yDwAvB8+Afsq5YrvN9LEsnz2mLIFc7ZT2LbPRBe/7hUY1br+wOf\nTa8nScTQP4T2F8hE/RU8RleTmByfz4zT3irZ/jiMzXMkgQdXLYJcNa9Lk4zZchJl0JvZt+jjRaK8\njgDlcP+6vd69qOjfo1aYCyGEiEZmKyGEENFIeQghhIhGykMIIUQ0Uh5CCCGikfIQQggRjZSHEEKI\naKQ8hBBCRCPlIYQQIpr/B6D+zdfha8DnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr1.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'full'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Full mode does a full cross-correlation." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "639" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also create CrossCorrelation Object by using Cross Correlation data. This can be useful in some cases when you have correlation data and want to calculate time shift for max. correlation. You need to specify time resolution for correlation(default value of 1.0 seconds is used otherwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cs = CrossCorrelation()\n", + "cs.corr = np.array([ 660, 1790, 3026, 4019, 5164, 6647, 8105, 7023, 6012, 5162])\n", + "time_shift, time_lags, n = cs.cal_timeshift(dt=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.83333333333333348" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvSeglQCAECCAtoHRICAGUtaCyrgoiIiod\nQQQLrhXd1d11i667rhUQFQhKFUGwoYhtpaVRQhEIIpBICb2XJOf3x9ys84tIEpjJnUzO53nmmXfe\ne9+ZM0A4ee99i6gqxhhjTFGEuB2AMcaYkseShzHGmCKz5GGMMabILHkYY4wpMksexhhjisyShzHG\nmCKz5GGMMabILHkYY4wpMksexhhjiqyM2wH4S61atbRRo0Zuh2GMMSVKSkrKPlWNKOi8oE0ejRo1\nIjk52e0wjDGmRBGR7YU5zy5bGWOMKTJLHsYYY4rMkocxxpgis+RhjDGmyCx5GGOMKTJLHsYYY4rM\nkocxxpgi82vyEJGHRGS9iKwTkZkiUkFEwkVksYhscZ5reJ0/TkTSRWSTiFzvVR8jImnOsVdERPwZ\ntzGmYJ+k7WLDT0fcDsO4xG/JQ0SigAeAWFVtDYQC/YEngCWqGg0scV4jIi2d462AnsB4EQl13m4C\nMAKIdh49/RW3MaZgM1buYPT0VPpMWMonabvcDse4wN+XrcoAFUWkDFAJ+AnoBSQ4xxOA3k65FzBL\nVU+r6jYgHYgTkbpAmKquUFUFpnm1McYUs6++38sfF6yje/MIWtWrxujpqbz+VTqeH09TWvhteRJV\nzRSRfwE7gJPA56r6uYhEqmreryq7gUinHAWs8HqLDKfurFPOX2+MKWbrMg8zZkYql9apyoS7OhIa\nIjz+/lpe+GwT2/Yd5++3tKFcGbuVWhr487JVDTy9icZAPaCyiAzwPsfpSfjs1xURGSkiySKSnJWV\n5au3NcYAGQdPMHRqEjUqlWPykE5ULl+GCmVDeen29oztEc3clAwGvr2Sg8fPuB2qKQb+/BWhB7BN\nVbNU9SwwD+gK7HEuReE873XOzwQaeLWv79RlOuX89b+gqpNUNVZVYyMiClwU0hhTSIdPnmXolCRO\nnc1hytBORIZV+N8xEWFsj+a83L89q3Ycos+EZWzbd9zFaE1x8Gfy2AHEi0glZ3TUNcBGYCEw2Dln\nMLDAKS8E+otIeRFpjOfGeKJzieuIiMQ77zPIq40xxs/OZOcy6p0Uftx/nDcGxtA8suo5z+vVPooZ\nIzpz+ORZer++lOVb9xdzpKY4+S15qOpKYC6QCqQ5nzUJeA64VkS24OmdPOecvx6YA2wAFgFjVDXH\nebvRwFt4bqJvBT71V9zGmJ+pKo+/v5blP+znn33b0rVprfOeH9sonA9GdyOiankGTV7JnOSdxRSp\nKW4SrCMkYmNj1fbzMObi/PvzTbz6ZTqPXNec+66OLnS7wyfPMmZ6Kt+l72P0lU155LoWhITY9KyS\nQERSVDW2oPNsWIQx5pxmJ+3g1S/T6d+pAWOualakttUqlmXK0E7c2bkh47/eyn0zUzl5JqfghqbE\nsORhjPmFbzZn8eR8z1yOZ3u35kIWdSgbGsLferfmD7+7jE/X7ab/pOXsPXLKD9EaN1jyMMb8P+t/\nOszod1NoEVmV8Xd1pGzohf83ISLcfUUTJg2MZcveY/R+fSkbd9mSJsHAkocx5n9+OnSSYVOTCHMu\nO1Up75t5xNe2jGTOPV3IVeg7YRlffb+34EYmoFnyMMYAcOSUZy7HidO/nMvhC62jqvHBmG40qlWZ\n4QlJTF26zafvb4qXJQ9jDGeyc7n33RS2Zh1j4sAYLq0T5pfPqVOtAu+N6kKPyyL504cbeHrBOrJz\ncv3yWca/LHkYU8qpKuPmpbE0fT/P3dqWbs3OP5fjYlUqV4aJA2K4p3sTpi3fzvCEZI6eOuvXzzS+\nZ8nDmFLupS+28H5qBg/1aE7fmPoFN/CBkBBh3A2X8Y8+bViavo++E5aTcfBEsXy28Q1LHsaUYnOS\nd/Lyki30janPA9cUbS6HL9wR15CEYXH8dPgkvV9fSuqOg8Ueg7kwljyMKaX+uyWLJ+elcUV0Lf7R\np80FzeXwhW7NajF/dDcqlStD/0kr+HDNT67EYYrGkocxpdDGXUe4991UmtWuctFzOXyhWe0qfDCm\nG22jqnH/zFW89uUW21wqwFnyMKaU2XX4JEOnJFGlfBmmDO1E1Qpl3Q4JgPDK5Zg+ojO3dIjiX59v\n5uH31nA625Y0CVR+20nQGBN4jjpzOY6dzmbOPV2oW62i2yH9P+XLhPJiv3Y0rlWZFxdvJuPASSYO\njCG8cjm3QzP5WM/DmFLibE4uo6enkr73GOPv6kjLev6Zy3GxRIQHronmlTs6sDrjELeMX8rWrGNu\nh2XyseRhTCmgqjw1P43/btnH3/u0oXvzwN9p8+Z29Zg5Ip5jp7K55fWlLEvf53ZIxoslD2NKgVe/\nTGdOcgYPXBNNv9gGBTcIEDGX1OCDMd2IDKvAoMmJzE7a4XZIxmHJw5gg935KBi8u3kyfjlE81KPw\nGzoFigbhlXh/dFe6NK3J4++n8Y9PN5KbayOx3GbJw5ggtjR9H4+/v5auTWvyXJ+2rs3luFhhFcoy\nZUgnBsQ35I1vfuDe6SmcOJPtdlilmt+Sh4i0EJHVXo8jIjJWRMJFZLGIbHGea3i1GSci6SKySUSu\n96qPEZE059grUlJ/AowpRpt2H2XUOyk0jajCxIExlCtTsn9XLBMawrO9WvP0jS35fMMebn9jBXts\ncynX+O1fk6puUtX2qtoeiAFOAPOBJ4AlqhoNLHFeIyItgf5AK6AnMF5EQp23mwCMAKKdR09/xW1M\nMNhz5BRDpyRSqXwoU4Z2IixA5nJcLBFh2OWNeXNgLFuzPJtLrf/psNthlUrF9avINcBWVd0O9AIS\nnPoEoLdT7gXMUtXTqroNSAfiRKQuEKaqK9Qz5XSaVxtjTD7HTmczdEoSh0+eZfKQTtSrHlhzOXyh\nR8tI3hvVBYDbJi5n0brdLkdU+hRX8ugPzHTKkaq6yynvBiKdchSw06tNhlMX5ZTz1xtj8jmbk8uY\n6als2nOU1+/qSKt61dwOyW9a1avGgjHdiK5dhVHvpvDCZ9+TYzfSi43fk4eIlANuBt7Lf8zpSfjs\nb1tERopIsogkZ2Vl+eptjSkRVJU/frCObzZn8bferbmyRW23Q/K72mEVmH1PF26PbcDrX21l2NQk\nDp+wvUGKQ3H0PH4LpKrqHuf1HudSFM5z3mbGmYD3APT6Tl2mU85f/wuqOklVY1U1NiIi8CdBGeNL\n47/eyqykndx3VTP6xzV0O5xiU6FsKM/d2oa/3dKaZVv3cdNr37Fx1xG3wwp6xZE87uDnS1YAC4HB\nTnkwsMCrvr+IlBeRxnhujCc6l7iOiEi8M8pqkFcbYwzwwapMXvhsE7d0iOLh65q7HU6xExHu6nwJ\ns0Z24dTZHPqMX8ZCW9rdr/yaPESkMnAtMM+r+jngWhHZAvRwXqOq64E5wAZgETBGVfOW1BwNvIXn\nJvpW4FN/xm1MSbJs6z4enbuGLk1q8vytJXcuhy/EXFKDj+6/nFb1wnhg5ir+9vEG2yPdTyRY18yP\njY3V5ORkt8Mwxq827znKrROWUSesAnPv7Uq1isExJPdincnO5a8fb2Da8u10bVqTV+/oQM0q5d0O\nq0QQkRRVjS3ovJI9a8iYUmzvkVMMnZJEhbKeuRyWOH5WrkwIf+nVmn/d1o7k7Qe5+bWlpGXYfBBf\nsuRhTAl0/HQ2wxKSOHjiDFOGdKJ+jUpuhxSQ+sbU5/1RXQG4deIy3kveWUALU1iWPIwpYbJzcrlv\nRiobdx3l9Ts70joqeOdy+EKb+tVYeF83Yi+pwaNz1/L0gnWcybb7IBfLkocxJYiq8szC9Xy1KYtn\ne7XmqkuDfy6HL9SsUp5pw+IYcUVjpi3fzp1vrmDvUVsX62JY8jCmBHnrv9uYvnIHo37TlDs7l565\nHL5QJjSEp37Xklfu6MD6n45w4yvfkbL9oNthlViWPIwpIRat28XfP93I79rU5bHrW7gdTol1c7t6\nzBvdlQplQ+k/aTnTV24nWEed+pMlD2NKgNU7DzF29mraN6jOv/u1IySk9M7l8IXL6oax8L5udG1a\ni6fmr+OJ99M4dTan4Ibmfyx5GBPgdh44wd0JSURULc+bg2KpUDa04EamQNUrlWPykE7cd1UzZifv\n5PY3lvPToZNuh1ViWPIwJoAdPnmWYVOTOJOdy5QhnahlE918KjREeOT6FkwcEMPWrOPc9Op3rPhh\nv9thlQiWPIwJUHnLq2/bd5yJA2NoVruq2yEFrZ6t6/DBmK5Uq1SWu95ayeTvttl9kAJY8jAmAOUt\nr/5d+j7+0acNXZvWcjukoNesdlUWjOnG1ZfW5i8fbeCh2as5ecbug/waSx7GBKA3vv3hf8ur3xbb\noOAGxieqVijLGwNiePja5ixY8xO3TljGzgMn3A4rIFnyMCbAfJK2i+c+/Z6b2tXj99eWvuXV3RYS\nItx/TTSTh3Qi4+AJbnrtO77dbJvL5WfJw5gAkrrjIA/NXk3MJTV4oW9bG5Lroqta1GbhfZdTJ6wC\nQ6YkMv7rdLsP4sWShzEBYueBE4xISKZOtQpMGhhjQ3IDQKNalZk3uis3tKnLPxdtYsyMVI6dznY7\nrIBgycOYAHD4xFmGTEkkO1eZPKST7T0RQCqVK8Ord3TgyRsuZdG63dzy+lJ+yDrmdlius+RhjMvO\nZOdy7/QUdhw4wRsDY2gaUcXtkEw+IsLI7k15Z3hn9h07Ta/XlrJk4x63w3KVv7ehrS4ic0XkexHZ\nKCJdRCRcRBaLyBbnuYbX+eNEJF1ENonI9V71MSKS5hx7RUrzPpsmqKgqT81PY9nW/TzXpy3xTWq6\nHZI5j27NavHh/ZdzSa1KDE9I5j+LN5ObWzrvg/i75/EysEhVLwXaARuBJ4AlqhoNLHFeIyItgf5A\nK6AnMF5E8i76TgBGANHOo6ef4zamWIz/eivvpWTwwDXR3BpT3+1wTCHUr1GJuaO60qdjFC8v2cKI\nackcOXXW7bCKnd+Sh4hUA7oDbwOo6hlVPQT0AhKc0xKA3k65FzBLVU+r6jYgHYgTkbpAmKquUM9Q\nh2lebYwpsT5c8xMvfLaJXu3r8VCPaLfDMUVQoWwo/76tHX++uRXfbM6i12tL2bznqNthFSt/9jwa\nA1nAFBFZJSJviUhlIFJVdznn7AYinXIU4L1HZIZTF+WU89cbU2KlbD/Aw++toVOjGvyzb1vsSmzJ\nIyIM7tqIGSPiOXoqm96vL2XGyh2lZjivP5NHGaAjMEFVOwDHcS5R5XF6Ej77kxaRkSKSLCLJWVk2\nqccEpu37jzNiWgpR1SsyaWAs5cvYkNySLK5xOB/dfzntG1TnyflpDJqcSGYpWJ3Xn8kjA8hQ1ZXO\n67l4kske51IUzvNe53gm4L0OQ32nLtMp56//BVWdpKqxqhobERHhsy9ijK8cOnGGoVOTyFXPkNwa\nlcu5HZLxgTrVKvDu8M4827s1KdsPcv1/vmVmYnD3QvyWPFR1N7BTRPK2PLsG2AAsBAY7dYOBBU55\nIdBfRMqLSGM8N8YTnUtcR0Qk3hllNcirjTElxpnsXO55J4WMAyeZNDCWxrUqux2S8aGQEGFg/CV8\nNrY7betXY9y84O6F+Hu01f3AdBFZC7QH/g48B1wrIluAHs5rVHU9MAdPglkEjFHVvCUtRwNv4bmJ\nvhX41M9xG+NTqsoT89ayctsB/tm3LXGNw90OyfhJg/BKpaIXIsH2hfLExsZqcnKy22EYA8ArS7bw\n4uLNPNSjOQ/ayKpSY+eBEzw2dy3Lf9jPFdG1eO7WtkRVr+h2WOclIimqGlvQeTbD3Bg/W7A6kxcX\nb6ZPhygeuKaZ2+GYYtQgvBLT7+7Ms71a/a8XMitIeiGWPIzxo6QfD/Doe2vp3Dicf9zaxobklkIh\nIcLALo34bGx3WkeF8USQ3Aux5GGMn2zbd5yR05KpX6MibwyMsSG5pVyD8ErMuDs+aHohljyM8YOD\nx88wbGoSAJOHdKJ6JRuSa87dCxk8JYmfSmAvxJKHMT52OjuHe95JIfPgSd4cFEsjG5Jr8snrhfyl\nVyuSfzzA9f/5ltlJJasXYsnDGB9SVR6fu5bEHw/wwm1tiW1kQ3LNuYWECIO6NGLRg91pFRXG4++n\nMaQE9UIseRjjQy99sYUPVv/EI9c1p1d7W4LNFKxhzZ97IYnbSk4vxJKHMT7yfkoGLy/ZQt+Y+oy5\nyobkmsLL64V8NrY7Lev93AvZdThweyGWPIzxgRU/7OeJeWvp0qQmf7/FhuSaC9OwZiVmjojnzzd7\neiHXvfgtc5J2BmQvxJKHMRdpa9Yx7nknhQbhlZg4IIZyZezHyly4kBDPUu+Lxl5By3phPPb+2oDs\nhdi/cmMuwgFnSG6ZEGHqkDiqVSrrdkgmSFxSs/L/74X851vmJAdOL8SShzEX6NTZHEZOS2bX4VNM\nGhRLw5qV3A7JBBnvXshldcN4bO5ahk4NjF6IJQ9jLkBurvLo3LUkbz/Ii/3aEXNJDbdDMkHskpqV\nmTUinj/d1JKVPwRGL6RMYU4SkfLArUAj7zaq+hf/hGVMYPvPF5v5cM1PPNazBTe2red2OKYUCAkR\nhnRrzFWX1ubRuWt5bO5aPk3bxT/6tKVOtQrFH08hz1sA9AKy8Wwnm/cwptR5L3knr36Zzu2xDbj3\nN03dDseUMt69kBU/HODa/3zDey70Qgq1n4eIrFPV1sUQj8/Yfh7GH5al72PQ5EQ6Nwln6tA4yoba\nlV/jnu37j/Poe54VDa5qEeGTXoiv9/NYJiJtLioiY0q4LXuOMurdFBrVqsz4u2IscRjXXVKzMrNG\nxvPMTS1Z/sP+Yu2FFPZf/+VAiohsEpG1IpLmbC1rTKmweuchbp+0gnJlQpkypBPVKtqQXBMYQkKE\nod0as+jB7lxWJ4w/LljH7iOn/P65hbphDvz2Qt5cRH4EjgI5QLaqxopIODAbz833H4F+qnrQOX8c\nMNw5/wFV/cypjwGmAhWBT4AHNVAGO5ug99WmvYx+N5VaVcsxbVhnGoTbkFwTeBrV8vRCNu4+Qt1q\n/t/qtlA9D1XdDlQHbnIe1Z26wrhKVdt7XUN7AliiqtHAEuc1ItIS6A+0AnoC40Ukb/ecCcAIINp5\n9CzkZxtzUeamZHB3QjJNIirz/r1daWzLq5sAFhIitKpXrXg+qzAniciDwHSgtvN4V0Tuv8DP7AUk\nOOUEoLdX/SxVPa2q24B0IE5E6gJhqrrC6W1M82pjjF+oKhO+3soj760hvkk4s0bGU7tq8Q+HNCZQ\nFfay1XCgs6oeBxCR54HlwKsFtFPgCxHJAd5Q1UlApKruco7vBiKdchSwwqtthlN31innrzfGL3Jz\nlb98tIGpy37k5nb1+Ndt7Wy9KmPyKWzyEDz3IfLkOHUFuVxVM0WkNrBYRL73PqiqKiI+u3chIiOB\nkQANGzb01duaUuR0dg6/n7OGj9fuYvjljXnqhssICbEVco3Jr7DJYwqwUkTmO697A28X1EhVM53n\nvU7bOGCPiNRV1V3OJam9zumZQAOv5vWdukynnL/+XJ83CZgEnnkehfxuxgBw5NRZRk5LZsUPB3jq\nhssY0b2J2yEZE7AKe8P8RWAocMB5DFXVl87XRkQqi0jVvDJwHbAOWAgMdk4bjGf2Ok59fxEpLyKN\n8dwYT3QucR0RkXjxbJIwyKuNMT6x98gpbn9jBck/HuSl29tb4jCmAOfteYhImKoecYbX/ug88o6F\nq+qB8zSPBOY7m+KUAWao6iIRSQLmiMhwYDvQD0BV14vIHGADnmVQxqhq3qWy0fw8VPdT52GMT2zN\nOsagtxM5dOIMk4d0onvzCLdDMibgnXd5EhH5SFVvFJFteG5+/+8QnlsWAfvrmS1PYgpj1Y6DDJua\nRIgIU4fG0aZ+8QxzNCZQFXZ5kvP2PFT1Rue5sa8CMyZQfPn9HkZPTyUyrAIJQ+NoZHM4jCm0ws7z\nWFKYOmNKijnJOxkxLYXo2lWZO6qrJQ5jiqigex4VgEpALRGpwc/Dc8OwuRamBFJVxn+9lRc+28QV\n0bWYMCCGKuULO+jQGJOnoJ+ae4CxQD0ghZ+TxxHgNT/GZYzP5eQqf/5wPdOWb6d3+3r8s69N/jPm\nQhV0z+Nl4GURuV9VC5pNbkzAOnU2h4dmr+bTdbsZ2b0JT/S81Cb/GXMRCtVfV9VXRaQ10BKo4FU/\nzV+BGeMrh096Jv+t3HaAP/zuMu6+ImAHCRpTYhR2D/NngCvxJI9P8CzR/h2eRQqNCVi7D59iyJRE\ntmYd4+X+7enV3m7VGeMLhb1T2BdoB6xS1aEiEgm867+wjLl46XuPMnhyEodOnGHKkDguj67ldkjG\nBI3CJo+TqporItkiEoZnPaoGBTUyxi0p2w8yPCGJMiEhzL6nC62jbPKfMb5U2OSRLCLVgTfxjLo6\nhmdJdmMCzhcb9nDfzFTqhFVg2rDONKxpO/8Z42uFvWE+2ilOFJFFeDZnsj3MTcCZnbSDJ+evo1W9\nMCYP6UStKuXdDsmYoFTQJMGO5zumqqm+D8mYolNVXvsynX8v3kz35hFMuKsjlW3ynzF+U9BP17/P\nc0yBq30YizEXJCdXeXrBOqav3EGfDlE837ctZUNt8p8x/lTQJMGriisQYy7EqbM5PDhrFZ+t38Oo\n3zTl8Z4tcLYBMMb4UWHneVQCfg80VNWRIhINtFDVj/wanTHncfjEWUZMSybxxwM8fWNLhl1uiz8b\nU1wK27efApwBujqvM4G/+iUiYwph1+GT3PbGMlbtPMgrd3SwxGFMMSvsHcWmqnq7iNwBoKonxK4N\nGJds2XOUQZMTOXoqm4ShcXRtZpP/jCluhU0eZ0SkIs5ugiLSFDjtt6iM+RXJPx5geEIy5cqEMPue\neFrVs8l/xrihsJetngEWAQ1EZDqwBHisMA1FJFREVonIR87rcBFZLCJbnOcaXueOE5F0EdkkItd7\n1ceISJpz7BXr9ZROn6/fzV1vrSS8cjnm3dvVEocxLioweTj/UX8P9AGGADOBWFX9upCf8SCw0ev1\nE8ASVY3Gk4SecD6nJdAfaAX0BMaLSKjTZgIwAoh2Hj0L+dkmSMxYuYNR76ZwaZ2qzB3VhQbhNmvc\nGDcVmDxUVYFPVHW/qn6sqh+p6r7CvLmI1Ad+B7zlVd0LSHDKCUBvr/pZqnpaVbcB6UCciNTFM6N9\nhRPLNK82Jshl5+Ty90828uT8NLo3j2DmyHhq2qxxY1xX2HseqSLSSVWTivj+L+G5vFXVqy5SVXc5\n5d1ApFOOAlZ4nZfh1J11yvnrf0FERgIjARo2bFjEUE2gyTp6mvtmpLJy2wEGxDfkmZta2eQ/YwJE\nYZNHZ+AuEdkOHMezHa2qattfayAiNwJ7VTVFRK481zmqqiKiRYz5V6nqJGASQGxsrM/e1xS/lO0H\nGD09lcMnz/Jiv3b06Vjf7ZCMMV4KmzyuL/iUX+gG3CwiN+DZfTBMRN4F9ohIXVXd5VyS2uucn8n/\nX+a9vlOX6ZTz15sgpKokLPuRv368kXrVKzLv3jha1gtzOyxjTD6FuWEeCnymqtvzP87XTlXHqWp9\nVW2E50b4l6o6AFgIDHZOGwwscMoLgf4iUl5EGuO5MZ7oXOI6IiLxzs37QV5tTBA5cSabsbNX86cP\nN/Cb5hF8eN/lljiMCVAF9jxUNccZOttQVXf44DOfA+aIyHBgO9DP+Zz1IjIH2ABkA2NUNcdpMxqY\nClQEPnUeJohs23ecUe+ksHnvUR65rjmjr2xGSIiNyDYmUIlnAFMBJ4l8C3QAEvHc8wBAVW/2X2gX\nJzY2VpOTk90OwxTCZ+t388icNZQJFV7u34HuzSPcDsmYUktEUlQ1tqDzCnvP448XGY8xv5Cdk8u/\nF29mwtdbaVu/GuPv6kj9GjZ/w5iSoLA7CX4jIpFAJ6cqUVX3nq+NMeez79hpHpi5imVb93NHXEOe\nuaklFcqGFtzQGBMQCrskez/gBeBrPMN0XxWRR1V1rh9jM0Fq1Y6DjJ6eyv7jZ/hn37b0i21QcCNj\nTEAp7GWrp4BOeb0NEYkAvgAseZhCU1Wmr9zBnz9cT2RYBebd25XWUbY+lTElUWGTR0i+y1T7Kfyi\nisZw8kwOT32QxrzUTK5sEcFLt7eneqVybodljLlAhU0ei0TkMzyLIgLcDnzin5BMsNm+/zj3vJPC\npj1HGdsjmgeujrZhuMaUcOdNHiLSDM9aVI+KSB/gcufQcmC6v4MzJd+SjXsYO3s1ISJMHtKJq1rU\ndjskY4wPFNTzeAkYB6Cq84B5ACLSxjl2k1+jMyVWTq7y0hebefXLdFrVC2PigBhbRt2YIFJQ8ohU\n1bT8laqaJiKN/BKRKfEOHj/DA7NW8d8t+7gtpj7P9m5tw3CNCTIFJY/q5zlW0ZeBmOCwNuMQ976b\nStbR0/yjTxv6d2qAbfxoTPApaMRUsoiMyF8pIncDKf4JyZRUsxJ30HfCcgDeG9WFO+IaWuIwJkgV\n1PMYC8wXkbv4OVnEAuWAW/wZmCk5Tp3N4ekF65iTnMEV0bV4uX8HwivbMFxjgtl5k4eq7gG6ishV\nQGun+mNV/dLvkZkSYeeBE9w7PYV1mUe4/+pmjO3RnFAbhmtM0Cvs2lZfAV/5ORZTwny1aS9jZ60m\nV5W3BsXSo2VkwY2MMUGhsJMEjfmf3FzllS+38PKSLbSIrMrEATE0qlXZ7bCMMcXIkocpkkMnzvDQ\n7NV8tSmLPh2i+NstbahYzobhGlPaWPIwhbYu8zD3Tk9h9+FTPNu7NQM622gqY0orvy1uKCIVRCRR\nRNaIyHoR+bNTHy4ii0Vki/Ncw6vNOBFJd7a9vd6rPkZE0pxjr4j9j1Xs5iTv5NYJy8jOUWbf04WB\n8ZdY4jCmFPPnyringatVtR3QHugpIvHAE8ASVY0GljivEZGWQH+gFdATGC8ieddDJgAjgGjn0dOP\ncRsvp7NzGDcvjcfmriXmkhp8eP/ldGxYo+CGxpig5rfkoR7HnJdlnYcCvYAEpz4B6O2UewGzVPW0\nqm4D0oGPtJVpAAARiklEQVQ4EakLhKnqCvVsuD7Nq43xo6yjp+k3cTkzE3dw75VNmTYsjlpVyrsd\nljEmAPj1nofTc0gBmgGvq+pKEYlU1V3OKbuBvPGdUcAKr+YZTt1Zp5y/3vjR7sOnuPOtFew6dIqJ\nA2Lo2bqO2yEZYwKIX5OHquYA7UWkOp6Z6q3zHVcRUV99noiMBEYCNGzY0FdvW+pkHjrJnW+uYN/R\n0yQMiyOucbjbIRljAkyx7AaoqofwTDLsCexxLkXhPOftUJgJeG9mXd+py3TK+evP9TmTVDVWVWMj\nIiJ8+yVKiR37T9Bv4nIOHD/DO3d3tsRhjDknf462inB6HIhIReBa4HtgITDYOW0wsMApLwT6i0h5\nEWmM58Z4onOJ64iIxDujrAZ5tTE+9EPWMW6ftJzjZ7KZcXe83Rg3xvwqf162qgskOPc9QoA5qvqR\niCwH5ojIcGA70A9AVdeLyBxgA5ANjHEuewGMBqbiWQb+U+dhfGjLnqPc+dZKcnOVmSPiuaxumNsh\nGWMCmHgGMAWf2NhYTU5OdjuMEmHDT0cY8PZKQkOEGXd3JjqyqtshGWNcIiIpqhpb0Hk2w7yUW5tx\niIFvJ1KpXCgzRsTT2NaoMsYUgiWPUix1x0EGv51ItUplmTki3vYYN8YUWrGMtjKBJ3HbAQa+tZKa\nVcox+54uljiMMUViPY9SaGn6Pu5OSKZe9QrMGBFPZFgFt0MyxpQw1vMoZb7atJehU5NoGF6JWSO7\nWOIwxlwQ63mUIp+v3819M1YRHVmFd4Z3tn3GjTEXzJJHKfHx2l08OGsVraKqMW1oHNUqlXU7JGNM\nCWaXrUqBD1Zlcv/MVNo3qM67wy1xGGMunvU8gtycpJ08Pm8t8Y1r8tbgWCqXt79yY8zFs/9Jgti7\nK7bzhw/WcUV0LSYNjLW9xo0xPmPJI0i9/d02nv1oA9dcWpvX7+pIhbKWOIwxvmPJIwhN+Horzy/6\nnp6t6vDKHR0oV8ZubRljfMuSRxBRVV5Zks5/vtjMze3q8WK/dpQJtcRhjPE9Sx5BQlX51+ebeP2r\nrdzasT7/7NuW0BBxOyxjTJCy5BEEVJW/fbyRt77bxh1xDfhb7zaEWOIwxviRJY8SLjdXeWbhet5Z\nsZ0hXRvxzE0t8Wy4aIwx/mPJowTLzVWenJ/GrKSdjOzehHG/vdQShzGmWFjyKKGyc3J5bO5a5q3K\n5P6rm/H7a5tb4jDGFBu/DcURkQYi8pWIbBCR9SLyoFMfLiKLRWSL81zDq804EUkXkU0icr1XfYyI\npDnHXpFS/r/k2Zxcxs5ezbxVmTx8bXMevq6FJQ5jTLHy5zjObOBhVW0JxANjRKQl8ASwRFWjgSXO\na5xj/YFWQE9gvIjkzWybAIwAop1HTz/GHdBOZ+cwZnoqH63dxbjfXsr910S7HZIxphTyW/JQ1V2q\nmuqUjwIbgSigF5DgnJYA9HbKvYBZqnpaVbcB6UCciNQFwlR1haoqMM2rTaly6mwOo95J4fMNe/jT\nTS255zdN3Q7JGFNKFcsMMhFpBHQAVgKRqrrLObQbiHTKUcBOr2YZTl2UU85ff67PGSkiySKSnJWV\n5bP4A8HJMzncnZDM15uz+PstbRjSrbHbIRljSjG/Jw8RqQK8D4xV1SPex5yehPrqs1R1kqrGqmps\nRESEr97WdcdPZzNkSiLLtu7jhb7tuLNzQ7dDMsaUcn5NHiJSFk/imK6q85zqPc6lKJznvU59JtDA\nq3l9py7TKeevLxWOnDrLoMmJJG8/yH9ub0/fmPoFNzLGGD/z52grAd4GNqrqi16HFgKDnfJgYIFX\nfX8RKS8ijfHcGE90LnEdEZF45z0HebUJaodOnGHAWytZs/MQr93RgV7tz3m1zhhjip0/53l0AwYC\naSKy2ql7EngOmCMiw4HtQD8AVV0vInOADXhGao1R1Ryn3WhgKlAR+NR5BLX9x04z8O1E0vceY+KA\nGHq0jCy4kTHGFBPx3HYIPrGxsZqcnOx2GBdk1+GTDJ6cyPb9J5g0KJbfNA+e+zfGmMAmIimqGlvQ\neTbDPMBs2n2UIVMSOXoqmylDO9G1aS23QzLGmF+w5BFAlm/dz8h3kqlYNpQ593ShZb0wt0Myxphz\nsuQRIBau+YlH5qyhYc1KJAyLI6p6RbdDMsaYX2XJw2Wqylv/3cbfPtlIXKNw3hwUS7VKZd0Oyxhj\nzsuSh4tyc5VnP97AlKU/ckObOrzYrz0VyoYW3NAYY1xmycMlp87m8Ps5q/kkbTdDuzXij79rabv/\nGWNKDEseLjh84iwjpiWT+OMB/vC7y7j7iiZuh2SMMUViyaOYZR7yzOHYsf8Er9zRgZvb1XM7JGOM\nKTJLHsVow09HGDo1kRNnckgYFkeXpjXdDskYYy6IJY9isjR9H/e8k0KV8mV4b1QXLq1jcziMMSWX\nJY9i8MGqTB6du4YmtaowdVgn6lazORzGmJLNkocfqSoTv/mB5xd9T3yTcN4YGEu1ijaHwxhT8lny\n8JOcXOXPH65n2vLt3Ni2Lv/u147yZWwOhzEmOFjy8INTZ3N4cNYqPlu/hxFXNGbcby+zORzGmKBi\nycPHDh4/w93TkkndcZCnb2zJsMttr3FjTPCx5OFDOw+cYPCURDIOnuT1OztyQ5u6bodkjDF+YcnD\nR9ZlHmbo1CROn83h3eGdiWsc7nZIxhjjN/7cw3yyiOwVkXVedeEislhEtjjPNbyOjRORdBHZJCLX\ne9XHiEiac+wVZx/zgPLt5ixuf2M5ZUOE9+/taonDGBP0/JY88Ow53jNf3RPAElWNBpY4rxGRlkB/\noJXTZryI5A1NmgCMAKKdR/73dNXclAyGTU2iQXgl5o/pRnRkVbdDMsYYv/Nb8lDVb4ED+ap7AQlO\nOQHo7VU/S1VPq+o2IB2IE5G6QJiqrlDPZuvTvNq4SlV57cstPPLeGjo3CWfOqC5EhlVwOyxjjCkW\nxX3PI1JVdznl3UCkU44CVnidl+HUnXXK+etdlZ2Ty9ML1zNj5Q56t6/HP/u2o1wZf3bijDEmsLh2\nw1xVVUTUl+8pIiOBkQANGzb05Vv/z8kzOdw/M5UvNu5l1G+a8tj1LWwOhzGm1CnuX5f3OJeicJ73\nOvWZQAOv8+o7dZlOOX/9OanqJFWNVdXYiIgInwYOsP/Yae54cwVLvt/LX3q14onfXmqJwxhTKhV3\n8lgIDHbKg4EFXvX9RaS8iDTGc2M80bnEdURE4p1RVoO82hSr7fuP03ficjbuOsKEu2IY1KWRG2EY\nY0xA8NtlKxGZCVwJ1BKRDOAZ4DlgjogMB7YD/QBUdb2IzAE2ANnAGFXNcd5qNJ6RWxWBT51HsVqb\ncYhhU5PIzlWm392Z2EY2FNcYU7qJZxBT8ImNjdXk5OSLfp+vNu1lzPRUwiuXY+rQOJrVruKD6Iwx\nJjCJSIqqxhZ0ns0wP4/ZSTt4cv46Lq1TlSlDO1G7qg3FNcYYsORxTqrKy0u28NIXW7giuhYTBsRQ\npbz9URljTB77HzGf7Jxc/vDBOmYl7aRPxyiev7UtZUNtDocxxniz5OHlTHYu97yTzFebsrjvqmY8\nfF1zAnApLWOMcZ0lDy9lQ4UmEVW45rJIBsRf4nY4xhgTsCx5eBER/nhjS7fDMMaYgGcX840xxhSZ\nJQ9jjDFFZsnDGGNMkVnyMMYYU2SWPIwxxhSZJQ9jjDFFZsnDGGNMkVnyMMYYU2RBuyS7iGTh2TOk\nJKkF7HM7iGJm37l0sO9cclyiqgVuxRq0yaMkEpHkwqyjH0zsO5cO9p2Dj122MsYYU2SWPIwxxhSZ\nJY/AMsntAFxg37l0sO8cZOyehzHGmCKznocxxpgis+QRYETkBRH5XkTWish8Eanudkz+JiK3ich6\nEckVkaAdnQIgIj1FZJOIpIvIE27H428iMllE9orIOrdjKQ4i0kBEvhKRDc6/6QfdjslfLHkEnsVA\na1VtC2wGxrkcT3FYB/QBvnU7EH8SkVDgdeC3QEvgDhEJ9t3HpgI93Q6iGGUDD6tqSyAeGBOsf8eW\nPAKMqn6uqtnOyxVAfTfjKQ6qulFVN7kdRzGIA9JV9QdVPQPMAnq5HJNfqeq3wAG34yguqrpLVVOd\n8lFgIxDlblT+YckjsA0DPnU7COMzUcBOr9cZBOl/LAZEpBHQAVjpbiT+YXuYu0BEvgDqnOPQU6q6\nwDnnKTxd4OnFGZu/FOY7GxMsRKQK8D4wVlWPuB2PP1jycIGq9jjfcREZAtwIXKNBMpa6oO9cSmQC\nDbxe13fqTBARkbJ4Esd0VZ3ndjz+YpetAoyI9AQeA25W1RNux2N8KgmIFpHGIlIO6A8sdDkm40Mi\nIsDbwEZVfdHtePzJkkfgeQ2oCiwWkdUiMtHtgPxNRG4RkQygC/CxiHzmdkz+4AyEuA/4DM+N1Dmq\nut7dqPxLRGYCy4EWIpIhIsPdjsnPugEDgaudn9/VInKD20H5g80wN8YYU2TW8zDGGFNkljyMMcYU\nmSUPY4wxRWbJwxhjTJFZ8jDGGFNkljxMiSAiNb2GPu4WkUyv18v88HlXishHvn7fX/ksEZEvRSSs\nOD6vIAV9dxGJEJFFxRmTCTw2w9yUCKq6H2gPICJ/Ao6p6r9cDcp3bgDWlJRlLFQ1S0R2iUg3VV3q\ndjzGHdbzMCWeiBxznq8UkW9EZIGI/CAiz4nIXSKSKCJpItLUOS9CRN4XkSTn0a0In/W002adiExy\nZhQjIp2cPVhWO3uyrHPqWzmfv9o5Hn2Ot70LyFvTrLKIfCwia5zPuN2pj3G+W4qIfCYidZ36ZiLy\nhXN+qog0dXoyLzjt07ze40oR+VpE5opnz5jpXvH3dOpS8SyPn/d9f+PVw1slIlWdQx84cZvSSlXt\nYY8S9QD+BDzi9fqY83wlcAioC5THs27Un51jDwIvOeUZwOVOuSGepSTyf8aVwEfnqA/3Kr8D3OSU\n1wFdnPJzwDqn/Cpwl1MuB1Q8x3tuB6o65VuBN72OVQPKAsuACKfudmCyU14J3OKUKwCVnPdYDIQC\nkcAO58/kSuAwnjW1QvDM/L7cabcTiAYEmJP33YEPgW5OuQpQxilHAWlu/1uwh3sP63mYYJOknj0V\nTgNbgc+d+jSgkVPuAbwmIqvxrC0V5qyCWhhXichKEUkDrgZaiWe3x6qqutw5Z4bX+cuBJ0XkceAS\nVT15jvcMV8/eD3lxXisiz4vIFap6GGgBtMZZsgb4A1Df6QVEqep8AFU9pZ710C4HZqpqjqruAb4B\nOjnvn6iqGaqaC6x2/kwuBbap6hZVVeBdr9iWAi+KyANAdf15r5m9QL1C/pmZIGTJwwSb017lXK/X\nufx8jy8EiFfV9s4jSlWPFfTGIlIBGA/0VdU2wJt4fmv/Vao6A7gZOAl8IiJXn+O0bBEJcc7fDHTE\nk0T+KiJP4+kNrPeKt42qXldQvL/C+88nhwLue6rqc8DdQEVgqYhc6hyq4HwnU0pZ8jCl0efA/Xkv\nRKR9IdvlJYp9Tk+lL4CqHgKOikhn53h/r/duAvygqq/gua/R9hzvuwlo4pxfDzihqu8CL+BJJJuA\nCBHp4pxTVkRaOb2VDBHp7dSXF5FKwH+B20UkVEQigO5A4nm+1/dAo7x7QsAdXvE3VdU0VX0ez6rA\necmjOZ5LdaaUsuRhSqMHgFjnBvYGYNSvnHeNeFaCzRDPqr+X4eltrMOzMm6S17nDgTedy0qV8dxb\nAOgHrHPqWwPTzvE5H+O5HwHQBkh0zn8G+Kt6tqztCzwvImvwXG7q6pw/EHhARNbiuS9SB5gPrAXW\nAF8Cj6nq7l/7w1DVU8BIPCsap+K5JJVnrHPjfS1wlp93trzKiduUUraqrjE+ICJV8i59icgTQF1V\nfbCQbesC01T1Wn/G6Esi8i3QS1UPuh2LcYfN8zDGN34nIuPw/ExtB4YUtqGq7hKRN0UkTEvAXA/n\nUtiLljhKN+t5GGOMKTK752GMMabILHkYY4wpMksexhhjisyShzHGmCKz5GGMMabILHkYY4wpsv8D\nOmuZIAzOx4IAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Yet another Example with longer Lingcurve\n", + "\n", + "I will be using same lightcurves as in the example above but with much longer duration and shorter lags.
\n", + "Both Lightcurves are chosen to be more or less same with a certain phase shift to demonstrate Correlation in a better way.\n", + "\n", + "Again Generating two signals this time without poission noise so that time lag can be demonstrated. For noisy lightcurves, accurate calculation requires interpolation." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "exposure = 50. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 * dt # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*freq*times + np.pi/2) + 900 * dt # counts/s" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Converting noisy signals into Lightcurves." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, signal_1)\n", + "lc2 = Lightcurve(times, signal_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAGICAYAAADLSrFdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXnYZUV1Lv7WGb7v6wEQFHAWicarxAn0EpOoaG5EvYom\ncYjBkUSj16tx+DlFQUUIV41er2MMGpwRY4JCjAMqOCGoiFFRgiDIKFNDQ3d/wzl71++PPZzadapq\nrdq79jn7dNd6nn56+FbvU/WetVatWu+q2kJKiShRokSJEiVKlChRbNKb9wCiRIkSJUqUKFGidFti\nwhglSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4JSaM\nUaJEiRIlSpQoUZwSE8YoUaJEiRIlSpQoTokJY5QoUaJEiRIlShSnxIQxSpQoUaJEiRIlilNiwhgl\nSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4ZTDvASy6\n3OlOd5IHHXTQvIcRJUqUKFGiRIlCygUXXHCTlHJ/3/8XE8aGctBBB+FHP/rRvIcRJUqUKFGiRIlC\nihDiN3X+X6Sko0SJEiVKlChRojglJoxRokSJEiVKlChRnBITxihRokSJEiVKlChOiQljlChRokSJ\nEiVKFKfEhDFKlChRokSJEiWKU2LCGCVKlChRokSJEsUpMWGMEiVKlChRokSJ4pSFSBiFEEcKIb4p\nhPitEGJdCHG1EOJzQogHaHr7CiE+IoS4SQixUwjxdSHEAw3PWxFCvFMIcZ0QYlUI8X0hxKNmN6Mo\nUaJEiRIlSpTFkYVIGAHsB+ACAP8bwOMAvAHAIQDOE0LcCwCEEALAmQAeD+BlAP4cwBDA2UKIu2vP\n+yiAFwI4DsCTAFwH4KtCiIe0P5UoUaJEiRIlSpTFkoV404uU8lQAp6r/JoT4AYCLATwNwLsAHAXg\nDwE8Vkp5dq7zfQCXA3gtgJfn//ZgAH8J4Bgp5Sn5v30LwEUAjs+fEyVKlChRokSJEiWXRakwmuTm\n/Pdx/vtRAK4tkkUAkFJuR1Z1fIry/44CMAJwmqI3BvBZAEcKIZbbHHSUKFGiRIkSJcqiyUIljEKI\nvhBiSQhxXwAfBvBbTCqPhwD4ueG/XQTgnkKIrYre5VLKXQa9JQD3CT/yKFGiRIkSJUqUxZWFShgB\nnA9gHcAlAB6EjH6+If/ZfgBuMfyfbfnv+zL19tN/IIQ4x/ar5jxqybvfDeyzD3DBBW69008HtmzJ\nfnfJBRcAd7gD8K53ufWuvRa4612B//W/3Hrr68AhhwCPe5xbDwCe+ETg/vcHVlfden/7t8Cd7wxc\ndZVb733vA/beG/jBD9x6Z56ZYfP5z7v1fvITYN99gbe/3a13/fXA3e8OvPCFbr3RCHjQg4DHPAaQ\n0q171FHA/e4H7Nzp1nv1q4EDDwSuuMKt96EPAXvtBZx7rlvvy18Gtm4FTj3VrfeznwH77QeceKJb\n76abgHveE3j+89164zFw6KHAIx9JY/Pnfw7c977Abbe59V7/emD//YHLLnPrnXxyNudvf9utd9ZZ\nmd4nP+nW++UvgTveEXjLW9x627YBBx0EPPvZbr0kAR7+cOARjwDS1K37F38BHHwwcOutbr1jjwXu\ndCfgkkvceqecks357LPdet/8ZqZ3yiluvUsuyb6TN77Rrbd9ezaPZz7TrZemGS4Pf3iGk0ue/ewM\n75tvduu99a2Zbf/iF269T30qiyNnneXW+/a3M987+WS33mWXAQccALzudW69HTuA+9wn8wOXSJn5\n06GHZv7lkhe8IPPTG2906514YhYTf/Yzt96pp2bYfPnLbr1zz81i9gc/6Na74ooszr3qVW69nTuB\n3/3dLH66RMosDj/4wcDGhlv3RS/K4vtvf+vWe8c7srX0Jz9x633+8xk2Z57p1uusSCkX5heA+wM4\nHMCzkB2CuRrAQfnPLgHwWcP/+WsAEsA98r9/DcB5Br3/kes90vCzc2y/DjvsMDkryUxdymOOces9\n9KGZ3u/9nlvvJS+ZPNMln/gET+9nP5vobdtm11tbm+idf777mYXee9/L0zv6aLfe4Ydneve9r1vv\nla/kzflzn+PpXXzxRO/66+16GxsTve98x/3MQu+d73TrLS1lek9/ulvvUY/K9O5xD7fe617Hm/MZ\nZ0z00tSud9llE71rrrHrJclE7+tfd392oXfCCW69rVszvaOOcus97nGZ3oEHuvXe/GYeNl/5ykQv\nSex6v/nNRO+KK+x6aTrR+4//cH92oXfssW69O94x0zvySLfek5+c6d3hDm69k07iYfPNb070RiO7\n3rXXTvR+9Sv3Mwu900/n6b3udW69u90t0zviCLfe056W6W3a5NZ717t42Hz3uxO99XW73o03TvR+\n+Uv3Mwu9U0/l6b3iFW693/mdTO8Rj3DrHX10ptfrufXe/34eNuefP9Hbtcuud+utE72f/tT9zELv\nYx/j6b34xW69+98/0zv0ULde2wLgR7JGDrZQFUYp5S+llOfL7BDMHwPYCuD1+Y9vwaSKqMp+ys85\netv0H0gpj7D9qjuXJnLlle6f/+d/Zr//3ETQK0JV7QpRqzmunby6C7vhBrve9dfz9KRSbaIqSoVc\nfrn758Xu+Fe/cutdcw3v89Rqjmu3ysVG3eVTO/5Ctm93/7wY16WXuvWKqgplF9ddxxvXNsWTdukN\nIIpwsVGrQ9umvJQeg0l27Mh+p6ptF1+c/a7arkmonxdy002TP7tsm4uNagO3mPgTg1D2VeD9y1+6\n9QrsqMom155VPdczudgU3zFA+0oh1PdYxIeLLnLrFT5HMSlU5bMQdZ6u/8PFZm1t8ufbb+eN4dpr\n3T8vqvpUJbKI1VTlXLUBdU3QRf3OXLbGxWY0mvxZtSGXXH21++eFL1GVyK7KQiWMqkgpbwVwKSY9\nhxch60/U5QEArpRS7lD07i2E2GzQ28if2WlZJo7lFA4ohFtPDRYuUZ3KFXBVR+QGepceNxlThcJm\nfZ33HC42apAKMWeunhrAKMqpkJUV98+52HD1Qs+Zq8f97lSh7Ib7TFXPtbjNCxt1ERwO7XqqhMJG\nTZpcScK8sFHHFAobrq+o7Sfqd6RL6Dmr8csV21VbXlqy66kSym7Ucbn+T2hs1KSTm0xTMbYQCpuu\nysImjEKIAwH8NwBFl9IZAO4mhHi0orM3gCfnPyvkTGT3Mz5d0RsAeCaAr0kpmS4+W1Ed1rUQ2f6P\nSXrKt+/SVSsgruoFV49bDalTNfGZM1dcCRl3jG1iSFV2CgmFjVpldi2Iob/nOlhzK0qhsFEXNFdV\ndV4+pS583Kp9KGzUTY7rs+flU2rSRvUPFxIKG/V7cflzm77i0lP9nJsEh8Km6+uPuj5QvbSFcNfw\nrslC3MMohDgdwI8B/BTAbQB+F8ArkV2pUxzZOAPA9wF8SgjxGmTU8xsACADvKJ4lpbxQCHEagPcI\nIYbI7ml8CYB7Azh6JhOqIaqTUvQGV9Sd7NoasGmTWU/9PFcgbVPPRQmoTuranQPAYEDrANWFf3U1\na1xvMsZ5YagGJiqYDZjRQP9s2255XvbAfZ4qFC1WB5sdO7IGd0qviz6lShvY7NyZHRKg9LroU6q0\nhc3++/P0OM+bJYaqUNj0+5M/S2lnxLrgK7P2qa7KolQYzwPwVAAfB/AlAK8C8C0AD5FSXgIAUsoU\n2VtbzgLwQQCnA0gAPEZKqXdlvQDAKQBOyJ93DwCPl1L+uP2p1BPVKEMljHpS1PSzQ+vVGV8dOpJ6\nZugxzlJPpfK5lQFKFskeXHpqAh0qgHfdHrjj86mAcNmP3cWnfEStPrmYiq77ShvYqPHIFbfn9T2H\nxnp3kIWoMEop3w6AuOAEkFJuA3BM/sult4os6SQO6ndH2jBKbqLF/ezQeqHH5yPzGuO8MASmF37b\njr/rcwn9ucA07aRWR7owxtAYqlV4qn9Y35TY+ri6/j1z9Xw2GlymYnfxFZ/WKX2MNoZrXt/zPAsW\nXZVFqTDu8cLd7ehO6nLaru/kQ48PqAZ4F0Xb9Z18G7tfbjWy63Npo2rS5iKzyBj66Hb9e+bqcStj\nbXx21zFUNxpU60/Xv+fQWKtrT6Sko7QqdRwWcFcHuu6IofXSlN8L2vW5tJEUdX2MEZvu6c3zs7uu\nN8/P7opeiBaF3UVPTSzHY/4BmS5JTBgXRFRj41IMlG4dQ+d+dgi90OPTq2ZdHOO8MNQD2CzH2HWs\npQzfb7VoGHKZikX+nuuMb2PDvfB3YYzzwlBKd5WxC2OcF9bUM7sqMWFcEKmz26F0u04JtDm+UM9c\nNAxtC38b2CySPayv22kiPbDvTvbAeV6a2hf+8bja39n17zn0+Ex/L0TKboxxXhhSul0Y47ywpnS7\nKjFhXBCZZ1K0SHquhX9Px8a18O/p2AD2hT9iY9eN2Nh1dUaj63OZJTZJUo1FXZ/LrJPprkpMGBdE\n1MVMdzabHhDGYbt+So274+diI2U35tIGNjbdNqpoi6Tn0o3YRGxsei7diM2eh836up3F8ZlzVyUm\njAsiunFxK0XcxJLba9J1PZcuV29jo+r0XZ/zLLFJkupBqq7PeZbY6BRk1+c8S2zqfnbX9Vy6uys2\nScJvbdnTsHHp+sy5qxITxgWR0EYZHTZiU0cvbjTseqNRtR2i63OOGw27XpLwW1v2tI2GSzfG2Jgw\nRumA6P0wtutyQuvpul3Xc+lGbCI2Nj2X7u6KTZraT/iGnrP+713HBrAv6KGx0ZPTRcBmVr6i31Cw\nJ2DTZYkJ44KI/lop16lFjp7+767djvrMWepxL4ENjQ1XT//ZPDG0UUTc77kNbOZlN6qelPakaJ52\n0wWfcunu6T7l0l0En2oTQ5duaAz1Km8XfaqN77mrEhPGBRHduGy7E64e13j1u7Rcu6LQenWToqbY\ncPVMY7QJN4DXwTBEUsQN4D7YtGk3PknRrOzBZxPWBZ/S/5/r37vuU6ExdOnOC0Ndd15xyfXZbWPY\nRZ9qI3Z2VWLCuCBS1yibGq+eiIQOPj5BSg8yNr3Q2MwrmQ5RKepKUjSvZNr1zHn5lK47T59q+j2H\n1tN/Ni8MXbrzwlD/2TyT6Vn5yp7oU12WmDAuiMxr4e9KRcn0d9u/z6oa0nYyHaIaMq9AL2U1wY8V\nRvvPok/ZdeeZFM0qdrYdY+eZFM0rmQ6N4XjcvO3H53vuqsSEcUGk7Z6iptSBrhtaD2g+xnlhqOuG\noJLa/p6bYu2TTNeZcwjadV72oCfT0afsuqF9ZZ4+FRqb0Bi6ToZ3Zf3ZE+yhyxITxgWRruzwYjXE\nf3z6z/aECmNXqiauZ87LHvRkOvrURPQ2j9C+4joZvqdXGF26XVl/9oSKc5clJowLIl1Z+EMnRW0s\n/KGxmVcyvScGep8FITRFtLv4lOsQVNd9qm4y3YavzOp75ur5VKa7khTNK5luY/2Zpd93VWLCuCAS\nuoTPNd62adcQ1ZC2adcQASD0dTltf8+zwlrX9aGauSfDZ2UPXWllcOnurj4VApuuY9hGMj0vvw8d\nl3x6ptu2mxB+31WJCeOCSOgdXtvXGnD1XM3EbV8JMysM9Z/57GqbngzvOob6z+ZZKeqanv6zENh0\n3R5m4VNdi51t2E2dSmSIz54Xhm0fQHTptvH9dVViwrgg0hVKgLvDayMp6hp9xh2frttGj1no77nr\nlDSwuPbQpWR6UTHUdee58HcNQ/1newIlvTv5VJclJowLIl2hBELQJV2nfkKPr+6p2FmOcREp6a7Z\nQ6SkIyXd5uf62A03KdpdKOm6PuVzMjxS0jFhXBjpyg4v9O7X55ld28lzx1e398jns7u2k28jmd5d\n7GF3qoZ0qcI4r0NQXcNQ/9k8T4Z3LS756MYK47TEhHFBJLSD1e0hCX2azaU7rzG2Pb42kqJZjbHt\n8bWRTM/KHkKPz9TI3/T1mLuLT+k/a+Nk+KJiCCye389ro+HSnZffd1liwrggUhjb8nL174umtwhj\njNjMXm9pafJ3KilSdWc5xjpzafK8YlHt97NfAJ0Udf17DqWnJtNdt4cYR7qjtyhj7KrEhHFBpAiO\nmzdnv1M7N0qvMNZQz+PqLcIY2xrfpk2T/0edDF/079lXb2lpkhTZDkEV/75ly3zGyNULPb7BABgO\nwzyz6/bAHV+ROPd6kwW4a2OcF4ZqMl3EnK6NcRHWn3n5fZclJowLIrqDUbuYeekVAcrVTDzvMc5L\nbzjMFn+APhne9bm0gU2RFHFtrKtzCT0+H2y6/j3P0266PpdQemplmlt97epcQuupyXRX/b7LEhPG\nBRHdKKmEg9LTd6BNn6cGcC59Nq8xzgtDn4Sx699zG3Yza2wWRS8kNl23h+hT4cbXZZ+aF4ZqMt1V\nbLosMWFcECmMa2Wl+ve6eoXx+j6PersGFaTU5vSCSpr1GOeFISeAz3uM89KbBzZd0WvqUz6fvTv7\nVFfHOC8Mu+xTbcWlYk1JEnPbzyLEmy5LTBgXRHQHo6p3belRAWAwcAdwdYdXUEmzHuO8MKSwUemS\neX/PXcNG1VXbHmY5Rq6e7/ia+lSdMe6OPtXVMc4Lwy7Yzaz1lpayvlbA3BLVJjah4lKXJSaMCyKL\nQglQO7c6u9+uUz+hsDEl0139nmdtN6ZkuqtziZT07Ma3J1LSy8uAEJlPmJIinyraonzP81h/IiU9\nLTFhXBCZ96IVigZp02G7nkio/Z1dDWbzwnAeyfSiYOjT5tF1H/BJioAsIXJViiifanOMXbWHOnGk\n63azJ60/XZaYMC6IhO6T4Bq57+cOBu4AztVrc4zzwpCiz3ywmff3PC+74SQI854Lt7qiJkWufisu\nNj6N/F21B1Mi6GptoXzKp2d6UXyKsgeVdu2qryzC+jMvbLosMWFcEJl3bwi3P4NqQufqtTnGeWE4\nT2y6gKEpKVokbNqwB1dStKdjE2LOpsr0ovtUKGxM9zV21R72pPWnyxITxgWRPbGHpK0xdrXfqg26\nZN4YcpvQd4feo3n5yu7oU/PAZlF8itu+0eU2j66vP/Ns8+iyxIRxQWSRKAEu7bq70GdLS7wmdB+6\nZN7XqHTNHtrAZt5688Bm3vZQ52R4E2pxT/Sp0BjWGeOirz8+yXRobLosMWFcEJl3NaTo/7ElRdwm\ndK5enR3ePA9shDjMwn1enTHOs0E/hD10AZt52k3Exq4Xfaq5Xter9nV6X2ftU/HQS5TOiK9Rhtar\n0xsSItD7VE18e0jawCbU4jbry8/bDODzohbn5Std9ak6Y/TtRZun3TTBsM4YfX0qFIZ7ok91uc0j\ndOzssixEwiiEeJoQ4gtCiKuEEKtCiP8SQpwkhNhL09tXCPERIcRNQoidQoivCyEeaHjeihDinUKI\n6/LnfV8I8ajZzchfCuOigk9benX6ZlxN6KH0THOhKIE2sZnFnFVahWrk75LdhJoz1civV6ZnPWfu\n587ap1Rd3zkvgk81wbDOGOeFYRdi7Dx9ivsGl1ljEyredFkWImEE8P8BSAC8AcATAHwIwEsAnCWE\n6AGAEEIAOBPA4wG8DMCfAxgCOFsIcXfteR8F8EIAxwF4EoDrAHxVCPGQ9qdST+a9w/O5yiFE5bBO\nhXGe2HDnMksM68xlntiE2PEX/+bTyD+vasisfaXNyvSi+1SdMbap57pRoA27CU27tlFx9n2Dy6xj\n7J5QYRzMewBMebKU8kbl7+cIIbYB+DiAIwB8E8BRAP4QwGOllGcDgBDi+wAuB/BaAC/P/+3BAP4S\nwDFSylPyf/sWgIsAHJ8/p3My7x6SWZf626RL9kRsFv2S4S5gs7vYjVqZ3h2wKRKIJti0eSrW5/Bc\nrze5rLxI4nznsjv7ysZGpttFbGIPY0dESxYL+WH++93y348CcG2RLOb/bzuyquNTlP93FIARgNMU\nvTGAzwI4UgixHHDowaQLOzxur9C8G/nn0W81ywb9OtjMs4dxlvbQJjZt2k1XfSp0D2Mbh+dCxqU2\nKpE+dwjOy1dCJ9Pz7Gmd9/qzO1cYFyJhtMij899/mf9+CICfG/QuAnBPIcRWRe9yKeUug94SgPuE\nHmgIGY8yjqIIuFSfRGg96i0SJj3qIt0Qeqa52BxxFtjMYs5NsJmn3exp2FBvcNkTfarNucwCQ1XX\n1x4oDLvqK4Verzc/n+oqNqY2j6ZzNgaNjshCJoxCiLsho4+/LqX8Uf7P+wG4xaC+Lf99X6befobP\nO8f2q/YkuHLbbcBf/RVelH4IALE7+eQn8fhbT6X1vvQlPPGy9wGQbr3zzsMR3z8JS1h397lccgkO\nPeMt2Bfb3Dv0G27AQR89FvfCFW699XVsffdb8RBc6NaTEnj3u3HE6Cx6zp/6FB6/7dO03le+gsdf\n8l6Q2Pzwh3j09/4eK1h1j/HSS/Hg09+M/XCzG8ObbsI9Tj4W98av3c/b2MDmfzgeh+ICGpv/9//w\n2I2v0HP+zGfwhBs/Qet97Ws48uL3QCB1N6FfcAEe+e0TsQm73GP89a/xwH99M+6EG91627bhbv94\nLH4Hl7r1RiMsv/NteDh+QFeK3vc+/PHal+g5n3YannD9x2i9b3wDR170bvSQVL7nqUXhwgvxR2e/\nDZux0z3GK67AIZ87Dgfgerferbfizh86DvfFJW698RjDt5+Aw3Eejc0HP4g/WT2DnvO//AueeN1H\nab2zz8bjfvoPJTbWz/7pT/EH33gbtmCHW+/KK3H/U4/DnXGd26duuw0HvP843A8Xu5+XJOi//e/x\nB/gejc2HP4w/2fkFes7/9m94wtUn03rf+hb+x0/eiT7G7s/++c/x+187HnvhNrfeNdfgfp8+DnfB\ntW69HTtwx/e+GffHL9wYpinwf/4PHolv09icfDIed/u/0nP+4hfxxCv/kdb77nfxxxe8HQOM3GP8\nxS/w37/8VuyN7e4xXnst7vOJY3E3XO3W27UL+77nzTgEP3frpSnk29+BR+OcSjJtnMspp+DI7Z+j\n5/ze9wIvepG5/N4BWbiEMa8UfhHAGMAL5jyc9uUb3wD++Z/xJpwAIOtzAczOgOc+F//3t3+JvbHd\nvqtNU+AZz8CLf/FyPBQXune/f/M3eNK5f4dn4VT3Tv7v/g4P/4+34tV4l1vvPe/BwZ85Ae/Aa916\nn/kM9n3PW3AKXuDWO/dc4NWvxueTpwKQdmxuuAF4znPwjmuejf1ws33OUgLPeAZe+PO/xeE4v6I3\nlRS95CV4wnffiKPxafcYjz0Wh/378Xgd3u7We+97cdAnT8C78Gq33mmnYe93vRkfx/Pcej/6EfCK\nV+BzG0+BQGqf87ZtwNFH44SrnocDcL0dQymBZz0LL/jPV+KP8F30+46k6KUvxeO+/SY8Dx93j/Et\nb8FDzzgef4e/d+t94AO4x8dPwHvwCrfev/4rtr79OHwSz3Hr/eQnwMtfjlNXn4IeEjs227cDf/EX\neMtvXoC74hq3rxx9NJ594avxGJzt/uyXvxyPPec4/BU+6tY7/ng86Atvw5twglvvH/8Rd//nt+F9\neJlb74tfxOaTjsVn8JduvYsuAl76Unzq9qdggJF9zjt2AM98Jv7u13+Ne+I3bmye+1w868evwZH4\nqvuzX/EKHPHN4/A3+LBb78QTcci/vQ1vxlvdev/0T7jLR96GD+Clbr0vfQnLx78Rp+JZbr1LLgFe\n/GJ8bPufYgnr9jmvrQFPfzpee+mLcDAus/sUADz/+XjGD1+L/4kvuT/7Va/CI7/+ZrwEH3LrnXQS\n7v/5t+FtONat95GP4MAPH49/xIvdel/5CobHvQGn4ZluvcsuA170IvzTtqdhBat2bEYj4GlPwysv\neQnuh4vddnPMMfiz81+Pp+IL7s9+zWvwB197C16G97n13vEO3O9zJ+BEvNGtd8op2P9Dx+NkvNCt\n941voPeG1+HzeJpb78orgWOOwftvfCa2YId9zuMx8PrXAx/5CPCd7xgAmb8sVMIohNiErCfxYABH\nSimvVn58CyZVRFX2U37O0dum/0BKeYTtV515eMlTnwq5soK74jrs07vdvsu6+OLyjwfj13ajvOYa\nYFfGxv8OLnMnlj/9KQDgAfiFuzT/r9mu8sk4s5JImIIUADwD/+LW+9a3AAAPwX+69fI5b8Eu7KMk\nyVPj+6//Kv/oxOb664Hbby/1BoPsDS6AtuGTErjgAgDAg/BT9xg/+1kAwJ/idHdQ+fjHc70vuJ93\n7rkAgN/DRW69X2adGsvYwH7YZp+zgo3THrZty34hw8b52eefDwA4FD92633ykwCAp1P28OmsMvyk\nfFG16v0wa2u+Hy5hYTNAggNwg33Ov/pV+UcnNtu3Z7YD4N643P3Z3/0uAOBwnO9Ouk85BQDKzZr1\neZ/LqhZH4mtuvQsvBAAcjMvR70kSGwC4C66z+9Rll5W7qPvgUjs2O3cCV2dhmsTm7Kz9/A/xPbfe\nP/0TAOA5+KQ7Lp1+OgDgj/FN9/N+9jMAwD1xFQa91FnJKuRurg3EZZeVAeO++JUdw7U14IorAGT2\n5RzjWRmLcgTOcet94AMAgOfjY269f/93AMCj8B13XMrnfBf8Fsu9EWv9uSeutGNz+eXlPzrtZjQq\n/e+++JV7jP/xHwCAP8FZ7jm///0AgOfhE269r34VAPAInMeKI3fCzdjcW7OPT8HmIFxhn/NVVwGr\nq8Bd7gI8+tHooixMwiiEGAL4PICHAXiilPJnmspFyPoTdXkAgCullDsUvXsLITYb9DYAXBpu1AFE\nCGD/AwAAd+7faDfKq64q/3hn/Na+q9X0itOSU03oN99c/nETVsleIQBYx7Jbr+j6BdF7tLZW/nG5\nN2LN+S7KXIw7vFx8sLGOcfv28o9L2GBhs4GlMNjsmrTebhKOIFXTHqzBTMHwQFxvH+POneUfe0hn\ni43yvewldgTHhqN3AG6wj3F9vfxjgj4LmxGGYbBR/Hnf3nZ3NSSXINhcPdnT748b7WNUsilyzrmM\nMXDrKf/g1MuTfQDYv3fz7HzqmmvKP94RN9vHqNAbZIzNhbQvLjbXXlv+8cBe+PXHqnfddeUf74Bb\nWXNew4qLlHjHAAAgAElEQVRbT7Extk/1pJP+L+QuvevD+dTBB6OrshAJY37X4qcBPBbAU6WU5xnU\nzgBwNyHEo5X/tzeAJ+c/K+RMZPczPl3RGwB4JoCvSSnX0TFJ77Q/gKrDTu1Wb7ut/OOdcJN9V6vo\n6QG8oqs9z7rTUoKZnjxNfXYxKBDNxErSsV/eF0nN5cD+Tc5epkL2x42tYGMdYy4DjN0VJS42eQW0\n+GwONvvjxjJIzcNuKGyGGPHtRgng1Fy42HDnHBIbZ4KgCIlN8cUCGPRS9px940jrPqXY9b64pZZP\nTY2x+AGAJTFizfkAwcOGO2cfDK1zVjaJ+2A7C5slym6UuL1ZrNrjUovY+GBojZ3KJmwLdrrnXFQU\nQMRYJWHcW9zOs5veTSwMWTF2n33QVRnMewBM+QCyBO9EADuFEL+v/OzqnJo+A8D3AXxKCPEaZNTz\nGwAIAO8olKWUFwohTgPwnrxqeTmyS8DvDeDoWUzGV+TedwAA7CNusy8wSsDdC7fbg5SitxU7SscZ\nj7NfpU9pertsi9vqavnHFayxFkGgWPgFa4yDwYGk3l49R0VJe54vNlO6mt7NNr2NjfKP+sLv2v0O\nxRiDXNE5Z1cVTdHbxwMb6+63JjZWPaWcLSDd2Cg4LosNDAbL5Bi52PjYQ2i74VSUAH7FeTN2YTDY\nSo5x7xZ8ZWbYaNLvT9pGpvR27Cj/mMWRfckxtmE3M/MpTZx6UzF2E6nXpt0Uh+eK71LXG4fApny4\nLzZ7k3pcu2GtzXvtha7KQlQYkb3dBQDeiCwpVH/9NQBIKVNkb205C8AHAZyO7O0wj5FSXqU97wUA\nTgFwAoAvAbgHgMdLKX/c7jTqSbolWwScDqvsYrgOuxduZwUpXc9WGXA+DzAsbrwxspIi106wRjJd\nF5vawUxZ3LZIXvBRd78h9GaKjTpfrTIQwh7Y2OB2eyvDDLGp2KzSkkFuwmpg46NnrYbMy25UuhAJ\nuxof2m585qwnRTa9xthoJ2uddKoam+R844ixMhcaG/X+GwADkYSNN72A2HQ4YVyICqOU8iCm3jYA\nx+S/XHqrAF6V/+q8pJuzhHEvscNOvwRw2FqOqCSqzuelaeWZW9Lb0e9vYY+R0gvisNy5hMZQyqkA\n3u/fgT1Go16lwsjTC2I3dTHsSfT7dMU5s5s7scdo1FPGOFNsamC4FTsx6KUY93vkXDJs7kKOcW/B\nn7O1OqZ9z1yfGgX0qRWsY4gRxGBIfnbmU7wxhraHwcDyBhdNb3tTn1JaeQBgBavo9zezx0jqueyG\naw+W7zlJMt1iHLreTo+E0TjGtbVKwrhF7kC/vw85RqfdaBvPYOtPhxPGRakw7tFSJIxbxU72btra\ns9agckgH+h3oC0sflRbMtqT8iiBHr84iGBIbSm8T1jAUY3sfjjJoLjZqZYDCxrf6OktsBkiwLNfM\neuNxpe2BO2cfu5mnT1GLIABsSnaYnydllXZtERtOwmG8UaBFuwGKJJkeYxu+4mMPvhvKINgk/Dhi\n7b+zJEXzXH9C2U3oGMvBkIVNTBijNJF0U5Ew8ijpedGuALAp3cnSUx02CF0SYofXNjZjyxhrYtMG\nzcbpt2oDm82JZYxKQgR0A5uiUmTTmxk2O3dWOM7QPrWPBzYh5xwEm/X1Cn0d3G48WhmCt7bYqGYu\nNklSaQ8Kjc28YuwmrGGQX4Du0gMc2BjYnpljExPGKE0kyRPGvcDrbduCnSyHdfaOOfRcO7eVhJcw\nWhPLNK1UIzdLi572TG71tW1sXHPmYmOdsxbMuNhsEUw9BRtXv9U8sbHajaZbvEmF0tvqgQ3HB/jY\n7LKf+K65CWPbAxObLR4+FdIeljAq3+7h0gOq2LgwDI3NvOymB4nldLWZr2ibsOB2g52sjWcn48jq\namU32GaMjQljlFakSBiLgxOAwdiUHeMK1txvaFD0rHSJQY8TfJbkOvk8AFiGRW+qD2fNPmd1jK47\nCRW9ZaxXKIFKUqTpcbDZhDX7Rcj6nKVljFwM19YqwWxZWPRMY+RgqNlDZXGrgc0ASXn1iUsPyLDh\n6FntYTyuXLHBtxsehr6+wpnLMOX5Ct+nLHOWsuJXXGw2CZ4e1x64egCwnPLsYSnl+ZQ13ljGSOlx\nseHGTh9suHbj41Oc2Mn3lXXe8+a4/nD12L7CxHDZ9YagQm/rVnRVYsK4AJIMs5dPOh1bWyytOzzD\nomqldHJZwqg8kejSAxwBXNOzJk+aHnfOzqRIm/NgkDWhA/Y7vbjYAMBQbrD0lmyLYF1sbHr6XFzJ\ntGHO1Bi9sEkti0dH7MYXG+qzfbDhzpmrZ7WH0aiyM/LxqXlhM0z49tDIp9K08g9t2U1InwrtK9aN\nhmGMLLtpyafmsf4se/oAR8/aylDoFS+b7qDEhHEBpEgYVUc0vmYql+V8h2dsQnc4rC15ArIdma8j\nup7H1oNjzjUD+GBAz5mrB1QXtxBzXrHNmaun6W7iYtgCNsHtoSmGmm4b2HB9ir1ozQubOfqUuvCH\nwJDtU64YG8BuXElRaJ/iYrjiOnCmLB517IbChuMry9iwX0o/L1+R0ppMN8ZGeVFB1yQmjAsgSX5R\n8bKr1K8FMyEsQYp7x5uiBziCj0Ov1g5Pe561aiLl1Fw4yXSQaog2Rms1hIuNrheiimbBhtLjzDlI\npSg0Nly70cbo3GiExsZhN+7NWmCf4toDc4PKtYeifSOoPTDjUpCqvQUbH7uxjXGABH1pObDBraLV\nxDCI3bToU4CDqeDG4pq+YtVTXiZQzIUz501YQ6+XFXOmXscbE8YoIWScVxjZ5XGRGajvrtblYIMx\nzxEbJwhcxx6PqzQbN0EIkUy3TC0uNw30UlYCWiu0K3Ph5wbwxrSrD5XETaZrYDPE2H5Ss66vMPXa\noNkaY6ONcZDy2zeC6nEThDnR9QDfHhonRW3Qs5pPFS0/UzcKtLz+NE6mZ9ACAxC+EhPGKE0k6ecV\nRlujLjDliACzb8Z2YMMQzLg9JCH1uD1KPj0kAI3NMjbQF2lQbEJjaMVG3/3a9LRnFoGe+uweJPrp\naDHtJkkqZR4fbLh9VIPE4qddx8ZAswXHZjwnX2Hq+doDYDg8V9tuOhZHGmAjBP3uZx9s5hZjuXoh\n15+YMEZpIqYKI9UbAtC9IX2kFRqE26fH3SWH7lHi9jpyHJbzzEGy7o1NiDkvceccug9Uq746sRnz\nPpuLzbzshtt75NObWAcbbtWkVbsxVO19kqd52E2dCmMtbLSq/XLuK2olzfRMrwpji9i06lOaLjfG\ndsVugsSRkNjEQy9RmohaYeRSAkDYUn+bi2AtKilQMHM9sz/yx6YW5aTPmasX+jR1y3bjxGZWtH6D\njYa1lSGAPczSp3woyF4vbFIU3G64B86aYmPoWQP8+za5SVGIOMK2m6bUtV61Z2Lj07cZes7B442r\nPcg3xsYKY5QmMh7kFUbX1RDKWw0WIikKvfAvQlK0B2ITfHFrYaNBNqEjx0Za+jZ3U7tZkTx7WMII\nPZnMx25m1etosBuAGWMTXt/mvOwh+EbDB5uub8qb2o1WtWdhExPGKE1knFcYrZeNarvfwig5vRf9\nEa9Hw8dh59WH47P7DY0Nd87cRTA0NsYmdG33u4wNIE3ZgT4oNly90L1HTF/pQQIjXt8mG5vQvsLV\n495d6OErYoPXt8m1B64ed+EPbTcrnjF2Lj7lEWO5SRG3nxwIG2N9EstOrT91sIkJY5QmMupnFUZq\n95tu3gIgo0GoasjtyG6TpxxxVy97JuWIa/2Jnut560vZ51KVgdFKpkcFs2RT9rlq43alCT3Xkysr\nSNDDAAkwdtMgXGx29ray5rw24GG4Mcz0qEWQjc3mXE9amtDz3a8cDLCG5fL/usa4E1uCYrM6yO2B\nmHNhNyQ2y1t42Ch2Axh2/ErP2o58zlhzP3OH4M258Kkh02642LThU4C7GuKLDRlv+p4+RSz8G0s8\nnxpvmvgKx6eWGdX4ApvehnuMOwUvdrKxGfJ8qsSGSIrGK7k9EHaTbsmxYdgNO8YqPuUa42qf5yts\nbJZ5vlLYDbXRKNbmWGGM0rqYKoym+7zkyiasI3/Fy8aG85TaduwDoLrDM+nd3sv0VIc16e0cZnrq\nzs2kt7bE09vYlOulbr3xlkxvKc2SoqnLyouEcWkZa8ibidfcz7xN8LDZ0edhs4uLzYofNktMbPQq\nWqmrBCguNtsF0x5ybPqE3mqOzYCY8zoTm9FmHjbJVgKbPFmUS0tYxabs3wLZzc4BExumrxTYLAXC\nJi2wSS3YjMdAkkAKgR35wk9hczsXG6ZPldgQeqXdEHNmY7MXgY1StS9iLIlNz89uuNhQPlXGEUJv\nXGAjPXxKSnccybFRk+lZYNPa+kNgk27ZCykEhhgD47FTNyaMURpJUWEcpusltQgYkqLlFawXlaLV\nVWdySSaMud4OymFzvV3cYLZMOGz+vHIRtDlsrkcmRUUy7ZEwzhybXC9YMNOwWbItbj7Y5LpFUkQG\n+mLhp7AZEgt/gQ3TbrjJdMLEBjWwIe2GwkbbaFA+tc7EZkRhU9jN1skiCLg3Gt7JNPE972D6CplM\n63GESqaZ2CRb9s4+FyMgTad189cwyn6/rMaz7Ya5CWNjQ+ix7YaZTMvlTdjAcKp9o9RN03Ijdhsy\nHMU6gQ1VsMj1fJPpxnbDxcYUY9cthZ+YMEYJIUWF0bqrLRx2uIyNosJoclhl91tUBnqJQU955o7e\nXtlnpm69XQOe3vow0xsQeqNl3vPGm/LnyezQjxWbpWWMkL/E04SNons7smf2iM8Ojc3aUq4nedgM\nCL2kRWyouexsyW5IbFZ4euPNTGyWa9gN4VNcbFa52HDtZoVnN2lOQfaRAklixQY+diPyMS46NsNl\nbLjmrCz6XGx2cLHpe2JDzGV9mYnNJl7MTil7UKr2znVKeWaBDeVTu5jYrA15ehtMu1HXn0IvTQ0t\nUUMCmyTJfqlXMXRQYsK4ALLRyyuMMjO+qWsuFIdVHXFKLz9JnfWsZc/sjTec12ZMgtlGxSF0vdJh\nE/fzih6SfurW2yj7stx64yLQp1kwsmEjl1Ym2GwYnqmcNN8p8wWTwGZX0ZdFzHm1DGYUNvlciOcV\n/TUDCpuyL2sDkNKBzbIbG0W3TIoIbMqFn7KHPg/D9SFvzmUyTegly5uRQpRJUQhsik0YNRcTNu6k\nKBQ2PL1kaWXS2qLEkalkeoXwKUWXi82uHtOnFGxccalIGCmf4mKTDgl7UNgePjY8X1llYrOW9wVT\ncy6xoeymTKbDYINlvk/tZMbYXcx4szrk+VSx/pAxVrGboh0KmE4YU2r9KbBZWUHlQR2TmDAugIx6\nWYVxmLgrjKm6izH1MBocVoyZu9/UsHAoeqXDEjuyItBTu1Xf3e9Qjsx9M5Zk2rX7LQ6AkNXXYvdL\nVdv6vDmvMatoG0u85yXDTRhjolC7Mj0eZ5Gt18NOuTkbI1V9FbydfLnRIObMrQysc6uvwxX3nGtU\n7W+XzAqjARvXJoxrN5TexjJPLx2Y5zyVFFHYKLq+lWnKp1YVbFxxie1TXhVG2m5AxRtFl4vNDs8Y\ny62+ctmegZxgLaUhKWJiI1vAhl2ZZvoUFxvVbgD32syymw7T0UBMGBdCxrJfqYZMGVvRJ6Ht8Fh0\nCXE4ZodSUWLRJYTeWhHMErfehlIZcC78g5VJUmRqJq6RTBd61JzLpIjQKxb+HjGXAhtqzmUynVLY\n8OZcoZKojYYcsuYyoZJ42FD2sDrkYbOhVE1mgk1x/6ly0pxtN4GwWRvy7GFjmYkN01ckhY2hak/G\nEa5PMePIpAUmDDYp026kR4y9nRtjezxsVpl2s861G4XFUd9uM+UrTGx81p9JmwcTGyqOMO2mbA8i\nsFEZDSBMMafLEhPGBZAkAWt3kiytuPskauzwJr2ORABX6BK3w04oafcOL9ejKkUDXpLsk0w79RRd\nbh8oF5s1JjYbCgXJxoZbRSMWwUKvNyICeEFBksl0gQ2x4+dis1QDGyIp4lYG1mWODZkUbWXprXLt\npmzzoCrTYX0qXSL0ivthl5awJnnJdElBUpUiX2wIvZGBggSmq6oJt4pG+ZRStd8lN/lhQ8XY3Keo\nKu0aM46o2ADMKloTnzL02lNxpLjGi1qnCmzI9YfpU6P8aqK+TMyHoDyxiQljlMaSJGAlgj5G6bvD\nIxuymfTsZPfLPORABIDxgGgmNu3wCCrJ+wAIe/fLpJIobMrdL73ws6poXGwUu6FaGbgHQHZ5VwZa\nwIZrN+zqK+8ACOUrZWWaWvi51bblaT1Tg37KxIY8LFUDm7Iyza3ac7HhHo5JCWqRW2FsAZudvgdA\nuJVp4nnFfY096T4ElTDjCFmZVqv2ktcetJN5cGgXN44wGY3xgHcIiotNTBijNBZ2wsitKFE7vDq7\n3x5vJ1hWGNnVNmLh7zOrITWqaEa9GifNi8Mx7N0vSSXxKgPjPs8e2BsNqqKk6HIr02W1jTz5ycRm\niadXqzLt8im1+kr5Crf66utT5EnziZ6AtN5Zyq4wemxQudVX76o92QLDrDAONiFBj0yKxswYS1Zf\nG2HDZXvCVO3HveXKIShrUhTYp2pV7akYy6xEFnZDxaUxd/1hYhMTxiiNpZIwOozNp/fIN5iJprvf\n4t49bmWAW2FkJkUklaTcl+VMzk27XyrQ9/wqA1ZsijsJh7znjT0qjL5JkfWetaJnrXjLBVGJ9O3L\nouxGvbapJybvcC2TouI+PY9k2vcgGXk4hqq+lvd88uyB27M26meHoHqQQZIicuEvfGp5UoXhVqa5\nVXt6o0FUGIu7J/u8ClCrSRFlD4ErjNyqPRlj8/FxK9M+PdPrKW/9IbHR1h8u20NWGAOvPzFhjNJY\nkoToYcwX6bQ/ZAd6b7qEbOQndm55P9MqtzLA7CGpBHpih+fUK09J85PpNSrQa7tfOikiqiH5GNeL\n16KlI/R7WVJkohZDJ0UklVT0rNWqDFCtDLxK0UafOASVjzF4Mk1hkyT8qn0+xl2U3RQ+NeBhOOox\nkyKuT1F2o9hDeSuDqfe1TtU+FKORj3HU4/k9u5XBJymSRTLtHmOJDbefL1DVfkTZQz6+NpLpcv0h\neqZJbAqfCl1h7IVdf2LCGKWxVCqMroSxN2T1hsjB0O3YRRVtOFQWfovj5Lq7ioqSLdDneqv5e3St\njpjrrfeL61vG6IvUqpf0iCSZm0wr2LAqjMMhNlIi0NfFhtAbiSWMkF3uKpLxNLWoYMOxBx9sOHqZ\n3RB9WQU2gjg964nNGLwx+tgNr9/KBxuiaqJjQ+it5dhYF/4CG8HzezY2zDmTPlX8odfDqszuhyV9\nyhMb0m4Ez+8r2ITwqeFEzxhjpVSq9ptZc1ll+tRanxeLE8H3KdY6NWD61HBIb8p1RoPpU9YKo4YN\n5VNcX+HqYThElyUmjAsgZMKYv8E87Q14wczDYdeZSVEZzKiFX/D0soV/knQA2t1fhR4zKUqYC3+t\nZNq2+y0TRiY2PSY2zIWfnSB4YMO3m+KezzDYrOXYcJIilj0w9SoLfyhsqKpJTWw4dsPCxmOj4Z1M\nE9iQjIYeRwh78LEbVuzkbso9sCEr00AlmebajbX6WmzKQ/sU11e4eoo9WCvT+dpX3A87D7sJ6isx\nYYzSVJIE/gu/I7GU/YF7t5PrZX16RFKU6+4qHJbQKxzWGsxyvTEmYxRjw+W8uV4CIknmJtMFNr2B\n27EVbMpk2rZbLbChFv5cb00QQUrBhjPGRAzCbDRMdkNhQyVFOjYEhuRGw2A3FDZcu2H51MADm5Sg\n6z3tZrIIujGsYOOYS+LhKyy9Ad+n1lJHta0GNmQyXWAj+D7FwTBl+oqP3RSMBtceqLhUJkXjjbK1\npYlPpUwM0z7Pp6BgY0wYlWS67Cdnrj8UhhtiGSkEhJToI7Fjw4wjXJ/q8msBgZgwLoSQFUZl98vd\n4XF3OxPa1UKXaDs8imYjg1lBu6JGNYTAhqPnQ7uWixux49+R0yWhKMhRHdqVWzVpQi2aKowUlVTY\nTSBKeuRBLbLsxqNqwseGOACi0WwUhq1WXwlsQvsU2c+nU5AEhqslNiNzUlRhNDxpV25FKZBPrXFb\nGZiV6XUsI8lTAGNSZLKbALRrrao9gU1ZiWRjw4+x/WTDqsf1FW68iRXGKI2FmzCSDlvu8Hh6Ug1S\npuBT/KHfp08Mc4NZ/tlkUlTu8IjgU+zwmEGKpOuLnWBlcXMn06vFIYemu19uMq1gw6owUtiU1RAP\nur5IimZeYWTS9VQyrdgNr8LIe16lhzEQXT+pMI6dlSKuT5EbDU+fIul6FZuylYFXYbRiWFSKsFwe\ngurL8bQeN5k2YRPAp7zo+sA+RSZF3BjLTaZLpoLnUyQ2it1wN+8+60/5xi9TS1Shx1x/uMWcmDBG\naSyVhJEoe/N2v7xexyol4NgVDQbKIshc+KlKkeSNkaTZijkzqaQKzUbMuQhSFF2yK80b+Zm7XwpD\n7pxJ2rUM9LznkdgYqEVrMq1XGIlAv4o86U4T5yEoNu3KtRtmXzDZ5mGyG+J73sm0hw05LA9BFRdP\nk9g4K4w1sHH5VA1s2Au/RxwxYtOST5HYcO3Gh67XsSEwJLHx9ak6duPcaNTwKWZ7EMlwySodPtUS\nVdhDHbshvucuS0wYF0CShHetDpcS4NJnfocceI38EyrJo4rmGGPwRn7mjl893Whc0E10SaCkaMSt\nojFPN3Ib+b1ONzKT6bKRn1gEN+TkEJRrceO2MnAPS6UeJ4a9D5LZGvmLhZ/ZyJ9hQy/8oX3K5wCI\nd2WasIcd+bupKZ/KkuncbhzUItun6rTABDos5fQpRZfbyqBi0xtvlD/Wb1vwibFBT5CH8ikDNpz1\nhzPGUeD1J1YYozSWSoXRuYvhUQK1KEjXrmg4xGpCVE2KpEiuZM3EaepsJiYDuIku4dJs3EBP0CVc\nmq3AhmrkX0+H5RsVXAu/GuhdY+TSbONQrQxKMu2k6ysUJNGzpmDDqRSpyZMzKfKgZ719qomvFH/o\n97ErWbbrKXNZT4mkyJM+C+5TVC+agVoEdSo2Le6ypH2qvLbGcdsCmUyXVbQadL3Lp3x6phMimdb7\nyQnqmvQVbiuDKbF0YUj10CvUNdenyKp9kTBKn6o9PcZarVPE99xliQnjAsh4jIrxFuXxcidooQSm\n9BRKQHVsmx76Zop7Sk89MTwyjE8Z40Y6mArgFT2FEuCMUT8xbNNLBKFnOd1oe55OJVkxVLEZW7Ap\nEsF0MLXjN2Go0/UubFj2QGFTzLnHwxAKNsLxPJ2edWGj2oMRm3Lh542RtAcLlVQbm8qcp33FRE1x\nfUq1B5dPjZk+ZcPGRC1ysNZPU/N8xTA+pTJd9EyrGw3KbsRoY/rOUstJYBY2s/QprQVmSs/U5uHh\nU64xknqWmwdc6w/Lp/oePpXwfGWncptH8SYoGzacMYZefyIlHaWxsCuMdS5qJugSLpXEpUvIaogn\nRURWTWrQJSwqaViDSjLpKboVapHAhkW7tkklBcKGSyVVKowubGRgu2HaQ61WhkA+ZaIWbVU071aG\nEHbjQS2W1VfTnGtiw7IHD5/i2g0XG1+63lh9Vds80uIAovtkOBcbn3tfQ7Yy+GDjtAclmV5Ll1iH\noMgKo4mpCOArscIYpbEkCa+H0efEMOv0rA+VlO/wwKDPuNQii3ZlUkncqyHInrUadD2JjUKflck0\nQUkHoUFMtKvLHkJdo2Kikkx6im6lF81hN+w+PS4F6UHXc09Tc6/X4PbzqT7lurOUS7uyqUXudUwe\ntzIUrQyU3awnxZuOLP2+3DhiSqYDYMNtbfG5jsnZyqBgk6RicgjKlBR5xli2TzF9hUvXs09TV5Jp\nd5tHkoowrS2hfSomjFFCSaXCGOROwhonP4nT1OQOT6GkWRXGOqekuSc/ndcf8E6a63RJbWwUXZWu\nd/aiSd5nkxd8c7Hh2o1yKpaNTZFMe2DjatAn7aYM4Hy7YdkD06fgc/k5NylKeWMM7lNMe+D6lN7K\n4LKbbOFnbK5S3hjZPuVhN7yqPd8eilYGyqfU9cIVY0lsPH0qYcYb8oLvGuuPszKtYKhiM0jd6w83\nxoZcfyIlHUCEEHcXQrxPCPF9IcQuIYQUQhxk0NtXCPERIcRNQoidQoivCyEeaNBbEUK8UwhxnRBi\nNX/uo2YxlzpSSRid1Tbuws8/Tc1t1C0c1rnD6/UwTnusE53cwwvchuzg75z2wGaSFBkoIi2Z5jbo\nh8SGrAz4YuPRyL+R9N2HoAxVNNczgx16KQP9/LBJUsE+BBXUHrjvDg6NzdADm2TCugzkDLHh2k3g\nOFJpZegqNh7vnA5pN+T6Y8Gmiz4VK4xh5D4AngHgFgDfMSkIIQSAMwE8HsDLAPw5gCGAs4UQd9fU\nPwrghQCOA/AkANcB+KoQ4iGtjL6hqEbeaOG3NPxzK0WuBv2y6XhjYzop0hyWc6KTrJooSTJLj7mr\n5Z+K5b/ubJT2kaBnfs2UlkyrDfq2wwb8E3zM151x9UJVXxUqaZwIO9VsqUwHqRSx58y0B+YrJW3Y\nmBr5udUQtZXB9dlNfWrqkAP73lfuqVi+T6nYFBXnJtXXDaqH0TPesF+Tx/Up7q0Mg0HlkGSIGMuv\nvjIvP6/zCkGX3SivIm1cfTW0BzXChms3yhi7LIuSMH5bSnmglPKJAP7FonMUgD8E8Bwp5alSyq/k\n/9YD8NpCSQjxYAB/CeCVUsqTpZTfQJaMXgng+DYnUVfICqOy42/tkAOxKxqnvUkzsZ4UaYFer6IB\n0wumT7N6kGqIEsC9KwNEE7Nzx2/Rc41RP8HHqoZw7cG14+f2d3LtRrOHqaTIUplutOP3vCqEffl5\nqAqj2ovmqoZYKtPOpKjOgaBZ+pTHIQdupYisTBcLOtenuAdAQlXRDDcPeFXRXJR0qCqaieHiVhid\nG09uHCGqr1yfUrHh0vWhKozKGLssC5EwSilTWgtHAbhWSnm28v+2I6s6PkXTGwE4TdEbA/gsgCOF\nEN33WxsAACAASURBVMtBBh1QKgkjsYvh0iWsXkeP043OaohFj1rcuM3qoU8Mc0/wcZuYnbvapthw\nT34SwYyFjceJ4Tp2MxXAW8SGO2efw1KtYqPbjZZMc8a4wbUHpk/Veq8ykSAE8SmfynRLPsXdvLOx\nCeVTii5ZRZtFjCWSaRY2wyHG+SEfjMfT/b4WbIyV6TmvPzFhnJ0cAuDnhn+/CMA9hRBbFb3LpZS7\nDHpLyOjvTgm3wsilBFJmAy7ZyK9QAmnq2NXaqmgEfcZtVmcdcuA2J3MvNWdiQ1bRLHquMVaqJiGw\n4R4IYlbb2Njo1dcm2HhW29jYMN+r7HMgiNvI76wU1fCpEdOnSF/xPTjE9SmPAyBObLRkOkj11RMb\nn0N2LJ8aKElRYjgExcXGpzLNjSPc6mtobBS7ASaHoKwsDoWN8szgMZa5/nSdku726PxkPwBXGP59\nW/77vgB25Hq3OPT2038ghDjH9qGHHXaYzxhrSWVB4CaMBCVQ2ZE5dngcPQyyzyx0B9CuctCCGeeZ\n6ynvs0fg6Y3FEOOcKjfqKUlRUGzyBX1su+bCouca40jyxsjFJhFMPWrOBYYDrt0MwmGjLPwsDLnY\ngIc116ckE0PSbmr4FIlNaLvx9anBECkmNxpnSVFvMX2KaQ9sn8qTohEGGGKcz3mJnHMv1bDRkumw\nPqVhuNwyNkoyDWRzXsIox2bZ7FMb09gAWUtUT0zua9xIefawIYcYstcfnt93WXanCuNuK5UKI5c6\ncBlvj6dXoQQYDlvSIEQA5zyzQgkQAZw1Z8HTS7jYDJjYDIfZvbEBsalQSQGwGQXGRjLtZooi0he3\nRbIb5pzTwRBJ3us7SYroOS+yT7HjSH8ItVI01QvdAWy4c2Zjw/UpLcZObcoJbNI0v22hTWxC241H\nvFGxqW0PWjI9jxjb9YRxd6ow3oKsiqjLfsrPi9/v5dDbpv9ASnmE7UMf9rCHSdvPQknFyE2VQ6Xs\nXe5iHHqJ4OmlPZ5eRgkoO369b0bd4a3B/kyNLuF8dqUyQGIjaD119ztLbPRKkeOZlR1/AGwSpt2k\nHnZTJkVJkp+aF9PYDIdI08DYMO2G6yuVykAAbGSvWinKFv4lcs5On2Jiw7WHKb2BWW/MnHPC9KnC\nVxIxAOQopxaHJDbF4bm5+JReRfOMsQk7jgwVbAy0q2XOYjyCEFloTVOgXwMbtt2Ah2Fb648vNsUz\nkyT7NUR7PjVm6nWdkt6dKowXIetP1OUBAK6UUu5Q9O4thNhs0NsAcGl7Q6wnZMLYFgXpufsdC2KH\np135QO3wuNR1yJ1g5YoZompS6SmyXCVUYJMw6DMnNsrrrdYT3hjZu18PWp+LTZEUOeecB3pOZWA8\nRlB74OqNmfZAUk5KJbLQ58yZrL5SPqXNmUuzhawoVa5RIe1m8j27qmgmbMo7S7k+pc455fsUl7oO\nymj0+L7irKK16FOVK2YCsT3c9iAgs0cKG6c9KD7Frb76tE7tDhVGr4RRCLEkhPh9IcSfCSGOFkIc\nabpAe05yBoC7CSEeXfyDEGJvAE/Of1bImcjuZ3y6ojcA8EwAX5NSrs9muHxJEt5hCNIolSoaRy/t\nDw2VIoNekRSJhj1FWtWEM0YygHP1uEGq3P1mSRF1lVBJJQnLwm+rFDVJpk1VEwIbDtY+vUfAxB5s\nPa1kMs21B1tlusnCX2DD7D0iF37Fp5zY6JswDRsbtci1h5A+xU6SuT5FJdMWXxHJuHpnKdenlDGS\nC7+nr3B71thJERVjuXOuEWOD9b4q6w8LG6qVQYsj48Drz0x9akESRrL+KYToA/hTAH8N4NHIThIL\nRUUKIa4BcCqAk6WUrVTohBBPy/9YnDJ5ghDiRgA3Sim/hSwp/D6ATwkhXoOMen5DPtZ3lIOV8kIh\nxGkA3iOEGAK4HMBLANwbwNFtjL2pVHZFTWg2pYrG0svpszH6GCDJHXE4pSfz3W+x8Pfq0mfaDo8z\nRpKCVCpFY8CuZwr0jucVO/5EDDCQSU6DDOzY5HSJ9eoYas5cDJVnTtElSy5sGPbgQSWpc86w2WRP\ninK9KWpRxcbVymBLpn2opC02bHj2QGKj2Q1FNctB1aes1OJwiGTswEZaGvl97MbpUwEo6bJSpNiN\nCZvSbgaVVobimWma6Q584ogpKQqBDdceuK0M2kajdhxpI8aakqIA6w+JjSEWG7EpfIWLjUeM9Vt/\nFp+Sdo4uT9JOAnAPAF8F8CYAFwK4EcAqsr6/ewM4HFlS+SohxMcAvElKeX3gseoXdn8w//1bAI6Q\nUqZCiCcB+If8ZyvIEsjHSCmv0v7vCwCcCOAEAHcA8J8AHi+l/HHgMQcRbnk8OLXYK4LUMEuKYEkY\ntSpa30GfOefCpVW0OVf0Bi49QT6PS5+p1OKyXGdUivIKY1MqyYMumdr9bjLrtdHIX+gD9h1/2d8p\nhlnCqFGLogbNVhubhpQ0m1rsT3zKiY3qU3LyzPE40+2r9rDumLOWTM/lsJQvJU22tlQPORTPHI08\n7UFLpoMeCGqJkua0MszLV1qlpBNDL7RWfQ2GTZMY21Bv0SuM70VWnfuYlPJWi84PkF2C/SohxOEA\nXgfgRQDeFmyUAKSUgqGzDcAx+S+X3iqAV+W/Oi/6biePHVNvR9GDWa+n6ZkogdHIqpcUCWNvACQT\n+kzX02m2olI09bozw86t8tmOKpptjOvpEKmSJPeWzHqjSUuz+XlKMON87iSZtsy50BvoemYMyTlz\nMVSeqVdNbHr6RsNlD87nTSVF1R0/hY2ziqbOWR+jj92YNldcbBx6Os3GtRtrFU075FDbHmr4lM1u\npqrxFDaFTzHjDddu5EDDRlmAp+a8yzFnR2Xaig3XHgTfp8q2n/E4u9oForZPFbcyeNuDPkbHAcSm\nPsWNsUne9pOIPvoyQU8mAAadWn90ur52HNlNEsaDpZRr3IdJKc8H8GdCiJVmw4qiiu7YtvutalEC\njF0ttbjpVFLtPj0bXULsaiWbEpD251kCvZuuB92LpukVwWyqikbN2ae/RsGG13tUg1Zx9R7pdmOt\nMFYDvbOKVodmc/UeMXsd2fbApdkobEoKsqpX2x5q+hQLG6496BjaKkWCazdVur62PbToUz5tHhI9\nJOihjzTvhR5MYTiVFFlYnClsXPaw7vApWzLt8ilmryNpNwo2xe99btsPHD6ltzIQ1VerXo02D66v\ndJ2Sdh568UkWQ/y/KGYhy+PFLqYFSqDQBxxJkYVmm2rQb4GSDn23HJs+K6uvbhpEp0umGvQ7QJew\n709j02dM2lWlpF1zXgCaberwguXUfNnK4Gk3te2hIz4l0Ssv5bbdPcmlpEtseoHsxsOnRi3cZQlM\n4ogtxnIpaf3Giln6FNdXfE6Qq3OxYqPZjf1GAXMrw9ScKXvQkuk9iZJmn5IWQvyuEOK/K3/fJIQ4\nSQhxphDif7czvCgA2Ltf7qlYdrN6vmNLbRXGkmar7vAKahGg6TPjjp+qKLVxX2MRzJj37iV6NcR2\neKHAptdwzlwMlc8OfZflVBXNlhSJ6pytdqNXGOtiw9VTxhj6brkx8qRI5EmR5dT8VBXNRklrPlXb\nHnyw8bQHbhVtkhTl1XjLPXlFHEnLKprFp/Tq6wx9Khg2ljhie61dsdGgYnEwbOr4lIeveK0/TLuh\n2zyq9mWd8zx8SklWuyw+1+q8H8DTlL+fCODVAO4K4P8KIV4acmBRJhLMYU16nB0eVQ3pEzv+Ipjl\nFzU3viOsxg6PfR2GR7VNxYjCxkotcnfyWjDjNPL73FHJpWcrSZHlfbYJs8KoHwCpTRH5VEMU+qyV\nShHRopBQdlMsggMCG649cH1KGWMwbAqf0uZsw2as9kzDfnhOahWl1n1K+Wz2vXueLI4VmzIpqsZY\nOyXth02nfUrv97XEkfIaLxs2mk9xsBmP+dVXlk8xfWW3qTACeDCA7wGAEKIH4LkAXielPAzZaeMX\nhR9eFABshw1NCRSOVezgqIU/pZIibn+NJ10SpPpazLmoFCE7fWGjz4qFPCWCWfCkiOrL0pLpkAmC\nf1JEYaNVX9u2B1vvEWEP3GRanbsVG3YvWhXD2vZQg1pcD/3OaWhVNCvtytxoDJjxpoX+Tp82Dx+7\noWJsolVfSWxm5VPKZ7fxjvts7oQ9WBJLvSVKaofsZulTI6ZP7U4J4z4Abs7//FBkr+H7fP73cwAc\nHG5YUVQJlhTp9BkEjO+ztVDSJCVgo121YDZTusSTEtADuG3ObNqVSUnLwWDqdOOsKEguRVToWLGx\nLW4EJU1SRKHswZZMO+bMfWUcmz7T9KwHyTQMW7cHpc1jFLjNYyopstiD7lO2V/7tTm0epU8RlHSq\nbcJIbOZASXN9hR1vPCnp4ndbSxTbblqIsdzDMbsTJX09gPvkf34cgMuU+w23Avm2MUpwCeawtqSI\nSZ/ZqiEJVUUrkyK/ZvWQOzwuJVDokJUiT0qaqobo9zWGoCDZ2HArSlQVrVz4eXaj02yt20MNCpJ9\nJyG4lSImJc1s8whWKdKS6aCUNLf62vNjNLhV+5BtHj5vPfGq2vfd9mCLxfrrEFONnp0lJR38Na1M\nFkdvgbF9z2SbR8sM1+5ASfuks2cAOEkI8XsAng/gw8rPHgjg1wHHFUURn4Xfa3HrD4F0lO/clujK\nAEEJpESFUXpWTcq5cCsDJCWQmp+nzplZRRvri5ulUqT311gTxr7yvNQxZ9OudsjAhthojJS74Fw0\nG2vOTGy4VTQymVbnrN2719/cDBvfKhq3T6882GF5uw1ZfXXZgw2bjRo+5cKG2TOt+xRlN2VSRGDD\nbWUgsfGsTFsxtGHDoaSJAxt61V6Ms7v89LfblEkREYtrJ0WmyrSnr4wwLE/MTxiunn8ybYk3xWeP\nx44Y68LGszLtvSl3VRh3o4Tx9cjennIksuTxROVnRwE4K+C4oiiSGRVNNbNPfkotKbJWingU0RTt\nSlTRrP01tlI/V4+kBBI7hloyLW1JcoGNtghaG601WsVGb0i1ny81jdGRJK/UwFAZY2Y3fRLDqWTa\nVinS7YaoolH2MIUNlyKq26OkjNGnzUOdC0W76nYzdVGzRrO5fKrSyuDyldUaPqXoTV1GzL2TkNp4\nEtgUn92zUJAYaZeL+9qD/nrFunFJw8aZFFnmzE6K8s8uE0aNkrYyGk0paaIyzcUGEEh6A/TTcR5H\nlmr7FHf9IXumbZR0XQzVNg+mr3SdkmaPTkq5E8ALLT/7g2AjijIlSQL75dRSlla3nvCbjgE6SFUq\nkQ69yYJAUAJN6JJNZr3xmLfDy+iS1K6nU9J9XqWIoqRtgV6fyyR5stFik2DmnHON3W928rNH6m1I\nwh4KDIWmR7Uy9N1z8Tnk4MRmzMRQm3MdStpqN5p9qQmjlIAoEgnKV4oEQaXZpEGvBgXp41PlW0oc\nSRE3jth8JUmyXz2urxTJtAclPV6rUW0jfUUg6Q/RT0bTSVGhp9mDPZk2+8poZI4jnBg7diXJLfqU\nag/GhNFznWKvPz2e3QS7eUBJpkcJ0eah4Nhl8bmH8ddCiAdbfvZ7QohISbck7KpJKrz69IrgYmsm\n1isDtipawiz1myoDrJ4iQs95KpZbfVVoFWCyU7cfetGwsVRfuQs/m0riVgZ8GvmZ/TVTSZHt0AsT\nG371lYchm4L0PORQJkVJMn33JDcpKuxBS4oKahGoNuiz2zz6LfsUYTdFpQiwJ8lTjIbNp7RNmG2M\nU/GGSqabUtJcDKewoVmcsc5o2Chppq9MVe25c2nqUz5sj44Nuf74+ZR1/dFbGbhV1bYxBCqxqcvi\nc+jlIADLlp+tALhX49FEMQprh+d1wSqPWpycUisqRZaeooKCZFaKyN2vJ7VoDeDKDs+nkV+di3VX\nW2BI6JFJUbHwl7RKoN0v9bYCrffImRR5znlCJVWraICWFDGrISmVFHHnzNVT5lIkRcUY7JVDgj6z\n+JR1zkx7aN2nXL5SbK6oarxWcZ5qUdCwkbZEUI83tsRSS6ZD+xT3ihl1ztZeaFRjZ+0qmqfdsG9l\naOFNQlPYUD7V5yXT5PrT4/lebXuoiyGqul0Wn4QRQPEy3il5GIBbG44likVqVU2cDsujiMpDDn1L\nhZFLu9p2vwEoAdYimOv5VIqKxYYO4FVs9Lu/SmyoYNavVhrYu9W62GjJNCcp4vZ3ThIE9xgLbKgE\ngawwcufsU5m2VccIbEjalcJGr5oQelON/G37lDKXSYuCu4o2RS3a4oiFdtXHyI0jJDY1fYq/0ZjE\nkaY+xW1t4erpr3Nt3adMc2bH2OrG07b+ULHTd/1pbA8+PrUglLQznRVCvBLAK/O/SgBnCiE2NLVN\nAPYD8Nnww4sCZEaV+iYIZVIk6KTI0kxcOKzUkiJbMJPMKhqXLmFRAhv8YAYIpL0+emmSB/DhdDDT\nKGkuNsXdX1JmSWOfG+g1SrrxCb46GOZzS3sD9JLxNDZTtCtVRTPPJUmyX8OS1q9Js+kYisCUdHG6\no0ymc18ZFZWiTf4bDYvd2MaY6BsIK83Wgk+59LQ2D3XOtiqarsf1KdsYuT41dciubZ9S5qLTrtzN\nle1keOkrfU9fsehVsMn/vb9cY85cDB3Y2CjpqXhDYcikpNkHEH3tYQ+gpKn6568BfCP/8/MA/AjA\njZrOOoBfAPhI2KFFKSQzNt4uplZSxKRdi2BW3P0lPCkB7iEHL/psFXZKWnsekAfKDQc23IM+GjbF\nGMfjTLevB3pmf+fMKGkTNrakyEIl2atoZmz0zy571siKEoGhDExJT/kUTZ+RGw0LBcmmXZtWX0NR\n0sWElGSasgd+9VX7nilqse/2e6NPLRnmHIqSNlSmi8SMSqYbHywsfYrnexWfSuwYtklJS2aMLQsW\nZDLNw4byPam2eZhurOAmyTa9xFDMUXS7LM7RSSm/COCLACCyq9OPl1JePoNxRVFED1KVJvliF6Mv\n/GmSO+Jw6sqOcoeXO0axuOl6+g5PJOPy7q80nSRFpsqAaYypoRJpavg3NZe79KzYGBb+apVj09RV\nITrN1rNgM0W7WsZooqSNhxwMu1/j92zYrVrnvMHUU5NpVF+tpc5Zp9mKAD513Qp437OpMu3ExoZh\nYq8cNsbQaDcuX8l+F4kZQ5evmKpo0mZfekVJ1Vu2z8Xbp/Tx+WBjsYcpu5nyKfcYXRXGit0YKowh\n7MGKoSGZ1jflNruhfKq0GyLemA5LmfRMGw1fezBhmCj3ufZElhSlKaYuPwemmQqrTw2qlLR3LPZc\nf0q76Q9QXOPFsgdy/ZkUc6bW5gWhpH16GP8GwA2mHwghtgghuj3TBRbWLsaw8Nt6ivSFn02f1e23\n0isDTCqpcd+MgXYle4qm6DN3XxaFzZjZi5bqCULdKkcb2HBpVz0povr0dJqtbu8Rd86OjYbxefom\nzDTnuj7F7O/kVtsa97626FNlpcjWC83FxpZM2+JIvx2fUpOiSi+0AxvrFVR6Mm3p09MPgDTFpkiK\nKD22T+UYSvQg86xpIJKJnq3Nowk23HWK61OF3bTkU9lkDb6iJNNdrzD6JIwn579M8mFU3/wSJaD4\nUAKApafIRJdQ9zAWdMnATf3Y6Fldz1QpctElVAAgT0kbaVc3tVgu/Fq1zRrAB+65FH0wZC+aB10i\nJcMe6lLS4PSiVXf89sWNR0mT9lAEcFv/Vs05e/mUbRNm3Wi4KWkSGybNxr53r8ml5mpS5PApm6/o\njEbtpEjDJqlDSQdo81CTouzuSTs2OotDxVgrNnr1tSntSvWTh/YVk90QMVb3KbX6WjlYyPUVLl1f\n9+YBxvqTmrApftjroSxRdlR8RvcY5PS0Qc4A8MfNhxPFJN7VEMIoyx0eFcw8qyHWBd1Bs7H6soiq\nKreilM3ZkkwXu1rmwq9X22xjrH1K2oJh2azOfL1inco0tfBThxe42HAPgBTVV+9T0hYMjXqmpMhB\nu9rsgVr4SWy0yjSll+pVNOJ75r4a0Fop4voUYLUHOt64x8g9XU9i47IHpq8MMXLrcU9J2w69OChp\nFjY2n2Ju3uscnjNuPAP4lEjGyDrjqpQviU3N9cfbpxjrD0y+siB0NOCXMB4ACyWN7CDMgc2HE8Uk\nvsHMWPZWEsvij0Wgt5b6tYqSdXFjV5SI3W9Jzw7Ksbr0yAqjI5muJEWmZNpWRZtKLN1z0ek4azBj\nV5QIPe175t7fqY6RSqbZlSJb9bVcBHlzmbIHWzKdj79xpYi7CQOmsAG18HN9hVu1p6ommj003nhy\nfQqTMZKV6al4Q9Cuut3YkmlmRYmsopliJxFjp7Cxba4s2ABaUgRevCkZDcL32C9RqMNUEHYzWX8s\ndmPZvDdef5jxhjw4pGHDfb2iFRsFw66LT8J4A4AHWn72QAA3Nx9OFJPUraJVgpRrh0ecbqQqjNy+\nrKmmYwftmunz5uyFjSnQuzBsiA3ZU2Srhtiw8bxLTKIHmd/3Y6TPKHswJNMIZDcJt4LNxKbsy2Ji\nA6AM0kPhtgfjnA2N/GWliOrvtG2GPO2Giw35zmlXNYTyFcIeprCx3Fnalk+1EUe42ITyFd/e11Dx\nZk/GZh7rT9fFJ2H8dwDHCiEepP6jEOKBAN4I4MyQA4syEdYOj9tDYtCzXVfg67AgdoJcSmCKLuHQ\nZ8ykqAxSajLtoFVIbGxVLw0bsteRS0HqzeqcinORFBH0GUw7fkfQs1XRvClpyh6YtD5JJTWhz0yb\nMEMyPakoNaSkmTQb+xWC6junHXp1sDH6lKnNI8ewuLMUqFbRJj7lHiM7QWDagxzUp6TZdkMl00T1\nPLhPdYGSNvmUCRtijFOtU8T6Y73L0pZME/YQKWmzHIfsbS4XCCHOFUJ8TgjxPQA/BrAdwJvaGGAU\nTCVFlZ4iQ6kfpiBlKI9bd3i57kaaB/qhJYBPLQhuxxl70iXkCT51zkNDT5GJBhk6kqIKhmEoaZ2q\npChpCsMSGwLDyvfMpogcwcyAobVPr5gzRUlDsy+CgqSTJx6GJrupRZ85MBTjPFHL7ywtfYrChusr\nGs1G+lS/vk+R2Jh8SkmmR0nPPWfdHogxTmFjswemTxXfmfWuW6NPuSnpqTiSmJPpIsZS9kDGWM1X\nSNq16IEmElWytaWGT+lJN7X+UGMsWxlscUTzKcoOfWLsWG3zIDC0znl3pKSllDcBeDiAkwAIAA/J\nfz8RwMPzn0dpQZxByrHj5+7wbFW0YocHZoWR3ZAdeIfnhY0pKaqx+y0DKLPC6E1BBsTGmAg6sKEq\njHqfnk4t6hQkhY01mfalkhpUX9nYEG0exVyKO0t13ZEnNqF8yreR3wsbU4XRYYe2z2ZX0bh0fQew\nMVYYlWRav2KGHUdCx1huKwMHG6Y9GPt91ds8dBbHlkyjZhwhGA2uPaRFGsVhuAi76bp4pbRSyluR\nVRqPa2c4UUxSGttwCIxGeVK0bA9SriqagYIkT3QSDksmRRolYD3MUpMuUZ9pTRh35HqmqqqBVimD\nmQWbqaSITKaJ3S/3/jTP3iMWNuuFHtduJkmR6XWIU8l0oN4j9klzqopGHRBrkEzrVYk0zXQHto2G\nrYrWBZ/yxKbiKw6sqYWfrqoa5rxi0KN8ShjaPBImNlxfMcUbB4ZWpkJPimbkU+V3IXqAhJIU9azf\ns2Ru3tnJNFV9pVqndJ8K3N8JCMjhEGI0ynuhl/ziyG5KSUeZk+hUM1XqN1ZDjJSAIdAbeo9AUD/k\nCT6NPvM+FcuhiAoaxEKn6no2SkBPuos3dujUIpcimtAgYShp6XmCr4JNMLsJQ59xWxS4lDSJjeF7\n5mPjpqSnFn7KV7iUdKBT0gV2HEp6ylcoapHrU76+QuhxT0lzfar8YZqSp+bZsbho30hm5FPcFgXq\nbtNyg5rHhIGYtP2YDohRMdbhU8aNhqF1qqlPcds3uKekS+wACKKdh7XRWHRKWghxhhDiodyHCSFW\nhBCvEkK8uPnQogBKogL402fcCqMazIw7PCYlwKRnKT3fQy8VbLiVIoouUXrRSmpxPE2XUHPxrZqQ\nFGSf97m16DNTb6KrGkLOOTDtSvV3tkm7lpsrioJ0j9Gbrqcw1CuMhE+pP6TuniyxYfoKhQ01Rv3S\nfDY2gdo8+gNRPpM6NV8myUwanl1hbOhTU9XXhj5VXsreh7evsH0qIfSI3kTv9iAmJc31qX4f5o1n\njfWn60JVGK8AcJ4Q4nwhxMuFEIcKUXTLZiKEuKsQ4qlCiI8CuA7AXyE7CBMlgCj5GwTXKF07PAeV\nBADphknPvdMikyKtUkTdz8d9vZVpzsYdP0XXO3aClc8eGV5vRe74eXMhA3ix42dWadU5G+3GpEfQ\nJTqGlc8eOyrTVIWROvTS0xZLm56eFNkqRardLPHsYZIg8HyKpBaJOU8o6TD2YEqKKHsosCH1TCfD\nHRiS2LDpeq7d8Kpt1oXf4SskNqZNGNenVGy4PkXdyuAZY8mkiMviNMGG6VPsWBzo4FB5gEVNppn2\nsFtS0lLKlwN4AIAfAHgLgB8CWBNCbBNCXCeEWAVwFYB/A3AIgFcAeJCU8getjnoPksLQfIxSuHYx\nJvpMdYg1h95oZGzkJ6kkvTJA3tfIex5JCRjmLLQkmdzxc7EhqCRy90udEPWtFFUCuKPKQVHSXLvZ\nmOxsyvsafZvVCXqWamovkqdKUmR6SwlFLRrswWk3FCU9NryWk/IVMPWY1bZKUuSqopnsgbKbYQOf\nMvgKFxsqLk21MhA+ZY2xAXzKWEXziSPcfnLdVwh6lqyiGeyG6ytsbOr4lCvGcu3Gho3O4vj4lOnq\nMg+76bqQI5RSXgbgZUKIVwN4BIDDAdwVwAqyy7ovBvBtKeVv2hzonirGhJFIipxGaSr1546YJFlS\nNNT16lDShiZ0Ls1m3P32JABRL9DXoaSHhjGu2Z/XmJJm0iCFXn8gUHxp2ZyH1WR6MMzuuFOeSVJE\nTEpamMZYAxtve2BS0qU9jMd5AB+Sc+G2KNB2YxijK5lW5my6kzDUyc9ErxStreX2sImNjTq+S6RS\nqgAAIABJREFUOtSi0W6MbR5uStr3laVe1KJr4TdVimz2sKM651BtHnP3KRY2hK+Uh+x4dkNeORSY\nkq5lN+yDpm5sui7slFZKuQHgW/mvKDOSSsLIpEu4pf4yKVIdcb0GXeJJSXOppEpSJBIAg4peOiAc\n1kGzkY3Whjkb6XomtRiKZpuiz5IkrxQNK3rFc4SYUNI0RWRY3Bz2RWFDzYXfyM/D0JgUMWlX6mCH\n026ozZXBp7jUImVfZaWI0Cv6srzoMxddb2h56DFp/coYDW0e9KGXwLS+6lMI277BjsWmMdZo82DH\nYoqSRouU9C4zNkAWR3pT2ISlpElf4bZ51KCkqVjcdYmnpDsulYRR261Wdvwm2jUxVAYMeiqlIzfc\nesZqiIF2LZ5nekk8pWekQeT0XKRBz1gN4WJjqYaUY1zn0fW1sHHQbKpeYlj4TXMuX9cWChtqzgZs\nxJDAxlAZMM7ZQJ8Z7UYw7cbQytBn2gOJjWHOJp+i6FRfn1KrJk18ymQP3BaF3tjfp7jYUL5iikts\nuzFU0ShfKTdXTHsQJmwoXxm5K9ON4ggXG26MrSRF9X3FGGNNesl0m0cobIqDZGKQG9V4jJ6Q9bHx\nsJuuS0wYOy6mhNH2WqEpSoBLSauVonWDHkFJlxd8U9S15+lG667WFejJOXtSRA2xIQ852JJpDjYF\nRWToRauFjamK5sAwFDbCVOk2UUlMWp9qUWjVbrg+RczZ9y7LUD5VaWVgxhHRpIfR1MpA+AoXG+4d\nlVy7IStFro2GWkVj+kotn/K0h4qeoRe6jq+Uc2bq0b7CbPNgxhESm1yvN+ihyChNvdAp06fY/Z2x\nwhilqZgSRoo+E1z6jElJ672OQJUuKXduFH3GvXePSZ8Z6RIimXZSAgYKko2NZS5TybTeD6PTZ0wK\nkqKIyP4aB81mvDPOgGFjup5pD2Rflo2StmHDbWWoVIDy5JbwKWOfXg1K2rfNg6TZqH7fRq0M+f9R\n7ywd8XzKfCuDJwVJ+JQ1KbK1eTDmLEzJtIPWr4yR6SslNkSrTNWn/Oh6a1LkirHM9g3yRgFmjDUy\nXDO4zUOdc2VT7vCpPrX+EGtz1yUmjB2XSsJYJkWG3YmDWqT0Ko7ooha5OzxLk/BURcmilxioRVOj\ntZESoLAZOrChghRBu1aSaRtdYtv95smTMeGgqiGGwywuCpLEpsapRYqud1WmKXvgnm50UdKVKpqD\nSiIrjJRPuaqvlN2Y7IHSMyXThkqRyaeMdmNoZeDOuXJnqaFy2MinXNgQPkVVirg+JfuDyZ24roMd\nphir2oPhtgXTnE3VNgob7q0MxhhrYCq4dmNMprnYUHEksE9R61SzGEvEzjLGmrHpusSEseNirDCa\n3sRh2sVYyt7FfxGmHT+TBil7jwiKwbm4EXqDAYJT0lz6zLnwqxia9JTeo0T2yv8TAhtf2nUwmOiR\nlCGTkqawcW40lGR6I2Um0zk2Jnttgk0tu0nc1CLbp4hkh9vmUakUCZH9l970+2yLvizVp0xzNl3U\nzMWmjj0YfYr4nn3pejIpYt62oNpNedAnkK+EboHhtnlQdCrXV9RWBirGTr5nrt3UX6eM2DD1uHZD\n+ZQ5md5DKWkhxB1DDGTWIoS4hxDi80KI7UKI24QQ/yaEuOe8x6WLMWG00Ge6I1IngY3BbMP0vGla\nxalnpWcHLL1iJ0jRZ8Xut+Kwltfa6WO0YeNMpk0UEaFXPK9XBEcLfTbyxMaaTPvSbOoYDQ3ZKrXI\nxcZpD8qp2CKZpuZcYFMmRVIa6TMTNqY5m+zGdsJ38v3x5myqXrCxUdo8imSaiw1pD6ZKkcmnev7Y\nNLEHo08RlPQUNjZKmukrCdNuSEbDhQ1lD8sNfMpgDxQlPVLnbGJxPH2qqEyrL5ig1x/mnJv4lMtu\nCEqaazfWSqQjjtiw6bqwE0YhxAuFEK9R/v5AIcTVAG4QQvxICHHnVkbYggghNgP4JoD/BuB5AJ4D\n4L4AzhZCbJnn2HSpJIyuXQxFu5oqkS5HpHbJLj1rAGf2olGUgLOHxNwboo9RhMKG3V/jXgSLXS2V\nFHGxcZ2mprEZF8UqpKMAdqPoSebzKnZjqBSZk50GdhPaHtRqvGnOJh8wJdM1sDEu/F3ApoFedeNJ\nVNE8sWHbjeEaFXaMpWInM45Q2JBtP1osJn2KejVgrmesTDPjTZ31p04cIe9rdMWbButP+dYd0Gtz\n18WnwvgyAKvK398N4FZkb3fZB8DxAcfVtrwQwMEAniql/IKU8osAjgJwLwB/M9eRaVLZfDiMUg6G\nZX9NucNLiMTSRZ8ResbrMAjatawUDftlUlR5dZvWa0LRJabmZDKZXq5i03TOTfTqzHnMnDNZYWTa\ng2RiY+49qq9nsht1LmS/lYtmC4QN127a9CmT3RixMegZ7caAIdXTyraHBnNOR0l2mkYIfptH4Dgi\nDXYTCpvQMZbSY/tKg3jTJjZ14gh5OLMDdtN18UkY74XsrS4QQuwD4NEAXiulfB+ANwM4MvzwWpOj\nAJwnpby0+Acp5eUAvgfgKXMblUEqFUbHzq1KCVQp6Qq1GKgC1GT3G2zHb9jhUTv+nmkugefcKjYN\ndr/BK85zrDAaq2gGPbOv7D7YmOyGXXHmVk3InmneXIy+1wWfYlbjTdW2Xp0qWugYO0rLZHos+7Wx\nGTTApqs+5axMN6wwtoFN18UnYewBKG7o+iMAEsA5+d+vAnBAuGG1LocA+Lnh3y9C9u7szkglYTT1\nFJl2MblRivGopBa5VS/uKWnj8yiKyNDzYaqGmHZ4pp2b6QSfcferXtRsnMukjBtizo0rRSZsHBiS\nu18HNuoYe6Y+Kq49GK5RaWw3jgojd86u3tfqwk9VQ5hz4VacW/QpbjXEdKLT1KdHYdMzjNHUm8ie\nM7faZmvzcPgU1x5CVdF6JrvpgE8Zq2h1YmyRFJnWnw74lJpMF5Xp3qC4NZ7BcHn6lMkeSGwqNGK3\nxWeEvwLwP5H1/v0FgHOllMVLfu4KYFvgsbUp+wG4xfDv2wDsq/+jEOIc24MOO+ywcKMyiLnCaHBY\nw31ZheOMx5i8cokKZmqQ2sj+yG5W96UWV1cxqJMUmQK9o9HaRAmQSRHRhO5MupmBvrLjr5MUcRv0\nXdj0B1OnG8m5GLBhb0hq3S3HswfuRsOIDXEPI3XoxbUIGjFsy6dg3mhU7KbHXPi5hxeMc6lvD+zk\nyefwXAifMm00kjrYMPW41LUJm+ItJWmaJ0W9YDGW7VMENmyfamAPprjUH4hsjKNR7itLfnbD3Wi4\nfEptidoYlWvzc58L3HYbcMopwL5Tmcj8xSdh/AcAnxRCPA9ZUvV05WePAfDTkAOLkok5YTSUvQ27\nmKLkPh7XpEFW7XpGysl0EthAl1SqaIZSP5dabEIJUBSRiT6rzHnswKZF+qwJNiYapHpRM28ubGqR\nSVV2ARvyYIdhLmy76QAlXcGm39xuKL8PPWcj1kWlKEnyuydFc2xC065cur6Br5j0+gORjXE8NidF\nTNo1BDZFS5SoOZeK3qbsj03aPMoxjkZ5HKmHTYj1J0mqvvLlLwM33TQpyHZN2AmjlPIzQojfAPh9\nAD+UUn5b+fH1AL4YenAtyi0wVBJhqTxKKY+wPehhD3uYtP0shNzvfsB55wErKwD+wa/sTdIg7EpR\nfRrEREVUFn4mJW2sDDDps1rYUNTPuic2pt30OEVR3isuP6doEFNloM+kZ02tDKbdL1kpYtJiJqrS\nqGfAkKqiNaHh2XajtDIY59LksBQbQ0ulyJM+q1V95dL1Db5nrq/AVimqJEXDYL5C2g2Xkq5DIa80\nx7Cci54wBvApNu2a37YgZTZGUXMuxnWKaYeN1x+XPTSgpIsxJkkWY/umMXZQ2AmjEOJRAH4spfye\n4cfvBHBosFG1Lxch62PU5QEAfjHjsThlyxbg8MPzv5gclkFJA0QTOqXnokEqu2keXUKV+o27WuN9\netNzboSNGsxclHQdbCisU+GPjYM+M707mMTGlEyb5mwM4Iqeo5XB2ZelVIoqybShMk1iAzs2pnfA\nmnqKqFYGZ6Woia/YKkW9BDq1SC78Dp8y0fAmuzFio1zUbPQVijIcNsewHON4nM95aK8wmvr0uK0M\nJrtRkiJg8jpEvYrGjiMun+JS0iZs1tb4MTZwvCnGOB5bvmcuNq6+c9WnqLjEXH+a+JT5jkpi/THM\npasJo8+hl7NhPxByv/zniyJnAPh9IcTBxT8IIQ4C8If5z7opZcJoKo8bdjEmSse0wzOV8E0LehM9\nEyUACw1i2uGZ5mzsKfKj6yvYcCmiGthUFsH81W3WZNoTm0GL2Djn0kRPT4pyhWLHX74tZzCoJtNt\n2c3Yv5WhNWxs1ZCchqeSadPpZ2MVzWAPLmzU2xZkXn31amUI7FMmbKwLvyftavIVEzbq6xCbfM9N\n6Ppg2MwixjaJnZReIGzYrS1MbKi12TrGDopPwigcP1sGkDQcyyzlZABXAPiiEOIpQoijkFHqVwH4\n8DwH5pTSeA1lb4PxkhQRk5I26TlPBJaVIrMeRYPUOiXNpQSMO7z6NAgXGzUpKi7kDoWNiWo2YmO4\nl7MWNg3unqTmXCSMC2s3M8CmssCYKtOGOTfBRr3IXTbApkm8MfmeCZtkLFEoVJJpzzlzD3aY2jfU\nd05z7SF0LP7/2XvzcPmOom78U2dm7vJdspIEAoGwhZBAWBIwQUCIsioCLwHZwqYssiqLEUgEgUAU\n/EVeFA2yKdGoyCI7GiGyBTECAoGQH0ISggmB7Pku987S7x9nmZ6e7q7qM31mztxvf57nPnPvTN0z\n3Z9T1V1dVd3Hyg2jD7HHG658Q9pnqa3UsSlbn2fZgGgdRzhuXCUFLYQ3JV1E3e6kvXUCEe0wxNYB\nPAfAFVFb1iCUUruI6GQAZwP4AHJn+N8A/I5S6paFNs6HWdKuoSv+GnKVUzQcVjVFdaJotmJ12wrP\n9vQK6wqvTqTIslrFLNyU3z0cYoX6ALq1oq9WbqyrWhk34iiaq8/bhHJBK/51lhtbFG2CG3JH4216\nQ0UUTU8tRo9Mz6I3GOtDrcj0DBuC9M1z5ThSJ/rKRtH2uuVstmeLFJX9mDUybY8Uufvc74/7UnKj\nn4lbSx/0vgyEHPr0QXOmbRFG6xhr05tAboL6PGeb8j0OsQ439uyfnxvbOLKUDiPyx+a9DoAqft6B\nyUijKv4eAHhREw1sCkqpKwA8YdHtCEJVN+NOCWQZHAY7XsVMHaMykUqSycFyveq7h8PCEHvjAbzX\nm5aDMYAbq1pdbsJgy9QcTctNDPTF9RTLjaWN+uBjKUKvzc3GRuUUeeVMbow0iJMbT7E6WbjRD3y3\ncmPpMze5ibjRB3rtu8sBvHTgnNx4+pxlQLUT2GYrFg7L1OJoNC7Q1yd+GzeYQR+C9QYWpyjEpoS2\n4htHcodxHEXzcaNsbbToTSxuyj7Xsaly4udsih1jpdyI+6xxuOmTm76e15nudDBSJOqzbbzxpaSl\n3ADx9cFWC60vXLz6oD3HvXoiWQ1uOnXG2CVKSXMO4/uRH85NyM9ffBGmN4VsALhUKbVM5zAuJyqD\nFaYEuCianhIofp1YoXtTRA4l7/Vyp6hOalFahK7ccrYCfS5dYtuBGaUInemzjes66RL7hiBtkDJS\n0mUbCYJ0iXBD0Cwc2vpca7NUhPSZXqfHpl2F3Ig5ZPRBalM2fRhY9MaWqWBTi7aatcg2VUdvrOl6\njhtf2rUON0K9gbjPHg41p8g6Zmt2L7Up66YXjhtpStrgRm/fzPpQRKZtGS7p/KMG4w9tZR5WmxLO\nP9wYC82ZnnD4Wwivw6iUuhzA5QBARA9Fvkv65nk0LMEC32BmC3vbBinXLrUyiibc0alHOUROEbdL\nzbLCcw5SI0ufDadoNMonNz1SxE78zA4+W1+kct7JzSFnG6Qm0q5w64Ntd2PZxuFQcxg5boR9tslx\nejMxOAbqDctNKRfITb+vOUWR9EbMoXBHZx1ubH2W7pK2tXHYpE1NbRAj8TgSjZtAvQFQjbHRxhum\n7CevhfaUtoRyI+wzO//4FhqxbEqX22X0RXcYa+iNbVwS643lsHKpTU2cievbMbJAiDe9KKX+PTmL\nC0aZPrOtYoRF6HpBNpcSqAxsVShnSYNw9VZlqL9a4WVZ9Qgnm5wzMqClFitj23SnZ521Qt56GMuK\nX8qhhRs97crWHlWRos6UXCZMSdv6wslZI0XWPlvu8wx6w8n5ShkmuBHudrWlz1hupLbCnafHbRAz\n066uSGSgrdjSZzY5W1+sm+wi2VSnl6HcepwfJRTADSNnrUXj9EZqUyU3TO2rrY1sDaOlL3kttJwb\nbrzpNGhTiMyNeBxhOKylN1JupHpjm8NbCrHDSEQrRPQ6IrqEiHYT0dD4GfBXSZgJpVKWhg/5xG8q\nZZZpESBp6lpSd1FG0TinqFzhcZNgtXJjBnpbGt6XSrIMZhMpgTWLnJAbNtXMbV6oVvwFN1qeacKZ\nLuXqcONLn3ETv63PvvSZ7hRxaVduoDe4YSPTnFNk0wcpN7Pog+UoITE3XJrNtiGI40ZoK1K98aak\nuYVGDX2QjiPsxD8LN77Fex29Ye5zdG6E44itFjqW3ojHm8i2ws4/3EJjBr2xOtMtBVfDqOOtyGsY\nPw3gw8hrFxPmCS1y2O3m+limFq1h736/8h25dEkpFyt9NjUJRkolDQaoUtKuFJHODVzcWPo8kRJY\nscjZ+lxGlAYDdDtGoXWvh+Hu+tyUfXbKZZOpxcFgLOvjBkClDyw3tj6vTeuDtY1a+mylE5Y+k8qN\nBuNKdpszHZI+M/ss1RuXrXg5LK9ZI30mLWXQ9cGWri+5kejN1CKsBje63oi42djAShamD7FKGWzc\nzKw3nrIfGzfOneHFNaXcSEtgSg5ZvQlIu5r6wM4/Qm7mPf90hWMsWUqiaqXrW4oQh/EUAK9TSp3Z\nVGMSGBi1iYMBqkFlwBYd108JTKTZipoiLr0hTQl0qhWe/3qTK7yw9BmfWrSsfqXclOmz0ahIn3Wj\npV073OrXthNYmFoUp6T7slIGb/psWO6aN7jZa8hp3LDps5FMjo1MR+AmThp+nbWBrtSm9DKP4jnu\ntjKPOukzc8fwlNxaKWeJFNlSi9JxpMGUtO2IGTYyXYeb7ZNyPDf++xxqK+wYK+yzLlc6ReJShlgp\naWE5T6yUtJQb/bSFss+DOvNPSxFycPcOABc21ZAEAXyTG2ewvhWebZCyRYqAIlLkkLOF+rmUQDXx\n+69nnfht0RBbStoRffUO9FJu9FWt5dgTURrEJTcyOIzIjTfCaBvM9LPltFKGKhqy6W9j7fSZK1I0\nksmVC418cVUO4DIbYPXBFw0J0JtxLZpMb7gyDzE3AXojiqJxTnINbqQ2VTlPQ5nejPoOZ7qMFFme\n/BPNpnzR11lS0qzeyLjhoq8TdeLl/CPsczRuxDblH5eqhefQPy7ZUtI2buwlUZxNWThsKUIcxo8D\neHBTDUkQwBI5FBuizynSrkdcNIQ72qOKhjCh/iqKln/OTYK2oxysq1qdG1/UhEsJ2K7HtLHkhq3b\nBCNncMOtkikWN1b98kQGbClpRm+qPjv0geWm1IdSb4ZcZGA6fSbmhj15YJIbwLUTWGZT/Caoss9+\nmyq5yVzcGOmzJmzKaver03LO8aamrbAR55GMw8lnRAttpdIbGYfWyDTHYQ1bCR1jucj0ZF9kNiV9\nQpBVH3Ruilpobp5ijy5z6Y1rnuLGWJ8+CG1lGSKMXV6kwjsA/A0RjQB8CsDUuYtKqR/GaliCBTZl\n25Qqb7nakUUirYNKdej0Grsi6wo3vYw3djiuV27SsURDbIX81hU/U3RMvglBlxOmiKRpEI7Dkhtu\n4p94DrLnjEp2Q5CuDyuTHHLRNu4+B0cYXdyUA/jQiJq4uJlh0wtbrG4b6C02xbUxlBvWpoYyPayz\nkQw2vbHKFWlxvZQhZPOCz6Y23NxwHLKlDFoUrUotSksZSn0Q6o01+lo5RZ6yH6neBKZnpdG2si+D\nQe4IEuS2Umv+sZX9CG0q9qbL0WCEUqEHI4szbRlH+PHGMv+0FCEOY5mOfj3yp7/Y0OKubgF4DIw1\nxLIYt05K2jdIueS4iX9qAHdcjyxOkTRFxMmtTMq1LSVdK7U4kqVLxBxG1hupkyxNn3EpSFtqUcoN\nOwnO2aaCnSIhN4BWiya0KWlqceJUhvJJHJpTFDvVzMmVtiJ1iiYcxljc2NpoO3Q6dHHV62G4Z3Zu\nuHtSaxyZJSU9FbDo2jm0La5C9YZxGCeuZzngexZuttqml+cAUE01JEEATzjbqZRVEXpYCnLW9Nk4\n1M+kz0ZM+qysnSvkRoMRyrNvrCu8WVIC805Jc+lUM30mSUmruClpa/S1DSnpkUwPJ1KLA0+BvuU+\n254Va+PGma4XbhALTrtyKWmOG+M+N5mSnrCpbDpSFLt8Q5qS5tK9ZV/6fQc3M9iKqTcoqEG3K9s1\nb+hNFjkl7RyLffMPozcVN9xTcHxt1J4gVislbdlkJ01Js9xESElvqQijUur9DbYjQQKPgbGDWVvT\nZ2YUzTnxW1aC3ApvKE2zxU1Jcw7eVBQtUkp6NBwBKJxp/YDvCCkiZ+2RMH1WOzo2Y/psIrUoTUmL\n064WbixOkTh9Jo6+MvrARdGM+xxU5iHkxupMA+5IEZeS5kpghGUemdCmrJEi4cbCWnqjcZNv2FgX\nONPCVDPHjVGiII2+lr9PcePrMzPelGPi1GPyCtlyMwtbEhU4/wRHGBmb0vvs5KYI5pi2koXsLJkz\nWty0hCnMkpL2pQR0B5QJ4UtTROMoGjMJclGTymBlcuKUgMWZdq4Ey0OnhX2OlS5hC/RLp6j4vIPi\nQ5czbemzNCU98Sg40g6dLp/EwekNyfRhSm+kqUWXPhR9JoxAI48zzUVNPLYyNFNJ5uIqkt5M2QoX\nfW3SVoTjiNUpgh5xFo4j0vKNUJuSRIp8pQw2fRCmpKdSkKG2Ihw7O0J9CLWpOtwMOL0pHUbzMXmu\ngIV0/nH1WWhTVMemhjKbsupNSyGOMBLRexkRpZT6zRnbk+BDnZR0NdB7wuN9+fmK4hSRrW5mY1qu\nHKTYHZ3F91VnE0rSJb6UADeA10iflYOZOEXEpqTDVrU9LpVkiapK02wjM11Sps+KSBEXfZ1a8TtS\nP+IomjR9VvRZ9R3OtC3K4dslbYuimdwY6TOnPhjcSOXYlLTQpsb3WYEKAdujJ1m98USKpiZBM1Ik\njExztlLaFMdh+TnHYZ0oGtnkbOlZ28kDGjfsQsNlUzNmKijQpnQenfpgRNGGHIflPOVYaEjLediI\nc6k3pq24bGoQalPwl3lwQZ+WQuwwAjgZ0zWMBwHYCeCG4iehSVhX/LKJ37qKsTpF4xWe7SHs4gij\nkhnYlFPkMNjy7K9yVS1Z4ZXX5DY5WGuPiu8Yp4i67iiHMUjJB3pNzvJEGHYwM/rSnTWi5HGmpyZ+\nM33GtLEbmnYVOkXSFT9BxqHeZzbN5uLGcIpiF+izNsVxY9znKsIpKPPwRhgtE78zwsiNIz5bqaM3\nBjfylLTmTLsm/nLznDDCWJUHMZFpbuEpXUCIbYpzpm02UDpF0kwFswgbR6btNjXe/Sy1Kb/di0tb\nAm0qJ0U4/1RO8haKMCqljrS9T0QPBvCXAJ4WqU0JLngijKWzUxVPA94BvKqTmIiGjKNoqjNWDVtK\nQF/hjcZPZ/Omz6xyllWtTa7sc2/AyHmOK7BdLxeYTJ/ZuZlcyduc6a4lomTv8/SkZZOzpc+83MDf\nPttCw8qNVG+A6dSio41dT1TVpjcT3GxauLFM/D5uMsg4ZLmxRYo6Dm4sR3tYubFETaz6ILSpUm+q\nNC1jKza9mepzdaJABJsCvDZl44a3lTCbqja/MPpQOdOdDkaKvH2ObVNg7rOPmwmnyGJ7Vm4CbUp3\npofFASmsrTC10Jkx/zhtKtL84zuzdJIb4Tzlyeq5uVmeCOPMNYxKqS8AOBv5OY0JTcKTEuBXMQ6l\nLGTNYmJXuoStTQxd1ZaD1MhxPTOKBv/3Thgily4x5bhVbbnjtmMfLHrS8xW5uhlXFI1JEbHcWPrM\n7pK2yXm4cX23NKIkf/LC9MQfixtp9LWyFYdNsbVoNdNnwdFXJn1WR2+kNuWKvoo3+ki5kZ4oEJiS\ndnLjidpztdCcTUkjh+KNPpUjyEXRwmyqqpnudPgyD1tdsKcW2jVPhdqUs8+BNlXqTelg8ilpQWTa\nWFwN9gWHscAPAdwn0rUSXLApZWmIttojW9ExyQZwV7pEnD6TpqTrps8CUtLi+k44BimTm6IgO8uK\n6GvgQF9FGEf+vpTcVJEiLiUdwI01XRIy8U8tNJiUNDeAm9FXFzc1U9K9gJS015mexSmScjNjSjo0\nfRbNpnSnKFZKWphqDrWpbOTnkOXG50zr3FicIm6MFddCCxflUjlWb2awKWn5hpMb6RjrshVGHySn\nLRDJ9cHpTHsjke1PSc/sMBJRF8CzAFw5c2sS/NAcwW5XU8ossz4PFf3x8yqtm14wll3JJlNEroGe\nLdCfSkEyA3jA+VbdLibSZ65BKu+zw5k2rqe30ekUldyUp/2zq19moBcWq0/tzJuVG73PvtrXAL0x\nI85TZ8uZcq5NL2b0VXh0jLQInY0UWbixOtODAbqdSaeIi9qztsIV8rsi085JUGhTxX2W6I05ubki\nReWz5jmbktqKLe3qnfiFNsU559FsSuvzajbZRnEUzbXQkHIjfVRkUcLTFepDHZtycWPOP7PalPRE\ngakSmFn1oY5NuaKqLYS4hpGIPmd5ewXAUQAOBvCCWI1KcCBKZIBZ8Y8cylszJc2lN0LP/hKlpNc8\nzrQ0Pav1eSrCyDnTbBRNlvqpduZFT7uqqo3OHZ3lrnkhN5mLGzMywPSF1RupMz1DStqadrVtEGPS\nZ6atuM6WG0dD4tgUScs8ZkhJW/VhOBxvEJu1lMGV0XDZipLZVOkUOVOLM6Sk2T4bjiAJGFehAAAg\nAElEQVTLDdMX8SNGbWOs5fGKNCz0YV42BUzNP85xxGFTtbkx5h+n3mRGn/vN2dQUNy1ESIQxA0DG\nz80APgzgl5VSfxW/eQkT0Cf0jmcVY8gBY0OcCntLUwLmAM6kfkJ3dHIpyFAnmU0daOmzjFn9Tg1m\n5dNnSuspJ3SOG2mKyEgtindJW/psK8jOMC7AnHCmS6cI0+mzqfrOqdRif4Kbus60dNf8lDPdQEra\nGQ0xbIVNSY8m9cY8W05qU9KoarXbNbJN6X2eiL5auKkeV+lyprk0vGkr3HgjTKeWB7lLIkWicaQG\nN9Wi3GFT0hMmfNzomx+bGmNr2RTZx06pTQXPP0w5T+2ARUSbKtswVS7WQogjjEqphzTYjgQJ9FXM\ninD1W0WK/E6Rmd7gVr8d12BWDlLcQadVNCT/vMPVFEmdZMvOz8kVoyVS5BrApyID3CQoTBEVfXX2\n2eSQizAGLiCccmVftKOEKn0w9SYwamJL/dijbTJ9qM7lZDgsU0nSzVIZhiClpp3psi/6+YqMTY0X\nGoUzzWwkY88QNCPTjE1JnSIS6E23KPNwLq4c+uCqmTbHG9XpQhWHttl2u/LjjVwfOh2gyzlPnK1Y\nUotOfTCj8a60q8ENW5vIcVONN6XeyPRBMo6E2JTODZeGly40OH0YjzdMxNkcb3o9jPRHCGaB+tDv\no7NNziGwdSOMCYuGdBXjixQxm14y1wrPrA0Rr/CY1GLs1a+ZEjDltL6Yq9rQCKNr9ctHTWQcjg+L\nnTGqKpXT+jI18TMRRic3gfogjYZUtWjCczmDuXE50wiIhmBy0hJz49IHM6I0azSEsxVpZFrry9Q4\nIiyB0aP21o1kbPSVcaal9zlChHFqjDWcIjbCaHA4VcogiDBOONPmLulI+hAlMu2IxnM2JZ1/xFH7\neduUZdf8MkQYgxxGIronEf0TEf2MiAbF6z8S0T2bamCCBmkUTZOtGw1xnrTPrfCMyY1b1Y5TizOu\nfqVyWl/M9Jkz+qom2+iaBKfSIIxTxHHIPt1mjty4dpBLuQk9yF1SoE8Uoc81uDFtxVUXbPbZZVOx\n9SZan2fQGz4aP9kXzqbY8SZw93NsbqrINJHAmWaibYZNlZFps5RByk15L9gsTixudOepLPsJnX9m\nHEfEesNlKmJzo28Qy5i5uYUQp6SJ6H4A/h3AHgAfA3A1gFsDeAyAXyWiByul/quRVibkcEXRXAP4\n5mYxgK9VKyi2QL9c8btSi1yUw4iiSdNnHW6FF1hM7OWmdvrMz2GHK7yfcqaZdEnxfRN92TstJ+ZG\nqjfQVvyu6KsriuZIu05x44qGcBuCzBU/80jC2twIoq+VTTnLPIwoGpuu97eRjaJJ+6xz2MPEoea1\n9cbUh5HMpipuHM60dDPL+AiqGe+zLrdNqDeZko03XPTVoQ+ujAbLjSv6asplwuirVB+Msh9CljvT\ngNuZpsk+sw7jaBx9nShlkI4jZqYipk1JbGU4LPrcW6qUtNhhBPAWAN9BvsHl5vJNItoJ4Pzi84fH\nbV7CBEql3NzkJzdH+oxLCWRsukSW+hFH0crIgCu1OIeUNLviF6ZLOsZgJnaKmJRO9YzoXg/DXW65\nJlLSzonfjAyUEUZXKUNoSprTh/I+648I23T0uaut+OumKrW+TJUyuJwiY0IXc8PZVKwzBKsTBWTp\nM4lN9UI3vRgp6Smb4koUqkVYoE3NuunFcIpk3Ew6yS6bMqP2Lmea5aZaeDJyEDrTLg5dfS5qobvF\nU2DQ602eSYhxG83FlcumXM50VcpgRhi5TS/cSRR1bEoy/xTcEFaRqVEemS54arPDGJKSPhHAW3Rn\nEQCKv/8IwEkxG5ZgQUiKSJv4CaNcKeFe4ZmhflfqIDhFxJyM34rUYjlIMWnXDpd2DeQmeOJvdbqe\nib5ymxIaThFJI0UhelO2kdUb16aXUG6ENtVU+kykN6E2JU1Jz7oJKrZN6X2mfpjeBDrT0WwqcmmL\ndHEl4kaoD9KxWFqbGKo3scdYL4ctRIjDqGb8PGFW1DTYCTlzheeIHDrTJaPJSYtLCXRihfobSknr\nzvTEAd+aHMuNNH0mnfhjp5pD0mcOZ5rb0cnqTWBKmi1RiJ0+A/hIkSMNX3vil6YWjfRZNJsKtJWY\nKWlTH2rblJGSZs8sDUlJS8fYTMYNu0B1cONMSQvLN6b0pmmb0vvM6U1pK+aGILZOvODGUQITalPi\njMY8baqFCHEY/wPAa4oUdAUi2g7gNABfjdmwBAtCUovaxC9KQQpT0q7BzEwJRE+fhaSkpekzCJ1p\nc+J3paQNZ9rpFJl1m3VTP6HpM8idItaZdkWKHHrD1m2Wk5t013zs9BkEK37DmebSZ5XzpBib4tLw\nNaOv0dJnJjeMTQHhKWmnTQlT0tVzkIW75mdOSWttZMdYY1EuTUmzUTTheEPcmaXzsikfh4Y+OBca\n5gKVsSkuJT3eWDjnlDRy/nQOR+NDCFqLkBrG1wC4AMDlRPQJAFch3/TyaADbADwkduMSDKys5K+B\nKWlJeLw604tJs5lpEPdgZgzgTORQdN6Z73yrMn02HKKXDWVpEOnqt5Dh02eTHLoekyd2pgOjr6Lz\nFYWpRakzXS0gSqdIyI07+lrIxUqfSSNFIdzQAIBCR+UCLme6I0yzZUrGTRUpimVTIekzITdTEUbX\nOKLstuIaRzh9KCf+rotDqmdTWURuzFIG6eY5boyV2lS3jk1ZnggTtHmOBuiVyUfJGMuVeRjzD6c3\nbEnUYJCXRHHcNGBTyxhhFDuMSqmvEdGJAP4AwCMAHATgOgCfB/BGpdS3m2liQoWQsLc0wlgZbFgU\nrcOkS8ZHOUSKHEpX/MOhfFUrjL5W0RDljwyw3BhRtA6XBokVfS37UhWhx4tMSyNFZjREdY0VtVRv\nYkemtTbW0htfZNroMxdF42xFHClqYhNUUKZCc6YdaVfTprgNQSw3XJTWfMSbUG/QoK24NiCafa6t\nN5WzU8jV0Yfdbm7kNqVYDk1uuDGWs6mpXfOcrQwEcl2jz32LnCTDJR1vWoiQCCOUUt8CcEpDbUng\n0OnkkTSlplKLU+FsW0qg252WM1ICHSNSZF7PrJspV3hTcpVTNF5pTXy3Nkh1dUM05TSD9cqV372x\ngdXOgJfDdEG2S25qR6fr6BhHfY3Jte2YCxc35mo1lENzwF3NhPpAMg47jvTZlJzpTDvOlqt2LSpG\nHyxPm6jFodZG1lYc0VcXh676TpetOPtscBPNpjgOZ+Wm08FIkVXOPFFgihtj4udspTqey8VhNsmN\n1KYguM+sTTki0yPqWOXMlDQ3xtr0ZsKZLp2iYSSbsmwQ8+sNpuTsC43p8WH68auy+YdC5x/L8VxT\ncmsGNxuanLZrfqUzFNuKNxLZQniz5USUEdFjiOgeHpl7EtFj4jctwQpt4o+ZkjZTAuzOPMWk2aR1\neoGP4Iq5a7GLgX+FV/ZZmC4x02eudIltMJtLShoh+iDkUE3eZzYlXXLjir4Wcs7UojT1Uzt9xtdl\ndSEs85CWb6jJPrsekzflFM1qU4Hps6g2pWTjjTglLT1tIWTTi3TXvJQbNelMi8s8nHXBQluJpQ/a\nrvmJgEUkvcmd6SLCyJREdTm9sSwgRNzUtSntu1e4ubns8xKmpLnyyqcBOA/ALR6ZmwGcR0RPidaq\nBDccK37RIOUbwI3omKvouHpmK5MSYIuJG0yf1U4tulJJRp/ZlDQ30Jvc1E0tNpF2LQd6Tm/MqKqL\nG0eKyLVjeEpv6urDrNz4FmHSMg8zas+lzww58zF5VZ0et4s1pEBfmD4LSbtKOBTbStPlG2YbQzaI\n2aKqUm4ENmVme1x609jjMT1tnIiqzqI3mq10MP7Q6Uw3lZKe1aa0Nq7GKolqITiH8VQA71NKXeYS\nKD57D4BnxmtWghM2h5EZzCSRyHxyU1XEyFnI79jY4Yqi1Sq09hhs7BW/bEMQEykyBinn6rec+Gcp\nQp81UiTVB2kUzeDGGX01oqpOvamcIkYfQiLTwkiRODLN6U2pD8KNZFJuoumD4RTNlRtp9NVhU66N\nZE1EVcVZHGk0XmhTmTAyzY6x0rFTalPad4ecPSmdf0JsioswRpt/QvQmMKvX4/rcQnAO430B/Ivg\nOucDOGH25iSwkBqsNvFLIpEdNRiv8LLMecD3VDTEabBh6TNp2lXSF3H0NSh9pjnTTEqa2zEsPsqh\nifMVpTvDuUiRuYBg+pyZco6IUrlrkdUHLjJQI30m1QexTXGRIkf6zCUnPvYkwFbM+rtZ+yy2KUMf\nXDZl7gznnOngccS32BbaStM25cpomHqjOp6aQwk3IZspA06YkM4/Ijnh/BOako5pU+LjubZgSnon\ngOsF17m+kE1oGrY0CLPCk6akJWF0V/psKooWKyWty0VOn4WkpDOMR2KxM+1wimCmFuum2Wqcrxh7\nl7TpFLl2xbILDWmfG0yfSVPSoWUezonfwY3r5IEm0mfi8g2hXN2UtNMpGsjGm2gpae2a0W1FmJKe\nKvtxZirsemOeiduash/fIkxoU+ZpCy6bYktbWmBTbJ9bCM5h/DmAOwiuc/tCthEQ0cuJ6ONEdBUR\nKSJ6vUf2uUR0CRFtENH3iegFDrnHEdE3iGgvEV1ORKcTUYtvVQGpUgamz+Tp2cl0qjMywKUWG0yf\nRU9Jj4TpEiMN4q7TGyDLPH3WuOl2PXJaG9n0WWCKqKPkHGYYIoPyOtNmisgZRWsgfRaNm0CbyiNF\nqjqBgEtJz8xNg+mzlVjcGM40ZysVN2C4KXb4Rj17UprFEfa5K7SpjlAfSme66yplaDAlHX+8CbEp\nnhtzvHGWMizSpjj9aiE4h/FLkNUmPquQbQrPBXAogI/6hIjouQDOAfAhAI8E8EEA7ySi3zbkHlHI\n/CeARwF4O4DTAbw5estjI9AQpSmiTDFyjlWtO8JopBZdK7yQp01ksjaKi9A5bspJi+OmWv2WgxkT\nYYz51ABtkIoiJ13xS7mpJn6GG2mfa0RDekK9kepDR6gPHS4yXdoKl66XclPHpsQRxkjcVFE0WdrV\nLG0RR18j2BQ73thSi0w0Pgo31VgsHG+asClhn8VlHtIx1ph/OG6i2pTwCWLiCCPHTQvRZT7/UwBf\nIqKzAZymlNrUPySiHoC3AjgZwAObaSIA4Fil1IiIugBcEcMugDMBfEAp9dri7c8T0eEA3khE71aq\nrIDFWQC+pJR6nia3A8DpRHS2UurqBvsyG2xKyaz4pfVWErlxNMRfQ1KtyAaylRv73Rsb4nqrXgA3\n0miI5HqVMw0ZN90+U18TWKAfXKIQQ2+GMg6zUG6c3x1eb7UaUKAfk5tsKJQbBNqUMBoSs95K2mep\nTWWjfv7oSSiAiI1Ms/Wd0hrGwA1iQ/16u+1yOTfDaBxmRvSVy+LMbFMupygkOrbp63PGXi94/mH6\nbGa4ate+aucrio8SChhHtlSEUSl1IYBXAHgpgCuJ6FwiOrP4ORfAlQBeDOAVSqnGniWtVPFAWz9O\nAnAIgHON9z8A4GAUDi0RHQHg3g65HvKIY3thU0rfyg1MeFxb/com/mJVC/9gZhpi7ZSA1kb5zrwa\n56LN4hSVkQEjReSs0wvc0VlrAJ8xRcTqTagzzXEj1Yca6bOQZ0RLd4ZLd3RKrmdObnNxirQoWsx0\nvVQfpDZVctPjuOH0IYZT5MloSMt5pCnpypkG3M50rJR0nbIfqVMkTUlLy36MlDRfEjXjIkyTjX72\nMTf/tBBchBFKqT8loq8DOA3A4wGsFx/tQf5s6bOUUl9srIVyHFu8fsd4/+Li9RjkjzG0yimlfkRE\nuwu59iJ04hcX6MdNSZuh/topAb3P0rSruAh9tpT01NMFjJS0K81mTvz6Y/JsTtEsKSLb00ek6VRp\n+kykNwY3ztQi1+fOAtNnlU0JORzKOFxk+qyHPrJ5puulelNFGIXcSDeImZEiRm/6wkV5FWH0cSO0\nKTK5Mc8kNPTGHGPNcQmDATo9wRhrZnFi2JQaoIvOlNz0k3/kKemJyHRx7emFRlESVcOmrE+jKZ41\nL7WpCTkz+iq1qRaCdRgBQCn1BQBfIKIMwK2Kt69VqnjGUTtwUPFq7uq+zvjcJVe+d5D5JhFd4PrS\n448/Xt7CGLA5jL0ehnvyX4PD3loaRCRnrPi5CGMpV/tsOU02WhQtkBtx2jUwUmRyYz4mbxm4keqN\nGUWT6s3UNWnSKYrZ55AomjQNL+JmKIyiSSNFhVMk1RuKaStSvZFyI40w9vvo9AS2UjhF8W2FT0nH\n1huEcLMm46aZcUSWko7KjVEStZTzTwvBbXqZgFJqpJS6pvip5SwS0a8UO525nwvqXH/Lw6aUKyve\nNIg37F2ufoX1VjQaiNIl5oq/fs3auI21zleMkD7LODkjfVbKuo6YmYq++lLXAemzKLVotkgRM4AH\n1ekF6sPUY/K09Jn5zNbGuZHqjS2KJnKmHXoTYita+kzSRvFZg8IUZEgtWh2bEp9ROQs3Ur2xZXGY\nlHRMm6J+H1kmGEdCxtgsrj50OTlb9NWnD0Kbijr/BOqD1KY6WzEl3QC+AuDuArndgdctI4YHArhK\ne7+MGF5nkTNxoCZXQSn1ENeXnnDCCSqolbNCM9gVbFbv+QaziUika5BSzHN0y0lwYFzPkS4xa4q8\nKQE9UuQL9XPP+tVS0hNyZrG65hSJ+jySPWOYhgNkGKJT7IydSpe4IoxmetZ4kL2oz0JuJmoTez0U\nwS3/in8Wbsr7XKTPqsi0Y3ejS2+qs+XKNprRkCa48TjTIpsaytpHg0luvLayMpabKmUoZYv0mcim\n0AckfZZyI9QHktrUQKg3ZqRoHvqgLVB7wpS0yKaGQpsqbWXk4MZwpiV9iW5TUlsR6sPU/MNxEzje\n+K4ZYlNRuGkh5u4wKqV2A7ikgUuXtYrHYtJhLGsSv2uRu7AUIqIjAWzT5NqJwAhjV2mOpS8SOZTJ\n0UAmV54hWMoOOyuTcppTtNodiq65msm+e8KZnic3Q+OeOJ6HynJTyhZOkeS7pXJT3OydjZtMyE02\n6I+daVvtkc7NuoybtU5cfZiSczjTsbnJU4sKq4Wsr/ZV15tRN+emKmXQZKW2skJ9IKKtROem7POg\n4CZbccp1Oog6jqxQH31xnwesXGfUEDd9h6049Gb+YyxF44YCuNH1IQY3tcdYT4RRl5t4Sk9L0eKm\nBeNC5IeHP814/+nIo4ZfBgCl1BUA/tsh1wfw6WabOSOkEUYtDeJ1LG2RIq/ByuSmIkWuiR/Gys3T\nxolVrW+QgkyO5ca2+vW0j+XGFUWbhRtb9HUWbmxRtFm4KfVB40b5nGmDm9IpmuAmUB+kch2h3mSx\nbWowQI/yD1Wn43amF2lTkfUhC7GVTGHFFX11cKN6K5OlDCHcSPXGFomcRW9mHGOnnGlXFM3TFyk3\n0j5LxxuxTcWaf1wZLp/DKLQpMTdcn1uIRaSkg0FEJwA4EmMH9xgiOqX4/VNKqd1KqT4RnYH8oO6f\nIH++9ckAngPgJcYZkq8B8AkiOgfAeQDug/zg7re3+gxGYGLlpivb1OpES4PojuWUXDXQM3JaTZFE\nDv0+OitaNER7bFWFMn1GsjaaTrLruyeiHB45lptqkLLLTQ30fVk/0O+js03ADYwVv6eNLm6m0yCy\nNoq5EeoD9ftVBE1f4Fj1psNwY4uG1OCmtt449GFq1zwnp/V5vbMJDHg5lhut3ldqU1SHmw0HN9Jx\nRMgh+n2sdsp61g5GxRQg5WYi+irlppr4hbYSS2+k3Oh91pzpqdIWfbzJlKgvUm6kNpXrg5qS82Zx\nfDYVMv/oEUZzB7lR9mMLvgT3OXCeMm0lOYzx8GJMPnHmicUPANwRwGUAoJT6SyJSyM+OfBWAKwC8\nWCn1Tv1iSqlPFQ7n65A/peanyJ/ycmZzXYiEauUmjDCOZKnrzEynetJnIrl+H511z+pXk53Ytcik\nBKRpeFFEqUFulCBdIooUCfscUqIgixRF5qbfx1qnDwx5uYVxI+yzWG8CbGWt088dxgVwQ4vQm1Bu\nODkjUhSFG9XHoI7e7HL0WWgrIdxUznS3Ox21J8r/GA4naqF90VexrQjl8l3ziu+zkJupsh+frWQK\nPdeml1LWrIWe5/zDybUQS+EwKqWehdyxk8ieg/zxgJzchwF8eKaGLQKlYY82RQW4HTUQbY7Jhoyc\nli6RyJUpAXOFZxvAeyRrYxey75bKsdyUfR7J2keDAdZoE1B+OZObqZq1EG4C5VhutM0LUbjR9GG9\ns5k7jF253li50dKpc+WmnNyENhXMDfKNLHx6Nq5NdSLailhvuHFE6/Na5uHGcIqicBNqK0JuWL2p\nMcaWeuOMUHW7OTfZYIqbiY1kgTYVNsaOxnLm8W9a+YZ0jJVyUy40VM+yObOULTaIlde0biRraJ5i\nbaWF2Eo1jPsGtFWMt7DWFvaeZYWnpRa9UTQtJdDL8k0OyrbJQZONVmht2xnurTGTXS8L2OgzHsAl\nq19HXVYIN7Z0ibc2UViQzUWKpNxo+lBN/IzchFM0S6TIlk6dxVZsqcVZIkVan1czj5xxlJCXG1va\ndZZIkW2Hr7fGTMZhyOYFb4RRu6aeqZiJG6lNaZEi0TgiHWPr2JRtvNHaqPc5hk31hH3uRt7oQwE2\nxXJjGWOtG8kC9SHEprzXayGSw7hssIW9vasYeahf7BQVhuiNFGmToOpZNjlosk2kXUUrvAbSIFWf\nmUL+lc4QGRRUltmdaRs3viha5LRrrQHct+LXJn7rAD7lFHmcacskKNYbX9REmnaV6k3AQsMbRdNk\nWaco1Kbq7H72RdECuBGnpOs4Rb4IY+TyjVo25YswhqSkM49NabJSvTHr70TcRJh/mrCpihvGpnRb\niWFT4tM3uGOWWojkMC4bApVSGuoPOftL6hSxk6A0DRIoJ94ZHitdL+2z5hRtozw3w61+J/rM7MyL\nkj6z7VqUpl2F+mBdaGiyFTedzvTB8AY3kjZOcOONvgq5kabPAmzK60xrsrlTxEemQ9JnkjaGnLYg\n5UZqU+zEb9nh64swRkstho4jwtMWEGu8MbjxOtM2m5KONzHGWKHeIMSmhBFGKTdSfWDPV7SNNynC\nmNAIpCs8aSqpToTRV28V4hRZVm5lSqC81ESfFxVhrFGgz/V5B+WV8SGrX++KP/amlwYijNJoyLbi\nzP5RVx5RihFhFEdDpDbVQISxtKlRx7LJwdXnSNGQtkcY17JNfpNDIDexN88tKsIojaKJI4yRbUqa\nxdFPouA2FlZjcaQIYxM2lSKMCc1ipVDoOrUhzCAlKiYOGMC3Uz7xqw5vsKJUktQRjM2NUC5o4q/h\nFHl3N9bhhnGmg/UmklNU6Q0jJ53cxLVoAU7Romyq1BvJJCid+GWbFyLbVL9Jm/JscgDQk3IT2aZC\naqHHNh+HmzXaQLd4Go2vBEZcpyccY6XjiHk8lzdg4etzSIQxdP4JSNeL+pxqGBMah23161NKYSop\n5NBpaYqonPhHgrSrJJVU69BpGzeBKaJa3DB9Zp0iGzee3Y3RDuSehRsP1zo3nD6wznRg+kyqD2Ju\npPrQgE1JuZHqA3t4sLZrXlqi0Bw3Qr1xLVCrzQuRDmC2ceOzFSmHgwFWyTOOWJwiTh/WkUemh11H\nPXmNMg/RGCudf6R6w42xtgwXow9rtCHanBl7jGVtqoVIDuOyQRpFs+1ajLTCG69qmQgjirQrE2Hs\nYXyoc4wVnjgaIowMhESKVmlT1GdphFHvsy9dEjsaIo2qBhWhkywaUukNF2HUIgPlocWAvZRhWSKM\nnD5IbUocYYwdtRf2eSK1yG6eK7mJb1PRI0WRIozBtdAcN0poU1JbqfNY1UjzT6kPnA2UZT/OBWoh\nt660hQZT5hE8/0jHkRRhTGgE2gAuijAGPM82uG4m0gC+poq6rMyxycE2gM9SGxLIzUT6TDjQc4NU\nOYA7oyETEz+/Y7hWLVqMXYu1UovCAZxL10NWexTbKQqp9y3bx0WKpM60lBt9clO9FefZcrUO5I4x\n3vT7+ZmlLm7K8xUBbEPpFMlsKppTVCftKq3TkzpFXJ+FY+zYKfLLSTNXXamTLLWpoIVnYC00M8bW\nsakou+aX8EkvyWFcNkgdhNB0yVC+27Wc3Lg0iDR9tg5mMKuRZhNFXxeYPqvS9Yzc6qhIJWWOTQ5l\nn+ukZ6W7XSNxI02fVdww+pAXoXs2OYSmXWOn63VHUJg+k9rUMCBd7ztbTryDXKgPIanFclMC1+cd\nmXAcKSb+Iac3sZ4RXaOUQX6iQFhpi3SMleiN9ESBxtL1rN6EzT/cWMw606H6IN1BzvW5hUgO47Ih\nMIoWkloM3e0qTxExK7xROdD75UJSRKJoiDR9ViMlLV7VMnJrI5mcdMUfUqAv0i8utag5Reu0N++L\nNIom5GbIpJIaTS2y+iC0FeEGMSk3PSXb5NCR1kILo2O1bEU6jnD6IORG1wdfKUOt1GKsMVY4jlRO\nEac30nFEuvu5AW6i21RkvRGnpOtE41OEMaER2JQydmpx1gjjVNqVSUkXD1/lrhdyzEVwimiW1KKe\nPuMiRSY3XLp+JOMw9rN+Q9Ku4wFcVn/Hps+KPjujIYbeOCNKNqeISS02diRMLG6kejPMJ8FBx7HJ\nwbbQkKbPInGzwkXjA7nZNpLJrShmk0ON1GLsY5bYDWI1bYobR/TTFrylDA0cyC0uiSKZTW2TcjOU\njTchB7lHKftpIZLDuGxoLBrCPJs6y6o/5AP4Lbkct/od5nLDjIsMbAqPhNmUDWYD2fVoc7PalKOv\najPdegrZHbhlSs478TMD+Pqg4IZzGEf2vkxFTYayPmecPpR6s7k5XkBwZ09irA9TE5Emt03J9KZa\naHB6o/fZO4AL9UGoN9jcxErpTDN92S50BLcVtsL1eW0g47ArfSb9QGhTfTk3a+Iomqzet1pocAvU\ngTbeeJzpjsOmao8jfRmHuk1xkcPtFluxjUvlWMxlcVaGe5BBYUQZRpQLTJQy2J/2TnwAACAASURB\nVMaRGmOsOS7RplxvKmdayA3nCK6PxjblG5e6ajwPiOcfZoxNm14SmoU0GrK6CgDI+ht+pSzkaGMs\n55z4C1l94vfJbeMMtpBb45yiQq43lPWlM9jwDz4lN5uy62Fjgy9Cn+LGL8cO4FPc+OW6IyE3Un0Q\nyk1ww7Rxu5SboUwfSm4GjNwENx59EHMTojecMx1qU6NAm8oYboQ2lQltqgluKqeI6XO58OQ4XO3L\n9Ks7iGxTmzIOJ7hh+sw6RVPc+OVWB8zi3aY3vjFWyCE4vel2c691NKqOCGK54QIWBjecPqz2iwUJ\ndaAomz4Tt9SHGW0qa7FX1uKmJVjhiDCWKyNTeam/MbHacclhY6OKhqiORQ4A1tYAADtxM4B88PHJ\nbR8Wcpn/eusDRq5yGPdWdVnodqdli+t1BhsTzrRLjuWmkMsH8PGq1roKLSd+dfOUnK0vFTcMhyU3\nQ0auN7T3pWqjjRuf3mzW4Kbrb6POjXVwLOS2jWQcrvUZueJ63aFMHzKOm1JvOG50m8qm9cZqK0p2\nn7cJbarkZshw2HHozZRN9YU2JeWm38cabfi5KW1qxPTF4IbjsOKG4bDLcaMtykW2sslw2Olom1nG\nUVWv3oym9cHqFA1k+rC2KeNQOsa6uLE5014OiSrZ8fwj5EY8xvrHpVWL3kxEX7WAhUQfMoc+pAhj\nQjxII4yVUu4NX/ELV7XiaEikSNHKZiGX9QAi2Yo/djQk1opfGGEUr/gHeyac6VlX/LW44SKMgdEQ\nsd6ERNHmEWHUoiHbFhYNEXIj1IdMaFNspIgIWMl3bVelLVzEWcmiY2tcut6MMDLciCNFsSKMmuy4\ntEXGTSybGnPjb19HGmEMGEfY9GwoN8Ixli37KbnZjBuZJs6mWojkMC4bpDWMtpWbx7HUI4ycIZaR\nIm6Q0lf83oG+z8gVbVzZyOUGWf6IPNdqNRswfZZyU0xseaH1hp+bqSiaX27bIJAbZnJb2cgHs362\nwjrTEn1gucmycTSEq2k1IkWsgzBg+myu+LlShv4edDDCCPnmJJ8zHUVviKzReL8zLetLGQ3hFlcs\nN2WkyIiiNc6NJltxw9jU9lEz3LClDFyfbVE0xikScyMcY1luyqiq1KY2x2Os12GU6oN0vNG4YcdY\nROKmWnjKxliWG1umgllopE0vCc1CusNKuqrtdvPJfzisdvhyK7JycuNW8uNVbZwoWhlhZFMCdSKM\nNjktGrKDK7w3V/yc3HCc3oix4u9p3AAIrpuZKRpCgRHnSHpTpc84bjY0bjzOtDSKFsKNnj6TTG6c\nnDiKVuoDcXqzGx2MMETmd6YD6u+Co2hCbvhIkdCmNoVRtMGGf5ODNFJk4cZ5uHjZZ8juM7sJyojG\n82OsjENxnXgAN9XGQuY+75DOPyMhN8IxdiVAb6KNIy1DchiXDTWcIumqVrphY7uw8H5duHJbE65q\ne2WEkfxyIWnX0GgIt1rdLoyirQ1labGKGy5dv3fMjVJwFmRLoyFs2lXnRhgdqyb+SHqzIky79vaO\n9QvwONMNRIrKiZ+NxgvLN9aF0bFVod50N8YcAm5uQjZBiccbod6EboLi5FaE4013Y7zJAVk2s95M\nbCyccxZHqjfjsh8+wrgiiEyzY6x2XM4al8WpAhay+yzOcAkj03qGy8tNQIlCijAmNIsqDbJXlEpq\nJBoijjBKV/wyucopYuTMQusoUbTASBEbRZNGQ8qBnosUBXAjXfF7OdRkK2eai4aMZHqzJo4UFXIc\nNxtjDr2lDA1E0XYKbaXcBMXdPyk3K1Ju9o7lAKEz7bOpjQ2sYryZReYwyqLx7HjTl/V5ZUNmU929\nYznA40xLszh6TSvHzUjWF3mmQqg3G7Lv7e4tHEv4nWlRFicwU7FDGI0vS1tYmxJnKmR6k8/N+ROo\nfPXkKcKY0DzK2qON3WOlnGVjhyYrjaLF3swirZvpaVE0sVMUqdBaHEUTr2ql0RBZJFLMTcAmKCk3\n0hV/5RQJ6zZjRUPKya1PK95SBuK4KcoTqN/HGvKn1jgf3RbIzbo04tyX2Uo58fel3HDRV24c0Wpa\n2UeCmgtPYaSIr00M3TzHcLOn4JAYbjYYvdFkK6dIupmF1ZuwWmheb8Jsio3aB3Ajnn+E3EizOKuB\nNsVzk0em++QvgRHNzS1DchiXDaXDeMuNAIC9tOZVyjCn6CYAkok/l+MG5vV+cT22mLi4HucU7cnl\nuEkw27tbtMlBj4bE4mbbUCZXcsP1eXVD1ueulJuNveO6LNcO3ywDjUbVxM+nFgO5Ydoo5mavUG92\ny+RYp0iraWU3bNTlhtObTaFNCbnpFtz0mVIGNiWtye4PWV92jITcDGR9XhPqzUogNwPGYQxZlO/X\nEDdcX9aEetPbKxxvdo31BnBzw+6a12T3E9pKMDecY7kRNv9wi/LObhk3yWFMaB7lGWGFw7hJ+d++\naEg18a+tMQabX3PY88vtGOZyg+6632A3c7k+I7e6t+hLxy/X21PIZf72jZ3pdbszrUVDyokf6/7v\n3llys+KXG3Pjb+N6bG5253IbmV8u2533dxM9eypJk90f+TVHK4zejGTcbB8U3PT8ciU3g47/e1cq\nbvxyXSE3tLEHK+jnCw3WKZLZys6RTK7kps9ws1Zws8noTclNn7GV7q5pm8oyW/R1o4qqsuMIZPpQ\ncsPZyraBTG5to+gzYysr1Tjilyu52Zut5/3xOEVSbvaXcjOUyW3rC/Wm4oaxKSE3nV1jmwL8TlHF\nDTPG7ie0KekYW3LDzVOroXrDjTfF/LPhmpu1YA7LTcuQHMZlQxlhvPkGAB6l1GpDykGKG8zYAbw8\n5oIbwMsDUfvMIFUe5bB3etLyTm7kv16HM1hNtuRGrfqvKZ3cqomfGVRKp8g5+JRHCe1hJv5yASHk\nJrtZwI3UKSqPuQjUG04fysmNG5hXuAXELNzYFhqarNRhLCe3PsNNNbkJueH0geXGsKkNhhvadQs6\nGKGPrr0uS5MtueH0IXTin1lvpNxY9KYsZQAs0de9e8ZR+9VV7zXLRTnLjdCmWG4Mh5HTByk37Bhb\nOYyb1ZNZpAELTh8qm2Luc7Uol+oN0+dyUe4cRwxn2hnM6XaBTgc0GlUbTZ3ctAzJYVw2lIY4yAvQ\n9xZKORjX2E7JVgc6r6155cqayGHPL9dV+Yf9jl+uM5LJZaO8ff1MJrfByFHx4YaAm7LPoxWmzwWH\ngy7TZ1X0hZMTclPKbcbiphiVQrjh9EEqJ+ZGyfRBzM2w0AchN3shtykxN0yfS5sS65fQpqTcbJLQ\npgTciMcRoU0FjzfSPkttxSVXPge58Cb3YhUgijrGSvVhINUHTk7ITWVThTNdljJMZHHKh0xglG+O\n6Xaj2JSUG6neiLlpcP7B6qpdrmVIDuOyoTxou8Am5YpXrk5sSgkAI9DErjKXHDC5woshp6/wfHL6\nCs8rRzI5c/Xrkx12V+NyI+xzX9pnodyGlBsEcNOLqw9ibiLrjZOb8oB2TQ6QcdN2W9mYlZtOZyLk\nsTfEpiLrjZSbuemNlsUBxguNVnMzL70xZLcSN9L5Zy+t2U9lMGQ3sDJRHpQcxoR4MBzGDeRK6QuR\nA7nBDkf+1W8JbuVWglu5leBWbpUcs3IrscFEQ0pIIkVAXs83RGch3Ig5nJWb8ryzApLIdIlhZ2Ux\neiPsMxcdK+HkRouGAHK9AfhoSAkuqlrJxbapWbkxZEO4EevDgvSGixRVclggNwsaR5ZBbxY13oj1\nxkhdV3XBhuzeYg5PEcaE+LCsYqRKORwuaKBvwBCtckY0ZMMwRK8zHZub2AP4rNw4oiHcNfcELDRi\nT25SuZn1xpCVcjNAB0Pyp9kq2djczEtvDNkgZ7rrSLM1zE1sp2jvEjhFcxtHkjMtd6YDuBmNksOY\n0AQsE7/VIQImopGmU+RynoBJg/XJ6Ybok9MN0StHMrkNl5whWxoikNOWZW65tnPj7LNnkOK4AcKd\n6TZyI9abfZAbqd7sDbApQMLN6sRCI0aft4pNDZFNLDSWmRvv/ONxiry20lltdZ+dcmYWJ4Ab5zjS\nMiSHcRlhcQQBfhUjjaL1M1lkYG5RjhlW/FI5MTeLSjU3ECnSi9WlznSsPkvrqBaiN0pWb9UUN1J9\nkNaYibiR2oqSRYpKbqS1aIuKoklqWkPGG2dq0eQmctR+buOIpaY15hgbUh7URBZHWpsozeLMzE3L\nkBzGZYTuMKowpeQMoo8uhtSNWkwcvUBf6CTvCXSmRZObdrhrjD7H3swiXkCoSTmulCH2pgRp6mcR\n3OwpnOkyOs0504va+DWTU2REQ0JsCojvTIv6LJQTb/wKqGmVjiOjkZybtm8YDBk7pXIL4SZAb6Sp\n5rlx0zIkh3EZMRFh9GzHrzGAhwz00Vf8rhXZDNGQmNw0Uc83MzdmNETIzZ7I0deQer651VuZ0ZAA\nvQlxpqNG7aV1m7NGVWeIhuhOUYy6YOl9jp3RWNQ4stDIdAMR54XNP/Pa+FU3U5EijAmtwAwRRqus\np9bRJQd4BjNzJ7fLwKRyvd7ErO01RO2aXqeoRp+9tSbmcUeuATw2N1k24TRKa1r3+PQmAje+vjhr\nimpy4x3AjTaG6k1IXbCrjRtYwVBlwdzEkPMW3te0lc3ijOqpTXY1uBmBMKDefGxFKmfpSx1bcel2\nkK2QY6HRsE0tAzfOBUSEsdjL4Tznn5YhOYzLiIkVnuPJAgCwvj6W8xlsDTnAM0jVlHMaLNFUG50T\nuianO0VNcDNh2LH7bMh5NyU4uJkaeObIDacP1vRLTW68mxL0Ngb0uXSKfBw2wY24z66nTZh60wA3\nGxsyOT3N5uXGtTmmaZuCg0ND1ruAMPrSz5+nML3JroY+mPV8Um5i2FTTY6yrjSG20qeV6HrjrGnV\nbuZc55+WITmMywhtdXIzdrgdhJ07q1+9dRI15ABgE456PkPOWcshlXO0kZPbo+TXGwwic+Nyigw5\n5yBlciPsi7du09JniZxUbyQcAp7oRV1uGtCH0imat02J++zicPv2yWi8rxatpt6EcMPd5yZsyqkP\nq6sTtYneKLvexgXqTYhNzSTX6VidGK4voWOsUhZnugY3ZXlQzPnHeyTZjh389cy+xJh/WobkMC4j\nNMO+eSRzGG/GTtEALpfb4U6zGYa4u7PTPblp2JU55CxtlMjdpHZWK/55crMXq+jDkWaTcrO6OvFG\nbG5uxk7R5BabmwE67miIlJtud2LRdAttDW4AYE/HYc8mNy59MCa3XVJuVPu5ceqDVM6QlerNTUvA\nzZ6ujBvxOLKFuJHqTRPzT8j1rJvsWoYWNy3Bif32q3690aeUmlyplNYUjEV5JQYrkQM8BptlE5Nb\nE4boTC3WHKT0Ps/KIeAZpIhqTW76xD+V2jDauHev4HoB+iDmcOhIQRrcSPssnvhrOIwchzFt5RZs\nFy/CYjvJTUz8MbnZwAo24XjiUNN6E8DNImxqiAx7sG63KW18BeqNI7G5madNAZ5F2NraRGN0W5G0\ncep6htyNo3o2NVEX3DK03mEkoqOI6B1E9F0iuoWIriKijxHRvRzyzyWiS4hog4i+T0QvcMg9joi+\nQUR7iehyIjqdiFpcPaDhgAOqX2/BjiqKxil5qZRZZiil4Vg66yk8g5lLbogMe2ibyBD1wWxKzuL8\nctcLmfid9VbSAbwGhwCwO9sxOzfSAdxoo5ObBvXB5Hqijcbkpi80ouhDgDNdJxoycc3YHK6vT4Qe\ndmU73fV3jsnNx+FNNbhpwqZqcdjrTdR164swSRs5uRt93EhtagZbEcm5Tm8wFuVebmrYVB294cal\nmDa1C9swUI46UGNRrtuUJPgydT1DLopNtQytdxgBPBzAyQDeD+DXAbwQwCEAvkpEx+uCRPRcAOcA\n+BCARwL4IIB3EtFvG3KPKGT+E8CjALwdwOkA3txkR6Jh//2rX2/BDvHkFjva5pTbtq361XtIrXHN\nJlb80j6XclPOdGxutIltBEJfOY6isVyz7dHXmeU6ncnz75TnyKgtmFr0yhFNlHDspu1JbxzfHT36\nGhAp2te4CYmibRVupLbizf5JuWkZWt48AMDfA/hzpcpnUgBE9DkAlwF4GYBnFO91AZwJ4ANKqdcW\nop8nosMBvJGI3q2UKmJxOAvAl5RSz9PkdgA4nYjOVkpd3XivZoHmMIZMblK5VUHRsTdSZMTUSxnJ\nd0uKhG9SMrkmuNk+KzcaMii/XEu4ce78NOSyAG6cA6mmO86idsc1ObkbR/G5kRToR5EDJsiXLsIW\nzY10Qucizrdgh58b7Y2+cjx4wPLdUqeodXqjLR72YN3PjXGc1pa3qYkHUfT83OjRV8gXYdI+S51k\nJzctQ+sjjEqpn+vOYvHejQAuBXBb7e2TkEcezzUu8QEABwN4IAAQ0REA7u2Q6yGPOLYbWkr6Bhwg\nUsobsb/IYG/E/qKB3iunYYTML1dj1+INan/ZQB/Q5zrcuNIgN2E/ETdDjhttoJcOZteP9re3z9KX\nJrlxTW7lxO9sY/kB4OdGu6Z0xR+iN/pZgz65wcBRrC7lJuQA39JzB8ONNgmWbbTKOfSmNeOI7gQW\nE7+zjVK9qaEPreRGX1ih47cpbcUuXWhIubkB+4s2FurccDY11/lH42YwykRj51znn5ah9Q6jDUR0\nEIB7APie9vaxxet3DPGLi9djfHJKqR8B2K3JtRdahPGnOMytbLe6VfXr1bi1WM5pYJoDUx6pwxks\nFVE0icF6BzO9jeowt9whh0z0xdnnGnI/xWGiyc0cwGtzo62T+iPH81XNvvi4kepDbG6MbX/eFX/p\nfYGZ+LUJc0M5NkMYbfzf0a1Fcl6b8nAzEVjXuL4Gh4om/iBbEUbbdqt1kT5IuQnVB6szffDB1a8/\nx63ijyPCRdjNaoebQ60vV6nD3E5RTZtytvHAA6tfr8eBcbiROtPaQuM6dWB0fZh5/tHmPanDGM2m\ntCDNz9St5jf/tAxL6TACeAcAAvCn2nsHFa/XG7LXGZ+75Mr3DjLfJKILXD+1Wj8r7nSn6tf/xeHu\nldtd7jIh54ya3OY21a/mIDVVJFzAjKJNXfPudwcAfB93E8mZ0bYpuduOg8m7Ro4dgQBw5ztXv3r7\nLOVGG8ykkUMvhwBw73sDAC7GsX65u92t+tUrd8QR1a83Dj3HLEn7LJUzNl9521h4DNfiYD+Hv/AL\nAIDv4yj/9bQ2euXucIfq12uHB4iup9vUVPuk+mWkurxtLI7JMp3uKbn73x8A8CMc6ZfTxgev3JFH\nVr9eMzxYzI2zz9r3XoXbTIxLE860dizYbmzzt7FwEv4Xh/vljs/L2X/CyWn64DwwHADueMfq12tw\nqHtjoZQbjevyPpfOyYSs9tQmlpvC6fgxjvDb1H3uAwD4meGc+8YRLzfaff4pDgseR6bap90Tc3E1\ncU3tD5ab290OAPAj3NEvd9xxAIAbubFdm3/0xbtv/rkKt5l9jG0Z5u4wEtGvEJES/Fzg+P9XA3gq\ngBcrpX4w18a3BSeeCBxzDP6l92jc5AtnH3448KAH4X/Wj8W3cU+3HBHwrGfhuvXD8Rk80r/SetOb\nsGftAPwFftsvd8YZ6K/twBtxhl/uBS/AcH07XoE/8cs95jEYHXQw/gwv8svd977AUUfh8ysPx3U4\n2L/Ce+hDcdn60fhv3MvPzXOfixvWb4OP4zH+7z7rLOxZOwB/zrXxNa/BYHU7/hCv88v91m9huG0H\nXoU/9ss96lFQhxyCc/A8f93fcccBRx+NL6881L/iP/BA4OEPxxXrR+G/cLx/9fvCF+LG9VvjI3i8\nv41vfSv2ru2Pt+Nl/oH5tNMwWNuO1+EP/dd79rMx3LYDr8ab/XIPexjUYYfhvXi2n5tjjwXucQ/8\n5+oDcSVu59/R+ehH4yfrd8Z/4n5+bl76Uty0fig+iCeyerOxth/Oxu/65V71KgzWtuMMvNHP4TOe\ngeH2nTgDb/Bf7+SToW5zG/wNTp14osiU3NFHA/e6F76+dhIuw5HuPm/bBjz2sbh6/Y64ECf5uXnF\nK3Dz+iH4OzzV38Y3vxmbazvxNrzSL/fyl2Owth2vxZl+uac9DaOd++ENxbjk7PODHwzc9rb4e3oy\nBui5+3LXuwL3vS++tXY//AB3ccutrgKnnIKfrt8BX8SD3JvsAOC003DL+q3wAZzKjsWbazvxx/g9\nv9zLXobB2na8Gm/xyz35yRjttz/ejFf75X7xF4Hb3x4fyZ6ADd9h5Xe8I3D/++N7a/fB93E3t1y3\nCzz5yfjZ+hG4AA/xf/drX4td6wfjfXi2X+4Nb8Dm2k6chd/3y73kJRiub8dp+CO/PpxyCkb7H4C3\ncnr4C78AHHkkPtF9LHZju7vPRxwBPOABuHT9OHwXxyxNhHERzfsKgLsL5HabbxRH5LwZwOlKqfca\nH5cRwwMBXKW9X0YMr7PImThQk6uglHqIq5EnnHCCcn3WGLZvBy6+GE8/FMDP4F65EQFf+AKe+YAR\nNi/M/Er5vvfhFaMRrvobpubjta/F/zd6Nb7+Bxke4ZN7ylPw0ew38M9PznCKT+6kk/DtL92Etx+f\n4Tif3BFHYM9l1+Al+2VY98lt2wZccgmefrgCrobfEfzc5/DsXxph7xcYbt71LvzeaIQr38NEQU87\nDe9Qr8LXXp3hwb42PvGJ+Hj2BHzolAyP9cnd73743oU34m33ynCMT+7ww9G/4mq8YJ3Q5SJZ3/0u\nnnYHBfyY/H3+7Gfxm788wp7PMdz8+Z/j1cN34PJzGL15+cvxF+p3cOErM9zf18bHPx6f+Yeb8A+P\nzfBoJmryg4tuxFnHZLirT+6ww6Cu/F/8Zo8An9zqKvCtb+Gpd1HAD8m/4v/kJ/HcR45wy2cZbt7+\ndpwxOhs//DOGm5e+FO9SL8YXf4exgcc8Bv/24Zvwt4/O8DCf3HHH4fJv3oA33TXDkT65Qw4BXXkl\nnt0lQHlspdcDvvENPO1oBVzK6M1HP4rnP2aEmz6R+Xd+vu1t+MPRH+P/P5vh5oUvxHvxAlzwogxH\n+eQe9Sj8+8duwl8/PMNDfXLHHIOffPt6vO7IDLfzyR18MHDFFXjWOgGbHm66XeCii/D0eyqoixl9\n+OAH8cLHj3DDRxm5s87CmerN+N4fM9w873n4AP0Wzn9ehmf7bOphD8NXPn0T3vPQDA/0Xe+oo/DT\n716H194uw2E+uQMOAC67DKfuALDbw02nA3z1q3j6fRWG38zcmTAAOO88vORJI1z7wQz9vuOJMADw\npjfhLPUGfOfNDDfPfjbOwzPxmedkONUn99CH4mv/ehPOeWCGX/BxeOc747pLr8XvHZbhIN/19tsP\n+OEPceqBAG70cJNlwJe/jFPvN8LgIkYfWoS5N08ptRvAJaH/R0SnAngngD9RSp1pESlrFY/FpMNY\n1iR+1yJ3oXb9IwFs0+Raj1K5nIfFFuj0siC5wcCfdu2utFsOROj08mX7MnBTDor7EjfOFXpAX6Ry\nWTcDUT4JeQfmlnAzTw6RZej28kWnty9Lxk0MDktuNvZRbrhxpFvsV9xK3ESxKSk3kPe5LViKGkYi\nejyA9wF4t1LqlQ6xCwH8HMDTjPefjjxq+GUAUEpdAeC/HXJ9AJ+O1OzGYTqMrvqHULl+3/+YolJO\nNxzbNRclp8vG5oYdfBbUZz21xa1W58GNtC/z4LBOX7gBfB7cLLutJG5ml0s2Vb+Ni+KwTl84ubag\n5f4sQEQPBnAecifv/UR0ovbxhlLqGwCglOoT0RnID+r+CYDzkR/4/RwAL1FKbWr/9xoAnyCic4pr\n3wf5wd1vb/0ZjBrKE2n27MlfXYbYE652TLmpYnVDrt/3G5gu51u5Sa9XtkcpTxre0ZdYcnpfbMZd\nhxtfhFF6vVKWjRShWW6kfZ6nXCnb78v7Etum2s5NSF9ic7gvcpP0Zna5fYmbtqDlzQOQO32rAO6L\nIkqo4XIAR5Z/KKX+kogUgFcAeBWAK5Bvjnmn/k9KqU8R0SkAXgfgWQB+irw20pbqbi3qrtxiybEh\nfE2ujFhyct4UUfG+ZOJvqs/OxysaciHclL/7BikpN7rDGHvFP6szXWfFL+WQ40Y6MDcVNeHaKL3P\ndaIhEr2R9KUuhzHHkdhy3MS/TGOs1PaSTbmvF2NcCulLchgjQyn1egCvD5A/B/njATm5DwP4cO2G\ntQBNrfibiAyURwrGihTF7ssiufE5jOV7IavaeffZ5kzbShliR5xD9KZ8P3bkMJY+SO9zbA5D+tIU\nh4uMFEmdomUYR+YdRQvVh3lzE9um9AwXV/YT26bagqWoYUywY18bzOq0MXHTPrl9kZuNDc/OT+zb\n3LTZKdrXuGnCKdoq3NRpYyy5tiA5jEsMcyXvCvU3JceF8G2G6JOTFBMvus/SqImUm1hyddrYBr3h\nUkmL1pt5c9gGvZm3HLfJLnafywi47hS1mZvQPs9iU3XauCibatJW2jZ2tgXJYVxihNZ8xJbjQvjS\nmg/p9eq0sSk5yU7zGH0OSZ+FtjF2DWOI3khqhWJxWKeNbagDnSXNVtbYSjaINXWf63DtqwuOqQ9t\nGUcktlI601JbmcWmQtq4aJuKNXZKx6U6bdxqNYzJYVxipJRAe+Vi9VnqINRpY+waxhBuYu+alx4l\n1Fa9kd7nkAXEou9zW21Kl11U/XdoHWjMEysWVdPapD5wTvKy21RbkBzGJcaiB7MmHMbyma1tHcDn\nzc0y1RQtcuJve58TN7PLJW7ccvsiN6UzLdlkt+zctAXJYVxi1A31z/tQWW4lqB9Rwz2Evam+lAYb\n88gH6RENsWqK6qZLZuUwtH1crVAIN021cVEcxtSbRd/nRY03IdyE2n1bx6VkU+721dGbto2dbUFy\nGJcYdYuJY8ltbo6Py5EWq8+7jU3JhRSrz7qqlQ64TRehx2qftJA/ZmpxWThs8+HBdTmMJddmbhYt\nl2zK3b46etO2sbMtSA7jEmPRKQFdjquvaft5Z7Frmbhi9WXipon0WayNMcDtOQAAGp1JREFUPovu\nS+JmfnJNcLMsNYwxuWlr2nVReqOntNta9tMWJIdxibHoVW2syEAb2hh7AJcWq2/F6GusaMi+yE2d\n41Ha2pdl4KYpu5/3uMT1WXeKFvVY1bbqTRvamCKMCY2jVK5YO7Gakov51ICtJreIXYux5ULbxz0R\npgm9WRYOQ3Z+chvEFn2f520r+lFCsXbNL4vcIsbYRetDrA1BbWhjijAmNI66tSFtO+C7DW1clFyd\ns7/a1pem2lenpmjZOSwdHdcTYWyRomW/z4vQh60mtwhuFq0P0va1WW+kHLYFyWFcYpRKuXt3/sqt\nYhYlFxJFW1QbpSvBJriRHiXU9vscS053iqQpnbb2JbbcMrSxKTnu8Yp1rrkou4/dvmUYY9P8U1+u\nLUgO4xKjVK5S2VZW2inX74+jIW1t47zl9KOESqfIJWsOKm3rS+z2LUMbF9W+ZWhj0+3r9ex1wfP4\n7rbKbWzkm+yI+DTpVtMHrn1tnn9C7L4NSA7jEkOqbIuS0yNF5Uq5bW0s5Xbtmu/3NnHNrSK3DG1M\n3LRPrs415233i2pfk21su5ye7pVGptvWl7YgOYxLjFLZyrMQy7/bImf7jAvNL6ovrr+b+t4Q2ZKz\ntt7n2O1bhjYuqn3L0MY2jDdtbeOixqUm2th2fdhKNtUWJIdxiWE6X5xSluDC6LHkTNlul08lzbuN\ni+LQJss5066/Q787tlzs9oXILqqNi2qf7Zrz6ktdDhdpU22z+0W1b5bvXlabMk9hCLGpNtp9G5Ac\nxiWGqVyzKmVsOfMzSbok1nfXlZsXh+ZnvZ7bmW77fY7dPttn3G5E7ppbhcMQ2bbc50XZVMg1l1Uf\nQpyituhDmn/c76eUdEJjaMtALzXEkMFsXm1cFIembBOD2bJyaMqurCzOmZ4Xh9KIkvkZkdyZbpuD\nV9cpWuTE3zabMj9rYqGxrDZlyi7z/NMWJIdxidGWgX5fWOE1zY1PLnZ6I7Zc7DSb+VmMqEnbOazr\nFM3TpupyGNspksplWXxnum3jkikbw1a2ik0Bk21s4/wTUlLQBiSHcYnR9jocUzaGU9T2WqG63MQY\nzNpehxPiFEm52Sr1VmabpLYyT5uqy2GMybKOPoToTdv0IWRxVafPvh3D+7pN+WRTDWPC0qItq995\nRoraLle3pmhf4Mb8LHHj/ixx4/4sceP+LHHj/kwqJzl+J1Ybk8OYMDeYyjWvlEBdpygkijbrjuG6\ncotKn4WsftuW+mlixR97cms7h0C9iHNKSc8uB7RPH6TtM2WTTU2ijk3N05lOKemEuWEZ0ql10me9\n3uKO34lh2LHTZ2abuOeSctdsy5EwKSXtblOIrUjkfN+dUtLt04emU9LJptzXjMFNSkkntA6LWiWb\nn8WOMC4yXdL2aEjIjuF9LRrSxI7heUZD6tjKVtoxnCKM4e0zZecZYVwUh01nuNo4/7QFyWFcYixq\noDdlYxviMh8NYcouikPfNdsy8S+KQ9vfrvfnxaEpG3vib+OO4bqRon1BH8zFzyIXGvMaO9P8429j\nG5AcxiVG02lXn/LWSYvFTl37ZJtOOcXmJjaHvmsuikNTdlEcAvOzlbakFpuwqVnTcXWfxBFbLmTH\ncNv1oQlbmdfYmeafFGFMaBBphZcijC453zVThHF+tlL3fMXYEcZFRpTarg9ttClTdlEcdrvxS2C2\n0vwTu88pwpjQGEwldClbbDlTdlFyPtnYciGGva9xQyRfoe9r3JiybZfzySZuEjcuOZ/sVuXG50w3\n0ec2IDmMS4y1tcm/XasYqVy3K4+G6NdclJxvk0NsboiA1dXwNi5KzicbW86UbbucTzZxk7hxyflk\nEzeJG5ecTzakz21AchiXGOvrk3+7VidSOaJJWd9qpy1yrhVebG5maeMi5HzO9L7OjU82cZO4ccn5\nZBM3s/e515PXtLahz/Pkpi1IDuMSw1Q2PQJWR86UjSGnr6Dm+b3SPpsrvEW1cVEc+mRD9KYN91na\nvk5H7kzPU2/awCHgnrSkfTYn/rbrwzxtJcsmo0ht1wdp+3yyUm7MgMVWsqkY40gbkBzGJYapbKaS\nhsqZsjHk9M/m+b3SPpvvL6qNi+LQJ7uyMhnBbft9jt0+n2ynM+lYtf0+S+XW1tw7hqW2QrS4+9wk\n1+Y9d8ktso2L4tD8P9/7bb/PbZ1/2oDkMC4xpAa7uhp/4l8mOZ9syMTfhr7Mk5uQib8NfZknN01/\nd9vlFvndbZdb5HcvSm51dfaFRtNtXJRcrIVGG5AcxiWGrlwrK26DNSd+l2NpXjOGXB2HI3b7ssz9\nbOq2tHFRHIbItv0+x25frO/eihya/9f0dy8T1yGyW0UffO0z06xtbOOiOOx2J+em5DAmNAapMYTI\nbsWUwPq6e3NMm9q4iPb5FhptaeOiOCSS74Rs+32OLbfI724j193uZF1sG9u4KA4XWaLQdg7Nz5PD\nmNAYQhRtUaH5tqc0gfa3scnB0bf6rXvNZebQPOg3xkJjq3BocuFbaCyqjYviGphcXPgWGltFH5oI\nWLT9Pi9y/mkDksO4xAiZ+NtuOLHlpCf8N/HdbZfTJ3rfpN/Ed7ddLgRt70viZn5yJua50Gi7HDAZ\nfXWdUNDEd7ddDpCf79sGtN5hJKKdRPSPRPQDItpFRDcQ0deI6OkO+ecS0SVEtEFE3yeiFzjkHkdE\n3yCivUR0ORGdTkQeVW4fQiZ+qcE2mRKIUWsildMHbN/gDcgjA21Iq8TgMASxa1/bzmEI2n6fm0if\nSbFMKelF2tQy64MuF+s4mLbf57qZCim4uWrR8GwFaA1WAAwAvAXAZQBWAfwGgA8Q0SFKqbNLQSJ6\nLoBzCtnzAfwygHcSESml/kKTewSADwF4D4CXA7gPgDcD2AngtDn0ae5QSiYXewWlG9i2bfP73rpo\nY2QgNoch0BcX0o1D87zPsTkMgfQ8vbbbStPOtHSh0UZ9kC4mQ7BM+uCTkwYhgH1v/gkJWEi5aQNa\n7zAqpa4F8FTj7U8R0VEAngPgbAAgoi6AMwF8QCn12kLu80R0OIA3EtG7lVL94v2zAHxJKfU8TW4H\ngNOJ6Gyl1NVN9qkJ+CZzANjclF1HN6r992+33H77ueV07Cvc6APYzp1uOR37Cje6Qyd1GDlu+v3x\n775Joe3c6JO9NFLEZTRGo/HvvghL27nR72ssW5Eeat52bnTE4kZ3yrdvd8vti9y0Aa1PSXtwLfLI\nY4mTABwC4FxD7gMADgbwQAAgoiMA3Nsh1wPwqCYa2zT0ycsGaVhcN1LfYHbooePfDzxwfnJ6m6Th\n+1jc6A6qbzBbFDf6xD8cuuV0xOLmoIPGv/sc+UVxo+sK12epnJSbQw4Z/37AAW652H2Wfq8OKTe6\nQ2hDHW7mqQ+3utX4d+nCM5Y+6HK+MWxRtqLb8o4dbjkdsbjRHUbfomRR3OhOojSLE4ubNmBpHEbK\n0SWig4noeQAegSK6WODY4vU7xr9eXLwe45NTSv0IwG5NbqnAhbXrDGY+SA3s1rce/+6btA4+ePy7\ndJAaDHgZgOdGmmqSDvSHHTb+XcqNT07/TBoBisWNVB/0dvkGeik3UjldV7iVfAmpM81Byo0+sfj+\nR6oPUm7075UurjhupBxLudHvn28ClnIjldNtXqoPnJNcZxzxQR8vfWNibJvSF57ScYTjUNpnqX7p\n84Uv0iedf3RufHJ1Fp6x9KYNWBqHEcCLAPQB/BzAnwF4mVLqb7TPy3XR9cb/XWd87pIr3zvIfJOI\nLnD91OhHVDyvSKq/wLq1Z4zf/M3JVxce/OD89UEP8svd6U75661v7U/xHX74+HiS8n9s6HSAI4/M\nf7/73f3f/bCH5a+PYmLBL3rR5KsLz3jG5KsLD3hA/nrSSX65sh8HH+yPXtz61mNH6853dssRAXe9\na/77Pe/p/+5HPzp/fexj/XIve1n++ju/45d7alEM8pSn+OXud7/89YQT/HIlNwccMDnomzj00LED\nUfbdBiLgmGKJd+97+7+75OT//B+/3Ctfmb++6lV+uSc+cfLVhbJd97qXX67kZseOyQWZiVvdahzh\nPuoo/zWPOy5/Le+PC6eckr8+6Ul+uZITjpvHPW7y1YV73CN/PfZYv9wd7pC/rq3lY4oLBxwwdiB8\negMAxx+fv5Z27cKTn5y/Pu1pfjmpTf3ar+Wvv/qrfrmjj85fjzrK7/CX3KysAEcc4ZbbsWMcPeS4\nOfHE/JWbB049NX991rP8ci9+8eSrC494RP768If75cr23/GO/vrJI47Iuet2xzzZsLY2dho5m3rg\nA/PXk0/2yz3nOfkrN+c+//mTr62GUmquPwB+BYAS/Fxg/N8hAE4A8EgA7wQwBPB87fPXFP+3Zvxf\nt3j/jOLvpxZ/H21p25UA3mN5/wLXz/HHH68WiZ//XKl3vUupPXv8crt3K/VXf5XL+zAYKHXuuUr9\nz//w3/3P/6zU17/Oy11wgVKf/zwv981vKvWRj/Byl12m1F//tVLDoV/u2mtzbnbv9svt2aPUu9+t\n1DXX+OWGQ6X+9m+V+sEP+DZ+7GNKXXQRL/eFLyj1b//Gy33rW0p96EO83OWXK/X+9+f30Yfrr8+5\n2bXLL7d3r1LveY9SV1/tlxsOlTrvPKUuvZRv4yc+odTXvsbLfelLSv3rv/Jy3/62Uh/8oFKjkV/u\nyiuVeu97ler3/XI33JBzc8stfrmNjfx6V13llxuNlPr7v1fqkkv8ckop9alPKfXVr/JyX/mKUp/9\nLC938cVK/cM/8Nz85Cf5fea4ufHGnJubbvLLbW4q9b735df1YTTK2/fd7/rllFLqM5/J+83hq19V\n6tOf5uUuuSTXWY6bq67Kx4fNTb/czTfn3Nx4o19uczO30R//2C83GuV6/Z3v+OWUUupf/kWpL3+Z\nl/va15T65Cd5uUsvVerv/o7n5qc/zbnZ2PDL3XJLzs311/vl+v18bL/8cr/caJSPh9/6ll9OKaXO\nP1+pL36Rl7voIqU+/nFe7gc/yOdIjptrrsnn3L17/XK7duVy113Hf3csALhI1fDfSM15iw4RbQNw\ne4HobqXUFZ7rvB/AEwAcpJTqE9FvI3ckD1dKXaXJHQrgpwBerJT6cyJ6FIBPAXiAUupC45q7ALxT\nKcWsn8c44YQT1EUXXSQVT0hISEhISEhYGIjov5RSTD5oGnPfJa2U2g3gkgiXugjAMwEchjwyWNYq\nHgvgKk2urEn8bvGqy1UOIxEdCWCbJpeQkJCQkJCQkIDlqmE08UsAbgFwTfH3hcjrG81Kk6cjr2P8\nMgAUUcv/dsj1AXy6ofYmJCQkJCQkJCwlWn8OIxE9H8CJyA/ivhL5ETlPAnAKgN9XSm0CQJGWPgP5\nQd0/KeRPRn5W40tKuQKvAfAJIjoHwHnID+4+HcDb1RKewZiQkJCQkJCQ0CRa7zAC+DaAxwJ4G/Id\nzD8H8D0Av6aU+qQuqJT6SyJSAF4B4FUArkBeu/hOQ+5TRHQKgNcBeBbyGsc3Iz/4OyEhISEhISEh\nQcPcN71sNaRNLwkJCQkJCQnLgrqbXpa5hjEhISEhISEhIWEOSA5jQkJCQkJCQkKCF8lhTEhISEhI\nSEhI8CI5jAkJCQkJCQkJCV4khzEhISEhISEhIcGL5DAmJCQkJCQkJCR4kRzGhISEhISEhIQEL9I5\njDOCiH4G4PKGv+Zuxev3G/6eBDnSPWkn0n1pH9I9aSfSfWkf5nVP7qCUOiT0n5LDuAQgogsAQCn1\nkMW2JKFEuiftRLov7UO6J+1Eui/tQ9vvSUpJJyQkJCQkJCQkeJEcxoSEhISEhISEBC+Sw5iQkJCQ\nkJCQkOBFchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF2mXdEJCQkJCQkJCghcpwpiQkJCQkJCQkOBF\nchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF8lhbDGI6Agi+iciupGIbiKiDxPR7Rfdrn0FRHQ7InoH\nEV1IRLuJSBHRkRa5A4no3UT0cyLaRUTnE9E959/irQ8iOoWIPkpEPyaiPUT0fSJ6CxHtNOTSPZkT\niOgRRPQ5IrqaiDaI6Eoi+kciOsaQS/dkgSCizxRj2JuM99N9mROI6CHFPTB/bjDkWnlPksPYUhDR\nNgCfA3A0gGcCOBXAXQF8noi2L7Jt+xDuAuBJAK4H8EWbABERgI8DeCSAlwB4AoAe8vt0uzm1c1/C\nKwEMAbwawKMA/AWA3wbwr0SUAemeLAAHAfgvAC8G8HDk9+ZYAF8lojsA6Z4sGkT0FAD3sryf7sti\n8FIAJ2k/v1J+0Op7opRKPy38AfAy5BPjXbT37ghgAODli27fvvADINN+/y0ACsCRhsxji/cfqr23\nP4DrAPzfRfdhq/0AOMTy3jOKe3Byuift+AFwt+IevCLdk4XfiwMBXA3gKcU9eJP2Wbov870XDyn4\n/hWPTGvvSYowthe/DuCrSqkflG8opX4E4MvIFSqhYSilRgKxXwfwv0qpz2v/dyPyFWK6T5GhlPqZ\n5e3/LF5vW7yme7J4XFu8DorXdE8Whz8C8B2l1HmWz9J9aR9ae0+Sw9heHAvgO5b3LwZwjOX9hMXA\nd59uT0Q75tyefRG/VLx+r3hN92QBIKIOEa0Q0V0BnIM8qlU6KemeLABE9EDkEfgXOUTSfVkM/paI\nhkR0LRH9nbE3obX3JDmM7cVByGvnTFyHPMWQ0A747hOQ7lWjIKLbAngDgPOVUhcVb6d7shj8B4AN\nAJcCOA55icA1xWfpnswZRLSC3HF/m1Lq+w6xdF/mixsB/AnyEqeTAbwRef3ihUR0aCHT2nvSXdQX\nJyQkJMyCYqX9z8jTns9ecHMS8o15+wG4E/LNSf9KRA9USl220Fbtu/g9AOsAzlx0QxJyKKW+AeAb\n2lv/TkRfAPA15BtczlhIw4RIDmN7cT3sKwnX6iNhMfDdp/LzhMggonXkNT13AvBLSqkrtY/TPVkA\nlFJlScB/ENGnAVwG4PcBvADpnswVRYrztcgjWatEtKp9vEpEBwC4Gem+LBxKqa8T0aUA7l+81dp7\nklLS7cXFyGsZTBwD4LtzbkuCG777dIVS6pY5t2fLg4h6AP4JwAkAHq2U+rYhku7JgqGUugHAD5Af\nTQWkezJv3AnAGoBzkTsY5Q+QR3+vB3BPpPvSRrT2niSHsb34GIATiehO5RvFodG/WHyW0A58DMBt\niajceAEi2g/AY5DuU3QUZy3+LfL6n8cppb5qEUv3ZMEgosOQnyH7P8Vb6Z7MF98E8FDLD5A7kQ9F\n7tCn+7JgENEJyI+h+o/irdbeEyrO+EloGYrDuf8bwB4ApyM/l+mNAHYCOC6t/OYDIjql+PWXkafW\nXgjgZwB+ppT698KB+RKAIwC8CvnK/dXIi/7vpZT68fxbvXVBRH+B/D6cCeATxsdXKqWuTPdkviCi\njwD4OoBvAbgJwFEAfhfArQHcXyl1abon7QARKQBnKqVOL/5O92WOIKJzkS+ivoHcVu6DnO/dAO6r\nlPp5q+/Jog+yTD/uHwC3B/Ah5Ip1M4CPwjg4Ov00fg+U4+cCTeYgAO9FvottN4B/Q27YC2//VvtB\nXhfnuievT/dkIffkNORPermh4Pr7yHfnHmnIpXuy+Hs1cXB3ui9z5//VyBdWNwLoA/gxgHcBuM0y\n3JMUYUxISEhISEhISPAi1TAmJCQkJCQkJCR4kRzGhISEhISEhIQEL5LDmJCQkJCQkJCQ4EVyGBMS\nEhISEhISErxIDmNCQkJCQkJCQoIXyWFMSEhISEhISEjwIjmMCQkJCRYQkRL8XFbIvr/8vS0gov9L\nRObh5j75dSK6ioie1GS7EhISlhPpHMaEhIQEC4joROOtjyB/+tLrtfc2lFLfIKI7A9hPKfWNebXP\nh6I93wPwAKXURQH/97sAXgTg7kqpflPtS0hIWD4khzEhISFBgCKC+CWl1NMX3RYORPQOACcqpe4X\n+H8HArgawKlKqX9spHEJCQlLiZSSTkhISJgRZkqaiI4sUtYvIKK3ENHVRHQzEZ1LRNuI6C5E9Fki\nuoWIfkBEz7Rc815E9DEiup6I9hDRl4noQYK2rAJ4OoC/M97fQUTvIKIriGiDiK4hovOJ6OhSRil1\nPYDPAvitGehISEjYgkgOY0JCQkJzeDWAwwE8E8AfAPgNAH+JPL39SQCPR/5s2fcR0bHlPxHRfQF8\nBfkzZZ8L4AkArgVwPhEdz3zniQAOAPBF4/2zATwJwB8CeBiA5wP4ZiGr4wsAfomI1kI6mpCQsLXR\nXXQDEhISErYw/kcpVUYPP1tECE9FnvI9FwCI6CIAvw7gFAAXF7JvBXAFgJOVUpuF3GcBfAfAGQAe\n5/nOEwEo5I6ojpMA/L/27p01iiiMw/jzkhDUzmCjKGIpKGnUdPoFtLOziam10MbbF7BQJIKFRQqF\ngGARsJGIVSwEhVikiRaioAhRiUhUvJDX4uzqMm4mLLqwWZ8fLIc5O+/OmWb5c85cpjJzsqVvuk39\nE2AIaIZWSXKGUZK66G5le6HRzjQ7GsvAi8AOKHcrA4eA28BKRAxGxCAQwH3g4BrH3AZ8bAbNFo+B\nsYg4HxH7ImJglfq3Lb8jSYCBUZK6aamy/a2mv7kEPAwMUGYSv1c+J4DNEVH3370B+Nqm/yRwHRin\nhMfFiLgSEZsq+31ptBtrjiHpP+OStCT1lg/ACnANuNluh8xcqal/z5/XJZKZy5RrKs9FxE7KEvhF\nSlg907LrcKN91/HIJfUtA6Mk9ZDM/BQRD4ARYG6NcNjOAjAUEdsz89Uqx3gJXI6IY8Ceyte7Gu3T\nDo8rqY8ZGCWp95ym3K08ExGTwBtgC+VGlIHMPFtTO9toDwC/AmNEPATuAPPAMuU6yRHgRqV+FHid\nmc//wXlI6hNewyhJPSYz54D9lOXlq8A9YALYy+9AuFrtC+ARcKTy1SzlsTpTlEf6HAVOZeZEZb/D\nwK2/OwNJ/cY3vUhSn4mIMUrA3JqZnzuoG6U8Smd3Zj7r0vAkrUMGRknqM43H8MwDk5l5qYO6aWAp\nM8e7NjhJ65JL0pLUZzLzB3Ac6GR2cSPlzS8XujUuSeuXM4ySJEmq5QyjJEmSahkYJUmSVMvAKEmS\npFoGRkmSJNUyMEqSJKmWgVGSJEm1fgI4zeCrbh2lFgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, creating CrossCorrelation Object by passing lc1 and lc2 into the constructor." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done\n" + ] + } + ], + "source": [ + "cs = CrossCorrelation(lc1, lc2)\n", + "print('Done')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2.86241768e-05, 4.71238867e+06, 9.42481318e+06,\n", + " 1.41372717e+07, 1.88497623e+07, 2.35622831e+07,\n", + " 2.82748324e+07, 3.29874082e+07, 3.77000087e+07,\n", + " 4.24126319e+07, 4.71252762e+07, 5.18379395e+07,\n", + " 5.65506201e+07, 6.12633160e+07, 6.59760255e+07,\n", + " 7.06887466e+07, 7.54014775e+07, 8.01142163e+07,\n", + " 8.48269612e+07, 8.95397103e+07, 9.42524618e+07,\n", + " 9.89652137e+07, 1.03677964e+08, 1.08390712e+08,\n", + " 1.13103454e+08, 1.17816189e+08, 1.22528916e+08,\n", + " 1.27241631e+08, 1.31954335e+08, 1.36667023e+08,\n", + " 1.41379696e+08, 1.46092350e+08, 1.50804985e+08,\n", + " 1.55517598e+08, 1.60230186e+08, 1.64942750e+08,\n", + " 1.69655286e+08, 1.74367792e+08, 1.79080268e+08,\n", + " 1.83792710e+08, 1.88505118e+08, 1.93217489e+08,\n", + " 1.97929821e+08, 2.02642113e+08, 2.07354363e+08,\n", + " 2.12066568e+08, 2.16778727e+08, 2.21490839e+08,\n", + " 2.26202900e+08, 2.30914910e+08])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.corr[:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "9.9999999999766942e-05" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cs.dt" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAERCAYAAABsNEDqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2wbddRH/hbe59z33syEMPYcQgfY4a4SJGEUBkBKcJM\nQUIIJMyQSYDAZCaEIjgmwIRJJQyBIVRIQiBUppJgD8aZGGIDJmCw+TJy+DAYg8GWZFuWbBlkW7Il\ny5YsWZ/v456z95o/9u61un+r+55zJd17n553V7169667zj77Y+3u/vWvu1fKOWORRRZZZJFF9pXu\nrE9gkUUWWWSRp5cshmORRRZZZJFjyWI4FllkkUUWOZYshmORRRZZZJFjyWI4FllkkUUWOZYshmOR\nRRZZZJFjyTVrOFJKL00p3ZdSunWPuf9jSunmlNI2pfSV9LevSyn94fzv607ujBdZZJFFnh5yzRoO\nAD8G4Ev3nPs+AH8XwE/qwZTSJwD4HgCfB+BzAXxPSunjn7pTXGSRRRZ5+sk1azhyzq8H8KAeSyl9\nekrphpTSTSml304p/cl57p0551sAjHSYvwLgV3POD+acPwLgV7G/MVpkkUUWuSZlddYncMryEgAv\nyDn/YUrp8wD8vwD+4hHzPwnA+9Xvd89jiyyyyCIftfJRYzhSSh8D4PMB/ExKSYbPnd0ZLbLIIos8\nPeWjxnBgCss9lHP+7GN85h4AX6h+/2QAv/kUntMiiyyyyNNOrlmOgyXn/AiA96aUvgoA0iR/dsfH\nXgvgS1JKHz+T4l8yjy2yyCKLfNTKNWs4UkqvAPBGAJ+RUro7pfQNAP42gG9IKb0NwG0AvmKe+zkp\npbsBfBWAH0kp3QYAOecHAfwLAG+e/33vPLbIIoss8lEraWmrvsgiiyyyyHHkmkUciyyyyCKLnIxc\nk+T4s571rPzc5z73rE9jkUUWWeRpIzfddNOHc87P3mfuNWk4nvvc5+LGG28869NYZJFFFnnaSErp\nrn3nLqGqRRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiVn\najh2bbaUUvrClNLDKaW3zv/+2Wmf4yKLLLLIIlbOOh33xwC8EMDLjpjz2znnLz+d01lkkUUWWWSX\nnCni8DZbWmSRa1kOtyN+8vffh8Mt7xm2yCJPH3k6cByfn1K6JaX0KymlPxVNSik9P6V0Y0rpxvvv\nv/80z2+RRRp5/MoWr3jT+zCMthfcz9z0fnznq96OV9509xmd2SKLPHm52g3HzQA+Nef8WQB+CMCr\no4k555fknK/POV//7GfvVTW/yCInJi983R34pz/3drzhjg+b8QceOwQA3PPQRTM+jBk//nt34bEr\n21M7x0UWeaJyVRuOnPMjOefH5p9fA2CdUnrWGZ/WIosUuf/RK/jpN78f3GX67o9cAgA8+PgVM57g\ny+/c8WH836++FS/8jTtO4jQXWeQplavacKSU/lia93lNKX0upvN94GzPapFFqnzvL70D3/6zt+A9\nH37cjIuBGInKyOXv1oRc2gwAgD/40KN2fs54+e/dhfseufxUnfIiizxpOet03GazpZTSC1JKL5in\nfCWAW+eNl/4DgK/JywYii5yBvO+Bi/i5m1te4rYPPAwA+Mjjh2ZcFukVIsE3wzj/PbvjjEje/+Al\nfPerb8X3veadT/DMF1nkqZczTcfNOX/tjr+/EFO67iKLnKl880/ejLff8zC++DOfg487vy7j3QSI\ncfFwMPPFv7m8seMy78rGGpTHZ26j66zpeOTyBgDw5js/0pzTK2+6G5/z3I/Hf/vfPOPY17PIIk9G\nrupQ1SKLnLa8895H8Eu3fKAZf/s9E7IQcltE9HxrOKb/LwWGg8cfvzL93iffcPRkUB69vME//pm3\n4QU/fvOR17PIIichZ10AuMgiV5V89YvfiEevbPHX/swnIqWWyr54aLOeBHEwstjO5AaPS/0G13EI\n4mgNxDS+6tmgTOPvvPeR5hx//q334NOf/TH405/0R5q/LbLIUyEL4ljko1JuvPNB/Oo7PtSMPzor\ncFHMLJcIWYgw4hBu43CwBmKcociW6jtk/pbY9GI4yKA8fkTa7j/8qbfi77z0TeHfF1nkycpiOBb5\nqJSvfPEb8Y0vi3eJZKQgwiEmMQQbMhBS+LcdsjvezJ+Pw0hkO8/j40T1HnLeDxJZDwC/+o4P4fff\nsyQlLvLkZQlVLXJNy+vedR9WXcL/8LzjFYUygojGt4EhKMgiMBBsCMbRRyIyf6BkwghxPBogJQDF\nUN75/X8tnLPIIvvIgjgWuabl63/0zfjf/1MctmGFL8JcRjS/IogAWYyRgYiOM7rzuXVJbDg27vhR\n8oY//DB+zQnbLbJIJIvhWOSakF982wfw5juP3y8zQhYRlxEhi1bhz/O3exqaAInIfK5e4voQkSiE\nNZLh0fK//affx987Imy3yCIsi+FY5JqQb33FW/BVL37jsT8XGQgmtUU2W6uARaGHISlGHNlHHGOA\nUOTzY/aP05xfcN7Mzewjb3rvg3j1W+459ucWufZlMRyLPK3kJ37/Ltw611SIcBhHJPKydfOBSKGy\n5y+yCRT+4b4k+A7EwQhFDARfY2AfwvEnYji++kfeiG/7L2899ucWufZlMRyLPG3k8mbAd73qVvyt\nH7HIIlKKl7d1XGcraTShFfs2GNfShJ6iUFUUeooQyvxry33Y49Vx//wiI6qRFX+3SLRHCI/fcvdD\n+M+/e6c7d5GPDlkMxyJXneSc8cO/+W68+/7HzPgjlybi93EKL0XhJj2ujYse10pRh5VCw9Egi/mz\nNF8MRhSSakJYQfru8RFHnaeRlU4v1tegUVlEuPP9/fsvvwnf8wu34cr2+ChmkWtDFsOxyFUn9z58\nGT9ww+34P17xFjN+XCL7klGWVdNe3vjIQitdDj2V+WwIsh+qqqR5FMIKQlWjb4AYSHB6rjeur0ff\nO424NMkeEe4XN9ag3Pvw1KmX26/ccd9jeNHr7mhazC9y7cliOBY5M9kOI/7tf30XPvDQJTP+0MUJ\nWbyXWpWHtRWb3Z7yJghDaQWulW4UzmFyvBb6BQWAHHqK6juigsEAcUT8zWhQU4Q46ndHxlXLvjUt\n3/7Kt+EHX/uuYlgWuXZlMRyLnJnccs/D+KHfuAP/6pdty/CohuLSHgZCK06DLJTC13yBVpZjEKrK\nwXz9magSnJFFWOgXIJHo+Prz2qhsDWraHYbThiPKJIvbrNjncecD066GH37Mbl71gYcu4Qdfe3to\nmBZ5+sliOBY5cbl0OOD7XvNOPEAK5bG5yvkeQhziyXLEY59QlQ71aG//MAxJ+cpVh570fA4l1RBT\nxFnsR6YPQZpuSL4HhsAYkWBcG9EIlVkDvB/iiMb/zQ2340Wvezduufthd/4iTz9ZDMciJy433HYv\nXvL69+Clv/NeMx4hi3jcV1Q6Nm+I3wApWOXqE8WbiDQPQlVRttXeJPiO8TGTIYhQkxn3w3DaWJps\nszBRYHemlv5ufn4femRyGB66aDmRBx67gn/5S+84smHjIlenLIZjkadM7n/0Cv75L97WtL24dDgp\npA8/ahWH7EHBIgaCu5pHIZMhUPjaSd/soXQNxzFGyni/OotSOR5ViIehqiNCUgHxrY1NFJIahn0M\nzX7XLMKhLflIszcJsjv+sjfehf/vDe/FDbd+0D3+IlevLIZjkadMfupN78OP/s6d+K+32b5HUQZQ\nhCwk3ZZbiUd1BpGy1Mo/QhzxeBCqCkhtvsYyvmddRtRuXX+3/tmgo9EPMR3uYyz1/O1uA6SFn0dB\nHFcYiUz/8/OWTaq4k++jlzf417/yzoYrWeTqkcVwLHJsueuBx/G9v/iOJo//wTkU8REKSVycQxGM\nIMRAkH3AZTEcvV2eWvlpwnoMwjBaZ2ulaJVlNN8f5zoJ+bWps9iRDdXWZdTx6NoiEjwycmEYbg/S\n/ChjGY3XKnpGIj7ikPm8Ln7rD+7Hj/zWe/DyN97lfu8iZy+L4Vjk2PLvfu0P8dLfeS/eTmSnKCre\nOU9i2KwsLwa73kX9mbaB4gyV6B5e9saEeQKEkv1j6svZ20BEBX3BsULEEaQORwrfEP9Bhtnhdvc9\n0sKGQ/ZLb8N50/9RS3quH5HW8JymvRlG/PNfvA13PWDTtBc5fVkMxyKh3PaBh/F9r3lnUzNw36NT\nnr7UW4iI4r1EIYnH5tAFKwj5vUlB3aN2IcoAssrPNwRWWQ7ueMQn7POz/jyHsCKDoq9hCBBHlIK7\nDwm+T6LAcREHFz3KNrr7ti6R588hLDEwByurnm65+yH86O/ciX/xSzZ9e5HTl8VwLBLKd/7c2/GS\n17+nSZcVRfU4vfCibB6jGLfUX0T8QLvr3Yw4SLlG2U1xuAU7x62nX38eA+9+b8MhqIl0aGRQLH9R\nx6NwU0TkRzzIPgYiSlnet29XHyKO7I7Lc+ckCWkt0xFyfeTStI44O2scM/7VL7+jaX65yMnJYjgW\nwY13PogXve6OZlwMBpOUogCi0APn/YuhaQxEVDw3K8IolRUArgx+0V+k/K6YVFMflUQcQuTpRyEs\nfU6xQYkNhzm/AHFERiG6hn0MXoxc9gtViZqPOgXz8y/b5TaZZP76EkeF7/U9D13Cf/zt9+KfvPIW\n9zwXeeplMRyL4O+//Cb84Gvf1eTTywsf1U9E81kR7BqPq67j1NRQyQVxeo0ajEe/B7IYj6mM9TmF\nBoURR3B+kYHY5zz2MS7hfJ2+q+7pUVX08b7pwXOW8cCh4PUi2Vp8rx+eEcq777NNMQHgB197O373\njg8344s8OTlTw5FSemlK6b6U0q3B31NK6T+klO5IKd2SUvpzp32O15LccOu9ePFvvbsZf2BOh+S0\nSHmBeVe5gznbKUIcEbI47viYY+UfFehFiGAbGJrjGoVxD8U8/c0fl+/O+QjFbpAM3DnRZ0NOZA+u\nJJq/byPIITIQxRDY+SHiLAjVri/hQjj5QtJ6V70dv7wZ8KLXvRvf9BM3Y5GnVs4acfwYgC894u9f\nBuB587/nA/jhUzina1Ze8OM34/t/5faweykbCFFOUWVv6EEGoSf2IKNNkMLU0UErLZ8cj8I545Mw\nFqHSDRCK/ttR7dAjEjw0EGF21+7r2ctIBSG8fQyK/tu+SCRaF5FDEdX3CPfRk0GR5A1BJFpe8vp3\n47/ethQePlE5U8ORc349gKM2iv4KAC/Lk/wegGemlD7xdM7u6Ss//eb34+VvvDP8exR6YsMhdRS8\nUdIYhSR2kN1R6Ik9S62oNDcRIYjIWOyTvht56yHKCAwQ13dEXMY+RLs1BL63r2+lQVPHDE/F4a96\n/DBNd2/OatfzZ+MahKqCglFBHB0ZFEbQWr7vNbfj+S+/Kfz7IkfLWSOOXfJJAN6vfr97HmskpfT8\nlNKNKaUb77///lM5uatVvv1nb8F3//xt4d8jBMGGQ7Jk2BAUsjtAFlFWTeRxRntW8GciInsfxPGk\nCOQ9Ql5W8cOd0847ngK3BsI3qPsYzv2MiJ/KHHXf1Z/ntOttsC52GxQ2HIM7Lp/nup+HLvmG46gN\nqF7+e3fhFW96X/j3RSa52g3H3pJzfknO+fqc8/XPfvazz/p0TkVe8vp342dvuvvYn2MDIXKFkIU4\ncK3CPxpxtIpDFASHczCP+8dvf9bHjDgOf9yktQaKdq8QVoQY9jAC/B0xeR+MZ/9e7GMIo3BWOB6F\n1ILv0iirec47EafvUPA6ks+z4o/QXVRPchQS+e5X34p/+nNvD/++yCSrsz6BHXIPgE9Rv3/yPLYI\nJrgNAH/zv/9k9++bYcS6b32D0HDQi5aCgq74hT/ueE27HcdcQg37xOAjhRrF46M5oVe+T0gpqreY\nP9slJ+02Z6y6hO2Y9/L8I6MQhtXCIkZ1Dtq4Ru1KNKIJwoKDueZ6/Cj0yOvruIhjV93PUehOi7Tz\nP4686i1344MPX8E3feGnH/uz16Jc7YjjFwD8nTm76s8DeDjnfO9Zn9Rpyw/ccHvTQTTaAU7XUOiQ\nVLTBkZbIQ4vI7uiFb8aD0FbEU0TK6bhx/WOHsHL0vUfPP+g7V5Gv+85VZmLM9wlv7ZVGG87fHeYL\nw3B7oBj7zPTxYSQqANy5XgIDEYXCuNiS0Z43ngM0xQkk/+d/eRt+4Ibb3eN9NMpZp+O+AsAbAXxG\nSunulNI3pJRekFJ6wTzlNQDeA+AOAP8RwD84o1M9M9kOI374N9+NF/y4JfIeC4jCR5U3pX+2vYoC\nwxFkPV2JPMJj1mtEHiT/PIYKyVd+UUjquHH9XW0/Vl1yP7vuk4tWDvoOObcNGddz2igbiAPHoByb\ndwlCezbMFxnR3TUwkWGyjSCfXEgq4kp2hUib3mbqvuTgful7oTshcEJI/az97htuvRf/8pfe4c69\nluVMQ1U556/d8fcM4JtP6XTOVHLO+M5XvR1f/ll/HH/hTzyrjHuphEBtyyCflbCS9t6uBNkwETl4\n/JBU3m9+2NiPDURvjsOfOW4VtTFA0d7izmdT8hXwuu9chXqw6lyuZL3qgCvTsaTGYBhz6cHEXXfX\nfcLhsCenEnA2IeLYg4PZq75jD8TRtIYvoSTY8fkjLRI5Ok23MShBqIrPSQy2Hr+yreFc3frk0uGA\n6w5a9fjI5S0+4RkH5ff/62ffjocvbfCP/8pn4Py6b+Zfq3K1h6o+auS+R6/gFW96P77lJ22xUmw4\nqnek02sjA6H3bNi3CZ14V1HIoA09+VlS8sI326Ie00DslRkVxfj38ZoVUvC+92DVuefAIakyf1ZI\ncixpw15CVYw4Vk4IKxgfci5Zb/sU+oVhu33uV5T6vEdITX+m3ZvENxBDme87GpGDc1RRZbS7oR5/\n7Ep919g4ifAmZfJ+8nv6u3d8GN/+yreFNVNPd1kMxynL4XbEt/3UW3DL3Q+ZcSlW+shFf2GyaC9N\nL/5oXL/8UfHccRFHs11q9MLPCqJRKHuQrsclimND06Kvg75zQzgNgsg7DMSqs+cs81fJfF4OWQwB\nfaYgEVLg1QDZ57YrtMXGQrLkQo4neh4RWtmDE9Gf521xi0GJHI2owPQIB8TsIa/XfPCOaOdKIw5t\nOPRnI4PyCL2n3/Fzb8dP33g3PvjIZXf+010Ww3HK8p4PP4ZXv/UDDdHGHT9FHgkyQBhui0Re1iaY\nv09efpj1EozzCy8vcKRQ+Lz3K9wLMoOc9hiSxSSiQ0yeQTm36tzCu3MB4jhYWYMiH2USXCMUvv5x\n9ElzE9oigyKhF/b8PSQyKsMUheeOWwOzz8/e9fN4sy6CcY0s9LEMmt6j5sSg8o2eHxmU+g5yA0+R\nRwiJvO/BiwCABx6z7/Vb3/8QvunHbwqP83SRxXCckDx8cYNvfcVb8O77beO1+x+dOs2+/0HbqjxE\nFmGDObX4dUjKjEcch/+yHNJ3xQbCz6rapQiOCiXEIRAfHfF86TbhKcV137nfe7Dq3O9lLiMMVUWh\nLTU+nXd7fL5+jSwawyGIgzz8g1XfjI9HHKdPCV3D32j0tY/BPp6B1/UdEeKMxtt15K/bIUAW0dre\nBu+Ifnd05uFjxnD4iOPSoT/Oe9a86HV34Fdu/SBu/+Cj7vyniyyG44TkxrsexC++7QP4EWoqKIaD\nN6nZB1lEW4Qe92WJ4r36JdLvbBOqkhe7CTH4Iako7h6Fp46bJbUdR5zzeIA5PLPirCelLL2iuojL\nYOUqxigkxynEVI/jI4VjIY4xl2u2uwEGnMiMRFadb+TOsRHdEeY7+ufd2W/6b+H4Ed2Ro3Wxj4Gw\naz7gBzd+2CpCCpxwIo4M10zdMXfw5e2V333/Y/iGH3tzGHm42mQxHE9SPvDQJXzzT97cbHMp0JWh\nqngs0aY2LDGy2B16CkNSe3AfUZsJ/XtjIEJP0Sp5kSjt9qjqalGW1vtuiWigEshRGu3BqnPbeLCB\n0JxFZFAiMl1/fjgCcRgSnNJ3oxBTSevV2VlHzO+7hL5L1gANcq49vKr7nu7dNvL6A6Vu04Z9Q9CS\n6eN87Ucg1MCJCjv5GoPivzvxO+UbDn18RiJy2WxQ5N4zJ/LSN7wXv377ffidOx7A00EWw/Ek5TVv\nvxe/fMu9eNVbbEG7GAxGFrI42wZxvuGIuIxtYFBsB1k9HpDpo/9C7ROz5nPexXHoOfwzKycvTh95\n06MK23hedt8FdRYNskAddwrDopDUuoSk2EDMyGKk4wRZUjxf5vgFg/pe+KQ516WIEfUUe4M41Dh/\nrz43keNmv+nzPirbLg6H+Y6N/tnyeoM7R3McYTg3QC7aiERI5BI1FJVnw4bjofl33lXzvkcv4wUv\nvwl3f+Sie/yzksVw7Cl/8KFH8Q0/9mZ8hPrcSCosd+6U0BNn44nh4JxzTmH1xvdDFupl2UTzfa8p\nUvBRnv1xyU4AlDHln58Ow4SIg5RFFKrq0+xlO+dwwFlSyqB4ynVNoa1RGRp9Thyq4joWH3G0oS2Z\nE4WevOPoe8Ghp75L6LrUGJqUJiPnrQXmgWScjbHclxahxA5IjDiOZ4RChyd0WHzHyXIcvqGJjMXl\noDYqKiTkcdkm92HiRF79lntww20fxCufQE+6k5TFcOwpL3/jXfj12+/DG2g3sbKdJQEGUbbsQdSX\nxc6PFr/xdsxi3geJBJlHexiL6IUdx1z4j31DWEeRqJHCjwxEJX41H1ORRcNxHBHXZ8ShFX4c2hqb\n4xTEQSEp9vybUBWn3QbZU+d2cB+swLuuJcG3sxFddanhnPo0GZSI4N+LTFfGeB/uSt+XzZBN4keU\nMRU5M1GoKuREgp/DkFwQwrq89Z00LU0IKxiXZ851IkK6s/P26OUNvu6lb8K7zohkXwwHyU13PYhv\nfNmNDcQUUpvHxUPgdDxZbE1fnaAFdIwI9jAQAdy2L5HvWcXwPyDlg9YN+ru3Y47bbJCiFgPBisAL\nwwxjxrl1G5LaRiGpcWoo2HXt9wJzqxBHcZzjUJVSolr3jWq+nIc+TotEMI8n83nJPKpGUX9HHNo6\n6B1DM1/zqmvDbZ1nXLMY1+TWz0SZZOfWcRW9N5/H9X2ZPu+PRwh1H1QTrecwrXufd0Q9nAhx6HNg\nZCGf59CWtAe6TPpiU+bb8Tff+SB+6w/uP7P+WYvhIHnhb9yBX33Hh/DODz5ixmVRcdqs8AVsUGTh\ncaty2e2OeQBDzG38BRwRefuQ2nHWi2+M9mki2CKOCDWNOCepo/QCe4ZgyFnNJy/bIcHHcc6eojBM\njeu3iGMlSjSo+I7DNu01slGMQlLyWR6Xr4pCUj7ZrefDzO9SaywjjmMc5V7ExY0eYozSd4+qgfG4\njK6kUQfOT7A+owzD2Cnyf97sgUSi77Vhq4Bkp/dfDAkbgsdmx5P1iCAQNkAffHjOznS6X5+GLIaD\n5A8lXY64DHnZeXOYzbwI2YPY7EAc7bhvIPbJ6IjDXL4B2uzxou1DULYtJOJjHSskNRwxf+3F9Ues\nuq6Nuysk0lRRi1e+TwjL9KRCM39XoV+pHBfEsed8+Q6v0M9Wjtvn3zvXJqiscziIEsLaIyQlCODc\nmjPJRnXv6j3SBkUfR+qEzjlJDfGuh7vRRBiGNT9HSGT3zxvzPu522Fjhy2eYExHnj+cLEmGDIpwq\nRy5OSxbDQSIkFRfuyGLgQh/JjmLDIQu1GZ+Pc2U72oK+wEBEHtEmeEE2pBRE9jI00c96/hEx6+2Y\ncd5V7L6BOMqgFC+bi968tNsRbhhGK0VO93Xj+lF4Ril8L22YkYI2NHq8pvVajoMLAxuU5RT6bcdR\nGSzU+Rku3zOOPsehQ1jevTi37v1Q1ap379E5rsYf6nwvNOWiqUEVdNLzl/W1j1HYZ81HjlP43qnG\nniY9Pkj35aSXijj20xcSAufkG2mPwu/gacliOEjEu3uIQlIl1rj1kQVDzwhxRH1vbBptAM8Dwi4a\nDz+7j4GY5zPJKsc5R5lH45iRM8IQk4SkWBG483NgULKPOMYscf0WcUxEMXvTUPUdrSFYR2m3q4nj\nEIMfI47pcwdBCCtCHLVrrr1HLuLIrQGa5o+K72mRiJeavHLuRTEcR5DjnlfOBkKn++rOAVu1joDW\nIYmz59r1ctyU3f3CU3sgkT3CYhqJjGMu738UoeBxMTSXSL+IIYn2YT9pWQwHibQn3/fBllAVGxSF\nLLSE6bIhT+Ev1H0yozaO59fMj7JQSoihb4zANB7HuPm42hDwyxyR4HHRm69QOickVZRi36aOVq8c\nZj4QV4JHCv8cKXA2BIxE2BDUDKajEwhYgfdJ0l/JQKT22uSaV13XkOAFcThJEBHHcW7dHkfme3wa\nP89BHUePy8/nC/dlr60iDju+KnU/kWIPeL19HKoQofg8o+VEVCRh63Mi+jtaB3Qav8SIY/49aoFy\n0rIYDhJZkA3ZvfWhZA1VHS+EBVAO+R6GIOQsgkUbvzjt8SfF0R7n3Lpzjcv5de8e8zyR3RWJ7OA4\n6Lxr7LtVEB5SkEyiyKBwfLzvEvrUKt2UgPURISx9DzjENAbjsUGB+VyYphuEsDrH+I0zmuJr0xwH\nH6dPk3F1kUVgRLlgcAjG2aGoiQLVMdHjAOZkCsm2s89N1hcjC3cdBe/UJvhZ36+odckmeAcjx88Y\njoATAaq+iLKwLjYchx/yOi1ZDAeJPBB+gIeDbyBEeXL2RBlv0usihR8gjiB7KkIKu1IWV11yc+DP\nBy/8eUYcQzUQoxN6OE8eJCuIKITFoaeIE+lSG27ZjqPysq2S84nficvqnR5W03ECcpzIa1EoO8lx\nGj/orVEs8x3julUoi1u9r1wDMfohqfnerajlSDEoKRnnJcqGKllVDcchjkZPRoCf/3zNQz2+Hpdj\nsQMiP/stZ+L5kdGt5xcYggiJPAmuJDIoQHUcm/GA+7g4cxxRm/eTlsVwkFwKLHkUqpL02tbQVGUR\nG4XjeUTHQSI9GYitUvh2wY9l3OvbxPn6TWyavGn2IDkksVdW1RhXS6/6tuZgHIGua9unS1y/S162\nlbMVbBYv3je6bRotIQgOPUWhqpXtMcUFg2z8PC5DFH4bbpsSBVZ9agyNzOe4u/A9XvfhthhyLOd6\nVJqu8ECoOyfbAAAgAElEQVSldQk9f8198DVrjoOzlcRAcMV3mU9r2wuFbcZxRzflhCice7iHIdgH\nfTSbnc1/4551pUURza+hqgVxnLnknHFx4yOOkOPY+sgi5g58BLEJ5hz1s+TAezntF8gQ1BBT53qW\nHHoqhmbVuwjlHGW3cEhCPsOGhsNnu3a92xdxSDqum5rK7TTGPM1PPkLpovqOQl7L+PR/7TGVzf8h\nCU4hKW5d0qTjdgkpoQkZyb3gNF1BIp4RbZocZsnCaqvoSwKBuRfT/+fWQQiLDETDfbFDMTsavIZd\nBDFknHcyzOx8H7lwGPZ8+d5W4Z9b9S6CmAyKF57tjnD8IkeR9UWEOHyDEjm4pyWL4VByOIxlMXAL\ngUJSBaGqpmlhkCUVIYjBeFBRfNV+dt136JI1KJsSMurdbKtz1AVVjhnFrM83iKMaFH39EbKIiGLZ\nRvVYvad04Z4ZR0jwCuLg0FPXTZ+xGUwoHIrfJj2V4+r/I6XI8yNOpBYGWnI854kf6jxDkHWWlHVS\nutn4NRs8pdQYy5qF1Xr9JfznIdEAcewyEI1BWbfrYjtqxU7roswfabydvxn89HBJvuC95aewoCRT\ntO/O+XXvvpsXeFy/X9vsjh8SgjgMkIXcp8igLOT4VSCaEG9CT1t5sL5B4e0s98myiKAr/3zB85pG\nyRjyewOFCn/duQjlHCGUjXrh3dh34FmeJy6DFUdjaAIS/JxXuzBIKKndO2LledM6DOMo0dabHkMl\nPZ2rjcc3pHYTkvLTdJv5gjgChBKhoC6JUSzDcRhu1KEt7160bVYErfn1HX6abkOCD9ZxKOti4PUy\n39P5kHFo00MoY2AgRtcAbYYR6z5h3XWNYZLMMw9xXFjbd0He+WZ8h9PYpVaPRAZC7l8bwprGL2+H\nM9nXfDEcSvTDaVuIRIYj8hT2QRDWq/GJvxEXDpxMkmHEqu+mDCBX4XcuNGaOQ5PaXiy75TjYEFhF\nECEOvrbIQ5XPsLcO2HqNdj9tnxAWr9lFIg7HIeNAG3rqOw5VEYIofA+C8aORC7eGl2sRY8b1HW79\nRZ7CcE3tSvaLJKV4sqkoH3y0ZtO0nRAmrYuRjG7ds2XmSppsq9Ecx9YfjSr5ghCHkwZ+VFpvMYr0\nbq67rglJFcNx0JvIQkHl0fiaEgsChKJ3SWz26ZFQVaB3cm7/dhqyGA4lUc8n/TuHpEqb9DGbF0xD\n1H1QxnbMykBY7uOCB8MLrKZ02WHEqktY953bBuHciudXz88zcFIhLF5NDXmxIaAXvnAc8hJFSCSo\nUei6ua+SvQYvY0gjDj5Oqe/Q3vqsFNuwzZxtlVrFLuEcPR4ii4bshpnPhX67Qlv12sqpEoKw476B\nGFV/LjTjjFBq3UfM94zZyRgL026twm8cCjpOQRBDNd5jRohE3TRdTZoTil/J+iInqu+dd2eoyMLL\nmLrQ8IPTz9cdrKweEIRysApD0IwstspwaGShz+MsMqsWw6EkIrUABRmbbIjAQDg8gswRBcHZF9fN\ni593K3OLnmblt+7bNMqjQgzn135BX4s47AvcptcerQgixBFl1TAi8JoQmt5TmV541xDU43DoSRBK\nSwgDfVPxPYeLkkUiley2BX1RCIsRChuIyKBUA1Gff2mf3rXdcUthoDEQUNesEQrc6vqa1kuFfowg\n8q51Ich1P46jRbSj+R5ej/LZKE131QdG1DMQ42xQ6J2q58qJItWgHJJTJ+MuJ3LQhU4qRy7k95yt\ncxXVmZyWnKnhSCl9aUrpXSmlO1JK3+H8/QtTSg+nlN46//tnJ3k+Ud99QJNXR3AZxhsZi8fJi1MQ\nBPMg592QlE5BtN7L5DV14HTcdd+5xXBAm3arxz2EwtktQzAeIYtQoTSxb4He2XrTHINOTmuR7Pdn\n0uQ4k93RfMm2stc8FmNsxpuWIzB/jyrEo/oOPo7o96Lw9yK7J7TWGJrZKHqciIc4hlHuKSlpeW5s\nFIP02i3ND7kvSV+nkGfMlVkjFxUGrvvpXnCxbekoQOHcVTdxH4zKuzQlBHhK/sJB36B+ALjuoCf9\nMI+vV65Bue6gb/RL1AU7CoWflpyZ4Ugp9QBeBODLAHwmgK9NKX2mM/W3c86fPf/73pM8J3kwXCQH\nHM1xiPLbkBcgoSdebNcdrMqcMj76JPhmzFj1TthmUBkgxInU9tlOSGrdNXHjadznPjiUcNzQE4cw\nmOPgKmr2stv6i67ZxU4XvbUIwt+8KGqr3nXTdwMqVDUrUUEcJX5PCp+9Yw5hNdlZDrIw35vruFb4\nkpHWBdfQd2gNSq7hmebeuQ0fR7cYsn1uovAtZyHPueE4Aodi7/ESwrKcwnknyUJCm8wDDiVUxe/C\nXCfEBmV+B9er5GZFsjO2CQxBmX/AiSjV0GzH3PB3zxA9srXffcGJUJyWnCXi+FwAd+Sc35NzPgTw\nUwC+4gzPhx64fRnlWXohrOsCA+FxE9thdLmM7TAqJEKwOgg99cJlGCTiGxSp++CCLmtQ2vHqEVLo\nYccLr7kffRwOz3BWlVaWfpVzmzE0jr5XLgilI8UhYZ6pt1UZrl48k+N58jjLOJHgXN/BdRxMjtc6\nDpi/8za3sj6kKJERSjF+DvHvXZvHfejiSa+ivO9gw4V0L9ihYCTCCv+42XYNEonSt9ctl7GdDYTX\ncmYKVTHiqJmK9l0QHoh2gFTvgpeOO6H41hm7bt27WZeiF+Rv4zih7+vOTY7mlaEm7BwOo6t3TkvO\n0nB8EoD3q9/vnsdYPj+ldEtK6VdSSn8qOlhK6fkppRtTSjfef//9T+iEZFF8zLkVGQFZCFOanpBU\nknN+nRdKUg+WuQzPQGiEwqEngc98TmsHiYg3NRkUJ37b0X7a6kXdi+OgF3jDBqUJYVlPNPYs7fdG\nnVx7J2Noq4lfuobOMUA6zGMyg5RB0edYQmccwiqhJ4sUasHY0Wm6LpeRqvGTU+Md/RokEvBATXfc\nWeGrW1TDc7SO6nFsJXhNWbX3olaIWwehNQRkIBqOo75r3rjf2+oIA9FFXIakstt7VDMV2/nrPjVc\nxrpPOOB3LUAcjETknsqcZ8yRiBLdUEhEf16+44IzflpytZPjNwP41JzzZwH4IQCvjibmnF+Sc74+\n53z9s5/97Cf0ZWLpryPDcdg82Gz+F4+Ae/KzByGfcQ3KWA0Kp92u+y6Az7N3RLDXC9tM6buzlxUU\nDLKCABzPbyQFERiUiBzn9N1VL4VYVqGUuowGZcFpyIe6/an2pnNAjo817XbMtU16qRxnEpzSdHXo\nqUto5of7ccy3PWp+WMhuMkw97ejH3AeHNmrdRxk2iKMpGCwJBzDjUoE+XZO9d32ALBrEMfj3gkOh\nG15fYT2QhzjGQoKzs9T3TueAoYZ/GRG43Mc4zvO7Zj0WMt3JorxwRKhKk916vr4X1dBM+kWHpDbD\n2Bia05SzNBz3APgU9fsnz2NFcs6P5Jwfm39+DYB1SulZJ3VC2iMwD2nLD9byHVGoqhoIuwg97sOQ\n4OztFAPRIgg2BIOEqoLipqamQYWqZJ4cx46P5u9xhfDRoQpWitweQ3vfmuCvpHnX9p6aDYRXc+C2\nWyevWf6k75E+R2nvUedbg9J3PmcRk+P+/Nq0sH4vUOs4GOn0nWRPWcQxzYej5CRRAGa+IBGzSdWM\nvpqEgDFIIOBkh8Gea+xQ2FBVi0TteG0h0l7bmsN249SupX0XarID84Al24oQxKqTpphWeUfIBQAu\nrFdhqEpfk/zPemRbHFbLZUikw3NMT0vO0nC8GcDzUkqfllI6APA1AH5BT0gp/bE0b5CRUvpcTOf7\nwEmdkBgI5jjk5wZKqvxuPS/nPCEIxyM4ivs4WM0ZIE2oqpvgsJMBwntIS+FWU8Q0Z1vxJkUbfoGL\nt1ORCOC88PQCR4WBNd7PHuR0/IKOCOn0HXnZ8ylLVpWJxw9VETTkeLKGCWgVvq4EjwzBSiEODmEJ\n4mjapzdZUnacjWiXbIV4vRcw49W4eoV+dQ9x75p5N0SdhaUNiijLjg3EWPd3N9fMKcV8L4IkixaV\nWUeDHYp1nwxClTkespzehW5eF05iiZN5WOuH7LiEhVvkMoWqjKOpnC6N4rVjCqjivqJ3LLLQEZDp\n86N7HK4tOw1Znfo3zpJz3qaUvgXAawH0AF6ac74tpfSC+e8vBvCVAL4ppbQFcAnA1+QTrK+XF+oZ\nBys3z/q6c/aBNw9QxW9zrp4C13G4CKUghTZF0O+fMy3aMbOhkdCW91II4rAEnxia6TxGXECvPEIb\nSpDvCj3IHU3u2IMsWU+ShUOIo/HK+xY1jVlnHrVKlHtSCYKoIaY63+Uyihff1nFEZDoQh6SaOo75\n+yupbedLUWLDiSSf1GYyXV8zumrIyjXMWVgN4lAoqxqzKWxTwnYqxJRSRVNtOjZxHxTa5Fb1UZdl\n6Y6sHZOcJyPachmV++K6jOu6Dut+tIZgHLF2jK44Jn0T2lKGhuYDMKFn7cgVh3Jr34UWcYjDOo1f\nKfNj7uO05MwMB1DCT6+hsRern18I4IWndT5CfF04mBSneJQxx+F7BLIQopDUBScdd0IQsvgt3K7p\ntXaRP2O9wpizaXRm5lPW1lrgOb1E8nIBuvGeNQTsQe7KqmJPsfE4B40sUqNoeH8No0S7ZAugVAqy\nSU0dKjnOmyMJWpPf5Tu65CCOI0JSnTpOvebpexoSXJHa/jgsOV7CeZ3xpnU4r8kYU8bMu+Yxt913\ni8HKE1pOM0Jb9ckxENXY870TpDP9PjtRlKY7NAiV07StY9KsCyLBJaQkDgUnQax6py5jNhCHe6L1\njToO84a1e4M9DmDR+rq3hYFA1SO60tyOWz0i84RPKfM1VDwludrJ8VMV8QCikBRDQ/YI2KBUj8Mu\n2qgAUMhrrkCXEBNzHJL1Etd9kAEib618r6v8rOcXh6RsPJbTaxvEIchCcRw6BMAZRlwb4VeU1zBP\n05PKqVGQZomsFKXNRulVpZSiJs21Yvfm8xaxzFlweK5wGRKqEgSkQlUaicjxSw8r1xBQJ4BBbxGr\nkIXymvV3Mg9UDcRoUJZOarDZVvO93uFQhBXlAaKVDDMm0z3nSjISe3VPAW0g2k2qhE/kosfKcTiG\nqecCQ58T3bIeCSIXHKripJkm2+qjrI7jqpMSqmIEIQaCxg8bTyGKQU6/55xD0lwMBBNtNbfcLlrh\nPtptTjVhp49f03F13LVkyXRtgV5KuuK3KgjAS5eMFAR5nA6X0etUUwpJFSU6KGXJseax8j1N2m3v\ntEnPwn3AntPgKz8mikel2IVD0efOHAeT4yXttjEQfkiKa1RqqMreixq2ma6Nw3alTqQOz1lY8Pmb\npHkdef7V8On5JZsr2flRhlmELGIOrXJimrOQz4liN9csThSHecdcKspb9C3vFIe82uJJ/U7pLKko\nw1BnVQFHOKbl2iJD4yOU05TFcCg5LAbCIohDerDy+3aHZ3GBoKRWrh21VhYDsaY46qakDrZxV+E+\n9MuyUQiCuQwTnlEvsBB/+pqEfO93xKyjkFRVotP3y94hHrLQHIccr0tWQQwBQuEq6ibt1iPHxViS\nURSDwsqPEYeer+s+2ni8XzneJdtjSpPjroHoLH/DoSpZLjZ9N26rzuS4DreN5FCU8WLkauorX7Mo\ndT3eIAhCZY1BGSpai9K0NWouad2CRAKHgkNMbvh3qJyIl/reku81fRew739KrVHUbdj1OOuRkqAy\nO5wX2IgG3Oppyl4cR0rpHIC/CeC5+jMn3QLktCVMu92y5bcP9jpKo2VDw6Gt1YwsZCFJep2MN/HY\n3jMEc5gkt3uIX1j3LZcxiLKshmDVKy/bSbv0Cr10u3U9Htd9KE9RGT/jZasXUsf1ddqtrqLWSlQu\nMa77sG3SRaFqElwjiHMrzffIOIyBaEJYTqgqeZlHhCy8EJZXx8FFjPY4bSFhWPQ4ow2Tjpstx6Wf\nz8Gqpt3qdNkIZa1mL96MN963fRfikJQlnbe0Xnjd9X3bn6siyM41BNN6tO+OVxulw7kW6VZORJ/L\nZpzaszOKl3vBrUI2NM4FgIUTHSmEdYbpuPuS4z8P4GEANwG4cnKnc7ais6qA9sFySKpNl/M9AllQ\nMn/aRCaBeQMhr7n1hxQZeaGtcTY6df6I/tzKXeQWWdTv9hSHwPYyHpGagUEpWTLKU9TptVpBaFKz\nkuZwlSWH7XQII0IW+poPZo9+UkDzvOL51/Yeerwo16IsUf7v3fGokHD6OyOCJoRF3IdkhnFtBHMZ\n+h416Ev4mAzDD3HtChc9shEte5c7yKJzDEpJu+3ZobCOBoewuKutNShVsZf5hCC0M9aENgPOYlMS\nVNp+XtNxPNQ/nY/8LueqnbGyS+j82QsHfqJIlFV1gdqptNzq1Ws4Pjnn/KUneiZXgUR51qUlwDlG\nEBTConQ5JsG3xXBYZGGQiArbyLGkKOmx7baOz4t/yGi8qXUvpHmrIGSR6zTKlVr8jDia1uBNuqRP\ngnvIQnt+ukbBhB7KeGeVpYzPjffqJksox9fjgFKWjAhGCQsRYV+MaJs6LFXd+lxkC9riZavQkw1h\noRwfQPmMhyA6R1lyexQd8tJbvnIrEplXtqBNCXkOF0r2lN67nJ+b5TLqWvWQqN4TRR9HelvtCmHx\n8y+9oUi5NhxHM+47Gpe3tc+TGJR1N7aFhE6693aY0BejfkEuJZVdJcdI2rA+R93zSn6X+YAKbXPW\nJiGOhuO4isnx300p/ZkTPZOrQLgQJyLBrwQkeIGSlC7HyrJmYgi0rUiE4XPxjhwEUVINHXjOFeWa\nE9HnKtWvLbKg8chA7PIgSwy6I2UpSMF2u424DA7PNIhjVqLaIxxHuEpuKEoO5jtbr1mOk+eaiTY1\n2WQYDaOan9AR+d6S476BaLgPev5Rhpk2KDoFmfmB6RrquXnp2PUe+dxHDWHVe6e9bJ3WLWEncy9o\nHXn1PS7iIK5BxouzRIap77wQ01gcBOYHxVlq2rD3sn7VtZXEFequMOTiHPI9Wql3sDEQ1B27FOFG\nWZtPgzqOLwDwd1NK78UUqkoA8txD6poRUaKymHmfcc6GYrKL4TNvZynHWdM+GlW5SjpuC7ebtgkz\nrB4T7TxYYHVd5JKO6mXDlLiu41nqcUYiHMvmmHUTVimpwALnUa5ZhxhEgXDLcMuJ1BeeEYcNw4xE\naisD0bVV0WXPCkIW9ZphjlOQRUnTlc9N55Nm4+FlSXUB4vCUZRmfjy/3Sq6Ba2+k/qJJOBBLJvem\n62uabmrXha1pQblm39CMrkGZyHe062X+v9mLvBg56SVlUTwbAl3f4TkaHvqujUDHhh9cd22FuCSW\n6GaWHRJ0tpV+LpqU1+eyGUas5y4Q8ru+hjbSMY035Hgw/zRlX8PxZSd6FleJFB4g8gg47ZYQSmMg\nVnOrkLJw5sW8so3U5HOFHCfva935LURW/dQmggsGVyrEJHH97TDiGTP3oY89GZTOzZ4yHIdCR8wb\nyPfKNXvZMG1Bn+ImjBKdroNRllWibUycx3W21YqU3BSnrwhCe/KGNNehJ4ezKMhiNijchl3OixFB\nQ44rZKH33dCGRhO/3IbdQxxeIWHfJYhdHZUhsHUZ1qFwM8w8ByTDGBTtUHhcmVzLem5yycYvRByd\nRRYtr8MhrM44LIDwgz6KFwdHumCnlBTqr+tl3U/zz6/ru6bT8SXdV48XZ6xBKBZZsF64sLZh4SiJ\n5zRlr1BVzvkuAM8E8D/N/545j11TcrgdS5tkQBsIa+G5XiPqalnIbuJEattzUcbVO5JFO80XD3Iy\nKE2oaobJLfGnFT4RdhTX17ueyTx3vowP2VcQFA6JsmFajoPn+55lQwi74ZxaoyK3JMoYktCWvobS\nzJCM6FE9rMw4hXMAGEQwsMJXJLse50LCVWBQmpCXvkdOvF/6fOm5oiy9azONHefvLtl5zTWP7nop\nZHpnjXH0/EU5HrWONNcg72Idt+soKtwrISnOYOyqYtdr26JybRTb9aI7UdvjSJdd65hKGUCjX0bR\nL9T2Zx4/t+rRd+2mc6chexmOlNI/BPATAP7o/O/HU0rfepIndhYifZ7WFG4pLUfO+SEpLtzRiEMv\n/mJQKL2WDUp5KQz3wS2j6yL0+vPwIpeCQeY4dI66vuajsq1cg0IIohoa9QIHCMIlhGm+JkE1spBb\norOexmwNUEuO1y67erz0tmqyoeJmhhqJDOYedeX7tWECVPv0xviB7gXMNbuV410yMfcy36T71uM0\n1fIjIQ66F40DQoZgUE5O37UJBHU9UkhKhWej56ydIhPC6luOQ5yoZnzOYNRIVGqjGHEMQ22KqM9V\nwsLNNY82sUQrfI1QKp84dettdsMsHMeqfB5QyGJN5Pg8ftB3JrR9mrJvqOobAHxezvlxAEgp/QCA\nN2LaI+OaEd1BFogrNeVBH5YH6xfoSMiIjyPEGSOUsm0lvVzsTcniX3cJQ4JZ/A03obOnPENAXpM2\nBJZYrshl3XduOiagM4BovD+asI0MB9d3TF6z4ocUOa6vQZSl9pqt8YOjIPyCvrIFbd8aFG10TQhr\nVqA6ZCRKt4yTQZFqdr4XXBi4JaXr3SMzXxlRET4nL8QU1a6s120IU5BFcSi0cfXQmkJHXn0PNzOM\nyO7K61huYjPqe1Q5Do1EOfVdQlhuyrqTWFLQuowrQ7CeN4TicYs4bEj6Atd9NQXGhKb6FjWdluxr\nOBKAQf0+zGPXlGyGceIf5gfL6bhNnvX8wM+ve1MJbg2EA597u4/GdlTzFQm+UfO1oZG13ncdMBPo\nujndpNg7c4zNOM7Ku82GsjHr6h3pgi6NRCKOo0tOBpB5gVtFIEqxSceltFttgIT4B8ibVp6/zjzy\nEIRLjnO8X4dzVLZVQyDz+HwcAKYz7zDCjPvEf2REu0bpHkWyd2niM0Z1L5gc1y1KmvRaRhzm+Vcv\nW4eejnJMWo5jWkeSQNCS3ZbX0SEsb7004yqbT3Mc8m6KYbIkuDV+OnklQt/mHaGU5ZYfrPt96HPh\nLKla6DcbFHJMZXz9NDAcPwrg91NKr5p//+sA/tPJnNLZyaFkPaz4wZJHQKQ5V5vWkNRsCEZ7nDUh\nCO1BrtTLsqX5g7P4O4k9j7V1c9+l4u1oJbR2FIR02eXMEEEoHhKxHIcKec0vnAkxkGfJ7dPLzm0b\nItM763Ear7xrja5Rfjmb3lZ8DRKecdNrPe94tE0RNQch4Z+UbChM5hryeq77kOvwQk8dIZTpGDBI\nxGSSBa1I9L3Q4TxNjpsWJW64rTWitV4DZZ6+RzWcY0NbYrPYGAMwCSE6JGU4scGuo0ubYT4Oc2I2\nzLvqfb5HwmfCiQHVWeK6DOYmNB+nE1E2yrhKjywzf7AtSmoYeXpnD/g48z08NyecMJm+Fgf0ag1V\n5Zz/n5TSb2JKywWAr885v+XEzuqMpHAcvfXKw6wqZSAO+jZ8UrZqDchu9jhKqMqd71Sa9wmDeuEl\n08PlLAabPaX7Z3ne0c5xx/vulbJswm0paJ8uoYRxKMeRe6Fbi2jyfYrrT89MZwzp+H1VioCXjrvq\najy+hjEovZaRiNNmQ8aYpNbkOFeUy/l65HXf1ZbxNQurs9yHNijuuN3mVofzoBR4CYU5yixKCNgK\nyhKjq67BOBQZZjwlq9h5vQzKAZIxt6CvFOixoQmQ6+xEaQQ0ze+w6uo7IGuEs6fk75qn0byO4ROV\noVnr+eqahccEKNuq04WE5DiuOqx1JEJnYXbd1ZeOm1L6uJzzIymlTwBw5/xP/vYJOecHT/b0Tle2\nQ8Z6VR+gDlWtOifbqlj+OV5K3MdBLzvutfPXfSr7aFSlKNlWLTmuxzUMT6iL6fy6r4u8Sa+18Vsd\ny9ZeEyMLr6J8NSsmE2KYjzOdV9u9VDzCJqwyK5QmJJVsKIFTWTllmb3soix7G1bh7VhlnK+Nx1kZ\nT+dUaz449FQNhFWucoxOFfo14RnnHunCQGNQUg3bMSdSr7meo8gwZKN0XcThpumOJhFBG2Oz8ZN6\nPhp9cQhLvt8PSfkFfeu+NQQN96HekV4hXe3UrZSDmFJW460CjxNLaqGfjixo501HItZ9zWC0410x\nrlx4LO/ztnFYJ6L9aiTHfxLAl2PqUaXPLs2//3cndF5nIoeEODgvu2ktsCVugr3jeXFKJbnhProO\n22Frxgsh6MJzf/OaJB7kDLnFq/G8HRu/1cpy/zitIA4ARGqOBc2w5yexbI/j4E2KNILQaZSsXMdc\n9yEHarxfrqGEc1Ta7dYgkTaE1So/OSeqB1GhJFECHHoqypLqKayX3RpFk75bjByM922MaxiGqc9N\nI5QEFc6jMKK55nFGqB7KmsM/8txl/LxDmg/KQPRdUska/nqJSHAOYfG9WEsvKScddyLBWyetIo7R\nII52F8Na96HP5Shy/BnnVo0zVkJeZf6oxlO5Dk7Hlx5zOrQFTIXEXN91WnKk4cg5f/n8/6edzumc\nrUhlZzEcsqHKXN/BHoHO3DhQ9RraQFgSvBqUdZ8KyWUWSO81cJO028k4aG8qoRq3raM42KthZVlJ\n81ZBnF/3rQc5pyYCaF5g60F6hkYVsYmC6CVOb+F5jd/XWHkZV+fqKUsdvzfkuDI0fe+Q44IsvDBc\nQqsUVYhDh1s04rDkuB0v4ZwgG4p7TzXZVh3ccX0No7pHEoKR58kbS+ljSOaZx/eYehB9zcoBsanM\nar3kdr2YddRkjHnI0josMu69a5JMUdY7efHynQLGPKeL+3M12VZMpo82bKcdUI3utSGQMR252Awj\nulRTk7m4cUr3PxtyfN86jl/fZ+zpLhyq0g9WCPO1yhWfHvhsUMz4/GAlo4NikxVxECfCi19BUl2U\n5MHtYVQGRcFn88LrxazTax1ksRl9xKFj0/raIo5DsnPKOPE0qy4oVuvsC69Tk/U5mfmqytkjx818\nLwzDxWrmmjtwdpZGEF3SoS0cQY4LErHpu3KubqEfV4gbI4pmnNNfOeQl58gorr0XTpt0qnUxiDah\nCfDO27IAACAASURBVGFJ+E+eNa9H+f7diMNmVUXcF6+jdWc3O9NciTYE5p1STpftsksIgrkJ9f5r\nMl0jFB250N23JZnlQHOfM0KR6+O6slWXsF51xQE9TdnFcZwHcB2AZ6WUPh41BffjAHzSCZ/bqctm\nGPEx5yvE1ByH9ggOVSW45ymUrIeVZFtxVpUtYuIsLC99Vys/7ZXpc+cW0zIu/3v1HUKatyEs6rdj\nMkbmF763XEbJqtIx5cEqCLl3pScVcRkVKdiQhA2rqPi9g0RMxlAHgyxc5FK4A8sP2Epw7X2jjjuZ\nQdLSBCDSXM3na9PGmLOtIsQhhiDy1uXY1bgC8goPo+J7jrjmFY+T920RSlcyzDzEyQairheNykYT\n2ry0cQyKete04+CFcyT5QlKTN4M+Ti3Q08hRcx8eotX9s7STpgt6bUNR++7UsK1C8UqP6FC18KpR\nCOvgagxVAfj7AL4NwB/HxHOIpnoEwAtP8LzORA4Hynoo3EQuYweG7K7elPEUTCW4IsEVl6HnGy/I\nQFUxNJF31CGleoyKOPyUUk12c0phnX80x8EepIdEOjM+2ri+8srlGF7BYNe1x5dj6HPaukhkNLUu\nLjnuIA6+F23lOMrv8jlNdoehKnXNvZ6vx5N3j+y1MffRd3aTKt5JUOaOajwFtS76+Qt3JIbA3iOb\nKKCzsHxkQc9fpWPXcUuC995xmpR163QxCV4Qhya7x1GNd+i7utYliidO3XQuowkve+E8fjfrNbTO\nmHRvkOuozVJzQSHrvrNJOb04JjYFvZMQ1hmFqnZxHP8ewL9PKX1rzvmaqhL3ZApJpaIkdHbDWj1A\nMSiHKoSlPQWd9bDuOzx2eSbByUBwCKvua0weZK8XYV3ME7ytXlNd5BahCNzW7RSMQenb8JyMi3dk\n4fn0nZwuG2VVRQolpbZgsG5exG3YWyWnlaVBHDkXJa6bEBoPsrfptWYL2tQqRVG6WoFLmu70/YjJ\ncTOOcr4l7VaNMyciY6ERlWtQ2VNmfMxG+WlyXHfZ1ZxFMbpuooBFHDUzjAyE41Csus7lONhArMtx\nvP1bbLZV4TjknaJ3h8NwGonoNd8XR4OdNGWwKOQ5FU+26fu15xU7Y1WPHGgDsa2Ri6nl0NGG5lAh\nlPWqw6VLujb7dGTfOo4fSin9aQCfCeC8Gn/ZSZ3YWYgOPZm0WHqwOiSlwzM1xjl5rimJR5DLcYBp\n0bhkV1+5kpxz+X69yDeD9bLLuWskopGFUpaWy7CoySVBFakZchwhskAznxVBDfN4bbL9vHzedChC\nIlWJwiAO7zhjzkZZspfNrUK8e2FaixDiCOs4vPTdhBZxcIW4RhbKEbCdglXYTl1zRRyjaVGiOQsd\n7/fSdFedj0SjeyTvDhsUN023WV82K7DWg9j1Imu75T5s4Z5GInrDrlGtRd17amucuohntO8Ut/3h\nwkD5nOkLVxCHJccPTLZVPf5BiYCcTZPDffcc/x4AX4jJcLwGU5v1NwC4pgwHh6Q2Ko3WjCuYvF6p\nUNVWednOQjAtRzrVBZfG5RgDGRTAek1T7nf1sEwFugO3e5VDbklthWjk2mavSY43KJh8bm66pklt\nzWXYvHzrNUXkKJOgovxK2wxCIoAd5/CMVEhPBC/qPXUQijaumsvQaKcrhkBXjlcSnJFCVYrUnl3m\nJ3/+kVvKEipjZOHxPVttIDqFOJRB0cpvGGtluhfOK/t3yPhQz9XNkhqn1uMyziHSOl+tFzE0vW9Q\n+q4tAKwch+XQmNerxnXaARCY3mNZIxJeBuZ3yhiaNkS66vy6DG//9SlrUwyUre8yDqhK6zWGRjum\nEgG5mrOqAHwlgL8E4IM5568H8GcB/JEn++UppS9NKb0rpXRHSuk7nL+nlNJ/mP9+S0rpzz3Z7zxK\nmpCUSq+zoSqfNK87AOrxNttqUuyqC67mMhTs1em4sgg3g427rnaMm8Xfec0J/Rz1YfBJzSb0oMYL\naa5gdZs9ow2K56Gi3iM5J1PlbDN3TAjLCc9octymptputzojiWPWJh5vwnOk/HS9hlNRLq1O3Pnq\n+JxtJZzCmOfaFY+baMJzOmznGxRtdPW+G16SRdM1N9H4UI0fd7W1DsIYjPuIw3AlqTpjHJISRDBm\nS4JPWXu1QE+38fFCWMxlVHSvs6TqcaK6jGkPHeIT1TulHccJWdTQk60faw2EdnDXK7tJ1WnJvobj\nUs55BLBNKX0cgPsAfMqT+eKUUg/gRZjQy2cC+NqU0mfStC8D8Lz53/MB/PCT+c5d0oSqhtYQcCW4\neBtcf1HmdxZ6yjF0Z069kVNN7RuJK2m9nb7TnmI2sNp6R9WLL4YmyFHXxrJ6NT6X0b7w1YhGWTUS\nErLjncmqAWxBnyVyrSdnlGLfjnfJJgTo8I/udqtj2Zx2q69ZIwLJwuJ7wYkCXIEu5yWKvrmnlECg\nuYYxW+7DGsX2OWtkoVOQbeYZZaoJ4ujasN12rH27dPaURhwdhaqi+p6I+6rjNrS5UutFIxegchzN\nczb3QjsUttmgdkD0uA5JaYRaG5M62VOEOEx9h2MgJLQFYE4dbh1T3bpII5epHuzqRRw3ppSeCeA/\nYsquuhlTW/UnI58L4I6c83tyzocAfgrAV9CcrwDwsjzJ7wF4ZkrpE5/k94ZiLHlve8NUErwzhXs1\nVJXMQtAIRafXdWletKaOI0IKKh3XkOPVAFUkYpWfrlr14LYQwvJCNoqAFHvMcTgIYs/5ZbzfgTjU\nNUgVtYyPFM7h8VXXmT0iPGJZKxpvu1RNdq8aQzDN4bTbkBz3yPRRh8I0JzKWMQ8pcC1KMTSdRRAe\n4hgiJDIwV0ZINFT4fkpxHJKM03R9xJGLY+BxHMzT1TXf0TtVkYJFHA6CGKPwLxkgxYnI/1wnIs9i\nra5BZ1WttN7Z1mvT/JBO35U9g9YKifz0m9+P7371rTgN2ctw5Jz/Qc75oZzziwH8ZQBfN4esnox8\nEoD3q9/vRlsbss8cAEBK6fkppRtTSjfef//9T+iEPu1Zz8BzPu4cAMw9YFpoqCvEDyk2abIeFBIp\nHsRoY5YMq6dUwGogTGir8xezMRBD+1JsFaye4ro1FCbef1m0lBZpuAllRP3K8dF94ZtwjoqJC0Kx\nNQo626oiBZ1tpSu7TX6/E2LoiBw3nWiNl61DWCjnKMfTIaZi5IIWIsb7PkJZejsG6p5U3CwRILJb\nIwLTQkTxNApZ2MJA3wCN6jiMOHSaLj+3hoNw1pEZH2Luq6yXno9j73XOuUnTneaOFmW7qFz3pPLr\nNUzCSd/ReH1npW+bRkfrrnPqNeo1c5JN5T4S9IZwuhWJDnnLuaxX1QDd/L6P4LW3fRCnIbsKAENO\nIaX053LONz/1p/TEJOf8EgAvAYDrr7/+CQX9fvFbv6D8vOpsiEnHGjWUPFCGwGQ9rBSZXrKqbEEP\nIHHXlsjbjDZ11HIfVYlmVKNkKtA7PV/BbfUS6dRE+b+S3Vbh786qqtdsQxVwFYruYaSRiM626kWB\nawOhQk8cvzdKbn6OpleV8srZm9Zhm5qCPJo0Xbk2FykkW69RkEVSKCs4zpC5dYm6dwqhyFyNssw1\nKOJXz9fK1SPHLffhK9EJxdV7Wp9bhCwqsuyc9dUgDp1tZxyQ+TiaHwg8fw9xrHrtgDAPWJ2unPU1\nt6nvenwgwzQdb8rCLP3i+nbNaz3CG7yZ5Bs97tV9UEj90HFwT1p2ZVX92yP+lgH8xSfx3ffA8iSf\nPI8dd86JiOE49INadbg4501vh4xza51tpbMkNCStpJnmDeQYuudVyZ4aLGehi5i0oRHQOAz0sqis\nKk8R2GKoFj5vdWigt4pdvxTa47xgPMia3RJzInV8zJX4LeMKTZneVk5dBu+nXdFUVRyj8iCZQ9GI\nQ47HNQ18DRHiMDsAdglXtmo81XG9x4VGFn5LkzYkxQkBmhPRqaZm4ycvHbfT3IefQGC9b98QmBDW\nfN/C0FbOOOel6Q4+QplQnIzXdSEGKCVG5TqNtkXrE89YnS6dGq57WHnV+NtBh7ZmQzC/O9rQyLjX\ndYFrTsy4ys46v9Ycqsd98Pi8wE5YdhUAftEJfvebATwvpfRpmIzB1wD4X2nOLwD4lpTSTwH4PAAP\n55zvPcFzKrJeEcehQlVb9aCecW66hfzAa0jKbvCkQ1iALM5a9xGS4+plEUOjF4kOSfHLYuK3oiwH\n7a3V9EebRusjDo+8PCrEYDzI4pXb0JYcQ3uWLqmplGKEOLZjLr2ceYe+XUVytf6Cj1+Px3uOT/Nt\n00JNjrs1LTo8lzUqgxvC8pCFNn7jqHteQV1b231XxrmhpNwjzxiPdO/kfybN67ifPaXXRe1IawsD\nQ46D7sV2nGqdNBfXPM/O5w0NWhsycqffnRoiNVyJk3xhQtKDzbbS16w7VwOWm9iMPoLYDiNWs35Z\n0zul0/114eHqKkEcAICU0nUA/hGAT805Pz+l9DwAn5Fz/qUn+sU5521K6VsAvBZAD+ClOefbUkov\nmP/+Ykw1I38VwB0ALgL4+if6fccVTXZvthUCRmlx7BEcqAdbM5g0VFUIQnsibojJpuPqkMSU7NZ6\nhFbROF7TaOO98v9mtJXmMq69JtPtVHlNu8lR1RIi1+/VCt8gEUXwcmM/me9lz8iWqHI/hRy3leZV\nAfKmRvI5TbLXVFMbqqrn6pPdelyHpHTdxzQfZdyQ7Aqh1OdZx3RISocwTUKACsOUAkDNZVAhoQ6R\nmvUi6y6p56lQk3E0tDJT43WnRx+JDgqVcysSPR+YFL4JeRbOwqJpy3HM42QgOkGWHdVAqZCUvheb\nwaKv9ZwlWbY8EMQxc5zaCZTP1Z532c5XjqbWO3IubZZnLlzp1RKqEvlRTNlUnz//fg+AnwHwhA0H\nAOScX4PJOOixF6ufM4BvfjLf8UTFGoixZE/pvGkNDTWXoS3/qpsarAmnoBcCILBXp/XWxa/JcV2U\npMdLyxGCybX61XIZuoWIVhDy90GT5l37AhvE0Sdc2Q7NeJglY7KnWsQh5DUriJG9YycMw2EVMRya\nHJ8MhOYBqgLSVdQAyiZVHHowNSdZG0u1/ekRISzhgZpKc3V8N31X3aOq8P0GjuaaR2sUTahKQl49\nh7yqQZE9wXWarkFHQ+toTKFHZfy04zDWMK/lyhTH5SKO0ayjae5oDEqUdms5Di99tzY5XPedKeiL\nOJE2zGsRh8mG0iFVRY4/fqXux1OypPqAW+11wXANYWmu9DRDVfuap0/POf8bABsAyDlfRG14eE2K\nbless6TWXfK75nZ2hy79wGWubFbP4yaP20kFlH06pnG7OAtnMVCoqq8Kghd536WCdOTc5XOeN6U5\nC9nTXI4jx96MflaVhucmC2ewyrVc8+iNj0ZZVgVhwzC6LsNuKYtyfMMDaO9bHUdfm1aigK3L0HUc\nXVcrrnUWFu/0Vw0ByrmE5Hhu0ZfwMV1CcQIAygxLFomY7CkdqlIhL0OOZ7su5JyY45D1Io5GRJpH\n6btynE4hWnZAhLi2hqYihek4VUnLuBu2VYZANydsDI16d/RxeJ1O86vDJ2Fne49SCakBMBEHs1dO\nMYqdMRA241FHLjpzPOFj5JpOWvY1HIcppQuYI8cppU8HcOXEzuoqEOYy9H4cZmOWvn3gnCUB1NDQ\nuqMHPr+QqwaJ1JCUVpaT97Ij1VCFGDYmrluN36CIP1u4Z8l0GY8UgTe+Tx0H74YHzJ6/Yzgkri+I\nyVY5t0qxzQyq5Hj1vlFqV9jQyP9Djkhzrdhh5sv3eJlEuo5DG5SGHM9TokB0LzhVGmiz7aJqea0U\nveysUSldvgY2ooIsGLnqcNuWrs2uC+V0eQjVPH9bkCpz7XyNCKa0bsNljNkgV43KB6XYqzOmQk+m\nxkr3sKpIZQpV1VDY9LnOfK910hSX4WRVyQZy8v013d+m9U7nOhq9c9Kyb6jqewDcAOBTUko/AeAv\nAPi7J3VSV4NwUzHvATJprquxdSuSaWwKPUnISxsI63HoRTt9b0oaVqu6jz4hz8BvM3Koqn1Z1koR\n6Ji1RiKuN8WKoK+KwCKIdj57kKIUvRBDUQSJFMfcToNDFbqmoe+t911CVUyOq8JAoIaetMdZznXM\nJhQGxE0LOzYohjR3QlJ0T5vwXKbUZPU8TTfdVK9Zk+NaifK+HtM4jDLT3vTIiGO+Ng+JMM8kfw+z\nrXR2nlkXso5GXHdQe6HJXA6FATXzkO+dZCoy96Gf80plVU1GtB5Dd7s1dSLqOI1z1SVrUJSR0xXo\nkiloQt5kFG3rks4cR+7RgeiRvhq/jbp3Jy07vyVNbNrtAP4GgD+PKUT1D3POHz7hcztTEQQh7Sjc\nrIfRkuOay6iL1j7YFSGOjSx+QhyCIHSB4TRft0HoioIcaNyH1fWcjLdOLzy/FMxZ7EIivVn8tupa\n5nLsG6hZTL3yXIGKsrSSno7tF7Hp3j06VDWae4HyHYYcN/UXdv8OuQarpFvlN4xqPPmJApx225Hy\nKyEpHpd75BgUw/eo8Jx+zm5/LuIyts616fAPG9eWNKfsKZnfx1lSEUIt1+YagnHHfJu+q8luk5o+\nVOQo3RhSmkNVhey23XH1FgnT/938jlfDJH/3nDcOedteVdUZWysDUcLCSi8cFD1ik2xOWnYajpxz\nTim9Juf8ZwD88imc01Uh6znrocYm5welPYWt3WgFaCHjulMPdrBNy8r80eE+5kwM5j6YsB0dTkSy\nZ4oXNNrFXGLWAxuIjkJb9VwvbYamclj3mNJIpMmSUYpD5rInasdtGEYyiXi+Jop11ouMybiOibuG\nYGyJX8l68hCH5gHcZoZRCCtbhW9IcDKKcm3a0AA19KS76co1m5CUukfu5lXDWPkeMhDjyOvChqR0\n2G6rSHZ9nJo9FfWqGs26M7UO5FBIhmEUtmvQ/UwUN+uLyW5VJ5TpOUuGYU3HrR0FpnVK4d8+GUem\neaccgyKkec5VH6y7VAoJbQeK2tuOWyNNY6PJtjpp2fdbbk4pfc6JnslVJrLTn1j/UiGuIONm1KEq\nHWvUoS27+PVCAKoXVLgPell0dkYZ19lWTs65NkKG+1Dejs70sK0fRseg2JCEz3GM7riXXisvPGcM\nDfM5yQtqveyx8b51KMEYDgqfFMQRKj+bpit/Z2J5+p94Ayeu35DjOrSlrsHbSbCQ2mM283XYzmSe\neVxGOiIduyAONA5CRRB0zTNnxUZ0chC843RFGRtHo+E4fOTK1ywKWfMDQG0VEpHmPTlj1lnyO07X\n0JDNkhJ+LXpHVvM7taF3rcynNN1V0S+c1lsjF9rR1L3tbLaVzQC7KgoAlXwegL+dUroLwOOYwlU5\n5/xZJ3ZmZyzS5FD6UulWAdv5pTDkuIK9OvSk6zUOh4wLB+wp5KZyFEBZtJp8k+Po3HLxrW17hLr4\nOaUQqCGDslFUb1/gSnaSQeHjdD4JagjhsY3fy3es1/X4QPWadeUwUMMwfBwTnknWcIjoFiUczgEU\nsigGRaVRjo6h6Ww4T/Mx+pq1IahIhFuOYB63mWdyjzRC0WE7L/OsMZZOcSP3qmoSAig816tr4D1R\nAHFMxuYeyb2Qx8BZUnJeGk3pdcTOklyD7Oths6F8jsNNIBgtaa5RvIBU/S7od8c2G/SctM4aII0s\nnPkHfYfDrZ7fGgLetmHMNdxaj6OMn0IoJy37Go6/cqJncRXKqp+aGZZW6CtrCK5spxdGcxzATHaP\ntnBnGpesqhY+2+6YYmgCAll5FpMHNJ2vZG3puX3HWVLKoAQIgkNhchyLUDSyCEISJgXVvsCy+Buy\nczZOkVJsuJLZ0KQEs+WrMRwdhxhaJWfGVeiJM5KAWjnukuaCICgkZZslynnBjJ9b2WuW7CZGaxJ6\n0plN5h4lm6bL5LhOx5VQFSv2JlEgMceBci80Elmpe6STLzSy8ByNFd+j4ixZR6MNeY42TZcyDJuQ\n1zga0lw7MrJGmndh4LBtsu19VKjq8sYnxy0SsZlk1TG17/9h4SzI0RzHZkdSQEc6rhLDMe+b8dqc\n8588hfO5akT2BBYCix/UpcPB/F5CVWM2UHJtPALFWawsgqgGpRogjzTnFMTSgVMrdvXd2zGuy9Cw\nHdBetv/Cc7ZVizgq95Fz9VLrC2+5Bh+J6HoQhRTUfLNPx6izsOp8EQkxSBiGDYTUZRRyXIeqlNLV\nYbLD7dhwJfuQ4CYkZbKw4JLgtg07XbMznwsPy7iuXRHDpIohm7RbRiJ9opTlqvzG3KbvrvheB4iD\nDdaUbdcqfAnbsAMia7JdR2NjmACUd0S3/ZDxLpFTJKEkeqcK4mhCUh22w1YV59b3VqNBjSy2Jt3X\n6pfLm0m/HPTtNegQeYtQZgt4wrLTPOWcBwDvSil96imcz1UjEpJijkMe7MWNGA7r7Wy2QoLb+aLA\nK2mukYgXqsouab4V8l1B0r5LpreVMQQOUpBxr6DLRxx28fscR5z+6GVVechiO+Smb5M5DqfpjkQg\nK34gDMOwIUjWQHDhnla65d5FSlGR4F0wzqGncTai8r4zCc48kJDmuh6kXHOARNwtZQfv2jrTTbdB\nHOWaUc7JXV8RUZyY+3KSIAaP4+BkCstl6JBqOc7YFuEOo814lDoeL8NQdugbGCkEGYlS0Mcp7tIm\nfTM483Uxbxmf9cvsmK7IQEjnCE6akTDZVYM4Zvl4ALellN6EieMAAOSc/+cTOaurQNZz+tvljUUW\n8qAuHW5pvMLhw6HNtppCWDZmqcc/Zt7HuxB/RJpzDrlOu6sFfX5lL6dRMoLgNNpmfueHHiQbppKg\nvnfMRO6kVEbDDwDVC9bHB6pyLQVmutBvaMnRIefS5FAbFe0dR8Q/E7YDKcteEAoZIM1ZaC/Y7jXi\nJApE9y5bI9p4zb2dL6iJ7/VAz19CMl64re/mBIWgGJIziSRRpJmfiAdSz1OjLy/bbutcm5DLTHZH\n2Vay5r3x9t3pZqdkOh/p5dXzO2LQukYQikzXKL7JYGwjFzmj0S/yPRdn/VI5zun/w8GGyE1Sjsry\nPGnZ13B894mexVUo9QEO5vfII+C6DJ2dAcwxS0N2z/NH2yqAM0Bq22brcfSEOAwBZ5RfS9j1wnE0\nsNoeZ02Lv0EcTKY3nuJ4pEHpe//F9jzO7ahCUuoeRYhDRHdg3SqlaKqfHSXXERLRIanJu0f5ffpc\nTevMuT0+YJGIaemeHYMiSESdD+DUceiCvrE9Pve20nuNiDetDW/YfkUhFG10L22CAsCsEYpdL42j\nkWhd7EAcPa0vdt6ENG95xtF/d4bRJA4AtXttm21lW4uYa3OzqjqfHxQHdGP1ixgCCYWXnUc7P0Ru\nkMh4lVWO55x/K6X0HACSkvumnPN9J3daZy/NA6QH9fgVjkFO41e2I8bcIhRR+OuVt5hVFpZKNdSk\nuYHVFMuUDpzifSWltDyksO5siiAjkYbj6JLxpjhmXRRE4yn6hVsNEmlCDDbDSDKAQgPEiGPMpZFa\n9fzbnf7KNWS4ytJL35W02zZ99wil69RraKTgpSaPc5prM39kA4RybH2PNELRva0AMX4o7d51K3nP\nQZBr072tyrWNPoobhuBeuMcnxEFJE5xJpkNS054V9jjSHVevazn+MNp3R4xZp97ZMu4YCEYiZmMm\nHZ7T5LjDlaxDQ0AGhQqGL1GI3JDpw+ml4+5lnlJKXw3gTQC+CsBXA/j9lNJXnuSJnbXIA7jYhKTk\nAdL4yi4EnaYH1KIkbi2is6Ts+BTOkZcEEC/Iwnn5TE1BtPN1T6q1eiFNw7cgtBVl2/BLcbQiGF2D\nsnWUKHMf1dDAhh7YQy3xfqjvZW+3Mwq/yTxzkMjgHEe61zbkeAcyKBUpuHUcITcxz80TqqlkfR2P\nEgK0MdaIQytjOTdjROn5D861mXRcCtswac7hP8txjI2jobPtPIUfORot92ENijeu15H8TRCBHpfa\nlQbF0z0yztWgN2WrhsCS6b4h4LT7i4fWQAjyeLyEsCzKktTeqy0d97sAfI6gjJTSswH8GoBXntSJ\nnbWIIeAHGIaqOmtQDsjQtPUdlstoCwPt4pe/Sb2GXiBa4a/M4pcXta3XmFIHj/YImePgGPekgKDa\ntltPkRU7hx48pOCFZ7aEOFhZyrjOnkoJ8796LKMUlTKT7zX3QqqinQwjlxynEFanjFklx22XXaDu\nCd6EpGYjVI195Xt03y42KDqkVu5prr2t5Jy146ANr1ev0QfKUsJ5TJq3aM2ul4G+V2fbeVlVNZOQ\n+MTiRBFCEYPijOtUeUDI7oyMTCi+ouwutZlnTfZU35V3XD4//Z12BiSHsugXSvdnJNJkc65onJDI\nScu+5qmj0NQDx/js01LkhRULzw/q4iGFqhqDYg1NkyWlYLjJkiihKglJOVzGMLoGRb8s03f73Efr\nTWmOw0tB7Ezu+rqzykk2pGk5DouCOkIK9fgw85smh4REdHim8RSVgTD3qIvTcYcRPiHszC/1HVEh\noVeBPmpyXM5zvgbmLBRSGJSytJ1/x8bQsLfe8EbJOhSy94m+n0LwVuNaz9UYAsU1WUfD58r6cny7\nXrzQk8dxxIjDonLTS2po07pLz7MGcYwhEtmMdle9khBAGYna0Ezj1ejacJ41EIUc73z9woZD9vCo\nWVi+oTlp2Rdx3JBSei2AV8y//y3QBkzXmkhzsYtXLMfBD4oXAj9wTRTrZmY1/3pCBLJwps12tDel\nvaDaBmXlGJQNGZTiWVLoSTgOXvwyv4w3cLv1voGJ1zHjir/JWSkUygzj+VKsuDeXQbUL8hnpjtuR\nsvQQx6rcC4fLyHo7VmVQvFCVFAbSuFHseY9mhoQUSpquNpbZqfsY/ToONij1XrSFoWxEdS2CJngZ\ncXBISvbXYIQq53yFHA2dbRfWZQz+VsNuWvd8TmXTrK42LfRQ/DBmZHW95ZrH0ewwKMfSiEOHDHVd\nhlbsGvXrjEegdTTr+LZ8Xv8fGRSOgJy0HGk4Ukp/AsBzcs7/JKX0NwB8wfynNwL4iZM+ubOUUTPz\nkQAAIABJREFUXZa/hZhMdlnEcWUz2mZmOgVxYM6iq00OzWKuip25DE7TnOb7OediIDZkUEIDQd43\noybZBZARR0EiCrkALcdRFQEIiZDhUCSuGXeMZZdgxiUdl1uGi4FovOkGQVRlOR6BUDzyHUAxNk0d\nhxg/Gud4vEYiXt1Hk9YbjMtnJAtr+h3lmnVrGbnPXQdjFC3H1ZLmklXFWVi8Xvq+KnZgCucaR2Mn\n4qCMRJk/h3OvI6QgBsWEquYMwz63vGHlDey7KcfpUn1esnOfl46rnbeCLIJQuLRLZ73TcBykXy6R\noTlp2WWe/h2ARwAg5/xzOed/lHP+RwBeNf/tmpVqIHY8KKV0p/kWiURpd01WlQOTvewpjxyviIMM\njWSAzMdPKsTgE3xdaCCsAbJx9xZx+EhEK4JRh2HK+Gji9Ls4EZ/UrHUWNvRgw3NVwbabHQEOJ8Ik\nOCOLztZ3uKgpSLvlNuxANXIeZ+GhsoIs1PmkVJEOh2GkNqZLMFl4GmVx9TNzIhKGEV6n1NmQQeFz\nbUKbPY07adrbMRsS396LFtFuRwd9UwhLzmEYfQOxGW1ab51vuRX5bjm+PhfZ14d5xsKJUvINIxGu\n14giIDz/pGXXtzwn5/x2HpzHnnsiZ3SViDwQsfA1xCTjNs+aDUoESV3SnBeh8vBZKQ5jWzmu4TAb\nFO4gKuekFYH1jtotZZkEbz3ItqXJND40xwFUSMKr48jepkb2GuRSmB8o10AhL/mMKMvp9/p8NAmu\nmxPqNhvMD3F4RjxaPr7mdXT4rK3jqOcv4/uF7eq9G8lA6KaFbtgut9lWGnFYHsjbJbHWTOhxLpKL\n1kvraAx0HOsgsKHZSpjXMSicKKLDbWvnHdmS01VS1gc/zMc8oxjRDSOLvjp1ctzpGo6OaDCCiOvH\n5nHKzjpp2WU4nnnE3y48lSdytcmaLfyKLD+n6ZKBOMdZEoQ4So+p0bYokWNuqNJcPrsZfYPCue5y\nHDEQ7DXxpjbyv1UENmTApGZ54Td+VpWMxw352vHt0PIAUrgnv5siNte4ojEoFU3VewCg7BXuNvzL\nXtjOb8/epYSca/hHz5drMOMKWTBSKONR7YopeqzzWclJ40X2pgsqG9tsq+keURaerAsieJvaFUIi\nNeTlGwg2KJc3bZPO6d5J7ynmDY9OCODQk2cI9DvSoHipveJ3x01999/z0jW3IJGjkcKaHNM2Kcc3\nKKdNju/6lhtTSt/IgymlvwfgppM5patDShZDgDgaElzGmxYl0/+XNy15pTM3mqKkofWapCe/zsKS\nY/K+HoB4U5ZYlHHT4VM8f+I4OC2SSc2Q4xDSfIhDDxpZ7IplM+Io1yAGgrxsz6CUDZgkHq+8Wt1O\no+MwTFQ53iCUauRknv6cNMv0DIEJ26lKcIuy5vFdabfGWKqQVOM1O2itkN0wx2YSXNeW2Kwqe04b\nJsFlHW34Xsj6IsTR23vH66IofEZfxYlqOQ4OPZV3hHlDFWLiBBUJYdlQFb3nXVLHaUOkrBdCQ9AJ\nx+Hrnb6bkmnYkT1p2ZVV9W0AXpVS+tuohuJ6AAcA/peTPLGzlpr+5lv+Ujm+Otryc++ZA1qEV7YT\nad4SdnNIamUX+eAs/nWfcGUztl5WV+OxbJhsW/XOzI9IcFnku7gMUV6sICp5yaEna1CqZ9nVcfaa\nxUA4WVXDCOTkxPUd7qPrfL6nT7BKVHn4o6NcS/x+aDvOAjXM19RxlMpxOZ/pf04I0FzG6CCOYnR7\ne4/qPVXXnPxsq1WfcGWrs6EqahKko5+LbHbUrJcg2644GlQMJ9d+JUAc7XHqutBdc4XXka4Ia1oX\nPiqXzrzk1CknakXzN9vWMdHZlrLlAVDfdzYQcszQAS1lAFa/PO4YiFXfNdlZJy1HGo6c84cAfH5K\n6YsA/Ol5+Jdzzr9x4md2xhJxHGGoSuZfOTqExaEnrjSXYxWYzIvWQSJT3H1wUg1rDrnLcRRlpo9T\nq18jA8HEf4tErAfJioA9SK4QjpQoe9Mu4ugmg5K7FBgIkJctBLL8XhWyVpa1/oLSbuVcxcsuyKKe\njzuukUVu03HLvhvsTR+ByrZ0j/QmVd7z97OtvGyoroS89HcK99WS5vNz3rKBYIdC7tH0wyGHc4Lk\nC9PPjRBBQRbOmq+GwDpj2yEjJad4drAdrYGaEr+ld1M+e2kzWK6EuQlVMKjHGxJ8RwGgvuaDvmta\nI5207Nur6nUAXvdUfWlK6RMA/BdMBPudAL465/wRZ96dAB4FMADY5pyvf6rOYZcwx8EtQR5vPIX5\nwW4sEpG6jHociywubtoHrkNPDIdL6xK9mDtNjlt4vikZI/yyjAWJlGyr4IWvBsIu2hp62IVELIKQ\n47i1COpcm3YavVWKJSTFBiUDuQlhtd66nJuEi6bjyvygtUhv27PrJoeAgyzIoDStRUabpts0cPS4\nDzdUhebaalqsvUd633R/vkVNxYg64Ta3uj7x84f5ew3bWc6CQ1WlTojCP726pw0SVSjb5TickNTj\n2y26lHBurd+pmsrepMoLcqFxYFLsHNoC2tYipRfexnIWbFB4O4fHHQOx7tOpI47TMU+tfAeAX885\nPw/Ar8+/R/JFOefPPk2jAVhoeNB3Rbm2WQ9Hk13ADCWdlgDrPtUsLHqBa5PDdvwoIo+PM3EZgVfm\nhCqAOCTF5GWTVUWG5rBRHDDjjFDYC5ZTq3nz7TV4XIZvUKqnaA1HEIYJUpaP2hnQXjN73/58Dp9Z\nLqMqz13puBGv4yELCduNznxJRGjWkUZlGnGMQEuai4GQdUTjDfdhkUi8vqwzxhwHIArfOiDyHVvH\noMj4hubr/m+aK5n26ZidLspsBCYDYZw61cOuS4pb20GOc0TjYOXrnelY3alzHGdlOL4CwH+ef/7P\nAP76GZ1HKGLRH7+ytcq+Y46jo3HbhGz6W8LlIFTlVXyWnlSq0lzGa6ohw2ep+7DzuW07YElwLjAE\ndpPguzgOHteEM+AoV8Vx6P0VTPZUbj1LjzQXJcfet2RPTQQyzHGi0JNXAFjmEzneorXWO/bu0XZs\n27ADwkGMDeIQI9eitTaTTBP5HMLi9i5yziXkpe9dCWG1z81rUdLUZexYR7vTdCXLy6L1Q+pMMM2R\nym6vtUicpss1UzXkNVK4uHMTTnTbc6svqoHgdkAyX9+zNu3WIhTROxyqemzWO+dW17bheE7O+d75\n5w8CeE4wLwP4tZTSTSml5x91wJTS81NKN6aUbrz//vuf9AnqkNTBSnsQ1iOQBypeEIeqps90uLhp\nPYJ119X5zksxZpBin8jIQ1rkETyX8Ta0JSmInG1lQ09tSIqQBSmCqI6D2680LSf6qizHsW0VIt1x\nm8ygoQ23lMZ7Hq/jZmd1bg8rNigaEeSMukteRI6Two/IcW7bzf28WLnWynGLyvxrqzyQJc3hZluJ\nQdHb+sp36/Raru/hnmclOWJH+rZGENN84gHK/LZGoe9Sw5XIHAlh2XdEIRE3NZ0RR1d6WEWdqD20\nHnEc03hraC5S9lTcscLXO/K3ajh6nIbs26vq2JJS+jUAf8z503fpX3LOOaV5w99WviDnfE9K6Y8C\n+NWU0u0559d7E3POLwHwEgC4/vrro+PtLbpd8TMvrMt4W9lpvRE3VNUF40eQ4yUsRONloyhGFoPX\noqSr3XRdg5IbLwtwQk+MIChm3aZX+goi8iA18asLugDxmoNYtoc4Zo8THVwvW2dtTceHH5JSYR45\nD/13RhDVQPh1HM34jjTdqXK8RSKcypxSqllSGY7hGBvSXLeiYQMxOkhE6kG4nUpFWT6CCOt+omyr\naB2RowFgzgBr0XpxosjRWPe1eJaPMxm+1kBsxmx255yO0ynD5BgIRhyz03mZDIduObLqkkGQKbX7\nAMn4446+WPVd0RcHp4Q4Tsxw5Jy/OPpbSulDKaVPzDnfm1L6RADuplA553vm/+9LKb0KwOcCcA3H\nUy0HzqKYfq6LOSX7oq77DhevOMhCGQiDRBTEZEPz8KWN+T7AvhQNZ3EE3N6otu0yPl2D9Y4qlzGY\na9Pj+lyjF1tvagU4SIQ8SE0gj6T8CpfBCl8pdv1CSqsQfX5ynHHM81azqPO7Gs5JiTc7ius1GFlw\nSKpzrk3PqwaIW5oI4rDddE2zRAd9CandGI7ckual6DHTcVSleU/rSCMODp9Fxi9CHFFrkSbbjrPz\n6JyYc5PPFAdkD45D3p32ODos3DpvXigMmJCFVt4HBSkQ9yHzD7cNob3uu3KP5H1OKWGtsqc8owVc\n+6GqXwDwdfPPXwfg53lCSukZKaWPlZ8BfAmAW0/rBPXD1A9jeoDT39aKNJfPcAFgGad0vGm8a5oi\nynxW0jJ/M3oV5Z16KZxxRha98oIcxHF5M7jEXxNiIoPSKg5LjnJ31MhDZT5mdAyENhwe8csKovSe\nyi2vw9XbfHwgVvgt4ogMhG9QOIHAkOPKWBqDkgkRpFpbYlBWCuo15rAdh6R0yNO7F7LPScTr8DVf\noXE2BG22na1YbxGtNgSd+470XSoOiGcgGieqr6nJK3LeJMzrZTZyKCwKSWkkYpHxjDiITAfQ1J+I\nHPRdrePoWuMEXPuG4/sB/OWU0h8C+OL5d6SU/nhKSdq1PwfAG1JKb8O0++Av55xvOK0TjCw6UBc6\n50yv+2kDev7bugs8hS417dlljkearzuf4JN0XL3D4HTMuk+H5x1d3rQGSMaP5D6CF343EvHHpXCL\n0zSB6gU31e9JKTnjTasd3Yzyq0pUHb54ol5Gkm4twnUWUV1G42XvXd9h711V+PP5zKcm2VYdP2eX\nm1D1GgE53vJJXsqy4tAcpcbIkh2H2vwQ9h6xoSEkWtbptuU4JsRhHRb5rsigCIJgVL4ZJMXdIgtg\ndqLIQEgtlcdxXCZOtKbXbi1XOs/P2dEjqr2RdkzXfSr6RacOax3xtOc4jpKc8wMA/pIz/gEAf3X+\n+T0A/uwpn1oRvVg4brjuEy5t7BzAegrrlV1UohQPaLzs3KUXW6fGyUupnIX1vmSLWOYyxjwp5I9V\ncVqNFPhlBKYX1UMiuxTEcWPWbMxqPUgZDpGFKHzdrkOOsxlGYOTjV3JcG+nqrfuEsNeGHahedmmW\n2BOyaMI5bZddPV9ud7Qtrs4wGynDTMJtnOygq+JlX275LiHHPe7La+znFWFy6Kk+/86Mt44GJ1/4\nCEUcCl5H8tkrFM6ZvsMPYUm9RtsqxN+PQ9bUpc0ATseVa/jY8y332SKO6efHrgz4uPOWK9HnoIW3\nXhCxIbDWCAHWoJyknBXiuOrFhqTIQFBRjsgqQCleloX8LHFjTvm75IWquoTL8rJw3NUpANReExOC\nMs4KApheVM+zZA8vzJJij5MUChsaYFKoHuKoNQTtBjxj4AXH9R2i/GCPH6Sgjtkjtae/s1IsXEaE\nOIK2LKx0dbW8nHe5tiQZZi2XUch0M94WDMr9jdJxo82xPD4pQpayBHdyHNE6ojUfGwgb8pKfvb5w\nsi64G8Oq6wrisHylrHlKx11pg9LOZ6fuIEAcXjirfiaZ7+J5B31HxL9vUE5SFsNxhJSQVPAAm9ik\n46UDdgGwIfDm9F1qCET5OXopJEvKvtg1lMTxW8AJVRnE0Y6HIamNfeGjvHwOVbCH741HRWx6i1j2\ngqM9KLgyvRx/8MMzgFPxLdl2hbPg+dSihI4TkuNsdGm+fBdnW8kcX7F3rtHVYbvGuHp7nKRqXF1H\no6nvkdCmbyAuh0i0JcH70EBUZNEYlGB9HQaGKQphTefqo+/Hr/ghKT4fnV57QO84z+Fj6XUKVKPA\nqEKn7GqDcpKyGI4jhDtWlvE53BQZlCY26Xj708++EfFaFkxzOndT+tIGgYg/brzG38UhqV692B5B\nJy+w/KlpRdIogiBU4ZKdKQxh7WoNviIl5zVFLPUdY5tJFB0faPcgafdZt4hjZx0HIY7GoDASaVKT\n///2rjRIsqpKfyez9uqN3umNhu6GhoZma1q72ZpVaEUEEcUVN9QZRUOdkWVG0XDCbYIwxiVGGAl3\nDWccBAVFUEdH3FCHpRFRwEFWQRwUUKprOfPj3Zt577n3ZL7srqqsyjpfREW9PO/me/e9fO9+96w3\n9n34Y2Y1C0pL1fs+58x2NY0jQxBaIAJQ/M7VSlq6pr7SX54gZH6PFiWVn2hUAt+HeI6G8wQkS577\nvjWqdisnXWF58x7t/W1gYfAgomRtnno7N74olg7px/DtJ8u/ARhxNIQnhoEe8UMpzvF69idl5fI7\nuZlJeHwgnTV551jONzE0kiYGAo4gMmG3Q8NxyGKNCIZHRR2e+PjJAJHMLCu144Tn812WYZe+jTyO\nlw+7DOFcAqCsGaTb6eulx2XUlo8YamS/Dxd4AkIiiNsnGeI1QmmcDxLWhYqOk4v0yoTR5ggldHZr\nWlxFEFC2EnFwL0KyDxP9pObi5YA+oVA1jkSzSE2b4fMiyazmHBfRUzl5PRk2X7SwaJO+p0/JfA2F\nIEKfpj5e5Cegfd1i3OnyBKFMWCcpogow4mgI/4P0yx/Q/7CSUPwMQvlh5bY2M4k0DkUdlg4+wNtX\n04dfFl4LfRxx+0pNHsfA1+W5aCs586tW4wEijEWPneDxsXK+j8hsJ2fBPnehVGRQ3a6vDbpScwGK\nwVJqLkDO9IRIXtc4Ynli71c0DukTia5N8+vkcl0y/huviWRDk2uRaulEY2cmeS53jzRTpRZ2HZpO\nw+P6NjkfR3eVAs0lvhfacXJyf0/TsuqN37WdI2PCVBX3rX7ekEQEcfjrV4ijV4w7PTVCidt7TWOy\nQnEBI46G8A9Df09XVt4nCUKUDai1V+yZucFctsnlUyTbIlu8fsy6up1rI4lAmh6k/OmR0aw2NCRe\nSG3g8NuajyPn16kGpgotATAZXLP2+Hq5jjwBpeU3gEJTkJoOkHFqSxOWN88IIkhMVbL4odREJCly\nPs9Chu+G9yi95opqtmukcQwJ06amcdTvUTzDlyZP/3zWfV+ZsNuAIDQfh/QXaBOQnH8wp6FLuW4x\nUKwEoVzxbwJ1IpEDvj+flA+4cUiapGa7aC1pGZlIGHE0QDONo1/8UDWi6ZZyZfCPknia+zs0DUV7\n4GX4opQ/PZKuhgZ4TSRv2pJmoeI4SgLgcN70IAddv50jCM1pHtUeUmblVUGWtZBVMegyw1VHjWfl\ngDPP5ExYo3I2Xam1L74f34uyiYGJc1xoOyOZyLOCUNIih6FfR+a0aITi+ySd4/7acrb8IRG1F5qk\nwoRBzVQlfV+ybI7m48hFHsZO8/xz1J255qK9QiIZc25y/Oi9zr+PCUFUFJOUoll4YpDO8Vm9BXEM\n9k5edoURRwP4HyrxcSgEof3goRNMZprnt/MPc7k2zX0o/gVMcheEL0O2f1oUcNN8HEkynHghtegZ\nGccPFIOO5jSvm1VS4pDObj+Ijon8jlAjiGbfQfRU3t4vNQW49nGUVM3er/o+NFNVWjYlJt2auJYh\nLsnSBxDI8ul+rfA0AbD4P5QkgDbRLEbHkvMW90i7d419H3pUVfo7S3kRVZXTXBSNQJmY5XyCUt6r\nmqryE8LEVKVZLrxcjC+eICQBzXIaR/hbTjSMOBrAE4PULFTnlapx+AckfxwgVj9V01Y0C8rPmnIz\nyGI7T0DxbK3Y1sMu8wOBNA3UEreUjF8tX0MWy6vLldm3EqabS1arlaTPJMkBGYLQCEXWpFKioSSJ\npiYpRO2lXPpE/HY2uz4kS0H4uUquzTSOoUyeCOB//7wmqvk4coOu5vuQ63X77Wweh2K29RpkIVfe\nnRLmKW1b1pqrbYeEEi4IpZBUuE/VOMR4MdDrxqPuvKlqtyu7tgAjjgbwD7rUOPzMQfvBpVOrppJK\n01bw0PZFJQSUWVATh13YB3l87Zg5XwaQ95sUoYnpS/e0GzgibaqSj3qpVipq9FQ22op0QvH5GvI6\nteKHhUM4f807R8ays++dowrRKLPmdKW/WK7md0iiUaKq6ppOTVxcWyaMtkhizAQKUECi1cw1qxOE\nvO8ruUc1jVMvognUn9X6RCPNswiJQJsgyQWYctua1iArMGTbtxjQEo4LkX9E1Sw0E1YsH3Q+jjBj\nHahrIpMJI44G8Iv1zB/sieRzXZn15AdXfSLKA6JoHOEDGRGKSgTN5bJSaLa98qLJSqmyjXSa+n1D\nGSIIZ5CJj2NYM201DtOVIaJZx28F0CrIAm6wzDh+d0rzjDQxCZNUUm49yRCvxMdRCCjrB9Ky60Nt\nKhNhlmoc+RpW9YW28hUFknsU/P65Zyq5d8IkFexClXSTVO24JbRpdfBv8d3RtZW86UmrUBv7MZUJ\npYye6qKs3DvH5UTWj0fh/ZxoGHE0gP/h5vTHDO9VQ8n8g+4HTQnCPQhK4k53ldSHvFeZvfRqNtsS\ns6/YkdcqMaWzrzGx4JTfpzvBlYV5lHUXmjvTw/PW1wTPRhKNprNywJlnMv6nnULuSW14dCwpww40\n10RkSXLpHCeSBR/jgbqmfYlBtwhBzvsB0sizMBw3JKbifyOTpKataaYqzcchNdTw99RMUqp2XGKQ\n1/0a1FQevoOaCStqHxBHpUK1z2H9uvD7kiD8uyRN5IPOVCWzww9duQf2WTiINx2/FpOFthQ5nC54\nzVF74+5HnsTG5XMjuR9swqJlQJ1gkhlENe8rkRnVNXmocSizl95SmoiiVivtq0p7fdaXP47cJ4+l\nObs1X4amoeRm3xVnwuKMeQZAWp8pmB33B/e0mcYx1CTaSiYMJiVKFOe4387di+geVeNrbpzrkiFR\nzqzrEYRvywrF/l5oJqw5fRkyHh6rTbLCvg2NjGZzGobEcX1f5feLvjYnFH27jFk4TwSaxhH2QYbL\n9nVXMTQyllgi/Heks9sTxBwxMfUahw/t9pg70I3vvH0bJhNGHA1wzL6LcOMFxydyuTKehycSmSE6\nS5HLvAePuNqlonEoznRNrr04GqG0rOaLa2h0rHr2uySUzJolCqEUpq28M7WIFsoT286R2K4fJvTN\n6q3fu1BTyJlONHlS4VUrUVKbfaeRQZUKZZ3jFaJ6LSxBNFJz8fJ6hngZjUPRIIJoO82ElfMhaBFp\nOQ1V9UEo2q4W8qoHfjSfXEVRUiWip8L3OdSeZLis3zUo8sH8syEnlP4dlr6Lbfstwoo9+vHSZ+6F\ndsOIYxdw5mHLcd3tD+O49YsjuTddhQ8pUCcU7zPx8A+8VD21hzY8bp8SuaG1z+VlNNpW80HE7J4I\nzs+gaxy5mTmQzhrHONOmEjrNBaFkBku/zCkjHnQiDUIpLRIvr5ofFEOi0QglvLZWneOA9GWIe6EU\ngsxFJFUryiJYCqGEGkHumncqUVXS9+GvfTRTDia3DdSfT6Jyz6fu42g++dEmS1omePhOadpHCKlB\n+CNJgvD3XmoW/vvyHi2b148fvCOdyLYDRhy7gAOXz81rIu5hk+HUXl33azZ79AQvS+44gP7Ah5pF\nVX3482q16vtQTQT5F81/lmudh+0qlNaYyp9Pl+fi9TXzTJdrz+K8YQSQanfPOcdH80mSkoC0UiR1\nuViPI3Ga5wlC5rTkyFIzbVUrQSmSrBN8LCGg2rWVIJTI/JcxbRXf1eTxc1Rb16SB5qpt62V88hMn\nTYuJtfW8PKwiIUsL5dqHGOwVpip3zXOFD/W0g5fhe79+FCfsH09MpxKMOMYRx6xbhL0WDOAlz4hV\nST+jkJqF94lIm2X4YMsQVw9NfY7V7eZytVSCNqhnfBnDYgEpoH6tjUwSmiZTZtbYpWko3lFM6awc\nKLKctbyMXJHD4ZGxKKghIo7MbFoO4NL3UY/CQu288hoqFBRFDM9B+eV1wwACec2+DlM8Q0etTzkt\nqzAl5QmlLNnntisVKpIVOX2Oulp8XppF+sljjZfGMRCYjge68wSRaBzeJNUdD7feaiCJ48Dlc/HN\ntxyTPfZUgRHHOGLl/AF87++OS+Tex1EVqoV/YGTijnSue+g+jtBprvlE8rMyzcGnD9hp9BQQDyjh\ndxKThHLcVrWS3CBfbBf9k+azWgmRRhpHbrBUalUNj3LiZ/DysJ1KKI2c44rGEZbfKBNAEPuHamJV\n42j2++eithq1l9u+3VhGQ/Xfb6RxqAEeJSIDY+d1CSe48o4MBFqDVhtqQPgmfJmY2SKY5rVH74N7\n//gXHCiCb6YD8rqWYVyxcfk8rFs8C289ad9IXiMOwRzS5ukRE0QZjUMxbZXQUHpESKEfv7ToqbID\nQauDTauEEg2QURhtsWNYIQKZLV33cYg6TMGAH/tW4NprpipFE1FMTHIdEH+OVjLKK0RBqZNU4xhj\n6NFJmXwNKS/zm2nPS+rjIKV9eD1B+/B6lGvQ6r9pZl6dUOrtw2NKn4WHJIglc/oAAAtn9UbyrWsX\n4jtv25bkiU0HGHFMAuYOdOP6tx6LrWsXxnIlkXBOf14RDGc4+kuhhQjmzVBae7UEtDIj1NZNripy\nud0qoegkogwoislPiwwqQxA5W34tuU0MkNL34fM1tOippr4P0T5HNHF7BPK836HMb1DGKa21L/YV\nn3VCyT93PV0Vtc5b9C5oPotQ3p1/BrWlXUN52AeNOGSY/kXP3h8Hr5yHvRYMZNtPR5ipqo1YOX8A\nB6+YizdsWxPJpc3TI0xE1NYc1pKVdIJoHtbrvzM8ygmhNNMsdk3jCPvaWvSMpnG0avJqZtffOTIW\nhUuGPgstxDXpa4PoKZVQsqatdMGp9JpDskC+TYtO7VYDHcJ9idydQ9Zz8uTfW80/d/I70TPcnX92\nymgWXUqkYoiB7vzwucdArEEct99iHLff1HV07wqMONqIvu4qrnrjUYlcM1VJFdgjHMBUjUOZZZXX\nOApfRpKL0sT0IOXaoBInoilEUMpUlb+enEM8PU763THOt9dKjw8rGor0ffg+5argVpTyGz5iDEjN\nM5pzvN4/RO2zbTJRZbK9vt2c4MPPUrPQTFheO5YRTP46e4Um0qqpStMsQjKapb13Qv52C5XrAAAX\nP0lEQVS+Mw/C1299cFqanlqFEccUxLyBbhy9biGes3HPSF6GUMLs1HBb9XF059VwOcvyL2SicVQV\nudZes4WX0j6af1ebTXcpA2TOgZ6eqy73A6pWQXinssaJFkarFjNUNJHwu3V5sTZJwzZKMT9V4yiR\nma3KG4Tdqk7wWvkd+bwUn9MJiybPPyNhwEmZGlNhsp5WRHCesAycs3kVztm8Ktu202DEMQVBRPjs\nq5+RyLUojvDBDtuEMyJtNqXFnGsvZEIE5OX5yr+lj6OYjyqK+SSX3AfIAbK5xhE7yjXzTPPZtD/O\nyBijvzvtWy5KKvJBKBqEdl80sixFriERliAFLUAh2hbO9AqlUVjhOVJNpJL0Ifws6zx5opEh7vK4\nHuF7EbbRJl3hceUk6j2nb8DN9z2enHsmoS3OcSJ6ARHdTkRjRLSpQbtTiOhOIrqLiC6YzD5ORRAR\nzjx0OS7avj6Sh/bYWGvIax+NFpepfbc7P7DnfB/ymKE8nUEq7YN+x87O5oNZl+IE14mg+YCqnSsi\nKWU7H76r5WtkEv1Ij57K9qlFLUDTOMppgM2JPOyHHMj9/Ss9oajm22vHl0saeGir42l+wxDhOwUA\nL9+yGpeefUi27UxBuzSOHQDOBPAJrQERVQF8DMBJAO4HcBMRXc3Mv5ycLk5NXPrCXXtgw5lVI5OU\nR9kX2w8emmlLW09ZWw0NiGeXrUbu7BYRiFDWmrzEjL6ZSal5GG0sH6vV89p101CpAAL13jW/R1pE\nlv88PMpqfbayps36c5fXaOWqd7N6FeLoUfwUihwA3rBtTc3XZIjRFuJg5juAlMkFNgO4i5nvcW2/\nBOB0ADOaODScd8w+yUsaQrPTyoqdHvIF9oOkNvNLB4Lis9Q4/IueRM8EA0/kIwg1kciRn2+jmp5K\nmGSi8uxK1eAyxJQjl2xxwkq4SFF+oG7dSd38uxopqhqHVuZciWYqPhfBFNKprT4vlJ9o1DVUTaOJ\nxLUKshKy3IdHI3PTO05Zr+6b6ZjKPo7lAO4LPt8PIDX8OxDReQDOA4BVq2aGgyrERdv3b7i/SyEV\nLVJLM2FpmkJ5DSVvwtLMHlrYZTiOaOGYrSYV5mpPFW3q5yrjE5EVAqqVIhqKqKTZSzEHaW1arwUW\nHFOtjtz8vBqpA/VkPRlGq/q+apqI4itLnrtK0gdA1yw0UxUAvHzLXrUkPUM5TBhxENENAJZmdl3M\nzFeN9/mY+TIAlwHApk2bJnP53SmNC09djwce/6u6Xws1lC9abVncFqOnykbJhLZvrT5X+J1wwAtn\ntZrtv4wTuFTOSInZemK2IcIoOEso9evRSKH5OVp3asd9q7VXyLLMuZKJQLWJxqlqFuU015qpStxr\nTbNotLzqe04/UN1nyGPCiIOZT9zNQzwAYGXweYWTGVrA645d03C/lmw4W7xo2szPFwBMfBmqZqHN\nIPMmLC3RMRzwtFUMexSnuRqdFJqqFEJpSBBOs0gcwhUAo+kgN24ah5q4h2x7de1uxTxXxs9U2meh\naKjaxKRZFJ6Ua5pFX3cVZx62HJtXz8/uN7SGqWyqugnAOiLaGwVhvAjAi9vbpc7Bh87aiB/d/Zga\njis1ET82SVOAn+FpL3aioajx+vmZaFTkTqvw25UfRLWFfEK56hyPtIy0n3K7aOc0i4xc9ll+P9Qs\nYp9NIC9RETbSFBSiDdtEgQglnOyyhllNrkTJqRqn+J19uKym0UpfnC/rIeu8aaZXADM+Emo80a5w\n3DOI6H4AWwBcQ0TXOfkyIroWAJh5BMAbAVwH4A4AX2bm29vR307ECzatzEZo+RdyXn+c/epfUEko\nPrFK92XkB1Fdnh845Hc0TSSeQTcnjjImnDKRR0Wf3P9YXK9b1cBUJRfIysl1s5KiKUT5La2Rq1Y1\nWQvAUMOuG2R8h/BObdne14OScTS+rMdOsSTB0jl9OOmAJbjsZYdn+2kYH7QrqupKAFdm5A8C2B58\nvhbAtZPYtRmPS88+BP/+8/uweHZcydNP7DRbsUxO1GzcTX0iDWbluklKIwjFxKLII00ksvHXt7WI\nJyDULPLXlpqq8tuao10lmhKmt7j8Rn67DLmWDZrQoqG85iAnDv75kcfx2dk+Ks1jD1fWY+nc2KlN\nRLj85WpqmGGcMJVNVYY24MQDluDEA5Ykcu8LkT6ROqHEck8wCaE08X2ky+jmtYwyg5w6+JVo32qh\nxfBzks3sBnatfbVCar0lTVPQiE3TPjRS7FFyZiKNQ9FQQkg5uydD0yA0U5U0Sc2tEUesWayaP4AT\n1i/G3xzX2IdnmBgYcRhK4aLt6/Gx796NtYtnRXJ2NiwZzeKJo1/4RLwmktjEfQmJxJyTH6ha1SBU\nJ7BaxiMkmnDwRrZ9eG45tsoS6/Vj5U1YakHGyMdRhtiCvirf1ciyR2mvmao0TUQSijdR9VSr2Xay\nvT/ufFFxtq+7ik+ee0T2nIaJhxGHoRQO32s+rjg3jUjxznLthZf2fp/ZqzmQ01l5vj/lNI4Sdv1q\nXl6JBt36B6Jg+VO1wmveUaz5OCQ3qpnqJfIpNFNarGUF11bJX7N2L7R1tqVJqltxgnvIicYY+zXZ\n43aHrdoDR69b2DQ60DC5MOIw7BZed+waPPLEELauWRDJ/QAwJqJevCYiE2384CzGDV3jUAfF1ggl\nNsM094kAxWC7c3QsXWe9RhDyGhqbqkqvs62apOpy1ZehkGhoqmpVEwmh+bJk1J7mK/MmKmnm22Ow\nJ1vw09BeGHEYdgtrF8/Cp1+1OZH7AX9Q+Dhm9fnlcmPq8O0koagaR7X5gF8qHFeZZWtO+dp3RssX\n3vNfl3Lv10iisETBw9rxFZKLIsy68oSiEYEWtaWVGy9rkvK/o9Qs/O8u1+U+49DluPHux3D2ppUw\nTH0YcRgmBGccuhw/+e1jOGvTikjuTVWjQhXxYb5jglDKaBya2aZMyY14Vl7OIVyLnlI0jkSD0Mxw\nlJ43bCed5qWSIZUcle4SJqmQjENNRDtvCK3mmcz78ZqGjJ5bPKcPn8lMQAxTE0YchgnB0rl9+NQr\n04HAD2bzhLPTDyiSOAaUASkkBXUFOHUN6d0zVfmBVA74tex3pUCk1CxqPg7FOS6JpqtFbaqqaCLx\nOtvavdB8GXn5gKJZyEzu1x+7Bn98ahhb1yzMHscwPWDEYZhUPHPNApy4/xK88fi1kdxn/I7FUZdq\nLS05qObksUkqP3Bqs29SCCU8R5JzQk3kZSsFK2tWlCnjrvl74igsKPLmxKE5x2VV2mJi8FQSvr3P\noln4t1dYnsV0hxGHYVIxp687O3D4PJCFIvFQKyGhDWBqOfAS+RoyvDbXJmwnNY66JqI4wVuUa4Qi\nUSbpsUczYSkZ4hpxaAmg0pf1rtMOwGXfvwdrFg9m2xumN4w4DFMCey8cxGkHL8Nrj947ks/uzRdh\nnKMQSrTOdBDRU1EdywjkmuNX8WWULJui+j5qmovSvkH5lVx72aZMDkioHYWH71eWKZYJnfMHe/DH\np3YmpseNK+bhoy8+LHsMw/SHEYdhSqCnq4KPnHNoIvemKmnymN2XJ5RwZq37LHYvK1od8JWseK1k\neEUhGv9Ri9qSCOWav0dzgodLrYbflRqEh9Q4PnrOofjarQ9i4ayebHtDZ8KIwzClscdAN87ZvAqn\nbdwzkmsmLG2J3HAQDSOAGjnB6/J4APettAFfmrx21YSl+VYkf2jL/2omrPD6pQZRa1OSOLauXYit\na83RPdNgxGGY0iAivO/MgxK5Fv6p2eDDwTUcFBs5wTV5bT1wzVSVLIvq25czSWmaSC3BUDBHn3Iv\n+jRtIoiAKhs9ddnLDscvfve4upKkYWbBiMMwLUFEeMO2NThk5bxIrg1sEXGUGGijYwqTlA8ZLh1t\npcqL/9p62pqPg4STXM2hUEk03z6EPMfJG5bi5A25BT0NMxFGHIZpi3ecsr502zKahTYAy/Y+00Rz\ndpfVILSSI/6zRijSVKURnuanaIQPnrURjz25s+XvGWYWjDgMHYcLT12PRSKsN4ScTXvIXAQPae9n\nReNoShBae7kcb3clf5xaiRJpqtIKCbb+elvJD0MZGHEYOg67WklV0zikfGTME4cSbaU6u/P5INKE\n5TUIyW+1UiTSVKU5uJXrAYB3P3eDSjgGQzMYcRhmDD74/I0YGhlV9/f15AdSaQoadsuVygHbj+fS\n9FTP44gHfF8SRWoifkCX9bx8u6S94rOQlWZDvGLranWfwdAMRhyGGYOzj2hshtGcxilBFAOyJBQ/\n0Kdl2PMmqfoyqtJUpRSCrNXzaty/EBecuh6rF1j2tmF8YcRhmPH415cejnsfe0rdL00+nhik3K+L\nLQmlzw3smkkqIQ5PYMIk5ZMeJaFoOS1AUVTQYBhvGHEYZjxOOTAfZtrfXcVfh0cxfzDOivYahCQI\n7zSXhOKJQEZb+axtacLqdaYqaWnyZVbk+tsDPV04/4R12LJPvJiWwTBRMOIwGBRcce4R+PE9jyUE\n4U1VMuva+zb6ha/Ef5bOaE8wWkKfjJ7yGsf6pbOTvr71pH2bXI3BMH4w4jAYFGxZswBb1qSz+CVz\nevHoE0OJJuIJIDFteUKRmogjEhk9VYuqEuddPLsXrz5qb5xx6PKWrsNgGG8YcRgMLeIDz9+Iq29+\nEEvn9EVy7/vQnOxSc6mbrmKK8KskysKOlQrhH59zwK5222AYN7SFOIjoBQAuAbA/gM3M/DOl3f8C\neALAKIARZrYVYAxtx4Zlc7Fh2dxEvsBpINriU0niofOJSPHGFfPwyiNX45Vb4xLzBsNUQbs0jh0A\nzgTwiRJtj2PmP0xwfwyG3cZbT9oP8wd7cfCKec0bA+h3mepzRIn47moF7zptw7j3z2AYL7SFOJj5\nDkAv/WAwTEesWjCAd56WmpLmOJPTbFECZPtBS7HjgT8li1cZDFMdU93HwQBuIKJRAJ9g5su0hkR0\nHoDzAGDVqlWT1D2DoTledeRqPDU0gu1iTZGBni5c8lzTLAzTDxNGHER0A4BcgPzFzHxVycMcxcwP\nENFiANcT0a+Y+fu5ho5ULgOATZs2ca6NwdAOzBvoMae2oaMwYcTBzCeOwzEecP8fIaIrAWwGkCUO\ng8FgMEwOpmx5TCIaJKLZfhvAySic6gaDwWBoI9pCHER0BhHdD2ALgGuI6DonX0ZE17pmSwD8gIhu\nAfBTANcw8zfb0V+DwWAw1NGuqKorAVyZkT8IYLvbvgfAwZPcNYPBYDA0wZQ1VRkMBoNhasKIw2Aw\nGAwtwYjDYDAYDC3BiMNgMBgMLYH84jOdBCJ6FMC97e5Hi1gIYKbV5LJrnhmwa54e2IuZF5Vp2JHE\nMR1BRD+badV/7ZpnBuyaOw9mqjIYDAZDSzDiMBgMBkNLMOKYOlAr/3Yw7JpnBuyaOwzm4zAYDAZD\nSzCNw2AwGAwtwYjDYDAYDC3BiKPNIKIPEdGviOhWIrqSiOYF+y4koruI6E4ielY7+zmeIKIXENHt\nRDRGRJvEvk695lPcNd1FRBe0uz8TBSK6gogeIaIdgWw+EV1PRL9x//doZx/HE0S0koi+S0S/dM/0\nm528Y68ZMOKYCrgewIHMvBHArwFcCABEdACAFwHYAOAUAB8nomrbejm+2AHgTIhFuTr1mt01fAzA\nqQAOAHCOu9ZOxKdQ/HYhLgDwbWZeB+Db7nOnYATA25j5AADPBPC37rft5Gs24mg3mPlbzDziPv4Y\nwAq3fTqALzHzEDP/FsBdKFZAnPZg5juY+c7Mrk695s0A7mLme5h5J4AvobjWjoNb2vmPQnw6gE+7\n7U8DeN6kdmoCwcwPMfMv3PYTAO4AsBwdfM2AEcdUw6sAfMNtLwdwX7DvfifrZHTqNXfqdZXFEmZ+\nyG0/jGKRto4DEa0GcCiAn6DDr7ktCznNNBDRDQCWZnZdzMxXuTYXo1B7Pz+ZfZsolLlmw8wDMzMR\ndVwOABHNAvAVAG9h5j8TUW1fJ16zEcckgJlPbLSfiM4F8BwAJ3A9seYBACuDZiucbFqg2TUrmNbX\n3ACdel1l8Xsi2pOZHyKiPQE80u4OjSeIqBsFaXyemf/TiTv6ms1U1WYQ0SkA/h7Ac5n5L8GuqwG8\niIh6iWhvAOtQrL3eyejUa74JwDoi2puIelAEAFzd5j5NJq4G8Aq3/QoAHaNxUqFafBLAHcx8abCr\nY68ZsMzxtoOI7gLQC+AxJ/oxM7/e7bsYhd9jBIUK/I38UaYXiOgMAB8BsAjA4wBuZuZnuX2des3b\nAXwYQBXAFcz8T23u0oSAiL4IYBuKsuK/B/AuAF8F8GUAq1Asd3A2M0sH+rQEER0F4L8B3AZgzIkv\nQuHn6MhrBow4DAaDwdAizFRlMBgMhpZgxGEwGAyGlmDEYTAYDIaWYMRhMBgMhpZgxGEwGAyGlmDE\nYZjyIKIFRHSz+3uYiB4IPv9wAs63jYi+Pt7HVc5FRPQdIpozGedrhmbXTkSLiOibk9knw9SDZY4b\npjyY+TEAhwAAEV0C4Elm/ue2dmr8sB3ALcz853Z3pAyY+VEieoiIjmTmG9vdH0N7YBqHYVqDiJ50\n/7cR0feI6CoiuoeI3k9ELyGinxLRbUS0xrVbRERfIaKb3N+RLZzrne47O4joMpc1DCI6wq2ncrNb\nX2WHk29w57/Z7V+XOexL4LKKiWiQiK4holvcOV7o5Ie7a/s5EV3nSliAiNYS0Q2u/S+IaI3TYD7k\nvn9bcIxtRPRfRPQfVKz/8vmg/6c42S9QlLv313tsoNn9DxHNdru+6vptmKlgZvuzv2nzB+ASAG8P\nPj/p/m9DkYW+J4pM/AcAvNvtezOAD7vtLwA4ym2vQlEqQp5jG4CvZ+Tzg+3PAjjNbe8AsMVtvx/A\nDrf9EQAvcds9APozx7wXwGy3/XwAlwf75gLoBvBDAIuc7IUoMs+BIjv5DLfdB2DAHeN6FBnqSwD8\nzt2TbQD+hKJOVgXAjwAc5b53H4ryLoQi2/nr7phfA3Ck254FoMttLwdwW7ufBftr359pHIZOwk1c\nrI8wBOBuAN9y8tsArHbbJwL4KBHdjKKe0BxX2bQMjiOinxDRbQCOB7CBihUbZzPzj1ybLwTtfwTg\nIiJ6B4C9mPmvmWPO52IdB9/Pk4joA0R0NDP/CcB+AA4EcL3r8z8AWOFm/8uZ+UoAYOanuah1dhSA\nLzLzKDP/HsD3ABzhjv9TZr6fmccA3OzuyXoAv2Xm3zAzA/hc0LcbAVxKROcDmMf1dWMeAbCs5D0z\ndCCMOAydhKFgeyz4PIa6P68C4JnMfIj7W87MTzY7MBH1Afg4gLOY+SAAl6OYratg5i8AeC6AvwK4\nloiOzzQbIaKKa/9rAIehIJD3EtE7UWgBtwf9PYiZT27WXwXh/RlFEx8nM78fwGsA9AO4kYjWu119\n7poMMxRGHIaZhm8BeJP/QESHlPyeJ4k/OA3lLABg5scBPEFEz3D7XxQcex8A9zDzv6DwY2zMHPdO\nAPu49ssA/IWZPwfgQyhI5E4Ai4hoi2vTTUQbnJZyPxE9z8l7iWgARcG9FxJRlYgWATgGjSsM/wrA\nau8DAnBO0P81zHwbM38ARYVfTxz7ojDPGWYojDgMMw3nA9jknNW/BPB6pd0JRHS//wOwPwotYweA\n61AMpB6vBnC5MyUNovAlAMDZAHY4+YEAPpM5zzUo/A8AcBCAn7r27wLwXi6Wmj0LwAeI6BYUJqat\nrv3LAJxPRLei8IMsBXAlgFsB3ALgOwD+npkf1m4GMz8N4DwA1zjneLhuxFuck/1WAMOor055nOu3\nYYbCquMaDLsJIprlzV1EdAGAPZn5zSW/uyeAzzDzSRPZx/EEEX0fwOnM/H/t7ouhPbA8DoNh9/Fs\nIroQxft0L4Bzy36RixXiLieiOTwNcjmc+etSI42ZDdM4DAaDwdASzMdhMBgMhpZgxGEwGAyGlmDE\nYTAYDIaWYMRhMBgMhpZgxGEwGAyGlvD/O0gluv+Hnr4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2495504991004161" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_shift` is very close to 0.25 sec, in this case." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has also separate class for AutoCorrelation. AutoCorrealtion is similar to crosscorrelation but involves only One Lightcurve.i.e. Correlation of Lightcurve with itself." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "AutoCorrelation is part of `stingray.crosscorrelation` module. Following line imports AutoCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.crosscorrelation import AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create `AutoCorrelation` object, simply pass lightcurve into AutoCorrelation Constructor.
Using same Lighrcurve created above to demonstrate `AutoCorrelation`." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = lc1" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac = AutoCorrelation(lc)\n", + "ac.n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.12500000e+10, 1.12499978e+10, 1.12499911e+10,\n", + " 1.12499800e+10, 1.12499645e+10, 1.12499445e+10,\n", + " 1.12499201e+10, 1.12498912e+10, 1.12498579e+10,\n", + " 1.12498201e+10])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-25. , -24.9999, -24.9998, ..., 24.9998, 24.9999, 25. ])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_Shift` for `AutoCorrelation` is always zero. Since signals are maximally correlated at zero lag." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "5.0000099997734535e-05" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuwbdlVHjbmXHuf++jW02oLLJRq5ACOwstVMjaYJA7B\nWDYVk2DjCk4RSKAUDHaCDamYGGIcUiXjYBdxCQwKCAISQgEjYWGBQEi8hITUrQfqltRS69Xdklrq\nVqvVj3vvOXuvufJjrTHnGN8YY+911Oee7nPvmlW37jnzrL32es1vfvMb3xgrDcNAS1va0pa2tGun\n5cf7AJa2tKUtbWkn2xZgX9rSlra0a6wtwL60pS1taddYW4B9aUtb2tKusbYA+9KWtrSlXWNtAfal\nLW1pS7vG2uMG7Cmll6SUPplSum3Gtv9pSultKaVtSulvw9++NaX0/unft169I17a0pa2tLPRHk/G\n/nNE9PyZ295FRN9GRL8oO1NKTyeif0pEf5GIvoKI/mlK6Wknd4hLW9rSlnb22uMG7MMw/D4RPSD7\nUkp/NqX0mymlW1NKf5BS+nPTth8ehuFPiKjAbv4aEf32MAwPDMPwaSL6bZo/WSxtaUtb2jXZVo/3\nAUB7MRF95zAM708p/UUi+gki+pod2z+LiO4Wv98z9S1taUtb2nXbnjDAnlK6kYi+ioh+OaXE3ece\nvyNa2tKWtrSz2Z4wwE6jLPTgMAxffozPfJSI/or4/fOI6HdP8JiWtrSlLe3MtSeM3XEYhoeI6EMp\npW8iIkpj+7I9H3stEX1dSulpU9D066a+pS1taUu7btvjaXd8ORG9iYi+KKV0T0rp24novyWib08p\nvZOIbieib5i2/QsppXuI6JuI6KdSSrcTEQ3D8AAR/TARvXX6939MfUtb2tKWdt22tJTtXdrSlra0\na6s9YaSYpS1taUtb2sm0xyV4+oxnPGO4+eabH4+vXtrSlra0M9tuvfXW+4dhuGnfdo8LsN988810\nyy23PB5fvbSlLW1pZ7allD4yZ7tFilna0pa2tGusLcC+tKUtbWnXWFuAfWlLW9rSrrG2APvSlra0\npV1jbQH2pS1taUu7xtoC7Etb2tKWdo21BdiXtrSlLe0aawuwL21pU3vw0hH9yq330FJmY2lnvS3A\nvrSlTe2Fr3kvfd8vv5Pe8/GHH+9DWdrSHlNbgH1p11372IOX6VVv/6jpf8+9DxER0Wcub1T/paMt\nvfTNH6FNj29mXNrSnphtAfalXXfte17xDvqeV7yDPv3okernN3dd2fSq/2ff+GH6gVfdRr/97k+c\n2jEubWmPpS3AvrRrtt35yUfoNe/6uOl/590PEhHRfY8cqn5+IeOlIw3sH7r/USIieviKZvJH20I/\n98YP0WXYfmlLe7zbAuxLu2bb3/1/3kzf9bK3UV90MLTLI4RHgHwZGPu0OaES8+t/8jH6oVe/m37+\nTR8+icNd2tJOrC3AvrQz3/7kngfpdY5M8smHR0aOmjm3CMBt//gH1Nh5v/d8+rLqL2Wgn3vjh+jB\nS1rqWdrSTqstwL60M9/+5oveSN/x83EZ6EtHW/U7Sy7I2JnXHwKws/aOEk2qf9ff97a7Pk0/9Op3\n04/85h17j31pS7sabQH2pZ2Z9kd33k9/8P77wr9H/nMEcAZqZOYs2Wx63M8w7UdPENtpe8D1ut8P\nfPIRc3y/8KYP00cfvExLW9rVbI8Z2FNKz04pvSGl9O6U0u0ppf/5JA5saUvD9nd/+o/pW37mLeHf\nr2x8OyICeJkmAHS/bCdA34Lkcjjt9wgAnyeMBJS9TiSA+Pc+dIV+8Ndup//1V/4kPIelLe0k2kkw\n9i0Rfe8wDM8lor9ERN+dUnruCex3addpe+3t99ItH37g2J9DAK/9wNiZaW8BqCtjh2DrlW0/ba8B\n/9L0fdsC/dP3ZQD2hy6PjP+d9zxojvHlb7mL7rh3SYxa2sm0xwzswzB8fBiGt00/P0xE7yGiZz3W\n/S7t+m3/4y/cSn/7J9907M+hls7tylYDbwNw6B9YitH9vBLA/kuH4/ddPtL9j07HkYHJP3K4cfuP\ntoW+/1ffRd/9i29zj39pSztuO1GNPaV0MxH9eSL6Y+dvL0gp3ZJSuuW++2KddGnXT/uVW++h2z76\nmWN/bq6Wzg2ZNn8eGXspvhTDkg0y+cNtBPjM2BHYx/4OqPxDkz/+TtDkiYj+3Ts/Rrd+5NOmf2lL\n29VODNhTSjcS0b8lou8ZhuEh/PswDC8ehuF5wzA876ab9r5ke2nXeNv2hb7vl99J3/gTf6T6o7R9\n6UWXWroE+aPgs7jPyL7YGLsGcJ4ANgHzj6QYdMs8csVn8g8FdsxhGOh/evnb6W/9mz9y/760pUXt\nRIA9pbSmEdRfNgzDr57EPpd27bSffeOHDBt9dAI/BGO0FHKT+rmUXA4F2Fo3i9+fc3L7myvGB/wt\nMPZwIpiAHlcELNF0MOoeuuJLSNH5EI1xiN9737LyXZrfTsIVk4joZ4joPcMw/KvHfkhLu5ba/Y8c\n0j979bvp7730VtUfZn3O6JeAJ50tUkIpAoSRUbMSgpJL2RNUxUmoRBNBwOR5O8yEfSQA9igYTDTG\nIb71JbFDaGnXdzsJxv6XiehbiOhrUkrvmP79jRPY79LOUCtloBe9/v3Go83Zme83jN0HM8nGpcwi\nAVwC6ZFg7BJ4e/HZzVYDaaI9UgwAchl87Z3x30wEAZPniQCBHScAbmjHnNPecMcn6dXv/NixP7e0\na6utHusOhmH4Q7I5Gku7ztp7732YfvS33kdvu+tBesm3/YXaz4FEbHPqtGzLQOvOJhNtIgAXQCrB\nM3S/oLRS7H7kvmy/Hzzdx+Thaw3Qc/tsiov99z/7ViIi+i+/7M8c+7NLu3baknm6tGO1w21PP/ra\nO+h+qIzIzPyjUDclZuZzJJcGjJIVhwAu2HsZ/H6i2P0SMvM9QI39kU9+W4HdnziwRVLM4fb4gP/W\nDz9AL3/LXcf+3NLOZluAfWnHam947330ojfcST/+hjtV/+XNCOADaZCKWGcE+FJOkRKKAmqlpbfP\nSkmjVxr7PKkkYuYl8Lfzr7j/ytgDSQfdmscFdqnJR5/FyembfvJN9P2/+q7ltX/XSVuAfWlue+jK\nhl74G+8xNcgZwO9/RFcu5CQdxI0IwK8EgC+xUGnmAsAiLV2m/Ef7GYahHuNxJRTje48miD0TAYJx\nH4CtvEbyM48KeSsC/0tB/8OH+n7c9tHP0E/93gfcbZd2dtsC7Etz28v/+C76qd/7oHmFHAYiuXHQ\nE//KGjtr5dyQ5bZ+aV8UUoxk4DOkGLmfcPsgeIpSSQkmgj6QdCqTDyaCuVLMpUCWkhNV5AqKVkoY\n8/jOl95KL/yN99YkqaVdG20B9uu83fuZK/TC17zHODA+fWkc6OixrgAO4MTMEeujsB6MhbIkmMmf\nJehJYIykGC25+Ex+GzD8yNYY9SOzjiSaEkg6vF+E8ehaKFlKyk/BOWwVq9/vOiJqteTvf1jHTO78\n5CP0f732veGks7QndluA/Tpv//fvvI9+6vc/SG+FolsM0AjgvMRH9YDZZZf1I8Vgg/uJmHN/XClG\n9UdSjN9vtPHBB/B9gG8TlAIphvdv3Dj7Jy35HTqQHASMg+SmKGiN/f/s1bfTj7/hA/ThTz3qbr+0\nJ3ZbgP06aXd+8mH6F7/5XpW4Q0T0iYdGpoYMj7dC8AuX+BXYdX9luzt0ZQ1mAUs9pvtlDmOPAByv\n0T4JBX3okbtG+tjlRBcBu/y+o+icA7kqKs0wF9g5HwGZ/EcfvEz/4jff+1l57Jd2em0B9uuk/eCr\nbqef+N0P0IeAgUUvcOaBi4DPgTvMwmTgiVjtLu+21sDbNpFffRtIF9FEEG0vtxmGoR6jcdFUAJ8Z\nPA3K/4ae+zle/BlMvhc/Y8DY249sGOTm78Ag7E//wQfpJ373A/RHH7jf3c/SnhhtAfZrrL3trk/T\nj73ufab/IxOgf/pR/z2cCODMzA/BA85a+pEpiMUvo/DlB2whaB2TjUYMPNTwA8CXGGyDpz6Tb371\neeV/50xC0TkfHfNa6FVNOwa8b9wwqMqTLfZ//MErRKSdOUREn7m0of/9125b3vP6BGkLsF9j7btf\n9jb6sde9nz5zSbscOHj5CAA4xzQfgYFai3QBEDCQRFY+0y9YZCQ/HIVSjA/ISpYIQDsE/CHYPvhZ\n/h751XE1wv3DEO83CnpG5xZKNHM0eXFN51bA5H0hk+d9oRTzy7feTT//po/Qr9x6j7v/pZ1uW4D9\njLY/eP999DN/+CHT//HPjIzqAWBODcD1QGUAwGzGy0H1RQabkLFj/ywJZYYUEzlnIgY+42cF8sGk\nI39Hxh4FQ/UxBcAb9M+pd6OCp9sZTH6G9o73bb2aXuB9iMA+7gufo09PzxvGYC4dbemfvPJd9LHl\nPa+n2hZgP6Ptv3vJW+iHf/3dBmy4YcVABnZcWu+VVqB/n+Mj0pvxM3Em6f7t5wB4OKHMkGsQqGPt\nPdheHZPcfv+5RauIo753t4+uRczkA2CH/tXkbsL7uZ6i4xiT4RrzKL39wfvvp5f98V30k0sS1Km2\nBdif4O2Vb7+HfuFNHzb9PH4eCTI7kVFtA2bOA/24AI4vdq6lbYOXURAB6wzkhygRKQKwOSuCOZLL\nLLcMau/scsHt1THt99BHqw59rORuE2nv8ppG90A2vM9MBBDwOdh+CFIMfwfGZHi/904rSXl8P/Cq\nd9H7PrG85/VqtAXYn+DtH77infSDv3Z7+PeoljcGQ5vk4gNvpLEaoO653x/Yu4Knc1jkHHkkBr/P\nfvsI/OUxRTVndtkXJWNXTP6YWr+cICLrZ3RNo4lAtugtU3j/+bgPgxekoBTDz+cKMo8/eP8j9NI3\n30UvfM173ONZ2mNrC7A/QdrPvfFD9G93BJ6i4k3IzLnZAewDLzNHA8gBUDcm7+vKR9uiQS5Ipok0\n89i1EgDnHGnlmPJLJK3slFzEn0rE2INzeywT1Rx7ZCRvyTa38Jm8z7JxRisSBy5VgJnHD07B/Q/e\nr+23wzDQj772Drr1IzphbmnHawuwP0HaD7363fS9v/zO8O84YLg9HDB2lFwiBhYtoSuT3/oDfpfk\nEmnaYSmAAJwiKWKORBFNFiWQXCK3jPzbriSr404qUWwgunZzvPva/RJNBP5zFN3/6D5bYPdjNQ9d\nnp5P4CVsi1xDRtunHj2iF73hTnrBz+s3bi3teG0B9lNuP/a699Fv3nbvrG2lPzqq/RH5ku0S2u/f\n1pdF+Awcl9yh9n5M1hkC7BypZBZ7t8eM/VGQU24vq0HuKgUQH7fY/pgBXXXOweR3pJh5+65QYw8s\npIaZ9/59riu8ANiRUPDv2M+MfQXFhdgn/ykn3+Jf/dYd9Pr3fsL0L822x/wGpaXNb8Mw0I+97v1E\nRPThf/71tT9Kz5aD8NHDnv7UjXabSDOdbUesDEwfQ12KH3M/c38O5YcZVsYI5I4bPPUY/iqnWfKO\n2W8YD/ABds5xh+AfSld+PoDcp2TmUUKT/EwYJIfnbl8QHlcE/MxjQHrXy0X+9evHdwDIsbM0vy2M\n/Sq0YRjo//z1d9ObP/gp1R/V6eC3DxEBixKDM3rg5UCS2jYOpG0wIPtAWtmnvUfOEfld2B8D0vFY\negR4keTiAXhKPtCuu+wec5eTOef4PNs2kd1xTvA0Dqr6gdE5Gv5cf3u0MtvumdjnSjpRrCZ6ziPJ\nkYjoJ3/vAzvjU9djW4D9KrSHD7f003/4Ifr7v/h21f/gZb/mtXQSyEw/VfsjyEiUS9yImcm/RS6X\nyH8evSYuqqey6+dZ9sWIUc8AxXCCcNj0QZf1fgYG9uRKKQddpmHYodeHmvnxgqehPTKSk+Zo+DPc\nRZaZ71vhzQuqbgKCEL0mMCoytwvY//lvvHdnfOp6bAuwP4a26Qv9b698F9320c+o/k9NbxfC94JG\ndTTkALuyiWxqvd8feMDnDry4v5h9EgnGjv0znCCPxY54bMlFSCseAz9YZXc/B6vO3Z5fFIKSC5s9\n5sQSwoDujJVGH8gsUeA5zAeIiobNzGOIpJXG2NEGu3uCwOeI39CFLbL14udle+mbP+JmZ18PbQH2\nx9DueuAS/eIf30X/5FW3qf4HHj10t8fCSdyiWh6y/zAIhkVBskhCwWBodb+Y0rN2n/L3Xd7tOZr5\nY7EvegC+7pLL8BHAa3+XXUA96JKrlx+ssntM7OqIj5vc/tD9EgQ3owqYx7d1+iuCHu9/AOx7GftM\neyTvFx1I/IpFbPiKRm6R3ZeI6AdedRv98K+/O/z7tdwWYJ/RHr6yoe962a30fsiSe2CK3N8FpXCr\nxQvaNtA3twFzivo34UTgbz8MQwPkwP2CAB4x9jnsOpRcZgRG9+nzOfkSzbrL7iSyBgDvg+35Mq5X\n2U0qOugssJeB6NzUj0DNbo9toIfPyoYNLZ775Zo5tsno2OTvUawGa9DzMR1ugokgJBTI2Oe9q5Wb\nBPa5L+p+1ds/Sj/62jtmbXtW2wLsM9o77/4MveZd99aoPDeWXNCLGyaBzJBQ5FI2TBEPAH8Okzcv\nheCBihpr7wP+HJ041JsDNjrL0y2Ys3cMB6usrkvE2KUU47lrDrrs6tzrlQPgZaj9eA4HtZ9a/wxf\neiS/zJKrwnyA40lj8veo30wEwfNyXAkwcohFJgEp0UQ16FEe+p5XvINe9IY7Z08EZ7EtwC7aJx++\nQt/x/95C93z6kurnZSC+Teahy74XFx96bnKAaeCd0R8w80M1QUQ/+8Ahf0fAP65fPQLk47o2Rnlj\nvJ6eJn0ArpUmoWTXEmiCpMzMQXJpwdNMZWjAgIwdZaCDgLEf1IlAg2pl/oHnfo6/P9LPI0kn8vRH\nK6thGMRzgc9LMZ+Vx4eSXitBga4rX3uXwdMoCC2feSnRyPiU3iYouwGB2te/9xP0gyCrntW2ALto\nr739E/S693yCXvHWu1U/v9gZ612wXh15erFJ54lkEZtIipnBwCPtfU42p/wdB3B9/+dJMnaod9JN\nEyIy0wqWDvDEQc/snqfpFwDu2h2ZaQ92e/k7nwOXt52jvZdCgskHzBwA2ZeA9oN/H0zyc+IZ8pab\n+9/7RCCW+nwAjzR5ydg3wXWRz7z+uX1Wgnm0CsCXznznL7yNfuHNH6llEM5yuy6B/YP3PUJ/76W3\nVo2cG1eswxmea013wMz76aE0y8/gRcJzAHmWxh68mCJiYFFa/7hdcA4B4M/J+oxWCwiwDbTa/svQ\n5A15bmUYHSir7GvmO5m8M9GcCwC/aeb6urjB0yEOnvqTUxFMXu4nCs4WOuf0z5Jr5rD98Of92nvU\nj5p5lMEspR55fPL53ATPcyRXSn1fau9XQPfnhnklPMmwxMrtLR96gP7hK95hrL9P5HZdAvsvvfVu\n+o3b7qXfeY9OT+YbnaFgEc/4CNj7Ao/jZ3xAPgr6DyPGfsw6K3MyNUsR7/mcqbEjUMl+z/pXhCyB\nx3fgAHhfBupSGm2KAE5dStRlcL9IzVwB3vj/egV2R2bmAeAzA+dDkj52+flSxlIDHoD38twUu262\nSWTs5wKJxpsI+LNRIFkep/050tv398u/hSu/KEhqVrU+mKtkqigOtfHHlxw7l458xi6POwrUPgT5\nJv/yt+6gV779o/SRBy652z8R2zUN7O+4+0H6rpfdqm4yUfOX4zKwvgVmM+8tQ9wPz3gIyGo5ufEH\nkgJ2ORFENcuPyeSilyibgSqkGBlk2mVTPOeA0LYfXNYpA4zI6rucKAOA98NAOSdadQlAaPx/DUFP\n5ZZxmGwk3aDkIreX21WGv3IkF7EaQYdNdM4ugA/+5CdlqTC2EU34M/qj/ci/2f7ARTVth8ld8nwO\ng1WqAvwAwCN5M5JuHg0AXzZcsb/j7geJiMwK/133fIa+62W3hnWcHs92TQP7i17/fnrNu+6l2z/2\nkOrnhwFvIL9dCJdo/FAZ6xd7cTHVfAaAHwVLzmMHSWe883KOEyIKntrtYg3c04P7APD7aPsJ2Fc5\nGafJKifqUtIp+wJ4vYJbGFSN7JFyeyK7YqkJSgX7/XPwgqfbEkk3YuKA+xkx9pR4MrPn1kFSFm8T\nlVHAn3fWpq9SjM/Mo6AqnkMUP4qsvJr8+AxcJ/eJiUAAuAThiLE/cuhr7Pge4X/ze3fSa951L71z\nAv4nUrsmgP2P7ryfvvsX32aWgfX9nzDTslSOSy5mCDiTV50QtLpNfcj1wxxJK5vgYVMPbdAfsauN\nGiyBXKNeEB1tYwdkV73YPmjh8Z1bd+b4dgG4x+T7YaDsSC5bIcV4cQVjUxSsNgqeajY9/r8GCaUA\nY+djivr5uyNnjy/dBNr7NJnlZO9Vuxb2Hh4EgH8OAs/H/Xn83XfFzJIl52TMhnGl/SQnYuxXRL/c\nJ74Fyts/UZvsPwN48YmHxpU/lgr5yKcepW/72bfQfQ/7iYqn0c4csHuOkx957R307//k43T3py+7\n2yKA801HZs4gicGWCvhbn8njyyXCQM+MhzMKJIVByBkvWohZur8fTmhygbccn4FHgccQzDoLWqWM\nUgz2S5+5y+QD98sIcsXsB88BmTm6hVz3yyAAH6Svc4H2fhAEYbtsJ7l+aKsaTw8Pvf7mWozb2/34\npED+zRABrjm0Y+UXrwL9sbDp7bESwUoxWB3L75LjWe5TMnZVfwmDrfy+YJgIeJJAwP//brmbfveO\n++g17/o4YTutAOyZAvZ//Tvvp29+8ZtNPy+FPgW1Wc6tRgaJF35TpZVIcsF+n7HHWvr+YGjEXjbR\nwx+UGtiU/eC/L7kFmRz/eM4Dp12M3ZEfRu29c7eP9lODpw6YuYCfGJzsNTVBUlGCoAyxXx2BHYG6\n+eF994tvdxxCu+O5te+H73K2k1nvX4tw0uL+dQf9JLbfP+HLv1lmPv4+DDu0+x2Bd25zgqrRWIgM\nCXIFLrePfO9I4PglIcjw+V4ivnxyYvKYAHX/I4f0n//L36U77r3673k9U8De5US3fOTT5kKyGwP7\neTlsmHmVXPxIvekvPuDPcrMEwdBN8JD3wTZzAmD7tjm3yjARRAyvTNt35vi2woJnkm8890u/I2AY\neLRdZl5Gt9JuwCe1H+/cegBk/lNl4Ctd7KsAk6+MfVfwtJBY7bRjkk6g8FrAfevyaPF0zzlZuaqd\nM6n98LEWdTzTfV53alLkY/AkHT7NXYlrcyTBOFjrA3VEfjbRxDHjZwn40mCBBI4/gRJNhC8sYWIM\n760feoDufuAy3fnJR+hqtzMF7M966gUissycB+mDENzg+x9p5tjfmDwGSYed/URowZrDOoIHOwDq\nOSDfWGpyB9G5II3+3KpTgI8sVTNkchn4NpBoImeHlBlwclo5oNWXMurNaHcskyaf0C0jQM7LYIXJ\nCROR8D2nCMhRUJX3FWWeRolLXgIUr168a9TlRF2X3EDn6NH3r4Ubh+iQsTPg+5IOBmHrOQerF/w+\nuS/cZo7dMay5FOwnMiTIsSllGbNiL0Hsra7kfYkGE53unjLa/5MvfAZd7XYiwJ5SeklK6ZMppaua\nj/uUC2sissycXecY5W43RAMyX3hb4GjqD/YTbU8Ey8Aonf+YS9HojTjRoJBA7U0Q59edK/WcX+ta\n4xIgvO9j0FKvWQskl9AtU3zW2TNQG9CiQFduIBcFSaN+IulX9wG8wPY99B+n6mPZAX7rLpsgaRFa\nOt7nVU60yn4dHHP/Rb8HrgjgkUSH/Sw11JiMJyfNWGlGjFqzcX8lGyc0+SvlaD9XFLALKbEMFT8i\nIoj9bKnEypMPXd5STkRPOnf1X1x3Uoz954jo+Se0r7A9+cJ4QRDYeeyYCz+9iNkEPUPGvru/L0P8\nIEXLxkAPDLNEZ2jv8X7G/vPr7PbvGsDyOHox4OXvwzAmNLnZkH0JGH4w4IWE4gUMEbRGicZa+aQs\ngd/L5+adMyYQxcHT8XP7gqcV8IveD97ntSPd9ANV+QmJQLSqycm6ZaqEsqNQWuiWcZ5HOxHw86Un\ncEkoxuPWJMRzV4Ur2VLo4kG3dxt5LWp/OAajn30pNfp5rnTL0ozXf/FgRQkSIK9GOxFgH4bh94no\ngZPY165247mRsWNd84EiQD7eTMsPxpXArz7+vJ9FhNuH4LxfV+8dVrNCt4Ri7DqAWfudwYJMe4vg\nFAC+/o4A8Pcw9lVO4BwZwduA1h5Zwl6L8X98I1IP52b96j6AHwQ+dpwg+Bg8AC9laBmmMJmveJKD\nSYvjCsh2G2Mvans+Jh0AnSb2zgd8BPC9QVggAvz/+YCxtyC8D8iSzGz6gS5ME0f0boJoTG2ccxv7\n/f1sgnEqcUGqACGOAHFswK77L2+2dGGatK52OzWNPaX0gpTSLSmlW+67777Pah/84FwBm9LeoOfM\nmZYfBnyxb5RAFLLoYwJ4qKtzcLPzl8TnweUgl9aeBHR+HSytAaiRgfHAiyYC/uxxsioZqHNGbbxU\nxu4HSbGOetuP+walqNgXaNr7JBfsj+IQGGzFVYp/LTgwbBn1qhtlJiNXOQHjvoyJS8bWOP2Iz4XW\n3v3+aCKQv++S7jb9UBk+xpL4GqGEgisC/FmvmsXPgVFhltSj3DI+sEe16Y0UM0kw2D8y9msM2Idh\nePEwDM8bhuF5N91002e1D77hcoZUP0dSzMyZlrV39OJGqc3Hf3h2s/pVTm4QE5kTTyjn19ll+CMz\nj5i8PU60NUrtXZ5DY/5eNqRk7PocfIuf8GIHQI22u1FysTp0rhmpGhSrDdIpiYBVGSXD1/0+gO/z\nvZ8Lztm7FjWrNiezomqBYT1BrLKTrDXtx1w7QRB8oM5mP0Rsj/QIhV7tNMZupRhZyAyfyUooYOx4\nzH/TDzWxcI4fXjtn/IkgKrin5JqtD/jy88eRYng1crXbmXLF8IMjazZLqxEGT/clFkXZc/hi5zAr\nLwri7EimaG/WcQYeuFYq8JoBNi2to2BYyLSyGnRSopHbWcauB3BLf5/B2HeUFPB96TJIqmWGMSPV\nMvDG/EltP0o6iYaheYpRiuFrgMFTtDUahg/MP9wejnXtMPnttErpnEnI698Kxo4M3yvHoFdyOjBI\ntDtIKoOhT3BBAAAgAElEQVTqyNg3sMKLmHnr1wDr2Wk3vWTsmiB4E0ekn8+RN0M3TpQzYgqZ+ZJu\nBXbAncvXImM/icYzuVwSSZA37pc9fnXMAuPf+zLAm3+Cpd8MwEcPuPfwb8qYgo46sQ6G2skC+3ux\nvZd5en7dUXEHqgYhBPAK+Mjwp/4WVPWX0G4AkIt6gX4sQc4DrS7j/ttEEGVtymOKgDfqb1UfwQaJ\nJQV6vf2+EgGYqZqnSQillcrMe30tVs45b0tQAVMAsp6MRb/z3Jmgunju5DUy2yMzD5xD5x3GrjV5\nDbY8djAjNfpe+dn6s+zfBmA+I/A6nvf4O8bkojyZR4+2dPHg6jtiiE7O7vhyInoTEX1RSumelNK3\nn8R+sR10mVKKrUmWmfsAzhf+CG6UuolBanOU5oyzvOuK6H3WwSC07jJ5ToDza5+Zn19H0krM5OXv\nlfkDo+phoPLvPTD8SK5AhrTK2bU1smyAejCzUXyhhMvwhVvGXNMkgD1g2ngOofsFJwjcDwZPA7uj\nx7RbMNT60usqBRk7A7hJaLKrHRkMj1aKURBe/o6JaxtBhIhIAK/+7nMuIPvau9TkcSK44DL/Ud5K\nyfaPx4qkaH/wNNTwEUdYug2AHW3Tl4/6Uwuensj0MQzDN5/Efva1lBJdWHdhirANkkYAXtT/2E80\n3mi2m+4KgK67RJt+oI0B8ExHfTHLPdSt+XvXTuq4ZOaeVn9+3al3PkoN1JdugGkBA0e9GTVQBHBM\n7ol0ZQYhw6iTXaWUMlCXyOrKpUkrCHKrnCmnZN78kz3GDlp6lWJEqQG5HQZPm3Qz/v0A6qvvYuxV\nA08RgFvA91YpNaiak3mz1qrLLmNPydamnyPdjb8XIurU8yWvafQc8c/nnf5NKfSUyeU2a1XbN00e\ng57rLtM6wxiZbuCFg06Nf3msnutmzM6OGLuvCMyVaC5vFikmbOfXnS7qs9U3mVsp7b2NUZF/I8U4\noMo/uxF8sTzEoNeFA8tSNv3I5F3LXseM3Q4w43LohUTjBb322Bqt+0WfGzKzKDAYAz6C0xQY7vX9\n4brrCNRcH0XGsOVEgCCXE1nwE/52dQ77XC6Rjx1KBETaewuqasAfhjEd3y2LMF2jnNHfzpOT4xBK\ngfbu7J8nFM91Q9TyG2ocIgDqfa4Y1NJb4pLW5Pk7znvuKhk8BZmxMnZnlTISLGe1C2OBj+HCQefm\npFw46Fx3zcFKj035HfKaDoNw6QGTP9w02ehqt7MH7KusgqRR4Z9NIJPI3/FGMfCa/ZZSgRqB9IKz\nzNz08iG0kksH7pdNP7JO+xKJ0d+8CiSaOMN0j62x9wdqKK0E/Sg/YOCxnXM2dsRt8QN9ZQK5kXXq\na5c96aZe09gGOe637T8nav1BwhEGQ6uPPdo+ukY8EUz93ktEeDIzmaSFyyv4cQtvkltN1wLBj1cE\nPjP3g+SYWBZN7Ohj32C/G2z3GbjU0o09MpBc1tMYweJgXU5GZuJjvrj2nWMXAgvxDTARlNJe6ReV\nF/Zwh5+Xq93OHLCPM2cgjWztDcSfiaREA+V2ldVKyzIXHP1w0w8+4Afe3U0/LpXXRhttCSobeAhX\nXTJJNnIgRRmD3sN8HphTlVBCH7sGLQPg0++7si1Hbdy3HXLAEF00jcmT2r6brH9eEo/H2PMEivJc\ne8Pk2/ZE7YXlGDzFejfRKoUfg1X2mbyXbVuma5STYwlNjqdfEAS8/36AuWn4Uc16dQ5BLEXaIIms\nxs7b4yQXumUgT6L2Oxo7O8rGlR9ci2mMmLGTxzduebVizh90Lim8sO7cvJWLB6tZxHGnJr8Ae9ww\nwMg34YbgRhHZN7GUwS/eNKYzj8K6jpgPIs1ZPjz+8lDqhBhsXXnsggE8I+uYAo85+zVeVliGtUk0\namltgHrafo+PfZ8NEpeiTd7QS3Fm7J48YLItK3u1/atuejUe+NW9kgImeCqAOov+NpmNnztAacWc\nG6l+9Lfz/jo4N8nYPSlmNTF2IzPlRDnjcxqVGiju6mVb2monqvqpzwGei3oOOlZTBn3OuMLztfrp\nmAKXy1ZINHb1Mq1qYJyvnf5tGar27gVPLwIDl3ErL6iKq+CwvDCvCA70BMGfYdy52u1MAvuRY1O6\nADMqgzlquxsxA4+/j/tibaxq41FABxjSBaeuhUyLNkA9sQsvqGaDp2UEM3Q5SH97wNiJrK6MA8xs\nH0grEUtFVluPtQYkx+Ny66sXoQcbCYUsky9cH8WvFdMkFwYh0v0CqPlaj9uT+ntka0TJJSrny/9z\n0hROip13DnxujkTD2rg7meG1G2g6t5ixI+ATeRM4BNtrTIqfu90STX1eYKWIx4S1iMZ9Frd/U0qd\n2A3gcz+Qri4nWq80w+fPXlyv3GDrxYPO7GfsXyntnX/uYAUhGX5ftG16Yew72hqkGL6QN5zzZ1oT\nDOEbe6DrUXC/J7lsA8BXWjo8bFVvxBs7BQaR4a+6XB028ljrEhq2H1PH9aQV+cz3aenWFaMBvO1n\nGvCdz/AwY5S3X3VWcmE92NPM8wROKLlEBbGYBfN2RMIG6QRPef9qe8PMg/69TH78fzUxbXTR+LXm\nOa7g2yMjTb7LGVY1ZcoN8MoxjM+dTDiymvk0FgRxGL/Pl1zw/iP5QX+7thO3aqD8DJeii8x58QZv\nxd7lPPYXvf8xNwS3n1a1u4KnxeILumt4m4tr3E/DI7ndMAx1FXEa7cwBO4JZW/roGXgjZmAvRRiZ\ntlxCyd95mwr4kIbsMfNNPwL1CMg2eLrK2WSnskTjglbA8FddVhY/y7SnATwdAzItXEJbKQZBjtR+\ncCLAYGgFszSeQxQ8RW3cY6l9IZ+xFx0klcfk9Vc3TuiWAYYflQ6Itp/+jqUAau2abC2bLD9FWbUm\nwDywJRR0677ZKdV++mniSHryqxIaVroM7r+RVvY8Lwj4NpNUb89jYj2NHSwOxhKdLXk8aezgZlnl\nTAdoPOjH4Pm5FTrQWMb0CeLFAy178mcvnvOBHRUB/n+RYoJmZ+xphjzoIDrN/SvalBYkrTMtALi0\nQcnPE2nJRQNsofOe9s5sAQB5I4KhKKGwLxlZhKe9Nr3RBsO6CfDlueGAjJj5PiZfJ4Kg6iPWV5dg\nhglKUfCUAR+ZPLtlXElHBUMFsEsmL45Jau9YUgBT/lvmabB9UAQMz4GvXc52kuMAM7pf6rXAa9T7\nE0Gt3w4vWhlry2TqnMCwd42QIGz2ALhh/sFEIGXPEdghVtOL58UxGKzZEuw989laf+u1AKbdVsd2\nJX/ByJuCIDo2yBsOVlQGMTn1Gl/4M1sxaZ1GO5PALpdEcqmkC/y0GXVQF37qX/OMOn6mMnkI6LCt\nKXTFONlwzBZwGdhPSzFk5ry0tiVmm8aOLMLV5GGg4hJ6LzMf/AGJbomongq+8IKlIS+TNAqetjci\nWe11xUlc6ChxMkx5wNt+8ieCIWDyAPimP0erF1LnzI8HO3v4msoAsxc8dS2hPBHsCKqaHIAAwN2y\nC3D/Cz4XMyWaSGOXHnMiQUAY2LtRWrGT2RQ8V2RplDeNjNkzuYIx2IsVIeyfyLpiqkSz9hUBJIIV\nd6CfzRirBdj9tu6yDmJIZg4+ViIJ4Pzw6BtiNPYDLa1UJu8FT6VEAw/DKngIeYChZXM9uRlQJ/T2\nsy2Fugr40v1S6vbj7wjUu1+QsC9IKksWyN9RivHkB8nAZLKODQA2L7Zmo1T1Zg+0GJBl0JOlG9k/\nZrYGwVaHyfNtRSlGMvOULPhFUsyYiCQAf9r/eEwaqGVcAdkou6WspMMTh2WvfC1kkJSlHnlus4Oq\nuH31pWuWeh7666S4SsqX3qQYn7SsOyvFtOApMvZSrcVR3MqzTZ9b+4rAxUl757GGAI5ZqDewFDOd\nA//9YJFi/HawCjT2czjT+gCOwY0qxcASqgK+CKrI7YjGm3bB0eTrw4ZpzsWXaHjgrVGT74Xd0Tyc\nuc7+vCvL2H0GZlwxQemAaCJoE4ceqKjvSvlBsle5vQkk9i24afVm64fvhyZvyH1L58i4nWbmpoaM\nCbaO++eBbOWq8e9otZSAL8+N2Ws31c2JGL52v0jfO4n+XdeobT8M+lrwcyHzEqRDCOUndLnI+ity\ne1ltVF8j/Rzh5LfOkx0RiIMnM1aXixs8tf526WPHCo3jqhlI1zQ2144VmWjEBbnybxLNSm1XceTc\nIsUcq0Ua+0XwsfOM2gBcP5wXQIrZQj8uD5srRjN2LkzmsoXOC55aiWYrHjYv4QRfTs3LSevFbmyX\nf+f98LWT/fu0dKOlCgYuAVYGDCVjb8k6ug5KZbUAivwdXro8a+k8cSjQmuyReKyetDKCorN9ZfJU\nt5N/j0oHoO1QxRuc1Qszdr79bSKwmvl2YtQ+Y3fkhEBaqftx4gddJ62f+v7E0h1IK4EN0hCHun1R\n16i6cdhFFciMPpOfasWYzFPJ5AHwuyk7F8byynXXoOTiE0GZ9EgkGPsixcxrWE9FXshNL4KkzNjX\nGJ0OmHm9gXrZaKWY8Xe2ZnFiEUox62yZ+WaSXDB4KgNA2mdc3Id5U4piYFozzQ5j1xJNFNxChm/t\njgKQBVBLJi819pqsA+nsEaut16JztPdBT2Z6lZJdjV0mItWkrCB4WoOwDsMnEu4XYKn1HERMhs9Z\nul9w8kP2isFTLoVcVzsgP3kOIVkcDK8FryzksUhZQh6LYeBGY9/nYw/6IZiPvvSmsXsW32YMwAxT\n7znaMFBnJ3iarWNNGhtc2zRkbTcpZjX9rokj4gv/v7higjYGT50LHyyVqp+09y88fx5v1AYeNtTY\nlTULmPm2Z33PWq1WHlD3jY349kgnU7GTjH0aSMDk5SvteOLgz8u/H3S7a8VgwgnWCEdduTHC8XgZ\nVBDMXCmG5YTALYNstNaWQWZeJZdpvwjgTkkBD/ysv53U/3ysYekAmMxWUxYugiK+RIRPvTmK9HPh\nJSJtYTKT95PB0lyLZFc1oW3WrORA0gNNnp/9qOYQAyx+LwfhXUadbUniancEssTBU5RWfDm01FWQ\nNluMOSPn1760YoOkWqLBwnoHC2P327mVlWKyvPAA1JHGfhGWSvgG9i1sfx72I3ViLD27qctAz7XC\nEX8HwM3D3DR2Y4+UjF0ArKexy1evyX6+jJEvvS25p+MM5AcJWrJfptfLdHYGuyh4ytu7bhkELdDM\nKzOfJggjxQxacrFSDDL5cbvoDUqZg6HBqoZvG587M3OUehCoVWmCzr4dqlZ9BIeQei7EMalrJ54X\nbyU3An5jl3aF5wfPMdFJAngnAJnHVC1Y5kx+WBBNxgO8ev/G7tiLqo9IHLJdEYyTX662VkkE19OY\n5d/l37HUiI3hLVLMrIaJCEfMjqEqo4lOg5Zuo9m6vwH+1I+MHaxZaGvkh9bWjtYyBlHz1tpyq83u\n6NkpWTNtrygrmskHgN+L7Yn2v0EJg6S4iuDv4RdeVFli0Nub4CmsXkoZ3TJ1/w7gY5JNVPullPF4\neJVSUJYAAJfvTpXHyN+Tky7SFU5yfI1SUtvXUgMgSxlNHuyRzV0zg7H3IEuJ7/ZiMk1jt/efwZKo\nTQRxTGb83/jSpeTirFIawOqx2Z4vzcy5tLWVXBzZc9Le3doynY1nsHzK9tWGF6VKNLK/4YXGlyMg\njhVfhOPnNNoZBHbQs7djrfQDuPC4VMKo9Xno3wYzsLRBySAp96+BmbMveVV96Rj05IcNWYc3ETQm\nXwbN8thFw7/j9rKf2YgH+ETOK/C4P0hEwmCoZmbZDOwu2D60BDp1U/icTYbpoPult36UPUidc1+a\nzo3nFmWq5jS+5EWyyApOVesm3Z91cFP2S+0dg6c4cYRyFTP2oou9sbtGnpvUoeV3NgC3z8u4EiGz\nHyIifNl0RBCM5LJHYzfPF1iLWzkOK28aTV66YnC121lDAsundfUijnXdScaOK39f6m0S8IQ72ybd\nnkY7k8Auy+22lGK48KCZ8yv06oxqJBdgHdDfLFgWtKStUaYO+8zceRFC708Eox4oBt4gHzbLzOUE\nwdeGt+e0ft6O/0/JVmWUwJ6SHajMCiuTE44Pj5mj3mzYLgL+xJz9ErYYxGya/Pg7tXMWDLwdU6ng\nqvdDLvjxxDEeV1DsK1tmXuUn73npPF1ZlwjA5C4X2Ou5UT3WlWDsSASsFDfVpq/+9sacJWPH+7nv\nJef7Jna0NRr5CcgSGxWqtGLIT3bqscsaMpqx8zWSZInlU8SRo17jC8YPLiKAV9OG1uQbLizA7jZM\nc+a6LFWKQQCHhKNQikH3CzxsXFAItfd1zsor2wpfBcHTSTPF6pHIgvkYmJkRgR7sMHPjiukbSHju\nh9gVMQ1IWELXgZq0g6c5RPzAIAZD5ZLbc8ugnVKec4ZjlS+5lt9ZX7FnGD5p94v4bs/HzlIPn4eZ\n5DB4KgPGzkRQGbs4TiKq1R3t6sXx7u9YmcnJbCv25QWeOZuX98OPZBn8iWCfi6reN5D6sA4SljZ2\nnxe5OhLOJJzkVK0YRZYKrQMm7wE1rwiq5CL65TUK3S9bjQs3nAO74yLF7G6odR1NUszaAXwiMjVe\nTH/kV3e09JVgC5E1qzF8K9EwkK49xu48hNWmCAOssQ47wFbuAPYnCPl6OtyeqNkU8YUaXaezJBnM\n+Fi9GuQegLdkGsvwctaVCFEDl5/ZNfnVc4t871LGkD520OSJSAOvWF3o4Ol4MYzMhNcUHUKwkmuT\nq61lX8/NuFmKe/9lwFD3EwB4UfuJYzI6U1kycCmhbGACRwBHsmQnCCQCebI7+vKmBvxhGrPjBCFX\n+HJVI7+DkwrH34vqx0CysVNXGyRINLz9IsXsbrhUqjN2Bo09DJIiM9eaOfrVq5aek3KzSGYuI/Ko\nE2IBpVW3w+WCNWR61Mbbdyj7GgA4PoSy5ozsjzRWHfR0NHOjN2sww2sRSS4cPJXsW+6HyAKvYeZD\ny8KU25dhUPuJZAlVgkBMHErDZ8aek8vAPYdQdfZgUDX7gI8OoV5daz+JCyW6AkCtQMtZ7dRgu5es\nJQF/ZkwmZ1I1XuR9lkweJRovDjGOHT3WeJyroKcwDGBJkXVuuKCeeTEWNuKYpEOouuv6MQkRAX8D\nAI6TWWXsixQzr6HkwlFuTxsjii88+kx5+/b6OIexO2ykJiJBsJXlIWTBOwM3OcgwdGxnkoG1GhzM\n2KxrQQ/4Brzukhv96gDgRjNnxt7tHqhesk72WG1OqhIhJ+uEzNyxNeK5SaBW1j/F5H2fPAOiBOR6\nP801orqtt30sP2V9TWWmamolAlrRMLEaEV5pryBarfoIk5mxQcJE4DH/LGyQJhhabY1+vyn2NUkf\nnotGFsTT0h2Qop7rtFvJpctOpVOQJeW1k5KuijcI6QZrS6HUuy8BcpFigoYa2NGW/aeBFFNLBOgL\nHNVjb7qc1sb45lophpeHgzqudYesQwOBx9gxoLPtW9IEkR14qLHKuhnyO1misYzd339fxqSMlmHq\nrEaSjStwgDYEdgNaO6QbAdR6PwTH6js+mIHXIKkE8OwFT8f+lHRRLx08tQwcJRctV9lzxmCo9rfb\n1UsHKyomq+M1IrXvvpAqERBN7NI37j1HfRlqfEXun1d4NgjbJvyVel6Exp6Teu6IdhEB311Vy3RM\nn5fyJhYBq+8XrnjRgHfVWavwBgB/KwFfaO9bIIJenkxO0uuvJZqFsQetzqjiQh44UgxXUuRl4xFc\nYGTySlrpbKAPg6QK8OUysyZfABtR/U7yRSSVBP388Mt+lmiQmbft/WDb1K33L+QH6TQhsuAkg56K\ngQfuFwyeYpBMMe1hUP2ojZeBXNZpGTjVz3lMnqUbIgySNj1erth0kNS3bEoJRfnbs5VuOHiKiU5c\nW4b7dOKSZpcmJtOLa5GzLSkQEAEEcJxEk/HiU70+0X2WMqPW0jOh1IPXDmvIYGJUW+3KMdWCp/JY\n2FFmZMxg5c9Z4SuHyRPZImBH034OOk00+dgWYA+ar7E3xi6XXBwtV/3TBcbaD9KmKN0sTVrRD5UE\nfKmlN+mm+Yzl9yJLUfW4nSJdCoTqA138h5P3EzJ2f1ma6kCaAEKwVNmvXCvBUlk6OJT8kOxEgIFE\nDDASTVa3CTgy9LdrZEsKIIDLpByt4ZO61kSkgXfaP38/lg7IiaUSfc41Wcuzfia7SsH3xUq5qkoo\nQ7sWclVTxMTLpQnkdUZJTz5f/NpC7M+JwueFv18ydl7h6clPnxuCYpvY/ZiMJw3KZEAdeNalAHoj\nxbTxLONKEhfYVy/33aRerb03Zm5t1lxmRPULHDmNdgaBnW1H0wXeaq+39p86MzC8Gg+1cWbmzaak\nAR+DrSzR2Ap1XAvaOgdW2Uo0a8WcxLJRWK3kwPBAq2nsgd6MAxtkBumh9gZw5EvGQCKWDugiicYE\nT0nth78Tq0rKY+FJ0TJ2mAhAWqnul3otSGnpUutWwVPBwHMiw16xCFjoEMKJAJKy8JrytpK92uBp\ny0jFayQBXxKBnBypb5IfspG9Sn2GMBjKxyKrKW7wnOE5WsPqeF+wFUmRlDcNkBYA5ArUEYBr774c\nt7G/XeCLvHaOnXKRYvY07wJ7F37D0Wy8sdP/51Zj8g1mjNVSnxgMZSmm1/vBgkLKBtk5y8luN8jJ\nffRFB7H0UtlZZtaldXb3EzH58fx0ZmAFObnklkxrRmBQgplktZKZ5zTaGke9tKjtiUawksk6fnne\nBsqyTg3HAsbtqf4fB0+pfr/UutW1YIY/IMPn/fsAbmQpnvxE8FTGGzCAzddfrl5s8DS2fsprgRq7\nmfAL6ecInjs+Lj25Ov1y7ADD52vhSS5IEPqix6D0mHO/qWvT4yq1rQp0XEmTIlzht9IEdqypiUO4\nX+TxHG315HRaRcBWp/ItJ9hM1LqMAI6JSzzTHsBSbDMlLqSky+3Kao0HbpA0qSCpAnxHJ1xPUozZ\nT27JF8MwQKITZLcVHcRSQN350o03ULelQFKO1N4laFnAj/Rjl6UimIl+BALZz30ym1OyUZmsYxh4\niTJS2WNOqp+llchFw8elGDsDeCJg7Mzwg8xTp9RADbYO+rng5Chk7DgJ1YnACW7WlZnxt0NJYgF+\nUns3NkjvWgtmLvfPQNnNYNobHAso3Uz3H2XSVR7HrCdvDtTq2uigqpZQ2P1i4gqVyTuumOwTR197\nb/giV+YM/IsUE7Rmd5wekj1SzKrDpVWp+5DldiXwekHSdce1nR2GnxMZiSbrCL7OSG0DLAI5/n8t\nlod6qRzJEtajGzE2Tu7g89Ys2OkvQ9NSO4exY1BNBlW9CSJrb7UMwtX+Hl0xbftWYdG+9q29FxTA\nD7R3fJUefw/652t/MBF4qxRZakCClvuiDcHAS/HPuS9tklOMXcRGfCnOf2VijU+Y1Q4EVaUOLQDc\nY+xucDPrICkGPfE5Gt1VWVXqlNein0gR2iaJxmde7h+JIBf7wtUxMnOppWtJt01OnvbOWj2R9vTL\nipan0c4gsNughC/FDFNiAd6ooW4rL/y2HwNAlV06TFv51QXgK4lGBU9t4aO1YNTbMpjaMnwO0q/c\ntvc1dtQ6DTMrzfeck2VyREQqhVtp7Np2xv05OQy8wyV0A17/dXA6MIhZm9yv67II8IMVBPfzd+ga\nMpppG1miSGaugTfLfjlBJL+f+3TZBQB86EcGjoFn3hZZ7dhPtTKmx8z5OUJHUS0pwNuDXJFzmmoF\nFbUf/n7lAa9MPpbo8JWMvLpkAlLgWshYExEpIFXxhk7Lj1vnmkppVQO+YOyCmW8B2DHOVQE/O0w+\nN+JY823KMNVeWoDdbZ7GfuDNqFsIYqgbxTNqEm84GdlxSjry3qLZuqCQHGBqgpDBU7G9dALwjd/K\ngSoe2r60hzNyvyjdTw3g9rChxs7HhUyOzwO12vF4NSjKge1p5l4/D2Cf1UoGTrV/5VwLrZkPeuIA\n1snauFf1sROg5fnVkWnzd646HTzlCVdJN+I+y1WKlpms9U8z8MENnuI5y+JdWA1SXgtcyTWXk101\n8f/1WqTkTuxdTmostGvX5Mp2/9FCHGnslpnL/cj4wbYfDOkiGsdrI1GOO6XAS2oEEVw5AM4MvAG4\nxpGa6wESMNGop9eJYMKj02pnVmNHLX1tbgjXXR5ZqtbGWGYQbpa+XXj1EE7/M/s3maedLiWKbKHp\nikVtTzSCwEY85J0D+NLxgUtfy8yneu+osfdNWtFSCYkBqfVdOVB9f7vjP67MzC6to7opKkgKfnje\nFgtljcc+GD1b7ru+As/T0h2/uin2JZJ+cgBySqLBIGkaE4hkQFKe267Vi5LowKPPhE8CeCnkPi+R\nRLMFpu1JgAeTHVjLUkUzdmC7RKRzOup9IxfAmWlb6UYHW+UqWEoubT+ZiNokoycOZOZlkjdxMuPS\nJA6+ZPsCDg6e8rWQ9utOMHauMstk7LTamQP2A/OGE+1jb9UdteQimbMCcKUfNlbr+9i1dMP9srKc\nSmjKo7+dZRWiibE7eqBKpihFaXLocqkvF4CHEJlZ5H5RQTIB7K59LWvLXsTkeVvJXnFp7QZVOwlm\nkxQDrDMCP2V3c8BJylgKwKdtpV/dZJiqSY5av0gs8pxDSvdXrFPITOLayUlRxgmiVc30I9znIvbT\ndNwtPBcmGNr773mVEp1ayfWgpctrLVYvSvbInNAUA7jP2P3tJSmS1k8WH8axI8aUYOyy/K8xHrCj\nrLpiGlB77hp+wQ8RKbMFJzSN359Jx/wWxh429JlarWu6wNtSHTHrLteZ80gw9gPhctn0pTprZN0J\nFZEXwdaNejhFpF4Avnx4MHGJ+5vFS1uqpPbaiQHMn9OgGGnsgkXwwOs001IMbOymfnLRjMelE0hW\nYrUTJSIZ33vS1Rojpl2zOYGlesFWZPK4etn1RqQ6mSVd72Zv8BSYttuP+3cmMy/zFAO6ejJrCUfT\n5upalMFf4WEFTMtS/bopOOErglB97BlesddY6uEm0ORh9coTr2eD9I0HbUxtSlFSDEPmRgK+kGhR\n3odqjxgAACAASURBVJTxLN6fSiySqxG5UhDkil/uI/NeJIlS+LItp8rYz57GDple/HCuvZlWSSt+\ncKO+nFY5RHQVR2YdMvkC36DkJTRJptWYuXbwyKBqpCtL7b1auTyNPbSvIWOXQO0w9l5vr4KtjkNk\nTMenysxQV1ZMGwODATOXgIyVEXnfCJbyO2vwFNioklayCJKWxswxS1YxfDERdEG/mwMwtH27madw\njXRtGar3BUsW8Hc26YbUcydfN2jeDgUOIRlIrIAMtkYp6fmuGC3dMZh1nX7u5Dm3fqr98tqpzFNn\nxSbdb1J7V5OZAXwrV7Kdcvy94ct6Cnpq91sjObLq60YweYUv5XSlmBP5ppTS81NKd6SU7kwp/eOT\n2GfUjL2o16Vt29IHpBiZWLBqrEPfEDkDN8Ze7UvZySQF7T1KmtgINqIAXDyE8s1Hcv9qoE4AEblf\nVp3vfpFL6Aioa8bo4C+5ObOx9Rez/6jUgAQVV2YIbI1yAEugliCnmTnVapCqCJgEs+pmgaJh3J+T\nmSD4+7UUQ6a/L6XtP+t+Iqp5CW6lS2c1shLPRRn08yKDp+3tQzoL18vaVc/LRFrkteDEJT4ulyB0\nUrorLhGIGDtq7HKlwOcmJcNGcvTrHTEI265FI1fSbKH9821MKbLUtf2P/xf1bMtqsFJyOVJaeuvn\n+3LUn27w9DEDe0qpI6IfJ6K/TkTPJaJvTik997HuN2oHnWbsm9ISAqKljwTkoylNn2h6MXb1saIN\n0mf40vdKxBH5rECOSC+he8Ei1llOQsA6HHah9lN0sNXLMG0DKbuALINVcgCjTU0CuCxM1al+qvvv\nBBDsZOwFAoOSgdftG+uUzFzZHQfhokk+89eTH5lrZFYd3A+Si8vAJeAHTF7HM9qxSlkqWqWowLMo\nEaCuaceTVivHMMs5JFZ42Xle1ESt7n9R185j7BhI9CQdVV7DMSrwG5T4GkkpRtoU1QQhbZCQLY79\n/JJrPha5asbyvOyiGf+uY28qH0bksTRZKtORIw2fRjuJb/oKIrpzGIYPDsNwRES/RETfcAL7dZtM\nOOqnZaYCalWnvS0nZSLSgQPgHOghImDgMtgqt9fLQ3xotV5XQD8Uup/DOiSTR3Yhg61ehunKAaGQ\nsUu3DDCz7IJTAdASjD21fk97jwKDcvUiS9VKZoZFw8btyZ0I+r5oTX4iScoG6WjpRZwDJhBp90vb\nn5RoeCXFshSRP8lxhinvw61oWUB+EhN7715TwdgxPuFMcp59MYuArmTmRmMPGLi3YosYewsk28ky\np5YARwQJR/Ic+qInCBF701Zh268nAr069gLPkvzI2Jsigk7w9OCMSzHPIqK7xe/3TH1XpUkpBium\nrTpd+a1d+KSCpEpy2fo3SrEOxfy15MIDbxh0MBSTJrxEJLlslA/bRrER+bBJ94PQ6ouO+BNp5oQD\nzBuoOMDc/oEEEOzOwkQnEH9uV/BUBVsl+AVgpiaCun1jrzkJmaGeg67W6JUOwAQifW6lnkeTaAAU\nWVfOnpae98pSKKFEtenrNR2g6mO219QLMOsM46zIjLTsRSUoIo29BUl1opvMzpRp966kJ45VvlBe\njX/F5KVE054L1S8mCFd7z3ps8jPciKPOb6nEMSf1Qg25vSf1nkY7tSkkpfSClNItKaVb7rvvvs96\nPzLTq3nDm6bVXsBRNFCLDDDPBqkZvvbQcsBGMv+NfDiFpaq9WUkGNzHN2T6E8h2mfcRS1DJTuxkk\nEBCB+0U8nJrJy2p9GCTzBnAJmLzenvuU5ML9M4KnObfJWnu0MVO1MXZZE0Yy+XrOAqh9m6JwxSQ9\nmanMU0fSwXIJ3opAero9mSm+Fj4Dx/iEJhR2P9KyF03gcjKTzh6fsUsn2I7iYAL8ogmiDFye2T5H\n4wpPW47rtXBWtX3RgC9ruUiJRk1+wrFWJV0gY+P/0tYo3HUrrQhIonnkbH8a7SS+6aNE9Gzx++dN\nfaoNw/DiYRieNwzD82666abP+sv4Qd+IpZhi5kKKYc+7qtmw1UEPlazReexF9uvsOSkBEWlpRS33\n5OpCLK23huHb7VG6aROEL9HIGi8R8CrbpKsTy4kgK9bpM3ntluA+DULtHLBoGJ+zx+TlpKjZqA48\nVtCSoCjOzQ+egq3R86sXWfUR68A38JPecL0ioLqfnKiyVHPfAgllTn+Bc3ZXBF1uspRYUemJWgBv\nZ+8zJrpt1f13ti+Djk+piaCRK95W2SYFacEXxBNxgpI0KgjJRZCr9gIebTmW39smAhlLK3ZMKXcd\nJigN9bianVrXljpNH/tJAPtbiegLUkqfn1I6IKL/hoj+3QnsN2wc9MQbgkV3pLcWX8xBpOUKuWyU\npQZk8ASZvPT0Eunl3qgfB4GeCmbai6uTdTzpRi8nZS1w2c/HNKeWh9IPxcDey8wlqxVghiDEYMZ/\nR8lFBk/lOSjQGixoGUlH7F9OHPw9XmBQSSVDcG6wvZfQpHRlpcmTu73KtpWTViC5qMnS0eS3Ra/Y\nJEGQE4F8XqbuQForOyZ8y8C1XCElQD9TlatHynvE51yvtRg7arWrckDaGFFBUuVAa/ZFWd9JyaF1\nItDPfCsAaImgLk0ig6p+ouNpM/bHnKA0DMM2pfT3iei1RNQR0UuGYbj9MR/ZjsYXEm+IBGSZ8rtW\nF1j7T2WUm19zpas+ClfMtPzk2uEyKk6kkyZ0LRehpQuJRgOy1Mz9xKVenDMyJ1mjRPbz90gNVLpl\nPKaFtkZXouk0Y0OmxWAjv5ePRckMTvBUvjWoF44PCX6G7UpQHPS1YNAapgQf9ao7cc7S7livhbRB\ngv9c9strJwur8fd6MkNf9teE0f2FigBcFZ/orXQjJ0UMhkrw479791kTgeJnmAbPkc5U1S/gkBME\n7xttk9yvy24wA5djIVEabL8BfGV4sL53xAUp9fD/RwGOXDra2v6VzkjlMXIa7UQyT4dheA0RveYk\n9jWnHQCwqxtSSwqU6ldfr1o2XKSlG/+p44qRgRucmXnbbdFVImu/1MZVkNQGW3tgEZ3DRpA5yf3w\n/1GJAMXYeaBGrDaBdCP2o0AOGLvVTKluK1+xF7HUBlqF+qFNYnN0aDlB8OdQz+bPuUXAgnOWjB29\n/h4zb6sR7RyS9W7ceANMTnKSy8nrj90vZsJP+lp47hc9sYuqn7DCUwxcjAW1fWefu763kxyvLnLQ\nz/uQsqesvyRXFbpENks0entJKJCZs/ul5p4o94uQeoUE3MaOYPI5KcbO0vBptNObQk6wsZvFXSox\nKwCm7ZXVlAB+tC16gmAtrYg0ehGIURqbsE6NwVbs1wEaCeDugOw1CHmarBwwm96CFg/UlnkobI2O\n710vucVSHO1rIsDIyR1ak5eTkC4aJvt52wjMtJZuGZuSYiaZISX0w7dj9Zi88at78sMOf3vnMHZ9\nTamdW9Hy1ngOOk4gJy0pJ8lJ7njXzmfmKBniOSuNPZHuh9UIETJzUTqg2OJz7SUYzgqvaDm0nUN7\n5sMx4hoSdO0Xb0zp0gQCLzyJptMxNmmnxqJh4zloReDMMfbTbijFoJbOGuK+zFOpB0rGrn3sRWlv\nRDQBaVHgyvtWVSJFerKUXOTDKa1cciLYOA+zq6VPbMVq7MkMCiI7gOW18wZ2tERv2ZAMilT3T9T0\nY8te/eCpDbbKfqr7kFJMBSd538Qkisxc2iC5X5cUEP2D6HcAvxRSqxQ3OJvFOTtMfhtM7BiHaLEX\nzdiV5CKvnVgFlcFei15ZRS1j11p6s+yhxh4x87a9lVbGSU5ajrVmjs+XllB0kFSOkYGlGLQQVwDX\nwVMZnMXJj2tFSW1/7M+tvrqQXA463wa5Xvm+99NoZ5Kxc4Yp+tgZ8OuSSwC4Su11mDxmjDEb1VJM\nA2qlE0pLVdFyxdiv3TIyIi+tXLLEqHzPo6cHGo29YH+Gfsk62kDNglFHGrtaoovlKu9DendRA0f2\nqtjiLCdIA7+cG4iz1CO/kzVwyeT5f81qqf7vSTEqMBg4Pkw/2xp7C+AMWjJQOZ4DhYAsZSadiBRI\nLgGTR2a+mo7VIwJFMGr5fPGEiP16lSIdJZK9tpUf72NTHClmus/eRCDlTfW88DiHuFVzoIkaL0Hw\ndCMmDpXQWHSFVf4744IsJqhicmqSy0KTP93qjmcS2FlLl1FxIhL+01J/J7JLJa7iGGaSZfkQthuo\nZIa+uNvroKp1y+CAVFauyiKaH77L+k02RkvPrLH7jL1HkFMMvADTsswcGbuUK4gYhMgMVP5uOdEQ\nacZutPHBAzkSmrxMRPLlJ9TqW7+WPfiaKAaupBWy/Vl7vXVQler5mWs0nXPrp9Y/SOeQmLQcl4t6\nmxRs35h/rklZMqgaXyNNBKZupaXHjN3GcOT7fJHJ87a9lCthEsLniDNGUaKRSXydIEVSlsRYmqoG\nWR1Cckxp+yKudvn9Dbz/A9Evy3PzsYz+9jZ2Fsa+p7HkIhMOZL8ESyItuXAtcyJm/l5QtQGytCmp\n13JBIgJvr4KqQnvnOhvjG5qm/l4nLklW0x5O7UuPgl49LCdrPwxs7QTxNValH8vtB524wuembG3S\nsqlskNTOzdkPgpBk5o11krI1Shsk70u+gKOl/FsJiP+uGXs7Vu1Xp7Z/cS3kagTfViSPC2UpzLa1\n7NWPQ5iENk+Wmo51VYHaPi+9s32XfU1eEYFe2xS9uEKbhDTDV3WTXAAfVFAVA8Mr3E+BZEAxpnAy\nY1ecDJ7yd0hy1dx12ViRuf9I+eEZwDXuSEm34s7yBqX9bbzApS5ztBQjiv1wffXpxvIyUy+hhN6M\n7pcpgGLdLyzFaNbBN1c+OOP2GvA1Yxee22Bg8/+9eAg78bBFGrtcfvoaO9THkcxMPJy1CFRvE5FK\nIfUmJlUTZpBBVa2lovtBMnZZrZEDwLxvXc6X9DXq0gSiU39q942PR20fBEOltBIm3/R6cmoSjZa9\n5LXo4Dnqi2by6u1Q8pwFY58ItZKl+iInLSGhCMlF19f3ts/+aifMPNVOEPtsg7QCJAfjULjCkzkg\nkoypiUBMQsxQeZVNRGacWwaeXLtjZfhFE0d+H4PZ/4QvyPzZzDEMeuV/Gu1MAvvB5GbhG8KSCwcx\njmBm5iCGnVHFhVfaewNk9So9ZXfUtkkioTdj8LTo5aS0R8plo3zIpT2SPyOXmdKForV3ZPLI2HMd\n2EUCcsDAcGldGWEnB3AxoMUBvRpgTBqEOpAr0IJXmXkUVFVA3b5Dn/PYn5PW5NGvLqUh/rt8C5SS\nXCZkVf52KaHMYOyYrGV05V5MTllLd9OPWpaSREBc122vy//y/7OC7d5kVrS01srt+kzbY+aNgVvA\njzR2STRkFrYcz2XwVjX8HdnEJ7i/LzLRERk+TAQTULOlGu3RqBQc1HdHDGcy8/TU23pa+hhtjGdU\nB8C9pRj60q0UU4DJC6Du7fLQ+NuVdKML8BNZ+5pk/r6bxdfYdS2a3Uy+aqyDP7D5eHGSKwMpBq7f\nfBT7ktEGiWDmyQ+yRICs/aKKeg2WdVb3C0o0cM6SjSp75F7G3nR6dc5C999C1ib3K3lLOIR6sXrR\nhc/K1CdXR7qejt6/lVB0PR09mcnXEPI56MJq7RmW56y1d/m8wNjhZx6AusqYMzV2thDjSpFlTJY3\nx/8xwAyaOUq3PHbMRACuGGbsGSWXhiNHQhrGFftRX9RYOI12JoF9hTOqkCUwEWH8P1XQ1f2SUVst\nfRM8hJy8gA6Rlj3nSDFF2ynH7cUx5SyCpM5D5QSAiDzNdLdbBicCXKITWU83n5sEoTogAbSQmTHD\nlMxcZ2dqJs99nhQjJzklV6H7BcFs0t573D7r7cN67I5zSPnblSRC/ipliOUnJAI8mVXQAqfReP31\n+z+Z4etrVMw572LmpZDTL7OtA4dQP6jni6hN7HLlx+eMdd3bucX2yMaOGxnbiP0QMdPWDjT+X2nm\n8hoJu6N0xW2K3Y9x3YHkgmSM/375qCeixuBPo51JYOcghlsELLzwUqLR7GKzHZQvVWnpva4JQdTS\nlkMt3TD8QdngtFtmtHLxoF9P0gc+VBbAJWO3QdXILdPlVANYdnvBzDo98MZB72ipvV4qI+B7iUtR\n8FQyZwZHFTyVmaTAXts1aoFMCaSlCB+7ZK+DfiEI90spxguS6rK9+hzkfuq1c2IsPYKlAnBxvjIg\nLa4FrhSIcJXSVhjtfu62wSIR6BJOKPK5sxY/SQRUPAtWZm6dpd7PPMUEKL4W275VXq3n4Kx213my\nRxcfkE0Vx6z3YzJSDY6MY4c97uusCSKXG1iJY73a7UwC+8HKDwy2GVVr76sdTJ6I6Mp2nFFlhhlR\ne8ORZeY6oKMrxel63EQcbHWY/PSQr8USDQFcauyeW6Zt77hiertE5yW0GcBZp4KjZjou08kdYJLV\ntsqCxQ2SMiB77LUvQ53kZLVGdLkwo0ZAZrkK/e0srVhNHgpxgbuGv98Ntg4O2NQ4RFbf02yN/irF\naPWTtGKkHnmsXbPBoj2yHatYmQmrpbZHilWNy+S1pCdrxZTBxg9QG7cSndbSo2ArVn3EVTa/gEMy\n9rqSE6tgIoexqzESSbpyTLXv9qWY8f8rm75+XvZfOurV/k+jncngqbnA6sLbxCX2m7YLr5n5Zbjw\nUqKRQVXFIopTUmDS2cwEMT3kRoqZtpcPJ1ukIv+xSRGfAjeGUXW7g2E+w28uB09aCfXjwQa9tj3I\nDGrJHQdPm82S6vci8Oa8Q1oZrJzAoGVBjgPJVPdb9x/42Me+wfjea/8gy/wKx4fDzE0gUa2CnElU\nuGKwtIP/vMhroSdwdMvUlZ9jj42eFz4m77lgYPTuv9TMZekAd7IUVmH1vWBsGPfFQVK9Cl5ljDdJ\nWdIGPVeTDdq3TccEkQG8q9trYGccOo12JoGdHSKelub6VeECo16H/TWIudVBVR08tSUFqiaPVq4J\nqD1dUa4I+BzkQ4glhk3En/sLDuxcl6tE+iGXVi4MqqFbRmugpF7MQdSWxIaBD9rWOMe77RXQQpbK\nn5GMvX0HuF/Ed8igqpRW1Is5KiBjRirpYwKHEMoD7jkM+loT2dWLDJ7KV+xJLX2A76yrEXP/NWPf\nB9RIHKq00kE8A+yr4wRuwSxi7KiZ6+fLJwKejMVkSY2d3NxvchXcYmwWL+QYkQmH2rHWcERlpMJY\nuLzpYXufUJ5GO7NSzFGva0UQNbsjLpX4ocALX4Mbm63bz8X8V7Affni8pAkVPAXphvfLUfzmrmkP\nZ9NA/USRpplCkLT32UiUoBIxsJobEAzI1k/1WqjEJbG9eok2eK5lYJNoArlAS40CgGEw1JFoVNEo\nlGgQFAN/u3qBhaOlW8mF1LVzpZsoeFqEpAcTCp6b9wYtjL3guXkau9sPE4R5Xrb+88Julkhaaftn\n8sOTYuCimq4Nlwjo6/41Y8c6TuO5gd1RxBs2vZ3M+E1pMseEiF0xjeHX6o4rWPnnpP7eiOMC7Dtb\nywzTwYpVzlSGNkPWUgMr/wLzjbx8ZGdyIhKzv3442WqJAxI1+VrjBdjLeKyNCcmZfGQddhnIHtp9\n/mMr3XjB1mKYPP+dgb2D1QjvS8oYqt8BZLlEV1a+wQJEZeypDeCc0K/e9uVZ+TAwKDNS1VuG5H48\n5p9TyPyJhLMHgqelBJmngXNoi9cOMkmlBMRuqWYJpXafnXPjVYo3yemJPddjVc+LuG/eCo//P5zi\nU/i8tGcegbq4DJw19ponIS3ERQO4jB9JAOdVyqa3Y01JKEIGwgxW7tfmDD3+mSDWSSsgjk0p2Kr9\nnEY7k8DOUowpArZioIYLXLX0rdreLKGEVk/UHlr0n9floRPZlyxCB08tgPe99vryd8iJIBmbGg4w\n0NjFAONKl/IYUcZAgOW69Vhu1zBwyVJFP2aG5jpQ28CW706VLFjaIOuxQhYm98vkGyWtuJILBFsj\nxg7BU/S3G2cHrF74M76V09oga0KTEzwtAuT4u+VqJyV9bn5gsK381IpNTYpi/86KINTYOwb2gLFP\nTNjGlfRqRI0psdptTqBixkiNpSFZ6lJ9x4HR3icZMyc9+bkSTc7gEGrkikjgy0rjhQ2ejv/X4Oni\nY9/d1izFgOQSLX1WcIFrpipPBMENaUFVDeCs43v12FVGam5Mvi8FrFmNXaJO2Bfr0cWIv2XsvnSD\nQTW5UsDtiQRjdxi1XEKj+8VnozbwzBY8BEtm4Cs4Z1UiAMAprLsOJQXY1rhPlsCXXHsMn6gBctS/\nwmtUJRcrM4SOkkGzVMmo1XOxwyFUhjgj2Ssp4BEErsfv7YdIMHaQH3dp7F5QdTwHLXsQ2eeu3R82\nKggAzw3APbK0EbIqUTNhoERTbY3GHsl4MRLEgwBf8H2uGMM7jXYmgR3foIRaOi99DgDwcQllmTww\nfMPkgXXUh7AxdimtjCVXW/qzlWJ0zRkiwbTQo5tB65TWrEADVf5joSsOA7XVDlgwD+EaSQD3QAgT\nUXSSjZUxcD9yIpBJPEQkSgS0LEz+TFQiQEsuvB/aLbkAM8cMVlf3H+xkVoHXSDR+ILlKNM7qZQyq\n1kvRGLv4Xv7uSIqTMRbUzK1bCkoTiOeid54j/tyVDTJ2raUjwzc5HWrs2DyJcVJBBp784Gm1KQKw\nTyv8HgCfk/6sRIPve9DnfAkI3wEwdpRurmwWjX1WW3cjOB1u+1qnmagtjfDCr4CBr1f+THsQbO8l\nX+g3KwnGXlBa4bex6IezpS0X8xBiXXf+bvUC7z0MvL2Aw/rYiYTkYhgYa+wa8Dnxxwy8QQ8wzBi1\nAzXQoZnhCdCq6e8DyA/JZ+AS/PDcJJOXstGu4ClKNBnO2Z2cis3O5X7GoMZqtR9eMXbnWqBDRJ/b\nvBgLWzltcF7HJ1bQj55u/r8+L8C0x6J7dvsaDOX9S4YfAL6NT+XJ7ogAztcImXlLOEJJx5NoapZ3\nvRZ+kDRy3a2A4TeNfQH2nU0CMi7FuF9uZ5ZEsFRqTN7vtyUIBiW5dPVhtgNvnSfXgvNwNk+vZh11\nuQoTAT/88jvNEjooHYAAiwOSBx67HJCN8kCNEosw+YalFfR6j+8w9aUe6d3mv42slhzAL/UtRxjo\nM4CMwVMp0RTymfzQXqKNwc0yfcYLqkomj7bGWtOmTn569YKVMb1rYVY1yKhrxuhul4sXVC+DJQJ8\nLkfbICaz1Ss8/hzqzSvxHCmNnfuBzHSKLOkCWl1ONUFJj5EsSFeC/vHlGDKtf3wRxqCSB7m/L04M\nD/DlAADcBFUN4LdjutrtTAK7XPrIi8XBU54hz3Xd2I9+9ZW+8IbJZ32jUDM/2hYqg50IWHKRDxsv\nibG6G2fD9UUX4OcIvpR6xv6Tc8UQ2QEZ2R3b9pGtDROUGtNyg61FW/80+PlxhRHMarcKJBKRzobc\nydj9YCtq8hXMON6QqG5P5NTHUZ57Z/ILfO+RWwatn/Ja4IoQg6E5iX6XgQc2yNyeR7k9jy+MvUQE\noXm3/e0ZMP3nwst41tINEbtZxv3g5FcrryrC197fIAGcM9j7Xk8ENSMdJyfU0tEtc+QTwcuLxj6v\nyZkQl1ZERI8eagBf1Zl2q35HzQxtjVcgGLKqE4qt45ISV4PUr8BivW4Eag/wLZjVCQIeWqlPV1mC\nXTQOIOultQ7cHRnGPg1UGJC5DmAIkgEIyZdaENliT03G0MHTem6DTuIhanZEvHb8hiO05lWQg1VN\nzVQ1JQUQ8En9jz5mnWGqGT6fs/T0qwqYbvKVlqWUX1344fkYOJDsMfbILeMFhr2SAru0eiIbe0EX\nlYzhEFniIF9SowFcSC5OpjK/k9SQpX4wTF5KK672jv25BU9RPiWS8QME6m3Q708Ejy4+9nlNArtm\nuyyh6OApLonOrfz+SHtvtiafyY/fnUw1SCIB1KVUZsnb88DTTL5ZrbyH2Va0g6V1ECSVtjYiy8Cb\nfU2nRctVityPfaGGHqhjso7dDwZPiZp+XIqVH5rUU7una1qEhNL6scyv3I8bbBUMHz36fO1Crz8G\nSQPtHX3vfLzmzUq5+dXl+2X5OziQrBi7dMvAROBr5kFMhic/x0VF5DFzDeA44dsVHsuYXAp7IhpG\nY9cEBIOwRDK4WYKxFks0aINk2zSumolGxq5ieBiTQ7wAs8UBAv5id9zdGvBu1Q1h++Kjh/4NsUEP\n7tfBDeuK0aCFMzb/zCzVMnanEl1u/R6YWRbRNHa5H1Otj8HMBEkx6KUBfB+Tb/362vGxImNn2cAu\nxckAezcxc5nQNO6rATtOBCp4CnVTjL890Js5eGqBffyeDQJ4MMmF8QbJzIPJD7X0EKj5/osaNfzd\nKG+N3+EncaHLZZ90h5KLcVGFBMEPwmOmKmrsMsO0HpMjS/GqVo81KcVo8sP96IrZOAxfMvA1jHGi\nBuCVOAIuGKmXieZKsJOr3M4ksPMFffSoN8EQogb4vCytEg1kgKHvHZeNVjMDxi6/Wzwk9iEsJlI/\nArWuA8/b80Oo99M0dgy2eq/9agNyAnDwjZsldAoGKrofEqm/V3aJoNVH1SCLkVxGsCFfZnDAbwVy\ngpJcipRcNDM370jtfL2Z/84BQ2TsbRWU1d9LoKUzOHmTH65SqrTiWD8ZwG225Qj4qL2HZRQCYJf2\nSJTuIiLAz0U2z5cfVLVB++ka9XpSlMe0LVozr/XSzWQ2OcqMFMMlAixjr/72rMcm0Vj1FccaEdGl\nQ40ja0Eoifb720+jnUlgb1r6VgG71NjPdfZGRZILA3VbWmnGjiyCSxAoViCSHdDWuJmWhyjdeEAt\n33xkSg1A7RoiwbQgLdr4jA3g2/rdYz8O4PF7joCBoX3NVn2EKpFKV9YDkl0uUp+W51ZwwIuknJRI\n2SDlm5XMS64dxu752w2AwzmgvIXMPHqhRuRv93zpGDyv/QOp7auEIrJ5eXvpBEJm7sVetHTnr1LQ\n5XIIsmRkg0RC4b50xlh/k6uZV/mxR8mlyZXeGMTV9KpLtNnyuxXk/htjl98rCaVUBDCGhxmp0HJW\nPgAAIABJREFUqL2fRjujwM4z5LZebKK21Ll0tFVsumnpkDEG9iWb6KRnYKLxZmLRMO6/Ag8t0fiQ\ntNIBenWBJQh4P9WLi6zWtU2yrVGXKkWgxoCO0dI7PYDbwEbGrsHpCNirYuaiGmTTj4uRExicpKTD\n3+HJUjn7Xu+IjVbvtueW8Vwxhpm3/YzXCLV6ms4Z3+c69QfauyczdfJazJBc5CrFMHax/1aaIuuS\nAsi0A6kkYtoRgF8JGDv38/MiC+IVZyXHBgN3VVtsEp/n9eeM1I3xt2dT6I9IEz4vqHr5qKcDoQhI\nwJe/V5xafOzzGl+gR4CxM0A+etQbnZvIArgtQZBge52RSjSyBW8GXuckGD4CdRCphxIE4zm0ZAoj\nuRSr1Y/MjOjIcdEQWW20DsgN9u9mWkcwQXRmItDfW5k5Mm2oLUPUwEkm8fAxVMYOS24ES7k9+tub\nrREAOY0stb59CALDPGmhj92wWhk8dVwxXpC0bh9JMaY/K6BW19SdILK7IsiJCYIu9hbd/9qPrpga\nw9Eyg9HkgURdAbcMfwa1d/6sN7HXVa2RN30AX3XTGNl6GrvjQJMAvrKA/+iRJpQrQTSJHNPGoTZt\nnEY708B+CS58u5A6qFp96Ue9ejkw1kuWbyVKKXC/dNkkLnH/lSP70NaHx9HSfc281VHHpIw6gJ1J\n63DbA/PfsyTe+kvicCIAxm6Z3KQ3y0QkB7QwqMr7bPKDvkbF0dijoCqz3VaVUe8/KhFQ7ZGGsUf9\nvnd7ZxKXk2HKjiJXS8egao4nAs/r3aVWpsEjCCYLd7pWhyA/1v49KzmzItzo2E5X+/V++Biq773z\nz806xIqRN7nUANogpSyJLjr2w6+BvBFZ192BAGpPEXj0cEurnEzm8SMM+Auw727yrSvn1AWebshG\nAz7//CgCvnDXjJ+XNze7dZTXXaLLVXLRkwdq9URaA3dZB+qBAvyMdDNp9Qh+RONDiy6asR+XxG0i\nkJ/ft7TGAdwCjP7S3WWXOVUPuGWp4/2U8SUlJyjmb+u18DEVR3KpwdOZkktl5mjxzPqcMasWJwJV\nqrh4Wbh29aIm8DmMPbfAMG4fOkoGwdjhubCJSADg+1wxzMwhtlPBdWvJUpeTCfLzZ/pSJlJkyZIv\nb1obpIyZKc1clAjAYCvRiAseMx/NGfp4xn6NOyklWnepXiO5r6vdziawS9Du7Mw5DLq/MvZNr7dn\njf3QPmzrLlUGjrM8lv/ln7E0wdgvkiBc94ujjU4RfHQ/tIfWspHDTW988mN/EPQKmblmbAhmVqKx\nOnRKFIBNwNgzlwgAZi6YdiRX6IAhvJhDHKu0QaLkgn51/r/2wyolysKMfO9Y9VH27wqe4mTGhdV8\noLYM3712Im7Bv8tzw7LN0X3G5wX7EcBNMD/rcYuEgn8+2nLNGXuNUN7k5wvHjlyxuyv5DdgaA6CW\nNmh01xCNZAZZuYzbLW9Q2tPkTVBSjLM8Imoz8KYf1DY5Ty6XQFq55EoxgpkD4CNL4c9eqW8vd9gI\nRvYF+HlM3itZQDQCNU4QY3+ggcLS1/QjgENma11ab228oSXT+GV4pQ2yXovJl45BVS49a1iq5wEX\n2jsfB5GXecrnTNO5oeTC/X7macTMjUQjVi+qDopg8lENehsk58S14k4Etmhc3jGJ2ozULJ4j/j55\nLlEJCgRqDJ5iUB1Xfvw3rwKilGhwbG4qk9er6VoHPlssuLLxY2/I2KUrxpNiNv3gau94nPJ6nKYM\nQ3RWgV0Y/RWwZ7//AG6+bAyY499AcnGlmNzeuJQTbK+DJ0Tjg33oBFX5JdSeBctbQtcEJccSRmQ1\ndvSf80dWewZq9Gq8QxyoIMUYB8fgxA8kYzeJSMVMBDmn+uo93yGCTM5n7GxrNIBvJBcfwCMbpHUg\n6WunXpwxDApEeVWDgUEJvBIwcrZvaOLv8iQdnhS9yZVovM+eDl3vZ9b9sSvGr4B6CGSG3S9XvFWt\nAHCURLxg6zr78mZ7J6k1KhCxy8WRbo961xXzKEgunvVxPB4fa4gaDp1m4JTorAK7M4tif3RDcEbl\n33NCFplFgFEz5MvgV639G8tepVvG9bGD3VHWr9A6ZEtQ8vTAw61lZkRTobSsa4iM/cFANYwdNVa9\nPU4E/PNmO5gldKuyCEEy5ezIqr++gKPT+6nWvzn+9gwZphFQR9o7MvngWpj9CC3dSiuywJl/LfTq\npZWa8OQqzx7pvXRC3mfveTncajKT9z0XUI8da5Djd2BhLexfG8D3nGZMiuxq1ysRsBYSiocFPEZa\nP0/INIuZ88qfyAI4X6dzq45Os51NYA+kmOjCy5uGM2qL5vv95mcJ1KClezUhxonAsg62NW6AOTX9\nEANDbYCtYf9EttKlZFrI/Md+/6UjKN3wV+1LOFFgkxMd9b6tzatBL4On8ja0VYqVaNh/jt/r1nWf\nbI1eFibRjuBpKMWAJh8x/9yAHQPGVR7y5CqwTbbtHcbeCcbe4X7IuKiiFV6ceRww805v367RuL/G\nwPUzjAlK3B8DvpMb0smJQE9+fEwesRsGO2aJHL+6I+OM37V75Y/bEzV1YZFiZrRQigmYPEencXv5\nGQR8LzjCP0/4YLV09yHMLuuovnTDwP0AkGRUHoCjK0YOvDWwHe6Xx4RLaMvYoxRxOyBXOZnaMvyZ\nOPmmhK+D8yQaL1mnAr4TbCWS2bMakKvGntv+5fbI5E0RsDpBRCsCLQ3xZ0vItHUJgnpunlyVpMau\nr3UtuOUQgcNtccnLvkQkm9msiUBKSQM1MvatI8V0OZwI9jN/S+yOttbfjtsQtXGKwVC5zbkZMTwi\n+bpNH0fOlBSTUvqmlNLtKaWSUnreSR3UvqYLfwXAHiyJzIxaZ1p/Bsa/xauCXAc8PiQe4LN9Eb3b\nq9zADJelRCOAR0toj+Ff2fQG/Mbtd2cYGskFBnxK42v/sDQBb9MAglQ/OkSINBuNAom+19uy4LGE\nsQ/s+4t66fgBAjJaPPncbP323cy/nlsht1YMa/LeqsYGSUWwVTzC47V2Cq5JYHcnv/F5kZmqREJa\nCbR0JCFef8TMVwLwMfkOJxSiKc7lyJs64zv4OXLRBTgSrvwRXyLiyFLM+gwBOxHdRkTfSES/fwLH\nMrvJiy21qy6nuhS0M2cA4GxHMlLM8ZZjnoecj6np0Jo54TsSx37hZnAYu2EXwjd8nAEc+tiBIUXB\nM/7upjfrc4sYe3WIwLXjgmgemO2qIeOxYM/fTjSjcmUI+NO16DRQY0mBqOoj7qedQzGSi7pGZjIL\nkr64ZjlIK1xbCL3hfEzehL/rOSKyjB1XcvxzqyGjV4ue3TFm4DmUaOqqWR1rxNL9MatxxAfwCOSj\nFT7iS5ViTtHqSPQYgX0YhvcMw3DHSR3M3CYv0g0HOijBF/hi0B9p6fZG7QftaPkWTQSRVo8lC4im\nLDnnAcNAjwRqXBHw9i5j3/hghkwrCqoSjYCGlkD+bi9FnIOhXiCxd2yQDGYeS+XXuBnr32Qh9HRl\nllwwuNk0cz4vn2lHTJ6v9VEQhEUmL48VVyPVu4/n3ElZSgN4lJFaBjLuKmlrRNlr7O8Na+bt1bXY\nNeF3uVp8O/UM72Dse7X3YBzNMExE23vJSuN+/JW/JI6RCeMAgqQX1yuzn9Nop/ZtKaUXpJRuSSnd\nct999z2mfcnZ9eK5lfobX+Dza32B+SZiPxbsqdvnxvBT2v9gRAzfS//n7QePdXQM7NqCFWmjfNxx\nkDRi7EW9wHdvIoqz6ljlbFwRRCNARgkn+KYc7i+FfKD2QC6L2uQAisNAtMHgKZxb5GZBAEdAjpK1\n+JJsYFLkQ/MYO78FCie56t13ANzLSJUBZi8mc9QXA6JEU0Kb87xETD4Ktkf2xUPHYBBJK132c0lU\n8FROEOGqOVhZq58FmAcMfKcvPdTSx89cBHy58fyITzccaJy62m0vsKeUXpdSus359w3H+aJhGF48\nDMPzhmF43k033fTZHzHpwWwZ+/i3C2ufsV9Y443yAR+LF9X9BA+G5y3H7aNtvJ9NULUyeawJ4/fL\nAawDUuPPtrYMDmCtN0dyAgN+BwMs2n5bBvX2+tavq0FyfxnILWTFVkHv2h1toYTt9GOUYWoBnNQ5\n8++2omUwEYhAYk7+qmb03NuKhuzdj5xAptJlAPhyAtf9bXXhyRiHW1sWmmhcQUoisE9jr4x9jsbe\n+Ss8qb17xzRuExGtGYxd7Edq4Fpy0YSPxzPiC+8XlYIbJuJ5w7nTBfa93zYMw9eexoF8tu0izITM\nrmNghxtSgxv+BIEzMy45cT/yu3CbSLqJ9hMx7ZXDUmZr7F1ytzcv1BDgl1OQYSqYmQZeq+Hz+aAO\nzd8xBk8tYx8BP5v9VEeJIzNsDGi1fpR6iJxVShD03KfJY3CW/+ZNcrvkqvZqRH1ufT+oOuD8WQ/w\n5SSnYzjj/8bHnhpBiBi7B4pRUS+2lkbB0JDYgCbvrWpDySXYT6Sr69IkbfxHduq2354uAICfnyYG\n7L9xAnRm7qfVTlf4uQrthnP6QvItxAtcmXzQfz5w0ZwHhh9Fyec9bAGrDz8bLA8dph191kg0cqA6\ngO8PvOwOYB0Yhu2d/eTsB1WllQ/lisjZ4ZX/lQCbPSmmx4mD6vby81ibnr8j0t4xHR/PwZViZHzC\nsbvGjN2px+7U6d/H2A/h7UBye09jRzstZ896wVMv6D9u4xMe1OG9nzWhCIiQE6vCbeR4Pm4+jPwd\nV/hPOrcmIsvYnzQB+o2nzNgfE7CnlP7rlNI9RPSVRPTvU0qvPZnDmt+efH6tfucbhBc+uiFx/3hz\nMWMsSiue0x89hJ4kIo9h7Pd1+2iy8Aat/BmZf01QcXzDUjNHphVJLn5QNblAoPRmh/lFZXuNJi8Y\nuHduqB9HpQNMIhIEW2OG7/jVo2uU/BrkWTh7fO++c408Tb4y9kCiC3zsR1vfjXUIQXveF7tTjgvg\nsRS5X3IJ7cdq7PhjUI5nmQ9zLgB2BGreLa78mZFfAAXhXIBHV7s9pmlkGIZXEtErT+hYjtU4gPaM\nJ51T/TwIkcmzxhVpY8jMI8bO/QddNi9/aPv0AXmO0yZcTmb/AfbYGO7HW2V4OjdRzNiPHGklJ9+v\nPEo0Ntgqt8fkmwjMdr1copSmf+M5eMFTI8UIJs/7lf0I1EaKMf3BSyScVU0WsgQy88rYnUlucPYT\nlfOt18KZzMZ+//5LPTjq579tev2GJjzPeY6y/WMEs7Pd7cV+JJBGtkaJBVFtKQRqfp4vHPjBU8SX\nBP+fVjuzUswLv/FL6Es/7yn0OU8+r/q5HshTLx6ofp55jfY+PSRzXTSVyRvA9x9atSQMZZz5Gjvu\nJ3II7GPsuP9mCQyCpI5ffdU1jR0TlNp+SG3vgVzT0m0Z3p1WPvRuCwDHhKaxfyDR3QA/KAK2175o\nGL5m/ryNm6AUMXaxPTL5BuD6GSnFvi9UTkLefT7cgK1R2B2j2Itl7Gww0P2RPBjLhv6zPc+XHgRD\nA1+6HLdSlsU66nWbYPxjP7+s5ek3aAXhv/rzz6JnPfUC/Y0v+Vw6zXa6ws8Jtr/zvGfT33nes00/\nA/jTAdj5wUV7ZJVuQHLhWRv797lo8G9dINF0wQN5XH0+BO1oP8FSlzVTLtyFDKwxbVKf95KvtESj\nGbuvNzf3Cx6rW0BLMGoveIpgJkHODZ7uqa+OkktYaiAIhoa1xqvGntX2frB1BPCByMhMbratYub+\nKmVWsD0gAvJvBvCDeFDE5OdJNP7PcqwpySVwuUgpRhovopR/lGL4GUPTBpsvbjyngf05N91Ib/zH\nX+Pu+2q2M8vYo/a//LUvoufcdAN9wTNvVP1ci/tpF/WFZ43eSC4hMx9/t1XcxMOmSgmLh2rtP+To\n3W3HELGXzx7wI/CXn+9goIaSU46BOspIjECLXyuHssFOjzaCkGLmEbD7DF9+PgLq6lfnySzwq2Pg\n1gX8qL+L4xackeoHhufVFopiLLJQVsSyu5nPS7N77nh25qxegwQiuT2+E8HtD/YjWXdUfRHNFvyy\nlqcBM/+Or/58+rM33UDPu/lp7n5Ou51Zxh6153/x59Lzv9guexiInwTB1idfWE3/636ekQ0zzxFj\nb4M8SmKKlofeW1qIdmjyoSsmcgvsB3/+HV/su+szYxle/zuOE1TNKQVWwVbyVoGZCG6iPk00Aixm\nDBIxSyW7n+2e4Klh8rpKJNcaPwTA520wCMv7uuJYRbsUy1VjDRmfvRoJRSUczYixqGMLgvmQ01EZ\nOybxTP24ffwc7g90ngsyQzUzl4xdMHlJrpzngih2raDkwrjwNFAEvuzZT6Xf+d6/4u7j8WjXHGOP\n2rd/9XPo859xA335s5+q+vmhQqB+8nk/FTgqnN9egRUzefmgzgH8OW6ZectbIYdMkgtuT2QZq78v\nn/F7GrjXjx5w3idWXhy3z7Vaow9mANSBzCCB2pN0DsOgqv9ijsjlsnEYu2LmnT6maPUSFVbzgqRa\nftKyFxGZiQADsnjO2L+LCPDfIiKw6zmK3p0gJwO5ivYmaiJbK6r179feZbt4zmfsT4UV/j/6q19I\n/+GfvpG+8JlPcrd/orRrjrFH7Ss+/+n0hu/7K6a/LrOTfgiZwWN/lGiAy/XaH7ALzSICTd55UTdR\nHFSaA/78+wZe8CE/P5exx4wv/tkFuQDwK2OPtPQeg6fj/0ZLF+CHgU2iMXjq2SYrUBvGvtuXvgr6\nZwF+0N/l5CbryKB3NJlHoB1tPydoT9Se1Uhjj6Q+IlJB7Ege1Ixdulx8oA6LegX7lA0Z+43nVvTI\n4ZaefoNm5l/73GfS1z73me4+nkjtumHsUfubX/5n6DnPuIGe/8Wfo/o5sSDB9izl8ODmFvlU57CI\ng0iTVyxlv0QTsZqIOZmBNw2MDgA/ZHnR4Ax+ZmeHPb7AjZOaj937XnS/SDcL7p+3d4OqyPBBS8fg\nqcuok+9+2VUB0w2qRtKN/Lmz5zwMCMj1x1nMfE5uROSKQe2dn58o2GrqLwVMPmbsfv8qkGLkPiPJ\nBa2cP/K3vpS+4uan0+c+5YK7/RO9XTeMPWpf+Mwn0esdJs8PDILikyvgA5OfHgzWX7lJENYBnf26\nn9YJ9wN4FEiyL9jNRFRiwJ/J2CMd3wtcmv0kvR8/uWfcv7EvTudztC3u5HKEPnYRVJWrJlk6IHKO\nyONmGevI0dJ1Vq1mpmGCkhdX6IKStE7CldkmWk3tWEF5+4w+i0SgAnUgP1rtnWVMTPoZ+3OK2XjM\nwPcHT+U2TwpW3H8KmPnXf+nn0td/6elaFE+yXfeMPWpf+Zxn0Bf86Rvpf/jLn6/6K5MHKs8SDdfI\n4CZBNWIpSqKJ7JHHZP4Sm6N6N/O10TbJpRmSS6S9ezLIeKwRUI3/Y0BXZ5Laa7ELqHXi0rT/qdIl\n7t/VzMNAb+BXz37AWMUbQoCd0R/KLBT0758UZD8XMsN++Xv0fGEp7C7YvjrQVp16vs4HxCaKW0k2\nLn+W+0Qp9Ye/4T+mr3vuM089M/Rqt+uesUftc55ynn77H/1npp+lGGQvTwqWeNHSb1YAKLBHzmHs\n/IoyfCm23NdsiWbP9kTkMmTcJg68tn16Wjrun7cf67SLzwalA6KSAjJI6gYknVVExMwjv/ou777H\n/Oew68hRMufnVdjvfxd/BuMZcjtbT4WB2mfyYT9YiyXYSnCO9HYZ6ET7ctte93/LV95M3/KVN7vb\nnuW2APsx23/0uU+mL3nWU+j7//qfU/03Bkwe7ZXcpD/23CyN3X+wV4HeyJ/ZliFmVGZJ7AN4DR7C\nyc0JvoUJUcHSP3ZkWMcH9vP+vRdzEMWAb14obmrFkPqbHzxNtDkKqju6hdJaMPTYsolaybVj8+rj\nmH6x/RqkJK+/fncfT/j2+cpuf/T6uAjwIwcLW5SJKGT4CZ7V7/2rX0iffPjQ3d+12BZgP2a78dyK\nXv0Pvtr0M4Dj8jPS9CSTnxPBnxPxt1p6osOg3zvWaAm9z9ZGRMamiPvEnz03C342OyydaB7b974X\nJRppFTy/Xpn+0SdPRn66vHFKBwTMvFMAHkxsx5RZMCC977NztPdoEpV/2xUM9baPAB8Bm+uxDFrF\nDOURLPw3p/2D/+ILjv2Zs9wWYD+h9h88/SL9pec8nb7tq25W/XOAXQaZLgZMXkkusj/5/fIzpr8y\np7kDchrA0B97ou0+8VhjsLHfi9tEoBh9Fx8nZm2q4GmQqYryg8Q2m0DkHXf0c3SeAYAH53bcEhTz\n8h78FVsUDI1WfhFBwOApF+zD+FTM2GNg/7avutkUALwe2wLsJ9S6nOiXXvCVpj9iF5H2HjF5CbZy\nYOQA8PmYiLwBlt1+Bs//v71zjbGrquL4f93HzMBM22nL9N0ZWmkH26G0MNCiECgUWh5SXpICtgUU\nQkKiFQNSa6JCMCFEIlE0qRUlBkETRfhCQiEm4IeK9RFFkVJBsQYLRYgIaJnO8sM9+95z1tnrnj2d\n6dy5567fl7mzz77n7n0f/7POWmuvrVn4mmUWf634eYLbA9wyIYIfEnj0jVlu2OH6Dw0zOsp+KxUY\nefZPULBZiVXUW/2b1e4rQSAf109rrH/BVwVc+Lnd8+V53GrOISnsisUud02L8+WLl6rHWgkT9iNM\nZ3sJ5w/Mwln9Pal2rb+jI/YF7gwoWCR/YM6FoLlcQgVc6x/iKgizUmPtmghlZM7I/pqIqsHZRLt/\nPJV+2QHHoNfQBFkR/IJqpWfHJ7THWtaVJuDt8vui3fm5dtHfCbL8frl2abFPUSxzIsJlJ83FwJwp\n3uOGCfu48O1PnJxq03Ytj4t2V0zMtcUa9c7pShhrwaqRBlXr+eRD0iB1Ucy25HW/crY/X/VnBzyO\nC23lvPHH8deotev5+tlWvfa+6Jkz8PZP3hH43ViyVG2BKiUI1OBmWf/8k/39lrkzWoR+Vyuuirca\ns6ckS3LHuffK5eoxw4S9oWxc1YfeaUcn2kgRlXo1oh3yB+Yq0WmWttYuN/AtZfTXLHw5piCLPcg/\nnf3ckKCib5OOeo+BmggTpYOqtfMGuEdC5hbklsm+g9AqI/oWrh08NJwS5IIq4BnfI2EgOAGXlrmz\n2KUPv7O9hAuXzcZ5TbCEf6Jhwt5A7rxk4LCepwVkUyVGo99PaHpZluCXlWCrDKrGRaWcCABn+95D\n/PZqfnuAu0b37Scvos56VQOJsj3A4g9LR/RfeHwFvurOLXFxjbUrtYiqr3fI43JR7vA0y1zLuuqK\ngprSveWCodJAAID7rz4p1WZkY8I+AdmyZlHKqomjFSKTmwK4c4zcx+7/AY/U8o+fE4CawRP/PeuW\nbHqclXb/xULzz2spl7LYW7FAGBZ13ePP19pTj2PdtAuJ9h6VlbsddWNndfs4f4BZfm6sGAJa0NNd\nJLTPX2anuCCpXOux4JhOnLHoGNxwxkIYY4MJ+wRky5rFdY+HVqhzC2mkJV8NqgamR2q34llZEUCd\njRMCqlKG5X3D20dbJJV0h6TnkuzHqXb32lpOd/rxyGIABU2Qldo/iYtlgIDXC5JqMRn3fWsr+vcm\nkAaFW9Mh3zuXACDPXy4W8INProQxdpiwNxF3rF+Kl994Vz0ut/1zu0ZJy+mQ4nvXLfb6t+LyFtoJ\nVYF0AdOsTk2cEnVwAvzZui8dSp8wy7y6GUegKyZ5p6EEN4NW3tbOE/98Ckp7iI9dxlKqrrvAGi/u\n9WSGl/u+yQqoy3u78ZEPTceta/thHFlM2JuITRk1LeQ+r+VipWSs3J+xasmnshyiW+7AdEcnZtqF\nQFpsmiWfdDP4BVwTrbLmihmh+yVlgVP9OaQs+eh/orA0ysT4lKX9WqlabfNzrYRtqMVeLFTKJMug\np35hr7TLYL7bJ1ju/9nVXsIPb1gF48hjwp4D7tuwHM/sOZByuZQLhINI5sADNYtdWvhZP+DUAiXF\nx1qoipzf2pXPCak1r66SVFw36qKfgAyUeD8tSKpdCOoFVUM2v1AvfprLRbPYE3c7tceUOE9awA/C\nH8QE0i4X9x7Li9yZ/T04+/gZuOrU9Gbzxvhgwp4D1i+fi/XL56bap3a24d2D72NaV9qSB9KC7wT9\nKNFeKPgFvJYt478QiN97IpCoiVObZrErZRRKipipqYWxMfhK+NbG5He5ZAVP6wVVNZ9+UImExHuh\nuLFKSn/xudXa/WPVfO8yhuN879KgmDm5Aw9ce4r3NY3xwYQ9x9x16Ql45LlXMWtycqGH+0HLfR6d\nBZayzDKCpJrrJrVqs+i3zAsBQq25XNqKfuFsC7DYNes9PqZQS746Z8WSrzsHJX6glWfWLXl/+WdN\n2LWFblLA3d4xMhvrmpW92LP/HZx9/AzveYzGYcKeY85c3IMzF/ek2l3esFyyrWU5OEGXF4KC4odW\nrdcAv7fqitFcLkqtcc1X7wsMHhr2pTWmn1uZg789666mWCA1/z6581W2xa5mFJX8F4XQlcou3VEG\nQ93uQlLwF/Z0WTbLBMWEvQX57JrFKBUIH541OdFeCwAmRctZajLNMiuLRuYry515aq9b66O6YhQx\nKykWe4jvHagI7CFwWpCrgWH/RSvtY0fd/qnMocTc/HcR5QCLPVFqIt4eL/ks/UwRUqg1l8st5y5G\nsUBYOif5fTEmLv5P3Mg1J87vxo7Np6R8o064jxZZDl3KUnBnFafdEoXory5mvv7xc8rna64bNT1S\ntYJloDfdJz5WNXgauFirasnL3YcCKlGWlTTI+HsRz3gqKxdF+Tk7pGXeM6kdQPpObmDuFHxn02Aq\nu8qYuNgnZVS57qPHYt9b76d8pk54pLC70gZi/+6qBV4v3dHXH9AXKOkWe3amSfxCkLKolZTNqmWu\nVDTUUj99dwSAJ8BcrN3VaDVntItZ/FzxVEOt6qdWn1wGz+++fBkefu5VzOk+ytvfaB5M2I0qfdM7\nsWPzYKrdiZu05JywD4mFKFpddyn0jqTwKsHTAN97IUTwFYtaFWRl8dVISxtr56m33aAoILHJAAAI\nlUlEQVTmQorfjcStcc2XfnTZ/zOP7xEKAKsWTseqhdO9fY3mwoTdyGTd0ll4ds8buHplb6LdBWGH\nhMneVS3PmmzXtjorKYtvNItdC4Zqtcbj15OyEuhNu2j87ZqPXXO51PLe5XnSc5HnTVT6VNIgNbdM\nHOmK2bFpEL/Ye0D9PIzmx4TdyKRnUju2b0pb8u7Wf8bk9kS722w4VZ5VcQmE5HdraZCayyVu4ZJy\nnvjzdRdNoOum6nKRF47K31RhLXdAuLG0OERJuetILDgKzH5Zs2Qm1lgp3Fxjwm4cNifO68aFy2an\nipa57QA/OCTrbisWpWbJF/2WaZCPXcndli4XzTeuWexZaY1py9y5pZLnd1b00HDSjaXFIWSqaQj3\nbViOVw7otYWM/GLCbhw2ne0lb71sJ+xyE5GQ7QDjFJQMETWnO9HfL5Cp7BRVkCt/Q33vWqVL10+e\n37lBZHVmLYNF2zu3Hr7VyEZrYMJujDlzujtw+UnzsPG0vkS7mp2hCHs8yyMueNomFVree5zgYOgI\ns2U0V4wTcFldX/NvT1Lei3r+8LsuHcAHQ8PqcaP1GJWwE9E9AD4G4CCAvwC4jpnfHouBGc1LqVjA\n1648MdXuBFzb5FjrDyRFXitVmxyD4qsOFGo1j13zyWdY5oeEy0VzP2mbqNTjmpV92Z2MlmK0FvtO\nAFuZeYiI7gawFcDnRz8sI49M7ijjU6cvSOXJa9kccQs/EQAt+C35OCMtfCUFvKQIvrba1q30lO1O\nwIeEz0Ubt1z1GefWtf2Y061v8GwYjlEJOzM/Gft3F4ArRjccI+988aIlqTY1m0MR5/gyejXwqmaX\nKBa+kqaouW5k/6PatCBppV2OpkPZBUsLMAPAzauPU48ZRpyx9LFfD+BH2kEiuhHAjQDQ29urdTNa\nlFvX9mPRjK5Em6xZ42vXhF2ziKWLxuXap4KkGUHVlIBH45DFxFy7nIsTfEmhQPj02cdhRd9U73HD\nCCFT2InoKQCzPIe2MfNjUZ9tAIYAPKSdh5m3A9gOAIODg/pOzUZLcrjWqLaMXhN8eRfghD20eFfN\nJ+8PkkrT3LXLS5Rb3DWtsw2SW86zreOM0ZEp7My8pt5xIroWwEUAzmFmE2xjTLnzkgF01cnh1hb0\naFkkHcKSd99YzRWj5b1LV4p2h1Cz2JPtPV3tuOGMBbjghNne5xnGaBhtVsw6ALcBOJOZ3xubIRlG\njY2rDi/jQxV2IciuHIL08zshltvH1XaZEsKekeXSLfajJSJsuzAdbzCMsWC0PvZvAmgHsDPyIe5i\n5ptGPSrDyOC+Dcvxzn+H1OOqBS3anStGCrOz5DvEht9O2KULqFrLXrxe/8xJ2HxaHzZmbERuGGPJ\naLNiLExvNISsVZVabrwUapc9Iy185+GR7W7lqlwx6nz3qV2pigV8Zf1A3bEaxlhjK0+NXPG9607B\n3v3/UTNqZAlb56OXWSrOApeWvOsv89JXHz8Dm07rs5REY0Jgwm7kitX9M7C6P7258vTONrz57kFM\n60r6up2AS9+7C5K2CwvfBXJ7xHk6ykXcYZa5MUEwYTdagh2bB/HsSwdSKzudXR+6gvWKk+dj31vv\n42IrsGVMYEzYjZZgRe9UrOhNL/qZMakDf33zvVQ++dQoi2WSqN0yrbPNLHNjwmPCbrQ0X73sBDz6\n232YPzVZYnjLuYswqaOEUxdMa9DIDOPwoUasKRocHOTdu3eP++sahmE0M0T0a2ZOb2cm8K/HNgzD\nMJoWE3bDMIycYcJuGIaRM0zYDcMwcoYJu2EYRs4wYTcMw8gZJuyGYRg5w4TdMAwjZzRkgRIRvQHg\nb+P+wqPnGAAHGj2IcaTV5gvYnFuFZp1zHzP3ZHVqiLA3K0S0O2TVV15otfkCNudWIe9zNleMYRhG\nzjBhNwzDyBkm7CNje6MHMM602nwBm3OrkOs5m4/dMAwjZ5jFbhiGkTNM2A3DMHKGCXsGRHQPEf2Z\niH5PRI8SUXfs2FYi2ktELxLR2kaOcywhoo8T0R+JaJiIBsWxXM4ZAIhoXTSvvUR0e6PHcyQgogeI\n6HUiej7WNo2IdhLRS9Hf9B6CTQoRzSeinxPRn6Lv9Gei9tzOGTBhD2EngAFmXgZgD4CtAEBESwBs\nALAUwDoA3yIi/47IzcfzAC4D8Ey8Mc9zjuZxP4DzASwBcFU037zxfVQ+uzi3A3iamRcBeDr6Py8M\nAfgcMy8BsArAzdHnmuc5m7BnwcxPMvNQ9O8uAPOix+sBPMLM/2PmVwDsBXBqI8Y41jDzC8z8oudQ\nbueMyjz2MvPLzHwQwCOozDdXMPMzAP4lmtcDeDB6/CCAS8Z1UEcQZn6NmX8TPX4HwAsA5iLHcwZM\n2EfK9QCeiB7PBfD32LF9UVueyfOc8zy3LGYy82vR438CmNnIwRwpiOhYACsA/BI5n3Op0QOYCBDR\nUwBmeQ5tY+bHoj7bULmte2g8x3akCJmz0XowMxNR7nKgiagLwE8AbGHmfxNR9Vge52zCDoCZ19Q7\nTkTXArgIwDlcS/z/B4D5sW7zoramIGvOCk095wzyPLcs9hPRbGZ+jYhmA3i90QMaS4iojIqoP8TM\nP42acz1nc8VkQETrANwG4GJmfi926HEAG4ionYgWAFgE4LlGjHEcyfOcfwVgEREtIKI2VILEjzd4\nTOPF4wA2R483A8jNHRtVTPPvAniBme+NHcrtnAFbeZoJEe0F0A7gzahpFzPfFB3bhorffQiVW7wn\n/GdpLojoUgDfANAD4G0Av2PmtdGxXM4ZAIjoAgBfB1AE8AAz39XgIY05RPQwgLNQKVu7H8CXAPwM\nwI8B9KJSTvtKZpYB1qaEiE4H8CyAPwAYjpq/gIqfPZdzBkzYDcMwcoe5YgzDMHKGCbthGEbOMGE3\nDMPIGSbshmEYOcOE3TAMI2eYsBuGYeQME3bDMIyc8X8krMmsAi63ZAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another example is demonstrated using a `Lightcurve` with Poisson Noise." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "dt = 0.001 # seconds\n", + "exposure = 20. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "lc = Lightcurve(times, noisy_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AutoCorrelation` also supports `{full,same,valid}` modes similar to `CrossCorrelation`" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "ac = AutoCorrelation(lc, mode = 'full')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.00487599, -0.00485198, -0.99992797, ..., -0.99992797,\n", + " -0.00485198, -0.00487599])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-19.999, -19.998, -19.997, ..., 19.997, 19.998, 19.999])" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOW9x/HPL4ngAigIIoIaEFzAnRQ3XHHB0BZt1Ut7\nq3jrXrWLtr3gigKK9aq33roUq3WpG3WpVAQE9w01gLIjAWKBsgmWRSUQ8tw/5szknPOcmYQkMLF8\n369XXpx5njkzz0zOnO95lgnmnENERCSsIN8NEBGRpkfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiKco3w2or7Zt27ri4uJ8N0NE5Ftl8uTJXzjn2tV2v29tOBQXF1NWVpbv\nZoiIfKuY2ed1uZ+GlURExKNwEBERj8JBREQ8CgcREfEoHERExKNwEBERj8JBREQ8CgeRRrRpczWj\nyhZRXa3/fle+3b61X4ITaYoeemcBvxs3Fxyc9529890ckXpTz0GkEa1evxGANd9synNLRBpG4SAi\nIp5aw8HM9jazN8xslpnNNLNfBOVtzGyCmc0L/m0d2mewmZWb2VwzOyNU3tPMpgd195qZBeXNzezZ\noPxDMytu/JcqIiJ1VZeeQxVwrXOuO3A0cKWZdQcGAa8557oBrwW3CeoGAD2AvsD9ZlYYPNYDwCVA\nt+Cnb1B+EfClc64rcA9wRyO8NhERqadaw8E5t9Q5NyXYXgfMBjoC/YHHgrs9BpwVbPcHnnHOVTrn\nFgLlQC8z6wC0cs5Ncs454PHYPunHeg7ok+5ViIjItrdFcw7BcM8RwIdAe+fc0qBqGdA+2O4ILArt\ntjgo6xhsx8sj+zjnqoA1wO5b0jYREWk8dQ4HM2sBPA/80jm3NlwX9AS2+sJuM7vUzMrMrGzlypVb\n++lERLZbdQoHM9uBVDA86Zx7ISheHgwVEfy7IihfAoQXeHcKypYE2/HyyD5mVgTsCqyKt8M5N9I5\nV+KcK2nXrtb/yEhEROqpLquVDHgYmO2cuztUNRoYGGwPBF4KlQ8IViB1JjXx/FEwBLXWzI4OHvOC\n2D7pxzoHeD3ojYiISB7U5RvSxwHnA9PN7JOg7DpgBDDKzC4CPgfOA3DOzTSzUcAsUiudrnTObQ72\n+xnwKLATMDb4gVT4PGFm5cBqUqudREQkT2oNB+fcu0C2lUN9suwzHBieUF4GHJxQvgE4t7a2iIjI\ntqFvSIuIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWD\niIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuKpNRzM7BEzW2FmM0JlQ8xsiZl9EvyUhuoGm1m5mc01szNC5T3N\nbHpQd6+ZWVDe3MyeDco/NLPixn2JIiKyperSc3gU6JtQfo9z7vDg5xUAM+sODAB6BPvcb2aFwf0f\nAC4BugU/6ce8CPjSOdcVuAe4o56vRUREGkmt4eCcextYXcfH6w8845yrdM4tBMqBXmbWAWjlnJvk\nnHPA48BZoX0eC7afA/qkexUiIpIfDZlzuNrMpgXDTq2Dso7AotB9FgdlHYPteHlkH+dcFbAG2L0B\n7RIRkQaqbzg8AHQBDgeWAnc1WotyMLNLzazMzMpWrly5LZ5SRGS7VK9wcM4td85tds5VAw8BvYKq\nJcDeobt2CsqWBNvx8sg+ZlYE7AqsyvK8I51zJc65knbt2tWn6SIiUgf1CodgDiHtbCC9kmk0MCBY\ngdSZ1MTzR865pcBaMzs6mE+4AHgptM/AYPsc4PVgXkJERPKkqLY7mNnTwElAWzNbDNwMnGRmhwMO\nqAAuA3DOzTSzUcAsoAq40jm3OXion5Fa+bQTMDb4AXgYeMLMyklNfA9ojBcmIiL1V2s4OOd+lFD8\ncI77DweGJ5SXAQcnlG8Azq2tHSIisu3oG9IiIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4ag0HM3vEzFaY2YxQWRsz\nm2Bm84J/W4fqBptZuZnNNbMzQuU9zWx6UHevmVlQ3tzMng3KPzSz4sZ9iSIisqXq0nN4FOgbKxsE\nvOac6wa8FtzGzLoDA4AewT73m1lhsM8DwCVAt+An/ZgXAV8657oC9wB31PfFiIhI46g1HJxzbwOr\nY8X9gceC7ceAs0LlzzjnKp1zC4FyoJeZdQBaOecmOecc8Hhsn/RjPQf0SfcqREQkP+o759DeObc0\n2F4GtA+2OwKLQvdbHJR1DLbj5ZF9nHNVwBpg93q2S0REGkGDJ6SDnoBrhLbUyswuNbMyMytbuXLl\ntnhKEZHtUn3DYXkwVETw74qgfAmwd+h+nYKyJcF2vDyyj5kVAbsCq5Ke1Dk30jlX4pwradeuXT2b\nLiIitalvOIwGBgbbA4GXQuUDghVInUlNPH8UDEGtNbOjg/mEC2L7pB/rHOD1oDciIiJ5UlTbHczs\naeAkoK2ZLQZuBkYAo8zsIuBz4DwA59xMMxsFzAKqgCudc5uDh/oZqZVPOwFjgx+Ah4EnzKyc1MT3\ngEZ5ZSIiUm+1hoNz7kdZqvpkuf9wYHhCeRlwcEL5BuDc2tohIiLbjr4hLSIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiI\niKdB4WBmFWY23cw+MbOyoKyNmU0ws3nBv61D9x9sZuVmNtfMzgiV9wwep9zM7jUza0i7RESkYRqj\n53Cyc+5w51xJcHsQ8JpzrhvwWnAbM+sODAB6AH2B+82sMNjnAeASoFvw07cR2iUiIvW0NYaV+gOP\nBduPAWeFyp9xzlU65xYC5UAvM+sAtHLOTXLOOeDx0D4iIpIHDQ0HB0w0s8lmdmlQ1t45tzTYXga0\nD7Y7AotC+y4OyjoG2/FyERHJk6IG7t/bObfEzPYAJpjZnHClc86ZmWvgc2QEAXQpwD777NNYDysi\nIjEN6jk455YE/64AXgR6AcuDoSKCf1cEd18C7B3avVNQtiTYjpcnPd9I51yJc66kXbt2DWm6iIjk\nUO9wMLNdzKxlehs4HZgBjAYGBncbCLwUbI8GBphZczPrTGri+aNgCGqtmR0drFK6ILSPiIjkQUOG\nldoDLwarTouAp5xz48zsY2CUmV0EfA6cB+Ccm2lmo4BZQBVwpXNuc/BYPwMeBXYCxgY/IiKSJ/UO\nB+fcAuCwhPJVQJ8s+wwHhieUlwEH17ctIiLSuPQNaRER8SgcRETEo3AQERGPwkFERDwKBxER8Sgc\nRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwK\nBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGP\nwkFERDwKB5FGVFlVDcDGzdV5bolIwygcRGK+3ljFl19tTKz7a9kiigeN4fnJixPrn5j0OQB3jp+b\nWD/y7fkUDxrD+JnLEutXra9kw6bN9Wi1SONSOMi30toNm3j6o3/w+aqvEuvPf/hD/lq2KLFuY1U1\nRw6dwGVPlOGc8+q73zSeI4ZOYNTH/v6/eW4aANf+9VNWrN2wRW1etPprbntlDgCXPTHZq7/vjXJ6\nDpvIgTeO8+qqqx3nPfgBhw4Zz+Zqv80Aj39QwaWPlyXWzV+5nic//JxvNip4pG4UDpI3X1VWsWp9\nZeIJetPmaooHjWHcjOQr7EOHvMrgF6Zz4p1venWrv9rIO/O+4DfPTWNTwvDO/jeMZfVXGxk/czmr\nYz2E9ZVVme3fPj8tZ/t73fZa5Pbrc5ZHbk/5x5eR28f/7o2cjxfubVRWRU/i5SvX81HFatZuqGK/\n617x9t2waTM3vTSTV2ctT+x59LnrLa5/cQYH3eQHD8C4Gcs49e63qE4IHuccK9dVKli2MwoHqdWP\nH5rEW5+t9Mq/2biZ7wyfmPUEPnfZOsZOX+qdgNN63DyensMm8r0/vOvVnXLXmwBc/pfJvD//iy1q\n75FDJ2S2u10/NlL3r6+jbZnyj39Fbh988/jI7WxX6Ul++mj0qv0H979f533jIXbkrRMit//83sLI\n7XgAhHsb4ddfF+NmLOXyv0ymfMV6zn/kQ6++9x1v8J3hE7MGy6r1lbw87Z/8Y9XXifUvTFnMcSNe\nTwzqMdOWcvFjyb0dyS+Fw3ZgxdoNTI1dxdZVn7ve5P35qxj4yEde3YtTl7ByXSWX/2UyS/71TaSu\nfMV6zvjft7niySkcOXQCS9dE63uETjQzlqyN1H2xvpJFq2vu/+OHoiesr0JX9wBrvtlU59dz68uz\nIrf/7/V5Oe8fbne8J9BQ85avy2zPXhp9D76KXaU//VF0iOvP71VkfdyvY/vGf/fxXsnlf5mS2X6v\nfBXrNkTfz/Dvtv9970Xqpi9eQ89hE7nqqamccOcbLFsTHWorX7Gea0Z9ypJ/fcOHC1Z7bb3yqSlM\nnL2cyxOG2eqirGI1q9ZX1mtfyU3h8G+ganM1f3pngfehT+t122ucneUqdtDz0ygeNIbiQWOoil3Z\nra+sYv7K5DF9gOtenJ7ZPm7E65G6WbGT3QtTlkRux09+4bY/8cHnWZ8TUj2OsB8/NCmzHX8NACvW\n1Zyw4u2YtnhNZjtpeGve8vWZ7aSeQF3nHeavXO+VPRua03j6o3/U6XHS7hg3J7Nd8YX/OwoPD8V/\n9wfckNwDSGrX1xujQfzpomhP69H3KyK3K2JzQKfe/VZm+ycP+72StHEzl3m9ocqqzZlj897X/BB3\nznHOgx/Qc9jExMf8qrKKR95dmDhUJrVTOGxDX1VWeVe9aVWbqznghrF8XOFfXa35elPWE/jGqmq6\nXj+WYWNmJ37oiweNSdyG1FDGM6ETwcFDoifd+BBL+LnjJ424nz89NXI7PJ6e9GHt+7/vZLZ/n3Ai\nyBZ8ADP/WRNEh9/qD6n0/8N7XlmSd8v94av/evTjnPu89Mk/6/TYfe56yyv707s1Q0XxnsGWOOl/\n3vTKzr6/bq95fcLxOGzM7Mx2PIghGqLPT4mu2howclLi/ZLKcg2NQTTE7p7wmfd4nQfXzL38+q+f\nes/V4+bx3PryLLpc94o3PLhhU03wrPna73m+MWcFR9z6atZgWbdhU62fgW+7JhMOZtbXzOaaWbmZ\nDcp3e+rj5Wn/5LH3K7Jevfa4eTw9bh7PjCVrInVvfbaSrtePpbKqmnMf/MC7Ejzs1lcz211jY+jH\nxq7Yz7jn7cx2fHgAYHnoSjc+Hr9hU027kz7Y4ec+7e63vfoL/+wPPSV5NmEV0cKEq9+wXMMoYUkn\nu6Vrcl/dr1yXGpZYt2HLP+yfr87d7oZIn5jKV6yr5Z6+Txevqf1OwHUvTM9Zn3AYMGHWcr8wQfjk\nnXZ16KIhaVVWLuEhwc+WR9+T5yYvZmNVzfEbvxCKD4uGnzv8+QKYs2wt//Xox3z59Sa6XPcKi1ZH\n51LembeSQ4a8SvebxicGRGXVZoa9PKvO71NT1STCwcwKgfuAM4HuwI/MrHt+WxXlnOOaZz9JvNqo\nrnac8j9vctVTU7l59EzvBL5szQZ6Da9Z2fLd/4tOwMYP3PCV4LkP+kMZi7+sOVi/iI23zl2+LnNi\nP2RI9KAHOCpYYRMfG05Lf8Cejw2/xMXnGADenJuatM72HYH00MngWk5ISUaMTQ2jZPt+QfjEsKXS\n8wpjpi/d4n3/Min1msIniQuO2TeznRSydfXi1NTv4OOK+s91ZFsM8M/g9zf607r1fMKeCn6PQ0bP\n3OJ9X56W+z3+aGGq55w0XPfn9yoyr+f0e/yLk7OC+ZCkq/1wrzA+NAbw5twVme1wLxaiq8ycc5z/\ncM3ntftN470e0AE3jONP7y7kksfLuPKpKZFjYNX6ysw55Hfj5jTo+NjamkQ4AL2AcufcAufcRuAZ\noP/WfMLKqs2s3bCJDZs2s7Gqmo1V1ZlfWvrn4XcX8uVXGxn18SI6D36FF6bWnDAPu/VVlq75hg2b\nNtPluldYELvyTV+5rK+s4ujbo0sew/XpVTlxI9+eDySfGHrfkTpY73ujPHHf0nv91T9xSW2C1DJP\nSO6mQ+7hnbQ7X03+AlhtoRBfkZPk2iztumtC8nOGhQPxshO6ZLa/Hww7jQmduL5/2F6Z7bpMeHa/\nqWb45brSgzLbl2T53kFY+Mr08hP3y2ynX2v4fevdte0WtevaUZ8kll+TpTxs+JhZieXpi4D4fENa\nXRY/JPVqAc774weAv0w4LTyHEZee5+qSsNQX4KVPUp/f+KQ6wIV/Tg0f3vbKbK8O4J4JnwHJvaED\nbxxH1eZqnHNej2XMtKV0HvwKVZurmbd8XWR+5P4359N58CuMnb6UFes2ZL4gGf6p2pw6N23YlDpf\nJY1KbC1F2+yZcusIhMcaFgNHbY0nGlW2iN8+l3v9etrQl2cx9OXkDwjAMbe/nrUO/K5t3AE3jM38\nuYW4216Zw/TYKp6wJyZ9nvVbuLOXruWdef7S07S/1+NqMe2AG8bxyIUlOe/z1Ic1k6sP/qQnl/+l\nZiVK/ITWdY8WlK9ITdbe8vdZbMnc4VUnd+UPQUD+8a0F/Ob0A3LePxw+F/XuzB/fXpD1vnedd1jm\nqvofq7+OXHn+51H78OSH2SeQd9yhMLM9cfYK7/sBPfZqlZkneWfeyshqq0FnHsiDb83P+thDzzqY\nk4Oe5eIvv2H3Fs0zdSfs3463Q0uOq6sdb8ytuf1fxxVnhucmJawcCvvb1CU89E7N+/XzU7py7+s1\nFyPx1/S7cw7NfK7Ovv99FtxWmvWxy1esz3mSz2X1Vxv5Q44VZrP+mf0z84tnPsk5xDjy7fmMzHJM\n/P61eYlzYWnx0YItqb/iySlZ67Lt95szDuDKk7vmfM6Gaio9hzoxs0vNrMzMylauzH7yy6UpfZEn\nWzCk5TqJ3/i3GZHb15y2f+R2uOsLUHrInpntq2OTxff+6IjI7XiovfvfJ0dux9fzh4VX0QCccuAe\nkdu/GhW98h/3i+Mjt8NhfON3oyOL8e77tadHX/PU0HBBx9124nuhq/9fPftJJAz2aLVj1tcAsENh\nzUfjvjfK+cUzNVfaw846mF7FbXLuHxbubV14bDFjfl7zmn/z12lc9dTUpN0SdW67S2a7/33vRX5X\nh3XaNXLfxV9Gh/5u7Bd9P+PDf+cfXTMc9stnoz2La2LBe0Ps+Du3Z6fI7dJ7o0MzYfFg+GDwKZHb\n8eNvyPei7f6fVz+raUe/gyJ18ecdfOaBkdvp4ckk6W+vfxvs3Kyw9js1UFMJhyXA3qHbnYKyCOfc\nSOdciXOupF27dvV6ooHHFlMxoh9zh/Vl1GXHROo6t92FucP6MndY38R9R191HAtvL6V4950T6/90\nQQmzb03eF2DWrWdkrbvr3MOoGNEva/2C20p5b9ApWet/3qdbzue9/z97Zq3//mF70W2PFlnrO7VO\nfr3pdt3zH4dlbj/wZvSqt6jAIrfDV7bThpxOUWH2Q/DkA9qxU+gqPLxkFcAs+tjnPvhBZvuJi3px\n17k17Xpxau45lLVZhjkgdfUff96bQies+Bfr4r5YX1P/s5P3i9Qtq2UpbHhOKfx6kvzq1P15/opj\nM7dPuDP6jeyC2O/iiNCX5UoP2ZOzj+yY8/GfuKhXZju+Sin+u5izrGbC+OGBJcwbfmbWx+2w605Z\n6/ofvhcXHtc5a/3Fx3fh4+tPzVp/2Yn7Za37+PpTc7arYkQ/+h3aIbGu1Y5FTLnxtKz7zh3Wl/v/\n88jEunN6dmLh7aU8d/kxXl1RgbHgtlLmDO3LgXu2jNSN+Xlv5g7rS8WIflx4bHHW524sTSUcPga6\nmVlnM2sGDABGb80nbF5USK/ObagY0S/z88avT6J5USHNiwqpGNGP8b88AYC2LZoz69YzOLTTbpgZ\nb/z6JKYNOT3yeOXDz+TU7u3ZqVlhYggsuK2UnZsVUZ7lYPxhcOWVLZgKCoyOuyV/iG75fg8gFV5J\ndm6WffTwot6pD95fEw5UgGcvPRqAH/XaO7G+oMA4+4hOiXXXlR5IQYEx8ZoTEutb7bhD1nYBdGnX\ngknX9cncDn+b+b4fJ3/wwvs2K8p9eKdfG6T+HEfaQxfkHjYDOKhDq8x2ePnsHi1Twzw7FNacLMNX\nyu1Cw0DZhF9bSWiM+sxQ7y9JQYHRc9/WiXVdgh5HvIeZdvd5h3PkPsn7ph3fLfmCbMYtqeP9rMP3\nSqzvc1D7SE8s7MmLU6PHD/4k+eLlznNyByJAu5bJ7+mbvz4JSAVMtv2ytSv9Oc12nE258TTa7NIs\n8fO88PZSmhcVUnpIB+YMjX6eZ9xyBneecyhmRklxG2bccgaHBj2+t35zEuW3lVJQYOy4QyHjfnlC\n5PzUY69daV6UuliKh/HW0CTCwTlXBVwFjAdmA6Occ1u+FKKRHbBnSypG9KPshlMjJ1gzo9WOO0R+\nceEr4J2bFTE9FB4Lby/NXLUVFRZQdkP0Sic8Ppv+5YeFexSTBvfx6gcGVxGHdtrNq3vwJzUHdzzQ\nAP67b6rbvdvOzbw6gKO67A7UhEjYR9f7bQm75PjUpG/XPVrmvN95JcnhArDrTskBkh4m++i63G1I\nkn5P0q8t7rTu7Wt9jMKC5A/n48HVdbaAyfWhPmKf1O+vNEsIpI/Bkw/Y8l7z6Kt7A3D1Kcnj1OF5\nkriJ15yY87FbNE+165bvH5zzfi9d6V+8dGuf6rH2PTj5NacDfuYt/gVX+MQ79Cz/uYuDQPz9gCO8\nuvDnM6nHHv48x3sXn9x0Wqa+qLAgUj9naN/I73jHHQoj54kWzYsi9S2aFzH6qt5UjOjHvrvXDBk2\nBU0iHACcc6845/Z3zu3nnBue7/Y0VMtQeMRPCG1bNKdiRD8u7t2Zpy45yuvufzbsTEae35P+h+/l\nHbh77rojvTrXjHcvvD068ffOb6PzA30PrukWJ12ph6+u4yeB239wSGY76QS/R8uacfv92vkHdl2v\nbtIhEvbjo/bJuU/6sWubO0hy0gF71H4n4I/n+1ezLZvnXsOxYxDuLWvpFSX5v2Dup7b37Z7/ONwr\na7Vj7nalT+BJj92pdU2PNB1QYW1bJF84xO26s/+aw8F/2N7+Y4ePoctOjB4H4WGbXRLe93CghedL\nAG+oKXwBdlHvzt7vZ+HtpVx2Qheev+JYPhsWDYMdCgt46uKjGHrWwVSM6OddSO1QWJD5rOcK2W+b\nJhMO26MbvtudY/dr65U3Kyrg9B57Jl7xAIy67JiswbN3m5r5gaRexs2hsfLw+DSkVg6FDfhOdCgp\n13DL6Kt6R27/foB/Agt7/oqaYaxu7f3gOXH/mqvjof175HysuPDwW9J4dF0/wH0O9EPk71f3Trhn\njfTVarbhnbSnLvYX4+Wa2wlL6uWFh99a1BJgceGhm/NK/OHD8POF5x0AfhCbp4hP1Cdd0ac9ExrW\nAxjUNzp53GaX6Ot8IDSGn3R8vXZtzcVNfKipoMAyn5n4QgdIhebg0oPouW/rxOHIY7u29QLo353C\n4d9Q+kOw567+VfWFxxYz9cbTmHjNiYknsN2DD+T7g07xgic83PLqr6LzCLs0L4r0Hg6LDXHFezg9\n98292uf00HOdGhvm+d0PD82578OhpbbZxqPT4osLWoauwJMmy4tDq4XiJ8bahCcoj+3qXxTk0mOv\nVjnrw8OeIxN6PGFXnBSdpD0ktMrpPxLCISw+73D3edGT9PWh1UOndW/vDZO+8LOaC5KjY8N6ZsYr\nwUqu/dv7CyTOPKQDE351Ap/efDr9D/ff+/3atcgc+9JwCoftjJnRepdmXi8hbfKNp1Exoh97ZZn8\nTn/49k+42n/t2pN4eGAJo686LnISTT9vSRBG8aAA+Huo5zH71ui4bXw1y3mxHk18+OfAPXOfSMOe\nja1Ye+TC79R539pCKq70kOSVL0nCc0VQ+wR82DH7RU+68QUBvzw1urIt3NMoKLDIcE56UjcsPURz\nZsI8wWF778bzVxzDExf1SuxpHrlP65wn8O57taJiRD9e/VXyPEe39i2zzkNJ41I4SKPqc1D7xIlx\nSJ2I5w7rmzjufUinXTMnjZ0S1nDfeU72E/EZPWpOUjclDBmEg2dqbPlh+9icRXw1UXgY5aTYRHC8\nZ3F9aXTNfa7lxXHxE3i8XfGwfT+0rDn+PQEzi4zfx+eLwlfzSV9obLNLs8zvIv68kAqQOUP7Zg2s\nnvu2ybqySb49mso3pGU7UFhgFBbUb8Lu3JK9Ob5bO1pkmXgt2bc1J+7fjp8mrKo6pNOuFBUYV5/S\njda7ZJ9c/elxnb2TYbiH9OdaehWXnBCdUL3mtP0T/9R02vzbSjP/q1txbKXKEfu0pv/he2X9q697\n7bYTF/fuzPNTFid+T2DwmQfhXPT/jAibNuR0NmzcXK8Jfaj7vI18e1lT/sNPuZSUlLiyMv0PUtJw\na77ZRIElrzDatLk689drk4ZCJi1Ylfkz1Un16W/7TrzmxMShvHR9tmGWtRs2YdRv9ZNIEjOb7Jyr\n9cs8CgceVBE4AAAEqUlEQVSRBhpVtohdmhUlfpv2hSmLKSosiPwhP5F8qms4aFhJpIGSln+m/eDI\n7F/wE2nKNCEtIiIehYOIiHgUDiIi4lE4iIiIR+EgIiIehYOIiHgUDiIi4lE4iIiI51v7DWkzWwl8\nXs/d2wJfNGJzGovatWXUri3XVNumdm2ZhrRrX+dcrX8Z8VsbDg1hZmV1+fr4tqZ2bRm1a8s11bap\nXVtmW7RLw0oiIuJROIiIiGd7DYeR+W5AFmrXllG7tlxTbZvatWW2eru2yzkHERHJbXvtOYiISA7b\nVTiY2Z1mNsfMppnZi2a2W6husJmVm9lcMztjG7frXDObaWbVZlYSKi82s2/M7JPg58Gm0K6gLm/v\nV6wdQ8xsSeg9Ks1XW4L29A3ek3IzG5TPtoSZWYWZTQ/eo7z9L1lm9oiZrTCzGaGyNmY2wczmBf+2\nbiLtyvuxZWZ7m9kbZjYr+Cz+Iijf+u+Zc267+QFOB4qC7TuAO4Lt7sCnQHOgMzAfKNyG7ToIOAB4\nEygJlRcDM/L4fmVrV17fr1gbhwC/zvexFbSlMHgvugDNgveoe77bFbStAmjbBNpxAnBk+LgGfgcM\nCrYHpT+XTaBdeT+2gA7AkcF2S+Cz4PO31d+z7arn4Jx71TlXFdycBKT/m67+wDPOuUrn3EKgHOi1\nDds12zk3d1s9X13laFde368mrBdQ7pxb4JzbCDxD6r2SgHPubWB1rLg/8Fiw/Rhw1jZtFFnblXfO\nuaXOuSnB9jpgNtCRbfCebVfhEPNTYGyw3RFYFKpbHJQ1BZ2DLu1bZnZ8vhsTaGrv19XBUOEj+RiS\nCGlq70uYAyaa2WQzuzTfjYlp75xbGmwvA9rnszExTeXYwsyKgSOAD9kG79m/3f8hbWYTgT0Tqq53\nzr0U3Od6oAp4sim1K8FSYB/n3Coz6wn8zcx6OOfW5rld21SuNgIPAENJnfyGAneRCn6J6u2cW2Jm\newATzGxOcLXcpDjnnJk1lSWUTebYMrMWwPPAL51za80sU7e13rN/u3Bwzp2aq97MLgS+C/RxwYAd\nsAQI/y/xnYKybdauLPtUApXB9mQzmw/sDzTahGJ92sU2eL/C6tpGM3sIeHlrtaMOtun7siWcc0uC\nf1eY2YukhsCaSjgsN7MOzrmlZtYBWJHvBgE455ant/N5bJnZDqSC4Unn3AtB8VZ/z7arYSUz6wv8\nFvi+c+7rUNVoYICZNTezzkA34KN8tDHMzNqZWWGw3YVUuxbkt1VAE3q/gg9G2tnAjGz33QY+BrqZ\nWWczawYMIPVe5ZWZ7WJmLdPbpBZm5PN9ihsNDAy2BwJNpcea92PLUl2Eh4HZzrm7Q1Vb/z3L50x8\nHmb+y0mNCX8S/DwYqrue1EqTucCZ27hdZ5Man64ElgPjg/IfAjODtk4BvtcU2pXv9yvWxieA6cC0\n4APTIc/HWCmpFSXzSQ3N5a0toTZ1IbVy6tPgeMpbu4CnSQ2XbgqOrYuA3YHXgHnARKBNE2lX3o8t\noDepYa1pofNW6bZ4z/QNaRER8WxXw0oiIlI3CgcREfEoHERExKNwEBERj8JBREQ8CgcREfEoHERE\nxKNwEBERz/8Dbm/uLf2AoOgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Crossspectrum/Crossspectrum_tutorial.html b/notebooks/Crossspectrum/Crossspectrum_tutorial.html new file mode 100644 index 000000000..2576bb0e9 --- /dev/null +++ b/notebooks/Crossspectrum/Crossspectrum_tutorial.html @@ -0,0 +1,911 @@ + + + + + + + + Cross Spectra — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Cross Spectra

+

This tutorial shows how to make and manipulate a cross spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
import numpy as np
+from stingray import Lightcurve, Crossspectrum, AveragedCrossspectrum
+
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+

1. Create two light curves

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out “Lightcurve/Lightcurve tutorial.ipynb” for more examples.

+

Generate an array of relative timestamps that’s 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The first is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. The second is a sine wave with amplitude = 200 cts/s, frequency = 2 Hz, phase offset = pi/4 radians, and mean = 900 cts/s. We then add Poisson noise to the light curves.

+
+
[2]:
+
+
+
dt = 0.03125  # seconds
+exposure = 8.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*times/0.5) + 1000  # counts/s
+signal_2 = 200 * np.sin(2.*np.pi*times/0.5 + np.pi/4) + 900  # counts/s
+noisy_1 = np.random.poisson(signal_1*dt)  # counts
+noisy_2 = np.random.poisson(signal_2*dt)  # counts
+
+
+
+

Now let’s turn noisy_1 and noisy_2 into Lightcurve objects.

+
+
[3]:
+
+
+
lc1 = Lightcurve(times, noisy_1)
+lc2 = Lightcurve(times, noisy_2)
+
+
+
+

Here we’re plotting them to see what they look like.

+
+
[4]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc1.time, lc1.counts, lw=2, color='blue')
+ax.plot(lc1.time, lc2.counts, lw=2, color='red')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png +
+
+
+
+

2. Pass both of the light curves to the Crossspectrum class to create a Crossspectrum object.

+

The first Lightcurve passed is the channel of interest or interest band, and the second Lightcurve passed is the reference band. You can also specify the optional attribute norm if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘frac’.

+
+
[5]:
+
+
+
cs = Crossspectrum.from_lightcurve(lc1, lc2)
+print(cs)
+
+
+
+
+
+
+
+
+<stingray.crossspectrum.Crossspectrum object at 0x7f7aa3d518b0>
+
+
+

Note that, in principle, the Crossspectrum object could have been initialized directly as

+
ps = Crossspectrum(lc1, lc2, norm="leahy")
+
+
+

However, we recommend using the specific method for input light curve objects used above, for clarity. Equivalently, one can initialize a Crossspectrum object:

+
    +
  1. from EventList objects as

    +
    bin_time = 0.1
    +ps = Crossspectrum.from_events(events1, events2, dt=bin_time, norm="leahy")
    +
    +
    +

    where the light curves, uniformly binned at 0.1 s, are created internally.

    +
  2. +
  3. from numpy arrays of times, as

    +
    bin_time = 0.1
    +ps = Crossspectrum.from_events(times1, times2, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm="leahy")
    +
    +
    +

    where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. astropy units) yet, so the +user should pay attention to these details.

    +
  4. +
  5. from an iterable of light curves

    +
    ps = Crossspectrum.from_lc_iter(lc_iterable1, lc_iterable2, dt=bin_time, norm="leahy")
    +
    +
    +

    where lc_iterableX is any iterable of Lightcurve objects (list, tuple, generator, etc.) and dt is the sampling time of the light curves. Note that this dt is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.

    +
  6. +
+

We can print the first five values in the arrays of the positive Fourier frequencies and the cross power. The cross power has a real and an imaginary component.

+
+
[6]:
+
+
+
print(cs.freq[0:5])
+print(cs.power[0:5])
+
+
+
+
+
+
+
+
+[0.125 0.25  0.375 0.5   0.625]
+[-3264.54599394-1077.46450232j  1066.6390401 -2783.16358879j
+  3275.00416926 +196.64355198j -8345.12445869-6661.52326503j
+  5916.3705245 +3602.05210672j]
+
+
+

Since the negative Fourier frequencies (and their associated cross powers) are discarded, the number of time bins per segment n is twice the length of freq and power.

+
+
[7]:
+
+
+
print("Size of positive Fourier frequencies: %d" % len(cs.freq))
+print("Number of data points per segment: %d" % cs.n)
+
+
+
+
+
+
+
+
+Size of positive Fourier frequencies: 127
+Number of data points per segment: 256
+
+
+
+
+
+

Properties

+

A Crossspectrum object has the following properties :

+
    +
  1. freq : Numpy array of mid-bin frequencies that the Fourier transform samples.

  2. +
  3. power : Numpy array of the cross spectrum (complex numbers).

  4. +
  5. df : The frequency resolution.

  6. +
  7. m : The number of cross spectra averaged together. For a Crossspectrum of a single segment, m=1.

  8. +
  9. n : The number of data points (time bins) in one segment of the light curves.

  10. +
  11. nphots1 : The total number of photons in the first (interest) light curve.

  12. +
  13. nphots2 : The total number of photons in the second (reference) light curve.

  14. +
+

We can compute the amplitude of the cross spectrum, and plot it as a function of Fourier frequency. Notice how there’s a spike at our signal frequency of 2 Hz!

+
+
[8]:
+
+
+
cs_amplitude = np.abs(cs.power)  # The mod square of the real and imaginary components
+
+fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)
+ax1.plot(cs.freq, cs_amplitude, lw=2, color='blue')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Cross spectral amplitude", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png +
+
+

You’ll notice that the cross spectrum is a bit noisy. This is because we’re only using one segment of data. Let’s try averaging together multiple segments of data. # Averaged cross spectrum example You could use two long Lightcurves and have AveragedCrossspectrum chop them into specified segments, or give two lists of Lightcurves where each segment of Lightcurve is the same length. We’ll show the first way here. Remember to check the Lightcurve tutorial notebook for fancier +ways of making light curves. ## 1. Create two long light curves. Generate an array of relative timestamps that’s 1600 seconds long, and two signals in count rate units, with the same properties as the previous example. We then add Poisson noise and turn them into Lightcurve objects.

+
+
[9]:
+
+
+
long_dt = 0.03125  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+
+# In count rate units here
+long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000  # counts/s
+long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900  # counts/s
+
+# Multiply by dt to get count units, then add Poisson noise
+long_noisy_1 = np.random.poisson(long_signal_1*dt)  # counts
+long_noisy_2 = np.random.poisson(long_signal_2*dt)  # counts
+
+long_lc1 = Lightcurve(long_times, long_noisy_1)
+long_lc2 = Lightcurve(long_times, long_noisy_2)
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')
+ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')
+ax.set_xlim(0,20)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png +
+
+
+

2. Pass both light curves to the AveragedCrossspectrum class with a specified segment_size.

+

If the exposure (length) of the light curve cannot be divided by segment_size with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we’re using 8 second segments.

+
+
[10]:
+
+
+
avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)
+
+
+
+
+
+
+
+
+200it [00:00, 12346.54it/s]
+
+
+

Note that also the AveragedCrossspectrum object could have been initialized using different input types:

+
    +
  1. from EventList objects as

    +
    bin_time = 0.1
    +ps = AveragedCrossspectrum.from_events(
    +    events1, events2, dt=bin_time, segment_size=segment_size,
    +    norm="leahy")
    +
    +
    +

    (note, again, the necessity of the bin time)

    +
  2. +
  3. from numpy arrays of times, as

    +
    bin_time = 0.1
    +ps = AveragedCrossspectrum.from_events(
    +    times1, times2, dt=bin_time, segment_size=segment_size,
    +    gti=[[t0, t1], [t2, t3], ...], norm="leahy")
    +
    +
    +

    where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. astropy units) yet, so the +user should pay attention to these details.

    +
  4. +
  5. from iterables of light curves

    +
    ps = AveragedCrossspectrum.from_lc_iter(
    +    lc_iterable1, lc_iterable2, dt=bin_time, segment_size=segment_size,
    +    norm="leahy")
    +
    +
    +

    where lc_iterableX is any iterable of Lightcurve objects (list, tuple, generator, etc.) and dt is the sampling time of the light curves. Note that this dt is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.

    +
  6. +
+

Again we can print the first five Fourier frequencies and first five cross spectral values, as well as the number of segments.

+
+
[11]:
+
+
+
print(avg_cs.freq[0:5])
+print(avg_cs.power[0:5])
+print("\nNumber of segments: %d" % avg_cs.m)
+
+
+
+
+
+
+
+
+[0.125 0.25  0.375 0.5   0.625]
+[291.76338464-640.48290689j 182.72485752 -35.81942269j
+ 293.42490539+276.16187738j 771.98935476-595.89062793j
+ 361.32859119-101.50371039j]
+
+Number of segments: 200
+
+
+

If m is less than 50 and you try to compute the coherence, a warning will pop up letting you know that your number of segments is significantly low, so the error on coherence might not follow the expected (Gaussian) statistical distributions.

+
+
[12]:
+
+
+
test_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 40.)
+print(test_cs.m)
+coh, err = test_cs.coherence()
+
+
+
+
+
+
+
+
+40it [00:00, 7645.47it/s]
+
+
+
+
+
+
+
+40
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Properties

+

An AveragedCrossspectrum object has the following properties, same as Crossspectrum :

+
    +
  1. freq : Numpy array of mid-bin frequencies that the Fourier transform samples.

  2. +
  3. power : Numpy array of the averaged cross spectrum (complex numbers).

  4. +
  5. df : The frequency resolution (in Hz).

  6. +
  7. m : The number of cross spectra averaged together, equal to the number of whole segments in a light curve.

  8. +
  9. n : The number of data points (time bins) in one segment of the light curves.

  10. +
  11. nphots1 : The total number of photons in the first (interest) light curve.

  12. +
  13. nphots2 : The total number of photons in the second (reference) light curve.

  14. +
+

Let’s plot the amplitude of the averaged cross spectrum!

+
+
[13]:
+
+
+
avg_cs_amplitude = np.abs(avg_cs.power)
+
+fig, ax1 = plt.subplots(1,1,figsize=(9,6))
+ax1.plot(avg_cs.freq, avg_cs_amplitude, lw=2, color='blue')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Cross spectral amplitude", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png +
+
+

Now we’ll show examples of all the things you can do with a Crossspectrum or AveragedCrossspectrum object using built-in stingray methods.

+
+
+

Normalizating the cross spectrum

+

The three kinds of normalization are: * leahy: Leahy normalization. Makes the Poisson noise level \(= 2\). See Leahy et al. 1983, ApJ, 266, 160L. * frac: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level \(= 2 / \sqrt(meanrate_1\times meanrate_2)\). See Belloni & Hasinger 1990, A&A, 227, L33, and Miyamoto et al. 1992, ApJ, 391, L21.. This is the default. * abs: Absolute rms-squared normalization, also known as +absolute normalization. Makes the Poisson noise level \(= 2 \times \sqrt(meanrate_1\times meanrate_2)\). See insert citation. * none: No normalization applied.

+

Note that these normalizations and the Poisson noise levels apply to the “cross power”, not the cross-spectral amplitude.

+
+
[14]:
+
+
+
avg_cs_leahy = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='leahy')
+avg_cs_frac = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='frac')
+avg_cs_abs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='abs')
+
+
+
+
+
+
+
+
+200it [00:00, 15141.07it/s]
+200it [00:00, 12807.43it/s]
+200it [00:00, 13023.36it/s]
+
+
+

Here we plot the three normalized averaged cross spectra.

+
+
[15]:
+
+
+
fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))
+ax1.plot(avg_cs_leahy.freq, avg_cs_leahy.power, lw=2, color='black')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Leahy cross-power", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=14)
+ax1.tick_params(axis='y', labelsize=14)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+ax1.set_title("Leahy norm.", fontproperties=font_prop)
+
+ax2.plot(avg_cs_frac.freq, avg_cs_frac.power, lw=2, color='black')
+ax2.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax2.set_ylabel("rms cross-power", fontproperties=font_prop)
+ax2.tick_params(axis='x', labelsize=14)
+ax2.tick_params(axis='y', labelsize=14)
+ax2.set_yscale('log')
+ax2.tick_params(which='major', width=1.5, length=7)
+ax2.tick_params(which='minor', width=1.5, length=4)
+ax2.set_title("Fractional rms-squared norm.", fontproperties=font_prop)
+
+ax3.plot(avg_cs_abs.freq, avg_cs_abs.power, lw=2, color='black')
+ax3.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax3.set_ylabel("Absolute cross-power", fontproperties=font_prop)
+ax3.tick_params(axis='x', labelsize=14)
+ax3.tick_params(axis='y', labelsize=14)
+ax3.set_yscale('log')
+ax3.tick_params(which='major', width=1.5, length=7)
+ax3.tick_params(which='minor', width=1.5, length=4)
+ax3.set_title("Absolute rms-squared norm.", fontproperties=font_prop)
+
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+    ax2.spines[axis].set_linewidth(1.5)
+    ax3.spines[axis].set_linewidth(1.5)
+plt.tight_layout()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png +
+
+
+
+

Re-binning a cross spectrum in frequency

+

Typically, rebinning is done on an averaged, normalized cross spectrum. ## 1. We can linearly re-bin a cross spectrum (although this is not done much in practice)

+
+
[16]:
+
+
+
print("DF before:", avg_cs.df)
+# Both of the following ways are allowed syntax:
+# lin_rb_cs = Crossspectrum.rebin(avg_cs, 0.25, method='mean')
+lin_rb_cs = avg_cs.rebin(0.25, method='mean')
+print("DF after:", lin_rb_cs.df)
+
+
+
+
+
+
+
+
+DF before: 0.125
+DF after: 0.25
+
+
+
+

2. And we can logarithmically/geometrically re-bin a cross spectrum

+

In this re-binning, each bin size is 1+f times larger than the previous bin size, where f is user-specified and normally in the range 0.01-0.1. The default value is f=0.01.

+

Logarithmic rebinning only keeps the real part of the cross spectum.

+
+
[17]:
+
+
+
# Both of the following ways are allowed syntax:
+# log_rb_cs, log_rb_freq, binning = Crossspectrum.rebin_log(avg_cs, f=0.02)
+log_rb_cs = avg_cs.rebin_log(f=0.02)
+
+
+
+

Note that like rebin, rebin_log returns a Crossspectrum or AveragedCrossspectrum object (depending on the input object):

+
+
[18]:
+
+
+
print(type(lin_rb_cs))
+
+
+
+
+
+
+
+
+<class 'stingray.crossspectrum.AveragedCrossspectrum'>
+
+
+
+
+
+

Time lags / phase lags

+
+

1. Frequency-dependent lags

+

The lag-frequency spectrum shows the time lag between two light curves (usually non-overlapping broad energy bands) as a function of Fourier frequency. See Uttley et al. 2014, A&ARev, 22, 72 section 2.2.1.

+

In AveragedCrossspectrum, the second light curve is what is considered the reference in Uttley et al. and in most other spectral timing literature.

+
+
[19]:
+
+
+
long_dt = 0.0015231682473469295763529  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+frequency = 3.
+phase_lag = np.pi / 3
+
+# long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 100 * np.sin(2.*np.pi*long_times*5 + np.pi/6) + 1000
+# long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 80 * np.sin(2.*np.pi*long_times*5) + 900
+
+long_signal_1 = (300 * np.sin(2.*np.pi*long_times*frequency) + 1000) * dt
+long_signal_2 = (200 * np.sin(2.*np.pi*long_times*frequency - phase_lag) + 900) * dt
+
+long_lc1 = Lightcurve(long_times, np.random.normal(long_signal_1, 0.03))
+long_lc2 = Lightcurve(long_times, np.random.normal(long_signal_2, 0.03))
+
+# Note: the second light curve is what we use as a reference.
+avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc2, long_lc1, 53.)
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')
+ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')
+ax.set_xlim(0,4)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+plt.show()
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(avg_cs.freq, avg_cs.power, lw=2, color='blue')
+plt.semilogy()
+plt.show()
+
+
+
+
+
+
+
+
+30it [00:00, 264.86it/s]
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png +
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png +
+
+

The time_lag method returns an np.ndarray with the time lag in seconds per positive Fourier frequency.

+
+
[20]:
+
+
+
freq_lags, freq_lags_err = avg_cs.time_lag()
+freq_plags, freq_plags_err = avg_cs.phase_lag()
+
+# Expected time lag, given the input time lag
+time_lag = phase_lag / (2. * np.pi * avg_cs.freq)
+
+
+
+

And this is a plot of the lag-frequency spectrum:

+
+
[21]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(8,5))
+ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)
+ax.errorbar(avg_cs.freq, freq_lags, yerr=freq_lags_err,fmt="o", lw=1, color='blue')
+ax.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax.set_ylabel("Time lag (s)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=14)
+ax.tick_params(axis='y', labelsize=14)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax.spines[axis].set_linewidth(1.5)
+# plt.semilogx()
+plt.axvline(frequency)
+plt.xlim([2, 5])
+plt.ylim([-0.05, 0.2])
+plt.plot(avg_cs.freq, time_lag, label="Input time lag", lw=2, zorder=10)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png +
+
+
+
[22]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(8,5))
+ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)
+ax.errorbar(avg_cs.freq, freq_plags, yerr=freq_plags_err,fmt="o", lw=1, color='blue')
+ax.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax.set_ylabel("Phase lag (rad)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=14)
+ax.tick_params(axis='y', labelsize=14)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax.spines[axis].set_linewidth(1.5)
+# plt.semilogx()
+plt.axvline(frequency)
+plt.xlim([2, 5])
+plt.ylim([0, np.pi/ 2])
+plt.axhline(phase_lag, label="Input phase lag", lw=2, zorder=10)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png +
+
+
+
+

2. Energy-dependent lags

+

The lag vs energy spectrum can be calculated using the LagEnergySpectrum from stingray.varenergy. Refer to the Spectral Timing documentation.

+
+
+
+

Coherence

+

Coherence is a Fourier-frequency-dependent measure of the linear correlation between time series measured simultaneously in two energy channels. See Vaughan and Nowak 1997, ApJ, 474, L43 and Uttley et al. 2014, A&ARev, 22, 72 section 2.1.3.

+
+
[23]:
+
+
+
long_dt = 0.03125  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+
+long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000
+long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900
+
+long_noisy_1 = np.random.poisson(long_signal_1*dt)
+long_noisy_2 = np.random.poisson(long_signal_2*dt)
+
+long_lc1 = Lightcurve(long_times, long_noisy_1)
+long_lc2 = Lightcurve(long_times, long_noisy_2)
+
+avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)
+
+
+
+
+
+
+
+
+200it [00:00, 14681.05it/s]
+
+
+

The coherence method returns two np.ndarrays, of the coherence and uncertainty.

+
+
[24]:
+
+
+
coh, err_coh = avg_cs.coherence()
+
+
+
+

The coherence and uncertainty have the same length as the positive Fourier frequencies.

+
+
[25]:
+
+
+
print(len(coh) == len(avg_cs.freq))
+
+
+
+
+
+
+
+
+True
+
+
+

And we can plot the coherence vs the frequency.

+
+
[26]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(8,5))
+# ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)
+ax.errorbar(avg_cs.freq, coh, yerr=err_coh, lw=2, color='blue')
+ax.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax.set_ylabel("Coherence", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=14)
+ax.tick_params(axis='y', labelsize=14)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb b/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb new file mode 100644 index 000000000..1d84d7b80 --- /dev/null +++ b/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb @@ -0,0 +1,1057 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve, Crossspectrum, AveragedCrossspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create two light curves\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The first is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. The second is a sine wave with amplitude = 200 cts/s, frequency = 2 Hz, phase offset = pi/4 radians, and mean = 900 cts/s. We then add Poisson noise to the light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*times/0.5 + np.pi/4) + 900 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy_1` and `noisy_2` into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we're plotting them to see what they look like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAGBCAYAAADfUj3ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADl1UlEQVR4nOy9d7gjR5ku/paydPKZ6DweRzDG2Bgw2QFs7oIxcQNhyRcuC7vknC6L8Q8WFi5hl7zLAktckjFgY2xMcDbB4Oyxx57xeOLJyi3V74+qr7u6Vd3qlrolnTn1Ps95pNOSuqu7q756+/1CMc45DAwMDAwMDAwMRh+pYTfAwMDAwMDAwMAgHAxxMzAwMDAwMDBYJTDEzcDAwMDAwMBglcAQNwMDAwMDAwODVQJD3AwMDAwMDAwMVgkMcTMwMDAwMDAwWCXIDLsBg8D69ev5li1bht0MAwMDAwMDA4OuuOmmm/ZzzjfoPlsTxG3Lli248cYbh90MAwMDAwMDA4OuYIzd5/eZcZUaGBgYGBgYGKwSGOJmYGBgYGBgYLBKYIibgYGBgYGBgcEqgSFuBgYGBgYGBgarBIa4GRgYGBgYGBisEhjiZmBgYGBgYGCwSmCIm4GBgYGBgYHBKoEhbgYGBgYGBgYGqwSGuBkYGBgYGBgYrBIY4mZgYGBgYGBgsEpgiJuBgYGBgYGBwSqBIW4GBgYGBgYGqxqcR9u+mmGIm4GBgYGBgcGqRbUKHHcc8OpXu7cvLQFbtgD/9E9DaVZiyAy7AQYGBgYGBgYGvWL7dmDbNqDddm+/7Tbg/vuBX/5yKM1KDEZxMzAwMDAwMFi1aLXEa73u3r60JF6bzcG2J2kY4mZgYGBgYGCwamFZ4tUQNwMDAwMDAwODEYdR3AwMDAwMDAwMVgmM4mZgYGBgYGBgsEpAiluz6U5QMMTNwCAsPvpR4HWvG3YrDAwMDAzWAEhxA4BGw3lviJuBQVh85CPAZz8LzM0NuyUGBgYGBgc5SHED3O5SQ9xiAmPsTMYY1/wteL43wxj7EmNsP2OszBi7nDF28qDba9AD6PHnYBstBgYGBgYjB1VxU4nb4qJ4PdimomEW4P1HADco/9uXnjHGAFwMYAuA1wOYB/BOAFcyxh7BOd85wHYaRAU9/qijycDAwMDAIAF0U9xaLbH0FWODbVdSGCZxu41zfq3PZ88E8HgAZ3POrwQAxtg1AO4F8DYI0mcwqqBRpI4mAwMDAwODBOCnuBFxA4TqlssNrk1JYlRj3J4JYBeRNgDgnC9CqHAXDK1VBuFgiJuBgYGBwYDQTXEDDi536TCJ2zcYYy3G2AHG2H8zxo5UPjsJwF80v7kFwJGMsfHBNNGgJ1A+tnGVGhgYGBgkjLCK28GCYbhKFwF8HMBVAJYAnArgXQCuYYydyjnfC2AWwHbNbylNcQbAivoBY+xXfgd85CMf2XejDSLAKG4GBgYGBgPCWlPcBk7cOOd/APAHZdNVjLFfA7geInbtPYNuk0GMUKsfGuJmYGBgYJAwdIob54a4JQrO+e8ZY3cCeJTcNA+hqnkxq3zu3ceZfvs//fTTeb9tNAgJlbgZV6mBgYGBQcLQEbdq1a0dHEzEbdSSE4hg3QIR5+bFQwHczzlf0XxmMApQR4pR3AwMDAwMEobOVaqqbYAhbrGDMXY6gBMg3KUA8GMAhzHGnqx8ZxLA+fIzg1GFIW4GBgYGBgOETnE7mInbwF2ljLFvQNRj+z2ABYjkhHcCeADAp+TXfgzgGgBfZ4y9FU4BXgbgowNuskEUGFepgYGBgcEAsdYUt2HEuP0FwN9BrIhQArAbwPcBvJ9zvh8AOOdtxtgzAHwMwL8BKEAQubM45zuG0GaDsDCKm4GBgYHBAKFT3Gi5K4Ihbn2Ac34RgItCfG8OwMvln8FqgSFuBgYGBgYDhDrV1Gri1au4NRqDa0/SGIkYN4ODCOoIMq5SAwMDA4OEsdZi3AxxM4gXpo6bgYGBgcEAsdZi3AxxM4gXRnEzMDAwMBggjOJmYNAPTIybgYGBgcEAYRQ3A4N+YFylBgYGBgYDhFHcDAz6gXGVGhgYGBgMEEZxMzDoB8ZVamBgo9U6uCaM1QIqCWEwOFjW8Pp6kOI2MSFeD6ZxaIibQbwwrlIDAxuPexzwiEe4h4VBsvjJT8Rk/e1vD7slawuPfzxw6qnD6etBitu6deLVEDcDAz8YV6mBAQBR8PP664FbbwWWl4fdmrWD3/9emJ4bbxx2S9YO2m3R12+5BVhZGfzxgxQ3Q9wMDLrBuEoNDAAA8/POe2+8jUFyoEmcJnCD5FGtOu+H0dd1ihsteWWIm4FBNxjiZmAAAJibc94b4jY40ARt4twGh0rFeT+Mvm4UNwODfqAGOBhXqcEahlHchgND3AaPYRM3r+LGuSFuBgbhYRQ3AwMARnEbFgxxGzyGTdy8ilu9LvpBLgeMj4vthrgZGPjBEDcDAwCGuA0LNIkb4jY4jBpxozZMTgLZrHhviJuBgR9GxFXabgPPfS7wgQ8MrQkGI4T/9/+A884bbMC6cZUOB0ZxGzyGTdy8rlJD3AwMomBEFLedO4Hvfx/4/OeH1gSDEcKXvwxcdhnw5z8P7piq4kYZbgbJgyZok1U6OJTLznujuCUPQ9wM4sWIEDcy2iY/wgAQNdWAwaowRnEbDoyrdPBQFbdhPKQYxc3AoB+MSAFemqgPpsFq0DuoH6j1ppKGiXEbDoyrdPAYtqvUKG4GBv1gRJa8MsTNQMUwiJtR3IYDQ9wGj2ETN6O4GRj0gxFR3Iyr1ECFUdzWDoyrdPAYNnHzU9ympgxxMzDojhGJcTOKm4EKQ9zWDkxywuAxbOLmVdwozs4obgYGYTAirlIy2pybcnLDxF/+ArztbcMnLsNwnxlX6XDgd6937ADe8hbggQeSPf7NNwMvexnwwhcCb3yjO+PyYMWwiZuquHEOHDgg3h+sxC0z7AYYHGRQWFK9bCE/pGaQ4gaIAZtOD6khaxyf+ATwla8Ap54K/N3fDa8dg1bcODeK27Dg5yr90peAj39cLIH0zncmd/yPfQz42tec/x//eOB5z0vueKOAYRM378P5vn3i9WAlbkZxM4gXygiy6sNX3AAT5zZMkNowbNVh0MRtZcU9mRjiNjiorlLOne1EpJPui3SvSyXxurKS7PFGAcMmbl4bb4ibgUEE8JbjKuXW8GPcgINrwK420H1Q78egwblj2AdF3Igk0DqJhrgNDup4Vx/g6B4k3Repj61f39mGgxXDJm5GcTMw6AOthjOC2o3h13EDDq4Bu9owCsRNfRofNHE76ijxurTkDv80SA7qeFfdpRSwnrQ9oD42PS1e1yJxU5XOQcAobgYGfaBRc4jbMBU34yodDYwCcfObyJMEJSZs2ACMjYmJbNju4rUCb2kIAilBhrjFD5W4tdvu/wcBo7gZGPQBa0SIm1HcRgOjRtwGrbjNzIjJAzDu0kHBj6gP2lU6NSVe1xpxAwa/7JX34ZzaoxK3YdqguGGIm0GsaNYdf1C7OfwCvMDaIm71OvCjHwHLy8NuicBaJW6kuM3OGuI2aHQjbknbAzrmWlXcgMH3dVLcikX3dqO4GRiEQLOmrpwwGorbWnKVfvObwLOeBfzrvw67JQJrlbiR4maI2+ChjvdhKm5ribhRGEChIF4H3dfpno+NubdPTgK5nHhviJuBgQ8sNTlhRIjbwTRgu2HvXvG6e/dw20Gga79WiZtxlQ4ew1bcvMRtLSy9RYrb5s3idViKG5VgAUTtzmLRKG4GBl1hKa5SGFfpwEEEaVQmi1FYemyYyQlGcRs8dPe72XQIlUlOiB/DJm6kuFH5HUCMO8YMcTMw6Aq16C4fgbVKgbXlKh1V4mYUN0PcBgVdVqka85lkX+TcGXt03w1xSx401aiuUrr+hrgZGHSBa7WEESkHcjAN2G6gSWlUJotRIG7qsU1ywsEPneKmXvsk7QGNu1zOCZQflbGYFDgfPnEjsq66Sg1xMzAICauhrpxgCvAOGkZx64RR3NYWuhG3JPsi9a9iEcjLhZoPduLWaIjabbmceFABRiM5gcqxGOJmYNAF6soJA1PclpY6mMpadZWScTLEzcGolAMZZG2rhYWDq26VL6jSqgJdVumgFLdhErdGY/D10wBHbSuVhveQoktOMIqbgUFIuIjbIGLcGg3g+OOBs85ybV7rrlJD3BwMIzlhmIrb8jKwZQvwjGcM5nhDw8UXAxs3Ap/7nL2Jc7fZWUvE7QUvAI48EtixYzDHI4wCcdMpboa4GRiEhJu4DUDq2r8f2LMHuPVW12bjKh1uOwijRtwGobi128DKing/MeG4bAY1me3aJZSXG24YzPGGhttvd7+ic6yvFVfp0hLwwx+K14svTv54KkaBuBnFzcCgD1hNpRzIIFylPjn+RnEbbjsAoX7Qk/AoEbekF8CmYxSLopbUoCczutYLCwd5fBV1LuUGe8c6nf+gFDcad4WCU4x2EPfgiisc8nLppckfT4WOuA1rySujuBkY9ID2oBU3H+K2VmPcRimrVL0lo1LHjfPkSSSpbVRTatDETT3fPXsGc8yhgAa2MsC9Y32tKG6XXea8v+KKwY43lbgNWl0mBClu6bR4bbfF38EAQ9wMYsXAY9zIUlqWS0oxrtLhtgNw34NRUdyA5N2ltPzPsIibeq0PauJG9kVha2FcpQdjjBsRt1JJPDhce23yxyQM21WqxjXqiNvBWITXEDeDWNG2nEcaNgjipjIUxYAbV+lw2wGMLnFL+toMW3FTr/WoLH2WCDSKm9+9Vl13B5vitm2b+JuZAV7+crFtkO7SYRM3UtFSKcc9DThtAQxxMzAIRKvpkDU2SFcp4BqVa9VVOkrlQEaVuCWtuBFxo3gbo7glhB5dpQeb4kZq21OeAvzVX7m3DQKkMA+LuNE9T6edaw4Y4mZgEBpthbihPUBXKeAalaOiuO3eDTzsYcC///tgjjcyitt3v4t1T3gIjscdANYmcSPFbWJCvC4tJZ8YAQxPcTtwADjtNOCLXxzQAUO4SoeZnDBo4nbuucCTniQK4d54o7gfg4CquFFfX1x093XOgQsuECVL4gZ1g0ymO3FbWAAe+Ujgwx+Ovx2DhCFuBrGi7VLchkfcRiXG7frrgVtuAb73vcEcj8673R6y0njxxchuux1PxlWudg0Dw45xy+XEX6s1mHinYSluv/kN8Ic/ABddNBiCGsVVejAnJ2zfLl5PPVWovI98pLj+f/5zssclqMQtnwcOOUT09Vtucb6zZw/w4x8D3/xm/KHPURS3668Hfv974DvfibcNg4Yhbgaxot1UY9yG5ypVjeUwCYzuiT9JqJPSUFU3edGLEPdnLRE3r+IGDDZQfVjEjSbwe+8VMVeJQ1MOZC26Sul8cjnxeuyx4vXuu5M9LkElbgDw1KeKV9Vdq7aFxkdciKK4kQo5qBVUkoIhbgaxglsDdpWq7GQEFbc1S9zkRR9DWf13mE2xMajkBLWmFAVND+KeDMtVSkojMKAYqx4VN08CeqxQiRuRBctKtgwFnT4d75hjxOtAyDM6idu554pXNUFCbUvctjCK4maIm4GBBipxY0OMcTPEbTQUtxKEVV/ritsgiduw6rjRBA4MKKuxx3Iguu/FBZW4MTYY1Y3OZVSIGyluv/61cz2SJG5GcTMw6BNqOZBU27hKDXFbe8TNG+MGrA3FTSVuAykC26PipvteXFCJGzBY4pbJiFdylQ6LuG3cKOLtajUR9+htyyAUN8bc489L3IaevNUnDHEziBVGcXODDHalMhgCOYwF1bWQDVmLxG2UXKVLS4NTF1TiNpAisAHlQFTC1GqJ9jDmZD0m1R/VrFJvO5JCkKt0EEkiXuIGOO5ScpkPWnGbnBT3m2AUN4NVg5/+FHjtawdLXLTE7XOfAy68MJkDaogb56NTDkSdqJeXkz+eOiENddkrj+LWbg9mIQ0dBkHcPvc54EMfEu+DXKVx35P3vAf46lfd27ykZFDuUprAafJ89auBZz7TUV1iR4CrlAharebcj4kJp20Ho+JG5GT9enGui4uDKQlC991+UPnkJ/GKhY8BSI64cQ684x3Af/+3c/u9xE2Fl7i1Wqu7ppshbgcxPvQhUT9skMuftFsaV+nb3y5mmCSYiyY5watsjYLiBgzGXToyrlKP4gYMT3UbBHF7xzuA974XmJ8PziqN857s3i2eh971Lvf2YRO3Cy4Qr7fdBlx8MfCJTyR0wABXqUrcaNxNTjqZl0n1xVFwlTI22Dg3l+LWbgNveQuO/cLbMFls4s9/Fv1g/37n+3HYwfvvBz7yETHmiL+n08Bhh4nrQO5igpe4AatbdTPE7SAGDZaFhQEeVJFVUly+pxGShPXSKG5eozwKMW7AGiNuHsUNGD5xo4ktietCcW0HDgwuxo26vre8gvc6DyrOjSbw//W/gBtuAD74Qff22BFQDoSuvZe4JV1BfxQUN2CIxK1SAVotMM5x7hPEB5/7nPv7cdhBup7lsltx27ABuPVW4Pvfd3/fEDeDVYO5OfGqrtOXOLyuUs4dy5KEtdQQN6+RNIrbEDCCxI3cJ3EbbMtyJo+5ucHFuNH19J7PsBW3Ugk4/XTg8Y8X/ydGWgJcpX7E7WBU3LwxbsBgExRcxE15ijjvieIDrys/DjtI5VXqdXdyAgAcdxwwPe3+vrpyAmE1JygY4naQot0WbhtgsOvGqYpbum25WdOAiJvXKK8V4tZquetFjZqrdFj3wes+i5u4qfdYJW5JK27q85AaP+gtyDpoxY2C1BMnLT24SpNW3PySE5Ici15FGXAUt0EU4fUjbmc9RnxAwgFd+ziEBOrvlHwCuM/fC5XUEoziZjByWF52JvFBEjeuxLgx3hoKcfNOFKPiKk1a+fQSVqO4CSStuKnX2S/GLYnkBD91lbYffrh4HYbiBgyHuNFbIm71+sHtKm1JpwZjjuIEDNFVqhC3rZsrOOII53snnSRe45iPVOLmVdx0MMTNYFWA3KTA8BS3DLeSr8uhSU5Yq4qb97xHKasUWBvEbW5ucDFuar9Wz4muM02agyZu5CIepuJWKgky02w6noeD0VWqc5MCgyVu1N9LJbiWz2DVCs47z/neqaeK1ziJW7vtXFujuBn0hf237cNvXvYVVOeG1zPIWAHOQLn9drHIb1LgXKpsKpSZ6vfXNeNfCmfUXKWcA1/7mm0xB0ncBr20UyBGMKuUiFvc10W9x6ripsa4JeEyU69nEHFTXaXf+15yi48PXHHziXEbxzLOuvfL2JwXRnDvXvHZwai46RITAKG25nLi3qtLkQHAH/8I/OAH8bXBT3FDpWLXcwOA004Tr3ESN/X4QYobEXYVhrgZuPCXl/4Lnvifr8BN7/jO0NqgU9xe8xrgBS8AbrklmWPW60AKnkX5lNHxxtc18YxnxFwVZNRcpddcA/z93wNvfnNHWwatuBlXqcCgFbdBx7gBeuJ25JHilRS3bduA5z8feMUr4muDiqG5Sj1ZpS/HV/Cy374Sr4FIZ9y1S3w2NXXwKW66+DZAkBhS3bz2/iUvAZ7zHOe69Au678UiOojbOecIUjk2BjzsYWJz3MSNiGlUxc0kJxi4kJkXdTj47r1Da4OOuO3cKV7VmjpxolYD0vAobkotgNpKE81mzPL9qCluNEvK1zVL3FyKmyjfPmzillRygnqd9+8X+2fMmbyB4bpKSXHbvl28qrYhToxCjFuzCWzAPgDAurRQ3G6/XXx21FHDS04YtKsUAJ74RPF6+eXu7fvE5YnFhc65099yObiJW7mM2Vng5z8HLrkEWLdObB6G4mZcpTGDMfZzxhhnjH3Is32GMfYlxth+xliZMXY5Y+zkYbUzClJNMUpTtaQKGHWHzlVKBjspI6IlbsroyEJYy6SJ21DLgdDjn3xds8RNzigZtOz7PmziNgjFjR6OxsaAlGJdkywH4t0vbd+wQRCHlRXRHYnAJTX+R8VVWoS4wYW0uPGkOB177NpxlQLOslOXXureTm2Mk0Cl05I4qX5Z2SHOPht48pOd8Tcqipshbj2CMfZ3AE7RbGcALgbwNACvB/BcAFkAVzLGDh9oI3tAuims6DCJm1dxa7edGjZJTehhiVusKeoByQm0Vt1AXaX0xClf13pyAjD89UoHSdzuv1+8qvFtQDJZpd0Ut3we2LRJvN+zx1FYkroPo6K4FSBuSD4ltlOM2zHHJOsq5Xx0XKUAcM454uHh6qvd4SlxEjeX2gZ0uEpVJEXcjOI2QDDGZgB8AsCbNB8/E8DjAbyYc/5NzvnP5bYUgLcNrpW9IW0Jw5Gujw5xW1x0FhxOirhpY9yUwTsoxY2MCcUYDVRxGyHiNgquUsAhbsOu45ZUcoK6vx07xKsa3wYkr7hphgFyOTdxI8UtCdLSbAr+lMk4k6RKWhJZ7NynHAgpbvm0s71YBA45JFnFjcZ6LueorcNU3Kangcc8RlyTX/1KbFPXcR40caNQhaWl/vuDiXEbHj4C4C+cc12e4zMB7OKcX0kbOOeLECrcBQNqX8/IjABx87pK1f8HqrgpB8tBjPLYiJv6iAt0uEpJ9TDEbQgYQcVtEAV4vQ8NhCSySrspbtkssHmzeL97t6O4JUEiXCUhJMh9xnlCqreP4mYTt5RzgbZuFQp8koqbV20DhhvjBnS6S9X+F0ddSbWvAdC6SgmZjOgfnHdmukaFUdyGAMbYEwD8PYB/8PnKSQD+otl+C4AjGWPjms9GBqNA3LyKm/r/sF2lsRE3n2A2MiY0iQzUVUoWqVoFWq0hlgPhmN5zh3sphQTRagF33qk8SSuNGYO4JsMmboNwlRI25+Zc0d/DSE4Io7jdd188a4l63aSERIkLzd5UhRZu4pZLOQOfloBKQnGzLOCOO5x7QPcaCD7/RqN/WxjkKgVg11GjMkxqPxm04gaIzN44jq0St8zunRjHsnMNduzoYIaGuPUJxlgOwOcBfIxzfofP12YBzGu2E/2Y0ez3V35/sTQ8AjItMUozjdFQ3KpVdwZRkskJYVylO3bENIl7R55HcRuqqxQAKpWhKW5/je/gIz86EfjUp5I9qMSHPwyccALws5/JDSOouA2SuH3xlscCJ59sX4dhJCfkcnrFrdUSf7t3C0LzN3/Tf1uGQtzUJzL5XnWV5hTFjUpjJKG4feADwIknAhdfLP4Pq7j90z+J6//HP/Z+7CBXKQA86lGCLN11l0icGTZxozHYr9pHxG0KC3j3V4/DxThfKG7794uL+uxnu75viFv/eBuAIoALh3DsgSDbElY00xwNxQ0QT9aEYSlu4/kmtmwRIhCVJuj7gCo8ittQXaXy/bCWvDoWMgPk3nuTPagEJZxs2wZxg5Uglsn0cIkbHXeQxO3Q6jZRd0E++Q8jOcFPcaPv3H+/IDpxdJFRIW5qckKOOZ8TcUtCcSNbRnFkYYnbnXeKV9U2R0U3V2kmI8qgAE6pGsIwiVtcitsheBC5Vg3HYJtQ3EgV8HRq9fpQ/OFqJm4B4XzxgzF2JIB3A3glgDxjLK98nGeMTQNYhlDbOlQ1CCUO0KhxnPMz/Y57+umnJxEa6wsibtkhKm5E3NJp0clVopQkcZsJIG6HbWjimGNEW7ZtA44/vs8D+ihuo0rcVlbEvQiKxegHqhEda5TdGxMG3YpaDR0XfLZQAcrDV9zUhcdpfcc44B1PaVhI0woi8qQHmZygU9x27XLqd9F3qG/GMT66EbdEbI7qL1OIGylu2dRgiBvt6y8yuCcscSNT0Wp1fhb12EGB+WQHKxX39+IgbmoiDIDAGDcgPuJGESBE0ouoCrtKA8Fzg1Xitn69yDQ2yQnhsRVAAcDXIcgX/QHAW+T7kyFi2U7S/P6hAO7nnK9oPhsZ5NqSuA1RcSNXKS00PQjFrVtW6SHrm7YBjaUkSBdXKRmsocS4yffUFiJrKwn2XJqwJyaUFQsGxJaoT9Xr6LjgM/nRcJUWi+I+tNvxTtzeSTmPzmyFYce43XKLO9yxXnfaEsd9GRXFzeUqxWBcpXQfqNCvrvCy7vzJVMRB3PwUN8C5J+Xywae40VgroCZIqU+nVq8PPcysZsVt0MTtjwDO0vwBgsydBeBuAD8GcBhj7Mn0Q8bYJIDz5WcjDZu4WcMhbo2GGKTpNHDYYWLboBS3IFfpIeubdpBwLAkKI6648WVHcVu/XrwmGeemugQHTdyCFLfp3GgQt2zWmVTjNNre8eQibrIDDGOtUlVx8463QStug3SV2oqbdJWm0467MEnFjZoTNjkhDsWtm6sUcO5JpXLwErciqkineCjFjR5mVjNxG6irlHO+AOBX3u2i3i7u45z/Sv7/YwDXAPg6Y+ytEErcOwEwAB8dTGt7R57LGIshKW6kts3OOlk8quI2rJUTNs40weWTbyzEzSfGbSTKgQBoLa6AczFxzMyIOKM1Qdw8ihsRt2HXcSPitrIi2ktjo18EErcBKW6aOtTI5fzPUSVuq1Zx6+YqlYqbutRVEoqbV9GP6irtxyMQxlWqEjeVVB5MxC2Ntij/QoYoQHE7GIjb0Je80oFz3gbwDAC/APBvAH4AoAXgLM75jmG2LQxyXHSmnOVfrMayxKBLoloDxbfNzDgDRc0qHYTi1qRnAmXwbphxu0qbzT4LMYZU3MgwJlIE1AvFcDUXxPt8Pt6q4X5Qsydt4haBLfVzfYKI22RmbShudtFVjeI2DFdpNivc5iqRUJuVhOLmXTHCS1xiHYM+rlKKe8pIxe2YY5wDJ6m4EQYa49Zwn5cOg1DcwtRxA5IjboAk7GtEcRsJ4sY5Z5zz93i2zXHOX845n+Wclzjn53DO/zSsNoaGZSELYTDyLb3i9uUvi8Gdy4mFd2ktvbhAxG121hkoKpIkbhTj1oB8BFNGx/rJJrZuFe9vv12c/1ln9WHMI5QDqdeBk04CXvnKHo8VForhai2K9/l8fPWLgtBPjNsllwh3rndB6rAIcpVOrBHiRm7JIMUtTuUpjKuUMWei8v52EK5S9bzvuktco3/7t/6PB8BN3ORJqIpbhovPn577BbBxI3DppSND3CzL2dYzcXvnO/GUV27BNOaHTtyGrbgBQIGHI24bN4pXk5xg4EAZobl2XTsqL7nEsTkLC8B118XbBHKVqoqbiiSTE0hx0xG38UITExPAc57jSPtXXdXHZBYhxm37duC224Af/rDHY4WFYrisxcEqbv24Sn/8Y0H4f/vb3o4dlJwwkRod4rZhg3ivlsboF3TuhxwiXkcpOQFwCKUKVXEblKv0uutENt8VV/R/PAD6GLcGR0kSt5nxJg4/HHjG1K9FLYzf/nZkXKWqMNUzcfv5z1Hafz8egttCEze1/8VO3Fot9wGGobjR8S3LpQgYxc0gGF7LrOkdNGk87GG+X+kLw1TcvMSNqysncDHT/M//iEmHFLGejai3VHnAyglkQw4cSDDWqtVyGau2JG6FwmCJWy+KG8Uc9nptghS3MTY6xO2YOGMsJWhS1hK3BF2lOsWN885MwzCKW78uzDDEjb4TW5a3JsZNZUiTJQs7dgDHHNG0vz8IxS1McoIqTPVM3KqUPdsIHeOmzjXVav/XwVUOxLuO1QBWTlDHWp7X9Iv2whA3gy5olT2WWdN5Kd5syxbxGjeR0sW4qRjEygk2cSs7o4NZbivR99MvXTgq0BVQDkS1KXv39ni8bvDc6/bS6lHcYiVunpl5mMSNc8fIq8QtlnI0EtQNDz1UvOoUt6TXKqX9qqSN6tR1I25A/2QqCnGLhTR5ijzTCaQbmolbSftMshwIIYziFgtxkzc9i2ZPrlKgf3vkUtzopIidDdNVqjYOhrgZdEFzxTNCNZ2XFLejjxavcXcgXVapikEqbu2ycv5NPXHr2ZDThSNr4FHcCgWnfppqKOJ0k7ngeeLkK06M27AUNx5ihqIq+kAyxK04xCWv6HzSaUFkklDcAombnLHVvt5PMLoKnau0I+YIblcpTVqqq9S7r14wcMXNuxP5P6vXOr+jELek1ipVMTBXqaK4jRRxo9pH1WpH9l3cS165FLd2NZTiRjFuhrgZ2GguBytuKytiU7GYXAcaKVdpWT+QgBgUNx/iRkYyl3Ni6VQDpWbYxgpPdV2+PBzFrVhUiFu9+8Xdvt2xr71MaK2Wc2ydq7TIh0/cyHAnSdyCYtwYiz9BQecq7ahkD7fidsQRzm/rnc3sGQNX3LxsR7KnVD1AcWu1+n9Y1GBoilufrlIgIeKmpjJ7Dpik4pZvV92Tm4a4lUpOiI5JTjCw0Y24EWnYtCmZDDdgeMkJqqu0ySRxqwyeuNH+8nlnwKpPeIMibih3Erck1ytVjWgU4qaSmF4mNHVS0iluhfbw6rh5iZtaADqu0hRhiBsQP3ELUtx0leIZcwpyH6yKW6ZZ7fyORnFLwlVKrulhELdekhOA+IhbNgtHRhwfdx9UQeLErYurdGoquXl3kDDELWZYK8HEjdx0mzcn14H8FDdSsGnw/td/AS96UXwTqppVajHKKu3uKk2KuOVyeuI2KFcpW3GI22yhgm/gBVj49qV43OOAn/0s/sPbakuWKzFu3W9uv8RN7b/1urOTNsRMRmVxhqm4UV+j8IHlZZFoGAdoUtaWA1Fm7LgTFHSKm85VSorb+vVO3KdXcVv1xE2egCvGbcCuUopZ3rr9CuDZzwb27fONbeybuFmWfeCRc5WOCnHTKG6Tk+J9KuW6hKsOhrjFjG7ETae4xa2AEUmZmnITN1IE6Hgf/zjwjW8AN90Uz3FdBXhTYuZwxZzETdzoROgk5Y50rtKBKm4ysI5VnBi30xcuxwvwTbx35W245poYa1kpsF2lqTpSEHJSmBi3OImbqrgtQySN5KzhEzcy3EnEuVE3HBsTtQI3TgUrbnGNd11ygo64nXiisDWnnuoec3G6SumZZdiu0mEmJ5x5png9/Q9fFHWHLrkkuRg3pRN1c5Wqi8wPhLiNjfkSt6kpYR4XFvpTnnXELduq+SpuRx0l2vjQhwobsNpVt0jEjTGWY4ydwRh7DmPshYyx8xhjWxJq26pEWMVt0ybHkMfdedQq5jriRgNmedndpn6hEjdS3FK1AbhKPVmlOlfpQJITyHBJiSNVdRS3LRvFTTkFN2MzHkxksXmbuPFK58YAqBmWcRK3JYjOl22ODnED4s8spTm0UACuvRa46P16xS3uzNKwitu6dSKO8Uc/chOpg0pxI1epFZCckHA5kA9/GNixQyHuc3PJuUqVQdeL4kZxXv0SN5eiHUJxy2SAI48UYQr33tv7caMqbps2iQSsb31L/H/QEzfGWJox9jzG2M8BLAL4HYDvAfgagJ8B2MYYu58x9hHG2LHJNnf00aoGZ5WS2pOkq1Q1okGKG42zOImbHeMmFTftE7BE3/EmIZIThhLjJn1m6YpD3NTZ+im4PFHiRjFlro0BiF1xkztZhEhpzjRGk7jFrbgVCmLOGssMXnELIm6ASIQqFJJT3MIQN1KZYiFNYWLcBqy45fPA4YcrO5+ft8+/0XDHVA6buJH7PFbFLUSMGxDP+KNkKpfiZnmSEzw3edMmp/8nUVdxkAgkboyx5wG4HcDXAdQBvAfAUwGcAuB4AGcAeAEEkXs2gNsYY19kjGkqB60NtCIoboMgbmNjTtAslSvwEre4iIzbVZrv/EJSihvVPAmZnJB4jJu0iumaQtyUWfI8XDowxY01gy9uuw3cc4/zfy+Tqmr8dIpbulZ2tW+QGDRxA+DLiJJMTmg03Nm9XuJG8CNuB43iFjI5IYkYN7uP0U2Ym0Mq5YRrqP0/TuKWRTNyVmkixC2E4gbEM/50iluu5a+4eXGwK26fAvBZAJs55xdwzj/OOb+Cc/5nzvndnPPrOeff5py/iXN+PIAnAFgH4H8n3fBRRbsSLsZtUIpbKuV4EmmwNpvij44bF5FRkxNaKc3MMeA6bkMrB2ITNyfGTWU3T8UvUFlpe3/dN2zFreUE0HQjbrt29T+B+yUn2MStPlqKm5pZGgfo1hJJcV3QASUn0H67EbeDxlXqE+OWbQUQt4RdpR3ETab369ylfce49ai4Ud9LlLgFxLgByRG37BoibgE8HQCwlXMe2sxwzq8D8BzGWKHrlw9SdCNuquJGxjVuudZrRCcnxQBdt05MHrWak3kKxKu4kavUSocnbrElJ4R0lc7Pi+/kNaJgX/C4SrN1vat0E/biqMWbATwi1sPrXKWpllyzj2RXD7zGs1/i1mgA7YaFFJzkhFSjjhRaaDTS0XfeJ5JW3Dh3+puWuA3IVUr71dVxU5G0q5QC4QmJJSf4KG5Za3iuUlv1UhQ3QFyDctl9vftW3DzJCSPhKg2puMXx4BQ1OcGL1U7cAhW3KKQtjt8dDODV8FmlSSQntNudrhviNbOzzrYDB5zf9Ku4XXkl8KY3iXPrRXEbRB23hQX3TxNZ9ooM17p1QCqFjFVHGlYHcQOAJ5QvjeeYy8vAv/wLsHOnE2vT8hjLgJmSjCcVZu2VuB2B+/FmfAxjWIFVkwt+I4sKEwa8iOpQ6rjlbr4Rr8G/I5txAowOO0z0jT17OkvvRYVliTGXySgT9xAUtxfjv9C+4lfaOm4AgC9/Gbj66p4Ut3Yb+PSngT/9yf873RS3Wm0w5UCyanJCuy3+EnSV0spbjDmrtNg7D1Dc1H7X0/XwKG5RXaVU/H3QddyABBW35gAUt3vuAV79auArX4n4w3gROquUMXY8Y+zRyv9FxthFjLGLGWOvS6Z5qw9E3BqQFkLpuJwnX8eN9lUsCjcp4BTdPOIIx4ioNaz6Vdxe/nLgE58Alpc50lJxa6U0j4ADyirttnICkFCcm2q4ZNrWGMou4sYf+lAAwOnt6+J56v/2t4G3vQ34+McdwuolbgEHuu8+8XrcceK1V+L2ZnwcH8Nb8Vz8D5oVsRNB3IQEU0JlKK7SLR99Lf4dr8Vx1m32tlRKZLYBIguwH3TEt6kbAde1jzurlO7VZrYH/4WXYOqtr9K7SrdvB175SuAf/qEnxe2mm4B//EfgzW/Wf657WCQMuhxIrlXt3K5ZOSGuvqhTdHWKGzA8V2kuJ/p8o9ERzdF3QfBeFLetW8XrPff0XnyYfleAM5i6JSeo6Pkh6uabgS98AfjudyP+MF5EKQfyGQDPU/6/EMCbARwK4BOMsX+Is2GrFbwmRuccZsX/ylqdy8uio9CyG0kQN92T7+c/L8oKnXyy02HjJG40+D/0f2XcFmPgac0j4AisnEBGNJE4N9VwSeI2jhUXcWPSjVpAzVuvtzeQdLhvn2NErfDEjUrCUHHmXpMTJiGY8TQW0KyKSdRCBrWU6IjDIm65PWIRVmofgVx6/ZIoLWEZsKv0qHEhn6cW5vTEjeT1xcWekhNIrd63T/85DcNSqdMjP+jkhEDiloDi1uEmBUIRt0FmlTLmzAfUFYYZ4zY+Lo7faAAPPNDbcXWKW8YagOJGMiHJhkNCFOJ2CkQpEDDGUgD+HsDbOeePBPAhrOGEBBVcWmUibu1lZ3ZW1TZgcMTt6KOBCy4Q73Wu0nK5P5cRDd5/er0kbuk0eEoTzzTElRPIzh99tHhNRHELIm5ktaU6mEUznsxSsrxLSz0RNyKPMzPitVfFLQvxwzzqsKrivYUM6ukhErdWC7lFwTYK6Zj7nkRHYgLQ1VUa91qlG0riJrJ6TU/cFKnLz1UadB3oM79J3s9NCgyBuLWDiVvca5V2ZJQCzgVbWADa7aETN8C5N17FLdY6biFdpUD/7tKhuUqpwRSoNyREIW5TAGi6PxXADEQZEAD4FYCt8TVrFcND3FTFTY1vA5JZOSHIiAJ6xU1tWy+wJ4u0HE3pdCjFre86bprkBDVYXHWVEoi4Ja64SUnHq7gNgrhlmuGJG7Vhelq89krcMhAzWB51WHUnxq0+TMVt/34wWfApn3ZP9HERN+prw1TcNhTFTUzVq2jURSyfH3HrRXGLg7gtLTm1t5JylXIui7CqoBR6+Z241yoNdJW228DSUjLELcLKCUDnvRlmcgKQEHGrL7sJfRLJCatQcdsDgGjmuQC2cc4pQmQcwCpd9SteMDmg5iEkDJW4eRU3NeYlrgWvwxI3VXFT2xYVnCvGKyVHUyqlROoqSDrGzbJgNcWFzGREM7xPohRfkWiM29iYb4xb7MSNfMAKccs2ohO3OBW3Vs1xldYzQyRuCjvPp9wn5lfRPiq6ukoHkJywviBuIuMcVkVs1BK3RqOn5AT63uKi3k6FIW4yTh9Acopbu+2OebK/l2A5kEDiBriK8CYV45ZFM7TiRog7OSEqces3s1Rbx6284P6ScZUCAH4M4CLG2McgYtvU6LyTAdyj/dUaA63NaStuFX/FLZWKP2BZ5Q46xK24kf3MZADGFVdpBOLWkxHl3J2JIY9XL1uufXsN2sAUN58YN5W4xRLjplHcsj0obkm4SpvIojFM4qawcy9xi9tVOkzFbTbnPAG0y2JMRFXcwrhKWy39RBdE3OicvcSt7wdVDXFrNkX2sgsexS3u5ATV/tlQd+6z7NWgXaXqfJDLCScFY2K+6DVBAOgtxg1ISHErz7u/FHdyQrMpEn0AZyIZEqIQt3cA+AmA8yBI3IXKZ88E8IsY27VqwRru5ARUKqhWgZ/8BPj1r8UmIm5A/HFu3RQ3XVYp0LsC5Rq4LcdViqSTE2gNmWxWHE9arkZZEgh5ngNV3MIQN7k9h0a8rtLFRcdVGkFx6znGrV4HrrkGaLVQq7ldpa26o7ipxK3ZjE9ZXlgQ2Y4dmJtzPlDYeS7lnujjUtza9+/E8bgjFHGL8yFNVbpncs4TAK8EELdGoydXqfo9nUITRnHzluPphywA0JYD0RK3gOSEeh24+ur+FECt4qZezADiNo5lnI4b0LJ6GBQRyoEA7ntTLArSRhEmlKDUC3zLgagr22vQ73rBWsVtec79pbgVt/vvFwc+/HBnB0NCaOLGOS9zzl/FOT+Zc/5yzp11dTjnj+OcvyOZJq4usIZbcUOlgg99CDj/fCeDmJaeAgZP3Pxcpb0qUP7ELWFXKc1+dAGl5VyecxO3kYlxG0ByAl1eWqnARoAB6znG7aMfBR73OOD739e4Sp3khKYkbpMpYdRjcZNBlFI6/XTg1ls9H7zkJeKDO+7wELdkFLeT3vBU3IjTMZFRBvAAkhPoOqbTwARzOhKVI3IRCTU5IcftNkRV3AA9caP5Ooi4UXybt/09QxPjZlldFLdWyxXF8clPAo9/PPC1r/XejDCuUq+602iI330Sb8ANeDSO2ntD9AP3mJwAOCaTiFs/7tJeFTdyld51V28kXptVmrSrdETcpEC0Om73MMZO8fnsYYwx4yoFkPIQN1at2LWiTj8deNWrgOcpRVXiTlCImpxA8XaxKG5knQcR4+b1UUnLdd1vxTFOPdW1GYBo0rp14n0sbkovQtRxS4y4KRJKB3FLwlVKefwPPNBB3NoNJznByooOXpILr8floqLD33+/5wNyZfzhD25XKdP3vX5JVH7/TkxgBevTiptmAK5SNZtvXCVuQYob53YCUbXqJk/9KG6kphH5V+G3OknfMWZhXaUexQ1wbAIVFO61JAWgKQeiSqEAMDdn2xyyuWQmjoTovDMrPRQTjLByAjAA4payxD8U/0MH9DG069cL8rayAtzQA2/VETfmlfPjTk5YjcQNwBYAPsMQBQBH9d2agwBpDXGjMfaWt4jafbOzzvfjXj0hquJGfTB2xU2n3cdJ3LzrDEnL9etfimOce65rMwBxTUjBj524WZYwpoyJizzoGDcAhYZ4nxoEcaN73Wx2ZJWqrtJ2Vtyf8XStW1Migebtjgd6OqFt21ydOuvjKu23PbQW7GRGacgAkhNUF9U4D0nc4JRF8brHwmSVAvpJnpbPoz6kwo+49a24+RC3wOQED3GjB+p+SGRHORDvzubnOx6OqYsSyUxbPTw99OkqBeIhbnS6Be4p5tdFcQMcG33ZZdGPSxqBStx8G6fBWiJuAODnjD8dwEJ/TTk4kG66s0pV4uatKg4Mz1VKwcLUB+OPcdMobp5ZMgnidvVVYrCed57YrBq0UimUPekNqtrG2ODLgQAoNCVxqw0gxk1ZwLtDcas7yQmtrOhwpUERNzqhbdtCKW59tYdzpFpivxNpH+KWsOKWzQJFrjwBVIOJGyVpeCfrflylZEvUB1L7eEkpbt1cpbRsjMdVCjjXJg7i5rvAPGFuzo5ppueIJIhbFMXNuxRiHIqbvVoLHSiEoSUbfWkPq/+1WkAalr1ST2DjNOjJ00UBeUOu4QZ0WWSeMfZGAG+U/3IAFzPGvFejCGAWwLfib97qQ9pyE7dUrYJalQNgI0XcCNQH+1Xcslk4xjSVAjIOcWuDIQXeYSH7qqnkQ9wWDzRx+OHAiSe6jwGIa5LPC17VaIjJv9uTamioxE159UtOiIW41euuizeJJZHdKztBFQUUUfO9wKpI6Fk1rDsU4lar6V2lFjJo50SHG0sNQXFTUhmzHuIWS3JCq2W7ZwZN3NQHplLL6Uis1oW4SfMdRXHr5iolxS0KcUtKcbOJ28SEqF/SbDrf9Shu5CKNg7h1LDBPmJ/H5jPE26QUtyyawLBdpVZ04nbmmeK6XXedcLfrXO1+aLUcta2BLHLQ3MSAG9uTp2sVKW73APil/GMAblT+p7//gSB3r0qumasHNAiXMYEGsmDtNto10bt1RmxYWaUEVXHrJePPVTm77ZQDUbNKy5D+yVbLdZAkFLcsmjj3XGfpHS9xU1X8OFescCUmKK92jFsSyQkeizuJJXFNZSdYwLT4wOcCq1yTJh5al7srAhQ33nCSE4i4lWImbvSM4JoX1HoVd9/tUtyyLIECvMrEMMa6u0rjzCpVlZ6CQtxo590UNy9x60dxC3KVZjKdy2ABA4hxo3GoXmxaXSHn3kWsrtIQihuNu1FxlfazXmkHcaNYlBDEbXJS5De1WsAVV0Q7rkrcyhhDU6dBxekq5VwsrgqMBHELvN2c8x8B+BEAMDH6Psg5v3cA7Vq1yEjFrYYCKighh0XZefOBitugkxMImzaJsVYuC2NOgzks/FylTFHc6shjPF0Fa7XEYJKWs686bgHEjSR4oNNVSq/lsrhWpDT1DSWjinOADSLGrQtxm8cMDsFu+yY1Gu4JXeWajIlLSJ4lP6XERkCMW7vpJCcQcSuweJMTtIqbekF37XIxBu8TeSzJCUrHHU+FV9zUj9Xogl4OncsBBcshbql6sOKWQ8PbdO3/KnSKm9qXglyljIm+5LVvsStu3nIgk5NCUlM7iEdxU37aM+i3xXQDQK5zZ3NzvjFuFI/XE3HzJCe0hq24NT2pxSFjUs49V5TJuuwy4DnPCXnQZhMtK2MTtzryyMBCFp4n4TiTE3bvFucyOxtNGkwIUWLcXg1gr+4DxtgYY6xL11kb8BI3QMS5AfoYt2ElJxBowV+gtzi3MMkJTWTBM50ly+NU3Nppsf8cmjjnHOdrXsVNfY01zk1av1p6DLOzwNe+P4AYN8+jspe4LUrFzao2cckl4l5/85vO99XsfcC5VqEmsiDFrem4SnledLhiQq5SF/n1MmFF3c16iFssyQnKj8egHDtkcgLnwCMfKUpS9HrobBbINyO4SlP6mxs2OWFxUWTyrlsHvPWtYluQ4gboHwKSKgdiJyfQE5lqWD0xboR+idvr8Gn86Kop4MYbta5SVXHj3Bl3JUkyM63BxrglQdzsot9eI1suB7pyKEHhF2GrwFYqwDHH4B03PMdF3KrQ1FWLU3EbITcpEI24fVH+6fB5+bfmkW1FI27DjnEbH3cMbi8D2K8ciKq4NZBLnLjV2mL/xxzZtNPvAT1x61Ibsjdcfz0A4E4cj4UF4MobuituiblKJYGpZKfE60IDv/mNuPSqgfSG5UWKOaSZt9HoIG5oOMkJPCfuT5GJ8497cW/XPQy4oEm7Skt+rtKAGLflZVGS4rrroocpqK5SW+2Ao7i5JnKF0Ga5/oSjuEpvuEFc6iuvFNuCFDdAT9xic5VSEoJlodng7hg3wG1YE1DcLAs4A9ci364Bf/yjc7HIsM/NYXxc/FutinvuKG7DcZUmkZxgF/2mA2Wz4q/dDuxcD3mIeA0dY3333cCOHXjo3G/9iRtd+ziTE+jphOTTISMKcTsL0m2qwY8BnOPz2ZoCEbe6Qtwoy28UiVuIWomBCOMqbSCnlXPiJG7Vptj/lsP0CRBAwoqbzGn/YVX4ae96UIlxS1vi2qRS9g1Io43ycphgsgB0cZVWC9MABHEjw6hWKveG5UVS3BRXqXflBG45ihudbxEDSE4IIm4+iltfrlLlZEpUj7zddl/AAOKm3r6oCpQ67nJ157zTjfgVN6+rlPoSvQYlJwAJKW60A7qolgWr0kAKHE2WdbaHcJX20yddJUhqSiIQTfDz82DM+XfPHsGjU2ghL93W6VWquHGuLPnlJW6AY1iCxmXUtWNlpytZS/7EjU4szuSEbhPrgBGFuG2Ej6sUwD4Am3w+WzvgHNm26EyZsbxN3Kgg6igStxDrAQfCl7hlnUfAQRC3iiRuR2x2D1a/GDcgRuJWqQC/+Q04Y/i3O58CADhQV1ylXKkHwxi4TNyor/QpO3Qhbo3itGjeYsN2g6trA/ZF3AJcpbQDlbgVBkHcAoIGMz4xbnEpbgUibq4BIRsqlegg4hZV9VEVt4xC3KgAuB9x8xJYQhTFjfoSuf56cZXGVg5EIW5Uw66RKjgDfwCuUi1xm50VbSiXgXrdFY6ysuKuN7daXaVqHySvkutA5NoIIG50m0ITedn5cryBSYiGdxC3qSl3AzWIPO+uYuK2F2IxeR1OBnDA57O1A0vUlWkig9JE2iFu8mkkKKt0UMkJ3jbEStwCXKUsFzNxowsmT2ilriduA1HcrroKaDSweOzp2GMJP+0KFFcpFYmUkwyXjYqbuE1hEcWMzC5IpdAeE22oLzmK265djrFKKsYNSnLCQIkbnVCq06xleQLJCcrJFNsV9w4LhY4O7s0qjYO45XJAphZecUu39DegF8Wt2RT9qVaTZUlC2hwgGcWttULEregwgoSTE1xxdSpxy+cdJqsU4d2zp5O4ZXshbhFXTlAXmac5h/hNr8TNZft1Ew89EQY8UNFQDZ3NrvhUN2AfAEHcalAUCWKkcSYnrGLi9hMA72WMPVzdyBg7GcC7AVwcZ8NWJWpOfNvYGGzilq2LjjtqyQne1Ul6ITKuApQBrlKmYQVx1nFbromdHbZxCMRNukmvmzrX3qQSN3Kfe5fnio24bdwIQChu9pqZpRIyJRn/t9RwJZ5QVrtfjFsU4sYbTdTrblcpWo6rlBXFOeeo5tIgiNtxx9mbFgvi2lD7CLEkJygXKu8lbvl8Bzv0ZpWqE2bUdthB4RmOdM2ZGDPNYOLGrKaWSEVR3NR4pNtvF68zM/qyH8CAiFuziXZFPhyki05n1hC3RBU3lVGT71hJUNi9W4w7dWmufhW3LJpDWTkhNHELUNwomx0I2ScUQ6YSt6iu0rVE3N4HsTrCTYyxqxlj32GM/Q7A7wEsAnhPAu1bXVCI2/i4Qtys7orbMIgblYEYiKs0bsXNQ9wWq2L/h24YgqtUlv7+6m4R33bWWQ5xG0MZrJ4wcTviCACSuKWdDpAdExe4vtzAXiXIgdylccS4teQqCarixizVVSruD7mLB0LcTnYcA3MlcW0yPopbbK5SqhyvKsEedpiEq3QsXQNTpIpuxA2NhuszamKUJa/Uh4DbbhOvfvFt6jF07e8ZQa7STFHvKm23RThLzOVAtIpbNusobkpJEFLcXMSt3S9xs5BNB8tVo0rcgIjuUuWpYaOM3PIlbnEmJ6xW4sY53w/gUQAugijG+wj5eiGAR8nP1zY8ihsVni2hglxO68Hpi7h997vA+ee7CsRHJm7qd0PXFbvwQuD5zwfabT1x87hKrZRecYurjluzCSxVxP43ziSkuFWrwNOehsanP4/zzgO+SPnVO3YAt92G9tg4vrvzDExOAi94AdBEDk1kRP0wsoxyBiO3cbPS7KnosQ2539/cpyduuXFxgRf3N1zVEyhBIY4Yt7aWuDmu0pRU3Ii4/Z//A5xxRn8LeyuH18e4bdgAHHYYAGB/8XAAncQt7uQEuwCpTnELQdx6VdwmU+5JMWt5iBvn7ovUdCtuYVbM8HOVAsCttwLTmMfXHjgb+O//1v6ejrcZD+JKnIkL8MP4FDfauULcmmkfVykAtFqxEzc7FEJdySRAcfMSt2xU4kb1MBlDA079yg78v/8nJohmM5GsUteqObqJJ+TC0JHsTkyKWzYrRItms7OyjBarlbgBAOd8gXP+Ps75Yznnx3POH8c5/wDnvI/aywcRPMSNVJdJLGndpEB/xO0LXwB+8hN3ba5+iFtoIvNv/wZ873vA9u36GLd0GqmsQ9xaqWyiyQn33QdfAxYbcfvjH4FLL0XjM1/AZZcBX/qS3C5Z0PyWU2Ehi8c8xllui+4/9stnGnnxicSm2s3+iIO0uH/cL8iJl7jlJ+QyYPvc18SruPUT49auNcHQttcMzMJCSsZRWcggNynOeTInxsbevaL8xY9/HP40Aw6vV9zGx4XsOTaGbVOnARDrGqqIW3HTEjcPO8xkxHFpgYc4FLcJ5iZuGctTDsQ7MzWbLsWNbEBYV+niYqfi9kT8Bo9cuhL4yle0v6fL8GRchTNxFV6JL8VXDkSjuDUzBecCeA2rZcXqKvWNccvlnCCyxUWX4nbrrW7ilmuFlX3gHAcALxRQh7i4mbbmBn7+82KCuO22g1JxI+JWQ0GfnBDQqRmLOPeuZuJm0AV1Jz15fNxZr3QG876V6PtJTqA5QoZYAXD6lxqMqkIlbhFWJ3GDGlup+LtKc46PspVKNqv07rtlILxn/0CMrlK531RFGCF7sMvGV7m4kYcd5tRotInbAZm343GV9l3LTRbg3QmHuNkV/EslFCbEBV4+INpIMUhE3PqKcZP3ut1odsaPybpiTWQxc4g4540TNdx3H/CWt7jb0Cu0S16pTPSrXwUefBB7c1JxayebnGAXIA1Q3ABXvHpfxI12Oc7cagbFednkxNvJPa5SuvdhFbdm022rbrsNdnafn7JCto9WbdiEPYkkJ9CgbGYCFDfLGoyrNJdzBTWS4vaHPwC33ALMFJXkhKiKGxmfYlGEoQBgTY0RpRtVr2uJG9375eWQiQEeuJY77IO4xaG4aZMTuuzwoCVujLEfM8ZODbszxliBMfYmxthr+m/aKoRHcZuDkMpnMO+ruPWTnEA24oorRB9VvSLFov43KoHsWXEjSx5A3NKq4pbJaf2icRG3bdv8iZtqpHsmqsp+U1Uf4ibXnNm0SdRsKpUGQNzkzK8SN3vNzFIJhUlxga2qaCOFfsUS46a4Sr0qJy3BZCGDdYc5/sEjjwROP93dhl4gQ5UABChuqRQwMYGGLMyc9nGVxqW4ZYKIm8J8FO9ZX65SOvS4Z5mfjiWvvJ3cx1UaVnHzYs8ekc0MwHeCtlelk/0kFuKmiXEj+2tli/6KW6s1mHIguZxLcSXFbedO8XrGw/twldI5FRzipr1JtK3R0BK3dFoMFXU1hygYuOJmWY73Av25SoGDmLgB2A7gWsbYdYyxf2SMncYYc+WvMMYOZYw9izH2ZQAPAngFRMLC2oMnOYGI2yzmEnGVUr9cXgauvdbximSz6HiqJMTiKvUjbmo5EIW4tdPJKm5hiVscilvaS9zk9kpTnMzmzULZ2rrViXH0ukpV4tbXeqVdiFtxSrSJlI7HPlZ8tH27sIFxEDfe0BC3ljgpCxmsP9ydSklqZD/ETTXw2hg3OiEAjbYwV2merKvULkCqc5VqFLe5uXhcpUTc2tKUkwsuCcXNL2vUVtx8Jmi72yvErdnoJ7gTgYqblR2c4hboKlWCGklxIzz6ZIW48d6IW7tQdOxeF+KmPsgXNRyn71Vz+ohxC03c9u1zLTHSlbh1GdyRvF2ribhxzv8RwEMBXA/gAwBuAFBjjM0xxh5kjFUB7ADwfQAnAXgDgIdzzq9PstEjC4/iprpKkyBuar+87DJnfAT1rb5dpe22K8DIT3FLKVml7cxoErdIpEmesyi9wDsUt3LDUdwAQVD8YtziVtx2YzNaSKGEKibaUv0olVCadhO3LVuEK9eyxHqTfcW40b3WuEoLLbFjns5iepO7eBkRt3vuib7ME8FL3Oz9eJkogDopbh5XadzJCVripungquKmLjXba3JCqS3OuVJaDyAEceshOYGOpS4lJxOZAYR3lToJLA2klhb8DxgGmnIgNChbGZ8CvPJ3dG1kFZ34khO85UAU4jY25uqWOPVEJcatR8WNd1PcqC/W6+qiLa45IFHiFrer1LMuVr+KWyRvV5jJdYDoGuPGOd/GOX89gM0AzgbwLgD/BbH81b8CeCmAoznnZ3DOv8o5D5OjcXDCx1WalOKmjtVLLw33UNC34qbOdJWKbx23dE5R3HyIW1x13AYa49ZuIY+685Qmt1MBYHKJuIgbuUrtGSxe4raIKSxBGKtZSxq3UgljM27itnmzW/HyClSRsnxJcWt2Km4lLnY8tS6DVMmdSjkzI8hLuRxhfUL9oQF4lkL0MlE4a9h6iVvcilu61j05AXCIW1yKG13r5nRI4uajuIVxla5f72w75RTnfTfFzUvcACCzf7f2u6GhcZWSm9jKBbtK6SMin/0Qt1bdQpYeXNSs0mwW3jRieqjbsgXYPNWH4ib3184VHOKmOwlFcQMcuzcwxS1uV6nHYORkf6ojjzqLlpwAHNyuUhuc8wbn/CrO+Uc552/gnL+Gc/5uzvnXOOf3JdnI1YJWVQzAGgooFh3FrYO43XYb8K53AUtLoeTaP/wBePe7Fft/ww3Ae94DXhcd8zG4Fuff8D7suFf0/KjELdKi6x7i5lcORM0q5dnuxC2y+iLb0c7mcc89g3OVAsI9Va3KNsvty3VhQMk4H3us4ir1xrjJmTMu4raESYe41eWEqCFumza5iVtcS155iRsZ1Kn1WTdDkq50tQ3Ut6Oon14DL1ccw71/7lTcGi3pKm3rXaVxKW4pHXGLkJwQlUCefOWn8Gx831bcmGRV5LYb//zHgJ/+VKu4qcQtSjmQDRucbQ9XyrDbxK1a1dZWcJITFLV9PgRrL5eB97/fqRitQlMOhNWk4pYL5yo9XEQY9EXceE3pQAGuUsB5qDv3XDi1HQHkenSV8nyA4sa5S3EDkiNuvuVA4lbcKDHBU1erjrxY5oygKm6cAxddBPzylx27WxPEzaA7WisyODaVRzbrTk5wZZV+/OOiM118cSi59sILgQ9/GPj5z+WGf/5n4MIL8Zjly8Xuiu/Be/HPuOc/rgIwWMXNtxyIklXa9iFu6bT4A0LW0tG0Y6WZR60GpPMJEzeFLYxjBZxLwyUvwFLNrbg94hHhXKU9x7g1GkCthhZLCzeBNFZba7eIz2dm7AK8dmzRJkEoATdx63fJK6+rlDC7MSMCozxLBhBxu/tu4E1vEn378stDHNNzaEKlArzzncDe7Z0xbrSiRtLJCSyIuMWtuO3Ygadc/E/4Il6FoiRuucMEqyqiiqNxD4rvfSvwutd1dZVGUdxU4nbkkQ4JtYkboGXgdLxSNiJx+9SngA9+EPjXf+38LCDGjecDFDfLwiGHiLcPe5h47as0ifrE3YW4nXSS+PfZz3a3q1fi1goibq2W8zQsPzv8cMF51Hi7VRXjRorbUUe5NteRRz3t4yq99VYhkrz97R27M8TNAABgSeLWTBeQzXoUt7wiKVFwy/JyqM6zvCxe7aKlcpStb4gNR2XE64Hb9gII7luZjPPA0lOMWxjFzVPHzZUt4bGSPbusqPQKk0VtfYhb3K5SQKyGAMh7Rq7SRs5VLP2xjwXOfXaCMW6yU5TTkwAYpo4U7oFj77lMfP6kJ9nH8XOVxrFyArM6FTfCzAZ58X2I25/+BPzud+J9lFABHXHbu1fJsJQn1G4DO3aLkypmki0HYi+yPYjkhLvuAgCswxzWrdwPACge6RA3qiiPBx7oVDsiJieowo3qKt20ySEAvRC3/HwIV6lckcRexV6FxlXaWhbHTk2OBxbgfe1rxa5fI2sfJEbcPK7yj3xE9PenPQ2xELd2LoC4qf/L99/5DnD11fERN205ELUOVURXaWjF7fjjXZuF4uaTnEDV6WkSVXDQJicYREOr7CZuDeRRRgkZtDCdUTovDdp6PRRxI8Npl7CRG9Y1d7teF+4VnbRb3yJbF7viprpKFcUNPoqb/Tv0TtyakrjxjD7WIylXKSDvmWx4E1ls2uTOvDviIQkSN2lpV1LSSE2IV9ZoiIv65CfbF5eI24YNbrUrjrVKg4jbus1yh57V1akNX/uac6wo5SF0xG1+XiFucvLYtQuoNEU/zHiySuNX3GqCKUZITujZVUpLXwDYvPdP4vgbnBi3Wcw7O921q6PNUcqB0LXOZIDpaWe7L3HTdGg6nkqeC0tdFLflZYfV6waJrgDvkvheZmY8MDmhUBDuSuIYfRG3enjFbXoaeNzj0NGunhW3IOKm2mn5/ogjgMc8xv212BQ3XfB+RFdpaMVNR9z8FDc6tuYJLVJygiFuBy9s4pYp2J2R3KXrmPLU2CNxs2MzpSFYb+1BDnUUawviuHvEMYZG3BRXaSavKG755IhbnbnJUBjiFimmj+BH3OR2Im4ueA+kSU7o2VUqVdsVJo3U1KTz2ROeII6tELf168Vh445xY5a/q3TdJo/iJvstuWuVkkyRJk+vgV9ZEaIMKaF0QkHZxnEkJ9ByXzaq1dDJCQcO9KG4KbVUNu0WxI3ksCKq2JhRbM2997p/G1FxU8f3pNLFNm92wgJCEzdFcSsudFHcfvUr50aHJG6sLL6Xnx0PdJUSIvV3HzDVHnYhbi4o7bKzUsOC6tXlAsqBaBQ3HSiOf1UkJ5Bycdxxrs0u4saY2/8fQNx6cpX6VbYfMAxxixEtWbXcSncSt1koxlSpaK2Obb8A/Q7FTf5+Q2s3NsF5cp3m0YjboFylLJcccatxNxkKcpXSQO03xo0IQq3mHK+BnD2R2VDz/4FEFDdKSkipxO2888SrQtyIVM7MiL9KRTQ9nXbuQS+u0lTLX3Fbf4jcoWcCI/Kooh/Fbfdu8czgdZWGIW71eu9lSVpVT6etVEInJzzwgLtafaT+rxC3QnVBvJmeRiuVQQoch6QVNcsb2B+xHIh6OipxUxW3KRbOVVpMOwcpLXdR3MhNCoQjbs2mXRw7PzvmDHxv8GzsxE0hZfW6bzmQDijbMmhFC/JVyp5EUdx0iEVxy/pUfo97rdIAxa2ZLjjHV3dILtJ+iJtliZNNpeB66hki+iZujLF13b+1NtCWWaWtrEPc1FpuNhTFLZXqXlPKT3HbiD04BM6TKx1jkIqbK85BLQeSdxgTS1BxI+JGC7f7KW6FghPbl6Sr1IUBELdFLixvekaZVc89V7wqxE0llaR4URPJvduL4hZE3DYcolfcDjmkc2WPKMTNO8ft3Alk0EQBdbTBwPPieEHEjRJjOO8hMYbaUfOct5e4BShu27e7f9qr4mZjbAytrLiohzPFPUqKm8LQopQD0SluExNiDEVV3Aou4tZFcVPX8dNN/JoYN1FjEShtHHdL7brfwd3feyXvrOHjKtWUA3HByxaiBFsqhYZ9y4GEVNziIG5jaXl+qpEFBqq4NTNFdxso643iyfshbvSFUsm/CvWAEZq4McZexRh7q/L/yYyxnQD2MsZuZIx59YY1B1on0NK4Sqdaelcp0N3X7qe4bcZuHJZxnlxJ1YtK3KgDl8shDJhGcTsOd2LDtmtdKyeoddwQoLj1XMvNj7h5dkT7V69JrMRtyIrbQlsSt1lpgTdtcmo1aBQ3wK14qU3slbj5uUr9iButLKHZXSh4v/vAA44KuoJx7D8gjOvdd4vVG/wO0G+CQofiVi6HVty8XCQ0cePcFeNmY3wcXA7kw/CAs52IGwWoeVylxaKY5/wIrE5xo760aROQRQMFrhCTkMRtbCVAcbv3XpGAQSTAs89GA9i9s7McSK4uvje2adwttatQ+kEq5RyiV/KeVombzPQG0LFWaQfiJm5BilsI4qYWgw4Lm7gpq7W40I243XQTcMst4ZITmk0RX5BKAUceiZZCXVzEjSYzWzmRgkkAceuanDBi8W1ANMXt9QDU3vavABYgVkuYAvDB2Fq1SsGrVBgxbxtHUtwmW3rFDejO/FXFjXM4BR2xB4eloytuNFjp6T+TEXZGzSDzhYa4/QgX4LHvfLIzSDwFeFOF5BS3ajtYcSPboQZW0/V2Vd3vBk85ECCE4uaNh4izHIi0tHMtcTOzh24U288915mNFOJGNauAGIibMsun2/6K26bDPa5Spe+ceKJ4pb7YD3HbudNN3EiQClLcgP4TFDpi3CK4Sr0I3YZ9+4CVFbSZx3SPjyM1Jjr2oariRrMSBTN5XKX5fPDDk6q4UVYp9aUjjvCobYB2kqZ7rMa4jZf3+K9s/tvfileK5Pfs81vfAm68rjPGLd8U3xvfHI64Af27S1MNz6xPrjk1qzQhxa2ZCZlVmrCrtAQfYkP2b2Wl09DW6yKB6mlPC5ecQAGx69cDmYwdIgJI4jY2Lf4hQ29PwHJOarU6DhA6OWEEiZtP79biKAC3AwBjbArAkwE8i3P+U8bYAQAXJdC+1YWKjD3IFjsUt4mmv+IWlrjVamKATckNk1jGVuYEH4dV3P7lX0RauFpEs1QSA7FScdd6820MYBO3I3E/Us2GqMkAiOSEgtO1whC3yIaTVqno4irdvBn47GfdZCWdFja1Xhd/gedL6FIOZOCKmzRIc3wG2SyQfsmLgAN7gVe9yvmOvLizE0287nXOZvVaqNwy9CSmTLgp3vYNrp6eleRCM4FdeKFYcP7BB0W5rn6JG5FpIm5nnCGI21QAces3QaHVjbhpXKWZjHA1eqsThO7/kpXeP/VwHLpwi1PUdmwM2QlhSE6afsD9iA34Km7ELyk8y+vCVonb4x4HfOhDwFOfKraddRbw/jcsAZ9UfqB5EnnqU4H/+3+BR1zfBKS5Srct0YfXaSJt6OIcd5wgcZ597tkDbIDbVcotC0W5ikRx/RjwYHdXKSD6vN+5hwFrePo+MaAIyQmAKOQb2gkn99cMUtwG6Sr1U9wyGcfQ1mruC7y8bCvUoVylnhT4ZUxiBgsAgFe/Po+pZx4N3PJJpzifPQEr82697iL0oV2lI0jcoihuKQBksZ8AgAP4lfx/B4CN8TVrdYLb9XU6XaUu4qYkJwDdJVuVK+3ZzV1ffBi/2X4flrg94QnA297mdteHdh96iFurbmGMnrjI4HpcpelCcnXcKi0xOaZ86rgBwGtf68TrEyK7SzWu0loN0WLc4lzyiogbZsW5jI8D73sf7OqiynEm8w3X2pJ9K24eC1vsYAlAA1mwlOxgmgnshBOAd7zD6fv9ukrpnpQxhrvvFvZ6YQHIl5JzlfJa9OQEwFG6VYTu/5K47Ro7DvfiaGf7+Lh9nccWdnX+LoTiprvv6umk02KVi0c/WmzLZIDXv6S74lYsiq45PeY5gN+aZ3QxJibEQdWgf9lO2z2vKG7UB9hEeMWt5wdHiXQzQHELmZwAAK1KD4pbOlo5EB3iqOPmq7gB/u5SYkuWhVy65dqfFvR9aTBUxe25L8jjKU8B8E//BJxzjtjoVdyAjuuwVojbXQCeLt//LYCrOec07R0KqGmTaxOMiFveUdzIVTrW6N9VCgB7drojaU+y/mS/D+sq1aEn4lYuI1NVpAManAN0lYYhbjpEJm5+rlKlHEiH4hbCVdozcZNPkvOY8b/fPhfXm5xA6JW42YZbQTulTJwBE1jo4pv+h9cqbuQuPWzLEF2lPllHOuIWVXHbVTwG2+Bh4EGGJEBxC+sq1cI74wd1aO9J2kG7PgfN550OqqhujYZC3HI5gDGwdttx244HJCfE7Crtmbh57hEltoWCTdwKfZcDiUNxK/ZD3AAUU+LcAx/ePMRtAVPOZ65liSS8MW7AmiVuHwPwBsbYfgAvAPBp5bOzANys/dVagkwNb+U7XaWlmuS1rZZjJeSADvK1e+PO9u90G4FDWzvt90XUUEC1p1IzvSpuuZoy4sloeVyl6WLyxC1dSJi4hUhO6CWrtOcYN6/ipoPPxVWzOnsibh53Uz/ELXTxTQXe7zYanTFuFL9/xNburtKeFbe6RnGjcwxQ3HRxbqGJgzyxHflj/YmbDkTcPFmlajO7KW5aRCFu8jpUINvZTXHLZt1xUnDaaRO3TMZm/xOQ9mc8QHHTuEppn72gg7hFdJXWpWLWC3Grh1XcEiZuJR6CuHkNnXJNCky0NazixrlbceuXuB3UyQmc8/8G8CSIWLazOOffVz7eA+BTMbdt1YEWOeaFTuJWqMkOpLKzEIqbd8wdeCC4l81gfnCKW6WCfF1D3Lyu0riJm71QKFBuih0MkripMW4WZRZmsrY3ykaSMW59KG5qVmdPMW5hFLe0oniEUNz6IW6Av+J25Fb/A/StuDXEhaqmlM5E46NQCOUqjZxVLU9sR86juJVKwcQthuQELbwzftCTiOxYOyD99n6Km1pjSDPxN5tAWsa4NblD3FLgsJjMtBpQckLGCiBuQXWepLFfxDSAXhW3/pMTqErM0lL0kih0iEI7gNhoiDeAvhS3VisEcQvhKl3NyQlRyoE8CcCfOOcf55z/2vPxvwDoVTtY9bAs4JprgPaKJG4aV2mhIhW3iMTNO+bmH9QTNy79dLOY6+xf7bYI+AlAaCKjTr6VCgoNveKWLTjELVMKSdwqlXBlrJUn8lpDdOFhuUrry+J4pelcZ4mfJF2lYRS3dFpkmLbbHUoDxbkl5Sp1TZwBE1jcxK2WGsOePcC114rtRx2bXHICpOJWzkyL/4NcpdWqWPD61luxccLp4xSb73vNm033mKPkhKxC3IpFca9V4lYowPUk0SU5wa8NdDpdiVuYml3yADsh01K7KW4qcVP2q7pK55fSrr5Wz3qWAfHCh7h5+4A63xM471w21ddVGrKO20JKzA+BxM1rv+X+6qn+67hls6LbtNtAZbGpXdPTDzZxC6O4BRA3UtwCbQBdw0IhHHHzS05Q0IurdGkJ+POflXXDh4QortIrATzU57MT5OdrEi96kci4WtnvPBV4Fbd8WXYgdRD3Qtx2awZ4LgcmJRQtcXvFK0R65c6dnb+V6FVx8yNuagHeIOJmG846B049VaS6dnv0UyZHepsp9kbcQrsqfVyljRVhvcZmNBNFNouOWZK2Q5TpCFU7TwdpkAKJG9A1zi0OV6kuOQGZ4ShuqSlxQpdcIrYffXyCrlK5z0pWEiS/5IR6HTjtNOCkk4CTTsIHfngKRG6XU2JDO7dalsjiOPNM0UkWF0Xmdj6PB3AY7obnJqrp0bOz7tXEfRS3QiGc4tbVVXrooeI1BHHrqrh1IW6qq3T/QsZF3Bo5+f0+FLfPfU5cvp/+1P3TT35SEO0rrnC2pS1P56HB7C0H4h3kciwssWkAXYjba14j7uV994n/yVWa6j85AXDcpelnPE1I8aHWgFL6Rise4hbWVdpB3HRlAXRPIzEQN6rG8PKXd/lNwohC3IKylfMAWgGfH9R44hPFa7sse0Chc+WEXNnfVRr0sOodc0t7NU9vmzbZ/pennDaPM87wfP6nP4kd3Xqr7zn0StxKjQXnfzXGTVmrNDuW850daHy1yjXgzjtFDM+DD4ZrQz5vc4FhuEprNcCS1fNLkz5P+Coz8ihuxXQTnIe2k26EcZUCvsTtxS8W5Rye9zxnW6+K23hKXkRlsiyMR0tO6IW4qQon3ZOHPWYcJ50EPOQhwF/9FfD4J8l+2G531A3r11XKpau0kvMhbnSABx4Abr/dPtkN83fZJVQCFbfFRVGM9rrrxO+vukpsP+00NKwU7sAJOPC0FwJveIPYripuMzNwZcv4KG4BtbHp6/b3tPAStxCu0j2QhNLPC6AeVONqazQcV6mXuFmFLopbiBi3v/xFvHrN5Y03itdbbnG2ZVo+oSu5nFBBs1lB2rwXVw765ZToO4HE7eabxUnfcYf4XxqterrUdzkQwLl16Vv/LOql7dsX+H3vbgthiJu3X2jWao3VVaq7/70SN2p7qTQyXtPAOm6MsS0A1BrnpzPGPIE7KAJ4OYD7wxyQMXYegLdDqHczAPYBuBrABzjntyrfOwLAJwA8FYI0Xg7gDZzzUMcZJKjURAFyECuK2xIm0UIKmcqyGLwa4hYUIOolbsv7gonb+143B0x4PqfeptP/JUIvvO5p0Exzr9I4J8ZNdZW6iJuPq9TFWrdtc6xJUBsU4pYpDSc5gTILc+M+M9v4uCPXe4hbKdsEWuLUIxmCeh2oVNBOpbHcngj+rc91f8Qj3MpBwFc74bGw09kKUIc4VzkZq8kpcRM3mnsnJ52K73RPTnn8OP7yHvXbTBzEssSfwkD6VdyYnLmquWmxwU9xIwZwyimiby8soIQK6igEK27qjbjsMrGaAACcdx4a3wM4UnjgI1/HOqrHqBK3AMVNXZtWXX6xL1dpBMXtANa5f+uFTnHzxLjZitu821XaLkpD5lXcqJ5YCMWN3vu5T9X+kg0iboDo++Tupm3ttr2TlZQw/rwW0AlpziBjJV+rLIC4hUxOAETYxB/+oLQhpA2lrwUqbn4xbootIOLWs+IWFOOmIobkhFEhbt0Ut5dAEKZfQGj7n5b/X65svxjA+QA+EvKYswBuAvA6AOcCeCeAkwBcyxg7CgAYYyUAVwA4UbbhxQCOA3AlY6yHnMlkccwxwNFHOy4jVnKIG0fKVt2wsNAzcbOXpTog4xumNjhf2rzZiXjWkTPqbd4ADQU9KW4A1lmKu0MpB6Iqbpli9zpufEV5ItOtxahrg0Lcsj26SvuNcaNaXoWJHhS3jGhr5Dg3eY8bpRkArCfFTYdeidtEVvZpXaYDkJjipi56bi8wr0up9jmxfhU32l+t0MVVSmPy2GPtjkdxgYGKm7rx0kudhdfPPdf+yCUseImbqrgRcWs07PP2eO77c5VS/cCkiJuPq3TffMZ9EcZ8XKU+BQN1XYO+4iX0ZD5dxM2bnEBQiRvg7vtKvFYjJQsI90DcaqlSuHIgXZ5MKGwi1YxG3OzbZA0gxi2IuOnUtTgVtxEkbt1WTvhPiCK7DIJI/QMAr7+tDuBOznmoOm6c828C+Ka6jTF2PcSqDM8D8HEAr4JQ+k7gnN8tv3MzRC25V0MstzUyYEysNFT8fCdxA4Q7az0OiJHfI3E74gjhSazMiUFf2bgF+UUpaW/a5NQY0JGzEIpbr8RtQ2t352fpNDJZhhZSSKMt1KhGF+K2rAxs3VqMujaoxG1Iihu5y/ITPpKESiRiJm7V0izQTa1Lgrh53E2TaXkRVZKa0Shumgmkl6w+HXGbYCvi0dKbyUsHqVZ9i6/2rLg1xTWtFabFBj9XKeGYY8T6jHCIGylu2vNX79nll4svTU8Dj3qUK/HShtdVqipudLEUxY2aN7KKWzbrm5xArtI9B9yuUjbh4yqlPhjCVRpJcWt3IW66xByFhDQa4vNA4kZGTkPc4nCVikQljgzF64V8komLuOV4H8kJ+bx+4fcQxK2XrNJVQdw45/cBuA8AGGNnAfg95zx82kl4HJCvdOueCeBaIm2yLfcyxn4H4AKMGHEDhLuUiFtqzE3cKEEBc3Pa5IQwxG16WnwvvSR+XxvfgCoKKKLmVtyCiFsCitsmrgkwTqXAmFjgO42GIG7LwcSNlT2u0jBtiCE5ofcYN45qlQHNCIqbR+KgRbcj13KT97FakDUCh6y42TFuukwHIHDNxrgUt5lsGWhAT9x8qvz2nVVqyRp+xS6KG+GYYzoUt9CuUnp/zjlAJuPiNjb8FLdSycXOYlXcyFcdIcatK3FTWWmXOm5759zELTXZv+JG70Mpbi3xT3tsHCnVhoVR3IpFWFYI4uajuFUQ0lXa5cnkmGPgXm84ouKWbcYT49aTq9SvY0ZwlUYibgfst0NFlDpuV8VJ2hhjacZYjjF2HIDPA9gNR4k7CcBfND+7Bf6ZrUPF2U9sIoMWLKSRLWb0xG1+Xqu4kRcjiLjl8+IB2u7kmaIT5Ksqbl5Vrd12jhmCuHUlEZ7Ovxka4pYWbtIWxGtuvHuMW6/ErVfFLXRMH0Ex+ClwFFEVx5bHK3ZLTshk7OviJW6RFTd5H8s5cc+HTdxKKY2rVKe4JUjcprODd5UySdyafsRNp7j16iolnHuu6yMXcVOz61TFTSVuSnKCl7jFkpwwgBg3tRzI7n3uGLfMtE+MWw/ETe0XnOsVt5xU3PjUtPt4tGNd31dISDMliVs1INBKJW6KPa/yQmyKm2u94cjETd4b3dgLUcct10NywiKtnOBH3JJwlY6NjYziFqWOW44x9n7G2O2MsQpjrOX5i2B6AQDXQbpZATwcwNmcc4p0nwWg8+vNARQw1tG+X/n9RWxXT5jKi4FXRdGVqQU4maX9uEqJuFECRDOdx27IJ2qv4vbpT4sFSZeX3QbDz1X6wQ/i7//9DBRRER3zfe8DHv94fOBdDTzxiZ5x3ANxy094iNtLXwo8+9kA5w5xq3hi3DgHXvAC4P/8n8CLQqeXGxuc4gYId2m1CjC5vTTdxVWqTqoBxO3ee8U6yd/6VkBb5H1czg1JcfNbOaGbqzQO4vaZz+BZ//cRmMUBTE0B/4RPYj/W4Ynln3e2gRDw0PDPeA/+6qInhIhQ7kRKqq3NsWmxoZviFhDjFqi4qa4gSdy0hCpIcVOugZ+rdG4OOP104KKLnN2EdpVu2CAyHTzriurOZxFTsJAWtrAbW+wS4+Z1leZmfVyldG1CuEqpLx5/909FCZebb8bysvNTHXGzs3btDwIUN5oDCgVY6S6Km5p2rq7MUSzCaqf867hFSE447DBgIhuCuL3mNcDTn25nZ9vErdGDq1S5Hrn2ABW3cll08pkZ5A5dh7fho2g2O7qFGyPoKo1SDuRfALwXIs7skwA+6Pn754jHfjGAMyCWz1oC8AuZxbo6ITtWDUU84Qk+xK2P5IR8Xthih7gVcBnOFaUIHv1oh7gdOAB86EPA734nqpCqzMRPcfvqV7F5+3V4BP4ovv4f/wFcfTWu+6878NvfegQwD3HbiL3ogCRut294Iu7Kn4TpLdPOBVlcBL76VeCHPwSWluzNqYoysOfmgN/8BvjmN4EvfCHwotD4T62fFRdpzx6R0t4FsRE3S1iv0lQXxU1D3HKpTuL2i1+IcgM//GFAW+R9XE4no7h1/ap3kXmuIW5JJSd885tYv/NPeCyuwcQE8EJ8A+swhwxaggU97GGdv/E5SD4PvBhfw6H3/E6k1UUEa4n7Z43Jp/877xSDeHxclKT3Fkw75BCbyD/iuAoe+1jnkgUqbiefLM7raU8DtmxxfRToKj3xRBEc+6QnuW7usceKpjzpSe59XH21CMH78ped3YROTpia8neLec6niSzK6QCj16UciLpywq69GXCFuOVnFYVbhbIYvYogxe3h234gMoJ/+UvfOq453gdxUxQ3X3dms+mUsalUXCSi2UTfKycAwlwfd2QI4vaNb4jidtu3uw6R7oW49VEOpN0GtmMLdqaPcmpxeeGnuN18s+jkCwtgc3N4IftvAF2e20aQuHVLTlDxPADv55xfGMeBOee3ybfXMcZ+BmA7gHcAeA2E2qZT1vyUOHDOz/Q71umnn95LidNokB1r/ZFFbHiUu96i/XTgNVKtFtBqYXIyrf0YcBO3bNYhbo1UAe/HB7H35e/HZ45KO1/805+cEVAuu5mJn+ImC2Fuwh5UytyuaE61hbSKWy4HNBpIw10bC4B48gZw+u5L0LbaYvkrGkh33ul8b2kJOVkDK131DOx/+zfxSvW3Usozhkrc5DXLTxXEIL78cvH3t3+rP1eJfrJKARHnVq0CqVYXxS2AuOVTnTFuVJM08OlT3sfFdATFLYQS2aur1F7yZhCuUjmD0tJusxD/v/dpN+Cff/Rw/ZN2gOJGv8e2bcBjHxuyEQIpSdqt8WmxgeoPnn22mA3VtmzdKvqwvFkf/UAF+FtnhYdA4jY+Lh7EFHRV3GZmxO/uvVccl0r1NJuYnAR27HA897SPHTvE6333ifuRyURQ3CYnxfGWlkSH9hIZ5XyayKKcmsRUa158n2RH3cl1cZXOL6dh8QzlViI91UVxi0DcirS+dLXqS9zyUnFj08oqFYw5F1eXmKOQEFLcfMmVZ6WanohbiIe2Y4+sA/SA7mcAqC3btgFbt9pfy9T7i3HLtqMnJ9RQxFlHbsNd3/DRnvyIG12/I44AduzABFsGpKjpu8b3CBK3KIrbOIBrkmgE53wBwN0AlQLHLRBxbl48FJ1ZraMB2RGZNBCMOX3HRdy8DvV6PZTiVigI22MrbjKN3K6XRoqb2vtXVrorbsp3NmM3Uovz9sCluAvXgKIG6VbKJkijxVLMWbOULobanqUle0LoIG7/8z/Oez83gKK4FQqw3Ui47DL/tkn0qri15JAhxS3dEkZxYrYHxY11Km60ClAgeaLiuywEcYuwGGavrtJcS/bpbopbHEteyXOfxRyyWYd4NQ8/2p9d+JxYId3EBJUR6ZbJrAGR9taEZ5FaKuyotofWGJM3K1WruGqoBbpKNZNQKMUNEGNRNUbyh8Qr1H0QcbMs4P773e3SKm6WJQYQY2LW67bslULcltMBgb0RXKUWMqg01XIg/ce40VdKCnHTLXnJOZCHhrjlco57W5eYo7o7uxE3db7QEDffciARkhMA4JjDuihuVAcRsF0woRS3MDFuPLqrFABYJq3PKAX8XaV0/WRM5hQWvc3pxConbhdDLDIfOxhjmyBqthHn/zGAMxhjW5XvbAHwePnZ6EGJWyCQUahm+idu+bybuNUlcbP7p+4J16u46YibsuzMJuxBYXGP85k0MFrFLQRxc0H3BKQQt0zd80SmGtgA4qZeH5u4XXpp13WkeiVuS6lpAApxa4vtYzNdYtzUmc9e8qpH4iZnEXLB+z4pAgNJTrDLAfjFuAVklUYqB6JEiM9gHtlUyza8hc3T/r/zYYdTbWU27pYQowGR9vaE59jUD9V77iFu1PECz9+HuLVa4lKowg6AzuQEFQH9wEvcAIfHBiYnkIo3OemQNyAccWMhXKUhyoFYyKBcV/qamgykoodyIGMN2T9qNa3i1mo5bj6m2l/1YnVxlfZD3CwrPsVtyyFdiJvaPtk5bOJW689VGkpx0xA33TTj7LSL4ibjP8fbSxAVAgL2NYLELYqr9NMA/osx1gbwUwAdLIBzfk+3nTDGfgDg9wBuhohtOx7AGyFKgXxcfu2LEAV6f8QYew9EhaZ/BrADIgN19KB0LAL1nVpuUpzd0pJ74WcAqNcxsUG8XVpyDLLyMQCHuJGhaDAPcctkhAFVDaFXcatWhQFRDbyy0PNm7Ma+JYfIUfxGZOKW0jwPdCVucmBv2WLHUNgIq7id8HCRwbFrl4hNOUkn2gr06ipdYtOYwRzGUEatBmR574pbVkPcQrlK5Syyvz0a5UDscgBJJyeUy3bjZjGHpdYiUuBYwBRm1gdYcZ8Tm7QUE9YDcSPFzTWmt251KpqqEzht83S8XhQ3XzKlU9wIpLy124JxKLMe7UddX5wuR6CrVHWTAsExbsqyT6GJW4hyIC2ksVzTELcYXKXjjWDFrdlUVsvphbgpyQmhiZuy/FKgq1Tdn2V1hpt4cNTmLsRNbb9HcUuFIW7ePqHsL9NDcgLQhbh1U9xmZoBcDrlGA3nUUasVOr9PGEHiFkVxuwZi9YIPQGSE3qX5C4NrATwLwFcBXALgTQCuAvAIzvmdAMA5LwM4GyLj9GsAvgHgXojM06jFEwYDRf4muIgb4Ku4pdPCPnHe+WCiErdCQVHcIAa8q396yZSXuAGdcW4exW287BA5bdBoQopblojbKad0fs87oulae4kbVUIGurpLe1XcFpg4b1LcMlxs74e4qTYtiqt0X2s0iFtaxnolvnKCInvMYB4TTWe91qDumBRxI7WVTyrEjfofkJji5utBVYmb9wER8I131A1NuhyBrlI/4qZT3ORsy1MpcKSw7Bf3q7YvRIybhQyWKiEUtx5cpSpx0yluvsStW99XSUhGXFjW6M1VGkpx0/3vwREbIyhuHuLGVoviVqu5rh/120ksrTrFLQpxezmAl8m/l/v8dQXn/COc80dyzqc55yXO+Qmc81dzzrd7vnc/5/y5nPNJzvkE5/xZ3u+MFAIUt3peMVLeyatLZqmfq7TmVdwA5ylbHSzdiJtHcZusOETOjqeT4/hb3wIOPNgjcdM9ASnELUfE7eEP7/xeWMUNcOKLaHkgH5SKHB/GO/G4Xd8L/J63DQtsGoAkbhVuuzvHZ3yIW0A5kEyvipu8h/usIdVx88udD6O4XXcd8OpXO2uaRiFuSt+dxRzGmuL/Ocx2CEwu0Il5E0wayljYuxfvf9My+Pf+B/jwh0M0Bsi0xTVNjSvlNlTipl4DH+LmvT0f+xjwuc/J3/SquE1PBz88+dRSVKFV3BoNUZ7n/PPFH5XqIeNFfX3fPuCNbwSuUUKiPefim7DlPUHNxG812khBhEK0kcKBBeU6+8W4RXSVZtFAqS3JYhjiNuWJcfMet5ur1I+4Kb9rlwNcpc0m8OMfA296k2stVBtdxv/maec4VjVYcWvesQ3nP4PTEEaqGiLGbf9+0Wc++1nxv0rcWiEUN09yAhCBuNG9oXIg1NY+iFtgeMoAENpVyjn/zwTbsfoRQNwaxWDFDRB96MEHxVcOO6zj484YN2iI28kni3Tn5z9flPTwxrgBnXFuHsVtsuYQOS9xe/e7gcfP10X5TIW4LaenMNFadPYZxVUqJ9xsQw6ohz7UKebJubgofsStUOgkbk99qni96qpOt7CC2QN34Z34/7Bt1/EQCdNdQMSNTwMQxC1tP/Wnkcn4PAPRhH3UUc42edMybTdxK5ed92EUt92N0VDcbIRR3C66CPjRj4AnPxl4wQv6UtyW6+L/OcziuOMCfuezcoKtqEhc8ok78P4vvAysvAz8zd84906HVgspLjKqc8U0cMIJwkV/9tnOdxgT2WuVinP/AxS3SgV461sFV3nNa9CVuHUMqU2bhKE4/nh9m30SVUIrbr/8pcIqFZAbmEjWv/+7IOi33OIo35TwlMkCdWAxLHGj66UQt3ZTzNytVAZoM9RaGsWNAgBplo/oKp1Rixf4uEotC5jo5irVLXmleGdsxS2Eq7S8t4IJhTl0KG5vfztw++3Ai18c7DrVgBIEAGB5rtlZ0kEhbtlGBTdeshsWDsHMNAdWFDLkxdgYsHEjsHcv8JOfiAfq177WdV6ZVkTFTb4N7SqdnRVlqFRXaVjixrnzm2JxVSpuBkEISE5oFsIRN/qK5uMO4lblBdcxAACf+Ywwlk9+svhfp7h5iZtHcZttdCpuNKCqVaXCtkLcFnKb3PuM4CqlzbmmNMzT08D114s/Gh0+xI3n8p0xOBs3AqeeKgzNb37TeUyJQ0qCaJasLk9bBHkR5rg47wlWtl2dTeaTmAAAp50G/PGPwKc+5WyTJ53mbuKm3Ap/8qQE6O+uj8bKCTbyeYck6ZIT6nXgLhlREYfiJhWzR507gxNOCPidz4mV6m71+YX4BlJlGei1b19wW+S+6sghl2eC1Pzxj50uymuuEXWj6D4EEDfqB3Z/9CFummdEgelp8eD2k5/o2xzRVcq5R3Gje/f0pwt158c/Bi65xCndQ6TpuuvEK31fcy6LvPcYt3ZDdJZUNo2rrgIe/TgNcQPcfTCiq9RF3HySE5oN7tjDHhW3KK7S1kqAq7Raddj20lJkV6lK7JpdFDcAOAbb8IMfAH+4pgZmWeI8ddJtKgXccIPoK/m884SixrhFJW5RFTcqN9MLcavXZfpwHkinR4a4hVbcGGNf6fIVzjl/RZ/tWb0IUNysUvzEraZT3CYmxJP/X+RqYRFj3Eqo4simE+vjVdyaTT1xW8nNAO28a5H5DnSJcSsQcRsbcyRHPyYhj0NGL5fziHznnisKql52maPAeZCpieONYwX33iuEvkDINhxoi/Oeza8gV5N1vJiPm5Tgjdsj4tZ2x7iFIm5Uwn1sDItVcfEGXsfNz1WayQgDvrKid5VWq8A9Mn9JdnQfL6YeHsWtJBW36aOD/KT+B7HLPUi8FP+pPZYWSqB9Pg/xwKCDKp8Dga5SGqp21mhU4gb4q23qfgJcpTMzYiwdOCBMg8stS8TgyU8Wbi8vvKtW3H+/2EEu10nc2iGJGy1D02za++JNeR8zGVFE+MgscLWmDdmsY5MiKm6HqLl31SrmNNU8mlULabTRRAZZVW2OkJxgE7dmd+LGqh5X6R6lHMjevc5vVlYiu0rV77dCELfj2DY861lPAPZ44hx1OPJI8Tc9LYycZx5Mh3GV9pOcEIK4+Rbg9TC1USFuURS3swGc5fl7LoCXQiQbnBVz21YXApITbOK2uNgXcSsUHOJU45rkBIL6lOrN5glQ3ADg4fxP9nvv4r9+xK2WnXT35G7EjSZ1NcbNku3U1QLzIW5NGR/S4Q0NE+cmn+DHUMa2u0PUZ5ZtmJOu0unMiq24tVJdiJsX8rwoK5HEBIVD+xsxun+zs+GMSBJ13PxYVjbbuQAmIO53KiUYCY0T2dF9vJh6KH13FnMO8QrMTPA/SLEqfn9fVrhEZ7DgfOhXrJqgEDff4rQ6eBYF9rpKCZaFDrJD0JiacPBRX9Xdb9rkeIi3bfO4Som4kWvUC2/gT7stqvkCHeey0FZsohdeX7Anzq3VkDO3Tt3tVgQ6ZIzbrIe46VylrbIMW2EFtxFKSHFL1wMUNxUrK5FdpS7iVutO3E7IKOoeEEzcCJN6AWOkFTfl+5w702nksRczQhM3zvkWzvnRnr8pAGdCLBD/3KQauSoQoLilSgXxT6PhGCoyRn26SrWThpqJRR2PjJhfcsIGUZNkCk4DOhS3BkdBR9zyHuLWLcaNynQoxK1orbjbrv7Gj7gxH+L2uMeJ9vz5z041ey/kCEyB477bQ/hKpVVZwDQAYDKlErcoMzd8iVsoxU3ePz4z0xnfp0MEV2locS4McVMnTcY6G+khblFdpVlYmFqQVWIDMxPg24/yFbG/69und/6mm+Imr2cDud6IW4DiZje1F8UtCCEUt82b3cTN5Sql4m5+sX+6dWKJ7MljMnmw+VZIxQ3ocJfaihvN3H7ETRdn2WOMm7aOmyRujVTBnXYbhbhlxeepEMkJeSskcSuXO70fURS3epesUgDHMtkXohA3cid7BIxMU1N2SoXqs8/noytuZB96IW5KMkOjIZ5Fslm9A2mQ6DvGjXP+awCfgKjztnYRQNwKReZ0bJqdKZhVdkjq02GJW6UdgriprlIK+FctEOeOzKMpw+GNcaOR1U5nhFuW2pgLobipxvW008Sr6iptKa5Sgp9aRMQt5UPc8nngLCkA/+IXnW0BXDEzD9wRosKMPHcqejvOyshBFmDNxK+4+dpZef/aU05igl/xcACRiBuV+uK8y6LLQa5SneIGdN4k+QDTa3ICAEztl6QgLHHzrlVaEfu7tvWozt9EUNx81/HUwUPc1Guu1lELUtz6Jm5dFDcS1FyKW6Ylls8CRK06HVTiRi5iInt2iQ9xsHk/V2mrJWZHtbqw8iDabgOs7bhKXa+0LiBB/dyno/nFuEVR3BqpiIqbLjnBx1XarijZl2iCL8gHf29WqQpVcSM7HUFxawcobq0ZoV5t5fEpbmmri+KmlH9CKhWf4iYn3bCK26i4SYH4khPuAXBqTPtanQhITsjn0ZW4+Sluap/ti7gdfrh4VSe/5WVxgFJJ+xStKm6cAyk5wNrZvKv3NgohiBtjjvE8VXaVxUUnZrvtr7j9/romrr7a2UzXrOGnuAHuVRR0UIjbnm1u4vaDHwC33aZsUIqHEnGbgKO4tdO9KW7M6iHGTc4gzYkQiQlAJOKmNC1YdYuquAGRFbf77gP++7+d9bUBdBC3SSJuPbpKc2VxLf+AU+2lzMpThwAA9t0xh0su0ezrppuAn/88NsUNcK656jUMo7gFKq06qJLqD+QC6p7dq4rb3Xc783lp/gFxzps26ZU1wF1D7WUvE++9ils2i1QKWITPk6paw42eSGi/Cwtofe2/sR77xb68xM3bLtqezTrvg1ylc3PAf/4nMo2Ki7jxatVVsoeuSbviQ9zUC6rLKlUXTM+Kz1M+xM1acjOK6s4D4o1U3NpIg3s9HDriFkFxa+sUNzkRNY4V3pItLXlfqdNGIW4LC672pLoRN8+TyrBcpQcVcWOMZSDi3Hb23ZrVjCDFrQCn01KHJYlNDoiortJyK4C4qa4F6m30BKw+OpLEs3mzvQSICpW4qcu7tDIa4qYqZX4VuqemhAH1KG4Mbf1C5fICvuftTTz96cok7iFuWsXjKU8Rr57FuW0olnjfvc77e+4BnvMc4BVqmo08MGcMyxCGcIyv2Iobj6qbe9hRpSKub6gYN5nt2BwPUQoEcC5OqNTZBImb9yZ1IW5vfSvwwhcCv/2tslH23TbEhD42J9do6tFVml2WZVWwGXdB1BO589S/BQBcc8kczj9fk1z6/OcDz3iGHQzer+IGOGOY6mLZTU1KcbvtNtHJX/pS1/EB/xi30oNyog4qkbJJZpc/8YmOgu8hbshmkckE1HHTFakjQvbRjyL70hfiXfiw+N9L3LwxdnS+KnELUtw++UngZS/DC2tfdrlKac1mmv+bTbkARUVR/qMobtSpxsfBc8HErbHoHre1BwRpJdcdAPCsZxJQkxNiJm61Q49GFQXMtg+IB/9eFDc1kQJAutklOcHT4WkeGHRywigRtyhZpVdoNucglqxaB+A1cTVqVSIgOcFF3AghFbfO5AS34qblDLoYN53iRhLPpk2O0VWgukrVYpOtdA+KGyAklGrVaYssB1JEVRTULBa1q1/zZhMLC6JM1uGHI5ziJmP2fNdNVJI2Fh4o26sA7Zd20RUap0w65YaYHIqo2Ipb5IAHUtyaTZRKTkH0UIqbzMqsbj4aQAgjQtehW3kLd9NCEbc2mF0I1f5xWFdpF+JG62bS/QBg99250uFYX9lh11Hrqrj5nFRmyVl54UX4Oo7CfXjBERmcik8gV5m3K6/QJQTnomGtluiMEIpbMYriRuRCo7ipxC3R5ARyecpXP8Vt2zbndhZ3dUlMAIAzzwS+9CVRy45ORkPcsllgqRGBuNE1++lPAQAPgZTDvTFuYRS3IOImCcWJrVtQgmI3JHFYt040lxJcSXFrpiO4SqtV2O6DRz8a7S+Lt76K27KbuLX3OsSNXOs8mwPqCvMol/tzlTb8iZuVKWIfNuBI7BCpx70QN09CXK+KW8AKXu5Orca4ETzEbdsqU9xCEzcIdc6bfrcM4PsAvsU5/1VcjVqVCKu4EXyImzfJyqu4ZaXqVWkFZJWqmWtEXIgshVDc2qk0Uu2WK6tUzSi1PIpbszQVjriR+5LaIBW3cTKSPk/MRJC2bXMTtxoCiJvORaFCIXSF1gp27BDLpNLXXfOJUjy00hDnWWhXbMUN3ifebqDr025jYqyNSiWFcjkkcZMT4fImMbt2NSJEyD3G0g+hiJu0nDUUUIJi8dQYt5CuUr9yIPR84XoSpvp1Y8dgfUVZEb2XGDfOkVkW+5vHDHbjENyE0/FXKVH7b0ouh+XqPisrzj4OCJdVE1lMrzbFjfrCgQOAZSGXc+7Vpk3CFJRK4mO6nfkdXRITAOHaJKmaBtA99wiJJA7FTX52KARpdhEz9Xve881mnTEX5CqVqv/RfJsrdozVqgA4ZmcZdu0S363XHSWuGSXG7be/Fe9PPRXYuBHtrDD4vsRtxS0FZeblA1ip5Fw670NSn4obD1Dcmqk85jEjiNv8fDzErZvi5snC6qscCP14bMxuzxQWu7tKx8ZGirhFySo9k3N+lufvf3HOX7PmSRsQG3EL6ypdsQJcpem007tIsiBXaQjFrbpOkDzVVeoibh7FzSqFyCpVQcZkaQm5LHeIm4/hVYkbAPui1Hk8xG0cKx1L/CwtCYEFgD1Z83QGFTjEjdrFchEVN8bsc5sZdxIUQrlKZUMX14UkbkTI1Z0HIIriVoWHOfQR4+Y9HnF7F3GjFSNKHvLQjbjpDrKyAmZZKKNkr0ICODGMU1w0wNV91IcehbgNK8atZ8WN+gLnwL59HYobYw4/o/PP3h/CVapiclJIlbWaUCeVEh+ZDFDGGDhj4uFSJVO6ZSE8dmETpKstbIxbLtdVcWs0YN+TY7DNFePGOEcODczMuM2KrbhlCmL/FJMXRNwo5laWLCJXKQXoe9FacTOKUrmTuLG8xlVK19FTvcAXKnHTKW7k5UgVMAc53ubmYiVuJsYtPMzKCXEhIDmhg7gx1iFhx0rcAEe9ongCNcaNggR8FLelGbE8j+oqbTQU4pZyE7fWWEhXKSGTEd/nHLlmGWOQbssuxI0S1GzFLYi4qYHYrgh3CQ9xo32ry9nYpEFV3CRxy7cU4uY1nGEgz22qJPaxe7ewETQZazM7ObeJ2/zsEBW3MMTNz1VKrrYAVynnGsXNssRvGMPuwhb3MbtdBN1JzTtqm4oDXExKNHG75jv1oUc+EEVOTqBq0Y2GfdJDU9wAYPfujqxSoJOfpe+LSNzU727b1uEqBRj4hDR6ajptkOLmhddV6lXso7pK5cx8JO7HJrjHSxFVzM66iRspbla64C55E7TkFS0BJr0PFJ+WthrKk6KDVtnNKHItGa6SL6FcFoe17Q+d/+Ki2Fc67XSSKIqbbvCT4pYuOGOmV8WN5iR5vaiGXSLELZNxz7Vrkbgxxk5mjH2PMbaPMWbJ1+8wxk5OqoGrBhprSuPXlVVK3/EM6NiJGxk7GiRTU6IDt9uOofRR3OYn3MTNq7g1UyLtvsXEyIlM3JQTzteXelbcqu0A4sZYcEalEuM2hnKH4gYo90JD3HKW4ypN5Xso6uMhbnT8zZsDyNPevaLdMzNYTIdMTlBj3AJrfLiaFdpV6kKQq5S2n3yy6B+1GtBoaOfTlRWnqTZxI1YzM4OFzHrny7OzXeqhKCelHoTi5eBW6/a35MoYmAPAQylukZITGHNumrQZOsUtTDmQyFmlOuK2Z4/LhtACEG5+xsHuiY+40T1vj2uMXlCMmxfdFDedq9TDDly1C+XMnEELWyHi/yhjs4BaJ3GrUeiIvBE64qYqbrt2idqSY2Oi1iSAVCaFBq1+oLFTvKJnFGUu+tDEhFMbDw9/uHiVfRO5nNPgCMQNATFudRaj4ia9TlTDLmxyQiRX6fi4+6YdJMkJoYkbY+xRAK6DWCHhJwD+Rb6eDeBaxtgjE2nhakGU5IRCoSfils+2kZdkYakeEOMGOEaM2lUqOUHcpByoitvYGOpZYSD3jW0RzfQhbo1UHmAMzazowe2J3olbtrrUEeN24IBsYhfiRoqb78QZ5C4NcJUehp0ooNpB3NrpLOrIow2GbKtuX59UIT7itmlTAHmSsmD10GPwxz+KTV2NSDYLrF8vCLsa6c+52J/nKd97bN7muO+KbeBt5Xv9Km6TjtJCXnXOHWFUFbZsg0obZ2awmFJUsm5uUkDvKp1zEhNULDaKaOcLyKGJEirxK26A73qlYV2lfScnqFl9iuK2bp1zKJWfbUofAFtaEvdtvUKauyFQcQPaYxqjp5YDIZAtGx9Hc72S/R53ORDv8oAAWuvFA20RVdtVmoaF1vYd4HbAvoe4qfdLJW5UU/LMM+1xkk4DdQTYKUncGmk3S19piz40OQnnWlEmL/VTWjLMb98qQipuvsTNu0avDjTuad6Rv2EhXaW1VNH1UBdKcVOJW7UqzpMxsW2NKG4XAfgLgC2c85dxzt/JOX8ZgKPl9ouSaOCqgUZxo/5SKiEWxS1lCdJWRw5Ly0Jl6ErcCKWSM8mRcqAqbgAqsobVg/ktADqzSm3iJrM561lxDD4xFS3GDbBPOFNxiBsfG0e7LezPaacJhQtwu0o5RzjFDYhE3GgJzdTe3bgHW/FdPN+ZSJUYN4ChlhLnOgXxhXSktEIJaVgmi+Lcbr9dbA4kbpLd/eiWY/DP/yzb7uNFcoHUVDXO7T//EzjuOODLX9Y1yz72r//6MzjqnGNxzZu+63wpiLhRP/B2TNp+zDGuzq6W9yPDratSb/fZ2VkspBSy1i2jVHdSyv68ilulAliTjrvUj7jx/ULVsJDtEBe7wmf1hIG5SlWGuGePPX7UikAqcbOXN9q6tbu6qYJ2cs89WsWtRcRNbY9OcaP+ctZZaGw83NmuxrABrqLgdCz7NYKrlLCCMbTGBblQidub8XGc8NQjcci1PxDnIYvodlXcfvlL8Z6StBCCuEnCVC6sc21eshTiRsfwErd8vjfFLYC41VgMrlLydkjFjVFB9S7JCZf8soinPjUkcaNrMjHh3A/6IVUtX8XELYrJOQPAiznny+pGzvkyY+wjAL4aa8tWGzTW9OUvF337/PMB/CKYuCnx+mKBaeb6WHydBg8K9njpGuNG0CluJKnLp+g/nf9e3P0fv8b9E48Rx/TJKiXi9rPT34c9V92GzMYjgGpvihtbXsJ0pgxYQKs0jkYNeOAB8ZUGssjDIW6Li6Lp6+ruzNo4iBtdz/wD9yCHJk7Bn3CXRnEDgHq6hFK7bBO3TLF3xY2IGz2Mn3aaU3rOj7jdjWOxebNYOcxVb84PmzcDt9zidpGRZEeM1d0s59h33gkAqP75budLcvLTukpf+Upxbf/qr9yfveY1YqfPfS7w2c+KbUqcm2WJv1zO7ZHUKW7zexWyFUZxC+EqpdULKhWgOTaD3L5dmME86vUjnN8oDeP794Ohh3VqgVCKWyIrJ+iMxe7dOOUUUS9X4ROuqh9HZnYBdQBHHNHx80CQOre4qCVulk5x0xG3v/5rMSje/nY0/uE9sC0b2ZnnPAe44QbgJS9xH19V3HxcpUHEbR4zWJ8TF7mIKiYmhEk5Db8HABx+4w8BwF62yrY3fsSNqnqffrr9cTfiJjJagWpxHWbKD9jbF5sKcXvDW0VRaLqB9ATQo+LGghQ3nu/fVUqgBL2QMW7LVgF33x2SuD30ocCrXgU86UmOwmZXk5bjr1gET6dRbNXQLDcA3SoUBwFx67YSd4iVug9iaAJPHv1o4Nvflv+oUrKGuOVy4qe1mtgVdQ4/4qZLvnIhSHGjSVBZsBwA9pz393jVf/w9XlsT8R1+rtI6E+d4xfGvwRevAj6fA8B6I25YWsJ0ZkUQt/yYy75UGm7iBgjuEgtx88S40VfYsjBEm7AHNy1yAKyTuHkUt0ypd8VtPC/2Tbb2vPOAz31OvPcjbttwDP72b4FPfCLksXQJCqS+eYvSeohbui6sFRUbFf8Iy6lV3M44A/jWtzrb8MQnij/AvWah/FmtplfcOojb7CwW9ikqWxjFTecqlSRskc0AXJSZ2bFD2Ona2CzGEKy4kavUirpOLTB8xU3Fnj3IZICvfMW9+cgjHUJ9SMqtzIeGep4aV2mrFJK4bdggakACqE8rbaD7unWrYmjR+XmPrtI5zGJGkrIiqiiVhEmh4rypttiXTdy6KW4UD6HImd2IW6ou3YTj6wAl0mGhoRC3v/kb8eddpi2fD79yiou4ab5rl2AqYA5ybomquHndqeQqbTQAcFiWj5orO3wVRVdFj8BpJpUCvvAF538dcWMM7fEppBfnkCovQ5Sj9UAlbvvdPx8morhKrwPwLsaYS49mjI0BeDuAa+Ns2KpDN2vaxVWqfkW1Y37EjRDKVZrJCAulukpbLecRXz750PHnK2L/vsRNxpa5bGxUV6myOOt0RqhfVmHcFSS60nBcpXQ627bBcR9Y8SludFwibjk0UXtQGkIqOJsSxr+eEec6jQXRvj4Ut4mCQyZmZsTDeDdX6TYcEy0gXlcShEhcV+ImCC6VPgAQ7CoNA09HD3KV2v2BJqWZGbd7M4ripolxoyQPWn6zUgFqRR9XqTIxphYXADhkPhL6jHHrOzlBhU+ZmEwGOErkKOEQpsTCRoEPcbN5dEmz7FWXJ9LatCbGzQ99ukrnMQNLKm4F1FAqiWvuWscUXYgbDdSlJdF/xsacDBB4iJsmQj7VEDe7OeGQilYqg4WyVOxVvuT1svSYnEBL8bkg21bliqt0bq63Ja8IpZJ9A3JodE1OqKKIWi0kcfNCNZjKXEWZzenykvcXAhrFzS9XZpCIQtzeBeAkAPcxxv6LMfYRxthXAWwH8DAA706gfasH3SKGuyQnqF+JnbhRT5vxDDjOBYGSI4COf6DsJm7eGDcqfOtL3KIobouLmEgJctDMe4hbzSFuj5SpL9u2wb4oPStunPsSt9SKc/FbD7hVqbZ0izXSbsUtVehdcVOJ21OeIi5d7MStD8UtIxW3drWTuGldpWHgQ9zomIGu0tlZLPJJe23Rfl2lK1kxJo4WC1GgUgHKebFNuErR8RsVrajr1AK+xE1t3sBcpQFlYkgYsktjxKS4OcQtpOKmoDKhtCFM2SF5zK7ErcG1ipuVdVylY2PCpHiJWzsXgrgRjjnGFSfYTXHLNMXNtqacft7MjelzAnI5d1+J4ipVDG8Qcau0+8gq9cYgKgJGHnW02/rKTSpxIxEBiIe4YcqJtdZiRF2lUQrwXg8R53YFgPMAvAnA0wBcCeAMzvkNibRwtSAGxW3K8wBqWaIjp1LS7miIm6/IoT4WUE9TFTdFwfA2cf9KsOJW66a4RXSVTqYFiWrk3MRtWSFuj3qU2Hb3Xdy+ZqS4Rc4qrdddFsJF3NQnL48qRfFMjaxbcQutNKnwuEoBJ0RFS9yWloB9+9DIFPEgDhmY4pZpSmulELdWQ5YDYUpfT6XCKa1Ab4qbQtyarRQWMC3+79NVupztVNxWso7ipisArCIOxU3HURLJKo2guAEOcdvI+1TcymWtq7RZ6IG4TUZQ3HQxbj6uUlqQuZ3JYh9EbN48ZmBlHOLmdZUSWkHEjeKrCJ5yKt2Jm7jZ7WlHcaunS/58SX1g79VV2gombrbitnu32K+aTR4ENVkCcM2DY+mAODeFuAFOlEscxI0d7MQNADjnN3POn8c538Q5z8rXv+ac/zmpBq4KUGS1Kpd4EcFVurAgRCH6yFaUaMUAOKnkvp1XHcDU01TFzRPfph5//7JUslAHwDuJWztm4sYEcatnx1wT5VLVIW4Uz7v9bktcnFQKlYYwzJEVN8/6pWMQa5VaFpBRiFtqr5ywpDVpSVdpMxMfcRvLhSRuUm07MLUVHKn+FLdazQmo6kLcspK4MWUtxOqKtK6FYucPw8BL3NIiPJaMtqq4dWSVzsyg1VKyQft0lZbz4veq4rac8VHcvDFEAFqZ+BQ3FYmunACIe5BKievg46OiBIUN7WQUt4ZC3OyqNF2IW3lcE+PmhwiuUorlbBdKuBvixOcwi6aHuBWyLczIcc+lckarH2iTEwC3gfKs9dqNuGVb4mbzdQ5xq6VCEjfVVRohOSEVVnEjezI5GT7b2MfzNJ7VEDfqFB7BIk7ilpLELd9Y0qt9q5G4McZSjLHzGWMPC/jOyYyx8+Nv2ipCmKCTCMTtqU8VYRC33CL+t/ucpwMH1o/SETc1OSGAuC0up1CXGTY5NDpcpVWpuLlKLvVYDgRLSxiXxK2RHXfZF4rjUInbzm2O79izhF0nQhK3CXn8Wk3UlSNkDoRU3CIX8kIHcTvxRBEQrnykJW57J8QTe1+Km1rHqwtxy1mdxK22LKxrejwG4vaZz+D6Bw/HVmwLrbhZllJ/LUo5EHVWkCSsnOt0lVLcW2ByggTvR3GTM1BUxS2W5IT1651YK7U/KCBxaL0Vb4wbNYOI2/z2RRx6qKhQQ9/77o9y+OY3O3e5Mt6j4taFuNEDSrtQwjaIE5/HTAdxm2ELAIB6aRoPHiqMEvcqbn41DIHIiltOErfUeoe4VRBA3FRPS4+KWypAcSu38ljCJNophTWFcZPqvqvMg6W0pySIZQGPehTwohd1KG5EoOJU3HyL8K5G4gbgRQC+CdCaRFosA/gmY+zvYmvVakMYS1oqOYTGh7g9/enOONu/H7j8cvE+duLm4ypVS5KQMSmg1qG4VVvxKm7jsnvVMm5X6YP7HXJDlQhW9jtsrW/iJn9IxK1edxO3woI7DoyIWzMnjON6uUB0P4rbI05qYutW4E1vcj5yVXMnSNJ1oHC42vRw8CpuAYuieolbnoibsgh2rSzcTZkJpRFRipmpxO2738Xm1i48EjcFE7edO8Xr5s2wLOCHeBaah2+B7UMPgo4JS7Jy2rnrcdJJYs3vdFp8ZV8rAnHLxJecoCKRGDd1P7Oz+vp+Cp7wBOFCTkxxo4Lf91ewe7dcDUoalflKDp/8ZOcul0sRYtxCrJxAX8k0ZPZ0voTv4znYhUNwBc5GM+2EjZRKjpu0VpzBNY99E7bjKNy39Syxk6c9TaQnn3GGux1hiZuXXDWbSPMWLKSRWecEs1V4D4pbFOLW1hA3O664AIChUZp2PouBuI1lPIrbnj3ATTeJbGFpr5MgbmotN039ZUfeK5XUt0NHGOL2H5zze/2+wDnfDuDLAF7i952DHmGCTpSCf37JCa96lfj3rW8V/993n3j1I26BfEEX49bFVZrJiJ9x7hxDR9wqMbtKx7gcmGk3cXtgrwzgzzftuNtcy0nt6Zm40QiUExGtlVqrAbmaQ9yKy3LCIlcpEzOOJRW3rbOSuPWhuG2cbmDbNnHvPR+5OZW8X0uZWdephcKGDeKhYf9+cS5qQHo34tYW1zvddG5MvSLX2JyMQXGTq0HkUde6Sms1uNZoxbHHwrKAi/Au7Prtvc6SXkHwxrhxbhO39312E/7yF9F9qQs/WNO4SptN95qaEu1eXKU0NrvFuPlkWPacVaoeaGbGUdB8EhTWrQO2/WkFuWZFHMwbXN4NmYw4ZrvtPCypyQmSFLVWpF2rwT7nBnK44YZOrlxOT6JKMb69KG4+MW65prABrVwJP8BzcBh24TqcgXrKrbhNt0WDasVZ/PHEv8XR2I7lzceJnbz0paKmzIknutsRNsbNS65oxQAUkJt27Otyu4cYtyiu0gDFjZZabIwrIQr9EDfZiYspD3Ej425ZwB13AEgmxo3aM4VFPXFbpYrbaQAuC7GfywGc3vVbByvCPgJTp1U6rG5AkT29/37xmqji5okRoiaqxM3rKq1YbuKWzcJNFCO6SktE3FLuGLfFqtudOD4OlOCMHlfGrQ7dFDcibtxxlebrDnGbWPEobky0x8rJ60lxYn0obrr4oiDiRqsGRCJu6bRwjXEu1iyNoLgVJHHLWDU75KRRFtY1P90ncduzR6zfCMclD2gUt337BGmamrJdpUAEkc97UvPz4v3kpGvM0jDZUdYobspaqa4D93Lvo8a4eQZ6LMkJIRQ312ebN0dbNYFA57roqNO2qzQliZssNVOtwkXcOHe8DoSmxbAHst0JuEqtvHtWbqTdxG2qLexmpTDjJ4h2oqAQTU8R40xGnCuATjtFJThQRH5GIW5WBMWtB1dpWqe4ybYsN8W5WBNKiEISrlL1WsiYIS9xC5sLBaB3xW2VErcJAJ0RuZ2Yl99dm+iFuAUEjZI99VPc6Aktlhg3T4yQjrh1KG4xu0pLLUGcKim34taEm7iNjbmJW9+u0g0bAMZQ4hWk0EKtBhTqTjGtyZo7xs0i4kbGnfY7COImifaCXKczEnED3HFuERQ3Im4F1GyD2aiKya80W+j8YRjQvafVG+Cu49RB3NTCpYz1TtzohyoZUUBd+L4ljeJGDzrr1rlqMPBsMskJiZcDCaG4uT6L6iYlaIibrbilRCduV2UIhkLcaOxf5pENGg1gN2S7o7hKuxA3iuW0H8okiCyUUBXLW1pOUouded2tH5KB2rKl48thFLcqiijMOu1atEr+5dPUB+gekxPCELfWVAyKm+J5KnmzStWJQBqeJJITDlbith/AUSH2cyRcdZ3XGML6LkISN7KnHcRNqV4N9EDcxsdFby+XnckrhOLmJW4rVrzErdAWI7HM3MSNnkRLWb3iFpq4eaNOibhNTtrtLqEiiFvTUdxmG+6sUiJuLc9TeT+u0qiK2zx6UNwAd5xbWMWt1ZKZxaIf0FN+oyrcTaV1CnPoJcZNaQe5SptNd+5IvY6OivORiZvXVepDRqgL3z2nUdzUBx1l8uExKG5RkhM4H1yMm+uzqIkJhBCKGyNlyaO4AYK42RmnEJekJ8WtSzkQm7hl3WN72RIXeSJTBWPARFPW/8s5ym9oxc3jJgVEs3wVN4W4Fdc57Vppl+zbEks5EKo7JZHhAa7SpiTbKnELs8A8wUdxI1epbY40mQIDj3GjiS+dBnK5VUXcfotwsWsvld9dm0hIcaOOEpurlDGHqNEalT7EjZ4C1QnVz1Way8FtHCO6SguWmKnLzJ1VSk/dxUyfxM0vxm1szL5OYyijVgOKCnFb19orDJqtuImJoO0lbgNU3OZ4n4rbnj3hFTdl5WWVuFk1MWNNbOzTVaqAXKXeihsuxU2WUujbVdpFcbt3XkxE01hEsyYnejUmVGk/G4SrVPkCdeVcLqKriH5EmJ0duuJGS+elGv7EbccO4Pbbnd1FIm4RFDeK5Wx6iNuSVJjGM2IsjDdFB13J9OAq9ZQCATzEzUOuWit6xa2Ckp2rE0tygsc+dihunDuKW0Psj0/H6yr1jXFTkEiMmySdWuJG9k8uSr+aiNsnAZzDGPsEY6yDJjDGsoyxTwI4G0DYlRMPPoQNOumSnEDw2sieiJsuOQFwXKM0GYZwlZ67+6s449tvtEnTSjMPzj3EjTHnOFEUt/l5jNfFYvcrfEzrKtUStzDJCWocIediofPPfc6RdMbHbUM3jhXU60DJWpLHziCDFnDggEPcMADFbW4Ob/j9i/FYXK1V3A7wPhW33btDK27NRceS5VG3iVurX+KmeUKnBwTVIwloXKVwjHtow+11lXZR3NpIY14W+M2sLIiNaha2Ovn0cu9DKG6qq/Tfv+Rc254TEwD3PZqZGZriZmeVSsWNEl+qVdjn3EDObu4FFwBnnw1cf73HVdprjNtf/gI897nAnXeCMdGPyK40Pa7Sxbro42Mp0caxupMkFJq40WD1Udz8XKW1BXGzG6kCUuNu4kbCYcdQ6iU5QX7G5ZNAh+JmydqZmYxdO5PP9ugq9VmzuySv78CJW5Di5mFqq4a4cc6vAfBmAP8IYCdj7OuMsQvl39cB7ATwOgBv5pxfm3xzRxRhFbeHPlS8Hn98IHFbt87dKWNT3ABHYdu3z/2/hI64vfqB9+HUqz6Js3AlAFHHzbKcsWW374QTxLqncu3TQORywpBxjhRvYwcOx3KrpCVuhXQMMW733AN8/vPAe9/rS9xqlTZKLZE5eC9EYa/Gjj32ZNKUrtJ2MUHF7QtfwJPu+zpej09ridv+do+K25Yt4vXPfw5U3FTvcm3OsWQuxU2unDC9WbnwvbhKFZDiRsLWoYc67aDM09hcpV0UNwA4IBecLqzICBA/xS2XnOLWboj2XvjRrLcWaXQ3qfdAs7Nd67gBSERxo2aQjclDn1X6rGeJ7911F3DllcBXviKuyx/xCPEBFd/zAylcxxzjdpV+/evA978PfOtb1CSHuGXcY3uuKolbWtj4kiRui5lZ2+x3HYvHyaxTb5kQBLtKa/PiujTTRVfnrMB5r5p50VBPjFsYVykRtzGxsw7iphhae03ndTFllcqLV2DhXaWxEjd5vcaxEkjcWi1NQfwhoqvYzjn/JICzANwA4NkA3in/ng3gRgBncc7/X4JtHH2EJW7vfS+wfTtwzjnuAaUGcUC4QJR1iJMhboQQitu0JRSx9RCvdYjitx3r5V15JXDnneF79o03Ar/7Hb7wkt/h4bgZtUZKS9zy6RiySoms7d8PPPAA7B0qA9daLCMFjmWM4wEcBgCo3LPbiXGDJABxEDdtsTbY0dglVJyPOLcVn/1Wj8Tt7LPF6y9+Eai4Ubcpl4H6XNneTsStVoN9PcbXKY2Icg3GxjoyFL3E7ZBDxGutBvB+Y9y8JLmL4gY47rixFfldH+IWh+LWzVW60sjavKfn+DagMzlBzTL3Q4KKG7lK7fqQHlfp3/2dEMfe/37x/eVl8fEP8Gz8+1vvAd74xuBjv+hFwL33Aq94hVtxo7bIV5W4NXyIW4mJC1+siWu1yGb8EvM78dGPinY89rEdHwUpbnWpuDWzRdcNJ+JGIcsu9LJyAn0mf5tFd+KWXheDq1TxPHW4SjXtjS05wVukGML+BBE3j9d06Ahl+jjnvwbwa8ZYCpALuQEHOOetgJ+tHYT1X6RSwFFHOe+zWWGcG42OmXjzZuDBB8V7v6zSwLmyWBQ9jHO9q5TQRXGbxBJKvOz6Th15LC+L5mQyymkrClYoTE8Dj3sc9l0JLMjTIw5bLAJNWQ4kz2KIcVNH5c03i1dPjFtrXjDRJUzaE3f9/j2AjPkgItkuJOQqXVkBfitCRYuoOh9VKqKPFItYahZdpxYaJ54oShHs2OHe7kPcVlaAxkKn4rZ3L5CBsK6pXMbpw1GIG9U0pAkUjquUqm6sWyd2mW8ug+3dK074sMPAuRNH3bOrNITiRu64yYr8ro+rNJVPPjmhiSz27BHDpS/i5lXcVOLGuX5Giktxoxp4iuKmFvkGOolbsQicdJJQ3ADRJ8UlYahsOhroNoEy5ijNquJG/U4+eQYRtwMVD3GryCSh1KyuFKYe6bTTDs1HfoobETcrUxTzRaEA1Go2cdPypV6SE+i4ktBk0HL3Bx1x23CQKG7KIvdBxG2U3KRA9LVK25zzvfLPkDZCr9bUL+sRbjvZU1YpY86ThZ/ilst19EQvcTsED3bsuo687WmNskydH9RQNLIhW7Y4RCkXN3H7s1xa1+MqbS84xG0uJybu5gOKq5Rn7WO7EJer9Kqr7P9dxE0hDV1VRj8w5iyGqsJD3KjLlMvuGLcialha5Ni92yFuyGSU0vMRXKVAh7GnciDqZFgoAFshk2i2bgVSKTu2J52O0O/6UNwmq8GKW1KuUssCmOUQN+KasSpuVE+yXnclorgQl+JGUBQ3VdUHRBO4Ug6EzlF9mPApbdcdjDnZHHQvNcStni7Z2wDgQFm0sQhxffIVMRbnMatbfCYygpITGovimG1aUotircISt4jJCayQR1NqObyh2AUlJobeZjbGm5xAxC1MjBudSizETXakborbqiZuBj7oNfAkREkQ9WuRXKWAM4j9iNvMTMfs580q9SNu6vrC/YKIV63mXMqjjnKIG0n3fcW4qaOSHtk8rlIy5EuYREUuZs13dbpKuddVGpfiphStchE3hTT0TNwAN3Fbv77z+HBPktaS25KV5xvYswdIQ7InlbhFJa+ejuNNTpiZEff1GPTpJlW/HCHGjRS36Vqw4sbyySQnNBscTJ4sKW5AjMkJZAeIdejcpZzHp7gpbbBdpS7FjQs1teoobnSOLhW40XkqoUEHpnMNIG7U7L3LwqYXuDA2ubIYi3N8JrziFoAgV2lzSdzsVl7OK2GIm99apSFcpSyft22uVdUQt0LByWreFK/iRu7yIOJG8x7BEDeD/tCv4tYlszRW4qY+HmosTljFjeKZkyJuquJGxE1V3NrFEppNwTt9jbgfcSN4FDeVuNWm5aS+x1HcGkkrbpdear/VErd+FDcAeMpTHKJOFdwDiJuquAFAZb7uVtxkfSPX+YQFdRwlxkSNcSPF7Vj0mZigto3qVVHnVQNJoVfcphvBilscrlLdpWvV6WEhDYDZXDOW5IR83tmBWpTbCwpqVEIKIkMzVuw6bq00rFQWKXB7jLdqblcp4I677FlxA5xOQ+eqiXEj4kbHnKvJ0AQubHx2mZKEElDcPPOAJZcC41GIWy8rJyhGhWxufaXZ8TlXXKW5zTETNz9XqRyjzXQe3ENXjKvUoD8kQNxUMeCwyl3Au94lgvkRo+IWgrgdil0AgLlxZ6mWuImbK5NRo7ileSdxo0KZhUKAyywCcRtDGWzZIW6t9WLiTu/frZQoEO1hYwkobvfdZ6/JBziFjwG4lifri7jNzjqLsh9+uHj1GHSVuLWW3destlDDnj0+rtJeidsJJwBwiFtu+514PT6FdVOWS3F7cOxYfOYzTnN7Im7Npijv0mqJ2dZzEdVhslgQA3AdFWH2I26FeBS3Z+JHOA8/dy6jEt8GoENx68tVqirt6vrFXvSrtgGdM10u58oTUBdxB4C2hriRiBSb4hbgKq1J4kbHJPdcvl0FqlWkm3XUkMcDc0VYlvheTyRSQqe43XEH8B//AVjL4mbzQo/ELZ+PlpyQz9tFxhvlTsWN5wvgXFyvVBzJCUr7Cn6K20knifakOiXmuBU3csTYMMTtIEev/ouQittfXfNe4KKLRMYmgH3YACCEwSD2p+5MfTzUPCr6Ebe7Nz8R23EUmsjgANYlrrgddRSQKQgjQosej487C8JTEHHgJe9G3BQlYRwrYCsOcWObxZNedn6vbU2abWH4O4hbHIobuUklsdIpbnymT+IGAM94hnil0jQBMW464rZrl4+rNGqMG9X7OO00AI6r9IIb3oNP4Z9w7P2/RD4PHAWxfMgXfnE0Xv964Fe/6uFwqqs0gIyoRrk2JT5f15LfV8vnKJ0+Xejh3hMjqVQAzpFHHd/BX+M7+GtMTYrsnHbdTdxiiXGjBzV1vcygzFK5jmzP8W1AoOJmWZ2ZpXTeOsWtrxg3wJnpKQNGR9yYnrjlWlVl9ZIZ7N4jiG8/ahs1yau4vfWtwMtfDtz2e8/NlvfBjr/s5ioNq7gpMWxBxK2dlSS7IL6LDRvEP1EuwvS0OJ/160XMocdV2rFW6SMeAaTTWCps7NjVWlbcIlpbAy0uuAA47DDgiU+M9ruQittYQz4hvvKV2HH0k/Cbd4vjdDVen/0s8PvfAw9/uLOti+JGpT28rtLl3Cxegp9hE/ZgPza4khP6hbdOLu33376YBV4MsKYT48aoCHBbjKBAmxFGcVNi3FLLwnWyhEnkN04DADKVpQ5XaaLE7YILgBtu0CYntKfEyWYyPVTNJ7z97aK+1dlnAx/5SKCrlJc7idv9tZgUtwsvFGVxJieB//xPW3Er1sW5TpYfRKEArJMlaO5dEQ8rRGB6dpUGBNurRrm5bjOwB9jQ2i0m+AMHREfdtMlVRLQnxS2dFpNXVag4RauCPBrIo4ENk3XsP1DoIG6xKG5HHgn8+MfuCv5BrlIqw7J1aw8HkwiIcWs2gRp3Z5ZyRXHTxbiFLnqrAx2Y0pJ1xC3VnbjNYRb7ZXm/fuLbAH1yAlUT2H2vuNmpkrwQn/0s7v7O73HzO4U9D+Uq9YYJ6AyHRnFrVjqJW0slbgDwk5+IJ7wogkU+D/zsZ45t7hbjdsQRwE9/io/9fxsgy4jaGGSMW98PzDHDELc4cPbZTp2sKAipuOVa0lq/+MWoHfIk8HeLf7sar61bO41uSFcpyffjUuFazszidjwEt+MhAJCY4kbErVAAHvU4N7kZHwe4NLBLVkzETVXcpCGvpCdRWC9OLFftJG6pMc+s2a+r1LKAyy8X/z/rWcB73qNV3JoTPa6a4G3r3/2d0+cCiFvbQ9yayzVse8AT49YrcTvkEOCFLwR++UsAjuKWkVX0S9U5FApivVAAeLAmbjSJJT27SkMqbti0CbgV2Mj3OAWAZWZr34obIC50tQqsrKDYcq7zoeNLuA2FZFylAHD++e7/g5ITPPXzekIAcbMsoMrF4N88VcPORYDXO12lFA6hJr/2RdwIS0sA58hmmU3cqinB2Ii40QNsxqq5FDdCHMTN6yql+pgUV2fbm61bwZ6/VVRRRUhXKWNizDca4k9HslTilsoBLb3i1spIkk27ePSjo5yqgyc/2d1GADnuQ9wKBeDcc3HHpzp30zNxUweP7BNZWKiW23A5IRXi5lolaARgXKXDREjFLWc51lrtcz11ooiuUsJSxm2hknaVFgroUKXUGLfFppgQAg1nxBi3lHSVVjKTyG+QxK2+ZFuTuiRumULGffH7VdxuvFEwkmOPBR4iiHEBdVgNqQwQcRvvsfhut+MrBaDVeCJ4iFt1vob77ovJVUpQnngtC8i0RAcoVOeFFwaCUOysiBtNxC2S0VYlnpCK29j6IhYxiRyaaN9wk9hISpXS6TPFPogbAKys2Gv1AsCmouiDVI7Bz1UaW/X2MIpbP8RNdd0B7uSEBlC2xIlsPVQqbvXOciCMOZeL+GVfrlIC50C57FLcqh5XaQsZNJFBijtJLXNwjE4SrlIibqRCpsYdo68eT7u2u9dVqr76uUsV4tZK+btKLam4xao6eYhbR3KC7Oi6pkfyOlCjczm3rWIMraz4rLHiOYiGuI2K4maI2zARQNxmZhQxo5UQcdOwnokJ8eolbvSUSbaPiJvWeESELjkhn0cgcZuv96i4qaO9VHK5StNlYTGr2UmMzebRQBbZdsNedaHRkk9nWegNZBSo50Zu0nPPFbXK0mJ/vCb7hZytGuMxKG6EVMq5Fi2nJKMa4+Z1le7ZIVSxfCoGVylBySptNoFMS5xzoTKHYr6NaSwAAHYsTwNwaqf2rLgRA+qiuE1MAHtlLBH/7e/ERiIw/SYnAC6GnLecqOjNJT1x27PHtdZ374qbF0HJCUTcNIujh0aA4rZvH1CVdmbdmIyjksSNZ3KuoWpnec7Zu4kOXadZWkI268TOUuC/OrzJXUorrqjELUnFjWrHpRXiNjXl5JVoH5ozmQ43ZNcEBQ1xc7lK5edWxuMqjQNhFDfom96T4qYLUsuKMWxVPMSNshUUV6lR3AwCBxRjztySbcZI3HI5xyppWE8uJwt0e4gbLW5OxC7pOm46xU2t4zZX61FxO/548VosipGvuEozVWExa7lJTE4xLEGe3AG51FdblifJwm0A+lXcqAyIrLNm5eRNJnlFzlb1sRiJm7cNErQSBudAa8VN3LJSDculY3CVEmQnJlepfYyVOcymF5ECR6M0heWKsNI9uUpVkhoQcK/e0vFxYG9afudqf+KWLfWpuJXLyDcdxW1DXk/cmk3B3/t2lXrhl5zAeccasT0hIDlh507HzoxnZckJSdy8hDgWxS2AuHkVN9Xj6CVuqqu0X8Utk3ErbpblmCoibtkJ52an087Dsq/tpcb3oLi1U/513OwM4ASJW0dygvxc1/S4iBuXn1llzzxsXKUGWnR5EiLilrYcNqMOmp47ERlrH9YzOdlJ3Pa33cSNJpBhuUoPVHskbiefDHtnyusYysjXxKRZz0+KFZkgLaSMRE6EuN19N3DddcKCn3UWAKAliRuryYssZ6taUcwSsRlOn4Xu6dK0PcSNXDc5neIWk6s01xbHyKzM2/Ft1aJzk3tS3ACnnbROrUZxU1WW8XHgQFqWhLlHEJideUlgSiW0pOlMF3schIqrNNdwiNtsRvRBddUEwp49CRI3r+I2Nycu9vi4yB7sFQGK2z33KLG0GTnw5QzpLWxM94aIW0/PCbqZ3kPcyjxAcZOkP27FTU1OoJXBMhmVuLkHPB0zNHEjO3jJJcAtt3R+XyVu6QDilkqOuGWHqbjlfBS3EU5OMMRtmFAZiwZUMSGjKG6pVOeDVGSQIabq+R7MzHQSt71NQRqIuBHiziqlAdKNuO0r9+gqPeUUd8PlCa3DARSaDnGbmoKjuMlJrdFWXKWazKRIoN9fe61wVT72sXabbOJWdytuRGCSVNwAZdKSrgIufTNE3DIshpUTCEpWmWUBeVmhPrM0ZxO3laxzk3smbipbAEIpbgey7u887XXHCjcWY3abVDdWJKiu0mYncfMqboDw8sZO3PxcpWp8Wz9r2mmIG7V9717HzoylpQ2UfdFLiImLkFc/blepl7i5SsOQLbz3XgDxx7iprlLq34ceCqwriZtdnHXfbDLfvscmSc675OGrXw2ceqoT50JQXaVE3FQSYxM3T3JCHCDi1g4mbn0rbtSBvBMY0J24jY2NnOJmskqHCRpgymLbKt75TpHBn/2S21oXi6Ij99yJPvhB4MorgUc+UvvxRRcB89/OA992tu1puhU3QpJZpTpXKaSB3bvSo+L2qEcB7363Q+COPRZWYQzH1e7Gvqa4D43CJA4/HLjD4yqttWJU3M45B/jf/1vMxpkM8OY32x+1bcVNGi85qVbyMSYnAF0VNyavWa04g2JlziZuaR5jjJtHcSPillqYw/RhQl5ZTDs3uSdXqdq+HTvEAKI6dgpcyQljwHxuE2ToEyykcUf9KOzeLfr8p7f8Kyp37cT/2tCj5KIobtlG1d48nZIBTs1gxS325ASvqzSO+DZAS9zOOw945SsFf1h/UwF4wCFurBnsKiXE6SotZFt2AVjKctW6Sq+/HgDwx9QjAZk3FKviVq/b8W2Tk8BDx8rAbcDDHuNO8PjAB0RYrG9S54c+BPz2t04f/9CHgK9+VayFvLAgin2rq4YoT8s8QHFrJKm4taMnJ0QibiefDLzlLe6MVglWEG1oV7u7SkdFcTPEbZgISsWHEGEe+5g28FlVhhLzzuJi73Mlnv508eeDZz8bwLqCm7g1RFu9BjRR4kYjs90G2m1kMin7yfi+fT0qbmNjwpAp31k67UzMXn0JNnBRnK5ZnMSmTcDv05NAC3a0sK+rtJdZZHwc+PzntR/RotKpelVIDIuLAGOoZKdcp9U3uhC3VF1cs8b4rJ64xRHjpiQn1OuOqscW5jHd7iy/0DdxA4Tx1sw+XsXt3ryjuN2PI2Eha0+sF8/8Pa4HcEGvD09KjFu27rikJ+DvKt29e4DJCXHEtwFa4jY1BXzxi/L/FxWAbzjELWWJGTJTCiZucSpuJSbYsJUvoWkJdVHrKm21gOlp/Ll+OqQXM/bkBJW4TS6Kp4b0lPvkn/Y08eeL8893l3159rPF31OfKsoOee+16irNiAvbqnUSt3oquazSbopb367SVAr4l3/RfyTd8rRqhw2Nq3RUFDfjKh0mglLxCWoHli4LMtqJdiJlYlvBGBar4mBJKG6+WaXqQqTNJtBsIgsLFtK4Z4fYHllx08Q4lB93ruv/ZmkKjAF83H1y9ZaPq7RnBq1HWy5xk25UHaYyNYW6JSzVoIhbpiGuWZOyWaUqwdrxlwPJo47ychs5uWYlm5/HlCWUzn1WDDFu6g/OPVf7FS9xWyo6cXDbIAgMTax9x7woilum7rhKJ9ryBBXFjZqeSIzb9LR4XVx0ZRfHUgoE6L6ur7QzpZR8KGhJ4uYps+KtKhJLORAAWFzEGBP93MqW7KGgJW4AcM45ohyQRNzlQFTiRtnsPa8T64WfUKB0Zq4jbvLzOpJT3CibPDHFLQCkuKVbdbcpNMkJBlpEJW4SgyZuc5i1+3ASxC2bFRzNssTckUop86xKLmQjKihhx05BYkMTNyW124v6mee5/m+VxEmmZ90np3WVMhafBZGgRaVT9Wp865Tq0CXGLWfJCW1SXOQCalg3y8GsGBU3xVVaXVAeqznHupXtAIDdDecmE3HpS3E77zztV1QyND4OLJUcxe1uCJchTax9G3Ilxi1Td8qBjLU6FbfDDhOfJRLjlk4L8sa5O2RjwMStmBL3PtMWF9Yvxs1vN6Ggdhoas0tLNnFr5kq24uNL3M47zzX+4k5OSJS4+c033YibnINqLEFXacujuHmMXd+KWxD8Vk8wyQkGWnRxlQLQWmoaOIMibvOYSZS4MeY2Bq6F432IG/GwwCfedFr8ce7MuBriljrxeNyHI+W+i/bTfn59COKWwE2gRaXTzaprcfNBETeaJ8gt3ZpyiNtxx8jgHsYEw44xOaG24E7S2bAg3HUPVDtvcs/E7bDD7CLHXqRSTj8cGwNWxvwVt76Jm6q4VR3FrdTsJG5Hiq6ZjOIG6N2lccW4UfV+grefyPtfZDUAHDkuLmxuzP292IkbZX4tLdn9XFXc1OvrStQ691zX+Is7OUFL3LxyY6/wc4urhiWIuPEEiJvc2TAVtzDEzShuBg7CKG4aSz0QxU2xTnOYtZf3U4kbY/HZFC9xs6EhbmU4B+36xEvnQddYQ9wKRYZLIVSYJUzaPxk7xE3cqpaGuMXsJgUU4taoOe2emRkYcZssif9pQmvPOMTt2KMVN6m6j15dpek02iyFNNqwFsuuj2bmBXnYVeu8yT27Ss87LzBLkm7r+DhQmRiAq7RcRlohbvmGP3FTFbdYJ09vgkK5LBbMzGaBww/vb9+MORc1ne689vJE8qjZS6lZSCNfcs/KsSQnqDP9EUeIV4W4NRTils06x7AVtxNOAI46yr7nntXPeoKfq3R63BKdjLH4WLpfIoqquMnxTGvlqlWf7XVlE1Dc0oriZllAuyqOyfMxxbiFaEPHQvMjnJxgiNsw0aPiRm8T4AwOPIobQTWgk5P9VQrwOVxX4kbVzXO5EDaNRhpZZA1xy+eByyDinpYxYf9k8vAQMW5JsGd6Cm1Wcc9Nom/cdWBAxO0738Gn/mMCf4VL7AkNCnE77mglo1TdRx+dsS3XQLRnLYmp/YK4qf2P0LPi5hPfRqDbOjYGpIp5zGMaQLKKW0ohbrmqP3F78MEEkhOAzgdIWfYCRx8dz+wY9JAj+3oBNeTQuU4pQbNyVnSonYYIqULcmh7iRuPMJm6y79D2mZmIyy5p4CJuzSaWFkV21rqCfIgZH4/PyIZwlUIlbs97HvCwhzl1JJOMcZO1SqtVkQxL6vvzX1xAu624UBUMw1VqFDeDnhW3v/1bUY7njDMSbJsnxo2gKm5xuEkJKhlxEZMA4jY7G8KmeVmOxuoUCsDP8L9wKc7FF/Eq+yezW4ajuNG9zjSr2PmXBQDA9sUBEbef/xzZVh1PxS/sCY3NCuJ06GwNFzxdiW8DgAsuAB7+cLt4cC9oZYQ1ZCtu4paVyRFq/yNENtove5nIqgvIpgaAv/97cSrHHiuu85fxCty88RzcClFagYgbverKQoWCEuOWrjlKY6rcSdy2bBGVg3bvdsrQJeIqpQdIWf7GVTKiH4QhbryGrExM0RG32MuBKMRtPCX6WT3lxLipitsPMn8tSie99rUA3MStX4h+zNCQ2cPleUFeZ3Mxx7cBoZITXMTt0kuBW28VpUUAVNoJZJVOTACMIV9fQhoW7rkHuOsubmeXX/G7vItMq0Q5UcWNc2UJi+LIuUpNOZBhQiVunOtZiCY54RWvEH+JYsDErRfFLZThVK1MqaS9xvk8UMEYngax9NRr5U/WHT184oYlMZMsticHQ9xkbNNJuAUpcNSQR3pSkIwXPKcOnORR3LqUlgkDLolb2kPcCLEobm96k/jrggsvdN7n88Bb8TFc8lCgJWuWLi2JZ6laLaTi6wdFcWP0cAYgJa9BquUQt1JJlP37/vedHJtEFTe1dE4cCEHccrzuUty8z1exx7ipxG1a1itM6RW3a8efAtx4o/1T+8Guz8QEwCEfTZZDjjdRXWwAyDvELa57AIRS3Bhd2HrdibGTcxARt1gVt0wGWL8ebN8+rMd+7Ny5GVk0kQJHExksljMuu9duO90zCcWNxpdr3k2lTHKCgYJiUfSERsNR1rxIJBo5BJRHC3XiHCXiFspweombBpmM26bTT9IznuQEazCuUlYS9zprVcGWxUQ+Zw2WuD0cNwMQ19pecqdWc0pG9BrTpkErK90lFX0hap3iFuPhfUHXed8+Z9vSkivRt3cvlkLc7AkSDnFjCnHL5zs9vIkmJwySuFEdv7bjKm0iG+gqzWR6vO7qTK8Qt4m0Y1doKGQyztD2Xob4FTegwcROKwviGkxnFVdpXAiTnJAT9yi30ukFKrcSIG6AvfzcZuzGzp1O2aE68mi3HXU7n3cfO27i5lLcPOWjRk1xM8Rt2OjmLh0WcVNSPdWJU7UjtPBDHBgmcfMe0/6J5wRrsgBvJoNEFTcibhmrZrsPDwyCuFWr9lqemyAkpgpKyI4rhfYsj+IWA3hWPvFW9YrbKBG3xUWHuPU1cRMbKJcdGQ2wiXpKcZXmcgkTN2/QekDNw55A5xqguGXbwTFuqt3pecj5KG5UDqQCvavUexmSUNwozq22KAb5VDoBV2mI5AQmiVuhfKDj54kRN7n83CbswdycU4S7LsuPkOc+l0uIuClFwLsRN6O4GQj4DSbCsIgbYPfSoSpuZD0bjXhcpSGOb//Ec4JUDJUxJKu4jTmKW0bGPO2vD4C4UQCVgg7FzfLEuMWAtlTcxnkncWsga99vFYMgbtQn9u93ti0tuSq09A4fxY3VasiigXTbTdyOPho47rjOtsUCP1dpXMQthKs02xo+cStzvavUj7jFqbhRSZDakrgGEyxB4uYVCZSq5ylJ3IqVTuJWaSWQVQq4FDfAIW60xBY1N593275+E0Ns6JITPGPAJCcYuOEnXxOGSdw0ituqc5WqOwuYiLTJEZ4TtJBxJo0EFbdUScb9tKrISBVqb20AxI1qdymooITcZLKuUlLcptDpKhV9j7maG/PhfUHXmUrhAAkTN3mCE1h2xbhRO6hucDYbc81nP1fpIImbFZ649Tx50kXLZJzEi6UlFNtC8Vxu6V2lg1Tc6ktikI8jgRi3Ukncg1rNHZqjKm55cY9K1f0dP1+xklfcAIe4NT3ELWnFzbhKDcKjm6tUk5wwMAyQuPWSVToMxa2DuCUwklNSccu1qsjVBHHbU510LwcWB0IQtypKyIxrFLcEiNukXKdzubjB/kxVezc7CxkMlLipUGPc+lJciIksLzuuUqk8TGEJWSXei7oYuUtjf4ZL2lUagrhlPMTNa+5U/tK34jY56cg3loWxurC9yy23q7Sb4pYEcWusiGtQ4gnEuDGm9/AoxI0Ut7GaVNyOPtr+2nIzgaxSwFdxa2YGRNwiKG7GVWogMMqu0lNOQTk7ZdewSqXczVgVils/xK1YBFesg4u4nXii+OLDHhaiEdGQlsQt364iXxdkZoFP2l0kaeJmTTkXtpYuORenXk/EVcpz4oSIuC2NH2p/pj40HOpsHipxi0Vxo4FUq4mM8mLRZoKzmSW7NIaquJ11FnDUUcDpp/dxXB1ovVJaF3cIxC3dqievuKnEDbBjWKfvuA4AsItv1hbg9V6GU04RHOjUU3tsh6ZJ5Col4lZsJ+AqBfQeHkUcSEnFbbwuidtppwGPfzxw1FHY115HX4sXkriR4kbJCZaHuA00OYEyIuT1X9OKG2PseYyx/2GM3ccYqzLG7mCMXcQYm/B8b4Yx9iXG2H7GWJkxdjlj7ORBtnVgGGVX6f/8D97wnB1YgjBw2ax74Kw64hbgdtASN8ZcJ+lylR5+uFiD6POfD9GIaEiPyxi3dg0FWUl/CZPYu9fTvn7hJW53iyWmqo9/iv2VukrcElLc4FHcyhOH2B+pxO0QZ/PqV9xSKXd/HB+3+9pM2k3caLIYHwduuw34xS/6OK4OaqIEMFjiRpXzG+HruPWsuNFMT2Navo7/6XcAgF+lnxLKVfqmNwlzfeaZPbZD06QGFwdrVQVpyTcTIm46oYBc9RMTSBeku74hidvUFPDLXwJ3341yQyYuJOQq9SpuVJh7UK5Sl+Kmpo7DKG5vAdAC8C4ATwPw7wD+D4BfMMZSAMAYYwAulp+/HsBzAWQBXMkY63P9lRHEKCtumYy94DowesQtcVcpAKacpEtxA4RRiy1C1gERt0K7ipLlEDfKbkxacWs/5Tz7K410yTlgUjFuebfiVpl2pDVylSq8Ju7D+0J3nRsNsYIBEIOrTJ2Ux8a6EjdAmIHYu5wabwcMRXFLNYPLgeRynYt1RIZXcVM61J04DrfXjw7lKgUckbJfEPmowSEPExNAqiJJdJwxbkBnaA7nDmEfG7MVt7HWsthGbuVMJrmoHY/iRsStlRus4uYibh5ZfdQUt0EX4D2fc64k1+MqxtgcgK8COBPAFQCeCeDxAM7mnF8JAIyxawDcC+BtAP5xoC1OGqOsuMFtJFVjBgyBuEkDMzBXKeCvuCWI9JiMJeFVjLdEwP4ipsCSJG6WBWzfLo5/nqO4NbMDUNxy7uSE5uQ6sX/LshW3yf+/vTOPkqws8/TzRkbkVpWZtS8UVEFRQgvSgpSAaEuBrIqoPSo6oiCDLUxrj3ocHdTjKA0y2u1GK7Yztva0ijDt0ujpRnCFbgekGRURFAXZSmSxdqqKzMrMb/747s24cTMyKrMq7v2+zPg958SJiBvLfe/+u+/2DTbqnFDCDSZW0/5XFc6f77226es0dNfVPFRaGDEIt5FccUJOHKTjIm/b1sZQaebYvonTeeqpeiFKq1BpO8l73HoYbhxgvqhQaeoo2L3bi7feXujqmvC4TZBZR6nXqejihKGep2EYXE64dXc3HpOFFidkxoiG+IRbqR63nGhL+ffkeVXyfA7waCrakt9tw3vhXlashQGIuTiBxgtkOuRIuvPOpeKE7NcaVnWykHuoAlaOcEs8bgPsoM/tZowKu+ifaEvRtl0hu24fecSLsgMOoO+wg9hGstxTCbd2ljV2N4ZKra934rhIPW554dbWqsopyAum1Mvy0EP+eb89blOFSm3blB63QkiPi127GlvTlyjc7Omn6atMneMG9e1fhMftRs5g506m1Q6kndTbgdS9PoUKt/z1Jjefal9u5WZ6WRZ2KVqyBFepsJQ/UGUPK4b8jNIB5gvv49bM46ZQ6V45KXn+ZfJ8JPCLJt+7G1htZm3ekwMTc6iUxpNkegGZGIR9tuW47YfHbdwyoyYUTbKtlyVNcLczCFj7m0CmCzMyUq8oXbeOrqrxgPmClNHunHArIFRKLlRq/XXhlvW45bvnF01+Pa9Kbi3bJtymCJUOWcket0qlUbwFEG4MDzO/e3rCbb/bgeSFW7XKrd0bGB+ve1Za5bi1kzTsPZwJlQ4NUbzHbQrh1pUXbpmTfNur2lO6utizwFeSL+VJlg40CrcgxQnyuE2Nma0CLgO+65xLB4NbBDRTMalLqqmfxcx+ONWj7Ya3k1kWKoX6wRNauE0rz6RdodJaLftULE2FW51CQqVJYQKHesH2cHcT4ZatKm2jcrKcx63S1ztxXDxVa+5xK1u49ffXhVrqlWlLqDT7egrhVsrFIhsuDSHcnn6aebVAHrfnP7+xzxFeFJQh3NJ5pe1AJkKlmbyztpJ3FOTmU20RKi0y+DO6qN4SZMmAd29Zr4oTpiKYcEs8Z9cDo8AbQ9kRnFnkcUtfH3CAPwdm+2rtLzMRbuM9/Rx00DQv3m0Sbl19NczqDdcLJdnWNbxIKkW4bdzoX69ZA8Bv+p7t5z3/gMbRK9Jbz3bGKpMT9AA+IbrS3zvRP+rRbv8cWrgNDk6+USkqVDrIHBNuqasySUJvIFP4MlhNBnunt+npLl1d+7w+0qa7q1f75+QmhZe/fFLVqlm9ijk1vyiywi26UGmyT+7a5S9RZu03CWB0aT3PbfE8rxCtv/zihLQLSLY4YWysmEDD/hDEDDPrw+esrQVOcs5tzHy8heZetUWZzyfhnNsw1fzWr1/v9s3SEoh1rNKEfI4bwNe/Dk88AYsXt28+MxFuV32uH5tuL6s2CbdqT5Xbbquf8wsld0tbinBLb6eT5b1u1Tv43tbnMLDuRfyFmZ/p8HD9ot5Oj1uPP3FW8Idp1/xeuPwTcP753Pn6E2FnnMJtvysLp/C4DbCdXZnWGKUKt+zYqe0Sbhs2wLe/Dc997uTP0pU8PMzK+T45/QmWNfXq7LfH7c1vhsMP9w3xAC65BI46Cl70IuZ/rv61dN965zvh+OPh1FMn/1U76eqqh0p7GKZrEHiwpOKEvHDrby7cbrnFnybWr2+/ExBgbEnd47ao35+LKkmFSnoJLGPkhLTlUjZUmnrYu7uT4Q4joHThZmY14KvAeuA059xdua/cDZw+6YdwBPCwc+6pJp/NXtLkz61bvazP743pBTUij9vatf7RTmYi3J55bD/80TT/eB+KExqEUbp9ajWOO26a89xfctu6FOGW87JUB/u5gRfzuvS60dvrhVt6oi9AuKVU+3tg6VI4/XR6k1UROsctL9wGB9tgwxQ5bgNuO3vw54Exq5VSiDGxcovwuFUq9fG68mRuClY7nzz4OMuLCZX29cFZZzW+P+00oPnIDPPnN369KPIet/6AHrfaFB63m27yb09vdmVuA25pvSXIgl7v3kqr61MKqyrNeNwee8wX2VomVBpbmBTKb8BbAb4MnAK83Dl3W5OvfRNYZWYnZX43CLw0+Wxu0dVVv3XfNnmsxonbjUBVpc2EWxHMpKp0RheUNue4lUIEwi29XkyYkq6g9ETfRjWR5rKkVAfqGyObTxnS4zY01FBg15bhjqb0uLl6qLS0/a7IUOneSDbyqjEv3B5jRTHFCS1oS4PffSTrcZsIlRaV45bPqc7NpzaFx+3GG/3bqfT3/jK+rN6Ed6jHOyvywq3oUGlfZZjdu+GpHa7B4xZbYQKUn+P2aeBVwEeBnWZ2QuaRZg99E7gV+JKZvcbMzkimGfCRku0th1YFChGGSotgJh63IMKtzOSGSmXiDhzCCLf0ejGxXvLCrY3ro5L3uM2fLNyGhuIKle53YQJMmeM2fyygcNu5s74vFBETa0aykVeOeOG2qWt504tyak4Rq6TsfStL0+KEoj1uU4RKm/Vx27gR7rnHf+WEE9przgSZJrwDNS/csucBmBwqbVsj6uRAT4tjHn9wt8/l7e2Fvj553IDU8fxevDjLPi4CcM6NA2cD3wGuBr6BH23hZOfcIyXbWw6tChQiLE4oghkJt5lcUGajxw14ulLf3lF53NI79HYKt77GBeqewuMWU6i07R63TKh03nhduLlqycJtx476vlDWOSdZ0cuHHwZga2/zqqe57HErrTghm+M2Pj5pPtadW/iBgYkh1k4+uUCvU2bYq3k1r5Rq8xvPC1mPW6XSxnyzZKH6q164bb4v7lEToOQcN+fcwdP83mbgwuQx92lVoCDh5p9HRvYtbDxLhdtwpQ/Gk5EE+gZhd/2zOSfcehvPiN2D9Y2R7Rk45zxuU4RK52U8bpMupEWRquJNm3yST09POV2OYWLfqo37K+T2vibVp7Qhx60FzXLcyiJfnLCgf8Qfk9lmcu2iWvWtT3bs8APv5kOymfm5efOwrq7Cw6QAtqLucZtXeQYAtcGpPW5tHfYtOdD7Kl4wbnsg7h5uEEcDXpGv9MkSuDghmlBpmv8308Ea91e4paWzZYWNEkYqdYMqQ+V73NJdciKvq8Act0nCbaC+gKlYWrw4LuFWSI5bsrIHRreEC5WmZXVl5bdBw8E3TDcj/Quafi3dJ4toRxGTx21BLSOmiihjzDoK8p69zMKPzRtkbIwJj1tRhQkAPWu8x20Vj1Ib89e8nhbCra33FIki6zWv0HY8HHcPNwjUDkTkyHYtz6PiBP/8u9/55yVL9v2Pp1lV2nBndcwx8KEP+SadJTLSVRfq1UWD8Jh/Xam0UbS0EG4XX+yvGeedl3w3XUElhEp7hur7+gc+AMce6ztKpL1/2zz7KSk1x23ePH/xXLiQni1bOBDfIak0j1t64X4yGZUwkHB7nOX09TcXK+ee608DFxYQhwmd45YtTlizuKAwacrChX74j70It52VQX79E/+1Qw6BdeuKMQdg/sFL2NMzj6HhbfD73wON5wHwx2N6TBYh3HrwCu3pRxUqFdMh9abt3t043bngY5VGEypNG8TOtOvvDD1u6XisE5jBpZfObJ5tICvcupfWyxnbeteXnon27JnUu2v1arjiisx3iyxOaBEqPfZY/0hnWan41JyyxyotxeMGvinsHXdwMD5Rv/RQaWCP21QVpeDX+eWXF2NCyFBptdpYnLB6UcHCLZtT3UK4PblnqKENSKE9zMyoHbYW7roL7r4bgO6hkjxuyYFeIxm54/HE45bcncXocVOoNAamEm7ZweHaGtSfPtEIt0eSupRm3ddbMUPhFsvBmRVu/SvqiqGt9s2kYrfIUGnO42Z9zW9Ssl3bQ3vcChVuGUr3uAUWblP1cCuaWEKlC/pH6B0tSbht3jw5xy2z8Bu3D3LDDf51kWHSCdJ9P/G4dfU3jqCRLU4owuNWHfMKbXxT/B43CbcYmEq4BS5MgIhy3NILyv543Fqsx9iE255q3daepYMTJ43gwq2AUOmkM2IL73KZwq2rq3Fc8sKLE2CScKv0dIBwy+zUj7EiSHAhllDp4nnDxfVwS8nmVLfwuG3aM8iPfuTtO+WUYkxpIB+L7elp2C5Fe9y6xrxCsy0qThDTIRUUqYctJXBhAkTkcUvZV49brdZyAWITbqNd9ZVQXTQ4IRo6Qri1WMj0WlbWxTU1pZAGvPkcN5h08erIHLcO9rgN9Y8U1wokZZrFCWkbouOPb8PwbtMhd9NCb285wi05/1RGvUKr7oi/OEHCLQbSvXEqj1ug/DaIULjtq8dtLxei2ITbnlr96lVbXLBw27Fj7y0gCgyVTlqoSDxu0NiOpK+vvtiledzyDVGLIhWO7R6ndDpMM8etSGJpBzLUW4JwyzZ8T7d3C+FWSpgUmgq37HYpLFSanExsdBRjnN5dCpWK6aBQ6d6rSlNm6nFLj/S9hB3SrwXUyA2MVhuFW+rtKUS4pa1WWl2s0xWTfrcgj9sYrctmyxZu2QbAZvVwadtz3NJ1nxduZXvc8vaUQWQet5AjJwx0D5fnccuGSpvkuO1IhFuR/dsamIHHra3bKB0vF1g0b4QF442h0hg9bqoqjYGIhVtZHrdqFd76Vn8MNdxN7a/Hbc0aePWr4eijW37tiCPgnHPg1FNn9vdFMZrxuPUumV+sx206wu3ww/3z44/754KE20ill74W5Wt/9mf+5H388e2bfSve8hb4+c/9bgTwtrfBvffCQQe14c/7+uCSS/wCpcVHK1cy0tVLd9LLqvQct5RAwm3l0Ss4+7wW3y2IWEKl82ojxee4TTNUevxpg7zxQHjuc4sxYxKrV/vzStr3Jyfcenr8cXjuuXs9nc+c7m4YHuagZcMsfKAxVBqjx03CLQYk3AC46qq9GAAz97hVKnDddXv9Wq0G118/s78uktFuv823M8D8wUp44ZaPl7RTuGUWaqTSS6u9/bzzMr3lSuA972l8//73t3kGV1/d+L5SYdOCQ1m5ybdEqPZ1lnC76rrlcFh5s04JLdzSUGlfpQSPWzZU2kK4nfYfBjntzcWY0JRqFQ4+GO67z7/v6WnQrt3d/nR+7bUFzLunB3bsYNXSERY9oFCpmA4RFyeUFSqdkv31uM1Sxmv+YradwexoSO0N5abrNo0FtLpYH3qo78KZ0s4kk8wZcbQronhEIDYvrIeMSvO45b07gapKZ3xj1iZC57ilHrfqeInFCZs2TS5Kyh7X2TLqssiGS5uESgsj+fOVi0dYiPq4iemg4oTpGdDb68fZ6wDGJjxug9nxx4vxuKW0ulibNXrdCvK47emKJMkwIFsX1S9eXWUVJ8TgcevtDSMWCJ/jlnrcGCmxOCFtat7fXw/Vm9XPC5EJt0KFUyLcVi3cxUK24swmysjlcRPNUah0arJHy4oVBbfvjofxnrpwy3rcggk3aMxSLijHbbQq4bZtSf3iVVqotK+v8dgqc2zeVLgtXx7s+M7u+iE9bgyX0Mct9bilKRJ5gRiLcGvSx60wkhPrmj7fx/DpnqEJ76M8bqI5Em7TMyBQGCUEUQq3U06ph1IKCpWOSbixbZnv5TZKF909JQmZ7LAUEMbjFjANoqurfpoNKtzK8LjNn9944xWTcEv7GCYJbfl2IIWRnIMOrPpBoXfU6mXj8riJ5kQs3KLKceuQ/DZoFG59fZEIt6EhOOEE/7qgUOlYTcJtx1LvddhDrdy7/OxVMoRwC3xjVnarmZSGUOlwCcUJZo2NCPOevRg8bsk+UbbHbbnzwu3hpxaxYoWvHZJwE82JuDhBHrcwPHHgc9hJP7d3/wlmvv1FX19dN7WFmQo3gAsu8GewdtbjZ86I47WI4hGB2LXsYO7hmdzK88q9WITyuB1zjN+5SxlXaWqaFFaWwgknQK0/43F7zIsHFi8ubqbZRoR5gXjiibB2LaxaVdz8p+IZz/CP5z1vkmllFCcc0vMoAH9wi3n8cfjiF+MMlaodSAyoOGF6BnSQx23T6mNYwFaWLKrxEXwvpW3b2rwN9kW4XXQRnH9+ew3JnBHHu+Vxq/ZWOYq7ALiyE4Tbc55TwM49c0IJtw9+EN73X3pgMV4l3H+//yDfkLadZD1ueeH2T/8EY2Plux7BC6h77pkolii7OGFgy8MAHHPWCrjB9yiO0eMm4RYDCpVOTYd63Go1GKVWbJuCfRFuRRjS1cUYFboYZ7xHwq1ahXF8DmFHhEohuGiD8sfBzVKbl6iCtDBhYACWLCluhq08bmZhVkJKZt75Pm6FkR5oD3vhNu8Qf63ZsiVOj5tCpTEQsXCTxy0M6WIXlebSMJOUsi/WGUYryVlZwq1hs3REqDQSQnncms503bpiK2yzwq3MCuIZUlpj5PRAS4Rbz2ov3DZvrgu3mDxuEm4xkIZCh4dhfLw+XcKtoz1uULBwq1Tq/Zsg6MV6T8XfzrpYBosNSHaXL/UuX8INCHSeq1QaZ1xkmBRah0ojIjWtu7vgTjHpgZb0tqsdtIK+Pj/61pYtdRtiQcItBswaxVuKihMk3Io+p2bXbwQeN5Nwa4hSyeNWHkGFGzRu7KKFW6tQaUSkphV+A5Ou+3Sc1OXLJ1ZRWiuiUKmYTLMChQiKE6LKcevAUGnhUYzs+g0YMkk9btYb0dkxEMFCpSFz3CIgZI4b0KgMyvS4RRwqTU0r/DjIz2DFiknCTR43MZlmeW47dvjngHdEXV11F3UQ4dbX508yBx0U9Z1huznwQP+cHR60ECLxuKVnxXlL5HFTqDQM6bGWHnulI4/bJJYt85eAwrdJ/kBbvnxC2z7+uH+OSbipqjQWmgm3dI8JHCKs1XxJdBDhVq3CHXdEUXVWJqedBrffDs96VsEzikS4LV7RDdth1VoJNxUnhOHtb4cNG2D9+kAGZDd2OoJAUcwS4TYwAD/96cSwocWRXffVKixaNLGK0uhpTKFSCbdYiFi4VateuAW741i7NtCMw2Hme7cVTiTCrdKXhEr7JNyyobogHrdKJS73Qkl0d/tG18FIN3Z3d/HNb2dJcQLA4YeXMJPsgbZsGVQqDdoW4jokFCqNhfzoCc5FI9zSa3uHOb06g0iE28RZUcUJ4XPc+vuDDfbe0aQb+5BD2jsWcDNmSTuQ0sgeaEkudVbbQlweNwm3WMgXJ2zd6t1cg4NBq0pBwm1OE4twS8+KMZ0dAxE8VNqBYdIoSPf9ovPbYFZ53Eohe6AljhJ53MTeyYdK01KWCCop09CNhNscJBbhJo/bBMFDpRJuYUiPAQm38skeaIlwy3vcJNzEZPLCLZIwKcjjNqeRcIuO4B43hc7CUKZw6+6ub28Jt6ah0rzHLaZggIRbLETscUsregYHw9ohCiAW4bZgQeNzBxOsHUg6Nmb+iiXKId33n/nMcua3cqV/Xry4nPnFTBOPW8yhUlWVxkLEHrfPfhZ+85viC51EAGIRbh/8IJxwApx6ajgbIiGYx+2oo+Azn4HjjitxpmKCK6+EU04p7xj4/Ofht7+FAw4oZ34xM8uKEyTcYiENEaVVpRF53E480T/EHCRVCaFbQBx2mH+IcENemcHFF5c4Q9HAEUf4R1m84AX+IVScIPaRiD1uYg6TCje1gIiGYKFSITqV7IE2hcdNwk1MJuIcNzGHyQo3EQXBQqVCdCpNPG5DQ433sjEV50m4xYI8biIEEm7RESxUKkSnknrcarUJV1ulUve6dXfHFZCQcIsFedxECCTcoiPdJF1dxTfQF0JQv0NavrxBoaXCLbaUBQm3WMgWJ4yPwxNP+PfLloWzScx9JNyiI71IqKWdECWRHmw5R0laoBCb51tVpbGQ9bht3gyjo17uxyb1xdwiFW5quhoN8+fDu96l9lpClMZxx8FrXwt/+qcNk7Oh0piQcIuFrHBTfpsoC3ncouTDHw5tgRAdRE8PXHPNpMmpxy02/4lCpbGQFW7KbxNlIeEmhBBNiTVUKuEWC/K4iRBIuAkhRFNUnCBaky1OSIWbPG6iaCTchBCiKfK4idY0C5XK4yaKRsJNCCGaIuEmWtMsVCqPmygaCTchhGiKQqWiNVnh9tBD/vWqVeHsEZ3BSSf5XoEbNoS2RAghouL44/1l+IwzQlvSiNqBxEJWuN1/v3+9bl04e0RncPrpPjQf03guQggRAStWwCOPxHd6lHCLhbQ4Yds2L96qVVi9OqxNojOI7awkhBCREOPpUcItFlKP265d/nnNmsbRpoUQQgjR8SjHLRbyAxMeemgYO4QQQggRLRJusVCpNJauSLgJIYQQIoeEW0yk4VJQYYIQQgghJiHhFhPZcKk8bkIIIYTIIeEWE1mPm4SbEEIIIXJIuMVEVritXRvODiGEEEJEiYRbTKTCbeVKDUEkhBBCiElIuMVEKtxUmCCEEEKIJki4xURanKD8NiGEEEI0QcItJlKPm4SbEEIIIZog4RYTS5f65yOPDGuHEEIIIaJEg2HGxGWXwQtfCC99aWhLhBBCCBEhpXvczOxAM/sbM7vVzHaZmTOzg5t8r9fM/srMfm9mu5Pvv7Bse0tl1So4/3wNLi+EEEKIpoQIla4DXg1sAf61xff+DngT8H7gbOD3wI1mdnTRBgohhBBCxEgI184tzrnlAGZ2EXB6/gtm9mzgPwIXOue+kEy7GbgbuAw4pzxzhRBCCCHioHSPm3NufBpfOwfYA1yX+d0ocC1whpn1FGSeEEIIIUS0xFpVeiTwgHNuV2763UA3PtwqhBBCCNFRxJoFvwifA5dnc+bzBszsh1P92bHHHtseq4QQQgghAhKrx00IIYQQQuSI1eO2BVjTZHrqaduc/8A5t2GqP1u/fr1rj1lCCCGEEOGI1eN2N3CImfXnph8BjAD3lW+SEEIIIURYYhVu3wJqwKvSCWZWBc4FbnLODYcyTAghhBAiFEFCpWb2yuRlWjVwlpk9CTzpnLvZOfdTM7sO+ISZ1YAHgEuAQ4DXlW+xEEIIIUR4QuW4/WPu/dXJ883AhuT1G4ErgMuBBcCdwJnOuZ+UYJ8QQgghRHQEEW7OOZvGd3YD70geQgghhBAdjzk39wsukzDsQwXO4vDk+d4C5xEzWn5PJy5/Jy87aPk7efk7edlBy1/08q9xzi1t9kFHCLeiSZv/tmpJMpfR8nfu8nfysoOWv5OXv5OXHbT8IZc/1qpSIYQQQgiRQ8JNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswSVFUqhBBCCDFLkMdNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLjtB2Z2kJl91cy2mdl2M/u6ma0ObVdZmNmBZvY3Znarme0yM2dmB4e2qwzM7JVm9jUze8jMdpvZvWZ2pZkNhLatDMzsDDP7vpk9ZmbDZrbRzP6PmR0R2rYQmNm3k/3/8tC2FI2ZbUiWNf/YGtq2sjCzF5vZLWb2VHLuv8PMTgltV9GY2Q+n2PbOzL4d2r4yMLPnm9lNZvaEme0ws5+Y2YVl2hBkkPm5gJn1A98HhoHzAQdcDvzAzP7YObczpH0lsQ54NfD/gH8FTg9rTqm8E3gYeA+wETgG+ABwspmd6JwbD2hbGSzCb/ergSeB1cB/A24zs6Occ0WODRwVZvZa4Nmh7QjAXwD/nnk/GsqQMjGzNwOfSh5/iXeAHA30BzSrLP4zMJib9jzgY8A3yzenXMzsj4HvArcBbwJ2Aa8E/s7MepxznynDDgm3fedNwFrgcOfcfQBm9nPgN8Cb8TvyXOcW59xyADO7iM4Sbi91zj2ZeX+zmW0G/jewAS/q5yzOua8AX8lOM7PbgV/hT2QfDWFX2ZjZQuDjwNuBawKbUza/dM7dFtqIMkkiCp8A/qtz7hOZj24MYU/ZOOfuyU8zszcBI8C15VtUOq8BuvDn/6eSad9JBN0bgFKEm0Kl+845wG2paANwzj0A/Ah4WTCrSqQDvEpTkhNtKan3YVWZtkTEpuS5IzwvCR8GfpEIWTH3uRAYB/42tCExkESeXgV8yzm3ObQ9JdAN7AF256Zvo0Q9JeG27xwJ/KLJ9LuBjszzEZyUPP8yqBUlYmZdZtZtZs8APgs8Rs4TN1cxsxfg77L/PLQtgfiymY2Z2SYzu6ZD8ntfgPcqv8bM7jezUTO7z8w6dR94BTCAjzR0An+fPF9lZgeY2YLE4/givOe9FBQq3XcWAVuaTN8MLCzZFhEYM1sFXAZ81zl3R2h7SuTHwLHJ6/uAU5xzTwS0pxTMrBsvVP/aOXdvaHtKZhs+FH4zsB2f3/ke4FYzO2aOb/8Dksdf4Zf5frzH6VNmVnXOfTKkcQF4A/AEcENoQ8rAOfcLM9sAfAOf7wfeA3exc660ULGEmxD7iZnNB67HhwjfGNicsnk9Pll5Lb5g4ztm9gLn3INBrSqedwF9wBWhDSkb59xPgZ9mJt1sZrcAt+MLFt4XxLByqOA9TBc4576eTPt+kvt2qZld5TpkOCIzOwA4Ffikc64j0iOSyMLX8JG1i/Eh05cBf2tmTzvnvlyGHRJu+84WmnvWpvLEiTmImfUB38ILl5OccxsDm1Qqzrk0LPxjM7sBeBBfXXpxMKMKJgkJvhe4COgxs57Mxz1mtgDY4ZwbC2FfCJxzPzGzXwPPDW1LwWwCngF8Jzf9JuBMYCXwaNlGBeI8vJDtlDApwIfwHraznXN7kmnfM7PFwCfN7Ctl5H4rx23fuRuf55bnCGBS5Y2Ye5hZDfgqsB54sXPursAmBcU5txUfLl0X2JSiWQv0Al/C36SlD/Bexy3AUWFMC85c9zbdvZfPO6lg63zgTufcnaENKZGj8Mu8Jzf9dmAxsKwMIyTc9p1vAieY2dp0QuIufz4d0M+m0zGzCvBl4BTg5Z3WFqEZZrYc+CN83s9c5mfAyU0e4MXcyXgB2zGY2XrgcPwFbC7zjeT5jNz0M4GNzrnHSrYnCMn2PoLO8raBL746OslxzXI88DQ+x71wFCrdd/4X8BbgejN7H/5O8y+BR/BJyx2Bmb0yeZkmqJ9lZk8CTzrnbg5kVhl8Gp+UfAWw08xOyHy2ca6HTM3sG8BPgJ/jE9QPw/cyG2WO93BLPIs/zE83M4CHnHOTPptLmNmXgQfw238rvjjhUuB3wFXhLCuFfwF+AHzWzJYAv8WfB06ns/Jb34A/1kvJ6YqITwH/CHzLzK7G57idA7wW+LhzbqQMI6xD8igLIcl1+ThwGmDA94C3dUBi9gRmNtUOdLNzbkOZtpSJmT0IrJni4w865z5QnjXlY2bvxo+acSi+t9EjeDFzZSft/1mSY+EK59xcTs7HzC7FX6jW4EcLeAxfVfjfnXO/D2lbGZjZIHAlvtH0Qnx7kP/hnOuIBsxJisij+D6mLw1tT9mY2VnAu/GpUr34CMP/BD5bVl6rhJsQQgghxCxBOW5CCCGEELMECTchhBBCiFmChJsQQgghxCxBwk0IIYQQYpYg4SaEEEIIMUuQcBNCCCGEmCVIuAkhZiVm5qbxeNDMDk5eXxDa5hQzW2VmO5MO9NP9zdvM7K5k1A4hRIeiPm5CiFlJbrQK8MMR3Ql8IDNtGD928DHA/c65J8uxrjVm9nlgmXPu7Bn8pg8/YsGlzrkvFGacECJqJNyEEHOCZDSLf3POnRfallYkY7o+ArzCOffPM/ztR4CXOOeOLMQ4IUT0yOUuhJjTNAuVmtnfm9lGM1tvZv/XzHab2b1m9pLk83ckYdbtZna9mS3N/WfVzC41s1+Z2bCZPWpmHzWz3mmYdAGwA7gx959nJLZsM7OnEnven/vttcARZnbiPqwKIcQcQMJNCNGpDAL/AHwOeAXwBPA1M/socDLw58Dbktefzv32S8D7gGuAl+DHrvxPTG/Q7TOBW51zo+kEM1sLfBMfCj0XP3D1x4B5ud/+DC/6zpzeIgoh5hrV0AYIIUQgBoCLnXO3AJjZo/gcubOBI9IBo83sWcBbzazLOTdmZn+CF1fnO+f+Ifmv75rZZuBLZna0c+5nzWZoZgYcD3w899FzgG7gEufc9mTa9/O/d86Nm9mdQD6/TwjRIcjjJoToVHamoi3hV8nzd1PRlpleBVYm788ERoCvJiHTqplVgZuSz1/YYp4LgD4gXyTxM2APcK2ZvdLMlrX4jyeBA1p8LoSYw0i4CSE6la3ZN865keTlltz30ulp/toyvHdsJ15spY8nks8Xt5hn+h/DuXnfB5yBPyd/EXjMzG4zs5Oa/MduvPgTQnQgCpUKIcTM2AQ8DfzJFJ8/upffAizMf+Cc+wHwAzPrAZ4PXAb8s5kd7Jz7Q+ari4A/5H8vhOgMJNyEEGJmfBt4NzDknPveTH7onBsxsweAtS2+Mwx838zmA9cDh9Ao1A4Bbp+x1UKIOYGEmxBCzADn3A/N7Cv4HLeP4UXUOHAw8GLg3c65X7f4i1uA47ITzOxifG7cv+B7vC0BLsV7736R+d4C4DDgr9u0OEKIWYaEmxBCzJzzgLcCFwLvxeesPYjvzfb4Xn57HfCGJAT6YDLtTuAsfFuRZcBm4N+A1znndmd++xJ8zt032rIUQohZh0ZOEEKIEknGGv0N8AXn3OUz/O0NwB+cc68vxDghRPRIuAkhRMmY2evwDXYPcc7tmuZvjgZ+DByZVKEKIToQhUqFEKJ8rgFW4fPi7pnmb1YAF0i0CdHZyOMmhBBCCDFLUANeIYQQQohZgoSbEEIIIcQsQcJNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswS/j+3tENHiYAiLgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `Crossspectrum` class to create a `Crossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'frac'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "cs = Crossspectrum.from_lightcurve(lc1, lc2)\n", + "print(cs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Crossspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Crossspectrum(lc1, lc2, norm=\"leahy\")\n", + "```\n", + "However, we recommend using the specific method for input light curve objects used above, for clarity. Equivalently, one can initialize a `Crossspectrum` object:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(events1, events2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s, are created internally.\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(times1, times2, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Crossspectrum.from_lc_iter(lc_iterable1, lc_iterable2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the cross power. The cross power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[-3264.54599394-1077.46450232j 1066.6390401 -2783.16358879j\n", + " 3275.00416926 +196.64355198j -8345.12445869-6661.52326503j\n", + " 5916.3705245 +3602.05210672j]\n" + ] + } + ], + "source": [ + "print(cs.freq[0:5])\n", + "print(cs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the negative Fourier frequencies (and their associated cross powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"Size of positive Fourier frequencies: %d\" % len(cs.freq))\n", + "print(\"Number of data points per segment: %d\" % cs.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Crossspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of cross spectra averaged together. For a `Crossspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can compute the amplitude of the cross spectrum, and plot it as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtEElEQVR4nO2debgcVbW+33VO5oSEBAgzhBhmkIDgRVEIg6CIICKOKE4IjhfUq6KoKIgT4oxXUfx5FfVeEA2KCCIkIIKCGlDmIRCmkEAmyJyc/ftj97bq1KnqruquHs/3Pk8/1d1V3b27u2rXV99ae21zziGEEEIIMVzoa3cDhBBCCCFaicSPEEIIIYYVEj9CCCGEGFZI/AghhBBiWCHxI4QQQohhxYh2N6ATMLN/AFsAD7S7LUIIIYRomBnAYufcvmkrJX48W0yaNGnbmTNnbtvuhgghhBCiMebNm8fy5csz10v8eB6YOXPmtnPmzGl3O4QQQgjRILNmzWLu3LmZ0Rzl/AghhBBiWNH14sfMRpnZ183sfjP7p5ld0e42CSGEEKJz6YWw13nAKGBX59yAmW3V7gYJIYQQonNpufNjZtuZ2bfM7GYzW2VmzsymZWy7vZldZmbLzWyFmV1uZjvE1o8D3g183Dk3AOCcW9iSLyKEEEKIrqQdYa8ZwOuApcCNWRtVhM11wG7AycBbgJ2B681sfOy9lgIfN7NbzewmMzummY0XQgghRHfTjrDXDc65LQHM7F3AkRnbnQJMx4ezHqhsfwdwP3AqcAG+/TsADzjnPmFmuwE3mNmBzrmHmvw9hBBCCNGFtNz5CeGpHBwL3BKET+W184GbgOMqTy0AHPDTyvp7gNuB/UprsBBCCCF6ik5OeN4TmJ3y/J3AiQDOuafN7Grg5cAVZrY1sDfwz7Q3NLM5GZ81s9HGCiGEEKI76GTxMwWfz5NkCTA59vg9wA/N7PN4F+jDzrl7W9A+IYQQQnQhnSx+cuGcexg4POe2s9KerzhCh5TWKCGEEEJ0LJ0sfpYy2OEJZDlChUiEwGY2+n5CCCGE6A46ucLznfi8nyR7AHe1uC0igXPtboEQQghRH50sfq4ADjSz6eGJSjHEgyrrGsI5NyvcgHmNvt9wYu1a2H13eNvb2t0SIYQQojhtCXuZ2Wsrd19QWb7CzBYDi51zcyvPXQS8H5htZmfhk5nPAR4FvtfK9orBPPYY3HsvrFzZ7pYIIYQQxWlXzs+liccXVpZzgVkAzrmVZnYY8DXgJ4ABfwROd84912gDlPNTP+vW+eX69e1thxBCCFEPbRE/zjnLud0C4IQmN0cUROJHCCFEN9PJo72aSnzYu4a6FyOInw0b2tsOIYQQoh46OeFZdChyfoQQQnQzw9b5Uc5P/Uj8CCGE6Gbk/IjCxMNeqvcjhBCi2xi2zo9yfuoniB+AjRthxLDdi4QQQnQjcn5EYeLiR0nPQgghug2JH1GYuPhR3o8QQohuY9gGLJTwXD8SP0IIIboZOT+iMGvXRvcV9hJCCNFtDFvnRwnP9SPnRwghRDcj50cURuJHCCFENyPxIwqj0V5CCCG6GYkfURg5P0IIIbqZYZvzo9Fe9SPnRwghRDcj50cURs6PEEKIbmbYOj8a7VU/Ej9CCCG6GTk/ojAKewkhhOhmJH5EYeT8CCGE6GYkfkRhJH6EEEJ0MxI/ojAKewkhhOhmJH5EYeT8CCGE6GaG7Wgv1fmpHzk/Qgghuhk5P6Iwcn6EEEJ0M8PW+VGdn/qR+BFCCNHNyPkRhVHYSwghRDcj8SMKI+dHCCFENyPxIwoj8SOEEKKbkfgRhVm7NrqvsJcQQohuQ+JHFEbOjxBCiG5G4kcURgnPQgghuplhO9RdRQ7rR86PEEKIbkbOjyiMxI8QQohuZtg6PypyWD8KewkhhOhm5PyIwsj5EUII0c1I/IhCbNwIAwPRY4kfIYQQ3YbEjyhE3PUBhb2EEEJ0HxI/ohBJ8SPnRwghRLch8SMKIedHCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotuR+BGFUNhLCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotsZttNbaGLT+lDYSwghRLcj50cUQs6PEEKIbmfYOj+a2LQ+1q71y5EjvfCR8yOEEKLbkPMjChGcn3Hj/FLOjxBCiG4jt/gxs33N7HIze9rMNpjZfpXnzzOzlzeviaKTCOJn/Hi/lPgRQgjRbeQSP2b2EuBmYDfgZ4nXDQCnld800YkkxY/CXkIIIbqNvM7PF4GrgT2BDyXW/R3Yr8xGic5FYS8hhBDdTt6E5/2A1zjnnJm5xLqngS3KbZboVBT2EkII0e3kdX7WAOMy1m0NLC+nOaLTUdhLCCFEt5NX/PwJON3M+mPPBQfoncB1pbZKdCwKewkhhOh28oa9PgXcBNwOXIYXPieb2QXAC4ADmtM80Wko7CWEEKLbyeX8OOduBw4GngI+CRjw/srqQ5xz9zaneaLTUNhLCCFEt5O7wrNz7u/A4WY2BpgCLHPOrWpay0RHIudHCCFEt1N4egvn3BrgiSa0RXQBcn6EEEJ0O5nix8w+XeB9nHPunBLaIzocJTwLIYTodqo5P2cnHjt8rk+SMOpL4mcYoLCXEEKIbicz4dk51xduwF7AfODjwDRgbGV5ZuX5PZveUtERBPEzdiyYgXMwMNDeNgkhhBBFyJvz823gB865L8eeWwB8ycz6gO8Ah5fduDyY2RxgR6JCi5c75z7XjrYMB4L4GTUKRozwzs/69TB6dHvbJYQQQuQlb5HD/wBuy1h3K3BgOc2pmzOcczMrNwmfJhIXPyNH+vsKfQkhhOgm8oqf5cDLMtYdSYHpLcxsOzP7lpndbGarzMyZ2bSMbbc3s8vMbLmZrTCzy81sh7yfJconTfxoxJcQQohuIq/4uRj4iJl9x8xmmdnuleWF+Fnef1DgM2cArwOWAjdmbWRm4/DTZuwGnAy8BdgZuN7Mxic2/6KZ/bMilHYt0BZRkGTYC+T8CCGE6C7y5vx8Gj+q63TgtMpzBqwEzmPoyLBq3OCc2xLAzN6Fd47SOAWYDuzqnHugsv0dwP3AqcAFle3e6pxbYGYGvB24xsymO+c2FmiTyMnatX4p50cIIUS3knd6iwHn3KeA7YFZwBuBQ4DtnHOfds7lHu9TYNtjgVuC8Km8dj5+jrHjYs8tqCydc+5iYAI+AVo0ATk/Qgghup1CFZ6dc8uoEqoqmT2B2SnP3wmcCFCZamOCc+7pyuOjgY3Ao2lvWBkZlsbMBts6bFDCsxBCiG4nl/gxs4NrbeOcu6Hx5gxiCj4vKMkSYHLl/kTgKjMbBQxUtj/GOafTcZNQwrMQQohuJ6/zM4eoknMW/Y01pTjOuUXACwpsPyvt+YojdEg5reptFPYSQgjR7eQVP4emPLcZcAxeNLy/tBZFLCVyeOJkOUKFSITAZjb6fsMFhb2EEEJ0O7nEj3Nubsaqy83sa8CrgKtKa5XnTtKnzdgDuKvkzxI5UdhLCCFEt5O3zk81rsTX7SmbK4ADzWx6eKJSDPGgyrqGcM7NCjdgXqPvN1xQ2EsIIUS3U2i0Vwa74pONc2Nmr63cDfk6rzCzxcDimMt0ET6cNtvMzsLnHJ2DH8n1vYZbLepCzo8QQohuJ+9or7emPD0KP9v7O4HLC37upYnHF1aWc/F1hHDOrTSzw4CvAT/BF1X8I3C6c+65gp83BOX81EcQP6NHy/kRQgjRneR1fv5fxvNrgf8F/rPIhzrnLOd2C4ATiry3aC5KeBZCCNHt5BU/O6U8t8Y591SZjWkl8WHvGuqeH4W9hBBCdDt5xY8DnkwrHmhmI4BtwjQToncZGIiEzogRCnsJIYToTvKO9poP7Juxbp/KetHjBJEzahSYKewlhBCiO8nr/FTL0RlJwdFenYASnosTD3mBwl5CCCG6k0zxY2ab4qspB7aN19ypMBY4GVhYftNEp5EUPwp7CSGE6EaqOT//CXwGn+/jgMsytrPKdl2FEp6LI+dHCCFEL1BN/PwaeBgvbi4GzgUeTGyzFrjLOXdHMxonOgs5P0IIIXqBTPHjnLsduB3AzBxwpXPu6VY1THQea9f6ZdL5kfgRQgjRTeSd2PTHzW5Iq1HCc3EU9hJCCNELVEt4vg54r3Punsr9ajjn3OHlNk10Ggp7CSGE6AWqOT/x4e19+KTnPNt2BUp4Lk6W8yPxI4QQopuolvNzaOz+rJa0RnQ0CnsJIYToBfJWeBZCYS8hhBA9QbWcn4OLvJFz7obGmyM6GTk/QggheoFqOT9zqJ7nE7DKdv1lNKhVaLRXceT8CCGE6AWqiZ9Dq6wTw5AgfkaP9kslPAshhOhGqiU8z21lQ1qNRnsVR2EvIYQQvUDeWd0BMLOJwF7AtsDjwD+dc882o2Gi81DYSwghRC+QW/yY2aeBDwMTiOr6PGtmX3HOnduMxonOQnV+hBBC9AK5xI+ZfRb4FPAD4BfAU8CWwBuBz5rZCOfc2c1qpOgMFPYSQgjRC+R1fk4Bvuqc+6/Yc3cC15nZcuDdwNklt010GAp7CSGE6AXyip9JwNUZ634PvKec5rQODXUvjpwfIYQQvUDeCs9/AQ7IWHdAZb3oceT8CCGE6AXyOj8fBH5lZhuAS4lyfl4HvAM4zsz+LaSccwNlN7RsNNS9OEp4FkII0QvkFT93VJZfrNziGPDP2GNX4H1FF6GwlxBCiF4gr0j5HPmmuhA9jMJeQggheoFc4kfD2AXA2rV+qbCXEEKIbiZvwrMQCnsJIYToCYpUeN4deC2wPTAmsdo5504us2Gi81DYSwghRC+Qt8LzW4GL8Xk/i4B1iU2UDzQM0GgvIYQQvUBe5+dTwGzgnc65Zc1rTutQkcPiZDk/CnsJIYToJvKKn62A03pF+Ij6kPMjhBCiF8ib8HwTsHszG9JqnHOzwg2Y1+bmdAVKeBZCCNEL5HV+3g9cbmbPANcAS5MbdENVZ9EYQfyMHu2XSngWQgjRjeQVP48B/wB+mrFeVZ2HAQp7CSGE6AXyCpaLgNcDvwbuYehoLzEMUNhLCCFEL5BX/BwH/Jdz7hvNbIzobFTnRwghRC+QN+F5JXBXMxsiOh+FvYQQQvQCecXPj4A3NbMhovNR2EsIIUQvkDfs9QjwRjP7A/B70kd7XVxmw0TnkRQ//f1+uXEjOAdm7WmXEEKIzmPDBnjDG+Dww+E972l3awaTV/x8t7LcETg8Zb3DT38hepik+DHzeT8bNvhbcIKEEGI4snYtDAzA2LHtbklncMcd8Mtfwl13da/42amprRBdQVL8QCR+1q+X+BFCDF8GBmDvvb0TfuutMGVKu1vUfpYs8ctVq9rbjjRyiR/n3CPNbojofNLEz8iRsGaNkp6FEMOb1avh/vv9/fe9D37+8/a2pxNYtswvV69uazNSyZvw3HOY2ZxwQxOb1sS5SPzEHR4lPQshxGB34xe/8LfhztJKdnDXOj8AZnYk8B5gV2BMcr1zbnqJ7RIdRnB2RoyAvphkVq0fIYQYeoJ/73vhpS+FbbdtT3s6ga53fszsaOAqYBywG77K8wJge2AAmNusBjYLTWxajLSQF6jWjxBCQHSC33lnOPpo73q8853eNe9l7rwT9tkHrrpq6Lrg/Gzc2HnniLxhr08B3wGOrjw+qyIa9gT68cJI9DC1xI/CXkKI4UxwfsaPhx/8wCc8X301/PjH7W1Xs7nmGj+q67LLhq4Lzg90nvuTV/zsBvwG7/L8exJT59x9wNl4cSR6mCzxo7CXEEJEJ/exY2HrreEzn/GPr722fW1qBc8955dhZFecpbGKgN0qfgaADc45BywGdoitewJ4XtkNE52FnB8hhMgmOD/jxvnl9EoWbJoo6CWC+HnmmaHresH5uReYVrl/G3C6mW1tZlsAHwYeLr9popPoBOdn2bKoHUII0UkkxU+o89Pr4ufZZ/2y25yfvKO9LgF2r9z/DHAt8Fjl8UY071fPE0TH6NGDn29VwvOKFbDjjnDAAb1vIwshuo942AuGj/jpVucnb5HD78Tu/83M9gZejh/9da1zTjO+9zjtDnstWOAF0I03+s8akbtIgxBCNJ+k87PZZn45XMTPkiVD53jsBednEM65x4AflNwW0cG0O+wVrNV162D+fD+cVAghOoWk8zN5sl8uXeqnvujr0ZLCQfysWwcrV8KECf6xc53t/PTo3zF8efZZ+NGPYPnyct+33XV+wgEGcM89zf0sIYQoStL5GTECJk70wqfs/riTiPfNcZdr9erBOZoSP6KpfPe78I53wLe+Ve77tjvsFZwfgLvvbu5nCSFEUZLiB4ZH3k9c/MTzfuKuD0j8iCZzVyX76qGHyn3fTgl7gZwfIUTnkQx7QZT3k5YM3OncdtvgfjeLLOcnnu8DnTe/l8RPj/Hgg3755JPlvq+cn+aiOklCdDe95PzcdpsfWfvBD9beNt43VxM/cn5EUwmOT6vET6ucn2TOT6fNl+McXHhhfa7UBz4AW24JixeX3y4hRGvoJfHzwAN+ef/9tbdV2Eu0ndWr4Ykn/P1WOz+tDHstWwZPPdXczyvKtdfC+97n862Kcv31vnO8887y2yWEaA3Vwl7dJn6CcEm6N0k2bIA1a6LH3eT8ZA51N7P5+Hm88uCcc5rios08/HB0f9EiL0iCOGmUTgp7gXdYttqquZ9ZhPvu88tbboGnn4bNN8//2tBJ9PKIECF6nWrOT7fl/OQVPytXDn7cTc5PtTo/c8kvftqOmb0duBg43jn36zY3py2EfJ/AU0/BdtuV897NCnstXuyLYtUSC8FaHTnSf9bdd8OsWfV9ZjOYP98vnfMzOb/5zflfG66WJH6E6F7SnJ9uDXsF4VKr3fGQV3L7IJxGj4a1a7tI/Djn3tbCdjSEmU0DTgFuaXNT2kpyhNeTTzZf/KSFve65x4ual760+nsODMC++3rxs2DB4MqgSYLz8/znw9/+1nkjvuKu21VX5Rc/a9ZEtrHEjxDdSy/l/IS+KIiWuKCLkxQ/ac7P1lv7/rHTxE/Lc37MbDsz+5aZ3Wxmq8zMVcRL2rbbm9llZrbczFaY2eVmtkNimz58tekPAGub/w06lzTxUxZFwl5veIN3Ze69t/p7Ll0Kjz8Ojz3mD7JqBPFzwAF+2WkjvuLi5/e/h40b870ubitL/AjRvaSJn1YMdf/DH+CGG8p9z3jIqlroK4/zs802ftnV4sfM9jGz15nZW5O3Am8zA3gdsBS4scpnjQOuA3YDTgbeAuwMXG9m42Obfgi4yTn3tyLfpRcJ4idcbZQpfoI4yRP2euQR7+pcfnn191y0KLpfqwZEOMiC+OlU52fKFN/R3XprvtdJ/AjRG5QZ9lqxIl///dxz8KpXwVFH5avJk5e84id8ZprIizs/0KXix8w2NbObgL8DPwf+X+X2o9gtLzc457Z0zh0NXFplu1OA6cCrnXO/ds7NBo4FdgROrbRrL+AE4NwCn9+R/M//+Llgbrut/vcI4ufFL/bLMPKrDPI6P/FS7r/6VfX3jA/tTibOJYmHvUaNgkcfHXrV0S6efdYf9GPGwBvf6J/73e/yvTbeKUr8CNG9lBn2OuII2HXX2n3cgw/6C9M1a7zjXBZFnZ8dd/TLXnR+zgM2Aw4GDDgeOAy4BHgIeGHeD3TODeTc9FjgFufcA7HXzgduAo6rPPVSYBpwv5k9DBwIfN/M3p+3PZ3ClVf6He7HP67v9c5F4uegg/yyFWGvpPPz3HNRDZ5bb/UhrSzizk9e8bPpptGkprXCaq3ikUf8cscd4eij/f2rrsr3Wjk/w5tTT4XXv77z6lZ1CitWwMUXd8exUdZQd+fg9tt9nxf6lizig1xmz87/GbWI/97V2h7Ezw47RNuGfbknnB/gKLwACgnFjznn5jjn3gpcC/xnE9q2J/CvlOfvBPYAcM591zm3tXNumnNuWqV973bOfTvtDc1sTtoNmNmE9hdi4UK/vP76+l+/erU/2Hbd1T/XypyfIH6SwxurHZD1iJ9NNoHddvP3OyXvJ4S8pk3zuU5jxngHL08tolriZ84c2Gcfn+QteouBAbjoIvi//xt63AjPd74D73wnfDu1R+8s0pyf5MzueVi2LOpv431kGg88EN2/8sry6q0VdX422wzGj/cRgNBX94rzszXwkHNuI7AG2CS27nLglWU3DJiCzwtKsgSY3ITPaytB/Nx5Z30F/ILr87znRTtbOxKekyfwaqGvImGvcJBtsgnsvru/3yl5P3HxM24cHHqof5zHhq4V9rr8crjjDvjFLxptZTksWeJHsl19dbtb0v0sWxZdJXfbaKBWEepnzZvX1mbkIk381DOzezgXQO1zQdz5WbasvMTnouJnwoShNY3Ce4TzUbfO7bUQ2LRy/xHgRbF1M8psUCM452ZVq/FTWT/kBsxrVRuziAuVetyfIH6mT49sxmaIn9GjBz+fDHuFHX6PPaC/3zsXWR17XucnVBHt6/OWcic7PwCveIVf5gl91XJ+wm/XKdWfv/pV+NnP4MtfbndLup/4cdEu8fPMM17M/ulP7fn8WoSwT6cc61msX+9HePb3Dy0sWzTvJy548jo/M2f6ZRmhr3XrBrs0ecVPPMS3caMPWZr5qXuge52fP+HzaQB+AnzGzL5nZt8BvgI04zpwKekOT5Yj1LWsXDk4U78e8ROuAKZPjyofL1yYf8h1GvE8hLxhr3ACDyGgjRvht79Nf/+84if8NhMm+IOpk50fiMTP1VfXrnxdS/yE9Xfd1UgLy2H1avje9/z9+NB+UR/xk2G7KgDPnu3F7Ne+1p7Pr8WCBX55332dMfnvunVw3nlDR3OmuT6BosPd485PLfET+v0PfcgvZ89uPH8s2Q/V4/yE95g0yYfDoHvFz2eJBM5XgO/gQ11vBK7A19gpmzvxeT9J9gAaPhV0Us5PUPqhyN911xV/j7jzM2qUP+AGBuqfLPPWW71d+8lP+sd5w17B+dl0Uzj+eH8/K/SVV/zEQ14Q5TTdf39ndIhJ8TNjBuyyi/8tzj+/ugDN6/w88kj7R7f97GdRB75gQWPCWnSG8/P443756KPt+fxqDAxE7Vq/fmgds3bw/e/7PvFTnxr8fDixp4mfZjk/a9f647CvD173On/Ru2CBT5ZuhGT+WbV2xy9M485P6Nc23TRKAO9K8eOce9A5d2Pl/nrn3Iedc9s556Y4597knGvGdcsVwIFmNj08USmGeFBlXc8QlP5++3nB8cAD0RVPXuLiBxrP+zn/fH+yPe88f7Wfd7RXXPEfVxmTd/XV6fHevDk/8WRn8FcSO+zQOR1iUvyAH8UDcOaZ8JKXwD//mf7aeMeycuVQMRcXR+10f5yDb3wjerxhQ/mT59bDwAC85jVw+untbklxOkH8hP+w2qjMdrFoUdTvQPtDXxs3Rg7Z008PXhf6t7RKyEXFT96cn4cf9sfljjv6dIRXvco/32joKyl+6nF+wntMntzF4sfMRpnZEjM7tqwPNbPXmtlrgRdUnnpF5blDYptdBDwMzDaz4yqfPxt4FPheo23opJyfsLNvtx0cfLC/Hw99rVwJn/ucz7e48kpvdSavuuMJz9BY3s/ixYPdmve9D/7yF38/72ivTTf13+eAA/xOn5YgW0/YKxDyfv6VNh6whcRr/ITYNngb+vLLvQi95RYvbNNGrCQ7lhUrBj+Od5jNFD8PPVR9xNGcOV7AbblllF/QCaGve+/1++qPilQa6xDiYZB2hb1C/7Bw4WCh0QkkLwDbLX5+/euon00WFMwT9irb+Qn5PqHPDxebv/51vs/JIlzAhvzOPOJnk0160Plxzq0DNuBHeZXFpZXbaZXHF1Yefzb2uSvxtYTuw+cZXQLMBw5zzjUcAOiksFcQP1ttBYcd5u/Hxc9HPgKf+YxfHnOMD6tstVUU7121yndiI0fCttv65xoRPz/+sRczr3wlfPzjXmiFxMMs5yc52mvSJL8Moa/kAblhw+AOv9pIgGTYC6K8nxNPhBe+ED72MfjrX2t+tdKJuz7JucmOP94Llve+13/fj3xk6HDXZMcSD305N3h9s5Ke77zT/56vfW32NsH1ec97fEgPOkP8hFFAnXbizkMnOT/OdYaTFycpftqd43f++dH95EVKWo2fQNGZ3fPm/IT+f0ZlyNHhh3tXfN682vWBqhEugoKTXdT5WbJksPMzerTvG0NSeKeQN+fn10CVrrEYzjnLuM1KbLfAOXeCc26ic24T59yrnXMPl9WOTiFN/Fx3ne+QbrgB/vu/vbA59VS/g2++ubddzzvPbxtmFJ82zY82gEj8FK3y7JyvPQLw7nfD5z8PJ5wQrS/i/IBvLwyNQydt4yJhr9C2l77Ux7tvvdWPPjrooKHvW4snn4Q3val2Neos0kJecSZN8rVKpkzxMfpkBxhOemFW+7j4ee65wWGwZomfr3/di4e5c9Ovzh56CK64wv/3p50WfddGOtiyCPtVO8XPnDk+9JC3qnegk8QPdF7oK4ifffbxy3Y6P3/+s3dwQx+UFD/VnJ9mhb2Szs+YMfDyl/v7VzSQGBL68J128suio72eeWaw82Pm2wad5f7kFT9X4UNTl5nZSWZ2uJkdFr81s5HNoBPDXlttBXvv7XeiRx/1J7tTTvHrPvEJL4KuvRZuvtmf9H/yE79dMt8H6s/5ueEGP7Jim218teK+Pj/1xgtf6HficEAEsur8BOcnnCiTV3HJROyiYa899vBtXbrU19OZPt23Ia2DfPRRn6iYNnnqFVfAz3/u80Y+8pHiRcJqiZ9AfAReIO7shN813qmGdX2Vo7QZYa+nn4af/tTf37AB/vGPodt8+9u+rW94gw97he/aCc5PED8DA+25qnTOhzgXLIguGpLrv/51f8wmafdoL+cG74+dlvQc+oyjjvLLu+9uXyXs4Pp84AO+H1y1avD+1qyE55Urs/vGpPMD0cVmI3WRks5PvGpzkjzOD3Rm6Cuv+PklsC3wGuB/gD/gKzvHl6JO4uKnr88PEQcf0rnvPh+SOPPMaPsZM3x2//r1Pg8oTfzUG/b6/vf98h3viEJa48b5OiCPPDL4QIPsOj/B+dliC6/6ly4dHCdP2rlFnZ/AhAm+c3xhZYKVtATos87yrlnakPu40/LVr/rOo8hvVlT8xN971Sr/u40ZA1OnDm1P6Cx33dW7LvWM+Hr8cT89wOte5wXWJZcMXn/RRb6GUiDkdgU2boymXPngB/0yzOPTCeIn3smnidtmc9VVkWC84YahYc1rroEzzvC3JO12fpYsGeyYdarz84IX+AvCZ58td77CvDzwgA/bjxrlxU/oh+L9WbWE5yJD3QcGIvET+oSsEbtB/ATnB9Id5KKE1269te+b1q/PTkvI4/xAd4ufw4BDU26HxZaiTuLiB6LQ1z33+KuMH/xgaHHBIIYuuig6YcUPgnrEzzPPwC9/6T/zne8cvG7kSNh++6GvyarzE5wfs2jel7j7E8RPCNMVGeqeRvju8YqngZAUnWYhh/d+1au823XjjT5JO+8MyY04P6GDmDw5+r3inVZYv8UW0fD+vO6Pcz4/bLvt/H956aW+raecEr3H+vVw4YX+fsj3SeZNzZvnT5I77eRPQtA5Ya9Fiwb/nq0OfTkH58amVF6yZOj/84fKZWGasIifDOsRP41+32Tf0GniJz5nXsjxa0fo62tf8//1SSf543jiRP983KUtK+wVCgROmRL1t2n91saN6Re9QWzkmS7lmWfgu98dGsKLX8DGp+dII+7K96TzU5nHa261W7MbWjadmvAMkfgBP9IqzNIe5/nP9wnJq1b5sA007vz85Cf+6vmoo2qfzAPV6vwEgviJnyzD1Uw4wOt1fgJZ4sc5Xw8o/j5p7z1rFvz97/43fPxxPzdXHvKKn/B/xE/WoTOcMiVd/MTX71mpeJVX/Dz5pB8ZOGKEF3bf+Y6fcX71ah++WrPG5zk99pgfOXfWWf51SecnJN6HKTsgcn4eeST/fEXNIJlHVlQM3HGHdzjrTfSdM8eHs6ZMiUbaJKcXCOJn0aKhoYNGwl5XXulPOD/7WbHXxckjfq67LrtMQ7MJF0s77NDequ7BMX5/ZbrsNOcnT8JzHvET+octt4ycn7Sk58ce8xcvW28dFRGEYuLn61/3gzGSIyXDaydNqi1+8jo/QRR2nfgxs4fMbJ+MdXuZWQdUW+lO4nH3MFR611294NlrryipOY1PfGLw4yzxkzdOHnIWQp5RHqrV+QmEk2Wa8xNyXYrm/CQJ3z0Z9lq0KHp9NfEzYYL//YPDUmuusUAznZ/QWU6eHImfvEnPQWjus4/Pa3rve329phkz/Mnsox+NRnB94AP+/ceN88nzcZs9FNyMC/Lx4729vm7d4O9ThOeeg3339d97883977PLLum5MVkk8xqKhr2++U3f8dcrIILrc8YZPj8OfNJ44KmnvMACf3wkTyDxk2GRiS/Bh6HXr/ciqF6C+AnHZzLn58kn4cgj4ZBDWj+r+qpVPh9t5Eh/XLbT+Ql9RLiIK+r8FBnqHr8QriZ+QrJzMg2hiPgJfWUYMBPI6/xs3OjFjJn/3vFt430XRKKwk+b3yhv2mgaMzlg3BtixlNa0kE5JeF6yxHdikyZFO4gZ3HSTv7Kt5na8+MVRXSAYLH7GjvU77/r1+a4q58/3rsLkyVGxrDzUGu0F6c5POKCDaGhW2Cu4PlBd/MQLKNZqT2DFCv//xXN2skjL+ckb9poyxSd4Q3Hxs2PsyNxkE+8SjhwJ3/qWH8EyaRK89a1exO6/v98uhL7Wr/dhQBjs/EDjoa/bbvPiZcUKv38+9ZT/r046KX9eU6POT+j86/kOf/6zF4YTJ3pHIByHN9wQXWz88Y+DXxMPXwwMRP/v+PH+NUUERhCojdS5CvviAQf4ZdL5ueMOf4JbutTvL60kCLHtt/d5kO2c0ibp6hQVP0Vmdg/7yJZbRhfDaeInLd8Hiomf8P8nHcCwH266aXXXKvSRYdqhkSOjSVzDMdULOT8AWf7B/sCyxpsyPEmGvOL05fh3gvuz1VZDxUGR0FfoqA89dOjEfNWI1/lZu9aHU0aMGGz/xsMkgXqcn2riZ5ttfF7U4sWDRU5c/KSdVJPCKrhLecRP+D5pNX6SpDk/zQx7BZdtx8Rlyf77+/IFgXe9K/rOIWk8iJ/bbvO/z667RqMHA42O+ArtO+EE/5899pgvnvjQQ75mUx4aFT/hireeUU7hN/zAB3wHv+uuXgAvXBhdlYeQVyAuflas8CeJiRMj4Vwk9BVKOtxzT/ERioHQL+y3n99/n3xy8HvFXZYLLhiaG9JM4iEvaJ/z41w0ICAM1y4a9ioys3ua85OW85Pl/IR+ZNmy2o5/SB5Pnh/yOj/xkFcgiKVwbHVlzo+ZnWFmC8xsAV74/CY8jt0W4+f5+n2rGtxrVBM/eTjySJ/PcfHFQ9cVET9p4Y08xJ2f+BVDXAykJTyHK9eywl59fdF7xd2f++4b+j5p7510fvK4D3lDXpCe85PX+Zk82V/hFRnxleb8BD78YXj1q/37hhFcAP/xH34Z8n6q7RONjvgK+8KMGT7ste22flTZyJE+CTvpmiRZs8afCPv6YOed/XNFwl4bNkSip56pZH73O3+VH6bVMIvcn7lz/YkniJ9wgopfwQehM2VK8QrAEB0/69ZFJ8KihH5hhx18/5MsdBiEdn9/c90f54b+d0nxs8MO/vdeuDCfq1EWQfiMHh1djBZ1fiB/3k/c+akW9spyfkaN8m3YuLH2BVwt8VMr5ydN/IR9OVyIdKvz8xDwx8rNgNtij8Ptl8AZQIEskc6gUxKew8kwnByLYubzOcJM4nHyih/nohNdqBORl3jCc1q+D+RzfopWeE4jdATxvJ+8Ya9wABcJe4UTf7L2URqN5PxMmeKvHkM+Up6r3/Bbh5NHnL4+P6pv0aLB64P4+etf/T6RluwcaDTslTy5gU/i/8xn/P13vKO603DXXb6D32WXqIMt4vw8+mhUp6Wo8xMKYh53XDS0GAaHvu691yfOT50KRxzhn49fwYf/drPNiteBgcF5WfWGvkK/sPXWflQgDA59hf3sox/1ywsuyD8KsghnnOFHNMYvWpL7R19fsf2/LNIcnTTxU63OD+Qf7h6/GK4W9spyfmCw+5PFc89F/2UznJ9AVzo/zrnZzrm3O+feDvwY+EB4HLud5pz7pnOug9KYuotGnZ9q5C10eNddvmPeeuuog8lLPOE57vzE2W47L9KeeCKy1Yvk/OQJe0F63k/RnJ8iYa8izs/kyV4oLlsWdQDxnJ7QoWY5P1As6bma8wP+ZBL+u8B22/n9cOlS/xk33eSfD3Wn4pQV9kqKs499zOegLFjgiwdmEUJe++wTVR0vIn7iAnnx4mKd8uWX+2WYuiUQFz/B9Tn88OjYThM/U6YUn/4ABlcyL0P8hFGXQfw4Fzk/73ufr56+ZEn6/HSNcvXV/jj85S+j59LCtu0Y8ZUmforW+YHizk+1sJdz2c4PRP1vtRBb/JywcmX0XTZu9PfNfJ9UTfykOfJB5IF3y0KosKvET4JTgdRZRsxsvJkVyBLpDDol4bmZ4ifvFBchxHD44bVzV5LEw15xuzTOqFG+LQMD/mp47Vp/1TRihH/ezNvLWRV684S9YKj4GRgYHBJIEz9JV6lZYa++vuhKLnRm8RERtZwfyC9+nKstftIwi9yfb3zD/yd77+2vypOkuXlFyBI/I0ZE4a+LL84eYhtGesXFT5GwV3KES94aNwsX+hFpo0cPdVv32sufeB55JApDv+xlQ/93GPzfFg17JUeOlen8BBds8WLfnk028RdRwZH76leLF9qsxsBA9F/Ec6TSnMt25P3kdX7KCnvlGer+1FNesEyZEomTOHmSnpMXxOFx+E6bbOL7rGrtruX8xNvWzeLnosotje9Rwizrw5VWiJ9azk+9+T6QHvZKOj8wOO8nWPZTp/oDLHQYWaGvvM5Pcrj7E08Mfs+yR3sVET8wNO+nSM4PRCO+aiU9L1/uv9f48UNt6FqEpOf/+R+/zNon4jk/RacccC5b/IA/ye2yy2ARlyQ4PzNnRgVAizg/SfGTN+9n9mzfriOPHCrG+/v9fHMQibMjjqgtfoo6P8nt6hE/zz7r9/ExY/y+lwx7BYGxxx5eFB9xhB9d+swzvmRCklWr/Hx7ReeUevLJSLTeeGN0ckzbPzpZ/FRLeIbi4merraKLjqefHnxhWM31gXziJ3lBHM4RydG69eb8xN8Dulv8HArMzlh3BVAwU0QE2i1+NmzwxdqgPvETD3tlOT8w2CkIVzLh4A7iJ0twFM35CZ1DCHmFhNik+Nm4cegVW5GwV3w4bh6SeT9Fcn4gv/MTv2ou6uQF5ycIiax9YuJE3641a6rPPJ3GkiX+991kk/R9BaKTXlo+jnONh72C+AniPW/eTwh5veY16evjpSd23dXvG2lX8PGE56I5P/HBAv393t0selKJuz5mQ8NeQWAEwWEW5f784AdDBe/FF/s6YZ/+dLF2xMOPa9f6+kUDA+nHVjuGuxcNezWS87Nxoxc6Zr5vHDnS7xsDA4P3jeSEpknaKX560fmZSkbYC1gMbFlOc4Yf7c75+cc//An3ec8rFiIJpI32SjuhxZ2fcBIIJ4VqbkuaQMkiJB4/8ohvTxA/++3nl0nxEz94w0iOvGGvgYGoI4snvVYjWesnLm7iHerGjV6UrljhO8Lwe+Yd8VVPyCuw//6RYOrrG3wyT1Jv6Cuez5ElztJGCAYefdR30ptv7k/ejYS9gtOVx/lZtsy7pP392bWw4r/Xy17ml9Wcn802Kx72Cvk+223nhf3AQHFBEBc/4b0gEh3BXQyCA3whxy239J8VrwTuXDQn4H33FSvWmCxK+oc/+P5h3Tr/u8SrF++8s//t588fPB9dI2zY4Odf+8AH/PxdScpKeM4jcBcv9r/d5ptHF5VpeT9pE5rGKRL2CsdfeJx07/OIn/hFaS86P4uAvTPW7Q20YU7ixui00V7Ndn6yQhMh36ce1wcGh73SChwG4ifKeNgLqoufNIGSxZgxfsj0xo2+Ew/iZ++9fae5du3gOiZp4bS8Ya9ly3xHtemm+esiVXN++vsHC6D4bxm+94gR2dV44zQifiZNihJL99sv/b8M1Jv0XC3kFQhX/GmiJISUZs70nXcjYa9DDvHLPM7Pb3/r9/NDDhncycfZd99oH0oTP+E4bCTsFY6fLbbweUZQPPQVTnbhAqla2CswciS85S3+fry0xl//Gk2BsXp1sTnCgvgJjuMf/pC9f4wa5S9wkrl89fDww17wbLutn87n29+Gj3xk6HbVnJ+0nJ9Gwl7xYe6BtBFfoXxHGc5PONaTzk+44CrL+ena6S2A3wKfMrPnx580s72BTwK/Kbthw4H16/1VXF9ffvegCBMm+Nvq1dmZ//UOcQ+kjfaqFvYq6vzkDXkF4qGv0Enssku6VZ323uFAruX8hKvvIv9bPOfHuaGT/8VDX8mQVyBtSHKSRsQPRCeitCHuceqt9ZNH/FRzfuIhLyju/Kxa5U80I0dG3zWP8xOGuCdHecUZOdIXHj366Ej8TJjgT4qrV0f7VZr4KRr2KkP8hH1ym22iQocbNgwNewXe/na//MUvohN+cH0C996bvx1B/Lz1rf7iZd68aF69tP0jHN/JnK2ivOc9XvAsWhSJ+LTSCtWcn7LDXmkXwmkh01CENDjaSYo4P2Gy4jxhr+QF9HDJ+fk0vorz38zsz2b2f2Z2E/B3YDlwVpPa1zQ6YbRXXASE2c3LJpws00ITIcYOtU90WeR1fuJTXCRzfqqJn7zJzoG4+Inn/KSJn0acn3rET9z5CeGtCROi3zCInxUrhiY7B7bd1i8ffzz7c7KqO+flzDPhbW+rPtQc6q/1U0T8pDkyYb6spPjJ6/wEsbbjjtF3qOX8rFoFV13l77/61dW3/cQn/Jxb8elqkuGLRkZ7hX2vTPEzapR3GQYGohpFo0cPTebfYw8vGMPQ9BUrvBCCyEWrR/zsuWeULB4m2kzbf7Pm8CtK+P6XXRbtT2kDLlqZ8FxN/IT9ZtEiL/zGj49yAJMUcX6CgMoKe40e7QXdhg1DLwjTRuHWyvnpurm9nHNPAwcAX8AXPJxZWX4eOKCyXhQk7HDNCHkFwpVbWpLsLbf4g3bvvWvPTZVFmc5P2oGRd5h7IIif++8fHBuvJn7i790K8fPkk0Mn/oPynZ9q4qIau+ziT0C19stmhr2qOT/h5Br27aJhr+Aa7LTT4M+pNmrtmmv8sfLCF0b/QRGSeT9pCc9Fw16bb16e+IHoe4Uh57vumn5RFtyfMCnsqlW+FtQxx/jn41XVaxFEzPTpkVOWx/lJzuFXlHDsP//5g0ebJveBomGvRnJ+8oS9Qq7VAQdkXzDnKXIYxE8t5weyQ1/DxfnBObfMOfdp59yLnHO7OOde7Jw72zlXpZSSqEYz830C1UYINTLEPZBW5yfN+Zk0yV8xrVoVWep5wl5FnZ9wZThnjj8ZbrONPzjzOj/NDHvFnZ80Zycufmo5P80Me+WlmWGvbbf1jsnjj/urzkA83yOM4isa9oqLn0mT/H++cmX1k8XsyljXrFFetUiexOLiNn6lnlXrKk487DVjhhd/CxYUm3srTfyEPKsgfuL5PnHe8AYforr+evjSl/xz7353VCA1r/OzapU/FkaN8sdpED+BtP2jLOcnfuz39/vfMG2ajbxhrzISnvOEvW65xS8PPDD7fWoVOQzVnUePjv7jrJwfKCZ+4lMb9cpoLwDMbHMzO8bMTjazKZXnxphZofcRnnaLn3AgBbu5HuITm1Yb6g7RyTIkrDYz5+fvf/fLcILMm/PTqrBXo85PVthrzRp/BTlixNDJSMsmHvYqUusnT1hu1Cj/ew0MDB6t+PjjvgOdOjX6vYqGveLiJz7Mu1reT3BW6j1W4s5PfOhymLpk003zz+weFz/9/dEJLE/l70A15yeUvkjm+wQmTfIT0oIXvptt5vOgioqfIGCmTfPf4/nPH1xQs1XiB7JrjaWJnzFj/H+2dq3f55zLn/BcbWb3NOcnKX6C8xNy1dKoFfaKJ7tPmeIvYJcu9X1Ho85Pf3/02p5wfszzFeAxfF2fi4FpldWz8UnPoiCNzuuVhyzx45wf5g6R9VkPfX3RaKTQoWeNEAqdWbi6KpLzUzTsFagmftKcn/iohGpX4fWIn7Fj/Ylj/frIto+LmzzOT62wV8hd2W675uWRBTbd1Ld55cr8IZt163zn29dXW5ylhb6StZugsbBX/HOq5f2E14STb1Hi4ufZZ/0JcJNNIue0SOgrnvMD9YW+qomfcCLPEj/g514LnHyyFwQ77eRFwYIF+U5y8ZAX+H0izIMG6eIn/Gfz5xcbUh9nwwZ/oo8XWC0ifswG9ydpk58myTOze9rFcHy/2bgxSnYuQ/xsvfXgyvMLF6YXqi0ifiDal3vF+TkTeD/wOeA/8Pk+gd8Ax5TcrqbTCUPdW+H87LKLPwk++ODgHe+JJ/wV5OTJjYdHQgcerkhrOT+BZoS94vNkQT7xEz9481SchvrED0T/dQj9FXV+aiU8N5rvU5SitX4ee8wL7223HTq3WJK84qeRsBfUdn6efdaLkjFjBl+VFyGeuJr23xYZ8RXP+YHi4mfNGn8iGzFicI5GMpepmviZNcv3LSNGwCmVaa1HjvRCxrnBc+plkRQ/EIW+Ro5M/60nTvTfe82awZMEFyF+0g4hmiLiJ7QDfKixVrJzoNZ/HJ/aIhB3fu6+2++LO+xQ/YK5lvgJ+T7h4iNeEiXN+clqd5Yrv+uu/neN/6/dLH7eBXzOOXcefoRXnAeAjIoDohqtED+jR0dTBcQLoYWwUKiV0ghB/IQroFpVe8EfDEH0lBn2Mhvs/uyyy+DX13J+arUn0Kj4CUXkauX8JMXP1Kn+hLN4cfrJvlX5PoHw+37qU/kKz+XJ9wmkiZJq4qdZzk/Yftq0+o+V+BV8PNk5kHfEl3ONOz/xfifuVMSrKff3D/6Nk/T1+ZzBv/0tqhUDxUJfaeLnqKO8EHnBC7JdlEZDX2kXPUXFTzzpOW8R1vAfZ7U7PqlpIC5+QsirWr4PDE54TgtHJ12/NPFTb84PwCWX+LpP8ZGC3Sx+tgVuyVi3Dhifsa5j6YSh7q0QP5Ae+gohr6xaEUWIX8GPH599RR8/IU+dOvSqq4ywFwwWP0XDXvHPaob4CR1NcH6ywl5pOUHgT0rVJqxttfj5zGf8b3DVVXDssbWHshYRP2mipNGw19Kl/vcdPz7678JJP0v8hITuIJbqIZ7wXM35qRX2Wr7ch2022ST63kXFT1rICwY7P897XvT+WWy7rc/TidOo+NlmG1/HKSSYpxGO70bFT1q4u6jz8+yztZOdAy9/uV9+9rNDRcn69f6/7+8f7MZtsol3HFeujArSVgt5gd9+zBj/nmlio6jzU1T8bLrp0GH43Sx+Hgf2yli3D9BgyanhSSeIn333bfz94xWOq1UEjp/w4omNZYa9IOoc4y5Q3oTneHuqjfhq1PkJJ9qiYS+onvfTavGz115+1M/UqX6U0DHHVBeNRWoQpYW9wjDqesNe4YQZkp2zPidO0imqh7jzE5/aIpA37BVPdg5sv73fhxctyhcKyhI/8RysaiGvajQqfsCPYKtWeiNsnxzuvno13Hpr7c+tJn6S+26esFetZOfARz/q/7ebbvI1kuLEa5/Fc/XiNaJCnalazg9UD31VEz9Fcn6KXJh2s/i5FPi0mR0Ue86Z2S7Ah4FflN6yHuHPf84eCdNO8RPCXmWIn7jTkxXygqHOT6DMsBdEneP22/srIIgO0E4JewWKDnWH6nk/RZyVsthrL5g713ei118Pxx2XnYxaj/MTXrNxY3TCjM9rVCTslSZkajk/zRI/9YS9kvk+4E+QB1V65uRJNY0s8TN6dNTOZoufgYH6f9essNcnPuHrMF19dfXXl+H81BP2mjgRzjnH3//oRweL9WrngtBXLlvmLzTz9NnVav1khb2eeCJ/2KvInIvxbbpR/JwN3APcAIRUtkuBf1Yef7H0lvUA55zjO6Xzzx+67rnn/Ml17NhiJ/Z6SIqfZ57xJ5SxY6POqhHyOj9bbTV0wj4o3/kJVvzMmdFzeROe44+zxM+GDb4jMKv+fdNIdm61wl6d7vwEdtvNC6CpU709H5/7KU4jOT8LFgyu3RQoEvZKO+HGf8+0EX7xnJ962XRTv++vWBFdedcT9kpzfsCPuIKoOnI1ssQPRL9FVo2fWsTFT7XyBwsX+hyxzTcfPEAhD1ni53e/88twYZdFu8JeAO98p++P58+Hb34zej5tmHsg/tw++9R2mKA+5+f++70oHTducJ+e5kqG32n8+NpzLkJ0Ebp27eALo7PPhs99rnqNrWaRt8LzamAW8Dbgz8C1wK3Au4GXOecKTCk4fAjl9z/+8ah2RiBe3bnRhONa7Lyz35nnz/cn9BDy2mefcoZDxw+Uas5Pf390QksTP2VUeAYfE7/qKvjv/46eqyfhOSvsFRcmRX+/5AmnTOcnTOgKrXV+AjvvDN/4hr//sY9F7licIqPRttjCC5ulS/1/kZbvA8XCXmniZ+xY/1kbNgyePbvaa4rS1xft82n5XnnDXslk58CrX+1PeH/7WzTJaBbVxM8JJ3gBVG/h0y228O1YsSL9twwE4ZI1OWc10sTP4sVRSLTWxKplip8iYS/wAvirX/X3zz03ErN5nB/IF/KC6oUOk5Pahv0gDIhJXtClOT9Z+T5ZmEUCKD4w4utf93mDeYp7lk2RCs8bnXM/cc6d5Jw70jn3Rufcj51zG2q/enhy7LF+nqSBAXj966OT1dKlcOqp/n69dUOKMHJkNOLr7rvLzfeBwWGvWk5IOOk1M+fHzCcXxjv3enJ+spyfekNekC/stXChP5GPHp3eoWY5P2FSyqlT83XEzeD1r/eT5C5Z4gVQHOeKOT9mg5Oe0/J9oPGwV7w9ybwf58pJeIboCj5N/DQS9gJ/YnnjG/39pPuzZo2/+ArisJr4OfNM/xsEgV0Us3yhr6x8nzxsu63v0xYujITHn/8cra81T1u7wl6Bo47y/dOKFT5Mt8ce8F//5delOT9x8VMr2TmQ5fw895z/3NGjo23CfhD6tWaIHxg6v9eaNV6cjRiRfpHXbIpWeJ5hZm8ys/8yszeamYa41+Ccc3zhrkWL4MQTfQf+4hf73IittoquAppNPPRV5kgvyO/8QGSnxzu9snN+0ihztFezxU84wU2enO4KZjk/7cj3SWIGF17oBcnFF/vkzsCSJb7jmzix9n4SiIuSLOennrBX8qSblfezZInfTyZObLyDDie28D3SEp7rDXtBNOfWT38a/RYDA7768qGH+rDd5z8f/QZZtWIadaKD+Kk2x1cj4qe/PwpBhu8S389aIX7Swl5FLjjOP98fIw8/7MXwkiX+ex188NBt44KoqPOTFD9x1yf8z1tuOfg/Tx6b1cRPkX45mfQcn+MxT+isbPJWeB5jZhcDdwM/Bb4EXALcY2Y/MLMagyI7j1YVOezv95P/bb893HyzFyH33OOXf/lLFBprNnHxU2ayM+TP+QEf373sMu+KBcqs8JxFkZyfWmGvRsTP5psPDpXFf69k7kNavg9kOz/tyvdJsssuketz2ml+yC3UN9t8XJQ0GvYaGMh2cbKcnzJq/ATCSSzMVdaI85Mmfvbf3yefL17sZ5UH+PKX4fe/921fuBDOOisKbzSrsnyo/VTN+Qkjtep1vpPD3ePip56wV1bovUjYK6/zA9F54JZbfImC+fP9f//KVw7dNjg/m22WP0xYS/zE//sRIwbvT9Wcn5Cv04jzE37TVg34ySKv3jofeDPwGWAGsElleTbwFuArzWhcr7DFFnDppV4kbNjgq5jedFNrr9CD+PnLX/wV2YgRUX2QRsk72gv8yf+EE4bWBoLywl5plFnksBHxEy8nP2nSYCHU3z+4M8kSPyFW/+STg2PlnSJ+wIdPpk/3HfvZZ/vn6nGm0pyfcHIN5A17hXDi5psP7bSznJ8y8n0CyeHb9SQ8Z+X8gBc48RnX//QnL3YAfvtbX4og1JrZZpv6q1XXotlhr/jrHnrIh09uu81///5+/xtVG1VUdtirSMJznJ128mGsPff04jor8Tv000cemV+AZ4mfZLJzIC6GkuJn5Eh/vAwMRL9dPRelSfFTLcm7FdQoMP9v3gB8tlLhOfAQ8Hnz/8YZwAdLbltTqRQ3BLwLBBzSzM/7j//wV2D//Ce8972D3ZJWEMTPjTf6PIY996xdxCwvRZyfNNoR9ooP1QyfH2hm2Av8lc4TT6SHUSZNir5zVphl9Gh/8lu82FvHoePqJPEzdqxPOH/5y+G88wbXL6lH/Dz4oBciyQrekD/s9ZOf+GXaMO5azk8Z4ifZycfFT5gNO8zsnpVIn5XzEzjpJO+6/e53Pvl540Y/rProo/36I47wgmH06NrTi9RLK8XPgw/677lunRcJzz3n3b3HHsuuUF122KtIwnM97LOPnwy6yGjDPGGvOFtv7YtLxl8bZ/Jk/9suXTq4j+pm8ZPX+RkN/DVj3V+AUeU0p7c57DD4z/9svfABXxdl1Kho+GlZIS8o5vykES8wFh8eOzAQHWRJgVKUuPhxLhI2EyYMjTc3M+wFkc2b5uzEr/6ynB+I8n7iFv8dd/hlvAZOO3nZy+CHP/T3zzgjGn1Xj/i54QZ/Io/XbgrkCXstWOBDrhC5IXFa4fxUEz/x2bCrDfutFvYC7y698pX+t3riCZ9feO65g7eZPr3+hOY8zJjhhdxDD6UL0lWrvAs3cmT97Yg7PyHkddBBtSf+hfYnPNfDPvsU61trOT/JkGf8cdrnJPN+yhQ/nR72uhY4MmPdkcB15TRHNIsRIwbX9ClT/BRJeM56/ciRXuzET2BBoIwb1/iQ/FGj/G3jRm+TV7Ntmxn2gqijyXJ+AtUSbEMnH5Ken3vOz/jc1xcVvOsE3va2aPh7mM+siPgJoiSczNKu5vOEvU4/3Z+kTjzRhw+SZDk/IUeokRo/gbj4mTAhancgT+irWtgrEGZcnzwZfv7z1l9sjR3r3cd4Uco48Tyqeo/rLPFTq2AllD/UvZ6E52aTVeSwmvMTyHJ+oFzxkzaRayvJK34uAF5nZt8xs1lmtntleSHwOuB8M5sebs1rrmiEeI5PWSO9oPGwF6QLjrJCXoG4+1Mtl6gVYS+oLX6KOD9//rPPJ9tvv/oEaDP54AejyrZQn/gJpImfWmGv3/0OfvUrv49dcEH6NqEA56JFg/PCmuX8pP23tWr9rF7t98lRo6ofE696FVx0kZ94tF0j/6qFvhoNeUH0fzz0UDTM/cUvLlf8rF8fhSCTAjIt7NVM56cojTg/aX14SMgPr69H/CSrPHdL2GsusAPwHuCPwL8qy9Mqz8/FV3oON9GBhLwfs3JHmTUa9oJ08VNWsnMgr/hpdtgrdNBpB329zs/11/vloYfW16Zm88lP+pFHr31t/lol4P+L+JDwas5PWthr9Wr4wAf8/c9+dvDknXH6+33NFfC5eVB9dFg9xBOe08RPrRFf8XyfaomvZvCudw2ucN5qglOWNgVLcB+y/os8TJzof4e1a/3xuOWWXkyVGfaq5uiUkfDcTBpJeE7rw1/0Ir8MU4f0Qs5P3pS3tze1FaIlBPEzY0a5U2qU6fzEO5+yhrkH4uKnmqtUy/kJYYl6xc8b3+gdhpNOGrquXuen08WPWVTIrSg77BD95smRXlA97PWVr3h3YK+9vANVjeOP9y7Cr37lw2PVRofVQxAtzlV3frLCXrXyfTqJINzT8pfCc43WTXre86ILkYMO8r9tmc5PXvET+olOCntlVXiuN+x17LH++L3ySu8wl1Hnp905P7nEj3Pux81uiGg+Rx7py+Aff3y579tozg90pvPTrLDXxInwqU+lr6vH+Xn2WT/Ut78fXvKS+trUyWy/fVSYs2jY67LL/PL882vnvhx/fNTBr1tXzpxecUaM8PvM4sX1hb3y5Pt0CtWSt0PeSL0XSoHp033pDojy3FolfkaP9re1a6P/q9Odn5Urh1Z3DtQSP7vs4kOZ997rc6zKGOreLTk/QzCzPczsBDPbpvbWohMYN85f1b71reW+bwh79ffXPyqrlTk/zz2XL+E5Ley1bp3vQPr7m5NbU4/zc+ONPjdh//2bP0luOwh5K3196eGnamGv8B/mGQH3vOfB3nv7//e668oNeQVCRx8P5QWKhL06nXACjVcFDoQTchniJ5AUP80Oe8VfHxyMThI/Y8b442Lt2mgurRCC3HrroWHTuPuS9b+EwrSzZzce9mr31BaQv8Lzt83sv2OPXwPcjp/Z/S4zO6BJ7RNdQLiinjSp/iq41ZyfZoS96k14joe8mjEhbV7xE3d+Oj3k1ShB/EybNnSEFET734YNg2eMhuIjcV7zGr+8/PJyk50DQfz0etirmvNTVtgriJ8xY6LRq5tv7veRMJVKkrVrfSLziBGD65zFy20Eau07Iek5iJ9OCnuZDf0PQimM3XYbuv3YsZGoThPmAMcd55dXXNGY87NqVTS1xZZbtmdqC8jv/LwCP5t74LPAb4F98PV/PlNyu0QXEZyfRq7kOjHsleb8hNBDVgfRKHnDXhMn+o5n1Srv5kHvip8QdoqXaohjFomiMJVGIFz15j0xhZDw7NnRFAxlip+Q9FxN/IR9LEk3hb3y5Pw06vyEhO5DD43+/76+6MIgLfQVP+7jFy/1OD9B/HRi2AuGip9aczpedBF861vZ+9eBB3qB9OCD0RRJ9To/7U52hvziZ2vgYQAz2w7YE/iCc+6fwDcBOT/DmLjzUy+tHupe7b2r5fw0mu9Ti/hvWOvkEDr5Bx/0/0En1fcpk2OOgY98JCpSmEZW6CucwJKFEbN4/vO92Fm0yAsgKC/nB3zhxwkT0v+rkIQaRuQk6UbnJy3sVVbOz377wdy5Q2exrxb6yrroaSTsFegk5weyxU9WjbdXvxre//7s9+vv98ciRPtiveKn3fk+kF/8rALC1zwEWAHcVnn8HH6uLzFMCeKnWc5PM8Neae89apR3szZsGJpE2yrxM3Fi7ekH4tVxX/jCxqtgdypjx/pRW/vvn71N2oiveNHMvOLHLHJ/wkm6TOfn7W/3J6MwdDhOrWTdbsz5aWbYC/ws6MkTaF7nJ86oUd41Wr8+cg/zOj+BTnN+koUOa4mfPMQnpIbGnZ92jfSC/OLn78D7zGwv4H3AH5xzIbq+E/BkMxrXTFo1q/twIJyky3Z+2hX2MssOfbVK/FTL9wnE66T0asgrL2kjvkLIa8yYYvlZydGQZc+VllXVOJ7Hlcxdgu5yfloR9sqimojMOu7jx3wQPUWdn04TP3EBunChv02c2JiYf9nLBudKDYew1yeBA/FJzrsCsXqtvJrseb/EMKAM5yct4bBdFZ4hO/TVbPGz226+AOWJJ9beNu78DHfxkxb2qnfagRe9KOqUt9kmv2vUKCHpdP366OQQp5tyfuKuQ3y+PufKC3tlUU/YC4aGvoo6P50c9gquz8yZjSUYT5jgJ8cN1Fvnp2vEj3PuVnwl5xcCOznn7oit/j5dmPDsnJsVbsC8Njenqykz56cTihzGP7PV4mfsWD+D85e/XHvb4BSMGpUeRhlOpIW9iiY7B/r7o5EtZYa88lDNtegm52fUKC8mNm4c7J6uWeP/o1Gjmicq6wl7QWPix2ywI9IJxAsdlhHyCsRDX0Xcrvj0Ft2U84NzbqVz7m/OuRWJ5690zt1XftNEtxAs7kZmim5X2CtLWLUr7FWEULvmJS/pvKvOVpMW9iqa7Bzn7W/34dxDDmm8bUXIEj8bNvhRRWb5QqKdQFreTzzfpxmlIqC+sBcUFz/x9xg7tnnfp17iv38YnVXGnI7HHOMvEKZOLTYxbafl/OSd3kKITE45xXfIJ5xQ/3t0Us5PVnugs8TPEUf44anDPeQF5Ya9wA/rfeqp1k8Sm3XiDvvdlCn1z4TeaiZP9iPXli2LvlezQ17QnrBXp+X7QHrYqwznZ5tt/BxfRY+ruPgJ02600/mR+BENM3Giv1JuhDSxEYrMNeIoxSkiftoV9ipCmMBSpIe9GhE/0B6HJUv8hJpDZQ67bzbVnJ9mip/NNvNu37Jl3rmNu7vDUfw88oif32706PQCh/Vw+OHFX9OtQ92FaCpJ8bNqlT9oR4zw0w6UQT3OTyeHvUREtbBXN4UEs8TP/ff7ZdrcZp1KWq2fMoe5Z2GWnffTzLBXpxF+/z/9yS/33rv2/HbNJPxGy5Z552fkyPZNbQESP6JDSIqf+ypZZDvvXN4B2w0Jz6I+yg57tYteEj9pw91b4fxAduhrODk/IWQbvnMZIa9GCL9jmGNs6tT2TW0BEj+iQ0iKn7vv9suybFqIOrzly6PPySoMmBaGW7XK30aNKm8EmiiHMkd7tZNa4meXXVrbnkZIC3u1IucH5PzA0N+4U8RPqGHVzpAX5J/Y9Dgze3vs8Y5mdrOZPWtml5mZTgWiIZJi4557/LJM8ZN0c8aPz77ySAt7NXtSU1E/ZY/2ahfbbuv3rSef9CO8At3o/LQr5weyRWQ1x7fXnJ9OFT+BrhA/wFlAvLrEBcB2+Bo/BwNnl9ssMdzIcn523728z+jvH9xJVRtFlhb2Usirc+mVsNfIkX7478BANMeXc90tflqd8wMKe8Fg8dPX5+etayfJ37Gdw9whv/h5HnAHgJmNBY4GPuSc+zDwCeD4Kq8VoiatcH5gcKdXTfykhb2aPaO7qJ9mjPZqF0nXYuFCvx9OmdI9NX4gPeenVWGvLOdnOIW9xo2Lph7abbf2C7S+vug4he5xfsYAlV2BF+OHyF9TeXwvsE3J7RLDjHjHs3FjlPDcTPFTLW8nLewl56dz6ZXRXjD0xN2Nrg+0N+zVSM5PuOApIn7aLSzSMIt+53aHvALx37JbxM/DwEsq948D/uacq5QpYiqwPO1FQuQlVEhds8bXpFi71uc/lFXgMJDX+VHYq7volbAXDA3ZdLv4SQt79YLzM2JE9JpOFD/QeeIn/jt1S9jre8DZZnYb8F7gh7F1LwLuKrthYnhhFh0Yf/ubX5bt+kBjYa8wt5LCXp1HrVndu4lecX6qDXVvds7P5Mn+GH722cGfX038JOcXzCOew/t0qsAO88C94AXtbUeg65wf59w3gLcBNwPvcM5dFFu9CfCj8psmhhuh8wnip8xk50BR8RMPez3yiF/usEP57RKN0cs5P90qfto51N0sqob98MN+6Vy5zg9ESc+d6vx86Utw7rlw8MHtbomnk8RP7uktnHOXAJekPH9qqS0qiJn9L7A7sBFYD5zpnPtjO9sk6iMIjttu88t2Oj9pYa8wxUBZFadFefRi2KsXxU+rwl7gxc+dd3rxM3Om3x8GBrwTOCLlzNeI+OnUfeylL/W3TiH+O7U77JVL/JjZLsCmzrm/Vh6PBT4N7AVc7Zz7dvOaWJNTnXPLKu3aF/ijmW3unBtoY5tEHQTxE2YgbrbzkyfhOS5+HnjAL8Ns6qJz6NWE54GB7hU/QRgsX+4HMfT1tV78QOT81JrSph7xE96rU52fTiP8lu2e2gLy5/x8G3ht7PHngQ/jR3l9zczel/cDzWw7M/tWpUjiKjNzZjYtY9vtK0UUl5vZCjO73MwGBR2C8KnQ4jmYRZkEwbFihV92Qs5PCHs9+6yf5Xv06Ggkiegcesn52WorX5Pqqaf85L5r1vipAFo9w3yj9PdHbV6xwh9DAwP+2GrFHFOtED+dHvbqNMJvOXVq+wvF5hU/+wA3AZhZH/BW4GPOuRcA5wLvLvCZM4DXAUuBG7M2MrNxwHXAbsDJwFuAnYHrzWx8YtuvmdlDwC+BE+T6dCfxqSYmToStty7/M+oNez30kF9On97e+WhEOr0yvQV40bBNpXjInDl+2W2uTyAe+mql6wONiZ+BgUhIV0uYD5+hC6J8hGOx3fk+kF/8TAIqxf3ZF5gMXFZ5PAeYXuAzb3DObemcOxq4tMp2p1Te99XOuV8752YDxwI7AoPyjJxzZzjnpgNvBr5sZqOGvJvoeOLiZ7fdmnNlUO9orxDyUr5PZ9Ir01sEQujruuv8UuKnOI2In/hIwWr90Dnn+P/oyCMbbe3wIIifduf7QH7x8xTesQE4EnjQORcqKEwANqS+KoUCrsyxwC3OuQdir52Pd6COy3jv3+OF2d552yM6h6T4aQZ5c37iBc8GBpTv0+n0UtgLekf8hLyOpUtbN8w90Ij4ybvvTJwIhx4qNzgvneT85B3tdQXwBTPbCz/k/XuxdXsDD5XcLoA9gdkpz98JnAj/TrzeqiKKMLMXAZtltcfM5mR81swG2ypKIB43b0ayM+R3fvr7/YG6erW/hZFeEj+dSS8NdYdI/Cxc6JfdKn7izk9//+Dnms1mm/kLquXL/ec3Q/yIYnSj+Pk4foqLo/BC6LzYumOJprookyn4vKAkS/DuDsBY4GdmtgnefVqJz/lJe53ocFrt/NSqHj1+vO8EV66U89Pp9NJoL4jET0Dipzih1k8Y7i7x036CG7fnnm1tBpBT/DjnVuJzcNLWvbjUFhXAObcEX2E67/az0p6vOEKHlNMqUS9x8dNu5wd8WOzpp/2IL+X8dDa9GvYKdKvoThM/rRziXET8hP1k1apoxFc37judzOmnw6xZsN9+7W5JgSKHAGY2BS82puAdmJsrAqQZLCVyeOJkOUKiywniZ8QIP6qqGeTN+Ym355ln/DxL/f2w447NaZdojGqjvbo54Rn8qMda+2qnEs/5abXzA4PzfmqJn74+v6+sWRNVopb4KZeRI+GAA9rdCk9u8WNm5+Jr+4yOPb3WzM53zn2q9Jb53J40c2wPSphLLJH/M7PR9xONE8TGjBnNqwNSNOwF8M9/+tL406a1pj6JKE4vh726NeQF7Q17wWDxE6o6Vzvux43z4ueZytjmbtx3RD5y5aib2enAJ4CfAofip5M4tPL4E2b2wSa07QrgQDP7twdQKYZ4UGWd6DHC1W2z8n2geNgL4Pbb/bJbQw/DgV4Le22xRfSdekX8tHqoOxRzfiDK+5H46X3yOj+nAd9wzp0Re+5eYK6ZPYef6f2beT/UzEK16DDX7CvMbDGw2Dk3t/LcRcD7gdlmdhbggHOARxk82qwu4vk/yvnpDF7+cjjqKHhf7nrhxYl3fOPHZ28XXx/Ej/J9Opdk2CtvkbpOpa/PF8576KHuFj/xsFdwXlqd8wNe/ARhI/EjIL/4mQZcmbHuSuA9BT83WdzwwspyLjALfJK1mR0GfA34CWDAH4HTnXPPIXqO7beH3/++uZ8xbhwcf7zv1IINn0VS/Mj56VySYa+8Reo6mR139OJn113b3ZL66aSwVwgl5ilu+vTTfinx07vkFT/P4CcxvTZl3Z5E1Z9z4ZzL1R055xYAJxR577wo52d4YgaXX55v2xD2Cna9xE/nkgx7dXPIK/DpT8Mee3hHtFtpt/iJ1/p5tFKWV86PgPzi51fAOWb2DPBz59wGMxuBLzb4OeDHzWqgEO0iGRaT+OlckmGvbh7pFZg1y9+6mXYPdY/X+rn7bv+cxI+A/NNbnAnMw4uc1Wb2FLAauAS4HZ8M3VU452aFG/67CTGIuPgxg512al9bRHWSYa9ecH56gXjOTxg+3krnB6LQV9g3JH4E5C9y+KyZHQy8EngpUZ2fucBVzjnXvCYK0R7itVW22667XYRepxfDXr3A+PHe8QlFA838fFitJIifgMSPgBzipzJD+i3Ax51zvwV+2/RWtQDl/IhaxJ0fhbw6m2TYS+KnMzDzTk8QExMntn4S0HrEjxKee5+au6Fzbh2wEwVmbheiF5D46R4U9upc4jk+rcz3CSTFT7USF0H8qMJz75NXg/8BOLKZDWk1yvkRtYiHvVTjp7MJlbfXrvXVuHsh4blXiOf4tDrfBwaLnwkTqjtPQfyERA6Jn94l72ivbwE/rYzw+jXwJL7o4L9xzj1UbtOEaC9yfrqH/n5/27gRNmyQ89NJdJL4qVXVPYifgPaf3iWv+AlVlz8EnJGxTY2ScUJ0F3HnR+Kn8xk92ifWrlsn8dNJxAVPO8JeodbPypUSPyIir/h5e1Nb0QaU8CxqEXd+FPbqfEaN8uJn7VqJn04iLnja4fzEa/1I/IhA3qHuKmIohh3B+dlyy8EukOhM4iO+JH46h3aHvSASP7WOY4mf4UOm+DGzPnxdn/nOuX9lbLM3MM0595smta9paGJTUYtdd4WTToIDD2x3S0Qe4iO+JH46h04RPyDnR0RUc35Owk84uneVbZ4Ffm5mpzjnfl5qy4RoM3198JOftLsVIi/xQoca7dU5tHuoO0j8iKFUG+p+EvAj59z8rA2ccw8DPwROLrldQghRCIW9OpNOcH6OOMILryOOqL5dsgaQ9p/epZrzsx9+iHstrgXeXE5zhBCiPhT26kw6QfzMnOmrTJtV307Oz/ChmvjZBFia4z2WVrbtKjTaS4jeIh72kvjpHDpB/EBt4QMSP8OJamGvp4Edc7zHDpVthRCibSjs1Zl0Qs5PXiR+hg/VxM+fyJfL87bKtl2FprcQordIC3sp4bn9dIrzkweJn+FDNfHzdeBwM/taZWb3QZjZSDP7OnAY8LXmNE8IIfKRNtpLJ6/2063iZ8QIfxO9SeZf65y72cw+DHwVeLOZXQM8Ulm9I/AyYDPgw865W5reUiGEqILCXp3JmDHw0pf6OdeqzajeCcTFj/ad3qaqrnXOfd3M/g58DDgeCLvDamAO8EXn3I1NbaEQQuRAo706l7mV2SHzJB23k5EjvduzYYP2nV6npqnnnLsBuKFS8XnzytPPOOc2NrVlQghRAI326lw6XfTEGTcOVqzQvtPr5I5oOucGgEVNbEtL0VB3IXoLhb1EGUj8DA+qJTwLIUTXEA97aXoLUS8h70fip7cZtrnsmthUiN5CYS9RBhI/wwM5P0KInkBhL1EGEj/DA4kfIURPoNFeogwkfoYHEj9CiJ4gOD9r1vjQFyjnRxQn1CKS+OltJH6EED1BED/Ll/vl6NHdNcRadAZyfoYHEj9CiJ4ghL1WrPBLnbxEPUj8DA8kfoQQPUHS+dHJS9SDxM/wQOJHCNETBPGzbJlf6uQl6kHiZ3gwbOv8qMKzEL1FCHvJ+RGNsPXWg5eiNxm24kcI0VvI+RFlcNppMH06HHVUu1simsmwFT+q8CxEb5HM+dEwd1EP48fD8ce3uxWi2SjnRwjRE2i0lxAiLxI/QoieIDg/AwN+KfEjhMhC4kcI0RME8ROQ+BFCZCHxI4ToCULYKyDxI4TIQuJHCNETJJ0fJTwLIbKQ+BFC9AQKewkh8iLxI4ToCRT2EkLkReJHCNETyPkRQuRF4kcI0RPI+RFC5EXiRwjRE8j5EULkZdhOb6GJTYXoLTTaSwiRFzk/QoieQGEvIURehq3zo4lNhegt+vvBDJzzjyV+hBBZyPkRQvQEZoNDXxI/QogsJH6EED1DPPQl8SOEyELiRwjRM8SdHyU8CyGykPgRQvQMCnsJIfIg8SOE6BkU9hJC5EHiRwjRM8j5EULkQeJHCNEzSPwIIfIg8SOE6BkU9hJC5EHiRwjRM8Sdn2TFZyGECEj8CCF6hiB+Ro+GPvVuQogM1D0IIXqG4PYo5CWEqIbEjxCiZwjOj8SPEKIaEj9CiJ5B4kcIkYeuFz9mNtnMfmtm95nZ7WZ2jZnNaHe7hBCtJ4S9NLWFEKIaXS9+AAd83Tm3i3NuH+C3wA/a3CYhRBuQ8yOEyENbxI+ZbWdm3zKzm81slZk5M5uWse32ZnaZmS03sxVmdrmZ7RDWO+eWOeeujb3kz0DqewkhehuJHyFEHtrl/MwAXgcsBW7M2sjMxgHXAbsBJwNvAXYGrjez8RkvOx2YXWZjhRDdgUZ7CSHyMKJNn3uDc25LADN7F3BkxnanANOBXZ1zD1S2vwO4HzgVuCC+sZl9prL9u5vUbiFEByPnRwiRh7Y4P865gZybHgvcEoRP5bXzgZuA4+IbmtlZwNHAK5xzq8pqqxCie5D4EULkoV3OT172JD2EdSdwYnhQcXyOBo50zi3PejMzm5Oxamb9TRRCdAoa7SWEyEOni58p+LygJEuAyQBmtidwNvAgMNfMADY45/ZvURuFEB2CnB8hRB46XfzUxDl3J2A5t52V9nzFETqkvFYJIdrB5pv75dSp7W2HEKKz6XTxs5SKw5MgyxESQgxj3vxm7/686lXtbokQopPpdPFzJz7vJ8kewF2NvHEi/2dmI+8lhOgMxo2Dk09udyuEEJ1Op1d4vgI40MymhycqxRAPqqwTQgghhChE25wfM3tt5e4LKstXmNliYLFzbm7luYuA9wOzK0PZHXAO8CjwvUY+P57/o5wfIYQQYvjQzrDXpYnHF1aWc4FZAM65lWZ2GPA14Cf4xOY/Aqc7555rUTuFEEII0UO0Tfw45/KO0FoAnFD25yvnRwghhBiedHrOjxBCCCFEqXT6aK+moZwfIYQQYngi50cIIYQQw4ph6/wo50cIIYQYnsj5EUIIIcSwYtg6P8r5EUIIIYYncn6EEEIIMaww51y729B2zOyxSZMmbTtz5sx2N0UIIYQQDTJv3jyWL1/+uHNuu7T1Ej+Amf0D2AJ4oIS3m1lZzivhvTqZmZXlvDa2oRXMrCzntbENrWBmZTmvjW1oBTMry3ltbEMrmFlZzmtjG1rBzMpyXhvb0ApmVpbz2tiGVjCzspxXwnvNwE+XtW/aSomfkgmjyOI5Rb2Ivmdvoe/ZW+h79hb6nuWjnB8hhBBCDCskfoQQQggxrJD4EUIIIcSwQuJHCCGEEMMKiR8hhBBCDCs02ksIIYQQwwo5P0IIIYQYVkj8CCGEEGJYIfEjhBBCiGGFxE9JmNn2ZnaZmS03sxVmdrmZ7dDudpWJmb3WzH5pZo+Y2Wozu9fMvmBmm7S7bc3GzH5vZs7Mzm13W8rGzI42sxvM7LnKvnubmR3W7naViZkdZGbXmNkiM3vWzP5uZu9od7vqxcy2M7NvmdnNZraqsm9OS9lujJl9xcyerByzN5vZwW1ocl3k+Z5mtr+Zfd/M7qlss8DMLjGzndrU7MLk/T8Tr/l4Zbs/taiZDVPke5rZ7mZ2qZk9HTvf/GdZbZH4KQEzGwdcB+wGnAy8BdgZuN7MxrezbSXzEWAj8Ang5cB3gfcAfzCznt2XzOyNwD7tbkczMLNTgdnA34DjgROBS4Fx7WxXmZjZ84FrgZHAKcBrgFuBH5rZe9rZtgaYAbwOWArcWGW7H+K/86eBY4AngavNbGazG1gSeb7nG4A9gW8CrwA+DuwH3GZm27eikSWQ9/8EwMymA2cBi5rcrrLJ9T3NbH/gL8Bo4F3A0cBXgf7SWuKc063BG/CfeFEwI/bcTsAG4EPtbl+J33OLlOfeCjjgsHa3r0nfeTKwEHhj5Xue2+42lfjdpgGrgdPb3ZYmf8/zgHXAhMTzNwM3t7t9dX6nvtj9d1X2zWmJbfapPP/22HMjgHuBK9r9HUr8nmn90o7AAPC5dn+Hsr5nYvurge8Bc4A/tbv9Jf+ffcBdwK+a2ZaevVpvMccCtzjn/j0rvHNuPnATcFzbWlUyzrnFKU/fWllu28q2tJAvAf9yzv283Q1pAu/AnyD+u90NaTKjgPV4oRdnOV3qfjvnBnJsdiz+e/9v7HUbgF8AR5nZ6CY1rzTyfM+0fsk59wiwmC7pl3L+nwCY2ZvwztaZzWtRc8j5PWcBuwMXNLMtXXngdyB7Av9Kef5OYI8Wt6XVHFJZ3t3WVjQBM3sJ3tl6X7vb0iReAtwDvMHMHjSzDWb2gJn12vf9f5XlN81sGzPb1MxOAQ4Hvta+ZjWdPYH5zrlViefvxAvCGa1vUmsws92BqfRYv2Rmk/H77Eedc0va3Z4m8ZLKcoyZ3WJm6yu5et80s7FlfYjETzlMwccwkyzBh016EjPbFvgccK1z7rZ2t6dMzGwU3lY+3zl3b7vb0yS2weemfQX4InAk8Afg22UmFrYb59y/8FeTxwGP44/V7wCnOed+0camNZtq/VJY33OY2Qi8m7kYn/PUS3wFuI9I0Pci21SW/wtcA7wM+DI+TPazsj5kRFlvJIYXZjYBnyi7AXh7m5vTDD4KjAU+3+6GNJE+YBPgbc65yyvPXVcZfXGmmX3TVYLw3YyZ7Qz8Eu94nIYPfx0H/LeZrXHOXdLO9onS+TbwYuCVzrk08deVmNlL8U70fr1wXFYhmDI/dc59unJ/jpn1A180s92dcw07enJ+ymEp6Q5P1pVXV1OxHn8DTAeOcs491uYmlUqlRMEngU8Boythkk0rq8Pj8kYdtI9nKss/JJ6/BtgS2Lq1zWka5+FzX45xzv3WOfdH59wHgf8DvtHDIxWr9UsQOUA9g5l9EXg38A7n3DXtbk/JfA/vZD0W65NGAP2Vxx2fw5WTav0SwL5lfEivHvSt5k58fD3JHvis9Z7BzEYClwH7A0c75/7Z5iY1g+nAGOCn+BNIuIEf7r8U2Ls9TSuVO2usz52E2eHsDdzunFufeP6vwGb43JBe5E5gp0opjjh74Ee/PTD0Jd2LmX0S+BjwQefcT9rdniawO965jPdJBwEHVu53a9mGJC3plyR+yuEK4MBK7QUAKqGDgyrreoLKFfIlwGHAq51zt7S5Sc1iHnBoyg28IDqU3jhx/KqyPCrx/MuBx5xzC1vcnmaxEJhZyeOK8x/AGnrQAanwG3xtoxPDE5V8mNcD1zjn1rarYWVjZh8EzgU+6Zz7drvb0yTS+qTb8YNtDsVflPYCVwFrSe+XAErJL1XOTzlcBLwfmG1mZ+FrF5wDPIq3KnuF7+A70s8DK83swNi6x3ol/OWcW4avnzEIMwN4xDk3ZF2X8jvgeuB7ZrY58BD+/z2S3srj+ja+cONvzOxCfM7PsfjaTV9zzq1rZ+PqxcxeW7n7gsryFWa2GFjsnJvrnPuHmf0v8PWKYzsf7w7sBLy59S2uj1rf08zeAHwd+D0+Zy3eL61wznWF+57j/5yT8pplwIhu6pNyfM9nzOwLwKfMbAW+gPD++EKdP46XlGmIdhc96pUbsAM+qXIF8Czwa6oUqerGG/AwXtil3c5ud/ta8P17qshh5TtNxIvap/ChkDuAN7W7XU34nq/AC9rFleNzHvBeoL/dbWvgO2Udi3Ni24zF10tZiHe5/gLManfby/ye+JFPNX+LTr/V8x3osiKHeb8nYMCH8A77OuAR/MjikWW1wyofJIQQQggxLFDOjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIMcwxs7eZmcu4HdHu9vUKZvYCM1tlZtvGnptjZn/K2P5dlf9gWoHPeLWZPVWZeFgIkYHEjxAicCLwosTtr21tUW/xFeBi59zjTfyM2cCTwH818TOE6Ho0vYUQIjDP5Swdb2ajXQ/NDdVszOwF+PmXPtDMz3HOOTP7PnCOmX3BObemmZ8nRLci50cIUZVYWOxgM7u0Mp/QXyrrRpjZmWZ2j5mtNbMnzOyrZjYm8R7TzezKSthnsZl9w8xOTYZ1Ko/PTrx2WuX5tyWeP8TM/mhmz5rZSjO72sz2Smwzx8z+ZGZHmNnfK5//LzM7PuV77mNmvzKzZ8xstZnda2ZnVtZ9qxJOGpl4zSaVz/9ijZ/xXcAdzrlaM1ZnYmZnVwlPvi226f8BmwKvqfezhOh1JH6EEIH+ipgJt/7E+kvwk2O+Fvh45bmfAmcBPwNeCXwBeGdlWwAqs6n/AdgXeB/wNvzkmmfV21AzeyXwR+A54CTgTcAmwI1mtn1i8+cB38DPcfUafFjoUjObEXu/FwI3V7Y9o/JdLgC2q2zyXWAqkBRNbwLGU3sC45cDN1b5PiOSN4b2zz9gaFjyl8BG4L6wkXPuaeBuolmwhRAJFPYSQgTuSTy+CXhJ7PFlzrmPhgdm9lLg9cDJzrn/qTx9rZktAX5qZjOdc/OAk4HpwIucc7dUXnsV8M8G2voNYK5z7rhYe67Hz0z/YeD02LabAwc75+6vbPd3vAB6HXBeZZvzgWeAA51zqyrPXRfewDl3l5nNBU7FOyuBU4FrnHPzsxpqZlsC04DbMzY5CFhf5buGNjwGPBZ73xPxYu5059yfE5v/AzgQIUQqEj9CiMDxxE6u+NnP4/wq8fjl+BmXL6s4FYFrKsuD8bOnvwh4NAgfAOfcgJn9H3B20Uaa2c54h+a8xOeuwrs3Bydecn8QPpXPXmRmi4AdKu83Di9AvhITPmlcCPzCzHZ2zt1vZgfg3axa4aVtKsvFGetvx4fFkhxHhjtmZvsDPwYudM59M2WTxbHPFUIkkPgRQgT+VSPh+cnE46nAKGBlxvabVZZbA0+lrE97Lg9TK8sfVm5JFiQeL0nZZi0Q8pIm40NMj6VsF+dXwEK82/MR4DTgCeA3NV4XPicrQfw559xtySfNbGbaxma2HXAFMAf4z4z3XB37XCFEAokfIUReXOLxM8Aa4KUZ2z9RWT4J7JmyfsuU59biBVWczRKPn6kszwSuTXmPdRntyWIpMABsW20j59x6M/sB8F4z+zLwBuCrzrkNNd4/tHdywXYNwczG48XW08DrnXMbMzadEvtcIUQCJTwLIerl93h3YZJz7raUWxA/NwPbm9m/c1DMrA+fc5PkEWCvxHOvTDy+F3gY2DPjc+8o8iUqoa4/ASeZ2dgam38PP5LqUmA0cFGOj3gYLxKnF2lXEjMzfIL51sAxzrlkWDLOTvjfSQiRgpwfIURdOOfmmNnP8Tk/F+ALIg7gk3uPBj7mnLsPn5vyceByM/sEsAgfMpqY8ra/AM4ys08Ct+BdpTcmPteZ2fuA2ZWRZP+Hd0K2BF4MLHDOXVDw63wEmAvcbGZfxYfApgMznXP/rs3jnHvczK7A50f9xjn3aK03ds6tM7O/AC8s2KYkHwNejQ91bWNm8ZyeB51zi+HfIumF+BwlIUQKcn6EEI1wEj5p+bX46sKXAe8H7qeS0+OcWwe8DJ/8fCFeDM0Hzk15vy8A3668x6+B3YG3JDdyzv0On9g8Hj8E/Grgy8BWeKepEM65W/FJz48C3wJ+h6+SnJYHdGllWWt4e5z/BQ6rhK3qZbfK8hv47xi/xd2xF+NDbL9o4LOE6GnMuWQYXwghmk+lMN+PgJ2ccw+3tzX5MbNL8EJpunNuIOdrJuKF1Hudcz9tcvu+C+zlnMvKxRJi2KOwlxBC5KCSszQTX9voQ3mFD4BzboWZfQn4qJld4pp01WlmW+HrKqnAoRBVkPgRQoh83IyvKP1j6sunuQDoxycsP1Fj23qZBnzYOXdDk95fiJ5AYS8hhBBCDCuU8CyEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFf8fCwEpuI7VzCYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cs_amplitude = np.abs(cs.power) # The mod square of the real and imaginary components\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(cs.freq, cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the cross spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together multiple segments of data.\n", + "# Averaged cross spectrum example\n", + "You could use two long `Lightcurve`s and have `AveragedCrossspectrum` chop them into specified segments, or give two lists of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here. Remember to check the Lightcurve tutorial notebook for fancier ways of making light curves.\n", + "## 1. Create two long light curves.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and two signals in count rate units, with the same properties as the previous example. We then add Poisson noise and turn them into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGBCAYAAAD2eQAbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADtf0lEQVR4nOxdd5gkRd1+a9Kmu73bS9xxcBxRsgiI8qlkSQoSRVRUVAyAigiogIIiAoKIImYFCSIZRJQkGckg4cgc4Q64u720extmdma6vj+qq7uquqq7etLu3db7PPvsTE+H6uoKb7+/UIRSCgcHBwcHBwcHh/GDzGgXwMHBwcHBwcHBobVwBNDBwcHBwcHBYZzBEUAHBwcHBwcHh3EGRwAdHBwcHBwcHMYZHAF0cHBwcHBwcBhncATQwcHBwcHBwWGcITfaBWgFpk2bRufOnTvaxXBwcHBwcHBwSMQTTzyxlFI6vZnXGBcEcO7cuXj88cdHuxgODg4ODg4ODokghLzZ7Gs4E7CDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDOMCoEkBCyLyHkPkLIACGknxDyOCFkN+H3HkLInwghSwkhg4SQOwkhW41GWR0cHBwcHBwc1jS0nAASQr4K4CYATwA4EMChAK4B0On/TgDcDGBvAN8AcDCAPIC7CSHrtLq8Dg4ODg4ODg5rGnKtvBghZC6ACwCcSCm9QPjpNuHz/gA+BGA3Sund/nEPAXgdwEkAvtmKsjo4ODg4ODg4rKlotQL4RQAegN/F7LM/gHc4+QMASmkfmCr4ieYWz8HBwcHBwcFhzUerCeCHAbwI4FOEkNcIIRVCyKuEkGOEfbYA8Jzm2HkA5hBCJrSioA4ODg4ODg4OaypaagIGsLb/dy6AkwG8BuYD+GtCSI5S+ksAUwC8oTl2uf+/B8CA+iMh5B7TRbfbbru6Cu3g4ODg4ODgsCah1QQwA2AigC9QSq/3t93l+wZ+nxDyqxaXx8HBwcHBwcFh3KHVBHAZgI0B3KFsvx0s6ncWgBVgKp+KKf7/FboTU0p3MV10++23p2kL6uDg4ODg4OCwpqLVPoDzEn73/H220Py2OYC3KKUR86+Dg4ODg4ODg4M9Wk0Ab/D/76Vs3xvAQkrpIgD/ADCbELIz/5EQ0g1gP/83BwcHBwcHBweHOtBqE/C/ANwN4PeEkGkA5oMFgewJ4Eh/n38AeAjA5YSQE8FMvt8HQAD8rMXldXBwcHBwcHBY49BSAkgppYSQAwCcBeBHYL5+LwL4DKX0b/4+HiHk4wDOA/AbAO1ghHBXSumCVpbXwcHBwcHBwWFNBKF0zY+P2H777enjjz8+2sVwcHBwcHBwcEgEIeQJSun2zbxGy9cCdnBwcHBwcHBwGF04Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODikwvLlwH77AbfcMtolcXBwcHCoFY4AOjg4pMLppwP//Cfw8Y+PdkkcHBwcHGqFI4AODg6psHz5aJfAwcHBwaFeOALo4OCQCpSOdgkcHBwcHOqFI4AODg6p4Aigg4ODw+oPRwAdHBxSwRFAh9Udw8PMl/XZZ0e7JA4OowdHAB0cHFLBEUCH1R3nngv86EfA1luPdkkcHEYPjgA6ODikgiOADqs7XnxxtEvg4DD6cATQwcHBwWFcgZDRLoGDw+jDEUAHB4dUcAqgw+oORwAdHBwBdHAYt6AU+Pe/gXffTX/cmgheH++8M9olcWg2HAF0cBgFAkgI2YUQQjV/K5X9egghfyKELCWEDBJC7iSEbNXq8jo4rKn45z+BffcFNtoo3XFrKgH8179YfWy44WiXxMHBwaH5yI3itb8J4DHhe4V/IIQQADcDmAvgGwBWAPg+gLsJIdtQShe2sJwODmsk/vtf9n9oaHTLMVbw4IPsf7E4uuVwaD6cAujgMLoE8AVK6cOG3/YH8CEAu1FK7wYAQshDAF4HcBIYeXRwcKgDmRr1/zVVAfS80S6BQ6vgCKCDw9j1AdwfwDuc/AEApbQPTBX8xKiVysFhDUI2W9txayoBXFPvyyEKRwAdHEaXAF5BCKkSQpYRQv5GCJkj/LYFgOc0x8wDMIcQMqE1RXRoODzPedmPETgFUMaael8OUTgCaIfly52LyJqM0TAB9wH4OYB7AfQDeB+AkwE8RAh5H6V0CYApAN7QHLvc/98DYED8gRByj+mC2223Xd2FdmgQPv1p4KqrgFtvBfbaa7RLM65RqwK4psIRwPEDRwCTMTAATJ0KdHQ4ErimouUKIKX0KUrpCZTSmyml91JKLwCwN4C14Hz71nxcdRX7//vfj245HJwJWIHzAXRwCDF/Pvs/PDy65XBoHkYzCCQApfRJQsjLAN7vb1oBpvKpmCL8rp5jF9P5t99++zV0ylqNsaayiNUIjgDKWFPvyyEKpwAmw/WHNR9jLQiEN7l5YH6AKjYH8BaldEDzm8PqBCe3jDqcD6CMNfW+HKJwBDAZrj+s+RgTBJAQsj2A9wB41N/0DwCzCSE7C/t0A9jP/63laGVnGBcdb1zc5NjGaBHAsfro3TvJ+IEjgMmop5+O1T7uIGM0VgK5ghDyE0LIQYSQ3Qgh3wFwK4C3AfzK3+0fAB4CcDkh5FOEkL38bQTAz1pd5rvvBmbNAm6/vfnXeuABdq2bb27+tUYVboQYdYyGCfg//2ldX0oL1yTHDxwBTEat/aFUArbaCjjmmMaWx6HxGA0fwOcAHA62wkcngEUArgdwGqV0KQBQSj1CyMcBnAfgNwDawQjhrpTSBa0u8J57ApUKC1pt9iRx8MHAkiXA/vuv4RPSGn1zqwdEBZBS+0mxnke3555MaWtFX0qLsVYeh+bBEcDm4b77gHnz2N9FF412aRzi0HICSCk9C8BZFvstB/BF/2/cYNwMTM7eNuoQCU+lAuTzo1eWsQBHAB0cQtTaH1x6qdUHY8IH0CHEuOk8jgCOOiqV8PPIiP1xaypRWlPvyyGKcfOiXQdq7Q+5MZFbxMEGjgBaoJWDxbghgG62HXVUq+FnRwDX3PtyiMIRwGQ4BXDNhyOAYwyt7Dzz5wMf/zjwyCOtu2YAN9uOOpwCKKPV97VoEfOJ/MhHgGeeae21m4mVK4EDDgD++c/ajr/vPmC//YCFCxtZKhnjhgBefjnwyU+yyIyUaIQC+PGPA/ffH7//JZcAn/oUUC7Xdj2H2uHEWgusqQrg5z/Poo5vuWUUJvU1lUWsRnAEUEarvRL++U/gjjvY5yuvBLbeurXXbxbOPBO46Sb2V0tb2dlP/pXLATfc0NiycYwbAnjEEez/PvsARx6Z6tBGKIC33JI8v/BiHXAAI4IOrYNTAMcYWuk/sWhR664VwZrKIlYjOBOwjFbf15Il4ee+vtZeu5lYurQx51m2rDHn0WHcEECO1WA9twG3vEPL4QjgGEMrFcBRHQRdEMioo1YFcE1Fqwlgb2/4ub+/tdduJhpVj80cC8cdAayhMmt9juKLpcPYhiOAYwytJIC1rgTREKypMtJqBHGgTuMitKY+ula/k4gEcE1SABvVPpppDRl3BLCGyhT7Q5pnWms/GnfPZAzAEUALrKk+gI0ggHfcAfz61zUcmGJEef114PTTmXO5Q+PQSh9AzwPOPrv2yWHBAtYGGmVe1KGelQ/OOCN9IIdoAm6lAvjUU8xPr1lO9+ONAF5xBfD3vzfufE1BCwmgUwBXH7ggkDGGVvoANoIA7rkn+7/TTimd2FOMKB/+MPDOOyxq+dJL05XPwYxW+gD+/e/A97+f/jiOvfcGnn8eeOKJ5i2TWCtxufBC4Ic/ZH9pzjFaJuBtt2X/e3qAo49u/PkbpaSuDgSwrw/47GfZ5zEdwFBDZYrjg+fZzxfOu2f1gVMALeAUwGSkVmZSjBLvvMP+P/FEyms4xKKVPoDz59d3/PPPs/8PPVR/WUyoVfF49dXarjdaCiBHvc/EhPGkAL7wQvh5TLtGOAXQQQNHAMcYVjcFsOZz1TBaOh+RxmJ1TAPTzMlFrI8012lvT38tSkffB7BZS/+tDgSwUZg3L/w8polPAxRAWzgFcPWBI4BjDKurAtgKAujQWLTSBNyox72mEMC+PuaDx0lYf3/ru0SzCFajCMDqEAUsEkCx/YwJ1Fkg8TmmeaZjmgg7SBg3BPCee4C33hrtUiSj1kFvaIglXk2T7qmRippTAFc/OAVQhhgUkeY6bW3pr8XVv3XXBQoFdu0aFmuoC81WALswwLJd1+hfsDqYgFtJAOfPT15VQ0KxGH6uoXAd8+dhWzC/m1ZEAa8u+M9/WFBaWlQqLCn2WIr4HxcEcHgY2HVXYL31ajt+dfABPOoolkn9tNPsj2mkApi6jpwCOOqoVQEcTYxFBbAWAsh9ZqdOBbq72edW+wE2mwBehcPYmm6nnlrTeVYHAvjyy+HnZitfG27Igu1eecXyAPGNoobCfeTrW+IJbI92DDsF0MfDDwN77AHMmZP+2PPPZ0vj7bVX48tVK8YNAVxdIJKyNBzpb39j/6+6yv6YUVUA1/TXxNUAIuFZXfIAjkUCWIsJmKuNbW3ApEnsc6uVgWYRLN4+PoZ/sQ9XX13TeVYHArhqVfi5VSZgHhCViDoJIMdErGqJArg6aAJPPln7sXxt7EceaUxZGoFxQQDr7eytVADFzlOLKjN3rv2+o+oDWMMo4UzAjcXquBTcWCSAogJoWzf8/NnsmqsA1otWBYHUU946rax1XzMWDSKAWVSdAuijnjmzUGhcORqFcUEAVyfUosqI+62zjv216iWAdYl4zgdw1NFKH8BGkYJmkk/RB7DWydy2z44rAlhjx20mARTLWI9iJVqXxjQBrKNwGXhNiwKuNdXMaKGewKRm9bd6MC4I4OqkAIr91Lajv/RS+DlN56uXAIplTT2Itqi3VypyvrVa0NvbvFUTRhNjPgikvx8YHATQmj6oKoDlsl3bERUPv7iJ4P0lkwkJYKtNwGORAIp12cxnXmuEq4hKRT62VQTQ2l1DowAuWpReocui2rQ8gGKd1VN/S5a0pv7raZNOARwlrE7KUS0KoJiM1HYCAuqvl9WBAO65J7DWWnIdpcH8+cCMGcDOOze2XGMBYzoNTKXCnOMmTADQmvRIKgHceWfWdt58M/44sR6HhuyuNVoKoPgcWpYGJsVA0yCrZSLEeqj1Oqpv+ZhWAKtVPPIIMGsWcOCB6a6X1gScZt9GEMDnn2f9dLfdajs+DcSmnHZMqyVYrNkYFwRwdYI4GNkSQHHiSEMAG6kAph5EW+QDePfd7P9116U/FgCuv579b+YKFKOFVq4Ekhqidz1aQwDVNDD8mT/wQPxxYj3a9j+RAPKJoRXPQLxGs97BVgefukYogGOeACqVyZfRTLuUYr0+gHF9txEE8IYb2P9UKXJqhNh/0gaXOhPwKGFNVwDFztlKAihOmGNVAeSodZBftqyx5RhLGNMKoNJpW60Aiqbf2bPjj6vHBJzNhvfWCud5kRM063r1mIBbpQCK40Gt11GJ2JgjgEplplJ8hYdYrwk47rqNMgG3CmLd26r9HM4EPAYw1iOUaiGAtZiggFFWAB0BHHWMeR9A4YKNjFg3QayPZ5+VLh+LWgggPyaTCfthKzIjiWNKs663upmA11gFUKnMVAqUUEF5lOsyAa9JBFB85mnEFmBsEsBUXiCEkAKAbQGsDaADwFIAL1FK32h80ZqDcjm9mjBaQSBjXQFsNQGs5znUOsjzhL1rIsZ0GhhFoslmm58TRGzPzzwjXT4W9foAtlIBbAUBbJQC2CoT8LhQACuVdAqgUEE5VOoyATsCyDAWCWAiBSCEZAkhhxBCbgXQB+BBANcCuAzAvwG8Rgh5ixByDiFko+YWtzaIA1IrfZ1uuQVYe23gwQftj6klCrgWBQIY5SjgFucBPOMMYIcdWJ7En//c/rjVQQFcuRLYeOOEVWDuuovZMv/zn2BT4svGk0+yYxQHytEhgPaH9vWx+vjhD9NdUnRpSEMAa/EBFE3AH3z5UizEbPz+G89im22aO0a1QmFT28f815MDaTjE8l1xBfDe98aPg4sWpe/TahnPP5+tEvX22+nOoSqArbIutdoEnEOlrkTQzfYBbCXGlQmYEHIIgBcBXA6gBOBUAB8F8F4AmwD4IIBPgxHCAwG8QAj5IyFkrWYWuh7UMrjWSjw+/nHg3XeBgw6yP6aVCmC9ymata6cCGJWkT489xiaiE06wP2Z1IIB/+hPw6qvAj38cs9MeewDvvMP++0g0AR9xBDvmkEOkzeKja9pjVPJrpCGAl17K6uOMM9Jd0mQCTnpXqdcEfMSdn8dsvIPv4Ww8/XRy0Ek9GA0TcLlC8NOf2h2rjnnPPAPccYd5//POS9+n1TKeeSZbJ/6ss9KdY7QUwFrTwKQyAQsVlNYE3OogkFZOJWuaApj0TvArAD8DcAmldKVhn0cBXAXgeELIBwB8F8BXAKQcfpsHsYG0esF19fpJaIQPIKV25G5NTwPTiEusDiZgq2g0TWWI7SZNnkM1eatNO0r9LMTCVaup1OpaczaK7Vkk/s02AXO8g7UBNNflpBUEUAUFsSbwOnVrxQrz/rXWle7e077Erm4+gLk0BERRAMdyGphWoh4CKPaBSqV1K93EIakIG1BKbZsbKKWPADiIEFLD6pitwZhLd6GgXgXQ89hxNuuTruk+gI0YUFYHBdCKABISqXOxfrSkyVDhtWTvrytNUEoTcK3P3UQcm2EC5ufsqoY5nF7H+gBaRwBbFgUM+/WSdWPeypXm/WutK10ZxzIBFLuDtelRSQOT66ztgmlNwGo9xtWL8p435iFWaVoCKD7DYjFIcTqqiKUAachfI45rFkbLB7AW1KsAAvYNc3VLA5N2sE+bp0kH/jy6uuo/V7NQ630mKoCGBiIeZ/vcU0+OdZiAa52ITcc1wwTMz7nuqueDbRSsgTeTAIoTWKuCQDxkrJPg6sa8VimAaeujlSbgmjI9xPgAJg6/DVQA4+qlEQpgK4M0xbE2rQ+g+AytVdwmw5oCEEI2IYTsIHzvIIScRQi5mRBybHOK13iMjAD/+hfzy4tbeolS4GtfA375y9YuJVevAgjURgAvuQT47GfTdcJWJ4JOi3o7mUiKJk+u71w2OPFE4Cc/SX+ctQKooBEKYNMIoCINjCYBbKYJeJ3+ecG2DFhlNmtCe+UVYK+9omXQglLgqKOAiy5KfR21TVAQtLUB3/wmcO658ceOJgEcywqgWLbbb2fzUiKEyrzztmq6RQYa6AMYV6+N9gFstmdRLQrgKacAp54q10MjxIlGII0V+tcA/gfm8wcAZwI4FsCzAH5BCKGU0vSjRQugKoAf+xj7vPHGwDnn6I+ZNw/4/e/ZZ75UU61IM0iJjURZDMHqGMB+EhIJ4JFHsv+HHAIccIDd8a32AWy1Aiianpr9lrlyJXNoB9hgkQa1EsBEBdBw0+Jxto+xLgVwNSKAixbZXSsggCtbRwA///kUqv2jj7LoIgA45phU11HbBAXBwoXAn//Mvp94ovnYtASwVitGI0zArVQA1Wd13HHAt76VcJBQmc/+r4J5W4c/DQ8nmOUbGAXcbAVQNSM307curQ9gpYIgAOpYQSZb7RRAsMjfBwGAEJIB8DkA36WUbgfgJ2CBH2Meogk4zr9LHIhGSwHs7bU7phEKIEca0tSKKOBGLStVC0Qi3Wz/lHrOXyvRXZ0UwDQTfa11afIBTLpH8d7mzTPvpzvn2itDE3AWzW1k776rL4MWdUTL6fqsrS9tq3wAV2cF0BpCZWZRlcazxLGxgXkAm60AinN6s1280pqAxfYstuOxogCmIYCTAPBu/D4APWDpXwDgHgAbNK5YjYXJBzCuUY/W8nG1EMBafQB191ir0tKsPID1OAnX28nEemy2xbqeRcabRgDHkQ8gpY1RAJ9/3q5O+DFrr4gqgM1CpxIEEHtfday9pzMBx6l4InQEMI48jkcfQGsoBFDs44ljRgNXAqlWzWPa6kYA05qAxf3FPrA6EsDFAHii5z0BvEYpXeB/nwBgzAZx1xIEIg4so7USiLgeaRxqVQB1nTqNfN6KKGBx0Eo7QKxOBFCsjnpNUVo00ATcEgVQMQHX2i5ruZyKtD6ANkmPq1WgG33oGVwYbGu2CVgNZIp9dnVEiOkIYJyKJ0LXluNehBtpAk7bx1cnBTCHilS+xLGxgVHAyukkNIIAii8NzU7zltYELJZHJICrown4HwDOIoScB+A7AK4RftsKwPxGFqxZEB9IXKNu5NqjhLBVQf7yl/j9PE/uKL29bBGGK66IP65WBVDXKdPcdysUwHoIYL2dLDUBfPJJ4OyzgwcyOAj86EfAyy8nH6oIXqkgDko//jHL3RyBwir+/nd5vyQCeOaZYd+x9gF86imWXbdSST+BtTgIRHf//JppTMCAnRnY84DN8by0zZYA9vcDp58OzE8ace+/H7jgguAhqQpg7H2JFU4pXn6ZJda2GVvUZ52GAOom8LgX4bFkAm6mm0gaUhVAGABVBTBxbEwRBbx4MRt3uP+rbl9Tn1ydFcDf/CZ59RgTARwrCmAad8nvAWgHsBcYGTxT+G1/ADH52kcXJgWwlQTw4x9nn/femy0Pp4PayZcsCRdhOPhgs9Ou2uFsg0B0HTVNEt1W+ACK10ib4LfeTibWoxUB3G479n/aNODLX8YJJwC/+x3w178mT9bi+ctl+7xpajlPOw248UbGRU2oVoHDD5e3JZmATz2VPbJTT02hAG67Lfu/1lqoVL4Ys6MGCiOu9cWknmM6O1kglq0COGkSyyyQSMz8YzZQ3pltCeCxxwKXXQbccAPw9NMxO+60E/v/3vcCu+6azgQs9s9yGVtvXUCpxOrjZz+LL5+uLushgCtXsrLqXgJqHafXBBPwyEjCOCFMdllUpfGwkQrgkUcC//43y67x8MP6slYq0KYCWt0IoFpvv/1tfOaGNUYBpJQOUkqPopRuRSn9IqV0SPjt/yil32tOERsLWwLYLDNMXGSv2gHEtwvbZJpA7elj0hyrlqlZUcD1DBAtVwA5XnsNAHD99ezr668nHyI+w3pN3U89pdlJaNC689uYgPnyaKl9AN98s6VRwOK91BOlzAmTLQHkiV1tXlSqVeZbJcLWB/Ba3/NaXK84FguYp456j7HPTryJUikYF7RtS4FOAYxLuSXC1GdNL7VjIRE0b5utJoCJY7VwUOogkBQ+gI/6eUEeeYT95/vuuKO2KBJWVwLI3/WTfFvHugKYJg/gfELIew2/bUkIGbMm4FoUQNPxtcB2kOIdoLOT+eKJnTRucFI752gQQOcDKMCfEbjpykalqMcEnNYHsFYCyJ9x6pVAurpamgdQrA9b1VhXvo6OaFHijuVqjM01PS8a9csJYFKd8nbNy2d1MUTNt7H3ZUhIatMP1LrkCa5tYOqzJtPzaJqAeTvjxL8VaWDWWYcZGIB0BDCHSl0KYNxznzpVf9l99w3zp9oEWNVqQh8NE/BRR7H/SS4RJv/E1U4BBDAXgCmfezuA9eouTQtgSwDrUWRqBb9OPg9Mn67/TQd1XdFWEcC6TMBrog8gh8L4NrCIj2+UD6ANaiWA/LjUCmAtBDDGBJxEkGohgLr9uAJouxIIN3HZ3Gu1yiZWEZwQxvUl8d7XXTf5OgCMBDD2vhwBTAQv68SJ7H8rFMBsNmxnieObUKB6FMAkE/CUKfJ3XrfZbBhUuCYogJUK+8tkQmKb5G5lmk9XOwXQh6kZbA9gZX1FaR7ExnvDDfrtKhQLVF2wHaT4dXK5dASQl5UrArUuIQcADzwAvPSS3fGtMAGPlg/gggXMr4UjrQK4dGn4VX2WOiRG5Kro7QVuuw0vv0SxeHGKsiEFAVSI7Ky+F/HCZY9LUZlNI4Ax0kBSfxSfu+11dfvxqFlbEzBXAG0JoEkBjKtT0S3Ednk1XkB1srI2AQtsoRYCmAYmYmJFAJcvB2691aqQcVHAd91lCKRSwMuahgAuWwbcc/lC0HvuTd5ZgEgAeTu78cYE38oYE7BpbBwYYL585VJYh0kmYK4AroVFwH/+E1w2k0k2j69OBJA/7/b2cGxIUgBN7Xm1IICEkG8TQt4ihLwFRv5u5t+Fv14AFwG4tZYCEEJuJYRQQshPlO09hJA/EUKWEkIGCSF3EkK2quUaIv71r/CzLQGs980urQlYRwDjJiH+G1csbJUvXae+8kpg003tjm+FCbieAaKeTjZnDovc5kirAIqRvzaEPHV722EHYO+9ceqm1yTvC0iNUPesbBTA396zGTb73PvRg+XBNmO9iDfR1qa9p9gmoLyBqUEycRCfeyMUwLQEsF4TcFxbE1/O+vuTryOecHU2AZuUFukd5UMfAvbZJzndAsxBIPfeC+y+O/Ce9ySXlY+znAzY9NsddwR2OWJdkF13sXOo9KFTAL/1LXa7iQfB3gR86KFspaxfXmAfBcwVwNewIbDHHtjg9f8EZV2TFECRAPKxIY0JWMRqQQDBUrv8x/8jAB4XvvO/6wB8G8BRaS9OCDkcbIURdTsBcDOAvQF8A8DBAPIA7iaErJP2OqaJplUmYNu1CkUCqK49a2MCTqsA1pvbrtUKYK0m4O22Y74z9SCtAig6vdsQ8tTt7Y03AAD74N/x+2lQqwLIIUavGh+jyE6qVe01YwlIHQSwFhOwLjiL9yfbNDBpTcC1EECxWm0DK1QCyB/raJmA47p+XQrgiy+y/7cmaxGmIJDbb2efBwYSTxG0Ld5ObJ77K68IX2JDuKNlA2QCCLCo28SDYG8C5lV38032UcCTJrH/XWAXmLvwAQCtUwBblQeQP+983l4BNJXHNlNHsxGbBoZSehOAmwCAcTL8mFJqEdOYDEJID4BfgJHHvyk/7w/gQwB2o5Te7e//EIDXAZwE4JtprlVLEEcjE//aOrqKBFBdf9jGBMzfSlpFAFP7AIoPogYfwFpNwAcdxDrsccelO15EWgIoDgw2b3tpCI6IdljKvQlBINo3ZwMBnBosCBRTL5YE0JjgWWHEzVYAdWparQpgMwmgOHH397MulWhhUAjg+eezvlCLAmgzliYRQM8zLzSS1gdQ20QtIoZMCqDtknVAbcRfQoocNiYCaHUQWFsTn3ealUCSFMBIm/B3FhXANcEEzOsgkwkJYK0+gLa5epuNND6AXwWgTclJCOkihORTXvscAM9RSq/U/LY/gHc4+QMASmkfmCr4iZTXMcJWARRRC2myNe+JBJC/Vdkcp5qAG0EA0w70VvVSw3IXjVAA29tTREwakNYEnMrhGvZtREUHLG0JDYgC5phiYwIWGVWl0lAFMKl+xPq2rUudmtZMAlirCVicuD3PUkmosiTAlYrsQ5YmDYx4zSQk3X/TFEAOC2JlCgJZvjy63YRanruEFKHt9RJANeCokWlgIml/PHZsJrNmmYDFZ1CvCXisKIBpCOAf/T8dfu//WYEQ8mEAnwNwjGGXLQA8p9k+D8AcQsgE22sB5gEnrlGbfqslIMQ2oGQ0FMAZWAxdbE+ScrJ4cdQHcOlS+0ndq8g7Ll6sf04qyUxDxMR0GWkSK+tAaQoluQYFsFaXA2sFUEAtBHC68O4nEkCe/T8CkVFVq9p2EdtWFNk8VgGkFGIkTKMUwFpNwInXHBxEbnhVQAC9DCMCwXfD9VatihIUKz9AzwvaY1eX5QonDTQBe8o0Y0twRaSaMC0IYNiXadC2+/sDzworqM897dwwNEywbJn9CwPAbq1WBVBEIxNBmwhgNlu7Cdg0H+hQLwG0vZZIAOs1Aa+OCuCu8M3BGvwDwO42JyGEFMDI4nmUUlO86RQAuhSLfPjr0Zz3HtOfTblUNJIANtsEXKsP4J6LLsVizMRPcGrkt7iO9OtfAzNnslXPOJ55hgWu7LlnzAWFSh0eqOLVV9nnSy9l5zv55Ogh6mSapv75INcIBRBIQQAzmdXKBEwIu7dI3QrHLMFawWeRAH7wg2xViggaqQAmmYBPOYU1IL8go2UCtjYFdnfjzAu7g0TQXpYZT7gCaCLL3d3AiSfK2638ABUCyPnRaJqATUhrAtYihQJ4Dr6LJVgLh+NveOYZ4LHH7C9TrwL4xaMymDYN+MAH7K8lKrjWByE9AeQkDkg2AavtaOVytnOtCuBf/8q682mnxZeRox4CeOWV7FqnnJK8r44AjicT8AwYTMAAegFhhojHSQA6IC8l11TUGwRisz0OtRDANCbgWhXAoxayHnYKfhr5La4jfetb7L+oRlx9Nft/110xFxRGkSyquMYPYOUdXSSUHOoEnoYc8c7Z2Sm/NTcyd1gAsTEpBLBUSp44a1UAOzCM92rTs5uhnj/vO29E6tYwkU7DUun7D36g2amJJuBIOc86i/3/0Y8A1BYE0jITMKXBvU0AizSgOZkApsnPmVYB7Oy0VADrSAMTUYRSEMC0JmDtuVIQwJNwLgDglBqmo3p9ALkyGrdsI0cjfABFJBEXQu3TwKjPe8liewVQN+7x+eCMM+LLyFEPAfzhD9l/PoTEQWcCHhqqrT2PFRNwmrWAlwDYCsDdmt+2AgTPcAMIIXMAnALgywDaCCFiU24jhEwGsApM/YuofGDKIKBRBymlu5iuO2vW9trp1zYNjAhbAijuJzZKGx/AbLY+BdA2DUyGmm8mriPVHDyiEEBOIOPOp07gaQZZ3sn42xpHrSu7WE+Ynhfp4MVivApZqw9gO4q44gpgyy3tj9ERwJERzRrEBqY8Q3kP1JITxQSsu6fY+0xjAlYwWiZgqzQwQufk/puqApimf1kRwGpV6gutjgJWEdf/0iqA2vE4lQm4dqjPvVYCaING+wAmEpAUiaDVZzA8HBLANAog36dQSCibgnoIYJp0LOIzyGTYcy8W2TnUOYZjTVIA/wngB4SQrcWNfm6+U8ACNJKwAdiqIZeDkTj+BwAn+J+3AvP120Jz/OYA3qKUWgTph6hFATQNdLaDs9gQbZd0a7UPIIlZe7QpzrSSY3ElWBsxrk7qIYCi2UtFvcE8ESgsX+3gSaS8VhNwG0rBc49FjAnYqAAaCOB09Erfte2tiSbguDZAqVyeeoJAuHrRUBOw0BA6/bQZNgqgqQytNgE3Ig1MIxUT3bkoqS0IRIRNfEa9JuA0+REbrQAmERBRAUwyAau/8XZcaxoY6/vzUQ8BTLNalPgMADs/wDWJAP4QbLWPJwgh/yWEXE0IeRDAkwD6AI0jWRT/A/MlVP8ARgp3BfAqmE/hbELIzvxAQkg3gP383xqCZpqATQvS2yR0blUUcK0KYM1QRooVy5IVD/W+05Aj0eylcpl6g3kiECusWo108KQ3zXqCQJpGAA1KSmoC2Ko8gJRGBvS0CqCo0jaFAAoNoQuskVALBdDU9sZaEAilrfUB1J1rqFQ/AVTXt9WhUSZgG7SaAIo+gGlNwLwd15oGJq0CWE8ewDQEUAzEAez8ANcYAkgpXQrg/QDOAksKvY3//0wA7/d/TzrHSkrpPeqf//Ob/vcBMJL3EIDLCSGfIoTs5W8jAH5mf3v8uum2A+HD3gQv4U3MwedxCQBg/fUhLYVlgolA2aaBURXAuElo9sp5eBNzsOMbLJ2iNQFstQKojCL/uLGKQw9NZwLebLNkMvX882wlD+7QrVMAkyb1s8jJmIfNMQFhhmBTOe+/H9h2S6HCvvc9HPfvvSBGV6dRAI1t5M03gblzgd/9LtjUgWE7AihAvfe0CqBqAtbemyhNff/7+MPCfaBGm6+/PqQl84yFtCWA8+cjv+2W6EQ4uu6yC5uI5syJiVhGSKTEtpJIlDwP2GknnPvWYQAslSChsjgB9BIUwDPPBDbaSN7Gn/lxx7GVe2KJ4KmnYtOzPh8cZ6UAGtLAJJlOtYqcZSJoSlP4AFIK7L03jvzj/+E1bIBv4/zgpxUr6zcB25CQ2hTA8MK1EkA1CGTOHOCFF2IOQnoTsKoAphFLCOpLA9NKE7DY3k49lfUlXVJ4oH4FcAs8hzcxB4fjb2PGBzDVWsA+gfshpXRHSukmlNL/o5Se7ufoaxgopR6AjwO4A8BvANwAoApgV0rpgsZdx/wbf9gfwf2YgwXY21/pbtUq4KKLks9tmqSaYQL+ytPHYA4W4PCbPwNg9VEAs6ji2mvTmYBXrADuuSf+Mscfz9by5ejqYss7bbZZuC2JAH6PnoXN8QJOnnNF4pqw++0HLH1XrrD3Lr4d62Bh8D2JtFoRwFNPZSTw618PNrWjGBC4WBgUwK99LT0B7IbMNrQESbnhXYZvjeQsrFaBP/zBUN5aFEAAuRfn4ZO4OnKqBQviV97ifFUk04lEacUK4P77sc+qq9GFATsfQKFeAhNwns14pjQwp54aJcpr+SF3/f1sebjrrou5JoA591wKgCmczVQAw8PCwZUoxN90jnI5miSa12lkwhweBm67DesufAgb4HWcj++EPzVAAbSxENSiAIpKnFovNuXRpYFZsAA44YSYg5BeAUyTCJpdJtxfVACbbQKmVO5vaectsV7PPDO+L6kE0CYXoDgXn4cTMAcL8Dd8ZvVTAJsJSimhlJ6qbFtOKf0ipXQKpbSTUro7pdR+7RzpXOx/bIoSBbzBTwKbGcTJy8aBuJUEUC1OIwhgU5bUUSqOD0px19LVo1o3KlT/nc5ONpHMm2e3cLv4jL731RUBQTINgpQCBURHns3xfPA5jQnYSCA0hW5HMXVUMz/N7rsDv/1tegLYBovGoSmrbsIz+usrNvE0QTJimhrTKVVwBU0kgIkmYOGHzfF8ahOwyQfQhnxwAshhmxqkrS19EAgtpieAcUTHdA5eNeIz4H1dqwAaULWY1kxl2Gkn/xwWzyBt+p9KBUHqHyBKyuLAy2syAWt9FhvoA5gkloj3xcfCViiA6phVq3Ah9h/TC7VJAbQ1ARcRXmRwsDGBSPUitqcQQv5BCHmf7ckIIe2EkOMJIV+rv2iNh9qwbEzAXO0Q863ZrOBTrwmYExWb46pKMPfqYgLmg5JJcgf0952keKkmUd5RCbHz6xKvSfr7EifMbFZPirbAvOB6DTEBaxpsG0aQqaZbI4+fn9djWh/AHKrIJE1emptQzVDitSNQFEDx1pP8+iZjpXZ7wwmgUJAtMC+1CThNEIgKlQBG3AAMg1t7e3oTsDcUljlpXNARQHWcMd2fuHIPx4QJ7H+EsMQUvkrTm4A5SZ0yJfH0AdIqgKWS3AfSEMAkH0DtC0CMCTiNAmjjAygSQD4WtkIBVNtjrfOW6PtrIqC1mIDFcX8lJkvnSru0aTOQ1FPeAPAwIeQRQsg3CSHbEkIktkEIWZsQcgAh5M8A3gXwJbDAkDED3pbVB2vj2MoJoKgA2igu9SqA6twbSxzlR9L0NDA1w0AA46Crx6SOo6ZbSTWpQ6nrvmQCmMvpFcAtMC9wJm9WEAgAZAYsIgE0JmD+dp5WAQQsVEDNQxInCQ7j236NJmAA6NHmkI9/5joTcKKpVCjI5ni+dhNwAwhgJMWQ4SRtbelNwN5w+KyTxhYdAVT7uenFW1y5h6MWAuhZEEDTvff0JJ4+gJoGJumYYtGsANoGGtVKANPmAVRXAkmaK8Xxj48NrVAAG0UAxfozEdB6TcAiAUw6rlWI7SmU0m+CpV55FMDpAB4DUCSELCeEvEsIGQawAMD1YGlbjgOwNaX00WYWOi34gJPmzSLOBGyjANZLAE2/ac/ZbAXwT38CjjwSqFbrMw03iAAmESRxAunokJ8X77z77w+8/LJ83JtvAgceCPz3v8LG3/0O3xhmcUdxCqDJBDxtGvucRgF87TXggAOAR9VeZJg5M8d+XbtdQqsJYD0K4FVXAZ/9rHSuNARwBpbgMnwWh+Nv0va0CmCiUibc4xaYV7MJGA0ggBFoT0IlE7BtGhiRACb1//YfnIjv4uyGK4ARwhJTyVVkcdJJMcl9KxWc9uoR+AwuDzbxQBV+vbi6ef55Nk7wMtkGgZRKZgKYRFxE8qEjSNq5rWJWGxNNkCnyAHqePP5xa1mtUcCpFMASxW/wdRyDX7PvNRLA3ap34Bocgh4sT60A2pqA+xCm9iDwcNZZwDHH6J9DaUVrokQSE0FTSl8D8A1CyHcA7AjgAwDWBsvntwzAiwDuo5S+2cyCNgJpTMCqAtgoE7BNwANvYBtuyMgAkEQAZQeQhgeBHHUU+3/ggejfcX+7k+tQAwFctiy6LYkAiJO4ahrjdfvww8DBBwPPPhv+9tWvArfdBtx4o+xX+cPB7+I0nJRaAdwcz2PqFAqApAoC+fGP2f+bb7ZTIsg116ATgxiCIRspUBsBjGnoTSWAn/qU/F1RAJPa9yfBlpj5LK7Alfg0OjoY7zLVZbnMzpnJyOVJYwJeBwvxZso8gEEamHx6Ajhjhvw9ck1NobOooq0tl9oH0CtaEsDFi9H12/NwNoDfIfQCast5EB99kg+g+ALH+2+k/8R0jMEhgnPZAh/4/vc1O9xwA/Zdfjn2FQggB5/U4+pmr72AhWF8VyoTsEgARWI8MhKfKF4kH7qypVUAq1V2TRPZUlcCGapRAaxlJRBRAPG8+PnWe/J/+DpYVoSLcGwqgUIc7y5dxAIEFmIdABfor6WkgeHPK25sN5WnBytw7rnMPHT00cAWStbjob7W2IfTpIEZoZTeSyn9GaX0OErp1yilp1BKLxvr5I8TPXWySeMD2CgTcNwgwUkX75TPPQd89KPJx1Va5QO4YIFd3jETlApfd1Yyu5k3L7otjQnYRAAB4O235d+S0vukVQAnoR+bdLKZIkkB1M1nkesp9deLacHnDts1gdEYBTBxDWJLE7AVFAKYNoUCDyQwcQb+bDo65H3SmICzqNopQToFMCEKWAdVAYxcU3OSPMr2JmDh3qitAjgQ5ucXCcdGG3p45x1g9mz/fIZxV6cA8rYZeXZxPoAVL363mAaUFPEPyOQPaIwPYBoFUFe2tD6AQEI/ShkFbPIBTGMC5qskivsmrrW7TF4TIg0B1Pme92BFIlnl/cemH4nlEecIMZWW7npD/Sn9gGrEmIgCbhUaFQRig1pMwHwQ4OVsbwfWXpt9TqMAVip2k0hqArhsmd3KAyYohVp/TnMIoPhcVQ4jEkD1tzAHnL5hpCWAALAFYTeQRgE0QmmwqzARywozAQCdGbl9RtrZGFUArRyhFRNwWt8ZHlBl6nv82bS3y8VONJUaCKDtUnAFf9LkaWDqMQHbKIA5VGoyAYtRwLFji3Bvkg8grWLWrOToY50CaCQQcSbgUriztq3ERJHZrv/MQUg4XrfKBKwrm1Y9NCiANsELaaOAa1UA1e3Vqrwtqa8XB+XKSJPYWTeXlZG3JoA2/UgkgOKzF5Pp6yK4HQFsIOoJAtH5ANr4GdRiAlYJIJDsQwHICiB/G7V5E8rWQADrUgCVCp80IX6UHR5mJnC1gyQNtOIErO4rnkvlN3xgNJmmayGA6w82jwCOoIBKlj3wjoz8wONISDN8ACPlbyQBbKECKJYn0QQs3GMGXmofwACKCbiWNDBpCGDaIBCqDCbGsUX4QUoD45OJeghg5Jg4BXAkgQDGRBnYKIAicjm7MRqIJ4BJ47VoftRdR2vKNRBAvspULLlKqQDqCGBaBZB/T0MAS0PyidMogLq5LA0BtAkoNBFAUQHU+fyrxLZZGBcEcEJpOT6OmyMvfnEPLk4BTGpk5TJwxhnA2ngbp+AnmILQkS2NCRhI7kAAa7Qc/NiLL44vo4gqMpG0M9p7rJMALn5XHkW62uMb+YsvApPpcpzX8xOsjbfxEdyHo3ERZt/2F1z3lduiQRI+ymVgBhbjFPwEOw/+CzjvvOCBigRQIpblMj694BxsiWeNZM40CE6jvfgxfqj9bXYfI4C1mIAj0BJAJju1E3sCuMUtPwOBFyGAaRyoVQJo46SvI4A213zjtWpdCmASARSJh1jsZpuAAzTDB1BzkhwqUhoYWxMwhsPG+1HcjnuP+JP+GOHexMmOE0D+PrF0KUu6q7pg6EzAxvEvLgp4JKwM7ctCjAIo+gAm5WnbDo/jBHousoTd3/Ll7L5ef12/f1wUcBoFUNe+tO9qBhOwDQFUfQDTmID/Dw/h1zgGU56+O7UCWKnITS/uZe+ee4Drr0lPAG+/HfjLX9IRwAceAH75S/ZZJYBrv3IvS6iqgTjui/OKqADqDC3Dq1qjACYGgawJmDH0Om7G/ji1IPdom2TAsg8gc+hPamRXXgncdx/wFD6GbfA0tsMTOAg3SOfVoVYFUDQBcwJ4zDHAHnsAm2wSX1aALUn0pS8BF1wQLYuEZctic/Yl4agvedJCzhM65MpQB7HXXwf+gK/gkKXXYa/81dis7Eds/IFFIpE/Uu0gXS4Df8XnsTduY6tUnwhggw2Agw4ym4B/+1scMe97OALfw2RDGhHTIHjG4q/gvXhG+9u0/vkA0kUBcyQt8TaCAio5dhOqAhh5fsLN7nDdd/FlTEY29xUAMQpgzAyoI4A8glJ/Mr0PoI0C+NeLq/C6w++NJoAi8fjYx4AHHwS23z6dCTgDL7UJOEANBFCqa10ZNYXmPoBpTcDigHc79gKuAxbd+xHM3Pk98jHCg5Hah6IAHnkk82++6irgGaHb8KoRX4Br8gFMUgBjsM02rKtwfzRtgmUfj+P9QAV49fapAL6IZ55h93PRRcA770T3b5QP4A47mH83bdQpgHHkSlwLOK0JGACOwW8weOHdyO31vLl8iM5rxaK9ArjrrsBeihXLhgDutRf7f+GF0d/KyGvL+pGPhJ9VE/Bhv92FfdhhB2C77aTjxOcqjn9TBVFI19+HB5wC2HAU8vYE0POADKqYCOZkmgENGnlSI3v3XfZ/G7CFS3bEQ8FvzTYBr1wZbn/xxfhycpBcFmefzQavHXeUyyJh2bK68gM+/7xc/6oCqA625TLwYTwAACH5s0C5DHwQD8sblyyJXEN683rppeCjOpjxlQVME/PWww/rfwCQ80aCMsXByq9HowB6OTZbqoQsyZz7UdwR1IWRAMYwEfV6kYG6gQqgaoJqlg9gRwdbUuuGG5hKkCYKmEXYss+tUABVEctWAazJBFyJVkDldc2KnMKDEfsQ8djxvL899xz7/6zSpdUE5eLnND6AXjmBAGoaXS4H3HknsOWWdqY9ET1P3Cl95+O/ikb5AO6xB3DLLfJYZksACQn7Q6wCKBCrJBOwmgYmOG5oVeL8pZZ76dJ0JmDVXSeNCfitt6Lb4kzAwTUVBTDAkiWRfXm9tbfLz14cC3XPrjiwmvgAEkKmNqIgrUAHSXCUF+B5wETIchc3Ayc1Mv6GFVxHUOhsTMBpCWBZIIDiJP7885qdNcjmM2hrA7baCth5Z7ksEpYtqysPoBp0ohJAVQr3vGiAiw3KZWAZlGbpZ2Q2moCFL3wwW5JnETjZhIl5MDspss3z84plaSUoUxx057YigHm9D2DShLIJXg7aFm9vo0EAbRTALOrzAUwTBJLPsxyMPT0WREnxAbQKBtApgIX0BDCmKAwNDALRPaTqSo0pQHgwEgFUTMAmqD5WQI0mYIEAatuK5n7aChS7784+W5nIBbS//ZrVfklpYOIg1g0hwL77AjNnRn/XHoSw7+Xz5gTG4vBCq+lWAtERQFIZSW0CXrJEfjzNJIA6a5YNAeTtI0IANbZcXm+FglxHYrl1dTvmfAAJIUcRQk4Uvm9FCFkIYAkh5HFCyMyYw8cEgrQLPpJMwOqi9zwQJMmcpzYskcQ0RQGkepKki6DVQmi4/NrNUABVAthZkG9K7T/VKjNPp0W5DCzHFHmjzwKMJmDBE5d31HJG9KymZgKY645s4+s+1kMAk0zAJbSFBFB5uUlSAEUCWIsJWI2KjwzUDTQBZ1GV2l1aBZC3aZsgEBFpo4CtggG0CmD6NDAqmpkGhp9cVIWqKzQOVCYTsCebgE1oFAGk5bAytG1F0+jE3pFWAWyrkQDWqgByiM88UlZKlUAOtkMuZ05gLFaLV00XBazr25lyKdGHnW/nfa+3V76vpJc9mQDSVFHAtRJA1QQcQPOGIxLANKvAjEUF8BsAxNHrfAArwVb/mATgxw0rVZPQSeXRIEkB5BHAHDYK4NNPAw89JG8TTbR1E8D+fpat2N/wyCPA8j69K6c1ARRGFW7G0g5IfX2NJYBt8SZgz6uNAG7y9t1RtcnviWLEldSBNQSwQgrBTqoKJWIwF1UAh8FGtKzHymEaVFauZOZGHRFKWt91BAV4bZZBIMrg1IEicll2vkaYgBsWBKKZaXKopDILqdBO6MUicOutQLEoKYCJx4lQfACN9cjR28uyeysgKRTAHfFfrI/5wK23YoJgobBVADurqzDp4duQTTDriScsFyvoRh/2Fzx46dKl0WOMJmA7ArjWC/dgPbyBHd66FvvjJmRRqc0ELJisbU3AYv/gz/2WW+Kj94tgg2Vu5TKYUkeJ0BFAAg974A54S5fHHisRwEcfBebPl+rEFCVdFcZPHvhlSgMjtlsC2QewJgWwnKwAdhaXY0/chlkz2fWWLElnAlYVVdPcPDzMujv/fWs8je63X/B/De+1LhNwjALY1mZWAHXjS2lw7BHA9cBW/QAhZBKAnQGcRCm9EMBpAPZqfPEaiw5Pbk21KoCmRlYqMSfiG25QzmWpAPLzxhLAffcF9t4buOACvPUW8MEPAsWqngDa+gBK5k+dAiiECFeGameARBkkVQLYEAXwzjtx2r274X34n7w9KQpYIICc3JSzoVySgWdOX5GdGN3mE8CM39FNpGC33ZhT8h/+EP0tktxVKcAICqAF3weQpDMBA8Dk4iIAjSGAQg5ghlpNwJqKSr2OqXq8jsh961vAPvsARx9tVADT+gAmKoAf/SiweHF0u0IATdfbCK/gv/gQ5mNDYJ99cCMOCH6z9QHc5icHY+Nv7I0Tca61Cfjdt8q4DXvhRhwYbMv0Rv2dTCZgfqFYAvjf/2L/X+yKN7A+vnLHobgJB2A/3GxWK2MVwAQCqOuMwvsRv+ZhhwFf+Yq5yOLarmJaDxOKxWgQyGdwBe7AntjhWx+MPZbf/5SBt4APfADYcMN4BTAggFlU/PmHt1GTCdhEADswXBMBzFRGEvvE6f/7BG7D3vhy9i8AogqgiQAGqd0UUmWam7/yFdbdjz8eKKCEp7ENfnPP5gCi41IjCSB/LqoCKF5TV7el4TFmAvb35UX9MBhtvsf/vgDADM0xYwod1J4Ael6UACYpgLqXYqA+H8DIG9SDD7L/N9wQLBNHhdHrgXur+PGP2XHDw5Y+ERoCKB0nqDJesXYCGFEAc/K5dD6AqQngPffot/s90RgEolMAM6ECGEcAeS4+EQEB9OJNwE89xf4/rIkjiQzqCqsbQQHwCWB7UhCIBh2UTdi1EMAJOfl6EXNKrQRQw1x165jag+qJ3B//yP5ffLE2/xxg4QsmrbXqJRPAp5/WbiaWQSCbQ3bq3R136YrCYFAAex67AwBwMK6zNgHnUMEH8Yj0c2a5ZtkcgwLILxTrA/j445FNs/Bu8OwUi2YsASReQhoYSxMwAFweXS0ugPgS1IEYqdCHTgHcG7cCACa880rssfx211nxbGSb+lncwAgga5g5X1E1+fxKSdCFsXoqlqOwahlMMJmASbWKQjb+BXjrPhbkd8iy3wOI+gCa+lIwV1oSQP4cL744XIIRYC/o4rPLolq7CTjBBzCNCXhkDCqArwD4mP/5UwD+Synl3WttAPEa9hhAhyePBkkm4LQKoCYIiF0npQ+gLg9gXO4nsbN+6P0j+MEPmBM7oM91FEGSD6AwU1SKtTfMSBBIVnbYUN+oalIAEzJwGwmgJgikmrUjgAXNqhiBD2ACAYxDEjkaQSFoLGmjgIHwPmvxAdxiI/l6kXamueH3bRHdFnlcughNhTimIYA5VPR9SLg3Xf45oHYFMO2ztjUBU0Sf4fe+y+7D1geQo4h2axOwjrjnlmsGu3p8ADWZjNtRRDZr8MWMmaXFydXeBCwcbxl3Jt6jzTKHcT6ASeD33lkJO5qtAlhVFEBTfzcpgAAwaaHZn8ikAAJAW6asvZaK2UOMAKsKoOkxB9YySwIolUkh7qI/s+puokNLTMBDY08BPA/AcYSQpQA+DUDMorMrYEiENobQXk1nAlZ9AJMIoGkt2UYEgcQdJw0k/kl47jPj0m3i5D5KBLAzK1dkQxTAhDX40iiA1YydD2CBRhuErQIYh0j71BBA0u4rgDWYgNtIAgGMYQgq6Y0QQE3n4gExIpqtAOZRTiRyJgUwlQ8g8SRzZZpAjnoIYHeRETFbBZBjGB3WJmAdASz0pVAAbUzAGgLYhhIIMTyHmMInEkCdAlgnAdTVkQodAdQ9Ux2CYIlyawigOlZPesecUsKUBgYAOrLxabCGMswhsbO0EkDUBzANAcyhgnI5vu9RKqu1XRisWQFMSwDTmIBHhsaYAkgp/RuAnQCcBWBXSun1ws+LAfyqwWVrOFQCaBpDykNlDL+zIp0JuFrFytf0MnmsCbhSAVawxMOFgeXIomIXBUyIVgHkK5VzAmhUAMUeKVSElgAKv3ulGpgMNOUE0OETwKlYCgJP6wMYnwZGo1AlKICTq8uCaEbpesIXPiBUswUrH8A4AkhMQSBLlyayBBsFMCCASBcFLJa7JgKo3HPkRUMzik4pLw58Io3ltCCAaXwAc6hYE0CTAsirYdkypUpEBZBWQUjYX7XuIOuvr70+abOLAta9DM1awSZmWx9AjhLarBVAnbrV1pfCB1AwAfeAjXHREzaHANZiAo4lqsuWIRN41oUV2JaxI4DiM8jAiyeAy5cD1Sp6e0UCGHa0aiUc/9KYgE1zCqsWimnojSiAPe/UqAD6L5mmYXlh24bB5ywquPdeOctGGgLYka9Kv6mY5q++IY6VKgHUKYCqIYS3j6aagMeaDyAhZCcAT1NKf04pvU/5+VwAqTxzRgNtFTsF8LUp2+PHv56CDSGH98emgdl3X3zy6GnYCFFfjlgFcIcdgClTgP/+F3/951Tcir2t08DwOV2aILfcErjttkQCSEtCjxRO3kwFUB1UOkgJO+ARLMV0XInDUyuAKqEEEK8A/u9/uP6+aYHzvHQ9oQ448VdNwKY5R0cAuQlYqwA++ywwfTrwiU/oT2i6FR0B7GDXSTIBDw431gRc8OROYGMC/tYrx+JW7C1tszEBN1UBJMQqDcwTTwDTpgEHHyzsINwjf6ng/XWttTQJgacoqYmCQtauAK613LDSguZmVRNwrAJY1qsVHO2r4hVAnQl4dvkNLMdU3INdoscaCOCkSekJoFjehpqAX3gBmDYN/8K+kf42sT35xVi3FJyRAM6fD0ydire3+ChmzAB+8Qu2uasYelrNWTu8T1OUdAW5YP7hBNDU3ysV4FT8BL2Ygc9Cdn7siVEATT6AANCeiVcAK8Iypny+ffPNyG1EoCOAPKhQRwCPwy/Qixk4qvKbiAIoEsIsqpG6VL+LCiDRzUECbPIA6ppyeXiMKYAA7gawueG39/i/j2kUqnZ5ADctMWv2Pvi3tD1WAbz9dgDAQbg+8lNsGhgeBfCtbwEA9sB/UucBjBCh730vSEZtQwBJkgIozEjVUm0Nk62sIpeznZTwFbDw18NwtdYHMA5aH5o4BfDSSwEA+4Ol4pAIoDBCBQQwZ+cDmPeiDYIWYgjglVey///8p/6E0SIxKPdWQhtyXXZRwLp2kKd1mIBpehMwAHwUd+KUU8LvkWtqOhef0HM59tJTKtnnaLv68gQCmMlYpYG55BL2+cYbhR2kIJBqUEYOHq+l218qQpsdAdS1986RPv2pExTAYXTU5wNY1gQ9JASB7NzP+t2HoVYMtOrJZhuU8M1vGghgPT6AKYJAJFx1FQBgL9weUdwntCePi/PnpyCAfkOb/RKbVn0jESYMh8rrzdeGfcWcBiaLom9m3W7TIXzzm/Em4DP8Nc0/g78BABb7sZ35otmZXFQAq5kcLsUReAvrAghdU0wEMEfDdrL7VtGXCtNj5i9tEgH088rq5udf4HgAwPmVb0oEsBNDiQqgWnaRAEp9Q9OhbEzAqwsBjHNWaANSeLSOEgoj9nkAAaDHXxOWh9En+QAC+rd0qyhg4aS2BJBvixDABQsSfQClaF7h5JE8gEr4Xa0EcHg4Ws42UpJUQV0ewLjougy8qEhl6q2azmkigNz3s5oNl02w8QH8Ev4Ubpvkm4CrGgIYWeJDDxsfwMJEuyAQvmC9iLoIoJfeBMzxk58A//634ZoxCmA2G6awsDUD775T7QpgYsJkJQ8gIC9jFnnMvAB//rNcBN8EnJQGRqey8Gdo4wNYaxCINskv1Tg6JqSBaaMxWXo15T1g7xK6ugzR2PX4AGraGCHmcUgHtb9N6EgeF+fNq90HkKNrKCRJW25cCppSnAl46gZsMvjX3/vxta/Z+QAG23yFLlM1359IAP+39/fweVwaWEAKCSZgvlQmAPzgW1GSaXrMfLqUAjoKZgWQ50PMoRoxAScFgZimlEwmmQDy8udyZhOwrh+Wi62hU/oEcj4IIXMBbCBs2p4QMkHZrQPAFwFoVtYbWyiU7YNAAGCSrwT1YjpmYZFVImjVzAlYBoGkJYCEBA0zogwsW5ZoApYIYJwCqLROOlKbD+DQkIYAekWpvnQ+gOqbtgjusCuti6qONPm870xYjZg0pYFeqGBOAL2cnQ9gvsrKOIQwc3Pb5A6gN1QApecXSfCnR5I6JhJANQ2MWg2NJoCq6mmrAAbH5/XljCOAmQxLYjs4yP4mTowvIy9HEgFMSgNTrRpSmEhRwB5AKbLZcMcIAeR1wjPx8iJYBoFo11s1EUDNScT0FxSkLhNwsI9ouk1QAGMJoK69+O29HhOwrQ+gCCMBFMaPiAm4Lf6cxSLw2mtAgVQC1+V6CSBKJXPbFgggnSBPBnEEsIJssGoI4GcagJxaR4VoAuYvM/y4dhJvAs4LCmB7KapWpPIBjCGARbSjy18JTDUBi/OzLghE/V6LApjPpzMB1+NqlQaxBBDA58GSPFP/70LISiD1v1cAHNOMAjYS+bJ9GhgRi7EWZmGRWQHU+EppHZ3jrim+PWerAPfbqEUBBNAzoQwgbzYBF4Wb0PgABveoFLhWBXBwMFrOAi1J23Q+gHEKYBZVlMsJBLBQYKOvhgBKk7pGAfRsTcBVVlmDCCf29h4eBFJVT187AdQogG3dXAGMDwLREsB6fADjTMCauo5c23TNmDQwmYwmiW3SW1w5WQFsxEogAABKUa2GjSpi1TQQQFsTsI4A5j17BXA6WRaQjwJG6jIBA4glgDofwLQKIJdmW2IC1qwEEgeVAHa1xbfDF19k1TBzWhlYGi2nLboGheCbYtGOAHb7/kC+TB8XBLICPZjOC4j0CmCmnU0gJX+VFL7dpADmBQWwoDEzN4MAiqJCJ4aCewTSm4ClZxhDAOMUQK0JuEUKYJIJ+BKwFC+7gxG9Y/3v/G83AP8HYCal9I/NK2ZjkCtZKICap7EYawGIMQELUSGT0Icn8T78GscG29iDp7gDe+ALd35WX7jloXNvRzVcViGOAPKGqSOA65VfBWBpAhYm7AgBVBq1N1I7AVTV0Vy1hBwxE8AkBTADL3kliZiFYJN8AG0JYM6LEsDOKYxNaE3AEtMwEyUbAtg+ySeAtAYF0KtBAfTJS6wCmETKSiXzmtMWCiDQWAIomYCffRaYMwfYZx9svt8GuBO745JX/i8g8hLUa1er0tJh2oh/AJggG1FUAnj++YFLMHDZZZiP9bExXtYrgP4z7O8Htt4aoX+l5tnNyC0LPhcwoq+P884DNtkEWLQo2JQ3EUD1BgW2xX3JxLK0SgGsOQ/gYYcBe+2FbCZ5Wbe0BPB5P4Zi9oz6TMCdgzUogBPtFMBKhRFAEZwcxSmAYhqYrN+WuQIYrKtu4QNYNwHMs511QZrcJA2kTwNTqwlYzbSmpqwxHAZgjCiAlNI3AbwJAISQXQE8SSnVLKG8ekAlgNoxRNN6ejEdADC5vQQUWeOjVFCQhNnvIFyPTfGStBRZHmWsjXewB/4DFuikSS8vKIDtI/1gyytrVgLhiDMBA5jmv8VZRQEDrBVms8HcFKzsYDABf/7zbK3Ms88Gvvxl5dw0ajLTKYAolZDLUfAXI7UjeFWKTgsFUIJOAQSSTcAJCmCcD2BeQwA33LIDuJUH2FCUy0KFCA2vC4MYhOpVwZDoA5jpQH6iPgpYXZlD95JQkwm4sxMYHESuGuMDmETKVq1CPt+mv2YCAeRm1YBo1UsA1SCQm24CFiwAFixAG4Dd8TowBKyz7H8AtoucW4LnScNH5N5MJmAlDQwA/OpXwC9/CeBzn8P6AM7H8fgX9o0Un798XHMNG7qefRY480z9zU7PhC+ZRgXwxBM1Gw1Qb1CbHiEsy2iYgCNLFAJaNpKBB1x9NQBg4harAHRHjxPGD/XFtDOBAPIVAJllJrymkQBKCmwZFeQxHUtQKAk3ZEkAVX+gOBOwiQCmVQBtCaBoAs4N2puAdUEgcQogT8sFRNPAiGOjjQLIhYOICVh5CLx/ZTLsL40CWKvQkhZp8gDeuzqTPwDIFi0UQM0gtgxTAQDHHVMOFDlpnhJYlpo7EDDnSDKhrRh2hFoVwAkdVbVoEiJLuvkXmOEv6BesaqK0Tlpm+335y2yf7ZQ5EdBb/3Q+gCiVkM/G5LLSkIEn8T70YhoAQ9LOFAqgRFI1PoA0b+kDqCGAha58cGyknMIIpSYbj7uVCAHsmBTkAVQTM6ur0mgJoJeQB1D3IH0brEoApXaWlPW6r69mEzC3OAZV2GgFcJ4p35lmolYLr1zAlgCqCqAOWVT1CmDVYGLTNNZpJFQA21BKlaxaC5soAg5KUUhrAo4jgJYmYO34pyln20g4teWy6RXACQVhcteYkIMk/0K+wFgTsCBdct/NLaC0TUsCSCbLJuA4AtjnCw9BuVP6AJoIoMkEXBAIIFnVH8kGlKQAbrSu4EMYkweQm6SBqAKopoFplA9gXQSwHNM2Gog0eQALhJDTCCEvEkKGCCFV5a81lLUOZEoWaWCGo4rTUp9wkEo5OgEBkvzRpUmHaLNMkIi2Ujhqxa0EwsuvG0gmdLLWZ60A+heYMoURoxUr/AFCadTcB7BQgJSkVYRuYtEqgMUiCrlwm3pcdiT6LMrIB067WhNwnAIYV06NCZjm06WBEYNAxIyrPEO9roy6FwYOSoVie16kwXoTusOl4BQTsLoqDaGatCCKCdiGRAQm4KowaGbZe1NwfBIp6++v2QTMrefWBDApCARKImgTAdRFgTSIAKpBIDpQkAjpAMJnaEoDImIKZAXQ1gfaiDQE0PPQ7sWsl9skE7DWBUbTxjqF/HoFi6TO6rNoy4XH6JoKv2SeWJqANQRQXQsapZJ5vWqRAE6SFcA4H0C1PIECmEAAAxNwh0wAucJnahrSi6swLnAkmoBJ1ARs8gEM9mtQGpgkE7BIAAmxNwFTCiBGcW0kkoJARJwLFujxbwDXA5rRaIwjMxwlZ56n+IIpCqAHEsriIyNoa2N9U2pkAsuaZFAAJf83nY1U3L8YJYBpFcCudjYAGH0AVQLoXyCbZQlve3vZygczC3oFkHdUXdZ8EwGMREhzE7DhOFKMThgjKATJoa1MwJzdeF5E0ZLmEJ0JON+WTAArFWRpFR6INMggl2N/pVJNBDCfZ0Uql/0BRzOCehMnAW3s+EQFkEYnTJUAWpuAEZoeAWZhWrGCmZ2nToUVAcx3G66pGb1FAthwBTCTCRXAfAV46SX9eXT9Vb22Ul9GH8DOTnl7PpkAAnpLQrZqkFY0z24KZB9AGwWwiLZIhHkA8eFRGr/+oOfVrADWkwamVGJ/krKk6UuFSjjWFEjyC7tKAEU/yUolOsQHCqCiAokBCBIEl6BOP3ihVgUwM9neB7BL8fcMFUB9ffMsYSEBVHwAaUwewGpVWk0F/f1SHk1eJh10PoBxCmCcCbieIJA4AsifSSbDfLDFe41TAEdGagsQqgVp8gAeAuA0Sul+lNKTKaU/Uv+aVchGQUcAIw1MUQD70R00ZpTLUQUCiFlvjSGPsjy484ZiiJTMD9mZgLe+4Uc4DadrJ47OdoMCeMEF8I47Hr84W68AAmyRCsAnEeos4feGSc89CBx8MNqWvRO5tm5iMZmAczEm4Gw5OmGICqCWAKob+Gin8QE0EcCAlBUsfAD9hlBCm5TwG/nQBBxHAE0mYF7s4LnrJtduQQFUVuaoRQFMFQQimIAnyRamsNDq6zxHShNwMwngUJHgjTfY5+4lrxpJTKEyhL/hcOyDf0nnlmCrALa1BblFAVgRwH3xbzmwwkfWM5Auzc1O9qIK4HFHj+DF9x8BXHut9jTSS42K2MVoo+VRc0caz8XhO1v/aOnR+Ap+X5MPIBD1h01yUTAqgDFpYHJUPqd0iVWr8MmrD8aD+D988KFfBJttTcC3Ym9siWdDAsgnBVMU8NtvAwcdxLYji+wUswn4/POBE04Iv6vWqiQFkF+XE9tcp6wA8iAPbbdSNy5fjouGjsRnBB/5RAIoWD6+/9hB+DDuR7EI/O53wNFHh49MXFFKHHN1QSBq06qVAIoKoFqvcQRQXTKwmUijAE4A8FCzCtIK6AhgZBxRCOBKTA7fEMrlwAldyi9lktl85FGWO3u1ylqPYSDKDVsogJ6H999yOt4P4GZ8PHKOyRPZ9d5R+dm3v40MgAGsLW8XLsAJYG8vgJlKEIivAK5/xIcBANPy0wD8Xi1aBCYCWMiaTcCZkl4BFE3AkXUby2XZiBETBCIdW6sPoD8SFdEur1usmIClayUogOutB6xcyT4HTUTzWksmdQPtbHZLUgDjCGAhfL+REeMDKBKPSGQuP1F7u37kT2kCbqYPYLlCAoIw8S3zeqe7PHk+3ovrcDj+jiByWxMEolxahpAVtoh2TODuIpYKoA5GBVBzs5OqMgEcGgIGfnspNsXlwKGXa583I4CG8U28wSS/T89DW5wJ2JQG5okn8OmVv8WnATxX/Wr4m/Dc38bauBhH4lScCSBKrPr6mFUjQJxSiRoJoDJhl8vC+8/dd2Orl6+PnM7WBLwh5uMf2D/cd7PNWLRPqYSsHz8mVd+xxwbrqVWRRbbHrACedhoLlDn1VD0B5EQuiQC2kRGAAjnFBFyIMwGrz+Hee3E47sXhuARXgGXLSCaA4TmmDS/A/dgJfy1RfP3rbNsXvwhsv718XzMQDo6dGMLczbvAres6BbBeH8BsVg524dcxHIZSaWwqgDcD2KlZBWkmFmTmAgDIcDQraKSBKSbgXkwPFcCRkSCgSnqrTFAACxiRGwq/qIkADlkQQGHDZKyMnGPaFA8TJjAioFuYfhqUjcIIIgWCGIJAOLIakqYjSqWSKQgk3GarAMaagFMEgZgUwDbfrGDlAxinANbgA3jccWzJ0YhCpiNGUycFjEjNy2ejAGZrUQD9ncXzRfxUeds05Tvs7x8zCqA4AU+IIYBdRU0nqlUBzOUkp3TeRmsZ9JNMwPfhI/gjWJj+hGpI5LjpLC4IqZTtMJsoAfkGE0hVognYpAAK47FOAby95zBshFfxA5yBD+N+ANF6tFmnWkTewp1djQJW876qCiAAWfX1yym5xYg3qGSwXhvvhOZOLrmbTMBvvx2eUmMCFgTEIEqau5uoBHDd9eMVwGCtW98XL9fJ9uftm79kWimAGpiEXt4sVGIFyO/KXM8RTcVrYXHwuQuD+MiOcmBOM3wAx6oCmIYAXgjgcELIDwkh2xNCNlD/mlXIetFPWAfIDKU3AfdiuqQAapdYszABRxRA7cUZsgMWBFBolToCSLwqNt+cfeY5qERMhGIXMSmASqMmlbKkNlXXXjdybpM7T5IJ2EYBTDIBR4JbYhRAEwGUjm0xAZw9m0Wj2hDA/JSJRgK4apX8LpPVqEs8gjQVAfTrU/QpjKQqEkydWjSAAAb3lmR6rFRi3Sg4ASQEaHvFTACJTg2t1Qcwl8OISAANCmBCLm0AQLZiMKv69bISk4M8puIKD3xC9GKmgHK2Q27TkR3SKYC6NbMDmAigEGWmI4BL8rNRRAcAgtewIYBw8pzKkjdEh+ckBVDwATRlClCD/dRcidIlfDXvKbxP2icDTyYGYh0qCQxXYnK478SJ7L+JAAqO2R4RooAVBVBIPYtqlV1eJR5Z36RrSgMTKIA8qbxqAvaSFUAvJhdikgKYRAA54ghgVjDf15UGJoYAZj17Algsjk0C+BCAjQGcDuARAK9o/sYkOGEgNiZgRQFcghkSAZwk9yWGBBNwWgVQPJ8NAeRrFkvwPGyxBfuoC2yMmB6FC0gKoJoHsFLBJng5+E40xELHG4rFMAhkmPsVFYvICQogrcoH6hRA1QScSgFMSQCr2XQ+gJIJmAeBQENUY3wA+eDCn3scAZw4OWskgICgAhqYBCcPqdLAaAhgpI2KJmAd+vrGjAmYE6CJEwHyguZNKYCmLtIogDwIiRAWeGJBAG2CNJIUwCqyWhLHJ8SqokqJGMm2xyuAYt0nqTnVanoTcBwB9K9dpuG9iS+GQDiORYbnFAqgRACFe1RfoGN9AH0170lsK+2TRVWeF2wJIE/WaiKAQp1RIuQBVHwAl4UxQahU2J+qVHnZ+ETQ/Lo8ujnflZ4A8iwbOiQRwFwCAeRDWBwBzNHwIo1cCUQkgGoAV9xawGPVBPxFAEf6f180/I1JeJTdJhkaihAWGwVQZwKWCKCFApiKAPLz3X8/Zt74O305kwhgNVQAAwIoTOgRBZD35Msuw7ZLbgXgE4iIR2xFikbLGiKrVYgKYJAupVSSIgwzVeUtyZAGJlUUsJEAUrlONc+iSNusfQCTFEBTHsBu9GN7PIZv4QIANCCANkEgkyYhYERTyotxHr6DjfFyMD+ccQbCe9cgWx0BBgYw+7KzMRevp1IARRNwZBLyCz1sCiBQFEDpsSQogBsvfwTH4kKUilS6lhGWJuApE8vmCGDoTei976bwARTUP0DOS2YigEm3BgCZSrwPoIeMlgByHzZRAVx23BnSPsuHG6sAFrwaTMCCmlWthA3ltZfDKNfgd4UAckvGd7/LcnvbltXoAyi0zZ/iFOmnLJWPkS7hkzmeTzY4JgUBXIGekEQIBFAbIS0QQC9jTgS9Qpg2uAKoEkCa4eMfDS5y773AN7/J4oYiCqBCALMxJmBurVmJyaCRfGLsWScSQE0QlE4BFH02ZyD0j/kIHkD22f8F3+PyAO6LW3A4/laTCVh9QRCPWy2CQCillzSxHE0FBZuMOlBEO4oYFvK1qZVPh4uSIK0qgFoTsDbdfIgsPPkNgF/UNBBxB8OddsIcANtjO5Qq75f3EY7laxxK8Dy85z3s42uv+duElh0hjZUKS1f/uc9hPwAAZSYClQRUK9gYbwRfTal1VIgEMAjJL5UkczLrzOHEmClHe7JqAo4MEGrvF6OAK/KbXrUqqBuakaZE05mA44JATArgRKzCY9gBAPAyNkE2u69U7DgFcMIEAJMnA/k8usoD+A7Ox1Qswy83ugT/+x/wxz8CP/gBsO5aeikpUx0BTjoJs377WzyIX2H3shIxZGkCjiiA/oeFS9qwse7C/f3IZpm6wnMdBukfdKZunmQ2A3zjig8CAK54fhMAezWMAG7SsYBV9rrrKmyBIZLCCMAzT5Sxu7ihWsXs2aELVr0EsFwWe4MeWQ0BpBQgggKoU/F0CuDUX8pRxkW0a03EHggjBGkJYDWGAAoPZ3CtDdC1eD7rW0IbZISB1chfL67ixwCWLAvLv812OeCJcPJci1m+8eKLwOGHAw884O9Yqwk45rgN10s2AQ+iC8VJM9Dex4IQsqiaTcCKD2CtJmBJAVR8AMXubSKAyGRQRo6ZuCsVoFDA0Uczt6ILLwTefZftVghMwHIaGO5momse1aEScmB9gUycGEa+gflYFtGRTAA1Crg4BfDnF7cYA3n8seBznAJ4ix9seUl5PwATU6WBUQlgkg/gWFQAV2vwVRpU342IG8+grDptsMN0HPvtMExSqwAmDX5QnIb5RU2tW9k+E4sSlwUDAHzta8B+jL6hWg0iloNdhXKKSWH5/qqtZGQEkdaZqZYlCb1uAiiYLlU/Cb6ObjUTvqckmYBJSZlkxDyAws6MAAr7aZ7hMOlMJoC+y0AJbaBid8pmJQIoCZDCsxMHptl4O6IABsXStJV8Hmxwv/NO3DydCfATMICLLgr3WbUKRltitjICPMQC+9fGuzX7AJqCQErUYD70R2ht9LHm9Z3nQRNzTnb1viFdy4iERNCcAM7qWMk2TJ0a3QlRBbBU0kyWnofHH0fgeqGNMs/l4HlKepU6FECiIYCeh0QF0MYHcBiKArjrrqA3/xO3YS92bCk+CGTl3G1Auc3e85C3UAAfwQ548LyHwnMK56VF4WXRn3hLHivfGWcA194gK4DrrRee/sEHw8+01iCQmOO22KSMm24K4zN0JuAhdOK+Xz3NxmmkUwBXYWKgsgUE0JQGRlIAc7LfBKXB2CKiUtH7AAIkbAP+MxJ4WmRJtmxHAY8+Cnzxq74CWDHnAeSrUZVRiCRH5/N0EgHUpUESr6UzAXM8jA9EtpmCQHJCX+dkLo0PYFoT8JjzASSE/CXh78/NLGg9oNSeANIhmQBuvvN07H9wuFSC1gfQIqW+mGsoUQFUtlOQ6CV0PePQQ8PBwfPMvlnQEECevVQthtI6c6hgrUwooZNiVH1MRQAFx3DVn4kTwHJHd1imOBNwpeKvvStANAELk0ke5UQT8CC6rH0AtfnS/AfQnq3IlzAQwEF0BWN3xAdQ08aCcX6nnfDQ1I8H5Vx3XWCrrYTjDQQwUx2RzpvOBzBqAlbbmdF8WIrxPdSt0qAhgNWyp1zUAEsfwBntfofu7o7uhGgQyNKlmkG6WsXMmawb+pcOIRDAalVQAAkJHnajTMCVCqx9AJMIoKQebrIJyMc/hmqGbSsPG8iLj8lf+xRIj59Ev1q1MgFfg0NRnTojbBwCERIJIJ9A+cvgoYcCPdNCAtjWBvBL+0WPLasIGx9AjlKG9XtSrWD//UPSqTMBD6ILdK2ZwMEHB+UU2xBfZ108JiiTT0CouCC2jQKYyYYvo5QClYqWAHIDiU4BVAmg6CUVBGPw4woFvP/9wNpzfQJoWqoQQHXYJ4AkSgB5nzf1AU48dUFQRY3WoiOA1+KQyDaTAij6zPP2YWsCzmZDcYO7xSSZgFulAKbJA7gbop7QUwBMBLDS/xuToDT0O+tUzKU6E7CIcs8MIB/m/dIqgH6LGUIHOqF3dJYIYJIPoNICPWRifQAD8EUHAaBaNZrmAI0JWBMkYSKAM0hIANMogNyMFpClUklSBSL+HP7DKbd3o32QEVZRAYwQQM0yfhIBFHbOo5yoAA7QLskHUMvzBROwhEwmJIC5ClAVcoMJo6EYwU1BzD6AmpFQdJupklBtzGQUchWnAMYRwDoVwLKlAihNDpqZgr+0iZNx4A/WIBPw1ILfofkbngLVd7i3V68AAgZiy8uZzcLzhPaSzUovGdAcEgcdASyXgTZBAYwzAccRwCLa5TL5xMPL5AEPqAyXw1avG4+EZOioVqXlAyPwy1tBjh3S1sbOaUkAMxlIQVc9PaGrHABsLPoiJJiA0xBAj8hvP9o2LRDAtjYANBy/xDZUHvQNp54XCUbkfcDL5pEVFL3EIBDfhw9tbayMpRLyGgZoNgELCqB/EbFoIQH0b5ifuyATwDgFcIS01a4AakzAtgRwFSZGtpkUQJEA1qIA8mjlYXSgA8XVLw0MpXQupXR95W8SgF0ALAJwcLMK2QiICmAPlmNX3AWA4skn5f1UBbA8ebrUq7U+gP4TfBezItetTmOhaHvgzsj+aq8IIgP7+oA77gi2e8hg/nzmohdAN4hls2HnFxTAoIEJ14sQ1YgCSNnuSuvMoywl0iSa1DrWCmCxKK0oEZHzOQFUFEBjIuinnope2JYAakaaQWphAjYRQGGh5DZfAdQFdMxGmLOrC4NmE3CcAggETtRZVEXuKalBKjL1EEBhADOlgWmUAtiOErowgA8NhX2iXG4sAZyW8zu0pQK4ZIlmsvQvwO/r0UeByy4DFi0SyqkqgEKf1fkAJoGUWX1tjaexsR+db6MA5lBFJi4RMTQmYD+qm0eGlofjTcDI58MX0mKR+Q3ycov3+uKLQd+tIsvaLo8gTyCAvHyZDIJ6zKOCnh7ZVCmSwWoxQQEUnqtIAFcsid5jR9Uvn/98pTY9fz7w5JMSASwUII0p4kQ/3O9fdyhqVeGEiObykknXSgEEpGO0JuAyxZxX7sRU1TJEQgXw7TcruP12vQIYECw+3vJxohISQNWgEJiAM4XI8ohGAjgygqEbb8fD1y3EZ3A5sqVoXYkEsFwGQKk1AYy4BvllELM1zHrpHuDdd1MRwA3fZQ6ofO5TTcCVCpvy334buP+ad7Ez7o2UrRmo2weQUnofgF+A5QlMBCFkL0LIXYSQRYSQEiFkISHkakLI5sp+6xJCriWE9BFC+gkh1xNC5tRaTpEAPoodcBd2x0G4HocfroSNqwrgpGlSr9aagP1WqiOA/NhjcVFkf3WED6JjH34Y2HPPYDt/Sz/qKLFgNSiAcTMKdwLxEUjhGgVwGhVMwJrk2qY0MLooYHFN2TzK0iDBk4+WOy1NwB/9aPTCdZiA19rA3gSsJYD+A2iLMQGLBLATQ8GAnuQD+DrmSutm0kx6BTBTLknnTWMC1iWCVtuZmKJDQpwCWNSrRNfgUPzprbBPVA0EMJJTzJIA9mQFE/B222lKINeFjQJ4113A5z4HHHmkcHEdARQIgQgrBbBcwgSswtPYBi/jPeFxCT6AACu/LriFowglDUxAANn5KkMJQSAiAVQC5YJ79Ty2ssV997FzigogIJtC/bZBaTjxSgqgQHx6JnlBGhixeH19QGkgngCKkzongAsXAg/dFz2umO2ULiC16Q03ZG3JX5VjCJ3sd+FlTbxWcVUyAfRyhXQEMBslgOp6uwAw6Z9X4Mt/14yfJFQAt39fBXvtJf8c5uMLTcDi9Uh5JPqC6IOvR19JYwI+5RR0HrgXFmJdXI4jtEFQIkHlIkZG085NBDBJAfy/33wWWGediAl48bt6AjidLsEnHjgRAFtaFogGgZxzDpvy11kHOOfy2fggHomUrRloVBDIfEDJcmnGFABPADgWwJ4Avg9gCwAPE0LWAwBCSCeAuwBsCuDzAI4Ay0F4NyGkS3fSJHDS0YVBbAQWFrsb7mK/if3Nbz0P4wP4Iv7MXh2F2TTOBCwRwEMOAR55RL8eqiEIZAid0X0B7LYbG4V4xBUvSwSZjFYBjCOAwYSpEKQgclWZNQsYwRRvafC9LgWwVEI7CQlgZIF6bhYSFECjCdjz9CqEQQG0CQI56riuZAXQv+YICvjEJ4TtAgFsz5kJ4DQsCz5bKYDvex9u3Ox72BV3ywpgRlYApeNNaWC8xpiATWlgyiYF0J/IuSojraojJicTsA9ulb4HJmA1955q7tQFgQjElhPAiVQggDfcAMycKZ1GpwDywT9Q7v0LqBPs4sWIBIE0igCS8gjmClH5gEz6TQogoMlPqiCiAPqTNPUVwMpwCgKoEPtgAuQLMfuoIisTQIE4cgWwUomagAOS4X+fOrmKL3xB8YUF892MiwgF9EEgr7wSPe5/eC+u3+i7CAoFg6rtZ+IPFMAkAuifq1iYiPvxYQAhAcy05SEuSJ+UBgaqAlgsahXAyXdcE90ISD6AurYSMQErCiBGRoxLTXrDggJoMAFHhq5LLpHPsc++kTJFCKAuLwyAw74eDfiyMQGzC3sRBfCN+XoCuG71jWDbqfgJAGCtqbIP4KWXhsfpyGqzUDcBJITkAHwBwEKb/SmlV1JKT6SUXkspvZdSehmAg8B8CblX5lEANgBwAKX0RkrpTQD2B7AegK9qT5yAIZ83ij6AxO9IUtSQrwD+GV/Cxfgi62C1mIDPPx/YYQeQgsHjVr0wQpVSxSEH0+juutlBmEySfAA5+jAp/E0xkerUoxlYIq0qUQsBFH0ASUkmgFKH93wCqCiAWgLo35uXy6NXTCwqpoFRFMAkAtgxTfYB1BJArnYhj7PPFrYLdtiIAmgYkEQCaHx2M2fiii3OwpuYq5iA0yuAuaQgkJil4MQ3WFNZRxJ8ALVqurqGnQGmIJAIAdQpgMI98zbZXvI79KRJLBXMeefJ51GigEUFMCBzigLIUalAIoDVqtAHYgiglQm4Uoks66gqgJE68Zl3G0o1EUAv5xPAknCs7uUrlwvJiPI7bz/es/Ok7RXkWHvSKIBkpBScSusDiNAkPHVSBe3tTFkRL5/N0MiqHSp0JuBKJUoAj8f5WFWYEu4AAwH0v+gIoHitQJn0n91wvhsn4WcAwnkr21GQyJxWART6bSAGJpiAM0OGVGaCAqhrK5El2RQfQIyMBJvUJkJFBdDSBEyV5PKZc38GfOEL2jIFx+t8N0Hw2WMnR7bbKIAcKgEcHtSngZnmMZepf2NvPIgPAQDaslWcdppfFs/uZa8ZsA4CIYTcpdlcALAJgKkAvlZHOfhrP6+G/QE8TCl9le9AKX2dEPIggE8AOD/tBYZJF0DlKOCRHFOipPbhvz5wlSqTQW0KoD9YkopmFE8yASvgjSxxQqhBAexHN3qwUquQ6cjD2vBzxc2cyZybBu0JIDc3lZFHlWSRpVXpDT+PsnQsjwIWCeAICoEJWPIB9D/QbA7VipKPjxcqjQ9gLicpGDYEUIxSFRXAQrYqX8LghN6FwWQTcC6nppRjt+c7o3MCaOMDSMojERMwX6yCnVRznF9Am7WAk0zA2r60ZEl0fw1MQSBWBFBoB5xItI0oUcCKjCfeL6WyD2AR7ZiE/ogPIIeOADZEASwUgJERzMSi6HEmBTCbZQRwYCBRASyiXT7Wn6SpTwCraRRA5Xd+r/Q5mQDGKYC83YjpSiQfQISEsKdbfhb88pViqE6biKAuCKRajZr8i2hHldePzgSsQGcCFk3wKgH0SDbIpxcEQuUtfADFcY7nNEwigIOrohsBewWQplcAuaLLFMAO6TcTAawWOmTS0t0d6asRBVDzMAaz3Ziosc6ZEkHr1szOZOQXYZUA8uFzqsdeansxPcy7Wa2KWo3Vy14zkEYBzAAgyt8qANcD2J1S+sc0FyaEZAkhBULIxgB+DxZIcqX/8xYAntMcNg/A5prtieAKoEgAq1nWKXSRpIGzZhaJPoDlkkYB9AdLolsmLqUC2Da4HHmMYKSUIA0nKYAGAhjspPORUzT4gADOnQsAIAMD6NBEVovrTPb1AYW+XmzsrxboIYNyRjabAYICWCoB8+YhX2HPwmvvDAbNJAWQZrJyQuaYIJBYH0BukkjyARRMwCYCGOcDKKITQ2gbXgmUy2YTsE8gADUIJIyAtFUAMTISeb7SV50PICcrtIoe32HclAam7NkRwKCLUGqtAA4PeuxNPyUBXLUKGBkKj+GTWltJIYDqLCnUhecBDz1Qxbq+0SOtAmgdBTxieG4cftuehXelzaLZP+ID2NUVLh+Ikdh0E5E0MLxP+O26f1kZr73mV01SEIjyXIPrKutURnwANQQwTgHk36dMYr+rhKw8GPZXE3RER6cASgqpqgCORPtOkgm49x2/s/vtSFRvg3nLhgDq0kwJZuPIohsAMkMmAkiCOjURQAIvXGeaTzq84gXCqQ6x5F02l1Q1JmCTD+AwVdJtdXdDvSFbAqhzhmykAhgQQN9nfglmhO1lZARdIywTx/Ll+gQWrUCaKOBdKKW7Kn/7UEq/Rim9p4ZrPwKgBOBlAFsD2I1Syl//pwC69c2wHECPZjsIIfeY/gCgmAl9ADnK2agJmOvH3EQTZwKmFPjFL4AnH2WNgC+6DiDspCs0t2HwARwmegVw1klH4BVsDK9sHqyDwgoKoGliFhEQwLQK4KxZwWj3LmZhElZimm95PeYYlk/3jjuYS9f2k1/BXS/MxKk4kxUNmaDuRQQ+gB/+MLDllvjsc98H4Dsy+4Q60QScyckTniEIJIcKKA3n9UhyWG6SSGEClghge3tqAjgXb2D/Y9cFPvlJswKYzcYSwBwqICSeAI7wSV1DAKWixSiAHXQYyzEVp+IMowKY2gTc1xdpo9ElohgWLKAstYfSh3oxXd5RIIArV7L54gPbyu0cACZUBRMwEJ0chLo4+fsUJ7/0ueB7YM41+ADWqgAmRavqCSCNKIASievsDI5LrQAGBJCd79K/lLHRRsAvf4lkBfDTn5Z+Cgjgiy9I2wMTsCYKWFQAzT6ArLxrz9CbZMtDYX81QRcEUixGCWAR7agQOV9TkL6pGK3XJBPweWeX8e9/QyDv4bMLCFahENaNyQQsEcCoAii8mwbImgggSVYAg3vI54WlN6IEUBpbbr0VU847GQBQifEBVMnYUFWZNyZOjBLAoZB8GwlgblL0TQ0pfADB3AnEOikNyWMpHzKmVRmtkRTAVavwnTOnYAO8ht/8hvmmjgZGcyWQIwB8EMCnAfQDuIMQMrdZFxvJswYm5r/L5NjtS2OXEtWpKoCFAtvGE2cef3w4GPViOm5a91i2+CTvCDoVxaAAlgt6BRAA1sNbdgQwpQ9gnAKoIw9B3rru7qCTT0I/ztv//iDq7i7fWeD884HHHgM2xYuS3yAFYZ1eQUAAH39c2k5yuWCA2PNjBXROCCdMVSGj2Zy1AigcFp3AeD1amoADBfAXvwA+9Slg551DE3DGjgB+BPcjXxwAnnnGnAhaUADlKGBzEAitygUPCIuGAErV4N/w09g63JaRh4wz8ENjGpgRL4dv4peobrSJdIzRBKxT/3hicwUZeFi4ULhodzeeW3dvnI7T5R2FIBC+wts7b8km4H33Beb2xJuAxXWqn3u6GqyH/frU7dC+jk86LRXAwUETAaQQo411JAIAsP32wDXXBJN68FIGwS0iTgG0JIDGIJAcJyXs2HnzoCeAog+ggoDsKhaSwATMCYGYy2Uk2QTcMYFd79OHyQpgYAJeJVt4tGUTnjXvHkNDdgogv54UIONjCJ3skfmFnTLZw4wpYf3nUWY+i/5Fq4IJONwpH76krFyZSACD4AxxNRBE26iRAGbifQBLJU0KGEBSHLUm4J/8JPhYzrRFfAAP309PAEtEIIATJ0q+1hxi3Zt8AIdy3VoCaFIAdSbgbLkoB/EM6RXAKVU2rs3cagb+fLHcH/bDzZHzthKpCCAhZCs/NUsvIaTi/7+aELJV2gtTSl+glD5CKb0SwO4AJgD4nv/zCuiVPpMyyBVK7R8AeB1sQBH9Zdoy/tugxmGXv3mpPoBApC9JKQn+sNWFkKMBNDD4AJayegWQozqSQAANeQBNCmAJhZAMaNLA6CJIJ/E3oY4O6e38y7u/rnID5P2ANWkZPLBJia8mIO2v+uWJ9+VPCAcdlsdOu4RkRyUdXsaOAHbmyuFhnheJ8gxgGQUcKIDHHQdceaU0MHECmOQDGORmHBoyJ4LOZsWPATxDGphKRQiY8GFNAP06kXJYqg8Z8WlgLsQ3UfrrVfIBJgLo+/+NTAtdKYiBAAa+U/yihx6K8/f4d6wCyCGqLnlSwS23ANnBeBOwuExhZbgcnGP9ey7BnPXlWVidV6pVSASwv18hgIQE0fiiT5hRAbzzTpZlwG/b6wjxd8FLkckHMCUBjKiHwg3yOjBNspICqCBQAJUxKTABc5IjRIXzZR7jTMAdXex7e15+Frx41X42ZpncbYAw/RQQdo/BQYMPIJHf1AKX46JcH2XkUEZBUgDXnlHFlIkyAdxkE5jVW34B/qa9ZImeAApBZoFvXgIBzA0n+wBuvkl0cJYUQB0BFKKOpUe9wQbBx2o2qgBuPldPACXLEe+rSgfnK4wE1/Qf/pBA+tMQwEpFrwDmSoN2BLDCxrVv/3Q6Dj1cJqvSXAUgutZGc2FNAAkh7wcz2+4K4J8AzvX/7waWwkWXPMsKlNKVAF4FsJG/aR6YH6CKzQE8X9M1OlkDE9+W20iYpDJAJYYAVioApUYCWEFO62AbgYEAjiQQQFpO8ApPmQdwCJ1ylnedj5zJf6xDeYN+/nktAWxrU1ZBga9KkGhFRdLAcAgmYHF1AZMJ2EgAhUmKk/9qFYKKp/OOTvABNJmAgdQm4ACDg6l9AMU6EV+Ky2WgUpIHbjENj40CKK0WoZnQTWlgRnwfwCxRKs5fkzTiA+grgP0T1g73TSCAQZ/IZjEyovcBVM1d4qAdEBFeCIMCmBMSlosEUFrtwkYBzGajBBCQAps4pLV2RSiO9iIBDF6KLH0AazIB6whgkglYgYkABomg+XMQnIlJjAk4uIzij6D2I28VIxamgDtAJoD8sQ0OpvMBVMk7J5wiAdSNueutB+nZRdpzoQBM919yenuRIawfSGOTYskBIEUOA3LzJjC/ABMhCrhnYrStGBVAPj8MD+tNwLNnh7eEkQgBzBT1PoAjWWHeMRBAkXyLBHCFoCkNNcAEnB+RCWBpWE8Ae3wFEDNmRMqqpmhq1QogHGkUwLPAAjPmUkqPpJR+n1J6JID1/e1n1VoIQshaYDn/XvM3/QPABwkhGwj7zAXwIf+39NfoYh1e9Jdpy2gIoODUD/jPS3SaKJcjBFAcjKwIIJ8plZZWypnfSgEkm4BFBVAggCYz5yC6QrKkmIBNCmAAJRwf8+ZFxvpCgZ1WSwDjTMAqcqECGNjgoZiATQRQTAMj3D9X5UQCqPULsvQBHEEhau1KaQIOMDiIfE5J/ZPCB1A1AavBBJICqAZRJBFAIDKpm1wNSp5vKiRCGxJmg4gPoK8ALskKwVQJBLDKU5HkckYCGKcA5ih7qQsKYfABFJecqhbL4UAtkhxLH8C+PiUNDPQE0KgA2hBASx/Aznx6EzDJs21WBNAQyhzcp/J7oADyyV1QADPlZB9A1R9BNT9yAhirAFble/E8MwEM6la5nvrshtAZumiLBFC4/6BdVsN705qA29pY/VQqyA2sFA9hEAmgl6wATo5bxVVQACdPiD5LyTdSPKlAALUmYOHLnPJrERMwX2JUbT5Sovd2uQ8F+6gE0L/nlZgcbB/Om4NA1CnP6ANYGpII29CAPg1MT8UngNOnJxJA1VrWbKQhgB8EcBalVNKK/e/nANjR5iSEkBsIIT8ghHyCELIrIeSrAO4FSwHzc3+3PwJ4A8BN/n77A7gJwAKwiOHUIBNYhxcJYCeGcQ92xvpnfincT2cCBqSRhPel6nMv4FVsiM3wIgDBgTkJBgWwnK/TBCwqgBYm4EF0xSqAsRGkqgI4b17wNhqcI0ex6Un74fdKhiAPGVQNCmCQ3kOA6AMoTrhWCqAhDUx7Njp5aQmgzgT8/e8D227LRj/VBCzC7+wSAbRJ+uR5+Omls/EJ3GidBob7ANoQwEB90iiAm2wiKHL+DUeWC9MQwMvwWRzwu72CBecBZvYiRIluFSYikw/gm2VBATQszcYJRHWEXeuZ53O45hrNM7z8cnTef5u0KbKCR0dHSDQMJmBxnWqvJCiAop9bXBoYQcG1VQCrJUM74dfzx6Q2gZi8io0w/frfg1aSfQDbUMKEjhoIYJusAJoc7ZHLRVYACW4hRgE0mYCvuaKEv/+dXcrkA2h6FiMjAH7wA+x4wocAxBPAwx79Dk72A9YA4C8938ERv95BCiAE/IA0gwlYNEPy6wUCWQwBVM33WgUQCFTA3Ipe8XaFm2Xg69bGEcDp6IURggI4qSss69U4FP/AfigVabwPoGACNq34M62yKKoA+gRQJWPatGrKpFu1UACH83oTcEQBvPlm/PCvG2AX3BPZd+KNl+GcwGsNGBr0Qpf/v/8d2+0+CcNox6yRt9i2GTOYmCSMn6oJuA36HLHNQhoCmGSctjVePwzgAAB/BXALgOPBCOA2lNKXAYBSOghmWn4ZwGUArgDwOliksCFjZTzKU1iE7nQhaeoGw89hZ9yHWf/6S7ijYgIOCLvQinlfmnLK17Ah5oeH6kzAF14YKUug5Kkm4Hy8AoiqhQlYowCagkD6MElWAC2igAO0twOnnx76o6xYEcmg30WGMP3hf0YOLbQRrLWO3gfQqxgiTz/6UXatbbaJNwETOxNwgURNwNoVE3QE8Oyz2dql//qXlQk4L/oAJql/PiYNvosbcWC4SkYdaWB0CuBwfqLvICiPsKUS8Pe/85P65iV1mFDeYrNZ4LO4Auu/fDtbzNK/x6A/bLstsOmmLBJUcA6PmID9m11SFtx/ExRAvprAbfew5xz1qQE6Hrhd+h4hgFzK32WXcKJUJpW8sGRhpViRTcDKcgxJQSA6AsgD0qQ1QjUm4PmbCGtxafKYzcIibHL+1+BVQxLxIjbFAqwDmskAe+wRJILeaHo/Nt3IPKaU0Kb1AeTJ7QMSJrxEjYg+Wvl8IgFUJ/SIAiiMP20o4fDDE0zACgGU1Cch8CCOAALAmTg1+Pzl/vOxwdLH0KWku5o0ieBLX5UHWS5klYfk+1qMtfQEUOd2w03ANKNXAIFg3M0uWyLeLoNEAKNpYMTTAMBEGPz/AEkBDAkgxaG4Fvvhn8DAgN4HMEkBFPKeXLjeeVECOMjajfquLC39xtmWMh6JSq045orPvJxrD/xvRXAfwIDI7b8/pq96Xbs6R/dFitHT80Je+69/ITfYj3YIYwu/R6G86pwzlgngIwBOJoRII7K/NNt3wYhdIiil51BKt6OUTqaUdlJK30Mp/Sql9A1lv7copQdTSrsppRMppQeo+6TBqnWj6QM7PKFD+z2IKCbgYGARZlQ+R2DE4L8i4thjWV4UAYN9egWwUohXAONydrEdsqkUwF5MlxVAizyAATo6gNNOY8mg/Qmlk8im3q6sXs4+6isZtHfrTcA6lZPksiyyetEitkqDYJZVyW3VMghE8gEMFKuUPoCUmvMAAqEJmAgKIK9jg2+UiiAwNsEE7ClpYMRnrxLAKrJYNMWcTjNo3yYTsDLg5jPCM1u5MrjHEtpYOQoFthzWFVdISkTEBOzf4xAV1GW+XpyCQAEclKM6JbXyl79k+5bkdqn1s3nwwTB8HYj6AAoKYLVo8AG0TATd1ycQQN5G2sM2zaESwBvxCVz3pX+HG3TLTPqg5VAB7MckrIc3cfctw8A3vhGQh4tO70VXwUwAq8jK9emTiEzBHARStiSAwX1qgkAkH0ABfHKMNQErg54pB12cD6AtVqwANniPbALmxR7uk1/05mELKwVQHHONQSBAoABmlycogDx4SVEAxeYdO68IUcDdnZXI/nTVgN4EnBQE4jOlI3Apnu3ZKUIAsYoNCp4naxCZquYFWhmPRBIljrkimeZrp0eCveABoEbdIw4ZeGH8jXB/u//fsDy2rKYE8GSwwIw3CSGXEkLOIYT8FcxUuyWAU5pQvoYhs9b00HnWR3clNC8EUosuCASQcgHytu158luBMQhE2di/In0aGMCCACoKoOgOQ2n0ekswI1YB9DzoFTkgfMMjJPis+i90ZvQEkGQzWvm9gJHAdCWBj1b8bS3GBFxVFUDDUnCN9gGMVwCr4a68DAZioyJYGENQAHUmYL4SSBbVSB5ANQrYQwZLpm0hbasKQ0FQNJ0JmNIIeW2jwnPu7ZUG3OAx82cXZwL2b2zY00T6KQiCQIbkvJ0S/EklMyK3w4gCCDCTo6gGqGlgBAXAKxl8AP36SvIB1CmAulyAKgEsI49sTihjwNSj4P2I9wWKDPJdsvmQ9C7RrnsbnANE9nvz6ydTkH0Ay2WE/UB00s/njRluTQpgxAQsgE+ONZuABSQpgAALjoj9nSBCOAMC2C/f1zxsET4usb3EmIAryMJDFlRsl4oJOEkBzFqYgOMCD4igAHICKPaf7GBfchCI78+sW3FrCJ3skSk+gKSvL+rDDiBbEQgSrxelw4ltVhxzgz6HMGuCzmdLFwhiA4kA+h9WYSIquXZ5bFkdCSCl9FEwP8C7AOwFZrrdG8DdAD5IKX2sKSVsELq7AWwhT3qTRkJzMJ+FSJIJWFAAqUIAtQqgeKyPVSv81qU6QLfFv5UmRggpPoDK13gFUAkC6fB95FTyEEAMAvE/t1N5sFe/S+XUqBd5lOGNRO+R5BSzXqwJWFEtxAFaGEm4AliTD2BQMGJFACUfQF7HnXYKhLUCSORcXXEmYA8Z9M6Q+0IWXjDhBdVkaQKWnrNAAEtoi/J8DQEMTMB+XQ6JBDAmDyAA0CF27bbJGgXQn4QyRbkdagmgGtQUE81FR9L5AHoewnadhgAqfSHSxmIUQG4CFp9dsDt32+jtjR1TPGQigQ9A1AdQMgHnBAIY4xDNlkHzQJROFTEBC+AvmDWbgAWwALj46S82OIJDSdjJi11cFSWAqRVAyspH88JzVkzAmaUJJmCLIJBYYYGEK4FMaGdllaLoB/r1JuBsll2EUnTmhRcFDl8hG0YHq0LVp7y/P2rBQnoTsFEB5MdYpoKxgY4AltAWnReEiGuimJbHLAEEAErpM5TSQyila1FK8/7/T1JKn21WARuFSZMQIYATdQSwbG8CVgmBrQIYEEBlVPIK5uSkAHA9Dor9XY0CxuAgLqefwT74F6p33g0ceaS0u7Q0zaWXAqeEIm57zn/D5ilEVLVB7LCCArgpXsDVOBSb4KUgb1cElBoVQG2ks4EABlHAN9/Mki8DoVO2sq+0QjhCH8Cuv1yIl/f6BoBkH8DTTweefjr86YorYGUC/vzTx+M9eFEmgG1tKGsCYby8PKnrFEA9AQxJMaAogIpZ3UMGy2bKfQEIJ/SgqixNwJICuGSJXgEMdg7TUZhMwMOe0NYSTMCerwB29mgUQJ/UERsFUJ2AYshLtWTwATz4YODJJ5HPA8fj5/gp2Eo2G+A1ZA47NDivLgpYRwCp4mJSQc6aAC5aKBMkaXduCVmyBMQzz3QURDshZdo0PoD+M+9dpZiADcjA05LPSBoYAaICqBLAQGAxmYBL8mA9hE6tv6iI2OAIDuV6vE2XVlmYgJcvl8iAzgQMhIm3pRviKu7SXhyAG/BXegRbW1dRFbOqCdjv3LYKoOgD2FmIKoDfumt/HM5XcFXbo9//ujLsBUznA1hEO6sOtb8pBPD445k7fdbCBGzyAUw0AfuNqB4FcOFC4LDDgJVLYgigwNZV8j2mCCAhJEMI2Y8QsmXMPlsRQvZrfNEai+5uADvtJG2THDt9GUKNAg7almACrlcBHOjTm4BpoS124tkGTxt/AxBRAHHBBTic/g3/wsdQ2Hu3yO69mI7Zc/37evRR6TeukAUmYJUAahTADgzjDnwUh+JaXI+DQIoGBbBYTEUAiVonggl4aAjA/vsD81kwTlUlcQkEcNqPv4lN5t8KgL2N/qnnRLbDySdHrgXITeja60mQdb6MvDENDABcg0PZSyEngPm8lAz7RbwHKzAZA+/ZTjrFwBLfT1UwIepWAqkqCmCcD+BFOAbbf95MAAOrnUAAl/VsyLbtsou1AjiCQrQ5C0pEVxcbcwcHZV9Mnj4GgJEABgMnn0gII3BvYj22XXBNUBVA7YSXggBmaRl50QTM64NSYLvtkM8DP8cJ+D7OxhQsw2U4Qjpvfz/wOtZnQRnrr8+2W5qApcnEYB4HgKuvCoNAOCIEsLcXxDOrP0/jvZhQiE642RgFUFphI4YAqsugcUQSQQsQfQBFE7DUHIUlyIDQz19dr3wQXdEXGwUzsCT2dwByjliEj6Q0YBEEop5Kyb1aoT4BFF8K+UmmTAEAkL6VuAEH4QhcDvrnv0Rs3c8f6L/U16EAcgLI3QXE5za5uBjfwK8ROSkQ9KkpHaz/ScudDYe+u9ksgJkz5WP7+5HLsvn1nXfYAks/+hGQFXxx8Z3vsP9JJmB/7B9BAY+Dja9Prf2xaJn9eSyHijpdWCEDD0cfDVx9NfD8UzEEUJj31bofa2lgPgvgSkCJf5exCsCVhJDDG1aqJqC7G8Chh2IrPIPvQrNSh2ICtlEAqa0CqDRQUxAIaSvETjyJUBVA3dJaAn528Qwc8Hn9JMKTFwfqkfp2p1MA6TDWwdsAgHWxIJ4AatQLMwE0m4DVW4wogPwBKj2aE1wRvZiOC2adA7z2GvD1r0vX4hNzoFb5oBYmYIDVx9AQQiKXz6MimJw/jAewGV5Aeao8EJKlvWw+SFgJRF2wXWcCfqFjW4y8OB/nvflJbLHn7AiBMBFACoLfHv0csHAhsOGGUR9AT3jOSQqgEI2YyYQW3lWrEPSHUlV4hlOnQofJfkQi5aYkf5H4y2+cCCxezF7ouALYYBMwz2tJObuICYqhIFLyeU4A38RcPPL3N4BLLmHblRcNIKoARl4yNt3UWEZ+niQTcEbJLHD12fNx3V8HMAvvYNMPT8eB++oIoNkHsF4CGPgApggC0ZLiIHye3beawkXKgWpAKgVQMQFzAjiwwdbowXIAJOxXMQRQzL3KTcBSPfLPmsgKb2Vf0PcG0IXDtn8N2152PPtRiQIWp5lYH8BsqADydq3tP4BRAdx0Luujz4tLOBRD393ABLxkCQsi6+gAPA/dWfbM+IJTAwOhAnjPD/4DfPaz7IckE7B/gkF04UN4EOvirTAITqwIf2LPoio2H2tk4OGll/xb94mclgAKpkO17seUAghGAC+mlL5u2sGPzP0zgM83sFwNR3c3AELwHLbCk9g2ukNAAMO8bkCSCTgaBGKjAA72+4O8qjMX6iSAYhCI5+nXIRaw1pbTkZ2sJ4Dtqg+ghQIovr0U0W42AQ8PayeHPMraIBATAczAixDACsnJfmAGBTBPKsgob19LMIM52W+wQSTgJGNyCC8lm4AB5gwsEcBcDlUS3tcyTMVizATtkJ3Tp9ElbDGEJBNwJkwDA8jzA1dxvUwOhfesjzlzwO5PcYngA2dQVaIPYHt7mL1fHXA9iyAQDkWJ4EJPX19YNxIBnDYNOgRJabkzuR85vN56YARn4sTgxURth1YEMKYfdnI1ie+jPPj8SEg2CKgccJDNBj6PbRutG06aOhOwsvJP5CVDeX5SGfha1ylNwL0T1kcp14VFmIV11pFXQAluod0cBSwF4yT4AOqIRzCGJgSBJBJAYY3hfF54Zj5sCKCVAmgwAZeH/NQjPbOx0s8/9+qr/jFJCqDfwbkCaEsAKTKS/+3aH94AJBMNvlJPGWsCTlAAJRhEgk3XY3103jzhN1UBBFi7nDQpqMTJmX5xV5RKIQEcmiO8/CQRwCH27AfRhRG0YSHW1SdhyIVWFGWJaitkEKaB4W01MHEbMKZNwAC2BXB7wj4AcCeA7esvTvMgjieR3EoAI4DVauCUHEkvYGkCtvEBHOo3KIDt8SbgRChLwSVixgyjGSlQAE0E0KAAchTRHkm/EcBAAE1RwBECKKglS5Qx2tYEnCflyKTQi+nR6k8ggFylSVIABzCBvYjyZ57LKQSdDdS0Qw4OmY5edo8JQSCqCVinAFK1gAqBkBRASoPyURD53lQfQFUB9CcZGwIoRQL791isJCuAfHURohBA6fnxNmqjACr5wOL6YaAAct8s1ST++gvB5yyqGIBgxvYVQEDhOIrSDERNwBEfwBgCOAEs/YqoAAZdmJPqZcuQLcsTTrEI2cWgZCaAujyAtgpgBp7RBJzJ+IVVjrdSACOOpXoF0NYHMCkS2GQCLg/6liRqziwQOZXBBAydCVhRHgH/WZsCsAwEMJOxTwPDCaCRMBpMwBuvy8ZeiQAKQSCR6vArkRNAcejO+QQw26EEnAiI+AAKCmDkEE3kfw6VsPmo40IMxL7L26pWARQw1gngRAArLM6zwt93zELkOWI4eIC+vtAEhQL4hKxTALlYoDMB2yiAw6tiTMBWa8kZIJqAbRIZ8TcuDYI8edwka2MCVhTAF56KUQANJmBtHsC8ntTlUBWXCgWgCeSI8QFUJ4UlmBEdjDSmORHcBKxVAIWTrcJENg4JJmCiNiAAXqesAM7AEpx2WpjWw7gSCOFElUZyQAYkntgRwGIREXIq1Ytyo5ICeP/9wH//CyDZBxD33ovDixcDYP49fct8AlgV5Qk9EeOR1fDVPR45LJUzMAEXhXGc4iT8THtOCRYEUJpFxcs+GyZEyMCTFUCBAErvXroXDTVNlPqSwf0HNTgSlwAwKID5PNDTA3geNpp3k3Tc8DDk9qVJXJ7rYPc9BctxIn6GaUNvNdQETAjYxKu8nIpRwEYfwEhuIVYMKxOwUt4ZWJKceYG3k/nzgfvuC1xWK0VOADVig4ERGE3AhRgFULAiiQQw0vd4v+vtBX72M8yqLADAmoFtGpjg5TKlCXjW5GFMmMDeDQM/QCEIJNLV/GfYk2EynEQA/YTsmXbhWqpLikCidnrlz8C/We5MsR8Gh2jSs2RRDZtPCkEmAw/tGMYJOBcb+ava2hLAiejHSTgHG+FV885NQBIBXApwr+pYzPH3HbPg48Iuu8QogJp0IBEFUDQBKxZWioyVD2BxUB8EkmlvgAlYVAATTMDo6EhUAL0UJmBRCSqiPUjSG4GqAPqjprUC6D+UiV1RAmUkgEpC2gKiBFCrAEaUGaVOhaXgIi+LiglYIoC5nJYAqvU8Fctw7bXA8t54BZBStvQaAKBalRXAskEB3F4W7fmbc6AAAvB80ihNsuobd1V5zosWAbBQAHfZBae89kVsjJdx3XXAfXf5BFQ0Aa+1FnTgagT37xv0YhTA4eGgyO/HY3g/HteeU76Ambxw5ZjwfVQfwOfDYK0sqtLEQ7O5wLyURACphgDGEXEdtD6AAHNz0KBYVAjgXv7KI1tvHeyTa2eV/AE8ip/hu7jizQ+B+q4QEQLI3QYUxAWBBDAQQCsTsEIAdSbgq/FJ+eIf/aj0dQqWG8mOt8VW7IPY4HbeGdks8z4I3CmEgKbAZdPw3AoYkU3AnsYEzB+izgcwkzW7X/B+d+utwHe/i58+tgcA5jIRpwASQQHMoYKOjvQmYFIcxiabsE2vveb/pjMBc/iixCQim4CBMK2NRACVeY7X/eaYh2P/92XgmWcAyMm/k0zAQfNJIchk4OEHOAPn4qRgWxIB5KT6pzgZ5+B7ONvPHNAqJI0gD8DOt+8L/r5jErMFf/cbbgB+eq49AYwogAYTMJ98bRTAYIRVfAAbQgAtfADvbtsbeOIJ9sVEALkCyBW5GkzAxogmlQD6kQDWPoD+Q+nuiu5bgcEHUDGJ50kllQLIJ2Zxgs7AC0zAFR0BFJ7vCArMFUUwAas5oAAgo0Rl8sGsXIz3AQQEtUchgB5/hupI9KEPAddfH7SBnXcUFEAeAOITQGlsVwlPVf+cY/MACq/1U8BkXFHVeW/mWeDuu4FZs7Tn5gQwU5KDQKTuI6xGwIs8FULy9zjY+AByZVqp18yy0DFVJYDFKnt+kyYpdapTADVBIJHJ5NVXcfaHbsaz0Cdq0CqAgJ/DKIpKRSGA3/kOC2sUVjLIdsgPdVZlIbwROXiO7ZgFHn9cSwLj0sAEUFaH4EuWWZmABScukwn4O/g5cNVVwAsvANddBxxxhLRPDpVIGZ/G1jgE18C7068PDUHo7g5JUslXs7fZBvjPf/wdDGZFkw8gadPkAUzwATQSQB+z+l/GtdcCe+4ZrwBSRQF8+WXggp+lUwBRLAaPMuj2QhCIyQQcJYA0WPeauyEAiFi7+Jg5TdGkEk3AggIYNJ+UBHBHPCRts1UAd+/4r/V1GokkAngBgN0JIb8ghERYEyEkTwi5AGzd3l80vniNwcyZ4XOcPBnYe38NAezrgy5fUHwUcDiB84HLxgcwmMGVN/xsez6Vz0EE4lJwMT6Aj3TuytZnBSxMwH7nMnVu4bOYD66EttBUpkI1AfujgykKmK88EMDvqCYCqNtXRV5jArbxAZSSoKIaPMNqVtOmVoTeE20oRRTADNWQXWXbhrN9c0Y5PE5nAgaEe69U9CuBqCMRIcCBBwamxP33EXwAlRyAUhNWTcC+Avjy9P+Tttv4AALhCxev2zLyeKVtSybXGxAogKV0CiAnb9fjQIzoEn9zpDEBK20ssyIkmRl4kg/gUImdV1mUyCoIJOIDCAAbboiXNv64MaUJyYbbpWfxnvdo1dUIAczngUMPlXwxiW6QK8nBc2xHwgbfww6L7G6lACoEcBLYrKyagG0UQJ0JuIgO4JOfZNLcQQdFxmldoMoQOnEdDkFupu9HqbaT4WF0dwtqusfGhS9+EVh77cjtSoj4AHrsxqT6josCJhYKoICDD/azGMUpgERWANdZB9j1IwbCqM5dQv/jlx8ZQdDIPJLRp8/yn2E3ZAIYPvMscm1iBJyeAKquXloTsAidApjSBKy2F1sC2D3NvKpPMxF7d5TShwgh3wHwcwCfIYTcDuBN/+f1AHwUwFQA36GUWq0FPCagS6BagwlYJICVWhRAlQAWsslm2zioCqABwTI4gFEB5BOsMQ+gRgFUTcBGAqjmAazRBDxBZwKmWdmzJ8bfRjULLcEMrG8ggLyjtmUq4HN0DpVgwBVz+gUQHBQ7MBzxAdQFlmSUqMwCYeenCUEggKCeCARQ9AGkGYPTu9+2O7KCCZi3H39Qj1MAOQEcyPdI20dQQKdaLUo6Cr4fIESVKumUBsgETKCyCT/nt8/siE8AqzEK4PAwcl0UAAmIwCC6UDCZsoDYFzHeroOJWWljZHlIANtzVQxVQtPTUJHtayKA0mSsLl8B/ftMZyei/mw+qBBpHrklNfIZGgKoQUWTwDxUwjUHGZbbMvkABlBWy+GEQDUB1+oDGIEyTusUwIj7kHpvvb3o7p4T+tNW2DkN79ny5RUfQK0CGBcEQokUgKXtCwqy2eQ0MGqKKV27BAC89Zb8PQjCKooxlIH6Vy10ACUSbR7cBAzZB5ATu8i9GQigamHRmoA1QSD1+ACqZNrWBOzlR4cAJjqRUEovALArgMcAHAjg+/7fgQAeB7ArpfSXTSxj45GCAEYUwNtuC7iQmCsoiJSy8AGEp1cA8wVSPwG08AH0skIhE0zAgSInEECaycj3xAmgoACmMgH7BDCPMjwdAczrTcATO6L7lk0mYA7/fk0+gJEJVvEB5CukAH7n9Z+hblIUFcAODGPCsjeBRx4BAHhZOxMwN3nAr5eVA2YTcDD53n47cqSKTfASlj/wPN592xAEwuE/C576RwwC0SqAyoVzvgl4IBclgMYgkMGw7vnzElUdmQBG48t4Ima+EshAVaMA8iTNnhf4tPJnLk4GsXkaNAhNwHoFEMtCAthRqErPudjHystT8all2AEsIfuHcT+6Vi2SdolEY/vo6jITQM/0zIFo8mvIq5OlIoBcCdeVQ3OiuCjgAIoCyAggrckErL7sSb6KhnLqSGoiAXzrLexauSNsZ2VWVzE5uwNETMC8LuOCQAQHuXffoXjzFXsFEEgmgFAUQABmAvjKK/J34QVMys/tl7mS0wRuAUFlTaSMhb18yyvYEs+mJoBqRK3WBCwiGxLdoPnYZNPghyuKcTWbB0XGKg3MaBFAK3pLKb0PwH2EkAwAnphrGaUaG9bqAB0BNJiAg4fHB6O//AVzTvg6gO0xPBQ1AdsogEHyVSXCjnTZrQ8bCwsFUFpaqEvzJowwyjJQACWTb4f85mQIAokogOuuCyxYAGy1lfwMBAUQWgKoN+tO0BDACs3Jwr/a+2bPBvr7kcdIhAD2ozs6JyqmufZcBZyTZVENlg6sZDRtau7c4GM7irj28bng8QceyWkVwMoc2Tk/71+sb1kFswAcd0IWPEhWbWvB5HvYYdj4S+fiJZwILAU+fvHN+BQAZA1kwH8WnACKCiD3AYwzAecr7Dmv0iiARhOwQI6D1UsEAig2j0fbPoL9h6+WTpMLfAB99VFHAAFGcgYG0JUZRi/ykgIYniyd321SHkCRAHZP8JAbCieF8kp2rEkBvAyfQwYe/oovRLyq4wigyQRc6MjCKHRqCKCoAJomru4pmvryTcBpFEBTHsAAythUQBntKKJc7pDUYrlwdgqgLQFMVADVueQTn8BZy5djlW/2H6wUpGLFQTUBe35QYawJWAhu+92vy3geI7gD9gQwl0swAQuJoLNUTwCfxZbYCs8BG28sH5ykAObZ75F2Nnky+0eZBeXXt7MIkrlg6YgjvsU1EECtAshfhFEMm4/kqpILVwDSQDUBe/k2oBofqxXUfT2+/3UgOYxMAKXUo5Qu8f9WT/IH6DvD4GC8AvjtbwfbZr/N3tLFN/tYBVDZSDgB9E2E92xxDL6O38CbMi21AjgMRdq3UQBFAmgwdfGl0gL/MdEZf0TJVWQwAUcUwPvuA046ia1+kI+SUJMJOGMwAXe0RwlUmSb4APr+bp3egDQpfBpX4AtfIOJyyP7FZQLIlSSAERa+cozWBPyDHwT+T2pS2Womr1UAV33uGOD73w/WbeYKIE8eXkEuGH+NCiCAdf5zSfCZP4dsLkEBzAiJoIVVQICEIJAKO/+qrAUB5GY9wTzOB0HRB1A87pSe3+IJJXk725eiw7+3gYrGBAyE65Fm/TWDESaFDRCzpq4OST6AomowY2pVmmCr/azNRRRAYZb4Ev5svHZaBbBnagYXXghcc43mR+GlbuFme2BLPGtlAt56O7MCWNb5VdZqAta8nHajHyMlGgQOrUAPFi8Wd4gSQDEI5K2uzXA0LsImO04LgzIM5dQRwMj95XLAH/4Qfvfb9UQ/D+PQiMEEfNVVwK9/zfIfnXgiAE0aGJ5XtqAxAWsIYB5lKf+c1Pc69eKCqABejUNxfv4k4Oc/D3cQooCDdiwEt+2Pm7A3bkXfUScAv/+9fHKNAjgyglABzBv6rB+hPmf4JSlZPx9DkxRAXgfq/COq/tqXG39u2BivBM2HCiINKegmd+BdsNWbVBNwNcd4ho0JuFCWXVzwgQ+YD2ogUhHANQa6AX9oKCCA2iCQzTYDzjsPADBt8bzI4WkUwMAE7Gcxvm3jY/E7fD3tPAQAKBGFANrkAcwmv23kuQLom4BpNoclYLIFUVcw8Tt6ZyUcdD1kogrg3LnAOecwx3CDAqgNAjGYgNvz0X1HkgjgRhsBALqq/QEZuBDH4o0dP42LL45kRon6AAoEMItqQAAlszrHpEnABRcAAKYo6TQrBgUQbW3AT3/KInQB5CkbgLhPpjhBqgOLSABzxXBA4QNiNh9PALnZX0oDY2MCLvt+eJkJUgfQEkA+qQsLgwarl5h8AAtTcALOk6+JijDZFTAwxMqpVQABdBJWRq0JOGXuzYgJOGaEL2RlAugNsOtHFEBBadC9GHCk9QEsoIxjjwUOOUTzo6AAPnHYuZiHLa0IoHYiLBsUOcOJrEzAGtLSjX5kh1ahHSUMohNDqi+fxgQsKoD/nnkkfoujccYZwG67KSfXBIEkmoAB4KijgOOOi24HMDhiMAF/8pPAMccAP/xhkGpHNQEHa8vrFEBepzEEUKp2g6Unmw373ztYGz/uPCcYIwEWWcyfSeCf7D/rm7A/bsb+eAezkfvFucA668gnF4JAdASwnDMogH5+0jmr5gWR30AY1dsIE7C2y/rX3QLzWPOhVLLS5dqi7Xg5enAyfsrOqSqAFgQwmFeKytIjn/mM+aAGYnwSQKFDLYIfCTc4KOV045Aap99AprwbJYBpFMDABOyvY7Y8y2aDWgjgCFHUzLQ+gAZwB3la9c0RJIvXsKF+Z7+jTxwJTV9ZVM1BIIDRB1CrAKoE0H8o7TmND6AtAaz0S+ZAowKv+AAGZhD4CmCcCRjQmtkAtmJJRjPRB+KRr1LzwYz7RgaDcSYq3ookIDsUDpz8OWQL8SbgNhJVAG2igDkBLKFdul+tDyCf1JfJbQUI3Q5UE3A2GzVx5lAN3vCLaA+aukkB7MywfbUm4JQEMFEBFJDPKo7h/rJUEQVQNBujHzrUYgLu8WLS3ggKII+0r1SUlUB00NUXD4ay9AGsRwFs62fjZi9UFo3EPIAD1Lc26LprLSZgjgijZ1hVsjAB+/VpMgHH5gEUfABzqEhr0NoogLlcqEIFiqPQyCpeqACqwYt8nuzsNPDLBBNwxUQAN9wQaGvDOt4CrIOFwWaRAEr3pvjp1WwCFghgfz87LxHnUE2778Jg0PdUAmijAAZj37DS5w0m+0ZjfBJA4YksBHtroQODWLQgasaQJtnN2QLSk95mBFBnAtYOmsrGDKpY9k4J6OsDzWbxRh8znbW1IbUJOEIAxcTHyuoXASwmvDypYBJWBopcxcvgdRhWHvAnkokjsqpjDAJRy+DnASxgJJL6AojxASwtiyzVVPZsFcA+OwKomIC7lXvMxCmAgDH6TquUQHCvKfDIWB4EEpIjQN/OxHOKBDAwAScogB2rmCIt+QDCIg+gv/btMDokAqjNA8hnCoHwBGYQojcBZ7NRYpFFJSBioj9XZDLxyzOTvgvAYAJOSQBn4235uJgRPp+RFUAybPABFEzik7FSe65agkAmV2MIoPCseB+zUQC1P6RUACVyJfQRKk5JAqsY8J/XZPShY4C10xV5lUX7xxDCXuh9YiCagJtGACOM3i93ySIIRCCApRIwPBBjAlZ9AMXT1GgC5u0zUN6FTuTRTCIBNHDfRBMwd1/SJt/3s2bvh5uDzdPBiH+tCqDWBBxHANVVcDR13oYRiQCK1/T8rAs2JuB80RHAUcG7YL5tZHgIn/1kGEKvxbrrAhMnoq1/KaahVyKAafIA5lDB1rMZkViRnYbb7xQm2bQEMGPwAbztNuDii7XHSEEgBuz+5p+xEj3Y5IazAQBlmsUz2Fq/M1cASykUQEMeQF3UlckEPPvWP+MiHCP9NFjKafcN4PuXdJb7JXOgDQE8Dafj/uHQRpxHGZlqjA8gABQKoBo/SymSUihjsCsngFQmgJE1qn1QqpiHK6G6wglgrmBQqvz2Oe0HX8f78aiSB5CIu0B38bz/9lpEuzSZpzUB5wQTsNg8ZsyIEpwcDQlg0Z9IxCD4AH55/r54V2yMlxuiAO6Ax/xC+I0mVgGUCWB/dUJwTyaYCCCgn0ziTMAkE5NXVCCAmbYUBDBGAeyHhulo6kcyAZsmO4EALgPLQzg504/OAUYEKj0a5pHJRFRA0QS8yoshgBZ5ALU+joDxgQ5X88jljO+B0nXzKOOll4ATjk/hAyieRiCARbRH+6xYCO7aktUogMLzqlQ1CmAlfFEDYgigKQ+gTwBfXmBQAIFAbDkLJwebjCbgSLCQngCK68RrSdnGG4Pmclgfr6O0cjhKADU3uhw9EgEU1Xvij6HJCiBFfkgxAcc2mMZh3BPAFegJ3kSCTPN+wz72WOXFiZCgo/dghTaKzcYHMItq4NC6cCQcOCKD0sRo+gsVgxllwLVIaZHNKCTz+usjS0NNKK8EALQNMt+1lf0Z/ArfxP3d+wJ/VpzU/Y4+oaRXAJejB28ep+QJb0AeQAD4On4n/dS7MiYNzMSJwDQWxN5R6ZfUoCQCmEUVp+NH0k98gKkgKyXclQtPQDSduSwqJYTgJz8BPvc5lp8XQNAYCpRdgyomYN1jNqmKnCjlEkzAAHA0fpOcBkY1AfsEUFUAYwmgEAW83XvZvXHzuuoD+Ne/AttuH1UAefviCqC26QvlOWb6NQ3xAYwcF6sAyibg49suAhAzaQKYZDABA/p71CmAP8fxuB0fxfXrfTt6AIdoAk6jAGrqi/vCXo+DcAMOwJsnXRT+qDnR1ElVbLN5AgEUBl+RAHYNsrFz6qYzcMghwPnnK8fxBXn9VEOSCdhj57RVAFUz9az1Crj0Us2xO+8M7L57ZPMICpg4MSG/v0AAgdDa4CHDivSZz7ClRPbYA9hxR21Z+fFGBRCQiZL/o2gCDtayF9pzNUYB5NunTDHclx/NixUrZAXQ7/srwX7X9tuvfjWyyUgAv/xlYN992bImCAlgnAVKe81CAZg8mbnmCC5hAPBA50dZUB/HLbcAu+6KvXFrMEZmUVUIYMV8LV4Of57kbmFPYFs8mNsZ2HVX80ENxLgngCsxOZgMenxH/TLy+MIXgAsv1BzgD1ZtKAUNDQjNwbYKIJezRT+WyKAUCVOLol/JvWazPih39g9w4IHAgw/GHtO7NINhdOL3+93C0tqL8CeSCQYFcD/cjBWfP04+JoUPYFZ1vo3pURElRNy3uzsg1Z1lSxNwZC3gEPz+tEt0STtq0m2IvoqZDE45hRGdiALor31JFAVQV16TChQogG2GQgonewUba1cCiTMB54bZi9MwOqQdAyd2ERpT1I9+4A+UVG8C3mAD4KLfymXP0qgJWPsMhZn3Wxesj43Xrl8BjBwXpwAKJmDv71fjiRXsRct/D0kFkwm4s1P2AfwGfoUT8HPshdsx1DHVfEJRASzUSQBHwrWAD8INWP6po8MfNSfaessqfvh9fxwyqR0CYVkOxjImoQ9dw2zsrE6ZjmuukRI0MPA25hNA0QTcX2Xn1HJOCxPw/gcX1BXjGCZNAu68E/jTn6TNZeRN1tcQCgEUcxzm82Bk4KmngDvuCEUBCxNwbN/LhS+SkesJ7blq4QNoNG9zVXTJEpkA+sGPfO7Tdp+ddwa++U1pk9EHsLOTEbIvfxmAWQEUofUBBIJ6qY5UUB1m51mI2Th6w9tllXebbYC77sJj2CHoexMwgJzo7uGTuiQTME94vQTTsT2ewAGT74k3ETQQ454A9mFSMBlw08sICuaHJhBA8e0wWCrMwgdQJIBLoCiAognYIjdQMat431oogDzFi4SEUWrJMnbeLbfU/OhPJGJQQwaepNBEyK3BBJxWAVQRuxRcdze7bns7srQaPIM0PoAiOAGJbS+AdraRTEm6g/36yXETcLV2BZA/h7xJAVwSpqhZhW5p+ThqYQLO+f6Gw7Rd+Y3EqxD8dNwELCiAkfaiXDNLK1IQCGDoLsrqBG3V+n0AI8dZ+gAODGfheUwYqSXgy3Sp9naZ/EvBQHHDgSEIpBYfwKz/EsDdZ6RyavYvZL3Q4dWCAHIFcILXj4k+AaxMMUyS/DhBAVQJoLb+FTKgzVWY1FaU30dQMAXgRo4xEkCL6wBqZLydAiiagHU+gFUargSSmgBymbu3VyaAvfLcZ3JVV2VyPl5ryS0QBrP5dVALASRCMuihFaFLWFsb9ME4CF++VNcNHjWdZALmqqHWfaLJcARQQwC16xNy8KTHCgFMowCKJuCIApiSAIpLPQGwUgDbiaZjJIxSi3vZeX0/WeWE0QFcVACLaI8OuAYTcBofQB1iCSBPEeGPWLPAAgNsfQBVWCuApWh9jygKYASKAohqsg9gEgE0KoAvvxx87Mr5E0jR3gTMJ/8h2hH5LZKNSNPOciTqAxjpRxoCaKUAzp8ffi6V0FZpoAnYwgcwJ5iA+wbYfnHm3ziYFMC2thoJoKAAcpXdZiUQnbMlj5bkpEC6rpYACheyMAFzBXCC14+JRTZ2VqcYKlIhgJICWIkxASvprbSRyknMXfm9jHxqAsjHmrQEMJUJWKMABv1ONAFbKIDGZe54QxcUwFIJEQVQXUAkgKKCGU3AHNxtxkIBNPYLYT3gYn+4MESEAAqfTQSQ+OnebAlgHyzWC2wwxj0BXInJWgJoowDqTMA2PoCH4+84BWcCSDAB2xBAtaA2CqBQbtvjYgmgxsQpEkCtApgmDUzB3gScqAACwYjFCaCNAvhtXBD5yZoAimsG+pCilS0UQO4jEhcFbDIB83LmTQRQyKTLCWBxyJ+EaLIJuLCYpWoYpu2RexGyVDBolOYMja4EEpm8lPO2D6/AnfgoK2ucAijii1/ErGXzAIyOArhyFau3eqw7uqbf1iabgOshgDYrgQAw1hknBUkK4Gfv/hIz2/Eb0EGjAE5EP7qLTAnyploQwKeewo+u3Bib4iUAwMpyjAKoIYARBTCJACr1koYAroe38Dw2C6LMAx9AHTQPJ++vlAIYCKDGBKxNAyMGgXiCD+BllzEztJKRwKgAcj+HZcvQ5qfs0imACxfqDoZRAdT6FgOpCGCSCTiHCob70hHALTFPOpWNCTiLamACdgpgK3HMMSjNWAfX4FCtCdg4+PmD1fqzalcAAWAamL+cyPpjSZIGA+gCzaRTAN/FTDy2wWH6H/fZx3gcVy/WXVfzo4EA8oa9ChPjTcBiEIhGAcyq0atpCKBYH9x/xh+xpvtvlMPoSDXQcogm4NjJUrN2ZqmawwG4AaVcFwvCUeG3s0AB9Go3Ac8BM4Pmpvdof8cllwQfJ+bZBDI0EJMH0HCz87MbR37z096F0MyGfP1jcSWQJBNw9/I3g893YTd2vO72//pXbVkH0YV5x/2Rtb1f/Uq7D044Qb+dI6UPYKwCeNppxnO8jrlYhim4GEdqu/c66wATJ9VnAuZ9zMoEDGjHJhbYRKLXNZ3oppvY/+23R2WDjfGPwsE46SThd6Gt8MmxE0PoGPEjJnmQgQpOdIaGgCOPxIy+V4OflpdifAA335xFYW22GQBgnVn1E8ARFKx9AAFgM7yI4/BLAOw5GrOBEBKp10QfQAsFMJeD9PA+uCPB/Enbhsf985/2JuBcjkWIUIqJZZbmSOcDeM45huOVN6Wp/uovA5hgDuKAGAQSEsDTIfcv4zQpEMDSqpAAtrdDrm+NCViFUQH89a/Dy6ESqNObbtuFzk7g7383lK0JGL8E8Ne/xjP/eBP9mBSYg9IogH+8sKglgDY+gCLElDNpTcCD6ALUxd5jRvyFW+6N2XgbI10GInDLLcB112l/qtCMbsxh0JiAOzCMyehDBVksx5R4ctvZCQ8EWXiBM7mIiA9ggglYigIW3/AUAsgRSwBjrmWtAGowVM7jJhyAM07sD6LXJPgVlvVkBdBkAhZ/U/E+PAUAyG2tk28B7L8/W30EwMQCGzQH+n0fQKpZCk5zs/+HB7GKToj8FiGAmpcF4lWRy4UmMBsTMMdfcCTOx3cAGNrm5z4HfOc7kc2D6MLyg77MVozYbjvtuXHuuXjyooekTcdDWCYrJQFc0R+jAJ5+ejS63se38EtMRy+WYrq2nWWzwB57N8YEbJUI2vCjdglNZd+Kro12diL3yov4+PC1MhkQCAtXebOoIltlbTTXlaAcDg5G3C+W+QRQm589nweefx648UYAwOSuCr7+5ZQ+gHWYgFVUkY0/Vjlu47kxaWAAYxBIXCLoCd0ZPLh8szCl2JIl9iZgIGjsk0r+Mm6CAtiL6TjnHGCXXQzHGnwllpHp+qhqhQB+6gD2MnsU/oAf4XRpV20eQMBIANvaIHcmMVeiQKPeQbhkqpEAHnMMU1MhW8pmbdCBVau0weRNw/glgAhNYql8AH0CmCnLJmDut2GrAHKIg2bkbc+GAKYwAVeybaBxZgVCjG+4VWRRKBjSGWhG07XAzIpLMQ0UmXgCWCgEK2mQksYjWL2nBAVQIoAi+GiqIYDGUzaJAA6X2UOYOCk+NUuORwHXoQDyN2e9/d4HT+WTZxPIqlXsRaRqqQCuQA8qFUQU6YgJOJOJmoGrVeRzNIigszEBczyBkLwZ27WmfQ6hk723JDy4fKdcEMlPh18w5hy5TLg6wPJ+tr/RB5CnL1FQRHuQINnUTom4eoOYENxWAUyTBxDQjmniy6xJAdTmWM3ngUwmWo1COwn8PFFB3ieA2U4LAihN1ARFtKOzM+aRZTLhMdUafADrMAGr8JBJRQALJCEIRHygXhi0GBcEAuL7na69Nvve22uvAAJBY5/gB+6ICuASzIivToOvxLKswYdCWT2p4NeFmCieI60CGJmbhYlQJICiGTcTlwaGB+GICyZ0dKSeR+rF+CaAfgepJQoYxaIc8p3CB1CESAAjCmCiCXhCKhNwJduWfNqYwcjYWTUKIPev4zJ/pAMpyU2rWT96cESTPFqt1DQmYBF8glVeWetVABOjgDUYGknwn+FBIP5kxwcTUxoYNRG0FnEE0H9A3AdwsF/2AUwigP3oRrUaEkaOiAIIRAlgpRL4CLHs+STRBMwxD+E9GZ+hxo7mIWtapU9Crk2+ruSnwyslZt1tawUQMEbilxCW39jOxMjNWhTAhpiAkxVALQE0XUijAOZQQc7zFcAJhuhhMQ2MUAHFTCcAkkzIBAIoLv0IoOkmYBFpFcACSQgCER9KJSQncWlggmOElC7WPoDCcV1DjPR5wyWgvx9VksVKTI5vYwZpkS+dGoGiABa8sC5UWCmAAyPB8XGrdIkEUGzfsVHAQrRxsGBCi5I/i3AEECkVQP6QhEW4gfQ+gBxig8nlkN4EnEIBLPsEMK1pB0gggNls5B4n+H4N3NE3clqDApgpagigek9pooBFGBTAItpr8gHkb261KIDGReI5FBMwockKINGsLczxDmYBPQbTPxAhgEsW+T6AOhOwgQAODwPPvZDgAwhE/QAHBnBJ6XAAwIgfHGNrAq6VAAJ2461KAFdBSM7OC6kED0jHk5AALutLiAI2zPZNI4DCQ+VJwp96KrCA1kUApesKX4wKoA4GAsiTo+cnJCiAQ0PSTfBl4KwJ4FtvYZc/K0n/mhgFrCKRAKb1ARQbj6/iqWlg1ETQAUESInpTmYD947oGmQL4lSdYgueBdmYZihUjDNmzl+cMb1BKGphc1UwAkxTALKp4e36MAihAJIDSS5A/HscRQFUBbDUcAQQiPoBWCqCBAKb1ARQbTGThj1oIYAwTKWcsCGDMYBQ79hlmU64ARvqyqgD6S6lldQpgShOwMek+H02Vim66D+AXvgAAWN45O9jEl6wzDp6cAFZ9H0Av2QdQXHFCxeIJG8UUEEG77siyQfPmf9ingQGYGr14MdC7XC7YMcdorqXOamedhU+UrwUQEtxIW9NccwUmY6kQRW9LAN/EHAB2422+Qz6pVgGMI4BCGphVg6xujDzcggAaV5QQU3fYEkChwnT7NcMErJuMjSxAaAQ1EcDBQS0BTFTk4iqtGXkAtWsYsr4XW1blWolpYDQKYC4nB4EUCoiYgAGEEb1LlwYrZFiZgKey6O32oeVYC4uw+0IWlLVw8la6W4igr2duZNuKnJ0CSEYsCCDPIn7UUey/oABedZmSB3DOHO1lpQj8TB7nTvoJAOA03+9QOzcIRDNQAB0BbC1UBbBbWAouyQdQTe0R6wOYEATy0EPAokV2PoDHtYdLnw0g6nQfqwBmLNJl1KIAAsbGO2Pz6VimW49eUQBDE7DGBzCFCbiKbCQuJgAfiZUR2ZhYFIglgHx5qRLa4gngn/4EvPIKHt3oM8GmgaKdCTjnE0DxLd1ULN3ShBxbfzhhWUFOAP0ckfOeDaOACTErOiFIsD/HK69Av2qCOqsJeSD4/dkogIuxVtIuDELHGupeC1vhWQANUAB5o7FUAEc8di7jpGdhAjaiFgVQKIiu/TcjCCSVAkgIIxy9vfjTxeHEzEmOFQEUKoC/6FsrgDqkNAEPoyP5eprjgPQm4JywPGIaE7AYBNLVBb0JuK2Nva1Wq4EPnxUB5En+y4PYgqdJyeVw/k436m4hgr+d/BzWxVtYiPDleWUhXgEMfPNLFibgL3+ZDVS/+11QNsB/0YASBTxxIvDuuyxwTIA45m37wQJ+P/VkbIyX8WP8EIAzAY9ZqASQwyYKWFUAOZKWo1JRRh5rrQWsxeeyBB/Atye8J/g8iC7QFOZRrgA23AcQMBJAOn2Gfq1IEwEs1W8CNlY39wEURlW2DjSpiwAmpoHJZoGNNgLNhxXIFUDj4MmdhL0yACq9pQPafNmxBDA7IUH2CAigP4EUQwJo64/H9+fYyCQ6xsxqfFKxIYDiKjqAnQK4avqGWOWreFYKYLuFCVj3MHiZBAJYrprVWwBWCqARrSaAaUzAtfoAAkxBmjYNa80OJ+ZgZRsTATT4AFoTwLjypDQB86CTRDSEACYogOJDEUzA4tgSIYDiYMrNwO+8E+wP2BHAvEgAjzwymHOTcndmJnZhIdaVXD36CnYKIF9iJFYBJIQNVHyDgQAGj3XmzMgNi2Nerj2PfIHgVWwM/lLsTMBjFCYCaJMHMJUPYAwiOc8SfADFdXGZCdjePGplAjb8GJuTCjC+vQxPMHRWJalmI03AmRQEMDGJcMy1RAJo5QMo3POqYoL/TCYjrRAgvqUDetEpzgScOOsJCc6BUNGmuuXcYm7WlBPLtixpTMBiEnXAjgBWC2E7tXnhVgmgNJlw4mdpAi57+gCeABYE0OCHXrcJuBEEUHKANyiAqUzAmsIUMIKCH5lbmGAgY6IPoJBWimcHaKUJ2FoB1FR2oglYOSbnyWlgYn0A4xRAcT/xMw8E8QkgJ/yG4HUG/wby5aGQAG6xRZAa1TarzkKsExa9YKgUgwLIx3gRSb60KgEUVsuMQBrz8vlIvVubgJ0C2FrUpQCmMQHHQHq7UKEphGiSSusDOEJq9wGsVQEcnmix7EEmEyiAy99pQBSwSQLkI7EuvUSdCqAVASyEdds/bPH27Ff4t/DLiAlYxzniFMDEWcgffOa88h98BpcHLzSezlE7wQSfCAsC2FAFUBhYK/mwndo8M9UHULo/PovZKoBebQqgbgKLoAkKYNqVQGpWAFMQQD5ZllBAod3wAEUTsL8cHBD2j1aagItotyOAGmafVgHM0pQ+gJRiyuO342CwRPQV5NjQmKQAvv46AMOqLyq4AlgarIsAii97xmOUNDBWJmAVfjs7Bhfhw3gAAGuzr75q2B/KmFCIrlKivZZANJ0COEpQg0A4rKKAFQLIJ8zYQVODiAJ4yCHsv2FVjmxbDiN+x7sPO6XyAeQEMLbTxSiAtQSBzHnfVP3+ymujl2Mnf3c+G+CpOPCo92SUQdggdl/nXuzL5pvLP3KbpGQCrp0A8jRA9gQwrMBVQ+yCkcAfzf7n4iSs5a8d3WwFEAAuxxGYizcApDcB34k9AABvF+aarzVzpvGnNCbgWhTASi7dINvWKV9XGux5kmHxYcyeLe0v+QBWExTAjg7tfVoFgdRCAAWn9kb4ANoogPUSQL5qQglt5nsTTcCtJoDK78PosDMBa14iUpuAvQQCuNNO8nfPw6bf2it6PZ0PIACsv750uEj4jfBvIFcaxOZ4nm2rgQDeESz7GOOv7f+QRwUdbV4sAUyKAt4fN+NzuMy/ZrsxWbW6DCPy+cg9JZmAXRDIKIE/KDVR5DBiEjLGmIBzMeIT/vc/4K678KedLpU2RwjgL34BXHkl+wOARx8FttwyLHN7FhvhVVy4y3W4EQek8o8rZi38LhqsAO7wkRhH7fvuAx5/HABQ6GIn553BywiFVCtVye4vooIc/jLlROCqq4B772Ubn32WrWE5d254bR/1mICD4iQFgfggggJYonm0tyfMJ5ofa1YAk2Yhxb7PF15PawL+DY7GsdOvQv7xh83X+sEP2HJIG2wQ+YkPppFLaK558Fem4amnwu82BLCcTWdmKXTEEEBuXhQn70cfZW3Pj/zOkqgJODbp+AMPAD//ObyZ4YoCTTMBz54N3Hkn8MwzY9cHUNlHJIBGGBRA/hzGpAKoIYBpE0FnqJwIOlKtn/40cM014XdlicrAB1CXBgYATj1V2v+UH+bw7LMx5QPCIJCFr2EKVmBlpgeYOdMu1yTC6r4Lu+MA3IAtMC92IYOS3756ukbqUgBFTJw7TV6iUMCrrwJn/rR2Arj1FlXsu5uvADoTcGuRzbL2rZpYYleGMJiAOQE04r3vBXbdFc9udKC0OWIC7uwEPvWp0Dns/e+X3txy7TkswBzcO/UgACSVAjicsSCADY4CFklPBB/5SLAMV0c3248TwEiCaxFFTaSwjwpyoLk88MlPhqkLttwS2GOPcKcGmYA5bBVAIlRgBbn4/FmGQpkUQErrNAErBJBPJB40KzQohJwK91VFDjO/+UnM2GotGDF9OssP86lPRX7iKy/09ys/aNr1Fh+ZIuW2tiKA+ZRv2cpJpbd9TgDFh7H22qztcWfyNAogAHzwg8DxxwNbbx2W2UZpMSiAidxq992BrbZqOAFslg8gJ4DcmqGF6AMoJKLkz6GpPoBCXyihAJpE4jgMCmAaH8CsoABWMm1RMSKTYRYmXiATATQpgFOnAt/6VvD1vdvnRW1CD/8GCq++AAB4Obc5QEhqBRAAbs4cgPnYMLZd8heMSR0jdkEgKjQn33zn6UZuts46wK67CycrFFL5AHZ3VDCl3SmAo4Z8PqoAFtGeWgHMwLMax7Lt8k5VEmNuDg4SBvT2nHz5FArgMGGdsZV5AK3e7gF09rCTc38Imo05LoEAJl4yjQLYQAKYaQvrtoJcvP8foM2i3DQfQIUA8pyYHjLqPBGRoUhHhzTZWE14gHai5f47K1cm74ueHum5JfZZhKmQrJGNUQB5xWjt8T7Z0/gA2nQJOam3OYuArpzWCqCARgeBNCQRtKYwnACWbQjgwIDUh1rtA8jnFav+oGlDaU3AmWo5GD+9fEz98AerrNMYEE6TDyAgZzG3eW7KDbyYYW9stRDAyZOTj5EIYB0mYBGVKQl+7JnaFUBUq+FzcApg66EjgE1RAH2IJABIUMg4hMJwkxS/PMmmVwBr8QGsVQG0jYrJd7KT74T7AQBlWhsBrCKbigDyZx9rlktAYhoYfqq0BFDJN8WPA/RxB43yAQTSEUB0dkp1Xg8B5ApGhADqnsOUKdL8ZDSPCvc2ktIHMJYA6nwAleNEE/BIUhoYASRmeTktajEBC9D1GSGA1uqAhucB1Fyvg+e5iyPyXDZ74w2pUVgTQELMvjwpCCB/ubSa1zXPO60JuG3xAkwCk86r+ZiL8uchmMcBgwlY7XfiOoY1EECezsWWAIrDEreY2CiAG2fnB/enC6JKYwKuTjFksuDIyAqgVVymSACL4yQIhBByCCHkOkLIm4SQYULIS4SQswghE5X9egghfyKELCWEDBJC7iSEbNWMMhUK0QZipQAqkzMBteoPJJtBRRigxdxwRojpGhQFcMWkufK+MYRliNTuA1izAmgbFq2cnOfJ08K4lpYlEW+wD6C1CbgtvMcy8vr8iCI0kwKf3COkDAkEMKUP4JTMSgDMBzCWCADABz5QGwHUVDpXANddV/lB9xz4AvU+jJxJuLeOnpRv2UoZJQLIneI1voy8QeRINSAepWpOd8pUML40CPUjLodoSwAbsRKIjQ+g1gScwgcwuFYmRuEyVNL/sA0ACxMwYK64JAIoHMfro1ZhJ9EEHDO2WimAihVLGwRSrwKo3MBzHgvMS+sDCNgRwLJPAH/7xt7Ctmg50yiA1anpFEB1bI4zAY83BfAEAFUAJwPYG8BvAXwdwB2EsPUbCCEEwM3+798AcDCAPIC7CSHr6E5aD2pWAJVABFsF0PPkBsnz38VCowDyvvv41l8ETj6ZOY8r+6qwIoCjpACq+8WmEzn4YOaQvN56kZ8y8JKfwyj5AKoK4OmnJx+jgvugNSsNDMdHt18ZXC9WAfzOd4A//lFa3sxqggWMJuB99wW+9z3lB3EiyueBX/4y8vyNBFC4ty2378App4TxQYloa5Ne2L52dBZnHvIkBo45Cfjud9nGb3+bfX7ssfA4IcrPOghEhCJn7r03cN55wMYbG/YXTurVoACq+/1/e2cebkdR5v/Pe5eEm5AVQTACCSJgoixDxhEYlmQUkAASQRGCAQF/iAgqghrD+PBDGBaBER03FoERXBEEZBDEENzQmSiLRkRRggKjJLKIBHKz1PxR3bl1+vZS3ae7z/Z+nuc+59w+XV3V1dXV337fqrfOP5/08V0ZLuAG3eDcXLFxIlMDjMYXcF2aABw/Hi68sGHTUws/xEl8cePPefPbSI44X1M3H+CSS2JeZjzJ6wJ2Cdd2Tk0XYwEc5QJOswD6PPAiJ/CHtbYyqnIBv3wbm2D8mmfshgsvJG4IRR4LYJrBARglAKMvzGlhYFi3rqUWwCbeRQtxiDFmpfP/PSLyNHAtsB+wBDgU2AuYa4y5G0BE7gUeBT4MnFZmgQYHc04CSVDpvhZAY2xHGboy1oqHBdApTBiXLBSAMjgA5503sm+aBTAId1N0JZDUfrpZARh54K1La5p9ffCJT8DKlfDFLzb+5CMA22AM4Gt3GWDPPbPTjMZ2ZlEXsDHluoCnT34WsNd9lAXQvVYXXwzY50IQH7bJMYBrueyyjPA4Rx4Jp43uBnwsgH3jhzj3Y57lAxDhpYEJbLruWQA+89k+YLfgL2BoCC64oDFdjAt4zTr/MYDR++GII+CEE1L2dxtgfz9hU/AVgK5gGxiIEeBRMiyADTgn3Di2McBHAEYtgP0ZaT7sCPS+PtZfcDErgwAMTQnALAugw/iJ/Zx+uvfuo8h0AafEn0yJlJVtAUyaBQxNjwH8i9mc9eubE4Bp98/YCZF2ccop8JHR++WxAPZNylhGM+ICjvaXmS7gsDK63QUcEX8h4WtzGEDrUODJUPwF6Z7DWgXfUnaZCk8CieAlPBhtAVwnOS2A4xoF4Kg8U3r8F5qwAGa6gJM6cV9/VxBcNCRVAIbE3DBellin1wktEnUIwP6hkQocO8HfkhBH6RbAaAUEg/AMkvac2Yj7XGhGAEITLrOkcrpts8DB1wz6npBD0CDKsgBmti/noO4M+rxxSb3ygsw4gEn7hgHzGyggANdlCUAYaZQbNmwMCAD1CcBCle+Q6QKOTOJwiRk+PELWGEBfC6DXrMfGOniWyQwPFxOAPi7gUdcnQVRlrQTScMixGZOwMiyAmS7g0ALYAy7gOPYNPh8KPmcBv4rZbzmwjYikLTyTm8Iu4Ah5LIDNCMAwMG04uW1UOVN67xeMhwBMOPFMF3DSoGlfC+Dvftfwr9eKEjE3jK8Qd/eHeuIA9jkzwMdNaM74HveG31QcwOj1CwRgrMsuJnP3ueDtAk6odB89EIeXACzwlj08pkCXE+MCbsYCmEcAut+LaBCvNAUtgLFWap8HXxEBGMb9xBY3tCBVOgbQpZnBntg+MPVapAjAlFCpI9cuNNkHZK4FDI3jK1OWQIwtUxAWZ3i4ujGADQmGhhJvnDwu4Mz+qMgYwLAAzz8/ota73QIYRUSmAecAdxljlgWbpwLPxOz+dPA5JeY3RGRp0l9aGQYHRw9M9goEDfZmCHxVq3iZ1/2+fn1zAjC6NFUuC6DxCAMjErtDpgBMwlcARu6yohbAtYxeizGNTAGY6kux+FoABxwBOJRDAP4PszP3mTTJtsFEvM1yATkFYJkWwKIC0McFXOQte92YAhbAGBdwnjAwrRSAXhbAmJ18BGBZFsD1Ax7XcdddG/4NX1LqGgPYrAUwc13tmDBRXoR1+d73NmzeaHFMcwG7/6eqzNGEYcheeqm6MYANCVIudB4XcOZzL+ICjlZLqgBctao3LYCBJe9mYB3wrlaVwzYm4UVnHGDq2ptuZzVzJtx9Nz8a2Jd53ObVN2zY0GjdSg14HBJjAQwZ1V5TLYAeYwATdhi1Yokvvh3mt77V8K+XAHSW3Vo9djI3cDg/ZO9cAjB8OCemyZwC6x8GxnUBj5voUcgbb2TVznOYx21czXH8G4sSd73oIrjw9Tfy19fuC5dfPnqHMgVgDK4FsO0EYII48mXtJgUsgMF9OHH8aAugVxEiJ5NptXLu+1pcwDEW/2FsENxF0WZahQt4wCPN+efDnDnwjW8AdtjowQc3xNhOJlJxwwzy3//0vnxWvSYF4JFHZaRPEIBnclF6uoRzWMeAfadOXM4q4OKL4a1vtUHLczDcbxvxihXFBOCBB8LcubBwoWeClJvGVwAezg35BGBeF7BL0Y6vCeqeBAKAiAxhx/RtB+xrjHnc+fkZ4q18U53fR2GM2S8pv9mzZyeaccIGuIaxGydmvMQmydZt9yLNmgW77878yUtZtQr+0aM2jWkcCJ11rwGxYwBjfkrYMMLwuozxbiEJ43sKCUDfDnOvvayKCdbc8XIBO8tALH3DIt52z4dzZQkeFkBPAehlARxyXMCTPITx/Pn8fNx8Vh4Ix3N16q5bbglX/ux1wFJ4+OHRO3j7ZQOC8zZxQYjLsgAmVHpmO0uwynqFzvNSN5HjDhW3AG6x2YgAfGltDgtghMxVY+q2AMawlkGuuQYWLIj84AayjxumUEAAbvARgJttBkuWbPz3lFPsnxeRivsIF7L5oR/k9Z7J446Rl3csyEgf4wL+7NYXcPGfzkxPlzLOe9S1j7vXPvQh+5eT9UPj4XlYvrxYHMCtt4bvfz8jE08LoI8L+FO8nxs5nAuqEIBxBfASA+VSuwVQRAaBG4DZwEHGmF9GdlkOzBqVEGYCfzTG/D3mt8KEDdC1dJi40Bchrpk2ECDhtfS1AObGaSybjM+wAKZ0Or7jLuJOZA1jiwnAPJ2gU7deAnDmTCefkeuXJ8tQjNchAPvH5bQAppUrjThXQsHxJUUsgM2EgYHi/WA7CsBxm2xgIBCAq4eLTwLJDBruHFQGWiMAN9AX316dCxrGeWygiAs4Lc5dGUTyG8Nw/nuxSQGYmT7GArh+wuTs4yY8qGK9Lh5DYHyRTe19tHz5yLMojwXQy5lUogs4HNKQ1wUc1Q6pYWBaTN2BoPuA64G5wGHGmLgV428BponIvk66icAhwW+lktSovC2AjFxL31nArlWldAtgSu/te9OVZgEcHMz3NHdEipcL2HkqTnn+jxu/l+oC9hjn4isABx0L4KaT/QpZqJ+IE3sFVZXvGMBwfA7kGCdfcifoJQCL1MO44rOA3Y7EZM04d8krAKNhYEZ/9aaoC3iQtZnnFq713EARC2DVAjBScWNZk78um5wEknkhYiyAZkrsEPlGUlzAoyhksYhncNKIAAxFUlYVub971b/blpq0ABYSgIODfmMAm20bJVF3KT4LvA04D3hBRNxBBI8HruBbgHuB60TkTKzLdxE2AFrG4Ib8JImhRAtgigD0nQWc2wXstKCh8Y2tqS4LYCEBmNeU4FiuvASgw+TnR0YRtMIFnBZ3dWO5HAE4frLf2MhC/USJs8l8XcB5hxgCpXeCVVkAmVB8FnAYH9ANJu1VhEgdt50LOEEAZlp0iloA+/rYgNAX9J0b0pY6K4NIxXWKBbBvanEBGOt1KdECuMnLRgvArPbitdSjS4ljAMOwRpWMAexFCyDw5uBzMVbkuX8nAhhjNgAHA98DPgfchA1rOscY86eyC5TbAjgwAHvuCXvssXEpqjwWwI9+tDlX/9C4xsSj2lHKwcM3k0osgCefzLpNJ/HJfifqZt6HrSNcvsY7+PvgZDjppPQ0X/gCTJjAj/cdGXnu1VFfeilrxk5gMTaIduL9OH++HUuUwjBj/JYzdVzAvhbA6LlcdZXtkL7ylZREURfw4Yd75cUZZ4wyNW3oG+Taa7OT7ryz9cjPn++XFdBQ6Q9uPpfVDHEiV+Q4QCOp8QqPPdZOGpozJ/dxt53VhAAMCB+u/f2e9/9ll/FS3xDv4fNAPhdwLWFgYki1AM6dy9+m7cTJfJ4XiDyYPZWVO7nFjKnPAjjMIJ/n5Pz1kidB3E2Wlf7WW63IuflmOOoo2G47Drv4n5kyhfRVhhKOe9wJFbmAP/1pmDSJsZ+5BBF4/PHAECJ+VbTffnZVmoxu2LKpc6+mvJUmGkpLcAF/+9vpyykDo0/8+OMzMqmGWi2Axpjpnvs9DRwf/FVKbgugCPzwhw0LhuexAG6/PZhtBVaMHC4T5yaMPttT+84bb2T4059nzNLvATlWnEmwAKa+qG+1FQPPPc2H6IP+YBmmJgTgKl7Ge474K9d9IeMYJ50E7343T10wsp/X8+SDH+TKgffz0GkZbrnJk+Gpp2Dq1MToqmsY62UBGxw3Uq8TphRzAR9wgPX8pFate/2WLoV9903ctYFPftIunTQwsLHNHXT4EBKddRfzUBgchF/+MufLjXNyD03Zi11Xfg9DH1fmOIRLqgXwmmvsDgUsgGOnNOECDggFoLcVafZs5r/x73z3TnucPLOAmx0DWIkAvOsubv+a4aGj+5jA82yQgdziYr0M0B9MItlQowCcwPMMM7ZaC+DChdaosMMOI9uy2upBB9k4cn19cMghYAxb9/WxalVG0oRhLRdeXJEF8NRT4ZRTGOjrY7PNbOQT8A8QsWSJLYbXrRszG01k9GkkLqkYIwDzxgE86CDrOPKOt3viifGRG2qgHQJBt5TcAhDsBXeedHksgNC4MmFea2BUvKXmOThI37oRe3Q4ZCRTABYdA9jX13iTNuECXk8/g2M90/f1NdxPvtdh4mRP0Ri53lGGGVOZAIyWa3AwZ7XmHcPT19fQQGQoxtWW8FDIqKbRuFYWGbNxjFwmRWcBF53dsGnzFsBwSEMeTbD6JUfUZdWruxJI/0ijKeJlL+oCTnWTirBugz2woa+QsNjQ5xy86pAZTn2GQqByF3D07d4nfXixRDZ+z7x+kRVANhJ3gmWNAQwK5eoz7+el5Lh1Y2ajxVVjovhssPyOSd83JGIBjOYZ6010d5g0qSUzgEEFYDEBGCG8/nlihIbkve65+oj+fvrWjrzteQvAsmYBN2EBzFx6LkIRAeiOq8pMU4IAHLPpyAlNmOrXWKLXN3cb81nHLYrbQKqMTu++bZvmlsaDUserN1JkgGOCCziPiEhZ6CE9vxaFgRnDcGr7jO1Tc3SADQKwagugQ/hiUqkLGEbf3FWNE0sKIB2XX4ljACH/UsJNZRDct9H2nNrkYiyAeV6+YmPoxrV7t1BFXjBLQgVg3jGAMeS1ALo3VaUWwP5+ZO2IBTB88csMOF7WLOAmLYBVC0B3XFUz8xGGGeMV+sS1AE6a6te5x1kAc1FEALoNJK6xlPVQiLGyNEORU/WiiABMcAHneabnEoAluoCrmgWcaQnJwNRpAYx5m8jdR+RNEL25iyrxLJIaVlx5SxaAeZcSbiqD4L6NNrGddkpJHzMJJJOICzhKpjFJBWDrSGqEeQaz5xkDGCXvGMCoAMyyAMr73gfA1Ry3UQAWHQOY+/za3AJYpgD00QhjJ4yc0NhN/JR/9Pp6lzM8Oa9lDyLUZQGMcbcUIZwn9IEPNFmeJPbe236+/OX+adrEAliZC9hh+Yx5AHyZd7L11sn77bOP/WzYJ0dmxj2ZqpfNihE+3lr1LW+xnyeckC/PaIdXlQUwyQUcl1/JZvVWWACjp5U6QSbGAphJjAvYJVMAFgqhUA7tEYymhcQ1wkcegVe9yv8YuS2Aec1+RSeB9PfDccfxD6fuxQMvvGpj1pnCKuaghSw0bW4BLOoC3omH+A2v2fi/rwDsG+hj5a/+Qt9gPz4T2uLK5d1pPvEEPPMMbLWVZwIHt5HFCcCyrAJFOtsYPvc5+OAHG8fPl8o228Bjj9mJQL5EnjphOJ3KBKCb9cBIWy3BeBmPcz/s8KubWHbzCj7zT6/mla9MTrLDDnYZsM03B8Jy5RA5fWNGKs9U+WICsW3c+9p985v2RBNnGiTQahdw3IWv0AJYSSi8jDGADz3kbwEsJACLWADzrtJUIioAY65xHvEHBSyAdbmAg1H5j4/bgQ2O+zczz5iDbqA/v4utSQtgHi9P5RZAp9J+S6PS8BWAAJvP2iJ7Jwe3XL5hEwDrVijqWnAbWZWWlpJcwH19sOOOZRQohW22ybd/5EKFAZArcwEnZF2ZAHQYHDfI7KP8xM622xbPbHCTkZtBqrYAxli+vK/d4GB+8Remc6nbBRxHp40BdGPFBG3ErcZU8QfqAu41ymiEuS2ADnldwAMDid6exIJlGXRGkdDx5PYGNKFu63YB53kwG2xQ2hDfMYBFyBhfXA1ZLuAKxgCuMcVdwG1J5B4KAyDn6SPCsE15qUUAljVrMceNNzA0UnmrTRtbAIvS35+4okup5OnIO20MoFtngdDNVY095gJWAViiAPQ+ltN5FulH3WeyT6wh15Lm9eKcUKjcArBFLmDfG96tl8xJP5E6cQek+8YBLIJ7fWtbPagFk0CGS5gF3FbErCQRszmVXBZA55q4eRR5Mal1kYIcfYQ4N8Bjf2njMYDN4D5E2mG1iE6zALoEYx1rFYAxJ5X5bGmhC1gFYHC9buAI++Wgg3IfI7z+RWYBH3povv2hUQCmNu5p04BGoeNlAUwQgHld482EQRBMLgHYrFCaMCHf/usGRio1jws4L24VVj3xcSNZFsBwUkSeMXFxOBfqtf9gL/brXtfcIduGBBdwnrb59rfbz6OPLp51ZRbANwSreFa93q2Lc2LbzarfAliVR7YBV0BUleGBB/rvu/32pWa95ZYj3yt/oQ0mwBUVgGW5gHfZJSP9jBl++VSAjgEMrtcH+XdO/M996TtkXu5jNDML+MIL86dxjTKxN9EDD8Cf/7xxul0ZAvA737HL8eQibwfm5DvI2spdwAD33Wcj07tvplllA/j7lq9m7B/vA+ybYlUvce65vOxl1eQxiqwxAyecYGfQhEKwKM5FO/wdg1z/FnjTmzzSlWyVqIRI2w/XsM3zMLriCvuCGE4q9aVZAehVxiOPtOe4xx75M8idWYBzM7z16PrHANaC2+lVZQH86lfhttvgmGPs/+997+ilyB56yM6G3HXXUrPebruR73lCreXiD3+An/98o9DN9Rgq0QX86KOwbBkcfHBCuvvvt6tMpU2dr5ieF4Dh9VrNeOSYBY3LdHjSzCxgL0GW1wK4884N4T/KcAHPy6+LmxonVJcA9O7fogJw2o5sFgjADfTXYgHMFKllkTUJpL/fCoBmcU5ucNwgR+dZR7jdSXh452mbEyfCggWeOzt9hPs8KjJZ1nsMYGiibIaCAnBwYsUWwBhqWayhDhfw5Mm2YYUCcO+9YffdG/fZaSePGRP5cfv03/++9MNbZsxosKrlqsYiE9MSLIDTp9u/RDJNg9WjLuDgevX3F7/Bm5kFXGT/TAtghLJcwLlpwoUxhuFaBGBRVr+i0TVSxxjAlgjAmlYCyR9lvM0pQQAWZXgk9nutK4EUIk9mbuW1IAxMLdThAo5SWQT1eMKJukVnueelchew+7ysbaB2OagADO63Zq5bM7OAi+A9CSSgrEkguekmARipk9XTGsM81CEAt8gXQaY4WZNAyqIlU5xrIqHtVzau3xEsa9ak7OdBRwjAFoSBqYU6XMBRKvPFxlNZvM4EKncBJ6TvBFQAligAvZ9hoenXd2WBYDJHiDvezKePyB0GJioAi3ZETTxJ/spmlccBzEXgK35qyMaDW7NTo/m+KoNEy13ANa0EkksAdsIYwLotgCUIwLBss2aVUB5fOsgCWIsL2O306hKAtXUslje+sdbs6hWAHebJ6Cy5WgEtsQBecYWdUnvyyX77H3kkLF++cYS8O66gFhdwUSFXoMd84kt3cOXxP+ZO9ucD7WQBvOYauOgintzrFM78Gex+/C589cpP8u1fbD0q/zJxq762SSDqAm6ehAZRxzO9aPzA+++HL30Jzjqr1OKkU7RCqra0tOolY/p0OwEDqjfF3nEH/OhH8OY3V5tPhMWL7WIkhx9eT35FXcALTxjD3JM80119tb3xqn4xKRkVgCUIwPA+9TZibLEFXHqpfwb9/XDeeRv/dd/QfRp30y7gGi2Aa+fsz9nsD+TTBJULwC23hEsvZVdg16Dj+sHrz+Abv6ggLwf3UrhB7itFXcDNk9D26/AQFRWAs2bBJZeUW5ZM8vQtrquyanNcqyyAs2bB7bfb71W/Ley/v/2rmbFj4eKL68uvqAD8yFmDMN0z3XHH5cikfVAXcCtcwE3iCsBaLIBFO6IC6VzR11YCMIa6A7g3G3bPm3Z3AXcCdVsASxwDWCt5XhIzl1QokVaNAcz7dq9kUlQAdp1XIgYVgB04CaR2C2BRV0SBdK4OUAHYSG0CsBUWwG7rbFs4C7ioBbAl5Okj6pys0EoLYEits3G6l8ICsNteSmPo+RZWhgAM09bVXl75ypHvbsiHJFo2CaRAj9lJArC2WbkBXT0GMM/Nk3fZllZQtwvYuck7SgDmadR1WgBjBGAt7yivec3Id7UAlkKuoTM9JgB1DGAJAvDoo+GJJ2Du3HLKlIWIHRK4bJnfjD13EnGtk0AKpCvDBVxXv3n88XDLLdUPZl60yLavV786e99ScCu+yk4wrwXwppvgssvgE5+orkxlUbcL+LDDbLT2Aw7gpdMqyqNMliyBs8+Gq67yT9MiF/CFF8JPf9r8wjdebLopnH46PPts/S6GLuXyy+HYYz0nN/WYC1gFYAkCcN68gitlNMHHPua/78yZI9/bfRJIJ1kAh4bsRLqq+bd/qz6PRKr0e+UdA3jYYfavE0i4ZyqrzsFBu14jQCAA2zok2Zw59i8PLbIAfvjD9WULtGAmTnczfTrcc4/nzt08LjkGdQE7K4F0K66VsNCQrhoFYFELfCsEoNIk3exuSWj7dUYXqTpWcu202AWs9ADufdsDDxIVgCVYANsd1wX8/PMeCVroAnazzmMtUQHYgfTgJJA6J5d2nQBs8SQQpQdwr3sts35aiwrAHhCAbjt+4omcCaAlK4HEFSMNFYAdSDe7W9pAAOZZSacj6IUwMEpr6THh3/MCcMcd7WzOWgb4tpCLLoKJE+GUUzx2bqEFEGC//exCKZEV8FJxRZ8KwCY54AA7O3PhwmrzGRiAnXeG3XbrvrftSNs/k4uAenTFl79s9ee111afV62oBVCpmle8ArbfHvbZp9UlqYWef1ROnQpPPtndYwABzjzTTi7zOs8WWwCXLLH9b57kagEskQkT4M9/rv6mEIH77us+8QeNdffb33LxDnYKdx264phj4KijurBP0zGAStX098PDD3dnnxSDPirpwo4yAe/zbLEFUCT//acCsGTquim6NditW39O7KW6PItd2aepBVCpg27tk2LonTNV/GlhIOiiqABU2gr3IeJMcNGhZU2gFkBFKRUVgMpo2mQSSB5UACptRcIMZ9UVTbB+fX156YVSegAVgMpo3vnOxv9PPTVf+vnz7eeJJ5ZTHg9UACptRYIAVAtgEyxebD8//vHq8/roR+3nGWdUn5eitAh9VCqjOeQQOxB2m21gxQo7VToP3/gG/P73+dM1gQpApa1QAVg+55wDCxbU068sXmzXeKyxD1OUutFHpRLPDjvYz512yp92YKD2jrMVawErSiKuC9FpkCoAm6CvD17zmnryEqkvL0VpEeoCVroCtQAqbYU7Xs0ZU6sCUFGUdkEFoNIVqABU2oqECQs6t0BRlHZBBaDSFagAVNqKKVNiN6sFUFGUdkEflUpXoAJQaSs23xzuvNMuNeSgAlBRlHZBH5VKV6ACUGk73vSmUZtUACqK0i6oC1jpClQAKp2ACkBFUdoFFYBKV6ACUOkEVAAqitIu1C4AReSVIvIZEblXRFaLiBGR6TH7bSIinxSR/xWRF4P996m7vEpn4K46p3EAlXZj3Dj7qaHlFEVpF1phK9keeDvwc+CHwP4J+10FzAPOBP4AnALcISJ7GGPur6GcSgchApdfbqNvqABU2o1ly+CLX4Szzmp1SRRFUSxiag5MJSJ9xpgNwfcTgSuAGcaYFc4+uwD3A8cbY64Otg0Ay4GHjTGH5slz9uzZZtmyZeWcgKIoiqIoSoWIyM+NMbOrzKN2F3Ao/jI4FFgLfN1Jtw74GnCAiIytqHiKoiiKoihdT7tOApkFPGqMWR3ZvhwYg3UjK4qiKIqiKAVo1/mSU4FnYrY/7fzegIgsTTrY7rvvXk6pFEVRFEVRuoB2tQAqiqIoiqIoFdGuFsBngG1jtoeWv6ejPxhj9ks62OzZs3UJdkVRFEVRlIB2tQAuB2aIyLjI9pnAMPBI/UVSFEVRFEXpDtpVAN4KDAJvCzcEYWCOBO40xqxpVcEURVEURVE6nZa4gEXkiOBrODvjzSKyElhpjLnHGHOfiHwd+JSIDAKPAicDM4AF9ZdYURRFURSle2jVGMBvRv7/XPB5D7Bf8P1dwHnAucBk4AHgQGPML2oon6IoiqIoStfSEgFojBGPfV4ETg/+FEVRFEVRlJJo1zGAiqIoiqIoSkWoAFQURVEURekxVAAqiqIoiqL0GCoAFUVRFEVRegwVgIqiKIqiKD2GCkBFURRFUZQeQwWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMFYCKoiiKoig9hgpARVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQYKgAVRVEURVF6DBWAiqIoiqIoPYYKQEVRFEVRlB5DBaCiKIqiKEqPMdDqAlSNiCwF1orIg60uS5uxY/D5cEtL0X5ovYxG6yQerZd4tF7i0XoZjdZJPDsCO1edSdcLwICfGGP2a3Uh2olAGKP10ojWy2i0TuLReolH6yUerZfRaJ3EE9ZL1agLWFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMMca0ugyKoiiKoihKjagFUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMTpWAIrI1iJyg4g8JyJ/E5EbRWQbz7SbiMgnReR/ReRFEblXRPapusxVIyJHiMi3ROSx4LweFpHzRWSCR1qT8LdrDUWvFBHZL+HcnvVI25VtBWy0+ZTr/t2MtF3RXkTklSLymeC6rg7OYXrMfk21AxF5t4j8RkTWBPfle0o9kZLxqRcRmS0ilwfntVpE/igi14vIDM88ktrfB6o4pzLI0V6auj86qb14tpWzU+rkJY88Oqqt+D6LRWSKiFwpIqtE5AURuUtEXueZR5+ILBKRFSLykog8ICKH5ylnRy4FJyLjgCXAGuBYwADnAneLyM7GmBcyDnEVMA84E/gDcApwh4jsYYy5v7KCV88ZwB+BjwGPA7sBZwNzRGRPY8yGjPTXAF+MbPttyWVsJacB/+P8v84jTbe2FYD3AhMj2/YALgVu8Uh/DZ3fXrYH3g78HPghsH/CfoXbgYi8G1tP5wN3Af8CfE5ExBjz+TJOogJ86uUdwCzg08ByYBrwr8AyEdnVGPMnj3weBE6KbFtRsMx14NteoOD90YHtxadOrgSiL5Xjg20+fQ10VlvJfBaLiAC3AtOBU4FngEVYHbOrMebxjDw+EeSzGFv37wC+KSIHG2P+y6uUxpiO+wPeD6wHtne2zcA+0E/PSLsLVjC+y9k2gF2M+pZWn1uT9bJ5zLaFwfnOzUhrgHNbfQ4V1ct+wfm9MWe6rm0rKed8FfbFamovtBegz/l+YnBe08tqB8F+TwHXRrZ/CVgFDLa6Dpqol7j+ZltgA3CORx5LgR+1+lzLrpfgt0L3Rye2F986iUn3zmDfed3WVnyexcBbgv/nOPtMAp4GPp1x/C2Cfvr/R7Z/H3jQt5yd6gI+FPipMeaRcIMx5lHgx9hKzUq7Fvi6k3Yd8DXgABEZW35x68EYszJmc2jxmlZnWbqErm0rcQSW9bcBtxpjnm51eerAZFvFobl2sAewOXBdZPuXgc2Af85V4JrwqZe4/sYY8xiwki7tbzzbSzN0XHtpok6OBf4C3FFicdoCz2fxocCTxpi7nXTPYa2CWTrmAGAMo9vJdcDrfIdhdKoAnAX8Kmb7cmCmR9pHjTGrY9KOwZqzu4l9g8+HPPY9ORhzslpElojI3lUWrAVcLyLrReSvIvIVyR4z2mttZT4wAbjWc/9uby8hzbSDWcFntL9aHnxm9VcdhYi8Bmud8OlvAHYTO457rYg8KCInVFi8uilyf/REexGRrYE5wPXBy5QPnd5Wos/iNB2zjYhsmnKsWVgL4COR7bnaSUeOAQSmYv3lUZ4GpjSRNvy9KxCRacA5wF3GmGUZu18HfAd4EuvGORNYIiJvMsYsrbSg1fMccAlwD/A37HiMjwH3ishuxpinEtL1TFsJWIh1P93usW83t5cozbSD8Ldo+q5rQyIyAHwBawG8yiPJD4DrsePiJmPb35UispUx5tyqylkTRe+PXmkvx2ANUL4vmx3dVhKexVOJH8MYXuspwN8TDjkVeNYEft+YtF7tpFMFoJJB8PZwM3Zc5Luy9jfGvNP594cicjP27eRc2tDtkAdjzH3Afc6me0TkB8B/YyeGnNWSgrURIvIK4I3AZT5v5N3cXpTC/AewJ3ZMV5xgbsAY8/HIpptF5CZgsYh8yhiT9PBre/T+yGQhcJ8x5kGfnTu5reR9FtdJp7qAnyHe0pf0pu6bFkYUdMciIkPYcQTbAQeY7NlEozDGPA/cBvxjycVrC4wxv8C+TaadX9e3FYe8b+QNdHl7aaYdhP1RNH1XtSERuQD4f8Dxxpg7mzjUV4FNAK9QGJ1Cjvuj69uLiLwe2ImCfY1D27eVjGdxVr+SpmWeASYHM4nj0nq1k04VgMsZGSvhMhP4tUfaGcGA92jaYUb71DsKERkEbgBmAwcZY37Z5CG7fbHotPPr6rYS4VjgAWPMA00epxvbSzPtIByTE+2vwjE6Wf1V2yMii4GPAKcZY75c0mG7sR1B9nl1fXvB9jVrga+UdLy2bCsez+I0HfPHDKvmcmAs8KqYtODZTjpVAN4CvEFEtgs3iA08uRfZMYVuBQaxsx3DtAPAkcCdxpg1pZe2JkSkDztOYi5wmDHmp00cayJwMNZN2nWIyGxgR9LPr2vbiktQFzNp4o28y9tLM+3gXmz4jgWR7cdg39J/XG5R60VETsO6NRcbY/6jhEMuAF4Emn1xbSty3B/d3l7GYOPV3Z4wUzYPbdtWPJ/FtwDTRGRfJ91E4BCydcx3sSI6rp38KoiKkkmnjgG8AngfdhzAWdg3gE8Af8IJvCki2wK/x8akOgfseDAR+TrwqUChPwqcjI0jGK3MTuOz2IfUecALIvIG57fHjTGPx9WJiJyBFUN3MzJo+QxgSzq/ThCR67HX+RfAs9hJIIuAJ7BBbHuxrbgsxI5PuT76Qy+0FxE5Ivi6e/D5ZhFZCaw0xtyTpx2IyCPAY8aYfwEwxqwVkX/FBvJ9AhvYdy5wPHCqMWa46vMrSla9iMg7gE9hH0ZLIv3N34wxv3aO1VAvwYzYjwI3YgfCT8Jahg4FPmqyg/m3DI968b4/uqW9ZNWJs+vBWDdl4stml7SVzGcxVuTdC1wnImcyEghagIvcg4nIOmxsyBMAjDFPicilwCIReR77bDsS21YO9S6lb8DAdvsDtgG+hZ3V+TzwbUYHKp2OFYdnR7YPYVc7+DPwEvAzYL9Wn1MJdbIiON+4v7OT6gT7xvFj7JvnWuCvQeN8favPqaR6WYSNIv9ccH5/Ai4HturVtuKc3yB21uatCb93fXtJuWeW5m0HwT24NGb7Sdgxp2uA3wHvbfV5N1sv2JUuMusurl6woXNux76ErcHOdvwJcFSrz7uEevG+P7qlveRoBzcH9TEm5Vgd31bweBYH+03FBvl+GliNDeS8S0L9XhPZ1o+dwPhYUC8PAkfkKacEB1IURVEURVF6hE4dA6goiqIoiqIURAWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVF6UhExHj8rRCR6cH341pd5hARmSYiLwSrsPim+YCI/DJYZUBRFKUpNA6goigdSSS6PsBNwAPA2c62Ndh1MXcDfm+aX36qFETkS8AWxpiDc6QZwq5CssgYc3VlhVMUpSdQAagoSlcgIiuAHxljjml1WdIQkZdjV6OZb4y5LWfai4B5xpi4ReQVRVG8UVeCoihdTZwLWESuEZHHRWS2iPxERF4UkYdFZF7w++mB+/hvInKziGweOeaAiCwSkd+IyBoReVJELhGRTTyKdBx2+co7Isc8ICjLcyLy96A8H4+k/RowU0T2LFAViqIoG1EBqChKrzIR+E/gSmA+8BTwLRG5BJgDnAJ8IPj+2Uja67DrcH4FmAecD5wAXO+R74HAvcaYdeEGEdkOu17so9hF3Q/Frj08PpL2fqx4PNDvFBVFUeIZaHUBFEVRWsQE4D3GmB8AiMiT2DGEBwMzjTHrg+2vBU4VkX5jzHoR2Rsr0o41xvxncKy7RORp4DoR2dUYc39chiIiwD8B/x756R+AMcDJxpi/BduWRNMbYzaIyANAdPyjoihKLtQCqChKr/JCKP4CfhN83hWKP2f7ALBV8P+BwDBwQ+AKHhCRAeDO4Pd9UvKcDAwB0cko9wNrga+JyBEiskXKMVYCr0j5XVEUJRMVgIqi9CrPuv8YY4aDr89E9gu3h+P7tsBa617Airbw76ng981S8gyPsSaS9yPAAdg++cvAn0XkpyKyb8wxXsSKSEVRlMKoC1hRFCUffwVeAvZO+P3JjLQAU6I/GGPuBu4WkbHAXsA5wG0iMt0Ys8rZdSqwKppeURQlDyoAFUVR8vFd4CPAJGPM9/MkNMYMi8ijwHYp+6wBlojIpsDNwAwaBd8M4L9zl1pRFMVBBaCiKEoOjDFLReSr2DGAl2LF2AZgOnAQ8BFjzG9TDvED4PXuBhF5D3bs4H9hYwS+DFiEtSb+ytlvMrADcHFJp6MoSo+iAlBRFCU/xwCnAscDi7Fj+lZgY/v9JSPt14GFgWt3RbDtAeDN2HAyWwBPAz8CFhhjXnTSzsOOSbyplLNQFKVn0ZVAFEVRaiRYy/d3wNXGmHNzpr0dWGWMeWclhVMUpWdQAagoilIzIrIAG+h5hjFmtWeaXYGfAbOCWcOKoiiFURewoihK/XwFmIYdN/hrzzRbAsep+FMUpQzUAqgoiqIoitJjaCBoRVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQY/wdKnEeDz+k3vgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000 # counts/s\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900 # counts/s\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt) # counts\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt) # counts\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both light curves to the `AveragedCrossspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 12346.54it/s]\n" + ] + } + ], + "source": [ + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that also the `AveragedCrossspectrum` object could have been initialized using different input types:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " events1, events2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " (note, again, the necessity of the bin time)\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " times1, times2, dt=bin_time, segment_size=segment_size, \n", + " gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from iterables of light curves\n", + " ```\n", + " ps = AveragedCrossspectrum.from_lc_iter(\n", + " lc_iterable1, lc_iterable2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again we can print the first five Fourier frequencies and first five cross spectral values, as well as the number of segments." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[291.76338464-640.48290689j 182.72485752 -35.81942269j\n", + " 293.42490539+276.16187738j 771.98935476-595.89062793j\n", + " 361.32859119-101.50371039j]\n", + "\n", + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(avg_cs.freq[0:5])\n", + "print(avg_cs.power[0:5])\n", + "print(\"\\nNumber of segments: %d\" % avg_cs.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If `m` is less than 50 and you try to compute the coherence, a warning will pop up letting you know that your number of segments is significantly low, so the error on `coherence` might not follow the expected (Gaussian) statistical distributions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:00, 7645.47it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "40\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "test_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 40.)\n", + "print(test_cs.m)\n", + "coh, err = test_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "An `AveragedCrossspectrum` object has the following properties, same as `Crossspectrum` :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the averaged cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution (in Hz).\n", + "4. `m` : The number of cross spectra averaged together, equal to the number of whole segments in a light curve.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the amplitude of the averaged cross spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmCElEQVR4nO2debgcVbW+35WTmYR5DmEIILNGQERABJyRy6A4oYgigwMi6nVGRVFwxFlExKtXuKIoCCoqyhAEwR+oTEEmGUIYkpBAQkLIdPbvj9Xbqq5T3ae6T/Xp6Xuf5zzVXV2ne1d31a6vvrX22hZCQAghhBCiXxjT7gYIIYQQQowmEj9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8xtt0N6ATM7J/ARsB97W6LEEIIIUbMdsCCEMLz816U+HE2WmeddabNnDlzWrsbIoQQQoiRccstt7B48eKar0v8OPfNnDlz2jXXXNPudgghhBBihBxwwAHMmjWrZjRHOT9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF/R9eLHzMab2TfM7F4zu93MLmt3m4QQQgjRufTCaK8zgPHADiGEQTPbtN0NEkIIIUTnMurOj5ltYWbfNrMbzOwZMwtmtnWNbaeb2S/NbLGZLTGzi81sy9Trk4ETgI+FEAYBQgiPj8qOCCGEEKIraUfYazvgDcCTwF9qbVQRNlcBOwLHAEcD2wNXm9laqfd6EviYmd1kZteb2SGtbLwQQgghupt2hL2uDSFsAmBmxwGvqLHd8cAMPJx1X2X724B7gROBs/D2bwncF0L4hJntCFxrZnuHEO5v8X4IIYQQogsZdecnhqcKcChwYxQ+lf99ALgeOKyyag4QgPMrr98F3ArsXlqDhRBCCNFTdPJor12AO3LWzwZ2BgghPAH8EXgVgJltBuwG3D5KbRRCCCFEl9HJo73Wx/N5siwC1ks9fzdwnpl9AXeBPhRCuDvvDc3smhqfNbP5ZvYnIYBZu1shhBBCNE4ni59ChBAeBF7a7nb0EytXwvOeBy98Ifz4x+1ujRBCCNEYnSx+nqTa4YnUcoSGJYRwQN76iiP0kmbesx+ZOxfuuguWLm13S4QQQojG6WTxMxvP+8myM3DnSN88EwKbOdL36ydWr/blmjXtbYcQQgjRDJ2c8HwZsLeZzYgrKsUQ9628JtpEFD9xKYQQQnQTbXF+zOzIysM9KstXm9kCYEEIYVZl3bnAScClZnYqnsx8OvAwcM5I25AOgSns1RgSP0IIIbqZdoW9Lso8/15lOQs4ACCEsMzMDgK+DvwUMOBK4JQQwoizTRT2ah6FvYQQQnQzbRE/IYRCg6RDCHOA17W4OaJB5PwIIYToZjo54bmlKOzVPHJ+hBBCdDOdnPAsOhQ5P0IIIbqZvnV+lPPTPGnnR5WehRBCdBtyfkTDpB2fwaLT1AohhBAdQt86P8r5aZ60+Fm9GgYG2tcWIYQQolHk/IiGSYsfJT0LIYToNiR+RMNknR8hhBCim+jbsJcSnptH4kcIIUQ3I+dHNIzCXkIIIbqZvnV+lPDcPHJ+hBBCdDNyfkTDSPwIIYToZiR+RMMo7CWEEKKb6duwlxKem0fOjxBCiG5Gzo9oGDk/Qgghupm+dX6U8Nw8cn6EEEJ0M3J+RMOsWpU8lvgRQgjRbUj8iIZR2EsIIUQ3I/EjGkZhLyGEEN2MxI9oGDk/Qgghupm+TXjWUPfmkfMjhBCim5HzIxpG4kcIIUQ307fOj4a6N4/CXkIIIboZOT+iYeT8CCGE6GYkfkTDSPwIIYToZiR+RMMo7CWEEKKbkfgRDSPnRwghRDcj8SMaRs6PEEKIbqZvR3upzk/zyPkRQgjRzcj5EQ0j8SOEEKKb6VvnR3V+mkdhLyGEEN2MnB/RMHJ+hBBCdDMSP6JhJH6EEEJ0MxI/omEU9hJCCNHNSPyIhpHzI4QQopuR+BENI+dHCCFENyPxIxpGzo8QQohuRuJHNIzEjxBCiG5G4kc0jMJeQgghuhmJH9Ewcn6EEEJ0M31b4VlzezWPnB8hhBDdjJwf0TByfoQQQnQzfev8aG6v5lm1Knks8SOEEKLbkPMjGkZhLyGEEN2MxI9oGIW9hBBCdDOFxY+ZPd/MLjazJ8xstZntXll/hpm9qnVNFJ2GxI8QQohuppD4MbP9gBuAHYH/y/zfIPCu8psmOhWFvYQQQnQzRZ2fLwJ/BHYBPph57R/A7mU2SnQ2cn6EEEJ0M0VHe+0OvDaEEMwsZF57Atio3GaJTkbOjxBCiG6mqPPzLDC5xmubAYvLaY7oBuT8CCGE6GaKip/rgFPMbCC1LjpA7wSuKrVVomMJodrtkfgRQgjRbRQNe30KuB64FfglLnyOMbOzgD2AF7SmeaLTyIa5FPYSQgjRbRRyfkIItwL7A/OATwIGnFR5+SUhhLtb0zzRaWSdHjk/Qgghuo3C01uEEP4BvNTMJgLrA0+FEJ5pWctER5IVO3J+hBBCdBsNz+0VQngWeLQFbRFdgJwfIYQQ3U5N8WNmn27gfUII4fQS2tMwlUlJtyIZcXZxCOFz7WhLPyDxI4QQotup5/yclnke8FyfLHHUV1vET4UPhBB+3cbP7xsU9hJCCNHt1Ex4DiGMiX/ArsADwMeArYFJleXHK+t3KfqBZraFmX3bzG4ws2fMLJjZ1jW2nW5mvzSzxWa2pDK32JZFP0uUj5wfIYQQ3U7ROj/fAX4YQvhyCGFOCGFFZfkl4Dzguw185nbAG4Angb/U2sjMJuP1g3YEjgGOBrYHrjaztTKbf9HMbq8IpR0aaItoEIkfIYQQ3U5R8fNC4OYar90E7N3AZ14bQtgkhHAwcFGd7Y4HZgCHhxB+HUK4FDgUz+85MbXd20IIOwLPBS4HrsgUYxQlorCXEEKIbqeo+FkMvLzGa6+ggektQgiDBTc9FLgxhHBf6n8fwIstHpZaN6eyDCGEHwFTcIEkWoCcHyGEEN1O0aHuPwI+bmZTcLdmHrAJHr46ATijBW3bBbg0Z/1s4PUAlZpDU0IIT1SeHwysAR7Oe8PKyLA8Zo6wrX2DnB8hhBDdTlHx82l8VNcpwLsq6wxYhguf08puGF5I8cmc9YuA9SqP1wZ+b2bjgcHK9oeEEFa1oD2CRPyMHeuP5fwIIYToNgqJn0qo6lNm9jVgN3wm98eA20IIbZvRPYQwH59brOj2B+StrzhCLymnVb1NFDsTJkj8CCGE6E4aqvAcQniKOiO0SuZJEocnTS1HqCEyIbCZI32/fiGKnYkTYdkyhb2EEEJ0H4XEj5ntP9w2IYRrR96cKmaTXz9oZ+DOkj9LFCQtftLPhRBCiG6hqPNzDUkl51qUPbz8MuCrZjYjhHA/QKUY4r54scURkQ6BKexVnHTYC+T8CCGE6D6Kip8Dc9ZtAByCi4aTGvlQMzuy8jDm67zazBYAC0IIsyrrzq2876Vmdiouvk7HR3Kd08jn1WjDNamnM0f6fv2CnB8hhBDdTtGE51k1XrrYzL4O/Bfw+wY+N1vc8HuV5SzggMpnLjOzg4CvAz/FR5ddCZwSQljawGeJEsk6PxI/Qgghuo2GEp5r8DvgQuA9Rf8hhJA3QWrednOA1zXZruHe+4D4WGGv4qyqFBGIzo/CXkIIIbqNohWe67EDXmNH9AEKewkhhOh2io72elvO6vH4bO/vBC4us1GjgXJ+mkPiRwghRLdTNOz14xrrVwA/B95fSmtEx5MVPwp7CSGE6DaKip9tctY9G0KYV2ZjRhPl/DSHnB8hhBDdTlHxE4DH8ubMMrOxwOZxdnXR20SxM368LwcHIQSwQinsQgghRPspmvD8APD8Gq89r/K66AOi+Bk3DgYqZS0V+hJCCNFNFHV+6t3Xj6MLR3sp4bk50rO6Dwy48Fm92p8LIYQQ3UDNS5aZrYtPIhqZZmYzMptNAo4BHi+/aaITSYufsWNh5Uo5P0IIIbqLevfr7wc+g+f7BOCXNbazynZdhRKemyMrftLrhBBCiG6gnvj5NfAgLm5+BHwe+HdmmxXAnSGE21rRONF5ZMNe6XVCCCFEN1BT/IQQbgVuBTCzAPwuhPDEaDVMdCZ5zo/CXkIIIbqJohOb/qTVDRltlPDcHHJ+hBBCdDv1Ep6vAt4TQrir8rgeIYTw0nKbJjoROT9CCCG6nXrOT3p4+xg86bnItl2BEp6bQwnPQgghup16OT8Hph4fMCqtER2Pwl5CCCG6naIVnoUAFPYSQgjR/dTL+dm/kTcKIVw78uaITkdhLyGEEN1OvZyfa6if5xOxynYDZTRIdDZ5YS85P0IIIbqJeuLnwDqvdT0a6t4ccn6EEEJ0O/USnmeNZkNEd6CEZyGEEN1OQ3Nxm9nawK7ANOAR4PYQwtOtaFir0VD35lDCsxBCiG6nsPgxs08DHwKmkNT1edrMvhJC+HwrGic6D4W9hBBCdDuFxI+ZfRb4FPBD4EJgHrAJ8Gbgs2Y2NoRwWqsaKToHhb2EEEJ0O0Wdn+OBr4UQPpxaNxu4yswWAycAp5XcNtGBKOwlhBCi2yla5HAd4I81XvtD5XXRByjsJYQQotspKn7+BrygxmsvqLwu+oAodMaNU50fIYQQ3UnRsNfJwCVmthq4iCTn5w3AscBhZvYfIRVCGCy7oWWjOj/NsWqVL+X8CCGE6FaKip/bKssvVv7SGHB76nlo4H1Fl6GEZyGEEN1OUZHyOYpNddE1qM5PcyjhWQghRLdTSPxoGLuIKOFZCCFEt1M04VkIQBObCiGE6H4aqfC8E3AkMB2YmHk5hBCOKbNhojOR8yOEEKLbKVrh+W3Aj/C8n/nAyswmPZUPJGqjhGchhBDdTlHn51PApcA7QwhPta45otNRwrMQQohup6j42RR4l4SPUNhLCCFEt1M04fl6YKdWNkR0Bwp7CSGE6HaKOj8nAReb2ULgCuDJ7AbdUNVZjByFvYQQQnQ7RcXPXOCfwPk1XldV5z5BYS8hhBDdTlHBci7wRuDXwF0MHe3VdWhur+ZQnR8hhBDdTlHxcxjw4RDCN1vZGNH5yPkRQgjR7RQVP8uAO1vZkNFGc3s1hxKehRBCdDtFR3v9D3BUKxsiugMlPAshhOh2ijo/DwFvNrM/AX8gf7TXj8psmOhMFPYSQgjR7RQVP2dXllsBL815PeDTX4geRwnPQgghup2i4meblrZCdAWDgxACmMGYMXJ+hBBCdCeFxE8I4aFWN0R0PmnXB5TwLIQQojspmvAsxBDxo4RnIYQQ3Ujhqsxm9grg3cAOwMTs6yGEGSW2S3QgtcSPnB8hhBDdRCHnx8wOBn4PTAZ2xKs8zwGmA4PArFY1UHQOCnsJIYToBYqGvT4FfBc4uPL81EqRwF2AAVwYiR4nipxx43ypsJcQQohupKj42RH4De7y/GcS0xDCPcBpuDgSPY7CXkIIIXqBouJnEFgdQgjAAmDL1GuPAtuW3TDRedQKe8n5EUII0U0UFT93A1tXHt8MnGJmm5nZRsCHgAfLb5roNFat8qWcHyGEEN1MUfFzAbBT5fFn8FyfucDjwEHAp8tvWmOY2TvMLJjZ4e1uS6+ihGchhBC9QNEih99NPf67me0GvAof/fXnEEJbZ3w3s62B44Eb29mOXkd1foQQQvQCTRU5DCHMDSH8MITwrUaFj5ltYWbfNrMbzOyZiluzdY1tp5vZL81ssZktMbOLzWzLzDZjgB8C7wNWNLM/ohhKeBZCCNELtKPC83bAG/CZ4f9SayMzmwxchY80OwY4GtgeuNrM1kpt+kHg+hDC31vWYgEo7CWEEKI3KFzhuUSuDSFsAmBmxwGvqLHd8cAMYIcQwn2V7W8D7gVOBM4ys12B1wH7t7zVQmEvIYQQPcGoOz8hhMGCmx4K3BiFT+V/HwCuBw6rrHoxPgrtXjN7ENgb+IGZnVRag8V/UNhLCCFEL9AO56couwCX5qyfDbweIIRwNnB2fMHMrgG+EUL4dd4bVl7PY2bzzewfVOdHCCFEL9DJs7qvj+cFZVkErDfKbRHI+RFCCNEbdLLz0zCV+cYafr3iCL2k/Bb1Fkp4FkII0QvUFD9m9gA+j1cRQgih7CkuniTf4anlCDVEJgQ2c6Tv1w8o4VkIIUQvUM/5mUVx8dMKZuN5P1l2BtpaVLFfUdhLCCFEL1BT/IQQ3j6K7cjjMuCrZjYjhHA//KeS877Ax0b65ukQmMJexVDCsxBCiF6gLTk/ZnZk5eEeleWrzWwBsCCEMKuy7lzgJOBSMzsVd6FOBx4GzhnN9gpHzo8QQoheoCHxY2bPA3YAJmZfCyH8bwNvdVHm+fcqy1nAAZX3W2ZmBwFfB34KGHAlcEoIYWkj7c5DOT+No4RnIYQQvUAh8WNm6wK/w4sIggsRqM4JKix+Qgg2/FYQQpiDV3AWHYASnoUQQvQCRev8nAFsgE8jYcARwEHABcD9wF4taV0LCSEcEP+AW9rcnK5AYS8hhBC9QNGw1yuBzwI3Vp7PrUwkeo2ZnQ28H3hbC9rXMhT2ahyFvYQQQvQCRZ2fzYD7QwhrgGeBqanXLgZeU3bDROehsJcQQoheoKj4eRxYt/L4IeBFqde2K7NBo4XCXo2jsJcQQoheoGjY6zo82fm3+Mirz1Rq7qwGjsFr8ogeR3V+hBBC9AJFxc9ngc0rj7+CJz+/EZiMC5/3ld800WnI+RFCCNELFBI/IYR/A/+uPF4FfKjy17Uo4blxosgZN86XSngWQgjRjQyb82Nm481skZkdOhoNEp1L1vkZUzl6QoDBwfa0SQghhGiUYZ2fEMJKM1uNj/LqGTS3V+NkxY+ZP1692vN+xhRNnxdCCCHaSNHL1a+BI4fbSPQ2WfEDSnoWQgjRfRRNeP498C0z+yUuhB6jemoLQghXlds00WnkiZ+xY2HFCuX9CCGE6B6Kip9fVZavrfxFAj7dRQAGSmxXy1HCc+OsWuXLrPgBiR8hhBDdQ1HxcxAZp0f0Hwp7CSGE6AWKDnW/psXtGHWU8Nw4tcJe6deEEEKITqdQwrOZ3W9mz6vx2q5mdn+5zRKdSD3nR+JHCCFEt1B0tNfWwIQar00EtiqlNaKjqef8KOwlhBCiW2ikMkutnJ89gadG3hTR6SjsJYQQoheomfNjZh8APlB5GoDfmNnKzGaTgPWBC1vTPNFJKOFZCCFEL1Av4fl+4MrK42OAm4EFmW1WAHcCPyy/aa1FQ90bR86PEEKIXqCm+AkhXApcCmBmAJ8LITwwSu0SHYgSnoUQQvQCRev8nAiMy3vBzNYCVlZme+8aNNS9cZTwLIQQohcoKn7OxcXPUTmvnQOsBI4tq1GiM1HYSwghRC9QdLTXgVRCYDlcBry0nOaITkYJz0IIIXqBouJnY2B+jdcWAJuU0xzRycj5EUII0QsUFT/zgd1qvLYbsLCc5ohORuJHCCFEL1BU/PwW+JSZPTe90sx2Az4J/KbshonOQ2EvIYQQvUDRhOdPAy8H/m5mNwFzgWnAXsADwKmtaZ7oJOT8CCGE6AUKOT8hhCeAFwBnAoYXBTTgC8ALKq93FWZ2TfxDRQ4LoTo/QggheoGizg8hhKdwB+jTLWuN6GhU50cIIUQvUFj8AJjZhsDewAbAb0IIi8xsIl7kcLAVDWwVKnLYOAp7CSGE6AUKhb3M+Qqe63MZ8CNg68rLl+JJz6LHiQJnXKrWtxKehRBCdBtFR3t9HDgJ+BzwQjzfJ/Ib4JCS2yU6EDk/QggheoGiYa/j8IlNzzSzgcxr9wHbltss0YlI/AghhOgFijo/04Aba7y2ElirnOaITkZ1foQQQvQCRcXPI8CuNV57Hl7rR/Q4cn6EEEL0AkXFz0XAp81s39S6YGbPAT4EXFh6y0THoTo/QggheoGi4uc04C7gWuDeyrqLgNsrz79YestEx6E6P0IIIXqBQgnPIYTlZnYAcBTwSjzJeSFwOnBBCEH3/X3AqlW+VNhLCCFEN9NIhec1wE8rf6IPUcKzEEKIXqDRCs/b4ZOZTsMLHv6/EMK/W9GwVlOp6hyZ2aZmdA2Dg/4HMCYVLJXzI4QQotsoJH4qU1h8DzgaSNf5WWNmPwHeG0JY0YL2iQ4hOjtjx4KlSlwq4VkIIUS3UdT5+SrwFuAz+MiuecAmwJvxiU6fAU5uRQNbheb2aoy8kFf6ucJeQgghuoWi4udNwGdDCGek1t0PfMHcBvgAXSZ+RGMMJ37k/AghhOgWig51nwD8vxqv/Q0YX05zRKdSS/wo4VkIIUS3UVT8/Bl4RY3XXgFcVU5zRKci50cIIUSvUDTsdRbwUzNbCy9uGHN+3gAcDLzVzGbEjUMI95fdUNFeJH6EEEL0CkXFz6zK8t3Au1LrLfN6JDvzu+hyFPYSQgjRKxQVP+9oaStExyPnRwghRK9QdHqLn7S6IaKzGc75kfgRQgjRLRRNeB6Cme1sZq8zs83LbJDoTFTnRwghRK9QSPyY2XfM7Pup568FbsWTn+80sxe0qH2iQ1DYSwghRK9Q1Pl5NfDX1PPPAr8FnofX//lMye0SHYYSnoUQQvQKRcXPZsCDAGa2BbALcGYI4XbgW4Ccnx5Hzo8QQoheoaj4eQaYUnn8EmAJcHPl+VJgasntKoyZ/dzMbjOzf5rZ/zOzl7arLb2MxI8QQoheoehQ938A7zWzOcB7gT+FEAYrr20DPNaKxhXkxBDCUwBm9nzgSjPbMNU+UQJR3IwbV71eYS8hhBDdRlHn55PA3niS8w7A6anXDqf2vF9DMLMtzOzbZnaDmT1jZsHMtq6x7XQz+6WZLTazJWZ2sZltmd4mCp8K6xRth2gMOT9CiE5m/nw4/3wY1G2vKEDROj83VUTHjsC9IYQlqZd/ANzbwGduh0+L8XfgL9SYM8zMJuNzhq0AjgEC8HngajN7bghhWWrbrwOH4eLndXJ9ykcJz0KITubUU+Hcc138vO1t7W6N6HQK1/kJISwLIfw9I3wIIfwuhHBPA595bQhhkxDCwfhQ+VocD8wADg8h/DqEcClwKLAVcGKmDR8IIcwA3gJ82cw0y3zJyPkRQnQy//ynL6+9tr3tEN1B00UOm6UBV+ZQ4MYQwn2p/30AuB53efLe+w/AesBuI22nqKabxc/gICxe3O5WCCFaRQhw113++G9/a29bRHcw6uKnAXYB7shZPxvYGcDMJpnZNvEFM3sRsAGQO6u8mV2T9wfMLLvxjRICLFjQ7lbUppvDXmecARtsoDtCIXqVRx6BpUv98ezZ8PTT7W2P6Hw6WfysDzyZs34R7u4ATAL+z8zuMLNbgK/iOT95/9fRfOlLsPHG8Oc/t7sl+XSz8/PrX7s4++53290SIUQriK4P+I3kTTeN7P2WL89f/+yzcOyx8Pvfj+z9G2HlSvj850e+T1keeQQ++1l44on815cu9e+yV+lk8TMsIYRFIYQXhRB2DSHMDCHsG0K4qs72B+T9AbeMWqNr8Je/+PKvf62/Xbvo1olNV66E22/3x5ddpvCXSFi8GH7xi852LUUx0uIHRhb6uvBCmDIFLr546GtXXAH/8z/wxS82//6NcvbZ8KlPwSGHwKJF5b3vd74Dp50G55039LW773a3/MMfLu/zOo1OFj9Pkjg8aWo5Qg3RaWGv+yqZTQ880N521KJbJzadPdsFEPhd269+1d72iM7h9NPhjW+Ec85pd0vESIni5/nP9+VIxM/VV3ueYJ4LH/vp+fObf/9GWLkSvva15DM/+MHy3vvxx32Zd8258Ub/7KtqWgndT9GJTQ8zs3eknm9VqdPzdKUOz5R6/98ks/G8nyw7A3e24PPaxpo1yQHYreKnU52fv//dl1MqR+j557evLaKz+H+V6mRXXNHedoiRE8XP29/uy7/9rfmQzYMP+vK++4a+FtfVChWVzc9+Bg8/DFtvDRMmwE9+Ut7xGl2kOXOGvhbX3Xdf74a+ijo/pwIbpZ6fBWyB1/jZHzit3GYBcBmwt5nNiCsqxRD3rbw2Ijop7PXww7BqlT/uVPET29dtCc9R/Jxyince11zj37fob0KAOyrDKa69dvQK4y1aBN//PqxYMTqf1y/861++POQQWH99dzWaPc/riZ9//9uXixa1vs8bHPRcUPDw1Gmn+eMTT0ySu0dCEfHz9NOjJ/RGm6LiZ1vgNvARVsDBwAdDCB8CPgEc0ciHmtmRZnYksEdl1asr616S2uxcfDLVSyvO06HApcDDQE8Z1fGEApg7NxEanUS3Oz8HHQSHHuoXvZ/9rJz3DqFzRV8/ce21cOutjf3P44/Dk5Xg+ZNPJnlhrebkk+Hd7/a8ElEOS5bAo4/CxImw1Vaw116+/sYbG3+vwUF46CF//NBDScg8EvvqwcHk+GkVv/mNi7rp0+HNb4YPfcjDeg8+6AUdR0oUP3kiMS2I8kRgL1BU/EwEYv77Pnhl6Gi+3Q1s3uDnXlT5e1fl+fcqzz8bN6hUcD4IuAf4KXAB8ABwUAhhxLq3k3J+0gfX4GBnOhPdKH5WrYLbbvPHu+8ORx/tj3/603Ks3COOgJ12GtpBtoIVK7zTu/76zjw+2sVTT8HLXw4HH9zYb3pHpojGNdeU2ap8li/3kYeg37BM7r7bl895jjvRL3yhP28m72fevMSVGxxMXCDw/iT9vIgj8sADzd0ghQBnnumPP/QhGD/e51U87zzfx299a+gx3ChR/CxZMnQgSBSAIPHzILBf5fFhwN9DCPHr2hhoaAxNCMFq/B2Q2W5OCOF1IYS1QwhTQwiHhxAebOSzuoG08wOdGfrqxjo/s2d7R7bddrDOOvDKV/oIhjvuSERRsyxd6qPH7r3X7zrLJgTvvI87DjbZxO9qt9kG9tsPZswoz73qdu67z8Xno482Zs/HC8e66/py1qzSmzaE3/8ellUm5Wm1azDaDA76cOzrrx/Z+6xZ4y7Hl79c/H9ivs+OO/py77192Yz4SYsb8PM7MmdOdT83XF22M8/0c/WMMxpvx7XXevs32MD7gMjzn+83XSHAP/7R+PtGQoCFC5PnaacnhOrn2etTr1BU/JwDnGZmNwPvAdKD415EFyYgd1LOTzy41lrLl90kfjrZ+Ykhr9139+X48T66B0ae+PzPfyZOQxnx98jKlT609XnP8078vPN8lMfAAGyxBey2m3/Xb3mLb9fvpM+V6AAUIYqfY4/15axZrc/7+fnPk8dlDlkukxCaKwfxpz/5cOz//u+Rff6//uUhwW98o/j/RPGz006+jGGvv/+9dgrB00/n3wBlxU/a9ciKgHpi+5JL4BOf8MfNODRR/J18cnJdiGy4oS+XLaNpli2r/m7STuTChdV1jvra+QkhfBN4O3ADcGwI4dzUy1OB/ym/ad3PtdfCJz/pHUM94sH1kkrGUzeJn06u8xPFzx57JOti6OuCC0bmVt18c/K4jGqyIXiMf9dd4T3v8RyUDTd0y/uOO9zBevhh77C/+EXf/j3vgS98oXdHYxRhpOLn0ENdVC5a5E5hq1i2DH772+R5pzo/J50EG21U7XgUIZ5r9+fW1i9OFB9LltTdrIqY7Bydn/XXh+2399IWtRzeY4/1G4zsbx4/f9IkX6Yv/FkRUEv83Hpr0s9A47/1qlXJMPv3vGfo61EMjeSmKyu+005PfGzmy353fgghXBBCeF8I4X8z608MIfy0/Ka1ltHI+bnuOrc861VtDiE5uF72Ml9m7z46gW6s85Mnfl74Qg+DPfbY8KK0HmnxM1Ln5/774RWv8AvxvffCDjv43e8jj8BXvwq77JKITICPftRr05h54mMjd8m9RjPiZ3Awuejtumty09HKvJ/LL4dnnvHwJXSu8/OXv/jFt9Fk4Vtu8eX8+b6fzRL7vmXLivcp2bAXDJ/3E4+bG27I//wXv9iXec7PuHG+zAt7zZ/v5/GyZYnj3Kj4ueced4BnzEhcnjSxbEdev7N8OXz72+4YX3997eOsiPiJNZP62vkxs+eY2V6p55PM7Ewz+42ZndS65nU3m2ziy3nzam8zb56fKOutl5ws3eT8dGrYa9WqZARQ/F7BBUOsBfI/I/AryxQ/xx3nAnnddV3I3H67h+fGj6/9PyecAD/4gT++4IKRfX43k3Ya7rmn2P889JCfc5tu6jkVBxzg61uZ9/OLX/gyhl070fkJIel7Gr3bj+IHqpNlGyV941fkvFq1Krk4P+c5yfrh8n5iyCgbkoqfH29E88RPFAV5zs+b3+zi4YUvTPqXRn/r2G8973n5r0fxkxf2uugiD5Udd5znB26wAey889BQZlb8pMNeUfy88IXugD3xRG9Wxi/q/HwHODL1/AvAh/BRXl83s/eW3bBWMxo5P5tu6stYSTOPeEJtt50ntEJ3iZ+8hOcvf9k7gXa6QXfe6aGiGTNcWKZ529tcBP3618Pfgf/rX0PF6+LF1RfakYifwcGk2N5tt8H735/cWQ7H617nyzvv7EznbTRoxvmJF7xdd/VldH5mzWpNCHHpUvjd7/zxCSf4shPFz6JFybHciPh5+ulqkTAS5zotnIqEvh54wAXQVlvB5MnJ+uGcn1riJx5PBx3kfUR8f0j2Mb531vl56imviDxxouf8bLaZr2/U5Yuhuuc+N//1emGveK3Zfnt3vMeP9z4suuCRmOwcE/7Tzk/8DbbaCrbd1h/3YuirqPh5HnA9gJmNAd4GfDSEsAfweeCE1jSvu4nip57zE0+obbeFadP8wvf447Un1msXjTg/X/uah23Sd4OjTV7IKzJ9ug+PXrmy/qipefP8Lu+Vr6y+KGZHWYwk5ye6EJtt5u1qhPXW82Nm+fLOFMwj4X3vgze9qb4YSddkAe+giziQWfGz3Xaw+eZ+h3tnC4Zu/O53/hvts09yQevEsFdatDRysbvtturfaSTiJ/2/RcRPXsgLku/57rvzbwzyxE/6eNphBz8f16zxdSEkLmN0lbLOzyOP+HKrrfx8jjddTz3VWDL9SJyfKIje8hZ3pw87zJ9nr0Hx+IufkRf22nJLPzegN0NfRcXPOkAcGPd8fM6tX1aeXwPMyPmfjmY0cn5i2KuI87Pttu6ibLmlP++0vJ+i4mf16uSOaKR1KOpx881+B/byl/vd9JlnVuds1BM/kIS+fvzj2p9x113uHt16a/W+pENeMDLnJ3shbpT4f638rkeb+fN90sWf/9xzs2rx6KMuYDfe2C9Uq1YVE4HZ79ys2v0pmzjK641v9Lv2ceNcDD37bHmf8fjjIxduzYqf7E1OWeKnyE1FdqRXZPz4xCHJy0GK5+y8eUl/9fjjfjxtuKELjPSF/7HH/DfbcMPEDaklfqZN8+XYsTB1qgunRhK4o/hpxvmJ66JAqpV6EcVP/IxHHklEosRPNfOAytfAK4B/hxBilHAK0GEZH53Bxhv7csGC2mGJdNgLfA4XKN6BrF4Nhx/u4ZK8u+SvfMUv9CMdxls07PXEE0k7WnlBvuACDxf9+c9w7rk+rPTAA+Goo9zSHU78HH641/65+eba7YydGVRPiBrFTxSqIxE/sbLwaIifp57qjpFhaRFbbwLJKHS22cbv1KFY6CtPcMa8n7KTnhct8mRnMw9TmiWOQJmhr8MOc5cyb6qCoqT7nPnzix/XUfy84AW+bDbnZ9myakFRRDBkR3qlqSUSVq+uLkwak9/j/sc+OH3hTzv0MQk5G/aK/cXmqZK/9X7r//1f+Otfq9ctWOBCa8qUJA0iSxHnp6j4mTbNr1OrViXbpMWPwl4+l9aZZvZVPNfnotRruwEjHOA4+oxGzs/48T7scs2a6oJSadInFTSe93PbbXDppV7xMyZVRq64Aj7yEZ8Mb6R3hUWdn/RJVuSCfNll8Ic/NN6emKD34Q+7S3DyyR7z/9nPfHRU7JDTyc5pJk3yvCSonfg8d27y+Je/TB5H8XPggb5sp/Oz226+HG56ht//3jvir361uc+pxZVXusVeZud49dXJ47LFz6pViVuw887J+rTzU1a9nxUr4MgjfXnggYkjsP76vixL/DzxhN8IrFw5Mucqe8NVdNj6P//pyyOOyH+fomRF00jCXlBbJGSfx3OwnvhJO/QbVWa5HM75gUT8ZMOc998Pxxzjgjh9vMV8n912gzE1rs71nJ/olk2d6svhxM/66yfh9jlz/Fh9/HG/qd1sMzk/AB8Dfgu8EhdC6ZqVh5JMdSEyDJf3k3V+8sTPqlV+gc+7o0oLjPe9Lzkhn34ajj8+eW2kVYiLOj9FxU8IXqPmsMPgv/6rfmgwjyhMDj0U3vte+OY3vePYf/+kRP022yQXmjxi6Ov88/OLoaWdn9mz/cK6aJF3XBMnJsXUioifP/wh31UYrbDXuZXKXF/6Urn5ZF/9Kvzf/3kIcqTVfSNXXZU8rpcv14z4iRWht946uUCAjxTacksXW1de2VSzqwgB3vlOF3Kbbgo/+lHyWq0LYrOk3YOsk9AI8eIfE+6LCNpVq6prJqXfp9nPjwwX9gqhvvipJRKy4mc45+fee6v76alT/Ttatqz6XIp9bFr81BK6sf96/PFEPEIifmrl+0D9oe6NOj8bbJA42A8/nLRr2jTv6/te/IQQloUQjg8h7BZCOLYy71Z8bZ8Qwsdb18Tupl7ez1NPuSM0eXIikvLEzznnuLD52MeGvkfseAYG3DI95RR//tGPVlvg9XInihDFT3Yk0pgxbuWH4Hcw6ZNs7lzfxywh+L7EyflWr66fe5NHdH7SScLbbusXm298w0/+N7yh/nvstZfnCsyf785IltgRxIvVr36VhNOe//xkpMRwnfRjj/ls0wcfXN1Z1nIhGmGnnfz7v+ee2jOFP/NM4q4tXOhipSyiIF+40EfIjHTajUcfrR5JV7bzU0tsmiU3C9/7Xv5n/fjHxV2hT37SQ7NrreUJz1ttlbxWtvNz3XXJ42zdmkaIF/84mikrfu64w3/jdM7b3Xcnoyp33NH7h3nzmhPYWfEznPMzf773L+uum6QYpGmV82OWhL7S7k895yf7W6f/7/LLk8fDJTtDOWGvGIlYf/1E/MyZk1wz4vE6fbr/po8+OrL6TZ1I4SKHAGa2vpm9xsyOrizr3FcLqD/cPZ5QM2Yk1TTzxE+8oMQh0WliuOPMMz2Uc8EFLizOPtsP2le9yl/PEz/XX++2a5EZsWs5P+l1q1cPPcmyFVQHB71q6Ze/7P934om+/oc/LJ6PsmqV749ZdXwdXIy9//3eKX7xi/Xfx8yHvYOH37LEziwOT/7Vr5KOf88969+BpbnkEnfGli+vvjO/917flxkzkvdqlMmTvUNevbp2nZsrrvDPnjDBn3/jG+Xk/oSQiJ+3v90dlaOOGv57j6xePTQXLh3ygvriJ4ZlZsxIxM9wtX7SxQ2zHHecnzOXXVZ947BqFbzmNfCOd/ikuMNx3nl+Pg4MeLg0G3ot2/lJO263397c6MMQkov/S1/qy6z4Ofts/33SU1jE8PLMmdUDNprJ+8k6T8OJn3jjsMMOSf+Zptb5GUVDDF/dcUf1/kfxE1MRHnggEdVxXV7oqxHxk84XSt94DZfsDOUmPGfDXvF3i7/jwEByTRpp9e5Oo7D4MbPPA48AvwF+Ulk+Ymant6htLWW0ZnWvV+gwWonxDgOGJjw//HBywbz//qEnUbxrOfxwOL3yS3zpS7489VSvHAz54uc734GLL/ZiWLEOSS3qiZ906Cu7n9lwzJlnwve/7xfiSy6B737XO4t//7t4suljj3lntemmtWvipCsi1yNemPIs/tiZveMd3pn84x9J7s+eeyZhk+HEz8UXJ4/TIZ2Rhrwiw4W+4kziH/uYf2d33DFUZDTDokV+N7j22h7W+frX/SL08Y8nBRhrsXChnxsx7yoS2xXFTFHnZ/p0D0U+/nj9i2a973zTTZMcjHPOSdafc06SWPvd79Z+70g8/7773eTmI02Zzs/y5XDTTf69P+c53vabbmr8fWKNn7XX9mMbhp4T8X1nzUou0jFkEwv/RcegmdBXvPDGENZwIi6vuGGa4cJe223nv8VTT7mzkRU/kyd735QumBr76ryk50YSntOi6cYb/fmqVUluZszly6Oe81Mr52f+/OobnrT4SYe90snOkZGGvmIh306jaIXnU4BPAOcDBwI7VZbnA58ws5Nb1cBup4jzE+8mwA/WSZP84FyyZGgSc3pY6VNPeWhm0iS/+z3llCQP5bnP9YtdLLSVl/MTQ0dLl3q8/tvfrr0fjTo/MYyTvSBHF+v88z0UNDCQTC75wx/W/vy8djdaFyePWgnma9YkgnGbbTwvCZIaP0Wdn4ULq0VdK8VPXtLz6tU+Zxj4UOs4V1AZU2KkO0ozP/6i6HnPe/JDiZEbb/Rj/KKLqt2w+P286U2+rCV+Vqzwi82YMX4cjBnjhd2gfuhruO/8vZVyreee65+xaBF85jO+btw4FwD1xEW6Vkx6fqc0ZTo/N9/sF83ddvN6VNBc6Cte+LfZJumP0nf6K1ZU9z3f+pYv084PJMJhJM5PvPAP5/zk3TymGS7stdZayXFw223Vxf0i8b0HB337GF7LOj9xtJRZ0udDInSzv3VaNIXg7uzddyfTWqTz0bLEYo7Llg0Nw2adn0mT/L1WrkxSEELIFz/psFda/DQ74mv1ap/sdrPNkv6zkyjq/LwL+GYl72dWCOHuyvJ44Fv4TO9dxWjN6l4v4Tmb7Ax+8sQO5IEHvFggJBf6dIG92JHvvLOLiIEBFxfHHecXlfHjE/GT5/zEnJZjj/WT6OSTPVchjyLOT1r8ROs8fUF+5BEPO6y1VpIcCZ4YauZhpSIXhDLFT7xwP/xwddLzvHkugDbe2L/HWE0ZvP077JB0MPXuUC+7zN/nRS/y7+mmm5LtyxI/8WKR5/xce61/pzvs4PlBJ57o+/Pb3448iTHvYnHccV52YM0aeP3rq5M500QnBRLH8qGH/Jhfd93EsawlfubM8U485iRA7byfwUF/n5tu8lDjwECybZZ99/UbhwUL/Hj83Of8+zvoIM+7g/ycoEi6Vky64nCaMp2fmO+z775+jMHIxM/WW7sAMvPfI573t93m50e86F9wgX9HtcRPM85P/J8Y8hmp+BnO+UmLnz//ubrGTyT93jHfB4Y6P/Pm+fG4ySbVbvRwzk/M7fn974slO4ML/XhsZfNwsuIHhkYfli93MTtxor9POuxVlvMzZ46PcPz85/17ufrqzqtFVlT8bA3UCoz8rvK6yKFewnN2mHskuhFXXul3dlOm+JBuyBc/6YvnjBl+1xqt4FriZ3AwsWm/+113Ysw8XyOv+FoR5ycd9oriJ8bTIZlI9MADq+et2morv9itWFEspyKKtjLEz4QJbm0PDlbnecTP2GILX7761UmHs/vufgEt4vzEkNfb3+51UNas8ckjYXTCXpdc4ss4DHnjjT0vJ4T6Tl8R8jpK8A7vqKP8IvOa11TPGxSJ+Rrgydg33ZSEvPbfPzlua432Soe8Inni51Of8rvfTTZxV3Rw0B2iOMFoFrPE/fnc5/zcGDPGQ3rvfrevv/DC2qUrsgmjeZTp/MR8n/32qxY/jeZ0xe9z6639u5k2zc/5uD8x3/DVr/bE/RUr4NOf9n3YYIMkz6VZ8fPMMy5Qx41LfsfRdH5++1tfZmvrZMVPJJvwnJfvA8Pn/MScwz/8IblRqJfvE4nCLr1vIRQTP+lkZ0jSBxYsSM6dPPFT1Pn5859dDF93nYcAY0mQn/yk2P+PFkXFz0KgVhe9C0n1Z5GhiPNTS/ycdZYvDz3U7+wgX/zUiw+nxU+6Q5w3zzu3DTf0zu4tb/EDNd4lZ2k07LXHHl5EcOHCZN0VlYII8a4+zXHH+TImPi9d6i7WuecO7cjjxTQKk5Eyo1KfPB36ynZmkyd7xw9J4cThcn6WLPF9NvMh/Qcd5Ouvuso7+/vu8++ulgtRlO23987rgQeq2xJCku8TxQ94Qjh4ns5ILsC1xI+Zv/dLXuLH3Ve+MvR/o/iJI4tOPz0RPwcdlIQXsrkKkSLi569/dSG2cqV39M99rl+4v/a1+vt11FGe+3L33X5MH3ec/+9223lo6dlna9eGyiaM5lFWkcPBwWrxE6dVWLSo+CSvkWy+SzwnYh8VQ30veEFy/MS8qOc/P3FEmhU/6e+tyCjKEMp1fuL3FdsfSb93+nE27JWX7wPDOz8vfrEfw0884TegMLzzA/k3XitW+M3VhAnV7lNW/KRDXuDiPval9cJeRZyf1au9ftGTT/q5dsstfg6C718nTYBdVPxcApxeGeU1FsDMxprZm4HPAb+q+999TC3nZ/lyP2HGjh3aUcYOPZ5Qb3yjF+4bN8475HjAF6kOPHWqnyjLl1fPzJt1Nuq1FYqFvVatSu5oNt64OhwzOJg4Py9/+dD3OPRQ71DuuMNPmuhQnHBC4pREygx7QX7eT973c9pp3s6TTvLn6c417wJ9+eV+4d1vP/9u4x3Q1Vd72CcEd+jqzd5ehHHjkiTRdDHLm2/2/Zg2LUliBb8re+lLvd1xX5ohL+wVmTAhCaFmJ1WERPycc447M7/5TeJSHXigf7drreUdet5FcDjxMziYlH049VQX4bfe6on9Bx9cf7+mTElqQE2dmoTlIHGFzj47f9h7EeenrLDXnXd6Hsf06Un4ttnQV62RTlnxs9defv7uuGNyzMeQV/r/mxU/W23lwhPqOz+xAvV669Wu5VXE+dlll+rX6omfPOcn9ne1nJ/hcn422ii5qYr9bhHnJ2/f4nmSHTk6nPiB6r50nXWS3wD8Oxkzxn+jdGXsPH73O88vfc5z/JzeaCM/Jrff3vcvXgM6gaLi5+N4XsxPgOVmNg9YDlwA3IonQ3cVozXaa6ONvFN64olq1RuTCbfeeqigSJ+A66zjd5sTJrjICcE78RCKh03yQl95AqKeSxVryNRzfmKezHrr+QU9HY659Vb/DqZPz3c6xo/3OwZwC3j5ct93GDoUv8ywF+SLn7zObNddvZp27ATHjfPfZc2a/FBhnBIj5gvts4/v5z//6bk48T3LIC/0FV2fww4bWi32+99PKmLHvLJGqeX8ROId7G23VQuFBQtcjKy9tnf0sdzB0097CCXuS9r9yRJ/q+hQQHJc3Xuv32XedJMf+x/9aOP79uEPu2j9/vera8gcfLBfoO+/H/74x6H/V08QRsoKe6XzfSKtED9PP+1ifdw4/03NPD8wkhY/m2/u/cHjjzc2d1n686OjWk/8DOf6wPBD3ddaywVA2q3Jip+04Ek/ruX8FA17xf/bcMNqMV5vWos0ea5WXsgLiomf9DmcPZ8nTPB12YmE84hu4AknJH2OWdK3d1Loq2iRw6eB/fFqzmfhVZ7PAg4BXhJCGGawb/8ydqwf4CFUZ/hHaz6OUEmTPvgPPzypzxKHZf/jH965LFrkJ1fWas2SJ37qOT954idegPKKiUXxEzuA+D7pC3I65JVXkwP8InXssT5U+MEH3WmBoVNzlB32yqtjkff95FGrg12+PCleFkNOkyf7xSmEJGm2XsiyEbIjvtasSfKN0iGvyHbbeR4LeC5Lupr1okUetx+uoN9wIZ6NN/Zjb+nS6u82XZXXzIVGPMYPOCDpNOuJn/h+6XNlnXX82Fu+PAnNnHFGczWUttjCHcejjqpePzAA73qXP85LfB5OEEJzzk8IHkqMghaqQ16RZsRPvRo399/vzl0ILnzi73T00cnNSXr+vIGB6gTaoqQ/P7oO9cJeeYNFsuTlxaSfx9fTNyBZ8TN1avJbpqtIZ52fvOrOkC9+YmXoiRO9DQcemHyvz31u7Wkt0uQ5P42Knw02SLapJ34gOR7qhVMfeshvXNM3spGjj/Zz/de/zi982w6G/ZrNbLyZ/QN4eQjhtyGEj1ZGfX00hHB5CN0wVeJQRmu0F+Q7KnG0S3Y2Yqju0N/4xuRxWvykQ161xESkUfGTF/aKJ3d8rzQx7FVU/NRiww29QNxHPuJ3znG4fFr8rFzp3+OYMfltaYaizk8etfJ+rrjC83r23LO6M4mhr3jnWpbzkw0xvutdLjI23jiZtyrL8cd7QvJTT3kto8cf9/IIW23loY10uCfLs8/67zAwUF98R1cgPUw6OyXB5psnQ/APOyzZLoqfPDGeF/aCxP156ik/X2JCaZnE0gx/+tPQIo2NOj9Fe88zzvBRkUcc4TlIy5cnzk9a/Oyxhzs0d9xRfCbxhQv9IrrOOkm+Tdr5icnOceJS8Avs737nAxSyU0tkQ18huLt3wgm19zdP/IyG8wP1xQ94RfQLL6zuK4smPEeBuHhxcqxEwbThht53T56cTKxbJOSVbnszzk824RmqXfS8Yze2q16Zh/PO89/3da9Lvp/Illt637dixdDyLe1iWPETQlgJbINmbm+aPFERLwB54me99fwObrfd4GUvS9anxU8jI4XixSld66eRsNczz3hHNGFC0nGnic5PfP+4vzGefvvt3lGbJaPAihDFz+zZSaf56KP+ONrrZZCX8DxS5yeOHnnta6vXx6TnSNlhr9tv91yXH/7Qc2l+8YvahSDNfLsNNvAL+RZbuOsW9+UrX6k91Dz9/dQrKBnFTzp0mTcT91e+4jlKb31rsq6W8/P0096BT5xYXVMFqkOqX/96sbvoRtl4Y7/IrVgxNLelSMLz+PF+8Vqzpti8cBdc4HlLZn4Onneei5wHH3ShkD6GJk70BOQQ4G9/K7Y/WdcHqhOeo/iJNcQi++5b/XtFsuLn2mu9/tO551aL4DRp0Thxop/bK1bUzjGpNVI2Ta2E5/g8vp7O+8m78O+7b/VNKCQX94ULq0fOZm8EBgYSARQdjyiYYugMPPdu3XWHfk4t8vqdbIHDyEjDXpAI7PRUKmlWr/bjEpKK+FnyQl/pmkOjTdGu4U9AnXt2UY96zk/ehHzglvY//1l94YqW6OzZyTQLRcImIw17xf/bbLN8l6mW87Phhr7vzzzjndiee1ZbrcMxbZp37gsXJndLZYe8wPdrwgT/jJi8XNT5qVXrJ/5/9vfZay8XJeDLIvH9Imy1lXfm8+b5EPbx491iruX6RDbdNJn0dM0aT+j+29/cEVq2zB2HPIpc5KG+85MW/gMDfkFPH1/p6rRp0sOys8djrDT8utf5kPlWEduerle0eLH/TZo09M43S9G8n1mzEqfpG9/w32a77ZLPjfWj0jQa+soTP+uv7xftpUs9BArVzk89suLnm99MXquVX5Zug1lyAa8V+mrE+Ska9tpww2TdcIwf733TmjUuaur1F9kwZ9r5iRxyiL8eHaDhyAvptSrnB5K8shtvzJ8EOp3oXKvPee1rvd1//SsceaRfD9Zbz0XgcInUraCo+Pk28GYz+6qZ7Wdm25rZjPRfKxvZ7WSrPKdnI85zfsA7gGynNnmyb79mTTIXVRHnYKRhr3ohL6id85NtX72QVx5mQ0NfZY/0AheU6bL8Tz7pYYW1165faRVqOz95HQy4yIp3UbE4ZRmMGZPcwY4d69NwFP2+jzjC785vv90Tuvfay0WPmY9qyktyLDKqCZKk53phr1rUcn5qhbzAhcKFF7Y+sTKet+mQbPo7GS4UXSTv5667POdv5UrPYTr5ZP8+b745SaI/5JCh/7fPPr688cZhdwPIFz9miauyeLEf58P9XpG0+HnwQT+mIhdeODSXbPly73PGjk2ck+FCX0XET5Gh7uCi+53vTHIMixKdm/vv98+YNCkJG6bJ5v3kOT+NktfvFBE/2erOkXR/mid+NtnEhc2yZflzQcbK7iecUPvYT082HSeJXrzYf4e8GQhaTVHxMwuYDnyw8vge4N7Mn6hBVlTMnesH0YYbNuaEQBL6iidwM+InbdOmxU+tsFf8v1q5HbXCXlDtfDQqfmCo+Cl7pFcknfdT1PWB2jk/saPLCxPG0F+Reh6NcNhhLpAvuKDxcvIvfnH1sfTc5/q8WytX5l8UiiT2gl+cJk/2323hQr/QPfigHzP1QhbQnPiZMMFDB0Xv4Jslz/kp+p1AMefnE59wV+Hww6trE62zjldwnzMnGXqfJg6iSCex1yM9tUWa9O+zxx7FhXpa/HznO97fvOUt3tfMmTNUlMXvbfr0pC+pJ34WLfLza8qU/AEYkaLOz8CAh3/zvst6ROcmVmaeNi3/wp8VP3nOT6M04vxMmeLn4LPPupOWl/CczveqdUMTb9qypUceesgrVOclOmf50pc8xP2Tn7gDNH++C6C8XKtWUzRr4h0tbUWPkxUVw7k+9dh996QK8rRp+RfXLNn5vebPd+tygw2SEAzUDnsN5/xkw17pPIx4QV1rLdh77+HbmqWW81Nm2AuqR3zFDrjIZzTq/IBPk7ByZfnJuJ/4hI+cqpXj0yif+5znDP3v//r7xt8Cioe9BgZcSN14o98xbrCB331uu+3w7ayV8Jw3zH20id9FWvwUSXaOFHF+4jH/uc8NFR5mtW8AYp9QdFRNnvMD1eInm+9Tj7j/99yT7MMpp3j/8dWvuvsT3SnI/97qDXdPuz71HLbhEp6bGQWYJoqX6ITUulkaLeenVs4PeN/+wAN+LtXqm773Pe9fa/V7++3nIw6vuw4+8IFk/Y9/7Of0a187vKDbaCP47/+uv81oUUj8hBA6aHR+95F1fuqN9BqO6PxA8WTZ6NhEB6eWe7Leen5BWrzY7xLiFABFnZ/Y2aadnwMO8Pd505uaK+Y3GmEvqE56jndVRZyfvJyfEOo7P5Mn+7QLraAs4QN+8Tv+eA99nXpq9ez0RcNe4A7XjTd66Ct+p0VCKLWcnzjMuax8qWZIh71CSObCgnKcn8HB2o7McMQ7+DLFT9F8H/DfeGAgGVW0zz6e32Hm4ucXv/Bk9Cjo8j6/3nD3IiEvKD7UvVmieIkh3Vr9Y7bQYRnOTyND3aFa/OSN9gJ3euuRTnqOx3wIfnMESW5at1Az7GVmY8zsv8ys5iXWzHYzsw6cr3V4RqvIIQx1foZLdq5HuqBYUfGzzjouQJYu9b9a7olZvvtTNOcnkhY/M2a46Dv77GJtzdKOsFfRkV5Q+w5szRrvXEdavbndxLmxLrmkOvenkQt9esRX0XwfqC1+Zs/2ZTM3D2Wx0UZ+8Xj66eT8aEQQDuf8PP64j3bKTrRZhLXX9nN5yZKhQ/GzhJA4adl2p521RsTP2LHV52esubT77i5Y5s3zRO5IPfEznPNTj1qzn5clftrp/DQy1B2q+/V6rnQ9ttvOz8n585Pf4Prr3S2fNm3oSNZOp17Oz1uBnwHL6mzzNPCzyjQXogZZ52ckYa+1105i+kUL5JlV5/3Uu7jniZ/0aK88spZ8Ng6/zjrNOxLTpyejmBYubH3Yq4ycn9i5FAlJdjqbbZaU3//d73w5OJj8Do2In1tuaezYj3VQFi5MqqMvXeoXy/Hjh7/4tZJ0Mn68mSnT+amX1zQcY8Yk4iE9pU0eTzzhozHXXXdosu6OO/p7TZtWTNCliUJm2rSkyKaZO8CQjPoKIfn+0uKnaNirHgMDSVg/Pft52c5P/I6Lip/01BbN0kjCMyT9+oMPuqs/fnwiDoti5rmBkAx5j67PW99a3uCN0WI48fM/IYQHam0QQngQOA8YJs2p8xjNIocbbOAHxqJFnusxEucH3F7cZpvGEojTeT/13JO8EV9Fw16QuExlMWZMcqG85Ra/6xg7dmh9l5FSpvMTO7lG76w6lTiiKIqfBQvclVh//WKuxG67ecd5553JXXKRY39gYGgxuegA7rBDuSG+ZsgmPTfi/Aw3uWmtUFRRiub91PuczTf3elWXXTb86LUs8bs56aTq3ymKn1/9yqchOeSQpGp1usBfGWEvyA8Ple38RBp1flqV8Fwr5weSY3WDDRr/TaE66Xn58qRgYSuKibaaeuJnd+CKAu/xZ2DPcprTmwwMJCr/nnvcxZg0qdgdYh4f+5hbjY1UOE7n/dRzT/JGfBVNeIbqkFdZxDvsOCne5puXf5ex3nre4S5dOryNnSYv56eXnB9InJ84G30jDgd4R7399u7exM636Ez22aTnGPIqqzjkSEjn/axc6edJdEqGY7iw10icH0hcnOGm0IjT7NQSbK9+dXWeYVE+8xkf0ZNNbt1lF//tFi3y7+/yy/2G6Yc/TGo0QTlhLxgaHorz8JlVD/ZohqxzU+t3r5Xz06qE53rOTzz/mr0xS+f9XHaZu1577lk9GKJbqCd+pgJFZp95srKtqEMUFddc48sddmhN9dlaNBr2is7P8uV+9zhuXO1h+Wnnp5XiJ04kWXbIC7wzjDkO0elqRPz0svOz6abewT37rM9I34jDEUnnqm26aX49lDyyeT+xsnl2Nu52kA57zZ2bVB4v4ki1MuwFxZOeL7rIl8MVw2yUTTZxNyCvCnt0f9as8bov//qX19lJU0v8LFni4mHixGI3f1nnJ4a/Jk9uzvlIk3Vuajnjaedn9Wr/zc1G1j80MtQdyhM/M2f6Z997b1J+oRtdH6gvfp4AinRvW1a2FXXIip/RTtbMEz/1wl7xTnu46s4weuInjqooO9k5kr7QjB9fzJbOEz+95vxAEvr67W8bq2cTSYufRsK9WfHTic7Pv/7VuCAczvlpdqRXpEjYa8ECd14GBoYf6VMm73+/u9eXXw4//3m+iKlV4TmO9Nt228YmAI3nZ1khL2hO/KSTjUfiXjeb8zPSG7OxY5OSJTfd5M+jmO026h0+11Esl+ftlW1FHeLBF0c5tEv8PPJIIn7ynI1s2Gu4ZGcYvbBXZDTEz+abF+tc8xKee835AZ/uAjzvp9GwF1SLn0aO/ewUF53k/MRk/PnzfSoaKP6dFHV+ms35KeL8XHihOxGvfGX5OXT1mDIFzjwzCafmUcv5aSTkBUMdkjLFTzpstdFGtUd2psVPGcPcof5Q93o5P5GR9E0x6Rm8XxhJ+K6d1OvevwG81My+bmZDflYzG2dm3wAOAr7emub1DrFzicluzSY7N0sUL7fe6gUO118/P9s/G/aK+T71Zu5utfOz9dbVSdStCHtBtfgp+hn9kPMDnvexySaeL3b55b6ukbBXupp1s85PnEOpzDnRRoJZsi9/+IMvy3B+Vq9uLrSYpkjOTxyp04lhi7LETyudn3XWSfq+eiHytNAtY5g75A91L5LzE2l0ZoE0Me8HOvPYKUpN8RNCuAH4EHAyMNfMzjezL1T+zgfmAicBHwohFJxFpn/JHnyj7fxE8RJHy9RyT+qFvWrRaudnYKD6gjkazk+RfB/oj5wfcBfs4IP9cbwANeL8bLZZ0uE3I37mzauu79Mpw2qjKxkd3aJiZZ11XDwtXjy0Fs/cub5u882bHzk5nPPzr3/5HGFrr+2T2XYatYa6N+v8tEL8mCUOTr3+Yu21/fxZujTpT0fq/KQdrRD8cb2w19pr+9QvkZH0TS98oQu6adMSR7gbqWvshxC+ARwI3AQcAXy88ncEcDNwYAjhmy1uY0+QtpXHjElq9YwWUbzEE6WWs5ENe3WC8wPVoa9WiZ90UbdGnZ9ez/mBoZNoNiJ+zHxizv32S2aILkLa+emkfJ9IvIlZscKXRb+TMWNqC5SRDnOH4XN+4hQ5r3/9yEc9tYJaQ92bdX5aEfaCRMTU6x/Tv/W9lVkwR+r8DAy4MA7BB6WEUF/8pAvYwsjEz5Qp8I9/wN/+Vi2ouo1hsxpCCNeGEF6Dj+jatPK3dgjhNSGEv9T/bxHJVj0e7YNmgw2qR6HUurivu67Hrpcs8ZOqiPMz2uKnVWGv9MWmqPPTLzk/AC9/eXIMjR/f+G996qleH6SRC09a/HRSvk8k6+A2Eqaqlfcz0pFeUN/5GRxMxE+nhi1qhb3SCc9FyDo/cVm2+Bmuv4i/dRQ/I3V+oPrG69ln/XedODF/hB2UJ37A+8qifWSnUniwdQhhMIQwv/I3TNF0kSXt/Ix2vg+48k+3oZZ7YlYdauiEsBck4mfcuNZ9xqRJyXdUVGClO9foqjVbPr7TmToV9t/fH0+fPjqlGtIJz9H56STxk03Gb8QNq5X3U6b4ycv5ueYaD61tvXV1/kYnkRf2StdSatSZbZXzE4/P4doTxc899/iyjCThdOirXr5PpEzx0wsUndW956jM6RWZ2erPSx947ZqTaPPNi00Psemm3jnOm9c5Ya+YMDtjRmsvurvs4snez3lOse3HjvW7rWefdads8uT6k5p2O4ccAlde2XyBzkZJOz/Ll/vjTgp7zZjhLtjKlf575420qUUt52ekw9zT753n/KSnJBjNWmONkB7qHifRfOQRfzxtWvHq3rUSnkc6o3vk5JO9LYcfXn+7KDbKFD/pfYs3XkXFz0gSnnuFvhU/o02cMX3VqvaJn7R7U0/8pEd8NRL2mjKl8fliijJjhtcEafUon/POg9tuqx6dNBxTprj4WbrU979XnR+At78dbrjBl6PBWmu5I7d8uf9NmTJ6wqsIY8d6/t7s2Y2PzBrO+RlJzk+tsFcIPkktwNFHN//+rWb8+KE3Fc2UWGjlUHfwGev32Wf47bJTXJQZ9konPcv5KU7fip/KnF7Af1ygkmucVjNmjB98c+e2J+wF1QKmXtJwPEnmzPEL+dix9U/WGPZqlesTecMbWvv+4BewRi9iU6f6ENalS72Te/ppv1ONeQu9xLrruggdLWIYNl74dtll5JV5y2annVz8NCrKRiPnJyusFi/2UNJaaxV3N9vF1KkufpYscfHTzPD/Vg51b4SsC1xm2Gvp0mTW+nrOo8RPNR1qevYm73sf/Nd/wR57tOfz0+KnXrJazHuJFZU33bS+PR6dn1aLn04lXesn3mmvt17nhhS6jRj6gs7K94nENjXq1ORNbrpihYeaBwZGNqqxVtgrjuIczaKGzZId8dVMZfFWOz9FyYqfshOe6430isT+edy40d//TqRvnZ928JGP+F+7iOJnvfXqH/zxJIlVa+vl+8DoOT+dSroT6uV8n3aRFj+dlO8TOe44DxG/972N/V92wkvwC3wILnxqjdopwuTJ/v/Ll7ugiqNLo/jphnM1O+Irun/d6PxknZayE55jragi4mf99TvPPW0HEj99RBQxw91RxpMkDi0ebgLB2El3w91kK0h3sFEIylYuj/SFuhOdny22gO9/v/H/y3N+ysj3Ab+4rbuuh2MXL64ewQndKX6acX46Rfykb4YmTSonNzK9b6tXV6/LI9YxG+mx1StI/PQR++zjcyy99a31t4siZtUqXw4nfmLHOtqFGzuFdK2fGHuX81Mene78NEtewnMZ+T6RKH6efLI7xU92uHszzk8nhr3KmgsrvW9R/NTL+dlyS/jTnyR+IhI/fcS66yahrHpkO8bhwl7HH+9Fxw48sOmmdTXpnJ9nn/XHcn7KI1641113eCHeTeQlPJcxzD37/um8n24SP+mcnxB6x/kpI98Hqvct3qgON4T/ZS8r57N7AYkfMYRsxzjcBWfixGTep34kb4oLOT/lEcXPrrv2Vq5CPeenjLvzvOHu3Sh+lixxB2v5ct+nRkZR9rLzkx7qvnJl9ToxPBI/Yghxiot4Qg3n/PQ7afETvzM5P+Xx0pf6fGDveU+7W1Iuec5P2WEvqBZX3SR+0mGvZlwf6BznJ90flB32Wro0Kfoo8VMciR8xhDgJXqwG3UuhhlaQzvmJnaucn/LYdFO47rp2t6J8Wp3z00thr2byfWDo7Oed4Py0IuwVxU8jFcb7HVUiEbmkO0eJn/qkO6Feru4symXyZD92li/3astz5sCCBe66lnHO9VLYq1nnJzv7ebvEz5QpyUjQViQ8F6nzI6qR+BG5xBFfAwPlnay9SjrhWXV+RFHM4Dvf8Yvz+ecnw/i32qqcAplZ8ROC1yOC7hA/6bBXs84PVN+ctEv8mCV9QiucnyITm4pqJH5ELrFz3GST6lnbxVDk/IhmOeYYuP12OOCA5O69rPnrsjk/cTTipEndcZFMh72adX4g3yFpR4Xj2CfI+ekMul78mNl6ZvZbM7vHzG41syvMbLt2t6vbieJHyc7Dk875kfMjGmW77eDKK+EHP/BCdG96Uznvm835SU9t0Q2j5vLCXiNxfpYs8dAXtG4C5npEN72sPjVvegvl/BSnFxKeA/CNEMKfAczsZOCHwAHtbFS3E09U5fsMj5wfMVLGjPF6WccfX957ZsNe3ZTvA9Xip5kZ3SPRIVmwwJeTJ7dn3r2zzoLrr4e99irn/dLOTxSzcn6K0xbnx8y2MLNvm9kNZvaMmQUz27rGttPN7JdmttjMlpjZxWb2n1MghPBUFD4V/grkvpcozr77uj2uoljDk875ieJHzo9oN90ufqKLMW+eC5dx45qbQieen/Pn+7Jdk3rusQecfHJ5rlujE5uKatrl/GwHvAH4O/AX4BV5G5nZZOAqYAVwDO7yfB642syeG0JYlvNvpwCXtqDNfcXuu/ucQHEIpahNunNdudInkZw0qb1tEiI7d1i3iZ/o/MSQ1/TpzTk2UezE/e+VGc3ziqtK/BSnXeLn2hDCJgBmdhw1xA9wPDAD2CGEcF9l+9uAe4ETgbPSG5vZZyrbn9CidvcVEj7FiB3Oo4/6cr31uiOnQvQ23e78ZCs5N5PvA8n52WviJ1vDKL1ODE9bwl4hhMGCmx4K3BiFT+V/HwCuBw5Lb2hmpwIHA68OITxTVluFGI5oz8cOSPk+ohNIi58Quk/8ZF2MZvJ90u/T7rBX2Ywd6y7z4KD/vpMm+TpRjE7/qnYhP4Q1G3h9fFJxfA4GXhFCWFzrzczsmhovzWy+iaLfyXamyvcRnUAMvy5fDs88033iZ8wYFy4xrNOs89OrYS/wfVmxwh8r5NUYnT7UfX3gyZz1i4D1AMxsF+A0YANglpndYmY3j1oLRd8zMFCd4yPnR3QKafen28QPVIe+5PwMJS14JH4ao9Odn2EJIcwGCmVYhBAOyFtfcYReUl6rRL8RpykAOT+ic1h3XXjsMRc/3VTdOZKuWyPnZyjpfZH4aYxOFz9PUnF4MtRyhAqTCYHNHMl7CTF1alJHRM6P6BTk/PRuwjNUCx4VOGyMTg97zcbzfrLsDNw5ym0RoibpTkjOj+gU4rE4d67n/UyYMHQUVSeTbuv06c29RxQ7K1dWP+8FFPZqnk4XP5cBe5vZjLiiUgxx38prTRNCOCD+AbeM5L2ESHc8cn5EpxCdn7vu8mW3TG0RiW7Gxhs3XzsrKwp6Sfwo7NU8bQt7mdmRlYd7VJavNrMFwIIQwqzKunOBk4BLK0PZA3A68DBwzmi2V4h6yPkRnUgUP3ff7ctuCnlB4vw0G/KC3hY/cn6ap505Pxdlnn+vspxFZV6uEMIyMzsI+DrwUzyx+UrglBDCUkaAcn5EmaTj7XJ+RKcQhXi3i59mk51hqNjpJfGT3hfl/DRG28RPCKHoCK05wOta3BwhRoScH9GJyPkZ6oj0kkMi56d5On20V8tID3vXUHcxUpTzIzqRKH6WVWZB7Dbxc8QRcPXV8OY3N/8e/eL8SPw0Rt+KHyHKRM6P6ESi+Il0m/jZc0/4619H9h7K+RF59K34Uc6PKJN0vF3iR3QK2WOx28RPGfSy86M6P83T6UPdhegKYic0daomFxSdQ7c7P2XQy+JHYa/m6dtuWjk/okxix6N8H9FJSPzAuHFe3DFOANpL4kdhr+aR8yNECcSORyEv0Uko7OWkBU8viR85P83Tt86Pcn5EmcQ77A03bGszhKgiPT3E+PFDnaB+YcoUWLTIH/eS+FHOT/P0rfgRokwOOABOPhlep4pUooMYO9Yvik8/7VNEdNPUFmUi50dk6Vvxo5wfUSYTJsA3v9nuVggxlHXXdfGz6abtbkn7SAuDyZPb146yUc5P8yjnRwghepiY99Ov+T6QOCQTJ8LAQHvbUiZyfppH4kcIIXqYmOfTz+InCoNeCnlBteDptX1rNX0b9hJCiH5A4qd3xc/aa3su19SpveVojQZ9K3402ksI0Q8o7JWInl4TPwMDcNttKqzaDPrKhBCihzn6aHjoITj00Ha3pH1E56cX82L6WdSOhL4VPxrtJYToB176Uv/rZ3rV+RHNo4RnIYQQPU2v5vyI5pH4EUII0dPI+RFZJH6EEEL0NLHAo/JjRKRvc3402ksIIfqDww6DH/8YXvWqdrdEdAp9K36EEEL0BxMmwDHHtLsVopPoW/Gj0V5CCCFEf6KcHyGEEEL0FRI/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL6ib4e6q8ihEEII0Z/I+RFCCCFEX9G3zo+KHAohhBD9iZwfIYQQQvQVFkJodxvajpnNXWeddabNnDmz3U0RQgghxAi55ZZbWLx48SMhhC3yXpf4Aczsn8BGwH0lvN3MyvKWEt6rk5lZWd7SxjaMBjMry1va2IbRYGZleUsb2zAazKwsb2ljG0aDmZXlLW1sw2gws7K8pY1tGA1mVpa3tLENo8HMyvKWEt5rO2BBCOH5eS9K/JRMHEWWzinqRbSfvYX2s7fQfvYW2s/yUc6PEEIIIfoKiR8hhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq/QaC8hhBBC9BVyfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8h8VMSZjbdzH5pZovNbImZXWxmW7a7XWViZkea2a/M7CEzW25md5vZmWY2td1tazVm9gczC2b2+Xa3pWzM7GAzu9bMllaO3ZvN7KB2t6tMzGxfM7vCzOab2dNm9g8zO7bd7WoWM9vCzL5tZjeY2TOVY3PrnO0mmtlXzOyxyjl7g5nt34YmN0WR/TSzPc3sB2Z2V2WbOWZ2gZlt06ZmN0zR3zPzPx+rbHfdKDVzxDSyn2a2k5ldZGZPpK437y+rLRI/JWBmk4GrgB2BY4Cjge2Bq81srXa2rWT+G1gDfAJ4FXA28G7gT2bWs8eSmb0ZeF6729EKzOxE4FLg78ARwOuBi4DJ7WxXmZjZc4E/A+OA44HXAjcB55nZu9vZthGwHfAG4EngL3W2Ow/f508DhwCPAX80s5mtbmBJFNnPNwG7AN8CXg18DNgduNnMpo9GI0ug6O8JgJnNAE4F5re4XWVTaD/NbE/gb8AE4DjgYOBrwEBpLQkh6G+Ef8D7cVGwXWrdNsBq4IPtbl+J+7lRzrq3AQE4qN3ta9E+rwc8Dry5sp+fb3ebSty3rYHlwCntbkuL9/MMYCUwJbP+BuCGdrevyX0ak3p8XOXY3DqzzfMq69+RWjcWuBu4rN37UOJ+5vVLWwGDwOfavQ9l7Wdm+z8C5wDXANe1u/0l/55jgDuBS1rZlp69Wx9lDgVuDCH8Z1b4EMIDwPXAYW1rVcmEEBbkrL6pspw2mm0ZRb4E3BFC+Fm7G9ICjsUvEN9vd0NazHhgFS700iymS93vEMJggc0Oxff756n/Ww1cCLzSzCa0qHmlUWQ/8/qlEMJDwAK6pF8q+HsCYGZH4c7Wx1vXotZQcD8PAHYCzmplW7ryxO9AdgHuyFk/G9h5lNsy2ryksvxXW1vRAsxsP9zZem+729Ii9gPuAt5kZv82s9Vmdp+Z9dr+/riy/JaZbW5m65rZ8cBLga+3r1ktZxfggRDCM5n1s3FBuN3oN2l0MLOdgI3psX7JzNbDj9mPhBAWtbs9LWK/ynKimd1oZqsquXrfMrNJZX2IxE85rI/HMLMswsMmPYmZTQM+B/w5hHBzu9tTJmY2HreVvxpCuLvd7WkRm+O5aV8Bvgi8AvgT8J0yEwvbTQjhDvxu8jDgEfxc/S7wrhDChW1sWqup1y/F13sOMxuLu5kL8JynXuIrwD0kgr4X2byy/DlwBfBy4Mt4mOz/yvqQsWW9kegvzGwKnii7GnhHm5vTCj4CTAK+0O6GtJAxwFTg7SGEiyvrrqqMvvi4mX0rVILw3YyZbQ/8Cnc83oWHvw4Dvm9mz4YQLmhn+0TpfAfYB3hNCCFP/HUlZvZi3InevRfOyzpEU+b8EMKnK4+vMbMB4ItmtlMIYcSOnpyfcniSfIen1p1XV1OxHn8DzABeGUKY2+YmlUqlRMEngU8BEyphknUrL8fn5Y06aB8LK8s/ZdZfAWwCbDa6zWkZZ+C5L4eEEH4bQrgyhHAy8Avgmz08UrFevwSJA9QzmNkXgROAY0MIV7S7PSVzDu5kzU31SWOBgcrzjs/hKki9fgng+WV8SK+e9KPNbDy+nmVnPGu9ZzCzccAvgT2Bg0MIt7e5Sa1gBjAROB+/gMQ/8OH+TwK7tadppTJ7mNcLJ2F2OLsBt4YQVmXW/z9gAzw3pBeZDWxTKcWRZmd89Nt9Q/+lezGzTwIfBU4OIfy03e1pATvhzmW6T9oX2LvyuFvLNmQZlX5J4qccLgP2rtReAKASOti38lpPULlDvgA4CDg8hHBjm5vUKm4BDsz5AxdEB9IbF45LKstXZta/CpgbQnh8lNvTKh4HZlbyuNK8EHiWHnRAKvwGr230+riikg/zRuCKEMKKdjWsbMzsZODzwCdDCN9pd3taRF6fdCs+2OZA/Ka0F/g9sIL8fgmglPxS5fyUw7nAScClZnYqXrvgdOBh3KrsFb6Ld6RfAJaZ2d6p1+b2SvgrhPAUXj+jCjMDeCiEMOS1LuVy4GrgHDPbELgf/31fQW/lcX0HL9z4GzP7Hp7zcyheu+nrIYSV7Wxcs5jZkZWHe1SWrzazBcCCEMKsEMI/zeznwDcqju0DuDuwDfCW0W9xcwy3n2b2JuAbwB/wnLV0v7QkhNAV7nuB3/OanP95ChjbTX1Sgf1caGZnAp8ysyV4AeE98UKdP0mXlBkR7S561Ct/wJZ4UuUS4Gng19QpUtWNf8CDuLDL+zut3e0bhf3vqSKHlX1aGxe18/BQyG3AUe1uVwv289W4oF1QOT9vAd4DDLS7bSPYp1rn4jWpbSbh9VIex12uvwEHtLvtZe4nPvJp2O+i0/+a2Qe6rMhh0f0EDPgg7rCvBB7CRxaPK6sdVvkgIYQQQoi+QDk/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL5C4kcIIYQQfYXEjxB9jpm93cxCjb+Xtbt9vYKZ7WFmz5jZtNS6a8zsuhrbH1f5DbZu4DMON7N5lYmHhRA1kPgRQkReD7wo8/f/2tqi3uIrwI9CCI+08DMuBR4DPtzCzxCi69H0FkKIyC2hYOl4M5sQemhuqFZjZnvg8y+9r5WfE0IIZvYD4HQzOzOE8GwrP0+IbkXOjxCiLqmw2P5mdlFlPqG/VV4ba2YfN7O7zGyFmT1qZl8zs4mZ95hhZr+rhH0WmNk3zezEbFin8vy0zP9uXVn/9sz6l5jZlWb2tJktM7M/mtmumW2uMbPrzOxlZvaPyuffYWZH5Ozn88zsEjNbaGbLzexuM/t45bVvV8JJ4zL/M7Xy+V8c5ms8DrgthDDcjNU1MbPT6oQn357a9BfAusBrm/0sIXodiR8hRGSgImbi30Dm9QvwyTGPBD5WWXc+cCrwf8BrgDOBd1a2BaAym/qfgOcD7wXejk+ueWqzDTWz1wBXAkuBtwJHAVOBv5jZ9Mzm2wLfxOe4ei0eFrrIzLZLvd9ewA2VbT9Q2ZezgC0qm5wNbAxkRdNRwFoMP4Hxq4C/1Nmfsdk/hvbPP2RoWPJXwBrgnrhRCOEJ4F8ks2ALITIo7CWEiNyVeX49sF/q+S9DCB+JT8zsxcAbgWNCCP9bWf1nM1sEnG9mM0MItwDHADOAF4UQbqz87++B20fQ1m8Cs0IIh6XaczU+M/2HgFNS224I7B9CuLey3T9wAfQG4IzKNl8FFgJ7hxCeqay7Kr5BCOFOM5sFnIg7K5ETgStCCA/UaqiZbQJsDdxaY5N9gVV19jW2YS4wN/W+r8fF3CkhhL9mNv8nsDdCiFwkfoQQkSNIXVzx2c/TXJJ5/ip8xuVfVpyKyBWV5f747OkvAh6OwgcghDBoZr8ATmu0kWa2Pe7QnJH53Gdw92b/zL/cG4VP5bPnm9l8YMvK+03GBchXUsInj+8BF5rZ9iGEe83sBbibNVx4afPKckGN12/Fw2JZDqOGO2ZmewI/Ab4XQvhWziYLUp8rhMgg8SOEiNwxTMLzY5nnGwPjgWU1tt+gstwMmJfzet66ImxcWZ5X+csyJ/N8Uc42K4CYl7QeHmKam7NdmkuAx3G357+BdwGPAr8Z5v/i59RKEF8aQrg5u9LMZuZtbGZbAJcB1wDvr/Gey1OfK4TIIPEjhChKyDxfCDwLvLjG9o9Wlo8Bu+S8vknOuhW4oEqzQeb5wsry48Cfc95jZY321OJJYBCYVm+jEMIqM/sh8B4z+zLwJuBrIYTVw7x/bO96DbZrCGa2Fi62ngDeGEJYU2PT9VOfK4TIoIRnIUSz/AF3F9YJIdyc8xfFzw3AdDP7Tw6KmY3Bc26yPATsmln3mszzu4EHgV1qfO5tjexEJdR1HfBWM5s0zObn4COpLgImAOcW+IgHcZE4o5F2ZTEzwxPMNwMOCSFkw5JptsG/JyFEDnJ+hBBNEUK4xsx+huf8nIUXRBzEk3sPBj4aQrgHz035GHCxmX0CmI+HjNbOedsLgVPN7JPAjbir9ObM5wYzey9waWUk2S9wJ2QTYB9gTgjhrAZ357+BWcANZvY1PAQ2A5gZQvhPbZ4QwiNmdhmeH/WbEMLDw71xCGGlmf0N2KvBNmX5KHA4Hura3MzSOT3/DiEsgP+IpL3wHCUhRA5yfoQQI+GteNLykXh14V8CJwH3UsnpCSGsBF6OJz9/DxdDDwCfz3m/M4HvVN7j18BOwNHZjUIIl+OJzWvhQ8D/CHwZ2BR3mhoihHATnvT8MPBt4HK8SnJeHtBFleVww9vT/Bw4qBK2apYdK8tv4vuY/ku7Y/vgIbYLR/BZQvQ0FkI2jC+EEK2nUpjvf4BtQggPtrc1xTGzC3ChNCOEMFjwf9bGhdR7Qgjnt7h9ZwO7hhBq5WIJ0fco7CWEEAWo5CzNxGsbfbCo8AEIISwxsy8BHzGzC0KL7jrNbFO8rpIKHApRB4kfIYQoxg14Remf0Fw+zVnAAJ6w/Ogw2zbL1sCHQgjXtuj9hegJFPYSQgghRF+hhGchhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq+Q+BFCCCFEXyHxI4QQQoi+4v8DNs9Nqa0jVhYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "avg_cs_amplitude = np.abs(avg_cs.power)\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_cs.freq, avg_cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Crossspectrum` or `AveragedCrossspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the cross spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / \\sqrt(meanrate_1\\times meanrate_2)$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*. This is the default.\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times \\sqrt(meanrate_1\\times meanrate_2)$. See *insert citation*.\n", + "* `none`: No normalization applied. \n", + "\n", + "Note that these normalizations and the Poisson noise levels apply to the \"cross power\", not the cross-spectral amplitude." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 15141.07it/s]\n", + "200it [00:00, 12807.43it/s]\n", + "200it [00:00, 13023.36it/s]\n" + ] + } + ], + "source": [ + "avg_cs_leahy = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='leahy')\n", + "avg_cs_frac = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='frac')\n", + "avg_cs_abs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='abs')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot the three normalized averaged cross spectra." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAANYCAYAAACRv3nwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC6JUlEQVR4nOzdd5xcVf3/8dc7nXSSQBqEhF6CLBBESiCU8EVARBRBRIkKgvjlK4qFACKoNEUUQZT6Cx0EaWpApASpAoGQhJJQUiC9kd42+/n9ce4sk8nM7szu3Jl7dz/Px2Mes3Pvufd+pux85px77jkyM5xzzrmkaVPtAJxzzrl8PEE555xLJE9QzjnnEskTlHPOuUTyBOWccy6RPEE555xLJE9QzkUkjZJkkrav0PEGR8c7rRLHcy5tPEE555xLJE9QzrlmkdSx2jG4lskTlHMlkvRdSW9KWiNpoaRbJPXKKfO/kl6StFjSJ5JelnR0gV22lfRLSXOisn+XtFXWvv4u6Y08cQyRVCfpzAZiHRE1Ix4r6boo3oWS7pTUM6ds96jMbElrJU2R9ENJyrO/4yXdJGkBMC9aN07S85KOlDRB0mpJb0jaV1I7SZdFz3GxpDGSuhT1grtWyxOUcyWQdAXwJ+BJ4FjgJ8CRwGOS2mYVHQzcDJwAnAi8BvxD0pF5djsa2B74NvADYD/gzqz1fwZqJH02Z7vvAiuBu4oI/RrAgJOBS4AvR8syz6sN8E/gW8DvgC8AjwNXA5fm2d+1gIBvAKOylm8P/Ba4gvDcOwKPRs+hf1T2l8DXgV8UEbdrzczMb37zmxmEL08Dti+wfjCwAbgoZ/kB0XbHFdiuDdAOeAJ4JGd/BozLKf/jaPmArO0/AG7JKtMemAv8pZHnNCLa1205y68D1gCKHh8TlRuVU+5mYC3QJ2d/D+U51jhgPbBt1rJjo/JP5pR9EJhW7ffcb8m+eQ3KueKNJCSLu6Imq3aS2gH/BZYDB2UKStpb0j8kzQNqCV/cI4Gd8ux3bM7jSdH9IAAzqwNuAE6S1CNadxzQN1pejH/mOUbHaB9EsdcBd+eUuxPoQKjVZXuowHGmmtmHWY/fje7/lVPuXWCr7OZD53J5gnKueFtG9+8TEk72rRvQG0DS1sBTQC/gbGB/YB9Ck1mnPPtdnPN4bXSfXfYWoC2hSQ3gTOAVM9vk3FQBjR2jF7DYzNbllJubtT7bnALHWZLzeF0Dy9sRnpNzebWrdgDOpcii6P4INv3CzV5/JNAD+KqZfZxZKalzUw9sZosk/RU4Q9K/gEOAcl4/tRjoJalDTpLql7V+o5DKeGzn8vIalHPF+zehGWyQmb2W5zYtKpdJROszG0rakXCuqjmuB4YSzgstBe5t5v6yPUv4PjghZ/nXCbWdl8p4LOeK4jUo5zZ1pKS5OcuWmtm/JV0JXCdpJ8KX+hpga8L5pZvN7BlCD79a4HZJvyP0XrsEmEkzfhSa2ctRd/ODgGvNbFVT95XHY8DzwF8kbQG8BRxFqKVdbmYLy3isvCS9D8wws8PiPpZLB09Qzm3q2jzL3gKGmtn5kt4Bvh/dDPiIcM7pPQAze0vS1wndqR8l9MA7j9D0N6KZsd0P7EnxnSOKYmZ10XValwE/I5xPmw78CPhDOY/VAD8n5TaS6WLqnEsBSS8AdWY2vNqxOBc3r0E5l3DRUEJ7AYcTegR+sboROVcZnqCcS77+wIvAJ8BlZvZodcNxrjK8ic8551wieQ0qj6in1BaECzKdc87FZ3tggZntmbvCE1RE0rish7v26NGjQ01NzcBqxeOcc63BhAkTWLp0ad51nqDyW11TU9Nh3Lhx1Y7DOedatBEjRvDss8/mba3yBBUxsxGZv6Pa1MFVC8Y555wPdeSccy6ZPEE555xLJE9QzjnnEskTlHPOuUTyThKRnG7mNVUKwznnXMRrUM455xLJE1TEzEZkbsCEKodTdsuXL+czn/kMV1xxRbVDcc65oniCaiUmTpzIpEmTePjhh6sdinPOFcUTVCuxfv36xgs551yCeIJqJWpra6sdgnPOlcQTVCvhNSjnXNp4gmolPEE559KmRSYoSVtLGifpbUkTJZ1Q7ZiqzZv4nHNp01Iv1K0FzjGzCZL6AeMljTWzldUOrFq8BuWcS5sWmaDMbA4wJ/p7rqSFQC/AE5RzzqVEIpv4JB0k6VFJsySZpFF5ypwlaZqkNZLGSxpeYF97A23N7KO4404yb+JzzqVNIhMU0BWYDPwAWJ27UtKJwDXAZcCewIvAY5IG5ZTrBdwOfDfugJPOa1DOubRJZBOfmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkfbdQQeBq4wsxfzHSdngNhsNU0MPbE8QTnn0iapNaiCJHUA9gaeyFn1BLB/VEbAGOBpM7ujogEmlDfxOefSJnUJCugDtAXm5SyfB/SL/j4AOBE4TtKE6LZ77o5yBoht0bwG5ZxLm0Q28TWXmT1POpNvbDxBOefSJo1f4guBDUDfnOV9gbmVDycdvInPOZc2qUtQZrYOGA+MzFk1ktCbz+XhNSjnXNoksolPUldg++hhG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJNBa9BOefSJpEJChgGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFPCa1DOubRJZIIys3GAGilzPXB9GY85IvN3dH3UweXadxJ4gnLOpU0iE1Q15Fy0W1OlMGLjTXzOubRJXScJ1zReg3LOpY3XoCLexOecc8lSdIKS1ANYY2ZrY4ynaryJzznnkqWoJj5J7YBFwBHxhuPi4jUo51zaFFWDMrNaSfMIIzi0SN7E55xzyVJKJ4k7gdPiCsTFy5v4nHNpU0onienAyZJeBR4hTKlu2QXM7NbyhVZZLf0clNegnHNpU0qC+lN0P5AwH1MuA1KboFo6T1DOubQpJUENiS2KBGjp56C8ic85lzZFJygf5y7dvAblnEubki/UlfQZ4CCgN3CDmc2VtD0wz8yWlztAVx6eoJxzaVPKhbodCT35jicM5GrA3wmTBP4GmAqcF0OMrgy8ic85lzaldDO/FDgc+AZh9trs0cYfA/6njHFVnKRxmRvei88556qulCa+rwEXmtndktrmrJsGDC5bVK7sPEE559KmlATVG3inwLo2QMfmh1M93ovPOeeSpZQmvmnAfgXWfRaY0vxwXFy8BuWcS5tSEtTtwHmSvg60j5aZpEOAH+IX6SaaJyjnXNqUkqB+A/wTuANYEi17HngSeNzMri1zbK6MvInPOZc2pVyouwE4SdKfCD32tiRMwfG4mT0bU3yuTLwG5ZxLm5Iv1DWz54DnYoilqlr6YLFeg3LOpU3RTXyS7pP0XUk7xhmQi4fXoJxzaVNKDWor4FqgnaQ5wDOZm5lNiyO4Smrp3cw9QTnn0qaUc1AHSOoCDAcOBUYAJwFtJM0Enjaz78QSpWs2b+JzzqVNKb34MLOVZva4mf3UzD5LqGU8DWwDjIohPlcGGzZswMwaL+iccwlSUieJaNTyQ/i0BrUl8DZwHSFRuQTy5j3nXBqVMpr5TMJsuu8Tzj2dQ2jWWxBPaK5cvHnPOZdGpTTxDQDWEMbjext425NTOngNyjmXRqUkqF6EEc2nAd8BJkiaF3U/PzNp3c8lPSRpiaQHqh1LtXmCcs6lUdEJysyWmdmjZvZDM9uDcP7p+4TE9SdCrSpJrgG+We0gksCb+JxzadSUKd+3JnSSOCS6bQ1sAMaXN7TmMbNxkkZUO44k8BqUcy6NShlJ4kZJ7wPTgVuA3YH7gWOAXmb2uXIFJekgSY9KmiXJJI3KU+YsSdMkrZE0XtLwch2/pfEE5ZxLo1JqUJ8jjGb+DDDOzD6JJaKgKzCZMMXH7bkrJZ1IaMI7izCi+lnAY5J2NbOZMcaVSt7E55xLo1JGkvhMnIHkHGssMBZA0pg8RX4EjDGzm6LHZ0s6EvgeMLrY4+QMEJutpth9pIHXoJxzadSUc1BDCSNI9AIWE2pTb5U7sAaO3wHYG7gqZ9UTwP6ViiNNPEE559KolAt12wFjCF3NlbXKJN0NjIrmjIpbH6AtMC9n+Tzg8MwDSU8CewBdJH0MnGBmL2VvkGeA2BbJm/icc2lUSg3qF8BXgYuAO4G5QD/glGjdh9F9IpjZ4Y2Xah28BuWcS6NSEtQpwK/N7NKsZTOASyW1Bb5FZRLUQkK39r45y/sSkqbL4QnKOZdGpQ519GKBdS9G62NnZusI11yNzFk1ksLxtWrexOecS6NSalCzgQOAJ/Os2z9aXxaSugLbRw/bAIMk1QCLo27kVwN3SHoFeAE4k5Ag/1KuGFoSr0E559KolAR1F3CBpLro7zmEc1AnARcAV5YxrmGE660yLolutxE6Y9wnqTdwIdCfcM3UUWY2o4wxtBieoJxzaVRKgroY2JaQKC7OWi7gHuCX5QrKzMaxcU/BfGWuB64v4zFHZP5uaVO+exOfcy6NSrlQtxY4WdKlhC/vzQnXQf2nktdBxSWnm3lNlcKIhdegnHNpVPKFulEySn1Cak08QTnn0qjUKd/bEqaw2I8wu+4sQs+5Oyp0kW5svInPOeeSpZTRzLch1JxuAY4kzAd1JHArMDla7xLIa1DOuTQqpQZ1HdAdONDM6q83knQAYdqNa4Fjyxte5bTkc1Beg3LOpVEpF+oeCozOTk4AZvYCcH603iWQ16Ccc2lUSg1qBTC/wLr5wKrmh1M9LfkcVHaCMrMqRuKcc8UrpQZ1J2HEhnzOIM/Egi4ZvInPOZdGpdSg3gdOkDQJ+Btheou+wFeAboQZbb+dKWxmt5Yz0Li15HNQ3sTnnEujUhLUn6L7rYDd8qzPHtXBCL37XAJ4gnLOpVEpCWpIbFEkQEs+B+VNfM65NCplqCMfiDWlvAblnEujUjpJ1FNwq6RB5Q7IlZ8nKOdcGpU8Fl+kDXAq4eLdmeULp3pacicJb+JzzqVRk2pQkQanw3DJ4TUo51waNbUG1eK05E4SnqCcc2nU1BpUHWF224VljMXFxJv4nHNp1KQalIXxcr5V5lhcTLwG5ZxLo1Km29hf0jFZj3tJukfSJElXRXNFuQTyBOWcS6NSmviuAPbOenwVcBQwFfgeYURzl0DexOecS6NSEtQuwGsAktoTxuD7oZl9GbgAOLn84VWOpHGZGy2sm7nXoJxzaVRKguoKLIv+/izQBfhH9Ph1wC/aTShPUM65NColQc0C9oj+/jww2cwy80NtTguYDypzAyZUOZyy8iY+51waldKL7x7gMkkjCOeefpG1bi/gvfKF5crJa1DOuTQqJUFdDKwBPkfoMHF11ro9gPvLF5YrJ09Qzrk0KmU08w3ApQXWHVeugFz5eROfcy6NSrkOqk/u6OWSzpB0bfb1US55vAblnEujUjpJ3Aqcl3kg6efAnwndyx+RdGKZY3Nl4jUo51walZKghgFPZT0+E7jMzHoTpoP/UTkDc+XjNSjnXBqVkqB6AfMAJA0F+hEGjAV4GNiprJE1g6RjJE2R9J6k06odT7V5gnLOpVEpvfgWAVtFfx8KzDazTNfy9jRvbqmykdSO0MPwEGApMF7SQ2a2qLqRVY838Tnn0qiUBPUkcLGkPsC5hFpTxs7AjDLG1RyfBd4ys1kAkh4DjiBcx9UqeQ3KOZdGpdR6fgp8BFwOfABckrXu68Dz5QhI0kGSHpU0S5JJGpWnzFmSpklaI2m8pOFZqwcQRr3ImAUMLEdsaeUJyjmXRqVcBzUPGFlg9eGEi3jLoSswGbg9um0k6i14DXAWISmeBTwmaVczm1nKgaKBYfOpKWU/SedNfM65NCr5vJGC3SQNj+5lZsvMbF05AjKzsWZ2vpk9QJi5N9ePgDFmdpOZvWNmZwNzCFN+AMxm4xrTwGhZq+U1KOdcGpWUoKIecXOAicC46H62pO+UP7S8x+9AmJPqiZxVTwD7R3+/AgyVNFBSV8LAtv/Kt7+cAWJbLE9Qzrk0KrqJT9LXgRsJ10LdCcwldDX/OnCjpFVmFndHhD5AW6Lu7lnmEZoZMbNaSecCzxAS8G9acw8+8CY+51w6ldKL76fAXWb2jZzlt0m6A/gZCekpZ2aPAo9WO44k2LBhA2ZW7TCcc65kpTTx7USoOeVzJ5W5UHchsAHom7O8L6FG53J4855zLq1KSVDL+fRC3VxbRetjFXXEGM+mvQlHAi82c98tcsJCb95zzqVVKU18jxEmLJxqZs9lFkraD/h1tL7Zoo4N20cP2wCDJNUAi6Nu5FcDd0h6BXiBMCbgAOAvzTzuuKyHNc3ZV5J4Dco5l1alnoP6HDBO0ixCb75+hNrT+9H6chhG6OCQcUl0uw0YZWb3SeoNXAj0J1wzdZSZJWUki0TxBOWcS6tSLtSdG9Vkvg0MJwweOx14lnBd0qpyBGRm4wA1UuZ64PpyHK+l8yY+51xaFZWgouuP7gN+b2bXAdfFGpUrG69BOefSqqhOElHnhMOLLZ9GLbWThCco51xalZJwXiCcg3Ip4k18zrm0KqWTxLnAw5JWEKbamANsdAWomeUbOy8VvBefc84lSyk1qEnAdoSRxGcA64D1WbeyDBbryssTlHMurUqpQf2SnBpTS5I9YGxUmzq4asGUkTfxOefSqpRu5hfHGIeLSaYG1bZtWzZs2FDlaJxzrniljGbeHuhgZivzrOsCrDOz1LYntdRzUJkaVPv27T1BOedSpZQmvlui8ifnWXcD4RzUt8sRlCufTA2qXbtS3mrnnKu+UjpJjAAeKbDuUeCwZkdTRS39Oqj27dtXORLnnCtNKQlqS2B+gXUL2HQKDJcA2U18zjmXJqUkqPnA7gXW7Q606llrk8qb+JxzaVXKt9Y/gJ9LGmdmEzMLJe0OXAA8VO7gKqmldpLwJj7nXFqVkqAuIkwMOF7Sq8DHwEDgs8A0wvQXLmG8ic85l1ZFN/GZ2UJgH+BywnQYNdH9pcA+0frUaumdJLyJzzmXNiWNTm5mn5jZRWa2n5ntaGb7m9nFZrY0rgBd83gTn3Mtw3//+19+/etft6rrGVvs9Bku8CY+5+K3cuVKZsyId1Lv888/n5///Oe8+uqrsR4nSTxBtXDexOdc/E466SS22247Zs+eHdsxFi4MZ1HWrl0b2zGSxhNUC+dNfM7F76WXXmLDhg3MmTMntmMsX748tn0nlSeoCqutrWX06NG89NJLFTsetO4a1IYNG3jnnXcwa7GD8bsqWrRoEYsWxX8Z6LJly2I/RtJ4gopIGpe5EeN1UGPHjuWKK67gJz/5SVyH2IjXoODyyy9n11135aijjuLjjz+udjhNNmvWLM4777xYm5Fc6d57772KHMcTVAMkfTcatdw1w9SpUwGYOHEidXXxT0DsCQpmzpwJwOOPP87QoUN59NFHqxxR09x2221ceeWVXHPNNdUOxWXJ/E/Hae3ata1y8tFSalB/BmZL+pOkz8QVULVU6jqo999/HwjtyXH3+gFv4svWv39/li5dyplnnlntUJokc3L8jTfeqHIkLlslElRrrD1BaQlqO+B64HjgDUkvSTpVUqd4QmuZspsDJk6c2EDJ8mioBrVmzRo+//nP85e//CX2OJLgF7/4BZ06dWLOnDmsWLGi2uE02YQJE/x8WoJ4gopPKSNJTDez0cDWwEnAKuBWYJak30vaJaYYW5RMDQqqn6AmTZrE448/zh/+8IeyHKuuro7TTz+dO++8syz7KzdJbLPNNgAVqb3GZcGCBcydO7faYbhIJRJUa+zBB03oJGFmtWZ2v5kdBuwETAL+D5gs6VlJR5c7yJZizZo1fPTRR/WPK5GgGmriy/wKnzlzZll+kY8dO5abb76Zb3zjG3nXP/bYYxxxxBE89NBDVasBDB48GIDp06fHdoyf/vSnXHHFFbHtH0ItylWfmVWkk4TXoEogqZuks4C/AQcRztlcQBh89lFJvyxbhC3ItGnTMLP6ZFHtGlTG6tWr6y8CbI7GfuXdfvvt/Pvf/+b444/n4IMPZvLkyc0+ZqniTlBLlizht7/9LT//+c9j7QTz5ptvNnnb2tpa1q1bV8ZoWoaVK1du9AOyGLNnz2bVqlUxRfQpT1BFkDRM0k3AbOB3hMS0n5ntbWZXmNkBwMXA98sdaEuQad4bPnw47dq147333ov9w11sL75KNHllvrAl8dxzz3HqqafGfsxccSeozPUwtbW1LF68OJZjQPNqUEOGDGHzzTdvVWO6FePLX/4y2223XUk/1irRvAfexNcoSa8D/wUOAX4JDDSzU83svzlF/w1sXr4Qm07SQ5KWSHqg2rHApwlq1113Zeedd8bMeOutt5g9ezYHHHAAN998c9mPWWwvvkqekxk9ejRAVToqZM5BxZWgspNSnKMKNKcG9fHHH7Nq1apW+6u8kHfeeYf169czb968orepVIJqre9VKTWoj4FjgB3M7LdmVujn4evAkGZHVh7XAN+sdhAZmbbq7bffns98JvTUnzhxIpdeeikvvvgit956a97tbrzxRnbffXfOOOMM/v73v5d0PUSSalAZHTt2rNixcsVdg8pOUHF2ZJgyZQorV66Mbf+t0dKlpU/K4AkqXqX04jvWzB6zRs5um9k6M0tEFykzGwckpm6cqUHtsMMO9Qnq8ccf55ZbbgEK/+K+8847mTx5MjfeeCPHHnssZ5xxRtHHTGKCitMTTzzBQQcdVHDEiJaSoMysKufwWqq6uromJQFPUPEquZOEpH6SPivpoNxbCfs4SNKjkmZJMkmj8pQ5S9I0SWskjZc0vNRYkyaToLJrUA888ED9BZhz585tsHfbIYccAsAHH3xQ9DFzm/gK7T9fgnr33Xf54Q9/yDe/+U2OP/74VIzA8NOf/pTnnnuOxx9/PO/6vn370rFjRxYuXBhLE2OlEhQ0r5kvbaZPn87f//53Pv7441h6gK5YsaJJ+820isTdKtBaz0EVPbyApIHAHcDB+VYDBrQtcnddgcnA7dEt91gnEprnzgKej+4fk7Srmc2MykwoEP8RZlbUYGXRuHv51BSzfSnWrVvHjBkzaNOmDYMHD6Zr164brW/bti1r1qxh6dKl9OzZM+8+DjnkEJ555pmSjtucGtQvfvEL/vrXv9Y/njlzJscee2xJx6+kiRMn1n9pF/qyadOmDdtssw1Tp05lxowZ7LbbbhutNzMkNTmGSiSo7t27s2zZslbV1fzYY49l0qRJAAwYMICbb76Zz3/+82Xbf1NqKLW1tfU/FrfddlveeeedssWTy2tQjfszsDvwU+DzwKFZt0Oi+6KY2VgzO9/MHgDy9cX9ETDGzG4ys3fM7GxgDvC9rH3UmNnQPLdEjqQ5ffp06urqGDRoEB07dmTAgAH06tULgGOOOYZtt90WKP+XWnM6SWR6GH7pS1/aaF9JdccddxRVLtPMl/2cZ8yYwVe/+lW6d+/Oiy++2OQYlixZUv93XAkqU/tuLTWotWvXMnnyZCTRs2dPZs+evdEPp3Joyvmn6dOnU1tby6BBg9hss83KGk8uT1CNGw78yMx+Z2ZPmNmzubdyBCSpA7A38ETOqieA/ctxjIyc8fdild28B6Gr9WGHHUb79u256KKL6N+/P1D+nl+Zrt1t2zZcuV2yZEnBZoQ999yzrDHFoba2tugRLHLPQ1111VXsvPPO3H///axYsYLXX3+9yXFUoga1xx57AKGreWvoKJG5fnDw4MH8/ve/BwrXkJuqKQlqypQpQDinHLfW2sRXSoJaDcyPK5AsfQhNhbl9PecB/UrZkaQngfuBoyR9LGm/8oRYukxbdfaHecyYMXzwwQfss88+9OsXnlo1h7DJjPqdRk899VTRr112gpo0aRI/+clPWLNmDb179252HJVIUFtssQX77rsvq1at4sYbb4zlGEmS++MuDk1JUJkL7YcOHVrucDaRtBrU6tWrNxq2LS6lJKibgPxj2CSUmR1uZluYWWcz28rMKjNLIGxyEWS+f7LOnTuz9dZbA8RWgypFWnry3XLLLZuci8s07xVz/ij7Wqi7774bgNNPP52TTjqp5Fiee+65jc4FVaqTxAUXXADAb3/7W9asWRPbcZIgc55nu+22i+0YTUlQmSbWTI22nFatWrXREEpJS1CjR49mxx13ZNy4cbEep8EEJenbmRvhOqj9JT0l6cfZ67LKlMNCYAPQN2d5XyDxI2SaGV/72tfYYostNvqyyr4GKp8k1KDSkKDeeecdTjvtNA499NNTnqtWreLBBx8E2Gh5IZka1LRp07jnnnsAOOWUU0qOZc2aNRxxxBEbnazPfs8XL15c30Oz3I455hhqamqYM2dOwevnWoqk1qDiTFDf/va32Wmnneq/Nxpr4lu4cCFDhgzh17/+ddljySczov6YMWNiPU5jNaibs243AIMJHSJ+k7PuZkINq9nMbB0wHhiZs2ok0PSz140ftyzzQUli/vz5LFmyhH/9619AOD/y8ssvA7D77rvn3S6ToLwG1bD58zdtZV64cCGrV69m4MCBDBnS+DXimQQ1fvx4ZsyYwVZbbcWBBx5Ycixr165lzZo1zJ07t/4LJJOgMr0m88VbDpK48MILAbjiiitaxNh6hZ5DEhPU6tWrmTp1Km3btmXXXXctezyZ7vSZa90aq0GNHz+e6dOn13/nxC0zHNQjjzwS62evsQQ1pITbtsUeVFJXSTWSaqIYBkWPB0VFrgZGSTpN0i6SrgEGALFNXFTOKd+PPjoM6D527FgAXnrpJZYuXcpOO+1U8As008TnNaima9OmuBbrfv360aFDh/oT7SeddFLR2xYyZ84czKw+QWXONcb5fn7pS19i11135aOPPuK+++6L7TiV8PTTT9OxY0euvPLKTdYlMUFNnjyZuro6dt55Zzp1im9KvMznqrEaVHbv0UrIJKhPPvmEp556KrbjNPhfaWYzSrmVcNxhwBvRbTPgkujvX0bHvQ84B7iQUJs5EDgqKSNUNOaoo44CwvQSGzZsqE9UmeX5eA2qcjLXQmWcfPLJzd7nrFmzWLFiBbW1tXTu3Lm+lhZngmrTpg1f+cpXACoy5UOcfvaznwFw3nnnbbS8tra2vrdl5lKMOJR6jifO5r1sc+bMYdWqVY2OjF/JBGVmGw2oe//998d2rOb9bGwiMxtnZspzG5VV5nozG2xmHaPR0v8Tc0xlm/J9p512Ytttt2XRokW88sorRSWoatagttxyS6D1JCj4tJlv5513pqamptn7mz17dn3tqVevXhU7p9jY5QNpN3PmTGpraxk4cGCs1xqVWoOqZIIqJnlWMkEtXbqUDRs21Lc6PPzwwyWND1qKUqfbOCIaIfxtSR/m3mKJsELK2cQnqb6Z74YbbmDixIl06dKF4cMLj9bUp08f2rZty6JFiyp+PmHgwIG0adOGOXPmtIhzGcXYcccdgVB7as7IERnVSlAtXSWa9yD9CeqTTz6JNY5smdrTNttsw6677sqSJUtia+YrZbqNo4DHgM7AzsC7wEzCFPB1QFku1G0pMgnqtttuA+Cwww5rcLyuNm3a0Ldv6LhYynD/5dC+fXsGDhyImZU8YVtanX/++fz+97/nJz/5SVn2N2vWLE9QMUhigjKz+mugiklQdXV13HXXXU0aoHj27NlFXaRbyRpUJkH16dOHE044AQhjisahlBrUz4E/AZl2qguj5rDdCBfWPlbe0CqrnE18AAcffDCdO3euf9xQ815GNc9DZc7JFNvMV1tby8knn5zaLs4DBgzgnHPOKdsJbq9BxaOpCWrVqlVcdtllRY82XkqCmjFjBkuXLmXLLbesf58bcscdd3DKKacU1cM0VxKb+PIlqIcffjiWCTBLSVA7A38n1JaMaKBWM5tKmEX35+UOrpLK2cQH0KlTJw477LD6x8UMbFnN81A9evQAKHqG30cffZR77rmH73znO3GGlRqeoOLR1AT1y1/+kgsuuIBddtmlqPKlJKhSm/deffXVoveda/78+UXNzFytBLXbbrtx00038frrr8dyPrSUBFUH1EbzQS0ABmWtmw3Ed5l3SmWa+YYOHcqgQYMaKZ2MnnzFag1jwJXCm/jikRlFotQElUkijfV+y4gzQTWHmRU1vU41zkH16dMHgNNOO62o77emKHq6DWAK4UJdgNeAcyS9ANQC5wLTyxpZhWUPGBvVovJNK1KSU045hddee62+GtyYJFwL5Zpm9uzZLFq0CNg0QTV3Co/Wqq6uriLDHJlZYhMUfDoobUOqVYOKWykJ6i4gU1/+BfAkYfgjCEMTNf9ikhamS5cu3HRT8QNspKkG5Ta2bt26+uaoXr160bVrVzp37syqVatYsWIF3bp1q3KE6TNr1izWrl3LlltuGevrt3r16pLOn7z77rtAZQaJzT5eQyqZoDI/xBKVoMzsT1l/j5e0O2FeqM2AJ83s7Rjiq5icyQtrqhGDNwulW2ZYml69eiGJfv368eGHHzJ37lxPUE2QxB58EGrLAFtttVUc4WyisY4edXV1TRpLsKkqWYNq8oW6ZvZxNKHgH9OenJIiCSOau6b78MNwKWBmIspif3DU1dXx7rvvxjKVeRwqFWdm+pfMRdVxKeXLffXq1XzyySe0b9++LNOzFCNTYylk2bJlFf3sJDZBKThW0lWS/p+kbaLlB0saEE+IlVHubuZN4TWodMt8SZSaoM477zx22WUXfvWrX8UbYBl88YtfZM899yy680FzZGZwjnOsOygtQWV+PPbv3z8x5xWb2rw3fvx4Lr744pJHgUjkOShJmwNjgX2B5UBX4FpgBnA6sBj4vxhibDX8xHrLkJugGqsR//a3vwXgyiuv5KKLLoo3uGZ69NFHAfjoo482Gs8wzUpJUJnmvQEDkvN7vKkJatiwYQBsvvnm/OAHP9hkfaHvoEyCqkQNspQa1G8Jo0YcAPQGsiN/Ejgs30aueJ07d6Z79+6sW7eu4qMTu/LJJKguXboAtPgJBdOuqTWopGjud0WmaTrb8uXL2XHHHesnxszYsGHDRpdTxK2UBPVF4IJoVtrcBs/MkEepVe4LdZvKz0OlW4cOHTYaQcQlX1pqUIUGy43jGqi7776b999/n8suu2yTY9XV1dGzZ8/6Oc/iVEqC6grMKrCuExvXqFwTZarNxVw97pIn04PPpUdTalDVSFDdu3fPu7ylXgMFpSWoKcARBdYdDExqfjjVk4ROElD8pHsumSrR7OHKqyk1qGo08RW6VKElJ6hSLtS9HrhO0lLg7mhZT0nfAv4X+G65g3MuDTbbbDPWrFmDmXmCSqFSJiv0GlRCE5SZ3ShpW8Lst7+MFv+bMEbfb8zsrhjicy7x2rdvT/fu3Zk3b54nqBRKcg2qY8eOrF27Fkn1nW5yVXMcvriVUoPCzM6T9GdgJLAlsAj4t5mlerJC55prwIABnqBSKsmdJPr378/06dPp2rVrweb/ljrMETRhJAkzm2FmN5vZZWZ2g5l9KOlwSRPjCNC5NBg4cCDg56DSqNgEVY1RJDI1tULNe9Cym/jKdUa+B2HiQpciaRlaJw0yv6g333zzKkfiSlVsgqrGKBKZz1VDCcqb+FqBJAwW69LrpJNO4rXXXuMLX/hCtUNxJcokqHbt2tUPr5RPNS7SzRyrocGGvQblXBFK/VXZkmpwhxxyCOPHj6/YHEGufDIJKjOrdCHVuEj3M5/5DAA77bRTwTLVSFCVauL0GlQkjgkLXX5+IatLkuwE1dDI4dWoQe2yyy588MEHDBw4kP/5n//ZZL2ZtegaVIMJKupWXox+ZYjFOecqau3ataxbt4527do1Omp6tYY52nbbwl/Dq1atarBZstwSlaCA99l03L18VGQ555xLjOzaU2M1+2qOIlFIJWtPtbW1LFmyBEkV6wzUWIL6VkWicM65Kij2/BNUdxSJQiqZoLJHMW/btm1FjtlggjKz2yoShXPOVUF2glq3bl2DZVvSXFBNUekOEuC9+JxzVVDJa3ca0pQaVJKa+DKvYzHxN9fatWsBKjqdTItNUJK2juZ3elvSREknVDsm5xw89NBDbL755px33nnVDqXoBLV69WqWLFlS0VEkipGpQbXUC8RbbIICaoFzzGxXwjQhf5CUf7RF51zF/PKXYazpK6+8ssqRhKnrofFmu7lz5wLQr1+/RE2Jk0lQPXv2rG4gMUnOK11mZjbHzCZEf88FFgI+UJpzrt77778PwPbbb99guSSefwKvQcVC0kGSHpU0S5JJGpWnzFmSpklaI2m8pOHNON7eQFsz+6g5cTvnWpZMgtpuu+0aLLdgwQIAttxyy9hjKkXmHJQnqPLqCkwGfgCszl0p6UTgGuAyYE/gReAxSYOyykyQNDnPbUDOvnoBt+MTKjrncnzwwQdA4zWozLBccXSvvueee/jqV79a3wmhFC29BlWVoY7MbCwwFkDSmDxFfgSMMbObosdnSzoS+B4wOtpHTWPHkdQReBi4wsxezLN+XIFNG923cy7damtrmTZtGtDwaA1xO/nkkwE47LDDOOOMM0ra1s9BVZikDsDewBM5q54A9i9hPwLGAE+b2R1lC9A51yLMnDmT2tpaBg4cyGabbVbtcFi+fHnJ26xYsQKArl27ljucREhcggL6AG2BeTnL51HamH8HACcCx0XNgRMk7Z5dwMxGZG7NCdg5lz7FNu+lQZJ6FpZTix3N3MyeJ5kJ2DmXAMX24HPVk8Qv8IXABqBvzvK+wNzKh+Oca4mK7cHnqidxCcrM1gHjgZE5q0YSevM551yztaQmvpaqKk18kroCmU9FG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJ1zrVAXoNKvmqdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSJ1zLU5dXV19DcoTVHJV6zqocYRJDhsqcz1wfUUCwqd8d641mTNnDmvWrGGLLbaoyEjgrmlabC++UuVctFtTpTCccxXgzXvpkLhOEs45FzfvYp4OXoOKeBOfc62H9+BLB09QEW/ic6718Ca+dPAmPudcq+M9+NLBa1ARb+JzrvVYtWoV0HJHAW8pvAblnHMukbwGFfFzUM45lyxeg3LOOZdIXoOK+Dko55xLFq9BOeecSyRPUM455xLJE5RzzrlE8nNQEe/F55xzySIzq3YMiZCToPYeOHBg12qM0/XGG2+wbNkyampq6qcBmDBhAkuXLmXw4MFMnz6dHj16UFNTU9T+Jk6cyJIlS+q37dq1K3vvvTcAy5Yt44033qBbt260b9+exYsXM3ToUHr37g3ApEmTWLx4cf22Xbp0YdiwYQDMmzePd999F4CDDw79SebPn88777yz0bJsb7/9NgsWLKjfX6dOndh3331Len0++eQT3nzzzY2OsXbtWl5++WU6duzI5ptvzty5c9lxxx3p378/AFOnTmXOnDkbLcvnvffeY/bs2Wy//fYMHDiw0Vhqa2t54YUXaNu2LQceeOAm6z/88EM++ugjhgwZwqBBgwru59lnnwWgTZs2DB8+vGC56dOnM2PGDLbZZhsGDx4MwIwZM5g+fTqDBg1iyJAhjcacfbwDDjiAdu1K+42a2XbfffelU6dOJW2b8dprr7Fy5Urg0/dw/PjxrFixYqNlc+bMYerUqfTr14+ddtoJgLlz5zJlyhT69u3LzjvvXPAYmc999v6yvfLKK6xevZp99tmHzp07A/Dqq6+yatUqhg0bRpcuXTYqv3DhQt566y169+7N0KFDN9lfJv699tqLbt26bbQu87kqFEvmNd12223ZeuutgYa/B/bYY4/6C4xzvxu6d+/OnnvuWfB1yXfcgQMHbjIm4ezZs3nvvfc2innFihWMHz9+o++Bcnj//feZNWvWBDPbJHBPUHlI+gNNq0VltplQplCqpSa6n1DFGMqhJrqfUMUYyqEmup9QxRjKoSa6n1DFGMqhJrqfUMUYyqEmup9QxRgyJpjZObkLPUGVUaYWlt1lPY38eSSLP49k8edROd5JwjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5Lz7nnHOJ5DUo55xzieQJyjnnXCJ5gnLOOZdInqCcc84lkieoEkk6S9I0SWskjZdUeHTPUP7gqNwaSR9KOrNSsRaIZ7SkVyUtk7RA0t8lbTr65cbbDJZkeW5HViruPDFdnCeeuY1ss7ukZyWtljRL0kWSVKmYC8Q0vcBr+88GtslXvqKfK0kHSXo0eh1N0qic9Yreo9nR6z1O0m5F7PfLkt6WtDa6/1JsT4KGn4ek9pKulDRR0kpJcyTdLanwyL9huxEF3qPCo9vG+Dyi9WPyxPNyEfut6veXJ6gSSDoRuAa4DNgTeBF4rNAHVtIQYGxUbk/gcuBaSV+uTMR5jQCuB/YHDgVqgScl9Spi2yOB/lm3p2OKsVhT2Die3QsVlNQd+DcwD9gH+AHwE+BH8YfZoH3Y+DnsBRjw10a2Oz1nu9tijDGfrsBkwuu4Os/6nwLnAmcTnuN84N+SuuUpC4Ck/YD7gLsIA5neBdwvqbQh70vT0PPoTHg/Lo3uvwhsDTwuqZhh4Hdj4/fovTLFnE9j7wfAkznxHNXQDhPx/WVmfivyBvwXuCln2XvA5QXKXwm8l7PsZuClaj+XrHi6AhuALzRQZjDhS3NYtePNiuliYHIJ5b8HLAM2y1p2ITCL6HKLJNyAC4BPsuPMU8aAr1Q71qx4VgCjsh4LmANckLVsM2A5cEYD+7kP+HfOsieBe6rxPAqU2TV6/XdvoMyIqEyfJLwf0bIxwD9K3E/Vv7+8BlUkSR2AvYEnclY9QaiN5LNfnvL/AoZJal/eCJusG6EmvaSIsg9Kmi/pBUlfiTmuYmwbNSFNk3SvpG0bKLsf8JyZZf+6/BcwgJCAqy5qbvwOcGdOnPlcI2lh1Fx7pqQk/S8PAfqR9dmPns9/KPy/AoX/XxraptK6R/fF/L+8FjULPiXpkDiDKtKB0f/vVEk3SdqykfJV//5K0oc66foAbQlNRNnmEf4Z8+lXoHy7aH9JcA1hPpiXGiizAvgx8FVCs8BTwH2STok9usL+C4wiNDueTnitX5TUu0D5Qu9FZl0SjCR8ud/USLmLgBOBw4F7gd8B58cbWkkyr2cp/yuZ7UrdpmKiH6m/A/5uZh83UHQOocb+ZeB4QlP0U2rkfHXMHge+CRxGaHr9LPC0pI4NbFP17y+f8r0Vk3Q1cCBwoJltKFTOzBYS/jEzXpPUh3Ce4c54oywY02PZj6MTvh8CpwJXVyOmMjgdeNXM3myokJn9KuvhBEltCU2Dv44zuNYsOud0J9ATOLahsmY2hZCUMl6SNJhwzvO5mEJskJndm/VwkqTxwAzgaODBasRUDK9BFW8h4VxN35zlfYFCvcfmFihfG+2vaiT9HvgacKiZfdiEXfwX2KG8UTWdma0A3qJwTIXei8y6qoqaW75I47WnfP4LdJeU+/yqJfN6lvK/ktmu1G1iFyWne4DPAIeZ2aIm7CZp/y+zgY9pOKaqf395giqSma0DxhOaYbKNJPRyyeelAuVfM7P15Y2weJKu4dPk9G4Td1NDaMpIBEmdgJ0pHNNLwPCoXMZIYDYwPd7oijIKWEv4IixVDbCG0LkiCaYRvtzqP/vR6z6cwv8rUPj/paFtYhWda7mPkJwOMbOmJssakvX/0gcYSMMxVf/7qxq9TNJ6I7T7rwNOA3YhnL9ZAWwTrb8duD2r/BBgJfCHqPxp0fZfruJz+BOhN9uhhDbmzK1rVpnLgaeyHp8KnBw9h50I56PWAT+s4vO4Cjg4eo33Bf4RPa/Me5H7HHoQvjTvBYYSzg0sA85NwOdKwFRyeohG6/4XeDfr8RcITYFDge2iz9RS4JoKx9yV8KVbA6winBerAQZF638WxXV8FOu9hB8D3bL28RRZPWAJnSFqgfMIPzZGA+uBfavxPAinQB4m9PTcK+f/Jbs3aO7//TnAcYTayW7RZ9GA46v0PLpG/y/7EToEjSAkn49z3o/EfX9V7APdUm7AWYRf3GsJNaqDstaNA8bllD8YeD0qPw04s8rxW4HbxVllxgDTsx6fCrwdfViXAa8Bp1T5eWS+8NZFXyB/A3Yt9ByiZbsTepKtIfxy/AUJ6GIOHBK9B5/Ns+5iwLIeHwm8QeiyvRKYRLj2pV2FYx5R4HM0JlqvKPY50ev9LDA0Zx/TM+Wzln0FeDd6X98hxi/1xp4Hn15eke82KmsfG/3fE87Nvke4Hmkx4bzTUVV8HpsRet/Nj17XGdHyrXP2sdHziJZV9fvLp9twzjmXSH4OyjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5gnLOOZdInqBciyZpVIHJ40zS4dWOr6WQtLekVZIGZi0bJ+n5AuVPi96DwSUc4zhJ8yR1LUPILgU8QbnW4gTClfTZt1eqGlHL8lvgVjObFeMxHiFc+PuTGI/hEsRHM3etxQQze7+YgpI6mtnauANqKSTtTRgN4+w4j2NmJulG4FeSLjezNXEez1Wf16Bcq5bVBHiQpPslfUIYeRpJ7SSNlvSupLXR5Ii/yxlwFknbSvpn1MS1QNI1ks7IbcKKHl+cs+3gaPmonOUHRxPdLZe0UtK/JA3NKTNO0vOSDpf0enT8yZK+lOd57iHpIUmLJK2WNEXS6GjdtVHTWfucbbpFx7+ikZfxNGCimb3VSLmCJF3cQFPsqKyifyVMeXF8U4/l0sMTlGst2kYJJ3Nrm7P+LsJYY18hDFYKYf6fC4G7CfPmXE6Y8fauzEbRJHb/BvYEvk8YlXxItF2TSDqaMJDqCuAUwkC93YDnJG2dU3w7wqDFVxO+tOcA90vaPmt/nyUMDrod8MPouVwNbBUV+TOwJZCb2E4GugA3NBLykTQwz1HO694umr4i97vnZjZtgv0bYYqbqZlCFuYmeyc6pmvpKjnwn9/8VukbIWHkG0Tz+Zz1v8/Zbni0/Js5y78eLa+JHp8ePf5cVpk2hLmpDBictXyjQXmjZYPZdPDR98kaiT1a1p0wB88fspaNI4z2vUPWsi0JX+rnZy37D/AR0LmB12lcnmO+DjzeyOvbN4r/9AL7LDTYauY2uMB+TwDqgP/Ls+4OYGq1P1t+i//m56Bca/ElwvQCGctz1j+U8/hIwsjPD0S/+DOeiO4PAiYQful/ZGYvZwqYWZ2kvxJG8y6JpB0INZ3Lco67ilALOihnk/fM7L2sY8+XNJ8wzQKSOgMHAL81s1UNHPp64F5JO5jZe5L2IdQKG2tKGxDdLyiw/k1CE2CuL1KglilpGHAbcL2Z/TFPkQVZx3UtmCco11pMtoY7SeRO3LYl0IEwpUU+vaP7/sC8POvzLSvGltH9LdEt18ycx4vzlFkLZM6TbU6o0X2cp1y2hwjzZZ1BmO/rTMJ0Jn9vZLvMcQp1KllhZq/lLpRUk6+wpK2ARwm1rx8U2OfqrOO6FswTlHNB7rwziwjzGA0vUH52dD+HMCldrnzTr68lJL1svXMeZ6YTHw08mWcf6wrEU8gSQlPZwIYKmdl6STcDZ0n6DXAS8Dszq21k/5l4Ny8xrk1I6kJIiAuBE81sQ4GivbKO61ow7yThXH6PE36l9zCz1/LcMgnqJWBrSZ/LbCipDfDVPPucQZhdNtvROY+nECby263AcSeW8iSiZr3ngVMkbdZI8RsIPeTuBzoCNxVxiOmERL5tKXHlkiRCp5T+wDFmltsEm20I4XVyLZzXoJzLw8zGSbqHcA7qasJFvXWETg1HAT8zs6mEcyXnAQ9KOp8wa+mZhE4Nue4FLpR0AfAyoXb2tZzjmqTvA49EPQT/SqhR9CVMiT7TzK4u8en8mDCj7UuSfkdo7tuW0NGj/tolM5sl6VHC+bq/m9lHje3YzNZJ+i/w2RJjyvUzwjTpPwAGSMo+x/SBmS2A+kT2WcI5M9fCeQ3KucJOIXR0+AphFIMHgP8lTOc9D8IXNDCS0GHiekLCmgb8Os/+Lgeui/bxMLAL8I3cQmY2ltAZoguh+/W/gN8A/Qg1tpKY2auEjhIfAdcCYwmjMeQ7L3V/dN9Y1/Js9wGHRk10TbVzdH8N4Tlm37JrmfsTmhPvbcaxXEr4lO/OxSC6uPT/AUPMbHp1oymepLsIyWxbM6srcpvuhGR3lpndGXN8fwaGmlmhc4OuBfEmPucc0Tm0GuBE4EfFJicAM1sm6Urgp5Lusph+9UrqB5yKX6TbaniCcs5BaEpbQXT9URO2vxpoS+jkMLuRsk01GDjXzP4T0/5dwngTn3POuUTyThLOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE1UpJGiXJCtwOr1AMPSVdLGmvPOvGSRpXiTgakvU6Da52LK5h0ft0cbXjcOXjg8W6E9h0XqC3K3TsnsAvouO/nrPurArF4JxLKE9QboKZvV9MQUkdzWxt3AEBmFmlkmRsKvl6pZmktoSBq2urHUs5+PtePt7E5/LKato6SNL9kj4B/hut20fSA5I+lrRa0hRJl0naLM9+viTpBUkrJC2T9IqkY6Mms2lRsZuymhdHRdtt0sQnaSdJD0n6JDruy5KOzClzcbSfHST9MzruDEkXSWqTVa6TpN9LmhyVmSvp75J2pgmieJ+X9AVJb0haC5wlaUQUz3GSbpC0OIr/D5LaRq/l85JWSnpL0v/k7HcfSf+WtCh6zh9KanQ6jGK2k3SYpNclrZH0gaQzJI2RND2rTCb+ETnbbtL0KekkSU9LWhC9pm9IOjVPbCbpUknnSZoGrAN2j9YdLOkpScuj1+RfkobmbN9W0q8lzZG0Knrtd2vsNcmJ+3OS7oo+k7Ml/VFSp5yy/SXdLmmhpLWSJko6pcD+8v2fTJd0p6RvRP8jqyU9F302u0Sfh0WS5kn6nSSvMOTwF8S1zfnHMDPbkPX4LuAewrTnmXKDCFOcjwGWA7sBFwHbAidlNpR0NvBHwvTmpxLmG9qLMK/Pv4DjgQcJU6E/Gm32Qb4gJQ0Ano+O97/AUuD7wD8lHWNmj+Vs8hBhRtvfA18ALiFMef7/ovUdgW6EqdnnAL0IzYovSdrFzObmi6MRO0bP91fAh8DiaL8Af4ie64mE6dwvJMyfdDjwW2BWtOxBSduY2UJJXQmv0yvAqOi5DyZMe15QMdtJ2oUw9ftrhPesI2F6+65A9vtfim2BB4ArgLroed4saTMz+0tO2VGE1+jHwEpgtqSjgUeAfwKZRPAz4DlJnzGzj6JlFwPnE+agegIYxqefn2LdQfhcHw/sF+1zCaHJGYXp658lTC9/PuGzcwpwh6TOZnZjzv7y/Z8QvQbbRc+jA+Fz8Lfoub9PeO0zn4cPaNpcXC2XmfmtFd4IXxCW5/Z8zvrfN7IfEf4hTyF8KfWOlncnfDE+2MC2g6NjnJZn3ThgXNbjq4BaYPusZW2BKcDrWcsujvb5rZz9TQKeaCCWtkDnKOYf5nmdBjfyOoyLnn9NzvIR0fa35ix/PVp+YNayz0TLTo0eD4sef6bE97bR7QhfqAuBLlnLtibUZqbniX9Egc9P3teF0DrTDrgJeDNnnREmNdwsZ/n7wFM5y7pHcf4herw54YfOX3LK/Sza78VFfu4vyVn+D2Bq1uP/LfC8nwTmA20b+z8BphN+pPTIWvZ/Ufmb83weninlfW4NN2/ic18C9sm6fSdn/UO5G0jqLulKSR8Aa4H1hF+kAnaIiu1P+DWe+0uzqQ4CXras82UWanr3ADWSuueU/2fO48mEml/28/iqpP9GzTK1hF/yXYGdmhjjdDObUGBdbg3vXWClmT2fswxCogB4D/gEuEHSKZK2Joekdtm3Yrcj1BrGmtnKzAILNZQXCj67RkRNV/dImkX4TKwHTiP/6/m4ma3O3pZQ07gr5/msIsz2e1BUdHegC/DXnP3dW2K4uZ+PSWz8+TgImGVm43LK3QlsAeyas3yT/5PIS2a2NOtx5j3+V065d/n0fXcRT1Buspm9lnWbkrN+Tp5t/h9wJqE5ayQhsX0/Wpdpx+8d3ef2EGyqXgVimUtIjJvnLF+c83htVmxI+gJwH/AOcDKwL+F5LMguV6J88WUsyXm8jpBE6pnZuujPTtHjpcAhhNrG9cBMhXNmX46ew2A+TQTrgfWSBje2XaQ/MC9PnPmWNSpqVvw3sAdwHjCc8HreSmg+zJX7Wm0Z3d+S+5yAY/j089S/QJylxp3v85EdZ0Oft8z6bIXe+3zve6HlTf3ctVh+Dso1xrIfRCeSv0hoSrkma/nuOdstjO4HEmovzbUY6Jdneb8oxtx/+MacBLxvZqMyCyS1Z9MvnlJY40VK3GGokX05qk0MA0YDf5W0BzCVkASyzW5sOzObTPhC7ZvnkLnL1kT3HXKW9855vB+wDTA8u1bYwIn/3NdqUXQ/mtCMlivzxZ5JBH2Bt7LW53suzbGY/DW/flnrs5X9vXdeg3Kl60g4X7M+Z/monMcvEs4VfLeBfWW64m7S+y+PZ4HP5fQaa0vodPCGmS0rYh/ZOhOa9bJ9g/DcEsfMas3sZeDnhP/bXcxsXU7t97WsWljB7aJVLwFHRZ0BAIiaAg/IOfSM6H5ozvKjcx53ju7rPxeSNif8mCnGFMI5m93yPKfXzGxiVG4ioSn2qznbn0R5PQtsJSn39TiZcA4q9ZdBpIHXoFxJzGyppJeBcyXNIdSUvk2oKWWXWy5pNHCtpL8RTsovB2qANWZ2LaFZZhFwkqTMF880M1vEpn5PSIL/lvQLYBmh192ObPplWYzHgeMk/Z5wgnwYcDY5zW7VJOkYQoJ/mNAlvwvhJPtyQoJpzna/Jlyk/YSk3xJqSBeT01RmZnMkPQuMlrSQ8OV8CqHHXrYXCe/Jn6L3pwuhZ9pCoEdjz9XMTNL3gUckdSCcY1pIqBntD8w0s6vN7JPoPbtA0nJCL758506bawzwA0KvygsITdVfJzRpn2Eb93SNhaRa4DYzK/dzSw2vQbmm+BowHvgT4R95LuGfeSNmdh3hS3ArQoL6G6Eb7rRofR3hJPrmhGadVwldwjdhZrOBAwnNOn8mdGfuBRxtZo834TncBFxKqIH9HTgqOvbShjaqsPeA1YTaz2OEc3+1wEgza+jcXqPbmdk7hOfcmXAu7grgGuCpPPs7BXiZcM5xDDCTkODqmdkCQoebtoT35nLgZkKngqKY2VhC54Qu0bb/An5DaFbLTsgXA5cRaryPAkdQ4HPTVFHnkYMJCfAKQvf3PYBv2KZdzOPSloTW6CtFZt506pwLJI0hdK0eXOVQnPMalHPOuWTyBOWccy6RvInPOedcInkvvjwkvUG4WryoUb6dc8412fbAAjPbM3eFJ6iINh45e9cePXp0qKmpGViovHPOueabMGECS5fm7zzrCSq/1TU1NR3GjRtX7Ticc65FGzFiBM8++2ze1ipPUBEzG5H5O6pNHVy1YJxzznkvPuecc8nkCco551wieYJyzjmXSJ6gnHPOJZJ3kojkdDOvqVIYzjnnIl6DaiXMjOuuu47XX3+92qE451xRvAYVaendzCdOnMjZZ5/NIYccwtNPP13tcJxzrlFeg2olMldqr1q1qsqROOdccTxBtRK1tbmzmzvnXLJ5gmol1q9fX+0QnHOuJJ6gWglPUM65tPEE1Up4E59zLm08QbUSXoNyzqVNi05Qkh6StETSA9WOpdo8QTnn0qZFJyjgGuCb1Q4iCbyJzzmXNi06QZnZOGB5teNIAq9BOefSpioJStJBkh6VNEuSSRqVp8xZkqZJWiNpvKThVQi1xfAE5ZxLm2oNddQVmAzcHt02IulEQvPcWcDz0f1jknY1s5lRmQnkj/8IM5tdTBA5A8Rmqylm+zTxJj7nXNpUJUGZ2VhgLICkMXmK/AgYY2Y3RY/PlnQk8D1gdLSPmvgjbTm8BuWcS5vEDRYrqQOwN3BVzqongP3Leaw8A8S2WJ6gnHNpk8ROEn2AtsC8nOXzgH6l7EjSk8D9wFGSPpa0X3lCTB9v4nPOpU3ialDlZGaHVzuGpPAalHMubZJYg1oIbAD65izvC8ytfDgtgyco51zaJC5Bmdk6YDwwMmfVSODFGI87InMDJsR1nGrxJj7nXNpUpYlPUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZwIDgL/EGNO4rIc1cR2nWrwG5ZxLm2qdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFsIT1DOubSp1nVQ4wA1UuZ64PqKBNQKeBOfcy5tEncOysXDa1DOubRp0d3MS5Hnot2DqxZMDDxBOefSxmtQrYQ38Tnn0sZrUBHvxeecc8niNahWwhOUcy5tvAYVaennoLyJzzmXNl6DaiW8BuWcSxuvQUVa+jkor0E559LGa1CthNegnHNp4zWoSEs/B+UJyjmXNl6DaiW8ic85lzaNJihJ7SV9UdKQSgTk4uE1KOdc2jTaxGdm6yX9FTgSmBZ/SNXR0jtJeIJyzqVNsU18HwJbxhmIi5c38Tnn0qbYBPUb4AJJW8QZTDW19Bl1vQblnEubYnvxHQr0AqZJehmYA1jWejOzU8sdnCsfT1DOubQpNkEdCKwHFgDbRbdstskWLlG8ic85lzZFJSgz8x58Kec1KOdc2vh1UK2EJyjnXNoUnaAkdZH0f5IekPSMpB2i5SdJ2jm+EF05eBOfcy5timrik7Q1MA7YCngXGAp0i1YfAhwOnBZDfBXj10E551yyFFuD+h2wFtgR2BtQ1rpngeFljsuVmSco51zaFNuLbyTwXTObIaltzrpZwMDyhlV5LXmw2Lq6Ourq6qodhnPOlaTYGlQHYHmBdT0AP8GRYH7+yTmXRsUmqInAlwus+zwwvjzhuDh4855zLo2KbeL7LfCAJIC7o2W7Svoi8B3g2Bhic2XiNSjnXBoVe6Hug5LOAq4Avh0tvp3Q7Pe/ZvZ4TPG5MvAalHMujYqeUdfM/iLpDmA/wsjmi4AXzazQuSmXEJ6gnHNpVNKU72a2EngypljKKrp26w5CMq0FfmVm91c3qurwJj7nXBoVe6HuXOCZzM3M3os1qvKoBc4xswmS+gHjJY2Nkmyr4jUo51waFVuDuoUwYsR1QFtJs/k0YT1tZjNiiq/JzGwOYVoQzGyupIWEKUNaXYLyGpRzLo2K6mZuZheY2f7A5sAXgHuAXYEbgQ8lfVDKQSUdJOlRSbMkmaRRecqcJWmapDWSxktq8mgVkvYG2prZR03dR5p5Dco5l0ZNOQc1VtKHwAzgeELNapsSj9sVmEzoCXh77kpJJwLXAGcBz0f3j0na1cxmRmUmFIj/CDObnbWvXtExTs9znHEF4qsp/qkknyco51waFXsOalvCrLqHRLe+wDuEJr4/RfdFM7OxwNho32PyFPkRMMbMbooeny3pSOB7wOhoHzVFxN0ReBi4wsxeLCXGlsSb+JxzaVRsDep9YBWhae9HhI4S8+IISFIHwoC0V+WsegLYv4T9CBhDOEd2R74yecbfa5G8BuWcS6Nihzp6A+hEaNL7KvBVSbvGFFMfoC2QmwDnAf1K2M8BwInAcZImRLfdyxRjqniCcs6lUbEjSewtqSdhhO9DCedz/iBpAWGeqKeymuMSwcyex2cMBryJzzmXTkV/gZvZJ2b2iJn9wMw+AxwITCLUqP5SxpgWAhsI57my9QXmlvE4rYbXoJxzaVR0Lz5JWxE6SGQ6S2wN1AGvUmIniYaY2TpJ4wlzUGWP/DAS+Fu5jpPnuCMyf7e0+aA8QTnn0qjYXnzvAdtGD98kJIpngGebMhafpK7A9tHDNsAgSTXA4qgb+dXAHZJeAV4AzgQGUN6aWm5M47Ie1sR1nGrwJj7nXBoVW4N6jJCQxpnZkjIcdxgb17ouiW63AaPM7D5JvYELgf6Ea6aOSuKIFWngNSjnXBoV20ni/8p5UDMbB6iRMtcD15fzuI0cb0Tmb2/ic8656ivlHFRnwlxQBxPGtFtMqAX9PzNbHU94leNNfM45lyxF9eKLRgN/HfgjoXmuc3R/HfC6pNwedy5BvAblnEujYruZ/4YwUOxwMxtiZvuZ2RBCV/OewJUxxVcxZjYicwMmVDmcsvIE5ZxLo2Kb+D4P/MzMXsheaGYvSrqQMBV8qnkTn3POJUuxNaiuwOwC6z6O1ruEyq5BmVkVI3HOueIVm6CmAN8osO4U4N3yhFM93sTnnHPJUmwT31XA7VFniLsJM9X2A04CDqdw8nIJ4E18zrk0KvY6qDujbua/BG7OWjUPONPM7o4juEpqyeegvAblnEujoq+DMrMbJd0M7MSn10FNMbO6uIJz5eEJyjmXRqVO+V5HmEm3xWnJI0l4E59zLo2Knm5D0g6SbpM0VdLK6H6MpO0b39pVk9egnHNpVOxo5iOAscBq4J+Ec099gS8AJ0o60syejSlG10xeg3LOpVGxTXy/I0z7/j9mtiKzUFI34Ilo/bDyh1c53knCOeeSpdgmvl2BK7OTE0A0F9SVwG7lDsyVjyco51waFVuD+hjoUGBdB2BWecKpHu8k4ZxzyVJsDepK4BJJA7IXShoI/AK4rNyBufLxGpRzLo2KrUEdDHQHPpT0Mp92kvhc9PeIqCMFgJnZqWWO0zWDJyjnXBoVm6AOBGoJQxxtE92IHgMMzyrro5EmjDfxOefSqNihjobEHYiLj9egnHNpVPSFui69PEE559KopKGOACS1Ad4HvmBmb5U/pOpoyddBeROfcy6NmlKDEjAY6FjeUFxcvAblnEujkmtQLVVLvg7KE5RzLo38HFQr4E18zrk0KjlBmdkG4FvAtPKH4+LgNSjnXBo1qQZlZreZ2RJJvcsdkCs/T1DOuTQqKkFJOl3ST7Ie7y7pY2C+pNck9YstQtds3sTnnEujYmtQZxPmgsq4GvgEOAfoAfyyrFG5svIalHMujYrtxbcN8C6ApB6EHm7HmdlYSYuAy2OKr0kk9QSeJDy/dsA1ZnZTVYOqIk9Qzrk0KjZBtQHqor8PJIy3Ny56/BGwZXnDarblwEFmtkpSF2CypAfNbFG1A6sGb+JzzqVRsU187wFHR3+fBLxoZquixwOAxeUOrDnMbENWfB0JFxeriiFVldegnHNpVGyCugo4R9JC4GTg2qx1hwATiz2gpIMkPSppliSTNCpPmbMkTZO0RtJ4ScPz7Kqx4/SU9CZhssXfmtnCUvfRUniCcs6lUbGjmd8taSawL/Cqmf0na/U84NESjtkVmAzcHt02IulE4BrgLOD56P4xSbua2cyozIQCsR9hZrOjmD8B9pDUF3hQ0gNmNi/nWOMKxFhTwvNJPG/ic86lUdFDHZnZ84SEkbv8F6Uc0MzGAmMBJI3JU+RHwJisTg1nSzoS+B4wOtpHTQnHmxfVpIYDD5QSa0vhNSjnXBoVex3U/pKOyXrcW9I9kiZJukpS23IEI6kDsDfwRM6qJ4D9S9hPX0ndor97AAcBU3LLmdmIzK3JQaeA16Ccc2lU7DmoKwiJI+O3wFHAVELN5vwyxdMHaEtoNsw2DyjlYuBtgOeimtNzwLVmNqk8IaaLmbFhw4Zqh+GccyUrtolvF+BKAEntga8A55jZrZLOAc4AfhVLhE1gZq9Q4nmkljqauTfvOefSqtgE1RVYFv39WaAL8I/o8evAoDLFsxDYAPTNWd4XmFumY+TVUics9OY951xaFdvENwvYI/r788BkM5sfPd4cWJV3qxKZ2TpgPDAyZ9VI4MVyHKO18RqUcy6tiq1B3QNcJmkE4dxTds+9vQgX8hZFUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZxIuBv5Lscdwn/IE5ZxLq2IT1MXAGuBzhA4Tv89atwdwfwnHHAY8k/X4kuh2GzDKzO6LpvG4EOhPuGbqKDObUcIxXMSb+JxzaVXshbobgEsLrDuulAOa2TgaGXbIzK4Hri9lv83lnSSccy5Zir5QF0DSUMIXdy/C+HvjzOytOAKrtJbaScITlHMurYpKUJLaAWOAr7Fx7cck3U1omvOLbRLIm/icc2lVbC++XwBfBS4ChgCbRfcXASdG96mWM6rEhCqHUzZeg3LOpVWxTXynAL82s+zzUDOAS6Nhjr7Fxj37Useb+JxzLlmKrUENoPB1SC9G610CeROfcy6tik1Qs4EDCqzbP1qfai29iU9qtfM1OudSqtgmvruACyTVRX/PIQzeehJwAdE4fS55Mgmqffv2rFu3rsrROOdc8Uq5UHdbwgW1F2ctF2GUiV+WNaoqaKnnoDJNfO3atfME5ZxLlWIv1K0FTpZ0KWFupcx1UP9pKddBtVTZNSjnnEuTRhNUNIngXMK1To8CLTIhtfSRJDxBOefSptFOEtEI47WEsfhcymQ38TnnXJoU24vvYcIkhS5lvAblnEurYn9WPwb8UdIDhGQ1B7DsAmb2dHlDc+XgCco5l1bFJqi/RffHR7cMI/TkM6BtGeOquNbQi88559Kk2G+tQ2KNwsXGa1DOtQzr169n4cKF9O/fv9qhVEyx3cyfjTuQamupvfgyNShPUM6l2+mnn84dd9zB+++/z5AhQ6odTkUU1UlC0o6S8n5hSzpI0g7lDcuVS6YG5U18zsXnz3/+M8cccwxr166N7RhvvfUWdXV1zJw5M7ZjJE2xvfj+AHyhwLpj2HgKeJcg3sTnXPyuuuoq/vnPf/LWW/FdJrps2bLY9p1UxSaoYcB/Cqz7D7BPecJpHd5//31WrlxZkWN5E59z8Vq7di3Tp08HwMwaLtwMnqAK60bhC3XXAz3KE07LN3HiRHbaaSfOPvvsihzPm/jgqaee4qCDDuKhhx6qdijNYmZMmzYt1i9BV7oPP/yQurq62I+zfPny2I+RNMUmqA+BwwqsOxSYXpZoqkjSuMyNGLuZv/zyy9TV1fHUU0/FdYiNeBMf/PWvf+W5557j+OOP55RTTmHx4sXVDqlJxowZw7bbbsstt9xS7VBclqlTp8Z+jA0bNlSs1SVJik1QtwM/lPR9SR0BJHWU9H3gHOC2mOJrcd5//30AZs6cySeffBL78byJb+Nml7vuuovjjz++gdLJlWlGqtSPG1ecSiSo1lh7guIT1FXAo8C1wEpJ84GV0eNHaQHzQVVqwsJMggKYNGlSXIep11gT30MPPcR7770XexxJ8OMf/xiA559/PtUzDb/55pvVDsFlqcT/jyeoBpjZBjP7CnA48FvCcEe/AQ41sxPMLP4G2BYiO0FNnDgx9uM11MQ3ZcoUjj/+eL7zne+U7XivvPIKs2cnc4LlHXbYgQEDBrBhwwZmzZpV7XCabMqUKaxataraYbhIJWpQrbGDBBRfgwLCeHtmNtrMvmtm55vZuJjiapHq6uoqnqAaauJbunQpAO+++25ZjvX222+z7777MnDgwLzrFy5cyAMPPMDq1avLcrymGDx4MAAzZsyI7RhvvvkmU6ZMiW3/dXV1TJ48Obb9u9J4gopPSQnKNc+cOXM2+nKuZA2qoV58CxYsKMsv8saani644AJOOOEEdtppJ+68886K9HzKlUlQmfM55bZmzRoOOOAADj300Fj2n+HNfMmwfPly5syZU5HjtEaeoCooU3vaYYcw8MakSZNi/5IuthdfJa5Oz3QK+eijj/jGN77Bt771rdiPmSvuBLVgwQJWrlzJ7NmzWbFiRSzHAJgwYUKTt73uuuu44ooryhdMC/HHP/6R4447rqTzk5U6f+s1KBe7TIL63Oc+x4ABA1i5ciXTpk2jrq6O22+/PZYPe7G9+OJs8sp15JFHAqHLfaXFnaCWLFlS//e8efNiOQY0rwZ19tlnM3r06Fb7q7yQ6667jkceeaSkJrtKNO+BJ6gWSVJnSTMkXVXtWODTBLX99tvzmc98BgjNfLfeeiunnnoqP/rRj/JuN2XKFK677jreeOONki/SLPZC3UomqP32269ix8q1zTbbAPElqOxrrObOnRvLMSAkqObWvtPckzEOmRp+Kf9jlUpQrfXHRItOUMAFQOV/pheQL0G9/vrrXH755UC4Ij2fH//4x5x99tnstddebLXVVtx7771FH7PYJr5KJqg4ffLJJ9x55531zztX3DWoSiWoFStWFPy8uKbJdBoqhTfxxavY0cz7SBqUs+wMSddKOiae0JonGmF9Z8JswImQ+TBnJ6hrr722/oum0Bda5h+na9euzJ49mxtuuKHoY+Y28RX6dZjvHJSZ8c477/D888/z+OOPb9R8lVRnnnkm3/jGN3jkkUfyrh80KHyMP/roo1hqEJVKUOAdJcppzZo1rFu3ruTtvIkvXsXWoG4Fzss8kPRz4M/AycAjkk4s9oDR9ByPSpolySSNylPmLEnTJK2RNF7S8GL3n+UqYHQTtouFmW3USSKToLJ/tS1evLjB4fp/+tOfApTUtNOcJr7Ro0ez6667Mnz4cD7/+c/z9a9/vejjVsOSJUt4+OGH6//Op1OnTvTv35/a2tpYrteqRIJq0yb82zano0TanH322QwYMICjjjqKSy65hPnz55d1/01JAGZWn6C22mqrssaTy5v4GjYMyB5f5UzgMjPrDfwJyH/yJL+uwGTgB8AmF8REye4a4DJgT+BF4LHsGpykCZIm57kNiNZ/EZhqZpX5eVOEefPmsXLlSnr16sXmm2/OTjvtVF+rGTRoEP369asvV07NaeLLTB2w9dZbAyT2AtyM+++/v6j5eAo18z355JOce+65LFiwoMkxVCJB7bTTTkDrqUGZGbfeeitz5szhscce4+KLL+ZXv/pVWY/RlOa9hQsX8sknn9C9e3e22GKLssaTy2tQDesFzAOQNBTox6fj7z0M7FTsAc1sbHSR7wNAvqrAj4AxZnaTmb1jZmcDc4DvZe2jxsyG5rllvkE/B5wkaTqhJnW6pItyD5Q9QGzcg8Vmn38C6NChA7vtthsA5513Xv0vsHJfU7FhwwYA2rZt22C5WbNmFWzyOv3008saU1xuv/32osrlJqgPPviA4447jpEjR3L11Vc3a9TzSiSompoaAN54441Y9p80c+fOZdWqVfTs2ZNzzjkHKH+NoikJKlN72nHHHZFU1nhyeYJq2CIgU4c9FJhtZpmzg+1L2E+DJHUA9gaeyFn1BLB/sfuJRrvY2swGAz8GbjKzX5YjxqbKTVAQrrv41a9+xWmnnVZfg4rrS62xf6C0D//zwQcf8MILLxRVNjtBLVmyhH333Xejc1ZNOReRUYkEtf3229O7d28+/vhjnn322ViOkSSZ/50dd9yRPfbYI5ZjNCVBZVoYdt5553KHswlv4mvYk8DFkv4XOJdQa8rYGShXF7A+QFui2lqWeYRaW1nlDBAbq3wJavjw4Vx44YW0b9+e/v37A+WvQZUiLT35li5dukkvvTvvvLPo7bOHO3rwwQdZtGgRe+21F1/+8pdLjiW300klElTbtm35v//7P4CyN3UlUb7/nXJrSoLKNLHGlTSzJa0G9eCDDzJy5MjYOwIVm6B+CnwEXA58AFySte7rwPNljqtszGyMmf24gsfjiSee4Cc/+Ul98xpsOopErrhrUMVIQ4L65JNP6Nmz50ZfVmbGHXfcAXx6nVNDsmtQd999NwDf//7369+DYtXV1bHPPvvwhS98oX5ZdoKaN29ebCOFnH322XTr1o2nnnqKl156KZZjJEVrTFA333wzhx12WP1oJI0lqLq6Oi6//HL++9//lj2WfG688UaefPJJbrzxxliPU+xo5vPMbKSZdTOzQ81sYdbqwwkdHsphIbAB6JuzvC9QvW/uEkji+9//PlddddVGIyVkPsyFEpTXoIqTeR2zu8XPnj2bDz74gJ49exY1Bl4miU2YMIFnnnmGDh06NGmOqOXLlzN+/Hj++c9/1p+/y05Q69evj61r/uabb14/K/Ovf/3rWI6RFElMUHV1dfVjacaRoG677Taefvrp+mbrxhLUSy+9xPnnn8+FF15Y9ljyWbgwpID7778/1uM0+9yRmS0zs6Y32m+8r3XAeGBkzqqRhN58qXD00UcD8M9//hOAadOm8e6779K9e3f22muvvNt4DarpMjXVbt26NdoZBD69Fmrx4sWYGUcffTQ9e/Zs8vHNrP59yySoAQMGAPG+n+eccw6dO3dm7NixjB8/PrbjVMKCBQs488wz8/ZM/OCDDwDYbrvtYjt+qQlq+vTpLF++nH79+rHllluWPZ5M03HmB2tj56Ay3e7XrFlT9ljyySSoyZMnl202hHyKTlCSjpR0i6QnJP0n51b0mVpJXSXVSKqJjj8oepzpRn41MErSaZJ2kXQNMAD4SwnPq6qOOuooAMaOHQvAY4+Fa4VHjhxZsLu316AqZ7PNNtuoOe9rX/tas/c5e/Zs1q5dy8qVK2nbtm19TTnOBLXFFltw6qmnAp/+GEqrs88+mxtuuKG+h2JG9vWDSapBVer805w5c1i7dm2jl09U+iL6TIICeOCBB2I7TrEjSfwUGAscA3QhNMNl30ppaB8GvBHdNiOcz3oD+CWAmd1HmEb+QsLMtgcCR5lZar49Dz74YLp06cKbb77Jxx9/XJ+oMokrn2rWoDbbbDOgMiOaJ0XmPFTXrl055pjmD4Yye/bs+i+JXr161f/giPv9zHxu0j6uXqaWlGvRokUsXbqUbt26xXqtUamdECqZoIrpwVfJBLV69WpWrlxZ/zjOZr5ia1D/C9wADDCzA8zskNxbsQc0s3Fmpjy3UVllrjezwWbW0cz2NrP/lPa0SlfOKd87duzI4YcfDoTeLk8//TTw6Sje+WQnqFIHhG2uzDmZmTNnVvzY1ZJJUMcff3x9gm6OWbNm1Tfv9erVKxFNti1Bdu0pzmuNklyDSlqCWrRoEQB9+vShR48eTJw4MbYhn4pNUN2B+81sQ6MlU6rcF+pmzkNdeumlrF69mj333LP+vEQ+nTp1omfPnqxfv36jE+2V0L17d3r27Mnq1aubNYpCmpx88snssssunHvuuWXZ3+zZs/MmqGo22bYElWjeg/gTVFNruLNnzy6qdpcZib0SMs17/fv359hjjwXia+YrNkH9izA6gyvS5z//eeDTk5cNNe9lVPNLLVOLKuU81DPPPJPa81Zf+MIXePvtt+vHRGyuQgnKa1DNk2n6a0qCWrBgQdEtAqUkqGXLljFt2jQ6duxYP+xUQ6ZOnUr79u2b9GNozpw5RSWoStagMgmqT58+nHDCCUB8zXylNPEdJWm0pL0lbZt7iyW6CipnEx+EwSOzf11lElZDKnXeoqFjFzsW4IQJEzj00EPrm8paO2/ii0emBlVqD77HH3+cLbfcktNOO62o8qUkqEz38t12263RQZghjBgDcPXVVxd9jIykJ6gjjjiCYcOGcfTRR2903We5NP7qBgYsBy4FCl100Xj/3gSLmvYyasqxz6OPPpo333yTzTffnH333bfR8tWsQRXTPTvbpEmTYooknbwGFY+mNvFdc801ANx6663ccsstjZYvJUFVcgSJNWvW8NFHHzVarloJqmPHjrz66quxHavYBDWGMBbe74F3gbJc99TSfe1rX+N3v/sd3/zmN4v6pVXNGpRrHk9Q8UjiOahKJigIM2o3phrnoPr06RP7sYpNUIcA3zezMTHGUlXZ4/FFtamDm7vPoUOHsmjRIjp16lRUeT+xnl5LliypH2y3V69e9OnThzZt2rBo0SLWrVtHhw4dqhxh+ixdupSFCxey2Wab1f94i8P69etZvXqTmX8KyrQeJClBVasGFbdiz0EtYNMBXF0RunTpUnTzmdeg0m3y5MlASFBt27atH2Gg3JPrtRbZI0hkJmmMQ6nXQGWuF9x228qcem8sQZlZ1bqZx63Yd/2PwFmS4vuUOK9BpVxm+oVevXoByRi+Ks2a2kGiVKU0723YsKG+I1Gpgws3Ve7EmrlWr17drCliSpXEJr7NgaHA25L+DeSmazOzX5Q1sgqLo5NEqbwGlW6ZZqJSE9Srr77Kueeey7XXXluxZqOm+tvf/saiRYv47ne/G/uxMheoZl7PuJSSoBYsWMCGDRvo06dPxZptGxsRv6nnn2pra5k3bx4DBw4sabskJqgLsv7eMc96A1KdoJLAa1AtQ6kJ6qCDDmLNmjUcffTRfPzxx7HH1xxf+cpXAPjSl74U+zTnGXHPVltKgsr8bzZ00X2lNbV574gjjuCZZ57hhRdeYP/9i54Ptj5B9e7du0nHLUWx0220aeSW6i7mUP7roJqiV69etG/fnqVLl5Z00tYlSyZBZf6BGxsZJDMCdaUH/GyOVatWVTuEsiklQc2ePRsg1k4bpWrq5+aZZ54B4L777ttknZlx1VVXbTJLtZklq5OEpA6SHpJ0UOzRtHKS/LxFykmiR48eALGe2Hfl05QEVY0aVKHOVnH8sHnsscf4yU9+woEHHrjR8lWrVrFmzRo6depE586dy37cXI3+B0VzNB1eTFnXfH37hrkaix3RwSVLz549S77o2VVXU5r4qlGD6t69e97lcVwDVeji4OzaU9xNr1D8OagXCGPxjYsvlOpKQicJoP6aqfXr11crBNcMcZ/Qd+WXlhpU9+7d89aWWuo1UFB8gjoXeFjSCuBhYA6hY0Q9MytlTijnWoy2bdvWj0PmCSp9SrkOKok1KE9QkBl47ZrolstK2FcixTGShGsdunTpQl1dHStWrPAElUJJrkFJqh+RvVu3bnnLeIIKs922jpnsnGuCgQMHMmXKFE9QKZTkc1BbbLEF8+fPp1OnTrRv3z5vmZY6Dh8UmaDM7OKY43Au1QYMGOAJKqWKTVAbNmyo711bqVEk+vfvz/z58ws270H1ZtOtBO+Z14q1lundKyFzNb4nqPQpNkEtXLiwfhSJjh07xhxVkGlKLNS8By27ic8TlHNlsPvuuwOw4475BlpxSVZsgqrGRbqZYyWlBpXIJr7WICndzNOs1OsiWlIN7oc//CGHHnooe+21V7VDcSXKJKhu3brVj/+XTzW6mG+99dZAqJnX1tbmLdPqz0E5V06VuMCv0tq3b8+wYcOqHYZrgkyC6tGjR4MJqhpdzEeMGMHatWs5+uijufDCC/OWqUYNqhLj8IEnqHrezdy51mfDhg2sWLECaPg8D1SnBtWuXTsuv/zyguvXr1/PypUrKxaPn4NyzrkKydSYunXr1ujYidW8SLeQStaesgeKrVQNyhOUc67Vym7ea0w1hzkqpJLnn5YvX8769evp0qULm222WUWO6QnKOddqlZKgWnsNqtLNe+AJyjnXiqW9BpVJUJlBpuNUymtVLp6gnHMVNXv2bE466SReeeWVaodS9JduNUaRKEYmQW2++eYVO2Yl5znzBOWcq6gzzjiD++67j3333bfaoTB//nyg8ZP+mVEkevfuXbFRJIqROQdVyQRVSS02QUmaLmmipAmSnql2PM654OOPP652CPU++OADALbddtsGyyVxqnf4tAbVs2fP6gYSk5Z+HdT+Zrai2kE455Ipk6C23377BsslsYMEVKeJr5JabA3KOeca8/777wONJ6i1a9cCYe6vcps1axZPPvlkk7b1Jr4yk3SQpEclzZJkkkblKXOWpGmS1kgaL2l4Ew5lwLOSXpX09WYH7pxrUcysPkFtt912VYtjq622YuTIkTz77LMlb+tNfOXXFZgM3B7dNiLpRMKsvWcBz0f3j0na1cxmRmUmkD/2I8xsdvT3gWY2S1J/4ElJk8xsYs6xxhWIsabUJ+WcS5fFixezdOlSunXrxhZbbFHtcHj11Vc5+ODSRljL1KA8QZWJmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkf7qCniOLOi+zmSxgJ7ARMb3so511pkN++ldQDjDRs2ABScbTftEnUOSlIHYG/giZxVTwD7l7CfLpK6RX93BQ4F3sotZ2YjMrcmB+2cS6UkNO+5hiWtF18foC0wL2f5PODwEvbTF3go+lXUFrjJzF4tS4TOuRah2B58rnqSlqDKwsw+BPaodhzOueQqtgefq55ENfEBC4ENhBpQtr7A3MqH45xrqbyJL/kSlaDMbB0wHhiZs2ok8GLMx84+HzUhzmM556rPm/iSr+JNfFGnhcwnog0wSFINsDjqRn41cIekV4AXgDOBAcBfYo5rXNbDmjiP5ZyrrmXLljF//nw6deqUqNHJ3caqcQ5qGJA9Nt4l0e02YJSZ3SepN3Ah0J9wzdRRZjaj4pE651qk7DH4Kjk6tytNNa6DGgc0eNGBmV0PXF+RgJxzrY4376WD/3RwzrU63oMvHVpkN/OmyL5YNzofVdqYI8651PAefOngNSjnXKvjNah08BpUxHvxOdd6zJsXBqsZOHBglSNxDfEalHOu1fIefMnmNaiIn4Nyzrlk8Z8PzjnnEslrUBE/B+Wcc8niNSjnnHOJ5DWoiJ+Dcs65ZPEalHPOuUTyBOWccy6RZGbVjiFxJH3co0ePgTU1NRU/9htvvMGyZcuoqamhR48eAEyYMIGlS5cyePBgpk+fTo8ePSg2tokTJ7JkyZL6bbt27cree+8NhCkH3njjDbp160b79u1ZvHgxQ4cOpXfv3gBMmjSJxYsX12/bpUsXhg0bBoQLHd99910ADj44tIbOnz+fd955Z6Nl2d5++20WLFhQv79OnTqx7777lvT6fPLJJ7z55psbHWPt2rW8/PLLdOzYkc0335y5c+ey44470r9/fwCmTp3KnDlzNlqWz3vvvcfs2bPZfvvti7qAs7a2lhdeeIG2bdty4IEHbrL+ww8/5KOPPmLIkCEMGjSo4H6effZZIFyTM3z48ILlpk+fzowZM9hmm20YPHgwADNmzGD69OkMGjSIIUOGNBpz9vEOOOAA2rUrrZU/s+2+++5Lp06dSto247XXXmPlypXAp+/h+PHjWbFixUbL5syZw9SpU+nXrx877bQTAHPnzmXKlCn07duXnXfeueAxMp/77P1le+WVV1i9ejX77LMPnTt3BuDVV19l1apVDBs2jC5dumxUfuHChbz11lv07t2boUOHbrK/TPx77bUX3bp122hd5nNVKJbMa7rtttuy9dZbAw1/D+yxxx707Nlzo2WZ/6nu3buz5557Fnxd8h134MCBm4yoMXv2bN57772NYl6xYgXjx4/f6HugHKLnMMvMtspd5wkqD0lvAFsA75e4aU10P6Gc8VRBTXQ/oYoxlENNdD+hijGUQ010P6GKMZRDTXQ/oYoxlENNdD+hijGUQ010P6GKMUCYH3CBmW2SWT1BlVGmq3p2h4s08ueRLP48ksWfR+X4OSjnnHOJ5AnKOedcInmCcs45l0ieoJxzziWSJyjnnHOJ5L34nHPOJZLXoJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0ieoEok6SxJ0yStkTReUuHRPUP5g6NyayR9KOnMSsVaIJ7Rkl6VtEzSAkl/l7Tp6JcbbzNYkuW5HVmpuPPEdHGeeOY2ss3ukp6VtFrSLEkXSVKlYi4Q0/QCr+0/G9gmX/mKfq4kHSTp0eh1NEmjctYreo9mR6/3OEm7FbHfL0t6W9La6P5LsT0JGn4ektpLulLSREkrJc2RdLekwiP/hu1GFHiPCo9uG+PziNaPyRPPy0Xst6rfX56gSiDpROAa4DJgT+BF4LFCH1hJQ4CxUbk9gcuBayV9uTIR5zUCuB7YHzgUqAWelNSriG2PBPpn3Z6OKcZiTWHjeHYvVFBSd+DfwDxgH+AHwE+AH8UfZoP2YePnsBdgwF8b2e70nO1uizHGfLoCkwmv4+o8638KnAucTXiO84F/S+qWpywAkvYD7gPuIgxkehdwv6TShrwvTUPPozPh/bg0uv8isDXwuKRihoHfjY3fo/fKFHM+jb0fAE/mxHNUQztMxPeXmfmtyBvwX+CmnGXvAZcXKH8l8F7OspuBl6r9XLLi6QpsAL7QQJnBhC/NYdWONyumi4HJJZT/HrAM2Cxr2YXALKLLLZJwAy4APsmOM08ZA75S7Viz4lkBjMp6LGAOcEHWss2A5cAZDeznPuDfOcueBO6pxvMoUGbX6PXfvYEyI6IyfZLwfkTLxgD/KHE/Vf/+8hpUkSR1APYGnshZ9QShNpLPfnnK/wsYJql9eSNssm6EmvSSIso+KGm+pBckfSXmuIqxbdSENE3SvZK2baDsfsBzZpb96/JfwABCAq66qLnxO8CdOXHmc42khVFz7ZmSkvS/PAToR9ZnP3o+/6Hw/woU/n9paJtK6x7dF/P/8lrULPiUpEPiDKpIB0b/v1Ml3SRpy0bKV/37K0kf6qTrA7QlNBFlm0f4Z8ynX4Hy7aL9JcE1hPlgXmqgzArgx8BXCc0CTwH3STol9ugK+y8witDseDrhtX5RUu8C5Qu9F5l1STCS8OV+UyPlLgJOBA4H7gV+B5wfb2glybyepfyvZLYrdZuKiX6k/g74u5l93EDROYQa+5eB4wlN0U+pkfPVMXsc+CZwGKHp9bPA05I6NrBN1b+/SptO07Uokq4GDgQONLMNhcqZ2ULCP2bGa5L6EM4z3BlvlAVjeiz7cXTC90PgVODqasRUBqcDr5rZmw0VMrNfZT2cIKktoWnw13EG15pF55zuBHoCxzZU1symEJJSxkuSBhPOeT4XU4gNMrN7sx5OkjQemAEcDTxYjZiK4TWo4i0knKvpm7O8L1Co99jcAuVro/1VjaTfA18DDjWzD5uwi/8CO5Q3qqYzsxXAWxSOqdB7kVlXVVFzyxdpvPaUz3+B7pJyn1+1ZF7PUv5XMtuVuk3souR0D/AZ4DAzW9SE3STt/2U28DENx1T17y9PUEUys3XAeEIzTLaRhF4u+bxUoPxrZra+vBEWT9I1fJqc3m3ibmoITRmJIKkTsDOFY3oJGB6VyxgJzAamxxtdUUYBawlfhKWqAdYQOlckwTTCl1v9Zz963YdT+H8FCv+/NLRNrKJzLfcRktMhZtbUZFlDsv5f+gADaTim6n9/VaOXSVpvhHb/dcBpwC6E8zcrgG2i9bcDt2eVHwKsBP4QlT8t2v7LVXwOfyL0ZjuU0MacuXXNKnM58FTW41OBk6PnsBPhfNQ64IdVfB5XAQdHr/G+wD+i55V5L3KfQw/Cl+a9wFDCuYFlwLkJ+FwJmEpOD9Fo3f8C72Y9/gKhKXAosF30mVoKXFPhmLsSvnRrgFWE82I1wKBo/c+iuI6PYr2X8GOgW9Y+niKrByyhM0QtcB7hx8ZoYD2wbzWeB+EUyMOEnp575fy/ZPcGzf2/Pwc4jlA72S36LBpwfJWeR9fo/2U/QoegEYTk83HO+5G476+KfaBbyg04i/CLey2hRnVQ1rpxwLic8gcDr0flpwFnVjl+K3C7OKvMGGB61uNTgbejD+sy4DXglCo/j8wX3rroC+RvwK6FnkO0bHdCT7I1hF+OvyABXcyBQ6L34LN51l0MWNbjI4E3CF22VwKTCNe+tKtwzCMKfI7GROsVxT4ner2fBYbm7GN6pnzWsq8A70bv6zvE+KXe2PPg08sr8t1GZe1jo/97wrnZ9wjXIy0mnHc6qorPYzNC77v50es6I1q+dc4+Nnoe0bKqfn/5dBvOOecSyc9BOeecSyRPUM455xLJE5RzzrlE8gTlnHMukTxBOeecSyRPUM455xLJE5Rr0SSNKjB5nEk6vNrxtRSS9pa0StLArGXjJD1foPxp0XswuIRjHCdpnqSuZQjZpYAnKNdanEC4kj779kpVI2pZfgvcamazYjzGI4QLf38S4zFcgvho5q61mGBm7xdTUFJHM1sbd0AthaS9CaNhnB3ncczMJN0I/ErS5Wa2Js7juerzGpRr1bKaAA+SdL+kTwgjTyOpnaTRkt6VtDaaHPF3OQPOImlbSf+MmrgWSLpG0hm5TVjR44tzth0cLR+Vs/zgaKK75ZJWSvqXpKE5ZcZJel7S4ZJej44/WdKX8jzPPSQ9JGmRpNWSpkgaHa27Nmo6a5+zTbfo+Fc08jKeBkw0s7caKVeQpIsbaIodlVX0r4QpL45v6rFceniCcq1F2yjhZG5tc9bfRRhr7CuEwUohzP9zIXA3Yd6cywkz3t6V2SiaxO7fwJ7A9wmjkg+JtmsSSUcTBlJdAZxCGKi3G/CcpK1zim9HGLT4asKX9hzgfknbZ+3vs4TBQbcDfhg9l6uBraIifwa2BHIT28lAF+CGRkI+kgbmOcp53dtF01fkfvfczKZNsH8jTHEzNVPIwtxk70THdC1dJQf+85vfKn0jJIx8g2g+n7P+9znbDY+WfzNn+dej5TXR49Ojx5/LKtOGMDeVAYOzlm80KG+0bDCbDj76PlkjsUfLuhPm4PlD1rJxhNG+d8hatiXhS/38rGX/AT4COjfwOo3Lc8zXgccbeX37RvGfXmCfhQZbzdwGF9jvCUAd8H951t0BTK32Z8tv8d/8HJRrLb5EmF4gY3nO+odyHh9JGPn5gegXf8YT0f1BwATCL/2PzOzlTAEzq5P0V8Jo3iWRtAOhpnNZznFXEWpBB+Vs8p6ZvZd17PmS5hOmWUBSZ+AA4LdmtqqBQ18P3CtpBzN7T9I+hFphY01pA6L7BQXWv0loAsz1RQrUMiUNA24DrjezP+YpsiDruK4F8wTlWovJ1nAnidyJ27YEOhCmtMind3TfH5iXZ32+ZcXYMrq/JbrlmpnzeHGeMmuBzHmyzQk1uo/zlMv2EGG+rDMI832dSZjO5O+NbJc5TqFOJSvM7LXchZJq8hWWtBXwKKH29YMC+1yddVzXgnmCci7InXdmEWEeo+EFys+O7ucQJqXLlW/69bWEpJetd87jzHTio4En8+xjXYF4CllCaCob2FAhM1sv6WbgLEm/AU4CfmdmtY3sPxPv5iXGtQlJXQgJcSFwopltKFC0V9ZxXQvmnSScy+9xwq/0Hmb2Wp5bJkG9BGwt6XOZDSW1Ab6aZ58zCLPLZjs65/EUwkR+uxU47sRSnkTUrPc8cIqkzRopfgOhh9z9QEfgpiIOMZ2QyLctJa5ckkTolNIfOMbMcptgsw0hvE6uhfMalHN5mNk4SfcQzkFdTbiot47QqeEo4GdmNpVwruQ84EFJ5xNmLT2T0Kkh173AhZIuAF4m1M6+lnNck/R94JGoh+BfCTWKvoQp0Wea2dUlPp0fE2a0fUnS7wjNfdsSOnrUX7tkZrMkPUo4X/d3M/uosR2b2TpJ/wU+W2JMuX5GmCb9B8AASdnnmD4wswVQn8g+Szhn5lo4r0E5V9gphI4OXyGMYvAA8L+E6bznQfiCBkYSOkxcT0hY04Bf59nf5cB10T4eBnYBvpFbyMzGEjpDdCF0v/4X8BugH6HGVhIze5XQUeIj4FpgLGE0hnznpe6P7hvrWp7tPuDQqImuqXaO7q8hPMfsW3Ytc39Cc+K9zTiWSwmf8t25GEQXl/4/YIiZTa9uNMWTdBchmW1rZnVFbtOdkOzOMrM7Y47vz8BQMyt0btC1IN7E55wjOodWA5wI/KjY5ARgZsskXQn8VNJdFtOvXkn9gFPxi3RbDU9QzjkITWkriK4/asL2VwNtCZ0cZjdStqkGA+ea2X9i2r9LGG/ic845l0jeScI551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gXF6SbpJkkn5fYP3F0fqKjOcoaUR0vBFN2PY4ST8qf1SumjKfwWrH4eLjCcptIpp5NTMj7MmVSkIxOg7wBOVcyniCcvkcR5gRdiywJT69QVEkdax2DGnRkl4rBR2qHUdL5AnK5XMqsAQYBayOHheyi6RnJK2SNEfSLyXVf64kdZV0raSZktZKmi/pSUk7Z5XpLuk6SbOjMlMk/TCa3rsgSdMljcmz3CRdHP09Jop/YLTcJE3PKruFpL9ImhUd+11J323sBcpqcjw+ag5dQDTLrqRxkp6XdKSkCZJWS3pD0r6S2km6LHqtFksakz0TbbT+V5I+kLRG0sJoXwc2Ek+j20nqLOl6SYskrZD0qKQDo+cxKqvcOEnjGnu9o9fuBklTo/f/I0l3SxqYs12mOXiopH9JWkGYyj4T05WSpklaF91fkP0ZisrtKem56LnNkvRzoMHPR07cd0o6SdI7klZKei3fayrpFElvZr2Gd0jqX2B/35b0LrAOOFrSqOh57i/pr5KWS5onaXS03ZHR52ClpFcl7V1M/K1Z2ptuXJlJGgAcDtxkZgskPQwcL2lzM1uSZ5OHgVsJ05n/D/BzoI4wVTrA74FjgfMJU6X3JszY2jM6Xhvgn8BewEXAJMIU31cDW0TbNcevov3sE8UBsDY6dnfgeWCzKN5p0XP4s6SOZnZtEfu/FniMMHV7p6zl2wO/BS4lzLP0G+DR6NaOkPx3icrMB34abfcz4IfABYRp5LsDw4BejcRRzHY3ECYkvAR4lTBV/d1FPMdCegFrgNHAAmAAcC7wgqSdzWxNTvlHgFuAK4E6habjfwG7Et6nScDnCJ+hXtG+kNQHeBqYS/ixsZYwZf2gEmIdDuwU7XtNdLx/SBpsZp9Ex/ku4TW6L3pOA4DLgH0l7WVmK7L2dwhhgsdLCO/f9OgYEObUuh24ETgBuExST+AoNv48PCxpOzNbV8LzaF3MzG9+q78RvigN2C96/D/R4zNzyl0cLT8vZ/lNwHKgZ/R4MnB1A8c7JtrPqJzlNxO+iPpEj0dE5UZklZkOjMmzTwMuzno8Bvg4T7nMl9UOeZ7DQqBdA3Fn4nkoz7pxwHrCtOmZZcdG5Z/MKfsgMC3r8T+AB5vwvjW4HeHLeUOe9+vPua9/FP+4PPvI+3pnrW8LbB3t70t5Pis/yCn/jWj5QTnLLyDUSraMHl8aPd46q0yX6D2yIl6b6YQWgc2zlg2Ljn1yVuzzgGdytj0wKvd/OftbBfTLKTsqKntR1rJ2hAS2HhiS5/NwcKnvdWu6eROfy3Uq8J6ZvRQ9fpIwQ2qhZr6/5jy+F+gKDI0evwqMknS+pGGS2uaUP4hQ48r9JX8n0AHYr/SnULQjgf8C06ImsnZZv+p7E37ZN+ahAsunmtmHWY/fje7/lVPuXWArqb4581XgKEmXRs1vG53bkNQmO9asprAGtwP2JTTp53u/mkzS96ImsRVALTAzWrVTnuK5r9WRwAzgxZzX/wmgPaE2BeEz8LKZfZTZ0MxWAn8vIdSXbOMWgEnRfaYWthPhfOtd2RuZ2fNRjAfn7O9lM5tb4FiPZW1fC7xP+DxMyyqT+TxsXfQzaIU8Qbl6koYRvpQflNQzapboRviV/zlJO+bZbF6Bx5nzEGcTmk2+TfgSnS/p95I6R+t7AYtt02aOuVnr47IlIUGuz7ndH63vXcQ+5hRYntscuq6B5e0Iv+AhNCn9gvAL+zlgkaT/FzVzQWhOzY711iK3y5xHKfR+lUzS2YTp4Z8Ejgc+y6dJpVOeTXJfqy2Bbdj09X8lWp95/fsXiLOU2BdnPzCztTlxZj5n+d7PuWz6OSz0vkP+97jQ5yHf6+Qifg7KZcvUkn4W3XJ9E7gwZ1lf4MOcxwCzACy0248GRkvaBvgKcAXhH/RnhC+OXpI65CSpftH9Rl8sOdYQaln1JBWTVDIWEZpfflBg/ZQi9lHW63DMbD3hHM2VkvoRmkCvBjoTzh9dDFyXtcnCIrfLfKEWer+yrSGcw8qV+yV9EvCUmZ2bWSBpSENPL+fxIsJ5v6/mKQuhKQ1C7PnizLesqTKfs3551vUDxucs8+uvKsBrUA6AqEnoa4Qmr0Py3CYA38hqisrI/XI5iXASeFLOcsxshpn9LlqXaQJ8lvA5PCGn+NcJSewlCpuRtZ+Mo/OUW0voCJHrcWBnYKaZvZbntryBY8fOzOaa2c2EGsrQaNn0nBinF7Md4X2tI//7lWsGsGN2M6Gkgwi16WydCTWebN8q6skFjxOauFYUeP0XRuVeItTg65vDFHo+fqGEYzVmCqFGttHrIWl/Qi1vXBmP5YrkNSiXcTShSeVcMxuXu1LSDYQT6iOAZ7JWnR6dB3mV0KHiNEIHhaXRdi8Req5NIiSug4E9CD2dILTXPw/8RdIWwFuE3k6nAZdnfUnlcy9wq8JoF/+I9jsqT7m3CbW07wGvAWvMbBKhh+GJwHPRPqYQTr7vDAw3sy82cOxYSHoEeBN4ndAstCfhXM0NzdnOzKZIuhv4Zdb7dQThtc51L/Bdwms7BhhCuNB5aU65x4GfSTqf0Cx3KKGGXKy7CAntKUm/i+LvAGxHaKo8zsxWEd6ns4AnFC4fyPTiW13CsRpkZhskXQTcIOlOwjnQgYQOGu/xaVNqbKLjXwRsZ2Yz4j5eGniCchmnEnrf3V9g/T2EJqNT2ThBfZHQ1frnhC+wXxO68Gb8h/Cr/TzC5+1D4Idm9kcAM6uTdDThHMrPCElyOuEL8Q+NxHwb4Rf4d4AzCOdevkQ4KZ3tZsK5kcsI3dtnAIPNbGn0C/mi6NgDgU8IiepvjRw7Lv8h1Ca/T6ihzCR0Sb60DNudQfiR8GNCIngaOJnwA6GemT0j6cyo3JeBN4BT2PQ1+SXh9fwh4VzKs4QfKR9SBDNbL+l/CJ+N7xIS4UrgA8KlB+uicgslHQZcQ3jPFwF/IXyeLirmWEXGc6OkVYTk9wjhtRoL/DTqlBG3NoRzkUVd39UayMybUp1rrSQNJpwH+paZjaluNM5tzM9BOeecSyRPUM455xLJm/icc84lkneSyEPSG4Tx23JPtjvnnCuv7YEFZrZn7gpPUPlt0aNHj4E1NTUDGy/qnHOuqSZMmMDSpblXMASeoPJ7v6amZuC4ceOqHYdzzrVoI0aM4Nlnn83bWuWdJJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0jeSSIiaVzWw5oqheGccy7iNSjnnHOJ5DWoiJmNyPwd1aZyp3hOvaVLl9KtWzfatPHfJc655PNvqlZizpw59OvXj+985zvVDsU554riCaqV+OCDD1izZg3vvPNOtUNxzrmieIJqJdavz52Z2znnks0TVCtRW1tb7RCcc64knqBaCa9BOefSpsX24pM0HVgG1AFLzOyQ6kZUXZ6gnHNp02ITVGR/M1tR7SCSwJv4nHNp4018rYTXoJxzaZPIBCXpIEmPSpolySSNylPmLEnTJK2RNF7S8JwiBjwr6VVJX69I4AnmCco5lzZJbeLrCkwGbo9uG5F0InANcBbwfHT/mKRdzWxmVOxAM5slqT/wpKRJZjYxZz/jChy/pizPIkG8ic85lzaJrEGZ2VgzO9/MHiB0csj1I2CMmd1kZu+Y2dnAHOB7WfuYFd3PAcYCe1Ug9MTyGpRzLm0SmaAaIqkDsDfwRM6qJ4D9ozJdJHWL/u4KHAq8lbsvMxuRucUadAJ4Dco5lzZlaeKT1ANYY2Zry7G/RvQB2gLzcpbPAw6P/u4LPCSJqOxNZvZqBWJLLK9BOefSptkJSlI7YBHwJeDvzY6oDMzsQ2CPErcZkfm7JY5m7gnKOZc2zU5QZlYraR6woQzxFGNhdKy+Ocv7AnObutOWPmGhN/E559KmXOeg7gROK9O+GmRm64DxwMicVSOBFysRQxp5Dco5lzbl6mY+HThZ0qvAI4QedZZdwMxuLXZnUceG7aOHbYBBkmqAxVE38quBOyS9ArwAnAkMAP7SvKfRcnmCcs6lTbkS1J+i+4GEHna5DCg6QQHDgGeyHl8S3W4DRpnZfZJ6AxcC/QnXTB1lZjNKDby18CY+51zalCtBDSnTfgAws3GAGilzPXB9GY85IvO3d5JwzrnqK0uCagk1l5beScITlHMubco61JGkzwAHAb2BG8xsrqTtgXlmtrycx3Kl8SY+51zalOtC3Y6EnnzHE5rmjHBN1FzgN8BU4LxyHCsu3sTnnHPJUq5u5pcSRnH4BuF6pOzzR48B/1Om48RG0rjMDW/ic865qitXE9/XgAvN7G5JbXPWTQMGl+k4rom8ic85lzblSlC9gXcKrGsDdCzTcWLjTXzOOZcs5WrimwbsV2DdZ4EpZTqOayJPUM65tClXDep24HxJ04G/RctM0iHAD4GLy3Sc2LT0bubexOecS5ty1aB+A/wTuANYEi17HngSeNzMri3TcVwTeQ3KOZc25bpQdwNwkqQ/EXrsbUmYguNxM3u2HMeIm5+Dcs65ZCnrhbpm9hzwXDn36crDm/icc2lTliY+SfdJ+q6kHcuxP1d+XoNyzqVNuWpQWwHXAu0kzSGMRP4M8IyZTSvTMVwzeIJyzqVNuc5BHSCpCzAcOBQYAZwEtJE0E3jazL5TjmPFxXvxOedcspSrFx9mttLMHjezn5rZZwmdDJ4GtgFGles4rmm8BuWcS5uydZKIRi0/hE9rUFsCbwPXERJVonkvPuecS5ZyjWY+kzCb7vuEc0/nEJr1FpRj/675vInPOZc25WriGwCsIYzH9zbwtienZPEalHMubcqVoHoRRjSfBnwHmCBpXtT9/Ezvfl59XoNyzqVNuXrxLQMejW5I6k04H3UG8CfCBIZlvSjYlcZrUM65tCn3lO9bEzpJHBLdtgY2AOPLeZw4tPRu5p6gnHNpU65OEjcSEtMQQm3pTeB+Qu+958xseTmO45rOm/icc2lTrhrU5wijmT8DjDOzT8q034rxbubOOZcs5ToH9Zly7MfFxxOUcy5tyn0Oaiih5tELWEyoTb1VzmO40pmZN/E551KnXOeg2gFjCF3NlbXKJN0NjIrmjHJVsGGDv/TOufQp13VQvwC+ClxE6CixWXR/EXBidO+qxJv3nHNpVK4mvlOAX5vZpVnLZgCXSmoLfIuQxFwVePOecy6NyjnU0YsF1r0Yra8oSZ0lzZB0VaWPnTReg3LOpVG5EtRs4IAC6/aP1lfaBcDLVThu4niCcs6lUbma+O4CLpBUF/09B+hHmLTwAuDKMh2nKJJ2AHYG/g4MreSxk8ib+JxzaVSuGtTFwAPAJcB7wArC1BuXRst/WeyOJB0k6VFJsySZpFF5ypwlaZqkNZLGSxqeU+QqYHTTnkrL4zUo51walSVBmVmtmZ0M7A6cTei197/A7mb2dTMr5Sd8V2Ay8ANgde5KSScC1wCXAXsSznE9JmlQtP6LwFQzm9qMp9SieIJyzqVRWS/UjS7KbdaFuWY2FhgLIGlMniI/AsaY2U3R47MlHQl8j1Br+hxwkqQTCMmuvaRlZrZJLS5ngNhsNc15DknjTXzOuTQq55TvbYFvAvsRZtedRajd3FGui3QldQD2JjThZXuC0BkDMxtN1LwXNQ8OzZecWhOvQTnn0qgsTXyStiHUnG4BjgS2jO5vBSZH68uhD9AWmJezfB6hU0ZJzGxE5laG2BLLE5RzLo3KVYO6DugOHGhm9ddDSTqAMO3GtcCxZTpW0cxsTKWPmUTexOecS6Ny9eI7FBidnZwAzOwF4PxofTksJEyA2DdneV9gbpmO0eJ4Dco5l0blSlArgPkF1s0HVpXjIGa2jjA778icVSMpPJJFq+cJyjmXRuVq4rsTOBN4LM+6M4Dbi92RpK7A9tHDNsAgSTXAYjObCVwN3CHpFeCF6LgDgL80OfoWzpv4nHNpVK4E9T5wgqRJwN8InRb6Al8BuhGuU/p2prCZ3drAvoYRZubNuCS63UaYtuM+Sb2BC4H+hGumjjKzGWV6Li2O16Ccc2lUrgT1p+h+K2C3POuvz/rbCL378jKzcWw8p1S+Mtfn7LPZWvKU716Dcs6lUbkS1JAy7adqci7aralSGLHwGpRzLo3KkqC8eS3ZPEE559KoXL346im4NTM2XlrkXLQ7ocrhlJU38Tnn0qisY/FF2gCnEi7enRnD/mPhTXzOOZcsZa9BRRrs5OAqyxOUcy6N4qhBpZL34nPOuWSJowZVR7hmaWEM+3ZN4DUo51walb0GZWYGfKvc+3VNl52gwtvjnHPJV5YEJWl/oJeZ/SN63Itw8e5Q4F/Az8o1J1RcWnInCW/ic86lUbma+K4gTCSYcRVwFDCVMNPt+WU6jmsCb+Jz/7+9M4+Pqr4W+PckshpAFmVfRbEKGgG1dQGty6P6bGuxpUp94qu+Wqy1tbVatX1Qq7aPp5bqE7u7YAW1iktdUdPiUioUUFEhAglbCDsJgQBJzvvjd2+cDDPJzOTe2XK+n8/9zMz9/e49585yz5zzO7/zM4xcJCgD9RlgEYCItMPV4Pu+qk4EbgEuDUhOaOTzPCgzUIZh5CJBGagioMp7fjJwKPC89/pfQE5N2s03LMRnGEYuEpSB2gCc4D3/AvCBqvrrQ3UnoPWgjNQwD8owjFwkqCy+x4A7RORM3NjTf0e0jQZKA5ITGvmcJGEGyjCMXCQoAzUNqAU+i0uYuDui7QTgiYDkGClgIT7DMHKRoKqZ1wO3x2n7chAywiafK0mYB2UYRi4SyBiUiPSKrl4uIt8SkXtF5N+DkGGkjhkowzBykaCSJP4I3OS/EJGfALNw6eXPiMikgOQYKWAhPsMwcpGgDNRY4LWI11cDd6hqT1xFiesDkmOkgHlQhmHkIkEZqB5AJYCIjAT64ArGAswDRgQkx0gBM1CGYeQiQWXxbQMGeM8/D2xUVT+1vB3hrTsVGPmcZm4hPsMwcpGgDNR8YJqI9AJ+gPOafI4BygOSY6SAeVCGYeQiQXk2PwLWAXcCq4DpEW2TgTcDkhMa+VyLzzwowzBykaDmQVUC58ZpPgc3idfIEOZBGYaRiwS6YKGICHAsLmliO/ChqlY1f5QRNmagDMPIRQJLXhCRK4EK4D2gxHvcKCLfDEqGkRoW4jMMIxcJakXdycBvcXOhZgObcKnmk4HfisgeVX0sCFlG8pgHZRhGLhJUiO9HwKOqelnU/odE5BHgRlzFcyMDmIEyDCMXCSrENwLnOcViNjZRN6NYiM8wjFwkKANVzacTdaMZ4LWnDRE5TEQWichSEflARK5Kp/xswzwowzBykaBCfC/iFixcqaoL/J0i8jng5157OqkGxqnqHhE5FPhARJ5S1W1p1iMrMANlGEYuEuQY1GeBEhHZgMvm64Pznj7x2tOGtz6Vv8x8B0C8rU1iIT7DMHKRQEJ8qroJV7/uOuAdoAr4B3AtcKI3kTdhRGSciDwrIhtEREVkSow+U0VkjYjUishiETkjqv0wEVkGrAdmqOrWlC4uDzAPyjCMXKTVHpSItAfmAveo6n3Afa3WCoqAD4CHvS1a5iRgJjAVV0ZpKvCiiByrqmsBVHUncIKI9AaeEpEnow1lVIHYSIoDuIaswQyUYRi5SKs9KFXdjytnFNikX1V9QVVvVtUngYYYXa4HHlTV36nqR6p6LS6s+O0Y56oElgFnRLe1FSzEZxhGLhKUUXkLNwYVOp7HNgZ4JarpFeBUr09vEeniPe8GjANWRJ8rqkBs3mIelGEYuUhQSRI/AOaJyG7cUhsVgEZ2UNVYnlAq9AIK8RZIjKAS58kBDMZVsPCTI+5V1fcDkp9zmIEyDCMXCcpA+Tf/md4WjQYoq0VU9Z/k2ThSqqiqhfgMw8hJgjIaPyPKYwqRrUA90Dtqf29cDUAjgvr6+kyrYBiGkRJBrQc1LYjzJChrv4gsxq0/9URE07nAX9KlR65g4T3DMHKVoKqZtwPaq2pNjLZDgf2qmvCdUkSKgOHeywJgkIgUA9u9NPK7gUdE5J+4BI2rgX7AA626kDzEwnuGYeQqQYX4/uCd69IYbb8B9gP/mcT5xgJvRLye7m0PAVNUda6I9ARuBfri5kydr6rlKegOuIw+/7k3P2p8qufKJsyDMgwjVwnKQJ0J3BCn7VlgRjInU9USWihNpKr3A/cnc97miJq0WxzUeTONGSjDMHKVoOZBHQFsjtO2hYMTGow0YSE+wzBylaAM1GZgVJy2UUDWVxGPmrS7NMPqBIZ5UIZh5CpBGajngZ+IyPGRO0VkFHAL8FxAcowkMQNlGEauEtQY1E9xad6LReRdXAXx/sDJwBpcMkNWk69jUBbiMwwjVwlquY2twEnAnbjkhmLv8XbgpLa81EWmMQ/KMIxcJbDyQ97yFj/1tpwjX9PMzYMyDCNXCWyJDCM7MQ/KMIxcJW0FXLOdfB2D8g3UIYccYt6UYRg5hXlQeY5vlNq1a5dhTQzDMJLDPCiPfB2DivSgDMMwcgnzoPIc30CZB2UYRq4RqIESkQIRGSki470q5kaG8UN85kEZhpFrBGagROQa3IKBy4DXgRHe/nki8t2g5ISFiJT4G3mYJGEelGEYuUYgBkpErsIt9T4PmETTSuQLgIlByDGSxwyUYRi5SlBxn+uBu1T1RhEpjGr7mPhLcWQN+ZokYSE+wzBylaBCfEOBl+O01QCHBSTHSBLzoAzDyFWCMlBbgSFx2kYAGwKSYySJGSjDyA/mzJnDRRddxJ49ezKtStoIcrmNn4rIsIh9KiK9gO/jxqaMDGAhPsMIn08++YRnn302VBn33nsv8+bNY9GiRaHKySaCMlC3AvuAD4D5gAK/Bj4C6oGfBSTHSBLzoAwjfC6//HK+9KUv8cknn4Qmo6qqCgBVDU1GthHI32pV3SoiY4HvAf8GrPLOfR9wj6pWBSEnTPK9Fp8ZKMMIB1Vl2bJlAOzatSs0Ob6BaksENg9KVatV9TZVPV1Vj1bVz6nq9FwwTulk165dnHfeeTz66KNpkWchPti2bRuzZ8+muro606oYeUhFRQU1NTWhyzEDlSIislpETojTNlJEVgchJ0xU9Ux/A5aGJeell17i1Vdf5a677gpLRBPMg4Jf/OIXXHbZZRx//PGUlJRkWp2UWbZsGeeeey5Lly7NtCpGBCtXrgxdhqq2yT9YQXlQQ4AOcdo6AoMDkpPzlJaWArB8+fK0LH9hBurTsEtZWRlnnXUWM2bMyLBGqTFv3jzmz5/P73//+0yrYkSQDgO1d+9e6uvrQ5eTbQRZiy/eyN1YYGeAcnIafxB1//79aflitxTia2hoCF2HbOGUU04B4LbbbsvJgWb/s/LHO4zswP/TGSZtMbwHrTBQIvJ9EVkrImtxxuk5/3XEtgX4P+CloBTOdSKzfN57773Q5TXnQe3YsYN+/fpx3XXXha5HNnDFFVfQpUsXqqur2bFjR6bVSZlly5a1qT8W2U46/mi2xfAetM6DWg285m0CLIp47W9/wc2Duqp1auYP2WSgSktLqays5LnnngtEVm1tLaNHj+bWW28N5HxBIyIMGTIEcOG+XKW6upo1a9ZkWg3DIx0GyjyoJFHVZ1T1ClW9AngIuNZ/HbFdraq/VtW2M/W5Gaqrq6msrGx8nQ4DlUgW37p16wKJbz/zzDMsWbKE22+/PWb7rFmz6NGjB7fcckvG/hGGbaAaGho455xz+PrXvx7K+X0szJcd1NXVsWrVqtDlmIFqBZ4xsr90LeB/kYuKioDMe1A+dXV1VFRUtFpWS2GnkpISduzYwR133MHw4cN5+umnWy0zWcI2UNu2beO1117j8ccfDzUJpjWZfOvWrUvLTTXXWLFiBS+88EJSx5SXlzf+xsKkrRqoQCbHiMhPW+iiqnpbELISQUQGAo8ARwB1wG2q+kS65MfDH0wdP348b7zxBuvWrWPHjh10796d/fv30759+8Bl+jfJlrL41q5dy4ABAwKXH4vDDz+czZs385Of/ISLLrooLTJ9fANVXl4eyvm3b98OuLTgLVu20Ldv31DktMaDGjRoEAD79u0L5TuXq1x++eUsXLiQtWvXMnDgwISOSUd4D2wMqrVMa2b7b+8xndQB31PVY4HzgF9lwwq//vjTiBEjGDlyJADvv/8+7733Hocffjg/+tGP4h67b9++lGT6/+5amqgb1g07Ft/5zncA0vLPM5qwPSjfQAFs2rQpFBnQOg/KJx2TS3OJ9evXA8l5K+nI4IO260EFFeIriN6AXsAUXH2+4UHISUKfClVd6j3fhKu23iOdOsTCN1BHHXUUxx9/PODCfNOmTaOqqoo33ngj5nE33HADHTt2ZOzYsUybNi2pcFyi86DSaaDCprkU8nwxUGvXrm0iy2g9qZQpSpcHZQYqYFR1u6o+DDyISzVPGBEZJyLPisgGEVERmRKjz1QRWSMitSKyWETOiHOuMUChqq5L4TICxTdQw4cPbzRQjz32WONYTDzDs3DhQgAWL17M9OnTufrqqxOWGR3ii3fzzhcD9cADD9ClS5e4HkakgQpjLlS6DBSkZwyzrVBfX8/u3buTPs5CfOESmoGKYBkwLsljinCe13XA3uhGEZmEW2L+DuBE4G3gRREZFNWvB/Aw8F+xhIhISayNkIrFxjJQb7/9dmN7ZWVls4kGkydPBmDnzp0Jy2xNiG/+/PmMGzeO4447jsGDB6etPFOqNDQ0cOedd1JTU8O7774bs0/37t0pKiqiqqoqqfcxUdJpoNpSyaOSkhKmTZvGvHnz2LhxY+DnT9VD8Q2Un/gUFuZBhce/A1uSOUBVX1DVm1X1SSDWHft64EFV/Z2qfqSq1wIVwLf9DiLSAbcO1S9U9e0Y50grNTU1bNy4kXbt2jFw4EBGjRrV2NauXTs6depEXV0d27Zti3uOESNGJC23NSG+++67jwULFvDhhx+ydu1aHnnkkaTlp5O///3vrF27ttk+zc2FOnDgQKv/EafDQB1xxBFA20o1v+yyy5g+fToXXXQR/fv3Z9asWYGePxUDsHfvXtauXUthYSFDhw4NVJ9ozEC1AhH5Y4xttogsxXlBfwhCjierPTAGeCWq6RXgVK+P4EKLr6tq3LtqVIHYUFm92tXLHTZsGIWFhfTo0YP+/fsDLnvI/4IHfVNLtJp5eXn5QSEvf27UNddcE6hOYfHwww8n1C+WgXrxxRcZNWoUI0aM4JlnnklZh0gDFUTqfiyKi4uBtuNB7d69m/Xr19OuXbvGa/fD3kGRyvjTqlWrUFWGDRsWeq1LC/G1js8DZ0VtY4BNwDeB2DM3U6MXUAhURu2vBPp4z08DJgFfFpGl3jaKDOJn+xx11FGN+yZPnszAgQO55ZZbGtORg76p+UanoKD5j7qmpibuoHvv3r0D1SkM9uzZwxNPJDaTINJANTQ0cMkll3D++eezYsUKwM0TSpV0eFCjRo1CRFi+fHmTid/5ij9n68gjjwytLFcqBsr/vhx99NFBq3MQ5kG1AlUdoqpDo7bPqOoEVX1Q01yZU1Xf9LIJiyO299OpQzSR408+v/zlLykvL2fIkCH06eNsa9jjFs2Ry4kSzzzzTMKD3JEGasGCBcyZM4eioiKOOeaYVuuRDgPVpUsXvvjFL3LgwIGsHxcMgli/naBJxUD5IdbIcH1YZJuB2rBhA0888UToRZfTMQYVNFtxy8hH/63vjfPYMo6qHrT0c7wfmYtG0migwgoLJUJL4zfZgKoydepUHnjggSb7/fBehw7xVn35lEgD9ec//xmAa6+9lrPPPjtpfWbNmsXcuXMbX6crScKvd3j//fc3O26ZD/geVLYaqBNOiLkUXqtYtWoVjz/+eKMBSCTEV1lZmZYlfABuuukmvva1rzFnzpxQ5bSmmvm4ZLagFFbV/cBi4NyopnNx2XypnjeQBQtVlRNOOIGjjjqqyQ3fDwfE+5H5IT7zoJpn0aJFzJo1i29/uzEfhl27dvHKK6/Qrl07vvCFL7R4Dt9AlZaWNoYFL7300qR1qamp4ZprruHKK69svJFEGqjq6urQJsOOHTuWCRMmUFNTw69+9atQZGQL/p+7I488MjQZ2Wagvvvd7zJp0iT+9a9/AS17UGVlZfTv358rr7wycF1i4RcrzloDBZQAbySw+f0SRkSKRKRYRIo9HQd5r/008ruBKSJypYh8RkRmAv2AB+KcMhGZgaSZi0ijEfLretXU1LBw4UJEhNGjR8c8Lhs8qFwwUHv2HFx3eNeuXTQ0NNCnTx969erV4jl8A/XRRx+xY8cORo0a1VjZIxnq6upQVXbv3t2Ysu4bqEMPdYVLwhwj8r2oX//616GkzKcTVWXJkiXs37//oLZsDPHt3LmT8vJyOnbs2GRcOWh9fO+xJQO1fPly6uvr01ZjcevWrQC8/PLLoYYfW2OgzsIlR7S0+f2SYSywxNs6AdO95z8DUNW5wPeAW3HezunA+aqaFXfYCy64APjUQL3xxhvs27ePk046icMPPzzmMeZBpY8ePXo0mbeSivcUzYYNG2hoaGhcZ8ofzwrz8zzttNM466yzqKqqyvopAC0xa9YsRo8ezaRJkw5qy0YD5U+SHjlyZIsZsq2hoqKChoaGFsdX0/0HxTdQ+/bt4/nnnw9NTmuW2/hbMluS5y5RVYmxTYnoc7+XnNFBVceo6t9TvRbvfIGE+IDGMNNrr71GbW1to6E6//zz4x6TSQ/Kz/BrKwZKRBg8eHDj6yCWxti4cSO7du1CVenatWtj4d2w/3CMHz8egC1bkppqmHX86U9/Atyy9pHU1tayfv16CgsLm3xmQZOsFxBmeC+SioqKhJJ/0rkAZ319fZNQdqLZs6kQaJKEiPQQkQtE5DLvMeP17xIlyEoS/fr148QTT2TPnj2UlJQkZKAy6UH169cPaDsGCj4N85166qmNz1vDxo0bG3+0PXr0SFtWpp9kk6+sWbMGVWXIkCGhzjVK1oNKp4FKxHim00Dt2LEDVW1MSHrxxRdDm6cVmIESkZ8DG4BncQsYPgdsEJG0LbORTfhhvhkzZlBeXs7hhx/OmDFj4vY/7LDD6NChA1VVVTHHWcKkT58+tG/fnq1bt7aZCtf+WOAVV1wRyPk2bNiQEQOV76QjQQKy10Bt3Lgx6wyUH94bNGgQp512WqhhvqAqSXwPuBmYjRtv+gxu7Gk2cLOIfDcIOWESZIgPPvWWXn/9dQAmTJjQ7GRZEcnYTa2goKBx/ZtkUs3TPL0tUG666SYWLFjAN7/5zUDOlykPKt9Jx/gTJGeg6urq+OCDDwAaa2o2R21tLddffz1vvfVW0npVVFQk5J2kcwzKN1C9evXiq1/9KgBPPvlkKLKC8qCuBmaq6lXemNMK7/Eq4NfA1IDkhEbQxWJPPvnkJhllzYX3fDI5DuUvYpdoFYWamhpGjBjBD3/4wzDVCo3OnTtz+umnBxYiMwMVDqkaqM2bNzNx4kRKSkoS6p+MgSotLaW2tpbBgwdz2GGHtdh/5syZ3HPPPZx++ukJy/DJxhBfpIGaOHEiAEuWLGksjRYkQRmoIcBf47T91WtvUxQWFjJhwgTAeSjnnXdei8dkchyqc+fOADHTfGPx1FNPUVpa2iYqGSSCGahwSNVA3XDDDTz11FOcddZZCfVPxkAlG95rbemsRBJgMmWgBgwYwKJFiygtLaWwsDBwWUEZqG1AvIkkx3ntWU3QIT6ACy+8EHAD8T16tJwvkg1zoYzUsDGocEi1isTmzZuT6h+mgWotiazamykDBTBmzJhQjBNAUAn8TwO3icg24DFVrRORQ4Cv4uYuPRSQnJzi4osvZtasWQn/i7ObWu6yadOmxn+6PXr0aCywu2nTJlQ177PtwuDAgQOUlZUhIqEuZ9HQ0JBUmnm6DdTHH3/cYp9MjUGFTVAG6sfACThD9EcR2Y5bYr0QeBOXQJHVeGNPPsVBnLOgoCCp1W/DqmhuhE99fX1jOasePXrQqVMnunXrxq5du9ixY0dCHrTRlPLycurr6xk4cCAdO3YMTU5NTU1SCT9+2PHYY48NS6UmJLJGWTo9KL/2Y84YKFWt9urtXQCcgTNO24G/AS+mu5p5rmIeVG7z/vuuYL5vjPr06cOuXbvYtGmTGagUyMYMPlVtXNHXnz8YNi0ZqLq6urSuF5VODyqweVDqeF5Vb/Sy+W70VsbNCeMUxhhUspgHldv4n1ukgYKW/3Ds2rWL2bNnJ7xcSCaprq5OW/V03xD4UyDCIhkD5RcA7ty5M127dg1Rq0/J1jJHOWOgRORoETk54nVHEblTRJ4Tke8EIaMtYB5UfpCsgZo8eTKXXXZZUuHgTNG1a1d69erF3r17Q5fl/7cNs9YdJGeg/D8hffv2zZpxxVQN1FNPPcWFF16YdJkn30D17NkzJbnJEJQHdR9wccTrO4Af4CqM3yMiubFmeIbxB9YrKytDmVNgpAffQEV+ns3x17+6GRpPP/10uIoFSLJZctlMMgYq3eG9REh1/GnixIk8//zzzJgxI2b75s2bOXDgwEH7c86DwiVIvAUgIgXAfwA3quoY4OfAfwUkJzSCnqibCu3bt6dnz540NDQ0fgmM3KN79+7Ap4snxvqRG9lDKh5UPhgon1ge1OrVq+ndu/dBywMdOHCAnTt3UlBQkNAk5dYSlIHqxqdznU4EugN+7YsSYFhAcvIeG4fKbTp37hxqxpkRPKl4UP7vNJ1ELhETSRgZfK+++ipAY0knn8i5fmHNfYokKANVCfipNucBq1TVnz5dBKRnHeJWkA1JEgDdunUDElvi2cg+LFsv98gVD6pLly4x9+frHCgIzkA9C9wpIv+LG3uKXCBkFLA6IDl5T7YMvBqpYQYq90gmSSCTHlS8rMFMVpEIm6DSY24COgL/hjNWt0e0fRF4JSA5hpF1FBUVsXfvXurr681A5SC5kiRhBipFVLUGuCpO26lByDCMbKWgoIC+ffuyfv16M1A5SKpp5umgqKiI3bt3U1BQQKdOnWL2yWcDFfSKul1F5FQR+ar3GDtoahh5Rv/+/QEL8eUi2exB+Yawa9euccP/6RyDSmeZIwh2Rd2fAuuABcBc73G9iNwalAwjWHKkyEdO4N+wzEDlHokaKL+KRKdOndJWRcL/XjUnL589qEBCfCIyHfgJ8HtgDi6rrzdwCTBdRA5R1WlByAqLMIrFGm2HAQMGAOn74RrBkaiBivSe0pXM5HtQ8TL4wAxUIlwF3KWqN0TsWw68LiK7cBN1pwUky8hSkv3R5pMHN3XqVGpra7nkkksyrYqRJL6B6tChA/v27YvbL93jT5Gy2qoHFeRE3ZfjtL3ktWc12TIPqi2Qj6n0xxxzDL/97W8bPSkjd/ANlD8HMR6ZyOD77Gc/S69evTjnnHPi9snEPKh01OGD4DyohcBJwPwYbSd57YZhGFmFqjYaqK5duzZbYzATc6D69etHZWUlBQUFnHnmmQe1NzQ05PVE3ZQNlFdzz+e7wNMiUoebpOuPQX0N+E/gS61R0jAMIwz8+WsdOnRorJ0Yj0xVkSgoiB/oqq6upqGhIW265IyBwpUvihxEEOAX3kbU/vdaKcswDCNwEg3vQX5VMk+Fffv2UV1dTWFhYULvVxC0xmj8jKYGyjAMI6dIxkBlIkmiJTI1Bypd48gpG6hsTxs3DMNoiUgD1dIijNnsQRUUFIQe6vMNVLoSJCDgShKxEJHxIvLHsOXEkPu0iOwQkSdb7m0YRrqor6/n9ddfp6amJtOq5LwH5RuodKzNVFfnFqVo37596LJ8QjFQIjJcRH4mImuAN3DJEulmJm7hRMMwsogZM2Zw9tln8+UvfznTqjTe4FsyUNXV1ezevZtOnTqlbfwlEXz9/UUy840gSx11E5H/EpG3gBXALcAO4Nu4pd/TiqqWALaokmFkGXPnzgVg/vxYs1LSS1lZGQCDBg1qtl+k95RN8/j8MSgzUDEQkQIROV9E5gIVwAPAYOD/vC7fU9XfqGriC664844TkWdFZIOIqIhMidFnqoisEZFaEVksIme05loMw2h7rFq1CoDhw4c32y8bx58gvSG+TNCaeVB3AZcCRwC1wNPAQ7jJul2B77RCryLgA+Bhb4uWPQkXwpsKvOk9vigix6rq2iSuoSROU3GS+hqGkYN88sknQMsGyjcEYRUDVtWUPDML8cXn+zjj9AIwSFUnq+orqtpAK9PPVfUFVb1ZVZ8EYqWmXA88qKq/U9WPVPVanAf37dbINQyjbeEbqCOPPDKh/s1Nmk2VadOmMWzYsJTmNJmBis8fcGM8FwArROQ+ETk5GLXiIyLtgTEcvErvK0BSiyNG1d8zDKMNUVtby/r16yksLGTw4MEZ02P69OmUlZXxhz/8IeljbQwqDqp6FdAHmAwsAr4FvCMiHwE3Et4k3l5AIa6cUiSVnj4AiMh8XNml80VkvYh8LiR9DMPIQdasWYOqMnjwYNq1a5dpdVLCn7sVb7XdXKdV5YdUtRZ4DHhMRPoCl+FSu2/yuvxCRO4HnvT6pg1VjV/+N3b/M/3n3tjU+IBVMgwji0h0/CkXyKbMwiAJLKCqqhWq+j+qOhI4GZfJdxQuyaEiKDnAVqAeV4w2kt7AplRPKiIl/oYlSRhG3pNoBp+ROUKZqKuqi7zEhX7ARKAkwHPvBxYD50Y1nQu8HZQcwzDym2QTJIz0E2qFcVU9gEs/fzqZ40SkCPD/1hQAg0SkGNjupZHfDTwiIv8E3gKuxhnDBwJS3TCMPCefQnz5SrYugTEWVyLJZ7q3PQRMUdW5ItITuBXoi5szdb6qlqddU8MwchIL8WU/WWmgvDJFzY76qer9wP0ByjzTf25JEoaR3xw4cKCxzNHQoUMzq4wRl6w0UJkgqqpEcYbUMAwjDaxdu5a6ujoGDBiQtyna+UDoy20YhmFkGxbeyw3Mg/KwEJ9htB0sgy83MAPlYSE+w2g7WAZfbmAhPsMw2hwW4ssNzIPysBCfYbQd1qxZA1gGX7ZjHpRhGG2OAwcOANC5c+cMa2I0h3lQHjYGZRiGkV2YB2UYhmFkJeZBedgYlGEYRnZhHpRhGIaRlZiBMgzDMLISC/F5WJKEYRhGdmEelGEYhpGViKpmWoesQ0TWd+vWrX9xcXHaZS9ZsoSqqiqKi4vp1q0bAEuXLmXXrl0MGTKEsrIyunXrRqK6vffee+zYsaPx2KKiIsaMGQNAVVUVS5YsoUuXLrRr147t27czcuRIevbsCcD777/P9u3bG4899NBDGTt2LACVlZV8/PHHAIwf7/JJNm/ezEcffdRkXyQffvghW7ZsaTxfx44dOeWUU5J6f3bu3MmyZcuayNi3bx//+Mc/6NChA927d2fTpk0cffTR9O3bF4CVK1dSUVHRZF8sSktL2bhxI8OHD6d///4t6lJXV8dbb71FYWEhp59++kHtq1evZt26dQwdOpRBgwbFPc/f/vY3AAoKCjjjjDPi9isrK6O8vJzBgwczZMgQAMrLyykrK2PQoEEJTzr15Z122mkcckhyQRT/2FNOOYWOHTsmdazPokWLqKmpAT79DBcvXszu3bub7KuoqGDlypX06dOHESNGALBp0yZWrFhB7969OeaYY+LK8L/3keeL5J///Cd79+7lpJNOapwL9e6777Jnzx7Gjh3LoYce2qT/1q1bWb58OT179mTkyJEHnc/Xf/To0XTp0qVJm/+9iqeL/54OGzaMgQMHAs3fB0444QQOO+ywJvv831TXrl058cQT474vseT279//oIoaGzdupLS0tInOu3fvZvHixU3uA0HgXcMGVR0Q3WYGKgYisgQ4HPgkyUOLvcelQeqTAYq9x6UZ1CEIir3HpRnUIQiKvcelGdQhCIq9x6UZ1CEIir3HpRnUIQiKvcelGdQB3OrpW1T1IMtqBipA/HGsyJT1XMSuI7uw68gu7DrSh41BGYZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGVWBafYRiGkZWYB2UYhmFkJWagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGKklEZKqIrBGRWhFZLCLxy0+7/uO9frUislpErk6XrnH0+bGIvCsiVSKyRUSeE5GDyzM3PWaIiGiMbUK69I6h07QY+mxq4ZhRIvI3EdkrIhtE5KciIunSOY5OZXHe2782c0ys/mn9XonIOBF51nsfVUSmRLWL9xlt9N7vEhE5LoHzThSRD0Vkn/d4UWgXQfPXISLtROSXIvKeiNSISIWI/FlE4pemd8edGeczil9+PcTr8NofjKHPPxI4b0bvX2agkkBEJgEzgTuAE4G3gRfjfWFFZCjwgtfvROBO4F4RmZgejWNyJnA/cCrweaAOmC8iPRI4dgLQN2J7PSQdE2UFTfUZFa+jiHQFXgUqgZOA64AbgOvDV7NZTqLpNYwGFHi8heOuijruoRB1jEUR8AHufdwbo/1HwA+Aa3HXuBl4VUS6xOgLgIh8DpgLPIqrtP0o8ISIJLcmS3I0dx2dcZ/H7d7jl4CBwEsiksg6JcfR9DMqDUjnWLT0eQDMj9Ln/OZOmBX3L1W1LcENWAj8LmpfKXBnnP6/BEqj9v0eeCfT1xKhTxFQD1zYTJ8huJvm2EzrG6HTNOCDJPp/G6gCOkXsuxXYgDcfMBs24BZgZ6SeMfoocHGmdY3QZzcwJeK1ABXALRH7OgHVwLeaOc9c4NWoffOBxzJxHXH6HOu9/6Oa6XOm16dXNnwe3r4HgeeTPE/G71/mQSWIiLQHxgCvRDW9gvNGYvG5GP1fBsaKSLtgNUyZLjhPekcCfZ8Skc0i8paIXByyXokwzAshrRGROSIyrJm+nwMWqGrkv8uXgX44A5xxvHDjN4HZUXrGYqaIbPXCtVeLSDb9locCfYj47nvX83fi/1Yg/u+luWPSTVfvMZHfyyIvLPiaiJwVplIJcrr3+10pIr8TkSNa6J/x+1c2famznV5AIS5EFEkl7scYiz5x+h/inS8bmIlbsOydZvrsBn4IfA0XFngNmCsi3whdu/gsBKbgwo5X4d7rt0WkZ5z+8T4Lvy0bOBd3c/9dC/1+CkwCzgHmAHcBN4erWlL472cyvxX/uGSPSRven9S7gOdUdX0zXStwHvtE4Cu4UPRr0sJ4dci8BPwHcDYu9Hoy8LqIdGjmmIzfv5Jb79nIK0TkbuB04HRVrY/XT1W34n6YPotEpBdunGF2uFrG1enFyNfegO9q4HLg7kzoFABXAe+q6rLmOqnqbREvl4pIIS40+PMwlWvLeGNOs4HDgC8211dVV+CMks87IjIEN+a5ICQVm0VV50S8fF9EFgPlwAXAU5nQKRHMg0qcrbixmt5R+3sD8bLHNsXpX+edL2OIyD3AJcDnVXV1CqdYCBwVrFapo6q7geXE1yneZ+G3ZRQv3PIlWvaeYrEQ6Coi0deXKfz3M5nfin9csseEjmecHgOOB85W1W0pnCbbfi8bgfU0r1PG719moBJEVfcDi3FhmEjOxWW5xOKdOP0XqeqBYDVMHBGZyafG6eMUT1OMC2VkBSLSETiG+Dq9A5zh9fM5F9gIlIWrXUJMAfbhboTJUgzU4pIrsoE1uJtb43ffe9/PIP5vBeL/Xpo7JlS8sZa5OON0lqqmaiyLya7fSy+gP83rlPn7VyayTHJ1w8X99wNXAp/Bjd/sBgZ77Q8DD0f0HwrUAL/y+l/pHT8xg9fwf7hsts/jYsz+VhTR507gtYjXlwOXetcwAjcetR/4fgav43+B8d57fArwvHdd/mcRfQ3dcDfNOcBI3NhAFfCDLPheCbCSqAxRr+07wMcRry/EhQJHAkd636ldwMw061yEu+kWA3tw42LFwCCv/UZPr694us7B/RnoEnGO14jIgMUlQ9QBN+H+bPwYOACckonrwA2BzMNleo6O+r1EZoNG/+6/B3wZ550c530XFfhKhq6jyPu9fA6XEHQmzvisj/o8su7+lbYvdL5swFTcP+59OI9qXERbCVAS1X888C+v/xrg6gzrr3G2aRF9HgTKIl5fDnzofVmrgEXANzJ8Hf4Nb793A/kLcGy8a/D2jcJlktXi/jn+N1mQYg6c5X0GJ8domwZoxOsJwBJcynYN8D5u7sshadb5zDjfowe9dvF0r/De778BI6POUeb3j9h3MfCx97l+RIg39Zaug0+nV8TapkSco8nvHjc2W4qbj7QdN+50fgavoxMu+26z976We/sHRp2jyXV4+zJ6/7L1oAzDMIysxMagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGyjAMw8hKzEAZhmEYWYkZKCOvEZEpcRaPUxE5J9P65QsiMkZE9ohI/4h9JSLyZpz+V3qfwZAkZHxZRCpFpCgAlY0cwAyU0Vb4Km4mfeT2z4xqlF/MAP6oqhtClPEMbuLvDSHKMLIIq2ZutBWWquoniXQUkQ6qui9shfIFERmDq4ZxbZhyVFVF5LfAbSJyp6rWhinPyDzmQRltmogQ4DgReUJEduIqTyMih4jIj0XkYxHZ5y2OeFdUwVlEZJiI/NULcW0RkZki8q3oEJb3elrUsUO8/VOi9o/3FrqrFpEaEXlZREZG9SkRkTdF5BwR+Zcn/wMRuSjGdZ4gIk+LyDYR2SsiK0Tkx17bvV7orF3UMV08+b9o4W28EnhPVZe30C8uIjKtmVDslIiuj+OWvPhKqrKM3MEMlNFWKPQMjr8VRrU/iqs1djGuWCm49X9uBf6MWzfnTtyKt4/6B3mL2L0KnAhcg6tKPtQ7LiVE5AJcIdXdwDdwhXq7AAtEZGBU9yNxRYvvxt20K4AnRGR4xPlOxhUHPRL4vnctdwMDvC6zgCOAaMN2KXAo8JsWVJ5AM+scRb3vh3jLV0Tfe37PwSHYv+CWuFnpd1K3NtlHnkwj30ln4T/bbEv3hjMYsYpovhnVfk/UcWd4+/8jav9kb3+x9/oq7/VnI/oU4NamUmBIxP4mRXm9fUM4uPjoJ0RUYvf2dcWtwfOriH0luGrfR0XsOwJ3U785Yt/fgXVA52bep5IYMv8FvNTC+9vb0/+qOOeMV2zV34bEOe9XgQbguzHaHgFWZvq7ZVv4m41BGW2Fi3DLC/hUR7U/HfV6Aq7y85PeP36fV7zHccBS3D/9dar6D7+DqjaIyOO4at5JISJH4TydO6Lk7sF5QeOiDilV1dII2ZtFZDNumQVEpDNwGjBDVfc0I/p+YI6IHKWqpSJyEs4rbCmU1s973BKnfRkuBBjNl4jjZYrIWOAh4H5V/XWMLlsi5Bp5jBkoo63wgTafJBG9cNsRQHvckhax6Ok99gUqY7TH2pcIR3iPf/C2aNZGvd4eo88+wB8n647z6NbH6BfJ07j1sr6FW+/ratxyJs+1cJwvJ15SyW5VXRS9U0SKY3UWkQHAszjv67o459wbIdfIY8xAGYYjet2Zbbh1jM6I03+j91iBW5QumljLr+/DGb1Ieka99pcT/zEwP8Y59sfRJx47cKGy/s11UtUDIvJ7YKqI/A/wdeAuVa1r4fy+vt2T1OsgRORQnEHcCkxS1fo4XXtEyDXyGEuSMIzYvIT7l95NVRfF2HwD9Q4wUEQ+6x8oIgXA12Kcsxy3umwkF0S9XoFbyO+4OHLfS+YivLDem8A3RKRTC91/g8uQewLoAPwuARFlOEM+LBm9ohERwSWl9AX+XVWjQ7CRDMW9T0aeYx6UYcRAVUtE5DHcGNTduEm9DbikhvOBG1V1JW6s5CbgKRG5Gbdq6dW4pIZo5gC3isgtwD9w3tklUXJVRK4BnvEyBB/HeRS9cUuir1XVu5O8nB/iVrR9R0TuwoX7huESPRrnLqnqBhF5Fjde95yqrmvpxKq6X0QWAicnqVM0N+KWSb8O6CcikWNMq1R1CzQaspNxY2ZGnmMelGHE5xu4RIeLcVUMngS+g1vOuxLcDRo4F5cwcT/OYK0Bfh7jfHcC93nnmAd8BrgsupOqvoBLhjgUl379MvA/QB+cx5YUqvouLlFiHXAv8AKuGkOscaknvMeWUssjmQt83gvRpcox3uNM3DVGbpFe5qm4cOKcVsgycgRb8t0wQsCbXPonYKiqlmVWm8QRkUdxxmyYqjYkeExXnLGbqqqzQ9ZvFjBSVeONDRp5hIX4DMPAG0MrBiYB1ydqnABUtUpEfgn8SEQe1ZD+9YpIH+BybJJum8EMlGEY4EJpu/HmH6Vw/N1AIS7JYWMLfVNlCPADVf17SOc3sgwL8RmGYRhZiSVJGIZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGV/D/npk71V02pGgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_cs_leahy.freq, avg_cs_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Leahy cross-power\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_cs_frac.freq, avg_cs_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"rms cross-power\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_cs_abs.freq, avg_cs_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Absolute cross-power\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a cross spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized cross spectrum.\n", + "## 1. We can linearly re-bin a cross spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_cs.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_cs = Crossspectrum.rebin(avg_cs, 0.25, method='mean')\n", + "lin_rb_cs = avg_cs.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_cs.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a cross spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`.\n", + "\n", + "Logarithmic rebinning only keeps the real part of the cross spectum." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_cs, log_rb_freq, binning = Crossspectrum.rebin_log(avg_cs, f=0.02)\n", + "log_rb_cs = avg_cs.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that like `rebin`, `rebin_log` returns a `Crossspectrum` or `AveragedCrossspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_cs))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Time lags / phase lags\n", + "## 1. Frequency-dependent lags\n", + "The lag-frequency spectrum shows the time lag between two light curves (usually non-overlapping broad energy bands) as a function of Fourier frequency.\n", + "See [*Uttley et al. 2014, A&ARev, 22, 72* section 2.2.1.](http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014A%26ARv..22...72U&link_type=EJOURNAL)\n", + "\n", + "In `AveragedCrossspectrum`, the second light curve is what is considered the reference in Uttley et al. and in most other spectral timing literature." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "30it [00:00, 264.86it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAF9CAYAAACZN6k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADXRUlEQVR4nOy9d5glR3U2/tbkmZ3ZnKRd7a5Wq1UOoAVERgIswAbjjxxtsI0BG/wDY5tgbD6CZYwJBgMGPptgkkgGhG1kgUAI0EpaSSiHlVarzTlMzvX74/SZrntvh6ru6q7q3X6fZ547c+fevmdqqk+99Z5QQkqJGjVq1KhRo0aNGjXaXBtQo0aNGjVq1KhRww/UxLBGjRo1atSoUaMGgJoY1qhRo0aNGjVq1AhQE8MaNWrUqFGjRo0aAGpiWKNGjRo1atSoUSNATQxr1KhRo0aNGjVqAAA6XBvgI5YuXSrXrVvn2owaNWrUqFGjRo1U3HrrrYeklMtsXKsmhhFYt24dtmzZ4tqMGjVq1KhRo0aNVAghHrV1rTqUXKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRoCaGNaoUaNGjRo1atQAUBPDGjVq1KhRo0aNGgFqYlijRo0aNWrUqFEDQE0Ma9SoUaNGjRo1agSoiWGNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJoYnKW69FXjwQddWnDwYHQVe+1rgG99wbcnJhZkZQErXVmTD9LRrC04+zMy4tiAbBgerOc9nZ11bkB1TU64tKA41McyBT30KWLsWuPtu15aY4SMfATZtAs46C9i507U1+rjnHkAI+vrFL1xbY4bPfx74j/8AXvlK15aYYWYGOP98GvOvf921NWa47jqgowNoawMmJlxbY4a//EugsxN4z3tcW2KGt76V5sp551WL2B49SnZ3dADPfKZra8xw9dXAggU0z++917U1+njwQaC9vZr+/HOfA7q7gd/6LWB83LU19lETw4z4/OfJCe7YAVxwAbB/v2uL9PFXfxV+/8IXOjPDGOefH37/9Ke7syMLVMf3hS+4s8MU3/seEXIAeNWrqrNLlhJ49avDn9/wBne2mGL/fuCf/om+//u/B/bscWuPLnbsoM0yQATlox91a48J1E3PddfR31IVfPaz4fcf/rA7O0zxz/8cfv/0p1dnngM0X6QErr0W+IM/cG2NfdTEMCOaF/fXvtaNHabYtq3x59tuc2OHDdxxh2sL9PDLXwLf/37487e/7cwUY3z3u40/V2Xh+fnPgb17w5+/8pXqqOOveEXjz9/7nhs7TPGDHzT+/MlPVie8+ZOfNP7c/Lf4iuFh4IYbwp+/8hV3tpjiM59p/PmTn3RjhykOHmwc86uuolShEwk1McyAffuALVvo+2XL6PH++93ZYwImJW3Kf74KuYYjI63PvfnN5duRBf/1X7RAXnQR/XzddcCBA25t0sHEBNkOAJdfTo/f+pY7e0zwZ3/W+tyuXeXbYYo9e4Cf/Yy+5zHn/4Hv+Nu/pcczzgBOPZX+ljvvdGuTDoaHw43bE55Aj81E0Vd897tk/5o14XMHD7qzRxdHjoTf85r005+6scUUH/84+fPLLgPmz6fnfvxjtzbZRk0MM+Dmm+nxkkvC/MLjx93ZYwImtB/9aEhqb7/dnT262Lo1/J7D37/+tRNTjPHoo/T4trcBT3oS5e195ztubdLBr35Fi87KlRTSBIC77qpGOHloiB4/9rEwZ6wKiuFvfhN+//nP0+PPflYNReLYMXocHQWe8xz6/n/+x5k52lBt5JDyr35VjcIIDmO+/e3AwoX0vTqHfAUT7zPPpLnS1kbRq8lJt3bp4Lrr6PEv/gJ4/evp+4cfdmdPEaiJYQb8/Of0uHIlsHQpJSwfP16NBHd2GpdfDhw+TN+//OXOzNEGO5JXvQr44hfD5x96yI09upicDG0/7zzg2c+m76+6yp1NurjvPnp83vOAxz8+fN535U1KUvUB4I1vDFWgKqRNsGryjneQ8rZpE/mVqmyCACpue+5z6ftrrnFriw44h/ZP/gQ4/XRSOw8f9j8KpCqDz3wm8LrX0fdVUDtf9jJ63LoV6O8HTjuNiDhvon3F7GwoBj3hCcC559L3mze7s6kIOCeGQogfCyGkEOKDTc8vEkL8PyHEISHEiBDiJ0KICzSv2SaEeJcQYrsQYlwIcYcQ4kW2bObE5CuuoJ0Oy/i+h0127iQi1dcHnHMO8M53hr/zvU0DF28873nhzhhozZn0DXfdRQ58wwZSmLu66PkqVOHxwnjOOVQ5yKFN323fs4dUzUWLgN7ekBiy0u8zHnmEHjdtosdzzqFH39VONd/3JS8JNxIPPODGHhPcdBM9PvnJNM+f9CT6+ZZb3NmkA54rp55KhXlPeQr9fNdd7mzSRU8PPTJBXL+eHn3357ffTmlNp51GotBjHkPP+263KZwSQyHEKwBcFPG8AHA1gOcAeAuAFwHoBPAzIcRqjUt/AMD7APwLgOcC2Azg20KI59mwmycBO7+nPpUefXcknMT+3OdSK4wPfQgYGKDnfM95Y2XwrLPokSV83xd7zt+88EJadNgRAhSm9RmsGDI54fCg7/OcE8P5/uTHW27xfwPEism6dfS4ciU97t7txBxtfPOb4fddXURW2tupAMj3SMqvfkWPvPHZuJEet293Yo42WBVncnLhhfTou0ABhPP7b/6GHpkY+q7Sci7hb/82Pa5YQY9V6kqiA2fEUAixCMDHAbw94tcvAPBkAK+RUn5DSvnj4Lk2AH8V8Xr1ussBvAPAP0gp/0lK+TMp5Z8A+BmAf8hrt5RhPgFP5sc9jh45adxXsNz9PIUe8w3q88Q+cIBISmdn6LSZpPgeYmPFhAntGWcAZ59N3/u8y5yaAm68kb6/+GJ6PPNMemSlwldwusSll9LjypWk6g8Ph2TXR4yPh2GqtWvpkUm574s9p0ZwPmdHB7BqFX3vc+rB8eOUjzpvHpFZIPSJvoc1edPJEav16ykatHt3mCbkK3ijw3OEVX3fi9tYuefWaStWUD/DvXuBQ4fc2WUbLhXDDwO4W0oZdRbECwDskVLOUS0p5XGQivi7Kde9AkAXgK82Pf9VABcIIU7PbjI1Qh0cJEeydCk9x8TQ54UeCHNSViuaKzsVn0M+fDOee26ocPLu2PcdZjMxBIgcAn4nLO/cSUUEq1eHzpt3x//9334XoDAR4QUeCFXDW28t3Rxt3HUX5aSuXh2ONecw+TxXgDBF4g//MHyOya3PPQHZttNOI0UfCOeNWvDmI669lh6f+ER6bGujnrqA3+Hkhx8OyTinBfFG3+eNGxAKKHx/dnVRCgIAXH+9G5uKgBNiKIR4CoDXAvjTmJecByDqPJF7AKwRQvQnXP48ABMAmssSghRjnGtgaguYiGzYEDoSDveofdN8BBNDJrRAqAZxAraP4ManvKMHyHkLQbt6nyvZeFfPSidQDWLIqiCr4kDj3+BzaJM3EqedFj7HaqfPJIVbeJx9ditJ8T2sOTZGj2qREm86fVbe2DZ1rjz2sTT+mzf7fXoL+w91zHnD7HOPV1b0n/70cJ6vWkUq89Gjfp8kwvNFFVc4lF+Ftm+6KJ0YCiG6AHwOwD9JKeN0qsUAjkY8z92PFiV8xGIAx6Rsaa16RPl9lF1vEEJsEUJsOZjQCIoVB54MABGW/n4ihj6TQ14wWQECwgnus91s2ymnhM91d/tfySZl6Cyqphiy+n26oq8vWQIsX07f+5x6EOW8qxDW5JyxJUvC55Yvp0T9I0fCFjy+YXY2vEfVzVsVFEMmUOcqcsGSJbTZn5721y+qlfeqX+ReqT6nHvB8UDedbW3h3+HrmE9Nhf58w4bw+aqkHpjAhWL4VwB6AXzIwWfHQkr5eSnlJinlpmXc4C8CLNGrxLCjI5Twfd01HDtGu7G+vnBxB8IF02cFiM//VB0g4D/B2rOH8tqWLgUWK9sR3+0GohVDIKyW9ZUY7thBDrq/vzGUzCTRZ2LIRRCcVwiQosJqp69h8EOHGqvAGawY+twmiPu68rxmsILoazX4tm1UHbt0aZheA4Rzx+c2XkwM1abcQOjffT0a76GHaMxPP70x6lYVVd8EpRJDIcQaAO8B8F4A3UKIhUKIhcGv+ed2kFoYpQry8hqlJkL53cKgsjnqvUeQAzypT2/KVOSffZ0cvNCffnoo3wPhDt/XmxEI20lwMQGDd22+OsGoMDIQki2fiWGUYgj4X4XHc+Hii0lVZjAx9HkDxIpDM0nhxHxf82nZd6iRCCAMcfpcIMb+WlX0gWoQQ4AECdWfM2E5kmuVKxZxxND3zRsHElVVHKiJoQ2sB9ADKgQ5qnwBVEl8FMAFoHzA8yLefy6AHVLKpEYf9wDoBnBGxHsB4N5MlgeIm9Q8OXyt2GRH0qwAsQN85BF/zzXl0IKqpAD+S/hMUpqJIZPzRx/1t4gjTjH0PZTMC3nVFh0gJK2rmxpy+R5iY7ubF8wLL6SWNQcP+tuyJiocC/hPDJuLIBgcmfC5QjZuDeXUA1/9OVd6q2oh0Gi3r2uoKcomhr8BcFnEF0Bk8TJQ0cgPAawSQjyd3yiEmA/g+cHvkvBjAFMAXtX0/KtBVdCZqZuU0YntgP8kRVUMVSxfTkfjDQ76uWhKGS6IXOTD8H3M2Tk3O++eHlJXZmb8zb+Kmy++5+qxetVMrpYto3ZHhw+HhRK+gcc0jhgyifENcYphe7vfpHZmJuzfqqbXAOH/wFdiyHOlmdAuW0b+Zd8+P0UKKcMNMxMqhu/EkO+/5rkyMECEfHzc/37AuiiVGEopj0kpf978Ffz60eDnYRD5uxHAV4UQLxdCXBE8JwD8o3pNIcS0EOLflM84AOBjAN4lhHi7EOIZQojPArgcwLvy2H/8OOWM9fVRPo0K33eYcYohEN6QPobZjh6lquOBAWpvoMJ3Cf9ooIWrJ7UwfM4zHBoilaenp5WM+z7PoyrYAUpu9zltYniY/Et3d2M+KuB/14O4MVef83HMDx2iwpklS8J2Owzf5zmnFXBPVEZ3N/C0p9H3PlYm79pF+e7LlrWSWl6HfG37xmS8eQME+L8WmcL5kXhRkFLOAvgdANcC+AyA/wQwA+AyKWXzrdoefKl4D4APAvhzANeAmmW/VEr5ozx2qWGq5gxG3x1J84kKKnwuQOFdb9TNyLt6HxcdIJkYshLn4+6YTzY57zwiVCp4nvuuGEaRFJ/DyWoYudm3sN2+LpjNzYpV8HM+3qOsADVvfoDqzPPmyBUQbv59tJ03N1FrKJNcX3Npk+b5iUYMO1wbAABSyuZCEUgpjwB4ffBl+t4ZEDH8YOs7siMujKw+t3MnyeUtpS+OEdVOgsHP+UgMederVoEzuHj8wAE/x5zDxFFj7nOSOC86zbmRgP8bICZPSRsJHxdMXlCifAufsnDffRT+bG/eBjsGN4KOGnOffYsOMfR1nifZzn4xoeuaM7Ddzek1QJhzuGePn/48LpcWOPGIoZeKoa9Qu+Q3Y/58+hob83Oxj+oFyPBZMeScjahFp7eX2pJMTVGOpG/gMHEUweJUBFYVfQLb1BzSBIjQdnbSa3zL1ZudDdtJceN2FT7P87jQIEDzfPFi+vt89C3cjoarp1X4HEpOIlennEIEfP9+Pwtn4opPgDAHzkdiyHZHjXlfH/nzyUn//LmUwM030/fNRZBATQxPasRVPDJ83WUmJVkDfod72LnFtZbkv8e3pN/Z2eT5wk2MfXTeTAyb82iBxlw93wjW8DDN9YEBWmSa4bNiyCSlufCEoarjPmF8nBbxzs5k3+LbXAGSiWF7O4VkpfQvtDk9TX5DiGi/6OtcAZLXIfV532wfHAyPwm0uyAP8T2syRU0MDZAUSlaf940YHjxIRGXp0tYka8Bv563rSHwjWAcP0s538eJoksLOxcfiE97Vx5FxX+fLsWP0uGBB9O99JoZRx1Wq8DU8yPYsXx4d+vNZMUxSrwB/j1E8dIgI65IlRMib4etcAapLDONa1TD4eZ/bBJmgJoYG0CWGvi08STtjwN+FHkhXDH3dHSelHQB+V4InpR0A/rasYaUzjhhWeZ77ugFichW30Ps85ml+kVV938L3aXb7OleA6hJDJnzqcZUqfCbjWVATQwPE9Rlj8OTg3YUv0F3ofdzVVzWUHNfbjeGr3UByZS/g7yk/fH/G2V0FxTBtA+TbwpO20PusGKYRLM6x9Y0Ypimdvs4VIH0j4atfTJsrPOa1YngSgm+0qIRfIHQkvhHDtEk9fz6FO4eH/Uv6rfqCGTdXFi6kM7YHB/1Lbk/bSHDOpG8EK+4YP8Ypp1C4c98+ytPyCSfqPF+wwF/foksMffXncWO+ZAnN88OH/ZvnafPFV2KY5hMXLaL866NH/T3NygQ1MdTE1BQ1oG1ri+5LB/i7w0yb1EL4GfKRsrqKYVLVINCYOO7TYq+eNBM3X3y0G4g/xo/R2Un/j9lZv470U0/AqVrxSZoCJIS/qmFVQ8lpvqWjg2yX0j8FSzeU7NP9CaT7xLa2cL74tpHIgpoYaoKdA+8MouCrI0lzgICfeSkjI1T12NvbeuoJw0e7gXQHqP7Op8X+8GHaBC1YQOMeBV9JCs/zuPA94OeY799PhUrLllG7jihUeZ77uOmcmCB1p6Mjui0T4O+5w2mqm/o7nwjWzEw4lnFFHD7aDaQTQ+DEKkCpiaEmeBcQl3wKVFcxBPzMkWAHuGxZfLNTX0mKjvP2laQA1dtEAKToA/HFJ4CfYx53prYKX1VaHWLoo2Koqm5xG33uP8p9Gn2B6hfjwPevT+drHz4cVlN3xBytwWuUbydC6cxzX+/RLKiJoSbSytUBf3eYaaEHIPy7fJrUaWFkwM+FHkgPsam/88l2nrtJY+6rA6w6MUzadPoaYtPZAPlIDNPy9ICQGPpEroDGFkFx8FF50/GJ3Jj+jjuIRPoCnbWIc68feqh4e4pGTQw1oeO8fbwZgVDBTCK1PiqGOjejryTFRDH0yfa0UA8QJrcfOeJXcnvViWHSmPOis327nwtmku0+dj3QUYD6+0lNHBnxa55XVTHU8YlcrDQ5SQVLvkBnw3zWWfToY29aU9TEUBO6oeTOTlqgfDoujG2Py6UBqqsYqsRwdrZ4m3Sho9L6GAbXmeft7TSXpPQr0bqqeZ06xHDBAvry7chNnXuU/y6f5oqO6iYEdWwAwk2HD6iqYqhzfwJ+FnHobIDYbh+POTVFTQw1oRNKFiLcqXFen2tIGS4kScTQR+VNx5F0dVGV+MxMePKFa0xP03xRK9WiUFWSAvg3X9KOCWNUecx9WzDVqtck2/loxaoRWiD8u3yZL1JWXzFMI4a+5epPTxPZEyJ5DeXf1cTwJIJOKBkIk2d9IYajoyTL9/bGV5kCflZU6RTNAP4pb+pcaW+Pf52PJEVnAwT4FwY/cIAWzWXL4hPbgWqPuW/EcHSUugb09EQf+8jwbaEH9MgVEPbE5B6ZrjE8TBXVfX3xnRoAPxVDnRxDwL95fuQI+ZZFi5J9i48boKyoiaEmdEJsQEhifNmp6aiFgH8KEBCOYRox9G2xNyVXvtgNhNWAcaeHMHybLzotmQA/x1x30+nbgqmqhXFdAwA/lRRdxZAJli8bZl1Cy3b7sg4B5qFkXwiWTn4h4Oc8z4qaGGpClxj6FkrWJYY+K4a6i70vJEV3zH2zGwiPuTvjjOTX+abSVnUTAVQ3lKxrt4+KoS4x5EImX3IMdckV+0yfFEOd4hPAvxNndPILgVoxPCmhK4P7dkOaEsODB/2petRVgXwjKaYqLYdBfQA747QF0zfF0HQT4dOYV50Yps0VdcH0pUCsqsTQJDdSCPof+XJEW1WLT7gxe1oUpVYMT0LoNP4F/JscuiRl3jzKFRofp9whH6C78PimAqmn5CRh3jzK+xwbo5YYPkCngh3wjxjqVIEDNOZ9fTTPfWmHUXVimGZ3Zye1fpmdBYaGirdLBzqVvYB/xFCXXHV0+BcFqmrxCZ8Jf9ppya9bsIDI+PHjVAxZZdTEUANS6jVEBfyb1LrEUAi/WtbMzobkOo1g+UZSTMbcJ1I7NUULd3t7ci9AwL8wuO6YA/41iz7RiSHg34ZZN1fPN2KoqxgC/o15VYtPdAWKtjbqkAH40yEjK2piqIGhIVIY+vrizzJlVJUYAn4RrGPHiJAvWJBcCQb4Ra4AfcUQ8ItgqXYnFRMA/oXvdTcRgF9jPjZGCj2raknwdcHUIYb8f/HB9pERGvfu7vQxPxGIoQ9r0cgIzfPubmBgIPm1vs1zE9/CtvviF7OiJoYaUMNUaQumTzcjYEYMfboh2e60Yh/Ar4Ue0FeXAb8IVlU3EUA2YujDmKsV7Gm+xaf7E9BPyldf44NfVMlV2pj7RgxN/KJPiqFaeFK1NdTEt6xbR4+PPFKYOaWgJoYa0C2CAPyb1Lo5Y4BfJxSY2O0TuQLCo7/4KLAk+ERSTgRiqGM7E3YfxtxEdfO1jYcJMfQh381EdeN72Jc+hib3qE9Vsrr5hYB/GyCTMV+9mh596UqSFTUx1IBuYjvgHzHMohj64LyzKIY+LPSAfmK7+hofbOe8GJOQyeHDfiRaV1UxzEIMfVkwTwZiePbZ9Lhtmx9V7Cb+3Ke1KAsx9MFuwMy38Gt8UGnzoCaGGjAhKWryqQ+tGUxs92nhMVEMq0xSfHKCTAx5Diehs5NeJ6UfidYmY+6Twqzb3Fp9jQ/3J1BdYmjiE7u6qJJ9dtaPKvaqEkPdwhOgkVz5sIaa+Bb2nTUxPAnA+SU6C2ZHB+WlSOlHXkpVcwx1G4oDNOZLltCY+2C7SVjTpyo2E2II+LU7NnHePi2YJurVvHlEVMbG6Ms1qk4Mde5PwK971MS3+HR/6p4GBYRr6OysX2NeK4Y1GsCTM62FB8OnhcfECfqUY2jqvH0JD6rOTIdg+bjoVI0YcpsdIYD589Nfz3b7MOYmxFAIf06FkDKb2ulDTmpViaGUZh0PfLk/AbM0FcCfNXR6GhgcpHtPZ/33aczzoHRiKIS4QghxnRBinxBiQgixSwjxLSHEucprfi6EkDFfP9b4jLj3XpzFZhPFEPAr6TdLsrJrBwiYKYaAP47k+HFy4PPnUz/ANPiy6ADVVQxVu9s0PJovdgNmuVeAP6o+N/EdGKAWJGnwacyrSgxHR4HJSTqIoLc3/fW++ETA3Lf4Ms+z+hbXcyUvUjrEFYLFAG4F8BkABwGsAfBOAJuFEBdIKR8F8GYAzXv/JwL4GIAfan7OlwB8rum5B7MYXFXFkENOXV3UgzENvjhAwNx5+9KawSTsAPg15qa7el/yaUzCa4A/dgNmiiHgz4JpEkYG/Lk/geoSQ1O7fSLjJwIx1IFPY54HpRNDKeU3AHxDfU4IcTOA+wG8GMBHpZT3Nr9PCPHHACYBfFPzo3ZLKTfnNBeA+eTwhRiqC2Za7yjArwXTVDH05YY8EYhh1Zyg6Zj7Yjdw8hBDn8a8JoblwzRNxZc1tKo+MS98yTFkNzcd9UshRB+AlwC4WkpZ+lThUHLVFMOqOkAguxN0PeZZiaEPjiSrE3Q9X7ISQ9d2A+Zqpy/EMOvGzfX9CWRXmF3Pl6xRFB/GvKqKYdY0Mh/8eR44I4ZCiHYhRJcQ4kxQyHcfmpREBb8HYADAlw0+4k1BDuNokNP41Ky2VlUxNGn5AjQumK57dlVVMcxDxl2PeVWLT0yJYV8fVT6OjQETE8XZpQPT8L0vC2bWDdDx4+5bkFR1w2xKaNX707VvqSoxNE0j82nM88ClYngTgAlQ3t+FAC6XUsbVlL4WwAEA/6N57a+C8hSfBeANAJYAuE4I8Yy4Nwgh3iCE2CKE2HKwqXTOdNfgCzE0dYA9PZRIPjlJZ0O7hKkT9GXMTRdMzv+cmaHzRF3ClKRUlRgK4Y/tVV0wTTcRHR1UkOVDGy+Tyl7AH2Jo6s9V3+K6B2NVxRXTtb+7mwqDpqfd+/M8cEkMXwPgUgCvBDAI4FohxLrmFwkhTgURvK9JKSNDzc2QUr5GSnmVlPIGKeVXATwFwB4AH0x4z+ellJuklJuWNSX8VLX4xNSRAH6ENqWkFgGAXvsRwJ/woClJAfxZeKqaT2O60KuvdTnm09O0YAsB9PfrvceXhuhZ5rkPflFKc9t9aRGUxZ/7co9WdQNkuvYD/ox5HjgjhlLK+6SUNwXFKM8E0A+qTm7Gq0F2moSRmz9rCMB/AXic6XtnZsx6pAF+OED183XDsYAfC+bICIWbOOSnA1/IVR4y7tJ29QSTLGETlzBVlwE/bFdzl3VaYQD+LJhZiKEPYz4yQj69r48UNR2sXEmPrs+/zbIB8mEtGh+nlI2uLr02O4AfdgPmiiHgxzzPCy+KT6SUxwA8BGBDxK9/H8AdUso7bHyU6RtYuRoY0HfevrRmqCpJ4ZtRl4gDIZlxTQyrqhgODREZnzePjrvTgS8OMM+Y+0AMTRYdX4ihadqB+lqXY24aAgdCYsjHurlCVRVDVS3U6Y4B+DfPTRRDX0htHnhBDIUQKwCcDeDhpuc3ATgXOdTC4DrzAfwOgJtN32sqgQP+TIyqhpKZjJvcjGpyu0tUlYxnmec+LDrq51eNpGQZc18WzKqGkvMQWtebzhOBGOrCl3lu2pEECG334fjHrCi9j6EQ4j8B3AbgTlBu4UYAbwO1qvlo08tfGzz/tZhrrQWRyfdLKd8fPPcOAGcB+Bkor3AtgHcAWAngVab2ZtnV++AA1c+vGknJohj6YDeQT72q2oLpCxmviWH5qOqYZ1EMffMtJv7ch7WoyuJKFtt9Olo2K1ycfLIZwEsB/AWALgA7AfwcwJVSyu38IiFEJ4BXAPhxQrWyANCORuXzAVB7m98DsABEPn8F4A+llJkVwyzJp0eOUO6WrnxuG3l2mC6dYB7F0LXzzjLmp5xCjy5zmLI4QCbufAygq3mexXYfSG2eMNXRoxT6101vsY2qEsMsGyCe54ODbsc8T5GVD2Nucn9y3u3gIJ2FrpveYht5FMOaGBpASvlhAB/WeN0UgMTzAAIiKZqeuxrA1TlMbEAWxbCnh77Gx6lXms5xdEXgZFIM+/vJkYyMuHUkWRbMU0+lxz177NujiyzOu6srnOejo5Sf6AJZ7lEfclKz2N3RQbYfP062m9zbNlH1ULLJmLe3U4750BB9mZAEm6hqukcWu9vaaL4cOkTzZcWKIixLRx5Vv8qhZC9yDH1Gll094EeunmmDa8APu02PCQNIrfJBBcpCxvm1LklKlhAbEN4XPihvVVUMTcfch/YpVVUMs85zHzbMWSIpVSXjgB+2n6yKYU0MU5BlV6++3qUjqWooed8+euRqQF24HvOpKepL19ZGCoMuqkqugNB2XrTKxuxsdXNSs46564VnaoqUeVbSdOEDMcwSSgbc36NqY3CTee7TmFdtngPZ1n9+rSufaAM1MUxBXsXQ1cIzMUHOu6PDzHm7thsIHQEn8erCte2qAzTJQ3Jtt/rZpgummmfoAkNDtGgODOj3vATcL/RAdRfMLO1HAD8UoKxj7voeHR2l/os9Pfr9F4FqE0PX80Ul4ybrv5qTWlXUxDAFWSe16xtSrWAzcd4+hJJNTz1huHbeVVUjgPyKoSvbq7pxUz/b1HafiKEJXPtEoLrEMAtBAfzoqZs3TcUVwVKboZvkrNfE8CRAVUPJWcLIgHu7AVKBAHNi6LqgoMr5S1UlhlkXTNdzBcjvW1wtPFkJrU/EMOt8cTXPs+QXAo0dMlyhqmkqWedKTQxPAuR1JFUjhj7kGKqnzZjAdUFBlRXDqhafZB1z13MFyL5g8n3hauHJq175UExQtc1blvxCwC8ynjVNxfU8N50rru22gZoYpiDr5GCnyepX2TgZFUPXYXAb5EoaH9poB3lJrSsneDKqtEwMXfmWrMSQjxUdHqYCFhfIqzBXTRlX5/nsrE2L9JF1nrvOX64VwxqxqOrkyEoMVaXTlSM52RTDjg7qATg7S4umC1TdeZuOeU8P5Q1NTFAfRhfI61tcE0PTudLW5j4iUdWc1KyhZPYtUlLOnAvk9S1VUwznzaO8fi4YqiJqYpiCvHKyqwUzKzHs7KRm0S5JStWLT7I0wPXF9qqGkk3t9qHvZVbf4jqUbGOeu1L1T7ZQsvoe1/OlasQw6zwXwv3mLS9qYpiCqiuGpkoK4N4J8s2UVTGs2q5efU/VCFZV7Vbf42K+ZO2/CFQ3lAy4XTCzth9RX+96E5FnzF2sRVJWlxhWdcxtoCaGCVAnddWIYdadsfoeFwsmN89tazM/Ys11onVWQgu4HfOZmewkxfWCmYcYurQ9a/9F4MQghi784ugoMD0N9Paa9QIE6k1nVoyPA5OTQHc3pW+YwPUamse3uLY9L2pimICxMXIkfPaxCVxPjKzhWMBtuEftv2h6WL0vzjvLmLt03uqi095u9t4qE0OX86XKi06eTadL2/MQWtddJqoaSj4R5nnVNkA2UBPDBOTJpXE9MfKQFJcJ4lnOd2ZUmRjWJCUbbCiGLsc8i2+pco6hS9ttbCLqULIZTlbf4tr2vKiJYQKqujNWP7dqJIUVw5MpNxJwq7xVNRwLVHexz+NbXLcIqipJydraSH2P601n1ULJVSZXeea5681bXtTEMAF5dsZVdt4uQ8lZ248A/jjvqpHxk50YVnXMq+hbXBaf7N9PjytWmL/Xda/RkzGUXGXf4prU5kVNDBNwsiqGLkPJeXb1/f2Ulzgy4qaBblVzDPOotFV23j6EkrPYzX3SRkYoB7psVNUvMjFcvtz8vT09VEAxOemm72VVVdo887ynhwqzJiZo3MtGVcfcBmpimABbk3piwqZVeqi6epWFpLjuTVf1Mc8yz3t73c5zGwpz1UJsbW1ulbeq5hjy/znLXAHcbiROxlCy2g+waqS2JoYnMPI4QNeT+mQkKer7XNh+MuYYupzneXoBAm7nSh41AnDXQD9PL0DAbaudPPcn4DaEb0O9culbspLxqlax18TwBEaekAngbnJMTVGrnfZ2oK/P/P0+5BhWjRjOzoYLT3+/+furTMZdkdrhYSIq/f3mbXYAf1oEZYErkqL2AuzuNn+/D5vlvMTQZbFSVdNUqraGArViWCMGeRRDwN3kUNVCIczf77JRdF5H4opg8fGBVSQpeee5K9vzEHHAD8Uwy0Kvvq/sMc+7ifBBMazamKsbfdOm/4DbnPE8kSvA3QZoaoo2QW1t2fxLTQxPYFRVMazqzah+ZlaS4mqx58/LO+YuSUoVFUMguwLkkhhW9R6tMjGsqmKYd6PvMgKUd567WkPVMHKWMa+J4QkMW0pK1YihD7v6rM7ble2HDtHjsmXZ3u+ymCCvelVVxdCHYoKqqVd5iaHLBdNWjmHZY573/nSpGOYdc1fz3FYOcE0MT0CcrIqhD3lAVbP94EF6XLo02/tdVmvmVWldjXmViwlqxdCGNWbIG0p2vdHPG0WpFUN9VDWNzBZqYpiAqu6O8+52XJIUWztMV2OetfqO/14uqCgTVVUM84aSVZJS9pjbIoa1kqKPvKHkqqpXalum2VkrJmmj6v68amu/LdTEMAFV3TXkXXS4B+PkZPm96aoaBs/rALmCXEpqXFwm8i48VQ0luxzzqqq0ee3m/5WLDdDJGkru6KBxVzsnlAVbeZ1VE1dqYngCw9auwWWychaovemqRrCqGtZU3+vKeVeVGOYZc9cEq2qKoVp9nwUdHdTqxgUZtxVKduXPs96fgHt/XtVQct6UicFBN0co5kXpxFAIcYUQ4johxD4hxIQQYpcQ4ltCiHOV1zxDCCEjvo5pfkaPEOIjQoi9QogxIcSNQoinmdp6siqGgBuSImX+HWZVFUP1va52x1VbMPMqhoCbMbcxz11tOm2MuQu/KGX1FUMbxLBqG+aqhu87OtxFI2ygw8FnLgZwK4DPADgIYA2AdwLYLIS4QEr5qPLatwK4RflZ92TQfwPw2wD+EsA2AH8K4BohxBOllL/RucD0NP1Ds/YxAtwTw6o5kvFxGvfu7mzNc4HqOkDAza6ezyHt7KQUgixwnQeUNa8TcDPmo6PAzAwpZ52d2a7hKsSWVzEE6B7Zv7/8MZ+dDY9wzALX8zzPRt/FPJ+epv6LbW3ZDloAqqsYAmT76CjZnud+cYHSiaGU8hsAvqE+J4S4GcD9AF4M4KPKr+6TUm42ub4Q4iIArwTweinlF4PnrgdwD4D3A3iBznXUm7Eto67qOj/ChmJYpu1VDsdW1fa8/br4veq1yoIt5w2UO89tKPquFkxbxBAod57buD+rHEp27c+z+hbXZDyvuLJvH9l+6ql27CoLvuQYHg4edRXBJLwAwBSAq/gJKeU0gG8CuEIIoaVFVVm+t7nwlOm8q7xgVp0Y5hnzKhNDF2NuY567zjGsWl5n3tA9UIeSTWFzzKuqGALVLEBxRgyFEO1CiC4hxJkAPgdgH5qURABfE0LMCCEOCyG+LoRYo3Hp8wA8IqUcbXr+HgBdADbo2Jf38G/gxCCGtWKoBxtO0KXzzrPoVJkY1oqhGaquGFaRjNsMJbvw51WzG6guGbcFFzmGjJsAXBJ8/xCAy6WUB4Kfj4NCytcDGATwGADvBnCjEOIxyuuisBhAVCvPI8rvWyCEeAOANwDAmjVrKj0xbIYeqqak1IqhGWzO8yoSQxchtiqTcZsFP1ULJdf+3Ax5izeBavuWKhNDl6Hk1wC4FJQPOAjgWiHEOgCQUt4upXyHlPJqKeX1UspPAHgOgBWgghTrkFJ+Xkq5SUq5admyZZWeGFXfYVbReVe1KvlkDyXXKRNmsKEYVjWsyQUUY2NUPFQWqipS5D0mFHC/hlZtzG3BGTGUUt4npbwpKEZ5JoB+UHVy3OtvA/AggMelXPoogKgAMCuFRyJ+14IqT4yqtquxYXdvLxULjY8DU1N27NJBVauSbakRQlAVf9UWzKqS8e5uqmienKS5Xhaq6ltshDXVDhVltiCp6kafieGSJdmv0dtLjejHx2mul4UqC0M24EXxiZTyGCicrJP/l9Yu8h4ApwshmgvkzwUwGXxOKmxMjL4+mtRjY+WSlKoqEjbIlavm3FVVO22Qq7Y2tyHZqs1zG3YL4SYxv+rEMM/9CTSe3FIWbIoULkLJefL01Xle1RSbmhhmhBBiBYCzATyc8JpNAM4CcHPK5a4G0AngJcp7OwC8DMD/Sim1DnmzMTFUklI1513VcI/6/qpV97okhnnsBsoPJ9toWAxUN5Ssvr9qG4kq+xYmhlVU9dVrlQFbY172fJHSbn5kFYlh6cUnQoj/BHAbgDtBuYUbAbwN1Krmo8FrvgbgkeB1x0DFJ+8CsBvAJ5VrrQWRyfdLKd8PUH6iEOIqAJ8QQnQG13kTgNMBvErXThsOEKDJcfQoTY48kroupqZIoeRzYLPCZSjZxpgD5ZGUkRFqZNrdXT3FsKpjbqNhMVBdpRMon4xPT9O4CwHMm5f9OlUNJQOh7WUphuopOVXbdNoacxe+ZWaGGv5nPWgBqImhKTYDeCmAvwC1j9kJ4OcArpRSbg9eczeAVwB4C4A+UCub7wH4OynlIeVaAkA7WpXP1wH4EIAPAlgI4A4AzwnyFLVQ1d2O6kSyNhXl96vXKwO2yHjZC+bBg/S4fHm+MXcRGqyqYlhl1a2qvkVd6G34FhebzqqFkoeHaQPU15dvA1TPc33YFIWAmhhqQUr5YQAfTnnNlQCu1LjWdhA5bH5+DMDbg69MsJWT4pIY5kFVw7FAmBdaFkk5GjRHypNLA1RbMSyb1NpWgMqc5zaaRAPlKym2FkzXp3DkQdnE0LaiX0WV1tUGqGprv014kWPoI3JPjslJ4N3vxjMmrgFQMWI4M4NlB+9FP4aqR1K2bsVjp24CEOaJFA1bjmTx8A4MYLDUti9W5ouUWDh/FkD5imGuMT90CKd/7YMYwGD1CiFuuAHPOvptALI0263Mlde/Hs94/XrMw3D1SMqb34xP3vR4LMOB0my3QsanpnDadz+BjXigeorhxAQWD0w1XK9oWLk/Z2bwlPc9C/+Av66J4YmE3I7kAx8ArrwSH9zyHPw+vlQdYjg0BHR04OwXnYchzMcVe/7dmm1pyK0Y3n03sHEjPnDtpfgU/qw0kpLbkUxPAwsXYsMz12IQCzB7rDxPknue//VfA21t+PpV7fgGXl6dUPLsLLBsGZZ/6r0YxAKIY1E98YtB7vny7/8OPO1peOsvX4r34gPVISnHjgFf/CJ69j6CYQyg6+h+W6alIjdJeeITgc9+FhuO3IJ/xp+Xphjm9olHjgBdXVj292/DAzjbyTzPbPvOncD69fiPq7rwazwRQ0dtnJibjtz3565dQEcHFt32U/w1/hFTR0ssYbeEmhjGINfkGB8HPvjBuR+/hNdhfN8xK3alIbfq9k//1PDjRw7/IWVAl4BcC8/MDHDBBXM//hk+jeW//r4Vu9KQ25H8+Z83SG13H8jREdYQuQjW1BTwkY/M/fhyXIWOh+63Y1gKco/5e9/b8OMHDr8pn0EGyGX7/v3AH/7h3I/vx99h6c3/bcewFOQm43//9w0/Xr7/6/kMMkCuMb/rLmDz5rkfX4Fvon17bAMNq8jtz5sqHv/u6P+Xyx4T5CLjDz8MrFkD7NkDAHgiNmP19V+zZ1wCcvuW005r+PHGuwfKC19ZQk0MY5Brcnz/+y1PXfL1zOmORsi9w/zUp1qeknffk90gA+Rygh/6UMtTL/n67+UzSBO5HclnPtPwYzcmMX13OQQrl/P+whdaNg2r7vpxfqM0kGvMpQS+9KWGp148fRVmjxzLa5YWctn+uc+1PLVxSzkEK7di+D//0/Dj/xn8cmkd0XOpV9/6VstTK3/zPxEvtA9beZ2M3539Hqanytno5xpzZZPPWLLtlnwGacJWalAD7r3X4sWKR00MY5Brcnz84/T4x3+MOy96DQDglG2/smNYCnLt6m+/Payk2L8fX2t7NQBg+pqf2jEuBblI7Z13zn17/6W/Hz4/odW2MhdyzZVvfzv8XrG17Ypn5zNKE7nmy1e+Qo+f/zx+8bukNP/2T95WSjf3XGN+882kRCxY0KDUTv/FX9kxLgW5bL8/2DCsXIlrX0FpHhff87VSVP1cc2XHDkr1ADD56F4AwAWzd0D+6Z9Zsi4ZuTZAd91Fj1ddhf9+0b8BAJ77X28pZcxz+cQtW8Lvr7sOh8RSDGAYk5/4TPx7LCLXmI+N0eM//zN+8Xu0nl5666dL2Ujkuj8VZXniuHIk0R135DOqZBgRQyFElxDiUiHE/xFCvEoIcQWfb3yiIfOknp6mhQcA/uzP8MtXfgazEFh8bFspC2Yu5/1f/0WPz342sHw5bux7Fv381f+wYlsaMu+ODx8Gvvtd+v6aa3Drn3wh/N2DD1qxLQm5HMmNN9LjaacBXV24q/OxAIC2PbvsGJcAtUease2jo6Gze/7zcfy8J4e/27bNin1JyLXofPaz9PiylwHz5+PbPbR5k/eUs6u3svBccw0OPuF3wud37sxtVxpyqVe//CU9/vZvo2vNyrmnxef+Nb9hGsisXo2PA1dfTd+vWYP9j31u+LtbilewckVRfvADevyDPwAuuww39PwWAKDrY6kNP3IjVwP66WlqUAoAv//72P+0l4S/+9GPrNiXhFz35w9/SI8vfjG653djDD3085vfbMW2spBKDIUQ7UKIFwshfgzgOIBfAfgOgP8A8D8AHhZC7BBCfFgIoXOknfeQksSbtrZwfmqDydXppwMXXojeZf3YhvVon50Gflx8mC0XMfzJT+jxTZRvdcPi3wUAdNxzR+E7tYkJKuTu6KDGokZQHfRTnoJ5CzvxfZDtc7v9ApHLkezYQY9Brt7XVigpBwUfyDoxQT64uztDI9dvfIMWzTPOAFaswPjFl+JhrKff3XSTdVubkXnMp6aAL3+Zvn/ZywAAn19B+YZtu4onV1KGrU649Yk2Dh4EHnmEukufdx66Vi3DfyMgKopSURRy+RbeAD3pSQCAPxj4rh2jNJCLpFx/PRUqrVoFPOYx6FxzSvi727Tb4mZGLjLOvu+KKwAAP1j+xwCA9v17LFiWjPFx8i1dXRl8y1VXkWK4cSOwYAE61q4Kf7d3r1U7o5DLn996Kz3+n/8DAPjQvL9PeLG/SCSGQogXA7gfwFcBTAD4GwDPBnAR6MSSSwG8EkQUfw/AfUKILwRH3FUWzIEGBjI0cmX5/rd/GwA50f8AKRK46io7BiYgs/OWkpwgADzucQAAsWghDmIpxPR0SGAKguoAjcecE3uf9CSgrw8DA8BNeAI9x7v9AmGFGK5ZAwC4cbWyOy5Yecu10G/fTo8vfSkgBAYGgE/hLfTcd4tf9DOPuTqPA5IyuHgdptGOjn07SQktECMjdKv19tLpREZgNWLTJqC9vXGel0DGc5GUX/+aHp/4RPpx6QswxW10Cx5zlaR0dRm+mQnt7/0e0N2NBQuA9yAoLOR7oEDkCiXfE+SGn3ceAOCRZY/HDNog29qBAwfsGBiDXPmFr6YUJqxfP3eNv8P76LkbbshtWxoy+xYpw2jh058OALhq+VtxHMEglCBS2EKaYvhJAJ8GsFJK+btSyo9KKa+TUt4lpXxISnmzlPIqKeXbpZQbATwFwBIAbyja8CIxSy3Zsk3qX/yCHp/97LlrbMal9NzXvhZevCBkXuz/7d/C71etmrvGrxCECK+7Lr9xCci16Py//0ePQcJyfz/wA1YMOYRVIDI7kqEh4L776PuAGPYt7MJVeCk9d801dgyMQa5w7EMP0eMGChLMnw9ciyAvsoRE69zE8MlPnpOme+d34h6cByEl8LOf2TMyArk2EddeS48veAGAJt/is2I4PExpB+3tc5vOvvkduAtBgUHB8zwXSWEi8ixKq1mwANiOdfRcCQt95lDy2BhV9nZ0AGedBQDoWtiH/8Fz0TYzXfiG2UoPwzcQjZg/H/gW+8T//d98hmkg8z16220kUixcCJxCynL/gnZ8Fy+i3/+0nFx9G0gjhuullJ+QUh7TuZiU8iYp5f8B8JHUF3sMVTE0xq4gN+zsswHQpL4Vl7T+viBkdt7f+U74fSDZDQwoxPA3v8ltWxJyqVecR3jxxQCIGN6Ps3G8bSGNd8H5V5kdyX//Ny2aj388cOqpAOjv/wmC3M6CE5ZzjTnPh4suAkB/+8M4A7MQFO4sOJ8285jzmJ5zztxT8+cDV+P59EPBG6BcagQvioEaMTAA3IzH03O33kq5GAUi83y5+mpyqo95zFz8fGAA+E8EXQMK3rzlIuMPPECP558PgNb860HjjxtuKHyjn3nDfP31NGfOPXdOJh0YUNYin6MR/Mc+4xlz17gfZ2Nc9ACHDhXe6TrzfGFF/+Uvn1tD588H7gD5yLm5VAEkEkMp5XjS722/zxfwvZ4pf4lJyOrVAGhiHMZS/KYnCPkUfENmntQrg4Tw971v7qn584EHQLvNOYWoIGR2gIOD4Zj/MeXQDAwAEm24tYvCVnPhoIKQecyZXD3jGQ2OZCvOpOd9dd4jI+TkOjrmFsyBAWACPdjdvoZIQMFFP5nHfOtWegzs5mtswSb64Z5iWzNltvvYMeoY0NcHXHLJ3DWOYREe6jiLEkaVyvwikPkeZTIepNcANOd2I8gdK/j+zKxeDQ8Du3cTsVq3DgD97buxCgfaVtI/s+DQZuZQMue6v/CFc08NDCj+vGD1KvM8n5mhf5gQcxONHgR2tK2j1zz6qCUro5HZ9kOH6PHcc+eeavDn7HsqAO2qZCHERiHE45Wfe4UQVwohrhZClNNzoCRkVgwfeIDI4fr15MAROtGdCJpe3n67HSNjkHlS80L+tKfNPTUwADyEoJ6oYGKYmaQwuXrMY+aStjip/2b5+MbXFITMoSpWpx772LmnFiwAtnERR0mbCGO7776b1IhzzpnLLOdr3NwWhDYLXjAzz3Me0yB/ia9xDygPq2himPlcbc5dUuyeG3NRTjg58z36cNAMeuPGuado8xYkE994Y6GtX3Lfnxs2zPkWJinXtlFBx1wqSEHIHEpmux4/t2RjYAD4LwTk/PbbKfGyIGSeK7t20VxYvpyqP5VrPCJPp298FVeOHKFHpan4CU8MAfwLgBcrP38IwF8AOBXAx4UQf2rTMJfITAybkn2BcFIfmQq+4Z1cQci8O2ZiGOSjAGT7NqyHFIISrQsMD2Z2JFwFFuQuASExfGiS8vawe3c+41KQ2ZHwgqmQcVZSptu7gH37Cq1MzjzmvOg0qW4AcN10EGb7+c9z2ZaGzIt9BDHkeT7V0UMLU4GnFGQmhqwGXnbZ3FM85r+aDqIRBRPDzOoV914844y5pwYGgF8gnPdF3qO5KpIBYFl4EtH8+SRm3TMdkFy+hwtC5nuUw5ZN/nwQCzA4fxWlHRSYYpN5zHmuKKkeXKh192zwXMEpNtw1wNj24JSW5vmyHesw29ZO4z1ejWCqCTG8CNSqBkKINgCvBfDXUspLAHwQFS84UWGTGM6bR47kRzPPoSd8zI84fJi++vvnkmb5GhPowfGB1bS7LFDtzNzCgx2JQlK4+nCnDEJVPhLDoSEa856eMIwPciSzaMfR/oDUFhg2ybyJ4DEP8mgBoLOTxMOb5abG1xSETLbPzISVpKefPvf0wACN+cElwcJTYPEMc86FCw3fyIu4Qmi5tdONMiCGvEkqCJnI+NGjpDD39gIXXjj3NJHxM3B0SRCRKFB5yzzP2W+8ONRD2trCfFoAfqpXw8O0wensnAuBq9c4PD+Y+488YsXGKGQmtBG+RQi6zi0INv8FV+BnGnMpw2KkJmFoGp04vmgdvaaEHq82YEIMFwA4HHz/GACLQG1qAODnANZHvKeSyJxjyAuKMjF4Uv8ST6EnfHQkvLvcuLGhVwzf1A+sDoohmo60soncoUFFjQCIYM7lMPlIDNkpr1vXMOZ8jf3zynPeNoghX+cQltIPLI0VhExjfvPNpJSccspcqod6jd0Liw8nZw4N8gYhqF5nzJ8PPIhAvdq+vdCQbKb5wnavX9/QFJav8fCaQAEtMDE/s7rMZLzpeLaGdA8fFUOO/px5Ju0eAvCYH+gr3rfkVgybfEt/v1IIecMNpaQeGNm+Zw/5vMWLG8QV/r8dXFCtcLIJMdwPcMIZfgvAw1JK1qL7ARSXsFAyWDHMHGJTkk/5OvuwErM9vaQSFaQaZm7kGhF2AMK//64lz6BvCiwosJkzxtfZgTWQbW10Mx4+HPHm/JidDaO98+YZvJHtVpQrIBzzvV3r6JsCe6VlXjCZOEXMl6MIYqQ7dhQaks00Xzgcq4Tu1WtsnxcQw+DotiKQye6ZmTBnM2Kej6Af04uWUphq/347hjZhepou39bWwKnT0VSMx5ib533FK2+ZfQt3kDjttIanFy5sUgwLIikzMxl9S4w/579/T3e1FEOAbN+F0zC9YDH9Qwua51JmTJlgtfCCCyLFlT39Jy4x/CGAK4UQ/wTKLVQOecUFAKqhkWogk2I4OxvuHs88s+FXNDkEplYEDqagljWjo2RGdzdFEbTBhSVNdvPfv3c26FdeYFPUTM57aooUCSEaQiYA7TCHMB9jZz+GPGxBioQaAm8zuZvYKccQw50dnu7qjx2j+dLT07IBGhgABqF404JCmxMT9K/v6DA8VYHHMvL+BLZ2B+kIBSqGmcZ83z5SIxYsmGsPxODrTJyyjr4paCOh2m3UgJ6JYRO5Yrt3dgUEq0DlLXPaAUcaVq1q+BVvgKb7F9DAcDWqZWT2LSnEcM63+EjGmRg22c4pRuOnFOsXR0bIv/T2Gm6AVGKoYG7Mu09cYvhOAD8CcAWIJH5I+d0LAFxr0S6nyJRjuGsXzaiVK1veyAvP2NJg11zQDZn5ZuSbrEmNmNvtzAY5cAWefpLJ9p076Z+1alXLOXrsSMZWBI6koFy9zOHYFGI4F6ryjaTwQn/66S27D24TdORxdCbrXDK2ZWQmKdwvT0n14OsAwP3txYeSc435hg0tfzDPl9Gla+mbEoihETi9pinVg6/zaHvxIdlMyvi+feRbli9v2X2QbxEYWRn8TQXlR2ZW9CMKCYFwzLeJ4lXaTIrhsWM07j09LSkTbPvIsmJJLQeWli41fCM3xt+0qeHpuYrqjoAYFtzdwxa0iaGUckRK+cdSyguklK+XUo4qv3uSlPKdxZhYPjIRQ3ZsTQ4QCPOJDq8PWgfw8VCWkbtSs4mk8N9/98w5VM3x4IOFVclmqgSLCSOr1xlaVGwRR24yHjPmvxZBPs3mzYWFqjLZzipK0JBbBc+7o6cGylsJxNAITLCUCnb1OtumAlVr//7CGhfnIoZNqpt6ncHF6+gb34ghN+V+6lMbnua58pAsPiSbafPGClCTugyEm87jy4PczoJOy8ndekxpDwSEY/7gTPEqbe6UpiaJdG7MlxSrGGYuDuPNQXDkI2MuGiGDLLwTTTEUQmwTQlwU87vzhRAnTCg5EzGMUd2AcHLsPyUYvoIqNm2TlLmFfqQrDKcUvNgbVSUnkPE5R7IwUFIqQgznHMnoKvojjh0rLD8yFzFsCq+p1zk+79TG11pG5qrBvXvpeyU5XL3OseEO+gdIWVgesG1iONcOa/46+qYgYphJAZIytEfp1QmEf/++sQWUsD82VljeWKYNMy/gTaFBQEmxWRv0j/RtzGOIIdv9yPgpFCs9dChMqLOMTLYzMWzKLwRC248sLFZhzpwDHJOPOufPp9ZR7svOnTTXPYdJKHkdgLiMnh4Aa3Nb4wky5RiqVaZN4MlxoDf4XUH9ozLtjEdGKHews7NFBWK7BwcR/s6nxV5DMTwyEEzLgsLgmR0Jbw5iiOHQsAgde0G7zEy2swNMIIYHFgZ2/+pX2Y1LQKZF5/BhSkxcuLAleahhnnODwX378poZCdvEkKMR+9m3+KQYHjtGYz4w0FCRrF5naAjhPVCQCpTJdt5ERMxz3nQemhf4Fp82bvv30xsXLWpotKxeZ3BIhD7TJ4IVkxsJhGO+d1GxBWKZ7D5wgKqzli1rmedz4spQRzjPK9CyxoQYAkCc1r8JwLF8pviDXIph00IPKIphe0CuClbdjBZMldAG3f0Zc45kEKGD9IkY8s54w4aWX7EjOdDroWL4q1/RJFu5sqXTMds9OAjIM4tNWM5kOzvkiDHn6zy0LAin+JRLy/dck1qoXmdoCGH+YUGk1jYx5Omzp+Aq9swLJgCsWNHyq7kNUAnEMNOGmTeSCcTwcFvQyLigTUQmu9lXNLUeU68zNISQGPqkdsa0HgPCMd/TF/idgv25UeSKN8tNlfdA06az4HluE4nEUAjxNiHEDiHEDhApvJp/Vr4OAvg0gB+XYXAZYMUwE8FKCCXvQ1DEsW9fIccRZXLenAybsNAPDQFyVTDpC1I7cxHDiB3mXGuGDiXHsIAcplw9DIND4lVw02Ipgel1xSYsZ7Kdz1hVjtpizCnjM0soJ/XYMSqVt4xMGyCet01J7UDTPH9CEB70iYwnEEPOhXoUygbIl3nOoeHly1t+1bDp5AWzYFJrm6Ts6g5+t3VroWNuZDeTlIh5znYPDwNyRbAWFRy+N5ov/P+PiLrN9XeVy0nAOHiQij0tw3YU5YQkhqAWND8NvgSALcrP/PVdAG8D8MfFmVkuMimGCWHNhly95cuJeRbQ+iXTpOZQQgQx7OwkkjI7C0yuCX5fUC9D4+KT2dnYNjuAEmKbXEShw+HhQvLGcuXpRSz06rXmqtg5rGUZxraPjVHblM7Olspe9TpDwyJMPShAHc+lAEUsmHxSzswMMLW22LPBM9mukWN4cHyAQofj44XMl0xKCi+Aysk+jAb1iv8unzad7BcT0lT2yRX0Q0F5wJnmCt9vEcVhHR0U6ZQSmFoaKOc+bToTom4874ZG28P5VMA8z1QEmaAY8slno6PAzNpiN0A2kUgMpZQ/kFK+Tkr5OgBfBvAW/ln5eqOU8pNqlXLVYUwMR0dJBezqSqzWbMjVK3DBzKSkrI1OEeVrjZwWJAQX1A/Q2JEcO0anWMyfH7laMTE8PijCG7YAUmu7gAMI/5zRgeIcIJDBdt7MLF8e2ScmMvWggHmeacyZGMaQ8bnQ5vKACPiS7zY5Sb6lrS3St/B1hocRni9bQP5VpjGPOMecwb1Wp6aAqZXFEkNjgjU6SnM9xp/PKW8jItxQF5Crl0kxjCmwYvC1hi8I0j1uvjmbcSng5hXaG4mDB0m97O9PzF8eHkahaU25FMMIYsgnnwFK67QTQDFU8ScAImUuIcQ8IYRJS2WvwaFk7UnN/+i1a1vy9IAmYujbpOZQQkQeEBDafmxp4AALyBtTT1Voyt2NBzeVVQ4sV8HEcHAQYW+pAtoEFUkMB+cFzr2AHKbJSfoyahKdkDMGNOWNFVislGnBTFAMAUXB6gnCngU0LZ6eJtFVCIOTLPbsIYnnlFMajjdjqOHBOZJSQKFVrnkeoQAJoSz2i8tpKaU9X9TjByM6S8+pV0MIyUAB8zyXYhhDDOcq8BcHG6AC7Gbf0t5u4Ft4zDdsSB9z/tsKVMZtEUNA8YtLT8ziky8EX1H4XPCVCiHEFUKI64QQ+4QQE0KIXUKIbwkhzlVe82IhxHeFEI8KIcaEEA8IIa4UQmj9u4QQMubrYp33A0RQIvxwNBLyC4EmklKgYpgrQTwiD0i91tH2oOPn4cPW82nUMJV2w+KDB+kxhhjyzXj8OMJQcwHhniKJ4fHe4hTDTE2iUzYRDeHBCoWS1Wsd7wgqOQsghupJFtpjnhBG5msBwZivVHKYLSNXwU/MPJ8jKcs3Eou47z7rfVInJjJsgDjUFxNFaSDjvm30b7mFHlk9bsLcmM9TFH3L/lw9xk97nqdsOht8CxPDAtdQo5QJ/t+nEMMjS5Q0lQLPerYBE2J4GYAfxPzuhwCeqXmdxQBuBfBnoDOX3wXgPACbhRB8J74DwAyAdwN4DoDPAngTgGuFELo2fwnAE5u+tGOJtvILgfLavhRBDOdsnwrOCJqaCj/IEjLZnUIM50LJxxG2bfCFGGoumEe7AidZQMNl28UE6rWGhlBKKLkIxfD47AAxiNFRP+Z5Sgi8IcS2QpkvlpFrnkeEYwHFt8z20983M2Od1GbaALF6FVEEwdcCyiOG2vNcynC+ROQAA8o8n55HTnJiwrpfNA4jA6G4kqJ0NnQOuOmmTPYloUjF8BgWUc/OkZHCin5swYQYLkdMKBnAQQDRVL8JUspvSCn/Ukr5HSnl9VLK/wDwfwAMAHhx8LLnSylfKqX8WvCaTwB4K4AnAHiGpr27pZSbm7608yCNJgY7kpQ8vcFBhM6mADk5U46hpmLYYLvlHKZMCb8mxJCdTQE5TMbOe3qaFj8hYp3gnAo02U2OZGbGuvO23X5EvZZ3GyD13NsU511kjzfbFclAk3pVAjHUXuwnJogYChFLDBvmy1IlImERmTYRKf68LMXQWBlX865jDvqN3LxZtl1VxrVxxx302NQIndFgN6uhPhSfSJlYlQw0rf8bFNXQY5gQwwMALoj53QUA8tzR/N5pAJBSHox4TaCRI3r0LSOTGpGS2H78OMKu7gWcfmK88OzaRYv9wECqYjg0BODCC+kHy6Q204LJ4xezq28ghtzOxofiE1b/li9vOWuY0RAe5Dll2fYiFMOGuVKgYmi8Adq7N+wbGRNPbFh4CnLeudrs6BBDn0LJDzxAm6Azz2w5x5zRMF9Y1bccws/VOD/GtzTcnz4phnyvRVSBMyLvUcu2q6FkbfCcTdu4qU3ojx7NZF8SjOfL4cO0CVq4MJYJRwpDBeXT2oIJMfwRgPcKIS5UnxRCXADgPQCuNvlgIUS7EKJLCHEmKD9xH4BvJLzl6cGj7onlbwpyGEeDnManmthnc1ffMDGYpDzwgPvwIMv3558fm1DZsKtnde5gFG/Pjlz9F2NyaRqIISsWPoTYEs4aZjQs9ryDvvPOTPbFoUjFsCHHkHfTFmFsOyt/Mfeneq2G5r+WnXcRoeSyFUNtksI2xKgoQNOYF6QYZspHvfdeekzJ0yuaGBrbnpKiol6ryELITIqhZhHk4CAoigIUkgecSVwBYgkt0GR7gcVKNmFCDP8WdLrJrUKIXwcFI78CcBuA4wD+xvCzbwIwAcr7uxDA5VLKuKrnVQDeD+AnUsotGtf+KoA3A3gWgDcAWALgOiHEM+LeIIR4gxBiixBiC2A/3CME3TAz8xeR4jI6an3RNJ7UvEvT2GE2hHsK2tXbTPhVHeDsgkWU3H7smPWmqJmJoYbzHh5GGM6y7EiKqGBvWHTWrqV2H9u3hyfTW4Kx7ZyQf8klsS9pUFJ4A+SDenXPPfQYcX4s0KheyeXB/2XfvsIKxLRtT+kaoF5rcBCFK4ZGKi0TrLQK9mZiWNCYa9tu4FvKUAxtEsOWTWd7O9lt+dzhwolhQRsg29AmhlLKQwAeB+BKULPri4PHDwF4XPB7E7wGwKUAXglgEFRYsq75RUKIflDRyzSA12na+hop5VVSyhuklF8F8BQAewB8MOE9n5dSbpJSbgIM85d4UsfkjLW1hbL66CgKW+yNQ2wGxLBhwfRBMUxxgp2dlGYjJTA82haGPy03Fi+CGDaoQLzZcL2JkDLMA4o4DQKgiGFHB9UnTaCbQrJqQrwlGM9zDjklqLSRJMV1XufsbLjpjBlztTn3xLzFpKYMDrpXO5lcxSz0QJNvKXjTqW339DRw5Ajt5JvOGmb09dGvx8aA6XkL6ImREesN9I0VQ41oRBnE0HijL2UqMWTfMjEBTKKLiJiU1lNVjG3PSgwLUDttwuisZCnlMSnl30opnyil3CilfJKU8n1SyuOmHyylvE9KeZOU8hugiuZ+AO9UXyOE6AWFqNcDuEJKmWl1lFIOAfgvELHVglGOwcwMOeSEfggNiz3HOV1XPfLNmEAMywglGyf8Tk2R7UJokdqGMFuFiGFDnzTLhTPGdg8N0Vzv64vsSwc09qYbGoI/ZFzjDZHtMFyTq6NHiagsWBCbpwc0NVw+/3z6wXLhjDEZ55YvMXMFKIeMG5Mr/vzFiyN70gI0z3nMR0ZF4QSriGhEkcTweMAGeJlLxdAQNbLt64tlZC2+hcPJlvMMjdeilMIT4CQghkVBSnkMwEMA5s5lCxpmfwfAJgDPk1LeZeOjdF9oMxwLNBHDhpliD8aOhMlGjNIJNO3qeaG3nMOUKQQuJZG9mAIOoGnMfbHdVDHk3b/lCrxcaQcJfT8aFvuCiKExSTElhhy2dV3wk9IxgNGQelDA8XJSZrA94dxbRmSOoetQskYIHCieYM3OZsjVM8gxLJIYcuYIn+OdihS1kFF0AUqmeZ6S0gScgMRQCPFDIcRjdC8mhOgRQrxdCPFGEyOEECsAnA3g4eDnNgBfA3A5gBdKKTebXC/i+vMB/A4A7fN/iiKGQ0NoKlO2A7WRa4K40Ahe+DZujH1JZAsS1ySFPz8hZAIUn5ifqXmuaY6hL6qbhroMNDVzL0ClzXRKjoZs1LAB4o2SL2OesmA2zHMmNBaVt7ExIip8jJ0WmJjG5OkBTWPOr7tPt7ZQD8aKYUobLEbRBItJ4bx5scJlK1KOwwPKOYXLWDHkNTRlnjesReyHLB4vNz5OwT+jeZ5VMbTsW2wj7WyP7aDG078BEbVfArhTSjnNLxBCnArg8QCeD+pHuAcJuYBCiP8EFazcCcot3AjgbaAcwo8GL/s0gJeA8hdHhBCXKpfYxSHloCH2wwDeL6V8f/DcOwCcBeBngS1rQQ2zVwJ4VcrfOwebeXpAjApk8TDtTI1cU5KsgaZJrR5FJKXBByUjc/5SggMEYoihxRsy05ibKoZLltDFDx8mVqR9HE8yMiuGKc6bVYJjx1AIqc005hq2Nyw6AwNhk+uREcO+G/EoSjFs2HRyiO3IEWP74pCpPyorOWxPBBrG/KKL6IcHHyQWGnEsWhYYK4ZMDHkBj0HRxDBT0UxK1wAgItWjo4N8y9iYwU4rGUwMjdvsJPhE9XpDQwAuvhj4+tfDCnILKCLXXb1ewwZoxw5iodqsv1wk3n1SyrcCOBektL0P1EtwXAhxRAixVwgxBmAngO+BTi/5/wBcKKVMUuY2A3ghgC+D8v7eDuB6ABdLKTl289zg8T0Abmz6+iPlWgJAe9Pf8UBg8ycBXAvgYwAeAfAUKeUNSX+vikJDydyyxmKftEzFBCl96YCmm3HePPqAiQmrlabGCb+GiuHICAoJJRflSBoW+vb2QsIPRVSwAyExPH4chYy5MUmRMswVTNhINDhvIQontVrQWOjV6w0NIQyxWVQMM81zZgcJ8cQGu3t76bVc/GEJRVRTq9crihgaK52a/rzB7ra2Qo6uLCoC1LCR4HvCYr57pu4YKaf7AE1jPm8eza3JSa9Vw1T5QUr5MIC3CCH+AnSs3BMAnAqgB9SY+n4Av5BSamVqSyk/DODDKa9Zp3mt7SByqD53NQx7KkbBeFKnqFcN4UFeXF2SlMFBInjz5iUqIg03I0A3wAMP0A3Bi1BOFNELECg+lJypCGJ4OFwEY9BgN0CO/uBBciQpxEwXRYU1G/pH+kCudu+mr0WLYit71evN1YMtW0bh0IMHEwsoTGC82Gss9Or1hoYQngt+l42UbOW6MLB7dlaLwTdsOgHyoceOkU9NUex0YTzmPFdTPr9h81ZAio3xmI+MkOrX05PIbFrm+apVpF7t3p14f5ggcwQoxZ8X3SHDuPBkfJwcXWenljLe4FsOHqSvFN7gCibtaiaD4+n+UUr5/0kp3yilfI+U8j90SWGVUKhiWCBJMW5Aq5nw2+C8AbdOMOXcW4Z3xFAltBoFHA3EEHBLsAzneYNKa9HuzORq7drEsE3LPPdhzDkHOGWeNyw8nC9ssb2RsUp7992kYK1alTjmLZtOnlsF+BZt21MaijMa7lGuqHYZvlfVZQ3f0kAMgULC4LaJYdEdMjJvlpcvT0x9aNhE8OuBQo70swUvqpJ9hLFiaJIgXkC+W+adsaYaMee8CySGxo1cEyrBgFAILaqIo4iKZCBGMQTc2q65kWgY8wLzOo0XTNN5zq93ufAwMeQWNDFoWOwLaPuSuemvid1AeF9YrKjO3KnBhIwX0DolF0lJQMuY+xBKNlQMGzoeuLw/NTfLLWN+7rn0aPk0K5uoiWEMtCcH9wvjY7Ri0LDYL13aWFBgAZnzOjRD4ENDwQl+/HqXjoRvyCzFJxbPkc3sADWJYcsO06XamUUZ94HQGhLDhnCP+n4LyJzvZmL7wACFtkZGKNRlAcZ2a5altqi03CbogQeM7EuC8YZZ07dEEkOXJCXrPC8wV892MWGD7apiaOnEmdKIIavRlvsB20RNDGOgpUjMzoYqEJ9mEoOGxb6jg3b2UlqbHMZKiuakbm8PVaCREfiRT5OlRRDL/QcPUoNsCyhadRsZCci4DzmpWULJ/f2U8zQ6qsif+ZA5xJayYPb20vSYmAimh2tFQkrtQoiGea6e2GFJNTT2LRqFJ0CESssbpgqk2DQs9qecQj593z5rR7QV5Vt6esinT07SlxebN81WWA2KYW8vOcrJSWv9gI2LTzR9YsuYF9TH2CZqYhgDrUk9OEgOfGAgtY1IS3jQcs5bUYqhes0GCd9VhezEBOXytLfHHlnFaMgD6uiwrhoaj7lmj7T29vA4v9FRhI7HldqpcWQVo2GeF1DdW5SSIkRMcrurMDgrfj09NBkS0KJIWK5iN1bdONcuhRj29tJcnyPjBZyXbDRfpqfpHhXCrCq5oyMUBiy1ICtynre0rFHfbwHG/vzYMRrDlGLGWFXf0ubNuPhEk9C2jHlDs1c/URPDGGhNDoMW7y0FBZbzrzKHTDSqXBsWTNfOW02yTul1VnQ+TWZimOK81WsODcE6MVQ7/Gvtjo8epZV7/vzUXmdF50cWtWCq1yzi1BbjUxX4/uK0kwS0+BYmhpYVQ9u5tC0LZgH5kUZ+8dAh+kctWZLa4bgl3YNTibZty2RnM4rKMVSvWQQxNJ7n/LnLlpn7c8vEsKgoinrNhpZSHp9+kpsYCiGSZZuKQuv0EHZgGsTQO8VQM5dGvWbDgmmp6pHlde3TQzQbLQPlEUPj5rkpagRQLDE0PslCUy0EmopP1PdY3gDZDiUDMQumpUVnYoIEqa4u+kqFSgxT0DLPLW/ejOc5+4aU4jCgybdYJobqKTkpoishg2+Zm+eWT8sx9uec656S0qReswhiyKeHaM9zA9/SMs8t36OZ11BT27kt0NatRvbFYWoK+PWvrVxqDtrEUAjxx0KIv1R+vkAIsQvAASHEFiGEnQZrHqC9XfNUBT6+iRtWJ6AsYqjtvDmUbKAYDg6CKg3b2qjjvIVcPfVm1BpzTfmer6l+hu38yMzqlQYxbBhzy8SwyJ3xiaAYFhFKzlx4YrqJAKwrhsbRCANiGBmNKEDp1PItGTbLRZNx7TFnpTLheFNGLDG0UMRRVG6kes2WwhlXESBubZSijKvXHBpCWHyyZ4+VMT94EHjyk3NfpgEmiuFbAKiZtR8DcAx02skCAO+3ZpVjaJ9Sw5M6pecVcGIohkNDICl10SKa0BZOPylNvgesV1QXlWOoXnOOpAhB75+ZMbazGUXujBuKTwDrFdVFKoaxDXRdLJiaR7Op12wJsbnyLRkUw7kQmxDkVyx0ayiqIlm9ZlFkPPMGyNQvzptH6SFjY1YKxDKnHaS0qlGv2VLFfs892vYlwbj4hNtJaQhDDbb39dGHTE6GhVo5MDceFmFCDNeCTjmBEGIBgKcD+Csp5acA/B2AK+yb5wbaxNAgxzC2BYmLHMOZGfpctTggAS1FVJwjYaGha6nEsEI5hg1j3tlJC8/srBVFoqiqQcAzxVBKI5W2Iaw5bx458IkJK54380KfhRha7jVqFI3go77a241UoMFBhMc/WurWUGQUpeiCH6P5MjlJecDt7YkncDBaqtgtihRF5aOq12xp++IikjI5SW/QHPPYMLgFv+iaGLYBmA2+fwoACeDnwc87AaSvdhVBSoFxiDzE0KViePAgkYylS7WSzFryaSw2dHVCDC11+TeyfXycBrCzU2ularHdYji5DMXQC2I4OEgOnEleCspw3qWoV5aJodGmUy2C0Nhht/QydElS8uQvFxgGT4UaiUgp4FCv6cWY5yGGLotP1LVfI08hdsxPAGK4FcBvB9+/HMCvpZSjwc+nArB3HpBjaCuGvDvU2DGwA/Qix9BgZwxELPb891ZNMbRcCJHZeWs4khaV1iUxzKMYuiw+MQgjq9csIrndeMwztJMqWjE0WjA1fKJ6zSJIinHaQYZ57oViaDjPvdp0VpUYsiiiIQqp16yKYqirjQHAPwH4DyHE7wNYBOAlyu8uA+Dv+S6G0EiNIWge5QM0hUwAt4qhAbkCPCWGWXb1Lh2JQUhTvaYXzttgzFuqkl0qhgahe/WaLfOlQoqhlIBwmUubccFs2QC5UK8yFCp50SLIoFWNes0iFUPtPD0DYjhvHu2px8YoBbXDpT83KA5Tr3nCEUMp5deFEI8CuBTALVLKXyi/3g/gB7aNcwWttimAEcHiZq7j41TM28kTintnaZXNxcMo3GOgRgBNJ58AITH0PN+N27FMTVGqWHdzQUHOMS+SpMQqhhZUoCJVWj5BZHw8cN4FFZ8UqaQUcV5ykWPe1dU4z3tUcjUzYxACiYaR8sbEMKVZMSM2lOxSGdfYAPX10TyfIykuq5LV3q4a8CqUbLABEoII59AQEfKFKhm3MM9LVWktEsMi+mSbtKt5GoA7pJQfbSKFAPARACMRbzuxYbBraGnm2tNDT0xNWa1M0nLeeRVDi4pEkeqVet25ajA+RqnsggKDimT1ml44b4MFs2WeqyE2ixXVRYSSi1QMjStk86id3d2U8zYzU/7mzZAYehVKNiBYTFKAwC8uXUoM/eBBq75FS3mzNc9dbIA0j09kNNje2Um2z86W7xfzRoA8VwxNcgx/BuDcmN+dFfz+5MH0NDlBIbLvji3dkDMzdHSaEKG6lwjDRaeFGHKs3UIRR+YCDj5WKAVFOUHj00MMiaE3OYZqhWiWXL3OzvBc8JxhNuN5XtUcw9nZcKw0qpLV67Zs3nIqzHxcnXYDes4xNCSGRaTYGI359DSNuXrWdAoafEtHR9i4OOfpJ5OTNObt7ZoHLRhs3ICIueKKGPLpBtp/aEJlcs4DF6Q0PBLPI8XQNTFMirt1A8gvB1QJR4/SbFq0SLuMucUJWroheUL392tGR3nR0XSALcSQ80EsnH5i5EjUxVIzDBybq5dT7RwZoX9/b6/mv7+qiiH3lBsYMHbeLSHZnE5QtVvr3++h89Ye85kZ2vxoHU1TXGsmVXXTGvO8oWSLOYZGKi2nlyxdauzPWzadObs1lD7PXRFDlYll9ee8huUc89FR2o/19Bj6cw98SxGh5MQhEEKsA7BeeWqTEKJZH+kF8HoAO+ya5jkMjqxixCqGOSeHcZiKCZZm5WBL02ImhmUrhjzmmoRWve7cmK9ZA2zeHHatz4giE9uBCMXQVe6VIaEFImxfvpxOCbJIDLWQN8fQVfGJYWK7et0W35JTpc1cTZ03383iPDdKO9C0G4ioTLbU39V4zPNuOl0p48YLV4TtHDnKmY5VZON8oJyNvk2kcePfBzWvlsHXp9CoHMrg52kAf2rfPI+RgRgWraRoT+q8imEBPZiMFswMY95yQ+Z0gqU7bw4N7t6du3CmyCRr9botC09OJ1gWMXS+YBqcesJosZ03fWUTQ4NODUDMJgIof8wNK3vV69ru1mA85oZ+sQzFUGst4oiT5lwBImxvmUDZYJgB4WU0wibSiOGXQE2sBYDrQOTv3qbXTAB4UEp5wvQx1IINxdASwTJ2JBmJ4dy9t3AhhbiGhqgsr7dX19QWZAol51EMLTWiLZoYtvi7JUvowwYHae4ZqEnNcKIYAtaU8aJ29UUp+uo1tWy3sQGyTFK0x9yg/QgQYbdarDQ7q9WwOQ6ZKtgNFMPYMbcYStZCXmKo+kRLY641X3bupMc1a7Sv32K7JZXW4KwKQl5iuHgxjfORI0GbEr2UkSiUTgyllI8CeBQAhBCXAbhNSlmAGRWEh4phUcSwZcHko/R27ybiYHBjN6N0xZD/5qqFe4SgROt776Uwm8fEMFalrWoo2UJ7o9JDyZaIoXG0z1AxbBnzri4KDx4/Tqu1ZrpLFIxIrWEBB1A8GS+NGHZ2EsE6epRsN/CvzTAihjxOeTb6ljpkMDHUrGnMTwz5+McDB+j/p9k6LgpO29VIKa+vSaECG4qhZSVFy5HMzBjr5pFqvQtSa1ipqV7XeYgtb44h4GbhyRBK9kIxVFu1ZF0we3row6anw3smI0oPJbtQxtUxN1TGG1QPS6HNskLJTokhn+Xd3p69UwNgbcz5HtUyxVimSyiyypnvbrSJsOFbAOtrqE2Y9DHsEkL8nRDifiHEqBBipulr2r55HsNDxVC7Aa2UdDNqVt+pSdazfFq22qA7B0ovPnGxYLLzNmizo465lMGTLkJVNhRDFzmGhw/TwC1ZYjzPR0Yi5nmZGyBe5PLkXrkIJR87RgPHqSYaKIOklJZL66L4JEenhsFBxbdYHvMimqEDEWuopUJIHnOt1mNHjtDALV6cqYJ9bswtHaPoIsdQxUdAOYb/A+B7oNzCkxc5FEPbPbuKztNrb6cbZniYvubPR8xW3xxGtnOysmZjbvW6LcTQ0s2o5QBVBUjTeXd0UD/u0VEiKv39cKNIGLZlAIpTDItWOtvaIub58uXAww/TOJx1lrHNDCPbDcOxQHHHVhqRqww+kY85Gx0NThDpgHXF0Civ02C+tFQlu9i4ZRjzri7qSTkxQSnifX2w3iGjaGI4N+ZMDHOGkovsYQjQPqllzC2JFKW3q2nCiwH8nZTyQ/bNqCBs5Lu5UlIAI2II0I0+PEyTcP58RKxE2WBk+8MP0+OGDdrXbxlzbohaZruaDKobX3t0lD7LGTE07PCvXreolAkjMm7gvAGyvWGeu1AM2fYM+W5zt6MLZTyDT+STcgYHg2POFsJNKDmHP28ZcxdRFMO8wPnzaXgHB5uIYZmKoXEpcEKxUpnzPAMx5Gtz8MgWMVQPWrAJk/KjfgA32jehorChGC5ZQp7xyJFcx4UZ3Yw5iKH6WTaIoTqpjRbMPIrh8uW0dTtyRGnMaA4ju7knWwZiqH6WDWI4Oxv+2UYntuRRDF0Un+Rw3upn2WifMjvb2IQ+FRl8S6x6VaYynpGkxLZPyTFfZmbCea51So6Njb6lQogyiGERLWsmJuggE1bHUpFBMWwJVM2fTzLz8DAZkBFG96ct32KBGE5MkNLe1ZX5EpEwIYZXA3ha3g8UQlwhhLhOCLFPCDEhhNglhPiWEOLcptedJoT4jhDiuBBiUAjxPSGEVvmrEKJHCPERIcReIcSYEOLG4Kxne7DhSDo66KaQMlf4IVOStSFJ4Rtyro9oy0pkjrExg27z6pFqeXIM1SOvchAsozG/8056PDfuRMloFBEeVBdLra4UNnIMBwZopRgZyUXGjTZAGZROoBi103jMbahXixbRBw4N5fItRYeS1WvbzBtTQ4NFj3nDXGlvp3tmclL7Os0oSzFUP8sGMTQ+JSfDhjmyQ4YFglV0FEW9tk1iaNzCSxMmxPBTAF4hhPhbIcQmIcT65i/N6ywGcCuAPwPwWwDeBeA8AJuFEGsBQAjRB+qbeDaoyfZrAJwJ4GdCCJ39378B+GMAfwvgdwDsBXCNEOJiTRvTYUMxVN+fY2dvNKn5HM/1uv8uQqwjyXEWq5Hdo6O0PerpCXR4PUQmt1sgWJkUw7VrjT6jCMXQyG71nOQ8fQy5vRGQi2BVdcE0sls9J9mgVUvLPk2IsI1UDoLlZMwtHLlpZPfUFO14DSp71Ws3tCDhaEZZfjFDQZ56bZvHsxqTFFZWNXteAhF2A1YIViZF3wPF0Lg7hiZMcgw5jPw+0GkoUWhPu4iU8hsAvqE+J4S4GcD9oDzGj4JI3XoAZ0kpHwpecyeArQD+BMDH4q4vhLgIwCsBvF5K+cXguesB3APg/QBekGZjKiYnaWbmdSQAOdEHH8xFDI0SZ1kxNEhsV689ZzuTnBy5emXkRkaOedk3ZIZcGqAYxdDY7ulp8vRasaHGa7e0N9q5k4jh6adrX0tFmfPFZuGM8ZgbVvaq127I7LBQIOYklMzvzzHPM6fXGDR3jvQtq1YREd+zx3gjyCi6UEm9dlGKYSpGRoiMd3cbbYAixZWy/XlOMn6iEcPXg47AKwI8Mtzy5gUANjMpBAAp5SNCiF8B+F0kEMPgvVMArlLeOy2E+CaAdwohuqWU+SqqMzqSohVDrd1OhrwOIMGRlDWpbRLDsgkWj7lBvy712jbbYZRRNBPJRyzkGZaRS1tEvlsZ4djIzI7IyW+GTLbnJeNlp3pk6BsJxPhzC228MnVqMFDdgAjby1bG1RNyDBrHx4orgJW1qKgcYPXaVQglaxNDKeWXbH6wEKIdpDCuBfAPAPYhVBLPA/CDiLfdA+AlKZc+D8AjUsrRiPd2AdgQfJ8dGRotAymTuizFMKN61WI7k5wcjX9PGmKYUzF0FkrOmGRdVEN0I9sznKoAJDShL2vBzKm6NSiGFoihk1CyhSb0ZdrtNDUoQwW7em2biqFRODZDr04gRTEsaw21dY96rBhmPxQxP25CcM4ygAsBXC6l5FVjMYCojOkjANJW16T38u9bIIR4gxBiixBiy8G0m8NWyES9hueKYcsNWbZ6dSKEkjMqhs5CyTna7KifBcAKMTRSr2zNl4rkRracZw6EN62FwjajUHLeMVfnucwWpCqjtVFLQR5QPjHMkI8KJOTSHjqUecwzEUNDpVOdK3NmWvTnWrbbEoY8JobaiqEQ4t9TXiKllH9o8NmvATAflEv4DgDXCiGeIqXcbnANa5BSfh7A5wFg06ZNyXdGRufd20uR5/FxpZlr2YqhrbDmihX0B+zbR4UhBgUhjDKIoZqnN3fcbdk3ZEYy3qIYzp9PE2hoKPPB62UQw95eSr8dH1fMtNCz04ik8OfkrZBV78/ZWaPUEUbZqtvcPOcCs4cein1fGozIeI7ekepnoasr7DQ+NJQpTla2Mj435q6IYd7wfXc3PTk0RBtZQ18FGLbB4jE3VDo7Osi/jI0pjf8tpB6UqRg2pAYJQevDHCEwgw9VyZcDuKzp60UA/gDAC4OftSGlvE9KeVNQjPJMUJ/Edwa/PopoZTBODVSR9F4gVA6zI+PE4GauQESitYVQVak5hl1dwLp15BEffdToWowyEn7ZkczOEn8F4M55ZxzzOefd1hZeI2MIv4xFJ3Kel6m8TUyQItHeDqxebfQZLXZ3dtKYz85mXnjKKODo7qavqSmlnRtXJZdVIWszJzVnODnTcXiGdnd2OvYtfIa3EPn9OZA7bYLJlVbfyIy+BYiIXpUZSZHSnjLe3h7+3zKq+s5DyVLKdVLK05u+FgB4Big/8EVZjZBSHgPwECj/D6AcwPMiXnougHtTLncPgNODljfN750MPicfMjpvIIEYlqEYDg3R3WRwZi8j0pHkTLQug6So12+R8Mtw3sPDtLXt6THe1vG/qCE8mNMJljXmto/FM2oSvX8/OfAVK4xV1UiSktP2MhRDICK0mdO3TE+T6tvWphEQmJgIOzXkjUYA1ua5Uc9LQ8VQvb6tMTdq+q9Gf9rbjT4nsXAmIzE0Ugwz5gADCTmpFohhqu0jIzTX+/qMo2RFpDU5J4ZxkFL+AsDHQX0OM0EIsQLUs/Dh4KkfArhU7Y0ohFgH4MnB75JwNYBOKEUqQogOAC8D8L+5K5IBr4ghKwTt7RodRR54gB7POcc4JFaEI3FGDHNWsU1PUyhDa8HkkObKlUbVd0BKcnsZJMXmmPPOuCEhSx8qKUydujbtBsqd5xaIYWQYPANUu1OnrqoW2vAtOcODZYSSgZjTrIDMY85N/7u7NfY0OchVEfO8LMWwJZKSkxhOTtI62tGhsYZmVAuBYoih86rkFGwD8BidFwoh/hPAbQDuBDAIYCOAt4Fa1Xw0eNkXQA2wfyCE+BtQm5wPANgJ4HPKtdaCyOT7pZTvBwAp5e1CiKsAfEII0QngEQBvAnA6gFfl+zMDeEQM1QUz1Xnzh2bIHzmhFENLC6bWmOeYK6wYNnApbqDLTbMN4UwxzFnFXvZcsVlRXUbKBGCfGGbKLzQMx6rXjyzKyzjmZeRGAglj7vlmOVIZL1MxtGl7zrSDsvy5802nAXITw0CN+wMAum3qNwN4KYC/ALWP2Qng5wCu5MITKeWIEOJykBL5HwAEgJ8C+P+klGpDBgFqedO8RX0dgA8B+CCAhQDuAPAcKeVtRn9cHHJMjpaCgpzO2+hmNCoba0Si8/bcCdoOJTsjV0B4HqvnxLBlzJnlZiSGZfQwBDxw3hY2ErYVwyIre4GYMT/tNHrM2EC/rFBySxP6im2WbUaAMimGhtXUgH3F0KjwJGNFsnr9hnnOxTcZi/KcE0MhxHURT3eBFL8lAN6ocx0p5YcBfFjjdTuQkrcYEMkWji+lHAPw9uDLPmzuGjg/ZHCQNG3D07CNbkajU+Ub4XzBtB3WFCI82cOwGqwsBeiEUgyXLKF5fvgwJa719Bhdr4wehsCJkWM4N+YLFuTyLWUUngAxGyBuY8InexiirHs0sqVUWxvl/2XoHJCJpOQgV5H+POM8LzvHMJIYzpWH68OoeNO2YpjTt/hQldwGImHq1xCA7wF4ppTyC3ZN8xg2J4cQuXLejG5GC8TQZjNXZ8SwvT3XLtOpYpjzLFZnikRHB6lAUmZSgZwqhmUSwxyKREshRE7fUkZlr3r9yNyrjNWa2rZLmbnPKBChGLa15VINMxHaHGQ8csxzKm9lVSXP2d7bS1+Tk0p5uD7K2ridkIqhlPIZdj+6wrA9OZYupYlx6FAYKtREppvRsCIZiHEkZRHD6Wla7YTI5LxjF57Dh8l2wxCSUZgqhwOMVAzLCiWr7VkyKBKxytv27ZlISpVDbEbz/OjRTO1HgIRipYy+xWkouayq5KEhmuv9/Zn6gkYeRbhsGY35gQOZx7wsktIwVyL/EfrQFinGx4nAdXbmSmtq6dawezfNF0PhwyjDqijF0DNi6PLkk2qCO2tyE1ZDJObqZSBYRorhw0HR9xlnGH9Oc6NoAOXl0/DisGiRcVsG9fqRY14BksJrF4DyFMNjx+hD58/PtGBGOu8cFXiZxjxniG1unpelGB49Sh+6eHGmeR5JDHMk5jsNJZfVlimHWqhev+EowhzzJdOY5yQpc/M8cjenD22RQr0/DcO+QErfy6IjQEUVn5RRIGYAI2IohLhACPEdIcRBIcR08PgtIcQFds3yGGqoJ8OkjnQkOYihkWLIjspwFwvQOtXXR06EyWhpimGOfBTA/pmmZRHDjg76v0oZkdxedN+rHAs9YN95lxVK7uyk9MfZWdoDAihPMcyx6AAxCnOOxd5o0bFQkDc8rGyALDW4Tp0vGRv+M1pCyUCuPOCyQsnd3aRtcK/Khg8tWjHMcX8CCYohkIsYGimGGWyPnOdlFogZQJsYCiEeBzrf+DIAPwLwkeDxcgCbhRCX2DXNU+R03k4VwxyhQSDihiybGGa02/bB62URQ8B+l3/tBTMnMfRCMcy58Mzdo2UphkX4lsh/hB7KGvO2tnBjO0ewyupjmFMxjCSGvPHOUDhTlnqlfkZDISSQOa9TW6QoYqNvgRgWeTIRQOJKyzwvM0/fACaK4ZUA7gawTkr5Oinlu6SUrwP1B7w7+P2JjyKJYQZFwkgxtESw5mwfGCCJZWREkVf0oT2pbS/0QCVCyUCECtTfT1Iid+A3RFnEsCjFsExi2FBRLQTZPT1tfL2yiGHkghn5pB7KyqVVPyOSpMzJK3owOiUn49nxjEjfwsQwQ7pHmcSwZcxz2A0Y+BbbcwXIpTBnikbYGnN1szwX09fD5GR4uIVhk4dUmBDDS0G9Bht05uDnDwN4ok3DvIVniqERMcwZNkmsqDa0fXqauI0QGs67CMUwBxkvq8oUiLBdiHAcDHf2ExNh15JUR2JpnttWDMsgKZFV7EuWkOM2tF09mUh7zG1ugPhaGea5CzI+Z3tHB+2KpDQ+LWdkhN42b55GqmZOnxjZnvPUU+mxaMUwR46h+hlz9+j8+VTdOzxsHE6WMgMxtBW5Uq/lsWKofsac7T09tABOTRmPuWp3hqy2RJgQwzQ6a0Z3qwrPiCFfR6vQ2FIo2UYvQ6NJbSn0ELlgVk0xBDI7QaOdsWeKofaYz8yEq3TGxd5mL0PV7tR5bsnuyH6Au3cbX097zFXC7EHemNH9mTOUHOlGcuQBZ6pgtxUBEiIzqR0dpVuvt1ejVs1TxVBrnufcvNnMdy8qjAyYEcObALxbCNFghhBiHoC/Bp1ocuLDM2LIhCF1sR8fp3BvZ2emPoaAXRUok3xvc4dZRih5bIy+uroyj7nNfBrtuQJ4l2NoVEwgJS30ho3LGUVsgMogKZF2WyCGqWM+OEhEZd48jcNmo5G42Be5YOZUDCOndI4ijky5kRkq2NXPiDxZyTCcbORbcm70I+1mQpuhR6pRa6OpKVL4MsZubfYDLqoiGTA7Eu/doKPrHhVC/AjAXgArATwPQB+AZ9g2zkt4RgwzVd9l1J1tKm9GxJB3rxmqqdXPsFWVnCmXJuOYO1MMc1Q8qp9ha1dfVgW7+hk2ehmWSQxtK4baC09OBUj9jNI3nWorrAzgf1XD/ZmDGGrbnjP6A9jNvWa7tSJXOTf6kb5lwwZ6fOQR4+tpz/Ocaz9QjGJouyIZMGtwfbMQ4lIAfwvgCgCLARwB8DMAH5BS3mXfPA+Rc3LENkRVr20A546kDOfNixovcoZwRsYtLJiJFdVFEkNLztuG3ep1yiApNjdARq0wilAMWUnJ0EDXuDjMwoJpg6SU1X8RiPHnFSGGNue5kWJou1MDEP7/iswxzBlGVj/DxlpUZCjZKNYipbwTwIvtm1EheKoYpu7UWDH0bIdp5Ehyqle229WU4Uj4/2qjabHRrr6IcI8FxbAMMm5zA+RcMVSLrAzPkS1zzBNJSpELZk5lPLIvbUWIYREqrZFimHG+NPcDbGtDOTmGnimGRYaSE3MMhRBtQojnCyHOT3jNBUKI59s3zVMUQQz7+ihnYWzM+KxHbUfCOSMZjqxiJDqSjJPaKNxjoWhmriMAh9SPHTNuQeJCvYoMJZcRYss45j09lOLHLRUA0KrR3k4efXLS6HpltTZSP6NqxHDePJrSXAgAgHL+5s+nOd5QOpsOF2NuIw84U5FVRn/e10fEZGxMcSORx0TpQZuMn8SKYVtbRP/IhQtDfz43+fVgHAHyhBgWGUpOKz55NYBvABhJeM0QgG8IIV5hzSqfkZMYdnfTgsltLADkavuiPak5Kfe004yur8JZjmFOJ9jVReM+Pa20W2xvLz5Xz8KCGakYluG8c465EDHtjSow5jaVFCNiuGsXPWbcvEWOOZC5vZGLDZCNTWeZiqHabmuOpHR0UHnu7GxxG31PU4NSFUMpwxNhMo45EHGPtreHG6qMGyDtCJBnxNBFVfKrAXxRShmb0Sml3A7g3wD8vkW7/ISFcvVY551xcmgv9rwz5uOaMsBmKFnb7ulperEQmnGKaNjM7SirSbT6GQ2KYdE5hrOzuas11c/Ju/CoRwJqH7fliZJiVMG+Ywd1Dchwljkj8h7l/6EBMZydLe+IM8BujmGm9iM5FnubeYbatnsWStb250eOEHHr788VvbLZDqvMUHJVqpLTiOFjAfyvxnV+AmBTfnM8B5820ddHXxlh87xkF0qKjTwgbbvV3m5tJt2VGhFZ3ZthzI1OVbBADIvIMUx1JIOD9IfyyTYZYWvh4YbFfX0anTmqGkpWw1QZ248AMYpEBmKozvHU265olbaoENvgYO72I0CMP+cb14CkTEzQV0eHhjkWqu+dRID4uitX5urKbKuN18yMwQbIomJos/jERSh5AICONzkavPbEhoWJAdjbNRg5Es9CbGXujIEY5S3DmLPzHxjQWDC5GbKFnXGkYpiRpGgrnTnmivo5eXf1mQqViiKGRTVbtrDQAzFjzsQww5iX0cQdSAmxFUXGc+YXMiLny9q19Lh9u/Z1MjX990wxTA3qGN3M8bDVEN1oA1SHkudwCMBajeusCV57YsMSMYxMhchwRFvZjqSIcE+qI7FEDCOVtww3pNGCyf/LHMTQZo6htk/m1iYZ+0YybC08ZZ40o36ODZVW3UgkwkIIXP2cvIphmUcQAsVEI7RDgzkUffVzGmznXG6DRtFl5l2rn1OqYmiJGNrqk5rpOLwq5tIaIo0Y/hJ6uYN/ELz2xIYlYhjJR3KQlDJaBAAxDpArTYeGjCpNXRHDvIqhkV9jxbCoHMOinLcFpVP9nLwLjyv1qkV1y1D1aKwYWlLGbRFDowKOohbMw4eNqnuNlfEiFMOifUtRxSeq6jY7q30tbcXQqAIuHrY2b5l8i23FUJ3nBmNuiWNHIo0YfgLAM4UQHxdCdDX/UgjRKYT4BIDLAXzcvnmewRIxjFwby3IktomhWmlqcEMaJSsDuYog1M+xpRiWcawcEKMY9vVRmfX4uFHVo/Zib6HwRP2cvE2ujXb1Rc1zrnqUshiCZYHQqp9jK3zvlIz39VF17+RkUwJfMrTH3JJi2FKVDGTyLUZkvKhQcmcn/TNmZ5t2o8kos4IdSIleZYy6pcJi8UmD3Z2d5OhnZ40qqp0phlLKGwH8BYC3AtglhPiqEOJDwddXAewC8GcA/kJKeeKflWyJGNpSr7TJlXrIvW1HAuRSgbR39TnVK1tjru1IZmet7DDnzaPcl9FRypMHQGS8yDG3RAxtKYauQsktBaVF2l6kYpjD7rJDyS2+JUOqSplVpurn5A2DexFKBnKNeRktX9TPiTz9pIgxt9CRRP2c2Hle1EbCEKllnlLKTwC4DMAtAH4PwLuCr98DsAXAZVLKf7Zvmoco0pEUqV6NjlKVSk+PlWrqhkbRQC5Hkhp6sBzWtBVK1jrkfmaGPrirRWzXhhAOCJYlldZWjqH2PB8bo6+uLmLUGWFzA1Q2MbRVUa1t98QElXV2dOSKacUumDkIVqpvsaDoA/aac5fdTqqIeV5Gk2jA3nnm2vP8+HEr/twmMSwylKx1JJ6U8hcAfiGEaAPA/9HDUkr9ZJsTAUUSwyJ3O5YqHru76Z7g0yzmKqGLXOwtEUPbxSfaO+Ociw5/1rFj5JvmeEOFFMO8Y54pHJujFYZ6asvkpLIOFEmwLIfYbJFxo6KZHGPOPH5khNbfuY49FVKvStvoc/7fggU0UTOiu5uimHzYQnd38IsMZNw4fF9EKDkDMSx7rrBv4Y4ic2NeNcVQhZRyVkp5IPg6uUghUF1HYqniEbAXNtFOVrZQwAE4yDG0SAxtVSa7yjG0Nc/LIlexTegzjLlxLq1nimEZ/VEBSpeI7AdYpG+xpBiWvuncupUeczRCB+zOc2NiWDXF0BKhjY0AVZkYnvQoKydFswJPO2RiyXkDdsImalPR1IifZcWwtKpki2NuozLZqDG3p4phmWNuo4jD6GANy30MS9tEFDDP8/qW4eHGo+piYXmjH3l/FuFb2Ceeeqr2teNgw59L6U4Zj+zXaVDAUXbUTf2sPMRwepoyxITIlTUTi5oYmqDI3U53N/1iejoiASEaZZ6rybCR72bUVNRyjmHD0GZoteNiwbRx+omLMU8kVwatGYzH3KIynodgjY5S4bhWaq/lPoaxzbkNN51lznMb0Qh1rqTOc0vtamJbBHF7o+lpresYnUykfnAOJPpzzTGfmKA/sbNTCY3Gocjik8jdfzLKzgFWPyvPhlntj5ojgyMWpRJDIcSLhRDfFUI8KoQYE0I8IIS4UggxoLzmS0IIGfN1v8ZnbI957wtz/wFFKobqdTUnh3aYymPnnYoiFUMhjHfHLsl4HsXQaC3hBtcrVmhdOw6Rzruzk9q+qAn0KTAO3xe1qzccc1V4LaMBPRAz5l1dtCMw2HS6UGltKIZGbfIspXtE+pb2dvpfGrQ30h5zizHExHSPInxLkcUn8+bRuI+NaW/0XUaA8hDDIsPIQPmK4TsAzAB4N4DnAPgsgDcBuDYobAGADwB4YtPXK4Lf/VDzc66JuMb1uSy3VK4OaLQJ0JwcLmRwG45Ee1KPjZHswgtbDtiqBnNBDG3kGBq1ZbBcrdkyzw1zgbTny65d9Lh6tdZ1k2Aj90o71UNKa/do7JjzxmrnTq3rZDrjOSdsqFfaYz45SUyO+1PmQOm+xeIhuTZO4tCeK9PTRJKFKKYVlhDhaU07dmhdp+yjWQE7HTKKrEgGNKuSLeL5Ukp1NbheCHEEwJcBPAPAdVLKhwE8rL5JCPHs4Nsva37OIet9FS2VqwMaiqHmgumy+CQPScl0fmxOvTw2ypBx4amaYqg95kND5MD7+zUO4E5G7IK5bBkl0B84AJx9dup1tJ03kx4+jiwHbBJDo3ZSvb1GdjYjdswf+1hg2zbg9tuB889PvY6LlAkbviVTFCU15pwMW612jLsGaB15lQwb89yoqE1K8olzZefZEDvmZ51FG8SHHgI2bEi9jnGeflHpWEWJKxlRqmLYRAoZtwSPqxLe+loAt0op77FvlSYshZEBe6FkFzK4DfVK+/zYAsiVrV298xxDJj8PPaR1jbLbMqifFateGSqGqbazSrBmjdZ1k2CjiMO4IrkoRR8I0wI0E/ONG9BbnC82Uia0K5It2B276SzKn1vseGCj+MSFupzahN72PLd4j9oohDyhiGEMnh483hf1SyHEkwFsgL5aCADPF0KMCiEmhBCbfcovBOznGGqfN1zUpC4q9FBAwu/QUFPNQ8Yb0rlieM459Lhtm1ZBQdntJNTPilQMgTB/NAXatu/bR48cTsqBUkPJZWyAOFyquWBqj7mltAMgZdOpWQmu7RMt9xkF8p/aUvaJLYCd8H3ZLV8ASicUgsT2htoew3nuMgKUJ8ew6FCyU2IohFgF4P0AfiKl3BLzstcCmALwDc3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMErJsHgz9vZS9GJ8XDnmTL12UYqhhUkded/xdY8epXB7ClwQw/Z2io5Kme9MU29yDDnsyH0LUuBCMWxuoDsHQ2KobTv/Yy14y0hSa9iuxsX92ddHvmVsLN+CWfZ5w0DKptN2+N6iYtjbS/5lfLyp5qFof16USKGOucGms0y7Y3swFkUMC4gANcxzrlA7elSriv2EVQyFEP0AfgBgGsDrYl7TA+ClAH4kpdS6u6SUb5FSfkVKeYOU8jsAngk6uu/KlPd9Xkq5SUq5aVmUk7O4YNpqcumNYtjRQTeklFo3pAtiCNiR8L3JMQSMnKALxVB13qWEqrQbNaYjclc/bx7lF/PReylwEUoufcEsOpQ8MED+ZWSkaXcRDReKoRB2mly7TPdosLu3l3YYk5NNu+houFAMgZg1lOe5ZssaF5u3yDE3rGI/IYmhEKIXpOytB3CFlHJXzEtfAGAhzMLIDQhOaPk2gNVCiOwxJos3I2DnWDwX7Wpi1xeD8IMrYliahD87C+zZQ9+vXGlkYxQiFx3AaLF30fJF/bysxFC7ea6UBl3T0xHb3shAwXIRSgZixpznisaio6rqqRy7gFByy5gb9Ox0QWjVz8ta3as2oC+TYKWmNRmMeZmbTiCll2FRimFRZFy9tsZ8OeFCyUKITgDfAbAJwPOklHclvPz3ARwC8N+WPl6vu2sUypjUBhNjYoI2dJ2dKcWjU1M0qVUHmwOpidYajsRFw2Igv2LIY97RkdLIdf9+euGyZRqdjdNhQzF0oUYA+ftejo7Sotnbm3Is7ORk2GU3Z9cAIIGMZyCGZaoR6ue1NFwGtIih9piPjREZ7+y0skLZGHMXiiGQv1hpZIQIObfii8XMTDnRiCI2+hbJlfp5WZVxPq84dQ2dnKR/bHu7lUpwG8VKJ5RiGPQq/BqAywG8MKmljBBiBShP8OtSyqm412l8ZgeAlwHYIaXcl/U6pSyYBhNDdYCJnVx27iQvv2oV3QE5kaoYGhDDVDXCM8VQzaVJHHMeHMuENo9i6CKUDORXDI0XnZz90RixztsgP9KYpBQ55gYhNmMFaNkyK8cvpLaU8lgxzLvp1Lb72DHy5wsXWvXnpWz0y4hG8P2vkQes7c/ViJuFeW5DMSyaGJbdx/DTAF4C4EMARoQQlyq/29UUUn4VgHYkhJGFENMAviyl/MPg51cA+F2QwrgTwAoAfwrgsQibZGeDZ4qhtiPhUywsnKsJ2HHeVc0xNG5Aa+muTVUMNVQgF60wgPyKoTZJsViRDCTMc76Pdu9OvYbxPZrzpBlGYu6VwSbCVTg2j2+pqmLoKhwbKyQb3KOuxjyvuOIijAzYUQxPtAbXzw0e3xN8qfi/AN6n/Pz7AO6WUt6WcL324IvxCIDlAD4CYDGAEVDhyXOklNdkNxvlKIZcmXTkCIUMEmIKLgpPgIT1pYjdjmeKoStiqCqGUiqbVgP1yrj9iGeKYeqYWzo6kRFLUph47ksPPmjnABdke6RiaJB2UGZFMqCh0hqQlLJTJvJWVLsiKan+XMN27TTTMsQVg1OVjOdKkUoncPIqhlLKdQavvUjjNaLp582gMLV9lDGpOzqIHB45Qlu4hM9yUR0LnICKYX8/5aSNjtJXQk6g9oKpHSvXQ3c3mTg5SS0x5g7HWBX0hN+1K/a9DFc5hpHzfP58muvDw5Tkk5CwaXSqAlDePNcIVWkXn1hWDCMrwdWk/NnZxNM+jJtEWyKGqWFNg81b2ban5nWmbPRdFYfZKCbUdhllEkObG/0y7AaKiaRkhNM+hpWC5Rsyb5NrY8XQouomBE3MhpaFRRBDVmWKdN5CaO+OXZx6wojMM2QiobE71ra9jMXeoLrX9QaoxXkb9DI0DiUXqRh2dNA/Xy3zjoFXeXrq9W2pQOq590Vv9LmNV0q6hyuSohLDhpaFBoqh9p6sjKhbXx9VknBhVAJcjbmNULL2+p8RNTHUgdqfz1Jye6qcnOIEjXukWVow29ry541pEcOxMVowOzqs5UfGhgc1b0htzmQ5NAjE2K42Fk+B1vS1XPEI5FckXKnL/f3EX4eHmzZABsRQ6x6dnQ0nVpHEENAOJ7vKGevrI1FtbKypUXQGFSjR9sFB6tZg4TxwRl6FWTtlwjJJ6ekhwX5ysqk1p+0cw+lp8lNtbeE8zInYjb5mONlFc2uAxryjI6yKnkMRynhG1MRQB0NDtDr091upBAMSjgvTnByueqQBMeuLwQ5Ty5Hw379iRe4D1xmxKpCm7Xv30mNqfUMBxDDSdoMKPP5fJfrkI0fCQ+4T+5ToI7Y+xlAx1A4lW9q4qRugrKefaN2jhw8TOVy82JpvSSWGttQry+qy2ig6skDMlmJomVypnxerMNtSxguwPfEoQlv+XG3JZMmf5426uRpz9YCLrPnutWLoA3gRsLToADGVg4BxKDl1UlvOvQLyJ1prrSdaTMYMeRVDngap/sEzxXB2VnM4C1h08hYruTibmpE4z1OI4cyMZpNoy+QKSCApmsVK2ouO5VCy+pmRxDDFt2j3di1zzDXni6uqZCAfSeF5LkTKPLesLgMa89y2Yli0X8xADE+YBteVhGU1AjgBFUNNYsg1Hl1dKY6kAGKYqhimjLn2wRq88Fp0gnkUw+FhIof9/SlCYAHOO2/fS1ehZCCGpGgqhqrdCXUeheSjxi6YnJPKOY0xcNXaCEgh4wZ514nt5gpU3Vo2nRVQDPO02lHtTpznZaq0msRQe4mxXF8AxLgRzXVIewOUAzUx1EEBxDBvAqqr4hP1MyOJ4aFDiQevqwKmVpNojxTD0VF6TD3MxHLOGBBju1r1mDDm2kNZgAKUtx2G9oJZ4D2aJZRsvHErgBi2RCNsE0PPFEOXdudVDHn6pt6jZW0kbK9DBRDDvKFk9kkubI/k3QsWUJh9cLApybYR2hugHKiJoQ4KWHRio4CaidbGMrhF2yMrTXt6SEqbnk6setR2JJaLfdTPzNomQFsxLCBUFWk7j/nUVMQfFcJ4Z1ymYuhp8QkQQ1L6+kjuHhtrytZvhKtqaiAhGqFJDI1DyQXMl4Yxb25vFANXRTNA/qPltJeYspS3vj6qShkfD3fEEXBJDPMqhmy7CzIeub9sa9NSaosOIwM1MdTDI4/QI/eNs4DYKKDtnVqBrVOyhAeNiaFHiqEWMZSyUEWixfaVK+kxoeHyiaAYln2uNhAz5uqZ4wm5ncb3ZwF2FxpKLqCCHYgh45rtjbQXzAKVzqxpKtr74LKKT9Q2Xgm2e6kYFhVK9kTtLLoiGaiJoR6YGG7caO2SsWuLzYqqmRma/UIUrxgCdh2JdmxFH3mdt1YxAbfCmDdP6USdH7G22ySGHiqGWrbPzrrJG0sIDxorhmXkGGrmjWkRLK5gX7TIWjU1kG/Tqb1gelgIoeXuuOWLZX+e5yhCLxVDQzKeOOYcjWlrs8rE8hDDoiuSgZoY6oFvDIuORFUMIxuL2lAMOfds4UJrLQLUz8zivF2qV2qftKkp5ReaY64V7ikgvAZoqJ0JY64dpipozDs6KCI1Pq78QlMx1LKdT5ZYtIjCvJZQCjEsUzE0rJBNtL2geR475rGH+obwQTE8frzJn2umBmkphuzPFy2y1k4KyBdJcVnBXkrxiXp/JlbXmMEGMaxDya5RQMikq4tEJbWtBQC77WoKCCMDCYqhzR1mAQUceftHaTmSghfMLCqQy5CJEDHzxWbuVQFV4EA+YuiyOEzNMWwgKYaKYaLtBbRkUj8zlhgmNOd2qRjysZVTUzFNizUVw8R5XsD9CZTkzwsY854e2uhzle4cDHMMtfrpWh7zWjE8EVAQwYrMM9SsTNJygjy5LC466mcWmmNY0GIfuTtWb8a81b0FOEAgX7jHWKW1bHuehuhaSkrBJCXLsXguQ8mdnZTFMDvbVDeg2TpF6x4tWzHk8UlY7F0qhurnmp7dq/YZTRxz7rBv6UxtRp5eoy5DyepGv4Fg2dzoF9DDEMhHDAuohW1BTQx1UEC4B0hItE6ZHFJqJuU//DA9rluXx8wWlJJjWIBiqH5uSwVeby9tPWPO15yaol+1tZXfsBiormKofm7DwrNwIQ3m8eNNcf0Q2gtmQcQwloxrECxtklKQb4kkKWpi8+xs5PtmZ92GkmNJyumn0+NDD8W+17iAowxSq96fMWM+NEQ+PfVgrZ076fG003LbqiJPr1GXxBCIIVgc9j16NNa3TE7Spqm9PaWYsIAehkA+YlhAkKEFNTHUQQG7eiB7L0N2JPPmpaSa7NhBj+vX57KzGTYUw1SSUqZiCKSOuWp3Yu+ogtWILO0wXBafqJ/bMF/a2lKVNw6FDgykzPOyw5r8v02o7nXZxxCIOf2uo4MMUs9+b8LwsKZvKYgYxkaMV6+mx4QiK60DqiYn6R/a3m61sA2IIeOdnfQ5s7Ox+ZHaClDBxDBLIaRrYhg55hptX7T9uSvF0EbOeA7UxDANk5P032tvt57tmZUYau+Mtc9wM0OenBQtBaigKlP1c00r2VyHYwtXDPlImu5ujUaNZshamaw9z8smhmecQY8J6pXLPoZAQq2G5oLpoochkEBSNML3WgummhZksZgA0KiSjQmDazdg2LWLHi22TVM/tzDFcGyMwi2px12ZI+uYGze3trxxy1NRXRNDH6D+Fyy3Gc9LDLUbc5YRpgLs7TCPHCFyaLkVBpBdMXRNDPPkGBolti9bZn2eZ114tBfMgohhbK9RDfVKK5R89CgtmH191hfMwolhwWPeMlc0qpJdFnAACf48Jc/QeKNfVvjeIBqROF9U1c2yb8nay9A4clVGeo36OTUx9BwFFZ4A2Ymh8fFJZRFDWzvMgsgVkJAeliLhG7d8KYgYDg01pSpphB6MqqkLWDCzOkHtMS+IpMQOrcaYa4WSWXE888zyyDj3vWT1qQlVVgy1xNcCfUvs5o0/i+dpE7TneUHlqLFkXGOeG/nzAnxL7FrEviBFMUxdQ7dvp0fLefp5+hjXOYY+gFUBy4sOkBCStbXDLMgJxvYDtJVjWNBCr16yxUfbUgwLytPjJGkpm9ob2QolF2Q3kLDweK4YquZFtn3RUFISFUO2+5RTspoYi1iB7cwz6TEmDK6dG1lCVXLDBkjjtBnXimEsGef/L1cVN0HbtxREDNWccdP2Ri5bvgDZFUPtUPKePfRoOa8zz8lntWLoA7iAY80a65cuPJRckPNO7QeYN8ewwF194cSwwN1xZJ6h6mFiqh69VwxtqbSWiWF3N/VKm55uOhaZK6qPHaNfRoBtTww0FDjPY4khK4YpRVauiGFHBy32aucFAPZyDF2M+amn0uPu3ZHv057nWtU15ujqos1+lp66Whv9AolhqmIYo9Jqh5ILKg7r7aVxn5ho8i39/fSLkZHYs9hrYugDeGKxQ7WI2Opez9UrIOaGnDePVlMuZIiAy+a56udWrfgEiAlVdXXRSqr2GVGg3X6kwLlS1eITIGbM29sTtvyNTyeGewpcMFNzDFOIYeJcKbA4DIiZL7295FvGxyMXzMlJWkvb21NaeLkc85SqZJe+JXLMuR3AyEjTsUUhjHIMC0jHiuxjCNhTDAtKx1JPNWyYFmq7uogNs5Q1MfQD2quTOQrNMZyYoLuFW1RYRiQxFCJcnCNaebjukaZ+rmn/KC1iyNV3nZ2FnFeUpeEyt3yZPz/lVMSq5hhOTtILVbJmEVk2EuoR5a6U8ViSkqLSGhWHLVxo9QhCRuyCmVCAol0j6GLMY3OGCFpLzNQUvVBt82QRTKYbFMMUkjI9Te5OiJTaqYIqe4HGU34aYEMxnJ4Ob2TLrY2AbJu34WEyq6+P9klFoSaGadDezpmj0HY16s7YcmI7kJBozV35I4gh90jr73fTlw7IXlFtfBxemWOekAtk3PS3TGKYsqs3rqa23H4EyHZGtTpXEsm4x4qhK0ILJMyXhA2QtopSwpi3mBf7BxGM5nkBbXaAsENVAzHkzwMi57m6yU80qaBegPzZqi1z0KxKTpznqvNMvJGzIXXzFnGPlqEWAjUxTEeB/4msjUVdntnLyEIMteX7EhTDQolhAQ4Q0OhlmOBIvAtTqZ+VhxgWuIkANI5oixhz7arBqiqGBfuW2GIlztXbtq3lPcb5qGWScZ4IeSpkCx5zJoYtBz/xOEUob9p5egUqhjy0jz7a9IsUxdAoBF5Q+W9qNXhNDD2GdnKZOWJTTypAUmKdYAIxdH1OMlAwMSwwTw9IIONcGBWxYLo+Dk/97BYHmNJSQovUlkQMTeaLNjF0oRimNP71gRjGbpjPO48eH3ig5T3GY14mGee+lzEtglwXzQBhKLiFGJ51Fj3+5jct79He6PNaUIDtl1xCj/fc0/QLG30MC8yNVD+7JoZVRIH/idieen19VA7JOWtN8IGkxHaPYGKYsMPU7jZfgO2x7Q345j94MLLSVIukFOy8Y0kKn8TRsm32o1ApVTFM2dW7VAyzhJKNFcMyieGiRWFFdcQ5sj6Q8VglhX1LxJj7oBjG+sRTTqEx37+fcmKb4AMxZL/YMuZMDPk4PgXa/vyRR+iRz7u2CHbbkeeZt7XRzRgxz7VsL1gxzBIxLKOHIVATw3RwH6OCc1IaOo2oSb9Zw4MlhXtaJnVC8YnrczWBxmTlhp5d3d20s5+ZSSRYWiSlbMUwYXesTQz5/1XAmPf2Uj3O+HhTcePAQFjF3pLc5MeYZwnf+6BexS466jmyEbZrpYOVpBi25OpppEwkzhUp3ai0HR0UBpcyXE8UGEWACiLj3Kavhf8lhGS11iEpw/6NrJxaRH8/TemRkab9fHt74hrqupoaqEPJcxBCvFgI8V0hxKNCiDEhxANCiCuFEAPKa9YJIWTM10KNz2gTQrxLCLFdCDEuhLhDCPGiTAYPDZH839MDrF+f6RJJ4KMjZ2fNqmS1FsySQsktzjtBMdR2JAXmpHR301dLbzogbEmUUlAQCyaUBfS8BBJISl5iODhI/8ienkIWHrWor4HUChGqCA8/3PI+H9SrLGRcixiqVaYFePmBAVobR0cjRKoE27XWwoKJYZZTIfi1iWM+OEjjPm8e7VYsQ+1N19Kti5tcR2yYjXJpCxpz5mwtrRYT0j20WvyNjtKA9PRQJMwy2toS7lENkSLRt7BPWrs2j4mxqEPJId4BYAbAuwE8B8BnAbwJwLVCiGZbrgTwxKavZvoUhQ8AeB+AfwHwXACbAXxbCPE8Y2v5Zli5spCqJCC8qUw6oPsQSs6iGGotOsePk2rHalIBiLU9NgNbc8w5h8hyl3xGHsUw0ZHw6T6rVhVSTQ0kOEF2uk35V1L6EUqOLT5JyKXVIobqzVBAlalKxk2KfrT2ZK6iERrhe+0K9gIghDmpHRsj3tTVlcJVXZHxBMVQixgW1CBaRZZ7VCt6xcfhbdiQx7xY+EwMk5qGFIHnSylVb3S9EOIIgC8DeAaA65TfbZNSbja5uBBiOYh8/oOU8p+Cp38mhNgA4B8A/LeRtQUqV4zFi0loOny4KQUjZnLMzNDGVz19JBIlORITxVArTFXSmO/bRzfZqlXKL5gYNm33JyfJgbe3p2x6C+x5CWRTDLVUN+1z0LLDlKSMjdG48+kjsXClGGosmK6aWzMWLaJ77siRpuGJGXO1/6JWNKKgMY/1LTxWWVW3gqMoQOhbjhxp8i0x/lzdcLrqvwgkjHlCHrBWCl7BeXoAjd2jj+oTQykNcwzLLuA82XIMm0gh45bgcVXE70xxBYAuAF9tev6rAC4QQphlv5bkSICEG7JpcqgnEyQKDQXbHrt5z6sYFng2NSM2DM6sr0kx1G6eWzDBKizHkPMYEo+MyAdTYmh86klBC2bs0OYlhgUv9Ornx6pATX/U0aO0aC5cqNlntGzFcP162p09/HDLSRzGPS8LQqw/j8mPNC6aKXvM1XWo6chNrXnuoWI4MkKboL4+yn2ORcEszGfF0Ifik6cHj/c1PX+lEGJaCHFcCPFDIcQFGtc6D8AEgOYT4rmY/Vwjy5ikFHDIPSM1lJx3weSbwzJiu15waCyiGkyLGHIFWwE5nQzTULL2zVjQIfeMWMVwwQLycMPDLQumdo4h4BUxNO6/WNBGgm99zp+fg0oMG6qY/FEMUzedTWOuLda7Cmv29NBnzs62/FFGZLyEMdcNg2v7c1dj3tVFN+HMTMsvtThfCYph7NGyMcTQuAjSZbuaJt9yUhBDIcQqAO8H8BMp5Zbg6QkAnwPwJwAuA4WGLwDwayHEOSmXXAzgmJRNowkcUX4fZ8sbhBBbhBBbDvJNyMSwgHOSGbEta2IkfO0Fs+AQW2xDfLUarGnhMUpsL3DMY4khF43cfXfD01o34+xsmCdXkO2xiqFaxR6zkdDq11Wgt4mtks2rGBZMsPj2adm89/TQP4SLSBRURjFs8i1akbOCz0kGUo6hjjy7rQKKYYwK5EMDeiBlzFPmi9YGqMAxT1UM866hBYkrsetQXx8lnE5MZBcpcsIZMRRC9AP4AYBpAK/j56WUe6WUb5RSfk9KeYOU8gsAngZAAnhPUfZIKT8vpdwkpdy0jCdxicSw5Ybkz2za7WhNjKkpumBB52oCjWcOt9DwlBsy0aSC8/TUz2+5Ic8/nx537Ig0KdGR7N1LiXHLlhXSDB1IUAyBVIKlVU1dUPWd+vmxTa6b5rmW3ePjRBAKOpta/fzI08xiFsyqKoZaG7djx0g9mj+/lOKwpuhl2Ik5DzF0MeZ5QsnT04WHZNUxb/HnMSKFlkkFpx0ACUdRxyiGWsv6+Dgtbp2dhUWAEn1LzEZCq8jKApwQQyFEL4CrAawHcIWUMrolfAAp5U4AvwTwuJRLHwWwUIiWTDB20VH7oXi4JIY8qdmGAMZJ1gVVU3d20sZmdjaiiJcXzCy2a7fTz47Y3XGM6mbUTqLAuRKrGAL5iCHHSRuy5e0iVjHkY86a+rtpjbkqcRVUTa2OeQtJiVl4fFMMrYaSCw7dA+RbYtt4pRBDb8c8pfgk1bdISRdPTP7Mju5u8ufT0xEtRfNsgAqOXAHmoWR2NYkZYgWfew+k+JaYowi15rkFlE4MhRCdAL4DYBOA50kp7zJ4e/Nephn3AOgGcEbT85xbeK/BZ5VCDGNDsjGTWmvB5DL7Ahd6IEHCZ+WJ7QigZXsJW6LUROumhDIfTiYAKAWyq4uEyZY+aSm5ei5bvqifH0sMmzYRPhz7CNA6PDBA63ILSYlYMNX0N1/Uq9gCsZjQoGsFCEhQ9XlCKARrbIwEntSWLy4Vw5gcQ62wJh9HxxGNgpDagixLKLlEYqjbx5CJIbueSJRgt+pbWqJAvHYrbbxmZws9obcBZTe4bgPwNQCXA3ihbjsaIcQaAE8BcHPKS38MYArAq5qefzWAu6WUjxgZ7ItiqGj7WhNj61Z6PCctJTMfYm/IdevoUQnJak9qJmUucgw3bKDw+8MPN3QF9uGQe4A2rjEZBpFV7Lz7b2sLhZZIlOAEYxd69QZQ5rnWgllC/pJqQ2wYXFkwh4Zorg8MpFQ88r3horAtZhOhFRosYZ4DCao+5wErvkW7a4BLxTBPKJntLqhxPsOkin1sjL66usKavUgUeE4yIzaUrNqtSHJaimFJG6DY008ijqJh39Lfn+JbLKBsxfDTAF4C4KMARoQQlypfqwFACPFRIcTHhRAvFUJcJoR4I4AbAMwC+JB6saBq+d/4ZynlAQAfA/AuIcTbhRDPEEJ8FkRE32VsrUti2N9Pd9zERMN2wijEVvCkZim8ZbcTkbHPR9DNn58S3WZiWOCCGesAe3vpl9zQDY2vc53YDsRmGEQu9mr1XWJrI5eKYU8PjfvUVENOglaIrQQFSLVBJ1Sl3eHioaBxwsaNec2LRaxiqN4AMzNzT/uijKs2xBaIxRDDRPA8d5ljePhwA0nRmucl5F2rl2+xPWIDpM7zRDLO/6eCmv4DCaHkri76o2ZmGm4Cfp3rlAkgYdMZQQzLyi8EyieGzw0e3wPgxqavPwp+dw9IHfwcgP8FnWLyKwBPkFI+0HS99uBLxXsAfBDAnwO4BsCTAbxUSvkjI0uHh+mLqw8LQmwoGQgJqcICjMKxBScixCqGEbl62s6biWGizp8PiRV4EXeq0dFsBS+YEVOi8XOVMdcOO7gkhkDkasomaTnvgolhbH5kyoIZi5mZUqrvYxXD9nb6o9ROv/DjzF5G7OaNiaFynrlW3pV6TnGBviWWGHZ10ToyM9Mw5lq+paT4YeyYRxSfaM3z2dmQ2BRY2MbzPKKNa2QhpFZ3rpI3QC3rP59RqISSy8ovBMpvcL1OSilivt4XvObfpZSPk1IuklJ2SilXSilfGUEKEbzvD5qem5FSflBKuVZK2S2lvFBK+R1jY1kFWLmysORTIMGRAJGKhBbBKmkGpRJDRTHUcoBjY+QEu7oKtT2RpET8UVob9hJC4EDCKU8RZFy7srfg6jsghYxHrEi8hiemybLqxqkLBcEklKx9HJ6UtKIVVEwApGw6I+REHxXDlvnCpE7JA9ZSUo4epbk+MFBov85Efx7hF40Uw4KJYRbFMHHjNjwcxj67uqzZ2YyE49YjHSbnCifqPSVsloGEPqkRZ2uX1aoG8KPBtZ8oIYwMNN6MLZVJEfIQ+xStbvMFz6DYBu0R+W5ak1olVwWS8URiGFGAYmR7gSFwQONYPMV5G+dGlrAB0lUM1X1ZLLi46YzmWjO7iCWGWUPJJS06saFkIFQktm2be0prvvDfWlBvN0bsfIlIstW6P7V2GvmRSAwjpC2jTg2uFMOIHEOtwhN2UgVG3IDwX7p/f0LrNGW+aJlV0gYopilD5NqvVRxmCTUxjENJxLCrizaws7MRi33EpNZqOffNb9JjwYph7KlgWUPJJZGrxJ5dTDKU7aeW2llCCBwIxY6WCtmIrafW/qCEIwiBRiFWSWsjRCyYRhWyrvKAsiqGJdrd1kZjPj3d9MuzzqJHVl2hqV452DA3ICGKkjjmu3fTY8H3J+dQDw21HPwUnub0QBj80vIt2h2Z8yFrjmEsCj4JitHdTen409N6a6hWKJmZWsEboJiTbxNFoZoYukRJDhDQaHKtTA6er7zhb4FSTVv0pI4lhpyRfOTIHAvwiRiqPbtaejDymCkyixbBKsn2WGKobj0DtstzJXEK84JZsJLS3p6QJM6TOchHktIvYshTQkn3afyF6YJZkhrR1qbRJihCGU/kHyX5xVj1ihtrj4zMNdzTuj9LUgyFSBjzM8+kRyU/0qjIquCNfmLnAPbnAdvVCiXfcQc9FlxNrdoR25rJNJTMR7NynLogxNrNPSuPHZs75lTrZCJLqIlhHHwghk27ndFRSsPjHVIk1K3HYx5j1c5mxDTEpwm9aBGt8IGX8YkYqna0jHmTPCSlRlhzepoWeyEKJymxleD9/fTLiYm5P0pLxGS2E7vTsAfdStPhYVp/+vqo9isWJREsLhzmLlBzWLiQ5vrx43PO2yfFULWjZeHheyzwc9r9F0tWDFvmihAtflHLt5S0AQL0T7OamaH7WIgUksIFHAUTrNgxV485DdYXrVAyE+CLLrJmYxxM+gGnKoazs2GaSsH5y7F2t7W12F4rhj6gpGICQF8x1DrogRfL888vNGcMSFAMgXCxDmw3ct4Fh3tUO2Ib6Aa/OH6cuBZ3D4oEJ7csX15oMQEQ27OVwIteoI5o7TBLJIaxigTnRQTEUEst5KKZjo7CQ2w85i33p7oRCO4734hh7MLTlHqgddLd2BjdEJ2dhecvJ+ZHZiGGJVQkM3RPs1IPeYptJzUzUxqp1TovuWmeJ96jJUpcqcQwuOdmZsIoUWxv1/37KfK2dGlKA9j8iM3TB1o2ErVi6ANKVAx1dztaO4YSF52InOQQTDQCp6alRvDOuMCeV4xYksLON8i90sq1L1HpjE1WVn8ZjLnWgumhYqhFDNW2KQVvgLQ6BwT3XeWIYTCRtNpwltSpAUhZMGOIoVaOoQ+KYRMxTD2VaGaGBqSgs6kZifO8SQUwOg+8BIkr5mCZlrmidriKJeN8fxacigWkdA7gezSYu3XxiQ9gYljCYp9FMYxFSeE1IEUxbGrQybUciUUzJRLDmNPvgHOD0xMDg30jhrHtDYBw0Wsi44nO2wExTDvNwqej2YCUBZPv0WAcfSOGsbY3qctaChD7xBIWzETf0qSkaG06fSKGTYQ2UfAu0e6Yo+IJTf8QrVByiUwm5mCZFmJofE5ywYi1G2jx5yX18wdQE8N4+JZjKKXZIfclLZhtbQ05ySGaGnQy5+PCvEiUSFI4D7wlb4z/GceOAVLqbR5LJIYrVpBYc+BAxJjHLDy+KIaxYfDly6k8/9AhYHRUbz3hExVKIFcqoW2pYucExKDSVIsYllTxCKQk5be10USanNRb6EtqVQM0kpSWNl4nQihZSj3FsKSiGaBR/G6Z57xZf/BBABUKJbNP3LsXmJ7Wy7su6RQroLEJfcs8b1pDa8XQB5ToBGMndW8vJaBMTQGHD+vdZyWqEW1tCSGfpkPAtRyJVvM6O2DH0EJSuroor2RmBhgamvt94nCWSAw7OmgM1crdOTSFNVMXTClLVSQimvkT2trChWfHDj0HuGULPW7aZNPESPT2UhHM5CQVgDWA1c6mcE8swZISuP9++p5bxhSIWN/S0dGwaBopnSX4RD7NTC2KmQPP1WBzkBpKnp6mG109bLxAsB0tPrG/nyqqxsaA4WG9E/q4nVAJlb19fWRi0ymshPPPp8dgJ601X9i3lEiwWuZ5Tw85nulp4NFH9Vx1ieJKZyfl9c7ORhwU0ZSOVSuGrjE9TV+LFhWe1wGkhKoUOdk3xRBICPkooSqtiseREVp1u7sLPZmAkZjDxKxx2zbvQslAQj5N0z8jlRgeOUJFHAsWlDLmTZGRRvCY79unRwz5H1dC2gGQsNgr1b1abXaOH6dVt7/frZICNNyjvoXA1Y9p8S2K3C+lhm/Zv59W3uXLaSUuGLHpHmpF9b59emIg9zxkYlYwYk9W4sEdHGyY57HzZXiYiHtXV0qYyA4S5zn7iD179PY2Ja+hseFkZSc9OUm1dmrbryJRE8MocIyuhN0lkEIMlcmhtWNwRAxb8lIUFnD8OPnl+fMT/HJJJ3AwEokhO+H77/culAzo9ew6eDDkH7GOpMQwMpBCDJV8Wi1iWGZcBZEtCwmK6jY0RPvJefMS9pOqQlviPI/M1VNYgBYx1JLP7SGWGPKYHzyI4WEa895ezTEvAYl5wMo818p3439MSf48lhgqHeqHhmg/OW9eSqcGgP64gjs1AAmbZaDhHjVKUynJL8barkTdVLtLcBs1MYyEI2KYeHTV7t16HXR82dUrFbJaqlvJhJY/JjLRmm/IvXv11sIS85eABFLLA7xz55xvO+OMhOq7kokhj6EV581jXtI8j+g1T1AUQy27SyYpTdGoRihsl+9frVQP175FSczS2pOVmKcHpHQOUCpNtdxGScebMlKJ4bFjejVIjlS3SH+uMHWte7SkHoYMHcXw8CHZ8NqiURPDKPD5USURQ61wz65devUwJVZrqh/T4ry5p9/hwzi0c2zuqVio7UdKQKJiqDgSH0PJsfPl7LMpUWjrVozspAXFl8ITIOFoOaCBYGmNeZAEX0aeHpBADPn+3LlTz3mXPOaxeZ1AA/O67z76lmtpIlFi1wAgQaVl2eTwYezbTo3FE2+9EvujqrZEKoZMNpR8t0R/zn6xZGW8hRjyH7Vrl14q+J130mNJ5CqxdZrp5k3r3Fl7aOocFWJggMJs4+M49gjlBZWRXwjUxDAaJSuGiW0CFM+eyj9mZ0t33rG7eqWgYOhesilxoeeVq+Q8vUOHIirwlC1/aih5drbUohkggdR2d885s6nttBgmnqjgEzFUCgpSFQk1abWkDVBTwXeIgQH6h4yPY3gr3aA+KYYrV9KtuG9fRBW7knrAi1LsOj45Cdx9N31fQs4YkOBburpoEzQzg9FbidEmcr6Sx1wt+G4Zc4UYsr9PnOdcfMJnuBeMxM4BfX3A0aM4tI2qJBLdHfcnK/j0LYYaAWrx5yaK4fR0aSfNMJo6uzUi8M1jW8lX14qhS5RMDJcsoaTSY8cajzoGMDcxpBJKjuVO+/dTSdnSpQnJH3aR2G8sICmTWx9teG0kOPZZ0s3Y00P5d1NTERV4yhYuNXp26BA5k8WLSylUAhJ29cDc4jezk1Z6n4hhfz/lmI6MRJxRzQufUvATe/sNDZH3HxgoJX8JaDm0ohGB7RP30mKYyFVLJimdnRpV7Hv3pkf+du2icT/ttNJTDyJ9S3CG7fhWWk19CiV3dIS2t8wXVqG2b08P7hw4QBXMixeXU3GABN8ixBypHb+XzhHWUjpL2rj19ob+vKW61yRNZfdu6khxyiml+XO2JWnDPP4Q+eqSKElNDCPB7Kwk9aqtLSEkG0yM2R27MDZGfC+2gLRkCRxIkfADkicf1SCGDmyPVWqDhW925y4MD5NAEeuXSw4jA42tuVoQSCejD9FimLiGl5xkLUTI/1gImUMwfnLfPhw61NgKqQVanYHtIjaUDMwpaFNbtwPw52xqBs/doaGmXwQL/ewj23HsGI15bOoBO6ayViakEEPeAO0goq2lGJYUSlY/quUeDcZcbt+e3sKL788SfWLipjMg47MPaxDDEnt1MmLXIvYte/fOqXKxU4HtLvH+5M17i0Ch2DHzKPmNspaZmhhGgYlhSeFYIOGGbNKZE29GTpot0ZHEElrFjo7dRPoSbXdIaltsb0jMknNNpSPByVklhXqAhpSZVgQeb3YXObjAl0ej5CRrILS9JQwe/DPkgYMAJJYtIxU9EkyuSiQpicQw+KNmdhML8CmsCSQsPDxng7DfkiUJhUolF56oHxXpW4J7tH2fxoJZsmIIJOSNzW2Wd0BKGvNY0bvkKAqgRww7dj7S8NpIcK/Os8+2Z1wKYgsK54jhPoyN0X4ydqNf4olnDB1iKPZobIAsoiaGUWBiWOINyQsP86M5LFoE9PWhfWQI83E8eb7ym0tc6HVCyX0HycElOhIHxDDWCc6fD8yfj7bxMSzC0eS1kHNpSnSAiSQl8Bx9x2lFinWAMzNOFAkW+VrOS543D+jtRdv4GOZhJHmuPEILU1m5bkDKghmMecd+GvNE/sGktkSSwhGGloVn2TJg3jy0HT+GhTiaHPUrufIe0FMMew75qRjyWLaE7xcsADo70TY6gh6MJY+5p8Swb3+KYihl6JxKVN5i274FSZ9thw6iA1PJa2iJJ54x2EcntavrPkR+oyaGLsE5hiU670suocfbb2/6hRBzjmENdiRPageKYaLzDuxeeJxIX+xiPzFBC6Z6AkYJiK16BOZuyNOwM5mk8KJTogPUCSUPDNFCHpt2EBwRhRUrKEGnJMQSQyHmVtNlOKhHDBPlULtIXDCDm7L7aIpiODFBUqmahFYC2PaWymQh5sj1GXg4ueLRITFMGvN5Q/vUH1sxMkJJZ93dKU0a7YIX+xYy3jTPK0UMg8biaw7dBiCBO42O0lzv6aGClZIQSwzb2+fGfAX2J3M+rVJxu2DhnhstNCDgIAPH61CyH3jsY0tLPgXCf3jkrkGXGDpQ3ebPpxy84WHKk25AYMey0RRiuG0bVeCtW1fqmCcuPAHRW41detXUJW4iFi6kYRoaiijiCBbuhaMpxNBBGFn9uJYNEDD3DzkNO5P9sgNiuHAhzfOhoYh5HtyUA8MpxFDtaBwbJ7cP7ugTufAEq9J6bEsmKVqHzNrFwoXEoQcHqaFyA4IJcsrYNnqM84tqGLmMzsABODzYUggBzP1DNmGLVwV5APmLnh7idsPDTb98whPInFEKE8feoxzLLau3SgCeA+weGhD4503YkuzPHSiGa9YQf963L6IAJViHFo/VoWQ/kNjQyz4SW3kEq+npeEQvx7DExV6IhKTfQP1bObMLbZiJn9TsAEsmKYmKYaCkXIC7kp23g5wx9cjXFlIbDPLScSKssVXJDtRlALj4Ynrkf3kDAtn88bjZO8VQnedxPd6WTOxVf2yFg02E+nGRCnMwzzfgIe8Uw0Tfct55kL292CC3YnnXsfiiGa5yKtm3sD18mzUgaOFyJrZ6pxgKkdCHMfijBuRxcO51JLYRWS/bt1x0ET3ec0/ELy+7DADwONySvIY6IIZtbWFWTEsqWUAMT5nZpQqfxdtUzsdUEGX9BwIwMYxUDINZsx7b4hcdKZ0ohkBCAUpvL2aWLkcnpnHuwr3xUQVeMEsMIwMpYZPHPx4AcD7u1tvVl2x7rPNetQqyowMrpvegF6PxZjlSDBObuQdEbyX2eacYAgkFBcEvVmMnlswbj5/nDtIOgJSGyxdeCICUlET+oXV+m33Epqp0d2NqGZHU85YdiBcD+azhkhqhMwJxDb/5TcQvA/+8DtuTfUvJ/fQYsU3ROzshe3vRgRmcumA0PrjDedcbNhRlYiTY7sh5HrDGM/Bwcm7kHXfQ9yVv3nj9b1GYFy/GbHcPFuI4zlg+FF8cZhk1MYxDyeSKJ3XLjgFo2NXH+uXDh0n/nz+/1DYeQENT/BaMLadxvGRp1B8WoOSm3IzYXmPA3P8/McdwaIhyxnp6St1hAgkFKB0dmF1H4cGL+h6KV1IcEcPEM02DgT4Fe+PHfGqKJpqSe1sW2CW03KMLFmBi/dnowQSevvCO+Atw/LxkYpiYkxoUTa3BjniXNzMT/tElKoZAcg7z2AD98uxFUTu7ABw/LzkCxP/iyDZewUCvxaPx/nxsjP7ozs7SfUvSaTnT8yh5cuPSKAUjABPDEjs1AClHEQZry2rsir/9jh6ljX5fH6WSlQiO7LREDIXAxDIy+LGLomLkxaAmhnEoecFk8WP79ojO7RdcAAC4BLfGO5KtW+mxxEpNBtseldtxbD45wfMHEoghLzolE0O2OzL3KrDlNOyM39XzH7xuXUKfj2KQVJk8dCotgk9a+mC8kuKggh1IOBcUmFu8z8M98Wvhjh2Uj7p6NSX9lQjmoVGbt+GVlJi/sT9qVQpw6630+JSnWLYsGYntjYJfnoK98b7lgQdoxVq9unSSkkQMh3pp93B6f1QuSABmwyWT8cSTOAIffSa2smDbCrXfZcm+JYkYjqwkFfCSeffHX8ARMVSV8ZYxDxTAVdgdLwbyH7xuXWmN8xlcrNRSlAfg0NpNAIAnd95Umj01MYxDyTvj+fOpY8fYWEQl28aNmEAXVmEPVs4fjb4Ah0xKbJvCSCKG+3uJGG7s2h5/Aba95F392rWUbH3gQHwvw9XYhWVLZqMvwLk0JYc0geTw4IGFNI4X90Ux3gCOFMNFi0jsO3aMhKgGBKGnxIIfR2FkIFQMo/Ijjw4Qa7yw7a74C3AoueR5rqZMtIx58MsV2I8Vy2LmOdu9YUOpBRxAw+EsLTjSQaxxbXeCYph6pmUxSDyJY+NGzKANZ+BhrDml+cy8AI5SVNSPjDqi7dBSWl/O7dwafwFHxHBggMZ8bCxizAM2eCr2YPWpMfPcQfN5Bg8VL4Uq9vWSr1vTlTDPLaMmhnEoOZdGiHgpfGKqDTtAC8/SkRjlzVEuDdBw/GcLtrfTYr9uOsGROLJdiJBHb202r7cXh8VSdGEKK9tiFAlHuTRAsmL4aBcRj42IIYazs+E/q+RwbHt7eERbS27nkiWYhcBSHMbKpdPRF3BIxmNDyQAeWkJJZWdO3Rd/AQeFSgAJq0uW0L+9JbTZ3Y0jYjE6MIOVHVEyLkIy7oCksG+J2nTubacFfM3s9vgLOAqBA/Fq5wS6cRDL0AaJFW1RsWY4KTxhJCmGO7tI7Txdbot+s5Sln++sIm7DLHv7cBiL0Y1JnNoeQ7CYCTsghrxXjCpW2jVJE2l1R1QuSICWY43yoVRiKIR4sRDiu0KIR4UQY0KIB4QQVwohBpTXPFMI8VUhxMPBax4WQnxWCKHV+EsIsV0IISO+XmhkbMkhEyB+Uu/bBzwKWpXadvpHDJNCVfdMkz2nDEZshQDSzo8cIbnUwZizkNAc2hwfB7ZLcspLDsaETdgBOiSGUUrKfTPkZVaPx5DxvXtJyggaHJeNoB1ay+54cqYdu0BOecn2W6Pf7FAxTAolbx+m5MmlIip5EuS4h4YoHzU28bM4xN2j4+PATkljvuj49ug3c0J+bNyzOPCt1XKEIoD72s4DAKw+HlWGCgq97N5NY16yMg6E92jzRv/BB4F9oF927o9gX0B4c5Sc6w4kE8MtR4K+l+Lh6DcfOkTzfP78hLP+ikNcgdiRI8BDoMnUtydiMgHhmDvw57GFbQBunzofALBuf0woeWzMerFs2YrhOwDMAHg3gOcA+CyANwG4VgjBtrwRwBIAHwxecyWAFwDYLITo1/ycawA8senrem0rOzrImZQMFhKab0iVGEb3P0CoXvGqWyKS1KstQ0QMF+6PIYbqKRYlh6mAsBiimRjefTdwI54IAOjccmP0mx0SQ04lvT+Cs94+QsRw6ZEYxZAdoIMdPQCccw493tckru3fD/wCTwMAtN0Xs9h7EEp+9NHWHKatR2gRXDAVowCpaqGDec4Lz//+b+PzmzcDD4Du0batMfcol9YGbVbKRNOpfQ24bZIWzCX77o5+M8/zM88stW8kg7los8veuxe4C5Q3Ppd32owf/5gen/70IkxLRBIxvGeaQizL9t4Z/WY1jOxwnjdvmPfuBR5EIMu1hIcC3HsvPZ57bjHGJYDn+V13tfqW649RRfX8gzFk/JZbqKG4RZSbYQk8X0qpes7rhRBHAHwZwDMAXAfgzRGveRBE7F4K4N81PueQlHJzZisd7NKAcHI074737gW2Yx39EEcMHRxvxlBzmKRs9Ae37zsFgxjA/MEjFMdq3tk4DA0C8cTwgQfCHebcot4Mh6Hks86ite6RR8gnqK0jbtt7CoYxD/2Dh2ir3Hziw52BU3egAAEhqW3O1XvwQeARBPMgsjwfIRN2MF8WLaIcpuFhypFUhb/NRzZiGu1YuONO6g7Q3LOGw1Qlh5EZXKfTTLAefRR4FEE+RdQuQ23hwY3iSsTatVR7sWNH6zy/9dgZGEc3eg/sIHWwuWmnwygKEJ97fegQcC8C8rEtIiQ7MxM24yu5UAmgEHhHB7nr8fFGjeT2yfMwgj7M27Mt2p87yi9kJBHDrQhEk8hqQ4Rjft55xRiXgHXraPoeOUJBNHbZUgK37VhKYz50jJInm885/fWvrdtTqmLYRPgYtwSPq3RfUzhKbvfC4DyD5nnbMKmjnPfgIK1Uvb2ld5sHKBrZ30+OWy23n54G9uwVuD9p4XGoAAHxxPDBB4HdPN2i9P3JSVpV29qchKk6OynlS21fCRBpuedeEc6XqN3xXUGBRFDtXjbiGovfe6+yAYpKKjt4kEhKV5cT24WIzjOUErhzx0Jsw3qI2dlo23/xC3p0RMZf/3p6bJ7Ke/ci+f48fpyO1xkYcOJburpozKVs3RPv2tuO+xDIz1FdjR0W5AHxxHD//pR5vmcPOc+VK0s9rpLR3h7uX5r3xPsOdeBukFIbWSnhKTHcvRvJPnFwkCTSnh4na1FcY/FDh4DhEYGdbQkRwzixKAd8KD5hrTwha1vrNSqeL4QYFUJMCCE2G+cXOsKZMRuaRx4B7kSwoNwZIeHzzXjaaU7keyA6tLl3LyW8b++JiR0Czokhb3ibG9E++CCwB0HCepRi+NBD9MetXVt62xRG1MKzcycJDnv6g10Gqz0qPCGGzaGqe+9FuND//Oetb2SHfuGFzjZvUXmGhw8TIX+0PVgMo1QgXkQvvbRYA2PA4cHmqZxKDL//fXq0nNxuAhbk1fV8dJTW8nvbApKSRAw9UwwfekhRxqMWdUeFYSqiwsmHD9Nmbnd7QFKiSK3DPD0gJFfN3O/BB5VQcpRiyGvT2Wc7STsAolOyeIh3DgQq5s03t74x8uiufHBKDIUQqwC8H8BPpJRbYl4zAOATIFL4fY3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMLIrafHYqKRAqHkGt99Ok3qms5tmSnM/G5aSg9M6XIDTj9QzcDl6dmBJsNhzDoeK2+hAdle7+ic/mR6jiOE2rA9/2Tzm/IfyGW8OELXwsFO5byUdAYVrr21808wMJVACzoghp/A0r+X33ANsxqWY6eqhydM85g5zOhlRiuFNQU74kYXBfIlKiGMyXnKrGkacArRnT5hjiK1bW3OVoshiyWDXoLoPXvh3zA+IIY8vQ8pwE+2IGMblGG7dmqIYMklxEIlgRBFDngp7V15M32yOyNb6+tfp0ZEyzifO/PSnJLoyfvazJmKo/hIIJ5Sj+xOIJoa8xzywKlhgo6qwotbVnHBGDINCkh8AmAbwupjXdAD4BiiE/HIpZUwPixBSyrdIKb8ipbxBSvkdAM8EsAVUxJL0vs9LKTdJKTctK/k4PMbixVTINTwcTg4piZfMoAPTZwdO8Fe/anwjzx4HuREM5keqQMX8Y+i0gAk0K4YjI8CWLbRDe9KTCrcxCmeeSYLfoUOkQgA05lQ5eAqmH/t4Chtvadq3MKF1kJDPYJVWXVuYsBzeEChTzexr2zaqYlu1qjX3sCSsW0f/8j17KIcJoDG/5x5Aog2zpwfEr3mx5zF36LyjehneEiS6dJ4V/EOanffRo7Sqdnc7ydMDSKXt6CBxgec5ANxwAzCKeRjfcD5VqvMfw5icpMcPfrA8Y5twfuD27lZqTH7yE3psvyjY3DTPlZ07Sb2aN8+ZXzztNMo02b075NvMV/djBWZ7+4Jy2ab58j//Q4/B+b4uwMRQ7WXIxHBsQ0D6mv25Gs3if1rJ2LiR7tGxscb92c6dwDAGMH3a6TSnm21n9u4ocgWEHZXUjQT79rY1Ef8QgCbWAw9YVzmdEEMhRC9I2VsP4AopZUv9U1Cl/GUAzwLwQillTBlUMqSUMwC+DWC1EKLc5oQZwJtbdoKPPEKkZdEioOu5z6Inm3dqjsOxQOh71fuNzVz61JhQ8gMPkIK1cSPlMDlAW1vYno0X+337iJwvWQJ0nBf8Q5p39lxN6JAYRimGHMlZcGHAYJrjtbyAOtrRA+TDWAxhpfbAAVojFywAOs4Nciq++MXGN/LC88QnlmFmJJgYqtFi3sR1XhRsgJpLf1lSvOQSZ2kHHR1h2heLI0NDlO/W0wN0Xx5I580bIE54ctDDkMG+Rd3j8B5h9XMDYnjnnY1hFmYFF1/cWghUEtQ8YPYtBw/SmC9cKCCeHfjzX/6y8Y18EzvaLAPhvztKMezaFPiOX/6SGBhDVQUcjTkQ3qPMoYaGaBq3tQFtlwT++gc/aHyTB2soiytqoTr7md6NwT+Ec5UZ/He0dK7Ph9KJoRCiE8B3AGwC8DwpZdxRAf8K4GUgpfCnlj6++aAc78CTg9dvTil46lMBcV6w8DTnSPCO02HogcODd98d+mdeMFc+aT2tPjt3Nurk3JLBQXsAFexIeC1hB7hxo/JLldROTISLvaOcMSBUDNVIAk+NNRcuJJY1NNQY92Ry5SiMzHjqU+mRzeH5ft55gOD4vrp1np2leBDgrLIXiA6D8zo+t9Bv3dr4T2G7+e9yBA7Jsr3qWihOX0c//Ou/Nr6J57mDNlgMddPJ6x9zkI2Xr6Z808OHG33LT4Mlw+FCD4T3KPsWzlJauRIQl1xCPzSHApmMl3zIggq+xT796dCfs5mrn7SGdhlTU407JP7+ne8sz9AINJ/c8pvfkPt4zGOAtudeQU+qJHZ8HPj3oNmJw3n+uMfRo5pGyPfowovX0Te7d9MOmhHXvSEnym5w3QbgawAuB6mAkS1lhBAfBfBHAF4npfx+zs/sABHMHVLKqNNCvQJzO96psSM59VSEITQ17+fGG2lV7elxutifeioVLR49Gs5VPtlixantIYFSd2q86Pzu75ZnaATYzpe8hB6ZpJx/PsI+YupO7Y47yJmce66TSk3GxReT0HrPPaFPZtvPOluEoSiOuwHA9UE7T0chTUZzDlNDR5TnPpd+UMMmqkruMCmf2wQ99BCJJRMTdAsKATzp6Z0kEwHAP/xD+CYupHnWs0q3VwVHI770JXrk/eTppyMkUCq5uv32cGVyGL5fuJCIytgYmTMzE9p+1tki9HtqKPMrX6FHR2lBDCbjLMTy8C5bhpDxqsRwxw5yogMDThpEM5jQAhQ9AZra/LH8zGFvwHnrMQYTQ7aX3cj69QiVl+98J3yDmmDuUKU96yz6t+/eHe4NeKO/8onKmKq7Um4z8I//aNWWshXDTwN4CYCPAhgRQlyqfK0GACHEXwN4O4AvAtja9JqGGnghxLQQ4t+Un18hhPimEOK1QojLhBAvB/AzAI8F8Ncl/Y25wP73xqCn8lvfSo/794McSUcHrf58GCRP8FWrnMr3QlCkDCAp/NixMNyzciWA3/kd+kElKayZc8awIzD346hIQ5u/xz2OFvtbbw29+r8FU85RHg2jpyfk2w88QP5t61Z6fuNGhMVIrHZKGZKU3/qtkq1tBA/dDTfQI/u6Cy9EWLa8Z08oV3zqU/R49tmtfbxKRE8PiQqzs7Q/27WLyOGaNUHKJveF4dVIynAj5zDtAAh9C89vJisXXgjgRS+iH44fJ/UNAL797fDNDkkKEM6Xe+6hoZ2YIEFtYAAhMVTzDLnK5hWvKNXOZjzzmfTIAuYXvkCPF1+MUH7++c/DZFuOUFxwAcU+HeGxjw2/37aNyOH27eQKzzgD4T3IxSbj46Ey7jgawbcZ+xZeS88+G42Fa3wD8A3x8pc7OdiC0dYGbNpE399yC+0Rdu6koT7zTABvehP98pvfpEcpgauvpu8t59GWPfMCKQDvAXBj09cfNb3m9RGveW/T9dqDL8YjAJYD+AiA/wWFoycAPEdK+U2bf0hR4PSp5mjxmjUgL/iEJ9CWmRd4Zl+qQuEIPKm3bAGuuip8fvlyhMTwuutoQl93Xei8HVaZAsDHPhZ+v2dP0wlgCxZQCHB2ljyMlMDnP08vUJs2OgJXsu3fH9YkveQlwYLJu/rvfY/s/sQnwjc6VDoB4PLL6fHmm6lAkNMJTzsNxLBOPZVWI15R2Rn+8z+XbmszeN27++4wG2KON735zfTIscPbb6fq6tWrnY/5y19Oj/v2URSwIRuiQznr4F3voscrg3q9D32oNBvjwOve3XcrYWQWMfkf8pd/STfwP/8z3a9A6JQcgTduW7bQNPjhD+nn17wGJBGddhoV4X3xi405kg4LTxg8p6+6CvjqV+n7c84JRPFXvpKeOHCA7L7mGmIxGzaEMVFHYJ3hppsoP5+1iKc9DY0Fdz/7GakBf/In9LNjQguEQ3fLLWFE/vGPD2pL3vhGeuIzn6Ex37uX/Ex/P/DsZ9s1REpZfzV9XXLJJdIVZmak7OqSEpDy1lvpEZBybCx4wXvfGz45ORl+v2uXM5sZ//mfZMpjHyvl294WmiallHJ2Nnzii18Mv+/rc2hxiGc9i8z5938PTTtyJPjllVfSE898ppR33x2+4Ne/dmqzlFL+zd+QKW98o5Rvfzt9/4EPBL88elTK9nZ68r3vlfKKK+j7nh6XJs+hrY3MeetbwyH95S+DX/7t39ITL3yhlA8+GL7gwAGnNktJ4wtI+frXh2bNzfOZGSm7u+mJm2+Wct06+v5FL3JqM2PtWjLn3ntDu/fuDX65cmX45O7d4ffXX+/SZClleF+ec46Ul19O3//RHwW/vOmm0Fa+CRr+KW5xySVkyqc/TY8rVyq/fOUr6cnHPEbKr389tHtqypm9jD/6o9Ccl7+cHl/zmuCX4+NSLllCT955p5Qvexl9/+d/7tJkKWXjsviud4Xf79sXvOBf/zV88k//NPz+0CGndksp5Xe+Q6asXx+a9c53Br9U19DPfEbK5zyHvhdCSiklgC3SEgdyTsJ8/HJJDKWU8nnPa/Rt7e3KL2+7rfGX/DU768xextGjrWZde63yAma86tc//qMrcxug8u2WNeXoUSkHBhp/+cpXujK1AXfe2Wr3//6v8oIXv7j1BT/9qTN7VfC6on7NrYe7dnk7z1VSxV8f+5jyggsvbH3B17/uzF4VTKr467TTlF/+5jfRY+4B1E1yy5DOzkrZ39/6grvucmozgzkTfz3vecov1Y0mfy1f7sxWFZs3t5rWsEd4xStaX/DlLzuzV4W62WyZxvv2eTvPd+xoNWvHDuUFHR2tL7jiCimlrIlh0V+uiSErb/z17Gc3vaB5Yjz96Q6sjEbiOr5lS+sLJiac2ariv/6r0az3vKfpBe94R+MLrrnGiZ1RWLUqYcyPHGkd84MHndmq4vrrG83q7W16wbOf3fiCxzzGiZ1RSFxTVNkZkPKMM5zYGIXvfrfRtKVLm17Q/IfNyRVuoYolACmfMzPKC/7yLxtf8PjHuzK1BRdd1GjaX/2V8suxsdYx94RcSdlq2siI8su77mp9weSkM1tV/PKXjWY1bNykbLXbk42+lFKuWBGa1RJo2Lmz1fbjx6WUsiaGRX+5JoYzM1I+7Wn039m4MSKq8P3vN04MDyRwxic+EZrVsDNmcCwLIDXLEwwONg5pwy5NShpjz3aXjHe/OzRr/fqIF6h2f/azpduXBFXBevDBpl8ePNho+/33O7ExCv/3/yZMh5kZIib8yy9+0YWJsVDtvvHGpl/ed1/4y5e/3AuFlqFmFLz97U2/PH688Q/7l39xYmMUmoXY225resG3vtX4ggbG6xbf/nZo1h/+YcQLVLvnzSvdvjg0bySOHm16wTe/2fgCTzbLUjZGulsIrZRSrl4dvuBtb5t7uiaGBX+5JoZS0sRO3Hxt2UL5ES0z3i2mpkhc+/CHY9aU6Wkpf/jDpninH7jvPil/9CMpjx2LecHmzVJ+5SteLZZSUrrPa15Dm97IOXPddXSrf/KTpduWG7t3U6LQvfe6tqQF3/ymlIsWSbl9e8QvZ2eJsf/7v5duVxpmZ6X8u7+T8uMfj3nB+99PiZSezXMpaQqff76SL6bi4EHaaXzqU6XblYZbb5XyiU+U8qGHYl7wsY+RIu5Brngz1q8nFWsuz13FwYOk7J93npRbt5ZuWxJ+9CMpzzxTyhtuiHnBe98r5WWXSXn4cKl2pWFmhvKXn/tcEixasHevlG95C93EyibCJjEUdL0aKjZt2iS3NJ8AUKNGlTE4SKXKQri2pEaNGjVqWIYQ4lYppZUy/I70l9SoUaPymD/ftQU1atSoUaMCcNdBs0aNGjVq1KhRo4ZXqIlhjRo1atSoUaNGDQA1MaxRo0aNGjVq1KgRoCaGNWrUqFGjRo0aNQDUxLBGjRo1atSoUaNGgJoY1qhRo0aNGjVq1ABQE8MaNWrUqFGjRo0aAWpiWKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRgAhpXRtg3cQQgwBeMC1HZ5hKYBDro3wEPW4RKMel2jU49KKekyiUY9LNOpxicZZUsoBGxfqsHGRExAPSCk3uTbCJwghttRj0op6XKJRj0s06nFpRT0m0ajHJRr1uERDCLHF1rXqUHKNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJobR+LxrAzxEPSbRqMclGvW4RKMel1bUYxKNelyiUY9LNKyNS118UqNGjRo1atSoUQNArRjWqFGjRo0aNWrUCHDSEEMhxGlCiO8IIY4LIQaFEN8TQqzRfG+PEOIjQoi9QogxIcSNQoinFW1zGcg5LjLm6+KCzS4UQojVQohPBf/n0eBvWqf53jYhxLuEENuFEONCiDuEEC8q2ORSkHNctsfMlRcWa3WxEEK8WAjxXSHEo4FveEAIcaUQIrVtxAnuV/KMywnpVwBACHGFEOI6IcQ+IcSEEGKXEOJbQohzNd67SAjx/4QQh4QQI0KInwghLijD7qKRdVyEEOsS5svCkswvDUKIHwd/2wc1XpvZv5wUxFAI0QfgOgBnA/h9AK8BcCaAnwkh5mlc4t8A/DGAvwXwOwD2Arim6o7KwrgAwJcAPLHp60HrxpaLDQBeCuAogBsM3/sBAO8D8C8AngtgM4BvCyGeZ9NAR8gzLgBwDVrnyvXWrHODdwCYAfBuAM8B8FkAbwJwrRAizb+ekH4lQJ5xAU5MvwIAiwHcCuDPAPwWgHcBOA/AZiHE2rg3CSEEgKtBY/kWAC8C0Any1auLNroEZBoXBVeidb4MFWOqGwghXgHgIoO3ZPcvUsoT/gvAn4Oc1AbludMBTAN4e8p7LwIgAbxOea4D1AD7h67/NlfjErxWAvig67+jgHFpU77/o+DvXKfxvuUAJgD836bnfwrgTtd/l6txCV6/HcBXXf8NBYzJsojnXhuMzeUJ7zth/UqecQled0L6lYS/96zgb/6LhNf8bvCay5TnFgA4AuCTrv8Gh+OyLnjNH7m2t+CxWARgH4BX6Nwfef3LSaEYAngBgM1Syof4CSnlIwB+Bbrh0t47BeAq5b3TAL4J4AohRLd9c0tDnnE5YSGlnM341isAdAH4atPzXwVwgRDi9FyGOUaOcTlhIaU8GPH0LcHjqoS3nsh+Jc+4nIw4HDxOJ7zmBQD2SCl/xk9IKY+DVMQT1VfrjMvJgg8DuFtK+Q3N1+fyLycLMTwPwN0Rz98DIC234zwAj0gpRyPe2wUKr1UVecaF8aYgJ2Q0yBF5qj3zKofzQIrhQ03P3xM86o7piYrnB/NkQgixuer5hQl4evB4X8JrTmS/EgedcWGc0H5FCNEuhOgSQpwJ4HMgNShp0U/y1WuEEP0FmFk6MowL40ohxLSgXPkfnii5lwAghHgKSG3/U4O35fIvJwsxXAzKi2rGEZBEm/W9/PuqIs+4AKSEvRnAswC8AcASANcJIZ5hyb6qYTGAYzLQ7RWcCHMlL64G5UZdAeBVAMYB/KcQ4tVOrbIMIcQqAO8H8BMpZdIRVSeyX2mBwbgAJ4dfuQm0iXwQwIWg8PqBhNenzRcdf10FmI7LBIhA/gmAy0C5rRcA+LUQ4pyCbS0cQogu0N/3T1LKBwzemsu/1Gcl18gMKeVrlB9vEEL8ALSr/SCAp7ix6v9v735jpLrKOI5/f7JKN0XEqtRKrbAmNaEm1gYrsSJFX4AFq00wbYRWrCbSGJKmL0RCbYipqTFCX5nGqG1TW8RIg2BQrEhJxdr2FYhF/FNZ2wZpS7srFuhi4fHFOdNOL7Ozszu7e3dmfp/khp0799w55+HOyTP3nnuuTUQRsar6taQtpBtz7uDsS+8tKZ+12Uq69PWlkqszYQw3Lh3Sr1wPTAV6SMnMbyV9PCJ6S61V+YYVl4j4N7CyatXvJe0gnRlbC7T6D8+vA93At8fzQzvljGEftX9RDZZVN1oWXs/AW1EzcTlLRPwX2A58pMl6tao+YFq+g7BaOxwroyoiTgM/By6UdEHZ9WmWpG7SWdEeYGFEPDtEkXbuV14zgricpR37lYj4S0Q8nseMfQqYAnyjTpGhjpdh99cT0QjiUmsfzwB7aPHjRWnauLXAN4HJkqZVTcFTeT1pkOJN9S+dkhg+SbrmXjQbONBA2Vl5apdi2VOcPZ6slTQTl3o69XE6TwKTgfcX1lfGFjYT03bW0seLpDcDm4E5wFURsb+BYu3crwAjjks9LX2cDCYi+kn/3/XGfdXrq5+OiJfHoGqlajAudXcxerUpRQ9wDumKSl/VAulsah/psnktTfUvnZIYbgPmSuqprFCamPeK/F49vyTNF/X5qrJdwLXAQxExMOq1HT/NxOUskqaS5kt6YrQq2GJ2kO4EW1ZYv5x0R9mh8a/SxFT1HXo6Io6UXZ+RynPyPQB8EvhcRDzWYNF27leaiUutfbV1vyLpfNJcsk/V2WwbMENS5QaeSlw+wwj66lbQYFxqlbuINOSg1Y+XvaRxk8UFUrK4gMETvOb6l7Ln5xmPBTg3B3A/6db+q4F9wD+BKVXbvY80Dua2QvlNpOz8K6TT25tJg+cvK7ttZcWF9Ivlh8AXgCtJE2TvJ/0amVd220YhNkvzchfpl+dN+fX8qm1eBX5cKPedfGzckuNyF3AGWFJ2m8qKC2nurU2kO+sWANeRJsgO4Lqy29RkPCpxuB2YW1guzNt0VL/STFw6oF/ZQro0+Nn8XfgqcBDoBy7O28zPcbmhqtybgEeBZ/L3ZyGwm3RJ8L1lt6vEuKwH7iRNvL+ANN7wX7ncB8pu1xjF6g3zGI5F/1J6I8cxmBcBDwLHSDOi/4LC5Ly8PlnmusL6bmAD6db5V0h3Tl1ZdpvKjAvpl+ofgKOks2Qvkn65Xl52m0YpLjHIsruwzb2FcpOAW3PnNAD8CVhadnvKjAspGdgFPJePlX5gJ2nMWeltajIevXVisi5v04n9yoji0gH9ymrSEz76gROkCYd/UN3nkhLiAFYUyp4H3E1KBk+QJs7/UNltKjMuwI2k+TH78vFyBNhImyaFuc3FxHDU+xflHZiZmZlZh+uUMYZmZmZmNgQnhmZmZmYGODE0MzMzs8yJoZmZmZkBTgzNzMzMLHNiaGZmZmaAE0MzMzMzy5wYmllHkBQNLL2SZua/V5Rd5wpJMyQdlzRnGGVulrQ/P57OzKwhnuDazDqCpLmFVVtIj4BcV7VuADgAfBh4KiJeGJ/a1SfpbmB6RCwZRplu4BCwJiLuGbPKmVlbcWJoZh1JUi+wJyKWl12XeiSdT3pG7jURsX2YZb8LLI6IS8akcmbWdnyJwcysSq1LyZLulfSspDmSHpV0UtJfJS3O79+SL0Mfk7RV0rsK++yStEbSQUkDkg5LWi/pnAaqtIL0HPPfFPa5MNflP5JezvW5rVB2EzBb0sdGEAoz60BODM3MGjMVuA/4EXAN8DzwoKT1wALga8DN+e/vF8reD9wKbAQWA3cAXwYeaOBzFwF/jIhXKysk9QDbSJeKrwWuBjYA5xbK7iUllYsaa6KZdbqusitgZtYi3gqsjIhHACQdJo1RXALMjojTef0HgVWSJkXEaUnzSMnbFyPivryvnZJeAu6XdGlE7K31gZIEfBS4s/DWZcBbgJsi4lhet6tYPiLOSNoHFMdXmpnV5DOGZmaNOV5JCrOD+d+dlaSwan0XcEF+vQg4BWzOl5S7JHUBD+X3P1HnM6cB3UDxJpi9wP+ATZKWSppeZx8vAO+p876Z2WucGJqZNaa/+kVEnMp/9hW2q6yvjB+cTjq7d5yUzFWW5/P776jzmZV9DBQ++x/AQlIf/hPgiKTHJM2vsY+TpOTSzGxIvpRsZja2XgReAeYN8v7hIcoCvL34RkQ8DDwsaTJwBfAtYLukmRFxtGrT84CjxfJmZrU4MTQzG1s7gNXA2yLid8MpGBGnJB0CeupsMwDskjQF2ArM4o2J4CzgiWHX2sw6khNDM7MxFBG7Jf2UNMZwAylJOwPMBK4CVkfE3+rs4hHg8uoVklaSxib+ijTH4TuBNaSzj3+u2m4acDHwvVFqjpm1OSeGZmZjbzmwCrgRWEsaM9hLmpvwuSHK/gy4IV8i7s3r9gGfJk17Mx14CdgDLIuIk1VlF5PGPG4ZlVaYWdvzk0/MzCaw/KzjvwP3RMTtwyz7a+BoRFw/JpUzs7bjxNDMbIKTtIw0gfWsiDjRYJlLgceBS/JdzGZmQ/KlZDOziW8jMIM0LvFAg2XeDaxwUmhmw+EzhmZmZmYGeIJrMzMzM8ucGJqZmZkZ4MTQzMzMzDInhmZmZmYGODE0MzMzs+z/pRDBkgvuIPwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFlCAYAAAA+gTZIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgQElEQVR4nO3de5RU5Znv8d8zEExiMpqox5lwEYzEiDrxgkjiOYl6YmxMJiTGcUATo2EguMJEnYwGTdaEzJilmdHjeEdUxJgIMoqE0Y5tFpFgRlTaWwQJixZRGoiNoxEFBJp+zh9v1dSu6trVVV39VvXl+1lrr6797ttTb+/a9eu9d1WbuwsAAADx/Fm9CwAAAOjvCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQ2eB6F1DKgQce6CNHjqx3GQAAAF165pln3nD3g4pN69WBa+TIkWpubq53GQAAAF0ys1fTpnFJEQAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwJ7tIdd0gvvFDvSgAAQH/Sq/95da01NUlTp4bH7vWtBQAA9B+c4UpYt67eFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACR1SxwmdkYM1toZrea2Vm12i4AAEC9VRW4zGyumbWZ2aqC9gYzW2tmLWY2M9M8QdKN7n6hpPOq2W4s7vWuAAAA9EfVnuGaJ6kh2WBmgyTdrBCwxkiabGZjJN0jaZKZ/ZukA6rcLgAAQJ9RVeBy9+WS3ixoHiepxd3Xu/tuSQskTXT3Nnf/jqSZkt6oZrsAAAB9yeAI6xwqaWNivFXSiWY2UtIVkvaV9G9pC5vZNEnTJGnEiBERygMAAKitGIGrKHffoEyQ6mK+OZLmSNLYsWNrelcV/9oHAADEEONTipskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS+KZ5AAAQA4ELAAAgMgIXAABAZAQuAACAyAhcCe71rgAAAPRHBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMCVwDfNAwCAGAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcCXwr30AAEAMBK4E93pXAAAA+iMCFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAEQ2uFYbMrP/I+nczDbHuPtnarVtAACAeqrqDJeZzTWzNjNbVdDeYGZrzazFzGZKkrs/7u7TJT0k6e5qtgsAANCXVHtJcZ6khmSDmQ2SdLOkCZLGSJpsZmMSs5wj6d4qtwsAANBnVBW43H25pDcLmsdJanH39e6+W9ICSRMlycxGSHrb3d+pZrux8E3zAAAghhg3zQ+VtDEx3pppk6Qpku4qtbCZTTOzZjNr3rp1a4TyAAAAaqumn1J09x+5+xNdzDPH3ce6+9iDDjqoVqUBAABEEyNwbZI0PDE+LNMGAAAwIMUIXCsljTazUWY2RNIkSUsibAcAAKBPqPZrIeZLWiHpcDNrNbMp7t4uaYakJklrJC1099XVlwoAANA3VfXFp+4+OaW9UVJjNesGAADoL/jXPgAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgJXglm9KwAAAP0RgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS3OtdAQAA6I8IXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwJXAN80DAIAYCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkdUscJnZyWb2uJnNNrOTa7XdSvBN8wAAIIaqApeZzTWzNjNbVdDeYGZrzazFzGZmml3Su5LeL6m1mu0CAAD0JdWe4ZonqSHZYGaDJN0saYKkMZImm9kYSY+7+wRJ35f04yq3CwAA0GdUFbjcfbmkNwuax0lqcff17r5b0gJJE929IzP9LUn7pK3TzKaZWbOZNW/durWa8irmXtPNAQCAASLGPVxDJW1MjLdKGmpmZ5rZbZLukXRT2sLuPsfdx7r72IMOOihCeQAAALU1uFYbcvdFkhbVansAAAC9RYwzXJskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgSuBf+0DAABiIHABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgSvBrN4VAACA/ojABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4Epwr3cFAACgPyJwJRC4AABADASuBAIXAACIgcCVQOACAAAx1CxwmdkRZjbbzO43swtrtd1KELgAAEAMVQUuM5trZm1mtqqgvcHM1ppZi5nNlCR3X+Pu0yWdLemkarYbC4ELAADEUO0ZrnmSGpINZjZI0s2SJkgaI2mymY3JTPuypIclNVa53Sg6OupdAQAA6I+qClzuvlzSmwXN4yS1uPt6d98taYGkiZn5l7j7BEnnpq3TzKaZWbOZNW/durWa8irGGS4AABDD4AjrHCppY2K8VdKJZnaypDMl7aMSZ7jcfY6kOZI0duzYmkYgznABAIAYYgSuotx9maRltdped3CGCwAAxBDjU4qbJA1PjA/LtPV6BC4AABBDjMC1UtJoMxtlZkMkTZK0JMJ2ehyXFAEAQAzVfi3EfEkrJB1uZq1mNsXd2yXNkNQkaY2khe6+uvpSAQAA+qaq7uFy98kp7Y3qpV/9AAAAUGv8ax8AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuBK4Hu4AABADAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAkPPJB7vH17/eoAAAD9C4Er4cknc49ffbV+dQAAgP6FwJViz556VwAAAPoLAleK9vZ6VwAAAPoLAlcKznABAICeQuBK+N73co85wwUAAHoKgSvBPfd41qy6lVG2zZulXbvqXQUAAOgKgSth797c46VLpU2b6ldLV1papKFDpaOOqncl6CuWLpVWr653FUB8L7/cdz9p7i7deKP01FP1rqTnNDVJU6dygoDAlXD99fnjW7bUp45yLF0afra01LeOemtqkhYvLj2Pu/T66zUpp9d67TXp85/vOqA/9ZT0k5/k//GB8mzYIL39dtxtrFolvftu3G1UatGizsfOnrJ3r3TiidL555e/zJ490mGHSSNHxqkptkcflb77XWn8+PKXeestyUyaNCleXdVoaJDuuEO65Zbi09va4oSxF18M4bu3qFngMrNDzexOM7u/Vtus1ksvlZ7+85+n70C15p5/SbQcO3ZIHR3h8fbtYfkdO3q+ts2bpUsvDW/6pezZU/mHFRoapK9+Vdq5M32eyy+X/uIvpKuuqmzdHR09GzzcpWefld55p/vreP758t9wN2wIB2JJam0tb5nx46Uf/lCaPbs71dVGJfv5jh3SH/4Qr5asLVukUaOkj3ykZ9Z30UXS5Mn5z/W3v5WOPlo67rie2cYll0hDhkhPP118erl/pHzta9LFF0v/9V/p8+zaFd5Ub7qp69s13nsvvE7cpTVrQn13311eLdnlu2PPnhB20r70uqmpe/vSe+9Vdk9wsTNzu3eXfl7jxoWf992XPk8t/+h8+WVp4cLwO0we07du7Tzv5s3SwQdLo0f3zLaXL5fuuSccJ//qr0L47jXcvduDpLmS2iStKmhvkLRWUoukmQXT7i93/ccff7zXUi625IZy5v/Tnyrbzj/8g/tPftL9Ot3dZ8/Obb+jw338ePczzgjTtm93X706f/7XXnP/5Cfd58wJ41u3hmVPOsl93br85/y3f+ve2Bjm+4//cJ861X3nTvcLLnBfuLDyWk86Kaz3yCPT5+nocP/wh9332y99enOz+zvvuL/5Zq49W/Nbb6Wvu9zfZ6HRo90PPTRsO83Che6HHOL++9+XXldHh/t//meo4fDD3V94wf2NNyqr59e/Dst/4hOdpzU25teQ/f1K7k1N7nfdld8Hf/d37qecEn6vScm++s1vKquvFpYtc//Qh8J+WY4xY8Jz+e1vc22/+pX7hg3V1bFrl/tll7k/8oj7tde6z5vXvX0sTXZdmzfn2i67rOe2sWNH8dfFa6+5//u/u++zT2i/4YbOy+7a5b5lS+daJfc77wxtHR3ub7+dm2f48Pz5Xn/d/dln3a+/vvPr6+STwzzXXOP+N39T+XPetq3rZVpb3ceOdb/vvlzbFVeEZb74Rff33suff82a7vX9rl1hmY99rPj0wtefu/ttt+W2tWdPaNtvP3cz9/b24uvp6hh35ZXpv89KdXSE5+Xu3tLivmlTej2NjeF3nB3/+7/vPO/993eu/dxz3c8+u/yatmzJ7UfZdS1d2rOvyXJJava0zJQ2oZxB0mclHZcMXJIGSXpZ0qGShkh6QdKYxPReGbiyO2ThcPbZ4RfnHl4cjz8edvqFC/MPHklPP+3+rW8Vf0Nta8stlzxolXLNNe4zZuS3JQNX4UEp+yazbFkYnzat8wvyvvty47NmpYfNYu3FDhKlfOADXb+J793b+cWxfbv7N77hfsIJ7gcemF/DRRe5v/tubvzhh0NQ/N3vOq87udzzz3cdjgqXK3aQ27zZ/cwzc/OccEL6enbuLN6P73uf+yuvuC9eHA5gLS2l67n44uIHkJaWXPuzz7qPGOF++eXFtym5P/VU7vH06bn1JA+MkvuECfnb2brV/d57Q63ZN4KkBQvcjzoqPKfvf9/95ptz0zZuDK+l5ubSz3H79vDa2rat+PQDDsjvg02bwrY2biw+f3beyy4L49nQW+lB+Jln3FesyI1fd116//aE7LpefTXXdumlnbfR3Oz+s591Xj7tjTlr+/b8mp980v3RRzs/l3337bzskUeGaQsWhDe55PyHHRbm+eY3w/hdd+VCR3LYuDH3OBueC98wC4cVK8Jx4oYbwmvhRz9yP//88EdYUjmB67zz8udZtqzz9rKBcfFi96uv7rzOe+5xv+qq8PjBB93/8R9zz6Gtzf1zn3P/+tfzl/vFL9wfeCA8XrAgtM+enV/bv/5reh9s2xaGo48O71lZhfvfrl3hWFDYp8V+n7/7XQhCO3ak91fSOeeEdf3hD+n9nKxnypTSr49igSs7ng12Sc8+G34nWQ88EOb99rfdH3sst+z8+T37mixXtMAV1q2RBYHr05KaEuOXS7o8MV4ycEmaJqlZUvOIESMid02QDC9pw7x57qeeGh5feWXY4bPTHn00vBFlZdvPOqvztjZvruzgfPvtuXnXraus5uwBoNgbQvaAKOUfyAvnK9Y+d244wHzpS+GNZ8eO3EHvrrvCG/ppp4WDYltbfuAqfM7t7SEE3XRTbnpzc3hRfeELpZ/fJZek1+1e+gB+663hTNGsWeGs32uv5ZZ75ZVw5iI776c/HZ5TR0d4o8r+BZ4cSv1tcPzxXf+uksPatfn989BDIbwnn2/Wzp35B/XuDC++WLyfTj89/y/Ho47Kn37hhWH64sWhzmz7pz6Vezx1aniTOe20XNshh7gvWtS5nzo6wh8qkvuXv5xr37PH/YMfdJ80KX/7n/987vEHP5i/rm3b8s8UnHNO5+C7eLH7D37gvnx5CJOXXOI+c2YI0k88EcLc7t354WDSpLDuZPgtHP74R/clS0qHnvb28Dpav7749Oy6hg7NtRULXNnxa67JrTfbdsQR7g0N+W+kO3aEEDdiRHn7xr775p+pKtxPCkO6FP4o7Wq9yT79538Ob7rDhnX+HZc7JGss52zU6NG5ed54I329RxzRua2wH9avzz3+1a/yn1tySJ5VfOKJ/Gn/9E9hna+/Xvp5vvNO/rHSPRyvkvM0NeVC8a235tdaLHBlpxX+Ue8eXt/btxeff/r09H4u9RymTg0/P/GJcKa/0sCVnXb77SH0feYzubYzzsg9njMnf727dxfdFXpcrQPXWZLuSIx/Q9JNkg6QNDtz9uvyctZdqzNclb64ky/W5DB9ev6lBSn8ktvbw5voscd2Xuaznw1nxNzDG86pp7p/7Wvhr449e/LnnT07XE5bvry8Og85pHi7u/vgwV0vn9Y3J5xQvP2HPyyvruwZuXXrioeXcoe05/fEEyFsVrKu/fcPB5eDD06fJ3sQKzYcd1zor0ceCWeu9t3X/bnnQpCr9Hkde2w4a7V7t/stt4S2ww7LD1zZEPSDH3S//5LDhg3p08aPzz8D2VND0rJl6cE87exz4bB2bXjdnHtu/oG3p4eZM0sHrrTn6B7ejAtDxe2356Z3dIQzOMnp//Iv4Y+b7JkFKZwdefDBztv6+c8713DddSE8J9+YKh2uvz6cnT799J7pw3JCWSXDjBnFw4q7+6pV4TL+L3/Z/WN+cli3Lpzdyo4Xnh0rfA/IDl3txzt35oePYsO777rfeGP+8ys1//jx+Wf8kn+Y7NoV3n+K7a979uTvSyedFI4RW7YU307WFVfkB8Jyhgsu6Lye7PjXvx76c+/e0F5Yr+Q+alT526r2VoJy9IrA1Z11xw5czz+f+4s61pA8U1JquOQS9+9+N78tec9GTw6FlxPShsIDen8fGhqqWz55Ojs7HHpo99d3yinuX/lK+vQTTwwH1Fr0zbhxPb/O5CX3j3608/RFi8K9K9n7iboarr22vvtPsWHt2lw4+9jH0ucr1Q/lDu6lL0f1puH976/Ndr74xfzbEc47L9w/25PbuPXW/PHPfa5769m+vevAtXJluISeHe/OMWvWLPePf9z9r/+6+D6UvO2l3ME93BdXbV9mrzQUth92WM+8H82aFTVSZGrvRZcUKxliB66efNH1paHYXwkM1Q8zZ/b8OgvP+hQOgwbV/3lXMzQ1DezXYnb43veq74e2tnB5rt7PZaANPRX0N2/uOnCdf37c5+Le+Z7fcoZHHgm3JvREDd29rFzOUO/ANbjyzzV2aaWk0WY2StImSZMknRNhO+im5cvrXUH/dPXVPb/OUl93IfX978s6/XTpz/+83lXU37XXhq8uqcaJJ0r7798j5aACyX8JV43bbgtf+1HKvHk9s600P/2pNGdO5cs1NPRcDQsW9Ny6CrnHW3c5qvoeLjObL2mFpMPNrNXMprh7u6QZkpokrZG00N35fmsARW3bVu8KeodLL61u+VdekZ57rmdqQe39+Mflf19eLDNn1nf7se3eXd/tV3WGy90np7Q3SmqsZt0AAAwkF19c7wr6t3pfEeBf+wAAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAOj3+vTXQgAAAKBrBC4AANDvcYYLAACgnyNwAQCAfs+svtsncAEAgH7v5Zfru30CFwAA6PcWLarv9glcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgspoFLjM71MzuNLP7a7VNAACA3qCswGVmc82szcxWFbQ3mNlaM2sxs5ml1uHu6919SjXFAgAA9EWDy5xvnqSbJP0s22BmgyTdLOk0Sa2SVprZEkmDJF1VsPy33L2t6moBAAD6oLICl7svN7ORBc3jJLW4+3pJMrMFkia6+1WSvtSjVQIAAPRh1dzDNVTSxsR4a6atKDM7wMxmSzrWzC4vMd80M2s2s+atW7dWUR4AAEDvUO4lxaq5+39Lml7GfHMkzZGksWPHeuy6AAAAYqvmDNcmScMT48MybQAAAEioJnCtlDTazEaZ2RBJkyQt6ZmyAAAA+o9yvxZivqQVkg43s1Yzm+Lu7ZJmSGqStEbSQndfHa9UAACAvqncTylOTmlvlNTYoxUBAAD0M/xrHwAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDIaha4zOwIM5ttZveb2YW12i4AAEC9lRW4zGyumbWZ2aqC9gYzW2tmLWY2s9Q63H2Nu0+XdLakk7pfMgAAQN9S7hmueZIakg1mNkjSzZImSBojabKZjTGzo83soYLhf2WW+bKkhyU19tgzAAAA6OUGlzOTuy83s5EFzeMktbj7ekkyswWSJrr7VZK+lLKeJZKWmNnDku7tdtUAAAB9SFmBK8VQSRsT462STkyb2cxOlnSmpH1U4gyXmU2TNE2SRowYUUV5AAAAvUM1gasi7r5M0rIy5psjaY4kjR071uNWBQAAEF81n1LcJGl4YnxYpg0AAAAJ1QSulZJGm9koMxsiaZKkJT1TFgAAQP9R7tdCzJe0QtLhZtZqZlPcvV3SDElNktZIWujuq+OVCgAA0DeV+ynFySntjeIrHgAAAEriX/sAAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIzNy93jWkMrOtkl6NvJkDJb0ReRv9DX3WPfRb5eizytFn3UO/VY4+6+wQdz+o2IReHbhqwcya3X1svevoS+iz7qHfKkefVY4+6x76rXL0WWW4pAgAABAZgQsAACAyApc0p94F9EH0WffQb5WjzypHn3UP/VY5+qwCA/4eLgAAgNg4wwUAABDZgA5cZtZgZmvNrMXMZta7nt7KzDaY2Ytm9ryZNWfaPmpmvzazdZmfH6l3nfVkZnPNrM3MViXaivaRBTdk9rvfm9lx9au8vlL6bZaZbcrsb8+b2RmJaZdn+m2tmZ1en6rry8yGm9ljZvaSma02s4sy7exvKUr0GftaCjN7v5k9bWYvZPrsx5n2UWb2VKZv7jOzIZn2fTLjLZnpI+v6BHqhARu4zGyQpJslTZA0RtJkMxtT36p6tVPc/ZjER4BnSlrq7qMlLc2MD2TzJDUUtKX10QRJozPDNEm31qjG3mieOvebJF2X2d+OcfdGScq8PidJOjKzzC2Z1/FA0y7pe+4+RtJ4Sd/J9A37W7q0PpPY19LsknSqu39K0jGSGsxsvKSfKvTZYZLekjQlM/8USW9l2q/LzIeEARu4JI2T1OLu6919t6QFkibWuaa+ZKKkuzOP75b0lfqVUn/uvlzSmwXNaX00UdLPPHhS0v5m9pc1KbSXSem3NBMlLXD3Xe7+iqQWhdfxgOLuW9z92czjdyStkTRU7G+pSvRZmgG/r2X2l3czo+/LDC7pVEn3Z9oL97Ps/ne/pP9rZlabavuGgRy4hkramBhvVekX4EDmkh41s2fMbFqm7WB335J5/EdJB9entF4trY/Y97o2I3P5a27icjX9ViBz2eZYSU+J/a0sBX0msa+lMrNBZva8pDZJv5b0sqQ/uXt7ZpZkv/xPn2Wmvy3pgJoW3MsN5MCF8v1vdz9O4dLEd8zss8mJHj7qysddS6CPKnKrpI8rXMbYIunaulbTS5nZhyQ9IOlid9+WnMb+VlyRPmNfK8Hd97r7MZKGKZzh+2R9K+rbBnLg2iRpeGJ8WKYNBdx9U+Znm6QHFV54r2cvS2R+ttWvwl4rrY/Y90pw99czB/oOSbcrdymHfssws/cpBIdfuPuiTDP7WwnF+ox9rTzu/idJj0n6tMIl6cGZScl++Z8+y0zfT9J/17bS3m0gB66VkkZnPnExROEGySV1rqnXMbN9zezD2ceSviBplUJffTMz2zcl/bI+FfZqaX20RNJ5mU+PjZf0duJS0IBXcH/RVxX2Nyn026TMp6FGKdwE/nSt66u3zH0xd0pa4+7/LzGJ/S1FWp+xr6Uzs4PMbP/M4w9IOk3h3rfHJJ2Vma1wP8vuf2dJ+o3zRZ95Bnc9S//k7u1mNkNSk6RBkua6++o6l9UbHSzpwcy9j4Ml3evuj5jZSkkLzWyKpFclnV3HGuvOzOZLOlnSgWbWKulHkq5W8T5qlHSGwo24OyRdUPOCe4mUfjvZzI5RuCS2QdK3JcndV5vZQkkvKXzq7DvuvrcOZdfbSZK+IenFzP01knSF2N9KSeuzyexrqf5S0t2ZT2f+maSF7v6Qmb0kaYGZXSnpOYUgq8zPe8ysReGDMJPqUXRvxjfNAwAARDaQLykCAADUBIELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiOz/AwFTp6Fc5kCRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.0015231682473469295763529 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "frequency = 3.\n", + "phase_lag = np.pi / 3\n", + "\n", + "# long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 100 * np.sin(2.*np.pi*long_times*5 + np.pi/6) + 1000\n", + "# long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 80 * np.sin(2.*np.pi*long_times*5) + 900\n", + "\n", + "long_signal_1 = (300 * np.sin(2.*np.pi*long_times*frequency) + 1000) * dt\n", + "long_signal_2 = (200 * np.sin(2.*np.pi*long_times*frequency - phase_lag) + 900) * dt\n", + "\n", + "long_lc1 = Lightcurve(long_times, np.random.normal(long_signal_1, 0.03))\n", + "long_lc2 = Lightcurve(long_times, np.random.normal(long_signal_2, 0.03))\n", + "\n", + "# Note: the second light curve is what we use as a reference.\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc2, long_lc1, 53.)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,4)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "plt.show()\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(avg_cs.freq, avg_cs.power, lw=2, color='blue')\n", + "plt.semilogy()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `time_lag` method returns an `np.ndarray` with the time lag in seconds per positive Fourier frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "freq_lags, freq_lags_err = avg_cs.time_lag()\n", + "freq_plags, freq_plags_err = avg_cs.phase_lag()\n", + "\n", + "# Expected time lag, given the input time lag\n", + "time_lag = phase_lag / (2. * np.pi * avg_cs.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And this is a plot of the lag-frequency spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFPCAYAAADtO6y7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTqklEQVR4nO3de5wbdbn48c+z993udksvtJTKtghyLV1ELkWhRa0HUY8iKuJygKMCinJTj+IP1KKgeEPrUYSiHoRW6AG8C0e80IJQwFYqQrnTFkovtNt2u9u97z6/PybpZrMzyUwySSbJ83698koymXznO5NJ5sn3KqqKMcYYY0y+VBQ6A8YYY4wpLxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5FVRBB8icpGIrBORXhFZLSInpVj3/SJyn4hsE5FOEXlURP7dZb0zRGStiPTF7k/P7V4YY4wxBoog+BCRM4FFwNeBo4GHgXtF5ACPt8wD/gq8K7b+PcCvEgMWEZkLLAOWAq2x+ztF5Pgc7YYxxhhjYiTqI5yKyKPAE6p6fsKy54G7VPWLPtN4DHhQVT8be74MmKiqCxLW+TOwTVXPCnUHjDHGGDNKVaEzkIqI1ADHAN9Jeuk+4MQASTUBOxOezwX+O2mdPwKfdsnDco80D8IJgC4LkA9jjDGmaInI9wGyvfZFOvgAJgOVwNak5VuBt/tJQEQ+BcwAbktYPM0jzWkB8jYFOE9EWgO8xxhjjClmrUAXcFk2iUQ9+MiKiJwBfBs4U1U3ZJKGqs73SHtjc3Pz/q2trfOyyGLoVqyAeVnmKIw0THBrN+0G4PDp4wuck/yw8yy9UjpG2e5LKR2LfMjV8VqzZg0dHR1d2aYT9eBjOzAETE1aPhXYkuqNIvIB4FbgHFX9XdLLWzJJM8kLra2t+y9fvjzAW3JPBLLNUhhpmODOvGklAMsunFvgnOSHnWfpldIxynZfSulY5EOujtf8+fNZsWLFC9mmE+neLqraD6wGFiS9tACn14srEfkQTjXLeap6l8sqK4OmaYwxxphwRL3kA+B64LZYj5WHgE8A04EbAUTkVgBVPSf2/MM4gcfngAdEJN6Oo19Vd8QeL4q9dgXwa+B04BTgLfnYIWOMMaacRT74UNVlIjIJuArYD3gSOC2hDUfyeB+fwNmv78ducSuA+bE0H44FKdcAXwVexGkX8mhu9sIYY4wxcZEPPgBU9QbgBo/X5qd6niLNuwC3KhljjDE5NjAwwMaNG+nt7fW1/r33wtNP5zhTJSSM41VXV8eMGTOorq4OJ1MJiiL4MMYYU1o2btxIU1MTM2fORETSrr9nDxx2WB4yViKyPV6qSnt7Oxs3bmTWrFnhZSwm0g1OjTHGFK+FC71f6+3tZdKkSb4CD5N/IsKkSZN8l0wFZcGHMcaYnLj66tSvW+ARbbn8fCz4KIBU/waMMcbkR2NjY+hprl+/nl/84he+Xlu1ahWXXHJJ6HlYuHAht92WPCtJtFjwUQDp/g0YY4wpTkGCjze96U384Ac/yFfWIsWCjxJgJSnGGJO55cuXM3/+fD7wgQ9w6KGH0tbWRnzG95kzZ/L5z3+e2bNnc9xxx/HCC87gnueddx533TXSYTJeinLFFVfw4IMP0trayve+971R20l+bfny5bz73e8GnNKKc889l5NOOomWlhZ++ctf7t3uqaeeysDAAACrV69m3rx5HHPMMfzbv/0bmzdvTrlvN998M8ceeyxz5szhjDPOoLu7G4AXX3yRE044gdmzZ3PVVVflpBQoFevtUgKuvtoCEGNM8Zp5xR/8rRhwcIT1173L97qPP/44Tz31FNOnT+fNb34zDz30EG95izPuZHNzM//617+49dZbueyyy/j973/vmc51113Hd77zHdd1kl9Lnp7jxRdf5P7772ft2rXMnTuXu+++m29961ucfvrp/OEPf+Bd73oXF198Mb/5zW+YMmUKy5Yt48orr+RnP/uZZ37e//73c/755wNw1VVX8dOf/pSLL76YSy+9lEsvvZSzzjqLG2+80fdxCouVfBQBCyyMMSa3jjvuOGbMmEFFRQWtra2sX79+72tnnXXW3vuVK1fmLA/vfOc7qa6uZvbs2QwNDXHqqacCMHv2bNavX8+zzz7Lk08+yYIFC2htbeWaa65h48aNKdN88sknOemkk5g9ezZLly7lqaeeAmDlypV88IMfBOAjH/lIzvbJi5V8FIFiLtlYuLB4826MyQ8/JRSrVsGb3pS7PNTW1u59XFlZyeDg4N7nib0+4o+rqqoYHh4GYHh4mP7+/tDyUFFRQXV19d5tVVRUMDg4iKpyxBFHBAqAzjvvPH79618zZ84cbrnlljGlLYViJR8mp6xxrTGm2C1btmzv/dy5zqzTM2fOZPXq1QD89re/3dsmo6mpic7OTtd0Ur3mxyGHHMK2bdv2Bh8DAwN7SzK8dHZ2st9++zEwMMDSpUv3Lj/hhBO4++67AbjjjjsyzlOmLPgoIlaCYIzJJfuNcbdz506OOuooFi1atLcR6fnnn8+KFSuYM2cOK1euZNy4cQAcddRRVFZWMmfOnDENTlO95kdNTQ133XUXX/jCF5gzZw6tra08/HDqydi/9rWvcfzxx/PmN7+ZQw89dO/y73//+1x//fUcddRRvPDCCzQ3NwfOTzYk3qLXBCMiy+fNmzcvkyIsEQhy2OPre70vcXnQtMPIX77SKnVn3uT8m1l24dwC5yQ/7NxIL9/HKOztpfptevrppzkswPjfua528TJz5kxWrVrF5MmT87/xLKQ7Xt3d3dTX1yMi3HHHHdx+++385je/GbNe8uc0f/58VqxYscLvPGperM2HMcYYU2ZWr17Npz/9aVSVCRMmpOwxkwsWfOSRNb40xpjiktjrpZScdNJJ/POf/yzY9q3NRx5Z40tjjDHGgg9jjDEFYm0Ooy2Xn48FH8YYY/Kurq6O9vZ2C0AiSlVpb2+nrq4uJ+lbmw+TFWvHYozJxIwZM9i4cSPbtm3ztf727fD00znOVAkJ43jV1dUxY8aMcDKUxIIPk5ViHn3VGFM41dXVzJo1y/f6hx9uXbODiPrxsmoXY4wxxuSVBR/GGGOMySsLPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMUXGepiZYmfBhzHGFBmbqsEUOws+jDHGGJNXFnwYY4wxJq8s+DDGGGNMXlnwYYwxxpi8suDDFBVr5W+MMcXPgg9TVKyVvzHGFD8LPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5JUFH8YYY4zJKws+SsTSpTBzpvN45kznuTHGGBNFVYXOgAnHBRdAd7fzeMMG5zlAW1vh8mSMMca4sZKPEhEPPBKfX3llYfJijDHGpGLBRwl7+eVC58AYY4wZqyiCDxG5SETWiUiviKwWkZNSrLufiPxCRJ4RkSERucVlnfNERF1udTndkTw74IBC58AYY4wZK/LBh4icCSwCvg4cDTwM3CsiXpfWWmA7cB3waIqku4H9Em+q2htWvvOtoWHs82uvLUxejDHGmFQiH3wAnwFuUdWbVfVpVb0Y2Ax80m1lVV2vqpeo6i3AjhTpqqpuSbyFn/X8WbwYWlqcxy0tznNrbGqMMSaKIt3bRURqgGOA7yS9dB9wYpbJ14vIBqASWAN8SVUfd8nDco/3t2a5/VC1tTk3EVi/vtC5McYYY7xFveRjMk5wsDVp+VZgWhbpPgt8FHgvcBbQCzwkIgdnkaYxxhhjfIh0yUeuqOpKYGX8uYg8jFP6cTFwSdK6893SiJWIzMtVHo0xxphSFfWSj+3AEDA1aflUILQ2Gqo6BKwCrOTDGGOMybFIBx+q2g+sBhYkvbQAp9dLKEREgKNwGrIaY4wxJoeKodrleuA2EXkMeAj4BDAduBFARG4FUNVz4m8QkdbYw/HAcOx5v6qujb3+FeAR4PnYOpfgBB+uPWiMMcYYE57IBx+qukxEJgFX4YzH8SRwmqpuiK3iNt5Hcq+V9wAbgJmx5xOAxTiNVjti65+sqo+FmvkcW7p0ZAj1mTNtXA9jjDHFIfLBB4Cq3gDc4PHafJdlkia9y4HLQ8lcgSxd6j2ZnDHGGBNlkW7zYbxdeaX7ZHLGGGNM1FnwUaRs0jhjjDHFyoKPImWTxhljjClWFnwUqWuvdZ9MzhhjjIk6Cz6KxMyZI/dLlzrzuLhNJmeMMcZEXVH0dilnS5c69xs2jNzHe7W4TSZ39tl5z6IxxhgTiJV8RFx8HI9E3d3uy6Nk4cJC58AYY0xUWfARcV69WqLe2+XqqwudA2OMMVFlwUfEefVqyUVvl6VLx7YtMaZUWGmcMdFhwUeeBb24uw2Z3tAQ/lDq8RFTk9uWWABiSoWVxhkTHRZ85MHSpTB5svM46MW9rc25T+7VEl8eFq8RU7NpW2KlKMYYY9xYb5ccS56DJVH84u4nkFi/fnSvlrCF2bYkXQ8dY4wx5c1KPnLMrUQhUVQajobZtqRYe+gYY4zJDws+cixdcBGVYdK9RkzNpG1JLnroWGNYY4wpHRZ85Fiq4CIXDUcz5TViaibVJGH30LHGsMYYU1os+MgxtxIFgEmTctNwNIjkrodtbSNtStavzzxvYffQyUVjWGOMMYVjwUeOuZUoAGzfXvjGl7nqeujVQ+f55zNLr1gHWjPGGOPOgo88SC5RKBfJpSiZBjv5HGjNGGNM7lnwYSIvzMawxkSdjcRqyoEFHybywmwMa0zU2UisphxY8GGKQliNYY0pNVZSYoqRBR/GGFPE0pWUWHBiosiCD2OMKWFWjWOiyIIPY4wxxuSVBR8GsKJZY8Lg53tk3zVjLPgwMVY0a0z2/HyP7LtmjAUfxhhjjMkzCz5MRmyWWWOMMZmqKnQGTPGJzzIbn+wtPsss2Pgbxhhj0vNV8iEitSIyX0SuEJEfiMjNIvINETlPRA7MdSbLVXLpQlTYLLPGGGOykbLkQ0QOAi4D2oBmYBjoAHqAiUAdoCKyGrgBuFVVh3OZ4XLhVroQX17o0gWbZdYYY0w2PEs+RORHwFrgWOCrsfs6VZ2kqjNUtQHYD3g/sAa4HnhKRI7Pea7LgFvpQnx5oYU9y6x1PTTGmPKSqtplOnCcqh6vqt9T1dWqOpi4gqpuVdXfqOoFOIHIj4E5Ocxv2Yhy6ULYs8xa10NjjCkvntUuqnp6kIRUtQ/4QdY5MoBTihCvakleXmjxap8rr3Ty2NLiBB6Frg4yxhhTHKyrbUS5lS7El0eBzTJrjDEmU357u7xXRP4z4XmLiKwUkU4RuUtEGnOXxfLU1gaLFzulCjBybxd5Y/yLSnuiqOTDmKjwW/JxFTAl4fn1wAxgMXAysDDcbBkYW7pgjAkmKu2JwsqHDe7nnwV8mcnXcfMbfLweeAJAROqB04DPqOpngf8HBGofYtKzL44xJlG8+328LVji4H5mrKgEnsUg8XqTr+PmN/iowxnbA+BEnIaq98WeP4vTM8aEKNMT4CtfCTcfxcwCOFNKvAb3MyZbhQjU/AYf64G3xB6/F1itqh2x5/viDDxmIsAuuCPsn48pJVHoZm9MWPwGHzcBC0VkFXAR8NOE1+biDEZmMmDBgjHGjyh0szcmLL6CD1VdBJwHrAQ+qqo3J7zcBPxP+FkrD+Xw79wayRmTPa/B/Uqd/X6UJt+z2qrqUmDMx66qF4aaI1NybAZcY7KXPLjfpEnO8+5u56JcigP92QzapSvV3C51mSSY6fvSpHmRiKwTkV4RWS0iJ6VYdz8R+YWIPCMiQyJyi8d6Z4jIWhHpi91bj50csRlwTSGV0j/nxO73PT3Q3u48jl+Ui3nf3NgM2qUrVbXLehG5XEQm+ElIRE4Ukd8C/xVKzkbSPRNYBHwdOBp4GLhXRLxqQGuB7cB1wKMeac4FluGU5LTG7u+0SfGyl/xD78Uaz5l8ceueWgoX6WK9KAdp5xblOa5MdlIFHxcBFwKbReRXIvIZEXmbiBwlIoeIyAki8hER+b6IvAAsBzbjDDwWps8At6jqzar6tKpeHNvOJ91WVtX1qnqJqt4C7PBI8zLgflW9NpbmtbH8XxZy3suK2zgEXrwaz1kDXBO2Yr1IZ6IYLspB2rmFPYO2iQ7P4ENVfwkcAZyNU5pwDfAn4HGc3i0PAUtwut7eBRyqqheq6tawMiciNcAxjIwpEncfzngjmZrrkuYf3dIUkeVuN5wSE5PArYgUQGT081Qz4JZDA1xTeMVwkc5EqV2Uw55B20RHyganqjoE3A3cHQsEWnEGFKsD2oFnVPWVHOZvMlAJJAc0W4G3Z5HuNI80p2WRZtnz+kFXdeamsRlwTVSUwkW6oWF0sF+KF2WbQbt0Bent0g88lsO8RJKqzndbHiv9mJfXzETcAQe4V7W0tDiN5ERsjhqTf6V6kV68uDwuym1tzs1+P0qL30HGCmU7MARMTVo+FdiSRbpbcpBm2XMrIo0vN6ZQkmeHXry4NC7SyRNP+tkna1NlvOS7V1ikg49YactqYEHSSwtwer1kamUO0ix7bW1jf+jjy43xK+wLZCYX6VJlbaqMl3z3Cot08BFzPXCeiHxcRA4TkUU47U5uBBCRW0Xk1sQ3iEiriLQC44GJseeHJ6yyCHiriFwhIoeKyBeBU4Dv52F/QhelyeSSf+iNCapULpBWymCKSb57hflu81EoqrpMRCYBVwH7AU8Cp6lqvHWBW9Oxx5OevwfYAMyMpfmwiHwYpwfPV4EXgTNV1XVckKizHzljoufqq+27aYpbLnuFRT74AFDVG4AbPF6b77JMXFZNXucunC7CxhhjjEmSy15hxVDtYowxxhS1qJeC5Xs8FV/Bh4j8LMXtJyLy3dhop6HP6xJlxdqmoZTmujDGmGIQ9bZM+e4V5rfa5RSgGZgADOJ0gZ0ce/+u2DqXAy+KyCmqujHcbEZTquHDoyrVLJHGGGPKU77HU/Fb7fIRoAM4A6hT1fgopx8EduM06DwutuwbOcinCYnXLJFRllhcGaWePcaEyUokTTnxG3x8D/imqv5KVYcBVHVYVe8Gvgl8T1VX4QQeyeNnmAgpxjktEosro15vWi7scxgt28DBbVJGK5E0pcxv8DEHpzuqmxeBI2OP1wL7ZJsp4y6Mf/2lMKeFG7sY5lfU66/zKYzAoRhLJE35WboUHnkEYF7WU4v4DT62AB/weO2DjEzSNh7YmW2mjLswLrBes0QWO7sYmkIJI3AoxhLJqLLqq9yIB9l9feGk5zf4WAScLyK/E5FzReSdsfvfAx/DqZYBOImxA3yZCHEbAn3x4sLmyZhiFkbgUKolkvnmVQplAUj23ILsbPgKPlT1+8AFONUv/wP8IXZ/FHC+qv4gtuqPgPPCy57JBZvrwpSKKFS3pQoc/P7zLtUSyXzzKoXKdpjwKJxnhRZ26ZzvQcZU9SdAS+x2Qvyxqv40YZ31qrrVIwljjAmVV3VbPovevWZzBv/tP6xEMhxeF8hsL5xWrRt+6VygEU7V8YqqPha713CzU1wmv++9/O+qV9jeFVIlmDERFsa/v3z8g8x3z5HkwCGZ36JqK5HMntcF0qq1spcqyM6EBIkfRGQOcAjOeB6jqOqtY99RukRkecsXfj/PeQxzZkzgbYfuy9sOm8ph+zUhMnZ6GRFQHblPXOa1bqp1st8H920E2V66/Iexr37yk+n7ouTMm1YCsOzCuQXOibswzsmg50OQ9OJmzvQeADDX54PL137MttPtX9i/D5muGwa3bYdx7nhJHkQRnAtmtqN1hnFc8v17lOn3KNX7li6Fj31sPn19oLo87RxqqfgdXn2CiDwE/AO4HbgldvufhFvZaf/jn5h/yBSqKytY88ouvvun5zjtBw/y5uv+ylW//hf3P/MavQNDhc6mYfQ/bqu/LaxcV4lYz5Hy5VV9ZaVI4WhrgxNOAFixItu0fJV8iMgNwFtxerY8CJyOM+LpR4G5wIdVdXW2mSkmIrIc5s1TXU53/yB/e347f33mNf7yzGts6xyphqmtquC4WROZ94YpXHT6FPq2NVJRIVby4SMf6baRbp0w9i+fyqXko6Eh9T/TYi/5cNu/7m4r+chHyUc26+c6rVIo+QCYP38+K1asWOE2o3wQftt8/BvwdeCR2PONqrpcVc8B/gxcmk0mil1DTRXvOGIa151xFI9+8W389tNv5pK3HcyR+4+nb3CYB5/fzjV/eJrpH3+AE6/7KxNPfYI/PLGZju6BQmfdmLzLRW+ERIXuOWINR00xy9cUFn4nltsPeElVh0SkF2hKeO2XwB2h56xIVVQIR82YwFEzJvCZBW9gW2cff3thGw88t50Hn9/G5o5emua8wqd+8QoVAtPOnsD3/jSFeYdMYc6MCVRWZFWNZkxRCnOSxngJypVXOum2tDgBydlnh7eNdNtPnqArl9u2+Y5MmPJVLe03+NiCM6MtwAacqpblsecHhZul0jKlqZbTj57B6UfPYHhYWbt5N28+Yxvv/Og2Vm/YSe3+u1j0l10s+svzNNVVccKBkzjx9ZOonjwZ1UbXhqvGFJOFC/PfzibfAUAhWRsmU4z8Vrv8DWdsD4DbgK+IyE0i8iPg28Afc5G5UlNRIRy5fzO7Hz2IOy6Yy+Nffgev3fUmzpnbwsxJDXT2DvKntVu5+ndrmf6xBzj22j9z8e2P0zjnZTa076HMezabCMiksWjyGAk2mFb+2ZDjJmr8lnxcDUyPPf42MAk4E2gAfgtcHH7WSl9jbRU9L07lq++dCsDGnd08/GI7K19s584HtrOdPn73z01MOnUT874N+0+o58TXT+LEgyYx98DJTGse0+M50qx4uPgldmNMHD8jSG+CxYsLVyXiVyFKa3IpjM8tlVI7Xib3Ao3zYUYk9nYJ/l4/rdmVF17bw8MvbOcz32pn/6Pb2ZXUQPWAiQ0cO3Mix83ah+NmTWLmpIZA1TT57u0SNB/ptgHOP7jkC5lbrwnr7ZI9r1OrpWWkasPrfek+h7DPv3TbzjbdoNsLu3dK0H1x4/a5hdUTxe17efbZ1tulGHq7pBNWbxe/JR8m74TXT2nk9VMaOefXM9l6t/L0lt08/EI7D724nVXrd/Lyjm5e3tHN3f/YCMDkxlonEJk5kWNnTeTQaeML3oA1l6UdyQMK5eIfnUmv1MfVCOtfffyCDE7VR2KgXAi5+txSfS+NifMs+RCRLwdIR1X1a+FkqTjkvuQj9TqDQ8M8s6WTx9bt4LF1O/j7+h207+kftU5TXRVvatmHY2dN5LiZE5k9o5naqsq02wiz5CNoGkFKPrzGc4j/o7OSj3CVa8lHGO/zM75JkG1HueQj3TgrVvKRH8Vc8rEwQDoKlFXwkY0wSgOqKis4cv9mjty/mY++ZRaqykvb9ziByLodPLZ+Bxt39nD/s9u4/9ltgDPgWevrJvDGln04+nUTqGjYB6jNPjMhyORfYa4mkTLe3C6g115buPwUE6/xTfJR+pHPz82+f8YPz94uqloR4FbplY4ZKxcNs0ScapqzjjuA689s5W9feCsPX/FWFn24lbbjD+DgfRvpGxzm0XU7+PHyF7ngttW87uI/c9K3/sqldzxO0xvX8cTGXQwMDYefOR/cJgJL1yLfJpHKj8SeEvX1MGmS8zjsoavLsUdGvi7U+RxyPOzvX64asloD2cKyBqcZyqbaZXQ6+Rtefceefv6xYSf/eHknj7+8i4ee2UVFzei5Z2qrKuhY18ylbftw9AETeOMB+7DveO9eNfkoFvZKK90kUlbtkj2vY5w4XHg6fqta/FZLeKUdZNuZ5jno+5YsGWl46SZd1Uc+qjUzTdfrfenOmUyrT8Kudkl8PV27Hqt2GRFWtYsFHxkqxuBjzDYqhnlqYxf/eHknl31tJ0edsouXtu8Zs97+E+ppPWACc2Y0M3v/CRy5/3ia6qp95z9tPjyCDxEYHrbeLoUUxjwpfoMPN0HakwTZdqZ5Dvq+5IAqUT7bfOQz+IBwe7vkI/jI1XEJO41cba8QwYffQcZMKdIKDp8+nrNPaKH9nlb++rn5PP6lBWy981gufutBvOWgyTTWVvHqrh7+8MRmvn7PM5x18yMcdfV9vO27y7l82RqajlnHqvU76OkPf/ZeP8W3bW0jF6f16+H558uz+N6P+D+7IMXNha6/L/T2s9Hc7B14lPpsq8nfy1LdTz/s98idlXxkqCRKPnz8Ix0aVl54rYvHX97Jv17t4F+vdvD05t0MDI3OUIXAG6Y2MXv/Zo6a0czHz5jA7pebRvWuSZUPtyL3c8+Fe+5xL9Xw2he3tOKvJf8DC1u2XTJzXfKRyT9IK/nI/H0VFd7vyzbP+Sj5CHI+B/kdK6eSj3RVw7kU9ZIPCz4yVC7Bh5u+wSGe3dLJExs7uPTqDo47tYPntnYyNDz6TdWVwhumNnHE9PEcvt94jti/mUOnNe2tsknMR2LdeEsLnHYa/Pzn/r+0iT9QqQRtrxBEtp9TFIMPa/OR+fsyDdyiEnyEcfGKQvDhFUTlI/hINxxALlnwUaLKOfhwS6Onf4i1m3fzr427eOLVDu64r4PaKV2u6cyc1MDh08dzxPRmDt9vPAuOHc/A7lpEZG96Qb+0foOPOAs+/L8vVf19Mrcfer/BR3IA6qe7dZSDj0wDNws+3NMI+335CD68Sr9EnPZsuVRSwYeIHAWcjDO3y02qukVEDgK2qmpnNhkpNhZ8pF5XBDp7B1m7aTdrN3Xw1KbdrN28m+e2do6psgGY3FjDYfuN5/e3NfPzReP5wNvGM7CjAbRiTLpuX9p8Bx+JF9lUjV6DiGrwkfz+5Mde66R7Xy7PP7fXM61GyCY/QQK3INu24CP791nJR2br5jX4EJFaYAnwfkAABY5V1X+IyC+B51T1imwyUmws+Ei9rtfy/sFhXniti7Wbd/PUpg7WbtrNyqd3U1E3OGZdHaygf3sjA9uaGNjeRP+2JqbWjmfdWqeUxG17Iql7GOxNO8X++blIxbcXZp1uqQUfiRfe+Ngg7e3uF2GvtLPtApnLfQ2yvbADAAs+sn9fPoIPa/PhzW9vl2uBtwP/AUzFCUDi7gX+LZtMmPJRU+X0sHnydzM4aPcRPPqNubyy6B3wu1P4yAHHsOuhg3n7YfsyoboeqRqmdtpuGme/yj6nPMPUD/0d3vsXWr/6Jz5040q+9OsnWfLIBlat34HUjEy6lzigUnJJiJ/p25OngE/lyiu9R66MguQLd75a3cd/dOP/+trbnRsEm+sjyGdhjB/57H3S1pbfAd6Kid+Sj1eBr6vqj0SkEhgA3hQr+Xg7cKeq7pPjvEaKlXykXtfPPwm3BoaJ9eE/vXWAr/2gk/bBTiYd2MnMozvZOdxJR8+Aa5rTm+t44R9NXP7RJg6d1sSZpzax+DuNLPxSZcbF3unWCbNONxclH4klNMnT1gf9BxbkH3mqxpaJsq2CsZKPYHkq95KPMNrhZCpXv+NhbK8QJR9+Z7WdBDzt8VoFUZkgxBQVtxKDRB87p5qPnTMRkYl0rnGWqSqvdfbxzJZOnt2ym2e2dPLc1k6eWN/Fpo5eGl7fy00rnLlspv8nXL0WXndRPd2PNXHBRxupntJIzfRGOnoaaa4f3esmHbcqgAMOcL/Ijh8fKOmccyuJyeXcIsU8PkcqYc1wawrDq6SyXBVypmW/wcc6YC7wV5fXjgOeDS1HpiSEMXmeGxFh6vg6po6vY94bpowsr1Be2LqHo97SyTU/7OTZLZ387oFO6qZ088qOHhoO6mHxA68BsN9/wJyrobGqltkHNHLQvqNvTiwtY7Z99dVjLzzXXuv+T6qjY+R5oS9YS5d6l0JkGiSk+3y9grJi53YOmMIK8v0q1aA4iPjxSi4FSqwOzUcA4rfa5YvA/wM+AdwNdAPHABOAu4CFqvrfuctm9Fi1S3Z5S26LkSg5vSDVIMn70TcwzIb2PbSe3EXDtC5o7qJ6UhdVE7uoqHavFxnureKNB48EI7Mmj+PAyeN4w/4N6GDlmDwFaViZSq6qXVI1wA3S6j7I5+BWvJ0ouag7KtUu8R/msPNj1S7pq0/SjccR9Fi4fZZhjL2SqahUu6SrGk33mxBWtYvf4KMSWAp8COjD+WvYA9QBd6hq2TWfKeXgI4yRDf28L12bjyDb8Ao+Eh+PplQ197D/YV1c+c0uXnitixe2OfdebUp0GCbW1rPz5UZ2vzqO8TKO884Yx8c+NI7pE+qpqpS0o6u2tY0EKy+/7JQQxJeHGXwkBkRe/Lb5cPsR95JpUBaV4MPPeWTBh//8BAk+0i3P9FhYmw/35Zm2V8tr8DGSKTkJp2fLvkA78H+quiKbDBSrUg4+0kkMTrIJPtwGlXIrJchN8DGyPP5Fcy6Wyivb+nndEV285+xOJs/aw7rtzm39tm7Eo39YTWUFPdsa6Ns+joEd4xjcOY6BHY0M7BjHcHcNIHuHjE8euRWci/NB//4cLce3Zx18nHEG/N//pa/LXrLEX/FqkAZ/buv4uZAHvdj7HVslm+DD7/npZ3sWfEQj+IDsx17JVNSCj6Io+TBjlXPwEUbeglxschl8xL9ofvrjS+UwVRO6qZ64h+qJXVTts4fqiXuom7IH6vs88zbcV8XgrgYGdjUwuKuBwZ0NDO4a5zzeXcfIQGoay5MEbvi1cCEcfHD60o7k/U5OI5Nib7d1vZZl+jh5UDe/YydkE3z4LZnzsz0LPqITfKTKW9A0goha8BF0DJL4d7BQJR8C7IdT3TKKqr6UTUaKjQUf2eUtyMXGzzb81NWnmjvEz7+AVKUnu3sGOfL4PWzrcwKSeGBSPbHLdQC1OB0SBnfX7w1KBmJByVAsWDlgetWY6poNG6CyEoaGRldnBPks3Eo9Mv3xT5dGGMFH4rIg/9iyCT68WPDhPz8WfISbRhjbS1weZHTm+PvyGnyIyCTgR8DpePSQUdX005eWEAs+sstbkIuNn22kK0oVST13SKr6z9tuS12ikKr0BJSKugGq9ummasIep+RkQjdVE7qdZU29KfdrsKt2byCyt9Skw7kNdbn3ykmlpcXZjzB//NOlEXbwEaSu2oIPCz4s+Ei/PMh3O6zgw29X258CpwA/BJ4B+rPZqDFhStVlLFFbm3MTGfsP2atr6MSJqXttVFc7QUw8fRgJVJwvqzDcW0P/5hr6N08Y836pGqKqORaM7A1K9jgBSnMPVY19VDX2UTtj55j36mAFg7vrGNzdwGBHPYMd9Qx1xB+PDk7ipT7r16e+sMYVuntwKl6f1QEH5D8vxpjM+A0+TgEuVdVbcpgXTyJyEfBfOFU+TwGXqeqDKdafB1wPHAFsAr6lqjcmvL4Q+ErS27aq6rSQs27yIIyBg7zG60iVVrwUIbGYMh7g+G2DoYOVDLQ3MdDeNPZFUSobe53Skn32jAQnzT1Uje+hsrGP6ondVE90z6AOCYMd9VT3N/Cmw+r582/q+dXj9dTu38Dmjnr2baqjssI9EnEbzyJXY7cE5fVZxYPARNnk2avNhzEme36Djx3A1lxmxIuInAksAi4C/ha7v1dEDlfVMUPGiMgs4B7gZ8DZwFuAG0Rkm6renbDqs8D8hOdDudmD0haFC1I2AwfF/+Enl1rEq2X+4z+835uqFCF+4W5rc+99Eu/5cs89iaUkSYmoMNRZz1BnPX2vTBqzDakaonJ8j1Ny0twTu40NTqCbVTthwslw+TKYdjbM/QZUVwr7NdczfUId05vrmXBSHUseqWf/CfVUT67jJ7fWc82XqwDZO/ph2NxGWHRbnsjrs/JqJBdUfHv19c4tuXtwKlH4PpjyFeUSy2R+23x8BpgHvE/z3D1GRB4FnlDV8xOWPQ/cpapfdFn/m8D7VfXghGU/AY5Q1bmx5wuBD6jqkVnka7mfNh+ZzsqZrj4yjJMs7PrdMLadSZsPPwMH+Wlf4Ja3dGn7PRZeY3skvn7BJb1073Bm7M30+Mbz09ICX/naEBdc1sOfHu5m484eLr6ih7YLnMcbd/awvcu7h07ccF8Vg511DO2uh5463n1KPaeeXMf0CfXs1+zc11VXpmy4lurYe5UuuJUyBGkkmwmv+W+8BkMLIox2F5l2cbc2H+XT5iPT9kKFaPPhu7eLiHwHeBfwZyC5AlpVNfSYX0RqcEZTPUtV70xY/iPgSFWd5/KeB4B/qeqnEpZ9EPgF0KCqA7Hg4/PALpxB0x4F/l+QHjt+g49cfTFyGQAEeV/Y284k+PAzcFC67Xn9sKdKO17tkq6VuF/xQcb+vXFuUruRkXXiz916uwQZvAugp3+ITR09bN7Vy6ZdPVxweQ8XXtbLpo4e/vpID5VNvVTUpC8QbKisoWNzHQMd9QzudgKVyr46PntRPWefUcvMqXWuI8P6aXuSKIzeLKkEDWKDCCMACOP7GuTPkAUf/rfhhwUfo/mqdhGR04BP4YxseojLKsrYNhRhmAxUMrbKZyvwdo/3TMMJkJLXr4qltxkn2DgPp/HsvsBVwMMicoSqtie+0QkyXLX62YEoK5UiYq9i+HRF5Im85uxwS/u00+DHPx65UIU9J0K83QikLjFJvJAkPn7+eX/bqa+p5PVTGnnkvkauvBI6NsCyjc42lvwEQKmoHXSqdsY7wUhVcw/nfqKHTR29bO7oYUtHL91D/VTv20/1vrtHpX/zS3Dzt6Hlc9D61Wqmja9j3w/W8fm7apk2vo7GOXUMdTm3wc66vYOxecn1vBzlMO9HsRTJm9Lnt9rlGeA1nADkGVV1H386ZCIyHXgVmKeqDyQs/zLQpqpjAiEReQ5YoqpfTVh2MrACmK6qm13e0wi8BFynqtcnvbbcI3utMK+5mEs+Mk0vaiUfftL1KtlItz2392U6MmA6uZrbJdVxTFWy4yZ5H4eHlZrmPicwGd9DZVMPVeN7nYClsZcDj+hjY3svUpn+A9QhcQKRrlonKOmM3WLLpo2vY+3qOhpqRv4zWclHsG2HmU8/24hyyUeQaiwr+ShQyQdwAHCJqv4rm41lYDtOQ9CpScunAls83rPFY/3BWHpjqGqXiDwFHOzy2ny398SCkjHVPiaaMv3H51Yi4vUPOYr/nBNLt9xKulL1FEr+QXLrUVJRIcyYVMeGDXVjuhK3tMBDt4GI8trufrbu7uW4eb3cvLSXrbv7uPb6Xmon9EJ9L5WNvVQ2DOxtOOvl8C9DU20VU8bXMqWxlsn/XstXf1fHlKZapjTVsm/C/T4NNVR49OZx41ZaVogeLmGVSBZyuvQgCpVPKwUqLL/Bx+PA9FxmxI2q9ovIamABcGfCSwtwZtd1sxJnMLREC4BVXiU2IlIHHArcn12OTTkopnEmEn9g3X5sU3YDTvi3mapdS/qur7I3OOh5sZm2452ln31H0sBvs4b47Jf6+K8v93LpFb0s+20vuwd6GT+1l96KPt4wp5ctu3vp7Bukc9sgL23bw7jD4GcPuee/skKY3FjDvk11owKT0UGK81pddSVtbU7wkdyWJ0j1XRjCuCgWerp0v6Kez2LqPVJs/Fa7HAP8HLhQVT2+6rkR62p7G04X24eATwAfw+m9skFEbgVQ1XNi688CngRuBm4C3gzcgNNo9e7YOt8Bfge8jNPm40vAycBsVU3xczwqX8uLvcFppukVY7VLunWCFHUHnRPBr1xUu6Tjt9FnuuOfqrdLuiovP4/j96pKVcMAz6zvY1tnH+94bx/f+3Ef27r6eG13b+zeeb6r23/tcLw0Ze3qWj7w7lp+8bNavnZlLZMba/jPs2p5+P5aJo2roWVqLcMDwQdzDvt8TpdGplWD+a528TutQS6qXYLk36pdwq928Rt8vAKMBxqBPTi9RBKpqrZkk5E0278Ip3fKfjiBxeXxNiDxNhmJByI2yNj3GBlk7JtJg4zdgRNsTAa2AY8AX1LVtQHytNyCj3C2F7Xgw8/FMsicCH4VKvjwU7UQ1rmRbfCRat1kfYNDbO/qZ1vn2MBkW2cfr3X2sb3Tedw/lGIO8STjaiqZ1FjLpMYaJo2rZUqTcz+psYZJjU7AMrnRCVYmNNRQWSF5Dz4ynS49aD7TfQ/SfZZ+8mnBR3rp5rZKl48oBx+3AClXVNX/zCYjxabcgo9Mxxjws72oBR9B0gvzcyhU8JFY9eGlGIMPv1SVjp4BtnX2cdTxfdz+qz7O/UQvVyzsZ3tnP0vu7OO4k/tp7+rj1fZ+pMp/oFIhMHFcLZtequGUE50gZclPavnaVTVMbqxh4rhaJo6rZp8G57WmuqpR7VSiXPLhayZoK/kIlI9s0y654MOMVW7BR9g/+MUYfLjV/5ZC8JF4LDKZRt4rPT/bi0Lw4ZY/7+0pHT2DtHc5wcj2rj62d/U7z/f00d7Vz7auPtq7+mjf0x+o6gecdir7NDjByD7jarj//2o4/5waJjbU8NWrarh1sbP8ziU1XHF5NZPG1VJfM7YaKNOqwbADnHSfZZAAxoKP9GkXU/Dht8GpMWmVUuMstxb4pbJvqSxenN14KWGI9vgzwvi6asbXVTNr8ri0aw8MDbNjTz+vO7iPPz/oBCjnXtjPF692ApWde/pp39PPzu5+duzpp7N3kO1d/WzvcubuHHcI/OJRJ62Jb4PLlo2k/ftvOvd11RVMjAUrE2O3fZpq+PDXavjLPTVs21jDlPE1XHJhDQveU03fYDW1VdlPQh5Gr68gQ+UXk2L5LSxkPj1LPkTkHOAPqtoee5ySqt4aduairJhKPvycYGGUfIRRQlGIko/k3g3g/19jmF/efJZ8uNXV+x0ZNZUwSj7c1o9OyUdm2/ObRv/gMLu6+9kRC0YWvLufG3/Wz449A1x9XT9tH3MClh2xgKV9Tz/9g/6rgeIaaiqZUF/NhIYaJjRUx241/Pj71Xzza87j886qZvl9NezTUE1zQzUT6muoqarYm0YYJR9ex8htefLrfttdFaLkIx+l1W5ph13y6/a+nFe7iMgwcIKqPhZ7nIqqavahdBHJNvgI0lAr2+L+bL58bq/nO/gIcoEPkk+vuTzik4kly3YQsXTyFXwEHY4+3fHPdLAmCz6yf5+q0t0/NCoYSQxOduzp56e39TP/3wZo39NHR88Au7oHGBzO7KCNq6ncG7D0dlTz1JoaBrqqGe6pZqi3hqqhai76eA3ve6cT0Bwyq4be3dVUV1aEGnwEqVay4MM7H1ENPlqATbG5UFrSJeS3i2qpyCb4CNpQy2+62awbpeAjmzlTguQz1YiWXmmn6imQrXwFH2GP5BnkwuqnJ5Fb2hZ8hLNtcAKWrr5BdnU7gciunv7Y434u/uwAn/1/A+zs7mfJ/w5w0tucxx3dA+zqGWAow6ClsbaKXa9Vc+QhVax5rJr3nFpNc71zG19XTXN9FZ++sJrf3FnN+PrRrzXUVqA6usdQkAa1UQk+clnFUWrBx0vA6ar6z2w2UKqyCT6CFlf6TTebdaMQfCxdCv/5nzCQ0EYv6PgZQfLp1c3PS6mUfKTa73xeIMMOPsKc6Tl5G6MGQ8tRUBzm+7zSyGZ7qkpn3yAd3U5AsisWkOzq7ueSzw3wmSucx/Flu7oHeP7lAarH9ZNhzOJsd7CCKROq2LyhmmNbnaDknl9XM9xbxXBvNcN91aPu//5QPKCpprGuiqrK9LNE5yP4yKVSCz72Vrtks4FSlU3wEaRve5B0s1k3CsFHGHOmhFHyMWkS9PSEP4hYOuVQ8hH0fUGCjzB+8L2259YLKPF8CHu22HRtcjLZp6DrhvEbIwJDQ07QMnm/AR5/aoBjTxzgV38YoKNngN09g8597wA//skA73r/ALt7Yq/1Oq9l0qZl1PZ7qnjdtFhJSn0VTXXVNNVVMT5231hbxecureYXP6+iqc55fXzsfvqUKob6KqmoGAlgwmhDF7ZcBh/J52J9/XyeecaCj4Kxko/MtpPqRzXTgZES+Wl/kFjS4tbmY/Fi53G+W+AXus3HqafC3bFJCyz4GJ2um0y/r+nW9dMmJ4hCBx9+L3TJy/f+VmwcouWgATZtH2DlaicwuffPg/xs6QBDMkBFnXOrHjfAoUcNUD/eCVradw/QOzzobwdSqBAY6KnigGlOsLLm79W8a8FIoNJUV0XjqKClitPeXs2aVQmv11QFmmcoqFwFH27nYkXFfIaHn39a9dXDs8pzmuDjeFX9ezYbKFXW5iN4Gul+VMOeLdbvly9VG5N8/oMpdG+XxP0Ou5Fvpu874wxYvTr8Xjnp8uQn+Mi0pDLdun5KpoIoxuDD7bcCnOqv+Hma6hze+/4epaJmkIq6ARomDPDZLw5w3JudUpWu3kE6ewfp7B3gez8a5MyzB+jsHWR3bFln7yBbdwxQUR1OQ6/G2njAMhKUNNVV01hbRWNtJY211YyrrXSe11UxrrYq9trIbVxt1ageR8nHLuzgw/1cnA/096k+XJf50UgffPwfHjPBJlFVPTebjBSbfPZ2CZJupuvmI/hI96Ma9pwpufg3lkuFHmQsjDTCvNAF7ZWTq+BjwgTo6Bi7bq5KPvy0yQmiGIOPbBuUBv0jkypP/YPD1DUOsm7jILt7B3jT3EF+e+/A3sCls3fQmeww/rh3kD/eP8Dso0eCmz39Q2MTz1BNZUUsOHEClsbaSh74SxUfPL2K22+r4rJPOYHKV66s4qYfxoOYkeCm9fBqtmysZFxtFfU1YxvzJnI/F+cDoLo8q6KcdMHHFqDPRzqqqgdmk5Fik89xPjJJN+i6+Qg+/PyohjlnigUf6UU5+AjaNiVXwUfYJZXZBOnZNnYNsm4hg48gVbBu6QWtwk2Xp6DHJXmdoWGlq9cJXjp7B+nqGx247OlzSmK64o/7Rj/e0ze0d1mmPY7c6JCwT1MV2zdXceQho0tbxtVW8r9Lq9jVXoX2VzHcXxm7v5qe55/KuuQj3Qin77M2HyYsXlPRJ2prc24iuetZ8pWvjB3B1ERPqpEy46PO5kO+R+G89lr3KgeI3pTzueL1W3HAAfl5f9gqK4Tm2GBt2VBV+gaH6ewd5PY7B/nS1YP06SAVNYNIjXPfdt4gbzhiiGuuG+T8Tw7S1e8ENus3DrLh1UEGZZCq+kEq6wYZqlR2dQ9Q1TzAM1tcNngITBiz8H1s+OY9L2W1I/GdcbsBw8BxXq+X+w1YDvM0HadQKPjrXsuXLFFtaXFeb2lxnmeTB7/pJaYRNM+J22pocNaL3+LPg6blR6pjmJwPcN/3MPLh14dufFg/dOPD+dughn+cv/IV98fp3ueWj/h56XVLPnfC3Jeg53iQ77mffCZ+L91uLS3p0wiyvUzzmW5dt/T8rJvtd9Trt8bP75vb8qDHJR+/G17nR/zcSHc8GxpUqRzU9q4+rWreo0+92qGPrWvXvz69VX+75lW9/dENevMDL+pHv/uctvz7Wp34jie05cx/6KxzvqfAcs32Gur5ggUfqQ9cAYKPoF+odNsIkl4YwUd8m8nBTr6Dj3Rf2rDz4VexBR/pAtdsL8heF6Dkm9/t+RGV4CNxXbebSLA0Mlm3kMGH6tjzK+ix9/PHymudVNuOSvAhkvrcSMxDqkDWb37j68ybN8+Cj0LeChF8BLlo+tlGphfhbIIPv+nlMvhI96VNlO7fe5gKEXxkun9+AtcwLsjpSgDKNfgo9ZIPt+VhHPtEXufwJz+ZutQlKsFHkJIPr9+8QgYfY/vsjFTHVKi194iUMGaRzCa9pUtH2kfMnOk8L0Ze9b5uy4thZspsZLp/V145tk1Cd/dIO5qwtLXldlTZYtDQMPZ5vtq75FO+ZzP2OocXL3ZvbxP2uZ2ta68de27ElycrVFuXVDyDDxM9QS6auUjvggtGGnHFG74VYwAS5Etr3IUdCPvhdhEuB4sXO41cwbn30/W8GIPmfOfZ61wd8ugVm8tzOxNtbaPPjcrY1K5XXjn2d9ntN6/Q3x8LPoqI1wmU6UUzaHr5+KebD8lf2pYWeP/7S7v3QNjCDoT9cLsIl4PE0p/16/2dp1dfncsclQavc7XSY372KJYetLWN/F7Hg6bEHlGJ60Xu+5NtvU253ijD3i7p2kkUS5uPsLcTlkK0+chUvtp8pFu3WNp8JLatyXcbjGJp85EubWvz4S5dY9JUeYtkmw8TTZn8C8plelH8NxCX7zrkcuL1T8pKj9wVYzVIqfM6h2+4Yezy+PpR5Kc6KIrnnwUfxrdia/gWxS9cKQk7EDbGr7C+217ncPLyKPPzBzCK1XAWfBjf7J+uiZpCl26VSg+wYhPFi2mhuP0BLHRjUj8s+DC+2T9dEzW5Kt3yE9TE53wJ2gOs0AGTKS3x3+FINSb1wYIPU7SsWsXkip9zK9OxTuy8LV2FLAkrtj+GFnyYomVFryYsmVw0CjHWiYmuTEvCypUFH8aYgitkVUSmF41CjHVioitfo/6WCgs+TNas0Z3JViGrIjK9aIQ96F+xseqj0awkLBgLPkxWrKjRFLtMLxrlPtaJVXuOZiVhwVjwYbJiRY2m2GVz0bAeYCYuHyVhXqVNidWWxVISbcGHyUquihqtO2LxKPbPqtyrT4pd2OdfptVJ+SgJ8yptSsyzW0l0FFnwYbKSq6JGq08uHsX+WZV79UmxC/v8y6Y6KQolYW4l0VFkwUeWolqklS/2r9GUgihcNEy0FUt1RrGw4CNL5d62wf41GlP87MKanjWsD5cFH1myblT2r9HkV7G3MYkarx5rZrRiaVjvVhIdhrC/dxZ8ZCnK3ajs34wphFyfd8XexiRqvHqsRVHUftMy/fOZeA6HfT67lUSHIex8WvCRpai2bbDxN0wh2HmXO34nuwtrmPgoitq5lemfz8RGrWGPl1IsJdEWfGQpqh+sjb9hCiFX551VtaT/55lp9UmUS2+TFfI3zRrWh8uCjxyIQrGwDfVrCiFX510UvlOQuyAojP3LtPrEq8daEIUMDnP5m5a4X6XcsL4Qn58FHzkQhWGHbahff+wfdbhK/bzLVRAUxm9Gphfh5B5rkyZBfb3z2G/VTSGDw1yeW4n7VSzVGZkoxOdnwUeJKqbxNwoZAETlH3WpKKbzrtRkcxFOvLD29EB7u/M4Cu0qEpX6uVVOv0cWfBSpdBfsYhp/o5y+cKWumM67UhNG9QlEu61YqZ9bUSg1zxcLPiLGb2t1PxfsKBcTWnVH6YryeZcrUTifvQK/MESlrVg5nlulyoKPCCmnbopW2mFKSVTO51xdnEulzY6JDgs+IsS6xxpjCq3U21WYaCiK4ENELhKRdSLSKyKrReSkNOvPi63XKyIvicgnsk0zH6x7rDGm0Eq9XYWJhsgHHyJyJrAI+DpwNPAwcK+IuBYEisgs4J7YekcD3wD+W0TOyDTNfCn1borGmOjwqioqtXYVUWiPY8aKfPABfAa4RVVvVtWnVfViYDPwSY/1PwFsUtWLY+vfDPwc+FwWaeaFdVM0prwUcq6SQvSsKMS+RqU9jkmiqpG9ATXAIPDBpOU/AlZ4vOcB4EdJyz4IDADVQdMElnvcdsE8Pf/88zVu1apVCiho7H7041WrVu1d9/zzz3dZF4WztLr6VQXVlhbVJUuSXx99u+mmm/amedNNN3ms56SR6I1vfKPrOkDG+zR2X0Zub3zjG0dtP/t9cvKRep9Gbu775H5z/5xyv09Tz/qGTj3rGyW0TyPvd9+nselnt0/u+Q2yT4lZTX3upfs++dmnsxS6Yvl2bnV1g7pkSRj7NPr76r5P7u8bSdP7WMXzlv5zcl53fseSb12xY5Bun1T971Omn5Pu/ZzieU51PNN/n9TnPo08dvYj3T6l+y0fna77Pn3FdX2/vxGNjY0KLNcsr+9RL/mYDFQCW5OWbwWmebxnmsf6VbH0Mkkzj25n9uz3AKVR5JkbZwHrgGjMbGkKa+lSuP32b8SercM5P4rB14Fxo5b09laWXAPze+/dh3PPdXtlHM4xMOFZ6GOdaAwmIk4wFk0iMh14FZinqg8kLP8y0Kaqh7i85zlgiap+NWHZycAKYDogQdP0yNtymDdPdbnLa7F4Mumxezrur6d7XxB+0gqSz3zk2Uu8O3Jir6CGhtJoFHfmTSsBWHbh3ALnJByZnvtBeJ0Pp54Kd98dPL18nMNxFRXe36Ph4ezyk+n3NYzfruR1Ghq855hJ3Nd02wmSt6DSpR1025n+nob5ncnVb/b8+fNZsWLFClWdH+ydo0W95GM7MARMTVo+Fdji8Z4tHusPxtLLJE0TEdYd2STyOh9++cvC5CeIcmlgnmpyuyjtayHb35SjSAcfqtoPrAYWJL20AKeHipuVHuuvUtWBDNM0EWHdkU2iYv7cy72Bud99zVdvlUwGePRqzGo9bNKLdPARcz1wnoh8XEQOE5FFONUnNwKIyK0icmvC+jcC+4vI92Prfxw4D/iO3zRNdJXLv0XjTzF/7lGZB6cQvUEqK/3va77yl0mJqlePIethk17kgw9VXQZcBlwFrAHeApymqrEYlQNit/j664DTgJNj618JXKKqdwdI06RQyKi+3P8tmtHCmkytUKIwpkauu9y6fR4//3lxtNEq5pK1qIt88AGgqjeo6kxVrVXVYxIbiqrq/OSGL6q6QlXfGFt/lqqOKdFIlaZJrZBRfVT+LZpoyOVkaiYcyZ8PZP99zdcfoGIuWYu6ogg+jEkUhX+LJjrsfIiW5D8nyZ9PLrYRBitRDWL6vtmmYMGHMcaY0BRi5NQwWIlqEC0HZptCVRjZMAashbcxpni1tTk3kfBKaEpXTW22KVjJhwmNtfA2xphy0N+XbQoWfBhjTAnIV/Bvg3EVv+w/ww0vZZsHCz6MMaYEJLa1yFUVaHw4+6CDcZnoCOcz3PRatvmw4MMYYwos7GAhV6UgNr1BdqJQahSVz9CCD2NMTlgDZP+Kpb1U1Kc3yPQ45uNc9SpxyLeofIYWfBhjcqJYLqjGv6hPb5BpN98g52qmgYpXiUO+ReUztODDGGOMLza9QeZBdVRKh6LyGVrwYYwxZSS53UEQNr1B5qJSOhSVz9CCD2OMKRNu7Q7iy/0qp+Hsw2wgGqVJEKPwGVrwYYwxZcKt3UF8uRkt7G7FNgniaBZ8GGNMmYhKT4dikIsuqV4lDlHogptvFnwYY0yZiEpPh2KQz0CtHAdus+DDGFMyyvEfZBBu7Q7iy4tZLj73MAI1vz1jojDoV75Z8JEl+4EzJjqy/QdZ6gOjubU7iC8vVrka8j2MLqmpxh1JDJjclHpVmAUfWfI60aP0D6zUf1CNicv2H2Q5DIyW3O6g2OVquPBcd0lNDJjcJJawROl6EhYLPkLgdqJHqQ6vHH5QjfFS6v8gy10u22bksktqqtFNE0tYSnUyPws+QpJ8omcSiVuQYEz4rDFlaSu1RrTJJSxRmQgubBZ8hMTPiZ4uEs90XgJjjCMKw0ab/IrKcOFhSS5hKdXu0RZ8hMDviV6skbgxxSIKw0ab/IrKcOFB+R3ttNRKduIs+MiS14leSpG4McUiCsNGm/wL83P300A/jAagfkc7LbWSnTgLPrLkdaIXYyRujDHlLl3bu7AagPoNmIq1ZCcdCz5yxP6B5Z51ITbG5FshGoAW6nqSy04QFnyYomW9g4wx+VaqDUDd5LIThAUfBWb/3o0xpniUagPQfLPgo8Ds37sx5cu+/8WnVBuA5psFH8YYUyD5GNunnEpX87GvfhqAluJw6GGrKnQGjDHG5E45la7ka1/b2pybyNj5ceK9YeKNUuO9YeLvMw4r+TDGGGNCUqrDoYfNgg9jjDEmJOXUGyYbFnyYlKzu0hhj/LPeMP5Y8GE8lepUzsaUUzsIk1/WG8YfCz6MJ6u7NKXKZpA2uVKqw6GHzXq7GE9Wd2mMMcGl6g1jHFbyYTxZ3aUxpaucxv8w0WPBh/FkdZfGlC5r92IKyYIP48nqLo0xJnxW6mTBh0mjUFM5G2PKV6mXypT6/vlhwYcxxpiU8n2xtN5Ipc+CD2NMSbCi7NyxYMCEzYIPY0xJSPx3boFINNjnYLxEOvgQkVoR+W8R2S4ie0TktyIyw8f7LhKRdSLSKyKrReSkpNeXi4gm3e7I3Z4YY/LJ6tRzz09gYZ+D8RLp4AP4PnAGcBZwEjAe+L2IVHq9QUTOBBYBXweOBh4G7hWR5NEp/gfYL+F2YdiZN8aYUmWBhclGZIMPEWkGPgb8l6r+SVX/AfwHcBTw9hRv/Qxwi6rerKpPq+rFwGbgk0nrdavqloRbRy72wxhjyoFNQhmecgjsojy8+jFANXBffIGqviIiTwMnAn9MfoOI1MTe952kl+6LvSfRh0Xkw8BW4F7galXtdElzuUf+5sIa5s+f7/pi4mKPVUJ9XxjSbS/f+Sk3azftBmD+7eMLnJP8KeQ5FZXzOdvv3datsG6d87iuDmbNgqlTM8+Dn8dueXjuORgedp5v2ADnnAPXXDM6L/E0/Bx7t3WieL6E8buZfJxXrIDlyzNPzyvdTNJLfn3NmjUAB/nPhTtR1WzTyAkR+QhwK1CtCZkUkb8Cz6vqmGoSEZkOvArMU9UHEpZ/GWhT1UNizy8ANgCbgCOAb8TSfIdLmss9svgWYAhYmdEOlpfW2P2aAuahGLTG7tcUMA/FojV2v6aAeYiA6fvC6w+BioRS7OFhePFZ2PQaeTtOc0+Amtqxy/v7YOUjud12KFpj92sKmIccmL4vtBzofDb9fbDhpdh5kY25QL+qNmWTSN5LPkTkGiDdvKin5DIPqro44em/ROQl4FEReWOseidx3fluacSDEq/XzQg7Vv7YcfLPjpU/dpz8sePkX4o/5IEUotrl+8CSNOu8DJwAVAKTgW0Jr00FHvR433ac0ojkQsepwJYU21sVe9/BwD9SrGeMMcaYLOU9+FDV7ThBQkoishoYABYAv4gtmwEchtODxS3t/tj7FgB3Jry0ALg7xeZm4wQ6m33sgjHGGGOyENkGp6raISI/Bb4lIq8B7cD1wBPAn+PricgzwA9V9YexRdcDt4nIY8BDwCeA6cCNsfVfD7QB9+AEQYcD3wUej61vjDHGmByKbPARcxkwCCwD6oG/AOeo6lDCOofgVM0AoKrLRGQScBXO+B1PAqep6obYKv3A24BLgUbgFeAPOL1dEtM1xhhjTA5EOvhQ1T7g4tjNax1xWXYDcIPH+q8A88LKozHGGGOCiWxXW2OMMcaUpsiOcGqMMcaY0mTBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPlyIyBdF5O8isltEtonI70TkSB/vmy0iK0SkR0ReFZEvi8iY3jilJJNjJSIzRURdbqfmK9/5JiKfEpEnYsdpt4isFJF3pXlPOZ5PgY5TOZ5LbmLfQxWRH6ZZr+zOqWR+jlW5nlcistBln1ONDp7xORXprrYFNB+nq+7fAQG+CvxZRA5X1R1ubxCR8cCfgAeAY4FDgf8B9uAMYlaq5hPwWCU4FfhnwvN06xezjcAXgOdxgv5zgV+LyDGq+kTyymV8PgU6TgnK6VwaRUROAC7AGYAx1Xrlek7t5fdYJSjH8+pZnN/1OM/xr7I6p1TVbmluOIORDQHvSbHOJ4HdQH3CsqtwZtmVQu9DxI7VTECBNxU6vwU+VjuACz1es/PJ33Eq63MJaAZexJmMcznOaM9e65b1ORXwWJXleQUsBJ4MsH7G55RVu/jThPMvbGeKdeYCD6pqT8KyP+IM7T4zd1mLHD/HKu6XIvKaiDwkIh/Icb4iQ0QqReTDOIGa6zxF2Pnk9zjFleW5BCwG7lLV+32sW+7nVJBjFVeO59WBIrJJRNaJyB0icmCKdTM+pyz48GcRsAZYmWKdacDWpGVbE14rF36OVRfwOeBDwGk4w+YvE5Gzc567AorVjXYBfThzDZ2uqv/yWL1sz6eAx6kszyUAETkfOAjnn6Yf5XxOBT1W5XpePQqch1PddD7OefFwbMoSNxmfU9bmIw0RuR54C/AWtblfUvJ7rNSZ2TixPnCViEwGPg8syW0uC+pZoBWn+PcDwM9FZL6qPlnQXEWP7+NUrueSiBwCfB3nuzZQ6PxEWSbHqlzPK1W9N/G5iDwCvITT9ur6MLdlJR8piMj3gLOAt6rqS2lW3wJMTVo2NeG1khbwWLl5FDg43FxFi6r2q+oLqrpaVb+IU0J0ucfqZXs+BTxObkr+XMIp7p4MPCUigyIyiDNn1UWx57Uu7ynXcyqTY+WmHM6rUVS1C3gK7/3O+Jyy4MODiCxi5GL6jI+3rAROEpG6hGULgE3A+vBzGB0ZHCs3rcDm0DJVHCoArx++sj2fXKQ6Tm5aKf1z6dfAbJx9jd9WAXfEHve7vKdcz6lfE/xYuWml9M+rUWLnyqF473fm51ShW9dG8Qb8CKcF71tx6q3it8aEdb4B/CXheTNOpHcHcCTw/lgany30/kTwWJ0LfAQ4DDgEp261H7i80PuTw+N0HXASTiOs2bFjMgy8086nrI5T2Z1LKY7dchJ6cNg5ldWxKsvzCvgOTqnQLOB44Pexc6Ql7HPK2ny4uyh2/5ek5VfjdEUC2A94ffwFVe0QkQU4F+NVOL09vkvI9WQRFPhYxVwFtOB0y30O+KiqlmxdKk5AtiR234EzzsA7VfWPsdftfHIEOk4x5XYu+WXnlH92XjlmALfjVFNtAx4BTlDVDbHXQzunJBa9GGOMMcbkhbX5MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPowpESJynoiox+3thc5fqRCRY0SkW0T2T1i2XET+5rH+x2OfwcwA23ifiGwVkcYQsmxM5FjwYUzp+SDOfBaJt8cKmqPS8m3gZ6r6ag638RucIa3/K4fbMKZgbIRTY0rPGlV9wc+KIlKrqn25zlCpEJFjgFOAi3O5HVVVEVkMfE1EvqGqvbncnjH5ZiUfxpSJhGqZk0XkThHZhTNTJyJSJSJfFJFnRKRPRDaJyHeTJoxCRA4UkT/Eqh22icgiEbkwuVoh9nxh0ntnxpafl7R8noj8RUQ6RWSPiPxRRI5MWme5iPxNRN4uIv+Ibf9JETndZT/niMivRKRdRHpE5FkR+WLstf+OVWdUJ72nKbb969Icxo8DT6jqU2nW8yQiC1NUj52XsOr/AhNw5sswpqRY8GFM6amMBRPxW2XS60uBdcAHgCtiy5bgzGXxC+BdOBNIfSy2LgAiUgP8CTga+BRwHs4EVFdlmlEReRfOvEBdwNk4k3k1AQ+KyOuSVn89sAhn3oj341RL3CkiByWkdxzOTJuvBy6P7cv1OHNWAPwY2BdIDlo+AowDbkqT5VOBB1PsT1XyjbG/sz9hbLXY3YzMIQKAqm4Hno5t05iSYtUuxpSeZ5KePwS8JeH5Xar6+fgTETkJOBM4V1VvjS3+s4jsAJaISKuqrsGZ6fNAYK6qPhJ7773Av7LI6yJghaq+NyE/9wMvAZ8FLktYdzJwsqo+H1vvHzgByIeAr8fW+Q7QjjMZVnds2V/jCajqWhFZAVyIU7IQdyFwn6qu88qoiEzFmW33nx6rvBkYSLGv8TxsBDYmpPtBnGDqMlV9OGn1x4ET0qVpTLGx4MOY0nM6CRc3oDPp9V8lPT8VZ7rwu2L/1OPui92fDKzB+Yf+SjzwAFDVYRH5X0ZmMPZNRA7GKaH4etJ2u3FKL05Oesvz8cAjtu3XROQ14IBYeg04AcC3EwIPNzcAd4jIwar6vIgci1Oak656Y3rsfpvH6//EqZZJ9l48SodE5E3Az4EbVPUHLqtsS9iuMSXDgg9jSs+TaRqcbk56vi9QA+zxWH9S7H4/YKvL627L/Ng3dv/T2C3Zy0nPd7is0wfE26Xsg1PFsdFlvUS/ArbglHZ8DvgEsAn4XZr3xbfj1UC3S1VXJS8UkVa3lUVkBvBbYDlwqUeaPQnbNaZkWPBhTPnRpOftQC9wksf6m2L3m4EjXF6f6rKsDyegSTQp6Xl77P6LwJ9d0uj3yI+XncAwsH+qlVR1QER+AlwkIt8CPgx8V1UH06Qfz+8+AfM1hoiMwwl2tgNnquqQx6oTE7ZrTMmwBqfGmP/D+XfdrKqrXG7x4GMl8DoR2dsGQUQqcNpcJNsAHJm07F1Jz58F1gNHeGz3iSA7Eatq+RtwtojUp1n9JpyeJHcCtcDNPjaxHidIOzBIvpKJiOA08N0PeLeqJleLJZqFc5yMKSlW8mFMmVPV5SJyO06bj+txBiQbxmlceRrwBVV9DqdtwhXAL0Xk/wGv4VRZjHdJ9g7gKhG5EngEp1TlrKTtqoh8CvhNrCfN/+KUBEwFTgReVtXrA+7O54AVwEoR+S5OFcyBQKuq7h2bQ1VfFZHf4rSP+Z2qvpIuYVXtF5FHgeMC5inZF4D34VS1TBeRxDYdL6rqNtgbpByH00bFmJJiJR/GGHC6uS7E6X77G+Au4NPA88TadKhqP7AAp/HpDTjByDrgGpf0vgH8MJbGr4HDgP9IXklV78FpWDoOpwvqH4FvAdNwSloCUdW/4zQ6fQX4b+AenFFC3dqB3Bm7T9e9NtEy4K2xapNMHRq7X4Szj4m3xNKhE3GqeO7IYlvGRJKoJlf/GmOMf7GBsf4HmKWq6wubG/9EZClOoHKgqg77fM94nEDmIlVdkuP8/Rg4UlW92uIYU7Ss2sUYU1ZibVZaccY2+YzfwANAVXeLyDeBz4vIUs3RvzcRmYYzrooNMGZKkgUfxphysxJnRNWfk1l7iuuBSpwGo5vSrJupmcBnVfWBHKVvTEFZtYsxxhhj8soanBpjjDEmryz4MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuTV/wcRU2RR5ajQbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_lags, yerr=freq_lags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Time lag (s)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([-0.05, 0.2])\n", + "plt.plot(avg_cs.freq, time_lag, label=\"Input time lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFJCAYAAAAVJ240AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA990lEQVR4nO3deZwcdZ3/8dcn4YgxgRXQkMBOBlQwQmAggmBCZlZFEVjFFWRxcM3P1YAIC4uugkFJwCAKIsEVIXggEgRFdMWFJXhM8AggAeRQ5DAJd4DIFQOEkM/vj6rOdDpVPdU91V1Hv5+PRz+6u85v1dR0fep7mrsjIiIiEmdE1gkQERGRfFOwICIiInUpWBAREZG6FCyIiIhIXQoWREREpK5Nsk5Au5jZbcBrgfuzTouIiEgbvAF40t33GO6GOiZYAF675ZZbbtfT07NdkoUXLYLe3o0/R7nxRnjppeh5UetVtjfUdpOs1+w2AFasgKVLg7RvvjnssAPcc0/9bTe670bS1+ixZO1Pjz4HwJsnbJFxSqItWgQjRsC6dYPTRoyAnXaCcePqrxf1N476PJzrr5F9N7LdNK65Ro5vqH2n8X/e7L6TrDfUtoY6R42mp5FroNFtJ91HEu34PUrjPNfb9pZb3s6zzz6bSlqtU/pZMLOB3t7e3oGBgYTLQ+XUVH+OMmJE/Pyo6ZXtDbXdJOs1u40FC2DmTFi9enDe6NHB93rbbnTfjaSv0WPJ2uEXLgbgiqP2zTgl0cyip0+cCMuW1V8v6m8c9bnZ66/RfTey3TSuuUaOb6h9p/F/3uy+k6w31LaGOkeNpqeRa6DRbSfdRxLt+D1K4zzX23Zvbx+LFi1a5O59w02r6iykoKsr6xQ0btasDQMF2Pi7lNODD2adAhEpGgULKZg7N3gqr1b7PW90w+hcRQxuRSRbChZS0N8P8+cH2bsQvM+fn22ahqIbRmeICmLnzs0mLSJSXKqzELt868pOVWdh+MvmQRHqLFx6aVDktHx5EMTOnRsEt0OtpzoLnVdnYautXmbJkod58cUX118vwAafq0VNb3a9JPOTbDvpPpJIYxuN7KPZ81wxatQott9+ezbddFMg/ToLndQaQqpUbhi1N5Ijj8w2XZKu/v7gZVa/UmMzursH35MEIZJvs2c/zNixY+nu7ubvfzcmTQqm//3vrP9cLWp69bRG1ksyP8m2k+4jiTS20cg+mj3PAO7OypUrefjhh9lhhx1aklYVQ3Sw/v7BG8iyZfqxl2QWLAjely8ffJ85c3C6FNMb3vAiW2+9NRbXjEZyy8zYeuutefHFF1u2DwULGTr11KxTINK4WbM2nrZ6dfR0KY4RI1CgUGCt/tspWMjQ7NlZp0CkcXEtadTCRoZrzJgxqW9z2bJlXHbZZQ2vN316+mmJ093dzTPPPNW2/TVDwYKINCSuJY1a2EgeNRssyIYULIhIQ6KaXqpJpqRpYGCAvr4+Dj30UN70pjfR399PpeVed3c35533GSZPnszee+/N/fcHw/3MmDGDK6+8cv02KrkUJ510Er/5zW/o6enha1/72kb7mT59OgcddBA777wzRx99NOuq+kefNWsWu+++O/vssw8rVqwA4Oqrr+atb30re+yxB+985zvXT1+0aBE9PT309PSwxx578PzzzwNw1llnsddee7HbbrtxaoKy50MOOYQpU6awyy67ML+qDf63v/1tdtppJ/bee2+++MWPc+yxxzZ8XodDrSFEpCH9/UGrmYkTG2uS2SjV6cnOoVf+L1xZNeHKmAWjptdZb9mZByVOw2233cbdd9/NhAkTmDp1Kn/84+/Ya69pAIwZsyV33nknl1xyCSeccAI///nPY7dz5plncvbZZ8cuc/PNN/OnP/2JiRMncsABB3DVVVdx6KGH8sILf2efffZh7ty5fOYzn+Giiy7ilFNOYdq0adx4442YGd/61rf4yle+wle/+lXOPvtsvvGNbzB16lRWrVrFqFGjWLhwIffddx8333wz7s573/tebrjhBqZPnx6b3u985ztstdVWvPDCC+y1116ce+4HePTRlzj99NO59dZbGTt2LHvv/Xa23373xOcyDcpZkJaK+sFXXY1yaHVLGl0nnW3vvfdm++23Z8SIEfT09PDoo8vWz3vXu44A4IgjjmDx4sXD3s+OO+7IyJEjOeKII/jtb38LwKabbsbBBx8MwJQpU1gWXvAPP/ww7373u5k8eTJnnXUWd999NwBTp07lxBNP5LzzzuOZZ55hk002YeHChSxcuJA99tiDPffck3vuuYf77ruvbnrOO++89bkZDz30EA89FAQbvb29bLXVVmy66aa84x2HDeuYm6GcBUnd7NmDP/RRP/hz5uhGIJJnVx56EG95S/D5lltY/7la1PTqaXHrJbX55puv/zxy5EheeWXt+u/VNf8rnzfZZJP1RQjr1q1jzZo1ifZT24pgcHubrv88cuRI1q4N9n/cccdx4okn8t73vpeBgQFmhz9mJ510EgcddBDXXHMNU6dO5brrrsPdOfnkkznqqKMSpWVgYIBf/OIXLF68mNGjR9PX18eaNa1rDtkI5SxI6ubMyToFIlJm119/BQBXXHEF++4b9KDa3d3NkiVLALjhhp/x8ssvAzB27Nj19Qei3HzzzSxdupR169ZxxRVXMG3atLr7fvbZZ9luu+0A+N73vrd++gMPPMDkyZP57Gc/y1577cU999zDu9/9br7zne+watUqAB555BGeeOKJutt+zWtew+jRo7nnnnu48cYbAdhrr71YtGgRTz/9NGvXruVXv/px3TS2goKFFOgpWUSkfZ5//ml222035s2bt77S4sc//nEWLVrE7rvvzp13LubVr341ALvtthsjR45k991336iCIwQ34mOPPZZJkyaxww478P73v7/uvmfPns1hhx3GlClT2GabbdZPP/fcc9l1113Zbbfd2HTTTXnPe97Du971Lj70oQ+x7777MnnyZA499NC6gcsBBxzA2rVrmTRpEieddBL77LMPANtttx2f+9zn2HvvvZk6dSoTJnSz5ZZbNnzehsXdO+IFDPT29npSEP25kWXj1htqe0Ptp5G0Jdl3I+lP4/jSPi9Z+eAFv/cPXvD7rJMRq9nrJMn1EHUtNrrtZuYnWa/ZY42anmRbjfzPNJKmNPadZL2Ka6/90/rPf/iDR36uFjW92fWSzK9Mnzhxol9//ZNNbaPWr3/9az/ooIOGtY3haOR8Pf/88+7u/vLLL/u0aQf7VVddtdGyf/rT4N8Q3Ht7ex0Y8BTuocpZEBERybnZs2fT09PDrrvuynbb7cAhhxzS1v2rgqOIiBTGsmXLuOWWdLbV19dHX19fOhtrsbPPPnv951tuCQaHayflLIhIaak+kUg6FCyISGmpZU5y69axvpdEKZ5W/+0ULIiUzIIF0N0dfO7u1tDRksz9949i5cqVChgKyN1ZuXIlo0aNatk+VGdBpEQWLICZM4MhoyHojnnmzGzTJMUwe/b2/PM/P8yTTz7JU0/Bn/8cTK/+XC1qerPrJZmfZNtJ95FEGttoZB/NnueKUaNGsf3227cmoShYECmVWbMGA4WK2u8iUZ5+elN22GEHAN78ZqhkMFR/rhY1vdn1ksxPsu2k+0gijW00so9mz3O7tL0Ywsymm9nPzOwRM3Mzm9HAum80s+fNbFULkyhSWA8+mHUKRKSMsqizMAa4CzgeeCHpSma2GXA5cEOL0pWIale3l853Y7q6sk6BiJRR24MFd7/G3T/n7lcC64ZcYdCXgTuAH7UmZcmodnV7VIIEne/GzJ0Lo0dvOK32u4hIowrRGsLMDgIOBo5LsOxA1AvoaXEyJUUKEprT3w/z58PEicH3iROD7+2gXCCR8sp9sGBmE4CLgCPdXXUVRIbQ3w/LlgWfly0LvreDAjxppVNPzToF6ShqUJ37YAH4PvBNd78pycLu3hf1Am5vZSJFRKR1inqTrVXUoLoIwcLbgVPNbK2ZrQW+Dbw6/K4W5CJNKsuPr4i0XhGChckE9Q0qry8QtKLoIePKjiLt0KqbelGfcCoU7Ii0Txb9LIwxsx4z6wn33xV+7wrnf8nMfllZ3t3vqn4BjwDrwu9Ptzv9Iu1QfSMs+k29VXReRNoni5yFtwC3ha9XAXPCz6eF88cDr88gXSK5oRuhiORJ27t7dvcBIHYkbnefMcT6FwMXp5kmERERiVeEOgsiIiKSIQULIiJSeKrw2loKFjJQls5FRETyQvV8WkvBQgYUAUseLVgA3d3B5222CV4QTFuwIKtUiUgetL2Co4jkz4IFMHMmrF4dfF+5cnDe8uXBPBHpXMpZKIDqJ77Ku0iaZs0aDBSi1JsnIuWnYCHnKk98y5cH3yvvyhaWND34YNYpEJE8U7CQc3FPfLNmtT8tUl5dXVmnQETqybqum4KFnIt74tOToKRp7lwYPTp+fr15ItJ6Wbf2ULCQc3FPfHoSlDT198P8+TBxYvB9662DFwTT5s/PLm1J1dbtKXpRnZpYS54oWMi5uCe+uXPbnxYpt/5+WLYs+PzUU8ELgmn9/VmlKrnauj1Fb8GRdbazSDUFCzlX+8RXeS/Cj7dIO9XW7VELDpH0KFgogOonvsq7iIhIuyhYEBERkboULIhIKdTW7cm6BYfqHEiZKFgQyQndXIantm5P1i04sm7qJpImBQsiOaGby/DU1u1RJWBJQkF6MgoWRDqA2uyLRFOQnoyCBZEO0O6nJz2tiZSLggXpWLqhtU5RntaU49K4svWUKckoWJCOVZQbWhnk9QajgLExUaPgzpyZn7+ntI6CBWmbvN4w8qos50s3mPKIGgV39WqNgtsJFCy0kLI4B+mG0biynC/dYMpDo+B2LgULLaQszkG6YTSuLOdLN5jy0Ci4navtwYKZTTezn5nZI2bmZjZjiOX7zOx/zOwxM1ttZneY2UfblFxJiW4Y6RjqfOUxQNUNpjyiRsEdPVqj4HaCLHIWxgB3AccDLyRY/m3AncChwK7AN4H5ZvahlqVQgHSLUXTDSMdQ5yuPlTZ1gymPqFFw589XB1idoO3Bgrtf4+6fc/crgXUJlj/D3U9x99+5+1/d/ZvAVcAHWp7YDpfmU6puGI0ry/nSDaZc1FNmZ9ok6wQ0aQvg4agZZjYQs05PqxIjQ6v8oMyaFVTWmzgxuPHphybe/PnlOV/9/cHLrP4w66oULJJPhQsWzOxg4B3A1KzTIo1JesOQQCeerzzWuRCRggULZjYVuAz4D3e/OWoZd++LWXcA6G1Z4kSkIyk3pJz0d91QYZpOmtk04FrgC2G9BZFEivS0WpaOmDpJka4vSU5/1w0VIlgws+kEgcJsdz834+SUWruj6Xb8Q+axhUCcqI6YJJ6CK5H2yKKfhTFm1mNmPeH+u8LvXeH8L5nZL6uW7yMIFC4ALjOzbcPXa9ud9k7Q7mg6ixt5nm8wUR0xxdGTj4IrkXbJImfhLcBt4etVwJzw82nh/PHA66uWnwGMBj4NPFb1+kN7kitlUqZup4uUY9IqjQRXeZfnIFYki34WBtzdIl4zwvkz3L27avkZMct3x+wiVqfUKC+adv5IqttpyaMyBbFSToWos5CWyj+iDE/aN/d2ZiXnsdvp6uKEqI6YpPzaFcQq90Ka1VHBgqQj7SegdmYl57Hb6erihKieDiVeWYKrdgSxyr2Q4VCwIA1rVzZ+5QloKI1U9Mt7t9PqSrcxZQmu2hHEqghOhkPBgqSiFdn4lSegoZ58GqnoFzdOwX33NZdGyVZZgqt2BLF5LIKT9FUXNd14I8CE16WxXQULkorhPAENlXWc9pNP1A2m3S0L1OxRqrVjsK08FsFJumqLml56CeD1O6exbQUL0rC0n4CqfySjlPHJpzY4UaUzaXUuSd6L4GT4ooqaYEQq9/lEGzGz7cxshpldYGY/M7PrzewHZjbbzP7JzBR0dJC0n4CqfySjtPvJp51P/ZXAYDitQbLOpVAN+2LQUOHl18oHK3P3+JlmvcB/Ae8GRhIMC/0k8AKwFdBF0GHSY8BFwDnu/lzrktu8YCCp3l73gYTLQ+XUxH0eatm0VbY9nP0Nlf5G1o9bb6jt1Tu3o0dvHBlfemn9H7RG9pc0HUnOx+EXLgbgiqP2HXrhmH13d8c36U16nps9juGcl+p91/7NKt+buTYa0Ug6m932cP6/0thGM/trdh+NnsNmfwubvS6b3ffs2fUD6lb+Zg+1v0bOV5JlN/496QPAfcCGm+7YHAEz+1+Cbpb/DnwQeJ27d7n7FHef5u5vBrYAeoDzgcOAB8zs3cNNlHSu2icfKM+TT9QPViufBNo1zkeZelGU8umknk6jippg3bo0tl2v+OBeYEd3P9zdf+LuT9Uu4O7r3P0Od5/r7rsA/w5smUbCpDPVlts2K+us+ShRP1qtLGJpxTmoLXIQkfyoLWrafHOAB/6SxrZjgwV3/093f7yRjbn7z9z9h8NPlhRRnsqu8/I0MdQNO6pyWZ47Fqrt1EdE8qX6gWuffQAefSKN7apioqRCvcNFGypoqRSxFKVjoagiBqspDc1zsCPZydPDhDRuk7gZZvZvjWzI3S8ZfnKkqOr1DleGOgdDVZJqxoIFG/chUXkiOPLIdPfVSu5BkLN8efA+d26x0i+tV3mYqPxGVLf6KcPvQyeIDRaAi2u+V+peWsQ0AAULHayovcNV37C7u+PbnM+Zk36wUPvjWUlP0X48J04MghyzYgY7rdauiqZ5VvaHiU5Qrxhih6rXfgTNJi8kaIsxKXyfDzwETGtlIiX/ito7XL0RL2uDg0o2qlnYROmmrRveX3VWbFSWft776Y8qYlCnPvXlsbJtuxX1YUIG1avguLzyIuhr4XJ3P8bdb3D3v4TvnwB+CHymXQmWfCpq73Bxzf66u4PchOqb+4c/vGFgccuC1zccMFQHJ1Hy/uNZ5qat0jpFfZiQQUkrOL4DuD5m3sJwvnSwsvUOV7mhf/Sjg59rO0F5Zc1IbvruGyMra1UHGdtsE7xg6D4I8v7jmVbTVuksRX2YkEFJg4WXgLfEzNsLWJNOcqTIijYC4JYJegRZM+SVbRu1/KhtGbJyZfBKIurHM+0yb9VKl3Yr28NEJ6rb3fP6hczOBz4KfB74EbACGEfQs+NpwLfd/ZMtTOewmdnAxM/+vDfrdIiIiLTL8i8fvMjd+4a7nXqtIap9ChgLfAk4s2q6A5eF80VERKSEEgUL7v4C8GEzOx14KzCeYPCom9z93hamL1XLv3wWSQeSqqaBpKKXbcVAUs0MwhN3TJdeGrQuqG7/H5ftGTeIVSPHtuWW8MwzG3dSFKe6T4Jm/q7V5yhu+7X1CkaMiP+bVXqQb/bv08qBnaIUZSCpZvfdyv110kBSaewvTa0cSKp2vd7ePtLqaLWhHhzd/V53/767fyV8L0ygIJ2n0R4l58+HrSMaN1RuxhMnwve/HwQhtZW1zODZZ2GTTTZcJ0pl3VbX64hqWaFa6SLSjIa7ezaz15lZV+2rFYkTGY64TmDi9PfDmDEbT69E8JWbe6Wy1uitXgR8gyj/lVcG16kEDFtvPRiEtLM756gAQLXSRaQZiYIFMxthZmeY2UqC4oelEa9EzGy6mf3MzB4xMzezGQnWmWxmi8zshXC9L5glzewVGTRUPwZJ+zno74eDz7iN0Vu9FJsdWJn+1FPBC1qXm5A0AFCtdBFpRtKchROATwJfJeju+QzgiwRBwgPAxxvY5xjgLuB44IWhFjazLQj6eFhB0EzzeIJOok5sYJ8yTFn0QteK5n1DZbfHzY9rZrn6b5sPL0EpaSQAKFoTVxHJXtJg4f8RNJH8cvj9J+5+KkG3z48AiYsh3P0ad/+cu18JrEuwSj8wGviIu98Vrvdl4ETlLrRPO4d8rgQGwx3Bspns9rgho7/xjZh9bPVSY4lqEQUAItJKSYOFHYFb3P0VYC3wKgB3fxk4l6APhlbZF/hN2CKj4jpgAtBdu7CZDUS9gJ4WplFSFFWvYKj6BlGayW6PGzI6br3J73swdkhmDdUsImWRNFh4FhgVfn4U2Llq3ibAVmkmqsa2BEUQ1VZUzZM2aVevf2kNOhP1tJ20OCXpU/rEt67cICgZOTKc3saKjCJlUPaeRYt+fEmDhduAN4efrwPmmNkRZnYYQUdNt7Yicc1w976oF3B7xkkrrLhigVZJ2ryvmX++VhSnVIISd1i7NphWCTI0PLHI0Gq7SG+26DGv4o6vSJIGC+cClYZopwKPAwuAK4BNgWNTT9mgxwm6lq42rmqetFhcsUCrxNUbqJ5elB+XuJyM6iAibwFF3tIj5TdrVuNNnYsk7viKJFGw4O7Xu/uF4efHgb2BnQjqAezk7ne0LIWwGNjPzEZVTdufoDhkWQv3K6F2D5ucpN5A2j8uad6849avnl4dRDTa0qQ2RyVtWbR8kc6WVtFjXpXhOIYMFsxsMzP7iZlNr0zzwP3ufkdYyTExMxtjZj1m1hPuvyv83hXO/5KZ/bJqlcsIcjUuNrNdzexfgJOAczzJKFgybFn17lev3kDaPy5RN+9mg4a4m20aN+GoHJXKdJGiKnvPomU4jiGDBXdfA7wzybIJvYWgDsRtBK0q5oSfTwvnjwdeX7X/ZwlyEiYAtwDfIOjv4ZyU0iNDiCsWyFI7flzy+IQdlaNSmS5SVGXvWTTu+OppdQ5io5IGAL8D9kljh+4+4O4W8ZoRzp/h7t0169zp7tPdfZS7j3f3OcpVaJ+4YoEslf3HJS5Xo+zZtdKZyt6zaNzxxcljDmLSYOFTwL+b2bFmtr2ZjQy7gF7/amUis1b2Cl9Jjy9Pnf6U/cclLlej7Nm10rnK3rFYI8eXxxzEpDf5OwmKBuYBy4E1wMtVrzUtSV1O5DE7Ok3tPr60gq+of76it2UeypQp0dmXq1aV71ilOMr+f9duecxB3CThcqcByvaXVLQqOKlk3VUi8qK1ZU4SRF11VTBE9vHHw8qVg9NXrizWsUp5FP3/Lo+6ugaLHmqnZyVRsODus1ucDpFhK3pb5qRBVH9/cKzVwQIU61ilPIr+f5dHc+duGIBVT89KqesaSGfppEp+nXSskm+6FtMXVSerMj0rscGCmZ1Y0xHSkMxsTzM7YPjJEmlcJ1Xy66RjlXzTtdgatXWyslYvZ+HDwFIzO9PMdo9byMxeY2YfNrOFwG+BLdJOpORfHiqBNtOWuajy0vdF2VsKydA66f+uk9ULFvYEPgu8B7jNzJ4xs9+Y2VVm9gMz+z8zuxd4CrgQeAR4s7v/sPXJlrxpdICmVtSebrQtc5Hlpe+LPASJkq1O+r/rZJakbyMzeytwAPBWgp4URwErgXuAG4D/cfdnWpfM4TOzAejtdR8Y5naC0QXjpkXNT0tl28PZX7PpG2rfjaSptvY0BE8iq1dvvI3qbc2eHX1zauRvkubf5/ALFwNwxVH7prPBBKKOpdnjS7JsI+cxjWujEa3cX9S5HU6amtl3K/eXxv9Ms7+FQ6Wz0euy2fQ3sr80NXueG/1bm0Fvbx+LFi1aFI68PCxJW0PcBNw03J2JQPO1p+fM0ZOsDF9c0Cki8dQaQtpOtaclS40WmYmIgoWOkLenqCxqT6uHORGR5ilYKLgktdHz9iSVRu3pRgOg2kFZZs5UwCDpUTAqZadgoeDylmuQRBq1pxsNgKLqSGhYZ0lD1AiB6u5YykbBgmQiDyPMqe6EpEHdHUsnULAgpdJITot6npM0KOiUTpAoWDCzrjqv7c1sbKsTKpJEXPFEVB2JLAdl6XRFLD6Lo6BTOkHSnIVlwNKY13LgGTO7z8w+3opEigzHqadG15HIclCWomhVd86trnTbzgqH6u5YOkGiTpmAo4HPAc8APwZWANsCHwC2BM4HpgMXmNnL7n5x6ikVaVLlKba/P+jVLA+DshRFUXMAqnsIra5w2IoAsbLNWbOCfU2cGAQQRx6Z/r5EspI0Z2En4BZ373H30919vruf5u67A0uAbd39YOAy4PhWJVY6hwYoak6S81bUAKAR7W79kocKu51ATVSzkzRYOBL4Vsy8bwGVf40fATsPN1EinXBDa4Uk5y1v/W60iyoiFltcE1UFDO2RNFgYC2wTM++1wJjw83PAK8NNlIhI2lQRsdjimqgef7xyG9ohabCwCDjDzKZUTzSztwBzgV+Hk94IKH4XkUyp9Uv5xOUMrVypDrHaIWmw8EngZeBmM1tqZjeZ2VKCkShfAo4LlxsDfCP9ZIqIJKPWL+WUNGeoCB1iFbHuRaJgwd2XAm8CPgH8ClgZvh8NTArn4+5fc/fzh9qemR0TBh0vmtkSM9tviOU/ZGa3m9lqM3vczC41s22TpF1EOsvs2apw2A7troQc1US1qIrYPXjSppO4+8vA/PDVNDM7HJgHHAP8Nny/1sze7O4bZTSZ2VTg+8CngZ8C4wiaai4A3jGctIiISHPaXQk5qonqqlVBMUTRFLF78Cy6ez4RuNjdL3L3P7v7ccBjBLkWUfYFHg5zLZa6+43A14G3tim9paImiSJSVLU5RvPmlbNDrDy2BkscLJjZu8zsJ2b2JzP7a83rgYTb2AyYAiysmbUQeFvMar8DxpvZP1tgG+BfgWti9jEQ9QJ6kqSx7PJ4EQ5XJwRARSjj7IS/g+RLGiPY5lEemzcnHRviQOBaYDRB3YV7CFo9/COwDrgh4f62AUYS9ABZrdIj5EbcfTFBcLAAWAM8CRjwkYT7lJIrYwBUrShDIJf975BUEQK7Mili/ZQi5oYkzVn4PEErhwPD76e4ex+wC8HN/9r0kxYwszcTFDucTpArcQBBYHFh1PLu3hf1Am5vVRpFWklDIBeLOg6SoRQxNyRpsPAm4GqCXAQnrBjp7vcCswmCiSSeIui0aVzN9HHA4zHrnAzc7O5nufsd7n4dQaXID5vZ9gn3K1JY6nmwWNrd1bQUTxFzQ5IGC+uAte7uBMUA1S1eHwVen2Qj7r6GYCyJ/Wtm7Q/8Pma10WzcK2TlexYVNEXaSj0PFp8CPim6pDfbvwDd4edbgBPMbLyZvRb4FMEQ1kmdA8wws4+Z2SQzmwdMAC4AMLNLzOySquWvBt5nZp8wsx3DppTnAbdGNbUUgXJVttMQyMWngE+KLmmwsACYFH4+laCuwsMERQdvB76QdIfufgVwAnAKQT2CacCB7h6W8tFFVc5FONz1icCxwF3AlcC9wPuS7lM6T5kq25W1xndZqatpKaOkPTh+w90/E35eAkwGjgL+E+hx9ysb2am7n+/u3e6+ubtPcfcbquZVKiRWL/91d9/F3Ue7+3h373f3hxvZp0iRFaWMUy0B1NW0lFPiHhyrhTfquCGrRaQN8lbUUmniWangl9cmnq3W3x+8zAYDPJGiUwVB6Sh5u8EOR6WoJS/HpCaeIuUVm7NgZpVmkkm4uzeVSyHSTmWqy1CRl2NSjX+R8qp3gz+N5MGCiHS4rq7BzoikMbNn5yfoE4kSGyy4++w2pkMSyEt2s0iUuXM3rLMAQUsAFUUMbc4cBQuSb6qz0CZp/BDoxySeauFnT008RcpLwUKb5HEUsbKIG2hJAUP7FaWJp4g0RsGCFF5cLXz1xy8ikg4FC1IoUcUNcbXwVTtfRCQdChakUKKKG7baKnpZ9ccvkg+qb1V8ChakUOI6/VF//CL5pTpbxZc4WDCzPczsKjN7yszWmtme4fQzzOyA1iVRpL6//U398Q9XK5781EJFpDwSBQtmNg1YDLwJuKxmvXXA0eknTSSZri7Vwm9Gdb8drXjyiyoyEpFiSpqzcCZwHcHQ1CfWzLsV2DPNRInEUXFDelpdjqxxIkTKI2mwsCfwTXd3Nu4C+ingtammSoYtywpFrexpUsUNIiLtlzRYeBEYHTNvPPBsOsnJVplq7GZZoaiV51HFDSIi7Zc0WPgtcIKZjayaVslh+HfgV6mmKiOqsSuSnqgiIxEppqTBwucJiiL+GH524CNm9mtgH0C32YIpUy6K5JPGiRApj0TBgrv/EZgOrABmAQYcG87udfe/tCZ50irKRZFWU5GRSHnEDlFdy91vBd5hZqOArYBn3F31m0WkdDQcvMiGGu7B0d1fdPdHgVFmNsXMNm9BukREMqNiOpENJe2U6RQz+1LV9+nAMuBm4D4ze2Nrkid5pqcvEZHOkDRn4Ujgr1Xfv0xQ2fEQgnoMp6ebLCkCPX2JiHSGpMHCdsB9AGb2WmBv4PPufjVB7477tSZ5UnbKnWjMcM6XxmoQkWYlDRZeATYLP08n6KTpd+H3JwkqPCZmZseY2VIze9HMlphZ3WDDzDYzs9PCdV4yswfN7D8a2ae0xnBvQMqdaEyz52vBguixGhQwiEgSSYOFu4EjzWwM8FFgkbu/HM77R+CJpDs0s8OBecAZwB7A74FrzayrzmqXAwcAM4GdgcOAO5Lus2iKcgPVDag4Zs2KHqth1qxs0iMixZI0WDgN+CBBt87vIKizUHEgwWBSSZ0IXOzuF7n7n939OOAx4BNRC5vZu8J9Huju17v7Mne/yd0HYpYfiHoBPQ2kMVNF6QNBN6DiePDBxqaLlJ2K5RqTtFOm64BJBAHDLu6+qGr2DWwYPMQys82AKcDCmlkLgbfFrHYI8AfgRDN72MzuM7PzwlwOyZBuQMXRFZNvFzddpMyUK9q4xP0suPtSd/+xuz9QM/1Cd78x4Wa2AUYStKCotgLYNmadHYFpwO7ABwh6jjwAuDgmnX1RL+D2hGmUhHQDKo65czW8t0iFckUbl7gHRwAzew3wRmBU7Tx3vyGtRNUYQTAWxYfc/dkwHccC15nZOHevDTykTebODaLx6n+6tG9Aai2RjkpXy7NmBU9REycGfyd1wSydSLmijUsULIRdPH+HoBjCYhYbGTO92lMELSvG1UwfBzwes85jwCOVQCH05/C9i41zKaRN2nEDKkplzyLo7w9eZoNjNoh0oq6uwSKI2ukSrZFRJ/uAjzA4iNTHCIaufgA4OMlG3H0NsATYv2bW/gStIqL8DphQU0dhp/A94s8taaqtBFRLgwWJSNGoWK5xSYOFDxC0iLg8/H6Tu3/X3XsJenI8oIF9ngPMMLOPmdkkM5sHTAAuADCzS8zskqrlLwNWAt81s13MbCpB08sr3T1xk01pXFQloMp0kU6gYrBy6u+PHkJdDzvxkgYLXcDd7v4K8DLw6qp53wEOT7pDd78COAE4haDS4TSCZpGVXIKu8FVZfhXwTmBLglYRPwQWEfT3IC0UVQmoMl2kE6gYrLyyyhUtagCatILjSqBSDPAQQcuE34TftwFe1chO3f184PyYeX0R0/4CvKuRfWSlqBdCFFUCEhFJV1ED0KQ5CzcS9LYI8GPgdDM72cz+CziLoO6CUNwLIUpemkaq85TyaFUwXaYgXSSPkgYLXwbuCT9/EfgVQR2GLxOMRhnZ+6IUW1QloMr0donrPCWObhr51qpgukxBupRHma7LpD043uLuV4Wfn3f3DxAUS/yDu7/N3ZUxXUJRlYAq09slrvOUOGX655R0KYdK2q0oXfcnkbgHx1ru/pK7P5dmYiR/aisBtZvqR0ga1L2vyPAk7sHRzLYgGDSqi417cHR3Pz3NhIlAfOcpIo2o171vpzSXmz1bOW/SvKQ9OE4Frgb+IWYRBxQsSOriupSuVxQhUkste4IscQUL0qykxRDnAsuAvYBR7j6i5pWkq+dCU3lnNuI6TxFpRF5a9ogUVdJgYRJwirsvCbts7igq78yWupSW4VL3viLDkzRYeBDYvJUJyTMNZypSbOreV2R4kgYLc4CTwkqOHUflnSLFpxyq8lEdjPaJreBYM5gTBMNILzWzxcDfaua5u38k7cTlhYYzFRHJH1XabJ96rSGmE7RyqHDgOWCXiGU9YlppxNXIV3lndtRTo4hI+8QGC+7e3cZ05Folu3LWrCCHYeLEIFBQNmZ29DQhImWwYMFg/bfu7vw+hCbtZ2EbYJW7v9ji9ORWf3/wMsumJ0MRESmf6lzroca+yVJsBUczG2lms83saWAF8JyZ/djM/qFtqRMRkVJREeKGGhn7Jkv1chaOBr4ADAB/AHYE3k9Qb+H/tTxlIiJSOipCLKZ6TSc/Dlzk7m9398+6+2HAJ4EjzWyz9iRPqqkXSRERyUK9YGFH4Ec1064ARgITW5YiiaReJEUCCpqlTKJ6Fs2jesHCGIIih2rPh+9jW5MciaNeJEUUNEv5FGXsm6F6cNzOzHasvAhyGzaaHs6TFuqEXiRV8ak4svpbKWiWsilKz6JDNZ28Mmb6TyOmlX7kySx1Qi+SqvhUHFn9rTohaBbJo3rBglo85Ih6kRTpjKBZJI9iiyHc/XuNvNqZ6CJJqzJWM6PmqSKYlI2GmhbJRtJRJ1NlZseY2VIze9HMlpjZfgnXm2Zma83srlanMQ1pV8ZqtGxLFcGkbDTUtEgyadcranuwYGaHA/OAM4A9gN8D15pZ3YxEM3sNcAnwy5YnMiVZV8ZSRTApo6JUCBPJUtr1irLIWTgRuNjdL3L3P7v7ccBjwCeGWO/bwPeAxa1OYFryWBlLFcFERKRRiQaSSkvY8+MU4OyaWQuBt9VZ7xhgHPBF4PND7GMgZlZP0nSmJY+VsVQRTEREGtXunIVtCJpYrqiZvgLYNmoFM5sMnAoc6e6vtDZ56cq6MpYqgomISBoyqeCYlJltTtDF9KfdfWmSddy9L+oF3N7CpEbKujKWKoKJiEga2loMATwFvEJQpFBtHPB4xPLjgUnAd83su+G0EYCZ2VrgQHdf2KrEpqG/P3iZDVbK6oR9i4hIebQ1Z8Hd1wBLgP1rZu1P0Cqi1iPAZIL6BpXXBcD94eeodUREpMOpn5l0ZVEMcQ4ww8w+ZmaTzGweMIEgCMDMLjGzSwDc/WV3v6v6BTwBvBR+X5VB+kVEJOfS7GdGXdFnECy4+xXACcApBPUIphEUJ1TaDXSFLykR/bOJSDul2c/MnDnDT0/RZVLB0d3Pd/dud9/c3ae4+w1V8yoVEuPWne3uu7YloZIa/bOJSNaG289MJz/05Lo1hIikT0OBS6cabj8znfzQo2BBpMN08tORdA71M5MuBQsiIlI66mcmXe3uZ0FERKTl1M9MupSzICIiInUpWBAREZG6FCyIiBSMeieUdlOdBRGRAlmwIOiNsNLpUKV3QpFWUs6CiEiBzJoV3TuhSCspWBARKZDh9kIo0gwFCyLSUuoxMl3D7YVQii+L/ykFCyLSUuoxMl1z50b3TphHqojZGln8TylYEBEpkP7+6N4J8yjNYaKHohys1lKw0GFaFenrH1VkQ638n+jvH+yVcNmy/HZjnOYw0UNRDlZrqelkB6nX5Gq4Pzb6RxXZkP4noqmCZjEpZ6GDxDW5alWkLyJSSxU0i0nBQgeJi+gV6YtIK2iY6PJQsNBB4iJ6RfoinaVddYw0THR5KFjoIHFNrhTpi3SWdtWnKEpFTBmagoUOEtfkSv/AIiJSj4KFDqNIX2T40noyV6dFxdVprV0ULIiINGjOnOFvo9KUubbTIimGNK6BIlGwICKpy0snXXlJRxSNHilFomBBpIO1Khs8L1m0eUlHFDVZliLJJFgws2PMbKmZvWhmS8xsvzrL/ouZLTSzJ83seTO7ycze2870ipRRXDa4ys3bQ02WpUjaHiyY2eHAPOAMYA/g98C1Zhb3r9ML/Ao4KFz+GuAn9QIMERmaevTMVpFGjxTJImfhROBid7/I3f/s7scBjwGfiFrY3Y939zPd/WZ3v9/d5wBLgEPal2SR8lGPntkq0uiRIm0dSMrMNgOmAGfXzFoIvK2BTY0Fno7Zx0DMOj0NbF+k9Lq6BosgaqdLe/T3By+zwSbNRx6ZaZJEIrU7Z2EbYCSwomb6CmDbJBsws08C2wPfTzdpIp1FPXqKSFKFag1hZh8AzgI+5O4Rz0Tg7n1RL+D2NiZVJPfUo2c5qGMnaYe2FkMATwGvAONqpo8DHq+3opkdClwC/Ju7X92a5Il0lqhscCmWmTMHK6pWd+ykoE/S1NacBXdfQ1A5cf+aWfsTtIqIZGYfJCh2mOHuV7YuhSIixaIWLdIO7c5ZADgH+L6Z3Qz8DjgamABcAGBmlwC4+7+F3/+VIFD4NHCDmVXqNqxx97+1Oe0iIrmnFi2StrbXWXD3K4ATgFMI6hFMAw6sqoPQFb4qjiYIas4laGJZeV3VlgS3kcoeRSQNatEiacsiZwF3Px84P2ZeX73vZVXpTU9lj/Hy3M+/SFZGj96wKEItWqQVCtUaoszUm97Q8tzPv0hW1KJF2iGTnAXZmHrTE5FmqEWLtINyFnIiroxRZY8i6VJxlkjjFCzkhHrTE2kPFWeJNE7BQk6oNz0REckrBQvk50mjv3+wzHHZsnwGCsrCFRHpPAoWgDlzsk5BceQlsBIRkfZRsCAiIiJ1KVgQERGRuhQsiIiISF0KFiQRVWwUEelcChbapOg3W1VsFBHpXAoW2kQ3WxERKSoFCyIikhtFz4UtKwULIiI510k5k510rEWiYEFEJOfUcZxkTcHCMCxYAN3dwefu7uC7iIhI2WySdQKKasECmDkTVq8Ovi9fHnyHfI7pICIi0izlLDRp1qzBQKFi9epguoiISJkoWGjSgw82Nl1ERKSoFCw0qaursekiIiJFpWChSXPnwujRG04bPTqYLiIiUiYKFprU3w/z58PEicH3iROD76rcKCIiZZNJsGBmx5jZUjN70cyWmNl+QyzfGy73opn91cyOblda6+nvh2XLgs/LlilQEBGRcmp7sGBmhwPzgDOAPYDfA9eaWWRpv5ntAFwTLrcH8CXg62b2gfakWEREJBt56f46i5yFE4GL3f0id/+zux8HPAZ8Imb5o4FH3f24cPmLgO8Bn25TekVERDKRl+6v29opk5ltBkwBzq6ZtRB4W8xq+4bzq10HfMTMNnX3l2v2MRC/ndvp6+sD4LHHHuPee+8NZ/VitqjqHXp7e9evuGTJElatWlWzbGD8+PHATvT1wfPPP8+tt94as3vYc889GTt2LAD33nsvjz32WMySvYTJBGDRokUbza+kYaeddgrTEHdMg5+rjwnY4DiqjR8/np122glo5zENij+miK3G/p021IpjGjX+DYwdM5a+H2xRgmMKrpExY8YwZcqU9VM3PKYNr/3hHBNMibz+Gjmm6muq3t+p/jFtKPkxbXg9D/6dejc6rmTHFKy35557AmPp66s9pg23W31MfX2VY9p437XHtPPOyY9p7Nhmjmnj3534Y9pQI3+n6rRGH9OG6agsG/3/FCxb/++04T0i6TE18lteu+zGf8sk96cNbbbZZgBviElcQ8zd09hOsp2ZTQAeAXrd/Yaq6V8A+t1954h17gUudffTqqZNBxYBE9z9sZrlB2J2Pw14BVg83OMouZ7w/fYM01AUPeH77RmmoQh6wvfbM0xDUfSE77dnmIYi6Anfb88wDUWwL7DG3ccOd0Ol6+7Z3fuipleCiLj5EtB5Sk7nKhmdp+R0rpLReUqmzsNzw9pdZ+Epgqf7cTXTxwGPx6zzeMzya8PtiYiISAu1NVhw9zXAEmD/mln7E7R2iLI4ZvlbausriIiISPqyaA1xDjDDzD5mZpPMbB4wAbgAwMwuMbNLqpa/ANjOzM4Nl/8YMIONK0mKiIhIC7S9zoK7X2FmWwOnAOOBu4AD3X15uEhXzfJLzexA4GsEzSsfBf7D3X/cxmSLiIh0rEwqOLr7+cD5MfP6IqYtAvZscbJEREQkQlubToqIiEjxaCApERERqUvBgoiIiNSlYEFERETqUrAgIiIidZUiWDCzk83sD2b2nJk9aWZXm9muCdabbGaLzOwFM3vEzL5gZtaONGehmfNkZt1m5hGvA9qV7iyY2SfN7I7wXD1nZovN7KAh1umo6wkaP0+dej3VCv8X3cz+e4jlOu6aqpbkPHXqNWVmsyOOOa4n5Mo6TV9PZRkboo+gKeYfAANOA35hZm92979FrWBmWwDXAzcAewFvAr4L/B34ahvSnIU+GjxPVQ4A/lj1fajli+5h4LPAfQRB9UeAn5rZFHe/o3bhDr2eoMHzVKXTrqf1zGwfYCZQ7/x08jUFJD9PVTrxmvoLwe96xStxCw77enL30r2AMeFJ++c6y3wCeA54VdW0UwhGxbSsjyFH56kbcOAtWac36xfBj89RMfM6/npKeJ46+noCtgQeAP4JGAD+u86yHXtNNXieOvKaAmYDdzWw/LCup1IUQ0QYS/CU83SdZfYFfuPuL1RNu46g6+nu1iUtV5Kcp4qrzOwJM/udmR3a4nTlipmNNLN/JQiu4sYw6fjrKeF5qujU62k+cKW7/zrBsp18TTVynio68Zra0cweNbOlZna5me1YZ9lhXU9lDRbmEYxzvrjOMtsCK2qmraia1wmSnKdVwKeBDwIHAr8ErjCzI1ueuoyF5XurgJcIxih5v7vfGbN4x15PDZ6nTr6ePg68geBpLomOvKaaOE+dek3dRDBO0gHAxwmuid+HwylEGdb1VJY6C+uZ2TnANGCau8eW33S6pOfJ3Z9iw/KsW8xsG+AzwKWtTWXm/gL0EGSJHgp8z8z63P2uTFOVP4nPU6deT2a2M3AGwf+bRsuN0cx56tRryt2vrf5uZjcCfyWoN3RO2vsrVc6CmX0NOAJ4u7v/dYjFHwfG1UwbVzWvtBo8T1FuAt6Ybqryx93XuPv97r7E3U8myIX5z5jFO/Z6avA8RemE62lfYBvgbjNba2ZrgV7gmPD75hHrdOI11cx5itIJ19QG3H0VcDfxxz2s66k0wYIFQ11XboD3JFhlMbCfmY2qmrY/waiWy9JPYT40cZ6i9ACPpZao4hgBxP1YdeT1FKPeeYrSQ/mvp58CkwmOtfK6Bbg8/LwmYp1OvKZ+SuPnKUoP5b+mNhBeJ28i/riHdz1lXaMzpVqh3yCo5fl2grKXymtM1TJfAn5Z9X1LgmjqcmBX4F/CbXwq6+PJ2Xn6CPAhYBKwM0HZ4BrgP7M+nhafqzOB/Qgq/kwOz8s64D26noZ1njryeoo5dwNU1fLXNdX0eerIawo4myDXZQfgrcDPw+tjYiuup7LUWTgmfP9lzfQ5BM1LAMYDr6/McPdnzWx/ghvoLQQtAr5KC8p6cqTh8xQ6BZhI0MzyXuCj7l7assDQtgTlndsCzxK09X6Pu18Xztf1FGjoPIU68XpKQtdUMrqmAtsDPyAotnkSuBHYx92Xh/NTvZ40RLWIiIjUVZo6CyIiItIaChZERESkLgULIiIiUpeCBREREalLwYKIiIjUpWBBRERE6lKwIJIBM5thZh7zemfW6SsLM5tiZqvNbLuqaQNm9tuY5T8W/g26G9jHIWa2wszGpJBkkVxSsCCSrcMI+sOvft2caYrK5SzgO+7+SAv38T8EXez+Vwv3IZKpsvTgKFJUt7v7/UkWNLPN3f2lVieoLMxsCvBPwHGt3I+7u5nNB043sy+5+4ut3J9IFpSzIJJDVcUU083sR2b2DMFIepjZJmZ2spndY2YvmdmjZvbVmgFiMLMdzex/w2z4J81snpkdVZvNHn6fXbNudzh9Rs30XjP7pZk9b2Z/N7PrzGzXmmUGzOy3ZvZOM7s13P9dZvb+iOPc3cx+YmYrzewFM/uLmZ0czvt6mL2/ac06Y8P9nznEafwYcIe73z3EcrHMbHad4qIZVYv+EPgHgv72RUpHwYJItkaGN//Ka2TN/AXAUuBQ4KRw2qUEfeFfBhxEMGDMv4fLAmBmmwHXA3sAnwRmEAw4c0qzCTWzgwjGFVkFHEkweM9Y4Ddm9o81i78emEfQ7/y/EGTT/8jM3lC1vb0JRsJ7PcGQ1geFy28fLvJN4HVAbZDxIeDVwIVDJPkA4Dd1jmeT2hcb/yZ+i42LiX7M4BgEALj7U8Cfw32KlI6KIUSyVTtM+O+AaVXfr3T3z1S+mNl+wOHAR9z9knDyL8zsb8ClZtbj7rcTjMS3I7Cvu98YrnstcOcw0joPWOTu76tKz6+BvwKfAk6oWnYbYLq73xcudytBwPBB4IxwmbOBlQSD36wOp/2qsgF3/5OZLQKOInhyrzgKWOjuS+MSambjCEbC/GPMIlOBl+scayUNDwMPV233MILg5wR3/33N4rcB+wy1TZEiUrAgkq33U3UzAp6vmf+Tmu8HEAy/e2X4JFyxMHyfDtxO8AT8UCVQAHD3dWb2QwZHGE3MzN5IkANwRs1+VxPkDkyvWeW+SqAQ7vsJM3sC6Aq3N5rghn1WVaAQ5XzgcjN7o7vfZ2Z7EeSWDJXdPyF8fzJm/h8JiilqvY+Y3BczewvwPeB8dz8vYpEnq/YrUioKFkSyddcQFRwfq/n+OmAz4O8xy28dvo8HVkTMj5qWxOvC92+Hr1oP1nz/W8QyLwGVehWvIcjyfzhiuWo/AR4nyE34NHA08Chw9RDrVfYTVyF0lbvfUjvRzHqiFjaz7YGfAQPA8THbfKFqvyKlomBBJN9qx5BfCbwI7Bez/KPh+2PALhHzx0VMe4kgAKm2dc33leH7ycAvIraxJiY9cZ4G1gHb1VvI3V82s28Bx5jZV4B/Bb7q7muH2H4lva9pMF0bMbNXEwQnTwGHu/srMYtuVbVfkVJRBUeRYvk/gqfXLd39lohXJVhYDPyjma0vQzezEQR1BmotB3atmXZQzfe/AMuAXWL2e0cjBxEWPfwWONLMXjXE4hcStDT4EbA5cFGCXSwjCKp2bCRdtczMCCqUjgcOdvfaYqJqOxCcJ5HSUc6CSIG4+4CZ/YCgzsI5BB04rSOozHcg8Fl3v5egbP0k4Coz+xzwBEEW/hYRm70cOMXMZgE3EuRaHFGzXzezTwL/E7a0+CHBk/Y44G3Ag+5+ToOH82lgEbDYzL5KUCSxI9Dj7uv7RnD3R8zsZwT1O65294eG2rC7rzGzm4C9G0xTrc8ChxAUPUwws+o6CQ+4+5OwPqjYm6COhUjpKGdBpHiOJKikeChB74FXAscC9xHWSXD3NcD+BJUdzycIHpYCX4zY3peA/w638VNgEvDh2oXc/RqCioyvJmhSeB3wFWBbgpyMhrj7HwgqOT4EfB24hqAXxKh6DD8K34dqLlntCuDtYTFCs94Uvs8jOMbqV3Xuy9sIijwuH8a+RHLL3GuLREWkrMKOhL4L7ODuy7JNTXJmtoAgsNjR3dclXGcLgsDjGHe/tMXp+yawq7vH1SURKTQVQ4hIboV1LnoI+pY4MWmgAODuz5nZl4HPmNkCb9GTkZltS9CvhTpkktJSsCAiebaYoMfI79FcfYBzgJEEFRQfHWLZZnUDn3L3G1q0fZHMqRhCRERE6lIFRxEREalLwYKIiIjUpWBBRERE6lKwICIiInUpWBAREZG6FCyIiIhIXf8ff2PCRPKbFt0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_plags, yerr=freq_plags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Phase lag (rad)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([0, np.pi/ 2])\n", + "plt.axhline(phase_lag, label=\"Input phase lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Energy-dependent lags\n", + "\n", + "The lag vs energy spectrum can be calculated using the `LagEnergySpectrum` from `stingray.varenergy`. Refer to the Spectral Timing documentation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Coherence\n", + "Coherence is a Fourier-frequency-dependent measure of the linear correlation between time series measured simultaneously in two energy channels. \n", + "See *Vaughan and Nowak 1997, ApJ, 474, L43* and *Uttley et al. 2014, A&ARev, 22, 72* section 2.1.3. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 14681.05it/s]\n" + ] + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900\n", + "\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt)\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt)\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `coherence` method returns two `np.ndarray`s, of the coherence and uncertainty." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "coh, err_coh = avg_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The coherence and uncertainty have the same length as the positive Fourier frequencies." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "print(len(coh) == len(avg_cs.freq))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "And we can plot the coherence vs the frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAFJCAYAAADtx5XDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtJ0lEQVR4nO3deZgcZbn+8e+dDWSLmEggQNgEZdNBEUGBRCDqARcUPAgqcPlT2QQVOEfA5SBwWA4QiEBAUdkEQTiHTUEQMWHfCZuskrCGkLCTPTPP74+3mu7pdE9Pz3RPz0zdn+vqq6ur3qp6qten36cWRQRmZmaWL0NaHYCZmZn1PScAZmZmOeQEwMzMLIecAJiZmeWQEwAzM7McGtbqAPqKpAeBDwLPtDoWMzOzPvAhYE5EbFFpYm4SAOCDI0eOXLOtrW3NVgdiZmbWbNOnT+ett96qOj1PCcAzbW1ta06dOrXVcZiZmTXdhAkTmDZtWtVeb+8DYGZmlkNOAMzMzHKozxMASdtLukbSS5JC0r7dmGdzSdMkLcjm+4Uk9UG4ZmZmg1IregBWAh4FfggsqNVY0irA34DZwCez+f4DOLSJMZqZmQ1qfb4TYERcB1wHIOn8bszyTWAFYJ+IWAA8KukjwKGSJoWvZmRmZla3gXAUwDbArdmPf8ENwLHAusCM0saSplZZTlsTYjMzMxuQBsJOgKuTuv9LzS6ZZmZmZnUaCD0AdYmICZXGZz0D4/s0GDMzs35qIPQAvAKMKRs3pmSamZmZ1WkgJAB3AttJWr5k3ETgZWBmSyIaBB55BL7zHZg1q9WRmJlZK7TiPAArSWqT1Jatf1z2eFw2/QRJfy+Z5RJgPnC+pM0kfQ04AvARAL3w0Y/CeefBlVe2OhIzM2uFVvQAbAk8mN3eB/wyGz4mm74GsEGhcUS8RfrHPxa4DzgLOBWY1HchDz777ZfuFy1qbRxmZtYarTgPwFSg6ln8ImLfCuMeAbZvXlT5097e+d7MzPJlIOwDYE2wdGnnezMzyxcnADnlHgAzs3xzApBTTgDMzPLNCUBOuQRgZpZvTgByyj0AZmb55gQgp5wAmJnlmxOAnHIJwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUewDMzPLNCUBOOQEwM8s3JwA55RKAmVm+OQHIKfcAmJnlmxOAnHICYGaWb04AcsolADOzfHMCkFPuATAzyzcnADnlBMDMLN+cAOSUSwBmZvnmBCCn3ANgZpZvTgByygmAmVm+OQHIKZcAzMzyzQlATrkHwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUEwAzs3xzApBTLgGYmeWbE4Cccg+AmVm+OQHIKScAZmb55gQgp1wCMDPLNycAORQBHR1p2D0AZmb55AQghwo//uAEwMwsr5wA5FBpt79LAGZm+eQEIIdK//W7B8DMLJ+cAOSQEwAzM3MCkEMuAZiZmROAHHIPgJmZOQHIIfcAmJmZE4Accg+AmZk5AcghJwBmZtaSBEDSgZJmSFoo6X5J29Vov5ek6ZLmS3pF0h8krd5X8Q42LgGYmVmfJwCS9gAmA8cDWwB3ANdLGlel/WeAi4ALgE2BXYFNgIv7It7ByD0AZmbWih6AQ4HzI+LciHg8Ig4GZgEHVGm/DfBiRJwWETMi4i7gDOBTfRTvoFP6o196XQAzM8uPYX25MkkjgE8Ap5RNuhH4dJXZbgeOl/Ql4M/AKOAbwHVV1jG1ynLa6gx30Crv9m9vhyHeG8TMLFf6+mt/NDAUmF02fjZQsaYfEXeSfvAvBhYDcwAB+zQvzMGtvNvfZQAzs/zp0x6AnpC0CanL/1jgBmAN4GTg18De5e0jYkKV5UwFxjcrzoHECYCZmfV1AjAXaAfGlI0fA7xSZZ4jgXsi4uTs8cOS5gG3SjoqIl5sTqiDV3kJwEcCmJnlT5+WACJiMXA/MLFs0kTS0QCVrEBKGkoVHrty3QPuATAzs1aUACYBF0m6h7SD3/7AWOAcAEkXAkREoXv/WuBcSQdQLAGcDjwQEc/3beiDg3sAzMyszxOAiLhM0ijgZ6Qf80eBnSPiuazJuLL250taGfgBcCrwFnAz8JO+i3pwcQ+AmZm1ZCfAiJgCTKkybUKFcWeQdgS0BnACYGZmrqHnkEsAZmbmBCCH3ANgZmZOAHLICYCZmTkByCGXAMzMzAlADrkHwMzMnADkkBMAMzNzApBDLgGYmZkTgBxyD4CZmTkByCEnAGZm5gQgh1wCMDMzJwA55B4AMzNzApBD7gEwMzMnADnkHgAzM3MCkENOAMzMzAlADrkEYGZmTgByyD0AZmbmBCCHnACYmZkTgBxyCcDMzJwA5JB7AMzMzAlADjkBMDMzJwA55BKAmZk5Acgh9wCYmZkTgBxyAmBmZk4AcsglADMzcwKQQ4V//MOHd35sZmb54QQghwr/+JdbrvNjMzPLDycAOVT4x19IANwDYGaWP04Acqjwgz9iROfHZmaWH04AcsglADMzcwKQQy4BmJlZ3QmApCGSNpM0XtKKzQjKmssJgJmZ1ZUASDoIeAV4CLgZ+HA2/ipJhzQ+PGsGlwDMzKzbCYCk7wGTgauAPQCVTL4V2K2hkVnTeCdAMzOrpwfgUODUiPg+cGXZtCfIegOs/3MJwMzM6kkA1gNuqDJtHvD+XkdjfcIlADMzqycBmAusW2Xah4GXeh2N9QmXAMzMrJ4E4M/ALyStXzIuJI0GfkzaN8AGAJcAzMysngTgZ8Ai4FHgJiCAXwGPA+3AMQ2PzprCJQAzM+t2AhARc4EtgROA4cC/gGHAmcA2EfFWUyK0hnMJwMzM6joPQES8ExHHRsS2EbFRRGwTEb+MiLfrWY6kAyXNkLRQ0v2StqvRfoSkY7J5Fkl63ucd6Dn3AJiZ2bDuNpS0EbBGREyrMG17YFZEPN2N5exBOp/AgcBt2f31kjaJiOerzHYpsBbwfeBpYAzwvu7Gbp15HwAzM+t2AgCcDvwTWCYBAL4IbJLd13IocH5EnJs9PljSF4ADgCPLG0v6HLAjsEFWhgCYWUfcVsYlADMzqycB2BI4p8q0W4B9ai1A0gjgE8ApZZNuBD5dZbZdgXuBQyXtDSwArgeOioh3K6xjapXltNWKLy9cAjAzs3oSgJWBhVWmLQFGdmMZo4GhwOyy8bOBnarMsz6wLekIhN1IJxw6AxgL7N6NdVoZlwDMzKyeBOBZUlf8jRWm7UDzuuWHkA453KtwpIGkHwA3SBoTEZ2SiYiYUGkhWc/A+CbFOKA4ATAzs3qOArgQ+LGkgyQtByBpuewKgT8CLujGMuaSzhkwpmz8GNJVBiuZBbxUdpjh49n9uG7GbiVcAjAzs3oSgFOAa0jd7/MkvUq6BsAZ2fiTai0gIhYD9wMTyyZNBO6oMtvtwFhJK5WM2yi7f67b0dt7vBOgmZl1uwQQEe3A7pJ2IP1gjyL9o78xIqbWsc5JwEWS7iH9uO9PquefAyDpwmx9e2ftLwF+Dpwn6WjSPgCTgSsi4tU61msZlwDMzKyefQAAiIibgZt7usKIuEzSKNKphdcgnVp454go/JsfV9b+XUk7kXoa7gXeIF134IiexpB3LgGYmVndCQCApNWA5cvHd3Ein/J2U4ApVaZNqDDuSeBz9UVp1bgEYGZm9ZwJcBVS1/sewHJVmg1tRFDWXOU9AE4AzMzyp54egLNIx+H/DniEdFy+DUDl+wC4BGBmlj/1JABfAP4jIs5qVjDWN1wCMDOzuq4GCDzZlCisT3knQDMzqycBuBT4UrMCsb7jwwDNzKyeEsCNwOmSVgauA14vb5AdImj9WIRLAGZmVl8CcHV2vx6wb8n4AJTd+yiAfq6jI91LMHx4GnYJwMwsf+pJAD7btCiszxT+7Q8dmm6l48zMLD/qORXwtGYGYn2j8GM/bFi6lY4zM7P8qPtMgJJGA1uTrgVwbUS8Lml5YHFEdDQ6QGusQnd/aQ+ASwBmZvnT7aMAlJwMvEi6+t/vgXWzyVcDP214dNZwLgGYmRnUdxjgkcAPgGOAT5F2/Cu4FvhiA+OyJnEJwMzMoL4SwHeBYyLiBEnle/s/A2zQuLCsWVwCMDMzqK8HYE3grirTFgMr9j4cazaXAMzMDOpLAF4CNqsy7WPAjN6HY81W+LdfWgJwD4CZWf7UkwBcDvxC0mdKxoWkjYDDSKcKtn7OPQBmZgb1JQBHA08AtwBPZ+MuJ10a+GngxIZGZk3hBMDMzKC+EwEtkDQB2Av4PGnHv9eAY4GLI8IdyQNAaQmgkAB0dKRrBEjV5zMzs8GlWwmApBHAZcBpEXERcFFTo7KmKe0BkGDIkJQAtLcX9wkwM7PBr1slgIhYDOzU3fbWf5WeBwBcBjAzy6t6ftBvJ50C2Aaw0vMAgI8EMDPLq3o6fQ8DrpL0LnAVMIt0CeD3+FoA/V9pCaD03j0AZmb5Uk8PwCOks/1NBp4jnfxnScltccOjs4YrLwH4dMBmZvlUTw/AMZT947eBp7wE4NMBm5nlUz2HAR7dxDisj7gEYGZm0MO9+iWtJGkdScMbHZA1l0sAZmYGdSYAkr4o6QHgLeBZYPNs/G8l7dWE+KzBXAIwMzOoIwGQtCtwNTAX+AlQet64GcA+DY3MmsIlADMzg/p6AP4LOC8iPgecXjbtUapfKdD6kdJTAZfeuwfAzCxf6kkANiadDhiWPRrgDWBUQyKypnIPgJmZQX0JwNvA6CrT1gXm9DoaazqfCtjMzKC+BOBvwJGS3l8yLiQtB/wAuL6RgVlz+FTAZmYG9Z0I6KfAPcCTwHWkMsARwEeBkcCujQ7OGs8lADMzgzp6ACJiJvBx4M/ARKAd2B64C/hURLzcjACtsVwCMDMzqK8HgIh4Efh/TYrF+oBLAGZmBj08E6ANXC4BmJkZ1NkDIGk8sCcwDli+bHJExI6NCsyawyUAMzODOhIASfsBZwOvA08Bi8qbNDAuaxKXAMzMDOrrATgMuAT4TkQsblI81mQuAZiZGdS3D8CapFMB9/rHX9KBkmZIWijpfknbdXO+bSUtlfRob2PIK18N0MzMoL4E4H5g/d6uUNIewGTgeGAL4A7geknjasy3KnAh8PfexpBnvhqgmZlBfQnAIcCPJG3fy3UeCpwfEedGxOMRcTAwCzigxny/Ay4A7uzl+nPNJQAzM4Ma+wBIeoHOF/4ZCfxD0nzSBYBKRUSsU2N5I4BPAKeUTboR+HQX8x0IjAGOA35eYx1Tq0xq62q+vPDVAM3MDGrvBPh3lr3yX2+MBoYCs8vGzwZ2qjSDpM1JlyLeOiLaJR9s0BvuATAzM6iRAETEvn0UR0XZhYYuAw6PiBndmSciJlRZ1lRgfMOCG6B8HgAzM4M6TwTUAHNJ1xAYUzZ+DPBKhfZrABsD50k6Lxs3BJCkpcDOEXFjs4IdjHweADMzgzpPBSxpc0lXSJqTHY43R9Kfsm76mrJDCO8nXUyo1ETS0QDlXgI2J9XvC7dzgGey4UrzWBdcAjAzM6jvTICfBKYBC4BrSP/YVwe+BOwiafuIuL8bi5oEXCTpHuB2YH9gLOmHHUkXAkTE3hGxBOh0zL+kV4FFEeFzAfSASwBmZgb1lQBOIP0Y7xgR7xRGSloZuCmb/rlaC4mIyySNAn5G6uJ/lNSV/1zWpMvzAVjvuARgZmZQXwKwNfDt0h9/gIh4R9JJpGP0uyUipgBTqkybUGPeo4Gju7su68wlADMzg/r2Aah1OGAjDxe0JnEJwMzMoL4E4G7gqKzL/z2SVgR+AtzVyMCsOVwCMDMzqK8EcBQwFXhO0p9Jp+9dHdgZWBEfYz8guARgZmZQRwIQEfdI2hr4BfB54APA68A/gGMj4pHmhGiNVO1UwE4AzMzypda1AIYAuwAzIuLRiHgY2L2szebAuoATgAGgWg+ASwBmZvlSax+AbwF/BOZ10eYd4I+S9mxYVNY0LgGYmRl0LwE4r6vz8EfETNKlevdpYFzWJL4aoJmZQe0E4OOkS/XWchOwZe/DsWZzD4CZmUHtBGBl4I1uLOeNrK31cz4PgJmZQe0EYC6wTjeWMy5ra/2czwNgZmZQOwG4je7V9vfN2lo/5xKAmZlB7QTgdGBHSadJGlE+UdJwSacDOwCnNT48azSXAMzMDGqcByAi7pR0GHAq8E1JNwKFq/atA0wERgGHRYRPBTwAuARgZmbQjTMBRsTpkh4gne//q8D7skkLSKcGPjEibm1ahNZQLgGYmRl081TAEXELcEt2ZsDR2ejXIsI/GwOMSwBmZgb1XQyIiOgAXm1SLNYHXAIwMzOo73LANgi4BGBmZuAEIHd8NUAzMwMnALnjqwGamRk4AcgdlwDMzAycAOSOrwZoZmbgBCB33ANgZmbgBCB3fB4AMzMDJwC54/MAmJkZOAHIHZcAzMwMnADkjksAZmYGTgByxyUAMzMDJwC54xKAmZmBE4DccQnAzMzACUDuuARgZmbgBCB3XAIwMzNwApA7PhWwmZmBE4Bc6egoDg/JXnn3AJiZ5ZMTgBwp3wEQnACYmeWVE4AcKd8BEFwCMDPLKycAOVK+A2DpsHsAzMzyxQlAjrgEYGZmBU4AcsQlADMzK3ACkCMuAZiZWUFLEgBJB0qaIWmhpPslbddF269JulHSHEnvSLpb0pf7Mt7BwiUAMzMr6PMEQNIewGTgeGAL4A7geknjqswyHrgZ2CVrfx1wZVdJg1XmEoCZmRUMq92k4Q4Fzo+Ic7PHB0v6AnAAcGR544j4YdmoX0raBdgVuLWZgQ42LgGYmVlBnyYAkkYAnwBOKZt0I/DpOha1MvBGlXVMrTJPWx3LH5RcAjAzs4K+LgGMBoYCs8vGzwZW784CJB0ErAVc1NjQBr9KJYDSBCCi72MyM7PWaEUJoMck7QacDOwREc9VahMRE6rMO5W0P0FuVSoBDBkCUvrx7+joPM3MzAavvu4BmAu0A2PKxo8BXulqRkm7k/717x0R1zYnvMGt/EqABd4R0Mwsf/o0AYiIxcD9wMSySRNJRwNUJOnfST/++0bEFc2LcHCr1ANQ+tj7AZiZ5UcrSgCTgIsk3QPcDuwPjAXOAZB0IUBE7J09/gbpx/9w4BZJhX0FFkfE630c+4BWaSdAcAJgZpZHfZ4ARMRlkkYBPwPWAB4Fdi6p6ZefD2B/UpynZ7eCacCEZsY62FTaCRBcAjAzy6OW7AQYEVOAKVWmTejqsfWcSwBmZlbgawHkiEsAZmZW4AQgR1wCMDOzAicAOeISgJmZFTgByBGXAMzMrMAJQI64BGBmZgVOAHLEJQAzMytwApAj1U4F7ATAzCx/nADkSLUeAJcAzMzyxwlAjrgEYGZmBU4AcqRWCcA9AGZm+eEEIEdqlQDcA2Bmlh9OAHLE5wEwM7MCJwA54vMAmJlZgROAHPFOgGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAHPHVAM3MrMAJQI74aoBmZlbgBCBHvBOgmZkVOAHIkWo7AfpqgGZm+eMEIEd8NUAzMytwApAjLgGYmVmBE4Ac8XkAzMyswAlAjvg8AGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAAUpKt3rUuhqgewDMzPLDCUCO+FTAZvXrSbJtNhA4AcgR7wRoZmYFTgAGuDvv7H5bXw3Q+spg/Nf88sutjsCssZwA9AP1flk+8EBxeO+9Yf787s3nEkDPdOf1GYw/eJX0t+1sdjz/+ldx+DvfgYjmrcv63/trsHMC0I889VTtNh0dcOCBxcfPPANHHdW95beiBOAPdGP15+ezENuECcVxTz/dvPU1+8d4yRL45jeLj2+4AX772/qX059fs/5k1qxWR9A9g+n1bEkCIOlASTMkLZR0v6TtarQfn7VbKOlZSfv3VazN9PbbcMABxcfbbAO33db1PL//Pdx9d/HxsGEweTJMm1Z7fT05D0Bv3uxvvFEcLu21qEdh/T0tT/Qm/rlzYbfdio9//vPKy3v44eLwf/83LF7cs/XVcsstxeE77mjOOroyfXpx+E9/Kg5HwCWXFB+Xvhe33hpuvbV7y6/ntXrzTdhzz+LjuXO7N189jj2282cN4NBDYebM7i+jNKmu9dnuz3rzOZo3r/r8hfGf+hSMHVscf/bZKQFrdCy91dFRHD7kEDjuuGI8PUlII1qcUEREn96APYAlwPeAjYEzgHeBcVXarwfMy9ptnM23BNitzvVOHT9+fDTSwoURt98ekV7GiLPPjrjvvohFi6rP09ER8fjjxXnKb8stF3HZZant229HPPVUxIsvRrS3R8ydGzFqVOf2//Vf6X699SIuvTRi8uTitOuvj5gxI2LWrBRXYfwdd3SO6bzz0vi9906PFy2KuO22iJ//vDjPfvtFXHxxxD//GfHQQ2kZ110XccYZEQcfXGx3ySURzz+fnovSWIcMiTjooIjXX++87qVLI2bOLLa7/faI6dNTTDvsUBy/5poRxxyTlv3QQxEXXlic9ve/p+W++mrEX/9aHP+xjxWHJ0xI8S9YkJ7Ha64pTrvuuohXXukc11/+EjFmTPXX6Xe/i3j33Yjf/CZi+eU7T9t887Qd8+en17vwur/9dsQLL0Q8/HDELbcU2591VnH4wAOLw8cdF3HrrRGzZ0d8//vLxrDnnun9sWRJ59iXLImYM6fr92G5RYsiXnstPY9vvhnxzjvpPVd4jU48MWL48M7r/+53I555JuLLX+48/swzKz9nDz+8bKxvvJHeM3vsUWw3ZUra5vnzI+66qzj+pptSjLfeGjFuXOdlr712alvu2WeLbW64Ib1mhefooYeK0+bMKc4zf37Etdem96xUbLP77ul+hx2Kz03htZ07N+KxxyLuvTfigQfSe3jKlIj11+8c5667RjzxRJqvvT29J0qf61JLl6bnZ+bM9Ll7++3itHffTZ/3wnInTYp48MHKyynV0RExb17Ev/4V8Y9/dH5un3kmre+JJyJuvrk47XOf6/z5nj+/+vLb29Nn9KabOn+nlT6H06en76Xy93T556hwO/zw4vC//Vvn9/+ZZ0bceWf6vP3tb8Vphff+okWdt+XXv06v0bx5xc9m4bmeNSvi/vsjrrgi4qSTivOcf36K+fLLIzbbrPp3wtprF4d/9KPi8OTJKbann4548smIRx9NMf34xxHrrlts9+Uvp++9uXO7fg3rMX78+ACmRlT5Xaw2oVk34G7g3LJxTwMnVGl/EvB02bjfAndWaT+1yu3NRiUAixdXfxOU3lZdtTi86aYRW20Vsdpqndt88pPF4dIv//Lb+95X/EHaYYfim3fRos4/dN25Pfhg5+0p/TEdMqS+ZXX3NnRocfhDH0q39dePGDGiOeurdlthha6njxzZ+fF22xWHv/OdztMqfWFtsEH17e7trfQHuPRLVYoYPTqtu/Q9BxHvf3/Ehz+ckpKNNy6OX2edrrejdP7y92z5+iFilVWKwxHF4YMOWna+jTaKWGut3j8fW2657POz887pi/QrX4nYcMPKz+Fmm6XPU/m0NddMt9JxRxxR/Jy8+mrEBz9YnLbyyo1973Wn3dixEZ/5TNdtSj9TK6zQ+T1dmtD09LbKKuk7aKedIiZOTMl1V99BldZZ/rm46qqU1BQel3+O6r0NGxaxySYRK61Uvc3QoZ3ft/XeJk2KOPLI3j+flW5vvNGQn6r+lQAAI4ClwNfLxp8FTKsyzy3AWWXjvp71Agyv0L7pCUBE8YXadNPi8Le+lb5sa724q69eHC79R9TREXHyycVplb6kIPUglCrtUShNIiZMKA6XfkDL/yU88kjl9ZT+sz/xxOLwZptFfOpTxcennFIc/vzni8OXX15MVB5+uPrzscYaxeFttikOn3tucfimmyK++tXi4912Kw5vtVVxeNtti8Ol/x7PPjvi4x8vPt5++8rDpbeTTkr/DCq97qVxXnRRcfq8ecXx5T+SpV/an/lMcXj//YvDv/pV59ey9P312GPF9cyYURxf/gXbmy/5kSOr/7Bdd11x/aX/nnfeOfVsVNLRUWy33nqVlzthQsRppxUf77JLcbh0+7feujh8xBGd/+Udckj17SkMlycMpT8yK65YHB42rDhc3otS2nNUbT1tbcXhyy4rDr/0UsT3vlff67HKKp3/WZbeSp+Pffap/7Uu/ayUfgY22KBz4nvllcXh0j8s1W6rrdb5/T17dnH4hz8sDn/728XhcosWFaeVfvdcfXVx+OyzOz8XO+5Y+TNQ+h7aa6/qcY8eXTnOr3+9ODxlyrIxFx6X9rKeempxuLSnozQpPeyw1NPa1bJ7q1YCoIjoYfGgfpLGAi8B4yPilpLxvwC+GREfrjDPU8AfIuKYknHbA9OAsRHRrV1HJE0dP378+KlTp/ZyK5LHHks1q1VXXXbawoWwaFGqWy9ZAgsWwLvvptvo0fChD3Vd83nrrXS/yirFdm+9lXb4W3VVWH/9hmxCJ4V4l1su7SPQm5pUROX5I+D551ONvPC2GzsWVlqp98tub0/jh9TYq+Xll2HUqLSdpTo6Uq2yvT09DyuskG5deeopWHFFWHPN6m2WLEnLXXFFGD686+VVs3gxjBhRffrSpakG/vbb8IEPpPfI0KFpm15/HV59NbUZNizdhg5NtyFD0uORI9O2lj+vS5em992bb8Jaay37nC1cCE8+CR/9aH21+5dfTq/5yiunW/lOqVCsG5e/BkuXpvfqiisuO8/06fDCC2m7OzpgjTVgyy07L//NN1PMG26YnquC9nZ49tn0vIwbVzmmgo6O9JosWpTuV14Zll++e9sP6XugoyM9B4X3a0dHOppn6dL0Phk+PMVQ+n5ub4fnnktHJmy4Iay77rLLXrSoOBxR/A5aujTFuMIKy+4DVK+nnkpxFH6uhg0rvu9GjUrPR1fefDPFM3p07+Loyrx58MQTsNpqsPbaldssXpye84ULU/xdfcb6Unt771+jggkTJjBt2rRpETGh0nQnAGZmZoNQrQSgr48CmAu0A2PKxo8BXqkyzytV2i/NlmdmZmZ16tMEICIWA/cDE8smTQSqHdh0Z5X290VElQNFzMzMrCutOA/AJGBfSd+VtLGkycBY4BwASRdKurCk/TnAmpJOz9p/F9gXOKWvAzczMxssutjVpTki4jJJo4CfAWsAjwI7R8RzWZNxZe1nSNoZOA04AHgZOCQi/rcPwzYzMxtU+jwBAIiIKcCUKtMmVBg3Dfh4k8MyMzPLDV8LwMzMLIecAJiZmeWQEwAzM7MccgJgZmaWQ316JsBWkvTiyJEj12xra2t1KGZmZk03ffp03nrrrZciYq1K0/OUADwIfBB4pheLacvup/c2nn6gLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqUtu5/ei2V8CJgTEVtUmpibBKARJE2FyocqDjSDaVtgcG3PYNoW8Pb0Z4NpW2BwbU9fbIv3ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5ZATADMzsxzyUQBmZmY55B4AMzOzHHICYGZmlkNOAMzMzHLICYCZmVkOOQHoJkkHSpohaaGk+yVt1+qYekLSkZLulfS2pDmSrpW0WavjaoRs20LSma2OpackrSHpguy1WSjpn5LGtzqunpA0VNKxJZ+bGZKOkzSs1bHVIml7SddIeil7T+1bNl2Sjpb0sqQFkqZK2rRF4dbU1fZIGi7pJEkPS5onaZakSySNa2HIVdV6bcra/jprc3gfhliX7myPpI0k/Z+kNyXNl/SApI17u24nAN0gaQ9gMnA8sAVwB3B9f/2A1DABmAJ8GtgBWArcJOkDrQyqtyRtDXwfeLjVsfSUpPcDtwMCdgE2Bg4GXm1hWL3xE+Ag4BDgI8APs8dHtjKobloJeJQU84IK0/8TOIz0+nyS9Br9TdLKfRZhfbranhWAjwP/nd1/BVgb+Gs/TdZqvTYASNod2Ap4uY/i6qkut0fSeqTvhRmk7+zNgJ8B7/Z6zRHhW40bcDdwbtm4p4ETWh1bA7ZtJaAd+FKrY+nFNowE/gV8FpgKnNnqmHq4HccDt7c6jgZuz5+BC8rGXQD8udWx1bkd7wL7ljwWMAv4acm49wHvAPu1Ot56t6dKm02AADZvdbw92RZgHeAlUhI9Ezi81bH2dHuAS4CLm7E+9wDUIGkE8AngxrJJN5L+RQ90K5N6gt5odSC98Bvgioj4R6sD6aVdgbslXSbpVUnTJf1AklodWA/dBnxW0kcAJG1C+gdzXUuj6r31gNUp+U6IiAXALQyO7wSAVbL7Afe9kPVa/BE4LiIeb3U8vSFpCPAl4J+S/pqVBu/NeqV7zQlAbaOBocDssvGzSV8CA91k0vWm72xxHD0i6Xuka17/rNWxNMD6wIHAs8DnSa/NiaRu84HoJOAi0pfXEuAxUo/AlNaG1WuFz/2g/E7I/vScClwbES+2Op4e+CUwNyLObnUgDbAaqZf2KFLCOZGU3FwsaZfeLrw/1nesj0iaBGwLbBsR7a2Op16SPkzqNt82Ipa0Op4GGALcFxGFGvmDkjYkJQADccfGPYC9gb1IP/5twGRJMyLid60MzCrL/j3/AXg/8OXWRlM/SROAfUnvtcGg8Cf96oiYlA1Pl7Ql8APgL41YuFU3l1QjH1M2fgzwSt+H0xiSTgP2BHaIiGdbHU8PbUPqoXlM0lJJS4HxwIHZ4+VaG17dZgH/LBv3ODAQdzYFOBk4JSIujYhHIuIiYBIDYyfArhQ+94PtO6HQdf5RYMeIeK3FIfXEBGANYFbJd8I6wEmSBmJvxlzSjtpN+V5wAlBDRCwG7id1vZSaSDoaYMCRNJnij/8TrY6nF64CNidl+4XbfcCl2fDilkTVc7cDHy4btxHwXAtiaYQVSMlzqXYG/vfODNIP/XvfCZKWB7Zj4H4nDAcuI/34fzYiBmoiM4W0DW0lt5eB04AdWxVUT2W/P/fSpO8FlwC6ZxJwkaR7SF/S+wNjgXNaGlUPSDoL+DZph7M3JBVqlu9GRO8PK+lDEfEm8GbpOEnzgNcj4tFWxNRLpwF3SPop6ct4C9IhdEe1NKqeuxY4QtIMUglgC+BQ4MKWRtUNklYi7VsCKWEZJ6mN9N56XtLpwFGSngCeonhY1iUtCLemrraH9AN5Oelwxi8BUfK98Fa2g2O/Ueu1oeyw2Wz/k1ci4sk+DbSburE9/wP8SdKtwM2ko52+QfoO751WH/YwUG6knbNmAotIPQLbtzqmHm5HVLkd3erYGrR9UxmghwFm8e8CPAQsJP2wHEJ21c6BdiMdYXI66Z/KAtLOjccDy7c6tm7EPqHK5+T8bLqAo0llm4XANGCzVsfdk+0B1u3ie2HfVsde72tTof1M+vFhgN3ZHtJ+DU9ln6OHgT0bsW5fDtjMzCyHBnotzszMzHrACYCZmVkOOQEwMzPLIScAZmZmOeQEwMzMLIecAJiZmeWQEwCzFpC0r6Soctup1fENFpI+IWm+pDVLxk2VdFuV9t/NXoN161jHrpJmZyd0MRswnACYtdbXSdc0KL3d09KIBpeTgd9HxEtNXMfVpBMC/UcT12HWcD4VsFlrTY+IZ7rTUNJyEbGo2QENFpI+QTpt6sHNXE9EhKTfAMdKOiEiFjZzfWaN4h4As36opESwvaTLJb0J3J1NGybpSElPSFok6WVJp2YXpCldxvqS/pJ1gc+RNFnSfuVd3Nnjo8vmXTcbv2/Z+PGS/i7pHUnzJN0gabOyNlMl3SZpJ0kPZOt/VNJXK2znxyRdKek1SQskPSnpyGzaGVnX+vCyeVbO1n9ijafxu8DDEfFYjXZVSTq6i1LNviVN/0S6hO7Xerous77mBMCstYZmP+iF29Cy6ReTrj63O3BENu4PpIvPXEK6dsAJwP/L2gIgaQTwN9IFeA4inUt8vWy+HpG0C/B30kVvvgXsRTrf/62S1i5rvgEwmXQhra+Rusgvl/ShkuVtBdyZtf1xti2TgLWyJmcDqwHlicNewIrAr2uE/AXg1i62Z1j5jWW/E3/LsiWa/yVd1fCpQqOImEu6ROsXasRk1m+4BGDWWuWXY74d2Lbk8RUR8Z+FB5K2A/YA9omIwlX1bpL0OvAHSW0RMR3YB1gf2CYi7srmvR54pBexTgamRcRXSuL5B+kiP4cBPyppO5p0wayns3YPkJKAfyddEAjgFOA1YOuImJ+Nu7mwgIj4p6RpwH6kf9gF+wE3RsSMaoFKGkO6yM1DVZp8BljSxbYWYngReO868pK+TkpofhQR5Zf+fRDYutYyzfoLJwBmrfVVSn5ggHfKpl9Z9vgLwGLgiuwfa8GN2f32wHTSP9UXCj/+ABHRIelPpKvY1UXShqR/6seXrXc+6V/89mWzPF348c/W/aqkV4Fx2fJWIP0In1zy41/JFOBSSRtGxNOSPknq1ajV1T42u59TZfpDpBJBua9QpZdE0pbABcCUiPhVhSZzStZr1u85ATBrrUdr7AQ4q+zxasAIYF6V9qOy+zWA2RWmVxrXHatl97/LbuWeL3v8eoU2i4DCfgqrkrrbX6zQrtSVwCukf/2HA/uTrl9/bY35CuupttPkuxFxX/nI7Drsy5C0FnAN6XLTP6yyzAUl6zXr95wAmPVv5dfrfo10/fntqrR/ObufBWxaYfqYCuMWkZKKUqPKHr+W3R8J3FRhGYurxFPNG0AHsGZXjSJiiaTfAgdK+h/gG8CpEbG0xvIL8a5aZ1zLkLQiKeGYC+wREe1Vmn6gZL1m/Z53AjQbWP5K+pc5MiLuq3ArJAB3AmtLeq8mLWkIqQZf7jlgs7Jxu5Q9fhKYCWxaZb0P17MRWbf/bcC3JL2vRvNfk/awvxxYDji3G6uYSUqU1q8nrnKSRNrpcg3gixFRXqIptR7peTIbENwDYDaARMRUSX8k7QMwiXTSoA7SDm87Az+JiKdIteojgP+TdBTwKqn7fJUKi70U+JmknwJ3kXoX9ixbb0g6CLg6O8LgT6R/xGOATwPPR8SkOjfncGAacKekU0nlgPWBtoh479j9iHhJ0jWk/SWujYgXai04IhZLuhvYqs6Yyv0E2JXU7T9WUmmN/18RMQfeSxS2Iu2zYDYguAfAbOD5FmlHvt1JZ6G7AvgB8DRZjT8iFgMTSTsETiElBDOA4yos7wTgzGwZVwEbA98ubxQR15F29luRdHjcDcD/AKuTehzqEhH3knYEfAE4A7iOdDa9SvsFXJ7d1zr0r9RlwA5ZF35PfSS7n0zaxtJbaS/Jp0nlhkt7sS6zPqWI8hKjmQ1W2clrzgPWi4iZrY2m+yRdTEoW1o+Ijm7OswopmTgwIv7Q5PjOBjaLiGr7Zpj1Oy4BmFm/le3D0EY698Gh3f3xB4iItyWdBPynpIujSf92JK1OOu+CTwJkA4oTADPrz+4knXnwAnpWX58EDCXtxPdyjbY9tS5wWETc0qTlmzWFSwBmZmY55J0AzczMcsgJgJmZWQ45ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5dD/B87GMaNM5oqsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "# ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, coh, yerr=err_coh, lw=2, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Coherence\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.html b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.html new file mode 100644 index 000000000..4250df75b --- /dev/null +++ b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.html @@ -0,0 +1,403 @@ + + + + + + + + Quicklook NuSTAR data with Stingray — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

In this notebook, we will analyze a NuSTAR data of the black hole X-ray binary H1743-322 with Stingray. Here we assume that the user has already reduced the data with the official pipeline and ran barycorr or other tools to refer the event times to the solar system barycenter.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+
+import matplotlib.pyplot as plt
+import numpy as np
+from stingray.powerspectrum import AveragedPowerspectrum, DynamicalPowerspectrum
+from stingray.crossspectrum import AveragedCrossspectrum
+from stingray.events import EventList
+from stingray.lightcurve import Lightcurve
+from stingray.gti import create_gti_from_condition
+
+
+
+
+

Quicklook NuSTAR data with Stingray

+

Let us load the data from two event lists corresponding to the two detectors onboard NuSTAR. fmt='hea' indicates event data produced by HEAsoft tools or compatible (e.g. XMM-Newton).

+
+
[2]:
+
+
+
evA = EventList.read('nustar_A_src.evt', 'hea')
+evB = EventList.read('nustar_B_src.evt', 'hea')
+
+
+
+

For the sake of a quicklook, let us join the two event lists

+
+
[3]:
+
+
+
all_ev = evA.join(evB)
+
+
+
+

Let us calculate the light curve and plot it.

+

In red, we show the bad time intervals, when the satellite was not acquiring valid data due to Earth occultation, SAA passages, or other issues.

+
+
[4]:
+
+
+
lc = all_ev.to_lc(100)
+
+
+
+
+
[5]:
+
+
+
plt.figure(figsize=(12, 7))
+plt.plot(lc.time, lc.counts)
+bad_time_intervals = list(zip(lc.gti[:-1, 1], lc.gti[1:, 0]))
+for b in bad_time_intervals:
+    plt.axvspan(b[0], b[1], color='r', alpha=0.5, zorder=10)
+
+plt.ylim([5000, 6500])
+
+
+
+
+
[5]:
+
+
+
+
+(5000.0, 6500.0)
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png +
+
+

The light curve shows some long-term variability. Let us look at the colors. First of all, let us check that the events contain the energy of each photon. This should be the case, because NuSTAR data, together with XMM and NICER, are very well understood by Stingray and the calibration is done straight away.

+
+
[6]:
+
+
+
all_ev.energy
+
+
+
+
+
[6]:
+
+
+
+
+array([ 6.24     ,  3.4      , 14.4800005, ...,  9.64     ,  8.76     ,
+        4.2      ], dtype=float32)
+
+
+

Other missions might have all_ev.energy set to None. In which case, one needs to use all_ev.pi and express the energy through the PI channels (See the HENDRICS documentation for more advanced calibration using the rmf files).

+

Also, we notice that some GTIs do not catch all bad intervals (see how the light curve drops close to GTI borders). We make a more aggressive GTI filtering now:

+
+
[7]:
+
+
+
new_gti = create_gti_from_condition(lc.time, lc.counts > 5200)
+all_ev.gti = new_gti
+evA.gti = new_gti
+evB.gti = new_gti
+lc.gti = new_gti
+
+
+
+
+
[8]:
+
+
+
hard = (all_ev.energy > 10) & (all_ev.energy < 79)
+soft = (all_ev.energy > 3) & (all_ev.energy < 5)
+
+hard_ev = all_ev.apply_mask(hard)
+soft_ev = all_ev.apply_mask(soft)
+
+hard_lc = hard_ev.to_lc(200)
+soft_lc = soft_ev.to_lc(200)
+
+hard_lc.apply_gtis()
+soft_lc.apply_gtis()
+
+hardness_ratio = hard_lc.counts / soft_lc.counts
+intensity = hard_lc.counts + soft_lc.counts
+
+plt.figure()
+plt.scatter(hardness_ratio, intensity)
+plt.xlabel("Hardness")
+plt.ylabel("Counts")
+
+
+
+
+
[8]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png +
+
+

Despite some light curve variability, the hardness ratio seems pretty stable during the observation.

+

Let us now look at the power density spectrum. Notice that we are using a sampling time of 0.001 s, meaning that we will investigate the power spectrum up to 500 Hz

+
+
[9]:
+
+
+
pds = AveragedPowerspectrum.from_events(all_ev, segment_size=256, dt=0.001, norm='leahy')
+
+
+
+
+
+
+
+
+238it [00:01, 177.96it/s]
+
+
+
+
[10]:
+
+
+
plt.figure(figsize=(10,7))
+plt.loglog(pds.freq, pds.power)
+plt.xlabel("Frequency")
+plt.ylabel("Power (Leahy)")
+
+
+
+
+
[10]:
+
+
+
+
+Text(0, 0.5, 'Power (Leahy)')
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png +
+
+

Nice Quasi-periodic oscillations there! Note that at high frequencies the white noise level increases. This is not real variability, but an effect of dead time. The easiest way to get a flat periodogram at high frequencies is using the cospectrum instead of the power density spectrum. For this, we use separately the events from the two detectors. The cospectrum calculation is slightly slower than the power spectrum.

+

For an accurate way to correct the power density spectrum from dead time, see the documentation of stingray.deadtime and the Frequency Amplitude Difference (FAD) correction.

+
+
[11]:
+
+
+
cs = AveragedCrossspectrum.from_events(evA, evB, segment_size=256, dt=0.001, norm='leahy')
+
+
+
+
+
+
+
+
+238it [00:03, 78.00it/s]
+
+
+
+
[12]:
+
+
+
plt.figure(figsize=(10,7))
+plt.semilogx(cs.freq, cs.power.real)
+
+
+
+
+
[12]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fe8c0e7d8b0>]
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png +
+
+

To improve the plot, we can rebin the data logarithmically

+
+
[13]:
+
+
+
cs_reb = cs.rebin_log(0.02)
+
+
+
+
+
[14]:
+
+
+
plt.figure(figsize=(10,7))
+plt.loglog(cs_reb.freq, cs_reb.power.real)
+plt.ylim([1e-3, None])
+plt.xlabel("Frequency")
+plt.ylabel("Cospectrum Power")
+
+
+
+
+
[14]:
+
+
+
+
+Text(0, 0.5, 'Cospectrum Power')
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png +
+
+

For deeper analysis (e.g. time lags and other products), please refer to the relevant notebooks

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb new file mode 100644 index 000000000..8b75c0359 --- /dev/null +++ b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we will analyze a NuSTAR data of the black hole X-ray binary H1743-322 with Stingray. Here we assume that the user has already reduced the data with the official pipeline and ran `barycorr` or other tools to refer the event times to the solar system barycenter." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from stingray.powerspectrum import AveragedPowerspectrum, DynamicalPowerspectrum\n", + "from stingray.crossspectrum import AveragedCrossspectrum\n", + "from stingray.events import EventList\n", + "from stingray.lightcurve import Lightcurve\n", + "from stingray.gti import create_gti_from_condition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quicklook NuSTAR data with Stingray" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us load the data from two event lists corresponding to the two detectors onboard NuSTAR. `fmt='hea'` indicates event data produced by HEAsoft tools or compatible (e.g. XMM-Newton)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "evA = EventList.read('nustar_A_src.evt', 'hea')\n", + "evB = EventList.read('nustar_B_src.evt', 'hea')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the sake of a quicklook, let us join the two event lists" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "all_ev = evA.join(evB)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us calculate the light curve and plot it. \n", + "\n", + "In red, we show the bad time intervals, when the satellite was not acquiring valid data due to Earth occultation, SAA passages, or other issues." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "lc = all_ev.to_lc(100)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5000.0, 6500.0)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAGoCAYAAABSXLPLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACkC0lEQVR4nO39efxkRXX/j79O9/s9C+sMq+wDiiCibCPihiB+EJcETTTiEtF88iUaNSafREVjXGN+xiVR4xajuMQFN1AUREbFBQRk37cBBhi2GRgYmIWZeb+7fn/0vd13qapbe9/u93k+HjPv7tv31qlbt5ZzT506RUIIMAzDMAzDMAwjpzPqDDAMwzAMwzBMm2GFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyGqVFnQMdOO+0klixZMups4G/uuQdP2LwZAHD/vHn47z32UJ77zjvvxKNTU4Pzm3j2I4/gRYcdJpWlk/erK6/E7xYtMpKhy3PTvVXzo2OnzZvx9gMO0J6jkmcj5+iHH8ajU1N4xdOfbnR+nj4APGvtWtyxcKHRNS9aswbPPuIIYxlVeab3c/Bjj+FVFveS84Nrr8U+mzfj7B12MDp/6dq1+JNDD7WWA9jdj2u52choaoeh5By7Zg2OcawDP7j2Wly3zTZG5+63YQNOfupTneT8/vLL8UvDOgC4ld2vrrwSm4hwyfbbG52/x6ZNuGf+fCd5Ns+HhMB98+cb9ZlFzr/iCpy+665Gcu6fNw9HPPooTnnKU2r5a5J18eWX4+eGz8ak/1XJ+80VV+D8xYuN5OjqWtO9nXvVVbjIsA6Y1GmVvEsuvxznGJbb0Q8/jOMOP9zoXJ38Jo5fswbPSTAeuPYFtv3n8x9+GK89+OCoco5dswbzAOdxdBRcfvnlDwohdpb9Rm0OK7d06VJx2WWXjTobwBvfCOSK+4oVwNe/rj53yRLgmGOG5zfxoQ8BxWdQlKWTRwR84ANmMnR5brq3an50fOlLwP33689RybOR86EP9e+/1zM7P08fAH74Q+Cf/slcjmv7sLmff/s3wLADKjFvHrBli3k9+MhHgNlZezmA/fNxKTcbGU3tMJQcnzowbx7w3veanfvJTwLr1rnJsekLALeyIwK6XeB97zM7/1vfAl7/ejd5Ns/nxz8GDj3UrM8sQgScfLKZnBUrgNNPBx5/vJ6/Jlm+/XSM8UBX15ruLZScJnk2clL106nkuPYFtv3nt74FzMzElfOhD/X/tljPrEJElwshlsp+Y5cMhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDUYKMxEtIqIfEtFNRHQjET2r8Ns/EpEgop2y70REnyWi5UR0DREdXjj3ZCK6Nft3cvjbYRiGYRiGYZiwTBme9xkA5wohXklE8wBsBQBEtBeA4wHcVTj3xQD2z/49E8AXATyTiHYA8AEASwEIAJcT0VlCiIeD3AnDMAzDMAzDRKDRwkxE2wM4GsBXAUAIsVkI8Uj2838CeBf6CnDOiQC+KfpcDGAREe0G4EUAlgkh1mRK8jIAJwS7E4ZhGIZhGIaJgIlLxr4AVgP4GhFdSURfIaKtiehEAPcIIa6unL8HgLsL31dmx1THSxDRKUR0GRFdtnr1apt7YRiGYRiGYZjgmCjMUwAOB/BFIcRhANYD+CCA9wJ4f+gMCSG+LIRYKoRYuvPOO4dOnmEYhmEYhmGsMFGYVwJYKYS4JPv+Q/QV6H0BXE1EKwDsCeAKInoCgHsA7FW4fs/smOo4wzAMwzAMw7SWRoVZCHE/gLuJ6IDs0HEArhBC7CKEWCKEWIK+Un14du5ZAN6QRcs4CsBaIcR9AH4B4HgiWkxEi9FfLPiLCPfEMAzDMAzDMMEwjZLxdgDfziJk3A7gTZpzzwHwEgDLAWzIzxVCrCGijwC4NDvvw0KINU65ZhiGYRiGYZhEGCnMQoir0A8Hp/p9SeGzAPBWxXmnATjNKocMwzAMwzAMM0J4pz+GYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0WCkMBPRIiL6IRHdREQ3EtGziOgT2fdriOhMIlpUOP89RLSciG4mohcVjp+QHVtORKdGuB+GYRiGYRiGCYqphfkzAM4VQhwI4BAANwJYBuBgIcTTAdwC4D0AQEQHATgJwFMBnADgC0TUJaIugM8DeDGAgwC8JjuXYRiGYRiGYVpLo8JMRNsDOBrAVwFACLFZCPGIEOI8IcRMdtrFAPbMPp8I4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3MZhmEYhmEYprWYWJj3BbAawNeI6Eoi+goRbV05568A/Dz7vAeAuwu/rcyOqY6XIKJTiOgyIrps9erVhrfBMAzDMAzDMHEwUZinABwO4ItCiMMArAcw8D8mon8GMAPg2yEyJIT4shBiqRBi6c477xwiSYZhGIZhGIZxxkRhXglgpRDikuz7D9FXoEFEbwTwMgCvE0KI7Pd7AOxVuH7P7JjqOMMwDMMwDMO0lkaFWQhxP4C7ieiA7NBxAG4gohMAvAvAnwohNhQuOQvASUQ0n4j2BbA/gD8CuBTA/kS0LxHNQ39h4FkB74VhGIZhGIZhgjNleN7bAXw7U3RvB/Am9BXg+QCWEREAXCyEeLMQ4noi+j6AG9B31XirEGIWAIjobQB+AaAL4DQhxPVB74ZhGIZhGIZhAmOkMAshrgKwtHL4SZrzPwrgo5Lj5wA4xyJ/DMMwDMMwDDNSeKc/hmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAyThEc2bMbqxzaNOhvWTI06AwzDMAzDMMzc4NAPLwMArPjYS0ecEzvYwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwTHJmZnv48E9vwKpHHx91VhphhZlhGGaO8vqvXIJ/+fF1o84GwzBzlAtvewinXXgH3nPGtaPOSiOsMDMMw8xRLlj+IP734jtHnQ2GYeYoPSEAADM9MeKcNGOkMBPRIiL6IRHdREQ3EtGziGgHIlpGRLdmfxdn5xIRfZaIlhPRNUR0eCGdk7PzbyWik2Pd1KSxeaaHLbO9UWeDYRiGYRgmOO1Xl80tzJ8BcK4Q4kAAhwC4EcCpAH4lhNgfwK+y7wDwYgD7Z/9OAfBFACCiHQB8AMAzARwJ4AO5ks3oefL7fo4X/efvRp0NhmEYhmGYYNCoM2BBo8JMRNsDOBrAVwFACLFZCPEIgBMBfCM77RsAXp59PhHAN0WfiwEsIqLdALwIwDIhxBohxMMAlgE4IeC9TDS3P7h+1FlgGIZhGIYJxjhYlnNMLMz7AlgN4GtEdCURfYWItgawqxDivuyc+wHsmn3eA8DdhetXZsdUx0sQ0SlEdBkRXbZ69Wq7u2EYhmEYhmGYwJgozFMADgfwRSHEYQDWY+h+AQAQQggEelEQQnxZCLFUCLF05513DpEkwzAMwzAM0zImyiUDfUvwSiHEJdn3H6KvQD+QuVog+7sq+/0eAHsVrt8zO6Y6zjAMwzAMw8xRhGi/c0ajwiyEuB/A3UR0QHboOAA3ADgLQB7p4mQAP8k+nwXgDVm0jKMArM1cN34B4HgiWpwt9js+O8YwDOPFlXc9jCWnno3L73w4mczP/upWfOm3tyWTxzAMM2kQjY+NecrwvLcD+DYRzQNwO4A3oa9sf5+I/i+AOwH8RXbuOQBeAmA5gA3ZuRBCrCGijwC4NDvvw0KINUHugmGYOc1vb1k9+HvEPmmC7/zHslsAAG9+/hOTyGMYhpk0xsGynGOkMAshrgKwVPLTcZJzBYC3KtI5DcBpFvljmLHgOR/7NfbeYSt895SjRp2VOckY9bnBuPKuhzHbE9KOmWEYhgmLqYWZYRgN9zyyEfc8snHU2ZjzjM/knj+v+MIfAAArRpsNhmEYZ8bJJYO3xmYYZuyZgwZmZ4QQeN+Pr8X1964ddVaYFnDnQxzjn2FMYIWZYZiJYRTGinsf2Yjf3Lyq+cSW8PiWHr518V1449cubT6ZMebc6+7Dw+s3jzobVvzultV4/id+g59cxQGrGKYJVpgZhhl/NE7MKx/egD/c9mA00S/+zO9Z+ZzjrH5sE978rSvwN/97+aizYsXN9z8GALh2Jc82MEwTrDAzDDMxkMSL+QWf+i1e+z+XSM4Ow9qNW6KlzYwHW2Z7AIC7H94w4py4wS5NzCj4f9+7atRZsIIVZoZhJprNM70kcn5+7X2YmU0jizEjj899b6IFueMWrWWM1lsxE8gZV94zVgu1WWFmGA8eXr8Z+77n7FFnY87TBj3lLd++Al/+/e2jzgZT4NuX3AUAuGB5PJccYPwVz3FT9BlmFLDCzDAeXLXyER5sWsSoFZdVj24abQaYkdAb8z5AtOKV049bHnhsZDtv/vTqe3H+TeOz8JdxgxVmhmHGnra8tHRGrbFbYJLTWx94DHevGU+/3JTMzvYrYCrF87t/vAtX3f2IdzqmMXCX3fAAnvHRX7ZarT7xcxfiYz+/Cb0RvL28/btX4k1f54W/kw5vXMIwHoyPejQ3GPXzmOqOOgfmmKgV/+c/fwdgAjZHiaxDzSZ+Y3vPGdcCAFZ87KVJ5H3wrOux+rF2z55s3DILoB3uWYw9bTF66GALM8N4ME67FE0ybZlSHicL81wg1dOY7fFiz7bQG6Hm9fUL78AdD/JGMDaMU5fJCjPDMFG5ZuUj2Lh5NomsUXe+U53x6f3HJ6ftZ9yDo4yDdc+U//rVrSML9fjBn96AV33pDyORzcSHFWaG8YCVDj2PbNiMP/3chfiHyPE22zLgd8ZIYW5JkU0EM2NqYR6f2mrOZ3+9HB/4yXUjk//o4zMjkx2Ch9Ztwu2r1406G62EFWaGYaKR+xWGWKDki0igVcfUl5/38V9j6b/+0judtrivpCT2Pc9mC83a8uIWmhRtJySj3Exo3F9Cjv74+XjBp3476my0ElaYGcaDUbsAjAttUNJSLJ6P6ZJx95qNeHCd/8KrvBjmWtX91sV3Bik/GbNjGlduUvuvmRE+j3Ev0/WJ3OeqtGGMaIIVZoZhopFvVd0GA1WKxUBj4ZLRgmeRmjse3ID3/fg6vPXbV0RJf2BhjpJ6PPLaOm4W5CZS7e4pgxf+2nHmFfeMOgvGsMLMMB7QnLPT2ZF67NBFLQmpMKsUjC4Plq0kV6Ae3rA5SvrjamE2ZdzubqQW5pFJHk/OuJIVZoaZE7B+ZEbs4csk/ZBGNNV43B0DC3NeDuOmBPmQT/fGesEdR4V5y2wPH/zpDUbnjpsBembcw5YwrYQVZoZhojGc8h1pNgCEVWpUURHGYzo2X6DWgocSmfxx5Lca6/GM0qLpytWFhbjjl3s9W2ZH6cM8Dn0A4wIrzAzjAXeNDQwKKO4AZqL7hXTJUEURS7HT3xPfew4++Yubna/PS2EO6MsDYr8cpN7pj9EzyjB/PCa48/UL78CSU89u7QwBK8wMw0QjtY+3zrgT0gioUpBSWJhnewKfO3+5dzqj3BEtNYPIIJGez+xsurByoZR/m1TGIYJBkVFamFljdkMI4JPn3QIA2LBlNJE6mmCFeYx4fMss1m4YXXxJRgJ3jloE0ikSTYS0MqrcO8bChzn7O4ZeBM4MXDIipZ/SwhxKVDGdpjTb0H5t2DJCC2X7e4D209b6xgrzGPEX/30RDvnweaPOBlOAo2Q0kGiBmYkFLKSC2FMpzOPgv5g/k7aOSgHJ22duTY/1eEL4x69+7HF89YI7Gs+LMTMwbhbkJkaqMI9DH5AQAeCDZ12PVY893nhuXnRtXUTLCvMYcc3KtaPOAsNYkbrb073AhFQ0VBbFcRorbYoj9HNcu3FLa/0UXQix6O+3t6zGR37WHLWipbpEq5jJXDL+eMcafPOiFcHSfWTDZuz7nrNxwa0PKs9J1Qf0emJsZpy//ocVeN+ZzduV50XX1r6BFWaG0bBm/WY8+Z9/jktXrJH+nlpB+srvb8cLPvWbtEI9EKmsmckX/cnTGgddZuiSUc7tuk0z+NBPr8e6TTNR5fd6Aod86Dy854xro8opMvRhjpO+qj5EkTWCmYFxqNdFNmcK11/890V4/0+uD5bu9fc+CiGAz2vWEKQaEj617GYc8uHz8PD6OLHFQ/fZJvU2t85vaelbISvMLeDxLbMjnUJi1Fx+58PYPNvDf//2tlFnBQDwr2ffiNtXrx91NowZ+DAnkqdTiEL2/0qLYjv7+QryZ/KTq+7B1y5cgU8vuyWq9Nw6n3LDgqEPcxx1Zlgf4leAcD7MovA5jcxUzERa9Jcv6tX5rKdyyTjn2vsBpNuMJ7aeIkTBJWOUizY1sMLcAg78l3Px4s/8ftTZCMIltz+Ex1u6wtWFfA2XSj8aoxn4kZBqoDUR42KZEwCe9/Ff17baVfnYjUPkiaHVv3x8120XAAC++8e7sOLBeC9loygiEdmHedItzONGrLBy+aJe3fNONSakDpXoq6c0ZXfTzOygX90ywrCAOlhhbgnLV60bdRa8men18OovX4z3/bjZV2lcyC0KPEi5kTrmr26wctVp7l6zEavXbaqkNXkuGd0shvT6zbM45pO/ibbwJpcbc8A/6csX4YwrVg6+5/cSS5nJLcwp6jn3Rc3ECivXzTQmvYU5iugasUMlynTWmHrKFXc9gsce77uDxZoh8IUVZiYYeR9yywOPjTYjAaEmC/MYrfISQiS1hOUyi39Hic+9V/OvUiZbcJvNKCzMpvcYOBtRuPj2Nfh/37968H2g4MSKw5zQIhbjsTQnOQ4VOz4DA4rOwpx4TIglLfSLmU1qbXVRZYWZYTTkHaRK4RsjfRk9Abz2KxcnlTmY/o8uxySsnI/CbJbWOIXnqua1qvPFsmTGtpDK6kIvsoV5YMEOIODqux/BCZ/+HdYrFl/GePkcixe9FmDkw5wqM5EZ5e6Vbd1qfmrUGWAmj0nqfJtcMlLd6+9uWY15U/7vtxffLo/2MSkk2+lPYQBpaT9fYuiSUT5ereOx6nYuN1b6xXTz+jATUKGVEdIl41/PvgE33f8Yrrr7ETxH8nuoOmaTzCT16T7kbURnAE3mkhF30iT4bKTNi17KGRsbWGFmGA2DRX+K9pvK1eANp/2xJnccLBlFJWzLbA+3PrAOB+2+XXA5Jo8hpIVZ6a4QqT7ECB1VLY8mBToUsduMzMo/2LgkksyQZdXkfxvnuejTZH25T172+kV/aXrm2LNZo9w8ZKRbm2tglwwPTvnmZVhy6tmjzkbrGKdp6SZyfzTVPY3qTsfBkgkU9EcB/P/OuQkv+ezvo0Zg0A1WPopazX1BkdbXLlwRxU/8mE/+JniaTT7M8VwyoiSrTX/oMhFWmZnt9fDVC+4YRFEJcWtNCxR50d/oyC3LqRf9Hfep3+D4//zt4PuqRx/Hg4/1X6JjVYeRumSwwjx5nHfDA6POAhOZpkV/o+pTxmXQLObyirseBgA8FMFaalIaPopatbhVPna3P7geP74qfHzhtRvD7eilenGoW5iDiaxkoH7oX358XTDjgyzbuaITWpe56f7H8JGf3YDvXXY3gDDtssl/c0ya/kSSv8ykDit32+r1uOWBYYSKI//tV9iYhW+N9mLbAzZunsVdD23A1y+8wzs9q0V/LXXJYIWZCc59jzyO/++bl2HD5rg7hhW5cPmDuOn+R4Onm3d+KiXj7jUbgsvMWf3YJvxEoXyNjcKcR8koHFv58IZaXONQ6H2YfSzMZTZodsO7e81GZzkpUJVC1aIUy3VC9hz+9+I7g6UvCsrMYCOEbAAObf3bktXjfIviEJaxpm2Bi+XnE/Peamv0MelvYpOXve6lJnWUjFgvtrNC4G3fuQJHf+J8fPCnzVu2N2FThdjCzMwZHlq/GctueADLElrgX/eVS3DCp+Nt/iLrlDZsnsG7fnRNNJl//Y1L8Y7Tr8JDlRjAwPhYmQYeGWLo1PCO068Kvi2ykQ+zh45eVfIe3qC2+K567HF3QSOk7pIRR06ol72H1m2SRpKQWpjzBVKh7X+VGajNAcJh3ZrHulVktfhc/rEQOs+Hxp3+gkgZX/L+K1eU22SwiPZi2xO4YPmDUdJuoq2L/lhhZqLRGaeYawrywUnWQa7TWBlDcM8jfcVLtviiTR22DlVYud/fujqKvAuXP4g7H5L7SPst+itf+8hGtVvJ6sfqLzjjQH0RYKRFf4XP9699HP/0Azel738vvlP6rGXZHkyhR+qS8ja6eaYX3RpbdAf4zc2rospi+ly6ou9OdtN9/VlMfRzmePmQhkyMZWHuCWw9P1xcCCuXDLYwMy6M81TYBOjLg/KXdUqppo3Wb65Pu47Lor9SN1moy7Gyf/7Nq/H8T/xG+puPAlg1HD6isTDH8NEOiaoYRhGH+QNnXYcfXj7ckS9Ef9eT1K54O/3V4/JuiuRulBPjsYzxMJOEex/pu1ndlbngFZ93tc7GHPfkY0GYh3fcp36D95wxnDHtCYGt5nWDpG1LrK3NfeGwcgGY7YnBHvPMkFThdWIyjBlb75Ri+eFWOVYSIWHsLMxRBnmB1Y9twi7bLTCKzOLzklG18uvCvI0yHJMZqkV/VR/mSNIL6VaLarYnvAclUWiWuaxBWLlIXZKoKMwLpuMpGqHafrHNjHtkoxM/f2HU9AfxvDMjyaykjg3OjTjuPbpxC7apWH1PPeNabNg0g2Wead+2ej1uWz2csekJga3njUZFZAvzBBNzG0dZtfG1wqx69HF88KzrGxeX+BLbwnzRbQ9h1aNyf9ETP3cB3numv5/sIO6mpMxHuX2naOcLeI2BD3NlSF792CZv14Wv/P4OHPlvv8Jtq9c1nww/RaN67SOaqBXt7OqHqIrBdDfDkPJr23EHkFlSBDUuVSEpKv6hXqRVilfxXlItMGv7+/nVdz+i/T3UTK3Mh7macsxH8ujj9X7n6rsfGfq9OyIrn9kesNX80ViY22p0YIU5AFGn4CT1xrftv/fMa/H1P6zA7yM79Mfuyl/zPxfjTz53gfS3q1euxXcuuctbxjBQff23+G/B6vRjKQBfu/AOPPPffhksPV02P3jW9V5p5/XXNFKJz6BZLW9dBJhxdaNq2sgkhhyZhdmXkkKO3CKYu2SE7ZXy1Ir53jTjHrmiicvvfBiv/8olNfmxGdc6neOb/eFz7mV/i3U4XdlsmYkjS+bqMdsLa2G2qUOxjXmusMIcgNSWRt8Gunk2lj9fmRTWjwcejbvASmehCrEi3pVYnfSHfnpDkDJ97PEt+PBPbxiEvZJl10c5um/tRvzulv7CQdNUQrpk6PzX265bqLJXLZ8UYeWqMppiEJtQtDDnyQ2iZCTQMGMaUO54cB3uXTueUViAvvX9Iz+7YRCGLxXe/WVWcbZI4jBX04652D3WmCNzMRulD/NYu2QQ0QoiupaIriKiy7JjhxLRxfkxIjoyO05E9FkiWk5E1xDR4YV0TiaiW7N/J8e5pfQkd8nwTDNv7LGjWEzCor+8M5T1t7F9mHV9fPTd0jwFfO7Xy3HahXfg9Ev7Vn4Bia+fR/24sDg7IkzDyoWzMOsUu3H1B63HYY4jR+vDHGCg7Ml8mAc7/Xkn38imLW79QtX6HT2vJdeYyLIyfnbNvfjqBXfgkA+fh/sTKv6+/eXAwpz7MJde+srn3vHgevzhtjizt6Esr5tne+j1xGAMk22MFDpKhg1tXfRnY2E+VghxqBBiafb94wA+JIQ4FMD7s+8A8GIA+2f/TgHwRQAgoh0AfADAMwEcCeADRLTY+w5agM80SfOV9TN835bz62MvVIyZetEytVEynRQKXVi50ArznQ+txxd/c5vRubGnSH19SXOFcmBta4EO6WdhLn/XKcwt7esbSbU1dtllokwYC3Pxsyilm2IhsqtLRpsNDKFqQnGm5vyEIfF863L+aHJFrvioZGl/5pe3AujvbhrSmh6ifQDA9fesRU8I/PjK/sZYD2+oW5hvfuAxTAXUEYQAvnPJXbhm5SON57bVwuzz+iAAbJd93h7AvdnnEwF8U/R734uJaBER7QbgGADLhBBrAICIlgE4AcB3PfLQCjbPxlPYZPiOY7OJrC2pFqQ85f3nRkt7YGGW/BbaV/Hk0/6IFQ9twCuP2BM7bztfe26IxVHa9HsCPgv98362aNWNZXk1TTekD/PMbA/TXZJ27O3s6oeow8ql92GuLfoL4sNct/4ltTA7vki3OqpQoLpQHBNS3q13d5lHyZDUT1naU13Cltke/uwLf8DSfRbjhw4iN83MYv5UuRMO5ZJRvQ/ZrMi7fngN/uywPYLIywmxEH+UmFqYBYDziOhyIjolO/b3AD5BRHcD+CSA92TH9wBwd+Haldkx1fESRHRK5uJx2erVcTY3CM3mQI7437vUbJGab+PPr+9GHj0mIdLeMA5zfAvzhsxSbmINie2S4WvJyN19cn0yppuCaXvwuaWqMjnTE5jujusSEHlBVMsnxcYlVXe2EFOxxfTze4j9glnEWWGu9Jcm3edjm2aCuASmKp1RDQm+/U/+MpOvXSgq/rJ2cvP96/Cp824BAFx371preWddfS8OeN+5WL7qsdLxULH/83FteqoeR7zIGZkFOjW+LoGxMO3xnyuEOBx9d4u3EtHRAN4C4B+EEHsB+AcAXw2RISHEl4UQS4UQS3feeecQSUYnlA/zu39Uf/uS1WPfxp9q8GjzFKMpwzjM9d9CL8DIlUwjhTlyh+LrS5oPKHk+hcTPOHX98Nq4RGJhnjcl7z7bHlFAlbt6HOY491GUc/Hta0q/xbcwB46SIUlu0xbHmSfHrP37z29yuq7kutJQ7KFqQrG8UrZ/bx/mLK/5WF92yaif/+C6TfjSb/vudVMd+xfrX1x/PwDghvuqCnMvSN+fv5fmeUuhoNroLS3Vl80UZiHEPdnfVQDORN8H+WQAZ2Sn/CA7BgD3ANircPme2THV8bEnfZQM3+vTWF1aPcVoSD6Ay5Qt18U9KgZuDAOrrJrnffz8qJ2cr6Uvv5eiAhQrwH9fGVeXRT7Y+dR3WfgzlYW55fqyknoc5lhy1AmH8NEsJpF/HPowx8f1Rdp1vuLmBx5rPmmEfOq8m/Ef590MoKIwJxwfQs2WDPqzQtabXiynug73mSVZnaVdvW4T9nvvOfbpVcjLI/dRTqGg2jyCti6cbmyjRLQ1EW2bfwZwPIDr0PdZfn522gsA3Jp9PgvAG7JoGUcBWCuEuA/ALwAcT0SLs8V+x2fHxp6Y0RJk1cbX8jNYyBZZz3/vmddiyalnxxUSGV2UjE2BX5SqVtkmYnYqvpa+oUuG2gc8FE1p52OOlw9zpTy2zArMUynMLe3sc5Q+zCNY9FcleBzm3DhQ8GFecurZUZ+Q6z24Wr9dox2ZPN6H1m3C3Ws2eLWd//r1cnz218udrw+B70ZPAwuzoQ9zERcLc96HvO07V5YMcqEii+QpTmV9WEqXJRPaamE2WfS3K4Azs8Y8BeA7QohziWgdgM8Q0RSAx9GPiAEA5wB4CYDlADYAeBMACCHWENFHAFyanffhfAHguELUbyyp4/H6Vqa88wsduqXa5u4b43ihOdo4zIFflPJ+NRc1yql92cBgQ3XRX8x7EcJMRfWp7lUlqG9hlisqLRt7jImxiYiJnCIhfDRlO/3d88hGAGkszKm3rXddK2KyNfaR//arbAOLMPF4S1blgA9jh63nYY9FC3HtPXJ/YX8f5j6zhlEyiqj6CRX9cG/DNO8qbMwUqknm/XKet7b5DLfVra1RYRZC3A7gEMnxCwAcITkuALxVkdZpAE6zz2Y7mer0V8mntjD7mkd02z0zZbQW5sBRMvLBpA1v+6F8mFPcS6OFOXuz/dz5y3Hf2o34SwcZ1fvY0lP7MLe9XRlbmAN3a9fdsxYv+68L8JGXH6w8J7SFuXpPKSL3/MP3rsaTd90WT919e6vrXLMW08KcP48oPsyV33o9gbd/5wr87TFPxFMt0+0JoQ2T6h+HWb7ob92mmZJCK8MmfOvaDVswtWUWv7zxgcGxYtjUjZodRm3In33uVpZiK2orl4yWdqHjusx75HziFzcNQkqdduEd8d7QJMn6Dsi5QTzUittJRhWHecWD6/Hxc28OKmvo9zv6QL7+PsyZwlwYcGu1LaDuomsSuZir7n4E//ITt+24c4vHN/6wAktOPRvrHp9R+zA7SRg91T4s9MvO72/tb+aw7IYHlOcEiZKh2VQiFfm92lBtDqZZd30JaNuL3dqNW3D2NffhnT+4xvraXq9JYfbWmAEUfOGz76/60kV4xRf+oL3UJpbxeolCvKGgMG8ItOdAD3HbugwTK/+TdtkGQPvqZg4rzI58/vzhBhMX374GZ119r+bssPhWpapfH6NGZY3/l59cJz3fZyppqGQ6J+HE3333ShzxkWWlY751I9cldRZ6ArBh8wyWnHo2Tv+jWUhFGU1FHsKomD+TfOX7qsc2KS3M7deY6xk85hPn41PLbikdC90/5AOmro2EkFlMotpuQ88KqXC5j6ria6o0uLtkqL5Izg1UFUpxmCv3uzGLLtIUg16GEHpLbrCNSyqd8433Pdp47ZRF+ElZPtdvGirRoRRmUVnMnsIlw+RdeNk/HA0A+MJvbsN1CveaUcIKcyAe2xRmqqROvSKH2ukv1dR/W/2RTBjGYS4fVy748rhVGlgx+j1LqlI76+p78dD68k5PvtEKqGJhBuT14Ob7+yv8v3XJnR7S5Hnt9QTuXrMhyGr8WYniP64WZln+VjxUn1YexaK/MDv9DdOoJrduUxw3qipBXjYMk3B1yShtje2WgjWk+AwMw/Ht4qAw94TQW3ID3aBLtBUbC7Os2pQtzGH0jGq41BS6gImM4kvUravaF/2FFeaWI43D7Fm38848lYV5nA3Zw46lfBPKGLwesqpuDKMkWJSMhnTuzBS1fXbc2lmWEPLpvq9ccDue9/HzgyzKHSxeLMhRvTS1dTrRllguW7qp2dA+zNUWuT60YUOhCzlZmCvfTVNwCMKQpW+ex1CRX3S6/eNZmM6dnBTmJguzdZIlBqEpHeJ524SVk1l6i24awVwyKjOnVbk7bj0viJwitm3C+UUwIqwwjyG+FtvBW2UixexdP7wGj0j2qo9FSIu2yqUg1IKvjZtnsXmmh1/e8EDBwhz3uXzxN7dJjxfLzd/C3P/bVMfynaT22WErZ1kqCZeteNg5zSqyejCuUTJM8xdL8S9OzT7/yTuXFJ3gcZgryQVXmBW4uWSUv5uWv7MP8wiWShQt8tVs52E6t5lvEryrTNOivz//ot7PuIk83/m6JZsxxiasXCqXjKqFuVpdbRYqmsu0axMpFujawgpzy5FVMd8hJZ8aCa2YqawQP7piJf6j4h8Zk5DjvGrRXyiXjNXrNgEAvnrBHfWFcpEUr38/V74zWHGQ9114OFjAqFFeiAgX3dZfHLW1wyBZRFZWSh9jB2TRAtSzDC3XmA0JpTBvnpnF+Tetkqbb7VBpyjqIL2Uh/eo9rEulMDuVXVlBME3COUpGSVaaOqvb6c/HgCOE3vUhDyvoTGVBtk1ebcLKydrcY48XFeZQLhnlGbPq/ajczQD3umLbn0TQ2b1hhTkUCc1KwXyYWzD1H4OQ/lhKH+ZAylKuIEx1afBGnTJ6yVcvuGPwufgC5ZuHfBDX7sAHN4tNFdWlIRVmuYVZMcsw+iAnWkxLOlT/cMHyB/Gmr186sJQVy7BDVCrHIBbmwudqam22MFeRpSDzmXZe9GfR5oIt+tP85uMq2GRh9mW46G/YD1x+p9k2Ejb5ktX/xx7fMvi8MdSiv4ErRv97VafQ5dm1LlQ94/bbSe+Gxy4ZE8yWhEqOb+eVN5KUCnPKqh9yKjlXaGsWZpXCbCk6T3e625FuJx2bj/zshlpegHCL/q5ZqV7pXJTgI05IXlPWbtiCaVfnTgmzPeCnV9+LB7MZAUA9y9B+zAo7VDt6eP2W0veyhbns4xkipGIx29VbSNW0YrlkyPqdEBbmkOcWqc4Y6LbGzp+9S73rL/qL3x5nCuPBn3/xIqNrdNbaKrL498VZkXtD7fRXmTmt1ledtd613lTbdtOLRBstzH7zoMyAxyOFK5JVzlADWVKFWdGpr3x4A9Zu3GIdqF5HSAtf1dcrJ5zC3P871aHBwBd6B0YV37/s7tL3Yn3wVZhNrFdbChv++FRpIerXH/Lh8zTnC+sXuJ4QePt3rywdU0bJaL0Ts9lpoWY6htO+dfFTnU5J0QnjwzxMI/aTUNWjEIv+ZJmXTe87B8mwKSfHgtxS68vUmR0qo/ZyegLoxLQwV/pmmzz6W5jDz4rkz14A+I9lt+Czv7q19Ls+z26VoaaUN7xIsA/zBJOv8PVBWkclddM7BrvGkimEwG9uXuXmS+hwydEfPx8v/ewF9hdqCGphztJat2kGh39kGR7NpsfmB4qQoLMwx1a83vXD8gYBxbHN19InK4fbH1xX+l6MXuHzzEThfxNcLVhVpqfkHXrbPZ1Msxd60d/QrWWYbqfiwxwmSoaQfk6Jy0uviYVZdjchdvprKibXSDO6mddqtmcc3bPys23Ct9kycMnI3UasFv3ZKMz1cg610E+GEKKmLANxIo7ctnp96XtTubBLxgSTx5D0wbSC+I4BupBfP77qHrzxa5fiu5e6byRhg2pRnQ8hfZiL+VqzfvMgmLrq7ddWcv5i0u3QYASJESXDZBAqdta+1kXZ+FodPLcUTvKRJoSwahMuY7+srczrdqXntj2snGn23vytK4LKnZVYELtUHpxDWLV1G5ekwk2/bF70JzvmqlY0lUyIl43Pn7+89F2nIw2UUcf+L6YPc05eJCZl86z9dgQAzJ+W9xMyZPU/ykLVbKxZr4hLrguFF6pFjaNLBivMgXg8pcLsWWWHEQzq6dy9pr+a+P5AvlI5Tbe2KYCFPkdEcMnIyf3uVAOx7QCdP4OpLtUtzFYp+VOsD76WPpNy2FxyyfCwMAu7cne5N9k1Kgvzqsc24cq7HraWMenkz+iqux8ZHOt0qBRHOIQ7UrEujGoBZhBfbMPzQliYZYR4b6+GsNRNs+e76LnKrVosL7n9IbeEJNSt/83X/N1x+2PvHbbCtKdLRqjIGEXyHP3jD66W/t7V1alAL6FN0UPYwjzBbAygMMvqh0w59u3Icl8vmRKQd1qhF1CodsTK3zJDlF9OLAtzSYbiIbj6ME93OiXL/91rNgT1XTPJVtWHuZf9c8HkupKF2eOR9SwtzC5WR9klKrccAHjFF/zivsZkVPZvWZ2Y6lBpcN4c2MI8qhB/Lhbmag8pdcmQHHPtqpt8vWNb56vKc64sur48V32YX/3li90yZoBJ2XQ7hG6HrMZr2biSW4E/c9Kh5gl5ostyqAnQJgtzC/VlVphDEcKH2XRKyXeqLB+gZNM/+YClsp5p86X5TVX5d8h2FAphoQf6ZRNyMWM9dnD/72xPYL5k4Z/tsymGlStamJ/38fOt86rFIFs/vfrewefZnsB+7z0HJ/2P26Bj8ghC+TDP9oT3oNR4jcyHOXKUjA2bZ/D585cPXmJDYRoOKzSyMuwWFrsC5VkHU6ptrvh9VP7ks72efT9d6SOlLhmyyyJFyQi9KLzvOjVMs5prX5eMJp9Yn3GzWsYmSXU7/fHCpm+TnZmHQtxqXjtiNISqFU1GuTZamNvxBMaYw/dehIfWbw7SucgqiPzN30/OQOmTNOTc6ucSkiuEH7cvPRF2oU8tLBKATTOz+O/f3S6NlOETVo5i+jAbnPNv5ww3NMnz8Mc73JQra5cMJynZtSK+JVHWvptWefvy7z+/Cd+46E4s8dg2vE3I9P4OUckyuMkh2pBAWfkq1b0RKcw/vupe/Piqe3EHfEJqyizM9bNixWEObWDuiar1X54f1+6vyeA00xNWm4gUcbmKqP8yaFWOknNzhTnkokavlALVi6Ytw9uoMLOF2ZOpTgfzup0g01fS+iFJ9j+W3ewlJ8+qzM9u4JLh0LHoVlKrUgu9in22J/DAo5uaTzRE1nl//cIVAOTWMNcoGQ+u24Q16/vbh4fwf/TF16ppUg7FRYA+7cfWJcNF0ibJs5bNMIRitifwjYvujC4nJTKXjG7VJcPBwlx9oCkX/cUc0k0VxxCKhawfDl12ff/0ghtIoHUgOU0K5RaPPs2liLvUnzW0szBLXDKyKBmdDmGPRQvtMyLDo8r0AmnMWj9p8KK/iUSgv8NQCAuzaf0459r7veQMg5XXf9sycBEI7MOsuLnQxtSeEPiTz4ULU1ft7IhI629tezv5M/jZNfdh+ap+2DWZhfnlh+5umXI1X3Y587Vy21qYbbJXHWhnK1O9BilYnNtno2ThzfzpeN1n0bI/PSkKs8Ilo9g3OCnMFUSh7hYlRhmAA6ZZLR55lAyBvzxqn9KmOa4Kc1MbDaEwP33P7QefZ3vlF1vV/YbyYa6yZSb+dMNfHrXP4HMnszCHevGY6hB+8rbn4Ogn7+ydVlON0WU51KL6pmrLcZgnECEQrFGkmj3M5egszPMcp65U/M/v78CKB9fXjof2k4vhd1fk7jUbtG/GrhbmItKIDL4vMJUkm6wt/hbm5nO2OPowV0/tCbu249JU10tioc6fMg8XZUtoJbINSH2YK1PWTj7MladfmvYvJB7bhSY0spdcgf5LxjYLht6U7huXlNOtEqIrLT7PmcpaA+WC6kgWZtdY0oB60XqVQ/ZaNPjc6fSVPhuxulvvEGGnbebjGfssBgC89pl7mycckHDub2xhnnPkHVisXfOizChmacqsiPk0eYxtRq+QhNoabmYQRsY5194XJqGMahH94w+u1g8klvchs6bIFmP6DvbVFG99YJ30vByfwQUwi5Kx2TFKRnVKUAi7RX8udW2DJBaqarfHEGwsKOgufr1tROWSURyAfesdUK4fRZE24b1Gg1rxL55RXUgWL6ycf6dcVJhnZ8ub2NcszPD1Yda3xxQuGcXTOplLRii3w9xHO7ek+yTbZL3VKcWhVJ2mMo25c6MrrDB70hMCnQ4hxC6ysurh08hV5FmVDWC5vBhB4KVh8xzKTUCtl76zsnudL7JB44wrV2rOt0tfVm9ksWhD72J1w32Pan/3tWraumT4KLzv/8n1pQgfMVgnCfBfnBa/7H0vDCpvfcEFJGSM8lEie8adTgALc3XGoeiSMc4WZkWYjOpCMpee4VsX31mOwSt1/3BIuELR93+2stZA1Ue4KpgxfZhNKersw7ByNj7MagYKs2rTrMj++qHlNNXbFurLrDDb8uC6TVhy6tmD70L0d6tyiVdrUvF+ddMD1umaypVZmHPrZozFMrKGHssyHwpZ9u58aIPyfNvpKlm9ke2+5LIIs0j1cTYFwy8NdA7PyNYlw6bcfOumy9Wy8ir6MO+0zfy6HMd89noC7/zB8MUvyk5fI0DlklEkhPtJse4VZbpGSEiFSXUR6CsS++y4VemYLZ/+ZX075CpBLMyz5X6kFPtZkXysnf7SWJiHJ/Y3b7WLw6x7mvn9Dd/7RjN2hlINqmV6aMGdpf97+9orK8yW3L2mrCz5uGTctWbDSKr8wMIsEZ53KrM9gfNvXhUsPrKKtm8jfN4NdgssbauB7P7XSxSk0DF/m+prUXFZ57CBikl7KEbJWPf4jPF0/CiqjNyHOewzWbN+M/7x+1fjd7euLi0s/cBZ1weVMyrULhlDZNFImqimWorDXEguRhzbkEN69T6kfaMQ6BDha298hv68BqrrV86+9r7ay0oIS+LmmR4WZltDVw00ZfcMuRuNDU0Ks0vdyjF9zkUdL3fJ8FmfUWSqYmGuu7SYY7Lo72dvf670t1BjdtUv/MdvfU7pO4eVmwBqjTLrwFwWKlTfeFO8US1fta5gIS3n+fp71+JXN60C0LcMvOlrl+J3t6yOmp8268sCwO2r6wsVtddYL/qrH5MpZ74uGVULrsxPukhxcHGKjWtZDj+4fCXOuuoew7Sts1O53j4BWYzx0ArzZSvW4EdXrAzuVtQWZC9R3Q6VnoePUpOjWli2zfzx2nZA4ZEBIsKOhRkNl/Ygm1385Y3l2cxQi/62mtdXmGdnqy4Z8mvihZXzuSF12vvtvDX+5JB6FKM8SkaoMS5XIJUvBiE1Zqit6qGG7EYf5vbpy6ww21KtrD3RP+biklF9w0rhg/TC//htQV75txsLfq1bsoHLdDrYJO+yN8a2W5htCXE7MgtzaB/mJmtuUXHZ4lC3Q25PXmUULhmy6dx53bBRMvL72ih5YZoEVGHlirgs+tNZZotKejGyRCup+mIr/Iqrk00u7UH2wlztYkK5ZCycl1uYe6U0VVtzu4ptsjCvfFjtSueDEMPxr2j06u9i6b/TX07ulqeyMNtgMprE9pVuVpjbpzGzwmxJVXEZxGF2qEQtrA8D8oErZKWVJRVTsRoFtrcjK12ZwtzpkNcbdzVfzRbmodLmEmLORse2XWA6ihojU+RCR8nIy6yo5LXRyuKKrE70euW5j80uEUGqU9MKH+Zto1iYwz0gnWvJ8Bwx6JOftMs2AFxdMurXVGc4ffdPEkJgticGLhkrHlqvjMNcemaRfJjf9p0rserRx53S1tETwzpczAENfJgt7kdzav7cn/OkHQEALztkt8qlYU3MqrE/XJQMfR7aqB+xwmyJLHRNhxwtzCOuELp2PJi+CphHWSzLCdOXrV8AZHVAZtXvEAWNXNK0AKYaP9UWGyvEPEv/bF8Lh8v1ssVovgsxqzyyYQuAch2SxXo+8AnbBpWbCpkitKHi6uK26K+cbk+IwctMsV/e2kNhFkLg0hVu28Q7y1QczxWNM//22QDcFBhZJJ6qghQq3m6e7l99/bKKJVmevqtl26R/3OA8e6POU0+Iwc/FIhxamENIGRrrnrTLtljxsZfi2U/cyTxhB5SeH8miZLRPY2aF2ZJqoxSZS4aThTnqxqrN6DrEXKEKWUH09X8yNOcQ21o/lG2RXaRDYTuQJoW56JLRZI2WYWMlso1e4GvhcOnvZYqcStF/1wkHWKc/2xN475nXAigPSDIr9gFjqjDLFKGNm2dLTd/JJUPiyjA/ezbFuuLjkrFlVuBVX7pIoiyE7LfKaVVl5d/zIWjbBdPYZdv5TgqMrA2FcPWQkbtkVNMsbTCjic9sionbmusd6a7r9Yb5L0fJIAdjmvrcqu7hYz8xWfSnsgCnsjCzwjwB1P28+g/WJWLNqOuD3sLcv6E2hnZpM34LS/rIfO0o63xdqT5rXT6JKj7MkV0y5lnumJcq3mgRmcKsilzi8pyKFr/8ZeMzJx0qXVgYOmJKKlQRYcouGWF8mPPtxIsvbj4uGXmdq74IxlOX1VEQivWrr5CFka9yyfCd2Xr5of0FcS98yi6lmyy14wAuGSbtzvklQHOZKMSXrkfJsIzDrDm1+hyqz8vq1gweqdrCbCHHIwttdEcbz563RQgh0O24xWGuVvjUyqkux7lCFTJHo2wAQginZ2TKS5/e9ydzscZWeVyyUUUeBD8UsinZnIXT3VI4QReXDNNBgsh+QaNvCbtcL41corCMuzylcmSH/t8OkdTCHCuecDUOamhMXDJCDMZCDK3/xXro6pLx6MYtg8+1thBRY1Yp0J2SUhbOEqxyyXjHcfs7pZfnaqrbwaF7LcKmmV7Jkly2MKNw3O1+TFykXMcArYVZDPNczEGH+mtPQg07sv4/5piqXPQXzFVH/3sbjXWsMFsia8u2u/moSO2baGZhDilRnVhsm+HyVetwxpUrnZ7Ty56+W+M5xx+0KwBgi6W5xzQ7/SD4VkmX5VRKWGdh3mpeWWF2cTMxHZimO51WWhJMUFl6nZ6Tol+RyQg5VXniocNwWM964o44ar8dgqVdRaYwb9w8O7A0ur4QyizMAx/mAGHlirHYq7MtMS3M1b5q4JJRKCf7jTHUVOXl6W41zy8aTLfTf/HbPNNTKskyubbI2sXSfRaXvsdYZN5TWJhzH2abGTHdmXKFeXgssIF55Iv+2jgusMJsieyt3zUOc7EhHfiEbbFgOmyYqkb5Bj7MbXzLc+GubMMZl/7S5Lnkik2snQtTLvpbOK9bCm3m4mZiWgxTXUo/sxLoEal8mEMptKl9+LpEePcJB2L7hdNR0pfVo+I9VjcxMaZqmRViYIUvVvMQYeVCzCCZYuKSsfqxTfjRFSuDKO6zlXsTWSNe6Kgw52XVJcK8bgdbZnuVyBhyv2VXlyupQlkNA+vovtJkYR7+Xn6Z6QR8oanuigm4R+opJiXboERA/eKfyiWOfZgngqoPmxjEYb7xvkft3iYLp86b6qRf9qazMM9kU0yGddYk7y2s/0aYbFCRK8w+26/q6BBJO0xT6mHl1PncanqqtNOc06I/w3Yw1aHk9SLUlGLoKBlVuh35suCQ5VV8TN0O4bC9F+N37zw2nIAC1ZfJk56xF/7tzw4ePA2f+l2kJ4btsdgfbxdAYbadQfLBxCXDZZGkiqq7SZ7yQkdDzmDheG5hntXFYR5+drUCt82H2SkOs86HWdLfFMcm117t4D22lx5XFWc4C7P+d1aYJwDZiuwuER54dBNe/Jnf4+ENW+QXytIqVPHqjlcp0PswZxbmkHFGRxhDzkeyyVt8btGKZYHqUFhrv85qvKDikuGiJJg+66luZ2xfpFS+16E6etXavsVbzQuSPlAezHMLHUUaFa69Z23p+zteuD922XbBoE+dcuwDqy9AAsOXmaLytfO28+FLtX0HdclQuGAMZWUuGZEaTPWFJq8bLi4Zxbx3qD8bs3mmZ7RBibtLRvOxGBtlicL/5QWZLi4z6pNlL5SlsJNWcprrUPSNSwp5+NifPa3+ewvHBVaYLam/9Qt0OjSwyNkE3i82JEK4qWIZM7M9LDn17NIxXcXfHMGHOeKau6jIYuFWyafndYvpfOh0SKlAmVAtep0lvEvlaAXVqVoTWctueACLtmqe2p/q+EX/cCHYKm9FvkPdTodIOq5tv3AabznmiUFkFItioDAHSbmZ6nOXWdBMkPXJuYX5kYIBY+dtFjilX6T2QhyxT6u5ZAysmHGeULXvyr8unGdvma/Wq+mpTv8lXRVWLoBLhkm5uLrM6WalekJg7x22BgAsLvR5/SgZcX2Y5087umRUvv/6H5+Pr73xGaVj6kV/YSiW6UlH7l37vepO0wZYYfZEoPrmZ/6Qi+2IiIJNFcvYJAnXZGJhDllndW/3IZSYp+y2Xen7vjttXRDgnq7KJaO4GDAPYxUirJyMDhG2chi4BlRdMjQDBxGVfnd5CdgyK7Db9gsbz+vQqKORhyfU/eh81l0XsNUoVIM8zVQvtvnd5f2e8/bvEsVyWrLBlKtyUaQ62xKyz66mVF/01//r2yerFLhayLzsvAUOfrK9koWZBhbmcjQYeT5crcAyBS/vXfK6FcPC3OsJvPvFB+C0Ny7F0iXDRbMuYeV01UnWHxTXUVi9aFSS2m/nbfDkStABZVg5hw7iiTtvXTvWlN0W6susMNtSfchdIuc3oWIFj21hliWtj5KR+TCbDv8GeY+1IC6nusK/tKjEI12VS8a/vvzgwefcohXPJYO8FmPVo2ToleDifbi+BJg0i/sffXxsLcwqQllGuoqXiQ6F8/su1otXHL4HADOf/RDkFsH8eTgv+qsghMD0lD6igCtRF/0pLMrDn/sHQi7+LSLzYZ7u0sAYYEPVN37eFPXDyikaX/Gw6zih8/fvDhRmp6S1CNGfhXzBgbuWjnc79ov+tBZmmUtGgJfAnOILqxBCvXGJQ9rn/v3RtWNNz5l9mCeBSoP/8huWOk+VF1MiijuQy95ydeLyKflYC4xiULVQhRKnUiCKilHuw3zXmg2O2/vq6RCMXBxM0SnMhPJiopgbCQwEJiVuRQx1OyrFu0N+awuK1+Zt8vOvPRzbLejXrwXTXXzp9Uc4p29K9fZcF/3V1pVAHvIviIW5GlYuYFWquZZUvwdwydg805PONgISH+aewFSnY711PVC1MGMYJaOSvvxaa3EA9IsF87Ehv8efX3sflpx6dmmthg7dc1ZZkPNQoKHi/8v6g6K7oI0UWQ0y3UnQxWVG1h6bLO8t1JdZYbal+Ijf+aIDsO9OWzt39L2ShTmuS4bMD9XIhzlkHiJbmKcqjbJ8e+6ylQpz4bnng8q/n3sT3vnDq51lqZjudrDIy8JcRmU13mb+FPbfddvKuW4vAKYbniS3MMcW4HI/kktUlsQDd9su2HSlapo/xAK5JmoW5i45Ppy6K8GUxCVj4XQX137weCzZcSsXIQCa6/S5f/8877jFOar+2efZX3vPWmU/LLu3DrlFgyl6ruQb8NRdMoafy1tjm1eC4hgqu6+8b+lWXDK+/ocVAMqb0riiqhKUhQK1ipJhKTvkbFDV4BQ7DnOzS0b7NGZWmC0pPuPBIpkQlpHIFmbbUD0x4jDH8B8rUrWEhHoBUS36K/YvxTfoX9+4KojcUh6mO1jkEx2h6sNcUYLzsnv/yw6qdZwuO/0BwCZD602IGnbaG5canxvdJSPgor9i+3vWfjviwlNfgKP229Fvm/TSbmuZ61XV2pvAgbAqQqbkmlB8nLmyJdsNcbrbwbYLpr3iMevCMQLAgU/YDk/dfTvtOaaoFv35PHvdY52V3BuRfPOcJqrRV6YHcZiLbnJmvtQ6iufKXuxfcOAuOOkZe+Gjr+hHYcgVedsuQHf+Cw/aVfmbdRxmy84ppMJctzCromSEkZc/O1V1ZoV5jPjSb2/DU99/rvacvH4571BVqHiEuJYv2bSQTp7tTn8meY+tqFR9jcsrr93TVU3lFht0yc8vQjufP9X19GEus7lgYT5ot+1KO75V63OTkqDCtF1Yd4ySZ2mTRmwLc6hljNXyExDYY1F/IWU4H+accoLFl6ZU41YIJT3v5qqzTUV8nk91Zqb47c3P94tcUnfJqMrqf/cpJl07qb4Y599kCyibKPa3eRzmmZ6oxGGWn2+jYBYVZpmiPX+6g4/9+dOx+6J+hJSB4Wjg3mIoSJGnf//zp+FTrzpEeRmRZRxm4zP7FMc837WF1RdWVXjJUGHlekLgm391JH77T8dKf2/jor9AS60nj4/9/Cbp8XJ8yfJ0jy3VtGK6LEithBpxw41LwtXaGNuSFqlZmCXiXO5G5cNXLJqiRSvGm/GC6Q62DbDxQk5RCa5mt/rd1cJsunNliOKyK/Ow9XC37cvhykJ19NVFf8Vpbt92edBu2+GFT9kFN9z3WJZe+ffSDnyRNOa8WuX94FSHsMmhrslCkskszCGoR4wZCj/1xQf6JV7psKpF0RsoeR4WZk3lrI8/AgRIF1A20RMCeevvFKzUm7YMy0+9ANDNwixbkJnX4/xvrrzazj6qzt990UJtnP4OkZ2xxrL6m4Q8NaWoLwuhcckIJK8ngKOfvLPy9zbuMswWZg+qjdGWYsWzfRO1RaaMG22N7SDrnS86QHo8ukuGpuPykWxiYS4q1THa+fyprt/W6VWXjEJ9qMXDrXx3jQywwHCRVYiO0aoNBqyGF7/nOJz3D+UV4MHiMFeKr7qQyocXPmUX/L/jD0BeGNXkpiK/AAL1/iCEnLxa6xaq+YgxicPs082d/Kx91Olk331eYHT1pvZiLACQfMFWEyWXDKKB60BxwWHpRad0rbmcohFG9mLfrSrM2TnDy/zqXNOzsN7pz1J+WB/mclohF/25pNNGC7NRaRPRCiK6loiuIqLLCsffTkQ3EdH1RPTxwvH3ENFyIrqZiF5UOH5Cdmw5EZ0a9lbSIPNhdg4fWlz057rexRBplAyNwM0ecZjf+Owlijyorwlx79WOPVTDVr3FFzvLouwY7XzBdMdLYa6+HBUjedSsi5WH7rodsLGF2Sn1MjazxiHb2RO2X4BtF5RdZUK6ZBSfTXmRsCeVBXdVZbX4PZahJ4/7nN/VVNd/t9O8jGJtW16LkhEwbYHyy6PKJcPneegUPJlRheDmklFMqtMZ9gWPPb6lcM7wpOJzd/VhnpX0U6qwcqLyuytNL/vWcZgrvPRpu2l/LxpzfNfsVMf62D7Mf37Eng35aZ/GbNMSjhVCHCqEWAoARHQsgBMBHCKEeCqAT2bHDwJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bqup+v5WfbMA9ygCeVpn/91z+1EyNDXRdzpe9vatVZhn3Bf9qS6pl2XYV4SaD3OkdHPKLhlFC3N4f9q+hTmcNaE4tVzNbbWjcrUwm04XOq71KqdhU+ZxJzqCKZhV5aYn6Xt8US36K26MEmPgWvGxl9ZeqJxd2wqf8/txsYqaYOKe5Fq9agZlRUI+j0NXb6prFXIF3sUlQ1QszE/ZrR9555rC9uiqcrJRMItjiizyz3Bhfv/77MDCbOmSoTi9qc7abo1dPPWNz16Cz7/ucO35IV0yquNWTH11uwVTeEnDy8C4K8xV3gLgY0KITQAghMhDA5wI4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3NbTa3xFget7Hmq4lo2kTfa3bZf2GhhLu4q58J1hY5qID+SS0bRwvbBPxm+E6l2rspz44tu0V+Mnf6KHUxpkZS7KCULpjtY4NE5Vm+/NLjUrIvlc119mF/ZYEEYiA9QYjbKVmR92c3FRJKpqnJT3ejIh/x6laWtGFbORzc3UUzyU5x3+iuFJOv/1SnMPmUX08IMUX4O1bILIUtVxFMdkrZzIrfoJdWXu6fuvj26HcI1K9cWzik8t8K1rovX9lxc31lUFVYuFE1V1nZr7OINmezmWZxJCekrLSBGrrC2UF82VpgFgPOI6HIiOiU79mQAzyOiS4jot0SUb0S+B4C7C9euzI6pjpcgolOI6DIiumz16tU29xIFmVtXTm4BKi5ksEq7ko6+wvvVnnecflXtmE5eblV0CilbuOaNz9l38Lm29Wpg1WVeZRq2FNvTJ10DP7HiPafyYba6p8rJxYG/aSrOJUrGCU99Ak44+AmN5735+U8M4qtml0ZclTnU49dZmF0rWU0Jy75WX1qKLyChrNnKPA2iP7jt9FeOsJC5ZMTaDc/Ah9mHYtuTrMED4LlpjaLeTHXVi85dFlBWt8ZeMN3FooXTAxndDikNGi6Lw085ej8c/9R6fzNwyagt+rOjNO5btA37xfx9RfVdJxyAt73gSY1nh16Qu7iwOZbSJSOoRDWjVthlmCrMzxVCHI6+O8Vbieho9CNs7ADgKADvBPB9CrB6RwjxZSHEUiHE0p13Vq+gTEXNKopyRwCUd0WzWnuU+w92+h1ZfUquKMs8XWP5mt82ecRhVl2SOqxcqKAjJtNe5XIK/7D6PszuE0J1C7PGJSNAHGZTH9K/ft6+Qd4wZJ3r5157GJ63/06147b18K+fu2/zScW8ZI/Jt/p1O1RSjkIu+suLa5CiJr1UA5ermLJLRv+v1iXD436qUTJkz9jV1Uyg/BiiuGSoFOZORxpWjuA2BlTjMAMohcXsUtkFUeZWY0J+6mF7LZL+Xt0rYba26M9Y0uDTVgXDRVPb6G9cYi/lb495ktEaENe2qcrSf//lMJ59zFZvUqfGdtGfEOKe7O8qAGei716xEsAZos8f0TeY7gTgHgB7FS7fMzumOt5qtC4Z2RPdNGO2QUOVvMPoD4yoteLStFahgoXbSUr9m30c5uJ0sfyialmGjqI3r1uxwAZy+bBdiRyjoc+f6gb1VytayqqdV80lw8GH2dSHdKpDgSzM9URe+JRd8fcvfHLtuO3d2PrWhlr0V31xKbaXUDLyPkiW2k7b9DfK8XLJMMoDsjxYhuCSCFGFlfvjPx/nkHAd1Q6ZQchcMl6VuTLVF/35o7JIdjtyS2iITblymdsXrJc1RbL0DO3lqbJZdcmopm16d8XrFhbGXxMLr8sLQJF3n3AgXnFYbTIeQLlthjBIxZ4ptWEsLcxEtDURbZt/BnA8gOsA/BjAsdnxJwOYB+BBAGcBOImI5hPRvgD2B/BHAJcC2J+I9iWieegvDDwr+B0FRuuSkZWeq0tGnlaH+kqDqYXZdhpGbfFQtzDVVK0JquxVp9pCDz31qcMwLhm2C4jiuGRILMw2lotK2ZfDypXPrYWVs4iSkS8WNd60pBNG9ZPJ6xDhiH0W44dvfpZX2qYuCQunu1i01XS0RX8hZ5yqpS4bnPLoH14Dl0UdDVFuKgvzLtsukJxtT909KZySCQgQET6RbYQRIyy/yh2578NcuTfhbmUsRXTJEilZmCtbRst2nzRheJ08p3k7yf8OLMzGEuoU+5qmRx2iTr/lmCfiP199qPS3ct/kX2FK86Tsw1zDRBPYFcAFRHQ1+orv2UKIcwGcBmA/IroO/QV8J2fW5usBfB/ADQDOBfBWIcSsEGIGwNsA/ALAjQC+n53baup+t0PygcR30V++BW7d/aMgq9AwbBcuqE43Sca20u6+/QLzcDSer8Snn3JU6XvIRX9F5SSWP6QNnQ75xWHWUFSeBEQ9rJyFVe2n19wLwPylrksUxJIgSyK/jaVLdij/YFkXZPci8+u85oPH49J/fmGwgabvqjX8LlNCbKneuipKBjCMzONzPyZF/ZTd+ltJu8aUlU3nx1r0VzOgSG4wlEtGDB821bOUWZgF3OtZMSmZSwaR/PaI7MLKDfy6GyzM+d/hTn+WY2jxs+TeQmH7xENbYfP6oS8et3r5p4fsjjc9ZwkAswXho1bYZTQuwxRC3A7gEMnxzQBer7jmowA+Kjl+DoBz7LM5Omqdn8RNYrOjwpz3C7lLRlVUOe5qUamxQ7WIwiQd2yHsdUftoxyQdCH6XNrgUfvtWPpei8Nsn+SAnhjee9dy0YudzXSYy+/89TPxjYtW4BfXPyA9U7WBip0UCZXs+iz6u++RjQDMQy12O/YKs+xeZGmEWrRSHBP/5vn7YfFW83DsAbvUzsvrX6huXrfoz3cwGfgwa2aScoU5dPjHKp977WG4/t5H8b1L74bAOq+0hgpznMFWVRIXvPvYIOnTQMFTy4qhSHQ7pHC9cpMl82FeVFCYhQBueeCx0negb5xwcslQHK+7ZJQtzC5lKVvHNCpKLhkB0ot5O599zWEA+hub+UR8GiW8018DusgOQwuzqw9zno78jbsU89nDV6mqqA7TCWhiLg3m8lOqirurZV5FdaGZalGJCcXnbusC49rpPG3P7bH7onJopM+cdCiu/1B/759YFmagnOeq0cTG4jPYAtfw2XY7FETDlFl61ItPze5nMANUSPs9L34K3vz8J+KAJ2yrvC7UIFq9p2rkAScUfYwsuTys1frNM26yMOwvVbt/An3Xj6P229G6GuTnl9p5rnhF2ulPFuptt+0XYM/FW5WOOaWNYd5kM47hndiGNEUoyS2DpghJXd1mMGMBrNs0gz/c9hA2bu6PnUUF1uYFrUnxHW4ullmYww45CB3u2/bltNg3udvMh6RQ/7eaNxU98k4sWGFuQDcFlzeWvztuf6e0BwtuiADIomQMPz/vyTtj63ld7LLtfOtwbD6+cLb1mqjeed344ROk+bhrzYbB5xBDQc3n0yOtoj+f/aIvNzpEWFhRiqe7HWydKS5ecZgbphF3276vqC/eal5NGdvioDA/vsXsJbJLoRb91Y+pBlHTuxm+0KZ4Yarnqh6HuSDDRUSBgbKZyZWll/swP+64RqPKLoXYziqs9IV8+rhwKFcyQ24Z3JiNUAmJYVqyGcfhbICfDBlEMlc/MajLrz1ybysxRXfovBrL4jlXX8Z1lnUX8vznogdh5WyFFM4XAtg236UyxjuMxQMu9U0B8tJGN4g2wQpzA7o3vryyHveUXZ3SLg5DfQtzWVbeuN9x3P54/pN3xvUfPgGvOGwPewuzh0tGCB+thfO66FDd0u0S31eHTsGwpdiR2/owu3Y6RYU5nw7fd6etB79Pd8k5Qsrpl941+Fx7pgJ42wuehC+87nD8n4N2rYeVs3hOthbmTiV0misxpkZ7WQuxbQMuTUZWVbvZ2oacf/g/w4gfRd3DpppXz83LTVZnfXcXrQr83bsa3BZsX85l4jJ5ISPKyNIfHqiXncxdx5SBgqex+MbQaTokcYUQ7sq5zCUjd5ORv7wLdT4MaHLJyP8O4zC722MFgHPe8Ty87pl7Y0mhfza6ODChDbV5etosx/XQajWsMDdQj+wQzn+paeeu/NddthtaZmTxmptQKsyVwzLFJdgCJskUY+gITdXn4eN7mUeRePmhu2und2W4FlmnM/RTfvXSvXDJe48bLIjqp0u4IbPW26J7ARAQmO528JKn7QaSWHxtFv3l2+hW3ZSOO1CtRKTfGtvwfhwtzKFsjt0OYa9s97Lz/+kY/Okhuw9+q/rv25Lf0idedQhOftY+OHLfHWrnvOqIfhTQw/Ze5CUrl2fiUmTTZGWlbGJh9nk6slBv1erxtmOfhN83vRwo0h7UNanFt85bj32itRwZHYm8souIXXqykKi6hZi56C6RlTKrcykqys5nH6txmC16jZLMvXbYCh99xdMaIyjZGgNsh6zgi/4q+f3OXz8Trz/KbnZhkmGFuQHVbkuAv/VVVDqV+hRcZuEqNAqZJboJYwtzxNmYjiSAu882pXlWv/6mZwyO6VwybMss71hlu0c15s1VYSbCvKwD3jLbw67bhQmFVaVab6tFU/191iKsXD7tWrUw76K5l9RbY5vSGyjMdteFGsM6RPjkXxyCL7zu8NJMA9B3ofn7F7q5ghXZY9FCfOjEg6Xld9Du22HFx16K/Xbaxjn9gY9p9owP33sRXug4I6eUUai/+TPzWSBrKiun+rw7HSptLW5D0SVD6T5RaC/HH2TfP8noGzR0smwVv7qFWWd4GPoiu80Mqtrc0CUjtzDn+bNLv3h+01jypdcfgY+8/GA7AXnalucXFWarmSaNa06RZz9pp4G7HmMQJWOuU4vsUPjsOzCWfBJlb/gSC5fMt60J1Yx6teGHGOdVyo/MgjHbE8qA+aYcU5j+rFkqPSzY+YpxF19IVwWwQ4TpTN7m0KtTCtQtzGWqswo2O/3lg6OpD3NfnvGp2jSestt2uPG+RxvPNfZhdnbJCGdh3m7BNF7ytN2kv8fYIll+rrOYWhpn/O1z1Oc4+2QMn+jQwqy2ZocNkyeCbSIDYFBQshm5mDPh0vEH7s9ebmFuTqzTsZtBHfrg69POm3A+nvuUZdO1Jxzs8xIjrGpTuW+KU0PYrXkIW5gb0HVa3hbmQmpE9eo+UJgrgdJDuWSkpEtUe/noCTGwqMbIok+SswYDrwqbDqYaCSUvj80z8Z5Zt/JmUX1xKlrqd9l2vnGIuH7aucJsfk0It59uh/DzdzwPXz15aeO5xh4Zg+leSx92q7PVxFhIbuu7CYR6kQ7PwPtVYv2rxmQPhSzKaIjnVN1xUWdpLVbHkLMZMstpMT82lCK6ZI/C2CXDpetTWZizv92BhTl3ybDzyfCZrbTB3iXD/VoZsucc9IVwzGGFuQFtlAzP3qq61W1t0d/AwlU+b7ZnN+ypw8oZXByob5BN+fV6IujUafF+XvK0J/iFlcstzA75c60VRDQY6GNamKuWnmrZ5J3wy56+G560yzZWW2Nvn0VW+OLrDze+JuTW2CF9+oaDuN11obLQpKinsvz4hWGLJ0dWPnkfE2uzoZoPs5Dnw8ctK/8b28zx1N2H6yM6RNB5XtneTmnRX3ZPsmeSl+fAUkwEm97aVO+tbVwCs+ukMh2uiUXoqBZ5OYXcVXSSYIW5gbq7QNEq7OvDXNKY1Rbmig+zLaoZ9Wrn73M3TZ2IbMpvVsQJ/7THooXYffuF5TxZ9nJ5WDknlwyPejHwYQ4co7pIk1JZjJzQ7ZCVS0ZeiZ66+/a2l1jzmiP3GqZR8VXUYb7mTxinWSSE0n5QYbGnCicpLv6hASxMpkXiYr0rW/+a5Xn1c1I/X3+q+SaoZwap9Nld+vf/ZrhlvDSsXOFlwLZPk0XC0Fr9B2Odqw+zWZ+mMh41UprFcL40OMVZbhc5CyoGIVkxpt6c5S+WNu8COCpYYW6gFqhe0hEUsalatbiqNWt2NmCXFGb7ymsaJSOEyUqVRLdT98nr9UTQ8E/FQac6pWltYe6VXTL+6jn7Gl/rU4r5tGVMC3Oe9hOyhXjVMaSoIE53O6WY1I049NquHfJR++04sFrlViyzWR+zTLrGYQ6hQf37nz/dPxENNrfkZWE29DHtn2OH7PzBQulCHf7GXx1pmXKAjFiS18hBUhLFMcSUe9FIksd3B+QzgKH8fPP+RBaHuYqrZV35CLIfhi4ZWf48lF6blzrbtmN7764uzAJ9XeKiU48rHZdHyqpfG5OPv/IQrPjYSyNLcYMV5gZ0nYjvVEXZh9ks7qaLSNWiunpYuXjIw8qJoBbmref3ldul+yyWygPMG/vMQGHu50+3U1kNj4IcuGREtDA/uG4TAGD3RVnkiko5Fev1lHLLXDkqZ6G/ft6+QcKTVRlYlvOpbEV1+uCfHIS/ef5+ACwW/eUuGSOwMJsk4SPGxjIZctFfDGQvxsVn8MxKyLygeRHy5u5q+a3WZ905PnzmpENL3zsduSJYtHi7kt9LdSdWYPi88r/djutOf0156P8dhJUbuIDYSoqrMNoq8r6z3Iu3nldJL7yMSYIV5gZqymbhq+/2jlULs0lH4eaSoVCYDZq+yyIhGURUi9bR64mgi3N23GY+zvm75+Fjf/50qYuLDb2KpcrKIuchN1f6F2o2KDncU/HMq8O+WbiwmoW5cLN9C7N/Hdht+wU4UxMhwQWi4cYeeVtUKRpvfM6+eM+Ln2IVtipfQ2AdVs7u9D6JHCPdxKQbMK3yJ8mWzKc1rF97ZcaxGDvZJ92SD2+/zqmjB/m56AHAztuUw96pDAwDhdnjFvNZn3mFxTgfz2dQKhZf60Xtg+ctz2B+vN9XDJ/f8FbNbszHvc8Ou8SLM2ohsiXbuITV5SGsMDegjZIRsCOWbQk6nKYrdJAO1Vel8NRdMqyTNqYrsWD0IvgwH7T7dlgw3e2XU4AexGXA8HkjP3zvxXjvSw7Ex/7sacpzzvjb5+DAJ2zrLCPnkL36fsbVOl60KnU7ZLXTn3Jlf6TKlaead/RN1mC7DU7srwHclAsX7yifepbMJcOiDdp7vuQXyBS9YWIhFy2ZxGF2S7ic1pTkRTWU8UIGEUk3khoonB7tN5/1KVmYFcnZ7vRnYynuEA0W/VmXpId7n6MYI0o7fgaJ3lHXmNnAPITjMCvILVH1Ojg84L3TX0me/A0/z4vssykqhSeGvqxKo0P1eMuzvV60LWz7lopw02g2z9qnHIkIpxzdvHuXj7L0pucswdoNW7DVvH7z10WCmeqS1U5/KmJ1ujWXjMbFPzYuGbmFmXDJe4/D+k0zRtcN8uBRbG0K5RSkXzCsAC4Kdsm/VDIrUH2J8ilbmVHDxO/TNN08rXndjtItK0Zb6pBM4QqjGg6jZAy1u+otFJ+bi+JnUiTdwixnNYxfE8UcbTM/otpkeevF/u78m1fhlQcbug6qDBuSAkm96K/NsMLcQG1r7JJLRjg5hPpgIZ9etE9bOaWeaBoYUISVE8OwbbZKTBO18vR8+7Yp9hT9i4/V7KRn7I0DnrAtzrxyJQD5NDPQv4/pjt2iP5dS9nkyVWWlycJMFnO+RR9mm10XXR/NKUfvh/vWPo6fXn0vtl0Qt2tOXZ9NkgjxkiCPLBTSJaN6IGx7z9Oa7lI9/nnE/lq1UUoIl4z8WcybUidS3HMg5G0W863y07bh/S87CC84cJfmEx2xtjAnGGxYXx7CLhkK8jqic8koVtZPvuqQ2u+NVByFzALVO7hkGFoIY7eL6pSiy6I/2Z284Vn74NVL9yods/aFa8CmY2p7J1a1yurCV011bXdibJ4lCcmrn9F/7nl0kaYXiQ7V66GK/CzrtQqO9zrdJXz8z5+O751yFPbaYatmMS6uHw6NwssiW3E1iI2RPB8XE8iUyvA3N2+qo9wwKEZR9jeWqhwUYWTJomTkZVatj7YblwzONXXJcNzpLz//r567L5ZUtqlvvDbiRieuY41NjnjR3xC2MCugzCejFrdR4dvzyiP2xDnX3mclo6wv1yvlsHP2q7Bqlwz1y4AtTX2CrM31F/1ZumRI5Hz4xIPr8iobwfh2WW3rM0Io5dVQSzkll4yOnUuGiw+zz4Dy/pcdhHedcMBg8ahJjGnjOMwDlwy7PLk+mw4RFs7r4pn77eh0vQ2pfJgHaRieF8pPN9ZLq2kcZl/p0121wlySE+g2iVRbY1MwOUUfZp3rnptLRnMGu8VZTleN2ZLYw0asTUUqtjwmgxVmBUMLc/l4yS+28pt9Jz1MoLiCt/qzrw/zFp+d/izR5k+imE1btvi+z6BZPsJO7ZWl3vSREwAAP3rLs3HDvWu158aA4H5/ee6mBgqzOqWpbsdu0Z9KZqQi6XRo4IsNBF70l6dpu+jP6uyyr7SdnDRDWaoBM0QdsQ8XZpt+nRiyprsdbJ6tK7B9eeEFytaYAB7PXtKnzJNujS1Kp7v226oiKbkzdgizmRldyE7QksZ/0Xpr7MAas/Tlr3IwoSdn62CXjAZ0LhlVpP2BhupbnFLZKH12ccno4eA96juHqeQdstci/M8bltZ2AfJB1hEKCIcdpNx8mEM38gXTfcv4Efssxl8+a0lNdmxCDJrDbVDV50x1SfnCZYPFe5QXzT7M5lbMvO3blrXrIJZycY1dHGYPlwzYlaHLS3ypnUt8mKt4lbLGzzck/UV/s9LffMeDWiLo+/dKX5wHPsxucr70+iMGn6e6RZeM8nl5PenHYTZPv2kOtpjvqU4hSoblor9U2M6wpOgzeNHfELYwK8jrSNUlQ9eYbUPiVN071D7MVDrPlpmewNbz6o+6vtirz/xuB//noF2DWrCqLhKD45YijIvX97XYQ4tL0b+EkNFtsDATUebb6DCCSdIq8r1TjsK2C6bN0zWkSVclwGnRnw22j6Y3UPLsrnPyYR6Rfcgkr2EszOHSMhMoj8Ps+0I7b6qDjVvkCnMMVHGYc1zvprhpzFSnPo5VJfZ3+rPvb1TlfcQ+iwefu4VNmBIOB1EFxXLJKMLq8hBWmBVQZvO10RVsLUvFpGUdhUy0a5SMrSQbYdTSj9gr1PTXmn+omXDTF5I8WSHsrdildCTX7rl4YcM15un7ulU4XZtdnNdX3Ra8oV5oqsnsv+u22KGyy1QIGn2YLVbhi0SK7CCkVorRLyP5Irw04gYVMNZOefVZsrD3lqc13SU8+ni6sHIkiWIUatFfTnGTqqoxptjWQsVhfueLDii97BY3YbKeyUikMduKYQtzWtglo4FaWLnC52o98tnIpL/oQvFb6bOTWUlqJVN2Gh7tQ7u4S3IsVmMcWDAidHQXvPsFWpkpCOGSkVt8qr6LTdOcelTW6sr34hUBn5GJD7OxwuyoyFo/GwMlTyrHToozQeq1qUuGp5joPsyJnJinJXGYo22aAnn846LLXAg5CwwWeLuGlTPxve12qLY1tik+9TKmrh2vng9zzfryEFaYVeQuGTrzWwWbkFVAtSHV3TlkIZLcpmH7/H/P21cjX3FtoNau8ikeKBem0+SGJ+aKe352CgNB/miShJULcHX+gqf0C3epa5WkfvLW5+Bvnr9fTYn0KyJdG2xSmLWXl6XkLhmRFdmULhkupNtExV+O6+6MxulXZwEVVlhf6dNTHWxWhZWLcGuyOPnA8D5C1IHtFg4ntKvdfv63Y7nqT+eCU81zP+KP+QLmEMRuo+6GE7UbXjgZkwe7ZCgoTukX0bVl6ynV2tS3mXXODcI/v/QgzJ/q4nPnL8/k6+8tZDuhimXPdbrb2CVjYGHOJk0Tum6m6F5CPJuBS4Z/UgOqaR2y1yIcstei2nkhBmBZCs3+xi4uGXEtzMUFT7FxisMcIFumSVjt9Ce73kBeiLjSpfQiPLb5icPKdUi+liFPP0gd0CVSdMlw0ZgNnmkxprxtO0g1fNjmK8lYk0DGuMAWZgV5265ttlSo0LsvKvuy2nfEhWkP1BvLYHqxkG7QXauCpdTcyVVzPdwK1VK5sPVhtkrdDwo5ujTJ8ujG8vBOTYv+ohKpiJrqk51/ee6SYZsHu/OHM0m2lmwfFzDza30elc4CWJPjbm8YHnMM0ecjM4ak6W4HW2YUBpQIEqU+zBFkvfRpu5XXgIj8T+5K4xglwyCb3U5nEFO+rT7MtoJcq7mNlJqMEQwXbYEtzAryjkKmTByxz2L86C3P9pZR9YdW1sNChXU1QskalmybV1+0RgSJT0Z+P7Z+pU3UF7Sla+VJ3sgdhbzs6bth7x37u8h1Bz7M5XO8dqaynAGofvYl5Hb1zhZmy4fjOtuSCq/nk78MJLZTRVv0VzNqyGcGfOv09FTdfSBEhBNV05b7MA8J9fQ+/7rDAQBnXX2vVFbXYo1BERMf5qlCHGZ70owftlJitatiPnjR3xBWmBuQdSLBBraiS4Yk7JpshbmbaLkDf70DrnpVu3PaG5eWLfCVF4KaD7Mhtrpc/sIzvMwsAZ/uMUlYOcfr/uzwPQafm3yYXTpj03IrprzN/HDdkM/C2yp53bEOK2dtKXWzivrcqs2lYeIwm1/hw6DPjDR3WuszhQiitFSboGzR34Diy6aj7Op10rByovDcAlj/y/LlF3Q6ti/sQ8t0lec+aafS96kuFaJk2NWzlC4Zdm0zrHyTF4+5DCvMDdTcyAJ1kIC5hbkch9m1g5TIj9gLvODAXevyJfJiR8nwTsfhXBfRC6fttgh3vb+igaWr8GH2qRbGizILN7Boq3DxmPN7CvFSW1qIZIHrs0kbZcXi3BDyIsjR+TBHs4pJLMxh13r0/87TLfoLJ26AbNFf2cLsOO4oLqseLz63EMPSio+9tHZsyiMOsw8xx9nAa/4UMlhjzmGFWUFeR2Q7/cVapWwSrMBXdvFyxU7cUag2OudFf6by8igZAx85f/7rNYfhgCds23iei4J1Y7bVtimuCkExTGKeRrWO75nNDBzwhG2wduMWu7Kz9DEHgO0XhlOY83oWYgGdcxxmR5eMFMOS0+CdcLz0VS5MdnDzcsmQHIuycYlk0V/MBYdEqkV/cR9+VaK1D7NF25nqdNwX/TnWy9jll8LV6ZgDdi59n8MuzLzoT0VeDWWdiEpZ8V20YrL4yrV5WEZvi0LR+uga49Z4a+zB/YbTmP/kkN3x5F2bFeYkLhnOFuZhQUx1qXYMAJ79pJ1wxt8+G3/93P3slT/D84r5X7Qw3AYmuaIcYqASji4Zzn7UkaNxlK61OtfHJSNLwyCJEIv+cjpEeP/LDsKrl+5ll6glQsRp79PdDnqi3jaBOEqYymAzmDULPvVfNaBkbS3i7EzfJaPqF94urH2YHcvLRs52C6bxxmcvcRM0YbCFWQEprG9BO8iiDzOhVottBhutGEXrqB7OXwS2znYFDNkxUyUf1RjTpg3Y1kc2ZQCIQZCMBG/9rjKK42/+vGVldPjei53SN6WY/+1DumSQiUuGoR/7wMJsqcg6+5W2k7Yv+pPHdwf+6rn7Ss/3CytnbkDxYegulaYDawwrF1jesMjKMgd9kqHMwfM2OLvbKfgwW5ZrsmHEcsAKXffyerf1vLJq+KbnLMGvb1qFu9ZsCCpv3GALcwOyRbXhKmlhMZ4sPqxksHFtuHkaZZeMcmr5VsWfeNUhjlI08kneF0QLK1dRxFMNPH3hCUQ4yii6ZMQIK+diYQ6pnOfW3UMlsZ8Bu0fj6g/r6mZk+0x9qlnqsHKmidjURKkPs+NLjimy0J+pXTxJ8dmFA7IZM+miPxQU5sA3WU1t0NYcG4+RhbnTGfowt820nJHKwqxiz8UL8d6XHIivnLy0dHyfHbfG7951LHbaZn5YgWMGW5gV5PWwvjV2uA6ytuhPIiv/bXAsckM/fO9FTo2iKV/1Kbj8eByGPszpesa+TNFaSyFQLo/cGqvakt1RgNFpxTr9pF22wfP23wnbB3DNmD/VxZl/+2w8cZdtvNMaxPS1NCtY9w8JrLBDUfYPO0R/Z5JEmGgT9T4zJDKjRgwXiVRK+Nl/91wIAKf+6NqacShFzzlYY5L9tY1yY5PHqdLW2HakHEdsCG/5J5xy9BM1vwcWOGawwqwit1AmWhkn8cioZkWeH9P0JRVdvoikothay1G3KKkPs7WF2daHOSEJOxPXQXq2oB3niuBILMyVwlpgESWkKbuHBbJYu1qYbSuCyF6yrC3MHvXNLkpGuoodSjGJEYd563ld6UJplVHURU5e1jJ3KdlMhK8CM5VtYiSLw1yMCBXPJaOMq/+/STl0u4Qt2VtBSv3X5iXVeqe/wo3vOMetvylgl4wGZKF2tAOoRYUvNg6Zy8Lge9HCbJ68/JpC3m135/NB7ZJhl469ZcDyggBYDWKO+XN9NsVFi1PZ6BS0jCxdZnxIZe2wFeO8uZDbZdEJ4sNskEiI5zl8yfFPK2fhdBedDmUhz6qzgHGeW56mrDkF2Va+koQsrFzxvPBtTe6UYW8IyK4zKJPpgoU5lSnFcbLJPP22dhoTCivMCgYuGdJVyvprXJB1xsN0C0quq4JlYGGO1fkX06/KjrVxySBdz37RpUNKsTOSrYjdtl8AADh4j+0Hx0ZrYfa5ut3kdc/0bkbiw+xxrQ0Dt7JU8hz7FSOUL/2JXDIiNo9ORxFCNZ7IgQzA3fe8unhcR9fDh7mtPdNo9OW2lkZ8WGFWoIySgXAdZNnyq/YlTeuP13iWE6r4mvbxcg1dMgZnp/Rhzv4m6MVcSq16TVdRx1NQVWiSdvyRb9f6Xhx9mF2UQpdHHeLZmGbV99HEbO9SHVbaZ6rPN5dl6lISpuWQwsKcCwvtlkPDDrr4xzus3FuOeSL2V6xfmOrUw8q1Tvez3Oov9aYic92gzT7MDdQGGLv6bAyBlI235MPsk34Fmb9g6TwnHzyz466L/qyjZIzCJSNFWLkAHeUwSoZ3UgP8LMzxSTG+WFvJ8g8pC8XKiTm8C4D0HG8pyPrnOAXZf+mXzTjGszCXZuUiandSH2YUnomzm5H8QlVyrm0nl/PuEw7Eu084UHruVJekM8ZWgiJj7ZLhczFjDVuYJVx3z1qs3bhF+ptAuA6y2EER1TtEWf13WhSjuKR+OHaLkyz660hGBqMU9Oh8AGMRz99PIitAGqbWfas613DuS572BACT7Xvnem+2l6X24fZeP2FyvmeDFUBjQbr23yS1aYhA27CXU9a5lFHpPH/ZgDysXHWNTUhUO7/6PJsmpjqELY5bY7dVF3Wd7W5r1I+2wxZmCW/+1uWDz/WKFSfuJkFuzQYCKehU+lNKv/Q10iBcXfTn6rdp68M8qR1DiCphojBbP5+G3z/96sPwwT/ZnHwqMSXjcGs2WQyy6M9AYpjdGeMZ6pUuGSorqsP9UK2fTtN/NS36S4X1InCLmcqpbnFr7HaqzGOx6G8yh1Qj2MIsYc/FCwefZXUjZBih4rV1fVnU0nXxN1VdIXVZM73Ykur9OS/yMMyQpeE6KGmUQX8ZKRYnVpk31cEu2y1ILjcl1s/f8cU41dNLtTV2CGKvWZCGlYswimpdymIYbEix018kkdVZi/y52a9pMafow5xy5iPgBN3IGQdjQEyMmjoRrSCia4noKiK6rPLbPxKRIKKdsu9ERJ8louVEdA0RHV4492QiujX7d3LYWwnHnou3GnyWhXoL5SNXTJog94/r/1aW74LcOqJPzOUu1Qtg5D9EU2xHsKBtGEPV/Bpnn/REFmZb2t7hp8DaLz9xJAkguQuzMSFmhJr6Z9fbIVkko0g+07KXWWnc/IDydHH5g+/0V1vUUpbnnZ6EbofS7/QXue3suI3/Zk+MOTbvxscKIQ4VQgz2TCSivQAcD+CuwnkvBrB/9u8UAF/Mzt0BwAcAPBPAkQA+QESL/bIfB52FOahFoeIjpvDISBclI6IsoDwYDnZRiyRwkOoI1niMh33ZflctxgzXOm19mUuUDOsrwtS1uLMuxX4lXh8mc5vrr2lRn+8sS2NICBKHufK9I7Ewi8J5sXuKXLJ9XP7hsr8mprodzPQEhBAtdtWzy9du2y/E+f90DJ657w6R8lOnrSWXAl/V7z8BvAvlMjwRwDdFn4sBLCKi3QC8CMAyIcQaIcTDAJYBOMFTfhS0O+bEsjDL3vAH3/092kwHrHgrzFUKejx5gH/jtimPlPpnCFmdGBbm4CmGJ3YeXf2+k8RhtvApHsjxqiZ2pe37bEz0IOdFmYo+LEoc5oZ8DD+HkS1b9FeVFZJquoOtsR37JNNFf0B/b4V2ejC7Wb733WlrTHfTeNem3PWzjZiWsgBwHhFdTkSnAAARnQjgHiHE1ZVz9wBwd+H7yuyY6ngJIjqFiC4jostWr15tmL2wLJgaFkv1TTTswjhRe4MvWWHz3wryfF+MdWn5JN2Ur6p1ZujD7CFUK4+M8hVWZp+QYdrUshy1MglbzTPflrpRTGstN31syi2k+5NeUH5dusHIziXDw4fZYlFWCOVMxIr7CQCoGzVEpEXgeaLJPAdki/4qM6BB5Q3657JQ65cPm/pVvsRJDjO3MY2S8VwhxD1EtAuAZUR0E4D3ou+OERQhxJcBfBkAli5dOpJqumBar0CoGrXtgGcatqfkw+zYcqU+zDJ/PE/rhfKKahihpvM9GVqY01ehFBJDDWD/+epDcOheo/eMcrmfVAqmvauE3enOFmaH2x9FewASz77ESpcAWWgh5XjgkZGORruLcX/yOMxi0Masx7amE6oWZskCdxs5NluvCwHrTjqZhXnC5EwaRhZmIcQ92d9VAM4E8HwA+wK4mohWANgTwBVE9AQA9wDYq3D5ntkx1fHWMb9kYa7+KqJ0WIM3btlvhc7Azeolv0i+yMMlfZdcZD7MnWIvFo6hxT5oslo+/7r++taF0/Gnx0I9p1cctif23WnrMIkxY0Mq/XX4Ymwo0aG9Fi8xCSvneu+2Psw+SDeaUuQpBLKwcsXZVOd7tLzO2f/f5JyB1d7ltdF9IEmnBLMaHJvGkZ2ItiaibfPP6FuVLxVC7CKEWCKEWIK+e8XhQoj7AZwF4A1ZtIyjAKwVQtwH4BcAjieixdliv+OzY61jvsbCLBDHjWDQT5TqfLgGIOuHTJTJUDnoDzblxTmA+xRco7xAPsw2HHPALnjyrtsksXy2NY4xd9ku5NY1u2c6Tv6EJrcW4n76LhIR12FILb4RfJg1M2Qx7k+26A+IaK3P/uYSXX2Yhxue2F1j6zrmvHbIYdbZpcytq4Sru9n4dDlRMHHJ2BXAmVkjnQLwHSHEuZrzzwHwEgDLAWwA8CYAEEKsIaKPALg0O+/DQog1rhmPScmHuWoXFeE6rNKiP9nvEv8sFx9R0ytEYQoOCNs4aos8sr+dwVt/WFQ+crGxHzzDudjEwiaHLXdhbiWu28T70NaBL82iP1crZj2snBDqnf58FGnplRFnBPNF50KUZ1DjLfqTJ+xuYTZ3yQAc6lmifo2txO2mUWEWQtwO4JCGc5YUPgsAb1WcdxqA0+yymJ6ihTmq24LEh1nuklG4xHMhUrFjkSmTMUMyFYm96C8XOAoFLkWnl8rCbC+FO3xX0vgwpyX9or94KC3MEZqizJDg6udbRFU+Tetywi/6KzM0oNilY1MmxYXgtuNCsnaTTDFnXOCd/iQsmC5amOvo3madp24kPhky/7+QK3xjNBqdIpfSZ9o7WY8pqxRKeksNhGxhhvsCKdvrfOpAaneOZBZtEV6WboFy30UvihNzWbjkJ6/kK3mWLSVJ2pRdXfQsKLq5tNuS29bevU+bSy42rDBLmD+ltjBrp+A83HGl10r8s5wtzBIB6rjP4anukpVbt+P5Gw6tCX7p2F+TokNp65R622lzuSXJW+LRzmZjCcDfhUoYLMr2KeZal6lz0bP0q3W5NNSLT774urqEJr+10C9YdRe9yiJwUyx8mAfvIC3W+FqcNQBtV+XjwwqzhAUNUQ7CDWzD5iGLGyxrPL7re8t+XPoFJSEbR3/RX/147J3+UlsSpBvQxJATXwSTCFcfZq+mk9DiC9gpNF7iYr/0R54lq25FnWpWbpimkB6PFYe5KtVVjE1YuYfWbcbjW3pW6XvVq7ZrwYwxrDBLKFmYJcHQ4uz0pz4vRGcle7sOunFJw9XqRX8eQg3kpbYmxFnCKJFjWSlSFUObrTdtJ4WF2eXxhOx/mvBe9IfmtuHnA1zPYYw+rCNRYJvWt/jJkxlsinGY41DtL2wNKDb1Jb+Xr1xwu5UMe0kFmbYGc+4/Ww0rzBJKPswSt4VOqFIrLvqrHxp8Ky/U8xO507bzZOJr+dCdo0PXQch3+oujYo4irFxRbnQ5acRY4/XSNUcHC1u3hZzgURhGjGvbKdWbqBbmevr9qBKqBXOesuriAqQsp6OQ59yfNTyHmkXbcxG4yWVD9xJ70nVN7e4E2xrONBWmO/3NKYoW5iq5ChsCFwuzs49flsZrnrE3tp43hYtvfwi/vHGVVlbIxlENyRRixbeOocUkfQdkI9I5e63ttxwtMRY31O4hxQELt4VxY/AqkOjmom1VjWxBr+R4lLj8svYQseJLDRdFg45ruDdL927XdUCT0nYmrm+bMNjCLKEYPF2mcIVa9Fe6Vrazk6T1+DaoTofw8sP2yBZXJGyelNaHOae6e1VsVINqcDkt1ZhTFne6QdLS8hvRSuZ3QeHSxBqGsUuGZwUy2/jBcWEZqDYemLiAuGAaZjQ2A5/q4Anr5RlTeDaNIiv+4a2EfaVbDSvMCi5497HS4/0OMry8+HGYqfK9jlAcD0HN1aPikhFcniRMXwpkg2oUOW3t88eg0x6DLBrhVAUcbt7n5cxmJ7YQikzIGcAqspdhIdT35mVAkQwIQeptUyIKebH6m1p0EGt92Xymsq1dZhHnCceUA8KkdKAOsMKsYNftFgCQ+TCLYEqeVK+SdFjlOMzhaqt8BbbfvemulrkaRlv0l8txXNjoWs7pLMzpsHIxiZeNILRx0EzttgCkLwfTW/Pt30xe+n1mAGLPklHlr+4cwONeqPo9vB+2Vr7S79vR9cPknLReLgUZ7esV25ej8YAVZgUq+2RYK+wwdV2nG2SVeq2DbG40ITvL2oKZgeUpnjWoIMY9HYfzk4SVS6XxtNaUPXlY1zWHZ9PGwTvH/v4lB818Mpzox5KviIPGRc9nUaZ2xjGCC0hDPkLLDBU1aVA+LbUw28psb+tkAFaYlejjYAayMJfSzI4VBMris7ooY9ItsGWuA/HGGuWiv3gWZvXzi4pkUI0ippW20rkb6cIHG7eFUKSSNZgyT1RfI+rL8nSFiKTAqpzmYiNKn9o6EzHAwoc53xSl1TYAjw7U6kruqJ1ghVnB0MJcWeSh8VlzXUzSdGVR3pN22cZOhiJ9lYU5SGgng3SHSkJsC3NqH+ZEclrb6XNH7IrtM/WpAjaygtQ1U5cMzwgzJmtMfG5HvujPI0EFsjjMOWWXjDDCVXHrSxtZBbzP2gyuyA0oji4ZLbUw2zIOQZPmcg/PCrMCbZi3KGHlqHZMFp/1FYftgemuv3yZ64C0Idi2Dk3Byf3/7OSYZkflw5yCubzoby53pjn2RjI3K6xLHUj9fKx2MQxQp2Ms+itO+0uNDCp/XI9syBTYqLsYWh73lhd4ltasfrW00xwj5noRssLcgFbJC4hpHGYiwtP22N47/f42r/Lu3yRPLvLli/4iW5gTawhtDXWWDNaY3UnpkpG4/pgqSDbVR+XD3CTJK+yfxMgQx62sbkAZ/ELVsyJRtTYHTFrtw2w7S5tHyWi+jgZ/W9p3Mq2HFWYFMosv0OSS4SFPdtDGOuNASJeMJqo+02LQ0eV5Ca1p5c/PMUyGh9SJWvRniXtYpKDZGCusrLAFnMqsxS80IRQZ0U8oCv1Ff/X+JMZLf+qomDKFM4S7ie3lrov+TC4bLmC0k+ELuwtPDqwwNyHZGztKWDmFgh6KWhxmkgmrSw+Vn2AWBUt56S3MkkE1hpzoEiaTNm9akDSsnI0Pcwh5AdIwIfaiv7obm3pnQZd85GnJ+sWhcuh+h019k95jOhwql7mOo7nezIc5fdtva3fDhg03WGHWIA1UDwTsQ4apy3x5Bx0kVZVduwyo/O70Dhn1byborhCSL9EU5iipmslNoaTH3iHRFbamuGNtYXao5cl9mLO/xtXVJQqQ5eXOsX4pbtSkUprZ30aXDB/3EkWaQ+JuMy49HkdcSaaTjJb3ay7PqZ0jSLthhVmDqkKplBVr96uSLPXFQSw8NR9mRbi5iK1ISF4GooWV04QFtEvIVq6nvJbJsaflI4sF7pvXuL3QtveZemAR9ivE/QsRUcmrhsbM3cpiyJL6Z0cQlMuzPB5NomvbMalfbiIYZgArzA3UpuAiTfnJfHmDxWeVWUUkh6Ouwq7FJzZfrOEkbyAlvQKXxIcZaVRT26eTsrRTjXvRB1gLpbLIOA38pnlN4s7kapVVWJjVBhT3B2R6aWw3g/h1TBT+dzCgWDgxj1N7YdoJK8waVP6oMXyYdSmG6BTlFuY4sqTyK99z2fEszGU5qahaoZpw9yVrZ+/PLhn2DMLKJXykqeqPTVsIkSOBuEpkyf0jYh82nCErGFDCiykKrMmIa0BBTR7g5y7TeE6Wdlv7zpQ4jztz3JGDFWYNtos8vGRJOhDVQBrC6qd6GfD1j9NeI+n8XRd5NNGRDABJULyIMC2ipc8nlQprS4j+Lu69lWfl4vndlhMO6UpT2zCkIqOcD395tTSVxxOtMXF8+bCJkpGfNLdVPsYHVpg1yBb9AZFcMiDRmANLUH+LLBr1soxtYc5vsJdYe03mKpFKEBMdYTXqD/Ga8ne+0g7be/NtriabBvkonOV1GHq3MhcxQz9bs6uDK8+VdSapjbH28sxd+0alKLfRdY7HDjdYYdZQfbsexg4O00GW6qxGg43VaclXfMeRJbPW9+XFsQQPLDTJw8ohSWfU1qkxn1ufvD7c7o5SPNNRzX6kWvTXlxWHWk8VMdJPbBe9WpoGa/BsXtCaqplyDLVd9Dfw/29mFK4Ybe2n/Zi8ntoUVpgbiKpUFhLXWXxDNPRaEkrrec3b2Ch92w4yf/mIF4dZN6kZD1sfZmc5be2HHTWy1t6PA663YlsGPkXWVsuhb8sRBsJChZWLGd1k4FJWKpB4/Yq0TIS/wtdkXFK5otjLMThHKmTuKn8uTFI/7QIrzDqoErUi+xts0V/hs7yDHGQjOCTTmAN0XroOVlaWkT0ynC1q7ovxHC+0lZNGjDU8/LjT1meaykrWdmuctVuZx+0M+xF91KToL2fR/MHL313HVquwcgMf5nbXM6a9sMKsgYDyDJzF9I+1LEkH2XyuRfqSNKqWUCE7MRAql4zoO/35puNQILw1NmPDKF7OUikNcV+M0zYCAlWiVojB8fCyNL9FuG1ZmqNoyz4h/2KlPS5w3xsfVpg1qBb9hYrsUExbHiWj/FtIlD7F1QOBWmFtOjOyf3Y+iI3ChznNor+W9v7ca9szaAt2z3QcdvqzvTeTRXveeChlqaJWDNaAN/q6hRVbNaLEmwGUu/5ZW5gtqsswrJyViLEg5Xgwl7t4Vpg1qBb9Kc+3rbOF5FQ+ZMrfLJHGYba8RktjK6qUZaWDDD1ODuMwj8CHOYHM1H2+6T2NQ2fatjyOJg5zGjk29+YaISEVVSPD0CVD76drJSNLS6c4prRoR9tYSpFsCguziwivxcwTFGd0At81rGCFuQFZZY/hw2wTh9lHzkCeQrHz7SB1l8vWr3Qsa6Bp3zPwYbZL3ptUFmbbnsu1z26jNcZn/Gnj/eTYZs3PJSONHFt5To/W8iLn26HybqUxZ8lk/VfMfkV+DyK6ghRKl2yrX3Jb+5vJUeHTwgqzhpSromtCivkIkGy1Q5ErdvE6yH5ZxltAWReYyRlBz5BmVrmdPXFKa0pbF1ja5itJv5LLGlVYORMLoH2qDjlxp29hjmdAKcnSWZhLi/7Cyq4q6MlmIhqs9Zorjc9srRvbuDGHtW1WmDUQ5KuigzW7Ylg5SWMe/Fp1pwhgXlT6MFeSDtU2ah5rTSvMveVlrh6pp20Tdcrc908QqobegE8VSOeSMTnU+0b9DKDXxjKJ27d04ywR0Yc5kEuGjZU/P6V47qR4S6TyZprrLx2sMGsgoqiRHUouGZoTYvgwy3qY6q3ayG1STGMMKkbyRmFhTiCjrd3WhIw/SUlpYU6O5ctAmggzgfpvx8WaJuSGBOlC6cJ5rrMZNQz6Z8vleNpfVWOL69hqchWHlWN8YYVZQ80qGnFxzmDxmywfMX3kKj4nvqJ018u2lY0WVm4gxxHXN3AgyajfWuXKudzaekPpSOnDnOqVy+plwPGGUr2kqWblQsyS1Q0O6h4sTNtvTiREudpKsS3LYf1qvpD7GMYXVpgbKG220WBRsG2QskV/0g7SKlU5Bgbm7HgsBZakZRnNJSNQ9A3b4rBe9DdhCiZbmF3IX8StVWYHSaN5Qslqq8HtueaFSN6HqdqiU7x8Kv9N+TJgc9xbXuX+bBRfaXpWMtO2gXb2ie65auf9pIEVZh2k8PMNlX4h7aHFV/pzKDEFeXWLduxV2KPZuGS0oaeiyWmnvoy53Z32sX5xDr02woDkPrJGFsBAsgKlI0tXPksWXpa+X3R1k3AgmkEjjDgXH+Zewi4qaTNLsth8bsMKs4bYC9XkFua6wNpg42S5oMp3xXkG57hQWzBT7egCN3aZD2AKqlaomHLaSNsX0bS02AC4zWZYk/z5tLxCWKCKmhQlSkYuQ6Kgx0A1I5d6JsvZh9nkhSw7pdf2TsqBYL7sjBZWmDX0F/0VQ6G5Tp0aSctkDBGlXyKhcp1zxDQOc2wf5vxGUneOySzM2V/u+MafYTtPp5ykkuRiPY8dmtA57J/CrUy5YM46Z4VrNReXwsoF6j/l9hoR7QVTtRNr3M1rwrjpxWKSNjiZVFhh1qBqvOGm4Iph5WqHGvPhg2mS4cLKVV8+suORp/xSd0HJYgNHHVjc4S7fAYtp5SKplN4QSpnRlHmLrf8AlC56cSzMoyqM8g3G9mE2Pa7CSl0ezDpyL8W4wQpzAyWraIOW5xpDElC84Q9+8+u2dJE3dKHkgnaW1cVwA/eWumU9kLiSnJRM0sYlbV1cOEmMYvhO5dIzCut5E86L/lAdD4Q2vRBxmKOuoZHIS4XK3dG6zCwaTz7WzPbsRDAF2tOMRwIrzBpU0+txOixJqoopPxf5NTdohUnbteNs6rdqHaSnvCYGPnnpbcxp4jC3tOOaKONNcv932/PtK8GoHo/ZoqyWVuoMqmrMGZ0Io6h8TYvkPNuEFRUglMXXF+tFfw5pp3bTSyVukrretsIKs4ZaGKHsb4yNSwaL1KT5CChId1qAlq0d9CTm+uhxmEeg9NiUo2v22qpaeL2gWF+ayMoe3Vcit1TaXejlI+txrRUJ2l+qNq4OjRmuNGnwt27Q8A29VpKjSKK6hibWS4xqhjPempYRGRmSCW3riDBZsMKsoWphHkzBxfApNjcwu6VfSSVUWB9j+SS3vMb2kfOOwxz5fFfaamGeuDeABNiExhoFPtlyqQ6x9V/nWL+Vy2xn1VxkNfWZoeqMVDEW1QWG5uk197thZzhNmOQoGaloaReVDCOFmYhWENG1RHQVEV2WHfsEEd1ERNcQ0ZlEtKhw/nuIaDkR3UxELyocPyE7tpyITg1+N4GJveiv7MOcr+CtN+YY/oYmq5RDyu2/fKTrqGRxpmXfg8tVLAwKL2eud11utHnaP0lYuQDXxpLX2iot6lbl7BuAOFbRmJZWUwT8n4m5q4dbWdq5ZPTTZoWZ3TdcsbEwHyuEOFQIsTT7vgzAwUKIpwO4BcB7AICIDgJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bquRLfpT7uzkk7r04nDVuu7DHCzpPg1ZVVlnVL7UajFm541qRXSbFbIUcEfcbtLrCg7uJim9eiwgUowHEWccpWtoYsqr/xJemC4fthc4ODGzvsy44uySIYQ4Twgxk329GMCe2ecTAZwuhNgkhLgDwHIAR2b/lgshbhdCbAZwenZuiyFpoPpQHVax3crURlUM01jGhyA+a4YuzAanB2EUfWOajUuii2AS4RpJYuIszPGz4SVHGRpTZUDxeT6SY/IF6OPZEQxynd2Ta5QMm752uOjPSsRYYF3XfMog4ZqotmGqMAsA5xHR5UR0iuT3vwLw8+zzHgDuLvy2MjumOl6CiE4hosuI6LLVq1cbZi8O/UpY15iDTYcXDcyaNEOIM02iJitQna/6g8cmlA+zi9xbHliH2V7c2EXW2y9HygcTjpRKrE398cnXJI2ZVQtz8bgvKtc4uZEhYkXRuOiFRDXexfVhrrs9TlD1TMJcdwU0VZifK4Q4HH13ircS0dH5D0T0zwBmAHw7RIaEEF8WQiwVQizdeeedQyTpTF13zP2s4svqy8t/8xNo3ClE7D1UW0bH2mBEtso8BdesXAsAuDb7G4s53m+1Gtd47PYLTF2cwEajIrSqvrb5BSArKGNXtVCL/lQKbJjklSSNkpH9ZR9mxhUjhVkIcU/2dxWAM9F3rwARvRHAywC8Tgxf2+4BsFfh8j2zY6rjrSaVS4auowhiYTZIw2eRh+uK8ehhixL3jQ+t3wQAWLdppuHMHLcMptY/eIiJj3Xb8wrD4HGtBTYv/a1SqiWoIv1ornCXlX8ojT/+UZpU+VcZbKJZmBXHbY1RNv37KMaElldpxpJGhZmItiaibfPPAI4HcB0RnQDgXQD+VAixoXDJWQBOIqL5RLQvgP0B/BHApQD2J6J9iWge+gsDzwp7O2GpRTxoWPRXOMVJFlCZLgrVsKW+b8qcNF2qRddBjMQlw/F61+tyT4zYU1eplIu2KzFutEv9FwW1clKxCkkWLxte9D300uRuuPFSpPRNThIiuUEjqkvGIEpGPBmjxfzGfGaaRjVL1QamDM7ZFcCZWQOeAvAdIcS5RLQcwHwAy7LfLhZCvFkIcT0RfR/ADei7arxVCDELAET0NgC/ANAFcJoQ4vrgdxSQWqD6/LiiUVsvWGgKkqGQ59KJuShwQTuv6stHZFRh86zTsSyEmUxjjuG2U2RcF/uMmja/AKT1YU6DjbtJKv9I17aj8mGOgfOaE1d5CgNDPAuz3DBjv+jPQqbEKDUptH3B7KTQqDALIW4HcIjk+JM013wUwEclx88BcI5lHkdGPaZuPiUWqtrUNWapPO9qarGSOHEHGYvhzolpO8fcejEpFuaUmD6pVM80Wc1x9GF2EuVwUyHyNQn11Xbhss895y56ycLKmbjMJKih1hJsnof9JYwH/ahbkwXv9Kehtugva2nBNi4pyYrswxz4PGv5aifmPoF7seGuTmHTNaUNGw+MEy6llcwtJfL5rtY1H9q92j1uo3W99bTPR3LQyrXOnxAKj23IPfuNS+w1Zl70x7jCCnMDEhfmKG/asn4iVLvWJRM8OoWmw1NNhcUZh3ILTSgrvaX02C4ZrVZ4GBdSrvlLRQr/7JTqT+zZjZqRRnZOjJ1fA7kZxspHkLRlPsyJKs+kuIHM9WGHFWYNRCRVWoP5p0p8mOVxNwNQ9YOWKeiV4yEbB6Fyb5H7j1E37NgW5phTl0xaYu4YpyJ18xh1ewyBtUuGjyxF/xyftDGKcxnD2dt4FWUUPsyTUO+dmcAxhxXmBkqL/gIPbCWXDEmiqqnaFG/hwdNVLPqLF4c5S3dkLhlm57lmL/aiQlcmxJAyEtq6kDOEldFs0Z+3GJi0KHeXmXT1e6g41gUW8x/KAiztL0XENS0jqOqjHhNiMqcV84SwwqyBKmbRmNOLOgUoyKIbk1R8epKGS7U+2u5S1WkOwjKNpndkl4z20rbxMkR8XVu4+thB2f/RZgCraUoXgcdD6ZIRzYAifyFw3fTHRib7MDOusMKsodZ4Yy76k3SQI5mqLbpkuISv0/yWUnmtWROszUp+eY3ukpFa4ZmQMWaS9ESXl6YJeYxeuC/6s5vO92mjsr5XFtbUVYRp3Um9cUnMWZbhQnBuBa60dRYsFawwNxC1aZUarmYKLsSUqGESsZqDbjoz5iIW7zjMzvJb5sPccjmThPWzH4kPc/uerG2ekvthp5SlcVWL8+zyGbnEeG5cYhWHOb9mjuvLqXy4J7GYWWHWQKColUtqYVaeUT/XRc4gDY0FIwaqoP+xDL80qgEgI3rD4jn1iSFpWDmXOMyJq5ppG0/dtlP6MJuGlYspL2Yc3fp453pz9hb/Sd3pb66/CKSAFWYNtjs7+U3B1QlZ/02zVh+0zXLR7G6RdtStrohOHxVgMizMTDpGYcFsE+niarsJqu78GkNOXgaDaxs2LgleZrpFfxaymkeDMBm3UxIzI0rKKBmJWnXKGaO5rJezwqyBkNKiELHCO96DS5Z015T8s4vX2IsxZlSNO/6iv7jpp4YXMaZ5pskXwSYRl+aeRmFhLuuv8YTLq57wbpfq+M5VSfGJFZEpFG3NV5G53k2zwqwh6c5O2d9qWJ9g6ZsEyQgnTiFf7Z8dPKyc2iU8CcYLQ11fZtjG7E7LRibX7PjUgEmYcXFfX5D2OidZhr/F7AdiumQUZaS6Pr8Xl0V/7O7AAKwwNxKrnVSnhdQ+ZLHC+sgyFXdVtHrRXwR5Iw8r164oGRPV33vcTCst2fmiv5RqrIUoXmA6JJWL3iDKTiJNTdkuUkXJSHCbw7By8WW1Ge/bn8Plxwqzhr6Sl6Z22IQhcwv3ZhhGqHJeqLtPraeMekV063b6m0CSKXKWgqwXsiaMwzwOlrK2ZjH2IvCSLKlLxiAjHigWkvsk6YJEoNMLo00c5vyScWgElrTTDjB55cwKsw5VZAeto65Z0qrTan6+ARqCa8V1EW1eNHEbU3XAsVdiwsiPRRs7yD6T10mmIumivxa+cjnXacXaiOByKuNBSL2rmpQuyk/x2Tm7l1jmIzbxY2QUF4I7CvOgVb1iqzIzXrDCrEHhdqs5330ZsdJFwjxFLcZxmKNNwcmtM4Q4nXJu4fWOw+yYtdhbV7dR4WHccLUctvelaTJRjQchvRkG7VoxHsRC6RIYcTwYCGnIhx77qCUpNy7hNjpZsMKsIaa/o/pNvhiZMn7Druej4QRHbEP0ecvL/o5qV6foCi13xJPDCHyY5/ZAbnfzxTjZqXoT3Qt3nDUfkoMBDTYqeUnHhEzmXN/pL9lCywksZlaYG0jlhxO7AzHp+GrKs0XPbBuFudZnBQ+TESfZttBW/13GndaWtUfG7KIYtLUA+tiuafExuAwWLY9YuUu9NXZMJn7jkgQyWrloOiGsMGvQRXbwpaqI20zrRauzAaJk6AY9WVlS3ycjOMMpP1cv5jQ4hxSb4x2XD7EHFtcIJml9mNMSU14q/SflLJmuvGKUparfbmvkFrfk2/ESEgMeDtLACrOGqIHqq75bg8Zcy0UYeUYtyj9QvVq8foV5aEt+24PU+zJp/WMyi3kiOVbku1EmGPXa3B6S7fTnsVBulFtjyxegh5Vb7KNrRp2AcgZ1PZOXxjra/zupFmYmPqwwa7DeCtWjR5F2kCNo2DXXiYBpq9KKYzHJZLbbwOwMWxQmB9cq6mP94xkKe/o+zNGmHEsMFi0r8hEc1QxnQpeM2DVyqKOzxsy4wQqzhpjbd1bT6qgsoqEMzAYZaVwAqKOhcJLHYR6RD+BJz9griRzWdyaPJM/UoTmkrmrRXWYSX2clQydEGmXIcgGjonBVqcS+Z1H7EI9hlIz4smq0SEf3eemb68MOK8wNSP1uo0iSRcnwl6VSGGPt7KTv8GXi0pRmqob+1mOflERO2xdIMeYM6yhHyWglRaPCCBWfkH2Z6vnXDTaxXPSiJGskM6URJaTRiRk9rDA3EM2F2TAOcyiM4zBHU2DVIZlihknyjsPcUsWUFZ74JBtXE77VjcXuW6ZZHMHKRZs6Ec2dIUp/mbYwqxuzDHa7jPhQ6yYpG9rdbnz2gIhFu0vMDVaYNfQXqiWSlX8ouUhMTpXrL6AsW8+jyqt0yJMG+6CmKwPbQdx10LfegttnzYT7pdGwfp6Ojdt90V/7Si1UE0h+ZyO0MPcSjkOtxuEZzPVhhxVmDbYql01dqoeVU0gL1iE2J1Tb2SngS6vSRy5WA5zwBR5t7bcms7Tj0vZ1qSHaaLKBNmIFbIuy0EbFfVTYde+ZD3MvSlaYOQArzBpSdpCxFl3Yjh8xb1kdJSO81LYMbrFIfX8Towi3sl6kCyuXM0nto77hkv788P2NPL3gId+MJduTflG25FgimXN9pz/GHVaYG0gdd7MoT7mi2aF3q14iTSGydUZXlqHLuRZWbsJIZWVK6/oxoQ+rgbyOtjRIRjKs73+ilH75k5H2X1GiyoVNtKnflbkgxmaCqoucNjfuCYEVZg0pd3bqKBQT70ZueQPFbITsYHQxTGMuYpkkP/Aik2QhBCbvflxIG1auzQU+mW3WhPypxF4ErkKn6LrUT2UwphE0+FxmSgtzsttMtOZvrvfTrDBrIOh3p4tBLGmm9Tx2mLdU1CzMc7yhM5OHT5W2GfjSzWYkEZNOTqy+tGjUCHQzo1KEygaNuJnIU+ed/tIwibO7rDBrUFmYY4ZBKxKivtmkEcIaq+vAQzQg0yR0O2WFlMMwVVyDPaRQTLlejz8haom6rsXbDluXbgrlinf6Y3xhhVmDbWfhtzW2LEqkCKadq5OpRuvQ/uyRgcqdidJPwQm2wIMt00wi2rDIODQuzS+2PuNz76NUtqIu+guUjrE8mUCK2wYGoUYnVF9OHTZ+LsIKcwMjjcMs5B1ZEAuDyresdE643ouqGnNDPkKRckGVC3O582H6TOoAXsTEet7WNpqT0oCiTzfKqr+JZ5KjZNg8Pp/bn+shDVlh1kHq3ekiiAIQ0Yc5uvlKn3Od+Bh5m+uLExg5ba4W1nU2yIwWMz7EH43SGYjqLnPJZj0SyRm1TCY8rDBrIKSbgpO9uYXxYfYIk+GA7uqUESuG02/cVU0ak/dE428LXJVlQ7rFeJMYKtGOPGu6ulCeBQwkN/GrZDXfKdq0j4XZNX82dW1s+rU5PKaywqwhqU9hZAuzKXUX5jA56r98qH8Pfd+yuNbMZJEsYlMqt6EJ9GFOTcrm3tQ3hi7jmH1Zi98hgjEIK8c7/TkzF+qJDlaYNdj7rFm8TVY6P1XczdhxmPN8yCyxYeMwqxatxLFtVJdQzvF2HoAE08HRJbSbJPblMSjkMchiiVHuktdma7kJKevjMNTouNWw8WQS90BghbkBk533QjBQG2v7vErOdegjjXb6c0wbMNnZKfWU32SviLYtzbaXw3gP+34MXurm+NbYbczTpKHqBuph3mQGFPsHpLomWjQmXV5aMosbAzvXj0ksgTSwwqxBtTtdzDjMo67KvoqtrmzKnXD1Tg3v3PC0oYXZsURH/SCYOYf9mr9EPr9JpHiQsK3aiAr9AhQyXrcqazV7TaxIHyOoVbnMSYySwaSBFWYNTX63oWXFTV8vIfYGLdpNYGK+gPiGYR5tcBEmBi0r89H4MI92kZf0HNs0nXLiXs4xn4+dIh5e/qhdO3LDRsxcDBf9RRSipGWdjiOtf3mODCvMGohcFC63hkGhNLwKxqlFHrQbXz4C9ycDl4y4YpgxY9SKgY4UeZuk+j+JGzXkLzKj9ItOKi9hXLmhD3NcOczkwgqzBlsrjE97l/UfITHtEKP1WZoMRO0nR2G+Y+Y09lUt/Qg+l5vDpLmyjOOzjD3e6YTO9UV/c/z2vWCFuYFUDvI2nV6I/jGWNct0MErRaFVuIAzTJtxjvKYRlkwhcxQ0V9p43EXn8WWU5EmedSq3xEn0YU75zmRaehNYzGYKMxGtIKJriegqIrosO7YDES0joluzv4uz40REnyWi5UR0DREdXkjn5Oz8W4no5Di3FBAnlwxXUXIXgnDpu1wTrhmqQvpE9VlD+7fGZpg5o/EZYlocc7VNx1x0Psm0ZWH9WDMXKooGGwvzsUKIQ4UQS7PvpwL4lRBifwC/yr4DwIsB7J/9OwXAF4G+gg3gAwCeCeBIAB/Iley2QkjXuCiSrb8tb3mpt8bO063NELSkPBgmJ+1mG+2l5YZsB0ETJSYowzyn3P21T280q/6YCcBHTTsRwDeyz98A8PLC8W+KPhcDWEREuwF4EYBlQog1QoiHASwDcIKH/OiQg8bsPL3qm0BT+oZhhGx/N5bfYEGPcdudhDMEVbhLdiBRoXEc0pYbilr8eJL3JxJ5abZ6issorL0dSWz+yfJnnqR7aSdkUmGI6A4AD6P/RP5bCPFlInpECLEo+50APCyEWEREPwPwMSHEBdlvvwLwbgDHAFgghPjX7Pi/ANgohPhkRdYp6FumAeAAADd73+V4sROAB0ediQmHyzg+XMbx4TKOD5dxfLiM48NlbM4+QoidZT9MGSbwXCHEPUS0C4BlRHRT8UchhCCiIK83QogvA/hyiLTGESK6rOD2wkSAyzg+XMbx4TKOD5dxfLiM48NlHAYjlwwhxD3Z31UAzkTfB/mBzNUC2d9V2en3ANircPme2THVcYZhGIZhGIZpLY0KMxFtTUTb5p8BHA/gOgBnAcgjXZwM4CfZ57MAvCGLlnEUgLVCiPsA/ALA8US0OFvsd3x2jGEYhmEYhmFai4lLxq4AzswiGUwB+I4Q4lwiuhTA94no/wK4E8BfZOefA+AlAJYD2ADgTQAghFhDRB8BcGl23oeFEGuC3cnkMGfdURLCZRwfLuP4cBnHh8s4PlzG8eEyDoDRoj+GYRiGYRiGmavwTn8MwzAMwzAMo4EVZoZhGIZhGIbRwApzYIjoNCJaRUTXNZz3DCKaIaJXFo79OxFdl/17deH4t4no5uz4aUQ0nR1XbkM+ySQu49dlZXstEf2BiA6Jd2ftIWUZ69KaZFKXMREdQ0RXEdH1RPTbOHfVLhL3FdsT0U+J6OqsjN8U787aQ6Qy/mpWjtcQ0Q+JaJvs+Hwi+l425l1CREui3ViLSFzG/4+IbsiO/4qI9ol3Z2OGEIL/BfwH4GgAhwO4TnNOF8Cv0V8g+crs2EvR3/1wCsDW6C+O3C777SXob8VEAL4L4C2F4z/Pjh8F4JJR3/8ElvGzASzOPr+Yyzh8GavSmvR/ievxIgA3ANg7+77LqO9/Asv4vQD+Pfu8M4A1AOaNugzGtIy3K1z7HwBOzT7/LYAvZZ9PAvC9Ud//BJbxsQC2yj6/Za6Usck/tjAHRgjxO/Q7Sh1vB/AjDGNXA8BBAH4nhJgRQqwHcA2yrcOFEOeIDAB/RD+GNaDehnyiSVnGQog/iP5W7gBwMYZlP9EkrseqtCaaxGX8WgBnCCHuys6bE+WcuIwFgG2JiABsk8mdCXYzLSVSGT8KDHYRXojhvs8nAvhG9vmHAI7LzploUpaxEOJ8IcSG7Po5M+aZwApzYohoDwCvAPDFyk9XAziBiLYiop3Qf8vbq3LtNIC/BHBudmgPAHcXTlmZHZvTBC7jIv8XfYv+nCdkGWvSmtMErsdPBrCYiH5DRJcT0Rvi5n48CFzGnwPwFAD3ArgWwDuEEL2I2R8LXMuYiL4G4H4ABwL4r+zwYMwTQswAWAtgx6g3MAYELuMiPOYVMN0amwnHpwG8WwjRK74YCyHOI6JnAPgDgNUALgIwW7n2C+i/Lf4+UV7HlU8jcBkT0bHodx7PjZjvceLTCFfG0rSYoGU8BeAIAMehb026iIguFkLcEvcWWs+nEa6MXwTgKgAvAPBEAMuI6Pe5JW8O82k4lLEQ4k1E1EVfkXs1gK+lzPSY8WkELmMiej2ApQCen+IGxoJR+oNM6j8AS6DwNQJwB4AV2b916E+fvFxy3ncAvKTw/QMAfgygUzj23wBeU/h+M4DdRn3/k1TG2fGnA7gNwJNHfd+TWMamaU3iv4RlfCqADxW+fxXAq0Z9/xNWxmcDeF7h+68BHDnq+x/XMi4cPxrAz7LPvwDwrOzzFIAHke0nMen/UpVx9v2FAG7EHFnrYPqPLcyJEULsm38moq+jX0l/nL3lLRJCPERET0dfSTsvO++v0bdeHCfKU3xnAXgbEZ0O4JkYbkM+pwlZxkS0N4AzAPylYGvcgJBlrEorxX20mcB9xU8AfI6IpgDMQ7+/+M80d9JeApfxXehb8H9PRLsCOADA7WnupL3YlnHmU/tEIcTy7POfArgpS+IsACejbyl9JYBfi0zDm8uELGMiOgx9Y9wJYo6sdTCFFebAENF3ARwDYCciWom+JWIaAIQQX9JcOo1+RwsAjwJ4vej7aAHAl9Dffvyi7PczhBAfhmIb8kkncRm/H30fuS9kx2eEEEtD31PbSFzGc5KUZSyEuJGIzkV/0U8PwFeEENoQVZNA4nr8EQBfJ6Jr0Y+g8W4hxIPBb6plhC5jIuoA+AYRbYd+OV6NfrQGoD8z8r9EtBz9RXAnhb+j9pG4jD+B/qLVH2TX3SWE+NPgNzWG8NbYDMMwDMMwDKOBo2QwDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDDO2ENFpRLSKiBqj/xDR3kR0PhFdSUTXENFLTGSwwswwDMMwDMOMM18HcILhue8D8H0hxGHohyb8gslFrDAzDMMwDMMwY4sQ4nfox+YeQERPJKJziehyIvo9ER2Ynw5gu+zz9gDuNZHBG5cwDMMwDMMwk8aXAbxZCHErET0TfUvyCwB8EP0dD98OYGv0twJvhBVmhmEYhmEYZmIgom0APBvDHQsBYH729zUAvi6E+BQRPQv93SMPrmx1X4MVZoZhGIZhGGaS6AB4RAhxqOS3/4vM31kIcRERLQCwE4BVTQkyDMMwDMMwzEQghHgUwB1E9CoAoD6HZD/fBeC47PhTACwAsLopTRJCRMouwzAMwzAMw8SFiL4L4Bj0LcUPAPgAgF8D+CKA3QBMAzhdCPFhIjoIwP8A2Ab9BYDvEkKc1yiDFWaGYRiGYRiGUcMuGQzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyG/z+p7ZdY2+FbMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 7))\n", + "plt.plot(lc.time, lc.counts)\n", + "bad_time_intervals = list(zip(lc.gti[:-1, 1], lc.gti[1:, 0]))\n", + "for b in bad_time_intervals:\n", + " plt.axvspan(b[0], b[1], color='r', alpha=0.5, zorder=10)\n", + "\n", + "plt.ylim([5000, 6500])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The light curve shows some long-term variability. Let us look at the colors. First of all, let us check that the events contain the energy of each photon. This should be the case, because NuSTAR data, together with XMM and NICER, are very well understood by Stingray and the calibration is done straight away." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 6.24 , 3.4 , 14.4800005, ..., 9.64 , 8.76 ,\n", + " 4.2 ], dtype=float32)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other missions might have all_ev.energy set to None. In which case, one needs to use all_ev.pi and express the energy through the PI channels (See the HENDRICS documentation for more advanced calibration using the rmf files)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, we notice that some GTIs do not catch all bad intervals (see how the light curve drops close to GTI borders). We make a more aggressive GTI filtering now:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "new_gti = create_gti_from_condition(lc.time, lc.counts > 5200)\n", + "all_ev.gti = new_gti\n", + "evA.gti = new_gti\n", + "evB.gti = new_gti\n", + "lc.gti = new_gti" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3qklEQVR4nO2dfbgdVXnof+852YSTaHNCPfLIgUi0SBQxCZwCiqWCLaBeIIUKWPsU0F6ut+AVrje3oVoJqIV7U4vYWltKsVpRwmcaiyXgBbWlBkg8iSFASuQr2WgJTYKVHMhJ8t4/9uyTOfvMx5rZM3tm9n5/z5Mn+8yej7VmZq93rfdTVBXDMAzDSENf0Q0wDMMwqosJEcMwDCM1JkQMwzCM1JgQMQzDMFJjQsQwDMNIzbSiG5AHr3vd6/Twww8vuhmGYRiVYu3atS+q6lCSY7pSiBx++OGsWbOm6GYYhmFUChF5Nukxps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBS05XeWYaRlBWjdZat2sTzO8c4ZHCAxacdyaKFw0U3yzBKT64rEREZFJHbReQJEXlcRN4pIp8VkR+LyDoRuVdEDvH2FRH5kohs9r4/xneeC0TkSe/fBXm22eg9VozWueLODdR3jqFAfecYV9y5gRWj9aKbZhilJ2911vXAPao6D5gPPA4sU9V3qOoC4B+Bz3j7vg84wvt3MfAVABE5CLgSOB44DrhSRGbn3G6jh1i2ahNj43snbRsb38uyVZsKapFhVIfchIiIzAJOAv4WQFV3q+pOVf25b7eZQLOgyVnA17XBamBQRN4AnAbcp6rbVXUHcB9wel7tNnqP53eOJdpuGMZ+8lyJzAW2AV8VkVERuVFEZgKIyOdFZAvwYfavRIaBLb7jt3rbwrZPQkQuFpE1IrJm27Zt2ffG6FoOGRxItN0wjP3kKUSmAccAX1HVhcDLwBIAVf2Uqh4G3AxcmsXFVPUGVR1R1ZGhoUSpX4weZ/FpRzJQ65+0baDWz+LTjiyoRYZRHfIUIluBrar6kPf37TSEip+bgXO8z3XgMN93h3rbwrYbRiYsWjjMNWcfzfDgAAIMDw5wzdlHm3eWYTiQm4uvqv5MRLaIyJGqugl4L/CYiByhqk96u50FPOF9XglcKiK30DCiv6SqPxWRVcCf+IzppwJX5NVuozdZtHDYhIZhpCDvOJGPAzeLyAHAU8BFwI0iciSwD3gW+Ji373eA9wObgV3evqjqdhH5LPCIt9/Vqro953YbhmEYDoiqxu9VMUZGRtRSwRuGYSRDRNaq6kiSYyztiWEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqrJ6I0TVYTRDD6DwmRIyuoFkTpJnSvVkTBDBBYhg5YuosoyuwmiCGUQwmRIyuwGqCGEYxmBAxugKrCWIYxWBCxOgKrCaIYRSDGdaNrqBpPDfvLMPoLCZEjK7BaoIYRucxIWIYXYTFyhidxoSIYXQJFitjFIEJEcMoCe2uIqJiZUyIGHlhQqRHMbVHuchiFWGxMkYRmItvD9IcsOo7x1D2D1grRutFN61nySLi3mJljCIwIdKDWIqQ8pHFKsJiZYwiMCHSg5jao3xksYpYtHCYa84+muHBAQQYHhzgmrOPNjWlkSu52kREZBC4EXg7oMBHgLOBM4DdwE+Ai1R1p7f/FcBHgb3A/1DVVd7204HrgX7gRlW9Ns92dzuHDA5QDxAYpvYojsWnHTnJJgLpVhEWK2N0mrxXItcD96jqPGA+8DhwH/B2VX0H8G/AFQAi8jbgfOAo4HTgL0WkX0T6gS8D7wPeBnzI29dISZnVHitG65x47f3MXXI3J157f8/YaWwVYVSV3FYiIjILOAm4EEBVd9NYfdzr22018Nve57OAW1T1VeBpEdkMHOd9t1lVn/LOe4u372N5tb3bKWuKkLLFOXTag81WEUYVyVOdNRfYBnxVROYDa4FPqOrLvn0+Aiz3Pg/TECpNtnrbALa0bD++9WIicjFwMcCcOXOyaH9XU8YBq0xxDmUTaIZRVvJUZ00DjgG+oqoLgZeBJc0vReRTwB7g5iwupqo3qOqIqo4MDQ1lcUqjw5TJ4G8ebIbhRp5CZCuwVVUf8v6+nYZQQUQuBP4L8GFVVe/7OnCY7/hDvW1h240uo0xxDmUSaIZRZnITIqr6M2CLiDStte8FHvM8rf43cKaq7vIdshI4X0Smi8hc4AjgYeAR4AgRmSsiB9Awvq/Mq91GcZTJ4F8mgWYYZSbvtCcfB272Bv+ngItoCIXpwH0iArBaVT+mqhtF5FYaBvM9wCWquhdARC4FVtFw8b1JVTfm3G6jAMpk8M/K5dYwuh3Zr03qHkZGRnTNmjVFN8NwoMw5vMrcNsPIAxFZq6ojSY6xBIxGYZTdAypPDzYTUEa3YGlPjMLoVQ8oS4BpdBO2EjEyJ2qW7f8uTJHa7R5QZYqHMYx2MSFiZEqUigqYYqwOIsgDqpvUP93kPtxNz8VIhwkRI1PiVFRxAiTIAyoP20mRg1+3JMAsu03L6AxmEzEyJWqWHTXTjko6mLXtpGibRJniYdqhrDatXk3iWRS2EjEyJW6WHfTd8OAADy45JfScWat/irZJlCkeph3KqJaz1VHnMSFiZEpckF6aAD5X9Y+riqoMg18ZE2AmpYxquaInCL2ICREjU1xm2Uln4C7R40lmoGUc/MBdCGZlz3H1ogu7Rhmj+sswQeg1LGLdSE0njdNx1zrx2vudVWWtAgcag1+RRaBc2/TpFRu4efVzk9yjB2r9nHPsMA88sc35WURdD4JXjEH3p2zeWUneA2MqaSLWTYgYqSjbQDx3yd2BcScCPH3tB6Zsr+Lgt2K0zuXL14X2s1WwRD2LqOtBOttVGSjbe1k1LO2J0Taug2vZdM9JVVRls0m4qGGWrdoUGqDZuj3uWaRR+1RBJdQtTgtVwoSIMUESu0KaQSjP2X/W+vlO2ydchGDSQTxq/zRedEXbjFwp2wSh27E4EWOCJH7/Sett5B2bsWjhMNecfTTDgwORMScuuLY1yz65xI4kHcSj9o+6XrfEsRidwVYixgRhM9f6zjFOvPb+SbPtpDP/Tqi/spqBurY1yz65qGFOnjfEN1Y/N+XYI14/k607Xkm0CsvDi87oTUyIGBOEqTiE/eqN5mz7mrOP5pqzj3YeaKrkeuna1qz7FCcEH3hiW+D2Xbv3JXoWLtczlZDhigkRY4Kg1UWr1w/sn20/uOQU54GmrLEZQbi2Ne8+tdpbgq4FDaGV1aBfNq81o/yYTcSYIMiukFW69irp2V3bmmefVozWWXz7+kn2ljCyFFqtNp7Ll6/j0ys2xB5r9C62EjEm0TqjDYsnSDpwVcn10rWtrfvNGqghApcvX8eyVZva6t9V397I+N74GK4sBXGQjUeBm1c/x8gbDyrlszKKx4INjUgseMuNrO/T4UvuDv1ueHAgF0EcFrDZvGbZAw2N9rFgQyNzkq4g8tSpl1lf38ngy7wG8zi7i2EEYULEiMXVaJtnGu6yp/jO2lNrcKDGzrHxwO15sfi0I0PTqpTRAcIoB7ka1kVkUERuF5EnRORxEXmniHxQRDaKyD4RGWnZ/woR2Swim0TkNN/2071tm0VkSZ5tNtKTZ5GishZAapI0+BKiiyctPfMoan0yaf9an7D0zKOyaXAAixYO8+ET5iAt28vqAGGUg7y9s64H7lHVecB84HHgUeBs4Af+HUXkbcD5wFHA6cBfiki/iPQDXwbeB7wN+JC3r1EyXGbjaavOlT3OJKmnVly0+6KFwyz74PxJnnLLPjg/91XX5xYdzXXnLcgk8t/oDXJTZ4nILOAk4EIAVd0N7AZ2et+3HnIWcIuqvgo8LSKbgeO87zar6lPecbd4+z6WV9uNdMTFTbSjksoqJiNLu0rruZKkY3exoRQV8GeBhkYS8rSJzAW2AV8VkfnAWuATqvpyyP7DwGrf31u9bQBbWrYf33qwiFwMXAwwZ86c9lpupCIuFUo7xucsEixmaVcJOtcda+vOs/ayr6yadNqZIU8hXyZHjG4iT3XWNOAY4CuquhB4GcjNnqGqN6jqiKqODA0N5XUZI4K4JIjteP5kkWAxTIgtXbkxsYqtXRtNGhtKp8k7aWae1+t023uZPFciW4GtqvqQ9/ftRAuROnCY7+9DvW1EbDdKRpgqZMVoPTCFCrgPnO2qWcKE1c6x8QlPqOZgs+bZ7ZGqqXZXEifPGwqsUFgmA3ana8Zkeb2y1bvpZnITIqr6MxHZIiJHquom4L1E2zFWAt8UkT8DDgGOAB6mkb7pCBGZS0N4nA/8Tl7tNvIhqqDSrt17mLvk7txVDlFxEH7GxvdOGuCD1F7t2GhWjNa5Y2190v0Q4Jxj27dFZKnCicvqnPWzylLF1w3qwqqo4/L2zvo4cLOI/BhYAPyJiPyWiGwF3gncLSKrAFR1I3ArDUFzD3CJqu5V1T3ApcAqGt5dt3r7Gm2Q1ksqLVE/3h27xjuicgjyoAojLOlk1LlcVxJh6UW+sfq5tp5F1iqcKIGYx7PKUsWXtct1HkQ9ryqp43IVIqq6zrNTvENVF6nqDlW9S1UPVdXpqnqwqp7m2//zqvpmVT1SVf/Jt/07qvoW77vP59nmXqCIF9R1IMgz9iPIrjJ7hnvwnl8QtmOjiRKo7TyLrGNp4oRu1s/KRTC7DvRZu1znQdTzKntclB+LWO9BitAXB3lXhZGHyqFVNXDdeQtYtHCYFaP10CjtVloFYVobTZxaLe2zyKO+CTTel06kQ4lLsZPEuy5pup4ifhPdUufehEiXE6RXLUJfHPSjfvnVPYGpPbLwUPL3e3BGjV+8sofxfQ1R0Tr4XLZ8Xez5sjR6uwjUNM/CxU6TVM/eFJRZZXOOI0owJx3okwj5In4T3VLn3uqJdDFhS/TBEBVO3i/oooXDPLjkFJ6+9gM8uOQUlp55VC71OFr7vWPX+IQAaeJXDQyH9LtfJJeobb8qLIw0zyJOhfPpFRu4fPm6VCqbMtSDyXOgL8Llulvq3JsQ6WLCZm6qlOIFzSL2I4igfgfRHHzCfrBfOHf+hMDLWqXRFKi/e0JwYOzJ89LFOk2ftv8nPXtGbeJ+rhitT3EpBnc9e17PKgl5DvRFDNpR97QM99sVU2d1MWEztJfGxrnuvAWlcB/0qxyaqpbLl69rq02uM9Pm4FNkwaywuulh28MIqmfyyvi+ic9RLtau96vodChZZC0Io6h3oOh7mgUmRLqYKJ1rHi9vO37tWaYkcYkHaR18WgeR5uw877iNrFQ0YavOT966PtZxQGR/EayBWh8H1vrZuWs8k4E0y1iHvAf6Mg3oZS994MeESBeT58ytlXZf+iy9Y06eN8Q3Vj83ZftArY9XxvcFDj5p2x8XLBZ3zqwSS4YJnb0OlUv95qKx8X2MeSuYdgeuPAbCMg30eVKliHuziXQxSfWq7QRbtevXnqXRNEwVdNDM6aE2jjTtj4stcDlnVrr4vAzA7cQmVCnWoWxUJeIebCXSFUTNhtupSnj58nWseXY7n1t0dOzx7b70Wc3I07YlzTFxs0WXc2alokkShyO4p4BpbW8SXO9pVdJ7dJIsfw95YyuRipNVpG1YKo6bVz/ndK52PWey9I5J05Y0x8QNkq7nbHpqXXfeAgAuX74u8UqwddXZP7VeD9BYjTZXY1EuxlHtdcWl/ytG6yy+bf2k93fxbetLmd4jL4I0AObia3SMrFQGYQOieteIo92XPkr1FqZmC9uepi1pjokbJJOcM4vJgD8O5wvnzg+9dvO+uaxEotobp/oM6r+wP4HjitE6S1dunBLDM75PWboy+/R4nc6N5dqmoOcOmIuv0RmyUhlEqTdc631Ae2qZINVbmHF2zbPbuWNtPdJomzQyO+kxcY4LSc6ZtSE17NpApNrLxTvL1WAelDbFnxk5KlNAUCaDdiirt1PUc88jPikPRB28N6rGyMiIrlmzpuhmdISwGeXw4AAPLjkFCI4hGKj1T5rZROWQ8p8rC5LowF1nzE2ybmscWenz5y65O/DeC/D0tR9ou51NXN6XPM6x8Op72bErmWB4xrHfLs8gi37nQaeeuysislZVR5IcYyuRiuPixutaz3vNs9tzL5SUdEaY1Kjbae+VrFxOO2VIzcLrJ805kgoQ1+zKru9TVG2UIqmSAT0Ms4lUHBc3Xtcf/ecWHc115y3IVQ+b1IaT9MeU1Y+v0/rzThlSs0gdkneeqf4+4cozjnLa1/V9CmubQKG2kSoZ0MOwlUgXEDcbTjLbSTOzTqLSSTqLTeK6mtWPrwj9eZbR2FHPI4sA1DTnGByoOds5ksxsXd+nxacdGaiubTqOFGV7KDLlTlYkFiIiMhs4TFV/nEN7jBzIM3I96YCbdPne+iPrEwmMwu4XyWzVlFe0cNDg3rxeVgNI3PPIygEi6TmWnnkUi29bP8UTK4jxfep8r13fp0ULw1P+Fx3AV/UofCchIiLfA8709l8LvCAiD6rq/8yxbUZG5DnbSTLgrhits2v3ninniBNorUka45wE2iWPaOGgwX3xbetBYHxvcJ2TNMQ9j6wcAZImzgyzuYXheq+TTJCGu8D+UEZcVyKzVPXnIvL7wNdV9UqvbrpREfKa7SRxMQ5SSw0O1Fh65lHObevE8j9sdjtroMaJ196f6rpBg3vQrLzdFU+UAfnTKzbEukUnJclK9IEntjkJEHAf2JO8D53MJddLuAqRaSLyBuBc4FM5tseoGK7qhLAaHzOnT0s8gGUlEMNm5WF2mP/0VWJMOgBn4f3kQlS8T1Q9kaxXPp+8dT2XLV9Hv6d+DFsFBJF0YHd9H7rB/hBFUeljXIXIVcAq4F9U9REReRPwZH7NMrIkz5fLdXZXZEK5MFtE1Aw6SPWyN6Q6YtC9bL3mrASG5aYAbp6jvnNs0mAc9fyiHBHarSeS5Nim3ar5f33nGBLShsGBGjOnT+vI4Fd1+0MYRQZTugqRn6rqO5p/qOpTIvJncQeJyCBwI/B2Gu/PR4BNwHLgcOAZ4FxV3SEiAlwPvB/YBVyoqj/yznMB8GnvtJ9T1a85trvnyfvlcp3d5eEP7yIcw/p/YK0v0nbgqnrxD6L+Qd8/YNZ3jlHrF2p9MkmFVeuTSTYRmJyaxN9u/2Ac9fya21zqxjdpFVoug3lz3yShykH7DtT6E6kzu4ksJ3dFpo53ilgXkR+p6jFx2wKO+xrwz6p6o4gcAMwA/gjYrqrXisgSYLaq/qGIvB/4OA0hcjxwvaoeLyIHAWuAERrv4VrgWFXdEXbdXopYj6MskbphBvFzjm0M2El/SK4G9qQR781I4bBI4lZmz6gx44BpkTPt1n1dvLPi2h30/PyDUpgXW2sbm/cMpqZDCXNYCLNvuTI4UOOlsWyKXlWVrB1Esop8zzxiXUTeCbwLGBIRvyfWLwH9wUdNHDsLOAm4EEBVdwO7ReQs4D3ebl8Dvgf8IXAWDaO9AqtFZNCzw7wHuE9Vt3vnvQ84HfiWayd7lRWj9bbyYWVJ84dx1bc3TkQvC8ryh7dMzM6TrJLCZl5LV26cNCgnjUhuzspdjq31C794Zc9Ef+KEzs5d44x+5tSJv6NmonHPJ85xIUiARAnthVff6zyTjaph3x8ivPzMnD6NdVeeGrlPt5P1yqHIyPc4ddYBwGu8/V7r2/5z4Ldjjp0LbAO+KiLzaawgPgEcrKo/9fb5GXCw93kY2OI7fqu3LWx7TxO3FG4OKmEU5dbor/u9y/e5iesPKWyQ3Tk2Psn4Hbc68OO35YRVR5x5QD+7du/lkMEBXvYZ2l1oTYHeqma7bPk6rvr2Rq4846hYIebquNAvwj7VyFn/itF6aFqSoPscJeB+aWAav3hlT2Q8SF4TmCrVJcnaRlik51mkEFHV7wPfF5G/U9VnU5z7GODjqvqQiFwPLGk5v4pIJhkgReRi4GKAOXPmZHHK0uJi54iaLRbl1hjVJj8uPyTXVYYyVYUTRKvB+h/X/zRwv1p/H09fezrQUCG4UuuX2Hxm0MgxdcWdGzjn2OFJ7ritnDxvCJhshwlin2qsOiMq1X+QW3PUvd+xa5xav0RGqOcxgSlrlt4wsl45FOl55pphYLqI3CAi94rI/c1/McdsBbaq6kPe37fTECr/7qmp8P5/wfu+DhzmO/5Qb1vY9kmo6g2qOqKqI0NDQ47dqiYu+YKiBuKi6hIkqXIYR1DOoTCagiSMpn3Bf0/CBkD/9iQ/+JkHTHZljroXY+N7eeCJbVxz9tGhxaUeeGLbpFoUYbi0MaotL+/eM6XWxcnzhiLv/fheZeb0aXzxvAUdywtVtVK8eeTMWrRwfz2ZTqaRdxUitwGjNDykFvv+haKqPwO2iEjzrrwXeAxYCVzgbbsA+Afv80rg96TBCcBLntprFXCqiMz2Uq6c6m3rWVyWwmGDx/DgQGEzM5cBzfWHFJR4Mizza79I6EqknR9uEkH20tj4pKSOfSHCocnzO8dYtHCYfSH2hed3jsWu7FwLSs0aCL5v0uI5Bo2B+Rurn2NsfG+ogIOGwFm2ahPnHDvckcJKVapJDm6JU6uCq4vvHlX9Sorzfxy42fPMegq4iIbgulVEPgo8SyOAEeA7NDyzNtNw8b0IQFW3i8hngUe8/a5uGtl7FZelcBmjc+OSKSbNf9W6hJ81UKPWL1NcZqMG2rDrzZ5RC7QT+AVVkAph1+49gccNzqjFGr79xBn4myuDMPpFOOdYtyJfQe7Hcfet2YcoVWF95xh3rK07PdN27RlVTKneLTErriuRb4vIH4jIG0TkoOa/uINUdZ2nYnqHqi5S1R2q+h+q+l5VPUJVf6MpELTBJar6ZlU9WlXX+M5zk6r+ivfvqyn72jW4LIXLONNptimMfaqJ2tdaWnTn2DhoY6Bv9vmcY4dDVVn9IqH1zK884yhq/ZOPrPVPTVHeqkK48oyjAp+NKs4usf5nmWS142evKnesrU/q14rROp+8df3U9Ct7ldccOG3Ku+JSgz3O1uSiUsqiNHARKdXLWG63CFxXIk31k1+FpcCbsm2O4YKrEa2MM51FC4dDDcFJZ41h+ahmHDCN0c+cOjFohg10UQF8aQ2VYcddniD4zy/s/edL6q7cmnjxijs3hK6AWt2Pm7QTD9IkTqWUNIln0DPptGG5aob8PHESIqo6N++GGMkoo4BwJStVW5QePG7QbCVo0Ep7j4OOcxUC/rVP64CZhrp3L+LsJ4cMDgQO0NecfTSfvHW9830MO3cUcc+x2abBGbVJ7sNBae479ZsoMkK8bDips0Tk94L+5d04ozokWdpnpWqLqrDn6k7sJ08jrKtaqlkkKUjFE6aWGx4ciFQ9xXlwDdT6OXneUKBKCeBDxx8WemwcLpODsOfYtCM127Rj1/iU+JOiPLCqZsjPE1d11q/6Ph9Iw9PqR8DXM2+RUTmyXNq3zoZPnjcUGGG9YrTOy6+G1yaJyh0VZgzO0wgbpG6JyiYQJATDck8FJZT00/SkiirmlYeLrGua/7CVqasdqYiBu4qG/Lxwyp015aBGYsVbVPX0zFuUAZY7q7Mkzc8VlUcrKsAubr/ZM2pceUZj0HrzFd8JVcEM1PrYs0+neHGlWQ2141UUdd+e92bfUbQO0itG65HCs9Xjyt/nqNxL4B71Dw3B9IVz5yd2kgiyI7lct9N54KAzxdGKIPPcWRG8TCOtiVEiOpn2wX+tKBfPIMJmvd96aEus7j1qvxm+gL6o84yN76PWJ8yeUWPnrvSJAFeM1ieVfJ2oVojbCizKNuRiQ2mtxRLltNB0TW5eq1UARc2sw9yWITyhYxY1YlzuQVFu691emyQJruVxv83+d6UfeCtwa16NMpLTSW8R1yyuYcFocTUo4gjbz3/euCJIfi+utCxduXGKjn58n7J05cZMiiTF3eOgJIxB5YebiSL9bX11z+S8ZWEC7eR5Qyx/eAut1PqFZb89P7L97RLUplq/MPOAaaXIAlxl55YscV2J/Knv8x7gWVXdmkN7jJRk6S0StqKJy9PUSthgHzbrdckAG7VfXLBlK+3q0l1So8QRNhC5uPZGJXRsMlDr45U9+2i9Xa3vRphAW7ZqU2AyRX8al7wGUpvtVwNXF9/vi8jB7DewP5lfk4w0ZOUtEraiWfPs9lh7RSvDLYOc31UzKELa1SZyzJxZ/OtPtk9Ro7QGW0L8IBwnMKO2501TwITp310SOr4yvs+5omGQQAuLb3kpgaBsh7jZfpUy93YrrkWpzgWW0aj9IcCvAYtV9fZcW5eSXjSsZ1V8Kuw8rquEJn7deNAgGKaWiPPOOnne0BRBI8CHT5jD5xYFR8MnMeQn3R7E7Bm1RGoy1wqNfiGsyqR752qE9uOSJj6qOFZQqd5O2+W60bhdJGkM665CZD3wm6r6gvf3EPBdVZ2fqqU504tCJKsflGtFvzAEpgweWVZXjDpXU/0SNIAFDW5hq5Qod9g4Qdq0Fbje86TPLWz/A2t9ocZvF9JWMYybLOQ5qJelamfWFLm6ytM7q68pQDz+A/e8W0YHyEp/3I69IuzHm2VgVtisuKl2C3MsSKKqCeunS/+T3vOktqyw/adP65uiIkxC2DXj1IL+4zodxd2NAX9VTKfiKkTuEZFV7C9Jex6NrLtGicjCWyTMSydOlRPlaplVYNaK0Xpk1tikA1i7Bn4/aWe/SQfCsO0vjY0zGJJ5OE1bksRtNI/r9KDejQF/VUynErmaEJFfEZETVXUx8NfAO7x/PwRu6ED7jA4TlpLkc4uOnrR9cKA2KVtulMoiqwyry1ZtSqxqixrAwtp1wptmT0kxEl39I/1AGZW6Jen2nY4CJKwvzXOHZdUNqzvSJ8KK0XriNrdLEZl786aKq6u4lcgXgSsAVPVO4E4AETna++6MHNtmFESU22nahISQXNXWOhtOmsUWprrBtrbhnGOHJ4IX+0U4Zs4sfvTcS5OElUt53SQDpb8dYTVQwgbCdgMUBXjXmw/iR8+9FOrtFTYbPrDWF1hnZK9qaEnfPAf1bnQBruLqKtKwLiKPqOqvhny3QVXDi0MUSC8a1ruNICNt3GAeFT0d5iGGMsmOEHaNKBVXEuNxYDv6hNccOM05ej7K/dglCLSpngzKSQbhzhUCXHfegtCsvnHODUY8RXuc5WFYH4z4rryi0ag8YQkIwwb5uIExsPbI3qlniqo9EjQLn3lAP5//LfcfeFwNlDiiPHdca480a7iH2XCiZsOLFg6HOiQ0S/qa0EhPFVdXcUJkjYj8V1X9G/9GEfl9YG1+zTJ6nTAdsLI/pUlzddAvMjEwhv3g2tUpD3sxKjevfm6SoHFxhnLJM+bSPhfPneYgHhXfEXS9JCq2KqpcqkTVBHGcm+5lwEUi8j0R+YL37/vAR4FP5N46o2cJG5CaXlDPXPsBvnDufAZq/VMqFAbVMkkywLUanpsD6ANPbJsiBOLSpbcaqcNwaV+SdO1x9UuCUqb4ywyP79VJ92H6tP1DRVYGbSsv2x1EChFV/XdVfRdwFfCM9+8qVX2nqv4s/+YZVSHrAcFloMpyUPVzYK0v0PMsjeeMS3Es1wE4yfWbXnbN7L1R1wtro1/o7RwbnxDQWRQVy6KuelJMaOWDa+6sB4AHcm6LUVHyCJBy0Q0nHVT954taFYyN7wOE685bMOl6adQ4UQImKLo/yuaR9Pr+3Ftp7mMr/niFdnNadToeIugdXXz7epau3FiKjMBVJm09EcOYIK8BIW6gSjuoQnROKAhuf5BNJG4VEdbGoODEOGGctjZ92vsYRLu2G4g2/OcVDxHmWNHMuFyFyPCykmvqEhF5RkQ2iMg6EVnjbZsvIj/0tn9bRH7Jt/8VIrJZRDaJyGm+7ad72zaLyJI822wkx2VFkIcqoR3dvIt6q7X9d6yth9pEwvqTpI1hwviy5es48dr7AZzUSC732r/Prt17qPXFhVM2aMd2s3Tlxth673kZ512EU1H12qtOJ1YiJ6vqi76/bwT+l5de/iPAYuCPReRtwPnAUcAhwHdF5C3eMV8GfhPYCjwiIitV9bEOtN1wIGpFsGK0ztKVGyfV2Gh31tfqSXRgrS9xhcKk9TqibBtR/WlVo80aqCHSyNu1bNWmSe2NGujqO8e4bPm62LrlLmqb1kzIO3aNU+sXBmp9niovmHZtN3F1VvIMTHRdbZU5MrysFJFE8S3AD7zP9wHneJ/PolG3/VVVfRrYDBzn/dusqk+p6m7gFm9foySEzbZPnjfEFXduCBw80s76gjyJXhnfx3XnLeDBJackEkqLFg7z4JJT+OJ5C2JXC3GDS1R/mte57rwFvPxqo9Rs05i8+Lb1EysFl1m438AdRJTapnnNm1c/F7jPQTOn88XzFkysdGbPqDE44Jbaxk+a1UQa43wSXB0rzE05OXmvRBS4V0QU+GtVvQHYSEMIrAA+CBzm7TsMrPYdu9XbBrClZfvxrRcSkYuBiwHmzJmTXQ96iLQpqFtn9c24jbia6WlmfXnYX1yM+C4z2bj+xJXTdanGCNH9dbmnUbEqeSXxjKITqdtbn/HgjNqUksFVz7tVFHkLkXeral1EXg/cJyJPAB8BviQifwysBHZncSFPQN0AjbQnWZyzl2jXw6q5j/8ccZlw08z6XD2ykgrEuMHTZWCM609UOd0Tr71/YnCbPq0vVvUTdh/S5hiD/YkU2xUirpHz0NmBu/UZZ1W3o9erK+YqRFS17v3/gojcBRynqn8KnArg2Tw+4O1eZ/+qBOBQbxsR242MyGKG7xIT0STt4OHikZWny/FlISk/gMj+xDkSNPu0Y9c4A7V+fveEOZGp98MElusqICh9TDORIrTvoeQSOZ+m/kqWZLHqqmL9j6zJzSYiIjNF5LXNzzQEx6PeqgQR6QM+DfyVd8hK4HwRmS4ic4EjgIeBR4AjRGSuiBxAw/i+Mq929ypZpKBOsm9a/XfWQYhJWLRweFLdeD+zZ9Rijd2ujI3v5e4f/9Q5WLC1jX4PrtlePXs/tb6GET3s2ll6KIU9ry/6bFhVDgLM612rEnmuRA4G7hKR5nW+qar3iMgnROQSb587ga8CqOpGEbkVeAzYA1yiqnsBRORSYBXQD9ykqhtzbHdPEjbDD6shkeQcrQx7ifyiCFMRZB2EGHWtIMJiNa4846jQ8+3avcd5hdakWVxq9DOntq2aa/Vme3n3HnZFeGFl6aEU97yqPpOvYv2PrHGqsV41LBV8claM1ll82/opht8kNcNdUpG7pLVuNx12ktrbaa4VNai7pmN3IQ+Dc1yQZV7XTdqeqtRJr3r7W0mTCt7qpBtAY9b3mgOnLkzH96rz0jwop9LvnjAncY6ldlUEWQT4ffLW9aFqlabL7tPXfmCKW3ESu1Acecxm487ZaQ+lqs/ky1RdsSi1oKU9MSYIK69a3znm7LWThbGy3YElSU2GsHOmNTJnOfjlEbMQpXLsF+GcYzubhrzqaeXLUv+jSLWgCRFjgqgBppN66iwGFldhFtXnKO+0MJVW2PkGB2rMnD5two1XldAIcshvNhvlvbVXlTvW1hl540EdGwTT5gMrE2Wo/9HphJZ+TIgYE0QNMJ16IcPaUcSgCsEri6hZX1jbo1KVAIy88aCOzGbjYjg6+Zxb29OrcRZZUKRa0ISIMcGihcOseXY731j9XOD3ndJTd3JgaZ4zrG540OonatbXNKYmbXsnZ7PNa4XVUnfN1JvV8ynDTL7qFKkWNCHSBST9QUft/8AT20KPmzVQmxRZ7VfJZD3Id3pQBSJXP0lK3FZlUAwbePpEmLvk7tDnmkb/3utR3XlTpFrQhEjFSfqDjts/ahb68u49E+k4dviM8FXz7Q8iavXj6rZbFmOw64AdpsprLTcMk59rUv171WNBqkCRakFz8a04Sd1h4/YPGwj7pOHuG0bVo3SjBt4sS9zmTdKysweGRK438T/Xpgtp0oJSFtXdGaJcz/PEhEjFSWpQi9se5ve+zyEmtSq+/a3EDbxxJW7zTmOeBNcBu9nnHSFu3X6e91y80xaUqnosiBGNqbMqTlKDWtz+Yctil4ysrdesih48Tj2TpMRt0bgO2EmCIg8ZHIjdP2olVnQsSFXew6piK5GKkzRi1mX/oGVxXFGf1nMkVasUSdrVWRnUV61ETR78uK4ChEb/o/aPW4kVef+q9B5WFRMiFSco1UjUD3rRwmHOOXaY/kZiTOco5aDssFFV76qkB48beJPe4yJxHbBdVgECfPiEOROrsSCaq7G4hJBF3b8qvYdVxdRZXUASl9IVo3XuWFuf8MBJEqWc5DpV0oO7uEdWxW3X1UsnqM+1fmHmAdMC3bbbdSEt6v5V6T2sKiZEeoxOpUcoWg+ehDJETXc6eC9pn8twj9JQpfewqpgQ6TE6NTOrWk6kIlcaRcVRJO1zVVZjfqr2HlYREyI+esGLo1Mzs6rOXIsgyeqwF97RLLH3MH9MiHj0SlRt1jOzqEGtijPXInBdHfbKO5o19h7miwkRjyJTKXeSLGdmWQ9qvTrLdl0d9so7GkevvidlxYSIRy95cWQ1M8tyUCvrLLsTA5br6rCX3tEwyvqe9DIWJ+LhGqRl7CfLQa2M/vydClRzjaOwd7Sc70mvY0LEo0pRyWUhy0GtHYGUV23psg1YZX9HO1Hj21Zj5cPUWR55e3F0ox43SyN9Wq+xPNUbnRqwXPtQZk+jTqmZLO6jfOQqRETkGeA/gb3AHlUdEZEFwF8BBwJ7gD9Q1YdFRIDrgfcDu4ALVfVH3nkuAD7tnfZzqvq1PNqblxdHt+px2x3U/IJ11kCNWr9MSjfvIpDyNDZ3asBK0oe072jek5hOGf0t7qN8dGIlcrKqvuj7+/8CV6nqP4nI+72/3wO8DzjC+3c88BXgeBE5CLgSGAEUWCsiK1V1Rwfangnd7FXTzqDmHwx2jo1T6xNmz6ixc5d7tcQ8VwsnzxsKLBV88ryhts/tJ+8VTycmMZ1atZV5NdarFKHOUuCXvM+zgOe9z2cBX1dVBVaLyKCIvIGGgLlPVbcDiMh9wOnAtzra6jYwPe5UggTr+D5lxgHTGP3Mqc7nyXO1EFYqOKqEcBryXvF0YhLTSTWTxX2Ui7wN6wrcKyJrReRib9tlwDIR2QL8KXCFt30Y2OI7dqu3LWz7JETkYhFZIyJrtm3L9kfeLuZVM5WsBGuexuZOpojJ02DeiX4E9UHIftVmlI+8hci7VfUYGqqqS0TkJOC/A5er6mHA5cDfZnEhVb1BVUdUdWRoqFwvbtm9aoogK8GaZ5rxTgn/vFOld6IfzRID4tumwB1r61a7o8vJVZ2lqnXv/xdE5C7gOOAC4BPeLrcBN3qf68BhvsMP9bbVaai0/Nu/l1ujc8D0uFPJ0kCal3qjk0bcPFU0nerHA09so7WKcrfY/oxwchMiIjIT6FPV//Q+nwpcTcMG8us0BMEpwJPeISuBS0XkFhqG9ZdU9acisgr4ExGZ7e13KvtVYJXB9LiTqYJgrUIbXehUP8z215vkuRI5GLir4bnLNOCbqnqPiPwCuF5EpgGvAE1byXdouPdupuHiexGAqm4Xkc8Cj3j7Xd00shvVpgqCtQptdKET/bAYjt4kNyGiqk8B8wO2/wtwbMB2BS4JOddNwE1Zt9GoJt0YuNkNWAxHb2IR60al6NbAzW6gW9R/RjJMiBiVopsDN4sg61Vdt6j/DHdMiOSEqVzyoV3jrT2X/diqzsgCy+KbA51KId6LhBlpFWIzx5bxuXQi820YZctSbFQTEyI5YD/O/AgK3GwSJxTK9lyKFmrmklsMRU4c8sCESA7Yj7NBHj8Wf3R3EFFCoWzPpWihZul4Ok/RE4c8MCGSA/bjzPfHsmjhMA8uOWVSig0/YUKhbM+laKFm6Xg6T9EThzwwIZID9uPszI8lqVAo23MpWqjlnbPLmErRE4c8MO+sHDB/+c5ljk0S3Fa251KG4Dxzye0s3RjVb0IkJ3r9x9mJH0saoVCm51I2oWbkTxkmDlkjjWwj3cXIyIiuWbOm6Gb0NK0xCND4sZi6xOh1yhyrJCJrVXUkyTG2EjFywWbZhhFMmVbDWWBCxIgl7cyp234shmFMxYSIEYmlxjAMIwpz8TUi6Ua/dsMwssNWIl1MFga8bvRrNwwjO2wl0qVkFTFedECcYRjlxoRIl5KVGqpsUd6GYZQLU2d1KVmpocxV1zCMKEyIdClZRoybq65hGGGYOqtLMTWUYRidIFchIiLPiMgGEVknImu8bcu9v9d536/z7X+FiGwWkU0icppv++nets0isiTPNncLlqHVMIxO0Al11smq+mLzD1U9r/lZRL4AvOR9fhtwPnAUcAjwXRF5i7frl4HfBLYCj4jISlV9rANtrzSmhjIMI28Ks4mIiADnAqd4m84CblHVV4GnRWQzcJz33WZVfco77hZvXxMihmEYBZO3TUSBe0VkrYhc3PLdrwH/rqpPen8PA1t832/1toVtn4SIXCwia0RkzbZt2zLrgGEYhhFO3kLk3ap6DPA+4BIROcn33YeAb2V1IVW9QVVHVHVkaGgoq9MahmEYEeQqRFS17v3/AnAXnnpKRKYBZwPLfbvXgcN8fx/qbQvbbhiGYRRMbkJERGaKyGubn4FTgUe9r38DeEJVt/oOWQmcLyLTRWQucATwMPAIcISIzBWRA2gY31fm1W7DMAzDnTwN6wcDdzXs50wDvqmq93jfnU+LKktVN4rIrTQM5nuAS1R1L4CIXAqsAvqBm1R1Y47tNgzDMByx8riGYRgGkK48rkWsG4ZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqTIgYhmEYqbF6IoZRAlaM1q3wl1FJTIgYRsGsGK1zxZ0bJsoZ13eOccWdGwBMkBilx9RZhlEwy1ZtmhAgTcbG97Js1aaCWmQY7pgQMYyCCat7H7bdMMqECRHDKJiwuvdh2w2jTJgQMYyCWXzakQzU+idtG6j1s/i0IwtqkWG4Y4Z1wyiYpvHcvLOMKmJCxDBKwKKFwyY0jEpi6izDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAzDSI0JEcMwDCM1XVkeV0S2Ac926HKvA17s0LXKgvW5++m1/oL1GeCNqjqU5ARdKUQ6iYisSVqTuOpYn7ufXusvWJ/TYuoswzAMIzUmRAzDMIzUmBBpnxuKbkABWJ+7n17rL1ifU2E2EcMwDCM1thIxDMMwUmNCxDAMw0iNCZEQROQmEXlBRB6N2Oc9IrJORDaKyPd9208XkU0isllElnSmxe3TZp+fEZEN3ndrOtPi9onrs4gs9vq0TkQeFZG9InKQ913lnnOb/e3WZzxLRL4tIuu99/oi33cXiMiT3r8LOtfq9mizz3t978DK2Iupqv0L+AecBBwDPBry/SDwGDDH+/v13v/9wE+ANwEHAOuBtxXdnzz77H1+Bnhd0X3Ius8t+54B3F/l55y2v938jIE/Av6P93kI2O4904OAp7z/Z3ufZxfdnzz77P39iyTXspVICKr6Axo3NozfAe5U1ee8/V/wth8HbFbVp1R1N3ALcFaujc2INvpcWRz67OdDwLe8z5V8zm30t7I49FmB14qIAK/x9t0DnAbcp6rbVXUHcB9wet7tzYI2+pwYEyLpeQswW0S+JyJrReT3vO3DwBbfflu9bd1AWJ+h8VLe622/uKD25YaIzKAxgNzhberm5xzUX+jeZ/wXwFuB54ENwCdUdR/d/YzD+gxwoIisEZHVIrIo7kRW2TA904BjgfcCA8APRWR1sU3KncA+q+q/Ae9W1bqIvB64T0Se8GZD3cIZwIOq6jqLrzpB/e3WZ3wasA44BXgzjb79c6Etyp/APqvqz2nkz6qLyJuA+0Vkg6r+JOxEthJJz1Zglaq+rKovAj8A5gN14DDffod627qBsD6jqnXv/xeAu2ioe7qJ85ms2unm5wxT+9vNz/giGmpaVdXNwNPAPLr7GYf12f+cnwK+ByyMOpEJkfT8A/BuEZnmLf2PBx4HHgGOEJG5InIAjR9jvIdDNQjss4jMFJHXAojITOBUINTDq2qIyCzg12n0v0nXPueg/nb5M36OxuoaETkYOJKGEX0VcKqIzBaR2TT6vKqwVmZLYJ+9vk73tr8OOJGGM00ops4KQUS+BbwHeJ2IbAWuBGoAqvpXqvq4iNwD/BjYB9yoqo96x15K42XrB25S1Y0FdCExafvsLXvvatjomAZ8U1XvKaIPSYnrs7fbbwH3qurLzeNUdU8Vn3Pa/gIH073P+LPA34nIBkCAP/RW2ojIZ2lMGACuroo6M22fReRdwF+LyD4ai4xrVTVSiFjaE8MwDCM1ps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAIQkV+0/H2hiPxFm+d8xvO9N4yuwYSIYeSAiFgMltETmBAxjISIyBki8pCIjIrId72IX0RkqYj8vYg8CPy9iPyyiNzr1Wu4kUZQFyJyuIg8LiJ/4313r4gMeN+9WUTu8ZIc/rOIzPO2f1Aa9T3Wi8gPvG1HicjDXt2HH4vIEcXcEaOXsWBDwwhARPbSyG7a5CBgpape6qXA2KmqKiK/D7xVVT8pIktpJC58t6qOiciXgBdV9WoR+QDwjzRqN7wG2AyMqOo6EbnVO/c3ROT/AR9T1SdF5HjgGlU9xYssPt1LjDeoqjtF5M+B1ap6s5d6pV9VxzpzhwyjgS25DSOYMVVd0PxDRC4ERrw/DwWWi8gbaBQvetp33ErfQH4ScDaAqt4tIjt8+z2tquu8z2uBw0XkNcC7gNu89CIA073/H6SRpuJW4E5v2w+BT4nIoTSS6T2ZvruGkQ5TZxlGcv4c+AtVPRr4b8CBvu9eDj5kCq/6Pu+lMaHro7HCWeD791YAVf0Y8GkaWWXXisgvq+o3gTOBMeA7InJKW70yjBSYEDGM5Mxif0rwqLrbP6BRDRIReR+NEquheLUcnhaRD3rHiIjM9z6/WVUfUtXPANuAw7zEl0+p6pdoZNx9Rxt9MoxUmBAxjOQspaFyWgu8GLHfVcBJIrKRhlrrOYdzfxj4qIisBzayv+TuMhHZICKPAv9Ko6b7ucCjIrIOeDvw9RR9MYy2MMO6YRiGkRpbiRiGYRipMSFiGIZhpMaEiGEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkZr/D6KEpiMUE7OOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "hard = (all_ev.energy > 10) & (all_ev.energy < 79)\n", + "soft = (all_ev.energy > 3) & (all_ev.energy < 5)\n", + "\n", + "hard_ev = all_ev.apply_mask(hard)\n", + "soft_ev = all_ev.apply_mask(soft)\n", + "\n", + "hard_lc = hard_ev.to_lc(200)\n", + "soft_lc = soft_ev.to_lc(200)\n", + "\n", + "hard_lc.apply_gtis()\n", + "soft_lc.apply_gtis()\n", + "\n", + "hardness_ratio = hard_lc.counts / soft_lc.counts\n", + "intensity = hard_lc.counts + soft_lc.counts\n", + "\n", + "plt.figure()\n", + "plt.scatter(hardness_ratio, intensity)\n", + "plt.xlabel(\"Hardness\")\n", + "plt.ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Despite some light curve variability, the hardness ratio seems pretty stable during the observation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now look at the power density spectrum. Notice that we are using a sampling time of 0.001 s, meaning that we will investigate the power spectrum up to 500 Hz" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:01, 177.96it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(all_ev, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power (Leahy)')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAGtCAYAAAC4HmhdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABUSElEQVR4nO3dd3hUVf4G8PdMS++FFkLoRQTpTVBUUETsDcu6lnVdt1nWXfytbVdX2V3L2nZd1FVXXV0XVFQQRJEmIE06hJpASAgJIT2Zycyc3x9TMpNMTWZyb27ez/PwOLlz5+bgkOTN95z7PUJKCSIiIiJSjk7pARARERF1dQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUZlB6AO2RmZkp8/LylB4GERERUVBbt24tl1Jm+XquUweyvLw8bNmyRelhEBEREQUlhCj09xynLImIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECuuUgUwIMUcIsaCqqkrpoRARERG1W6cMZFLKz6WUd6ekpCg9FCIiIqJ265SBjIiIiEhLGMiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgYyIiIhIYQxkRERERApjICPqAk5WNSJv3hJsKahQeihEROQDAxlRF/D1vlIAwP+2FCk8EiIi8oWBjKgLOFVjBgBkJ8coPBIiIvKFgYyoCyiraQQApMWbFB4JERH5wkBG1AWcqnZUyKx2u8IjISIiXxjIiLoA15SluYmBjIhIjRjIiLqAijoLAMBsZSAjIlIjBjKiLqCmsQkAYLbaFB4JERH5wkBGpHF2u0SN2QqAFTIiIrViICPSuDqLFVI6HlsYyIiIVImBjEjjqhut7seskBERqRMDGZHGVTc0uR9zDRkRkToxkBFpnFcgY9sLIiJVYiAj0rCTVY0or3W0vDDqBacsiYhUyqD0AIgoeiY+8437cWZiDKcsiYhUihUyoi4iKymGFTIiIpViICPqIjITY9j2gohIpRjIiDRKupqPAeiflYDEGAMrZEREKsVARqRRdmcee2DGIHz9wHmIMehgbuIaMiIiNWIgI9Ioq91RDdPrBIQQiDHqWCEjIlIpBjIijbI5S2QGnQAAxBj0DGRERCrFQEakUVZnINM7A5nJoGPbCyIilWIgI9Ioq80RyIx6x5e5Sa9Dk03CbpeBXkZERApgICPSKM81ZICjUz8A2CQDGRGR2jCQEWlUyzVkep3O6zgREakHAxmRRrmmLF0VMlcwszKQERGpDgMZkUa5K2R6V4XMOWVpYyAjIlIbBjIijWq+y9LxZe4KZq61ZUREpB4MZEQa1XoNmfA6TkRE6sFARqRRrkqYO5AJriEjIlIrBjIijXIt6m+1hoyBjIhIdRjIiDTK3xoyBjIiIvVhICPSKH99yDhlSUSkPgxkRBrVslO/gVOWRESqxUBGpFH+7rJk2wsiIvVhICPSqOY1ZKyQERGpHQMZkUa5OvIb9Y4vcz23TiIiUi0GMiKNalkhY9sLIiL16pSBTAgxRwixoKqqSumhEKlWq8awrgoZ97IkIlKdThnIpJSfSynvTklJUXooRKpla7WGzPHlbpcMZEREatMpAxkRBefu1K/jGjIiIrVjICPSKHeFTN/yLku2vSAiUhsGMiKNsvrrQ8Y1ZEREqsNARqRRthaL+rmXJRGRejGQEWlUc4XMubk415AREakWAxmRRrVcQ6YTrJAREakVAxmRRjXZvNeQuSplrJAREakPAxmRRrnWkLk79TsrZXYGMiIi1WEgI9Io99ZJwrvtBStkRETqw0BGpFE2u4ROALpWe1myDxkRkdowkBFplNUuYdA3f4mzQkZEpF4MZEQaZbNLdwgDPCtkDGRERGrDQEakUVabdIcwgHdZEhGpGQMZkUbZ7HavCpkzj7FCRkSkQgxkRBrVZJfQ6zzXkDkrZNzLkohIdRjIiDTKZvNeQ+Z6aJMMZEREasNARqRRVrv3GjIhBAw6wbYXREQqxEBGpFE2ux1GvfA6ptcJLuonIlIhBjIijWpZIQMAs9WOf64+gh3HK5UZFBER+cRARqRRTTY7jHrfX+KLthV18GiIiCgQBjIijaq32BBv0vt8Li3e1MGjISKiQBjIiDSqzmxFQozB53Np8cYOHg0REQXCQEakUXVmGxJMvgNZUiwDGRGRmjCQEWlUncWK+BjfU5Z29iIjIlIVBjIijaozW/1WyBjIiIjUhYGMSKPqLDa/a8hs7A1LRKQqDGREGtRks8NitSOhxV2WM4Z1A8Dtk4iI1IaBjEiD6s02AEB8iwrZ/KvPBgDY2a2fiEhVGMiINKjOYgUAJLZY1G/QOb7kbQxkRESqwkBGpEF1Zkcgi2+xqN+ZxxjIiIhUhoGMSIPqLI4py4QWFTLX3pZcQ0ZEpC4MZEQa5KqQtWx7oRPOQMYKGRGRqjCQEWmQO5C1WNTvqpBxUT8RkbowkBFpUL1zyrLl5uJ6wSlLIiI1YiAj0iDXXZYtK2Q6VsiIiFSJgYxIg8xNjlb8MYbWX+IGnWCFjIhIZRjIiDTI4twbyeQjkOl0AlZWyIiIVIWBjEiDLFZnINO3/hLXC8EpSyIilWEgI9Igi9UOnQAMvgKZTnBzcSIilWEgI9Igi83uc7oSAHQCsHMNGRGRqjCQEWmQxWr3OV0JuCpkDGRERGrCQEakQWarHSaD3udzet5lSUSkOgxkRBpksdp9trwAHNsncVE/EZG6MJARaVCTzQ6jXvh8zsC2F0REqsNARqRBFmuARf06VsiIiNSGgYxIgwLdZck1ZERE6sNARqRBAe+yFLzLkohIbRjIiDQo6JQlK2RERKrCQEakQWZbgLYXrJAREakOAxmRBgWastRx6yQiItVhICPSIIvV5rcPmUEnYLMzkRERqQkDGZEGBdzLUidg44wlEZGqMJARaVDguyzBPmRERCrDQEakQU02GbgPGQMZEZGqMJARaVDAtheCjWGJiNSGgYxIgwIFMj23TiIiUh0GMiKNkVLCYrPD6G8NGbdOIiJSHQYyIo2xOJuM+Wt7wTVkRETqw0BGpDEWqyOQcS9LIqLOg4GMSGPcgSxQHzIGMiIiVWEgI9IY15Sl30X9gpuLExGpDQMZkcYEnbJkhYyISHUYyIg0prHJEchijXqfz+t0AsxjRETqwkBGpDGna80AgPQEk8/n9QKskBERqQwDGZHGlNdZAABZSX4CmU7HQEZEpDIMZEQaU17jqJBlJMT4fF6vY4WMiEhtGMiINKa81gyDTiAlzujzeXbqJyJSHwYyIo0przUjI9EEnU74fF4nuJclEZHaMJARaczpWovf6UqAFTIiIjViICPSmPJaMzKT/AcyHbdOIiJSHQYyIo0pr7UgM9H3HZYAYNQLNNnskKySERGpBgMZkcZUNTQhNc5/IOuZGofGJjvKay0dOCoiIgqEgYxIQ6SUqLNYkRDju0s/AAzMTgIAHDxV01HDIiKiIBjIiDSksckOKYF4k8HvOQOyEwEAh0/VdtSwiIgoCNUEMiFEPyHEm0KIhUqPhaizqrdYASBghaxbcgwSTHocKa/rqGEREVEQUQ1kQoh/CSFOCSF2tzh+iRAiXwhxSAgxDwCklEeklHdGczxEWldvsQEIXCETQiAhxoDGJltHDYuIiIKIdoXsbQCXeB4QQugBvApgFoBhAOYKIYZFeRxEXUKdq0Jm8l8hAwCjXocmG++yJCJSi6gGMinlGgAVLQ6PB3DIWRGzAPgQwBXRHAdRV1FndlbIYvxXyIDm1hdERKQOSqwh6wXguMfHRQB6CSEyhBCvARglhHjY34uFEHcLIbYIIbaUlZVFe6xEnUp9iBUyg14HKytkRESqEfjX6A4kpTwN4J4QzlsAYAEAjB07lj9RiDy4K2QB1pABgEEnYGGFjIhINZSokJ0A0Nvj4xznMSJqJ1eFLD5Ihcxk0MHKQEZEpBpKBLLNAAYKIfoKIUwAbgTwmQLjINKcOtddlgHaXgCOCpmV+1kSEalGtNtefABgA4DBQogiIcSdUkorgF8AWA5gH4CPpJR7ojkOoq6i3uxaQxZsUb8OFisrZEREahHVNWRSyrl+ji8FsDSan5uoK3JVyOKMwdteNLAPGRGRaqimUz8RtV+DxYp4kx46nQh4noFtL4iIVIWBjEhD6iy2oHdYAmwMS0SkNgxkRBpSb7YG3MfShY1hiYjUhYGMSEPCqZCx7QURkXowkBFpSL3FGrRLPwAYdJyyJCJSEwYyIg2pM9sQF0IgMxk4ZUlEpCadMpAJIeYIIRZUVVUpPRQiVXFUyIJPWRp0OjaGJSJSkU4ZyKSUn0sp705JSVF6KESqUme2Be3SDzjbXrAxLBGRanTKQEZEvoVaITPpdWiyM5AREakFAxmRhtRbwqiQcVE/EZFqMJARaYTVZofZag+pQmbU62CzS9i5joyISBUYyIg0ot65N2V8CHdZGvWOL31OWxIRqQMDGZFG1JsdgSwhJpS7LB17XVo5bUlEpAoMZEQaUWexAgizQsZeZEREqsBARqQR7gpZSGvIHBUyLuwnIlIHBjIijWhLhczKNWRERKrAQEakEfWuQBbKGjLXlKWVFTIiIjUI+J1bCDEJwC0ApgLoAaABwG4ASwC8J6Xk3kVEKlHnnrIMpULmnLJkhYyISBX8VsiEEF8CuAvAcgCXwBHIhgF4BEAsgMVCiMs7YpBEFFw4FTIu6iciUpdA37lvlVKWtzhWC2Cb889zQojMqI2MiMJSbwm9QuZqe8EpSyIidfBbIXOFMSHEL4UQaYHO6WhCiDlCiAVVVZwxJXJxBbL4EO6yTIx1nFNjborqmIiIKDShLOrvBmCzEOIjIcQlQggR7UEFI6X8XEp5d0pKitJDIVKNOrMVRr2AyRD8yzo1zgQAqKpnICMiUoOg37mllI8AGAjgTQA/BnBQCPG0EKJ/lMdGRGGot9hCqo4BQFqCEQBQ2cBARkSkBiG1vZBSSgAnnX+sANIALBRC/CWKYyOiMNSZrSGtHwOaK2SVrJAREalC0F+nhRC/BvAjAOUA3gDwkJSySQihA3AQwG+jO0QiCkW9xYa4EANZrFEHk0GHynpLlEdFREShCGV+Ix3A1VLKQs+DUkq7EOKy6AyLiMJVZ7GGtLE4AAghkBpnZIWMiEglgn73llI+LoTQCyF6ep4vpTwmpdwX1dERUcjqzbaQtk1ySYs3obKBFTIiIjUIZcryFwCeAFAKwNVFUgIYEb1hEVG46ixWdE+ODfn8lHhWyIiI1CKU+Y37AAyWUp6O8liIqB3qLbaQuvS7ZCXF4IfCMzheUY+UeCOSY41RHB0REQUSyl2WxwGwAyuRytVbQr/LEgCm9M9EcVUjpv7lW8x+aW0UR0ZERMH4/XVaCPGA8+ERAKuEEEsAmF3PSymfj/LYiCgMjjVkoVfIpg5s3vnseEVDNIZEREQhCvTdO8n532POPybnHyJSGSml8y7L0Ctk2ckxURwRERGFw28gk1L+oSMHQkRtZ7baYZeh7WPpEmMIPbwREVF0hXKXZRYczV/PAuC+hUtKeUEUx0VEYagzWwEgrApZSza7hF6n+Fa1RERdUiiL+t8HsB9AXwB/AFAAYHMUx0REYaq32AAAcca2B7KKOvYkIyJSSiiBLENK+SaAJinlainlHQAUrY4JIeYIIRZUVfHmTyLA0YMMQMid+n05XWcOfhIREUVFKIHM1TmyRAgxWwgxCo7tlBQjpfxcSnl3SkqKksMgUoTFasep6kavY3VmR4UsnE79LZmb7MFPIiKiqAglkD0lhEgB8CCA38Cxwfj9UR0VEfn1+092YfzT38BstbmP1UegQtZkYyAjIlJKKHtZfuF8WAVgenSHQ9Q5ldWYYbXb0SMlLuqf66u9pQCAqvomZCc7KmKbC85ACKBXanifXycAu3Q8tlgZyIiIlBK0QiaEGCSE+EYIsdv58QghxCPRHxpR5zFv0U786oMfOuRzxRgcX7ZnnPtQWqx2/Of7Y5g+OBs9wwxkQjTfVWlmhYyISDGhTFm+DuBhONeSSSl3ArgxmoMi6mz2n6zBiTMd0+0+1nknZeHpOpTVmLH9eCXKa824fmzvsK/l+ZomVsiIiBQTSiCLl1JuanHMGo3BEKlNY5MNS3eVQEoZ8JziqgacrrMEPC9SYo2OL9u7392KcX/6GhuPnIYQwKR+GWFf68krzsLCeyYBACyskBERKSaUQFYuhOgPQAKAEOJaACVRHRWRSizaVoR739+GVQfKAABWmx0fbyvyWgB/vKIeUjq65ddZmhfaV9RZUNPY1Oqa7RXbotfYxiOnMaxHMlLijWFfy6DXISPRsYUSF/UTESknlED2cwD/BDBECHECwH0A7onmoIjUYvPRCgDAoq1Fjv9uK8IDH+3Al7tPus85Wl7nflxR29xc9Uf/+h6Pfrq7zZ/7aHkd7vvwBzQ22byOx7bY8mjH8UqM7ZPW5s9jcq5J46J+IiLlBA1kUsojUsqLAGQBGCKlPBfAVVEfGZEKbC44A8BxZ2NVQxPeXl8IANh09LT7nMLT9e7H5c7mqrVmK/YUV+NAaa37OYvVjiNlzR97OnSqBrVm75UAq/JP4dPtxcg/WRNwjHUWG7KS2r5RuEnvDGS26E+3EhGRb6FUyAAAUso6KaXrJ8MDURoPkWqcqGzAicoGXD2qFyxWO/7w2R7sK6lGjEGHzUfPuM87erp1hWxfSTWkBIrONIe1RduKcPHf1rTaoshqs+PyV77DgtWHvY6XVjvC3XGPawBAo9W7YgYAKXHhT1e6uAMZK2RERIoJOZC1wB2ISfO2FDimK+84ty8GZCfi4x9OICXOiLum9kV+aQ0q6x3BqqC8zl2hcm0/tKvIsa1XdaMVVQ2OdWTHK+rRZJPYf7LacW6tGZ/vKEZJVSPqLTavahoAdzf+ohZ3bzZYWgey5PYEMueUJdeQEREpp62BjHMbFDG7T1R5VZLUYnNBBRJjDBjSPQnXjM4BANwwrjemDcwCAGxxTmcWlNe513Cddla/dp9o3mfV9XdzVcYOOKcg/72hEL/84AdsO+a4TmFFPaw2uztwnapxVsgqvP/fNDRFNpAZ9Y7fr1ghIyJSjt9AJoSoEUJU+/hTA6BnB46RNO6e97bimaX7lR5GK1sKzmBUbioMeh1uGNcbV43qhbvO7YuRvVNh0uuwuaDC2fKiEUO6JyPOqMdp55TlrhNV6JbsqJodr3BUuFxh7cApRyVsb4mjUrYq33EHZ+HpOjy6eDcuen41KuosKHVWyI63qJC1XOQPAMmxbQ9kBr0OOsFARkSkJL+BTEqZJKVM9vEnSUrZ9g3ziDw02ewormxAfmnghesdraq+CfmlNRiflw4ASE8w4YUbzkF2cixijXqMyEnBpoIK94L+vMx4ZCSaUFFnQb3FisNltbjkrO4AWlfIDjr/rq6pyzXOlhr1FhuW7jqJE5UNePCj7e4KWVHLCpmPKcuUuPZ9SZoMOk5ZEhEpKFCFLDHYi0M5hyiQ0upG2KVj2k9NgWDrsQpICYx1BrKWxvVNx66iKizd5WjJl5eRgIwEE8przdhXUg27BKYMyERijMG9BswVyPJP1qCmsalV5QwAqhqa0D05Ft/ml6GqoQkGnUDRmQbYnRtOSinR0GTDhUOycfe0fu7XtWfKEgCMeh3MrJARESkm0BqyxUKI54QQ04QQCa6DQoh+Qog7hRDLAVwS/SGSlpVUOablrHbp1T4iWlbln8Kq/FNBz9tScAYGncA5vVN9Pj99cDZsUuLFbw5CJ4C8zARkJMagos7iXtB/dk4KctLi3BWy07VmmAw6VDdasfZgOQDH5t4AkJnY3LbiznP7uh+f1SsFFpsdJ53TlxabHXYJjO6Thtsm57nPa8+UJeDYH1NNgZiIqKsJNGV5IYBvAPwUwB4hRJUQ4jSA9wB0B3CblHJhxwyTtKq4snl91KFTvnt0RYqUEv/38S78eVl+0HP3FFdjYLckxJn0Pp8f3zcdm39/Ed65YzzeuWM8UuKMSE9wTFnuLq5GZqIJ3ZNjkZMWj6IzDWiy2VHdaMXo3FQAwOLtJwAAE53bHU3slw6dAPQ6gRvG90a88/O6pj2/2FkMAGi0OEJTnFGPpFjHNGWMQdeqe3+4jHod15ARESko4F2WUsqlUsqbpZR5UsoUKWWGlHKylPJPUsqTgV4bTUKIOUKIBVVVVcFPJlU74RHIDvtpmhop+aU1KK5qxLHTdUH3nNxbUo1hPZIDnpOZGIPzBmVhqvOuy4xEE07XWrD7RBWG90qBEAI5aXE4XlGPM85pycn9M2HQCazYW4rkWIP7tf0yE9ArLQ6DuyUhOdaIMc67Ns8fnIWJ/dLx1ncFaLLZ3XdYxpn0SDA5All7pysBriEjIlJaW9teKEpK+bmU8u6UlBSlh0LtVFLZiNR4I3qkxEa9QrZyv2Oqss5iQ3mtxe95ZTVmlNWYMbRHUljXz0gwwWKzI7+0Bmf3cvzb7J0ejzqLDYecYbN/ViIW/GgMuiXHYmK/DAzIdizDzEmLxwMzBuH+GYMAAJP6Z0CvE+iREou543NRUtWI/SU1zYHMqIdeJ5AYY0BybPvvsTHpdVHbXHzx9hP4/Se7onJtIiKt4N2SpKjiygb0SIlDZqIp6oHs2/2noNcJ2OwSxyrq/G43tM/ZjmJYz8AVspYyEhzXkxI4q6cjkOWmxwMAthU6eo2lJ5gwqX8G1v0uG3YpUWe2YurATEzqn4HeznMB4I4pfTG5fyZS403omRoHAKiot0DvXHTmmqJMjDG0q0u/SzSnLH/94XYAwJ+uOjsq1yci0oJOWSEj7SiuakSv1Fj0z0rE4bJa992EkVZV34SthWfca7IKyv3fQOAOZEGmLFtKTzS5H5+d4whkrlC3xrmIP8N5jl4nYNTrkBpvwrt3TvAKY4AjcLluKEiLdwSuynqL15QlACTHRSaQmQyOuyyDTeWGo7LewsoYEVGIAgYyIYReCKG+jp2kGcWVDeiZGoeB3RJRb7GhxHk3YaStPlgGuwRundQHOuFowurP3pJq9EyJRWq8ye85vmQkOM5PTzChZ0osAKBnSizSE0xeFbJwucZRWd/kbgob56yQPXzpUPzigoFhX7Mlk0GHtQfLMeyx5e2+lstb3xXg/e+PRex6RERaFmxRvw1AvhAit4PGQ11Indmxz2OPlDgMyHKspYrWtOW3+08hPcGEcXnp6JESh8IK/xWyvcXVYU9XAkCGs3WFa0E/AAghcHavFFjtEkIAaWGGPABIdVbAztRb3E1hY42OL93pg7PdNwC0R+80R4WuockGW4SqlAkx7bvzk4ioKwllyjINjrYX3wghPnP9ifbASPtKqhx3WPZMjXUvbj8YhY79NrvEqvxTOG9QFvQ6gbzMeBT46XnW2GTDkfI6DA1zuhJwVMiM+ta9y1wL/FPjjO41YOEw6HVIijWgsr7Ja1F/JA3u3tzj2fW+tFd7e6MREXUloSzqfzTqo6Au6USlY3qyZ2ocMhJjkBZvjErri+3HK3GmvgnTh2QDAHLTE7Bsd4nPcw+U1sBml2GvHwMc674W3jMZ/bO9N7BwrSdry3SlS2q8ESVVDfj3hir354qkHilx7sevrT6Me88f4L6ZoK1attGw2yV0bQikRERdQdAKmZRyNYACAEbn480AtkV5XNQFuJrCun7wD8hODHnKsrHJhkc/3R1wLZjLt/tPQSeAaQMzAQB5GfE4U9+EqoYmAI7tm574bA9KqxvdC/rbUiEDgJG9U5EY4/17zghnIHPdhdkWafEmLN9Tis0FZxBr1LlvDoiUWcO7Y+54x8qE9zYew4/+tand12xs8g5k1ijdsEFEpAVBA5kQ4icAFgL4p/NQLwCfRnFM1EWUVDZAJ4BuzvYT4QSyL3aW4N2NhXjru4KA5y3bfRIL1h7BlAGZ7sXxfTIcO4Edc05bfrT5ON5eX4Cr/74ey3afRIJJ725XEQndk2ORlRTjt81GKDxvMNjx+EzEmyLbscag1+GJy4e5P66o89+nLVSuGxBcXlt9uN3XJCLSqlDWkP0cwBQA1QAgpTwIIDuag6Ku4URlI7olx8Kgd/wz7J+ViDP1TThdaw762nc3FgIAlu4q8bsI/cNNx3Dv+1sxrEcyXrxxlPt4nwxH2CpwVtfWHz6NnLQ4WGx2fJtfhqE9kiM6tSaEwGu3jMYDMwe1+Rqu1heDuiUixhCdxfKe141Es9nnVhzw+vj5Fh8TEVGzUAKZWUrp/nVZCGEAwLkHajdXywsX18L+YFWynUWV2HG8EhP6puNUjRmbCypanfPa6sOY9/EuTB2Yhf/8ZILX+i1XIDtWUY/GJhu2HjuDWcO74+OfTcao3FRcMrx7JP56Xsb0SUf/rMTgJ/rhutOyb2ZCpIYUUHu3Y9p9gtuaERGFI5RAtloI8X8A4oQQMwD8D8Dn0R0WdQUlVX4CWZCF/e9tLES8SY+X5o5CrFGHJTu9F+gXnanHX5btx6zh3fHGbWNbTe/FmwzISopBQXkdthWegcVqx+T+meidHo9P7p2Cu6b2i9DfMHJcASmSU6mBtLfZ7GUvr4vQSIiIuoZQAtk8AGUAdgH4KYClAB6J5qBI++x2ieKqRncDVQDomRKHOKM+YIWsqr4Ji7cX48pRvdAtORYXDumGL3eXwOpxR9+/NxRCCIFHLhsGo973P/G8jHgUVtRj/eHT0OsExvVNj9xfLgpqzVYAQHo7bgwIB1tWEBF1rFAC2XQA70kpr5NSXiulfF1Gcn8V6nQi8fafrrPAYrV7Vch0OoH+2QkBA9n/th6H2WrHLRP6AABmj+iB8loLvj/qmLasM1vx4aZjuGR4d/QK0LYhNz0BhafrsP5wOUbmpLS6M1JtXMGyZ2pskDPb56Kh3ZyfLzJr6O46t29ErkNEpHWhBLIfAdghhNgohPirEGKOEKL9rcGpU9paeAaTnlnpt49XqFzNR3ukeAeMgdlJOOwnkNntEu9/fwxj+qS5O+lPH5yNeJMeXzinLT/eVoTqRivumJIX8PPnZcSjtNqMHUVVmNw/s11/l47wywsGYN6sIbhsRM+ofp5Xbx6F1HgjmtrRosIzsI/vm46HLh4ciaEREWlaKH3IbpNSDgJwNYDjAF6FYwqTupgjZbW4653NOFndiEcX70FNY1Obr9WyB5nLgOxEFFc1os45Redp/eHTOFpeh1sn9nEfizPpcdHQbli2uwQWqx1vrS/AyJwUjM4N/DtDH+fieJtdYnL/jDb/PTpKUqwR95zXv02d/sMRY9Cje3Ismqx2LNpahLx5S9zTpaGqbmg+32qX7psoiIjIv1D6kN0ihPgnHL3ILgLwCoCp0R6YGny+oxiPfrobR6LQPb6zKasx47a3NkEnBF6aOwrltWa8sOJgm69X7OzS33Ja0XUnoq+O/e9uLEB6ggmzzva+C3L2iB44U9+E+V/ux5GyOtxxbl/3XpL+9HEujjcZdBgdgb0gtcRk0OGrvaV48H87ADga54bD86aMcwdmwsDu/EREQYWycOZvAA4DeA3At1LKgmgOSE0KT9fhv5uP473vC3HhkG6489y+mNgvPegPe62pM1txx9ubUV5jwYd3T8TI3qnYeOQ03tlQgOvG5rSpq31xZQNijTqkxnsvHvdsfTEiJ9V9vOhMPVbsLcVPz+vfqg/XeYOykBhjwL++O4puyTGYNbxH0M+f52wOOyY3LeLbEHV2LQNUuEsGb3N2+f/q/mlIjjWiurG5Yial7HJfP0REoQhlyjITwB0AYgH8SQixSQjxbtRHpgK/uGAg1s2bjl9eMBDbjp3B3Nc34rKX1+HjbUWwWO3BL6ABVpsdv/jPNuwprsIrN43CSOfG2b+9eDCSYw14bPHuNi3yL3a2vGj5w7lPRjwMOtFqYf9zXx2AQa/DLR7TlS6xRj1mDHMsRv/RpDyYDMGXRqbEGzF1YCauGZMT9ti1ruW0aMuO+8GYrY7z+zmnhc94dP3n7klERL6FMmWZDCAXQB8AeQBSAHSNNAIgOykWD8wYhPXzLsAzV58Ns9WOBz7agXP/vBKvfnsIlfXt32JGraSUeOTT3fg2vwxPXXk2LnTegQc4tvKZN2sINhecwcfbToR97eLKRvRMaX0XpFGvQ16m952W249X4pMfTuCuc/v6vXPy1kl9MCo31b0fYyjevXMCrmUga6VlaKq3hBfI+mclYuawbu4dGFwhHoDfXRWIiLq6UO6yXAdgDoCdAG6QUg6WUt4W3WEF5rzTc0FVVcd1A4816jF3fC6+um8a3r59HAZ3T8Jfl+dj0jMr8cinuzS5zuylbw7hw83H8csLBuCmCa2DznVjemNUbiqe+XKfe6PuUDm69Ptu4TAgq3lPSyklnvxiLzITY3Dv9AF+rzc6Nw2f3DvFqyM/tU3LTcDrLeEt6rfY7DB6VCkn9svAry4cCICBjIjIn1CmLEdIKe8F8BmAyqiPKARSys+llHenpKR0+OfW6QTOH5yNd++cgGX3TcWckT3w0eYiXPDcatz1zmasP1wekT5dSvtoy3G88PUBXDM6Bw/M8L0Ho04n8OQVw1FRZ8HzX+WHfG2L1Y6yWnOrOyxdBmQnorCiHharHV/sLMHWwjN46OJBqu8VphU2u3cBPNwpyyabHTEtGvImxjjW6dk08LVBRBQNoUxZDhdC/ABgD4C9QoitQojh0R+a+g3pnoy/XDsS3827AL+6cCC2HavETa9/j9kvKb/OzGy1Yf2hchworUGTLbxxrMo/hYc/3oWpAzMx/5qzAy7CHt4rBbdO7IN3NxaGvH9haXUjpITPKUvAEchsdon8kzWY/+V+DOuRjGvH9A7r70BtZ7V5h6alu05izsvrvHZDCKTJKlvtkKBz/htihYyIyLdQSg4LADwgpfwWAIQQ5zuPTY7esDqXrKQYPDBjEO49vz8+/eEE3lx3FA98tAPzv9yP2ybn4abxuUjroKm0w2W1+HDTMSzcWoQz9Y5pRKNeoH9WIgZ3T8Lg7kkY0j0Jg7sno2dKbKuwtftEFe59fxsGd0vCP24Z43frIU8PzByMJbtK8Oji3Vh0z2TogrQ5OOGnB5mL607LRxbvxonKBvz1uhFR779FzVqGps92FAMAKuotyE4KvlOAY8rS+/1y3blpZyAjIvIplECW4ApjACClXCWESIjimDqtWKMeN47PxQ3jemPNwXK8sfYI/ro8Hy+vPIhrRufgjnP7uvtsRVJjkw1f7i7BB5uOY9PRChh0AjOGdcNVo3qhzmLF/pM1yD9Zg81HK7B4e7H7dUmxBgzu1hzSeqXF4bcLdyEt3oS3bx8X8hRhSpwRD88aigf/twMLtxbh+nGBq1nNTWF9/3Dvl+X457XjeCVmDuvWKTrpa4m/Kla92QYkBX99k9UOk967lYgrULdcn0ZERA6h/MQ9IoR4FICr1cUtAI5Eb0idnxAC5w3KwnmDspB/sgb/WncU/9tahPe/P4YLh2Tjzql9MalfRrv7MR0orcEHm47h420nUNXQhD4Z8fjdJUNw7ZgcZCX53oS6qqEJB0prnCGtGvkna/DZjmK8/71j4XZKnBEf3j0B2cnh7Zl49ehe+HDzMcxfth8zz+qG1Hj/FcGSKkej0R5+pizjTQbkpMWhtLoR/3fp0LDGQe3nWuf15BVn4dHFe9zHy2rNyMsM/ruYrwqZq2paVmP2+2+TiKgrCyWQ3QHgDwA+BiABrHUeoxAM7p6EP187Ar+5eDDe21iI9zYW4qbXv8fQHsm469y+mDOyZ0h9s1waLDZ8sbMYH24+jq2FZ2DUC1x8VnfcND4XE/tlBJ0uTIkzYlxeOsblpbuPSSlRUtWI/NIaDMxORE5a+FvdCCHwxyuG47KX1+Gvy/Pxp6vO9nvuicoGpCeYEGfy35D17mn9oBMipABAkeVaQzYqNw1GvUCT8+PrXtuART+bhIq6Jnfft5aklLDY7DC1mOrWO3/5uOrv3yH/qVlRHD0RUefkN5AJIWIB3ANgAIBdAB6UUrZ988IuLispBvfPGISfnd8fi7efwBtrj+LB/+3A/GX7cdukPrh5Qp+A68z2Flfjw83H8MkPJ1DTaEW/zAT8/tKhuHp0L2Qktq/iIIRAz9Q4v2u6QjW0RzJum5SHt9YfxY8m5WFwd9/zW8WVDa02FW/pR5Py2jUWajur8y7LOJMesUY9mmzNbS+u+ccGAMCah6ZjzcGyVo16bXYJKdEqkLkmKs1dpKEyEVG4AlXI3gHQBEdFbBaAoQDu64AxaVqsUY8bxuXi+rG9sfZgOd5YdxTPfnUAr3x7CFePzsEdU/q6F7XXma34Ymcx/rPpOHYcr4TJoMOlw7tj7vhcjO+rzi2cfnXhALz/fSHe3ViAp670XSUrqWxELjecVi3XzZSxRj2SY42oaWzdh+y6f65HabUZ147J8dp6au7rGwHAqw8ZAK87fQ+W1mBgtxAWoxERdSGBAtkwKeXZACCEeBPApo4ZUtcghMC0QVmYNigLB0od68wWbi3Cf74/hguGZKNbciw+31GMWrMVA7MT8dhlw3D16F4B12apQWq8CZeN6IlPtp3AvFlDfd4YUFzZgEn9MxQYHYXC1Ycs1qBDWoLRfVesp1M1Zue53ov0NxecAdB6P0zPFjDXvrYBOx6fGdExExF1doECmXt6UkppVWM1RisGdUvC/Gua15m9u6EQtWYrLhvRE3PH98aYPmmqrIb5c/PEXCzaVoTF20/g5gneU1rVjU2oMVuDTlmSctISTDhT3wSTQYfUON+/ALj6u/q7a7K6RVXNc6qyzhxe538ioq4gUCAbKYSodj4WAOKcHwsAUkqZHPXRdTGZiTG476JBuPf8AbBL6TUV1JmM6p2KYT2S8d7GY7hpfK5XmCypdNxh2d71ahQ9/75jPNYeLEdSrDHouf6axZa0qKp5VsjYrZ+IqDW/t/dJKfVSymTnnyQppcHjMcNYFJkMuk4bxgDHdOzNE3Oxr6Qa249Xej1XHKQpLCkvJy3evUl7g3PbpOmDs3ye61kh++3CHe7HQ3t4f4uweAQ35jEiotZC77dAFIYrzumFBJMe72085nW8uCpwU1hSlwaLI5D1Tvd9E4bnYv2PthQBAOaOz8WPJ+d5nafkNmJERJ0BAxlFRWKMAVeO6oUvdhajst7iPl5c2QC9ToS0BQ8pz1Xp6uWnotly30sA6J+V0Kof3kw/fcuIiMiBgYyi5uYJfWC22rFo2wn3seLKRnRPjuXelJ3EU1cOx8J7JqGPnzYlrp5lnnw1Op7QLwOZ7eyXR0SkZQxkFDXDeiZjdG4q3v++ENK5cKi4soHTlZ1InEmPsXnpfjeZ93WXZWe6I5iISC0YyCiqbp7QB0fK6rDhyGkAjjVkXNDf+Rj8BLIFq1tva2vzc+elUc+gRkTkDwMZRdXsET2QEmfE+98fg90ucbKq0e+m4qRe/sLUxz+caHXMX28yTlkSEfnHQEZRFWvU47oxOVi++yT2naxGk02iF6csOx1/U5YAUFrd6NXepGX3fpehPbhdEhGRPwxkFHVzJ+TCapf429cHAbAHWWcUKJDd9c4WXPnqd+6P/VXInrj8LABA73S+/0RELTGQUdT1z0rE5P4ZWLG3FAA4ZdkJtdyb0lP+yRqvjy8cmu3zvHiTAdeNyYHNR6sMIqKujoGMOoTnnpb+elqRevlqZeHi2YV/fF46hnT3v5GHQa+DhYGMiKgVBjLqEDPP6oaspBjEm/RIjgu0hSqpkWeFrF9Wgt/zdEG+o5j0wmfvMiKiro6BjDqEUa/DQzMH48ZxuexT1Ql5riGbNby73/OCNfw16HU+u/sTEXV1LFVQh7l+XG+lh0Bt5BnIHpgxGH0zE/Gb/+1odZ4uSNg26AXMVhuklAzmREQeOmWFTAgxRwixoKqqSumhEHUJnn3I9DqBcXlpPs8LFsjqzFY02SR++u5WWP00kCUi6oo6ZSCTUn4upbw7JSVF6aEQdQktO/X769wfbMqyos6x0fxXe0vxzobCyAyOiEgDOmUgI6KOFWt0fKv41YUDAfhvgxGsQuapprGp/QMjItIIriEjoqBiDHocefpSuPKWK3ZlJprQJyMBWwvPAACCFMjQ2NQ8TckGwUREzVghI6KQ6HTCvRDfNTU5qFsSFv1ssvuc0urGgNdobLK5H+u5qJ+IyI0VMiIKW0ZiDN66fRxG53ov7tcFKZF5BjL2IyMiasYKGRG1yfTB2UiJM3od87ONpdtvZg52P/7dol1YlX8qGkMjIup0GMiIqN1evPEcAIA9SCKbPCATWx+5yP3xgjVHojksIqJOg4GMiNotxrnXpS1YiQyAwWN/JW40T0TkwDVkRNRurk7+dhk8kOk9msyuPViGvHlLMHd8LirqzPjnrWOjNkYiIjVjICOidjOEEcg8e5idqjEDAD7YdCw6AyMi6iQ4ZUlE7ebaWimEGcug3fyJiLoiBjIiajf3lGUIiSxQ/zEZQoWNiEiLGMiIqN1cgcwWQqAK1KvMbGVvMiLqmhjIiKjdXOvCQrnLMpB6iy34SUREGsRARkTtZnK2vWjvjGOd2RqB0RARdT4MZETUbpGqkHHKkoi6KgYyImq3cNaQBfLV3pMAgIG/X4q8eUuwq6iq3WMjIuoMGMiIqN1cgay9d0n+ZVk+7HaJJpvjOnNeWcdQRkRdAgMZEbWbQR+ZKUsAmPHCaq+Pj56ua/c1iYjUjoGMiNrNqHN16g/t/JfnjsLin0/x+dzhMu8AZtLz2xQRaR+3TiKidnPtFx5KY1gAmDOyZ8jXNhnY2Z+ItI+/ehJRu8Ua9QCAmybmRvzaRlbIiKgLYIWMiNrNqNfh4J9meW0cHslre9p0tAKjc1PdG5oTEWkBv6MRUUQY9TqIAPtUttW6g+UoKHesK9t27Ayu/+cG/O3rgxH/PERESmIgIyJVe+XbQzj/2VUAgFPVZgDA0t0lCo6IiCjyGMiIqFPYUlCB4xX1AIAjZWyFQUTawkBGRIr567UjQj732tc24E9L90VxNEREymEgIyLFXDmqV5tfW2e24qzHlmHl/tIIjoiISBkMZESkGH07bgK44tXvUGex4dnlByI4IiIiZTCQEZFidDqBJ68c3qbXHjpVCwCIwo2dREQdjoGMiBSVGONoKmsytO3bEQMZEWkBAxkRqUJb96wUYCIjos6vUwYyIcQcIcSCqqoqpYdCRBHCChkRdWWdMpBJKT+XUt6dkpKi9FCIqJ2kcz9yzwrZQxcPDvn1zGNEpAWdMpARkfbEGJu/HYVV9WKJjIg0gIGMiFTBs0IWzrowAeCRT3fhjbVHojAqIqKOwUBGRIoa0ycNAHDDuN7uY+EUvYQA3tt4DE8tYRd/Iuq8GMiISFF9MhJQMH82pg/Jdh/ThRPIojAmIqKOxkBGRKpg8EhhqfGmkF+37Vilz+PFlQ2oqm9q77CIiDoEAxkRqYLeI5BdOzoHf7j8rLCvsf9kNfLmLcGhUzWYPH8lpv5lZSSHSEQUNQxkRKQKBp3j21Gv1DjodALTBmWFfY3F24sBAMv3ODYcr260Rm6ARERRxEBGRKrQLTkGPz2vH96+fRwAIC3eCAC4/6JBIV/jH6sOR2VsRETRZlB6AEREACCEwMOzhro/To03Ye8fL0acUY8Xvj4Q5rV8Hz9TZ0FaQujr04iIOgorZESkWvEmA4QQWHjPpLAqZTofiWzZ7hKMenIFNhdURHKIREQRwUBGRKo3Ni8dv75oYMjn+yqQfX/UEcQ+2HQsQqMios5u5f5S5M1bghOVDUoPhYGMiDqPCzx6lQXyzJf7Wx1zdf//eNuJiI6JiDqv/24+DgDYVVSp7EDAQEZEncjrPxrb5teu2HcygiMhIoosBjIi6jT04bTwb+F4hfJTEkSkjKqGJtz2r004Vd3odVxKhQbkAwMZEXVal43oEdJ5Uk3fdYmowy3cWoTVB8rwj9X+WuMovwkbAxkRdSomg+Pb1kc/nYS/XjsypNc8+YX3xuMfbTmOvHlLUF5rjvj4iCh8ZqsNteboN3Ju+buZmn5VYyAjok5l6a+m4s/XnI3xfdMRZ9IHPf8X/9mGf3131OvYh847LQtP10VljETkLW/eErz67SG/z1/56noMf3y5++Onl+7Dst2OdZ/PLs9H3rwlAa9vt0sUnq7Dy98cxKr8U62e91f/cgU0f70LOxIbwxJRpzIgOxEDshNDPv+LnSV+n+NMJlHH+evyfPx8+gAcLqvFqWozJvXPcD+3r6QagGOtV1lNIxasOQIAKJg/G684g9ye4ir0yUjA8MeX44UbRuKqUTk4dKoWFz2/GrdMzMV7G71b2jwyeyjumtovpLGpII8xkBFR1yOcvw5LAFPmr8Tc8b3xiwtC73NGRG134XOrvT5+/64J7sczX1iN0urmpQQ/HDvjfjz7pXXol5kAALj/vzuQkxaP617bAACtwhgAvLDigDuQuSpgb68vwIMzB8FuBx5auANf7yuNzF8qAhjIiKjL8fxt+ERlA5796gADGZFCvthZ7H7sGcYA4Kq/r/f6+Eh58zIDVxjzp85i83n87Ce+anVMqGDOkmvIiKjLcX3v9ZyytNrsvBuTKArO1FkCPp9/sibqYwgWt37y7y1RH0MwDGRE1OW4uvbbPQLYgN9/idve2qzUkIg0yWK1Y9STK9wf3/VO6+Cz7Vhl1D7/vpJqrNhbipdW+r+hQC04ZUlEXY+PChkArDlQhkOnajAgO6njx0SkMQvWHEb3lDivYx29ZmvWi2tDPldKqejUJStkRKQ5X90/LeDzm5wbjc99fWOr505UNrY6RkTeKuosWH+oPOA5Ty/dj1998EMHjajzY4WMiDRnULe2V7js9sDryJpsdtilRIzBfw+0WrMVCSa9KhYKE0XaG2uP4KkljmbLh5++1GtLs5KqBry88hCM7djmTCl2CegVHDYrZESkKRsfvrBdr7d5BDK7XXrddg8A059dhcGPLPP7+uMV9Rj++HK8u7GwXeMgUitXGAOAl745iI1HTiNv3hK8ue4oJj2zEv/5/hje2dD5/v1/teekop+fgYyINKNfZgK6p8S26xo2j4Vlb6w7gqv+vh7rDzdPzRSdCbxJeYGz+/9Xe9TT34i6ptO1ZkyZvxIHSsO/i/FkVSMe/GgHzFbfrSNcXvzmIG5c4Jj6f/KLvW0ap1p0xNZNgTCQEVGntv2xGVj1m/MBAFMGZLb7ep5TlvtLHD/IioOsK5NSYmvhmYDnEHW0lftP4URlA/65+khI55+ps+Dlbw7Cbpd4/LPdWLStCP9YdRjFlQ3YXFCBr/eWBt3CqDNTeokB15ARUaeWGm9CarwJ3827ANlJMe7j6+ddgMnzV4Z9PauPNWTBvk1/tOU4frdoF/5x82gkxvLbKqnLom1FWH3gFCb3z8RLc0f5Pe//PtmFL3efRK3FiuXOCu/fvj6Iv319sKOG2qWxQkZEmtArNQ5GffO3tJ6pcQHO9s/upzlsk82OF1YcaHX83D+vxO8W7QIAHKuodx+XYJNZUpZnxae81oLPdhSjzmzFoVO+pzBdU3ahVtS0RunG0AxkREQePt9Rgp1FlY7O/R7HF24twovfNFcKzFYbKuosXmvKbFLCYrUDAMprAncnJ1LC7W9txkXPrwEANDbZ8M76Avc0fVffqMLs/NpVCmvrREQevt5Xiq/3lWLu+Fz3MSGAhhb74t3+1masP3za69hfluW7H+e3YSE1UST5mmrfVFDhfvzC1wfwz9VHkBpvxBXn9PJbHe4q/re1CLdM7KPY52eFjIg06+xeKW1+7QebjgWcwmgZxkKx8chpHPeY1gzVst0lId0BVllvCXnaZW9xddA9BgHgSFktPttRHPQ8iqxPfihC3rwlyJu3BLtPVPk9rz13BlbVNwEAfv3hduTNW9Kmf9NawilLIqIoMbSzy2NNo+OH3QMf7cCJysDtLkJx44KNmPqXb8N6zYHSGtzz3jb8btHOgOcdOlWLc/64Au99f8zreGW9BRe/sAaHy2q9jl/60lpc/uq6oJ9/xgtr2G1dAf9aV+B+vHBrkc+wsGhrEYY/vhwr95fiw03HWj0f7KZB9i1WFwYyItKstHhTu17/zf5T7sdvrjsa9uvz5i1B//9bisr60NeTfbOvFIXOXmYAUOesgATrf3a03PGaVR5jdlzvFPJLa/DEZ3taveZ4hfc11x4sw2/+t8PrmC3IzgUUfW+vL8CHm4+3Or4y3/Fe3/H2Fsz7eBcam7yn1V2/UFDnwEBGRJr17HUj8dtLBis6Bptd4pw/rsDra5rvXLs0wIbHd76zBef9dRVeWRm41cC/NxTgoMc6NddONeW1ZnzjsYGzzvldfu3BwPsOAsCtb27Cwq1FQc/r6hasOeyeRtxTXIWxT63A6Vqz1zlLd5XgH6sOex07XFaLvHlL8G2L0OxLy+rVxiPBpxNbFtEe9xHCyb9ahQMsAxkRaVZ6ggn3nj9A6WEAAP60tHm7mb0l1bDbJfYWV2P94XL31jOeYejZrxwtNvzVpx5bvAczXliDk1WNyJu3BP90Br4dRVW4850tqLc4frjofMxLXffa+gj9rTqelBLPfZXfagq2Iz29dD8ue9kx3Tv7pXUor7VgXYuNtu99fxv+vGw/th+vBAC8+PVBXPjcagDAkl0lAa//xtoj2Fnkf92YP5UNFuw/WY1PfzgRtIHrnW9vxgebWlfdurIj5XXBT4oi3mVJRJo3OjcV245VKj0ML+99X4jHFntXMFpOF3ryjFXvbihwP574zDcAgE1HK7zOt9oljp2ux+c7Wv/w31zQvKvAuoPluOXN73H/RYPcxx78aAcWbStCwfzZofxVAjp2uh4GvWhzX7iWymrMeHnlISzaWoT17dy3tCNc+ep3KJg/Gy983dzDrqqhCe9uLMStPu7oa7DYvPaK9OVEZQO6J7feIuyi51ajzhJ4qyOXb0Ko0lHHYiAjIs1beM9k1FqsGPHEV0oPxa2sxhz8JABX/711NevRxcGnoqQELnt5LaqDTMO49h/0DAyLtrWetqy3WFHbaEW2jyDgz4HSGsx8wdHzKhLhDgBcS9osNuXXtvmberz8lcA3S6zYW4oVe0sxOjcVZ/VMwanqRmwuOIN4kx63v7054GvXHizDrW9uwo8n57VqaxFqGCN1YiAjIs3T6QSSY41KD8NLtG9we/Hrgz7DmKVF88tA/dI8F/Rf+ep3OFBaG1awWrE38husu3plldeGFmgjQUqJV789hMtH9kJuRrz7uGd48uyKH+p04wsrDuCR2cNw/rOrAAD9shL8nrv7RBUq6iy49c1NABwL/UlbGMiIiBSwOoRF9i1bHUgp0RRiZehf37W+K/Sd9QVhrb36bMcJ9+MDpd6vW7S1CBab3auBbns9vXQf8k/W4J07xvs9JxJ3fS7efgJp8SZMG5QV0vml1WY8+9UBx5/rRvo8x/VeFZ0Jvc/c1/tO4et9zVW2I2X+1zAdLqvD6CdXhHxt6nwYyIiIFLDDudg7kL4PL3U/3n680uvjtnj8sz1IMOlDPv/+//pf0/agc73b3PG5mLdoJw6eqsUFQ7Lx8+m+b6KoamjCh5uO4e5p/VDV0IQ1B8tx+cieXucsWBN8D8WthWeCntPSFzuL8e3+Mjw4cxB6psbh1x9uBwAcfvpSmK02HDpVixE5qQAc78s7Gwrw7LUjodMJSCnd6/QA/+v8fv3hdrz1XQEuG9Gj1XMHuGsDhYCBjIi6tEvO6o4pAzLw6fbiNv2w72zau85oX0k1hvZI9jrm6pG1tfCM30D22OLdWLy92DHteboOWwvPYFTvVPROj/d5/s6iSvxpyT7cPa0fLhzaDQBgtdlx2mN3gdO1jspVvEmPRy8b5vX67w6VY+X+U5g9ogd+8R9HY9uWNyr87esDOFBag+V7SrH9sRlIjTfh9rc3o6LOgsn9MzEiJyWsqcHtxyvdd1V68rUOkKglBjIi6tJeu3UMAODWSXlBWwWQY0cAz0D2ZYsWDj/59xaszi/DgT/Nwn88dg1YvN2x/ZLnDQMHSmv8BrLLX/kOAPD90QoUzJ+N2S+txZ7iatw0oXmKdMxTX7sfT+yXgV9+sA3bHp2BeJMBN7/xPYDWDX09p2xfXnkISbGOH4PPfpWPSf0y3VOPrkrYOb1TA/3vCEl7tjeiroN9yIiInPpk+A4H5N/P3t/m9fGKvaWw2OwwW21Bt5u6850t2HasdVWyprGp1bE9xdUA4BXyPP3k31vQ2GTHZS+vCxiAluz0DpCubvbvbTyGn/9nG87Ue39uXxUvomjolIFMCDFHCLGgqir8xnlERCNyfG86vvqh6R08ks7n0cW7Q+o0P/iRZSFd7+q/r8ey3SfxnUdjVVcrjrY4UlaH4Y8v9/v88ysO+H2OSEmdMpBJKT+XUt6dkuL7myoRkS/JzumpxT+fovBIOq/K+qagvbLCdc97W91TjEDrhfvLdgfubE+kBVxDRkRdxpJfTUX+yRqvnlGkPodbtH+4571tfs4kipwYg7I1KgYyIuoyeqfH+11ETkSkpE45ZUlEFC0r7p/m97lchjkizdIpXDlnICMi8jCwW5Lf5wJ1kCciag8GMiKiEPXNTEBKnLr2xCSiyLh+bI6in5+BjIgogIvPcnSJn9gvHQAwLi9NyeEQUZTEhrGtWDQwkBERBXDVqBy8dstovHnbOADAc9edo+yAiCgqBLiGjIiow/VOjwvxTIlLhvdAQozjpvSUeCPeuWM8Vj54XvQGR0RdDtteEFGXtPLB82F37lvY0gs3jMQjn+xGncUGX6ecNygryqMjoq6GFTIi6pKMeh1iDL7XjFw1KgdTBzpCl+/IRkQUWQxkREQ+uFoS+SmiERFFFAMZEZEP7kDGGhkRdQAGMiIiH1x3XEWyQtYrNdQbCYiooym9xS0DGRGRL+4KmX/PXz/S73MF82e3OhancJ8jIvJP4TzGQEZE5ItBF/zb89Wjc7DriZkhXW/bozMU/4ZPRP7FGtkYlohIdR6ZPQxzx+e6O/X7kxRrbFUN2/bojFbnpSeY8Lcbz4nkEIkogvplJSj6+RnIiIh8yEqKwTNXn+23NUZLY/s0b6mUnmDyes4V2M7qmdLm8UwdmIlHZg9t8+uJKDB26ici0oAP7p7YrtfHGAJ/O373zgm4a2o/9Mts/i1+9oge7fqcRKQe7NRPRBQBRr0Oi342CdlJsW16ff5Ts7C1sALX/GNDwPNc61wenDEIN0/sgyU7S9r0+YhIXVghIyKKkDF90tE7PT4i15o1vLvP467tni4c2q3V1GhLvVLjcO2YnIiMh4iii4GMiEg1HGtYRuWmYmxeuvvobZP6uB+7Apnex12gN03I9fr4k59Pxj3n9Y/GQImibu1vp3fo5zPquYaMiIhaMDl/ONwxpS+euPws9/EeKY7msnE+btH3XF8GANlJsex9Rqq264mZ+PjeyT6fC1RtzkqKQWJMZFddnZObGtHrhYuBjIhIQZ7dwVPijACAQdlJuG5sb9wxpS/unzEQwuOkF288By/NHYXcjNY/rHztKtArNQ53nds34uMmioSkWCNG56Z5HUuMMWB4r2SvYz+f3lzpHdMnDe/cPh67/3BxZAej8C5pXNRPRKSA8X3TseloBZbfNw2bjlYAAAZkJ+I/P5mA0blpiDXq8dicYa1elxpvwuUje/q8pq9pTACYNigLb6w7GrnBE4Xhtkl98M6GwpDOzX/qEq9WM+/fNQEZiSYM6Z6MV789DABY9LPmitqOx2ZizivrcKyi3uf17pjSFzqBkP79ZyXFhDTGaGGFjIgoSvpkxCPPRyXrgiHZeOvH4/D1A9MwqFsSbpnYvEZscv/MsDqGr3loOh6YMQg/Pa8fbpqQi0N/mtXqnIQYx/Um9kvHF788F1eP6tX6HE5tUgR5Nke+f8Ygn+e89eNxrY617Ps3ZUAmhnRPbnWeS0q8EanxRr/P//S8fpg3a0iw4QKAVyVaCayQERFFyeqHWi9K3v/kJTDoBAx6HQZkJ7X7c+RmxONXFw4MeM7o3DT85doRuPTsHkiMMeD5G87B9CHZ+OUHP2DrIxeh1mzFpS+ubfdYiADgiTnDHDtT3HAOlu0+idR4E/54xVl4bPEeZCaaUF5rAQBMH5Lt9Tpfv7x4evWm0ahubAp5HOvnXYBuyW1rQ6MEBjIiog7UEfvl/XhyHnafqHJ/LITA9WN7e50zZ2RPzHFOfWYkBp6quWZ0DhZtK4r8QEmTRvZOBQBcOaoXrnRWY3unOcLW8F4pWJVf1uo1+5+8BLogFapQGyF/8JOJGN83vdUU/uBuSbhral88tHBnSNfpaAxkREQa43lXZqgCTdc8d/1Ir0DWKzUOJyob2jS2PhnxKDzte70PaUMoU3+Zid499CLxi8pVo3rhL9eOgFHfejXWhocvQHKsEesPnwYAdEuOgVGvw9zxuRjaIwnVDdZ2f/72YiAjIqKwfPPgeRjy6LKwX7fziZlIMBnQ//+WRmFUpBa+4tiUAZm4ZnQO7p8xEGU1ZvRKi4vY55vUPwM7i6rw4MxBPsMY0NwuZrSztcWLN47CxH4ZERtDJHBRPxERhcWzmvHQxYNbPS+E4+62hfdM8rpZIDnW2OqH9U+msiWH1vgqkJkMOjx3/UjkpMVjVG5am7cY8+W3Fw/BmoemIyct+C4ZGYkxKJg/W3VhDGAgIyIi+K5qhOLn0we4H6/6zfkYn5eOlQ+ej8fmDMPYvHT84YrhXue3bPUUb+JEjZr96oIBwU9qIS0+8JZekabXCZ99+TobBjIiIsKLc8/BKI9O5RnOfTL/dsM5Xud9+5vzW7120c8mYe743uiTEY+P7pmEvh47Blw7JgcXetxN51pn/csLBuDuaf3ci74psg481br9SVvExxgCto24ZWIuDB6L5//147ER28+1q+GvJkREhAuGdMMFQ7ohb94SAMBWjz5Snvq22J4JcGyqPqZPuo+zHRb8aCyabHYAjgXfBfNnu5/zdXPA1kcuwoYjpzGpXwbGPPV10LH3z0rA4bK6oOd1FQeemgWTITL1lhnDumHF3lL3x+Pz0lHZYMGB0lr3sdun5OH1tY7GqyNyUiPyebsiVsiIiCgk14/NadPr9Drh9y66nimxXjsPPH/9SGQkxuCyET2DtuMAgH1/vAQv3jgK2T66rKfGG/H4nGFBm96O7J2K/KcuCfq5lHCrR9NgT3++5myfx0fkpAQMY3PH9/b7XEsF82ejf1aiezr77mn98NE9k/D89ee4zxncPRkPzxqKrY9chA9+MhGZIbxn5BsDGRERBXX46Uvx52tGRPy6Qgg8fbXvcBGKOJMew3ulYNPvL2q14fqn907B7VP6Ys8f/YetOKMer986plWH+GAeDrH7e3vMGdkTyXG+J7JuGJeLT+6djGX3TcXWRy5yH7f72tAUwEtzR+HAU7Pw6wsdXfPH5/muaH768ykAAKPe/6pCz0X7t0zIhU4nkJEYg0n91bdQvjNhICMioqD0OhG1rWUSY4Kvnnnm6rMxOcwf+Hk+plcBRyd5l31PXoLsELu5Xz26eb3bT8/rH+BMb8vumxryuZ7+cs0IjPWYCnZV+lxVrlG5aRjSPRkZiTHugJjlp0I1Pi8dJoMO3VNisey+qXj3rvHY/PuL8MjsoTj6zKVY/dD52PHYTIzMScF1Y3Lw/l0T3a8d08ex+XfLwDW0R7Li2w1pCQMZERG1iWvhfyS4bh6Y4KcdwdzxuXjlptEBryFb3cPpW7oztMwc1s3vOd88eJ7XWjcAXlN14RjSPRnzrz4b/717Ip69bqT7+D3OUNcvM8G9a4KnOJPea3uhlb85H+cOyMS8S4a2Oven5/XHc9eNxAstbsIAgD9cfha6pzSHziHdkxFj0CMrKQZ3Te0HIQT6ZCQgJd4IIQT+et1IjO/bHATH5qVj7x8vxvTBjrH0yXAE3XvPDz2UUnBc1E9ERG5JMQbMPKt70PPW/W46kmL8b+ocLs9tdjwt+tlk7D9ZDQBI9wiAk/tnuLuuu8y7ZAie+HwvAMf2OZ4K5s+GlBJSAt8dLgfg2DXA09rfTsfJ6kaMyEnxO4W54v5pKK5qDPNvB9w4PhcAMAHA4u0ncO6ATOQ670Yc1C0Jj84eCqPOMX3rr+lut+RYvHfXBL+f45oxvtf43TY5L+zxtuTZniQxxtAqrFL7MZAREZHbrj9cHNJ5oTThjIQxfdLcU2YA3JtT/+2Gc5DWokL34yl93YHM13omIQSEAM4dkIm/3zwaFw713ty6d3p8q5YN3zx4Hi5+YQ2udYadgd2SMLCb703hf3fJEPx52X4AwPL7puHppfswvFdyq/PevdMRqvYUO/YbHZuXhuzkWDzvo7oFAG/dPg5bCip8PkfawUBGRESdjhDC7zY5obz20rND26i6f1YiDj19acBz5o7vjQ82Hcc1Y3rh0x9O4OrRvTC4exLeuWN8wNed1TMFa387HTktthG6YEg2Vu4/5f54+uBs93RhOPplJqDeYgv7daQMBjIiIuo0fn3RIDz66W6/dx8CgdeGRZKr/9kfLh+OO8/th+ykWCy/f1pY1/DVRPXN28bCHtpyuIBW+mjiS+olpJ9bZDuDsWPHyi1btig9DCIiUolasxWxBh0MbayehaO81owDpTWY3D8z6p+LtEEIsVVKOdbXc6yQERGRZoTSQiNSMhNj2AiVIoZtL4iIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECmMgIyIiIlIYAxkRERGRwhjIiIiIiBTGQEZERESkMAYyIiIiIoUxkBEREREpjIGMiIiISGEMZEREREQKYyAjIiIiUpiQUio9hjYTQpQBKGzDS1MAVEXh/GDn+Xs+nOO+jmUCKA9hfJEW7v/HSF0jlNe09b3w91yo7xHfi/DPCfe98HdcS+9FW67D71O+daWvDb4XbX9NR32fGiilTPF5FSlll/sDYEE0zg92nr/nwznu59iWzvD/MVLXCOU1bX0vwvn/7us434vovxehvked+b1oy3X4fSp670dn+drge6Ge9yKc98P1p6tOWX4epfODnefv+XCOhzv2aIrEWNpyjVBe09b3wt9z4b53Ha0rvRf+jmvpvWjLdfh9yreu9LXB96Ltr1H8+1SnnrIkByHEFinlWKXHQXwv1ITvhbrw/VAPvhfq1FUrZFqzQOkBkBvfC/Xge6EufD/Ug++FCrFCRkRERKQwVsiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgUzjhBBXCiFeF0L8VwgxU+nxdGVCiH5CiDeFEAuVHktXJIRIEEK84/x6uFnp8XRl/FpQF/6cUAcGMhUTQvxLCHFKCLG7xfFLhBD5QohDQoh5ga4hpfxUSvkTAPcAuCGa49WyCL0XR6SUd0Z3pF1LmO/L1QAWOr8eLu/wwWpcOO8FvxaiL8z3gz8nVICBTN3eBnCJ5wEhhB7AqwBmARgGYK4QYpgQ4mwhxBct/mR7vPQR5+uobd5G5N4Lipy3EeL7AiAHwHHnabYOHGNX8TZCfy8o+t5G+O8Hf04oyKD0AMg/KeUaIURei8PjARySUh4BACHEhwCukFI+A+CyltcQQggA8wF8KaXcFuUha1Yk3guKvHDeFwBFcISy7eAvoxEX5nuxt4OH1+WE834IIfaBPycUx29KnU8vNP+WDzh+yPQKcP4vAVwE4FohxD3RHFgXFNZ7IYTIEEK8BmCUEOLhaA+uC/P3vnwM4BohxD+grv39tMzne8GvBcX4+9rgzwkVYIVM46SULwF4SelxECClPA3HGg1SgJSyDsDtSo+D+LWgNvw5oQ6skHU+JwD09vg4x3mMOh7fC3Xi+6IefC/Uhe+HijGQdT6bAQwUQvQVQpgA3AjgM4XH1FXxvVAnvi/qwfdCXfh+qBgDmYoJIT4AsAHAYCFEkRDiTimlFcAvACwHsA/AR1LKPUqOsyvge6FOfF/Ug++FuvD96HyElFLpMRARERF1aayQERERESmMgYyIiIhIYQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxq2TiKhTEULYAOzyOHSllLJAoeEQEUUE+5ARUacihKiVUib6eU7A8X3N3sHDIiJqF05ZElGnJoTIE0LkCyH+DWA3gN5CiIeEEJuFEDuFEH/wOPf3QogDQoh1QogPhBC/cR5fJYQY63ycKYQocD7WCyH+6nGtnzqPn+98zUIhxH4hxPvOMAghxDghxHohxA4hxCYhRJIQYo0Q4hyPcawTQozsqP9HRKR+nLIkos4mTgix3fn4KID7AQwEcJuUcqMQYqbz4/EABIDPhBDTANTBsXffOXB879sGYGuQz3UngCop5TghRAyA74QQXzmfGwXgLADFAL4DMEUIsQnAfwHcIKXcLIRIBtAA4E0APwZwnxBiEIBYKeWO9v1vICItYSAjos6mQUp5jusDIUQegEIp5UbnoZnOPz84P06EI6AlAfhESlnvfF0omyrPBDBCCHGt8+MU57UsADZJKYuc19oOIA9AFYASKeVmAJBSVjuf/x+AR4UQDwG4A8DbYf6diUjjGMiISAvqPB4LAM9IKf/peYIQ4r4Ar7eieQlHbItr/VJKubzFtc4HYPY4ZEOA76dSynohxAoAVwC4HsCYAGMhoi6Ia8iISGuWA7hDCJEIAEKIXkKIbABrAFwphIgTQiQBmOPxmgI0h6RrW1zrZ0IIo/Nag4QQCQE+dz6AHkKIcc7zk4QQrqD2BoCXAGyWUp5p19+QiDSHFTIi0hQp5VdCiKEANjjX2dcCuEVKuU0I8V8AOwCcArDZ42XPAvhICHE3gCUex9+AYypym3PRfhmAKwN8bosQ4gYALwsh4uBYP3YRgFop5VYhRDWAtyLzNyUiLWHbCyLqkoQQT8ARlJ7toM/XE8AqAEPYloOIWuKUJRFRlAkhfgTgewC/ZxgjIl9YISMiIiJSGCtkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxkBGREREpLD/B60i90GDljRkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Power (Leahy)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nice Quasi-periodic oscillations there! Note that at high frequencies the white noise level increases. This is not real variability, but an effect of **dead time**. The easiest way to get a flat periodogram at high frequencies is using the **cospectrum** instead of the power density spectrum. For this, we use separately the events from the two detectors. The cospectrum calculation is slightly slower than the power spectrum.\n", + "\n", + "For an accurate way to correct the power density spectrum from dead time, see the documentation of `stingray.deadtime` and the Frequency Amplitude Difference (FAD) correction." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:03, 78.00it/s]\n" + ] + } + ], + "source": [ + "cs = AveragedCrossspectrum.from_events(evA, evB, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGfCAYAAACQtOy5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABA/0lEQVR4nO3deXicVd3/8c+Z7GvbtGm6Ny3daUtLFwqlRaBAWWRHlkdEQQEVt0dRQNTHB0UE9VGRn4iCKCCLIKDsW9lLS0pL931P0yZNmq3ZZjm/PyYzzTZJJpl0Tpv367q4krln5p6T3Mzk0+/53uc21loBAACg8zzxHgAAAMCRhgAFAAAQJQIUAABAlAhQAAAAUSJAAQAARCnxcL7YgAEDbH5+/uF8SQAAgC5ZtmzZfmttblv3HdYAlZ+fr4KCgsP5kgAAAF1ijNkR6T6m8AAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKBCjAQQ2+gEbf+qL+WbAr3kMBALSBAAU46EBNgwJWuufVDfEeCgCgDQQowEH13oAkKSWJtygAuIhPZ8BB9T6/JCklMSHOIwEAtIUABTio3hesQCUn8BYFABfx6Qw4qKahsQLFFB4AOIlPZ8BBtd5ggEplCg8AnESAAhxU2+CTJCUn8hYFABfx6Qw4KDyFR4ACACfx6Qw4KDSFl5LEFB4AuIgABTiotrECxVl4AOAmPp0BB4Wm8OiBAgA38ekMOCg0hecxcR4IAKBNBCjAQaEpvIC1cR4JAKAtBCjAQTWNyxj4AwQoAHARAQpwUG3jxYT9gTgPBADQJgIU4KDQQppM4QGAmwhQgINCFxNmCg8A3ESAAhzU0BigqEABgJsIUICDvH4CFAC4jAAFOMjrDwYnpvAAwE0dBihjzEPGmGJjzOom2+4xxqw3xqw0xjxrjOnbo6MEeplQBYqz8ADATZ2pQD0saWGLba9LmmytnSppo6RbYzwuoFdrYAoPAJzWYYCy1r4rqazFttestb7Gmx9JGtYDYwN6rUMVKAIUALgoFj1Q10p6OdKdxpjrjTEFxpiCkpKSGLwccPTz+oLBiQoUALipWwHKGPNDST5Jj0V6jLX2AWvtTGvtzNzc3O68HNBrcBYeALgtsatPNMZ8UdJ5kk63lk95IJYamMIDAKd1KUAZYxZK+r6kU6y1NbEdEoBwBYqz8ADASZ1ZxuBxSYsljTfG7DbGXCfpD5KyJL1ujFlhjLm/h8cJ9CrhdaAo7gKAkzqsQFlrr2xj84M9MBYACk7bhabumMIDADexEjngGG+T1TNpIgcANxGgAMc0DVBUoADATQQowDGh/idJIj8BgJsIUIBjmk3hkaAAwEkEKMAxDb4mU3j0QAGAkwhQgGN8TapOVKAAwE0EKMAxoSm85AQPFSgAcFSXL+UCIPa++ugylR5skCSlJHo4Cw8AHEWAAhzy8uq94e9TkhJEAQoA3MQUHuAoKlAA4C4CFOCo1CR6oADAVQQowFGpSQmchQcAjiJAAY5KTUqgAgUAjiJAAY5KTaIHCgBcRYACHJWayBQeALiKAAU4KjUpgYsJA4CjCFCAQ9KTE8LfpyXTAwUArmIhTcAh2alJOiY3U9eenK9N+6qZwgMAR1GBAhxiZXXskGxdNH2YEjyGChQAOIoABTgkYCVjjCTJY4yslSwhCgCcQ4ACHGKtlSeYn5TQ+A1LGQCAewhQgEOCFajg9+EARQUKAJxDgAIcErBWnsYEFQpS5CcAcA8BCnCItQoHqATDFB4AuIoABTgkYC1TeABwBCBAAQ5pWoEKfWUtKABwDwEKcEjAWjUWoDgLDwAcRoACHGKt5GkMTh6m8ADAWQQowCHNeqAavyE/AYB7CFCAQ5r3QAW3MYUHAO4hQAEOadoD5aEHCgCcRYACHGLVeh2oAHN4AOAcAhTgkECTa+F5Gt+d5CcAcA8BCnCEtVbWSqblOlAkKABwDgEKcEQoJ4XOwguhBQoA3EOAAhwRykktVyI/dA8AwBUEKMARoam6cA9UeAovXiMCAERCgAIcEQpQpsU6UPRAAYB7CFCAI1r2QIW+BgLxGQ8AIDICFOCIUIAKTd2FKlGWHigAcA4BCnBEpB4oZvAAwD0EKMARhwIUPVAA4DoCFOCIlmfbhXugyE8A4JwOA5Qx5iFjTLExZnWTbTnGmNeNMZsav/br2WECRz/bogIV7oGiAgUAzulMBephSQtbbLtF0pvW2rGS3my8DaAbDjWRh76yDhQAuKrDAGWtfVdSWYvNF0j6W+P3f5N0YWyHBfQ+4R4oT/MeKCpQAOCervZA5Vlrixq/3yspL9IDjTHXG2MKjDEFJSUlXXw54OgXCK8D1fJiwvEaEQAgkm43kdvgP48jfsRbax+w1s601s7Mzc3t7ssBR61QpSl0BbzQV87CAwD3dDVA7TPGDJakxq/FsRsS0Du1vJiwYR0oAHBWVwPUvyVd0/j9NZKej81wgN6r9UKawa/0QAGAezqzjMHjkhZLGm+M2W2MuU7SXZLOMMZskrSg8TaAbgi0uJRLqJmcHigAcE9iRw+w1l4Z4a7TYzwWoFcLhLvIm32hBwoAHMRK5IBjWl9MGADgGgIU4IhIPVBUoADAPQQowBGteqC4lAsAOIsABTgiVGkKXUQ4fDHhQJwGBACIiAAFOMJGWImc+hMAuIcABTjCtuiBMvRAAYCzCFCAI+iBAoAjBwEKcESg5bXwwhWo+IwHABAZAQpwRKQeKKbwAMA9BCjAEZGvhRenAQEAIiJAAY6wLXqgDBUoAHAWAQpwRMt1oA41kcdrRACASAhQgCMOTeE1VqBabAcAuIMABTgiFJOoQAGA+whQgCNsywoUC2kCgLMIUIAjWi2k6aECBQCuIkABjggEWlxMOLSdBAUAziFAAY6I2AMVn+EAANpBgAIc0fIsPA89UADgLAIU4IjIC2nGa0QAgEgIUIAjWi6kacKXciFBAYBrCFCAIw5VoEJfOQsPAFxFgAIccagCRQ8UALiOAAU4gh4oADhyEKAAR4QrUI23PfRAAYCzCFCAIyJXoAhQAOAaAhTgiJZn4R2qQMVpQACAiAhQgCNaXQuPHigAcBYBCnCEjbAOFFN4AOAeAhTgiJYVKKPQOlAEKABwDQEKcIRV6Fp4avaV/AQA7iFAAY4IVaAMPVAA4DwCFOCI0FSdhx4oAHAeAQpwRMtLuRhDDxQAuIoABTii5cWEQ98TnwDAPQQowBEtz8ILfc8UHgC4hwAFOKLlSuRSKEDFaUAAgIgIUIAjbIseqOANmsgBwEUEKMARkXqgaIICAPcQoABH0AMFAEcOAhTgCHqgAODIQYACHBHugdKhBGXogQIAJxGgAEeEYpKneQ8518IDAAd1K0AZY75jjFljjFltjHncGJMaq4EBvU0gELqUS5MeKI9hJXIAcFCXA5QxZqikb0qaaa2dLClB0hWxGhjQ20RuIo/TgAAAEXV3Ci9RUpoxJlFSuqQ93R8S0DuFe51aLGNADxQAuKfLAcpaWyjpV5J2SiqSVGGtfa3l44wx1xtjCowxBSUlJV0fKdBLNO2BkqhAAYCLujOF10/SBZJGSRoiKcMY8/mWj7PWPmCtnWmtnZmbm9v1kQJHuVClqfkUnsRKmgDgnu5M4S2QtM1aW2Kt9Ur6l6STYjMsoPeJ2AMViNOAAAARdSdA7ZQ0xxiTboIX7zpd0rrYDAvofdpeSJMeKABwUXd6oJZIelrSJ5JWNe7rgRiNC+h1wj3kTdeB4iw8AHBSYneebK39iaSfxGgsQK9m2+iBMkay9EABgHNYiRxwRKQeKGbwAMA9BCjAEYfOwju0jR4oAHATAQpwRCDcA9V0Co8eKABwEQEKcIW1zRrIpWAPFBUoAHAPAQpwRMA273+SGm+TnwDAOQQowBEBa1tcxoUeKABwFQEKcETASkatK1AEKABwDwEKcIRV6x4oSXp1zT4VV9Yd/gEBACIiQAGOsG30QBWW10qSvvbYJ/EYEgAgAgIU4Ah/oHUPVE2DX5JUXe+Lw4gAAJEQoABHNPgCSk5s/pb0Ny4ClZKUEI8hAQAiIEABjmgrQIWkRtgOAIgPPpUBR9T7/BEDVFoyFSgAcAkBCnBEgz+glMS2g1IaU3gA4BQCFOCIBl9AyQkRKlAEKABwCgEKcER9Oz1QNJEDgFsIUIAj2msipwIFAG4hQAGOCPZARTgLL4m3KgC4hE9lwBHt9UC1dYkXAED8EKAAR7TXA+UPHObBAADaRYACHNHgizyFZ609zKMBALSHAAU4or0m8gABCgCcQoACHNHgbx2gzpyUJ0kKkJ8AwCkEKMARwSby5ssVPPCFmcpKTaQCBQCOIUABjog0hecxRuQnAHALAQpwgLW2zSk8SfIYeqAAwDUEKMAB9b7gOgVtnYXnMYYABQCOIUABDmjwRw5QxhiayAHAMQQowAENjRWoiFN4JCgAcAoBCnBAOEC1cSkXpvAAwD0EKMAB7VWgEjxM4QGAawhQgANCPVBtBSjDWXgA4BwCFOCAjqbwyE8A4BYCFOCA+o6ayElQAOAUAhTggHqfX5KUkpjQ6j4PyxgAgHMIUIADDjWRm1b30QMFAO4hQAEO8PqDASkpYg8UAQoAXEKAAhzgazwLL1KA8jOHBwBOIUABDvAGQhWo1lN4HtaBAgDnEKAAB4QqUImets/CYwoPANxCgAIc4GvsgUpsqwLFWXgA4BwCFOAAb6C9HijOwgMA1xCgAAeEK1CetpYxoAIFAK7pVoAyxvQ1xjxtjFlvjFlnjDkxVgMDehNvqAcqQgWKHigAcEtiN5//O0mvWGsvNcYkS0qPwZiAXsfX3ll4xjCFBwCO6XKAMsb0kTRf0hclyVrbIKkhNsMCepf2z8IzamyRAgA4ojtTeKMklUj6qzFmuTHmL8aYjJYPMsZcb4wpMMYUlJSUdOPlgKPXoZXI276Ui58KFAA4pTsBKlHS8ZL+aK2dLumgpFtaPsha+4C1dqa1dmZubm43Xg44enn9ASV4jIxpHaASPFzKBQBc050AtVvSbmvtksbbTysYqABEyRewbVafJNaBAgAXdTlAWWv3StpljBnfuOl0SWtjMiqgl/H6A0pqo/9JCk7h0UQOAG7p7ll435D0WOMZeFslfan7QwJ6H5/ftrkKuUQFCgBc1K0AZa1dIWlmbIYC9F6+QKDNNaAk1oECABexEjngAK/fKqmNVcgl1oECABcRoAAH+PyRK1CGdaAAwDkEKMAB3kB7PVA0kQOAawhQgAN87ZyFxxQeALiHAAU4oL2z8BI8nIUHAK4hQAEOaGi3B4opPABwDQEKcIDPb5XczjpQ5CcAcAsBCnCALxBQYsQeKCpQAOAaAhTgAG+HK5EToADAJQQowAG+QEBJrAMFAEcMAhTgAJ/fKjHiSuRcygUAXEOAAhzg9UeuQHmMkZ8ABQBOIUABDvC1txK5R6wDBQCOIUABDghO4UWuQDGFBwBuIUABDghO4bV3Ft5hHhAAoF0EKMABXn+AiwkDwBGEAAU4oL0pvOAyBgQoAHAJAQpwgDcQUHJiez1Qh3lAAIB2EaAAB3S0DhRTeADgFgIUEGfW2sZlDCJUoDw0kQOAawhQQJz5GtNRUoQKlDFiIU0AcAwBCogzrz94obukdnugCFAA4BICFBBn1fU+SVJGSmKb9yewDhQAOIcABcRZdV0wQGVFCFA0kQOAewhQQJyFKlCZEQKUaVzGgGk8AHAHAQqIs1AFKjM1UgUq2FxOfgIAdxCggDirDE3hRQxQwa9M4wGAOwhQQJyFpvCyUpLavN/TmKBoJAcAdxCggDirrvNKijyFZ6hAAYBzCFBAnB1axiChzftDPVAEKABwBwEKiLOqep+SEz1KSYwUoIJfmcIDAHcQoIA4q67zRVwDSqICBQAuIkABcVZd74vY/yQ1WcYgcLhGBADoCAEKiLPqOl/ERTSlQ1N4vgAJCgBcQYAC4qyqvv0AlZOZIknaX91wuIYEAOgAAQqIs44qUEP7pkmSCstrDteQAAAdIEABcVbn9Sstue0z8CRpWL/GAHWg9nANCQDQAQIUEGe1Xr/SkiIHqNzMFCUneLS7nAAFAK4gQAFxVtPgV3o7FSiPx2hw31TtpgIFAM4gQAFxVuv1K7WdACVJfdOTVdV40WEAQPwRoIA48gesGnyBdqfwJCnJY+Tzs4wBALiCAAXEUZ3XL0kdB6gEj7wEKABwBgEKiKOahmCAaq8HSpISE4y8fi7lAgCu6HaAMsYkGGOWG2NeiMWAgN4kVIFK7UQFipXIAcAdsahAfUvSuhjsB+h1akNTeB1UoJISjLw+KlAA4IpuBShjzDBJ50r6S2yGA/QunZ/C88hLBQoAnNHdCtRvJX1fUsRPdmPM9caYAmNMQUlJSTdfDji61DZ0cgrPY+SjBwoAnNHlAGWMOU9SsbV2WXuPs9Y+YK2daa2dmZub29WXA45KnIUHAEem7lSg5ko63xizXdITkk4zxjwak1EBvcShKbzIFxOWGqfwqEABgDO6HKCstbdaa4dZa/MlXSHpLWvt52M2MqAXqO1kBSo5wVCBAgCHsA4UEEehAJWa3P5bMTHBw0rkAOCQ9ucNOsla+7akt2OxL6A3qWvoXAUqMcHIG2AKDwBcQQUKiKOaTgaoZJrIAcApBCggjmq9fiUneJSY0MEUnscja4MXHwYAxB8BCoij2gafUpM6fhsmJhhJogoFAI4gQAFxdLDBr4yUjlsRkxsrVAQoAHADAQqIo4P1vk4FqFAFitXIAcANBCggjqo7HaAaK1BcDw8AnECAAuKopsGvzJT2z8CTggtpSmI1cgBwBAEKiKOD9T5ldHAZFyl4Fp4kFtMEAEcQoIA46uwUXlIiTeQA4BICFBBHwSbyjqfwkjxM4QGASwhQQBwdrO/cMgahJnLOwgMANxCggDhp8AXU4A8osxM9UEmNTeQNTOEBgBMIUECc1DT4JEnpnemBSqCJHABcQoAC4qS6PhigOrOMQWJjD5SPa+EBgBMIUECcHKz3S1JUZ+ExhQcAbiBAAXESqkB1KkB5aCIHAJcQoIA4CfVAZXaqAtXYRO6jAgUALiBAAXFysLEClZ7ccQ9UVmqSJKm63tujYwIAdA4BCoiT6sYeqM5UoLJTg4+prPX16JgAAJ1DgALipLI2WE3KbqwutScjOVEeI1XWUYECABcQoIA4CYWhrNSOK1Aej1FWalI4dAEA4osABcRJRa1XmSmJ4cu0dKRPWpIq63xaXVih9Xsre3h0AID2dPxPXwA9orLWF+5t6ozstERV1Hp13r3vS5K233VuTw0NANABKlBAnFTWeZWd1nH/U0g2U3gA4AwCFBAnlbVdCFA0kQOAEwhQQJxU1HrVJ4oA1SctSeU1BCgAcAEBCoiTqjpfp5YwCJkwOEvFVfXh216uiwcAcUOAAuIkOIXX+Sbya07Mb7ZqOf1QABA/BCggDvwBq6p6X1RTeB6PaRagyglQABA3BCggDqrqOr8KeVMpiYcCVAUBCgDihgAF9LDaBr/+8+meZttC17SL5iw8SUpJOvSWraChHADihgCFo4rXH9CjH+1QbYM/3kMJe3l1kb7x+HJtKakOb9teelCSNCg7Nap9Na1A1Xrd+RkBoLchQOGo8tqafbr9udV68uOdXXjuXj29bHfMx1R2sEGStL/JGXQfby9Tgsdo2oi+Ue0rtUkFqt5HgAKAeCFA4ajy2tq9kqR/t5gy64x7Xt2g3725MdZDCp8td6CmIbxtybYyTR6SrcyU6K6m1LRnqs7LMgYAEC8EKBw1vP6A3lpfrLSkBH2ys1y7ymoiPvaNtfv0q1c3hG8XV9ZpU3G19pTXhddXstZqZ2nkfXRWqNn79bXFeuDdLdpTXqsVO8s1e1RO1Pu6+9Kpumj6UElSPVN4ABA3BCgcNZZsLVNVnU/fXzheUuQqlLVWd768Tn98Z4safMGwtHhrqaTg8gJF5XWSpA+3lGr+PYu0Zk9Fq31s2lelfZV1nRpXZV2wYfyZT3br7lc26Bcvr5fHI33hxPyofj5JystO1c8vmixJqvdRgQKAeCFAIWp1Xr9TTdohr63dq9Qkj66YNUIzR/bTv1e0HaAKdhzQ1pKD8gesdjQ2c3+4uTR8/46y4LZQ0/f7m/ZLCp5N948lOxUIWH3p4Y91xwtrm+3X5w/oyY93tlohvOlyA76A1Zvr9umcyYM1PCe9Sz9nckLwbcsUHgDEDwEKUfvm48v1lb8XxHsYzVhr9frafZo/NldpyQk6f9oQbdhXpSseWKxZP39D33h8uVYXBitJTyzdJWOCz9tUHAxJH27drylD+0iSdjZO/RVVBCtMS7eVSZKeW1Go255dpbc3Fmv3gVqtLaqUJH20tVQX3veBXl69Vz94ZpVeXbO32dhartdU0+DXoD7RnX3XVGKCR4keQxM5AMQRAQpRsdbqo62l+mDLfpVW13f8hMNkdWGliirqdMakPEnSuVMGa1B2qsprvDphVI4WrS/Wefe+rysf+EgvrtqjC6cNlTHS5uJq7Sqr0a6yWl00faiSEzzhALU3FKC2l8kfsPp0V7kkhStb2/cfVJ3Xr0c/2qEVu8rDZ/At2VrWbGxtXXJlYFZKt37e1KQEpvAAII6iOwUIvd7OsppwT89b64t12czhcR5R0LubSiRJp00YKEnqn5mij247PXx/ZZ1XTy7dpYc+2KZ6X0DXzh2lgh1l2lRcrcVbgtN3J48doGFL0sKN40UVtZKCF/1dv7dSn+4OVrBeW7tPkhSw0rqiSi1aXyxJeq9xDEu2HZoOlNpeMTw3q+sVKElKSfSojiZyAIgbAhSisqpxGiwpwejNde4EqOU7yzU6N0P9M9uu7GSnJukr80fri3PzVXigVvkDMjQmN1Obi6vlMdKAzBSNHZipETnpzSpQM0f2U8GOA3p7Q4k27quSFJyCC3nog+062Hg7YIPbNu6rVml1fXgsbQWogdndq0ClJHqoQAFAHDGFh6isKqxQUoLRhdOG6r1NJU704VhrtWLXAU0f3q/DxyYleJQ/IEOSNGZgpraWVOvDLaU66Zj+MsYEA1Rpjay1Kqqo0/Ej++nYIdm6b9Fm+QNWo3ODzx09IEOJHqMXVu5Rv/QkzRs7QJJ04uj+kqS3NwSrUXVef5tBhyk8ADiyEaAQldWFFRo/KEtnTxmkgw1+fdSi3yfWdpXVaPnOA+0+ZveBWu2vboh6Ve+xA7NU7wuopKpeJx0TDD4jctJVVe/T9tIa1fsCystO1a1nTwxXna6YFay4TRySrVEDMmSt9O0F4zR9ePC1PzdrmPL7p+upgl2SglOHTSUlBLvXB3ZzCi+5B6fw/vPpHs27+y35QyU1AEArXQ5QxpjhxphFxpi1xpg1xphvxXJgcI+1VqsLKzVlaB+ddMwApSZ59Oa6fT32el5/QNc+/LGueWipfP7I1ZYVjc3doRDTWccMzAx/f9IxwQrSiMalBZY29jEN7pOqk8cO0IKJeRqRkx7usRqTm6mZ+TmaNDhbV50wQieM7h+8NMvwfrps5nAt2VambfsPhhvI77jgWP31i7M0ZmCWslISlZacoO5I6cEK1A+eWaldZbWqafD1yP4B4GjQnQqUT9J3rbWTJM2R9HVjzKTYDAsu2lVWq4paryYP7aPUpATNG5urN9cVy9qeqVQ89P42bSquVmWdL9x71ZblO8uVkujR+EFZUe1/TGOAGto3TcNz0iQdClWvrQkGw9ByA3+4arqe+/pcHZObqZvPGq9LZwzTzy+crOdvmqukBI/mjhmgZbcv0KgBGTrr2EGN4zoQ7n8anpOuUycMVG5WinK72f8kSamJHm3cW9Wla/5F4g9Y/eGtTeFqGxUoAIisywHKWltkrf2k8fsqSeskDY3VwOCe1Y0rcofWS1owcaAKy2u1rqgq5q9VVFGr3725SSeMypExhxazbMuKXQc0dVgfJSVE979zn7QkjR6QodMmDJRpXBhq9IAMjRmYqTcbz6wb3BigUpMSlJORLGOMvn7qGA3PSZfHY5q9Zt/0ZEnSsH7BMLb7QK32VQaXeuifEQxN3zp9rH58Xvf/nZGSlKC9lXX6wTOrVFhe2+39SVLB9jL96rVD1wL0+glQABBJTHqgjDH5kqZLWtLGfdcbYwqMMQUlJSWxeDnEyarCCiV6jMblBSs9pzZOZ/XENN4dL6xVwFr96rLjdOyQbL23+VCAqvcF116qqPWqwRfQ6j2Vmhbl9F3Iv752kn547sTwbWOMLjhuiCTJY6TcCGf1tSc1KUEDs1K0+0CNlmwtVXpyQrg6NmNkP31m/MAujbWplMRDb90H39umkqrur8m1rEWvWcsV1QEAh3Q7QBljMiU9I+nb1trKlvdbax+w1s601s7Mzc3t7sshjlYXVmhcXpZSk4L9OwOzUnXc8L56o7FaEytvrd+nl1bt1U2NlZ65YwZo+c4DOlgf7Ml5etlu3f7can310WVaVViuBl9A0zpxBl5b+qYnh3+ekPOnBQNUblaKEqOsaoUM65em3Qdq9cGWUs3Kz1FyYmzP12g6vfbQB9t0zu/f6/Y+735lQ7Pba/e0ejsDABp161PdGJOkYHh6zFr7r9gMCS6y1mpVYUV4+i5kwYSB+nRXuYqrOr6w7q6ymg6XPXh+RaFufPQTjR2Yqa/MHy1JmjcmV16/1dJtZbLW6h9LdqpvepI+3FKqbz6+QpI0Pcoz8Nozsn+GZozsp/z+GV3ex7B+6fpk5wFtLq4On+EXS7Pyc9Q/I1mexkvSxKIC1dKX/17QbvM+APRm3TkLz0h6UNI6a+1vYjckuGj3gVqV13g1eVjzAHX6xOClUxa1U4XaUlKtrz/2iebdvUhX/XmJKmpaLyxprdVv39iobz2xQtOG9dWTN5yolMRgZWhmfj8lJ3r03qb9Wrm7Qmv2VOq7Z4zTVz9zjArLazUwKyXcqxQrf7p6hu69cnqXnz88Jy18sd95Y2Nfef3qZ47Rsh+dEW6E764Zd7ze5vYGAhQAtKk7K5HPlXS1pFXGmBWN226z1r7U7VHBOaEL8basQE0cnKUhfVL1xrpiXT5rRLP79lbU6XdvbtRTBbuVkujRFbOG61+fFOryBxbr79fNDq+FVFRRq//59xq9umafLjl+mO68eHI4PEnBnqLZ+Tl6f3OJDtb7lJaUoAumD1VmcqJKq+uVl50abgKPlQFd6H1qali/4HIIqUkeTRwc3dmB0QhN5aV3Y1mEqjqvSg82SAo21jddOb3BF1BjbzwAoIkuByhr7fuSYvtXq5s27avSkm1lWjh5ULf/AKK5UAP5hBZLBRhjdPrEPP1z2S7Vef2NK2T79ed3t+oPjat3Xz1npG46bYwGZKbo3KmDdcMjy3TZ/Yv10Bdn6bU1+3TvW5vkD1jdds4EfWXe6DbD0MljB+iul9drR2mNLpw2VNmpSZKkuy897rD8/NHKyQimjtmj+sc83DX1k88eqy88tFTDGwNbV2zfXxP+fs7oHL265tBJAQ2sdg4AbTqqroX32tp9uufVDfrx86t14jH9de6UITrr2LyI10c72h042KA31xfrw837NXfMAF18/NAu/zFfVVihsU0ayJs6feJAPfLRDn24Zb88xuh//r1G20trdM6UQbr17IkannPoj/u8sbl69Msn6Et//Vin//odSdKCiXn6yWcnNXtcSyePCS50We8L6KoTRkR8nCvmjhmgi6cP1c0Lx/fo68wfl6szJ+VpZ1nw8jPriqo0aUh2VPtYuj24mvy4vEz99PzJzQMUU3gA0KajKkB97TPH6PSJA/XiyiK9sLJItz27Sj96frVOOqa/zpkyWGcdOyhcGTha7Sqr0etr9+m1tXu1dFuZAlbKTEnUv5YX6t+f7tGdF0/R0L5pUe0zuAJ5hc6YlNfm/XNG91d6coK+//RK7a9u0OgBGfr7tbM1f1zbvT/Hj+inp244Uf/3+kZdPmt4eDmE9kwanK2cjGQNyk7V1BZ9WC7KTEnUby6fdlheKy05QbVevx5fuku3PbtKj335BM1tDJydsWJXuYbnpOm175wiSfrnjSfqsvsXS6ICBQCRHFUByhijCYOyNWFQtv77jHFaV1SlF1ft0Ysri3Trv1bp9ueCYeq8qYN15qRB6udImGrwBfTy6iI980mhrLXqn5Gs/pkpGpCZov6ZyRqQmdz4fYr6ZzQ/7d5aq/V7q/Tqmr16bc0+rS0Knno+Pi9LXz91jM6cNEiThmTr0Y926JevrNeZv3lHt54zUVfNHiGPp3PVqMLyWh2o8bbqfwpJTUrQmZPy9Mqavbr5rPH68rxRzXqY2jJ+UJbuv3pGJ39Dksdj9MDVM9QnLalHp8SORGlJCdpXWacPtwTXytpRWqO5Yzr//Jp6n/qkJTXbXwgVKABo21EVoJoyxmjSkGxNGpKt7505Xmv2VOqlVUV6cVWRfvDMKv3w2dWaO2aAzp0yWGcemxdeRfpw2ldZp8eW7NQ/luzU/up6jchJV05GsraXHtT+qgbVRrhYbFZKovpnBkNWcVWddpXVyhhpxoh+uu2cCTpz0iDlD2h+Cv41J+XrtAkDdcu/Vur251brhZV79MtLpmpkJ07VDzWQT44QoCTprkum6qcXTG72hzjWZubn9Ni+j2SpSQmq8wb0wsoiSVK0+bLW628WmpquMUUFCgDadtQGqKaMMZo8tI8mD+2jm88KhqkXVhbpxVV79P1nVuq2Z41OHtsYpiYNUp/0ngsB1loV7Dighz/crldX75XfWp06fqC+cOJIzR+b26wqVNPgU2l1g/ZX12t/dYNKq+tVerBBJVXBr6XV9cFK02fG6PSJecrNar/Xa3hOuh697gQ9VbBLP3thnc767bv63pnj9aW5o5TQTjVqVWGFEjxGEwdH7q1JTUposz8KPa/lhYk/2XFAjy3Zob9fe0KnpqxrvX5lphz6KKhrEtxZjRwA2tYrAlRTTcPUDxaO16rCCr24qkgvrizSzU+v1G0JqzRvbK7OnTJYCyblxayiUtvg1/MrCvW3xTu0rqhS2amJ+tLcfH1+zsiIVaD05ESl5yS221wdLWOMLp81QvPH5er2Z1frZy+u04urivTH/5oRvnBuS6sLKzV2YCYByVFJLcLvP5ftliS9uKpIV88Z2eHzaxv8GtgkfM8Y2U8TBmVp/d4q1VOBAoA29boA1ZQxRlOH9dXUYX11y8IJWrn7UJh6a32xkhKM5o/N1blTg2EqdOp8NHaW1uiRj7brqYLdqqj1asKgLP3i4im6cNrQVpWDw2lwnzT95ZqZen7FHv3w2VW64dFlevL6Oa1CUqiB/LRONHojPqrr257qXba9rMMA9eD727R+b1Wz5SkSEzy68+Ipuvj/fUiAAoAIenWAasoYo+OG99Vxw/vq1rMnaMWu8mDP1Moivbm+WMkJHs0fl6vzpg7W6RMHKqudMBUIWL23eb/+/uF2vbWhWB5jtHDyIF1zYr5m5fdzpgnaGKMLpw9ValKCbnx0mX7y/BrddcmUZuMrqqhT6cEGTTkCznzrrarrgwtffuv0sXp62W4VltdKkp5bsUc/PHdSu1O7d7ywVlLracDkxmsA3vDIMm382dk9MWwAOKIRoNpgjNH0Ef00fUQ/3Xr2RK3YXa4XVxbppVVFemPdPiUnenRKOEzlhftHKuu8embZbj2yeIe27j+oAZnJ+sapY3TVCSMjTo+5YOHkQbrp1DH6w6LNmjq8j/7rhENVi1WdaCBHfFU3XmR5zMBMnTEpTw9/uD1839sbinWgpkFnTx6s376xSb+4eEqbFzZuedZkqBLZ4Avoy38r0F+umdlzPwAAHIEIUB3weIyOH9FPx4/opx+eM1HLdx3Qiyv36qVVRXp9bTBMnTo+VzkZKXp+RaFqGvw6fkRf/e6KaVo4eVCHp/O74jtnjNOqwgr9z7/XaMKgbM0Y2U9S8Aw8j5EmDopucUYcPt86fZx2ltXolPG5yslIbhagbn56pSTp7Q0l+nBLqS6aPlQnj229RtT20oPNbo8ZmCmPkQJWemPdvlaPB4DerssXE+6NPB6jGSNz9OPPTtKHt5ymp288UVfNHqHlO8v1zCe7dc6UwfrPTSfrX1+bqwumDT1iwpMkJXiMfn/FdA3uk6avPrpMxZV1khpXIB+YFdd+LbRv/KAsvfCNecpOTdLcMQP0+Ffm6O5LpjZ7zL7G4/n5B5fIWttqHye3sfDmyT1wEWQAOFpQgeoij8doZn6OZubn6MfnTVKDP3DEn6XWJz1JD3xhhi6670N97bFP9I+vzNHqwgqdMo4G8iPJicf0V1Zq87d2UUVd+PuKWq/6pifrnY0lkqSvzBul604e1Wo/TYOWtdaZ3j0AcAEVqBjweMwRH55CJgzK1i8vnaqCHQf0rSeWa391g6YMZfruSJOR0jxA1TQcOlNvX2W99lbU6ZqHlkoK9vy1FY4CTQKU19+6agUAvRkVKLRy/nFDtLqwQg+8u1WSOAPvCJSREjnQry2q0Hee/DR8OzRd21LTVcjrff42m88BoLfiExFt+v5Z4zV3TH8lJ3raXYEcbspIjvxvo/c27W92+9ghbQfk0yYcung0l3QBgOYIUGhTYoJHf/nCLL3wjZOV3s4fY7gprZ0p5X99Utjsdlv9T5J0w/zRuu2cCZKk+xZtid3gAOAoQIBCRGnJCRqXl9XxA+GcptdUvP/zx+umU8e0+bhRAzKaPbblPkILxj70wbbYDxIAjmAEKOAodd3Jo3TvldO1cPJgfeP0tgNUSgd9TdV1vvD3720qObS93qfNxdWxGSgAHIGYmwGOUj86b1L4+9ClWVoqO9jQ7j6q6rzh769+cKmuO3mUzpkySL96daMWby3VljvPUUKEChYAHM2oQAG9QKQ1nIqr6tt93injmy+m+eD723TJHxdr8dZSScE1pQCgNyJAAb3EQ1+cqXdvPlXHDeujU8d3bpXxGSNztP2ucyPeX1rdfgADgKMVAQroJU6bkKcR/dP1/E0n66fnT47JPks7mAIEgKMVAQrohfqkJcVkP6XVwQC1t6JO+be8qA827+/gGQBwdCBAAb1QZmpszh954uOd+s3rGzXnF29Kkm5/bnVM9gsAriNAAb1QtGfO/fi8ScpIbr0453ub9uv3b24K3962/6BW7a7o9vgAwHUEKKCXun7+aN3/+Rmdeuy1J4/SZTOHd+qxL64q0uV/Wqx/FuzqzvAAwGnG2sN3lfWZM2fagoKCw/Z6AGJnV1mNbnp8uT7dVd7p51xz4kgN6pOmr37mGEnS0m1lGp2boQGZKT00SgCIHWPMMmvtzLbuYyFNAJ0yPCddz399rvJvebHTz/nb4h2SpD3ltTpjUp6+8NBSjRmYqTf++5SeGiYAHBYEKAA97pGPduiRj4JhanNxtarrfUr0GKW2c9FjAHAZPVAAovJ/lx/X7X1M/smruuAPH8haq2eW7VZ1va/jJwGAQwhQAKIyc2ROq23trVYeyYZ9VVq244C++89P9dN/r5G1VoezJxMAuoMABSAqKYnBj438/und3lfoWnr7q+v1mV+9HV5PKmR1YYXe3VjS7dcBgFgjQAGIysDsVP3i4il6/Po5zbbPH9e56+s15fUHK06LNpRoR2mN9lXWa9mOMn26q1ybi6t03r3v6wsPLVVtg1+/fGW96rz+mPwMANBdNJEDiNqVs0e02vb3a2dLkv7z6R594/HlndrPsh1lrbZd8sfFkqQ//tfx4W1/fm+r/vj2FvVNS9INpxzTlSEDQEyxDhSALntl9V6NzcvUMbmZzbYHAlbltV4t/O27Kq6q19Ifnq7nlhdq+c5yvbx6b9Sv883Txuj3b22WJD1x/Rx5jFH+gHTlZqbImOhWVQcQX6sLK/S9f36qZ756kjJS3K7jtLcOFFN4ALps4eRBrcKTJHk8RjkZyXrl2/P15y/M1MCsVF0//xjdevbELr1OKDxJ0hUPfKTP/WmxZv/8zfC193aW1qiqzquqOq+ufnCJCstro9r/c8sLo34O0BU+f0CrC4/cyx35/IFWZ80u3lIa3mat1TUPLdVb6/dF3MfPX1yn9Xur9PaGQ/2Nr67Zq11lNZKCFydvOV2/Yld5+PdmrXViOp8ABaDH5GQk64xJeeHbI2LQeN7UY0t26puPL9f8exbpsvsX66VVRXpv037Nveut8GMqarz6cMt++QNWb63fJ2utAgGr0up6SVKDL6BvP7mi2XN62iuri6Ja0R1Hj9+8vlHn3fu+1u+t7NHX2VNeGw4kbVm2o0xvrtundUWHxlHn9au2IRhM/uffa7R0W+sp9u/981NN/smrqqj1qs7r10dbS3Xlnz/St59YIUkKWOmdjSW69uEC1fsOhZxAwKq8pkGl1fVavLVUkvT1f3yiB9/fpvxbXtQNjyzTvLsX6fRfB08muf6RZc1e98L7PtB5976v6nqf/vjOFk340SvaE+d/9DCFB+CwentDsb741497ZN8TBmVp/d4qSdKi731GowZk6Lx739Pqwkr1z0hW6cEG/eSzk7RmT6WeXrZbkrT+joWa8KNXJAWXYwgErK5/ZJmuPTlf97+zVVV1Xv3swsk6dkgfVdZ5tWRrWbNQWFheqyF9UsNTiYGAVcBaJSZE/vdpaDX3754xTmdPGawxA5tX8d5ct0/V9T5dMG1o1L+DsoMNentDsS4+fljUzz3aFFfW6aVVRfri3FEx3/fH28s0c2S/8HEvLK/Vl/9WoL9fO1u5WZEvVXT1g0v03qb9+tu1s3VKGydebNpXpRH907V8Z7lOGJUT3n+d16+7X9mg75wxVpV1Pvn8AVXV+TR5aJ9mz1+/t1KD+6TpuJ++Ft6WmZKol745T/PvWaR/3niiBvdJ1cm/XBS+Py87Rf/4yhyd/ut3JEnvff9Uzbs7eP9TN5wof8DqxGP6q8EX0LjbX474syV6jK4+caT++sH28LYzJ+XptbX7lJORrLKDDRGfG8kVs4Zra8lBLd3eOsz94arpOm/qkKj3GY32pvAIUAAOuz++vUW/fGW9huekKcEY3XL2RN346LKOnxilT350ho6/4/Vm2z573BD959M94dtN+6te/tY8DcpO1fQWz5GkOy44Vk98vEtr9gTDWHZaku676nid8/v3NHtUjn5+4WSNzcvSNQ8t1TsbS8JrY+0oPajtpTWaPqKvkhM82l9d3+yPV1KC0XfOGKfr540Oh65QwLr7kqn6xcvr9MT1J2rxlv2qrPPpm6ePbTW22ga//vupFfrxZyfpO0+u0Edbg39s7r1yuj57XPf/wHj9Af31g2364kmjlJwY/cTFY0t2aF9FnYqr6nXXJVMlSaXV9Zrxszf0wjdObhUCWnqqYJeyUhJ19pTBHb5WbYNfxkiVdV5d+/DHWl1Yqbe+e4oGZKXou099ql9cPEXJiR5lpybpvkWbdc+rG/T+D05V2cEGfbC5VFtKqjUuL1NXzB6hLcXVmj6iX7P91zT4NOnHr0oK/j+RnZaksycPbhYsLpw2RN9eME6VdV71S0/WS6uKdP380Xrw/W16aVWRPtlZLkn68xdmalZ+P82+8001+AL63Mxheqpgd3g/91w6VZfNHK7t+w/q5dV79ctX1mvO6Jzw8ZWkP109Qzc8Evv3zpFgaN80fXDLaT36GgQoAM7bX12vW55ZqTfWFcdsn135V++CiXl6Y13k/o2mEj1GvsChz9AxAzO1ubg6/NqXzRimP727tdOvvf2uc8N/1COZMrSPbjtnor795HL97wWT9b//WRvu37po+lA9u7ww/NjjhvfVc187SdYG+9JW7i7X+X/4QJL08Q8XqE9akhb+9l3defEUVdZ6tXJ3hb531njtKqtRwFrtKK3RnNH99ffF2/WzF9dJkgZkJuvjHy4IV0Y+3VWu8YOylJqUoL8v3q5B2alaMDFPL6wq0jcfX67fXTFN32qc3gn9jPsq63TCnc3X/JoytI/+94JjWwUW6VCgvP/zx0syuvHRZXru63M1bXhfScGm5PPufT/8+LzsFO2rrA/f/tzMYXpnY0mzbfdeOb3ds0UzUxJVXe/TuzefqvsWbdab64u1v7o+4uNx+KUmebT+jrN79DUIUACOCL99Y6N++8ameA/jqJKRnKCDDX5dP3+0HogizDU1d0x/fbC5NHz7nkun6n//s1ZVjY3D/TOS9bdrZzcLMZF878xx+tVrGyPef/clU/X9Z1ZKkhZMHKiR/TP04PvbIj5+SJ9U7amo6+yPgqNIcqJHG39GgAIAHaz3acFv3lFRJ/8g3nPpVN389MoeHhUAFyV6jDbfeU6PvkaPLWNgjFlojNlgjNlsjLmlO/sCgIyURD15/YmSpN9dMU0njGp93b1/3niihuek6WcXTtZlM4fr15d1/+LGAI48TafP46HLAcoYkyDpPklnS5ok6UpjzKRYDQxA7zSif7o2//xsXTBtaKv1Zpb/6AzNys/Re98/TZ+fM1KSdMkMzjYDcPh1ZwnQ2ZI2W2u3SpIx5glJF0haG4uBAei9Qmej/d/l03T/O1t006ljlJmaqH4ZyW0+fvVPz5Lfb/Xn97bqD4uCZ9RNHpqtm8+aoAmDslo1LANAd3VnCm+opF1Nbu9u3AYAMTEuL0u/+dw0jc7N1MCs1IiPy0xJVJ/0JN102pjwtme/NlenjMtVXnaqnvv6XP30/GMPx5AB9BI9vhK5MeZ6Y0yBMaagpKSk4ycAQBelJiVo/R0Ltep/zlRSk4Uspw3vq2tOytfS205vc/HCrgqeVg+gN+pOgCqUNLzJ7WGN25qx1j5grZ1prZ2Zmxu7Dy4AaEtqUoKyUpPavG9gdqp+/bnjdOMpx+iBq2dICjalv3vzqZKkfulJ+vCW03T7uZGv2ZffeDmaF75xshZOHqx3bv6MciJMLbb09VOPieZHAdCOi6bHd9KrOz1QH0saa4wZpWBwukLSVTEZFQD0kAGZKbrl7AmSFF4tXJIe/tIsjcvL0pC+afryvNE6b+oQ+QLBC79mpSZp7pgBkqRHPtqhHz23WsP6pUmSRvbP0JWzh+u+RVskSZ+fM0I/u3CKdpQe1LB+6frHkh360fNrdNOpY/S9s8brilkjtKe8VqMGZGh2i96sK2eP0ONLd+q3l0/ThdOHaum2Mn3uT4tb/QxnTMrT62s7t9gncLRK9Ji4vn631oEyxpwj6beSEiQ9ZK39eXuPZx0oAEcjnz+gZTsOyEqaMbJfs+lDKXhh17zsVCW0+MAvr2nQ5x9cotWFlXr2aye1uQr3xn1VOvP/3tUNp4xWXlaqMlMTdenxwzT6tpeaPa5vepLKa7ySpKyUxPAil5H848sn6Kq/LGm27bXvzNeZ//duZ39sIK4unj5Uv7l8Wo++RnvrQHWnAiVr7UuSXurwgQBwFEtM8OiE0f0j3j+kb1qb2/umJ+uui6fqjhfWauLg7DYfMy4vS5/+5ExlpSTK0ySAHTesjz7dXRG+vfS2Baqs8+rJj3fp/OOGaEdpjf62eLv6ZyTriY+D5/s0vazKSWMGqOD2BXry412659UN+vlFkzUuL0t3XzJVFbVeXXvyKC3ZVqqr/rxEV84eoao6r15YWaRrThypvy3e0eZYp4/oq6tmjwgvbvqDhRP0y1fWR/7FAd2wqrCi4wf1IFYiB4Aj0IPvb9MdLxxaNabpdGRLm4urtHFftc6ZMlgNvoAC1io1KaFTr+PzB8LLSizZWqrpI/rphZV79N9Pfaq+6Un67eXT9MW/fqxlty9Q/8wUSdJ9izYrJdGjL88b3WoaclZ+P/3uiunqn5msLcUHdc7v35MknX/cEP33GeO0srBCp08YqLKDDZp39yJ9f+F43f1K82sDPnLdbL29oURLt5V16Y/ov2+aG74mYEtMjx45uJQLACBq1lp5/VY/fHaVEjxGd10yNd5Datcrq/eqpLpeVzcugNpZgYDV6Nte0g3zR2vXgRq9tGpvOCzuKqvRvLsXhR/7ly/M1Jf/XqD3vn+q8rJTNe72l7Xw2EE6Y1KePtl5QD+/aEr4sXe+tE4rdpXroS/O0uSfvKqhfdP0wS2nSZKq6ry67uECzRs7QL9+PXjdvgGZKeGLCa/734V6eXWRHnh3q7z+gPL7Z2hGfj+9unqvPt1dER7fGb95R5saLy7dGbeePUGfPW6ITrrrrah+R73VFbOG9/j/9wQoAMARr8EXUFWdN1zpOnCwQdPveF2XzhimX7VxSZ+KWq/SkxNa9aR1lT9gW/WxtXy93QdqdOyQPpKk/dX1mnPnm3ryhjmaMTJHa/dU6tqHP9bL35qnfhnJKiyv1Ya9lVq/t0r/b9EWfXjracpOTVJVnVeVdT7d+Mgy/fyiybrs/sW686Ip6puepPnjcrV9/0Gd0Uav2uJbT9PgPmnKv+XFZtu/e8Y4zcjvp5TEBF3yxw9j8rtwwdY7z2k2rd0TCFAAgKPSlpJqDeuXppTEzk1JHi3eXLdPS7aV6cJpQzVpSPP+uVdWF6lferImDcmWlZTdZFkPf8DKY6RRtwbbl5fdvkAzfvZG+P4nrp+j44b11Q+fW6V/fXJoZaL/OmGEHluyU8cN66OUxARt3X9Q1508Sl/9zDHNAtvNZ43XPa82n3Jt6g9XTddN/1jebFvTEyj2V9drZpPxtDQgM0VPXD9HHiONzs1s5zcUGwQoAAAQ9qd3tmhk/3QtnDxYL6zco+o6n66YPaLZY55YulO/fn2jFkwcqF9cHHmqbE95rTJTE5WelKAEj9GZ//euNhVX66fnH6tZ+TlKTjRa8JtgxWz7XeeqYHuZLr1/sQb3SdWjXz5Bx7QIQo8t2aG7X9mgitrgWaVPXj9Hs0flaHNxtfpnpnR63bVYIEABAIDD4hcvrdOf3t2qR66brXljgwtof7qrXCVV9VowKa/T+3lxZZHGD8rSmIE9X2mKpMeWMQAAAGjqu2eO1/QR/cLhSZKOG9436v2cO3VwDEcVez1+LTwAANB7JCd6tHDyoHgPo8cRoAAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKxlp7+F7MmBJJO7rw1D6SKnrg8R09LtL90Wxva9sASfs7Mb5Yi/b3GKt9dOY5XT0W7d3XmeNxJB+LruwnFu+NnjoWUnyOx5F8LNq7/0g8FpHGcjj2wedUa0fyeyNWx2KstbZPm3ux1jr/n6QHeuLxHT0u0v3RbI+wreBI+D3Gah+deU5Xj0V3j8eRfCy6sp9YvDd66ljE63gcycci2t+568ciVseDzyl3jkVX9uP651TovyNlCu8/PfT4jh4X6f5otkc79p4Ui7F0ZR+deU5Xj0V797l8PGI1jni8NzgWsdkPn1Nt43PKneNxJL83evxYHNYpPAQZYwqstTPjPQ5wLFzD8XAHx8IdHAs3HSkVqKPNA/EeAMI4Fm7heLiDY+EOjoWDqEABAABEiQoUAABAlAhQAAAAUSJAAQAARIkABQAAECUClGOMMRcaY/5sjHnSGHNmvMfTmxljRhtjHjTGPB3vsfRGxpgMY8zfGt8P/xXv8fR2vB/cwd8JNxCgYsgY85AxptgYs7rF9oXGmA3GmM3GmFva24e19jlr7Vck3Sjp8p4c79EsRsdiq7X2up4dae8S5XG5WNLTje+H8w/7YHuBaI4H74eeFeWx4O+EAwhQsfWwpIVNNxhjEiTdJ+lsSZMkXWmMmWSMmWKMeaHFfwObPPX2xuehax5W7I4FYudhdfK4SBomaVfjw/yHcYy9ycPq/PFAz3pY0R8L/k7EUWK8B3A0sda+a4zJb7F5tqTN1tqtkmSMeULSBdbaX0g6r+U+jDFG0l2SXrbWftLDQz5qxeJYIPaiOS6SdisYolaIf+z1iCiPx9rDPLxeJZpjYYxZJ/5OxB0fSj1vqA79K1oK/lEY2s7jvyFpgaRLjTE39uTAeqGojoUxpr8x5n5J040xt/b04HqxSMflX5IuMcb8Ue5cG6w3aPN48H6Ii0jvDf5OOIAKlGOstb+X9Pt4jwOStbZUwR4DxIG19qCkL8V7HAji/eAO/k64gQpUzyuUNLzJ7WGN23D4cSzcxHFxC8fDHRwLhxGget7HksYaY0YZY5IlXSHp33EeU2/FsXATx8UtHA93cCwcRoCKIWPM45IWSxpvjNltjLnOWuuTdJOkVyWtk/SUtXZNPMfZG3As3MRxcQvHwx0ciyOPsdbGewwAAABHFCpQAAAAUSJAAQAARIkABQAAECUCFAAAQJQIUAAAAFEiQAEAAESJAAUAABAlAhQAAECU/j/WgDsQLF04kQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.semilogx(cs.freq, cs.power.real)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To improve the plot, we can rebin the data logarithmically" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "cs_reb = cs.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Cospectrum Power')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGtCAYAAACm11juAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABeoUlEQVR4nO3deXxcZb0/8M93tkz2rU26pGnapnQvtLRlF1CWgmwqgoJeFwS9iutPr+B+vSiiXi4XZVdAvQgiCoIUCghlKaW0pZTupXuTNkmzL5Nktuf3x5kzW2bPTObM5PN+vfpq5syZc57J0OTD99lEKQUiIiIiMh5TthtARERERJExqBEREREZFIMaERERkUExqBEREREZFIMaERERkUFZst2ATJgwYYJqaGjIdjOIiIiI4tq0aVO7UmpipOfyMqg1NDRg48aN2W4GERERUVwicijac+z6JCIiIjIoBjUiIiIig8qroCYil4rI/T09PdluChEREdGo5VVQU0o9o5S6oby8PNtNISIiIhq1vApqRERERPmEQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY1oHDvWM4j7Xt2Htr6hbDeFiIgisGS7AUSUHU9vOYr/9/i7cHkUAOCLZ8/KcouIiCgcK2pE49TjG45gSkUhbBYTOgec2W4OERFFwKBGNA4ppfBeUzdOn1WN6mIbOhjUiIgMyfBBTURmisjvReSJbLeFKF8c6nCgd8iNxXUVqCq2oYtBjYjIkLIS1ETkQRFpE5FtYcdXishuEdkrIjcBgFJqv1Lqumy0kyhfvdfcAwBYNLUcVayoEREZVrYqag8DWBl8QETMAO4CcBGA+QA+KSLzx75pRPnvvSPdsFlMmDOpVKuoORjUiIiMKCtBTSn1GoDOsMMrAOz1VdCcAB4DcHmi1xSRG0Rko4hsPH78eBpbS5R/3mvuwfzJZbCaTagssqGzn0GNiMiIjDRGbSqAI0GPmwBMFZFqEbkXwBIRuTnai5VS9yullimllk2cODHTbSXKWR6vwrbmHpxYVw4AqC62oW/YDafbm+WWERFROMOvo6aU6gDwpWy3gyhfHOl0wOH0YMEULahVFtsAAF0OJ2rL7NlsGhERhTFSRa0ZwLSgx3W+Y0SURh0DwwCAmrICAFpFDQDXUiMiMiAjBbUNAGaLyAwRsQH4BICnk7mAiFwqIvf39PRkpIFE+aDDNx6tulgLapUMakREhpWt5TkeBbAOwBwRaRKR65RSbgA3AlgNYCeAx5VS25O5rlLqGaXUDeXl5elvNFGe0ANZVYkW0FhRIyIyrqyMUVNKfTLK8VUAVo1xc4jGFX3NtKoiLaCxokZEZFxG6vokojHQNeBEodWMQpsZAFBRaIUIgxoRkRExqBGNM50DTlT5qmgAYDGbUF5oZVAjIjKgvApqnExAFF/HgBPVJbaQY1XFNnRydwIiIsPJq6DGyQRE8XUOOFFZFBbUuDsBEZEh5VVQI6L4Ogec/pmeOu73SURkTAxqRONM+Bg1QAtqHRyjRkRkOAxqROPIoNODQZfHv4aarqLIhh6HC0qpLLWMiIgiyaugxskERLHpEwaqwsaolRVa4PR4MeTixuxEREaSV0GNkwmIYtMnDIR3fZYXWgEAvUOuMW8TERFFl1dBjYhi0zdkD1+eQw9qPYMMakRERsKgRjSO+Pf59G3IriuzM6gRERkRgxrRONI5EHmMmr/rk0GNiMhQGNSIxpHOAScsJkFZoSXkeBm7PomIDCmvghpnfRLF1jngRGWxDSIScpxj1IiIjCmvghpnfRLF1hFhVwIAKLNrFbbeQfdYN4mIiGLIq6BGRLG19g5hYmnBiOMWswnFNjMrakREBsOgRjSONHcNoq6yMOJz5YVWBjUiIoNhUCMaJwadHnQMODG1InJQKyu0csFbIiKDYVAjGieauwcBAFOjVNTKWFEjIjIcBjWiccIf1CqKIj5fXmjlOmpERAaTV0GNy3MQRdfcFbuixqBGRGQ8eRXUuDwHUXRHuwdhNglqI8z6BLRtpNj1SURkLHkV1IgouubuQUwqs8NijvzPvrzQigGnBy6Pd4xbRkRE0TCoEY0TzV2DUbs9AaDct61U3xAXvSUiMgoGNaJxorl7EHVRluYAuN8nEZERMagRjQNujxctvUNxKmoMakRERsOgRjQOtPQOweNVURe7BQJBjTM/iYiMg0GNaBzQl+aYwq5PIqKckldBjeuoEUUWb1cCAKjwBbVuBjUiIsPIq6DGddSIIvMvdhujolZVbINJgOO9Q2PVLCIiiiOvghoRRdbcPYgJJTbYreao51jMJkwoKUALgxoRkWEwqBGNA83dgzGrabpJ5Xa09A6PQYuIiCgRDGpE40Bzd+zFbnU1pXa0saJGRGQYDGpEeU4phaMJV9TY9UlEZCQMakR5rmPAiSGXN7GgVmZHt8OFIZdnDFpGRETxMKgR5Tn/jM/Korjn1pbZAQCtrKoRERkCgxpRnvOvoZbgZAIAaOWEAiIiQ2BQI8pzgYpaYl2fADhOjYjIIBjUiPJcc/cgSgss/r08Y6nRuz57GNSIiIwgr4Iat5AiGqmpazDmHp/ByuwWFFrNrKgRERlEXgU1biFFNFKia6gBgIhgUrmdkwmIiAwir4IaEYXyeBWaOh2oSzCoAUBtWQGDGhGRQTCoEeWxrc096Bt24+TplQm/ZsaEYrx7pBv//cJueLwqg60jIqJ4LNluABFlzqu7j0MEOGv2xIRf8+0L5qB/2IPfvLwXC6aUY+XCSRlsIRERxcKKGlEKlMqNStOre9pwYl0FqoptCb+muqQAv/zYYogAu1p6M9g6IiKKh0GNKAXf+Mu7uO7hDXB5vNluSlTdDifePdKNs09IvJqmK7SZMa2yCHvb+jPQMiIiShSDGlGSmroceHrLUfxrVxt+vmpntpsT1evvt8OrgLPnJB/UAGB2TQmDGhFRljGoESXpb5uaoRRw6YlT8NDag/j7O03ZbpKfw+n2f/3k5mZUFllxYl1FStdqrC3B/uMDcBu4akhElO84mYAoCV6vwl83HcHps6px+1Unoq13CDf/fSsGht0osJohAE6cVoHZNSUQkajXcXu8sJgD/5806PRgb1s/FtWlvgagw+nGmbe9gjMbJ+BjJ9fh5V1tuPmiuTCborcjlsaJJXB6vDjc6cDMiSUpt4uIiFLHoEaUhLcOdKCpaxDfvmAOrGYT7rp2Ka64ay1++I/tIedNry7CB+fW4MS6CsybXIZuhxPrD3Ri8+EuvN/Wj+buQfzk0gX4zOkNAIA7/rUH9726H+fNq8VPLpuPusoiANqkhbV7O3CgYwB9Qy4snFKOZQ2VKLKN/Ke76VAXOgeceHrLUaze3oLp1UX47BkNKb/X2bWlAID32/oZ1IiIsoRBjSgJT2xsQmmBBRcu0JasmFBSgJe+dTaO9w0DAFweL9bt78AL21vxyPrDeGjtQf9rRYATakqxtL4SZpPg8Y1H8JnTG6CUwvPbWlBXWYi1e9txwf+8hj9dtwInT6/C7984gFueDR0HZ7OYcNHCSfjM6Q1YWh9YH+2t/R0wmwTXrKjHn946hO9fPA8FFnPK77WxRgtne9v6ceGClC9DRESjwKBGlKC+IRdWbTuGjy6tQ6EtEIDsVjOmVRX5H8+cWIJrT5kOl8eL/ccHsPNYL0oKLFjeUIXyIm1j9Ade24+frdqJQx0DGHZ7cajDgVuuWIhz5kzEtb9bj+v/uAk/uWwBfvHcLlwwvxa3fGQhCq1mbD7cjZd2tuLJzc3453vH8NK3zsaMCcUAgPX7O7Foajl+evkCfPncWZhcnvhuBJGUFFgwpdyOPa19o7oOERGljpMJiBL07HvHMOTy4uMn1yV0vtVswpxJpbhiyVScN7/WH9IA4KJFWkVu1dYWvLijFQBw/vxa1FUW4aHPLodXKXzt0c2oLbPjV1eeiJpSO0rtVnzghIn46eUL8cI3PwClFB7feASANj5tS1M3Tp1ZDREZdUjTnTKzGi/uaEVH/3BarkdERMlhUKOckMkFZtv7h+Ne/7U9x/Gbl/eisaYEJ02rGPU96yqLcOK0Cqzaegwv7GjFiXXlqC2zA9Aqcg/82zLMn1yG316zJCTg6SaXF+LcOTV4YlMT3B4v3jnUDZdH4ZSZVaNuW7CvnNuIIZcH9722P63XJSKixDCokeHtbunDybe8hPtf25f2wPb4xiNY/rOXogaRPa19+MyDb+PfHnwbZpPg5x9ZFHM2ZzIuXjgJW5t7sOVIN86fXxvy3PKGKqz6+llYUh99j86rl0/D8b5hvLL7uH982rIk9vRMRGNNCa5YMhV/ePMguh3OtF6biIjiy6ugJiKXisj9PT092W4KpdGTm5vROeDEz1ftwjf+8i4GnZ60XPfv7zThu397DzazCXf+63209g6FPL+ntQ+X/OYNbD7chR98eB5e/NYHsGJG+ipWFy+a7P/6/PnJ76d57twaTCwtwA+f2obfv3EAi6aWo9Q+svo2WtesqMew24u39nek7ZptvUMYcqXncyQiymd5FdSUUs8opW4oL099LSoyFm1G5DGcNXsCvnPhHDy95SiuvPdNNHU5Rpzr9SpsOtSFvW3xB78/veUovv3XLThtZjWevvFMuD0Ktz2/y/+8x6vwH0+8h2KbGS9+62x84ayZo5pBGcm0Kq37s6G6CCfUJr/8hdVswvVnzYBJgMtPmoL/vurEtLZPt7iuAnarCW/t7xz1tZRSePCNAzjztldw/R835syeqURE2cJZn2Rou1v7cLDDges/MBPXnjId8yeX4WuPbcZlv12Lu65ZitNmVWNXSy+e2nwUz2w5iubuQZgE+MzpDfh/F8xBScHI/8Sffe8YvvmXd7GsoQq/+8wyFNksuO6sGbhnzT58+tTpWFJfiYfWHsC7R7rxv584yT92LBPuumYJnG5vyt2pN3xgFm74wKw0tyqUzWLC0vpKrD8w+qD2+MYj+Ok/d+CE2hK8/n47/rqpCVctm5aGVhIR5ae8qqiNlfb+YfQNubLdjHHh+W0tEAEu8HUNnju3Bv/4yhmoLLLiU79fj/NvfxUr73gdD7y+H7NrS/A/V5+Ia0+ZjoffPIjzb38VL2xvAQAMuTx4YlMTrrhrLb7y53dw0rQKPPjZ5f6FY79ybiMmlhbgP5/ZgYPtA/j1C7vxobk1uOzEKRl9f3WVRTmxmOwpM7RA3ONI/b/7Qx0D+NE/tuPMxglY9bWzsLS+Ar95+X1W1YiIYmBFLQV3v7IP//fWIZzeWI0LF0zCefNqMbG0INvNyrrDHQ68ua8dk8rtOPuEiWkZdP/8thYsn14V8v2dObEET33lDPz4H9txpMuB/7xsAT68eDImlGjnfGRJHa5YMhXf+/tW3PCnTVgxowq7W/rQM+jCrInF+NEl8/GJFdNCVvcvKbDguyvn4tt/3YKr718Hq8mEn6Vx4kCuO2VmFdRLwNsHO0dMfEjU2wc6Mez24ieXzYfFbMKVJ0/D957cit2tfZg7qSzNLSYiyg8Maim4/KQpMAmwekcLbv77VnxPtmLZ9EpcMH8SLlwwCfXVRfEvkgc6+ofx5r4OrN3bjjf2tqOpa9D/3Gkzq/GDS+ZhwZTUxwseaB/ArpY+/PCS+SOeK7VbcfvVJ0V97cnTK/HPr52JB17fjz+8eRBnzp6AT50yHafOrIoavj66ZCr+tO4gtjT14NaPLsKk8sx1eeaak6Zp49Re3tWaclA70umASYDp1doCvefNq8H3ngRe3N7KoEZEFIXkY7fDsmXL1MaNGzN+H6UUdh7rwws7WrB6eyt2HusFAMydVIoLF0zCBQtqMX9ymWGqMkopvHukG39efxh72vpRWWRFZZHN98eKymLf18Xa8apiGyqKrP5B9A6nG28f6MSb+zrwxvvt2OF7v6V2C06bWY0zZ0/AaTOr8db+Dtz+4h50D7rw8ZPr8P8umJPSOK97X92HXzy3C2tv+iCmVqRnAdd4DrYP4JXdbfjs6Q2G+dyM4jt/3YJVW49h/ffPizj2L56vP7YZmw514Y3vftB/7Iq71sKrFJ6+8cx0NpWIKKeIyCal1LKIzzGopc/hDgde2NGCF7a3YsOhTigFTKsq9FfaTp6u7fE41vqH3XhqczMeWX8YO4/1oshmxpL6CvQNudE54ES3w4X+YXfU1xfbzKgosqGtbwguj4LNbMLJ0ytx5uwJOKNxAhZOKYPFHDrcsWfQhbtf2YuH1h6ExSz40tmzcP1ZM0O2Xorn8rvWQvGXuGFsPtyFj9z9Jr72odmYXVOCixdNTuq/54/cvRaFVjP+fP2p/mO/Xr0bd63Zi93/dRFsFg6ZJaLxKVZQY9dnGtVXF+ELZ83EF86aifb+Yby0oxWrt7fgT+sO4fdvHEB1sQ3nzavFhQtrcfqsCbBb07vcQ7htzT14ZP1hPP1uMwacHsybXIZbrliIy0+aMmK9rWG3Bz0OFzodTnQNuNDlcKLLoYW4zgHt64mlBTizcQKWTa+KG7jKC624+eJ5uOaUetz2/C7c/uIe/Hn9YfzHyjm44qSpMMX5BX+0exBbjnTjOxfOGfX3gdLjpGkVmD+5DHf+630A2hImVyyZmvDrj3Q6cN680G7T+uoiKAW09AyNmyEDRETJYFDLkAklBfjEinp8YkU9+ofdWLO7Dau3t+LZrcfwl41HUGwz45w5NbhgQS3OnVuDsjQtVOpwuvHPLcfwyPpD2NLUA7vVhEsWT8G1p9TjpGkVUbvzCixm1JSZUZPmpSimVxfj7mtPxoaDnbjlnzvwrce34JH1h/HHz69AcYzuM3225kULk18IljJDRPCLjy3ChoNd+MObB/Ho24cTDmoDw2609ztDNq8HgLpKrUu7qcvBoEZEFAGD2hgoKbDgksVTcMniKRh2e7BuXwdWb2/Fizu04GY1C06fNQEXLKjF+fNrUVOafFja3dKHP68/hL9vbkbfkBuza0rw40vn46NL6iLuFTnWljdU4ckvn4En3mnCTX97D9/923v4zSeXRA2Oz21rwQm1JTmxdMV4sriuAovrKjDs9uCXz+/G/uP9CX1GR3wLFNeHB7UK7XHwRBQiIgpgUBtjBRatknbOnBrccsVCbD7chRd8XaTff3IbfvDUNiytr8SFC2pxwfxJaJhQHPVaQy4Pntt2DH9efxgbDnbBZjbhokWTcO0p07G8odJwg+FNJsFVy6ahvX8Yv3x+N5bWV+LzZ84YcV57/zA2HOzEjec2ZqGVlIgrT67D7S/swf+9dRg/unTkrNxwhzsiB7VJ5XaYBBF3miAiIga1rDKbBMsaqrCsoQo3XzQXu1v7sHpbK17Y0YKfr9qFn6/ahTm1pVpoWzAJC6ZoM0j3H+/Hn9cfxhPvNKHb4UJDdRG+d/FcXHnyNFQV27L9tuL697Nn4d3D3fj5qp1YOLV8xP6ZL+1ohVcBKxdOjnIFyraaUjsuPXEKHn37MG78YGPc/+4Od0YOajaLCZPK7KyoERFFwaBmECKCuZPKMHdSGb5+3mwc6XT4K22/fWUv7nx5L6ZWFGJKhR0bDnbBYhJcsKAW154yHafNrI47ON9IRAS/vupEXPFbbZeAZ796ZsjYuOe2taC+qgjzJpdmsZUUz5fPmYUnNzfj4bUH8K0LYk/6ONLpQGmBBRURuuHrKosY1IiIouB8eIOaVlWE686cgce/eBo2fP88/PJjizF3Uil6B934zoVz8ObNH8Td156MMxon5FRI05XZrbj30yejf8iNLz/yDlweLwBtWY8397Vj5cJJhuu6pVCza0uxcsEkPPzmwbhbqh3udGBaVVHEz7SuspBdn0REUTCo5YDqkgJctXwafv/Z5Vj9zQ/gK+c2pjThwGhOqC3FbVcuxsZDXfj5qp0AgFd2tcHlUbhwAWd75oKvnNuI3iE3/vTWoZjnHe50jOj21NVVFqKldwhOtzcTTSQiymkMapRVl504BZ8/YwYeWnsQ/3i3Gc9tO4basgIsmVaR7aZRAhbVleMDJ0zE718/gEGnJ+I5Xq/Cka7BqMtv1FcXw6u0LcOIiCgUgxpl3c0Xz8Xyhkrc9LetWLP7OC5cMCknu3PHqxvPbUTHgBOPbTgMAFi/vwP3vboP+q4nbX3DcLq9I9ZQ0506U5tM8vr7x8emwUREOYRBjbLOajbhrmuWosRuwbDbi5Xs9swpK2ZUYUVDFe5/bT9++/L7uOZ363Hrc7tw0LckR7QZn7q6yiI01pRgzW4GNSKicAxqZAg1ZXY88G/L8KlT60cs10HG95UPNuJYzxB+/cIeLG+oBABsOtQFIH5QA4BzTpiItw90wuGMvucsEdF4xKBGhnHStArccsWiERu8k/F9YPYE3HzRXDz0ueX48xdORandgk2HujAw7MbB9gGIAFMrCqO+/uw5E+H0ePH2gc4xbDURkfFxHTUiGjURwRfPnuV/vLS+Eq/tOY4ztx1D96ALU8oLYbNED+An+iaPbD/ai3Pm1GS6uUREOYOlCyJKu2XTK9HcPYgBpweNE0tw6szqmOeX2a2oryrC9qM9Y9RCIqLcYPiKmogUA7gbgBPAGqXUI1luEhHFoY8zvPHcRnztQ7MTes2CKWXYfrQ3k80iIso5WamoiciDItImItvCjq8Ukd0isldEbvId/iiAJ5RS1wO4bMwbS0RJWzGjCo9efyq+cm5jwq9ZMKUMhzoc6I2zywER0XiSra7PhwGsDD4gImYAdwG4CMB8AJ8UkfkA6gAc8Z0WeUVNIjIUEcFps6phTmI9vAVTygEAO1lVIyLyy0pQU0q9BiB8etcKAHuVUvuVUk4AjwG4HEATtLAGxGiviNwgIhtFZOPx41yPiSjXLJxaDpMAd7z0PnocrKoREQHGmkwwFYHKGaAFtKkA/g7gYyJyD4Bnor1YKXW/UmqZUmrZxIkTM9tSIkq7iaUFuO1ji7HxUCd+8sz2bDeHiMgQDD+ZQCk1AOBz2W4HEWXex5dNw45jvfi/tw7h5ovmoqbMnu0mERFllZEqas0ApgU9rvMdI6Jx5DOnNcDtVfi/tw5luylERFlnpKC2AcBsEZkhIjYAnwDwdDIXEJFLReT+nh6uxUSUqxomFOPk+kqs3deBtr4hrN/fke0mERFlTbaW53gUwDoAc0SkSUSuU0q5AdwIYDWAnQAeV0olNVBFKfWMUuqG8vLy9DeaiMbMzInFONThwF0v78VnHnobXq/KdpOIiLIiK2PUlFKfjHJ8FYBVY9wcIjKY6dXFaO9vwuYj3RhyedEx4MTE0oJsN4uIaMwZqeuTiAgAML26CADwXpM2jKG1dyibzSEiypq8Cmoco0aUH6ZXFYc8PtajBTWn25uN5hARZU1eBTWOUSPKD/W+ipqupWcQa/e2Y8lPX8Aru9qy1CoiorGXV0GNiPJDeaEVlUVW/+NDHQ784KltGHB68LNVO+H2sLJGROMDgxoRGVJ9dTFsFhMmldnx2IYjONA+gGtPqcfetn6s3t6a7eYREY0JBjUiMqRTZlThtJnVmFJhR/+wG1XFNvzksgUotpnxFtdWI6JxwvBbSBHR+PS9i+cBAL78yCYAwOmzqmE1m7CkvhKbDnVls2lERGMmrypqnPVJlH8mlRUCAM5onAAAWDq9ErtaetE/7M5ms4iIxkReBTXO+iTKP9OqtKB2pi+onTy9El4FbDnSja1NPVxjjYjyGrs+icjQrl4+DYvryjGtSluyY0l9BWxmE361eje2H+3BjAnFePZrZ8Fqzqv/7yQiApBnFTUiyj9FNgtOnl7lf1xmt+JHl87Hu0e6UWg1Y09rPx54fX8WW0hElDmsqBFRzvnUqdNRardg4dRy/Hr1bvzPi3twVuNELKrjsAciyi95VVHjZAKi8ePyk6Zi1sQS3PrRRZhYUoAbH30HfUOubDeLiCit8iqocTIB0fhTUWTD/35yCY50OvDDp7ahtXcImw9z+Q4iyg/s+iSinLe8oQrfPO8E/PeLe/DUu0cBAAduvRgikuWWERGNTl5V1Iho/PryuY04o7Ha/7itbziLrSEiSg8GNSLKC2aT4OHPrcA91y4FABxoH8hyi4iIRo9BjYjyhtVswsKp2hjVgwxqRJQHGNSIKK9MqSiEzWxiRY2I8kJeBTUuz0FEZpOgvroI9722Hx+/9014vSrbTSIiSlnMoCaaaWPVmNHi8hxEBACldm1C+4aDXeh0OLPcGiKi1MUMakopBWDVGLWFiCgt5k0u83/d1svZn0SUuxLp+nxHRJZnvCVERGny/Yvn4dcfPxEA0No3lOXWEBGlLpEFb08BcK2IHAIwAECgFdsWZ7RlREQpKi6w4JQZ2kbux1lRI6IclkhQuzDjrSAiSrOasgIAQGtvoKK26VAnfvvyXvzmmqUoKeDGLERkfHG7PpVShwBMA/BB39eORF5HRJRNBRYzKoqs/h0KNh7sxMfuWYdXdh/HpkPcC5SIckPcwCUiPwbwXQA3+w5ZAfxfJhtFRJQOtaV2tPYO4ZXdbbjy3nUotJoBADuP9Wa5ZUREiUmkMvYRAJdBG58GpdRRAKWZbBQRUTrUlBWgrW8YL+5oRWmBBZt+eB6mlNsZ1IgoZyQySMOplFIiogBARIoz3KaUicilAC5tbGzMdlOIyABqSu3Y19aOQacHS6ZXoshmwbzJZdhxlEGNiHJDIhW1x0XkPgAVInI9gJcAPJDZZqWGC94SUbDasgIc7RnC7tY+LJteCQCYP6UM+9sHMOTyZLl1RETxJTKZ4NcAngDwNwBzAPxIKfWbTDeMiGi0FtdV+L/Wg9qiqeXweBVe3NGapVYRESUukckE1wE4qJT6jlLq20qpF8egXUREo7Zy4ST89PIFOGVGFZbUa0HtQ/NqsWBKGX727E4MOllVIyJjS6Trsx7AfSKyX0T+KiJfFZGTMtwuIqK0+LfTGvCXL56GQps249NsEnzjvBPQ0juELU3d2W0cEVEciXR9/lgp9UEACwC8DuA7ADZlumFERJkyp1abuH6405HllhARxRZ31qeI/ADAGQBKAGwG8G1ogY2IKCdNrrDDbBIc7mBQIyJjS2R5jo8CcAN4FsCrANYppbh5HhHlLKvZhKkVhTjEihoRGVwiXZ9LAZwH4G0A5wPYKiJvZLphRESZVF9VxK5PIjK8RGZ9LgRwLYDPALgaQDOAlzPcLiKijKqvLsLB9gFsOdINr1dluzlERBElMuvzFwDKANwJYJ5S6lyl1I8y2ywiosyqrypCz6ALl9+1Fjf8aSNcHm+2m0RENEIiXZ+XAPgfAL0A5oiINeOtSpGIXCoi9/f09GS7KURkcA3V2m54MycU46WdbVi/vzPk+Y7+Ydz/2j54WG0joixKpOvzbADvA7gLwN0A9ojIBzLdsFRwCykiStR582rw5+tPwWM3nAoAeL+tL+T5zz28AT9ftQsPvL4fF/zPq+gfdmejmUQ0ziUy6/N2ABcopXYDgIicAOBRACdnsmFERJlkMZtw+qwJUEqhosiK99v6/c81dTnwXpNWmf/d6wfQ3j+Mncd6sbyhKlvNJaJxKpExalY9pAGAUmoPAMN2fxIRJUNEMLumBKu2HsNH716Ljv5hrNp6zP98e7+2GtHeoCBHRDRWEglqG0XkdyJyju/PAwA2ZrphRERjpbGmFN0OF9453I3X32/Hun0dmDmxGPMml/nPYVAjomxIJKj9O4AdAL7m+7PDd4yIKC9MLC3wf727tQ9vH+jE6bOqMbumxH+cQY2IsiHqGDURqQHwPQCNALYC+KxSqnesGkZENFYuWjgJD75xAP3Dbjz29mEMOD04beYEHGjXwlltWQGDGhFlRayK2h8BDAD4DbR9Pv93TFpERDTG5k0uw7b/vBCXnTgFXQ4X7FYTzmycgPPnT8I5cybiI0vq0Nw9iAHO/CSiMRYrqE1WSn1fKbVaKfVVACeOVaOIiLJhcrkdAHDevFqUF1kxZ1IpHv7cCpwyQ5vtuaWpO4utI6LxKOYYNRGpFJEqEakCYA57TESUVy5eNBkA8OVzGkOOL51eCRHg7QOdkV5GRJQxsdZRKwewCYAEHXvH97cCMDNTjSIiyoYTp1XgwK0XQ0RCjpcXWjFvUllCQe2HT23D3MmluPaU6ZlqJhGNI1GDmlKqYQzbQURkCOEhTbdiRhUe23AYLo8XVnP0zogXdrSgc8DJoEZEaZHI8hxEROPewqnlGHJ50dw1GPO8gWEPBl2eMWoVEeU7BjUiogQ0VBcBAA50DEQ9RymFAacbg04GNSJKDwY1IqIETK8uBgAcao8e1IZcXigFVtSIKG0S2ZQdIlIJYFrw+Uqpd6K/IjtE5FIAlzY2NsY9l4goGRNKbCiymXGwwzHiudtf3IPntx3DZ05vAAAMMagRUZrEDWoi8l8APgtgH7TZnvD9/cHMNSs1SqlnADyzbNmy67PdFiLKLyKC6dXFOBSh63PN7jbsae3HHS+9D4AVNSJKn0QqalcBmKWUcma6MURERtZQXYTdLX1wON3o6HdiWpU2bs3hG5PW3j8MAByjRkRpk8gYtW0AKjLcDiIiw5teXYwjXQ5cdd86nPXLV/zHux0uAIDy9TmwokZE6ZJIRe1WAJtFZBuAYf2gUuqyjLWKiMiA5k0uhcujsK25FwBwuMOBAacbPYOhHQ4co0ZE6ZJIUPsDgNsAbAXgzWxziIiMa2l9ZcjjHz29DVubeuDyKJTZLegd0jZtd3lU3IVxiYgSkUhQcyil7sx4S4iIDK6ushATSwtwvE/rXHi/tR8dA1o1bXp1MbY29/jPHXJ5GNSIaNQS+SnyuojcKiKnichS/U/GW0ZEZDAigiXTKvyPm7sDuxTU+xbE1XGcGhGlQyIVtSW+v08NOmbI5TmIiDLt8pOm4s19HegfdoccbwgLakNOjhQhotGLG9SUUueORUOIiHLBhxdPxsKpZTj7V2tCjk+vKg55zIoaEaVDIgve/ijScaXUT9PfHCIi4ysvtI44Fq3rc9XWYzijcULE1xARxZPIGLWBoD8eABcBaMhgm4iIDK3UboVI6LHp4UHN6cH+4/348iPv4LtPvBf3mn9efxhvvN+ezmYSUR5IpOvzv4Mfi8ivAazOWIuIiAzObBKU2a3oGdQWui2wmFBTag85Z8jlQZdvIdxjvUMxr+f2ePG9J7cCAA7+4sMZaDER5apU5o4XAahLd0OIiHKJ3pVpNQsqiqwwmwSlBRbYrdqP1UGXBwO+CQd2S+wftXta+zPbWCLKWYmMUduKwGbsZgATAXB8GhGNaxVFVhzuBE6ZUQ2vb++oskKtS7SpaxCDTg9cHm3mp91qjnqde1/dh9ue3zUmbSai3JPI8hyXBH3tBtCqlHJHO5mIaDzQK2r/c/VJqCzSvm6YUASr2aQFNZcHzkE9qGkVtTf3tuNrj23Gv751Duw2ExzDHvziuUBI088jItLFDGoiYgawWik1d4zaQ0SUE8p91bOqYhvMJm1mwX2fXoZBpwfLf/YShlwe/2btFt8OBTc/uRXt/U7saevDw28exLPvHUORzQyHU5shOuTyYmDYjeKCRP4fmojGg5j/+6aU8gDYLSL1Y9QeIqKcMLWyEFMrCv0hDQBKCiyo8FXXBp0e//ZSQ74gdqjDoT12efD8thYAgMPpwX+snIPbPrYIANDePzxm74GIjC+R/22rBLBdRN6GtkQHAEApdVnGWkVEZHBf++BsfO70GSOOW80mWM2CQZcHXb6gNuB0o6UnMPOzZ9CFhuoi7Duu/UhtnFgCm2/CQXv/MKZXF4+4LhGNT4kEtR9mvBVERDmmuMAStYvSbjVjYNiNTl9Qczg92Hy4y/9876AbdZWBoDa9utg/8eB4nzPDLSeiXJJIULtYKfXd4AMichuAVzPTJCKi3LZoajmeevcoCnxVMofTg/3t/g4J//pruvqqIvQOacfY9UlEwRKZYnR+hGMXpbshRET54r+uWIghlwdtfVrocgy7sf/4AGpKC2A1C3oGXf4tpqZWFKLQZkZVsQ1A5KD21OZmXPPAW1BKjXiOiPJb1KAmIv/uW0Ntroi8F/TnAICtY9dEIqLcMmtiCb59wRz/4wGnBwfa+zFzYjHKC63oHXJh0OnB4rpy/OHzKwBoY9smlhagqWtwxPVWbT2GN/d1+Hc60DV1OdBw07PYdKgzs2+IiLImVtfnnwE8B+BWADcFHe9TSo3ZTwURmQng+wDKlVJXjtV9iYhG4/NnzkD/sBs7jvVize427G8fwMWLJqOtb9hfUZtTW4rGmhL/a+bUlmJPa9+Ia21r7gEAHOwY8FfeAGDN7uMAgL9ubMLJ06sy/I6IKBuiVtSUUj1KqYMA/hdAp1LqkFLqEAC3iJySyMVF5EERaRORbWHHV4rIbhHZKyI3RXu9rx37lVLXJXI/IiKjMJsE3zz/BCyeWg6XR6Hb4cLMCcUos1vRO6hV1MJ3LJgzqRS7W/rwfmsfTvj+c9h+tAcd/cM46psxeqhjIOR8fYsqrrtGlL8SGaN2D4Dgjej6fccS8TCAlcEHfIvo3gVtnNt8AJ8UkfkiskhE/hn2pybB+xARGVJRUIjyd336KmpFttCgNndSKYbdXnzniffg9HixZvdxbPVV0wDgQLsj5HwGNaL8l8i/blFBI1iVUl4RSeinglLqNRFpCDu8AsBepdR+ABCRxwBcrpS6FaHbVRER5bzioDA2Y0IJygqtONQxgEGnB4VhQW3e5DIAwLtHuv2v3XKkR9sBocg2oqLWP6xNSLAGLbpLRPklkYrafhH5mohYfX++DmD/KO45FcCRoMdNvmMRiUi1iNwLYImI3BzjvBtEZKOIbDx+/PgomkdElD56Rc1iEkyrLER5oQXdvopaeNdnY00JSoKqY31Dbmw81Ik5taWYN7kM/3j3KP668Qg2HuxEU5cD3YO+ddp8M0jDfeEPG/D8tmMZemdENBYSqYx9CcCdAH4AQAH4F4AbMtmoYEqpDl8b4p13P4D7AWDZsmWcw05EhlDkC2P11UWwmE0oL7T69wAN7/q0W814+dtnQyngnF+tQafDiXcOdeEjS6dielUx3tjbjntf3edfKPes2RMAaNtVhfN4FV7a2YaXdrbh4C8+nMm3SEQZFDeoKaXaAHwijfdsBjAt6HGd7xgRUd4pKtDC2MwJ2uzOMrvV/1xhWEUNAGpK7dp5hRZsONiJAacHyxuqcPlJU7G3rR+v7G7zn3tcX6fNqY1Ve3lXK9bt68D3PzwfQ1GqbESUW+J2fYrICSLyL33mpogsFpEfjOKeGwDMFpEZImKDFgKfHsX1iIgMq9im/f/wzIna/p2VQctrRApqulK7FduaewEAi+sqAAAVRVYcD1oQd1eLtpTHgK+i9vmHN+KB1w9gyOXxL6hLRLktkTFqDwC4GYALAJRS7yHBCpuIPApgHYA5ItIkItcppdwAbgSwGsBOAI8rpban0vgI97tURO7v6emJfzIR0RgoK9QqaI0TtYpaTWmB/7nwyQQhr7MHOjwml2tVtvIiKyJtThDe9fnOoS609XIrKqJ8kMgYtSKl1NsiIbOK3IlcXCn1ySjHVwFYlcg1kqGUegbAM8uWLbs+3dcmIkrFjAnFuOfapTh3rrbaUG2Z3f9crIqaHvBK7Rb/pIOKQlvEc/WuT5MAXgVc87v1Ic+f86tX8NDnVmDGhGLcvWYvth/txV3XLE39TRHRmEmkotYuIrOgTSSAiFwJgNOIiIgSdNGiyf6wlWhFrdQ3li34/IqiwPi2x794Grb+5AKcfcJEf0Ut2npqBzscePrdowCAXz6/G8++xx/hRLkikaD2FQD3QdvzsxnAN5DALEwiIhqpsihojFoCXZ/65AIAqCgMBLXKIitK7VYU2cxwOD1we7zoH47e2VFqDw1xSin86B/bsHZv+4hz97b1Y9/x/hHHiWjsxQ1qvi2czgMwEcBcpdSZvq2kDIdj1IjI6ExBi9Mm0vVZUxaoqJUHVdQqfIGv0BfUOgacEcev6bodzpDHL+5oxR/XHcLPnt0JABhyebDhoLaN83m3v4oP/ferCb4jIsqkRGZ9VovInQBeB7BGRP5XRKoz37TkKaWeUUrdUF5enu2mEBHFFXvWpyXkbyAQzgCg3BfktIqa279Ux/9+4iR8eNFk/3lL6ysAAC29Q9joC2IA8MDr2rrlUysLAQBPbW7GVfetQ0c/JyEQGUkiXZ+PATgO4GMArvR9/ZdMNoqIaDwIX/A2mECrvNktgXP0rs9imxk2i8l3DQscTo8/qNVVFoVMWPjFxxZj5sRiPL6xCVfeu85/vKVX2+i9x7f4bqdDq8h1D7rS8daIKE0SCWqTlVL/pZQ64PtzC4DaTDeMiCjf2WMENX3B2uBtpopsZtjMppDKWqHVjGG31x+8akoLQgKg3WJGVdHI2aIut9ZP2jGgBTx9QkL/UGCc25rdbWjrG0r6fRFR+iQS1F4QkU+IiMn35ypoa6AREVEKPrpE2944VtfnhBItXNVXFfmPiQjKi6whsz+LfTsf7GntgwgwsbQgZJKC3WYKWWRXN+TWglnHgDZ2bcC3wXtbX6Dr8wt/2Ig/rTPkkGSicSORddSuhzbT808ABFq4GxCRLwJQSqmyzDUvOSJyKYBLGxsbs90UIqKobrtyMW66eC6s5uj/r3zNKdNRWWzDxQsnhxyvKAwNaoW+nQ+e2XIMy6ZXwm41ozg4qFkjV9Qcvgpat8OFhpuexSzfzgnNXQ7/OW6v8u9LSkTZkcisz1KllEkpZVVKWXxfl/r+GCakAZxMQES5wWo2hSy7EYnZJLhk8ZSQWaIAcOMHG3HdmTP8j/VN39v7h3HhgknaMVvg/8HtFjMqirVgd968Gpw0rQIA4HR7Qyp6+kbvTV2DIffrHWJQI8qmuBU1ETkDwLtKqQER+RSApQDuUEodznjriIgoxOUnTQ15HDyGTQ9qeten2SSwmgVm384yC6eWo8xuxbtHugFoW1Ptbx8IuV5zd2hQ6xtKaCMaIsqQRMao3QPAISInAvh/APZB6wYlIqIsm1SurbP29Q/NxjTfeDZ93JrdYoKIYMC3EG5JgQVWiynotSOreuFBrZezQImyKpGg5lZKKQCXA/itUuouAKWZbRYRESViaX0l3rr5Q/jm+Sf4jxVatc4Svdp22ixt6cvlDVWwBnWlRgpq4V2frKgRZVcikwn6RORmAJ8GcJaImABY47yGiIjGgIiMCFz+ipovqK1cOBlbfnQByouseL8tsDXUlPLCEdfrHAjdwYBj1IiyK5GK2tUAhgF8XinVAqAOwK8y2qoUcQspIqLAQrp2a+BHvL79lNUcqKhVl9iw9qYPYuaE4qjXYkWNKLsSmfXZAuARAOUicgmAIaXUHzPeshRw1icRUWDJDnuEddqClwSxmk2YWlEYsodouP5hNzzeGJuIElFGJbLX51UA3gbwcQBXAVgvIldmumFERJSaYlto12cwS9AYNZsvtJXZQ4NacNUNCOxWoJSC1xfa3m/tGzHxgIjSL5Guz+8DWK6U+oxS6t8ArADww8w2i4iIUqUvzxFp54PgWZ9WixbIygpDg9qy6VUhj/Vxanev2YdLf/sGlFK48t51OOu2l/HlRzah2xE6ro2I0ieRoGZSSrUFPe5I8HVERJQFNrMJZpOEjFHTWU2hXZ8AUGoPnVe2YkbkoLa3rR/vt/Wj2+FCz6ALsyaWYNXWFqw/0Jnut0BEPokErudFZLWIfFZEPgvgWQDPZbZZRESUKhFBkc2Mgkhdn0HdmhZT5K7P5Q1hQW3Qjd4hF/qG3HC6vTjYoS2Se8niKQAAl8eb1vYTUUDc5TmUUt8RkY8CONN36H6l1JOZbRYREY1GRZF1RAADQsef2Xxdn+EVtcXTymEzm2CzmNA/7Mbz247hMw++jbpKbTmP91u1JT6mV2sL7DKoEWVO1KAmIo0AapVSa5VSfwfwd9/xM0VkllJq31g1MlHclJ2ISHPfp5ahqnjkZuzhsz6BwBi1H14yH6V2C8rsVhQVmFFbasfu1j5sOtwFp8fr325qT2sfAPh3QnC5OSuUKFNidX3eAaA3wvEe33OGw+U5iIg086eURdx5wBJhjFqZr6K2aGo5rlo2DQBQVWTD7NoSANrYtGB72vphNgmmVGjXd7KiRpQxsbo+a5VSW8MPKqW2ikhD5ppERESZEtz1qQe1eZPLUFtWgAZfVyYA3Pvpk1FRaMXLu9rgcHpCrrGnpQ81pQWwW7QxcG4GNaKMiVVRq4jx3Mh9R4iIyPCCuz71ddROqC3F+u+dh5qyQAXuhNpS1JTZUVNaMOIaLb1DmFRu9y/14fIoDDo9aO0dynDricafWEFto4hcH35QRL4AYFPmmkRERJkSPOtTX0ctluDwFmxKeaG/Ouf0eHHPmr34yF1r09NIIvKL1fX5DQBPisi1CASzZQBsAD6S4XYREVEGBFfUgserRROpogYAdZWF/jXZXB4vmruHcKx3CF6vgskUPwASUWKiBjWlVCuA00XkXAALfYefVUq9PCYtIyKitIvU9RlLTWnkilpdVRFMJoHZJHB5vOgbckEpoG/YjfLC6HuHElFyEllH7RUAr4xBW4iIKMOS7fqsLYtcUZvmW1PNaha4Pcq/e0HvoItBjSiNuBUUEdE4EmkLqVhqogU13xpqVrMJTo8Xfb6N2/W/j/cNY+Udr2Fbc89om0w0ruVVUBORS0Xk/p4e/mAgIook0vIcsdT6JhMU20K3o5paoVXUbGaTr+tTC2h6Ze21Pcexq6UP33sysMrTip+9hKvvWze6N0A0zuRVUOOCt0REsZmDBvonMkbtlBnVuPWji/z7eursvn1ELWaByx3a9QkA7/sWyd3b1g+nW1tnra1vmBu4EyUpr4IaERHFJiL+qlrweLVozCbBJ1fUY0Kpth3VxYsm4dw5E/3PW8Mqavrf249qPRsOpwfbjrKXgyhVDGpEROOM3uVpSWIZjRPrKjB3Uinu/MQSPPS5Ff7jNrMJPYMueLzafp+9Qy4opbCtuQcnT68EABzpdIRcy+F0R7yH2+PFj/+xbcT5ROMZgxoR0ThjMQlsZhNEEg9qFyyYhOe/8QFYwrpLrWYTOgac/se9g268/n47uhwuXLFkKgAtqLmCtplq7hqMeI9dLX34w7pD+Oqjm5N5O0R5jUGNiGicsZpNIZMKRsNiFnQGBbW+IRduf3EP6ioLcfWyaagpLcDhTgcGhgNVtKYoQU3viuVWVEQBDGpEROOMxSz+fTpHy2o2hQS1nkEXtjX34JLFU2CzmDCtqghHOgfRHxLUIndtDru0qltHvzPi80TjEYMaEdE4o1XU0vPj32Y2hYSwoz2DcHsVJpRokw/qq4p8FTWP/5wD7ZGD2pBLO8cZ1E1KNN4xqBERjTNWsymhpTkSulbQ7gblhVYc6tBCWEWRFtSmVRXhWM8guh2BKtnmI10RrzXsZkAjCsegRkQ0zlhMktDSHIkIrsxNrSj0jz+rKta2kZpcbodXwR/gljdUYltzDwadWvXs7jV7ceU9bwIIVNQAoMfh4lg1IuRZUOPOBERE8aWz69MStCXVzInF/q/1itqEEm0LqkOdAwCAc+bUwOVR2NLUDQD45fO7sfGQVmELrqj9fNVOrLzjNSil0tJOolyVV0GNOxMQEcVnNUv6xqj5uj5NAsyaWOI/XuULatW+sWoHfRW102dVA0DEPUCDK2rbjvagy+HieDUa9/IqqBERUXwWswm2NHd9Ftss/v0/AaDSF9Qm6hW1Dq2iVl9VBLvVhJae0G5Nr1dhKKii1uPbisoRNAmBaDxiUCMiGmfsVhMKLOb4JybAH9QKLJgSFNRK7RYAQV2fvpmexQUWTCqzoyVs/Nmw24vh4DFqelBzMajR+GbJdgOIiGhs/ceFc+FN09gvfeHc4gIzJlfY/cdNvu2pCm1mFNvM6Bt2w2ISFFhMqC2zj5goMOTyhIxR0/cMHYyy3RTReMGgRkQ0zpw4rSJt19IraiV2K6aUF0Y8p7qkAAOdDhQXWCAimFxu908g0A26PCEVNZ3DyYoajW/s+iQiopT5g1qBGYW2yN2p+uK3JQVabaC23I623uGQGZ1DLk/IGDUdgxqNdwxqRESUsuDJBAAgAsybXBZyTlWxNk6tuEALcpPK7HB6vCGbuQ+5tDFq4QvxDkYIajf//T0s/PHq9L0JIgNj1ycREaVMH6OmV8t2/ddKmCR0RmmBb1/Ry0+aCkBbBBcADrQP+M8ZdHkw5PKirNCC9qC9PiNV1B59+0ga3wGRsTGoERFRyvSKmt3X7RlpNuk3zz8BH5pXg48s0YLa9GptYdz7Xt3nP2fY5cGw24MimwUWkwtur9Yt6uBkAhrnGNSIiChlelDTq2aRNNaUoLEmsBju3Eml+NwZDXho7UH/sQfXHsBb+zsxpcIOu9Xs3+g9vKLm4gK4NM5wjBoREaVMQat82WIEtXAigo8trQs59tLONvQPu2G3mmG3Bq4VHtT0vUSDbWvugZsBjvIUgxoREaXM6ZupWZDkllT11UURjxdYQhfjDV9H7UB7f9jjAVzymzfws1U7k7o/Ua5gUCMiopTpi9QWWJPb6aDMbo143G41oyBGRe2wb89Q3YCvi3T9/k50O5zYcqQbAHDLP3fg5V2tSbWJyIgY1IiIKGXDLl9QS6LrMxab2QR7UEUtfAupAV9w02eb2n0BccDpxsfueROX37UWAPC7Nw7g8w9vTEubiLKJkwmIiChlTo8WnJIZoxaLw+kJqaiFr6Omd7WafVtU6YvmDgy7/ct6qDRtj0VkBHlVURORS0Xk/p6enmw3hYhoXNCDU/hCtYlYWl8x4ljvkCu0ohY2Rs3pmzSgZzGP7wt9ligAeLwMapQ/8iqoKaWeUUrdUF5enu2mEBGNCzd8YCamVxfh/Pm1Sb/2oc+twCNfOCXkWO+QK+YYNT0Y6lFMD2VDrsCsTzeDGuURdn0SEVHKGmtK8ep3zk3pteWFVpzROCHkWO+gO6yiFjmo6UnNG2FVDq61RvkkrypqRESU2zxeFXMdNT2oeX1dnu4ISc3tYUWN8geDGhERGcLXPzQbj15/qn8dNbNJMBw269M/Rs332Bth4oArUpmNKEex65OIiAzhm+efAAD+iprdYkJ4DPOPUfMFtEi9nKyoUT5hRY2IiAxFXxvNHmER3WF/16f2ONIMTwY1yicMakRElFXFttBApi+eG2kR3fCJAuz6pHzHrk8iIsqqDT84D8GFsYKgilq0rk9A6/6MV1HrG3Lh8Y1N+PwZDRCRtLabaCywokZERFlVZLOgpCBQN9AraZF2O3AGVdS8KnLXZ3DV7SdP78B//XMHXn+/PZ1Njuq821/F5x56e0zuReMDK2pERGQo+ti0AqvZPyZNl1BFLehYt8M54nWZtLetH3vb+sfkXjQ+sKJGRESGcurManx48WRMKbePeC4kqCGwhdSN5zZiakUhAMAdUnXTnjfxtx3lKP6nS0REhtJYU4K7rlkKa4T9Q51hIczrq559ePFk/OrjiwEArqAxanpxTcDxaZSbGNSIiMjwdrX0YsjlCev6DFTUzCbxB7vg3Qr0yMZ5BJSrOEaNiIgMrXfIhZV3vI6LFk4aMWZNH6NmNgksJi2NBU8m0BfGNTGpUY5iRY2IiAxtyLeN1IaDXXC6A1tKeYMmE5glUFEL7fpkUKPcxqBGREQ5w+kJ6/r0Ruj6DApq+vOmNOe03S19ONLpSO9FiSJgUCMiopzhdHv966wpBM/qFFjMWhoLHqPmr65FCWptfUPY1tyTdDsuvOM1nPXLV5J+HVGyGNSIiCgneLxeeFVgnTWt61N7ziwCq2lk1+ewr6s0Wtfnub9ag0t+88ao2+b1qjFbq43GF04mICKinKAHIX9FLWzWp7+iFtQ9qr8mWlAbcHoiHk+U2+OFxWzCf/ztPTyxqWlU1yKKhBU1IiLKCXqlrMDq+9WlAI8vlAUHNZc3uKKmB7XMtOlYzxAAMKRRxjCoERFRTtAnEhRYgro+fZksuOszuKI27NK+Dt6QfW9bf9q6KQ91cEIBZRaDGhER5ZSQyQTewBZRga7PkWPU9JzWP+zGebe/ii8/8k7c+9z1yl789JkdMc852DGQbPOJkmL4oCYiV4jIAyLyFxG5INvtISKi7AqMUVMRdyZwBc36HA4bo3bYVwF7aWerP+RF86vVu/Hg2gMRn9O7Upu7B1N8F0SJyWhQE5EHRaRNRLaFHV8pIrtFZK+I3BTrGkqpp5RS1wP4EoCrM9leIiIyvsCsz8g7EwRX1JxhY9QOdwYqYJsOd6V0f49X+fcQ9cQJe0SjlelZnw8D+C2AP+oHRMQM4C4A5wNoArBBRJ4GYAZwa9jrP6+UavN9/QPf64iIaBwLdH2G7kxgNo2c9en2hu5MEDymbHsK66cBoVtUEWVaRoOaUuo1EWkIO7wCwF6l1H4AEJHHAFyulLoVwCXh1xBtBOgvADynlIo6qEBEbgBwAwDU19en5w0QEZHh6JMJEFZRExFYzRIy61Onj1E71OlAeaEVLo8Xh1LcWSB8v1GiTMrGGLWpAI4EPW7yHYvmqwDOA3CliHwp2klKqfuVUsuUUssmTpyYnpYSEZHh2H3Lc3iVNvNTJDCr02IyhVTUdOLbmuBIpwMN1UWoryryj1dLllEXtm383irc+tzOmOfsaunFw1HG3ZExGX4ygVLqTqXUyUqpLyml7s12e4iIKLv0ipre9WkOWnrDYpaQnQl0vpU7cLjTgWlVWlBLtaJm1K5Pt1fhvlf3xzxn5R2v4ydxZrKSsWQjqDUDmBb0uM53jIiIKK6CoIqaRymYglaztZpNIXt96vQxakMuD0oKLJheXYS9bf0jzusfduNXq3f5l/WIxKgVNcpP2dhCagOA2SIyA1pA+wSAa9JxYRG5FMCljY2N6bgcEREZkB66lFLweJR/ticAWEwSMusz8JrQx/XVxRGvffsLe/Dg2gOYOaEk6v2dBq2oUX7K9PIcjwJYB2COiDSJyHVKKTeAGwGsBrATwONKqe3puJ9S6hml1A3l5eXpuBwRERmQ3tOp7/UZ3PVpNZsidn0CoUmtrrIw4rUP+7pD9SVAIsmHilq8NeTIODI96/OTUY6vArAqk/cmIqL8pE8MUEoLHMFdnxazROz6DFdTWhDxeHv/MADA6YnR9ZkHFTWvUjAhQxugUloZfjIBERFRMH9FDdrOBOYEuj7D1ZTaIx7vGNCCWt+QO+prjVhRUyq5CpknyfMpexjUiIgop5iCuz69gTFrgN71GT9IVRXbIh5v73MCGH1Qu2fNPrT0DMU9L10i7ZCwq6UX6/Z1RDyfOS135FVQE5FLReT+np7UVpsmIiLj09dM8yoFrzdsMoFZEgpq5vDZBQC6BpwYdGldnrGCWiLXv+35XfjS/22Ke166RKqQrbzjdXzygbcinu9lUssZeRXUOJmAiCj/6RFLQVs7zDxieY7UQog+Pg0A+oZcUc9LtOuzN8Y10i3Z3MU9SnNHXgU1IiLKfyJBkwmU8i9mCwBWk9b1GaFgFteAMzCBIGbXZ4KTCcZyZmWywYs5LXcwqBERUU4JLM8ReWcCt0eFjFuLdx2dYzgQzvqHowe1RPf6zFQY+sZjm/HMlqMhx5KdHJDs5INg/cNuvLijNeXXU3IY1IiIKKcEd32G70xgMZvgCluyI5qSgtAVqvSKWmmBJWbXZ6JbSI22e/E/ntiCF7a3jDj+1LtH8dVHN4ccS7Z6N5q2ffXP7+D6P27EsZ7BlK9BicuroMbJBERE+c8koeuoBU8msJoE7ghdn99/citO/fm/Qo7d9+mTAQAVRVYAgMOpVdFqygrSsjzHaAbsDzo9eHxjE274U2ITEvTgFWmSROS2pdw0bDrUBSCwnh1lVl4FNU4mICLKf3qXpVcpuL2h3ZzRuj7XH+hES2/ochmnz5qAT51a7+86HRjWKmqTyu1pCWqjqVod7BgAMHLrq2j0W5kT6PLVzk+9bb2+7w3XYhsbeRXUiIgo//m7Pn0VteAqktkkWndogoElmF5Rqy2zo9vhjHqeHtSs5tj3GE0YOtCuBbUJJZF3UIh2r1hvOzg4pmN5Dk8CCwvT6DGoERFRTvHP+oywM4HeHZdCTvNX1GrL7CEzQMPpY9TidTOOpnsx2aCWSNfnkCvwntIx0SGRrbpo9BjUiIgop4Rsyu5NrXoWicPlhs1iQkWhNeZ5wx4vbBZT3DFao+n63H9cC2qJXsEf1GJ8L4Jnq6Zj6RCuxTY2GNSIiCinhGzKHlZRGw3HsAfFNjOKwmaDhnO6vSgwx//1OZowdLhTC2r9w4ktmqt3Zcaa7RpaUUutbcEzXjlGbWzkVVDjrE8iovzn3+sTvnXU0hTUBpxuFNksMUPYa3uO46G1B2G1xP/1OZogo4+DO9I5iMt/+waOdDpinu+fTJDhrs/OgcDYPTfHqI2JvApqnPVJRJT/ArM+MWLB29FwDHtQXGCGLUYI+84TWwCEBpZo0rWf5pamHrx7pDvmOXo3ZKzMGtz1mWq3ZVtvYJstdn2OjbwKakRElP8CW0hlpqIWK6gtm16V8PXSOdb+SJcDu1p6o99L7/qMEVqDK2qp7kzQ3B2o7KW6pyolh0GNiIhyin8yAQCPij0uKxkOp6+iFqPrs66yMOHrpXMM1y+f342Vd7weNWAFz/o82D4wYucCIKyilmLbdrX0jbgnZRaDGhER5ZTAZAKlraOWpgXyB4bjV9R0t350UdxzMhFkol0z0PUpuPnvW0fsBQqEjVFLsdq3OyiocXmOscGgRkREOSV8eQ6zKT2/ygZd2qzPeEHNbjXhkyvq03LPZEXrblQJTSYIWp4jxYra7pY+VBfbtGtkMae19Q5hMMZad/mEQY2IiHKKKbjr06uQwEoZCRkY9qCoILGK2liI1I5oQc2jEplMMLrlOQadHhzsGMCCqeW+tmQvqa34+b9w9f3rsnb/sWSM/xrThMtzEBHlP73r0+sduTPBaDicbq2ilq7kl6RNh7qw7JaX0DOorZ1WGmE9t2jbNvm7PmN8L4L3KE2lV7a9fxheBUyvKvLfs6nLkdAM2Ex4ryn13/Vr97bjua3H0tiazMmroMblOYiI8l/wZAJvmnYmUErB4fSg0Bq/6zNT7nhpD9r7h/1LcZTYRwa1aFUsvUIWa6mS4GyWSkVNf4n+/XF7Fc687RUs/9lLSV8r2373+n7c+fLebDcjIXkV1IiIKP8FludA2ipqepei1WzKWkUtXEEyXZ9x9vpctfUYegcDuxyksmuC8kU9i2/2hn5Po87+dLq9Uat9To83ZJcFI4u9TwYREZHB6FEkneuo6avsW8wmw4xRm1JRiM+ePgNHuhy4Z80+ANGDWqx11PYf78eXH3kn7Pzk26NX1Cy+77fR11H78iOb8NLONhz8xYdHPOdyK7hzJKgZ479GIiKiBEn4ZII0dH3qXYpWsxgmqAHANafU44xZE/yPo4ULvUc00gTYgeGRsyNTqYLpr7D4bpKOjd0z6aWdbVGf0ypqxm6/zjj/NRIRESXAFNz1meaKmtlkrKAGAGfOnoBfXrkYQPxZn5FCa6TFbVPZmUB/TfAYNd3AsHvE+Z0DTsz63iq8faAz6XulU6T36nR74WRFjYiIKP0Ce30qeJVKy84EeuiwGGiMWrBimzZSKdpG6N4Ysz4jTRxIpRjmDev69ARNbDjeNzzi/E2HuuDxKtz/2r7kb5ZGkcKty+Nl1ycREVEm+MeoIf1dnxaTGDKo6QP4o8369E8miPC9iNRFmdoWUoEwq7UlcI22CEHNKCKFWxe7PrOD66gREeW/TGzK7p9MYJK07R2aToEqVpzJBBHaHuk1o1mew2oe2ZZIFbVss8YIt+z6zBKuo0ZElP+Ct5DyqtjbJiUq0PVpvJAGBN5jtCqQN8bOBGkboxbWFrdHoaLICgD4yp/fwbZmYxVJgtsZzunhrE8iIqKM8G/KDgW315umipre9WnMX4tWX3dj9E3Ztb8jfS8i9ZamklH0MKi3xasUKgqt/ueDN2w3AqtpZBetzuXxwquMuwZcMGP+F0lERBSFKbii5o28dliy/BW1Mez2bO8fxuEOR0LnBqpDUcaoxVhHLVJFLR1dn27frhCLfHt/6re+9Ddv4LRb/5X09dPNHKfrE0BOLHrLBW+JiCinBGZ96jsTjP6awQvehlNK+cfFpdOKn70Er0LEBVnDBYejSPQJA2aTjOjqizSZINk10K7/40Z/qNGrjv79RcO+NVsN0gWqtzPaZAL9b7vVPKbtShaDGhER5RR/16evxCNIR0XNF0IijFFTKhAO0ymZrGT2d+Mlv9dn5MkEid8bAF7c0er/2h8aDT5rMtoOCl6v8h/LhZmf7PokIqKcErwzQbrE6vo0wq9yS4yB8UAgjEWq/KWr61Ond696ooRGowjsSRrazuDZnrnQ9cmgRkREOSV4eY50CSzPEbnrM5OO9w1jyDVym6dglnhdn3pFLcJv9Yhdn6MMahaTpLgW29ixRJkp68qxoMauTyIiyimBTdnTd82YXZ/pu01Ey3/2EpbWV6C4IPqv5Hgbocea9ZnuipqIbyycwWdMWiLMlO1xuPDXTUf8j9n1SURElGZ60SutXZ+eGF2fY/C7/J3D3TGfDwzgT2HWZ8TJBEk2MIiI9n3yGDzkBCpqgTf7zHtHccuzO/2Pc6GixqBGREQ5RZ88MJqqULjAGLWRvxbTeZ9UxVvwVvm7PhPb63M03ZYCyZGK2sgdFMI3j2dQG2PcQoqIKP8F70yQLv4Fbw26M0H8BW9jVdRGnj+acXciWrei0ReL1WfKBofbwbCxgOz6HGPcQoqIKP/pkwkyUVGzRlmeI9viLngbI6hFrKiNqutTYBLjV9SsEfZHHRnUWFEjIiJKq0zUvPTJBOZIsz4NsEBH3AVvE5j1GZzhRjWZANr4r2QXzc2kXS29eHNve8gxf3dx0IC8IWfuBTXO+iQiopxi8i/Pkb5rZnsyQTyxNhgHEpv1aRaB2/f1aLs+jTZGbeUdrwMI3eXB313Mrk8iIqKxE9hCKgOTCXyVqwklNv9zRphMoIeOeBW1iF2ferdoUIgbzfgygcBiFsMveOsPt0HtHHSFttnlNvZ7ABjUiIgox2RmHbXQWZ+rvn4WPrxosnaf9N0mZfHGqHljTiYYub3UaIphJgNW1CKJ1F08GNb1GW1LLiNhUCMiopzi35kgjdf0z/r0BaKaUjuW1Fdo9zFAHom74G2M5Tn03r3g50ZVJdTXUTN4UIvUXRy+A4STXZ9ERETplZGuT09o16d2nwxsKpoiEW3tsmjhKNKEgfDnTElOJugdckVuC3Jj1qclQnfxiDFq7PokIiJKL3/eyGDXJxAINkaY9QloFSJXnJ0JYj0XWlGLfa/X9hzH4p+8gLVhMykBfR01Y836jMQSobuYXZ9EREQZ5p/1mcYAFWnBW/0ro+QRa4xtm2K10T9GLYnJBOsPdAAA3jnUNeI5kwjMJpPxK2qmkRU1dn0SERFlWKDrM33XDFTURnZ9jmYpi3SKNYA/VnUr0kSDeO9Jv5wpwpg3yZExahErauz6JCIiyqyMbCHl9cJsksC4tOD7pO82o2I1m6J21cUKTal0fcaaRSrQQ6MxQ47D6YZSyl8djTVGzajvIRiDGhER5RTJRNenV41Y7DYTy4CMhtkk0Re8jdHISKErXjUs1k4HRq6otfcPY/6PVuPuNfsizpQNH6PGBW+JiIjSLBNjx9yeCEEtA4FwNLSKWvJdn5Eqagl3fUaaRgox7Dpqrb1DAIB/vnfMP+tTD5Rer8JwWFenk12fRERE6SUZ6Pv0eJX/F3vgPmm/zahoFbUoC97GaKP+XDJdn3q4kQhBTV/wNldmfer7eQ65Q6tpRu6+DcagRkREOcWUgbFjLo83Qtdn+vcUHQ1LjCpWIl2fwZkr1vlAoOJmjlBQE5GYbUnFkp++gO8/uTVt1wMCIVMPneHdnjazKWrX57DbY5ggmldBTUQuFZH7e3p6st0UIiLKED1ApfMXqdujQpbmAIInExjjF7a2v2YKXZ8Rt5AaxaxPIOLiu8d6hnDPmn0xrxtNl8OFR9YfTum18ehhLHwigcUsEbs+vV6FOT94Hv/5zPaMtCdZeRXUlFLPKKVuKC8vz3ZTiIgoQzIxG1ObTBD6K9GUhq7PdIZJsyl6BSjpWZ9x2qW/JlLXpzaZYOR4uV+t3o3bnt8V87rZoG8er6+hdvtVJ2LLjy+ALcosWv19ZSo4JiuvghoREeW/TC3PMaKiplfuRnGjdG5zZTWLP3SES3bWZ7z8GOj6jFRRi72dldH4K2pO7XtXZreivNAKq9kElzvwHpRSUEr5P7NI1cRsYFAjIqKcko4AFS7S8hxIQyCMNxYsGbFmWsa6TeR11OJU1CLsD6oTyZ2B+EDQGDVfRa3QZgagdX26giZnfP2xdzHj5lURFz/OJgY1IiLKKRFXjBglt8c7ouszHbdJZ5axmkzR11GLOUZN+ztkU/a466jpr4nc9anN+ozdXqPQA6V/mzDfN8JmNsEZFNSe3nIUQOQxfdnEoEZERDnFv9dnGnvetOU5oqyjZqiKWupdnyHH4u1M4LvewY4B/OPd5pDnBPqsz9xIatHG9YlEHueof7/Mkaa8ZoEl2w0gIiJKRmCvz/SFIFeEBW8Dy4Ckfp+dx3qxvKFqNE3zs5gFQ+7IbUlkwduQ8+PN+vRd7+4Iszj1ilqujFFLtp1uVtSIiIhS59/aKY3X1CYTRF7wdjR55OP3rsP+4/2jaFlArG2bYoWRyBW1xLo+IzFlYB21THJFWSQ4Gk4mICIiGoV0dEmGc3tUyGB7IHjB29HdqG/IParX62ItzxErM0WsqMXJLrGCnIgWYjxjuE/mzmO9WHnHa+gbciX92mQrah5OJiAiIkpdJro+3V4Fa9QFb0enuMA8yitoYi3PEet7ESmoxBs7FzOoIRBix8p/v7Abu1r6sG5fR9KvTXbjdU+E5UyyiUGNiIhySiZ+fUZa8FY32jxoM6cnqGl7fabQ9Rn2BkQSGaMW/blU80tH/zCO9w2n9Fq9ippKb2u0cBv9/JHLmWQTJxMQEVFOCcz6TOcWUiP3+gxUVEZ3n3QVZkwiUVuSTEXNJBI3fMYOcqm9oZNveQkAcPAXH076tYGPJvnPItmxdHq1kV2fREREKUjHIP9wkZfnSP99dOkMmUC8ilroY5PEH7cVK6hlI7+YRlFRi1aFjMbf9cmgRkRElLzAIP/0XdMVccHb9N9Hl+6lLWIFq/BZnyaRUc36jLT/Z6YFgloqFbUUuz4NMkaNXZ9ERJRTAoP80xd2YlXU0nkfXbqrdLGySPjEgUS6PmMFyWzEl9FUN91ehbN++TLmTipL6HyOUSMiIhqFTHRJetXIWX7+EWoZqKilc8YqEHsW58gxaqPr+sxGoUlGMS7R7VE40jmII52DCZ1vtKDGrk8iIspNmUhQQTKxXpsu7UEtiVmfJlP8rs9YT2dj2Qr/LhEpVtSSoYdejlEjIiJKkSnKPo3plIn12nRjOUYt0qzPeO/JaNtDjWaMWrwN6KOdz1mfREREKZIEwsao75HBa6c7B8X6VoSPXzObJOFN2SPJTten9vdY5Efu9UlERDRKgvjdYKMtiGS063MMK1YjJxPEr0zFejrXZn0my+tfniPjt0qIQZpBRESUuFiLvwafMxqB5W4z0PU5BoHDf6+wUCgiWLP7OH73+v7or4mzhVSmRJssIHGeT6fAgrfGiEjGaAUREVEyEqgKjTao6b+n42WDVMLDWFSGot1L79K75dmdCb8mWCYnE0Qb+G/KYHUzWhs4mYCIiChFAsSdTTDaPKEveDuabsJoklyDdVQiLc8RT+wFb0fZoBii7SKgh+ax6DH2+seoZf5eiTB8UBOReSJyr4g8ISL/nu32EBFR9iXS9TnqdbD8C97Glkp2GMuKWnhQSyTsxBpDl8n84oqSYGUMx6gF1lEzRkTKaCtE5EERaRORbWHHV4rIbhHZKyI3xbqGUmqnUupLAK4CcEYm20tERLlBJP6A/LSNURvVBuaRjeXyF+Ht6xtyJf2aENmoqPnXURvLoJbxWyUk0814GMDK4AMiYgZwF4CLAMwH8EkRmS8ii0Tkn2F/anyvuQzAswBWZbi9RERkINF+MceqqOmvSTSnRbtOIOgpbG3qQcNNz2LHsd4I90vsPqN9TarCM+GA05P0a4JJBpOa2xO5ojaaTdmTpU8mMMrOBJLpdCoiDQD+qZRa6Ht8GoCfKKUu9D2+GQCUUrcmcK1nlVIfjvLcDQBu8D2cA2B3Cs0tB9CTgfPjnRft+WSORzo2AUB7Au1Lt2S/j+m4RqY/i2jP8bNI/TXp/iyiHQ8/lsufRSrX4c+pkfL1s4j2nJE/i2htGYtrGOnn1GylVHnEqyilMvoHQAOAbUGPrwTwu6DHnwbw2xivPwfAnQDuA/CVDLf1/kycH++8aM8nczzKsY2Z/nzT8X3Mhc8iye/7uP4sEn1Nuj+LRD+PXP4sUrkOf06Nn88iye+7IT6LdH0e+fZzKviP4TdlV0qtAbBmjG73TIbOj3detOeTOZ5s2zMpHW0x2mcR7Tl+Fqm/Jt2fRbTjRvk80tUOo/3b4GeR/vP5c2psrpETP6dyquuTkiMiG5VSy7LdDuJnYST8LIyFn4dx8LMwpmzMadgAYLaIzBARG4BPAHg6C+0YD+7PdgPIj5+FcfCzMBZ+HsbBz8KAMlpRE5FHoY0xmwCgFcCPlVK/F5GLAdwBwAzgQaXUzzLWCCIiIqIclfGuTyIiIiJKjUGWcyMiIiKicAxqRERERAbFoEZERERkUAxq45SIXCEiD4jIX0Tkgmy3ZzwTkZki8nsReSLbbRmPRKRYRP7g+/dwbbbbM57x34Kx8PeEMTCo5aA0bXb/lFLqegBfAnB1Jtubz9L0WexXSl2X2ZaOL0l+Lh8F8ITv38NlY97YPJfMZ8F/C5mX5OfB3xMGwKCWmx5GGja79/mB73WUmoeRvs+C0udhJPi5AKgDcMR3WvzdqilZDyPxz4Iy72Ek/3nw90QWGX4LKRpJKfWab8eHYCsA7FVK7QcAEXkMwOW+HR8uCb+GiAiAXwB4Tin1ToabnLfS8VlQ+iXzuQBoghbW3gX/5zXtkvwsdoxx88adZD4PEdkJ/p7IOv5Qyh9TEagKANovn6kxzv8qgPMAXCkiX8pkw8ahpD4LEakWkXsBLNG3VKOMiPa5/B3Ax0TkHhhr/8N8FvGz4L+FrIn2b4O/JwyAFbVxSil1J4A7s90OApRSHdDGgFAWKKUGAHwu2+0g/lswGv6eMAZW1PJHM4BpQY/rfMdo7PGzMCZ+LsbBz8JY+HkYGINa/uBm98bBz8KY+LkYBz8LY+HnYWAMajnIt9n9OgBzRKRJRK5TSrkB3AhgNYCdAB5XSm3PZjvHA34WxsTPxTj4WRgLP4/cw03ZiYiIiAyKFTUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIobiFFRHlBRDwAtgYdukIpdTBLzSEiSguuo0ZEeUFE+pVSJVGeE2g/77xj3CwiolFh1ycR5SURaRCR3SLyRwDbAEwTke+IyAYReU9E/jPo3O+LyB4ReUNEHhWRb/uOrxGRZb6vJ4jIQd/XZhH5VdC1vug7fo7vNU+IyC4RecQXEiEiy0XkTRHZIiJvi0ipiLwmIicFteMNETlxrL5HRGR87PokonxRKCLv+r4+AOCbAGYD+IxS6i0RucD3eAUAAfC0iHwAwAC0vQ1PgvYz8R0Am+Lc6zoAPUqp5SJSAGCtiLzge24JgAUAjgJYC+AMEXkbwF8AXK2U2iAiZQAGAfwewGcBfENETgBgV0ptGd23gYjyCYMaEeWLQaXUSfoDEWkAcEgp9Zbv0AW+P5t9j0ugBbdSAE8qpRy+1yWyGfUFABaLyJW+x+W+azkBvK2UavJd610ADQB6ABxTSm0AAKVUr+/5vwL4oYh8B8DnATyc5HsmojzHoEZE+Wwg6GsBcKtS6r7gE0TkGzFe70ZgiIg97FpfVUqtDrvWOQCGgw55EOPnrFLKISIvArgcwFUATo7RFiIahzhGjYjGi9UAPi8iJQAgIlNFpAbAawCuEJFCESkFcGnQaw4iEJ6uDLvWv4uI1XetE0SkOMa9dwOYLCLLfeeXioge4H4H4E4AG5RSXaN6h0SUd1hRI6JxQSn1gojMA7DON76/H8CnlFLviMhfAGwB0AZgQ9DLfg3gcRG5AcCzQcd/B61L8x3fZIHjAK6IcW+niFwN4DciUghtfNp5APqVUptEpBfAQ+l5p0SUT7g8BxFREBH5CbQA9esxut8UAGsAzOXyIUQUjl2fRERZIiL/BmA9gO8zpBFRJKyoERERERkUK2pEREREBsWgRkRERGRQDGpEREREBsWgRkRERGRQDGpEREREBvX/AdehXHQ656kXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(cs_reb.freq, cs_reb.power.real)\n", + "plt.ylim([1e-3, None])\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Cospectrum Power\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For deeper analysis (e.g. time lags and other products), please refer to the relevant notebooks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Deadtime/Check FAD correction in Stingray.html b/notebooks/Deadtime/Check FAD correction in Stingray.html new file mode 100644 index 000000000..f267e4a2e --- /dev/null +++ b/notebooks/Deadtime/Check FAD correction in Stingray.html @@ -0,0 +1,376 @@ + + + + + + + + Fourier Amplitude Difference correction in Stingray — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Fourier Amplitude Difference correction in Stingray

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+import matplotlib.pyplot as plt
+from stingray import EventList, AveragedCrossspectrum, AveragedPowerspectrum
+from stingray.deadtime.fad import calculate_FAD_correction, FAD
+from stingray.filters import filter_for_deadtime
+
+import matplotlib.pyplot as plt
+
+
+
+

Dead time affects most counting experiments. While the instrument is busy processing one event, it is “dead” to other photons/particles hitting the detector. This is usually not an issue if the count rate is low enough, or the processing time (dead time) is small enough. However, at high count rate dead time affects greatly the statistical properties of the data, to a point where a standard periodicity search based on the periodogram/power density spectrum (PDS) cannot be carried out.

+

The Fourier Amplitude Difference (FAD) correction is described in Bachetti & Huppenkothen, 2018, ApJ, 853L, 21, and is able to correct precisely deadtime affected PDSs if we have at least two identical and independent detectors. This is common in new generation X-ray timing instruments, often based on multiple-detector configurations (e.g. NuSTAR, NICER, AstroSAT, etc.).

+

In the code below, we calculate the PDS of light curves without dead time, after applying a dead time filter, and after applying the FAD to the dead-time affected dataset.

+
+
[2]:
+
+
+
def generate_events(length, ncounts):
+    ev = np.random.uniform(0, length, ncounts)
+    ev.sort()
+    return ev
+
+
+
+
+
[3]:
+
+
+
ctrate = 500
+dt = 0.001
+deadtime = 2.5e-3
+tstart = 0
+length = 25600
+segment_size = 256.
+ncounts = np.int(ctrate * length)
+ev1 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])
+ev2 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])
+
+pds1 = AveragedPowerspectrum.from_events(ev1, dt=dt, segment_size=segment_size, norm='leahy')
+pds2 = AveragedPowerspectrum.from_events(ev2, dt=dt, segment_size=segment_size, norm='leahy')
+ptot = AveragedPowerspectrum.from_events(ev1.join(ev2), dt=dt, segment_size=segment_size, norm='leahy')
+cs = AveragedCrossspectrum.from_events(ev1, ev2, dt=dt, segment_size=segment_size, norm='leahy')
+
+
+
+
+
+
+
+
+100it [00:01, 98.20it/s]
+100it [00:00, 134.62it/s]
+100it [00:01, 80.61it/s]
+100it [00:01, 52.97it/s]
+
+
+

Now let us apply a deadtime filter to the events generated above, and calculate the corresponding periodograms

+
+
[4]:
+
+
+
ev1_dt = ev1.apply_deadtime(deadtime)
+ev2_dt = ev2.apply_deadtime(deadtime)
+
+pds1_dt = AveragedPowerspectrum.from_events(ev1_dt, dt=dt, segment_size=segment_size, norm='leahy')
+pds2_dt = AveragedPowerspectrum.from_events(ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')
+ptot_dt = AveragedPowerspectrum.from_events(ev1_dt.join(ev2_dt), dt=dt, segment_size=segment_size, norm='leahy')
+cs_dt = AveragedCrossspectrum.from_events(ev1_dt, ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')
+
+
+
+
+
+
+
+
+100it [00:00, 154.30it/s]
+100it [00:00, 167.20it/s]
+100it [00:00, 133.60it/s]
+100it [00:01, 67.74it/s]
+
+
+
+
[5]:
+
+
+
results = \
+    FAD(ev1_dt, ev2_dt, segment_size, dt, norm="leahy", plot=False,
+                      smoothing_alg='gauss',
+                      smoothing_length=segment_size*2,
+                      strict=True, verbose=False,
+                      tolerance=0.05)
+
+freq_f = results['freq']
+pds1_f = results['pds1']
+pds2_f = results['pds2']
+cs_f = results['cs']
+ptot_f = results['ptot']
+
+
+
+
+
+
+
+
+100it [00:33,  2.99it/s]
+
+
+
+
+
+
+
+M: 100
+
+
+
+
+
+
+
+
+
+
+
+
[6]:
+
+
+
for spec, spec_dt, spec_f, label in zip(
+        [pds1, pds1, ptot, cs],
+        [pds1_dt, pds2_dt, ptot_dt, cs_dt],
+        [pds1_f, pds2_f, ptot_f, cs_f],
+        ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']
+        ):
+    plt.figure(figsize=(10, 8))
+    plt.title(label)
+    plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)
+    plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)
+    plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)
+    plt.legend()
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_0.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_1.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_2.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_8_3.png +
+
+

As can be seen above, all power density and co- spectra have been corrected accurately in their basic property (the white noise level). See Bachetti & Huppenkothen 2019 for more information.

+

Note that this can also be done starting from light curves:

+
+
[7]:
+
+
+
# Calculate light curves
+lc1_dt = ev1_dt.to_lc(dt=dt)
+lc2_dt = ev2_dt.to_lc(dt=dt)
+
+results = \
+    FAD(lc1_dt, lc2_dt, segment_size, dt, norm="leahy", plot=False,
+                      smoothing_alg='gauss',
+                      smoothing_length=segment_size*2,
+                      strict=True, verbose=False,
+                      tolerance=0.05)
+
+freq_f = results['freq']
+pds1_f = results['pds1']
+pds2_f = results['pds2']
+cs_f = results['cs']
+ptot_f = results['ptot']
+
+for spec, spec_dt, spec_f, label in zip(
+        [pds1, pds1, ptot, cs],
+        [pds1_dt, pds2_dt, ptot_dt, cs_dt],
+        [pds1_f, pds2_f, ptot_f, cs_f],
+        ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']
+        ):
+    plt.figure(figsize=(10, 8))
+    plt.title(label)
+    plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)
+    plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)
+    plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)
+    plt.legend()
+
+
+
+
+
+
+
+
+100it [00:34,  2.93it/s]
+
+
+
+
+
+
+
+M: 100
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_2.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_3.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_4.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_FAD_correction_in_Stingray_10_5.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Deadtime/Check FAD correction in Stingray.ipynb b/notebooks/Deadtime/Check FAD correction in Stingray.ipynb new file mode 100644 index 000000000..c8d9c597c --- /dev/null +++ b/notebooks/Deadtime/Check FAD correction in Stingray.ipynb @@ -0,0 +1,360 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fourier Amplitude Difference correction in Stingray" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from stingray import EventList, AveragedCrossspectrum, AveragedPowerspectrum\n", + "from stingray.deadtime.fad import calculate_FAD_correction, FAD\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dead time affects most counting experiments. While the instrument is busy processing one event, it is \"dead\" to other photons/particles hitting the detector. This is usually not an issue if the count rate is low enough, or the processing time (_dead_ time) is small enough. However, at high count rate dead time affects greatly the statistical properties of the data, to a point where a standard periodicity search based on the periodogram/power density spectrum (PDS) cannot be carried out.\n", + "\n", + "The Fourier Amplitude Difference (FAD) correction is described in [Bachetti & Huppenkothen, 2018, ApJ, 853L, 21](https://ui.adsabs.harvard.edu/abs/2018ApJ...853L..21B), and is able to correct precisely deadtime affected PDSs if we have at least two identical and independent detectors. This is common in new generation X-ray timing instruments, often based on multiple-detector configurations (e.g. NuSTAR, NICER, AstroSAT, etc.).\n", + "\n", + "In the code below, we calculate the PDS of light curves without dead time, after applying a dead time filter, and after applying the FAD to the dead-time affected dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_events(length, ncounts):\n", + " ev = np.random.uniform(0, length, ncounts)\n", + " ev.sort()\n", + " return ev\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:01, 98.20it/s]\n", + "100it [00:00, 134.62it/s]\n", + "100it [00:01, 80.61it/s]\n", + "100it [00:01, 52.97it/s]\n" + ] + } + ], + "source": [ + "ctrate = 500\n", + "dt = 0.001\n", + "deadtime = 2.5e-3\n", + "tstart = 0\n", + "length = 25600\n", + "segment_size = 256.\n", + "ncounts = np.int(ctrate * length)\n", + "ev1 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "ev2 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "\n", + "pds1 = AveragedPowerspectrum.from_events(ev1, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2 = AveragedPowerspectrum.from_events(ev2, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot = AveragedPowerspectrum.from_events(ev1.join(ev2), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs = AveragedCrossspectrum.from_events(ev1, ev2, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let us apply a deadtime filter to the events generated above, and calculate the corresponding periodograms" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:00, 154.30it/s]\n", + "100it [00:00, 167.20it/s]\n", + "100it [00:00, 133.60it/s]\n", + "100it [00:01, 67.74it/s]\n" + ] + } + ], + "source": [ + "ev1_dt = ev1.apply_deadtime(deadtime)\n", + "ev2_dt = ev2.apply_deadtime(deadtime)\n", + "\n", + "pds1_dt = AveragedPowerspectrum.from_events(ev1_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2_dt = AveragedPowerspectrum.from_events(ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot_dt = AveragedPowerspectrum.from_events(ev1_dt.join(ev2_dt), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs_dt = AveragedCrossspectrum.from_events(ev1_dt, ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:33, 2.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "results = \\\n", + " FAD(ev1_dt, ev2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen above, all power density and co- spectra have been corrected accurately in their basic property (the white noise level). See Bachetti & Huppenkothen 2019 for more information.\n", + "\n", + "Note that this can also be done starting from light curves:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:34, 2.93it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Calculate light curves\n", + "lc1_dt = ev1_dt.to_lc(dt=dt)\n", + "lc2_dt = ev2_dt.to_lc(dt=dt)\n", + "\n", + "results = \\\n", + " FAD(lc1_dt, lc2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n", + "\n", + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Deadtime/Check dead time model in Stingray.html b/notebooks/Deadtime/Check dead time model in Stingray.html new file mode 100644 index 000000000..7f80c5c05 --- /dev/null +++ b/notebooks/Deadtime/Check dead time model in Stingray.html @@ -0,0 +1,905 @@ + + + + + + + + Check Stingray’s dead time model — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Check Stingray’s dead time model

+

Here we verify that the algorithm used for dead time filtering is behaving as expected.

+

We also compare the results with the algorithm for paralyzable dead time, for reference.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+import matplotlib.pyplot as plt
+import seaborn as sns
+from matplotlib.gridspec import GridSpec
+import matplotlib as mpl
+from stingray import EventList, AveragedPowerspectrum
+import tqdm
+import stingray.deadtime.model as dz
+from stingray.deadtime.model import A, check_A, check_B
+
+sns.set_context('talk')
+sns.set_style("whitegrid")
+sns.set_palette("colorblind")
+
+mpl.rcParams['figure.dpi'] = 150
+mpl.rcParams['figure.figsize'] = (10, 8)
+mpl.rcParams['font.size'] = 18.0
+mpl.rcParams['xtick.labelsize'] = 18.0
+mpl.rcParams['ytick.labelsize'] = 18.0
+mpl.rcParams['axes.labelsize'] = 18.0
+mpl.rcParams['axes.labelsize'] = 18.0
+
+from stingray.filters import filter_for_deadtime
+
+import numpy as np
+np.random.seed(1209432)
+
+
+
+
+

Non-paralyzable dead time

+
+
[2]:
+
+
+
def simulate_events(rate, length, deadtime=2.5e-3, **filter_kwargs):
+    events = np.random.uniform(0, length, np.int(rate * length))
+    events = np.sort(events)
+    events_dt = filter_for_deadtime(events, deadtime, **filter_kwargs)
+    return events, events_dt
+
+
+
+
+
[3]:
+
+
+
rate = 1000
+length = 1000
+events, events_dt = simulate_events(rate, length)
+diff = np.diff(events)
+diff_dt = np.diff(events_dt)
+
+
+
+
+
[4]:
+
+
+
dt = 2.5e-3/20  # an exact fraction of deadtime
+bins = np.arange(0, np.max(diff), dt)
+hist = np.histogram(diff, bins=bins, density=True)[0]
+hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]
+
+bins_mean = bins[:-1] + dt/2
+plt.figure()
+plt.title('Non-Paralyzable dead time')
+
+plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');
+plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');
+
+plt.xlim([0, 0.02]);
+# plt.ylim([0, 100]);
+
+plt.axvline(2.5e-3, color='r', ls='--')
+plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')
+plt.ylabel('Probability density')
+
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_5_0.png +
+
+

Exactly as expected, the output distribution of the distance between the events follows an exponential distribution cut at 2.5 ms.

+

The measured rate is expected to go as

+
+\[r_{det} = \frac{r_{in}}{1 + r_{in}\tau_d}\]
+

(Zhang+95, eq. 29). Let’s check it.

+
+
[5]:
+
+
+
plt.figure()
+plt.title('Non-Paralyzable dead time - input rate {} ct/s'.format(rate))
+
+deadtimes = np.arange(0, 0.015, 0.0005)
+deadtimes_plot = np.arange(0, 0.015, 0.0001)
+
+for d in deadtimes:
+    events_dt = filter_for_deadtime(events, d)
+    new_rate = len(events_dt) / length
+    plt.scatter(d, new_rate, color='b')
+
+plt.plot(deadtimes_plot, rate / (1 + rate * deadtimes_plot),
+         label=r'$\frac{r_{in}}{1 + r_{in}\tau_d}$')
+plt.xlim([0, None])
+plt.xlabel('Dead time')
+plt.ylabel('Output rate')
+plt.semilogy()
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_7_0.png +
+
+
+
+

Paralyzable dead time

+
+
[6]:
+
+
+
rate = 1000
+length = 1000
+events, events_dt = simulate_events(rate, length, paralyzable=True)
+diff = np.diff(events)
+diff_dt = np.diff(events_dt)
+
+
+
+
+
[7]:
+
+
+
dt = 2.5e-3/20  # an exact fraction of deadtime
+bins = np.arange(0, np.max(diff_dt), dt)
+hist = np.histogram(diff, bins=bins, density=True)[0]
+hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]
+
+bins_mean = bins[:-1] + dt/2
+plt.figure()
+plt.title('Paralyzable dead time')
+plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');
+plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');
+plt.xlim([0, 0.02]);
+# plt.ylim([0, 100]);
+
+plt.axvline(2.5e-3, color='r', ls='--')
+plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')
+plt.ylabel('Probability density')
+
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_10_0.png +
+
+

Non-paralyzable dead time has a distribution for the time between consecutive counts that plateaus between \(\tau_d\) and \(2\tau_d\), then decreases. The exact form is complicated (e.g. )

+

The measured rate is expected to go as

+
+\[r_{det} = r_{in}e^{-r_{in}\tau_d}\]
+

(Zhang+95, eq. 16). Let’s check it.

+
+
[8]:
+
+
+
plt.figure()
+plt.title('Paralyzable dead time - input rate {} ct/s'.format(rate))
+
+deadtimes = np.arange(0, 0.008, 0.0005)
+deadtimes_plot = np.arange(0, 0.008, 0.0001)
+
+for d in deadtimes:
+    events_dt = filter_for_deadtime(events, d, paralyzable=True)
+    new_rate = len(events_dt) / length
+    plt.scatter(d, new_rate, color='b')
+
+plt.plot(deadtimes_plot, rate * np.exp(-rate * deadtimes_plot),
+         label=r'$r_{in}e^{-r_{in}\tau_d}$')
+plt.xlim([0, None])
+plt.xlabel('Dead time')
+plt.ylabel('Output rate')
+plt.semilogy()
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_12_0.png +
+
+

Perfect.

+
+
+

Periodogram - non-paralyzable

+

Let’s see how the periodogram behaves at different intensities. Will it follow the Zhang+95 model?

+
+
[9]:
+
+
+
nevents = 200000
+
+rates = np.logspace(2, np.log10(3000), 6)
+bintime = 0.001
+deadtime = 2.5e-3
+
+plt.figure()
+plt.title(f'bin time = 1 ms; dead time = 2.5 ms')
+for r in tqdm.tqdm(rates):
+    label = f'{r} ct/s'
+    length = nevents / r
+
+    events, events_dt = simulate_events(r, length)
+    events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+#     lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+#     pds = AveragedPowerspectrum.from_lightcurve(lc_dt, 2, norm='leahy')
+    pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)
+    plt.plot(pds.freq, pds.power, label=label)
+
+    zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)
+    plt.plot(zh_f, zh_p, color='b')
+plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+  0%|          | 0/6 [00:00<?, ?it/s]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+
+ 67%|██████▋   | 4/6 [00:02<00:00,  2.50it/s]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+
+100%|██████████| 6/6 [00:02<00:00,  2.37it/s]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_15_6.png +
+
+
+
[10]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.powerspectrum import AveragedPowerspectrum
+import tqdm
+
+nevents = 200000
+
+rates = np.logspace(2, 3, 5)
+deadtime = 2.5e-3
+bintime = 2 * deadtime
+
+
+plt.figure()
+plt.title(f'bin time = 5 ms; dead time = 2.5 ms')
+for r in tqdm.tqdm(rates):
+    label = f'{r} ct/s'
+    length = nevents / r
+
+    events, events_dt = simulate_events(r, length)
+    events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+#     lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+#     pds = AveragedPowerspectrum.from_lc(lc_dt, 2, norm='leahy', silent=True)
+    pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)
+    plt.plot(pds.freq, pds.power, label=label)
+
+    zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)
+    plt.plot(zh_f, zh_p, color='b')
+plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')
+
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Power (Leahy)')
+
+plt.legend();
+
+
+
+
+
+
+
+
+  0%|          | 0/5 [00:00<?, ?it/s]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+
+ 20%|██        | 1/5 [00:01<00:04,  1.20s/it]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+
+ 40%|████      | 2/5 [00:02<00:03,  1.11s/it]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+
+ 60%|██████    | 3/5 [00:03<00:02,  1.07s/it]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+
+ 80%|████████  | 4/5 [00:04<00:01,  1.09s/it]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+
+100%|██████████| 5/5 [00:05<00:00,  1.09s/it]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_16_11.png +
+
+

It will.

+
+
+

Reproduce Zhang+95 power spectrum? (extra check)

+
+
[11]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.powerspectrum import AveragedPowerspectrum
+import tqdm
+
+bintime = 1e-6
+deadtime = 1e-5
+length = 40
+fftlen = 0.01
+
+plt.figure()
+plt.title(f'bin time = 1 us; dead time = 10 us')
+
+r = 20000
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy')
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+4000it [00:00, 4140.55it/s]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_18_2.png +
+
+

Ok.

+

An additional note on the Zhang model: it is a numerical model, with multiple nested summations that are prone to numerical errors. The assumptions made in the Zhang paper (along the line of “in practice the number of terms needed is very small…”) are assuming the case of RXTE, where 1/dead time was low with respect to the incident rate. This is true in the simulation in figure 4 of Zhang+95: 20,000 ct/s incident rate, 1/dead time = 100,000. However, this is not true in NuSTAR, depicted in our +simulation below where the incident rate (2,000) is much larger than 1/dead time (400). A thorough estimate of the needed level of detail (that implies increasing the number of summed terms) versus increase of numerical errors has to be done. This is a quite long procedure, and I did not go into so much detail. This is the reason of the “wiggles” that can be seen in the model in red in the plot below.

+
+
[12]:
+
+
+
bintime = 1/4096
+deadtime = 2.5e-3
+length = 8000
+fftlen = 5
+r = 2000
+
+plt.figure()
+
+plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')
+
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy', silent=True)
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy', silent=True)
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_21_1.png +
+
+

The script check_A checks visually the number of ks to calculate before going to the approximate value r0**2*tb**2. The default is 60, but in this case the presence of additional modulation for k=60 tells us that we need to increase the limit of calculated A_k to at least 150. The script check_B does this for another important quantity in the model.

+

Somewhat counter-intuitively, there might be cases where too high values of k could produce numerical errors. Always run check_A and check_B to test it.

+
+
[13]:
+
+
+
def safe_A(k, r0, td, tb, tau, limit=60):
+    if k > limit:
+        return r0 ** 2 * tb**2
+    return A(k, r0, td, tb, tau)
+
+
+check_A(r, deadtime, bintime, max_k=250)
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_23_0.png +
+
+

So, we had better repeat the procedure by using limit_k=150 this time.

+
+
[14]:
+
+
+
check_B(r, deadtime, bintime, max_k=250)
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_25_0.png +
+
+
+
[15]:
+
+
+
bintime = 1/4096
+deadtime = 2.5e-3
+length = 8000
+fftlen = 5
+r = 2000
+
+plt.figure()
+
+plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')
+
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime, limit_k=250)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+1600it [00:00, 3214.76it/s]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_26_2.png +
+
+
+
[16]:
+
+
+
from scipy.interpolate import interp1d
+
+deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value="extrapolate")
+
+plt.figure()
+plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)
+
+
+
+
+
[16]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f8c9ed78100>]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_27_1.png +
+
+

Still imperfect, but this is a very high count rate case. In more typical cases, the correction is more than adequate:

+
+
[17]:
+
+
+
bintime = 1/4096
+deadtime = 2.5e-3
+length = 8000
+fftlen = 5
+r = 300
+
+plt.figure()
+
+plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')
+
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime, limit_k=250)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+1600it [00:00, 3402.34it/s]
+
+
+
+
+
+
+
+INFO: Calculating PDS model (update) [stingray.deadtime.model]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_29_2.png +
+
+
+
[18]:
+
+
+
deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value="extrapolate")
+
+plt.figure()
+plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)
+
+
+
+
+
[18]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f8c6f9bd0d0>]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Check_dead_time_model_in_Stingray_30_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Deadtime/Check dead time model in Stingray.ipynb b/notebooks/Deadtime/Check dead time model in Stingray.ipynb new file mode 100644 index 000000000..c90e48b17 --- /dev/null +++ b/notebooks/Deadtime/Check dead time model in Stingray.ipynb @@ -0,0 +1,951 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Check Stingray's dead time model\n", + "\n", + "Here we verify that the algorithm used for dead time filtering is behaving as expected.\n", + "\n", + "We also compare the results with the algorithm for paralyzable dead time, for reference." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from matplotlib.gridspec import GridSpec\n", + "import matplotlib as mpl\n", + "from stingray import EventList, AveragedPowerspectrum\n", + "import tqdm\n", + "import stingray.deadtime.model as dz\n", + "from stingray.deadtime.model import A, check_A, check_B\n", + "\n", + "sns.set_context('talk')\n", + "sns.set_style(\"whitegrid\")\n", + "sns.set_palette(\"colorblind\")\n", + "\n", + "mpl.rcParams['figure.dpi'] = 150\n", + "mpl.rcParams['figure.figsize'] = (10, 8)\n", + "mpl.rcParams['font.size'] = 18.0\n", + "mpl.rcParams['xtick.labelsize'] = 18.0\n", + "mpl.rcParams['ytick.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import numpy as np\n", + "np.random.seed(1209432)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Non-paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate_events(rate, length, deadtime=2.5e-3, **filter_kwargs):\n", + " events = np.random.uniform(0, length, np.int(rate * length))\n", + " events = np.sort(events)\n", + " events_dt = filter_for_deadtime(events, deadtime, **filter_kwargs)\n", + " return events, events_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAAQ5CAYAAABF6gYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDWPsxr4XY0uKshPtfkKkokXSotJCG5UUbUokbeqrtIiiFBJZokiIssbIbjCWsQ9zlvv+/XGc2zlmO7OcOWdmXs/HQ3Pf59znuq9zzj0j7/mcz2UzTdMUAAAAAAAAACDgwoI9AQAAAAAAAAAoLAhkAQAAAAAAACCPEMgCAAAAAAAAQB4hkAUAAAAAAACAPEIgCwAAAAAAAAB5hEAWAAAAAAAAAPIIgSwAAAAAAAAA5BECWQAAAAAAAADIIwSyAAAAAAAAAJBHCGQBAAAAAAAAII8QyAIAAAAAAABAHiGQBQAAAAAAAIA8QiALAAAAAAAAAHmEQBYAAAAAAAAA8khEsCcAAABy1969e3X11Vdb+w0aNNC0adMUGRmZpXG+//57DR061NrfuHGjIiIKz/863HXXXVq5cqVfx0ZERKhIkSIqU6aMatasqebNm+vaa69V3bp1AzzL0HPh9bdw4UJVq1YtiDMKHu/voapVq2rRokU5HnPIkCGaMWOGJOnmm2/WG2+8keMxg6mgPZ+siIuLs7a/+OILtWjRIsdjbt26VX/99Zd69+6d5v3eP9cGDhyoRx99NMfnBAAAWUeFLAAABdy///6rCRMmBHsaBZrT6dTp06e1d+9eLVu2TOPGjdNNN92kJ598UqdOnQr29AAUcGfOnNFbb72lm2++WWvXrg32dAAAQCYKT5kLAACF2EcffaRrrrlG9evXD/ZU8qVSpUrpkksuSfd+l8uls2fPav/+/Tpw4IAkyTRNzZ49W9u2bdNXX32lmJiYvJougELmtdde07fffhvsaQAAAD8RyAIAUAg4HA4NGTIkW60L4P5o8cSJE/06dvXq1Ro5cqT+/fdfSe4K5bffflvDhw8P5BQBFGIOhyPYUwAAAFlAywIAAAoJWhfkjWbNmumzzz5TzZo1rdumTp2qxMTEIM4KAKQvv/xSW7Zs0ZYtW+gfCwBAEBHIAgBQwHkvxPXRRx9p8+bNQZxN4VCmTBk9/PDD1r5hGPr555+DOCMAAAAAoYJAFgCAAu7ee++VzWaT5P5Y69ChQ+V0OoM8q4Lvuuuu89nfsmVLkGYCAAAAIJTQQxYAgAKuVatWOnHihKZOnSpJ2rRpkz766CMNHDgw18/133//6bvvvtPKlSuVkJCgU6dOqUSJEqpcubJatWqlrl27Ki4uLsMxxo8fr/fee0+SNGzYMN15552y2+368ccfNXfuXG3btk2HDx9WiRIlVLt2bXXq1Em33XabSpQokevPJyeio6NVtmxZJSUlSZIOHjyY4fHr1q3TwoUL9ddff2nfvn06duyYnE6nSpYsqYoVK+ryyy/XjTfeqGbNmqU7xvfff6+hQ4dKcgfxzz77rBYvXmxVRkdFRalq1apq2bKlBg0apKioKJ/H79u3Tz///LNWrlypbdu26fjx4zpz5oyKFy+uMmXK6NJLL1WHDh10/fXXKzw8PMuvycSJE/Xmm29KksLDw7VkyRLFxsZm+rgFCxbokUcekSTFxMRo6dKlKlasWKbXUkaqVq2qRYsWpXv/8uXL9dtvv2n16tU6cOCAjh8/LkkqWbKkqlSpoubNm+umm27K8kJ5drtd06ZN008//aRt27bpzJkzio2NVdOmTXXjjTfq6quvtn6BkhuSkpL0/fff6/fff9eOHTt09OhRRUdHq0KFCmrRooW6du2qJk2a5Nr5vK1bt07Tpk3TypUrtX//fkVGRqpatWq69tpr1adPH5UtWzbLY54+fVo//PCDlixZoq1bt+rIkSOKiopSbGysmjdvrhtvvFGtW7fO0pi5/V47HA7Nnj1bc+bM0aZNm3T8+HGVLl1acXFx6tmzp2688cZce4/T+h6YMWOGZsyYYe17/zLorrvu0sqVKyVJAwcOTNW2wPvn70svvaTevXsrOTlZs2bN0qxZs7Rz506dOHFC5cuXV/369XXbbbepQ4cOPmPs2LFDU6dO1dKlS7Vv3z5JUrVq1dS+fXvdc889fn3PS8G9dgEACDQCWQAACoFnnnlGv//+uxISEiS5Wxdcc801WQ6T0nPixAm9/PLL+umnn2Saps99SUlJSkpK0saNGzVx4kR17dpVL774omJiYvwae/PmzXryySf133//pTnu6tWrNXHiRI0ePVpt2rTJleeTW7wrkaOjo9M8Zs+ePRo2bJiWL1+e5v2HDx/W4cOHtXHjRn355Zfq2LGjRo8e7dfr98MPP2jIkCHWe3LmzBkdP35cTqdTzz77rHXcmTNn9Prrr+v7779Pc3GgY8eO6dixY9qxY4d++OEH1alTR++9954uuuiiTOfgrWvXrhozZoycTqdcLpd++ukn3XPPPZk+bubMmdZ2586dVaxYsSydNys2bNig4cOHa8OGDWnef/bsWR08eFD//POPJk6cqJ49e2r48OGpwu207N69Ww8//LC2bt3qc/vevXu1d+9ezZ49W5dddplGjRrl04M4uyZNmqR3331Xp0+f9rndbrfr2LFjio+P15dffqkbbrhBI0eOVMmSJXN8TklKTk7WiBEjfEJBSUpJSdHmzZu1efNmTZ48WaNGjcrSuDNnztQbb7yhI0eOpBr35MmT2r59u7799lu1bNlSo0aNUqVKlTIcLxDv9caNGzV48GDt3LnT5/ZDhw7p0KFDWrp0qaZOnap33nnHr+ccbOvWrdNTTz2lXbt2+dyekJCghIQELVy4ULfeeqteeuklhYeH6/PPP9dbb72V6udIfHy84uPj9f3332vChAmZBqnBunYBAMgrBLIAABQCxYsX16uvvmqFX57WBdOmTfPpMZsdhw8fVp8+fXz+wW6z2VS3bl2VKVNGSUlJ+u+//2SapkzT1I8//qhNmzbp008/VYUKFTIce+fOnXrvvfd09OhRSVK5cuVUp04dnT17Vtu2bVNycrIkdzj70EMPacaMGVkOCQNl//79OnHihLVfrVq1VMds27ZNd911l0/AVKJECdWpU0fFixdXcnKytm/f7jPOr7/+qsGDB+vjjz/O8Pzbtm3T5MmTUwXkkjsY9Thz5oz69u2rtWvXWrdFRUWpTp06KlOmjBwOh/bs2eOzKNn27dvVt29f/fzzz1mqTI6NjVXbtm21ePFiSe6ALbNA9sSJE/r111+t/R49eljbbdu29fvce/fu9QnJmjZtmuqYVatW6YEHHrCuK8ndD7hWrVoqVqyYTpw4oe3bt1v3m6ap6dOnKyoqSsOHD8/w/KdOnVLfvn2tisGYmBjVq1dPhmFo8+bNOnv2rCTp77//1p133qmvvvoq26GsaZp6/vnn9d133/ncXrNmTVWqVEnJycmKj49XSkqKJGnu3LnaunWrPv/8c7+rF9OTkpKi+++/X3/99Zd1W1hYmOLi4lSiRAnt3r1bBw4cUFJSkh555BG/n+N7772n8ePH+9xWpUoVVatWTSkpKdq2bZtOnTolSfrzzz/Vq1cvTZo0Kd2fB4F4r9euXat77rnHZ8ySJUvq4osvlsvlUnx8vM6cOaMVK1bovvvu8+t5Z8bzPRAfH29V4VeoUEH16tXL8dhbtmzR6NGjrde1cuXKql69uo4fP674+HjrZ8u3336runXryuFwWBXwRYoUUf369RUeHq74+HhrjKSkJD366KP6+eef0/wlVTCvXQAA8hKBLAAAhUSrVq1022236ZtvvpGUO60LHA6HHnjgAZ8w9pZbbtFjjz2mihUrWrcdOHBAY8eO1Q8//CBJ2rp1q5544gl9/vnnioyMTHf8L7/8UpJUo0YNvfDCC2rfvr31Ud9Tp05p/PjxmjRpkiR3EDR+/PiQqTz79ttvffYvrN71BA+eMLZkyZIaMWKErr32Wp+Q3DAMLV68WCNHjrTCvCVLlmj9+vW65JJL0j3/kiVLJEmNGjXS0KFD1bhxYx08eFA//vijTyD7wQcfWGGszWbTwIED1a9fPxUvXtxnvM2bN+uVV17RqlWrJLkr/r799lv1798/S69Ljx49rEB248aN2r59u+rUqZPu8XPmzJHdbpck1a5dW5dddpl138SJE/065/79+9WrVy9rPy4uTq+88orPMSkpKRo6dKgVplWuXFmvvvqqWrdu7fPxcofDoZ9++kmvv/66jh07JkmaOnWqBg4cqHLlyqU7h+PHj+v48eOKiorSk08+qT59+liVlqdOndJHH32kTz75RJK7vcXTTz+tqVOnKiws60s+fPLJJz6B1tVXX62nnnrK53U+c+aMVanp+QXH4MGDNWnSpGy1o/B4++23fcLY66+/Xs8//7zPz4OlS5fqxRdfVEJCQqpq4bT89NNPPmFss2bNNHToUJ/r3263a/bs2Ro1apSOHTumgwcPauDAgZo+fXqqazkQ7/WpU6f0+OOPW2MWLVpUzz77rG655RbrfU5OTtann36qDz74QBs3bsz0efvD8z0wZMgQqyK5TZs2euONN3I89pQpUyRJtWrV0ogRI9SiRQvrvs2bN+u+++7ToUOHJEljx47VmTNnZLPZNGDAAD3wwANW4JqcnKxRo0ZZbXMOHDigWbNm6bbbbkt1zmBeuwAA5CUW9QIAoBB55plnVLVqVWvf01s0u7799lufYOHJJ5/Uq6++6hO+SFKlSpU0atQon36Fq1evtsLhjFSrVk3ffvutOnTo4BOWxMTEaOjQofq///s/67YlS5ZY4V0wLVmyxArXJOniiy9O1ddy5cqV+vvvv6390aNH68Ybb0xVsRwWFqZOnTrpww8/9Ll96dKlmc6jcuXKmjRpkq644goVK1ZMNWvW9AnLz5w5Y4XektS/f38NHDgwVYAlSfXr19f//ve/VMFaVnXs2FGlS5e29r3bEaTlxx9/tLa9q2P9lZycrAEDBljBUZkyZfTBBx+kqs776aeftGfPHknu/rYTJkxQmzZtUvX6jIyMVPfu3fX6669btxmGoWXLlmU6l7CwML3//vu65557fD72HhMTo6eeesrq/yu5qy1nz56d5ee7Z88ejRs3ztq/88479cEHH6QKvYsVK6Z+/frpf//7n/VLkZUrV+r777/P8jm9zz158mRrv2vXrho3blyqnwdt27bVlClTMm0pILmDzpdeesnav/rqq/XFF1+k+mVEVFSUevTooa+//lqlSpWS5K7k9v4+9AjEe/35559r//79kty/2Hj//fd9QnfJ3bZk4MCBeu211zJ93qGicuXKmjp1qk8YK7l/HjzzzDPWfnJyskzT1LPPPqsnnnjC5/srOjpaL730kk+LnD/++CPVuYJ57QIAkNcIZAEAKERiYmJ8KgM9rQu8e51mhXfY0aJFCz3wwAMZHv/II4+oefPm1v7EiRNlGEaGj3nsscdUpkyZdO/v3bu3tZ2cnGwFLXnpzJkzSkhI0IIFCzR48GA9+OCDVg/F8PBwvfDCC6kqHb17xjZq1CjVwjgXql+/vmrVqmXtHzhwINN53XnnnRn2Vly9erUVYEdGRur+++/PcLyiRYv6zNOfOVwoKipKXbp0sfYzCh337NmjNWvWSHK/jt26dcvSuQzD0JNPPmn90iEyMlLjx49Ps33En3/+aW1fc801mS4Y1qFDBxUtWtTa9/f9aN++fbr333PPPT4VwJ4Kxaz4/PPPre/n6tWra8iQIRkef8UVV+juu++29j/77LMsn9Nj9uzZ1rlLlSqlF198Md3FqypWrKhhw4ZlOub06dOtlh0lSpTQa6+9lmGblYsuukiPP/64tT9lyhSrHYRHIN5r718s3HzzzRm20+jevbuuueaaDM8ZKjL6+XvhAnRVq1ZV37590zzWZrPpqquusvZ3796d6phgXrsAAOQ1AlkAAAqZ1q1b+3xU1NO6IKvi4+OtijBJ6tevX6aPsdlsPh9x37dvX4YVumFhYbr66qszHPPiiy/22T958mSm88iqlStXKi4uLt0/TZs2VadOnfTII4/4LGwWERGh4cOHq1WrVqnGfOKJJ/TPP/9o1qxZeuutt/yaR/ny5a1tTw/FjFx55ZUZ3t+2bVutW7dOv/zyiyZPnuxTuZpbc0jLzTffbG17h64X8q6Obdu2bapKy8y89dZbWrRokbX/wgsv6Iorrkjz2DfffFOrV6/WjBkz9PTTT2c6dnh4uE9QldlrYbPZ0g2rvN1+++3W9t9//219VN5f8+fPt7a7dOmSYUsQj+7du1vb27Zty/YvNTxtMiTphhtuyLS/cKdOnVS5cuUMj5k3b561fWF1dXpuuukm66Prx44d0z///ONzf26/1zt27PDpT3zrrbdmOuYdd9yR6THBZrPZdN1116V7f/HixVW2bFlrv3379hm22PD+/k3r53Qwr10AAPIagSwAAIXQM888oypVqlj72Wld4N0nMjw8XC1btvTrca1atfLp87d69ep0j61WrZpiYmIyHO/CCtALV/cOBpvNprZt22ry5Mlp9kn0KFasmOrVq5fpQmQ7duzQtGnTfMIGl8uV6Ry8PyKcnoiICNWsWVOXXnpphscdOnRIv/zyi091YWZzSE/jxo19Fh2aNWtWmsddWHWYFdOmTdOnn35q7ffp08cn7ExLTEyMGjZsqOrVq6d7jGEYio+P11dffeWz2Fpmr0XNmjXTrMy9ULNmzaxt0zRThYkZSUhI8Kne9HeBu7p16/pUgKYXkGfEbrf7LAx3+eWXZ/qYsLCwDH9pYLfbtWHDBmvf3+dTsmRJ1ahRw9pP6/nk5nvt/bMwKioqw97OHs2bN8/xgoqBVqVKlUx//npfN7Vr187w2CJFiljbF34yIpjXLgAAwRDa/xcAAAACwtO64N5775V0vnXBtGnT/A4JPCt6S+6PqhYrVsyvxxUrVkzVqlWzFgLzHudC/lTDXbiIS2YtELKjVKlS6YYsNptNxYoVU0xMjMqXL68GDRrosssuy7Ty70J2u12bN2/Wjh07tGfPHu3Zs0e7du3S1q1brRXKvXmqcNMTExPj07/SH4ZhaMeOHdq6das1h927d+u///6zerBmZQ4Z6dGjh7Xw0M8//6znnnvOpyLu77//tq6R0qVLZ1op7W3lypV6+eWXrf0WLVro+eefz9L8kpOT9e+//2rnzp3Wa7Fjxw5t375dZ86cSXV8Zq9FRguXeatevboiIyOtXyx4V6Fn5sKPgT/11FN66qmn/H68R2JiYpYfc/jwYZ/vPe/2Ghm5sMLd24EDB3x6Qo8dO1Zjx47N8twyez45fa+9x69atapfP0OjoqJUvXp17dixw89nkfcyWqQuLZmFt+m1r5CCe+0CABAMBLIAABRSbdq00a233qpvv/1Wkrt1wYQJE/TII4/49Xjvj1Jn1Kc0Ld7HZ/SRbO/Kp+zq1KmTEhISMj3uiy++SLVwjUdcXJy1mnlui4+P14QJE7Rw4cI0wx9vERERfvf7zSwc8ZaUlKRPPvlEM2fO1OHDh3NtDhnp2rWrRo8eLafTqaNHj2rp0qXq2LGjdb93u4IuXbr4HS7v2rVLjz76qBVoVq9eXePGjfP7Fw1r1qzRxx9/rKVLl2ZYbW2z2WSz2fz+BUBWvkdiYmJ09OhRSdLx48f9flxWjs3tcY4cOeKz7+/1l9HrEujnk1vvdVJSkrWdle87z+Jjocq7otUfGQWumQnmtQsAQDAQyAIAUIg9++yzWrp0qfbt2ydJ+vDDD/1a5EbKWXWk90d+M+o5WNBNnjxZr776apofd4+MjFSNGjXUoEEDXX755Wrbtq1eeOEFrVy50q+x/X1dV69erYcffjjNYNxms6lKlSqqV6+emjZtqlatWmnJkiV6//33/Ro7I+XKlVP79u2tHq+zZs2yAlm73a6ff/7ZOrZHjx5+jXnixAk9+OCD1nOJjo7WBx98kOGicN5Gjx7ts1CdtyJFiqh27dpq2LChLr/8crVv3169e/f2K+zPKu/vraz8UuLCoPyKK67IcqgmKcOP8acnu61CMgraL3w+l1xySbZCzLSqcHPzvQ7Ecw8FOQlYsyqY1y4AAMFAIAsAQCGWXusCT9VsRryDEe/+iv7wrmIqXrx4lh5bUPz6668aMWKEtV+8eHF169ZNV155peLi4lSjRo1UVZ25UZnqbf/+/XrooYes9yMsLEzXXnut2rVrp4YNG6pOnTqpWlF4L5KVUz169LDG81QIFytWTL///rsVqsbFxalRo0aZjuV0OvXYY49ZHwG32Wx66623fHrVZuSrr77yCejKlSunbt26qVmzZoqLi1PVqlVThdxZeT9Onz7t13Gmafq0qMhKZe2Fxw4bNsyvX67khgvP7e/PhLTacaQ35sMPP6xOnTplfXIXyO332nvxsqwsKpjRcy9sgnntAgAQDASyAAAUche2Lti4caMmTJiQaQ/USpUqWdsJCQlWmJaZU6dOWRW5krvnYiDlZoCYm95++21ru2rVqvr66699XtO05PbHcT/++GNrzMjISH3yySdq1apVns3hqquuUpkyZXT06FGdPXtWy5Yt0zXXXKMFCxZYx/hbHTtixAgtX77c2n/sscd0zTXX+PVYu92u8ePHW/uNGjXS559/7hO0pSUrv4jYu3evX8ft2LHDJ/zzXpwqM96r2EvuwD2vQq1q1aopLCzM+lj/tm3b/FrY68Leod4qVqwom81mVQxnpZ9uegLxXtesWdPa3rt3r1JSUjKt7jRN02eRvsIumNcuAADBUHg/IwgAACzPPvusTwD74YcfKj4+PsPHeIctLpfLJwzLyPLly30+ku1P9WNBs3fvXm3dutXaf+CBBzINY5OTk33Cq5y0jPBYsmSJtX3ddddlGsZK0ubNm63tnC6gFhkZqS5dulj7CxYskGEY1rwiIyPVtWvXTMeZNGmSvvnmG2v/xhtv1MMPP+z3PP7++2+flg2DBg3KNKDbsWOHT8/fzN6P9BZnu5D391FkZGS6i8mlpW7duj7z/vPPP/16XFJSkoYMGaJ3331X06dPz1YbhqJFi6pBgwbWvr8/D1avXp3ufTExMapbt6617+/zcTgceu655zR27Fh98803+u+//6z7AvFeX3bZZda20+n0q63Ili1bslRNW9AF89oFACAYCGQBAIDVusDD4XDoiy++yPAx9erV86lunTRpUqbnMU3T57iyZcuqcePGWZ5vfnfo0CGf/djY2Ewf8/XXX/v0qsyN9gUHDx7M0hzWrl2rf/75x9pPq/dtVvXs2dPa/vXXX7VmzRprgairrrpKZcuWzfDxS5Ys0ZtvvmntN2zYUK+//nqW5pCd9+PC74/M3g+n06kZM2ZkeIzD4dDkyZOt/Xbt2mWpj2ZYWJjat29v7c+YMcOvKt4vv/xSM2bM0Pvvv6/nn3/eWlAsq2644QZre/78+T6V8GlZt26dNm3alOExV111lbW9aNEiv6pKf/zxR3333Xf66KOP9OKLL2rbtm3WfYF4r+vVq6c6deqke3xapk6dmukxWZGX/V4DIdjXLgAAeY1AFgAASJLatm2rXr16WfuZhW1hYWG6++67rf0VK1bo448/zvAxH374of766y9r/4477kjVJ7UwKF26tM/+0qVLMzx+xYoVGjdunM9t2V1IKL15LF++PMP3fP/+/Xr66ad9qgNzYw4NGjRQ/fr1JUnHjh3T6NGjrftuvvnmDB8bHx+vQYMGWfOuWLGiPvzwQ79aZ3jL6vsxa9YsTZkyxec2f16LsWPH+oSDF3r77bd97u/Xr1+mY17I0w9acr+ezzzzjOx2e7rHr1+/XhMnTrT2mzRpku1fkvTq1ctaQM1ut+uZZ55RSkpKmseeOnVKzz//fKZj3nnnnYqMjJTkDkKfeOKJDCuN9+7d63MNVa5c2VosTgrce/3ggw9a27/99ptPsH6hP/74w6eiOzd4B/fpveahLpjXLgAAeY1AFgAAWIYMGZJp71hvffr08fkH8Ntvv63nn39eiYmJPsclJibqueee8wkVL7roIt133305n3Q+VLt2bZ/q4ilTpmjixImpwoe9e/fqrbfeUr9+/VLdl5ycnON5tGvXztresmWLnn32Was61ePkyZP6+uuv1b17d+3atSvX5yD5Bq9///23JKl8+fLq0KFDuo85cuSIBgwYYC2WFR0drQkTJmTa+iEtl19+uaKjo639cePGacaMGakC6q1bt+qFF17QU089lepj6/68FqdPn9Ydd9yhefPm+bR7OHz4sJ599ll99tln1m09evTQlVdemeXn0rhxY/Xp08fa//XXX3XXXXdp7dq1PsfZ7XZNnjxZ/fr1swK88PBwDR06NMvn9ChTpoyee+45a3/VqlW6++67tWXLFp/j1q1bpz59+mTaFkVyh+xPPPGEtb9hwwbdeuutWrp0qc974HK5NHPmTPXp08enSvKZZ55RVFSUtR+o97p79+5q06aNtT9y5EiNHj3aJzz2vOYPPfRQjtt9XMg7aP7nn39yvd90XgjmtQsAQF4rfCUpAAAgXTExMRo5cqTfQWlUVJTGjx+ve+65xwrrpk+fru+++05169ZV2bJllZSUpK1bt/qEGtWrV9eECRNUtGjRgDyP/GDw4MF68sknJblbObz55pv68MMPVaNGDRUrVkyJiYnau3evz+tWpUoV62PgF370OjsGDBiguXPnWgHTrFmzNG/ePNWoUUNly5bVkSNHtGfPHp8w2HsOLpdLSUlJmbYVyEzXrl01evRon8rDrl27Zlg9/fLLL/v0i6xdu7Y+//xzJScny263y+l0ZtrXtWvXrurWrZuio6P10EMPWQut2e12DRkyRG+88YZq1Kih8PBwHThwINWiUpUrV7Zuy+z9aN68uXbs2KEjR47oscceU2xsrGrWrKkzZ85oy5YtPh+Db968uYYNG5bheBkZOnSo9uzZo99//12SO6C79dZbValSJdWoUUOnTp3Szp07fYJFm82mF154wa+FuDLStWtXbdiwQZ9//rl17q5du6pOnTqKjY3VgQMHrJ8V4eHh6tixo88ibmm57777tGPHDk2fPl2Se8Gw/v37q1y5cqpdu7bsdrt27dqVKoR84IEH1LlzZ5/bAvlev/766+rfv7/18+6TTz7RF198ofr16ysiIkJbt261PoZ/0UUXyWaz+fS3zYl69epZ2/v27VPnzp1Vt25dnTx5Up9++qlKlSqVK+cJtGBeuwAA5CUCWQAA4KNdu3a65ZZbrPAjM1WqVNG3336rF198UfPmzZPkDhjTqn6z2Wz6v//7Pz3//PM5DvHyuy5duujgwYN6++23rTDu5MmT2rhxY6pjS5UqpWeeeUaxsbF64IEHJEnbt2/PcRhas2ZNffDBB3riiSeshY7sdnuaIVFERITuuusuPfjgg2rdurVV4ffXX3/puuuuy/YcJHcv4Q4dOvgEcz169MjwMRf2ity4cWOar11GmjZtam3ff//9OnLkiE+P42PHjvksAOVRqVIlvfTSS9q/f79efvllSe7gyOVyKTw8PM1zVa5cWUOHDtWjjz6qffv26dChQ6mCPZvNpp49e+rFF1/MUu/YC0VFRWnChAl699139dlnn1lVhAcOHNCBAwdSHR8bG6vhw4fr2muvzfY5vT333HOqWrWq3nrrLStk3759u7Zv324dU7RoUQ0fPlwpKSmZBrKS9OqrryouLk7jx4+3Qs0jR46kquiW3L9Yevrpp3X77benOVag3uuKFSvq66+/1qBBg6xWCCkpKakqPOvWrasPP/zQ+oVMbrj22mvVsGFDqyfv4cOHdfjwYUnuhfhatGiRa+cKpGBfuwAA5BUCWQAAkMrQoUO1bNmyVFVi6SldurTeffddbdq0SbNmzdKKFSu0b98+nTx5UkWLFlWtWrXUokUL9ejRQxdffHGAZ59/3HvvvWrfvr2mTJmilStXKiEhQWfPnlV0dLTKlSunuLg4tWjRQt26dVNMTIzOnDmj4sWL6/Tp0zIMQ99//32O2z60atVKP//8s6ZOnarffvtNO3bs0KlTpxQVFaXSpUurTp06uuyyy9StWzdVr15dktSiRQstX75ckrsiOqeBrOQOlDzB3CWXXKK6devmeMyssNlsGjp0qDp37qxvvvlGa9asUWJioux2u6Kjo1WxYkXFxcWpbdu26ty5s4oUKaJ9+/Zp5MiRMgxDx48f1y+//KIbb7wx3XM0btxYM2fO1OTJkzVv3jzt3r1bLpdLFStWVKtWrXTLLbfkWg/M8PBwDRo0SHfccYd++OEH/fHHH9q+fbsVOpYtW1YNGjRQx44d9X//938qXrx4rpzXo2/fvrr66qs1ZcoU/f7779q9e7ckd2jZtm1b3XHHHapTp06q/qwZufvuu9W9e3f98MMPWrZsmeLj45WUlCTDMFSqVCnFxcWpXbt26tatm9XLNi2BfK9LliypiRMn6rffftOMGTP0999/6/DhwypevLhq1aqlzp076/bbb89R4J6WyMhIffnll3r//fe1aNEiJSYmyul0KjY2Nt+1Lwj2tQsAQF6wmZl9lgsAAAAIsOHDh1srz48YMUK33XZbkGcEAAAABAaLegEAACCo7Ha75s6dK0kqXry4unTpEuQZAQAAAIFDIAsAAICgmjVrlvVx5O7du/MRZAAAABRoBLIAAAAImn/++UejRo2S5F44rF+/fkGeEQAAABBYLOoFAACAPPPPP/9oyJAhqlixopKSkhQfH2/d98ADD1gLhwEAAAAFFYt6AQAAIM8cOXJErVu3TnV7x44dNX78eEVGRgZhVgAAAEDeoUIWAAAAeaZcuXJq3bq11q9fL6fTqRo1aqhnz5668847FR4eHuzpAQAAAAFHhSwAAAAAAAAA5BEW9QIAAAAAAACAPEIgCwAAAAAAAAB5hB6yyJHVq1f77IeFkfEDAAAAAAAURoZh+Ow3a9YsSDMJbQSyyFUXfuMBAAAAAAAAOI9yRgAAAAAAAADII1TIIlfRsgBZlpwseVdWh4VJ0dHBmw/yLe8KfX4WITu4hpBTXEPIKa4h5AauI+QU1xBygk9O+4dAFjkSFhbm8812ySWXKCKCywr+M+vXl23LlvP7cXGybd4cxBkhP3I6nVq7dq21z88iZBXXEHKKawg5xTWE3MB1hJziGkJO/f3331ZORKCfPl4ZAAAAAAAAAMgjBLIAAAAAAAAAkEcIZAEAAAAAAAAgjxDIAgAAAAAAAEAeIZAFAAAAAAAAgDxCIAsAAAAAAAAAeYRAFgAAAAAAAADyCIEsAAAAAAAAAOQRAlkAAAAAAAAAyCMRwZ4AgMLNNW+e/l23ztpv0KQJP5gAAAAAAECBRe4BILiqVpX98GGffQAAAAAAgIKKlgUAAAAAAAAAkEeokAUAAAAA5AumacowjGBPI2S5XK5U+zabLUizQX7ENVS4hIWF8f4GCYEsAAAAACAkmaap5ORknThxQqdOnZLT6Qz2lEKaaZo++9u2bSNsQZZwDRU+ERERiomJUcmSJRUdHc37nUcIZAEAAAAAIcdut2v37t1yOBzBnkq+EhHBP/ORM1xDhYvT6dSxY8d07NgxRUZGqkaNGoqKigr2tAo8esgCAAAAAEIKYWz22Gw2RUREWH+odENWcQ0Vbg6HQ7t375bdbg/2VAo8fu0BIKhsP/ygchs2nN/fsUO65ZYgzggAAADBZJpmqjC2ePHi1sdpw8PDgzi70OZp8eDBx4+RVVxDhYvL5bLawpw+fVrS+VD2oosu4r0PIAJZAEEV9sILqrVli7VvxsURyAIAABRiycnJPmFsxYoVVbZs2SDOKP8wTdMnsA4PDydQQZZwDRUu4eHhioqKUunSpZWUlKTExERJ7lA2OTlZxYsXD/IMCy5aFgAAAAAAQsaJEyes7eLFixPGAkAeKFu2rE8Ae/LkySDOpuAjkAUAAAAAhIxTp05Z2yVLlgziTACgcPH+mUsgG1gEsgAAAACAkGCappxOp7UfHR0dxNkAQOHi/TPX6XTKNM0gzqZgI5AFAAAAAIQEwzB89lnACwDyzoU/cy/8mYzcQyALAAAAAAAAAHmEQBYAAAAAAAAA8giBLAAAAAAAAADkEQJZAAAAAAAAAMgjBLIAAAAAAAAAkEcigj0BAAAAAACQOyIjI4M9BQBAJghkAQAAAAAFwrEzDh074wj2NILGlCmX02Xth0c4VKZYlEoXI6RF/uBwOPilAgoFAlkAAAAAQIFw7IxDO5OSgz2NoHIZXoFsWLhsZW15Hsh+//33Gjp0qLU/YcIEXXXVVX4//sCBA+rQoYO1v2XLltycXp7o1KmTEhISJEkLFy5UtWrVgjyj3Dd+/Hi99957kqSBAwfq0UcfzfZYhw8f1ltvvaVWrVqpe/fuqe4fMmSIZsyYIUl6/fXX1aNHj2yfCwgFBLIAAAAAgALlz11H5TTMYE8jCEw5HO4K4Ygwm9pdXDHI83F74YUXNGvWLJUpUybYU0EImjNnjl588UWdPHlSLVq0CPZ0gDxBIAsAAAAAKFCchlloA9lQfN6HDh3SSy+9pHHjxgV7KghBv/32m06ePBnsaQB5KizYEwAAAAAAAAXb3LlzNXPmzGBPA/nUG2+8oS1btmjLli20K0CBQCALILgiI2VERVl/RAN3AAAAoEAaOXKkEhMTgz0NAAg6AlkAQeX6+2/9/ccf1h/X338He0oAAAAAckm9evVUunRpSdKJEyf03HPPBXdCABAC6CELAAAAAAAColy5cnrooYc0aNAgSdLSpUs1efJk3XHHHbl2jm3btunbb7/VypUrlZCQoOTkZJUuXVq1a9dW+/btdeutt6pUqVK5dr4jR45o8uTJWrx4sXbs2CHDMFS5cmV16tRJffv2VcWKWVtMbd26dfrhhx+0YsUKJSYmKiUlRWXLllXDhg11zTXXqGvXror045OEDodDc+fO1bJly7Ru3TodOXJEp06dUrFixVS6dGldcskl6tSpkzp37qzw8PAMxzIMQ/PmzdMvv/yiDRs26MSJEypTpoyaNm2qPn36qFWrVll6jmnp1KmTEhISfG4bOnSohg4dKkl6/fXXrfYEQ4YM0YwZM1Ld7hEXFydJuvrqq/XBBx/oxIkTmjp1qubNm6c9e/bI4XCoQoUKateunfr27avq1atbj/333381efJk/fnnn0pMTFTRokVVv359de/eXT169JDNZsvweZimqfnz52vevHn6559/dOTIEdlsNsXGxqpZs2bq0qWL2rRpk7MXCwUOgSwAAAAAAAiYzp07a+HChZo9e7YkafTo0Wrbtq1q1qyZo3GTk5P1xhtv6Ntvv5Vp+i5mdujQIR06dEgrV67UhAkTNHToUPXs2TNH55OkJUuWaNCgQTp9+rTP7Tt27NDEiRM1bdo0vf32237Pf9iwYdbr4u3AgQM6cOCAFi1apI8++khjx45V48aN0x1rxYoVGjJkiPbt25fqvpMnT+rkyZPas2eP5syZo48//lgTJkxQlSpV0hzr6NGjGjRokNatW+dz+8GDB/XLL7/ol19+Ue/evVW2bFm/nmdeW7NmjZ544olU7TF27typnTt36scff9SHH36o5s2b6+OPP9a4cePkdDqt4+x2u1auXKmVK1dq8eLFGjdunMLC0v6A+a5duzRo0CBt3Lgxzft27dql77//Xm3atNHo0aND9jVD3iOQBQAAAAAAAfXiiy9q5cqVOnjwoJKTk/Xss89q8uTJmVZqpiclJUUPPvigVq5cad3WoEEDtWrVSqVKldK+ffv066+/6uDBgzp58qSee+45HThwQI888ki2n8O8efM0ePBgK7yLjY3VtddeqwoVKmj//v1asGCBjhw5okcffTTTqsrk5GTdeeedVpAXFham1q1b65JLLlGRIkW0d+9eLV68WIcPH9bu3bt1xx13aOLEiWrevHmqsVavXq3+/fvL4XBIkipVqqT27durSpUqstlsSkxM1B9//KGdO3dKkuLj4zV48GBNnTo11VhHjx5V3759tXfvXklSZGSkrrrqKtWvX192u11//PGH1q9frylTplitKLJrwIABOnnypObMmaMNGzZIcof3nuD5kksuyfKYe/bs0YMPPqgTJ06ofPnyuvbaa1W+fHnt2rVLc+fOld1u14kTJzRkyBD16tVLY8aMUVhYmK666ipdcsklcjgcWrRokeLj4yVJv/zyi7755hv17t071bni4+N111136dixY5Kk6OhoderUSXXq1JFhGNq6dauWLFmis2fPatmyZerVq5emTZtGKAtJBLLIZZ6/dEzTzPQvIAAAAABA4VCqVCm9+uqruv/++yVJf//9t/73v//pwQcfzNZ4r7/+uhXGFitWTK+99po6d+7sc0xKSopGjx6tL774QpI0fvx4NWzYUB07dszy+U6cOKGXXnrJCmNvuukmjRw5UsWKFbOOeeaZZ/T8889r7ty5mY43fPhwK4ytW7eu3nnnHV188cU+x5w9e1ZvvfWWvvrqK509e1ZPPPGEfvrpp1TtF1566SUrjO3atateffVVRUVF+RxjmqY+/vhjjRkzRpL79d+4caMaNWrkc9yYMWOsMLZSpUqaMGGC6tevb90/ePBg/fDDD3rhhResIDK7br31VknS1q1brUC2Xbt2qdoRZIUnSO3Zs6deeukln9fhrrvuUu/eveV0OrVnzx6NGTNGZcuW1YQJE9SkSRPruMcff1zPPPOMZs2aJUmaNm1aqkD2zJkzevTRR63X4LrrrtPIkSNThdSJiYl68skntWrVKu3du1dPP/20Jk6cmO3nh4KDRb0QEA6XmflBAAAAAIBCo3379rr99tut/fHjx2vz5s1ZHmfXrl2aNm2atT969OhUYawkFSlSRM8//7xuu+02Se5QcvTo0TIMI8vn/PTTT5WUlCRJuuyyy/Tmm2/6hLGSFBMTozFjxqhp06YZjvXvv/9q5syZkqTSpUtr0qRJqcJYSSpatKiGDRtmBciHDh3Sl19+6XPMunXrrBCyfPnyGjlyZKowVnIXTz344IO66KKLrNvWr1/vc8zOnTs1ffp0SVJERITeeecdqzert+7du1t9XkNRo0aN9Morr6R6HZo0aaKrr77a57aRI0f6hLGSu1r56aeftvY3b94su93uc8y3335rVRxfccUVeuedd9KsGK5YsaI++ugjVahQQZK7h/KqVauy+9RQgBDIIiCc2fgLDgAAAABQsD377LOqUaOGJPciVE8//XSqsCszs2fPtipVW7ZsqWuuuSbD45966ilFR0dLkv777z+tXr06y/OeP3++tf3QQw+l21M0PDzcWsAsPd6tAm677TaVL18+w+O92yz8+OOPPveVLl1aw4YN07333qsnnnhCRYsWzXAs72rXkydP+ty3YMECqxdvx44dVa9evXTH6dOnj6pWrZrhuYKlb9++6b4/DRs2tLZjY2NTBbQeFStWVMmSJSVJLpdLx48f97nf+z0cMGBAhq03YmJidM8991j7P/zwQ2ZPAYUAgSwCggpZ+Ms2dqyqjh9v/bGNHStJMk1CfQAAAKCgiY6O1htvvGEFZvHx8Xr33XezNMaff/5pbd94442ZHl+yZEm1a9fO2l+xYkWWzrd//379999/kqSoqCi1bt06w+NbtGiRYX9V7763F7YMSEvDhg2tQHn37t06ePCgdV+NGjV055136tlnn1WvXr0yHOfgwYM6evSote+9kJUk/f7779a29+uVFpvNpmuvvTbTuQfDhRWv3rzD70aNGmXYarF48eLWdkpKirV9+PBhbd++3WeczDRr1sza/uuvvzI9HgUfPWQREA6DQBb+CZs4UZW2bLH2zbg46emnJcMhhRcJ4swAAAAABEKzZs3Uv39/ffLJJ5KkiRMnqlOnTrr88sv9evzu3but7QYNGvj1mIYNG2revHmpHu+PhIQEa7tWrVqKjIzM8HibzaZ69er5BK8eLpdLO3bssPYfe+yxLM1Fkvbt22d9BD69+3ft2qW9e/dqz5492rZtmzZv3mz1hvXwVMN6eD/POnXqZDoP72rbUFKxYsV07/OunPVUwPpzrLetW7f67Lds2TILs3O/PwCBLALC6aK6ETljuhyyEcgCAAAABdJjjz2mJUuWKD4+XoZh6Nlnn9WPP/5oVYJmxHsxqTJlyvh1Pu/jsroY1eHDh63tzEK8zOZ1/PjxVEFoVqU1/507d+rTTz/V/PnzrV63aQkPD5fL5UrzviNHjljb/jxPf1/7vHZhb9/0ZNRmICM5XczMbrcrOTnZr2sdBReBLAKCClnklGlkrY8UAAAAgPwjKipKb731lm655RY5HA7t3r1bb7zxhkaMGJHpY7MTaHqHkOlVPuamtBbWklK3CXjggQcybG+Qltq1a/vsT58+XS+99JIcDkeqOdSsWVP16tVTkyZN1LJlS02aNEkzZszI0vnSk95zDLaM2hDkBu9rqUSJEnrooYeyPEZEBHFcYccVgIBwUCGLnHI5Mj8GAAAAQL5Vv359PfrooxozZowk6ZtvvtE111yT4WJSklSqVCmrj+rRo0etRcIy4t07tUSJElmaZ2xsrLXtb3XkhQtmeZQqVcpn/4YbbvCrB2l61qxZoxdffNEKCZs1a6Zbb71VTZs2VY0aNVKFz2fOnEl3rNjYWO3atUuSu5K3WrVqGZ77xIkT2Z53fuZdPWwYhvr37x/E2SC/YlEvBISTClnkkGkQyAIAAAAF3X333afLLrvM2n/++edTrWh/oVq1alnb//77r1/n2bRpk7Vds2bNLM3RO5jcuXOnzp49m+ljtm3blubtRYoU8elxemE/0vSk14ZgwoQJVhh71VVXafLkyerevbtq1aqVZiWw9zgXVhp7P8/4+PhM55TecyzovK+f06dP+9UT1m63pxvSo3AikEVAOFwEssgZWhYAAAAABV94eLjeeOMNq+/nwYMHNXLkyAwfc8UVV1jbc+bMyfQcJ06c0LJly6x97xXv/VGxYkWritXpdGrhwoUZHr9t2zbt2bMn3fuvvPJKa3vu3LmZnn/z5s1q1aqVLr30UnXu3NknVF2zZo21feutt2b4cf3k5GStXbvW2r8wkO3UqZO1vWDBgkzntWTJkkyP8UegWwzktpo1a/qE6p7F4jIydepUNW/eXFdccYUGDBgQyOkhnyCQRUDQsgA5ZdKyAAAAACgUatWqpaefftraX7VqVYbH33zzzdaCTCtWrMg0PBwzZoz1Uf1KlSr5BLr+uummm6ztd999N8OP/o8bNy7DsXr27GltL1682CcsvpBpmnrrrbckSWfPnlXJkiVVtmxZ637vvrEZLeYlSW+99ZZSUlLSfKwkXX/99YqMjJQk/fnnn1q+fHm6Y/36668+4W5OeFfyprfgWKjxfg8/+eQTq4VGWo4ePaqPP/5YkvuXA5m15EDhQCCLgKBlAXKMlgUAAABAodGnTx+1adPGr2OrV6+uW265xdp/6qmn0qyUtdvtGjVqlKZMmWLdNmzYsGwtqHTHHXeoTp06ktxtCx544AEdOXIk1flee+21TCsmW7VqZT1X0zT12GOPpRkqJycna/jw4Vq6dKl12+OPP+5zTP369a3tCRMm6NChQ6nGOXnypF544QV9/fXXPrdf2HohNjZWDz74oDWvZ5991ufcHsuWLfMJ0HMqJibG2k5ISMi1cQPp7rvvtnoLHzlyRH379k2z/cT+/fv10EMPWe9L6dKl1a9fvzydK0ITi3ohIKiQRU6ZhlOmachm4/dGAAAAyJqIsPz1EejcZJ577vntNbDZbHrttdd00003+bVY1PPPP68tW7bon3/+0ZkzZzRo0CB98sknatWqlUqWLKn9+/fr119/VWJiovWY+++/X9dcc0225hcVFaVRo0apX79+OnXqlFauXKnrrrtO1113nWrWrKmkpCQtWLBACQkJioiIUOXKlTNsWzB69Gjddttt2r17t06dOqVHHnlEjRo1UsuWLRUTE6OEhAQtWrTIp+p1wIABatWqlc84/fr1099//y1J2rNnjzWn6tWry263a+fOnVqyZIkVvkZGRlqVsWktUPbggw/qjz/+0Jo1a3Tq1Cndd999atmypZo1ayabzabVq1dblbO1a9fWjh07svV6evPuXfvpp5/KbrerRIkSuuKKK9S8efMcjx8IZcqU0bhx49S/f3+dOXNG27dvV7du3dSmTRs1btxYNptN27Zt08KFC63XOzIyUm+++abKlCkT5NkjFBDIIiAcVMgix0zJcErhUcGeCAAAAPKZljULb+DhMvLHR77TUqlSJb3wwgt65plnMj22SJEi+vzzz/Xyyy9rxowZMk1TmzZt8lm8y6N48eIaPny4unXrlqP5NWnSRFOnTtWDDz6ohIQEnTp1St9//73PMVFRURo5cqQWLVqUYSBbtmxZffvttxoyZIgWL14sSdq4caM2btyY5nN94okndO+996a67/rrr9ejjz6q9957T6ZpKjk5WT/88EOa57zxxhvVrVs3q4fphg0bUh0TGRmpDz74QCNGjLCqjv/880/9+eefPsd16tRJPXr00MCBA9N9jv668cYb9d577+nYsWNKSUnRxIkTJUl33nlnyAaykrsX8ZQpUzR48GBt375dLpdLv/32m3777bdUx1aoUEFvvPGG31XgKPgIZBEQhmnKZZgKz2e/lUVoMQ2HbASyAAAA8FPpYpGqVTY62NMIGlOmXM7zgWx4RLhKF4sM4oyyrlu3blq4cKFfCyUVLVpUr7/+uvr27avvvvtOK1as0IEDB3Tq1CmVKFFC9erVU/v27dWzZ0+fvqs5UbduXc2ZM0fTpk3Tzz//rPj4eJ09e1YVKlRQy5Ytdc8996hevXpatGhRpmOVKVNGEyZM0OrVqzVr1iz99ddfSkxMVHJysmJiYlS7dm21atVKvXr1UpUqVdIdZ+DAgWrXrp2+/vprrVmzRomJiTIMQ8WLF1eNGjXUuHFjde/eXZdeeqnsdrvKlCmjo0eP6r///tP69et1ySWX+IwXFRWlV155RV27dtXMmTO1Zs0aHTlyRDExMapXr55uueUWde3aVb/++muOX09JKl++vKZOnapx48Zp1apVOnbsmIoWLZphn95Q0aBBA82ePVvz5s3TggULtHbtWiUlJcnhcKh06dKKi4tTp06d1K1bN5/WDIDNvHBZPSAL/v77bxnG+fYETZs2VXh4uBZvO6yWNcqoaGR4EGeH/MCsX1+2LVvO78fFybZ5s1IS1yiidB2FFykdvMkh33A6nT6LClx66aXZ6g2GwotrCDnFNYSc4hpyc7lcio+Pt/br1atnLd6EzJmm6bNQU2RkZL5bwR7B5amy9YiOjuYaKkRy42ewd04UFhamyy67LFfnWFAUvr/hkWdY2As5xsJeAAAAQJZcGMgCAEIPq+UgYBwuAlnkhCnT5Qz2JAAAAAAAAHIVgSwCxunVygDIMtOkQhYAAAAAABQ4BLIIGCpkkVMmgSwAAAAAAChg6CGLgHFQIQs/mHFxOuO1tmDRuDi5W8abBLIAAAAAAKDAIZBFwDipkIUfjO++078XrChsle4TyAIAAAAAgAKGQBYBQ4UscsKUKRks6gUAAAAAAAoWesgiYOghixwx6SELAAAAAAAKHipkETBOg0AWOWFKLipkAQAAAABAwUKFLALG4aJlAXLClGk6ZZoE+wAAAAAAoOAgkEXA0LIAOWaKPrIAAAAAAKBAIZBFwNCyADlyrjKWPrIAAAAAAKAgoYcsAsY0TTldhiLCyf2RvrBHH9VF//57fr9BA+nDD88fQCALAAAAAAAKEAJZBJTDMBURHuxZIJTZfv1VpbdssfbNAwc8W+7/EsgCAAAAAIAChNJFBJSTPrLIIQJZAAAAAABQkBDIIqAchhHsKSC/OtdDlkW9AAAAAABAQUIgi4ByUCGLbDvXssBFhSwAAAAAACg4CGQRUE4qZJFDtCwAAAAAAAAFCYEsAooKWWSfp2UBgSwAAAAAACg4CGQRUA4XFbLIHk8LWZMesgAAAAAAoAAhkEVAOQ0qZJFdVMgCAAAAAICCJyLYE0DBRssC5BQ9ZAEAAAD/RUZGBnsKAIBMEMgioBws6oVsc4f5puGUaZqy2WxBng8AAABCnevsMRkpx4I9jaByOc+3/LJFRCisSGmFFy0dvAmFOIfDQYhdyPCeIxQQyCKgnFTIIrs8l45pSqZTsvEXJgAAADJmpByT88SuYE8jqFyG6/xOWLgiSirPAtlJkybp9ddflyRVrlxZixcv9utxXbt21ZYtW6z94cOHq0+fPpk+7qefftLgwYMlSWXLltUff/whm82mFStW6O6775YkXXnllfryyy/TfPzy5cv1yiuv6Keffkrz/ri4OGvbe36hItTnlxuGDBmiGTNmSJJef/119ejRI9tj7d69W6+++qruvfdetWjRItX9d911l1auXClJ+uKLL9I8BsgtBLIIKCpkkR3m+RW9JFuYTMMpWxiBLAAAAPyTsv/PQrk4rCnJ4XA/b1tYhErUaJun52/durW1vX//fu3bt09VqlTJ8DGJiYmpwsTffvvNr0B2xYoV1nabNm2y9Km6QYMGac6cOX4fj/xt0qRJevvtt2W323XvvfcGezoAi3ohsJyGeT5cA/zmaVdwrn+siz6yAAAA8J9pOCXTVUj/OCXTGZRAul69eqpQoYK1/9dff2X6mCVLlqS67c8//5Tdbs/0sd6BbLt27fycpRthbOGycOFCv64pIK8QyCKwTHcoC2SHJ5BlYS8AAAAgf2jTpo21nZVA1maz6aqrrpIknTlzxidsTcvBgwe1c+dO67HegWyLFi20ZcsWbdmyJd12BcCFvvzyS+u6oV0BAo1AFgHjiWEdLtoWIIs8VdUu928wCWQBAACA/MG7bcHq1aszPNZut2v58uWS3NW1nTt3tu5Lq3LWm6fXpyQ1bNhQZcuWzc50ASAoCGQRMJ4g1kGFLLLJCmILYf8vAAAAID/y7uW6bds2HT16NN1jV69erdOnT0tyB7nt2rVTWJg7pvjtt98yPI93IJvVdgUAEGws6oWAcRqmosIlp4tAFukzb7hBR2vUsPZLN2wom6eHrIuWBQAAAEB+Uq5cOdWvX1///vuvTNPUmjVrdPXVV6d5rHfo2q5dO5UtW1aNGjXS+vXrtWvXLu3cuVO1atVK87EZ9Y9dsWKF7r77bknSlVdeabUt8L7dW1xcnLV94QJj3lJSUjR16lT98ssv2rZtm06fPq3Y2Fg1aNBAN998s6655pp0H5tVe/bs0eTJk7V06VLt2bNHYWFhql69uq6//nrdfffdKlGiRJbG++OPPzR79mytXr1aBw8elGEYKleunC699FLdcMMNuu666/xaFO3MmTOaNWuWli9frk2bNuno0aM6ffq0ihcvrrJly6pp06a6/vrr1bFjx0zHstvt+u677/Tzzz9ry5YtOn36tMqXL68rr7xSd999txo3bpyl55gW7/fWw/sa+OKLL6z2BHfddZcV9HvfLkl79+61ruO7775bzz//vBITEzVlyhQtXLhQCQkJstlsqlKlijp16qS77rpL5cuXtx6/atUqTZkyRX///bcOHTqkmJgYNWrUSL179/brunE6nZo1a5YWLFigjRs3KikpSZGRkapYsaKuvPJK9ejRQ02aNMnei4SgIJBFwDhchhQZTssCZMgYPVo71q619ps2bWoFsu4FCQyJQBYAAADIN1q3bq1///1XkruPbHqBrKctQXR0tK644gpJ7nB1/fr11v1pBbLe/WNLlCihpk2b5u4TSMOmTZs0cOBAJSQk+NyekJCghIQELViwQFdffbXefvttFStWLEfnmj59ul566SU5HL7/DvL0N/3mm2/0wQcf+DXWkSNH9NRTT+mPP/5IdZ9n7nPmzFGjRo00btw4VatWLd2x5syZoxEjRqRZ9Xz8+HEdP35cO3bs0IwZM3TllVfqvffeU6lSpdIca/fu3XrggQe0Y8cOn9v379+vH3/8UbNnz9ajjz7q13MMhgULFmjo0KE6ceKEz+3x8fGKj4/XDz/8oE8//VS1a9fWa6+9lqqX8dGjR7V06VItXbpUffv21XPPPZfuudatW6ennnpKu3bt8rk9JSVFp06d0rZt2zRlyhR16dJFI0eOVHR0dO49UQQMgSwCxnGuMpaWBcgy8/w1YxoOKmQBAACAfKRt27aaOHGipPT7yO7du1fbtm2T5F6EKyoqSpLUvn17K2xcsmSJ+vbtm+qx3tWxrVu3VkSEf9FGjRo19Mwzz0iS3nzzTet2z20ZufPOO3X69GkVK1ZMV199tWrXrq2UlBT9/vvvVvi8cOFCjR49WsOGDfNrPmmZNGmSXn/9dZ85d+zYUWXKlNGuXbs0f/58JSYmqn///pmOdfDgQd1+++1WiBwZGakOHTqofv36CgsL086dO7V48WKdOHFCGzdu1C233KIpU6aoYsWKqcaaM2eOBg8eLPPcv9Vq1aqlNm3aqGLFinK5XNq3b59+++03JSYmSnK3lHj55Zc1ZsyYVGPt3LlTvXv3VlJSkiRZr+lFF12kkydPasmSJdq2bZveeecdlSlTJusvohfPeztlyhTt2bNHknT77berxrlPadbw+rSmv/755x9NmTJFDodD1apVU8eOHVWqVClt3bpV8+fPl2EYOnDggF544QU1atRIX375pSIjI3XNNdeoXr16OnXqlObNm6e9e/dKkj7//HO1bdtW7du3T3Wu5cuXa8CAATp79qwkqUyZMurYsaOqV68uh8OhjRs3atmyZXI6nZo9e7Z27dqlyZMnq0iRItl6vZB3CGQRMM5zQSwtC5B1ngpZ0x3IuughCwAAAOQXzZs3V9GiRXX27Flt2rRJZ86cSVU16r1ol3cQ1aRJE5UuXVrHjh3TqlWrlJycnKriL7v9YytXrmwFmd6BrD/h5unTp9WhQweNGjXKJyR88skn9fbbb+vjjz+WJE2dOlWPPPJIthYZ27Nnj0+A2b9/fw0ePNgncH7qqac0aNAgn9cgLaZpatCgQVYY27x5c40ePVqVK1f2Oe748eMaNmyY5s2bp2PHjumxxx7T5MmTfc6ZnJysV1991QpjH3jgAQ0aNMjq9+vhcDj02muv6euvv5YkzZ07Vy+88EKq12LEiBFWGFu/fn19+OGHqlKlinX/008/rYkTJ2r06NEZ9iD2h+e9Xbx4sRXIdu7c2acdQVatW7dOkvTwww/r0Ucf9XkdFixYoEceeUSStGbNGq1Zs0Y1a9bUxx9/7FPt/dhjj+mBBx6wfrkwbdq0VIHswYMHNXjwYCuM7dOnj5555plU30vbtm3T448/rq1bt2r9+vV69dVXNWLEiGw/P+QNFvVCwLgMU4YpOQxaFiAHDCctCwAAAIB8JCoqSs2bN5fkDun++eefVMf8/vvv1rZ3EBUeHq7WrVtLcvcYXb58earHBmNBr7i4OL3//vtpVmwOGjTI+qi/0+nUmjVrsnWOd999VykpKZKkG2+8Uc8880yq6t/y5cvro48+yrC1gOSu1v3rr78kuatZP/nkk1RhrCSVKlVKY8eOVYMGDSRJW7du1dy5c32OWbx4sQ4fPizJHaAOHjw4VRgruStwhw4dqpIlS0qSXC6XNm7c6HPM8uXLtWzZMklSyZIl9cknn/iEsZIUFham+++/36+gPFiuueYaPf7446leh2uuuSZV79tx48alar1RtGhRPf7449a+J+T19r///c8Krrt06aLhw4en2Q7joosu0scff2zdN336dCt8RugikEXAmJKchmG1LgD8d25RL5m0LAAAAADyoTZt2ljbF7YtsNvt+vPPPyVJderUSRUuege03pW0kpSYmGj1j61bt64qVaqUm9NOV79+/RQZGZnmfWFhYWrZsqW1f2GfWX84HA79+uuv1n5G/VOLFy+uhx9+OMPxpk6dam3fe++9GfYVDQ8P14ABA6z92bNn+9xfp04dDR06VHfffbcGDhyY4eJfUVFRqlOnjrV/8uRJn/t/+eUXa/vWW29VhQoV0h3rkUceCdl+qP369Uv3voYNG1rbTZs2tcLuC9WrV8/a9gSvHk6nU9OnT7f2Bw4cmOF8qlSpoh49ekhyB+GzZs3K8HgEH4EsAsrhMuWkQhZZ5cnwTVNyEcgCAAAA+U1GgeyKFSt05swZSVKHDh1SPbZt27ZW6Ld06VKf+4JRHStJzZo1y/D+8uXLW9unT5/O8vhr1661wsvq1avroosuyvD4a6+9Nt1g1OVy+bzmjRo1yvT83s9v3bp1cjrPt42rX7++7rnnHj3//PO69tprMxxnz549Sk5Otva9x5F8K6M7duyY4VjFixf3uY5Chc1m0yWXXJLu/d7XQkavffHixa1tu93uc9/GjRut6yg6Olq1a9fOdF7e72F6vZsROughi4ByuKiQRXb4Lurl7iXrlC2MH1kAAABAfhAXF6fY2FgdOnRI//zzj5xOp/Xx+/T6x3rExsaqQYMG2rRpkxISErRnzx5Vr15dUvAC2cx6wnq3FnC5XFke37PAkyRdfPHFmR5fsmRJValSJc1q3H379vmEoj179szSXM6ePatjx475BIveTNPUnj17tHv3bu3evVt79uzR9u3btWnTJh08eDDVsd7b+/fvt/YzC50ldxg8f/78LM0/0EqXLp3holnebQw87RsyO+5CW7dutbaTk5MVFxeXpTlmp0obeYt0AwHlNEx6yCJDYV26qNHmzef369eXOfuHc3vuIFYSgSwAAACQz7Ru3Vo//vijkpOTtWnTJjVp0kSS9Ntvv0lyV/55es1eqF27dtq0aZMkd9/RCwPZjB4bCDExMQEd/8iRI9Z2RiGetzJlyqQZvOV0ISzJvdjXhYHshg0bNGnSJC1evDhVKwJv4eHhaYbSR48e9amY9ed5ptWzN9jS6uOanvDw8Gyd49ixY9l6XG49HoFHuoGAcrhMOamQRQZsO3eq6K5d1r5ZtKi8K2StBb0Mh6SieTo3AAAAANnXpk0b/fjjj5LcH6Fu0qSJdu7cqV3n/v+/RYsWioqKSvOx7du314QJEyS5A9lbb73Vp3/slVdeme5jC4v0nv+FYehTTz2VYTWmN9M05XA4UlUEv//++xo/frxPxavkDsZr1aqlevXqqUmTJmrdurVefPFFn0rmnAjF9zijHrq5xfs9rFq1qu64444sPT6jCl6EBgJZBJTTMOQyTBmGqbCwwP/QQgFh/SVvWv1j6SMLAAAA5C+tW7eWzWaTaZr6559/JPn2hE2rf6xH06ZNVaJECZ08eVIrVqyQJK1atcq6Py/bFeSF2NhYa9vf6sb0qlQvrDzt1auXSpcu7deYpmn6tDuQpDlz5ujdd9+19jt27Kju3bvrkksuUZUqVVIFlJ7+wBcqU6aMIiMj5XC4/213/PjxTFtBnDhxwq95FzTe72Hx4sXVv3//IM4GgcCiXggoT/9Yh0GVLLLB9ApiXQSyAAAAQH4SGxtrrSS/fv16SdKff/5p3Z9W/1iPiIgItW7dWpL74/wHDhwo0IFstWrVrO3NXi3d0uNwOKxK4wtVrVpVkZGR1r53P9L0GIaRbquDDz74wNru3bu3PvroI91www2qWrVqmtWiSUlJ1rZ3Ra3NZlPVqlWtfX+e57Zt2zI9piCqWbOmtb1r165Ui36l5ezZs6nCdIQuAlkElKd/rNNFH1lkxfkKWVkVss70DwcAAAAQktq0aSPJvcjQoUOHrFD1oosu8gnn0uIduv77779as2aNJKlGjRo+gVVBcOmll6pcuXKSpMTERKuiOD3Lly9PN6QrWrSoLrnkEmt/3rx5mZ7/119/VcuWLdWsWTPdddddVq/XkydP+gS6t99+e4bj7N6926ev7YUtDjp16mRtz507N8OxnE6nT0V1YXLZZZdZoXpKSooWL16c6WPGjh2ryy67TC1bttTw4cMDPEPkFIEsAspJhSxyxJTpomUBAAAAkF95AllJmj59uvVx/IyqYz28j1m1apX+++8/SblTHeu92FJaC1DltfDwcHXu3NnaHz16tIx0Fsh2uVx67733MhyvZ8+e1va0adMUHx+f7rF2u13vvPOOJOn06dOqXr26IiLcHS497QU8Mlsw7NVXX/XZ917ES5K6dOlibc+YMSPDeU2dOlWJiYkZns9f3u93eq9rKClWrJjP9TB27NgMq1937dqlqVOnSnK/Rw0bNgz4HJEzBLIIKMe5ylgHFbLICs9vUU1JpkvelbIAAAAA8o8rrrjCWmDoq6++sm7PqH+sR8WKFa2WBzNmzLCCtNwIZGNiYqxt74rOYHr44YetnqqrVq3S4MGDderUKZ9jTp8+rSeffFJr167NcKxu3bqpbt26ktwfZb/33nv1119/pTru6NGjeuKJJ6xgNDIyUvfff791f5kyZVShQgVrf+zYsanmJEmHDh3SgAEDUlVyXthPtlGjRurRo4ckdxB83333aePGjanG+/HHH/XGG29k+Byzwvv93rt3b66NG0gPP/ywoqOjJUnbt29X//79tX///lTHbd26VQ888IDOnj0ryd3u4Oabb87TuSLrWNQLAeWpjHVSIYtscV83puGgQhYAAAB+s4VFyCysNSE29/9D28JC45/7RYoUUfPmzbVs2TIdPnxYkhQdHa1mzZr59fh27dopPj7e6ksaFRWlFi1a5Hhe1apV0/HjxyVJjzzyiP7v//5PZ86c0SOPPKKoqKgcj58dZcuW1auvvqrHHntMDodDP//8s1auXKlrr71WlStX1oEDBzR//nwdPnxYMTExKlasmA4dOpTmWJGRkRo/frz69OmjpKQkHTp0SHfccYeuuOIKNWvWTJGRkdq1a5cWLFjgU3k5bNgw1a5d29q32Wzq16+fRo0aJUlau3atrr76al177bWqUqWKTp06pf/++0/Lli2zqmG9F+5Ka4GyoUOHau3atdq2bZsSExPVq1cvdejQQY0aNZLD4dAff/yhdevWSZJq166tHTt25Pi19e7RO3r0aCUkJCgyMlLXXXedFVyHmlq1aun111/Xk08+KafTqTVr1uj6669Xhw4dFBcXJ7vdrvj4eC1ZssT6ZUXx4sX1zjvvBO0ahv9C4yc0CiyrZYGLQBZZccH14iKQBQAAgP+KVG4Z7CkETZQR/I/fX6h169ZatmyZtd+yZUu/A6P27dtr4sSJ1n6zZs2sqsGc6N27t1544QVJUnx8vFUheu2116px48Y5Hj+7OnXqpM8++0wDBw7UsWPHdOTIEeuj6B4xMTEaN26cxowZk24gK7nDzGnTpunJJ5+0etKuWrXKZ3E0j5IlS2rYsGG66aabUn00vl+/ftq+fbumTZsmyR2yera9hYWFqXfv3mrQoIH12m7YsCHNc02dOlVPPPGEli1bJpfLpUWLFmnRokU+x/Xu3VsXX3yxRo4cme5z9FfPnj01efJk2e12HTt2TB9++KEkd2uAUA1kJemGG25QqVKl9OyzzyoxMVEpKSn65Zdf9Msvv6Q6tlatWhozZgztCvIJAlkElGdRL0c+6NGCUGL6fDUNh8SiXgAAAMhEWJHSiigZ7FkEmVfPzoiICIUVKR28uZzTtm1bvfXWW9a+P/1jPZo1a6bixYvr9OnTknKnXYEk9erVS0WKFNGXX36p7du36+zZsypTpoxVxRtMV1xxhX755Rd9/fXXWrhwobZt2yaXy6VKlSqpffv26tevn6pWraoxY8ZkOla1atX0zTffaMmSJZo7d67WrFmjQ4cOKSUlRSVLltTFF1+s9u3bq2fPnipbtmyqRbgkd5XsK6+8ouuvv17Tp0/X2rVrdeTIEZmmqZIlS6pWrVq69NJL1bNnT1188cU6cuSIVSX7xx9/KDExURUrVvQZs2TJkpo4caLmz5+vGTNmaN26dTp27JhKly6tSy65RL1791aHDh182lzkRN26dfXVV1/p/fff17p163Ty5EnFxMSk2X4h1LRq1UoLFizQjz/+qF9//VWbNm3S0aNHZRiGypUrpwYNGuj6669X586dqYzNR2xmWt9tgJ/+/vtvn4bYTZs2VXh4uBZvO6y9x87qv8On1a5OWVUrVUxxFWIyGAmFlVm/vmxbtpzfj4uTuXalUg7+LXvSvzKSDyqyXCNFlKiqooW40gEZczqdPn20Lr30UmshAsAfXEPIKa4h5BTXkJvL5fJZ5KdevXo+i/EgY6Zp+izCFBkZKZvNFsQZIb8xTdOnQjY6OpprqBDJjZ/B3jlRWFiYLrvsslydY0FR+P6GR55zukwqZJFFnkW9zn01HCzqBQAAAPjhwkAWABB6woI9ARR8DpdBD1lkk/eiXobMEOyHBQAAAAAAkBUEsgg4h2Fai3sB/jAvWNTLdJ37LT9VsgAAAAAAIJ8jkEXA0bIAWWat6eVpWeBemMBkYS8AAAAAAJDPEcgi4BwGLQuQVRdUyJ6rjDWpkAUAAAAAAPkcgSwCzuEyZZqmXAahLLLqfA9ZSbQsAAAAAAAA+V5EsCeAgs95rl2Bw2UoPCw8yLNBqDEeekiJGzda+5UaN9aFFbKiQhYAAAAAABQQBLIIOE+7AodhqmiQ54LQYz7yiPavXWvtV2zaVLIf89zr/q8VyNJDFgAAAAAA5G+0LEDAOVzuClmni4W9kEU+i3qZkosKWQAAAAAAkL8RyCLgnMb5ClnAP6mvFdNw0rIAAAAAAADkewSyCDirZYGLQBZZ5XXNGA4W9QIAAAAAAPkegSwCzmHQsgBZZfp8kdx9ZOkhCwAAAAAA8jsCWQSc00XLAmSRlceev2ZMl4OWBQAAAAAAIN8jkEXAmXL3kXVQIQu/pRHeG05aFgAAABRwYWG+/0R1uVxBmgkAFD4X/sy98Gcyck9EsCeAwsHhMqzFvQBv4Y0bq9mWLda+GRcnY80Sz9752w2HTMMl0zRks/GXAgAAQEFks9kUEREhp9Pdqio5OVlRUVFBnhUAFA7JycnWdkREhGw2WxBnU7CRaiBPuCtkCWThpzQuFatdAVWyAAAABVpMTIy1feLEiSDOBAAKF++fuSVKlAjiTAo+AlnkCYfLtBb3AjJj9Y41vZLZcwt6mS4CWQAAgIKsZMmS1vbp06eVlJQUxNkAQOGQlJSk06dPW/sEsoFFywLkCYdhWIt7Af7zbVng/uoM1mQAAACQB6KjoxUZGSmHw/3/f4mJiTp16pRKliyp6OhohYeHB3mGocs0TZ8ekC6Xi48cI0u4hgoXl8ul5ORknThxwieMjYyMVHR0dBBnVvARyCJPOF2mnIYp0zT5YQ4/pBHeu2hZAAAAUBjYbDbVqFFDu3fvtkLZ06dP+4QFSJ/h9clEFuRBdnANFW6RkZGqUaMG2U2A8Z2FPOFwGTJNk4W9kDVmWhWyBLIAAAAFXVRUlGrUqKHIyMhgTyVfMU1TTqfT+mOa/PsLWcM1VLh5wlgWUww8KmSRJxznglinYSqSTxghMxku6kXLAgAAgMIgKipKF110kZKTk3Xy5EmdPHlSTif/L5gZ79eIQBvZwTVUuERERKhEiRIqUaKEoqOjqYzNIwSyyBOe/rEOl6FiJLLIlHnBV51f1IsKWQAAgELDZrOpePHiKl68uCpVqiTTNH0+Tg1fTqdTGzZssPYvuugiRUTwz374j2uocAkLCyOADRK+q5AnHOf+p8nBwl7wS1rXiSnTcBLIAgAAFGI2m41FvTJw4cfLw8PDeb2QJVxDQN6ghyzyhCeIpYcs/GIVyF5wvRgOFvUCAAAAAAD5GoEs8oTTqpDl40XwRxotC+RuV2DSQxYAAAAAAORjBLLIE54KWQcVssiCVFeL4ZDpokIWAAAAAADkXwSyyBNOw5QpyUmFLPySfoUsLQsAAAAAAEB+RiCLPON0mVTIImsuuFxMwynTdKZqNA8AAAAAAJBfEMgizzgMgx6y8I+ZdoWsXA73TVTJAgAAAACAfIpAFnnG4TLlpEIWfjBTd491334uiDUJZAEAAAAAQD5FIIs84zQMa3EvwD8X9pB1nvtKIAsAAAAAAPKniGBPAIWHw2XSsgCpGG++qV0bNkiSbDabajZufL5lwYW9Yj1B7LlgFgAAAAAAIL8hkEWecbgMuQxTpmnKZrMFezoIEWbnzjpataqkc4Fs06bSyd1pH0vLAgAAAAAAkM/RsgB5xtM/lrYFyFzai3qZrnNBrItAFgAAAAAA5E8EssgzniDWYdC2AGnLtHLaqpClZQEAAAAAAMifCGSRZzz9Y51UyCJT6fSQlSmZLpmGPc9nBAAAAAAAkBsIZJFnHAYVsvBTqiDW6y6X/fziXgAAAAAAAPkMgSzyjKdC1k6FLPyW+loxDcf5XrIAAAAAAAD5TESwJ4DCwxPIOpxUyMLL9u0qsnOnJCk8LEwqUUIqn/7hpssukwpZAAAAAACQTxHIIs84XKZMSXYXgSzOC+/aVY23bLH2zbg4aflspVUdK8ndroAesgAAAAAAIJ+iZQHyjCn3gl6eXrJA+jLoIWs4ZBqGTMOVh/MBAAAAAADIHQSyyFN2l2G1LgAylM7CXp7+sbQtAAAAAAAA+RGBLPKUw2WwqBf8kME14gliaVsAAAAAAADyIQJZ5CkqZOEP0zSVXihrngtiPZWyAAAAAAAA+QmBLPKUw2W6F/dK5+PoQGZoWQAAAAAAAPIzAlnkKYfLkGmacrKwFzJkpt9D1tOqgEAWAAAAAADkQwSyyFOe/rG0LUBmzPT6yHoqZF30kAUAAAAAAPkPgSzylCeIZWEvZCyj68OUDCctCwAAAAAAQL4UEewJBNumTZs0bdo0/fXXXzpw4IDOnDmjUqVKqU6dOmrXrp1uu+02lSpVyu/x1q1bp2nTpmnVqlVKTEyUaZqqWLGiGjVqpG7duql9+/ay2Wx+j2eaphYsWKCZM2dq/fr1OnLkiIoVK6aKFSuqZcuW6tmzp+rXr5+dpx4U9nOBLBWyyJBp/Sftuw0HLQsAAAAAAEC+VGgD2bNnz2rEiBH67rvvUt13+PBhHT58WCtXrtRHH32kESNGqEuXLhmO53A4NHLkSH3zzTep7tu5c6d27typn376SW3bttXrr7+uChUqZDrHxMREDRo0SKtXr/a53W636/jx44qPj9eXX36pe+65R4MHD1ZUVFSmYwab41xlLBWyyJiZYZGsaditxb0AAAAAAADyk0LZssBut2vAgAE+YWx4eLgaNGigFi1aqFq1atbtp0+f1pNPPqkpU6akO55pmnriiSd8wtgiRYqoSZMmuuyyyxQTE2PdvnTpUvXt21cnTpzIcI5JSUm68847fcLY0qVLq3nz5mrUqJEiIiKsc3/22WcaMmSI/y9AEDmokIXfMqiQdTnOL+4FAAAAAACQjxTKCtlPPvlEy5cvt/Y7duyo4cOHq3LlytZtq1at0rPPPquEhARJ0iuvvKLmzZurbt26qcb79NNPtWDBAmu/T58+Gjx4sEqUKCHJXY07adIkjR8/Xk6nU9u3b9dzzz2n9957L905Dh06VLt375bkDneHDh2qXr16WUHsoUOH9Nprr2nOnDmSpJ9++klNmzbV3Xffnd2XJU84DPdSTXYCWWTEzKSCmpYFAAAAAAAgnyp0FbJ2u12ffvqptd+qVSu9//77PmGsJF1xxRX64osvrFDV6XTqww8/TDVeUlKS3n//fWu/d+/eGj58uPU4SSpatKgGDBigESNGWLfNnz9fa9asSXOOv//+uxYvXmztv/HGG+rdu7cVxkpSbGysxo4dq+7du1u3ffDBBzp16lQmr0DwOVyG1boASJupzCtkDZmGK++mBAAAAAAAkAsKXSD7zz//+ISWjz/+uMLDw9M8tlq1aurTp4+1v3jxYpkXVO5Nnz5dp0+fluRuKfDMM8+ke+6ePXvqqquusvY/++yzNI/7/PPPre22bduqc+fO6Y45fPhwlStXTpJ09OhRzZgxI91jQ4XdZdKyAJnLpIes91cAAAAAAID8otAFsgcOHPDZb9SoUYbHX3rppdb26dOndfToUZ/7f/75Z2v7xhtvVHR0dIbj3Xbbbdb2b7/9puTkZJ/7jx8/rj/++MPa79mzZ4bjRUdHq2vXrtb+3LlzMzw+FDhcBi0LkImMK2StdgUs7AUAAAAAAPKZQhfIercSkGRVt6bH6XT67BcpUsTaPnbsmP79919rv23btpmev2XLllZF7tmzZ33CV0lauXKlXC73x7BtNpvatGmT6Zjex6xZs0bHjx/P9DHBZKdlAfySccsCSTLpIwsAAAAAAPKZQhfIXnzxxT77v//+e4bHL1u2zNquXLmyihcvbu1v2bLFp4VBZtW2kruitUaNGtb++vXrfe7fvHmztV2tWjWVKlUq0zHr169vbRuGoY0bN2b6mGByuAw5DCNV+wcUTq5p07Rp8mRtmjxZ/02bJvO77zJd1IuWBQAAAAAAIL8qdIFs9erVffq4vvPOOzp8+HCax/7111/6/vvvrX3vfrKStHPnTms7Kioq1cJg6alWrZq1vXv37nTHrFmzpl/jxcbGqmjRotb+rl27/HpcsDhcpmSKKlm4NWigM3FxOhMXp7P160sNGrhrYzMIZT0VsrQsAAAAAAAA+U1EsCcQDM8995w2bNigw4cPKyEhQbfccosee+wxtW/fXqVLl9b+/fv1008/6cMPP5TD4Q58GjZsqDvvvNNnnEOHDlnbsbGxfp/f+1jvMSTp4MGD2RqzXLlySkhISHPMvORyuWSz2WSapkzDkGGk7hV71uGSaZo663Aq3BZOpWwh52nR4WEYhvvaMc00rx/3QSkyTVMuZ4rC0rnOULhceB1duA9khmsIOcU1hJziGkJu4DpCTnENAXmjUAayNWvW1HfffadXXnlFCxYs0P79+zV06NA0j7XZbOratauGDRuWasGuY8eOWdsX9qbNSExMjLV9Yb9X7/2sjOl97IkTJ/x+XG7btWuXihcvrtOn7Dp67LgSE5NSH3Q2WtWKS/sTU1QszAhqgIzQc/DgQYWfPi7j1AkdTUxM97hypY5K9ii5zhbX4cOHrV+eAJK0YcOGYE8B+RzXEHKKawg5xTWE3MB1hJziGgICo9C1LPAoW7as2rdvn2lbgDZt2uj+++9PMxy128/3r/RuGZCZqKioNMeQpJSUlByP6T1GKLI73L9hcxhSWFihvQSRBpvN5t4wTWW0qJckGU67ZLoX3eM6AgAAAAAA+UWhrJDdvHmzHnvsMZ9eq0WKFFG9evUUHR2txMREq5fr0qVL1a1bN/Xt21dPPvmkIiLOv2TeFXlZCYS8x3A6nT73ee9nZczw8PB0xww1KU53IOs0TIWFhWdyNAqrzFpZmK4U2QhkAQAAAABAPlPoAtk9e/aob9++VruBokWLatCgQbr99tt9KlL37NmjMWPGaM6cOXK5XPr000918OBBvf3229Yx3iFoVnpYegemkZGRPvdld0zvvi4XjpmXatasqYiICBVPPqIyjjBVdEalOiY8zKaY4jEqUbqYKpWNVoUKFYIwU4QKl8vl8zGYChUqyBl+QM6wEypSsWK6j4uKiVZE8WIqUqkS1xBSXUeNGzf2+XkKZIZrCDnFNYSc4hpCbuA6Qk5xDSGn1q9fzzovfih0geyIESOsMLZIkSL67LPPdPnll6c6rnr16ho7dqxq1Kihjz76SJI0e/ZsdezYUV26dJHk21IgK20CvI8tUqSIz32BGDMvhYeHKywsTDabTbawsDQrF90fRrfJea5lAdWNhZtt4UKVOvcXflRkpMISEmRrGiubzZbhtWEznZLp5BpCmsLDw30+jQBkFdcQcoprCDnFNYTcwHWEnOIaAgKjUH1X7dmzR7/99pu1P2DAgDTDWG+DBg3S8uXLtXbtWknS//73PyuQLV26tHXcqVOn/J7H6dOnrW3vMSSpVKlS2RrT+9gLxwxFDpchh4vfmEAKe/xxXbxli7VvxsVJS75WZj1kTZddMg2ZhlO2sEL1owwAAAAAAORjhaqs7K+//vLZv+WWW/x63O23325t//vvvzpy5IgkqaLXx6k9t/nj0KFD1nb58uV97svumN7HxsbG+v24YLG7DDmMjAM3FHKZXB6m4fD5CgAAAAAAkB8UqkD24MGD1napUqX87jtZv359n/2EhARJ7n6pHsnJyTp8+LBf4+3Zs8farl27ts99tWrVsrZ3797t13gHDx7U2bNn0xwjVDlcpuxUyCJdpjKtkPUEsS574KcDAAAAAACQSwpVIBsVdX6BKYfD/6q6C/tT2mw2SVLDhg2tbcldPZuZ06dP+wStF4a9jRo1srZ37dqlM2fOZDqm93ltNpvi4uIyfUyw2WlZgIyYflRPnwtiqZAFAAAAAAD5SaEKZCtVqmRtJycna8eOHX49btu2bWmOExMTo4YNG1q3//HHH5mO9eeff1qrzYWHh+vKK6/0ub9Zs2ZWw2yXy6UVK1ZkOqb3eRs2bOjThzZUOVyGnC5Thj/BGwop/ypkCWQBAAAAAEB+UqgC2RYtWvhUu37zzTd+Pe67776ztuvWrevTo/X666+3tmfOnJlpReuUKVOs7datW6tkyZI+95csWVItW7a09qdOnZrheKdPn9bMmTOt/RtuuCHD40OF3eUO26iSRdrMTKtkTU+rAheBLAAAAAAAyD8KVSBbtmxZnwD1iy++0PLlyzN8zJdffqlly5ZZ+7fddpvP/T179lSxYsUkSYcPH9aIESPSHWvatGn6/fffrf277747zePuuOMOa/vXX3/V999/n+6YL730kpKSkiRJ0dHRfi9UFmyeINYTzAJZZjglSaZBD1kAAAAAAJB/FKpAVpKeeuopqyrV5XLp/vvv1/vvv2+Fmh6HDh3Syy+/rFdeecW6rVGjRurdu7fPceXLl9d9991n7X///fd68skndeTIEeu2s2fP6qOPPtLw4cOt29q3b6/27dunOcdOnTqpRYsW1v6wYcM0YcIEpaSkWLcdPnxYgwYN8qmOffjhh1W2bFm/Xodg8wSyVMgiLaYfi3pJpkzDQcsCAAAAAACQr0QEewJ5rVq1anrvvfc0YMAAJScny+Fw6N1339WHH36o2rVrq0yZMjp69Kj+++8/q9erJNWsWVMfffSR1d/V24ABA7R+/XotXrxYkjR79mzNmzdPcXFxioqK0tatW3Xy5EmfOYwaNSrDeb711lu64447tGfPHjmdTo0ZM0affPKJ6tatK7vdri1btvgsTNaxY0f1798/h69O3jnfsoAKWaTBzDyOlSQZDpm0LAAAAAAAAPlIoauQldy9ZKdNm6ZGjRpZtzkcDsXHx2vFihWKj4+3wlibzaYbb7xR06dPV4UKFdIcLyIiQuPHj9ctt9wim81mjbdhwwatWbPGJ4y97LLL9PXXX2dayVqxYkV9+eWXuvzyy63bTp48qTVr1mjDhg0+Yewtt9yid99916c/bqg737KAClmkJfMestK5PrJUyAIAAAAAgHyk0FXIelx88cX6/vvvtWTJEs2fP19r1qzRoUOHlJycrBIlSqhq1aq68sor1b17d8XFxWU6XlRUlF599VXddtttmjFjhv78808lJibKbrerbNmyatKkibp06aLrrrvO7+C0cuXK+vrrrzV//nzNmTNH69at0+HDhxUWFqaKFSuqWbNmuvXWW9W0adMcvhp5j5YFyJh/ldOm4Ti/uBcAAAAAAEA+UGgDWY8OHTqoQ4cOuTZekyZN1KRJk1wbz2az6brrrtN1112Xa2OGApcpuQyTRb2QAT+uDRc9ZAEAAAAAQP6Sfz7jjgLHYZhUyCJtpp8tCwyHZJoyDWceTAoAAAAAACDnCGQRNHaXQQ9Z5IhpuNsV0LYAAAAAAADkFwSyCBqHy5CDlgVIkyl/WhaYrnPtCmhbAAAAAAAA8gkCWQSN3UnLAuTQuSCWPrIAAAAAACC/IJBF0DhchlyGKZdBlSwuYPpbIetpWUAgCwAAAAAA8oeIYE8AhZenf6zDZSg8LDzIs0GwuFav1rq1ayVJMTExurhuXSlptT95rFUZ6+klCwAAAAAAEOqokEXQePrHsrBXIVekiMxzf1S0qFSkyLk7/EhkDYf7OFoWAAAAAACAfIJAFkHjMDwVsrQswIX8vyZMw0nLAgAAAAAAkG8QyCJo7M7zLQsAb+4Wsn6Gsi47LQsAAAAAAEC+QSCLoDnfsoAKWVzI9LtG1jQcEhWyAAAAAAAgnyCQRdCcb1lAhSzS4l8kaxoOa3EvAAAAAACAUEcgi6AxTMlpmCzqBYvNZju3lYUesi53IGv62+IAAAAAAAAgiCKCPQEUbnaXwaJehZztk09UcdMmSVLRIkWkiy+W/q+B/A5lDbu736zplGyRgZsoAAAAAABALiCQRVA5XFTIFnZh48ap2pYt1r4ZFyf93wS/81jzXP9Y0+WQLYxAFgAAAAAAhDZaFiCoHC7D6iUL+PK/h6wkiT6yAAAAAAAgHyCQRVDRsgDpy0LLAknmua8AAAAAAAChjEAWQeVwmTIMU06qZGExfb5kerRXywIAAAAAAIBQRyCLoPL0j6VKFqllrWWBScsCAAAAAACQDxDIIqgc5wJZFvZCthkOSaZEhSwAAAAAAMgHCGQRVPZzlbEOAlmk4n/VtGk46CELAAAAAADyBQJZBNX5CllaFuCc7FwKLgctCwAAAAAAQL5AIIugclg9ZKmQxQXMrFXI0rIAAAAAAADkBwSyCCqHy5QpFvVCzpguOxWyAAAAAAAgXyCQRVCZkpwuk0W9kIqZ5R6yDplZqKoFAAAAAAAIBgJZBJ3dZdCyAKllJVw1HO7jDWfg5gMAAAAAAJALCGQRdA6XwaJeyBHzXP9Y07AHeSYAAAAAAAAZI5BF0DlcJhWySENWWhbYz32ljywAAAAAAAhtBLIIOnfLApP+nzgnG9fBuQpZ6ysAAAAAAECIIpBF0DlchkzTlNMgkIU3KmQBAAAAAEDBExHsCQCe/rEOl6HIcH5HUNiYVarIfuKEJCksLEzhVaqcuyMLY5wLYk0XPWQBAAAAAEBoI5BF0Hn6x9pdpqKDPBfkPeOXX7Rh7VpJUtmyZVW9Snnp4BplKZE1nO7jqZAFAAAAAAAhjnJEBJ39XCDLwl7wlbUWFqbLQcsCAAAAAAAQ8ghkEXSOcy0LPK0LUNiZPl/8fpRhl8miXgAAAAAAIMQRyCLoHFTI4hybzeYVxGYxkTUckkEPWQAAAAAAENoIZBF0DsOUKQJZeGSvUpqWBQAAAAAAID8gkEVIcLgMWhbgHPOCr34+ynAHsqbJdQQAAAAAAEIXgSxCgt1lUiELH1mOVV1294OokgUAAAAAACEsItgTACRPhSyBbGEU9vzzqrlpkySpaJEiCqtdXXqsu5TFSldPuwLTcMgWHpXb0wQAAAAAAMgVBLIICXaXIQctCwol248/qvyWLda+Wa+uO5DNRssCyd1LVpG5OEEAAAAAAIBcRMsChASHy5TDMOj/iWwzXXb3hmEP7kQAAAAAAAAyQCCLkOBwGZIpqmQhqzI2q+G8V8sCAAAAAACAUEUgi5Dg6R/Lwl7ILp+WBQAAAAAAACGKQBYhwVMZa6dCFpasVsg63Y+hQhYAAAAAAIQwAlmEBCpkkRtMl10mPWQBAAAAAEAII5BFSPAEsXYCWViyXi1tGg5aFgAAAAAAgJBGIIuQYHe6wzcW9YKVw2Z1US9JcjloWQAAAAAAAEIagSxCgss0ZZgmFbLIEdNIkemiZQEAAAAAAAhdBLIIGSlOg0AWXrLRssBll2k4ZRquAMwHAAAAAAAg5whkETLsLipk4SUbHQtMV4rPVwAAAAAAgFBDIIuQYXcZSnESyMLNzGaFrPsrgSwAAAAAAAhNBLIIGXanIYfLlJmdxZxQgGT//beCWPrIAgAAAACAEEUgi5BhdxkyTVMOF4EspOz1kD3XssAgkAUAAAAAAKGJQBYhw9OugD6yyDaXXZIp00nLAgAAAAAAEJoIZBEyPEEsgSwkSdlsXWG67DINAlkAAAAAABCaIoI9AcDDfq5CloW9ChezdWudKFtWklQkKkpRNat47sneeC67tbgXAAAAAABAqCGQRcigQrZwMj7+WP+tXStJqlSpkiqUtEnHtmZ7PNOVcn5xLwAAAAAAgBBDywKEDIfLlKnzlbIorM5VxuakZYHLLjObjwcAAAAAAAgkAlmEDE8Ya3cRpBVqOQ1SXSnuMQxH7swHAAAAAAAgFxHIIqTYXQYtCwo5M42tLD3+XLsC2hYAAAAAAIBQRCCLkGJ3GSzqVYjZbDZlN4j18CzoxcJeAAAAAAAgFBHIIqS4WxYQyEI56CFLhSwAAAAAAAhdBLIIKXaXKcMw5TQIZZHTQJYKWQAAAAAAEHoigj0BwJunXYHdaSgiit8XFAZhffoo7t9/JUlRkZEKr1VVrnFPZb9xgemSTBcVsgAAAAAAICQRyCKkeNoV2F2mooM8F+QN27p1itmyxdo3T53wbGV7TNNllwhkAQAAAABACKIEESHFE8iysFdhZvp8ydYIrhRaFgAAAAAAgJBEIIuQYve0LGBhL+SoQjaFlgUAAAAAACAkEcgipJxvWUAgi+wzXXaZhlOmyXUEAAAAAABCC4EsQophSg7DtCplUZjlrELW+ysAAAAAAECoIJBFyLE7DSpkIZk5XNRLBLIAAAAAACD0EMgi5NhdBot6IUesIJaFvQAAAAAAQIghkEXIcVfIZr86EgVFDq4BWhYAAAAAAIAQRSCLkGN3GXK6DBkGoSyy53zLAipkAQAAAABAaCGQRcjxtCugj2whl4MespIp07BTIQsAAAAAAEIOgSxCjieIJZBFTpguOxWyAAAAAAAg5BDIIuR4+seysFfhZFqVsTlrWWG6UqiQBQAAAAAAIYdAFiHHbrUsoIcscoAKWQAAAAAAEIIIZBFyaFmAnFbHSu4KWZmGTJcjF+YDAAAAAACQOwhkEXKchimXaVqVskB2eNoV0LYAAAAAAACEEgJZhCS706BCtjAzc6NC1n7uK4EsAAAAAAAIHRHBngCQFrvLZFGvQsK4804d3rRJYTabihUrpqKVSuTKuFaFrEEfWQAAAAAAEDoIZBGSqJAtPMwhQ7R37VpFREQoNjZWkUVOSKf35XxcTyDrpEIWAAAAAACEDloWICTZXYYcLlNmLnx0HflNLr3nhlMyDYkKWQAAAAAAEEIIZBGSUpyGTNOUw0UgWyjlUhBvulLoIQsAAAAAAEIKgSxCkqddAW0LCiHTlJlLVbKmy24t7gUAAAAAABAKCGQRkjxBLAt7FR42my3Xx6RCFgAAAAAAhBoCWYQku5MK2cItFytkDYdMk+sIAAAAAACEBgJZhCSrZQEVsoWQmWvrepmuFPdwtC0AAAAAAAAhIiLYEwDS4nC5u4hSIVvwhbdsqUu3bJHNZnO3LahTXa4ZY3JlbKtdgStFiiiaK2MCAAAAAADkBIEsQpIpd3Ws3ZVLpZIIXadOKeLUKWvXOHU698Y+VxlLH1kAAAAAABAqaFmAkGV3GSzqVWjlUg9Zwx3E0rIAAAAAAACECgJZhCy7y6BlQWFl5t6iXt5fAQAAAAAAgo1AFiHL3bKAQBY5YBoyDQctCwAAAAAAQMggkEXIsrtMGYYpJ6FsIZR7vYNNVwoVsgAAAAAAIGQQyCJkefrHUiWLHHHZqZAFAAAAAAAhg0AWIcsTxKY4c69aEvlELvWQldwVsjIIZAEAAAAAQGggkEXIslMhi1xguuwyDUOm4Qz2VAAAAAAAAAhkEbo8QSyBbOFj5nIPWe+vAAAAAAAAwUQgi5BlBbJOAllkH4EsAAAAAAAIJQSyCFmGKTkMkwrZQsfM5R6y9nNfCWQBAAAAAEDwEcgipNmdhlKokC2EAtGywJ5rYwIAAAAAAGQXgSxCmt1lUCFb2OReFutmOCTTkAhkAQAAAABACCCQRUizOwlkC6fcTWVNw07LAgAAAAAAEBIIZBHS7C5DTpcpw8jtskmEtFx+u02XnZYFAAAAAAAgJBDIIqR5+sdSJVvY5HKFrCuFClkAAAAAABASIoI9ASAjniA2xWWoaGR4kGeDQDCGDdPeDRsUFRWlYsWKKbqUK9fPYbrs7rYFpimbzZbr4wMAAAAAAPiLQBYhze6pkHVSIVtQmbfdpsP166tYsWIyS5dWEdte6dS+3D2HK8VddOuySxFFcnVsAAAAAACArKBlAUKa3WWe+0ogW9D5Vq7mchPZc+0KaFsAAAAAAACCjUAWIc0TxNqdLOpVeOT+e+1Z0Ms0CGQBAAAAAEBwEcgipDkNUy7TpEK2MDGt/+TekFaFrD1XxwUAAAAAAMgqAlmEPLvTUAqBbKGS2zWyJi0LAAAAAABAiCCQRcizuwwW9SoEzveQNSUzlyNZ05BpOKmQBQAAAAAAQRcR7AkAmbE7aVlQoB06pIjDhxWenKyws2el8CSpSADO40qhQhYAAAAAAAQdgSxCnt1lyOEyZZqmVxUlCorwjh116ZYt1r5xUQ0lz3k7189juuwSFbIAAAAAACDIaFmAkJfiNGSaphyu3O4sipCV2y0L5O4fS4UsAAAAAAAINgJZhDxPuwIW9kJOmC67TMMl03AGeyoAAAAAAKAQI5BFyPMEsizsVZgEoELWcFfHsrAXAAAAAAAIJgJZhDxPEMvCXsgJ0+kJZGlbAAAAAAAAgodAFiGPCtnCKBAVsucqY6mQBQAAAAAAQUQgi5Bnd5kyRYVsoRKA9ds8lbFWMAsAAAAAABAEBLLIF+xOg0W9CpUAJLIuhyTTal0AAAAAAAAQDASyyBfsLkN2ZwBCOhQipkyXw1rcCwAAAAAAIBgIZJEvpDgNpbhcwZ4G8ooZmPDddKXIpIcsAAAAAAAIooAEshMmTFBiYmIghkYhleJ0V8iaAQrqEErMQDQscI9s2AlkAQAAAABAUAUkkB07dqw6deqk++67Tz///LPsdgIQ5EyK05BpmizsVWgEKJJ1EcgCAAAAAIDgigjUwIZhaNmyZVq2bJlKliypLl266Oabb1bjxo0DdUoUYClOw/paJCI8yLNBfmW6UiTTkOlyyBYeGezpAAAAAACAQiggFbL169eXaZrWn+PHj+vrr79Wr169dNNNN2nSpElKSkoKxKlRQKU4Xee+UiFbOASuh6z3VwAAAAAAgLwWkED2hx9+0KxZs9S/f39VrFhRkqxw9r///tOoUaPUvn17Pfzww1qwYIFcLNaETJw9F8SeJZAtHALUscDTrsA0aFsAAAAAAACCIyCBrCTVrVtXTz/9tBYvXqzPPvtM3bt3V3R0tBXMOp1O/frrr3r00UfVrl07jRo1SvHx8YGaDvI5T+9YKmQLCypkAQAAAABAwRSwQNbDZrOpVatWeuONN/THH39o1KhRatOmjcLDw61w9ujRo5o0aZK6deumHj16aPLkyTp+/Higp4Z8xDDdoSyBbGERqEDW7vMVAAAAAAAgrwVsUa+0FC1aVN26dVO3bt106NAhzZw5Uz/99JM2bdpkHbNp0yb9+++/GjVqlK6++mrdfPPNateunWw2W15OFSEoxWlYvWRRcLg+/VTb1q9XTEyMikRFKabI4YC1LJDhkExDokIWAAAAAAAESZ4Gst5iY2PVv39/9e/fX/v379eiRYu0aNEirVy5Ug6HQ3a7XXPnztXcuXNVqVIl9erVS7169VJsbGywpowgcweyVMgWOFdeqVNFiii8VCnZihWV4fpPOrk7YKczDTsVsgAAAAAAIGgC3rLAH5UrV1bHjh3VoUMHxcXFSZJVEWuapg4cOKDx48erU6dOGjZsmJKSkoI5XQRJitOQ3eVuc4GCKvDvrekikAUAAAAAAMETtApZSdq5c6dmz56thQsXavPmzdbtNpvNCt2qV6+uhIQEGYYhh8Oh6dOna+HChRozZoxatmwZrKkjCM46DZmmqRSnoaKR4cGeDnKZ+5cwnkA2cMGs6UphUS8AAAAAABA0eR7IHjlyRLNnz9asWbO0ceNG63bvqseyZcvqpptu0s0336z69evr4MGDmjlzpr799lvt3r1bSUlJevjhh/Xtt9/q4osvzuungCDx9I9NcRHIIvtMl12m4ZBpmvSmBgAAAAAAeS5PAtnk5GTNnz9fM2fO1IoVK+RyuYM17xA2IiJCHTp00M0336yrrrpKERHnp1ahQgXdd9996tevn1544QXNmDFDZ86c0Ycffqi33347L54CQoCnfyx9ZAuBQLalcNnd4xt2KbxI4M4DAAAAAACQhoAFsoZh6Pfff9fMmTO1aNEinT17VpJS9f+Mi4vTzTffrK5du6ps2bIZjhkeHq6XX35ZixYt0vHjx7Vq1apATR8hiEC2MDDP/TewLQvcX+2yEcgCAAAAAIA8FpBAduTIkfr555919OhRSbI+GuwJY0uXLq0uXbqoZ8+eatCgQZbGjoqKUr169bRq1SodO3Yst6eOEJbiNGSKQLbAWblSMevXq2hMjKKiwhVW5KhUp2jATnc+kE2RVCJg5wEAAAAAAEhLQALZyZMn+wSwkru6tW3bturZs6euuuoqRUZGZnt8p9MpSapcuXKO54r8w5TkcBkEsgVM+L33Km7LFmvfuKi67DNeCtj5TJfd5ysAAAAAAEBeCljLAk8YW7duXfXo0UNdu3ZVuXLlcmXsChUqqHfv3mrZsmWujIf846zTsBb3ArLDt0IWAAAAAAAgbwUkkC1VqpS6dOmim2++WY0bN8718ceNG5frYyJ/SHEaOkuFbCEQwEW9TJdkuqiQBQAAAAAAQRGQQHbp0qU5akkApCfFacjuMqy+xEB2mC67RIUsAAAAAAAIgoAEshMmTJAk1axZUzfddFO2x1i2bJnCw8P12Wef5eb0kI+lOF2S6Q5mi0aGB3s6CJgAVsjK3a6AClkAAAAAABAMAQlk33vvPdlsNrVt2zbbgeyyZcu0cuVKlSxZMpdnh/zMs6AXgWwBF9g8VqbLLtMgkAUAAAAAAHkvLNgTSM/Zs2clScnJyUGeCUKJdyCLgizQFbJ2mS6HTJPrCAAAAAAA5K1sV8gePnxYdnvGFWZnz57Vvn37sjRuSkqKlixZovXr10tyLxAGeHgW9EpxEaQVbIFvWeD+apctomhAzwUAAAAAAOAt24Hsjz/+qNGjR6d7v2ma+uuvv3T11Vdna3zPok3169fP7hRRANmdhkxJZx2uYE8FgRTwlgXnFvRypUgEsgAAAAAAIA9lO5C955579MMPP2jr1q3pHmOa2UtVbDab9bVfv37ZGsNfLpdLv/zyi+bPn68NGzbo0KFDcrlcKl++vBo3bqybbrpJV199tcLC/OvusG7dOk2bNk2rVq1SYmKiTNNUxYoV1ahRI3Xr1k3t27e3np8/TNPUggULNHPmTK1fv15HjhxRsWLFVLFiRbVs2VI9e/YsVKG1KXcoS4VsQRfgRPbcgl4s7AUAAAAAAPJatgPZ8PBwvfTSS7rzzjuzHbymx2azqU6dOnr00UfVtm3bXB3b27p16zRs2DBt3rw51X0JCQlKSEjQvHnz1LRpU40ZM0ZVq1ZNdyyHw6GRI0fqm2++SXXfzp07tXPnTv30009q27atXn/9dVWoUCHT+SUmJmrQoEFavXq1z+12u13Hjx9XfHy8vvzyS91zzz0aPHiwoqKi/HjW+V+K06CHLHLENM63LAAAAAAAAMhL2Q5kJalZs2ZavHixnE6ndZtpmrrmmmtks9nUvHlzvfHGG36PFxYWpiJFiqhkyZKKiMjR1DK1fPlyPfzwwz6LhsXGxqpGjRpyOBz6999/5XA4JEn//POP7rrrLk2dOjXNINU0TT3xxBNasGCBdVuRIkUUFxen8PBwbd26VadOnZIkLV26VH379tU333yjkiVLpju/pKQk3Xnnndq9e7d1W+nSpXXxxRfrzJkz2rJli5xOp0zT1GeffaaDBw9qzJgxOX5d8gMC2cIg8It6ub+mBPQ8AAAAAAAAF8px6lmxYsU0bzdNU0WLFs2wqjRYdu3a5RPGVqlSRS+++KKuuuoqq53AiRMnNH78eH3xxReS3BWzI0eO1Pjx41ON9+mnn/qEsX369NHgwYNVokQJSe7FzSZNmqTx48fL6XRq+/bteu655/Tee++lO8ehQ4daYWyRIkU0dOhQ9erVywqqDx06pNdee01z5syRJP30009q2rSp7r777py+PCEvxeWS3WXIME2FZaH9A/KPADcskExDpuG0KmUBAAAAAADySkDKUAcOHChJqlGjRiCGz7ERI0ZYYWytWrU0adIkVa5c2eeYkiVL6vnnn5dhGPrqq68kSfPnz9fOnTtVq1Yt67ikpCS9//771n7v3r01fPhwn7GKFi2qAQMGKDY2Vs8995w11po1a3T55Zenmt/vv/+uxYsXW/tvvPGGOnfu7HNMbGysxo4dq6ioKP3www+SpA8++EA9evRQTExM1l6QfObs/7N35/Fx1fX+x98nmaxNmu4FSlu20lIQ4eIC0ouAWEWx0IIgmwgoKItaUAEFcWG9/BARvMJFREQEEUFWQdl3ZIdCW0qB7k2aZp39nPP9/v6YZkjatEkmc3JmJq/n49E758yc+c4n4bT33nc++XxdI9nMLNnqivKwy0EQ8jwGpVd+ipEFAAAAAABgyPVvp6oBOuOMM3TGGWdozpw5QSw/KG+99ZaeeeYZSZkRCVdcccUmYWx33/ve97KzWa21PYJSSbrzzjsVi8UkZUYK/OhHP9rsWocffrj233//7PlNN93U63U333xz9njWrFmbhLHdXXjhhRo7dqwkqbW1VXffffdmry0VXeMKkowtKGHBB7LWT2c39wIAAAAAABgqgQSyheyuu+7KHh922GHafffdt3j9yJEjdfbZZ+uUU07RD3/4Q33sYx/r8fo///nP7PHBBx+s2traLa531FFHZY+feuqpHjNsJam9vV3PPfdc9vzwww/f4nq1tbU9gu+HHnpoi9eXgpSfCWKZI4vBsCbFDFkAAAAAADDkch5Z0PVr8l0OO+ywzb42WN3XHqzuHa5HHnlkv97zjW98o9fn29ratHDhwuz5rFmz+lxr7733Vnl5uXzfVzKZ1HPPPaeDDjoo+/p//vMf+b4vSXIcR/vuu2+fa+67777ZbttXX31V7e3tamho6PN9xaoriCWQLWFDMLLA+mlZ48saX04Zoy8AAAAAAMDQyDmQPffcc7MbYEk9Q9ONXxusfAWya9eu1erVqyVJNTU1fXbH9mXx4sWy3YKjXXfdtc/31NbWasqUKfrggw8kZUYodA9kFy1alD3edttt+xWszpgxI3tsjNHbb7+tz3zmM/36GopR2jOyklKeH3YpyAP/8cf19ptvauzYsapQUvXlzZJWBf65Xd2x1k/JKdtyZzsAAAAAAEC+DHpTL2vtZsNXm4cut3wGu4sXL84e77DDDiovz3TFrVy5Uv/4xz/0+OOPa9WqVUokEpowYYI+9alP6YgjjtCee+7Z63offvhh9riysnKLs2i723bbbbOB7PLlyze75tSpU/u13vjx41VdXa1kMilJWrZsWUkHslaZUJYO2RIxfry8ceNkxo+XUVySJ61fGfjHdm3oZf20VEEgCwAAAAAAhkbOgew222yT02th6h5+TpgwQcYY3XjjjbrmmmuUSqU2uXb58uW68847NXfuXP385z9XVVVVj2vWrVuXPR4/fny/6+h+bfc1JKmpqSmnNceOHatVq1b1umYpSnkmO0sWyEV2fqxhjiwAAAAAABg6OQeyjz32WE6vham5uTl7XFtbq1/+8pf6y1/+kn1up5120tixY9Xc3KylS5dmn7/77ru1fPly/fGPf1RlZWX2+ba2tuxxfX19v+uoq6vLHre3t/d4rfv5QNbsfm1HR0e/35dvvu/LcRxZa2WNkTHBhKYJ11Mi7csE+BkYGl0zk7tY2SH57+q4SVlr5btJOdxHRW/j+2jjc6Av3EMYLO4hDBb3EPKB+wiDxT0EDI1BjywoJt2Dyqeffjp7ftBBB+ncc8/V5MmTs6+vWLFCv/zlL/Xkk09Kkl555RVddNFF+sUvfpG9Jp1OZ4+rq6v7XUf3ULf7GpJ6dOrmuubG3b5DadmyZRoxYoRi0bRa29rV2NgSyOeMLU9rhNOgNWtSSiTimwTbKFLWKh6PqW3dOrnx5r6vHxRH4xs+JuM2yo9VqKmpif9jo4QsWLAg7BJQ5LiHMFjcQxgs7iHkA/cRBot7CAhGWdgFDKXu4WdXGHvUUUfp2muv7RHGStLkyZN13XXX6Ytf/GL2uTvuuEPvvvtu9tx13exxWVn/v5WRyEc5uOd5PV7rfj6QNbvm4fa2ZilKup6srNLG9vjaUbx6zose/PzpvlkZLy3ZzN/jgfx9AwAAAAAAyFXBJBDRaDS7KVVQNt4gbPLkyTr//PM3u3FYWVmZLrroouyIAWut/vznP2df7x4EDuTXnbsHphUVFT1ey3XN7p19G69ZihLpzPfQNZYgraTYjR6DZbykZDKBLME+AAAAAAAYCkMysmDZsmVyHEdTpkzZ5LU//OEPuvnmm9XU1CTHcTR16lSdeOKJ+upXv7rZoDRXtbU9d1L/2te+1uNX/XtTX1+vL33pS7rjjjskSc8991z2te4jBQYyJqD7tRtvFBbEmkNp6tSpikQiGhFfr9FumSZ6W/7+5qquOqK6EXWqH1WnCXWVmjRpUiCfg+DZ227T6nfe0Yj6epXblKoajCJ7j5NJBf+DhcoRVYrUVatqq600YcKEwD8PwfF9v8evU+22226E7BgQ7iEMFvcQBot7CPnAfYTB4h7CYL311lvs0dIPgQayL7zwgi677DItXrxYp5xyiubPn9/j9XPPPVf33HOPrM10w1lr9cEHH+jCCy/UM888oyuvvDKv3Z4jRozocf5f//Vf/XrfHnvskQ1kV6xYoXQ6rcrKSo0aNSp7TTQa7XcdsVgse9x9DUlqaGjIac3u12685lAqLy9XWVmZHMeRU1YWWPeq62c6nl1GFhQ9e/HFmrp4cfbc7DhZyb+eNSSdz45xJeOqLMB7FeEoLy/vMR4GGCjuIQwW9xAGi3sI+cB9hMHiHgKCEVgC8fjjj+ub3/ymFm8IWlauXNnj9SeeeEL/+Mc/JG06SsBaq3//+9+66qqr8lrT6NGje5yPGTOmX+8bO3Zsj/O2tjZJ0sSJE7PPrV+/vt91rFu3Lns8bty4Hq/lumb3a8ePH9/v9xWrtG9kJaU8fuqC3Fk/LVkja9y+LwYAAAAAAMiDQALZdDqtCy+8MDsr1VqrlpaWHtfcdNNN2dcikYjmz5+v3/72tzrkkEOyz99yyy1asWJF3uqaNm1aj/Oujb36svEmWV0/HZo6dWr2uXg8rubm/u0K3/1r2n777Xu8tt1222WPly9f3q/1mpqaeszf7b5GqeoKY5MEsiVqaGbIWj+14THdx5UAAAAAAAD5EUgge99992VnwlZXV+tXv/qVfv/732dfX79+vV566aXMr7U7jn784x/r1FNP1ec+9zn9v//3/3TcccdJygShDz74YN7qmj59eo/zDz/8sF/vW7t2bfa4uro6OxJg5syZPbp7Fy5c2OdasVisR9A6Y8aMHq/vuuuu2eNly5YpkUj0uWb3z3UcZ5Ovs1SlPEOHbKmyQx3I9n9eMwAAAAAAwGAEEsg+++yz2eMLL7xQX/rSl3rM+XzyySdljJG1VtXV1Zo7d26P95955pnZLtSnn346b3WNGTOmR1j5yCOP9Ot9L730UvZ45syZ2VmTdXV1mjlzZva17ht+bc4LL7yQHW5cXl6uT33qUz1e32uvvbJfu+/7evHFF/tcs/vnzpw5s8cc2lKW8nwCWQxKV2csHbIAAAAAAGCoBBLIvv3225IyG1TNmTNnk9e7QlbHcfSpT31K1dXVPV5vaGjQTjvtJGutVq1aldfaDj300OzxY489pvfee2+L169Zs0aPPvpo9nz27Nk9Xv/CF76QPb733nv77Gi97bbbssef+cxnNHLkyB6vjxw5UnvvvXf2/Pbbb9/ierFYTPfee2/2/Itf/OIWry8lKc/I9Y2MGZpuSgwlOmQBAAAAAEBpCiSQbW1tleM4mjx5cq87l7/wwgvZ43322afXNbo24BrIxlb9MXfu3GwHqeu6Ovfcc9XZ2dnrtel0Wuecc45cN7PhT11dnebNm9fjmsMPP1w1NTWSpObmZv3iF7/Y7Gf/7W9/69Hx+/Wvf73X64499tjs8eOPP6677rprs2v+7Gc/y87nra2t1RFHHLHZa0tNV3dsyqdLFjkyriQr0SELAAAAAACGSCCBbDwelyTV19dv8trChQvV2tqaPf/0pz/d6xrpdCYg6T7qIB/GjBmj8847L3v+1ltv6ZhjjukREkvS+++/r5NOOqnHyIDvf//7m4wDGDdunL75zW9mz++66y6dffbZPYLkZDKp6667ThdeeGH2uf3220/77bdfrzUeeOCBPb4vF1xwga6//nqlUh918TU3N2v+/Pk9umNPO+00jRkzps/vQano2tCLsQUlaIhmyEqZcQV0yAIAAAAAgKESCWLR+vp6tbW19QheuzzzzDPZ49GjR2uXXXbpdY0PPvhAkjb5lf58mDt3rj788ENdd911kqR3331XJ5xwgrbaaitNnjxZ7e3tevfdd3u859BDD9Xxxx/f63rf/va39dZbb+mJJ56QJN1///16+OGHNX36dFVWVmrJkiU9unC33XZbXX755Vus8YorrtCxxx6rFStWyPM8/epXv9INN9ygadOmKZ1Oa/HixdnOXUk64IADdPLJJ+fy7ShaXUFs0vMlVYRbDIqW9VPMkAUAAAAAAEMmkA7ZrvmvS5cuVTQa7fHa448/LikzP3bWrFm9vv/5559XS0uLHMfRTjvtFESJmj9/vi655JLsaARJWrt2rV566aUeYWwkEtFpp52myy67bLNrRSIRXXPNNTriiCPkOI6kzDiEBQsW6NVXX+0Rxu655576y1/+0mcn68SJE3XLLbfov/7rv7LPdXZ26tVXX9WCBQt6hLFHHHGEfvOb3/Q6HqKUpTx/wyMdsqVniDtkDYEsAAAAAAAYGoF0yO6999566aWX5LqurrjiCv385z+XlAljX3311ex1G2+QJUkrVqzQT3/60+z55kYa5MPhhx+ugw46SPfee68effRRvf/++2ppaVFFRYW222477bPPPjr66KM1efLkPteqrKzUxRdfrKOOOkp33323XnjhBTU2NiqdTmvMmDHafffddcghh2j27Nn9Dk633npr/eUvf9G///1vPfjgg3rzzTfV3NyssrIyTZw4UXvttZeOPPJI7bHHHoP8ThSntG9lRSCLwcmMLEjLWpv9gQoAAAAAAEBQAglk582bp+uvv16u6+qOO+7QG2+8oW222UZPPfWUHMeRtVYTJkzQ/vvvn33Pe++9p/vvv1+33XabOjo6JElVVVU69NBDgygxq6GhQccff/xmxxEM1O67767dd989L2tJmU7i2bNn9xpeIxPGEsiWoCGcISs/lfk840rllUP3uQAAAAAAYFgK5Hfct956a33/+9+X3RCqLF68WI8//rh83892of3kJz9RJPJRHvzXv/5V119/fTaMdRxH3/3udzVx4sQgSkSJSHk+gWxJGsqRBakejwAAAAAAAEEKpENWkk466SQ5jqOrrrpK6fRH8xlramp03nnnbdLxuf3222cD3PLycp122mk66aSTgioPJSJJh2xJGsL+2OyGXmzsBQAAAAAAhkJggawknXjiiZo7d66eeOIJNTU1aautttJnP/tZNTQ0bHLt9ttvr9GjR2v//ffXCSecoBkzZgRZGkpEyjNyfSPfWJWXMf+zdNAhCwAAAAAASlOggawkjRo1Socddlif133605/W888/H3Q5KDFd3bEpz6i2sjzkapA3Q9giaw0dsgAAAAAAYOgEHsj2V1lZIONsUeIIZEtAXZ28urrMvwHWyI6o1ZAmssbLfC4dsgAAAAAAYAgUTCAL5CLl+d0eK8ItBjnxX3hBb775prbaaiuVpdZqZHmHtGZou+Wtn5IMHbIAAAAAACB4QxbIptNpdXZ2ynVdGTOwTZi22WabgKpCseveIYsSYLs6Y4dyW6/MuAJGFgAAAAAAgKEQaCDb1tamG2+8Uf/617+0fPnynNZwHEfvvPNOnitDqUj7VsZKKZ9AtqTYoQ5kU4wsAAAAAAAAQyKwQHbRokU66aST1NraKjvE4QqGl5Tn0yGLQbEmLWtcWWvkOMyzBgAAAAAAwQkkeUin0zr99NPV0tJCGIvApTyjJIFsiQhpZIGXynwkYwsAAAAAAEDAAumQ/fvf/65Vq1bJcRxZa7XHHnvoa1/7mqZNm6aRI0dmdlMH8iTlGzpki5zjOKF+vt2woZf103Ii1aHWAgAAAAAASlsggey///3v7PEhhxyi//f//l8QHwNIklKukecb+caqvCzcYA+DtaEzdqg76zfMj7WGObIAAAAAACBYgQSy7777riSpoqJCP/7xj4P4CCCra1xB0vM1ojLQfeoQAOeyyzTpnXdUW1srx48pMn6EUnOnDmkNdsOoAusxsgAAAAAAAAQrkPSqvb1djuNop5120pgxY4L4CCAr6fmZR9doRGXIxWDAyv78Z01YvDh7bnacLM395pDWYL1k5tFPDunnAgAAAACA4SeQYa6jRo2SJNXX1wexPNBD0v2oQxbIjZX10wSyAAAAAAAgcIEEstttt52stVqxYkUQywM9dO+QBXJl/aSsxwxZAAAAAAAQrEAC2c9//vOSpDVr1uiNN94I4iOALGOltG+ys2SBXFgvSYcsAAAAAAAIXCCB7Lx58zRx4kRJ0kUXXaR0mo1yEKykaxhZUCpsSB/rp2R9V9ZwHwEAAAAAgOAEEsjW1dXpsssuU2VlpRYsWKCvf/3reu2114L4KEBSZmwBIwswGF3dsdZnbAEAAAAAAAhOJIhFn3zySUnSN77xDV1//fV64403dMwxx2jMmDGaPn26Ro0apaqqqn6t5TiOLrnkkiDKRAlJuEaub+QZo0hZID9nQInrmh9r/aRUURtyNQAAAAAAoFQFEsieeuqpchxHkrKP1lqtX79ezz///IDXI5BFX7pv7FVXRSCLgaNDFgAAAAAADIVAAlkpE8AO5PnN6Qp0gS3pGleQ9Izq+td8DfRgvWSPRwAAAAAAgCAEEsjOnTs3iGWBzfqoQ5YNmYpfaLt6ScajQxYAAAAAAAQqkED20ksvDWJZYLNSnpFVpkMWyJX1U3TIAgAAAACAQDFsEyXBWCntGTpkMSjGT9IhCwAAAAAAAkUgi5KR9Hw6ZDEo1ktlumQHOOsaAAAAAACgvwLb1GtzGhsb1djYqPb2do0cOVIf//jHJUmJREKVlZUqLy8f6pJQIpKuyc6SBXJh/aRkreSnpEh12OUAAAAAAIASNCSB7PLly/XHP/5RTzzxhNasWZN9ftasWbrhhhskSY8++qguuugiHXnkkfrWt76l+vr6oSgNJSTpGXm+lecbRcpp/sbAdc2PtX5KDoEsAAAAAAAIQKCplbVWV199tQ4++GDddtttWr16tay12T/drV69Wm1tbbrhhhs0Z84cvfXWW0GWhhLUNT+WsQXIVdf8WOuzsRcAAAAAAAhGoB2y3//+9/Wvf/2r13mMjuP0OF+5cmX2eM2aNTr55JN12223accddwyyRJSQxIYgNuH6qqsa8mkcyJHdfXclKisViUQkk1LZpLHh1dLVIeuxsRcAAAAAAAhGYKnVtddeq4cffjgbvH7sYx/TYYcdpl133VVf+9rXNrn+K1/5ipYuXapXXnlFjuOoo6ND5557rv72t78FVSJKDB2yxcn85S9aunChxo4dq/LYUtWVR6XGl0IqJi1ZQ4csAAAAAAAITCAjC9auXZudDStJZ599tv72t7/p2GOP1R577NHrez75yU/q1ltv1fnnn599bsGCBXryySeDKBElKOUZWX0UzKJYbdpRP6Sf7qeynbIAAAAAAAD5Fkgge+eddyqVSslxHH31q1/Vt771rX6/97jjjtMJJ5yQPX/wwQeDKBElyCoTytIhW3w+GmFiw85jZf1kdpYsAAAAAABAvgUSyD7zzDOSMiHLd7/73QG//5RTTsnMk5TY3AsDknR9AtmiZmXD7pD1UgSyAAAAAAAgMIEEsitXrpTjONppp500bty4Ab9/zJgxmjJliqy1amxsDKBClKqkZxhZgEGxflLW+LK+G3YpAAAAAACgBAUSyLa3t0vKBKu5Gj9+vCQpnU7npSYMD0nXl2+sXJ8u2eIVfoesJDb2AgAAAAAAgQgkkK2vr5f0UTCbi/Xr10uSGhoa8lIThoeucQVJl0C2mGRnyNqQB8jqoyCWsQUAAAAAACAIkSAW3XrrrdXS0qIlS5aovb19wKHqmjVrtHTpUjmOo2222SaIElGiusYVJD1f9cHc3sizslNO0ZR331VFRYUcL6ayrUfJnT8rtHqygaxHhywAAAAAAMi/QDpk9913X0mS7/v6wx/+MOD3/+Y3v5Hd0Cn36U9/Oq+1obRlO2TZ2KtoOM89p/pnn1X1E0+o6pmXVP7KO6HW89HIAjpkAQAAAABA/gUSyM6ZM0dlZZmlf//73+vhhx/u93uvv/563X333dnzL3/5y3mvD6Ur5RlZSQk29kLOrKyfpkMWAAAAAAAEIpBAdqeddtLcuXNlrZXv+5o/f77OPfdcvfjii1q3bt0m18fjcT3xxBM68cQT9etf/1pSZqbk7NmzNWPGjCBKRImyyowtoEO2iIU/RlbWT9IhCwAAAAAAAhHYkM0LLrhAixYt0ttvvy1rre655x7dc889Pa556aWXtPfee6uzs1PGZAK0rlEFkydP1i9+8YugykMJS3omO0sWyIX1ktlZsgAAAAAAAPkUSIesJFVXV+vGG2/Uf//3f8ta2+NP147qqVRKbW1t8n0/G8RK0syZM3XTTTcNeDMwQJKSrqFDFoNi/ZSs78oagn0AAAAAAJBfgQWykjRq1CjdcMMNuvzyyzV9+vTs893D2e4mTJigc845R7fffrsmTZoUZGkoYUnPlzFWaUJZ5KirO5axBQAAAAAAIN8CG1nQ3aGHHqpDDz1Uy5cv16uvvqply5apo6NDruuqoaFBEydO1J577qlddtkluxkYkKukmwlik56vygj3U7EpgBGysl4miLV+UqqoDbkaAAAAAABQSoYkkO0yZcoUTZkyZSg/EsNQ0sv8mnnSNRpZHXIxyEH4kWy2Q9ajQxYAAAAAAOQX7YMoOd07ZIFcWK9rZAEbewEAAAAAgPwikEXJSflGxoqNvZA760vGI5AFAAAAAAB5l/PIgpdeeimfdWzRJz/5ySH7LJSGlOdnO2WBXBg/qTJGFgAAAAAAgDzLOZA9/vjj5ThOPmvpleM4eueddwL/HJSWhGsYWYBBsX5K1ieQBQAAAAAA+RXYpl7Whr8xD4avpOcr6RlZa4fkBwcoPdbLBLLcQwAAAAAAIJ8GFcj2J3TtCjK6ro1EIpo8ebIaGhpUUVGhWCymFStWqLOzs8f1O+20k2prawdTHoaxpGtkjFXat6qKEKZh4KyflKyV/JQUqQ67HAAAAAAAUCJyDmQXLVq0xddbW1v1zW9+U2+//bYk6aCDDtKxxx6rvfbaS5WVlZtcv3jxYt1222264447ZK2VtVZXXnmltt1221xLxDDWNa4g6fmqirB3HQbOepkNvayfkkMgCwAAAAAA8iSwpGr+/Pl65513FIlEdNlll+naa6/VPvvs02sYK0nTp0/Xz372M/3+979XVVWVli5dqtNOO03pdDqoElHCkl5mQy829kKurL8hkN0QzAIAAAAAAORDIIHsgw8+qBdeeEGSdNppp+mwww7r93s/85nP6Ic//KGstVqyZInuuOOOIEpEiUu6H3XIorDZQw9V+2GHKf7Vrypx2EHyDvpk2CVJysyQlcTGXgAAAAAAIK8C2dTrrrvukiRVV1frpJNOGvD7jzzySF199dXq7OzU/fffr+OOOy7fJaLEpX0rYy0dskXAXHyx1i5dqvr6ekU63lSNbZfaFoddlmTSkjXZTlkAAAAAAIB8CKRDdvHixXIcR9OnT1d19cBnL1ZUVGjatGmy1mrZsmUBVIjhIOkZOmSLjt3wpzBYP8XIAgAAAAAAkFeBBLKtra2SpPLy8pzX8DxPkhSNRvNSE4afpGvokC1ChRPHZubIMrIAAAAAAADkUyCB7KhRo2St1XvvvZcNVgciFotp0aJFchxH48ePD6BCDAdJz1fSM7K2kCI+9MZxnMyBLbAOWS/FyAIAAAAAAJBXgQSyM2fOlCR1dHTo73//+4Dff9111ymVynSl7bnnnnmtDcNHws2EsWmfLtmiUkABuvWTssbI+m7YpQAAAAAAgBIRSCB78MEHS5Kstbrsssv0/PPP9/u9f/nLX/T73/8+ez537ty814fhIelm5scmGFuAHFkv84MhumQBAAAAAEC+BBLIfuUrX9HUqVPlOI4SiYROPvlknX/++XrjjTdkzKbhWDqd1rPPPqtTTz1Vv/zlL2WtleM4mjVrlmbNmhVEiRgGkp7Z8MjGXsWjwEYWbAhiCWQBAAAAAEC+RAJZNBLRr371Kx1//PFKJBIyxujvf/+7/v73v6uyslKTJk1SXV2dpMxYg5UrV8r3M6FZ17zPnXbaSVdddVUQ5WGY6Api2dirsJXNnq3t331XjuPIMWnZyePUedVRYZclqVsg67GxFwAAAAAAyI9AAllJ2nXXXXXTTTfpe9/7ntauXZsNWlOplD744IMe12686dK+++6rSy65JBvaArlwfSvf2mynLAqTs3q1Klatyp77VeUhVtMTIwsAAAAAAEC+BTKyoMvHP/5xPfDAAzrzzDM1derU7PPW2h5/uuywww667LLLdOONN2rixIlBloZhIuma7CxZYOCsrJ+iQxYAAAAAAORNYB2yXUaMGKHTTz9dp59+uj788EO99NJLampqUktLi1zXVX19vaZOnao999xT06ZNC7ocDDNJz6dDFoNi/ZSsTyALAAAAAADyI/BAtrvttttO22233VB+JIa5pGuU8kx2ozhgoKyXZGQBAAAAAADIm0BHFgBhS3q+rLVK0SVbPGzflwylTIesK2sYfQEAAAAAAAaPQBYlLelmgljGFhSTwkpku7pjGVsAAAAAAADygUAWJS2xYUOvBBt7IUfW6wpkGVsAAAAAAAAGj0AWJa2rM5ZAFrnq6oy1Hh2yAAAAAABg8AhkUdI8Y5X2jRIuIwuQGzpkAQAAAABAPhHIouQlXEOHLHJnfVnjEcgCAAAAAIC8IJBFyUu4PoEsBsV6iWynLAAAAAAAwGAQyKLkJVxfvrFKe4wtQG6sl5B142GXAQAAAAAASgCBLEpeV3dswqNLFrmxXiIztsC4YZcCAAAAAACKHIEsSl7Xhl6MLUCurJfo8QgAAAAAAJCrQALZ1157LYhlgZxkO2RdRhYgN6YrkHUJZAEAAAAAwOAEEsgeffTROvjgg3XDDTeoqakpiI8A+s0zVq6xdMgiZ9bLzI81dMgCAAAAAIBBigS18Icffqhf/epX+vWvf619991Xhx9+uA488EBVVFQE9ZHAZiVcn0C2QJnvfU9tH3yginKpLNWoshEF2MlsvMwMWQJZAAAAAAAwSIEEspFIRJ7nSZJ839fTTz+tp59+WiNHjtRXvvIVzZ07V7vuumsQHw30KhPIFmDQB9lvfUsdK1aoukKKdL6tyvQaKb4m7LI2Yb04gSwAAAAAABi0QEYWPP300zr//PO1++67S5KstbLWqr29XbfeequOOOIIzZkzRzfffLNaWlqCKAHoIeH68nwj1yeULVx2w/+0IdfRO+slCGQBAAAAAMCgBRLIjh49Wscdd5zuuOMO/fOf/9Spp56qbbbZRtJH4eySJUt02WWXab/99tMZZ5yhxx57TMYQliEYXd2xjC0oYF05rC3UQDaZGVvgu2GXAgAAAAAAilgggWx322+/vebPn6/HHntMf/7zn3X44Yervr4+G8x6nqdHH31Up59+uvbbbz9dfvnlWrJkSdBlYZjpCmIZW1DICjOI7dK1sVfXIwAAAAAAQC4CD2S7+8QnPqGLL75Yzz77rK666irtv//+ikQi2XC2ublZf/zjHzVnzhwdccQRuu2229TR0TGUJaJEfRTI0iFb+AozmDUbxhUYxhYAAAAAAIBBCGRTr75UVlbq4IMP1sEHH6y2tjY98cQTeuyxx/Tss88qFotJkhYsWKC3335bl112mWbPnq2jjjpKn/jEJ8IoFyXA9a08YwlkC5TjOGGX0Keu+bHMkQUAAAAAAIMxpB2yvRk1apQOO+ww/eY3v9FNN92kPffcU1ImoLHWKpVK6f7779fxxx+vOXPm6L777gu5YhSrhOszsqAQpVJyUikpmZRS6cyfQmQ8WeMSyAIAAAAAgEEJpUO2u5deekmPPPKIHn30Ua1atUrSR2Fsl67jJUuW6Ec/+pHuvPNO/c///I8mTpwYSs0oTplAlg7ZQlO+116aunhx9tzfbqI6/nJaiBVtnvUSsl4y7DIAAAAAAEARCyWQXbRoke6991498MADampqkqQeAawk7bLLLpo7d65mz56tV199Vffcc4+efvppGWP04osv6oQTTtDtt9+uUaNGhfAVoBglXCPXN/KMUaQs9OZwFKFMIMumXgAAAAAAIHdDFsiuWbNG9913n+677z699957kjYNYUePHq2vfOUrmjdvnmbMmJF9/ktf+pK+9KUvadmyZZo/f77eeecdLVu2TP/3f/+nH/3oR0P1JaDIJbMbexnVVxHIFqzC3NNL0oZA1viyflpOeWXY5QAAAAAAgCIUaCDb0dGhhx56SPfee69effXVbADbPYiNRCLab7/9NG/ePO2///6KRDZf0tSpU3Xdddfpc5/7nDzP0yOPPEIgi35LZANZX/VVoU/rQBEy3Tb2IpAFAAAAAAC5CCSVevjhh3Xffffpqaeekuu6kjbtht155501b948zZkzR2PGjOn32hMmTNDMmTP1xhtvaO3atXmtG6Wta0Mv5sgWusJtkbVuZlyB8RIqq2oIuRoAAAAAAFCMAglkv/e972U35uq+QdeoUaN0yCGHaN68eZo5c2bO61dVVUmSGhoIRNB/Kd/ItzYbzAIDZbt1yAIAAAAAAOQi8N/bLi8v16xZszRv3jwdcMABqqioGPSaa9as0Y477qiDDjooDxViOEm6hg5Z5M76ssYlkAUAAAAAADkLLJDdaaedNHfuXB166KEaO3ZsXtf+17/+Jcdx8romhoeE6xPIYlCsFyeQBQAAAAAAOQskkL3zzju12267BbG0JBHGImcJ11faN/KNVXkZ9xEGznoJAlkAAAAAAJCzQALZRCKhl156SQ0NDdp5551zWuPZZ5/Va6+9Jtd1NX/+/DxXiOEq4fqSzTzWVQU+sQMlyLoJWePL+mk55ZVhlwMAAAAAAIpMIInU8ccfL8dxNGvWLN1www05rfHb3/5Wr732msaOHUsgi7zp2tCLQBa5Mhu6Y40XVzmBLAAAAAAAGKCysAvYnPLycllr1dbWFnYpKCFd82O7gllgoLrGFTC2AAAAAAAA5KIgA9m3335bCxYskCTV1taGXA1KScozMlZs7IWcEcgCAAAAAIDByPl3tq+99lrdfffdW7zmpZde0uc+97kBrZtKpdTS0iJjjBzH0ZQpU3ItEdiElZT0fAJZ5M5m5scSyAIAAAAAgFzkHMged9xxuvXWWzc7UsBaq2QyqdWrVw9oXWutJMlxHEnS3Llzcy0R6FXC9ZXwCGSRO+slZF0CWQAAAAAAMHA5jywYNWqUfvCDH8hau8mf7np7fUt/ujvmmGN07LHH5loi0KuE62dGFxjb98UIQeH/d7FeXNZPbPJvFgAAAAAAQF8Gtc384YcfrqqqKrmum33OWqsf//jHchxH06ZN04knntjv9RzHUVVVlUaNGqWdd95ZY8eOHUx5QK8SrpGslPB8jagc1F8BDFPWS8oaI/lpKVIVdjkAAAAAAKCIDDqNOuSQQzZ57sc//rEkaeLEiYwcQMHpmh+bcI1GVIZcDGSuvlqtK1ao3MRUlmqSU9Ycdkl9MhvmxxovoXICWQAAAAAAMACBtAd+8pOflCRNnz49iOWBQfkokGWObCGwn/uckmvXKuK1qTzxoco7F8nx42GXtUXWi294TEgaFWotAAAAAACguAQSyN5yyy1BLAvkRdI1siKQLTzFM4/VbuiQ7XoEAAAAAADor5w39QKKlZWUdH0C2QLiOE63syIIZq2R9VMEsgAAAAAAYMBy7pBdvXp1j/Ntttlms68NVve1gXxIuCazuRcKSBEEsd1YL0EgCwAAAAAABiznQPbAAw/MdrU5jqN33nmn19cGa+O1gXxIuL5SnpGxVmV5uleRJ7Y4glnrJWT9hKy1efv3DgAAAAAAlL5Bz5C1WwhPtvQaEKaE68taq6RrVFtZHnY5kFRsHbLGS8gaI/kpKVIddjkAAAAAAKBIDCqQJYxFseqaH5twfQLZsC1cqIo1a1Tmtaos2aiydKPs1Iawq+pT17gC4yVUTiALAAAAAAD6KedA9tFHH83pNaAQdM2PZWOv8JV/9auasHhx9tyfMl4dt58RYkX90xXIZh5Hh1sMAAAAAAAoGjkHspMmTcrpNaAQJD1fVgSyyF3PQBYAAAAAAKB/ysIuAAiDsVLKM0p4JuxSsIkiGXdijayfIpAFAAAAAAADQiCLYSvh+nTIYlCslyCQBQAAAAAAA0Igi2Er4fpKuoYN6JAz6yVkvCT3EAAAAAAA6LecZ8h+/etfz2cdm+U4jm6++eYh+SwMLwnXl7VWSc+opqI87HJQhIyXUPmG0QVOpDrscgAAAAAAQBHIOZD9z3/+I8dx8lnLJqy1gX8Ghq+EazY8+gSyyIl145lHLyERyAIAAAAAgH7IOZCVxK/poqh1zY/tCmaBgeqaH5t5HB1uMQAAAAAAoCjkHMieccYZ+awDGHIfBbJs7IXcZIJYy8ZeAAAAAACg3whkMWwZKyU9QyCLQbCyfkrWi4ddCAAAAAAAKBJlYRcAhCme9hVPE8gid9ZNyHrJsMsAAAAAAABFgkAWw1rc9ZX0jIxhHjJyY7yEjJeQtcwiBgAAAAAAfSOQxbAWT/uy1irO2ALkyLoxyTJHFgAAAAAA9E/OM2TPO++87LHjOLrkkkt6fW2wNl4byKd42ss8ur7qqnL+64C8Kq5uZevGPnqsGBFyNQAAAAAAoNDlnEDdfffdchwne949NN34tcEikEVQujpjmSOLXBkvE8gaN6bykGsBAAAAAACFb1AtgdZmOtl6C1+7XhusfAa7wMbSvpVnGFmAQTCerJ/KdsoCAAAAAABsSc6B7Ny5c3N6DSg08bRPhywGxboxGTcedhkAAAAAAKAI5BzIXnrppTm9BhSaWNpX3M1s7kVH9tDz771XLWvXqiy5Rk66RWXxRWGXNGDGi6vMT8gaX04ZgwsAAAAAAMDmsYsRhr2468sYq5RnVF1BmDbkdthBXl2dyhNVclI1UmujysKuaYCsG5OsZL24nMr6sMsBAAAAAAAFrNhyDyDv4mkv88gc2ZBZKT+jp4eccWM9HgEAAAAAADZnyDtkly5dqjVr1qi9vV1VVVVqaGjQlClTNHHixKEuBZD0URAbT/saUxtyMcNecSaydsP8WMscWQAAAAAA0IchCWRfe+013XbbbXryySfV0dHR6zVbb721Pv/5z+u4447T5MmTh6IsQJKUdI2MzcySRZiKM4yVJFlf1kvKenTIAgAAAACALQt0ZEFbW5u+//3v65hjjtF9992n9vZ2WWtl7UfBS9f56tWr9ac//UkHH3ywfve73wVZFtCDlZRwfUYWhM1K1pqwq8iZ8WKMLAAAAAAAAH0KLJBtaWnR8ccfr4cffniTEFZSr89Jkud5+s1vfqOzzjorqNKATcTTvuJ0yIasiDtkldnYy3opWeOFXQoAAAAAAChggY0sOO+887RkyRI5jiNJmjRpkubNm6dPfOIT2n777VVfXy9rrTo6OvTee+/pueee0913363W1lZZa/XPf/5TU6ZM0fe///2gSgSy4q4v1zdyfaOKcva6G0rOgw+qetUqlaXWSek2lTlr5c+aEXZZA2Y3dMdaNyanqiHkagAAAAAAQKEKJJB98cUX9eSTT2bD2OOPP14//OEPVVlZucm1tbW12mqrrTRr1ix95zvf0fnnn5/tqr3xxhs1d+5cTZ06NYgygaxYOtPVGE/7aqghkB1KZT/6kcYsXpw996eMVUcRBrJmw4Zexo2rjEAWAAAAAABsRiDJ0/333589njt3rn7yk5/0GsZurL6+XldddZX++7//W1JmfMEdd9wRRIlAD13jCpgji1xZLy7JZjtlAQAAAAAAehNIIPuf//xHklReXq4f/vCHAyuorEw//elPs921Tz31VN7rAzaW2BDEMkcWObNG1kvIeASyAAAAAABg8wIJZJuamuQ4jmbMmKHRo0cP+P2TJ0/WzjvvLGut1qxZE0CFQE++lZKeoUMWg2LcmOyG0QUAAAAAAAC9CSSQraiokCTV1NTkvMbIkSMlSdYW987rKB7xtK8YHbIYBOvGZf20rO+GXQoAAAAAAChQgQSyU6ZMkbVWS5cuzTlQXbVqlRzH0TbbbJPn6oDexV1PSc+XMfwQALkxG+bHGubIAgAAAACAzQgkkJ09e7YkqbW1tccGX/31wgsvaPXq1ZKkAw88MK+1AZsTT/uSZWMv5K5rQy/LHFkAAAAAALAZgQSyxx57rLbeemtZa3XRRRdp8eLF/X5vS0uLfvKTn0iSGhoadPzxxwdRIrCJrg29CGSRK+slMpt70SELAAAAAAA2I5BAdsSIEfrNb36jkSNHqr29XUcffbRuueUWJRKJLb7viSee0Lx587Rq1SrV1NToyiuv1Lhx44IoEdhEbEMQG2eOLHJmZb2EDBt7AQAAAACAzYjk+savf/3rfV5TV1enjo4OxeNxXXLJJfr1r3+tPfbYQzvuuGN2065YLKaVK1fq9ddfV3Nzs6y1chxHn/rUp/Tyyy/r5Zdf1ve+971cywT6zfWtXGMJZDEoxo2pjA5ZAAAAAACwGTkHsv/5z3/kOE6f13VdY61VLBbTc889p+eee26T67o2/+q6/qmnntJTTz0lSaEEsuedd57uuusuSdKll16qefPm9et9S5cu1e23364XX3xRK1eulOd5mjBhgnbeeWd95Stf0ec//3lFIgP7tj///PP6+9//rtdff11NTU2KRCLaaquttOeee2ru3Ln6xCc+MeCvD72Lp31GFmBQrBuTNZ6sn5JTXhV2OQAAAAAAoMDkHMhKH4Wo+XzPxq/3J/TNtyeffDIbxg7ENddco+uuu06e5/V4fsWKFVqxYoUeffRR7bbbbrriiiu0ww479LleNBrVOeeco0ceeaTH86lUSkuXLtXSpUt15513as6cOfrpT3+q+vr6AdeMnroC2a5ObWCgzIbuWOPGVE4gCwAAAAAANpJzIHvGGWfks46C0dnZqQsuuGDA77vooot0yy23ZM8jkYimT5+umpoaLV26VK2trZKkBQsW6Pjjj9cdd9yhSZMmbXa9VCqlk046SW+88Ub2uREjRmjnnXeW7/t69913lUwmJUn33nuv1qxZoz/84Q+qrKwccO34SNz1ZIxVyjOqrigPuxwUIetlAlnrxqXqMSFXAwAAAAAACg2B7EYuueQSNTY2Dug9Dz30UI8w9gtf+IJ++tOfZjckc11Xd911ly699FIlEgk1NzfrzDPP1N///vfNdmFefvnl2TDWcRydeeaZOvnkk1VdXS1J6ujo0DXXXKM//elPkqSXXnpJV155pc4777wBf834SNf82FjaJ5BFTqyXlKyf7ZQFAAAAAADorizsAgpJLqMKXNfV5Zdfnj0/4IAD9Otf/zobxkpSRUWFjjrqKF177bXZ+bFvv/227r///l7XfO+993T77bdnz88++2ydfvrp2TBWkkaOHKmf/OQnOv3007PP3XrrrVq5cuWA6kdPXfNjmSOLwTBuXJZAFgAAAAAA9IJAdoOOjg6df/75kjIBak1NTb/e9+9//1urV6+WlBlT8NOf/lRlZb1/W2fNmqWjjjoqe37TTTf1et0tt9wi388EgjvssINOPvnkzX7+GWecoZ133llSJhz+85//3K+60buka2TsR52yQC6sF5P14jnN2QYAAAAAAKWt4APZBQsWDMnnXHLJJWpqapIknXLKKRozpn+zHx988MHs8Wc+8xlts802W7y+eyD79ttva8WKFT1eN8bo4Ycfzp7PmzdvswGvJJWVlenII4/Mnnd/LwbOSkq4Ph2yGBTjxmWNL+snwy4FAAAAAAAUmJxnyPaX7/t68803tXbtWqVSKfm+32vXmLVWnufJdV3F43GtW7dOL7/8spYsWaJ33nkn0BqfeOIJ3X333ZKknXfeWd/+9rf1j3/8o8/3WWv14osvZs/33XffPt8zffp0jR8/XuvWrZMkPfbYYzrhhBOyry9atCi7AZiU6artS/fPXb16tRYtWqQZM2b0+T70Lpb26JAdQv6CBWpqalIkukhe50pVJd8v/J8U9aFrXIF141Kkf932AAAAAABgeAg0kP3DH/6g66+/Xh0dHTm931q72U2v8qWjo0MXXHCBpMzIgUsvvVSVlZX9eu+qVat6fG277bZbv943ffr0bCD71ltv9Xht0aJF2eOKigpNmzatz/W23357VVdXK5lMZtckkM1d3PXl+kaub1RRXuzRYDGxKpVf8DfZQDYm1YwNuRoAAAAAAFBIAkubfv3rX+uKK65Qe3t7j45Ya232z8a6vzZUsxcvuuii7KiCk08+ud+hqiR9+OGHPc6nTJnSr/dtu+222ePly5dvds1JkyZlNwHbEsdxeoxKWLZsWb/qQO+6umPpkh1iVlKpzFz1U5LxZDw29gIAAAAAAD0F0iG7cuVK/f73v5eUCQs3Dli7ul57C127Xhs/frzmzJmjAw44IIgSJWXGBdxzzz2SpB133FFnnHHGgN7f1eUqZWa5jhs3rl/vGz9+fK9rbHw+YcKEftcybtw4vf/++72uiYHJBrKur4aaipCrGW5KJJCVZLyYytx42GUAAAAAAIACE0gge/fdd8vzPDmOo6qqKv3gBz/Q7NmzNX78eP3+97/XlVdeqUgkomeffVZ1dXVqb2/XwoUL9ac//UlPPvmkJKmlpUUHHXSQ9thjjyBKVHt7u376059KyoSpAxlV0H2NLiNGjNji5lvd1dXV9bqGJLW1tWWP6+vr+11L92s3XnMo+b7/UQhvjIwxodWSq2jKyFqraMqVMZVF+TUUk4++v1ayVsZaqQS+534qKqcyJt/PBPxD1fU/XHV9nzd3DvSFewiDxT2EweIeQj5wH2GwuIeAoRFIIPuf//wne3z22WfruOOOy57vs88+kjJ/qZ955hl9+ctf1pgxY7Tvvvtq33331fXXX6+rrrpKvu/rggsu0L333hvIHNmLLroo20n6jW98Qx//+McHvEYqlcoeV1dX9/t93YPfdDrd47Xu5/lacygtW7ZMI0aMUCyaVmtbuxobW0KrZTDWjYmo3K3UCLdTLS0tPf5bI79qa2vV0NCQPV+3YYRIsatJ16jOGan2NcuUdB21tBTn34VitWDBgrBLQJHjHsJgcQ9hsLiHkA/cRxgs7iEgGIHMkF2xYoWkTEh45JFH9nhtxowZqqjI/Br4yy+/vMl7Tz31VB100EGy1uq9997TI488kvf6Hn30Ud17772SpO22207f+973clrHdd3scX+7YyX1mAvreV5e1iwvL9/smhi4aNJV0s90NPZnji/yo3S29ZK8VDRz4Cez/+YBAAAAAAAEEsi2t7fLcRztuOOOqqqq6vFaJBLRDjvsIGut3n777V7ff8opp2SPH3/88bzW1tbWpgsvvFBSZl7txRdfPKBO1O66h6AD+bX27oHpxkFNrmt2/zUCwp/Bi6ZcpX3JWALZoI2+9VbVX3mlRlxzs0b+3z0a/WBp/ATWS3VKkhw/obKysgH9gAUAAAAAAJSuQJKmrsBx1KhRvb6+/fbba/HixVq6dGmvr+++++4aN26c1q9fr0WLFuW1tu6jCo477jh94hOfyHmtmpqa7PFAfqW9+0iBjQPr7uHwQNbsfu3Gaw6lqVOnKhKJaER8vUa7ZZroDWwub6GoqK3WiBEjNHJMg7auLGf+Z4DKjzlGzrvvZs9rp4xV5YmfC7Gi/KmuqVKkrloVY7Ya0CZ9GDjf93v8OtVuu+3W4wdcQF+4hzBY3EMYLO4h5AP3EQaLewiD9dZbb7EXTz8EEsiOGjVKzc3NPX79vrvJkydLkuLxuBobGzVx4sRNrpk0aZKam5u1evXqvNX1yCOP6L777svWcNZZZw1qve5zL2OxmKy1/Zp3G41Gs8cbh9bdz7tfN5g1h1J5ebnKysrkOI6cIu4KTHpGjuMo6VmNrOF/+QTJbvR3xtHAxnUUNC8ueXE6ZENQXl5OdzsGhXsIg8U9hMHiHkI+cB9hsLiHgGAEkhCMHz9e1lotX76819enTJmSPX63W2dcj8I2hBexWCwvNbW1telnP/uZpMyogosuuki1tbWDWrN7kOz7vlpbW/v1vq4OXUkaN25cj9e6d9GtX7++37U0Nzdnj8ePH9/v96F3cdfv8QjkwrgxGS8ha/npIAAAAAAAyAjkxxx77rmn3nnnHTU1NWnBggXabbfderzePZB9/fXX9d///d+brNG1MVi+fhLz17/+NRuE1tTU6IYbbtANN9yw2eu7B5w33XSTHnjggez55ZdfrnHjxmnq1Kmb1DxmzJg+a1m5cmX2ePvtt+/x2nbbbdfjuv503VprtWrVql7XQG5c38o1VvE0gSxyZ92YZK2sG5dTWRd2OQAAAAAAoAAEEsjuu+++uvXWWyVJ559/vm688UaNHTs2+/rMmTNVVlYma63uueceffvb3+6xEdXjjz+u5uZmOY6zSQdprrrPbY3H43rmmWf6/d533323RydvMpmUlBmrMGrUKLW1tUmSFi5cqI9//ON9rtd9Lu6MGTN6vLbrrrtmjxOJhD744APtsMMOW1zv/fff7zFDdpdddumzBvQtnvbokMWgGDfT4W+9mEQgCwAAAAAAFNDIggMOOCDbpbl48WIdfPDBuuKKK7Jdp/X19frkJz+Z7ew888wztWzZMsViMT388MP68Y9/nF2rPwFnmD796U9nj5977rk+r1+0aFGP7tu99967x+vTpk3r0WX7/PPP97nms88+mz0ePXq0pk+f3ud70LdY2lfc9dnQCzmzXlySZNx4yJUAAAAAAIBCEUiHrOM4Ov/88/Xtb39bvu+ro6NDf/jDH3TwwQdnO16/8Y1v6MUXX5QkPfnkk3ryySez7+8egM2bNy8vNZ155pk688wz+339gQcemB0DcOmll262jtmzZ+vhhx+WlOns3dwmZV1uu+227PGOO+64SXjqOI4+//nP669//ask6Y477tDRRx+92Q2BjDG64447sudf+MIX+rWxGPoWS/syG8YWjKhiiDlyYDxZP5UZXQAAAAAAAKCAOmQladasWfqf//kf1dfXZ5/rPjv2gAMO0Jw5c7Lhq7U2+6crUPzSl76kz3zmM0GVmBezZ8/ObsSVTqd17rnnyvO8Xq99+umn9be//S17fvzxx/d63THHHJP9HixatEi//e1vN/v5V199tZYsWSIpsxHa5tbEwEVTmf+OUebIYhCsG8uOLgAAAAAAAAgskJUygeo///lPnX766dprr700cuTIHq9fcsklOvHEE1VeXr7Je4866ihddtllQZaXF5WVlTrrrLOy588995y+9a1vZTclkyTP83THHXfozDPPlO9nwr2dd95ZX/3qV3tdc8aMGZo7d272/Nprr9Ull1yizs7O7HOdnZ26+OKLdd1112WfO+qoo7TTTjvl7Wsb7mIbgthYuveAHegP48Zk/aSsIdgHAAAAAAABjSzobuzYsZsdFxCJRHTOOefopJNO0jPPPKN169Zp1KhR2meffTR58uSgS8ubuXPn6rXXXsuOGXjuuec0e/ZsTZ8+XXV1dVq6dKlaWlqy148aNUpXX321IpHNf/t/8pOf6N1339WCBQskSTfffLPuuOOO7IiDxYsXK5FIZK//2Mc+pnPPPTeIL2/Y8oxV0jN0yGJQrBuTbGZjL6dyZN9vAAAAAAAAJa0gBmOOHz++R0doMfr5z3+u0aNH68Ybb5TrujLGaOHChZtct+OOO+rqq6/WDjvssMX16urq9Mc//lE/+tGP9Nhjj0mSEomEXn/99U2uPeCAA3TFFVeouro6L18LPhJLe4ql6JBF7rrGFRg3pjICWQAAAAAAhr2CCGRLgeM4mj9/vubMmaM777xTzzzzjNauXatEIqGGhgbtsssu+uIXv6g5c+aosrKyX2vW19frd7/7nZ5//nnde++9evnll9Xc3Czf9zVu3Djtueeemjt3rmbNmhXwVzd8RVO+Up6R6xtVlAc64QMlynpxSVbWjYddCgAAAAAAKABDGsguWrRIr776qtauXau2tjZVV1dr5MiRmjp1qvbcc09tu+22Q1nOFnV1pQ7UjjvuqHPOOUfnnHNO3mrZZ599tM8+++RtPfRf18ZesbSvUTUEssiBNbJeko29AAAAAACApCEIZJPJpG6++Wb99a9/1Zo1a7Z47fTp03XiiSfq0EMPDbosoF+6NvaKpjyNqqkIuRoUK+PGVEYgCwAAAAAAJAXa8vfmm2/qkEMO0a9//WutXr1a1lpJkrW2x5+u5xYtWqRzzz1XJ598stavXx9kaUC/JFxfxtpsMAvkwroxWT8ta9ywSwEAAAAAACELLJB96623dNJJJ2nVqlU9ni8vL9fUqVO12267adddd9XkyZNVVvZRGdZaPffcc/rGN76hzs7OoMoD+sUq0yUbTbOxF3LXfWMvAAAAAAAwvAUyssD3fZ133nmKRqNyHEfWWn35y1/W0UcfrY9//OOqqOj5q9/JZFIvvPCCbr75Zj3//POSpPfee0/nnXeerr322iBKBPotmvIVS/uy1spxnLDLKT3bbSfX8+SYpKzvym49MuyK8s5uCGKtG5eqRoVbDAAAAAAACFUggeyDDz6o9957T47jKBKJ6KqrrtJBBx202eurq6u1//77a//999ef/vQnXXrppbLW6tFHH9WLL76oT3/600GUCfRLLO3JGKuEa1RbWR52OSXHPPCA1jWuVUX7a4qvX6o6pzXYWSohsF4is7kXHbIAAAAAAAx7geQeDz30UPb47LPP3mIYu7Gvf/3rOvHEE7Pn//jHP/JZGjBg0a6NvRhbECDb46H0WFkvwcgCAAAAAAAQTCC7cOFCSVJdXZ2OPfbYAb//tNNOU1VVlSTp5ZdfzmttwEDFUt6GRzb2Cozd5KDkGDdGhywAAAAAAAgmkG1ubpbjONp55503mRfbH3V1dZoxY4astVq3bl0AFQL95xqrlGfokB0CpRvHZubIWuPJ+qmwSwEAAAAAACEKJJAdOTKzKY/v595RWF6emdVZXV2dl5qAwYilMxt7IShdIwtKN5LtGlfA2AIAAAAAAIa3QALZ6dOny1qrxYsXKx6PD/j9nudp6dKlchxH22+/fQAVAgMTTXtKer48Y8IupUTZjR5Lj/UyQax1B/5vIgAAAAAAKB2BBLJz5syRJCWTSd1www0Dfv/dd9+t9vZ2SdIhhxyS19qAXMRSvmSZI4vcWS8pWZ8OWQAAAAAAhrlIEIseeuih+utf/6pXX31V119/vSZNmqQjjjiiX+996aWXdMkll0iSdt55Zx155JFBlAgMSNf82GjaV0PNwOciY/Ocs8/W6A/el+O2qTbZqbIJ1Up+7+CwywqEceMqI5AFAAAAAGBYC6RDVpJ++9vfapdddpExRhdccIHOOOMMvfzyyzKb+ZXvDz74QJdffrlOPPFEJRIJ7bDDDvrtb3+b06ZgQL7F076MlWJs7JV3zkMPqebe+1T9z6c14vHXVfn8krBLCox1Y7JeXLaEZ+UCAAAAAIAty7lDdpdddunXdY7jyFqrRx99VI8++qiqq6s1depU1dfXS5JisZhWrVqljo4OSZK1Vo7jKBKJ6JxzzpHjOPrzn/+ca5lAXlhJcddXlJEFGATjxmSNL+sn5URqwi4HAAAAAACEIOdAtis43VKnl+M4PR6ttUokElq8ePEma3Vd13XtkiVLsp8BFIJYylMs7XFfImcfbewVkwhkAQAAAAAYlgY1Q7avX7vd3OsDfR4oBNG0L99YJT2jmorysMtBEera0Mu6cYk8FgAAAACAYSnnQPZPf/pTPusACl40lZkfG0t7BLLIjZ+WNZ6MGw27EgAAAAAAEJKcA9lPfepT+awDKHhdG3pFU77GjQi5GBQt68YyHbIAAAAAAGBYKgu7AKBYpH2rtG8US7OxF3Jn3ZiMF5e1JuxSAAAAAABACAhkgQGIpX1FN3TKArkwXkyyVtZLhF0KAAAAAAAIwaA29RqI5cuX6/HHH9crr7yipqYmtbW1qby8XCNGjNCkSZM0c+ZMffazn9XOO+88VCUBAxZNeUq4mc29ysucsMtBEbLZjb1iUgWzLwAAAAAAGG4CD2QbGxt1ySWX6JFHHpExvf+K7ltvvaWHHnpIv/rVr/TpT39aP/3pT7XDDjsEXRowYLG0L9nMPNmR1RVhl4MiZDYEssaNia3hAAAAAAAYfgIdWfDKK69o7ty5+te//iXfz8zdtNb2+qfrtRdeeEFHHHGEnnnmmSBLA3ISTW3Y2Is5ssiV8WT9dLZTFgAAAAAADC+Bdch+8MEH+s53vqOOjg45TuZXuyORiHbddVdNmzZNI0eOlO/7am9v15IlS7Ro0SJ5nifHcRSPx3XmmWfqjjvu0LRp04IqERiwuOvLSoqlmCOL3Fk3JuPGwy4DAAAAAACEILBA9rzzzsuGseXl5frWt76lr3/96xo9enSv17e0tOjmm2/WjTfeKN/3lUgkdMEFF+j2228PqkRgwIyV4mmfDlkMivFiKvMTssaXU8bgAgAAAAAAhpNARhY8/fTTev311+U4jioqKnTDDTfoe9/73mbDWEkaM2aM5s+fr9///veqrKyUJL3xxht6/vnngygRyFks7WVmyQI5sm5MspL16JIFAAAAAGC4CSSQ/de//pU9PvPMM7XPPvv0+7177723zjzzzOz5Aw88kNfagMGKpnx5vlHSJZRFbrpv7AUAAAAAAIaXQALZV155RZJUVVWl4447bsDvP/bYY1VVVSVJeu211/JaGzBYsbS34ZFAFrmxG+bHsrEXAAAAAADDTyAzZJubm+U4jqZNm6aampoBv7+mpkbTp0/Xm2++qdWrVwdQIZC7rvmx0bSnsSMqQ66m+NkDD1Rq6rZyvKjcRJsiW9WHXVLwrC/rJQlkAQAAAAAYhgIJZBOJhCTlFMZ2qa6uliT5Pl2IKCwpz8gzVrEU92Y+2GuuUeuqpYrE3lX7ylc0utYG07pfYIwXk2GGLAAAAAAAw04guUdDQ4OstVq1alXOa3S9d0sbgQFhiaY8RTeMLkAeWRt2BUPGpmOyXkrWcB8BAAAAADCcBBLITps2TZK0evVqLVy4cMDvf/vtt7Vq1So5jqOpU6fmuzxg0GJpXwnXyJjhEyAGa/h9H42XGVfA2AIAAAAAAIaXQALZz3zmM9njiy++eEBjBzzP0yWXXJI9nzVrVl5rA/IhmvJkrWVjr7yxGz2Wvq4g1hDIAgAAAAAwrAQSyB5++OGqqqqSJL3yyiv67ne/q46Ojj7f19HRoe9+97t65ZVXJGXmyM6dOzeIEoFB6Uxlfs28k7EF+TWcRha4cckaWTcadikAAAAAAGAIBbKp15gxY/Sd73xHv/71r+U4jh577DF94Qtf0Ny5czVr1iztuOOOamhokCS1t7frvffe0zPPPKN//OMfamtrkyQ5jqOTTjpJ48ePD6JEYFBiaV/GZjplkT92GHXISlbGjcmkCWQBAAAAABhOAglkJemUU07RggUL9Mgjj8hxHLW2tuqmm27STTfdtNn3WGvlOI4k6bOf/azOPPPMoMoDBsVKiqW9bKcsBqmrM3Y45bGSbLpTxo3KWiPHCeQXFgAAAAAAQIEJLJAtKyvTb37zG1188cW67bbbZDcELnYzv5LcFcRaa3Xcccfp3HPPDao0IC86U96GTlmrsg33LwaubN48jVuyWI5Ja6QbkzNptGKXHxN2WUPCuJ0qt1bWjcmprA+7HAAAAAAAMAQCC2SlTCh7wQUX6Gtf+5r+7//+T88++6xaWlp6vXbkyJH67Gc/q5NOOkkzZswIsiwgL6IpT8ZYxdO+6qoC/atU2hYvVsXixZIy/yD53vDZKK1rXIFJd6qMQBYAAAAAgGFhSFKkadOm6YorrpAkLV26VE1NTWpra5O1Vg0NDdpqq6204447DkUpQN50pvwNjx6BLHJi3ZhkjUy6M+xSAAAAAADAEAkkRbrtttv0/vvva86cOfrYxz7W47Udd9yR8BUlIZb2ZJUJZLcOuxgUKSvjRlXmsrEXAAAAAADDRSC7yDz44IP685//rCOPPFJXXXVVEB8BhM5YKZbyFGVjLwyCSUdl3JisNWGXAgAAAAAAhkAggewHH3yQ3bzr85//fBAfARSEzpSvaNrf7GZ1QF9sulOyVpYuWQAAAAAAhoVAAtmOjo7s8U477RTERwAFoXPDxl6x9PDZiAr5ZdzM/NiuDb4AAAAAAEBpCySQ3XbbbbPHa9asCeIjgILQNa6AsQXIlXXjbOwFAAAAAMAwEkgge+SRR2aPr7322iA+AigI0W4bewG5yWzsxcgCAAAAAACGh0AC2RNOOEHz5s2TtVYPPvigzjjjDC1YsCCIjwJCZawUS/vqTDGyALkz6U429gIAAAAAYJiIBLHoU089pS984QuKRqP617/+pUcffVSPPvqoRowYoZ133lljxoxRXV2dHMfpcy3HcXTJJZcEUSaQF9GUl+mUtbZf9zSwsezGXumonKqRYZcDAAAAAAACFEgge+qpp2aDqa5Ha62i0ahee+21Aa9HIItC1rWxVzzta0RVIH+lUOLMhnEFxu1UGYEsAAAAAAAlLbD0yFo7oOc3h45DFLquDb060x6BLHJi3ZhkfTb2AgAAAABgGAgkPZo7d24QywIFKZrKbOwVTflSfdjVoFgZN6qyNBt7AQAAAABQ6gIJZC+99NIglgUKkm+leNpX54ZOWSAXJh2VqYrLGl9OWXnY5QAAAAAAgICUhV0AUAqiKS/TKTvAkRxAl+zGXi5dsgAAAAAAlDICWSAPOlOefGOVcP2wS0GR6pofaxhbAAAAAABAScvryILW1lYtXbpUTU1Nqq2t1bbbbquddtopnx8BFKSucQWdKV+1lWzsNRD2m99U7L23VeZ3KtGyTNVbjw67pFBYL57Z2MtlYy8AAAAAAEpZXpKjN998U9dcc42ef/55+X7PDsEJEybo+OOP1/HHH6+qqqp8fBxQcKIpX1aZYHZiPff5gJx1lqLL3lB5cpXWL3lE48eOGrat+yYdVVmaQBYAAAAAgFI26Nzjd7/7nY4++mg988wz8rzMDM3ufxobG3XllVfqiCOO0IoVK/JRM1BwfJsZVxBlY68cZWbvDvcRvMbtlPEyG3sBAAAAAIDSNKhA9o477tDVV1+9SVdsd47jyFqrJUuW6Jvf/KaiUeYjojR1pjx1srHXIA3v751NRyUrNvYCAAAAAKCE5TyyIBqN6sorr5TjOJIka6323ntvzZ49W5MmTZLneVq8eLHuvvvubGfs8uXL9dvf/lbnnHNOfqoHCkg0u7GXUW1ledjlFJeuEHuYh9kfbezVqbKqhpCrAQAAAAAAQcg5kH3ooYfU3t4ux3FUVVWlK6+8Up/73Od6XPO5z31Op5xyii644ALdfffdstbqrrvu0ve//33myaLkdCYz4wqiKY9ANmfDO5BlYy8AAAAAAEpfziMLXnzxxezxD3/4w03C2C6RSES//OUvNW3aNElSR0eHXn/99Vw/FihY0XRmdEdnmjmyyJ1Jd2ZGFwAAAAAAgJKUcyC7aNEiSdKIESN05JFHbvHaSCSio48+Onv+9ttv5/qxQMHyTGZjr65OWQxE16Zew7tDVpJMOsrGXgAAAAAAlLCcRxasW7dOjuNoypQpqqio6PP6vfbaK3u8fPnyXD8WKGidKU/1aYK0gXD22EMTFy+WZDXWGpkpY9V5y+lhlxUa63ZKVjJup8qrRoVdDgAAAAAAyLOcO2Tj8bgkqb6+vl/XT5o0KXvc2cl8RJSmzpQvzzdKuISy/ZZOy0mn5aRdlbm+nGH+veva2IuxBQAAAAAAlKacA1nXdSWpX92xUma0QZdYLJbrxwIFLZrKjCvoTDG2ALmxXkIyXjaYBQAAAAAApSXnQLZr1qPjOP26vvt1vj+8O+BQurqC2CiBLAbBuFEZl0AWAAAAAIBSlHMgC2BT2Y29CGQxCCbdKeslZA33EQAAAAAApYZAFsizaMpXNEUXOHJn3GhmYy/myAIAAAAAUHIIZIE860x5cn2j5DDfnAq5s10bezG2AAAAAACAkkMgC+RZJxt7YZDY2AsAAAAAgNJFIAvkWVcQ20Egi0Ew6Q6ZdEfYZQAAAAAAgDyLDHaBxsZG/eMf/wj0PYcddtiA1gfC5BmrWNpXe4JAFrkzqXaVVY+R8ZIqi1SHXQ4AAAAAAMiTQQeyS5Ys0Xnnndfv6621A34PgSyKTXvSVV1VRMZYlZU5YZeDImRS7Rse21QW2SrkagAAAAAAQL4M6cgCx3HkOP0Pp6y1AVYDBKcj6clayxxZ5MykOyRrssEsAAAAAAAoDYPqkCUwBXrXnnSzjw01FSFXg+JkZdKdctIEsgAAAAAAlJKcA9lHH300n3UAJSXhGqV9o/YkHbLInUm1q6yqQdZPyymvDLscAAAAAACQBzkHspMmTcpnHUDJaU94qq3MjC4YyKgOoItJt0maIpNqU3nthLDLAQAAAAAAeTCkM2SB4aQ96crzjeKuH3YpKFIm1SHJMkcWAAAAAIASQiALBKRrXAFjC5Az68ukowSyAAAAAACUkEFt6gVg86IpT7616ki62mZkddjlFCx78cXqeO8VKd2uaOM7GrkNv5rfnUm1y1TVyxpXThkbxAEAAAAAUOwIZIGAWEmdSU/tlXTIbtHcuUounSibWKP294yqJ06kdb8bk2qT7LYyqXaV14wLuxwAAAAAADBI5B5AgNqTnhKur7Rnwi6lwFnJ2rCLKEgmnRlXkJknCwAAAAAAih2BLBCg9qTb4xEYMOPJurFsMAsAAAAAAIobgSwQoI6kJys29uoPS4fsZvmpdpl0p6zxwy4FAAAAAAAMEoEsECDPWMXSPh2yfbIb/qA3mTmyVibN2AIAAAAAAIodgSwQsPaEq2jKl28IHDeP782WfDRHlrEFAAAAAAAUOwJZIGAdSU/WWnWmGFvQq1WrVLZyjcpXN6miqUNl6+gC3YSflvUSBLIAAAAAAJSASNgFAKUuu7FXwtWomoqQqyk8zuc/r/GLF0uSJkjyp4xVx+3fDbeoAmRS7XIqRshaI8fhZ2kAAAAAABQr/r96IGBJzyjlGTb2wqCYVLtkjWy6M+xSAAAAAADAIBDIAkOgPemqI+XKWmalIjcm3ZZ5ZGwBAAAAAABFjUAWGALtSU+ebxVL+2GXgiJlvaSsn5JJtYVdCgAAAAAAGAQCWWAItCc2zJFlbAEGwaTaZdIddFoDAAAAAFDECGSBIRBL+/KNVceGDb6AXJhUu6zxZd1o2KUAAAAAAIAcEcgCQ8BK6kh5dMhiULrGFTBHFgAAAACA4kUgCwyR9oSrpOsr5TFHFrmxXlzWuASyAAAAAAAUMQJZYIh0dce2J+iSRe4yc2QJZAEAAAAAKFYEssAQ6Uh6spLamSOLQTCpdlnflXFjYZcCAAAAAAByQCALDBHfWkWZI4tBYo4sAAAAAADFjUAWGELtSU+xtC/f2LBLQZGyblSyPoEsAAAAAABFikAWGEIdSVfWWnUwtgCDwBxZAAAAAACKF4EsMIS6NvRibAEGw6TaZb2UjBsPuxQAAAAAADBABLLAEEr5RknPqC1Bhyxy5ydbJEkm1RpyJQAAAAAAYKAIZIEh1hpPqyPlMUcWObNuVNa4MkkCWQAAAAAAig2BLDDEWhOujLFqZ44sBsEkW2VSbbKWYB8AAAAAgGISCbsAYLhpjbuyGx7H1FaGXU7o7F/+otZ3n5Iba1R83WKN3mpC2CUVBZNqla2dIJvukFPVEHY5AAAAAACgnwhkgSHmGqtoylNLwtWOYRdTCPbYQ17tOqXbapVY3aaREyfSut8PfrJVFRseywhkAQAAAAAoGuQeQAha465iaU9pz4RdSoHg1+4HzE/JenE29gIAAAAAoMgQyAIhaE24kt3wiA0IZQfKT7bKpDtljRd2KQAAAAAAoJ8IZIEQtCddGWvVmkiHXUqBsCKQHTiTbJWspUsWAAAAAIAiQiALhMBYqS3hqSVOh2wWeeyAmVSbJCuTbAu5EgAAAAAA0F8EskBIWhNppT2jWJpfN5e1siSyA2d9mVSH/CQdsgAAAAAAFItI2AUAw1Vr3JXGZh5HVA7jv4pPP63KxS9L0UbZ1uWKbJ2U2XP7sKsqGibVqrKqBhkvobJITdjlAAAAAACAPgzjFAgIVzTtK+0btSZcbTtq+AZpzqmnatTixdlzf8pYddz+3RArKi5+skWRkdvJJNtUVjd87yMAAAAAAIoFIwuAELUmXLUlMht8Abmw6U5Z48mkWsIuBQAAAAAA9AOBLBCi1rgr31h1JJkji9yZVKtMsk2WYB8AAAAAgIJHIAuEqDXu9ngEcmGSrbLGk3U7wy4FAAAAAAD0gUAWCFHKN4qlfbUm0mGXgiJmUq2SJD/ZGnIlAAAAAACgLwSyQMhaE646U74834RdCoqU9ZKyXkKGQBYAAAAAgIJHIAuErDWelrVWrQnGFiB3Jtkqk+6QNX7YpQAAAAAAgC0gkAVC1pbwZCUCWQyKn2qVrJVJtYVdCgAAAAAA2AICWSBkvrVqT7jDeGMvG3YBJSETxFrGFgAAAAAAUOAIZIEC0JpwlXB9JVx+3Rw5Mp5MujO7wRcAAAAAAChMBLJAAejqjmVsAQbDJFtl3Lislwq7FAAAAAAAsBkEskAB6Ex58owdxmMLkA9d4wr8VEvIlQAAAAAAgM0hkAUKQNemXq0JV9YOs5mqw+zLDZJJd0jWZ44sAAAAAAAFjEAWKBCtcVeeb9SZ8sIuBUXLyk+1yaTahl+wDwAAAABAkSCQBQpEayK94ZGxBcidSbbK+q6sGw27FAAAAAAA0AsCWaBAJFyjpGeYI4tBMcmWDY+MLQAAAAAAoBARyAIFpCWeVnvSk2dM2KWgSFkvIesn5acIZAEAAAAAKESRsAsA8JH1sbS2GVmt1rir8XVVYZczJMyzT6p16ROKrVusROsyTZg4UU7YRRU5k2yVE6mVNb6csvKwywEAAAAAAN3QIQsUkLaEK2Ot1sfTYZcydEbWy46skxlRIzOiSnbE8Aiig+QnWyVrZFJtYZcCAAAAAAA2QiALFBDfZjb1Wh9zZa0Nu5whYXs5wuCYVKsku+ERAAAAAAAUEgJZoMCsj7lyfaPOlBd2KUNjQ/BsCWTzx3gy6U429gIAAAAAoAARyAIFpmtcwfqYG3IlQ2yYdAQPFZNslXHjsl4q7FIAAAAAAEA3BLJAgUl5RtG0P4zmyBLEBqGrO9ZPtYRcCQAAAAAA6I5AFihA62NpRVOekq4fdilDiGA2n0y6Q7I+YwsAAAAAACgwkbALALCp9fG0po6u0fq4q0kN5WGXEyjnlltVs/QVOe2rVZtsU9U24+V++b/CLqsEWPnJVjmRallr5ThO2AUBAAAAAAARyAIFqTPpyfWt1sfTmtRQHXY5gSq74leqe3eJ6jac+1PGEsjmiUm1ytaMk3Wjcirrwy4HAAAAAACIkQVAQbLKdMm2JVz5hl/lR266xhUwtgAAAAAAgMJBIAsUqPWxtIyxak24YZeCImW9hKyXlJ8ikAUAAAAAoFAQyAIFqiXuZjplY+mwS0ERM6lWmVS7rBlOG8QBAAAAAFC4CGSBAuVbq7aEq/VxAlnkzk+2StbKpNrCLgUAAAAAAIhAFiho62NppT2jzpQXdikoUibVKslueAQAAAAAAGEjkAUKWFd3LGMLkDPjyaQ72dgLAAAAAIACQSALFLCEaxR3/RIfW2DDLqDkmWSrjBuX9VJhlwIAAAAAwLBHIAsUuPWxtDpTntKeCbsUFKmu7lg/1RJyJQAAAAAAgEAWKHDrY2nJqsS7ZBEkk+6QrM/YAgAAAAAACgCBLFDg2pOePGOZI4tBsPKTrTKpNlnLiAgAAAAAAMIUCbuAsL344ot64IEH9Nprr6mpqUnRaFR1dXXaeuut9YlPfELz5s3TzJkz+73em2++qb/97W966aWX1NjYKGutJk6cqF133VWHHnqo9ttvPzmO0+/1rLV65JFHdO+99+qtt97S+vXrVVNTo4kTJ2rvvffW4YcfrhkzZuTypaNIWGW6Y6siZTLGqqys//cP0MWkWmVrxsm6UTmV9WGXAwAAAADAsDVsA9mVK1fqnHPO0csvv7zJa21tbWpra9PChQt1yy236Mtf/rJ+8YtfqK6ubrPrua6rX/7yl/rrX/+6yWsffvihPvzwQz3wwAOaNWuWLr30Uk2YMKHPGhsbGzV//ny98sorPZ5Pp9Nqb2/Xu+++q1tuuUXf+MY3dNZZZ6mysrIfXzmK0fpYWhPrqtSWdDWmtsT+O9OwOSS6xhWYZKvKCGQBAAAAAAjNsBxZ8OGHH+qrX/1qjzC2oqJCu+66q/bee29NmzatRxfrAw88oGOPPVbRaLTX9ay1+v73v98jjK2qqtLuu++uPffcs0eQ+8wzz+iEE05QR0fHFmtsaWnRcccd1yOMHTVqlD7xiU9o1113VSQSyX72TTfdpHPPPXdg3wQUlZa4m+mUZWwBcmS9hKyXlM8cWQAAAAAAQjXsAlnf93XmmWeqpSWz23h5ebnOOOMMvfDCC7rrrrt088036/7779eTTz6pww47LPu+RYsW6Sc/+Umva/7hD3/QI488kj0/5phj9Oyzz+pvf/ubbr/9dj377LOaP39+NkR9//339eMf/3iLdZ533nlavny5pEy4+7Of/UzPPvusbr31Vt1111164okn9KUvfSl7/QMPPKA//elPOX1PUPg8Y9WecLU+7oZdCoqYSbXKpNtljR92KQAAAAAADFvDLpC966679O6772bPL7vsMp155pmbjCOYOHGiLr/8cp144onZ5x566CG9/vrrPa5raWnRb3/72+z50UcfrQsvvFD19R/9SnB1dbW+/e1v6xe/+EX2uX//+9969dVXe63x6aef1hNPPNGjxqOPPjob6ErS+PHjddVVV/UIjf/3f/93s128KH7r466Srq9oygu7FBQpP9kiWSuTagu7FAAAAAAAhq1hF8jec8892eNZs2Zpzpw5W7z+rLPO6jHv9YEHHujx+p133qlYLCYpM1LgRz/60WbXOvzww7X//vtnz2+66aZer7v55pt71Ni9E3ZjF154ocaOHStJam1t1d133735LwZFrTmWkiStK7GxBXbsGJmxo+SNHiFvVI1MQ23YJZWsTBBrZZItYZcCAAAAAMCwNawC2XQ63aMr9ZBDDunzPZWVlZo1a1b2/K233urx+j//+c/s8cEHH6za2i2HSUcddVT2+KmnnlI8Hu/xent7u5577rns+eGHH77F9Wpra3uEyg899NAWr0fxSrhGnSlP66KpsEvJK//f92j907fo/Vu/q3dvPEEdvzsp7JJKl/FkUm3yk+tlLbupAQAAAAAQhmEVyK5atUpVVVXZ8x133LFf7xs1alT2uLX1ow1x2tratHDhwux59+B2c/bee2+Vl5dLkpLJZI/wVZL+85//yPcz8x0dx9G+++7b55rdr3n11VfV3t7e53tQnNZF04qnS3VsAQHhUPAT62W9lGy6M+xSAAAAAAAYloZVILv99tvrtdde08svv6wHHnhAO++8c7/et2rVquxxQ0ND9njx4sU9usx23XXXPteqra3VlClTsucbd9wuWrQoe7ztttv2+LzNmTFjRvbYGKO33367z/egOK3rGlsQLaWxBRv+DtGxOST8RHOPRwAAAAAAMLSGVSDbpb6+XjvttJOqq6v7vDYajerZZ5/Nnnfvqv3www+zx5WVldp666379fnbbrtt9nj58uU9Xuu+5tSpU/u13vjx43t8LcuWLevX+1B8smMLYqU1tiCDQHZI+CmZdIf8JIEsAAAAAABhGJaB7EDceOONikaj2fMDDjgge7xu3brs8fjx4/u9Zvdru68hSU1NTTmt2bWxV29rorQ0ldrYgg2dsTTIDh0/0SzrJmTS0b4vBgAAAAAAeRUJu4BC9uabb+qGG27Inm+33XY68MADs+dtbW3Z4/r6+n6vW1dXlz3eeN5r9/OBrNn92o6Ojn6/L99835fjOLLWyhojY0xotZSqxo6EdhhTo8bOpGoraov6e9x1r2RkHo21UhF/TcXAxpoUGbm9vPg6RSLFfQ916Zq9vblzoC/cQxgs7iEMFvcQ8oH7CIPFPQQMDQLZzVi5cqVOO+00ua6bfe7cc89VJPLRtyyd/miOZ3/GH3SprKzsdQ1JSqU++lX0XNfsvsZQW7ZsmUaMGKFYNK3WtnY1NraEVkspm1xr5SWrVZOuVGdnZ48u7mKy1VZbqdxdr/Juz63r1iWO4IyumqLypC8vXqWOjg7FYrGwS8qrBQsWhF0Cihz3EAaLewiDxT2EfOA+wmBxDwHBIJDtxZo1a3TCCSf0+NX/b3zjGz3GFUjqEdaWlfV/+kP3UNfzev7aeffzgaxZXv5RpLXxmig9q9tiGjWiSnHPqqampmgDWUmqu+p/Vb52mSo61sgYV35DjdZ97ZNhl1XyUh1rNaKqXo5Jqbq6uuQCWQAAAAAAChWB7EaWLl2qk08+WWvWrMk+N2vWLP3gBz/Y5NruIehAfuW3e2BaUVGRlzW7/xrBxmui9Kxpj2vmpDFqTRpNqosoEokUbRBfff/Dirz/oWo2nKe2GUUgOwRSnWs1Yvw0OW6bKqsmqqysrCRGFwAAAAAAUOgIZLt59dVXddppp6m1tTX73N57761rr72215Cz+0iBgYwJ6H5tVVVV4GsOpalTpyoSiWhEfL1Gu2Wa6FX2/SbkxC+vlldZpa22GqWJEyd2m8VaPBzHkVNe3uO58ki5Jk6cGFJFw0t1VUTltVaV47fShAkTwi5nUHzf7/HrVLvttluPH3ABfeEewmBxD2GwuIeQD9xHGCzuIQzWW2+9RbNPPxDIbnDffffpxz/+cY+Zrp/97Gf1m9/8ZrOzXEeNGpU9HsivjHf/1eDua0hSQ0NDTmt2v3bjNYdSeXm5ysrKMkFbWdmAxi5gYJpjaY2qqVAsbVRfXbx/lTeOkR0NbFwHcmeS61VWWSPHuopEwvtBThDKy8t7jIcBBop7CIPFPYTB4h5CPnAfYbC4h4BgkHpIuuaaa/SDH/ygRxg7Z84c/e///u8WN9bq3sW3fv36fn9e99m048aNy8ua3a8dP358v9+H4rUulrlfm2LhbeKG4uYn1klW8hP9/7cGAAAAAAAMzrAOZF3X1Y9+9CNde+21PZ4/9dRT9T//8z99/hRo6tSp2eN4PK7m5uZ+fe6KFSuyx9tvv32P17bbbrvs8fLly/u1XlNTk5LJZK9roHSlPKP2pKd10XTfFwO9sOkOWT8tP9G/f7sAAAAAAMDgDdtANp1O64wzztA999yTfS4Sieiiiy7SWWedJcdx+lxj5syZPa5buHBhn++JxWI9gtYZM2b0eH3XXXfNHi9btkyJRKLPNbt/ruM4mj59ep/vQWlYF00p6frqSLphlzIIxTf7tpSYRLNMqk3WFPM9BAAAAABA8RiWgaznefrud7+rJ554IvvciBEjdP311+urX/1qv9epq6vTzJkzs+fPPfdcn+954YUXssONy8vL9alPfarH63vttVe2M9f3fb344ot9rtn9c2fOnNljDi1KW1d3LF2yyJWfaJasZWwBAAAAAABDZFgGsldccYUef/zx7PmYMWN0yy23aNasWQNe6wtf+EL2+N577+2zo/W2227LHn/mM5/RyJEje7w+cuRI7b333tnz22+/fYvrxWIx3XvvvdnzL37xi/2qG6Uh5Ru1J13myCJnme5YT4axBQAAAAAADIlhF8g++eSTuvnmm7PnDQ0N+tOf/tRjVMBAHH744aqpqZEkNTc36xe/+MVmr/3b3/6mp59+Onv+9a9/vdfrjj322Ozx448/rrvuumuza/7sZz9TS0uLJKm2tlZHHHHEgOpH8WuKppVyTZGPLUB4rEyyWSbVKmv8sIsBAAAAAKDkDatA1vd9XXzxxbI2M7PScRxdeeWVmjZtWs5rjhs3Tt/85jez53fddZfOPvtsrV//0a//JpNJXXfddbrwwguzz+23337ab7/9el3zwAMP1Kc//ens+QUXXKDrr79eqdRHXZDNzc2aP39+j+7Y0047TWPGjMn5a0Fxao6mZZUJZoFc+In1ssbIJFvCLgUAAAAAgJIXCbuAofTQQw9p2bJl2fOamhr98Y9/1B//+Md+rzFu3DhdfvnlPZ779re/rbfeeis7k/b+++/Xww8/rOnTp6uyslJLlixRZ2dn9vptt912kzU2dsUVV+jYY4/VihUr5HmefvWrX+mGG27QtGnTlE6ntXjxYrnuRx2RBxxwgE4++eR+fx0oHSnfqD3hqrqiTDuOre3XhnRAdybZIllffqJZ5bXjwy4HAAAAAICSNuwC2e7i8bieeeaZAa0xadKkTZ6LRCK65ppr9POf/1x///vfZa2V67pasGDBJtfuueeeuvrqq/vsZJ04caJuueUWnXXWWXr11VclSZ2dndnj7o444ghdeOGFKisbVg3P6GZdLK1RNRXqSHlqqK4IuxwUG2vkJ1vklFfJWiPH4d8SAAAAAACCMqwC2ffffz+wtSsrK3XxxRfrqKOO0t13360XXnhBjY2NSqfTGjNmjHbffXcdcsghmj17dr+D06233lp/+ctf9O9//1sPPvig3nzzTTU3N6usrEwTJ07UXnvtpSOPPFJ77LFHYF8XisO6aEo7jRuhxs4UgSxyYhLNsjXjZVJtKq9m9AkAAAAAAEEZVoHsAw88EPhn7L777tp9993ztp7jOJo9e7Zmz56dtzVRetK+VUs8rUiZox3HjlB5GWMLMDB+Yr0qZGUSzQSyAAAAAAAEiN9LBUrE6vakfGPVFE31fTGwMevLJFvkx9fJGi/sagAAAAAAKFkEskCJaIm7SnpGqzuSYZeCIuV1rpA1nrzoqrBLAQAAAACgZA2rkQVAKbOS1nQkVR0pU2fKU31Vcfz1Nnt+TP6oWrnx9ZKkyLbjQ65o+DKpdplUm/zOlYrUTZJTVhz3EAAAAAAAxYT/bxsoIWs6ktpuTK1Wtyc1fUJd2OX0i/e7K9TRuFjrFmZmPE+cOJHW/RB5HctUVjVKfnS1IiOnhF0OAAAAAAAlh9wDKCFp32p9LK2maEqeMWGX009W1oZdA7qYVJtMukNedKWs8cMuBwAAAACAkkMgC5SY1R0bNvfqTIddygCQyBYSr2OZrO/Kj60OuxQAAAAAAEoOgSxQYopucy9rRSBbWEyyRSbdKa+TLlkAAAAAAPKNQBYoQavbk4qmPHUk3bBL6QdLHluAMl2yafmxNWGXAgAAAABASSGQBUrQ2s6krKTVHamwS+knEtlCY5LrZdyovM4VsrZY5hEDAAAAAFD4CGSBEpT2rZqjGzb38gs9TCOMLVR0yQIAAAAAkH+RsAsAEIzVHUmNr6tUYzSlSQ01YZezWZHTztWo95dqRKIlc77teMUvPDzkqiBJJtEs68bkda5Q+Yit5Tj8DA8AAAAAgMEikAVKVGvCVcL1tbqjsANZ59W3VPneB6rccO53pkOtBz25HctUWTFCfqxRkbqtwy4HAAAAAICiR7sTUMJWd6QUS3lqL4rNvVCITGKdrBeX17lc1jJeAgAAAACAwSKQBUrY2s6kjJVWtyfDLgVFzOtYJusl5cfXhl0KAAAAAABFj0AWKGGub9UcS2ldLC234Df3QqHy402yXkJexwq6ZAEAAAAAGCQCWaDErW5Pyhirxs5U2KVsBgFfMfA6V8h6CZlUa9ilAAAAAABQ1AhkgRLXlvQUd32t7kjS3Yic+fEmyRr58cawSwEAAAAAoKgRyALDwMq2pOJpXy1xNvdCjqwvP9Esk2iWNX7Y1QAAAAAAULQIZIFhYG1nUq6xWtGWCLsUFDE/3ihrjPzEurBLAQAAAACgaBHIAsOAsZlZsm0JV50pL+xyUKRMslXWpBlbAAAAAADAIBDIAsPEqvaEjBVdshgEKz++TibVJusV6iZxAAAAAAAUNgJZYJhI+1aNnSmti6aVdJkBitz4sbWSlfxEU9ilAAAAAABQlAhkgWFkZXtC1lqtak+GXQqKlHWjsl5cfoyxBQAAAAAA5IJAFhhGYmlfLXFXazqT8owJuxwUKT/WKOPGZNLRsEsBAAAAAKDoEMgCw8yKtoQ832pNBzNAkRtvw6ZebO4FAAAAAMDAEcgCw0xrwlU07WtVe1LW2rDLQTHyUzKpNvnxJu4hAAAAAAAGiEAWGIZWtiWUdH2ti6XDLkUSgV4x8mONsn5aJtUadikAAAAAABSVSNgFABh6TdGUdhhbqxVtCU2oqwq1FjNnthLLlirVuVaSVD1pXKj1oH/8xDpV2GnyY40qrx4TdjkAAAAAABQNAllgGDJWWtmWVGV5mdoTrhpqKkKrxfvhqWpfvVBtHz4rSZo4cSKt+8XA+vITzXLKI7LGl1NWHnZFAAAAAAAUBXIPYJha3ZGUb61WtCVCrsRKzCEtSn68UdYY+Yl1YZcCAAAAAEDRIJAFhinPWK3tSKk5nlbC9UOuhkC2GJlkq6xJy483hl0KAAAAAABFg0AWGMZWtidkrULukrXEsUXLyo83yaTaZL1U2MUAAAAAAFAUCGSBYSzhGjXH0lrbmZLrm3CKsGJkQRHzY42SFV2yAAAAAAD0E4EsMMytaEvIGKtV7clQPj/TH0sgW6ysG5V1Y/LjTWGXAgAAAABAUSCQBYa5jqSn9qSnVe1JGRNSMEqHbFHz400ybkwm3Rl2KQAAAAAAFLxI2AUACN+KtoQaqiNa25nSNg3VQ/rZlYd+S1st/VATjStJspPHKXr9N4e0BgyOF1+ryMip8to/UOX43cMuBwAAAACAgkYgC0DNsbTirq8VbQltPbJKjuMM2Wc7Le0qa+nInvsj40P22cgTPy2vc4XklMlPrFN5zfiwKwIAAAAAoGAxsgCApEyXbML11RxLD/EnM66gFHidy2W9pNy292WNH3Y5AAAAAAAULAJZAJKkxs6U0r7RirZE2KWgGFkjt+09WS+Z6ZYFAAAAAAC9IpAFIEkyVlrVnsxs8pVwwy4HRcgk18skW+R1rpDxCPYBAAAAAOgNgSyArFXtSfnWajldssiR2/aeZDx5be+FXQoAAAAAAAWJTb0AZHnGak1HSuVljuJpT7WV/BOBgbFeQl7nyg0bfK1Xec3YsEsCAAAAAKCg0CELoIeVbQlZK61oS4ZdCoqU17lM1k/JbVsqa03Y5QAAAAAAUFAIZAH0kPSM1kVTaoymlPYI05ADazJhrJdggy8AAAAAADZCIAtgE8tbEzLGamU7s2SRG5NYJ5Nsld+5XMaj2xoAAAAAgC4EsgA2EU37ak24Wt2RlG9s2OWgSLlt78kaX17b0rBLAQAAAACgYBDIAujViraEPN9qTQfdjciN9eLyOlfKTzTLT7aEXQ4AAAAAAAWBQBZAr1rirqJpXyvaE7KWLlnkxutYJuun5XUsC7sUAAAAAAAKAoEsgM1a0ZZQyjVqjKbCLgXFyvryY2tkUh0y6WjY1QAAAAAAEDoCWQCb1dSZUsL1tayVLlnkzoutlmTlx1aHXQoAAAAAAKEjkAWwWVbSstaEEmk/wC5Zgt6S56czc2TjTbLGC7saAAAAAABCRSALYIsa6ZJFHvjRNbLGlx9vDLsUAAAAAABCFQm7AACFzUpa3ppQTUW5mqJpTayvyuv67mnHKL5siVKdayVJdduMz+v6KAwm1SrrJeRH1yhSNynscgAAAAAACA2BLIA+re1MaeqYWi1rjWtCXaUcx8nLutZa+Ud8UR0rJinW+I4kqWLiRFr3S5QXXS0nUiM/1abyqlFhlwMAAAAAQCjIPQD0yUpa1hJXPO2rKZoO4AMYhTAc+PG1kjXyo2zuBQAAAAAYvghkAfTL2s6Ukp7RstZ4HmfJ2o0eUdKMJz/RJD/RLOsHEOwDAAAAAFAECGQB9EugXbLkscOGF10tWSs/tjbsUgAAAAAACAWBLIB+y3uXrKVDdrix6U6ZdKe82Jo8dloDAAAAAFA8CGQB9FtQXbLEcsOLH1sj6yVlki1hlwIAAAAAwJAjkAUwIPntkrVSZ0xlHXGVxVIqi6XkxFJ5qROFy483ZubJxtjcCwAAAAAw/ETCLgBAcbGSlrXGVR2pU1M0rYn1VYNarfrQ72jK0hXZZ/wpY9Vx+3cHXScKmDXy4o1SeUTGS6osUh12RQAAAAAADBk6ZAEM2NqOPHXJMqtg2PKjqyUrumQBAAAAAMMOgSyAAevqkh38LFkS2eHKenGZVJv82FpZa8IuBwAAAACAIUMgCyAnaztSSri+3l8fk+cTqGHgvOhqWd+VSawLuxQAAAAAAIYMgSyAnFhJ766LKeUZLV0fH8QqGK5MolnWT2eCWbpkAQAAAADDBIEsgJy1Jlyt6UhpTWdSrXF34AuQxw5zVl7ncplUh9Lr3pD1UmEXBAAAAABA4AhkAQzK0vUxpVyjd9dF5ZuBJayWRHbY86Or5La+K5NsU6rpFfnJtrBLAgAAAAAgUASyAAbFM1ZLmmNKuL4+aBno6AICWUh+bI1S616XSXcq3fymvM4VYZcEAAAAAEBgImEXAKD4NcfSaoqm5DiOJtRVamR1RdglocjYdKdSja+qcswucq2VSXeoYvR0OWX8rykAAAAAQGmhQxZAXrzXHFPaN1rcFJOx/ex87e91GB6Mu6FDdrn8eLPSTa/JuLGwqwIAAAAAIK8IZAHkRdq3eq85plja0/LWRNjloIh57R8ovf7tzGZfhLIAAAAAgBJDIAsgbxo7U2qJu1rWmlAs5fXjHXTIoncm0axU02uyviuv/cOwywEAAAAAIG8IZAHk1eJ1UXm+0aJ1UVlGEmAQrBeXF1sjP9ksk+4MuxwAAAAAAPKCQBZAXqU8o6Xr4+pMelrZntzyxQS26IPXsVwyRl7HsrBLAQAAAAAgLwhkAeTd6o6k2hKuPmjJBLObRyCLPpi0vOhq+Yn1dMkCAAAAAEoCgSyAQCxsiirlGr3d2CnXN2GXgyLmdS6XrC+v48OwSwEAAAAAYNAIZAEEIuUZvdPYqYTr653Gzs3Mk6VDFv1g3A1dsi0yqY6wqwEAAAAAYFAiYRcAoHS1Jlx9sD4uR7X6oCWuHcaO6HmBldKX/UAtS16WG18vSRq19YQQKkWh8zpXKFK3jbyOD1U5fvewywEAMhD+AwAAaANJREFUAAAAIGcEsgACtbwtofrqiORII6sjGjeiqturVuZTuyvR0KZUZyasrZs4kdZ9bMq48qKrJKdcJtWusqqGsCsCAAAAACAn5B4AAreoMap42tfCxqji6U03+bKMLkA/eJ0rJOvLZZYsAAAAAKCIEcgCCJxvrRas6VTaM1qwtlO+yQSwBLEYEOPJ61wpk2yTn2oLuxoAAAAAAHJCIAtgSMRdX4uaMp2yi5qimSe7NvrqdcMvYFNedGUmmG1fFnYpAAAAAADkhBmyAIbMulhay9sSkqTWeJVG8iMhDJTx5EVXKlIWkZ9sVXn16LArAgAAAABgQIhDAAypD9bH1Zpw1RxLK+n5kiOVlfFPEfrP61wpazx5HXTJAgAAAACKDykIgCFlJb3T2Km0b9QSS0tvvae6pY2qXdKkmncbVb5kbdglotBZX350pUyqXX5ifdjVAAAAAAAwIIwsADDkXN9qTUdKI+qNKs/4hSZ8sCL7mj9lrDpu/26I1aEYeJ0rVT5iK7kt70hjd1VZ5SjV19ers7Mz7NIAAAAAANgiOmQBhML1jVri6bDLQLGyvtJNb8ikY0o3L5AfX6e6ujo1NDSEXRkAAAAAAFtEIAsgNCnPyMiGXQaKlPWTSjW9JpPulNu6UGXpZtXW1mr0aDb6AgAAAAAULgJZAKFwHEeSlSWPxWAYV+l1b8gk21WeWK6y1FpVV1dvuL8AAAAAACg8zJAFEIrNxWWGgBYDZTyl1r2hVMW2qpIk68txtgq7KgAAAAAAekWHLIDQOL2MK/CtVdo3IVSDomaNOla8rGT7apWnGuW2Lpal/RoAAAAAUIAIZAGEYsPEgk1YKzVFU/JplcWAWXWufk2J1mXyY41yWxYSygIAAAAACg6BLIAQ9dIha6w832pdLM12X8hJdO0CeR3L5cfXyWt/P+xyAAD/v737jpOivv84/t52HTh6B+nFgthQRJSoaIwasRE7KqJGSWIJYoqiYjSKMQom1gTFgqD4UxPFrhERUFBA5GgCUqQexx3Xts3vj+WGmbvbcnfb7ng9Hw9lZnf2O9/Z+ez3Zj/7ne8XAAAANowhCyAlHGFGkTVkaHeZT61zpMIyr1rnZCS5ZmgKfHt/kNOTJUlyuLPlzuuU4hoBAAAAABBCQhZAaoQZskCSSir9ynSFErYZLqeaZdJUoe58havkcGXJV7RWDneWXFmtUl0lAAAAAAAYsgBAaoTSreEHJdhd5lOlP6jCMp8q/Ezyhfow5N29QoavTL7d3yvoK011hQAAAAAAICELIHUcERKyhkKTe/mDQe3cVyk/k3yhPoI+eXctV9BfKe+u72QEvKmuEQAAAADgIEdCFkBKOGofQtYmYEg79nnlDxraua9SBjlZ1IPhL5dv9woZ/vJQUjYYSHWVAAAAAAAHMRKyAFIihnysJIWGLSj17h++gN6NqJ9gZZF8hasU9JbIt6dABtl9AAAAAECKMFMOgBSJMKtXNSXegDLcfkmSx+1Ucyb5Qj0EyrbL4c6WJDlc6+XJ75niGgEAAAAADkZkNQCkhMMRey9ZSSos8ynD5dSe/f9muengj7rzF2+wJGUz5W7WOcU1AgAAAAAcbMhoAEih2G8bNyf5CgS1Y1+lKvzBxFULTZqvsEDByj3y7V2rQOn2VFcHAAAAAHCQoYcsgJSo6h3741N/UcE378vnq5AkZTVrFvY1AUPaVlKpDs0ytb2kUm3zMpTjcSWhtmhaDHl3rVBG20Hy7lmlDKdbruzWqa4UAAAAAOAgQQ9ZAKljGPK3b6PSNs1V2rqZSls3U0WrvIgv8QUN/VRSKW8gqJ37vNrnDSSpsmhSjIC8u5bL8JXKV/i9gpV7U10jAAAAAMBBgoQsgKSrMXZsHWe89wcNbSuuUKU/oF2llSqu9MetbjiIBH3y7lymoK9c3l3fKejdl+oaAQAAAAAOAiRkASSdY39G1rF/DNm6pWNDqoYvqPAFVVjqVVG5L34VxEHDCFSGkrL+cnl3LVfQX57qKgEAAAAAmjgSsgBSr449ZKsEDWl7SaXKfQEVlftUWOarV3IXBzfDXxYavsBfLu/O5TIC3lRXCQAAAADQhJGQBZB0B4YsMKr9W3eGpB37vCr1BlRc4dPuUi9JWdSZ4S2Rd/cKGb7SUHI2yDAYAAAAAIDEICELIAXso8ga9ewha75e0s5Sr0oq/dpX6df2kkoFGlgmDj7Bij3yFhYo6C1R5Y4lCvpKU10lAAAAAEAT5E51BQAcfByWfGyzj+erx9JVCgYDkiRXy+b66dje9Sp3d5lPvoChVjnStuJKtc3LUIaL350Qu2D5Tnl3BZXRqr+8O76Rp1V/ubLbpLpaAAAAAIAmhIQsgJRxyFDbx6ery4bN5mMlHfPrnZCVpOJKv3zBoNrmZmpbcaXa5GUox+OKR3VxkAhW7FbljiXKaHOYvLtXyN2su9zNu8vhcER/MQAAAAAAUdB1DEDS1RxDNr7KfUH9VFwhbyCoHfsqtbeC8UBRN4a/XJXblyhQtkv+4o3y7V7BuLIAAAAAgLggIQsg6ZLR0dAXNLS1uEIVvqD2lHm1i8m+UFdGQL7dK+Qv3qBA+W55d3yjoK8s1bUCAAAAADRyJGQBpE6CJ94KGtL2kkr7ZF9B0rKoG3/xRnl3fadgZbG8O5YoUL471VUCAAAAADRiJGQBJJ1j/6AFyRiR01Bosq/dZT5V+AL6qSQ0lAFQF1Xjyga9JfLu/l6Bij2prhIAAAAAoJEiIQsg+VIwN1JJpV/bSirl9Rv6qbhSpd5A8iuBRs3wl6tyx1IZvlL5dn+nYOXeVFcJAAAAANAIkZAFkHSJntQrnAp/UFuLK+T1B7WztFJF5T7GlUXdBL3y7lymoK88NIyBtyTVNQIAAAAANDIkZAEcVPxBQz8VV6jMG1BRuU8791WKYWVRF0agQt6dSxX0l8m7a7mCvtJUVwkAAAAA0IiQkAWQdA6zi2xqMqFBSTv2eVVU4VOZN6BtJRXykZVFHRj+8gM9ZXcuU9BfnuoqAQAAAAAaCRKyAJIumZN6RVJU7tfOfV5V+oPaVlyhMh/jyiJ2hq9U3l3LzOSs4a9MdZUAAAAAAI0ACVkAKWQoVb1kq5T6AvqpuEKV/qB2lFRqW0mlKvzBlNYJjYfhLZF313cyfGWh5GzAm+oqAQAAAADSHAlZAEnnSHXX2Gq8AUNb91aoqHz/EAbFFdq+r1KVARKziC5YWSTv7hUK+kpVufNb+Yt/VNC7L9XVAgAAAACkKXeqKwDgYJY+47YGJRVV+FVc6VeLLI8MSeW+gHI9brXIdivDxe9XCC9YUSjvru/kye8tn69c2rteDnemnJkt5cpuJWdmSzmc/MkFAAAAAJCQBZACtg6y6ZOTlSQFDWlPuU/FFT61yPbIMKRSn195GW61yvHImW7de5E2ghWFqty2SA53jpxZreTKaiXDV65A6TbJ4ZAzo4XczTrJld021VUFAAAAAKQQCVkAKeNIs2SsVcCQCst8Kq7wKz/LIxlSpT+oNnkZyqS3LCIw/GUK7CtTYN9myeEM9ZLNaiUju1LByiI5M1vIk99Lzoxmqa4qAAAAACAFSMgCSLoDnUyNdOsgW4M/aGhXmVdlPqfa5GZqW3GlWuV41CyT5hMxMIIKVuxWsGK3tHed3Hld5G7eTZU79sqV006e5j3kcGelupYAAAAAgCQiowAgBaoysoYMj1sBt8t8JmhZTidlvqC2FleobW6GdpcaqvAH1TonQ05GMECsjKD8JT/KX/qTPC16SIahYPkuufK6yN2sK2PMAgAAAMBBgm9/AJLOOgzr2pl/17eL3jLXc/PylK45Tn/Q0LaSSrXM9kiSvP6g2uZlMOEX6ibok2/PavlLNsuT30tGMKhA6Ta5m3eXK7eDHA7iCQAAAACaMhKyAJLuQMLVkGGk+6AFdoakwnKfKvxBtcnN0E8MYYB6Mvxl8u5aLmdmS7nze8oIeOUv2SRP80PkzGknBxPIAQAAAECTRAYBQMo05nRTmS8QGsIgLzSEQUmFX82y3MrNcDOMAeokWLlH3u2L5cppJ3fzQ+T1V8hZsknuFofIld0m1dUDAAAAAMQZCVkASWfNVza2HrJW/qChbcWVapbpVvMst7yBoPaU+5SX4VazLLc8ZGZRB4GyHQqU7ZQrt4Pczbsr6CuVM7O53M0PkSurZaqrBwAAAACIExKyAJLPcWBSr9B/jZchqbjSr5JKv7I9TjXL9CgYNFRc6VOOx6VmmW5leVyNujcwkslQoPQnBcq2y5XXWe5mXRWsLJYru5U8LfvJ4cpIdQUBAAAAAA1EQhZA0tmTk407IVvFkFTmC6rMVymP06FmWW4Fg1KZNyC3y6m8DJdyM+k1ixgZQQVKNimwb6vczbpJMhT0LpanVX96ywIAAABAI0dCFkAKGWrEIxaE5QsaKizzqajMp7xMt/IyXfIHgioq9ynT7VJepks5GS65mLQJ0RgB+YvXK1CxWxmtB8i7a5nczbrK3bwHk34BAAAAQCNFQhZA0lXlkRyS2rz0lgYXfGs+F2zdXOvOOjol9Yq3oELDGRRX+uVxOkLJ2QxDlf6ACsscyvGEkrPZHleqq4o0Z3iLVbl9sTwt+0qGFKzcK0+rAXK6s1JdNQAAAABAHZGQBZB0Zr8+w1DrNz9S541bzedKOuY3mYSslS9oaE+5T3vKfcpyO5WX6VYwaKjU61em26WWOR5luZ2pribSWdAv3+7vFcztJE9+L3n3J2hdOW1TXTMAAAAAQB2QkAWAJKvwB1Xh96pQUrMst1pkSZXFAWV7XMrP9iiTxCwiCJRuVdC7VxmtB8q7+3u5KjrIld1aDlemHO4sOZyeVFcRAAAAABABCVkASXdg7MsmOIBsHQQl7a3wq6TSr+ZZbhmGVO4LKCcjlJjNcJGYRe0MX2loCIP83pKkQOk28zmH0yWHK0sOd6Ycriw5s1rJmdWKMWcBAAAAIE2QkAWQMg7pYM/JSpKChlRU7ldJhV8tsjwyJJX5AsrNcCs3w6Vst0vk0lCDEZRvz2r5ijfI6c7Zn4TNOtBTdv+/2rdVTk+OXM26yJXTXg4HiX4AAAAASCUSsgCSjtxi7QKGVFjuU3GlXy3295gtrfTL6XAo2+NSdoZT2R6XXGRnYRXwKhjw1v6cwylXbge587oq6CuTv3ij3Hmd5crtKIeTSwAAAAAASAW+jQFIIUN0ka3JHzS0uyw0AVi2x6Ucj0v+oKFSb2i4h0x3KDGb7XEyrAEiM4IK7NuqwL6tcma3lbtZVxn+SvmLf5Qrt6PczTrL4cpMdS0BAAAA4KBCQhZA0h3o4EkyNpKgIZV6Ayr1BuSQlOV2KifDpWyPSxW+gPZIcjlDvWerkrRuJ71nUbtg+U55y3fKmZkfSswG/fLv2yxXVku5ctrLmd2G4QwAAAAAIAlIyAJIOgeDFtSZIancH1S5PyjJpwxXKBGb5XbKHzC0b/9b6nE5leV2Kmt/D1onwxugmmBlkbyVRXJ4cuXK7SQj4FOgvFAOp1uunHZy5XaQM6NZqqsJAAAAAE0WCVkAyeeo+ocesvXlDRjyBvzaq9Dbmek+kIj1BpwqqfQzvAEiMnyl8hetkb9orZzZbeTO7SAj6JN/31Y5Pbly5bSTw5NzYJIwpyfVVQYAAACAJoGELICko89mfBmSKvxBVfiDUoVfTklZnqpE7IHhDdwuh7LdLmXt71nrYngDSJIMczgDuTLkymkvd24HBX2ltq0cTpccriw53JlyuLLkzGolZ1YrOeiFDQAAAAB1QkIWQErRRzb+gpLKfEGV+ULDG3icDnPsWX/AUEmlX5LkdjmV6XIqw+1Upju0TG7tIBfwKlCySYGSTfuTr1mWfzNt/2rfVjlcGXLltpcrp4OcnpxU1x4AAAAAGgUSsgCS7sCcXqRjk8EXNLS3wq+9lt6zGW6nMl0ued1OOb2h7RwOhzJcjv3jz4YmCiM/e/AyAhUyAhW1P+lwyZXdVq7cDjICXvmLN8mZ2SKUnM1uJ4fTldzKAgAAAEAjQkK2kVi3bp1mzpyphQsXavPmzfL7/WrXrp369u2rc845R6effrrcbk4nGgmyfClj7z0b6inrcYbGmg3951KlP6i95T45nQ5z2INsj1Muus+iihFQoGybAmXb5HBny5XbQa5AewUr98rvXCeHJ08Op1tyuuRwuCWnO7TucMvhypAzM5+kLQAAAICDFhm8RmDq1Kl68skn5ff7bY9v2rRJmzZt0kcffaTDDjtMDz/8sHr27JmiWgKxc5j/0kM2HfiChnzegPZ5A5J8cjscys4IjUEbCBgq3T9BWIbLqWyP00zeOknQQpLhL5d/73r5966XM6uVXDntQ5OBOVwHErHVf4VxOOTMaC5nVku5slrK4WnGWLQAAAAADhokZNPc5MmTNWPGDHPd7XarX79+ys7O1rp167Rnzx5J0nfffacrrrhCs2bNUufOnVNVXSAmJF7Sm98wVFIZUEllQA5JWW6nsvePQVvp33/uHFKG02nrWetxcV4PdsGKQgUrCms+4XCZvWUdnhy5MlvKyCoL9ajdu0EOp1vOrJZyZraUM7MF49ECAAAAaNJIyKaxuXPn2pKxZ5xxhu666y61adNGkuTz+TRnzhw98MADKi8v165duzR+/Hi9/vrrJLzQSBhiWq/0Zkgq9wdV7g9NEOZySJlul7L2J2IrA045KkPbOh0OuZ0OuZwH/q1adjudcrscjFZxsDICUiAgQ14Z/jIFy3dJkhzuLDkzW4V6yvorFCjbGXrc5ZEzo0UoOZvZnB60AAAAAJoUErJpyufz6a9//au5PmLECP3973+X0+k0H/N4PBo9erQ6d+6s66+/Xn6/XytWrNB//vMfnXPOOamoNhATa1qloltHlQe9B9bbtUh+hRCzgCGV+QIq8wUkhc5lhtupLLdTHpdzf/I1lIitnj5zOEKPe5wOeVwHkrQekrUHLcNfoYB/qwKlW+WT5MhoZknElslRlbh1uuTIaCaHK2P/Kx22fx0Oh+T0hF6X0Xz/MAkAAAAAkJ74xpKmPvjgA23dulVSaJiCu+66y5aMtRo2bJhGjx6tl156SZL073//m4QsGgWHDK35y2+06rv/mY/l5uWRmGtEDEmV/qAq/cEaz7kcqtFDNpSMDSVubRySy3FgO7ez+n9ORewg6XDI4/HIMAwFgzXrgsbB8JYo4C1RYN9mSZLDnWP2knVmtJDMRKslge9wSHJIDqe57vTk7k/sNpczs4Ucrsyo+3Y6nWrbtq28Xq+8Xm/U7QEAAACgvkjIpql33nnHXB46dKg6deoUcXtrQnbFihXatGmTunbtmtA6AvVlTawZBkMWNFUBQwoEDHkDhiR7ktQhhRKtlh6y1uRr9XxtxIStyxkaSiHzQNKN29ubBsNfpoC/TIHSn6JvXNVDNrNFKBmbUSLt29+D1pURanjM9mb/v4YhORxyeHLl8DSXRz65c3KUk5MT9kdQAAAAAGgoErJpyDAMLVy40Fw/8cQTo76mX79+atu2rXbuDI2/9/HHH+uqq65KWB2BhrFlZFNXDaSMIckXNOQLGipXzR6tTsmSeHWayduwCVtJAV8gNG6tQ/K7fPK4nHI6HXI6HHI6ZP7rcDA8QpMU9ClYvsscn1YOl5wZ+3vIVk0SVj0hK0OSU86M5pJrj9yl+2TIIcOVK//ecrmyW8rhzpHDlSGHgwQtAAAAgPggIZuGtmzZouLiYnP9sMMOi+l1/fr1MxOyy5cvT0jdgHg4kAwzmNILtQpK8obpXStJTofsyVqn5PeFkrAel1OBCn/4wvcnZ137x7Q1/3Va10NxWtXT1uEI3SQf+heNghFQsHKPgpV7Ytvc4VHxvoA8Oa3kyWklf4nMoRMkyeF0h3raujLkcGaEkrROT2ioBIdLDmfoXzmccuz/NzSUgmW826p4UmjMW4fTFeeDBgAAANAYkJBNQxs2bLCtd+vWLabXdenSxVz+8ccf41klIEEMiZQs6iFoVCVsQ5OLGYah0n2l5vPNm+WFesg6LD1k9/eWdVRLyLqdjlp73IbjsLzO5Qj13LWWJYdsYW2N8FCSV7Z6kOBND0agUpXF21VZvEWSlFHeVe7sfDlcWaHkqyURq6pkbAOFkryZ+8vMDC27M0MJXVVl/60REhor11G1LQldAAAAoFEiIZuGqnq5SqFJRtq0aRPT69q2bVtrGckUCATkcDhkGIaMYJDJdRCGERo7tuo/21P0mkU9VIujQNBQwIi9/XFIth6yTqe9R2zVMAdVPWXdTktSti7Z3DD7dlQbVsHptK4fGGqh+tALTofk3F/PREjLz2KChjkJGobZI9owDAUDlfKX7ojwiv29XB1OyekK/etwhXrL7n/M3E4KjVVrXXZmHEjA7k+wqo7DIjic7lByeH9SN1RGVS9dp9l711xX1QRo1Y4jVJj9dapajxxc1nHAGzp2cyLGFE/mOOWBQMAce9gwDAX2/2AExKp6zBBDqA/iCA1FDAHJQUI2De3du9dczs3NjXlikby8vFrLSKaNGzeqXbt26pznUZssp/q3iT6zNQ5WQWU6DWW17qTMQ49PdWWAenMqlMx1Op1yOR0HOsjuTwTV7CEbW9LKkBTY/1/MLLk2h+XBqo67Vc+b/8VQFUe1Mh1VD9p3W2MlXNGRdpnq3sJtcnvY1hv0k2L1PGD19UBQ8pVLKjcfcrg8crqz9idRJXv/6f1DHjiccrqqeud6JZU1pJbRVSVnnR7J6ZYcbsnp3j9cQ2hZkmQEJVX9yBbc/6/lLgjzH0sCd3+PX9t/sieS7cuWISHSVO/evc1lr9ebwpqgserbt6+5TAw1XRUVFUm7o/G7775Lyn7QdBFDQGKQkE1DlZWV5nJWVlbMr8vIyDCXU3UB17x5czmdTjkUUJbbpSx3+n5pQupl+TKUf8+j6rR9t/lYoH1rFd31mxTWCkB11afCSpZYk7qREsu1PWXd3lFtq3BlRUsWR3pvatQ3wgbWcsKVGYyhPvVRa5nG/v8FvKH/4rCTqv3UP54cNZetY/WG3VY1hhSxP1d9vF+Hfdnh3L9clTx22Hsf2+pQffxgZ/hyFQwltI2gZAQOLFf9JGBNTst5oBe22aPaIcNWnvW4w7/LNeMwlvfV+gZWH5vF+rhRy2PW96/6e+qwvCZyvWtX9WOAUW3Z2iu8+vseQ5m21TrUqfo+Yt6nat0u/r3Pa1k3anvcUifrexh+TzVfV/2RBhxL7T3eY9tnQ16bCFlZWWrTpo127dqVkPIBAOmPhGwa8vl85nKsvWMlye0+cDr9/ggT2iRQ1X475JKIRQxyj1H2VwVyrVljPhTo00dGpyEprBQAAI1LqnuXx02TOZD0UjOpWMsbHZf3PrEnsPbkaGz7bMhrE4XbwAHg4EZCNg25XAeSmXUZg9WahPV4Gj7ZSH20adNGbrc7Yb8mo+mpHitOh0M5OTkpqg0aq2AwqJ9++slc79ixY51+0AKCwaC2bdsmKdQudejQgb9lqLM9e/aYyy1btqx1m9riqrbee+F69RGXTZdhGCotLTXPcW5ubtzPdzzGVY41hsNtGy8N2Wcq6msVDAbVrVu3mCdvrotAIGC7xfywww6zfb8EoiGG0FDLly9nPqEYkJBNQ9nZ2eaydfiCaKzDFGRmpmbsVpfLRWONOjGqX/g6HMQQ6swwDNtkhp06dSKOUCeGYWjHjgOTeHXo0IEYQp34/X5t3LjRXM/Pz7fdvQRE4/f7tcZy19CgQYPiHkOJSjim4oeChuwz1T9sJPPvi8vloi1CgxBDQGLQfSgNtWjRwlwuLS2N+Zfsffv2mcv5+fnxrhYAAAAAAACABiIhm4bat29vLgcCAdvtb5FYe4e1adMm7vUCAAAAAAAA0DAkZNNQ9+7dbeubNm2K6XWbN282l3v06BHXOgEAAAAAAABoOBKyaahz5862IQdWrlwZ0+sKCgrM5f79+8e7WgAAAAAAAAAaiIRsmhoyZIi5PH/+/KjbFxQUaNeuXeb68ccfn5B6AQAAAAAAAKg/ErJpauTIkebyJ598ou3bt0fc/pVXXjGXe/XqpX79+iWsbgAAAAAAAADqh4Rsmho5cqTatWsnSfJ6vZo4caL8fn+t237++eeaPXu2uX7FFVckpY4AAAAAAAAA6oaEbJrKyMjQrbfeaq7Pnz9f1113nW2CL7/fr1mzZmn8+PEKBAKSpL59++qiiy5Ken0BAAAAAAAAROdOdQUQ3qhRo/TNN9/o1VdflRRKyo4cOVL9+vVTXl6e1q1bp8LCQnP7/Px8PfbYY3K7Oa0AAAAAAABAOiJzl+buuecetWzZUs8995x8Pp+CwaBWrlxZY7tevXrpscceU8+ePVNQSwAAAAAAAACxICGb5hwOh2655Rade+65eu211zRv3jxt27ZN5eXlatGihQYMGKAzzzxT5557rjIyMlJdXQAAAAAAAAARkJBtJHr16qU77rhDd9xxR6qrAgAAAAAAAKCemNQLAAAAAAAAAJKEHrIAUso480zt6dbNXM8fOFCOFNYHAAAAAAAgkUjIAkip4JQpWr90qbk+aNAguu4DAAAAAIAmi7wHAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJHGnugIADm7Os8/WoQUFB9b795fmzk1hjQAAAAAAABKHhCyAlHJs2KCsjRvNdSMrK4W1AQAAAAAASCyGLAAAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSh2EYRqorgcZr8eLFtnWnkxw/6qisTAoGD6w7nVJOTurqg0YraIkj2iLUBzGEhiKG0FDEEOKBOEJDEUNoCGv8SNLRRx+dopqkN3eqK4CmpfoHD4gqK6vmY8QRGoi2CA1FDKGhiCE0FDGEeCCO0FDEEJAY/NQBAAAAAAAAAElCD1nEFbczAAAAAAAAHJzoVR0bxpAFAAAAAAAAgCShOyMAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCQhIQsAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJLEneoKHMzWrVunmTNnauHChdq8ebP8fr/atWunvn376pxzztHpp58utzv+p+inn37SzJkzNW/ePG3cuFEVFRVq27atevbsqbPOOktnnXWWsrOz61TmsmXLNHv2bH311Vfavn27DMNQ+/btdeihh+qXv/ylhg8fLofDEXN5hmHoww8/1FtvvaXly5dr9+7dys7OVvv27XX88cfrggsuUP/+/etUx9LSUr3xxhv68MMPtWrVKpWUlCg/P1+dOnXSqaeeqlGjRqldu3Z1KjMdEEfhlZWV6c0339S8efO0cuVK7dmzR36/X/n5+erbt69OPPFEXXjhhWrevHlM5Z199tlas2ZNnY7pwgsv1P3331+n1yQbMVS766+/Xp9++mmd9n/CCSdo+vTpEbfxer3673//q3fffVfff/+9ioqKlJeXp44dO2r48OG64IIL1K1btzrtN9WIoQMmTpyoN954o0HHddxxx2nGjBm1PtdU2yGpacVRbSZMmKA333wz4vkNh+ui2BBD4XFNFBtiqHZcE8WOGDqAa6L6aypxFAwG9cknn+iDDz7Q0qVLtXPnTlVUVKhZs2bq2rWrjjvuOF100UXq3r17ner55Zdf6vXXX9e3336rHTt2yO12q0OHDho8eLBGjRqlY445pk7lpaotchiGYcS9VEQ1depUPfnkk/L7/WG3Oeyww/Twww+rZ8+ecdvvzJkz9eCDD6q8vDzsNocccogeeughDRo0KGp5Pp9P9913n1599dWI2w0bNkwPPPBATBf227dv1y233KLFixeH3cbhcGjMmDG69dZblZGREbXMxYsX67bbbtNPP/0Udpvc3Fz96U9/0vnnnx+1vHRBHIX3zjvv6J577lFRUVHE7fLy8nTnnXfqwgsvjLhdZWWlBg8erEAgEHXfVun+R58YCu+kk07Sjh07om5nFe3Lx7p16/Tb3/424sWjx+PRb37zG1133XV1+gEiVYghu0R++Wiq7ZDUdOIonA8//FA33XSTpMhfLmvDdVFsiKHwuCaKDTEUHtdEsSGG7Lgmqp+mEkcrV67UhAkTtHr16ojbuVwuXXrppbrjjjvk8Xgibrtv3z7dcccd+vDDDyNud+655+quu+5Ss2bNotYzlW0RCdkUmDx5sq1Rcbvd6tevn7Kzs7Vu3Trt2bPHfK5NmzaaNWuWOnfu3OD9Tp8+XQ888IC57nA41KdPH+Xn52vDhg22P7LZ2dl66aWXdOihh4YtzzAM3XzzzbYPQ2Zmpvr16yeXy6U1a9Zo37595nM9e/bUq6++GvGX98LCQo0ePVo//vij+Vh+fr569+6t8vJyrVq1ytYw/eIXv9Df/va3iMe9ePFiXXPNNaqoqDAf69y5szp37qydO3dq/fr1tu0nTZqkSy65JGKZ6YA4Ch9H1esoSa1atdIhhxwil8ulDRs2aOfOnbbnx48fr5tvvjlsmcuWLdNFF10kScrKyor5V7eTTjpJY8aMiWnbZCOGIrdFJ5xwgrk+bNiwmI5t4MCBuu2222p9bv369brkkkts72vbtm3Vo0cPFRUVac2aNbL+Sb7uuut0++23x7TfVCGGasbQv/71L33xxRd1Op61a9dq27Zt5vott9yiG264ocZ2TbEdkppOHIWzbNkyXXXVVSorK5NUt0QI10WxIYZir6PENVFtiKHwuCaKDTFUE9dEdddU4uibb77RmDFjbNcaWVlZ6tu3r7Kzs7V9+3Zt2LDB9pphw4bpqaeeCtvzt7KyUldccYWWLl1qPpabm6u+ffsqEAho9erVtv0de+yx+te//hXxh+qUt0UGkurdd981+vbta/43fvx4Y+fOnebzXq/XmDlzpjFo0CBzm1GjRhnBYLBB+/3mm2+MAQMGmGVedtllxsaNG83ng8Gg8d577xlDhgwxtxk+fLhRVlYWtsxnn33WdiyTJk0yiouLzefLy8uNf/7zn8bAgQPNbW666aaI9Rw3bpy57eGHH268/PLLhs/nM5/fsWOH8bvf/c623+effz5seSUlJcawYcPMbU8++WRj/vz5tm2+//5745e//KW5zcCBA43vvvsuYj1TjTgKH0dLliwx+vXrZ247YsQI49NPP61x7PPnzzdGjhxp2/enn34attxXX33V3O7yyy+P5e1Ka8RQ5LZo3rx5thhqKL/fb5x77rlmmccee6zx7rvv2t7PH3/80bjyyittx/Lhhx82eN+JQgxFjqFYrV271hg8eLBZ7q233hp226bWDhlG04qj2ixcuNA4+uijbcdYl3PHdVF0xFB4XBPFhhiKjGui6Iih+OCaqGnEUUlJiXHCCSeY2x5xxBHGCy+8YFRUVNi2++GHH4yxY8fajvmvf/1r2Hrec8895nb9+vUzpk2bZpSXl5vP792715g8ebKtvL/85S9hy0uHtoiEbBJ5vV7jlFNOMU/k9ddfbwQCgVq3/fzzz21f/N56660G7fviiy+2fWitgWu1cuVKWyP4z3/+s9btdu/ebdvu7rvvDrvv1157zRbAixcvrnW7//3vf7bt/vvf/4Ytc8KECeZ2Q4YMMUpKSmrdbsqUKeZ2Rx99tLF+/fpatyspKTHOPvtsc9urr7467L5TjTiKHEeXXHKJ7Q+F9Y9YdXv27DFOP/10c/szzzwz7LaTJk0yt5s8eXLY7RoDYihyDBmGYTzzzDPmdjfeeGOdjrE2r7zyilnewIEDw+7b6/UaV111lbntz3/+c8Pv9zd4//FGDEWPoViUl5cbP//5z21tUGlpadjtm1I7ZBhNK45q8+yzz9rqXNcvjlwXRUcMRcY1UXTEUHRcE0VGDMUH10RNJ44effRR22d84cKFYfcdDAaN8ePHm9sfeuihxpYtW2pst2bNGlvS+Omnnw5b5mOPPWYrb9OmTbVulw5tkTN+fW0RzQcffKCtW7dKCnU9v+uuu+R01n4Khg0bptGjR5vr//73v+u936VLl+rbb7811//85z8rKyur1m379+9vjgsjSc8//3yt47K89tprKi0tlRS6dW7ChAlh93/BBRfolFNOMdfDHcvzzz9vLg8bNkxnnXVW2DLvvvtutW7dWpK0Z8+eWsemqaystI0FeN111+mQQw6ptby8vDzbWDJffPGFVq1aFXb/qUQchdR2LJs2bbKNsTdhwgS1adMmbJn5+fmaOHGiuf7DDz9o5cqVtW5rfbyuE6ekG2IoJNKxxPt8v/DCC7Z6HHXUUbVu5/F49Ne//tUcP2ndunX67LPPGrz/eCOGQhpyLJL08MMPa926dZJC5/7RRx9VTk5O2O2bUjskNa04stqwYYPGjRunhx56KOL4b9FwXRQdMRQe10SxIYai45ooMmIoPrgmajpx9NZbb5nLF1xwgY477riw+3c4HJo0aZIyMzMlheZ0eP/992tsN2PGDHNfPXv21LXXXhu2zJtvvll9+/Y1y3vxxRdr3S4d2iISskn0zjvvmMtDhw5Vp06dIm5v/ZCtWLFCmzZtavB+e/XqpcGDB0fc/sILLzTH7SgsLNSiRYtqbPPuu++ayz//+c8jNpaS/Vj+97//mWPPVNm7d6/mz59vrl9wwQURy8vJydG5555rrs+dO7fGNvPmzdPevXslSU6nM+qkFEcccYRtHJTaykwHxFFIbXG0YMECczkzM1Onn356xPKk0DhC1sHDly9fXmMbwzBsX0Qb+x99YiikthiqUlBQYC439HwXFBSYF5iSok6W0r59e40YMcJcT8e2iBgKiRRD0Xz99dd66aWXzPXrr78+Yqw1tXZIalpxJEl+v1+TJ0/W2WefbbtQHzx4cJ3HYOW6KDbEUHhcE8WGGIqOa6LIiKGG45qo6cTRjz/+qC1btpjrZ599dtQ6tGrVSkceeaS5Xv1vTzAY1HvvvWeun3/++WGT1VLoGufiiy82162vrZIubREJ2SQxDEMLFy4010888cSor+nXr5/atm1rrn/88cf12veXX35Zp/22aNFChx12mLn+ySef2J4vKiqy/SIVy8Duxx9/vFwulySpoqLC9iVDkhYtWmT+4uFwOGKqp3WbJUuWmF8yqliPu2/fvrb3MpYyqx93OiCOIsfR9u3bzT8QXbt2jWmmaY/Ho7y8PHPdOqB3lY0bN5pJF7fbrT59+kQtN10RQ5FjSAr1IrNOatPQizzrl+IWLVro8MMPj/oa6/vz6aef2gaTTzViKHoMReP3+3XPPfeY57VXr166/vrrI76mKbVDUtOKoyplZWWaMWOGfD6fpNB5uv766/XCCy+YvVdjxXVRdMRQZFwTRUcMRcc1UWTEUMNxTdS04mjLli1mb1dJ6t27d0z1yM/PN5eLiopszxUUFNj+HsVyvW49lq1bt9p+WJLSpy0iIZskW7ZsUXFxsbluDeJI+vXrZy7X9it1ND6fTz/88IO5HuuMipH2u2rVKlvwxVJmTk6OunXrFrZM6wekS5cuatGiRdQyrRcEwWBQK1asqFHPutSxeplr1qxRZWVlTK9LFuIochzdfPPNWr58uT7//HNNnTo1pjqWlJTYvrTWNmu6NWHTo0ePmL7UpCtiKHIMVZVblQjJyclR165dY6prONb2bcCAAXI4HFFfY22L9u7da5thPdWIoegxFM2rr76q1atXm+t33nln1HalKbVDUtOKo9oMHTpUr7/+um699dZ6nSuui6IjhiLjmig6Yig6rokiI4YajmuiphVHJ5xwgpYtW6YFCxbozTfftCVaI9m8ebO5XP1vj7Xd8Hg8MSXge/ToYRt6IVL+KZVtkbvBJSAmGzZssK1bv8xF0qVLF3O5Pid88+bN5q9bktS9e/cG79d6LBkZGerYsWPMZVb9whqpzFjr2LZtW2VlZamiokJS6JeyoUOHms9bf82tz3H7/X5t3rxZvXr1ium1yUAcRY4jKXSLQrt27dSuXbuYyvvggw8UDAbN9drOt7XB7tevn/bu3as333xTn3zyiQoKClRSUqLmzZurR48eOvnkkzV69OiYvjynAjEUPYaqn++Kigr997//1QcffKAVK1aoqKhIubm56tq1q0466ST96le/Uvv27cPurz7tm/W4pVD7FutrE40Yih5DkZSWluqJJ54w10855RSddNJJUV/XlNohqWnFURWn06kRI0bo6quv1pAhQ+pcNyuui6IjhqLjmigyYig6rokiI4YahmuikKYYRy1btlTLli1jKm/Tpk36/vvvzfXqf3us70/nzp3Nuz8icTgc6tSpk5lw3rhxY9gyU9kWkZBNkp07d5rLTqcz4qD6VtZu6NYy6rPf6uXFut/du3crGAya43RYy4y1vOrbVq/Xjh076lVm69atzTFKrGUGg0EVFhbWuczq52Xnzp1p88VDIo6qb1ufY7GqrKzUU089Za7n5+fXOpi39VfY9evX67TTTrP9iimFjm/37t36+uuv9cwzz+gPf/iDRo0a1aD6JQIxFP1YrOe7uLhYI0eOtLVRUuhWmqKiIi1fvlz/+te/dNNNN2ncuHG17q8+7VurVq3kcrnMXikNjfV4IoYadiwzZszQ7t27JYUuFm+55ZaYXteU2iGpacVRlby8PD355JN1rlNtuC6KjhiKL66JiKHacE0UGTHUMFwThTTFOKqLqVOn2u5Ys47VWr2esf7AKIWuYaoSsvHIPyWiLWLIgiSx3v6Tm5sbc8Bax3GqPhZYXfcr1X7rUW2aNWtmLhuGYWvgrGN6WLeLJtKxWNfrUqZ1W2sdS0pKbDP+1ee4q5eZDoijhh+L1ZQpU2y/jl155ZW1/uJm/aO/YsUK8zi6d++u4447TocddphtrJzi4mJNnDhR06ZNa1D9EoEYin4s1vO9bt068w92p06ddOyxx+rII49Ubm6uuU1FRYUeeeQR3XnnnbXurz7tm9PptE0ulU5tETFU/2MpLy/X888/b66PHDky5vH4mlI7JDWtOEoErouiI4bii2siYqg2XBNFRgzVH9dEBxzMcfTBBx/ozTffNNePP/74GkMn1Pd63bptPPJPiWiL6CGbJNYxt6xjWURjHQ/F6/U2aL912bd1htXq5VjrEa9jicf7Yy2j+nFbG+RYy6utnFQjjhp+LFVeffVVvfDCC+Z6586ddfXVV9fYrrCwsEZPgHPPPVe//vWv1aNHD/OxyspKzZkzR1OmTNG+ffskhX7t69mzp84666x61zPeiKHIx1J91lYpNOv0LbfcYrs48Pl8ev/99/XAAw+Yv47OmTNHPXv21HXXXRe2zvFo31KNGKr/scyZM8fWS/HGG2+M6XVNrR2SmlYcJQLXRdERQ/HDNRExVBuuiaIjhuqPa6IDDtY4WrFihSZMmGAr94477qixXWPIP9UXPWSTxDo2R126c1t/mfb7/XXeb/XXxLrv6r+IW3tVJOJYrOt1KbNqpuvqZVQv37pdrOVJ9uNOB8RRw49Fkv7v//5PkyZNMtc9Ho/+/ve/237xqrJu3Tpb/e688049/PDDtj/4UujL7SWXXKKXX37Z9mvlAw88kFYXjsRQ5GPZsmWL7XxdeeWVeuaZZ2r8UuvxePSLX/xCr7/+ujp06GA+/sQTT9S4fcW6j1jbourb1jfWE4EYqv+xvPzyy+bykCFDNGDAgJhe19TaIalpxVEicF0UHTEUH1wThRBDNXFNFB0xVH9cEx1wMMZRQUGBrrnmGpWVlZmPTZgwQQMHDqyxbX3fn0jtRrq0RSRkk8R64qyD5UdjPcnVf4mIRfWAjXXf1YPLuu9EHEt9y7R++MPVsfp2sZZXWz1TjThq+LG8+OKLmjhxorlPh8OhyZMn64gjjqh1+2OPPVZLly7V3Llz9dJLL2nMmDERy+/Xr5/tl74dO3bo3XffrXM9E4UYinwsXbp00bJly/Thhx/qhRde0J133hlx1s327dvr/vvvN9fLy8s1a9Ys2zbWetblgsW6bTrNHksM1e9Yvv76a61du9Zcv/LKK2PeX1Nrh6SmFUeJwHVRdMRQw3FNRAxFwjVRdMRQ/XBNZHewxdHixYt15ZVX2oYiuPDCC8PGQbyviaqXmcq2iIRskmRnZ5vLdflFxtq1Otbby8Ltty77rt6l27pva5fuuhyLddvqxxLvMqt3O4+1zPre0pcsxFHkOIrEMAw9+uijuu+++8xBwx0Oh+666y6dd955EV+bkZGhHj166JhjjolpX6NGjbKNp/XFF1/EXM9EI4aix5Db7VbXrl01ZMiQmH6FHTZsmO1X+ernOx71TKcvH8RQ/dqht956y1xu06aNTjnllJj3JzWtdkhqWnGUCFwXRUcM1R/XRCHEUHRcE0VGDNUP10R2B1Mcffjhh7rmmmtsY7iec845uvfee8O+Jl3zTyRkG5EWLVqYy6WlpbZZ5CKpGu9ECs122pD9Vi8v1v263W7bQMfWesRanhQ67trKqF7PupQZ7v1p1qyZ7aKhPsddWz1TjTiKHEfhVFZW6pZbbrHNGOpyuTR58mRdeumlMe87VhkZGTr88MPN9Y0bN8Z9H/VFDNUvhqKxzkRd/XzXp30LBoO2W3jSqS0ihuoeQ36/X++99565fu6559Y6WU48pXM7JDWtOEoErouiI4bqh2uiA4ihxOCaKLqDOYa4JqrpYImjZ599VuPHj1dFRYX52IUXXqiHHnoo4rAB9b1ej/T+pEtbREI2Sdq3b28uBwIB7dmzJ6bXWcfdadOmTYP2K0m7du2q835btWpluz3FWubu3btjrkukY6lvmdZt27Ztay47nU7beqxlVn9/6vOeJxJxVPdj2bVrl6644grbrSmZmZl6/PHHdeGFF8a837qy1q0+s14mCjHU8GOpTaTzXZ96FhYW2m7JsbZnqUYM1f1YFi9ebLst6+c//3nM+2qIdG2HpKYVR4nAdVF0xFDdcU1kRwwlBtdE0R3MMcQ1UU1NPY58Pp/+9Kc/6eGHH7Z9lseNG6f7778/au/7du3amct1uSayHk/1diNd2iISsknSvXt32/qmTZtiet3mzZvN5eoDVceiU6dOtvEy6rPfQw45xPac9VjKyspi/uBa9139WKz7+PHHH2Mqb8eOHbZfVyLVM9YyrXX0eDzq3LlzTK9LFuIochxV98MPP+jiiy/W0qVLzcfy8/M1ffp0nXbaaTHtr76stzNYb5FJNWKobjEUq0jnuz7tW/X3p/qxpxIxVPcY+t///mcud+jQwdZLI5HStR2SmlYcJQLXRdERQ3XDNVFNxFBicE0U3cEcQ1wT1dSU46i0tFTjxo3T7NmzzcdcLpfuvvtu3XbbbTHtz7qPzZs3x9SD2DAMbdmyJWw906UtIiGbJJ07d7Z1aV65cmVMrysoKDCX+/fvX+f9ejwe9e3bt877tW5XfcbDgQMH2n4FiaXM0tJSW6BXPxbrbJ0bN25UeXl5nerocDjUr18/2/OHHXaYuWx9H2Mts3fv3mkx4YIVcRQ5jqwKCgp06aWX1miIX331VdutVNH8+9//1t13363x48fr2Wefjfl11ga7Y8eOMb8u0YihyDH0+uuv695779Vvf/tb/fWvf42pjlLk821t3+rTFrVo0SKtkiDEUOztUJUvv/zSXB4+fHide6Q0tXZIalpxlAhcF0VHDMWOa6LaEUORcU0UHTFUd1wT1dRU46i4uFhXXXWV5s+fbz6Wk5OjJ554ok5D5FjbjfLycq1fvz7qa3744QdbEr56PdOlLSIhm0RDhgwxl61BGU5BQYGtt87xxx+flP0WFRXp+++/D7vfvLw8DRw4sE5lLliwwOze7XK5dNxxx9meP/roo82xYwKBgBYuXBi1TOt+Bw4cWGMMFOs+VqxYoeLi4jqVWd/3O9GIo/BxVGXdunW66qqrbLd7DB48WDNnzqzzL1kff/yxZs6cqffff19vvPFGTK/Zvn27Vq9eba7HOuB8shBD4WPoq6++0ksvvaS5c+fqtddeqzFofW0qKir01VdfmevVz7d1Hzt37tSaNWuilmk9Fuv7li6IoejtUJWysjKtWrXKXA83e3kkTbEdkppOHCUC10WxIYai45ooMmIoPK6JYkMMxY5rovCaWhyVlpbqmmuu0fLly83H2rZtqxdffFEjRoyoUx379OmjVq1amevWpH441onbWrZsWeNH6nRpi0jIJtHIkSPN5U8++UTbt2+PuP0rr7xiLvfq1atGENVnv999952+++67iNvPmjVLfr9fUijzP3To0BrbnHHGGebyW2+9FbXnhvVYhg4dqubNm9ueb968ue3DPHPmzIjllZaW2mZnPPPMM2tsc8IJJ5gDTPt8Pr322msRy1y6dKmtcUnWeDZ1RRyF1BZHklRSUqJx48bZxiYaMWKEpk+frpYtW0YsvzbWxnrt2rVasmRJ1Nc888wzZsLG4/GkXSwRQyG1xZD1fBcXF9smHYhUpjWxcc4559ie79u3r+02omjt208//aRPP/3UXE+3+JGIoSrh2iGrFStWmHWQVK9b85piOyQ1rTiKN66LYkMMRcY1UXTEUHhcE8WGGIod10ThNbU4mjhxoi0Z2717d73yyiu2nqmxcjgcOv300211sI7lWl0wGNSsWbPM9TPOOKNGT+x0aYtIyCbRyJEjzQGJvV6vJk6caGuQrD7//HPbOBtXXHFFvfc7ePBgW+DfeeedYWeSW7lypf75z3+a6xdffLGysrJqbHfBBRcoOztbUmiw5HvvvTfs/mfPnq3PP//cXL/yyitr3e6yyy4zlz/55BPNmTMnbJmTJk1SYWGhpFC399omIsjKyrI9Pm3aNNsvclYlJSX64x//aK4feeSRGjRoUNj9pxJxFBIuju666y7buDannHKKpk6dWuv+Y3HeeefZZv6cNGmSbYb16t599129+OKLttd36NChXvtOFGIopLYYOuOMM2wJtocfflg7duwIW+bixYv16KOPmutDhw6tte2wtm8zZ84M+wu0z+fTHXfcIZ/PJyk0tlOix/arD2IoJFw7ZGW9DSorK0u9e/eO+prqmmI7JDWtOEoErouiI4Yi45ooOmIoPK6JYkMMxY5rovCaUhy98sorev/99831zp07a8aMGeratWu963nppZeaSdWCggI98cQTYbd97LHHzB6vTqcz7PuTDm0RCdkkysjI0K233mquz58/X9ddd51tPBO/369Zs2Zp/PjxCgQCkkLZ+4suuqjWMn/2s5+pX79+6tevn372s5+F3fcdd9xhBvDq1at1xRVX2BpEwzD0/vvva8yYMSorK5MU6lJ+/fXX11pemzZtNHbsWHN9zpw5uu2222wz1FVUVOjJJ5/U3XffbT42fPhwDR8+POyxWLt+//nPf9ZTTz1lG/tj165duuWWW2y9QH7961/burBbjRs3znyutLRUY8aM0QcffGAbCLqgoEBXXHGF+aF1uVyaOHFireWlA+IofBx99dVXeuedd8z1Qw45RH/7298aNOZd165dNWbMGHN91apVuuyyy7Rs2TLbdsXFxXr00Ud12223mfHVqVMn3XHHHfXed6IQQ+FjKDc3V7fccou5vn37dv3qV7/SvHnzbNtVVFRo+vTpuuaaa8w2Ki8vT/fdd1+t9Rw9erT5K6zf79dNN92k2bNn2y60Nm3apLFjx9puTf7973+vjIyMWstMJWIo8t8zq7Vr15rLHTt2tH2JiFVTbIekphVHicB1UXTEUHhcE8WGGAqPa6LYEEOx45oovKYSR/v27dPf/vY323H985//VPv27WN5G8Lq37+/Ro0aZa5PmzZNf/nLX1RSUmI+VlJSovvvv19PPvmk+djo0aPDJv7ToS1yGLFMUYa4uuuuu/Tqq6+a606nU/369VNeXp7WrVtn9nCQQrOfvvLKK+rZs2etZf3sZz8zB+jv3LmzPv7447D7feqpp2wfDik0QUOrVq20ceNGW7f4rKwsPffccxHHV6kKWmvXbY/Ho379+ikjI0Nr1qyxfUC6dOmi2bNnh/2SIIX+0F922WW2hqdZs2bq06ePvF6vVq1aZf4yIYVuu/rHP/4hpzP8bwtffvmlbrjhBtvMwx06dFC3bt20e/durVu3zrb9hAkTdO2114YtL10QRzXj6Nprr7VdJPbo0aPOg22fe+65+uUvf2l7zOfz6eabb7bVsaouXbp0UUlJiVavXm2LzXbt2mnGjBlpNRNsdcRQ+Lao+nsjhc7pIYccosrKSq1evdp2a3teXp6effZZDR48OGyZVRc41ltHW7VqpV69epkxZL395rLLLtNdd90Vtrx0QAyFj6EqY8eONXvVDho0yHYLVV001XZIajpxFMnUqVM1bdo0SaHbLWfMmBHT67guig0xVBPXRHVDDIXHNVFsiKHouCaKrrHH0dNPP61HHnnEXG/VqpVtvoZY9OvXTxMmTKjx+L59+3TVVVfZhlXIzs42h2tYtWqVrS06/PDD9eKLL0bsDZ7qtqjuP0mgwe655x61bNlSzz33nHw+n4LBYK0z2vXq1UuPPfZY2A9YXV1//fXKzc3VI488Yv6yYf2VqkqHDh00ZcqUqA212+3W1KlTdc899+j111+XYRjy+Xy1jjsyePBgPfbYY1G/vLZv314zZszQrbfeao4HU1JSUuvYMBdeeKHuvvvuiF86pNCYac8884zuuOMObd26VZK0bds2bdu2zbZdVlaWJkyYYOu6ns6II7vi4uIaA3yvX78+plkYrY488sgaj3k8Hk2bNk2PP/64/vWvf5m/mm3evNl2K2CVk08+WXfffXdazQJbG2IovHvuuUc9e/bUo48+aiYtduzYUeutekceeaTuvffeqGM39e3bVy+88IJuu+02s+dZYWGh7cJKCvVGu+666/S73/0uYnnpgBiKzjrhQtX4nfXRVNshqenEUSJwXRQbYsiOa6K6I4bC45ooNsRQdFwTRdfY42ju3Lm29cLCwhq96qMJN4FgXl6epk+frgkTJpjJ5fLycn377bc1th0xYoQefvjhqENzpLotoodsCq1bt06vvfaa5s2bp23btqm8vFwtWrTQgAEDdOaZZ+rcc8+N2hW6Lr96VNm2bZtmzZqlzz77TJs3b9a+ffuUl5envn376rTTTtMFF1ygvLy8Oh3LsmXL9MYbb2jBggXavn27vF6vWrVqpSOOOEJnn322Ro4cGfULgpVhGPrggw/0zjvvaNmyZdq1a5ecTqfat2+vo48+WhdffHGtF4mRlJeXa86cOfrggw+0du1aFRUVKTMzU927d9eJJ56oX/3qV42ika6OODrw2nC3a9TFzTffrPHjx4d9fuvWrZo9e7YWLFigDRs2qKSkRLm5uWrXrp2OOeYYnXnmmWk5A2wkxFB4hYWFeu211/TFF19o3bp1KioqUlZWltq2batBgwbpjDPO0CmnnFJjoPhI/H6/3n77bb333ntauXKldu/eLY/Hoy5dumjIkCH61a9+Va8xtVKJGApv5MiR2rhxoyTprLPOso2vV19NsR2SmlYcVdfQXkVcF8WGGArhmqj+iKHwuCaKDTEUHtdEsWuscXTkkUdGnSA3mlhi68svv9Rbb72lr7/+Wrt27VIgEFCbNm00ePBgjRo1SsOGDavTPlPVFpGQBQAAAAAAAIAkYVIvAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCQhIQsAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJIk71RUAgIPV5s2bdeqpp8a93I8++khdunTR1KlTNW3aNEnScccdpxkzZsR9X41VY3tvDMPQnDlzNGDAAA0cODDV1UEj19jiH+kp3dulxhTn6f5epruTTz5Z27ZtS0jZL730ko455piElI2G4bwDaOzoIQsAQBpbs2aNLr/8cv3hD39QSUlJqqsDALRLccR72TDbt29PWFLO5XLp0EMPTUjZaBjOO4CmgB6yAJAiWVlZGjZsWMRt9u7dq+XLl5vrhx9+uFq0aBG1XDQdo0aNks/nS3U1AMBEuxQ/vJcN88MPP6hbt25Rt9uxY4cqKirM9Vhe061bN2VnZzeofkgMzjuApoCELACkSJs2bfTcc89F3GbhwoW68sorzfXf//73GjJkSKKrhjTCF3UA6YZ2KX54LxvmhBNO0AcffBB1uzPPPFPr16+XJHXu3Dmm1yB9cd4BNAUkZAGgiRo/frzGjx+f6moAAACkTGlpqTZu3GiuM07vwYHzDiDdMYYsAAAAAKBJWrlypYLBoLlOYu7gwHkHkO5IyAIAAAAAmqSVK1fa1pmw6eDAeQeQ7hiyAACaqKlTp2ratGmSpOOOO04zZsyIuM2kSZN0ySWXqKysTG+//bbefvttbdiwQcXFxWrTpo369++v0aNH6+STT7aVsX79es2cOVPz5s3T1q1bJUldunTR8OHDNWbMGLVt2zam+q5Zs0ZvvfWWvvjiC/30008qKSlRixYt1LVrVw0bNkwXXHCBOnbs2JC3JKJ9+/bp5Zdf1nvvvacff/xRfr9f7dq107HHHquzzz5bxx9/fJ3Ka8jxzJkzR3feeWeNx63jCY8aNUpbt27VwoULJUlnn322HnnkkbD1mTdvnq699lpz/YEHHtD5558fdvvJkyebMROp7ESct3iUaY3tP//5z7r88svl9Xr15ptvau7cuVq3bp127dqlZs2aqUePHvrZz36m0aNHq1mzZnWqayT79u3Tf/7zH3366adauXKlCgsL5Xa7lZ+fr549e+r444/XL3/5S7Vr1y5sGRMnTtQbb7whKXTOH3zwwYj73Lx5s0499VRz/aOPPlKXLl1iqms84j8ex1xdvGPM5/PpP//5j9555x19//332rt3r1q2bKm+fftq1KhROuuss+R0OvWb3/xG7733niTphRdesI3fnYzzkm6fg1jbpWjvRbR63nbbbRo3bpyKi4s1c+ZMzZ07V5s3b1Z5ebnatm2rI488UqNGjdJJJ51U5/34/X699dZbmjt3rgoKClRYWKj8/Hx16tRJp512mkaNGhXz36xvv/1Wb731lr7++mtt27ZNZWVlys/PV5cuXXTiiSfqvPPOU9euXWt9bTzey4bsv0qi2slEtAMN8f3339vWBwwYkJT9IrU47wDSHQlZAIBp2bJluv32221jbknSli1btGXLFn300Ue6+OKLNWnSJLlcLj3//PN6+OGHa0xKsnr1aq1evVpz5szRU089pSOOOCLsPsvLyzV58mTNmTPHdmuZJO3atUu7du3SN998o6efflrXXXedbr75ZjkcjvgdtELH/dvf/tZMKFfZsGGDNmzYoNmzZ+vkk0/Wgw8+qFatWkUsK5nHM2LECDMh++WXX8owjLBlzZ8/37a+aNGiiAnZ//3vf+ayNZFUJRHHmcj3rqCgQLfddpvWrl1re7ywsFCFhYVavHixnnvuOU2ZMkUnnnhiTGVGMn/+fP3+97/Xrl27bI97vV6VlZVp69atmjdvnqZNm6brr79ev/71rxu8z/qKV/zH+5gTEQ/Lly/X7bffrg0bNtge37Fjh3bs2KF58+bp9ddfj/jjRqI1pc9Bfa1cuVI33XSTtmzZYnu86m/Rf//7Xw0bNkwPPfSQWrduHVOZq1at0q233lrj2Hfu3KmdO3dq6dKlevbZZ/WXv/xFp512Wthytm/frj/84Q+aN29ejeeqyvrmm2/01FNP6bLLLtPtt98uj8cTUx1jkcj9xyM+0rHtW7Fihbnctm3bpCWCkVqcdwDpjoQsAEBS6MvqlClTtG/fPklSx44d1bVrV+3du1erV6+WYRiSpFmzZqlPnz7y+Xx66KGHJEmZmZnq37+/XC6XVq9ebZZRWFio8ePH691331VOTk6Nfe7Zs0djx47Vd999Zz7mcrnUp08ftWjRQnv27NGaNWtkGIYqKys1bdo0rVmzRo8++qhcLldcjnvLli269tprVVxcLElq2bKlevXqpfLycq1atUp+v1+S9Nlnn+mKK67QjBkzwial4nU87du317BhwyTJ9qX78MMPV4sWLSRJffv21SmnnGL2oNq9e7dWrVql/v3711q3BQsW2NYXLVoU9j3ZsGGDmZT3eDwaPnx4Qo4z0WVaj2fatGnas2ePJKl169bq2bOnKioqtG7dOpWVlUkKxeuNN96oN954Q7169YpYZiRLly7VuHHjbD9UHHLIIWrXrp0CgYC2bNmibdu2SZIqKir02GOPKRgM6uabb673PusrXvEf72NORDwsXrxYY8eONc+3JDVr1kx9+vSR3+9XQUGBvF6v5s+fr5tuusn8rCVTOn8OYm2XGqoqJnfv3i1Jys/PV+/evWvE5Lx583TppZfqlVdeifpD2Y8//qjLL7/cjPPmzZurR48ecrvdWrNmjfn43r179dvf/lYzZ87U4YcfXqOcH374QZdddpkKCwvNx9xut/r06aPmzZtr+/btZrLf5/Np+vTpWrFihZ5++mnb38D6vpfx2n9t4tFOpmPb5/V6tW7dOnOdcUQPDpx3AI0BCVkAgCTplVdekRT68nTvvffabs8tKCjQ2LFjtXPnTknSo48+qvLycjkcDt1www0aN26c+WWvrKxMf/3rXzVz5kxJ0rZt2/T2229r9OjRtv0ZhqEJEyaYiQen06lrr71W1157rVq2bGlut2PHDk2dOlWzZs2SJL333nt6/PHHdcstt8TluKt6YDVv3lx//OMfdc4555iJjcLCQj388MOaM2eOJGnt2rWaNGmSHn/88RrlxPN4TjzxRLP3Ub9+/czHf//739vOixQ6X1VfwOfPn19rQnbPnj01xlLbsmWLNm3aVOstrZ999pm5fOyxxyovLy8hx5nIMq2qhl7o1q2b/vSnP2n48OFmj8J9+/Zp6tSpmj59uiSpsrJSU6dO1d///veIZUZy7733mgmJI488Ug8//LC6detm22bRokX685//bJ67p59+WhdddJHat29f7/3WR7ziP57HnIh4KC4u1u9+9zszqZSRkaHbb79dl1xyiTIyMsxtnnjiCU2fPl1LliyR05ncqRbS/XNQl3apIar+dmRnZ+v3v/+9Lr74YrOH565du/Tggw/q7bfflhRKIv7pT3/SP/7xj4hlViUBW7ZsqYkTJ+qss84yz7vP59OMGTM0ZcoUBQIB+f1+3X///WY9qhQVFWns2LFmMrTq/IwdO1b5+fnmdj/88IMeeOAB8y6Dr776Sn/84x/16KOPmtvU572M5/5rE492Mh3bPmsSX+K29YMF5x1AY8CkXgAAU8eOHTVz5swaXwj79++vCRMmmOtlZWUyDEN33HGHfve739l63uTk5GjSpEm2xGD12+Ul6a233jK/MDocDj3yyCO6/fbbbYkHSWrXrp3uu+8+3XbbbeZjTz/9dI1bjhsiJydHL7zwgs477zxbL7NWrVrpgQce0BVXXGE+9t5772nx4sVpczwjRowwl7/44otat1m4cKF563NWVpbt8dpYhyv42c9+ZnsuEceZjPeuS5cumjVrlk4++WTb7d15eXm688479Ytf/MJ87LPPPpPX641aZm22bt1qJtRcLpf+8Y9/1EhISKFxnZ977jllZmZKCiU4Pv3003rts6EaGv/xPuZExMNzzz2nHTt2mOuPPfaYrrrqKjMpJ4WS0nfeeacmTpwoSTWGC0i0pvQ5aCiPx6Onn35al112me12+zZt2mjKlCm65JJLzMc++ugjff3111HLbN26tV5//XWdd955tvPu8Xh0zTXXaMyYMeZj33zzja0XqhR6j61DKEyZMkW33367LRkqST179tRTTz2lCy64wHzsnXfe0SeffBK1jpEkY/8NiY90bfuqjyPKxE4HB847gMaAhCwAwPSb3/ymxpf/KqeeeqrtC1rnzp111VVX1bqtw+HQKaecYq7/+OOPNbZ57rnnzOVzzjlHZ511VsS6jRs3zryFNBgMmj114uG3v/1txN4TEyZMUOfOnc31qt7EVqk6Huv7vHjx4loTKNaE+IUXXmgu1zZsQXl5ub766itzvXpCNhHHmYz3LlJsS7IleMrKyrRp06aoZdbGmvTLycmJuM8uXbro4osv1qmnnqqrrrqq1uRFMjQ0/uN9zPGOB7/fr9mzZ5vr5557bo24trr66qvN28mTqSl9Dhrquuuu03HHHRf2+TvvvNMWk1UTrEVy22232V5TnfXYJdnGUS0tLdVLL71krp9//vm25GR1TqdTd999t7p3724+9swzz0StYzjJ2n9D4iNd2z7rOKISt64fLDjvABoDhiwAAEgKJVFHjhwZ9vnc3Fy1atXKHNdv+PDhEW/ptd5+WFJSYntu48aNWrVqlbkeaXIpq/POO0/Lly+XZL+tviFycnJ00UUXRdwmIyND559/vqZOnSop1IPUOoFWKo/nmGOOUbNmzVRSUqLy8nItWbJExx9/vG2bL7/8UlJovMxLL71UL774oqTaE7ILFixQZWWlpNCttNYERiKOMxnvndPprHViMqvevXvb1qvHbKw6dOhgK+Pvf/+7fve734X9rPzpT3+q137iJR7xH89jTkQ8LF++3Gy3JNUYPqU21157ba2TJiVKU/scNITH49GVV14ZcZvMzExdcMEF5vAZn376qYLBYNiYczqdOv300yOW2bVrV+Xl5ZljoFsnpVq0aJEqKirM9auvvjrqcWRmZuqKK67Q5MmTJUlLlixRUVFRjR6tsUjG/hsaH+na9lmH62nRooW6dOlSr3I+++wzjRs3TlLo72SkhHOyGIahH374QcuWLdOyZcu0fPlyFRQUmMNGWNuUhrKOxxpvrVu3rtfnIpKmfN4BNB0kZAEAkqROnTrZxgqtjfV29x49ekTctup2RKnmrb9Lliyxrffs2TOmOh522GHm8tatW7Vt2zbbl8D6GDx4sHJzc6Nud8wxx5jLe/fu1dq1a9WnTx9JqT0et9utYcOG6d1335UU6g1rTchu2bLF7KF8zDHHqFevXsrPz1dRUZF++ukn/fjjj7beSdakTvVehIk4zmS8d126dIka282bN7etWyelqYsOHTpo0KBBWrp0qSTpqaee0ty5c3X66adr2LBhOvroo223S6daPOI/nseciHioSlhKoWTfoEGDopY3ZMgQZWVl2ZJgidTUPgcNMWjQoJiSHtahdXbt2qX169eHnYyvc+fONY6tNs2aNTMTsta7DaxDIrRt2zbmycuqxomVQsmzJUuWROydHU4y9t/Q+EjHti8QCGj16tXmekPGEa1K8HXq1CltknJbtmyJ2pM+XhK5n9tuu81MesZDUz/vAJoOErIAAEmhHgp1Ee2Lm3V4g+o2btxoWx8+fHid9l1l+/btDU7Ixpr4qJ6A/umnn8yEVKqP55RTTrElZG+99VbzOetwBVWJ2qOOOkoff/yxpNA4staEbKTxYxNxnMl472LpeVN9hvqGjB9699136/LLLzcnkNq4caOeffZZPfvss8rKytLRRx+tE088UaecckrYBFKyxCP+pfgdcyLiwTruZufOnW1jkobjcrnUu3dvc0zMRGuKn4P6qm1iwtpUj90dO3aEja0WLVrEVKa1N6f12K2341fvJRpJjx495PF4zMSltZy6SMb+4xEf6db2rV271vajSkNuW68akzRdJ4dq3769jjjiCBUVFdmGHToYHUznHUDjxhiyAABJ9h6tsYiUcI2muLi43q+1KioqanAZsfSakkI9p6z27t1rLqf6eE4++WTzi/KKFStsdVuwYIG5XJWQtfagtU7stW7dOjN51a5dO3N8yiqJOM5kvHfWnt3JcOihh+rll1/WEUccUeO5iooKffHFF3rooYd01lln6Re/+IVmzJiRkp6IUnziX4rfMSciHqp6PEo1jyOSeN9CG0lT/BzUV6zJ0+o/ClqHGKjOOvFkfVjf11g/M1Lo76Q15urbxidj//GIj3Rr+6y3rVfVr74ef/xxrVq1Sv/4xz/qXcbmzZvVr18/9evXr95lWOXn5+uJJ57Q559/rv/973+aNm2ahg4dGpeyG7N0O+8AEA49ZAEAkhqWYK0rv99vLmdmZurYY4+tVzl1+WLaUIZh2NatX15TfTwtW7bUoEGDtGTJEgWDQS1YsEBnnHGGDMMwE7L5+fnml0BrQtY6jqx1uIIRI0bUiIlEHGeq37tEGTBggGbPnq0lS5bo3Xff1WeffVajF6QU6skzefJkvfbaa5o+fXra3hIZKf6rxOOYExEP1h+bqh9HJHX9kaohmurnoD7c7ti+nlTvnVmXc1tXDSk7EAiYy5HGXU/n/ddFOrV91Sd2amq9HPPy8nTaaaclZV/xHI820Zr6eQfQdJCQBQAknTVpkJ2dbZtdPNlKS0tj2q56DzbrMaTD8YwYMcIch/KLL77QGWecodWrV5u9xoYMGWImWPv27avWrVtr9+7d2r59uzZs2KBDDjkk4nAFUmKOMx3eu0Q66qijdNRRR+mPf/yjNm3apAULFmjBggX64osvtGfPHnO7goIC3XHHHXr66afDlhVLUqZqQrZYxSP+q2vIMSc6xuoySZW1Z20k8TgvTf1zUBexvu/VYzKRPZqtvXbr0ps5EAjYjieW8ZrTcf/1Ec+2r76qbjeXQr2ko419H86bb76pCRMmyOPxaMmSJWk1Djhq4rwDaCwYsgAAkHTt27c3l4uLi2P+Ap4Imzdvjmm7tWvX2ta7d+9uLqfD8ZxyyinmctW4sdber9YJcBwOh4477jhzfeHChSotLTUnjsnJydEJJ5xQYx+JOM50eO+SpWvXrrrooov0yCOPaP78+Xr66afVsWNH8/nPPvtM69evt73G2kvZ2osyHGuiIxbxiP9I6nrMiYiHQw45xFzevHlzzBN1VU2GV5t4n5eD6XMQTW29KWtTfdb3+iZdYmEdl7f6ZyGSH374wdZDtb4zvad6/w1Vn7avoQzDsN263r9//3r3EC4oKJAk9erVi6RcmuO8A2hMSMgCAJJu8ODB5nIwGLQlDiNZtGiR7rrrLj311FN6++23Y+7dF8nSpUtj6uFmnRyrY8eOti/I6XA8ffv2VefOnSVJmzZt0qZNm2wzc1uHKai+vnDhQn355ZfmWH5Dhw6t9XbtRBxnOrx38bRixQrNmTNHU6ZM0dy5c8Nu53Q6dfLJJ+tvf/ub7fHqSSbrBFSxJOnWrFlTp/rGI/7jecyJiIejjz7aXA4EAjGVuWXLFv30009hn4/3eWlqn4OG+Pbbb21JxHCs42O3a9dOXbt2TVidjjrqKHN5586dMd++/cUXX9jW63vrdKr3H4t4t30NtXHjRtvnoSHjiFYl+Lj1Pf1x3gE0JgxZAABIugEDBqh9+/bavn27JOn555+v9Rb56h577DEzyZifn68zzzyzwXXZuXOnPvnkk4j7Ly4u1htvvGGuVx+zLZHH43A4Yh4/cMSIEXrxxRclhb6IV5Xdtm3bGjNaW3vALlq0yDZBTri6J+I40ykW4uHJJ5/U+++/LymUZItWrz59+tjWrYk+SbZxFWNJWPz3v/+NtaqS4hP/8TzmRMRD165ddeihh5rjCr7wwgsaPnx4xPJeeeWViM/H+7w0ts9BXdqlutq1a5c+/PBDnXHGGWG3KS0t1Zw5c8z1RB/3cccdp5ycHJWVlUmSpk+frgceeCDiayorK/Xyyy+b6wMHDlS7du1qbBfLe5nI/cdLvNu+hrLeti41LKlW1VOyf//+DaoTEo/zDqAxoYcsACDpXC6XxowZY64vWLBATz75ZMTXvPjii7YenxdeeGHcvsBNmjQp7AzdgUBAf/7zn81bjl0ul6688krbNok8HmtP1WjjUFqHLXj55Zdt48dW1717d3Xq1ElSKCn39ttvSwr1XhoxYkSt5SfiONMtFhrK+t59++23EXuKSbI973Q6a8y+bf0iuGnTJn366adhy3r11Vf11Vdf1bHGDY//eB5zouJh7Nix5vLnn3+ul156KWx5ixcv1vTp0yPuM97npbF9DurSLtXH/fffrx07dtT6nGEYuvfee83nPR6PLr/88rjXwapZs2a68MILzfU5c+ZETLIbhqHJkyfbhl+o/rmpEst7mcj9x0u8276Gqj6xU317Sm7bts1s/+gpmf447wAaExKyAICUuPzyy20Xyo8++qgmTpyorVu32rbbvXu3HnzwQU2ePNl8rH379ho3blzc6rJ9+3ZdfPHF+vLLL22Pb9q0STfccIPti+Ovf/1rdevWrUYZiToe60Q11km3ajNkyBDl5ORIss+IXH24Auv2Vap6Xg0aNEitWrUKu49EHGc6xUJD/eIXvzBv5zcMQxMnTtSrr74qr9dr287r9WrWrFm67777zMfOPPNM21AAknTSSSeZ51SSfv/73+vjjz+2bbNz5049+OCDuvvuuyXFPkt9lYbGf7yPORHxcNZZZ+nUU0811++77z499NBDtkm+/H6/Zs+erbFjx5rDd4STiPPSmD4HdWmX6mP79u265JJLbENlSNLWrVt188036//+7//Mx6655pqYxzRuiJtuuskcFkaSbr/9dj3yyCMqKiqybbdhwwbdeOONmjVrlvnYkCFDdN5559VabqzvZaL2Hy/xbgcayjqOaEZGhnr37t3gcmJJzAUCAZWWltb6n3X86nDblJaWJqz3+cEgVecdAOqDIQsAACmRkZGhxx9/XGPGjNGmTZskSW+88Yb+7//+T7169VLr1q21c+dObdq0yZYcadasmaZOnWqbdbohhg8frq+++kpbtmzRmDFj1KlTJ3Xp0kV79+7V6tWrbV+MzjzzTP36179O6vH07dtX27ZtkyTNmDFDX331lfLz89WrVy/dddddNeowdOhQffjhh7bHa+shK4UStdZb0aXwwxUk8jjTJRbiITMzUw888IDGjRsnn8+n8vJy3XXXXXrwwQfVu3dv5eXlqbS0VGvXrrWNc9e9e3f94Q9/qFFeXl6err/+ej366KOSQsMH3HjjjerQoYO6du2qoqIibdiwwXxfLr74Yq1atUpLly6Nqb7xiP94H3Oi4uHBBx/Utddeq2XLlskwDD333HOaMWOG+vfvr8zMTK1Zs8ZMbnXu3FlbtmwJ+74l4rw0ps9BXdqlumrVqpVKSkq0efNmXX311WZMFhcXa/Xq1QoGg+a2p556qn7zm980aH+xys/P1xNPPKFrr71Wu3fvVjAY1NNPP61//etf6tu3r5o1a6YdO3bUmJzq0EMP1eOPP26bCM4q1vcyUfuPl3i3Aw1lvXW9T58+df6hqkpVYq5z585q3rx51O2//vrrmHojW8cFru6jjz5K2QRsjV2qzjsA1Ac9ZAEAKdOlSxfNnj3bNlagYRhau3atFi5cqB9++MGWeDj00EP18ssva9CgQXGrw8CBAzV16lSzl9LWrVu1aNEirVq1ykxGeTweM/kSabbeRBzPjTfeaLsNuaCgQAsWLAh7i7R12AJJ6tSpU609eqXae85aexGGk4jjTIdYiJehQ4fqn//8p228xrKyMi1btkzz58/X0qVLbQmJESNG6IUXXlDbtm1rLe+GG27Q9ddfL5fLZT62bds2ffXVV1qzZo18Pp+cTqfGjh2rSZMm1amu8Yr/eB9zIuKhefPmev7553XOOeeYj3m9Xi1btkxfffWVmYzt27ev/v3vf4ctp0oizktj+RzUtV2qi969e+uxxx4zkyBVMVlQUGAmYz0ej2644QY9/vjj9U641MeAAQP02muv2dpOv9+v77//XgsXLrQlQ91ut6644gq99NJLtl6w1dXlvUzE/uMp3u1AfW3dutW83Vxq2MROjCPaeHDeATQ29JAFAKRUy5Yt9fjjj2vlypX6z3/+o4ULF2rr1q0qLi6Wx+NR+/btdfjhh+uss87SySefHDEhWl8nnXSS3n77bb344ov6+OOPtWXLFjkcDnXq1EknnXSSLr74YvXo0SMlx3PUUUfppZde0tNPP61vv/1WRUVFyszMVG5uriorK23jD0qhhKx1kphwvWMlqUOHDjrkkEO0YcMGSaGeStUn/0rWcSaqzFQ56aSTNHfuXL3zzjv67LPPtGrVKu3atUter1ctWrRQu3btNGTIEI0cOVJHH3101PJuvfVWnX322Zo9e7bmz59v3sbeoUMHnXDCCbrooovqfVtlvOI/3seciHjIycnRlClTdPnll+v111/XwoULtX37dmVmZqp3794655xzdMEFFygjIyOm9y4R56UxfA7q2i7V1amnnqr//Oc/mjFjhj7++GNt3bpVDodD3bp100knnaTRo0era9eucTqauunUqZOef/55LVq0SO+++66+/vpr7dixQyUlJcrLy1OvXr00dOhQnX/++bYhBsKp63sZ7/3HW7zbgfqoPrHTwIED611WVU/JWD/HQ4YMsQ0ZZLV582bzR89w26D+UnneAaA+HAaD1AAAAAA21kmGXnjhhYg/bqBhpk6dqmnTpkmSjjvuOM2YMSPFNQKkffv26ZhjjpFhGHriiSd02mmnNai8ZCRk//GPf+ixxx5L6D6aunifdwAIJ327lgAAAAAAkAIFBQXm3Sbcun7w4LwDSBYSsgAAAAAAWFSNI9q8eXMm2TqIcN4BJAtjyAIAAAAAYFE1jmg695Jcu3at9u3bZ65v27bNXP72229t2/bu3Vt5eXnJqlqj1RjOO4CmgYQsAAAAAAAWjSExd88992jRokW1Pjd69GjbOmNhx6YxnHcATQNDFgAAAAAAsJ/f79fatWslSQMGDEhxbZAsnHcAyUQPWQAAAAAA9nO73Vq2bFlcy+zSpYtWrVoV1zJnzJgR1/IOdok47wAQjsOomkIQAAAAAAAAAJBQDFkAAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCQhIQsAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJL8P62H1VkvVvUgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time')\n", + "\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exactly as expected, the output distribution of the distance between the events follows an exponential distribution cut at 2.5 ms.\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = \\frac{r_{in}}{1 + r_{in}\\tau_d}$$ \n", + "(Zhang+95, eq. 29). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSYAAAQ1CAYAAACoZxHKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xT9f7H8Xe6oANaZoGykZYlDhBEUARBAQFZbrgXHIiIAweIC/e4olwBFVRARARBcQMqqCiooMgqo2WWtmxKd6Ervz96e345TUfapj0dr+fjwYPkm5OTT5qT9c532Ox2u10AAAAAAAAAUI48rC4AAAAAAAAAQPVDMAkAAAAAAACg3BFMAgAAAAAAACh3BJMAAAAAAAAAyh3BJAAAAAAAAIByRzAJAAAAAAAAoNwRTAIAAAAAAAAodwSTAAAAAAAAAModwSQAAAAAAACAckcwCQAAAAAAAKDcEUwCAAAAAAAAKHcEkwAAAAAAAADKHcEkAAAAAAAAgHJHMAkAAAAAAACg3HlZXQAAVAQxMTG65pprjPPt27fXihUr5O3tXaz9rFy5UtOmTTPO79q1S15e1eeldsyYMdq8ebNL23p5ealGjRqqU6eOWrRooa5du6p///5q27ZtGVdZ8eQ9/tatW6emTZtaWJF1HJ9DISEh+umnn0q9z8cff1xffPGFJGn48OF69dVXS71PK1W1+1McYWFhxumPPvpI3bt3L/U+9+3bp7///lu33nprvpc7vq5NmjRJ999/f6lvE4XjNdE1W7Zs0fHjx3X99ddbXYpbVfb7NWXKFH311Vfq1q2bFi9eXKzr2u12rV27Vl9//bV27typM2fOyNfXV8HBwbr88ss1cuRItWvXrlj7TElJ0RdffKG1a9cqIiJCSUlJCgoKUpMmTXTNNddo+PDhatiwYbH2eezYMS1btkwbNmxQVFSUzp07pwYNGqh169YaNGiQBg0aJF9f32LtszzZ7XatXLlS7du3V4cOHVy6Tnp6urp166a0tDRdf/31evPNN8u4SqD6oMckAORjz549mjdvntVlVGmZmZlKSUlRTEyMNm7cqLfeektDhgzRI488ouTkZKvLA1DFpaWl6fXXX9fw4cO1fft2q8sBXHb27Fk9+eSTuv3223Xw4EGry3GbqnC/1q5dq6+++qpE1z1x4oRuv/12TZo0ST/88IOOHTum9PR0JSQkKDIyUh999JGGDRumV199Venp6S7tc8uWLbr++uv1wgsv6I8//lBcXJwyMjJ06tQpbd++XW+++aYGDBiglStXulznsmXLNHDgQM2dO1fh4eFKSkpSRkaGjh49qg0bNuiJJ57QsGHDKuzr6r59+zR69Gg98cQTSkpKcvl6mzZtUlpamiTpqquuKqvygGqp+nTjAYBimjt3rvr161fsX6aRIzAwUBdeeGGBl2dlZencuXM6duyYjh8/LinnF+xvv/1WBw4c0Mcff6yAgIDyKhdANfPyyy9r+fLlVpcBFNsjjzyijRs3Wl2G21X2+7Vjxw499thjJbpuXFycRo8erSNHjhhtQUFBuuCCC5SWlqaIiAhlZmbKbrdr4cKFOnnyZJE99rZs2aI77rhD586dM9pCQkIUEhKiU6dO6dChQ5JyelROmzZN58+fL7DneK4PP/xQr7zyinHeZrOpbdu2CgoK0uHDh3Xy5ElJ0uHDh/Xvf/9bS5YsUceOHYv99yhLw4cPV0ZGRrGvt379ekk595lgEnAvgkkAKEBGRoYef/zxEg3pRs6Qy/nz57u07ZYtW/TCCy9oz549knJ6rL7xxhuaPn16WZYIoBoryRdToCKoqsduZb5fmzdv1sSJE5Wamlqi60+bNs0IJWvUqKFp06bpxhtvNKYDOnXqlF5++WWtWrVKkvTdd9/p4osv1r/+9a9895ecnKyHHnrICCUbN26sV155RT169DC22bNnj6ZNm2Z89nrxxRfVuXPnAoPEbdu26T//+Y9x/rLLLtPLL7+s5s2bS8r5cfnHH3/UM888o7NnzyotLU0TJ07UmjVrKtSw7pIeZ7/++qskqVOnTqpbt647SwKqPYZyA0AhGNJdPrp06aKFCxeqRYsWRtuyZct04sQJC6sCAGnx4sWKiIhQREQE80uWk6ZNmxp/84iICOaXRIU2f/58jRs3rljDgh399ttv+uWXX4zzr776qm699VbTHOUNGjTQzJkzNWzYMKPtnXfeKXDqm3nz5hm9F2vVqqUPP/zQFEpKOfOpf/zxxwoNDZWUM8XOG2+8UWCdr7zyirKysiRJHTt21AcffGCEklJOT8Jrr71WH374ofz9/SVJx48f16JFi1z4K1RsUVFRioqKkiT17t3b4mqAqodgEgDy4fhhcO7cudq7d6+F1VQPderU0cSJE43z2dnZWr16tYUVAQAA5O/w4cMaP368/vOf/ygzM7PE+3EM7nr16qVBgwYVuO306dNVr149STlzcuYuhObo/Pnz+vTTT43zd999t1q2bJnv/gICAvTSSy8Z5zdu3KiIiAin7bZv365t27YZ559++mnVrFkz3322a9dO9913n3F+0aJFRqBZWeUO45YIJoGyQDAJAPm44447ZLPZJOUM+Zg2bVqpPnTCNddee63pfH4fjgEAAKySmZmpF198UYMHDzYFVpdcckmRczTmlZCQoN9//904P3LkyEK39/Pz09ChQ43za9ascdpmw4YNSkhIkCR5eHhoxIgRhe4z7/Dt/PaZO4Rcktq0aaNLLrmk0H2OGjXK+JE/Li5OmzdvLnT7ii73ca5bt646depkcTVA1cMckwCQjx49eigxMVHLli2TJO3evVtz587VpEmT3H5b+/fv1+eff67NmzcrNjZWycnJqlWrlho3bqwePXpo6NChCgsLK3Qfs2fP1pw5cyTl/Io9evRopaen66uvvtKaNWt04MABnT59WrVq1VKrVq3Ut29f3XzzzapVq5bb709p+Pn5qW7duoqLi5MkYxhSQXbs2KF169bp77//1tGjRxUfH6/MzEzVrl1bwcHBuvTSSzVw4EB16dKlwH2sXLlS06ZNk5QTSE+dOlW//PKL0VPWx8dHISEhuvzyyzV58mT5+PiYrn/06FGtXr1amzdv1oEDB5SQkKC0tDT5+/urTp06uuiii9S7d29dd9118vT0LPbfZP78+cacTp6enlq/fr0aNGhQ5PXWrl1r9FgICAjQhg0b5OvrW+SxVJiQkBD99NNPBV7+xx9/6Ndff9WWLVt0/Phx44tR7dq11aRJE3Xt2lVDhgwp9oJS6enpWrFihb777jsdOHBAaWlpatCggS6++GINHDhQ11xzjfFDgjvExcVp5cqV+u2333To0CGdPXtWfn5+atiwobp3766hQ4eqc+fObrs9Rzt27NCKFSu0efNmHTt2TN7e3mratKn69++v2267rUTzWqWkpOjLL7/U+vXrtW/fPp05c0Y+Pj5q0KCBunbtqoEDB+qKK64o1j7d/VhnZGTo22+/1apVq7R7924lJCQoKChIYWFhGjlypAYOHOi2xzi/58AXX3xh6nnk+KPImDFjjC/VkyZNchrO7fj6++yzz+rWW29VamqqvvnmG33zzTc6fPiwEhMTVb9+fbVr104333yzU4+bQ4cOadmyZdqwYYOOHj0qKWc481VXXaWxY8e69JyXrD123SkmJkbXXHONcX7dunVOw7n79u2r2NhYSdI///wjf39/RUdH67PPPtOvv/6qo0ePKi0tTfXr19dFF12kwYMHm/aZn9xjw8fHRzt37pSUsxLv0qVLtWPHDp08eVI1a9ZUmzZt1Lt3b91yyy2FPic3bdpkmgPQlR/bCjre8v5Ncs2ZM8c4/op6jS7I448/bhz/c+fOVe/evfXRRx/p008/VUxMjGrXrq3WrVtrwIABuv32252uX5r34tLer+zsbP34449au3attm/frtOnTysrK0v16tVTx44ddc011+j6669361zhqampWrx4sXHey8tLd955pyZNmlTs6X82b95s9Ca02Wzq2bNnkdfp2bOnFi5cKCnn2E9ISFBgYKBx+R9//GGcDg0Nden1o2fPntq1a5ck6eeff9aDDz5outxxn67UGBgYqE6dOhm9LH/++WenoeQldeLECa1cuVIbNmzQ/v37lZycLF9fX4WEhOiyyy7TqFGjnN57HD/rOXJ8fg4fPlyvvvqq0zZpaWn666+/JOX0aPXwyL9v19GjR7Vy5Ur9+eefprrq1Kmjjh07qmfPnhoyZIhq1KhRmrsPVEkEkwBQgClTpui3334zvvi4e5XuxMREPffcc/ruu+9kt9tNl8XFxSkuLk67du3S/PnzNXToUD3zzDMur1K9d+9ePfLII9q/f3+++92yZYvmz5+vGTNmuPQBszw59kz18/PLd5vo6Gg9/fTTpg/Kjk6fPq3Tp09r165dWrx4sfr06aMZM2a49Pf78ssv9fjjjxuPSVpamhISEpSZmampU6ca26WlpemVV17RypUr851IPT4+XvHx8Tp06JC+/PJLtW7dWnPmzFGbNm2KrMHR0KFD9eabbyozM1NZWVn67rvvNHbs2CKv9/XXXxunBw0aVKYTz4eHh2v69OkKDw/P9/Jz587p5MmT2rZtm+bPn6+RI0dq+vTpTiFvfo4cOaKJEydq3759pvaYmBjFxMTo22+/1SWXXKLXXnvNNEdpSX344YeaNWuWUlJSTO3p6emKj49XZGSkFi9erAEDBuiFF15Q7dq1S32bUs4X3eeff95pWN758+e1d+9e7d27V0uWLNFrr71WrP1+/fXXevXVV3XmzBmn/SYlJengwYNavny5Lr/8cr322mtq1KhRofsri8d6165devjhh3X48GFT+6lTp3Tq1Clt2LBBy5Yt03//+1+X7rPVduzYoUcffdSYjyxXbGysYmNjtW7dOt1000169tln5enpqUWLFun11193eh2JjIxUZGSkVq5cqXnz5hUZKFp17FYUH330kWbMmKHz58+b2nP/7qtWrVK3bt00Z84cU4hTELvdrldffVUffvihqT0jI0Pbtm0zjvGnnnpKw4cPd+ddsdxTTz2lzz//3Dif+56aN9Qvy/diV4SHh+uJJ57IN/DNfdx/+OEHvfPOO3rppZd02WWXueV2HV1xxRWaOnVqiT8bOk4V1LRpU5eOTcfbys7O1q5du0w/Ljn+PVxdEdtxn/v27dP58+eNAC0jI0MHDx4s9j7DwsKMYDI36C+NjIwMzZkzR/Pnz3d6vUxKSjLeKz/++GPdcsstevLJJ90SSG/atMl4XSloGPeCBQs0c+ZMpaenO9WcmJioqKgorVq1Sm+99Zaee+459e3bt9R1AVUJwSQAFMDf318vvfSSEQLlDulesWKFaQ7Kkjh9+rRuu+020xdXm82mtm3bqk6dOoqLi9P+/ftlt9tlt9v11Vdfaffu3VqwYIEaNmxY6L4PHz6sOXPm6OzZs5KkevXqqXXr1jp37pwOHDhgrBgZFxene++9V1988UWxw7KycuzYMSUmJhrn81vw4MCBAxozZowpaKlVq5Zat24tf39/paam6uDBg6b9/Pzzz3r44Yf13nvvFXr7Bw4c0JIlS5yCYkmmoVNpaWn697//re3btxttPj4+at26terUqaOMjAxFR0ebFu85ePCg/v3vf2v16tXF6qnaoEED9erVy5gY/+uvvy4ymExMTNTPP/9snHccxtWrVy+XbzsmJsYUFl188cVO2/z1118aP368aSXSOnXqqGXLlvL19VViYqIOHjxoXG632/XZZ5/Jx8enyFXXk5OT9e9//9voQRYQEKDQ0FBlZ2dr7969xmqjW7du1ejRo/Xxxx+XOJy02+168sknTV/GJalFixZq1KiRUlNTFRkZaXw5WbNmjfbt26dFixa53JutIOfPn9fdd9+tv//+22jz8PBQWFiYatWqpSNHjuj48eOKi4vTfffd5/J9nDNnjmbPnm1qa9KkiZo2barz58/rwIEDxsIJf/75p2688UZ9+OGHBb4elMVjvX37do0dO9a0z9q1a+uCCy5QVlaWIiMjlZaWpk2bNumuu+5y6X4XJfc5EBkZafTKbtiwobEARGlERERoxowZxt+1cePGatasmRISEhQZGWm8tixfvlxt27ZVRkaG0SO6Ro0aateunTw9PRUZGWnsIy4uTvfff79Wr16d7481Vh67FcXChQuNY91ms6l169aqX7++Tp06ZQpUNm/erEmTJpl6uxXkjTfeMELJ3PfnoKAgHT582DhukpOT9fjjjyspKanA1ZHdpWbNmsaxu3PnTqOXcvPmzY0FSOrXr1/q2/niiy/0/fff53uZ4/ugu96LS3q/1q9frwcffFBpaWlGW2BgoFq3bi0vLy9FRUUZj1NUVJTGjRun119/XQMHDiz23yQvDw8P9enTR+PGjVP37t1LtS/H91hXX9sbNGigmjVrGu+BUVFRpmDy0KFDxd6n4+etzMxMxcTEGO8FMTExpiCwJPvMXXG8pDIyMjRx4kRjZexczZo1U+PGjXX69GkdOXJEmZmZstvtWrp0qU6ePKm3335bNptNwcHBxnG2YcMG4/oXXnihEQYX9B6QO4zbw8Mj3x/zFy5caPrR0NvbW23atFGdOnWUlJSkmJgYxcfHS8oZCXT//ffrgw8+cFsPUqAqIJgEgEL06NFDN998szGJuDuGdGdkZGj8+PGmUHLUqFF64IEHFBwcbLQdP35cM2fO1Jdffikp5xfshx56SIsWLSr0F+DcL1zNmzfXU089pauuusoYApmcnKzZs2cbX7bOnz+v2bNnV5ieSMuXLzedz/sBMPcLeO4Xodq1a+v5559X//79TWFxdna2fvnlF73wwgtGqLV+/Xrt3LlTF154YYG3n/vhs2PHjpo2bZo6deqkkydP6quvvjJ9IXvnnXeMUNJms2nSpEkaN26csQplrr179+rFF180hgCdOnVKy5cv15133lmsv8uIESOMYHLXrl06ePCgWrduXeD2q1atMn61b9WqlWkuqPnz57t0m8eOHdONN95onA8LC9OLL75o2ub8+fOaNm2aESo1btxYL730kq644grTsNuMjAx99913euWVV4wP58uWLdOkSZOMSfzzk5CQoISEBPn4+OiRRx7RbbfdZvS8S05O1ty5c/X+++9Lyvmw/9hjj2nZsmUFDrMqzPvvv28Kdq655ho9+uijpr9zWlqa0XMvN+h/+OGH9eGHH5ZomH6uN954wxRKXnfddXryySdNrwcbNmzQM888o9jYWKfeo/n57rvvTKFkly5dNG3aNNPxn56erm+//Vavvfaa4uPjdfLkSU2aNEmfffaZ07FcFo91cnKyHnzwQWOfNWvW1NSpUzVq1CjjcU5NTdWCBQv0zjvvGMMMSyv3OeA4fLVnz575DuErrqVLl0qSWrZsqeeff94UWuzdu1d33XWXTp06JUmaOXOm0tLSZLPZNGHCBI0fP94IHlNTU/Xaa68Z04kcP35c33zzjW6++Wan27Ty2K0oco/1wYMHa/LkyaZAJDIyUo899pjRM23z5s1av359oQtYpKenG68t3bp10/PPP69WrVpJynkfWrdunZ555hnjvei1117TJZdcUuj7S2nVr1/fOHYdh3sPHTrUravF54aSgwYN0qRJk9S4cWPt379fa9euNXrtuvO9uCT36/Dhw5o8ebIRSjZq1EhPPvmk+vXrZ3r937Rpk1588UVFRkYqIyNDjz/+uFq3bl2qKU2knB/J5s6dW6p95HKcsqY4PxTUq1fPGNGT+5oi5fzNc6fDKc4+84a/p06dMoJJx/0XZ5+O2505c0bZ2dklen+Wcl4vHUPJbt266cknnzT19IyJidELL7xgfF5at26dli5dqttuu009e/Y0PlM6Pv6PPfZYkeFy7u1edNFFqlOnjumys2fP6s033zTO33TTTZoyZYrpB+jMzEx98803eu6555SWlqbMzEy98sorppEtQHXH4jcAUIQpU6YoJCTEOF/aVbqXL19u+oL9yCOP6KWXXjKFEFLOB+3XXnvN9MF8y5YtppUWC9K0aVMtX75cvXv3NoUGAQEBmjZtmq6//nqjbf369U5DT6ywfv1644ugJF1wwQVO895t3rxZW7duNc7PmDFDAwcOdOrB6uHhob59++rdd981tTv+Sl6Qxo0b68MPP9Rll10mX19ftWjRwhQap6WlmXrb5M4rlTfIkXKGRn3wwQdOAVNx9enTR0FBQcb5oj7MfvXVV8bpoia9z09qaqomTJhgfBmpU6eO3nnnHafeWt99952io6Ml5cx/OW/ePPXs2dNpLkBvb28NGzZMr7zyitGWnZ2tjRs3FlmLh4eH3n77bY0dO9Y0HDggIECPPvqoac6o7du369tvvy32/Y2OjtZbb71lnB89erTeeecdp/DX19dX48aN0wcffGD8OLB582atXLmy2LfpeNtLliwxzg8dOlRvvfWW0+tBr169tHTp0iKHWks5gd+zzz5rnL/mmmv00UcfOYUmPj4+GjFihD755BOjx8jBgwdNz8NcZfFYL1q0SMeOHZOUE/C//fbbpvBZypnOYdKkSXr55ZeLvN8VRePGjbVs2TKnL7vt2rXTlClTjPOpqamy2+2aOnWqHnroIdPzy8/PT88++6zpS7fjAhm5rDx2K5oxY8bojTfecOppHxoaqgULFpiCgh9//NGlfV599dVasGCBEUpKOcdqv3799PHHHxvD4TMzMzVjxgw33IuKoW/fvnrzzTfVpk0b+fn5qXPnznr44YeNy8vjvbgwzz77rDFlQbNmzfT555/r2muvdQq9unfvrqVLlxqB6rlz5/Tcc8+V6rbdLbeHqKRijaZw3NaxV2pSUpJpBWxXp2zIe9uO+3SssaT7tNvtpn0WR3R0tD766CPjfN++fbVw4UKn4fNNmzbVnDlz1LVrV6PtvffeU3Z2doluV8rpGRwTEyNJuvLKK50ud/wMHRYWpueff97pb+nl5aXhw4ebVj+PiIgw9WwFqjuCSQAoQkBAgKmnWGlX6Xb80t+9e3eNHz++0O3vu+8+04es+fPnF/kh64EHHnD6VdeR46qRqampRuBQntLS0hQbG6u1a9fq4Ycf1j333GMMFfL09NRTTz3l9CXDcR6rjh07FtrjRcoJAlq2bGmcP378eJF1jR49utAP3Vu2bDE+hHp7e+vuu+8udH81a9Y01elKDXn5+Pho8ODBxvnCwrfo6Gj9888/knL+jjfccEOxbis7O1uPPPKIEb57e3tr9uzZ+Q6r//PPP43T/fr1K7IXSu/evVWzZk3jvKuPx1VXXVXg5WPHjjX1CM3tsVYcixYtMp7PzZo10+OPP17o9pdddplp2GbuIgQl8e233xq3HRgYqGeeeabARV6Cg4P19NNPF7nPzz77zPgCWKtWLb388suFTj/Rpk0b00IHS5cuNYYI5iqLx9oxYB8+fHih0wwMGzZM/fr1K/Q2K4rCXn/zLtQUEhKif//73/lua7PZdPXVVxvn8xsKaeWxW5HUqlXLFJzlVa9ePfXv3984HxkZWeQ+g4KC9MorrxQ4QqF169aaPHmycf7PP/80gvbK7t577y10sanyeC8uyO7du023/8ILLxQ6hD0gIEAvvfSScX+2bNmiHTt2lPj23c1xTlTH18yiOP6A47iPvHOsurrQSt55gAvbp6t15n3u5N2Pq1asWGF8PvTz89NLL71U4Huat7e36bXg2LFjpZrf0nHV9fyOc8cer02aNCn0eXPdddfp8ssv16BBg3TPPfe4ddE+oLIjmAQAF1xxxRWmIXS5Q7qLKzIy0vTFZdy4cUVex2azmYb+Hj16tNAemx4eHkWuPHrBBReYziclJRVZR3Ft3rxZYWFhBf67+OKL1bdvX913332mBYC8vLw0ffr0fOfeeeihh7Rt2zZ98803ev31112qw/ELiysfirt161bo5b169dKOHTv0ww8/aMmSJaaejO6qIT+Oiys4ho95OfaW7NWrl1PPu6K8/vrrptVPn3rqqQIXDPjPf/6jLVu26IsvvtBjjz1W5L49PT1NgU1RfwubzVZgaOPolltuMU5v3brVGELsKsfeU4MHD3Zpsvxhw4YZpw8cOFDicN/xS8+AAQOK7DHTt29fNW7cuNBtHOeHy9vbtiBDhgwxhvTGx8cbCxbkcvdjfejQIdPcajfddFOR+8xvNeCKxmaz6dprry3wcn9/f9MqzldddVWhQxsdn7/5vU5beexWJD179ixwsbRcbdu2NU670nNr+PDhha64nbuNY2/5kqyIXdH4+/urU6dOhW5THu/FBXF8fWvUqJFL8/SFhoaqQ4cOxvncob4VgeOP3MUZ5uw4BYPjPvL+aO7qVA15t3PsdZl3n67WmTc8dNxncTjOmT1gwIAin5ddunTRI488otdee00rVqwo1fzBucO469evn++iP46v0b/99luhrwFeXl5atGiRZs6cqYcfftgU1gPVHcEkALhoypQpatKkiXG+JEO6HeeR8/T01OWXX+7S9Xr06GH60Lhly5YCt23atGmRK17m7RGY36rS5c1ms6lXr15asmRJvvOo5fL19VVoaGiRC/YcOnRIK1asMH3pLupDsc1mc2llTS8vL7Vo0UIXXXRRodudOnVKP/zwg6m3WUk/mHfq1Mn04fqbb77Jd7u8vdCKY8WKFVqwYIFx/rbbbjOFfvkJCAhQhw4d1KxZswK3yc7OVmRkpD7++GNTIFDU36JFixb59tTMq0uXLsZpu93uFKoVJjY21tR7x9WFoNq2bWvqNVJQUFyY9PR00wJKl156aZHX8fDwKDQ8T09PN62Y7er9qV27trHQhJT//XHnY+34Wujj4+PS3Hxdu3Yt9cJjZa1JkyZFvv46HjeOQ4Tz49jbKW9PeSuP3YrGlTkDHUN/V97ziuoFKOW8Hzkeu7nzCVdmoaGhLgVPZfleXBjH47U4C/c5hq0V6Zh3/GxXnCHHjn9Dxx8kCgsYXd1f3n3mPR5crTNvoFmSFbLT0tJM8yq7urL6+PHjNWzYMHXu3Fm+vr7Fvl1JSklJMd6rrrzyynx7OPbu3dvYf2Zmpu69917deuuteu+997R79+58F1ME4Kxif7oDgAokd0j3HXfcIalkq3Q7DvkICQlx+cOSr6+vmjZtaiyY47ifvFzpHZX3g2tp5t8pSGBgYIFhg81mk6+vrwICAlS/fn21b99el1xySZE9wfJKT0/X3r17dejQIUVHRys6OlpRUVHat2+fsaKto6I+IAYEBDgNZypKdna2Dh06pH379hk1HDlyRPv373eaMN6VGgozYsQIY4GO1atX64knnjB90N+6datxjAQFBRXZc9bR5s2bTXNvde/eXU8++WSx6ktNTdWePXt0+PBh429x6NAhHTx40LRyaq6i/haFLfDjqFmzZvL29jbChuIMp8w7PPbRRx/Vo48+6vL1czmuwO6q06dPm557rvaeyNvj2dHx48dNc8bOnDlTM2fOLHZtRd2f0j7WjvsPCQlx6TXUx8dHzZo1q9DzchW2mFN+igoxCxvqZ+WxW9EU933PlddhV36kknJep3J/fCrsvbmyKKo3Wn7c/V5cGMfjfuPGjSVayKYiHfOOPxIUpyep47aOP2DkHWbt6j4LGwKe97Pq+fPnXfqslHf+cleHlTuKiYkxHS9F/ZjjTn/88YfxuaKgKWWCgoI0bdo0PfPMM0bbP//8o3/++UdvvPGG6tSpo8svv1xXXnmlevfuXei0A0B1RjAJAMXQs2dP3XTTTcbq0bt379a8efN03333uXR9xyGmrk4ent/2hQ1VLc4cRQXp27evsdpjYT766KMCVzMMCwtzeQXo4oqMjNS8efO0bt26fEMQR15eXi7PB1pUSOAoLi5O77//vr7++mudPn3abTUUZujQoZoxY4YyMzN19uxZbdiwQX369DEudxzGPXjwYJdD1qioKN1///3GB/BmzZrprbfecjlw/+eff/Tee+9pw4YNhfZEstlsstlsLgfhxXmOBAQE6OzZs5KcJ+ovTHG2dfd+cle0zeXq8VfY36Ws74+7HmvHVWOL87zLXaSnoiruF+/SzDFm5bG7adMm01yVBQkJCSmX4c3ueN9zZLPZXD7WHHti5n1OV0bFeT6W1XtxYUq6gIojdz133MHxOMsvxC2I47aOwXytWrXk4eFhvPa6us+82znuM+9zITk52aWFehz36eXlVazFfXLlncKiJPsoqdypVjw9PQudA/nmm29WYGCgXnrpJacfJ86ePavVq1dr9erV8vDw0GWXXaZx48aZPrsBIJgEgGKbOnWqNmzYoKNHj0qS3n33XZcWg5BK10vAcZhNceYhqmqWLFmil156Kd/hSd7e3mrevLnat2+vSy+9VL169dJTTz2lzZs3u7RvV/+uW7Zs0cSJE/MNiG02m5o0aaLQ0FBdfPHF6tGjh9avX6+3337bpX0Xpl69errqqquML/rffPON8eE2PT1dq1evNrZ1dTXuxMRE3XPPPcZ98fPz0zvvvFPo4kmOZsyYke8qzlJOSNOqVSt16NBBl156qa666irdeuutLoXexeX43CpOSJH3i/Jll11Wol4dhQ1vLkhJp1AoLHDOe38uvPDCEoV5+fXKdOdjXRb3vSIoz8UMrDx2qzoPDw+X3w8c34uqwrBNV+93Wb4XF8bxtaN58+amKShc5TgvqNUc5ygsTrDtuG2DBg2M0x4eHmrQoIHRK9TVfeb9gdWxZ1/euapPnz7t0ggXx1EjdevWLdHro5ULxOTOL3nxxRcX+UPpgAED1LdvX61fv17ff/+9NmzYYPxYmis7O1ubNm3Spk2bdMMNN+jVV1+t1p/nAUcEkwBQTAUN6c7tRVkYx4CguL/6O/7CX5E+VJenn3/+Wc8//7xx3t/fXzfccIO6deumsLAwNW/e3KmXnzt6aDg6duyY7r33XuPx8PDwUP/+/XXllVeqQ4cOat26tdOwJ3f2GBoxYoSxv9xeKr6+vvrtt9+McDEsLCzfSdrzyszM1AMPPGAMjbXZbHr99dddnij+448/NgVV9erV0w033KAuXbooLCxMISEhTh+6i/N4pKSkuLSd3W439cwoTk/LvNs+/fTTJRoaWBJ5b9vV14TCesDk3efEiRPVt2/f4heXh7sfa8deL8VZfKs4PYqqOiuP3aouKyvLeG0tiuPxW9SQcrvdXmTQUpqFYcqLle/FgYGBRoh2zTXXFLkSfUXnOIVH3ukZCnLy5EmdO3cu331IOfMz5waTru7TcQ5Qb29vhYSEGOebNGlimi4lOjrapXmBY2JiCqzRVXlf58piscb8REREGHP4ujLfrJTzw1n//v3Vv39/ZWdna8+ePdq0aZP++OMPbd682fSYffXVVwoNDdVdd91VJvUDlQ3BJACUQN4h3bt27dK8efOK/AW5UaNGxunY2FiXv/gkJycbPTQlmT4wloWKurLoG2+8YZwOCQnRJ598Yvqb5sfdQ7bee+89Y5/e3t56//33i1wV1J01XH311apTp47Onj2rc+fOaePGjerXr5/Wrl1rbONqb8nnn39ef/zxh3H+gQceUL9+/Vy6bnp6umbPnm2c79ixoxYtWlTkMKviBPKOX2oKc+jQIdOX3uL0oMnbE+TYsWPlFu40bdrUNOTuwIEDLi2AU9gXzeDgYNlsNqPnVnHm2yxIWTzWLVq0ME7HxMTo/PnzRfb2s9vtVWIFaXex8tjt3r27IiIiyuW2rBIVFeXSPJP79+83TucNX/KGkBkZGUX2+s3by6oisvK9ODg42AgmHT8XVVaOPyJGRUW59Llwz549xmmbzeb0vO/UqZPRO9XVRRod93nBBReY5q/29vZWaGiodu3aZWw7aNCgYu2zffv2LtWRV8OGDU3vaVFRUbrkkkuKvN4ff/yhhIQENW3aVC1atCj2EPDcYdxSwfNLFsbDw0MdO3ZUx44ddccddyg1NVVffPGFXnnlFSPgXbRoEcEk8D/0HQaAEpo6daopiHz33XcVGRlZ6HUcQ4esrCxTKFSYP/74wzREzJXecFVNTEyMaWXG8ePHF/lFKDU11RTiuGOYneOH1WuvvbbIUFIyfzEo7UJD3t7eGjx4sHF+7dq1ys7ONury9vbW0KFDi9zPhx9+qE8//dQ4P3DgQE2cONHlOrZu3Woayj558uQiP/gfOnTINA9ZUY9HQQsn5OX4PPL29napJ0eutm3bmup2XEG9MHFxcXr88cc1a9YsffbZZyUanl6zZk3TlzVXXw+2bNlS4GUBAQFq27atcd7V+5ORkaEnnnhCM2fO1KeffmoKW8risXb8YpmZmenSEM+IiIhy6y1TGVh57FYHjivHFyQ5OdkIa6ScleMd5Q0hi3o9S01NrfCPh9XvxY6vHVu2bHG5J+Y777yjV199VYsXL3b5uVIeunTpYvQuzcrK0qZNm4q8zu+//26c7tChg9N0Hd26dTNO79q1y6UfBB33efnllztd7jifuOO2BYmPj9fu3bsL3acratWqZVp9vbD3P0dz5szRgw8+qJEjR2rOnDnFvt3cYdwNGzYsMFTN/Ry/ZMkSvfjii4V+B/Dz89Ptt9+uSZMmGW0nT550y5ypQFVAMAkAJZQ7pDtXRkaGPvroo0KvExoaaurt+OGHHxZ5O3a73bRd3bp11alTp2LXW9nlXeHacU6lgnzyySem+ajcMZTMcWJzV2rYvn27tm3bZpzPbz6u4ho5cqRx+ueff9Y///xjzCN19dVXF7mq6vr16/Wf//zHON+hQwe98sorxaqhJI9H3udHUY9HZmamvvjii0K3ycjI0JIlS4zzV155ZbHm2fPw8DD1hvjiiy9c+qKwePFiffHFF3r77bf15JNPlriX04ABA4zTP/74Y5E9gHbs2GH6spefq6++2jj9008/udTL8KuvvtLnn3+uuXPn6plnntGBAweMy8risQ4NDTWtul7Ua6ckLVu2rMhtisPKucvcwepjt6pbvnx5kT8krVixwhie6e3trWuuucZ0ed6h3Y7Pq/ysXr3apfcIK4/dsnwvduV+Ob6+nT59Wt9++22R1zl06JDmzJmjhQsX6sUXX9SPP/5Y5HXKS+3atU2hXVGvcykpKfr666+N847vIbl69Ohh/GiRkZGhzz77rNB9bt++3fS+MnDgQKdtrr32WuN0eHi4wsPDC93n8uXLjcc5MDBQV1xxRaHbF8bxdW7NmjVF/kB17Ngx/fPPP8b5vKFoUcdZUlKStm7d6nTbeXl4eGjy5Ml6/vnntXjxYn333XeF7lcyz99ss9lcXmQQqOoIJgGgFHr16qUbb7zROF/UFwoPDw/TSqabNm3Se++9V+h13n33XVPPjdtvv71afpDJ+wVvw4YNhW6/adMmvfXWW6a2ki64UVAdf/zxR6GP+bFjx/TYY4+Zeoe4o4b27dsbQwzj4+M1Y8YM47Lhw4cXet3IyEhNnjzZqDs4OFjvvvuuS1MKOCru4/HNN99o6dKlpjZX/hYzZ84s9Mv8G2+8Ybp83LhxRe4zr9z5YqWcv+eUKVOUnp5e4PY7d+40rTjfuXPnEv9YcOONNxoLDaWnp2vKlCkFzjGXnJysJ598ssh9jh492hiGl5mZqYceeqjQnloxMTGmY6hx48amFUPL6rG+5557jNO//vqrKWDO6/fffzf18HUHxwC7Mszrlx8rj92qLiIiQu+++26Bl+/du1ezZs0yzg8ZMkT16tUzbdO0aVPTKteLFy8ucH/Hjh3Tm2++6VJtVh67Zfle7Mr9uvLKK03zIL/00kumHt55paen64knnjDe8zw8PHTzzTcXWnN5u/32243TP//8s1auXFngts8++6zi4uIk5fTCGzVqlNM2NWvWNLXPmTOnwKkXkpKSTO8rF198sS666CKn7S655BLTaJ1p06YV+L6yZ88e03PnpptuKtaidHnddtttxhzGiYmJeu655wrsdWu32/Xyyy8bPyo0atTIKVws6jjbuHGjEaoWFkzabDZTUL506VJFRUUVel/WrFljnG7RooX8/PwK3R6oLggmAaCUHn/8cZdWJ8x12223mb4IvvHGG3ryySeNicpznThxQk888YTpA32bNm2q7Xw0rVq1MvU2Xbp0qebPn+/0JTwmJkavv/66xo0b53RZampqqeu48sorjdMRERGaOnWq06qXSUlJ+uSTTzRs2DCnD6nuqEEyB5C5v+zXr1+/0Enaz5w5owkTJhiLyvj5+WnevHlFDsPLz6WXXmr6QP3WW2/piy++cApq9+3bp6eeekqPPvqo0xcJV/4WKSkpuv322/X999+bei+dPn1aU6dO1cKFC422ESNGmIawuapTp0667bbbjPM///yzxowZo+3bt5u2S09P15IlSzRu3Djjy4ynp6emTZtW7NvMVadOHT3xxBPG+b/++kv/+te/nL5E7tixQ7fddluR00VIOWHzQw89ZJwPDw/XTTfdpA0bNpgeg6ysLH399de67bbbTL3mpkyZYhqCWlaP9bBhw9SzZ0/j/AsvvKAZM2aYvuzm/s3vvffeUk+DkJdjwLJt2za3z0dbHqw8dquDWbNm6cUXXzQdG7nPm3/961/GcR0UFGR6zuXy8vIyLT71/fff66WXXjId45mZmVq1apVGjRql06dPu/TDY94fyAoLo92tLN+LXb1fzz33nPHjS2Jiom655RYtW7bMafstW7ZozJgxpt5zN998s8sLvJWXvn37moZKP/3005o3b54pNDt9+rQmT55s6i05ceLEAkdIjB8/3rgsJSVFY8eO1Y8//mh6bd67d6/GjBljDM339PQsdDGhqVOnGr0NIyMjNWbMGNNUNXa7XT/88IPGjh1rPMYNGjQw/QhVEs2aNTN99v3mm2903333OY0GOHHihCZPnqwffvjBaJsyZYo8PT1N2zkeZ7lDth05To3j+B6Vn7Fjxxr7T0hI0J133qnff//d6T0wPj5eL774or755hvTdQHkqH5dbgDAzQICAvTCCy+4HBj6+Pho9uzZGjt2rBFaffbZZ/r888/Vtm1b1a1bV3Fxcdq3b5/pg02zZs00b968Uv3qXNk9/PDDeuSRRyTlfAD+z3/+o3fffVfNmzeXr6+vTpw4oZiYGNPfrUmTJsbw2LxD0EpiwoQJWrNmjfGh+5tvvtH333+v5s2bq27dujpz5oyio6NNX5Aca8jKylJcXFyRw62LMnToUM2YMcPU82To0KGFfql97rnnTPOXtWrVSosWLVJqaqrS09OVmZlZ5NxfQ4cO1Q033CA/Pz/de++9xiII6enpevzxx/Xqq6+qefPm8vT01PHjx50WX2ncuLHRVtTj0bVrVx06dEhnzpzRAw88oAYNGqhFixZKS0tTRESEaThg165d9fTTTxe6v8JMmzZN0dHR+u233yTlBFU33XSTGjVqpObNmys5OVmHDx82faG22Wx66qmnXFqwpjBDhw5VeHi4Fi1aZNz20KFD1bp1azVo0EDHjx83Xis8PT3Vp08f02JH+bnrrrt06NAhYwjfgQMHdOedd6pevXpq1aqV0tPTFRUV5RTGjR8/3mlRg7J8rF955RXdeeedxuvd+++/r48++kjt2rWTl5eX9u3bZwxPbtOmjWw2W6G9o4rDMZw4evSoBg0apLZt2yopKUkLFixwmretorLy2K3KgoODdeLECS1evFjLli1T+/btVaNGDR04cMDosSZJvr6+mjVrltNiRLnuu+8+rV271vj7f/TRR/rss8/Upk0beXp66tChQ8bzsEmTJho2bJjeeeedQmtzPHbDw8M1YMAANW/eXOfPn3fqrVwWyuq92NX7demll+rZZ5/V9OnTlZmZqaSkJE2fPl2vvfaa2rZtK29vb0VHRzv94NutWzfTD0EVyeuvv67bb79d0dHRyszM1Jtvvqn3339fbdu2VXp6uiIiIkzv93369NGdd95Z4P7q1q2rN998UxMmTNC5c+cUFxenSZMmGa8LZ86ccRqN8MgjjxS6sEz37t01efJko2fv7t27dcMNN+iCCy5Q3bp1FRUVZfqb16xZU//973+LvfBMfh588EHt27dPP//8syRp3bp1WrdunS644ALVr19f8fHx2rdvn+kHszFjxuj666932ldoaKix4vbixYv1119/KSgoSG3atNHTTz9tvJZecsklph7P+WnXrp0mTpxoLBAXHR2tcePGqW7dumrVqpV8fHx09uxZHThwwPT49evXTzfddFPp/ihAFUIwCQBucOWVV2rUqFFFzuOTq0mTJlq+fLmeeeYZff/995JyPtzn1xvKZrPp+uuv15NPPlnqMKuyGzx4sE6ePKk33njDCKWSkpJMiw/kCgwM1JQpU9SgQQONHz9eknTw4MFSh4ItWrTQO++8o4ceeshYECQ9PT3fsMTLy0tjxozRPffcoyuuuMLo8fX333+b5msqibp166p3797FWo0771xyu3btyvdvV5iLL77YOH333XfrzJkzpjlQ4+PjTQul5GrUqJGeffZZHTt2TM8995yknAAlKyvLqTdDrsaNG2vatGm6//77dfToUZ06dcrpC63NZtPIkSP1zDPPFGtuybx8fHw0b948zZo1SwsXLjR6qhw/ftz4AuOoQYMGmj59uvr371/i23T0xBNPKCQkRK+//rrx5eXgwYM6ePCgsU3NmjU1ffp0nT9/vshgUsoZ4hgWFqbZs2cb4d6ZM2ecevhKOT+wPPbYY7rlllvy3VdZPdbBwcH65JNPNHnyZGNI6Pnz5516/LVt21bvvvuuEYa4Q//+/dWhQwdjbrXTp08bq/3u3bvX1IOpIrP62K2qnn/+eS1btkw///yzMjIytGPHDqdtQkND9dprr6lDhw4F7qdly5Z677339PDDDxtzFKempmrnzp2m7S6++GLNmDGjyKHRUs7Q2CVLlhjBf2xsrPGjU0xMjJo2bery/SyJsnovLs79GjVqlEJCQjR9+nTjh5vU1FSn1w4pZ/j2bbfdpqlTpxa5KrpVgoODtXjxYj388MNGD8+kpCRTb89co0aN0vTp043hzQXp0aOH3n//fU2dOtUIhfN7XahZs6amTJliGlJekHvuuUf+/v564403jLA9v88/jRo10owZM5wWhCopLy8vvf322/rvf/+rhQsXGu+T+/fvd7p9b29vPfTQQwUGt/fee6/++OMPYx+5vT6jo6M1cuRI43OGq6txT5o0STVr1tSsWbOM19+4uDjTDxiOtY0ePVoPP/xwgZ99gOqIYBIA3GTatGnauHGjU6+hggQFBWnWrFnavXu3vvnmG23atElHjx5VUlKSatasqZYtW6p79+4aMWKEabLs6u6OO+7QVVddpaVLl2rz5s2KjY3VuXPn5Ofnp3r16iksLEzdu3fXDTfcoICAAKWlpcnf318pKSnKzs7WypUrSz0cvkePHlq9erWWLVumX3/9VYcOHVJycrJ8fHwUFBSk1q1b65JLLtENN9ygZs2aScrpaZC76vJnn31W6mBSyglWcgOqCy+80LQac3mw2WyaNm2aBg0apE8//VT//POPTpw4ofT0dPn5+Sk4OFhhYWHq1auXBg0apBo1aujo0aN64YUXlJ2drYSEBP3www/5TrSfq1OnTvr666+1ZMkSff/99zpy5IiysrIUHBysHj16aNSoUW6bI8/T01OTJ0/W7bffri+//FK///67Dh48aIRvdevWVfv27dWnTx9df/318vf3d8vt5vr3v/+ta665RkuXLtVvv/1mrGIbHBysXr166fbbb1fr1q2L1SPqX//6l4YNG6Yvv/xSGzduVGRkpOLi4pSdna3AwECFhYXpyiuv1A033GDMdZmfsnysa9eurfnz5+vXX3/VF198oa1bt+r06dPy9/dXy5YtNWjQIN1yyy2lCp7z4+3trcWLF+vtt9/WTz/9pBMnTigzM1MNGjSodMO6rT52qyJfX1/NnTtXP/zwg1asWKHdu3crISFBQUFBuvDCCzVkyBBdd911LoULl112mdasWaMVK1Zo3bp1OnDggBITE1W/fn2FhYVpyJAhGjhwoMtBRWBgoJYvX645c+Zow4YNRqDesGFDnT59usyDSals3ouLe7969OihVatW6fvvv9cvv/yiHTt26PTp0zp37pwCAgLUqlUrXXbZZRoxYoRatWpV5n+T0mrcuLE++eQT/fjjj1q1apVxfzw8PBQcHKwuXbropptuMv1AWJRu3bpp1apVWrlypX788Uft379f8fHxqlGjhlq0aKGePXvqlltuMQ3PL8ro0aPVr18/LV++XOvXr1dMTIySk5MVEBCg0NBQ9evXTyNHjiyyt2FxeXp66pFHHtEtt9yizz//XL///ruOHDmihIQE+fn5qWXLlrriiit06623FjpFzaWXXqolS5bovffe07Zt24y/h7+/v2lod2FT4+R11113afDgwfrqq6/0559/av/+/UpMTFRWVpbq1aunkJAQXXnllbr++uvVvHnzUv0dgKrIZi9qzBYAAKiQpk+fbqzg+fzzz1e4Cf0BoDIJCwszTn/00UeVptcsAACVGYvfAABQCaWnpxurO/r7+2vw4MEWVwQAAAAAxUMwCQBAJfTNN98YwzSHDRvG0EwAAAAAlQ7BJAAAlcy2bdv02muvScqZEH7cuHEWVwQAAAAAxcfiNwAAVHDbtm3T448/ruDgYMXFxZlWbx8/fryxwA4AAAAAVCYEkwAAVHDNmjXToUOHdOjQIVN7nz59NHHiRIuqAgAAAIDSIZgEAKCCq1evnq644grt3LlTmZmZat68uUaOHKnRo0fL09PT6vIAAAAAoERsdrvdbnURAAAAAAAAAKoXFr8BAAAAAAAAUO4IJgEAAAAAAACUO+aYhMu2bNliOu/hQa4NAAAAAABQXWVnZ5vOd+nSpVjXJ5hEieU9+AAAAAAAAABX0eUNAAAAAAAAQLmjxyRKjKHccAfHnrccUygtjie4G8cU3I1jCu7E8QR345iCO3E8VQ+lHU1LMAmXeXh4mA64Cy+8UF5eHEIouczMTG3fvt04zzGF0uB4grtxTMHdOKbgThxPcDeOKbgTx1P1sXXrViMrKkkATWQNAAAAAAAAoNwRTAIAAAAAAAAodwSTAAAAAAAAAModwSQAAAAAAACAckcwCQAAAAAAAKDcEUwCAAAAAAAAKHcEkwAAAAAAAADKHcEkAAAAAAAAgHJHMAkAAAAAAACg3BFMAgAAAAAAACh3BJMAAAAAAAAAyh3BJAAAAAAAAIBy52V1AQAAAAAAAAWx2+3Kzs62ugwUQ1ZWltN5m81mUTXI5eHhUeEeB4LJCiwtLU0fffSRVq1apcOHD8vLy0utWrXS4MGDdeutt6pGjRpWlwgAAAAAgFvZ7XalpqYqMTFRycnJyszMtLokFJPdbjedP3DgQIULxKqrGjVqKDAwUIGBgfLysj4WtL4C5OvUqVMaO3as9u/fL0ny9vZWdna2du7cqZ07d2r58uVauHChgoODLa4UAAAAAAD3SE9P15EjR5SRkWF1KSilihB6wdn58+d18uRJnTp1So0bN1ZgYKCl9TDHZAX18MMPa//+/apTp45mzZqlrVu3atu2bfrggw/UqFEjHThwQA8++KDVZQIAAAAA4BaEklWHzWaTl5eX8Y/ekhWP3W7XsWPHlJKSYmkdxNcV0KZNm7R582ZJ0quvvqqrr77auOzKK6/U66+/rjFjxmjr1q36+++/1bVrV4sqBQAAAACg9Ox2u1Mo6e/vr9q1a8vPz0+enp4WVofiyh2On8vPz49w0mJ2u12ZmZlKTExUfHy8srKyZLfbFRMTozZt2ljWw5VgsgL6/fffJUkhISGmUDJXt27dFBAQoOTkZIWHhxNMAgAAAAAqtdTUVFMoGRwcrLp161pYEUrDbrebwmRPT0+CyQrAy8tLNWvWVK1atRQVFWUsLJWSkmLZkG6CyQpo8uTJGj16tOLj4/O9PDs725hI1tvbuxwrAwAAAADA/RITE43T/v7+hJJAGfL19VXt2rWVkJAgSUpOTiaYhFmDBg3UoEGDfC/7+uuvlZKSIpvNpssvv7ycKwMAAAAAwL2Sk5ON07Vr17awEqB6CAgIMIJJK+eZJJisJM6dO6eoqCh99tln+uSTTyRJ48aNU5s2bSyuDAAAAACAksud+y6Xn5+fhdUA1UPNmjWN07nzTVox3J5gshKIiorStddea5y32WyaMmWK7rjjDgurAgAAAACg9LKzs03nWegGKHt5n2fZ2dmWPPc8yv0WUWzHjh2Tt7e38auR3W7XO++8o7ffftviygAAAAAAAICSIZisBC666CJt27ZNW7du1c8//6wbb7xRycnJmj17tt566y2rywMAAAAAAACKjWCyEvD19ZWXV86o+yZNmujFF1/UmDFjJEkLFixQXFycleUBAAAAAAAAxUYwWUmNHTtWUs6iOBEREdYWAwAAAAAAABQTi99UQIcPH1ZUVJSCg4PVrl27fLdp2LChcfrs2bPlVRoAAAAAAADgFvSYrIAef/xxjR8/XrNnzy5wmwMHDhinQ0JCyqMsk8xMac0am1JTy/2mAQAAAAAAUAUQTFZAvXv3liT98ssvioyMdLrcbrdr1qxZknJCyQsvvLBc65Ok9HQPDRniqZAQ6eGHpXzKBAAAAAAAAApEMFkBjR49WsHBwcrMzNTdd9+ttWvXKiMjQ5J08OBBTZo0ST/99JNsNpueeuopeXhY9zDGx0szZ0phYdLIkVJCgmWlAAAAAAAAoBIhmKyAatWqpffff1+NGjXS8ePHdd999+niiy9Wly5dNHDgQK1du1Y+Pj566aWX1LdvX6vLNaxcKfXqJcXGWl0JAAAAAACo7u677z6FhYVp3rx5SklJ0Zw5c3T99derc+fO6tChg86fP291idUei99UUGFhYfr666+1ePFi/fjjj4qKilJGRoZatmypK664QmPHjlWLFi2sLtNJeLg0YIC0YYMUGGh1NQAAAAAAoLrau3evJMnHx0dDhgxRbGysatasKQ8PD7Vo0UI1atSwuEIQTObjrbfe0jvvvKOQkBD99NNPxbrugQMHtGzZMm3atEkxMTHKzMxUw4YNFRoaqiFDhqh///7y8nLtzx4YGKhJkyZp0qRJJbkblgkPl+64Q/r8c6srAQAAAAAA1VFycrJi/zekc9asWQoJCdGiRYvUvXt32Ww24zJYi2Ayjx07duj9998v0XVnz56tuXPnKjMz09QeHR2t6OhorVu3Tp06ddLrr7+u1q1bu6PcCmvlSmnfPqltW6srAQAAAAAA1c3evXtlt9slSQ0aNNDSpUtVq1Yt4/KQkBClp6fr0ksv1Z133qnJkydbVWq1xhyTDqKjozVx4kRjoZniePHFFzVnzhwjlPTy8lLHjh3VtWtX1alTx9guPDxcY8aMqRbJ/Ny5VlcAAAAAAACqo4iICEmSzWbTyy+/bAolcx08eFAZGRlq3759eZeH/yGY/J/IyEjdfvvtOnXqVLGvu2bNGi1evNg4f91112n9+vVauXKllixZot9++03PP/+8fH19JUmnT5/W/fffbyT3VdXChVJqqtVVAAAAAACA6iZ3fsmLLrpIXbt2zXeb0NBQ7dixQ9ddd115lgYHDOWW9NVXX2n69OlKS0sr9nUzMjL02muvGef79Omj//73v/Lw+P/M19vbWzfffLNCQkJ0zz33KDMzU7t27dK3336rIUOGuOU+lDvvLMk7U8oo+BA6e1b66acsDRhQtQNYlFxWVlah54Hi4HiCu3FMwd04puBOHE9wNyuPqaysLKPjjs1mk91ur/Ideaq6vI+fFY9nbjDZt2/fAm/fZrPJx8dHkjU1Win3/ub+n5mZacnfoFoHkydOnNCbb76pL7/8ssT7+PHHH3X06FFJOcO3n3nmGVMo6ahXr166+eabtWTJEknSwoULK28wKbvUOUra0qbQrf7+O1qNG58pp5pQ2YWHh1tdAqoQjie4G8cU3I1jCu7E8QR3s+KY8vLykpeXl1JTU+Xp6Vnut4+yU5KOYKWRnZ2tyMhISdKFF16o1AKGcz7yyCM6cuSIVqxYYbRNmjRJcXFxxpR9f//9t7y9vXXDDTfogQceKJf6y0NWVpays7OVmZmpzMxMy95Hqu1Q7nfffVcDBgwwhZKtW7fWhAkTirWfVatWGaevuOIKNWnSpNDtb775ZuP0rl27FB0dXazbq1BaFD3sPSWl2h5iAAAAAADAAtHR0Tp37pw8PDwUGhpa4HaRkZFqm2fV3n379ik9PV0TJkxQ8+bN9cADD+iCCy7Qhx9+qPXr15d16dVOtU2N5s+fb0rMb7zxRq1YsUItWrRweR92u12bNm0yzvfs2bPI64SFhalBgwbG+Z9++snl26twmsZJHtmFbuLvX/jlAAAAAAAA7pTbW7JZs2bGeh95paSk6OjRo6bgMiEhQadOndLJkyf1wQcf6KGHHtKoUaM0Y8YM2Ww27d69u1zqr06q9VBuSerUqZOmTp2qbt26Ffu6sbGxSkxMNO3LFWFhYcYiOzt37iz27VYUNu8s2RuflWLrFbhN167NdNFFTcuxKlQmWVlZpu7inTp1YsgGSozjCe7GMQV345iCO3E8wd2sPKaysrJ04MABSTlz/vn5+XE8V3J2u900fNvX11c2m63cbv/QoUOSpA4dOsjPzy/fbfbu3Su73a5OnToZ2+RmNOPHj1e7du2MbT08PGS32+Xn51fg/iqbrKwseXh4yNvbW97e3mrTpk2Jnnc7d+5UdnbJO6VV22CyW7duGjFihK655poSPzkOHz5sOt+8eXOXrte06f8HdUeOHCnRbVcYLU4XGEzWqSP17espr2p7lKG4PD095cUBAzfheIK7cUzB3Tim4E4cT3C38jymbDab6Xt53vOo/Mr7MY2IiJCUE0wWdLu527Rr187YZt++fZKkfv36ma6Xm/+0atWqyhybufcj938vLy9LfhCotu9c77zzTqn3kdvrUcpJz+vXr+/S9RyHcjvuo1Jqfkr6PSzfi8aNk6rIDwkAAAAAAKCSyF2R27HXY14REREKCgpScHCwqS0gIECtW7c2bbtnz54i94eSqbZzTLpDQkKCcdrf37/A1bjzCggIyHcflVKjeMk7M9+LirmOEAAAAAAAQKkkJCTo2LFjkqT27dsXuF1ERITCwsLybcvbK3Lv3r3y9fUt1rokcA3BZCmcP3/eOF2zZk2Xr+fj42OcTk9Pd2tN5c3maZeannFqHzFCyrOwFQAAAAAAQJkKDAxURESEIiIiTCNWHdntdkVGRpp6QNrtdu3fvz/fMHPv3r0KDQ11uUMaXMdftBQyMjKM08U5OB3n6cjMzL+3YaXS/LTpbKdO0oIFFtUCAAAAAABQiOjoaKWkpJh6TB45ckSpqan5DteOiIhgGHcZIZgsBcdJQYuzApFjGOnt7e3WmizhEExeeKG0Zo0UGGhhPQAAAAAAAAXIXfjGMZiMjIyU5Dz8+/jx44qPj3ca9g33qLaL37iDr6+vcdpxWHdRHIdv16hRw601WcHWMFF23/MaMbCGFiwglAQAAAAAABVX//79jXCysDZJatSoUb7tcA96TJZCoEMCl5KSIrvd7tL1kpOTjdNBQUHuLssS/115Rp9/TigJAAAAAAAA19BjshQcl5TPysrS2bNnVbdu3SKvd+rUKeN0/fr1y6S28rY7+ZSkJlaXAQAAAACoJjKysvX8j5FateeEUtOzrC6nQvHz8dSg9sF6pn+ovD3pk4aKi2CyFPIuEx8dHe1SMBkTE2OcbtWqldvrssJP+04XvREAAAAAAG7y3A+RenndPqvLqLC2xiZKkl4YwKItqLiIzUshJCTENBR7z549Ll1v7969xunKuqqTp81mOn/gTKqi4lItqgYAAAAAUN1sPnLW6hIqvE1R/I1QsRFMllL37t2N07///nuR2+/du1enT/9/78LLL7+8TOoqax75HDnr9tNrEgAAAABQPro1r2N1CRVe9xb8jVCxMZS7lK699lp9//33kqSff/5ZJ06cMM09mdfSpUuN023atKm0y8172pzbftp3Wnd0a17+xQAAAAAAqp3p14bKZhNzTObDcY5JoCIjmCyla6+9Vg0bNtTJkyeVnp6uxx9/XO+//768vJz/tL/99ptWrFhhnB8zZkx5lupWNklBNb0Ufy7TaFu3/7TsdrtstnxSSwAAAAAA3Mjb00MvDGjHHIoVQGXtdFXVREREWF1CsTGUu5R8fHz08MMPG+d///133X333YqOjjbaMjMztXz5ct1///3Kysr5FSc0NFQ33nhjudfrLjabTb3b1DO1nUg6r13HkyyqCAAAAAAAAJUJPSbdYPjw4dq6das+/fRTSTnh5LXXXquwsDAFBATowIEDiouLM7YPCgrSW2+9lW+vysqk7wX19NWuE6a2dftPq1Pj2hZVBAAAAAAAylvennp2u12pqf+/QK6fnx+jK5Eveky6yXPPPacJEybI29tbkpSdna09e/bor7/+MoWSbdq00ccff6zWrVtbVarb9MnTY1LKmWcSAAAAAAAAKErl7rJXgdhsNk2ePFlDhw7VZ599pg0bNuj48eNKS0tTYGCg2rdvrwEDBmjo0KHy8fGxuly3CGvgrya1a+po4jmjbf3BM8rMypaXJ5k3AAAAAADVSXJysjZt2qSdO3dq+/bt2r17t+Lj4yVJq1atUps2bawtEBUOwWQeI0aM0IgRI0p8/TZt2mjq1KmaOnWqG6uqmGw2m65pW1+Lt8QYbYnnMvV3TIIub1HHwsoAAAAAAEB5+/PPP3XfffdZXQYqEbq1oVT6XlDfqW3dvlMWVAIAAAAAAKxWr1499e7dW+PHj9dTTz1VJrcRFhbGSuBVBD0mUSrXtHUOJn/ad1pP9gu1oBoAAAAAAGCVPn366PfffzcWvzl69KjVJaGCI5hEqTQN8lVoA39Fnkox2n6POqu0jCz5entaWBkAAAAAAChPnp6VLwe47777tHbtWj388MMaPXq0Fi5cqNWrVys6OlqZmZnaunWratSoUarbmDx5slatWuXy9lOnTtUdd9xRqtusLAgmUWp9L6hvCibPZ2Zr46E49QttYGFVAAAAAAAAhdu7d68kycfHR0OGDFFsbKxq1qwpDw8PtWjRotShpCTFxMSofn3ziNPTp09LkurUqeMU6Hbp0qXUt1lZEEyi1PqFNtDcP6JMbev2nyaYBAAAAAAAFVZycrJiY2MlSbNmzVJISIgWLVqk7t27y2azGZeV1ooVK0znjxw5ov79+0uSfvjhB9WuXdstt1MZEUyi1K5uU082m2S3/3/bushT0qD21hUFAAAAAABQiL1798r+vzCjQYMGWrp0qWrVqmVcHhISUia3GxERIUlq1KhRtQ4lJVblhhvU9fPRpSGBprYtsQk6lXzeoooAAAAAAAAKlxsQ2mw2vfzyy6ZQ0lF6ero6deqkmTNnuvV2Q0NLt3DwkCFDdO+997qjJMvQYxJucW1YA22JSTDO2+3S9xGnNLpLUwurAgAAAAAAldH8+fO1YMGCQrfp2bNnvu133HGH7rzzziJvI3d+yYsuukhdu3YtcLuDBw8qIyND7du7Z2RoZGSkpNIFk5mZmTp06JCuueYat9RkFYJJuMWgdsF6Zd1+U9vqvScJJgEAAAAAQLGlpqYaC8QUpKDLU1NTXbqN3GCyqHAvNDRUO3bskI+Pj0v7LUpuj8mwsLAS7+Pw4cPKyMgoda9LqxFMwi26Nw9SkK+34tMyjLbvI04qK9suTw+bhZUBAAAAAIDK5v7779f999+f72W5gV5uwFcS2dnZ2rdvnyQV2ltSkjw8PNyyOrcknTt3TkeOHJFUuh6TubWXJtysCJhjEm7h5emh68LMq3DHpWbor+h4awoCAAAAAAAoQFRUlNLS0uTh4aF27doVuu19992nwYMHm9ruuusuDR8+XPv379fEiRPVpUsX9ejRQzNmzCh0X/v27VN2dra8vLzUunVrl2pdt26dRo0apc6dO2vQoEH69ddftW/fPtWoUUMtW7Z0aR8VFcEk3GZAWEOntlV7TlhQCQAAAAAAQMFyh3E3b95cfn5+RW6bt2diRESE0tPTNXbsWLVs2VKPPfaYQkND9f7772vdunUF7isqKkqS1KxZM5eGhn/66aeaOHGi6tatqyeeeEJ9+vTRQw89pF9++UUXXHCBPD09i9xHRcZQbrjNgHbOweSavSf1/IDCf3kAAAAAAAAoT7nBZFEL2iQnJys2NlY333yz0RYfH6+TJ08qLS1Nn3/+uVq0aCFJuv7663XZZZcpPDy8wHkr4+PjJUl169YtssYDBw7ohRde0JgxY/TUU08Z7X5+fpo1a5aGDx9e5D4qOnpMwm2Ca9VQl6aBpra/YxJ0Ium8RRUBAAAAAIDyFBcXp7Nnz+rs2bNKTEw02pOSkhQXF2f8y87OtrDK/5+fskOHDkVuZ7fbTT0mc687fvx4I5SUJG9vb9ntdnl7exe4P39/f0k5i9fExsYWettz585VjRo19OCDD5rau3fvLql0c1RWFPSYhFsNaNdQW2ISTG3fR5zUv7o2s6giAAAAAABQXnr06JFvu2OPQyln3sSmTZuWR0n5yu0xWdT8krkhpON2kZGRkpxX8z506JAkqVWrVgXur3v37vL29taZM2fUt29fBQUFaerUqRoxYoRpu8zMTK1bt05DhgxRrVq1TJflhrqVfeEbiR6TcLNB+QznXr33pAWVAAAAAAAAOEtISNCxY8ckFT2UOyIiQkFBQQoODja1BQQEOC1es2fPHkmFh51NmjTR7Nmz1b59e3l7eys+Pj7fgDYmJkYpKSnq1KmT02Xh4eGS6DEJOOnWvI7q+nkrLjXDaPsh4pQys7Ll5UkODgAAAABAVZY79Dk1NdVo8/Pzk81mc+ttlEZgYKDL+4iIiMh34ZuwsDCn+7R37175+vqahnfnp0+fPurTp0+h25w7dy7f9qysLC1btkx169ZVgwYNXLgHFRtJEdzK08Om6/Kszn02LUObjsRbUxAAAAAAAEAJ2O12RUZGmnpA2u127d+/P9+elnv37lVoaKg8PEoftzVu3FiS9Oeff5raFy9erKioqCrRW1KixyTKwIB2DbR0q3kC19V7T6pnq6JXnAIAAAAAAKgIoqOjlZKSYuoxeeTIEaWmpuY7XDsiIkLXXXedW247MDBQffr00bfffquaNWvqoosu0ubNm7VhwwbZbLYqMb+kRI9JlIHrQp3nmVzDPJMAAAAAAKASyR3u7RgC5i58k7fH5PHjxxUfH+/WwPDll1/Wtddeq++//16vv/66UlJS9PLLL8tut9NjEihIw1o1dFmzIP0VHW+0/ROboOOJ59Sodk3rCgMAAAAAAHBR//79neaizK9Nkho1alTquS/zqlu3rmbPnu3U7u7bsRI9JlEmBuSzOveaiFMWVAIAAAAAAICKiGASZWJQPsHk6j0nLKgEAAAAAAAAFRHBJMpE12ZBqufnbWr7IfKUMrOyLaoIAAAAAAAAFQnBJMqEp4fNaTh3wrlM/RF11qKKAAAAAAAAUJEQTKLM5DfP5GpW5wYAAAAAAIAIJlGGrgtrIJvN3EYwCQAAAAAAAIlgEmWovn8NdWsWZGrbfjRRRxPOWVMQAAAAAAAAKgyCSZSp/IZzr4mg1yQAAAAAAEB1RzCJMjWoXbBT2+o9BJMAAAAAAADVHcEkylSXpoFq4O9javtx3yllZGVbVBEAAAAAoCLx8DBHE1lZWRZVAlQfeZ9neZ+H5YVgEmXKw8PmNJw78VymNh6Ks6giAAAAAEBFYrPZ5OXlZZxPTU21sBqgejh37v/X//D09JQt7+rF5YRgEmUuv3kmv9p13IJKAAAAAAAVUUBAgHE6MTHRwkqA6iE5Odk47e/vb1kdBJMocwPbNZSXhzl5/yr8uOx2u0UVAQAAAAAqktq1axunU1JSFBfHKDugrKSlpZl+AHD8YaC8eRW9CVA6Qb7eurpNPa3dd9poO3w2TTuOJeqiJoEWVgYAAAAAqAj8/Pzk7e2tjIwMSdKJEyeUnJys2rVry8/PT56enhZXiOKw2+2mOQyzsrIsGyqMHHa7XZmZmUpMTFR8fLzRWczDw8PSHpMEkygXN3RqZAomJemr8BMEkwAAAAAA2Ww2NW/eXEeOHDHCyZSUFKWkpFhcGUoqO/v/F721amEVFM5ms6lp06amOV7LG0cGysXQjo2c2r7adcyCSgAAAAAAFZGPj4+aN28ub29vq0tBKeX2zsv9x1RuFY/NZlPjxo0t7S0p0WMS5aRZkK+6Ng3U3zEJRtvW2ERFxaWqRV0/CysDAAAAAFQUPj4+atOmjVJTU5WUlKSkpCRlZmZaXRZKwPFxI2yuOGrUqKHAwEAFBgZa2lMyl/UVoNoY2qmRKZiUclbnfuDK1hZVBAAAAACoaGw2m/z9/eXv769GjRrJbrebhgWj4svMzFR4eLhxvk2bNhUiBKvuPDw8KtxcnxwVKDfDOjbSM2siTG1fhRNMAgAAAAAKZrPZWPymksk7dNvT05PHEPlijkmUm46NaqlNPfOw7V8PxSkuNd2iigAAAAAAAGAVgkmUG5vNphs6mRfBycq267s9JyyqCAAAAAAAAFYhmES5GtYpn9W5w49bUAkAAAAAAACsRDCJctWjRV018Pcxta3Ze0ppGVkWVQQAAAAAAAArEEyiXHl62DS4Y7CpLTUjS2sjT1lUEQAAAAAAAKxAMIlyN6xjPsO5dzHPJAAAAAAAQHVCMIly1y+0gfy8PU1t3+w6rqxsu0UVAQAAAAAAoLwRTKLc+Xp7akC7Bqa2Uynp+iMqzqKKAAAAAAAAUN4IJmGJofkM5/6S1bkBAAAAAACqDYJJWOL69sHy9LCZ2r4KPy67neHcAAAAAAAA1QHBJCxRz99HV7Wqa2o7cCZVu44nWVQRAAAAAAAAyhPBJCxzQ6f8VudmODcAAAAAAEB1QDAJy9yQzzyTXzHPJAAAAAAAQLVAMAnLtKjrp4ub1Da1/R2ToOj4NIsqAgAAAAAAQHkhmISl8hvO/TXDuQEAAAAAAKo8gklYalg+weTKHccsqAQAAAAAAADliWASlurcuLZa1vE1ta0/eEYnks5bVBEAAAAAAADKA8EkLGWz2TTqoiamtmy7tHInvSYBAAAAAACqMoJJWO6mPMGkJK3YftSCSgAAAAAAAFBeCCZhuS5NA9W6np+pbf3BMzqeeM6iigAAAAAAAFDWCCZhOZvNphvz9Jq026XPWAQHAAAAAACgyiKYRIXAcG4AAAAAAIDqhWASFcLFTWrrgvr+prYNh+MUm5BmUUUAAAAAAAAoSwSTqBByhnM3NrXZ7dLnDOcGAAAAAACokggmUWHcfFGIUxvDuQEAAAAAAKomgklUGBc2rqWwBubh3BsPn1V0PMO5AQAAAAAAqhqCSVQY+a3OLUmf7aDXJAAAAAAAQFVDMIkKJf/VuZlnEgAAAAAAoKohmESF0qlxbXUIDjC1/Rl1VlFxqRZVBAAAAAAAgLJAMIkKJ//h3PSaBAAAAAAAqEoIJlHh3NjZOZhczurcAAAAAAAAVQrBJCqcDo1qqVOjWqa2v6LjdegMw7kBAAAAAACqCoJJVEj5DedewercAAAAAAAAVQbBJCqk/FfnJpgEAAAAAACoKggmUSGFNQzQRU1qm9q2xCRo/+kUiyoCAAAAAACAOxFMosLKdzg3vSYBAAAAAACqBIJJVFgM5wYAAAAAAKi6CCZRYV1Q31+XhgSa2rYdTdTek0kWVQQAAAAAAAB3IZhEhZbfcO6Pt8RaUAkAAAAAAADciWASFdqtlzgHk5/8E6PsbLsF1QAAAAAAAMBdCCZRoTWv46fereuZ2g6fTdPGw3EWVQQAAAAAAAB3IJhEhTe6S1Onto//ibGgEgAAAAAAALgLwSQqvJGdG6uGl/lQXbH9mM5lZFlUEQAAAAAAAEqLYBIVXpCvt4Z2CDa1xadl6Ls9JyyqCAAAAAAAAKVFMIlK4fZ8hnMv+YfVuQEAAAAAACorgklUCgPCGqqen7ep7bs9J3QmJd2iigAAAAAAAFAaBJOoFHy8PHTzxSGmtowsu1ZsP2pRRQAAAAAAACgNL6sLAFw1uktTvfP7YVPb7HUxqhHRUsnJUkCA1KiR1Lu35OdnTY0AAAAAAABwDcEkKo3uzYN0QX1/7T+dYrTtSTirO95IkRL8jbagIGncOGnCBCk01IJCAQAAAAAAUCSGcqPSSEy0yWtfiPMF7c2L4MTHSzNnSmFh0siRUkJC+dQHAAAAAAAA1xFMolKIjZV69ZL2fO68Orc6xEiy53u9lStzrhfLAt4AAAAAAAAVCsEkKrz4eOm666TwcEkJ/rIfrWO63FYnRWoUX+D1w8OlAQPoOQkAAAAAAFCREEyiwrvzTmnXLoeG3QX1mixYeLh0xx3urQsAAAAAAAAlRzCJCi0yMmc4tklEE9mzbOa2drGSR3ah+1q5Utq3z731AQAAAAAAoGQIJlGhzZ2bT+M5H+lQQ1OTzTdDanmyZPsDAAAAAABAuSOYRIWVmiotXFjAhfkO5y56hZuFC3P2CwAAAAAAAGsRTKLCWr8+Z+GbfB0Mlv2cl7mtzXHJJ6PQfZ49m7NfAAAAAAAAWItgEhXW8eOFXJjlKUU2MTXZvLKl0GNF7vfEiVIWBgAAAAAAgFIjmESFlZxcxAb5DefudKTI/SYllaweAAAAAAAAuA/BJCqsgIAiNoitK3u8n6nJFnJWqlt48lirVikLAwAAAAAAQKkRTKLCatSoqC1s0q5mzs2dogu9VnBwiUsCAAAAAACAmxBMosLq3VsKCipio13NZLfnaesQLXlk57t5nTo5+wUAAAAAAIC1CCZRYfn5SePGFbFRkq90uIGpyeafLrXOf4WbceNy9gsAAAAAAABrEUyiQpswwYWNdjZ3bitgERyX9gcAAAAAAIAyRzCJCi00VBoxooiNDjSSPdXH3NbqpBSQZmoaMUJq29a99QEAAAAAAKBkCCZR4S1YIHXqVMgG2R7S7qamJpuHpA4xxvlOnXL2AwAAAAAAgIqBYBIVXmCgtGZNEeFkeEHDue268MKc6wcGllWFAAAAAAAAKC6CSVQKISHShg2FDOs+U0v2o0GmJludVF152xn99lvO9QEAAAAAAFBxEEyi0ggMlD7/XIqIkCZPloKC8myQT6/JltcfoackAAAAAABABUQwiUonNFR6800pNlZatUpauFCaNUt658EmquHhadr2sx3HFJ+WYVGlAAAAAAAAKIiX1QUAJeXnJw0c6Njirb+WNdGHf0cbLecys7V0a6zuvaJleZcHAAAAAACAQtBjElXKHd2bObUt2HzEgkoAAAAAAABQGIJJVCk9W9ZVWAN/U9uWmARtP5pgUUUAAAAAAADID8EkqhSbzaZx3ZwXwZm/OTqfrQEAAAAAAGAVgklUOf/q0lSeHjZT25ItMTqXkWVRRQAAAAAAAMiLYBJVTqPaNTW4fUNT29m0DH0ZftyiigAAAAAAAJAXwSSqpDvyGc7NIjgAAAAAAAAVB8EkqqSB7Rqqce0apra1+05r/+kUiyoCAAAAAACAI4JJVElenh76d9dmTu3z/oiyoBoAAAAAAADkRTCJKuvu7i1kM6+Bo4V/HVEai+AAAAAAAABYjmASVVaren4aGGZeBCcuNUMrth+1qCIAAAAAAADkIphElTbhipZObXMZzg0AAAAAAGA5gklUaQPbNVSLOr6mtj+jzmprbIJFFQEAAAAAAEAimEQV5+lh0/jLWzi1v/v74fIvBgAAAAAAAAaCSVR5d3ZrLm9P8yo4n/wTq4S0DIsqAgAAAAAAAMEkqryGtWpoVOcmprbUjCx9tCXGoooAAAAAAABAMIlqYUIP5+Hcc38/LLvdbkE1AAAAAAAAIJhEtdCrVV11alTL1LbnZLJ+PXjGoooAAAAAAACqN4JJVAs2m00TerR0an/396jyLwYAAAAAAAAEk6g+RncJkb+Pp6lt5c5jOp54zqKKAAAAAAAAqi+CSVQbtWt6a3SXpqa2zGy75m8+YlFFAAAAAAAA1RfBJKqVe/MZzv3en1HKymYRHAAAAAAAgPJEMIlqpXOT2rqiZR1TW3T8OX2354RFFQEAAAAAAFRPBJOodu69oqVT27u/Hy73OgAAAAAAAKozgklUO6M6N1Z9fx9T2/cRp3TgdIpFFQEAAAAAAFQ/BJOodmp4eeqObs2d2t+m1yQAAAAAAEC5IZhEtXTP5S1ks5nb5m86osRzGdYUBAAAAAAAUM0QTKJaalXPT0M7BJvaks5n6sO/oi2qCAAAAAAAoHohmES19cCVrZ3aZm84pOxsuwXVAAAAAAAAVC8Ek6i2rm5TT50b1za1HTiTqu/2nLCoIgAAAAAAgOqDYBLVls1m04NXtnJqf+u3QxZUAwAAAAAAUL0QTKJau/WSEDXw9zG1/bT/tHYcTbSoIgAAAAAAgOqBYBLVWk1vT024oqVT+6wN9JoEAAAAAAAoSwSTqPbu7dFC3p42U9uSf2J0Kvm8RRUBAAAAAABUfQSTqPYa1a6pWy4OMbWdz8zWvD+jLKoIAAAAAACg6iOYBCQ9kM8iOO9sPKz0zGwLqgEAAAAAAKj6CCYBSV2aBunKVnVNbceTzmvFjqMWVQQAAAAAAFC1EUwC//PgVa2d2t769aDsdrsF1QAAAAAAAFRtBJPA/9zQsZFa1vE1tf0dk6DfD5+1qCIAAAAAAICqi2AS+B9PD5sm9XKea/Kt3w5aUA0AAAAAAEDVRjAJOLijW3P5+3ia2lbuPKaouFSLKgIAAAAAAKiaCCYBB0G+3hp7WTNTW7ZdmrPxsDUFAQAAAAAAVFEEk0AeD+QznPv9TVFKPJdhQTUAAAAAAABVE8EkkEfbBgEa3D7Y1JZ4LlPv/XnEoooAAAAAAACqHoJJIB+PXN3aqe2/vx7U+cwsC6oBAAAAAACoeggmgXxc1bqeujULMrUdTTynT/6JtaYgAAAAAACAKoZgEsiHzWbTlL4XOLXP+OWAsrPtFlQEAAAAAABQtRBMAgW4oWMjta3vb2rbczJZ3+05YVFFAAAAAAAAVQfBJFAATw+bHrm6jVP7678csKAaAAAAAACAqoVgEijEv7o0VcMAH1PbhkNx+v1wnEUVAQAAAAAAVA0Ek0Ahanp76oErnVfonkGvSQAAAAAAgFIhmASKcG+PFvL38TS1fbXruPaeTLKoIgAAAAAAgMqPYBIoQh0/H919eQtTm90uzfjloEUVAQAAAAAAVH4Ek4ALJl/VWl4eNlPbx1tidDThnEUVAQAAAAAAVG4Ek4ALmgX56rZLQkxt6VnZmrXhkEUVAQAAAAAAVG4Ek4CLHrm6jVPb3D8OK/FchgXVAAAAAAAAVG4Ek4CLLmxcW4PaNTS1JZ7L1Ht/HrGoIgAAAAAAgMqLYBIohsf6OPea/O+vB3U+M8uCagAAAAAAACovgkmgGK5qXU/dmgWZ2o4mntNHf8dYUxAAAAAAAEAlRTAJFIPNZtOUvhc4tb/6035lZmVbUBEAAAAAAEDlRDAJFNMNHRupXcMAU9uhuFR9sjXWoooAAAAAAAAqH4JJoJg8PWx64pq2Tu2vrNunrGy7BRUBAAAAAABUPgSTQAnccnETtannZ2qLOJWiz3YctagiAAAAAACAysXL6gKAysjL00OP922ru1dsN7W/8MM+BRxtopMnbEpOlgICpEaNpN69JT+/AnYGAAAAAABQDRFMAiU0pktTvfBjpI7Epxltu08mafCDx6X9jU3bBgVJ48ZJEyZIoaHlXCgAAAAAAEAFxFBuoIR8vDx0fw/nFbp1+T5J5rkm4+OlmTOlsDBp5EgpIaFcSgQAAAAAAKiwCCaBEoqNlRY83Ez25BqmdltwgtTyZIHXW7lS6tUr5/oAAAAAAADVFcEkUALx8dJ110m7d3hKf7Vx3qCHc69JR+Hh0oAB9JwEAAAAAADVF8EkUAJ33int2vW/MztayJ7qY7rc1uSs1OxMofsID5fuuKOMCgQAAAAAAKjgCCaBYoqMzBmObcj0kra0dt7w8sgi97VypbRvn/tqAwAAAAAAqCwIJoFimjs3n8atrWRP8zY12ZqfkUIK7zVZ4P4AAAAAAACqOIJJoBhSU6WFC/O5IMNL+iefXpPdi+4OuXBhzn4BAAAAAACqE4JJoBjWr89Z+CZfW1vKft7L1GRrdUoKLugKOc6ezdkvAAAAAABAdUIwCRTD8eOFXHjeR9ra0rm9R0SR+z1xosQlAQAAAAAAVEoEk0AxJCcXscE/rWXP8DQ12dqclBqfLfRqSUmlLAwAAAAAAKCSIZgEiiEgoIgN0mpI21o6t1+xt9Cr1apV4pIAAAAAAAAqJYJJoBgaNXJho7/ayJ6ep9dky9OFrtAdHFzKwgAAAAAAACoZgkmgGHr3loKCitgorYb0Tyvn9ivyn2uyTp2c/QIAAAAAAFQnBJNAMfj5SePGubDhljbOK3Q3PyM1O+206bhxOfsFAAAAAACoTggmgWKaMMGFjc75SFtaO7f33CvJXvz9AQAAAAAAVDEEk0AxhYZKI0a4sOGW1rKneZuabCFnpZanjPMjRkht27q5QAAAAAAAgEqAYBIogQULpE6ditgo3Vv6u41z+/96TXbqlLMfAAAAAACA6ohgEiiBwEBpzRoXwsmtrWRP9TE12RolqEXfE1qzJmc/AAAAAAAA1RHBJFBCISHShg1FDOvO8JI2X+DUXHtAhBo3tudzBQAAAAAAgOqBYBIohcBA6fPPpYgIafJkKSgon422t5AttYapKfxEolbuPFYuNQIAAAAAAFREXlYXAFQFoaHSm29KL74orV8vnTghJSVJtWpJwcFe2l2jrR5bFW66zrM/RGj4hY3l6WGzqGoAAAAAAADrEEwCbuTnJw0c6NzeJ6O53tq4XzEJ54y23SeS9em2WN12adNyrBAAAAAAAKBiYCg3UA5qenvqiWvaOrU/90OkMrOyLagIAAAAAADAWgSTQDm5o1tztazja2rbdzpFC/6KtqgiAAAAAAAA6xBMAuXEx8tDT/UPdWp/7ocIpaZnWlARAAAAAACAdQgmgXL0ry5N1a5hgKntWOJ5zdpwyKKKAAAAAAAArEEwCZQjL08PvTSwnVP7az/tV1xqugUVAQAAAAAAWINgEihnwzo10uUt6pjaEs5l6pV1+y2qCAAAAAAAoPwRTALlzGaz6ZVBzr0m52w8pOj4NAsqAgAAAAAAKH8Ek4AFerepr0HtGprazmdma/r3ERZVBAAAAAAAUL4IJgGLvDyovWw2c9tHf0dr9/EkawoCAAAAAAAoRwSTgEU6N6mt0Zc2NbVl26UnV++xqCIAAAAAAIDyQzAJWOi568Lk42l+Gn6164Q2HoqzqCIAAAAAAIDyQTAJWKhlXT/de0ULp/Zpq/bIbrdbUBEAAAAAAED5IJgELPZkv7aqVcPL1LbhUJy+23PSoooAAAAAAADKHsEkYLH6/jX06NVtnNqnfbdHWdn0mgQAAAAAAFUTwSRQAUy+qrWCa9Uwte06kaTFW2IsqggAAAAAAKBsEUwCFUBADS893S/Uqf2p1XuVcj7TgooAAAAAAADKFsEkUEHcfXlzXVDf39R2NPGcZqw/YFFFAAAAAAAAZYdgEqggvD099Or17Z3aX//5gI4mnLOgIgAAAAAAgLJDMAlUIMM7NdKVreqa2lIzsvTUmr0WVQQAAAAAAFA2CCaBCsRms+mNoR2d2hf9Ha1tsQkWVAQAAAAAAFA2CCaBCqZrsyCNvjTE1Ga3S49+s1t2u92iqgAAAAAAANyLYBKogF4a1F41vcxPz5/2n9a3u09YVBEAAAAAAIB7EUwCFVCzIF89cnUbp/bHvt2tjKxsCyoCAAAAAABwL4JJoIKa2ucCNapVw9QWeSpF8/6IsqgiAAAAAAAA9yGYBCqogBpeen5AmFP7cz9E6GxqugUVAQAAAAAAuA/BJFCBjbusuS5sXMvUdiY1Qy+t22dRRQAAAAAAAO5BMAlUYJ4eNr0xpKNT+5wNh3XgdIoFFQEAAAAAALgHwSRQwfULbaDr2zc0taVnZevx7/ZYVBEAAAAAAEDpEUwClcB/BneQp4fN1Pb5zmP6ef9piyoCAAAAAAAoHYJJoBJoH1xL4y9v4dT+4JfhyszKtqAiAAAAAACA0iGYBCqJ564LVZCvt6kt/HiS3v0jyqKKAAAAAAAASo5gEqgk6vvX0PPXhTm1T/8+QqeSz1tQEQAAAAAAQMkRTAKVyIQeLdSpUS1TW3xahp5as9eiigAAAAAAAEqGYBKoRLw8PfTWsE5O7R9sOqJ/YuLLvyAAAAAAAIASIpgEKpk+F9TXjZ0bm9rsdumBL8Nlt9stqgoAAAAAAKB4CCaBSuj1IR3k621++v5++KyW/BNrUUUAAAAAAADFQzAJVELN6/jp8b5tndqnfrdbSecyLagIAAAAAACgeAgmgUrq0avbqGUdX1PbscTzemndPosqAgAAAAAAcB3BJFBJ+Xp76o2hHZ3aZ/56QPtOJVtQEQAAAAAAgOsIJoFKbFinRurXtr6pLSPLroe/3mVRRQAAAAAAAK4hmAQqMZvNpv/e0EmeHjZT+3d7TuqbXcctqgoAAAAAAKBoBJNAJdehUS1N6tnSqf3BL8OVms5COAAAAAAAoGIimASqgOnXhqmBv4+p7fDZNBbCAQAAAAAAFZaX1QUAKL0gX2+9PqSDxi7bZmqf8csBjb60qVrUqqX166Xjx6XkZCkgQGrUSOrdW/Lzs6ZmAAAAAABQvRFMAlXEmC5NtWDzEf16MM5oy8iy67r/7FTigh5KiLc5XScoSBo3TpowQQoNLcdiAQAAAABAtcdQbqCKsNlsentEZ3nlWQgnxnZGCY1i871OfLw0c6YUFiaNHCklJJRDoQAAAAAAACKYBKqUjo1qafylbZwvuHq3VCOj0OuuXCn16iXF5p9hAgAAAAAAuBXBJFCFxMdLP73SVvZEX1O7zf+81HNvkdcPD5cGDKDnJAAAAAAAKHsEk0AVcued0p4dXtJPnZwvvPiwFBxf5D7Cw6U77nB7aQAAAAAAACYEk0AVERmZMxxbknQgWPYDwabLbTZJ/XZINnuR+1q5Utq3z/01AgAAAAAA5CKYBKqIuXMdz9mknzrJnmF+itsaJUido0qwPwAAAAAAAPcimASqgNRUaeHCPI2JftKfoc4b99oj+Z0vcp8LF+bsFwAAAAAAoCwQTAJVwPr1OQvfOPm7jexnAkxNtpqZUu9dRe7z7Nmc/QIAAAAAAJQFgkmgCjh+vIALsj2kdRc6Nds6xEotTha53xMnSlkYAAAAAABAAQgmgSogObmQC6Pry747xLm9/w7JK7PQ/SYlla4uAAAAAACAghBMAlVAQEARG6zvKHuat6nJFpgm9Ywo9Gq1apWyMAAAAAAAgAIQTAJVQKNGRWyQWkNa38G5/dKDUsP4Aq8WHFyqsgAAAAAAAApEMAlUAb17S0FBRWy0q5nsUfVNTTYPSddul2zZTpvXqZOzXwAAAAAAgLJAMAlUAX5+0rhxRW1lk9Z2lj3D/LS3BSdKXQ46bT1uXM5+AQAAAAAAygLBJFBFTJjgwkbx/tKfoc7tV0RIgSnF3x8AAAAAAEAJEUwCVURoqDRihAsb/t1G9pO1TU0272yp3w5Jdkk5+2nb1v01AgAAAAAA5CKYBKqQBQukTp2K2CjbQ/rhItnt5mZby9NS+xh16pSzHwAAAAAAgLJEMAlUIYGB0po1LoSTJ4Kkf1o5NXv126UlK88rMLBMygMAAAAAADAQTAJVTEiItGGDC8O6N7aTPdHX1JTlk6EZf+0qu+IAAAAAAAD+h2ASqIICA6XPP5ciIqTJk6WgoHw2yvBSwJ8XOjV//E+sVu85UeY1AgAAAACA6o1gEqjCQkOlN9+UYmOlVaukhQulWbNy/l+1SjrxZ7BuubiJ0/XGf7ZDCWkZFlQMAAAAAACqCy+rCwBQ9vz8pIED87/svzd00g+RpxSX+v9BZGzCOT367W69f+NF5VQhAAAAAACobugxCVRzDWvV0FvDnFfLmb/piH6IOGlBRQAAAAAAoDogmASg2y4J0ZAOwU7t41fsUNK5TAsqAgAAAAAAVR3BJADZbDa9O7Kzgny9Te1H4tM05bvdFlUFAAAAAACqMoJJAJKkJoE1NXNoR6f2eX9E6ad9py2oCAAAAAAAVGUEkwAM/+raVAPbNXRqv2v5NiWfZ0g3AAAAAABwH4JJAAabzaZ5ozqrdk0vU/vhs2matmqPRVUBAAAAAICqiGASgEnTIF+9McR5SPfbGw9r/QGGdAMAAAAAAPcgmATg5I5uzXRtaAOn9ruWb1dqOkO6AQAAAABA6RFMAnBis9n03o2dFVDD09R+4Eyqpq3aa1FVAAAAAACgKiGYBJCv5nX89PrgDk7tszccYpVuAAAAAABQagSTAAo0/vIW6ntBfaf2cZ9uVUJahgUVAQAAAACAqoJgEkCBbDab5t90kWrVMK/SHR1/Tg99FW5RVQAAAAAAoCogmARQqBZ1/fTfG5xX6V70d4y+DD9mQUUAAAAAAKAqIJgEUKSxlzXT0I7BTu33rNihk0nnLagIAAAAAABUdgSTAIpks9k0b9RFqu/vY2o/lZKuCZ/vkN1ut6gyAAAAAABQWRFMAnBJcK0aenfkhU7tX4Yf1+ItMRZUBAAAAAAAKjOCSQAuG9m5icZ0aerU/sCX4TpyNtWCigAAAAAAQGVFMAmgWN4a1klNA2ua2hLPZeqOT7crO5sh3QAAAAAAwDUEkwCKJcjXW/Nvvtip/af9p/X274fLvR4AAAAAAFA5EUwCKLb+oQ10X8+WTu1Tv92t3ceTyr8gAAAAAABQ6RBMAiiR165vr7b1/U1t5zKzdfsn/+h8ZpZFVQEAAAAAgMqCYBJAifj5eGnRrZfI08Nmat9+NFFPrt5rUVUAAAAAAKCyIJgEUGKXt6ijp/q1dWp/c/1BrY08ZUFFAAAAAACgsiCYBFAqT17TVj1a1HFq//eyrTqTkm5BRQAAAAAAoDIgmARQKl6eHlp82yWqVcPL1H4s8bzGr9guu91uUWUAAAAAAKAiI5gEUGqt6/lrzohOTu1fhB/X/M1HLKgIAAAAAABUdASTANxi9KVNdcvFTZzaH/pylyJPJVtQEQAAAAAAqMgIJgG4hc1m0zsjO6t5kK+pPTUjS7cv+UfpmdkWVQYAAAAAACoigkkAbhPk663Ft10iD5u5fUtMgp79IcKaogAAAAAAQIVEMAnAra5sXU+P923r1P7az/v1y/7TFlQEAAAAAAAqIoJJAG43/dpQXdYsyNRmt0ujP9mqU8nnJUmpqdKaNTZ9/XU9LVvWQF9/XU9r1tiUmmpBwQAAAAAAoNx5WV0AgKrH29NDH992iS6d+atS0rOM9qOJ53TT/G266HA3LfrQpvh4T0ktTdcNCpLGjZMmTJBCQ8u1bAAAAAAAUI7oMQmgTLRtEKDZwy90al8ffVJv/XZQ8fH5Xy8+Xpo5UwoLk0aOlBISyrRMAAAAAABgEYJJAGXm312b6vZLQ5wvuHKPFBxf5PVXrpR69ZJiY91fGwAAAAAAsBbBJIAyY7PZ9PI1neWT4m9u97RLg7dIPhlF7iM8XBowgJ6TAAAAAABUNeU2x2R6erq2bdumf/75RydOnFBCQoIuuOACTZw4UZJ04MABHTx4UFdffbW8vb3LqywAZeyhiV46v+FS6daNsnllG+22oFTZ+++QvrtUkq3QfYSHS3fcIX3+eRkXCwAAAAAAyk2ZB5NpaWl6//339cknnyghT5enXr16Gae3bNmi6dOnq3HjxpoyZYoGDBhQ1qUBKGORkTnDsaUg6df2Ut9dpstt7Y7KfqS+tLNFkftauVLat09q27ZMSgUAAAAAAOWsTIdyHzx4UKNGjdK7776r+Ph42e12419esbGxstvtOnr0qCZPnqyZM2eWZWkAysHcuQ5ntraSfX+w80Z9wqV6ScXfHwAAAAAAqNTKLJg8ceKExo4dq4MHDxptnp6eatWqVb7bnz59WlLOnHR2u13vvfeeVqxYUVblAShjqanSwoWOLTbp+4tlT6pp2s7mnZ0z36RXZpH7XLgwZ78AAAAAAKDyK7NgcurUqTp58qQkqXbt2nrmmWf0559/avXq1flu/9xzz+nFF19UUFCQEU7+5z//cRr+DaByWL9eio/P03jOR/ruUtmzzc22+klSn10qytmzOfsFAAAAAACVX5kEk3/88Yf+/PNP2Ww2BQYG6pNPPtFtt92mWrVqFXgdLy8vjRo1SitWrFDDhg0lScnJyfryyy/LokQAZez48QIuiK0n/RHm1GzrfERqH13kfk+cKGVhAAAAAACgQiiTYNKxV+Tjjz+uNm3auHzdpk2b6pFHHjHO//bbb26tDUD5SE4u5MJNbWU/Us+5vf/OIuebTHJtOkoAAAAAAFDBlUkw+ffff0uSAgICNHjw4GJff/DgwQoMDJTdbldkZKS7ywNQDgICCrnQbpNWXSp7io+p2eadJQ35W/IueL7JQjpeAwAAAACASqRMgslTp07JZrOpTZs28vLyKvb1PTw81KJFC0lijkmgkmrUqIgNUmrmhJN2c7OtXrLUf4cke75XC85nYW8AAAAAAFD5lEkwmZ6eLkny8fEpYsuC5V7Xw6PM1ucBUIZ695aCgorY6EgD6fd85ptsHyt1jnJqr1MnZ78AAAAAAKDyK5PUr169erLb7YqJiSnxPg4dOiRJqlOnjrvKAlCO/PykceNc2PDPtrIfauDc3meX1DDe1DRuXM5+AQAAAABA5VcmwWTbtm0lSceOHdPu3buLff2NGzfqzJkzstlsCg0NdXd5AMrJhAmubGWTVl8ie1JNc6tXtjRki1Qjo5j7AwAAAAAAlUGZBJO9HcZavvLKK8rOznb5usnJyXr55ZeN87169XJrbQDKT2ioNGKECxum1ZC+7SJ7ls3UbAtKla7bJsmuESOk//3mAQAAAAAAqoAyCSaHDRumevXqScpZofvBBx9UYmJikdeLiYnRuHHjdODAAUlS7dq1NWzYsLIoEUA5WbBA6tTJhQ2P1pV+a+/UbGt7XI2uP6gFC9xfGwAAAAAAsE7xl8x2gZ+fn6ZOnaopU6bIZrNp7dq12rRpk/r06aM2bdoY2yUkJOiXX37R0aNH9eeff+qnn35SVlaWJMlms+n+++9XQEBAWZQIoJwEBkpr1kgDBkjh4UVsvKW17CFxsrU9bmo+3X6PdpwJ0pWB9cquUAAAAAAAUK7KJJiUpKFDh+rIkSOaM2eObDabEhMT9fXXXxuX2+127dy5U/fee6+pzWbLGco5atQojR49uqzKA1COQkKkDRukO+6QVq4sbEub9P3Fsjf4NWcY9/9k2e26afEWbXnoKjUJrFnI9QEAAAAAQGVRJkO5c02aNElvvPGGatWqJSkneJRyekPmBpC5bbn/e3l56bHHHtMLL7xQlqUBKGeBgdLnn0sREdLkyVJQUP7b1fHz1ujArvLxNL88nUg6r5sW/630TNfnrAUAAAAAABVXmfWYzHX99dfr6quv1ooVK/TDDz8oPDxc6enpTtu1bdtWffr00ejRo9WwYcOyLguARUJDpTfflF58Ufrppyz9/Xe0UlI85O+fra5dm6lvX0/5+QXq6k0X6u4V203X/f3wWT3yzS7NHn6hRdUDAAAAAAB3KfNgUpL8/f01duxYjR07Vunp6Tpx4oQSEhKUmZmp2rVrq2HDhswlCVQzfn7SgAF2NW58xmi76KKm8vrfq9Kd3Ztr05Gz+mDTEdP13t54WN2aB2lMl2blWS4AAAAAAHCzcgkmHfn4+KhZs2Zq1sy1UCE9PV0+Pj5lXBWAimj28E7afjRRf0XHm9rvWbFDFzaqrYtDAq0pDAAAAAAAlFqZzDE5bdo0TZs2TR9++GGJ9/HCCy/ommuu0Y033ui+wgBUKjW8PPXZv7uqvr/5x4lzmdkauehvxaU6TwsBAAAAAAAqhzIJJr/44gt9+eWX2rhxY4n3ceDAAcXGxio2NtaNlQGobJoF+WrZ6C7ysJnbD8WlavSSf5SVbbemMAAAAAAAUCpluip3acTHx0uSzp07Z20hACzXt219vTKovVP7mohTeu6HCAsqAgAAAAAApVXiOSb37t2rpKSkQrdJSEjQX3/9Vaz9nj9/XuvXr9fevXslSUFBQSUtEUAV8ujVbfRXdLw+23HM1P7i2n3q2ixIQzs2sqgyAAAAAABQEiUOJnfv3q0nn3yywMvtdrt27typf/3rXyW9CdlsNl1yySUlvj6AqsNms2n+TRdr1/Ek7TmZbLpszCdb9ecDvdQ+uJZF1QEAAAAAgOIq8VDuESNG6NJLL5Xd7t753Rz35+3trbvvvtut+wdQedWq6aXPx3ZVrRrm31SSzmdq2MK/FJ+WYVFlAAAAAACguEo1x+Szzz4rLy8v2e12079ceduL+idJNWvWVHBwsK666iotWrRInTt3Lt09BFCltGtYSx/ecrFT+77TKbrt4y0shgMAAAAAQCVR4qHcktS2bVuFh4c7tbdr1042m029evXS+++/X5qbAAAnwy9srKf7h+qFHyNN7WsiTunJ1Xv16vXOC+UAAAAAAICKpcxW5Xb3EG8AcDS9f6hu6Bjs1P6fn/dr6dZYCyoCAAAAAADFUaoekwV55ZVXJEnBwc6hAQC4g4eHTYtuvURXzN6g3SfMi+HctXybwhr469KmQdYUBwAAAAAAilQmPSaHDx+u4cOH64orriiL3QOAJKl2TW99Oa6bgny9Te1pGdka/uFfOpl03qLKAAAAAABAUcpsKLe75DeHJQDkuqC+v5aNvlQeNnN7dPw53fjR30rPzLamMAAAAAAAUKgyGcrtKCsrSzt27NDx48d1/vx5ZWVl5Tv/pN1uV2ZmpjIyMpSamqpTp07p77//1r59+7R79+6yLhNAJXZtWEO9dn0HPfat+bXit0NxevCrcL07srNFlQEAAAAAgIKUaTC5YMECzZs3T4mJiSW6vt1ul81mK3pDANXew71ba/vRBH38j3nhm3l/RKlTo1q6r2criyoDAAAAAAD5KbOh3P/973/1+uuvKyEhwdRD0m63G//ycryMVb0BFIfNZtO8Gy9Sl6aBTpc99NUu/Rh5yoKqAAAAAABAQcokmIyJidEHH3wgSUaPR8ew0WazyWaz5RtE5l7WsGFD3XXXXfr444/LokQAVZCvt6e+GHuZgmvVMLVnZdt100d/a+/JJIsqAwAAAAAAeZVJMPnFF18oMzNTklSjRg099dRT+vXXX7Vnzx498sgjstvt8vT01KZNm7Rr1y79/vvvmj9/vnr37m2ElHFxcerXr5+6dOlSFiUCqKL+j737Ds+6vvc//vxmMEJCEkAChD0CKEMUBwjGLVhn0Gpt1UK10lbbQn+tbU/PaU/ltHaB2laorYC21lol1dYqdaARHAxFJSCEPQKElUAgjJB8f3/clYIZJCE3CfB8XFeu3vl+xv2+z8kl4cVndExpTvYdg2kad+R/3nbuO8i1U+ezo+RAA1UmSZIkSZIOF5Vgct68eYdef+tb3+ILX/gCbdu2JQgChgwZAkQuxZkzZw6xsbG0atWKCy64gN/97neMGzfuUPt///d/u6VbUq0N6dqKP3x2YIXnK7bt4abHF1Ba5k3dkiRJkiQ1tKgEk+vXrwegSZMmfPaznz2irU+fPsTHxwOwYMGCCmPvvvtuLrvsMsIwZMWKFbz66qvRKFHSSe7zZ3Xk+5f2qvD89ZXbuedvi/xHD0mSJEmSGlhUgsmdO3cSBAE9evSgadMjz3qLi4uje/fuhGHI4sWLKx3/5S9/+dDr119/PRolSjoF/PjK3mT1b1fh+e/fXcfDc1Y3QEWSJEmSJOkTUQkmPzlfMiUlpdL2bt26AbBy5cpK2wcMGECbNm0AWLp0af0XKOmUEBMT8PgtgxiU3rJC27f+vpiXPi5ogKokSZIkSRJEKZj8JJAsLS2ttL1Tp04AlJSUUFBQeTCQnp5OGIZs3LgxGiVKOkW0aBrH86PPpd2nbuouD+GWP73P4s3/uam7pAReegmmTYNf/zryvy+9FHkuSZIkSZLqV1w0Jj3ttNPYunUr69atq7S9c+fOh17n5eWRlpZWoU9MTCQz3bNnTzRKlHQK6ZjSnOdGn8NFj7zNvoP/ufimeP9Brn5sLk9+ZjjPPN6U6dOhqKji+JQUGD0axo6FjIzjVbUkSZIkSSe3qKyYHDRoEABbtmwhNze3QvvhweQHH3xQ6RyfXKATFxeV7FTSKebczqlMu+XMCs/XFu7lgl/M48HfHKw0lIRIWDlpEvTuDaNGwc6d0axUkiRJkqRTQ1SCyQsuuODQ6x/84Ads3779iPbTTz/90IrI559/vsKW79dff51t27YRBMGhsyYl6VjdfGY6/3N5xSWPQfsiuGohcPSburOzYdgwyM+v//okSZIkSTqVRCWYvPjii+natSsAy5YtY+TIkfziF79g27ZtACQlJXHOOecQhiH5+fnce++9rF27lj179vCvf/2L73//+4fmGjhwYDRKlHSK+uEVGdzUL73C86DXZrjw4xrNkZsLI0a4clKSJEmSpGMRlWAyCAJ+8IMfEBsbC8CuXbuYOnUqmzdvPtTni1/84qHXOTk5jBgxgsGDB/PNb36TwsLCQ21ZWVnRKFHSKSoIAvb/YyDhhlYV285ZCQPW1Gie3FwYM6aei5MkSZIk6RQSlWASYNiwYfz85z8nKSnp0LPDz5a8+OKLufbaawnDyNbJMAwPfQVBAMBVV13F0KFDo1WipFNQXh48nx0Lz59DuKNFxQ6XLoKuBTWaKzsbli+v5wIlSZIkSTpFRC2YhEiw+NJLL/G1r32Ns88+m5YtWx7R/pOf/ITRo0cfWll5uJtvvpkHHnggmuVJOgVNmfLvF/uawN/OI9wbf0R7EANc8x6cVrN92ofmkyRJkiRJtRL1K69bt27Nvffey7333lvxzePiuO+++xgzZgxz5sxh69atpKSkMGTIEDp16hTt0iSdYkpKYNq0wx4UtYDnziW86R2CuPJDj4MmZYQ3zIMnh8OeZtXOOW0a3H8/JCREqWhJkiRJkk5SUQkm33nnHfbs2UNmZibx8fFH7X/aaadxww03RKMUSTokJweKij71cGMrmHkmXP3+EY+DpH2EWXPhLxdAadX/qSwsjMw7cmS9lytJkiRJ0kktKlu5//SnP3HvvfcybNgwnnrqqWi8hSTV2mH3bx1pWTrh7D4VHgdtd8G1CyCmvJJB/1FQsyMpJUmSJEnSYaISTC5ZsoQwDNm1axfp6enReAtJqrXdu6tpnNeTcFHFIySCrlvh8g+BsMqhxcXHXpskSZIkSaeaqAST27dvP/T6rLPOisZbSFKtJSZW1xrAqwMI17ap2NJvAwxdVuXIpKRjr02SJEmSpFNNVILJlJSUQ6/37dsXjbeQpFpr1+4oHcpj4O+DCbe0rNAUDFkOA9ZUOiwt7dhrkyRJkiTpVBOVYPKKK6449PrZZ5+NxltIUq1lZsJh/25SuQPxkH0e4a7mFdsuXQTdjzyoMjU1Mq8kSZIkSaqdqAST3/jGN+jduzdhGPKb3/yGxx9/nNLS0mi8lSTVWEICjB5dg457msGM8wj3xR/xOIgBrn4P2hUeejZ6dGReSZIkSZJUO3FRmTQujscee4wf//jHvPzyyzzwwAM88sgjDBo0iD59+tCqVSsSExOJialZLnr99ddHo0xJp6CxY2HSpBp03JEEz51DeOO7BHH/uZU7iC8nvGEePHUBFCUydmz0apUkSZIk6WQWlWDy8AtvgiAgDEN27txJTk4OOTk5tZ7PYFJSfcnIgKwsyM6uQef81vDSIMKr3yMI/vM4SDhAmDWXz+waRq9eTaNWqyRJkiRJJ7OobOUOw/DQF0TCyeDff6s/vK0mX5JU36ZOhX79atg5rwO8cUaFx0FqCfnnzWXXPo+pkCRJkiSpLqKyYrJDhw7RmFaS6kVyMsycCSNGQG5uDQa8350waS/B4FVHPP5w806ypi/gn3eeS9O42OgUK0mSJEnSSSoqweSsWbOiMa0k1Zv0dJgzB8aMqeG27pzTCRP3EfTZeMTjWSu2cfufF/LnL5xNbExQxWBJkiRJkvRpUdnKLUknguRkmDEDli2DceMgJaXyfqmpMH58QO4vz+TSXm0qtD/z0Sa+/lyux09IkiRJklQLUVkxKUknkowMmDgRJkyAnBwoKIDiYkhKgrQ0yMyEhASAWLK7nsPFk9/m/fydR8wx+e01pCU25X+uyGiQzyBJkiRJ0onGYFKS/i0hAUaOrL5PUrM4XrzzPIb99i1WbNtzRNuPXl5G28QmjB3aNXpFSpIkSZJ0knArtyTVUtukpvzrrvNpl9S0QtvX/raIZz/cWMkoSZIkSZJ0OINJSaqDbq0TmHnX+SQ3O3LheRjCF/68kFnLtzVQZZIkSZIknRgMJiWpjgZ0aMnzo8+ladyR/yk9UFbO9dPnMW9dYQNVJkmSJElS42cwKUnH4MIerfnLF84mJjjy+e79ZVz1h7ks3lzcMIVJkiRJktTIGUxK0jG6rl87fnfjwArPd5SUcsWj77Bq+55KRkmSJEmSdGozmJSkevCl8zrzwGf6Vni+add+Lv/du2zcua8BqpIkSZIkqfEymJSkevKdi3vy3Ut6Vni+ekcJVz76Ltv3HGiAqiRJkiRJapwMJiWpHv3fyD6MHdKlwvPFBcVc9Ye5FO872ABVSZIkSZLU+DT6YPLAAVcYSTpxBEHAb27oz62D0iu0zV9fxPXT5rGvtKwBKpMkSZIkqXGJSjD5ve99j+9973tMnz69znPcf//9XHrppdx00031V5gkHQcxMQHTbjmTq/umVWh7feV2bv7je5SWlTdAZZIkSZIkNR5RCSb/9re/8dxzz/HWW2/VeY6VK1eSn59Pfn5+PVYmScdHfGwMT99+Nhf1aF2h7R9LCrj9qYWUlYcNUJkkSZIkSY1Do93KXVRUBMC+fd5kK+nE1Dw+ludHn8vgjskV2p7+YCN3/fVDyg0nJUmSJEmnqLi6Dly6dCnFxcXV9tm5cyfz58+v1bz79+8nJyeHpUuXApCSklLXEiWpwSU1i+PFu87jokfeZknB7iPapi9YT7P4GH6b1Z8gCBqoQkmSJEmSGkadg8klS5bwX//1X1W2h2HIokWLuP322+v6FgRBwKBBg+o8XpIagzYtmvLyl4eQ+chbrNxeckTblHfWktAkll9cfbrhpCRJkiTplFLnrdxZWVmcddZZhGH9bkM8fL74+Hjuuuuuep1fkhpCh+RmvHr3EDqnNK/QNjFnFT96Oa8BqpIkSZIkqeEc0xmTP/rRj4iLiyMMwyO+PvHp50f7AmjWrBlpaWlceOGFPP744wwYMODYPqEkNRJdWiXw6tghtG/ZtELb/a/k8cCs5Q1QlSRJkiRJDaPOW7kBevXqRW5uboXnffr0IQgChg0bxu9///tjeQtJOqn0bNOCV+8ewkWPvM3WPQeOaPv+i0tJiI/l68O7H3pWUgI5ObB5M+zeDYmJ0K4dZGZCQsLxrl6SJEmSpPpzTMFkdep7i7cknSz6piXx8t3nc/HkdyjaW3pE2zefX0yz+FguatWFyZNh+nQoKqo4R0oKjB4NY8dCRsbxqFqSJEmSpPoVlWDypz/9KQBpaWnRmF6STngDOyQz867zuPx371K8/+ARbWOf/YjwXwHkdq5yfFERTJoU+crKgqlTITk5ykVLkiRJklSPohJM3nDDDdGYVpJOKud2TuWFL53LiN+/y97S8iMbr/gQygNY0umo82RnQ14ezJwJ6elRKlaSJEmSpHp2TJffSJKOzfDurXl+9Lk0jT3yP8dBAIz4APpuqNE8ubkwYgTs3Fn/NUqSJEmSFA1RWTE5f/78ep3vnHPOqdf5JKkxuSzjNM7OP4e32swniPvPyskggHDEQggDWHr0pZC5uTBmDMyYEc1qJUmSJEmqH1EJJm+77TaCIKiXuYIgYMmSJfUylyQ1Rnl58NaTbaHbYMLr5hPE/ufysCAGwpHvR7Z153U46lzZ2bB8OfTqFc2KJUmSJEk6do1iK3cYhtV+SdLJbMqUf79YnQb/GExYduQ/7AQxwGfeh14bazefJEmSJEmNWFRWTAJ1DhSDICA2NpZLL72U2NjYeq5KkhqXkhKYNu2wByvbwQtnE1793qdWToaEn3kfXghgRftq55w2De6/HxISolS0JEmSJEn1ICrB5NKlS2vc98CBAxQWFpKXl8cLL7zA3//+d8rKyti3bx8PPfQQzZo1i0aJktQo5ORAUdGnHq5oD/88i/Dq9wliDgsnY0PCq9+DF86uNpwsLIzMO3JkdGqWJEmSJKk+NPhW7iZNmpCWlsbw4cP52c9+xqOPPkpsbCxvvvkm999/f0OXJ0lRtXlzFQ3LO8CLgwjLj3wcxIZw9XtH3dZdUFA/9UmSJEmSFC0NHkx+2vDhw7n33nsJw5Ds7Gzee++9hi5JkqJm9+5qGpelw0tVhZPvQ0bV4WRxcf3UJ0mSJElStDS6YBLg1ltvpWnTpgDMmDGjgauRpOhJTDxKh6UdKw8nY8LIhTi98ysdlpRUP/VJkiRJkhQtjTKYTEpKonv37oRh6IpJSSe1du1q0GlpR3jprMrDyavehz4bKgxJS6uf+iRJkiRJipZGGUwCJPz7OtktW7Y0cCWSFD2ZmZCSUoOOS9PhxbMIy4MjHgcxwMiF0Pc/4WRqamReSZIkSZIas0YZTJaXl7NmzRoA4uPjG7YYSYqihAQYPbqGnZelR27rriqcPH09EJnv3/+2I0mSJElSo9Uog8nnnnuO7du3EwQBHTt2bOhyJCmqxo6tRee8DvDCWYRlnwonA2DEB9BvXe3mkyRJkiSpgTSqYPLAgQP8+c9/5kc/+tGhZ8OHD2+4giTpOMjIgKysWgxY3gFeOLvScDK48kNe3rK6fguUJEmSJCkK4qIx6e23317jvmEYcvDgQXbv3s2GDRvYt28fYRgC0LRpU2655ZZolChJjcrUqZCXB7m5NRywoj38YzDhNQsIYsMjmu79Wy77Ssv51kU96r9QSZIkSZLqSVSCyXnz5hEEwdE7fkoYhkeM+/a3v0379u3rszRJapSSk2HmTBgxohbh5Mp28PdzIuFk3JFXdn/7hSXsPVjGDy7LqP9iJUmSJEmqB1Hbyh2GYa2/PhnXoUMHfvnLX/L5z38+WuVJUqOTng5z5tRyW/eqNC7Ydg7N4ir+5/x/Zi7jBy8tPfTfV0mSJEmSGpOorJi85557aj2mSZMmpKam0qdPH/r37x+FqiSp8UtOhhkzItu6p0yBadOgqKhiv9TUyO3bY8dCr15teWPFeVwzdR57DpQd0e8nry1nb2kZv7zm9DqtZJckSZIkKVoaTTApSfqPjAyYOBEmTICcHCgogOJiSEqCtDTIzISEhP/0v6hnG/715fO56g9z2bXv4BFzTXpzFfsOlvPr6/sRE2M4KUmSJElqHKISTEqS6kdCAowcWbO+Q7u24tW7h3Dlo+9SuLf0iLbJb69hb2kZv79pILGGk5IkSZKkRiBqZ0xKko6/wZ1SeP0rQzmtRZMKbdPnr+fWP73HgYPllYyUJEmSJOn4Oq4rJleuXMn8+fPZsmUL27ZtAyAlJYWuXbsyePBgOnfufDzLkaST0oAOLXnjq0O57HfvsGnX/iPanvloE7sPzOeZ288moYmL5iVJkiRJDSfqfyvds2cPTzzxBM899xzr1q2rtm+fPn344he/yHXXXRftsiTppNY3LYmcr17AZVPeYV3R3iPaXlq6hav+MJe/jzmXls3iG6hCSZIkSdKpLqpbuT/88EOuueYaHn74YdauXUsYhgCEYXjE1yfPPv74Y7773e/yhS98ga1bt0azNEk66fVs04I3vzaUXm1aVGh7c9UOLpvyDtv3HGiAyiRJkiRJimIwmZubyxe/+EU2bdp0xPP4+Hh69uzJmWeeyYABA+jatSuxsbGH2sMwZMGCBdx2220UFhZGqzxJOiV0Tk3gza9dwID2LSu0Ldiwk8xH3mLjzn0NUJkkSZIk6VQXla3cpaWlfOtb32Lv3r0EQUAYhowcOZLPf/7zDBo06IggEuDAgQO89957PP7447zxxhsEQcDatWv54Q9/yMMPPxyNEiXplJGW1JTXvzKEq/4wl7nrio5oW1KwmwsfeYtXvjyEbq0TGqZASZIkSdIpKSorJp9//nnWrl1LEATExsYyceJEJk2axODBgyuEkgBNmjRhyJAhTJkyhfvvv/9QmPnKK6+wcOHCaJQoSaeU1IQmvPzlIVzSs02FtlXbSxj+27dYsrm4ASqTJEmSJJ2qohJMvvTSS4def/Ob3+Sqq66q8dibbrqJu++++9D3zz77bL3WJkmnqqRmcbzwpXO55vS0Cm0bd+3jwkfeYu5aj9CQJEmSJB0fUQkmly5dCkBiYiK33357rcffddddNGvWDID58+fXa22SdCprFh/Ls3cM5nOD0iu07Sgp5bLfvcPLy7Y0QGWSJEmSpFNNVILJnTt3EgQBGRkZNGnSpNbjExIS6NOnD2EYsnnz5ihUKEmnrvjYGJ743CC+fH6XCm17DpRxzdR5/PWDjQ1QmSRJkiTpVBKVYDIlJQWAgwcP1nmOuLjIvTzNmzevj5IkSYeJjQmYPKo/37u0Z4W20rKQzz35HlPeXnP8C5MkSZIknTKicit3z5492bZtG0uXLqW4uJikpKRajT948CDLly8nCAK6desWjRIl6ZQXBAH/N7IvrROa8P/+seSItjCEr2YvYnvJAb5/aS+CIDjUVlICOTmweTPs3g2JidCuHWRmQoIXe0uSJEmSaigqKyavv/56AA4cOMBDDz1U6/EzZsxg586dAHzmM5+pz9IkSZ8yPrMH0285k9iYoELbf89cxvi/L6a8PCQvD8aNg/R0uOoqGDMGvv71yP9edVXk+fjxkJfXAB9CkiRJknTCiUowed1113H++ecThiFPPvkkjz76aI3Hzps3jwceeACAbt26cfPNN0ejREnSYW4f3InsOwbTLK7iHwsPzV5Nt68upHffch58EIqKKp+jqAgmTYLevWHUKPj3vy9JkiRJklSpqASTQRDw0EMPcc455xCGIZMmTeL2228nJyeH0tLSSsesWLGCCRMmMGbMGPbu3Uu7du2YPHlynS7PkSTV3jVntGPmXefTslnFUz7WJ+ZD1lxoUvl/wz8tOxuGDYP8/PquUpIkSZJ0sojKGZN33XUXALGxsQCEYcj8+fOZP38+cXFxdOvWjeTkZOLj49m9ezdr165l165dh/oGQUBBQQEjRoyo9n2CIGDJkiXV9pEk1dyFPVrzxleGMuL377Jl94Ej2oIu2whvfhuyz4M9zY46V24ujBgBc+ZAcnK0KpYkSZIknaiiEkzOnj370EUJh1+YEIYhpaWlLF++/Ij+YRge6vvp/pKk4+vM9GTm3DOMM+9/l5L4kiPagra7CD83JxJO7jj6xWa5uZEzKGfMiFa1kiRJkqQTVVS2ckMkVPz0V1VtR3suSTq+yne0YM8fLiAsqLjUMUjeC7e8BR121Giu7Gz41L9HSZIkSZIUnRWTTzzxRDSmlSQdJ1OmACXN4OmhhNcuIOi69Yj2oHkp4Y3vwItnwYr2NZrvV7+KUrGSJEmSpBNSVILJc889NxrTSpKOg5ISmDbt39+UxsHfziW84kOCMzYc0S+ILye8ZgHM6g8fdq12zmnT4P77ISEhOjVLkiRJkk48UdvKLUk6MeXkQFHRYQ/KY2DmmYTv9qzQN4iB4LJFMOxjoOojOAoLI/NKkiRJkvSJqKyY/M1vfgNAly5duOaaa+o0x+9+9zveeustYmNjmXZo6Y4kKdo2b67saQBv9SXc3RwuXcRh95RFWs9bQZi4D14eGAkyK1FQUO+lSpIkSZJOYFELJoMgYNiwYXUOJt966y3mzZtHy5Yt67k6SVJ1du+upvHDrrCnKeFV7xPElx/RFJyxgbDFfvj74MgW8E8pLq7fOiVJkiRJJ7ZGu5V73759AJSUlDRwJZJ0aklMPEqHFe3h2SGEe+MrNAVdt8LNb0PCvgptSUn1VKAkSZIk6aRQ5xWT27Zt48CBA9X22bdvHxs3bqzVvPv37ycnJ4dFixYBkJycXNcSJUl10K5dDTptbAV/uYBw1FyClnuPaArSdhLeOgdmnA+F/0k509LquVBJkiRJ0gmtzsHk888/zy9/+csq28MwZMGCBVx66aV1mj8MQ4IgoE+fPnUtUZJUB5mZkJLyqQtwKrMjCf48jDBrLkHbXUc0Bcl7CT83B/52HmxKJTU1Mq8kSZIkSZ+o81buL37xi/Ts2ZMwDCt8faKytpp8fSIIAkaPHn1sn1CSVCsJCVDj//TuaQZPDyVc26ZCU9C8FG56G3puYvToyLySJEmSJH2izsFkbGwsP/rRjwg+fTVrPQiCgB49ejBx4kSGDRtW7/NLkqo3dmwtOh+Ih+zzCJekV2gK4svh2gU0GbLyiH94kiRJkiTpmG7lPvvss3njjTc4ePDgoWdhGHLZZZcRBAGDBw/mgQceqPF8MTExNG3alJYtWxIXF5ULwyVJNZCRAVlZkJ1dwwHlMfDSIMLdzQjOXXlEUxDAz95dQiF7+PUN/YiPbbT3rkmSJEmSjqNjTv/SqrjNIAxDmjVrRnp6xRU0kqTGb+pUyMuD3Nyajghg9umEu5vBxYv59IL6R99dy+ode3j6tsGkNK94o7ckSZIk6dQSlWWJ99xzDwCdO3eOxvSSpOMgORlmzoQRI2oTTgILu0Nxc4KrFxLGlh3R9EreNob9Zg7/GHMe3Vp76KQkSZIkncqisp/unnvu4Z577uHaa6+NxvSSpOMkPR3mzIls666NrAHtmXX3UNq3bFqhbUnBbs5/eDbvrNlRT1VKkiRJkk5EHvQlSapWcjLMmAHLlsG4cZCSUnm/1FQYPz6y/XvGDMjsk8Lcrw9nYIeWFfpu3XOAS6a8w9Mf5Ee3eEmSJElSoxWVrdwbN26s1/k6dOhQr/NJkmovIwMmToQJEyAnBwoKoLgYkpIgLQ0yMyHhU7uzO6Y0582vXsCtT77HPz/eckTb/oPlfO5P77Ni2x6+f2kvgk8fSilJkiRJOqlFJZi85JJL6u0vmEEQsGTJknqZS5J07BISYOTImvdPahbHc6PPZfzfF/PrOasrtP/3zGWs2LaHKTcOoGlcbD1WKkmSJElqzKK6lTsMw3r5kiSd2GJjAh66vh8PX9+PmEr+3erxBRu48tF32b7nwPEvTpIkSZLUIKIWTNY1UAyCgLi4OAYOHMjAgQMZMGBAPVcmSWoo9wzrxj/GnEti04orI99ctYOhv57D8q27G6AySZIkSdLxFpWt3K+99lqN++7fv5/CwkKWL1/OP//5T+bPn09ZWRm9e/fmf//3fz1zTJJOMiP7pjHna8O4Zupc1hftO6Jt+bY9DPn1HLLvOIcLe7RuoAolSZIkScdDVILJ9PT0Wo85++yzueWWW3j66af50Y9+xDPPPENKSgrjx4+PQoWSpIY0oENL3v36cK6bOo8FG3Ye0bajpJTLH32H3980kNsHd2qgCiVJkiRJ0RbVMybr4uabb+aOO+4gDEMee+wxli5d2tAlSZKioH3LZrzx1aFk9W9Xoa20LOSLf/mA7/7zY8rKPWtYkiRJkk5GjS6YBLjzzjuJi4ujvLycZ599tqHLkSRFSUKTOP5622C+c3HPStt//voKrp82j517S49zZZIkSZKkaGuUwWSbNm3o1q0bYRjyzjvvNHQ5kqQoiokJeOAzfXn0pgHEVXJl9z8/3sIQL8WRJEmSpJNOVM6YrA8pKSkAbN68uWELkSQdF3ee14VurRK46Yn3KPrUCsmlW3Zz3sNz+MsXzuKK3m0rjC0pgVmzAubPb01JSQwJCeVs2hRwySWQkHC8PoEkSZIkqTYabTC5fv36hi5BknScXdrrNOZ+fRjXT5vPx1uOXCFZtLeUq/4wl19cczrfHN6dIAjIy4PJk2H6dCgqigW6HjEmJQVGj4axYyEj43h9CkmSJElSTTTKrdyvv/46mzdvJggCOnTo0NDlSJKOo16nJfLO14fxmb4VV0aWh/Ctvy/htj99yPWjyujdGx58EIqKKp+rqAgmTYLevWHUKNi5s/J+kiRJkqTjr9EFkzk5OXz3u9899P3QoUMbsBpJUkNo2Sye50afy32XVH4pzp8/XM/zTd+BFvtqPGd2NgwbBvn59VWlJEmSJOlYRGUr9/e+971a9S8tLWX37t2sWrWK9evXE4YhALGxsdx0003RKFGS1MjFxgT89Kq+DGjfki89/QH7DpYf0R50KCT8/Gx4/hwoSKnRnLm5MGIEzJkDyclRKFqSJEmSVGNRCSb/9re/EQQVb1Y9mk8CySAICMOQL33pS/TsWflqGUnSqeFzg9Lp1aYFN0yfT/7OI1dIBkn7CG9+C14eCEs71mi+3FwYMwZmzIhGtZIkSZKkmoraVu4wDGv99YlmzZoxbtw4xo0bF63yJEknkMGdUvjLNcMJN6ZWaAviywk+sxCGL4EgrGR0RdnZsHx5fVcpSZIkSaqNqKyYvOGGG2o9pkmTJqSkpNC3b1+GDRtGYmJiFCqTJJ2oZjzRDP46hPCyRQT91ldoD85dSdimGP55FhyIP+p8U6bAr34VjUolSZIkSTURlWDypz/9aTSmlSSdokpKYNo0oCwW/jWQcEtLuGgxwafW/QfdtxDeOidy7mRh9f/ANW0a3H8/JCREr25JkiRJUtUa3a3ckiR9Wk4OFBV98l0AC7tD9vmEeyuujAxa74Zb50C3gmrnLCyMzCtJkiRJahgGk5KkRm/z5koerj0N/jyccHvFlZFBs1KCrHkwZBlQ9bmTBdVnl5IkSZKkKIrKVu7D7dixg1WrVlFUVMTevXtp3rw5ycnJdO/endatW0f77SVJJ4Hdu6toKGoBfx5GeNVCgh4VU8ZgaB5hWhG8NAj2N6nQXlxcv3VKkiRJkmouKsHkRx99RHZ2Nm+++SabNm2qsl/btm256KKLuP766xk0aFA0SpEknQSqvQ/tQDw8fw7hBUsJzltRoTnosYXwC7Mj505ua3lEW1JSPRcqSZIkSaqxet3K/fHHH/P5z3+em2++maeffpqNGzcShmGVXwUFBfz1r3/l1ltv5dZbb2XJkiX1WY4k6STRrt1ROoQBzOlL+PezCQ/EVmgOUkrg1tnQZ8MRz9PS6rFISZIkSVKt1Fsw+Yc//IEbb7yR999/nzCs+jyvyoRhyPvvv89NN93E5MmT66skSdJJIjMTUlJq0HF5B3hyOOGOFhWagvhygs8shItzIaac1NTIvJIkSZKkhlEvW7kfeOABHn/8ccIwJAgCAIIgYODAgQwePJju3bvTqlUrmjZtyp49e9i5cycrV65k4cKFLFq0iIMHDxIEAWVlZTz88MNs2bKFH/7wh/VRmiTpJJCQAKNHw6RJNei8IykSTo74gKBXxVtzgrNWE6YVcVOHwSQkNKv/YiVJkiRJNXLMweSTTz7J9OnTDwWSTZo04Qtf+AK33XYb7Y669w62bNnCk08+yRNPPMG+ffsIw5C//OUvdOnShS9+8YvHWp4k6SQxdmwNg0mInDv598GE56yEYR8TfGp/QJBeyHMJb3L76sFc0K1VvdcqSZIkSTq6Y9rKvX79en75y18eCiV79uzJ3/72N7797W/XKJSEyAU448aN45lnnqFHjx4EQUAYhjz44IOsW7fuWMqTJJ1EMjIgK6s2IwKY3xNmnE+4N75C69aS/Vw8+W1+PWd1rY8gkSRJkiQdu2MKJh9++GH27t0LQPfu3fnjH/9I9+7d6zRXz549eeKJJ+jcuTNBELB//34efvjhYylPknSSmToV+vWr5aB1p8EfLyTcnFyh6WB5yDeey+X2pxZScuBg/RQpSZIkSaqROgeTBQUFvPjiiwDExcXx4IMPkpqaekzFtGrVit/+9rfExsYShiEzZ85ky5YtxzSnJOnkkZwMM2fWIZwsToC/XEDqhs6VNj/5fj5Df/0WK7ftOfYiJUmSJEk1Uudg8uWXX6asrIwgCBg1ahS9evWql4J69uzJjTfeCEBZWRmvvPJKvcwrSTo5pKfDnDm13dYNWdfFsup3A/ndjQNoElvxj7+PNu3inIdm888lBfVUqSRJkiSpOnUOJufNm3fo9S233FIvxXzipptuOvR67ty59Tq3JOnEl5wMM2bAsmUwbhykpFTeLzUVxo+HvLxI/+RkuOv8Lrz5taF0TK54I3fR3lKumTqP77/4MQfLyqP7ISRJkiTpFFfnW7mXLVsGQHJyMn369Km3ggDOOOMMUlNTKSoqOvQ+kiR9WkYGTJwIEybArFllLFiwnj17YmjRopzBgztxySWxJCRUHHdu51TeG3chn/vT+8xasa1C+wOzVvD2mh38+fNn06GSAFOSJEmSdOzqvGJyx44dBEFA165d67Gc/2jfvj1hGLJtW8W/MEqSdLiEBBgxIuSaa7Zzyy1bueaa7YwYEVYaSn7itMSmzLzrPP7fRT0qbX9z1Q4GTczh1bytUapakiRJkk5tdQ4m9+3bB0Dz5s3rrZjDtWzZEoD9+/dHZX5JkuJiY/j51afz19vOJqlpxU0EW/cc4Mrfv8uP/rWMsvKwASqUJEmSpJNXnYPJlH8f6FVYWFhftRyhqKgIgITqlrtIklQPbhzYgQXfHM7ADi0rtIUh/PiVPEb8/l0Kiv3HMkmSJEmqL3UOJlu1akUYhmzYsIHy8vq9IKC8vJz8/HyCIKBNmzb1OrckSZXpdVoib987jLvO71xp+2vLtzFoYg45Kz1iRJIkSZLqQ52DyZ49ewKwZ88e3n///XorCOD999+nuLgYgL59+9br3JIkVaV5fCy/u3EgT3xuEAnxsRXaNxfv59Ip7/CT15ZT7tZuSZIkSTomdQ4mhw8ffuj1k08+WS/FfOLPf/7zodfnn39+vc4tSdLRfOHsjsz/5nDOSEuq0FYewg9eWsrVj81l2x63dkuSJElSXdU5mLzwwguJi4sjDEP+9a9/8eGHH9ZLQQsWLODFF18EID4+nssvv7xe5pUkqTb6piXx7teHccfgjpW2z1y2lbMmvsnba3ZU2l5SAi+9BNOmwa9/Hfnfl16KPJckSZIkHUMw2bp1az772c8CkTMhx40bd8wX4axfv55vfOMbAARBwKhRow5dsiNJ0vHWomkc024ZxGOfHUizuIp/ZG7YuY+LHnmbX76xkjCMbO3Oy4Nx4yA9Ha66CsaMga9/PfK/V10VeT5+fKSfJEmSJJ3K6hxMAnz1q1+lRYsWBEHAxo0bueWWW1i+fHmd5lqwYAFf+MIX2L59OwDJycl87WtfO5byJEmqF6PP7czcbwyn92ktKrQdLA/5zgtLuPr387nmpgP07g0PPghFRZXPVVQEkyZB794wahTs3BnNyiVJkiSp8TqmYLJNmzb84he/IAgCgiBg7dq13HTTTfz4xz9m1apVNZpj5cqV/OAHP+CLX/wiW7ZsiRQVE8OECRO8kVuS1Gj0b9+Sed+4kM8NSq+0/aW8Al5IfRM6VL61uzLZ2TBsGOTn11eVkiRJknTiiDvWCS655BLuu+8+HnjgAYIgYN++fTz11FM89dRTtG/fngEDBtCtWzeSkpJISkri4MGD7Ny5kw0bNrBgwQLWrl0LcGgLHMB//dd/cdlllx1raZIk1aukZnH86dZBXNi9Fd94bjEHysqPaA9a7iW8+W14OwPm9YIwOOqcubkwYgTMmQPJydGqXJIkSZIan2MOJgHuuOMO0tPT+d73vkdxcTEQCRo3btzIpk2bqhz3SRgZBJG/uCUkJPDTn/6UK6+8sj7KkiSp3gVBwN1DunJOpxQ++8f3WLX9yNtsgpgQhi0j7LwNXhoEu5sfdc7c3MgZlDNmRKtqSZIkSWp8jmkr9+Euu+wynnvuObKysoiLq13eGRsby3XXXcfMmTMNJSVJJ4SzOqbw9DUXEua1r7Q96Lwdbs+B7ptrNF92NtTxmGZJkiRJOiHVWzAJkJ6ezk9+8hNeffVV/t//+39ceOGFtGjRgjAMK3zFxcVx5pln8s1vfpPXXnuNn/3sZ7Rt27Y+y5EkKaqenBoP/zib8JX+hKUV/0gNmpcS3DAfLs6F2LKjzjdlSjSqlCRJkqTGqV62cn9aWload955J3feeSdhGFJUVERRURE7d+4kJiaG5ORkOnbsSGxsbDTeXpKkqCspgWnTAAL4qCvktyK8+n2CNsUV+gZnrSbsuB3+eRbsSKpyzmnT4P77ISEhamVLkiRJUqMRlWDycEEQkJqaSmpqarTfSpKk4yYnB4qKDnuwvSU8OYzwoiUEA9dW6B+03UX4hdkwqx/kdgIqXoxTWBiZd+TIqJUtSZIkSY1GvW7lliTpVLG5sqMjD8bBqwMI/3424b74Cs1BfBnBlR/CZ96HJqWVzltQUM+FSpIkSVIjZTApSVId7N5dTePyDvDEhYT5le8WCPpshNvehHaFFdqKK+4ElyRJkqSTksGkJEl1kJh4lA7FCfD0UMJ3MgjLKzYHKSVwy1tw7nIgPPQ8qeojKCVJkiTppGIwKUlSHbRrV4NOYQy83RueGUJY3KxCcxAbEgxfCje+Cy32AZCWVs+FSpIkSVIjZTApSVIdZGZCSkoNO29oA09kEq6oPHUMumyDO96gxZmbyMystxIlSZIkqVEzmJQkqQ4SEmD06FoM2NcEnj+H8LV+hAcr/vEbNC+l5NIFfP2FD9m9/2D9FSpJkiRJjZTBpCRJdTR2bG1HBPBBN/jzMMLtlR9SOXXeOgZNzOHdtRUvxpEkSZKkk4nBpCRJdZSRAVlZdRi4NRn+NJzwo86VNq/cXsLw377Fj/61jINlldycI0mSJEknAYNJSZKOwdSp0K9fHQYejINXBhI+P5jYA/EVmsvKQ378Sh7Df/sWK7btOfZCJUmSJKmRMZiUJOkYJCfDzJl1DCeB/s3bM/drFzGi92mVts9dV8SgiTn8Ye5awjA8hkolSZIkqXExmJQk6Rilp8OcObXf1p2VBbNnw1m9m/HPO8/j1zf0o1lcxT+a9xwo48vPfETW9Pls3b2/nqqWJEmSpIZlMClJUj1IToYZM2DZMhg3DlJSKu+Xmgrjx0NeXqR/cnLkeRAEfO2Cbrw37kIGpbesdOzziwsY8KscXvq4IDofQpIkSZKOo7iGLkCSpJNJRgZMnAgTJkBODhQUQHExJCVBWhpkZkJCQtXj+6Yl8c69w/nhy8v4+esr+PTu7YLi/XzmsXl8dWhXfn51XxKa+Ee5JEmSpBOTf5uRJCkKEhJg5Mi6jW0SF8NPr+rLyN5tuf2phawr2luhzyNvr2HWim386dZBnNUx5diKlSRJkqQG4FZuSZIaqQt7tObDb2XyhbPSK21fumU35z88h/97NY+DZeXHuTpJkiRJOjaumJQkqRFLbh7PE7eexVV90/hq9iKK9pYe0X6wPOS/Zy7jH4sLmP65M+nTNqna+UpKIlvMN2+G3bshMRHatTv6FnNJkiRJqm8Gk5IknQBuGZTOBd1a8cWnFvL6yu0V2uetL+KsiW/yf1f14RvDuhMTExzRnpcHkyfD9OlQVFRx/pQUGD0axo6NnJMpSZIkSdHmVm5Jkk4QnVKa88rdQ/jF1afTJLbiH+H7Dpbzrb8v4ZIpb7Nq+x4Adu6EUaOgd2948MHKQ0mIPJ80KdJv1KjIOEmSJEmKJoNJSZJOIDExAd+6qAfzvjGcMzu0rLTPm6t2MPBXOfzspTVcMCwkO7t275GdDcOGQX5+PRQsSZIkSVUwmJQk6QQ0oENL3v36cH5wWS9iP7VtG2DPgTK+99oiFveeC4kVb/U+mtxcGDHClZOSJEmSosdgUpKkE1STuBh+PKIPb98zjD5tEyvtE3TdCne8AaevB8JazZ+bC2PGHHudkiRJklQZg0lJkk5w53RO4b1xFzI+sztBxcWTBM0OEoz8AK6bDwn7azV3djYsX14/dUqSJEnS4QwmJUk6CTSPj+WX15zBG18ZSnKYUGmfoGcBfPF16LWxVnNPmVIfFUqSJEnSkQwmJUk6iZzdrjXhE5mEH3SptD1oXkpw7Xtw1fvQ7ECN5pw2DUpK6rNKSZIkSTKYlCTppJKTAzu3xcFrAwifPY+wuFml/YK++ZGzJ3tsPuqchYWReSVJkiSpPhlMSpJ0Etl8eM64ti08fhFhbsdK+waJ+wmunx9ZPdm8+rMnCwrqr0ZJkiRJAoNJSZJOKrt3f+rB/nj41yDC584h3NOk0jFB33z44huQUfXZk8XF9VejJEmSJIHBpCRJJ5XExCoaVraLrJ5c1r7S5iDhAME178E1CyBhX4X2pKT6q1GSJEmSwGBSkqSTSrt21TTubQovDCZ84SzCkipWT2Zsiqye7LsBCA89T0ur1zIlSZIkyWBSkqSTSWYmpKQcpdOydJh+EeHSDpU2B81LCa5aCNfPg8S9pKZG5pUkSZKk+mQwKUnSSSQhAUaPrkHHvU3hn2cTPj+YcHfTSrsEPbbAF99g8Oi1NG8eVtpHkiRJkurKYFKSpJPM2LG16LyifWT1ZG6nSpuDpgd5NfiIKx99lzU7SuqnQEmSJEnCYFKSpJNORgZkZdViwP4m8K8zCWecR1jcrNIury7fRv9fvsFv5qymvNzVk5IkSZKOncGkJEknoalToV+/Wg5a0zayevLDLpU27zlQxtefy+XiyW+zfOvuYy9SkiRJ0inNYFKSpJNQcjLMnFmHcPJAPLw6gK4LhtC5ZUKlXWav3sHAX+Xws1krKC0rP/ZiJUmSJJ2SDCYlSTpJpafDnDm13NZNpP/C59uw+L5M7h3WjSCo2GffwXK+9+LHnPvQbOavK6qXeiVJkiSdWgwmJUk6iSUnw4wZsGwZjBsHKSmV90tNhfHjIS8v0j85GVo0jeOh6/uR89WhZJzWotJxH27cxZBfz2bc87ns3n8weh9EkiRJ0kknrqELkCRJ0ZeRARMnwoQJkJMDBQVQXAxJSZCWBpmZkFD5zm2GdWvNwvGZ/Ohfy/hVzko+ffdNeQgPzV7Nc7mbeSSrPyP7pkX/A0mSJEk64RlMSpJ0CklIgJEjaz+ueXwsP7v6dG4a2IEvP/MhH2zcVaHP2sK9fOaxedxyZgcevK4fbZOa1kPFkiRJkk5WBpOSJKnGBndKYe43hvPgm6v40cvL2Fta8fKbv3ywkX8t28ovrzmdL57TiaCyQyoPU1ISWcW5eTPs3g2JidCuXfWrOCVJkiSd+AwmJUlSrcTHxvDti3uS1b89X5nxEa8u31ahT+HeUr701w958v18ptw4gJ5tKp5RmZcHkyfD9OlQVFTxfVJSYPRoGDs2shVdkiRJ0snFy28kSVKd9GjTgn99+Xym33ImrRPiK+0za8U2BvzyDR6YtZzSssjqyp07YdQo6N0bHnyw8lASIs8nTYr0GzUqMk6SJEnSycNgUpIk1VkQBNw+uBNLvnMxXzgrvdI++w6W8/0Xl3LOg7N54b1Chg2D7OzavU92NgwbBvn59VC0JEmSpEbBYFKSJB2z0xKb8sStZ/HSXefRNbV5pX0+2rSLa/88h9w2uRB/sNbvkZsLI0a4clKSJEk6WRhMSpKkenNl77Ys+n8XMT6zOzGV3XkTQHD2ahj9OvTaCIS1mj83F8aMqZdSJUmSJDUwg0lJklSvWjSN45fXnMHcbwxnUHrLSvsESfsIrn0PbpgHLUtqNX92NixfXh+VSpIkSWpIBpOSJCkqzu6YwtyvD+fnV59OXFj5rxxB9y3wxdfh3OUQU17juadMqa8qJUmSJDUUg0lJkhQ1cbExfPXcHjT/68WEq0+rtE8QX04wfCncngMdt9Vo3mnToKR2Cy0lSZIkNTIGk5IkKapycmDXhgTIPo/wH2cT7m5aab+g9W6Cm9+BKxdC8/3VzllYGJlXkiRJ0okrrqELkCRJJ7fNmz95FUBeB1hzGuEFy+DM1QSV/BNp0G8DYY8CmN0XFnWOjKtEQUG0KpYkSZJ0PLhiUpIkRdXu3Z96cCAeXu8HTw4n3Jxc6ZigeSnBFR/BLW9Bm12V9ikurudCJUmSJB1XBpOSJCmqEhOraNiSAn8eTvhqf8L9lW/iCNIL4bY34cIlEHfwiLakpPqtU5IkSdLxZTApSZKiql27ahrDAD7sCtMuJvw4vdIuQUxIcM5KGP0G9NgMhACkpdV3pZIkSZKOJ4NJSZIUVZmZkJJylE57msGLZxE+ez5hYYtKuwQt9xJcPx9umEfLznvIzKz3UiVJkiQdRwaTkiQpqhISYPToGnZeexo8nkn4dgbhwcp/TQm6b6Hkxjf4Sc5SSg4crLSPJEmSpMbPYFKSJEXd2LG16FwWC+/0hicyCde2qbxLUM5PXlvO6T9/g+xFmwjDsH4KlSRJknTcGExKkqSoy8iArKxaDipMhGfPJ/znIMI9TSvtsq5oLzc+voCRv59L3tZPX/8tSZIkqTEzmJQkScfF1KnQr19tRwWwtCNMvZhwQXcoDyrt9XLeVvr/8g2+/+LH7Nnv9m5JkiTpRGAwKUmSjovkZJg5sy7hJHAgnv47zuCVOy7kwu6tKu1SWhbywKwVnP6L13n2w41u75YkSZIaOYNJSZJ03KSnw5w5td/WnZUFs2fDpQNb8vpXhvKnWwfRvmXl27vXF+3js398jysffZelW4rroWpJkiRJ0WAwKUmSjqvkZJgxA5Ytg3HjICWl8n6pqTB+POTlRfonJ0eeB0HArWd15OPvXMz4zO7ExVS+vfvV5dsY+Ksc7nthCbvd3i1JkiQ1OnENXYAkSTo1ZWTAxIkwYQLk5EBBARQXQ1ISpKVBZiYkJFQ9vmWzeH55zRmMOacz9/5tEa+v3F6hT2lZyC/eWMmfF+bzi6tP5+YzOxAElQeZhyspgVmzAubPb01JSQwJCeVs2hRwySXV1yRJkiSp5gwmJUlSg0pIgJEj6z7+9HZJvDp2CH/9cCPf+vsSNu7aV6FP/s593Prk+zzy9hoeur4fg9KTK50rLw8mT4bp06GoKBboekR7SgqMHg1jx0aCVUmSJEl151ZuSZJ0wguCgJvPTOfj71zM/7uoR5Xbu+es3sHgB9/ky898yNbd+w8937kTRo2C3r3hwQehqKjy9ykqgkmTIv1GjYqMkyRJklQ3BpOSJOmkkdQsjp9ffToffiuTS3u1qbRPGMIf5q4j44FZPPjmKtasK2fYMMjOrt17ZWfDsGGQn18PhUuSJEmnIINJSZJ00umblsTLXz6fp287m04pzSrts3PfQcb/fTF9fpJDbvGWOr1Pbi6MGOHKSUmSJKkuDCYlSdJJKQgCbhrYgY+/czH/c3kGzeIq/7XnQOJughvnwvXzIGV3rd8nNxfGjDnWaiVJkqRTj8GkJEk6qSU0ieNHV/Zm6X0X89mBHarsF/QogC++AcOXQPzBWr1HdjYsX36MhUqSJEmnGINJSZJ0SuicmsBfbjub178yhIEdWlbaJ4gNCc5dCWNmwenrgbDG80+ZUk+FSpIkSacIg0lJknRKyezRhje/fCHN5vQn3BtfaZ8gcT/ByA/g1jnQrrBG806bBiUl9VioJEmSdJIzmJQkSaecObMD9s7tCo9dQvheN8LyoNJ+Qfsigs/PgZHvQ9LeaucsLIScnCgUK0mSJJ2kDCYlSdIpZ/Pmf7/Y3wTe6AePZxKuaVNl/+D0fBg9C4Yurfb8yYKCei5UkiRJOokZTEqSpFPO7k9fvr0jCWacT/jcOYSFCZWOCeLLCYYsj5w/ecY6CCqeP1lcHIViJUmSpJOUwaQkSTrlJCZW9jSAle3g8YsI3+xLeCC20rFB4n6CER/CF96ETtuOaEtKqvdSJUmSpJOWwaQkSTrltGtXTWNZLMzvCVMvIcztRFjFxdxB210En30HrpsHKZElmGlp9V+rJEmSdLKKa+gCJEmSjrfMTEhJgaKiajrtaQb/OhMWdiPMXEzQeXul3YKeBYTdttDs464MODcDaFL/BUuSJEknIVdMSpKkU05CAoweXcPOW5LhmSGEzw8mLGxRaZcgNmR/v9UMfGgWD89eRWlZef0VK0mSJJ2kDCYlSdIpaezY2vQOYEV7mH4R4etnEO6Lr7TXjpJSvvn8Yvr/8g3+sXgzYVX7wCVJkiQZTEqSpFNTRgZkZdVyUHkMvN8dHruE8P1uhOVBpd3ytu7humnzufx377Iwf+exFytJkiSdhAwmJUnSKWvqVOjXrw4D9zWB1/vB45kkban6xptZK7Yx+ME3ueOphawrLKl7oZIkSdJJyGBSkiSdspKTYebMOoaTQP/0JJb89Fxe/vL5DGjfstI+YQh/fG8DvX/2Ove9sISivaXHULEkSZJ08jCYlCRJp7T0dJgzp/bburOyYPbsyPjLMk7jvXEX8uhNA0hLalpp//0Hy/nFGyvp+dPXePDNVRw46AU5kiRJOrUZTEqSpFNecjLMmAHLlsG4cZCSUnm/1FQYPx7y8iL9k5P/0xYbE3DneV3Iu+8SvntJT5rFVf5r1o6SUsb/fTGn/+J1nv4gv8YX5JSUwEsvwbRp8OtfR/73pZcizyVJkqQTUVxDFyBJktRYZGTAxIkwYQLMmlXGggXr2bMnhhYtyhk8uBOXXBJLQkL1cyQ1i+MnV/Xlq0O78j8zl/H4e+upLHtctb2Ez/3pfSbmrOIXV5/OhT1aVzpfXh5MngzTp0NRUcX2lBQYPTpyy3hGRm0/sSRJktRwXDEpSZL0KQkJMGJEyDXXbOeWW7ZyzTXbGTEiPGooebiOKc2ZesuZLByXyZW9T6uy3/z1RVw0+W2unzaPjwuKDz3fuRNGjYLeveHBBysPJSHyfNKkSL9RoyLjJEmSpBOBwaQkSVIUDejQkpfuOp9/ffl8zuxQ+QU5AH9fXMCAX+Uw9tmPWJi3j2HDIDu7du+VnQ3DhkF+/jEWLUmSJB0HBpOSJEnHweUZp7Hgmxfy+OfOpFNKs0r7lJWHPPruWgY/MovcpGUQf7DW75ObCyNGuHJSkiRJjZ/BpCRJ0nESExNw29mdWHrfJTzwmb4kN6v8uO8wroxgaB586TU4czXE1O4G79xcGDOmPiqWJEmSosdgUpIk6ThrHh/Ldy7uyYrvXco3hncjPjaotF/Q4gDBpbkw+nXoswGo2Q3eENnWvXx5PRUsSZIkRYHBpCRJUgNp3aIJk67rx5JvX8zNZ3aosl+QUkLwmYVw25vQtYCaBpRTptRToZIkSVIUGExKkiQ1sB5tWvBY1tm0eH4Y4fpWVfYL2u4iGDUPPvs2tC886rzTpkFJSX1WKkmSJNUfg0lJkqRGICcHdq9Ihb8OJcw+l3BL1Td4B512ENw6B66dD62Kq+xXWBiZV5IkSWqMKj9xXZIkScfV5s2fvApgdRqsbkvYNx8uWEqQvLfSMUGvzYQ9NsOSTvB2byhuXqFPQUH0apYkSZKOhcGkJElSI7B796efBPBxR8hrTzhgHZyfR5BwoMK4IAbot56wTz580BXm9oJ9TQ61F1e9oFKSJElqUAaTkiRJjUBiYhUNZbGwsBvkdiIcvBIGryRoUlahWxBXDoNXEfZfB/N6RsaUxpGUFN26JUmSpLoymJQkSWoE2rU7SofSOHinN3zQlfC85XDmGoLYirdzB00PwvClhGetgrm9SG3TBYiNSs2SJEnSsfDyG0mSpEYgMxNSUmrQcW9TeKMfTL2EcHFHworZJABBiwMElyzmnvdn8ft311JaVl6f5UqSJEnHzGBSkiSpEUhIgNGjazFgVwLMHARPZBKuTKuyW/6ufdz97Eec8Ys3+PP7GygvryLJlCRJko4zg0lJkqRGYuzYOgza1hKeO5fwL0MJ81Or7LZi2x6+8OeFnDkxh+dyNxFWtdRSkiRJOk4MJiVJkhqJjAzIyqrj4PzW8JcLCLPPJdzSsspuuZuLyZq+gPMfnsPLy7YYUEqSJKnBGExKkiQ1IlOnQr9+dR0dwOo0zlh4IdNGnU2ftlVd9Q3z1xcx4vdzuWTyO7y1ekdd31CSJEmqM2/lliRJakSSk2HmTBgxAnJzaz++f3946aWA9PQOfP7cdjz5fj7/+/Iy1hTurbR/zqrtDP/tW4zs05b7R/TmrI4pNX6vkhLIyYHNm2H3bkhMjNwunpkZOTNTkiRJqo7BpCRJUiOTng5z5sCYMZCdXfNxWVmRFZfJyZHv42JjuOOcTnxuUDp/mLuO/3stj0279lc69qWlW3hp6RZG9W/PD6/IoF/7qreD5+XB5MkwfToUFVVsT0mJXOQzdmxke7okSZJUGbdyS5IkNULJyTBjBixbBuPGRcK+yqSmwvjxkbBwxoz/hJKHaxIXw1cv6Mry717Cz68+nVYJ8VW+74xFmxg4MYdb//QeHxcUH9G2cyeMGgW9e8ODD1YeSkLk+aRJkX6jRkXGSZIkSZ/miklJkqRGLCMDJk6ECRMi26YLCqC4GJKSIC2tdtumE5rE8f8u6sGXz+/MpDdXMTFnFcX7D1boF4bwlw828vSHG7l1UDr/fXkGLQ4k1ml7eXZ2JDSdOTOyElSSJEn6hMGkJEnSCSAhAUaOrJ+5WjaL54dX9OaeC7rx89dX8Ju3VrO3tLxCvzCEJ9/P56mF+SRt6EjR+gygRa3fLzc3cmbmnDmVr+iUJEnSqcmt3JIkSaeo1i2a8LOrT2fF9y7laxd0pUls5b8aloewM30DjHkdrvgQWpbU+r1ycyNnZkqSJEmfMJiUJEk6xbVv2Yxf39Cf5d+7hLFDuhAfG1TaL4gJCfqvgzGz4LKPIKl2AWV2NixfXh8VS5Ik6WRgMClJkiQAOqU055FRA8i77xLuPK8zcTFVBJSxIcHAtZEVlJcugsS9NX6PKVPqq1pJkiSd6AwmJUmSdIQurRJ49KaBLPz6xcTndSIsryKgjCsnOHMNfGkWXJwLLfYdde5p06Ck9jvBJUmSdBIymJQkSVKl1i1qwYF/nAnTLiJc3JGw4v04wL8DyrNWw5deiwSU1aygLCyM3C4uSZIkeSu3JEmSKrV5879fFCXCzEEwtxfhkDzok09QySLKIL4czlpNOGAtLOoM83tCcfMK/QoKolu3JEmSTgwGk5IkSarU7t2felCYCC+eBe/2IhyaR9B7Y6XjgrhyGLSGsP86yO0E83pCccKh9uLiKBYtSZKkE4bBpCRJkiqVmFhFw44keOFswnd7wZBlBBmbK+0WxJXDmWsjAeXiTjC3F+xKICkpejVLkiTpxGEwKUmSpEq1a3eUDttawj/OITxtJ5yfV3VAGRvCgHWEZ6yHJZ0ob9kTaFHv9UqSJOnE4uU3kiRJqlRmJqSk1KDj1uRIQPl4JuGy9oRh5d2C2JCg/zrufvd1xvzlA5Zv/fRecUmSJJ1KDCYlSZJUqYQEGD26FgO2tYQXBsPjFxEu7VBlQFlWHjJ9wXr6/vx17nhqIcu2GFBKkiSdigwmJUmSVKWxY+swaHsS/PNsmH4R4ZJ0wvLKu5WH8Mf3NnDGL17n80++T+6mXcdUqyRJkk4sBpOSJEmqUkYGZGXVcfCOJHjpLJh+MeHijlDFCsryEJ5amM+AX+WQNX0+C9YX1bVcSZIknUC8/EaSJEnVmjoV8vIgN7eOExQm0m/DIJ54JINfz1vOH9/bQFl55Snlc7mbeS53M1f2Po3/uqwXw7q1rtVblZRATg5s3gy7d0duFm/XLnJeZkJCHeuXJElSVBhMSpIkqVrJyTBzJowYUbdwsn9/eOklSE9vwdRuZ/KDy3rxk9dW8MSC9RysIqD817Kt/GvZVjK7t+b7l/Xisl5tCIKgyvfIy4PJk2H6dCgqqtiekhI5L3Ps2MgqUEmSJDU8t3JLkiTpqNLTYc6c2m/rzsqC2bMj4z/RvXUL/vDZgeR99xK+fH4XmsRW/StpzqrtXPnouwx5eA7/WLyZ8FM36uzcCaNGQe/e8OCDlYeSEHk+aVKk36hRkXGSJElqWAaTkiRJqpHkZJgxA5Ytg3HjIqsQK5OaCuPHR1YxzpgRGVeZrq0SmHLjAFZ+/xK+MbwbzeOr/tV03voirps2n0ET3+SvH2ykrDwkPx+GDYPs7Np9juzsyLj8/NqNkyRJUv1yK7ckSZJqJSMDJk6ECRMi5zkWFEBxMSQlQVpa7c9zTE9uzqTr+vG9S3rx4OxV/PatNRTvP1hp34827eKWP71Hr9Yt2PN6L/KXpFOXf2vPzY1sTZ8zp+rgVJIkSdFlMClJkqQ6SUiAkSPrb762SU35yVV9+fZFPfjNW2t4aPYqdpSUVtp3+fY9MOAD6LIM5veExZ3gYGyt3i83F8aMiazqlCRJ0vHnVm5JkiQ1KqkJTfjvyzNY/f3L+Nln+pKW1LTKvkHyXoLLFsGdr8K5y6Fp5UFmVbKzYfnyY61YkiRJdWEwKUmSpEYpqVkc3764J6u+fykPX9+PjsnNquwbtDhAMHwp3PUqDF8CLfbV+H2mTKmPaiVJklRbBpOSJElq1JrHx3LPsG6s+N6l/Pa6gcTsqvoAy6DpQYJzV8Kdr8FlH0LKnqPOP20alJTUZ8WSJEmqCYNJSZIknRCaxMXQdXdnyv5wMeE/BxFuS6qybxBXTjBwHYyeBVe/B22LquxbWBi5xEeSJEnHl5ffSJIk6YSxeTMQxsDSjrA0nbD7Fjh3OUF6YaX9gxig90bovZFwzWkwryesbw0ER/QrKIh66ZIkSfoUg0lJkiSdMHbvPvy7AFalwao0wvTtcM4Kgh5bqhwbdN0KXbcSbkqJBJQr2vFJQFlcHM2qJUmSVBmDSUmSJJ0wEhOraMhvDfmtCdvsgnNWQJ+NBDFhpV2D9kVw3QLCHS1gfk9Y0pGkJE84kiRJOt78DUySJEknjHbtjtJhW0t46Sx47BLChV0JS6v+dTdotYfgyg/hztd4e/9Kdu8/WL/FSpIkqVoGk5IkSTphZGZCSkoNOu5KgFn94feXEb7bi3BffJVdg6R9/GH5ErpMeJUf/msZ2/bsr7d6JUmSVDWDSUmSJJ0wEhJg9OhaDNjbFN7qA7+/lDDndMLdTavsWri3lPtfyaPLhFf5+nO5rN1RcuwFS5IkqUoGk5IkSTqhjB1bh0EH4mFBD/jDpYQvD4icL1mFvaXl/GbOano+MItb//Qe720oqnOtkiRJqpqX30iSJOmEkpEBWVmQnV2HwWWxsKgL5HYm7LmJ1CtXUNR0Z+Vdy0P+8sFG/vLBRi7q0ZpvZfZgZJ+2xMQEtX7bkhKYNStg/vzWlJTEkJBQzqZNAZdcElkFKkmSdCoymJQkSdIJZ+pUyMuD3Nw6ThAG9Gvagdn3t2fBlm387PUVvLZ8W5Xd31i5nTdWbqdv20TGZ/bg82el0yw+9qhvk5cHkyfD9OlQVBQLdD2iPSUlsjV97NhI4CpJknQqcSu3JEmSTjjJyTBzJvTrV7fx/ftHxqekBFyWcRqv3D2EuV8fzqj+7QmqWRD58Zbd3PXMh3T7yWv836t5bN9zoNJ+O3fCqFHQuzc8+CAUFVU+X1ERTJoU6TdqVGScJEnSqcJgUpIkSSek9HSYMyeyrbs2srJg9uzI+MOd0zmFZ+4YzMffuZi7h3ShWVzVvyoXFO/nv2cuo8uEV7n3b4tYuW3Pobb8fBg2rPZbzbOzI+Py82s3TpIk6URlMClJkqQTVnIyzJgBy5bBuHGRrdGVSU2F8eMjW6tnzIiMq0rGaYlMHjWAtT+4jB9ekUGbFk2q7FtSWsZv31pD75/N4rNPLODVxYVceWXdt5jn5sKIEa6clCRJpwbPmJQkSdIJLyMDJk6ECRMgJwcKCqC4GJKSIC0NMjNrf8nMaYlN+eEVvfnOxT15YsF6JuasYvlhKyMPVx7Csx9t4tmPNhH2T4X9PWBlOwhrf1FObi6MGRMJUCVJkk5mBpOSJEk6aSQkwMiR9Ttn8/hY7h7SlbvO68ILHxfwqzdWMnv1jir7B+mFkL6AcEcLeK87LOkEB49+Uc7hsrNh+XLo1etYq5ckSWq83MotSZIk1UBMTMC1Z7Qj52sX8M69w7hpQHtiqlkQGbTaQ3D5IrjrVRiyDJrvr9X7TZlyjAVLkiQ1cgaTkiRJUi2d1yWVp28fTN53L+GeYd1IiK96RWSQcIBgaF4koLzsI0jdXaP3mDYNSkrqq2JJkqTGx2BSkiRJqqPurVvw8PX9mDrkMsLZfQj3NK2ybxBfTjBwLcGY1+H6udB5KxBW2b+wMHJepiRJ0snKMyYlSZKkY7RnexOY1wve607YNx/OXknQpuqVkUGPLdBjC+G2JHi/G3zcsdJzKAsKolm1JElSwzKYlCRJko7R7k8yyLJYyO0MuZ0Iu26BwasIumyrclzQphiu+Ihw+MfwYVf4oCvsaXaovbg4qmVLkiQ1KINJSZIk6RglJn76SQBr0mBNGmHbIhi8CnpvJIipfOt20LwUzl9OeM4KWNYhcpv3lhSSkqJduSRJUsMxmJQkSZKOUbt21TRuSYEXz4LZfQjPXAMD1hE0K620axAbwun5cHo+4YZWrAi6cbCsHXGxHg0vSZJOPv6GI0mSJB2jzExISTlKp+IEmH06/O4ywlf7E+5oUW33oOMOfrLoPXo9MItfvbGSor2Vh5mSJEknKoNJSZIk6RglJMDo0TXsfDAucp7ktIsJs88lXNOm2u5rC/fy7ReW0On+V7j3b4tYvrXqS3UkSZJOJG7lliRJkurB2LEwaVJtRgSwOg1WpxG23gVnrYa+GwjiyyvtvedAGb99aw2PvL2Gz/RJ45sXdufinq0JgqBO9ZaUQE4ObN4cubwnMTGyJT0zMxK0SpIkRZvBZCO3e/dunnzySV555RVWr17N/v37ad26NWeffTZ33HEHAwcObOgSJUmSBGRkQFYWZGfXYfD2lvDKQJjTh7D/OpoPWc2+uP2Vdg1DeOHjAl74uID+7ZP4xvDu3DoonWbxsTV6q7w8mDwZpk+HoqKK7SkpkdWfY8dGPpMkSVK0uJW7EVu7di3XXXcdEydOZNGiRRw4cID4+Hg2b97MP//5T2655RamTp3a0GVKkiTp36ZOhX79jmGCvU3pV9KLtf9zGX+8dRBnd0yutvuiTcXc+dcP6TLhVf5n5lI27txXZd+dO2HUKOjdGx58sPJQEiLPJ02K9Bs1KjJOkiQpGgwmG6mDBw/y1a9+lQ0bNpCWlsajjz7KBx98wPvvv8/MmTO5+OKLKS8v52c/+xlvvPFGQ5crSZIkIDkZZs6sezjZv39k/GmtYvj8WR2Z943hzP7aBdw4oD0x1ezY3rrnABNeXU7X/3uVz/3pPeas3k4Yhofa8/Nh2LDar+bMzo6My8+v2+eRJEmqjsFkI/Xyyy+zYsUKgiDgoYceIjMzk9jYWIIgoFu3bvz2t79l0KBBAPzmN79p4GolSZL0ifR0mDMnsq27NrKyYPbsyPhPBEHABd1a8dfbB7Pye5fyrcweJDer+jSmg+UhT3+wkQt/+zZnT3qTqfPWsWlrGVdeCbm5dfs8ubkwYoQrJyVJUv0zmGykcnJyADjrrLMOBZCHi42N5cYbbwQgNzeXvXv3Htf6JEmSVLXkZJgxA5Ytg3HjIuc2ViY1FcaPj5z7OGNGZFxVurRK4BfXnM66H1zOw9f3o2ebFtXW8MHGXdz51w/p+pNXWNxqCbQsqfPnyc2FMWPqPFySJKlSXn7TSJ1++uns3buXftXsAzrttNMACMOQ3bt307x58+NVniRJkmogIwMmToQJE2DWrDIWLFjPnj0xtGhRzuDBnbjkktha34Cd1CyOe4Z146tDu/Li0i08+OYqZq3YVmX/0thSgnNXEg5eCavSYGE3WNcGqN1t3tnZsHw59OpVu3olSZKqYjDZSN1xxx3ccccd1fZ57733AGjatCmpqanHoyxJkiTVQUICjBgR0r799kPPBg7sSNwx/DYeExNw9elpXH16Gos3F/Obt1bzxwUbKCktq7R/EAP0LICeBYTbE+GDrrC4E5TWvIgpU+BXv6p7zZIkSYdzK/cJaseOHTz99NMADB8+nLhj+a1WkiRJJ7Qz2iUxedQANvzP5Uy89oyjbvMOWu8muDQX7n4FLs6F1N01ep9p06Ck7jvCJUmSjmAweQI6ePAg3/72tykqKiImJoavfOUrDV2SJEmSGoGU5vF888LuLP3OxfzvwHMJV7Wttn/Q9CDBWasJxrwOWe9C9wIIwir7FxbCv49ClyRJOmYuszvBlJWVcd999zFnzhwAvva1r1V7DqUkSZJOPTExAR0PpsHf0ghT9sCZq6HfeoKmB6scE3TbCt22EhYlRLZ553aC/U0q9CsoiGLhkiTplGIweQLZv38/48eP59VXXwXg2muv5Wtf+1oDVyVJkqTGaPcnu7OLWsAb/eCtPoR9N8CgNQRtiqscF6SUwEVLCC9YCh93jFyWs63lofbiqodKkiTVisHkCWLHjh189atfZeHChQBcd911/PSnPyUIaneboiRJkk4NiYmfelAaBx91hY+6EHbaDoNWQ4/NkUtxKhHEl8OAdTBgHeGGVvBhV1jejqSk2ChXLkmSThUGkyeANWvWcNddd7Fu3ToAbr/9dr7//e8bSkqSJKlK7dpV1RLA+jaRr6QSwoFrYcBagualVc4VdNwBHXcQljRhZnFnLtrRha6tEqJStyRJOnV4+U0jl5ubyy233MK6desIgoDvfOc7/Nd//ZehpCRJkqqVmQkpKUfpVJwAc/rC7y4nnHkmYUFytd2DhAP8de0Kevz0Na55bC7/XFJAWXnVl+VIkiRVxxWTjdjy5cv50pe+RFFREfHx8TzwwANcffXVDV2WJEmSTgAJCTB6NEyaVIPOZbGwuBMs7kjYvhAGrYGMjQSxlYeOYQj//HgL//x4C11Tm/PlIV0Yc05n2iY1PaaaS0oit35v3hw5IzMxMbLyMzMz8nkkSdLJxWCykSopKeGee+6hqKiIJk2a8Nvf/pYLL7ywocuSJEnSCWTs2BoGk4cEsKlV5CvndML+6yLbvJP2VTliTeFevv/iUn74r2XcOKADY4d0YVi3VrXa4ZOXB5Mnw/TpUFRUsT0lJRKyjh0LGRm1+TySJKkxcyt3IzVlyhTWrFkDwPe//31DSUmSJNVaRgZkZdVx8J5m8G4G/P5SwucH03Zvm2q7l5aFPLUwn8xH3mbgr3L47Vur2bWv6nMrAXbuhFGjoHdvePDBykNJiDyfNCnSb9SoyDhJknTic8VkI3TgwAH+/Oc/H/r+N7/5Db/5zW+qHfPss8/Svn37aJcmSZKkE8zUqZEVibm5dZwgjKFfs/bM+Ul7thzYze/eXcv0+evZUVJ16Ji7uZh7/5bLd//5MZ8/qyNfGdqFgR2OPL8yPx9GjKh9XdnZkc8zcyakp9flA0mSpMbCYLIRysvLo7i4+ND327ZtO+qYsrKyaJYkSZKkE1RyciTEq0sICNC/P7z0UmSeZBL55TVncP+IPjzz4UYmv72GueuKqhy750AZj767lkffXcuQLqmMHdqFmwZ0YN+eWK68EhYvrttnys2NfJ45cyJ1SZKkE5PBZBUeeughHnnkEdLT05k1a1atxq5cuZK//OUvzJ07lw0bNnDw4EHatm1LRkYG11xzDZdffjlxcVX/n75fv34sW7bsWD+CJEmSBERWFs6ZA2PGRFYc1lRWVmTF5afDv+bxsdw+uBO3D+7EwvydTH57DX9+P5+S0qr/sfydtYW8s7aQ8c8vptXGzuRt6AK0qNsHIhJOjhkDM2bUeQpJktTADCYr8dFHH/H73/++TmN//etfM2XKFA4ePHjE8/Xr17N+/Xpee+01+vXrxy9+8Qu6d+9eH+VKkiRJR5WcHAnx8vJgyhSYNq3yMx1TU/9z0UyvXkefd1B6Mo/eNJBfXH06f3xvA5PfXsPHW3ZX2X97SSnbU1YS3LmScPVp8FEXWJUG5bU//j47G5Yvr1mdkiSp8TGY/JT169fz1a9+ldLS6g/qrsyECRP44x//eOj7uLg4evfuTfPmzVm5ciWFhYUA5Obmctttt/HXv/6VdA/GkSRJ0nGUkQETJ8KECZCTAwUFUFwMSUmQlgaZmZCQUPt5k5vHc8+wbnztgq68uWo7U95ZS/aiTZSWhVWOCbpthW5bCfc0hdxOsKgz7KzdKsopU+BXv6p9vZIkqeEZTB4mLy+PO++8k61bt9Z67MyZM48IJa+88kr+53/+hzZtIrcXlpaWkp2dzU9/+lP27t3Ltm3buPfee5kxYwZBENTbZ5AkSZJqIiEBRo6s/3mDICCzRxsye7ShoHg/j81bx6PvrGVd0d6qx7TYD+etgPNWEK5pE1lFubJdjVZRTpsG999ftzBVkiQ1LIPJf3v++ef54Q9/yN69Vf/CVJXS0lJ+9rOfHfr+4osv5sEHHyQm5j+/SMXHx3PzzTeTnp7O3XffzcGDB1m8eDEvvPAC11xzTb18huPNC3d0rD79M+TPlI6FP0+qb/5Mqb6dij9TrZvH8p3MbnxreFdeWrqF/3thPQu2b6W6f5cPum6DrttqvIqysBBmzSpjxIiqV2aejE7FnydFlz9Tqk/+PKmmgjAMT60/wT+loKCAiRMn8txzz1XaXpPLb1588UXGjRsHRLZvv/LKK3To0KHK/j/+8Y958sknATjjjDPIrs0J5A1o4cKFlJeXN3QZkiRJOkH9/e+t+fFDp8GAdXDGOoIWB2o0Llz771WUKypfRfnDH67hmmu213e5kiSpFmJiYhg0aFDtxkSplhPC5MmTGTFixBGhZPfu3Rk7dmyt5nnxxRcPvR46dGi1oSTAzTfffOj14sWLWb9+fa3eT5IkSToRlZTERFY/zu4Lj15O+PezI1u3jyLoso3gmvfg7ldg+BJI2XNE+549p/RfayRJOmGd0n+CP/bYY5SUlBz6/qabbuKZZ56hS5cuNZ4jDEPmzp176PsLLrjgqGN69+7Naaedduj7o63IlCRJkk4GCQmH7b4pj4HlHWDGEMI/XEI4t2dk+3Y1goQDBOeuJPjSLLjxHeidD7FltGjhrh5Jkk5EnjEJ9OvXj/vuu49zzz231mPz8/PZtWvXEXPVRO/evQ9dsrNo0aJav29j0K9fP2JjYxu6DJ3AysrKyM3NPfS9P1M6Fv48qb75M6X65s8UbNpUxeGSO1vAnL7wdm/C7gUwcC1B1+ovpAy6bIMu2whLmrAoNZ3PduhJxmm1u9H7RObPk+qbP1OqT/48nToWLVp0TMf+ndLB5LnnnktWVhaXXnppnW/GXrNmzRHfd+7cuUbjOnbseOj1unXr6vTeDS02Npa4uFP6R0j1zJ8p1Sd/nlTf/JlSfTsVf6YuuQRSUqCoqIoO5TGwoj2saE/YsgT6r4V+6wkS91c5Z5BwgL+tX83ffrWai3u05q7zu3BD/3Y0jTu1/gJ8Kv48Kbr8mVJ98udJVTmlfyoeeeSRY57jk1WPEDnks02bo5+RAxyxlfvwOSRJkqSTVUICjB4NkybVoPOuBHirL7zz71WUA9ZC1+pv9H595XZeX7md1gnxfOHsjnzp3M70a9/ymGouKYGcHNi8GXbvhsREaNcOMjMjn0eSJNXdKR1M1oedO3ceet2iRQtiYmp2bGdiYmKlc0iSJEkns7FjaxhMfuKwVZS0LCHstw76r6t2FeX2klIemr2ah2av5txOKYw5rzO3nNmBls3ia/y2eXkweTJMn175Cs+UlEjIOnYsZGTU4vNIkqRDTunLb+rD/v3/+YWoWbNmNR7XpEmTQ68PHDhQrzVJkiRJjVVGBmRl1XHwrgR4uw88ehnhc+eQVtK22hWUAPPWFzH22Y/o8L+vMPovC5m9ajthGFbZf+dOGDUKeveGBx+sett5UVEkYO3dO9LftQaSJNWeKyaPUWlp6aHXNV0tCRxxtsLBgwfrtSZJkiSpMZs6NbIi8bB7EWonjKFf83bM+Wk7ispKeGzeOqbOW8/GXfuqHFJSWsbjCzbw+IINZJzWgjHndub2szvSruV/Fhfk58OIEbWvKzs78nlmzoT09Dp+JkmSTkGumDxGh98qVZtbiA4PI+Pja76lRJIkSTrRJSdHQrx+/eo2vn//yPjkZOjSKoEfj+jDmv+6lOdGn8M1p6cRG1P9Msq8rXv47j8/ptOEV7lh2jz+sXgz23aUc+WVdQ9Lc3MjoaYrJyVJqjlXTB6j5s2bH3p9+Lbuozl8+3bTpk3rtSZJkiSpsUtPhzlzYMyYyIrDmsrKiqy4TE4+8nlcbAzXntGOa89ox8ad+3jivfVMnbeeFdv2VDlXWXnI84sLeH5xAc0ONmVvaidI6QRFiVWOqU5ubuTzzJhRp+GSJJ1yXDF5jJIP+41oz5491Z5Xc7jdu3cfep2SklLfZUmSJEmNXnJyJMRbtgzGjYtcKFOZ1FQYPz6yXXrGjIqh5Kd1SG7Gdy/pxbL7Lub1rwzhtrM70jy++r/67IvbT3DeCoIvvQ6ffRv6roe42h+5lJ0Ny5fXepgkSackV0weo7S0tEOvy8rKKCwspFWrVkcdt3Xr1kOv27RpE5XaJEmSpBNBRgZMnAgTJkBODhQUQHExJCVBWhpkZkJCQu3nDYKAzB5tyOzRhoev78dTC/OZOm8dCzZUv9866LQdOm0n3J8LH6dDbmcoSAaOctPOv02ZAr/6Ve3rlSTpVGMweYy6dOlyxPfr16+vUTC5YcOGQ6+7detW73VJkiRJJ5qEBBg5MjpzJzePZ+zQrowd2pUPN+7ksXnrefK9DRTuLa1yTND0IJy5Fs5cS7ilZSSg/Dgd9jWp9r2mTYP7769bmCpJ0qnErdzHKD09/Yit2B9//HGNxi1duvTQ6z59+tR3WZIkSZKqMLBDMg9f34/8/7mc75xxFuHao+9gCtruIrgkF+5+Ba5eAN0KIKj88svCwsjKT0mSVD2DyXpw3nnnHXr99ttvH7X/0qVL2bZt26Hvzz///KjUJUmSJKlqzeJj6U06PDuE8PeXEr6TQbirWbVjgrhygt6bCLLmwZdfhQuXQKviCv0KCqJVtSRJJw+DyXpwxRVXHHr9+uuvU3CU30KeeuqpQ6979OhB7969o1abJEmSpKodupNyVwK83Rv+cBnhjPMIl7UnLKv+TMkgcT/BOSsJRr8Bt86GgWug6QEgckamJEmqnsFkPbjiiito27YtAAcOHOC73/0uBw9WfoPf7NmzeeaZZw59f9tttx2XGiVJkiRVlJj4qQdhAGvawguD4XeXE75+OuG2pKPOE7QvIrhsEYx9Ba5+jzVsoaw8jE7RkiSdJAwm60GTJk0YP378oe/ffvtt7rrrLtavX3/o2cGDB/nrX//KvffeS1lZGQAZGRncdNNNx71eSZIkSRHt2lXTuLcpvN8DHs8kfHIY4QddCPfFVztfZKv3RiatnUuXCa/y3X9+zNItLp+UJKky3spdT2644QYWLlzI008/DUTCySuuuILevXuTmJjIypUr2bFjx6H+KSkpPPTQQ8TF+f8CSZIkqaFkZkJKChQVVdcrgM2pka83ziDsuRnOWA9dthJUs9Rj4659/Pz1Ffz89RWc3yWVOwZ35OYz00lpXn24eTQlJTBrVsD8+a0pKYkhIaGcTZsCLrnEm8AlSScWU7F69L//+7+kpqby2GOPUVpaSnl5eaW3dPfo0YOHHnqI7t27N0CVkiRJkj6RkACjR8OkSTUcUBYLy9IjX4l7CU/fAGesJ2i1p9ph764t5N21hYx7fjE39G/PHYM7cmmv04iNqf4cy8Pl5cHkyTB9OhQVxQJdj2hPSYl8lrFjISOjxtNKktRgDCbrURAEjBs3jmuvvZZnn32WOXPmsHnzZvbu3UtycjJ9+/ZlxIgRXHvttTRp0qShy5UkSZJEJMircTB5uN3NYV4vmNeTsH1hZBVln40ETSs/bx5g38FynlqYz1ML8+mY3IzbBnfkjsGdyDjt04dd/sfOnTBmDGRnV19OUVHkc0yaBFlZMHUqJCfX4XNJknScGExWIisri6ysrDqP79GjB/fddx/33XdfPVYlSZIkKRoyMiJB3tGCv6oFsKkVbGrFdcn9uPm/NjN9/jpeXb6NsJr7bzbs3MdPX1vBT19bwZAuqdx2dkc+e2YHWiX8ZxFDfj6MGAG5ubWrKDs7ssJy5kxIT6/jx5IkKcoMJiVJkiSd8qZOjQR5tQ0AD9evHzz+WCzJyel8blA664v28sf3NjB9/npWbKt+q/c7awt5Z20h33x+MVef3pbbzu7EkPZtufLKGBYvrls9ubmRUHPOHFdOSpIaJ2/lliRJknTKS06OrC7s169u4/v3j4w/PADslNKc71/ai2X3Xczsr13AmHM7k9S0+rUhB8rKyV60mRumz6fzhJdZnLYI2hUC1Sy9rEZubmQbuCRJjZHBpCRJkiQR2fI8Z05kW3dtZGXB7NlVb5kOgoALurXiD58dyMb/uZwnPjeIS3u1Oeq8B2JLCQatIfj8HBj9OpyXB0kltSuOyLbu5ctrPUySpKgzmJQkSZKkf0tOhhkzYNkyGDcuctN1ZVJTYfz4yPbvGTNqvlW6RdM4vnB2R165ewirv38p/3tlb3q2aXHUcUGrPQTDlhF8+TW46W3otw6alNb4c02ZUuOukiQdN54xKUmSJEmfkpEBEyfChAmQkwMFBVBcDElJkJYGmZmQkHBs79GlVQL/fXkGP7isF3PXFfHEgvU8/cFGCvdWHzgGnbdD5+2ElyyCFe1hSTqsPQ3CqtedTJsG999/7DVLklSfDCYlSZIkqQoJCTByZHTfIwgCzu+SyvldUpl03RlMeHILE7I3QPcCgtiqz5YM4suhbz70zSfc0xQ+ToclHWFrSyA4om9hYSRgjfZnkSSpNgwmJUmSJKmRaBoXS/fy9vD39tDsAGHvjXD6eoIORdWOC1rsh8GrYPAqwq1JkYDy446wp9mhPgUFUS5ekqRaMpiUJEmSpEZk9+5/v9jXBD7sCh92JUzdDX03wOkbCJL3Vjs+OK0YMj8mHP4xrGsTCSiXt6e42L/+SZIaF/9kkiRJkqRGJDGxkoeFifB2H3i7N2HH7XD6BsjYRND0YJXzBDFA123QdRvhZR/xZFE7ui5O58rebWkS5z2okqSGZzApSZIkSY1Iu3bVtQawoU3ka1Y/wh4FkZCy61aCmOrPo5y3cyPXTdtIq4R4bhrYgS+c1ZGhXVMJgqDKcTVVUhI5w3Lz5siKz8TEyOeoj0uCJEknL4NJSZIkSWpEMjMhJQWKio7S8WAcLEuPfCXsI+yTD2dsIGi7q9phO0pK+d07a/ndO2vpmtqcz52VzucHdeT0dkm1rjUvDyZPhunTK683JQVGj4axYyM3nUuSdDjX70uSJElSI5KQEAnzaqWkGbzfA/6YSfh4JuH8HoTFzY46bE3hXn762gr6/fINzpqYwy/fWEn+zurPsATYuRNGjYLeveHBB6sOUYuKYNKkSL9RoyLjJEn6hMGkJEmSJDUyY8cew+BtLeHN0+H3lxH+dQjhok4kNjn6ZrkPNu7iOy8sofOEV7lsyjtMnbeOnXtLK/TLz4dhwyA7u3ZlZWdHxuXn126cJOnkZTApSZIkSY1MRgZkZR3jJGEA69uQlXgmW/73Cp65/Wxu6NeOJrHV/zUwDGHWim3c+dcPafe/L3PT4wt4LncT+w+WUVQEV14Jubl1Kyk3F0aMcOWkJCnCMyYlSZIkqRGaOjVyhmNdQ0CAfv0i8zSLj2XUgA6MGtCBwpIDzFi0iT+/n88bK7dXO37/wXJmLNrEjEWbSGkeT0pBe1bvTAdaA3W7NCc3F8aMgRkz6jRcknQSMZiUJEmSpEYoORlmzoysMKxLONm/P7z0UmSew6UmNOHO87pw53ldWF+0l6cW5vPn9/P5aFP1l+YU7S2lqOU6gpvXEe5qFrl0Z2kH2JJMbUPK7GxYvhx69arlh5IknVTcyi1JkiRJjVR6OsyZU/tt3VlZMHt2ZHx1OqU05zsX9+SDb2Xy0bcyue+SnnROaX7U+YOW+wjOWUlw22wY/ToMWQapu2tV45QpteouSToJGUxKkiRJUiOWnBzZ9rxsGYwbBykplfdLTYXx4yPbv2fMqLhS8mj6tW/JT6/qy6rvX8obXxnKXed3JrV5/FHHBa32EAzNIxjzOnwhBwavgKSSo46bNg1Kjt5NknQScyu3JEmSJJ0AMjJg4kSYMAFmzSpjwYL17NkTQ4sW5Qwe3IlLLoklIeHY3ycmJuDCHq25sEdrHr6+HzOXbuVXL25gdn4BQXx5tWODtF2QtgsyPybMT4Wl6bCsA+xtWqFvYSHk5MDIkcdesyTpxGQwKUmSJEknkIQEGDEipH37/1xcM3BgR+Ki8Le7pnGxXNevHTvmt2P2f5cS9toMfTdAp20ER9l/F6QXQnoh4cWLYV2bSEi5vB0c+M8qzIKC+q9ZknTiMJiUJEmSJFVr924igeLiTpGvhH2EGZugT34kgKxGEBNC163QdSvhZTGwum0kpFzVluJi/0oqSacy/xSQJEmSJFUrMfFTD0qawQfd4INuhC1LoPfGSEjZtvqbvYO4cui1GXptJjwQy1NF7ei+JJ3LM06jSZxXIEjSqcZgUpIkSZJUrXbtqmnclQDze8L8noStiqFPPvTZSJC6p9o5gyZlvLszn2um5tMqIZ6s/u353KB0LuzemtiY4JhrLimJnGG5eXNkxWdiYuRzZGZSL2dxSpKOncGkJEmSJKlamZmR28CLio7ScUcSvN0H3u5N2HYn9M2H3hsJkvZVP6yklD/MXccf5q6jfcumjBrQgc8ObM/QLq2IqWVImZcHkyfD9OmV15uSAqNHw9ixkQuFJEkNx7XykiRJkqRqJSREwryaC2BLCuScAY9eRviXoYQfdCHcG3/UkZt27ec3c1Zz4W/fpsv/vcq453N5d20hYRhWO27nThg1Cnr3hgcfrDpELSqCSZMi/UaNioyTJDUMg0lJkiRJ0lGNHVvXkQHkt4bXBsCUKwhnnEe4uCMt4o++gS9/5z4emr2aob+eQ7f/e41v/2MJ89cVVQgp8/Nh2DDIzq5dZdnZkXH5+bUbJ0mqHwaTkiRJkqSjysiArKxjnKQ8Bta0JSthEFt+fAXP3H42o/q3p2kNLr5ZV7SXX+Ws5LyHZ9PrgVl878WPWZi/k8LCkCuvhNzcupWUmwsjRrhyUpIagmdMSpIkSZJqZOrUyBmOdQ0BAfr1i8zTPD6WUQM6MGpAB3btK+X5xZv56wcbeTlvK6Vl1W/bXrW9hJ/NWsHPZq2gRWkLdqd0gDYdYFsSUPuLc3JzYcwYmDGjjh9KklQnBpOSJEmSpBpJToaZMyMrDOsSTvbvDy+9FJnncC2bxXPb2Z247exOFJYc4LnczTzz4UZeXb6Ng+XVh5R74vcQnL8czl9OuD0RlnWIfO1IqlVt2dmwfDn06lXbTyVJqiu3ckuSJEmSaiw9HebMqf227qwsmD07Mr46qQlNGH1uZ16863w2/fAKHr1pAJf1akNNLucOWu8mGJpHMPoNuP0NOC8PUnfXuMYpU2rcVZJUDwwmJUmSJEm1kpwc2fa8bBmMGwcpKZX3S02F8eMj279nzKi4UvJoWrdowp3ndeHlu4ew8X+u4JGs/lzUozVBTULK04oJhi0jGPM63JYD5y6HlOpDymnToKSkdjVKkurOrdySJEmSpDrJyICJE2HCBMjJgYICKC6GpCRIS4PMTEhIqJ/3apvUlLFDuzJ2aFc279rHj/+yicmzNkL6jqMGlUHbXdB2FwxfSrilJeS1h+XtK2z3LiyMfI6RI+unZklS9QwmJUmSJEnHJCHh+IZ57Vo245z4bkx+uhsk7iXstQn6bCToUHjUsYdCymHLCLcmRQLKw86kLCiIdvWSpE8YTEqSJEmSTji7P9mVvbs5LOwOC7sTJpVAxibovZGgfdFR5whOK4bTimFoXuTinLwOLNvenjBMIqjJfnFJ0jExmJQkSZIknXASEyt5WJwA7/WA93oQtiyB3huhdz5B2q6jzhe03g1D8vjZpjz+9vMW3DigAzcOaM/ADi3rNaQsKYlsF9+8ORKuJiZCu3b1u+1dkk4UBpOSJEmSpBNOu3ZH6bArAeb3hPk9CZP3RFZSZmwkaLfzqHPnbd3DT15bzk9eW07PNi0YNaA9Nw5oz1npyXUOKfPyYPJkmD4diooqtqekwOjRMHZs5OxOSToVGExKkiRJkk44mZmRMK+ykK+CnS3+E1K2/Pd2714bCTocffCKbXv42awV/GzWCrq1SmDUgPbcNKADgzvVLKTcuRPGjIHs7Or7FRXBpEmRr6wsmDq19reYS9KJxmBSkiRJknTCSUiIrDCcNKmWA3clwIIesKBH5EzKXpug96YaXZyzekcJv3xjJb98YyWdU5ofWkl5XudUYmIqhpT5+TBiBOTm1q7E7OzICsuZMyE9vXZjJelEEtPQBUiSJEmSVBdjxx7jBMUJ8H4PeGoY4e8u4/tDz2BYt1bUZLf2uqK9THpzFRf85i06T3iVe7IXMWv5Ng6WlQORFZBXXln7UPITubmRUHPn0XeeS9IJyxWTkiRJkqQTUkZGZNvz0bZJ10TWFc2ZkNUd6M7GnfvIXrSJGR9t4s3V2wnD6sdu3LWPR95ewyNvr6F1QjzXnNGOpf9oz+KlbYDYOteUmxvZBj5jRp2nkKRGzWBSkiRJknTCmjo1su25risTAfr1i8zziQ7JzbhnWDfuGdaNzbv28bfczTz74UZyVm2n/Cgh5faSUqbPXw/t1sNX4mB1W1jePvK/pbX/K3h2NixfDr161XqoJDV6BpOSJEmSpBNWcnLkLMa6nOUI0L8/vPRS1RfNtGvZjK8M7cpXhnZlS/F+/pYbWUn5+srtlB0lpQyaHoQ+G6HPRsKDMbDmtEhIuSoN9jWpcY1TpsCvflWbTyVJJwbPmJQkSZIkndDS02HOnMi27trIyoLZs2t+wUzbpKbcPaQrL989hE0/vJxHbxrAVX3aEh979EMpg7hygp4FBCM/gK+8DDe+AwPXQIt9Rx07bRqUlNSsRkk6kbhiUpIkSZJ0wktOjpzFmJcXWWE4bVrkAppPS02N3OY9duyxbY9u06Ipd57XhTvP68LOvaW8uHQLf1u0iX/kbmF/eVm1Y4OYELpsgy7bCC9dBBtTIyspl7eP3Br+KYWFkJMDI0fWvV5JaowMJiVJkiRJJ42MDJg4ESZMiIR5BQVQXAxJSZCWBpmZkFAx+zsmyc3j+dygdD43KJ3fPVbG2J9uhV6boEcBQbPSascGAZBeGPm6aAnhlpaQ9++QckciEFmNWVBQvzVLUmNgMClJkiRJOukkJDTMCsMDJbGwsl3kK6acsNP2SEjZczNBi/1HHR+03QVtd8GwZYQ7WhxaSblrVzKfhJSSdLIwmJQkSZIkqZ4kJh72TXkMrD0t8vVaf8IOO6DnZui1iSB571HnClrtgfNWwHkr+PGmZqx6vj1Z/dpzQbdWxMbUX0hZUgKzZgXMn9+akpIYEhLK2bQp4JJL6n91qSQdzmBSkiRJkqR60q5dFQ1hAPmtI185pxO23Qm9/h1Stt591Hl3lO7j4dmreXj2ak5r0YRr+7Xj+jPacWmvNjSLj61TrXl5MHkyTJ8ORUWxQNcj2lNS/nMeZ0ZGnd5CkqplMKn/396dx1dR3f8ff9+sZCMJCUkgYYeEVcQFLVJRXECqVhFrXWvFhVqsS1uq7U9coF+sLdCKFqRKcKugEisKuCCCIAqKG2BIwhYCkj0hG2Sd3x8j471J7hbCBW5ez8djHo+Ze2fOnLn5cDn55CwAAAAAgHYyZoyZ0Gtt4Z0f2aTCGHP7ZKCMLpU/9qRMOuT2HkXVdXp+0z49v2mfIkICNT4tQVcOTdTPBiWqS3iI2+sPHZJuu03KyHB9Xnm5NHeuuU2cKC1aZC4yBADthcQkAAAAAADtJDzc7GU4d64XF5VGSZujpM0DZHSusZKUSi41F8dxobquUcu2HtSyrQcVGGDT+X266OdDk/TzIUnq1aXlOOwDB6Tx46Vt27x7rowMs4flu+9KycneXQsAzgSc6AoAAAAAAOBPpkw5hosrwqUv+0pLz5MWXCLjg2EandJVQR7MKdnYZOijXSW6763t6vN/H+qMOev02PtZ+vrAIRmGofJyadw475OSR23bZiY1D7nv1AkAHqHHJAAAAAAA7Sg11Rz67G6otFs1nTSxf28tu6+3ymrq9E5mgTK+Paj3s4t0uL7J7eVff1+hr7+v0GPvZ6tXbJiC9iZpZ0WSZOsiGW3rp7RtmzkMfNmyNl0OAA5ITAIAAAAA0M4WLTKHPre1d6IkDR1qliNJseEhuvnMHrr5zB6qqWvQB9nFemt7vt7enq+Smnq3ZeWWHZai98j2iz0yDgdLuxOlXYnS3gSp3rvUQEaGlJMjDRjQlqcCgB+RmAQAAAAAoJ1FR5vzMbZlPkdJGjZMWrWq9cVmwkOCzHkkhyapobFJG/eW6a3t+Xpre752l9S4LdsWVi8N2S8N2S+jIUDKjZd2JZlbTahH9VuwQJo929unAgBHzDEJAAAAAMBxkJwsbdhgDuv2xsSJ0vr1ni0yExQYoPP7xWn2lUOU8+BYffv7MZoxPk1npXi2fLYtqEm2foWyXfqtNOV96ZcbpLN3SrFVLq9LT5dq3OdAAcAlekwCAAAAAHCcREeb8zFmZ5u9DNPTpfLylufFxpqreU+Z0vYh0jabTUO7ddbQbp31l4tTtb/8sJZvL9Dz6w7qy6IS2QINN9dLSi4zt/MzZZRESjt/6El5MEbSjwvwlJVJ69ZJl13WtroCgERiEgAAAACA4y41VZozR5o500zoFRRIlZVSVJSUmCiNGSOFh7fvPVNiwnT3eb0Vlt1btz1eL6NPodQvX+pTKFtog9vrbXFVUtxO6ZydMqpCzTkpdyVJefFSQ6AKCtq3vgA6HhKTAAAAAAD4SHi473sZVlVJqg2WdiSbW2CjjJQSqX++1K9AtqgjbsuwRdZKw/dJw/fJqA+UcuP1/vdJGl+RoKTOndq9zjU1ZgI3P9+sf2SklJR0fBK4AE4cEpMAAAAAAPixyMhmLzQGSrkJ5vahISOp3OxJ2T9ftnjXc0tKki24UepfoCWlBVryuDSyR4wuH5KoKwYn6rRunWWz2dyW4Ux2tjR/vrR4cetD3mNifhzynpra5tsAOEmQmAQAAAAAwI8lJbl61yblx5rbJ4NkxFRJ/QvMRGVyqTzJMW7OK9fmvHJNfzdLPWPC9LPBibpySKIu6Ben0KBAj+p46JB0221SRobr88rLpblzzW3iRGnRotZXLgdwaiAxCQAAAACAHxszxuxp2FoPxBbKI6UvIqUv+klhtTL6FZhDvnsWyRbc5PbyfeWHNX/jXs3fuFeRoYG6NLWrLh+cpJ8NSlDXyNBWrzlwQBo/Xtq2zavHUkaG2cPy3Xc9W8EcwMmHxCQAAAAAAH4sPNwc/jx3rpcXHg6VtvU0t6AGGb2KpX4FUt8C2SJq3V5eVduojK35ytiaL5tNOrdnrC4fbA75HpIUJZvNpvJyadw4afv2Nj2atm0zk5obNtBzEjgVkZgEAAAAAMDPTZnShsSkvYYgc0XuXUmSDL2+oVxfVxbone8K9M33FW4vNwzp09wyfZpbpr+s2qE+XcJ1+eBEffl6orZnxkkKaHPVtm0zh4EvW9bmIgCcICQmAQAAAADwc6mp5pyM7uZw9MTEHd4BngAARg9JREFUiTZdc16srlGsZowfqNzSGr2TaSYpP9pZorpG90O+95TWaN6GPVK3PdLdQdLertKuRGlPonQkxOs6ZWRIOTnSgAFteSIAJwqJSQAAAAAAOoBFi8w5Gb2dy9He0KFmOfZ6dQnXb8/ro9+e10eVRxr0QU6R3tleoBWZBSqqrnNbpi20QUo7KKUdlNEk6fsu0u5EM1FZGinJs1W+FyyQZs/2/pkAnDgkJgEAAAAA6ACio82FYtqy0IwkDRsmrVrlei7HqE5BmjismyYO66bGJkOb95Vp+XcFemd7gbYXVLq9hy1AUkqpuZ2fKaMs4oeelAnS/jipyfmQ7/R0acYMc05NAKcGEpMAAAAAAHQQycnmQjG33ebdsO6JE82ekt4sMBMYYNNPenfRT3p30awJg7S7pFrvfGcO+V67s0QNhuG2DFtstXTWbums3TJqg6TceHO49+4EqaaTw7llZdK6ddJll3leRwAnFolJAAAAAAA6kOhoc6GY7Gxz+HN6ulRe3vK82FhzNe8pU9pn7sa+cRH63U/76nc/7atnnqvX1L8XSf3ypT6FsoXVu73eFtogpeabmyQjP/rHJGV+jCSbCgqOvZ7O1NSYic/8fKmqSoqMlJKSpDFj6KUJtBWJSQAAAAAAOqDUVGnOHGnmTGnNmkZ98UWeqqsDFBHRpLPO6qGxYwOPW8Kt6XCwlN3d3GxNMrqXSf0KpL4FssVVeVSGLemQlHRI+km2jJoQaU+CPs5P1FWHuyomLLjd6pqdLc2fLy1e3HoCNybmxwRuamq73RboEEhMAgAAAADQgYWHS+PHG+rWrcR6bfjwFAUdx4xBZKTdgREgHYgzt48Hy4iplvrmm4nKlFLZAjwY8h1eJw3Zr8XF+/XSIzaN7t1FEwYl6GeDEjUoMVI2m2cL6Ng7dMizIe/l5dLcuebWliHvQEdGYhIAAAAAAPhUUpKLN8sjpC/7mVtovYxeRVLfAnPId7j7Vb4bmwyt212idbtL9KcVmeodG6YJgxI1YVCCLuwfr7DgQLdlHDjQtkWCMjLMHpbvvmvO5wnANRKTAAAAAADAp8aMMYdAtzY02kGt3ZBvGTKSyn9MUiYd8uhee8sO698b9+rfG/cqLDhAY/vHa8KgRP1sUIJ6xrYcq15eLo0bJ23f7t0zHbVtm5nU3LCBnpOAOyQmAQAAAACAT4WHm/Myzp3rzVU2KT/W3DYOlBFxROpTKPUpkHoXyRbS6LaEw/VNWpFZqBWZhfqtpKFJUVaS8ie9YhUUGKDJk9uelDxq2zZzGPiyZcdWDuDvSEwCAAAAAACfmzLF28RkM9WdpG09zS2gSYtXl+jrykKtzCxQdlG1R0Vsy6/UtvxKPfnRTsWGBesn3btqRWaCFJYgHQ49hsqZw7pzctpnRXPAX5GYBAAAAAAAPpeaai4W425xGU9MvCpAt1zYVbeoq+ZcOUQ7i6u1MrNAKzMLtXZXieoam9yWUXa4Xit3fS/bhO9lGJIOxkp7EqS9XaX8GEneL6CzYIE0e7bXlwEdBolJAAAAAABwQixaZC4W4+0iM/aGDjXLsdc/PkK/+2lf/e6nfVVV26APc4q1IrNAq3YU6sChI27LtNkkdS8zt/OyZNSEmAnKPQlSblePe1Omp0szZphD1wG0RGISAAAAAACcENHR5grWbVkBW5KGDZNWrXK9yExkaJB+PjRJPx+aJMMw9M33FVaS8rPcMjUZ7u9jC6+TBh+QBh8we1Pmx0h7E8xEZX6MZLTem7KsTFq3TrrsMu+fDegISEwCAAAAAIATJjnZXMH6ttu8G9Y9caLZU9Kbla9tNptOT47W6cnR+svFqSqurtV7WUVamVmot74tVE1jvQdlSOpWbm4/yZZxONjsRbknwUxW1jj2piwo8Lx+QEdDYhIAAAAAAJxQ0dHmCtbZ2ea8jOnpUnl5y/NiY83VvKdMaZ9FZeIjQnXjGSm68YwU/bOkSfc/WfbDSt+FsiVUeFSGLaxeGvi9uUkyCqLNJOWeBOlgjCorA469ok7U1Jg9MvPzpaoqKTJSSkqSxoxh+DhODSQmAQAAAADASSE1VZozR5o500y4FRRIlZVSVJSUmHh8E27RUQHSgThz2zBIRsQRM0nZu1DqVSRbpwaPyrElHpISD0nn5sg4EqyXyuIVuTlB4wcmqFvnTu1S1+xsaf58afHi1hO4MTE/JnBTU9vllsBxQWISAAAAAACcVMLDfT8vY1JSsxeqO0nbepqbrUlG9zIzSdmnULZED3tTdqrXFxUHNfm1g5Kk07t31riBCbosLUE/6R2r4EDvelMeOuTZkPfycmnuXHNry5B3wFdITAIAAAAAgA5vzBizp2FrPRBl2PWm/GSQjPAjUu8is0dlryJzOLcHvv6+Ql9/X6G/rdmpzp2CdMmArho3sKvGpyUoJSbM5bUHDrRtkaCMDLOH5bvvmvN5AicTEpMAAAAAAKDDCw83hz/PnevByTWdpO96mJutSUZS+Y9zUyYd8uh+FUcatGzrQS3bavamHNYtSuPSEjQ+LUHn9YlVaFCgdW55uTRunLR9u/fPJZnJzPHjzUWG6DmJkwmJSQAAAAAAAJlzMnqUmLRnBEgHu5jbxoEywmqt3pSxIwpVfsSz3pRbD1Zq68FK/WPtLkWEBOqCfnG6NC1Bl6Z21UO/idD27TbvH8jOtm3mMPBly46pGKBdkZgEAAAAAACQuVDMxInu53B06XColJmiiYNS9NrjhrbsL9eqHYV6d0ehNueVyzDcF1Fd16gVmYVakVkoSTK6hEkXd5X2Jkh58VJtcJuqlpEh5eS0z4rmQHsgMQkAAAAAAPCDRYvMORm9ncvR3tChZjmBATaN7BmrkT1j9cilaSqurtUH2cV694dEZVF1nUfl2aIPS8P3ScP3yWiySQdjzCRlblcpP0YyPO9NuWCBNHt2254LaG8kJgEAAAAAAH4QHW0uFNOWhWYkadgwadWq1udyjI8I1fUjknX9iGQ1NRn68sAhvZtlJik/yy1Tkwe9KW0BhpRcZm7nZck4HCzti/8xUVnpehGd9HRpxgxzTk3gRCMxCQAAAAAAYCc52Vwo5rbbvBvWPXGi2VPSkwVmAgJsOqtHjM7qEaP/d3GqSmvq9GFOsd7LKtL7WYXaf+iIR/e0hdVLaQfNTZJREint/WHY9/4uUoNj6qesTFq3TrrsMs+fCzheSEwCAAAAAAA0Ex1tLhSTnW0Of05PN1fHbi421lzNe8qUY5u7sUt4iK4d3l3XDu8uwzC0o7BKM14q0qufFkopJbIFN3lUji2uSoqrks7cI6MhQDrQxUxS7u0qFUdJsqmgoO31dKemRlqzxqbPP49TTU2AwsObdPCgTWPH0ksTLZGYBAAAAAAAcCI1VZozR5o50+xpWFAgVVZKUVFSYqI0Zkz7J9xsNpsGJUbpJ6FRejWjrxTYKCO51Fztu3ehbF0rPSsnqEnqVWxuYySjKlTa21Vr8xP0s6p4dY0Mbbc6Z2dL8+dLixdL5eWBkno7vB8T82MCNzW13W6LUxyJSQAAAAAAADfCw30//Dky8oedxkBpX1dz+3iwjIgjUq8iM1HZq0i2cA8X0YmslYbu14vF+/XSY9IZydG6NK2rxqUm6NxesQoJCvC6jocOeTbkvbxcmjvX3LwZ8g7/RmISAAAAAADgJJSU5OSN6k7Sdz3MTYaMhENWb0p1L5Mt0P0qOoYhbdl/SFv2H9KsD3cqIiRQF/SL08WpXXXxgK4anBgpm831at8HDrRtkaCMDLOH5bvvmvN5ouMiMQkAAAAAAHASGjPGHALd2tyWP7JJhTHmtnmAFFIvo0fJD70pC2WLrfHoXtV1jVqRWagVmYWSpO6dO+niAfE/JCrjldS5k8P55eXSuHHS9u3eP5dkJjPHjzcXGaLnZMdFYhIAAAAAAOAkFB5uzss4d64XF9UFS7uSzE2SEV39Y2/KHiWyhTZ4VMz3FUf04pb9enHLfknSsG5RunhAV12S2lU/7dNFkycHtTkpedS2beYw8GXLjq0cnLpITAIAAAAAAJykpkzxMjHZ3KEI6ZsI6ZveUkCTXl5Tpu9qivR+VqG2HDgkw/2ob0nS1oOV2nqwUnM/3q3ggADVBcZKI7tKuV2lwmjJcD3s25mMDCkn59hWNMepi8QkAAAAAADASSo11Vwsxt3iMp6YeFWAbhgTJylOMy8bqOLqWn2QXazVOUVanV2kvPIjHpVT39QkW88SqWeJ9NMdMg4HS/vizSRlblepwrtlyhcskGbPbsMD4ZRHYhIAAAAAAOAktmiRuViMt4vM2Bs61CzHXnxEqK4fkazrRyTLMAxlF1Xrg+wirc4p0kc7S1RZ69mwb1tYvZR20NwkGeXhPyQp482EZW2Iy+vT06UZM8yh6+hYSEwCAAAAAACcxKKjzRWs27ICtiQNGyatWuV6kRmbzaa0hEilJURq6ug+qm9s0uZ95fogu0gf5hTps33lamzybNy3LaZGismVhufKaJJUEPNjovL7LlJTgMP5ZWXSunXSZZd5/2w4tZGYBAAAAAAAOMklJ5srWN92m3fDuidONHtKervydXBggM7r00Xn9emiR8elqeJIvdbuKtFTbxXpw51FsnWp9qgcW4CkbuXmdm6OjPpAKS/OTFLmdpVKoiTZVFDgXf28VVNjJj/z86WqKikyUkpKMlc+p6fmiUNiEgAAAAAA4BQQHW2uYJ2dbc7LmJ4ulZe3PC821lzNe8qU9ltUpnOnYF05JEm5a5L0YbpkRNVIvYqlXkVSz2LZwus8KscW3Cj1LTQ3SUZ1qLQvXu9/H68LSuPVu0v7Zgmzs6X586XFi1v/rGJifvysUlPb9dbwAIlJAAAAAACAU0hqqjRnjjRzptkLsKBAqqyUoqKkxMTj2wswMvKHncpwaVtPc5Mho2uFmaTsVSQll8oW3ORRebaIWmnQAS0pPaAl/yf1jQvX2P7xumhAvMb2j1fXyNA21fPQIc96l5aXm6uez53b9t6laDsSkwAAAAAAAKeg8HDfz8uYlNTaqzapKNrcvugvBTXK6F5qJSptiRUel7+7pEa7S/bpuU37JEmndeussQPidVH/eJ3fN05Rndynsg4caNt8nBkZZg/Ld981h87j+CMxCQAAAAAAAI+MGWMOf25tWLSlIVDa19Xc1ktGWK3Us9ga+m3rfNjj+317sELfHqzQPz/eraAAm87pGaOxA7rqov7xOrdXrEKCHBfSKS+Xxo2Ttm9vy9OZyczx4835POk5efyRmAQAAAAAAIBHwsPNORnnzvXiosOhUlayucmQEVttJip7Fkk9S2TrVO9RMQ1Nhj7ZW6ZP9pZpxgfZCg8O1E/7drGGfp/ePVqTJ9vanJQ8ats2cxj4smXHVg7cIzEJAAAAAAAAj02Z4mVi0oFNKos0t296SzZDb2w4pJwjxVqzs0gb9pTqcL1n81PW1DfqvawivZdVJEmKDg1WeX28NDxe2hcvlUWY92uDjAwpJ6f9Fg9C60hMAgAAAAAAwGOpqeZCMe4WlvHExKttmjgqRlKM/jS2v2obGvXp3jJ9uLNYa3KKtTmvXI1NhkdlHaqtly31oJR6UJJkVHaScn9IUu7rKlV38qpuCxZIs2d7+UDwColJAAAAAAAAeGXRInOhGG8XmLE3dKhZjr3QoEBd0D9eF/SP14zxUsWRen28u1Qf5hRpzc5ibT1Y6XH5tqgj0tD95ibJKIn8IUkZL+2Pk46EuLw+PV2aMeP4rXAOEpMAAAAAAADwUnS0uXp1W1a/lqRhw6RVq9wvMNO5U7AuH5yoywcnSpIKK2u1Zmex1aNyT2mNx/e0xVVJcVXSiL0yDEmFnaW8eHPb30WqC3Y4v6xMWrfO9yufdyQkJgEAAAAAAOC15GRz9erbbvNuWPfEiWZPybasep0QFapfjkjWL0ckS5L2lNTow51Feu69Ym06WCxbRJ1H5dhskhIrzO2s3TKabFJBtJmk3BcnHegiNQSpoMD7OsJzJCYBAAAAAADQJtHR5urV2dnmnIzp6VJ5ecvzYmPN1bynTGnfBWX6xIXr9rheOry5lzY9YsiIr/xhxe9iKaVEttAGj8qxBRhSt3JzG7lTRqNNyo/R0rx49doZr5/0ilWn4MD2qzgkkZgEAAAAAADAMUpNlebMkWbOlNasadQXX+SpujpAERFNOuusHho7NvC4ztUYGSlJNqm4s7l92VcKaJKRWP5jorJ7mWxBnq34bQs0pOQyvXeoTO8tyFFoUIBG9YrVBf3jdWH/OI3sEauQoIDj90AdBIlJAAAAAAAAtIvwcGn8eEPdupVYrw0fnqKg45yBSkpq5cWmAOlgF3PblCoFNcjoXib1KJZ6lkhJ5WZPSQ/UNjTpo10l+mhXiR55TwoPDtToPl10Qf84je0frzOSoxUUSKLSWyQmAQAAAAAAcEobM0aKiWl9GLmlIUja19XcPpEU3CAjucRMUvYolhIPmXNPeqCmvlHvZxfp/ewiSVJUaJDO79tFF/SL19gB8RrerbMCAjwsrAMjMQkAAAAAAIBTWni4OYfl3LleXFQfJO1NNDdJCq2TkVJqJil7lMiWUOFxUZW1DVqRWagVmYWSpNiwYI3pF6cL+8frwn5xGpIUJZunWc8OhMQkAAAAAAAATnlTpniZmGyuNkTalWRukj79plZ5RonW7CzW2l0l2lFY5XFRZYfr9b9t+frftnxJUmJUqB6+OFVTftKLnpR2SEwCAAAAAADglJeaKk2cKGVkHHtZEydK55wWqnPUXZOGd5ckHaw4oo92FuujXSVau7NYu0pqPC6voLJWU9/cqr5x4Ro/MOHYK+gnSEwCAAAAAADALyxaJGVnS9u2tb2MoUPNcprr1rmTbjgjRTeckSJJ2ldWo492lmjtrmKt2VmsvPIjbsvesKeUxKQdEpMAAAAAAADwC9HR0rvvSuPHty05OWyYtGqVWY47PWPD9auzw/Wrs3vIMAztLqnRR7uK9dHOEn20s1j5lbUtrrloQLz3lfJjJCYBAAAAAADgN5KTpQ0bpNtu825Y98SJZk9JT5KSzdlsNvWLj1C/+Ajdfk4vGYahrKIqrckp0YY9JWoypF+O6K4L+5OYtEdiEgAAAAAAAH4lOlpatswc1r1ggZSeLpWXtzwvNtZczXvKFGnAgPa7v81m08CEKA1MiNLd5/Vuv4L9DIlJAAAAAAAA+KXUVGnOHGnmTGndOqmgQKqslKKipMREacwYKTz8RNey4yIxCQAAAAAAAL8WHi5ddtmJrgWaCzjRFQAAAAAAAADQ8ZCYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HM2wzCME10JnBq2bNnicBwQQF4bx66pqcnaJ6ZwrIgntDdiCu2NmEJ7Ip7Q3ogptCfiqWOw/zlL0plnnunV9UHtWRl0LM2DDzhWxBTaE/GE9kZMob0RU2hPxBPaGzGF9kQ8wRlS1gAAAAAAAAB8jh6TaDO6YgMAAAAAAHRcx9obljkmAQAAAAAAAPgcXd4AAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzQSe6Amhp165dWrJkiTZt2qT9+/eroaFBCQkJSk1N1RVXXKFLLrlEQUHt/6M7ePCglixZog0bNig3N1dHjhxR165d1bdvX02YMEETJkxQWFiYV2V+++23ev311/X555+roKBAhmEoMTFRQ4YM0c9//nOdf/75stlsHpdnGIZWr16t5cuXa+vWrSopKVFYWJgSExN17rnn6pprrtHAgQO9fXS/Rjw5V1NTo7feeksbNmxQZmamysrK1NDQoJiYGKWmpuq8887TpEmT1LlzZ28f368RU94rLS3V5ZdfrpKSEklSVlbWMZfpT4gp1woLC7V8+XKtXbtW+/btU2lpqTp16qSUlBSNHDlS1113nfr16+dVmf6MeHKuoaFBK1as0OrVq7Vt2zaVlpbKZrMpLi5Ow4cP14QJE3TRRRe1y/eeP/GnmGrNtGnT9NZbb2nkyJF66aWXvLqWtnnbEFPO0T73HvHkPdrmJxebYRjGia4EfjRv3jwtWLBADQ0NTs8ZOnSo/v73v6tv377tdt8lS5boiSee0OHDh52e07t3bz355JMaPny42/Lq6+s1Y8YMLV261OV5o0eP1qxZs5SQkOC2zIKCAt1///3asmWL03NsNptuvfVWPfDAAwoJCXFbpr8jnpxbuXKlHnvsMZWXl7s8LzIyUg899JAmTZrktsyOgJhqm/vuu0+rVq2yjmn8/IiYci09PV1PPfWUampqnJ4TEBCg22+/Xffff78CAjr2YBjiybkdO3bovvvu0549e1yeN2zYMM2dO1c9evRwW2ZH4C8x5czq1av129/+VpK8/qWftnnbEFPO0T73HvHUNrTNTy4kJk8iM2fOdPiHFhQUpLS0NIWFhWnXrl0qKyuz3ouPj9drr72m5OTkY77v4sWLNWvWLOvYZrNpwIABiomJ0d69e1VYWGi9FxYWpldeeUVDhgxxWp5hGJo6dapWr15tvRYaGqq0tDQFBgYqJydHVVVV1nt9+/bV0qVLXf7Vq7S0VNddd5327dtnvRYTE6P+/fvr8OHDysrKcvgy/tnPfqY5c+Z4/iH4IeLJeTw1r6MkdenSRb1791ZgYKD27t2roqIih/fvueceTZ061f0H4MeIqbb9Zf7dd9/Vvffe6/AajR8TMeU8pgzD0OOPP67//ve/1muBgYHq2bOnunbtqoKCAuXm5jpcc9111+nxxx/37EPwQ8ST83jKzMzUTTfd5HBdVFSU0tLSZBiGduzYoerqauu9rl27asmSJUpJSfH8g/BD/hJTznz77bf61a9+Zf3hw5tf+mmbtw0x5XkdJdrn7hBPbUPb/CRk4KSwatUqIzU11druueceo6ioyHq/rq7OWLJkiTF8+HDrnKuvvtpoamo6pvt+9dVXxqBBg6wyb7zxRiM3N9d6v6mpyXjvvfeMc845xzrn/PPPN2pqapyW+dxzzzk8y6OPPmpUVFRY7x8+fNiYP3++MXjwYOuc3/72ty7reeedd1rnDhs2zPjvf/9r1NfXW+8XFhYa9913n8N9X3jhhWP4ZE5txJPzePryyy+NtLQ069wLL7zQWLt2bYtn37hxo3HppZc63Hvt2rXH8Omc2ogp199RzpSUlBjnnnuuw/1SU1PbVJa/IaZcx9Szzz7b4vPZt2+fwznbt283rrrqKofzPvzwwzZ+Mqc24sl5PNXV1Rnjxo2zzh0yZIiRnp5u1NXVWefU1tYa8+fPd3iW66677pg+m1OdP8VUazZt2mSceeaZDs940003eXw9bXPvEVPO0T73HvHUNrTNT04kJk8CdXV1xgUXXGD9o7jrrruMxsbGVs9dv369Q0N0+fLlx3TvX/ziFw5fVIcPH271vMzMTGPEiBHWufPnz2/1vJKSEofzHnnkEaf3fuONNxy+DLZs2dLqeR9//LHDeStWrHBa5rRp06zzzjnnHKOystL5w/sp4sl1PF1//fUO/0na/wfeXFlZmXHJJZdY548fP975w/sxYsp1TLnyu9/9rkXDh8YPMeUupvLy8oyhQ4c6JKac/SJx6NAh4/zzz7fO/eUvf+n6A/BDxJPreFqxYoXDecuWLXNaZnp6usO5H3/8sfOH92P+FFOtee655xzq7O0v/bTNvUdMuUb73DvEU9vRNj85deyJiE4SH3zwgb7//ntJZvfr6dOnO50javTo0bruuuus4/T09Dbf95tvvtHXX39tHT/88MPq1KlTq+cOHDjQmttBkl544QU1Nja2OO+NN96whgLFxMRo2rRpTu9/zTXX6IILLrCOnT3LCy+8YO2PHj1aEyZMcFrmI488ori4OElSWVmZ3nzzTafn+iviydTas+Tl5TnMgzRt2jTFx8c7LTMmJkYPPvigdbx7925lZmY6Pd9fEVMmb59l1apVevfddyWJCdqbIaZMzp5l0aJFqqurs+rx//7f/3O6GEnnzp01ZcoU6/irr77SoUOHnNbBHxFPJmfPsn79emu/T58+mjhxotMyb775ZiUlJVnHa9eudXquP/OnmLK3d+9e3XnnnXryySddzkfnDm1z7xFTztE+9x7x1Da0zU9eJCZPAitXrrT2R40ape7du7s83/6LZfv27crLyzvm+/br108jRoxwef6kSZOs1bxKS0u1efPmFufYTyB72WWXKTw83GWZ9s/y8ccft5jc/9ChQ9q4caN1fM0117gsLzw8XFdeeaV1fPSLpyMhnkytxdNnn31m7YeGhuqSSy5xWZ4k/fSnP1VwcLB1vHXrVrfX+BtiytRaTDlTWlpqzfUXEhKi+++/36PrOgpiytRaTNXX1+vtt9+2jv/yl78oMDDQZZnjx4/XTTfdpKlTp+rPf/6z24a/vyGeTM6+o/Lz8639wYMHuywvMDBQw4YNs47379/v8nx/5U8xJZmrsc+cOVOXX3651q1bZ70+YsQIXX/99V7VkbZ52xBTztE+9x7x5D3a5ic3EpMnmGEY2rRpk3V83nnnub0mLS1NXbt2tY7XrFnTpnt/+umnXt03OjpaQ4cOtY4/+ugjh/fLy8sd/lo1evRot2Wee+651i9cR44ccWjoSNLmzZutX7BsNptH9bQ/58svv+xQPUeIJ9fxVFBQYP3n2KNHD49WhwwODlZkZKR1bD+JdEdATLmOKWceffRRlZaWSjInZu/Xr59H13UExJTrmNqyZYsqKiokmatZjhw50m2ZsbGxevjhh3XPPffolltuUZcuXdxe4y+IJ/ffUVFRUda+J39cse+lEhoa6vZ8f+NPMXVUTU2NXnrpJdXX10sye1jdddddevHFF63ejJ6ibe49Yso12ufeIZ7ahrb5yY3E5Al24MAB6xcQSQ7/cF1JS0uz9tvyF6L6+nrt3r3bOvZ0lSxX983KypJht8i7J2WGh4erZ8+eTsvcsWOHtZ+SkqLo6Gi3ZQ4cONDab2pq0vbt291e4y+IJ9fxNHXqVG3dulXr16/XvHnzPKpjZWWlQwO6o3X7J6Zcx1RrVq5cqffee0+S+XlNnjzZ7TUdCTHlOqa+/PJLa/+cc87xqI4dGfHk/juqf//+1v6WLVtcJicPHz7sEIMd8Rc3f4qp1owaNUrLli3TAw884FECqDna5t4jplyjfe4d4sl7tM1PfiQmT7C9e/c6HNs3Ll1JSUmx9vft2+f1fffv32/9RUKSevXqdcz3tX+WkJAQdevWrV3L9LSOXbt2dZjrIjc316Pr/AHx5P5ZAgIClJCQoL59+3pU3gcffKCmpibruKP9kkZMefcsJSUl1jCR4OBgzZo1y+0w3I6GmHJdZlZWlrU/YMAAa3/jxo168MEHNW7cOJ1++uk655xzNGnSJD3zzDNWD4COiHhy/yzXXXed9ctdRUWF/va3vzkt64knnrB+2Q8ODta1117rUR38iT/F1FEBAQG68MIL9eKLLyo9Pd0hUegt2ubeI6bco33uOeLJO7TNTw1BJ7oCHV1RUZG1HxAQ4HKiX3v2XbHty2jLfZuX5+l9S0pK1NTUZE20a1+mp+U1P7d5vQoLC9tUZlxcnA4cONBqmf6MeDr2Z7FXW1urZ5991jqOiYnRGWeccUxlnmqIKe+e5dFHH7WGE/3mN79Ramqqx/fpKIgp189iP+9TYmKiCgoK9PDDDzvMuSSZPdvKy8u1detWLV68WI888oguv/xyj+vgL4gn98+SmJioadOmaebMmZKkJUuWKD8/X3fccYeGDBkim82m7777TgsXLnQYZnfPPfe4nbfMH/lTTB0VGRmpBQsWeF2n1tA29x4x1b46evucePIObfNTA4nJE8y+C3pERITT1bSas59Toy3ztDS/xtPu7/bzFBmGoYqKCsXExEgy50Zq7Tx3XD2L/bE3Zdqfa9/V3d8RT8f+LPb+8Y9/OPxV8pZbbrHmwOkoiCnPn2XFihV6//33JUmDBg3SnXfe6fE9OhJiyvWzFBcXW/s1NTW64YYbrAVIwsLClJqaqpCQEO3evVslJSWSzP/n/vCHP6i8vFw33XSTx/XwB8STZ89y8803Kzk5WbNmzdK+ffu0du1apytux8TE6I9//KMmTZrkcR38iT/F1PFA29x7xFT76ujtc+LJc7TNTx0M5T7BamtrrX37IQ7u2M+3UFdXd0z39ebe9qufNS/Hvh7t9Szt8fk0f1Z/Rjwd+7MctXTpUr344ovWcXJysn7961+3ubxTFTHl2bMUFxdbw0SCgoI0a9asFnWBiZhy/Sz2v7D/9a9/1f79+xUaGqqHHnpImzZt0muvvaaXX35ZGzZs0DPPPGP1RDAMQ7NmzdIXX3zhcT38AfHk+bOkpqbqoosucvndFBQUpFtvvVWXXXaZx/f3N/4UU8cDbXPvEVPth/Y58eQp2uanFhKTJ5j9PA2e/rVDksNfhexXT/RU82s8vXfzv0YdXZVPOj7PYn/sTZn280a05fM5VRFPx/4skvS///1Pjz76qHUcHBysf/7znwoPD29TeacyYsqzZ3n00Uet3k533HGHBg0a5HH5HQ0x5fpZ7H9ZqKioUHBwsP7zn//o1ltvdVghOSAgQBdffLGWLFli9TxoaGjQE0884XE9/AHx5NmzLF68WOPHj1d6erp1n4SEBJ199tkaMWKEQwz985//1Lhx47RhwwaP6+BP/Cmmjgfa5t4jptoH7XMT8eQZ2uanFhKTJ5j9f9L2E/i6Y//F0JbMf/MvEk/v3fwLyf7ex+NZ2lqm/RdeR/rLCPF07M/y8ssv68EHH7TuabPZNHPmTJ122mlel+UPiCn3z/LOO+/ogw8+kGQuVnL33Xd7XHZHREy5fhabzeZwfPvtt7tcnTslJUXTpk2zjrdu3aqvv/7a47qc6ogn98/ywgsvaNasWdYvswMHDtTLL7+s9evX6+WXX9aSJUv06aefasGCBdYiCkVFRbrzzjtbzG3aEfhTTB0PtM29R0wdO9rnPyKe3KNtfuohMXmChYWFWfvedGu271Fh34OiLff15t7Nu33b39u+O7c3z2J/bvNnOR5l+jPiqe0/e8MwNHfuXM2YMUOGYUgyGz3Tp0/XVVdd5XE5/oaYch1TxcXFmjFjhiSzofh///d/DkNl0BIx5Tqm7Ht+2Gw2j+aMvOKKKxyu++STTzyuy6mOeHIdTwcOHNDs2bOt4xEjRmjJkiU6++yzHc47uiLqG2+8YS0M0NjYqIceekiVlZUe18Uf+FNMHQ+0zb1HTLUd7fOWiCfXaJufmkhMnmDR0dHWfnV1tfWF605VVZW135bJY+3v27w8T+8bFBTkMJmtfT08LU8yn7u1MprX05syj/XzOVURT67jyZna2lrdf//9DqvBBQYGaubMmbrhhhs8vrc/IqZcx9QjjzxiDRO57bbbOuRf7r1FTLmOqYiICGu/V69eHq22GRISoiFDhljHu3fv9rgupzriyXU8LVu2zPrlMTg4WH//+99b/HJpLzo6WrNnz7Z65JSUlCgjI8PjuvgDf4qp44G2ufeIqbahfd464sk12uanJhKTJ1hiYqK139jYaC1l705RUZG178kvLa7uKzmuAurpfbt06eIw5My+zKMrhXpbZvNnaWuZ9uceXRigIyCevH+W4uJi3XzzzVq1apX1WmhoqJ566qkOuyKpPWLK+bO8/fbbWr16tSSpb9++uueeezwusyMjplw/S2xsbKv77nTp0sXat1/d2d8RT66f5fPPP7f2zznnHPXo0cNteampqTrzzDOt444216Q/xdTxQNvce8SU92ifO0c8OUfb/NQV5P4UHE+9evVyOM7Ly3P45cKZ/fv3W/t9+vTx+r7du3dXcHCwNd9QXl6ehg0b5tV9e/fu7fCe/bPU1NSouLjYoy+9vLw8a7/5s9jfY9++fW7LkqTCwkIdOXLEaT39GfHkOp6a2717t26//XYdOHDAei0mJkbz58/XGWec4fZeHQEx5Tymnn76aWvfMAyX89ccOnTI4Xjy5MnWflpamsMcgf6OmHL9PdW/f3999913kuTVEFr7OZzs55/yd8ST63gqLCy09vv37++2rKPS0tK0efNmSXL4P7Ij8KeYOh5om3uPmPIO7XPXiCfnaJufuugxeYIlJyc7dKXOzMz06LodO3ZY+wMHDvT6vsHBwdYcQt7c1/685itbDR482OEvIJ6UWV1d7dCoaf4s9kPTcnNzdfjwYa/qaLPZlJaW5vYaf0E8uY4nezt27NANN9zg0Ojp3bu3li5dSqPHDjHlPKbsV0Xcs2ePNmzY4HTbunWrQ7mu3vN3xJTr7yn7/7MOHDjQYm4mZ/Lz8639pKQkj67xB8ST63iyn1fL01iSHJPb3qz66g/8KaaOB9rm3iOmPEf73D3iyTna5qeujtXSOEnZr7a5ceNGt+fv2LHDoev0ueee65P7lpeXW704WrtvZGSkBg8e7FWZn332mbWiV2BgoEaOHOnw/plnnqmgILNjb2NjozZt2uS2TPv7Dh48uMV8GP6OeHIeT0ft2rVLv/rVrxyGPhxdEKCj/RXfE8SU+5iCd4gp5zE1atQoa//w4cMeLWRTWVmp7Oxs69iTHgz+hHhyHk/dunWz9j39JVKSdu7cae03H77XEfhLTB0PtM3bhphyj/a554gn+BsSkyeBSy+91Nr/6KOPVFBQ4PL8V1991drv169fm//qaH/fbdu2adu2bS7Pf+2116yhYtHR0Q6/PB01btw4a3/58uVu/4pq/yyjRo1S586dHd7v3LmzwxfYkiVLXJZXXV2t5cuXW8fjx493eb4/Ip5MrcWTZP4Cf+eddzrMwXbhhRdq8eLFXs3n1pEQU6bmMbVmzRplZWV5tL344osO5dq/99JLL7msgz8ipkytfU8NHjxYAwYMsI7/85//uJ3YfsmSJVYvgeDgYF1wwQUuz/c3xJOptXiyv8dXX33l0GPGmby8PIdkU2v19Hf+FFPtjbZ52xBTrtE+9w7x1Dra5qcuEpMngUsvvVQJCQmSzGE2Dz74oMNcUfbWr1+v119/3Tq++eab23zfESNGOAzHeOihh5yurpWZman58+dbx7/4xS/UqVOnFuddc8011mqPxcXFevzxx53e//XXX9f69eut41tuuaXV82688UZr/6OPPnK5OuSjjz6q0tJSSVJ4eHiHnByZeDI5i6fp06c7zHVywQUXaN68ea3eHyZiyuQspuA9YsrkLKZ+9atfWftbtmzRwoULnZa5Y8cOPfPMM9bxhAkTOtzCEsSTqbV4uuKKKxxWep82bZrLlVSPHDmiP/3pT1aiOzw8XFdccYXT8/2VP8XU8UDb3HvElGu0z71DPMHfkJg8CYSEhOiBBx6wjjdu3Kg77rjDYTLzhoYGvfbaa7rnnnvU2NgoyVw18dprr221zLFjxyotLU1paWkaO3as03v/6U9/suYzys7O1s033+zw13TDMPT+++/r1ltvVU1NjSRzJb277rqr1fLi4+N1++23W8cZGRn6/e9/77AS35EjR7RgwQI98sgj1mvnn3++zj//fKfPYt9t/OGHH9azzz6r2tpa67Xi4mLdf//9Dn+Rvfvuuz2aCNjfEE/O4+nzzz/XypUrrePevXtrzpw5Cg4OdvpMIKYk199R8B4x5TqmJk2a5NAjac6cOZo+fbpDj4impiatXLlSt9xyi9WrLioqSvfff7/TZ/dXxJPzeIqLi9Pvfvc76zgrK0tXX321PvroI+tzOOqLL77QL3/5S23ZssV67d5777V++e1I/Cmmjgfa5t4jppyjfe494gn+xma4Gx8En5k+fbqWLl1qHQcEBCgtLU2RkZHatWuX9ddGyVyZ7NVXX1Xfvn1bLWvs2LHWpMHJyclas2aN0/s+++yzmjNnjsNr/fv3V5cuXZSbm+vwi1CnTp30/PPP66yzznJaXkNDg377299q7dq11mvBwcFKS0tTSEiIcnJyHFYaTUlJ0euvv+6yoVJQUKAbb7zR4cs2KipKAwYMUF1dnbKyshwmu73wwgv173//u8NN2G6PeGoZT5MnT9aGDRus4z59+ig5OdnpvVtz5ZVX6uc//7lX1/gLYqrtv0xt2rTJoTdTVlZWm8vyJ8SU85gqLS3V5MmTHeZmCgoKUp8+fRQbG6vdu3c7zBcVHBysZ555RmPGjHFapr8jnpzH0+OPP65XXnnF4bWYmBj17t1bwcHB2rt3r4qKihzev/HGGzV9+nSnZXYE/hJTrsybN89ayXbkyJEeD2Gkbd42xFRLtM/bjnhqO9rmJ5egE10B/Oixxx5TbGysnn/+edXX16upqanVicr79eunf/3rX06/VLx11113KSIiQrNnz7b+qmE/6flRSUlJ+sc//uH2SyUoKEjz5s3TY489pmXLlskwDNXX17c6B8WIESP0r3/9y+0v/ImJiXrppZf0wAMP6Msvv5RkzkVydN/epEmT9Mgjj3T4hg/x5KiiokKffvqpw2t79uzRnj17vHk8nX766V6d70+IKbQ3Ysq5Ll266MUXX9Rf//pX/e9//5NhGGpoaFBOTk6Lc7t3764nn3xSZ599tssy/R3x5Nz06dOVmpqqf/zjH1ZSs7y8XF9//XWLc6OiovT73/9e119/vcsyOwJ/ianjgbZ52xBTjmifHxviCf6CHpMnoV27dumNN97Qhg0blJ+fr8OHDys6OlqDBg3S+PHjdeWVVyokJMRlGd78xeOo/Px8vfbaa1q3bp3279+vqqoqRUZGKjU1VRdffLGuueYaRUZGevUs3377rd5880199tlnKigoUF1dnbp06aLTTjtNl19+uS699FKvGimGYeiDDz7QypUr9e2336q4uFgBAQFKTEzUmWeeqV/84hcd9j8mZ4inH691NnTBG1OnTtU999xzzOWcyogp7/FXWdeIKdcyMzO1fPlybdy4Ufn5+aqqqlLnzp01ePBgXXrppbrqqqsUGhrqVZn+jHhyrqqqShkZGfrkk0+UlZVlrX4bExOjtLQ0jR49WhMnTvS6nv7On2KquWPtjUTbvG2IKRPt8/ZBPHmPtvnJhcQkAAAAAAAAAJ+jPz0AAAAAAAAAnyMxCQAAAAAAAMDnSEwCAAAAAAAA8DkSkwAAAAAAAAB8jsQkAAAAAAAAAJ8jMQkAAAAAAADA50hMAgAAAAAAAPA5EpMAAAAAAAAAfI7EJAAAAAAAAACfIzEJAAAAAAAAwOdITAIAAAAAAADwORKTAAAAAAAAAHyOxCQAAAAAAAAAnyMxCQAAAAAAAMDngk50BQAAAOA7+/fv10UXXeT2PJvNpqCgIEVERCg+Pl69e/fWmDFjNH78eHXu3NkHNT15ZWRk6KGHHpIkJScna82aNcdcpmEYysjI0KBBgzR48OAW7zf/uX344YdKSUk55vsCAACcSPSYBAAAQAuGYai+vl7l5eXauXOnVq9erYcfflijRo3S7NmzVVdXd6Kr6DdycnJ000036c9//rMqKytPdHUAAAB8hh6TAAAAHVhqaqoSEhJavN7U1KQjR46otLRUBw4cUH19vSSpvr5eCxcu1Jo1a/Tcc8+pW7duvq6y37n66qutzxcAAKAjITEJAADQgf3617/WxIkTXZ5TV1enTz/9VM8884y++eYbSdLOnTt1yy236PXXX1dMTIwPauq/SEoCAICOiqHcAAAAcCkkJERjxozRq6++qhtvvNF6fd++fdZcizi+UlJSlJWVZW3MLwkAAPwBiUkAAAB4JDAwUA8//LAuvvhi67U1a9Zo3bp1J7BWAAAAOFWRmAQAAIDHbDabHn/8cUVERFivLVy48ATWCAAAAKcq5pgEAACAV+Li4vSLX/xC6enpkqQvvvhCeXl56tGjh8vrcnJytHz5cn3yySc6ePCgKisrFR0drR49emj06NG65pprvFpMp7q6WqtWrdJnn32m7du3q6ysTJWVlQoLC1Pnzp2VlpamUaNG6eqrr1ZkZKRHZR48eFBLlizR+vXrtXfvXjU0NCgpKUmjRo3SDTfcoNTUVI/r50pGRkarw+BvueUWa//qq6/WE088IUnav3+/LrroIuu9Dz/8sMVw7rFjx+rAgQOSpG+//VahoaHas2ePXnvtNa1fv14HDx6UzWZTUlKSRo8erRtvvLHFz2z16tVatmyZduzYoaKiIkVERGjw4MH6+c9/riuuuEKBgYEePd/XX3+tFStWaNOmTSooKFB1dbViY2PVp08fnX/++brmmmsUGxvr2YcFAAD8FolJAAAAeO2yyy6zEpOStG7dOt10002tnnv48GHNnDlTGRkZampqcnivuLhYxcXF+uqrr7Rw4ULdcccdmjp1qmw2m8v7L168WPPnz1d5eXmL9yorK1VZWakDBw5ozZo1mjdvnmbOnKlLL73UZZnp6emaO3euamtrHV7Pzc1Vbm6u3njjDf3ud79TfHy8y3JOFgsXLtRTTz3VYnGdyspK5eTkaOnSpZo7d64uuOAClZWV6cEHH9TatWsdzi0vL9fGjRu1ceNGvf3225o/f75CQkKc3rO0tFQPP/ywVq9e3eK9wsJCFRYWatOmTVqwYIEeeOAB3XDDDe3yrAAA4NREYhIAAABeGzZsmMLDw1VTUyNJ+uqrr1pNTJaVlen222/Xtm3brNcCAwM1YMAARUdHq6ysTDk5OTIMQ7W1tXr66aeVk5OjuXPnOu2dN3PmTL300kvWsc1mU69evZSQkCCbzabCwkLl5uZaSdBDhw7p3nvv1auvvqrTTz+91TL/9re/adGiRQ6v9erVS4mJiSopKdGuXbtUX1+v2bNna8iQIV59Vq1JTEzU6NGjJUkbNmywXh82bJiio6Ml6Zh6Zz711FN67rnnJEnBwcHq06ePYmJitHfvXhUWFkqSampqdP/99+utt97SAw88oK1bt0qSEhIS1Lt3b1VUVCgrK0uGYVj1nD17ttMFj/Ly8vTrX/9aeXl51mshISFKTU1VRESECgoKtHfvXklmcvSxxx7T3r179ec//7nNzwkAAE5tJCYBAADgtYCAAPXo0UNZWVmSpD179rQ4xzAMTZs2zUpKBgQEaPLkyZo8ebLDMN7CwkLNmzdPr732miTpvffe01NPPaX777+/RZnr1693SEqOGzdODz30UIsh4AUFBfr3v/+tJUuWSJKampo0f/58Pfvssy3KXL16tUNSMi0tTTNnztRpp51mvbZ792498sgj2rx5s7Zv3+7+A3LjvPPO03nnnWfd76g//vGPOuecc465/KNJyYkTJ+q+++5TYmKiJPNnkp6err/97W+SzOTk1VdfraqqKiUmJmrmzJk6//zzrXJ27typqVOnWj/fJUuWaOrUqYqKinK4X21tre655x4rKRkaGqp7771X119/vcLDw63zcnNz9eSTT1o9Kl944QUNGDBA11577TE/MwAAOPWw+A0AAADaxD4ZePDgwRbvL1++XB9//LEks1fj7Nmz9Yc//KHF3IIJCQmaMWOGfv/731uvLVy40OpdZ89+oZ0RI0bon//8Z6vzUiYmJuqxxx7TJZdcYr22ceNGNTY2OpzX1NSkv//979Zx//799corrzgkJSWpb9++WrRokdXL8VRwww03aNasWVZSUjJ/DrfddptGjRplvVZVVaWoqCi98sorDklJyfw8Zs+ebR0fOXJEX375ZYt7Pf/888rMzJRkJiUXLVqkyZMnOyQlJbMX6tNPP63rr7/eem3WrFmqqKg4tocFAACnJBKTAAAAaJOwsDBrv7q6usX7zz//vLV/xRVXaMKECS7Lu/POOzVs2DBJZsJw8eLFDu9XVVU5DAm/6667FBDgujk7btw4a7+urk5lZWUO73/11VcOCdBHH320RW/Ao4KDgzVr1iyH5z5ZRUVF6YEHHnD6/sUXX+xwfNNNNzldvGjIkCEOyc3c3FyH9+vq6vTyyy9bx7fddpvOOussp/e22Wz685//bJVZXV2tpUuXOn8YAADgt0hMAgAAoE2Cgn6cFah5T8Tc3FxrmLdkDin2xFVXXWXtr1u3zuG9yMhIffnll/r444/18ssvW0OhXWm+UM2RI0ccju3v0bt3b5199tkuy0tISGiR1DsZjRo1ymmCVVKrK3q7Yp+YrKysdHjviy++UElJiXXsyc86JCREP/vZz6zj5j9rAADQMZCYBAAAQJtUVVVZ+5GRkQ7vNR/u27dvX4/KHDp0qLX//fffKz8/3+F9m82mxMREnX322S5Xh66qqtKnn36q5cuXO7zefFXwzz//3No/88wzParjueee69F5J9KAAQNcvt+pUyeH4z59+rg8PzQ01Npv/hna/6yDg4PVs2dPj+po/7P+9ttv1dDQ4NF1AADAf7D4DQAAANrEvudc8955zYf7Np+70FMFBQVKSkpy+n5+fr527Nihffv2KS8vT3l5edq1a5f279/fIoEmyVph+qijK1RLZo9JT/Tv39+zyp9AcXFxXp3fPLHcnM1mc/qe/c+6vr7eYTEfT9XW1qq8vLxFD1cAAODfSEwCAACgTeyTegkJCQ7vtddiJuXl5S1eq6ur09KlS7V06VLl5OS4vD4oKMhlT7zS0lJrPyIiwqM6de7c2aPzTiT7Ho6ecJV4dKe9ftaHDh0iMQkAQAdDYhIAAABeKy8v1759+6zjo4vWHGWfDAwNDXU7d6MzzZOAhYWFuuuuu/Tdd9+1en5sbKxSU1M1bNgwjRw5UgEBAbr99tudll9fX+91nVwNIT9ZHEui0Vv2P+vo6OgWseCpU+FzBQAA7YvEJAAAALz2zTffOBwPHz7c4dg+oRgWFuawQndbNTQ06J577nFISo4YMULjxo3TsGHD1K9fP8XGxjpcs3HjRpdlRkVFWb0mmy/q4oz93Jpw/FmnpKS0y88aAAB0DCQmAQAA4LW33nrL2u/UqZN++tOfOrxvv4pzRUWFqqqq3M5j6M4HH3ygr7/+2jq+9957dffdd7u8prWh4PZ69eplJSZ37tzpUT3se4rC8Wf9/fffn8CaAACAUw2rcgMAAMArBQUFev/9963jiy++uMXiNyNGjLD2m5qatHnzZo/K3rx5s6ZPn65nn31Wb7/9tqqrq6331q1bZ+0nJiZqypQpbsvbsWOHw3HzBXHs67l582Y1Nja6LXPLli1uz+lI7D/DsrIyZWVleXTdu+++q8cee0zPPfecVq5c6dFnDwAA/AuJSQAAAHjMMAz95S9/seZmDAgI0B133NHivEGDBjn0pHvhhRc8Kv9f//qXli5dqjlz5mjmzJkO8w4WFRVZ+3FxcQoIcN2Uraio0JtvvunwWvPk17hx46z9goICvffeey7LrK6u1vLly90+hzd8OR/k8XDuuecqLCzMOl68eLHba+rq6jR79mz997//1d///nfNnz9fgYGBx7GWAADgZERiEgAAAB5pbGzUrFmztH79euu16667TgMHDmxxbmBgoG699Vbr+LPPPtOCBQtclv/yyy/riy++sI4nTZqk4OBg6zgmJsbaz8nJUUFBgdOyamtr9eCDDzqsHC61XOzm9NNP1znnnGMd//Wvf1VeXl6rZRqGoRkzZjis5N0e7FfQrq2tbdeyfSE6OlrXXHONdZyRkaG3337b5TVz5851GBJ//fXXH7f6AQCAkxeJSQAAALhUU1OjlStX6tprr3Xo+XjaaafpoYcecnrdTTfdpCFDhljHc+fO1YMPPthiHsKSkhI98cQTmjlzpvVaYmKi7rzzTofzRo8ebe3X19frN7/5TYuh2vX19Vq9erUmTZqkDz/8sEWd7IeGHzVjxgx16tRJklRcXKwbbrhBH374oQzDsM4pKCjQvffe26IHZnuwT7h+/PHH7V6+L0ydOlXdu3e3jv/4xz/qb3/7W4skbl5enqZNm6ZFixZZr6Wlpenaa6/1WV0BAMDJg8VvAAAAOrD09HStWLGixeuGYejIkSMqLi7W/v37WwyBPvPMM/X000879PZrLiQkRE899ZRuvfVWqxfim2++qf/973/q16+f4uLiVFRUpLy8PIeejFFRUZo3b56io6Mdyrv88su1aNEiZWdnS5K2b9+uq666SikpKerWrZsqKyuVl5fnsGp2XFycqqqqrJ6I9sPBj+rVq5dmzZqladOmqb6+XoWFhbr77ruVkJCg3r17q6qqSjt27LDmpxw3bpzbId/eSE1NVX5+viTppZde0ueff66YmBj169dP06dPb7f7HE+xsbGaN2+e7rjjDpWWlsowDC1atEgvvPCC+vfvr+joaBUUFLSIpcTERD399NMOPWMBAEDHQY9JAACADiw7O1sbNmxosX3yySfasmWLcnNzHRJJnTt31u9//3stXrxYXbp0cVt+SkqKXn/9dYe5HA3D0M6dO7Vp0ybt3r3bISk5ZMgQ/fe//9Xw4cNblBUcHKyFCxcqLS3Noay8vDxt3rxZmZmZDknJMWPG6M0333Q439nCNRMmTNCiRYsUFxdnvVZYWKjNmzfru+++s5KSN9xwg+699163z+2N3/zmNw6JuR07duizzz7T2rVr2/U+x9vQoUP1+uuvOwyNb2xsVFZWljZv3twilkaNGqWlS5eqZ8+eJ6K6AADgJECPSQAAALRgs9kUFhamiIgIpaSkKDU1Veedd57GjBljDXv2VGxsrJ566illZmbqnXfe0aZNm/T999+roqJCwcHBSkxM1LBhwzRhwgSNGTPG5aI23bp10xtvvKHly5frvffeU2ZmpsrLy2Wz2dS5c2f16tVLQ4YM0YQJE6zVoi+88EJ9++23kqR33nlHf/jDH1p9hpEjR+r999/XG2+8oQ8++EDZ2dk6fPiw4uPjNXz4cP3yl7/UT37yE+3atcur53fnjDPO0CuvvKKFCxfq66+/Vnl5uUJDQxUREaHa2lqXvVJPNikpKXrxxRf1+eef67333tPnn3+ugoICVVZWqlOnTurevbtOP/10XXHFFRo5cuSJri4AADjBbIb95DkAAAAAAAAA4AMM5QYAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz/1/1SXbE9Wuqc0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.015, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.015, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate / (1 + rate * deadtimes_plot), \n", + " label=r'$\\frac{r_{in}}{1 + r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length, paralyzable=True)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAAQ5CAYAAABF6gYsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyNdf/H8feZDYOxm+xkGYw1JSGi3a+sqWhRaVFpoY02haISFRV106qIKKRkl30ruyEMQ8wYY5iFOdv1+2Oaq3PMdsbMmTPmvJ6PR4/7+p7rOt/zPedcue/77XM+X4thGIYAAAAAAAAAAF4X4OsFAAAAAAAAAIC/IJAFAAAAAAAAgEJCIAsAAAAAAAAAhYRAFgAAAAAAAAAKCYEsAAAAAAAAABQSAlkAAAAAAAAAKCQEsgAAAAAAAABQSAhkAQAAAAAAAKCQEMgCAAAAAAAAQCEhkAUAAAAAAACAQkIgCwAAAAAAAACFhEAWAAAAAAAAAAoJgSwAAAAAAAAAFBICWQAAAAAAAAAoJEG+XgAAAPA/R48e1fXXX+/RtRaLRcHBwQoNDVWVKlXUuHFjXX311br11ltVpkwZL6+06Jk4caImTZokSWrbtq2++eYbH6/Id+677z5t3LhRkjR48GA99dRT+Z4zIiLCPP7666919dVX53tOXypu78dTc+bM0fDhwyVJNWrU0LJly/I9p2EYmjNnjpo0aaKmTZtmOn/hn2tLly5VzZo18/26AACg+KFCFgAAFGmGYchqtSoxMVH79+/X/Pnz9eqrr+r666/XzJkzfb08AH5g//79uvfee/Xyyy8rKSnJ18sBAACXOCpkAQCAzzVq1EhVq1bN9rzValVycrIOHz6slJQUSVJiYqJef/11xcfH68knnyyspQLwQ7169ZLNZvP1MgAAQDFBIAsAAHzuwQcfVO/evXO9zmq16ocfftC7776rtLQ0SdKkSZPUoUMHtWrVysurBOCvCGMBAEBBomUBAAC4ZISEhOjee+/V+PHjzcecTqcmTpzow1UBgFSzZk1FRUWZ/9A/FgAAZIdAFgAAXHJuuOEGtWvXzhyvW7dOCQkJPlwRAAAAAHiGQBYAAFySbrrpJvPY4XDo77//9uFqAAAAAMAz9JAFAACXpAt/Dnzy5Mlsr7Varfr999+1bt06bd++XQkJCTpz5oxCQkJUrlw5XX755br66qvVu3dvVa5cOdt57rvvPm3cuFGSNH/+fNWpU0eTJ0/WvHnzFBcXp/Lly6tRo0bq06ePunXrlun569at06pVq7RlyxadOHFCZ86ckSSFhYWpevXquvLKK3X77bercePGF/OR6Pbbb9e+ffskSZ07d9Znn33m0fOefPJJLVmyRJLUt29fjR49WnPmzNHw4cMvah2SNHjwYD311FNZnktJSdGvv/6q9evXa9euXTp9+rSSkpJUqlQphYWFKSIiQu3bt1evXr1UpkyZPL1uTEyMvvnmG61atUonTpxQSEiIqlWrpk6dOqlXr166/PLLL/o9ZeWvv/7SL7/8og0bNig2NlYpKSmqUKGC6tWrp06dOqlPnz6qUKFCgb6mlN7TdMGCBVq4cKF2796tM2fOqHz58oqIiFCfPn106623ymKx5Hne/fv3a968eVqzZo2OHz+upKQklStXTrVq1VLHjh3Vp08fVatWzeP5vPFdHz9+XDNmzNAff/yh6Oho2e12XXbZZWrfvr369++vRo0a5fl9ZyW7fwfuv/9+87hXr14aO3asJOno0aO6/vrrzXNLly7N9OdU165ddezYMUnS9u3bVaJECR06dEg//PCD/vjjDx0/flwWi0WXXXaZOnbsqHvuuUe1atVym2PJkiX68ccftXfvXp08eVKlS5dW06ZN1aNHD91+++0KDAz06P356t4FAAAEsgAA4BJ14SY7pUqVyvK6efPmady4cYqNjc1yjpSUFP3zzz9avXq1Pv74Y7344ou65557cn19p9OpJ554QqtXrzYfi4uLU1xcnDp27Oh27c6dOzVixAjt3Lkzy7nOnz+vuLg4/fXXX5o6dar69OmjESNGKCQkJNd1uOrZs6feffddSdKaNWuUkJCgihUr5vicxMRErVy50hx7srlafnz55Zf69NNPlZiYmOlcUlKSkpKSdOzYMS1btkwTJ07U6NGj3aqhc/Ljjz9q1KhROnfunPnYuXPndObMGe3du1fTpk3T/fffr+eff97j0Co7CQkJeu2118wg21XGfbBhwwZNnjxZQ4cOVf/+/fP1eq527dqloUOHKjo62u3xkydP6uTJk1q9erVmzJihDz74wOM5z507ZwbxTqfT7Vx8fLzi4+P1559/6rPPPtMjjzyiwYMH5xr4euO7/uKLLzRhwgRzU78Mhw8f1uHDhzV79mw9/fTTOf7FSlHy2Wef6aOPPsr051lSUpL279+vmTNnasKECbruuut0+vRpDRs2TCtWrHC7NjExUWvXrtXatWs1f/58ffrppzn+2eHLexcAAKQjkAUAAJekqKgot3FWG+hMmzZN77zzjttjNWrUUI0aNRQQEKCEhAQdPHhQdrtdUnowOnLkSFWsWFG33nprjq//ySefuIWxGQIDA/V///d/5njTpk169NFHlZqaaj5WoUIF1a1bV6VKldLZs2d18OBB87xhGJo9e7ZCQkI0YsSIXD4Fd927d9f48eNlt9tlt9u1cOFC3XvvvTk+Z+HChWYYVLduXV1xxRWSpPDw8EzBck62bNliBqEWi0UtWrTIdM3o0aP1zTffmGOLxaI6deqoatWqslgsiouL0+HDh81A8MyZM3rmmWf0/fffq1WrVjm+/uLFi7Vv3z4ZhiEp/X6oXr264uPjdfDgQUmS3W7XtGnTdPz4cU2YMOGiKkil9CrcBx98UDExMeZjISEhatSokUqXLq3Y2FgzLE1KStKbb76p6Ohovfzyyxf1eq62bdumBx54wO1+CgsLU4MGDeRwOLRv3z6dO3dOGzZs0MMPP+zRnKdPn9bDDz/s9hcGgYGBatiwocqVK6fTp09r//79MgxDaWlpmjRpkvbv368JEyZkG2x747t+5513NG3aNLfH6tSpo/DwcJ06dUoHDhyQzWbT+++/r8jISI/ee05c/x1w/Xe9efPmKleunCTlqxr3o48+0v/+9z9JUnBwsOrVq6fy5csrOjpacXFxkqTU1FQNGTJEP//8s4YOHaodO3ZIkqpWraq6devq7NmzioqKMu/71atX6/3338+2ut2X9y4AAPgPgSwAALjk2Gw2zZ071xxXrVo1UzCyf/9+vf/+++a4bdu2euONN1S/fn23686cOaOvvvpKn376qRkOffzxx7kGsosWLZKU3sbggQceUPny5bVnzx5t3bpVVatWlSSlpaVp+PDhZnhWrVo1vfXWW2rfvr1bGGiz2fTLL79ozJgxZjXhjBkzNHjwYFWqVMnjz6VKlSq69tprtXz5cknpbRVyC2R//vln87hPnz7mcYcOHdShQwePXnfWrFlugdXTTz+tzp07u13zxx9/uAV0N998s4YPH57p5++xsbH65JNPNGPGDEnplciffvqppkyZkuMaMgL6Bg0aaOTIkWrTpo15bt++fXr11Ve1bds2SdKvv/6qq666yqNK6AulpaXpqaeeMgOtEiVK6JlnnlG/fv0UGhpqXnf48GG9++67ZhXiV199pYYNG6pv3755fs0MycnJeuaZZ8z7qWTJknrppZd0xx13mBWRqampmjZtmj755BPt2rUr1zkNw9CLL75ohrEBAQEaOHCgBg4c6PZz9bi4OE2cOFE//PCDpPT7/6OPPtKQIUMyzemN73rJkiVuYWxERIRGjx7tFvwfPHhQI0aM0MaNGz1677lx/XcgIiLCfPyFF17Q1Vdfne/5M8LY3r1769lnn1V4eLik9O/kiy++MP8yKTU1Vb169VJycrLCw8M1evRoderUyZzn77//1uDBg3Xo0CFJ//3ZUbZsWbfX8+W9CwAA3LGpFwAAuKTYbDa9/vrrbhVe9913X6brpk6dala+1qxZU1OmTMkUxkpSuXLl9PTTT2vAgAHmY/v378+yxcGF7rvvPr366quqWbOmypQpo6uuukqPPfaYef6XX34x1xkYGKgpU6aoQ4cOmSozg4OD1bNnT40ZM8Z8zOl0as2aNbmu4UK9evUyj//66y8dOXIk22sPHz6sv/76y1xfjx498vx669ev15tvvmmOb7nlFj3xxBOZrnPtZ9u6dWt98MEHWfYiDQ8P15tvvqkbb7zRfGzt2rVyOBy5rqVhw4b67rvv3MJYKb2K8auvvnKrvJwwYYJbawNPTZ06VXv27JGUHmhNmzZNAwcOdAu0pPTKzUmTJqlfv37mY2PGjNHZs2fz/JoZvvrqKx0/flxSesXpxx9/rP79+7v9PD00NFSDBw/W22+/7dGc8+bN06pVq8w533//fT3//POZeodWrVpVo0aN0nPPPWc+9tlnn2Vqm5DxeIaC+K6dTqfee+89c9ygQQNNnz49UxX25ZdfrmnTpuWpstvX+vfvrzFjxphhrJT+PTz00ENq3769+VhycrLKli2r6dOnu4WxUvrn4fqXT+fPn9fWrVszvZYv710AAOCOQBYAABRpTqdTSUlJ2rt3r6ZPn67evXtrzpw55vkGDRpkCmQNwzA335KkBx98MFPocKELe1eeOHEix+stFosGDRqU4zXr1683j2+44Qa3KrusdO7cWSVLlvR4DVnp0qWLypcvb47nzZuX7bWu1bEdOnRwC4U8ER0drWeeecZsedC0aVNzgyNXycnJbj+Hf+yxxxQQkPP/DL355pvNY6vVqtOnT+e6nnfffdf8KfmFSpUqpbffftsMw5OSkrRgwYJc53RltVr17bffmuOHHnpIV155ZbbXWywWvfzyy+bnmpKSopkzZ+bpNV25fpe9evXKMXjs2bOnbrjhhlznnDp1qnl8++23Z7kZnatHH31UzZs3l5T+7+aXX37pdt4b3/Wff/7pFvy+8cYbmao/MwQHB2vMmDHZ9pQuSsqWLauhQ4dme/7C7+/ee+/NtMFXhsjISLd/fw8fPux23tf3LgAAcEcgCwAAfG748OGKiIjI8p8mTZroyiuvVI8ePTRy5Ejt27fPfF7t2rX18ccfZwpfLBaLli1bpjVr1mjGjBnq3r17rmuoUqWK2/j8+fM5Xl+/fv1cNw569913tWXLFs2dO1cvvPBCrmsIDAx0q0y8cOMiT4SEhOi2224zx/Pnz8/2WteAL6+beZ05c0aPPfaY2WKhUqVK+uSTT7IMwsqUKaOtW7dq1apV+vbbbz1qhXDhZ5vb99G2bVs1bdo0x2vq16+vtm3bmuOM1g6e2rx5s06dOmWOPfnMQkJC3HoKu26glheHDh1yCyXvvPPOXJ+TW0uGw4cPu/Vi9vQe6Nmzp3l84fvxxnft+hp169bVVVddleN8VatW9SiM9rX27dtnGyxLmftid+3aNcf5XAPZpKQkt3O+vHcBAEBmBLIAAOCSExYWpgEDBmjOnDmqW7duttdVrlxZrVu3VlhYWLbXpKWlacuWLfruu+/cHr9wp/kLNW7c2KO1lilTRk2bNs22si3jtfbt26dvv/3W7WfBnvxMPyuuYUt0dLS2b9+e6ZrNmzeb7RTKly+v66+/3uP5bTabnn76aTMgDA4O1sSJE7P8WXoGi8Wi8PBwXXXVVTnuAJ+cnKx169ZlquzN7fvwtN+ta1VgVj/rzonr9cHBwapdu7ZHz2vWrJl5vH37drOVRl5s3rzZPA4JCTGrVHNy5ZVXKigo+y0jLnz/l19+uUdrcX0///zzT6ZK7oL+rjdt2mQeX9iOIjvt2rXz6DpfatiwYY7nXavlJalevXo5Xl+iRAnz+MLP0Jf3LgAAyIxNvQAAgM81atTI3AjrQkFBQSpdurTKlCmj2rVrKzIyUq1atcrzT5ITEhK0e/duHTlyRDExMYqJidGBAwd05MiRLEOGjF3Ls1OxYsU8vb6UvjnPnj17FB0dba7h0KFDOnjwYJb9THNbQ3YiIyPVqFEjs5p43rx5mfptuoZg//d//5djcHahkSNHurVjGDFihMdBWYYTJ05o7969mb6Po0ePZhm+5vZZZNUfOCuuodbp06eVlpbmFmTlxPVn4DabLdcWFFlJS0tTYmJirtXVF3LtaVyjRo0cg9YMISEhqlWrlrnZ04Uu/Fn7hb1J87K2yy67LNvz+f2u4+LizOOc/gLGVYMGDTxbvA/lZcM+Kf0vd3JyYW9qV768dwEAQGYEsgAAwOcefPDBPP9k3hOGYWjevHn69ttvs6wSdRUUFJSn6q/cwhFXW7du1WeffabVq1eb/VazYrFYZLFYcq0G9UTv3r3Nfq6//vqrhg8frsDAQEnp/SR//fVXt2s99cUXX+iHH34wx/fdd5/Hu69brVbNnDlTM2fO1P79+3O8Nq/fR04//c7pusTERI975xbUpkZnzpzJc6iVkJBgHufl3suup65UcO8no22Fq4L8rl3fe+nSpT1aU05V8UWFp38RkCGnwDU3vrx3AQBAZgSyAACgWEpOTtbTTz+tNWvWZHm+bNmyatiwoSIjI9W2bVvVqVPHo16zGXLbqCjDuHHj9Pnnn2d5rkSJEqpXr56aNm2qK664Qp06dVK/fv107Ngxj9eRne7du2vcuHGy2+2Kj4/X2rVrde2110qSli1bZgY0jRo1cvtZck6WL1+ud9991xy3b99ew4cP9+i5cXFxeuyxx7R79+4sz1eoUEGNGjVS8+bN1bZtWwUEBOjhhx/2aO68uLD68sKfhefENTQsV66cR20DspKXauQMOQX5F/taru+nRIkSufZmzc6F4WdBf9cX894v5jMubPkJWPPKl/cuAADIjEAWAAAUSy+//LJbGNuoUSP93//9n1q2bKkGDRpk2sTrwp9vF4Rvv/3WLYytVKmSevTooTZt2igiIkI1atTIFOwWVI/GSpUqqVOnTlq2bJkk6ZdffjED2QULFpjX9enTx6P5oqKi9Nxzz5nVu7Vr19aECRPMqtuc2O12PfXUU24BXevWrXXzzTerefPmql+/vttmZpK0du1aj9aVISUlxaPrzpw5Yx5bLBaPK2sl9+CxZs2amjp1qucLzCfXdV64YVNOkpOTsz3n+n5KlSpVIO/HG9912bJlzSpZT997Tu/bH/ny3gUAAJkRyAIAgGJn+/btWrRokTm+88479eabb+ZY1eoa1BUEq9WqiRMnmuPIyEh99dVXuQaABfXTYim9FUFGILt8+XI5HA7Z7XatXr1aUvrmPp5UBcfHx2vQoEFm6Fm6dGl9+umnKl++vEfrWLx4sf766y9z/Mwzz+iJJ57I8TlZ/Qw+J0ePHvXougMHDpjHtWrV8rjSWXLfxf6ff/7xfHEFoE6dOubx0aNHPep9axiGuXFbVlzfz9mzZ5WcnJyndghZ8cZ3XadOHTOQ/fvvvz1ax5EjRzy6zl/48t4FAACZef6/QAEAAC4RK1euNI+Dg4P10ksv5Rq87dmzx22c3z6uf/75p1vQNGTIkFzD2EOHDrlt7nWxm3pluO6668xqxMTERG3evFlr1641X6Nz5865bk6WlpamJ5980gxxAgIC9P777+dp0yTX7yM8PFyDBg3K9Tl79+51G+f2fbiGgDlxrcZs3bq1R8/J6vrTp08rKirKo+f99ttvevPNN/W///1PCxculMPhyNPrXvjadrtdGzduzPU5UVFROVaUus7pdDo9mlOSNm7cqNdff11TpkzR/Pnz3aqTvfFdu65z48aNHn1+W7ZsyfUaf+LLexcAAGRGIAsAAIqdkydPmsehoaG5Vv3ZbDZ9//33bo/lN3hwXYOkTC0SsvL111+7jfPbviA4OFi33367OV66dKlZMSt5tpnXyy+/7BZ2DhkyRF26dMnTOlw/i0qVKuUajp89e1Zz5851eyy372PZsmWKj4/P8ZotW7Zo586d5vjGG2/M8foLtWvXTqVKlTLHX375Za7PsVqtev/99/Xdd9/pvffe06effupRm4cLNWrUSJdffrk5vvBeycqMGTNyPN+kSRO3ysmvvvrKo7V8+OGHmjlzpsaPH6/Ro0e79RX1xnd98803m8exsbFu1e9ZSUlJ0bx583J9H3lRmP1evcGX9y4AAMiMQBYAABQ7rj+lP3PmjLZv357ttQ6HQ2+99VamCtmL3UQpqzVIMtsEZGf+/PmZQuH8rkFyD12XLFmi5cuXS0oPyzp37pzjcydNmuTWb7ZXr1569NFH87wG189i//79io2NzfbatLQ0DRs2THFxcW6P5/ZZnD9/Xi+99FK2wW1CQoJefvllc1y7dm1df/31Hqz+P+XKlXPruTtnzhzNnz8/x+dMmDDB7efz/fr1y9NrunrsscfM41WrVmn69OnZXrt27VrNnDkzx/kCAwP1wAMPmOP169dr8uTJOT7n22+/1ebNm83xHXfcoeDgYHPsje+6VatWuvrqq83xW2+9lW0rBsMwNGrUKLPFQUFxbQ+RlpZWoHMXBl/fuwAAwB2BLAAAKHY6duzoNh46dKhbiCSlBzfr1q3TgAEDMgWhkuebRGXniiuuUGhoqDn+8MMPNXfu3EyB4f79+/Xqq6/q+eefz9SiIDU1NV9rkNKrIBs3bixJOnbsmFnB2L17dwUFZb+dwMKFCzVp0iRz3K5dO40aNeqi1uD6fdhsNj3++OOZfqZus9m0ZMkS3XHHHVq6dGmmOTz5PlavXq2BAwcqOjra7fFNmzapX79+5uMBAQEaNWpUnvrHZhg8eLCqV69ujl944QW98847mQLAmJgYvfjii5o2bZr5WEREhPr27Zvn18zQs2dPdejQwRyPGjVK48aNc9vAymq1avr06Xr88cc9artx7733KjIy0hxPmDBBw4YNy9Rn9NSpUxo7dqxGjx5tPhYeHp4poPfWdz1q1CiVLFlSUnpP4/79+2vp0qVu/87ExsbqmWeeyVRxWxBcg+ZVq1YV+PyFwZf3LgAAcMemXgAAoNhp27atOnbsaFalxsTE6J577lH16tVVvXp1nTt3TseOHXPr8RoaGqqQkBDzsQtbDuRVaGioHn/8cb3//vuS0oOyYcOGaezYsapdu7YCAwN14sQJHT9+3O151apVMx/L7xoy9O7dW2+//Xamx7KTkJCgYcOGuYVdlSpV0rBhw3T+/HnZ7XY5HI5ce9y+8847qly5sm677TZNmzZN+/btkyTt2rVLPXv2VM2aNVWtWjUlJSUpJibGLVisVKmSkpOTzWrE3D6Lm2++WYsWLdK6det0yy23qEGDBqpQoYKOHTumY8eOmddZLBYNHz5c7dq1y3G+7FSoUEETJ07UI488ooSEBBmGoWnTpumrr75SgwYNVK5cOcXGxuro0aNu4Xt4eLgmTZrkVk16McaMGaOBAwdq//79MgxDn3/+ub7++ms1btxYQUFB2r9/v7kxXP369WWxWHLcCCskJEQfffSRHnjgAbPqdO7cufrpp59Uv359VapUSSdPnlRMTIxb5WrZsmU1ceJElStXzm0+b33XderU0ZgxY/Tiiy/KZrMpLi5OTzzxhKpWraq6desqOTlZe/fuNUPojPuhoDRq1EgnTpyQJH3zzTfatGmTypcvr/r16+v1118vsNfxJl/fuwAA4D9UyAIAgGLpgw8+UNu2bd0e++eff7R582bt2rXLLYxt1aqVZs+erWuuucZ87MKK2ovxyCOPuP0kXErfXGv79u36888/3cLYyy67TJMnT3arOPzrr78KZBOd22+/3S1MadasmRo1apTt9ampqZl+lv3LL79owYIFWrJkiVasWKE//vhDq1evzvGf8+fPS0rvZfvZZ58pIiLCnM8wDMXExGjjxo3as2ePW0DXuXNnzZ071+363DZpuvvuu/Xcc88pMDBQhmFo//792rhxo1sYW6FCBY0fP173339/Lp9Yzpo1a6ZZs2a5/Yze4XAoKipKGzdu1OHDh92+t/bt22vmzJmqXbt2vl5XSg/HvvvuO7dK1LS0NG3btk1btmwxw9iGDRtqypQpKl26dK5z1qxZU7NmzXLr1WoYhv7++29t2LBBBw8edAtjIyMj9d1336lly5aZ5vLmd92tWzdNmzZNlSpVMh+Li4vTxo0btXv3bjOM7d+/v5555plc33dePP74427/Du3du1fr16/XihUrCvR1vM2X9y4AAPgPFbIAAKBYKlu2rL766istWrRICxYs0K5du3Tq1CkZhqGyZcuqZs2aatKkiW688UZde+21kqQuXbro119/lZT+8/fY2Fi3TY/yKqMas1u3bpo5c6a2bt2q2NhYWa1WhYaGKjw8XBEREerYsaO6deumEiVK6J9//tGoUaPkdDp15swZ/f7777r11lvz9VlUrFhRbdq00fr16yV5tplXQatWrZpmz56tefPmadGiRdqzZ48SExNlsVgUFhamOnXqKDIyUt26dTN3hO/SpYvZ/3fBggV6/vnnzZ+tZ+XRRx9Vhw4d9O2332rjxo2Ki4tTaGio6tWrp65du+quu+7KVNF5sWrWrKmvv/5amzZt0qJFi7Rp0ybFxsYqKSlJJUuWVPXq1dWqVSvdfvvtmf5iIL/CwsI0depUrVq1SnPnztWff/6p+Ph4lS5dWnXr1lW3bt109913u/U9zU2FChX00Ucfac+ePVqwYIE2bNigf/75R2fPnlVwcLDCw8PVvHlzdevWTZ07d86x3YM3v+u2bdvq999/1+zZs7V48WLt27dP586dU+XKldWyZUvdfffduuaaa3TgwIE8fqo5u+KKKzR9+nR99tln+uuvv5SYmKgSJUqodOnSSktLy9Nn7Wu+vHcBAEA6i5Hbb80AAABwSbNarerQoYPOnj2rkiVL6o8//lBYWJivlwUAAAD4JVoWAAAAFHNLly41f8rerVs3wlgAAADAhwhkAQAAirnp06ebx/379/fhSgAAAADQQxYAAKCYcjqd+uijj7Rp0yZJUrt27dS8eXMfrwoAAADwb/SQBQAAKEbefvtt/fnnnypZsqQOHjyo+Ph4SVJISIjmzp2rBg0a+HiFAAAAgH+jQhYAAKAYqVKlirlbfYagoCCNGjWKMBYAAAAoAghkAQAAipHWrVurfv36iomJUZkyZdSiRQs9+uijatOmja+XBgAAAEC0LAAAAAAAAACAQhPg6wUAAAAAAAAAgL8gkAUAAAAAAACAQkIPWeTLli1b3MYBAWT8AAAAAAAA/sjpdLqN2ccgawSyKFAX/osHAAAAAAAA4D+UMwIAAAAAAABAIaFCFgWKlgXIs9RUybWyOiBACg313XpwyXKt0OfPIlwM7iHkF/cQ8ot7CAWB+wj5xT2E/OCX054hkEW+BAQEuP3L1rx5cwUFcVvBc0bjxrJERf03joiQZe9eH64IlyK73a5t27aZY/4sQl5xDyG/uIeQX9xDKAjcR8gv7iHk159//mnmRAT62eOTAQAAAAAAAIBCQiALAAAAAAAAAIWEQBYAAAAAAAAACgmBLAAAAAAAAAAUEgJZAAAAAAAAACgkBLIAAAAAAAAAUEgIZAEAAAAAAACgkBDIAgAAAAAAAEAhIZAFAAAAAAAAgEIS5OsFAPBvjkWLtGf7dnPcpEUL/mACAAAAAADFFrkHAN+qUUPW+Hi3MQAAAAAAQHFFywIAAAAAAAAAKCRUyAIAAAAALgmGYcjpdPp6GUWWw+HINLZYLD5aDS5F3EP+JSAggO/XRwhkAQAAAABFkmEYSk1N1dmzZ5WcnCy73e7rJRVphmG4jQ8cOEDYgjzhHvI/QUFBKlOmjMLCwhQaGsr3XUgIZAEAAAAARY7VatWRI0dks9l8vZRLSlAQ/zcf+cM95F/sdrsSExOVmJio4OBg1a5dWyEhIb5eVrFHD1kAAAAAQJFCGHtxLBaLgoKCzH+odENecQ/5N5vNpiNHjshqtfp6KcUef+0BwKcsP/2kSjt3/jc+dEi64w4frggAAAC+ZBhGpjC2dOnS5s9pAwMDfbi6oi2jxUMGfn6MvOIe8i8Oh8NsC5OSkiLpv1C2fv36fPdeRCALwKcCXn1VdaOizLEREUEgCwAA4MdSU1Pdwtjw8HBVrFjRhyu6dBiG4RZYBwYGEqggT7iH/EtgYKBCQkJUvnx5JSQkKDY2VlJ6KJuamqrSpUv7eIXFFy0LAAAAAABFxtmzZ83j0qVLE8YCQCGoWLGiWwCblJTkw9UUfwSyAAAAAIAiIzk52TwOCwvz4UoAwL+4/plLIOtdBLIAAAAAgCLBMAzZ7XZzHBoa6sPVAIB/cf0z1263yzAMH66meCOQBQAAAAAUCU6n023MBl4AUHgu/DP3wj+TUXAIZAEAAAAAAACgkBDIAgAAAAAAAEAhIZAFAAAAAAAAgEJCIAsAAAAAAAAAhYRAFgAAAAAAAAAKSZCvFwAAAAAAAApGcHCwr5cAAMgFgSwAAAAAoFhIPGdT4jmbr5fhM4YMOewOcxwYZFOFUiEqX4qQFpcGm83GXyrALxDIAgAAAACKhcRzNkUnpPp6GT7lcLoEsgGBslS0FHogO2fOHA0fPtwcT5kyRdddd53Hzz9x4oQ6d+5sjqOiogpyeYWia9euOnbsmCRp6dKlqlmzpo9XVPAmTpyoSZMmSZIGDx6sp5566qLnio+P13vvvadrrrlGPXv2zHR+2LBhmjt3riRpzJgx6t2790W/FlAUEMgCAAAAAIqV9YdPy+40fL0MHzBks6VXCAcFWHRtg3Afryfdq6++qvnz56tChQq+XgqKoIULF+r1119XUlKSrr76al8vBygUBLIAAAAAgGLF7jT8NpAtiu/75MmTeuONN/Thhx/6eikoglatWqWkpCRfLwMoVAG+XgAAAAAAACjefvvtN82bN8/Xy8AlauzYsYqKilJUVBTtClAsEMgC8K3gYDlDQsx/RAN3AAAAoFgaNWqUYmNjfb0MAPA5AlkAPuX480/9uXat+Y/jzz99vSQAAAAABaRRo0YqX768JOns2bN6+eWXfbsgACgC6CELAAAAAAC8olKlSnr88cc1ZMgQSdLq1as1ffp03XPPPQX2GgcOHNAPP/ygjRs36tixY0pNTVX58uVVr149derUSXfeeafKlStXYK936tQpTZ8+XStWrNChQ4fkdDpVrVo1de3aVQMGDFB4eN42U9u+fbt++uknbdiwQbGxsUpLS1PFihXVtGlT3XDDDerevbuCPfgloc1m02+//aY1a9Zo+/btOnXqlJKTk1WqVCmVL19ezZs3V9euXdWtWzcFBgbmOJfT6dSiRYv0+++/a+fOnTp79qwqVKigVq1aqX///rrmmmvy9B6z0rVrVx07dsztseHDh2v48OGSpDFjxpjtCYYNG6a5c+dmejxDRESEJOn666/XJ598orNnz2rGjBlatGiRYmJiZLPZVLVqVV177bUaMGCAatWqZT53z549mj59utavX6/Y2FiVLFlSjRs3Vs+ePdW7d29ZLJYc34dhGFq8eLEWLVqkv/76S6dOnZLFYlGVKlXUpk0b3XbbberQoUP+PiwUOwSyAAAAAADAa7p166alS5dqwYIFkqRx48apY8eOqlOnTr7mTU1N1dixY/XDDz/IMNw3Mzt58qROnjypjRs3asqUKRo+fLj69OmTr9eTpJUrV2rIkCFKSUlxe/zQoUOaOnWqZs2apffff9/j9b/22mvm5+LqxIkTOnHihJYtW6bJkydrwoQJatasWbZzbdiwQcOGDdM///yT6VxSUpKSkpIUExOjhQsX6rPPPtOUKVNUvXr1LOc6ffq0hgwZou3bt7s9HhcXp99//12///67+vXrp4oVK3r0Pgvb1q1b9eyzz2ZqjxEdHa3o6Gj9/PPP+vTTT3XllVfqs88+04cffii73W5eZ7VatXHjRm3cuFErVqzQhx9+qICArH9gfvjwYQ0ZMkS7du3K8tzhw4c1Z84cdejQQePGjSuynxkKH4EsClRuf3MEAAAAAPA/r7/+ujZu3Ki4uDilpqbqpZde0vTp03Ot1MxOWlqaHnvsMW3cuNF8rEmTJrrmmmtUrlw5/fPPP1q+fLni4uKUlJSkl19+WSdOnNCTTz550e9h0aJFGjp0qBneValSRTfeeKOqVq2q48ePa8mSJTp16pSeeuqpXP+/cWpqqu69914zyAsICFD79u3VvHlzlShRQkePHtWKFSsUHx+vI0eO6J577tHUqVN15ZVXZppry5YtGjhwoGw2myTpsssuU6dOnVS9enVZLBbFxsZq7dq1io6OliTt27dPQ4cO1YwZMzLNdfr0aQ0YMEBHjx6VJAUHB+u6665T48aNZbVatXbtWu3YsUPff/+92YriYg0aNEhJSUlauHChdu7cKSk9vM8Inps3b57nOWNiYvTYY4/p7Nmzqly5sm688UZVrlxZhw8f1m+//Sar1aqzZ89q2LBh6tu3r8aPH6+AgABdd911at68uWw2m5YtW6Z9+/ZJkn7//XfNnDlT/fr1y/Ra+/bt03333afExERJUmhoqLp27arLL79cTqdT+/fv18qVK3X+/HmtWbNGffv21axZswhlIYlAFgXMYrHI4TQUGEAwCwAAAABIV65cOb311lt65JFHJEl//vmn/ve//+mxxx67qPnGjBljhrGlSpXS22+/rW7durldk5aWpnHjxunrr7+WJE2cOFFNmzZVly5d8vx6Z8+e1RtvvGGGsbfffrtGjRqlUqVKmde8+OKLeuWVV/Tbb7/lOt+IESPMMLZhw4b64IMP1KBBA7drzp8/r/fee0/ffvutzp8/r2effVa//PJLpvYLb7zxhhnGdu/eXW+99ZZCQkLcrjEMQ5999pnGjx8vKf3z37VrlyIjI92uGz9+vBnGXnbZZZoyZYoaN25snh86dKh++uknvfrqq2YQebHuvPNOSdL+/fvNQPbaa6/N1I4gLzKC1D59+uiNN95w+xzuu+8+9evXT3a7XTExMRo/frwqVqyoKVOmqEWLFuZ1zzzzjF588UXNnz9fkjRr1qxMgey5c+f01FNPmZ/BTTfdpFGjRmUKqWNjY/Xcc89p06ZNOnr0qF544QVNnTr1ot8fig829UKBszmcvl4CAAAAAKCI6dSpk+6++25zPHHiRO3duzfP8xw+fFizZs0yx+PGjcsUxkpSiRIl9Morr+iuu+6SlB5Kjhs3Tk5n3v8/67Rp05SQkCBJat26td599123MFaSypQpo/Hjx6tVq1Y5zrVnzx7NmzdPklS+fHl9+eWXmcJYSSpZsqRee+01M0A+efKkvvnmG7drtm/fboaQlStX1qhRozKFsVJ68dRjjz2m+vXrm4/t2LHD7Zro6GjNnj1bkhQUFKQPPvjA7M3qqmfPnmaf16IoMjJSo0ePzvQ5tGjRQtdff73bY6NGjXILY6X0auUXXnjBHO/du1dWq9Xtmh9++MGsOL7qqqv0wQcfZFkxHB4ersmTJ6tq1aqS0nsob9q06WLfGooRAlkUOJvTyP0iAAAAAIDfeemll1S7dm1J6ZtQvfDCC5nCrtwsWLDArFRt166dbrjhhhyvf/755xUaGipJ+vvvv7Vly5Y8r3vx4sXm8eOPP55tT9HAwEBzA7PsuLYKuOuuu1S5cuUcr3dts/Dzzz+7nStfvrxee+01PfTQQ3r22WdVsmTJHOdyrXZNSkpyO7dkyRKzF2+XLl3UqFGjbOfp37+/atSokeNr+cqAAQOy/X6aNm1qHlepUiVTQJshPDxcYWFhkiSHw6EzZ864nXf9DgcNGpRj640yZcrogQceMMc//fRTbm8BfoBAFgWOClnkhWXCBNWYONH8xzJhgq+XBAAAAMBLQkNDNXbsWDMw27dvnz766KM8zbF+/Xrz+NZbb831+rCwMF177bXmeMOGDXl6vePHj+vvv/+WJIWEhKh9+/Y5Xn/11Vfn2F/Vte/thS0DstK0aVMzUD5y5Iji4uLMc7Vr19a9996rl156SX379s1xnri4OJ0+fdocu25kJUl//PGHeez6eWXFYrHoxhtvzHXtvnBhxasr1/A7MjIyx16/pUuXNo/T0tLM4/j4eB08eNBtnty0adPGPN68eXOu16P4o4csCpzdQYUsPBcwdaoui4oyx0ZEhOTy8xAAAAAAxUubNm00cOBAff7555KkqVOnqmvXrrriiis8ev6RI0fM4yZNmnj0nKZNm2rRokWZnu+JY8eOmcd169ZVcHBwjtdbLBY1atTILXjN4HA4dOjQIXP89NNP52ktkvTPP/+YP4HP7vzhw4d19OhRxcTE6MCBA9q7d6/ZGzZDRjVsBtf3efnll+e6Dtdq26IkPDw823OulbMZFbCeXOtq//79buN27drlYXXp3w9AIIsCZ7uIfjwAAAAAAP/x9NNPa+XKldq3b5+cTqdeeukl/fzzz2YlaE5cN5OqUKGCR6/nel1eN6OKj483j3ML8XJb15kzZzIFoXmV1fqjo6M1bdo0LV682Ox1m5XAwEA5HI4sz506dco89uR9evrZF7YLe/tmJ6c2AznJ72ZmVqtVqampHt3rKL4IZFHg7A5DhmHkWPoPAAAAAPBfISEheu+993THHXfIZrPpyJEjGjt2rEaOHJnrcy8m0HQNIbOrfCxIWW2sJWVuE/Doo4/m2N4gK/Xq1XMbz549W2+88YZsNlumNdSpU0eNGjVSixYt1K5dO3355ZeaO3dunl4vO9m9R1/zdhbhei+VLVtWjz/+eJ7nCAoijvN33AEocIYku9NQcCCBLAAAAAAga40bN9ZTTz2l8ePHS5JmzpypG264IcfNpCSpXLlyZh/V06dPm5uE5cS1d2rZsmXztM4qVaqYx55WR164YVaGcuXKuY1vueUWj3qQZmfr1q16/fXXzZCwTZs2uvPOO9WqVSvVrl07U/h87ty5bOeqUqWKDh8+LCm9krdmzZo5vvbZs2cvet2XMtfqYafTqYEDB/pwNbhUsakXvIKNvQAAAAAAuXn44YfVunVrc/zKK69k2tH+QnXr1jWP9+zZ49Hr7N692zyuU6dOntboGkxGR0fr/PnzuT7nwIEDWT5eokQJtx6nF/YjzU52bQimTJlihrHXXXedpk+frp49e6pu3bpZVgK7znNhpbHr+9y3b1+ua8ruPRZ3rvdPSkqKRz1hrVZrtiE9/BOBLLzC5mRjLwAAAABAzgIDAzV27Fiz72dcXJxGjRqV43Ouuuoq83jhwoW5vsbZs2e1Zs0ac+y6470nwsPDzSpWu92upUuX5nj9gQMHFBMTk+35tm3bmse//fZbrq+/d+9eXXPNNWrZsqW6devmFqpu3brVPL7zzjtz/Ll+amqqtm3bZo4vDGS7du1qHi9ZsiTXda1cuTLXazxxqbU7rFOnjluonrFZXE5mzJihK6+8UldddZUGDRrkzeXhEkEgC6+wOQhkAQAAAAC5q1u3rl544QVzvGnTphyv79Wrl7kh04YNG3IND8ePH2/+VP+yyy5zC3Q9dfvtt5vHH330UY4//f/www9znKtPnz7m8YoVK9zC4gsZhqH33ntPknT+/HmFhYWpYsWK5nnXvrE5beYlSe+9957S0tKyfK4k3XzzzQoODpYkrV+/XuvWrct2ruXLl7uFu/nhWsmb3YZjRY3rd/j555+bLTSycvr0aX322WeS0v9yILeWHPAPBLLwCjstCwAAAAAAHurfv786dOjg0bW1atXSHXfcYY6ff/75LCtlrVar3nnnHX3//ffmY6+99tpFbah0zz336PLLL5eU3rbg0Ucf1alTpzK93ttvv51rxeQ111xjvlfDMPT0009nGSqnpqZqxIgRWr16tfnYM88843ZN48aNzeMpU6bo5MmTmeZJSkrSq6++qu+++87t8QtbL1SpUkWPPfaYua6XXnrJ7bUzrFmzxi1Az68yZcqYx8eOHSuweb3p/vvvN3sLnzp1SgMGDMiy/cTx48f1+OOPm99L+fLl9eCDDxbqWlE0sakXvIKWBQAAAAB8JSjg0voJdEEy/n3vl9pnYLFY9Pbbb+v222/3aLOoV155RVFRUfrrr7907tw5DRkyRJ9//rmuueYahYWF6fjx41q+fLliY2PN5zzyyCO64YYbLmp9ISEheuedd/Tggw8qOTlZGzdu1E033aSbbrpJderUUUJCgpYsWaJjx44pKChI1apVy7Ftwbhx43TXXXfpyJEjSk5O1pNPPqnIyEi1a9dOZcqU0bFjx7Rs2TK3qtdBgwbpmmuucZvnwQcf1J9//ilJiomJMddUq1YtWa1WRUdHa+XKlWb4GhwcbFbGZrVB2WOPPaa1a9dq69atSk5O1sMPP6x27dqpTZs2slgs2rJli1k5W69ePR06dOiiPk9Xrr1rp02bJqvVqrJly+qqq67SlVdeme/5vaFChQr68MMPNXDgQJ07d04HDx5Ujx491KFDBzVr1kwWi0UHDhzQ0qVLzc87ODhY7777ripUqODj1aMoIJCFV7CpFwAAAABfaVfHfwMPh/PS+Ml3Vi677DK9+uqrevHFF3O9tkSJEvrqq6/05ptvau7cuTIMQ7t373bbvCtD6dKlNWLECPXo0SNf62vRooVmzJihxx57TMeOHVNycrLmzJnjdk1ISIhGjRqlZcuW5RjIVqxYUT/88IOGDRumFStWSJJ27dqlXbt2Zflen332WT300EOZzt1888166qmnNGnSJBmGodTUVP30009Zvuatt96qHj16mD1Md+7cmema4OBgffLJJxo5cqRZdbx+/XqtX7/e7bquXbuqd+/eGjx4cLbv0VO33nqrJk2apMTERKWlpWnq1KmSpHvvvbfIBrJSei/i77//XkOHDtXBgwflcDi0atUqrVq1KtO1VatW1dixYz2uAkfxRyALr6CHLAAAAIDCVr5UsOpWDPX1MnzGkCGH/b9ANjAoUOVLBftwRXnXo0cPLV261KONkkqWLKkxY8ZowIAB+vHHH7VhwwadOHFCycnJKlu2rBo1aqROnTqpT58+bn1X86Nhw4ZauHChZs2apV9//VX79u3T+fPnVbVqVbVr104PPPCAGjVqpGXLluU6V4UKFTRlyhRt2bJF8+fP1+bNmxUbG6vU1FSVKVNG9erV0zXXXKO+ffuqevXq2c4zePBgXXvttfruu++0detWxcbGyul0qnTp0qpdu7aaNWumnj17qmXLlrJarapQoYJOnz6tv//+Wzt27FDz5s3d5gsJCdHo0aPVvXt3zZs3T1u3btWpU6dUpkwZNWrUSHfccYe6d++u5cuX5/vzlKTKlStrxowZ+vDDD7Vp0yYlJiaqZMmSOfbpLSqaNGmiBQsWaNGiRVqyZIm2bdumhIQE2Ww2lS9fXhEREeratat69Ojh1poBsBgXbqsH5MGff/4pp/O/atjWrVvrSOJ5pVgdirysrA9XhkuF0bixLFFR/40jImTZu9eHK8KlyG63u20q0LJly4vqDQb/xT2E/OIeQn5xD6VzOBzat2+fOW7UqJG5eRNyZxiG20ZNwcHBl9wO9vCtjCrbDKGhodxDfqQg/gx2zYkCAgLUunXrAl1jceF//w2PQkHLAgAAAAAofBcGsgCAoifA1wtA8cSmXgAAAAAAAEBmBLLwCipkAQAAAAAAgMwIZOEVdipkAQAAAAAAgEzoIQuvcDoNOZyGAgNo/o2cGREROueyt2DJiAhx1wAAAAAAgOKKQBZeY3M4FRjAjqjImfPHH7Xngh2FKd0HAAAAAADFFbkHvIaNvQAAAAAAAAB3BLLwGjb2AgAAAAAAANwRyMJr7A4qZAEAAAAAAABXBLLwGpuTClkAAAAAAADAFYEsvMZGhSwAAAAAAADghkAWXkMPWQAAAAAAAMBdkK8XgOLL7qRCFrkLeOop1d+z579xkybSp5/6cEUAAAAAAADeQyALr6FlATxhWb5c5aOizLFx4oQPVwMAAAAAAOBdtCyA17CpFwAAAAAAAOCOQBZeQ4UsAAAAAAAA4I5AFl5jp0IWAAAAAAAAcEMgC6+xOwwZBlWyAAAAAAAAQAYCWXgVbQsAAAAAAACA/xDIwqvY2AsAAAAAAAD4D4EsvMpOhSwAAAAAAABgCvL1AlC8USELAAAAAIUnODjY10sAAOSCQBZeRQ9ZAAAAAIXFcT5RzrREXy/Dpxx2u3lsCQpSQInyCixZ3ncLKuJsNhshtp/hO0dRQCALryKQBQAAAFBYnGmJsp897Otl+JTD6fhvEBCooDAVWiD75ZdfasyYMZKkatWqacWKFR49r3v37oqKijLHI0aMUP/+/XN93i+//KKhQ4dKkipWrKi1a9fKYrFow4YNuv/++yVJbdu21TfffJPl89etW6fRo0frl19+yfJ8RESEeey6vqKiqK+vIAwbNkxz586VJI0ZM0a9e/e+6LmOHDmit956Sw899JCuvvrqTOfvu+8+bdy4UZL09ddfZ3kNUFAIZOFVtCwAAAAAUNjSjq+X4bTnfmExY0iy2dLftyUgSGVrdyzU12/fvr15fPz4cf3zzz+qXr16js+JjY3NFCauWrXKo0B2w4YN5nGHDh1ksVg8XuuQIUO0cOFCj6/Hpe3LL7/U+++/L6vVqoceesjXywHY1AvexaZeAAAAAAqb4bRLhsNP/7FLht0ngXSjRo1UtWpVc7x58+Zcn7Ny5cpMj61fv15WqzXX57oGstdee62Hq0xHGOtfli5d6tE9BRQWAll4jcNpyOagQhYAAAAA/EWHDh3M47wEshaLRdddd50k6dy5c25ha1bi4uIUHR1tPtc1kL366qsVFRWlqKiobNsVABf65ptvzPuGdgXwNgJZeI3NacjmpEIWAAAAAPyFa9uCLVu25Hit1WrVunXrJKVX13br1s08l1XlrKuMXp+S1LRpU1WsWPFilgsAPkEgC6+xOZxUyAIAAACAH3Ht5XrgwAGdPn0622u3bNmilJQUSelB7rXXXquAgPSYYtWqVTm+jmsgm9d2BQDga2zqBa+xOw3ZqZBFLoxbbtHp2rXNcfmmTeV5K34AAAAARUmlSpXUuHFj7dmzR4ZhaOvWrbr++uuzvNY1dL322mtVsWJFRUZGaseOHTp8+LCio6NVt27dLJ+bU//YDRs26P7775cktW3b1mxb4Pq4q4iICPP4wg3GXKWlpWnGjBn6/fffdeDAAaWkpKhKlSpq0qSJevXqpRtuuCHb5+ZVTEyMpk+frtWrVysmJkYBAQGqVauWbr75Zt1///0qW7ZsnuZbu3atFixYoC1btiguLk5Op1OVKlVSy5Ytdcstt+imm27yaFO0c+fOaf78+Vq3bp12796t06dPKyUlRaVLl1bFihXVqlUr3XzzzerSpUuuc1mtVv3444/69ddfFRUVpZSUFFWuXFlt27bV/fffr2bNmuXpPWbF9bvN4HoPfP3112Z7gvvuu88M+l0fl6SjR4+a9/H999+vV155RbGxsfr++++1dOlSHTt2TBaLRdWrV1fXrl113333qXLlyubzN23apO+//15//vmnTp48qTJlyigyMlL9+vXz6L6x2+2aP3++lixZol27dikhIUHBwcEKDw9X27Zt1bt3b7Vo0eLiPiT4BIEsvCa9QpZAFjlzjhunQ9u2meOWLVtSug8AAABcwtq3b689e/ZISu8jm10gm9GWIDQ0VFdddZWk9HB1x44d5vmsAlnX/rFly5ZVq1atCvYNZGH37t0aPHiwjh075vb4sWPHdOzYMS1ZskTXX3+93n//fZUqVSpfrzV79my98cYbstlsbo9n9DedOXOmPvnkE4/mOnXqlJ5//nmtXbs207mMtS9cuFCRkZH68MMPVbNmzWznWrhwoUaOHJll1fOZM2d05swZHTp0SHPnzlXbtm01adIklStXLsu5jhw5okcffVSHDh1ye/z48eP6+eeftWDBAj311FMevUdfWLJkiYYPH66zZ8+6Pb5v3z7t27dPP/30k6ZNm6Z69erp7bffztTL+PTp01q9erVWr16tAQMG6OWXX872tbZv367nn39ehw8fdns8LS1NycnJOnDggL7//nvddtttGjVqlEJDQwvujcJrCGThNTaHIcMwZHc6FRRAxAYAAAAA/qBjx46aOnWqpOz7yB49elQHDhyQlL4JV0hIiCSpU6dOZti4cuVKDRgwINNzXatj27dvr6Agz6KN2rVr68UXX5Qkvfvuu+bjGY/l5N5771VKSopKlSql66+/XvXq1VNaWpr++OMPM3xeunSpxo0bp9dee82j9WTlyy+/1JgxY9zW3KVLF1WoUEGHDx/W4sWLFRsbq4EDB+Y6V1xcnO6++24zRA4ODlbnzp3VuHFjBQQEKDo6WitWrNDZs2e1a9cu3XHHHfr+++8VHh6eaa6FCxdq6NChMoz0oqu6deuqQ4cOCg8Pl8Ph0D///KNVq1YpNjZWUnpLiTfffFPjx4/PNFd0dLT69eunhIQESTI/0/r16yspKUkrV67UgQMH9MEHH6hChQp5/xBdZHy333//vWJiYiRJd999t2r/+yvN2i6/1vTUX3/9pe+//142m001a9ZUly5dVK5cOe3fv1+LFy+W0+nUiRMn9OqrryoyMlLffPONgoODdcMNN6hRo0ZKTk7WokWLdPToUUnSV199pY4dO6pTp06ZXmvdunUaNGiQzp8/L0mqUKGCunTpolq1aslms2nXrl1as2aN7Ha7FixYoMOHD2v69OkqUaLERX1eKDwEsvAamzO9f6zNYSiIPBYAAAAA/MKVV16pkiVL6vz589q9e7fOnTuXqWrUddMu1yCqRYsWKl++vBITE7Vp0yalpqZmqvi72P6x1apVM4NM10DWk3AzJSVFnTt31jvvvOMWEj733HN6//339dlnn0mSZsyYoSeffPKiNhmLiYlxCzAHDhyooUOHugXOzz//vIYMGeL2GWTFMAwNGTLEDGOvvPJKjRs3TtWqVXO77syZM3rttde0aNEiJSYm6umnn9b06dPdXjM1NVVvvfWWGcY++uijGjJkiNnvN4PNZtPbb7+t7777TpL022+/6dVXX830WYwcOdIMYxs3bqxPP/1U1atXN8+/8MILmjp1qsaNG5djD2JPZHy3K1asMAPZbt26ubUjyKvt27dLkp544gk99dRTbp/DkiVL9OSTT0qStm7dqq1bt6pOnTr67LPP3Kq9n376aT366KPmXy7MmjUrUyAbFxenoUOHmmFs//799eKLL2b6d+nAgQN65plntH//fu3YsUNvvfWWRo4cedHvD4WDmAxeY/+3XYGdtgUAAAAA4DdCQkJ05ZVXSkoP6f76669M1/zxxx/msWsQFRgYqPbt20tK7zG6bt26TM/1xYZeERER+vjjj7Os2BwyZIj5U3+73a6tW7de1Gt89NFHSktLkyTdeuutevHFFzNV/1auXFmTJ0/OsbWAlF6tu3nzZknp1ayff/55pjBWksqVK6cJEyaoSZMmkqT9+/frt99+c7tmxYoVio+Pl5QeoA4dOjRTGCulV+AOHz5cYWFhkiSHw6Fdu3a5XbNu3TqtWbNGkhQWFqbPP//cLYyVpICAAD3yyCMeBeW+csMNN+iZZ57J9DnccMMNmXrffvjhh5lab5QsWVLPPPOMOc4IeV3973//M4Pr2267TSNGjMiyHUb9+vX12Wefmedmz55ths8oughk4TUZ/WMzKmUBAAAAAP6hQ4cO5vGFbQusVqvWr18vSbr88sszhYuuAa1rJa0kxcbGmv1jGzZsqMsuu6wgl52tBx98UMHBwVmeCwgIULt27czxhX1mPWGz2bR8+XJznFP/1NKlS+uJJ57Icb4ZM2aYxw899FCOfUUDAwM1aNAgc7xgwQK385dffrmGDx+u+++/X4MHD85x86+QkBBdfvnl5jgpKcnt/O+//24e33nnnapatWq2cz355JNFth/qgw8+mO25pk2bmsetWrUyw+4LNWrUyDzOCF4z2O12zZ492xwPHjw4x/VUr15dvXv3lpQehM+fPz/H6+F7BLLwGteWBQAAAAAA/5FTILthwwadO3dOktS5c+dMz+3YsaMZ+q1evdrtnC+qYyWpTZs2OZ6vXLmyeZySkpLn+bdt22aGl7Vq1VL9+vVzvP7GG2/MNhh1OBxun3lkZGSur+/6/rZv3y673W6OGzdurAceeECvvPKKbrzxxhzniYmJUWpqqjl2nUdyr4zu0qVLjnOVLl3a7T4qKiwWi5o3b57tedd7IafPvnTp0uax1Wp1O7dr1y7zPgoNDVW9evVyXZfrd5hd72YUHfSQhdeYFbIOKmQBAAAAwJ9ERESoSpUqOnnypP766y/Z7Xbz5/fZ9Y/NUKVKFTVp0kS7d+/WsWPHFBMTo1q1aknyXSCbW09Y19YCDocjz/NnbPAkSQ0aNMj1+rCwMFWvXj3Latx//vnHLRTt06dPntZy/vx5JSYmugWLrgzDUExMjI4cOaIjR44oJiZGBw8e1O7duxUXF5fpWtfj48ePm+PcQmcpPQxevHhxntbvbeXLl89x0yzXNgYZ7Rtyu+5C+/fvN49TU1MVERGRpzVeTJU2CheBLLzGnlEh66RCFtkLuO02Re7d+9+4cWPpgp5FAAAAAC497du3188//6zU1FTt3r1bLVq0kCStWrVKUnrlX0av2Qtde+212r17t6T0vqMXBrI5PdcbypQp49X5T506ZR7nFOK5qlChQpbBW343wpLSN/u6MJDduXOnvvzyS61YsSJTKwJXgYGBWYbSp0+fdquY9eR9ZtWz19ey6uOancDAwIt6jcTExIt6XkE9H95HIAuvsTsMGZLsVMgiB5boaJU8fNgcGyVL+nA1AAAAAApKhw4d9PPPP0tK/wl1ixYtFB0drcP//u//q6++WiEhIVk+t1OnTpoyZYqk9ED2zjvvdOsf27Zt22yf6y+ye/8XhqHPP/98jtWYrgzDkM1my1QR/PHHH2vixIluFa9SejBet25dNWrUSC1atFD79u31+uuvu1Uy50dR/I5z6qFbUFy/wxo1auiee+7J0/NzquBF0UAgC68xlN6ugB6yAAAAAOB/2rdvL4vFIsMw9Ndff0ly7wmbVf/YDK1atVLZsmWVlJSkDRs2SJI2bdpkni/MdgWFoUqVKuaxp9WN2VWpXlh52rdvX5UvX96jOQ3DcGt3IEkLFy7URx99ZI67dOminj17qnnz5qpevXqmgDKjP/CFKlSooODgYNlsNknpVbi5tYI4e/asR+subly/w9KlS2vgwIE+XA28gU294FV2p2Fu7gUAAAAA8B9VqlQxd5LfsWOHJGn9+vXm+az6x2YICgpS+/btJaX/nP/EiRPFOpCtWbOmebzXpaVbdmw2m1lpfKEaNWooODjYHLv2I82O0+nMttXBJ598Yh7369dPkydP1i233KIaNWpkWS2akJBgHrtW1FosFtWoUcMce/I+Dxw4kOs1xVGdOnXM48OHD2fa9Csr58+fzxSmo+gikIVXUSELAAAAAP6rQ4cOktI3GTp58qQZqtavX98tnMuKa+i6Z88ebd26VZJUu3Ztt8CqOGjZsqUqVaokSYqNjTUrirOzbt26bEO6kiVLqnnz5uZ40aJFub7+8uXL1a5dO7Vp00b33Xef2es1KSnJLdC9++67c5znyJEjbn1tL2xx0LVrV/P4t1z2DrHb7W4V1f6kdevWZqielpamFStW5PqcCRMmqHXr1mrXrp1GjBjh5RUivwhk4VU2hyE7m3oBAAAAgF/KCGQlafbs2ebP8XOqjs3ges2mTZv0999/SyqY6ljXzZay2oCqsAUGBqpbt27meNy4cXJm82tTh8OhSZMm5Thfnz59zONZs2Zp37592V5rtVr1wQcfSJJSUlJUq1YtBQWld7jMaC+QIbcNw9566y23sesmXpJ02223mcdz587NcV0zZsxQbGxsjq/nKdfvO7vPtSgpVaqU2/0wYcKEHKtfDx8+rBkzZkhK/46aNm3q9TUifwhk4VU2hyEbm3oBAAAAgF+66qqrzA2Gvv32W/PxnPrHZggPDzdbHsydO9cM0goikC1Tpox57FrR6UtPPPGE2VN106ZNGjp0qJKTk92uSUlJ0XPPPadt27blOFePHj3UsGFDSek/ZX/ooYe0efPmTNedPn1azz77rBmMBgcH65FHHjHPV6hQQVWrVjXHEyZMyLQmSTp58qQGDRqUqZLzwn6ykZGR6t27t6T0IPjhhx/Wrl27Ms33888/a+zYsTm+x7xw/b6PHj1aYPN60xNPPKHQ0FBJ0sGDBzVw4EAdP34803X79+/Xo48+qvPnz0tKb3fQq1evQl0r8o5NveBVdqdTDqchp2EooBB2IgQAAAAAS0CQDH+tC7Gk/0LRElA0/u9+iRIldOWVV2rNmjWKj4+XJIWGhqpNmzYePf/aa6/Vvn37zL6kISEhuvrqq/O9rpo1a+rMmTOSpCeffFL/93//p3PnzunJJ59USEhIvue/GBUrVtRbb72lp59+WjabTb/++qs2btyoG2+8UdWqVdOJEye0ePFixcfHq0yZMipVqpROnjyZ5VzBwcGaOHGi+vfvr4SEBJ08eVL33HOPrrrqKrVp00bBwcE6fPiwlixZ4lZ5+dprr6levXrm2GKx6MEHH9Q777wjSdq2bZuuv/563XjjjapevbqSk5P1999/a82aNWY1rOvGXVltUDZ8+HBt27ZNBw4cUGxsrPr27avOnTsrMjJSNptNa9eu1fbt2yVJ9erV06FDh/L92br26B03bpyOHTum4OBg3XTTTWZwXdTUrVtXY8aM0XPPPSe73a6tW7fq5ptvVufOnRURESGr1ap9+/Zp5cqV5l9WlC5dWh988IHP7mF4rmj8CY1iK6N/rM1hqEQQgSwAAAAA7ytRrZ2vl+AzIU7f//z+Qu3bt9eaNWvMcbt27TwOjDp16qSpU6ea4zZt2phVg/nRr18/vfrqq5Kkffv2mRWiN954o5o1a5bv+S9W165d9cUXX2jw4MFKTEzUqVOnzJ+iZyhTpow+/PBDjR8/PttAVkoPM2fNmqXnnnvO7Em7adMmt83RMoSFhem1117T7bffnumn8Q8++KAOHjyoWbNmSUoPWTOOXQUEBKhfv35q0qSJ+dnu3Lkzy9eaMWOGnn32Wa1Zs0YOh0PLli3TsmXL3K7r16+fGjRooFGjRmX7Hj3Vp08fTZ8+XVarVYmJifr0008lpbcGKKqBrCTdcsstKleunF566SXFxsYqLS1Nv//+u37//fdM19atW1fjx4+nXcElgkAWXmX7929p7A6nSgTRIQMAAACA9wSUKK+gMF+vwsdcenYGBQUpoER5363lXx07dtR7771njj3pH5uhTZs2Kl26tFJSUiQVTLsCSerbt69KlCihb775RgcPHtT58+dVoUIFs4rXl6666ir9/vvv+u6777R06VIdOHBADodDl112mTp16qQHH3xQNWrU0Pjx43Odq2bNmpo5c6ZWrlyp3377TVu3btXJkyeVlpamsLAwNWjQQJ06dVKfPn1UsWLFTJtwSelVsqNHj9bNN9+s2bNna9u2bTp16pQMw1BYWJjq1q2rli1bqk+fPmrQoIFOnTplVsmuXbtWsbGxCg8Pd5szLCxMU6dO1eLFizV37lxt375diYmJKl++vJo3b65+/fqpc+fObm0u8qNhw4b69ttv9fHHH2v79u1KSkpSmTJlsmy/UNRcc801WrJkiX7++WctX75cu3fv1unTp+V0OlWpUiU1adJEN998s7p160Zl7CXEYmT1bxvgoT///NOtIXbr1q11JPG8ohNStfpQgsqXClazy8qqVY1yKl8q2IcrRVFlNG4sS1TUf+OICFn27vXhinApstvtbn20WrZsaW5EAHiCewj5xT2E/OIeSudwONw2+WnUqJHbZjzImWEYbpswBQcHy0LrOOSBYRhuFbKhoaHcQ36kIP4Mds2JAgIC1Lp16wJdY3Hhf/8Nj0Jl/3dDLzb2AgAAAADvuzCQBQAUPfyGHF5lcxpu/wkAAAAAAAD4MwJZeFVGZaydClkAAAAAAACAQBbeZXMYbv8JAAAAAAAA+DMCWXiVIcnhNGRzUiELAAAAAAAAEMjC62xOgwpZAAAAAAAAQFKQrxeA4s/mcBLIIlvOxx9X7K5d5jg8MlKBPlwPAAAAAACANxHIwutsDkN2WhYgG8aTT+r4tm3muGrLlj5cDQAAAAAAgHfRsgBeZ3NSIQsAAAAAAABIBLIoBHaHIbvTkGEQygIAAAAAAMC/EcjC62wOpwwjPZQFAAAAAAAA/BmBLLzO9m8QSyALAAAAAAAAf0cgC6+zOZxu/wkAAAAAAAD4KwJZeF1GZSwbewEAAADISUCA+/9FdTgcPloJAPifC//MvfDPZBScIF8vAMWfWSHrpEIWmQU2a6Y2UVHm2IiIkPbu9eGKAAAA4CsWi0VBQUGy2+2SpNTUVIWEhPh4VQDgH1JTU83joKAgWSwWH66meCPqhtdlVMbaqZAFAAAAkIsyZcqYx2fPnvXhSgDAv7j+mVu2bFkfrqT4I5CF12UEsrQsAAAAAJCbsLAw8zglJUUJCQk+XA0A+IeEhASlpKSYYwJZ76JlAbzOYRgyRMsCAAAAALkLDQ1VcHCwbDabJCk2NlbJyckKCwtTaGioAgMDfbzCosswDLcekA6Hg58cI0+4h/yLw+FQamqqzp496xbGBgcHKzQ01IcrK/4IZFEobA4nFbIAAAAAcmWxWFS7dm0dOXLEDGVTUlLcwgJkz+lSCMOGPLgY3EP+LTg4WLVr1yaI9zL+zUKhsDkM2amQBQAAAOCBkJAQ1a5dW8HBwb5eyiXFMAzZ7XbzH8OgKAZ5wz3k3zLCWDZT9D4qZFEoqJAFAAAAkBchISGqX7++UlNTlZSUpKSkJNntdl8vq8hz/YwItHExuIf8S1BQkMqWLauyZcsqNDSUythCQiCLQmF3GrI5qJAFAAAA4DmLxaLSpUurdOnSuuyyy2QYhtvPqeHObrdr586d5rh+/foKCuL/9sNz3EP+JSAggADWR/i3CoXC5nDK5qRCFgAAAMDFs1gsbOqVgwt/Xh4YGMjnhTzhHgIKBz1kUShsTkNOpyEHoSwAAAAAAAD8GIEsCkVG/1g29gIAAAAAAIA/I5BFobD/2z+Wjb0AAAAAAADgzwhkUSgy+scSyAIAAAAAAMCfEciiUNgyKmRpWQAAAAAAAAA/RiCLQmH2kKVCFgAAAAAAAH6MQBaFIqMyNqNSFgAAAAAAAPBHBLIoFBmVsRm9ZAEAAAAAAAB/FOTrBcA/GJLsToMKWWTifPddHd650xzXadZMgT5cDwAAAAAAgDcRyKLQ2BxO2amQxQWMbt10ukYNc1y7ZUsfrgYAAAAAAMC7aFmAQmOjQhYAAAAAAAB+jkAWhcbmcMrqoEIWAAAAAAAA/otAFoXGaqdCFgAAAAAAAP6NQBaFxuZwyuE05KCPLAAAAAAAAPwUgSwKjfXf6liqZAEAAAAAAOCvgny9APgP27+VsVaHUyWDA328GhQZBw+qRHT0f+OyZaVGjXy2HAAAAAAAAG8ikEWhsZkVsrQswH8Cu3dXs6goc2xEREh79/pwRQAAAAAAAN5DywIUGqs9PZC10rIAAAAAAAAAfopAFoUmozKWHrIAAAAAAADwVwSyKDRWWhYAAAAAAADAzxHIotAYkuxOg5YFAAAAAAAA8FsEsihUVoeTClkAAAAAAAD4LQJZFCqbw0mFLAAAAAAAAPwWgSwKldVhsKkXAAAAAAAA/FaQrxfga7t379asWbO0efNmnThxQufOnVO5cuV0+eWX69prr9Vdd92lcuXKeTzf9u3bNWvWLG3atEmxsbEyDEPh4eGKjIxUjx491KlTJ1ksFo/nMwxDS5Ys0bx587Rjxw6dOnVKpUqVUnh4uNq1a6c+ffqocePGF/PWfSK9QpaWBQAAAAAAAPBPfhvInj9/XiNHjtSPP/6Y6Vx8fLzi4+O1ceNGTZ48WSNHjtRtt92W43w2m02jRo3SzJkzM52Ljo5WdHS0fvnlF3Xs2FFjxoxR1apVc11jbGyshgwZoi1btrg9brVadebMGe3bt0/ffPONHnjgAQ0dOlQhISG5zulrVodThmHI7nAqKJACbQAAAAAAAPgXv0zErFarBg0a5BbGBgYGqkmTJrr66qtVs2ZN8/GUlBQ999xz+v7777OdzzAMPfvss25hbIkSJdSiRQu1bt1aZcqUMR9fvXq1BgwYoLNnz+a4xoSEBN17771uYWz58uV15ZVXKjIyUkFBQeZrf/HFFxo2bJjnH4APZWzoRZUsAAAAAAAA/JFfVsh+/vnnWrdunTnu0qWLRowYoWrVqpmPbdq0SS+99JKOHTsmSRo9erSuvPJKNWzYMNN806ZN05IlS8xx//79NXToUJUtW1ZSejXul19+qYkTJ8put+vgwYN6+eWXNWnSpGzXOHz4cB05ckRSerg7fPhw9e3b1wxiT548qbffflsLFy6UJP3yyy9q1aqV7r///ov9WApFRv/Y9P8M9O1iAAAAAAAAgELmdxWyVqtV06ZNM8fXXHONPv74Y7cwVpKuuuoqff3112aoarfb9emnn2aaLyEhQR9//LE57tevn0aMGGE+T5JKliypQYMGaeTIkeZjixcv1tatW7Nc4x9//KEVK1aY47Fjx6pfv35mGCtJVapU0YQJE9SzZ0/zsU8++UTJycm5fAK+ZTUrZNnYCwAAAAAAAP7H7wLZv/76yy20fOaZZxQYmHWlZs2aNdW/f39zvGLFChmG+0/tZ8+erZSUFEnpLQVefPHFbF+7T58+uu6668zxF198keV1X331lXncsWNHdevWLds5R4wYoUqVKkmSTp8+rblz52Z7bVHwX4UsLQsAAAAAAADgf/wukD1x4oTbODIyMsfrW7ZsaR6npKTo9OnTbud//fVX8/jWW29VaGhojvPddddd5vGqVauUmprqdv7MmTNau3atOe7Tp0+O84WGhqp79+7m+Lfffsvxel+zurUsAAAAAAAAAPyL3wWyrq0EJJnVrdmx2+1u4xIlSpjHiYmJ2rNnjznu2LFjrq/frl07syL3/PnzbuGrJG3cuFEOh0OSZLFY1KFDh1zndL1m69atOnPmTK7P8RW7w5AhWhYAAAAAAADAP/ldINugQQO38R9//JHj9WvWrDGPq1WrptKlS5vjqKgotxYGuVXbSukVrbVr1zbHO3bscDu/d+9e87hmzZoqV65crnM2btzYPHY6ndq1a1euz/EVQ+nVsbQsAAAAAAAAgD/yu0C2Vq1abn1cP/jgA8XHx2d57ebNmzVnzhxz7NpPVpKio6PN45CQkEwbg2WnZs2a5vGRI0eynbNOnToezVelShWVLFnSHB8+fNij5/mKzWFQIQuTY9Ys7Z4+3fzHMWuWr5cEAAAAAADgNX4XyErSyy+/rMqVK0uSjh07pjvuuENz5sxRfHy87Ha7YmJiNHnyZA0cOFA2m02S1LRpU917771u85w8edI8rlKlisev73qt6xySFBcXd1FzZmzsldWcRY2VClm4atJE5yIizH/UpImvVwQAAAAAAOA1Qb5egC/UqVNHP/74o0aPHq0lS5bo+PHjGj58eJbXWiwWde/eXa+99lqmDbsSExPN4wt70+akTJky5vGF/V5dx3mZ0/Xas2fPevy8guZ0OmUYThmGIafTKaczc/CaZncoze749zyVsv4uo2dydmPAE9xHyC/uIeQX9xDyi3sIBYH7CPnFPQQUDr8MZCWpYsWK6tSpk/bv3+/WJuBCHTp00COPPJJlOGq1Ws1j15YBuQkJCclyDklKS0vL95yucxS2uLg4JaQ4lJxiV1xcrGxZtCaoHGRVGUs5nTiRppSUFJ8GyCh6du7c6esloBjgPkJ+cQ8hv7iHkF/cQygI3EfIL+4hwDv8MpDdu3evnn76abdeqyVKlFCjRo0UGhqq2NhYM6RdvXq1evTooQEDBui5555TUNB/H1lGOwNJCgjwvPuD6xx2u93tnOs4L3MGBgZmO2dRY7U7ZMiQ3Wnk6T0CAAAAAAAAlzq/C2RjYmI0YMAAs91AyZIlNWTIEN19991uFakxMTEaP368Fi5cKIfDoWnTpikuLk7vv/++eY1rCJqXn967BqbBwcFu5y52TtefEVw4Z1Fjtae/L5szb6EzAAAAAAAAcKnzu0B25MiRZhhbokQJffHFF7riiisyXVerVi1NmDBBtWvX1uTJkyVJCxYsUJcuXXTbbbdJcm8pkJc2Aa7XlihRwu2cN+YsTFWrVlXamfM6q3OqWjVc9ix6yJYpHaIypcuofKUwlS8ZpFq1avlgpSgqHA6H289gmjVr5vYXE4AnuI+QX9xDyC/uIeQX9xAKAvcR8ot7CPm1Y8cO9gvygF8FsjExMVq1apU5HjRoUJZhrKshQ4Zo3bp12rZtmyTpf//7nxnIli9f3rwuOTnZ43WkpKSYx65zSFK5cuUuak7Xay+cszAFBATIYgmQxWJRQECAApQ5kHUY6ZulOZziD3bIsnSpyrn8F35QfLwCb77ZhytCcRAYGOjWHgbIK+4h5Bf3EPKLewgFgfsI+cU9BHiHX/1btXnzZrfxHXfc4dHz7r77bjOQ3bNnj06dOqVKlSopPDzcvObUqVMer+PkyZPmceXKld3OXeycrtdWqVLF4+f5gtWR0bKAvzGBFPDMM2oQFWWOjYgIae9eH64IAAAAAADAe/yqgWdcXJx5XK5cOVWtWtWj5zVu3NhtfOzYMUlSnTp1zMdSU1MVHx/v0XwxMTHmcb169dzO1a1b1zw+cuSIR/PFxcXp/PnzWc5RFNkc6VWzVkfm6lkAAAAAAACgOPOrQDYkJMQ8ttlsHj/vwo2nLBaLJKlp06bmsZRePZublJQUt6D1wrA3MjLSPD58+LDOnTuX65yur2uxWBQREZHrc3zJ7jTkNCSbgwpZAAAAAAAA+Be/CmQvu+wy8zg1NVWHDh3y6HkHDhzIcp4yZcqoadOm5uNr167Nda7169ebzY0DAwPVtm1bt/Nt2rQx+7M4HA5t2LAh1zldX7dp06ZufWiLKpvDabYuAAAAAAAAAPyFXwWyV199tVu168yZMz163o8//mgeN2zY0K1H680umw/Nmzcv14rW77//3jxu3769wsLC3M6HhYWpXbt25njGjBk5zpeSkqJ58+aZ41tuuSXH64sKq8Npti4AAAAAAAAA/IVfBbIVK1Z0C1C//vprrVu3LsfnfPPNN1qzZo05vuuuu9zO9+nTR6VKlZIkxcfHa+TIkdnONWvWLP3xxx/m+P7778/yunvuucc8Xr58uebMmZPtnG+88YYSEhIkSaGhoR5vVOZrNodBhSwAAAAAAAD8jl8FspL0/PPPm1WpDodDjzzyiD7++GMz1Mxw8uRJvfnmmxo9erT5WGRkpPr16+d2XeXKlfXwww+b4zlz5ui5557TqVOnzMfOnz+vyZMna8SIEeZjnTp1UqdOnbJcY9euXXX11Veb49dee01TpkxRWlqa+Vh8fLyGDBniVh37xBNPqGLFih59Dr6WXiFLIAsAAAAAAAD/EuTrBRS2mjVratKkSRo0aJBSU1Nls9n00Ucf6dNPP1W9evVUoUIFnT59Wn///bfZ61WS6tSpo8mTJ5v9XV0NGjRIO3bs0IoVKyRJCxYs0KJFixQREaGQkBDt379fSUlJbmt45513clzne++9p3vuuUcxMTGy2+0aP368Pv/8czVs2FBWq1VRUVFuG5N16dJFAwcOzOenU3hsDqfsDkNOw1CAy8ZoAAAAAAAAQHHmdxWyUnov2VmzZikyMtJ8zGazad++fdqwYYP27dtnhrEWi0W33nqrZs+erapVq2Y5X1BQkCZOnKg77rhDln/DRZvNpp07d2rr1q1uYWzr1q313Xff5VrJGh4erm+++UZXXHGF+VhSUpK2bt2qnTt3uoWxd9xxhz766CO3/rhFnfXf/rFUyQIAAAAAAMCf+F2FbIYGDRpozpw5WrlypRYvXqytW7fq5MmTSk1NVdmyZVWjRg21bdtWPXv2VERERK7zhYSE6K233tJdd92luXPnav369YqNjZXValXFihXVokUL3Xbbbbrppps8Dk6rVaum7777TosXL9bChQu1fft2xcfHKyAgQOHh4WrTpo3uvPNOtWrVKp+fRuHLCGKtDkMl/PYuBAAAAAAAgL/x+yisc+fO6ty5c4HN16JFC7Vo0aLA5rNYLLrpppt00003FdicRUFGIEuFLAAAAAAAAPzJpfMbdxQrGS0LrASyAAAAAAAA8CMEsvCJ/ypkDR+vBAAAAAAAACg8BLLwCSstCwAAAAAAAOCHCGThE05DcjgNs3UBAAAAAAAA4A8IZOEzVoeTClkAAAAAAAD4FQJZ+IzNYbCpFwAAAAAAAPxKkK8XAP+VXiFLywJ/59iyRdu3bTPHLVq25A8mAAAAAABQbJF7wGdsDicVspBKlJBRooTbGAAAAAAAoLiiZQF8xuow5HQacjipkgUAAAAAAIB/IJCFz2Rs6EWVLAAAAAAAAPwFgSx8JqN/rI1AFgAAAAAAAH6CQBY+YzUrZGlZAAAAAAAAAP9AIAufyaiMpUIWAAAAAAAA/iLI1wuA/7ISyEKS5fPPFb5793/jpk2lxx/34YoAAAAAAAC8h0AWPpPRQ5aWBf4t4MMPVTMqyhwbEREEsgAAAAAAoNiiZQF8xpBkcxpUyAIAAAAAAMBvEMjCp2wOp9m6AAAAAAAAACjuCGThU1a702xdAAAAAAAAABR3BLLwKZvDoEIWAAAAAAAAfoNAFj5ldVAhCwAAAAAAAP9BIAufsjmcMgw29gIAAAAAAIB/IJCFT9mc6dWxBLIAAAAAAADwBwSy8CmrPT2ItdK2AAAAAAAAAH6AQBY+lVEZS4UsAAAAAAAA/AGBLHwqozKWjb0AAAAAAADgDwhk4VMZlbFWKmQBAAAAAADgBwhk4VM2pyFDtCwAAAAAAACAfyCQhc/ZHE429QIAAAAAAIBfIJCFz1kdBhWyAAAAAAAA8AsEsvC59ApZAlkAAAAAAAAUf0G+XgBgdThlo2WB3zKqV5f17FlzHFy9uiw+XA8AAAAAAIA3EcjC52wOp2xOpwzDkMVCFOdvnL//rp3btpnjli1bUroPAAAAAACKLXIP+JzVbkiGqJIFAAAAAABAsUcgC5+zOdP7x9JHFgAAAAAAAMUdgSx8LqMylgpZAAAAAAAAFHcEsvC5jMpYGxWyAAAAAAAAKOYIZOFzGUEsLQsAAAAAAABQ3BHIwuesdloWAAAAAAAAwD8E+XoBgMMw5DQMKmT9VMArr6jO7t3/jZs2ld55x4crAgAAAAAA8B4CWRQJVodBD1k/Zfn5Z1WOijLHxv79BLIAAAAAAKDYomUBigSbwykrLQsAAAAAAABQzBHIokiwOpxUyAIAAAAAAKDYI5BFkWBz0EMWAAAAAAAAxR+BLIoEq8Mph9OQ00nbAgAAAAAAABRfBLIoEjLaFVAlCwAAAAAAgOKMQBZFQpqdQBYAAAAAAADFH4EsigSrw/j3PwlkAQAAAAAAUHwRyKJIsP5bIZtmp4csAAAAAAAAii8CWRQJVnrIAgAAAAAAwA8QyKJIsDsNOQ3DrJQFAAAAAAAAiiMCWRQZaXYnFbIAAAAAAAAo1ghkUWRYHQaBLAAAAAAAAIo1AlkUGVaHU2m0LAAAAAAAAEAxRiCLIsNqd8rmMGQYhq+XAgAAAAAAAHgFgSyKDKvDKcMwZHMQyAIAAAAAAKB4CvL1AoAMGe0KrA6nQoL4uwJ/YbRvr7MVK5rjso0by+LD9QAAAAAAAHgTgSyKjIwNvdjYy784P/tMf2/bZo5btmxJ6T4AAAAAACi2yD1QZFj/rZBlYy8AAAAAAAAUVwSyKDKokAUAAAAAAEBxRyCLIsPmMGTov0pZAAAAAAAAoLghkEWRYUiyOZyyOgxfLwUAAAAAAADwCgJZFClpdictCwAAAAAAAFBsEciiSLE6nGzqBQAAAAAAgGIryNcLAFxZqZD1OwH9+ytiz57/xk2aSD/84MMVAQAAAAAAeA+BLIoUq8OQ02nI7nQqKIACbn9g2b5dZaKizLFhs/lwNQAAAAAAAN5F4oUiJaM61krbAgAAAAAAABRDBLIoUjL6x1odho9XAgAAAAAAABQ8AlkUKVTIAgAAAAAAoDgjkEWRkhHEprGxFwAAAAAAAIohAlkUKWaFLIEsAAAAAAAAiiECWRQpTkOyOw1aFgAAAAAAAKBYIpBFkZNmd1IhCwAAAAAAgGKJQBZFjtXhlNVu+HoZAAAAAAAAQIEjkEWRY3U42dQLAAAAAAAAxRKBLIocq90pu8Mpp0GVLAAAAAAAAIoXAlkUORn9Y9nYCwAAAAAAAMUNgSyKnIz+sWzsBQAAAAAAgOKGQBZFTkb/WAJZAAAAAAAAFDcEsihyMloVpNnpIQsAAAAAAIDihUAWRY6VClkAAAAAAAAUU0G+XgBwIbvTkNMw2NTLTzjvvVfxu3eb48pNmyrQh+sBAAAAAADwJgJZFElWh0GFrJ8whg3T0W3bzHGlli19uBoAAAAAAADvomUBiqQ0u5NAFgAAAAAAAMUOgSyKJKvDqTRaFgAAAAAAAKCYIZBFkWS1O2VzGDIMw9dLAQAAAAAAAAoMgSyKJKvDKcMwZHMQyAIAAAAAAKD4IJBFkWT9t10BfWQBAAAAAABQnBDIokhKcxDIAgAAAAAAoPgJ8vUCgKyYFbJs7FXsBbZrp5ZRUf+NIyKkzZt9uCIAAAAAAADvIZBFkZRRGZtGhWzxl5ysoORkc2i4HAMAAAAAABQ3tCxAkWRzGDJEhSwAAAAAAACKFwJZFEmGJJvDKavD8PVSAAAAAAAAgAJDIIsiK83uZFMvAAAAAAAAFCsEsiiyrA4nLQsAAAAAAABQrBDIosiy2g029QIAAAAAAECxQiCLIsvqcMrpNGR3EsoCAAAAAACgeCCQRZGV0T/WamdjLwAAAAAAABQPBLIosjL6x7KxFwAAAAAAAIoLAlkUWWlmhSyBLAAAAAAAAIoHAlkUWRlBLBt7AQAAAAAAoLggkEWRZfaQJZAFAAAAAABAMUEgiyLLaUh2p0HLAgAAAAAAABQbBLIo0qwOJxWyAAAAAAAAKDYIZFGkpdmdstoNXy8DAAAAAAAAKBAEsijSrA4nm3oBAAAAAACg2Ajy9QKAnFjtTtkdTjkNQwEWi6+XAy9wvvaaju7caY5rNmumQB+uBwAAAAAAwJsIZFGkZfSPtdqdKhlMTFccGXfdpfjGjc1xjZYtfbgaAAAAAAAA76JlAYq0jP6xbOwFAAAAAACA4oBAFkVaRv9YAlkAAAAAAAAUBwSyKNKs9oyWBYaPVwIAAAAAAADkH4EsirSMytg0KmQBAAAAAABQDBDIokizOw05DcOslAUAAAAAAAAuZUG+XgCQG6vDoIdscXbypILi493GqlbNd+sBAAAAAADwIgJZFHlWu5NAthgL7NJFLaOizLERESHt3evDFQEAAAAAAHgPLQtQ5KU5nLQsAAAAAAAAQLFAIIsiL71C1pBhGL5eCgAAAAAAAJAvBLIo8qwOpwzDkM1BIAsAAAAAAIBLG4EsiryMdgX0kQUAAAAAAMCljkAWRV5GEEsgCwAAAAAAgEsdgSyKvLR/K2TT2NgLAAAAAAAAlzgCWRR5BLIAAAAAAAAoLghkUeTZnIachkEgCwAAAAAAgEsegSwuCWl2p9LoIQsAAAAAAIBLnFcC2SlTpig2NtYbU8NPpdmdVMgCAAAAAADgkueVQHbChAnq2rWrHn74Yf3666+yWq3eeBn4kTQHgSwAAAAAAAAufUHemtjpdGrNmjVas2aNwsLCdNttt6lXr15q1qyZt14SxVia3Sm7wymH01BggMXXywEAAAAAAAAuilcqZBs3bizDMMx/zpw5o++++059+/bV7bffri+//FIJCQneeGkUUxnVsVTJAgAAAAAA4FLmlUD2p59+0vz58zVw4ECFh4dLkhnO/v3333rnnXfUqVMnPfHEE1qyZIkcDoc3loFihEAWAAAAAAAAxYFXAllJatiwoV544QWtWLFCX3zxhXr27KnQ0FAzmLXb7Vq+fLmeeuopXXvttXrnnXe0b98+by0HlzgzkCW8BwAAAAAAwCXMa4FsBovFomuuuUZjx47V2rVr9c4776hDhw4KDAw0w9nTp0/ryy+/VI8ePdS7d29Nnz5dZ86c8fbScAlJszv+/U8qZAEAAAAAAHDp8tqmXlkpWbKkevTooR49eujkyZOaN2+efvnlF+3evdu8Zvfu3dqzZ4/eeecdXX/99erVq5euvfZaWSxs5OTPbA5DhghkiyPHtGk6sGOHOa7fvHnh/sEEAAAAAABQiHyWe1SpUkUDBw7UwIEDdfz4cS1btkzLli3Txo0bZbPZZLVa9dtvv+m3337TZZddpr59+6pv376qUqWKr5YMH8oIYwlki6G2bZVcosR/45YtfbcWAAAAAAAAL/N6ywJPVKtWTV26dFHnzp0VEREhSWZFrGEYOnHihCZOnKiuXbvqtddeU0JCgi+XCx8hkAUAAAAAAMClzqe/DI6OjtaCBQu0dOlS7d2713zcYrHIMAxJUq1atXTs2DE5nU7ZbDbNnj1bS5cu1fjx49WuXTtfLR0+kGZ3EMgCAAAAAADgklbogeypU6e0YMECzZ8/X7t27TIfzwhgJalixYq6/fbb1atXLzVu3FhxcXGaN2+efvjhBx05ckQJCQl64okn9MMPP6hBgwaF/RbgI2l2p2xOp5yGoQB6CgMAAAAAAOASVCiBbGpqqhYvXqx58+Zpw4YNcjgcktxD2KCgIHXu3Fm9evXSddddp6Cg/5ZWtWpVPfzww3rwwQf16quvau7cuTp37pw+/fRTvf/++4XxFlAEpNmdkiFZ7U6VDA709XIAAAAAAACAPPNaIOt0OvXHH39o3rx5WrZsmc6fPy/JPYSVpIiICPXq1Uvdu3dXxYoVc5wzMDBQb775ppYtW6YzZ85o06ZN3lo+iqCMdgVpBLIAAAAAAAC4RHklkB01apR+/fVXnT59WlJ6COvaF7Z8+fK67bbb1KdPHzVp0iRPc4eEhKhRo0batGmTEhMTC3rpKMLSHP8FsihGNm5UmR07/hunpUnt2/tuPQAAAAAAAF7klUB2+vTpbgGslF7d2rFjR/Xp00fXXXedgoODL3p+u90uSapWrVq+14pLhzWjQtZBIFucBD70kCKiosyxEREhuWzyBwAAAAAAUJx4rWVBRhjbsGFD9e7dW927d1elSpUKZO6qVauqX79+ateuXYHMh0tDmt0pQ1TIAgAAAAAA4NLllUC2XLlyuu2229SrVy81a9aswOf/8MMPC3xOFH2GJJvDSSALAAAAAACAS5ZXAtnVq1fnqyUBkJ00u1NpdoevlwEAAAAAAABcFK8EslOmTJEk1alTR7fffvtFz7FmzRoFBgbqiy++KMjl4RKWHshSIQsAAAAAAIBLk1cC2UmTJslisahjx44XHciuWbNGGzduVFhYWAGvDpeyNLtTVochwzBksVh8vRwAAAAAAAAgTwJ8vYDsnD9/XpKUmprq45WgKEmzO2UYhqwOqmQBAAAAAABw6bnoCtn4+HhZrdYcrzl//rz++eefPM2blpamlStXaseOHZLSNwgDMmS0K0izO1UiKNDHqwEAAAAAAADy5qID2Z9//lnjxo3L9rxhGNq8ebOuv/76i5o/4yfpjRs3vtglohjK2NCLPrIAAAAAAAC4FF10IPvAAw/op59+0v79+7O9xjCMi5o7ozeoxWLRgw8+eFFzeMrhcOj333/X4sWLtXPnTp08eVIOh0OVK1dWs2bNdPvtt+v6669XQIBn3R22b9+uWbNmadOmTYqNjZVhGAoPD1dkZKR69OihTp065an3qWEYWrJkiebNm6cdO3bo1KlTKlWqlMLDw9WuXTv16dPHr0LrNMd/FbIAAAAAAADApeaiA9nAwEC98cYbuvfeey86eM2OxWLR5ZdfrqeeekodO3Ys0Lldbd++Xa+99pr27t2b6dyxY8d07NgxLVq0SK1atdL48eNVo0aNbOey2WwaNWqUZs6cmelcdHS0oqOj9csvv6hjx44aM2aMqlatmuv6YmNjNWTIEG3ZssXtcavVqjNnzmjfvn365ptv9MADD2jo0KEKCQnx4F1f2syWBfSQBQAAAAAAwCXoogNZSWrTpo1WrFghu91uPmYYhm644QZZLBZdeeWVGjt2rMfzBQQEqESJEgoLC1NQUL6Wlqt169bpiSeecNs0rEqVKqpdu7ZsNpv27Nkjm80mSfrrr7903333acaMGVkGqYZh6Nlnn9WSJUvMx0qUKKGIiAgFBgZq//79Sk5OliStXr1aAwYM0MyZMxUWFpbt+hISEnTvvffqyJEj5mPly5dXgwYNdO7cOUVFRclut8swDH3xxReKi4vT+PHj8/25FHVOQ7I5DCpkAQAAAAAAcEnKd+oZHh6e5eOGYahkyZI5VpX6yuHDh93C2OrVq+v111/XddddZ7YTOHv2rCZOnKivv/5aUnrF7KhRozRx4sRM802bNs0tjO3fv7+GDh2qsmXLSkrf3OzLL7/UxIkTZbfbdfDgQb388suaNGlStmscPny4GcaWKFFCw4cPV9++fc2g+uTJk3r77be1cOFCSdIvv/yiVq1a6f7778/vx1PkpdkdBLIAAAAAAAC4JHmlDHXw4MGSpNq1a3tj+nwbOXKkGcbWrVtXX375papVq+Z2TVhYmF555RU5nU59++23kqTFixcrOjpadevWNa9LSEjQxx9/bI779eunESNGuM1VsmRJDRo0SFWqVNHLL79szrV161ZdccUVmdb3xx9/aMWKFeZ47Nix6tatm9s1VapU0YQJExQSEqKffvpJkvTJJ5+od+/eKlOmTN4+kEtMmsNJIAsAAAAAAIBLkmc7VeXR4MGDNXjwYHXv3t0b0+fLjh07tHr1aknpLRLee++9TGGsq2eeecbszWoYhltQKkmzZ89WSkqKpPSWAi+++GK2c/Xp00fXXXedOf7iiy+yvO6rr74yjzt27JgpjHU1YsQIVapUSZJ0+vRpzZ07N9tri4s0u1NWh7PAexcDAAAAAAAA3uaVQLYomzNnjnncs2dPtWjRIsfrw8LC9Nxzz+nRRx/VCy+8oObNm7ud//XXX83jW2+9VaGhoTnOd9ddd5nHq1atcuthK0lnzpzR2rVrzXGfPn1ynC80NNQt+P7tt99yvL44SLM75XQasjkIZAEAAAAAAHBpueiWBRk/k8/Qs2fPbM/ll+vc+eVa4XrnnXd69JwHHnggy8cTExO1Z88ec9yxY8dc52rXrp0CAwPlcDh0/vx5rV27VjfccIN5fuPGjXI4HJIki8WiDh065Dpnhw4dzGrbrVu36syZMypXrlyuz7tUZbQrSHM4FRLkd3+nAAAAAAAAgEvYRQeyw4YNMzfAktxD0wvP5VdBBbInTpzQP//8I0kqVapUrtWxuYmKinL72XxkZGSuzwkNDVXt2rV16NAhSektFFwD2b1795rHNWvW9ChYbdy4sXnsdDq1a9cutW/f3qP3cCkyA1m7U2VL+HgxyDfH8uXatX27OY5s0cI7za0BAAAAAACKgHznHoZhZBu+FkSPz4IMdqOioszjyy+/XIGBgZKko0eP6qefftLy5ct17NgxnTt3TlWrVlXbtm11xx13qHXr1lnOFx0dbR6HhITk2IvWVc2aNc1A9siRI9nOWadOHY/mq1KlikqWLKnz589Lkg4fPuw3gSyKgSpVZK9c2W0MAAAAAABQXF10IFu9evWLOudLruFn1apV5XQ6NXXqVE2cOFFpaWmZrj1y5Ihmz56tXr166c0331SJEu7lmCdPnjSPq+QhRHK91nUOSYqLi7uoOStVqqRjx45lOWdx818g6/DxSgAAAAAAAIC8uehAdtmyZRd1zpfi4+PN49DQUI0aNUrfffed+ViDBg1UqVIlxcfH68CBA+bjc+fO1ZEjR/Tll18qJCTEfDwxMdE8Llu2rMfrKFOmjHl85swZt3Ou47zM6Xrt2bNnPX5eQXM6nTIMpwzDkNOZvvlWgb+GJJvDqfM2x7+vQaXspSyjZ3J2Y8AT3EfIL+4h5Bf3EPKLewgFgfsI+cU9BBQOv2rV6BpU/vHHH+b4hhtu0LBhw1SrVi3zfExMjEaNGqWVK1dKkrZs2aLRo0dr5MiR5jVWq9U8LlmypMfrcA11XeeQ5Fape7FzXljtW5ji4uKUkOJQcopdcXGxsjm8E5bGVwhUsL2EyjuTlZCQ4NP3jIK1c+dOXy8BxQD3EfKLewj5xT2E/OIeQkHgPkJ+cQ8B3uFXW9S7hp8ZYexdd92lSZMmuYWxklSrVi1NnjxZt9xyi/nYDz/8oH379pljm81mHgcEeP5RBgX9l4Pb7Xa3c67jvMyZ0Q83qzmLo3NWu2z/Zr2u7x0AAAAAAAAoyopMIJucnGxuSuUtF24QVqtWLb366qvZbhwWEBCg0aNHmy0GDMPQt99+a553DQLz8rN518A0ODjY7dzFzun6M4IL5yyOztscsv3bDoFAFgAAAAAAAJeKQmlZcPjwYVksFtWuXTvTuWnTpumrr75SXFycLBaL6tSpowcffFB9+/bNNii9WKGhoW7ju+++2+2n/lkpW7asunXrph9++EGStHbtWvOca0uBvPxk3vXaCzcK88achalq1apKO3NeZ3VOVauGy+6FHrKSVKpMqEqFhqpylQoKDw+XYXjndeB9xvff65/du81x9aZNZenXz4crwqXI4XC4/ZyqWbNm/GUN8oR7CPnFPYT84h5CQeA+Qn5xDyG/duzYwV4/HvBqILt+/XqNHTtWUVFRevTRRzVkyBC388OGDdPPP/9shmmGYejQoUMaMWKEVq9erffff79Aqz1Lly7tNr7iiis8el6rVq3MQDYmJkZWq1UhISEqX768eU1ycrLH60hJSTGPXeeQpHLlyl3UnK7XXjhnYQoICJDFEiCLxaKAgAAFyDtBqdVpyGKxyOaUQoL5L4dLmfHWW6oTFfXfOCJClvvu8+GKUBwEBga6tYcB8op7CPnFPYT84h5CQeA+Qn5xDwHe4bWWBcuXL9fDDz+sqH+DlqNHj7qdX7FihX766SdJmVsJGIahxYsXa8KECQW6pgoVKriNK1as6NHzKlWq5DZOTEyUJIWHh5uPnTp1yuN1nDx50jyuXLmy27mLndP12ipVqnj8vEtVmj39b1vSvLRpGAAAAAAAAOANXglkrVarRowYYfZKNQxDCQkJbtd88cUX5rmgoCANGTJEH3/8sW677Tbz8W+++UYxMTEFtq6GDRu6jTM29srNhZtkZfztUJ06dczHUlNTFR8f79F8ru+pXr16bufq1q1rHh85csSj+eLi4tz677rOUVyZgaydQBYAAAAAAACXDq8EsvPnzzd7wpYsWVLjx4/X//73P/P8qVOntGnTJlksFlksFr388st67LHHdP3112vcuHG69957JaUHoQsXLiywdUVERLiNo6OjPXreiRMnzOOSJUuaLQGaNm3qVt27Z8+eXOdKSUlxC1obN27sdj4yMtI8Pnz4sM6dO5frnK6va7FYMr3P4shKIAsAAAAAAIBLkFcC2TVr1pjHI0aMULdu3dyaQK9cuVJOp1OGYahkyZLq1auX2/Ofeuopswr1jz/+KLB1VaxY0S2sXLJkiUfP27Rpk3nctGlTBQSkf2xlypRR06ZNzXOuG35lZ/369WZz48DAQLVt29btfJs2bcz37nA4tGHDhlzndH3dpk2buvWhLa5sTkNOwyCQBQAAAAAAwCXFK4Hsrl27JKVvUNW9e/dM5zNCVovForZt26pkyZJu58uVK6cGDRrIMAwdO3asQNfWo0cP83jZsmX6+++/c7z++PHjWrp0qTm+6aab3M7ffPPN5vG8efNyrWj9/vvvzeP27dsrLCzM7XxYWJjatWtnjmfMmJHjfCkpKZo3b545vuWWW3K8vjhJszsJZAEAAAAAAHBJ8Uoge/r0aVksFtWqVcusJnW1fv168/iaa67Jco6MDbjysrGVJ3r16mVWkNpsNg0bNkxJSUlZXmu1WvXSSy/JZrNJSq+I7d27t9s1ffr0UalSpSRJ8fHxGjlyZLavPWvWLLeK3/vvvz/L6+655x7zePny5ZozZ062c77xxhtmf97Q0FDdcccd2V5b3BDIAgAAAAAA4FLjlUA2NTVVklS2bNlM5/bs2aPTp0+b46uvvjrLOaxWqyS5tTooCBUrVtTw4cPN8Y4dO9S/f3+3kFiSDh48qIceesitZcCzzz6bqR1A5cqV9fDDD5vjOXPm6LnnnnMLks+fP6/JkydrxIgR5mOdOnVSp06dslxj165d3T6X1157TVOmTFFaWpr5WHx8vIYMGeJWHfvEE0+oYsWKuX4GxUWa3ak0h8PXywAAAAAAAAA8FuSNScuWLavExES34DXD6tWrzeMKFSqoSZMmWc5x6NAhScr0k/6C0KtXL0VHR2vy5MmSpH379mnAgAG67LLLVKtWLZ05c0b79u1ze06PHj103333ZTnfoEGDtGPHDq1YsUKStGDBAi1atEgREREKCQnR/v373apwa9asqXfeeSfHNb733nu65557FBMTI7vdrvHjx+vzzz9Xw4YNZbVaFRUVZVbuSlKXLl00cODAi/k4LllpdqfsDkMOp6HAAEvuTwAAAAAAAAB8zCsVshn9Xw8cOKDk5GS3c8uXL5eU3j+2Y8eOWT5/3bp1SkhIkMViUYMGDbyxRA0ZMkRvv/222RpBkk6cOKFNmza5hbFBQUF64oknNHbs2GznCgoK0sSJE3XHHXfIYkkPBm02m3bu3KmtW7e6hbGtW7fWd999l2sla3h4uL755htdccUV5mNJSUnaunWr/p+9O4+Psy73//++Z8vepDttoaVAF8pSOOIRpEfBpR4Uiy0IBwHZjsthUcEFUFCPh1W+yCL+jhxEBFQQBWQVFJR9kbW0pS1tga5p02wzmfXePr8/JpkmbdpmuzOT5PV8PPLIfc/c92euhGmAd69cn6VLl3YJY0844QTddNNN3Y6HGM5yXn5cQc6lSxYAAAAAAABDQyAdsocffrheffVVOY6ja6+9Vv/93/8tKR/GvvHGG4Xrtt8gS5LWr1+vH/7wh4XznY00GAjHH3+8PvWpT+mhhx7SU089pffee0/Nzc2KRqPae++9dcQRR+jkk0/WXnvttdu1YrGYrrjiCp100kl64IEH9PLLL2vLli2ybVtjxozRwQcfrGOPPVbz58/vcXA6adIk/f73v9ff/vY3PfbYY3r77bfV2NioUCikiRMn6kMf+pBOPPFEHXLIIf38TgxNHfNjc65RZazIxQAAAAAAAAA9EEggu2jRIt1yyy1yHEf33nuvFi9erMmTJ+vZZ5+VZVkyxmjChAk66qijCvesXr1ajzzyiO6++24lEglJUllZmY477rggSiyora3VaaedttNxBL118MEH6+CDDx6QtaR8J/H8+fO7Da9Huo7O2Pwc2WhxiwEAAAAAAAB6IJDfcZ80aZK+9a1vyRgjSVq5cqX+8Y9/yPM8GWNkWZZ+8IMfKBLZlgf/4Q9/0C233FIIYy3L0je+8Q1NnDgxiBIxDGzrkPWLXAkAAAAAAADQM4F0yErSWWedJcuydP3118u27cLjFRUVuuSSS3bo+Jw+fXohwA2HwzrnnHN01llnBVUehgHbMzIikAUAAAAAAMDQEVggK0lnnnmmFi5cqKeffloNDQ3aY4899PGPf1y1tbU7XDt9+nSNHj1aRx11lE4//XTNnj07yNIwTORcn0AWAAAAAAAAQ0aggawk1dXV6Qtf+MJur/vIRz6il156KehyMMzkXI9AFgAAAAAAAENG4IFsT4VCgYyzxTBHh+wwUF0tt7q6cBrudAwAAAAAADDclEwgC/RFzvXl+L58YxSyrGKXgz7wXn5ZixcvLpzPnTuXH0wAAAAAAGDYGrTcw7ZttbW1yXEc+X7vOhonT54cUFUY6nKuL5n854pouNjlAAAAAAAAALsUaCDb2tqq2267TX/961+1bt26Pq1hWZbeeeedAa4Mw0XHuAICWQAAAAAAAAwFgQWyK1as0FlnnaWWlhYZY4J6GYxwOW9bIAsAAAAAAACUukACWdu2de6556q5uTmI5YGCzh2yAAAAAAAAQKkLJJC97777tHHjRlmWJWOMDjnkEP3Hf/yHZsyYoVGjRikUCgXxshiBbNeXkZRzvWKXAgAAAAAAAOxWIIHs3/72t8Lxscceq//3//5fEC8DyCgfytIhCwAAAAAAgKEgkED23XfflSRFo1F9//vfD+IlgIKs6xdmyWLosa6+Wnt22rjPmjNHuvTSIlYEAAAAAAAQnEAC2Xg8LsuytN9++2nMmDFBvARQkHM9ZR0C2aEq9NvfauLKlYVzM2sWgSwAAAAAABi2AhnmWldXJ0mqqakJYnmgi6zry/F8+b4pdikAAAAAAADALgUSyO69994yxmj9+vVBLA900TE/NsscWQAAAAAAAJS4QALZT3/605Kk+vp6LV68OIiXAAqyjicpP7oAAAAAAAAAKGWBBLKLFi3SxIkTJUmXX365bNsO4mUASXTIAgAAAAAAYOgIJJCtrq7W1VdfrVgspqVLl+rLX/6y3nzzzSBeCigEsjkCWQAAAAAAAJS4SBCLPvPMM5KkM844Q7fccosWL16sL33pSxozZoxmzZqluro6lZWV9Wgty7J05ZVXBlEmhgnHN/KMoUMWAAAAAAAAJS+QQPZrX/uaLMuSpMJnY4yampr00ksv9Xo9AlnsTs71mSELAAAAAACAkhdIICvlA9jePL4zHYEusCtZx6dDFgAAAAAAACUvkEB24cKFQSwL7FTO9ZghCwAAAAAAgJIXSCB71VVXBbEssFNZ15fvG9mur1gkkL3qAAAAAAAAgH4jucKw0NEdS5csAAAAAAAAShmBLIaFjvmxWTb2AgAAAAAAQAkLbFOvndmyZYu2bNmieDyuUaNGae7cuZKkTCajWCymcDg82CVhGMi1B7F0yAIAAAAAAKCUDUogu27dOv3mN7/R008/rfr6+sLj8+bN06233ipJeuqpp3T55ZfrxBNP1Fe+8hXV1NQMRmkYJnKFDlkCWQAAAAAAAJSuQEcWGGN044036phjjtHdd9+tTZs2yRhT+Ohs06ZNam1t1a233qoFCxZoyZIlQZaGYcY3ku35dMgCAAAAAACgpAXaIfutb31Lf/3rX3cIXyXJsqwu5xs2bCgc19fX6+yzz9bdd9+tfffdN8gSMYxkXb8wugBDhzn4YKWi0cJ55f77y9rF9QAAAAAAAENZYIHszTffrCeeeKIQvB500EH6whe+oAMOOED/8R//scP1n//857VmzRq9/vrrsixLiURCF198sf74xz8GVSKGmZzjM7JgCPJ//3utXLy4cD537lx2GwQAAAAAAMNWILnH5s2bC7NhJenb3/62/vjHP+qUU07RIYcc0u09H/7wh/W73/1Ol156aeGxpUuX6plnngmiRAxDWdeT7fnyu+nIBgAAAAAAAEpBIIHsn/70J+VyOVmWpS9+8Yv6yle+0uN7Tz31VJ1++umF88ceeyyIEjEM5VxfMmKOLAAAAAAAAEpWIIHs888/Lyk/J/Yb3/hGr+//6le/qkgkP02Bzb3QUx1BLIEsAAAAAAAASlUggeyGDRtkWZb2228/jRs3rtf3jxkzRlOnTpUxRlu2bAmgQgxHHfNjs2zsBQAAAAAAgBIVSCAbj8cl5YPVvho/frwkybbtAakJw1+uPYjNOXTIAgAAAAAAoDQFEsjW1NRI2hbM9kVTU5Mkqba2dkBqwvBne0a+MYVOWQAAAAAAAKDURIJYdNKkSWpubtaqVasUj8d7HarW19drzZo1sixLkydPDqJEDFM512eG7BAT+upXtd+KFdvOZ8+Wfv3rIlYEAAAAAAAQnEA6ZI888khJkud5+nUfgpWbbrpJxhhJ0kc+8pEBrQ3DW9b1mSE7xFgvvqjal14qfFgvvljskgAAAAAAAAITSCC7YMEChUL5pX/1q1/piSee6PG9t9xyix544IHC+ec+97kBrw/DFx2yAAAAAAAAKGWBBLL77befFi5cKGOMPM/TBRdcoIsvvlivvPKKtm7dusP16XRaTz/9tM4880zdcMMNkiTLsjR//nzNnj07iBIxTGVdT55v5HiEsgAAAAAAACg9gcyQlaTLLrtMK1as0LJly2SM0YMPPqgHH3ywyzWvvvqqDj/8cLW1tcn38wFax6iCvfbaSz/5yU+CKg/DVM7Jv49yrq9oOJC/bwAAAAAAAAD6LLDEqry8XLfddpv+7d/+TcaYLh+WZUmScrmcWltb5XleIYiVpDlz5uj222/v9WZgQLZ9XEGWsQUAAAAAAAAoQYG2ENbV1enWW2/VNddco1mzZhUe7xzOdjZhwgRddNFFuueeezRlypQgS8Mw1TE/NsfGXgAAAAAAAChBgY0s6Oy4447Tcccdp3Xr1umNN97Q2rVrlUgk5DiOamtrNXHiRB166KHaf//9C5uBAX3REcTSIQsAAAAAAIBSNCiBbIepU6dq6tSpg/mSGGE8IzmeKXTKAgAAAAAAAKWEdlQMO1nXI5AFAAAAAABASSKQxbCTc31lmSELAAAAAACAEtTnkQWvvvrqQNaxSx/+8IcH7bUw9OVcX7ab3zTOsqxilwMAAAAAAAAU9DmQPe200wYl7LIsS++8807gr4PhI+v6MiY/R7Y8Gi52OQAAAAAAAEBBYJt6GWOCWhrYpVz7uAICWQAAAAAAAJSafgWyPQldO7poO66NRCLaa6+9VFtbq2g0qlQqpfXr16utra3L9fvtt58qKyv7Ux5GqGz7hl5Z11dtkWsBAAAAAAAAOutzILtixYpdPt/S0qL//M//1LJlyyRJn/rUp3TKKafoQx/6kGKx2A7Xr1y5UnfffbfuvfdeGZOf/3nddddpzz337GuJGKFyTj6QzbGxFwAAAAAAAEpMKKiFL7jgAr3zzjuKRCK6+uqrdfPNN+uII47oNoyVpFmzZunHP/6xfvWrX6msrExr1qzROeecI9u2gyoRw5Tt+TLa1ikLAAAAAAAAlIpAAtnHHntML7/8siTpnHPO0Re+8IUe3/vRj35U3/3ud2WM0apVq3TvvfcGUSKGMaP8/NgcgeyQYI47To3HHlv4MMcdV+ySAAAAAAAAAhPIpl7333+/JKm8vFxnnXVWr+8/8cQTdeONN6qtrU2PPPKITj311IEuEcNc1vHokB0i/Cuu0NrFiwvndXPnBte6DwAAAAAAUGSB5B4rV66UZVmaNWuWysvLe31/NBrVjBkzZIzR2rVrA6gQw12+Q5YZsgAAAAAAACgtgQSyLS0tkqRwONznNVzXlSQlk8kBqQkjS9b15XpGrk+XLAAAAAAAAEpHIIFsXV2djDFavXp1IVjtjVQqpRUrVsiyLI0fPz6ACjHcdXTH5hwCWQAAAAAAAJSOQALZOXPmSJISiYTuu+++Xt//y1/+UrlcTpJ06KGHDmhtGBk65scyRxYAAAAAAAClJJBA9phjjpEkGWN09dVX66WXXurxvb///e/1q1/9qnC+cOHCAa8Pw1+uPYjNEcgCAAAAAACghAQSyH7+85/XtGnTZFmWMpmMzj77bF166aVavHix/G5metq2rRdeeEFf+9rX9D//8z8yxsiyLM2bN0/z5s0LokQMc1mHQBYAAAAAAAClJxLIopGIfvazn+m0005TJpOR7/u67777dN999ykWi2nKlCmqrq6WlB9rsGHDBnlefuanMUaStN9+++n6668PojyMAJ4xcn2jbPssWZSu0Pz5OnDFim3ns2dLf/97ESsCAAAAAAAITiCBrCQdcMABuv322/XNb35TmzdvLgStuVxO77//fpdrO57rcOSRR+rKK68shLZAX+Rcnw7ZIcDatEll9fWFczNqVBGrAQAAAAAACFYgIws6zJ07V48++qjOP/98TZs2rfC4MabLR4d99tlHV199tW677TZNnDgxyNIwAmRdj029AAAAAAAAUFIC65DtUFVVpXPPPVfnnnuuPvjgA7366qtqaGhQc3OzHMdRTU2Npk2bpkMPPVQzZswIuhyMIB0dsh0ziQEAAAAAAIBiCzyQ7WzvvffW3nvvPZgviREs6+TDWNszKosQyAIAAAAAAKD4Ah1ZABRTx/zYHBt7AQAAAAAAoEQQyGLYyrYHscyRBQAAAAAAQKkgkMWwta1DlkAWAAAAAAAApYFAFsNWzvVlJGUdRhYAAAAAAACgNBDIYtgykmzXp0MWAAAAAAAAJYNAFsNa1vWZIQsAAAAAAICSQSCLYS3reIXNvQAAAAAAAIBiI5DFsJZ2PLmekU2XLAAAAAAAAEoAgSyGtUz7hl5pNvYCAAAAAABACSCQxbCWtvNBbIZAFgAAAAAAACUgkED2zTffDGJZoNfokAUAAAAAAEApCSSQPfnkk3XMMcfo1ltvVUNDQxAvAfSIZ6Sc6ytjE8gCAAAAAACg+CJBLfzBBx/oZz/7mW644QYdeeSROv744/WJT3xC0Wg0qJcEupVxPDpkS5j/zW+q/p13CueT5sxRuIj1AAAAAAAABCmQQDYSich1XUmS53l67rnn9Nxzz2nUqFH6/Oc/r4ULF+qAAw4I4qWBHaQdTxnHlzFGlmUVuxxsx3zlK9qyeHHhfI+5c4tYDQAAAAAAQLACGVnw3HPP6dJLL9XBBx8sSTLGyBijeDyu3/3udzrhhBO0YMEC3XHHHWpubg6iBKAgbXsyxijr+sUuBQAAAAAAACNcIIHs6NGjdeqpp+ree+/VX/7yF33ta1/T5MmTJW0LZ1etWqWrr75aH/vYx3Teeefp73//u3yfwAwDr7CxF3NkAQAAAAAAUGSBBLKdTZ8+XRdccIH+/ve/67e//a2OP/541dTUFIJZ13X11FNP6dxzz9XHPvYxXXPNNVq1alXQZWEE6Zgfm2GOLAAAAAAAAIos8EC2s8MOO0xXXHGFXnjhBV1//fU66qijFIlECuFsY2OjfvOb32jBggU64YQTdPfddyuRSAxmiRiGso4vI7GxFwAAAAAAAIoukE29dicWi+mYY47RMccco9bWVj399NP6+9//rhdeeEGpVEqStHTpUi1btkxXX3215s+fr5NOOkmHHXZYMcrFEGeU746lQxYAAAAAAADFNqgdst2pq6vTF77wBd100026/fbbdeihh0qSLMuSMUa5XE6PPPKITjvtNC1YsEAPP/xwkSvGUJRxPDpkS1UuJ6vTh3K5YlcEAAAAAAAQmKJ0yHb26quv6sknn9RTTz2ljRs3StoWxnboOF61apW+973v6U9/+pN++tOfauLEiUWpGUNP2vaUc315vlE4ZBW7HHQS/tCH9C8rVxbOzaxZ0ooVRawIAAAAAAAgOEUJZFesWKGHHnpIjz76qBoaGiSpSwArSfvvv78WLlyo+fPn64033tCDDz6o5557Tr7v65VXXtHpp5+ue+65R3V1dUX4CjDUZBxPMvnP1WVF/3sIAAAAAAAAjFCDlkzV19fr4Ycf1sMPP6zVq1dL2jGEHT16tD7/+c9r0aJFmj17duHxz372s/rsZz+rtWvX6oILLtA777yjtWvX6v/+7//0ve99b7C+BAxhaceXRCALAAAAAACA4go0mUokEnr88cf10EMP6Y033igEsJ2D2Egkoo997GNatGiRjjrqKEUiOy9p2rRp+uUvf6lPfvKTcl1XTz75JIEseiRtu/nPzJEFAAAAAABAEQUSyD7xxBN6+OGH9eyzz8pxHEk7dsPOnDlTixYt0oIFCzRmzJgerz1hwgTNmTNHixcv1ubNmwe0bgxftmfk+SY/ugAAAAAAAAAokkAC2W9+85uFjbk6b9BVV1enY489VosWLdKcOXP6vH5ZWZkkqba2dkDqxciQdjylbb/YZQAAAAAAAGAEC3yYZjgc1rx587Ro0SIdffTRikaj/V6zvr5e++67rz71qU8NQIUYKTKOx8gCAAAAAAAAFFVggex+++2nhQsX6rjjjtPYsWMHdO2//vWvsixrQNfE8Jd2PLmeL8fzFQ2Hil0OAAAAAAAARqBAAtk//elPOvDAA4NYWpIIY9EnmfZxBWnHUy2BLAAAAAAAAIogkEA2k8no1VdfVW1trWbOnNmnNV544QW9+eabchxHF1xwwQBXiJGoY1xBxvZUW97/0RkAAAAAAABAbwUSyJ522mmyLEvz5s3Trbfe2qc1fvGLX+jNN9/U2LFjCWQxIDLtgSxzZAEAAAAAAFAsJft72+FwWMYYtba2FrsUDBOub2R7vjKOX+xSAAAAAAAAMEKVZCC7bNkyLV26VJJUWVlZ5GownGQcjw5ZAAAAAAAAFE2fRxbcfPPNeuCBB3Z5zauvvqpPfvKTvVo3l8upublZvu/LsixNnTq1ryUCO0jbvjKOJ2MMm8MBAAAAAABg0PU5kD311FP1u9/9bqcjBYwxymaz2rRpU6/WNcZIUiEsW7hwYV9LBHaQdjz5vlHO9VUeDRe7HAAAAAAAAIwwfR5ZUFdXp+985zsyxuzw0Vl3z+/qo7MvfelLOuWUU/paIrCDjo29MowtAAAAAAAAQBH0uUNWko4//niVlZXJcZzCY8YYff/735dlWZoxY4bOPPPMHq9nWZbKyspUV1enmTNnauzYsf0pD9hB2s4HsWnH1+gi1wIAAAAAAICRp1+BrCQde+yxOzz2/e9/X5I0ceJERg6gpGRdT0Z0yJYS/8Yb9X77Jn6SNP3AA8UwCQAAAAAAMFz1O5Dtzoc//GFJ0qxZs4JYHugz30hZxyt0yqL4zCc/qfi4cdvO584tYjUAAAAAAADBCiSQveuuu4JYFhgQGcdXmg5ZAAAAAAAAFEGfN/UChqq04ynn+vK320QOAAAAAAAACFqfO2Q3bdrU5Xzy5Mk7fa6/Oq8N9FfG8WSMUcbxVBULpEkcAAAAAAAA6Faf06hPfOITsixLkmRZlt55551un+uv7dcG+qtjfiyBLAAAAAAAAAZbv9Mos4tf+97Vc0CxZNrnx6ZtX6oqcjEAAAAAAAAYUfoVyBLGYijKts+PzbCxV2lYvlwVK1duO4/FpIMOKl49AAAAAAAAAepzIPvUU0/16TmgFKQdX2kC2ZIQ/uIXNadTIGtmzZJWrChiRQAAAAAAAMHpcyA7ZcqUPj0HlIKM7dEhCwAAAAAAgEEXKnYBQDGkHU+268v1/WKXAgAAAAAAgBGEQBYjUkd3bMYmkAUAAAAAAMDgIZDFiNQxP5Y5sgAAAAAAABhMfZ4h++Uvf3kg69gpy7J0xx13DMprYeTI2ASyAAAAAAAAGHx9DmT/+c9/yrKsgaxlB8aYwF8DI5PjGzm+KQSzAAAAAAAAwGDocyAr5QNTYKjK2B4dsgAAAAAAABhUfQ5kzzvvvIGsAxh0accrbO4FAAAAAAAADAYCWYxYGceT5xvlXF9lEfa3AwAAAAAAQPBIoTBipTs29mKOLAAAAAAAAAYJgSxGrI75sYwtAAAAAAAAwGAhkMWIlXE8GYmNvQAAAAAAADBo+jxD9pJLLikcW5alK6+8stvn+mv7tYGB4hsp63iMLAAAAAAAAMCg6XMg+8ADD8iyrMJ559B0++f6i0AWQUk7Hh2yAAAAAAAAGDR9DmQlyRgjSd2Grx3P9ddABrvA9tK2p6zryfeNQiHeawAAAAAAAAhWnwPZhQsX9uk5oJRkHE8y+U7Z6rJ+/f0EAAAAAAAAsFt9TqCuuuqqPj0HlJKO+bEEssXjPfSQVixZUjiffdBB/WvdBwAAAAAAKGHkHhjROubHZtjYq3j22Ue5trYu5wAAAAAAAMNVqNgFAMVke0aub9jYCwAAAAAAAINi0Dtk16xZo/r6esXjcZWVlam2tlZTp07VxIkTB7sUQFK+S5ZAFgAAAAAAAINhUALZN998U3fffbeeeeYZJRKJbq+ZNGmSPv3pT+vUU0/VXnvtNRhlAZLyc2TTjCwAAAAAAADAIAh0ZEFra6u+9a1v6Utf+pIefvhhxeNxGWNkjClc03G+adMm3XnnnTrmmGP0v//7v0GWBXSRtj15vlHO9YtdCgAAAAAAAIa5wALZ5uZmnXbaaXriiSd2CGEldfuYJLmuq5tuukkXXnhhUKUBXWTaxxXQJQsAAAAAAICgBTay4JJLLtGqVatkWZYkacqUKVq0aJEOO+wwTZ8+XTU1NTLGKJFIaPXq1XrxxRf1wAMPqKWlRcYY/eUvf9HUqVP1rW99K6gSAUkqzI9NO55GK1rkakYe67HHNHrp0m3nGzdKCxYUsSIAAAAAAIDgBBLIvvLKK3rmmWcKYexpp52m7373u4rFYjtcW1lZqT322EPz5s3Tf/3Xf+nSSy8tdNXedtttWrhwoaZNmxZEmYCkfIes0bZOWQyu0Pe+p31Wriycm1mzCGQBAAAAAMCwFcjIgkceeaRwvHDhQv3gBz/oNozdXk1Nja6//nr927/9m6T8+IJ77703iBKBAt9IWYeNvQAAAAAAABC8QALZf/7zn5KkcDis7373u70rKBTSD3/4w0J37bPPPjvg9QHbSzteYXQBAAAAAAAAEJRAAtmGhgZZlqXZs2dr9OjRvb5/r7320syZM2WMUX19fQAVAl2lbU9Z15Pn77jRHAAAAAAAADBQAglko9H8xkgVFRV9XmPUqFGSJGMIyBC8tONJhjmyAAAAAAAACFYggezUqVNljNGaNWv6HKhu3LhRlmVp8uTJA1wdsKNM+/xYxhYAAAAAAAAgSIEEsvPnz5cktbS0dNngq6defvllbdq0SZL0iU98YkBrA7rTEcSysRcAAAAAAACCFEgge8opp2jSpEkyxujyyy/XypUre3xvc3OzfvCDH0iSamtrddpppwVRItCF7Rm5vmFkAQAAAAAAAAIVSCBbVVWlm266SaNGjVI8HtfJJ5+su+66S5lMZpf3Pf3001q0aJE2btyoiooKXXfddRo3blwQJQI7SNseIwsAAAAAAAAQqEhfb/zyl7+822uqq6uVSCSUTqd15ZVX6oYbbtAhhxyifffdt7BpVyqV0oYNG/TWW2+psbFRxhhZlqV//dd/1WuvvabXXntN3/zmN/taJtBjacdjZAEAAAAAAAAC1edA9p///Kcsy9rtdR3XGGOUSqX04osv6sUXX9zhuo7Nvzquf/bZZ/Xss89KUlEC2UsuuUT333+/JOmqq67SokWLenTfmjVrdM899+iVV17Rhg0b5LquJkyYoJkzZ+rzn/+8Pv3pTysS6d23/aWXXtJ9992nt956Sw0NDYpEItpjjz106KGHauHChTrssMN6/fVhR2nbk+cb5VxPZZFwscsBAAAAAADAMNTnQFbaFqIO5D3bP9+T0HegPfPMM4Uwtjd+/vOf65e//KVc1+3y+Pr167V+/Xo99dRTOvDAA3Xttddqn3322e16yWRSF110kZ588skuj+dyOa1Zs0Zr1qzRn/70Jy1YsEA//OEPVVNT0+uasc22jb18AlkAAAAAAAAEos+B7HnnnTeQdZSMtrY2XXbZZb2+7/LLL9ddd91VOI9EIpo1a5YqKiq0Zs0atbS0SJKWLl2q0047Tffee6+mTJmy0/VyuZzOOussLV68uPBYVVWVZs6cKc/z9O677yqbzUqSHnroIdXX1+vXv/61YrFYr2tHXseGXmnH02hFi1wNAAAAAAAAhiMC2e1ceeWV2rJlS6/uefzxx7uEsZ/5zGf0wx/+sLAhmeM4uv/++3XVVVcpk8mosbFR559/vu67776ddgBfc801hTDWsiydf/75Ovvss1VeXi5JSiQS+vnPf64777xTkvTqq6/quuuu0yWXXNLrrxl5GceTkZS23d1eCwAAAAAAAPRFqNgFlJK+jCpwHEfXXHNN4fzoo4/WDTfcUAhjJSkajeqkk07SzTffXJgfu2zZMj3yyCPdrrl69Wrdc889hfNvf/vbOvfccwthrCSNGjVKP/jBD3TuuecWHvvd736nDRs29Kp+bOMbKet4hdEFAAAAAAAAwEAjkG2XSCR06aWXSsoHqBUVFT26729/+5s2bdokKT+m4Ic//KFCoe6/rfPmzdNJJ51UOL/99tu7ve6uu+6S5+VDwX322Udnn332Tl//vPPO08yZMyXlw+Hf/va3Paob3Us7njKOX+wyAAAAAAAAMEyVfCC7dOnSQXmdK6+8Ug0NDZKkr371qxozZkyP7nvssccKxx/96Ec1efLkXV7fOZBdtmyZ1q9f3+V53/f1xBNPFM4XLVq004BXkkKhkE488cTCeed70Xtp21PW9eT5vd+wDgAAAAAAANidPs+Q7SnP8/T2229r8+bNyuVy8jxPxuwYdhlj5LquHMdROp3W1q1b9dprr2nVqlV65513Aq3x6aef1gMPPCBJmjlzpr7+9a/rz3/+827vM8bolVdeKZwfeeSRu71n1qxZGj9+vLZu3SpJ+vvf/67TTz+98PyKFSsKG4BJ+a7a3en8ups2bdKKFSs0e/bs3d6HHaUdTzL5ebLVZYH/8YAkb+nSLpvXzZ07N/gfTAAAAAAAAEUSaO7x61//WrfccosSiUSf7jfG7HTTq4GSSCR02WWXScqPHLjqqqsUi8V6dO/GjRu7fG0HHnhgj+6bNWtWIZBdsmRJl+dWrFhROI5Go5oxY8Zu15s+fbrKy8uVzWYLaxLI9k3azo+KSBPIAgAAAAAAIACBjSy44YYbdO211yoej3fpiDXGFD621/m57p4PwuWXX14YVXD22Wf3OFSVpA8++KDL+dSpU3t035577lk4Xrdu3U7XnDJlSmETsF2xLKvLqIS1a9f2qA7sqGNDr45gFgAAAAAAABhIgbQAbtiwQb/61a8k5cPC7QPWjq7X7kLXjufGjx+vBQsW6Oijjw6iREn5cQEPPvigJGnffffVeeed16v7O7pcpfws13HjxvXovvHjx3e7xvbnEyZM6HEt48aN03vvvdftmug5xzNyfVMIZgEAAAAAAICBFEgg+8ADD8h1XVmWpbKyMn3nO9/R/PnzNX78eP3qV7/Sddddp0gkohdeeEHV1dWKx+Navny57rzzTj3zzDOSpObmZn3qU5/SIYccEkSJisfj+uEPfygpH6b2ZlRB5zU6VFVV7XLzrc6qq6u7XUOSWltbC8c1NTU9rqXztduvOZh835cxvowx8n1f/hDcHCuZc5XKue31+8UuZ9jzPG+X50BP8D5Cf/EeQn/xHkJ/8R7CQOB9hP7iPQQMjkAC2X/+85+F429/+9s69dRTC+dHHHGEpPwf6ueff16f+9znNGbMGB155JE68sgjdcstt+j666+X53m67LLL9NBDDwUyR/byyy8vdJKeccYZmjt3bq/XyOVyhePy8vIe39c5+LVtu8tznc8Has3B1NDQoOaUp2TKVUPDFjne0As0N5W5ivk12hzJKJlMqq2trdgljShLly4tdgkYBngfob94D6G/eA+hv3gPYSDwPkJ/8R4CghHIDNn169dLyoeEJ554YpfnZs+erWg0Kkl67bXXdrj3a1/7mj71qU/JGKPVq1frySefHPD6nnrqKT300EOSpL333lvf/OY3+7SO4ziF4552x0rqMhfWdd0BWTMcDu90TfROKuvIM0a2b3o0wxcAAAAAAADoqUDSpng8LsuytO+++6qsrKzrC0Yi2meffbRy5UotW7as2/u/+tWvFoLYf/zjH/r0pz89YLW1trbqRz/6kaT8vNorrriiV52onXUOQXvzq+2dA9OOcLq/a3b+NYLt10TvJHP5UDzrGlUSyAZu/B/+oEinUR1uXZ22nnRS8QoCAAAAAAAIUCBpU0fgWFdX1+3z06dP18qVK7VmzZpunz/44IM1btw4NTU1acWKFQNaW+dRBaeeeqoOO+ywPq9VUVFROO48vmB3Oo8U2D6w7hwO92bNztduv+ZgmjBhgnLxrBLKaMKEiXKH4AzZilhY1VXVqqqt0uRRZZo8eXKxSxrWQl/6kkLvvls492fO1OQrryxiRRiKPM/r8utUBx54YJe/4AJ2h/cQ+ov3EPqL9xAGAu8j9BfvIfTXkiVL2I+nBwIJZOvq6tTY2Njl1+8722uvvSRJ6XRaW7Zs0cSJE3e4ZsqUKWpsbNSmTZsGrK4nn3xSDz/8cKGGCy+8sF/r1dbWFo5TqZSMMT2ad5tMJgvH24fWnc87X9efNQdTKBSSZYVkWZZCoZBCGnqBrO0ZybKUdX3+xTMIzHZ/ZizLYlQE+i0cDvM+Qr/wHkJ/8R5Cf/EewkDgfYT+4j0EBCOQGbLjx4+XMUbr1q3r9vmpU6cWjt/t1BnXpbD2+ampVGpAamptbdWPf/xjSfnA5/LLL1dlZWW/1uwcJHuep5aWlh7d19GhK0njxo3r8tyECRMKx01NTT2upbGxsXA8fvz4Ht+HHflGyjqe0g67SQIAAAAAAGBgBfLXHIceeqjeeecdNTQ0aOnSpTrwwAO7PN85kH3rrbf0b//2bzus0bEx2ED9Tcwf/vCHQhBaUVGhW2+9VbfeeutOr+8ccN5+++169NFHC+fXXHONxo0bp2nTpu1Q85gxY3Zby4YNGwrH06dP7/Lc3nvv3eW6nnTdGmO0cePGbtdA36QJZAEAAAAAABCAQALZI488Ur/73e8kSZdeeqluu+02jR07tvD8nDlzFAqFZIzRgw8+qK9//etdNqL6xz/+ocbGRlmWtUMHaV91ntuaTqf1/PPP9/jed999t0snbzablZQfq1BXV6fW9g2Jli9frrlz5+52vc5zcWfPnt3luQMOOKBwnMlk9P7772ufffbZ5Xrvvfdelxmy+++//25rwK6lbU8515fnG4VDux9DAQAAAAAAAPREICMLjj766EKX5sqVK3XMMcfo2muvLXSd1tTU6MMf/nChs/P888/X2rVrlUql9MQTT+j73/9+Ya2eBJzF9JGPfKRw/OKLL+72+hUrVnTpvj388MO7PD9jxowuXbYvvfTSbtd84YUXCsejR4/WrFmzdnsPdi3teJKRMnTJAgAAAAAAYAAF0iFrWZYuvfRSff3rX5fneUokEvr1r3+tY445ptDxesYZZ+iVV16RJD3zzDN65plnCvcbs20jqEWLFg1ITeeff77OP//8Hl//iU98ojAG4KqrrtppHfPnz9cTTzwhKd/Zu7NNyjrcfffdheN99913h/DUsix9+tOf1h/+8AdJ0r333quTTz65MFN3e77v69577y2cf+Yzn+nRxmLYtbTtFT5XlzHAHAAAAAAAAAMjkA5ZSZo3b55++tOfqqampvBY59mxRx99tBYsWFAIX40xhY+OQPGzn/2sPvrRjwZV4oCYP39+YSMu27Z18cUXy3Xdbq997rnn9Mc//rFwftppp3V73Ze+9KXC92DFihX6xS9+sdPXv/HGG7Vq1SpJ+Y3QdrYmeifVHsgm7e7/WQIAAAAAAAB9EVggK+UD1b/85S8699xz9aEPfUijRo3q8vyVV16pM888U+FweId7TzrpJF199dVBljcgYrGYLrzwwsL5iy++qK985SuFTckkyXVd3XvvvTr//PPlefmgb+bMmfriF7/Y7ZqzZ8/WwoULC+c333yzrrzySrW1tRUea2tr0xVXXKFf/vKXhcdOOukk7bfffgP2tY1krm+UdX0lbUYWAAAAAAAAYOAE/rvYY8eO3em4gEgkoosuukhnnXWWnn/+eW3dulV1dXU64ogjtNdeewVd2oBZuHCh3nzzzcKYgRdffFHz58/XrFmzVF1drTVr1qi5ublwfV1dnW688UZFIjv/9v/gBz/Qu+++q6VLl0qS7rjjDt17772FEQcrV65UJpMpXH/QQQfp4osvDuLLG7GSOVepHB2yAAAAAAAAGDglMRxz/PjxXTpCh6L//u//1ujRo3XbbbfJcRz5vq/ly5fvcN2+++6rG2+8Ufvss88u16uurtZvfvMbfe9739Pf//53SVImk9Fbb721w7VHH320rr32WpWXlw/I14K8lO0p5/pyPF/RcKDN5AAAAAAAABghSiKQHQ4sy9IFF1ygBQsW6E9/+pOef/55bd68WZlMRrW1tdp///317//+71qwYIFisViP1qypqdH//u//6qWXXtJDDz2k1157TY2NjfI8T+PGjdOhhx6qhQsXat68eQF/dSNTsr07NplzNbqyZ//MAAAAAAAAgF0Z1EB2xYoVeuONN7R582a1traqvLxco0aN0rRp03TooYdqzz33HMxydqmjK7W39t13X1100UW66KKLBqyWI444QkccccSArYee6djQK2l7Gl1Z5GIAAAAAAAAwLAQeyGazWd1xxx36wx/+oPr6+l1eO2vWLJ155pk67rjjgi4L2K2M48vzTaFTFgAAAAAAAOivQAdjvv322zr22GN1ww03aNOmTTLGSJKMMV0+Oh5bsWKFLr74Yp199tlqamoKsjSgR5K2p6TtFbsMAAAAAAAADBOBBbJLlizRWWedpY0bN3Z5PBwOa9q0aTrwwAN1wAEHaK+99lIotK0MY4xefPFFnXHGGWprawuqPKBHkjlXaduT3/4XBwAAAAAAAEB/BDKywPM8XXLJJUomk7IsS8YYfe5zn9PJJ5+suXPnKhqNdrk+m83q5Zdf1h133KGXXnpJkrR69Wpdcskluvnmm4MoEeiRpO3KGKO07am6jD3wgmD23lu5bLZwHtt7b1lFrAcAAAAAACBIgSRMjz32mFavXi3LshSJRHT99dfrU5/61E6vLy8v11FHHaWjjjpKd955p6666ioZY/TUU0/plVde0Uc+8pEgygR2K5XLjytI5lwC2YD4jzyiZYsXF87nzp0b7CwVAAAAAACAIgok93j88ccLx9/+9rd3GcZu78tf/rLOPPPMwvmf//zngSwN6JWk7cpIzJEFAAAAAADAgAgkkF2+fLkkqbq6Wqecckqv7z/nnHNUVlYmSXrttdcGtDagN3wjZRxPyZxb7FIAAAAAAAAwDAQSyDY2NsqyLM2cOXOHebE9UV1drdmzZ8sYo61btwZQIdBzyZxLhywAAAAAAAAGRCCB7KhRoyTlN/fqq3A4LCk/XxYopmTOk+v5yjqEsgAAAAAAAOifQALZWbNmyRijlStXKp1O9/p+13W1Zs0aWZal6dOnB1Ah0HNJ223/TCALAAAAAACA/gkkkF2wYIEkKZvN6tZbb+31/Q888IDi8bgk6dhjjx3Q2oDe6pgfm2KOLAAAAAAAAPopEsSixx13nP7whz/ojTfe0C233KIpU6bohBNO6NG9r776qq688kpJ0syZM3XiiScGUSLQY7Zn5HiGDtmAhL7zHU1/551t53PmSDfcULyCAAAAAAAAAhRIICtJv/jFL3TWWWdp+fLluuyyy/T000/rjDPO0L/8y78oFNqxMff999/Xvffeq7vuukuu62qfffbRL37xiz5tCgYMtKTtFjplMbCsxx/XmJUrC+dm3boiVgMAAAAAABCsPgey+++/f4+usyxLxhg99dRTeuqpp1ReXq5p06appqZGkpRKpbRx40YlEglJkjFGlmUpEonooosukmVZ+u1vf9vXMoEBkcy5yriePN8oHLKKXQ4AAAAAAACGqD4Hsh3BqTFmp9dYltXlszFGmUxGKzt1w3U83nFdx7WrVq0qvAZQbMmcJ5l8p2xtOV3bAAAAAAAA6Jt+beq1qzC24/nOH319HCi2pJ0fV5DMMUcWAAAAAAAAfdfnDtk777xzIOsASlra9uQbMUcWAAAAAAAA/dLnQPZf//VfB7IOoKQZSSnbVcomkAUAAAAAAEDf9WtkATCSpGxPSdtjnAYAAAAAAAD6jEAW6KFkzpXvG2Uc5sgCAAAAAACgb/o8sqC31q1bp3/84x96/fXX1dDQoNbWVoXDYVVVVWnKlCmaM2eOPv7xj2vmzJmDVRLQKx3zY5O2p8rYoP3RAQAAAAAAwDASeKq0ZcsWXXnllXryySfl+3631yxZskSPP/64fvazn+kjH/mIfvjDH2qfffYJujSgV5J2vjM2mXM1obqsyNUAAAAAAABgKAp0ZMHrr7+uhQsX6q9//as8Lx9mGWO6/eh47uWXX9YJJ5yg559/PsjSgF5zfaOs6xeCWQAAAAAAAKC3AuuQff/99/Vf//VfSiQSsiwr/2KRiA444ADNmDFDo0aNkud5isfjWrVqlVasWCHXdWVZltLptM4//3zde++9mjFjRlAlAr2WzLmF0QUAAAAAAABAbwUWyF5yySWFMDYcDusrX/mKvvzlL2v06NHdXt/c3Kw77rhDt912mzzPUyaT0WWXXaZ77rknqBKBXkvarmzXl+P5iobZEw8AAAAAAAC9E0ii9Nxzz+mtt96SZVmKRqO69dZb9c1vfnOnYawkjRkzRhdccIF+9atfKRaLSZIWL16sl156KYgSgT5J5bbNkQUAAAAAAAB6K5BA9q9//Wvh+Pzzz9cRRxzR43sPP/xwnX/++YXzRx99dEBrA/ojabvtn5kjCwAAAAAAgN4LJJB9/fXXJUllZWU69dRTe33/KaecorKy/C72b7755oDWBvRHxvHl+YYOWQAAAAAAAPRJIDNkGxsbZVmWZsyYoYqKil7fX1FRoVmzZuntt9/Wpk2bAqgQ6Luk7dEhO4DM0UcrvscehfNR++8vq4j1AAAAAAAABCmQQDaTyUhSn8LYDuXl5ZIkzyP4QmlJ5lylbU++MQpZRIf95f/851qzeHHhfO7cucG07gMAAAAAAJSAQHKP2tpaGWO0cePGPq/Rce+uNgIDiiFpuzLGKEWXLAAAAAAAAHopkEB2xowZkqRNmzZp+fLlvb5/2bJl2rhxoyzL0rRp0wa6PKBfkrl8EJtijiwAAAAAAAB6KZBA9qMf/Wjh+IorrujV2AHXdXXllVcWzufNmzegtQH9lbJdGYk5sgAAAAAAAOi1QALZ448/XmVlZZKk119/Xd/4xjeUSCR2e18ikdA3vvENvf7665Lyc2QXLlwYRIlAn/lGStue2uiQBQAAAAAAQC8FsqnXmDFj9F//9V+64YYbZFmW/v73v+szn/mMFi5cqHnz5mnfffdVbW2tJCkej2v16tV6/vnn9ec//1mtra2SJMuydNZZZ2n8+PFBlAj0S1vOVVsuP0vWYmMvAAAAAAAA9FAggawkffWrX9XSpUv15JNPyrIstbS06Pbbb9ftt9++03s6h1sf//jHdf755wdVHtAviayjPWrKlLI9VZcF9scIAAAAAAAAw0xgSVIoFNJNN92kK664QnfffbeMMZJU+Ly9jiDWGKNTTz1VF198cVClAf2WyLqFzwSy/RM6/njtv2LFtvPZs6UHHyxiRQAAAAAAAMEJNEkKhUK67LLL9B//8R/6v//7P73wwgtqbm7u9tpRo0bp4x//uM466yzNnj07yLKAfkvZnnxjlMi5mlzsYoY4a+VKVb77buHcMAICAAAAAAAMY4PS2jdjxgxde+21kqQ1a9aooaFBra2tMsaotrZWe+yxh/bdd9/BKAUYEEZSW85TW5aNvQAAAAAAANBzgQSyd999t9577z0tWLBABx10UJfn9t13X8JXDAuJrKPaiohc31ckFCp2OQAAAAAAABgCAkmRHnvsMf32t7/ViSeeqOuvvz6IlwCKri3nSkZqy3rFLgUAAAAAAABDRCCB7Pvvv1/YvOvTn/50EC8BFF3Hxl5tOafIlQAAAAAAAGCoCCSQTSQSheP99tsviJcAii7r+nK8/MZeAAAAAAAAQE8EEsjuueeeheP6+vogXgIoCYmcw8ZeAAAAAAAA6LFAAtkTTzyxcHzzzTcH8RJASUhkXeVcXzmXObIAAAAAAADYvUAC2dNPP12LFi2SMUaPPfaYzjvvPC1dujSIlwKKqq19XEGCLlkAAAAAAAD0QCSIRZ999ll95jOfUTKZ1F//+lc99dRTeuqpp1RVVaWZM2dqzJgxqq6ulmVZu13LsixdeeWVQZQJ9Nu2jb1cja8uK3I1AAAAAAAAKHWBBLJf+9rXCmFrx2djjJLJpN58881er0cgi1Ll+kYZx6NDFgAAAAAAAD0SSCAr5QPY3jy+Mz3pogWKKZF1VV3myhjD+xUAAAAAAAC7FEggu3DhwiCWBUpSIudqom+Utj1VlQX2dxwAAAAAAAAYBgJJj6666qoglgVKUlv7uIJEziWQBQAAAAAAwC6Fil0AMNQlbVe+yW/sBQAAAAAAAOwKgSzQT77Jh7Js7AUAAAAAAIDdGdDfr25padGaNWvU0NCgyspK7bnnntpvv/0G8iWAktSWdZUq9+T5RuEQG3v1hn/22dq6bFnhfPwBByhcxHoAAAAAAACCNCCB7Ntvv62f//zneumll+R5XpfnJkyYoNNOO02nnXaaysrKBuLlgJKTyLkyxiiZc1VbES12OUOKueACbVy8uHA+bu7cIlYDAAAAAAAQrH6PLPjf//1fnXzyyXr++efluvlQqvPHli1bdN111+mEE07Q+vXrB6JmoOR03tgLAAAAAAAA2Jl+BbL33nuvbrzxxh26YjuzLEvGGK1atUr/+Z//qWQy2Z+XBEpS2vHk+oY5sgAAAAAAANilPo8sSCaTuu6662RZ+XmZxhgdfvjhmj9/vqZMmSLXdbVy5Uo98MADhc7YdevW6Re/+IUuuuiigakeKCGJrKvqMgJZAAAAAAAA7FyfA9nHH39c8XhclmWprKxM1113nT75yU92ueaTn/ykvvrVr+qyyy7TAw88IGOM7r//fn3rW99iniyGnbacq6zjyXZ9xSL9ngYCAAAAAACAYajPqdErr7xSOP7ud7+7QxjbIRKJ6H/+5380Y8YMSVIikdBbb73V15cFSlYi60jKB7MAAAAAAABAd/ocyK5YsUKSVFVVpRNPPHGX10YiEZ188smF82XLlvX1ZYGS1RHEsrEXAAAAAAAAdqbPIwu2bt0qy7I0depURaPR3V7/oQ99qHC8bt26vr4sULJszyjr+oVOWfRM+NBDdei77xbOrZkzpSVLilgRAAAAAABAcPocyKbTaUlSTU1Nj66fMmVK4bitra2vLwuUtETWUXVZRMaYwoZ32A3HUci2C6fGIdAGAAAAAADDV59HFjjtoUlPumOl/GiDDqlUqq8vC5S0tpwr1/OVcfxilwIAAAAAAIAS1OdA1hgjST3uAux8ned5fX1ZoKQlsvn5sWzsBQAAAAAAgO70OZAFsKNkzpWRmCMLAAAAAACAbhHIAgPIM1Iq5ypBhywAAAAAAAC6QSALDLBEzlUy58n3TbFLAQAAAAAAQIkhkAUGWDzryhjDHFkAAAAAAADsgEAWGGAd82PjzJEFAAAAAADAdiL9XWDLli3685//HOg9X/jCF3q1PlBMGceX7fmKZ+mQBQAAAAAAQFf9DmRXrVqlSy65pMfXG2N6fQ+BLIaaRNZVVYxAFgAAAAAAAF0N6sgCy7JkWVaPrzeGTZEwNMWzjhzPV9r2il0KAAAAAAAASki/OmQJTIHudYwriGcdVcbCRa4GAAAAAAAApaLPgexTTz01kHUAw0oy58o3Romsq0mjil0NAAAAAAAASkWfA9kpU6YMZB3AsOIbqS3nKp51il0KAAAAAAAASsigzpAFRpJ41lXa8eR4frFLAQAAAAAAQIkgkAUCksi6kmn/DAAAAAAAAKifm3oB2LmOcQXxrKOxVbEiV1O6/Msv1/qlSwvnex14oNgGDQAAAAAADFcEskBAHM8o7Xh0yO6G+cIX1DR9euF8z7lzi1gNAAAAAABAsBhZAAQokXWVyLkyxhS7FAAAAAAAAJQAAlkgQPGsI983asvRJQsAAAAAAAACWSBQHeMKGFsAAAAAAAAAiUAWCFTK9uT6RnECWQAAAAAAAIhNvYDAxbOOqmLhYpcBAAAAAACAEkAgCwQskXU1ttJX1vFUHiWY3cHGjYpt2rTtfNw4adq04tUDAAAAAAAQIAJZIGDxjJP/nHUJZLsR/sxndNDKlYVzM2uWtGJFESsCAAAAAAAIDjNkgYC15VwZSYmsU+xSAAAAAAAAUGQEskDAPCMlcy4bewEAAAAAAIBAFhgM8ayrlO3J9f1ilwIAAAAAAIAiIpAFBkE848gYoza6ZAEAAAAAAEY0AllgECTag1jGFgAAAAAAAIxsBLLAIMh5vrKurzgbewEAAAAAAIxokWIXAIwUiayjqlhYxhhZllXscgAAAAAAAFAEdMgCgySedeX5RinbK3YpAAAAAAAAKBICWWCQxDP5cQXMkQUAAAAAABi5CGSBQZKyPXm+UYI5sgAAAAAAACMWM2SBQWIkJXKuquiQBQAAAAAAGLHokAUGUTzrKOt4yrl+sUsBAAAAAABAERDIAoMonsl3x7ZmGFsAAAAAAAAwEhHIAoMonnXkGaPmtF3sUgAAAAAAAFAEzJAFBpFv8t2xFdGwjDGyLKvYJQEAAAAAAGAQ0SELDLKWtCPb9ZWyvWKXAgAAAAAAgEFGhywwyJrTTuFzdRl/BL3f/larly4tnO934IH8YAIAAAAAAMMWuQcwyNKOp5zrqyVja+roimKXU3yHHKJU59ENc+cWrxYAAAAAAICAEcgCRdCcdlQRC8vzjcIh5sgCAAAAAACMFMyQBYqgOW3L943iWafYpQAAAAAAAGAQEcgCRdCacWS0bZ4sAAAAAAAARgYCWaAIHN+oLeeqOW0XuxQAAAAAAAAMIgJZoEha0o7Stqec6xW7FAAAAAAAAAwSNvUCiqQ5bWva6Ao1px1NGhUudjnF8/zzGrVkybbztjbpqKOKVg4AAAAAAECQCGSBIklkXbm+UUva0aRR5cUup2jCX/+6ZqxcWTg3s2ZJK1YUsSIAAAAAAIDgEMgCRWKU39yrIhqWMUaWZRW7JAAAAAAAAASMGbJAETWnHTmer7acW+xSAAAAAAAAMAgIZIEiasnY+c9pp8iVAAAAAAAAYDAQyAJFlHF8ZRxPzRkCWQAAAAAAgJGAQBYosua0077Bl1/sUgAAAAAAABAwAlmgyFoyjowxaqVLFgAAAAAAYNgjkAWKrCXtyCjfKQsAAAAAAIDhLVLsAoCRzjNGiayjymi42KUAAAAAAAAgYHTIAiWgOe0o43jKOF6xSwEAAAAAAECACGSBEtAxroCxBQAAAAAAAMMbgSxQApI5V45v1JK2i10KAAAAAAAAAsQMWaAEGEktaVvlkZCMMbIsq9glAQAAAAAAIAB0yAIloiXtyPONElm32KUAAAAAAAAgIASyQIlozjBHFgAAAAAAYLgjkAVKRM71lbI9NWeYIwsAAAAAADBcEcgCJaQ5bast58p2/WKXAgAAAAAAgACwqRdQQprTjvaqq1BzxtYeNeXFLmdQeC++qKVvv104P/Dgg/nBBAAAAAAAhi1yD6CExLP5jb2a086ICWQ1apS8mpou5wAAAAAAAMMVgSxQQnwjtWQclUfDMsbIsqxilwQAAAAAAIABxAxZoMQ0p205nq+2nFvsUgAAAAAAADDACGSBEtOcdiRJTe2fAQAAAAAAMHwQyAIlJuv6SjuemtN2sUsBAAAAAADAACOQBUpQU8pWW86V4/nFLgUAAAAAAAADiE29gBLUnHa0V12FmtOOJtaUFbucQFl33qkJy5ZtO1+8WDrrrCJWBAAAAAAAEBwCWaAExbOOPGPUnLaHfSAb+ulPtdfKlYVzM2sWgSwAAAAAABi2CGSBEuQbqTXjqDwSljFGlmUVuyQAAAAAAAAMAGbIAiWqKeXI8Xy15dxilwIAAAAAAIABQiALlKjmtN3+2SlyJQAAAAAAABgoBLJAicq6vtKOVwhmAQAAAAAAMPQRyAIlrDltK5Fz5Xh+sUsBAAAAAADAACCQBUpYc9qRDGMLAAAAAAAAhgsCWaCEtWYcecYwtgAAAAAAAGCYiBS7AAA755t8KFseCcsYI8uyil0SAAAAAAAA+oEOWaDENacdOZ6vZM4rdikAAAAAAADoJwJZoMR1jCtgbAEAAAAAAMDQN+JHFrzyyit69NFH9eabb6qhoUHJZFLV1dWaNGmSDjvsMC1atEhz5szp8Xpvv/22/vjHP+rVV1/Vli1bZIzRxIkTdcABB+i4447Txz72sV792rkxRk8++aQeeughLVmyRE1NTaqoqNDEiRN1+OGH6/jjj9fs2bP78qVjiMg4vjKOp6a0o2ljil0NAAAAAAAA+mPEBrIbNmzQRRddpNdee22H51pbW9Xa2qrly5frrrvu0uc+9zn95Cc/UXV19U7XcxxH//M//6M//OEPOzz3wQcf6IMPPtCjjz6qefPm6aqrrtKECRN2W+OWLVt0wQUX6PXXX+/yuG3bisfjevfdd3XXXXfpjDPO0IUXXqhYLNaDrxxDUVPaUWUsIsfzFQ3T2A4AAAAAADBUjchk54MPPtAXv/jFLmFsNBrVAQccoMMPP1wzZszo0sX66KOP6pRTTlEymex2PWOMvvWtb3UJY8vKynTwwQfr0EMP7RLkPv/88zr99NOVSCR2WWNzc7NOPfXULmFsXV2dDjvsMB1wwAGKRCKF17799tt18cUX9+6bgCGlOW3LGKOWtFPsUgAAAAAAANAPIy6Q9TxP559/vpqbmyVJ4XBY5513nl5++WXdf//9uuOOO/TII4/omWee0Re+8IXCfStWrNAPfvCDbtf89a9/rSeffLJw/qUvfUkvvPCC/vjHP+qee+7RCy+8oAsuuKAQor733nv6/ve/v8s6L7nkEq1bt05SPtz98Y9/rBdeeEG/+93vdP/99+vpp5/WZz/72cL1jz76qO68884+fU9Q+lozjnxj1JxhjiwAAAAAAMBQNuIC2fvvv1/vvvtu4fzqq6/W+eefv8M4gokTJ+qaa67RmWeeWXjs8ccf11tvvdXluubmZv3iF78onJ988sn60Y9+pJqamsJj5eXl+vrXv66f/OQnhcf+9re/6Y033ui2xueee05PP/10lxpPPvnkQqArSePHj9f111/fJTT+//6//2+nXbwY2nwjtWQcNaUcGWOKXQ4AAAAAAAD6aMQFsg8++GDheN68eVqwYMEur7/wwgu7zHt99NFHuzz/pz/9SalUSlJ+pMD3vve9na51/PHH66ijjiqc33777d1ed8cdd3SpsXMn7PZ+9KMfaezYsZKklpYWPfDAAzv/YjCkNaVsOZ6vRNYtdikDa+xYOZ0+1P5+BgAAAAAAGI5GVCBr23aXrtRjjz12t/fEYjHNmzevcL5kyZIuz//lL38pHB9zzDGqrKzc5XonnXRS4fjZZ59VOp3u8nw8HteLL75YOD/++ON3uV5lZWWXUPnxxx/f5fUYuhpTdpfPw4X3zDN6+4knCh/eM88UuyQAAAAAAIDAjKhAduPGjSorKyuc77vvvj26r66urnDc0tJSOG5tbdXy5csL552D2505/PDDFQ6HJUnZbLZL+CpJ//znP+V5niTJsiwdeeSRu12z8zVvvPGG4vH4bu/B0GN7Romcq8b08ApkAQAAAAAARpIRFchOnz5db775pl577TU9+uijmjlzZo/u27hxY+G4tra2cLxy5cou8zwPOOCA3a5VWVmpqVOnFs6377hdsWJF4XjPPffs8no7M3v27MKx7/tatmzZbu/B0NSYtJWxPaXsYTa2AAAAAAAAYIQYUYFsh5qaGu23334qLy/f7bXJZFIvvPBC4bxzV+0HH3xQOI7FYpo0aVKPXn/PPfcsHK9bt67Lc53XnDZtWo/WGz9+fJevZe3atT26D0NPU3t3bNMwG1sAAAAAAAAwUozIQLY3brvtNiWTycL50UcfXTjeunVr4Xj8+PE9XrPztZ3XkKSGhoY+rTm200ZI26+J4SNle8o43rCbIwsAAAAAADBSRIpdQCl7++23deuttxbO9957b33iE58onLe2thaOa2pqerxudXV14Xj7ea+dz3uzZudrE4lEj+8baL7vyxhfxhj5vi/fN7u/Cb2yNZlTeTSkrO0qGra6jM0YijpmJu/sHOgJ3kfoL95D6C/eQ+gv3kMYCLyP0F+8h4DBQSC7Exs2bNA555wjx3EKj1188cWKRLZ9y2x7W5diT8YfdIjFYt2uIUm5XK7fa3ZeY7A1NDSoOeUpmXLV0LBFjucXrZbhykmWaXR0kt5dn9XY8pC2bNky5EPZzpYuXVrsEjAM8D5Cf/EeQn/xHkJ/8R7CQOB9hP7iPQQEg0C2G/X19Tr99NO7/Or/GWec0WVcgaQuYW0o1PPpD51DXdftujlT5/PerBkOh3e6JoaXllROtuurNedrXEVYZWVlymazxS6rzybdcouiTU2Fc2fsWNV/7WtFrAgAAAAAACA4BLLbWbNmjc4++2zV19cXHps3b56+853v7HBt5xDU93veCdo5MI1GowOyZudfI9h+TQwvRtKWRFrlkRr5Jt9JPZQD2TF//avKO21El502jUAWAAAAAAAMWwSynbzxxhs655xz1NLSUnjs8MMP180339xtyNl5pEBvxgR0vrasrCzwNQfThAkTlItnlVBGEyZMlMsM2UC4kZgqq6oUHVWjSXtEh/TIgtB279dYWZnmzp1bpGowVHme1+XXqQ488MAuf8EF7A7vIfQX7yH0F+8hDATeR+gv3kPoryVLlvSqwXCkIpBt9/DDD+v73/9+l5muH//4x3XTTTftdJZrXV1d4TiZTPb4tVKpVLdrSFJtbW2f1ux87fZrDqZQKCTLCsmyLIVCIYU0dIPCUhbPujKSmtOOJtb0fNZwKTKW1eXcsqwuYz2AvgiHw7yP0C+8h9BfvIfQX7yHMBB4H6G/eA8BweBPlaSf//znuvnmm7s8tmDBAl111VW7/MEzceLEwnFTpxmYu9N5Nu24ceMGZM3O144fP77H92Fo8kw+jC2LhGWMkbVdqAkAAAAAAIDS1PNdo4Yhx3H0ve99b4cw9mtf+5p++tOf7vZvgaZNm1Y4TqfTamxs7NHrrl+/vnA8ffr0Ls/tvffeheN169b1aL2GhoYuM0Q7r4Hhqylly/F8xbNs4gYAAAAAADBUjNhA1rZtnXfeeXrwwQcLj0UiEV1++eW68MILe9RxOGfOnC7XLV++fLf3pFKpLkHr7Nmzuzx/wAEHFI7Xrl2rTCaz2zU7v65lWZo1a9Zu78HQ15S2ZSQ1puzdXgsAAAAAAIDSMCIDWdd19Y1vfENPP/104bGqqirdcsst+uIXv9jjdaqrqzVnzpzC+Ysvvrjbe15++eXCcONwOKx//dd/7fL8hz70oUJnrud5euWVV3a7ZufXnTNnTpc5tBi+bM8okXUJZAEAAAAAAIaQERnIXnvttfrHP/5ROB8zZozuuusuzZs3r9drfeYznykcP/TQQ7vtaL377rsLxx/96Ec1atSoLs+PGjVKhx9+eOH8nnvu2eV6qVRKDz30UOH83//933tUN4aHxpStrOMplWNsAQAAAAAAwFAw4gLZZ555RnfccUfhvLa2VnfeeWeXUQG9cfzxx6uiokKS1NjYqJ/85Cc7vfaPf/yjnnvuucL5l7/85W6vO+WUUwrH//jHP3T//ffvdM0f//jHam5uliRVVlbqhBNO6FX9GNqa2rtj6ZIFAAAAAAAYGkZUIOt5nq644goZYyTl561ed911mjFjRp/XHDdunP7zP/+zcH7//ffr29/+tpqamgqPZbNZ/fKXv9SPfvSjwmMf+9jH9LGPfazbNT/xiU/oIx/5SOH8sssu0y233KJcLld4rLGxURdccEGX7thzzjlHY8aM6fPXgqEn7XhKO54a0wSyAAAAAAAAQ0Gk2AUMpscff1xr164tnFdUVOg3v/mNfvOb3/R4jXHjxumaa67p8tjXv/51LVmypDCT9pFHHtETTzyhWbNmKRaLadWqVWpraytcv+eee+6wxvauvfZanXLKKVq/fr1c19XPfvYz3XrrrZoxY4Zs29bKlSvlOE7h+qOPPlpnn312j78ODB+NKVuVsbByrq+yyIj6OxYAAAAAAIAhZ8QFsp2l02k9//zzvVpjypQpOzwWiUT085//XP/93/+t++67T8YYOY6jpUuX7nDtoYceqhtvvHG3nawTJ07UXXfdpQsvvFBvvPGGJKmtra1w3NkJJ5ygH/3oRwqFCONGosaUral1FWpK2ZpcW17scgAAAAAAALALIyqQfe+99wJbOxaL6YorrtBJJ52kBx54QC+//LK2bNki27Y1ZswYHXzwwTr22GM1f/78HgenkyZN0u9//3v97W9/02OPPaa3335bjY2NCoVCmjhxoj70oQ/pxBNP1CGHHBLY14XS15Z1ZXu+GglkAQAAAAAASt6ICmQfffTRwF/j4IMP1sEHHzxg61mWpfnz52v+/PkDtiaGF6P85l5lkbAcz1c0TKc0AAAAAABAqSK5AYaBzW05GWNUn8jt/mIAAAAAAAAUDYEsMAzEs66Stqf6RFbGmGKXAwAAAAAAgJ0YUSMLgOFsUzyr6lhYLRlHYypjxS6nx8xhhylZVVU4r9p/f1lFrAcAAAAAACBIBLLAMLGlLad9x1ZqUzw7pAJZ/ze/0buLFxfO586dS+s+AAAAAAAYtghkgWHCM0ZbkjlFwiHlXE9lkXCxSwIAAAAAAMB2aEQDhpFN8fwM2U1s7gUAAAAAAFCSCGSBYSRpe4pnXTb3AgAAAAAAKFEEssAwsymRle36akzZxS4FAAAAAAAA2yGQBYaZrcmcHN9oUyJb7FIAAAAAAACwHTb1AoYZ30ibE1lFw5bStqfKGJt7AQAAAAAAlAoCWWAY2pTIaq+6Cm1KZLXfuKpil7NLoTPO0Mzly7ed77+/9NvfFrEiAAAAAACA4BDIAsNQxvHVnHYUCYe0z5hKhUJWsUvaKeu111SzcmXh3KRSRawGAAAAAAAgWMyQBYapTYmsXM9XQzJX7FIAAAAAAADQjkAWGKaaUrZyrs/mXgAAAAAAACWEQBYYpoyk+kRWiayrZM4tdjkAAAAAAAAQgSwwrNUncjKSNsbpkgUAAAAAACgFBLLAMJbzfDWmbDUkc3J9v9jlAAAAAAAAjHgEssAwtymelecbbU6wuRcAAAAAAECxEcgCw1xLxlHK9rQhnpUxptjlAAAAAAAAjGgEssAIsL41o6zjaWvSLnYpAAAAAAAAIxqBLDACbGnLKef6Wh/PFLsUAAAAAACAEY1AFhgBjKSN8azasq5aM06xywEAAAAAABixCGSBEWJTIr+51/pWumQBAAAAAACKJVLsAgAMDtc3qm/LKhy2lLZdVcb44w8AAAAAADDY6JAFRpANrVkZI61vzRa7FAAAAAAAgBGJQBYYQbKur63JnLYkc7Jdv9jlAAAAAAAAjDgEssAIs741K9832pigSxYAAAAAAGCwMUQSGGHacq5aM46i8aym1lUoHLKKWo/54hfV+M47hfOxc+aouBUBAAAAAAAEh0AWGIHWt2ZUVxHV5racptSWF7UW/0c/0rrFiwvno+fOpXUfAAAAAAAMW+QewAjUlHaUdjxtaM3IGFPscgAAAAAAAEYMAllghFrfmlHG8dSYsotdCgAAAAAAwIhBIAuMUFvacrI9X+tb2dwLAAAAAABgsBDIAiOUb6SN8awSWUfxrFPscgAAAAAAAEYEAllgBNsUz8ozRmtbMsUuBQAAAAAAYESIFLsAAMXj+EYb41mFLUvxjKPaimixSwIAAAAAABjWCGSBEW59S0aTR5Xrvea0Dp1SO+ivH/74x3XwypXbzmfNkl54YdDrAAAAAAAAGAwEssAI5/hG61szioQsNaVsja2KDW4BTU2KNjUVTk2nYwAAAAAAgOGGGbIAtKE1I9vz9X5zWsaYYpcDAAAAAAAwbBHIApBnpLUtGSVzrram7GKXAwAAAAAAMGwRyAKQJNUnssq6dMkCAAAAAAAEiUAWgCTJN9IHzWllbE+b23LFLgcAAAAAAGBYIpAFULClLae04+mDlrR8ny5ZAAAAAACAgUYgC6DASHq/Ka2c42tjIlvscgAAAAAAAIYdAlkAXWxN2WrLuVrXkpHr+8UuBwAAAAAAYFghkAWwg/ea0nI8Xxta6ZIFAAAAAAAYSASyAHbQknHUmnG0vjUjx6NLFgAAAAAAYKAQyALo1nvNaXm+0bqWTLFLAQAAAAAAGDYIZAF0K5F11ZiytTGRVc6lSxYAAAAAAGAgEMgC2KkPmtPyfaO1LelilwIAAAAAADAsEMgC2Kmk7akhmVN9Iqes4xW7HAAAAAAAgCGPQBbALn3QnJFvjNYySxYAAAAAAKDfCGQB7FLa8bSlLafNbTll6JIFAAAAAADol0ixCwBQ+ta2pDWxpkwfNKe1/8SaAV3b/973tGnZssL55AMOUHhAXwEAAAAAAKB0EMgC2K2M46s+kZVlSVNHV6gqNnA/OsyXv6yGxYsL55Pmzh2wtQEAAAAAAEoNIwsA9Mjalox8Pz9TFgAAAAAAAH1DhyyAHsm5+S7ZUEhK5ipUXcaPDwAAAAAAgN6iQxZAj61tScv3jd5vThe7FAAAAAAAgCGJFjcAPWZ7RhvjWYUsS4mso1Hl0WKXBAAAAAAAMKTQIQugV9a1ZuTRJQsAAAAAANAndMgC6BXHM9oQzyocstSacVRX0c8u2URC4ba2LucaM6Z/awIAAAAAAJQoAlkAvba+NaMpteV6vzmtQ6fU9mut8Ec/qkNWriycm1mzpBUr+lsiAAAAAABASWJkAYBec32j9a0ZxTOOmlJ2scsBAAAAAAAYMghkAfTJhtaMbM/Xe01pGWOKXQ4AAAAAAMCQQCALoE88I73fnFbKdrW5LVfscgAAAAAAAIYEAlkAfbY5kVPK9vR+c1qeT5csAAAAAADA7hDIAugzI+m9ppRs19f61kyxywEAAAAAACh5BLIA+qUp7agl42h9a0a26xe7HAAAAAAAgJJGIAug395rSsnzjT5oSRe7FAAAAAAAgJJGIAug39pynrYkc6pP5JS23WKXAwAAAAAAULIIZAEMiPeb8ht7rWmiSxYAAAAAAGBnIsUuAMDwkHV9bYxnFLKk1oyjuoposUsCAAAAAAAoOXTIAhgwa1sycnyjNU0pGWOKXQ4AAAAAAEDJIZAFMGBc32htc1ptWVdbk3axywEAAAAAACg5BLIABtSmRFYZx9N7zWn5dMkCAAAAAAB0QSALYED5Rnq/Oa2s4+l9NvgCAAAAAADogk29AAy4hqStcVU5SVIsEtJedRVFrggAAAAAAKA0EMgCCMSKhqSi4ZDWNKUUC4c0saas2CUBAAAAAAAUHYEsgED4Rlpa36ZDpoxqD2ctjamM7XCd98tf6v0lSwrn0w86iB9MAAAAAABg2CL3ABAYzxgtqU/o0Cm1Wra5TXMnj9Ko8mjXi+bNU6KmZtv53LmDWyQAAAAAAMAgYlMvAIGyPaO36xPKOJ6W1LcpbXvFLgkAAAAAAKBoCGQBBC7j+Hp7U0JZx9Pb9QnlXL/YJQ0aN1Uv47vFLgMAAAAAAJQIAlkAgyJpe1q6Od8hu6Q+Idcb/qGsk1grp/ld2VvflvGdYpcDAAAAAABKAIEsgEHTknG0fEub2nKulm1pkzFGlmUVu6xAOPEP5MY/kG+3ybcThLIAAAAAAEASgSyAQbY1Zeu9ppRa0o7WNKVlWZZqOm/qtRtepkl203I5ravlJtbJTW2Wl22WbydlPFvGmACr7xkn/oHcxFp5mUbZDW/Kbl4h327Lh7IeoWxnxs3JTW0udhkAAAAAAAyaSLELADDyrG/NqqYs/+OndsUSjW7Zqkhbm2zbloyRDjtsh3uM78ppXS0vtUUyvmR1//dJofI6xcYdXLTO285hrNP0jiQjP90g2xjFxu4ve+tixcYfLCscK0p9pcIYIy+1WW58jYzvyc/FFR09c9h2TAMAAAAA0IFAFkBRrGxIqjIWUdXpp6nyvdUa3/64mTVLWrGiy7VepklOy7syni03uUlufE0+uA1HZYVissL5j1BslCTJjb+naN2+g/wVdR/GdvAzW2U3GcXGzmkPZeeO2FDWdzNyWt6Vn22Vb7fJuClJkvGyio09QFaIfzUBAAAAAIYv/q8XQFF4Rlpan9DRu5gw0Lkr1rhZOS0r5edaOy1i58cUtE8B8FKbJSssSQrFqhWunNjzerLNMm5W4coJfQoEnfj7chPr5GW2ymlars5hbAc/0yi7cVmnUPZgWeGyXr/WUGWMkZfcKDfxgYznyEl8IK9tvSTJt1OK1u0ju+FNRccdpFCkvFdrW5alSCQi13WDKB0AAAAAgAFDIAugaLKur5zrq6qb53bsin1PMt5u13RaVsqKVsppeVdWpEqhWPVu7/FSW2S3rJSMkdO6RuHyMQpXTVSofIysnYxGkPKBsW8n5We2yk1u2mUY28HPNsluWqbY2AOU27pY0br9FC4fs9sau6zhpORlGhWunNjr4LJYfCfdHqgn5NtxOc0rZdxM4XkvuSHfITtmtuyGNxQbe6BCZaO6Xct4jrxMo7zMVlnhmMKVe0jRGo0fP16O4yidTg/WlwUAAAAAQK8RyAIoKq+bTbh8u01249Luu2J3x/hyGpfJmvgvspuWqWzCv8gKR3d6uZvcKKd1tfxcm9zEWoUrxkl+PvCzQhGFKyfku2ajVflfr3eS8u229k3EMoXs1UtvltP8rnYVxha+vmyz7Kalio6ZI3vrEoWiVQrXTFG4cuIuA2Av2yovuV5etlkyytdbOVGRUVMVilT0/Hs0CPJhdSL/PcvF5eXiku/Iib8vL7mx23v8TKNyDW8pNu4g5bYuVmzMLIUrJxTW8zKN8tMN8nKtkjEyvi3LiuTnCofLFMpGFYuNUbS2tk+zaI0x8nOt8jNNCpXVKlQxjpm2AAAAAIABRyALoKT4xkheVpJ6H8a2M15WTtNyxcYfJLv5nZ1u8tUx89XPtcpuXCoZT362SU7rKoUqxilSOUHGd+QmN3Vd33dlnHwo69ttMnabTHvNPf46sy3K1b+scNUkRaqnyHdScuMfKFw9WZGqyYUQ2RiT78Bt2yDfbpOMJzdVLz/TqHDVJMn48tJbFK6coEjNVIWilTt+P4zJB8m5eP77aYUUrhiX7wAeoHmtxs3JyzXL2G35Llg3VcimjZeTn2uRm1gr4+76+2ScpHINbyg27kDZzcsVySVkvGx7CG1kfEd+equ8zNb819IemocqJirsWDK5zTKRavlpKVQ5rkdzen07IS/dIC+9Vcaz8w8mN+a7b6smKVI1SVZk16MlfDcrP9ci+Z7CleNH1CgKAAAAAEDvEMgCKCm+b+TZ+dDOeLm+r5NrkRN/X1FZO2zyZYyR27pGbnJjfgOu5uWS8bfdbHz56QbZ6QYpFM0HbKGYfCcl47TtNlTsMePJS26Ql9yQD4Br9syPaEisU6RqoqxIpdzkRhk3K+PZ+fmrqU2S77Z/jXG5ibWK1ExtD2YbFK4Yr0jNXvmvIdcq347Lz8VlfK/9S7NlWWF56a2SZSlcPlqh8nEKV4zt9SZjxvjyM43yUpvl5VryAazx5TvJ9tEE+Q/19p+jl5Pd8JaiY2ZLRvkQNtMoL701H3p25rvykpvkJDaouTWt8to9VV47RU6Lkdu6SlYoLCtS0f5Rnv8crpAVCsvLNMlLN7SPTjDyc/F8MJtpUrh8tMLVk/L/PNrW5cdYVE9WqGy0LMvKh8zZVnm5Vvm51i7vCSe+RqGy0fnu6orxskLh3n39vWR8V8Z3JM+R8R0Z35Z8txAuh6smdRvUAwAAAACKg0AWQEkxklqSKdUas61bsY+8tvUKRfMzZEOxGoUrJ8gYI6d5RXtH5GY5zSt3vYjvyNuuQzYIfqZRdqZRVqxGkeo92+flWjJuWm7b+vyv5XczDsG4GTktK+W2dQ1mC897uUJnrJ+Ly7hpSZZC5aMVrhgn4+VkZZrltEqhWK1C5aMVilTIilTmw8tuwkTfSclL1efDzPYQMP/9bJCx27qts9eMJ6dpmZxQTPKdHq3p5dqUaliuVMMKxabNVqS8dlsIG6mQFdoxcPbttvYQtkHq9H7z0lvkpbfIilYpUjU5H/xmmvLrWJZ8p31OrfHzoXd7OCsZhSsnKuw58rMtckOrFaoYm5/32x7m9vpb4XvynTbJzcl4ORkvm//sth/7u56t7CY35juoR00rudEWAAAAADASEcgCKCmeb+R5ObVlc4r4rkL9nOG5bZOvlbLC5XLb1srLNMtNbpDbumaAqh44xm6T07xcTusaWeGYjJPs2X1uVk7Lu3ITaxWqGNveIRvvsnFWp6vlZ5vlZ5ullvYgtnKcwuVZ+bn4tsssyQrnA81QpFJWOJaf49oeuvrZFrmpzfIzjRqQELY7fl9C+fzX59qtXR+2OnXLhiLtna3dfX86reSk5LSukhN/Lx+0Vo6XZLWH3C35DuDO3dWSXLtNbusahcrH5LtkPUdeqiE/AqFinEIV4xQqq9tlOJufZ9siL71Ffqapa+hq/PZgtj2QdW0Z3+7UJbvt2AqXKTKqUwc1wSwAAAAAFB2BLICS4hspmU6rysupOWlrQnWZQv3JZI0vp2mZrAn/otzWN/ObYcXfl9u2bsBqDoSfD9l6y3i5Xnf0+nZcvh2XqzVSKKpQtLK9Q7ZSVjQfxvqRcklWfp5rarO81OZ+jZQoCuPJOMkeh9zb3+ulNslL9fR7a+Rnm/Izia2wwpXjFa6YkP+eJTfJCkc7hbPbOmd9O9nenduQ7xA3vrxMo7xsk4ybkXFzvQqpjdce1LetU6RmWqdgtjQ3gwMAAACAkYBAFkDJcZycEpmkbMfT1lROE6rL1K9M1s3K3rpYkarJ8nIt7R2d6Jbv5LtkO3fKSpIsKRTtY8fqCGe8QoitUEThinEKV4zPB67JelmhiEIVY2TslHwnJUnyc63twezW9vEV/SzBzW4bbTGqI5jdokj1FEVGTRuwzd0AAAAAALvH/4EBKDlh46gtk1Eq40iSGpO2xlXH+hfKtv/qOfrKEMYOBN/tGs6Wj1WocrxCbkby7PZZvFsC6z42blZO88r8xnG10yVj5KUbFKndW+HKPfo04xYAAAAA0DsEsgBKjiVXjpNTPLtthmwoJY2t2nFTJmDI8t3C5mGDzbgZOU3vyCurU7RuPzmeLS9Zr2jdfgqVjdr5fb6bn73ruwpXTiTABQAAAIA+IJAFUFKs9s2hXDcrSWrJOIUZsqGQpdEV0WKVBgw7fq5VuS2vK1w9WZFRe8vf+qbClRMVrd0nv6mc58i3W9s3MYvLd5KF/du8tvWK1E5XuGLcgNTiZbbKS21WqKxOobLRCsWq+72mb7fJS22WFS5TuHoyoxkAAAAAlAT+zwRAiWkPZJ1tv7LdnHa2dcpalmrL+dEFDBwjL7lRXrpB0fYxBn6mUVa4XL6bav8jaeTbyfZgtlVWKKpI7d7ynbRCZXWK1k1XKLbzztrdcRPr5CTel3xfXqZZkmSFYwqV58PZcPloWeGynn01HZ3Hqc3y7W0buLlt6xWunqRI9Z6ywnTbAwAAACgeUg0AJcXqJpA1khpTtkJWmZS2ZUkaRSgLDCzfkdPyrtzkJkVq9pIVjsm32+Tn8h2y228u5mUaFKneU5GavZSzWxWuGK9I7XSFIhU9fkljfDnNK+WlG+Rnm2Q3LZcVLlOoPB/CGjcjL9UgR5IVqVAoUi4rUi4rUiErXJY/DldIoUh+I7TUZnmZRsn47fdulpveolCkQpGaqTK+K7dtoyJVExWu2atLrZZlqaqqSq7ryvP6v5EaAAAAAOwMiQaAEtN1ZEHnR7cmc5pQU6bmtC3fGNUxvgAYcMZJymle3oMLfblt6+Sm6hUZtXd+g7BMoyJVkxWunqRQtGrXt3u27KZl8nMJuW0b5MbX5B930/KSaXnJjZIshcpGtY8wqJHfHsTKCnVdzLIkYyTjF0Yf+LnWwtO+l5Oda5UVrVZk1FTJeHJTmxWuGJefhRupkEIxjRq1rcs3FOr6Gsb35NuJfJewHZdxUoqO2V/h8tG7/14BAAAAQCcEsgBKzI4dsh18SVvachpfHStcyUxZoMh8R27rKnnJDYq0jzxwkxsVitUoXLWHwpXjZYW6/jn17TbZTctknIyc1lXyUpt3srgpzK/tIlymULijW7ZcVigm30nJyzRIvrvTUo2TlNP0jtxIhSI1e0m+Jy+9tf2VpEg6JxMqk0JlcttchSIxGScpP5don5+b//lk3KxkWXKalkpjD1C4fExfv3sAAAAARiACWQBF9Zsrf62WLfUaVR7TYftM0MTyVlmuI2P8bq/Pd8raGleVD2V9YzSmMib2egeKy7iZ9rCzXOHKPRSumijfbpPTukbhirEKV05UqHyM/EyjnJYV8t2cnMZl8u347hffnpeT7+WkvtzbUWvLu3Li7ysUq2nvkC2TnbYVjlYpHKuUG8/KsixJRr6T2raxmR2XPFsKl6ls/FzZjcsUG0coCwAAAKDnCGQBFFXbuIlq8oyitZXKTJ4gP2LJpOt3eU/HTFlj8l13xkhjqwhlgVJg3KzcxAdyEx8oVFancNVEyXfkpbfKCkdlfEfGTsluXCrjZXe/YJB8R342v4mY7/tKbNnS/oSlyOSpCkXLZJz0DvNzJUleTrmtiwllAQAAAPQagSyAklAeDUuSQsZWztl9SGMkNaYddfTRGiONqyaUBUpJfkOwVjnWaoUrxitUMVbGy8mNv999yFkyjIyXlTH2ri8jlAUAAADQBwSyAEpCeTT/4yhsnG7nx+5Mc9rpGOsov81ofHWZQqSyQGkxnrz0Znnpnc2KHcK8nHJb31LZ+EP6Fcoa35OX3iI/26Rw1WSFK8YGUCwAAACAUkAgC6AklEXDChlPlvHluj0PZCWpJePIb09lG5I5TSCUBTCYPLtrKDt2To8DVd/NyEtulJfaIuO7koy8TLNCZXWK1k5XqGxUsLUDAAAAGHQEsgBKQnkkrLDyu6O7PRhZsL141pUx0phKaWt7KGsRygIYLIVQdq7spncULquVFamUFamQFSnf9tkKyRgjP9ucD2JzLZKR/Gyz3ORG+bm4ItVTFKnZS7lcq8IV4xSpna5QtDKQso0x8nOtssJl+Rr5wQkAAAAEjkAWQEkoj4YVbp/X2JuRBZ0lcm4hhN2ayml8dRkzZQEMHs9WrmGxorXTZZyUrEi51PmnkGXJCpdJMjJuTsZ35aU2y0ttknEzhcvctnVyU/WKjJoqGV9etkmRqj0UGTWt/f7+M74jL1kvN7VJpv23EqxQRKGyUbJioxSKjVIoViMrFOx/KhrPlnEz8t2MTOEjq2jdvgqV1fZ+Pd8NvGYAAACgv/gvVgBFtf+LT2qf+g2a+f5YVVpp1dR6cqb1PUaNZ93C8dYkoSyAQebbclpWtp9Ynbpj8x+h9pDWyzTKS2+RjL+TdRy5rWvktW1UpHZvyfhyU1sULq9TqGyMQuWj+9Q16zupfGdueouM78t3kvKSmyQrrFDZKIWclKxwc0f5CkWqZMWqFYpWyYpW5T/3MRQ2viM/Fy98GDct43s7XGPJkt20TLEJhyoUqej515aLy258W1akSuHKCQpXjh+wABsAAAAYSASyAIrqU7+5XuM3vF84z+29p9yrv9SvNeNZtxDCNiZtjauOEcoCKAJT6Prs8wpeVk7zCrlt6xWp3lPGy8rK5ANTK1KucHl7OFs2WlYovO0+35OMJ2M8yfdkvGx+JEK2Vfk5tY3y2jbKt+OFe7xk+0G4LN8hW9beKWtXybO2rW2Fo7IiVQpF8yMZFArLsiL5z6GIZEUKXaq+HZefjec/O0nJ5L8vvpOSsZNdu2O9rOS7sqLVKptwiJzGpYpNOLRHHa++nZTduFS+k5XslHy7TU58jUJldflwtmI8nbMAAAAoGfyXKYCS09tNvbrTmnW3zUJMSeOqCGUBDF3GSeU7b1skK1pdCGKNm5GSm9rHIcQk35UxvtS+0WGXNXxXXqpeXnKjjLeLn7NeTn5mq/zM1sJD+U7fqi6dsn60UurRT1Yj3062d8a25kNg39351U5SdtNyxcYdkO+UHXeQLCu00+t9NyO7cUn+89bFMm5aVqxG4cqJCru2/GyrHGuVwuVjFandW6FoVQ9qBgAAAIJDIAugpBhjug0S+qIl4xSiAkvSWEJZAMOAcZJynaTUti4/aqB8tMJlo6VwNN8Na/LdsZ2PjefIz7XsfETC7l7Tzcq4WfnZpk6PtofAoUj3HbKWJd9uk5+L5+vpBT/bJKf1PUXr9pXTskqxMbN2UldO9ta3ZdpDWeOm84/bbXLtNrmtqwtdsvK9/Dze6smKjNqbjlkAAAAUDf8lCqC0DFAY26E543Rp4CKUBTCsGE9+plF+prEYL57vtPVyGtif3HleckNhhqwbqchvctb51T1HduPbMk5aduNSGbut23X8XKv8XKvcxFpFaveRjJGXblCkdrrClXts+22KARIKhVRVVTXg6wIAAGD4IJAFUFJMAP9b35x2CseO52t8dZkiIf5HGQBKndO6WlakXI4lWZEKhSvHS8rPyLUbl8h3UrKb3pGfa93tWsbLyWleLi9Vr2jdfnK8d+Ul6xWt21ehstoBqbeurk7l5eWyLEvGjstO1cv4rqxwRFYoJoWi+Rm8oWj+OBRt7zKOEuACAACMIASyAEqK6eOv0+5Oc9qR4/oaUxVTfSKrcVUxVUTDu78RAFBERnbTOyqbcKiclhWyImWyotWym5bmN+5qXrndGIXd83Otym15TeH20QX+1rb8vNnKCQpFKmVFyvtUaSgUUkVFuUJ2i0J2g2w3JEu+fDcjKxSTFY5qpzN3LeXHPoSj+WtDkW1BbfuHwh3HsfzxLubqAgAAoLQRyAIoLQM8sqCzNtuT7WU1vrpMW5I51ZVHVVsRZYQBAJQyk++GjU34F9mNyxSKVec36mpdLS+9pc/LeslN8tINio6anh9jkMqvZYXCsiKVsqKV+U3MIpWyIhX5QNWKdNvJanxHbttGRRIrZRlHnpOVk43Lz2zpuoFZKLJDd2zhvHPnbHswq52Fru0dw6FotULR6vxGa7FqWeGybTUZI+NlZZyUfCcl0/6hUEyRmj0VKh9DVy4AAECREMgCKClBjCzoLOcZbUpkNb4qJhnJ9nyNq4opxP+UAkDJMl5OdtNSxcYdJOPZchMfyEtu7P/CviundZWctrUKRWvyAWy0UlakUqFopTxru9+ksKwdOlYlS362Ub7nyU03KtP8nnKJek2cOEGhUGiH1zO+KynTs3/bWaFtHbGF143JCscUilbJj1a319B+eTgmK1qV38jNScn42zZTM74j46RkRavk51oVilYpXDNF4cqJ/eq2NZ4tL71VCoUVrhjHZmkAAAA9wH8xASgtAXbIdvCNtCVpq648/yNwk5fThOqYYmF+/RMASpWx25Srf0UKRSQvN7CLe7Z8r2mH8QdWuExWtEpWpLy9e3XbOIFCKKuQvFyrnMQ6ta57d2DrMr6Ml5W87M4D3HBZvlM21t4pG62S8T0ZNyXfThU+y7fbv6iQwlWTFKneU76Tkhv/QJHqKQpXT+5xmGqMLz/bLC+1WV62ufDvbsdapXD5aIUrxytUPk5WiNFAAAAA3SGQBVBSzCAEsh1as65ynq/xVWWqT+Q0qjyi2vII3bIAUKqMJ3ne7q8bsJfLyfQw/PX9YGag75aXk+/lej5L1/jykhvlJTcqVDFekZq98l3HbesUqhgnK1yeD6LDsfbPZe3zbyXfTspLb5aXbpDxHMl35WW25sc9hEIKV0zId8xmmmSFQgqVj1G4YkJ+PEIvwlnjOfJS9fLSDYqM3k/hsro+fGMAAABKF4EsgKLaPvoMalOvnck4vjYlshpbGZMxRsmcq7qKqKrLIsyWBQAMa35mq+zMVoXKahWu2Uthz+l+bq0VkhWKyHi2JCM/25oPZjONUqd/b/vZFqnl3XwQWzleYc+Rl27Mh7NldQqVj1O4Ymx+w7Lu6rHb5CY35kcgGF8yvpzGJdKYOQpXjO3x12U8W162SeGK8QM6QsHPxWWMp3D5mAFbEwAAjEwEsgCKqhSaUV3faEsyp4pISKMrY/J8W4msq9GVUVVG+XVLAMDw5ufi8nNxOVJ+47EdOmTLpFBExk7KTW/ZzcgIIz+bH//gWB1dsmMVcnOyMs1yWpWf11sxVuHysbKilfLTW+WmNsnPJSQZeemtcpMbJS+n2PiDZTctU2z0LIWrJu72a/GyzXKaV8h4jtzQaoUqxitctUe/u2zd5CY5raslGUWqJitSuw8jGQAAQJ8RyAIoKmvHHtmi1CFJGddXNpFVVSys0RVRNbT5Ko+GNaYyynxZAMDI0L7xmHFS/V/L+PIzjfIzjZKkUKw2H8RWjM13w8Y/yHfkGl/Gy8lL1ctN1m+bdysp1/CWYuMOkt2yQlHfVaRmSvcvZXy58fflJjfIOFm5ibUKlY9W2HPlpbbIilYoUrmHwlUT8wFzT78E48tpWSUvtVm+nZBx05KRvGyLomNm9jjoNcbIKoW/hQYAACWBQBZAUZXa/5sYSUnbU9r28jNljbTJ9VQdi6iuIqpIqMQKBgBgiPDtuHw7Ljf+nqxIRfvM2rJ8h26mUd3+pazvyN66WLFxB8oxq2V8R9Havbe7JC2neYV8u01eukFOy7uS8eSlN8sJRRSunKhw1R4yTkZO4gOFy8coXLWHQuVjdxmSGjcnu/kd+bmEvE4dsl66UdHRM2VvXaxI9Z6K1E6X1c2oB+M78toDaT8Xz9dRs5dCkfL+fSMBAMCQRyALoKhKNd70ld/0q619pqyMlLI91ZSFVVseVZhgFgCAPjNuRl7b+h5e7Mne+raiY+fkz31Hkbr9ZFmW3NRmua2rZTxbTstqeenNXe/13cImZla0WpGqSZLn5Dcei5QpXLmHIlV7yNouJPVyrXKalsu4WTmtq+Wl6rctmW1SbsuritbNkIzkZ5sVHTNLodiowqZmXmar/FyrZIyM78g4SRnflZuqV7hygiL/f3v3HR9Fmf8B/DOzJZ2ElgAJvQSwIBZQRAQLelhOBOEsKCqCjbOggHceouLZ8DgEG+odggVB8afeCXY9ESmCAiKhhGISJCEJ6bvZnZ35/THJMJNs7wmf9+ulzOw++8wzO9+dzH73medJ6wbRktxsV81mMwRBYG9aIiKiVo4JWSKKqXj/wuFSgLI6pzqmbJKlYeIvtfdsm0QLmJclIiKKBgXOsp1A21x1TZYAAK66EsjOGjjLfoUi2bzX4KyBs2IvnJX5MCVlwpTaGYpUD6n6UEOv2c4QE9vDVXsYzop8KJIdjrKdUBzVzSuTJTjLd8FlK4WlbV/IJT9DtKZBdlQ3JGEdkOtKjydmAQjmZJjTugKKDFddMUxJHdXErDUVACCKIjp27KhtQhSNvW4VRQFkJxRXfcN/DkAQYErK5Hi2RERELQwTskQUU4rFApfVCgEKFEWBbI7PLxROWUFJrQMJdhFtky2QFQXV9RLSEy1ISzTHbU9fIiKi1sR5bLeWjAUAqaYQUsV+BDQGvSLDVXcErrojECwpMKV0huKS4LKVQxDNUGQJcn0lHGU7AdnptSrZdhT19RWwZPSG4qiBq74Csu0o5PrK5puV6uA8thtS1UGY0roBsgxX3VGYEttCMCdBll0w1R1r2BcZjrIyiFCgKK7jCVil+X5KpgMwpXSBObULBJPV//chAIrshCLZ1P9cEgRLEkRLasS2R0RE1NoxIUtEMfX16i+RLFWgk7QXBQd/gsNeHtfJzXqXjCPV9Ugyq4lZl6ygqmFYgxSrKa7bTkRE1BpIlfnqEAKKDMVlD6kuxVkLqWIfpMr9MCV1hJjUHoqjBlJ1AfxO8spOOMvz/N+mqx5SxV5IVYdgTsuBIjsbEsEuwF6l9rBVZLjEasgCoMi6hKzWO1ZdF8xJah0uJ6TqAphTsmBKzXE7HILPdikKFKkOirMWsrPueAJWshmS4HqCyQrRmgrBkgrRkgLBktJwXBxQZAfgcmrLisuh9kROy3E75i4REdGJhAlZIoqpBJMIk1PtfSI5QvtSFU02SYatqh4pVhPaJllQ6pJRZRaRkWRBsiU+e/kSERG1FopUF+YK1WEEXHXF4a3XG9kBqXI/pMr96qoso6z4+PYtWVnNhi1oSpHq4LCXQbCmNQyH4FLHqU1sD1NqNgTR4vm1rno1+SrVQnHUQpbqDD1wFVlSE7SSDYpkhyLZIEs2QHZCsKSoPWQtKWpC1uRtojIFissJKDLk+kpIdUdgSe8NU1J7/96nCJAdNZDt5VBkCea0HPb0JSKiqGNClohiKsEsQoTa68LptMPUwnKZtQ4X6hwupCaYkZFkhkOSkWgxISPJgkQze38QERFR5CmOajjLfoVkToQpNQeQXXDZyvx7sSzpkrLH/4WHXrGAOimbbCs9/oBobkjQJgOyS+sRq7gchmEfxORMWNJ7weH8BaakdjCn9/bYm1dRFCiOKrhsZZDrj6kPCiIgiBAEk2FZMCVAMCdCMCep/4nGr7mK7IJcXwHZXgaXvRyKVK8956o9DFNqF5jTunpNYEeaIkuQ7eXqimiBIFrURLFoifs5F4iIKHBMyBJRzJhFAaIgwKSoF+pqQrbl9VBQAFTXS6itl9TJvhTA7nQh2aomZq0mJmaJiIgo8hTJrg7BUHUQYkJbNXHpqazsgOKsheKq91jGb7KkTl7WMIGZx2J1Jai3lcKc1l3tlWw/BnNqDsxtukMQTVAUWU2c2krhspWpCV2gYbI0FyCY1OEOBBFoSMqqE5oZE5aCyaIlZyE74bJXAIoMQIFcX6kmee3lgCDCkt4DiuyCq+YwTKk5ao9ZMTpfkxVFgWwvh6uuGLK9DIosNy8kAIJghmCywpzeK6Y9i4mIKHyYkCWimElo6EFqglMdK01yAGh5CdlGMoAKu6RN9qUAqHO6kGQxoU2CGYkWjjFLREREUSBLkG1HY90K9xQZUtUBuOp+hzm9N6AocNUVQ0xIh2w/1jBerQLZXgGXvRQuWynQkJj1SLRCbOwda07SesuK5iQoiguy/Rhc9nI1Cau4DC91lP4CwdpGl5gtgjmtK0yp2WpzdeP2wuVQl2UHBFMSxIR0iAnpASdwZUcVXLUlcNlKGoZzcMFlK4WrrgSKLGm9YwXRApjU3rKiNR2yVAdLem+Y03IC2h4REcUfJmSJKGYae46a4ITT2XLGj/XFpQDlNieqGnrMyjJgc7hgMYlISzAjNcEEkbeeERER0QlMkexwlu2EK7EtzOm9oEg2uOzH1N6x9jKvQyY0IzsgOxyAozK4tjiq4Di6HWJCBszpPaDIEpxVBw1j6upKN0zEZgWqCwBBgGhJ1ZKzYkI6IJgB2QFFqofisqtJ3IZlWaqD4rRBSzrXFatJZ12i2O10cqIZ1vYD4VTyITtrYWnbl5OjERG1YEzIElHMaD1kFalFTejlL0lWUF7nREWdE6kJZqQlmuF0yaiwCUhNMCEtwQKLiYlZIiIiOnHJ9mNw2LfEuhkAALm+Ao6SnyEmtoWY2A6QZUMPWXVM3IbeuqIZYkJGQxI2A6KjCqgubBg9QXCTzFXUcXUlO1z2MnUCOV89fw2Nk+A4ugOWjD5qbZIN1vYnQTA1H/dWFEVYLBZYrVaOP0tEFKeYkCWimLGaRHR9/UWk/v4LHPYqpFX8Drl9G+SPOSPWTQsrGUBVvYSqeglJZlHtNasoqKqXkGzhOLNERERE8US2H4NsP+ajkATZVnp8cjPRDNHaMISBYGpI4Np1vWQd8ND3NQAKnBV7IUu1sGT0QX3JVlg78fI6lQAAXVtJREFUnAzRkqKVEAQBWVlZx1/iqofLYWt4UgQEAQLUf7WJ0URL1MbN9YeiyOrwENrkcE4oskNNYIsmmJI7eZwMjoiopYifsy4RnXASzCI6r3wTKQf2aY9Vd85odQlZPZskw1bjgEUU0CbRDEVRx5lNtpiQnmRBAhOzRERERC2PLEG2l0G2l0V8U66aw1CcNljaD4Sj5CdY2g2AKak9FNkJub4Sov13CK46CK5a1EuJfvWSFUQTBFMCYLJCMCU0/Gc1/AsxtB63iqJArj+mtl+yA1DU5CsUddI1RQEgq4+5zV0rAARIVQXq8BKpnSAmdeTQDUTUIjEhS0QxYzWLEELuKdAyOWUFZXVOVNoktElqSMw6XEi2MjFLRERERN7J9cfgaOgh6yj7BYIpEYpkh6IoMNXXwOW0w2mvhNMpAFId1GTm8Z6xAvQ9ZK0QzFYIYgIEc4I6Pq67HrOC0DDZWEOi1pKsDdvgLSmqyC51rNyaIsjOOjV57awBFNlNQlaBIrvUSdQae8jKzobhIpwQzIkwpXSGSXZArq+AYMqHKTkTppTOWk9hRXZBkWxQXDb1PZFskCWb2hPYnAzRkgzBkqJOABfBZK7sqIYi2dT3vPG9h6gmtQURginR7ZATRHRiYEKWiGJGTTqemAnZRpKijjNbaXMiPckCBccTs20SLUgwi+DIX0RERETUlCLZUF/yEyzpvSCYEiA7aiDVV6KsMB+ypM7PkJSVBVEMIukomHQ9ZPU9Z/U9aBMA/AZBFNXhGhLbqQlaayoAQJbscNUUwVV7BIosQZFskBrW9ZOYBbbPdkiVByBVHoSY1B7mlM5QXE5I1UUQLSnHk7eGF8lQXHZAtEAQdQlQQYBoToJgToZgTYVoTYNoTTOWCbR9igxXXQlcNYchO6q9FxYA0ZIGMbEtTIntIFjbBN0DWZGdkO3lcNnLIYhWmJIzIVrTgqpLEAS0adMGNpsNTqczqDqIyDcmZIkoZqxmJmQbuRQcT8wmHk/Mmk0iUq0mpCSYYRGZmiUiIiIiHVmC89ie46uyrCVjQ6I09DKVbJ7LiFaYEtuqk6Al2CE0jLsrmKwQzMmQHZWAokC2l0OqKYJsLw+9XccbCNlWCoetVO01m9wZYkIbNSHb0Cu2sWcsXPW6NlvUHrLmFLWHb2NvWZtVKyKYk7TkrGhNg2BJhSCavLdGskOqPawmn11OKK56uGoOw1Vf0ZBk1Y3bCwGCIEKwpMKU2BayoxpS1W8QRDPExAw1sW1Nh2CyqolxD0la2VGjJWFlR5Xaw1iRAUGEVF0I0ZIMMakjTClZEM1JzdssuyA7KiHXq/8pUh3ExPYQEzsgJSUFKSkpcLlcnBiOKEKYkCWimGHvz+ZcClBuc6LS7kSK1YzUBBMkl4wKmxMJZhNSE0xItppg4oUREREREcWS7FCHIqgrBgB1OIDEdjAlZkAwJUKur4RUUwRFqotoMxTJDqnqgH+FG8bZRX2l8XGTFaK1jZaEVRxpcOmGbRBEs9ZDGPoxdkWz2iPWXq4mn+sr1ORz42Rv8Nb9pBhSJQBTAkyJ7dSespIdrrrjr4UgqBOuiWYIgllblh1VUKT6hv23qUlZexlkewVgUnvImpIzITrrIFUdgmhNgyk5E4I5SU3AOirVHryK0lBHXUMiux5Sze8w19VDsbSFYG3b4hKyjRPpiQnpsW4KkVdMyBJRTFhMQkMylj1k3XEpQFW9hKp6CRZRQGqCGalWBfWSC+V1ApIsIhItJiSZRVg43iwRERERxZgi1cFVUwdXTWGsmxI4lwOyrdSQSBXMyQ09ZFOaT3Am6HrMKi64aouDTz676uGq/R2u2t/hhADR2gaCNVUdOkFUk7BqItai/iuYoUi1cNnUJGyzXsyueriqC+CqLoBgTtaSs/ohFBRnLVz1lZDrKyDXVwByw9AEohlCQns4pURYkp0wO0pQf6Qc5pSOAERAlqAoTvVfWYIiq8uAoLbXpA4LobbdoiWtIZjU3r5iw7+CCRBNuh7DoSV9FdkJV10pXHUlkB0VgAKIiRmwpPeEaG0TUt0+ty3ZITtrochOmBLbNgzlQeQbE7JEFBONk1adqJN6BcIpKzhmc+KYzYlEs4jUBDNcsgl1DnXsLbMoINFiQqJFRKLZBDOHNiAiIiIiCoki1cHlKcEqmNTEm2iG4qwNekxcN1tVh3pwVPou6k9tUh2kqoOQqg6qQy+YLJAdNccTsE3JEly1v6OyuBiiOREJbTojyTIAcDUOg6FAkaWGhOzxxCwACCZLw4RwlobJygL4TiI0/k9Q5z5rXG6YPE4wJ0E0J0OwNIz5K5rVIRfsZYYeyoqrHq66o4Digllxod5eAVNSe5jTe2qTvnl9vxomkfP4vOyE4qyD4qyB7KyD4qzV9h8AnI3jAie1hymxvTaestu6GtqrJvEFCOZEdaK3FtYjmYLHhCwRxYQ6fiy022TIP3ZJhl1yQABgNTUkYs0mOGUFNQ3DY1lMIlI47iwRERERUWQorogPxRBuirMGSgBzdMmSHbbyA6i31EE0Wxsf9L8C0Xy8p6wgGnrIGpfV5CvQcAdl47ogqAlKS3KzidYEk1U9BrILiixBth1Ve8fWV2hlpJoimNO6AYoMl70MpuQsmNv0gGhOVN8PRVETq/VVkB1VDcNA+Dv+sgLFWQfZWaP9C0VWh+xIaq+OC1x5UB3fOLE9xMS2DeMb29ThIZwN4xsrsrFaoSEJ3ZicNSeqYwFb0iA0tJtaDyZkiSgmErTb7JmQDYYCoN6loN4loRISBKhj8iZZTEiyiHA2jDubaDGpyVmrCSJ/bSUiIiIiokAFkojVvUbtPWoL/RufaD7eS7ahpyxkF1y20obJ4txsQXZCqsyHVFMIS5vugKLAVVcCU1JHtWeqsxqKLGttlR3ValJWPwlcE4osqb1iJZvbbcr1FZAq96ttTWwPU1J7tWxNka4OBxSnmpiVJRsUZ93x5LM5EaKWjE1qGNJBJZis6hAa2oRzbdThIOISv+P7I16PHhG1co09ZDlkQXgoaOw9K+OYTe09m2I1wyUrsDvVcWeTLSakJJiQZDFxMjUiIiIiImoZZAmKoxou3Ti4fnPVw3lsD6TqApjb9IDicjRM7qbrGeusDWtzFckGV02hOp6yaIZobaP1kA2sl7EVoiVFl4htA8FUpj4noGG8WlE3zIFg7GFsToRoSVXHQ7akBN3LVnE51Ing6qsgO2vUHs+iGYJwfJzjxn9ddUehKDICGrLiBMWELBHFRIJZBCD7LEfBcbgUOGxOtZesWURKghmyrKDWIUEUBCRaGnvTcsxZIiIiIiJq3RTJBmf5ruhvWJYaevEG81oH5HoH5Ppjxx8zJRzvIWtOakjGNiZhoVsWIZqT4NL1ohVEMwRLipqcNSUAogmCYFYnWBPNDctmQJEbErBqEvb4xHFKw7JwPBHbLPGqAEqKm8epKSZkiSgmEswiTIEMYkRBUQDYJBk2yYFyAElWE5ItJkiNk4IJ6vARjclZq1nkn04iIiIiIqJ45KqHbKuHbCv1q7g6MVqK2lPWkgzRkgrZkgy/EqaKrPYirq/Uesg2m8BOMDWMFawmaGVnLWC6wDDcArnHhGwLkZ+fjxUrVmDjxo0oLCyEJEnIzMxEv379cMUVV+Diiy+G2czDSS2H1SRCVPwdNJ3CQQZQ63Ch1uEyjDmbbDGhXlLHnBUFASZRgNkkwCw2/ifCJAqwiOpzREREREREFP8UVz0UV32TXrqCcagBoUkPWSjqUA6OGvgcD1ZxQXG5AJeupCkiu9LqMIPXAixatAgvv/wyJMk41khBQQEKCgrw5Zdf4uSTT8azzz6LXr16xaiVRIFRe8g6Yt2ME5ZxzFknzKI6xqzVLOoSsc2TrxaTiESziASLiEQzhzsgIiIiIiJqWRRAdkKRnY1rFANMyMa5efPmYfny5dq62WxGbm4ukpKSkJ+fj2PH1LFEfvnlF0yaNAkrV65EdnZ2rJpL5BcBamJPlDhkQbyQZAVV9RKgm1RUAGAS1N6yJlGAxSQg0WyCwyVCaChnbkzQNiRyRUGAKACiIEBoWCYiIiIiIiKi45iQjWNr1641JGMvueQSzJkzBx06dAAAOJ1OrF69Gk8++SRsNhtKS0sxffp0vP/++7pZ9ojij9WkjlMqyuwhG88UAJKiQJL0v5lK2nAHiWYRiRYTnC4RNfXu6xAEAYIAmEUBVpOo/mcWYTWpyVsiIiIiIiKiEw0TsnHK6XTi6aef1tZHjRqFf/7znxDF4wMjWywWTJw4EdnZ2Zg2bRokScLOnTvxn//8B1dccUUsmk3kF6tZjWOT4kR992zUSnXac/bM9Fg1i/ykH+4AdjVBazWJMInGnrH63rJmUTBOGCYAZlFEgkmEpaEHrkkUYBKOLzNdS0RERERERK0RE7Jx6vPPP8fhw4cBqMMUzJkzx5CM1Rs+fDgmTpyIt956CwDw73//mwlZimsJDQlZUXFi/9MzsGPrGu25lNRUJuJaGAVAvUsGXN7LCYCWmLWa1GEOHCbR/bAGArTkbON4tiZRTd42rut72AqCgJSUFMiyDFmWw7l7RERERERERGHFhGyc+uSTT7TlYcOGoUuXLl7L6xOyO3fuREFBAbp27RrRNhIFy2pq7CHrgF2yx7g1FC0KAKeswOlwoVaXvTUJaNY7Vr/saYIxURRgEQVYTOr4tU4ZMAsmmC0mDttCREREREREcYsJ2TikKAo2btyorZ977rk+X5Obm4uOHTvi6NGjAICvvvoKN910U8TaSBQKfQ9Zyelh8FE6YbgUwOVS4G1+z8betdp/DUlYi0mARRQhCIDDcbxnbJXLDnND71sB6ji2otAwpi2gDaug/YvG4RaOD7XQWJaIiIiIiIgonJiQjUNFRUWoqqrS1k8++WS/Xpebm6slZHfs2BGRthGFgzqplwwBLjid7CFLvmm9a+XGpK1xfASTADjtNljNIixmE1yCCeaGRK3QkJR1OzSCN1pyVoBJtyyK6nAKYkNPXlEQYNI9xiQuERERERERecOEbBw6ePCgYb1bt25+vS4nJ0db/u2338LZJKKwSjCLEGUHAEBiQpbCQJIV1Dkk1KlhhTrZ/bAFau/Yht6wgLGXrCBARMO/DROUmQwTlB1PxnrkI4nrbsIzURQMPXkb20lEREREREStExOycaixlysAiKKIDh06+PW6jh07uq0jmmRZhgAFVpOADslmSLLnW5DpxNUu2QyLbIcIwCyKSEpK0Z5LtCYB3hJeRO4oCuSk4+ebQOJIQZP+ts0eaE5sGPe28V+TllhteEwQDElXeJ1nTGnyr0rQ/qcfauF4MlloGGJBP9yC/nHD66B7rqFeoUm9+n9bgrD/dRGAlLS2x9dNiVDi8c3gn9W4pYgKLAmpuvUEKPx7RgFgDFE4MI4oVIwhouhgQjYOVVZWasspKSkQRdGv16WmHj9p6uuIJpvNBosio32SiFG92/p+AZ2wzA4XElwienY/CT27nxTr5hC1at5H6G1Of83t7vJbn9T19pibV3msN5DrfF+vDeYrgwAgvYPxxe7qafo+8usJNTIByMyMdSuoJWMMUTgwjihUjCEKWYUp1i1oEZiQjUP19ccnOUpMTPT7dVarVVt2OBxhbVMgEkwCBMG/JDKduAQxBYKpO9L++hjEIyXa43KnTFQ/MSeGLSOiUPib+G2NHT2bpZzdJKibJXD9yOj6KhLNpLC+57bXMk34Ot7eqgzoxwRPjzNz7pantyXSn89gDoc/beJhJiIiigOVNa3zYj/MmJCNQ06nU1v2t3csAJjNxw+nJElhbZO/HA4HLBYLrCYmZMkHSyqQlIqE9T/CtHev9rCrb1+42mTHsGFEREQntnhMbMZjm4iIiMidvWBG1jcmZOOQyXS8e7csex140ECfhLVYLGFtk79SU1MN7SfypenES4IgICkpKUatoZbK5XLhl19+0dZPPvlknosoIIwhChVjiELFGKJwYBxRqBhDFCpBEKAoTMj6woRsHNIno/TDF/iiH6YgISEhrG3yl8lkMvTUJfKl6QDxgiAwhihkPBdRqBhDFCrGEIWKMUThwDiiUDGGiCKD95XHofT0dG25trbW718WampqtOWMjIxwN4uIiIiIiIiIiIhCxIRsHMrKytKWXS4Xjh075tfrjh49qi136NAh7O0iIiIiIiIiIiKi0DAhG4e6d+9uWC8oKPDrdYWFhdpyz549w9omIiIiIiIiIiIiCh0TsnEoOzvbMOTArl27/HpdXl6etty/f/9wN4uIiIiIiIiIiIhCxIRsnBo6dKi2vH79ep/l8/LyUFpaqq2fffbZEWkXERERERERERERBY8J2Tg1evRobfnrr79GcXGx1/LvvPOOtty7d2/k5uZGrG1EREREREREREQUHCZk49To0aORmZkJAHA4HJg9ezYkSXJb9rvvvsOqVau09UmTJkWljURERERERERERBQYJmTjlNVqxf3336+tr1+/Hrfddpthgi9JkrBy5UpMnz4dLpcLANCvXz9cc801UW8vERERERERERER+WaOdQPIs7Fjx+Knn37Cu+++C0BNyo4ePRq5ublITU1Ffn4+ysvLtfIZGRlYuHAhzGYeViIiIiIiIiIionjEzF2ce/TRR9G2bVu8/vrrcDqdkGUZu3btalaud+/eWLhwIXr16hWDVhIREREREREREZE/mJCNc4Ig4L777sOVV16J9957D+vWrcORI0dgs9mQnp6OAQMG4NJLL8WVV14Jq9Ua6+YSERERERERERGRF0zIthC9e/fGrFmzMGvWrFg3hYiIiIiIiIiIiILESb2IiIiIiIiIiIiIooQ9ZIkoppRLL8Wxbt209YyBAyHEsD1ERERERERERJHEhCwRxZQ8fz4ObNumrQ8aNIhd94mIiIiIiIio1WLeg4iIiIiIiIiIiChKmJAlIiIiIiIiIiIiihImZImIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSpiQJSIiIiIiIiIiIooSc6wbQEQnNvHyy3FSXt7x9f79gbVrY9giIiIiIiIiIqLIYUKWiGJKOHgQiYcOaetKYmIMW0NEREREREREFFkcsoCIiIiIiIiIiIgoSpiQJSIiIiIiIiIiIooSJmSJiIiIiIiIiIiIooQJWSIiIiIiIiIiIqIoYUKWiIiIiIiIiIiIKEqYkCUiIiIiIiIiIiKKEiZkiYiIiIiIiIiIiKKECVkiIiIiIiIiIiKiKGFCloiIiIiIiIiIiChKmJAlIiIiIiIiIiIiihImZImIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSgRFUZRYN4Jari1bthjWRZE5fgpQXR0gy8fXRRFITo5de6jFknVxxHMRBYMxRKFiDFGoGEMUDowjChVjiEKhjx8AOOOMM2LUkvhmjnUDqHVp+sEj8ikxsfljjCMKEc9FFCrGEIWKMUShYgxRODCOKFSMIaLI4E8dRERERERERERERFHCHrIUVrydgYiIiIiIiIjoxMRe1f7hGLJEREREREREREREUcLujERERERERERERERRwoQsERERERERERERUZQwIUtEREREREREREQUJUzIEhEREREREREREUUJE7JEREREREREREREUcKELBEREREREREREVGUMCFLREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlDAhS0RERERERERERBQlTMgSERERERERERERRQkTskRERERERERERERRwoQsERERERERERERUZQwIUtEREREREREREQUJUzIEhEREREREREREUUJE7JEREREREREREREUcKELBEREREREREREVGUMCFLREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlDAhS0RERERERERERBQlTMgSERERERERERERRYk51g04keXn52PFihXYuHEjCgsLIUkSMjMz0a9fP1xxxRW4+OKLYTaH/xD9/vvvWLFiBdatW4dDhw7BbrejY8eO6NWrF8aMGYMxY8YgKSkpoDq3b9+OVatWYfPmzSguLoaiKMjKysJJJ52EP/7xjxgxYgQEQfC7PkVR8MUXX+Cjjz7Cjh07UFZWhqSkJGRlZeHss8/GuHHj0L9//4DaWFtbiw8++ABffPEFdu/ejerqamRkZKBLly648MILMXbsWGRmZgZUZzxgHHlWV1eHDz/8EOvWrcOuXbtw7NgxSJKEjIwM9OvXD+eeey7Gjx+PNm3a+FXf5Zdfjr179wa0T+PHj8cTTzwR0GuijTHk3rRp0/DNN98EtP1zzjkHS5cu9VrG4XDgv//9L9asWYNff/0VFRUVSE1NRefOnTFixAiMGzcO3bp1C2i7scYYOm727Nn44IMPQtqvIUOGYPny5W6fa63nIaB1xZE7M2fOxIcffuj1+HrC6yL/MIY84zWRfxhD7vGayH+MoeN4TRS81hJHsizj66+/xueff45t27bh6NGjsNvtSEtLQ9euXTFkyBBcc8016N69e0Dt/OGHH/D+++/j559/RklJCcxmMzp16oTBgwdj7NixOPPMMwOqL1bnIkFRFCXstZJPixYtwssvvwxJkjyWOfnkk/Hss8+iV69eYdvuihUr8NRTT8Fms3ks06NHDzzzzDMYNGiQz/qcTicef/xxvPvuu17LDR8+HE8++aRfF/bFxcW47777sGXLFo9lBEHA5MmTcf/998Nqtfqsc8uWLZgxYwZ+//13j2VSUlLw8MMP4+qrr/ZZX7xgHHn2ySef4NFHH0VFRYXXcqmpqXjooYcwfvx4r+Xq6+sxePBguFwun9vWi/c/+owhz8477zyUlJT4LKfn68tHfn4+7rnnHq8XjxaLBX/+859x2223BfQDRKwwhowi+eWjtZ6HgNYTR5588cUXuOuuuwB4/3LpDq+L/MMY8ozXRP5hDHnGayL/MIaMeE0UnNYSR7t27cLMmTOxZ88er+VMJhOuu+46zJo1CxaLxWvZmpoazJo1C1988YXXcldeeSXmzJmDtLQ0n+2M5bmICdkYmDdvnuGkYjabkZubi6SkJOTn5+PYsWPacx06dMDKlSuRnZ0d8naXLl2KJ598UlsXBAF9+/ZFRkYGDh48aPgjm5SUhLfeegsnnXSSx/oURcHdd99t+DAkJCQgNzcXJpMJe/fuRU1NjfZcr1698O6773r95b28vBwTJ07Eb7/9pj2WkZGBPn36wGazYffu3YYT02WXXYZ//OMfXvd7y5YtuOWWW2C327XHsrOzkZ2djaNHj+LAgQOG8nPnzsW1117rtc54wDjyHEdN2wgA7dq1Q48ePWAymXDw4EEcPXrU8Pz06dNx9913e6xz+/btuOaaawAAiYmJfv/qdt5552Hy5Ml+lY02xpD3c9E555yjrQ8fPtyvfRs4cCBmzJjh9rkDBw7g2muvNbyvHTt2RM+ePVFRUYG9e/dC/yf5tttuwwMPPODXdmOFMdQ8hv71r3/h+++/D2h/9u3bhyNHjmjr9913H26//fZm5VrjeQhoPXHkyfbt23HTTTehrq4OQGCJEF4X+Ycx5H8bAV4TucMY8ozXRP5hDDXHa6LAtZY4+umnnzB58mTDtUZiYiL69euHpKQkFBcX4+DBg4bXDB8+HK+88orHnr/19fWYNGkStm3bpj2WkpKCfv36weVyYc+ePYbtnXXWWfjXv/7l9YfqmJ+LFIqqNWvWKP369dP+mz59unL06FHteYfDoaxYsUIZNGiQVmbs2LGKLMshbfenn35SBgwYoNV5/fXXK4cOHdKel2VZ+fTTT5WhQ4dqZUaMGKHU1dV5rPO1114z7MvcuXOVqqoq7Xmbzaa89NJLysCBA7Uyd911l9d2Tp06VSt7yimnKG+//bbidDq150tKSpR7773XsN033njDY33V1dXK8OHDtbLnn3++sn79ekOZX3/9VfnjH/+olRk4cKDyyy+/eG1nrDGOPMfR1q1bldzcXK3sqFGjlG+++abZvq9fv14ZPXq0YdvffPONx3rfffddrdwNN9zgz9sV1xhD3s9F69atM8RQqCRJUq688kqtzrPOOktZs2aN4f387bfflBtvvNGwL1988UXI244UxpD3GPLXvn37lMGDB2v13n///R7LtrbzkKK0rjhyZ+PGjcoZZ5xh2MdAjh2vi3xjDHnGayL/MIa84zWRb4yh8OA1UeuIo+rqauWcc87Ryp566qnKsmXLFLvdbii3f/9+ZcqUKYZ9fvrppz2289FHH9XK5ebmKosXL1ZsNpv2fGVlpTJv3jxDfX//+9891hcP5yImZKPI4XAoI0eO1A7ktGnTFJfL5bbsd999Z/ji99FHH4W07QkTJhg+tPrA1du1a5fhJPjSSy+5LVdWVmYo98gjj3jc9nvvvWcI4C1btrgt97///c9Q7r///a/HOmfOnKmVGzp0qFJdXe223Pz587VyZ5xxhnLgwAG35aqrq5XLL79cK3vzzTd73HasMY68x9G1115r+EOh/yPW1LFjx5SLL75YK3/ppZd6LDt37lyt3Lx58zyWawkYQ95jSFEU5dVXX9XK3XHHHQHtozvvvPOOVt/AgQM9btvhcCg33XSTVvYPf/iDIklSyNsPN8aQ7xjyh81mU/7whz8YzkG1tbUey7em85CitK44cue1114ztDnQL468LvKNMeQdr4l8Ywz5xmsi7xhD4cFrotYTRwsWLDB8xjdu3Ohx27IsK9OnT9fKn3TSSUpRUVGzcnv37jUkjZcsWeKxzoULFxrqKygocFsuHs5FYvj62pIvn3/+OQ4fPgxA7Xo+Z84ciKL7QzB8+HBMnDhRW//3v/8d9Ha3bduGn3/+WVv/29/+hsTERLdl+/fvr40LAwBvvPGG23FZ3nvvPdTW1gJQb52bOXOmx+2PGzcOI0eO1NY97csbb7yhLQ8fPhxjxozxWOcjjzyC9u3bAwCOHTvmdmya+vp6w1iAt912G3r06OG2vtTUVMNYMt9//z12797tcfuxxDhSuduXgoICwxh7M2fORIcOHTzWmZGRgdmzZ2vr+/fvx65du9yW1T8e6MQp8YYxpPK2L+E+3suWLTO04/TTT3dbzmKx4Omnn9bGT8rPz8e3334b8vbDjTGkCmVfAODZZ59Ffn4+APXYL1iwAMnJyR7Lt6bzENC64kjv4MGDmDp1Kp555hmv47/5wusi3xhDnvGayD+MId94TeQdYyg8eE3UeuLoo48+0pbHjRuHIUOGeNy+IAiYO3cuEhISAKhzOnz22WfNyi1fvlzbVq9evXDrrbd6rPPuu+9Gv379tPrefPNNt+Xi4VzEhGwUffLJJ9rysGHD0KVLF6/l9R+ynTt3oqCgIOTt9u7dG4MHD/Zafvz48dq4HeXl5di0aVOzMmvWrNGW//CHP3g9WQLGffnf//6njT3TqLKyEuvXr9fWx40b57W+5ORkXHnlldr62rVrm5VZt24dKisrAQCiKPqclOLUU081jIPirs54wDhSuYujDRs2aMsJCQm4+OKLvdYHqOMI6QcP37FjR7MyiqIYvoi29D/6jCGVuxhqlJeXpy2Herzz8vK0C0wAPidLycrKwqhRo7T1eDwXMYZU3mLIlx9//BFvvfWWtj5t2jSvsdbazkNA64ojAJAkCfPmzcPll19uuFAfPHhwwGOw8rrIP4whz3hN5B/GkG+8JvKOMRQ6XhO1njj67bffUFRUpK1ffvnlPtvQrl07nHbaadp60789sizj008/1davvvpqj8lqQL3GmTBhgrauf22jeDkXMSEbJYqiYOPGjdr6ueee6/M1ubm56Nixo7b+1VdfBbXtH374IaDtpqen4+STT9bWv/76a8PzFRUVhl+k/BnY/eyzz4bJZAIA2O12w5cMANi0aZP2i4cgCH61U19m69at2peMRvr97tevn+G99KfOpvsdDxhH3uOouLhY+wPRtWtXv2aatlgsSE1N1db1A3o3OnTokJZ0MZvN6Nu3r8964xVjyHsMAWovMv2kNqFe5Om/FKenp+OUU07x+Rr9+/PNN98YBpOPNcaQ7xjyRZIkPProo9px7d27N6ZNm+b1Na3pPAS0rjhqVFdXh+XLl8PpdAJQj9O0adOwbNkyrfeqv3hd5BtjyDteE/nGGPKN10TeMYZCx2ui1hVHRUVFWm9XAOjTp49f7cjIyNCWKyoqDM/l5eUZ/h75c72u35fDhw8bflgC4udcxIRslBQVFaGqqkpb1wexN7m5udqyu1+pfXE6ndi/f7+27u+Mit62u3v3bkPw+VNncnIyunXr5rFO/QckJycH6enpPuvUXxDIsoydO3c2a2cgbWxa5969e1FfX+/X66KFceQ9ju6++27s2LED3333HRYtWuRXG6urqw1fWt3Nmq5P2PTs2dOvLzXxijHkPYYa621MhCQnJ6Nr165+tdUT/fltwIABEATB52v056LKykrDDOuxxhjyHUO+vPvuu9izZ4+2/tBDD/k8r7Sm8xDQuuLInWHDhuH999/H/fffH9Sx4nWRb4wh73hN5BtjyDdeE3nHGAodr4laVxydc8452L59OzZs2IAPP/zQkGj1prCwUFtu+rdHf96wWCx+JeB79uxpGHrBW/4plucic8g1kF8OHjxoWNd/mfMmJydHWw7mgBcWFmq/bgFA9+7dQ96ufl+sVis6d+7sd52Nv7B6q9PfNnbs2BGJiYmw2+0A1F/Khg0bpj2v/zU3mP2WJAmFhYXo3bu3X6+NBsaR9zgC1FsUMjMzkZmZ6Vd9n3/+OWRZ1tbdHW/9CTs3NxeVlZX48MMP8fXXXyMvLw/V1dVo06YNevbsifPPPx8TJ07068tzLDCGfMdQ0+Ntt9vx3//+F59//jl27tyJiooKpKSkoGvXrjjvvPPwpz/9CVlZWR63F8z5Tb/fgHp+8/e1kcYY8h1D3tTW1uKFF17Q1keOHInzzjvP5+ta03kIaF1x1EgURYwaNQo333wzhg4dGnDb9Hhd5BtjyDdeE3nHGPKN10TeMYZCw2siVWuMo7Zt26Jt27Z+1VdQUIBff/1VW2/6t0f//mRnZ2t3f3gjCAK6dOmiJZwPHTrksc5YnouYkI2So0ePasuiKHodVF9P3w1dX0cw221an7/bLSsrgyzL2jgd+jr9ra9p2abtKikpCarO9u3ba2OU6OuUZRnl5eUB19n0uBw9ejRuvngAjKOmZYPZF736+nq88sor2npGRobbwbz1v8IeOHAAF110keFXTEDdv7KyMvz444949dVX8Ze//AVjx44NqX2RwBjyvS/6411VVYXRo0cbzlGAeitNRUUFduzYgX/961+46667MHXqVLfbC+b81q5dO5hMJq1XSqixHk6ModD2Zfny5SgrKwOgXized999fr2uNZ2HgNYVR41SU1Px8ssvB9wmd3hd5BtjKLx4TcQYcofXRN4xhkLDayJVa4yjQCxatMhwx5p+rNam7fT3B0ZAvYZpTMiGI/8UiXMRhyyIEv3tPykpKX4HrH4cp6ZjgQW6XcD9rUfupKWlacuKohhOcPoxPfTlfPG2L/r1QOrUl9W3sbq62jDjXzD73bTOeMA4Cn1f9ObPn2/4dezGG290+4ub/o/+zp07tf3o3r07hgwZgpNPPtkwVk5VVRVmz56NxYsXh9S+SGAM+d4X/fHOz8/X/mB36dIFZ511Fk477TSkpKRoZex2O5577jk89NBDbrcXzPlNFEXD5FLxdC5iDAW/LzabDW+88Ya2Pnr0aL/H42tN5yGgdcVRJPC6yDfGUHjxmogx5A6vibxjDAWP10THnchx9Pnnn+PDDz/U1s8+++xmQycEe72uLxuO/FMkzkXsIRsl+jG39GNZ+KIfD8XhcIS03UC2rZ9htWk9+naEa1/C8f7o62i63/oTsr/1uasn1hhHoe9Lo3fffRfLli3T1rOzs3HzzTc3K1deXt6sJ8CVV16JO++8Ez179tQeq6+vx+rVqzF//nzU1NQAUH/t69WrF8aMGRN0O8ONMeR9X5rO2gqos07fd999hosDp9OJzz77DE8++aT26+jq1avRq1cv3HbbbR7bHI7zW6wxhoLfl9WrVxt6Kd5xxx1+va61nYeA1hVHkcDrIt8YQ+HDayLGkDu8JvKNMRQ8XhMdd6LG0c6dOzFz5kxDvbNmzWpWriXkn4LFHrJRoh+bI5Du3PpfpiVJCni7TV/j77ab/iKu71URiX3RrwdSZ+NM103raFq/vpy/9QHG/Y4HjKPQ9wUA/u///g9z587V1i0WC/75z38afvFqlJ+fb2jfQw89hGeffdbwBx9Qv9xee+21ePvttw2/Vj755JNxdeHIGPK+L0VFRYbjdeONN+LVV19t9kutxWLBZZddhvfffx+dOnXSHn/hhRea3b6i34a/56KmZYON9UhgDAW/L2+//ba2PHToUAwYMMCv17W28xDQuuIoEnhd5BtjKDx4TaRiDDXHayLfGEPB4zXRcSdiHOXl5eGWW25BXV2d9tjMmTMxcODAZmWDfX+8nTfi5VzEhGyU6A+cfrB8X/QHuekvEf5oGrD+brtpcOm3HYl9CbZO/YffUxublvO3PnftjDXGUej78uabb2L27NnaNgVBwLx583Dqqae6LX/WWWdh27ZtWLt2Ld566y1MnjzZa/25ubmGX/pKSkqwZs2agNsZKYwh7/uSk5OD7du344svvsCyZcvw0EMPeZ11MysrC0888YS2brPZsHLlSkMZfTsDuWDRl42n2WMZQ8Hty48//oh9+/Zp6zfeeKPf22tt5yGgdcVRJPC6yDfGUOh4TcQY8obXRL4xhoLDayKjEy2OtmzZghtvvNEwFMH48eM9xkG4r4ma1hnLcxETslGSlJSkLQfyi4y+a7W/t5d52m4g227apVu/bX2X7kD2RV+26b6Eu86m3c79rTPYW/qihXHkPY68URQFCxYswOOPP64NGi4IAubMmYOrrrrK62utVit69uyJM888069tjR071jCe1vfff+93OyONMeQ7hsxmM7p27YqhQ4f69Svs8OHDDb/KNz3e4WhnPH35YAwFdx766KOPtOUOHTpg5MiRfm8PaF3nIaB1xVEk8LrIN8ZQ8HhNpGIM+cZrIu8YQ8HhNZHRiRRHX3zxBW655RbDGK5XXHEFHnvsMY+vidf8ExOyLUh6erq2XFtba5hFzpvG8U4AdbbTULbbtD5/t2s2mw0DHevb4W99gLrf7upo2s5A6vT0/qSlpRkuGoLZb3ftjDXGkfc48qS+vh733XefYcZQk8mEefPm4brrrvN72/6yWq045ZRTtPVDhw6FfRvBYgwFF0O+6Geibnq8gzm/ybJsuIUnns5FjKHAY0iSJHz66afa+pVXXul2spxwiufzENC64igSeF3kG2MoOLwmOo4xFBm8JvLtRI4hXhM1d6LE0WuvvYbp06fDbrdrj40fPx7PPPOM12EDgr1e9/b+xMu5iAnZKMnKytKWXS4Xjh075tfr9OPudOjQIaTtAkBpaWnA223Xrp3h9hR9nWVlZX63xdu+BFunvmzHjh21ZVEUDev+1tn0/QnmPY8kxlHg+1JaWopJkyYZbk1JSEjA888/j/Hjx/u93UDp2xbMrJeRwhgKfV/c8Xa8g2lneXm54ZYc/fks1hhDge/Lli1bDLdl/eEPf/B7W6GI1/MQ0LriKBJ4XeQbYyhwvCYyYgxFBq+JfDuRY4jXRM219jhyOp14+OGH8eyzzxo+y1OnTsUTTzzhs/d9ZmamthzINZF+f5qeN+LlXMSEbJR0797dsF5QUODX6woLC7XlpgNV+6NLly6G8TKC2W6PHj0Mz+n3pa6uzu8Prn7bTfdFv43ffvvNr/pKSkoMv654a6e/derbaLFYkJ2d7dfrooVx5D2Omtq/fz8mTJiAbdu2aY9lZGRg6dKluOiii/zaXrD0tzPob5GJNcZQYDHkL2/HO5jzW9P3p+m+xxJjKPAY+t///qctd+rUydBLI5Li9TwEtK44igReF/nGGAoMr4maYwxFBq+JfDuRY4jXRM215jiqra3F1KlTsWrVKu0xk8mERx55BDNmzPBre/ptFBYW+tWDWFEUFBUVeWxnvJyLmJCNkuzsbEOX5l27dvn1ury8PG25f//+AW/XYrGgX79+AW9XX67pjIcDBw40/AriT521tbWGQG+6L/rZOg8dOgSbzRZQGwVBQG5uruH5k08+WVvWv4/+1tmnT5+4mHBBj3HkPY708vLycN111zU7Eb/77ruGW6l8+fe//41HHnkE06dPx2uvveb36/Qn7M6dO/v9ukhjDHmPoffffx+PPfYY7rnnHjz99NN+tRHwfrz157dgzkXp6elxlQRhDPl/Hmr0ww8/aMsjRowIuEdKazsPAa0rjiKB10W+MYb8x2si9xhD3vGayDfGUOB4TdRca42jqqoq3HTTTVi/fr32WHJyMl544YWAhsjRnzdsNhsOHDjg8zX79+83JOGbtjNezkVMyEbR0KFDtWV9UHqSl5dn6K1z9tlnR2W7FRUV+PXXXz1uNzU1FQMHDgyozg0bNmjdu00mE4YMGWJ4/owzztDGjnG5XNi4caPPOvXbHThwYLMxUPTb2LlzJ6qqqgKqM9j3O9IYR57jqFF+fj5uuukmw+0egwcPxooVKwL+Jeurr77CihUr8Nlnn+GDDz7w6zXFxcXYs2ePtu7vgPPRwhjyHEObN2/GW2+9hbVr1+K9995rNmi9O3a7HZs3b9bWmx5v/TaOHj2KvXv3+qxTvy/69y1eMIZ8n4ca1dXVYffu3dq6p9nLvWmN5yGg9cRRJPC6yD+MId94TeQdY8gzXhP5hzHkP14Tedba4qi2tha33HILduzYoT3WsWNHvPnmmxg1alRAbezbty/atWunreuT+p7oJ25r27Ztsx+p4+VcxIRsFI0ePVpb/vrrr1FcXOy1/DvvvKMt9+7du1kQBbPdX375Bb/88ovX8itXroQkSQDUzP+wYcOalbnkkku05Y8++shnzw39vgwbNgxt2rQxPN+mTRvDh3nFihVe66utrTXMznjppZc2K3POOedoA0w7nU689957Xuvctm2b4eQSrfFsAsU4UrmLIwCorq7G1KlTDWMTjRo1CkuXLkXbtm291u+O/mS9b98+bN261edrXn31VS1hY7FY4i6WGEMqdzGkP95VVVWGSQe81alPbFxxxRWG5/v162e4jcjX+e3333/HN998o63HW/wAjKFGns5Dejt37tTaACCoW/Na43kIaF1xFG68LvIPY8g7XhP5xhjyjNdE/mEM+Y/XRJ61tjiaPXu2IRnbvXt3vPPOO4aeqf4SBAEXX3yxoQ36sVybkmUZK1eu1NYvueSSZj2x4+VcxIRsFI0ePVobkNjhcGD27NmGE5Led999ZxhnY9KkSUFvd/DgwYbAf+ihhzzOJLdr1y689NJL2vqECROQmJjYrNy4ceOQlJQEQB0s+bHHHvO4/VWrVuG7777T1m+88Ua35a6//npt+euvv8bq1as91jl37lyUl5cDULu9u5uIIDEx0fD44sWLDb/I6VVXV+Ovf/2rtn7aaadh0KBBHrcfS4wjlac4mjNnjmFcm5EjR2LRokVut++Pq666yjDz59y5cw0zrDe1Zs0avPnmm4bXd+rUKahtRwpjSOUuhi655BJDgu3ZZ59FSUmJxzq3bNmCBQsWaOvDhg1ze+7Qn99WrFjh8Rdop9OJWbNmwel0AlDHdor02H7BYAypPJ2H9PS3QSUmJqJPnz4+X9NUazwPAa0rjiKB10W+MYa84zWRb4whz3hN5B/GkP94TeRZa4qjd955B5999pm2np2djeXLl6Nr165Bt/O6667Tkqp5eXl44YUXPJZduHCh1uNVFEWP7088nIuYkI0iq9WK+++/X1tfv349brvtNsN4JpIkYeXKlZg+fTpcLhcANXt/zTXXuK3zggsuQG5uLnJzc3HBBRd43PasWbO0AN6zZw8mTZpkOCEqioLPPvsMkydPRl1dHQC1S/m0adPc1tehQwdMmTJFW1+9ejVmzJhhmKHObrfj5ZdfxiOPPKI9NmLECIwYMcLjvui7fv/tb3/DK6+8Yhj7o7S0FPfdd5+hF8idd95p6MKuN3XqVO252tpaTJ48GZ9//rlhIOi8vDxMmjRJ+9CaTCbMnj3bbX3xgHHkOY42b96MTz75RFvv0aMH/vGPf4Q05l3Xrl0xefJkbX337t24/vrrsX37dkO5qqoqLFiwADNmzNDiq0uXLpg1a1bQ244UxpDnGEpJScF9992nrRcXF+NPf/oT1q1bZyhnt9uxdOlS3HLLLdo5KjU1FY8//rjbdk6cOFH7FVaSJNx1111YtWqV4UKroKAAU6ZMMdya/OCDD8JqtbqtM5YYQ97/nunt27dPW+7cubPhS4S/WuN5CGhdcRQJvC7yjTHkGa+J/MMY8ozXRP5hDPmP10SetZY4qqmpwT/+8Q/Dfr300kvIysry523wqH///hg7dqy2vnjxYvz9739HdXW19lh1dTWeeOIJvPzyy9pjEydO9Jj4j4dzkaD4M0UZhdWcOXPw7rvvauuiKCI3NxepqanIz8/XejgA6uyn77zzDnr16uW2rgsuuEAboD87OxtfffWVx+2+8sorhg8HoE7Q0K5dOxw6dMjQLT4xMRGvv/661/FVGoNW33XbYrEgNzcXVqsVe/fuNXxAcnJysGrVKo9fEgD1D/31119vOPGkpaWhb9++cDgc2L17t/bLBKDedvXiiy9CFD3/tvDDDz/g9ttvN8w83KlTJ3Tr1g1lZWXIz883lJ85cyZuvfVWj/XFC8ZR8zi69dZbDReJPXv2DHiw7SuvvBJ//OMfDY85nU7cfffdhjY2tiUnJwfV1dXYs2ePITYzMzOxfPnyuJoJtinGkOdzUdP3BlCPaY8ePVBfX489e/YYbm1PTU3Fa6+9hsGDB3uss/ECR3/raLt27dC7d28thvS331x//fWYM2eOx/riAWPIcww1mjJlitardtCgQYZbqALRWs9DQOuJI28WLVqExYsXA1Bvt1y+fLlfr+N1kX8YQ83xmigwjCHPeE3kH8aQb7wm8q2lx9GSJUvw3HPPaevt2rUzzNfgj9zcXMycObPZ4zU1NbjpppsMwyokJSVpwzXs3r3bcC465ZRT8Oabb3rtDR7rc1HgP0lQyB599FG0bdsWr7/+OpxOJ2RZdjujXe/evbFw4UKPH7BATZs2DSkpKXjuuee0Xzb0v1I16tSpE+bPn+/zRG02m7Fo0SI8+uijeP/996EoCpxOp9txRwYPHoyFCxf6/PKalZWF5cuX4/7779fGg6murnY7Nsz48ePxyCOPeP3SAahjpr366quYNWsWDh8+DAA4cuQIjhw5YiiXmJiImTNnGrquxzPGkVFVVVWzAb4PHDjg1yyMeqeddlqzxywWCxYvXoznn38e//rXv7RfzQoLCw23AjY6//zz8cgjj8TVLLDuMIY8e/TRR9GrVy8sWLBAS1qUlJS4vVXvtNNOw2OPPeZz7KZ+/fph2bJlmDFjhtbzrLy83HBhBai90W677Tbce++9XuuLB4wh3/QTLjSO3xmM1noeAlpPHEUCr4v8wxgy4jVR4BhDnvGayD+MId94TeRbS4+jtWvXGtbLy8ub9ar3xdMEgqmpqVi6dClmzpypJZdtNht+/vnnZmVHjRqFZ5991ufQHLE+F7GHbAzl5+fjvffew7p163DkyBHYbDakp6djwIABuPTSS3HllVf67AodyK8ejY4cOYKVK1fi22+/RWFhIWpqapCamop+/frhoosuwrhx45CamhrQvmzfvh0ffPABNmzYgOLiYjgcDrRr1w6nnnoqLr/8cowePdrnFwQ9RVHw+eef45NPPsH27dtRWloKURSRlZWFM844AxMmTHB7keiNzWbD6tWr8fnnn2Pfvn2oqKhAQkICunfvjnPPPRd/+tOfWsRJuinG0fHXerpdIxB33303pk+f7vH5w4cPY9WqVdiwYQMOHjyI6upqpKSkIDMzE2eeeSYuvfTSuJwB1hvGkGfl5eV477338P333yM/Px8VFRVITExEx44dMWjQIFxyySUYOXJks4HivZEkCR9//DE+/fRT7Nq1C2VlZbBYLMjJycHQoUPxpz/9KagxtWKJMeTZ6NGjcejQIQDAmDFjDOPrBas1noeA1hVHTYXaq4jXRf5hDKl4TRQ8xpBnvCbyD2PIM14T+a+lxtFpp53mc4JcX/yJrR9++AEfffQRfvzxR5SWlsLlcqFDhw4YPHgwxo4di+HDhwe0zVidi5iQJSIiIiIiIiIiIooSTupFREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlDAhS0RERERERERERBQlTMgSERERERERERERRQkTskRERERERERERERRwoQsERERERERERERUZQwIUtEREREREREREQUJUzIEhEREREREREREUUJE7JEREREREREREREUcKELBEREREREREREVGUMCFLREREREREREREFCVMyBIRERERERERERFFCROyRERERERERERERFHChCwRERERERERERFRlJhj3QAiohNVYWEhLrzwwrDX++WXXyInJweLFi3C4sWLAQBDhgzB8uXLw76tlqqlvTeKomD16tUYMGAABg4cGOvmUAvX0uKf4lO8n5daUpzH+3sZ784//3wcOXIkInW/9dZbOPPMMyNSN4WGx52IWjr2kCUiIopje/fuxQ033IC//OUvqK6ujnVziIh4XgojvpehKS4ujlhSzmQy4aSTTopI3RQaHnciag3YQ5aIKEYSExMxfPhwr2UqKyuxY8cObf2UU05Benq6z3qp9Rg7diycTmesm0FEpOF5KXz4XoZm//796Natm89yJSUlsNvt2ro/r+nWrRuSkpJCah9FBo87EbUGTMgSEcVIhw4d8Prrr3sts3HjRtx4443a+oMPPoihQ4dGumkUR/hFnYjiDc9L4cP3MjTnnHMOPv/8c5/lLr30Uhw4cAAAkJ2d7ddrKH7xuBNRa8CELBFRKzV9+nRMnz491s0gIiIiipna2locOnRIW+c4vScGHnciinccQ5aIiIiIiIhapV27dkGWZW2dibkTA487EcU7JmSJiIiIiIioVdq1a5dhnRM2nRh43Iko3nHIAiKiVmrRokVYvHgxAGDIkCFYvny51zJz587Ftddei7q6Onz88cf4+OOPcfDgQVRVVaFDhw7o378/Jk6ciPPPP99Qx4EDB7BixQqsW7cOhw8fBgDk5ORgxIgRmDx5Mjp27OhXe/fu3YuPPvoI33//PX7//XdUV1cjPT0dXbt2xfDhwzFu3Dh07tw5lLfEq5qaGrz99tv49NNP8dtvv0GSJGRmZuKss87C5ZdfjrPPPjug+kLZn9WrV+Ohhx5q9rh+POGxY8fi8OHD2LhxIwDg8ssvx3PPPeexPevWrcOtt96qrT/55JO4+uqrPZafN2+eFjPe6o7EcQtHnfrY/tvf/oYbbrgBDocDH374IdauXYv8/HyUlpYiLS0NPXv2xAUXXICJEyciLS0toLZ6U1NTg//85z/45ptvsGvXLpSXl8NsNiMjIwO9evXC2WefjT/+8Y/IzMz0WMfs2bPxwQcfAFCP+VNPPeV1m4WFhbjwwgu19S+//BI5OTl+tTUc8R+OfW4q3DHmdDrxn//8B5988gl+/fVXVFZWom3btujXrx/Gjh2LMWPGQBRF/PnPf8ann34KAFi2bJlh/O5oHJd4+xz4e17y9V74aueMGTMwdepUVFVVYcWKFVi7di0KCwths9nQsWNHnHbaaRg7dizOO++8gLcjSRI++ugjrF27Fnl5eSgvL0dGRga6dOmCiy66CGPHjvX7b9bPP/+Mjz76CD/++COOHDmCuro6ZGRkICcnB+eeey6uuuoqdO3a1e1rw/FehrL9RpE6T0biPBCKX3/91bA+YMCAqGyXYovHnYjiHROyRESk2b59Ox544AHDmFsAUFRUhKKiInz55ZeYMGEC5s6dC5PJhDfeeAPPPvtss0lJ9uzZgz179mD16tV45ZVXcOqpp3rcps1mw7x587B69WrDrWUAUFpaitLSUvz0009YsmQJbrvtNtx9990QBCF8Ow11v++55x4todzo4MGDOHjwIFatWoXzzz8fTz31FNq1a+e1rmjuz6hRo7SE7A8//ABFUTzWtX79esP6pk2bvCZk//e//2nL+kRSo0jsZyTfu7y8PMyYMQP79u0zPF5eXo7y8nJs2bIFr7/+OubPn49zzz3Xrzq9Wb9+PR588EGUlpYaHnc4HKirq8Phw4exbt06LF68GNOmTcOdd94Z8jaDFa74D/c+RyIeduzYgQceeAAHDx40PF5SUoKSkhKsW7cO77//vtcfNyKtNX0OgrVr1y7cddddKCoqMjze+Lfov//9L4YPH45nnnkG7du396vO3bt34/7772+270ePHsXRo0exbds2vPbaa/j73/+Oiy66yGM9xcXF+Mtf/oJ169Y1e66xrp9++gmvvPIKrr/+ejzwwAOwWCx+tdEfkdx+OOIjHs99O3fu1JY7duwYtUQwxRaPOxHFOyZkiYgIgPpldf78+aipqQEAdO7cGV27dkVlZSX27NkDRVEAACtXrkTfvn3hdDrxzDPPAAASEhLQv39/mEwm7NmzR6ujvLwc06dPx5o1a5CcnNxsm8eOHcOUKVPwyy+/aI+ZTCb07dsX6enpOHbsGPbu3QtFUVBfX4/Fixdj7969WLBgAUwmU1j2u6ioCLfeeiuqqqoAAG3btkXv3r1hs9mwe/duSJIEAPj2228xadIkLF++3GNSKlz7k5WVheHDhwOA4Uv3KaecgvT0dABAv379MHLkSK0HVVlZGXbv3o3+/fu7bduGDRsM65s2bfL4nhw8eFBLylssFowYMSIi+xnpOvX7s3jxYhw7dgwA0L59e/Tq1Qt2ux35+fmoq6sDoMbrHXfcgQ8++AC9e/f2Wqc327Ztw9SpUw0/VPTo0QOZmZlwuVwoKirCkSNHAAB2ux0LFy6ELMu4++67g95msMIV/+He50jEw5YtWzBlyhTteANAWloa+vbtC0mSkJeXB4fDgfXr1+Ouu+7SPmvRFM+fA3/PS6FqjMmysjIAQEZGBvr06dMsJtetW4frrrsO77zzjs8fyn777TfccMMNWpy3adMGPXv2hNlsxt69e7XHKysrcc8992DFihU45ZRTmtWzf/9+XH/99SgvL9ceM5vN6Nu3L9q0aYPi4mIt2e90OrF06VLs3LkTS5YsMfwNDPa9DNf23QnHeTIez30OhwP5+fnaOscRPTHwuBNRS8CELBERAQDeeecdAOqXp8cee8xwe25eXh6mTJmCo0ePAgAWLFgAm80GQRBw++23Y+rUqdqXvbq6Ojz99NNYsWIFAODIkSP4+OOPMXHiRMP2FEXBzJkztcSDKIq49dZbceutt6Jt27ZauZKSEixatAgrV64EAHz66ad4/vnncd9994Vlvxt7YLVp0wZ//etfccUVV2iJjfLycjz77LNYvXo1AGDfvn2YO3cunn/++Wb1hHN/zj33XK33UW5urvb4gw8+aDgugHq8Gr+Ar1+/3m1C9tixY83GUisqKkJBQYHbW1q//fZbbfmss85CampqRPYzknXqNQ690K1bNzz88MMYMWKE1qOwpqYGixYtwtKlSwEA9fX1WLRoEf75z396rdObxx57TEtInHbaaXj22WfRrVs3Q5lNmzbhb3/7m3bslixZgmuuuQZZWVlBbzcY4Yr/cO5zJOKhqqoK9957r5ZUslqteOCBB3DttdfCarVqZV544QUsXboUW7duhShGd6qFeP8cBHJeCkXj346kpCQ8+OCDmDBhgtbDs7S0FE899RQ+/vhjAGoS8eGHH8aLL77otc7GJGDbtm0xe/ZsjBkzRjvuTqcTy5cvx/z58+FyuSBJEp544gmtHY0qKiowZcoULRnaeHymTJmCjIwMrdz+/fvx5JNPancZbN68GX/961+xYMECrUww72U4t+9OOM6T8Xju0yfxAd62fqLgcSeiloCTehERkaZz585YsWJFsy+E/fv3x8yZM7X1uro6KIqCWbNm4d577zX0vElOTsbcuXMNicGmt8sDwEcffaR9YRQEAc899xweeOABQ+IBADIzM/H4449jxowZ2mNLlixpdstxKJKTk7Fs2TJcddVVhl5m7dq1w5NPPolJkyZpj3366afYsmVL3OzPqFGjtOXvv//ebZmNGzdqtz4nJiYaHndHP1zBBRdcYHguEvsZjfcuJycHK1euxPnnn2+4vTs1NRUPPfQQLrvsMu2xb7/9Fg6Hw2ed7hw+fFhLqJlMJrz44ovNEhKAOq7z66+/joSEBABqguObb74JapuhCjX+w73PkYiH119/HSUlJdr6woULcdNNN2lJOUBNSj/00EOYPXs2ADQbLiDSWtPnIFQWiwVLlizB9ddfb7jdvkOHDpg/fz6uvfZa7bEvv/wSP/74o88627dvj/fffx9XXXWV4bhbLBbccsstmDx5svbYTz/9ZOiFCqjvsX4Ihfnz5+OBBx4wJEMBoFevXnjllVcwbtw47bFPPvkEX3/9tc82ehON7YcSH/F67ms6jigndjox8LgTUUvAhCwREWn+/Oc/N/vy3+jCCy80fEHLzs7GTTfd5LasIAgYOXKktv7bb781K/P6669ry1dccQXGjBnjtW1Tp07VbiGVZVnrqRMO99xzj9feEzNnzkR2dra23tibWC9W+6N/n7ds2eI2gaJPiI8fP15bdjdsgc1mw+bNm7X1pgnZSOxnNN47b7ENwJDgqaurQ0FBgc863dEn/ZKTk71uMycnBxMmTMCFF16Im266yW3yIhpCjf9w73O440GSJKxatUpbv/LKK5vFtd7NN9+s3U4eTa3pcxCq2267DUOGDPH4/EMPPWSIycYJ1ryZMWOG4TVN6fcdgGEc1draWrz11lva+tVXX21ITjYliiIeeeQRdO/eXXvs1Vdf9dlGT6K1/VDiI17PffpxRAHeun6i4HEnopaAQxYQEREANYk6evRoj8+npKSgXbt22rh+I0aM8HpLr/72w+rqasNzhw4dwu7du7V1b5NL6V111VXYsWMHAONt9aFITk7GNddc47WM1WrF1VdfjUWLFgFQe5DqJ9CK5f6ceeaZSEtLQ3V1NWw2G7Zu3Yqzzz7bUOaHH34AoI6Xed111+HNN98E4D4hu2HDBtTX1wNQb6XVJzAisZ/ReO9EUXQ7MZlenz59DOtNY9ZfnTp1MtTxz3/+E/fee6/Hz8rDDz8c1HbCJRzxH859jkQ87NixQztvAWg2fIo7t956q9tJkyKltX0OQmGxWHDjjTd6LZOQkIBx48Zpw2d88803kGXZY8yJooiLL77Ya51du3ZFamqqNga6flKqTZs2wW63a+s333yzz/1ISEjApEmTMG/ePADA1q1bUVFR0axHqz+isf1Q4yNez3364XrS09ORk5MTVD3ffvstpk6dCkD9O+kt4RwtiqJg//792L59O7Zv344dO3YgLy9PGzZCf04JlX481nBr3759UJ8Lb1rzcSei1oMJWSIiAgB06dLFMFaoO/rb3Xv27Om1bOPtiEDzW3+3bt1qWO/Vq5dfbTz55JO15cOHD+PIkSOGL4HBGDx4MFJSUnyWO/PMM7XlyspK7Nu3D3379gUQ2/0xm80YPnw41qxZA0DtDatPyBYVFWk9lM8880z07t0bGRkZqKiowO+//47ffvvN0DtJn9Rp2oswEvsZjfcuJyfHZ2y3adPGsK6flCYQnTp1wqBBg7Bt2zYAwCuvvIK1a9fi4osvxvDhw3HGGWcYbpeOtXDEfzj3ORLx0JiwBNRk36BBg3zWN3ToUCQmJhqSYJHU2j4HoRg0aJBfSQ/90DqlpaU4cOCAx8n4srOzm+2bO2lpaVpCVn+3gX5IhI4dO/o9eVnjOLGAmjzbunWr197ZnkRj+6HGRzye+1wuF/bs2aOthzKOaGOCr0uXLnGTlCsqKvLZkz5cIrmdGTNmaEnPcGjtx52IWg8mZImICIDaQyEQvr646Yc3aOrQoUOG9REjRgS07UbFxcUhJ2T9TXw0TUD//vvvWkIq1vszcuRIQ0L2/vvv157TD1fQmKg9/fTT8dVXXwFQx5HVJ2S9jR8bif2MxnvnT8+bpjPUhzJ+6COPPIIbbrhBm0Dq0KFDeO211/Daa68hMTERZ5xxBs4991yMHDnSYwIpWsIR/0D49jkS8aAfdzM7O9swJqknJpMJffr00cbEjLTW+DkIlruJCd1pGrslJSUeYys9Pd2vOvW9OfX7rr8dv2kvUW969uwJi8WiJS719QQiGtsPR3zE27lv3759hh9VQrltvXFM0nidHCorKwunnnoqKioqDMMOnYhOpONORC0bx5AlIiIAxh6t/vCWcPWlqqoq6NfqVVRUhFyHP72mALXnlF5lZaW2HOv9Of/887Uvyjt37jS0bcOGDdpyY0JW34NWP7FXfn6+lrzKzMzUxqdsFIn9jMZ7p+/ZHQ0nnXQS3n77bZx66qnNnrPb7fj+++/xzDPPYMyYMbjsssuwfPnymPREBMIT/0D49jkS8dDY4xFovh/ehPsWWm9a4+cgWP4mT5v+KKgfYqAp/cSTwdC/r/5+ZgD176Q+5oI9x0dj++GIj3g79+lvW29sX7Cef/557N69Gy+++GLQdRQWFiI3Nxe5ublB16GXkZGBF154Ad999x3+97//YfHixRg2bFhY6m7J4u24ExF5wh6yREQEILQEa6AkSdKWExIScNZZZwVVTyBfTEOlKIphXf/lNdb707ZtWwwaNAhbt26FLMvYsGEDLrnkEiiKoiVkMzIytC+B+oSsfhxZ/XAFo0aNahYTkdjPWL93kTJgwACsWrUKW7duxZo1a/Dtt9826wUJqD155s2bh/feew9Lly6N21sivcV/o3DscyTiQf9jU9P98CbQH6lC0Vo/B8Ewm/37etK0d2YgxzZQodTtcrm0ZW/jrsfz9gMRT+e+phM7tbZejqmpqbjooouisq1wjkcbaa39uBNR68GELBERRZ0+aZCUlGSYXTzaamtr/SrXtAebfh/iYX9GjRqljUP5/fff45JLLsGePXu0XmNDhw7VEqz9+vVD+/btUVZWhuLiYhw8eBA9evTwOlwBEJn9jIf3LpJOP/10nH766fjrX/+KgoICbNiwARs2bMD333+PY8eOaeXy8vIwa9YsLFmyxGNd/iRlGidk81c44r+pUPY50jEWyCRV+p613oTjuLT2z0Eg/H3fm8ZkJHs063vtBtKb2eVyGfbHn/Ga43H7wQjnuS9YjbebA2ovaV9j33vy4YcfYubMmbBYLNi6dWtcjQNOzfG4E1FLwSELiIgo6rKysrTlqqoqv7+AR0JhYaFf5fbt22dY7969u7YcD/szcuRIbblx3Fh971f9BDiCIGDIkCHa+saNG1FbW6tNHJOcnIxzzjmn2TYisZ/x8N5FS9euXXHNNdfgueeew/r167FkyRJ07txZe/7bb7/FgQMHDK/R91LW96L0RJ/o8Ec44t+bQPc5EvHQo0cPbbmwsNDviboaJ8NzJ9zH5UT6HPjirjelO01nfQ826eIP/bi8TT8L3uzfv9/QQzXYmd5jvf1QBXPuC5WiKIZb1/v37x90D+G8vDwAQO/evZmUi3M87kTUkjAhS0REUTd48GBtWZZlQ+LQm02bNmHOnDl45ZVX8PHHH/vdu8+bbdu2+dXDTT85VufOnQ1fkONhf/r164fs7GwAQEFBAQoKCgwzc+uHKWi6vnHjRvzwww/aWH7Dhg1ze7t2JPYzHt67cNq5cydWr16N+fPnY+3atR7LiaKI888/H//4xz8MjzdNMuknoPInSbd3796A2huO+A/nPkciHs444wxt2eVy+VVnUVERfv/9d4/Ph/u4tLbPQSh+/vlnQxLRE/342JmZmejatWvE2nT66adry0ePHvX79u3vv//esB7srdOx3r4/wn3uC9WhQ4cMn4dQxhFtTPDx1vf4x+NORC0JhywgIqKoGzBgALKyslBcXAwAeOONN9zeIt/UwoULtSRjRkYGLr300pDbcvToUXz99ddet19VVYUPPvhAW286Zlsk90cQBL/HDxw1ahTefPNNAOoX8ca6O3bs2GxGa30P2E2bNhkmyPHU9kjsZzzFQji8/PLL+OyzzwCoSTZf7erbt69hXZ/oA2AYV9GfhMV///tff5sKIDzxH859jkQ8dO3aFSeddJI2ruCyZcswYsQIr/W98847Xp8P93FpaZ+DQM5LgSotLcUXX3yBSy65xGOZ2tparF69WluP9H4PGTIEycnJqKurAwAsXboUTz75pNfX1NfX4+2339bWBw4ciMzMzGbl/HkvI7n9cAn3uS9U+tvWgdCSao09Jfv37x9SmyjyeNyJqCVhD1kiIoo6k8mEyZMna+sbNmzAyy+/7PU1b775pqHH5/jx48P2BW7u3LkeZ+h2uVz429/+pt1ybDKZcOONNxrKRHJ/9D1VfY1DqR+24O233zaMH9tU9+7d0aVLFwBqUu7jjz8GoPZeGjVqlNv6I7Gf8RYLodK/dz///LPXnmIADM+Loths9m39F8GCggJ88803Hut69913sXnz5gBbHHr8h3OfIxUPU6ZM0Za/++47vPXWWx7r27JlC5YuXep1m+E+Li3tcxDIeSkYTzzxBEpKStw+pygKHnvsMe15i8WCG264Iext0EtLS8P48eO19dWrV3tNsiuKgnnz5hmGX2j6uWnkz3sZye2HS7jPfaFqOrFTsD0ljxw5op3/2FMy/vG4E1FLwoQsERHFxA033GC4UF6wYAFmz56Nw4cPG8qVlZXhqaeewrx587THsrKyMHXq1LC1pbi4GBMmTMAPP/xgeLygoAC333674YvjnXfeiW7dujWrI1L7o5+oRj/pljtDhw5FcnIyAOOMyE2HK9CXb9TY82rQoEFo166dx21EYj/jKRZCddlll2m38yuKgtmzZ+Pdd9+Fw+EwlHM4HFi5ciUef/xx7bFLL73UMBQAAJx33nnaMQWABx98EF999ZWhzNGjR/HUU0/hkUceAeD/LPWNQo3/cO9zJOJhzJgxuPDCC7X1xx9/HM8884xhki9JkrBq1SpMmTJFG77Dk0gcl5b0OQjkvBSM4uJiXHvttYahMgDg8OHDuPvuu/F///d/2mO33HKL32Mah+Kuu+7ShoUBgAceeADPPfccKioqDOUOHjyIO+64AytXrtQeGzp0KK666iq39fr7XkZq++ES7vNAqPTjiFqtVvTp0yfkevxJzLlcLtTW1rr9Tz9+tacytbW1Eet9fiKI1XEnIgoGhywgIqKYsFqteP755zF58mQUFBQAAD744AP83//9H3r37o327dvj6NGjKCgoMCRH0tLSsGjRIsOs06EYMWIENm/ejKKiIkyePBldunRBTk4OKisrsWfPHsMXo0svvRR33nlnVPenX79+OHLkCABg+fLl2Lx5MzIyMtC7d2/MmTOnWRuGDRuGL774wvC4ux6ygJqo1d+KDngeriCS+xkvsRAOCQkJePLJJzF16lQ4nU7YbDbMmTMHTz31FPr06YPU1FTU1tZi3759hnHuunfvjr/85S/N6ktNTcW0adOwYMECAOrwAXfccQc6deqErl27oqKiAgcPHtTelwkTJmD37t3Ytm2bX+0NR/yHe58jFQ9PPfUUbr31Vmzfvh2KouD111/H8uXL0b9/fyQkJGDv3r1acis7OxtFRUUe37dIHJeW9DkI5LwUqHbt2qG6uhqFhYW4+eabtZisqqrCnj17IMuyVvbCCy/En//855C256+MjAy88MILuPXWW1FWVgZZlrFkyRL861//Qr9+/ZCWloaSkpJmk1OddNJJeP755w0Twen5+15GavvhEu7zQKj0t6737ds34B+qGjUm5rKzs9GmTRuf5X/88Ue/eiPrxwVu6ssvv4zZBGwtXayOOxFRMNhDloiIYiYnJwerVq0yjBWoKAr27duHjRs3Yv/+/YbEw0knnYS3334bgwYNClsbBg4ciEWLFmm9lA4fPoxNmzZh9+7dWjLKYrFoyRdvs/VGYn/uuOMOw23IeXl52LBhg8dbpPXDFgBAly5d3PboBdz3nNX3IvQkEvsZD7EQLsOGDcNLL71kGK+xrq4O27dvx/r167Ft2zZDQmLUqFFYtmwZOnbs6La+22+/HdOmTYPJZNIeO3LkCDZv3oy9e/fC6XRCFEVMmTIFc+fODait4Yr/cO9zJOKhTZs2eOONN3DFFVdojzkcDmzfvh2bN2/WkrH9+vXDv//9b4/1NIrEcWkpn4NAz0uB6NOnDxYuXKglQRpjMi8vT0vGWiwW3H777Xj++eeDTrgEY8CAAXjvvfcM505JkvDrr79i48aNhmSo2WzGpEmT8NZbbxl6wTYVyHsZie2HU7jPA8E6fPiwdrs5ENrEThxHtOXgcSeiloY9ZImIKKbatm2L559/Hrt27cJ//vMfbNy4EYcPH0ZVVRUsFguysrJwyimnYMyYMTj//PO9JkSDdd555+Hjjz/Gm2++ia+++gpFRUUQBAFdunTBeeedhwkTJqBnz54x2Z/TTz8db731FpYsWYKff/4ZFRUVSEhIQEpKCurr6w3jDwJqQlY/SYyn3rEA0KlTJ/To0QMHDx4EoPZUajr5V7T2M1J1xsp5552HtWvX4pNPPsG3336L3bt3o7S0FA6HA+np6cjMzMTQoUMxevRonHHGGT7ru//++3H55Zdj1apVWL9+vXYbe6dOnXDOOefgmmuuCfq2ynDFf7j3ORLxkJycjPnz5+OGG27A+++/j40bN6K4uBgJCQno06cPrrjiCowbNw5Wq9Wv9y4Sx6UlfA4CPS8F6sILL8R//vMfLF++HF999RUOHz4MQRDQrVs3nHfeeZg4cSK6du0apr0JTJcuXfDGG29g06ZNWLNmDX788UeUlJSguroaqamp6N27N4YNG4arr77aMMSAJ4G+l+HefriF+zwQjKYTOw0cODDouhp7Svr7OR46dKhhyCC9wsJC7UdPT2UoeLE87kREwRAUDlJDRERERGSgn2Ro2bJlXn/coNAsWrQIixcvBgAMGTIEy5cvj3GLiICamhqceeaZUBQFL7zwAi666KKQ6otGQvbFF1/EwoULI7qN1i7cx52IyJP47VpCREREREREFAN5eXna3Sa8df3EweNORNHChCwRERERERGRTuM4om3atOEkWycQHnciihaOIUtERERERESk0ziOaDz3kty3bx9qamq09SNHjmjLP//8s6Fsnz59kJqaGq2mtVgt4bgTUevAhCwRERERERGRTktIzD366KPYtGmT2+cmTpxoWOdY2P5pCcediFoHDllARERERERE1ECSJOzbtw8AMGDAgBi3hqKFx52Iook9ZImIiIiIiIgamM1mbN++Pax15uTkYPfu3WGtc/ny5WGt70QXieNOROSJoDROIUhEREREREREREREEcUhC4iIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSpiQJSIiIiIiIiIiIooSJmSJiIiIiIiIiIiIooQJWSIiIiIiIiIiIqIoYUKWiIiIiIiIiIiIKEqYkCUiIiIiIiIiIiKKEiZkiYiIiIiIiIiIiKKECVkiIiIiIiIiIiKiKGFCloiIiIiIiIiIiChKmJAlIiIiIiIiIiIiihImZImIiIiIiIiIiIiihAlZIiIiIiIiIiIioihhQpaIiIiIiIiIiIgoSv4fVIxJzmGG5ggAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff_dt), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Paralyzable dead time')\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Non-paralyzable dead time has a distribution for the time between consecutive counts that plateaus between $\\tau_d$ and $2\\tau_d$, then decreases. The exact form is complicated (e.g. )\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = r_{in}e^{-r_{in}\\tau_d}$$\n", + "(Zhang+95, eq. 16). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSwAAAQ1CAYAAAC/RYEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3hTZf/H8U866YC2bCi70DJFhuwhDkAUFFBxoaKiqKBSF44HFw4cbAEXQ0AFFX0QEBVQhmwoMgRadilQVlu66Mzvj/56nqRJ25SutH2/rouLc859zp1vkjtJ8809TGaz2SwAAAAAAAAAcAIupR0AAAAAAAAAAGQjYQkAAAAAAADAaZCwBAAAAAAAAOA0SFgCAAAAAAAAcBokLAEAAAAAAAA4DRKWAAAAAAAAAJwGCUsAAAAAAAAAToOEJQAAAAAAAACnQcISAAAAAAAAgNMgYQkAAAAAAADAaZCwBAAAAAAAAOA0SFgCAAAAAAAAcBokLAEAAAAAAAA4DRKWAAAAAAAAAJyGW2kHAADI36lTp3TjjTc6dK7JZJK7u7u8vb1Vo0YNNW/eXJ07d9Ytt9wiX1/fYo7U+UyfPl0zZsyQJHXq1EkLFiwo5YhKz/Dhw7Vt2zZJ0ujRozVmzJhC1xkSEmJsf/311+rcuXOh6yxN5e3+OGrp0qV65ZVXJEmBgYFau3Ztoes0m81aunSpWrRooZYtW9qU53xfW7NmjerVq1fo20XeeE/MX3p6uubNm6dBgwapZs2apR1OkSnr9ysmJkb9+vVTXFyc3n//fQ0ZMqRA11+6dEnff/+9/vrrLx09elSJiYmqWrWqGjRooH79+mnQoEHy8/MrUJ1HjhzRd999p61bt+rUqVNKT09XzZo1FRwcrIEDB+rmm2+Wm1vBvnJv3rxZP/74o3bv3q1z587Jzc1NtWvXVrt27TR48GB17NixQPWVtJiYGC1cuLBAf2P8/PPPevnllyVJX375pXr27Flc4QEoQ0hYAkA5YzablZqaqtTUVMXGxioiIkK//PKLPv74Y4WGhmrYsGGlHSKAci4iIkJvvvmmduzYoa+//rq0wwEctnPnTr355psKDw9X//79SzucIlPW75fZbNbrr7+uuLi4q7p+9erVeu211xQbG2t1PDo6WtHR0dq+fbs+++wzvfvuu+rdu7dDdU6fPl2zZ89Wenq61fHIyEhFRkZqzZo1at26tT766CM1adIk3/oSEhL08ssva/Xq1VbHU1JSdOTIER05ckQ//PCDBg0apPHjx6ty5coOxVlSsn+k+uijj+Tt7V2ghOX69eslSV5eXhXmh0IA+SNhCQBlUHBwcJ69I1JTU5WQkKATJ04oMTFRkhQbG6vx48frwoULevrpp0sqVAAV0ODBg5WWllbaYQAFcvbsWd1///0ym82lHUqRKg/366OPPrJJ5Dlq1apVCg0NVUZGhnGscePGqlGjhqKiohQVFSVJOn/+vJ588knNnDlT119/fZ51Tpgwwap3spubm0JCQuTl5aUjR44oJiZGkrRv3z4NHz5cS5YsUWBgYK71paSk6JFHHtE///xjHPPx8VFwcLAyMjIUHh6uK1euSJKWLVumM2fOaM6cOfLw8Cjw41Fcli9frldffVWS5O3t7fB1GRkZ+vvvvyVJXbp0car7BKB0kbAEgDJoxIgRDg2FSk1N1ZIlS/Thhx8qJSVFkjRjxgx1795d1157bTFHCaCiIlmJsig9Pb1MJ/VyU5bvV2ZmpiZOnKh58+Zd1fWRkZF65ZVXjGRlcHCwJk6caDVNxZYtW/Tqq68qKipKGRkZCg0N1a+//qpatWrZrXPVqlVWycp+/fpp/Pjxql69uqSs97+lS5fq/fffV3Jysi5cuKAxY8boxx9/lMlkslvnxIkTjWSlyWTSmDFj9Oijj6pSpUqSpMuXL2v69OlGj/Xt27frk08+MabycAZX+76/e/duo+crQ8EBWGLRHQAoxzw8PPTAAw9o0qRJxrHMzExNnz69FKMCAKlevXo6dOiQ8Y/5K0vGmDFjjMec+SvhzC5duqRHHnnkqpOVkjR58mQlJSVJypqfd/78+TZz6nbp0kXffPONMXIlMTHRmOc1p7S0NE2cONHY79Onj6ZMmWIkKyXJ3d1dw4YN04wZM4z5K/fv36/ly5fbrfPw4cP67rvvjP3nn39eTz/9tJGslKQqVarotddesxohs2jRIp06dcqhx8GZZQ8Hl+TwcHwAFQMJSwCoAG666SZ16dLF2N+8ebMuXbpUihEBAADYt3LlSt1xxx3avHnzVdcRHR2t3377zdgPDQ1V1apV7Z5bu3Ztvfbaa8b+0qVLbea7lKQ//vhDp0+flpQ1DHz8+PFycbH/lbpHjx5W84bPnTvX7nkLFiwweoA2adJEjz76aK73afTo0QoODpaUlTxduHBhrueWFdkJy6CgIH64AmCFhCUAVBB9+/Y1tjMyMnT48OFSjAYAAMDakSNHdM8992js2LGKjo6WlDVE+plnnslzDkh7fvvtN2NBnMqVK6tfv355nn/zzTcbCc309HS7c2auXLnS2O7WrZvq1q2bZ52WCcv9+/crMjLSqjwzM9MqqTpkyJBcE6CS5OLiorvvvtvYt7y2LDp37pwOHDggSerVq1cpRwPA2TCHJQBUEDl/tT5//nyu56ampur333/X5s2btWfPHl26dElxcXHy8PCQn5+fmjRpos6dO2vIkCFWw6ByGj58uLZt2yZJ+uWXX9SwYUPNnj1by5Yt07lz5+Tv76/g4GANHTpUAwYMsLl+8+bNWr9+vXbu3KmzZ88aq4NWqVJFdevWVceOHTVw4EA1b978ah4SDRw4UOHh4ZKyhiF9/vnnDl339NNPG19k7rrrLk2YMEFLly4t1FxSo0ePznVFzcTERP3666/asmWL9u/fr5iYGMXHx8vLy0tVqlRRSEiIunXrpsGDB8vX17dAtxsZGakFCxZo/fr1Onv2rDw8PFSnTh316tVLgwcPdmhl04LYvXu3VqxYoa1btyo6OlqJiYkKCAhQ48aN1atXLw0dOlQBAQFFeptSVk+U5cuXa+XKlfr3338VFxcnf39/hYSEaOjQobrllltynVssLxEREVq2bJn+/vtvnTlzRvHx8fLz81P9+vXVo0cPDR06VHXq1HG4vuJ4rs+cOaPvvvtOGzZs0PHjx5Wenq7atWurW7duuu+++4zeOoWV22vgwQcfNLYHDx6sDz74QJJ06tQp3XjjjUbZmjVrbN6nbrjhBmNBjD179sjT01PHjh3TkiVLtGHDBp05c0Ymk0m1a9dWjx49dP/996t+/fpWdaxevVo//vijDh48qPPnz8vHx0ctW7bU7bffroEDB8rV1dWh+1dabbeoTZ8+3Rju2qlTJ5th4Vu3bjWes379+mnatGmSpHXr1mnZsmXas2ePzp8/Lzc3N9WtW9foRdawYcNcb9OybQwbNkxvv/22UlJS9MMPP+iXX37RiRMnFB8fr6pVq6p169YaOHCg+vXrl2fiZty4cfrpp58kWber3OTV3iwfE0uW5+f1Hp2XkJAQSZK/v7+2bt2qs2fPasqUKVq3bp2SkpJUvXp1tW3bViNGjFCbNm2sri3sZ3Fh79elS5e0dOlSbdiwQceOHVNMTIy8vb1Vs2ZNde7cWYMGDdI111xT4MckLxs2bFBYWJixX7duXb3zzjvq0aOHfvzxxwLVZdk7s1OnTnJ3d8/zfFdXV3Xt2lUrVqyQJP3555+68847jXKz2aytW7ca+927d883hpCQENWoUcP4m2vt2rV66KGHjPKDBw8aC/RIWb0y82N5u6dPn9bBgwev+u+gnLZt26bly5dr165dioqKUlpamvz8/BQcHKzevXtryJAhqlKlitU1ln/rZYuKijLaviR9/fXXdlf/Xr9+vTG/al7DwTdv3qwVK1Zo9+7dOnPmjFJSUuTn56datWqpY8eO6tu3rzp27FiYuw7ACZGwBIAKIudk6F5eXnbPW7ZsmT7++GOjZ0POOhITE3X69Glt3LhRn376qV566SXdf//9+d5+ZmamnnrqKW3cuNE4du7cOZ07d87mD/R9+/bpjTfe0L59++zWdeXKFZ07d067d+/WV199paFDh+qNN94o8MqSd9xxhz788ENJ0t9//61Lly7lOlwsW2xsrNatW2fsO7L4UWHMmzdPs2bNsjs0LT4+XvHx8YqKitLatWs1ffp0TZgwwao3bV5+/PFHvfPOO0pOTjaOJScnKy4uTgcPHtScOXP04IMP6oUXXnA4qZObS5cu6T//+Y/dHivZ7WDr1q2aPXu2QkNDdd999xXq9izt379foaGhOn78uNXx8+fP6/z589q4caO+++47TZkyxeE6k5OTjUR1ZmamVdmFCxd04cIFhYWF6fPPP9fIkSM1evTofBOixfFcz507V5MnTzYW3cp24sQJnThxQj/88IOeeeaZPH94cCaff/65pk2bZvN+Fh8fr4iICC1evFiTJ0/W9ddfr5iYGI0bN05//fWX1bmxsbHatGmTNm3apF9++UWzZs3K872jNNuuM4iJidErr7yiP//806Ysey7Mr7/+Ws8++6xGjhzpUJ1RUVF6+umnjZ5V2aKjoxUdHa01a9aoVatWmjx5cp6J0LImOjpa99xzj86cOWMcO3XqlE6dOmUzDLi4PosdNW/ePE2bNk2JiYlWx1NTUxUbG6vw8HAtWLBA/fv31zvvvGOTxCqsSpUqafjw4Ro1alSBf4jLdujQIWO7VatWDl3TvHlzI2G5d+9eq7KoqChdvnzZ2G/durVDdYaEhBgJy5x1Hjx40Nh2d3dXs2bN8q2vcePGqlSpkrFq+N69ewudsDx58qRee+01m8Sj9L/PtE2bNmn27NmaMGGCbrrppkLdXrbs4eDe3t7q0KGDTXlsbKxCQ0ONVcTtxbV//37Nnz9fXbt21SeffKJq1aoVSWwASh8JSwCoICz/cJdse1xK0pw5c6wmk5eyJqkPDAyUi4uLLl26pKNHjxpDrK5cuaK3335bVatW1S233JLn7c+cOdMqWZnN1dVVt956q7G/fft2Pf7448Yk+ZIUEBCgRo0aycvLS5cvX9bRo0eNcrPZrB9++EEeHh5644038nkUrA0aNEiTJk1Senq60tPTtXLlSj3wwAN5XrNy5UojWdKoUSO1b99eklSrVi2HekZk27lzp5EoNJlMdnupTJgwwar3k8lkUsOGDVWzZk2ZTCadO3dOJ06cMBJmcXFxevbZZ/Xtt9/muwr8H3/8ofDwcKNnQ7169VS3bl1duHBBR48elZQ1JG7OnDk6c+aMJk+efFU9EKWsXpwjRoywGgrn4eGh4OBg+fj4KDo62kgmxsfH66233tLx48f16quvXtXtWfrnn3/08MMPW7WnKlWqqGnTpsrIyFB4eLiSk5O1detWPfbYYw7VGRMTo8cee8wqoe7q6qpmzZrJz89PMTExioiIkNlsVkpKimbMmKGIiAhNnjw518RvcTzXEydO1Jw5c6yONWzYULVq1dLFixd15MgRpaWl6ZNPPnH4y3xeLF8Dlq/1Nm3ayM/PT5IK1Ztz2rRp+vLLLyVlfbFv3Lix/P39dfz4cZ07d06SlJSUpLFjx+q///2vQkNDjeRAzZo11ahRI12+fFmHDh0y2v3GjRvzXGm3NNuuM7hy5YpGjRql3bt3S8r6oSskJESurq46duyYMRdyWlqaPv74Y1WrVi3fH3Hi4+P16KOP6tixY5KyEhUhISHKzMzUwYMHjeT6/v37de+99+rbb78t9qRlgwYN1KNHD6WkpGj79u3G8euuu06enp7GOYX1wgsvWCUrswUFBVm9Bovqs/hq7pfZbNZrr71m05uxYcOGql27tpKSkhQeHm48T6tWrVJERITmz5+vGjVqXM3DYsXf31+PPfaYHnzwwVxX6XZEamqqMddkdvyOsPzbKDo6WleuXDEWv8n5o5ejbcKyzpMnT1qVWdYZGBhoLNKTF5PJpLp16xqf1SdOnHAojtwcPHhQDz30kNWPZe7u7goODpa3t7eOHz9uJFxjYmL0zDPPaNKkSerfv7+krPd4Dw8PnTt3zhi14unpqeuuu86oL/szwFJ6ero2bdokSeratavND0dpaWl65JFHtH//fuOYv7+/GjduLE9PT507d06RkZHG32SbN2/W8OHD9dNPPxntG0DZRsISACqAtLQ0Y+iclPXlPWfiICIiQp988omx36lTJ7355psKCgqyOi8uLk7z58/XrFmzjOTJp59+mm/CMnuepeHDh+vhhx+Wv7+/Dhw4oF27dhkrc6akpOiVV14xkkt16tTRu+++q27dulkly9LS0rRixQq9//77xh/Y3333nUaPHl2gX9Zr1Kihnj17Gj2Hfvnll3wTlv/973+N7aFDhxrb3bt3d2h4mCR9//33VgmdZ555xmYo1IYNG6wSWP369dMrr7xiM7w4OjpaM2fONFYYzczM1KxZs/TZZ5/lGUN2Artp06Z6++23rXo2hIeH6/XXX9c///wjSfr111913XXXXVXvnZSUFI0ZM8ZI+Hh6eurZZ5/VvffeK29vb+O8EydO6MMPPzR6sc2fP1/NmjXTXXfdVeDbzJaQkKBnn33WaE+VKlXSyy+/rDvvvNP4YpSUlKQ5c+Zo5syZVl+KcmM2m/XSSy8ZyUoXFxc9+uijevTRR62GA587d07Tp0/XkiVLJGW1/2nTpmns2LE2dRbHc7169WqrZGVISIgmTJhglRg/evSo3njjDW3bts2h+54fy9eA5VDAF1980e5QwILKTlYOGTJEzz33nJHMMJvNmjt3rpHgSUpK0uDBg5WQkKBatWppwoQJVnOjHT58WKNHjzYSZtnvHZUrV7a6vdJsu84iuze5t7e3nn/+ed19993Gayc9PV0///yzMbxbkiZNmqTbb789zx7Z2XMAurq66qmnntKjjz5q9PhPSEjQjBkzjMVJLl68qLFjx+r7778vdC/vvNx+++26/fbbbYaNf/DBB0W2CEhsbKy2bdsmLy8vvfjiixowYIDMZrO2bNli1Uu7KD+Lr+Z+ffHFF1bJyhtvvFEvvPCC1fQgycnJRq/0K1eu6MiRIwoNDdW8efMK/Tzdcccdhbo+2/nz540fJiQ5nEzN2dv8/PnzxjQTllPpuLi4ONwz3fK2c07HY7mf/beQo3FmJyzzmuInP0lJSXr66aeNv6VcXV01atQojRgxwuo9cfXq1Xrrrbd07tw5ZWRk6LXXXlOHDh1Uo0YNvfTSS5Ksp36oXr26vvrqqzxve9euXYqPj5dkfzj4kiVLjM8mLy8vffjhh7rpppuspoo4f/68Jk2apKVLl0rKmgP122+/1cMPP3x1DwgAp8KiOwBQzqWlpWn8+PFWPYSGDx9uc95XX31l9NaoV6+ePvvsM5svSFLWr+TPPPOM1RxMERERdoet5TR8+HC9/vrrqlevnnx9fXXdddfpiSeeMMpXrFhhxOnq6qrPPvtM3bt3t+nZ5+7urjvuuEPvv/++cSwzM9PukKH8DB482NjevXu3Te8HSydOnDB6Grm6uur2228v8O1t2bJFb731lrHfv39/PfXUUzbnWc6n2a5dO02ZMsXuXIi1atXSW2+9pZtvvtk4tmnTJmPF0bw0a9ZM33zzjc0wrODgYM2fP9+q597kyZOtho476quvvjKGfXp6emrOnDl69NFHrRI+UlbvlxkzZujee+81jr3//vtWw+8Kav78+UZvJpPJpE8//VT33XefVS8Ob29vjR49Wu+9955DdS5btswYwmYymfTJJ5/ohRdesJm7sGbNmnrnnXf0/PPPG8c+//xzmx462cezFcVznZmZqY8++sjYb9q0qRYtWmTTi7dJkyaaM2dOgXoGl7b77rtP77//vlXPK5PJpEceeUTdunUzjiUkJKhy5cpatGiRzUIOTZs2tUoIXblyRbt27bK5rdJsu87E3d1dc+fO1QMPPGD12nFzc9Odd95p1Zv0/PnzxntkfiZOnKjRo0dbTU/i6+urcePGWb1u9u/fr19++aXwd8RJfPjhh7r//vsVEBCgqlWrasCAAbrtttuM8pL4LM5NZGSkpk6dauw/8MADmjlzps1cxl5eXhoxYoS+/PJLY17Ibdu2GUkjZ5A953U2R4es5/zhwvJ1bFmnj49PnnOsWrIc0p4zLstejTlv29E4c9ZZEPPmzdOpU6eM/Y8//ljPPPOMTSw33XSTZs+ebfQ2TUhIKPQK5ZbT69hbcMdyQaFnn31Wffv2tXnMa9Sooffee089e/Y0jq1atapQcQFwHiQsAaCcyczMVHx8vA4ePKhFixZpyJAhVl8imjZtapOwNJvNVvMWjRgxwuZLeU455847e/ZsnuebTCaNGjUqz3O2bNlibN90001WvbTs6d27t/HHsyMx2NOnTx/5+/sb+8uWLcv1XMveld27dy/wcLXjx4/r2WefNYYvtWzZ0u5CEQkJCVbDjZ944ol8vxhZrn6amppqNYl/bj788EO7w7SkrC+k7733npEsjo+P1/Lly/Ot01JqaqrVF5pHHnkkz0nxTSaTXn31VeNxTUxM1OLFiwt0m5Ysn8vBgwfnmZi74447HJqTy7LHyMCBA+0uFmXp8ccfNxbSyMzM1Lx586zKi+O5DgsLs0qMvvnmm7l+EXZ3d9f777+f65y2zqRy5coKDQ3NtTzn8/fAAw/YLMCTrVWrVlav35xDKku77TqT22+/Pc8pJoYMGWI1/DJ7SGh+dQ4cODDX8pEjR1rd5s8//+xIqE6vadOmec47WxKfxXmZP3++kSytX7++xo0bl+f51113ndWiWtk9Y51Bznl7HR0inHNYsmU9ltuWf3sUpM7U1FSrMsv9oqrTUZmZmVbvU7feemuen2mtWrWyet3+/vvvV3W72bJ//AsODrb7I132VB+S8lwh3mQy6aGHHlKXLl101113Fdn8mgBKH0PCAaAMeuWVV65qReoGDRro008/tUlOmEwmrV27VhcuXFBkZKTd3hw55RxelT35e26CgoLyHT714Ycfavz48Tp58qRDPQ1cXV0VEBBg9KLL+QXFER4eHrrtttuM5MQvv/yi0aNH2z3XMgFW0MV24uLi9MQTTxi9KapVq6aZM2faTRT5+vpq165dOnfunE6ePKm2bdvmW3/Oxza/56NTp05q2bJlnucEBQWpU6dOxqqof/75Z4GGue7YsUMXL1409h15zDw8PHTrrbcaw5nXrVvn8EIelo4dO2aVtLv77rvzveb++++3u7BKthMnTljNBetoG7jjjjuMuRQte5RIxfNcW95Go0aNrOYRs6dmzZq66aabnL4XW7du3fJ8X7C3wnheatWqZfRGyx6WmK00266zyW9hJw8PDzVs2NBIVOZ8LO3JucBMTiaTSffee6/RW3PHjh26fPlykS/sUtI6deqUZ3lJfBbn5Y8//jC2b7vttnxX1Zay3t+yf8g5cuSIIiMjc/2hoCRlJ16zOTpUPed5lj3YLRf7crR3pSSreSlzxnW1dVrGmbNOR/37779WCW7LXuK5efDBB9WoUSM1btxYjRs3vqrblbIS69nvGfZ6V0pS7dq1jak7Pv30U7Vr1y7Xof09e/a06mUJoHwgYQkAFUCVKlU0ePBgjRkzJs8v/NWrV883qZiSkqJ9+/bZJHZyrpSck6MrWPr6+uabSMvMzNThw4e1bds2q+FajgyDtmfIkCFGwvL48ePas2ePzfDZHTt2GMPV/f39reYDy09aWpqeeeYZI4Hm7u6u6dOn2+1RkM1kMqlWrVr59uJMSEjQ3r17bXqG5vd8ODrfZseOHY2Epb1hs3mxPN/d3d3hBQosV17ds2eP0tPTHVqIwNKOHTuMbQ8PD6OXY146duwoNze3XL/85bz/OYdJ5sby/pw+fVpnz55V7dq1jWNF/VxbLq5hb9VVe7p06eL0Ccv8Vs/N2Tspvy/Tlj2ucj6Gpdl2nU1+Pd0l6+Gp+fX2qlOnjkN1Ws57mpaWprCwMLvz3JUlLVq0cOi84vwszk1UVJRV8sqRZKmU9bq0XLF6165dTpGwzJn8c/Tvg5znWSZtLZOEBXmcLT9TciaBr7ZOyzgdSSzbs2fPHqs6HPnBLDg4uFCLp2XLbzi4lDWaYPPmzZKyFgbq27evbrjhBvXq1UvdunUrkkWeADi3sv0XFABUUMHBwblOzu7m5iYfHx/5+vqqQYMGatWqla699toCD/m8dOmS/v33X508eVKRkZGKjIzUkSNHdPLkSbsJHcvJ7e2pWrVqgW5fypoM/sCBAzp+/LgRw7Fjx3T06FG78ynmF0NuWrVqpeDgYOPX/mXLltkkLC2TRLfeeqvNsLG8vP3221bD3d944w2HE0nZzp49q4MHD9o8H6dOnbL7JSe/x8LRL6OWSZ+YmBilpKQ4PLTOcphtWlqaQ0mKnFJSUhQbG+vw4gbZLOdxc3TlVQ8PD9WvX9/o0ZFTzmHDuX3JciQ2y4RlToV9ri2H0TVq1MihmJo2bepY8KWoIAtqSdbzxtmT16r3pdl2nY3llBm5sUy65Pfe4+iPV3Xq1JGXl5fxXm/Zrsuqq/kcLOrP4tzknL/5hRde0AsvvFDgegozh2ZRyvk3j6PDpvMaSm5ZZ0FGdFjeds7PT8sfWgpSp+W5V7situXc5oGBgQX6u6awshOWvr6+uf49NHToUK1cudKYJiEpKUnLly83pqdp1qyZunXrpl69eqlz585XnbgF4LxIWAJAGTRixIgCD0l2hNls1rJly7Rw4UKrX97tyasnmj35JQ8s7dq1S59//rk2btxoNVwqJ5PJJJPJdNU9SiwNGTLEmE/y119/1SuvvGJ8CU9NTdWvv/5qda6j5s6da6wULWUtPOTosOrU1FQtXrxYixcvVkRERJ7nFvT5cHRy/5znxcbGOjx3Z1EtOhIXF1fgpM+lS5eM7YK0vdzm9JSK7v5YLrKQrSifa8v77uPj41BMZWGobUG/lOeVkMxPabbdcePG6aeffsr3vNGjR2vMmDFXG5rDCjKvniPyeo3l5OvrayQsLYfol1WOvh6L87M4N4VZuKU46imsnO0sISHBoetynmeZsLesMzExUWaz2aH3Gcs6c/4AYLnvaIz51Xk1dRRkwZ/CSk1NNXpOdu/ePdcfFD08PDR79mxNnjxZ3377rU07j4iIUEREhObPn6/KlSvrlltu0ZNPPqm6desW+30AUDJIWAIAJGX94frMM8/kutJ25cqV1axZM7Vq1UqdOnVSw4YNNWjQIIfrd3Rupo8//lhffPGF3TJPT081btxYLVu2VPv27dWrVy/de++9ioqKcjiO3AwaNEgff/yx0tPTdeHCBW3atMmYD2nt2rVGAiM4ONhq2Gde/vzzT3344YfGfrdu3Ryee/TcuXN64okn9O+//9otDwgIUHBwsNq0aaNOnTrJxcVFjz32mEN1F0TO3joFSV5Yfrnw8/NzaFi2PVfT6yOvRPfV3pbl/fH09Mx3bsjc5EwOFvVzfTX3vSR71lytwiQgC6o02255V5Ah8pY/Rl1tz0Fn4sjnYHF/FucmZzLouuuuu6qee84wHFzKmtvTxcXFaEMXLlxw6DrL80wmk1XPbssf6zIyMhQTE+NQr9nz588b2zl/wLAcLVOQpLxlnFc7NLok31Mt7dy5U0lJSZKU77yTPj4+ev311zVy5Ej9+uuvWrNmjXbt2mXTXuPj47VkyRItW7ZMkyZNKtC0PQCcFwlLAIAk6dVXX7X6ghQcHKxbb71Vbdu2VdOmTW3+IM45PLYoLFy40CpZWa1aNd1+++3q0KGDQkJCFBgYaPOFryh6lmTfVq9evbR27VpJ0ooVK4w/pC1Xxx46dKhD9R06dEjPP/+88WWpQYMGmjx5skMT/6enp2vMmDFWCax27dqpX79+atOmjYKCghQQEGB1zaZNmxyKK1tiYqJD51n2ljGZTAXqhWGZmKtXr57VCtvFzTJORxYByZZXDxfL++Pl5VUk96c4nuvKlSsbvSwdve8F6dlTEZRm2y3vHG1rZrPZqv3m1YvMkWTm1SzKVhpK67M45w8p//nPf65qKgRn4eHhoTp16hg/aOYc8p4by2HSdevWtfrRoWHDhjbnOpKwPHXqlLGdc25dy2k7Tp065VCvTbPZbPVDraNTf+Rk+ZwX5HOysByZvzKnWrVq6eGHH9bDDz+shIQE7dy5U1u2bNHff/9ttRjelStXNHbsWK1atYqelkA5QMISAKA9e/bot99+M/bvvvtuvfXWW3n2BinqYV+pqamaPn26sd+qVStjmE9eimroppQ11Ds7Yfnnn38qIyND6enp2rhxo6SsSekd6cly4cIFjRo1ykgK+vj4aNasWQ4P2/rjjz+M1XEl6dlnn9VTTz2V5zX2hhnnxfILVF6OHDlibNevX79Aq5ha9kY5ffq048EVAcsvlqdOnXJo7k2z2Wz1ZTUny/tz+fJlJSQkFGi4uT3F8Vw3bNjQSFgePnzYoTgc/TJfUZRm2/3ggw+M6SnKI0cTbJGRkVZz/+VMylgmdRz54SomJsaxAEtRaX4W55zq48yZM2U6YSllLYKVndg7ePCgQ9ccOHDA2M65SFJgYKD8/f2N9+ADBw44tFCN5W3nnMO1VatWxnZycrKOHTuW74JuR48etUrAO7qYU06Wz3lUVJTS0tIcmgdy8eLFqlOnjurXr6969eoVeO7I7IRl8+bNHZ5ixpKvr6969+5tLMJ18uRJffzxx8ZrJyUlRYsXL9bYsWMLXDcA5+L4tw4AQLll+Wu3u7u7Xn755XwTU5Z/1EtXvzJptrCwMKtEzNixY/NNVh47dsxq8Z3CDhm8/vrrjd5ssbGx2rFjhzZt2mTcRu/evfPtTZGSkqKnn37aSHK4uLjok08+KdCiJpbPR61atTRq1Kh8r8n5ZSy/58MySZYXy9587dq1c+gae+fHxMRY9YLIy6pVq/TWW2/pyy+/1MqVK69q9XfL205PTzcm7c/LoUOH8uxlYllnZmamQ3VK0rZt2zR+/Hh99tln+uWXX6x6txbHc20Z57Zt2xx6/Hbu3JnvORVJabbd8u7w4cMOJdm2bt1qbNtbwdgySeJIr8385oZ1BqX5WdysWTOrz1zLheLycunSJY0bN07Tpk3TDz/8UCRTtBSVTp06Gdtbt27N97HJyMiwanddunSxOcdy9XpHRjYcPHjQavh2zjqbNWtm9XdF9tyOebHsgRsQEHDViWXL11RaWpr27t2b7zWRkZEaP368Ro4cqf79+1v9qOmIyMhIHT16VJKMhKM9Fy5c0B9//KHPPvtMEydOzLPO7BEslonesvB6B5A/EpYAAKv5lby9vfPtNZaWlqZvv/3W6lhhv5hbxiA5NifT119/bbVf2OHh7u7uGjhwoLG/Zs0ao8el5NhiO6+++qpVMnDs2LHq06dPgeKwfCyqVauW7xfWy5cv2yzSkd/zsXbt2nzn9Nq5c6f27dtn7N988815np9Tly5drFZVnTdvXr7XpKam6pNPPtE333yjjz76SLNmzXJoGH1OwcHBVl9ecrYVe7777rs8y1u0aGHVG2T+/PkOxTJ16lQtXrxYkyZN0oQJE6yGGBbHc92vXz9jOzo62qrHlj2JiYlatmxZvvejIEprbrSiUpptt7xLS0vTjz/+mOc5GRkZ+uabb4z9Xr16ydvb2+ocy6kSHEmarFixIt9zCtKDvDgU12exI/fLxcXFanjuTz/95NAIhgULFuinn37Sp59+qtdee82perLedNNNxmswOwGWl99++83one7m5qa+ffvanGN57M8//8x3VXTL5ycoKMgmuWgymaw+W5csWZJnYjUzM9NqIb9+/fpd9ftty5YtrebU/P777/O9xvJ1VLVqVQUHBxv7jrSz9evXG9t5DQffs2ePRo8erUmTJmnOnDn59sx2dXW1+sxnxXCgfCBhCQCwGqocFxeX56qkGRkZevfdd216dVztIif2YpBkDMPOzS+//GLzRa2wMUjWScnVq1frzz//lJSVTMqrN4AkzZgxw2q+y8GDB+vxxx8vcAyWj0VERESeX4hSUlI0btw4nTt3zup4fo/FlStX9PLLL+ea2Lx06ZJeffVVY79BgwYFnsTez8/Pas7PpUuX6pdffsnzmsmTJ1sNT7733nsLdJuWnnjiCWN7/fr1WrRoUa7nbtq0SYsXL86zPldXVz388MPG/pYtWzR79uw8r1m4cKF27Nhh7N95551WX6SK47m+9tprrXoBvfvuu7kOdTebzXrnnXesVhYvCpbD78vK3IGWSrvtlnfTp0/Pc7qC6dOnW83ravm6y2Y5tDYyMlJ//fVXrvUtXrxY27dvzzeunNNGlHTbLa7PYkfv1yOPPGJsx8bG6qWXXrIalp/T3r17reZ3veaaaxxelK4k1K5d2+pz69133831PfbMmTN67733jP2+ffvaHa7ct29fY6Gc1NRUjRs3LtcfSzds2GCVBBw+fLjd8+677z4j6Xjw4EF9+umnud6nqVOnGr0HXVxccq3TEW5ublbvUz/99JNVQjGnqKgoq+f7zjvvtEpSWv4Yl1sby66/SpUqeY7a6NSpk9WPFB988EGeo2guXbpkNeqhZcuWuZ4LoOwgYQkAUI8ePaz2Q0NDrZIsUlZiY/PmzXrooYdsEoWS44u45KZ9+/ZWf5xOnTpVP/30k01CLSIiQq+//rpeeOEFmz9es1edLIwWLVoYX4SjoqKMHi+DBg3Kc3XblStXasaMGcZ+ly5d9M4771xVDJbPR1pamp588kmbYcBpaWlavXq17rzzTq1Zs8amDkeej40bN+rRRx/V8ePHrY5v375d9957r3HcxcVF77zzzlX1Pho9erTVxPcvvviiJk6caJMgi4yM1EsvvaQ5c+YYx0JCQnTXXXcV+Daz3XHHHerevbux/8477+jjjz+2Gj6ampqqRYsW6cknn3RoKOUDDzxgNefY5MmTNW7cOJt5Di9evKgPPvhAEyZMMI7VqlXLJoFdXM/1O++8Y6zofuHCBd13331as2aN1WsmOjpazz77rE2PzaJgmXjJ6wuwMyvNtlveJSUl6YEHHtCvv/5q9bq7dOmSxo8fr1mzZhnHbrvtNquhvdl69uxp9Znx4osvWvWIl7J6LH7wwQd64403JOW/QnmVKlWs3udKuu0W12exo/erdevWuu+++4z9P//8U8OHD9c///xjdV72++aIESOMxJSrq6teeeWVfO5hyRs7dqyRsI2OjtZ9991nM53H1q1bdf/99xuf997e3goNDbVbn4eHh1XZpk2bNHLkSKsfhdLT07VkyRKNGTPG+BsmODg41/eE5s2ba/Dgwcb+jBkz9N5771lNURIfH693333X6keyYcOGFWi6GXsefvhhY35Ys9ms0aNHa968ebpy5YrVeZs2bdLw4cONXrc1atTQY489ZnWOZa/nixcv2gwxT0lJMYbcd+/ePc8e6L6+vrrnnnuM/bVr1+qFF17QmTNnbM7dt2+fRowYYcTm7e3N+y9QTrDoDgBAnTp1Uo8ePYxejZGRkbr//vtVt25d1a1bV8nJyYqKirKaY9Lb21seHh7GsZxDugvK29tbTz75pD755BNJ/+u58MEHH6hBgwZydXXV2bNnbf5YrVOnjnGssDFkGzJkiFVPi+xjucmew8syGVStWjWNGzdOV65cUXp6ujIyMvKdY3PixImqXr26brvtNs2ZM0fh4eGSpP379+uOO+5QvXr1VKdOHcXHxysyMtIq8VatWjUlJCQYXx7zeyz69eun3377TZs3b1b//v3VtGlTBQQEKCoqymoOMpPJpFdeecXuXF6OCAgI0PTp0zVy5EhdunRJZrNZc+bM0fz589W0aVP5+fkpOjpap06dskpO16pVSzNmzCj0sK73339fjz76qCIiImQ2m/XFF1/o66+/VvPmzeXm5qaIiAjjS05QUJBMJlOePb88PDw0bdo0Pfzww8YX1J9++kk///yzgoKCVK1aNZ0/f16RkZFWPZ0qV66s6dOny8/Pz6q+4nquGzZsqPfff18vvfSS0tLSdO7cOT311FOqWbOmGjVqpISEBB08eNBIFmW3h6ISHByss2fPSsoaMrp9+3b5+/srKChI48ePL7LbKU6l3XbLK29vb7m4uCgmJkbPPfecqlevriZNmigpKUmHDh2yet1ce+21euutt+zW4+vrqyeeeEKTJ0+WlDVdwpNPPqnatWurfv36io2N1fHjx4367r77bh06dMgm+WbJ3d1djRs3NoaYT5w4UStXrlSlSpXUrVs3Pfnkk0X1MNhVXJ/FBblfr7zyiiIjI7VhwwZJWfMd33333apdu7YaNGighIQEHT9+3OoHQpPJpNdff13t27cv6oek0Jo0aaIJEybo5ZdfVmZmpk6dOqXhw4erQYMGql27ts6cOWOVbHRxcdG7776r+vXr51rn4MGDFRYWZvTK37Rpk/r27auQkBD5+vrqyJEjVj9s+Pv7a+rUqXkmzF977TWFh4cb07DMnz9fS5YsMYaQHzp0yGrO7jZt2mjcuHFX96BY8PX11bRp0zRixAhdvHhRKSkpev/99zV16lQFBwfL09NTJ06cMN7PJcnLy0tTpkyx+Txr1qyZTCaTzGazzGazhg8frjZt2ig9PV1PPfWUzGaz1Zzg+RkzZow2btxofD4uX75cK1euVKNGjVSzZk3j+bT8wTD7+XNk9XYAzo8elgAASdKUKVNserGcPn1aO3bs0P79+62+IF177bX64Ycf1LVrV+NYzl4gV2PkyJE2Q/9iY2O1Z88ehYWFWSUra9eurdmzZ1v1WNu9e3eRLHIxcOBAq2RD69atreZpyikpKclm+NOKFSu0fPlyrV69Wn/99Zc2bNigjRs35vkvu0eDu7u7Pv/8c6u5rrJXsN62bZsOHDhglcDq3bu3fvrpJ6vz81tE5Z577tHzzz8vV1dXmc1mRUREaNu2bVbJyoCAAE2aNEkPPvhgPo9Y3lq3bq3vv//eaphyRkaGDh06pG3btunEiRNWz1u3bt20ePFiNWjQoFC3K2Ulj7755hurnkspKSn6559/tHPnTiNZ2axZM3322Wfy8fHJt8569erp+++/t5or0mw26/Dhw9q6dauOHj1qlXRp1aqVvvnmG7uryRbncz1gwADNmTNH1apVM46dO3dO27Zt07///mskK++77z49++yz+d7vgnjyySetXkMHDx7Uli1b8hy264xKs+2WVwEBAfryyy+NYbUXLlzQtm3btG/fPuN1YzKZdNddd2nu3Ll5zuM4atQoPfHEE1Y9tc6ePavt27crIiJCaWlpcnFx0WOPPaY333zTofjGjBljDM81m83as2ePtm3b5tACK0WhuD6LHb1fHh4e+uyzzzRq1CiroeRnz5413jssk5U1atTQ9OnTrXpmOptBgwZp8uTJVj2/T548qW3btlklK/38/DRlyhQNGDAg3zrfeustjRo1ynify8zM1IEDB7R9+3arZGVQUJAWLlyY78rfvr6+mjdvnm644QbjWHJysnbv3q3du3dbJSv79OmjuXPnGr3oCyskJERLlixRhw4djGNJSUnavXu3tm7dapWsbNSokRYsWKCOHTva1FO9enWrdpCcnKxt27Zp165d2r17t9Gz12QyqWfPnvnG5e3trfnz51t9fmdmZuro0aPasmWLtm3bZpWsrFu3rmbMmOHQ8wegbKCHJQBAUlYPsPnz5+u3337T8uXLtX//fl28eFFms1mVK1dWvXr11KJFC918883GH5p9+vTRr7/+KilreHF0dLTdOZ8cld2bb8CAAVq8eLF27dql6OhopaamytvbW7Vq1VJISIh69OihAQMGyNPTU6dPn9Y777yjzMxMxcXF6ffff9ctt9xSqMeiatWq6tChg7FKqiOL7RS1OnXq6IcfftCyZcv022+/6cCBA4qNjZXJZFKVKlXUsGFDtWrVSgMGDDDmgerTp48x59ny5cv1wgsv5PmF5vHHH1f37t21cOFCbdu2TefOnZO3t7caN26sG264QcOGDbPpQXG16tWrp6+//lrbt2/Xb7/9pu3btys6Olrx8fGqVKmS6tatq2uvvVYDBw60O/yzMKpUqaKvvvpK69ev108//aSwsDBduHBBPj4+atSokQYMGKB77rnHZp63vAQEBGjatGk6cOCAli9frq1bt+r06dO6fPmy3N3dVatWLbVp00YDBgxQ79698xxOX5zPdadOnfT777/rhx9+0B9//KHw8HAlJyerevXqatu2re655x517dq1wCu95qd9+/ZatGiRPv/8c+3evVuxsbHy9PSUj4+PUlJSCvRYl7bSbLvlVbt27bRixQotXLhQv//+u06ePKn09HTVq1dPXbp00bBhwxxe+Tg0NFS33Xabvv/+e23atMlIYNSuXVtdu3bVXXfdpRYtWjgc2y233CIfHx/NmzdPBw4c0OXLl+Xl5VViC0kV12dxQe6Xq6urxo4dq/vvv18///yzNm3apKNHjxrJ0qpVq6pFixbq06ePbr31Vod+6Clt/fv3V5cuXfT9999r7dq1OnHihOLi4uTt7a2goCD17t1bw4YNc7hnnslk0tixYzVo0CD98MMP2rhxo86ePavk5GT5+fmpRYsW6t+/vwYNGmQ1t2NeKleurFmzZmnz5s1atmyZduzYoQsXLigjI0PVq1dXu3btNHjwYJupA4pCvXr19M0332jDhg1atWqVdu7cqfPnzyslJUUBAQFq1aqV+vXrp1tvvTXP+/Of//xHjRs31k8//aSTJ08aj0dqaqqRsMy52E9eqlatqq+++krbt2/XihUrtGfPHkVFRSkhIUGenp6qXr26mjdvrhtuuEH9+/cvsiQuAOdgMuc3Pg0AgAomNTVV3bt31+XLl1WpUiVt2LBBVapUKe2wAKBMWrp0qTG/YWBgoM1ckwAAADkxJBwAgBzWrFljDBUeMGAAyUoAAAAAKEEkLAEAyGHRokXGtjPPywUAAAAA5RFzWAIA8P8yMzM1bdo0bd++XZLUpUsXtWnTppSjAgAAAICKhYQlAKBCe++99xQWFqZKlSrp6NGjunDhgqSslVL/85//lHJ0AAAAAFDxkLAEAFRoNWrUMFZbzubm5qZ33nlHTZs2LaWoAAAAAKDiImEJAKjQ2rVrp6CgIEVGRsrX11fXXHONHn/8cXXo0KG0QwMAAACACslkNpvNpR0EAAAAAAAAAEisEg4AAAAAAADAiZCwBAAAAAAAAOA0mMMSDtu5c6fVvosL+W4AAAAAAICKKjMz02q/qNYCIGGJq5azUQIAAAAAAACFRRc5AAAAAAAAAE6DHpa4agwJR34se+HSXpAf2gsKijaDgqC9oCBoLygI2gsKgvaCgigL7aW4Rt+SsITDXFxcrBpimzZt5OZGE4J96enp+ueff4x92gvyQntBQdFmUBC0FxQE7QUFQXtBQdBeUBBlpb2EhYUZuaKiTKo6Z3oWAAAAAAAAQIVEwhIAAAAAAACA0yBhCQAAAAAAAMBpkLAEAAAAAAAA4DRIWAIAAAAAAABwGiQsAQAAAAAAADgNEpYAAAAAAAAAnAYJSwAAAAAAAABOg4QlAAAAAAAAAKdBwhIAAAAAAACA0yBhCQAAAAAAAMBpkLAEAAAAAAAA4DTcSjsAAAAAAADgXMxmszIzM0s7jHIlIyPDZt9kMpVSNHB2xdFeXFxcykybI2HpxJKTk/X1119r5cqVOn78uNzc3NS4cWPddtttuvfee+Xp6VnaIQIAAAAAyon09HTFxcUpLi5OKSkppR1OuWM2m632jxw5UmaSRyh5xdVePD095efnJz8/P7m5OW9a0Hkjq+DOnz+vhx9+WIcPH5Ykubu7KzMzU3v37tXevXu1ZMkSzZ07V7Vq1SrlSAEAAAAAZV1sbKzOnj1rkyRB0XLmBBGcT3G0l5SUFJ07d07nz59XnTp15OfnV+S3URSYw9JJhYaG6vDhwwoICNC0adMUFham3bt368svv1Tt2rV15MgRPfvss6UdJgAAAACgjEtMTNSZM2dIVhYzk8kkNzc34x+9K5GX4m4vZrNZZ86cUWJiYpHWW1RI7TuhrVu3atu2bZKkDz74QNdff71R1rNnT3300UcaPny4wsLCtGPHDnXs2LGUIgUAAAAAlGXp6ek6deqUse/q6ip/f39VqVKFpFoRM5vNSkpKMva9vb15fJGrom4vZrNZ6enpunz5smJjY5WRkSGz2axTp04pKCjI6Xr/Olc0kCRt2rRJkhQYGGiVrMzWqVMn+fr6KiEhQfv27SNhCQAAAAC4KomJicbiOiaTSfXr15eXl1cpR1U+mc1mubq6Gvuurq4kLJGr4mgvbm5uqlSpkipXrqwTJ04Yi2slJiY63dBwEpZOaOzYsXrggQcUGxtrtzwzM9Poqu/u7l6CkQEAAAAAypOEhARj28/Pj2QlUAF4eXmpSpUqiouLk5T1PkDCEg6pUaOGatSoYbds2bJlSkxMlMlkUpcuXUo4MgAAAABAeWE5f52Pj08pRgKgJPn6+hoJS2ecx5KEZRlx5coVnThxQj/88IO++eYbSdKIESMUFBRUypEBAAAAAMois9msjIwMY79SpUqlGA2AkmT5es+ez9KZpiggYVkGnDhxQn379jX2TSaTXnrpJT3yyCOlGBUAAAAAoCzLnrsym+V8eQDKt5yv98zMTKd6D3Ap7QCQvzNnzsjd3V3e3t6Ssn4Fmzlzpj799NNSjgwAAAAAAAAoWiQsy4C2bdtq9+7dCgsL059//qm77rpLCQkJmj59uqZOnVra4QEAAAAAAABFhoRlGeDl5SU3t6zR+3Xr1tWECRM0fPhwSdKcOXN06dKl0gwPAAAAAAAAKDIkLMuohx9+WFLWYjyHDh0q3WAAAAAAAACAIsKiO07o+PHjOnHihGrVqqXmzZvbPadmzZrGdkxMTEmFBgAAAAAAABQrelg6oXHjxunxxx/X9OnTcz3nyJEjxnZgYGBJhGUlPV1atcqkpKQSv2kAAAAAAACUYyQsnVDv3r0lSX/99ZfCw8Ntys1ms6ZNmyYpK1nZpk2bEo1PklJTXTRwoKsCA6XQUMlOmAAAAAAAAECBkbB0Qg888IBq1aql9PR0jRw5UqtXr1ZaWpok6ejRoxo9erTWrl0rk8mk119/XS4upfc0xsZKkydLISHS0KFSXFyphQIAAAAAAFBgTz/9tEJCQvTZZ58pMTFRM2bM0K233qprrrlGLVu2VEpKSqFvY+zYsQoJCXH435w5c4rgnpVdzGHphCpXrqwvvvhCjz/+uM6ePaunn35abm5uqlSpkhISEiRJHh4eevPNN3XDDTeUcrT/s3RpVk/LVaukUhilDgAAAAAAUGAHDx6UlJVrGThwoKKiolSpUiW5uLioYcOG8vT0LPRtnDp1StWrV7c6duHCBUlSQECAXF1drco6dOhQ6Nssy0hYOqmQkBAtW7ZMCxYs0B9//KETJ04oLS1NjRo1Urdu3fTwww+rYcOGpR2mjX37pP79pY0bJT+/0o4GAAAAAAAgdwkJCYqKipIkTZs2TYGBgZo/f746d+4sk8lklBXW999/b7V/8uRJ3XzzzZKk33//XVWqVLEqN5vNSqrAC4eQsLRj6tSpmjlzpgIDA7V27doCXXvkyBF999132rp1q06dOqX09HTVrFlTwcHBGjhwoG6++Wa5uTn2sPv5+Wn06NEaPXr01dyNUrNvn/TII9KPP5Z2JAAAAAAAALk7ePCgzGazJKlGjRr69ttvVblyZaO8uBY6PnTokCSpdu3aNslKMIeljT179uiLL764qmunT5+uQYMG6euvv9ahQ4eUmJiolJQURUZGas2aNXruuec0bNgwHT16tIijdj5Ll0oREaUdBQAAAAAAQO6yE4cmk0nvvfeeVbLSUmpqqlq3bq3JkycX6e0GBwcXqp6BAwfqySefLIqQnAo9LC1ERkbqqaeeMha4KYgJEyZowYIFxr6bm5tCQkLk5eWlI0eOKCYmRpK0b98+DR8+XEuWLCm2LL2zmD1b+uST0o4CAAAAAACUFzNmzNDMmTOv6tqRI0dq7NixVsey569s27atOnbsmOu1R48eVVpamlq0aHFVt51TeHi4pMIlLNPT03Xs2DHdeOONRRKTM6GH5f8LDw/X/fffr/Pnzxf42lWrVlklK/v166d169Zp6dKlWrRokTZs2KC3335bXl5ekrImVR0zZozR5bi8mjtXqsDTLQAAAAAAgCJmNpuVkZFx1f9yyk5Y5pf0Cw4O1p49e9SvX78iuR/ZPSxDQkKuuo7jx48rLS2t0L00nRE9LCX997//1RtvvKHk5OQCX5uWlqaJEyca+3369NGUKVPk4vK/XLC7u7uGDRumwMBAPfHEE0pPT9f+/fu1fPlyDRw4sEjuQ4lzT5dCoqRDufcSjYmR1q7NUP/+5TsxC/tyfhDY+2AAstFeUFC0GRQE7QUFQXtBQZT19pKRkWF0pDGZTDKbzeW+Y01pyvnY8lhfncKu9WH5uGdmZiri/+ez69ChQ57PiclkkoeHh00dV+PKlSs6efKkpKxEqL36HGkv2bGHhIQUOKbs87P/T09Pd6o2WaETltHR0Zo0aZJ+/vnnq67jjz/+0OnTpyVlDQMfP368VbLSUo8ePTRs2DAtWrRIkjR37tyym7CUZLptl8z1L0h/tZbSXe2es2NHpOrUuVjCkcEZ7du3r7RDQBlCe0FB0WZQELQXFATtBQVRVtuLm5ub3NzclJSUJFdX+9/tUPSuptMUitaJEyeUnJwsFxcXNWzYMM9VuZ9//nmdPHnSarXv0aNH69KlS5owYYJmzJihHTt2yN3dXbfffrueeeaZXOv6999/lZmZKTc3N9WuXduh1cBXrVqlL7/8UocPH1bdunUVGhqq/fv3y9PTUzVq1CjwiuIZGRnKzMxUenq60tPTne79q8ImLGfNmqXPP//c6glt0qSJ+vbtq9mzZztcz8qVK43tbt26qW7dunmeb5mw3L9/vyIjI1W/fv0CRu88TG1Pylw3RlreQbpkOzFtYiKzDgAAAAAAUBL279+v4cOHS5Lq1KmjFStWSJL++ecfrVixQjt37lR0dLSSkpIUHBys7777rsRjPHDggFavXq0dO3bozJkzio2NlZeXl+rVq6cuXbronnvuUY0aNUoklux5JOvXr29M45fXuW3atLE6FhERocqVK2vUqFEaMGCAunXrpj/++EPz5s1T27Zt1bt3b7t1ZfeurFevntzd3fON88cff9S7776rHj166Pnnn1dUVJTGjRunBg0aqHHjxuXyh4YKm7D86quvrJKVd911l8aNG6fff//d4TrMZrO2bt1q7Hfv3j3fa0JCQlSjRg1jrsy1a9fqoYceKkDkzsdUI17mBzZIq9tI/1onX318MkspKgAAAAAAKpYDBw4Y28HBwYqJidHEiRPt5joKM3fi1Th58qQ++OADbdmyxaYsPj5eBw4c0IEDB/Ttt9/qtdde06233lrsMTm68E1iYqJOnz6toUOHGsfi4uJ0/vx5JScna+HChWrQoIGkrHVNrr/+ev3777+5JixjY2MlSf7+/vnGePToUX344Ye699579eKLLxrHvb29NWvWrDI9cjcvFTZhma1169Z6+eWX1alTpwJfGxUVpcuXL1vV5YiQkBAjYbl3794C364zMrlnSLfslrn+RWlNayk9q2l17FhfbdvWK+XoUBoyMjKsupS3bt26XP7qg6JBe0FB0WZQELQXFATtBQVR1ttLRkaGjhw5Iilrfj5vb+8yFX9ZYzabrYaBe3l5yWQyFeltHD582NiuWbOmHnvsMR07dkwmk0nXXHONmjRpovT0dEVERKhNmzby9vYu0tvPzbp16xQaGqrExERJkqurq1q1aqXGjRvLw8NDp0+f1o4dO5SSkqIrV65o/Pjxqlq1arGvfp3d/vN7LA4ePCiz2azWrVsb52Xncx5//HE1b97cONfFxUVms1ne3t651hkQECBJioyMVExMjAIDbdcHyW4vc+bMkaenp8aOHWtVX48ePTRr1iy1aNHiqp7HjIwMubi4yN3dXe7u7goKCrqq1//evXuVmVn0ndUqbMKyU6dOGjJkiG688carfoM4fvy41X52Nj0/9er9L4GX3Q24zDHbf8xMrSNlrhMj/dJBAZlVdMMNrnKrsK0MllxdXeVGY4CDaC8oKNoMCoL2goKgvaAgylp7MZlMVt+Hc+6jeBXH423Zw3Lp0qXKyMhQ9+7d9Z///EeNGze2OjcjI6NEnu89e/boueeeM5K1d955p8aMGaPatWtbnXfx4kW9+uqr+uuvv2Q2m/X222+rZ8+e8vT0LLbYslfqbtGiRZ6PRfZ5zZs3N87LXvDmpptusro2O1fUuHHjXOvs0qWL3N3ddfHiRd14443y9/fXyy+/rCFDhlidl56ernXr1umWW25RlSpVrOrLThJaxlQQ2ddk/+/m5uZUP1hU2AkGZ86cadOoCiq7l6SUlUGvXr26Q9dZzsVgWUeZku4q8+Zg2VtAylQtQbp/gzqOOCEvL+dZYQoAAAAAgPIqPT3dGOIsZSUkhwwZoi+++MImWSmpRJJT0dHRGjVqlLGwzcSJE/Xuu+/aJCslqVq1apo+fboRa3R0tDZu3FhsscXFxenMmTOSshKWeTl06JD8/f1Vq1Ytq2O+vr5q0qSJ1bnZSWPLXpc51a1bV9OnT1eLFi3k7u6u2NhYq85t2U6fPq3ExES78WX37s5vOHtZVXZ++nFCcXFxxraPj0+uq4Pn5Ovra7eOMmdTiHSqqswDwmTySbEqMrlnarX2aPg3FzVr6DWqXImmBgAAAABlXVpGpt7+I1wrD0QrKTWjtMNxKt4erhrQopbG3xwsd9eS7x92+PBhpaT877t527Zt9fbbb5dqr7kpU6bo4sWLkqQxY8bojjvuyPN8Dw8P3X777ZoyZYqkrN6ZxTUs3M/Pz+g5mZ9Dhw7ZzPmZfSxnR7iDBw/Ky8tLDRs2zLPOPn36qE+fPnmec+XKFbvHMzIy9N1336lq1aoltkBRSSOLVAiWbwSVKlVy+DoPDw9jOzU1tUhjKnEna0hf95Z5wC6ZGl6wKf4mLErbI2O1eHgHXRvoVwoBAgAAAACKylu/h+u9NRGlHYbTCovKWufinf65964rLpbDwSVp/PjxDq1ALUmjRo3Sn3/+qZdeekmPPvpokcXz888/S5IaNWqkxx9/3KHrLHsxxsTEFEkshWE2mxUeHq4777zT6tjhw4dthnBLWQnL4OBghzu15SW7J+r27dt1//33G8cXLFigEydOqEuXLoW+DWdFwrIQ0tLSjO2CNETLOU3S09OLNKZSkeQp/dhF5k4RUrdDMuV4KCIuJKrr9I36ZGArPdmtIXOiAAAAAEAZte1k6SeQnN3WE6XzGO3fv9/Yvu666xxeGFjKSrJJRbty+Ndff23Ms+jj46P33nvPoessez0W5/yVjoqMjFRiYqLVY3Py5EklJSXZHfZ96NAh9evXr0huu0qVKurVq5dWrVql119/XW3bttW2bdu0ceNGmUymEl/pvSSRsCwEy27VBVkRyTJJ6eivHU7PbJK2BquJZzUlXb9L0YnW3ZZT0jM1+qe9+uvIBX1xV1v5eZWT+w0AAAAAFUinBgFaHWE7ug7/07lhQKnc7r///mtsFyRhlpSUJC8vLzVu3DjPeRcLIjMzU2vWrDH29+/fb5VQdZQzDHfOTqBaJgez5wrNObfk2bNnFRsbW6SJxDfeeEPvvvuufvvtN/3+++/q2LGj3nvvPT355JPldv5KiYRloXh5eRnblsPD82M5DNwZfi0oKkOGSHPmVFOqay89/N1u/XrwnM05P+w5o52n4vTdAx10XQP/kg8SAAAAAHDV3ugbLJNJzGFph+UcliXNbDYbvSSlrB6WjvL29tavv/5apPEcPny4SNbsaNq0aRFEUzg333yzzVyX9o5JWUO4HZ0X01EBAQH6+OOP5e3tbTVitahvx9mQsCwEP7//zcmYmJgos9ns0HDnhIQEY9vf3784QisxAQHSiBHSqFFSs2bZRz31yyOd9Mm6I3rt14NKz7ReKfzYpST1+HSjJt7aUs/2bMwQcQAAAAAoI9xdXfRO/+alMkcjcnf8+HElJiZKylpjo9n/vqCXimPHjhnbbdu21ZIlS0oxGpRFJb9sVTliORFsRkaGw5PBnj9/3tiuXr16kcdVEjw8MvXLLxk6dUr65BPLZGUWFxeTXuzTVOue6qYG/l4216dlmBW6bL8Gz9uuS0llfOEhAAAAAABKkeVw8ObNmxdoZfCnn35aISEh+vzzz62Ojxo1SiEhIfryyy+VmpqqBQsW6K677lL79u3VvXt3jR49WpGRkXbrjI2NNbarVq1asDsDiIRloeRcoj63F2pOp06dMrYbN25cpDGVFDc3qX9/s7y98z6va6Oq2hXaS7e3qmW3fNn+aLWftF6bj18qhigBAAAAACj/LBOWLVu2LNC1uS24k33cz89PQ4cO1YQJExQREaGMjAxduHBBf/zxhx544AGjZ6cly4WJL1++XKB4AImEZaEEBgZaDek+cOCAQ9dZzitRVBPaOrOq3h5a+vB1mnx7K7m72g7/PhmbrF4zN+nDPw8rM8fwcQAAAAAAkDfLhGWrVq0cvi4hIUFRUVGSrPMTcXFxOnPmjCTp448/lo+Pj7777juFhYVp9+7dmjp1qtzc3HT27FmtXLnSpt6aNWsa2/v377eb1ATyQsKykDp37mxsb9q0Kd/zDx48qAsX/reiWpcuXYolLmdjMpn0bM8m+nt0DzWpZtstMyPTrHErDmjgnG06n+D4AkYAAAAAAFR0lgnL1q1bO3zdwYMHZTabFRAQYDXtneWCLg0bNtTXX3+tdu3ayWQyyWQyqX///rr++uslZc2fmVO7du3k5pa1bMqVK1c0Y8YMh2NKSUmxGlKOiomEZSH17dvX2P7zzz8VHR2d5/nffvutsR0UFFSkS92XBR3r+2vnc7105zV17Jb/evCc2k1ar/VHLpZwZAAAAAAAlD2nT582EnweHh4FWlk7OzGZc/Rn9shQNzc3ffLJJ/Lw8LC5tkqVKpJkdyHdKlWqaODAgcb+nDlz9N577+W5cvjBgwc1bdo03Xjjjbp4kZxARccq4YXUt29f1axZU+fOnVNqaqrGjRunL774wvglwdKGDRv0/fffG/vDhw8vyVCdhp+XuxYP76DZm08odNl+paRnWpWfvnxFN8zepDf7heiVG5rJ1YVVxAEAAAAAsMeyd2VISIjdfERushOTOROW2YnMzp07q379+navzV6fIzAw0G75Cy+8oO3btxvnzZ8/X999953atm2revXqyd3dXYmJiTp37pzCw8ONpKu3t3eZXe8DRYceloXk4eGh0NBQY3/Tpk0aOXKk1QI86enpWrJkicaMGaOMjAxJUnBwsO66664Sj9dZmEwmPdmtkTaP6aFm1X1syjPN0vhVh3TLF1t09vKVUogQAAAAAADnt3//fmO7IPNXSvkvuNOnT59crw0PD5ckNWvWzG559erVtXDhQnXq1Mk4lpKSom3btmnp0qVavHixli9frm3bthnJShcXF/Xt29dq0R5UTPSwLAKDBw9WWFiYFi9eLCkradm3b1+FhITI19dXR44c0aVL/1sF29/f35igtqK7NtBPO57rpaeW7tGiXVE25asjLqjd5PVaeF873disRilECAAAAACA87JcALggCcvMzExFRERIsu5hmZGRocOHD+dZX/YwdJPJlOdiwnXq1NGCBQu0ZcsWrVy5Uv/884/OnDmjhIQEubm5qXLlygoMDFRQUJA6dOignj17Ws2liYqLjFkReeuttxQQEKCvvvpKaWlpyszMtLtqeFBQkKZOnaomTZqUQpTOqXIlN319bzv1aVpdY37aq+Q06yHi0fEp6vv5Fr12YzONvzlYbq780gIAAAAAgCTNnj37qq47ceKEkpOT5e7urqCgIOP48ePHdeXKFbm4uOSajMzOd9SrV0++vr753laXLl0qzKLDKBokLIuIyWTS2LFjNWjQIP3www/auHGjzp49q+TkZPn5+alFixbq37+/Bg0aZHey2orOZDLpkU4N1LlBgIYt2KF/oxOsys1macLqCK0/elGL7m+vQD+vUooUAAAAAICyL3vYd+PGja3yFNnzVzZo0EDe3t55XtuiRYtijhIVFQnLHIYMGaIhQ4Zc9fVBQUF6+eWX9fLLLxdhVBVHq9qVtfWZnhrz8z7N2x5pU77+6CW1m7ReX9/bTv2b1yyFCAEAAAAAKPvyW3Anr2RkbnNfAkWFsbVwOj6ebpoz7FrNv/da+Xi42pRfSEzVgC+3atyKA0rLyLRTAwAAAAAAyEt2YjJnwjI7GdmyZctcr80eEk4PSxQXEpZwWsM71NeO53rpmjpV7JZ/+OdhXT9zk07GJJVwZAAAAAAAlG359bDMbf7KhIQEnTp1Ks9zgMIiYQmnFlLTV5uf6aEnuja0W775RIzaTVqvZfvPlnBkAAAAAACUTXFxcTpz5owk62Hdlsdz6z158OBBmc1mValSRYGBgcUfLCok5rCE0/Nyd9WsodeoT1B1jfz+H8WnpFuVxySn6Y652/Vsz8aaeGtLebiRhwcAAAAAIDd+fn5GT0pHjlvq2LFjvucAhUVmB2XG3dfW1a6xvdShnp/d8qkbjqnHjI06ejGxhCMDAAAAAABAUSFhiTIlqLqPNo7urjE9Gtst33EqTu0nr9cP/5wu4cgAAAAAAABQFEhYoszxdHPV1Dtaa+nDHeXv5W5TfvlKuu5esFNP/bhHV9IySiFCAAAAAAAAXC0Sliiz7mhdR2Fje6lLwwC75bM3n1DX6RsVfj6hhCMDAAAAAADA1SJhiTKtYVVvrXuqm164Pshu+T+nL6vjlPX6ZtepEo4MAAAAAAAAV4OEJco8d1cXfXhbS/3ySCdV87YdIp6QkqEHvgnTY0v+UVJqup0aAAAAAAAA4CxIWKLcuLVlLYWF9lbPxlXtls/ZdlKdp27Uv2fjSzgyAAAAAAAAOIqEJcqVev5eWjOqq167qZlMJtvy/dHx6jR1g+Ztjyz54AAAAAAAAJAvEpYod9xcXfRO/+ZaNbKLavp62JQnpWXokcW79dC3YUpIYYg4AAAAAACAMyFhiXLr5uAaCgvtrRuaVrdbvmDnKV03Zb32nL5cwpEBAAAAQOlzcbFOCWRkZJRSJABKWs7Xe873g9LmXNEARaxOlUr67fEuerNviFzsDBE/dD5Rnadt0Gebj8tsNpd8gAAAAABQSkwmk1xdXY39K1eulGI0AEqS5evd1dVVJnvz6pUiEpYo91xdTBrfN1irn+iqOlU8bcpT0jP15I97dd+iXbp8Ja0UIgQAAACA0uHj42NsJyYmlmIkAEpSQkKCsW35PuAsSFiiwri+aXWFje2tfiE17JYv3n1aHSav165TsSUbGAAAAACUEl9fX2M7Li5OycnJpRgNgJKQnJysy5f/Nz2e5fuAs3Ar7QCAklSzsqdWPNpZH/51WP9ZdUgZmdbDwI9cTFK36X/ro4EtNbp7I6frEg0AAAAARcnHx0cuLi7KzMyU2WxWZGSk/P39VaVKFbm5ufGdqAiZzWareQMzMjJ4fJGrom4vZrNZ6enpunz5smJjY41p8VxcXJyyhyUJS1Q4Li4mjbuhmXo2rqZ7F+7UqTjreVpSMzL17M/79NfhC/ry7rYK8LZdaRwAAAAAygM3NzfVq1dPJ0+elJSVFLl48aIuXrxYypGVT5mZmca2sy1yAudT3O3FZDKpXr16cnNzvvSg80UElJDujasqLLS3Rny3W8sPRNuU/7TvrMKi4vTtAx3UuWGA3TqSkqR166SzZ6WEBMnXV6pdW+rdW/L2Lu57AAAAAACF5+Pjozp16ujs2bMsRlqMsnu4ZXN3d6eHJXJV3O3FZDKpTp06Ttm7UiJhiQqumo+H/vvIdZq8/qjGrTig9BxDxI/HJKvnp3/r/QEtNLZXE7n8/1Lj4eHSrFnSvHlSbKxtvf7+0ogR0qhRUnBwsd8NAAAAACgUf39/+fr6Ki4uTnFxcUpJSSntkMqlnAkoIC/F0V48PT3l5+cnPz8/p+xZmc15IwNKiMlkUmjvIPVoXFX3LNip4zHWk0ynZ5r14vJ/9deRC5o2oJ1eGO2hpUvzrjM2Vpo8OevfkCHSnDmSn1/x3QcAAAAAKCw3NzdVq1ZN1apVk9lsthqOisJLT0/Xvn37jP2goCCnThihdBVHe3FxcSkzvXp5ZQD/r1ODAO0K7a3HluzW0r1nbcpXHDin33atU9rW9pKqOVzv0qVZPTJXrZICA4swYAAAAAAoJiaTSa6urqUdRrmSc7i9q6srjzFyVdHbCzO8Ahb8vdz1/YMdNX1wa3m42r480r2uSHdvljpFSHJ8bpd9+6T+/aW4uCIMFgAAAAAAoBwiYQnkYDKZ9HT3xtr8TA81rW47+azJxSxTz4PS0K2Sl+PzuuzbJz3ySFFGCgAAAAAAUP6QsARy0S7QTzue66kBQXXtlpsanZceXCfVv+BwnUuXShERRRUhAAAAAABA+UPCEshDlUruahbRXubfr5E5zfblYvJNke7cLHU9JJkcGyI+e3ZRRwkAAAAAAFB+kLAE8pCUJM2ba5L2NpS+6SnzRV+bc0wukqlbeFbi0udKvnXOnZtVLwAAAAAAAGyRsATysG6dFBv7/zsXqkiLesq8v57dc00NLmYNEW94Ls86Y2Ky6gUAAAAAAIAtEpZAHs6ezXEgzU1a1U7mX6+VOc3V5nyTd6pMd26VehyQTJm51hsdXcSBAgAAAAAAlBMkLIE8JCTkUvBvfWlhT5nPV7ZbbOp8WBq2SaqcbLc8Pr6IAgQAAAAAAChnSFgCefC1nbLyfy5VzprXck8Du8WmwBhp+DqpsW13ysr285wAAAAAAAAVHglLIA+1a+dzQrqr9EdbmVe0lznVzhBxrzSZhmyTeu+XXP43RLxWrSIOFAAAAAAAoJwgYQnkoXdvyd/fgRMPBkoLesl8rordYlPHo9Kwv6UqSQoIyKoXAAAAAAAAtkhYAnnw9pZGjHDw5Fhf6ZseMoc1sltsqhsrDV+nHiPOyNu7qCIEAAAAAAAoX0hYAvkYNaoAJ2e4SmvbyLysg8xX3GyKTZXStdy0Q2N+2quU9IyiCxIAAAAAAKCcIGEJ5CM4WBoypIAXRdSVFvaS+Yy/3eJP/z6u7tP/1uELiYWODwAAAAAAoDwhYQk4YM4cqXXrAl4U5yN9113mHU3sFu+KilOHyeu1eHdU4QMEAAAAAAAoJ0hYAg7w85NWrbqKpGWmi7SulRqEXSc/T3eb4viUdN27cJee+OEfJacxRBwAAAAAAICEJeCgwEBp48aCDw8fMkT6Z2lt/fNCL3VtGGD3nC+2nFSXaRt08Fx8EUQKAAAAAABQdpGwBArAz0/68Ufp0CFp7FjJ39/+eQEBUmioFB6edb6fn9QgwFt/PdVNL/VpaveavWfidd2UDVqwM7L47gAAAAAAAICTs13GGEC+goOlSZOkCROkdeuk6GgpPl6qXFmqVUvq3Vvy9ra9zt3VRR/c2kLXB1XTg9+G6UJiqlV5YmqGHvp2t/6MuKjpg1vLx5OXKAAAAAAAqFjIhgCF4O0t3XJLwa/r37ymwkJ76f5Fu7T+6CWb8nk7IrUtMkaLh3dUq9qViyBSAAAAAACAsoEh4UApCfTz0uonuur1m5rJZLIt/zc6QZ2mrtdXW0/KbDaXfIAAAAAAAAClgIQlUIrcXF30dv/m+v3xLqpV2dOmPDktUyO//0fDvwlT/JX0UogQAAAAAACgZJGwBJzAjc1qaHdob93UrLrd8m/CotRxynrtjoor4cgAAAAAAABKFglLwEnUquypX0d20Tv9Q+RiZ4h4xIVEdZ2+UTP/Ps4QcQAAAAAAUG6RsASciKuLSa/dFKy1o7qpbpVKNuUp6Zka/dNeDVuwU3HJaaUQIQAAAAAAQPEiYQk4oV5B1RQW2ku3NK9pt/yHPWfUfvJ6bT8ZW7KBAQAAAAAAFDMSloCTquHrqV8e6aSJt7aQq50x4scuJanHpxs1Zf1RhogDAAAAAIByg4Ql4MRcXEx6sU9TrX+qmxr4e9mUp2WYFbpsvwbP265LSamlECEAAAAAAEDRImEJlAFdG1XVrtBeur1VLbvly/ZHq/2k9dp8/FIJRwYAAAAAAFC0SFgCZURVbw8tffg6Tb69ldxdbYeIn4xNVq+Zm/Thn4eVmckQcQAAAAAAUDaRsATKEJPJpGd7NtHfo3uoSTVvm/KMTLPGrTiggXO26XxCSilECAAAAAAAUDgkLIEyqGN9f+18rpfuvKaO3fJfD55Tu0nrtf7IxRKODAAAAAAAoHBIWAJllJ+XuxYP76BPh7SRp5vtS/n05Su6YfYmTVgdrgyGiAMAAAAAgDKChCVQhplMJj3ZrZE2j+mhZtV9bMozzdL4VYfU/4stOnv5SilECAAAAAAAUDAkLIFy4NpAP+14rpfuaxdot3xNxAW1m7xeq8PPl3BkAAAAAAAABUPCEignKldy04L72umLu9rKy932pR0dn6J+X2zRf1YdVHpGZilECAAAAAAAkD8SlkA5YjKZ9GjnBtr6TE+1qOlrU242S++ujtBNn21WVFxyKUQIAAAAAACQNxKWQDnUuk4VbXu2px6+rr7d8vVHL6ndpPX69UB0CUcGAAAAAACQNxKWQDnl4+mmOcOu1fx7r5WPh6tN+YXEVN361Ta9vPxfpTFEHAAAAAAAOAkSlkA5N7xDfW1/rqfa1Klst/yjv47o+pmbdDImqYQjAwAAAAAAsEXCEqgAmtesrC3P9NTjXRraLd98IkbtJq3Xsv1nSzgyAAAAAAAAayQsgQrCy91Vs++8Rt8+0F6VPd1symOS03TH3O0a+999Sk1niDgAAAAAACgdJCyBCmbYtYHaObaX2gf62S2fuuGYeszYqKMXE0s4MgAAAAAAABKWQIXUtLqP/h7TXaN7NLZbvuNUnNpPXq8f/jldwpEBAAAAAICKjoQlUEF5urlq2h2t9eNDHeXv5W5TfvlKuu5esFNP/bhHV9IySiFCAAAAAABQEZGwBCq4wW3qaNfYXurcwN9u+ezNJ9R1+kaFn08o2cAAAAAAAECFRMISgBpV9db6p7vr+d5Bdsv/OX1ZHaes1ze7TpVwZAAAAAAAoKIhYQlAkuTu6qKPBrbUL490UjVv2yHiCSkZeuCbMD225B8lpaaXQoQAAAAAAKAicCvtAAA4l1tb1lJYaG/dt2iXNh67ZFM+Z9tJbT0Ro8XDO6hl7cp260hKktauNWn79mpKSnKRt3emzpwx6YYbJG/v4r4HAAAAAACgLCNhCcBGPX8vrR3VVW/+Hq7310bIbLYu3x8dr05TN2jGkDZ6+Lr6xvHwcGnWLGnePCk21lVSI6vr/P2lESOkUaOk4ODivhcAAAAAAKAsYkg4ALvcXF004ZbmWjWyi2r6etiUJ6Vl6JHFu/Xwt2GKOp+uoUOlkBBpyhQpNtZ+nbGx0uTJWecNHSrFxRXnPQAAAAAAAGURCUsAebo5uIbCQnurT1A1u+Vf7zyloP+s19L1lwtU79KlUo8eUlRUUUQJAAAAAADKCxKWAPJVp0ol/f5EV73ZN0QuJtvyVN9E6f4N0jXHJZltT8jFvn1S//70tAQAAAAAAP9DwhKAQ1xdTBrfN1irn+iqOlU8bcpNbpky3bxXunWX5JHmcL379kmPPFKUkQIAAAAAgLKMhCWAArm+aXWFje2t7vVq2C03NT8tPbBeqhnrcJ1Ll0oREUUUIAAAAAAAKNNIWAIosJqVPdXxZGeZNzSXOdN2jLgpIEm692+p3TE5OkR89uwiDhIAAAAAAJRJJCwBFFhSkjRvrkna1kxa0lXm+Eo255jcMmW6YZ80aIfkmZpvnXPnZtULAAAAAAAqNhKWAAps3TopNvb/d6KqSV/3lvlILbvnmpqdlYavl2rH5FlnTExWvQAAAAAAoGIjYQmgwM6ezXHgiof083Uy/9VS5gw7Q8T9kqV7/pY6HFFeQ8Sjo4s2TgAAAAAAUPaQsARQYAkJ9o6apJ1B0nfdZY7zsi11Nct0/b/SHdulSvaHiMfHF2mYAAAAAACgDCJhCaDAfH3zKDwbIC3oJXNEbbvFpqBo6cF1UuBFm7LKlYsoQAAAAAAAUGaRsARQYLXt5yL/J8VDWtZR5jWtZU63fZsxVb4i3b1Z6hQhyyHitexPgwkAAAAAACoQEpYACqx3b8nfP7+zTNLuxtK33WWO8bYtdTHL1POgNHSr5JWigICsegEAAAAAQMVGwhJAgXl7SyNGOHjyOX9pYS+ZD9a1W2xqdF56cJ1uGnFB3rZ5TQAAAAAAUMGQsARwVUaNKsDJqe7SivYy/36NzGl2hoj7pmipy2a99fshZWTmvoo4AAAAAAAo/0hYArgqwcHSkCEFucIk7W0ofdNT5ks+NqWZZumt38PV97PNOnP5SpHFCQAAAAAAyhYSlgCu2pw5UuvWBbzoQpWsIeL769kt/vPIRV37yTr9fuhc4QMEAAAAAABlDglLAFfNz09ateoqkpZpbtKqdgrcd6283Fxtis8npuqWL7fqtV8PKD0js2iCBQAAAAAAZQIJSwCFEhgobdxY0OHhWefvW1xf25/rqVa1KtuUm83S+2sO64bZm3UqNrmIogUAAAAAAM6OhCWAQvPzk378UTp0SBo7VvL3t39eQIAUGiqFh2ed7+cntaxdWVuf7aFHOzewe83GY5fUbtI6rfg3uvjuAAAAAAAAcBpupR0AgPIjOFiaNEmaMEFauzZDO3ZEKjHRRT4+merYsb5uuMFV3t6213l7uOmLu9qqT1A1jfpxjxJSMqzKLyalaeCcbXq+d5DeG9Bc7q781gIAAAAAQHlFwhJAkfP2lvr3N6tOnYvGsbZt68ktn3ec+9rXU8f6/rpnwU7tPn3ZpvyTdUe08dhFfftABzWqaifzCQAAAAAAyjy6KQFwKsE1fLVpTA892a2R3fKtJ2PVfvJ6/bT3TMkGBgAAAAAASgQJSwBOp5K7qz4d0kZLhndQlUq23TJjk9M0dP4OPfPzPqWkZ9ipAQAAAAAAlFUkLAE4rTvb1tWusb3UsZ6f3fIZG4+p+/S/dfhCYglHBgAAAAAAigsJSwBOrUk1H20c3UPP9Wpit3xXVJw6TF6vJbtPl3BkAAAAAACgOJCwBOD0PNxcNGlQK/084joFeLnblMenpOuehTs16oc9Sk5jiDgAAAAAAGUZCUsAZcagVrUVFtpLXRsG2C3/fMsJdZ22UYfOJZRwZAAAAAAAoKiQsARQpjQI8NZfT3XTS32a2i3fc+ayOk5ZrwU7I0s4MgAAAAAAUBRIWAIoc9xdXfTBrS208rHOqu7jYVOemJqhh77drUe+263ElPRSiBAAAAAAAFwtEpYAyqz+zWsqLLSXejWpard83o5IdZ62QfvPxpdwZAAAAAAA4GqRsARQpgX6eWn1E131+k3NZDLZlv8bnaBOU9frq60nZTabSz5AAAAAAABQICQsAZR5bq4uert/c/02sotqVfa0KU9Oy9TI7//Rg9+GKf4KQ8QBAAAAAHBmJCwBlBs3BddQ2NheurFZdbvli3ZF6bqp67U7Kq6EIwMAAAAAAI4iYQmgXKldpZJWjeyid/qHyMXOEPHw84nqOn2jZm06zhBxAAAAAACcEAlLAOWOq4tJr90UrLWjuqlulUo25SnpmXp66V7ds2Cn4pLTSiFCAAAAAACQGxKWAMqtXkHVFBbaS7c0r2m3/Ps9Z9R+8nptPxlbsoEBAAAAAIBckbAEUK7V8PXUL4900sRbW8jVzhjxY5eS1OPTjZqy/ihDxAEAAAAAcAIkLAGUey4uJr3Yp6nWP9VNDfy9bMrTMswKXbZfg+dt16Wk1FKIEAAAAAAAZCNhCaDC6NqoqnaF9tKgVrXsli/bH632k9Zr8/FLJRwZAAAAAADIRsISQIVS1dtDPz18nSbf3krurrZDxE/GJqvXzE368M/DysxkiDgAAAAAACWNhCWACsdkMunZnk208ekealzV26Y8I9OscSsOaOCcbTqfkFIKEQIAAAAAUHGRsARQYV3XwF87x/bSndfUsVv+68FzajdpvdYfuVjCkQEAAAAAUHGRsARQofl7uWvx8A76dEgbebrZviWevnxFN8zepAmrw5XBEHEAAAAAAIodCUsAFZ7JZNKT3Rpp85gealbdx6Y80yyNX3VIt3yxRdHxDBEHAAAAAKA4kbAEgP93baCfdjzXS/e1C7Rbvjrigq6dtE5rIs6XcGQAAAAAAFQcJCwBwELlSm5acF87fXFXW3m5275FRsenqO/nW/TGb4cYIg4AAAAAQDEgYQkAOZhMJj3auYG2PtNTLWr62pSbzdI7f4TrptmbdTruSilECAAAAABA+UXCEgBy0bpOFW17tqcevq6+3fJ1Ry/q2knrtOrguRKODAAAAACA8ouEJQDkwcfTTXOGXav5914rHw9Xm/ILiaka8OVWjVtxQGkZmaUQIQAAAAAA5YtbaQcAAGXB8A71dV19fw1bsFN7z8TblH/452FtPHZR39zfXg0CvO3WkZQkrVsnnT0rJSRIvr5S7dpS796St/1LAAAAAACocEhYAoCDmtesrC3P9NTY/+7X51tO2JRvOh6jdpPWa+4912pQq9rG8fBwadYsad48KTbWtl5/f2nECGnUKCk4uNjCBwAAAACgTGBIOAAUgJe7q2bfeY2+faC9Knva/uYTk5ymO+ZuV+iy/Tp/KVNDh0ohIdKUKfaTlVLW8cmTs84bOlSKiyvOewAAAAAAgHMjYQkAV2HYtYHaObaX2gf62S2fsv6oGr38t5auTipQvUuXSj16SFFRRRElAAAAAABlDwlLALhKTav76O8x3TW6R2O75cl+sdLwdVKz0wWqd98+qX9/eloCAAAAAComEpYAUAiebq6adkdr/fhQR/l7uduUmyqlyzRop3TDXsk1w+F69+2THnmkKCMFAAAAAKBsIGEJAEVgcJs62jW2l66p4W+33NTuuHTfRsk/weE6ly6VIiKKJj4AAAAAAMoKEpYAUEQaVfVW7+juMu9oYrfcVPOyNHy91NzxCSpnzy6q6AAAAAAAKBtIWAJAEUlKkr6e6yKtayXzT51kTrYzRNwjQ6Zbd0k3/yO5pedb59y5WfUCAAAAAFBRkLAEgCKybp0UG/v/O0drSQt6y3yqqt1zTdeczBoiXjU+zzpjYrLqBQAAAACgoiBhCQBF5OzZHAfivaQlXWXe0lRms+35phrx0gMbpJaRedYbHV10MQIAAAAA4OxIWAJAEUmwt56O2UX6u4X0Y2eZkzxsik3uGTLdslvqHya52x8iHp93J0wAAAAAAMoVEpYAUER8ffMoPFFT+rq3zCer2S02tTol3b9Bqn7Zpqxy5SIKEAAAAACAMoCEJQAUkdq18zkhsZL0Q1eZNwXbHyJeLUG6b4PU5oSk/51Qq1aRhgkAAAAAgFMjYQkARaR3b8nfP5+TzCZpc4j0fVeZEzxtik3umTL13SPdukvySFNAQFa9AAAAAABUFCQsAaCIeHtLI0Y4eHJk9awh4sdr2C02NT8tPbBBA0bEytu76GIEAAAAAMDZkbAEgCI0alQBTk72zFqMZ0NzmTNNNsWmgER97/q3Zmw8JrO9MeQAAAAAAJRDJCwBoAgFB0tDhhTkCpO0rZm0pKvM8ZVsStMyM/XMz/t019c7FJucVmRxAgAAAADgrEhYAkARmzNHat26gBdFVcsaIn7E/go7S/eeVftJ67TtZEzhAwQAAAAAwImRsASAIubnJ61adRVJyyse0s/XqfahlnJzsR0ifjwmWT1m/K1J644wRBwAAAAAUG6RsASAYhAYKG3cWNDh4dKQISYdWBikDU93V8MAL5vy9EyzXvjlX90+Z7suJqYWUbQAAAAAADgPEpYAUEz8/KQff5QOHZLGjpX8/e2fFxAghYZK4eFZ5/v5SZ0bBmjX2F4a3Lq23WuWH4hWu0nr9PexS8V3BwAAAAAAKAVupR0AAJR3wcHSpEnShAnSunVSdLQUHy9VrizVqiX17i15e9teF+DtoR8e6qhP/z6uF375V6kZmVblp+Ku6PpZm/R2vxC93KepXOwMIwcAAAAAoKwhYQkAJcTbW7rlloJdYzKZNLpHY3VrFKBhC3bqyMUkq/KMTLNe+/Wg1h25qK/vbaealT2LMGIAAAAAAEoeQ8IBoAxoX89fO8f20rBr69ot/z38vNpNXqe/Dl8o4cgAAAAAAChaJCwBoIyoUsld39zfXrPvvEaV3Gzfvs9cTtFNn23WW78fUkYmq4gDAAAAAMomEpYAUIaYTCY93qWhtjzTUyE1fGzKM83SW7+Hq9/nW3Tm8pVSiBAAAAAAgMIhYQkAZdA1dato+3O9NLxDPbvlaw9fULtJ6/RH+PkSjgwAAAAAgMIhYQkAZZSvp5vm39tOc4ZdK293V5vycwmp6v/FFr3+60Gl51hhHAAAAAAAZ0XCEgDKuIevq69tz/ZUq1qVbcrMZum9NRG6cfZmnYpNLoXoAAAAAAAoGBKWAFAOtKxdWVuf7aFHOzewW77h2CW1m7ROKw9El3BkAAAAAAAUDAlLACgnvD3c9MVdbbXwvnby9bQdIn4xKU23fbVNLy3/V2kMEQcAAAAAOCkSlgBQztzXvp52PNdLbetWsVv+8V9H1HvmJp24lFTCkQEAAAAAkD8SlgBQDgXX8NXmMT00qmtDu+VbTsSo3eT1+nnfmRKODAAAAACAvJGwBIByqpK7q2YOvUaLh3dQlUpuNuWxyWkaMm+Hnv15n1LSM0ohQgAAAAAAbJGwBIBy7q62dbVrbC91rOdnt3z6xmPqMeNvHbmQWMKRAQAAAABgi4QlAFQATar5aMPo7nq2Z2O75TtPxan95PVasvt0CUcGAAAAAIA1EpYAUEF4urlq8u2t9dPD1ynAy92mPD4lXfcs3Kknf9yj5DSGiAMAAAAASgcJSwCoYG5vXVu7xvZS14YBdss/23xCXadt1KFzCSUcGQAAAAAAJCwBoEJqWNVbfz3VTS9eH2S3fM+Zy+o4Zb0W7jxVwpEBAAAAACo6EpYAUEG5u7po4m0tteLRTqru42FTnpiaoQe/DdMji3crMSW9FCIEAAAAAFREJCwBoIK7pUUthYX2Us/GVe2Wz9seqc7TNmj/2fgSjgwAAAAAUBGRsAQAKNDPS2tGddVrNzWTyWRb/m90gjpNXa85207KbDaXfIAAAAAAgAqDhCUAQJLk5uqid/o3128ju6hWZU+b8uS0TD225B89+G2Y4q8wRBwAAAAAUDxIWAIArNwUXENhY3vpxmbV7ZYv2hWl66au1z+n40o4MgAAAABARUDCEgBgo3aVSlo1sove7h8iFztDxMPPJ6rLtI2avek4Q8QBAAAAAEWKhCUAwC5XF5NevylYa0Z1Vd0qlWzKU9Iz9dTSvbpnwU7FJaeVQoQAAAAAgPKIhCUAIE+9g6orLLSX+ofUsFv+/Z4z6jBlvXZExpZsYAAAAACAcomEJQAgXzV8PbX80c764NYWcrUzRvzoxSR1n7FRUzccZYg4AAAAAKBQSFgCABzi4mLSS32aat1T3VTf33aIeFqGWWP/u19D5m3XpaTUUogQAAAAAFAekLAEABRIt0ZVFRbaW4Na1bJb/t/90Wo/ab22nIgp4cgAAAAAAOUBCUsAQIFV9fbQTw9fp8m3t5K7q+0Q8ZOxyer16d/66M/DysxkiDgAAAAAwHFupR0AAKBsMplMerZnE3VrWFX3LNypY5eSrMrTM816ecUBrTtyUfPuvVbVfTzt1pOUJK1da9L27dWUlOQib+9MnTlj0g03SN7eJXFPAAAAAADOhIQlAKBQrmvgr11je2nk9//ohz1nbMpXHjyndpPWa9F97dUrqJpxPDxcmjVLmjdPio11ldTI6jp/f2nECGnUKCk4uFjvAgAAAADAiTAkHABQaH5e7lo8vINmDG4jTzfbj5aouCu6YfYmTVgdrksxZg0dKoWESFOmSLGx9uuMjZUmT846b+hQKS6uOO8BAAAAAMBZkLAEABQJk8mkp7o30uYxPdSsuo9NeaZZGr/qkBqO3aKlq1IKVPfSpVKPHlJUVFFFCwAAAABwViQsAQBF6tpAP+14rpfuaxdotzyx+gXpwXVSg/MFqnffPql/f3paAgAAAEB5R8ISAFDkKldy04L72umLu9qqkp0h4iafFOnOLVK3Q5LJ8VXE9+2THnmkKCMFAAAAADgbEpYAgGJhMpn0aOcG2vZsTwX5+9opl0xdw6W7Nks+Vxyud+lSKSKiKCMFAAAAADgTEpYAgGLVuk4V9b/UU+Z99e2Wm+pfzBoi3uicw3XOnl1U0QEAAAAAnA0JSwBAsUpKkhbOdZN+u1bmX6+VOc3V5hyTd6pMQ7dKPQ9ILpn51jl3bla9AAAAAIDyh4QlAKBYrVsnxcb+/86/9aWFPWU+X9nuuaZOh6W7N0mV885GxsRk1QsAAAAAKH9IWAIAitXZszkOXKosfdNT5n8a2j3fFBgjDV8vBeW80Fp0dBEFCAAAAABwKiQsAQDFKiHBzsF0V2n1NTIvby9ziptNsckrTaY7tku99+c6RDw+vogDBQAAAAA4BRKWAIBi5Wu7QPj/HAqUFvaSOdrPbrGp41Hpnr+lKrZDxCvbH1UOAAAAACjjSFgCAIpV7dr5nBDrI33bXeawRnaLTXVipeHrpGanrY7XqlUk4QEAAAAAnAwJSwBAserdW/L3z+ekDFdpbRuZ/9tR5it2hohXSpdp0E7phr2Sa4YCArLqBQAAAACUPyQsAQDFyttbGjHCwZMP15EW9Jb5jL/dYlO749K9G3XHiAR5exdVhAAAAAAAZ0LCEgBQ7EaNKsDJl72l77rLvKOJ3WJTrcta4rFe34ZFFU1wAAAAAACnQsISAFDsgoOlIUMKcEGmi7Sulcw/XSdzsrtNcVJahu5ftEuPf/+PktMyii5QAAAAAECpI2Hp5BISEvTZZ5/pzjvvVIcOHdS6dWv17t1boaGh+ueff0o7PABw2Jw5UuvWBbzoaO2sIeJRAXaLv9x6Up2nbtCB6PjCBwgAAAAAcAokLJ3YiRMndPvtt2vSpEnau3evUlNT5e7urrNnz2rFihW65557NGfOnNIOEwAc4ucnrVp1FUnLeC9pSTdVP9rUbvG+s/G6bsoGzd8eWfggAQAAAACljoSlk0pPT9dTTz2lU6dOqVatWvr888+1e/du7dq1S6tWrVKfPn2UmZmpiRMn6q+//irtcAHAIYGB0saNBRweLmnIHS6KmNtCv47srBo+HjblSWkZGrF4t0Z8F6bElPQiihYAAAAAUBpIWDqp33//XYcPH5bJZNLUqVPVu3dvubq6ymQyqXHjxvr000/Vrl07SdKMGTNKOVoAcJyfn/Tjj9KhQ9LYsZK/v/3zAgKk0FApPDzrfD8/qV9ITYWF9tb1QdXsXjN/xyldN3WD9p65XHx3AAAAAABQrNxKOwDYt27dOklS+/btjcSkJVdXV915550KCwvTvn37lJycLC8vr5IOEwCuWnCwNGmSNGGCtHZthnbsiFRioot8fDLVsWN93XCDq7y9ba+r61dJfzzRVe/8Ea53VofLbLYuP3guQZ2nbtDUO1rrsc4NZDKZSuYOAQAAAACKBAlLJ9WyZUslJyerdR6TvdWoUUOSZDablZCQQMISQJnk7S31729WnToXjWNt29aTWx6fUK4uJr3ZL0S9mlTTA9/s0tn4FKvyK+mZeuKHPfrz8AXNvvMaValku9I4AAAAAMA5kbB0Ug899JAeeuihPM/ZuXOnJMnT01MBAfZX0AWA8uyGZtUVFtpbD367S3+EX7Ap/273ae04FafFwzuoXaBfKUQIAAAAACgo5rAsoy5duqTFixdLknr27Cm3vLoiAUA5Vquyp359rIvevaW5XF1sh38fvpCortM26tO/j8mcc/w4AAAAAMDpkLAsg9LT0/Xiiy8qNjZWLi4uevLJJ0s7JAAoVS4uJr1yYzP9+WRXBfpVsilPzcjUmJ/26e6vdyo2Oa0UIgQAAAAAOIqEZRmTkZGhl19+WRs3bpQkPf3003nOcwkAFUmPxtUUFtpLt7aoabf8x71n1H7SOm07GVPCkQEAAAAAHEXCsgxJSUnRM888o+XLl0uSBg0apKeffrqUowIA51Ldx1P/HdFJH93WUm52hogfj0lWz0//1uT1RxgiDgAAAABOiIRlGXHp0iU99NBDWr16tSTp9ttv1wcffCCTyfbLOABUdC4uJj1/fZDWP91dDQO8bMrTMsx6ftm/un3Odl1MTC2FCAEAAAAAuSFhWQYcP35cw4YNU1hYmCTpwQcf1MSJE+Xq6lrKkQGAc+vSMEC7xvbSHa1r2y1ffiBa7Sev09/HLpVwZAAAAACA3JCwdHL79u3TPffco5MnT8pkMumll17Sa6+9Rs9KAHBQgLeHfnyoo6be0VoerrYfe5GxV3T9rE36YG2EMjMZIg4AAAAApY2EpROLiIjQo48+qpiYGLm7u+vjjz/Wo48+WtphAUCZYzKZNKZHY/09pruCqnnblGdkmvXqyoO69autOhefUgoRAgAAAACykbB0UklJSRo9erRiY2Pl4eGhmTNn6rbbbivtsACgTOtQz187x/bSsGvr2i3/7dB5tZu8TuuOXCjhyAAAAAAA2UhYOqnZs2fr+PHjkqRXX31VvXr1Kt2AAKCcqFLJXd/c316zhraRp5vtx+CZyym6cfZmvf17uDIYIg4AAAAAJc6ttAOArdTUVH3zzTfG/owZMzRjxow8r/nhhx9Up06d4g4NAMoFk8mkJ7o2UteGVTVswQ4dOp9oVZ5plt78/ZDWH72oBfe1U50qlUopUgAAAACoeEhYOqHw8HDFx8cb+xcu5D80MSMjozhDAoBy6Zq6VbT9uV56euleLdh5yqZ87eELajdpnRbc1143B9cohQgBAAAAoOIhYZmLqVOnaubMmQoMDNTatWsLdO2RI0f03XffaevWrTp16pTS09NVs2ZNBQcHa+DAgbr55pvl5pb7Q9+6dWsdOnSosHcBAOAAX083zbvnWl0fVE2jf9qr5LRMq/JzCanq/8UWvXJDM73ZN1hudlYaBwAAAAAUHRKWduzZs0dffPHFVV07ffp0zZ49W+np6VbHIyMjFRkZqTVr1qh169b66KOP1KRJk6IIFwBQSCaTSSM6NVDnBgEatmCn9kfHW5WbzdJ7ayK04ehFLbq/ver5e5VSpAAAAABQ/tFNJIfIyEg99dRTSktLK/C1EyZM0IwZM4xkpZubm1q1aqWOHTsqICDAOG/fvn0aPny4oqKiiixuAEDhtaxdWVuf7aFHOjWwW77h2CW1m7ROKw9El3BkAAAAAFBxkLC0EB4ervvvv1/nz58v8LWrVq3SggULjP1+/fpp3bp1Wrp0qRYtWqQNGzbo7bfflpdXVq+cCxcuaMyYMTKbWYEWAJyJt4ebvry7rRbc104+Hq425ReT0nTbV9v04i//Ki0j004NAAAAAIDCYEj4//vvf/+rN954Q8nJyQW+Ni0tTRMnTjT2+/TpoylTpsjF5X/5YHd3dw0bNkyBgYF64oknlJ6erv3792v58uUaOHBgkdyHksZCP8hLzvZBe0FenLG9DLumttrVqaz7vgnTnjPxNuWfrDuijccuauG916phAEPES5ozthk4L9oLCoL2goKgvaAgaC8oiIreXkzmCt7FLzo6WpMmTdLPP/9st9yRRXdWrlypsWPHSsoaBv7HH3+obt26uZ7/9ttva9GiRZKkVq1aaenSpVcXfAkLCwtTZia9iQBULCkZZk3eFacfDyfZLa/sbtL4Lv66vh5JSwAAAAAVl4uLi9q1a1c0dRVJLWXUrFmz1L9/f6tkZZMmTTRq1KgC1bNy5Upju1u3bnkmKyVp2LBhxvb+/fsVGRlZoNsDAJQcT1eTxl3nr/e6B8jH3WRTHp9m1osbYvTJzjilZlTo3wABAAAAoEhU6ITlV199paSk//WYueuuu/T999+rYcOGDtdhNpu1detWY7979+75XhMSEqIaNWoY+/n14AQAlL6bG3hpYb8aalHV3W75d+GJemz1BZ2KTy/hyAAAAACgfGEOS0mtW7fWyy+/rE6dOhX42qioKF2+fNmqLkeEhIQYi/vs3bu3wLfrDFq3bi1XV9sFKQApa36Nffv2Gfu0F+SlrLSXtpJu6pKhV389pOl/n7ApP3ApTQ/9cUmzhrbWXdfUKfkAK5Cy0mbgHGgvKAjaCwqC9oKCoL2gIMpKe9m7d2+xTB9YoROWnTp10pAhQ3TjjTfKZLId5ueI48ePW+03aNDAoevq1atnbJ88efKqbru0ubq6ys2tQjchFADtBQXhzO3Fzc1NUwdfoz7NauiRxf8oNjnNqvxySrru/2a31h+L0aRBreTl7nx/VJRHztxm4HxoLygI2gsKgvaCgqC9oCAqWnupOPfUjpkzZxa6juxeklLW5KLVq1d36DrLIeGWdQAAyoY7WtdRu7p+unfRLm05EWNT/tnmE9p8PEaLh3dQSE3fUogQAAAAAMqmCj2HZVGIi4sztn18fOTi4thD6uv7vy+vlnUAAMqOhlW9te6pbnrx+iC75XvOXFbHKeu1cOepEo4MAAAAAMouEpaFlJKSYmxXqlTJ4es8PDyM7dTU1CKNCQBQctxdXTTxtpZa/mgnVfO2XZAnMTVDD34bpkeX7FZSKgvyAAAAAEB+SFgWUlra/+Yuc7R3pSSreQfS0/kCCwBl3YAWtRQW2ls9G1e1Wz53W6Q6Td2g/WfjSzgyAAAAAChbSFgWkuUKTQVZFckySenubtsjBwBQ9tTz99KaUV312k3NZG8tt3+jE9Rp6nrN2XZSZrO55AMEAAAAgDKgQi+6UxS8vLyMbcvh4fmxHAbu6elZpDEBAEqPm6uL3unfXL2aVNPwb3bpXIL1tB/JaZl6bMk/+uvwBc0ceo18Pe1/FCclSevWSWfPSgkJkq+vVLu21Lu35O1dEvcEAAAAAEoHCctC8vPzM7YTExNlNptlstetJoeEhARj29/fvzhCAwCUopuDa2h3aG898E2Y1h6+YFO+cFeUtkXGavHwDmpb93+fJeHh0qxZ0rx5Umysbb3+/tKIEdKoUVJwcLGFDwAAAAClhiHhhVSrVi1jOyMjQzExMQ5dd/78eWO7evXqRR4XAKD01a5SSb893kVv9QuRi53fssLPJ6rLtI36bPNxxcaaNXSoFBIiTZliP1kpZR2fPDnrvKFDpbi4YrwDAAAAAFAKSFgWUsOGDa32IyMjHbru1KlTxnbjxo2LNCYAgPNwdTHpPzcHa82orqpbpZJNeUp6pp78ca8aPb1LS5en2akhd0uXSj16SFFRRRUtAAAAAJQ+EpaFFBgYaDWk+8CBAw5dd/DgQWO7efPmRR0WAMDJ9A6qrrDQXuofUsNu+eU6p6UH1ks1YwtU7759Uv/+9LQEAAAAUH6QsCwCnTt3NrY3bdqU7/kHDx7UhQv/m8+sS5cuxRIXAMC51PD11PJHO+v9AS3kameMuCkgSbpvo9TuqCTHVxHft0965JEiDBQAAAAAShEJyyLQt29fY/vPP/9UdHR0nud/++23xnZQUJBCQkKKLTYAgHNxcTHp5Ruaat1T3VTHx3aIuMnVLNMN+6VBOyTPVDs12Ld0qRQRUZSRAgAAAEDpIGFZBPr27auaNWtKklJTUzVu3Dilp6fbPXfDhg36/vvvjf3hw4eXSIwAAOfSrVFVDYrvLfORWnbLTc3OSsPXS3UcW8xNkmbPLqroAAAAAKD0kLAsAh4eHgoNDTX2N23apJEjR1otwJOenq4lS5ZozJgxysjIkPR/7N13eFR12sbx+2QmPSEJHUIvAZQWegmJICp2BREUUGAtWFgEd1d9t1jXsu7SLGADFRAUiei6iA1NCJ0QhNCCobcAIQnp9bx/ZM0aZ4AkTEn5fq4rl5N5fueXe3bn0smT85wjhYWFafTo0S7PCwBwv5wcadlCL2llX5k/XCmz2M6IeFCuNGad1CdZFRkRX7iwdF8AAAAAqMms7g5QW9x+++1KSEjQxx9/LKm0aXnttdeqU6dOCggIUHJyss6dO1e2Pjg4WHPmzJHVyv8FAFAXxcRI6emSZEjb2knH68u8KV5GcPmOo2ExpajdMluelVb3lHK9L7hnWlrpvtdf78zkAAAAAOBcnGHpQM8++6ymTJkiT09PSVJJSYn27NmjLVu2lGtWtm/fXosXL1a7du3cFRUA4GanTv3miZRgaXGkzKRmdtcb7U6XjoiHpl5030tcRhkAAAAAqj1O73MgwzA0ffp03XLLLfr0008VFxenU6dOKTc3V0FBQerSpYtGjBihW265RV5eXu6OCwBwo6wsO0/me0r/7i2zx2Hpql0yrCXlykZgnsw710vrO0mbOkqyHSPPzHROXgAAAABwFRqWdowcOVIjR46s8vHt27fXE088oSeeeMKBqQAAtUlAwIUqhvRTG+lkSOmIeEh2+aqHpIh9MlukSl/1knLKj4gHBjojLQAAAAC4DiPhAAC4QdOml1hwOkhaFClzT6jdstHmrDQhRmp5ttzzTezfdBwAAAAAagwalgAAuEFUlBQcfIlFhVZpVbjMb7rLLLT9T7YRkC+N3iAN2icZpkJCSvcFAAAAgJqMhiUAAG7g5ydNmlSRlYa0s7W0ZIjMVNs5csOQjIFJ0h0bNHpSnvz8HB4VAAAAAFyKhiUAAG4yZUolFqfWkxYPkZnY0m7ZaJWqFb4x+nrfaceEAwAAAAA3oWEJAICbhIVJlbrHW5FV+rqnzK96yiy02JTP5RXo+nc26alVe1RYXGJnAwAAAACo/mhYAgDgRgsWSF27VvKg3S1Lz7Y8Y/+W4K+s+VlD563X0fTcyw8IAAAAAC5GwxIAADcKCpJWr65C0/JcoPTREIUcbWW3vP5QmsJnxujfu05dfkgAAAAAcCEalgAAuFloqBQXV8nxcEkjb7HowNs99NG4XgrwtjMinlOoWxdu0eNf7FJBESPiAAAAAGoGGpYAAFQDQUHSihXSvn3S9OlScLD9dSEh0owZUlJS6fqgIGlseKjiH4tUeGg9u8fMij2gyDfW6WBqjvNeAAAAAAA4iNXdAQAAwP+EhUkzZ0ovvCDFxEgpKVJmphQYKDVpIkVFSX5+tsd1bBSg9VMj9Mcv9+j1uIM29c1H09VrVozeG9NTI7s1c8ErAQAAAICqoWEJAEA15OcnXX995Y7xtlo097auuqp9A/3u4+3KyCsqV8/IK9IdH2zVI4Pb6NWbrpCPp+0YOQAAAAC4GyPhAADUMiO7NdO26VHq1zLYbv2NdYc0+PU47T+T5dpgAAAAAFABNCwBAKiF2jbwU+wjgzUjqp3desLx8+o9O1ZLE467OBkAAAAAXBwNSwAAaikvq4f+efOV+nxSX9X387SpZ+UXa9ySbXpg+U/KLSx2Q0IAAAAAsEXDEgCAWu7mK5sqYUaUBrcJsVt/d9MR9Z+zVntSMl2cDAAAAABs0bAEAKAOaBnsqzUPDdKTwzrYrSeeylTf2Wv1wZajLk4GAAAAAOXRsAQAoI7wtHjoxRu66Kv7+6uRv5dNPaewWJM+3q5JyxKUnV9kZwcAAAAAcD4algAA1DHXdWqshBlRuqp9A7v1D7YeU985a7Xz5HkXJwMAAAAAGpYAANRJzYN89O2DA/XXa8JkGLb1vaez1H/OWr276bBM03R9QAAAAAB1Fg1LAADqKIuHoWev66RvHxiopoHeNvW8ohI9sHyHxn+UoPN5hW5ICAAAAKAuomEJAEAdN6xjQyXMiNLwjg3t1pcmHFef2WuVcDzDxckAAAAA1EU0LAEAgJoEemv1/QP0wvWd5WFnRPzns9kaODdOb6w7yIg4AAAAAKeiYQkAACRJHh6G/u/qjvrhoUEKDfKxqRcUl2jqZ4m688N4pecyIg4AAADAOWhYAgCAcoa0a6CEGZG6oXNju/UVO0+q18wYbT6S5uJkAAAAAOoCGpYAAMBGQ39vfTG5n/5x0xWy2pkRP5SWqyFvrNOs2GRGxAEAAAA4FA1LAABgl4eHoT9c1V6xjwxW6xBfm3phsanHv9it2xZu0bmcAjckBAAAAFAb0bAEAAAXNaB1iLZNj9RtXZvarf97d4rCZ8Zo/aFzLk4GAAAAoDaiYQkAAC4pxM9LK+7to9m3XilPi+2I+NH0PEW9uV6vrPlZJSWMiAMAAACoOhqWAACgQgzD0O+HtNO6RyPUroGfTb24xNRTq/bopvc26UxWvhsSAgAAAKgNaFgCAIBK6dMyWPGPRerOHs3t1lfvO6PwmbGKST7r4mQAAAAAagMalgAAoNKCfD21dHwvzRvVTd5W248TJ87n6er5G/T8t0kqZkQcAAAAQCXQsAQAAFViGIYeHNhGG38fobBG/jb1ElN6+ut9GvHORp06n+eGhAAAAABqIhqWAADgsvRoHqStj0VqfK9Qu/Xv959Vz5kx+i7pjIuTAQAAAKiJaFgCAIDLFuBt1Qd3heu9O3vI19P248XprAJd985G/eWrvSoqLnFDQgAAAAA1BQ1LAADgEIZhaFK/Vto8LVJXNAmwqZum9OL3+3X1/A06lp7rhoQAAAAAagIalgAAwKGubBqozdOGaHK/Vnbraw+eU/jMGK3ak+LiZAAAAABqAhqWAADA4fy8rHr3zh5adHe4/L0sNvXUnELd9N5m/enL3SpkRBwAAADAr9CwBAAATjOuVwvFT49Uj+b17Nb/+WOyot5cr8PnclycDAAAAEB1RcMSAAA4VVijAG2YGqEpA1vbrW88nKZes2K1MvGki5MBAAAAqI5oWAIAAKfz8bTozVHdtWx8b9XzsdrU03ILNfL9rXrs80TlFxW7ISEAAACA6sL2NwYAAAAnubNnc/VuEaSxi+MVfyzDpj537UGtO3hOy8b3VvuG/nb3yMmR1qwxtGVLA+XkeMjPr0QnTxoaNkzy83P2KwAAAADgbDQsAQCAS7Vv6K+4Rwfrif/s0dy1B23q8ccy1Ht2rN4Z3UOjezQvez4pSZo3T3r/fSk93SKpTbnjgoOlSZOkKVOksDCnvgQAAAAATsRIOAAAcDlvq0Wzb+2qzyb2VbCvp039fF6RxiyK18MrdigltVijRkmdOkmzZ0vp6fb3TE+XZs0qXTdqlJRhewInAAAAgBqAhiUAAHCbW7s2VcL0SA1oHWK3Pn/DYbV9Kk7RP2RVat/oaCkiQjp+3BEpAQAAALgSDUsAAOBWrev7KebhQfrjVe3t1vPqnZfGx0qdj1Vq38REacQIzrQEAAAAahoalgAAwO08LR565aYr9OXv+qmBn+2IuOFVLOPGBOnanyRrUYX3TUyUJk92ZFIAAAAAzkbDEgAAVBs3dGmihBlR6tO0vt260e2ING6t1CCzwntGR0v79zsqIQAAAABno2EJAACqlRbBvhp0YqDMDR1lmrZ1o2GWNC5WuvKIJDsL7Jg/37EZAQAAADgPDUsAAFCt5ORIHyz0kNZ3llYMkJntZbPG8CyRMeIn6foEyfPSI+ILF5buCwAAAKD6o2EJAACqlZgYKT39v98cbiQtipJ5uKHdtcYVx0tvyNPo4nfWSUsr3RcAAABA9UfDEgAAVCunTv3miWyf0jMt13WSWWK73qifLd0dJ3U/pIuNiKekODIlAAAAAGehYQkAAKqVrCw7T5qGtDFMWj5QZpa3Tdmwlsi4Zqd00zbJq9DuvpkVv08PAAAAADeiYQkAAKqVgICLFI81lD6Mknmwkd2y0elE6Yh443SbWmCgY/IBAAAAcC4algAAoFpp2vQSC3K9pej+Mtd2llli2JSNkBzprnVS+EH9ekS8SRPH5gQAAADgHDQsAQBAtRIVJQUHX2qVIW3uKH08SGamj23VWiJjWKJ0y1bJu0AhIaX7AgAAAKj+aFgCAIBqxc9PmjSpgotP1C8dEU+2f/qk0fGUNCFWIyalyc/PcRkBAAAAOA8NSwAAUO1MmVKJxXle0sq+Mn+4QmaxnRHxoFx9almnf/2YrJKSC99FHAAAAED1QMMSAABUO2Fh0siRlTnCkLa1l5YNlpnha1MtKjH1xy9369aFm5WaXeCwnAAAAAAcj4YlAAColhYskLp2reRBp0KkRVEyk+zfuec/e04rfGaM4g6mXn5AAAAAAE5hddUPKigo0Pbt27Vt2zalpKQoIyNDHTp00MMPPyxJSk5O1oEDB3TVVVfJ09PTVbEAAEA1FRQkrV4tjRghJSZW4sB8T+nffdTshkNK7bpbBcUl5crHMvI0dN4GPXtdJz05tIM8PGzHyAEAAAC4j9Mblrm5uXrnnXf00UcfKSMjo1wtIiKi7HF8fLyefvppNWvWTH/60580YsQIZ0cDAADVXGioFBcnTZ4sRUdX/LiRIw0tWNBWB7Lqa8yieP18NrtcvbjE1F++2quY5LP68K5eahLo7eDkAAAAAKrKqSPhBw4c0B133KF58+YpPT1dpmmWff3W8ePHZZqmTpw4oenTp2vWrFnOjAYAAGqIoCBpxQpp3z5p+nQpONj+upAQacYMKSmpdH1QkBQeGqStjw3R2J7N7R7zbdJZhc+M0Zr9Z533AgAAAABUitPOsExJSdHEiRN15syZsucsFotatWqlgwcP2qw/e7b0FwXDMGSapt5++221aNFCo0ePdlZEAABQg4SFSTNnSi+8IK1ZU6ytW48qO9tD/v4l6tOnpYYNs8jPz/a4ej6eWjKul4Z1bKjff5aovKLyI+KnMvN1zdsb9NfhYfrrNWGyMCIOAAAAuJXTzrB84okndPr0aUlSvXr19Le//U0bN27UV199ZXf9s88+qxdeeEHBwcFlTct//OMfNmPkAACgbvPzk0aMMHXzzakaO/aMbr45VSNGmHablb8wDEP39W+tTdOGqHPjAJu6aUrPfZuka97aoBMZeU5MDwAAAOBSnNKw3LBhgzZu3CjDMBQUFKSPPvpId999twIDAy94jNVq1R133KHly5ercePGkqSsrCytXLnSGREBAEAd1K1ZPW2ZNkT39mlht/5jcqrCZ8bom32nXZwMAAAAwC+c0rD89VmUTz75pNq3b1/hY1u0aKHHH3+87Pu1a9c6NBsAAKjb/L2tWjg2XAvH9JSfp8Wmfia7QCPe2aT/W7VHRb+5wzgAAAAA53NKw3Lr1q2SpICAAN10002VPv6mm25SUFCQTNNUUlKSo+MBAADo3r4tteWxIera1P4EyMtrftbQeet1ND3XxckAAACAus0pDcszZ87IMAy1b99eVmvl7+vj4eGh1q1bSxLXsAQAAE7TpUmgNk0bovv6t7JbX3coTeEzY/Tl7hQXJwMAAADqLqc0LAsKCiRJXl5eVd7jl2M9PJx2XyAAAAD5elr09ugeWjKulwK8bUfEz+UU6pYFm/X4F7tUUMSIOAAAAOBsTukGNmjQQKZp6tixY1Xe4+DBg5KkkJAQR8UCAAC4oLvCQxX/WKTCQ+vZrc+KPaDIN9bpYGqOi5MBAAAAdYtTGpYdO3aUJJ08eVK7d++u9PHr1q1TamqqDMNQWFiYo+MBAADY1bFRgNY9GqFHBrexW998NF29ZsUoeudJ1wYDAAAA6hCnNCyjoqLKHr/00ksqKan4+FRWVpZefPHFsu8jIiIcmg0AAOBifDwteu32blp+T28F+dheizsjr0h3fLBVUz/bqfyiYjckBAAAAGo3pzQsb7vtNjVo0EBS6R3Dp02bpvPnz1/yuGPHjmnSpElKTk6WJNWrV0+33XabMyICAABc1KjuzbVtepT6tgy2W39j3SENfm2dfj6b7dpgAAAAQC1X+Vt4V4Cfn5+eeOIJ/elPf5JhGPruu++0adMmDR06VO3bty9bl5GRoR9//FEnTpzQxo0btWbNGhUXl56pYBiGpk6dqoCAAGdEBAAAuKS2Dfy09pHBemrVHs2KPWBT33Y8Q71nxeqtO7prbHioGxICAAAAtY9TGpaSdMstt+jIkSN6/fXXZRiGzp8/ry+++KKsbpqmdu7cqYceeqjcc4ZhSJLuuOMOjR8/3lnxAAAAKsTL6qF/3XKlrmrfQBOXbVdabmG5emZ+ke5esk0/JJ/V7Fu7ytfT9k7jAAAAACrOKSPhv3j00Uf1r3/9S4GBgZJKG5JS6dmTvzQmf3nul39arVb98Y9/1PPPP+/MaAAAAJVy85VNlTAjUoPahNitv7PxiAbMXau9pzNdnAwAAACoXZzasJSkG2+8UT/88IOefPJJ9erVS56enjJNs+zrFx07dtQDDzyg77//Xr/73e+cHQsAAKDSWoX46YeHBumJYR3s1neezFSfWWv14dajLk4GAAAA1B5OGwn/NX9/f02cOFETJ05UQUGBUlJSlJGRoaKiItWrV0+NGzfmWpUAAKBG8LR46KUbuiiqXQPdszRBZ7MLytVzCos1cdl2/fhzql67vav8vV3ycQsAAACoNZx+huVveXl5qWXLluratat69uypdu3aXbRZWVBQcMEaAACAu4zo3FjbZ0Qpql0Du/X3tx5VvzlrlXjyvIuTAQAAADWbUxqWTz31lJ566im9//77Vd7j+eef19VXX63Ro0c7LhgAAIADNQ/y0bcPDtBfrwnTfy/PXc6e01nqN2et3t10uNylcAAAAABcmFMalp999plWrlypdevWVXmP5ORkHT9+XMePH3dgMgAAAMeyWjz07HWd9M0DA9Qk0NumnldUogeW79D4jxKUmVfkhoQAAABAzeLykfCKSk9PlyTl5eW5NwgAAEAFXN2xkbbPiNLwjg3t1pcmHFfv2bFKOJ7h4mQAAABAzVLlq8Dv3btXmZmZF12TkZGhLVu2VGrf/Px8xcTEaO/evZKk4ODgqkYEAABwqSaB3vrq/gF6ec1+Pf31PpX8Zgr857PZGjg3TjNvuVIPDWotw94cOQAAAFDHVblhuXv3bv35z3++YN00Te3cuVP33HNPVX+EDMNQeHh4lY8HAABwNYuHoT8PD9OQtg007qNtOp5RflqkoLhEj362Uz8mn9Xbo3so2NfTTUkBAACA6qnKI+EjR45Ur169HH4B+V/v5+npqfvvv9+h+wMAALhCZPsGSpgRqes7N7Zb/3THSfWeFastR9JdGwwAAACo5i7rGpbPPPOMrFarTNMs9/WL3z5/qS9J8vHxUZMmTRQZGakPPvhA3bt3v7xXCAAA4CYN/b3178n99MqNXWT1sB3/PnguRxFvxGl27AHuIg4AAAD8V5VHwiWpY8eOSkxMtHm+c+fOMgxDEREReueddy7nRwAAANRoHh6G/ji0gyLa1tddi7fpSHpuuXphsakZX+zSj8lntWBMT9X383JTUgAAAKB6cNpdwjlLAAAA4H8GtqmvbTMideuVTezWv9iVovCZMVp/6JyLkwEAAADVy2WdYXkhL730kiSpSRP7H8gBAADqovp+Xoqe2Fdz4w7qT1/uVmFx+T/wHk3PU9Sb6/X36zvrD1Ht5WFnjBwAAACo7ZzSsLz99tudsS0AAECNZxiGpg1pp8Ft6mvs4ngdSM0pVy8uMfXkf/YoJjlV74/tqUYB3m5KCgAAALiH00bCHcXeNTIBAABquj4tgxX/WKRGd29mt/7V3tMKnxmr2ORUFycDAAAA3MspZ1j+WnFxsXbs2KFTp04pPz9fxcXFdq9vaZqmioqKVFhYqJycHJ05c0Zbt27V/v37tXv3bmfHBAAAcLkgX08tm9BbQzcc1vQvdim/qKRc/cT5PA2bv17PXNdJTw3rKAsj4gAAAKgDnNqwXLBggd566y2dP3++SsebpinD4IM5AACovQzD0JRBbTSwTYjGLIpX0pnscvUSU/rb6n2KSU7VorvC1bSej919cnKkmBjp1CkpK0sKCJCaNpWioiQ/P1e8EgAAAMAxnNawnD17tt56662ysyl/aTz++uzK3zYjubM4AACoq3o0D9KWaZF6OHqHlmw7blP/fv9Zhc+K1aK7wjU8rFHZ80lJ0rx50vvvS+nptvsGB0uTJklTpkhhYU6LDwAAADiMU65heezYMb377ruSyjcqf928NAyj7Dl7tcaNG+u+++7T4sWLnRERAACg2gn0serDu8L17p095Otp+zEtJTNf172zUX9dvVepaSUaNUrq1EmaPdt+s1IqfX7WrNJ1o0ZJGRnOfAUAAADA5XNKw/Kzzz5TUVGRJMnb21t/+ctfFBsbqz179ujxxx+XaZqyWCzatGmTdu3apfXr1+u9995TVFRUWfPy3LlzGj58uHr37u2MiAAAANWSYRia3K+VNk+L1BVNAmzqpin9/bv9av34BkV/k1upvaOjpYgI6bjtCZwAAABAteGUhuXmzZvLHj/++OMaP368GjduLMMwNHDgQEmlN+OJi4uTxWJR/fr1NXjwYL311luaPn16Wf2vf/0rY+IAAKBOurJpoDb9fogm9m1pt55T/5w0IVZqk1KpfRMTpREjONMSAAAA1ZdTGpZHjx6VJHl5eenOO+8sV+vcubM8PT0lSVu3brU59sEHH9Tw4cNlmqZ+/vlnfffdd86ICAAAUO35e1u1YExPfXhXuPy9LDZ1w69AxqjN0pDdkkeJnR3sS0yUJk92ZFIAAADAcZzSsMzIyJBhGGrfvr28vb3L1axWq9q1ayfTNLVr1y67xz/wwANlj3/44QdnRAQAAKgxxvduoa2PRapT/Xp260a/ZGnMeikwp8J7RkdL+/c7KiEAAADgOE5pWP5y/crg4GC79bZt20qSkpOT7da7d++uhg0bSpL27t3r+IAAAAA1TKfGAbrmbITM7a3t1o3maaUj4u1PVXjP+fMdlQ4AAABwHKc0LH9pVBYWFtqtt2xZei2mnJwcpaTYv+5SaGioTNPUiRMnnBERAACgRsnJkRYttEjfd5f5794y8602awzfQhm3bZGuSqzQiPjChaX7AgAAANWJUxqWjRo1kmmaOnLkiN16q1atyh4nJSXZD+ZRGi07O9vxAQEAAGqYmBgpPf2/3yQ1lxZFyjwVZHet0fugdFecFHTxz1FpaaX7AgAAANWJUxqW4eHhkqTTp08rMTHRpv7rhuX27dvt7vHLjXusVtuzBwAAAOqaU7+d9M7wl5YNlrmtrd31RtOM0hHxjhefVrnAsAsAAADgNk5pWA4ePLjs8V/+8helpqaWq19xxRVlZ1B+/vnnNqPjP/zwg86ePSvDMMquZQkAAFCXZWXZebLYIv3QVebnfWTmedqUDe8iGbfES1fvkCzFdvfNzHRwUAAAAOAyOaVhOXToULVp00aStG/fPl1//fV69dVXdfbsWUlSYGCg+vbtK9M0dfz4cU2dOlWHDx9Wdna2vv76a/3f//1f2V49evRwRkQAAIAaJSDgIsWfm0kfRso8EWK3bPQ8LN0dJ4XYdj0DAx0UEAAAAHAQpzQsDcPQX/7yF1ksFknS+fPntWDBAp361SzTxIkTyx7HxMRoxIgR6tOnjx577DGlpaWV1UaOHOmMiAAAADVK06aXWJDpJ308SOaW9nbLRuPz0vhYqfOxcs83aeKggAAAAICDOKVhKUkRERH6xz/+ocBf/dn+19euHDp0qG655RaZpilJMk2z7MswDEnSDTfcoEGDBjkrIgAAQI0RFSUFB19iUYmHFHuFzOh+MnPtjIh7Fcu4MUG69ifJWqSQkNJ9AQAAgOrEaQ1LqbTh+NVXX+mRRx5R7969Va9evXL1F198UZMmTSo7E/PXxowZo5dfftmZ8QAAAGoMPz9p0qQKLj7YRPowSuax+nbLRrcj0rg43TIpU35+jssIAAAAOILTb8HdoEEDTZ06VVOnTrX94VarnnjiCU2ePFlxcXE6c+aMgoODNXDgQLVs2dLZ0QAAAGqUKVOkWbMquDjLV/pkoMxBSVL//frvAEsZo2GmPrHGKmpzN03s27JswgUAAABwN6c0LDds2KDs7GxFRUXJ09N2HOm3GjVqpNtvv90ZUQAAAGqNsDBp5EgpOrqCB5ge0rrO0rEGMq/fJsO/oFw5r6hEv/vkJ/2YnKo3RnZTgLfT/5YNAAAAXJJTRsIXL16sqVOnKiIiQkuXLnXGjwAAAKiTFiyQunat5EGHG0mLomQebmi3vCj+mPrOjtWOE+cvPyAAAABwmZzSsNy9e7dM09T58+cVGhrqjB8BAABQJwUFSatXV6Fpme0jrRigxj93koed6e99Z7LVf+5avbXhUNlNEQEAAAB3cErDMjU1texxr169nPEjAAAA6qzQUCkurnQ8vDJG3m5o3wdh+u7BgWpWz9umnl9UoodW7NTdS7bpfF6hg9ICAAAAleOUhmVwcHDZ47y8PGf8CAAAgDotKEhasULat0+aPl361cevckJCpBkzpKSk0vVBQdJVHRoqYXqUruvUyO4xH28/od6zYhV/LN1p+QEAAIALcUrD8tprry17/OmnnzrjRwAAAEClN+KZOVM6flxatUpauFCaO7f0n6tWSceOSf/6l9SxY/njGgd66z+/668Xb+gsi50Z8eTUHA1+bZ1eizvIiDgAAABcyim3gpw2bZq2bNmiffv26fXXX5evr6/uvvvuCt0xHAAAAJXn5yddf33ljvHwMPTksI4a0raB7locr2MZ5SdjCopLNG1lon78+azevbOHQvy8HJgYAAAAsM8pDUur1ar33ntPzz33nL755hu9/PLLevPNNxUeHq7OnTurfv36CggIkIdHxU7wvO2225wREwAAAJIGt62vhBlRmrRsu77ck2JT/yzxlLYdz9Cy8b3Vv3WIGxICAACgLnFKw/LXN9oxDEOmaSojI0MxMTGKiYmp9H40LAEAAJyrgb+XPp/cV7NiD+jJ/+xRUUn5MfDDabka8sY6vXRDF02PbCcPe7caBwAAABzAKdewNE2z7EsqbVoahmFTq8gXAAAAXMMwDM2Iaq+4RwerTYivTb2oxNQfv9ytWxduVmp2gRsSAgAAoC5wyhmWzZs3d8a2AAAAcIF+rUK0bUaU7vtku6J3nrKp/2fPaYXPjNFH43spom0DNyQEAABAbeaUhuWaNWucsS0AAABcJNjXU8vv6aM31h3SH/69WwXFJeXqxzLyNHTeBj13XSc9MbQDI+IAAABwGKeMhAMAAKDmMwxDj0a01fqpg9W+gZ9NvbjE1J+/2qvr392olMx8NyQEAABAbUTDEgAAABfVq0Ww4qdHamxP+5f9+TbprMJnxmjN/rMuTgYAAIDaiIYlAAAALqmej6eWjOult+7oLh+r7UfIU5n5uubtDXrm630qLuHGiQAAAKg6GpYAAACoEMMwdP+A1to0bYg6Nw6wqZum9Ny3SbrmrQ06kZHnhoQAAACoDWhYAgAAoFK6NaunzdOG6J7eLezWf0xOVfjMGH2z77SLkwEAAKA2oGEJAACASgvwtur9u8K1cExP+XlabOpnsgs04p1N+r9Ve1T0mzuMAwAAABdDwxIAAABVdm/flto8bYi6Ng20W395zc8aOm+9jqbnujgZAAAAaioalgAAALgsVzQN1MbfR+h3/VvZra87lKbwmTH6z+4UFycDAABATUTDEgAAAJfNz8uqd0b30OK7wxXgbTsifi6nUDcv2Kw//HuXCooYEQcAAMCF0bAEAACAw9zdq4W2Phapns3r2a3PjDmgqDfX6dC5HBcnAwAAQE1BwxIAAAAOFdYoQOunRujhQW3s1jcdSVevWbH6bOdJ1wYDAABAjVDtG5YFBQXujgAAAIBK8vG06PWR3bT8nt4K8rHa1NNzCzXqg636/cpE5RcVuyEhAAAAqivbT48O8NRTT0mSOnXqpIkTJ1Zpj+eff14//vijAgIC9PnnnzswHQAAAFxlVPfmCg8N0l2Lt2nL0XSb+utxB7X+4Dktm9BbHRr6uz4gAAAAqh2nnGH52WefaeXKlVq3bl2V90hOTtbx48d1/PhxByYDAACAq7Vr4K+1jwzWY5Ht7Na3Hc9Q71mx+ng7n/sAAABQjUfC09PTJUl5eXnuDQIAAIDL5mX10MxbrtTKSX0V4utpU8/ML9Jdi7fpwU9/Um4hI+IAAAB1WZVHwvfu3avMzMyLrsnIyNCWLVsqtW9+fr5iYmK0d+9eSVJwcHBVIwIAAKCaueXKpkqYEam7Fm/ThsNpNvV3Nh7RxsNp+nhCb3VuHOiGhAAAAHC3Kjcsd+/erT//+c8XrJumqZ07d+qee+6p6o+QYRgKDw+v8vEAAACoflqF+OnHhwfpb1/v0ytrfrap7zyZqb6z1+rNUd00oXdLNyQEAACAO1V5JHzkyJHq1auXTNN0ZJ5y+3l6eur+++936P4AAABwP0+Lh166oYtW3ddfDf29bOrZBcW6d+l2TV62Xdn5RW5ICAAAAHe5rGtYPvPMM7JarTJNs9zXL377/KW+JMnHx0dNmjRRZGSkPvjgA3Xv3v3yXiEAAACqrRGdG2v7jChFtWtgt/7+1qPqP3etdp26+KWIAAAAUHtUeSRckjp27KjExESb5zt37izDMBQREaF33nnncn4EAAAAarnmQT769sEBev67/XrhuyT9doBnd0qW+s2J1dzbumlyv5YyDMM9QQEAAOASTrtLuKNHxQEAAFB7WS0eeva6TvrmgQFqEuhtU88tLNH9y3/ShI8SlJnHiDgAAEBtdllnWF7ISy+9JElq0qSJM7YHAABALXV1x0baPiNKEz7apu/2n7Wpf5RwXFuOpuvjCb3VMzTIDQkBAADgbE45w/L222/X7bffrkGDBjljewAAANRiTQK99dX9A/T8iE7ysDP9vf9stga+Fqc31x1iqgcAAKAWctpIOAAAAFBVFg9Dfx4epjVTBik0yMemnl9Uokc/26kxi+KVkVvohoQAAABwFqeMhG/ZssWh+/Xt29eh+wEAAKBmiGzfQAkzInXv0u36au9pm/qnO04q/liGlo3vrb6tgm3qOTnSmjWGtmxpoJwcD/n5lejkSUPDhkl+fi54AQAAAKg0pzQsJ0yY4LC7NxqGod27dztkLwAAANQ8Df299e/J/fSvmGT9+au9KiopPwZ+8FyOIt6I0ys3XqFpQ9rKMAwlJUnz5knvvy+lp1sktSl3THCwNGmSNGWKFBbmqlcCAACAiqgWI+GmaV70CwAAAHWbh4ehPw7toJiHB6lVsK9NvbDY1Iwvdummd7bo5tEF6tRJmj1bSk+3v196ujRrltSpkzRqlJSR4cz0AAAAqAynnGEpqcqNRsMwZLFYdPXVV8tisTg4FQAAAGqygW3qa9uMSP3u4+36fFeKTf2rpBSZIbFSs17SyfoV2jM6WkpKklavlkJDHZ0YAAAAleWUhuXevXsrvLagoEBpaWlKSkrSl19+qS+++ELFxcXKy8vTnDlz5ONje5F1AAAA1F31/bwUPbGv5sYd1J++3K3C4vJ/KDfq5cocu16K6yxtaS/p0pcqSkyURoyQ4uKkoCAnBQcAAECFuH0k3MvLS02aNNGQIUP0yiuv6O2335bFYlFsbKyef/55d8cDAABANWQYhqYNaad1j0aoXQPbu+cYHqaMyD3S7Zsl3/wK7ZmYKE2e7OikAAAAqCy3Nyx/a8iQIZo6dapM01R0dLTi4+PdHQkAAADVVJ+Wwfr45kiZ+5rZrRvtTksTYqXQ1ArtFx0t7d/vyIQAAACorGrXsJSku+++W97e3pKkFStWuDkNAAAAqrMlCzylL3vL/K6bzCLbj7dGYJ5053qpf5JkXPo66/PnOyMlAAAAKqpaNiwDAwPVrl07mabJGZYAAAC4oJwcaeFCSTKkn9pIH0XIPOdvs87wkIyIfdKojZJf3kX3XLiwdF8AAAC4R7VsWEqSn1/ptYhOnz7t5iQAAACormJipPT0Xz1xJkhaHClzt/3bfRutz0r3xEqtzlxwz7S00n0BAADgHtWyYVlSUqJDhw5Jkjw9Pd0bBgAAANXWqVN2niy0Sl+Fy/y6h8xCOyPi/vnSHRulQXslo8TuvikpDg4KAACACquWDcuVK1cqNTVVhmGoRYsW7o4DAACAaior60IVQ0psJS2JlHk2wLZqSMbA/dLoDVJArk09M9OxOQEAAFBx1aphWVBQoI8++kjPPPNM2XNDhgxxXyAAAABUawG2vcjyUgOlJUNkJra0WzZaniu9i3ib8pchCgx0UEAAAABUmtUZm95zzz0VXmuapoqKipSVlaVjx44pLy9Ppll690Zvb2+NHTvWGREBAABQCzRtWoFFRVbp654yjzSQhu+U4VVcrmz4FUijNsnc3EFa10kq8VCTJs7JCwAAgEtzSsNy8+bNMgyj0seZplnuuD/+8Y9q1qyZI6MBAACgFomKkoKDf3PjnQvZ01JKCZZ54zYZjc/blI1+P8sMTVVQXC9FRfk5OioAAAAqyGkj4aZpVvrrl+OaN2+uf/7znxo3bpyz4gEAAKAW8POTJk2qxAHnAqWlETJ/am23bISmKf/OWH130N7dfAAAAOAKTjnD8tFHH630MV5eXgoJCVHnzp3VrVs3J6QCAABAbTRlijRrViUOKLJI33WXebSBdM0OGd5F5cr5RqFuW7hF04a01Ss3XiEva7W67DsAAECtV20algAAAEBVhIVJI0dK0dGVPHBfaOmI+E3xMppk2JTnrD2odQfPadmE3mrXwN8xYQEAAHBJ/LkYAAAANd6CBVLXrlU4MN1fWjpY5ra2dstbj2Wo16xYffrTicsLCAAAgAqjYQkAAIAaLyhIWr26ik3LYou6ne2qt2/uo2BfT5vy+bwi3bkoXo9E71ReYbGdDQAAAOBIThkJv5Dk5GRt2bJFp0+f1tmzZyVJwcHBatOmjfr06aNWrVq5Mg4AAABqkdBQKS5Omjy5cuPhI0eWnqEZFNRMw7sF6a7F8dp0JN1m3bz1h7Th0Dl9PKG3OjYKcFxwAAAAlOP0hmV2drY+/PBDrVy5UkeOHLno2s6dO2vixIm69dZbnR0LAAAAtVBQkLRihZSUJM2fLy1cKKWn264LCSm9u/iUKVLHjv97vk19P8U+Mlj/t2qv/hWTbHPc9hPn1Xt2rN66o4fuCg913gsBAACow5zasPzpp580ffp0nTx5UqZpSpIMwyh7/ItfntuzZ4+efPJJLV++XLNmzVKjRo2cGQ8AAAC1VFiYNHOm9MIL0po1xdq69aiysz3k71+iPn1aatgwi/z87B/rafHQqzdfoavaN9DEZQlKzSksV8/KL9a4Jdu05uezmnPrlfLzcunQEgAAQK3ntE9XiYmJmjhxovLy8so97+npqVatWikgIEAlJSU6f/68jh07pqKiIkmSaZraunWrJkyYoKVLlyokJMRZEQEAAFDL+flJI0aYatYstey5Hj1ayFqBT8E3XtFECTOidPeSbYo7eM6m/t6mI9p0OE3LxvfWFU0DHRkbAACgTnNKw7KwsFCPP/64cnNzy86evP766zVu3DiFh4fLYrGUW19QUKD4+Hh98MEH+vHHH2UYhg4fPqynn35ac+fOdUZEAAAA4JJaBPtqzZSBevqbfXp5zc/6zaCQEk9lqt+ctXp9ZDdN7NvSPSEBAABqGafcJfzzzz/X4cOHZRiGLBaLZs6cqVmzZqlPnz42zUpJ8vLy0sCBAzV//nw9//zzZU3Ob7/9VgkJCc6ICAAAAFSI1eKhv1/fRV/d11+N/L1s6jmFxZr88XZNXJqgrPwiNyQEAACoXZzSsPzqq6/KHj/22GO64YYbKnzs6NGj9eCDD5Z9/+mnnzo0GwAAAFAV13ZqrO2PR2lo+wZ26x/GH1O/OWu148R5FycDAACoXZzSsNy7d68kKSAgQPfcc0+lj7///vvl4+MjSdqyZYtDswEAAABV1ayej755cKCevjZMhmFb33s6SwPmrtXbGw/b3GgSAAAAFeOUhmVGRoYMw1BYWJi8vGzHZi7Fz89PnTt3lmmaOnXqlBMSAgAAAFVj8TD09LWd9N2DA9U00NumnldUoimf7tC4Jdt0Pq/Qzg4AAAC4GKc0LIODgyWp7M7fVWH9760bfX19HREJAAAAcKihHRpq+4woXRvWyG592fYT6j0rVtuOpbs2GAAAQA3nlIZlhw4dZJqm9u7dq8zMzEofX1RUpP3798swDLVt29YJCQEAAIDL1zjQW6vu668Xb+gsi4ftjHhyao4GvbZOr8UdZEQcAACggpzSsLztttskSQUFBZozZ06lj1+xYoUyMjIkSTfeeKMjowEAAAAO5eFh6MlhHfXDQwPVIsjHpl5QXKJpKxN1xwdblZZT4IaEAAAANYtTGpa33nqrBgwYINM0tWTJEr399tsVPnbz5s16+eWXJUlt27bVmDFjnBERAAAAcKiItg2UMCNKN3VpYrf+WeIp9Z4Vq02H01ycDAAAoGZxSsPSMAzNmTNHffv2lWmamjVrlu655x7FxMSosND+hcd//vlnvfDCC5o8ebJyc3PVtGlTzZs3r0o37QEAAADcoYG/lz6f3Ff/vPkKWe2MiB9Ky9WQN9bpXz8mMyIOAABwAVZnbHr//fdLkiwWiyTJNE1t2bJFW7ZskdVqVdu2bRUUFCRPT09lZWXp8OHDOn/+fNlawzCUkpKiESNGXPTnGIah3bt3O+MlAAAAAFViGIZmRLVXRNv6GrsoXofScsvVi0pM/fHL3YpJTtXCsT3VwJ8/0AMAAPyaUxqWa9eulWGU/kX5l39Kpc3IwsJC7d+/v9z6X/66bBiGzXoAAACgJurXKkTbZkTpvk+2K3rnKZv6l3tSFD4zRkvH99bgtvXdkBAAAKB6cspIuFTabPzt14Vql3oeAAAAqImCfT21/J4+mntbV3lZbD96H8vI01Xz1uul7/erpITPvwAAAJKTzrD88MMPnbEtAAAAUOMYhqFHI9pqUJsQjVkUr+TUnHL14hJTf/5qr2KSU/XhXeFqHOjtpqQAAADVg1Malv369XPGtgAAAECN1atFsOKnR+rBT3fo4+0nbOrfJJ1Rz5kxWjKul4Z2aOiGhAAAANWD00bCAQAAAJRXz8dTH43rpfl3dJeP1faj+KnMfF3z1gY9+80+FTMiDgAA6iinnGH5+uuvS5Jat26tm2++uUp7vPXWW1q3bp0sFosWLlzoyHgAAACA2xiGoQcGtNaAViEauzhee09nlauXmNKz3yQpNjlVi8f1UrN6Pm5KCgAA4B5OOcPy9ddf1xtvvKEvvviiynusW7dOmzdv1q5duxyYDAAAAKgeujevp83Thuie3i3s1n9ITlXPf8Xom32nXZwMAADAvartSHheXp4kKScn5xIrAQAAgJopwNuq9+8K18IxPeXnabGpn8ku0PXvbtKfv9qjouISNyQEAABwvSqPhJ89e1YFBQUXXZOXl6cTJ2wvKH4x+fn5iomJ0c6dOyVJQUFBVY0IAAAA1Aj39m2pvi2DNXZxvBJPZZarmab00vc/a+2Bc/poXC+1CPZ1U0oAAADXqHLD8vPPP9c///nPC9ZN09TWrVt19dVXV2l/0zRlGIY6d+5c1YgAAABAjXFF00Bt/H2Epn2+S+9tOmJTjzt4TuEzY/T+2HDdeEUTNyQEAABwjSqPhE+cOFEdOnSQaZo2X7+wV6vI1y8Mw9CkSZMu7xUCAAAANYSfl1XvjO6hxXeHK8DbdkQ8NadQNy/YrD/+e7cKGREHAAC1VJUblhaLRc8884wMw3BkHkmljcr27dtr5syZioiIcPj+AAAAQHV2d68W2vpYpHo2r2e3/q+YZEW+sU6HznG9dwAAUPtUeSRcknr37q0ff/xRRUVFZc+Zpqnhw4fLMAz16dNHL7/8coX38/DwkLe3t+rVqyer9bKiAQAAADVaWKMArZ8aocf/vVvz1h+yqW86kq5es2K1YEwP3da1mesDAgAAOMlldwWbNLF//RzTNOXj46PQ0NDL/RG4gLS0NN14443y8fHRmjVr3B0HAAAADubjadEbI7tpaPsGum/5TzqfV1Sunp5bqJHvb9XUiLb6x01d5G21HSMHAACoaZxyGuOjjz4qSWrVqpUztoekwsJC/elPf1JqaipNYQAAgFrujh7N1atFkMYuitfWYxk29dfiDmrdwXP6eEJvtW/o74aEAAAAjuPUhiWcIzc3V3/4wx8UGxvr7igAAABwkXYN/BX3aISe+M9uzVl70Ka+7XiGes2K1Tuje+jOns0vuldOjhQTI506JWVlSQEBUtOmUlSU5OfnrFcAAABQMVwosobZt2+fHn/8ce3fv9/dUQAAAOBiXlYPzbq1q4Z2aKhJy7YrLbewXD0zv0hjF8drzc9nNevWK+XrWX5EPClJmjdPev99KT3ddv/gYGnSJGnKFCkszGkvAwAA4KKc0rA8ceKEQ/dr3vzifyGuC/Ly8vTiiy/q008/VXFxsRo2bKhu3brphx9+cHc0AAAAuNgtVzbVtumRunvJNm04nGZTf3vjYW08nKaPJ/RWp8YBysiQJk+WoqMvvm96ujRrVunXyJHSggVSUJBzXgMAAMCFOKVhOWzYMBmG4ZC9DMPQ7t27HbJXTXb27Fl9/PHHkqTrrrtOTz/9tD766CMalgAAAHVU6/p++vHhQfrLV3v16o/JNvUdJ8+rz+xYvTisu96e3kKJiZXbPzq69IzM1aslLpkOAABcycOZm5um6ZAvlDZuBw0apMWLF2vu3Llq0KCBuyMBAADAzTwtHnrlpiv0n9/1U0N/L5t6dkGxpq1OUGLodslaZLvBJSQmSiNGSBm29/kBAABwGqddw7KqjUbDMGSxWHTllVc6OFHNFhoaqoULF7o7BgAAAKqh67s0UcKMSI1bsk2xB87Z1I2uR2U2TZO+7COlBlZq78TE0nHyFSsclRYAAODinNKw/P777yu8Nj8/X2lpadq/f7/+85//aMuWLSouLlanTp307LPPOmy0HAAAAKjNQoN89d2DA/Xct0n6+/f79dvzB4yGWTLHxUprukmJLSVV/HN2dLS0f7/UsaNjMwMAANjjlIZlaBUuctO7d2+NHTtWH3/8sZ555hktX75cwcHBmjFjhhMSAgAAALWP1eKh50Z0VmS7BrrtrQTlGPnl6oZniXTdTzJbnpW+6y4VVvzXgfnzpX/9y9GJAQAAbDn1GpZVMWbMGN17770yTVPvvfee9u7d6+5IAAAAQI0yqEUjWZZGyjzc0G7duOK4ND5WalTxi1MuXCjl5DgqIQAAwIVVu4alJN13332yWq0qKSnRp59+6u44AAAAQI0SEyOdP+kjrRggM66TzBLbNUb9bOnuOKnHIUmXvv58WlrpvgAAAM5WLRuWDRs2VNu2bWWapjZs2ODuOAAAAECNcurUfx+YhrQpTFo+UGamj806w1oiY/hO6aZ4yavwkvumpDg4KAAAgB3VsmEpScHBwZKkU2WftgAAAABURFbWb5441lBaFCnzQGO7641OJ6UJsVKT9Ivum5npmHwAAAAXU20blkePHnV3BAAAAKBGCgiw82Sut/RZP5kxXWSW2N4h3AjOke6Kk8IP6EIj4oGBjs0JAABgT7VsWP7www86deqUDMNQ8+bN3R0HAAAAqFGaNr1QxZC2dpCWDZJ53te2ajFlDNsl3bpF8imwqTdp4ticAAAA9lS7hmVMTIyefPLJsu8HDRrkxjQAAABAzRMVJf33Ckv2naxfOiL+s/0OpNEhpXREvNm5sudCQkr3BQAAcDarMzZ96qmnKrW+sLBQWVlZOnDggI4ePSrTLB1BsVgsGj16tDMiAgAAALWWn580aZI0a9ZFFuV5SZ/3lRl+UIraLcNSfgzcqJcrc+x6Ka6ztKW9Jk0y5Ofn3NwAAACSkxqWn332mQzD9ro4l/JLo9IwDJmmqd/97nfq0KGDo+MBAAAAtd6UKZdoWEqSDCmhnXSivsyb4kuvY/nrqocpRe6R2SJVd97bU5K3k9ICAAD8j9NGwk3TrPTXL3x8fDR9+nRNnz7dWfEqZc6cOerUqZOGDRtW6WOTk5P197//Xbfccot69eql7t27a/jw4Xr44Yf11VdfqaioqMq5pk6dqn379mnNmjVV3gMAAAC1U1iYNHJkBRenBJeOiO9rZrdstDutUStjFZuc6rB8AAAAF+KUMyxvv/32Sh/j5eWl4OBgdenSRREREQqwe2tD19uxY4feeeedKh372muvaf78+TZNyaNHj+ro0aP6/vvv1bVrV7366qtq166dI+ICAAAAZRYskJKSpMTECiwu8JS+7C3z6GHpql0yrCXlyifO52nY/PV65rpOempYR1k8Kj9RBQAAUBFOaVi+9NJLztjW5Y4ePaqHH35YhYWFlT72hRde0KJFi8q+t1qt6tSpk3x9fZWcnKy0tDRJUmJioiZMmKBPPvlEoaGhDssOAAAABAVJq1dLI0ZUsGkpQ/qpjXQipHREvH52uWqJKf1t9T7FJqdq0d291CSQEXEAAOB41e4u4dVFUlKSxo0bpzNnzlT62NWrV5drVl533XWKiYlRdHS0lixZorVr1+q5556Tr6+vJOns2bOaOnVqubF4AAAAwBFCQ6W4uEqMh0vSmSDdfD5Sd3S1/wf17/afVc+ZMfp+f+U/KwMAAFyKU86wrOk+//xzPf3008rNza30sYWFhXrllVfKvh86dKhmz54tD4//9YY9PT01ZswYhYaG6sEHH1RRUZF27dqlL7/8UjfffLNDXoMrFBcXuzsCqrHfvj94v+BieL+gsnjPoDJ4v0j+/tLHH5eOh7/9toc++MBQerrtSHdIiKl77zX1wAMl6thRMs1uumZriB77YrdyC8uPiKdk5uvatzfqqaHt9ZerO8hqqR3nQvB+QWXwfkFl8H5BZdT194thOvm0vnPnzunAgQNKT09Xbm6ufH19FRQUpHbt2qlBgwbO/NGVlpKSopkzZ2rlypV266GhoZe8wc2qVavKbhZktVr17bffqnnz5hdc/9xzz2nJkiWSpCuvvFLR0dFVC+8CCQkJKikpufRCAAAAVGt5eYbi4wN17pynsrM95O9fovr1C9W7d6Z8fGx/Pfg5vVD/ty5NB8/bv2FkeCMvvTAoRI39LM6ODgAAqikPDw+Fh4c7ZC+nnGG5Y8cORUdHKzY2VidPnrzgusaNG+uqq67Sbbfd5rAXVFXz5s3T22+/rZycnLLn2rVrp2uvvVbz58+v8D6rVq0qezxo0KCLNislacyYMWUNy127duno0aNq2bJlJdMDAAAAFefjY2rw4PMVXt8h2FMfXNdQr27N0L8P2k4hJZwp0LjVZ/TsgGANau7jyKgAAKAOcujcxp49ezRu3DiNGTNGH3/8sU6cOCHTNC/4lZKSok8++UR333237r77bu3evduRcSrlvffeK9esHD16tJYvX67WrVtXeA/TNLVp06ay7wcPHnzJYzp16qRGjRqVfX+pMzgBAAAAd/C1euhvA0L07IBg+Vptx8nT80s0LeacXtt+XkUlXJsdAABUncPOsHz33Xc1a9YslZSUyDRNGYbth5gLMU1T27Zt0+jRo/Xoo4/qoYceclSsSuvataueeOIJ9evXr9LHHj9+XOfP/+8v1V27dq3QcZ06dSq7uc/OnTsr/XPdpWvXrrJYGPuBfcXFxUr81e1Ieb/gYni/oLJ4z6AyeL84Vo8e0u2DsjTuo+3aeSrTpv7hniztz7Fq0V091SrY1w0JLw/vF1QG7xdUBu8XVEZNeb/s3LnTKZcPdEjD8uWXX9YHH3xQrlFpGIZ69OihPn36qF27dqpfv768vb2VnZ2tjIwMJScnKyEhQTt37lRRUZEMw1BxcbHmzp2r06dP6+mnn3ZEtArr16+fRo4cqauvvrpSzdZfO3ToULnvW7VqVaHjWrRoUfb4yJEjVfrZ7mCxWGS1ct8mVAzvF1QG7xdUFu8ZVAbvl8vXtXmwNk4boumf79LbGw/b1DccTlffOeu0cGxP3XJlUzckdBzeL6gM3i+oDN4vqIy69n657Fe6ZMkSvf/++2VNPi8vL40fP14TJkxQ06aX/nBy+vRpLVmyRB9++KHy8vJkmqaWLVum1q1ba+LEiZcbr8LefPPNy97jl7MkpdILjTZs2LBCx/16JPzXewAAAADVla+nRfPv6K6hHRrogeU7lJlf/oY8abmFum3hFj0W2U4v39BFXtbacRdxAADgfJf1qeHo0aP65z//Wdas7NChgz777DP98Y9/rFCzUiq98c706dO1fPlytW/fXoZhyDRNzZ49u0adbShJGRkZZY/9/f3l4VGx/3kDAgLs7gEAAABUd2N6hip+eqR6hQbZrc+OPaCI1+N0IDXbxckAAEBNdVkNy7lz5yo3t/Quge3atdOiRYvUrl27Ku3VoUMHffjhh2rVqpUMw1B+fr7mzp17OfFcLj8/v+yxj0/F747o5eVV9rigoMChmQAAAABn69DQX+umDtajEW3t1rcey1CvWbH69KcTLk4GAABqoio3LFNSUrRq1SpJktVq1ezZsxUSEnJZYerXr6833nhDFotFpmlq9erVOn369GXt6UqFhYVljyt6dqWkctcgKCoqushKAAAAoHrytlo097auWnFvHwX7etrUz+cV6c5F8XokeqfyCovdkBAAANQUVW5YfvPNNyouLpZhGBo1apQ6duzokEAdOnTQHXfcIan0jkjffvutQ/Z1hV/frakyd0j6dZPS09P2wx0AAABQU9zerZm2TY9Uv5bBduvz1h/S4NfjtP9MlmuDAQCAGqPKDcvNmzeXPR47dqxDwvxi9OjRZY83bdrk0L2dydfXt+zxr8fDL+XXY+De3t4OzQQAAAC4Wpv6fop9ZLBmRNm/XFTC8fPqPTtWSxOOuzgZAACoCarcsNy3b58kKSgoSJ07d3ZYIEm68sory8bLf/k5NUFQ0P8uNJ6dnS3TNCt0XFbW//66HBwc7OhYAAAAgMt5WT30z5uv1BeT+6m+n+0UUVZ+scYt2aYHlv+kXEbEAQDAr1S5YXnu3DkZhqE2bdo4MM7/NGvWTKZp6uzZs07Z3xmaNGlS9ri4uFhpaWkVOu7MmTNljxs2bOjwXAAAAIC73HRFEyXMiNLgNvavd//upiPqP2et9qRkujgZAACorqrcsMzLy5NUfgzakerVqyepcqPV7ta6dety3x89erRCxx07dqzscdu29u+sCAAAANRULYN99cNDg/TksA5264mnMtV39lp9sKVin58BAEDtVuWG5S+jyxU9i7Cy0tPTJUl+fn5O2d8ZQkNDy41079mzp0LH7d27t+yxo8frAQAAgOrAavHQizd00Vf391cjfy+bek5hsSZ9vF2TliUoK7/Izg4AAKCuqHLDsn79+jJNU8eOHavUHbEroqSkRMePH5dhGDVuRLp///5lj9evX3/J9Xv37i039j5gwACn5AIAAACqg+s6NVbCjCgNbd/Abv2DrcfUb85a7Tx53sXJAABAdVHlhmWHDqXjHNnZ2dq2bZvDAknStm3blJlZeg2bLl26OHRvZ7v22mvLHv/www9KSUm56PqlS5eWPW7fvr06derktGwAAABAddA8yEffPDhQT18bJsOwre89naX+c9bqnY2HK3wjSwAAUHtUuWE5ZMiQssdLlixxSJhffPTRR2WPa9oZh9dee60aN24sSSooKNCTTz6poiL7Iy1r167V8uXLy76fMGGCSzICAAAA7mbxMPT0tZ303YMD1TTQ26aeV1SiBz/doXFLtul8XqEbEgIAAHepcsMyMjJSVqtVpmnq66+/1k8//eSQQFu3btWqVaskSZ6enrrmmmscsq+reHl5acaMGWXfr1+/Xvfff3+5G/AUFRXpk08+0dSpU1VcXCxJCgsL0+jRo12eFwAAAHCnoR0aavuMKF0b1shufdn2E+oze60Sjme4OBkAAHCXKjcsGzRooDvvvFNS6TUnp0+fftk34Dl69KimTZsmSTIMQ6NGjSp3E5ua4vbbb9eYMWPKvl+/fr2uvfZa3XbbbRo/fryGDBmiv/71r8rNzZVUegOjOXPmyGq1uisyAAAA4DaNA7216r7++vv1nWXxsJ0R//lstgbOjdMb6w4yIg4AQB1Q5YalJD388MPy9/eXYRg6ceKExo4dq/3791dpr61bt2r8+PFKTU2VJAUFBemRRx65nHhu9eyzz2rKlCny9PSUVNrU3bNnj7Zs2aJz586VrWvfvr0WL16sdu3auSsqAAAA4HYeHoaeurqjfnhooEKDfGzqBcUlmvpZokZ/uFXpuYyIAwBQm11Ww7Jhw4Z69dVXZRiGDMPQ4cOHNXr0aD333HM6cOBAhfZITk7WX/7yF02cOFGnT58uDeXhoRdeeKHG3SH81wzD0PTp0/X5559r8uTJCgsLU7169eTp6amGDRtqyJAh+vvf/66VK1eqY8eO7o4LAAAAVAsRbRsoYUakbuzS2G49eucp9ZoZo81HLm+6CwAAVF+XPYM8bNgwPfHEE3r55ZdlGIby8vK0dOlSLV26VM2aNVP37t3Vtm1bBQYGKjAwUEVFRcrIyNCxY8e0detWHT58WJLKjXb8+c9/1vDhwy83mkOMHDlSI0eOrPLx7du31xNPPKEnnnjCgakAAACA2quhv7c+n9RPs2IP6KlVe1RUUn4M/FBariJeX6eXb+yi6ZHtZNi71TgAAKixHHLRxHvvvVehoaF66qmnlJmZKam0AXnixAmdPHnygsf90qT85QOGn5+fXnrpJV133XWOiAUAAACghvLwMPT4Ve01uG193bU4XofTcsvVi0pM/eHfu/Xjz6laOLanGvh7uSkpAABwtMsaCf+14cOHa+XKlRo5cmSlbx5jsVh06623avXq1TQrAQAAAJQZ0DpE26ZH6rauTe3Wv9yTol6zYrTu4Dm7dQAAUPM4rGEpSaGhoXrxxRf13Xff6Q9/+IMiIyPl7+8v0zRtvqxWq3r27KnHHntM33//vV555RU1bmz/OjUAAAAA6q4QPy+tuLeP5tzWVV4W219hjqbn6ap56/Xymv0qKeEu4gAA1HQOGQn/rSZNmui+++7TfffdJ9M0lZ6ervT0dGVkZMjDw0NBQUFq0aKFLBaLM348AAAAgFrGMAxNjWirQW1CNGZRvA6k5pSrF5eY+r9VexWTnKoPxoarcaC3m5ICAIDL5dAzLO0xDEMhISFq27atevbsqe7du6t169Y0KwEAAABUWu8WwYp/LFJ39mhut/71vjMKnxWjH38+6+JkAADAUZzesAQAAAAARwry9dTS8b00b1Q3eVttf6U5eT5fw9/aoGe/2adiRsQBAKhxaFgCAAAAqHEMw9CDA9to0++HqFMjf5t6iSk9+02Srn1rg06ez3NDQgAAUFU0LAEAAADUWN2b19OWxyI1oXcLu/UfklMVPjNG3yadueReOTnS6tWGvviigZYta6Qvvmig1asN5eRc8lAAAOBATrnpDgAAAAC4SoC3VR/cFa6hHRrq0eidyiksLlc/nVWgEe9s1FPDOuqZa8Nk/c2dxpOSpHnzpPffl9LTLZLalKsHB0uTJklTpkhhYU59KQAAQJxhCQAAAKCWmNi3pTZPG6IrmwTa1ExTevH7/Ro2f4OOpedKkjIypFGjpE6dpNmzpfR0+/ump0uzZpWuGzWq9DgAAOA8NCwBAAAA1BpXNA3UpmkR+l3/VnbrcQfPKXxmjD5cm6KICCk6unL7R0dLERHS8eMOCAsAAOyiYQkAAACgVvHzsuqd0T20+O5wBXhbbOqpOYWa+PlmJdbfLXmUVHr/xERpxAjOtAQAwFloWAIAAACole7u1UJbH4tUz+b17NaNvsnSmHVSvcrfVScxUZo8+XITAgAAe2hYAgAAAKi1whoFaP3UCD00qI3dutE8XZoQK3U4Wem9o6Ol/fsvLx8AALBFwxIAAABArebjadEbI7vpkwm95WVabeqGT6GMW7dKQxMlS7GdHS5s/nxHpQQAAL+gYQkAAACgTrihY3N5L4+UeSrIbt3odVAau04Kyq7wngsXSjmVnygHAAAXQcMSAAAAQJ0QEyOdP+ovLY2QGd/W7hqjaUbpiHjYiQrtmZZWui8AAHAcGpYAAAAA6oRTp/77oMRD+rGrzJV9ZeZ62qwzvItk3BwvXb1Dsl56RDwlxcFBAQCo42hYAgAAAKgTsrJ+80RyU2lRpMwTIXbXGz0PS3fFSSG/PbC8zEwHBQQAAJJoWAIAAACoIwIC7DyZ6Sd9PEjm5g52jzEan5fGx0pdjl1w38BABwUEAACSaFgCAAAAqCOaNr1AocRDWttF5or+MnO8bMqGV7GMGxKka7dL1iKbepMmjs0JAEBdR8MSAAAAQJ0QFSUFB19kwaHGpSPiR+vbLRvdjkrj1koN/jcDHhJSui8AAHAcGpYAAAAA6gQ/P2nSpEssyvKVlg+UuaGjTNO2bDTMksbFSl2PSDI1aVLpvgAAwHFoWAIAAACoM6ZMqcAi00Na31n6dIDMbG+bsuFZIuO6n6TrEzR+su2IOAAAuDw0LAEAAADUGWFh0siRFVx8pJH0YaTMww3tlo0rjuuuL2P104kMxwUEAAA0LAEAAADULQsWSF27VnBxjo+0YoDMuE4yS2zLSWeyNWBunOavPyTT3gw5AACoNBqWAAAAAOqUoCBp9epKNC1NQ9oUVnpty0wfm3J+UYkejt6puxZvU0ZuoWPDAgBQB9GwBAAAAFDnhIZKcXGVGA+XpGMNdeO5SF3dvpHd8ic/nVDv2bHaejTdIRkBAKiraFgCAAAAqJOCgqQVK6R9+6Tp06XgYPvrQkKkGTOkpCTpy+Xe+vrB/nr5xi6yeBg2aw+k5mjw63Gau/YAI+IAAFSR1d0BAAAAAMCdwsKkmTOlF16Q1qwp1tatR5Wd7SF//xL16dNSw4ZZ5Of3v/UeHob+NLSDItrW112L43U0Pa/cfoXFph77fJd+TE7Ve3f2UIifl4tfEQAANRsNSwAAAACQ5OcnjRhhqlmz1LLnevRoIesFfmsa1Ka+EmZEafLH2/XFrhSb+srEU0o4nqGl43trQOsQZ8UGAKDWYSQcAAAAAKqovp+XPpvYVzNvuVKeFtsR8cNpuYp8Y51e/eFnlZQwIg4AQEXQsAQAAACAy2AYhh6LbKe4RyLUtr6fTb2oxNQT/9mjWxZs1tnsfDckBACgZqFhCQAAAAAO0LdVsOKnR2pUt2Z266v2nlb4zFitPZBqtw4AAErRsAQAAAAABwn29dQn9/TW67d3k5fF9tet4xl5Gjpvvf7+XRIj4gAAXAANSwAAAABwIMMw9PDgNtr4+wh1bOhvUy8xpb+u3qfr392olExGxAEA+C0algAAAADgBD1Dg7T1sUjdHR5qt/5t0lmFz4zRmv1nXZwMAIDqjYYlAAAAADhJoI9Vi+4O1zuje8jHavvr16nMfF3z9gY9/fU+FTMiDgCAJBqWAAAAAOBUhmHod/1bafO0IerSOMCmbprS898mafj8DTqRkeeGhAAAVC80LAEAAADABbo2q6fN04ZoYp+WdusxB1LVc2aMVu897eJkAABULzQsAQAAAMBF/L2tWjC2p94f21P+Xhab+tnsAt3w7iY9tWqPCotL3JAQAAD3o2EJAAAAAC52T5+W2vLYEHVrFmi3/sqanzV03nodTc91cTIAANyPhiUAAAAAuEHnxoHa+PshemBAa7v19YfSFD4zRv/edcrFyQAAcC8algAAAADgJr6eFs2/o7s+GtdLgd5Wm/q5nELdunCLZnyxSwVFjIgDAOoGGpYAAAAA4GZjw0MVPz1SvUKD7NZnxx7QkDfW6WBqjouTAQDgejQsAQAAAKAa6NDQX+umDtajEW3t1rccTVevWTFaseOEi5MBAOBaNCwBAAAAoJrwtlo097au+vTePgrysR0Rz8gr0ugP4/Vo9E7lFRa7ISEAAM5HwxIAAAAAqpmR3Zpp2/Qo9WsZbLf+5vpDGvx6nPafyXJtMAAAXICGJQAAAABUQ20b+Cn2kcGaEdXObj3h+Hn1nh2rpQnHXZwMAADnomEJAAAAANWUl9VD/7z5Sn0xuZ/q+3na1LPyizVuyTY9sPwn5TIiDgCoJWhYAgAAAEA1d9MVTZQwI0qD24TYrb+76Yj6z1mrPSmZLk4GAIDj0bAEAAAAgBqgZbCvfnhokJ4c1sFuPfFUpvrOXqsPthx1cTIAAByLhiUAAAAA1BBWi4devKGLVt/fX438vWzqOYXFmvTxdk1cmqCs/CI3JAQA4PLRsAQAAACAGubaTo2VMCNKV7VvYLf+Yfwx9ZuzVjtPnndxMgAALh8NSwAAAACogZoH+ejbBwfqb9eEyTBs63tPZ6n/nLV6Z+Nhmabp+oAAAFQRDUsAAAAAqKEsHoaeua6Tvn1goJoGetvU84pK9OCnOzRuyTadzyt0Q0IAACqPhiUAAAAA1HDDOjZUwowoXRPW0G592fYT6jN7rRKOZ7g4GQAAlUfDEgAAAABqgSaB3vrqvgF64frO8rAzIv7z2WwNnBunN9YdZEQcAFCt0bAEAAAAgFrCw8PQ/13dUT88NEihQT429YLiEk39LFGjP9yq9FxGxAEA1ZPV3QEAAAAAAI41pF0DJcyI1KRl2/WfPadt6tE7T2nbsRgtm9Bb/VqFXHSvnBwpJkY6dUrKypICAqSmTaWoKMnPz1mvAABQl9GwBAAAAIBaqKG/tz6f1E+zYg/oqVV7VFRSfgz8UFquIl5fp5dv7KLpke1k/OZW40lJ0rx50vvvS+nptvsHB0uTJklTpkhhYU57GQCAOoiRcAAAAACopTw8DD1+VXvFPjJYrUN8bepFJab+8O/dunXBFqVmF0iSMjKkUaOkTp2k2bPtNyul0udnzSpdN2pU6XEAADgCDUsAAAAAqOUGtA7RtumRuq1rU7v1L/ekqNesGK3cfE4REVJ0dOX2j46WIiKk48cdEBYAUOfRsAQAAACAOiDEz0sr7u2jObd1lZfF9lfBo+l5GrlsvRL99kuq/F3EExOlESM40xIAcPloWAIAAABAHWEYhqZGtNW6qYPVroGdO+Z4mDKG7JVGbpJ88yu9f2KiNHmyA4ICAOo0GpYAAAAAUMf0bhGs+McidWeP5nbrRtsz0j0xUouzld47Olrav/9yEwIA6jIalgAAAABQBwX5emrp+F6aN6qbLKbtr4ZGQL40eoM0cJ9kVG5EfP58R6UEANRFNCwBAAAAoI4yDEMTerSR78oImef8besekjEoSRq1UfLPq/C+CxdKOTmOTAoAqEtoWAIAAABAHRYTI2UeCJIWR8rcHWp3jdH6rDQhRmp9pkJ7pqWV7gsAQFXQsAQAAACAOuzUqf8+KLRKX4XLXN1DZqGdEXH/gtIzLQfvlYySS+6bkuLgoACAOoOGJQAAAADUYVlZv/7OkHa1kpZEyjwbYLPWMCRjwH7pzg1SQO5F983MdGxOAEDdQcMSAAAAAOqwANu+pJQaKC0ZInNnS7vHGC3Old5FvO2FT6MMDHRQQABAnUPDEgAAAADqsKZNL1Aoskrf9JS5KlxmgcWmbPgWyhi5WYrcLXnYjog3aeLgoACAOoOGJQAAAADUYVFRUnDwRRbsaVF6Q57T9eyWjb7J0pj1UuD/bgseElK6LwAAVUHDEgAAAADqMD8/adKkSyxKC5CWRsjc3tpu2WieJt0TK3U4Kal0Pz8/BwcFANQZNCwBAAAAoI6bMqUCi4os0vfdZf67t8x8q03Z8CmUcetW6apETb6/2PEhAQB1Bg1LAAAAAKjjwsKkkSMruDipubQoUuapILtlo/dBTVy9Tslnsx0XEABQp9CwBAAAAABowQKpa9cKLs7wl5YNlhnf1m45/liGes2K1SfbTzguIACgzqBhCQAAAABQUJC0enUlmpbFFunHrjI/7yMzz9OmnJlfpLGL4/XQih3KLWREHABQcTQsAQAAAACSpNBQKS6uEuPhkvRzM404E6m+oSF2y29tOKyBc+O073SWY0ICAGo9GpYAAAAAgDJBQdKKFdK+fdL06VJwsP11ISHSjBlSUpL01cd+ivv9IP3hqvZ21+44eV59Zsdqcfwx5wUHANQatrd2AwAAAADUeWFh0syZ0gsvSDExUkqKlJkpBQZKTZpIUVGSn9//1ntaPPSPm67QVe0b6N6lCUrNKSy3X3ZBse5ZmqAfks/qtdu6ys+LX0cBAPbxXwgAAAAAwAX5+UnXX1/x9Td0aaKEGVEat2Sb1h48Z1NfuPmoNh1O08cT+ujKpoEOTAoAqC0YCQcAAAAAOFSLYF99P2Wg/jy8owzDtr47JUv95sRqweYjMk3T9QEBANUaDUsAAAAAgMNZLR56fkRnrb5/gBoHeNnUcwtLdN8nP+nepQnKyi9yQ0IAQHVFwxIAAAAA4DTXhDVSwowoDevQ0G598bbj6jM7Vj+dyHBxMgBAdUXDEgAAAADgVM3q+ejrBwbomWs7ycPOiHjSmWwNmBuntzYcYkQcAEDDEgAAAADgfBYPQ3+7NkzfPThQzep529Tzi0r00IqdumvxNp3PK7SzAwCgrqBhCQAAAABwmas6NFTC9CiN6NTIbv2Tn06o96xYxR9Ld20wAEC1QcMSAAAAAOBSjQO99eXv+uulG7rIYmdGPDk1R4NfW6fX4g4yIg4AdRANSwAAAACAy3l4GHpiWAfFPDxILYN9bOoFxSWatjJRd3ywVWk5BW5ICABwFxqWAAAAAAC3GdSmvrZNj9LNVzSxW/8s8ZR6zYrVpsNpLk4GAHAXGpYAAAAAALdq4O+llZP66l+3XCFPi+2I+OG0XA15Y53+9WOySkoYEQeA2o6GJQAAAADA7QzD0PTI9lr7yGC1CfG1qReVmPrjl7t168LNOpud74aEAABXoWEJAAAAAKg2+rUK0bYZURrZrand+n/2nFb4zFitPZDq4mQAAFehYQkAAAAAqFaCfT21/J4+eu32rvKy2P7aejwjT8Pmb9CL3+9nRBwAaiEalgAAAACAascwDD0yuK02/D5CHRr629SLS0z95au9uv7djUrJZEQcAGoTGpYAAAAAgGorPDRI8Y9F6q7wULv1b5POKnxmjNbsP+viZAAAZ6FhCQAAAACo1gJ9rFp8d7jeHt1dPlbbX2NPZebrmrc36Jmv96mYEXEAqPFoWAIAAAAAqj3DMHRf/9baNG2IOjcOsKmbpvTct0m65q0NOpGR54aEAABHoWEJAAAAAKgxujWrpy3ThujePi3s1n9MTlX4zBh9ve+0i5MBAByFhiUAAAAAoEbx97Zq4dhwLRzTU36eFpv6mewCXf/OJj21ao+KikvckBAAcDloWAIAAAAAaqR7+7bUlseGqFuzQLv1V9b8rKHz1utoeq6LkwEALgcNSwAAAABAjdWlSaA2/n6I7h/Qym593aE0hc+M0Ze7U1ycDABQVTQsAQAAAAA1mq+nRW/d0UMfjeulQG+rTf1cTqFuWbBZj3+xSwVFjIgDQHVHwxIAAAAAUCuMDQ/V1seGKDy0nt36rNgDinxjnQ6m5rg4GQCgMmhYAgAAAABqjY6NArTu0Qg9MriN3frmo+nqNStG0TtPujYYAKDCaFgCAAAAAGoVH0+LXru9m5bf01tBPrYj4hl5Rbrjg62a+tlO5RUWuyEhAOBiaFgCAAAAAGqlUd2ba9v0KPVtGWy3/sa6Qxr8epx+Ppvt2mAAgIuiYQkAAAAAqLXaNvDT2kcGa3pkO7v1hOPn1XtWrJYlHHdxMgDAhdCwBAAAAADUal5WD/3rliv1+aS+CvH1tKln5hfp7iXb9OCnPymXEXEAcDvbi3kAAAAAAFAL3XxlUyXMiNTdS7Zp/aE0m/o7G49ow6E0fTyht7o0CbzoXjk50po1hrZsaaCcHA/5+ZXo5ElDw4ZJfn7OegUAUDfQsAQAAAAA1BmtQvz0w0OD9Lev9+mVNT/b1BNPZarv7LV6Y2Q33du3pU09KUmaN096/30pPd0iqU25enCwNGmSNGWKFBbmlJcAALUeI+EAAAAAgDrF0+Khl27oolX39VdDfy+bek5hsSZ9vF2TliUoO79IkpSRIY0aJXXqJM2eLaWn2987PV2aNat03ahRpccBACqHhiUAAAAAoE4a0bmxts+IUlS7BnbrH2w9pr5z1uq7n84rIkKKjq7c/tHRUkSEdJz7+QBApdCwBAAAAADUWc2DfPTtgwP012vCZBi29b2ns3Td+2uVaByWZFZ6/8REacQIzrQEgMqgYQkAAAAAqNOsFg89e10nffvAQDUN9Lapm5YSGdfukG5IkDyLKr1/YqI0ebIjkgJA3UDDEgAAAAAAScM6NlTCjCgN79jQbt3oclyaECs1rvzpktHR0v79l5sQAOoGGpYAAAAAAPxXk0Bvrb5/gJ4f0UmGnQlwIyRbuitO6nFIlR0Rnz/fIREBoNajYQkAAAAAwK94eBiaPihMfv8ZJDPTx6ZuWEtkDN8p3RQveRdWeN+FC6WcHEcmBYDaiYYlAAAAAAC/ERMjZe1rIC2KlHmgsd01RqeT0vhYqWlahfZMSyvdFwBwcTQsAQAAAAD4jVOn/vsg11v6rJ/MmCtkFtveRtwIzpHGrpN6JasiI+IpKY7NCQC1EQ1LAAAAAAB+Iyvr198Z0tb20seDZWb42qw1LKaMobul27ZIPgUX3Tcz07E5AaA2omEJAAAAAMBvBATYefJkSOmI+P6mdo8x2qdIE2Kk5ucuuG9goIMCAkAtRsMSAAAAAIDfaGq/Jynle0lf9JG55kr7I+L18qQx66W+P8veiHiTJo7NCQC1EQ1LAAAAAAB+IypKCg6+UNWQEtpJSyNkpvvZVj1MGZF7pJGbJN/8sudDQkr3BQBcHA1LAAAAAAB+w89PmjTpEotSgktHxPc1t1s22p6RJsRKLc5KKt3Pz7a/CQD4DRqWAAAAAADYMWVKBRYVeEpf9pL5bTeZRba/YhuBedLoDdKAJN3/wKXvIg4AoGEJAAAAAIBdYWHSyJEVWWlIO9pIH0XIPOdvW/WQjMH7NPXHjTp1Ps/RMQGg1qFhCQAAAADABSxYIHXtWsHFZ4KkxZEyd4faLX+//6zCZ8Xqu6QzjgsIALUQDUsAAAAAAC4gKEhavboSTctCq/RVuMzVPWQW2v7KnZKZr+ve2ai/rt6rouISx4YFgFqChiUAAAAAABcRGirFxVV0PFySDGlXKw1PiVTnhgE2VdOU/v7dfg1/a4OOZ+Q6NCsA1AY0LAEAAAAAuISgIGnFCmnfPmn6dCk42P66kBBpxgwpKUn6dlmgts4Yokn9WtpdG3vgnMJnxmrVnhTnBQeAGsjq7gAAAAAAANQUYWHSzJnSCy9Ia9YUa+vWo8rO9pC/f4n69GmpYcMs8vP733o/L6veu7OnhrZvqIdW7FB2QXG5/c5mF+im9zbrD1e119+v7yxPC+cVAQANSwAAAAAAKsnPTxoxwlSzZqllz/Xo0ULWC/yWPb53C/VtGawxi+K14+R5m/o/f0xW3MFzWjqul1rX97OzAwDUHfzpBgAAAAAAF+jUOEAbfh+hBwe2tlvfeDhNvWbF6vPEUy5OBgDVCw1LAAAAAABcxNfTonmjumvZ+N6q52N7OmZabqFuf3+LHvs8UflFxXZ2AIDaj4YlAAAAAAAudmfP5op/LFK9WwTZrc9de1ARr69T8tlsFycDAPejYQkAAAAAgBu0b+ivuEcH6/dD2tqtxx/LUO/ZsVr+0wkXJwMA96JhCQAAAACAm3hbLZp9a1dFT+yjYF9Pm/r5vCKNWRSvh1fsUF4hI+IA6gYalgAAAAAAuNltXZspYXqkBrQOsVufv+GwBsyN077TWS5OBgCuR8MSAAAAAIBqoHV9P8U8PEh/uKq93fqOk+fVZ3asFscfc3EyAHAtGpYAAAAAAFQTnhYP/eOmK/Tl7/qpgZ/tiHh2QbHuWZqg332yXTkFRW5ICADOR8MSAAAAAIBq5oYuTZQwI0pD2ta3W1+4+aj6zVmr3acyXZwMAJyPhiUAAAAAANVQi2BffT9loP48vKMMw7a+OyVLfefEauHmIzJN0/UBAcBJaFgCAAAAAFBNWS0een5EZ62+f4AaB3jZ1HMLS/S7T37SxGXblZXPiDiA2oGGJQAAAAAA1dw1YY2UMCNKwzo0tFtfFH9MfWfHaseJ8y5OBgCOR8MSAAAAAIAaoFk9H339wAA9e10nedgZEd93Jlv9567VWxsOMSIOoEajYQkAAAAAQA1h8TD012vC9P2UgWpez8emnl9UoodW7NTdS7bpfF6hGxICwOWjYQkAAAAAQA0T1b6hEmZEakSnRnbrH28/od6zYhV/LN21wQDAAWhYAgAAAABQAzUK8NaXv+uvl27oIoudGfHk1BwNfm2dXos7yIg4gBqFhiUAAAAAADWUh4ehJ4Z1UMzDg9Qy2HZEvKC4RNNWJuqOD7YqLafADQkBoPJoWAIAAAAAUMMNalNf26ZH6eYrmtitf5Z4Sr1mxWrT4TQXJwOAyqNhCQAAAABALdDA30srJ/XVv265Qp4W2xHxw2m5GvLGOv3zx2SVlDAiDqD6omEJAAAAAEAtYRiGpke219pHBqtNiK9NvajE1J++3K1bF27W2ex8NyQEgEujYQkAAAAAQC3Tr1WIts2I0shuTe3W/7PntMJnxmrtgVQXJwOAS6NhCQAAAABALRTs66nl9/TRa7d3lZfF9tf/4xl5GjZ/g/7+XRIj4gCqFRqWAAAAAADUUoZh6JHBbbXh9xHq0NDfpl5cYuqvq/fp+nc3KiWTEXEA1QMNSwAAAAAAarnw0CDFPxapu8JD7da/TTqr8JkxWrP/rIuTAYAtGpYAAAAAANQBgT5WLb47XG+P7i4fq2074FRmvq55e4Oe+XqfihkRB+BGNCwBAAAAAKgjDMPQff1ba9O0IercOMCmbprSc98m6Zq3NuhERp4bEgIADUsAAAAAAOqcbs3qacu0Ibq3Twu79R+TUxU+M0bf7Dvt4mQAIFndHQAAAAAAALiev7dVC8eG66r2DfVI9E7lFBaXq5/JLtCIdzbpyWEd9Nx1nWS1c6fx38rJkWJipFOnpKwsKSBAatpUioqS/Pyc9UoA1DY0LAEAAAAAqMPu7dtS/VoFa8yieCWeyrSpv7zmZ609kKqPxvdWy2Bfu3skJUnz5knvvy+lp9vWg4OlSZOkKVOksDCHxgdQCzESDgAAAABAHdelSaA2TRui+we0sltfdyhN4TNj9J/dKeWez8iQRo2SOnWSZs+236yUSp+fNat03ahRpccBwIXQsAQAAAAAAPL1tOitO3roo3G9FOBtsamfyynUzQs26w//3qWCohIdPy5FREjR0ZX7OdHRpccdP+6g4ABqHRqWAAAAAACgzNjwUMU/Fqnw0Hp26zNjDmjwa+s09LYcJSZW7WckJkojRnCmJQD7aFgCAAAAAIByOjYK0LpHI/TI4DZ26/HH07W/f6zU4WSVf0ZiojR5cpUPB1CL0bAEAAAAAAA2fDwteu32blp+T28F+djes9fwKZRx61ZpaKJkKbazw6VFR0v7919uUgC1DQ1LAAAAAABwQaO6N9e26VHq2zLYbt3odVC6a50UnF2l/efPv4xwAGolGpYAAAAAAOCi2jbw09pHBmvqoHZ260aTDGl8rNSp8nfSWbhQysm53IQAahMalgAAAAAA4JK8rB4a4XulzM/6ysz1tKkb3kUybtomDf9JslZ8RDwtTYqJcWRSADUdDUsAAAAAAFAhp05JOtBUWhQl83iI3TVGjyPS3Wul+pkV3jclxUEBAdQKNCwBAAAAAECFZGX990Gmr/TJIJmbOthdZzTKlMatlbocrdC+mRXvbQKoA2hYAgAAAACACgkI+NU3JR5SXBeZn/aXmeNls9bwKpZxw3bpuu2Steii+wYGOjQmgBqOhiUAAAAAAKiQpk3tPHm4sfRhlMwjDeweY3Q9Wnq2ZYMLn0bZpImDAgKoFWhYAgAAAACAComKkoKD7RSyfaRPB8rcECbTtC0bDbOkcbFS1yOSyi8ICSndFwB+QcMSAAAAAABUiJ+fNGnSBYqmIa3vJC0fKDPL26ZseJbIuO4n6YYEyfN/I+KTJpXuCwC/oGEJAAAAAAAqbMqUSyw42rD0LuKHGtotG12OS+NjpUYZFdsPQJ1DwxIAAAAAAFRYWJg0cuQlFuV4SysGyFzbWWaJbdmony3dHaee9x5Shw52ZsgB1Gk0LAEAAAAAQKUsWCB17XqpVYa0uaP0ySCZmT62VWuJfmq4U2MWxSsjt9ApOQHUTDQsAQAAAABApQQFSatXV6RpKel4A2lRpMwDje2WP91xUr1mxWrLkXSHZgRQc9GwBAAAAAAAlRYaKsXFVWA8XJJyvaXP+smMuUKGadiUD57LUcQbcZode0CmvduMA6hTaFgCAAAAAIAqCQqSVqyQ9u2Tpk+XgoPtrwsJkWbMMJT0UXut+/1gtQ7xtVlTWGxqxhe7dPv7W3Qup8C5wQFUa1Z3BwAAAAAAADVbWJg0c6b0wgtSTIyUkiJlZkqBgVKTJlJUlOTnV7q2o0K0bXqkfvfJT1qZeMpmry92pajXzFgtHd9LA9vUd/ErAVAd0LAEAAAAAAAO4ecnXX/9pdeF+Hlpxb199FrcQf3xy90qLC4/Bn4kPVeRb67X36/vrD9EtZeHh+0YOYDai5FwAAAAAADgcoZh6PdD2mndoxFq18DPpl5cYurJ/+zRzQs260xWvhsSAnAXGpYAAAAAAMBt+rQMVvxjkRrdvZnd+ld7Tyt8Zqxik1NdnAyAu9CwBAAAAAAAbhXk66llE3pr3qhu8rbatipOnM/TsPnr9cJ3SSou4S7iQG1HwxIAAAAAALidYRh6cGAbbfx9hMIa+dvUS0zpb6v3acQ7G3XqfJ4bEgJwFRqWAAAAAACg2ujRPEhbH4vU+F6hduvf7z+r8Fmx+n7/GRcnA+AqNCwBAAAAAEC1EuBt1Qd3heu9O3vI19O2dZGSma9r396ov63eq6LiEjckBOBMNCwBAAAAAEC1YxiGJvVrpc3TInVFkwCbumlKL3y3X8Pf2qDjGbluSAjAWWhYVnPffvut7r33XvXp00fdu3fXddddp1dffVVpaWnujgYAAAAAgNNd2TRQm6cN0aR+Le3WYw+cU/jMWH21J8XFyQA4Cw3LamzWrFl69NFHtXHjRuXl5clqterQoUN69913dcstt+jQoUPujggAAAAAgNP5eVn13p099eFd4fL3stjUz2YX6Mb3NuuJL3erkBFxoMajYVlNrVq1SvPnz5dhGPrDH/6grVu3atu2bVq+fLnatWun06dP69FHH1VxcbG7owIAAAAA4BLje7dQ/PRI9Whez2791R+TddWb63UkLcfFyQA4Eg3LaqikpERz586VJN1zzz26//775ePjI0nq3r27Fi5cKD8/P+3fv18rV650Y1IAAAAAAFwrrFGANkyN0JSBre3WNxxOU/jMWH2x65SLkwFwFBqW1dDGjRt18OBBSdKkSZNs6k2bNtWtt94qSTQsAQAAAAB1jo+nRW+O6q5l43urno/Vpp6WW6jbFm7R9M8TVVDEiDhQ09CwrIY2bdokSWrbtq2aNWtmd82gQYMkSfHx8crJ4VR3AAAAAEDdc2fP5op/LFK9WwTZrc9Ze1ARr8fpQGq2i5MBuBw0LKuh/fv3S5Lat29/wTWtW5ee+l5cXKwDBw64JBcAAAAAANVN+4b+int0sH4/pK3d+tZjGeo1K1af/nTCxckAVBUNy2ooJSVFUuno94U0adKk7PGZM2ecngkAAAAAgOrK22rR7Fu7KnpiHwX7etrUz+cV6c5F8XokeqfyCrl5LVDd0bCshrKysiRJvr6+F1zzy014fr0eAAAAAIC67LauzZQwPVIDWofYrc9bf0gDX4tT0hl+jwaqMxqW1VBRUZEkydPT9q9Cv/Dy8ip7XFzMX4cAAAAAAJCk1vX9FPPwIP3hKvuXWfvpxHn1mR2rj7Ydc3EyABVFw7Ia+uXsycLCwguuKSgoKHt8scYmAAAAAAB1jafFQ/+46Qr9e3I/NfCz/Z05K79Y4z9K0H2f/KScgiI3JARwMTQsqyF/f39JUl5e3gXX5Obmlj0OCAhweiYAAAAAAGqaG69oooQZUYpoW99ufcHmI+o/J067T2W6OBmAi6FhWQ39crOd06dPX3DNLzfmkcrfgAcAAAAAAPxPi2BfrZkyUP93dUcZhm19V0qm+s1Zq/e3HHV9OAB20bCshsLCwiRJBw8evOCaw4cPS5KsVqvatGnjilgAAAAAANRIVouHXri+s1bfP0CNA7xs6jmFxZr88XZNXJqgrHxGxAF3o2FZDfXv31+StH//fp09e9bumvXr10uSevToUe6O4QAAAAAAwL5rwhopYUaUhrZvYLf+Yfwx9Z0dqx0nzrs4GYBfo2FZDfXu3VtNmzaVaZp6++23beonT57UF198IUm66667XB0PAAAAAIAaq1k9H33z4EA9fW2YPOyMiO87k63+c9fqrQ2HZJqm6wMCoGFZHXl4eGjGjBmSpA8++ECvvfaacnJyJEk7duzQpEmTlJOTo7CwMN1www3ujAoAAAAAQI1j8TD09LWd9N2DA9WsnrdNPb+oRA+t2Km7l2zT+bxCNyQE6jYaltXUrbfeqvHjx0uSXn/9dfXt21e9e/fW6NGjdfDgQTVu3FhvvfWWLBaLm5MCAAAAAFAzXdWhoRKmR+nasEZ26x9vP6Hes2K17Vi6a4MBdRwNy2rsr3/9q9544w0NGjRI/v7+ys/PV4sWLTRhwgStXLlSzZs3d3dEAAAAAABqtMaB3lp1X3+9eENnWezMiCen5mjQa+v0WtxBRsQBF7G6O0B1NGfOHL355psKDQ3VmjVrKnVscnKyli1bpk2bNunYsWMqKipS48aNFRYWpptvvlnXXHONrNaK/88+fPhwDR8+vLIvAQAAAAAAVJCHh6Enh3XUkLYNdNfieB3LyCtXLygu0bSVifrx57N6984eCvGzvdP4xeTkSGvWGNqypYFycjzk51eikycNDRsm+fk58pUAtQMNy9/YsWOH3nnnnSod+9prr2n+/PkqKioq9/zRo0d19OhRff/99+ratateffVVtWvXzhFxAQAAAACAgwxuW18JM6I0adl2fbknxab+WeIpJRzP0NLxvdW/dcgl90tKkubNk95/X0pPt0hqU64eHCxNmiRNmSKFhTnkJQC1AiPhv3L06FE9/PDDKiys/AV1X3jhBb3++utlzUqr1aorr7xSffr0UUjI//4llpiYqAkTJuj48eMOyw0AAAAAAByjgb+XPp/cV/+8+QpZ7YyIH0rL1ZA31ulfPyarpMT+iHhGhjRqlNSpkzR7tpSebv9npadLs2aVrhs1qvQ4ADQsyyQlJWncuHE6c+ZMpY9dvXq1Fi1aVPb9ddddp5iYGEVHR2vJkiVau3atnnvuOfn6+kqSzp49q6lTp3LtCwAAAAAAqiHDMDQjqr3iHh2sNiG+NvWiElN//HK3bl24WanZBeVqx49LERFSdHTlfmZ0dOlxnN8EMBIuSfr888/19NNPKzc3t9LHFhYW6pVXXin7fujQoZo9e7Y8PP7XC/b09NSYMWMUGhqqBx98UEVFRdq1a5e+/PJL3XzzzQ55De5QXFzs7gioxn77/uD9govh/YLK4j2DyuD9gsrg/YLK4P1S+/VqHqjNvx+sBz7dqZW7bEfE/7PntMJnxmjRXT00uE19padL111n0a5dtmdmVkRionTddaZiYooVFHSZ4VGj1fV/vxhmHT7NLyUlRTNnztTKlSvt1ity051Vq1Zp+vTpkkrHwL/99tuL3r37ueee05IlSyRJV155paIr+ycXN0pISFBJSYm7YwAAAAAA4FKmaWr5/hzNTshQoZ1fiy2G9GC3QO16v7t+/KH+Zf+8oUPT9OqrBy57H8CVPDw8FB4e7pi9HLJLDTRv3jyNGDGiXLOyXbt2mjJlSqX2WbVqVdnjQYMGXbRZKUljxowpe7xr1y4dPXq0Uj8PAAAAAAC4lmEYujPMXwuuaaiWARaberEpvbkjUz/WT5J88y/75/3wQ4iOHPG+7H2AmqrONizfe+895eTklH3//+3dd3xUVf7/8fekQggktAQEpCdUAZEiRLAColgARVFYURELLIK7CLtLEXBRWUCxoKgUAQ1VRQFRRLp0kCIJTaqSACGkEFLn90e+3N9MpmQmCWEmeT0fDx6Pe+fcOfecyYeZ5DOnPPbYY1q8eLFq167tch1ms1nbtm0zzjt27JjvcyIjI1W1alXjPL8RnAAAAAAAwDM0qhSgL7pVVZebbde1lCRTnfNS//VSrQuFvtfSpVXzvwgooUr9GpbNmjXT66+/rrZt27r93LNnzyopKcmqLldERkYam/vs37/f7ft6imbNmsnX1/abJUDKXV/jwIEDxjnxAmeIF7iLmIE7iBe4g3iBO4iX0uu71mbN2nFGw5b/rqtZ1nPETcHpMvf+VdoakfvPXLD1LFeuDNNHH1VWUFBRtBjexlveX/bv339dlg8stQnLtm3bqmfPnrrnnntkMhXszePEiRNW5zfffLNLz6tZs6ZxfOrUqQLd2xP4+vrKz6/UhhDcRLzAHcQL3EXMwB3EC9xBvMAdxEvpMqhDXXWoW1l95u1STHyKVZnJR1KHwzLXvCitvFVKLeN2/ZcumbR5s5/uv7+IGgyvVtreX0rtlPCPPvpI9957b4GTlZKMUZJS7sKiVapUcel5llPCLesAAAAAAADeo3n1Cto+9A51CKlpt9x088XcKeK14wtUf5ztxuRAqVBqE5ZF4fLly8ZxuXLl5OPj2ssZHBxstw4AAAAAAOBdggP91Ce0lcyrWsqcaTtl1xSUIVPvbVLUIcnk3tTZ5OSiaiXgXUhYFkJ6+v/f+atMGdeHdwcEBBjHGRkZRdomAAAAAABQvIKDJf1eS5p/h8zny9u9xtTuqNRni1Q+zeV6y9uvCijxSFgWQmZmpnHs6uhKSVZrDmRlZRVpmwAAAAAAQPGqVu3/DhLKS1/eIfM++3tcmGpckvqtl+q5Ntc7PLyIGgh4GRKWhWC5O5M7OyJZJin9/f2LtE0AAAAAAKB4de4shYb+30mWr/RTC5lX3Cpzhp0p4mUzZXp0u9T5oOTjOJdQsWJuvUBpRMKyEMqWLWscW04Pz4/lNPDAwMAibRMAAAAAACheQUHSgAF5HoypIc3rJHN8BbvPMd12XOqzWapwxW75gAG59QKlEQnLQggJCTGOU1NTZTabXXpeSkqKcRxqfAUDAAAAAAC81Ysv2nkwMVj6MkrmPXXsPsd0U6LUb4PU4C/X6gNKCRKWhRBusZhEdna2Ll265NLzzp8/bxxXqVKlyNsFAAAAAACKV0SE1LOnnYJsX2ltc5mXt5b5qp9NsalMpkwP75TuOiD5ZkvKradhw+vcYMCDkbAshNq1a1udnz592qXnnTlzxjiuW7dukbYJAAAAAADcGLNmSc2aOSg8cpM0v5PMf4XaLTbd+of05GY1bJuqWbOuWxMBr0DCshBq1KhhNaX70KFDLj0vJibGOG7UqFFRNwsAAAAAANwAISHSDz84SVpeLidFd5R5Zz27xabwyzp3zwb98MfZ69dIwAuQsCykdu3aGcdbtmzJ9/qYmBhduHDBOG/fvv11aRcAAAAAACh+NWpImzY5mB4uSTk+0vqmMn/TRuY0f5vilIwsPTl/twYt+U1pmdnXt7GAhyJhWUhdunQxjn/55RfFxcU5vf6rr74yjuvXr6/IyMjr1jYAAAAAAFD8S903CwAASHJJREFUQkKkpUul2Fhp2DDJ7n67x6opZHknVTdXtFvHp1tPqf30jYqJT76ubQU8EQnLQurSpYvCwsIkSRkZGRo5cqSysrLsXrtx40YtXrzYOO/Xr1+xtBEAAAAAABS/iAhp6lTp7Fnpu++yNXbsCf3jH6c0duwJffddtv6MDdKJdzpoxF0N7D5//1/JavPuRs3b5dqeGUBJQcKykAICAjR8+HDjfMuWLRo4cKDVBjxZWVlatGiRhgwZouzs3OHcEREReuyxx4q9vQAAAAAAoHgFBUndupnVo8dFPfHEefXocVHdupkVFCT5+/rorQcaa+Xz7VSlXIDNc1MzsvW3r/bq2ei9Sk23P0AKKGn8bnQDSoJHH31Ue/bs0cKFCyXlJi27dOmiyMhIBQcH69ixY0pISDCuDw0N1XvvvSc/P15+AAAAAAAgdWsUpr3DO+upBbu1/vhFm/I5O09r26lLWtivtZpVr3ADWggUH0ZYFpE33nhDL774ovz9cxfMzcnJ0aFDh7Rjxw6rZGX9+vU1f/581atnf0cwAAAAAABQOt0UUkY/DWqv0fdFyGSyLT8Un6J20zfq822nZDabi7+BQDFhiF8RMZlMGjZsmB566CEtWbJEmzZt0rlz55SWlqaQkBA1btxY3bp100MPPaSAANsh3gAAAAAAAH6+Pnqja6Q61aukp7/co7jkdKvytMwcDVz8m9Ydu6CPet6i8mVI7aDkIarz6Nmzp3r27Fng59evX1+vv/66Xn/99SJsFQAAAAAAKE3uaVhVe4d3Vr8vd2vNkQs25Qt2n9X2U4la2K+1WtYIuQEtBK4fpoQDAAAAAAB4oPDygVo1sL0mdIuUj50p4kcupOr29zfpo80nmCKOEoWEJQAAAAAAgIfy9THp3/dGaO2LHXRThTI25elZORr89X71mbdLl9Myb0ALgaJHwhIAAAAAAMDDdapfWXuGd9L9jcLsli/Z95dunbZBO04lFm/DgOuAhCUAAAAAAIAXqBocqO+ebau3H2gsXztzxP9IuKKoDzfp3Q3HmSIOr0bCEgAAAAAAwEv4+Jj0z7saaMPLHXRzaFmb8sxss4YvP6hH5+xQwpWMG9BCoPBIWAIAAAAAAHiZ2+tU0u7hnfRQ03C75csPxunWqRv064mEYm4ZUHgkLAEAAAAAALxQpaAAff1MG017uKn8fW2niJ9KTFOnj7bonV+OKieHKeLwHiQsAQAAAAAAvJTJZNLQO+pp8+Ao1ascZFOenWPWyBWH1GPWdp1PSb8BLQTcR8ISAAAAAADAy91WK1S7Xu2k3rdUt1u+KiZeraZu0IZjF4u5ZYD7SFgCAAAAAACUACFl/bWwX2t92LO5Av1sUz5/Jl3V3R9v0cQ1h5XNFHF4MBKWAAAAAAAAJYTJZNJLHero1yFRalilnE15jlka80Osun26VeeSrt6AFgL5I2EJAAAAAABQwrSsEaKdr3ZS31Y17Jb/fOSCWk3boJ+PnC/mlgH5I2EJAAAAAABQApUv46d5fVvp08daqKy/bQooLjldXWZu1ZgfYpSVnXMDWgjYR8ISAAAAAACghDKZTHqu3c3a9vc71Dgs2KbcbJYmrjmiez/5VWcvp92AFgK2SFgCAAAAAACUcM2qV9D2oXfomTa17JZvOJ6gVlM3aNWhuGJuGWCLhCUAAAAAAEApUC7QT7P6tNTcJ1uqXICvTfmF1Aw98Pl2vf7978pkijhuIBKWAAAAAAAApUi/1rW049U7dEv1CnbLJ687pjs/2qJTl64Uc8uAXCQsAQAAAAAASplGYeX169+j9EL72nbLfz15Sa2mbtC3B84Vc8sAEpYAAAAAAAClUll/X33c+xZ99fStKh/oZ1N+KS1Tj87ZoWHfHlBGFlPEUXxIWAIAAAAAAJRifVrW0K5hndS6Zojd8vc2/qGoDzbp+MXUYm4ZSisSlgAAAAAAAKVcgyrltGlwRw2Jqmu3fOeZy7p12gYt+e3PYm4ZSiMSlgAAAAAAAFCgn6/ee6SZlj1zm0LL+tuUJ13N0uPzdumVZft1NTP7BrQQpQUJSwAAAAAAABgeaVZdu4d1UrubQ+2Wz9hyQh3e36Qj51OKt2EoNUhYAgAAAAAAwEqdSkHa8EpHvda5vt3yvX8mqfW7G/TVnrPF3DKUBiQsAQAAAAAAYMPf10eTezTRd8+2VeUg2yniKenZemrBbg1c/JuuZGTdgBaipLLdsx4AAAAAAAD4Pw80Cdee4Z3Vd8Fubfojwab8822ntO3kJS3s11qNw8u7XO+VK9L69dK5c1JKihQcLFWrJnXuLAUFFWUP4G1IWAIAAAAAAMCpmqFltfbF2zX2x1i9tfaozGbr8gPnktXm3Y36sGdz/a1NLad1HT4szZghzZkjJSbaloeGSgMGSC++KEVEFFUP4E2YEg4AAAAAAIB8+fn66M37G2vV8+1UtVyATfmVzGwNWLhXz3y1RynptlPEL1+WevWSIiOld9+1n6yUch+fNi33ul69cp+H0oWEJQAAAAAAAFzWJTJMe1/rrLvqV7Zb/sWuM2r73kbt/yvJeOzsWSkqSlq2zL17LVuW+7yz7O1TqpCwBAAAAAAAgFuqVyijHwfdrnFdIuVjsi2PiU9Ru/c26tOtJ3Xpklldu0oHDhTsXgcOSN26MdKyNCFhCQAAAAAAALf5+pg0pkuE1gy6XdUrBNqUX83K0aAl+9Ri1G4dPJJZqHsdOCA9+2yhqoAXIWEJAAAAAACAAruzQRXtGdZZXSKq2i0/E/yn9PRGKaxwQySXLZOOHClUFfASJCwBAAAAAABQKGHlA7Xy+Xb6b/dG8rUzR9xUMVV6cpPU8g9JZtsKXPTxx4VoJLwGCUsAAAAAAAAUmo+PSSPvbqhfXrpdNUPK2JSb/HJkuueA1GOnFFiwKeKzZ0tXrhS2pfB0JCwBAAAAAABQZKLqVtae4Z3Vtkq43XJTxDmp33qp2iW36750SVq/vrAthKcjYQkAAAAAAIAiVblcgF4IayPzuiYyZ9uZIh6SJj2xWWp9TO5OEY+LK6JGwmORsAQAAAAAAECRS001SbvqS9EdZb5c1qbc5GuW6c7fpUd2SGUyXK43ObkIGwmPRMISAAAAAAAARS44+P8OzlWU5nWS+Ug1u9eZ6sflThG/KcGlesuXL6IGwmORsAQAAAAAAECRq2aZn0wPkJbfJvPPzWTOsk1HmSpclfpskdoeUX5TxMPtL42JEoSEJQAAAAAAAIpc585SaKjlIyZpb13pq44yXwqyud7kY5bpjhip5zapbLrdOitWzK0XJRsJSwAAAAAAABS5oCBpwAA7BfGh0vxOMsfcZPd5prrnpf7rpZoXbMoGDMitFyUbCUsAAAAAAABcFy++6KAgw19acavMP94ic6adKeLB6dJjv0q3x0qm/z9F3GF9KFFIWAIAAAAAAOC6iIiQevZ0VGqS9teWvrxD5oRytqU+kqnDYanXVqncVfXsKTVseF2bCw9BwhIAAAAAAADXzaxZUrNmTi64UCF3ivjBmnaLTbUvyG/AevX7z/nr00B4HBKWAAAAAAAAuG5CQqQffsgnaZnpJ/3QSuZVLWXO9LUpzg7MUK8vt+o/q2KUlZ1z/RoLj0DCEgAAAAAAANdVjRrSpk3Opof/n99rSfPvkPl8eZsis1n6789HdPfHv+pMYtr1aSg8AglLAAAAAAAAXHchIdLSpVJsrDRsmBQaav+6iubyGlIlSo81utlu+aY/EtRq6nqt+D3u+jUWN5TfjW4AAAAAAAAASo+ICGnqVGniRGn9eikuTkpOlsqXl8LDpc6dpaAgP0kt9PDuynpx6T6lpGdb1XHxSqZ6zNqu1zrX13+7N5K/L2PyShISlgAAAAAAACh2QUHS/fc7v6bvrTXVplao+szbpb1/JtmUT1l/TJv+uKivnm6tOpWCrlNLUdxIPwMAAAAAAMBjNawarC1DovRyhzp2y7edStSt0zbomwN/FW/DcN2QsAQAAAAAAIBHK+Pvqw96Ntfi/q0VUsZ2wnBiWqZ6ztmpod8cUHpWtp0a4E1IWAIAAAAAAMAr9LrlJu0a1kltaoXaLX9/0x/q+P5mHb2QWrwNQ5EiYQkAAAAAAACvUa9yOW18paNe7VTPbvnus5fVetoGLdr7ZzG3DEWFhCUAAAAAAAC8SoCfj6Y+1FTfDGijimX9bcqT07P0xPxdenHJPqVlMkXc25CwBAAAAAAAgFd6qGk17RneSbfXrmi3fObWk7p9+ibFxqcUc8tQGCQsAQAAAAAA4LVurhikdS930Ot3N7Bbvu+vJN327gbN33WmmFuGgiJhCQAAAAAAAK/m7+ujSd0ba+Xz7VSlXIBNeWpGtvp/tUfPLtyr1PSsG9BCuIOEJQAAAAAAAEqEbo3CtHd4Z3WuV9lu+Zwdp9Vu+kYdPJdczC2DO0hYAgAAAAAAoMS4KaSMfhrUXqPvi5DJZFv+e1yK2r63QZ9vOyWz2Vz8DUS+SFgCAAAAAACgRPHz9dEbXSP14wvtFV4+0KY8LTNHAxf/pv5f7VHyVaaIexoSlgAAAAAAACiR7mlYVXuGddI9DavYLV+w+6zavLdBe89eLuaWwRkSlgAAAAAAACixqlUoox8Gttf4bpHysTNF/PD5VN3+/ibN2HKCKeIegoQlAAAAAAAASjRfH5P+c2+Efn7xdt1UoYxNeXpWjl5Ztl9PzNuly2mZN6CFsETCEgAAAAAAAKVC5/pVtGd4J3WLrGq3fPG+v9T63Q3aeTqxeBsGKyQsAQAAAAAAUGpUDQ7U98+101sPNJavnTnixy9eUccPNum9jceZIn6DkLAEAAAAAABAqeLjY9KIuxpo/csddHNoWZvyzGyzhn17UD3n7FDClYwb0MLSjYQlAAAAAAAASqUOdSpp9/BOeqhpuN3ybw/G6dapG7T15KViblnpRsISAAAAAAAApValoAB9/UwbTXu4qfx9baeIn0pMU6cPN2vyL0eVk8MU8eJAwhIAAAAAAAClmslk0tA76mnTK1GqWynIpjwrx6zXVxzSQ7O260Jq+g1oYelCwhIAAAAAAACQ1ObmUO0e1km9b6lut3xlTLxaTtmgDccuFnPLShcSlgAAAAAAAMD/CSnrr4X9WuvDns0V6GebOvsz6aru/niLJq45rGymiF8XJCwBAAAAAAAACyaTSS91qKNfh0SpYZVyNuU5ZmnMD7G6/9OtiktminhRI2EJAAAAAAAA2NGyRoh2vtpJfVvVsFu+5sgFtZy6Xj8fOV/MLSvZSFgCAAAAAAAADpQv46d5fVvp08daqKy/bSotLjldXWZu1djVsUwRLyIkLAEAAAAAAAAnTCaTnmt3s7b9/Q41Dgu2KTebpQk/Hda9H/+qPy9fvQEtLFlIWAIAAAAAAAAuaFa9grYPvUPPtKllt3z98YtqOXW9foiJL+aWlSwkLAEAAAAAAAAXlQv006w+LTX3yZYqF+BrU34hNUPdP9umkSsOKTM75wa00PuRsAQAAAAAAADc1K91Le18tZNuqV7Bbvk7vxzVXTO26NSlK8XcMu9HwhIAAAAAAAAogMiwYP369yi90L623fItJy6p1dQNWn7wXDG3zLuRsAQAAAAAAAAKqKy/rz7ufYu+evpWlQ/0sym/lJapR2bv0H9WxdyA1nknEpYAAAAAAABAIfVpWUO7hnXSrTVC7Jb/9+cj+o6Rli4hYQkAAAAAAAAUgQZVymnzkI4aHFXXbvlvfyUVc4u8EwlLAAAAAAAAoIgE+vlq+iPNtPRvtym0rL/xuMkk3VG30g1smfewnVgPAAAAAAAAoFAebV5dt9YI0YdbTujohVQ9dWsNda5f5UY3yyuQsAQAAAAAAACug9qVgvTOg01udDO8DlPCAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9hMpvN5hvdCHiHXbt2WZ37+JDvhnM5OTnGMfGC/BAvcBcxA3cQL3AH8QJ3EC9wB/ECd3hDvFi2UZJat25dJPX6FUktKJXyBiXgDPECdxAvcBcxA3cQL3AH8QJ3EC9wB/ECd5S2ePHM9CwAAAAAAACAUokRligwTx2ODAAAAAAAgOvveo38ZA1LAAAAAAAAAB6DIXIAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMvxvdANg6duyYoqOjtW3bNp05c0ZZWVkKCwtTRESEevToofvuu09+fkX/o/vrr78UHR2tTZs26eTJk7p69aqqVq2qevXqqXv37urevbvKli3rVp379u3T4sWLtWPHDsXFxclsNis8PFxNmzbVww8/rE6dOslkMrlcn9ls1po1a7R8+XLt379fFy9eVNmyZRUeHq727durV69eatSokbtd92rEi3syMjL04IMP6uTJkxo8eLCGDBlSqPq8DfHi2JUrV/Ttt99q06ZNOnTokC5duqSsrCyFhoYqIiJCHTt2VO/evVWhQgV3u++1iBfHkpOTtXTpUq1bt06HDx9WUlKSQkJCVL16dXXq1EkPPfSQ6tSp42bPvRvx4r6EhAQ9+OCDunjxoiQpNja20HV6E2LGvkGDBmndunVu3f/222/XnDlz3HqOtyFenIuPj9fy5cu1bt06nTp1SgkJCSpTpoxq1qyptm3bqk+fPqpfv75bdXoz4uX/GzlypL7++utC9att27aaN29eoerwZMSLY1lZWVqxYoXWrFmjAwcOKCEhQSaTSZUrV1aLFi3UvXt33XPPPUXye1FeJrPZbC7yWlFg77//vj7++GNlZWU5vKZZs2aaPHmy6tWrV2T3jY6O1ltvvaW0tDSH19SpU0fvvPOOWrRokW99mZmZmjBhghYuXOj0uqioKE2aNElhYWH51hkXF6dhw4Zp165dDq8xmUx65plnNHz4cAUEBORbp7cjXtz35ptv6osvvpCkUpewJF4cW7lypd544w0lJiY6vS44OFijRo1S7969863T2xEvjq1evVpjxoxxGi8+Pj4aMGCAhg4dqsDAwHzr9HbES8G8+uqrWrVqlXFemhKWxIxjd9xxh+Lj4/O9zlJJT1gSL87Nnj1b06dP15UrVxxe4+Pjo+eff17Dhg2Tj0/JnmhJvFgjYekc8eJYTEyMXn31Vf3xxx9Or2vevLmmTZumWrVq5VunO0hYepCJEydavQn4+fkpMjJSZcuW1bFjx3Tp0iWjrEqVKlq0aJFq1KhR6PvOmTNHkyZNMs5NJpMaNmyo0NBQnThxwuoXprJly2rBggVq2rSpw/rMZrMGDx6sNWvWGI8FBgYqMjJSvr6+OnLkiFJSUoyyevXqaeHChU5HLSUkJKhPnz46deqU8VhoaKgaNGigtLQ0xcbGWr3BPPDAA5o6darrL4IXIl7cH+W2YMECjR8/3jgvTQlL4sVxvORtoyRVqlRJderUka+vr06cOKHz589blQ8ZMkSDBw/O/wXwUsSL43hZvHixRo8eLctfn2rUqKGaNWvqypUrio2NVUZGhlEWFRWlmTNnytfX1/UXwssQLwUbdf3DDz9o6NChVo+VloQlMeP8d97bb7/dOI+KinKpb02aNNFrr73m0rXehnhxHC9ms1njx4/Xl19+aTzm6+urm2++WVWrVlVcXJxOnjxp9Zw+ffpY/T5c0hAvtvEya9Ysbd682a3+HD16VOfOnTPOhw0bphdffNGtOrwB8eL4/eXQoUN6+umnrZ5Xvnx5RUZGymw2KyYmRqmpqUZZ1apVFR0drZo1a7r+QuTHDI+watUqc0REhPFvyJAh5vPnzxvlGRkZ5ujoaHOLFi2Max599FFzTk5Ooe67Z88ec+PGjY06n3rqKfPJkyeN8pycHPPq1avN7dq1M67p1KmT+cqVKw7r/Oyzz6z6Mm7cOHNSUpJRnpaWZp4xY4a5SZMmxjWvvPKK03a+8MILxrXNmzc3f/nll+bMzEyjPD4+3vzqq69a3Xfu3LmFeGU8G/HiPF7smT17tjkyMtLqXtOnT3e7Hm9EvDiOl927d1vFxV133WVet26dTd+3bNli7tKli9W9161bV4hXx3MRL47jJSYmxty0aVPj2i5duph37Nhhdc3ly5fNEyZMsLrv1KlTC/HKeDbixf3PI7PZbL548aK5ffv2VveLiIgoUF3ehphxHjObNm2y+kwq7YgX5/HyySef2Lw+p06dsrrm4MGD5kceecTqup9//rmAr4xnI14K9pmU19GjR82tWrUy6h0+fHiR1OtpiBfH8ZKRkWHu2rWrcW3Tpk3Ns2fPNmdkZBjXpKenm2fMmGHVlz59+hTqtcmLhKUHyMjIMN95553GD3nQoEHm7Oxsu9du3LjRKsiWL19eqHs//vjjVv/50tLS7F536NAhqzetGTNm2L3u4sWLVteNHTvW4b2XLFli9Z9q165ddq/bsGGD1XUrVqxwWOeIESOM69q1a2dOTk523HkvRbw4j5e8UlNTzcOHD7f5ozAionQkLIkX5/Hy5JNPWv0iYPlLSl6XLl0y33fffcb13bp1c9x5L0W8OI+XF1980bimY8eO5vj4eId1jhs3zri2VatWVr80lhTEi3ufR5b+/ve/2/1cKumImfxj5tNPPzWue+mll9zqY0lDvDiPl9OnT5ubNWtmlaBwlEi5fPmyuVOnTsa1TzzxhPMXwAsRLwX/TLKUlpZmvv/++61+301NTS1UnZ6IeHEeLytWrLC6bunSpQ7rnD17ttW1GzZscNx5N5XsxSu8xE8//aQ///xTUu4Q5DFjxjhcVyQqKkp9+vQxzmfPnl3g+/7222/au3evcT569GiVKVPG7rWNGjXSK6+8YpzPnTtX2dnZNtctWbLEGBYcGhqqESNGOLx/r169dOeddxrnjvoyd+5c4zgqKkrdu3d3WOfYsWNVuXJlSdKlS5cKvVaHJyJecrnSly1btqhXr176/vvv8722pCJectnry+nTp63WxB0xYoSqVKnisM7Q0FCNHDnSOD9+/LgOHTrk8HpvRLzksteXCxcuWG2C8fLLL6tq1aoO6xwyZIjx2qWmpmrLli0Or/VWxEsud/uyatUq/fDDD5JUqjbxkoiZa5z1xfJzpbRtJJkX8ZLLUV9mzZplLEHSqFEj/ec//3G46UWFChWspvPu2bNHly9fdtgGb0S85CpMXyRp8uTJOnbsmCTJ399f06ZNU1BQUKHq9ETESy5Hfdm4caNxXLduXfXs2dNhnf369VO1atWMc3c3jXOGhKUHWLlypXHcoUMH3XTTTU6vt/zPcvDgQZ0+fbrQ961fv75atWrl9PrevXsbO2MlJCRo+/btNtdYLhx///335/vmZtmXDRs22CwUffnyZas/8nr16uW0vqCgID300EPG+bU/CEoS4iWXvXi5Ji4uTi+88IIGDBig48ePG48/8cQTuvXWW53eo6QhXnLZi5etW7cax4GBgbrvvvuc1iflboTg7+9vnO/fvz/f53gT4iWXvXg5cuSIkVwymUxOvzyTctdBvfYFmiSbNcRKAuIll7PPo7wSEhKMteMCAgI0bNgwl55XUhAzuZzFTExMjHFc2hOWxEsue/GSmZmp7777zjj/97//ne9ayd26ddPTTz+twYMH61//+pfdxIc3I15yufOZlNfOnTu1YMEC43zQoEEl9n2IeMnlKF4s1y9t0qSJ0/p8fX3VvHlz4/zMmTNOr3cHCcsbzGw2a9u2bcZ5x44d831OZGSk1aiOtWvXFujev/76q1v3DQkJUbNmzYzzX375xao8MTHR6lthVxYJb9++vfHhevXqVZsRKNu3bzc+TE0mk0vttLxm9+7dJerbQ+LFebxcs3//fq1fv944Dw0N1eTJk/XGG28Yb/ilAfHiPF7i4uKMeKhVq5YCAgLyrdPf31/BwcHGueVC3N6OeHEeL7fffru2bdumTZs2acGCBQoNDXVan9lstlqkvFy5cvm2wZsQL659HuU1btw4JSQkSModhVu/fn2XnlcSEDP5x0x6errVTqwlNVHgCuLFebzs2rVLSUlJknJ3EW7btm2+dVasWFGjR4/WkCFD1L9/f1WqVCnf53gL4qVgn0mWsrKy9MYbbxibCtavX1+DBg1yux5vQLzkHy/ly5c3jl1JgFtugBwYGJjv9a4iYXmDnT171viwkWQVjM5ERkYaxwUZ4ZOZmWk18szZjlOu3jc2NtZq11RX6gwKCtLNN9/ssE7Lb5lr1qypkJCQfOu0/OUuJydHBw8ezPc53oJ4cR4vefn5+alPnz5auXKl1cjb0oJ4cR4vgwcP1v79+7Vx40a9//77LrUxOTnZ6kuQkjSdk3hx7f2latWqat26db71bdq0SWlpaW61wZsQL+59Hkm5oypWr14tKff1eu655/J9TklCzOQfM7GxscYX9UFBQapVq5ZLbS2JiBfn8bJ7927juF27di61sSQjXtz/TMpr4cKFOnz4sHE+atQol77M90bES/7x0qBBA+N4165dTpOWaWlpVu9JRfllLAnLG+zEiRNW55aB44zlVvGnTp1y+75nzpxRZmamcV67du1C39eyLwEBAapevXqR1ulqG6tWrWq1DkRJmoZHvLjWl7Jly+rJJ5/UihUrNH78eKtpmaUJ8ZJ/X3x8fBQWFqZ69eq5VN9PP/2knJwc47wkjY4iXgrfl2uOHz+usWPHGuetWrVSy5YtC1yfJyJe3OvLxYsXjang/v7+mjRpUr7TN0saYib/vlh+UR8ZGamrV69qyZIlGjRokKKiotSsWTO1a9dOvXv31nvvvae4uDiX7uuNiBfndcbGxhrHDRs2NI63bNmikSNHqmvXrmrZsqURLx9++KExurskIl4K15fU1FR9+OGHxvmdd96pO+64w606vAnxkn9f+vTpYySsk5KS9Pbbbzus66233jIGdPj7++uxxx5zqQ2uKD1zIz3U+fPnjWMfHx+nGz5YshyObFlHQe6btz5X73vx4kXl5OQYi9Na1ulqfXmvzduu+Pj4AtVZuXJlnT171m6d3ox4ca0vHTt2dGmIfUlHvBS+L5bS09P1ySefGOehoaElak1U4qXgfcnOztaVK1cUGxurVatWafHixUpPT5ckhYWFafLkyS7X5S2IF/f6Mm7cOGMJiZdeekkREREu36ekIGby74vltL6kpCR16dLF6ndhKXf6X2Jiovbv369Zs2bplVde0QsvvOByG7wF8eK8L5br54WHhysuLk6jR4+2WhJJyh35dC1e5syZo7Fjx+rBBx90uQ3egngpXF/mzZunixcvSspdhq2kr69MvOTfl/DwcI0YMUITJ06UJEVHR+vcuXMaOHCgmjZtKpPJpN9//10zZ860mqY+ZMiQfNcDdQcJyxvMcmphuXLlHO5MlZflGmoFWaMx73NcndZouZaB2WxWUlKSsY5XYmKi3evy46wvlufu1Gl5reVwb29HvBS+L6UJ8VK08fK///3P6lvM/v37l6g1UYmXgvelXbt2Sk5Otnm8c+fOGj16dImc1km8uN6XFStW6Mcff5QkNW7cuEQml1xBzOTfF8uE5bVdeiXppptuUo0aNZSZmakjR44Yu8FevXpVU6ZM0R9//KFJkya53A5vQLw478uFCxeM4ytXrqhv377GRhdly5ZVRESEAgICdPz4cSMRlZSUpH/84x9KTEzU008/7XI7vAHxUvC+pKWlae7cucZ5ly5dSvz6ucSLa33p16+fatSooUmTJunUqVNat26dwx3AQ0ND9c9//lO9e/d2uQ2uKDl/aXmpayMwJDnczt4ey/UkMjIyCnVfd+5tuTtu3nos21FUfSmK1ydvX70Z8VL4vpQmxEvRxcvChQv1xRdfGOc1atTQgAEDClyfJyJeCtaX5ORku8lKPz8/BQUF6ezZsyUyYUm8uNaXCxcuGFPB/fz8NGnSJJu2lBbEjPO+mM1mq2m+knTHHXdo2LBhVmuSZWZm6scff9SkSZOMUTHLli1TvXr1NHDgQJfb4umIF+d9sRyQ8eabbyopKUmBgYEaPny4nnzySWPTi5ycHK1du1bjxo3T+fPnZTabNWnSJDVq1Ei33Xaby23xdMRLwfuybNkyq+UCXnrpJZef662IF9f7EhERoXvuuUfz58+3ms5uyc/PT88884zuv/9+l+/vKtawvMEsf+iuZvYlWY3qsdyRyVV5n+PqvfOOJrq2MLh0ffpiee5OnZbrQhXk9fFUxEvh+1KaEC9FEy/ffPONxo0bZ5z7+/vr3XffVVBQUIHq81TES8H6cvbsWVWsWFGtWrVS27ZtFR4ebjx/1apV+tvf/qZRo0aVuPcr4sW1vowbN84Y/TBw4EA1btzY5fpLGmLGeV/Onj1r9Udo//799emnn9psoODv768HHnhAS5cuVbVq1YzHP/zwwxK1DBLx4rwvlgmGpKQk+fv769NPP9UzzzxjtUOvj4+P7r33XkVHRxsjsrKysvTWW2+53A5vQLwUvC9ffvmlcdyuXbtS8TlFvLjWlzlz5qhbt26aPXu2cZ+wsDC1adNGrVq1snpPeffdd9W1a1dt2rTJ5Ta4goTlDWaZWLPcyCE/lkFVkG/q8wazq/fOG8yW974efSlonZb/iUvSSAbipfB9KU2Il8L3Zf78+Ro5cqRxT5PJpIkTJ+qWW25xuy5PR7wUrC8NGzbU1q1bFR0drXnz5mnDhg1asGCB1Y6Oy5Yt04QJE1xuhzcgXvLvy/fff6+ffvpJUm6cvPzyyy7XXRIRM877UrNmTe3bt09r1qzRF198oVGjRslkMjmsKzw8XG+++aZxnpaWpkWLFrncFk9HvDjvS97YeP75553uFl6zZk2NGDHCON+/f7/27t3rcls8HfFSsL7s3LlTR48eNc779+/v8v28GfGSf1/mzp2rSZMmGYnKRo0aaf78+dq4caPmz5+v6Oho/frrr/r444+NTYvOnz+vF154wWYt3cIgYXmDlS1b1jh2Z+qy5bdqlt+iFeS+7tw773Bhy3tbDkF2py+W1+bty/Wo05sRLyX3Z3s9EC8Fjxez2axp06ZpwoQJMpvNknL/OBgzZoweeeQRl+vxJsRLweLF3k7Pt912m6Kjo9WsWTPjsejoaB04cMDltng64sV5vFy4cMFIUvv6+uq///2v1fSr0oiYyf89xs/PT7Vq1VK7du1cGikTFRWlunXrGuebN292uS2ejnhxHi+WszxMJpNLa1L26NHD6nnES+mJF0eWL19uHFepUkV33nmny/fzZsSL83g5e/aspkyZYpy3atVK0dHRatOmjdV1Pj4+uuuuu7RkyRJjM8Hs7GyNGjXK7nJJBUHC8gYLCQkxjlNTU40/jPOTkpJiHF8bilvQ++atz9X7+vn5WS3satkOV+uTZCwcnreOvO10p87Cvj6einhxHi+wRrwULF7S09M1bNgwffzxx8Zjvr6+mjhxovr27evyvb0N8VK07y9BQUF66623rEbBfPPNN4Wq05MQL87jZezYscZU8GeffbZEjsp2FzFzfX6HufXWW43jkydPFkmdnoB4cR4v5cqVM45r167t0i7HAQEBVksMHD9+3OW2eDrixf33l6ysLK1evdo4f+ihh0rUZpLOEC/O42Xp0qVGQtPf31+TJ0+2SbZaCgkJ0ZQpU4wv8S9evKhly5a53BZnSFjeYNfWupJys9GXLl1y6XmWa9S48gHl7L6S9U5zrt63UqVKVn+IWdZ5bTc6d+vM25eC1ml5bdWqVV1+nqcjXgrfl9KEeHG/LxcuXFC/fv20atUq47HAwEBNnz69yHe98zTES9G/vzRs2FBNmjQxzvfv31/oOj0F8eK4L999953WrFkjSapXr56GDBnicp0lGTFzfX6HsaynILvWeirixXlfKlasaPc4P5UqVTKOLXcX9nbEi/t92bVrl1UMXI8NUzwV8eK8Lzt27DCO27Vr59LmkREREWrdurVxXlRrWZKwvMFq165tdX769GmXnnfmzBnj2HIqiKtuuukmq7UKCnLfOnXqWJVZ9uXKlSsu/we0vHfevlje49SpUy7VFx8fr6tXrzpspzcjXpzHC6wRL+7Fy/Hjx/X444/rt99+Mx4LDQ3VnDlzdO+997p0P29GvFyf9xfLtpSkPw6JF8fx8sEHHxjHZrNZL7/8sp577jm7/yZPnmxVp2XZO++841I7vAUxc33eYyyn9VmOuvN2xIvzeGnQoIFx7M7US8t16+wtaeKtiBf33182bNhgHFerVk3Nmzd36T4lAfHiPF7i4+ONY8v3mvxYrt9+9uxZl5/nDAnLG6xGjRpWQ3APHTrk0vNiYmKM40aNGrl9X39/f2OdAXfua3ld3h3EmjRpYpXtd6XO1NRUq0Rk3r5YTls4efKk0tLS3GqjyWSy+o/j7YgX5/ECa8SL6/ESExOjvn37Wn241qlTRwsXLrSableSES/O42XFihUaM2aMnnvuOb399tsutVGyTiZYTuHxdsSL43ix3LHzjz/+0KZNmxz+yzvq1lmZtyNmnL/HLF26VOPHj9fQoUPdeo+x/KOzevXqLj/P0xEvzuMlb2Ig7xp3jpw7d844ttxl3tsRL+7/jfTrr78ax506dXK6yVdJQ7w4jxfLNbddfW+RrL8EcWfHcmdIWHoAyx3dtmzZku/1MTExVpnz9u3bF8t9ExMT9fvvvzu8b3BwsNXUN1fq3Lp1q7Gbla+vr9q2bWtV3rp1a2MtjezsbG3bti3fOi3v26RJE5u1Irwd8eI4XmCLeMk/Xo4dO6a//e1vVtNBri0uXZJGaLuCeHEcL7t27dLChQu1adMmffvttzY7NjpiudFO3m/0vR3xwueRu4gZxzGzY8cOLViwQD/88IOWLFni0h+JV69etZq6d9ttt+X7HG9CvDiOlw4dOhjHaWlpLm2gk5ycrMOHDxvnJW1EHfHi+mfSlStXFBsba5yXxnWWiRfH8WL55ZerSVVJVjvO553+XlAkLD1Aly5djONffvlFcXFxTq//6quvjOP69esXeASh5X0PHDiQ7+6lixYtMv5ACwkJsfqgvKZr167G8fLly/MdEWnZlw4dOqhChQpW5RUqVLD6TxkdHe20vtTUVKvdzrp16+b0em9EvOSyFy+wRbzkchQvycnJeuGFF6ym6t51112aM2eOW2tClRTESy578WL5WXTx4kWrheodWb16tdVreNddd+X7HG9CvOTKGy9r165VbGysS/+++OILq3oty+bNm+e0Dd6ImMll7z3G8g/GpKQkl95jvvrqKyUlJRnnPXr0yPc53oR4yWUvXpo0aaKGDRsa559++mm+G4dER0cbI8D9/f1L3I7QxEsuV/5GOnjwoNUXryUtee0K4iWXvXixvMeePXusRpY6cvr0aavBZfbaWRAkLD1Aly5dFBYWJil3yO3IkSMdjtzYuHGjFi9ebJz369evwPdt1aqV1ZTrUaNGOdxZ6tChQ5oxY4Zx/vjjj6tMmTI21/Xq1cvYQerChQsaP368w/svXrxYGzduNM779+9v97qnnnrKOP7ll1+c7jg1btw4JSQkSMrdobUkbpJBvORyFC+wRrzkchQvY8aMsVoX5s4779T7779v9/6lAfGSy1683HXXXVbfFr/zzjtO1wk6ceKExo4da5zXrl3b6pfUkoB4ycXnkeuImVz2YqZr165WfzROnjzZah2xvHbt2qVp06YZ5x06dFCLFi0cXu+NiJdcjt5j/va3vxnHu3bt0syZMx3WGRMTow8//NA47969e4namFQiXq5x5TPJMgFVpkwZt9YpLCmIl1z24qVHjx5WayKPGDHC6Q7kV69e1euvv258IRIUFFRkX6CRsPQAAQEBGj58uHG+ZcsWDRw40GpNmqysLC1atEhDhgxRdna2pNydmB577DG7dd59992KjIxUZGSk7r77bof3fv311401Dw4fPqx+/fpZvYGZzWb9+OOPeuaZZ3TlyhVJubtuDxo0yG59VapU0fPPP2+cL1u2TK+99prVjlVXr17Vxx9/bPWHXKdOndSpUyeHfbEcOj169Gh98sknVuuCXbhwQcOGDbMaXfnyyy9b7YRXUhAvzuMF1ogXx/GyY8cOrVy50jivU6eOpk6darUYdmlDvDiOF39/f/3nP/8xzs+dO6e+fftarQEl5f7Su3TpUj3++OPGMgP+/v4aP3681ZpAJQHxwueRu4gZxzFTrlw5DRs2zDiPi4vTE088YbPT6tWrVzVnzhw9++yzxu/CwcHBmjBhgsO+eyvixfl7TO/eva1G/0+dOlVjxoyxGimWk5OjlStXqn///saoq/Lly1vFWklBvLj+mWQ5dbd69erGEmylCfHiOF4qV66sv//978Z5bGysHn30Uf3yyy/G63DNzp079cQTT2jXrl3GY0OHDjWSwYVlMuc3dhzFZsyYMVq4cKFx7uPjo8jISAUHB+vYsWPGyEEpd+far776SvXq1bNb1913321sHlGjRg2tXbvW4X0/+eQTTZ061eqxBg0aqFKlSjp58qTVh16ZMmX0+eefO10jJysrS6+88orWrVtnPObv76/IyEgFBAToyJEjVrvZ1axZU4sXL3aaXIyLi9NTTz1l9QZSvnx5NWzYUBkZGYqNjbVa5P6uu+7SRx99VGSLvXoi4qVgyeh+/fpp+/btkqTBgwdryJAhBarH2xAvtvHy3HPPWf0hWLduXdWoUcPhve156KGH9PDDD7v1HG9AvDh+f/nwww81ffp0q8fCw8NVp04d4/Po2i+X1+43adKkEjdV0xLxUvAvR7dt22Y1usFyTbGSjJhxHDN5XxtJCgsLU506dZSenq7Dhw9bTfcLDg7WZ599platWjms09sRL47jJSEhQc8995zVGnd+fn6qW7euKlasqOPHj1vNBvD399eHH36ozp07O6zT2xEv+X8mPf/888YouxYtWmjRokX5PqekIl4cx8v48eO1YMECq8dCQ0NVp04d+fv768SJEzp//rxV+VNPPaUxY8Y4rNNdJCw9iNls1rvvvqvPP//cKvmWV/369fXee+9ZrVuSlzv/WSRp/vz5mjJlitUfWXlVq1ZN//vf/9SmTZt8epI7wuSNN97Q0qVLna6n0qpVK7333nsuLcr6119/afjw4dq9e7fT63r37q2xY8eWuJEseREvBVNaE5bEi7WkpCS1b9/e5ltCd5XUGCJenFu+fLkmTJhgtXacPfXq1dOkSZPUsmXLfOv0ZsRLwZXWhCUx45jZbNbcuXM1bdo0Xb161em1LVu21Pjx4wu8lpq3IF6cS05O1ptvvqlvvvnGaZ033XST3nnnHZfa6c2Il/w98sgjxmYqUVFR+vzzz116XklEvDgXHR2t//3vf1bJTnvKly+v1157TU8++WS+dbqDhKUHOnbsmJYsWaJNmzbp3LlzSktLU0hIiBo3bqxu3brpoYceyjcZ5+5/Fil3etuiRYu0fv16nTlzRikpKQoODlZERITuvfde9erVS8HBwW71Zd++ffr666+1detWxcXFKSMjQ5UqVdItt9yiBx98UF26dHFrFKTZbNZPP/2klStXat++fbpw4YJ8fHwUHh6u1q1b6/HHHy/xfxjmRby4p7QmLK8hXv7/cx1N53BHSY8h4sWxlJQULV26VBs2bFBsbKwSExMVEBCgKlWqqGXLlrrnnnt03333leiR/nkRL+4rrQnLa4gZxxISErRkyRJt3rxZx44dU2JiosqUKaOqVauqRYsW6tq1q+68805jWmFpQLw4d+jQIS1fvlxbtmzRuXPnlJKSogoVKqhJkybq0qWLHnnkEQUGBrpVpzcjXhzr0qWLTp48KSl3PVPL9XBLK+LFsZSUFC1btkybN29WbGysseRRaGioIiMjFRUVpZ49e7rdTleQsAQAAAAAAADgMUrP1/4AAAAAAAAAPB4JSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DH8bnQDAAAAUHzOnDmje+65J9/rTCaT/Pz8VK5cOVWpUkV16tRR586d1a1bN1WoUKEYWuq5li1bplGjRkmSatSoobVr1xa6TrPZrGXLlqlx48Zq0qSJTXnen9vPP/+smjVrFvq+AAAAnogRlgAAALBhNpuVmZmpxMREHT16VGvWrNHo0aPVoUMHTZkyRRkZGTe6iSXGkSNH9PTTT+tf//qXkpOTb3RzAAAAbjhGWAIAAJRiERERCgsLs3k8JydHV69eVUJCgs6ePavMzExJUmZmpmbOnKm1a9fqs88+U/Xq1Yu7ySXOo48+ary+AAAAIGEJAABQqg0YMEA9e/Z0ek1GRoZ+/fVXffjhh/rtt98kSUePHlX//v21ePFihYaGFkNLSy6SlQAAANaYEg4AAACnAgIC1LlzZ3311Vd66qmnjMdPnTplrOWI66tmzZqKjY01/rF+JQAAKMlIWAIAAMAlvr6+Gj16tO69917jsbVr12r9+vU3sFUAAAAoaUhYAgAAwGUmk0njx49XuXLljMdmzpx5A1sEAACAkoY1LAEAAOCWypUr6/HHH9fs2bMlSTt37tTp06dVq1Ytp887cuSIli9frs2bN+uvv/5ScnKyQkJCVKtWLUVFRalXr15ubeKTmpqqVatWaevWrTp48KAuXbqk5ORklS1bVhUqVFBkZKQ6dOigRx99VMHBwS7V+ddffyk6OlobN27UiRMnlJWVpWrVqqlDhw7q27evIiIiXG6fM8uWLbM7nb5///7G8aOPPqq33npLknTmzBndc889RtnPP/9sMy387rvv1tmzZyVJ+/btU2BgoP744w8tWrRIGzdu1F9//SWTyaRq1aopKipKTz31lM3PbM2aNVq6dKliYmJ0/vx5lStXTk2aNNHDDz+sHj16yNfX16X+7d27VytWrNC2bdsUFxen1NRUVaxYUXXr1lWnTp3Uq1cvVaxY0bUXCwAAlDokLAEAAOC2+++/30hYStL69ev19NNP2702LS1NEydO1LJly5STk2NVduHCBV24cEF79uzRzJkzNXDgQA0ePFgmk8np/efMmaMZM2YoMTHRpiw5OVnJyck6e/as1q5dq/fff18TJ05Uly5dnNY5e/ZsTZs2Tenp6VaPnzx5UidPntSSJUv097//XVWqVHFaj6eYOXOmpk+fbrOpT3Jyso4cOaKFCxdq2rRpuvPOO3Xp0iWNHDlS69ats7o2MTFRW7Zs0ZYtW/Tdd99pxowZCggIcHjPhIQEjR49WmvWrLEpi4+PV3x8vLZt26aPP/5Yw4cPV9++fYukrwAAoGQhYQkAAAC3NW/eXEFBQbpy5Yokac+ePXYTlpcuXdLzzz+vAwcOGI/5+vqqYcOGCgkJ0aVLl3TkyBGZzWalp6frgw8+0JEjRzRt2jSHo/kmTpyoefPmGecmk0m1a9dWWFiYTCaT4uPjdfLkSSM5evnyZQ0dOlRfffWVWrZsabfOt99+W7NmzbJ6rHbt2goPD9fFixd17NgxZWZmasqUKWratKlbr5U94eHhioqKkiRt2rTJeLx58+YKCQmRpEKN5pw+fbo+++wzSZK/v7/q1q2r0NBQnThxQvHx8ZKkK1euaNiwYfr22281fPhw7d+/X5IUFhamOnXqKCkpSbGxsTKbzUY7p0yZ4nCjpdOnT2vAgAE6ffq08VhAQIAiIiJUrlw5xcXF6cSJE5Jyk6ZvvPGGTpw4oX/9618F7icAACiZSFgCAADAbT4+PqpVq5ZiY2MlSX/88YfNNWazWSNGjDCSlT4+Pnruuef03HPPWU0Hjo+P1/vvv69FixZJklavXq3p06dr2LBhNnVu3LjRKlnZtWtXjRo1ymYqeVxcnD766CNFR0dLknJycjRjxgx98sknNnWuWbPGKlkZGRmpiRMn6pZbbjEeO378uMaOHavt27fr4MGD+b9A+ejYsaM6duxo3O+af/7zn2rXrl2h67+WrOzZs6deffVVhYeHS8r9mcyePVtvv/22pNyk5aOPPqqUlBSFh4dr4sSJ6tSpk1HP0aNHNXjwYOPnGx0drcGDB6t8+fJW90tPT9eQIUOMZGVgYKCGDh2qJ598UkFBQcZ1J0+e1DvvvGOMwJw7d64aNmyoxx57rNB9BgAAJQeb7gAAAKBALJOEf/31l0358uXLtWHDBkm5oyCnTJmif/zjHzZrF4aFhWnChAl67bXXjMdmzpxpjMazZLnBT6tWrfTuu+/aXfcyPDxcb7zxhu677z7jsS1btig7O9vqupycHE2ePNk4b9CggRYsWGCVrJSkevXqadasWcaoSG/Qt29fTZo0yUhWSrk/h2effVYdOnQwHktJSVH58uW1YMECq2SllPt6TJkyxTi/evWqdu/ebXOvzz//XIcOHZKUm6ycNWuWnnvuOatkpZQ7avWDDz7Qk08+aTw2adIkJSUlFa6zAACgRCFhCQAAgAIpW7ascZyammpT/vnnnxvHPXr0UPfu3Z3W98ILL6h58+aSchOJc+bMsSpPSUmxmlo+aNAg+fg4/3W2a9euxnFGRoYuXbpkVb5nzx6rxOi4ceNsRg9e4+/vr0mTJln121OVL19ew4cPd1h+7733Wp0//fTTDjdNatq0qVXS8+TJk1blGRkZmj9/vnH+7LPP6rbbbnN4b5PJpH/9619GnampqVq4cKHjzgAAgFKHhCUAAAAKxM/v/68ulHfk4smTJ43p4lLu1GRXPPLII8bx+vXrrcqCg4O1e/dubdiwQfPnzzemVDuTd4Ocq1evWp1b3qNOnTpq06aN0/rCwsJskn2eqEOHDg4Tr5Ls7jDujGXCMjk52aps586dunjxonHuys86ICBADzzwgHGe92cNAABKNxKWAAAAKJCUlBTjODg42Kos77ThevXquVRns2bNjOM///xT586dsyo3mUwKDw9XmzZtnO5WnZKSol9//VXLly+3ejzvLuU7duwwjlu3bu1SG9u3b+/SdTdSw4YNnZaXKVPG6rxu3bpOrw8MDDSO876Glj9rf39/3XzzzS610fJnvW/fPmVlZbn0PAAAUPKx6Q4AAAAKxHKkXd7RfHmnDeddG9FVcXFxqlatmsPyc+fOKSYmRqdOndLp06d1+vRpHTt2TGfOnLFJrEkydry+5tqO2VLuCEtXNGjQwLXG30CVK1d26/q8Cee8TCaTwzLLn3VmZqbVJkKuSk9PV2Jios2IWAAAUDqRsAQAAECBWCb7wsLCrMqKahOVxMREm8cyMjK0cOFCLVy4UEeOHHH6fD8/P6cj9xISEozjcuXKudSmChUquHTdjWQ5ItIVzhKS+Smqn/Xly5dJWAIAAEkkLAEAAFAAiYmJOnXqlHF+bbOcayyThIGBgfmuDelI3uRgfHy8Bg0apN9//93u9RUrVlRERISaN2+utm3bysfHR88//7zD+jMzM91uk7Op6J6iMAlId1n+rENCQmxiwVXe8LoCAIDiQcISAAAAbvvtt9+szlu0aGF1bploLFu2rNWO4QWVlZWlIUOGWCUrW7Vqpa5du6p58+aqX7++KlasaPWcLVu2OK2zfPnyxijLvJvJOGK5diesf9Y1a9Yskp81AAAo3UhYAgAAwG3ffvutcVymTBndcccdVuWWu0onJSUpJSUl33US8/PTTz9p7969xvnQoUP18ssvO32OvSnllmrXrm0kLI8ePepSOyxHlsL6Z/3nn3/ewJYAAICSgl3CAQAA4Ja4uDj9+OOPxvm9995rs+lOq1atjOOcnBxt377dpbq3b9+uMWPG6JNPPtF3332n1NRUo2z9+vXGcXh4uF588cV864uJibE6z7sRj2U7t2/fruzs7Hzr3LVrV77XlCaWr+GlS5cUGxvr0vN++OEHvfHGG/rss8+0cuVKl157AABQOpCwBAAAgMvMZrP+/e9/G2s/+vj4aODAgTbXNW7c2Grk3dy5c12q/7333tPChQs1depUTZw40Wpdw/PnzxvHlStXlo+P819lk5KS9PXXX1s9ljcp1rVrV+M4Li5Oq1evdlpnamqqli9fnm8/3FGc601eD+3bt1fZsmWN8zlz5uT7nIyMDE2ZMkVffvmlJk+erBkzZsjX1/c6thIAAHgTEpYAAABwSXZ2tiZNmqSNGzcaj/Xp00eNGjWyudbX11fPPPOMcb5161Z9/PHHTuufP3++du7caZz37t1b/v7+xnloaKhxfOTIEcXFxTmsKz09XSNHjrTayVyy3WSnZcuWateunXH+5ptv6vTp03brNJvNmjBhgtXO4kXBckfv9PT0Iq27OISEhKhXr17G+bJly/Tdd985fc60adOsptY/+eST1619AADA+5CwBAAAgFNXrlzRypUr9dhjj1mNlLzllls0atQoh897+umn1bRpU+N82rRpGjlypM06hxcvXtRbb72liRMnGo+Fh4frhRdesLouKirKOM7MzNRLL71kM+U7MzNTa9asUe/evfXzzz/btMlyivk1EyZMUJkyZSRJFy5cUN++ffXzzz/LbDYb18TFxWno0KE2IzaLgmUidsOGDUVef3EYPHiwbrrpJuP8n//8p95++22b5O7p06c1YsQIzZo1y3gsMjJSjz32WLG1FQAAeD423QEAACjFZs+erRUrVtg8bjabdfXqVV24cEFnzpyxmUrdunVrffDBB1ajA/MKCAjQ9OnT9cwzzxijFr/++mt98803ql+/vipXrqzz58/r9OnTViMfy5cvr/fff18hISFW9T344IOaNWuWDh8+LEk6ePCgHnnkEdWsWVPVq1dXcnKyTp8+bbWLd+XKlZWSkmKMXLScVn5N7dq1NWnSJI0YMUKZmZmKj4/Xyy+/rLCwMNWpU0cpKSmKiYkx1r/s2rVrvlPH3REREaFz585JkubNm6cdO3YoNDRU9evX15gxY4rsPtdTxYoV9f7772vgwIFKSEiQ2WzWrFmzNHfuXDVo0EAhISGKi4uziaXw8HB98MEHViNpAQAAGGEJAABQih0+fFibNm2y+bd582bt2rVLJ0+etEowVahQQa+99prmzJmjSpUq5Vt/zZo1tXjxYqu1Is1ms44ePapt27bp+PHjVsnKpk2b6ssvv1SLFi1s6vL399fMmTMVGRlpVdfp06e1fft2HTp0yCpZ2blzZ3399ddW1zvaMKd79+6aNWuWKleubDwWHx+v7du36/fffzeSlX379tXQoUPz7bc7XnrpJauEXUxMjLZu3ap169YV6X2ut2bNmmnx4sVWU+yzs7MVGxur7du328RShw4dtHDhQt188803orkAAMCDMcISAAAANkwmk8qWLaty5cqpZs2aioiIUMeOHdW5c2dj+rSrKlasqOnTp+vQoUP6/vvvtW3bNv35559KSkqSv7+/wsPD1bx5c3Xv3l2dO3d2uplO9erVtWTJEi1fvlyrV6/WoUOHlJiYKJPJpAoVKqh27dpq2rSpunfvbuxefdddd2nfvn2SpO+//17/+Mc/7Pahbdu2+vHHH7VkyRL99NNPOnz4sNLS0lSlShW1aNFCTzzxhG6//XYdO3bMrf7n59Zbb9WCBQs0c+ZM7d27V4mJiQoMDFS5cuWUnp7udBSrp6lZs6a++OIL7dixQ6tXr9aOHTsUFxen5ORklSlTRjfddJNatmypHj16qG3btje6uQAAwEOZzJaL8wAAAAAAAADADcSUcAAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBjkLAEAAAAAAAA4DFIWAIAAAAAAADwGCQsAQAAAAAAAHgMEpYAAAAAAAAAPAYJSwAAAAAAAAAeg4QlAAAAAAAAAI9BwhIAAAAAAACAxyBhCQAAAAAAAMBj/D+O5lnqASSojgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.008, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.008, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d, paralyzable=True)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate * np.exp(-rate * deadtimes_plot), \n", + " label=r'$r_{in}e^{-r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Perfect." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Periodogram - non-paralyzable\n", + "\n", + "Let's see how the periodogram behaves at different intensities. Will it follow the Zhang+95 model?" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 0%| | 0/6 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, np.log10(3000), 6)\n", + "bintime = 0.001\n", + "deadtime = 2.5e-3\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, 2, norm='leahy')\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r", + " 0%| | 0/5 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, 3, 5)\n", + "deadtime = 2.5e-3\n", + "bintime = 2 * deadtime\n", + "\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 5 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lc(lc_dt, 2, norm='leahy', silent=True)\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It will.\n", + "\n", + "## Reproduce Zhang+95 power spectrum? (extra check)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4000it [00:00, 4140.55it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAAQ1CAYAAABKuwqzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3gUVdsG8HvTIAVIqIFAaELoTZr03qUpICBI8RNFVKQjUgUBQZGiiBTpvSO9hFCTUBJCS0J6771v+/7Im3Enm7JJdrMp9++6vJw5O3Pm2WRnwz57znkkSqVSCSIiIiIiIiIiIiIdMdB3AERERERERERERFS2MQlJREREREREREREOsUkJBEREREREREREekUk5BERERERERERESkU0xCEhERERERERERkU4xCUlEREREREREREQ6xSQkERERERERERER6RSTkERERERERERERKRTTEISERERERERERGRTjEJSURERERERERERDrFJCQRERERERERERHpFJOQREREREREREREpFNMQhIREREREREREZFOMQlJREREREREREREOsUkJBERlQnbt2+HnZ0d7OzsMGXKFK30uWTJEqHPJUuWaKVPXXj37h2OHTuW6+NTpkwRnsf27duLMTLShkWLFmn1dU2a08X7SmnRr18/4bmfPXtWK32GhIRgz549uT5eWt5zKWdbt26FnZ0d+vXrV6jzHz9+jAULFmDAgAFo06YNOnTogGHDhmHZsmV4+vSplqMlIiJ9YBKSiIiolEpNTcWmTZswZswYvHjxQt/hkA7cunULFy5c0HcYREUik8mwZ88eDB8+HA4ODvoOh3TAzc0Nu3fvLtS5SUlJ+PrrrzFt2jRcunQJgYGBSE9PR3JyMry9vXH69GlMnjwZCxcuRGJiopYjJyKi4mSk7wCIiIiocH7++WecPHlS32GQjri5uWHhwoX6DoOoyPbs2YMtW7boOwzSkcDAQMyePRtSqbTA56anp2PGjBmiL9LMzc3RtGlTyOVyeHp6Ii0tDQBw8eJFhIaGYt++fTAxMdFa/EREVHw4EpKIiKiUKswHPiodnJ2dMWPGDKSkpOg7FKIi43tV2eXp6YnJkycjMjKyUOdv3LhRSEBKJBJ8++23ePToEY4fP45Tp07h/v37mDp1qnD8kydP8Ouvv2oldiIiKn4cCUlERJSLDRs2YMOGDfoOo8gOHTqk7xCoAPbu3YvffvsNMplM36EQFauy8p5bXly4cAErV65Eampqoc738vLC8ePHhf358+fj//7v/0THVK5cGcuWLUOlSpXwxx9/AACOHDmCKVOmoG7duoUPnoiI9IIjIYmIiIhKAD8/P3zxxRf45ZdfmIAkohIrPDwcixcvxqJFiwqdgAQyvyCTy+UAgEaNGmHmzJm5Hjtnzhw0bdoUQObI2sOHDxf6ukREpD9MQhIRERHpkUwmw9q1azFixAhR0Y727dtj4sSJeoyMiEhs586dGDJkCM6fPy+0NWrUCF9++WWB+lEoFLh+/bqwP3bsWBgY5P7R1MDAAOPHjxf2Vc8lIqLSg9OxiYiozEpKSsLRo0dx/fp1BAQEQCaToWbNmujUqRNGjBiBrl275nn+kiVLcO7cOQDAmDFj1KYJnj17FkuXLgUAzJgxA4sXL4ZCocC1a9dw+fJlvH37FlFRUTA1NUXdunXRp08ffPLJJ6hRo0aRnpednZ1a27lz54RYAcDDw0PYnjJlCpydnQFkjib55ptvROdu374dO3bsAACsWrUKEydOREpKCi5duoRLly7Bz88PCQkJqF69Opo1a4YJEyagd+/eoj58fX1x/PhxPHjwACEhIQCAunXrolevXpg2bZrGzzkmJgZnz57F/fv34evri9jYWJiZmaFmzZro0qULRo4ciTZt2mjUV2mRkpIimjJvZGSEmTNnYs6cOdi1a5fOrpvf6zu7oKAg9O/fX9i/fft2rtMhY2JicOHCBdy/fx+enp6Ii4uDiYkJrKysYGdnh27dumHkyJGoXLlyntfs168fgoODAQA2Nja4c+dOQZ5inry9vXHixAk8fvwYQUFBAIDatWujT58+mDRpUqGmemZkZODy5cuwt7fH69evER0dDYlEgurVq6Nt27YYNGgQBg4cCIlEonGfbm5uuH37Np4+fYqQkBDExcVBJpOhcuXKqFWrFjp06IChQ4fi/fff16g/pVKJmzdv4tKlS3jx4gViYmJQqVIlNG7cGCNHjsSYMWNgbGxc4OeeE9XfXxZnZ2fRe5jq66gg77n/93//hwULFkAqleLatWs4f/48vLy8EBMTg2rVqqFRo0b46KOPMGTIEBgaGgp9hIeH48SJE7h9+zaCg4MhlUphbW2Nbt26YcaMGahXr55Gzy05ORnnz5+Hg4MD3r17h+joaJiYmKBGjRro2LEjhg4dim7duhX8h1bC7d27V7RW7bhx47BkyRLcuHGjQP24u7sjNjZW2O/Ro0e+53Tv3l3YDgkJgbu7O5o1a1ag62bJ7+9idk5OTqK1KVX/xmYXEhKCs2fPwtHREV5eXkhKSoKpqSmsrKzQsmVLdO/eHR9++CEqVKhQqNiJiEozJiGJiKhMcnNzw3fffSckxLL4+fnBz88Pp06dQu/evbFhwwZUrVpVK9cMCgrCggUL4OLiImpPT09HXFwcXr16hX379mHlypUYPXq0Vq6pC25ubliwYAH8/f1F7cHBwQgODsbt27cxfvx4rFq1CoaGhjhw4AA2bdqkVnzC09MTnp6eOHv2LHbt2pVv8nD//v3Ytm0bkpOTRe0ZGRmIi4uDp6cnDh06hCFDhuCnn37KN4GVH9WERlGsX78eY8eOLXI/ANCtWzcsXry40B+sS4KLFy9i9erVSEpKErVLpVIkJycjKCgIt2/fxtatW7Fo0SKMGzeuWOOTyWT47bffsH//fmEqaBZvb294e3vj2LFjWLFiRYH6ffDgAVauXCkkNFUFBAQgICAAly5dQsuWLbFx40Y0adIkz/4CAwOxfPlyPH78OMfHo6KiEBUVhdevX+PQoUPo27cvNm/eDAsLizz7nDdvHtzc3ETtMTExiImJwZMnT3DkyBFs375dg2esf35+fpg3bx5ev34tag8NDUVoaCgePnyIS5cu4bfffoOZmRmuXLmC5cuXq702s/4unDt3Dr///jv69OmT53UvXryIDRs2IDo6WtSenp6OxMRE+Pj44OTJk+jatSs2btwIa2vrIj3P7AmwwtIk2aapVq1aYfHixejcuXOhznd3dxe2jY2N870fAKBhw4aoWLGiUC375cuXJe69ct++fdiyZQsyMjJE7VKpFAkJCfD398eVK1ewdetWrF69Gv369dNTpERE+sEkJBERlTnBwcGYOXMmEhISAABWVlZo3LgxUlNT4eHhIay35+DggClTpuDQoUNFTkTGxMRg+vTpCAgIAJC5mP57770HpVIJb29vIZaUlBQsXboUtWrVwgcffFCoa2WNGPH09ERERAQAoGbNmsJ6WUXh4eGBzZs3Cx/Sa9eujXr16iE+Ph6enp5QKpUAgJMnT6JJkyaQSqX45ZdfAAAVKlRAs2bNYGhoCE9PT6GPmJgYfPPNN7h69SrMzMzUrqlUKrFs2TKcOXNG1F6/fn1YW1sjJSUFnp6eSE9PBwBcu3YN7969w4EDB4o8qrQkMDAwQN++fTF9+nR06dJF3+EUyfXr17Fo0SLhdWJgYIBGjRqhWrVqSE9PR1BQEKKiogAACQkJ+PHHH2FkZIQxY8YUS3xKpRILFizA1atXRe3vvfceqlatitDQUAQGBgr3afPmzTXq9/Tp01ixYoUoqVm9enU0aNAAcrkcvr6+iIuLAwC8fv0an3zyCXbt2oWOHTvm2J+3tzemTJkiSnJVqlQJjRo1grm5OVJSUuDj4yO8rwCAvb095s2bh7///jvHPgMCAjBp0iRRFWMzMzM0bdoUBgYGePfuHRITE+Hu7o5p06apfRlQGJ06dULDhg2FJCwAVKlSBa1btxaOqVixYqH6DgsLw9SpUxEeHg7gv593Wloa3N3dhfd5e3t7bN26Fe3atcO8efOgVCphbGyMpk2bwszMDF5eXsKIvNTUVMybNw9XrlzJNXG4Y8cOtSRtnTp1ULduXaSnp8Pb21t473N0dMS4ceOwf/9+NG7cuFDPs6Tp3Lkzxo4di/79+xdoRG92fn5+wraNjQ2MjPL/WCqRSFCnTh34+PgAgNoXZfr2zz//YOPGjcK+sbExGjduDCsrKyQmJiIoKEh4H4iIiMA333yDPXv2FPrfAkREpRGTkEREVOZkTf/Lqqr54YcfCtPxYmJisGnTJpw9exZAZnXOVatWYdu2bUW6Ztb6WNWqVcPSpUsxbNgw4Zrp6ek4cOAAtmzZAoVCAYVCgd9++w2nTp0q1LX27t0LQDx1sXv37lqpKnvs2DEAQIMGDbBmzRpRUszd3R2ff/65kMTYsmULUlNTIZFI8OWXX+KLL74QkowpKSnYuHGjUPk0LCwMly5dwoQJE9SuuXv3blECsn///liwYAEaNWoktKWmpuL48eP4/fffkZaWBm9vb8ybNw/79+8XTbUsiFq1amk0BVCTforCwsICf/31V5Hj0DeZTIaffvpJSED27dsXP/30kyhRrFQqcefOHaxYsUJIRm7evBlDhw4tdDKqIA4ePChKQHbu3Blr1qxBw4YNhTY3NzcsX74c7u7uePPmTb59Pn36FCtXrhQSkE2aNMGyZctEiQW5XA57e3usW7cOISEhSEpKwrfffotz586pvX6ykvJZCcjKlStjzZo1GDhwoChRo1AocPfuXfz000/CiG8HBwe8fPlSlOTLuv7cuXOFe9fAwABff/01Zs6cCVNTUwCZI45PnTqFTZs2qU2hLqyshIzqkg92dnbCe1hRXLp0CUBm8jFrRFnWmoLBwcH44osv4OXlBSCzmvKxY8egVCoxYcIEfP/997CysgKQ+bx3794t/A1ITk7G0aNHMW/ePLVrXr58WZSAfP/997F06VLRzzsjIwP//vsvNm7ciLi4OERERGDOnDk4ffo0zM3NC/Vcq1SpopX3Kltb2yL38eeffxa5DwCiZHjNmjU1Pq969epCElK1D32LjY3Fb7/9JuyPHz8eixYtQqVKlYQ2mUyGS5cuYfXq1UhNTYVMJsP69etx8eJFfYRMRKQXTEISEVGZZGZmhoMHD6qNZKpatSrWr18Pc3NzYR2+69ev49mzZxqvqZabKlWq4Pjx42of9CpUqIAvvvgCiYmJwiglNzc3hIeHFzmBpQu1a9fG8ePHhQ/pWZo1a4ZFixZh4cKFACCsC7ZkyRJMnz5ddKyZmRlWrVoFV1dXYdrdo0eP1JKQgYGB2Lp1q7D/6aefYvny5WoxmZqaYvr06WjVqhWmT58OqVQKZ2dnnD17ttDTebt37y5aY4yKxsXFRUgKWFlZYdu2bTAxMREdI5FI0L9/f1SrVk14LURFReHp06c5Jlm0uQZkUlIS/vjjD2G/S5cu2LNnj1qMbdq0wZEjR/Dpp5/i7du3efapUCiwbNkyYdRdmzZtcODAAbURv4aGhhgwYADatGmDiRMnIigoCNHR0di8eTM2bdokOtbZ2Vm0pMPmzZvV1mAFMhOJ/fr1Q506dTBq1Cih/cGDB2pJyEuXLommLK9Zs0btvjExMcHkyZPRuHFjzJgxQ22qeklkZmaG48ePq63jaGNjgzVr1mDSpEkAICwVMWXKFPz444+iY01MTPD111/j5cuXsLe3B5D5XpU9CZmUlIRVq1YJ+/3798e2bdvURvCZmJhg7NixaNu2LSZOnIj4+Hj4+Phg9+7dmDt3bqGeZ7NmzbSSuC1JskYEAhAl6vKjemx8fLw2QyoSBwcHYQq2nZ0d1qxZozZSNGvUt4mJifD68vDwgK+vr+iLECKisozVsYmIqEz67rvv8pxKuWjRItjY2Aj7WSMAi2LatGl5jjTJXuk4r4Xt9enbb79VS0BmyT4Fz8bGBp999lmOx0okEtHaalnTMVUdOHBASODUq1cPS5YsyTO2Tp06idZG++eff/I8nopP1tIAAFCjRg215J6qdu3aYciQIRg8eDBmzpyJKlWq6Dy+O3fuCEkLQ0NDrFu3LtcYLSwssH79+nz7vH37tjCt1NDQEBs3bsxxyYEsNWvWFK01eeXKFWE6cRbVNSBbtmyZYwJSVbNmzdCgQQNhPywsTO2YCxcuCNtdunTJM3HftWtXfPrpp3les6TIq5DM+++/L1pmw8zMDN99912ufakWXcrpver06dPC9PdKlSrh559/znMKcePGjUXXO3bsmLCWIUG0ZmJBRkGr3rPZ113UJ9X3vzp16uQ5VX3w4MHo2rUrhg0bhlmzZhVpWjsRUWnDJCQREZU5ZmZm+Y6OyxqtkuXevXvCNNLCGjRoUJ6P16lTR5SgSExMLNL1dEEikeT5PMzNzUUf7Hv16iVMgcyJ6kjPnJ7vzZs3he0RI0ZoVJVXtaiPt7c3AgMD8z2HdE/1d+3p6ZlvYn/r1q3Ytm0bFi1apDZyTxccHByE7Q8++CDfKsjNmzdHhw4d8jzm+vXrwna7du1ESwjkpmfPnkKSXyaT4cGDB6LH586dC1dXV1y6dEltlGRuqlevLmxnrZ2aJTk5GU+ePBH2x48fn29/kydP1ui6+jZkyJA8H1etcN6xY8c8R9ypTgnO6b1K9Xfdt29fWFpa5huf6lIgcXFxcHV1zfec8kK1kFlef0OyU11+I+sLrJJA9f3v/v37eY7iNjIyEpZomTdvnuhLBCKiso5JSCIiKnPat2+v0dpbqkUh4uPjhfXDCsPY2FijBIRqRefs1aRLgjp16uRZXRcQj1rJbwpZhQoVhG2FQiF6LDg4WDRqS9PCDU2aNBHF8Pz5c43OI91q166dqJjHqlWrMGrUKGzfvh0uLi56TxioJuLySy5m6dq1a56Pq772NH39GhgYoGXLljn2kcXU1BRNmzbNt09fX1+cOnVKlIjPPo36xYsXovcaTZadqF+/PmrXrp3vcfpkaGiY7/uPtt6rMjIy8OrVK2Ff09915cqVRaPj+V71H9VkYvafd15UX9+afGlVXHr37i2sryqTyfDVV19h4sSJ+Pvvv/HmzZsif8lJRFRWcE1IIiIqczRJBgLqH0pDQ0PRpEmTQl2zcuXKGo3mKOwHr+JSrVq1Ah2fX8Iyr2lm2ac8LliwAAsWLCjQ9QGoTWcl/TAyMsKaNWvw1VdfCYkCd3d3uLu7Y8eOHbCwsECnTp3Qs2dP9OnTR7Qcgq4plUqhEA4AjUcevffee7k+JpfLhYIwQGbF+JMnTxY4tvxevxkZGXB3d4evry8CAwMRGBgIf39/vHv3TqjCrCp7skN1mqiJiYnGycXGjRsjNDRUo2P1wdLSUqOKylmK8l4VFhYmmvq7ZcsWbNmyReNrZ+F71X9UE8TZR+/mRfVY1cSxvllaWmLp0qWi5RaeP3+O58+f49dff4WVlRW6du2Knj17onfv3qLRy0RE5QmTkEREVOaojjbMS/apeUVZ5L44KvsWh4J+qCvKWlbaKipQ2H4ePnyIffv2Ffn6M2bMYIGb/+nduzf27duHVatWwdfXV/RYUlIS7O3tYW9vjzVr1qB169b49NNPMWrUKJ2viRYbGysaQZVfQipLXu8l8fHxWhndlNvr19PTE7t27cLt27eRmpqaZx9GRka5jjTNqrINaP68ARTLOp1FUZ7eq9zd3TWemp+XkSNHiooY6ZPqdPackum5UT1WkynxxWnChAmoUqUK1q1bJ0r+A5nvQVevXsXVq1dhYGCATp06Yfr06ejbt6+eoiUi0g8mIYmIqNzKnkAoK4nEoijOBfKzJ006depUqJEt+a3tl5vw8HC19fgKY/jw4UXuoyzp2rUrrly5gkePHuH69etwcHDIcQTYy5cvsXjxYly4cAE7d+7U6f1X2KUP8iquk/3127RpU9G6gprKqZjVkSNHsG7duhwrVBsbG8PW1lZYs7JHjx748ccf4ezsnGP/unjuJYE+36tat25dqCRtXiNr8xIfH6+V96p27doVuQ9tUb1XVBPl+VEd0VyjRg2txqQNQ4YMQb9+/eDg4IDr16/jwYMHiI2NFR2jUCjg5OQEJycnjBo1Chs2bCjQuphERKUZk5BERFTmJCcna3RcVqXTLJqOoCTtyP7zXr58Oezs7PQUTfmmyYi+gkyZNDAwQI8ePdCjRw8AgJeXF5ycnODo6IhHjx6JRjM9evQIGzduxMqVKwseuIayj3rOfu/nJq8RWtmTUOPHj8eUKVMKHlw2WSNFs5ibm2PUqFHo3Lkz7OzsYGtrqzYNOa/1NlWfe2JiIpRKpUYJvIKMTivrsr9XzZ49G/369dNTNGWD6pIIQUFBGr0ulUolgoODc+yjKLT9/mdiYoKBAwdi4MCBUCgUePv2LZycnPD48WM4OzuLqqRfuHABTZs2xeeff16o2ImIShsmIYmIqMwJCgrS6LjshWjq16+vi3AoF6rVRIHMNTmLMwk5duxYUYX08kb1A78mRWOyj+YpiPfeew/vvfceJk+ejIyMDNy8eRMrV64UqhCfPn0aCxYs0KigVGGYmZmhRo0aiIyMBKB+7+cm+7qlqipUqABLS0vExcUBgGh9yKL49ddfhW0bGxscPXpUVPAnJ3lN81V9X5NKpQgICNDovc7f31+DaMuHWrVqQSKRCMmq4l4rs0uXLvDw8CjWa+qaanGm1NRU+Pr65rues4+PjygZ2Lx5c63Eosv3v6xCVC1btsSMGTOQkpKCc+fOYf369cIo5QMHDjAJSUTlBsd9ExFRmfPixQuNRjY8evRI2K5du3a+H/RJu5o0aSIapeXo6KjReTExMViyZAm2bduG06dPi0bGkOZUK8tqMurt3bt3eT7+9OlTnDx5Ehs3boSTk1Oux5mYmGD48OGikY8ZGRl5Jvy0QbUitqavtWfPnuX5ePv27YXtvJ5zdj///DM2bdqEI0eOwM3NTWgPCgoS/Zy/+OKLfN+XUlJSRD+77O99bdu2FRXEevz4cb7xxcXFwcfHJ9/jygsLCwtR0TJNXz9SqRQ//PADtmzZghMnTmic/C4PmjRpgqpVqwr7mrwuHz58KGxbWVkV6Usr1eUGivr+J5fL8fjxYxw5cgRr166Fp6dnrseamZlh8uTJmDNnjtAWERGh8ehsIqLSjklIIiIqcyIjI2Fvb5/nMQkJCTh37pywP2DAAF2HpXXFuSaaLhgYGKBXr17C/rlz5zT6IHbo0CGcO3cOf/zxB5YtW1akEXrlmZWVlbDt7e2d7/GXL1/O8/Gff/4Zy5cvx759+zSqEp29Er1qUlQXBg8eLGy7urrixYsXeR4fFhaGu3fv5nlMnz59hO3Xr1/jyZMn+cbx+PFjHDhwAHv27MGaNWvw9OlT4bGskZpZNFnz7ujRo6J1H7OP6qpUqRI++OADYf/IkSP5jvw6deqURqPDNFXa36sA8e/6zp07CAwMzPecCxcu4MyZM/jrr7+wYsUKje6z8kIikWDgwIHC/smTJ6FQKHI9XqFQiN5XBg8eXKTXlWpRm/ySw1KpFDdu3Mj1cQMDA3z//fdYs2YNDh06lO97JSBeH1QikRSo0jsRUWnGJCQREZVJq1atEi1gr0oul2P58uVC8srQ0BBTp04tzvC0QrWIS0HWqypJZsyYIWzHxcVh0aJFyMjIyPX4ly9fYu/evcJ+mzZt0KpVK53GWFY1a9ZM2A4MDMwz4XbixIl8E2yqVV6vX78OFxeXPI+/evWqsG1mZpZjgRZtGjhwIBo2bCjsL126NNcEdkZGBpYuXZpvUZfRo0eLRnMtXrw4xyI8WeLj40UjQM3MzETVirNX+82vGImTkxO2bt0qassp5lmzZgnbnp6e2LJlS659enh44M8//8zzugVVFt6rPv30UyFRLpPJMHfu3DxH0AUFBWHz5s3Cfu3atVkJOZtJkyYJiUR3d3f88ccfuR67detWYTSigYFBkddfVZ3K7ezsnOd09+3bt+e5PIFEIhElqY8dO5bvcgbXrl0TtuvXrw8zMzMNoiYiKv2YhCQiojIpPDwc48ePV5viFRgYiC+//FL0AWD27Nk6T4DogmrCwtXVNc914UqqVq1aYdKkScK+vb09pkyZojZKLSMjA0eOHMH06dOFJIahoSGWLl1arPGWJT179hR98F24cCHu3LkjOiYyMhIbNmwQEmd5jdb55JNPhP6kUilmz56Na9euqVV4TklJwV9//YW///5baJs8eXKO1Zj79esHOzs72NnZFbkQiImJCdauXSskPby9vTFp0iTRSEQgc925mTNnipZryE3FihWxfPlyYT84OBjjxo3DlStX1EYS3r17F5988okoOTF79mxUq1ZN2G/YsCFsbGyE/WPHjmHv3r1qifmgoCBs2rQJ06dPV3ssJSVFLc7OnTtj3Lhxwv6ePXuwdOlSUVVihUKBK1euYOrUqTn2URTZR51pum5vSVKrVi3MnTtX2H/16hXGjx+PBw8eiKbAy+VyXLx4EZMmTRIluRctWlTiK44Xt2bNmmHMmDHC/o4dO/Dzzz8La8UCmcWU1q1bh7/++ktomzBhQqErjWcZMGCAUJFaqVRi1qxZau8FgYGBWLRoEXbt2gUAomUNsps2bZrweHx8vPAekn15hLi4OKxduxaXLl0SnUtEVF5w3DcREZU5vXr1wpMnTxAcHIxp06ahTp06qFu3LuLj4+Hp6Sn6UDBkyBDMnj1bj9EWXtOmTYXtkJAQDBs2DE2aNEFiYiL27dunVr23pFq6dCkCAwNx//59AJkJ1fHjx8Pa2hq2trZISkqCn5+fKDEikUjw448/itb5o4KxsLDArFmzhFFxCQkJ+Oqrr2BtbY169eohLi4Ofn5+wsi68ePHw8PDI9dpzDVq1MCKFSuwZMkSAJlrd3733XeoXLkyGjduDFNTU8THx8Pb21tUHbZdu3bFdg927NgRS5YswYYNG6BUKuHj44PJkyejbt26sLGxQUxMjGjtt8GDB+P69et59jls2DD4+Phg+/btADK/APn++++F5w1kFnmJiYkRnTdixIgci1HMmzcP8+fPB5CZHPnll1+wc+dO2NrawtTUFOHh4UI14Sx16tQRCuNkn9KdZcmSJfDz8xNGtJ49exYXL16EnZ0dzM3N4ePjI4wer169OmxtbfH8+fM8n7umVNfuS05OxpgxY9CiRQukpqZi7dq1oveykuzzzz+Hr68vTp8+DSAzkT1z5kxUq1YNDRs2REZGBvz9/dW+EPriiy8wbNgwfYRc4i1btgyenp549eoVgMwiLSdPnhReMx4eHkhNTRWOb926tfAeUxQNGjTAxx9/LEzxDg0NxeTJk1GvXj3Url0bkZGR8Pf3F6aIz507F4cPH851hkWzZs0we/Zs4X0gMDAQ06dPR9WqVdGwYUOYmJggNjYW3t7eotHKAwYMwPjx44v8fIiISgsmIYmIqMxp0aIFpk6digULFiAuLg4hISFqlWuNjY0xY8YMzJ07VxgNUdoMHDgQLVq0wJs3bwAAUVFRwgckd3d3dOnSRZ/haczExAS7du3Ctm3b8M8//wgjHcPCwhAWFqZ2fI0aNbBy5UrRemJUOF9++SVSUlKwZ88eYcRi9p+7gYEBZsyYgXnz5mHixIl59jdmzBhIJBKsW7dOWN8zISEhx6nZEokEo0ePxg8//FCsUxGnTZuGWrVqYdmyZUhOTgaQObJQdXSeoaEhvv32W7Ro0SLfJCQAzJkzB40aNcLPP/8sJAFze94mJiaYNWsWZs+eneOadiNGjEBERAR+/fVXYTRlYmIiXr9+rXZslSpVsGjRItSoUQNffPEFgMyRnDExMaJp4kBm0nnfvn1Yvnw5zp8/DyBzWnH2fmvXro3t27dj3759+T5vTbVp0wZ9+/YV1upNSEgQiru8evWq1CQhAWDdunWws7PD9u3bhdd4dHS0aFRpFgsLCyxcuBCffPJJcYdZalhYWGD//v1YtGiRMBI7NTUVrq6uasf27dsXmzZtQsWKFbVy7RUrVkAmk+Hs2bNCW2BgoGi9TxMTE8ybNw/Tp0/H4cOH8+xvzpw5qFixIrZt2yb8HYuJiVH7AgLI/DfIp59+innz5uU5wpKIqKxhEpKIiMqknj174tKlSzh8+DDu3LmD4OBgSCQS1KlTBz179sT48eNF68OVRsbGxjh06BD++OMP3LlzB+Hh4ZDJZKhRo0apm5ptaGiI77//HpMnT8b58+fx6NEj+Pj4IC4uDgBQtWpVNG/eHH379sXw4cNhbm6u34DLkHnz5mHEiBE4deoUHj16JCTsra2t8cEHH2DcuHGi9dPyM3r0aPTu3RuXLl3Cw4cP4enpibi4OEilUlhaWqJ27dro1q0bhg4dKlqXsjgNHToUXbp0wdGjR3H37l34+PhAKpWiZs2a6Ny5MyZNmoTWrVvj3r17Gvc5bNgw9OvXD5cuXcL9+/fx+vVrxMTEQCqVCqMiP/jgA4wdOzbfitczZsxAr169cOzYMTg7OyM4OBhpaWkwMzNDtWrVYGdnhy5dumDUqFGwsLBAamoqzM3NkZycDIVCgbNnz+Y4ytLExAQbN27EJ598gpMnT+LJkycICwtDxYoVUa9ePQwaNAiTJk3SySjqbdu2Yffu3bh69SqCg4MhlUphZWWl9anfxWHq1KkYPXo0zp8/L7zGY2JioFAoUKVKFdjZ2aFnz54YNWqUqAAU5axSpUrYuXMnHj9+jIsXL+Lp06eIioqCXC5H9erV0b59e4wZMwY9evTQ6nWNjY2xfv16jB8/HmfPnoWTkxMiIiJgZGSE2rVro3fv3hg3bhzq16+vcZ+ff/45RowYgQsXLsDR0RFeXl5ISEiAXC5HtWrVYGNjg549e2L48OGlchkYIqKikiizL1RBRERERFRCREVFoXv37mjWrBkuXLig73CIiIiIqJBK5/wzIiIiIioXskZm1qxZU8+REBEREVFRMAlJRERERCVWVhVZbU/FJCIiIqLixTUhiYiIiKjEUSgU+Oeff3Do0CHUqlULo0aN0ndIRERERFQEHAlJRERERCWOgYEBHj16hDp16mDnzp2wtLTUd0hEREREVAQsTENEREREJVJ0dDRMTU1hZmam71CIiIiIqIiYhCQiIiIiIiIiIiKd4nRsIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinTLSdwBUMj179ky0b2DAfDURERERERERUXmkUChE+++//36B+2ASkjSS/cVGRERERERERESkKQ5vIyIiIiIiIiIiIp3iSEjSSFmYjq06mrMsPB8ifeL9RKQdvJeItIf3E5F28F4i0o6ydi9pY4Ysk5CUIwMDA+EFZmBggPbt2+s5oqKRyWR48eKFsN+6dWsYGfHlT1QYvJ+ItIP3EpH28H4i0g7eS0TaURbvJRcXF1GeqDBKfyqWiIiIiIiIiIiISjQmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinWISkoiIiIiIiIiIiHSKSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0ykjfARAREREREZUWSqUSCoVC32EQ6YRcLlfbl0gkeoqGqPTS971kYGBQIu9dJiGJiIiIiIjyIJPJEB8fj/j4eKSnp+s7HCKdUSqVon1vb+8SmcggKulKwr1kZGQECwsLVK5cGWZmZiXiXmYSkoiIiIiIKBdxcXEICwtT+0BJVFYZGTFNQKQN+r6XZDIZ4uLiEBcXB2NjY9ja2sLExESvMXFNSCIiIiIiohwkJycjNDSUCUgqNyQSCYyMjIT/SsLIKaLSqKTdS1KpFAEBAcjIyNBrHPyKg4iIiIiIKBuZTIagoCBh39DQEJaWlqhcuXKJ+EBJpAtKpRIpKSnCfkmZwklU2uj7XpLL5UhJSUFCQgKSk5MB/JeIbNy4sd7uayYhiYiIiIiIsklOThYK0EgkEtSrVw+mpqZ6jopIt5RKJQwNDYV9Q0NDJiGJCkHf95KhoSFMTExgaWmJmJgYhIeHA8hMRKakpMDc3LzYYlHF6dhERERERETZJCUlCdtVqlRhApKIiEqlqlWripKOiYmJeouFSUgiIiIiIqJssqavAdDbiBEiIiJtqFy5srDNJCQREREREVEJoVQqIZfLhf2KFSvqMRoiIqKiMTMzE7ZlMpneCq4xCUlERERERKQiay3ILKrrehEREZU22f+OZf87V1yYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIir1pFKpvkMgojwY6TsAIiIiIiIiIl3y8fHBqVOn8OTJEwQGBiIpKQnm5uaoXbs2OnXqhPHjx6Np06Ya9ZWamopTp07h5s2b8PT0RHJyMqysrNC4cWMMGzYMo0ePhomJSanv6/z587h79y7evXtXpL6Kg0KhwIkTJ/Do0SNs375do3O2bt2KP//8EzVr1sT9+/d1HCERAUxCEhERERERURkllUqxadMmHDx4EEqlUvRYfHw84uPj4e7ujsOHD2PSpElYsmRJnsk1Dw8PfP311wgMDBS1R0REICIiAo8fP8aBAwfw22+/wc7OLs/YSmpf7969w/z58xEUFFTkvopDeHg4vvrqK7x+/RqdO3fW+Dx7e3sAQJ8+fXQUGRFlxyQkERERERERlUmLFi3ClStXhH07Ozt069YNVlZWiImJwaNHj+Dp6QmlUokjR44gKioKv//+OwwM1FcuCwwMxNSpUxEXFwcAqF69OgYNGoSaNWsiMDAQN2/eREJCAry8vDBz5kycOHECNjY2OcZVUvsKCgrCrFmztNJXcfHz88Pr168LdE54eDjevn0LgElIouLEJCQRERERERGVORcuXBASkMbGxli7di1Gjx6tdtypU6ewcuVKyOVyXL9+HWfOnMG4cePUjlu6dKmQnOvZsyd+//13WFhYCI/Pnz8f33zzDZ49e4bIyEisXLkSe/bsyTG2ktrXkiVLhL66deuGbdu2oVKlSoXqqyTLGgVZoUIFdOvWTc/REJUfLExDREREREREZY5qcmzhwoU5JiABYNy4cZg7d26O52V58OABnjx5AgCoVq0atm7dKkr0ZbXv2rULNWrUAADcv38fT58+LVV9ZbVXrVoVv/zyS6H7Kunu3r0LAOjSpQtMTU31GwxROcIkJBEREREREZUp/v7+8PT0BABYWFhg4sSJeR4/efJkGBsbA8ic3hsSEiJ6/PTp08L2Z599BnNz8xz7qVSpEmbOnCnsnzt3Tu2Y0tDXpEmTYGZmVui+SrL09HQ4OjoC4FRsouLGJCQRUQ6eB8Vh7S1PHHkehAyZQt/hEBEREVEBuLu7C9vNmzfPt5Kzubk5qlevLuxHREQI2wqFAg8fPhT280tcqT5+69YtUUGc0tJXz549C91XYT158gQ//vgjhgwZgrZt26JVq1bo1asXvvrqK1y5cgUKhfjf5Nu3b4ednR2mTp0qtDk7O8POzg52dnaYMmVKjtd5/PgxUlNT1Z6Hqrt372LhwoUYOHAg2rZti7Zt26J37974/PPP8c8//yA+Pr7Iz5eoPOKakERE2dx+F4mhu50gU2T+Y+rCqzCcnNpRz1ERERERkaYGDBgABwcHREREQCKR5Ht8RkYGYmJihH3VEYX+/v5ISEgQ2vOrCN2wYUNYWloiLi4OcXFx8PHxQePGjUtVX02aNCl0XwUVGRmJJUuW4MGDB2qPhYeHIzw8HHfu3ME///yDHTt2oFatWoW6TpY7d+4AAJo2bapWVCchIQHfffcdHj16pHZeWFgYwsLCcP/+fezYsQM//fQThg0bVqRYiMobJiGJiLLZ9dhfSEACwGm3UEQmpaOGRYVC9RcSn4YaFiYwNuTgcyIiIqLiYGhoCGtra1hbW2t0/N27d5Geng4AMDU1Rb169YTHfH19he26detq1F+dOnWEAi9+fn5Cgq409FWnTp0i9VUQsbGxmDRpEgICAoS2Tp06oUOHDjA2Noanpydu374NuVwONzc3TJ06FWfOnIGFhQW6d+8OMzMzBAQE4Pjx4wCAevXqCVPva9euneM1HRwcAOQ8CnL+/PlCArJKlSro27cvbG1tAQDBwcG4desW4uPjkZSUhPnz58PGxgZt27Yt8PMmKq+YhCQiyua0W6haW2RSRoGTkGEJaRix1xnPg+NRuaIR/pnQDmNa5/yPISIiIirdpHIF1tz0xJW34UjJkOs7nBLFzMQQw5rXwoqBTUvkl7IZGRnYunWrsN+7d29UrFhR2I+MjBS2c0tsZVerVi28efNG7fzS0JemIw1z66sgVq1aJSQgq1atim3btqFTp06iYzw8PDB9+nRER0fDz88Pf/zxBxYvXowOHTqgQ4cOcHJyEpKQtWvXFq1Xmd3bt28RFhYGQD0J6erqinv37gHIHOl59OhRVK1aVXTMDz/8gC+//BJPnjyBQqHAzp078ddffxXquROVR0xCEhHpyE+33uF5cOZ6MQlpMsw44YqRLa1haJD/lCAiIiIqXVbf8MTPt9/pO4wSyyU4c6rvT0Oa6TkSdWvXroWXlxeAzBGUc+bMET2emJgobGtaSVk1ial6fnnoS1N+fn64du0agMyf+86dO9GuXTu14+zs7PDLL78IycWTJ09i3rx5QiGhgrC3twcAWFpaon379qLHXF1dhe1PPvlELQEJZBY5Wr9+PQYMGAAAePPmDeRyOQwNDQscC1F5xCQkEZGO7HzkJ9qPT5MhIDYVDavlXGmQiIiISi/ngFh9h1DiOfmXvJ/R1q1bceLECWH/q6++UlsPMSMjQ9hWTbzlRfU41fPLQ1+aunnzprDdr1+/HBOQWXr06IHOnTvD0NAQtra2iI+PFxUS0tTdu3cBAL169YKBgXhUrmoi8fnz55g2bVqOfdSrVw8XLlyAtbU1LC0tCxwDUXnGJCQRUTFSouiVA4mIiKjk6WxrhVvvovQdRonWpb6VvkMQKJVKbNq0CXv37hXa+vXrpzYKEoBasqqgVAvjlIe+NHX//n1hu1+/fvkef+jQoQJfQ1V0dDRevnwJIOf1IDt37ixsX79+HVOnTsW4cePQvXt3tVGRzZqVvBG9RKUBk5BERERERERFtHJQU0gk4JqQOVBdE7IkyMjIwLJly3Dx4kWhrWfPnvj9999zTKaZmf03iyWreE1+0tLShO0KFf5bV7w89KWp0ND/1mFv2lT3r427d+9CoVDAyMgIPXv2VHvczs4OH3/8MU6fPg0AcHJygpOTEyQSCZo1a4YPPvgAPXv2RMeOHWFiYqLzeInKIiYhiYiIiIiIisjY0AA/DWlWItc8pP9ER0fj66+/houLi9A2ZMgQbNq0KdfEkmqCLjU1VaPrqCboKleuXKr6Uj2mMH1pKirqv5HDVapUKfD5BZU1FbtDhw65xrtq1SpUr14d+/btE6aYK5VKvH37Fm/fvsW+fftgbm6O/v37Y8aMGWjevLnO4yYqS0peaTIiIiIiIiIiLXvz5g0+/vhjUQJy6tSp2LJlS54j21SrRUdERGh0rfDwcGG7Ro0a5aovTclksgKfU1gZGRl4+PAhgJynYmcxNjbG999/DwcHB6xcuRK9evVSK9STnJyMixcvYuzYsdizZ48uwyYqczgSkoiohLnmHoF5F18jNCENn7S3wfbRrWBkyO+MiIiIiArr9u3bmD9/vjBi0NDQEMuWLcPkyZPzPVd1qnBwcLBG11M9rmHDhqWqL9Vp0oXpS1NVqlRBZGQkACA+Ph716tUrcB+aevLkCZKTkwHknYTMUrVqVUyaNAmTJk1CRkYG3Nzc4OTkhPv378PV1RVKpRIKhQKbNm1C+/bt8f777+ssdqKyhJ9qiYhKkJQMGT468ATuEUmIT5Nh12N/7Hzsr++wiIiIiEqtM2fOYM6cOUIC0sLCAn/99ZdGCUggc5RgVhXkuLg4+Pn55Xm8j48P4uPjAWQm2mxtbUtVX/Hx8QgICCh0X5pSTTp6eXnle/z58+exbNky/PXXX3B3dy/Qtezt7QEAtra2aNy4cYHONTExQceOHfH111/j+PHj+Pfff1G7dm3h8QsXLhSoP6LyjElIIqIiUii0V/H6eXA8UqUKUdufD3211j8RERFReZKVuFIoMv99VadOHRw7dgy9evUqUD+q1Zvv3LmT57FZCS8A6NGjh1qxm9LQl4ODQ5H60oTq6MF79+7le/y5c+dw+vRpbNmyBf7+/31Jr8m1s9aD7N27d46PK5VKLFu2DOPGjUPHjh3zHA363nvv4bPPPhP2NR05SkRMQhIRFZpHRBI6/34PZkuvYMBfjxGeqFklwbxkyNQTmh6RyUXul4iIiKi8ef36NZYvXw6lMvPfV40bN8bx48cLVYl55MiRwva+ffuQkJCQ43EJCQn4559/hP2PP/64VPZ16NAhJCYmFrovTYwaNUpIIN64cQOenp65Huvu7g5nZ2cAmUV0unfvLjxmYPBfWkMuV69M7+XlhcDAQABA3759c+xfIpHAx8cHbm5uSExMzHd0Y3R0tLBtbW2d57FE9B8mIYmICumzYy54GhSPDLkCd7yi8N35V/oOiYiIiIiQWfRk3rx5QoXjWrVq4Z9//hEVYCmIDz74AB988AEAIDIyErNmzRIlooDMxNSXX34prHPYqVMndOvWrVT2FRUVhe+++67QfWmiSZMmGDp0KABAKpXiyy+/zHGatb+/P7777jthNOunn34KCwsL4XHV7bCwMLVEZNaoTXNzc3Tq1CnXeCZMmCBs79ixA9evX8/xuOfPn+Pw4cPCftZzIKL8sTANEVEhyBVKOAfGidpOvgjB8SlclJqIiIhI3y5cuCBaI7Ft27b4999/NT5/2LBhonX/AGDNmjUYN24c4uLi8Pz5cwwZMgSDBw+GjY0NQkJCcO3aNWEkoqWlJdavX59r/yW1r9WrV2PcuHGIj4+Hq6srhg4dWui+NLFmzRq4u7vDx8cHwcHBGDt2LHr27IlWrVrB0NAQHh4euHPnjpBMbtOmDebMmSPqw8bGBhKJBEqlEsHBwZg9ezbef/99mJqaYsqUKcJU7O7du+dZBX3kyJE4ffo0njx5AqlUim+//RYtW7ZE27ZtYW1tjdTUVLx+/RoPHz4UEp1Dhw4tdBKWqDxiEpKISANShSL/gzRwzT0Ss7uba6UvIiIiIsrZqVOnRPs3btzAjRs3ND6/VatWaklIW1tbHDhwAHPmzEFgYCASEhLUrgMAdevWxR9//JFnteeS3NeuXbuwYMECBAUFFakvTVSqVAnHjh3DwoULce/ePcjlcty9e1dIHKrq27cvfvnlF1SoUEGtjxEjRuDSpUsAIJxvYWGBkSNHwsXFBUD+VbENDAywc+dOzJ07Fw8ePACQOaX/9evXasdKJBJ8/PHHWLFiRSGeNVH5xSQkEZEG2v92D+9VN8e+CW3Ro2E1XHOPKFQ/+5wDMLt7A+0GR0REREQiHh4eOum3WbNmuHz5Mk6dOoUbN27Ay8sL8fHxMDc3R5MmTTBo0CCMHz8epqampbavpk2b4tSpUzh37hwcHByK1JcmLC0tsXv3bjx+/BiXLl3Cs2fPEBERAZlMhurVq6N9+/b46KOPROtAZvfzzz+jQYMG+PfffxEaGgqlUglLS0vcuXMHcrkcEokk16I0qipVqoS9e/fi/v37uHz5Ml6+fInQ0FCkpaWhcuXKsLa2xgcffICRI0eiefPmWnn+ROWJRJm1Si+RChcXF2HNDQMDA7Rv317PERWNTCbDixcvhP22bdvCyIg5eMqZwYJLuT5mXakCglcMxMcHnuLcqzC1xxWbP8y3H9VjsrvzLgoDdj0u0DnFjfcTkXbwXiLSHm3fT3K5XFQko2nTpjA0NCxSjESlgVKpREpKirBvZmZWqMrXROVdSbuXtPF3TRt5IhamISIqgLDEdATFp+WYgCQiIiIiIiKinDEJSURUQHIFB5ATERERERERFQSTkERERERERERERKRTTEISERERERERERGRTjEJSURERERERERERDrFJCQRUQGdcA0p0vmhCWlaioSIiIiIiIiodGASkoiogJZeeVuk823W3MScsy+hVLLADREREREREZUPTEISUbmn0EO16z8f+eFZUHyxX5eIiIiIiIhIH5iEJKJyyyU4Hu1/c4D5D1fw4V4nxKZkFLnPI8+DEJGYrtGxy6+5F/l6RERERERERKUBk5BEVG59cugZXoQkIF2mwOW3EVh6pehJwSlHXdDm17t4F5mU77E2VUyLfD0iIiIiIiKi0oBJSCIql2JTMvAuKlnU9rejv1b6jkjKwKobnlrpi4iIiIiIiKgsYBKSiMoluY6LwhxzCdZp/0RERERERESlCZOQREREREREREREpFNG+g5An5ycnHD58mW4uLggIiICSUlJsLCwQO3atdGxY0eMHTsWLVq00Pp1fX19cebMGTx9+hQBAQFISEhAhQoVUL16dbRr1w6DBg1Cv379IJFItH5tIiIiIiIiIiKi4lYuk5BBQUFYvHgxnj59qvZYXFwc4uLi8PbtWxw6dAjDhw/HmjVrYGFhUeTrpqSkYP369Th16hSU2aaCSqVSJCUlwc/PD+fPn0eLFi2wZcsWNGjQoMjXJSIiIiIiIiIi0qdyl4T08/PDxIkTERMTI7QZGxujadOmqFSpEqKjo+Hl5SUkCS9fvgxvb28cOXKkSInItLQ0zJgxAy4uLqL2Ro0aoUaNGkhJSYGHhwcyMjIAAG/evMHHH3+MI0eOwM7OrtDXJSIiIiIiIiIi0rdylYSUy+X45ptvhASkoaEhvvrqK0yfPl2UYAwPD8dvv/2G8+fPAwDc3d2xbNkybN26tdDXXr9+vSgBOWTIECxcuBB169YV2lJTU3Ho0CFs27YNUqkUiYmJ+Oqrr3DlyhVUrFix0NcmopLrnnc09jkHoIKxAeZ0b6jROUqlEonpMlSuaKzj6IiIiIiIiIi0o1wVpjl79iw8PT2F/Q0bNuCbb75RG+FYq1YtbNy4EdOnTxfarl27BldX10Jd19fXF6dOnRL2x48fj61bt4oSkABgamqKL774QpTsDA4OxsGDBwt1XSIq2V6FJmDQ3444+CwIux0D0HfnI0QlZ+R5jqN/LBquuw3LH6+h8+/3EBSXWkzREhERERERERVeuUpCXrhwQdju0aMHRo4cmefx8+bNQ82aNYX9y5cvF+q6ly5dglwuBwBYWlpi6dKleR7fv39/DBo0qMjXJaKSzTkwDhlyhbAfkyLF5bfheZ4z7bgLAv6XeHwaFI/Fl9/qNEYiIiIiIiIibSg3SciMjAw8f/5c2B8xYkS+55iYmKBHjx7C/suXLwt1bUdHR2G7X79+MDMzy/ec/v37C9vu7u7CWpFEVLa9DE3I9bHkdBk8I5NFbcdcgnUdEhEREREREVGRlZskZHBwMCpUqCDsN27cWKPzLC0the3Y2NhCXTs6OrpI1wUyq3YTUdnnGpJ7ElJZjHEQERERERERaVO5KUzTsGFDuLi4IDExEeHh4WrrMeYmOPi/UUZVqlQp1LWvX7+O9PR0hIeHw9zcXKNzgoKCRPuFvTYREREREREREZG+lZskZJZKlSqhUqVKGh2blJSEhw8fCvuajmLMSYUKFWBra6vx8devXxe2bWxsRKM4iUh3Jh95nv9BREREREREVOpIpVIYGxvrO4xyq9wlIQti7969SEpKEvb79u1bLNd9/PgxnJ2dhf1+/foVy3XzIpPJ9B1CkWQVBsptn8ofmSzn10BJXWNRJpPleh8W9/3J+4lIO3gvEWmPtu8nuVwOpTJzIRSJRAKlUinsU+nRrFmzIvcxevRobNiwQdifMmUKnjx5AgA4cOAAunTpUuRrlCTZX+cl+XWfkZGBCxcu4ObNm3j79i3i4uJQsWJFNGrUCL169cL48eNRo0aNfPvx9vbG8OHDC3TtU6dOoXXr1oUNvVw5e/YsfvjhBwDq9xMALFmyBOfPnwcA/Pzzzxg7dqzOYrl27RoOHTqEI0eOqD0WFBSEAQMGAADq1KmDO3fuFOlaJe1eyrp+1v9lMpleYmISMhdubm7YvXu3sN+gQYNiSQbGxcXhxx9/FPaNjY3x2Wef6fy6eVEoFHjx4oVeY9C2V69e6TsE0rO49NL1Yf/FixdIkSpyfUyfeD8RaQfvJSLt0db9ZGRkBCMjI6SkpMDQ0FArfVLpIpfLkZKSIuwrFP/9eyw9PV30WFmUmpqq7xBy9ObNGyxevFi0fBqQOcrtxYsXePHiBXbv3o05c+Zg0qRJefalWsBWU+Xhd68tqkV2s99PWW2qx+ri55qSkoL58+fDyckJtWvXzvEaaWlpwrZSqdR6HPq+l+RyORQKhTC4RV//7mQSMgdBQUGYPXs2pFKp0LZkyRIYGen2x5WRkYFvv/1WtB7klClTUK9ePZ1el6g8KsFf6hIRERGRFsydO7fA5zx69Eg0K83a2lqLEZE2vHjxAl9++SXS09MBZI5W7tKlC1q3bg0DAwO8fPkSjx8/RlpaGjZv3oyQkBAsWLAg1/7evn0rbI8cORKNGjXKN4ZatWoV/YlQsYmLi4OTk5O+wyAwCakmNDQUn332GSIjI4W2adOm6XwqdkZGBubMmSO6Mdq2bYt58+bp9LpE5VGKVIGv7kTnfyARERERlVpTp04t0PHPnj3Dn3/+Key3a9cOn3/+ubbDoiJITk7GwoULhQRkzZo1sWnTJrWp0S9fvsT8+fMRFRWFo0ePokWLFhg2bFiOfaomIWfMmFGgWg5UdKtXr8bq1av1HQbq1KlTqFGxVDBMQqrw9vbGzJkzERoaKrT16NEjz29NtCEpKQlz5szB48ePhbY6depg+/btJWLBVAMDg1K/3oVcLhcNN27VqhWn1JRje5wC4B0fpu8wCqRt27ZISpcBp9Xjbtu2bbHGwvuJSDt4LxFpj7bvJ7lcDm9vbwCZo6zMzMx4f5ZxAQEBWLBggTB1tGbNmti+fTuqVKkiOs7AwEDYrlChAszMzIo1Tl1TKpWiaaOmpqaQSCQ6uVbWmp0FWX/v4MGDiIqKAgCYmZlh//79OY5c7NKlC/766y9MmDABcrkcW7duxYgRI1CxYkXRcQqFAh4eHgCAypUrw87OTmfPt7wyMTERtg0NDfVyz6j+3rPe03WtOO8lTcjlchgYGMDY2BjGxsZo3Lhxgf+uvXz5UrQkRWEwCfk/z58/x+zZsxEbGyu0de3aFTt27NBpIjAiIgJffvklXr9+LbRZW1tj//79JWqIt66nohc3Q0PDMvecSHO7nQP1HUKBGRkZwSiXZSz1/Vrm/USkHbyXiLSnqPeTRCIRfVjMvk9lS3JyMmbPno34+HgAmevyb9++HTVr1lQ7try9LorjORbkGjdu3BC2p0+fjsaNG+d6bOvWrTF48GBcuXIFkZGRuH37NkaMGCE6xs/PT1j7r2XLlqIkM2lHSbhnSkoM+ny/yLp21v+NjIz08uUa/6UL4NKlS/jhhx9EC6b27t0b27ZtU/umRJvc3d0xa9YshIX9N7KpXr16+Oeff7gOJJEOhSak6zsEIiIiIiohli5dCi8vL2F/+fLlaNeuncbn37hxAxcuXICbmxtiY2NhaWmJBg0aYNiwYRgzZgxMTU3z7ePVq1e4evUqnj17huDgYMTHx0MikaBSpUpo2LAhunbtmme15+3bt2PHjh0AgNOnT6N169Z48eIFTp06BWdnZ0RERMDQ0BB169ZFr1698Omnn2o06CUiIgJHjx6Fg4MD/P39IZfLYW1tjZ49e2Lq1KmoX78+VqxYgRMnTgDIHKmoq4rhUqlUNHV66NCh+Z7TvXt3XLlyBQDg4OCgloRUHQzUqlUrLUWaO9Xf05EjR9CxY0c4ODjg2LFjePXqFeLi4lC5cmW0bNkSo0aNwrBhw3JNjJ49exZLly4FAGzduhV9+/bF9u3bceHCBSQkJKBWrVro1KkTvvvuO7WEelhYGE6ePIkHDx4gMDAQiYmJqFy5Mho2bIhevXphwoQJsLS01Og53b17F2fPnoWLiwtiY2NRuXJlNG/eHBMmTMCgQYPyPX/JkiU4d+4cAGD9+vV5Vsd++/Ytzpw5AycnJwQFBUEqlaJKlSpo1qwZBg8ejNGjR4tGXqr+jLIEBwfDzs4OAGBjYyOMwg0KCkL//v3V2nOSlJSEc+fO4e7du/Dw8EBcXBxMTU1hbW2Nzp07Y/To0Xm+nrL/7oYMGQIvLy+cOHECDx8+RFhYGJRKJaytrdG9e3dMmjRJo7VKS4Nyn4RUfRPIMnLkSKxfv16noxHu3LmD+fPniyouNW/eHLt37871DwsRlV8fH3iC+DSZvsMgIiIiKlP27NmD69evC/vjx4/HhAkTNDo3Pj4eU6dOVSt4ERkZicjISDx58gRHjhzBn3/+ifr16+fYR0JCAhYvXpxrwiMtLQ2RkZFwdnbG33//jbVr1+LDDz/MMy6lUon169fjwIEDUGarxuju7g53d3ccOnQIGzZswJAhQ3Ltx8HBAcuWLVOrEuzv7w9/f3+cOnUKy5cvzzMWbYqLixM9n9x+pqpUCwvlVA04pyRkYGAg3NzcEBMTA3NzczRo0ABt27bVyaixVatW4dixY6K26Oho3Lt3D/fu3cPhw4exc+dOWFlZ5dvX/PnzcfPmTWHf398fkZGR+PHHH0XH7dq1C3/88YewrqbqdaOjo/H06VP8/fff+PHHHzFmzJhcr5eamop58+apvXajo6Px4MEDPHjwAP3790evXr3yjT0/ycnJWLVqFS5evKj2WFRUlHC9vXv3YseOHWjSpEmRr5mbK1euYPXq1YiLixO1S6VSJCQkwNPTE4cPH8bw4cOxdOlSjaZ+7927F1u2bBEVRwYAHx8f+Pj44NixY1i8eHGB17kticptElIqlWLZsmW4cOGCqH3WrFn4/vvvdTpM9siRI1i7dq1oLn2PHj2wdetWWFhY6Oy6RFR6nX1ZutawJCIiIirpHB0d8dtvvwn77dq1K1BSbcmSJUhOToZEIkH37t3RqlUrGBsb48WLF7h//z6USiW8vLwwd+5cnDx5Um2ZL6lUis8++wxv3rwBkLl2Xs+ePdG0aVOYmZkhMTERr169gqOjIxQKBdLS0rBkyRI0a9YszyTLb7/9JtQbaN++PTp37owKFSrA29sbt27dQnp6OlJTU7FgwQLY2dmhYcOGan3cuHEDy5Ytg1yeuR5QrVq1MHDgQFSvXh3BwcG4efMm4uLisHz5ctSuXVvjn1lRFGaZNNVEW0hIiNrjqknI6OhojB8/Hi9evFA7zsrKCp9//jk+++wzrS3Xtn37djg6OgIAmjZtit69e6NixYp4+fIl7t27B4VCARcXF0ycOBEnT55E5cqVc+0ra1Redv369RONxFUdtQoALVq0QNeuXWFpaYno6Gg8fPgQXl5eSEpKwpIlSxAbG4sZM2ao9ZuRkYGpU6fCzc0NAIR7oF27dlAoFHj27BmcnJxw+/ZtPHv2rLA/IgCZv8MZM2bA1dVVaGvZsiW6du0Kc3Nz+Pr64saNG0hPT4efnx+mTJmC8+fPw9raGq1bt8aiRYuQkJCAv/76CwBQpUoVzJo1CwBQqVKlAsVy7NgxrFq1Sti3srJC3759YWtri+TkZDx9+hQuLi4AgMuXL8PLywt79uyBubl5rn0eP35cuF+bNWuGbt26oXLlyggICMCNGzeQlJQEmUyGdevWoWnTpujatWuBYi5pymUSMiMjA998843oJjUyMsKqVaswbtw4nV57586d+P3330Vt48aNw6pVq7gOFBERERFRaSWVAmvWAJcvA9lGjpV7ZmbA8OHAihVACSi8CWROR503b56QZKtRowa2bdsmmsqZn+TkZDRo0ABbt24ViqxkuXv3LmbPng25XI43b97g7t27GDhwoOiYgwcPCglIa2trHDhwAA0aNFC7ztu3bzFjxgzExMRAJpPhxIkTaqPbVD1+/BhWVlbYsmULPvjgA9FjPj4+mDZtGsLDwyGVSnHw4EGsXLlSdExsbCzWr18v/Gw++ugjrFixQrRU2cKFC7F48WLY29vnmNzThSpVqsDU1FQo9uHt7Y3mzZvneY7qNPu0tDQkJiYKiSelUin8/AFgzZo1ufYTGxuLTZs2wcHBATt27FArWFQYjo6OkEgkWLhwIWbMmCEaCPX8+XN89dVXiIuLg6+vL7Zs2aL2e1J19+5dGBgY4LvvvsO4ceNgZGQER0dH0TTsU6dOCQnISpUqYcOGDRgwYICoH6VSidOnT2P16tWQSqXYvHkz2rZti/fff1903N69e4UEZJUqVbBjxw507txZdMyDBw/w3XffqY0YLKitW7cKCUgzMzOsX79ebQRvSEgIpk+fDj8/P8TGxuLnn3/Gtm3b0KRJEzRp0gRBQUFCEtLCwgIzZ84scByurq6i18jYsWOxbNkytYFkDg4OWLBgARISEuDh4YHVq1fjl19+ybXfx48fo0KFCtiwYYNaBffvv/8eM2fOhKenJwBg3759TEKWNjKZDN9++60oAWlubo5t27ahR48eOr3233//rZaA/P777/Hll1/q9LpERERERKRjq1cD69bpO4qS63+jg/DTT/qNA5mDUr799ltER0cDyBxht3Xr1gIXBjU1NcWePXtyXM+/T58++PDDD3H+/HkAgLOzs1oS8syZM8L2smXLckxAApnLds2YMQObN28GkFmhNj8bN25US0ACQKNGjfDtt99i2bJlAIBHjx6pHbNnzx6hSE/37t2xbt06tZmCVapUwfbt2/HJJ5/kOM05y7179/Du3bs8Y01KSsLevXtzfKxJkybCdF6JRIJOnTrh3r17AIATJ06IRqVlp1Ao1KbvpqWlCUlIX19fJCcnC48ZGxtj0qRJGD16NOrXrw+lUgl3d3ecOHFC6MfZ2RnffPMN9u3bp5VBRHPmzMkxIdahQwfs2LEDU6ZMgVKpxPHjxzFjxow8a0d89dVXotzC4MGDhe2MjAxs3bpV2N+6dSu6d++u1odEIsG4ceOQmJiIjRs3CpXFDx48KByTlJSEXbt2CfubNm1SS0ACmbM9f/vtN3zxxRd5/ATylpycjMOHDwv7OSUggcwK63/++SdGjBgBhUKBmzdvIiIiIsfiUoX166+/CrNZBw4ciPXr1+d4XO/evbFz505MnToVcrkct27dgpubW57JwyVLlqglIAGgZs2a+OGHHzBt2jQAEEZFl+YCSuUuCblp0ybY29sL+1WrVsWePXvQsmVLnV731q1b+PXXX4V9Q0NDrF27Ns9FV4mIiIiIqJTIti4g5eB/U0/1be3ataIptz/88IPaSC9NDB06NM+kULdu3YQkZPbRgnK5HJ9//jmCg4MRGRkpFMTIjepIy8TExDyPrV+/Pnr37p3r46rJkIiICNFjSqVStK7g/Pnzc12qzNjYGAsXLsRnn32W67WuXLkiFB3JTXx8fK4jxcaMGSNaU/CTTz4RJSE7d+6cY/IGADZv3iwaCQlkDkrKojoV29zcHP/88w/atm0rOr5jx47o2LEjunXrhiVLlgAAnJyccOLECUyePDnP55WfGjVqCNOCc9KpUyf06tULDg4OUCgUuHXrFqZPn57jsRKJBJ9++mmufd26dQuRkZEAMqfo55SAVDV16lTs3LkTCQkJcHJyQlhYmLC+5v3794XRqG3atMnztda7d2906tQJT548yfN6uXFwcBCm1Ldo0SLPNUwbN26MYcOGITw8HPXr10diYqLWkpChoaFwdnYGABgYGAivhdx07NgRw4YNw6VLlwBkFqLJLQlpZmaGjz/+ONe+3n//fRgbG0MqlSI9PR1xcXGoWrVqIZ+J/pWrJKSDgwMOHDgg7FepUgUHDx7U6aKlABAeHi580wRkvkFs3Lgx3wWFiYiIiIiolOjSBbh1S99RlGwlYBrh2bNnRWviffTRR5g0aVKh+urQoUOej6sWHFUdcQdkDkrRdEBKRkYG/Pz8hH3VRFpOsifSsqtWrZqwnZaWJnrs1atXiIqKAgDUrl0bLVq0yLOvrl27omrVqoiJicnzOG3p378/+vbtC3t7eygUCsybNw+Ojo4YP3483nvvPcjlcrx+/Rr79u2Dvb09qlatirS0NKG4jup0+yFDhqBt27YICgqCpaVlns91zJgxePr0KU6fPg0gczpyUZOQQ4cOzXd9yYEDB8LBwQFA5qjS3JKQDRs2zDMxpVo8SZMBWEZGRmjTpg0ePHgAAHj69KlQWfz+/fvCcX369Mm3r0GDBhU6Cal6rX79+uV7vOrAL23KWrMRyEy81q1bN99zhg8fLiQhnz59mutxzZs3z3MZCBMTE1SqVEm4x7IXFCptyk0SUi6XY926dUI1LYlEgl9//bXICcgpU6YIGXEA8PDwUDvm999/F62DMGvWLCYgiYiIiIjKkpUrAYmEa0LmRHVNSD168+aNaPpumzZt8pzOmx/VZF5OVKspZ62vmJekpCT4+PggMDAQgYGB8Pf3h6enJzw8PERVc7NXvM6uevXqeT6uWqhEtVgqkFlROct7772Xb8xA5ijNnKZ1A8CGDRuwYcOGHB+zs7MDANjY2ORaHTwnmzdvxldffQVnZ2colUqcOHFClFjOYmlpiV27dokKq6iua2lsbAxbW1vY2tpqdN0pU6YIScjg4GB4e3ujcePGGsedXVY17ryo5ivyWnszrxG5gHhtzMOHD4umOGtC9drBwcHCtiavkezrpRZEaGiosN20adNC91NUAQEBwramz0d1vdLQ0FDI5fIcp/Dnd78Ced+zpU25SUJeu3ZN9IZqamqK/fv3Y//+/Rr3Ub16dWzcuLFA1w0NDVVbh8LV1bXAC6Fu3LhRoxcnERERERHpgbFx5nqHJWDNQ1IXFxeHOXPmCKOIqlWrhu3btxeoEE12eVW81VRaWhqOHz+Oc+fOwcPDI9cEo6GhoUaJTCBzemdhZU3ZBaBx8RUrK6tCX68wLCwssG/fPuzbtw979+4V1q/MYmJigiFDhmDx4sWoWrUqkpKSAGT+XIryO7OzsxMVxgkICChSElKTz/eqvwPV3012eVXOBlDk4jCxsbHCdtZaqppcFyja66Og19IV1Z+fps9H9TilUon4+Pgcv7go6P2a35cQJV25SkKqSklJEYYWa8rGxqbA171165bacHnHQqyFkn2YPBEREREREeVPoVBg/vz5wgguIyMjbN26VVjjTl8CAwPx+eefi6ZaA5mz9qytrdG4cWO0bNlSWK+yKAU+NKU64lLTpKc+kiLGxsaYNWsWpk+fjufPnyMgIAAymQy1a9dG+/btYWlpCSCzgnZWfEX9fUskElSqVElIQmYlNwtLdaRsblRHveWVMM+vSI5qTmLIkCFo06aNBhH+pyg1NIqS6Fd9PepTYV7j2Ucs5ra2anlTbpKQPj4+5eq6RERERERElFkJWHUAypIlS9CpUyc9RpSZXJk9e7aQgKxatSo+++wzfPDBB2jSpIna6KisdQF1TXXkXX4FcLIkJCToKpx8mZiYoGvXrrkW/XBzcxO2c5tGm56eDkNDQ42qXasmHos6Mk+TJKbqCDzVNUYLSvX32q5du1zXltREjRo1hIrnmoywLMrrQzVufb7OspLagHhUaF5UjzMwMICFhYW2wyqVyk0S8vLlyzrp99ChQ3k+vnLlSqxcuVIn1yYiIiIiIqLc3b59G7t27RL2x4wZgylTpugxoky3b9+Gp6cngMzpmCdPnsxzXT/Vaam6HHmougZh9srSucl6HsVBqVQiLi4O0dHRqFWrFipVqpTn8bdv3xa2O3bsKHrso48+go+PD1JSUvDHH39gwIABefYVGBgoFLgBUOT6El5eXvle093dXdiuX79+oa9la2srVITX9PcVHx8PCwsLtRGbqkVZ3N3dMXTo0Dz78fb2LmC0/6lXrx5cXV0BZP68Bg8enOfx9+/fx+XLl1G3bl107dpV7XdeWA0aNBC2VX8neXnz5o2wbW1tnW8RovLCQN8BEBEREREREWmbv78/Fi9eLCTtWrZsidWrV+s5qkzPnz8Xtrt3755vYRHV6ry6LEzRqlUrYd3EsLCwfBMur169QkREhM7iyW7dunXo2rUrhg8frlZ7IbuwsDBhBKmhoaFawq9SpUpCUlGTwjiq12vUqBHq1KlT0PBF7t69m+8xN2/eFLb79+9f6Gt16dJF2HZwcMi3wnJGRgaGDx+ONm3aoF+/frlWqb5x40a+1y7KKN6spQiAzOrg+bl69SrOnTuH7du3i0bBFnUqtGoy083NDUFBQfmec+XKFWG7Xbt2Rbp+WcIkJBGVKwqFEmGJef/RJSIiIqLSLSUlBXPmzBGmFFetWhU7duxAhQoV9BxZJtW17mJiYvI81sXFRZTQyF5zQJtMTEwwbNgwYX/r1q15Hp/f49qmmpQ6c+ZMnqNCf/75Z2RkZAAAhg4dilq1aokeVx3Bd+nSpTyXUvP398fevXuF/alTpxY49uxcXFzyTKw9evRIqCdhampapCTk4MGDheRydHQ0du7cmefx+/btQ2RkJGQyGWJiYkRrSHbv3l0ouuLj44OTJ0/m2s/bt29FidTCxJ1V0dzV1TXPuh6RkZG4evUqgMyko+rPq6CV6rOrV68eOnfuDCDzS4DcKr5nef78uaguieo9Vd4xCUlE5crPd97pOwQiIiIi0rEff/xRmHZqYmKCP/74o8gj17RJdX3C58+fi5KMWZRKJS5fvoz/+7//EyUedV20dMaMGULCyt7eHqtXrxaSeaoxLF++XKPRabnx8PCAh4eHRqMQs/Tv319YG/H169f49ddf1ZKyqamp+OGHH3D9+nUAmVXMFyxYoNbX6NGjhSnOGRkZmDVrVo5Th1++fInPPvsMycnJAIA2bdpg/PjxGsecl/nz54tGuWZ5/PgxvvvuOyHJOnfu3CKtQVm5cmVRYaO//voLO3bsUCv8olAocOLECWzfvl1omzFjhmhtRhMTEyxevFjYX7NmDc6fP692zTdv3mDWrFlFKi5TtWpV0fIJ8+fPz7HQb1RUFObMmSOMbB02bJho+rrqeowxMTGiafWamjt3rpDMvHnzJpYuXZrjup4PHjzAV199JSQ7+/bti27duhX4emVVuVkTkogIAPY4Bug7BCIiIiLSodu3b4tqArRr1w4uLi5wcXEpVH8TJkzQelGJ4cOHY/v27YiMjIRSqcT333+P48ePC9Ohw8PD8eDBA1FFb7lcDqVSicTERMhkMo0KqRRGrVq1sGTJEqxYsQJKpRJHjx6Fvb29kAAMDw/HrVu3EBERAUNDQxgYGAiJJgMD3Y5zMjExwcqVK/HNN99AqVRi9+7duHnzJnr06IFq1aohJCQEN2/eFAqmGBsbY8uWLahdu7ZaXxUqVMBvv/2GqVOnIjk5GQEBARg5ciT69u2LFi1aQCaT4cWLF3j06JEwBd7W1hbbtm3TqLJ1foyNjZGQkIBp06ahe/fuaN++PYDMpPSjR4+E43r27KmVkZezZs3Cy5cvcevWLSiVSmzfvh1nzpxBnz59UKtWLURGRsLR0VG0Fmjnzp0xe/Zstb7GjBmDBw8e4N9//4VUKsXixYtx5MgRdOvWDSYmJnj16hUcHBwgl8vRsGFD+Pr6Fjru7777Dq6urnjy5Ani4uLw2WefoXPnzujQoQPMzMzg4+ODGzduCIlFW1tb/Pjjj6I+LCwsYGlpibi4OGRkZGDmzJno27cvZDJZjs8vJ++//z4WLVqE9evXAwDOnj0Le3t79OvXD/Xq1UNqaiqePHkiWmqhQYMGWLVqVaGfe1nEJCQRlSsBcak66bdqagLaRfiiWloiEk1M8aZaPQRUrqmTaxERERFR7uLj40X7zs7OcHZ2LnR/gwcP1noS0sLCAjt37sSXX36JqKgoAICTkxOcnJzUjrW1tcX69evxww8/wN/fHwqFAm/evBFNkdW24cOHQyqVYvPmzUhJSUFoaCgOHz4sOsbMzAwbNmzA+vXrERoaCiAzSahrAwcOxPr167F69WqkpqbCz89PqDKuqk6dOvjll1/yrITeqlUrHD58GPPmzYOvry9kMhlu3ryZ4xTiHj164Oeff1ab1l1YU6dOxbt373Dv3j08fPgQDx8+VDtmypQpWLp0qVaSuxKJBNu2bcNvv/2GAwcOQCqVIiQkBEePHs3x+FGjRmHNmjW5Jrs3b96MWrVqCdPU3dzcROswAplfACxatAiTJk0qdNzGxsbYu3cvVq5ciXPnzgHI/Z5u3749fv/9d1StWlXtsU8++QR//fUXgMxEb1aycOLEicL08vxMmzYN1atXx5o1axAfH4/Y2FicOXMmx2NHjRqFhQsXqlW6L++YhCQiKiylEsN9nmLes/PoHfgKBhCvSfO2al381XYo/m4zGOlGuv8HGRERERGVHq1bt8alS5dw9OhR3L17F35+fkhJSUHFihVRo0YN2NnZoU+fPhgxYgRMTEzQq1cvHDp0CABw/vx5nSYhgczpyn369MHx48fh4OCAkJAQZGRkoHbt2ujVqxdmzpwJa2trUbGf4kq4jBkzBp07d8aRI0fw8OFDBAQEICMjA5aWlmjWrBkGDx6MkSNHCusJ5qVFixa4dOkSrly5ghs3buDVq1eIiYmBkZERatasiQ4dOmDYsGHo2bOnVp+Dqakpdu/ejYsXL+L06dPw8PBAcnIyrK2t0blzZ0ycOBGtW7fW6jUNDQ2xcOFCTJw4EadOnYKjoyMCAgKQkJCAChUqwMbGBh06dMBHH32U7+tLIpFg0aJFGDp0KI4dOwYnJyeEh4fDzMwMjRo1wocffogJEybkudampipUqIANGzbg008/xdmzZ+Hk5ISwsDCkp6fDysoKrVu3xsiRIzFo0KBcE7Zz585FtWrVcPr0aQQGBkIqlaJ69eoICwvTOAkJACNGjECfPn1w6tQp3Lt3D+/evUNcXByMjIxQt25ddOzYEWPHjkXr1q0LNe27rJMo81rJlcotFxcXYci5gYGBMDS8tMoaSp+lbdu2Opu+QCWbwYJLWumnVnIs9l7fhmG+z/I91ruKNT4f/A0c6mn3HxFZFJs/1Em/ueH9RKQdvJeItEfb95NcLhfWEwSApk2bamX6JVFJp1QqRYkTMzOzfCsLt27dWlgz0tHRsUAJnfJm+/bt2LFjBwBgzpw5+Oabb/QcEelKYe4lXdLG3zVt5IlYmIaIqIDaRvjgyeF5GiUgAaBxfBhunVqOeU/P6SSeVGnBK7wREREREeXk4MGD+Pfff0WJ/dz4+PgICUgrKysmIIkoT/y6nYioANqFe+PW6eWomqZeCS0vhkoFNjv8g+qpCfih52dajWnuhVfY9XFbrfZJREREROXTlStXhBFTp0+fznNK8P79+4Xtzp076zo0IirlOBKSiEhD9RIiceXs6hwTkOFmVfBLp7H4bMhcLO0xFS9qNMixjyXOZ/Dt84tajWs3K34TERERkZZ06dJF2F67di1iY2PVjpHL5dizZw9OnDgBIHNqpjYqOBNR2caRkEREGjCSy3Dm4npYp8SpPba/ZT981/cLJFb4byHuXzqPxYyXt7DV/m+YyTJEx/9mvxf+lWriQpOuug6biIiIiKhApkyZgosXLyI+Ph6urq7o06cP+vXrB1tbWxgbGyM8PBwPHz5EcHCwcM7//d//oWPHjnqMmohKAyYhiYg0sMzpJDqGe6m1r+06Hiu6TQayLTKslBhgb5tBcKnVCFfPrEKN1AThMQMoceTKZnT8dAvcq9XTeexERERERJqqXr06du3ahUWLFiEgIABpaWm4cuVKjseamJhgyZIlmDx5cjFHSUSlEZOQRET56BDuhR+cTqm172w7NMcEpKrntd7DiDErYH/yB9GISDNZBg5e3YJuE3+BzJBvxURERERUcjRt2hSnTp3C3bt3cfPmTbx9+xbR0dFQKpWoXr06bGxs0K9fP4wYMQI1atTQd7hEVErwky8RlTmvQhOw6oYHguPTML5dHczt2QiSPBKFeTGSy7D/6u8wVogrUD+p9R6+6/t/eSYghWNrN8XkYQtw5uJ6GEAptHcM98KPjiexqvukQsVGRERERKQrxsbGGDVqFEaPHq3vUMqMb775Bt98842+wyDSGxamIaIyRSpXYNDfjjj7MgxOAXGYf/ENDj4NKnR/M1/dRKtoceGXNENjTBs6t0AjGC806Yp1Xcertf/gdBLtw70LHR8RERERERFRacAkJBGVKW6hCQhLTBe1TT/hWqi+zDNSsfLRMbX2H3t8irfVbAvc309dJ+BprfdEbUZKBbbe+RtQKnM5i4iIiIiIiKj0YxKSiMqUlAx5/gdpaO7zi2rVsF9Xq4ffO4wsVH8yQyNMHfo9Uo1MRO09Qt5igsf9woZJREREREREVOIxCUlEZYqhQc5rNPpEJ0NZgNGGVVMTsPDJWbX2pT0/g8LAsNDxuVerhw2dP1Zr/8VhP0yl6TmcQURERERERFT6MQlJROXCe+vvoOcfDzU+frbrFVTOSBW13bdpgX8bdSpyLJs7joF/JXEVwXpJUZj37HyR+yYiIiIiIiIqiZiEJKJy45FfrEbHVZBl4GvXy2rtS3tO1agadn5SjStgUe/pau3znp5H5fTkIvdPREREREREVNIwCUlElM1E93uolRIvanOo2xKPbFpo7RqnmnbHgzrNRW1W6cn49vklrV2DiIiICsfAQPwxSS7X3prTRERExS3737Hsf+eKC5OQRESqlEp8/+yCWvOW90dp9zoSCVZ2n6TW/P2zC6iSlqTdaxEREVGBSCQSGBr+twZ0WlqaHqMhIiIqmpSUFGHbyMgIEi3M8CsMJiGJiFQM8HdF6yh/Uds7y9q41Liz1q9lX68N7mUbXWmVnoxvXP7V+rWIiIioYMzNzYXt5GQul0JERKVXQkKCsF2pUiW9xcEkJBGRipkvb6q1/f7+KCglOni7lEiwqpv6aMg5LpdRUUeVst0jEnH6RQiC41PzP5iIiKgcs7CwELbj4+ORmsq/nUREVPrExMSIvkzTZxLSSG9XJiIqYaxSEzHa21HUFm9ihgMt++nsmnfrtcY9mxboFfxGaKuZGo/Jbx2wt80grV7rz4d+mHPuJQCggpEBLs3ojAFNa+RzFhERUflkbm4OAwMDKBQKKJVKBAYGwtLSEpUrV9brVDYiXVIqlaK14+RyOV/rRIWg73tJLpcjJSUFCQkJogSksbExzMzMii2O7JiEJCL6n0nuDqggl4najjfrhRTjirq7qESCzZ3GipKQQObakPtaD9B4BKZvdArqW5nCwCDnP2wKhRJrbnoI++kyBTbaezEJSURElAsjIyPUrVsXAQEBADI/0EVHRyM6OlrPkRHplkKhELb1VbyCqCwoafeSsbExbG1t9frFgv5/CkREJcT0V7fU2v5p1V/n173cqCM8rGxEbS1iAjHE97nGfTRefxt11tyAvVdUjo+nyeSISMoQtd1+l/OxRERElMnc3By1a9fmSDAqN5RKJWQymfCfUqnUd0hEpVJJu5eyEpAmJiZ6jYNJSCIiAG0jfNAhwkfU9rpaPThbN9X5tZUSA/z+/ki19rk5VOnOS0RSBqYdd9H7HzgiIqKyxNLSEu+99x5q1qyJChUq6DscIp1TTZwQUeHp+14yMjKClZUVbG1t0bhxY70nIAFOxyYiAgBMeWOv1vZPqwFAMY18ONiiH356cBjV0xKFtoEBL/BebAi8rOpo3E9gXBquukege4OqqGJqrItQiYiIyh0jIyNUq1YN1apVg1KpFE2xIypLZDIZXr16Jew3btwYRkZMGxAVlL7vJQMDgxI5ip/vJkRUpjz2iy3wORKlAh97PhS1ySQGONy8j5aiyl+qcQX83XYIfnA6JWr/wu06FvWeXqC+Rux1hpGBBEcnd8DHbTVPYBKVFEqlEnKFEkaGnLBBRCWPRCKBoaGhvsMg0onsM2oMDQ35eicqBN5LOeO/7omoTNnnHFDgczqHesI2Ubw+4m3btogwt9JWWBrZ3XoQFBB/WzXt1S1UkGXkckbuZAol5l96zanZVOocdwmG7dpbsPzxGv7v1AvI5BxtRERERERUFjAJSURlytuIpAKfMy7bKEgAON20uzbCKRD/KrVwteH7orbqaYn46N2jQvUXGJeGVKlcG6ERFYvo5Ax8evQ5guPTkCKVY69TAPaqfLEglSvg5B+LsIQ0PUZJRERERESFwSQkEZVruU3FPtekq17i2dV2iFrbrBfX9BAJUfG77xsNRbbBu3899gcA+MWkoMn6O/hg+wPUWXMTm+966yFCIiIiIiIqLCYhiahcy20qdoxpZb3Ec6Xh+wioVF3U1jP4DRrHhuglHiJdSEiTYucjP6y67oEXIfFCe5pUfer1i5AEAMCvDt4IiEsV2pddfYvkdFbtJCIiIiIqLZiEJKJy7WNP9anO+piKnUVhYJhZlTubKW/uFn8wRDqgUCgxZLcTvj77EmtueuKDbQ/wJCAu3/P+eOgn2pfKlfCNSdFNkEREREREpHVMQhJRufahj7NoX59TsbMcbNFPrW3KmzuQKAteoOPUi1AAgFtoYpHjItKGl2EJcPT/r4p9mkyBfU8KXlCKiIiIiIhKFyYhiajcahITjKbZpjnfq9tSb1Oxs/haWuOeTQtRW8OECPQIflPgvqafcEVEYjqOugRrKzyiIgmMUy8qs+t/6z4SEREREVHZxSQkEZVbI3yeqLVdbtRJD5GoO5TDaMipr+0L1detd5F4+b919YiIiIiIiIj0gUlIIiq3hvk+VWv7t4QkIU/ZdUeqkYmobZznA1SUphe4r8jkDG2FRURERERERFQoTEISUblUOT0ZvYJei9o8rergXVUbPUUkllDBHOcbdxG1Vc5IxWgvxwL39f2F13gbwTUhiYiIiIiISH+YhCSicmmQnwuMFXJRW0mZip3lYMucCtQUbkp2RBJHQ1L5o1AoMf/ia9RYcQ0tfrHHxddh+g6JiIiIiKjcYhKSiMql4TmsB/lvo456iCR3t+q3Q6i5lahtkL8raiXH5nIGEak68DQQW+75IDpFCveIJIw7+BSxKUzIExERERHpA5OQRFQmKBRKpGTINDtYqcRgPxdRU4KJKR5kq0itb3IDQxxp3kfUZqhUYOy7x1q7xtPAOK31RVQUSqVS633OPPlCtC+VK3HPJ0br1yEiIiIiovwxCUlEpd7R50GwXn0DVX68ptHxLaMDYJ0SJ2q7ZdsWUkNjHURXNMea9VJr+9jzodb6P/gsSGt9ERXFhjtexXKdNJk8/4OIiIiIiEjrmIQkolItPlWKacddEZWcAblCs5FUA/1d1dpu1W+n3cC0xKVmI3hZWovaege+0tqU7CcBnNpNJcOux/65PpauxcRhlYol78sGIiIiIqLygElIIirVngXFQ6Zh8jFLf/8Xam0lNQkJiQSnmvYQNRlAiY88H+kpICLdCIhLzfWxa+6RxRgJUfFTKpVYf/sdmm64gy5b7+O6R4S+QyIiIiLSOiYhiahUkykUBTreWC5F76BXojb/SjXgZVlbm2Fp1Um7Hmpt4zwf6CESIv04+rzgywbEp0p1EAmRbpxxC8Wyq+7wikrGk8A4jP7nCaKTWUSJiIiIyhYmIYmoXOka6gELaZqo7Xb9toBEoqeI8veiRkN4WtURtfUMeoPaSdF6ioioeCWka1h06n/ehCWiyYY7OoqGSPv2OgeI9tNlCtx6xxHAREREVLYwCUlE5cqAHKZi3yypU7Gz5DolW3tVsolKM5lcgYe+Mbj9LhJpUjm2PvBBFEeRUSly11v9S6XYFI7mJSIiorLFSN8BEBEVp5zWg7xj20YPkRTMqabdsczppKhtnOcD7OgwQk8REZUMGTIFRv3jjOsemaPG2tapjBchCXqOioiIiIiIsuNISCIqN8wzUtE5zFPU5lqjISLNLPUTUAG41WgADysbUVvP4Deok8gp2VS+PfSLERKQAJiAJCIiIiIqoZiEJKJy44MQdxgpxYVs7tZrradoCkgiwSm77mrNo70c9RAMUclx5a3uqggnpctwxi0Ex1yCEZvC6d1EREREREXBJCQRlRu9gl+rtTnUbaWHSArndBP1JOQoJiGpnJMrlTrpNyVDhn47H2HcwWeYfOQ5umx7gKjkdJ1ci4iIiIioPGASkohKvOR0GQ4+DcSvd73hFZVc6H56Bb5Sa3tg06IooRUrtxoN4FOllqitT9ArWKYl6SkiorLrjlc0ngbFC/teUck4+zJMjxEREREREZVuTEISUYmmUCgxbI8Tph13xcJ/36Dj7/fwKrTga75VkGWgS7b1IF9Vs0W0WWVthap7EgkuvNdV1GSskGOY71M9BURUdl11V5/mfeBJoB4iISIiIiIqG5iEJKISzTUkHvd9Y4T9hDQZ9j8teCKgc5gnKshlorZ7pWgqdpbz73VRa+OUbCLtU+YwzVum0M3UbyJdSkyT5fh6JiIiIipuTEISUYnmFZWi1vabg0+B++mdw1Tse3VbFiomfXpUpzkiTcWjN4f6PkcFGYtmEBHRfwJiU9Dp93uo8uNVNNlwB8+C4vQdEhEREZVzTEISUbnQM0i9KM39uqVnPcgscgND/Nuok6jNQpqG/gEv9BQRERGVRPMvvsGz/61r6hOdgunHXfUbEBEREZV7TEISUZlnJJehW4i7qO2dZW2EWlTTU0RFcyGHKdmjvZz0EAkREZVUZ16GivZfhSUiQ6bQUzRERERETEISUTnQJsoP5rJ0Udv9UjgVO8vN+u2RYmQiavvQ2wkGCrmeIiIiotJACa4NSURERPrDJCQRlXkfZBsFCQCP6jTTQyTakWpcAdcbdBC11UqJR9dQDz1FRERERERERJQ3JiGJqFSLTZXme0zOScjmugin2OQ0JXukt7MeIiEqmOf/W6OOiEqWM24hmHDwKeZeeIWguFR9h0NERERlkJG+AyAiKopHfrH5HpM9CRlbwRweVW10FVKx+LdRJ8glBjBU/re+1zCfp1jSa5r+giLKhVKpxOHnQbjzLgoHngYV4nwdBEVEgkuvwzDu4DNh/+rbCLxd1BcGBhI9RkVUNqRJ5XgZmohmNS1QqSI/fhNR+cZ3QSIq1WpYmOT5uHVSDBomRIjaHtdpBqWkdA8EjzGtDMfaTdFdJcHaKjoA9ePD4V+llh4jI1L3+30fzL/4ptDn3/CM1GI0RJTdXucA0f67qGS4hSagnU0VPUVEVDY8CYjDkN2OiE2VwsTQACenvo+RLa31HRYRkd6U7k/hRET5+CBUfSq2Y207PUSifZcbdVJrG+7zVA+REOVtt2NA/gcRkd5cfB2u1hanwXInRJS35dfchaWDMuQKzL/4Ws8RERHpF5OQRFSmfRCiXqylONeD/HmY7grgXG7UUa1tmC+TkFTyuEck6aTftxFJ+P2ej076Lg6RSem4HZCK19EZUHLOORFRmZN9JL93dAqkckUuRxMRlX2cjk1EZVrXbOtByiUGcK7dpNiub2VqrLO+X1ZvgECL6qiXFCW09Q18CVNpOlKNK+jsukQlxYRDz/I/qJDeRSXrrG8AeBmagD5/PhJGyHzS1BwH2+n0kkREREREesWRkERUZhnLpegY7iVqe1m9PpJMzPQUkWa62FpqdqBEgivZRkOayjLQL8BN+0ERFYM9TiVn2vbtd1H5H1QEOx76CglIADjhmYyYlAydXpOIiEqO2JQMLLn8Fh/tf4I9Tv4cEU9E5QKTkERUZrWN9ENFuXhNK8c6JX89yE0ftsCOMa01OvbfHNaFHOHzRNshERWLO166TfxlkckVeB4Ul2vSL0Om+6ly2dfJVAIIik/T+XWJiKhk+OjAU/xi74Vzr8LwxSk37Hzkr++QiIh0jtOxiajM6hj2Tq3NyVrzJGQ1M2NEpxRtYf7CLvszu3sDVDM3xsTDz/M87o5tG6QamcBU9l8yZZjPU0CpBCSSwl2cqAybfsIV4Ynpwv7CPo2xYXhzSFTuF0Uuo1F8onU7RZuIiMqHmJQM3PWOFrXtcfLH7O4N9BMQEVEx4UhIIiqzOuWQhHxirfl6kA+/6VHkGEISdDuyKdW4AuzriUdN1kuKQusoP51elyg3aVI5guJS9R1GrlQTkACw6a43Gqy7BW8N1oCMTpHme5xSqcSdd1HY8cAXr8MSixQrERGVTckZcrU215AEPURCRFS8mIQkojLr/WzrQSYZV4R7VRuNz29awwKrBhVt+rYSul/f50pD9SrZw31YJZuK3z7nAFRdfg22a2+h69b7iEpOz/+kEiAwLg0/XnPP/0AAzX+xz3Pdrh+uumPArsf49vwrtP/NAZffhGsrTKJSYZ9zAIbtdsSs0y8QEJui73ConJHKFUhMk+k7DCIiygWTkERUJplJ09AyOlDU9rxmIygMDHV2TV1Wws7L5UY5JSG5LiQVr+R0GWafeYm0/62n6BwYh18dfPQcleZOuIZodJxMocSzoPgcH8uQKbD1no/o2G0PSs/PgKiojjwPwucnX+CaRyR2OwZg4C5HFtugYrPjgS+qr7gOq+VXMfHwM6TL1EcbEhGRfjEJSURlUrsIHxgqxQsyPivAVOzSxL9KLbyqZitq6xrqiaqpnNZDxeddVDIysi2CusneK5ejS7ezL0NzbE9IlwpJ2Cw3PYun2A5RSbD6hqdo/11UMjwik/QUDZUnwfGp+Pb8KySmy6BQZn6xtP9JYP4nEhFRsWISkojKpBzXg6z1XoH7saigu5GT2nQl22hIQ6UCQ/zyLmpDpE05jXVSlNEBUNG5VNUmKq+S0mUYtOsxvHJYMzWnte+ItM3eK1qtjdWmiYhKHiYhiahMyr4eJAA8LcRIyGHNa2ojHJ3LaUr2MK4LSURExeCfJ4G49Y6jfkl/0rONQgeAV2GcEUJEVNIwCUlEZVKnMHESMq6CObwsaxe4n2Y1K+HnYc1gZlyyR0Q+qtMcsRXMRW2D/FxgoOAIFCIi0q0dD3z1HQIRERGVAkxCElGZUzk9GXaxwaK2p7XeAySSQvW3pF8TxPw0BA/mdNdGeDohNzDEzfrtRG3V0xLRIUI7RTHkCiU8IpKQkcNIA6KyJvu6jkSUSa5QQiZXvz+8otWnYRNR0bwKTcCUo88xbLcjjrsE538CEVEpYKTvAIiItC3nqdgFXw9SlYmRASxM8n7LrGhsAKQW6TJFcr1BB4z3fChqG+z3PM9p6E4BcTj8LAiTO9hAkkuS9lVoAobsdkJIQhoqVTDCiU/bo4ZWIycqWa65R+g7BKISZ8Odd/jF3hsKpRLf9GiINYPtcv27UVL5RCfjb8cApMnk+KxjPbS3qaLvkIhylJwuQ7+/HiMqOXMN4msekahqZoxBdqVjmSAiotxwJCQRlTkdw3JIQtYq2HqQg+0Knmab072hWlsXW6sC91NYNxq0V2sb7Jt/cZqpx1zwx0O/XB9feuUtQhLSAACJ6TJ8d+FNoWOk8sezFFbGPe7KESdEqpwDYvHDFXfEpUqRkCbDulvvcMerdK0BGZuSgZ5/PMQv9l7Ydt8Xvf54CI+I0vf+RGWbUplZ0e2eT7SQgMyyz5nVvomo9GMSkojKnJxGQj4pYFGaA5+oJ/TyM7mDDepUrijs92pUtViTkMGVquNl9fqitq6hHqiSlv+HrN1OuVeQvPxWPCrsXVQypPIyWvaYtO5YKZxClirlWqpEqk67haq1HXlWuu7tK+4RCE1IF/aTM+Q4Wgrfn6jgIpPSsejfNxh/8CmOPA/Sdzh5+sXeGwAQnpSh9tjJFyHFHQ6R1sSkZOC+TzSS0mX6DoX0jElIIipzOoW9E+1HmFZBYKXqBeqjZqUKBb6urZUZnn/fC/smtMPZaR1x9f+6wsigeKeq3agvTp4aKRXoH+CW73kvQxOx85GfjqKi8uwOK+YSlXrhielqbf6xKXqIpPBcguPV2s7mkFylskWpVGLYHidsvuuN026hmHLUpUQnIvfk8aUwUWl1+kUIaq26gd5/PoLNmpt47Bej75BIj5iEJKIypVpKAhomiEfuPbFuUuiiNAVVs1IFTOtUD6Nb1YapHipqX2vYQa1tiF/+U7IB4OuzL+HgzYQRERERlQ2Bcal4FiROQE856oIV19yRnMeILKlcgeXX3NFjxwPMOv0C0cnqIxN1wTu6dCX3ifKjVCqx8N83kCsyZ1Elpsuw6oaHnqMifWISkojKlPcj1KdiP6tVtKI0pckDmxZIMTIRtQ3yew4oNZs+feBpyR0dQERUUjj5x2LUPmf0+uMh9jkH6CWGUy9C0HzjHdRZfQMrrrkLa8kR0X8S03NeXmPtrXeYeswl1/OWX/PAulvv8MgvFrsdAzDpyDNdhUhUpskUSvjHiit33vTkoIfyjNWxiahMaR/uo9b2rFZjPUSiH+lGJrCv1wbDfZ8KbbaJUWgeE4i31WzzPT+n6WpEubnuEYHjLsGoYVEBPRpW1Xc4RSaVK+AUEIu73tH6DoVKsPhUKQb97YjE/42ieuAbgzqVK2JIs+KrWhsSn4aJh5/hfwNLsPbWO7StUxkftalTbDFkkSuUmn7PlSvX4Hi4hiSgewMrNKlhoZ3AiPJx7lUY0mVyVDBSn7mSfVr0Tc8opEnlqKiHWS4FERKfhqvuEahmbowhdjVLfLxEJd2zoDj8fOsdYlKkmNapHj7rVE/fIZV6TEISUakUHJ+KL0654aq7eOp120hftWNdajYqrrBKhOsNOoiSkAAw2M9FoyQkkabsvaIwfI+TkATZfNdbvwFpwZC/HWHPBCTl47ZXlJCAzLLXKaBYk5DXPSKEey/LHqeAYk1CKpTA9xdeFbli744Hvvj2/CsAgKGBBKendsSoVtbaCJEoX+kyRY5JyJgUqVqbVK5ERePiiKpwvKKS0X37A0T+b+r4gCbVce3/usKgmNcnJyorEtNkGLjLEXGpme8HDj7RqGlhgqHNa+k5stKN07GJqFSadtxVLQEJqCchoytWQlABi9KUdtcbqFf2Huyr2bqQRHmJS5XiwqswOPnHYq9TgFoSpLRjApI0EZFDkZZ/34YXawyxqeoJEueAuGKNwcEnGlvv+6olZAtCqVTi59v/FZOTK5TYdFd9WRUiyt+Bp4FCAhIAbr2LwovQBD1GRFS62XtHCQnILEX94o04EpKISqnbOVTcNZOmwS4mWNTmWrNhsRWlKSneWdWBT5VaaBT/34fiXsGvUVGajjTjglf9JgIA3+gU9PzjIUIS0vQdChEVgVKpxOHnQbB/F41WtSvh+176my0gVygRli2p+8gvVk/REJVuOc1IeBmagPY2VfQQDZVXGTIF7npHITZVigFNaqByxdKbcopIUv/S8fzrMD1EUraU3lcEEVE2raL8YQDx0KwXNRoWy7VHlKRh+RIJbjRojy9fXBOaTGUZ6B30Ctcbvp/v6UqlEp6RyTA1NoCtlZkuI6VSZLeTPxOQRGXA8mseotGHCy690WM0RKQt6TKFvkOgck6hUGLs/ie48r/ZanWrVMTd2d30HBWVNJyOTURlRrsI9fUgiyMJaW5iiMX9tFeB28ig6G/N1xp0UGsb7Jd7FcgsKRlyDPrbEc1/sUeDdbcx44RrkWOh0idVKodrcDzSZf9VFd1wh1MkifTpeVAcdjv642URp1eqJiDzss85AAo9rrmgVCpxzzsafzv6411kkt7ioLLNNyZF3yEUC6VSicPPgjDjuCt+vest+vtOpC2uIfFCAhIAguLTcPBpkB4jopKIIyGJqMxoF6leGdu1pu6TkD4/9EcNC+1Mc65oZIA2tSsVuR/7em0gNTCEseK/f2QO9st/Xch3Ucl4F5Us7O9/wnVPypubnpEY888TpEjlsDI1xtX/64LOtlb6DouoXNv5yA9fn30JIHOFkQ7FML3y8PNgNKhqhjVDmun8WjlZesUdv9hnfvlhYmiAf2d2xoCmNfQSC5Vd351/hbuzu+s7DJ3bet8X8y6+FvZdguNxeLL6F9ZERfE0KF6t7bd7+itceMYtBHe8otHKuhI+72ILY0OOwSsJ+FsgojKjbbaRkOmGRnCvWlfn19VGAtLU2ACNqpnh5NSOMDMp+vdDiRXM8LBOc1Fb85gg2CaoF/MhUjX/4mukSDOT17GpUiy9/FbPERGVLjK5Ao7+sXgZmgClUjsjCbOScQCgVALPcvigpwu7nQKK5TrZpcvk2Hr/vy8WM+QK0T6RttzzidF3CMVit6O/aP+oSzAyNJi+HZeuwNgDz1B1+TX03/kIfuVk5ChpT1K6fkbd/vnQD+MOPhO+xJt12k0vcZA6JiGJqEwwUMjROkr8D6zX1WwhNTTWU0QFk7BuGLyW9seIFtpbW/JGTlWyNRgNSeXbq7BE0X5RK0aXsQLaRHmKS5Xig+0P0G37A7T91QETDz+HXAtTmv1jU7UQXcGF51AJXJtSpTknQWJTpGrr211+yy/RiArrbYT6kgZpGkzJ3vwsHv++jUBcqhT23tGYeiz/pX2o+CWkSbXyt6Ys2eXoJ9rf/yQQUjnXTS0JmIQkojKhcVwYLKTiohmFXQ9SH0VmDA20X8E7p3UhB2mwLiSRNj3wLR+jTIgA4IRrsGiU4skXIXgWFKe/gLQkpwqhRfXQNwbWq69rvV8i0p7r/uIvQB74xuh1rVgSS06XYdQ+Z1gtv4aaK6/j8DP19RdDE9Jw4Ekgrr4N12j0qyYC41Jh7xWF5HRZofvo9Ps9nHoRopV4cvIyNFGtLS2XL76oeHFNSCIqE9pF5lCUphDrQQ5oUh1/fdxGGyHp3YuaDRFuVgW1Uv77QDzA/wWM5DLIDPn2T0Skbbse+6u13fCMLNXrqkYmpeO6R6TW+1165W2uIyGJSquENCnOuIUiLk2KMa1q6zscKqCYlAz4RKegbZ3KpWL9wG0PfHHpTTiAzCV0ZpxwxciWtVC5YuZMMM/IJPTY8RBRyRkAgJEta+HctE6QSAo/+OH3ez7C+qI1zE1w56tuaGld8PXsnwXFY+LhZ2hTuzLsaloUOh4qfUr+nUVEpIF2ETkUpanRqEB9PP++F27M+gB1qlTUVlhFUquIa00qJQa4nm00ZJWMFHQO8yxSv0RElLPYVKlam0xeukcNnXsVppN+OUqayhqpXIGBuxwx8+QLzL/4Bh1/v6fvkKgA9jj5o+bK6+i89T4a/XwbnpHqU9hLmu0PxIMwZAolXoQkCPv7nAOFBCQAXHwdDvccpuZrKl0mx7Kr/60VHpmcgc13vfI4I28KJXDKTXejIalkYhKSiMqEtjmNhKzRoPgD0aIPGlihbhETojmtCznIz7VIfRIRUflx3CVY3yEQ6ZS2Ckg99ovFk8A4YT8mRf1LiZJGqVTiNwdv9NjxAJOPPId3VLK+Q9ILqVyB+RffIGumeXB8GjbcKXxyrbiE5bBur+rakKpFzbLktD6opkLi09VGsB94qj4FvCB8olnsqLxhEpKIyoTsSUjfyjURX7F0D+2vYGQI+6+6od971Qvdx8367dTaBvmzOA1RUex2DIDtTzfRcN0t7Hrsp+9wiHRKS/mZUsE1OB7dtz9ArZXXMfOkK9Kk+qnqSsUrp0ROYbiGFE/Vem3a4xSABZfe4JFfLI65BGPwbketJWVLk5D4NCRmW99w/5NAPUVDVLYxCUlEpV6NlDjYJImndbnWLNhU7JKqcXVzbB/TqtDnR5pZ4nm2n0WnMC9Ypaov1kyUm0gdFKUo7YLi0+Afm4qvzrzEi1L4wZNKvtlnX+JVaEL+B+qYU0CsvkMoFkqlEqP+ccZj/1hEJmfgH+dArL31Tt9hUTGQleNCK7sdxevY+kSnwLOcjoYkouLBJCQRlXptI9SnYruVoqnYxoaFWxy6vU1ljY67WV88JdtQqUD/gBeFuiaVT1zXKm9LLr8tlyNHSPfa/OqA51qsrn3LM6rA56RpqZpqQYRqaWRaQQTGpSIwLk3U9sdD9X9fUMG8CUvEV2fc8NkxF9z1Kvjrj3TraZD6l2gsGEVEusQkJBGVejlVxi5oURp9Wtz3vUKdt2lESzyc0z3f4240aKfWNsjftVDXpPIp+wdzErvuEYlVN1jwiXRjyG6nAp+Tmss04vV3SsfIvve3FP8XHzmNhotPk+GPh754psVEcHkSm5KBPjsfYddjfxx6FoTBux3hEsyR41Q8MmQKfHnaDTZrbqDnjgd87RGVEExCElGp1zLKX63tRc0GxR9IIdhUqYgZnW0LdW6/JtXRtb5Vvsc9rNMCyUbiStuD/J6Xr4W+iHTsp5ueaPnLXX2HQWWQamXT/GTIFPj0yHOYL72S4+OP/MrH1Gpt+ubcK3T6/T72OgXoO5RSJTldhq/PvhS9fqVyJQ49K1oRC12Iz6GqfW7kCiXiCnA86c+GO17429EfoQnpeOgXi5H7nDlroZxb8O9ryOQc6atvTEISUanXOlsSMtHYFP6Va+opGs3c/7o7Tn/WEW7ze6NBVbNC9yOR5D+VO8PIGHfrtRa12SZGwS6GFU+JtCmyAMkiKntSpXK9f7ezxykAR1nNWmORyemYf/E1xu5/gn/yKULxq4N3MUVV+sWnStHjj4c47hqi9tiFV2F6iChvX5x2E7YVCiU8cqkefNw1GDVWXkfV5dcw+O/HSEhjMrIk+/OReKZUcHwafGPKfiVmub7/EJVgux0DsJnv5XpnpO8AiIiKwkAhR4to8QeH19XrQSkp2d+xdG9YtVivd6NBewz3fSpqG+TvAo9qdYs1DiKisihdpkDlZVchL0SBC4VCCamWRmZk/9BNeYtIysCWez4AgPP5JMfcc0lMkbpLb8LxIkT/RZUUSqDHjgf5HufonzlC2DsqGYP+dsw1UTVLJVl50zMK/f96jPeqm6OqmQm+71VylwE6+zJU3yHoRUSS+heDUnnZT9AN3OWIUS1r4eDEDvoOpdgpFEoccw2Ga3Du7z+7HvtjSb8mxRgVZcckJBGVao3jwlBRLv4m+nW1+nqKpuS6ka04DQAM8nPB9g4f6iEaKonCE9OxP5+RQLpWPSUeg/xd0DHMC20jfWGTFI2qqYkwUciQZGyK2Irm8LSywevqtrhn0xL36rZChpGxXmMmylKYBOTOR35Ycc0d2ijOG5sqRSynierUXa8o9Hmvur7DKPGOPtfNlGuFQom/Hf3xyC8GHepa4uvuDWBsmPeXzvFpMo37X33Do0Aj5Z4FxePZ/wq7XHgVhm97NtT4XG3Y5xyAk64hsLGsiB/7N83xmOD4NKy47lGscZH+XXgdjjU3y99a1Qv+fYPf//fFUm78Y1OLKRrKDZOQRFSqtYpWXw/yVfXCrbFYlnlUtYF/pRqonxgptPUJfAkTmZRJnHLMLSQBa295Ijg+DY/99bNWnIlMionu9/DZ69voGfwGhsqcR4RVzkhFneQYtIwOxBgvRwBAslEFXG7UEXtaD8Lt+m1L/AhoIlW+0Sn4+uxLfYdRLOy9onDMJRg1LEzwdbeGqFOlor5DKpR+fz3GwYnt8en7nEWQF6k2suo5WHXDA2tvZRZXOvw8GB6RSdj5URut9X/4eeGXMghJSMMDnxitxZIbl+B4tLepguMuwfj85Auh/a5XdI7HL7vqrvOYqGT6/X7eybjSzD0iEadehKJKRSNM7lAX1cxNoFAosfORn75DIw0wCUlEpVqrKPWF4l9V50hINRIJbjZoj89f3hCazGXp6B7yBva2bfUYGOlLqlSO/n89QnSKfkZOVZSm47vnlzD3+QXUSilcxUpzWTrGez7EeM+H8LSqg3VdxuNo896QGxhqOVoi7bvqHqHvEIrFfZ8YLPz3jTBS9PSLULxe2Ee/QRXBn4/8mITUovOvQnHxdTgaVTPDN90boopp7l+M7s5WHGiPU4BWk5BFFZyg+xFWR58Ho71NFezJ9rMoD2sdUsEUZnR+SSNXKGFoIF7/3j0iEV23PUDC/0Y573EKwJO5PWEgkSBdVvilTV6ExMPBOxqta1dGn8bVNFp3nwqHQwaIqFTLqTK2rpKQtlamyPZ3EF91a5DnOVXNjFHTwkTUNqFdHS1HppnrDXKaku1a/IFQiXDoWZB+EpBKJSa434P7P19h/YODhU5AZtc0NgQHrv2Ol/vnYLDvM630qS0ZRfhHMZV+932iceBJIALjxAmKhPTyMXV6/5NA0Yfhd1HJcAqI019AReSop1Hjpcntd1EaHXfcJRhj9z/F/ieBWHHNA2P3P8nz+PDEdNF+WUiyFNS7qMy1Se94afYzJt1Llcpx510UXILjoSiHr0lduOUZiaYb7qDSD1cw6fAzpErlwmOHnwULCUgAeBWWiPtFHIV89mUo3t9yD3MvvEb/vx5j9Y3yN5W9ODEJSUSlWvbK2JGmlRFuZqmTa1maGmNh3/eE/ZoWJvi2R97r/0gkEmwf0xom/1uzqE7lilgxMOd1e3TtTr02kGebrjrI77leYiH98olOxpcqC+wXlxopcThzcT2OXd4M28S8P0DJJQbwsrTG49p2uFu3FZ7VbIxwsyr5XqNZbDCunl2N45c2olZyyUgW3PSMzP8gKrPsvaMx/YQrWm6yx9PAOH2HU+zcQtULBATHpxW6v5QMGXY+8sPif9/goa/up79SwcgKUGRpt6P433D23tEISyj8a0PfXPIohkFl085HfjBfegUDdj3G+1vuYeoxFyh1VJ363zfhGHfgKf7v1Au4RyTq5Bp5kSuU+Pa87pcQcfKPxaC/HeEVlYw0mQLHXUOwyf6/ita7HvupnZPT35mC+P2ej2ht5t//n737Dmvq/OIA/s0Gwt57b1QEBVFR3HvPap2to9bWVjscHVpbba22VuvPDq2rWvdeuPcABcWFInvvvcn4/YGi4QZIIMlN4P08j4/y3pt7XyEJueee95wb8W3yJoeqkOXYBEFoLJ6gGm4F6RJjT0wdACWmz68e7IlpnWyRmF+Obo7GjS4bem28rzWGeJojLq8c3ha6YDdRRF1ZCrT1cM/SFUEZb+7u+eUkwLysANl8I1rmRMhHJBIjKqMYZdUCBNoZgctu3nNp74Pm171qrj5JUfjv9DqYVzSc+Zigb46DHsE46RyISAsXVHB4lH1MyovRM+0Jhsbfx9iY2zColr4EbULMLfRKeYL3Bi3AGecAhf0/mmPfwzQM9bagdQ4E/UqrhPjtejyG+1ggPq9cLboHa6KxO+/j3IvawP4v1+JwelYXDPQwp3lWxGtZpVVN7/TKlThqHcOiSgEs9RU5I4JQjjPRWZS6vv89SMOSPq5oZ6XYJ/H1uDyM3B6O1/HNk08zEbe0r0LP0ZRd91NwOlq5ZUSS8svR9XdqR/vfb8bj2wG1SRyKjg0eeZyBm/VuaBVXCiSyLwnFIkFIgiA0lkd+Gtj1mlg8NVFuUxoGgwEvCz14WejJ9Tg+j40O1vR/qj7v4C8RhASA/kkPsce7N00zImQlFIkx8d/7OPI4EwDgZ6OPSx90g6EMgfD6toWrsAu2WIxPIk9g7bXtlNfra3et3PFT4Diccg6AqIl6jnk6+jjq1g1H3bphQZ85mBR9HUvCD8GlKJOyr3lFEU4d/R6/dhqJxT1n0FYrsrhSAKFIDCYDpMZQG/ffgzT8R8NNgNYiraiiLgAJ1F6MbrmbRIKQbZyyMs/ocuJpJt7b/1DqttuJBQhPpjfL/5drcZjf3RE63LYdStgWTq1LDwC3EvMVHoTccS8Fbz/Ns0urVb4k/6871BJYinbwUYbU8abKB20PTwGnGUkeeyJTMfW/B3I/7q87iVh7NQ5iMbAoxBnzuze+Mo6QRJZjEwShsaR3xiZNaRpz3rEjZax/0kOVz4OQ372UwroAJFC77OtAVHojj2iYSEUXbEyREJsv/YH1V/+RGoBM0TXFpKGfo9uktTjhGtRkALK+co4W/ukwAF4zN2Nu/w+RqyX95sCiiOM4c3gFjCpUv3wJAE4+y4Lh12fhvPoSjjyW/gGbIIim5Uu5EH37fRGofX97UVBDGnW0Ef6/XoPesrOYfTCq6Z3VSG5ZdYPbRjdSGzO3rBpBG6mZYqq0+HQ03vlXejkfsViMHfdSMPW/SPx0+WWrziar/97zmjI+Yu2Pot68SilUbemCcBWUE7mVIL3Le1OeZpXgk2NP5H5c/ZIQshCKxJh3+DHi88qRkF+Oj48+QRipFSyXtn37giAIjdZOalMa5WZCarowKw8UcXUklrAOSHxQ+4mJZGiptXMvqEtg/rqTiDlB6hl45whrsPPsb3jnxQ2p23d698anvWejSEu3xecSsNjY0mEQjrh2w9rr2zDj6WXKPv2To3Bn7xcYOPY7JBmofml0WbUQZdUVmLQ7AtkrBqr8/ATRFpRWi/Dx1Tw8yasBQq8BAMa2t4KXhS5KqgRNPJrQRA8VVNagftMbZXueXdrgNk1I7DwVnYWC8moY6Ug2X1x/PR6fn3xW9/XDtGLsm9pJ1dMjCJlcb2FDm9f2PEhDFwdS2kpWJBOSIAiN5ZNLXQah7OXYmk7IZOGSfQeJMcvyQnTISaRnQoTMpBXILqyQ7aK6oLwahRWq68TLEdbg0ImfpAYgK1kcTBu8EDMHL1RIAPJteTr6eG/Qpxg/fDEKeHzKdveCdNzYtwReedKXUKlCjVCMO+SOOdHGRWU0XBu2Jc4mVdQGIN9y+HEGfrj4Elvu0ve6J+RTUqn6gLHVd+dVej4OU/Nv/BZL+TltDZN8nR2ISkdkaiE23UzA5Ze5rW7pPJ3OPs+iewoa68tTz/DDRcV1wI7LLVPYsdoCkglJEIRai8lt+E5x/c7YyXqmCg9qtEbnHf0xJvauxNiApAd4ZE7qmbQ2QpEYHxx+hG3hyWAAmBPkgE2j2yv1nCyRELvP/ILh8dTlZGm6xhg18itEWLopdQ6H3bvjvoUrjh1fBd96AXbb0jxc27cUQ8auwH0lz6MhVQLZu8cSyicWi7H9XgrORGfBzUwXi3u7NqvWKiG7Hy/FKuW4B2PIhaAyCUVixOaWwdlEp1n11wA0uUy+3bqrEIrE8DTXxeHpneWuwU3QS1qGZ+ff3tyQXNLHFauHeKlySq2WspvEtGbrrsY1vROhNCQTkiAItfa/W4lSx/WqyuFYLPnLl9SDlI20upADEuUvykyovwsxOfgnLBlicW0Dhz/vJOFafPPq7chELMaW879jfMxtyqaXhlYIfmeN0gOQryUZWCD4nTU44hpE2WZaWYJLB75Gl/TnKplLfexWkAHTmvx5JwmzDkThyONMrLkcizGN1GMj1NOHhx/hm3MxSCjW7CXXTzNLcOBhOlILK+ieCsWj9GLY/3ABXj9fgdnyc7j8svlNMRpb+vw66/95dinmHX7U7HMQ6mnDjXjUCMmNOOKNmJw3gWvy1GgbSBCSIAi11tAHVW8pyylbuhSb28y7+pom0cASMUbWEmM90p5Cu6Z59ZAqa4RkeY2a2iulC+8XJ58prfbVV2EHpNZjfGzqgB7v/KTyWoxlXG1MGL4YW9oPoGzTq6nAmSPfoX1OgkrnBABanLbxXqMptoZJZtVfjctDfvmbphFisRgvc0rxOKOYvNepqT/vJGHNFdVltoiklMdoqd+ux6P9uqt4Z3cE3H+6jCsq7nzblMWnnyGjuPZ3R3GlAB8ffdzsY514Kr2hR32KqtdGKMf7B+RvBlRRI5K6jFsTcVjkhqIi3E4sgEgkxsLjT3AqmiwxbwvIp2CCIDRSOyn1IFuSCWmlz4OHedtZyn3BoaPE1zyhACGp8nWVK60RYeG1PBgtvwDHVRdxXkrjFIJe0rpvRqYVoVIJy4HHv7iJ72/toYy/MLLBgHErkc2np2C3iMnC3P7zsSZgLGWbUVUZzh/6Fu75qTTMTDGqBSLse5CGHy+9xCMFNWhoax6kUb9vpa+amAhFYkz97wE81lyB7y/X0OePOyirbr3dXtXd+Rc5dE8BAKC99DQCfruOF400F3nbiaeZCPztOnx+voLfb1JvfIhEYon6ZJUCET49/gR5jXRQVrSSSgFOPs3EtbhcqZlq5+p976OzS6XWKpbF06ySZj2utRi38z4m/BtB9zRa7HJsLi31O9WFjb4W3VNoFXws9HAgKh0bbqj+pnBjmvv+RjSNBCEJgtBI7fKkdcaWPQjpZKyDZX3d4Gmui4EeZjg7KwgsDV0i6WSsI/djzjv4UcbkXZK9/WkpbqZXQSgSI6WwEu/sjoTg1YVLZnElKmvIhXpbEZjxAjtCf6OMJ+mZof+4lciiKQBZh8HA0p7TsSx4KmWTRXkRLhz8FnbF6hHckNeU/yIxeU8kvjr7HIEbbuBanHplT2mqJ5kl6L35NjhfnsJ/b2UUX4vPw7EnGTTOrG3bFq4ezWVqhGJEpBZhxr6mf2+mFlZg3M77uJ9ahOjsUnxy7AkuxEi+35RWC5BfLtlQ53FGCcxXnMOCY0+UnoGbXVKFzr9dx8jt99D7jzsYvf2eTBfgApEIf9xOxNxDUdj3II1kCsvo5LPWk+3VVI1PTXc7MR9norPqbkwRylG/oZE6sFhxHhvVLDDaWpAgJEEQGsm7XiakCAxEG9vK/HgmA/hhsCeefdkbZ2cHoYO1vqKnqDBmulzK2LgOVnX//rK3i9zHvGLfHjVMlsSYvEHI/15IZoAUVtTgYXoxem++DeuVF2DybSj+upMo99wIzWJZmo9jx1ZBWyCZsVPM1cbw0d8gVd+MpplR/dRlPL4PmkgZtyvNxamjK6FXpVkXU1klVTj06E1ArFoowl93qDdoCPmN2BbeYP3UW4mkuzldomXMPFSVsOTCJoN1J59lQVBvH1mDqWIxsOlmAiJSldNN/LW9D9Pw8q3urmeeZ+NeSmGTj/vwyGPMP/IYW+4mY/KeSKy/Hq/EWRLqqqJGiCuxuXiW2foyXIM33cKwf8Lhv/46Mosrm3WM/PJqZCupDE5z7IlIxbqrcXW1GMViMQrKFZN13dwbEY8y1G8lR7VQhCet8DmtDkgQkiAIjeRVb/lkvKEFKjk8mmajXKZ8Hib4vqnhyGEx8EFXx7qv53Z1RMTCnnIds5Srg9vWnhJj3vkpsJUjG0zait7ADTfqLtwrakT46OgTFFXUUHckWgXmq07YluWFEuNCBhPvDPsST8wcaZlXY5Z3m4zf/EdQxtvnJmH/qTVgiZSfwXtbQUGsnFLqRc2+h+kKOXZbR1ZhEYqSKSX4EJYk33vAyWdZEIrEWHUxBj3/dwtzDkZJff0312YpTQDPyFCbbXt4isTXf98lN0HamtSiCrRbexV9/7yDduuuNv84hRXYeCMeW+4myRQQu5dciK/ORuOP24kqyVKMzS3DvxHylW4RicT46MhjmC0/B8vvzmPy7ogmm/KIxWIcfpSOz048VVp28dEnmfjy1DN0/u06ttxNgtOqSzD59hz8fr2GxBZmtv5w8aWCZtmwAnJdofFIEJIgCI2jX1UG21LJDJVoYzu5jhHsZKzIKSndrkl+2POuP34Y7ImwBT3Qx81UYrufjQF2Tuoo1zHPO1KXZPdPetiCWVIJRWJEkTp1rdbXdw+gTwq1OcHCXrMQ6tSJhhnJgMHAol7v4592/SmbBiU+wKZLf9WmHynR8nMvlHp8giBal7JqAX68/BLfhL7AzYR8bA1Lxtid91t0zIoaIf66k4jFp55JZEG+1pxgQkwO9TiE+koral5m39u23E1q8ZLs1MIKBG64gU+PP8XcQ48Qsvk2yqsbDixej8tD8P9u4sdLsZh/5DGG/xMuc7CupEqAmfsewGX1JYzdcQ8ZcmQ3/nZDvkzfu8kF2Hw7se4jxb6H6TjVxFL8ny7HYvyuCKy/Ho/JeyLxrRI/L5RWCTH30CMkF1YAAKLSi/H5yactOJ5AIc+pxuy8l9L0TjS4lZiPHy7G4OjjDKU0LmttSBCSIAiN4ymliUS0iXxByBkB8u1PNy6biUl+NljW1w0dbQyk7jPF3xY/DvFCByvZlpYroi6kLESkRlSr1Cv5Eb69s48y/k+7/tjkN5SGGcmBwcAH/T/EWUd/yqa5j0LxSeQJGiZFEATRsC31sgxvJuSjuLL5GUGTdkdg3uHHWHtVdV3FCfXis/Zqi49x/GnL61vuf5gukTH8JLMEl142XN94a1gSaoRvPltei89DfJ5kILSh18aiE0+x834qEvLLcfRJJqb+J/vn3qIK+TIujz6mdoHfeb/xINoftxMb/VrZjtSbc+jzbEzf+wCfnWg6OKnsAKRYLMbM/Q+Veo7mKq4U4NvQFxi78z6G/hNGApFNIEFIgiA0jleelCCkDJmQ1vpaCLQzxLaJHRHiYtrk/pqGwWBgcR9XPPwsBAemNp2FFmnhglwtPYmxfslRYKpgOSqh2czKC7HnzC9gQvJD1mNTByzoMwdgqH+TJyGThXeGfYlHUhparb22Hb2SH9EwK4IgCOlSCqkX+JU1jS/tbEhOaRVOKCB4JM3O+/ItWZWVKjuFE6q1Q0p2242E/Ab33x2ZRhnLqff8qN/N/bWb9Y57OTa3WV2QqwRCJBZUNLpPiZRl4lmN1IbMKK5Ear1AXv2GVap0JTYXw/4Jw78RqWpR77W0SjOuT869yIHrj5eQXKBZdcZViQQhCYLQON551ILu0SZNN6W59EFX3P2kh8ZlQTaHuW7T9THFDCYuOHSUGDOpLEGnLJIVQTRCLMb/Lv4JqzLJmmZlbB4mDvsSFRpUm7WEp4Pho79FRr3u3WyxCPtOrZWrRipBEISmkDWw0ZzSEVtlrAspb71o0p249VLGipk7ctRdLa0SoFJaofNGTJMjg/JtYcmFWHM5Vmqm3MoLMc06prLsuJeikvrIT7NKkNvKbjIkFlTg5yvkeqohJAhJEITGkbocW86akK1dkINR0zsBOC9lOeqAJMUvySaUIyG/HAuOPcH+h8opXi7NxBc3MO7lbcr4h/3m4bmcZRHUQYq+GUaM+hqVLI7EuHlFEQ6d/Ak8Qev6YEwQBCGr7y/ENJq5JU1T2WFAbdndIVvDmjstoo0SicT4RQnlA4y/DYXXz1dk3j+9qBIHH2U0+3xLz0Tjx8vUmqt/3VGvxk7yNuIhJG1W8VJ6TUKCkARBaBzvPMllG6m6Jijh6dA0G/XEZTMx3Nuiyf3qZ0ICyqkLSSjPppsJmLQ7Ej9ejlX6uSzKCmobt9Tzr1cv/OvTR+nnV5YISzfM6/chZTww8yU2XNlCw4wIgtBkYrEYv99MQP+/7uB7NctuktfD9CKFH/NFdqlcmWoEAQC/XIvDF6eeKfy4st7DLa8R4t09kbD9/kKLz7k1jLqqiyDaChKEJAhCo2jVVMGpSLKOUbRx00ux26Ive7s2uU+6ngmemNhLjHVNfw69KlLHRNP8qew7rmIx/riwGSaVJRLDabrG+KTPHOWeWwV2tuuLzb5DKONzHp3DhOc3VDKHzhtuYdLuCBSUk+xLZROLxdhyNwnDSDYWoQR/3UnCJ8eeNNpcQ1MoI8k+p0y+7EpCNh5mfLqnIJOVF2Iwbuc9bLwRL1cDj8YCd2efZyM6q0Tpq0L2PqDWo2yOJBkyhulUWaMZ9RcJzUSCkARBaBT3gnRKM4zoekE0olY3R1mXZEt2yWaLReidQppyaJrXxcyFIjEepBUhp1SxF3mTnl/HqDhqwGZO/49QqKWr0HPRZWHv93HL2pMy/teF/8GpkNrlUhn2P0zHh0ceq+Rcbdk/4cmYe+gRzjzPpnsqRCtEspwIOrCZmnFp//vNBBx5nIlPjz/Fd3JkCr/MLWtw2/cXYuCz9iq+CZW/jqmiXY3Lw4C/7uBvGeujqqOFMnTDftvxJ5mYtpespKrveXYp3VNQS5rxTkUQBPFKc5vStEUMGTsU1w9CAsBAsiRbI6UXVaLd2ivotP46LFacx1kFBVgMK0vx69WtlPHtPn1x1rmzQs6hDmpYHEwYvhjZ2gYS4wbV5dh7ei04QtV0qdz/MF0l52nLtt4lQSJCeSLTFL+EmSBao+8vxCBagYGaNVdi5W56pGgHotJxUcOzoLfIGUAdveMe7qUUKmcyGmzw1nAIVNHdR8OQICRBEBrFizSlUbjrNj6Uphz9m2hOk1JKulSqow034vEip+FMgeZadfNfWJRLXlSn6JpiUa/3FX4uumXommD64E8p44GZL7Hq5m7VT6gR1UL5unkSb4STiyWCIAiplp55rrJmd4omFImRXKjeS501AYmbKUZacRVeFtIbFFdHJAhJEIRG8cxPoYw908COvOqkksPDdVsfiTHXwkw4Fzbc+W/WBc2+w9tarVVC18iAjBjMjQqljM/v9wGKWsky7PrOOXXC2s6jKeOf3z+KQQkRNMyIqrxagL5/3qF7GgRBEEQrcyk2DxHZpDYxQShCSbUYQhLVlUCCkARBaJT6nbFztfSQq2PQwN6ErKQtyW6sS3ZJDfll2hYwRUJsvvgHpQ7rMZcuOOUSSNOsVOPr4CkIs3SnjO88ux7mZfR1dS2urMGHhx9Bd9lZFFWSjGSCICQJhCJcj8vD0ccZtC9LbYiGJtmpvadZJU3vJKNzSSSbkCAUYf6VPPQ/kol/o0l9yNfYdE+AIAhCViyREG4Fktl50SQLUiHOO/gB2C4xNiDxAf7sSO0WTNBDl6f6X9kfPjyLTtmS2ZVlbF6r6IbdlBoWB5OGfY4Huz6FQfWbbvFmFcX4+/z/MGrUV4CMdVcVafaBKBx81HCWMkHoVZWjc9ZLeOanwb44B/bF2bAsLwRPUAOuSACOSIBSjhbytfRQoKWLdF1jRBvb4bmxLaJNbFHK1aH7v0A0k1gsxsR/I3D0yZtGWsdnBmC4jyWNs6J6mF5M9xSIJuRVku7IynbpZQ66ORpDm8PCs0zFBZBbals4qZmsaCU1Ymx8WIypPYvRyd6Y7unQjgQhCYLQGC6FGeCKJDN/SBBSMZ6YOiCdbwzrsvy6sT4pj8AWCiBgkV8V6sBaX0ul5zMpL8Z3t/dQxld2fQcp+mYqnQtdEg0sMXvARzhw6meJ8RHx4Zj55CK2t++v8jmRACRRn05NJfonPsSw+HsIyngOr7xUSvayrIQMJh6YO+OGrQ+u2rbDJQdflHNU+96jiTKLK5FZUoX2VvpgMVV/c+K1xxklEgFIABi5/R72TemECR2taZoVQajWvodpdE9BJv3/ugsvc11c/bAbdtynlpuiy6wDUXRPodU6+iSTBCFBgpAEQWiQ+kuxASDamHTGVggGA+cdO2LG08t1Q/rVFQjKeIGb9epFEm3Dijv/wahKssnNExN7rO80kqYZ0eOQRzC2J0Rg5tNLEuO/XdmKK/btkWigXhlGRNvAEdZgZGwYpj67gn7JUdAWKKZ+G0ssQuesWHTOisXCiOMoZ3Nx1qkTDrt1w0mXQJRxtRVyntZkxfkXWHXxJQDAx0IPFz/oKtPjCitqEJlaBF9rfXBYzQtcPssqAYMBmOnyAAD3Uwul7vfbjXgShCTajB8vxaKfmynd05BJdHYp9kSmYZ0Sanq3Ni9zNX85c165epbIUDUShCQIQmN4SWlKQzIhFeeCg59EEBIABiQ9IEHINsg7N1lqM5oFfea0yczYT3vPRu+Ux3Aszq4b06upwPbQDeg7/geImCwaZ0e0JQ5FWfggKhQznl6kdKxXBh1BNca+vIOxL++gmKuNPV698KfvIDw2c1L6uTXF6wAkUFuT74/biU0+JrGgAtbfnUeloGUd7vu8ak71bX93rBjo0eB+d5Poq2NLaCa663ZuD0/Gz8O8m/34iy81p4HiohNPG93+4eFHqKhp2XtFa9D5txt0T4FQENKYhiAIjeGZl0oZe2ZMgpCNmeAre+bDBYeOlLH+iQ8VNxlCM4jF+OXqP2CLJT/wHnENwlX7DjRNil4lPB3MHPQJZTwk9Sk+jTyhlHPml5POpIr2LLMEU/ZEwmblebqnIjeXgnT8E7oBMds+wOJ7h+UOQJazucjR1keqrgmS9MyQr6ULEeTLvtOvrsC8qLOI2vUJru1bgsHx9+mPVKihNVdiZdqvpQHIt628EIOM4kqFHY8g6I55kYyxN/68k0T3FAhCodpeOgNBEBrLK18yCFnC0UaqnmYst6DLPxN8YWuohYdpxeBzWTj5LKvBfXN1DBBh7iLRiCQg8yWMK4qRr62viukSamBwQgQGJkl2Rq9isfFlyEyaZqQertm1x/pOI7Ew4rjE+Kqb/+Kcoz+emjoo9HxDt4bh9sfBYNDQ/EZeVQIhiisFdUtC1dGV2Fz0fZU1pklsSnLxw81/MSX6GljipqMCZWwe7lm6IdzKHfcs3RBraIVkPTMUaOlSGikxxCIYV5TCrTAdnvmpaJebhO5p0eiUFUu5CVFfj7Rn6HF0JR6aOWF1l/E47N4NYgbJbQCAKgUGF1/79Vp8k/tEpCo/M5ZoO4qrSeYdQRDKQYKQBEFoBrEYHvmShaZfGNvQ0p1Wk/B5bKwbXruc+kFaUaNBSAA47+gnEYRkQoy+yY9w0CNYqfNs7dKKKvDVmeeIyS3DEC9zLOvjBiaNzQsawhIJse7aNsr4Bv8RiDe0omFG6mVZ8FQMSIyEz1v1aXlCAXad+RVB765DDYujsHOFJRciIb8cziZ8hR1TGf64nYjPTz5FRY0IA9zNcGh6Z1o6uTdl861EuqcgF62aKnwWcQxLwg6BL6hqdN9MHUMcdw3CcdcuuGLXHlVsrkznEDOYyNPRR56OPu5ae9aN86sr0CPtGUa/vINRsXdhVtFwJ+OOOQk4cOpn3LdwxZIe03HZwVe2/yChcKJWmpWaUlgBthr+vmztovNr8Pn1/KZ3JAiCkJP6fUokCIKQwro0H3o1FRJjz41taJpN63Xe0Q9Lww9JjA1MjCRByBYaue0eItNqs1TuJhWAw2RicR9XmmdFNePJJUrGcZaOAVZ1mUDTjN7wNNfF82x6i5JXsbmYNngR7v73OTgiYd24X04Cvrp7ECu6T1bo+Qor3ixHE4vFSCqoaGRv1csrq8ZHRx/Xrcg9H5ODzbcT8WVv9XtuH36sOV3FByRG4s8LmyVqkNYnQm0zsb87DMIp5wCF1mot42oj1KkTQp064cN+89Ar5TFmPTqPMbF3JJ73b+ucFYuLh75BqKMfFvWaheekXjOhIA4/XAQA+FqTFRmqdi2NLPEnCELxyLoJgiDU2uuOke4FaZRtL41IEFLRblt7opSjJTHWP/Gh0up+VQtESMgrh7iVZnAAQHZJVV0A8rUtYepX30erpgrL7+yljH/b/V2U8HRomJGkG/O70z0FAMADCxes7PoOZXxp+EG0z0lQyjmzSqrQaf11OK++1PTOKnQ/tZDy1rDhRtPLRgnpDCtL8U/oBoQeXtFgAFLAYGKHTx94zdyMIWO/wzG3rkptFiVksnDJoSMmDf8S9nO24Zvu7yJb26DB/QclPsDDXZ9g1Y1d0K5pPIOT0By3EujPiItKbzgjlyAIgtAcJAhJEIRa62JvBADwkBKEfEGCkHJxMdEBq4klTTUsDq7YtZcYsyvNldqZXFY77qWgqIJaYPzYkwyYfBsKlx8vwfvnK0jKL2/2OdRZpYCaORSfR/2/isViXHqZg1+uxuF+SqEKZiZp/sMzsC3Nkxh7bmSDbe36q3wu0pjwZVtiqgo/BY5DmKW7xBhHJMS20I1gCwUKP9/PV2LxUA0vwIUi6s2DjGISeGqO/okP8HjnR5j5tOFA8w6fPvB470+8N+hTvKRhJUAW3wirgibCafZWLOg9B8kN1GTmigRYGn4IT3fMx7C4cBXPkpBFabV871OydPwmCEWbsfcB0orUawUAQRAtR4KQBEFohPr1IIFXNSEJmelrcbBqsGeT+5139KOMDUh8IGVP2eyKSEWfP2+j6q1gnEgkxpyDj1BWXTv2IqcM352PafY5WoPvL7xE/7/u4otTz9Bl4w3sfUB9ziuLQWUploYfpIx/HTwVQiZLZfPQFEImC+8PXICqehlonbLj8Pn9owo914vsUqy/Ll924eFH6QqdA6E8bKEAP13fgXOHl8OmVHq22W0rTwS++wveG/QpEgwtVTxDqgoOD5v8h8H9vb/wWch7yNfSlbqfY3E2Thz7AQdO/ASz8kLVTpJoUFR6EQJ+uyHXY/5T4e8jgnhtV0Qqhv9DbmQQRGtDgpAEQWgE6cuxrWmYiWb7srcrHIy0G93nvINig5AA8CCtGDfi31xgZ5VWIbesWmKfHfebn22p6UQiMdZff9MQSCwGNsgZeGqJL+4fhXGlZL3FexauOOLWVWVz0DTPTO3xfRB1WfbyO3vhmaeY5/L8I4/R43+35H7c+F0RCH2ejYNR6ei8/jo6rLuKrWpYAqCtsy/OxrX9S/HlvSNSt+dr6WL6oE8RPGkN7lu6qXh2Tatmc7C+8yi4vP831nYejZoGbliMe3kbj3d8jNEvb6t4hkR9CXnlCNlMfg6E5niYXoysEpJhTxCtCQlCEgShEeoHIZP1TFFer3YhIRtzXV6j218aWSNR31xiLCT1CXiC6gYeIZtwGpYYa4oakQhFlZLL41T1/bIszccnESco40t7TCfd55vwc8AYRJo7S4zxhAL8c24jmA008JBHWHIhJVgvqyWnozFpdwQi04rwJLMEcw4+wp1EaqadUCRGXjPPoQ7EYjFuJ+Zj570UjSrp0Ds5Cvf/XYiuGS+kbj/iGgSfGf/Dvz591P51WKSli8UhM9Fx2gZKOY/XzCuKcPjET9h15hcYVtLbYKot2x+VhuJKxZeMIAhliskpxb8RbfdGNUG0NiQISRCE2uMKauBUJFmkP4bUg1QeBoOyJFtHUI3uadE0TYhQpq/vHgBfIJllcMHeF5cdfGmakeYQsNh4f+ACSgZY14wX+CTyJE2zqvUooxj1SzbuipDsfH74UTrMlp+D2fJzCPnfLeSXa14wcumZ5wjedAsz9z+E99oruJmQ1/SD6CQWY0HkCZw7tBymlSWUzcVcbbw75DOMG7EUWXwjGibYfNEm9ug7/gdMHbwQWTrSm9dMib6GRzs/Ro/UJyqeHRGVXoSz0Q13XCcIdRWy+Tam731I9zQIglAQEoQkCEJt3E0qwLt7IjF+531cepkDALiZkA+XogywxCKJfUkQUrmkLckemBhJw0wIZXIqzMTsx+co48t6TKNhNpopytwZPwWOo4z/cGs3XAvUqzbjo7ea21QLRJi5/yEKXzWNupGQjx8vxdI1tWapqBHit7fKFlTUiPDVmec0zqhxHGEN/jm3Eb9d2Qp2vd9pQG0JBP+pv2GvV4jaZz82iMHAHu/e8Jr5B3Z695a6i21pHi4f+Brf3NmnkIxhotb5Fzl4kd1wlqnfr9dxQw26XBMEQRBtGwlCEgShFlILK9D/rzvY+yANhx9nYMjWMCw4VpspQZrSqN4l+w4QMiR/RfRPekjPZAilWRZ2EJx6QYAD7t0RoaL6cxZ6jZcG0BSrukzAExN7iTFtQTW2nP8dDCnBJnUQl1eG0irJn/0v1+Ia2Fs95ZRWoVoo+f29kZCPXptvQSBUr++7XlU5Th1Z2WD36w3+wxE8aQ3iDa1UPDPlKNTSxczBCzF6xDKpWZEssQjf3f4PFw59C6tSNc9e1RCbbydi7VXNeg0TBEEQbQ+76V0IgiCU7+iTzLpOyQBQIxRj080EAIC7lGwiEoRUriItXYRZuqNbxpusoo45CbAoK9C4JYKtxdqris1ScyrMxLRnlyXGhAwmvu3+rkLP05hFPZ2x+LTmL/OvZnPw/sAFuL33S4ms7ZDUp/ggKhR/dBxC4+zeuJNUgAm77sPTXBdDvSzono7SXI/Px5orsfiqnzvdUwEAWJfk4fTR7+Cbk0jZVsniYM6Aj7C7gaxBTXfcLQi3bLyw+eIfGCelMU3vlMd4uOsTTB+8EKFOnWiYIUHUIxbDuLIEjsXZsCvOhVFVKYwqS2FYVQbDqjKwRUIwIAbjVbmLahYbxVwdFPFq/+Rr6SFV1wQpembI5BtC1EDDJoIgiLaKBCEJglALjzOKG9zmkZ9KGYshnbGV7ryjn0QQEqjNhlTmxbJIJAaTqaHLEJWosKIGjzOo9eNaQloW5B6vEMQY2yr0PI0Z18G6VQQhAeCelTt+7TQSX9w/KjG+5voOnHHqhCQD9Qj6HXqUAQDYE0nNMG9Nvgl9gXc62sDFlE/rPHxyk3Dm8HewK82lbEvVNcGYkcvUsvO1IuXqGGDC8MV478kFbLz8N3TqNTkzqyjGmSPfYXWX8fi222QStCFUxqKsAH7Z8ej46o9nfioci7OhX12hkOPXMFlI0zXBCyMbPDO1x1MTOzw1scdjM0fSXJEgiDaLBCEJglB79TtjV7I4SNYza3D/4d4WOPksS9nTavXOO/phxZ29EmMDEiOVGoR8mlWC9lb6Sju+porNLVPo8RyLpGdBruoyQaHnacw3/d3B57auYMPybpMxIi4cHm+9Z+nWVOLv85swcNxKtarzl6CCTtJlVQJ8fOwJrsTmop2lHv43pj3sjXSUft7Xem6+hSef94KRDldl53xb17RonD66EoZV1NfvAzMnDB2zHJm6xjTMjAYMBra1H4A71p7Yd2ot2ucmUXZZFnYQnTJj8e7Qz5CvTX4PEAomFsOtIB29Uh8jJOUJQlKfwKZUuTUyOSIhHIuz4VicjYFJD+rGhQwmnpjaI8zKA2GW7rhj7YnnxrZq9TuCIAhCWUgQkiAItVe/JuRLI+sGMyUYDOD4e4Fgfk5vZ9rW4J6lGwp4fBi9dQE9MPEBmCKh0jJViiprlHJcQtKysEOULMj/PHvipYrKHPRwMsbCns6oFqhX3b6WquTw8P7Aj3F931Iw8aY1df/kKLz35AK2tR9A4+xkcyshH92dGg+MlVUJsOdBGrbcpQaS3vbl6WjsuJcCAEgqqEDe7kjc/jhYYXNtSkZxFc4+z8Zkf9Vl977WJykKx4/9QOk8DwChjn6YMHwxSrmqC8iqi2gTe3SZvA6/Xd2KOY+oTbEGJj3A/d2LMHbEUjywcKFhhkRrolVThb7JjzAyLgyDE+4rPegoK5ZYBN+cRPjmJNa9DtL5xrjo4IvL9h1wyd4XaXqmNM+SIAhCOUgQkiAItWZcUQzTSsllqC9IZ2yVEDJZuOjgi/Exb+p4mVUUIyDzJcKsPeU+nlgsbnonQukcirIwvV5zDCGDiVVBys+C/GtcBwzztoCVfu0ytOwSaoBG09228cYmv2FY8EDyRsgvV7ch1LET0vVMaJqZbNZfj2s0CCkWizFqxz1cekldXlzfH7cTJb6+m1SAyhohtDiN38TILavCjfh8OBnrwNdaH4wWZAc9TC/GZP9mP7xZhsTfw6ETP0FLSL2pst2nL+b2nw8Bq+1+BK/k8PBB//m4ZO+LLed/pyx9dSzOxq29X+LDfvOwo10/mmZJaCrtmiqMjL2LcTG3MDDxgdQbAerIuiwf055dwbRnVwAA0ca2OOvUCcddu+C2tReEpEwBQRCtRNv9BPRKWFgYTp8+jQcPHiA7OxulpaXQ1dWFlZUVOnfujDFjxsDb21vh583Pz8fBgwdx9epVxMfHo6ysDMbGxrC3t8fAgQMxYsQIGBhQuwkSRFsjrSlNjAzZWu93scc/Ycl1X3NZTNgZkvo78jrjFCARhASAoQn3mxWE/Cb0Bfq6mSHIgTS2oZO0WpB7PXs0uxaki4kO4vKaXtob9VlIi5faj21vhcOPM6RuG+ljgeNP1aMMw7IeUzEsPhzORW/mY1Bdjj8ubsbIUV+r9ZK7I48zG92ekF8uUwCyIQJR4zcjotKL0PuPOyisqA3gLenjitVDvJp9vvi8MpUGu8fG3MKe07+AKxJQtn0fNBHLu01W65+/Kh30CMZDMyccObEaPnkpEtu0hDXYdm4jumTE4JPes1HN5tA0S+LT40/onkKTGGIReqU8xpRnVzH25e1m13TM09LDSyMrJOpbINHAHIn6FsjR0UcBTxeFPD4KtfioYtU+F8VgQMxgQEtQDYOqchhUl8Ggqhzm5YWwK8mFfXEObEty4VKUKfG7QFZe+anwyk/FoojjyNXSwymXAJx0CcQ5R39ST5IgCI3WZoOQqampWLx4Me7fv0/ZVlhYiMLCQkRHR+Pff//F0KFDsXLlSujq6irk3BcvXsRXX32FwsJCifGsrCxkZWXh3r17+Ouvv7Bq1SqEhIQo5JwEoanqL8UGZGtK83mIC049y0LWq4vPFQPdocNts295zXbWiZpCNCT+Pr7tPqVZx3tv/0M8+7J1doHVBA5FWZghLQuyy8RmH/Pah91h+/2FJvdTRK3P30b5NBiE3De1E7SXnGnxORShnKOFOf0/wsVD30iMD4+/h0nPr2Ovl2b+bi+rEii8Punb4vPK4PfrdYmxdVfjsLSPG/S02Nj/MA0/XY5FtUCEBT2cMNjTvMljHnmc2WRgVVEmRV/DrrPrJTqkv7ao1/v4rdNIlcxDk7w0tkHQ5HXYeu53TIy5Sdk+91EofHPiMW74UrXPIm6tYnKU95pvKfOyAsx6fAGzH52DQ0mOXI/N19LFDRtvRFq44oG5Mx6YOyNN10QpNwl0airhlZcCn7xk+OYkIiAjBp2y46Bdr0lTQ0wrSzDj6WXMeHoZZWweTroEYr9HD4Q6+aOKTU/NW4IgiOZqk1fkiYmJmDRpEvLz39QF4XA4cHd3h56eHvLy8hAbG1u3dPD06dOIi4vDnj17WhyIDA0NxaJFiyAUvslCcXJygpmZGdLS0pCWVhtwycnJwbx587B582b06tWrReckCE3mUUDtjC3LcmwPc13ELe2DsORCuJjoqLQZQmuSzTdCuKUbAjNf1o35Z8fDqjQPGbryXxA+zy5FZY2w6R0JpVgaTq0FudezB16YNL9mniqTuowbaTDCY6vXUrXLDr74u8NASt27jZf/xiX7Dsjma05GsFgsxtehz7HuahxqhC0vq3AoKh3fX4xBaZUQc7s64IteLmAwGJi29wFlX4FIjLTiCjCKGZi8JxKvqzrMO/wYuyf7tXguijL+xU2pAUgRGPiw3zz87TuIppmpvzKuNiYN+wJhkR74+dp2sOt9D4MyYnB/90KMH74Et2wVvzqJ0DBiMYLTnmHewzMY+/KO1KxjacrZXFy074gr9u1xxa4DHps5QMxgKnmyr87N0UKEpRsiLN3qxthCATrkJqJb2nP0SY5Cr9QnUptY1ccXVOGdFzfwzosbKOLq4JhrF+z37ImL9r5tuswDQRCao829UwmFQnz88cd1AUgWi4V58+Zh5syZEgHGrKws/Prrrzh27BgA4Pnz5/jqq6+wYcOGZp87JSUFS5curQtAuru7Y82aNRLLve/evYtly5YhLS0NQqEQixYtwtmzZ2FhYdHs8xKEJnOTshz7hYzLRnW4bPR2JYW9W+qMU2eJICQADImPwD8dmtdkg1SGpId9cTZmPrkoMSYCo0VZkACgx6P/o4S/jXqWL/my5wwMjo+AXemb5csmlSXYePlvvDN8MY0zk8+DtCL8eClWIcdKKazApD2REL5alr3kdDTaWephkIc5bicWNPi4w48zUL+s7L8R1JtUdBj98jb2nF5HCUAKGUzMHPQJdnuT7O8mMRj4rdNIRJq7YP+pNbAoL5LYbFleiMsHv8LCXrOwueMQsqS9DWKKhBjz8g6+uHcEAVmyvR9laxvglEsAjrt0wUWHjqjg8JQ8S9kJWGxEWrgi0sIVm/yHgSUSolNWLPolRaFf0kMEpz2jBOTrM6gux/RnVzD92RXkaulhn2dP7PLpg/sWruQ1QhCE2lLN7R81cuTIEcTExNR9/dNPP+Hjjz+mZDhaWFhgzZo1mDlzZt1YaGgoHj582Oxzr1+/HuXltXWzbGxssHPnTkq9yaCgIPz3338wN69dYlRWVoZNmzY1+5wEoenqL8fO1jZAoZZiSiMQsjnt3JkyNiSBWsqCUG+Lww9LyYLs2aIsSADQVYMgJIupnhdbxTw+Puj/IWV8QswtjKlXa1WdnVBgrc2Tz7LqApCvbQ9PafLmRHIBtcbbuRfyLb9UhuGxYdh3ai0lWFDDZOGdYV+QAKScrtu1Q6cpv+GOlQdlG0ckxKbLf+GfcxvBk3EZK6H5tGqq8MHDM3i+fR4OnPq5yQBkGZuH3V4hGDR2BWw+2IFZAxfgpGsXtQpASiNkshBu5YHVQRPQZ+JqWMz7F1MHL8QB9+4o4Wg3+XjTyhJ89PA0wvd8hic7PsKX4YdhXZKngpkTBEHIp80FIY8fP1737+DgYIwYMaLR/RctWlQXEARql2Y3R1ZWFs6de7Mka9GiRTA2lt590tLSEl999VXd10eOHKHUjySI1iZeSmMLpkgI10LJ+m+y1IMkFCvSwgWZOoYSY/2THoIroHZ+JdSTRVmB1CzIH4JalgXZ24XUaGvKWefO2CklELXp0p8wriimYUbyK6mSbbmjLLJLqU1i7qcWNvqYny7FQqyGOdSD4+/j4Mk1lOC+gMHEpKFf4LB7d5pmptnS9UzQe8Jq/NVB+hL2mU8v4fq+JbArpj8ITSgPv7oCi8MOIXHLLGy+9CdcCxuv7XrL2hMzBn0Cq3k7MW3IZzjv6K/RHaULtPWwx7s33hm+GGYf7sbgMcuxrV0/FPD4TT7WOz8FP93YieS/30PooW8xOfoqtGs0o0s4QRCtX5sKQlZXVyMyMrLu62HDhjX5GC6Xi+Dg4LqvHz9+3Kxznzt3DgJB7Yd4PT09DBw4sNH9+/fvXxekFAgEuHjxYqP7E4SmeZFdip7/uwXjb0Lh8dNlXI6ldlt1KM6BllAy0CVLZ2xCscQMJs46dZIY062pRM9U9e+YSdT6NOIE5bV00L17i7MgtTgtu8Bjs9Qzg7G+8R2sWvT4Rb1mUQL5luWF+PXqPy06bluxKyIVex9Qm5TRqX/iAxw+8SOlHp2QwcSUIZ/hiHs3mmbWOlSzOZjX/0PM7v8RqqTUuQvIisX93QvRK/kRDbMjlEm7pgqf3TuK+K2z8ePNXTCvKGpw31KOFv7qMAgdp25Aj0k/Y5dPX5RyW18N8Go2B+ecOmHWwAWw+mAXRoz6Gns8Q1DaRJdsJsQYkPQQu8/8isw/puGf0A3omfIEjCaWeRMEQSgT/WuoVCgtLQ08Hq9uSbSLi4tMjzM0NKz7d0FBw/WKGnPnzp26fwcGBoLD4TS6P4vFQteuXesyL69cuYJx48Y169wEoY7e2R2BqPTaLKDCCukZde4F1ItOWZrSEIp32jkAM+t1VR6acB8XHdWnMQQhnUFlKeZFUbtGrwkcS8NsJBnrcOFprovn2aWN7hfsJH3lgKoM97HEwUfSu3LLokBbDx/2m4cjJ36UGJ/27AoOeATjjHNAS6fY6pVWqU9Dq65p0Th6fBUlsC8CAzMGfYIDnj1omlnr80+HAXhs5oBDJ36Cbank0lKzimKcP/QtvgiZiQ3+I0gNPA2nVVOFuY9CsTj8MCzLCxvdN1XXBL91GoGt7QegWIbMwNakms3BKZdAnHIJhHZNFYbG38Pk6GsYmnCfkpX9Nr2aCsx8egkzn15Cor45dnv3wr9evfGS3NwnGsESCWFQVQbD138qa//Wq66AlrAaWoJqaAlqXv27BjxhDRiNrFwQMFioZHNRyeagkvXm7yo2BxVsLoq5OijmaqOIx0cRTwfFXB2UcbTI+3sr06aCkE5OTnjw4AFKSkqQlZUFW1vZMkBed6wGAAOD5hW/f/HiRd2/fXx8ZHqMp6dnXRCyuRmYBKGOyqoEdQHIxnhIC0KSD0u0uODQEdVMtkTWz5D4+1jYe7bcx8ouqQKX3aYS8Zvt8stc9HFrWXOlD6POQL9asp7eWUd/PLSQ7Uacsh2a1hlzD0XhVgNNSbgsJpb1dZO6TVWGepk3vVMTjrl1xX73YEyMuSkx/ueFzWg3Y1OrupDu88dtfNFLPZ5fitYuJxGnjq6EjpSahLMGfow9pAakwoVbeSBgyq84cHINeqQ9k9jGFouw/uo/6JwZizkDPlL7un8EFVsowOzH57Es7ABsSvMb3feJiT3WBYzGXs+eqGE1ntDRFlRweDjkEYxDHsEwLS/CO89vYNqzy+jcRN1Mx+JsfH33AL6+ewBhlu7417s39nv0QJ6OvopmTtCNJ6iGY1E27EtyYFWWD8uyQliWFdT9sXr1t0E1tVyWqgkYTBS/CkgW8XRQwNNFnrYe8rX0kKutjzztV39r6SNXWw952vrI1dZHEU8HYga53lBHbSoI+Zqenh709PRk2re0tBS3bt2q+1rW7Mm3VVdXIz39TYdfBwcHmR73dpA0KysLlZWV0NJqPO2eIDSBsH6L0wbUb0oDAC+M3rwu/Gz08SBNM2qqaboSng5u2Hqj71tL39wKM+CWnyb3XXSvn6/g6EyS+QUAp55lYe2VWJRVS89emPjvfVz6oBsCN9xo1vG1a6rwScRJyvhPXdQns97bUg83PgrGz1diseR0NGV73LI+sDFouii/LA5P74yxO+VvqmSkw1XI+Rf0nYO+yVEwrSypG7MtzcPaa9sxd8BHCjmHOrgal4dbiY0HEzSRU2Emzh1eDqOqMsq2Of3nY0e7fjTMqm3I4huh3/jv8cvVbfjoIbU++7vPr8E7LxljRy5FooElDTMk5CYWY3TsHfx4YxfcC9Ib3fWOlQdWBU3AWadOJKjQgFwdA2zyH4ZN/sPgnZuMac8u493oq00GdrtkxqBLZgzWX92K006dsdu7N045B6CaTYK8Gk0shllFEbzyUuFSmAGn4iw4FmXBqSgLTkXZsC7TnN/RbLEIxpWlMK5sfNVMfUIGE/lauq8ClLWByvxXAct8LT0U8vgo0NJFweu/tXRRwNNFEU8HIg2uJ6sJ2mQQUh7//PMPSkvfPOF795b/DndOTg7EbwVdzMzMZHqcqalk9ktOTg7s7OzkPj9BaKr6y7EFDCbiDS1omg1xxqmzRBASqF2S/ZucQchKgQibbiYocmoaKTa3DGN23INA1HBQPq+8Bh1/vdbsc7z35AKlntYta0/csJEtI59uZnyuRACS1cRynIEeZo12TLbU48HBSBtJUjotq0KOjiE+6TMHe878IjE++/F5HPAIxiWHjrTMSxlqhOrXSKYlLEvzcf7Qt7Aqo2bsLuz1PrZ2aLzWN9FyNSwOFvSdi/uWrvjzwmbKcni/nATc2/0ZJg39nJQKUXNB6c/x87XtCE6n3nh6W7ilG5Z3m4xzjv5kOaYcnpnaY0nPGVgWPBX9kqMw7elljI69C+1GuspzREKMigvDqLgw5Gvp4qB7MHZ598Yda0/yvVdjTJEQjsXZ8MpLhWd+KrzyU+CRnwqv/FS5g3atDUssgllFMcya0QSwkMevC04W8vgo5WijjMNDOUcL5Rweyjg8lHG0Xv3hoZLFhYDJevWHCQGDhRoWGwIGE9k6hnhk5kheR28hQchGPHr0CFu2bKn72tHREX369JH7OEVFkheA+vqypbrXz9YsLqYn46u8WgjPNZeb/XgnI22cfK/hrKcvTkXjbCMXjbLo42KCjaMavqges/M+Hqe+uXDgXbgm9xvB+wF2WNjTqcHt/r/dRLWwZYWefxjojlHtpN/BTyuqxMCt4S06PgDsntQRHa2lPwdvJuTjgyMtbzZye35X6GtJv4O6KyIVP12Ok+k47vmSd8YTDCwklt80lFD5zdnoFtVvA4AAWwNsn+jb4PaZ+6NwL7XhYumyGN/BCsv7N7zMtNcfd5Fb3vAHRll82csZ0zpJlp4Qy5iJWt9p58745do2ibEh8ffxW6eR8h8rOlvq+Lt7IqEtpdnJuVmBsDGQngl+7Ekmvj4XI/cc3sZlMRH5aXCD29dfT8A/91KadWxBA+8LBx6mNhqAbCm2UIDP7x2ljP8UOF5hH4TEYjEEAgGGeZnjVAM/09ea+j2SXy69Nuzrpm5Aw930nmeXwHPNZZQ20cV50u4IpBfL3yG0Jb8D69vr2RMTn9/AiHjJ9/O/z29Ch+m/o4yrmKzPlnj7/9vdwQgGWor7uLg9nPo6SiqowLIzz6TsrR4MK0sReng5XIqo3Xl/CJqADc14DySab5dPXzwxdcCR46thXyLZ1M6ksgRnj3yHZcFTsTZgDLnoUzMuBelYfXMXxsfcbnS/SHNnLO/2Lk47dyY/wxYQMVk47+iP847+0Ksqx/iYm5jy7Cp6NdFY0LiyFHMfhWLuo1DEGlrioHswDrp3x0NzZ/LzoJFeVTk65CSiY048OmYnwDcnAT55yY0Gl4nmeV0D06m48c+2sooyc0TPiT9BLBJJfK59W0uuNV7zMOPj8LRODW5fcOwpLsflNbhdFjv6GIDTwoR0EoRsQGpqKj788EPU1Ly5KFqyZAnYbPm/ZVVVkhc8PJ5s9Wq4XMnlX/WPoyoisRgxOdSlR7KqqqxCVFRUg9ufJecjJqey2ccHACuuEFFRDV98vsgoQFLJW9tLGr9QleZpQiqiDBoOBMdkl6C6hc3mnrxMgJMwS+q29FJBi34OdeeIfgFGjvSlhY/TKxVyjkePn0CPK/3d6WlsKWLzmq4volNTCbtSyYuL+vUgKyqkZDOJgeikdMTktKyGiS6jptHnbXRaLmJyWvZLPzopHVFRDc/zeVYR8itb9qR6GpuEKLbkL5vXzbnkFWNkgzgDS4kL8Z6pT6FXVY4SnmK6UaYUSn8vePTkKXJ1pb//Pokvb/HzlstEoz/vpwnFCnltvO1eTKpCj1ffpOfX4VAieYPnkalD7UWdghQXFyMqKgqf+zBxqvGElmZ9/2x0qD+XxZ0NsOa+5A2AkiohSmQ4fnIDz6+mKPRnz2Dgw37z0HPnUxi+tazXqTgb665tx7z+HyruXM309v/XmCWAs4HiPi4WNNCIbO3VeIWdQ5G0a6pw4uj36JCbRNm22XcIvu32Lg2zIiItXNF5ynrsP/UzeqdI1k1niUVYc2Mn/LPiMGvgx2oR2G/rTMqL8c3d/fgg6iylo/zbnpjY49vu7+KYaxAJdilYCU8H29oPwLb2A+BQlIV3o69h6rMrUuuvv821MBNLww9hafghvDS0wmH3bjjoHowHJCCpPGIxbErz0DE7AR1z4uH76m/XQuqNMGUoZ3ORwTdGJt8QOdoGKNDSRRGPj0IeH4VatX+XcLVRweahksWpbTTz6u8qFgeiBp4XDIjBFolqm9kIa8B7q6GNlrAa/JpK6FVXwKCqHAZVZTCoLodeVTkMqmu/1q+ugEFVGYwrS6Fb07LYgar55iRiYcRxPPV5v8HrDUVca4hrGo+7RKe0PO4iEusDaNlrnwQhpcjIyMD06dORk/Pm4m3GjBnNWooNgBLtZrFkqzFQfz+hUH06QxKEsrkWUDMZX5LO2PRiMHDaOQALHrypMcgVCTAoMRIHPRrOIiRUjyEW4ct7hynjawLHKeWigc9h4t4ka1QIROh5UHEfkke7UIPbnS0UU5+RTul6Jvgs5D38c/53ifG5j0Jx3LULQp0avotNqA5HWIODJ3+SumR0r0cPfNx3DrkIp1GujgEGjFuJNdd3YFHEccr2iTE34Z2fgjEjliLOyJqGGRI8QTUWRJ7E0vBDEjdd6kvTNca33d7FTp8+pBabCiQZWGB10ASs7jIeAZkvMe3ZZUx8fkOiXrE0boUZWBJ+GEvCDyPW0BLHXYJw2rkzbtp4Q8AiYYXmYAsF8ChIQ8fsN9mNHbPjm/xZNFc5m4sEAwskGFggUd8CiQbmSNU1RSbfCBl8I2TyjVDC1Vb73208QTVMKkpgUlkM04pimFSU1P5dWVI7/urfr7eZVJY0+h6kCtqCaiQVy58I1RqRd4t64uLi8P777yMj400AJDg4GJ9//nmzj8lkSmaEyRpMrL8fh0MKBBNth2uhlCCkoRUNMyHedsIlUCIICQAjYsNIEFLNDI8Lh0+e5JKOOANLHFDwz8mSL3mxqK2grucMAEOctDHAofVmMG1v1w/jY25iUOIDifGt535Hh+kbka+tHl1KxQDKBK2rvqMsGGIRtoduwJCECMq2s47+mDH4U9IgQw0ImSx83ut9RFi4Ysv53yldy9vnJiF8z2eYPnghTrkE0jTLtochFmFy9DX8cHM3JSP/bSUcbfwcOAbrO41EOYc031Q5BgP3rNxxz8odi3q9j8EJEZjy7CqGx4eDJ2w8WOJamInPIo7hs4hjKOLq4JyjH844d8ZZp07I0TFUzfw1jH5VWe1y6lfBRt+cBLTLTaLUt22pShYHMUbWiDa2wwtjW7wwtkH8q8Bjto6h2gcYZVHF5iJdzwTpeiYyP4YtFMC4sgSmFSUwqiyFUVWp5N+VZTCs+/fr8dqx+r9b5JWnpYfNHYfASvO/9QpBgpBviYyMxIcffoiCgje1A4OCgrBp06YWBQC1tSUvoqqrZXsSN3cZt6IxGQy4m/Gb/XgnI234+jZcW887JRpJFS2rCellZwJf34ZrQno8vI9q4Vs1IXlcud+AfZxs4evbcE1I9yslLa4J2c7NCb4N1IQ0LaqE+92W38Fp5+UB3wZqQpbo58P9WctrQnZo367BmpBRglS4Jsc1uSTbTUqnxNh6QUhtbW2goN4vbgbg5WAN96KW1YT0sjFo9Hnr9TwKpeKW1YT0crCCr2/DNSE9b1e0uCakj6sDfH0la0Lq3LgN5Ddv7tdtfVDA40t0hx2acB9soUAhd8HtDLXqakJW1AhRWiUAm8mEs5s7PMz1pD4mgZUJ9/iW14Rs7OftU5QA99zm14SMz6eWDjA2NgbiW1Y2QCqxGEvCD1GG1wWMhlDBGSbz+7SHr7OxxJjL+ULESXl9y/x7RAysHOiGMe2l33TQyyuHe3jTHa6lLWmxN9RCenGVXLU4zfhcGOlwFL4cHwwGZg1YgMc7P5J4PVmX5WPTpb8wedgXij2fHF7/rPLLq3E/qwqK7DHDZjKUWgtVIcRibLz8NyY/v07ZdMvaE+NHLJGoT9xW2RtqNbvEgaLt9QrBMxM7HDm+mlLDy6iqDCeO/YCNfsPxZc8ZpOuvkvVKfoS117ajU3bD9b8FDCa2dhiAFV0nIZtvpMLZEQ2pYXFwwjUIJ1yDYFhZigkvbmJy9FUEp0WDicbfsw2qyzEh5hYmxNyCCAxEWLjgql17XLHvgJs2XijlKqZkj6ZgiEVwLMp+tZQ6ER1eBRwVVV/wtQo2F49MHfHU1B7RxnaINrHFc2NbJOqbk4xiKQQsNrL5Rs16z2GIRdAW1C4Z16mpAr+mqvbfgtq/uUIBOCIh2K/+cEQCsEUisEVCFGjp4pyjH/K19fFZoHOD8YSWXGu85mHGb/z6NeEpMqpbVhOSqYAgNkPc3A4FrczJkyexbNkyiQBhSEgINm7cCC2tlt2ZS0tLk2hos2fPHnTu3HRNrvDwcEydOrXu66tXr8LKSjWZYA8ePIBIVBtQYzKZ8PPT7C6DAoFAoj6Cr69vs+p7EopRXFkDw69DG91n67mNeO/JRYkxp1lbkGTwpju2n40+HqRJ1ulkMADh2uGKm2wr1GXDDdxLKWz24/89/QvefS7Zsbn/uJUK6ex7fX43BDuZ4EJMDoZsDYPwVbCip7Mxrn7YvcXHp0NyQTkcV12ijL8XaI9t4ckKP1+v5Ee4fPBribEMvhGcZ21BFVsxS5kNtTn4pIcTvu3vDka9DyO5ZVUwX36e8hjROtW+Lpmfn6SM3fqoOybviaR0x5b2XvLaz8O88XkvF6nHU4R3oq/hv3rdsgFg0tDPsd+zp1LO2RTh2mF4mVsGzzVXaDk/3Vbc+g/f3t1HGX9k6oBeE39EoZYuDbNSP5ELe8J/PTVQSyfjimL8d3odBiQ9lLr9gZkTJg37AjHGtlK3E83nmZeCn67vpDTdqu+4SyCW9JiBFybkZ6AJrErzMOblHYyLuYUeqc+aDEjWJ2Awcd/SFdds2yPMyh3hlu5yZa+pO9PyInjlp8ArLxUdcmoDjh1yE6FfLaVufQtk6Rjggbkzosyc8dDcCVFmTnhpZK3wm8uEcoUv6I7O9sZN76jGFBEnIlEYAL///js2bdokMTZixAj8+OOPCglUmZmZgclk1v2wcnNzm3gEKPsxGAyYmLSeN2yCaIpLveXYVSw2UvRMaZoN8bYTrl0oQciRsWEKCUK+tvVuUl0AEgCux+cjIa8cTiZt6256c0jLgvzNf4TCApAAkPPdQLCYZE2JIuzz7ImRsWGYGHNTYvx/l/7EDRsf2i7Wzr1o2QoFTfVx5EmpAch4AwsMGvsdCUC+hcNSv+Xo+dr6GDJmOVbd3I3FUuri+uUk4P7uRfi4z1zs9OnTKpYl0s28rAAr7uzFrEfnwRY3vCIo3NINX4TMxA3bdiqcHdFSGbom+J/fMPzPbxgsygreCkg+bfTn/RpbLEJQRgyCMt6sWEnnGyPc0g33Ld3w2NQBz0zskGBgobbZexxhDRyKc+BSmAGv/FR45aXA89Xfiq7dKAIDMUbWeGjujCgzJzw0d8JDc2dkkYxhohVp00HImpoafPXVVzh+XLKY9dy5c7Fw4UJKdkdzcblcWFlZIS2ttvtYcrJsmS8pKW/Sca2trSndsgmiNXOr15gm3sBSbT+caBofS70WZUKGOvqjmsmW6HA5Ii4MC/q0vElDvz/v4qehXjj4iLqcPr+iGk5oPUFIZWRB+mfFUjKACnh8/Ok7WGHnaGepRwKQisRgYH6/D9Aj7Rmsy/Lrho0rS7H1/EYMGbOClkBJWXXbK57+7rMr2HBlC2U8g2+EAeNWIlNXs7MXFM3OUD1r+ImYLCztOR3hVm7Yeu53iXIHAKBbU4nt5zZgQGIkPur7AQq0pZf6IBqnXVOFhRHHsTj8MPRqGs76StA3x7Ie03DAI5jUUdVwWXwj/NFxCP7oOASGlaUYkPgAQ+PvYXBChFzBOOuyfIyKC8OouLC6sQo2F8+NbPDMxB7xhpZI1jNDsr4ZkvXMkKJvqrSaoSyREGblRbAsK4BVWQEsywpgW5oHp6JMOBVlwakoC7YleXJngMqinM3FIzPHuuzGh2ZOeGzmSOqjEq1emw1CVldX4+OPP8bVq1frxthsNlasWIHx48cr/Hzt2rWrC0I+f/5cpsdER7/pxujl5aXwORGEutKpqZS4GAeAl4aks6WiTOtkix33ml9zpISng8v27SUaatiX5KJjdjweWri0aG7VQhEWnXjaomO0ZUvCqFmQmzsORQlPccHbL3u7KuxYRK18bX3MGvgxzhz5TmJ8UOIDfPjwDDb7DaVpZm3H0Lh72B66gTJewONj0NgViCeN0SgYUO+bEUfduiHCwhW7T/8itcP5pBc3EJL6FHMGzMcZ5wAaZqiZmCIhpkRfxQ83d8O2tOHaYgU8Pn4Imoj/dRxK6nC2QoVaujjg2QMHPHuAKRIiMPMlhsbfx8DESPhlx4MlQ5bk27QF1fDLSYBfToLU7UVcHeRp6yFfSw/5WrrI09JDMY+PKhYH1Sw2qlgcVLHYqGGywRKLXtXle1OfT7emEvpV5dCvLodBVRn0qytgVl4E8/IipQQY60vnG+OhudOroGPtcuoYI2uSYEG0SW0yCCkQCLBgwQKJACSfz8fGjRsRHKycDq+BgYE4d+4cACAsLAwikYjSNfttQqEQYWFv7g4FBQUpZV4EoY5cC6hZcHFG5AJQUXq5mmL9SB/8fjMBWSVVKKsWyn2M465BlK6+I+PCWhyEJJrPPT8VY17ekRgrZ3OxwV9xtRhdTfmY0qnxOl7qHJhwNml+kzVlC3XqhL86DMLcR5L1ctdd24Ybtt54bNZwYzRFa2vVwnukPsGBU2soSwvL2VwMH/2NSr/3hGIl65uj98TVWH5nL5bdPUgJNliX5ePU0e+xrV0/LOw1S6E3bFodsRhDEu7jh5u70bGBQBEAVDPZ2OQ3FKu6TCBZpm2EiMnCXWtP3LX2xDfBU2BQWYrgtGj0TnmEXimP0TE7ocWBPoPqchhUl8O5KEtBs1aOGiYL0ca2eGjuLBFwzNUxoHtqBKE22mQQcu3atbhy5U2xdWNjY2zduhU+Pg13V26pfv36YfXq1RAKhcjNzcWFCxcwcODABvc/d+4c8vNrM8HYbDYGDBigtLkRhLpxK6R2xn5JslAU6pMezvikh3ODTVOacsIlEH9c/ENibERsGL7rNllRUyTk9Pn9Y5QP+f+0H6DQD77tLZu+oDTW4cDWQAupRW+65k5tInCpKqZ89S5r8nnITPRLegiXosy6MS1hDfaeWoeAKb+igsNTyTxe5JSq5DzqoGNWHE4c/QHagmqJ8RomC+NGLMVtG2+aZkYPDqv2JsL87k747Xo8zbNRDCGThW+7T8Fluw749+yvsCnNp+zz3pOL6J/4EAv6zMFxN3Ljv75eyY/ww83d6JbR+Gqu/e7B+KrHVJI53MYVaenitEsATrvUZhgbVJaiU1YcAjNjEJD5EoGZMVJfh5qkmsnGSyMrRBvb4bmJLaKN7fDMxA7RxnYk85cgmtDmgpDXrl3Dzp076742MDDArl274ObmptTzWlpaom/fvjh/vrZj6KpVq9CxY0dYWFhQ9s3IyMDq1avrvh4wYIDU/QiitZKWCfnSiCzHVicZuiYIt3RDYObLujG/nATYF2cjWd+cxpm1TZal+Zj67LLEmIDBxC+dR6l8LgwGA9smdsSk3RHIK69BByt9/DDYU+Xz0ERlXG1MHbII1/ctkcjK885PwW9XtmDugI9UMo/iSgEEotafDumWn4bQwytgUF0uMS4CA9MHfYpQp040zYw++SsHAQD4PHarCUK+dtW+AzpO3YhNl/6kNIICALvSXBw9sRrHXQKxoM9cpOib0TBL9RKY8QI/3NyNfslRje53y9oTX4S8h7vW5L2eoCrS0sVlB19cdvCtG7MuyUP73ER456W8+pMM77wUyvsxnapYbCTqWyDewAKJBhZIMLDAS0NrRJvYIt7AEgJWmwulEIRCtKlXjlAoxKpVqyB+tc6IwWDgl19+aXEAcurUqQgPD6/7+sWLF1L3W7hwIa5du4aqqipkZWVh8uTJ+PHHHxEYGFi3T1hYGJYuXYqcnNqulDo6Oli0aFGL5kcQmkZaJmQsuauudk64dJEIQgK1XbJ/V+DyX0139HEGxu68r/TzfBp5AjyhZCORvZ49FR4QtjaQrVh6P3czZK0YiJyyaljoqSZ7r7W4a+2J5d0nY9XN3RLjsx+fxwWHjjjkoZyyMW+7FJuLb0Olf5ZpLWxKcnH+0LcwryiibPuo71zs8wqhYVb04/Na96VBno4+Jg3/Ekefd8X/Lv0JEynNNEbGhaNfUhS+6zYJG/yHo4bV9rKa/LNi8e3tfRgRH97ofrGGlljSYwaOuHUlncYJuaTrmSBdzwTn3r7ZIxbDorwQ9sU5sC/JgX1xDhyKc2BXkgPTimIYV5bApKIExpWlEs0R5SFgMFHE46OYq40CLV1k8I2RxTdEJt8IGXwjZPKNkKljhAQDC2ToGpFmSgShBK37k0Y9oaGhSEpKqvtaW1sbO3bswI4dO2Q+hqmpKdasWdOs8zs7O+OHH37A4sWLIRKJkJqaiqlTp8Le3h6WlpbIyMiQ6IjNZDKxatUq2NnZNet8BKGpXAolMyGrWGyk6JnSNBuiIcddu+CHW5KBkhFxJAj52u3EfJUEIA0qS/FB1FnK+NqAMQo/1zsdbWTel8lk0BqArL8kHIAaV6uUtCZgLPokP0Lf5EcS439f+B/uWbohyUC5qyO+PitbAz1NZVJejPOHvoVDSQ5l29fdp+DPjkNomJX68TLXRXR261yaf8CzB67ZtcPf5zdhePw9yna+oAo/X9+BOY9CsbTHdBx269b6g2xiMXqmPsXSsIMYmPSg0V2zdAywussE/Ok7qE0GaQklYTCQxTdCFt8I96zcG95PLAa/phJ61RXgCWvAFQrAE9aAJ6wBRySEgMmCgMFEDYsNAYMFAZOJUq42irk6qGBzW/9rmSDUXJsLQr6tvLwcN29Sl2M0xsZG9gswaUaMGAEul4vly5ejsLAQAJCcnIzk5GSJ/QwMDPD99983WjeSIFort3rLseMNLEn3ODX01MQecQaWEvXrQlKewLCyFIVauko5p0gkBpOpGR8ePzn2RCXn+SAqFPrVFRJjp50644mZo0LPs3KQB7o5Gin0mMo0O8gBy8+9yeZ7L9BeY547IiYL0wYvxMNdn8Csorhu3LCqDPtOrUXIxB9Jzalm0q0ux5kjK+CVn0rZtr7TSKzuMp6GWclPX4uN4srmZQLJalaQPT478Uyp56BTFt8II0d9jXeeX8evV/+BZXkhZR/XwkwcPLkGt6088XmvVrrcWCzG0Pj7WBp2sMmajwU8PtYGjMHvfsNQxtVW0QQJoh4GA2VcbfIcJAgN1aaCkPHx6lHbZtCgQQgKCsLBgwdx+fJlJCUloaioCDo6OnBxcUFISAgmTpwIY2NjuqdKECqnU1MJ6zLJYtUvDUk9SLXEYOC4axcsijheN8QWizA8Lhz/+vRR+Olm7nuI+LxyWBtoYeOodhjkqd61JyNSqcs8FY0nqMYnkSco42sCxyr0PLYGWvi6XyNZCWro635usNLn4UZ8Pnyt9fFR9+Z1OPaz0VfwzGSToWuCmYM+wamj30uMd8mMwfqrWzG/3zxa5qXJeIJqHDu2CgFZsZRt23364vOQmW06Q6arg+RNhk97OIPHYuGjo48bfEwPJ2PcSNDgBhMMBvZ5heCsUyesvvkv5kaFSu3i2y3jOW7v/RJnnDphVZcJuGPjRcNkFYtfXYFpz65g/oPT8M5PaXTfUo4Wfus0Ar90GoUiJd1kJAiCINqGNhWEPH36tFKO+++//8r9GENDQ8yePRuzZ89WwowIQnNJa0oTa0TqQaqrY65BEkFIABjz8rZSgpBPMmtrd8XmlmHczvvIXTkQWpy2nSE77dllSvbObStP3FRwR1+WhmQQvo3BYGBWFwfM6uLQouMEO9F3Q/CMcwB+8x+BT+sFmudFnUWYlTt2+fSlaWaahy0UYO+pteiTQg2oHXUNwpwBH7X52l8fBUsG6hkMBj7s7ogPuzvC+JtQFFbUSGznsBhYO9wbQRvlW1Wkjoq0dDG/3zzs8u6N/136E/7Z0hMXhiREYEhCBC7btcfqLhNw2b6DxgWu3fLTMC/qLGY+udhkE5AKNhd/+g7GT4FjkaNjqJoJEgRBEK1a2/60RRCE2iFNaTTLbWtPZNa7MBmY+AB6VcrtblheI6wLSrZVTJEQn987Shn/OXCMwi+KmRp2kd0Yef4vf4xtDx6b3kD3kh7TcVdKbaw/Lv4B3wYCJYQklkiIPWfWYVRcGGXbZbv2mDz0cwjVsORHS152lg3UY70yr6vU8Vsfdcckv4ZLDs3uYi/xdR9XU2hxWAi0N0JHa3qyhZUhzNoTAVN+xYxBnyBV16TB/fqkPMbFQ98g8t9PMftRKHRqKhvcVx3oV5Vh1qNzuLH3S7zYPg+fRp5oNABZyONjdZfxcJy9FZ/1ep8EIAmCIAiFIUFIgiDUirRMyJdGZDm2uhIxWTjqJnlRqyWswVAphf4VTSCiLplrS8a8vAO3ek2cnhnb4aRLoMLPNateAEKTSfu/dLGXXuvSSJur7Ok0qZrNwfjhS5CtbSAxri2oxuETP8KwsnU2DlEUpkiInWfXY3zMbcq2cEs3jBr1FarY9P+cpYld0rxMVzaTge8GekjdZsaXHpzs6th4xu8Pgz2xuI8rAu0MMTPQDvum+tdtm9/MUgfqSsxgYpdPX3i89ye+7j4FJZyG6851zEnAXxc2I/WvmfjjwmZ0T30Ghlikwtk2jF9dgXEvbmLPqbXI+HM6/r7wP3RPb7zmY5aOAZYGT4Pj7K34OngqCT4SBEEQCkeCkARBqBWSCal5Drl3o4yNfUm94Fem4soaiMVtKCgpFuPLe0cow+sCRit8SakZn9tohpSmmeRnAzP+m6BTByt99HIxpXFGTUvTM8WkYZ9DWO9n61yUhd1nfgFTJKRpZuqNIRZh6/nfMfn5dcq2Z8Z2GDp6OUq5OjTMrGndHI3gZCL/3Mx1uUj6uh9G+lgqdD4cFhM/DvHC3U964J8JHWH6VjDzvUA7hZ5LXVRweFgdNAGus/7CmoCxjQYjDavKMPdRKG7sX4K4rXOw9uo2hKQ8Bluo3OZBEsRiOBZl4v1H53H86PfI2TwFB079jEkvbkBbUN3oQ5+a2GFev3lwmrUVa7qMQzGPr6JJq8bnvVzongJBEATxSpuqCUkQhPpzqZfZVcViI0VP9gABj0Xurajaddt2yNY2gHnFm0YsQxIiwK+uUHrnwvzyaozdcR/X4vNgocfD9okd1b5hjSL0SX6EzvWaa6TqmmCPV4hCz7NuuDfGtreCg7F6Bmqaw9FYB+Gf9MDRJ5ngc1kY18FKIxprXLH3xbLgqVhzY6fE+JCECPx8fQc+7/U+TTNTTwyxCH9d2IwZTy9Ttr0wskG/8d8jT0c9lxGzmQx82du1WY8d4mUBK30tZJdUKXhWDWO0onIN0uToGGJpz+n4OWAMPn5wCp9EnoBRVVmD+zsWZ+OziGP4LOIYCnl8XLVth5u23rhp442HZs4K62zPFgrglZ+CTllxCEl5jF4pT+BQkiPz40Vg4IRLIH73H4YrdppX21IePhZ6dE+hQf42BohMU34jO4IgCHVBgpAEQagVt3rLseMMrCBqoFZXO0t9PEgrlhhbFELudquakMnCMbcgzHl0rm5MW1CNIQkROOgRrNRzLz/3Atfi8wAAWSVVmPJfJLJWDNTIRiryWBx+iDK2vtNI1LAUc3H72qc9nMFshd9LB2MdfNrTme5pyG1twBh0yXiBMbF3JcYXRRzHC2MbbOkwiKaZqRmxGL9f+huzHp+nbIozsETf8T8gU5e+hkON8TDj49T7XeBiqpxMNDtDbbCZDIlyFnO7tqx5k6yEa4fhXkqhxjayKdDWw8puk7C+00jMfHoR8x6ehUdBWqOPMawqw6i4sLp6pDVMFl4aWuOJqT1eGtkgVc8EqbqmyOIboozDQylHG1UsNtgiEdhiIbQE1TCpKIFJZQksygrhXJQJp6IsuBekwScvGbxmZFrGGVhil08f7PLujSQDi2Z9LwjFODOrC4x1OBr7miAIgmgOEoQkCEJt8KsrYF0mmZHU2FJsf1sDJOaX12UxmehwML2zrVLnSEh3yK2bRBASAMbG3FJqEDKvrBr/u5UoMZZfXoPkgopmLWNsTGFFDf64nYjkwgqMameJgR70ZVv6Z8Wif3KUxFgBj48tHQbQNCNCZRgMzBz0KTz/+wLe+SkSmzZd+gtxBla47OBL0+TUA0Mswp8XNmO2lABkor45+k74Ael6DTccodu7nWyVFoAEAD0tNr7p747l514AACz0ePi0h2oC8gwGAx2s1DP7VB4lPB1s9B+B3/2GoW9SFOY8Oofh8eEyBQQ5IiG881Mor19lK+Dxccw1CNvb9cNNG+9WnfWoSQZ6mOFeSiHd0yAIglApEoQkCEJtuBRmUsZijRoOQrIYDJyZ1QWnorOQV1aDYd7msDdqPctG1cXnvVwQllSAO0kFDTaDuWrXHnlaejCpfNOxemj8fWjXVKGCI70RQkttv5csdVzUzNqQIpG4way/4f+E4VZiAQDg77tJODYjAMMVXHNNVl+EU2tBbu44VOG17ZyMdVplFqSmK+HpYPjobxC25zOYvvV644iEOHjyJ/R85yc8NVVNZpu6YYmE+OfcRkx7doWyLUXXFH3H/4Bk/dZfrqEp3/R3x7v+NkjIL0eQvRH4PNVdDnBaUckUMYOJi45+uOjoB4PKUox9eRuTo6+hZ+pTsNWgOU063xjHXbvgqGsQrtq1h4BFLvvUib4Wu9WXMiAIgpCG/DYiCEJtSGtK01RnbD6PjYkdW0/TDHU0o7Mdfh7mjYoaIa7E5mLYP+GUfQQsNo67dsF7Ty7WjfEFVRicEIEjUhrXKMKRx9SgdfOOk4EvTj5Dblk1pnSyxYaRPmC/daGclF9eF4AEALEY2BqWLDUImVZUgRfZZQiwM1TI3OpzKUjHuHpNfyrYXGz0H6aQ42uxmagUiMBk1HbDJdRTgqElxoxchosHvwFX9Cb7yqiqDKGHl6P7pJ/bXLCNI6zB7jO/SO2Cnc43Rt8JPyDBkJ4bB3TQ5lDLmHiYvcmwdDbhw9lE9c1HWEwGPujqgD/vJKn83MpUpKWLbe0HYFv7ATCsLMXAxEgMjb+HPsmPKSs8lKWYq40bNj64atceV+3aIdLCReGNygjF8TDTpXsKBEEQtCBBSIIg1IZrvXqQAOmMrU60OSwwG7lrf8i9u0QQEgAmvriutCBkS6UXVeLks0zMO/y4buyP24noaK2P2UFvMskKK2sojz35LKvu3w/SinDoUTqOPs7E8+xSAICRtmJrM772+f1jYNXLsNnu0w85OoYKOX7yN/1wP6UIHaz0YW2gpZBjEspx09YHcwbMx47QDRLjNqX5CD20HD3eWaO2jVcUjSeoxv6TP2NEPPUGSaquCfqN/x6xTdzQam30tNgY6GGGcy/eNCqZ1UU9MmQ3jGoHM10evr8QQ/dUlKJQSxf7PXtiv2dPQCyGU1EWgtOeoUtGDLzzktE+N0li1UBzFHO1EW1sh4fmznho7oQIC1c8MHeGsIEa2gRBEAShLkgQkiAItdGcTEhC+bhs2TIpLtl3QL6WLowrS+vGhsXfh15VOUp46rVM/mZCHgb9HYbyGiFl2593EiWCkI25l1yIkM23UCmQDAwWVFADly1lUVaA6U8vSYwJGUz80nmUws5hyue1ie7ircUun75wKczEN3f3S4x7FqTh9NHv0H/c92r32lM0o4oSHD2+Cj3TnlG2Jeibo9/4tpUB+bZ9Uzrhx8uxeJ5dggHu5pjXTT2CkBwWEzM620kNQurx2Cipkr/ZitpiMJBgaIkEQ0v869Ondkwshnl5IexKcmFbkgfb0lwYVpVBt7oSujUV4AkFqGGyIGCyUM1kI19bF3la+sjT1kOynhniDC2Rr6VH6jq2Evpa5HKcIIi2hbzrEQShNlwLJIOQVSw2UnUbbiAga3CMaD4bAy04G8sWxKhhcXDYrZtEQwhtQTVGxoVht3dvZU2xWdZdjZMagARA6bjemO33kikBSGVZEHkSWkLJ4OYB9+5tNsBC1FrebTIsygspjaECM1/izJEVGDJmRasNRNoV5+Ds4RVSm3zEGFmj37jvkapvRsPMmk9HyjLq5jLQ5uCnoV4KO54qpH7THwZfn6V7GsrFYCCbb4RsvhEiLN3onk2bYMrn0j2FBnmY6aK9lR4eZ7QsO5YgCEJTkCt4giDUhmu9xjRxBlYQNbK0qK+rqbKn1GY5GGmjl4sJTr0fKFdzkr2ePSljk6KvKXJqCnHiaVbTOzWhoLxaZXXN9KrKMS+KemG+NmCMSs5PSJf6TX/6gzwMBj7s+wEOu3WlbOqe/hxnjqyAXlU5DRNTrg7ZCbi9l9olHACemNgjZOKPGheABIBBHm07E1mPZIURCqbDYaGXS8M3tOliolNbtoXBYOD8nK5Y2tcVUzvZ4tjMAJi1IGjqJOONY4IgCLqQICRBEGqBX11BKd7+soHO2CwmA9/0d4eLqeqL6rcVCV/1w+V53eBrbSDX467b+iCdbywx1j/pIUzLixQ5PbWQX674JdcN+SDqLAyryiTGzjn44aGFi8rmQFAxGMCCYCeJhh90EDFZmDLkM1yxa0/Z9joQqV/v+aPJ+ic+wPX9S2BTSm34cdfKHb0nrEYW34iGmcmnq4MRJvhag8EAOCwGvu3vDi8LzWxWoY5BHoIAgIsfdFVpB3hpfh3hQxmbGWhf928LPR5WDfbCzkl+GCGl6Z08No5q16LHEwRBKBsJQhIEoRZcCqmdjuOkNKV5L9Aeud8NxHcDPVQxrVbPUEoDlYEezc8eEjFZ2O/ZQ2KMLRZhXMytZh+Tbgn5DWeR8VRQEkCrpgoLI45TxtcEjlXoeSb4kvqrzaHFYeG/KZ3ongaq2FyMHPUVbth4U7Z1T3+Oq/uXwVJK0E6jiMVYdP8ozhz5DvrVFZTNx10C0Xf8Ko1pyDM9wA77pnZC9oqByF85CCsGeoDRwjp/jTUPU6Z2VprxPSfaHn+b2pup0zvb0jaHj4OdJM4/1MscI3wslHKuYCfjpnciCIKgEQlCEgShFlwLZeuMbWugBQMldR5ui/S1OJjib1P3NYMBfNDVsUXHlLYk+53n11t0THlEZRTj2JMM5JdXt/hYAqEIY3bcb3C7rPUyW+L9JxdgWV4oMRZm6Y6rUrLeZLWsrxuGeb25AOJzWfi0p3Ozj0eoh1KuDoaO+VZqILJjTgJu7/0S7vmpNMys5bRqqrDz7Hqsu7ad0iEeAP7qMAjjRixFBYdHw+yaZ9SrjCcTPldhmVojlRTYIAhNN6uLA+XGobICgfWxmAxsf8cPyV/3Q+zSPjj5fhfw2MrpZE4+IxOtRVcH9V/RQDQPKbxCEIRacJExCEko3j8TO2KAhzlickoxyNMc3Rxbdhf9voUrYg0tJWp89kx7BrviHKSooEbbuJ21QUNjHQ6uzuvWogwdeZrUKANHWIMvw49QxlcFTWhRZ9RFIc4w0uYgIrUIL3PLEOJsAmsDrZZMlVATrwORp4+sRI96HaMdi7Nxc+9ijB75FW7ZUgOV6sojLxX7Tv8M35xEqdu/7j4Fq7uM16huwUdmdIa5nuIDpn3dNL9WcoCdIe6lFNI9DaKV6e5kjLsLgnHyWRbsDLQx3tcKL3LKWlwjmsNioEYoBgAMcDfD+ZicBve1NdRu0bkIgiBaA5IJSRCEWnApkm05NqF4HBYTUzrZYuUgzxYHIAEADAb2eoZQhlWZDQnU1mzceDOhRccorFRd3Udppj67ArvSXImxKDNHnHIOaPGxGQwGOtsZYpKfDQlAtjKlXB0MGbMcoY5+lG2mlSW4fPArzH9wChCLaZidfKY+vYx7exZJDUCWs7mYPOQzrG5hUJ4OnWwNFX7Mz0JcoMPV/PyCWV3sm96JIJrB19oAX/dzx/QAO4W8Vro7GiFyYQjWDffGsZkB+GtcBwXMkiAIOsnRj5NoJhKEJAhCLTjXqwlZw2QhWQM7m7Z2IhmDFtKWZE+JvqryoMfWsGSVnk+RWCIhFocfpoyv7qJ5ARdC9cq42hg56mv869WLso0jEuL3y39jR+hv0K6pUv3kZGBSXozdp9dhZ+hv0K2ppGxP1jNFj3fWYJ8X9YaHupvkZwM7JWREaXNax8f62UEO2POuP971t8EHXR3ong5BNMrHUg+LQlwwwscSLBK9IAiNt+ddf7qn0Oq1jk8rBEFovPrLsZP0zSBkKqdeDtF87Sz1ZNrvuYkdIs0lawy2z02Cf3acMqbVKk14cRNu9V4Xz41scNitK00zIjRNDYuDGYM/xdrOo6Vun/bsCiL+/RQBGTEqnlkjxGKMe3ETT3fMx+QGsqev2fogYMqveKCB3eHPzu6Cne90pHsaam+Snw3+neyPzWNJZhmhvsx11bMG7c/DNKfcBkGom4kdbeBjIdv1DtE8JAhJEATtOMIa2JdILjmNMyBLsdWRvZEO7A1lW7q706cvZWzGk0uKnlKrxBCLsDTsIGX8py7jICLBeYUz5XPpnoLSiBlMLA6Zidn9P0IVi7r80LMgDbf2fomVt3aDI6S3/IBrQTqOHl+FA6d+hnlFEWW7CAysDHoH/cb/gBwdQ9VPUAEGepiDzSIfv+VhoYTamQShCNM629E9Bam8zHXpngJBtMjbzRMbYqxDmjBpKvIpiCAI2jkU51C6ncYbWtI0G6IpL77sJdN+/3mGoJopGfSY9Pw6uALVBjrua2CDgxGx4WiXJ7mUPEHfHP9JqbVJtFyAnSHdU1C6fzoMQMjEH5Gqa0LZxhaL8PXdA3i882MMiwtXedkEg8pSrL26DU92fISRceFS90nnG6Pf+O+xovtkkiVPEAQtrPR5ddVQJvnZYIiXOb0TakBPZxPo8sj7ZGumxWbCtpXW8w6wM8Tvo9vBq4lsxPNzglQ0I0LRSBCSIAjaSeuMHW9AgpCaLk9HH6ecO0uMmVSWYFj8PZXOY+6hqLp/X43Nxcx9D1R6frmJxfgq7ABleG3AGAikZLIRLcdpI5lp4VYe6DzlV1yxay91u3tBOk4c+wHnDn2LTpkvlT4f0/IifH9zN+K3zsZnEcfAFQmk7vefZ0/4TtuIq/aqWZr7WYgL7EkXW7l0sGr8YtHPRl9FMyEI5fnfmPbIXjEQGcsHYM+7/kr73TG1s22zHvdeYG1TJz0tNkJnkwBNa9bD2RhJX/dDwjLqqiNNF/ZJDzgY62Bap8ZfB00FKQn11TY+dRMEodZcCqV1xiZByNZA2pLs6U9VuyT7QVoxgNqMyIFb7mLn/VSVnl9eA5IeoHNWrMRYOt8Y29v1o2lGbQO7jTQUyOYbod/477Gw1/uoYEtfht4/OQr39nyGy/uXYWjcPTDqZaq3iFgM/6xYbLr4JxK3vI+vwg7AqKpM6q7pfGOMGrkMU4Z+jjwd1QaxrPTJEmB5DPe2hJF2w0vj5gSRBjNE62DC5yq9RMC0TnbQYst3mc5hMfBe4Jvl4d0cjRU9LUKNMBkMMBgMmLfichU9XUzw6wgfuqdBKAFJqSAIgnYuRSQI2VqddeqEbG0DifpugxMiYFFWgCy+kUrnsisiFTVC1S4zlZtYjG/u7KMM/9J5FKoaCBgRirG4jytWXZTM/mvfRHaXPJxNdBCfV66w47WEmMHEhk4jEerYCTtCf0OXTOmNaXqlPkGv1CdI1DfHXs+eOOLWFZEWLhAz5Ls4ZohF8M1OwMDEB5j8/Bra5yY1ur+AwcQfHYdgebfJKNRq27XNdHkslFYJ6Z5Gkyz0eLgyrxv+dzsB1QIROtoY4PSzLKQWVWKCrzVmdyFBSIKQVQdrfVz9sBv2RKZBX4tN+d0kzdV53dBVTQKPXewNEZZcSBl3M+UjvbgSZdXq/55GqIdPezpjgLsZ2q27SvdUCAUiQUiCIFTuWlyexNfOZDl2qyVgsfGfVwg+jTxRN8YWi/Bu9FX82kDHXmXIKa3CppsJKjtfcw1IeoDu6c8lxnK19PCX7yCaZtR2zAyww7bwZGQUVwEAxrS3hKcCi/svCHbCp8efKux4ivDCxBbdJ63BjKeX8MPN3bAsL5S6n2NxNpaGH8LS8EPI0dbHTRtvRFq44LmxLZL0zZGrrYcyjhYYYjG0BdUwqyiGbUkuvPNS4JsTj5CUp1IbzUhz2qkzvgiZiecm6tnwQdU+C3HBd+epQWKOGmbudrDWx1/jfOu+/qSHs9LP6W9jgP+m+IMBILe0Et3/d0fp5yQIVQi0N0Kgfe3N2qaCkF7mulIDkHwuq9kBv+vjLbH7eRn+flwi92MNG8iKHuptgZ+GeEFryelmzYl4o6HvMUFoAhKEJAhCZbaFJ2PtlVi8yJFceudclCXxdaaOIcq4pB5Xa7HDp69EEBIA3nt8Eb92GoW6Cu9KNml3ZLMeV1mjwrv1YjFW3P6PMvxr51Eo5yiu+DiHxYAul/z6r8/ZhI9Hn/XCpZe5MNPlooeTMRgtfH6emxOE8OQCdHUwRh83U7ULQgKAiMnCtvYDcNA9GEvDD+KTyJPQFlQ3uL9ZRTFGx97F6Ni7Cp3HeYeO+ClwnMrqPmqKBcFOlCBkR2t9FFUKkFdObzdzus0IsMO2iR3rvi4oq6JvMgShhuZ1c8S6q3HNeqw2mwk3Q8V/VuDKucyckG6ynw3dU2iVgp3UI5u4tSPvAgRBqMTDxtpR2gAAx6pJREFUtCLMOhBFCUBCLIZzvZqQZCm2epM3LPPI3AkPzJwkxrzzU9AjTXUBmcuxuXLtLxCKMOtAFEZuV10TncEJEQjKkAw25GjrY5PfUIWe54OujuQioAEmfC4mdLRGb1dTsBXQcKC/uxm+6ueOPm6mCpidcpXwdLCsx3Q4zP4Hy7tNRra2gdLPWcNk4ZBbNwS++wsGjVupVgHIAHvVlotoiJEOF6WrB6OfmymMdTjo726Kg9M6N/3ANkDemnkE0dasHOhB9xSkmt/dke4paLSx7a0w0EM9O7NrIj1ebbDdSJuDn4d5K+SY4ztYKeQ4rRVJhSAIQiX2PUyXOm5ZVgC+QDJ7Ic6QvHGrMyaTAX9zLiKzG86Wqm9Lh4HYfOlPibG5UaG4YdtO0dNTiL0P07AtPFl1JxSL8Z2ULMi1AWNQytVp8eE/7+UCAy02fCz1MMKbBPnVyW8hxkguESC3QoQbWUIk5FfQOp9cHQN83/UdrO08GpOeX8e70VfRK+UJmFBcPdWHZk7Y0a4v/vMMQa6O8oOdzTGtky3+dysB4mb+t+d3d8T/biUqZC46XDbOz+2qkGMRBNE0RyNtJBbQ+16sCFocFm3nbm+lh8cZ0pdyL+vrhhvx+XiUUQxtDhMVNQpsftYGHJxObkQpUvZ3A/Aiuwye5rp1N+kFopY9J/dP64yDn59UxPRaJXILkSAIlUjIk979VFpnbFIPUv1939UIwdY8mGvL9mtkj1cvlNZbUjwu5jbMGqhBR7fNMgQPpu59gOjsUoWcb3hcOKUjdpaOATZ3HKKQ4wc5GOGrfu4Y1c4KTDWsJdeW6XKYmOShi4876uNdNVpeVcnhYXv7/ug3YRXs5m7DrAEf4YB7d6Tz5V+qlKulh0Nu3TC3/4dwnvU3/KdtwEb/EWobgASAznaG2DelU7Mfv2qwpwJnQxCEKh2dGUD3FFo1K30tPFjUEwnL+iL/e1LzuiXUqT7w1gm+Te+khnhsFjpY60usEqKs3CMUimRCEgRBK5cialMashxb/ZnrsLA+xAQAELBXepbr20p4OvjPKwRzHp2rG+OKBJjx5BLWBo5V2jybS1pXx/ruJhUo5mQN1IL8OWCsQmtBEupvXAdLrL4cC5GaNXHP0DXBtvYDsK39AACAZWk+2ucmwbE4C3YludCvqgC/phIiBgOVbC4KeXyk6pkgWc8Mj00dka5rrLL6r4o03tcaU/6LRI1Q/h8IqbuqeuQGS9vwYTdHbL6dqNRz+Fqr7w2S1oLBYMDBuOUrPdo6NouJGQF22HEvhdZ5BDkY4b1Ae/x+MwFR6cUqOacyA7DjO1jh4CPqNao8xra3wuHHkscw0SENhQAShCQIgmYkE7Lt+LPDIIkgJADMeXQO6wJGQ8xou4n5o2Lvwi9HsnN3Bt8If/oOlvtYPwz2xNdnnze9I6GWvC30cHBaZ/xyLQ63ExUU5FaCTF1jZOqS4u0EvVj1LkC9zXXBZzNQJlCzKD5BEIQS/Tm2A0KfZyOzhL7mXLsn+wEApnayRVT6syb3n+BrDUt9HjbeSGhy34awWUy862+DPZFpzT5GQ/i8lofJZgfZ49jTTAhf3VkOtODCzpA0XgXIcmyCIGhWvykNQDIhW6uHFi4Is3SXGHMpykS/pCiaZkQ/pkgoNQtyTeBYVHB4NMyIoNvo9la4+VEwjswgNZ+I1svWUKuuGcBrs4Ps5TrGSB/JzwpcNhNrexjD2YDkWBCEIjS3Jm5bN8XfBj4Wegi0M1TJ+bhsJj4Kdmp6RyWIX9YXwrXD4GzCB/AquKjX+OfXD7o6YN/UTviyl2uLz79lvPouAR/gYY5Lc7pgqicfX3QywLqe5ObtayQISRAEreovxy7laCFbx5CeyRBK95cvtfbPB1FnaZiJeng3+ho65CZJjKXpGuPv9gNpmhFBEITycVhM/D66HTis2mxGFxMdLO3jJnXfEGcTqeM9pYwHWPKwfwjpGksQjXE15cu0X34laRjTHLsm++PxF73wx7gOdE9F6RyNdcB4q9yKraE2wj7pgfUjffDH2PZwNlHuknstDgtW+up7076boxEW+Blggjsf2mwSenuNfCcIgqBV/eXYcYaWGlk7jJDNfo8eKORJfvgdERcOh6IsmmZEH56gGitv7aGM/xg4HpUkC5IgiEZIu+iisxNuc0zrbIe8lYPw9IteeLG4DxwbqA/3XqAdZSzlm34STQTqs+Zr1veCUD+8VhIw+LSns8TXejw2Dk7rBBuDpmtOkxCk5qifWU4nO0NtfNLDGXO7OsJEh9vgftoc6mtM1gA5odlax7srQRAaSa+qHGYVksWL40g9yFatgsPDLu8+EmMssQgLHpyiaUb0mf/wNBxKciTGYg0tsaXDAJpmRBCEPGZKCY6pyuwuDpSxIZ6alwGoy2PDy0Kv0aYyAzzM8cfY9vC3MUAvFxNcmBsEG4PG62p96qev6KkSbczi3tSlon40Nazp5mjU7Md+1dcNPZxql4Ea63Cwa5IffK0NkPRVP7xc0gfp3/ZX1DQJGmni+7+RDpfy3H4/kFqWQ5dHvakU7ESWNmsyEoQkCII2zkVSmtIYWtEwE0KVfvcbChEkLzjff3we+lVlNM1I9QwrS7Es7CBl/OvuU1HDIp3zCEIZLJqoUyUvQTO6ZivKhI7WGORhVvf1R8FO8LVuvYG3uV0dcX9hT1ye1w193cya3F9HSoYNQchjVhd7OL2VnTsnyIG2bs7Sbjq8TV+r4Sw4Ez4X1+Z3R853A5G1YiBGtqu92c9kMuBiyoeZLg9G2pKfO0b5WLR80m3UZD8bWs7rYsrHbyN9YKjNAY/NxOwge+yc1LFFxzTjN5zFqChHpgdgblcH9HYxwU9DvfBFLxfKPnaG2vC3kbwBMKuLfDWECfWiPnm7BEG0OdI6Y5OmNK1fnJE1jrt2wejYu3Vj+tUVeP/xBazvPIq+ianQ4vDDMK4slRi7b+GKgx7daZoR0RLG2tTA8bgO5IaKurnzcTAMtTnouvEGXuS07KaHGZ+LIV7m+DciVUGzk482h4Uzs4OQmF8OHQ4L5goOsBJEW2drqI0nX/TC7cR8WOjy4GOpR9tcpgfYgctm4viTTByISqdsnx3UeJASqA1GSsNiMvDjUC98cOgRAMBAi40lvV2AvMQWzbmtCLQzRHhKIYDa7+X7NAbHFvRwxvzuTqgRiqDFYaGkUoAAu0TcezU/eZjocPDsy964EpuLCf9GSN1HETe+zPV4+GNs47UzGQwGzszqgp+uxCIxvxwjfSwxrbN8KxHmdXNEWlEFTjxte+Wf1BEJQhIEoRKl1ULKmEthBmWMLMduG9Z3GikRhASABZEnsdF/OITM1l3Ly6YkFwsenKSML+45HWIGyd7RRA7GOujtYoIrcXkAai9EZLkoJFTPUJuDmx8F4/jTTIjEYsw5+KhZxwmdEwSxGrSObaiOIkEQLafNYcmUefsaS0pZgUYqDchlkp8NJvpaSw1Cjm3fsptec4IcMMzLAs+zSxFgZwhtNhCVB+iwG558+Cc9ELjhRovO2xqEzgnCP2HJSC2qwNgOVgh2etMwi89V/edZFpMB1qvP0XpabFyf3w23EwsQ+jwba6/GyXUsEz4X43yt4XvpJaLSiynbP+ja9OccGwMt3EuRHDOQcuO2KeZ6PPw6wkfqNqYMvQTsDbXxvzHtwfyc+vmbUD1ytUMQhEqcfZ5NGXORshw7jizHbhNu2njjvoVkvSWHkhyMeXmHphmpzne3/4O2oFpiLNTRD1fsfRVyfA8zalFvLov8ule2YzMDsWFUOywKccaVeV3R3132C1dCtUz4XLwXaI9ZDSxxzCiubPTxf47rAD8bemrDEYpx6yOSda4ODBsJRrxc0gedbDXrdWapx4ODkWS90gU9nBvYW3GaE9Spz9pAC33cTKH31tLuQIuGM6w72xk2ejxvC2rmqIVuyzO2F4Uo//spjbS6hEDtc/izXi5YP7KdRAASANzUoMkKj81Cb1dTfNvfHea6il1ePUeGm61TO9lSxka3U2zCiSxLs4d4yVczs6+bqUz7kc/XzUO+awRB0Ma53nJsAYOJFD3Z3vQJDcdgYH2nkZThRfePAWqQXaQs7XMSMP3pZYkxERhY0mOGws7xYXcnia+ZjJYVtSdq1a/zZKzDgflbF1R6Wmx8HOyEdcN9KBcidBhJano1Ww9nUvC+tWMzySWQKmwc1U7q+NEZAXj8eS9809+twceaNRIwqV8fTl0wGAwcnt4Z/jYG4HNZGN/BCisHetA9rWYz02Ghj13TXbSlmS5luewoBQSfDLToqZu9sCe1VmFTGAwGfh7mrYTZyI/PY+PKvG4KWy7ey8UEDBkyEId7W2BGgB2YDIDDYuDzXi4IaCKALa93/amBzvrayVlOQdZGP/O7O8p1XKIW+Q1MEARt6i/HTtI3h4BFqkS0FQfduyNVVzJY0yUzBn2Sm7c8Uu2JxdhweQtYYpHE8B6vEDwyd2rgQfKbE2SPd/1twGExYMbnYsc7fjDWUX5x8dbum/7usNavvRhjMxn4bWQ7qUvv1IWhNgcLeijuedWWkNcL0Vx+NprVHMjRqPEu4y3xXqA9BnhIzwgf2c4SPpZ6YKB576Gzg9S3KYW/rSHuL+yJktVDsH9aZ+jyNPtz7RDH5pV8GOhhhpWDPGDxKjt0y3hfeJjrKnh2qjO/m2OzHmdrIFsQl8NS/ucJLws9bBmvmFU3HWSsB8lmMbFtYkfkrhyEvJWD8PMwb5mCl/JwNeXj2/7uje4j7zmNmvgc8GVvVxybGdDkeQnpNPtdkSAIjcUR1sC+JFdijDSlaVsELDZ+9xuGNTd2Sox/c3cfLjso5kOSOhkXcwu9Up9IjFWyOPi2+7sKPQ+PzcK/k/2xZbwvuCwmmGocKNMkHua6SPyqLx5nlsDFRAf6Ss7GsDNseXAgt7S66Z0IgmizNPX3w9yujuBz2Tj0KJ00mlBTDAYDX/dzx9f9SJCmKXOCHLBuuDf0vzpL91SUprHSC4rgquKl7ysHeoDLZqK4skal520tSCYkQRC0cCjOoWSExcsQhDTQJvdOWpM/fQcjX0vyznhI6lOEpDymaUbKoVVThbXXtlPG1wWMRpKBcpbNanFYGnuBqa7YLCb8bAyUHoAEAD9rA4l6aFpsJsIW9ICVvuw1tXgc8jHvbeTVQBCtx5ROttg92Z/uaRCtRLBTw2U4pkmpa6hI5rpc6PLYpHSOCljoSX6G8raQPzvXxkBLJZmrrRn5dEoQBC2kd8ZuuinNMC9S56w1KeHp4Df/EZTxb+/so2E2yvPF/aNwKMmRGEvVNcFPgeNomhGh7phMBs7PCcJvI32wtK8rbn7UHQH2hnIdo68rqbH7GpfFhK0CsksJ4jUjKZk9VnrNq59HEIRsjHUUexNw28SOODS9M0Jnd5G63dWUj98aqG2qaP9M6Ag/G30wGUBXByNSb1AJFvaUbGz0STMaRy0f4K7wJeVtDUkpIgiCFs5F1OUzjS3HNtbhYPkAD7iZaW49GUK63/2GYVHEcRhWldWN9U55jB6pT3DDVjUf/JTJvjgbi8MPUcYX95yBcg65YCUaZqTDbVFn1SqBqOmdWilfa31EpRfXfb1/aie1ruFJqJalHBnFDfllhA/e2/9QYmxMByuceZ7d4mMThDTS4h6y1hxsLXq7KPbm2owAagOdt/33rj8MtTnILqlS6Hml8TDXRcTCENQIReCwmPj5SqzSz9kQPzVt/tRSX/Z2RWdbQ9xPLUR3R2N0byQDVppLH3RFb3KDt8VIJiRBELSQmgnZQBDyz3EdkLViID4OJk0WWqMiLV1s8B9OGW8V2ZBiMTZd+hM6AsnafDetvbDXsydNkyLaCjcz1dZIUifrhntDtG440r7tj+o1QzFSAV1ZidZDETVX+7qZ4schXrAx0IKTsQ62TvCFpwyNN9pb6aGjjE0dCOJtDAYD7wVKNuWZ1cWBptkAU/xtFHIcaQ2deGwmetQLEHma62pcWabcMvlrM3NY9IdoFNVFWx31cTPFl71d5Q5AAoCLSfMaNRGS6H+GEwTRJjkXZlLG4g3eXCT2cjHByfcCkbCsL+YEOZAMllZug/8IFHElf7H3TX6k8bUhx8XcwrD4+xJjIjDwaZ/Z0lMaCEKBLMnSUFjpa4GtBhd0hPr5opdLix7PALC4jytSvumPuGV9KcEhaTaNbo8r87qBx6b/OcllMWGvxBIFnua6sDXQArfe6681BzdUYfOY9lg33BtT/G3w17gO+Ka/G21z2TSmvUKO834gNZDKALDnXX8M97aAvaE2pnWyRfgnPRRyPlUKsDOkewoyWTHAA3aGWjDU5mBRiDPGd7Cme0pEK0b/b0CCINoklyLJIGSmjiHKuG8+DJvxuRjqbQEHY3LHqS0o1NLFRinZkD9f2w6GWDOXlBpUlmLDlS2U8T86DkakhSsNMyIIgiBeU3UgcIC7GT7s7ghjHa5Kz/s2c9035/52gDt0OCyFHHdiR2u8fa+Yy2JibHsr6HDZWDnIQ+L8n4W8KTEhS+ZoY3Q4LJgouEaguuOymVgU4oJdk/0xO8iB1tp0+locTOzY8mBVQ/8FW0NtHH8vEIlf98OOSX7Q5WlWFiQAdLYzxEgf9apnLy0Te143ByR+1Q+53w3EuuE+pLEhqJm+ujwWrPTJzV1FIEFIgiBUTyymZEI2Vg+SaBt+8x+BAp7k8tGArFiMf3GLphm1zI83d8GqrEBiLE3XGMuCp9E0I4LQfEv6yBbAZ5FMY0KNMBnAh2rQZCJ2aV9cmBuEuKV9sayv4jLo/GwMcHBaZ/RxNcUAdzOcfD8QTq+WLX7Z2xUJy/ri0gddEbe0LzzN9eoeF+Ji0qLljUwmA1/1c2/x/ImGaUmJU/u30nqBjTHlcyWC+IBsy9FZTAYOTQ/A3QXBOD8nCJZ6La9H21L1l/B3czSCmS4PDAaDBB/f8mVvV5jy3/zMVw32Uoul8q2B5t1OIAhC46QVVUh8bVlWAL5AssDz20uxibapQFsPP3YZj5+v75AYX31zF465BqGarTnZDt1Tn+GDqFDK+II+c1DCI9m9hGIxGYBILDnma906LxJXD/HCT5ebLtbfzkqvyX2ItmkWDcuB73zcQ+7u9q9tn9gRM+s1wGkuXR4bfd3M6r52MaXWjTXW4SC/vEbuY49ub4XR7a2kbnMw1pG6skWbw8K1D7vD9vsLcp/vtU97OqOfmymeZJZg8p7IZh+HkK6dKRdabCYq32p0NrerYutQcljUwJeDkfJKBTQHk8nAX+N88e6eSJTXCOFiooMVAz2afiBqA5GB9kYAap/zLWHGb3km9bxuDmAygDPR2XA142NZX7I6R5p2VvpI/KovwpML4WbGh42Bej0nNRkJ5RIEoXQ3E/IlvnaRVg+SZEISqO2UnaRnJjHmXJSFTyNP0DQj+elWl2NH6G+U8eMugTjq2lX1EyJavcl+NhJLS/lcFsZ2kB4MaCtMZFzyKu2CjiSCtF4/DfXCptGKqWMnj+YGIBvT3dGoxceY7EfN5JrYUTHNRmRlrYDuzu2s9PGOlP8L0XJ8DhOHpvmjg5U+LPR4WNjTWaL+qbROwUO85Ft+HOJsQhn7SAXNKIPlbEwysp0l8r4fiJdL+iBmSR84m2hm8zcGg4EPujnixPuB+HWED0z59GdntpSyegfocNno5WpKApAKRoKQBEEoXY1QMkXHpUhaZ+y2fcFM1Kpic/FN8BTK+Nd398O2OIeGGcnvl6vbKDVPSzja+LjPXNKMhlAKTws9hM7ugokdrfGuvw0uzu2qkO6/mojLYuLw9M4y10lb+FZ9ute62Lc8uEOopy97u4KrBk1h5NHQU/ns7KAWH7uLgxF+H90OTsY6cDbRwR9j27fJpbZE4wa4m+HhZyHIWD4Av4zwkQj4jPKxlFhibMbnYmwDGbENcTXlY3Ef17rneoizCaZ1slPI3BvTnJt1PDYLLqZ8WmtxElRdHej5vc3nsmGoLblSq58bNTBPSCLLsQmCUDlpmZBx9ZZjB5KLwDZrj1cIPo48iYCsN0sudWsqse7aNrwzfDGNM2va0Lh7mP34PGV8cc/pSNU3k/IIglCMEBdThLiQD755KweCL0fzgjlBDjgYlY4HacUAamtO2rbRAC6hnqQFxX8c4qWwJh3zuzthfvc3WWf/hCUr5LjyYDAAcb2SEmySkqwRzPV4uPVRMHZFpEAkBqZ2spU7u5XBYODHIV74PMQFRZU1cDLWIUE+Qi6Oxjr4opcL1l6NU+l5WUwGlvZxxeLT0QBqb4R+3stFpXPQRCoLQhYUFCAuLg6pqakoLCxEeXk5mEwm+Hw+DAwM4OjoCGdnZ+jqtqxLGkEQ6s+pSEoQ8q3l2Lo8Fsb7kszItkrMYOLjvnNx978vJMYnxNzCtsRInHf0p2lmjTMpL8aW879Txs86+uNP38E0zIggWicWkwFh/SKYr8gTgAQAYx0u7n3SE8+ySmCmy4OFGjQNINqmOUEO+PtuksSYlT4P7mZ8zAy0w/bwFACAhxkfMwKUnyWmSvO6OmLz7cS6rwPtDKHDJbkymsLJRAfLB8hWH7ExJnwuTJpZ81Da64doW9YM80Z/dzMM+PuuSs/7RW9X9HM3w5PMYgQ7mtQ15SIaprR3d4FAgNu3b+PixYsICwtDcnLTd9UYDAbc3NzQtWtX9OvXD507d1bW9AiCoJFTUZbE12VsHrJ1DOu+vvxBN9gbkTfwtizcygNb2w/ArHpZhX+d/x86TP9d7Zq7MMQi7AxdD8vyQonxPC09vD9wAVmGTRAK0PfVEqe5QQ4SAYuWYjIZaGelL/fjjGWsO0kQsprVxR5b38pEnN3FAQwGA1vH+2JRTxfkllUhyMEIPHbLmluomzVDvVBeI8SllzloZ6mP/41Rfd1OQrP9MbY95nVzgN+v1+meCkEjurqP+9kYwI+UspCZwoOQubm52Lt3L/bv34+8vLy6cfGrHPvXqdXit3LuGQwGxGIxxGIxYmJiEBMTg507d8LW1hYTJkzApEmTSIYkQbQizvWCkAkGFhJBms52hiqeEaGOlgZPw5iXt2FcWVo35lCSg5+v78C8/h/SODOqb+7sx5CECMr4vH7zkKkrX+FzgiCojHU4+HGIFwBg7XBvRKUX4VZiAa1zcjTWQS8XE1yNy2t6Z4KQwf/GtIenuS4epBUh2MkYs7vUdiFmMBjwsdQD0Dq7vvN5bGyb2JEyPtjTHBGpRRJj5EKfkIbBYMDX2gBd7A0RllxI93QaZKhNDb+wmZpVp5YgWkphz/iCggKsWbMG/fr1w+bNm5GXl1cXWHw74CgWi8HlcmFqagpzc3Po6elJ1Hx4+zGpqan49ddfERISgl9//RUlJSWKmi5BEDTRqqmCVZnkhWO8AemMTVDl6ehjUa/3KeNzH4WiX+IDGmYk3cCECHx7Zx9lfLdXCA55BNMwI4JoPX4d4YOHi2obIry+QaXNYWHz2A70TuyV4zMD6Z4C0YpwWEwsCnHBv5P9MberI5htvC7iZH8baHPeXK6a8rkY4SNf52WCUCdzuzpSxgZ6kJrhRNuikEzIvXv3Yv369SgpKZEIOJqYmCAoKAheXl5wd3eHh4cHjI2NweFIdhASCATIzMxEcnIynjx5gqioKISFhaG0tDb7paysDFu2bMH+/fvx0UcfYcqUKaRYLUFoKMfibMpYogH5QElIt8u7Dya8uEnJMtx1dj06TtuAbD69DYzsi7Ox+8yvYEKyPl20sS0+7DePplkRROuhxWaig7X8S6VVRU+L1K0jCGXxNNfDlXndsC08BTw2Ex90dYCZLqnbSmiuCb7W+PtOEiLTajN8x3WwIivAiDanRZ+cUlJS8MUXXyAqKqou+GhqaorRo0djwIABaN9etnoebDYbtra2sLW1Rbdu3QDUBiYjIiJw6tQphIaGoqSkBEVFRVi9ejVOnTqF1atXw8WFdB4iCE3jLKUpTbwhCUISDWAwMLf/fDzZ8REMqsvrhi3LC7Hr7HoMHrsCYgY9y1j0q8pw4uj3MKmUzNIv5Whh7IilKOWqvm5lEOkqTxAqZ8rnIresuu7rtzO3CIJomUB7IwQq6XebtJQWPrd11dsk1IuhNgd3FgTjfkoh+Fw22lvpkeQqos1p9qekY8eOYdSoUXUBSB8fH6xfvx5Xr17FZ599JnMAsiFsNhtdunTB999/j5s3b2LFihVwcXGBWCxGVFQUxo0bh8OHD7foHARBqF79pjQAkKBPgpBEw9L0TPFx37mU8QFJD6Uug1YFtlCAAyfXoEMutRPj+wMX4LmJ8juXupjoSBTgDrQzRLATqT9JEKo2J8hB4uvZ9b4mCEI9eZrrQosteTm8sKczTbMhFKG7BnwO4rCY6OpojA7W+iQASbRJzQ5CLlmyBGVlZbCzs8PGjRtx+PBhDB48GGy24pel8Hg8vPPOOzh9+jTWrVsHBwcHVFRU4JtvvlH4uQiCUK76TWmAV41pCKIRu717Y7tPX8r48jv7MOH5DZXOhSEWYev53zEg6SFl2wb/4TiogjqQhtoc7HnXH/c/7YnNY9pj92Q/XJjbFVw2ycAiCFVbOdADf43rgBmd7bBpdHv8MtyH7ikRbdx7gfZ0T0EjaHFY+HeyH0z5XDAYtY1wvujlSve0iBaY2skWrDZeS5Ug1F2zI4Z8Ph/z58/H1KlTKTUelWnYsGEYPHgw/v33X2zatEll5yUIQjEcSRCSaKaP+85FUMYLeOWnSoxvP7cByfpmuGvtqfQ5MMQi/HVhM6Y9u0LZFurohy96zlT6HAAgY3l/8Ni1S8Y+6OaoknMSBB1cTfl0T6FJTCYDs4McJDIgRSJxI48g1Nk3/d3x/YUYuqfRbB5mfKwb7o0X2SUSHeQHydj8orxGKPc59XiaWxt1bAdrjG5nhbJqIanx2gr4WhvgxMwA/HE7CVw2A+8F2mPYP+F0T0uj6Ut5fXNIR2+iBZr97AkNDcV7772n0gDkaywWCzNmzMDZs2dVfm6CIFqmfk3IbG0DlHG1aZoNoUnKOVoYN2IJiurVWtQWVOPMke/glxWn1PMzRUL8cfEPzHp8nrLtoZkTJgxfDAFLNRcwXBb58Ee0DT2c1X9pHaF+zLWp75H1l81L42Ssg+8GeoCtwZlUR2YEwFCbgy0TfNHeSg8A4G9jgE1jZCuVFZdXJvc5B3uay/0YZajfOdvbQlemFQJMJoMEIFuRwV4WOPF+IA5NDyBlahTg/S7UzOrh3iSBhGi+Zl/FmJnR30peHeZAEETTjHVe3awQiyk1IUlTGkIe0Sb2eGfYFxDWa0ZjWFWG84e+hW92vFLOyxNUY/+pnzHn0TnKtkR9cwwb/S0tjWgIojX7e3yHuoxfgpCHoz4bvd4KYGtzmJgl5UJa0aQFL52M6fnd4Gmuh6jPeqH8xyG4v7AnnE2Uk1X8vzHt4UjT/7G+tcO84fYqe9pcl4u/xvnSPCOC0Hxj2luhq8Ob5lCj21mimyNphEg0H7nlQxCE0mWWVAEATCpKoF9dIbGNNKUh5HXOqRMW9pqFjVf+lhg3qSzBtf1LMX74Elxw9FPY+axL8nDg5Bp0y3hO2Zaia4o+E35Aup6Jws5HEEQtKz0tuqdAaCgGg4GjMzrh2NMcpBdXYoSPJXws9ZR+3g5W+tDhsCSWNM/v7qj08zZGi6O8QP74DlaYp0YlQdzMdPF8cW9kllTBQpcHpgZntBLSGWlzwGQAb1e8kLXUANE8ujw2rs/vjsjUImhxmGhnSTp6Ey2jlPVcgwYNwt9//42sLGrtN4Ig2pafLr/ErANRAACnYin1IA0tVT0lohXY5D8MK7pOoozrV1fg9JHv8HHkSUDc8pps/RIfIGL3p1IDkOl8Y/Sd8AMSDchzmCAIQt3wuWxMD7DD0r5uUgOQhtrUklKe5rotOqcWh4UjMzrDy1wX+lpsvN/FHh8HO7XomOrA11ofA9ypgR51DPIxGAxY6Wup5dyIltPhsiXq77KYDMzvrvmvMXXHYjIQYG+I9lakozfRckrJhExMTMT69euxYcMGdOvWDWPHjkXfvn1pqR9JEAR9iitr8E3oi7qvnQszKfvUz4Ts7UIyygjZrOz6DnjCGiwNPyQxzhaLsOHKFgxKiMCcAR8hTc9U7mMbVpb+n737jq+qvv84/j73Zm9CBkkgQAgQluwliAxnURAQ1Cpq3VprXRW02lrrqL+2WjeKs87WgVDFTQEVBATZe49AgEASRubN+f1Buebm3pB1zx3J6/l4+Og93/M953ygOSS8+Q79dd5runb1Vx7Pb2iRofMmPKgdbKoE1NkvclI0e/1+f5cBSJIu6Jqqu/+z1qXtmgFt6nRtVKhdyTFhHs+d0zlFa+5JkWmaTeov603ol4Ig9+y4Hjqvc4o2HDiqszslq3dGvL9LAlAPlk7Hdjgc+u677/Tdd98pLi5OF154oS666CJ1797dyscCCBBb84/LUWW+RPX1ICX3NSHHdmdUWbAZ3DZBC3cU+P7BhqHfD52sY6ERevj7t9xOn799mTa8epOe7HuRnuw7Roci42q9ZXzJUf3mp090x9KZalHqeXH+H9I66cKL/qD8qNrvB/hTaICNBHrg7E6a1CtdV7+33N+lAOqUHKNnxnXXn77cqOJyh64bmKlx3dPqdO39Z3esdb3SphRAAoHEbjOaxd8XPP0JEu9hBDcQbCwJIe+9917NmjVLa9askfm/6XCFhYV6++239fbbbys7O1sTJkzQmDFjlJjIjlVAc1F9Z2xJ2sZIsqB37YA2/gkhJckw9OigSdoen6JXP39aYZUVLqejKsr0+0X/1t0/fqQZ2YM1O6ufFqTnaHdMkspCQhVWUa52RXkauHejRm9dojFbFivCUV7j46b1PE+3D79eZSH8EIjAl9kiUpkJkdpZUFx7Z4uE2W2yGdKdZ3bQgMwEDWzbghASAePXQ9rr5sHt5DBNhdprX6WqR1qs3ruir7qkWr++JIDmbXgH95k8/l5jFvAGS0LIq666SldddZW2bNmijz/+WJ988on27t3rDCQ3b96sxx9/XH/729905plnavz48Ro+fLjsdnZABJqydtVGQlYYNu2KZTHpYDe5T4aue3+VX2t4p8twbUpI19uz/6ZsD9P+wx0VunTDt7p0w7fOtlJ7iMIdFW59PSkIj9ZtI2/QW11HeK1mwGqGYWjWNQN028ertPngcV3YLVXLdhdqya4Cn9Vw6M/nymYYlm6OATSGzWbI5nHMkbux3VoRQALwiT6t4zWueyvNWH3i59ouKTH6Ze8MP1cFNJ6l07E7dOigu+66S3fddZcWLVqkmTNn6osvvtCxYyemuFVUVGjOnDmaM2eOEhMTNWbMGI0bN06dOnWysiwAflJ9Y5qdccly2PiLabAzDEP3n9VRD3+9ya91LEnrpN6Tn9ITc1/R9au+rLV/XQPIj7IH6TejbtTeGNYrRfA5LT1Oc28Z4jw+49nvfPr8qDBLf9QEAMArTkuL08q9RS5t4SGW7ONbJ3aboX9f2U9LdxeoqKRCQ9onKpJ/0EMT4LO3auDAgXr00Ue1YMEC/f3vf9ewYcNkt9tlmqZM09ShQ4f0+uuva+zYsZowYYLeeecdFRUV1X5jAEHBVulQ26IDLm1MxYa3HQuL1I3n3Kq+VzypbzJPa9S95rXuppETH9bFY+8jgAT+Jz4iMELFFh7WxbqgC99TAAANc0OVXbclqVVsuLr6eeSz3WZoQGYLndUpmQASTYbPf5IMDw/X6NGjNXr0aOXn52v27Nn6+uuvtXTpUlVUnBiVsmbNGq1du1aPP/64Ro0apYsvvlinn366r0sF4EWtj+YrtNLh0rYtvukvKg3/+Cm1g86e+LD6792o61Z9qUs2fKu4strXxTscHq33Ow/VP7uO0IL0Ln7fDvT6QZma/sNOv9aApiUtLqJR198xrIP+/PVGl03H/KF1QqRGZidpzuaDkk68qtcPyvT6c8LsNpU7HLV3BAAEtZsGt9WBY6X6YMVeZbaI1GO/6CJ7gG3wBjQFfv3n7JYtW2ry5MmaPHmyjhw5onnz5umtt97S8uXLZZqmSktL9dlnn+mzzz5TmzZt9Mtf/lITJ05UdHS0P8sGcArfbs3XnM0H1S01Vlkto5ztWR7W6dsWn+LL0tAMLUnrpCVpnXTrqBvVJ2+Lhu5Zp44FuUo6XqjYsmIVhkfrcESM1iRlalGrTlqW2kHl9sDYdKZFZKhuHdKeEBJedUXf1vpg5d4GX39ht1RN7Jmmbn+d672iGmjG1f01fdEObT9crLHdUjWqo/fXGP7tGVl69BvXpSZ6tGJNQDQ/CR5GH8eGB8bIaMAbbDZDfzyns/54Tmd/lwI0aQHxnWP9+vX6+uuvNWfOHK1bt05GlZEnJzez2bVrlx5//HG98MILmjp1qsaNG+evcgHU4J1lu3XFOz85j4dlJTo/t6+2KY0kbWUkJHyk3B6qRek5WpSe4+9SarXotjO0/fBxDe/QUskx4f4uBwHm6v5t9Ng3m13a6hOKje6Sql8NaKPXFu9qcA1dUmOVHB2mA8fKGnwPb4iNCNGdZ3aw9BmT+7bWCwu263BxuSRpcNsW6t8mwdJnAoHol70z9K/luS5tk3qm+6kaoPGyWzKwqanxNHLV0z+gwL/8ttLq5s2b9eSTT2rUqFEaN26cnnvuOa1bt06SnOtE5uTk6LbbbtMZZ5whm80m0zRVWFio++67T3/605/8VTqAGjz3/XaX4/lbDzk/Z3kIIVkTsumICmOdGm/pn5mgiT3TnQHk1f3auJw/q2OSyz/WIXj0So9za6vvq3N579aKCf/5og4tozSqY1Kdr7fbDL0yqZf2/+kc3Xx6O/VIi9XFp6XVrwhJNw5uW3unJqBzSoyW3jFMT47tpjcu66UvbhikELv/NioA/OW8nBRNrPJnxeV9MjS8A+slIzhlJkRqRDZfv01Nx6Rot9DxN0Pb+6ka1MSnIyHz8vL06aefatasWdqwYYOkn0c6npSYmKgLLrhA48ePV07OzyNWDhw4oHfffVcvv/yyysrK9N5776l3794aM2aML38JAE5h4Y7DNZ5rx0jIJu0XOam6b/Z6l7bzOifr8w0H3PrGhofoSGnddqaG9NRF3SVJ87flq3d6vJ4d38PPFaGhbhzcVjd/uMp5nBgVqo4J9fsX+q6tYvXdr4fq3eV7FBseoqv7tWnQDtRJ0eF6rsrXUssHPneO9quLP53bWR2To3XVu8vr/WxPfje8g/46d4tLW05KjFfu3VjtEqP02zOy/F0GfCg1Nlx7Ckv8XUZACbXb9K8r++mvh4/LZhhqnRDp75KABpt3y+kN+t6JwBZit+mDK/vplo9WaufhYo3t3kpTRlg7YwL1Z/mbd/ToUX3xxRf6z3/+oyVLlqiyslKSa/gYEhKiYcOGafz48Ro+fLhCQtzLSk5O1m233abu3bvrlltukSS98847hJBAkMgqdF0T8mhohA5Guo8KQnDqkRarqSOz9de5W+SoNHXxaWk6LyfFYwiJ+omNCNGrl/bydxnwgusHttWewhL9e0WuWsdH6uFzOyrk0I563+e09Did5mFUZWMMattCn63fX+f+hmFoct82DQohB7VtoR+q/KNVr/Q4XTcwU/9cult5R0olSZf2SleHpOCdKmcYUqjdULnj5593O1RZJxmB7bdnZOmeT9a6tbdP9M7/h/0zW2jRzgKXtuwg+XrPbMHXMYJfWy+9ywg8Izsmaf2UkXJUmmwsFKAsCSErKio0b948zZo1S3PnzlVZ2Yk1g6qPeuzcubPGjRunMWPGKDEx0dOt3IwcOVJt27bVjh07tHnz5tovABAQqq8JuTU+1ePOw0zrDU6GYejRX3TR1JHZKq2oVHJMuN5autvfZQEBxWYz9NB5OXrovBMzPSoqKrSiASGkFa4dmFmvELIx/vKLLhr9yiIdK3MoMtSmxy/oqo7JMVp195n6ZtNBtYoN15B2dfu5MFAZhqEbB7fTs99tc7bdOLid/wpCvVzdv7VbCBkTbtfoLt5ZRubKvq313PfbdPKvRqF2QxN61H9ZBF+xswQIgCBDABm4LAkhhwwZoqKiIkkngkfDMJwBZEJCgnO6ddeuXRt0/7S0NO3YscMt1AQQmKLKS9TqeIFLW03rQZ5lwe6m8J24CBZ/BoLRuO6+Wx5jWIeWynvwHK3ae0TdW8Uq+n877CZFh+uSXhk+q8NqT47pptPSYvXTniINy0pkE48gkhQdrtLHR+v3n63Xhyv3qk9GvO4e3kEpsd7ZLKxfmwS9c3kfPff9doXZbbp7eAe1D5CRsmd1TNbT325zabu6f5saegMAUD+WhJCFhYUuwaPdbtfQoUM1fvx4jRgxQqGhjftLan5+viSpY8eOja4VgPXaFbqPrtnmYT3If4ztpnZMj2jyxnVvpX8yShIIKL7e7CgqLEQD27bw6TN9zW4zdN3A5rGBT1MUarfp/y7oqv+7oGGDJmpzSa+MgAzdR2a3VK/0OC3PPTGgJDMhskGbVwGBICrUrqhQu46XO5xtw7KCe6Q9EOwsWxPSNE117NhR48eP15gxY9Sypfd2n7rllluUkZGhrCwWCQeCQfX1ICX3kZC/7J2h21j4v1n41YA2hJAAAASgqLAQzb3ldP1nbZ5Kyit1YddUr40ABXwtxG7Tb4e112PfnFjGzWaIv28AfmZJCHn55Zdr3Lhx6t69uxW31/nnn2/JfQFYo/p6kJJ7CBlqZ92OpiYpOsyt7aLurXRmhyQ/VAMAAOoiLiJUl/dp7e8yAK94+LwcDe+QpNX7ijSiQ5J6ZcT7uySgWbMkhHzggQesuC2AIOUphNzqYTo2mpZhWYlKjArVoePlzrZrB2RKkrqmxmht3lF/lQbAB/q25i96AAD/MgxDZ3dK1tmdWHceCASWTccGgJPae5iOvT0+xQ+VwJeiwkL0zU2D9ejXm3TwWJmu7NdGo7t6Z2dRAIHvxsGshwgAAICf+SyENE1Thw8fVllZmSorK+t1bXo6uwkCwaz6SMh9UQk6Hhrhp2rgSz3T4/WvK/v5uwwAPhQXEaLXLumlcT3YzAIAAAA/szSEPHbsmKZPn645c+Zo69atcjgctV9UjWEYWrt2rQXVAfAJ01RWtRCy+nqQAICm4/nxPQggAQAA4MayEHLLli26/vrrtXfvXkknRkICaLqKyz3/I0NScZFiyktc2lgPEgAAAACA5sVmxU1LS0v129/+Vrm5uZIIIIHm4NO17pvPSFKWx/UgGQnZ3GXEMx0fCDT92yT4uwQAAAA0YZaMhJw9e7Y2b94swzBkmqZ69uypSy65RF26dFFMTIxsNkuyTwB+9Pay3R7bPe+MTQjZ3P2qf6a+2njQ32UAqOK6gZlasqvA32UAAACgibIkhPzkk0+cny+66CI99thjMgzDikcB8CPTNPXq4l2au+WgZq6p+0hI1oTE+B5pmtQzXf9ekevvUgD8z3UDM1Vc7tDHq/epXYsovf7jLn+XBAAAgCbEkhBy27ZtkqTQ0FDdd999BJBAE/W3uVs05dN1p+zTvnC/W9vWBNaEbO7CQmx6b3JfQkgggBiGodvOyNJtZ2RJEiEkAAAAvMqSedEHDx6UYRjKyclRXFycFY8AEACmL9pZa5/21UZCltvs2h3T0qqSAJ8a0YGvZQAAAACoC0tCyOjoaElSeHi4FbcHECA2HzxWa5/qa0LuiEtWpc1uVUmAT3VIiq5X/9bxEfpFTop6pMVaVBEAAAAABCZLQsi2bdvKNE3t2sU0HqA5s1c6lFl0wKVtWxzrQaL56pkep0+uG6gVdw33dykAAAAA4FOWhJAjR46UJOXl5enHH3+04hEAgkCbIwcUYla6tG1nUxoAAAAAAJodS0LISy65RPHx8ZKkv/zlLyorK7PiMQACXPWp2JK0NZ5NadB89W2dcMrzvTNYRxkAAABA02RJCBkfH68HH3xQkrRmzRrdcMMN2r17txWPAhDAsgrcQ8htjIREMxVqN3Rp7/RT9rluYFsfVQMAAAAAvhXS0AufffbZWvtkZ2dr06ZNWrRokc4991zl5OSoS5cuio+PV2RkZJ2fdeuttza0TAB+1L7Iw0jIBEZCom6iw+w6VubwdxkNdmXf1tpxuFiGIcWGh+jWoe2Vk3LqDWku7XXqkBIAAAAAglWjQkjDMGrtd7KPw+HQ2rVrtXbt2no/ixASCE7tC/a5tbExDaqaeFqa3l+51+O5Q38+T+FTPvVxRd7z+mW9/V0CAAAAAASMRk3HNk2zzv/Vt3/V6wAEp+ojIYvCIpUfeeqRYGherhmYWeO5UHvdvkW1a1H3kfUAAAAAAP9o8EjI/v37e7MOAE1Q9TUht8WnSnUYQY3m49zOKXrvir669K2l/i4FAAAAAGChBoeQb775pjfrANDERJcVK6W40KWNnbHhyaRe6UEbQqbGhvu7BMCvIkJsKqmo9HcZAAAACAKW7I4NAO0L3Tel2c7O2KinnulxtfaJjwz1QSWeTeiR1uBrz89JcTlOiAxVXIT/fi1AQ9wzItutrVd6vB8qAZqfm09v53IcHmJTu8Qo/xQDAEAdEEICsISnEHIrISTq6bpqa0bGRbgP4L9pcFtfleOmV0a8okLtDbr27uEdFBHy87fh+0Z1lN3GcgUILlf3b6P0uAjn8bjurdQlNcaPFQHNx++Gd3Cui2wY0uOjuyiygd+TAADwhQZPx/aVsrIyhYWF+bsMAPWUVehhZ2xCSNTTLae3U1SoXZ+v369OKTG6c1iWrv33Cn28+sTXV8/0OE3qma6bP1zltxqnXXyarnz3p3pfNyI7SRumjtT32w6pW6tY9UirfdQnEGjaJUZp5d1n6ptNB5UcHaah7RNlsPYv4BPtEqO0cepIrdhbpLYtIpUUzRIhAIDA5pMQ0jRNHT58WCUlJXI4HB77VFZWqqKiQuXl5Tp+/LgOHDigH3/8UbNnz9b333/vizIBeFH7wv1ubYSQqMmIDi313y35zuMBbRIkSYZh6FcDMvWrAT+PiPzgyn76KbdQx0odGtg2QeEh/h31MSAzocHXtkmI1KW9M7xXDOAHiVFhmtgz3d9lAM1SiN2mvq0T/F0GAAB1YmkIuXLlSj3//PNauHChysrKrHwUgADT3sNIyO1xhJDw7B8XddeFryzWzoJipcdF6LkJPWrsa7MZAfEXrrb/mwJn9zDqKzY84CcaALVqFRuufUdKXdo8fb0DAAAAdWHZ35K++uor3X777aqsrJRpmg2+D1N6gOBUfU3IvdEtVBzKNCF41iMtTtt+P0q5RSVKj4vw6p/9j5yfo99/tr7R9+mWGqs1eUecxzcMOrEWZfvEKKXEhGn/0Z//se03Q9s3+nmAv/16SDs98PkG53FcRAjrPQIAAKDBLNmY5ujRo7r//vtrnHptGIbHv2CebDcMQxERETrttNN02223WVEiACuZplsIyaY0qI1hGMqIj/RqAJkRH6HL+3hnuvN/rh2giaelqVd6nH5/VkfnrsA2m6GPru6vHmmxig6z67LeGbpvlPuOwUCwuXt4B13Zt7Wiw+zqkhKjj67qr1A7exoCAACgYSwZCfnxxx+rsLBQhmHINE2dffbZOvfcc5WUlKSZM2dqxowZCgkJ0bRp02S321VQUKD169drxowZ2r//xDpyMTExevbZZ5WSkmJFiQAslHK8QNEVrlP4WA8SvvbChB4a3yNNyTGNH4HbMSla7RKj9K8r+3k8f3q7RK24a7hM02QEP5qM8BC7Xr+st167tBdf1wAAAGg0S/45e8GCBc7Pl112mZ555hldcMEFGjRokMaOHStJcjgcMk1TgwcP1vnnn6877rhDn376qUaOHClJys/P1x/+8AcrygNgseqjICVpW3wrP1SC5qJDyyi3tmsGZHolgJSkm09vV6d+BDVoivi6BgAAgDdYEkJu2HBi/SCbzaZbbrnF5VyPHj1ks5147OLFi13OxcbG6h//+Ic6deok0zQ1b948rVixwooSAVgoy2MIyUhIWOe6gW1dji/vk+HVaaOs8QgAAAAAjWNJCFlUVCTDMNS2bVslJye7nIuOjlbr1q0lSatWrXK7NiwszGUdyNmzZ1tRIgALeRoJuZWRkLDQPSM66OVJPXV5nwz9ZXQXTZ/Y06v3t9sYCQYAAAAAjWHJmpDFxcWSVON6jllZWdq5c6c2btzo8fzw4cMVExOjY8eOac2aNVaUCMBCWYX73NoYCQkrGYahawZk6poBmf4uBQAAAADggSUjIWNjYyVJpml6PJ+ZeeIviYcPH1ZhYaHb+ZCQELVp00amaWr79u1WlAjAQu2qjYQss4VoT0yin6oBAAAAAAD+ZkkI2aJFC5mm6dzpuro2bdo4P2/evNljn5iYGEnSkSNHvF8gAEtVXxNyR1yyKm12P1UDAAAAAAD8zZIQslu3bpKkHTt2KC/PfW24kyMhJc/rQkrSvn0npnPWNJoSQGAKcVSozZGDLm1MxQYAAAAAoHmzJIQcNGiQpBMB4l/+8he38zk5Oc7PX3zxhdv5DRs2aPfu3TIMQ/Hx8VaUCMAimUcOyG5WurRtY1Ma+NlV/Vr7uwQAAAAAaNYsCSHPP/98Z3j4+eef65e//KXmzZuniooKSVJqaqo6duwo0zS1fPlyvfjii85r9+/fr/vuu885ArJr165WlAjAIp52xmYkJPztsV900eC2LfxdBgAAAAA0W5aEkFFRUbr55pudQeKyZct00003afny5c4+kyZNcn7+xz/+oeHDh2v8+PE666yztHbtWue5c88914oSAVjE087YWwkh4Wet4iL0/W+GquiR8/1dCgAAAAA0S5aEkJJ09dVX64orrnBZ07HqWpCXXnqpunTp4jy/b98+rVu3TmVlZc4+nTt31pgxY6wqEYAFGAmJQBYTHuLvEgAAAACgWbIshJSk+++/X9OnT1f//v0VGRmplJQU57nQ0FC99NJL6tmzpzOIrPq/HTt21LRp0xQSwl8YgWDSvsA9hNzKmpAAAAAAADRrlid8Z5xxhs444wwdPXrU7VxycrLeeecdffXVV5o3b57279+vhIQEnXHGGbrgggsIIIEg1L7INYQsDIvS4YiYWq/rnFJ7HwAAAAAAEJx8lvLFxHgOGOx2u8477zydd955vioFgIWqT8feGp8qGYZL24QeaZqxeq8q/7daQ6jd0MWnpfuqRAAAAAAA4GMMNQTgNTFlx5VcXOTSVn09yKToMD1+QRdd1idDz3y7TSF2Q3ed2UHZSdG+LBUAAAAAAPiQz0PIvLw85eXlqbCwUHFxcerZs6ckqbi4WGFhYbLb7b4uCYCXeN6U5sR6kDHhdv3p3M4a1z1N7RKjlNUyWuN7pPm6RAAAAAAA4Ac+CSF37typ119/XXPnztXevXud7UOHDtX06dMlSd98840efvhhTZo0Sddff71iY2N9URoAL8rysCnNyZGQ1wzI1B3DOvi6JAAAAAAAEAAs3R3bNE099dRTOv/88/Xuu+8qNzdXpmk6/6sqNzdXBQUFmj59usaMGaNVq1ZZWRoAC1TflEZyn44NAAAAAACaH0tDyNtvv13Tpk2Tw+FwCx2NahtV7N692/l57969uvbaa7VlyxYrywPgZVkF+9zatv5vOjYAAAAAAGi+LAshn332WX3xxRfO4x49euiBBx7Qe++957H/hRdeqL59+8o0TRmGoaKiIk2dOtWq8gBYoJ2HkZDb41P8UAkAAAAAAAgkloSQ+/btc671KEl33XWX3n//fV1++eXq1auXx2v69++vt99+W/fff7+zbfXq1Zo3b54VJQKwQPU1IffEJKo0JMxP1QAAAAAAgEBhSQj5wQcfqLS0VIZhaOLEibr++uvrfO0VV1yhq666ynk8e/ZsK0oE4G2m6bYm5LY41oMEAAAAAAAWhZDfffedpBPrPt522231vv6GG25QSMiJjbvZoAYIDq2OHVZkRZlL29YE1oMEAAAAAAAWhZC7d++WYRjKzs5WUlJSva9PTExUZmamTNNUXp77GnMAAk/7Qg/rQTISEkGid0Zcjef6ZMT7sBIAAAAAaJosCSELCwslnQgTGyo5OVmSVFZWVktPAIEgq9DDztgJhJAIDn88p7OuG5ip1vERbuduGdLO9wUBAAAAQBMTYsVNY2NjdfjwYWcY2RD5+fmSpPh4RqAAwcDTSMht8YSQCA4RITa9NLGnJMlRaepfy/do1b4jGpmdpLM7Jfu5OgAAAAAIfpaEkGlpaTp06JA2bdqkwsLCegeJe/fu1ZYtW2QYhtLT060oEYCXeQoht8azJiQCT6/0OC3PLXJpiwixOz/bbYZ+2ae1r8sCAAAAgCbNkunYQ4YMkSQ5HA69+uqr9b7+6aeflmmakqSBAwd6tTYA1qgeQpbaQ5Qb0/AlGQCr3Di4rctxdJhd/TMT/FMMAAAAADQTloSQY8aMkc124tYvv/yyvvjiizpf++KLL2rGjBnO49GjR3u9PgDeVz2E3BGXItOw5I8YoFGuH9hW94zIVuv4CA1ok6BPrh2gyFB77RcCAAAAABrMkunY2dnZGjdunD788EM5HA7dcccdGjNmjMaNG6esrCy3/sePH9fixYv1xhtv6IcffpAkGYahc845Rzk5OVaUCMCLQh3lanPkoEvb1mrrQabFum/4AfiDzWboL6O76C+ju/i7FAAAAABoNiwJISXpgQce0Pr167VmzRqZpqmZM2dq5syZLn2WLFmiQYMG6ciRI6qsrJQk5zTsNm3a6KGHHrKqPABelFl0QDaZLm3bq4SQhiGN68H6kAAAAAAANFeWzZWMiIjQK6+8ojPOOEOmabr8ZxiGJKm0tFQFBQVyOBzO8FGSunbtqtdee42dsYEgkeVpZ+y4EyFkp+RovX5pL3VKjvF1WQAAAAAAIEBYNhJSkhISEjR9+nTNnDlTr776qjZs2CBJLoFjVSkpKbr66qt1+eWXKywszMrSADTS4p2HnZ897oydcGLk4/opI31WEwAAAAAACEyWhpAnjR07VmPHjtXOnTu1bNky7dixQ0VFRSovL1d8fLxSU1PVu3dvdenSxbmhDYDA9uIPO5yfswr3uZ3fGs/0awAAAAAAcIJPQsiTMjMzlZmZ6ctHArDIa4t3OT+38zQdu9rGNAAAAAAAoPli2CGARqu+JuTh8GgVRLAGJAAAAAAAOMGnIyHr4/XXX9eGDRtkGIYeffRRf5cD4BSqrwnJKEgAAAAAAFBVwI6E/O677zRjxgzNmDHD36UAOIW40mNqWXLEpY0QEgAAAAAAVBWwISSA4OBpZ+xtbEoDAAAAAACqIIQE0CieQ0hGQgIAAAAAgJ8RQgJolKzCfW5tWwkhAQAAAABAFYSQABqFkZAAAAAAAKA2hJAAGqV6CFkpQzviUiRJ/VrH+6MkAAAAAAAQYAghATRK9RAyNyZRpSFhkqQbB7fzQ0UAAAAAACDQhPi7gED01FNP6fnnn1dGRobmzJljyTN27Nih9957T4sWLdKePXt07NgxxcTEqF27dho8eLAuvfRSpaYypRWBzTAr3ULIqutBXt2/ja9LAgAAAAAAAYgQspqVK1dq+vTplt3f4XDoqaee0vTp01VZWely7vDhwzp8+LB++uknTZ8+XXfffbeuvvpqy2oBGuqpb7dKklodO6wIR7nLuarrQdpthk/rAgAAAAAAgYkQsopdu3bplltuUXl5ee2dG+i+++7Txx9/7Dw2DEMdOnRQUlKS9u/fr61bT4Q75eXleuyxx3Tw4EHdfffdltUD1NeqvUW6Y+YaSZ43pdnOpjQAAAAAAKAaQsj/2bhxo6677jodOHDAsmd8/PHHLgFk79699cgjj6hDhw7OtvXr12vKlClav369JGn69OkaOHCgzjjjDMvqAmpTWWnK9r9RjTNW7XO2Z3kIIbfGt/JZXQAAAAAAIDiwMY2kmTNnatKkScrLcw9UvOnFF190fs7Oztarr77qEkBKUk5Ojv75z38qIyPD2fbss89aWhdQk7KKSl3z3nLF/f4zdfrLHH22Lk8Hj5c5z3saCbmNkZAAAAAAAKCaBo+ErDqizwpWB4Inn/HEE09Y/muRpD179jinWkvSzTffrKioKI994+PjdeONN+oPf/iDJGnFihU6dOiQEhMTLa8TqOqZ77bp9R93SZI2Hzymi//5o37Zp7XzfPvCfW7XMBISAAAAAABU1+AQcurUqTKM4N104oUXXtBLL72k48ePO9uysrJ0zjnnaNq0aV5/3r59rmFN165dT9m/Z8+ezs+maWrPnj2EkPC5577f5nJcXF6plblFzuPqIyFL7KHaG9PCJ7UBAAAAAIDg0WynY7/yyisuAeTEiRP1/vvvq23btpY8LzY21uW46rM9qaiocDmOiIjwek1AbbYfLnZrK3P8vKt7VoFrCLk9LkWm0Wz/WAEAAAAAADVo1MY0pml6qw6/6d69u6ZMmaIBAwZY+pzMzEyFh4ertLRUkvTtt9+qe/fuNfb//vvvnZ9DQ0OVmZlpaX1AXa3430jIsIpyZRzNdznHepAAAAAAAMCTBoeQ33zzjTfr8LkBAwZo/PjxGjVqlE+mlUdEROjiiy/W22+/LUl69dVXdc4557htTCNJW7Zs0csvv+w8Hj9+vMLDwy2vEaiPtkX7ZZPrP0RsYz1IAAAAAADgQYNDyKq7Nwej559/3ufPvPXWW7VgwQJt27ZNRUVFuuyyy3Trrbfq7LPPVnJysvLz8/X111/r6aefVlHRidFm6enp+s1vfuPzWoHatC9iZ2wAAAAAAFA3jZqOjfpJTEzUv/71Lz3++OOaOXOmCgsL9cgjj+iRRx7x2P/MM8/Un//8ZyUnJ/u4UnfV16gMNg6H45THqL/qm9JI7iFksH/dwDPeJ8A7eJcA7+F9AryDdwnwDt4lzwghfSw2NlZDhgzRhg0btHr16hr7de/eXbfccotSU/0/sqyyslIrVqzwdxledarfe9RNVsE+t7at1ULIpvZ1A894nwDv4F0CvIf3CfAO3iXAO3iXTmjwNrZvvvmmKisra+9oEdM09dZbb/nt+Q2xZ88eTZo0SXfeeafzCzAkJERdu3bVoEGD1LFjR9lsJ/4vWb16tS655BL97ne/U3Gx+w7FgL+1Yzo2AAAAAACoowaHkI888ojGjRunRYsWebOeOlmyZIkmTJhQ4zTmQFRQUKCrrrpKq1atkiTZ7XbdfPPNWrhwoWbMmKE33nhDn3zyiebPn68rrrjCed2sWbN0ww03qLy83F+lAx5lFbiGkIciYlQYEeOnagAAAAAAQCBr8HTspKQkbdiwQVdffbWGDx+uO++8Ux07dvRmbW6WL1+uZ555RgsWLJBpmkpKSrL0ed70j3/8Q7t27ZIk2Ww2Pfnkkzr33HPd+iUnJ+uBBx5QTk6O7r//fknS4sWL9eqrr+rGG2/0ac0n2Ww29ejRwy/P9haHw+Ey/Ll79+6y2+1+rChIvJtb46nqG9Nsi3MfBdmzZ0+vlwT/430CvIN3CfAe3ifAO3iXAO9oiu/SqlWrGj0jusEh5KxZszR16lTNnz9fc+fO1bx58zRs2DBdcsklGj58uAzDaFRhJ5WWluqrr77SW2+95VxfzjRN9e/fX0888YRXnmG148ePa8aMGc7j8ePHewwgq5o4caIWLFig2bNnS5Jef/11XXPNNQoNDbW01pqEhDSt5UPtdnuT+zX5UnzJUSWWHHVp25rgHkLye9w88D4B3sG7BHgP7xPgHbxLgHfwLp3Q4N+BxMREvfTSS3rvvff0xBNPqKioSPPmzdO8efOUkpKiUaNG6cwzz9SgQYMUHh5er3sXFhbq+++/19y5c/XNN9/o+PHjkk6Ej5GRkbrjjjs0efJkrwWdVlu9erVKSkqcxxMnTqzTdZdeeqkzhDx06JDWrVun0047zZIagfrwtDP29mojIU9Li/NVOQAAAAAAIMA1Ooa99NJLdfbZZ+vxxx/XJ598osrKSu3fv1/vvvuu3n33XdntdrVt21adOnVSx44d1bJlS8XGxio6Olp2u10lJSUqKChQbm6uduzYoTVr1mjnzp0yTVOSnP9rGIbGjBmjO+64Q2lpaY0t26f279/vcpydnV2n63JyclyOd+/eTQiJgJDlIYTcmtDK5fiu4Vm+KgcAAAAAAAQ4r4wFbdmypf7v//5P119/vZ566inNmTPHOU+8oqJCW7du1datW/X555/X6X4ng0fpxJDVc845RzfeeKNbKBcswsLCXI7LysrqdF319QJO7pwN+JunkZDVd8bu3ybBR9UAAAAAAIBA59UJ6R07dtSzzz6rXbt26Z133tGnn36q/fv3u4SKJ6dQVx3hWPX4pIyMDI0ZM0YTJkxQ69atvVmmz7Vq5TpCbO3atRo6dGit123evPmU9wH8xWMI6WFjGgAAAAAAAMnLIeRJbdq00ZQpUzRlyhStXLlSCxcu1IoVK7Rlyxbl5uaqvLzc2dc0TYWGhiozM1MdOnRQnz59NGjQoKAd9ehJt27dlJCQoIKCAknSv/71rzqFkB9++KHzc1xcnLp3725ViUC9tC/c53JcKUM74lL8VA0AAAAAAAh0lm/Nc9ppp7msY2iapo4eParjx4/LMAxFR0crOjra6jL8ym636+KLL9bLL78sSfryyy81Y8YMjRs3rsZrvv76a33wwQfO4wkTJrCTEgJG9ZGQe2JaqizEPzu3AwAAAACAwOfzRQYNw1BsbKxSU1OVkpLSJALIkSNHqnPnzurcubNGjhzpsc9NN92kjIwM5/G9996rRx55RHv37nXpV1RUpKefflq33Xabc13N9PR03XLLLdb9AoB6MMxKtS9yDSG3JjAVGwAAAAAA1IyhdT4SGxurl156SZMnT9ahQ4dkmqb++c9/6q233lK7du2UnJysI0eOaOPGjaqoqHBel5iYqOnTpysuLs6P1QM/Szt6WOGOCpe26pvSAAAAAAAAVMV2yz6UnZ2tjz/+WIMHD3a2VVZWauvWrVq0aJHWrl3rEkAOGjRIH3/8sbKzs/1RLuBRVrX1ICVpWzybJgEAAAAAgJoxEtLHUlNT9frrr2vp0qWaPXu2fvzxR+3bt09Hjx5VTEyMUlNT1a9fP40ePVp9+/b1d7mAG487YzMSEgAAAAAAnAIhZDXjx4/X+PHj63XNnDlz6v2cvn37EjIiKHkaCbmVEBIAAAAAAJwC07EB1Es7RkICAAAAAIB6IoQEUC9Z1ULIEnuo9kW38FM1AAAAAAAgGBBCAqiX6mtCbotPlWnwRwkAAAAAAKgZyQGAOguvKFP60UMubUzFBgAAAAAAtSGEBFBnbYv2yybTpY0QEgAAAAAA1IYQEkCdVZ+KLRFCAgAAAACA2lkSQn722Wd6/fXXdfDgQStuD8BPqm9KI0lb41v5oRIAAAAAABBMLAkhP/zwQz3++OMaPny4XnrpJSseAcAPGAkJAAAAAAAawpIQcuPGjTJNUw6HQ3369LHiEQD8oH3hPrc2QkgAAAAAAFCbECtuWlBQ4PzctWtXKx4BwCJ5R0q1YPshvfHjLrdz1UdC5kfEqig82lelAQAAAACAIGVJCJmSkqLdu3dLOhFIRkVFWfEYAF5kmqbunLVGT327rcY+1deEZBQkAAAAAACoC0umY1944YXOz6+//roVjwDgZevyjp4ygEwoOaqE0mMubVsJIQEAAAAAQB1YEkLefPPNGjJkiEzT1JtvvqlHH31Uhw4dsuJRALzkm82n3s3e06Y02wkhAQAAAABAHVgyHXvnzp363e9+p+joaH355Zd688039dZbb6lDhw7KyclRYmKiYmJiZBhGne536623WlEmgCrKHZWnPJ/lYVOarfGtrCoHAAAAAAA0IZaEkBdccIEzYDQMQ6ZpyjRNbdq0SZs3b673/QghAf/zNBKSNSEBAAAAAEBdWBJCSic2uahPe03qOloSgLU8j4QkhAQAAAAAALWzJITs37+/FbcF4Eftqo2ErJShnXHJfqoGAAAAAAAEE0tCyDfffNOK2wLwo6xqIeTu2JYqt4f6qRoAAAAAABBMLNkdG0DTYqt0qG3Rfpe22jaliQmzbLUHAAAAAAAQZAghAdQq/eghhTsqXNqqbkoztH2iy7l+rePVOiHSJ7UBAAAAAIDA5/OhSnl5ecrLy1NhYaHi4uLUs2dPSVJxcbHCwsJkt9t9XRKAWrQvOvXO2Ff3b6Nf9W+jWWv2qX3LaE0dke3L8gAAAAAAQIDzSQi5c+dOvf7665o7d6727t3rbB86dKimT58uSfrmm2/08MMPa9KkSbr++usVGxvri9IA1EH7wlOHkJL0qwGZ+tWATF+VBAAAAAAAgoil07FN09RTTz2l888/X++++65yc3Nlmqbzv6pyc3NVUFCg6dOna8yYMVq1apWVpQGoh6wC9xCytjUhAQAAAAAATrI0hLz99ts1bdo0ORwOt9DRMAyX4927dzs/7927V9dee622bNliZXkA6qhdLdOxAQAAAAAATsWyEPLZZ5/VF1984Tzu0aOHHnjgAb333nse+1944YXq27evTNOUYRgqKirS1KlTrSoPQD10KNjrclwcEqZ90S38VA0AAAAAAAg2loSQ+/btc671KEl33XWX3n//fV1++eXq1auXx2v69++vt99+W/fff7+zbfXq1Zo3b54VJQKoh6xqa0JujU+Vqo1mBgAAAAAAqIklIeQHH3yg0tJSGYahiRMn6vrrr6/ztVdccYWuuuoq5/Hs2bOtKBFAHUWVlyjt2GGXti3xaX6qBgAAAAAABCNLQsjvvvtO0ol1H2+77bZ6X3/DDTcoJOTExt1sUAP4l6edsbcmsCkNAAAAAACoO0tCyN27d8swDGVnZyspKane1ycmJiozM1OmaSovzz0AAeA71deDlNgZGwAAAAAA1I8lIWRhYaGkE2FiQyUnJ0uSysrKvFITgIapvh6kJG1hJCQAAAAAAKgHS0LI2NhYST+HkQ2Rn58vSYqPj/dKTQAahpGQAAAAAACgsSwJIdPS0mSapjZt2tSgIHLv3r3asmWLDMNQenq6BRUCqKusgn0ux5UytD0+xU/VAAAAAACAYGRJCDlkyBBJksPh0Kuvvlrv659++mmZpilJGjhwoFdrA1A/1adj74lpqdKQMD9VAwAAAAAAgpElIeSYMWNks5249csvv6wvvviizte++OKLmjFjhvN49OjRXq8PQN3YKh1uu2N7Wg8y1G74qiQAAAAAABCELAkhs7OzNW7cOJmmKYfDoTvuuENTp07VokWLdODAAbf+x48f19y5c/WrX/1K//jHPyRJhmHonHPOUU5OjhUlAqjGbnMPEjOOHlJYZYVL27b4VLd+Z2a1tKwuAAAAAAAQ/EKsuvEDDzyg9evXa82aNTJNUzNnztTMmTNd+ixZskSDBg3SkSNHVFlZKUnOadht2rTRQw89ZFV5AKpJj4twa/O0Kc2WhDSX49+f1VGZLaIsqwsAAAAAAAQ/S0ZCSlJERIReeeUVnXHGGTJN0+U/wzgx4qq0tFQFBQVyOBzO8FGSunbtqtdee42dsQEf8jShOqtwn1vb1mojIe8/q6NFFQEAAAAAgKbCshBSkhISEjR9+nQ9/vjj6ty5s7O9aiBZVUpKiqZMmaL33ntPGRkZVpYGoA46FLiHkNVHQgIAAAAAANTGsunYVY0dO1Zjx47Vzp07tWzZMu3YsUNFRUUqLy9XfHy8UlNT1bt3b3Xp0sW5oQ0A/6u+KY3keWMaAAAAAACAU/FJCHlSZmamMjMzfflIAI1QfU3IwrAoHYqIdWkL4R8OAAAAAABALSxJD/7xj39o5cqVVtwagA9lVRsJuSWhlWT8vHqkYXjeVRsAAAAAAKAqS0ZCTps2TS+++KKSkpI0YsQIjRw5UqeffrrCwsKseBwAC8SXHFXLkiMubVvjXadiPzuuhy9LAgAAAAAAQcrS6dgHDhzQ+++/r/fff18RERE6/fTTNXLkSI0YMUKJiYlWPhpAI3XwtDN2tfUgQxgFCQAAAAAA6sCSEHLEiBH64YcfVFxc7NwBu7i4WHPmzNGcOXNks9nUo0cPjRw5UqNGjVKHDh2sKANAI2R52Bm7+khIAAAAAACAurAkhHzhhRdUXl6uJUuWaN68eZo/f762bdvmDCQdDodWrFihFStW6Mknn1SbNm00cuRIjRw5Uv369WOHbCAAdPAQQrIzNgAAAAAAaAjLpmOHhobq9NNP1+mnn657771Xu3fv1rx58zRv3jwtXrxYJSUlzr67du3SG2+8oTfeeENxcXEaNmyYRo4cqWHDhik6OtqqEgGcQpan6diMhAQAAAAAAA1g6ZqQVbVu3VqXX365Lr/8cpWWlmrRokWaP3++5s+fr507dzr7FRYW6pNPPtEnn3yikJAQDRgwQK+88oqvygSajS837Nff521RWYWpXw9p53a+eghZYdi0My7ZR9UBAAAAAICmxGchZFXh4eEaNmyYhg0bJknavn275s+fr3nz5mnJkiUqKyuTJJWXl2vBggX+KBFo0rYfOq4xry5RmaNSkjR/W75+NzzbpU/1NSF3xKXIYbP7rEYAAAAAANB0+H3xxZKSEuXm5io/P1/Hjh1TZWWlDMOQYbDrLmCVD1fudQaQkmSa0ltLdzuPQx3lyjxy0OUa1oMEAAAAAAAN5fORkGVlZVq6dKkWL16sRYsWadWqVaqoqHDpc3IDG0mKjIz0dYlAk7fp4DG3ttyin9dpzSw6ILtZ6XJ+KyEkAAAAAABoIMtDyLKyMv3000/O0HHlypUqLy93nq8aOEpSWFiYevbsqUGDBmnQoEHq2bOn1SUCqKYDm9IAAAAAAAAvsiSEXLJkiRYtWuQMHU+u8Si5h452u13dunXToEGDNHjwYPXp00fh4eFWlAWgjqqvBykxHRsAAAAAADScJSHk5MmTnWs6Vg8dDcNQp06dnCMd+/fvr5iYGCvKANBAHTyEkIyEBAAAAAAADWXpdOyTAWRkZKQmTJigkSNH6rTTTiN0BAJc+zpOxz5aVuHWBgAAAAAAUJ2lIeTJ0ZAlJSV65513tHjxYpcRkLGxsVY+HkADVV8T8kBknI6ER7n165bKOwwAAAAAAGpnSQj50EMPacGCBVq0aJEOHz4s6cSoyE2bNmnTpk168803ZbPZlJOTo4EDB2rQoEHq16+foqLcQw4APmaabtOxa1oPslVshC8qAgAAAAAAQc6SEHLSpEmaNGmSJGndunVauHChFixYoKVLl6q4uFiS5HA4tHbtWq1du1avvfaa7Ha7unfv7gwl+/btq7CwMCvKA3AKycWFiikvcWljPUgAAAAAANAYlk7HlqQuXbqoS5cuuuaaa1ReXq7ly5drwYIFWrhwoVavXq2KihNrylVUVGjFihVasWKFXnrpJYWGhqpnz54aNGiQfv3rX1tdJoD/8bgpDTtjAwAAAACARrA8hKwqNDRU/fv3V//+/fXb3/5WR48e1ZIlS7R48WL9+OOPWrt2rRwOhySprKxMS5Ys0Y8//kgICfhQVh03pQEAAAAAAKgrn4aQ1cXExGjEiBEaMWKESktLNW/ePD333HPasGGDDMNw7q4NwHc8jYSsaU1IAAAAAACAuvBrCLl27Vp9//33WrBggZYtW6aysjJJP++qDcD32nsYCbklPs0PlQAAAAAAgKbCpyHknj17tGDBAi1YsEA//PCDCgoKnOeqj3rs0qWLhg8frhEjRviyRKDZqz4SssQeqr0xLfxUDQAAAAAAaAosDSGPHDmiH374Qd9//70WLlyonTt3Os9VDx0jIiI0aNAgjRgxQsOHD1dqaqqVpQGoQfU1IbfGt5Jp2PxUDQAAAAAAaAosCSGffPJJLVy4UGvWrFFlZaWzvXrw2KpVK5155pkaMWKEBg8erPDwcCvKAVBHEeWlyjh6yKVtawL/IAAAAAAAABrHkhDyxRdf9LixjGEY6tGjh4YPH66RI0cqJyfHiscDaKD2RXlubVtZDxIAAAAAADSSZdOxTwaQUVFRGjp0qIYPH67hw4crMTHRqkcCaCRPO2MzEhIAAAAAADSWJSFkmzZtnNOsBwwYoNDQUCseA8DLOhTsdWtjZ2wAAAAAANBYloSQX331lRW3BWCxrEIP07EZCQkAAAAAABrJ0t2xqysqKtKyZcu0f/9+FRQUyGazKTo6WhkZGeratauSkpJ8WQ6AarI8TMfeFkcICQAAAAAAGscnIeS8efM0ffp0LVu2zG2zmqq6dOmiq666SmPHjvVFWQCqySp0DSH3xCSqJJRd6wEAAAAAQOPYrLx5SUmJ7rrrLt10001aunSpKisrnSGkaZpun9euXaupU6fqV7/6lYqKiqwsDUA1hlmp9tWmY2+Jb+WnagAAAAAAQFNiWQhZUVGh66+/XrNnz3Yb/Wi325WYmKj4+HjZbD+XYBiGTNPUDz/8oGuvvValpaVWlQegmowj+YpwlLu0bU0ghAQAAAAAAI1n2XTsv/3tb1qyZIkMw5AkZWZmavLkyRoyZIjat2/v7FdZWamtW7fqu+++07vvvqsdO3bINE2tXr1aTzzxhO69916rSgRQRbaHnbE3J6T7oRIAAAAAANDUWDIScvfu3XrrrbecAeSECRP0n//8R1dccYVLAClJNptN2dnZuvrqq/Wf//xHEydOlHRiivbbb7+tvXvdgxEA3texINetbXNCmh8qAQAAAAAATY0lIeTHH3+siooKSdKwYcP0yCOPKCwsrNbrwsLC9Oc//1nDhw+XJDkcDn344YdWlAigmuzDHkZCtiCEBAAAAAAAjWdJCPn99987PzdkOvXUqVOdnxcuXOiVmgCcWgeP07EJIQEAAAAAQONZEkLu2rVLhmGobdu2ateuXb2vb9eundq3by/TNLV582bvFwjATfU1IfdHxqsoPNpP1QAAAAAAgKbEkhCyoKBAktSqVcN31k1JSZEkHTt2zBslATgV03QLIRkFCQAAAAAAvMWSEDI6+sToqaKiogbf48iRI5KkmJgYr9QEoGZpxw4pqqLMpY31IAEAAAAAgLdYEkK2atVKpmlq48aNDQoiCwsLtXHjRhmG4RwRCcA61UdBStIWRkICAAAAAAAvsSSE7Nevn6QTu1u/8sor9b7+lVdece6u3b9/f6/WBsCdx52xCSEBAAAAAICXWBJCjhkzxvn55Zdf1meffVbna2fPnq2XX37ZeXz++ed7tTYA7jyNhKxLCGkYVlQDAAAAAACaGktCyJ49e2rIkCEyTVMOh0N33nmn7r///lPudL1p0ybdd999uuuuu1RZWSnDMDRo0CDnqEoADXPwWKnGvrpYiQ98rrOmLdSOQ8fd+nRoQAgZHmJTdhK7ZwMAAAAAgNqFWHXjRx99VBdddJEKCgpkmqY+/PBDffjhh0pOTlZ2drbi4uIkndi8ZtOmTTp48KAkyTRNSVLLli312GOPWVUe0GzcNmO1/rM2T5I0Z/NBXfXeT8pJiXXpU30k5KGIGB2OdO1T3QsTTlNkqN27xQIAAAAAgCbJshAyNTVVb7/9tq677jrl5uZKOhEw7t+/XwcOHHDpezJ4NP43tzM9PV3PP/+8WrVqZVV5QLPx3vJcl+P5Ww+5hpCm6RZC1jYK8rLeGbq6fxuv1QgAAAAAAJo2S6Zjn5SVlaUZM2bommuuUXh4uLPdNE2X/06KjIzUlVdeqRkzZignJ8fK0gD8T8rxAsWVFbu01RZCXj8w08qSAAAAAABAE2PZSMiT4uPjdc899+jWW2/V4sWL9eOPP2r//v3OadpxcXFKS0tTnz59NGDAAMXExFhdEoAqPG1Ks6WGEDI9LkK3ndFew7OTrC4LAAAAAAA0IZaHkCdFRUVp+PDhGj58uK8eCTR7FY7KWvt4CiE3tUh3a+uYFK0NU0d6pS4AAAAAANC8WDodG4B/Ld5VUGsfTyFkbdOxAQAAAAAA6sOrIyEPHz6sLVu2aP/+/YqKilLr1q2VnZ3tzUcAqIcf6xBCdjhMCAkAAAAAAKzllRBy5cqVeuaZZ7Rw4UI5HA6XcykpKZo8ebImT57ssjkNAP/ZXfDzRjTVR0IWhkXpYGScr0sCAAAAAABNWKOnY7/wwgu67LLL9N1336miosJt5+u8vDz9/e9/18UXX6xdu3Z5o2YAjTR7/f4TH0xTHauFkJsT0iTD8ENVAAAAAACgqWpUCPnvf/9bTz31lNvox6oMw5Bpmtq0aZOuu+46HT16tDGPBOBFiSVHlFB6zKWNqdgAAAAAAMDbGjwd++jRo/r73/8u438jpkzT1KBBg3TOOecoIyNDFRUV2rBhg2bMmOEcAblz504999xzmjJlineqB9Aonjal2dKCEBIAAAAAAHhXg0PIzz//XIWFhTIMQ+Hh4fr73/+uUaNGufQZNWqUbrjhBj3wwAOaMWOGTNPURx99pNtvv531IYEAwM7YAAAAAADAFxo8HXvRokXOz7/73e/cAsiTQkJC9Oc//1kdO3aUJBUVFWn58uUNfSwAL8pmZ2wAAAAAAOADDQ4h169fL0mKjo7WpEmTTtk3JCREl112mfN4zZo1DX0sAC/qwEhIAAAAAADgAw0OIQ8cOCDDMJSZmanQ0NBa+/ft29f5eefOnQ19LAAv6liQ63J8LCRc+6Jb+KkaAAAAAADQVDU4hDx+/LgkKTY2tk79MzIynJ+PHDnS0McC8KLq07E3t0iT/rfZVHUx4XZflAQAAAAAAJqgBoeQ5eXlklSnUZDSiWnbJx07dqyhjwXgJQklR5VU4voPApsS0mvsf+PgdhZXBAAAAAAAmqoGh5CmaUqSjBpGTVVXtZ/D4WjoYwF4iaf1ILfUsB5kj7RYXXwaa0UCAAAAAICGCfF3AQD8I7sOm9LcNLitxvdI05D2iYoMZTo2AAAAAABoGEJIoJnyGEK2cA0hT2+XqLM6JfuqJAAAAAAA0EQ1eDo2gODmaTp29ZGQAAAAAAAA3kAICTRT1XfGLg4JU25Mop+qAQAAAAAATRkhJNBE/XfzQd0+c02N56tPx94S30qm4fpHQmlFpSW1AQAAAACA5qXRa0Lm5eXp448/tvSaiy66qF73B5q7knKHxr62uMbzMWXH1ep4gUubp6nYfVrHe7s0AAAAAADQDDU6hNy0aZPuvffeOvc3TbPe1xBCAvWzIrdIR0sdNZ7vULDPrW2LhxAyOowdsQEAAAAAQOP5dDq2YRgyDKPO/U3TtLAaoOkqrzz1NOqOh3Pd2qrvjA0AAAAAAOAtjRoJSUgIBKdOHkLIjS3S/VAJAAAAAABoDhocQn7zzTferAOAD3U8vMetbVMCISQAAAAAALBGg0PIjIwMb9YBwIc6HnbdGft4SJj2xLb0UzUAAAAAAKCp8+makAACQ6dqIyE3tUiXafDHAQAAAAAAsAapA9DMJBYXKankiEsb60ECAAAAAAArEUICzYzHnbFZDxIAAAAAAFiIEBJoZjoW7HVr29jC8xqvseENXjYWAAAAAADAiRASaGaqrwcpeZ6OPaRdC6XFRfiiJAAAAAAA0MQxzAloZjoecp+OXXUk5JB2LTSsQ0vddWYHX5YFAAAAAACaMEJIoJmpPhLycHi08iNjJUkPn5+j+0Z19EdZAAAAAACgCWM6NtCcmKbbmpAbW2RIhuGnggAAAAAAQHNACAk0I2nHDimmvMSlzdN6kAAAAAAAAN5ECAk0I50Ou68HuYkQEgAAAAAAWIwQEmhGPO+MneGhJwAAAAAAgPcQQgLNSMfDe93aGAkJAAAAAACsRggJNCMdPYyE3NQizfk53M4fCQAAAAAAwPtIHIBmpPqakLnRiToaFuU8Prdzsq9LAgAAAAAAzQAhJNBM2Csd6lCwz6Wt6s7Yk/u2VrdWsb4uCwAAAAAANAOEkEAT9M4y92nXmUUHFFZZ4dK2uUoI+fRF3WUYhuW1AQAAAACA5ocQEmhiCovLNW3hDrd2zztj/xxCxkeGWloXAAAAAABovgghgSbm1SU7PbZXXw9Scg0hAQAAAAAArEIICTQhpmnqrllrPZ7zPBIyw+qSAAAAAAAACCGBpmTfkdIaz2Uf3uty7DBs2hrfyuqSAAAAAAAACCGBpqS0orLGc9VHQu6IS1ZZCOtAAgAAAAAA6xFCAs1AeEWZ2hYdcGljPUgAAAAAAOArhJBAM9ChYJ9sMl3aNrEeJAAAAAAA8BFCSKAZ6MjO2AAAAAAAwI8IIYEmpLjc4bHd087YmwghAQAAAACAjxBCAk3IzR+u9Nje2UMIyUhIAAAAAADgK4SQQBMyf+shj+2dD+12OS4OCdPO2GRflAQAAAAAAEAICTQHOYdcR0JubJGuSpvdT9UAAAAAAIDmhhASaOJaHi9Sy5IjLm0b2BkbAAAAAAD4ECEk0MTlVJuKLUkbElv7oRIAAAAAANBcEUICTZynEHI9ISQAAAAAAPChEH8XAKBxjpVWaP7WfMVFhHo873kkpOt07Ml9CSUBAAAAAIB1CCGBILb/SKmGPf+9Nh44VmOfTof3uLVVXxPyiTHdvF4bAAAAAADASUzHBoLY2z/tPmUAKbmPhNwVk6RjYZEubS2jw7xeGwAAAAAAwEmEkEAQe/a77ac8H1ZRrqzCPJe26lOxAQAAAAAArEYICQSxopLyU57vULhXdrPSpY0QEgAAAAAA+BohJNCEsTM2AAAAAAAIBISQQBPmcWfsFoyEBAAAAAAAvkUICTRhnQ6574zNSEgAAAAAAOBrhJBAE5ZTLYQ8GhqhPbEt/VQNAAAAAABorgghgabKNN2mY29skS7T4LUHAAAAAAC+RRoBNFGpxwsUX3bcpY2p2AAAAAAAwB8IIYEmyuOmNISQAAAAAADAD0L8XUAgeuqpp/T8888rIyNDc+bMsew58+bN0xdffKGffvpJBw4cUGlpqVq0aKGuXbvq3HPP1ejRoxUWFmbZ89G0sTM2AAAAAAAIFISQ1axcuVLTp0+39Bnbt2/XAw88oMWLF7udy8vLU15env773//qpZde0pNPPqmcnBxL60HT5CmEZDo2AAAAAADwB6ZjV7Fr1y7dcsstKi8vt+wZGzZs0C9/+UuXADIhIUG9e/dW7969FRUV5WzfunWrrrzySm3atMmyetB0daq2M3alDG1qke6nagAAAAAAQHPGSMj/2bhxo6677jodOHDAsmccPnxY1113nfLz8yVJ8fHxuv/++zV69GjZ7XZJUklJiV577TU988wzcjgcKiws1JQpU/Thhx/KMAzLakPTU30k5M64ZBWHhvupGgAAAAAA0JwxElLSzJkzNWnSJOXl5Vn6nCeffFL79++XJLVs2VL//Oc/NWbMGGcAKUkRERG6+eabdffddzvb1qxZo4ULF1paG5qWiPJStS1yDdTXJ7IeJAAAAAAA8I9mHULm5eVpypQpuueee1RcXGzps/bv36+PPvrIefzHP/7xlGs9Xn311UpOTnYe//e//7W0PjQtHQtyZZPp0sbO2AAAAAAAwF+a7XTsF154QS+99JKOHz/ubMvKytI555yjadOmef15s2bNcq41OWDAAJ177rmn7G+z2XTXXXdp06ZNSkhIUOfOnb1eE5qunGrrQUo174z9i5wUq8sBAAAAAADNXLMNIV955RWXAHLixImaOnWqvvzyS0ueN3fuXOfnSy65pE7XjBs3zpJa0PTVZ2fs285ob3U5AAAAAACgmWu2IeRJ3bt315QpUzRgwADLnlFeXq6VK1c6j618FiC574wt1RxCntOZkZAAAAAAAMBazTaEHDBggMaPH69Ro0ZZvuv0jh07VFpaKklKSEhQSsqJ0Cc/P18zZ87Ul19+qV27dqmoqEhJSUnq06ePxo4dq2HDhllaF5quLod2uRwXhUVqX3QLt37tE6N8VRIAAAAAAGjGmm0I+fzzz/vsWTt37nR+PhlAfvTRR3rsscdUVFTk0jc3N1e5ubn65JNPNGzYMP3tb39TfHy8z2pF8LNVOtSl2nTstS3bSBaH7QAAAAAAADVptiGkL+Xn5zs/R0VFafr06frb3/7mbMvMzFRaWpoKCwu1ceNGVVZWSpLmz5+vSy+9VO+8845atHAfxeZLFRUVfn1+YzkcjlMeNyVtiw4osqLMpW1dYpsaeptB//8tfK85vU+AlXiXAO/hfQK8g3cJ8A7eJc8IIX2gsLDQ+XnLli1asWKFJKlfv3564IEHlJOT4zx/4MAB/f3vf9eMGTMkSVu3btXdd9+tV155xbdFV1FZWemsualYvXq1v0vwiooK9z/Iuubvcmtb2zLT4/WlpWVN7v9b+F5TeZ8Af+NdAryH9wnwDt4lwDt4l06w+buA5qCs7OdRaUeOHJFpmho+fLhef/11lwBSkpKTk/WXv/xF11xzjbPtu+++c9ldG5CkebtLVFhW6dbeNX+nW9valjWNhAQAAAAAALAeIaQPVN/4JiYmRo8//rhCQ0NrvOauu+5SZubPo9fefPNNy+pD8Jm/p0R3f3vI47nqm9JIhJAAAAAAAMC/mI7tA1FRrjsQjxkzRgkJCae8JiQkRBMmTNCTTz4pSfrxxx9VVlamsLAwq8qskc1mU48ePXz+XG9yOBwuw5+7d+8uu93ux4oa56EVS2s8V3069rGQcO2MS/bYNzw8TD179vRqbWj6mtr7BPgL7xLgPbxPgHfwLgHe0RTfpVWrVjn3MGkoQkgfiI6Odjnu06dPna7r1auX83NJSYlyc3PVrl07L1ZWdyEhTetLxW63B/Wv6T9r93s+YZpuIeS6lm1kGjUNejaC+vcBgSHY3ycgUPAuAd7D+wR4B+8S4B28SycwHdsHqu9snZiYWKfrWrZs6XJ8+PBhr9WEpqnNkYOKKS9xaWMqNgAAAAAA8DdCSB/o2LGjy3FRUVGdrquoqHA5Dvahu7Cep01p1iUSQgIAAAAAAP8ihPSBNm3auKwLuX379jpdt2/fPpfjtLQ0b5aFJqj6VGyJkZAAAAAAAMD/CCF9wDAMDRo0yHn81Vdf1em6JUuWOD+3atVKycmeNxcBTiKEBAAAAAAAgYgQ0kfGjh3r/LxmzRp9//33p+x/7NgxzZgxw3l89tlnW1Ybmo4u1ULIEnuotsWn+qkaAAAAAACAEwghfWTkyJHKzMx0Hv/xj39UXl6ex76maerBBx/UoUOHJJ3Ymfryyy/3SZ0IYqaprodcQ8j1ia1VaWMtUQAAAAAA4F+EkF4wcuRIde7cWZ07d9bIkSM99gkLC9PDDz8swzAkSbt27dIll1yir7/+WqZpOvvl5eXptttu06xZs5xtkydPVvv27a39RSDopR07pITSYy5tTMUGAAAAAACBIMTfBTQnAwcO1J/+9Cc9+OCDqqys1N69e/XrX/9aLVu2VLt27VRSUqL169fL4XA4rxk8eLDuvPNOP1aNYOFpPch1hJAAAAAAACAAEEL62CWXXKKUlBQ99NBDys3NlSTl5+crPz/fpZ9hGJo0aZJ+//vfKywszB+lIsiwKQ0AAAAAAAhUhJB+MGLECA0ePFiffPKJvv76a23YsEH5+fkyDEOtW7fWwIEDNWnSJOXk5Pi7VAQRjyFkYqaHngAAAAAAAL5FCFnN+PHjNX78+HpdM2fOnHo/JyIiQhdffLEuvvjiel8LeNIlf6fLcZktRFsSWp3yGrvNsLIkAAAAAAAASWxMAzQNpqlu1UZCbmyRrgr7qf+d4bqBjJQEAAAAAADWYyQkECQqK019sHKv1uQdcTuXXFyoliWu7bWtB5kaG65Le6V7tUYAAAAAAABPCCGBIPHbmav13PfbPZ6rz87Yr0zqqWNlDl3UvZVaJ0R6s0QAAAAAAACPCCGBIFBWUakXF+6o8bznnbE9T7X+1QCmYAMAAAAAAN9iTUggCBwvd6ii0qzxfNdqm9JItU/HBgAAAAAA8BVCSKAJ6FJtJGSFYdOmBNZ7BAAAAAAAgYEQEmgCulUbCbk5IU1lIaF+qgYAAAAAAMAVISQQ5JKOFyr1eKFLW02b0gAAAAAAAPgDISQQ5Hoc3O7Wtjqpre8LAQAAAAAAqAEhJBDkehx03zV7FSEkAAAAAAAIIISQQJDrftB9Z2xGQgIAAAAAgEBCCAkEue7VpmOX2EO1qQU7YwMAAAAAgMBBCAkEMcOsdBsJuS6xtRw2u58qAgAAAAAAcEcICQSxdoX7FVNe4tK2Krmdf4oBAAAAAACoASEkEMS6e9iU5lTrQY7MTrKyHAAAAAAAAI8IIYEgVt+dsa8dmGllOQAAAAAAAB6F+LsAAA1Xn5GQ713RV5N6sWENAAAAAADwPUZCAkGsR7WdsQ+HR2tPTEuPfQkgAQAAAACAvxBCAkEqrKJcnQ/tcWlbldRWMgw/VQQAAAAAAOAZISQQBEzTdGvrfHi3QsxKl7bVSe18VBEAAAAAAEDdEUICQWDulny3No+b0iTXvCkNAAAAAACAvxBCAkHgraW73dp6HKjfztgAAAAAAAD+QggJBIHN+cfc2jztjL2mZaYvygEAAAAAAKgXQkggSFXfGXtnbJIKI2L8UwwAAAAAAMApEEICQSiu9Jgyjxx0aVvFpjQAAAAAACBAEUICQcjTVOzVrAcJAAAAAAACFCEkEITYGRsAAAAAAAQTQkggCHnaGXt1S0JIAAAAAAAQmEL8XQCAmlVWmvrbvC1atfeIS3u3fNcQssKwaX1ia1+WBgAAAAAAUGeMhAQC2OP/3aypn65zbTRNt+nYGxIzVBYS6sPKAAAAAAAA6o4QEghgLy/a6daWfvSQEkuOurSxMzYAAAAAAAhkhJBAANt26Lhb22kHt7u1sTM2AAAAAAAIZISQQID629wtHtt77d/q1rYiub3V5QAAAAAAADQYISQQgCoclXr4640ez/Xcv82tbXkKISQAAAAAAAhchJBAACooKVdRSYXHcz0PuIaQByNitSempS/KAgAAAAAAaBBCSCCIRJWXqNPhXJe2FSntJcPwU0UAAAAAAAC1I4QEgkiPA9tlk+nSxnqQAAAAAAAg0BFCAkGk1wFP60Fm1XrdZb0zrCgHAAAAAACgTgghgSBSfT1ISVpew0jI+IgQSVKn5Gg9fF6OpXUBAAAAAACcSoi/CwBQd9V3xi61h2h9Ymu3foYhHfjTucotKlGbhEgZrBkJAAAAAAD8iBASCBK2SodOO7DdpW1Ny0xV2D2/xiF2mzJbRPmgMgAAAAAAgFNjOjYQJDoU7FN0RalLG5vSAAAAAACAYEAICQQJT5vSrEghhAQAAAAAAIGPEBIIEr32b3VrW57seWdsVoAEAAAAAACBhBASCBLV14OUpBXJ7Tz2vXGw53YAAAAAAAB/IIQEgkSvA64jIbfFpagwIsatX5jdpqv6ue+YDQAAAAAA4C+EkEAQSD5eoIyjh1zaatqU5r83D9aAzBa+KAsAAAAAAKBOCCGBINBzf903pRncLtHqcgAAAAAAAOqFEBIIAr09bEpT00hIAAAAAACAQEMICQSBPnlb3NqWpmb7oRIAAAAAAID6I4QEgkDf/Ztdjg9GxGpXbJKfqgEAAAAAAKgfQkggwMWXHFV2wT6XtqWp2ZJh+KkiAAAAAACA+iGEBAKcp/Ugl6V28EMlAAAAAAAADUMICQS4vh7WgySEBAAAAAAAwYQQEghwffI2u7UtJYQEAAAAAABBhBASCHB9qk3HPhQRo+1xqX6qBgAAAAAAoP4IIYEA8+bSXer2f3MlSbGlx9X58B6X88tSOrApDQAAAAAACCoh/i4AwM/W5R3R1e8tl2meOGZTGgAAAAAA0BQwEhIIIB+u2usMICWpz373TWmWpmb7sCIAAAAAAIDGI4QEAsiugmKXY0+b0ixLyfJVOQAAAAAAAF5BCAkEsL55riMhC8KjtSUhrcb+kaG80gAAAAAAIPCQWAABKqbsuDofqr4pTdYpN6W5flBbq8sCAAAAAACoN0JIIED13L9dNpkubT+lnHpTmkGZLawsCQAAAAAAoEEIIYEA1Xe/+3qQS2vZGbtP63irygEAAAAAAGgwQkgggMzZdND5ud++TW7nl9USQnZMivZ6TQAAAAAAAI1FCAkEkC35x52fB1QLIQvCo7WpRfoprzdOsV4kAAAAAACAvxBCAgGiuNzh/Nyi+Ig6Hc51Ob8kNVumceKV/fhX/X1aGwAAAAAAQGMQQgIBwjR/3oSmX577epBL0jr5shwAAAAAAACvIYQEAtCAfRvd2ha36uiHSgAAAAAAABqPEBIIQP33um9Ks7gVIyEBAAAAAEBwIoQEAo1puo2E3BWTpH0xiX4qCAAAAAAAoHEIIYEAsXhngSSpzZGDanW8wOXcItaDBAAAAAAAQYwQEggQI6ctlOR5PcglrAcJAAAAAACCGCEkEGAG7PWwKQ0jIQEAAAAAQBAL8XcBQHO28cBRvbV0t+w2w9lWfSRkpQwtTe3g69IAAAAAAAC8hhAS8JNdBcUa8sx3yj9e7myzVzrUb99ml35rW7bR0bAoX5cHAAAAAADgNUzHBvzkg5W5LgGkJHXJ36XoilKXNk/rQYZUGTl5UrsWkd4tEAAAAAAAwEsIIQE/+WRNnlubp01pPK0HOahtC1XPIW8d2t5rtQEAAAAAAHgTISQQQAbs2+TWtriVewiZGBWmaRefpriIEBmGNLZbqm4a3NYXJQIAAAAAANQba0ICAWRQ7nqX4+KQMK1K8hwuXjewra7u10bHyx2Kiwj1RXkAAAAAAAANQggJBIi40mPqfnCnS9uPqdmqsNf8mobYbYqzM6AZAAAAAAAENtILIEAM3LtRNpkubQvTc/xUDQAAAAAAgPcQQgIB4vTcdW5t36d38UMlAAAAAAAA3kUICQSIwdXWg5QYCQkAAAAAAJoGQkggANgqHRq0d4NL28YW6ToYFe+nigAAAAAAALyHjWkAi6zMLdJvP16trYeO6YKurfTkmG4KC/Gc+3fL36m4smKXtgWMggQAAAAAAE0EISRgAdM0NebVxdpZcCJYfGHBdrWKDdfvR3XU1Nnr9Le5W1z6D9njvh4kU7EBAAAAAEBTQQgJWGDH4WJnAHnS8wu268CxMj373Ta3/p7Wg1zApjQAAAAAAKCJYE1IwALljkq3trwjpR4DSEk6vVoIWRgWpbUt21hSGwAAAAAAgK8RQgJ+lnrssDoU7nNpW5jeWabB6wkAAAAAAJoGUg7AzzxNxV7IVGwAAAAAANCEEEICflZ9KrbEztgAAAAAAKBpIYQE/GxwruvO2A7DpkVpnfxUDQAAAAAAgPcRQgJ+FFleqv77Nru0rUpqq6NhUX6qCAAAAAAAwPsIIQE/GrR3vcIqK1zavsvoespr/jKa9SIBAAAAAEBwIYQE/OjMXWvc2ua16X7KaxKjQq0qBwAAAAAAwBKEkIAfDdu92q1tfutufqgEAAAAAADAOoSQgJ+EVZRr0N4NLm1rE9voQFSCfwoCAAAAAACwCCEk4CcD9m1UhKPcpe1bRkECAAAAAIAmiBAS8JMzPUzFnkcICQAAAAAAmiBCSMBPhu3yEELWsimNJLWMCrOiHAAAAAAAAMsQQgJ+EOKo0Om5613aNiWkaW9My1qvHZmdZFVZAAAAAAAAliCEBPygb95mRVeUurTNb137KMjfn9VR8ZGhVpUFAAAAAABgCUJIwA/O3L3GrW1+HdaDPKN9ohXlAAAAAAAAWIoQEvCDYZ42panDepAAAAAAAADBiBAS8DF7pUND96x1adsel6KdcSl+qggAAAAAAMBahJCAj/Xbt0lxZcUubfPqMBUbAAAAAAAgWBFCAj529o7lbm1zMnv6vhAAAAAAAAAfIYQEvMw0TRUUV9R4ftTOFW5t3xBCAgAAAACAJizE3wUAwc40Tb2+ZJf+u/mg8o6WasmuQhUUl3vsG11WrMG5G1za1ia2UW5sS1+UCgAAAAAA4BeEkEAj/W3uFk35dF2d+g7bvUZhla6jJL9u28uCqgAAAAAAAAIH07GBRpq+aGed+57lYSr2122Zig0AAAAAAJo2QkigkTYfPFbnvmdV25SmwrBpbpvubv223DuqsWUBAAAAAAAEDEJIwEdSjx1Wj4M7XNp+SOuso2FRbn1D7IavygIAAAAAALAca0Ki2dlRVKE/vbFU2w8X68JuqXro3BzZbXUP/eZvydf0RTsUarfptqHt63xd9VGQkvQNU7EBAAAAAEAzQAiJZsU0Td0+L1+7jzokSav3HVF8RKjuGZFdp+tX7y3SOS/9oDJHpSRpxqq9dX72KA/rQX7FpjQAAAAAAKAZYDo2mpV9xx3OAPKkl37YUUNvd2//tMcZQEpSYUnFKXpXYZo6a4drCFkUFqnFrTrV+dkAAAAAAADBihASzUqZw71ta/7xOl//9cYDDXpul0O71Ppovkvb3NY9VGFnMDIAAAAAAGj6CCEBHxi99Ue3NtaDBAAAAAAAzQUhJOADv/AQQn7Wvq8fKgEAAAAAAPA9QkjAYvElRzV0z1qXtg0tMrS5RbqfKgIAAAAAAPAtQkjAYufsWK4Qs9KlbXZWPz9VAwAAAAAA4HuEkGg2Kk1TWwrLa+1XUFyuz9blacP+o1557uitS9zaPm1PCAkAAAAAAJoPtuZFs7C7sFjj/rNfucc8bI9dxeq9RRrxwgLlHz8RVj54Tmf94ZxODX6urdKh87ctdWkrCovUt627NvieAAAAAAAAwYaRkGgW/vjFploDSEl6Yv5WZwApSY9+s0nHSisa/Nz++zYpubjIpe3Ltr1Vbg9t8D0BAAAAAACCDSEkmoU3l+2pU7/Xl+xyOS5zVGpPUUmDn3uBh12xWQ8SAAAAAAA0N4SQaBZaxYb75bm/8LAe5Gft+/qhEgAAAAAAAP8hhESz0L9NvM+fmX4kX70PbHNpW9yqo/KiW/i8FgAAAAAAAH8ihAQscoGHUZCz2RUbAAAAAAA0Q4SQgEXGbVro1vYp60ECAAAAAIBmiBASsEBCyVGN3LXSpW1nbJKWpmbXem2Y3aak6DCP61jabYbXagQAAAAAAPAVQkjAAhdsXaLQSodL24yOgyWj9hDxN0PbKzLUrtvOaO/SbjOkPhm+X9sSAAAAAACgsUL8XQAQLIrLHdpbVFqnvp6mYn/Y8fRar/vvzYM1LKulJOnWIe01f0u+Pt9wQDHhdv39wm5qERVWv6IBAAAAAAACACEkUAdPfbtVUz9dp9KKylr7RpWX6Lzty1za8qLitSA9p9Zrz+yQ5PwcEx6i2dcP0qHjZYoND1GonYHLAAAAAAAgOBFCArVYm3dEd8xcU+f+521bpsiKMpe2mdmDVGmzN+j5iYx+BAAAAAAAQY6hVUAtxr/+Y736T9rwrVvbRx0He6scAAAAAACAoEMICXhRTNlxXbh1iUvboYgY/bdNDz9VBAAAAAAA4H+EkICksjqs9VgXYzcvcpuK/VHH01VuD/XK/QEAAAAAAIIRISQg6cEvN3jlPpeud5+K/W7OGV65NwAAAAAAQLAihAQkTVu4o9H3SCwu0jk7fnJp2xvdQvNad2/0vQEAAAAAAIIZISQgqaC4vNH3mLBpgUIrHS5t73ca2uBdsQEAAAAAAJoKQkjgf3ILSxp1/eQ1/3VrYyo2AAAAAAAAISTgdMU7yxp8bfbhXA3NXefStjU+VYvSOje2LAAAAAAAgKBHCAn8z9wt+Q2+9qo1c9za3ug2SjKMxpQEAAAAAADQJBBCAo1kq3ToSg8h5D+7jqjXfdokRHirJAAAAAAAgIBCCAk00sidK9Xm6EGXtjltemhHfGqt19ptP4+UvG9UR6/XBgAAAAAAEAhC/F0AEOx+tfprt7bXu59Vp2vX/m64fth5WL3T49U9Lc7bpQEAAAAAAAQEQkigEVKOHdaETQtd2o6ERuqjjoPrdH3H5Bh1TI6xojQAAAAAAICAwXRsoBGuWf21wiorXNre7TJMx0NZ3xEAAAAAAOAkQkiggWyVDt2w8gu39hd6nu+HagAAAAAAAAIXISTQQOdvW6Z2Rftd2hak5WhFSpafKgIAAAAAAAhMhJBAA92y/FO3tmm9GAUJAAAAAABQHSEk0ADdDu7Q+duXubQdjIjV+52G+KkiAAAAAACAwEUICTTAnT9+7Nb2So9zVBoS5vtiAAAAAAAAAhwhJFBP6Ufydfm6eS5tZbYQPd3nghqvefQXOVaXBQAAAAAAELAIIat56qmn1LlzZ40cOdLnz3722WfVuXNnde7cWc8884zPn4+6+c1PnyisssKl7e0uZ2pvTEs/VQQAAAAAABDYCCGrWLlypaZPn+6XZ69fv17Tpk3zy7NRd4nFRbp5xWy39if6XeT7YgAAAAAAAIIEIeT/7Nq1S7fccovKy8t9/uzy8nJNnTrVL89G/dz148eKKyt2aZvdvq/WJLX1U0UAAAAAAACBjxBS0saNG3X55ZfrwIEDfnn+iy++qHXr1vnl2c1FucNs9D1aHi/Sb376xK39sQETG31vAAAAAACApqzZh5AzZ87UpEmTlJeX55fnMw3bN0orKht9j9/9+JFiyktc2r5o21vft+7aoPvZbUajawIAAAAAAAgGIf4uwF/y8vL0xBNP6OOPP/ZbDeXl5ZoyZYpzGnZsbKyOHDnit3pQszZFB3Srh1GQD55+WYPvmRQd1piSAAAAAAAAgkazHAn5wgsv6LzzznMJILOysnTTTTf5tI5p06Zp/fr1kqSLLrpIXbp08enzUXd/mf+6oirKXNo+bd9Pi9Jz/FQRAAAAAABA8GiWIeQrr7yi48ePO48nTpyo999/X23b+m5zkXXr1unFF1+UJCUnJ+u+++7z2bNRP0N2r9VlG751aauUoQeGXF6n6y/q3sqKsgAAAAAAAIJGs52OLUndu3fXlClTNGDAAJ8+t/pu2A8++KDi4+N9WgPqxl7p0D/+O92t/bXuZ2l5aoc63eOhczvr8w3umx6lxDAdGwAAAAAANA/NMoQcMGCAxo8fr1GjRskwfL85yPPPP++chn3BBRforLPO8nkNqJs7ls5U3/1bXNqKwiL1+6FX1On6x0d3Ufe0OFVUuu/Ofcvp7bxRIgAAAAAAQMBrliHk888/77dnr1mzRi+99JIkqWXLlvr973/vt1pwap3zd+uh7992a3940CXaH92iTve4un8bSdJpaXG6un8bvb5klyRpQJsEXdorw3vFAgAAAAAABLBmGUL6S1lZmaZOnaqKigpJ0h/+8AclJib6uaq6OVlzsDJN95GIpxLiqNCrXzylCEe5S/vKpLZ6qs+FdbrHX0fnqEWE3fl799KE7po6PEtFpRU6rVWsbDYj6H9f0Tw5HI5THgOoG94lwHt4nwDv4F0CvIN3yTNCSB96/vnntXHjRknSueeeq/POO8/PFdVNZWWlVqxY4e8yGuXosaP16v+Xb9/Q4L0bXNoqDJt+dd7tKreH1ukeB/L2asWKIrd2Q9Iq9yUigaC1evVqf5cANAm8S4D38D4B3sG7BHgH79IJzXJ3bH9Ys2aNpk8/scFJQkKC/vjHP/q5ItRk0vpvdefSmW7tfxl4sX6q42Y0AAAAAAAA+BkhpA9Un4Z9//33q2XLln6uCp4M3rNOr3zxtFv7spQsPTzwEj9UBAAAAAAAEPyYju0Dzz33nHMa9siRI3XhhXVbUzBQ2Gw29ejRw99lNErMokWSDp2yT5+8zZr90Z8UXVHq0p4fEasJY+5VWUjdpmGf1DojQz17tq1vqUDAczgcLtMJunfvLrvd7seKgODEuwR4D+8T4B28S4B3NMV3adWqVaqsrGzUPQghLbZ69Wq9/PLLkqT4+Hj96U9/8nNFDRMSEtxfKoZhnPL8yB0r9O9PHld82XGX9koZunz0XdoRn1rvZ9ps9qD/fQPqwm7nax3wBt4lwHt4nwDv4F0CvIN36QR+ByxUVlame++91zkN+95771VKSoqfq0JVtkqHbl82S3+Z/4ZCTPdE/84R1+rLdn0adO9ack8AAAAAAIBmgxDSQl9++aVzGrbdbtcnn3yiTz75pMb+Gzb8vBvzrFmztHz5cufx7373O+Xk5FhWa7Njmhq1c4X+Ou819TqwzWOX+4dcoaf7jGnwI4a0S2zwtQAAAAAAAE0JIaSFysrKnJ8dDoe+++67Ol+7c+dO7dy503l8ww03eLW2Zsc0NWT3Wp2/fakyjhzUGXvWKqswr8bufx50iR4dNKnBj5vUM1090mIbfD0AAAAAAEBTQgiJZmHi1+/qphnP1dqvxB6qG865VW91HdHgZy25/Qz1To+vdR1KAAAAAACA5oIQ0kLjx4/X+PHj69x/8uTJWrx4sSTp1ltv1W9+8xurSmt2Lp7zr1r7rG+RoSt/cad+bNWxUc/q2zqhUdcDAAAAAAA0NYSQaBaKouOVVHjQ47mC8Gj9edAlerb3aJXbQ31cGQAAAAAAQNNHCNlII0eO1J49eyRJGRkZmjNnjp8rgid/u2KqHnzmbqUUF0qSjoZGaEF6jmZ0HKx3cs7UkfAoP1cIAAAAAADQdBFColnY0K6r0m5+Q1kF+1QSEqbcmESZhs3fZQEAAAAAADQLhJBoNkzDpi0t0v1dBgAAAAAAQLPDUDAAAAAAAAAAlmIkZBX13c1aklfXgHzzzTe9di8AAAAAAAAgUDASEgAAAAAAAIClCCEBAAAAAAAAWIoQEgAAAAAAAIClCCEBAAAAAAAAWIoQEvCi7q1i/V0CAAAAAABAwCGEBLzo72O6+bsEAAAAAACAgBPi7wIAXzhWVmH5M7bdN0ptE6Msfw4AAAAAAECwYSQkmoW1eUctf0ZkqN3yZwAAAAAAAAQjQkg0C0fLHP4uAQAAAAAAoNkihAQAAAAAAABgKUJINAsjs1v6uwQAAAAAAIBmixASzUJydJhX7hNqN7xyHwAAAAAAgOaEEBLNwi97p3vlPi9MOE1Lbj/DK/cCAAAAAABoLggh0Syc0ylZYztENfo+Z3dKVt/WCY0vCAAAAAAAoBkhhESzYLcZun9AQp36psS4T91Oig7TixefpjYJkV6uDAAAAAAAoOkL8XcBQKD58obBWpN3RAXF5RrTLVXJ0eEKsRmy2VgPEgAAAAAAoCEIIYFqYsLtuqx3hr/LAAAAAAAAaDKYjg0AAAAAAADAUoSQAAAAAAAAACxFCAkAAAAAAADAUoSQQAOM7pLichwdZldCZKifqgEAAAAAAAhshJBAA9wxrIPCQ35+fe4e3kFhIbxOAAAAAAAAnrA7NtAAIzsmae3vRmj+1nzlpMRoQGaCv0sCAAAAAAAIWISQQAO1bxml9i2j/F0GAAAAAABAwGP+KAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICAAAAAAAAsBQhJAAAAAAAAABLEUICVcRFhCgzIdLfZQAAAAAAADQphJBo9rqlxkqSIkNtmjbhNIXYeS0AAAAAAAC8KcTfBQD+FBFi08q7z9T2Q8VKiwtXRKjd3yUBAAAAAAA0OQz5QrNyVmaEy/H1g9rKMAy1bxlFAAkAAAAAAGARRkKiWXlgQIJSIo9oT3m4hma11ANndfJ3SQAAAAAAAE0eISSalahQm+7oE6+ePXsqJIQvfwAAAAAAAF9gOjYAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALAUISQAAAAAAAAASxFCAgAAAAAAALCUYZqm6e8iEHiWLl3qcmyzBX9eXVlZ6fzcFH49gD/xPgHewbsEeA/vE+AdvEuAdzS1d6nqr0eS+vbtW+97hHirGDRt1b/Ygl1T+/UA/sT7BHgH7xLgPbxPgHfwLgHewbt0QvBHsQAAAAAAAAACGiMhUSdNYegwAAAAAAAA6s8bozlZExIAAAAAAACApRjeBgAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALEUICQAAAAAAAMBShJAAAAAAAAAALBXi7wIAK23ZskXvvfeeFi1apN27d6uiokIpKSnq1KmTLrzwQp199tkKCeE1QPPw1FNP6fnnn1dGRobmzJlTr2sXLlyoDz/8UMuXL9f+/fsVEhKiVq1aqXfv3ho3bpz69etXr/uVlZXp008/1Weffaa1a9eqoKBAMTExSktL07BhwzRhwgRlZmbW656AFRYtWqRPP/1UP/30k/bv36+jR486v1b79eun8ePHq2vXrnW+38qVK/X+++9ryZIlysvLk2maSk1NVbdu3TR27FgNGzZMhmHU+X6maerrr7/WrFmztGrVKuXn5ysyMlKpqakaNGiQJkyYoJycnIb80gGvMk1T8+fP16xZs7RixQodPHhQNptNrVq1Urdu3XThhRdq6NChstnqPkbCip/zvP39DvCle++9Vx999JEk6bHHHtP48ePrdB3vEpqjzz//XL/97W/rfd28efPUqlWrGs/zs96pGaZpmv4uArDCM888o2nTpqmioqLGPt27d9df//pXZWVl+bAywPdWrlypX/7ylyovL69XCHn06FFNmTJFX3/99Sn7jRkzRn/4wx8UGxtb6z23bNmi3/72t9q0aVONfUJDQ3Xbbbfp+uuvr9c3acBbdu/erSlTpujHH3+ste/o0aP10EMPKSYmpsY+5eXl+vOf/6x//etfp7zX0KFD9dhjjyklJaXW5+bl5emOO+7Q0qVLa+xjGIauvvpq3XnnnQoLC6v1noAVcnNzdc8992jJkiWn7NerVy89+uij6tChQ6339PbPeVZ8vwN8ad68ebrhhhucx3UNIXmX0Fw9+eSTmjZtWr2vqymE5Ge9uiGERJP08MMP680333Qeh4SEqHPnzoqMjNSWLVt0+PBh57mkpCT9+9//VkZGhj9KBSy3a9cuXXbZZTpw4IAk1TmELC0t1eTJk7VixQpnW3R0tDp16iSHw6GNGzeqpKTEea5///569dVXT/nNb9u2bbrssstc3sHk5GS1b99eBQUF2rRpk6p+W7r++ut199131+vXCzTW9u3bddlll+nQoUPOttDQUHXq1EmxsbHKz8/X5s2bXb5Wc3Jy9Pbbb3sMIk3T1K233uryF7Lw8HB17txZdrtdmzZt0tGjR53nsrKy9K9//UtxcXE11njo0CFdcskl2rlzp7MtISFB2dnZKi4u1oYNG1z+Qjl69Gg98cQT9f/NABppz549uuKKK5Sbm+tsi4qKUufOnRUaGqqtW7fq4MGDznMxMTF677331LFjxxrv6e2f86z4fgf40pEjRzR69Gjl5eU52+oSQvIuoTm74YYbNG/ePElSp06d6hQKStJf//pXJSYmurTxs149mEAT89lnn5mdOnVy/veb3/zGPHDggPN8WVmZ+d5775k9e/Z09hk3bpxZWVnpx6oBa2zYsME844wzXN6JESNG1OnaP/3pT85rOnfubD777LNmcXGx83xhYaH58MMPu9z70UcfrfF+FRUV5pgxY5x9+/fvb3722Wcu797OnTvNK6+80uWeX3/9dcN/A4B6qqioMC+44ALn11+XLl3Mp59+2jxy5IhLv3379pn33HOPy9fqbbfd5vGeL7/8sku/Bx980CwqKnKeLy4uNl944QWza9euzj6//vWvT1nnDTfc4Ozbo0cP85133jHLy8ud5/fv32/efvvtLs994403GvE7A9Sfw+EwL730UufXYLdu3czp06ebJSUlzj6VlZXmZ599Zg4YMMDZb+TIkWZpaanHe1rxc563v98BvjZ16lSXr89OnTqZH3744Smv4V1Cczd06FDn1+GiRYsadS9+1qs7Qkg0KWVlZebw4cOdL+GNN95oOhwOj32//fZblz8EZs2a5eNqAWt9/PHHLj841ieE3LRpk9mlSxfnNS+99FKNfZ966imXv2Du2rXLY793333X2a9r167m0qVLPfYrKyszr7rqKmff888/36yoqKjbLxpopH//+98u78vMmTNP2f+xxx5z6f/TTz+5nM/Pzzd79+7tPP/HP/6xxnt98MEHLveq6R2ZP3++S79PP/20xntWDUoHDhzoFqYCVvryyy9dvlY/+uijGvv+9NNPZk5OjrPv+++/79bHip/zrPh+B/jS3Llz3X7Wqy2E5F1Cc5efn+/yvhQUFDTqXvysV3fsjo0m5auvvnJO9wkJCdEf/vCHGhc4Hzp0qC655BLn8WuvveaTGgGr5eXlacqUKbrnnntUXFzcoHu8+eabcjgckk5MF7j22mtr7HvrrbeqU6dOkk6shfLWW2957PfPf/7T+XnChAnq06ePx36hoaF6/PHHFRoaKunEGpInp0oAVps5c6bz89ChQzVmzJhT9r/zzjtdpu98+umnLuc/+OADHTt2TNKJKTT33HNPjfeaMGGChg8f7jyu6fvSG2+84VLjL37xixrv+cc//lEtW7aUJB0+fFgzZsyo+RcDeNn777/v/Hzaaadp3LhxNfbt1auXzjzzTOexp/XkrPg5z4rvd4CvFBUV6f7775d04uenyMjIOl3Hu4Tmbt26dc7P6enpio+Pb/C9+Fmvfggh0aTMnj3b+fn0009Xenr6KftX/Ya6Zs0a7dq1y7LaAF944YUXdN555+njjz92tmVlZemmm26q8z0qKyv1xRdfOI/Hjx9/yt1KbTabJk2a5Dyueu1J69ev15YtW5zHF1988SlrSE1N1YgRI5zHn3/+eZ1qBxqjrKxMy5Ytcx5fcMEFtV4TFhamoUOHOo9XrVrlcv6zzz5zfj7//PMVFRV1yvtV/b40f/58HT9+3OV8YWGhFixY4DyeMGHCKe8XFRXlEqTyLsFXTNPUvn37nN8/Ro8eXes1VdeB3LFjh9t5b/+cZ8X3O8CXHn30Ue3fv1/SifXtqq9TVxPeJTR3VUPIzp07N+pe/KxXP4SQaDJM09SiRYucx0OGDKn1ms6dOys5Odl5XNcdg4FA9corr7h8I5s4caLef/99tW3bts73WL9+vctC5FUDlppUfd9yc3O1fv16l/M//PCD83N8fLx69OhRr3vOnTvXZRMQwAp79uxReHi487guO/RKJ/7V+6Sq705BQYHLD7l1eZcGDRoku90uSSopKXH5IVSSFi9e7BxpYhhGnb7XVe2zbNkyFRYW1noN0FiGYWjWrFlatmyZPvjgA1144YW1XlNUVOT8HB0d7XLOip/zrPh+B/jK3LlznSOeOnXqVOd/cOZdAlxDyJycnAbfh5/16o8QEk3Gnj17XH547d69e52uq/ovH9VHsADBqnv37nrzzTf18MMPe9yt91Sq/hAYGhp6yh1KT2rfvr0iIiKcx9Xfpar37NKliwzDqPWeVX8gKCwsdNkZDrBC+/bt9dNPP+nHH3/Up59+6pwqVps9e/Y4P1edzrNhwwaX8Lxbt2613isqKkqZmZnO41O9S61bt67T9KGq71JlZaXWrFlT6zWAt0RGRqpHjx7OqWI1KSsr07fffus87tq1q8t5K37Os+L7HeALRUVFeuCBBySdmE792GOP1XmHad4lwPVrtjEhJD/r1R8hJJqM7du3uxxXfbFPpXXr1s7PhBwIdgMGDNBzzz2nDz74QAMGDGjQPaq+SxkZGQoJCan1GsMwXKbyVJ9GV/WedR2VWfXd9HRPwCqxsbHKzs52+ctRTY4eParvv//eeVx19GTVr/uwsDClpaXV6fmn+r7UkHcpOTnZ5dfCu4RAU1ZWpvvvv98Z6NtsNl111VUufaz4Oc+K73eALzz88MPOadjXXnttnYNEiXcJKC0t1bZt25zHnTt31tKlS/XAAw/o/PPPV69evdS7d2+dc845uvfee7Vw4cIa78XPevVX+58OQJA4cOCA87PNZlNSUlKdrqs6taDqPfD/7d17XM7n/wfwV1LooCQMzRAV5jB8x3eMaebUMCHDVsxhZmXJGNmKhmbOK+YwZjkXUmbf8TWGkG3M7KCanKovUmQddLq7f3/06Pp9Ph3u893x9Xw89nh8rs99fa7Pdee+9rnu930dqCbatGmT3mVI24F0ww117O3tcfPmzTJlABAdZUDe5lSxs7ODqampmI7A9knV0fbt25GVlSXS0rVMpZ9ZTT/3pfMaoi0BQNOmTUWAh22JqlpRUREKCwuRnJyMmJgY7Nq1S/YlLDAwsMxyCMbo5xnjeUdkbKdOnRKbqDk6OsLb21ur69mWqK6Lj4+XTXdeunRpuYHGO3fu4M6dOzh8+DD69++Pzz//vMyofvb1tMcgJNUa0nUPLC0tVS6GLCWdqlqd104gqiwZGRni2NraWuPrpHlLtyVpWtMy69WrBwsLC2RmZgKQrxVGVB1cu3YN27ZtE+m2bdvC1dVVpHVtS6qeS7q0pdJ52ZaoqgUHByMsLKzM+WeeeQb+/v4YOnRomdeM0c8zxvOOyJiePHmCgIAAAMX9JG2mYUvLKMG2RHWRdLqzUqkUAUhra2u0adMGlpaWSElJkS23ExMTg/Hjx2P37t2yEbzs62mPQUiqNfLy8sSxJlPoSkgf3Pn5+QatE1FNJG0HhmpLhmif0jKIqlpycjJmz56NgoICcW7hwoWyKWhsS0Tl+9///lfu+SZNmiA1NRW5ubllPt/G6OcZo40SGdOyZcvECKcpU6age/fuWpfBtkR1nXQjGaB4tOGCBQswbNgw2WcyISEBq1atwtmzZwEUr6c6e/ZshIeHi3zs62mPa0JSrSH9IqjpL3oAZF8YCwsLDVonoppI17ZUsssbULYtSdPSfPqUSVRV7t27By8vL9lUlylTpsimYgPGeS5J04Zqn0SVLS0tDS4uLujbty+cnJzEZ/n69etYtmwZRo8ejcTERNk1xmhPxnjeERnLDz/8gOjoaADFI+8/+OADncphW6K6rvSai1FRURg1alSZUcVOTk7YunUrxo4dK85dv34d+/fvF2n29bTHkZBUa0gbXVFRkcbXSRuomZmZQetEVBPp2pZK1lYByrYlU1NT0dak+bQpU9vpRkTGkJiYiGnTpuHevXviXP/+/fHhhx+WyWuM55Ix2idRZdu7d6/ss/zw4UOEhoaKL3a3b9/G1KlTERUVhSZNmgBge6K6LSMjA4GBgQCK17Bbvny5ViOkpNiWqK77+uuvkZ6ejuTkZDRv3rzMOo9SJiYmWLJkCWJjY8X07LCwMHh6egJge9IFR0JSrdGoUSNxrM3wY+nw5wYNGhi0TkQ1kbRTq01bkuYt3ZYMUSaDkFTVrly5gsmTJ8sCkH379kVoaGi5nb3q2pb4rKOqVnpEfLNmzbB06VJZMP/BgwfYuHGjSBujn8f2RDWFdBr2W2+9hd69e+tcFtsSUfEmLt27d9doN2tzc3O8+eabIp2UlCQ2U2NfT3sMQlKtYWNjI46zs7OhVCo1uk66q6mtra2hq0VU40jbgbR9qKOqLUnbp6ZlFhUVIScnp8IyiSrT0aNH4eXlhcePH4tzAwcOxJYtW2Rf6KR0bUvZ2dnllgHo1pZK52VboupqxowZ6Natm0gfOXJEjAIxRj/PGM87IkM7efIkjh49CgB49tln4efnp1d5bEtE2uvZs6csXTKlm3097TEISbVGixYtxLFCoZB9UVRFuqaXvb29wetFVNM0b95cHKenp2t8XVpamjhu1qyZ7DVp+9S0zEePHsmmIJQuk6iyhISE4MMPP5SNAhk1ahQ2bdqkcjqcLp97QPVzSdcypXnZlqg6Gz16tDjOzMwUX/SM0c8zxvOOyJAyMjKwZMkSAMXTQpctWwYLCwu9ymRbItJe6SnbJTtYs6+nPa4JSbXGc889J0snJSXBzs5O7XXJycniuF27dgavF1FN07ZtW3GcnJwMpVIJExMTldcolUqxTkrpMkrSV65cAQAxfUGdpKSkCutFVBkKCgqwePFiREVFyc6/++67mDt3rtp2IX0u5eTkIC0tTaMfu6Sf/dLPJWk70LQtlew2XF4ZRNVNmzZtZOmMjAwAxunnGeN5R2RIBw4cEMGKRo0aYdu2bdi2bVuF+aVBva+//hrHjh0T6ZUrV8Le3p5tiUgHpadFW1paAmBfTxcMQlKt0bp1a9ja2orO6vXr19G9e3e118XFxYljFxcXY1WPqMbo0qWLOH769Clu3bqF9u3bq7zm5s2bsodzp06dypR5+PBhAPI2p8r169fFsY2NDVq3bq3RdUSGkJ+fDx8fH/z444/iXP369bFkyRKMHz9eozI6d+4MExMTMdXt+vXrePnll1Vek52dLetwln4uSdvnnTt38PTp0wqng5eQtiUTExM4OztrVH8ifdy8eRMRERFITk7GvXv3sGvXLrWfVUC+7hwANG7cGIBx+nnGeN4RGZK0PeTk5CAmJkbjaxMSEpCQkCDSJQEKtiWqy+Li4hAVFYX09HSkp6fj888/V7kxTQlpEB4AWrVqBYB9PV1wOjbVKn369BHHFy5cUJs/Li5O9oth3759jVIvopqkY8eOsl/EL168qPaa8+fPi+MmTZqUefC9+OKL4vjhw4f4+++/1ZYpbcPStk1kbIWFhZgzZ44sAGlpaYktW7ZoHIAEACsrK3Tu3FmkNXkuxcbGimUITE1NZW0HAHr16oX69Yt/Q1YoFLh06ZLaMqX37dy5s2ytISJjyc7Oxo4dO3DixAn8/vvvGj1LAOD3338Xx2ZmZrJNAwzdzzPG846oJmBborrqyZMn2LFjB6KiohATE4OffvpJo+vOnj0rjq2treHk5ASAfT1dMAhJtcqQIUPE8enTp/HgwQOV+fft2yeOHR0d+fAjQvGvZ6+99ppIh4eHy9ZmLK2oqAjh4eEiPXTo0DJTcJycnGRTDfbv36+yDvfu3ZMFgIYPH65p9Yn0tmrVKpw+fVqk7ezssGvXLvTv31/rsoYOHSqOo6Oj8fTpU5X5pc+ll156SYwCK9G4cWPZlz91bSk7OxvR0dEiPWzYMI3qTaQvFxcX2cL4e/bsUXtNTk4ODh06JNJ9+vQRU94Aw/fzjPG8IzIkHx8fxMfHa/yfdNZIcHCw7DUHBwfxGtsS1VXPP/+8bF3ViIgItdfcv39f1pdyc3NDvXr/H0pjX087DEJSrTJkyBCxMHJ+fj4WLlyIwsLCcvOeO3dO9j+dt99+u1LqSFQTTJo0SXQG4+LisHHjxgrzbtiwQYxsrFevXoVtafLkyeJ4//79Ff5SWFBQgI8++ggFBQUAiqc7DB48WKf3QaStM2fO4JtvvhFpGxsbhIWFyabGaGPs2LFiCk1aWhqCgoIqzBsREYFz586JtKenZ7n5pG3p9OnTYqmD8ixZsgSPHj0CAFhYWGDcuHFa1Z9IV2ZmZhg7dqxIx8TEiB1+y1NYWIiFCxfKFuufMWOGLI8x+nnGeN4RVXdsS1RXWVpaYsSIESJ9/vx5HDlypML8WVlZ8PX1FYHFBg0aYNq0abI87Otph0FIqlXMzc3h5+cn0hcuXMCMGTNkC78WFhYiPDwcPj4+UCgUAIpHaWkzxY6otnNxccGYMWNEOjQ0FCtWrEBmZqY4l5mZieXLl2Pz5s3i3IQJE9ChQ4dyy5wwYYIYDVlYWIj3338fERERsk5vUlISpk+fLpt2MH/+fJibmxvsvRFVRKFQYPny5WJdHxMTE6xZswYdO3bUuUx7e3tMnz5dpA8fPox58+bJdjDMzc3F5s2bERgYKM4NGDAAAwYMKLdMV1dX2VS6Tz75BFu2bJGtrZWWloa5c+fKfhmfPXu2RpsPEBnK7NmzZbt8Llq0CFu2bCkzSuSPP/6Al5cXjh8/Ls6NHz++zJRPY/TzjPG8I6ru2JaoLvvggw9gbW0t0osXL0ZoaCiys7Nl+X7++WdMnDgRv/76qzjn5+dXZgM19vW0Y6Is6WkT1SIBAQE4cOCASNerVw/Ozs6wsrJCYmKi+KUAAGxtbbFv3z61iycT1WSHDx/GokWLABQvSH7q1Cm112RlZcHLywt//PGHONeoUSMxBSc+Pl72RbJr167YvXs3GjZsWGGZCQkJePvtt8Vi6EDxVFdHR0dkZmYiISFBNn1n8uTJCAgI0Ph9Eunj2LFjsi9lFhYW6Nmzp1Zl2NvbY+XKlbJzJUF36RIDZmZmcHZ2hrm5Of7++2/ZlzQHBwdERESo7EQ+ePAAkydPln1htLa2RseOHZGfn4/4+HgxmhgABg0ahE2bNsmmDxFVhri4OHh6euLJkyfiXMmzxNzcHCkpKbIdcgFg8ODB2LBhg1gTqzRD9/OM8bwjqgqurq6iPQUHB8Pd3V1lfrYlqqtiY2Mxc+ZMWVCvYcOGcHFxgbm5Oe7evYv79+/Lrpk2bRoWLFhQbnns62mOQUiqlZRKJdavX4/t27fLGmZpjo6O2LBhg16jXIhqAl2CkEDxL9YLFixQm3/QoEFYtWqV7FfFisTHx2PevHkqN6cxNTXFjBkz4OvryzWCqNL4+PjgxIkTepVRUfvKz8/H0qVLcejQIajqer3wwgvYsGGDbPRYRe7duwc/Pz9cuXJFZb5x48YhMDCQI4qpyty9exfz58/H1atXVeazsLDArFmzMHPmTJX/7zdGP88YzzuiyqZtEJJtieqyP//8E/Pnz0diYqLKfDY2Npg3bx4mTJigMh/7epphEJJqtcTERBw8eBAxMTG4f/8+nj59ChsbG3Tq1AnDhg3DqFGjakRDJdKXrkHIEhcvXkR0dDR++eUXpKWlQaFQwN7eHi+88ALGjBmj9YYdhYWFOHr0KI4fP47r168jPT0dZmZmcHBwQJ8+ffDmm29yag5VOjc3N9y4cUOvMtS1r2vXriEyMhKxsbF48OAB8vPzYWdnh27duuH111/HkCFDtPoFW6lU4r///S++++47XLt2DWlpaahXrx5atGiBXr16wcPDAz169NDrPREZytmzZ3Hs2DFcvXoVqampKCgogK2tLTp27Ih+/frB3d1dq2lkxujnGfp5R1SZtA1ClmBborpKoVDg5MmTOHHihOhHFRYWwt7eHm3btoWrqyvc3Ny0ejaxr6cag5BERERERERERERkVNV7sjgRERERERERERHVeAxCEhERERERERERkVExCElERERERERERERGxSAkERERERERERERGRWDkERERERERERERGRUDEISERERERERERGRUTEISUREREREREREREbFICQREREREREREREZFYOQREREREREREREZFQMQhIREREREREREZFRMQhJRERERERERERERsUgJBERERERERERERkVg5BERERERERERERkVAxCEhERERERERERkVHVr+oKEBEREVUHrq6uSElJ0bucsLAw9OnTxwA1Iqo8eXl5GDduHBISEuDl5QV/f3/x2qVLl+Dp6SnS8fHxet3L2dlZHHt7e8PHx0frMkJCQhAaGmqwOqkzZ84cHD9+HH379sXXX3+NevU4loOIiEhbfHoSEREREdVxwcHBSEhIgL29PebMmVPV1al2PvroIzRs2BCxsbH46quvqro6RERENRJHQhIRERGV0rx5czg5Oel0rY2NjYFrQ2RcZ8+exb59+wAAvr6+sLKyquIaVT+tW7fG1KlT8eWXX2LDhg0YMGAAXFxcqrpaRERENQqDkERERESl9OvXD5999llVV4PI6HJzcxEUFAQAcHJywtixY6u4RtXXzJkzERERgbS0NAQGBmLfvn2clk1ERKQFPjWJiIiIiOqoLVu2ICkpCQAwd+5cBtVUsLCwwKxZswAAV69excGDB6u4RkRERDULexlERERERHVQeno6du7cCQDo0KEDXF1dq7ZCNYCHhwdsbW0BAKGhocjLy6vaChEREdUgDEISEREREdVBW7duRU5ODoDi4Bqp16BBA7zxxhsAgAcPHoi1NImIiEg9rglJREREZEQLFy5EZGQkAGDz5s0YOHAgwsLCcODAASQnJ6Nx48Zo3749hg0bhsmTJ5e5Pjs7G0eOHMGZM2fw999/Iz09Hebm5mjWrBl69+6N4cOH46WXXtKqThcvXsShQ4dw5coVpKamwtLSEm3atMHw4cPh4eEBKysr7N69G59++ikAwNvbGz4+PrIyDh8+jEWLFgEo3rTj1KlTau/r6uqKlJQUAMW7Mbu7u6vMn5KSgsjISMTExCA5ORkZGRmwsrJCq1at8NJLL2HMmDFwdHRUWUZISAhCQ0MBAJ988gneeust5OfnIyoqCt9//z0SExORlpYGa2trtGvXDq6urpgwYQKsra3Vvp8SP/30E7799ltcuXIFKSkpKCgogI2NDZycnDBw4EC4u7ujcePGsmuCgoKwZ88eAMWbGcXExMDc3Fztvb755husWLECANC2bVscP35c43pKZWVlISIiAoA8sKYPhUKBuXPnyurk5eUFf39/vcvWlvTfXReqPp8eHh5iBGlYWBg8PT05jZ2IiEgDDEISERERVaKPP/4Yhw4dEum0tDSkpaXB2dm5TN7o6Gh89tlnSE9Pl53Py8tDZmYmbt68ifDwcPTt2xcrV67EM888o/Le6enp+Oijj3Du3DnZ+YyMDGRkZODatWvYu3cvvvjiCz3eof4UCgXWr1+PnTt3Ij8/X/ba48eP8fjxY/z555/YsWMHPDw84O/vr1EADwDi4uIwb9483LhxQ3b+0aNHePToES5fvozt27dj9erV6Nevn8qy7t69i8WLF+Onn34q81rJv+uFCxewefNmLFu2DIMHDxavjxkzRgQhnzx5grNnz8per0hUVJSsDF1FRUUhOzsbANCnTx+9d3VXKpVYtGiRLAA5ZcoUEaiuTRwdHdGhQwfcuHEDKSkpOH36NF599dWqrhYREVG1xyAkERERUSWJjIyscOTaqFGjZOnQ0FCEhITIzrVq1QoODg7Iy8tDYmIisrKyAACxsbEYP348du7cWeHIwPT0dEyaNAm3b98W58zMzODs7IyGDRvixo0byMjIQFJSEqZNm2aQkXG6yM/Px+zZs2WBUhMTEzg6OsLe3h7//PMPEhISUFhYCIVCgX379iEhIQFfffUVLCwsVJZ9+/ZthIaG4vHjxwCApk2bon379sjNzUViYqKYmvzo0SO89957iIyMrPDvGRcXBy8vL2RkZIhzZmZmcHJygoWFBW7fvo2HDx8CKA6czpkzB2vXrsWwYcMAAF27doWTkxMSEhIAFAec1QUhExMT8eeffwIA6tWrp9e/UXR0tDh+5ZVXdC6nRGBgoCxAOnXqVCxcuFDvcnXVpk0b9O/fX+P8Fy9ehEKhAFA8MrRz584q8w8YMEAEsqOjoxmEJCIi0gCDkERERESVpCQAOWLECHh7e6Nly5a4ceMGTp48iW7duol8x44dkwUge/XqhUWLFqFr167iXH5+Pr799lusXLkSGRkZSE1Nhbe3Nw4ePAhLS8sy9160aJEsADl+/HjMmzcPTZo0AQAUFBQgMjISwcHBePTokZhuWtmWLVsmC0COHz8e3t7eslGeT548wfbt27Ft2zYUFRXh8uXLCAgIwOrVq1WWvWvXLgDFAaqPP/4YAwYMgImJCYDi6ckhISHifefl5SEkJATr168vU05OTg7ef/99EYA0NTXFrFmzMHXqVNk07pMnT2Lp0qVITU2FQqHA4sWL0atXLzRr1gxA8UjGlStXAgBOnz6NzMxMldPAjxw5Io5feukltSNfK5KamorffvtNVpY+goODceDAAZGu6gAkAIwePRqjR4/WKO+6desQExMj0kFBQXBxcVF5Tb9+/bBjxw4AwLlz55Cfn6/xaFwiIqK6ikFIIiIiokrk6uqKtWvXiuBXt27dZAHIrKwsLFmyRKRfffVVfPHFF6hfX95tMzc3h7u7O7p3746JEyfiyZMnuHnzJrZt2wZfX19Z3gsXLuDMmTMi/c477+Cjjz6S5TEzM4OHhwc6dOgALy+vMtOgK8Mvv/wiC2YtWLAA06ZNK5PPxsYGfn5+cHZ2hp+fHwDg6NGjGDt2LP7973+rvIeDgwPCw8NF8LWElZUVFi1ahIcPH+LYsWMAgDNnzpQbXNq5cyeSk5NFevXq1RgxYkSZew0ePBgtW7bEpEmTkJubi6ysLOzevRtz584FUDz6dc2aNSgsLER+fj6+//57jB8/vtx6K5VKHD16VKTHjh2r8n2qcunSJSiVSgBAo0aN8Nxzz+lcVsm0+RLlfbZUiY6OxtWrV7W+7927d7W+pjxRUVHYvHmzSL/zzjsajTDt1KmTOM7Ozsa1a9fQu3dvg9SJiIiotmIQkoiIiKiUyMhIsZmMpsLCwtCnTx+1+d577z0RgCzPwYMH8c8//wAArK2tsWLFijIBSClHR0d88MEHCAoKAgDs27cPs2bNQsOGDUUe6Q6+zz77rAiCladnz57w9vbG2rVr1b4XQ9u+fbs47tWrV7kBSCk3NzecOHEC33//PQBgx44daoOQc+bMKROAlJo4caIIQubk5CApKUk2JbuoqEgWKHVzcys3AFmiS5cuGDlypNgE5sSJE+Lvb29vj5dffhmnT58GUBxIrSgIeenSJdy7dw9AcRBWk/UjKyIdBdmhQwedN1XZunUrvvzyS5HWNgAJFAcTDRVQ1Nbly5fx8ccfi/SAAQMwf/58ja5t2rQpmjZtKtZr/e233xiEJCIiUoPbuBERERFVEktLSzz//PMq80jXjBw0aBBsbW3Vljty5EiYmpoCKN5kRjqyrKCgQDbV1N3dXe200UmTJqFRo0Zq72tIubm5smnYmm66Ih21dvHiReTl5VWYt169emrX7uvQoYMsnZmZKUv/9ddfuH//vkhPnDhRbR09PT0xf/58bNq0CRs3bpS9Jn2fP//8s6xsKel6i25ubnpN/U1MTBTHHTt21KmMsLAwrFmzRqR1CUBWpeTkZHh7e4sRv+3bt8fatWu1Csg6OTmJ49IbHREREVFZHAlJREREVErz5s1lAQZNaLK7sJOTk8ogR35+Pv744w+RrmhTlNIaN26MNm3a4NatWwCAK1euoG/fvgAg23AFgEajtaytrdGzZ0+cP39eo/sbwrVr11BQUCDSmr53aVC3oKAAv//+e4Xv0cHBAVZWVirLa9y4sSwtrVNJPUuYmZmhe/fuauvo5ORU4eepJNCckZGBoqIifPvtt5g+fbosT25uriw4rc+u2ABkU8mbNm2q9fURERFYsWKFSDs5OekcgPT29oaPj4/W14WEhCA0NFSne2ZlZWHWrFl49OgRgOJ/8y+//FLlepzlkf7tpH9TIiIiKh+DkERERESl9OvXD5999pnBy7Wzs1P5+v3792VrMa5btw7r1q3T+j4PHjwQxykpKbLX2rZtq1EZzs7OlRqEvHPnjiytyQjD8qSmplb4miajSktGlJYoKiqSpZOSksRx69at9d6MxNzcHCNHjhSb5kRHR5cJQp48eRLZ2dkAikcuStcQ1UXJ7uAAtA68AUBAQIBYUxIAEhIScPz4cQwdOlSvelUGhUIBX19f/P333wCK/73XrVuncbuQkga0pbukExERUfk4HZuIiIiokqgbhffkyROD3EdaTlZWluw1TYNOqtZNNIaSdTD1pSoYJF0nU1fSv6cuAbzySEc2xsfHIyEhQfa6dCq2u7u73vd7+vSpOFb3mSxPSWBWOmX/008/Ndjn15iCg4Nl0/4XLFiA/v3761SW9N9fOtqYiIiIyseRkERERESVRN16c4WFhbJ0165dNZrmXZp0XcMGDRrIXpOOYFNF3xF+2ir93nUNDDVv3twQ1amQqk2FdNWlSxc4OzsjPj4eQPEGNfPmzQMApKWliRGp9evXx6hRo/S+n/Q96LopzZtvvolRo0Zh8uTJUCqVePjwIYKDg40ygthQ9u7dK0acAsUB3SlTpuhcnnTUrK5/RyIiorqEQUgiIiKiaqL0eoSzZ8+Gq6urXmWWDmJmZmbCwsJC7XWlR1CqomlgU9WmMaXf+4YNG3QapWds0nqW3rRGH+7u7ggODgYAHDt2TAQhv/vuOygUCgDFuzfb29vrfS9LS0sxYjQ3N1fr6ydPnoxPPvkEJiYm8PDwELuFR0ZGws3NDS+//LLedTS08+fPY/ny5SLdo0cPLF26VK8ypaMfLS0t9SqLiIioLuBPdkRERETVRIsWLWSj1O7du6d3mc8995wsrekuvnfv3lX5urSepTdvKU9RUZHK6botWrSQpQ3x3o1BWs+UlBSN3jsAHDhwAGfPnsWtW7fKvWbkyJGoX7++KPf69esAiteDLDF27Fh9qi5I18bUZS3DgIAA8e//4YcfolmzZuK1wMBAsX5ldZGYmAhfX18x2vaZZ55BaGio3qN9pZ9nXUYsExER1TUMQhIRERFVE1ZWVujYsaNIx8bGanRdQUEB/P39sW7dOhw4cEAWaGzVqhVatWol0hcvXlRbnlKpxOXLl1XmkQZwNAk6VRR8K9GjRw9ZYFPT937jxg34+/tj48aNOHLkiNjx2Fiku2GX7MatTlJSEgICAjBjxgwMGzYMiYmJZfI0bdoUAwYMEOmTJ0/in3/+Ef8OdnZ2GDhwoAHeAdCmTRtx/L///U+vsho3bgx/f3+RTklJwZo1a/Qq05AeP36MWbNmiTVHGzZsiI0bN8oCp7qS/u102diGiIiormEQkoiIiKgaeeWVV8TxqVOnZLsxVyQqKgqHDh3C5s2bERAQUCbINWzYMHF8+PBhtVOtz507h+TkZJV5pKPpcnJy1Aazjh07pvJ1Ozs7WYBvz549Go0y3Lp1Kw4dOoQvvvgC/v7+ZXazNrTOnTvLpkRHRESovUb63u3s7ODk5FRuPulIxx9++AFnzpwRo/dGjRoFMzMzXast4+joKI5L70quixEjRsgCpHv37sUvv/yid7n6KigogI+Pj2xU74oVK/D8888bpHzp3659+/YGKZOIiKg2YxCSiIiIqBp56623RLCpsLAQvr6+KoOGycnJWL16tUi3bNkSgwYNkuXx9PQUZaanpyMgIKDCYF16ejqWLFmitp7Ozs6ykYvSDT9Ki4uLw/bt29WW+c4774jjW7du4dNPP1W53uSpU6cQHR0t0kOGDDHImomq1K9fHxMnThTpyMhInD17tsL8KSkpsvc+bty4CjcxGThwIOzs7AAA169fx549e8Rr0h209dWzZ09xHB8fL9ac1EdgYKBYa1SpVGLx4sUq1wCtDAEBAfj5559F+v3334ebm5tByk5NTUVqaqpI9+7d2yDlEhER1WYMQhIRERFVIy1atICvr69I//HHH/Dw8EBMTIwsIKdQKBAdHY1Jkybh8ePH4vyCBQvKrHXXsmVLfPjhhyJ97NgxzJo1q8woy0uXLmHixIlISUlRW097e3tZMOvrr7/G1q1bkZ+fL87l5uZi3759mDhxInJzc8WahxUZMmSIbCTogQMH8O6775ZZxzIrKwtffvkl5syZI/4mFhYW8PPzU1tvQ5gyZYqYfqtUKuHt7Y2dO3eW2eTlwoULePvtt8VU4GbNmmH69OkVlmtmZobXX39dpH/99VcAxbtnu7i4GKz+L774oggg5+bmIi4uTu8yW7duDR8fH5G+ffs2QkJC9C5XV9u2bcPhw4dFevTo0ZgzZ47Byr927Zo4trW1RadOnQxWNhERUW3F3bGJiIiIqpnp06fj1q1bOHjwIIDijTWmTZuGpk2bol27dsjPz8edO3fKbPQyc+ZMjBgxotwyp0yZgps3b4qdjM+cOYOzZ8+iY8eOaNKkCZKTk0Xw0dzcHDY2Nnj48KHKevr5+cHT0xMKhQJKpRJr1qzBtm3b4OjoiIKCAty6dUusF9m5c2f06NEDe/furbA8ExMTfP7555g6dSr+/PNPUc8zZ86gTZs2eOaZZ5CRkYG7d+/KAn5mZmZYvXq1bK1DY7KyssIXX3yBqVOnIj09HXl5eQgODsaGDRvg5OSEBg0a4M6dO7h//764plGjRli/fr3aDUzGjh2LsLAw2Tl3d3eD1t/W1ha9e/cWowRjYmLQpUsXvcv18vLC0aNH8ddffwEAduzYgeHDhxukbG3Ex8dj7dq1Il2/fn2YmprCz88Pubm5KCws1Gj0p6rRu+fOnRPHrq6uFY5uJSIiov/HICQRERFRNbR8+XI4OzsjJCREjKRLT09Henp6mbxWVlaYP38+3nzzTZVlBgUFwcHBARs3bkRubi6USiUSEhJkeWxtbbFy5Ups375dbRCyd+/eWLt2LT755BNRx3/++UeM4CvxyiuvIDg4GDt27FD7vm1sbLB3716sWLECBw8eFMGiu3fvlrtj93PPPYcVK1ZU+nRYZ2dnhIeHY8GCBWLzmJycHFy9erVM3rZt22L16tXo2rWr2nJdXFzQqVMnsTu2ubm5bHSkoYwePVoEIX/88Ue8++67epdpamqKoKAgeHh4oKioCAqFAv7+/jh06JDaUbCGlJGRIVtuoLCwUDYq0hCkQUhDTpUnIiKqzRiEJCIiIqqmPD098cYbb+DIkSM4f/48EhIS8OjRIxQVFcHGxgbOzs54+eWXMXr0aDRp0kSjMmfOnAk3NzeEh4fjxx9/REpKChQKBRwcHPDaa69h8uTJaNq0qUZrOALFm968+OKLOHDgAE6fPo07d+4gJycHzZo1Q9euXfHGG2+UWaNSnYYNGyIoKAjTpk1DVFQUYmNjcffuXWRkZKB+/fqwt7dHly5d8Nprr2HIkCFlpp9XFgcHB+zduxfnzp3D999/j8uXL+Phw4fIy8tDkyZN0KVLFwwdOhRubm5a1fG1114TQUhXV1fZJkCGMnz4cKxcuRKZmZn49ddfkZKSgtatW+tdbteuXfHWW2+J0ZxxcXHYunUrZs+erXfZ1cXly5fFqOF27drhX//6VxXXiIiIqGYwUapa7ZuIiIiI6qS3334bP/30EwDA29tbtt4fGdf06dPFSLvt27ejf//+RrnPqlWr8NVXXwEAfH198d577xnlPrVNQECAWNZg2bJlGD9+fBXXiIiIqGbg4iVERERERNVEamoqLly4AAB49tln0a9fP6Pda8qUKWjUqBEAYP/+/SgsLDTavWqLjIwMsSN7y5YtMXr06CquERERUc3BICQRERERUTWxf/9+sQ7mxIkTxS7WxtCsWTNMmTIFAHD//n385z//Mdq9aovw8HA8ffoUAPDBBx9U2VIARERENRGDkERERERE1cCpU6ewbds2AMUb9EyYMMHo95w+fTqaN28OANi0aZNGu0bXVVlZWWJzpS5dunAUJBERkZYYhCQiIiIiqgLfffcdRo4cCS8vLwwdOhTvvfce8vPzAQALFiyAlZWV0etgZWWFwMBAAMDNmzdx5MgRo9+zptq5cyceP34MU1NTfPrpp6hXj1+liIiItMEnJxERERFRFXBwcEBCQgJiY2Nx+/ZtcX7ChAkYN25cpdVj8ODBYlTf+vXrkZWVVWn3rinu378vdox/99130aVLlyquERERUc3DICQRERERURVo164dunfvDgsLC1haWqJ79+5YuXIlgoKCKr0uS5YsgaOjI1JTUxESElLp96/uVqxYgZycHLz44ovw9vau6uoQERHVSCZKpVJZ1ZUgIiIiIiIiIiKi2osjIYmIiIiIiIiIiMioGIQkIiIiIiIiIiIio2IQkoiIiIiIiIiIiIyKQUgiIiIiIiIiIiIyKgYhiYiIiIiIiIiIyKgYhCQiIiIiIiIiIiKjYhCSiIiIiIiIiIiIjIpBSCIiIiIiIiIiIjIqBiGJiIiIiIiIiIjIqBiEJCIiIiIiIiIiIqNiEJKIiIiIiIiIiIiMikFIIiIiIiIiIiIiMioGIYmIiIiIiIiIiMio/g8JruYhNNeGOAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "bintime = 1e-6\n", + "deadtime = 1e-5\n", + "length = 40\n", + "fftlen = 0.01\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 us; dead time = 10 us')\n", + "\n", + "r = 20000\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ok." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An additional note on the Zhang model: it is a numerical model, with multiple nested summations that are prone to numerical errors. The assumptions made in the Zhang paper (along the line of \"in practice the number of terms needed is very small…\") are assuming the case of RXTE, where 1/dead time was low with respect to the incident rate. This is true in the simulation in figure 4 of Zhang+95: 20,000 ct/s incident rate, 1/dead time = 100,000. However, this is not true in NuSTAR, depicted in our simulation below where the incident rate (2,000) is much larger than 1/dead time (400). A thorough estimate of the needed level of detail (that implies increasing the number of summed terms) versus increase of numerical errors has to be done. This is a quite long procedure, and I did not go into so much detail. This is the reason of the “wiggles” that can be seen in the model in red in the plot below.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAAQ1CAYAAADAlJPyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDTP27MtUZFeiKImiQhKhiELRIvGV7GTJVygla5SQpbIrSoks2Zeyb5N9H8MYszLb+f0xv7m/555z5sw5sx68no9Hj+77Pvd93dcZ59znPp/zua6PxWq1WgUAAAAAAAAAbvDK6Q4AAAAAAAAAuP0QWAQAAAAAAADgNgKLAAAAAAAAANxGYBEAAAAAAACA2wgsAgAAAAAAAHAbgUUAAAAAAAAAbiOwCAAAAAAAAMBtBBYBAAAAAAAAuI3AIgAAAAAAAAC3EVgEAAAAAAAA4DYCiwAAAAAAAADcRmARAAAAAAAAgNsILAIAAAAAAABwG4FFAAAAAAAAAG7zyekOALhzTZ48WVOmTJEk1alTR/PmzctwmwMHDtTy5cslSa1atdLYsWMz3GZW+Pfff7V79261b9/e4eMdO3bUzp07JUk9evRQz549s7N7cMP+/fu1ePFi7dq1S8HBwbJarSpevLiqVaumli1bqkGDBrJYLFly7hMnTmjBggXasWOHzp8/r/j4eBUrVkwVK1bUiy++qOeee04+Pu59lG/btk1Lly7V3r17deXKFfn4+KhEiRKqWbOmWrVqpUcffdSt9mJjY/Xrr7/qt99+0+HDhxUWFqa8efOqZMmSatCggdq0aaPAwEC32jx16pSWLl2q3bt36+zZswoPD1euXLlUpEgRPfzww2rcuLEaNWqUKX/3KVOmaPLkyZIy772Y2W0uWbJEQ4YMkSQdO3Ysw/2TJKvVqjfffFPbtm2TJM2dO1ePPfaYy8dnxfviypUrWrFihTZs2KCzZ88qNDRUuXPnVpkyZVSnTh21a9dO5cuXd7m9sLAwLVu2TNu2bVNQUJDCwsIkSYUKFVKVKlXUoEEDtWrVSrlz506zLavVqkceeURRUVFuPadevXqpe/fubh1zJ7tbP/vOnz+vZ555xlj/888/VaZMmQy3+/fff+vy5ct64YUXHD7eqFEjXbhwQZI0ZswYtW7dOsPnRNbI7M9md2T29dxqtWrt2rVasWKFDhw4oGvXrilPnjwqXry4Hn/8cbVp00aVK1d2q4/BwcFavHixdu7cqZMnT+rGjRvy8fFR4cKF9eCDD6pRo0Zq1qyZS/dEoaGhqlu3rlvnl6TPPvtMLVu2dPs44G5AYBEAMlFMTIymTJmiOXPmqHnz5qkGFuH54uLi9N///lcLFy60e+z06dM6ffq0fv31Vz355JMaM2aMihUrlqnnnzx5sqZPn674+HjT9nPnzuncuXP6888/Vb16dY0bN07lypVLs73IyEgNGDBAa9euNW2/deuWTpw4oRMnTmjJkiVq0aKFhg0bpnz58qXZ5okTJ9SrVy/9+++/pu3Xr1/X9evXdfjwYc2cOVP/+c9/9Pbbb6f5xSQ6OlpjxozR4sWLZbVaTY/FxcUpMjJSp0+f1k8//aSqVavqyy+/1H333ZdmP1Nz9OhRTZ8+Pd3HZ0eb58+f16effppp7SX78ccfjaCiO7LqfTF79mxNmjRJ0dHRduc7cuSIjhw5onnz5umtt95S79695eWV+qAbq9Wq+fPn64svvlBMTIzd45cuXdKlS5e0bt06TZ48WaNHj9bTTz/ttH9nzpxxO6gIZJXr16/r888/19KlS/X+++/ndHeQAVnx2eyqrLieBwcHq3fv3vr7779N22NjY3Xjxg0FBQVp3rx5euONN/Thhx/Kz8/PaXvx8fGaPHmyZs6cqbi4OLs2o6Ojdf78ef3222+aNGmSxo8fr4ceeshpm0eOHEnzeQBwD4FFAMhEo0eP1qJFi3K6G8ggq9WqDz74wHSjnytXLlWqVEne3t76999/FRkZKUnavHmzOnfurIULFyp//vyZcv5Ro0aZMnx9fHxUqVIl5cmTRydOnND169clSQcPHlTHjh21aNEilS5dOtX2bt26pS5dumjfvn3GtoCAAFWsWFEJCQkKCgrSzZs3JUkrVqzQpUuXNGvWLKc3/KdOndJrr71m9EWSihYtqvvvv19hYWH6999/ZbVaFRcXpy+++ELh4eHq27dvqu3dvHlTXbp00Z49e0zby5Urp6JFiyo6OlrHjh1TbGysJOnw4cN6+eWX9f3336tSpUqptpuauLg4DRw40O6LSkZkdpuhoaF65513FB4enintJTt//rzGjRvn9nFZ8b6wWq0aOXKkfvjhB2Obt7e3AgMDVbRoUQUHB+vMmTOSpMTERH3zzTe6ceOGRo4cmWqbY8aM0Zw5c0zbihcvrsDAQCUkJOjkyZNG9uK1a9fUrVs3jRkzRq1atUq1TdsvogULFlT16tVT3deWu9m6gCv69OmjLVu25HQ3kEFZ8dnsqqy4noeGhur111/X2bNnjW0FCxbUAw88oJiYGB07dkzx8fGyWq2aPXu2rly5ovHjx6faXmJionr37q0//vjDtL1s2bIqWbKkYmNjFRQUZPwgde7cOXXo0EHffPONnnjiiVTbtb2eFy9eXBUqVEh1X1uZ/QMycCchsAgAmSgzgxTIObNmzTLdbHfo0EEffvihkSlw8+ZNfffdd5o8ebLi4+N18uRJDR482Bj6nxG///67KajYpEkTDRs2TEWKFJGU9BpbtmyZxowZo5iYGF29elU9e/bU0qVLU80I/PTTT40vLhaLRT179lTXrl2NIaDh4eGaPHmy5s6dK0natWuXvvjiCw0aNMhhewkJCfrggw+MoGKBAgU0cuRINWnSxOjDuXPn9NFHH2n79u2SpBkzZqhmzZqm4YC2xowZYwoqNm3aVP369TMNF4yJidG8efM0adIkxcXFKSIiQu+9955WrVrl0nBWW19//XWmZy1kZpuXLl3SO++8oxMnTmRKe8msVqsGDx5slxnoiqx4X8yYMcMUVGzSpIn69eunsmXLGtsOHz6sIUOG6PDhw5KkhQsX6umnn1ajRo3s2lu1apUpqFi5cmUNGzZMjzzyiLEtMTFRa9eu1ciRIxUSEiKr1aqhQ4eqSpUqqQ7PO3r0qLHcqFEjjRkzJtXnBGQ17jXuDJn92eyOrLieDxo0yAgq5sqVS4MGDdIrr7xiDE8OCQnR6NGjtWrVKknSr7/+qocfflidOnVy2N63335rCio+9thjGjJkiOnHxLi4OC1fvlxjx45VVFSU4uLi9J///EerVq1KNRBo+zndtm1b9ejRw+nfCkDaKN4C4LYyduxYHTt2TMeOHfPY+RVdMW/ePON53C1zTN0uQkNDNXXqVGO9ffv2Gj58uGn4Ue7cudWtWzdT1tSaNWv0zz//ZOjccXFxpmGvDRs21IQJE4ygoiT5+vqqXbt2mjJlinGzfujQIf3yyy8O2zx+/LgWLFhgrPfp00fvv/++KRCXP39+DRkyxDSk7vvvv9f58+cdtrl48WIj0OLj46Pp06eradOmpsBm2bJl9e2335rmMfriiy+UkJBg196pU6e0ePFiY71t27aaOHGi3RxkefLk0TvvvKOJEyca2y5cuGB86XKVpw+B3rx5s1q1aqWgoKBMac/WDz/8oB07drh9XFa8L86fP2/MRSklfbGdOHGiKagoSVWrVtWcOXNUokQJY9uMGTPs2ktMTNTnn39urFepUkU//vijKagoSV5eXmrcuLF+/PFHFSpUSFLSe8/22JRsv4imJ0MWyAnr1q0z7jWYX9GzZMVns6uy4nq+adMmbdiwwVgfO3as2rdvb5rzsGjRovryyy/10ksvGdu++uorIzPSVnh4uOkztX79+po1a5bd9dfX11dt27bVd999p1y5ckmSIiIiTM8vJdsfityd6xGAYwQWAQCwsWTJEmMutYIFC6p///6p7tumTRvT3GyzZ8/O0LnXrFmjixcvSkoK2A0bNizVueSefPJJtWvXLs1zz5s3zwjmlStXTl27dk31/D169FDFihUlJQVa5s+f73A/20BemzZtVKtWLYf7+fr66tNPP5Wvr6+kpDkZN27caLffypUrjT4WLFgwzWyMZ555Ro0bNzbWf/31V6f724qLi9OAAQOMjJ/MmK8qs9oMDw/X2LFj9fbbb5uGmGeWc+fOGcEzd4ftZ8X7YtasWcbQ9sqVK+ujjz5KNes2f/786tatm7G+Z88e3bhxw7TPzp07jUIVkjRixAj5+/un2s+yZcuavrBv2bIl1b+7bWCRL6IAMiorPptdlRXXc9tM8SeffFLNmjVLtc3hw4frnnvukZQ0X2hyUUZba9asMfro6+ur//73v04Lszz00EPq0KGDsf777787/CHz1q1bOnXqlLHOD0VA5iCwCACAjd9++81Yfv75550GJiSZgnt//fVXuoaYJkseHiRJTzzxhEqVKuXyuQ8dOqRz586ZHk9MTNTq1auN9datWzsteuHl5aW2bdsa67bHJjt69KhpeO7LL7/stI/FixdXw4YNjfXff//dbp/k4dJS0jDTtP7mkkxDqo8ePWoEqNIyffp0I1vhpZdeUpUqVVw6LqvbXLx4sZ577jnNnj1biYmJkpKyO5zNS+kOq9WqIUOGGK/PgQMHunV8Zr8v4uLitHLlSmN9yJAh8vb2dtpm06ZN9frrr6tHjx4aPHiw3ZdG29dR6dKl9fDDDzttTzK/jhITE43h1rZCQ0N15coVY53AIoCMyIrPZndk9vX8xo0b2rp1q7Hepk0bp+35+/urRYsWxnpa9wU1a9ZUyZIlnbYpma/nYWFhdvdEknTs2DHjsyNv3ryZUp0dAHMsAshmkZGR+uGHH7R69WqdPXtW8fHxKlasmGrXrq3mzZvr8ccfd3r8wIEDjV82W7VqZTccetmyZUa2U5cuXTRgwAAlJibq999/16+//qojR47o6tWrypMnj8qUKaOnn35ar776qooWLZqh5+XoF8/ly5ebfoU9duyYsdyxY0ft3LlTUtIv0SmHQ0+ePNmYx2bEiBFq3769oqOjtXLlSq1cuVKnT59WeHi4ihQposqVK6tdu3Z66qmnTG2cOnVKCxYs0ObNm40suDJlyqhBgwZ64403XH7OoaGhWrZsmTZt2qRTp07p+vXr8vf3V7FixfTYY4+pRYsWaVbgu12EhYWZMpOefPLJNI95/PHH5e3trYSEBN28eVNbt27Vs88+6/a5rVaraYhqvXr10jymUqVKKlq0qEJCQiQlDXvr3Lmz8fjRo0dNGViuPB/b8168eFFHjx41BVJsb/YLFCigBx980KU2k+dJ2rBhg6xWqykz7dq1a8Zy+fLl02xPSsqysBUWFpbmxOpHjhzR119/LSkpaDd48OAMz62UWW3Onz/fKCgiSc8++6xGjBihkydPZqh/yWyHQD/55JNq06aNBg8e7NKxWfG++Pvvv42iNPfdd5/q1KmTZpuFChXS0KFDU308JCREXl5eSkxM1AMPPJBme5L968hRxqLtcy9RooTdMdnhxIkTWr58uXbt2qXTp08rMjJSefPmVeHChVWjRg01aNBATZo0cRqcPX/+vOmLt6PP0IzYtm2bli5dqn/++UdXrlxRQECAAgMD1axZM7Vt21YBAQFut5nZnz+JiYlav369tmzZoj179igkJERhYWHy9fVV/vz5FRgYqNq1a6tVq1Z2Q/JTEx0drWXLlumPP/7QsWPHFBUVpSJFiqh69epq27atGjRo4PbzdiTlv1+yKVOmGPcLpUuX1rp164zHGjVqZGTxjhkzxm44tO091YwZM9SgQQOFhYVp2bJl+v3333Xu3DlFR0erePHievDBB9WhQwe7qQUOHjyohQsXaufOnbp8+bJ8fHx033336dlnn9Xrr7/ucgb3hQsXtHz5cm3evFnnz59XWFiY8ubNq1KlSumJJ55Qq1atXP588HRZ8dnsqqy4nu/cudMI1lksFpfuX+rVq2dkP/7zzz+6ceOGChQoYDx+9epVWSwWWa3WDF3P77vvPtM222HQlSpVSjVLPivt379fK1as0N9//63z588rJiZG+fLlU5EiRVSrVi01atTI7p4e8HQEFgFkm/3796tXr15GkCvZ6dOndfr0aS1evFhPPfWUxo4dq8KFC2fKOc+fP6++ffvaVZq9deuWwsLCdPDgQc2aNUvDhw83zfniafbv36++ffsa1VGTXbhwQRcuXNCff/6ptm3basSIEfL29tacOXM0btw4uwneg4KCFBQUpGXLlunrr79O8wvZd999p0mTJhnDUZLFxsYqLCxMQUFBmjdvnpo2bar//ve/Ga6KbBsYzghHX6BccezYMVmtVmO9WrVqaR7j7++vwMBAY2jNgQMH0hVYvHDhgqn6r6tVZytVqmQEFg8cOGB6zPYG2tfX16XKh/fff79y585tVKI8cOCA6cuLbZtVqlRx6abc9vgbN27o7Nmzuvfee41tq1ev1q1btxQcHOxy8CHlHFO2X0gcSVmxecSIEWkek5asaPO+++5T37599dxzz0lSpgQWbYdA582bV6NGjXLr+Kx4X9jO0/XYY4+51Z/UfPLJJ/r4448VEhKi+Ph4l45J+TpydA3LyWHQiYmJGjdunL777jsjkzVZWFiYwsLCdPLkSS1fvlz33XefPv30U5cyNTNTaGioBgwYoL/++sth//bv36/58+drwoQJbrWb2Z8/mzdv1qhRo0zDIJPFxcUpOjpaly9f1s6dO/X111/rrbfe0gcffOD0Grd161b179/fuAYnu3Tpki5duqQ1a9aoadOm+s9//uPGM885Gzdu1ODBg3X16lXT9jNnzujMmTP65Zdf1LNnT/Xo0UMJCQmaOHGiZsyYYffaPHjwoA4ePKilS5dq9uzZToO0CQkJmjBhgr777ju7zPPr16/r+vXrOnTokGbNmqW2bdtq8ODBGa6KbPvjbUbMnTs3XdevrPhsdlVWXM9tn0+ZMmVc+hy07XtiYqIOHTpkquQ8e/ZsxcbG6sqVK06HQNvy9Ov5rVu3NGTIEFO2frLQ0FCFhoYqKChICxYsULVq1TR+/Hi7wCjgqQgsAsgWFy5cUNeuXY3ASaFChVS+fHnFxMTo2LFjxpfAjRs3qmPHjpo3b16Gg4uhoaF68803jQp1+fPn1wMPPCCr1aoTJ04YfYmOjtagQYNUvHhxU6EJdyT/4hsUFGQMmStWrJgxJ05GHDt2TJ9//rkxuXXJkiVVtmxZ3bhxQ0FBQcYN4qJFi1ShQgXFxcXps88+k5RUla9y5cry9vZWUFCQ0UZoaKh69uyp3377zeEQmORhk0uXLjVtv/fee1WiRAlFR0crKChIt27dkpQ0jOXff//VnDlzMpz9mZNOnz5tLPv5+bk09EZKupFOvuFOfr1l5NySFBgY6PK5k6U8t22bpUuXdunm3GKxqFSpUkZAK2Uw27ZN2+Cgq31MbjPlsbly5XL5OUvmoWClS5c2Jm1PzVdffWV8+WnevHm6gr9Z2WbVqlX15ptvqnnz5i5/iXJFyirQ/fv3d/l1nSwr3he2Gdy2X6q3bt2qFStWaM+ePQoODlauXLlUtmxZNWzYUO3bt0/zc8HHx8et55dySGG5cuXs9klZuOXKlStatmyZ/vrrL504cUJRUVEqWLCgKlasqEaNGqlNmzbKkyePy31wZvTo0aYq8blz51b58uWVP39+hYWF6ezZs0bg7fTp03rzzTeNz4LsEBoaqtdee80UAPf19VXlypWVO3dunThxQqGhoTp//rzeeust5c2bN802s+LzZ9WqVerXr58p4FysWDEFBgbK19dXN27c0PHjx43AVnx8vKZPn658+fLprbfectjm2rVr1atXL1Ob99xzj8qVK2f0MS4uzsj8y6jcuXMb9xoHDhww5hgNDAw0rp22hb7ctXXrVs2bN894PoGBgSpRooSuXr1q+vedPHmyqlSpoi1btuj777+XlPSDRcWKFZWYmKijR48awa9z586pV69eWrp0qcMAbWxsrLp3765NmzYZ2ywWi8qXL68iRYooPDxcQUFBio+PV0JCgn788UcFBQXp22+/dWnKDE+VFZ/N6Tl3Zl3P03NfULRoUVOg9MyZM6bAYnL/3BmqbHs9z507t0qXLm23T8rr+dmzZ7V06VJt2bJFp0+f1s2bN3XPPfeoatWqaty4sV588cVM+0z+4IMPTBnFefPmVbly5RQQEKBr167p7Nmzxt/j0KFDev311/Xzzz8b81ECnozAIoBskTwUJ7nC3YsvvmgM2QoNDdW4ceO0bNkySUmV8kaMGKFJkyZl6Jw//fSTpKQb/UGDBqlZs2bGOW/duqU5c+boyy+/VGJiohITEzV+/HhTZVp3zJw5U5J5WFG9evUyZZjZjz/+KCkpk2nkyJGmX8ePHj2qt956y8iW+PLLLxUTEyOLxaJu3brpnXfeMW6+o6Oj9emnnxpVCC9fvqyVK1ea5s5JNmPGDNOXumeeeUZ9+/Y1femOiYnRggULNGHCBN28eVMnTpzQhx9+qO+++y7NudJSU7x4cZeG5bjSTnrYZp24EyC13Tdl5kp6zu3l5eXyF0Rn57ZdT2uYsK0iRYoYX15Stmk715yrf6PChQsbw6gctemubdu2GVMJSEnD/Zw5dOiQvvnmG0lJ14MhQ4Zk6PxZ0eaYMWMy3CdH5s+fb/yt6tat6/D9npaseF/YBlqKFy+u4OBgDR061K64T0xMjMLCwnTgwAF99913Gj58uJo3b+7uU3AoNDTUVAShYsWKDr/E2mbj7Nq1S3PmzDG+/CULCQlRSEiItmzZounTp+uTTz7J8FC25Iy8ZO+//77eeecdU9XYW7du6YcfftC4ceOUkJCg6OhojR8/XtOmTcvQuV01dOhQU9CpQ4cO+uCDD4yMpYSEBK1evVojR47U9evXTcP9U5PZnz9Xr17V8OHDjYBZxYoV9cknn9hl7MfExGjRokX64osvjKDlN998o86dOxsFqJJdvHhRAwYMMNosWLCghg8frqZNmxpz5YWFhWnSpEn6/vvvdejQoTSfd1qKFCli3GvYTqfSokULu+lU0iN5WOrDDz+sYcOGmTLZtm3bpu7du5t+oIiMjJSfn5/69eun9u3bG3+j69ev66OPPtLatWslJV0rt2zZ4vCzfdSoUaag4iuvvKIePXqYKsDfuHFDM2fONDIj//77bw0bNsxpFfe0BAYGZsq9Rnoz1LPiszk9586s63l67gukpM/O5O8HGb0vOHHihH755RdjvW7duqZrpZT0o4Xtj1q//PKLPv74Y7v5ei9fvqzLly9r3bp1mj59usaNG5fhKX82bNhgBBW9vLw0bNgwvfzyy6ZrS0REhL7++mvNmDFDUtLfZNq0afroo48ydG4gOxBYBJBt/P39NXfuXLvCBoULF9aYMWMUEBBgfIlavXq1/v77b7u5fNxVoEABLViwwC4TKleuXHrnnXcUERFhBAf279+v4ODgdAelslLJkiW1YMECFSpUyLS9cuXK6t+/v/r16ydJpsIMb775pmlff39/jRgxQnv37jW+KG/dutUu0HDu3DlNnDjRWH/99dcdzmuWJ08evfnmm6pevbrefPNNxcXFaefOnVq2bJleeeWVdD3PevXquTQ3T1ax/dLrTmVf2yyclJVqXWV7XEBAgNOJ3F09d3qfj+2+Kdu0XXe1TS8vL/n7+ysiIkKSTEO+3RUWFma6yfb19TXNK5lSbGysBg4caAQAhg0bluFs6KxoMyucPXtWX3zxhaSk97+7Q6CTZcX7wnaoZXR0tDp06GAMY8uTJ48qVqwoPz8/nTx50piDMzw8XH379lVYWJhef/319DwVg9Vq1dChQ03PzVFV1pQVRJOHcHt7e+vee+9V0aJFFR4eruPHjxtD4kNCQvTee+9p5MiRaRY3ciZ5XlJJatiwocPhtLly5TKuv8n/1ps2bVJ0dLRdRleZMmVMX6ozavfu3UbwSJK6deum3r17m/bx9vZWs2bNVKFCBbVr185uWHNKWfH58+OPPxrXnHz58mnmzJkOgzl58uRR586d5eXlZbxXbty4of3799vdi0yZMsUYAZA7d27NmTPHblhlwYIFjWvD5MmTnT5vT1GtWjXNmTPHLiBTt25dvfPOO8Zw9uTn/sUXX6hx48amfQsVKqTPP/9czz77rPE+37p1q10gb/fu3Vq4cKGx3r9/f4fvwQIFCujDDz9UpUqV9OGHH0qSVq5cqTZt2qR7lEnLli3VsmXLdB2bGbLiszmrz+3sep6e+4KU+2bkviD5M9l2+h9HmcZnzpwxFZ5JDs77+vrq/vvvV6FChXT9+nUdP37cGN5/+vRpdezYUZMnT87QfKm22ZSvvfaa2rdvb7dPvnz51LdvX4WHhxvvjdWrVxNYxG2BqtAAsk2vXr2cVkvt37+/adhCcqZeRrzxxhtOh1em/GDPzC9dmek///mPXVAx2TPPPGMaYlS6dOlUAy0Wi0VPP/20se5o2O6cOXOMgEnZsmXTrB5bu3ZtderUyVhPznq4HdnO75Tyi5UztvM9uVqdOKXkDJnMPHdWPJ/M6KdtG+6IjY3Vf/7zH9M8Sh07dnQ6f9dXX32loKAgSVKTJk3UtGnTdJ07q9vMbMlDoGNiYiRJffv2TXf1y6x4Hdl+ifzkk090/vx55cqVS4MGDdKOHTu0aNEizZ8/X5s3b9bUqVONLBir1aoxY8Zo9+7d6Xouyb788ktTUOyhhx4yVSlNZltBVEq6hnbu3Fnr1q3Tb7/9prlz5+qnn37S9u3b9cEHHxjZJwkJCRoxYkSG+mmbBZTWv93LL7+sWrVq6cUXX9Tbb7+doer0rkoeFSAlZdQ7y5qrUKGCevXqlWabWfH5Y1tw6pVXXkkzQyxloCw4ONi0Hhsba6qq+/bbbzudq6179+4uzWPnCQYMGJDqezzlVA+PPPKI3d8qWZ48eUxBP0f3GsnZl8ltOQoq2nrhhRdM19pZs2Y53d+T5eS9xp12X5D8Wbd//35jW5MmTfToo4/a7Ws7DFpKCij26tVLmzZt0sqVKzV37lytXLlSmzdv1htvvGHcW9+8eVO9e/e2m7LGHbbXc0dDtG299tprql27tlq3bq127drZZcgDnojAIoBs4e/vn2YWm5+fn6ngxl9//WWaYDo9UrvpTVaqVClTVkdyRpUnsVgsTp9HQECAKVuqQYMGTrPdbDMyHT3fNWvWGMvNmze3GwLmiG3hmxMnTmTKfFI5wfbXblczBiWZ5t9xtWhEdpw7vW3aDiVM2abtujtD3p216YrY2Fj16NHDVDm7Ro0aRgaLI4cOHTKGFCUPVcyorGgzK8ybN0+7du2SlBR86dChQ7rbyorXpu0X0/DwcPn6+mrGjBl64403TPNlenl56dlnn9WCBQuMip/x8fEZmmbiq6++Mip5S0kZUV9++aXD52Y7zNfLy0sTJkzQ4MGDTUM1paRsnvfee08zZswwnndcXJxGjx6d7s8x23MsX75c+/btS3XfwoUL68cff9Tnn3+uXr16ZWiuPVfZDltv3bp1mvOQtWnTJs2gQ1Z8/nz//ffasWOHFi9ebJfJ70jKoZwpv9Tv3LnTCNxaLJY07228vLwcZid5msKFCzstRJLyB5yGDRs6bc/ZvcbNmzdNQ6BbtWrlUh9t/623bduW7mBUTsuKz+asPrez67ntenY+H6vVqmHDhpmKoZQtWzbV7Hzb7PNcuXJp7ty56t69u90P98lTKNlOURIZGZmh4fe21/M5c+Y4LCKVrFKlSpo/f77GjBmjHj16uBWsBXIKgUUA2aJmzZouVXu1/YUxeTL19PL19XU4EX9KtlXjUlZR9gSlSpVKc8J725uO+++/3+m+tl/aU1ZyvHDhgi5fvmysly9f3qU+VqhQwdQH24qvtxPbm9yUfxtnbG+IXfkinF3nTm+bthlaztpMOS+Rq226W9EzMjJS77zzjimQUapUKU2ePDnVv3fK4cofffRRhidAz4o2s8LZs2c1fvx4SUnXhk8++cSl6t2pyYrXZsr+vPXWW06DGmXKlFH//v2N9QMHDmjv3r0u9yXZuHHjTENtfX19NXHixFQzAl966SXt27dPv/zyixYuXJhmdmrdunVNmVeHDh3S33//7XY/paSsm+S/U2RkpNq1a6euXbtq7ty5OnHiRLrazCxnzpwxZeC4Mm1J3rx5nVa7z8rPn4IFC+qhhx5ymq0YFxenAwcOmDLpJPvrXHLAXkp6Xboyfcrjjz+e5j457YEHHnD6eMrgRkbuNfbv32+633L139r29ZP873U7yorP5qw+d3bfa6QlLi5Offv21aJFi4xt+fPn19SpU1OtEN+9e3f9/fff+vnnn7Vo0SLVqlXL6TlatWplmtN3zZo1unjxolv9TNakSRNj+dKlS3rxxRf1/vvva9GiRXbVrIHbEXMsAsgWrgT4JPsb1UuXLqW7umX+/Pld+uU0vTdE2cXdwEVaQUhnAYaUw5X69u2rvn37unV+yX7o2O0iZVEEV9num1Z14tTYVpF159y2mV8pz50Vzyd37tzG/FrpbdOdwOKVK1fUrVs3U/GDEiVK6LvvvnP6hX7q1KnGcOVGjRrpxRdfdPmc2dlmZrNarRo0aJAxBLp3794uV+lMTVa8jvz9/Y3h0BaLxaU5E1988UWNGjXKyBbbsmWLHn74YZf6Ehsbq2HDhhnFtaT/BRXTmqctd+7cbn0Ovf7666aMyM2bNzsclpeW8uXL691339X06dMlJf3bbt68WZs3b5aUlBH2xBNPqH79+qpfv36qX6azgm1QUXK9Emz58uVTHR6eXZ8/4eHhOnz4sM6ePauzZ8/q3LlzOnXqlE6ePOnSj4u2z93V512mTBlTBVxPlJ33GikrGqc3ozPl6/B2kZP3Gll1X5DZbToTGRmpXr16GddCKWl+wm+//VaVKlVyemzevHmdTl2QUseOHU1FYbZs2ZKuecQbNGig5s2bG23FxcVp7dq1xpQcgYGBxvW8Xr16pntC4HZAYBFAtnD1C0/KSZ/TOzm15N48L57M3ZvHjGQmZeTvnRntbNmyJVPmTerSpUu6isAkD7WU/jc5vStsCxLYtuEO2+qSUVFRslqtLv1b2vYz5bnT+3yctVmgQAHjcVfbTExMNM355urf6OjRo3r33XdNWUxly5bV7Nmznc6rePDgQX377bdGfz/++GOXzudMVrSZFebOnWsEbmrWrGmafy69suJ9ERAQYAQW7733XpeG7vr5+alatWpGxpjtMGVnwsLC1LNnT1Ml8Tx58mjixIkZrtzsSLFixVS2bFljSG7KIIo7PvjgAxUrVkwTJkywK24QHBys5cuXa/ny5fL19dWTTz6pt99+O8NFz1yRXFAnWVpBpmTOquhm9efP+vXrNXv2bO3atcvpj4g+Pj5Oh2WGhoYay64+b4vFonz58nl0YDE77zUyUqjDlitVxh35+eeftWLFigyfv1+/fm4FqZJlxWdzVp/b2fXc9n2d1c/nwoUL6tatm/Ejn5RUMGjGjBl68MEHXT63q6pXry5fX1/jR4eMXM/Hjh2r+++/XzNmzLC7FiT/0LFgwQLlyZNHjRo10nvvvZfu5AoguxFYBOBRUs5FdacEBzMiIzfv7kr5Zap27drp+lXcWdDHmeDgYNMv0On1wgsvpOs42wy4lF+cnQkJCTGW0zu3me25ExISdP36dZcqDTs7t+2wP3eej23F3pTzjRUvXlwXLlxwq83Q0FDTF/mUbTqybt069enTxxSQrFKlimbMmOH0+NjYWA0aNMh4LQ8aNCjNYg1pyYo2s8KZM2f05ZdfSkoKEowePdqt+a5SkxXvi0KFCunSpUvGsqts3xOuBBVOnTqlbt26mSbdL1iwoKZNm5bmMLiMKFKkiBFYzEjAzGKx6LXXXlOrVq20Zs0arV27Vlu2bLGrrhwXF6f169dr/fr1DqszZ7b0ThviLFs5qz5/4uLiNGTIEP38888O9/f391f58uVVrVo1PfLII6pfv77ToctZ8dw9QU7ea6SsGO2q9F6Hz549myn3Gu+88066jsuKz2ZXZcX1PL1t2u7ryvPZt2+funfvbvo7lC5dWt9++63LI6Pc5ePjo4IFCxrPPyPXc19fX/Xo0UMdO3bUb7/9pj///FM7duywy/KMiYnRr7/+qt9//11Dhw69LeZoBQgsAsgWKb8EpSblr9jZObQL9n/voUOHpjms5E5iO6wtOjpaV69edSlQaFssIK15p1w5d3KbrgQWbefmSXnu++67z7SfK1mQVqvVCBymbCN5PXkOM0eVPh1JWUwhZZspff/99xo1apQpGPnkk09q4sSJaWYI/fHHH0Ymg7e3t3755RfTMKaUbCvBr1ixwjRvX3I2Sla0mRVmzpxpDIEOCAjQJ5984vKx48aNM2Wd2M4zlxXviwceeECHDx+W5F7RLHeKB/3zzz967733TAHIMmXKaMaMGVn2JTSZ7RdFV+YXTou/v79atmypli1bKj4+Xvv379eOHTu0detW/fPPP6a/y/Tp01W5cmU9//zzGT5valJ+VoSHh7s0dM9ZNlNWff6MHz/eFFQsXbq0WrZsqYcfflgVK1ZUiRIlTNfFtIpI2I6scOe1604m150u5b+1K9f2O0lWfDa7Kiuu57Z9cfW+4MqVK6asvbSez9q1a/Xhhx+arq3VqlXT119/ne4gq6tsp5zJjOt5gQIF9Oqrr+rVV1/VrVu39M8//xjX8wMHDhj3PgkJCfr4449VtWpV1ahRI8PnBbISgUUA2cLViYlTFmvJ6NxgcE/KOesuXbqUrYHF1q1bmyqDZ7eqVavKYrEYmbNHjhxR/fr1nR4TFRVlupFOb9CodOnSKliwoBEEOXLkiEs3kkePHk313NWqVTOWY2JidOrUqTQDKidPnjTduFepUsWuzWXLltmd25kjR44YywUKFFDp0qVT3XfatGmaMGGCadsrr7yiESNGpFl1VjJ/AUhISHArKyV5KFKy5GyUrGgzK9j2MzQ01K1+OiuCkBXvC9vryoULFxQbG+tSRpftsPiUlZltbdmyRd27dzd9cX3ooYc0bdo0l7OKrVarJk6cqGvXrunatWtq3LixqSptahITE00BgJIlS7p0Plf5+PioVq1aqlWrlhE4nT9/vqZMmWL8G82ZMydLA4uBgYGm9RMnTrhUxMTZMMKs+Py5cuWK5s6da6w/9dRTmjJlitPXWloZSbb3Ja4WmAsLC8u0od53Akf/1tk55LNnz57q2bNntp0vpaz4bHZVVlzPbZ/PmTNnFBMTk+YPDbb3BRaLxel7/aefftLgwYNNxV4aNmyoL774wuVAX0REhGbMmGFcz19//XWXMmXDwsJMSQ+ZfT3PlSuX6tatq7p16+qDDz5QcHCwpk+frh9++EFS0ufQ3Llz9cUXX2TqeYHMRlVoANli3759dsOcHdm6dauxXLJkSadfHJH5KlSoYMrG2L59u0vHhYaGauDAgZo0aZKWLFli+lJ9O8mbN6+qVq1qrNu+HlOzfft249dlb29v1alTJ93nt62K68q5jx49ahoSlHL4XoUKFUxZj9u2bUuzzS1bthjLhQoVsrvZt31+ISEh+vfff9Ns0/a5OKv8+80339gFFXv37q1Ro0a5FFRE1siK98UTTzxhLMfExJhed6mJiIgwzauV2nxaO3fu1HvvvWcKKj777LOaN2+eW1MVWCwWrVixQosWLdKff/6pVatWuXTc/v37TUGk9BRuuXnzpv766y/NmTNHI0aMML3PUypYsKB69OhhKijgasArve677z63ry3x8fHat29fqo9nxefP5s2bTRmIAwcOTDOAbRvwkOyLutWsWdNYDg4Odmmuz/RWBr9TPfzww6YMPVf/rY8fP67Bgwdr6tSp+umnn0zzXd5OsuKz2VVZcT1/5JFHjM/ohIQE7dixI802bc9btWrVVOdf/eWXXzRo0CBTULF9+/aaOnWqW9mDuXPn1qxZs7RkyRKtX79ef/75p0vHbdmyxfT9JT3X8/DwcK1fv14zZ87UsGHDnE6nULx4cQ0fPtw0T3hWX8+BzEBgEUC2CAkJ0fr1653uEx4ebqrY+eyzz2Z1tzJdds5RlBW8vLzUoEEDY3358uUuTbI+b948LV++XFOnTtWQIUN0/fr1rOxmlmrSpImxvGLFCmNoaWp+/PFHY/mJJ57I0PD9xo0bG8vr169Ps7qp7bnLly9v90XDYrHoueeeM9YXLVrktGhBYmKiFi1aZKw3adLE7jVdsWJF0zCoBQsWOO3jpUuXtGHDBmM9tSyqtWvXmn6R9/b21pgxY9StWzen7afUunVrHTt2zOX/bL8g9ejRw/RYchA0K9rMCmPHjnWrn7bmzp2b6mNS5r8vqlataspQmjFjRpo/Pi1YsMD4Qubr66unn37abp8LFy7o/fffN2X2tGvXTpMnT07XnL22/5Zbtmxx6UeT5CrOUlLQL61sIEfi4uL07rvvavTo0frxxx+1bt26NI954IEHjGVfX1+3z+mOlNeWZcuWpTnU948//nAaCMqKzx/beeEk1+bkmzdvnmk95dDounXrml7PthmRqUnrOumu2/1eo3DhwqaM/O+//96luSu/+eYbLV26VJMmTdLgwYOdfp55sqz4bHZHZl/P8+fPb/phM63Xe1RUlKl4TtOmTR3ud+DAAQ0cOND0t+nVq5dGjBiR5lQYKfn6+pp+FFi1alWa16z4+HijaJuUdI21Dcq66tKlS+rWrZs+++wzLVy40FRILDXZeT0HMgOBRQDZxlnWRUJCgoYOHWp8IfD29s6UaqbZzXai+ZSTMd8uunTpYiyHhYWpf//+piGWKR04cMA0H9tDDz2k6tWrZ2kfs1KbNm2MITxXr17VyJEjU9138eLF2rRpk7Ge0dds48aNjS++sbGxGjhwYKrzfW3atEmLFy821jt27Ohwvw4dOhhfQI4ePaqpU6emev6JEycaGYheXl6ptvnaa68ZywsWLEg14yEuLk4DBgwwvjCWKlXK4Q8GwcHBGjJkiLFusVj06aef5uiweJhlxfuic+fOxvLff/+tb775JtU2U752mzVrZjevVkJCgvr27WsKRrVr104jR45MdxGbl19+2ViOj4/XsGHDnM7BN2vWLNOPaG+88YZLcw+mlC9fPlNmzNdff+00KGe1WvXHH38Y6+n58uuuN99808j+u3r1qoYNG5ZqcCQ4OFijR49Os83M/vxJWWnW9nXpyNdff236IUSyL9aSO3du02t3wYIFTn84Xbp0qf766y+n53XXnXavcerUKf33v/91+uPCunXrTMGoxo0bp7tYmifIis9mV2XF9dz2vmD9+vXGlCmOjBgxwrie+fv7m66zyaKiotSnTx/T++/DDz9U9+7dU203LbbnCQsLS/OaNHbsWGMuYEl699130xXQrVixomkKmC+//NLp+/bWrVum61B2XM+BjCKwCCDbBAcHq23btnZDPs6dO6du3brp999/N7Z1797dbg6n24Htl5i9e/felnMqVa9eXR06dDDW169fr44dO9oNYYuNjdX333+vN99807hB8vb21qBBg7K1v5mtSJEieuutt4z1ZcuWqU+fPqbqhTdv3tT06dM1fPhwY1uDBg1M2TYpVapUyfgvtS8Ffn5++vDDD431rVu36u233zZNmh4fH69FixapZ8+extCgihUrmoZB2qpcubJatWplrE+ZMkWjR482FR2IiIjQJ598Ysq0ateunekXc1vt2rUzshbj4+P1/vvva/HixaaAy7lz5/TWW2+ZhkT169fP4TDECRMmmApsvPvuu3rxxRcdnhs5IyveFy+//LIpy2X8+PEaNmyYKVM3MTFRq1atUqdOnYysmnz58jmserxy5UqjsJCUVFXYti/p8eijj5qybDdv3qyuXbvqxIkTpv1CQkI0bNgwffrpp8a2atWqmf5m7rINvJw/f15vvfWW9u/fb7dfcHCwevfurd27dxvbbANftm3YXocGDhyY7r5JSQUcbL/k//rrr3rvvffs5lTevHmz2rdvb5c96Ehmf/488cQTpkDAiBEjHGZ/7tu3Tz169ND48ePtHrOtTJ/snXfeMTJurVarevbsqVmzZpmCBTExMZoyZYo++uijNJ+3u2zvNbZt2+Y0+OqpGjdubMo6Xrhwod599127YZ+RkZGaNm2a/vOf/xiBR39/f9Nn5e0oKz6bXX2PZ8X1vFGjRqaM/KFDh+rrr782vSeuXr2q3r17mwLE3bt3d1iobvbs2aY5WZs3b653333X4bld9eKLL+rhhx821pcuXaoPPvhAly5dMu139uxZ9ejRw5S93KhRI7Vo0SJd57VYLOratauxfuDAAb333nt2nyOSdPr0ab399tvGc/fy8rotEy1w92HCIgDZokGDBtq1a5cuXLigN954Q6VKlVKZMmV048YNBQUFmX6lbtq0aYZ+kcxJFStWNJYvXryoZs2aqUKFCoqIiNCsWbNSnUPG0wwaNEjnzp0zfqXeu3ev2rZtqxIlSigwMFCRkZE6ffq06QuXxWLRRx99pFq1auVUtzNNt27ddODAAeMX419++UWrV69WpUqV5Ofnp3///dd081+mTBlTQCEjWrVqpT179mjhwoWSkoKLjRs3VqVKlZQ3b16dOHHClLlUsGBBTZw40ekchEOGDFFQUJAOHjwoKamww6JFi4yh08eOHTMNhXrwwQedBh38/Pw0adIkdezYUWFhYYqOjtZHH32k8ePHq3z58sZceLbZS6+99pqaNWtm19alS5dMXzKkpNeb7U24Kz799NPbOnvldpDZ7wuLxaIvv/xSXbt2NbJCFi5cqKVLl+r+++9XoUKFdPLkSVOmu6+vr7744guHE+h//fXXpvXIyEi3i+V06dLFNLeVJI0aNUrnzp0z3j/bt29Xs2bNVK5cORUrVkxhYWF2r/cKFSpoxowZGRrC1rBhQ7Vu3drI/Dl06JBeeeUVFS9eXPfee6+8vb0VEhKikydPms79+uuvO/2RIzO9/fbbOnLkiFavXi1J2rBhgzZu3KiKFSuqQIECOnfunPGlPU+ePHr00UfTzBrMzM+fsmXLqm3btsb1NCwsTO+9956KFi2qMmXKKDExURcvXjQFPX18fFSoUCFjm6OAqJ+fn/HaDQ4OVlxcnD799FNNnTpVFStWlNVq1dGjR43rap06dRQUFGT6ASUjbO81Dh48qKZNmyowMFC3bt0yDVv1ZBaLRZ999pnefPNNHTp0SJK0ceNGbdy4UYGBgSpRooTCwsJ09uxZ03ypvr6++vzzz2/LH59TyuzPZndkxX3OuHHj9Nprr+ncuXOKj4/X+PHjNWPGDFWoUEGxsbE6duyYKQOxYcOGDj/rY2Ji7KYkuHDhgtv3Bf369TMVmvHy8tKkSZPUoUMH4weQ3377TatXr1aFChWM933KgF+dOnUc/ujgjvbt22vt2rXGCI8tW7aoWbNmKlu2rEqVKiUpqThZygJX/fr1SzWQDHgSAosAskXVqlXVqVMn9e3bV2FhYbp48aIuXrxo2sfX11ddunTRBx98kO5hazntueeeU9WqVY0vyVevXjW+FB89ejRL51fLTH5+fvr66681adIkzZ492/jF+fLly6aqrMmKFi2q4cOHm+YMup35+Pho8uTJ+vjjj7V06VJZrVbFxcUZN/+2atasqYkTJzr8xT29Pv74YxUqVEgzZ85UXFycEhMT7QoKSEnzKk6cODHNapJ58+bVd999p/79+xvZOjExMdq7d6/dvg0bNtS4cePSnI+uYsWKmjt3rvr06WMM0QoNDbUbrunt7a23335bH3zwgcN21q5daze01NWJ/G3ZfvFE1siK90XhwoU1d+5cffLJJ/rpp59ktVoVHx/vsChQqVKl9Nlnn6l27dp2jx07dsyuiIaj90xaXnjhBbttefPm1dy5czVq1CgtX77c+CHs5MmTDgt3tGjRQoMHD1ahQoXcPn9Ko0aNUoECBTR37lwjQzk4ONjh/Kv+/v7q1q1bllYeT8nHx0cTJ07U559/rlmzZikxMVFWq9Vuns4CBQro888/186dO9MMLGb2589HH32kiIgIU/GdkJAQhwHD8uXLa9SoUfrzzz+NudVsM0FtVahQQYsWLVL37t2NwFhkZKQpa1ZKKmwxceLETM3Cbtu2rb7//nsjaHvhwgVj/s/z58+rTJkymXaurFSgQAH98MMPGj16tJYsWWK8xs+ePWuqQpzs3nvv1ejRo9NVQMMTZcVns6uy4npevHhxzZs3Tx9++KHxPoiIiLB7T0hJGevDhw93eL+/bds2uyD8nj173Hh2SRxdC4sXL67Fixdr8ODBxhQGiYmJDucW9vb21uuvv67evXuna0oLW15eXpo2bZqGDh1q+jH13LlzplEpyQoVKqQ+ffqkOhoF8DQEFgFkm/r162vlypWaP3++1q1bpwsXLshisahUqVKqX7++2rZtayoKcTvy9fXVvHnzNHXqVK1bt07BwcGKj49X0aJFb7th0d7e3urdu7dee+01/fTTT9q6datOnjxp3OwVLlxYVapUUcOGDfXCCy+4VZ3vduDn56dPPvlE7dq10/Lly7V9+3YFBwcrNjZWhQsX1kMPPaTmzZurcePGmR4It1gs6t27t1q0aKElS5Zo8+bNunz5smJiYlSgQAFVqVJFTZs2VYsWLdKscJosX758mjZtmrZt26YVK1Zo9+7dunr1qhISElSkSBHVrFlTrVq10pNPPulyPytVqqSffvpJK1eu1OrVq3XkyBFdu3ZNvr6+KlOmjB577DG9+uqrTn9td6WiKjxHVrwv8uXLp7Fjx6pz585asWKFtm7dqsuXLysyMlL58+dX1apV1bhxY7300kumueVsZfXrKCAgQGPGjNFbb72lJUuWaOfOnTp//rzRx+LFi6tu3bp64YUXMnWOWW9vbw0cOFDt2rXTzz//rN27d+vUqVMKDw+XxWJRkSJFFBgYqKefflrNmjVzqThJsswqAGKxWNSvXz+1bNlSCxYs0LZt23ThwgV5e3urdOnSatiwoV5//XUVL17cpaIFUuZ+/iRnF7Zp00bLly/X3r17jWtfQECASpUqpcqVK+vpp5/Ws88+K29vbyUmJhqBxaCgIO3fv18PPfSQXdslSpTQkiVL9Pvvv2vFihU6ePCgwsLClD9/fj3wwANq2bKlXnrpJbcLTaSlQIECWrRokaZMmaLNmzcbP2AWK1ZMV69evW0Ci1LSnJUjR45U165d9fPPP2v79u06e/aswsLC5OPjoyJFiqhatWp67rnn1LhxY5c/824XWfHZ7KqsuJ6XLFlSP/zwg9asWaNVq1Zp//79unr1qry8vFS8eHE98sgjatu2rWlIckpZfT0vXLiwpk+frn379umnn37S33//rUuXLikmJkYFCxZUyZIlVb9+fTVv3jzNH27dkTt3bo0bN05vvPGGVq5cqT179ujMmTOKjIyUj4+P7rnnHj3wwAPG9fx2GeUESJLFmlYJPgAAAAB3hFWrVql3797q1KmTqWgSAABAetyeYw0BAAAAuC15GhJ3shsBAABSQ2ARAAAAuAskJCQYcw3Wr18/h3sDAADuBAQWAQAAgDtcRESE+vfvr0OHDql+/fqmaqkAAADpRWARAAAAuMMlJiZqx44dqlOnjr744ouc7g4AALhDULwFAAAAuAucP39epUuXzrSK0AAAAAQWAQAAAAAAALiNodAAAAAAAAAA3EZgEQAAAAAAAIDbCCwCAAAAAAAAcJtPTncA2efvv/82rXt5EVcGAAAAAAC4GyUmJprWH3nkEbfbILB4F0v5AgIAAAAAAABcRcoaAAAAAAAAALeRsXgXu1OGQttmXt4pzwmAe7gOAOA6AIDrAACuA+7JjJGsBBbvIl5eXsaLxsvLSzVr1szhHmVcfHy89u3bZ6w/+OCD8vHhZQ3cTbgOAOA6AIDrAACuA+7bs2ePKU6UHoRvAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAAAAAAAOA2AosAAAAAAAAA3EZgEQAAAAAAAIDbCCwCAAAAAAAAcBuBRQAAAAAAAABuI7AIAAAAAAAAwG0EFgEAAAAAAAC4jcAiAAAAAAAAALcRWAQAAAAAAADgNgKLAAAAAAAAANzmk9MdAAAAAICcZrValZiYmNPdQDolJCTYrVsslhzqDYCccKdfB7y8vDzy+RBYBAAAAHDXsVqtio6OVnh4uCIjIxUfH5/TXUIGWK1W0/qJEyc88gs4gKxzN1wHfHx8lDdvXuXPn1/+/v4e8fwILAIAAAC4q8TGxurs2bOKi4vL6a4gE/n48PUWuNvd6deB+Ph4hYWFKSwsTL6+vgoMDJSfn1+O9ok5FgEAAADcNQgq3pksFot8fHyM/zwhiwdA9rrbrgNxcXE6e/asYmNjc7Qfd3YoFwAAAAD+n9VqtQsqBgQEGEPKvL29c7B3yIjkoe3JPGWIIIDsc6dfBxISEowpPKKioiT9L7hYvnz5HHuuBBYBAAAA3BWio6NNQcXixYurcOHCOdgjZBar1WoKDHt7e99RAQUAabvTrwPe3t7y8/NTwYIFFRoaquDgYElJwcXo6GgFBATkSL8YCg0AAADgrhAeHm4sBwQEEFQEANyWChcubAokRkRE5FhfCCwCAAAAuCtERkYay/nz58/BngAAkDG2n2MEFgEAAAAgC1mtVsXHxxvr/v7+OdgbAAAyxvZzLD4+XlarNUf6QWARAAAAwB0vMTHRtE6hFgDA7Szl51jKz7nsQmARAAAAAAAAgNsILAIAAAAAAABwG4FFAAAAAAAAAG4jsAgAAAAAAADAbQQWAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAAAAAAmSYuLi6nuwAgm/jkdAcAAAAAAHDXyZMntXjxYu3atUvnzp1TZGSk/P39VaJECT322GNq27atKlas6FJbMTExWrx4sdasWaOgoCBFRUWpUKFCKl++vJo1a6aXXnpJfn5+t3Vb2SExMVELFy7U1q1bNXnyZJeOmThxor766isVK1ZMmzZtyuIeAshsBBYBAAAAALeNuLg4jRs3TnPnzpXVajU9Fh4ervDwcAUFBWn+/Pnq0KGDBg4c6DT4duzYMb3//vs6d+6cafuVK1d05coVbdu2TXPmzNH48eNVqVIlp33z1LayQ3BwsN577z0dOnRIderUcfm49evXS5KefvrpLOoZgKxEYBEAAAAAcNvo37+/Vq1aZaxXqlRJdevWVd68eXX9+nXt2LFDx48fl9Vq1ffff6+rV69qwoQJ8vKynwns3Llz6tSpk8LCwiRJRYoUUePGjVWsWDGdO3dOa9asUXh4uI4fP66uXbtq4cKFKl26tMN+eWpb2eX06dM6dOiQW8cEBwfryJEjkggsArcrAosAAAAAgNvCzz//bAQVfX19NWrUKL300kuyWq2Kjo429vv11181YsQIJSQkaPXq1Vq6dKleeeUVu/YGDRpkBO/q16+vCRMmKG/evMbjffr0Uc+ePfX3338rJCREw4cP17fffuuwb57alidLzlbMlSuXnnjiiRzuDYD0oHgLAAAAAOC2YBs869evn1566SWH+73yyiv64IMPHB6XbPPmzdq1a5ck6Z577tHEiRNNwbvk7V9//bWKFi0qSdq0aZN2795927Tl6TZs2CBJeuyxx5QnT56c7QyAdCGwCAAAAADweGfOnFFQUJAkKW/evGrfvr3T/V977TX5+vpKShqme/HiRdPjS5YsMZY7d+6sgIAAh+3ky5dPXbt2NdaXL19ut4+ntuXJbt26pe3bt0tiGDRwOyOwCAA5zGq16ueDl/XJ2iDtPHs9p7sDAADgkY4ePWosV6lSJc1qyAEBASpSpIixfuXKFWM5MTFRW7ZsMdbTCmzZPr527VpT0RhPbSu9du3apY8++khNmzZVjRo1VL16dTVo0EDvvfeeVq1apcTERNP+kydPVqVKldSpUydj286dO1WpUiVVqlRJHTt2dHiebdu2KSYmxu552NqwYYP69eun5557TjVq1FCNGjX01FNP6a233tLs2bN148aNDD9fABnDHIsAkMM++v2oxvx5XJI0fPUx/fxmHb1QtXgO9woAAMCzPPvss9q4caOuXLkii8WS5v6xsbEKDQ011m0z/86cOaPw8HBje1pVle+//34VLFhQYWFhCgsL08mTJ1W+fHmPbstdISEhGjhwoDZv3mz3WHBwsIKDg7Vu3TrNnj1bU6ZMUfHiGbtfXbdunSSpYsWKdoVnwsPD1atXL23dutXuuMuXL+vy5cvatGmTpkyZov/+979q1qxZhvoCIP0ILAJADkpMtGrK5tP/W7dK07aeJrAIAACQgre3t0qUKKESJUq4tP+GDRt069YtSVKePHlUtmxZ47FTp04Zy2XKlHGpvVKlShkFVU6fPm0E8Dy1LXdcv35dHTp00NmzZ41ttWvXVq1ateTr66ugoCD9+eefSkhI0P79+9WpUyctXbpUefPmVb169eTv76+zZ89qwYIFkqSyZcsaQ9VLlizp8JwbN26U5DhbsU+fPkZQsUCBAmrYsKECAwMlSRcuXNDatWt148YNRUZGqk+fPipdurRq1Kjh9vMGkHEEFgEgByVYrYq4FW/aturolVT2BgAA2S0uIVEj1wRp1ZFgRccm5HR3PIa/n7eaVSmuYc9VlK+3582wFRsbq4kTJxrrTz31lHLnzm2sh4SEGMupBb5SKl68uA4fPmx3vKe25Y4RI0YYQcXChQtr0qRJql27tmmfY8eO6c0339S1a9d0+vRpTZ06VQMGDFCtWrVUq1Yt7dixwwgslixZ0jT/Y0pHjhzR5cuXJdkHFvfu3au//vpLUlJG5g8//KDChQub9hk8eLC6deumXbt2KTExUdOmTdP06dPT9dwBZAyBRQDIQZkwDQ4AAMhCH/8RpNF//pvT3fBIey4kDdn9b9PKOdwTe6NGjdLx40lTzXh7e6tHjx6mxyMiIoxlV6sR2wYmbY/31LZcdfr0af3++++Skv5W06ZN08MPP2y3X6VKlfTZZ58ZAcNFixbpww8/NArkuGP9+vWSpIIFC6pmzZqmx/bu3Wssv/rqq3ZBRSmpeM+YMWP07LPPSpIOHz6shIQEeXt7u90XABlDYBEActDxq1E53QUAAOAEhdWc23HG8/4+06ZN06JFi4z19957TxUqVDDtExsbayzbBuacsd3P9nhPbctVa9asMZYbNWrkMKiY7Mknn1SdOnXk7e2twMBA3bhxw1Qgx1UbNmyQJDVo0EBeXuaMV9vg4D///KM33njDYRtly5bVzz//rBIlSqhgwYJu9wFA5iCwCAA5qO/KQzndBQAA4ESdwEJa++/VnO6Gx3rs3kI53QWD1WrVxIkTNXfuXGNbo0aN7LIVJdkFs9xlWzzGU9ty1aZNm4zlRo0apbn/vHnz3D6HrWvXrunAgQOSHM+vWKdOHWN59erV6tSpk1555RXVq1fPLnuxcmXPy5YF7jYEFgEgB/1+LH3z4AAAgOwxvHFFWSxijsUUbOdY9ASxsbEaOnSoVq1aZWyrX7++JkyY4DDY5u/vbywnF3hJy82bN43lXLlyeXxbrrp06ZKxXLFi1v97btiwQYmJifLx8VH9+vXtHq9UqZJefvllLVmyRJK0Y8cO7dixQxaLRZUrV1bdunVVv359Pfroo/Lz88vy/gJwjsAiAAAAAKTC19tL/21a2SPnEUSSa9eu6f3339eePXuMbU2bNtW4ceNSDTzZBvBiYmJcOo9tAC9//vwe35arrl79X0ZugQIF3D7eXcnDoGvVqpVqf0eMGKEiRYpo1qxZxvBuq9WqI0eO6MiRI5o1a5YCAgL0zDPPqEuXLqpSpUqW9xuAY55XvgsAAAAAABccPnxYL7/8simo2L59e40fP95pNlvx4sWN5StXrrh0ruDgYGO5aNGiHt+Wq+Lj490+Jr1iY2O1ZcsWSY6HQSfz9fVV7969tXHjRg0fPlwNGjSwK2YTFRWlFStWqHXr1vr222+zstsAnCBjEQAAAABw2/nzzz/Vp08fI7PP29tbffv2Vbt27dKcq9B2yO+FCxdcOp/tfvfff7/Ht+WqAgUKKCQkaXqeGzduqGzZsm634apdu3YpKiqpeKGzwGKywoULq0OHDurQoYNiY2O1f/9+7dixQ5s2bdLevXtltVqVmJiocePGqWbNmnrkkUeyrO8AHCNjEQAAAABwW1m6dKl69OhhBBXz5s2rCRMmqF27di4dX7x4caOScFhYmE6fPu10/5MnT+rGjRuSkgJxgYGBHt+Wq2wDicePH09z/59++klDhgzR9OnTdfToUbfOtX79eklSYGCgypcv79axfn5+evTRR/X+++9rwYIF+uWXX1SyZEnj8Z9//tmt9gBkDgKLAAAAAIDbRnJgKzExUZJUqlQp/fDDD6pXr55b7dhWQF63bp3TfZMDYpL05JNP2hWE8dS2XGGb5ffXX3+luf/y5cu1ZMkSffnllzpz5oyx3ZVzJ8+v+NRTTzl83Gq1asiQIXrllVf06KOPmgrLpPTAAw+oc+fOxrqzfQFkHQKLAAAAAIDbwqFDhzR06FBZrVZJUvny5bVgwYJ0VTNu0aKFsTxr1iyFh4c73C88PFyzZ8821l9++eXbpi1XtGzZ0ggK/vHHHwoKCkp136NHj2rnzp2SkgrN2AZzbYefJyTYV1A/fvy4zp07J0lq2LChw/YtFotOnjyp/fv3KyIiIs0sxGvXrhnLJUqUcLovgKxBYBEAAAAA4PHi4+P14YcfGlWCixcvrtmzZ5sKnrijbt26qlu3riQpJCRE7777rilQJSUFrrp162bMQVi7dm098cQTt01brqhQoYKef/55SVJcXJy6devmcIjzmTNn1KtXLyNT9PXXX1fevHmNx22XL1++bBdcTM6uDAgIUO3atVPtj+1w9ilTpmj16tUO9/vnn380f/58Yz35OQDIXhRvAQAAAAB4vJ9//tk052CNGjX0yy+/SEoaQhsXF2c85uvrazc0t1mzZqY5+SRp5MiReuWVVxQWFqZ//vlHTZs2VZMmTVS6dGldvHhRv//+u5ExWLBgQY0ZMybV/nlqW64YOXKkjh49qpMnT+rChQtq3bq16tevr+rVq8vb21vHjh3TunXrjKDuQw89pB49epjaKF26tCwWi6xWqy5cuKDu3bvrkUceUZ48edSxY0djGHS9evWcVuxu0aKFlixZol27dikuLk7/+c9/VK1aNdWoUUMlSpRQTEyMDh06pC1bthjBy+effz7dgVUAGWOxJueQ4463Z88e49clLy8v1axZM4d7lHHx8fHat2+fsV6jRg35+BAvx+3Dq+9Kh9tPDn5G9xX2z+be3J64DgDgOgBXJCQkmIZ4VqxYUd7e3jnYI7jr1Vdf1Z49e9J9/Ny5c/XYY4/ZbT969Kh69OhhDNN1pEyZMpo6daoqV67s9Bye2pYrwsLC1K9fvzTnWWzYsKE+++wz5c+f3+6xvn37auVK8/1t3rx5tW7dOtWtW1cJCQkaPXq02rRp4/QcERER+uCDD7R582an+1ksFr388ssaNmyY02Al7g5Wq1XR0dHGur+/f7rmHb1dZMbnWmbEibjjAoAcciQ4ItXHyo3+Ux8+VU6fv1gtG3sEAADguY4dO5Yl7VauXFm//vqrFi9erD/++EPHjx/XjRs3FBAQoAoVKqhx48Zq27at8uTJc9u25YqCBQtqxowZ2rZtm1auXKm///5bV65cUXx8vIoUKaKaNWuqTZs2TovkjB49Wvfdd59++eUXXbp0SVarVQULFtS6deuUkJAgi8WSauEWW/ny5dPMmTO1adMm/frrrzpw4IAuXbqkmzdvKn/+/CpRooTq1q2rFi1aqEqVKpny/AGkDxmLdxEyFgHPMmjVEX267rjTfc4NfValC2TOzeKdiusAAK4DcAUZi3e2uy1TCYC9u+064CkZixRvAYAc8uvh4DT3WX0sJBt6AgAAAACA+wgsAoAHi08kqRwAAAAA4JkILAJADmEiCgAAAADA7YzAIgDkkFOh0Wnuc+fOCAIAAAAAuN0RWASAHBIdl5DTXQAAAAAAIN0ILAIAAAAAAABwG4FFAPBgFsZCAwAAAAA8FIFFAAAAAAAAAG4jsAgAAAAAAADAbQQWAcCDWagLDQAAAADwUAQWAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAPRlVoAAAAAICnIrAIAAAAAAAAwG0EFgHAg5GwCAAAAADwVAQWAQAAAAAAALiNwCIAAAAAAAAAtxFYBAAPZqF6CwAAAADAQxFYBAAAAAAAAOA2AosAAAAAAAAA3EZgEQA8GAOhAQAAAACeisAiAAAAAAAAALf55HQHPM3EiRP11VdfqXTp0lq3bp1bx27btk1Lly7V3r17deXKFfn4+KhEiRKqWbOmWrVqpUcffTSLeg0AAAAAAHD3iYuLk6+vb053465FYNHG/v37NWPGDLePi4yM1IABA7R27VrT9lu3bunEiRM6ceKElixZohYtWmjYsGHKly9fZnUZwB2OotAAAAD/U6lSpQy30apVK40dO9ZY79ixo3bu3ClJmjt3rh577LEMnwPpExsbq59//ll//PGHjhw5orCwMOXOnVvlypVTgwYN1K5dOxUtWjTNdk6cOKFmzZq5de4lS5bowQcfTG/X7yrLli3ToEGDJNm/nyRp4MCBWr58uSRpzJgxat26dZb15bffftO8efP0ww8/2D12/vx5Pfvss5KUruQxuIbA4v87d+6cunfvrri4OLeOu3Xrlrp06aJ9+/YZ2wICAlSxYkUlJCQoKChIN2/elCStWLFCly5d0qxZs+Tn55ep/QcAAAAA4HZ18OBB9erVS+fPnzdtj4uL0759+7Rv3z59++236t27tzp37pxmW7izRUVFqUePHtq6datKly6d0925qxFYlBQUFKS33npLISEhbh/76aefGkFFi8Winj17qmvXrsqdO7ckKTw8XJMnT9bcuXMlSbt27dIXX3xhRPcBAAAAAK7p37+/w+1Wq9WUJOLr6yvL/w/92LRpk7Zt22Y8VqpUqaztJNy2Z88ede7cWbdu3ZKU9N26Xr16qlGjhry8vLR3715t3rxZMTExGj16tC5cuKDBgwen2t6hQ4eM5datW+uBBx5Isw8lS5bM+BNBtrl+/bq2bt2a092ACCzq559/1vDhwxUTE+P2scePH9eCBQuM9T59+ujtt9827ZM/f34NGTJE+fLl09SpUyVJ33//vTp27KgyZcpkrPMA7ngMhQYAAPifrl27OtxutVoVHR1trPv7+8tisWjnzp2aMGGCsb1WrVp67733srqbcENkZKR69uxpBBWLFy+uyZMnq0aNGqb99u3bp/fff18hISGaM2eOqlevrhYtWjhs0zaw+O677+q+++7Lsv7D3tixY+2GR+eEMmXK6NixYzndjTveXVsVOjg4WAMGDFD//v3TFVSUpHnz5ikhIUGSVK5cuVQ/5CSpR48eqlixoqSkVO758+en65wAAAAAgLSdPXtWPXv2VGxsrCSpWLFimjRpEkUeslClSpVUqVIlNWrUyOVj5s+fb4we9Pf31+zZs+2CipJUo0YNTZ8+Xd7e3pKkzz77zJh2zFZiYqIOHz4sKSnR5957703PUwHgorsysDht2jQ1bdpUP/30k7GtXLly6tatm8ttJCYmavXq1cZ669at5eWV+p/Ty8tLbdu2NdZtjwWA1FhEyiIAAIC7oqKi9N577yksLExS0tDoyZMnu1T4A9nL9rvxm2++qfLly6e6b/Xq1dWkSRNJUkhIiF0BVUk6deqUkb1arVo1Y0g8gKxxVw6FnjlzpilN/pVXXtHAgQP1xx9/uNzG0aNHdf36dWP9ySefTPOYevXqGcsXL17U0aNHVblyZZfPCQAAAABI2+DBg3X8+HFjfejQoXr44YddPv6PP/7Qzz//rP379+v69esqWLCg7rvvPjVr1kytWrVSnjx50mzj4MGD+u233/T333/rwoULunHjhiwWi/Lly6f7779fjz/+uNq2bZtqsHPy5MmaMmWKpP9VLN63b58WL16snTt36sqVK/L29laZMmXUoEEDvf766ypevHia/bpy5Yq+//57bdy4UWfOnFFCQoJKlCih+vXrq1OnTrr33ns1bNgwLVy4UFLWVsqOi4vTkSNHjPXnn38+zWPq1aunVatWSZI2btyo5s2bmx63HQZdvXr1TOpp6mz/nb7//ns9+uij2rhxo3788UcdPHhQYWFhyp8/v6pVq6aWLVuqWbNmqSYl2VZbnjhxoho2bKjJkyfr559/Vnh4uIoXL67atWurV69eKlasmOnYy5cva9GiRdq8ebPOnTuniIgI5c+fX/fff79RUbtgwYIuPacNGzZo2bJl2rNnj65fv678+fOrSpUqateunRo3bpzm8e5UhT5y5IiWLl2qHTt26Pz584qLi1OBAgVUuXJlNWnSRC+99JKp+K3t3yjZhQsXjIrxJUuW1K+//irJvarQkZGRWr58uTZs2KBjx44pLCxMefLkUYkSJVSnTh299NJLTquGp/y3a9q0qY4fP66FCxdqy5Ytunz5sqxWq0qUKKF69eqpQ4cOKleunLM/423jrgwsJqtevboGDBigOnXquH3s0aNHjWVfX19VqFAhzWPuv/9+5c6d20jXPnDgAIFFAAAAAMhEc+bMMWXBtW3bVu3atXPp2Bs3bqhTp07asWOHaXtISIhCQkK0a9cuff/99/rqq69SHWIbHh6uAQMGpBrEuHnzpkJCQrRz50598803GjVqlF588UWn/bJarRozZozmzJkjq9Vqeuzo0aM6evSo5s2bp7Fjx6pp06aptrNu3Tr16dPHlGgjSWfOnNGZM2e0ePFiDR061GlfMlNYWJjp+bgybLlEiRLGsqPqz44Ci+fOndP+/fsVGhqqgIAA3XfffapRo4YxrDozjRgxQj/++KNp27Vr1/TXX3/pr7/+0vz58zVt2jQVKlQozbb69OmjNWvWGOtnzpxRSEiIPvroI9N+X3/9taZOnWrMU2l73mvXrmn37t365ptv9NFHH6lVq1apni8mJkYffvih3Wv32rVr2rx5szZv3qxnnnlGDRo0SLPvaYmKitKIESO0YsUKu8euXr1qnG/mzJmaMmWKSzGX9Fq1apU+/vhjI8M5WVxcnMLDwxUUFKT58+erefPmGjlypAICAtJsc+bMmfryyy9NRaUk6eTJkzp58qR+/PFHDRgwQJ06dcrMp5Ij7srAYp06ddS6dWs988wz6U6LPn36tLFcunRp+fik/ae0WCwqVaqUTp48KSnpogAAzsQnWtPeCQAAAJKkXbt2GdljkvTwww+7FSgbOHCgoqKijKrE1atXl6+vr/bt26dNmzbJarXq+PHj+uCDD7Ro0SK7+Rrj4uLUuXNnY44/Pz8/1a9fXxUrVpS/v78iIiJ08OBBbd++XYmJibp586YGDhyoypUrOw2cjB8/3qhsXbNmTdWpU0e5cuXSiRMntHbtWt26dUsxMTHq27evKlWqpPvvv9+ujVWrVqlv375GnYDixYvrueeeU5EiRXThwgWtWbNGYWFhGjp0aLZVSE7PfJe2wbOLFy/aPW4bWLx27Zratm2rffv22e1XqFAhvfXWW+rcuXOmzbs5efJkbd++XZJUsWJFPfXUU8qdO7cOHDigv/76S4mJidqzZ4/at2+vRYsWKX/+/Km2lZw9l1KjRo1MGbO22aWSVLVqVT3++OMqWLCgrl27pi1btuj48eOKjIzUwIEDdf36dXXp0sWu3djYWHXq1En79++X9L/K3A8//LASExP1999/a8eOHfrzzz/1999/p/dPJCnp37BLly7au3evsa1atWp6/PHHFRAQoFOnTumPP/7QrVu3dPr0aXXs2FE//fSTSpQooQcffFD9+/dXeHi4pk+fLkkqUKCA3n33XVmtVuXKlcutvvz4448aMWKEsV6oUCE1bNhQgYGBioqK0u7du7Vnzx5J0i+//KITJ05o/vz5yps3b6ptLliwwHi/Vq5cWU888YTy58+vs2fP6o8//lBkZKTi4+P1ySefqGLFinr88cfd6rOnuSsDi1999VWG20ieXFaSXQqyM0WKFDECi7ZtALi7pPylOTW34hOyuCcAAMCpuDhp5Ejp11+lFFledzV/f+mFF6RhwyQPKYYSHBysQYMGGYGzokWLatKkSaZhlGmJiorSfffdp4kTJ9qNLtuwYYO6d++uhIQEHT58WBs2bNBzzz1n2mfu3LlGULFEiRKaM2eOw4rER44cUZcuXRQaGqr4+HgtXLjQLgvN1rZt21SoUCF9+eWXqlu3rumxkydP6o033lBwcLDi4uI0d+5cDR8+3LRPaGioPv74Y+Nv06ZNGw0bNky5c+c29unXr58GDBig9evXOwzYZYUCBQooT548RkHVEydOqEqVKk6PsR3ifvPmTUVERChfvnySku6xk//+kjRy5MhU27l+/brGjRunjRs3asqUKSpQoEBGnookafv27bJYLOrXr5+6dOliSmT6559/jHk/T506pS+//NLu38nWhg0b5OXlpV69eumVV16Rj4+Ptm/fboo/LF682Agq5suXT2PHjjWG/iazWq1asmSJPv74Y8XFxenzzz9XjRo19Mgjj5j2mzlzphFULFCggKZMmWI3unPz5s3q1auXXWafuyZOnGgEFf39/TVmzBi7TNuLFy/qzTff1OnTp3X9+nWNHj1akyZNUoUKFVShQgWdP3/eCCzmzZtXXbt2tasOn5a9e/eaXiOtW7fWkCFD7IKGGzduVN++fRUeHq4jR45o8ODBmjRpUqrtbtu2Tbly5dLYsWPVrFkz02O9e/dW165dFRQUJEmaNWsWgcW7le0bKfki5grbfW/cuJGZXXJbfHx8jp4/MyR/MKa2Dniq34+59sNCYmLiHfFezUpcBwBwHYArEhISjB/2LBaLrFaraz/0jRghy+jRWdy729SePUl/w//+N6d7olu3bqlfv34KDQ2VlJQJN3HiRBUrVizNf2fbx/PkyaNvv/1WZcqUsTvuqaeeUvPmzfXzzz9Lknbu3GkXxFm6dKmxPHjwYN17770Oz1+5cmV16dJFn3/+uSRp//79dvulXP/000/1+OOP222///779Z///EdDhgyRJG3ZssVun2nTphnfYevVq6dRo0YZ74Nk+fPn16RJk9S+fXvTEOOU75VNmzYZQZHUREZG6ttvv3X4WMWKFVW/fn1jvXbt2vrrr78kSQsXLnQabEtMTLQbOhsTE2MEgk6ePKmoqCjjMV9fX3Xo0EEtW7Y0/i2OHTumhQsXGu3s3LlTPXv21MyZM10aiZhSyr/1+++/b2QE2j5Ws2ZNTZ48WZ06dZLVatWCBQv05ptvqmzZsqm21a1bN7377rvGevL8hlarVbGxsZo4caLx2IQJE1SvXj2Hr7eXX35Z4eHh+uyzz5SQkKCJEydqzpw5xuORkZH6+uuvjfVx48apdu3adm3Vq1dPX3zxhalPjq6ltuspH4+KitL8+fON9dGjR6tJkyZ2bZQsWVJfffWVmjdvrsTERK1Zs0bBwcFGYNXROZy91x09/vnnnysxMVGS9Nxzz2n0/1/rU+7XoEEDTZs2TZ06dVJCQoJWr16tPXv2mOZtTXnMwIED9fzzz9ttL1q0qAYPHqw33nhDUlIwOiEhwWkxYGfPyfb/8fHxLiewZCYCi+kUGxtrLNv+ypMW21/LbNvIbomJiQ7TwW93jubYADzR53+FurTf+fPntS/39bR3hIHrAACuA3DGx8dHPj4+io6Odml+tdzbtinzZ2G7cyRu3aqbHpDJ+cknn5je+3379lXlypVdyl5KDixI0rPPPqvChQunetyjjz5qBBbPnTtn2i8hIUEdO3bUxYsXdfXqVdWtW9fp+W0zGcPDw+32tZ2brWzZsnr00UdTba9GjRrG8pUrV0z7Wa1Wo9iJlBT4Ss4QdKRnz56mwNGtW7dM7a1YsUIrV65M9XgpKYlm3LhxDh978cUXTdlyrVq1MgUWa9SokWqBkAkTJpgyFiUpIiLCmPMueciqJAUEBOirr74yFdywWCyqUqWKRowYoUceecQIYu7YsUPz5s1zeS5OW7b/TkWKFFHHjh1T/XeqVq2a6tWrp82bNysxMVG//fabXn/9deNx2xiBxWJRmzZtUm1r9erVxijIhx56SDVr1nT6env55Zc1bdo0RUREaMeOHTp16pRR7OfPP/80XhPVq1d3+lqrXbu2atWqpX/++UdS0us+5b62P/DFxsaaHl+zZo0xnL1y5cpq0KBBqucqUaKEGjdurCtXrigwMFAhISFGEDm5doWkVDMVne1z+fJl7dq1S5KMzFBnf78qVaqocePG+u233yRJP/zwgypWrGh6nsn8/f31/PPPp9pelSpV5OPjo/j4eN26dUuXLl1yac7NlBISEoxElPj4+By7/yGwmE62Fw93Isu2Ny9kIQF3r2PX49LeSVJIDFk3AADkpIRHH5X3+vU53Q2PlVC7dk53QStWrDBlCrZs2VKvvPJKutqqWbOm08eLFCliLNtmxklJ3/VatGjh0nliY2N19uxZYz2t74bOqtFKMgUlUhbwOHLkiK5evSopKQssrQKitWvXVqFChXT9evb8uP3UU0+pQYMGxhyEgwYN0s6dO9W6dWuVK1dOiYmJOnLkiObOnatNmzapUKFCunnzphEIs03eefbZZ1W9enVdvHjRqCycmhdffFF79uzRTz/9JClpGHt6Aou2nnvuuTTna2zYsKE2b94sKSm71DawaOvee+91GmyynecwreHjUtKPKtWrVzfm/tuzZ48x/Hjr1q3GfrbZpKl55plnjMCiu2zP5UoRmNFZlDG+c+dOY7latWoqVapUmsc0bdrUCCzu3r071f0qVqzodAoGX19f5cuXz3iPpXzP3m4ILKaTbYDQ9heutNhG7jNrglgAtx9Xy0atO3dT7z6Y+qTOAAAga8UNHixZLPJevVoWD8jM8xRWf38lNGmiuEGDcrQfR48e1ZgxY4z16tWra1AG+pRW1pDt90BXpl2IjIzUmTNndP78eZ0/f15nz57ViRMn9O+//5qSVdIavnjPPfc4fdy2mEfK76e2AcwHHnggzT5LSYGRlJWxk3388cf6+OOPHT5Wq1YtSUkBzF9//dWlc0lJGae9e/fW7t27ZbVatWzZMi1btsxuv4IFC2rSpEl67733jG22Iwh9fX1VtmxZ0/BiZ1599VUjsHjp0iWdOnXKYeEbV1WtWjXNfcqXL28sX7p0KdX9ypQp47SdEydOGMsLFy40FXBxhe25befULFeuXJrH2mbquevy5cvGclZWek7L+fPnjeVKlSq5dIxtoPrSpUtKSEhwmPlu+wNEamxft+7ElDwRgcV0sn0RuBNdtt3X3WpFmcnLyyvNX71uBwkJCaZ03+rVq7s0pAXIaX6/rZei074ZPXkj3jS0Bfa4DgDgOgBXJCQkGF/ELRaL/P39XX+djB2b9B8MFkleknIyVSIsLEz9+vUzvmMVLlxY48aNk5+fn/LkyWMqnOGM7Qi0woULy9/fP9V9bb/DeXl5Odz35s2bWrBggX766ScdO3Ys1aCht7e3EZx01JZtIkr+/Pmd9isl231t5/ZP6/klsw1k5sqVy61zS/97j7nK399fs2fP1qxZszRr1iy7egR+fn5q2rSp+vfvr8KFCxvZov7+/i4FcVJTo0YNU/GYK1euqFq1am61YfvvVKpUqTSfd/LwYymparXt/rZZboUKFXLaVkREhFv9TCkqKspo37aGRNGiRdN8DiVKlDCWvb297fa3vbb6+fmZHrfNhHXlXKmxjckkv96sVqtpmL+jfZLZZhy72g/baulWq1VxcXFGHQ3bf7u8efOm2Z7t9Sl37tzp+jskz83o6+srX19flS9f3u37nwMHDmQ4sElgMZ0KFixoLEdGRrp8nO2+tm3khPRMTOvpvL2978jnhTuRqzmLd+Z7NStxHQDAdQCOWCwW0xe5lOu4vSQmJqpv3766cOGCpKT7pU8//dQI2rjz7+vO6yKtfc+dO6e33npLp0+ftjuuRIkSKl++vKpVq2bMMfjOO+84bNvdfjnrp+0w68TERLdf9+l5r6TnGD8/P3Xr1k1dunTRP//8o7Nnzyo+Pl4lS5ZUzZo1je/PJ06cMIK1JUqUyND72GKxKF++fEYwKioqKl3PNZmPj0+ax9sGmv38/Oz+nV1ty/bftWnTpnrooYfc6ne1atVSbT+t52AbYHf0b+3stZty2H96//3cfX+k3CdlwN+VfqQ8xsvLyzguPf1xZ39nbST/38fHJ0d+WOWOK51sS7xfu3bN5eOS57aQkqLiAAAAAAD3TJw40ZinTpIGDBhgKgiSE+Li4tS9e3cjqFi4cGF17txZdevWVYUKFewykjZu3Jgt/SpQoICxHB4e7tIxru6XFfz8/PT444/r8ccfd/j4/v37jeXU5lC8deuWyz8y2Sb/5M+fsSmIXEk6SpkdmF62/64PP/yw3nzzzXS3VbRoUf377792/UtNRl4f6Xk9ZgXbRC9X5xO13c/Ly8soJHO3c7+eNSSZK3idP3/epZLeVqvV+EUtZRsA7i4kSAAAAKTPn3/+qa+//tpYb9WqlTp27JiDPUry559/KigoSFLSEN1FixapW7duqlGjhsNhjrYJKq58n0wv23kVk4NHaUl+HtnBarXq+vXrOn78uEvDe//8809j+dFHHzU91qZNG9WsWVMPPfSQNmzYkGZbKSt7Z3TOv5QVqx05evSosXzvvfem+1yBgYHGsqv/Xjdu3HA4N6jtfI62/UuN7fyO7rKd/9KVv9emTZs0cOBATZkyxWnBFHfZxmNcec6SdOjQIWO5ZMmS1M34fwQW08l23oWYmBidOnUqzWNOnjxpmmPRlcpNAAAAAIAkZ86c0YABA4xAXLVq1VItJJLdbKvk1qtXL80CIsnVeaWsLd7w4IMPKiAgQFJSkY60gigHDx7UlStXsqw/KX3yySd6/PHH9cILL2jFihVO9718+bKR6ent7a1nn33W9Hi+fPmMQOG6devSPLft+cqVK+dSZWBnXAlmrlmzxlh+5pln0n2uxx57zFjeuHFjmrUfYmNj9cILL+ihhx5So0aNtGnTJuOxRo0aGct//PFHmufOSLatbWbxX3/9leb+v/32m5YvX67JkyebslUzOpWFbVB6//79pmIuzvqSLKczpD0JgcV0qlChggoXLmys234opGbLli3GcqFChVyuPAQAAAAAd7vo6Gj16NHDyGorXLiwpkyZkqNFMW3ZVnkODQ11uu+ePXu0atUqYz3lvHOZyc/PTy1btjTWJ0yY4HT/iRMnZllfHLEN0CxdutRp9ubo0aMVGxsrSXr++edNhVCStyVbuXKlTp48mWpbZ86c0cyZM431Tp06ud33lPbs2eM0WLZ161Zt375dUlIl74wEFps0aWIEjK9du6Zp06Y53X/WrFkKCQlRfHy8QkNDTXMy1qtXz6iIfvLkSS1atCjVdo4cOWIKjqan38lFVfbu3Wua0iClkJAQI5hnsVhMfy93K7SnVLZsWdWpU0dSUmB/bBoFuv755x9TYLFFixZun/NORWAxnSwWi5577jljfdGiRU5/ZUpMTDS9OZs0acJk0cBd7Mz1mLR3AgAAgOGjjz4yhnz6+flp6tSpGc4wy0y28/39888/psBhMqvVql9//VVvv/22KZh48+bNLO3bu+++awSh1q9fr48//tgI0Nn2YejQoS5lkaXm2LFjOnbsmEvZgsmeeeYZY67BQ4cO6YsvvrALtMbExGjw4MFavXq1JCkgIEB9+/a1a+ull14yhhfHxsbq3XffdThs98CBA+rcubNRGfihhx5S27ZtXe6zM3369HGYeLRt2zb16tXLCJx+8MEHGZrTMX/+/KbiP9OnT9eUKVNMAW4pKRaxcOFCTZ482djWpUsX01yHfn5+GjBggLE+cuRI/fTTT3bnPHz4sN599127c7ijcOHCpqkL+vTpYwRbbV29elU9evQwMlCbNWtmGjpuO79haGioaUi7qz744AMjQLlmzRoNGjTI4TyZmzdv1nvvvWcEMJ999lnVr1/f7fPdqSjekgEdOnTQokWLZLVadfToUU2dOlU9e/Z0uO/EiRON+Sy8vLw8Yg4QAAAAALgd/Pnnn/r111+N9Ycfflh79uzRnj17JCUF7GyDHb6+vk4TOdq1a5fphRdeeOEFTZ48WSEhIbJarerdu7cWLFig6tWrKyAgQMHBwdq8ebOpknVCQoKsVqsiIiIUHx+fZRXtS5QooeHDhxvDyH/44QetX7/eCOoFBwdr7dq1unLliry9veXl5WX8Pb28sjYfyc/PT8OHD1fPnj1ltVo1Y8YMrVmzRk8++aTuueceXbx4UWvWrDGKivj6+urLL79UyZIl7drKlSuXxo8fr06dOikqKkpnz55VixYt1LBhQ1WtWlXx8fHat2+ftm7daiQGBQYGatKkSZlSTdfX11fh4eF64403VK9ePdWsWVNSUqB569atxn7169fPlAzJd999VwcOHNDatWtltVo1efJkLV26VE8//bSKFy+ukJAQbd++3TSXYZ06ddS9e3e7tlq1aqXNmzfrl19+UVxcnAYMGKDvv/9eTzzxhPz8/HTw4EFt3LhRCQkJuv/++12aDi41vXr10t69e7Vr1y6FhYWpc+fOqlOnjmrVqiV/f3+dPHlSf/zxhxEsDAwM1EcffWRqI2/evCpYsKDCwsIUGxurrl276umnn9bNmzf11ltvudSPRx55RP3799eYMWMkScuWLdP69evVqFEjlS1bVjExMdq1a5dpmoP777/f2B9JCCxmQOXKldWqVSstW7ZMkjRlyhRFRESoZ8+eypcvnyQpIiJCkyZN0ty5c43j2rVrZ5pAF8DdJSEx6ybnBgAAuBPduHHDtL5z507t3Lkz3e01adIk0wOLefPm1bRp09StWzddvXpVkrRjxw7t2LHDbt/AwECNGTNGgwcP1pkzZ5SYmKjDhw+bhqdmtpYtWyouLk6ffPKJoqOjdenSJc2fP9+0j7+/v8aOHasxY8bo0qVLkpICf1ntueee05gxY/Txxx8rJiZGp0+fNqpr2ypVqpQ+++wz1a5dO9W2qlevrvnz5+vDDz/UqVOnFB8frzVr1jgcvvvkk09q9OjRdkOq06tTp076999/9ddff2nLli2m6dCSdezYUYMGDcqUgK3FYtGkSZM0fvx4zZkzR3Fxcbp48aJ++OEHh/u3bNlSI0eOTDWA/fnnn6t48eLGEPH9+/eb5jWUkoL6/fv3V4cOHdLdb19fX82cOVPDhw/X8uXLJaX+nq5Zs6YmTJhgmoou2auvvqrp06dLSgreJgcAX375ZVPVZ2feeOMNFSlSRCNHjtSNGzd0/fp1LV261OG+LVu21PDhw43sXyQhsJhBQ4YMUVBQkA4ePChJmjNnjhYtWmTMn3js2DHFxPxvyOODDz6ogQMH5khfAQAAAABZ58EHH9TKlSv1ww8/aMOGDTp9+rSio6OVO3duFS1aVJUqVdLTTz+t5s2by8/PTw0aNNC8efMkST/99FOWBhalpIDLE088oR9//FEbN27UxYsXFRsbq5IlS6pBgwbq2rWrSpQoYSqI46iidVZo1aqV6tSpo++//15btmzR2bNnFRsbq4IFC6py5cpq0qSJWrRoYczP50zVqlW1cuVKrVq1Sn/88YcOHjyo0NBQ+fj4qFixYqpVq5aaNWuW6cNZ8+TJoxkzZmjFihVasmSJjh07pqioKJUoUUJ16tRR+/bt9eCDD2bqOb29vdWvXz+1b99eixcv1vbt23X27FmFh4crV65cKl26tGrVqqU2bdqk+fqyWCzq37+/nn/+ef3444/asWOHgoOD5e/vr3LlyunFF19Uu3btnM5d6apcuXJp7Nixev3117Vs2TLt2LFDly9f1q1bt1SoUCE9+OCDatGihRo3bpxqEPaDDz7QPffcoyVLlujcuXOKi4vTPffco+DgYJcDi5LUvHlzPf3001q8eLH++usv/fvvvwoLC5OPj4/KlCmjRx99VK1bt87y9+ftymLNyrr2t5lly5Zp0KBBkqTSpUu7PC9ERESE+vfvn+b+DRs21Lhx44xsxuy2Z88eI93by8vLSMu+nSWnsierUaNGlg0fADJLYqJVPv1/cX3/z1/Mwt7c/rgOAOA6AFckJCQY8/NJUsWKFTNl6CM8g9VqNc2x5u/vz5z2GfDggw8aczBu377dKOwBe5MnT9aUKVMkST169Eh1ejRkvbvtOpAZn2uZESfijisT5MuXT9OmTdO2bdu0YsUK7d69W1evXlVCQoKKFCmimjVrqlWrVnryySdzuqsAAAAAgLvMzJkzdc899ygwMFC1atVyuu/JkyeNoGKhQoUIKgJwisCijdatW6t169bpPr5u3bqqW7duJvYIAAAAAICMWbFihY4ePSpJWrp0qapXr57qvt99952xXKdOnazuGoDbXNaWdwIAAAAAADnqiSeeMJZHjRql69ev2+2TkJCgb7/9VgsXLpSUNCwyMyoXA7izkbEIAAAAAMAdrEuXLlq2bJnCwsK0Z88ePf3002rUqJECAwPl6+ur4OBgbdmyRRcuXDCOefvtt/Xoo4/mYK8B3A4ILAJANjscHJHTXQAAAMBdpGjRopozZ4569eql06dP6+bNm1q1apXDff38/DRw4EC99tpr2dxLALcjAosAkM3W/ns1p7sAAACAu0zlypW1cuVKrVq1SmvWrNGRI0d07do1Wa1WFSlSRKVLl1ajRo3UvHlzFS1aNKe7C+A2QWARALKZxZLTPQAAAMDdyM/PTy+99JJeeumlnO7KHaNnz57q2bNnTncDyDEUbwGAbEZcEQAAAABwJyCwCADZzELKIgAAAADgDkBgEQCyGWFFAAAAAMCdgMAiAGQzEhYBAAAAAHcCAosAkM0s5CwCAAAAAO4ABBYBIJuRsQgAAAAAuBMQWASAbEZcEQCA7OflZf7qk5CQkEM9AQAg41J+jqX8nMsuBBYBIJuRsQgAQPazWCzy8fEx1qOjo3OwNwAAZIzt55iPj48sOfRFk8AiAAAAgLtC3rx5jeXw8PAc7AkAABlj+zmWL1++HOsHgUUAyGbu/pIUHRufRT0BAODukj9/fmM5KipKoaGhOdgbAADSJzQ0VFFRUcZ6TgYWfdLeBQCQmdxNUA8KidLDpQtkSV8AALib+Pv7y9fXV3FxcZKk4OBgRUZGKn/+/PL395e3t3cO9xDpZbVaTfONJSQk5NiwQAA5406/DiQkJCg6Olrh4eGmoKKvr6/8/f1zrF8EFgEgm7n72bbycDCBRQAAMoHFYlFgYKDOnj1rBBejoqJMX9Bw+0pMTDSWc6qIAYCcdbddB3x9fRUYGJijAdQ7/68MAB7G4mbOYsQthkIDAJBZ/Pz8FBgYKF9f35zuCjKR1WpVfHy88Z/Vas3pLgHIZnfbdSA5qOjn55ej/SBjEQCymbs/Jt05yfsAAHgGPz8/lS9fXtHR0YqIiFBERITi4/kh73Zn+29I4Bi4O93p1wEfHx/ly5dP+fLlk7+/v0cM9SawCADZzN1Lv5dXzn9YAABwp7FYLAoICFBAQIBKlCghq9VqGkKH20t8fLwOHjxorJcvX14+PnzdBe4md/p1wMvLyyMCiSndOX9hALhNuPth4HkfHQAA3HksFgvFW25jKYc8ent78+8J3GW4DuQM5lgEgGzmbqDQA3+UAgAAAACAwCIAZLeQqFi39ne32AsAAAAAANmBwCIAZLNx64873N6hZmmH28lYBAAAAAB4IgKLAJDNUstYHNa4osPtXkQWAQAAAAAeiMAiAHiIPL6OJxYmrAgAAAAA8EQEFgHAQ6QWQCRhEQAAAADgiQgsAoCHYyg0AAAAAMATEVgEAA+RWvyQuCIAAAAAwBMRWAQAD1fE3y+nuwAAAAAAgB0CiwDgISyy6I1Hy9ptLxJAYBEAAAAA4HkILAKAB2lUoYjdNmsO9AMAAAAAgLQQWAQAD2GxOJ5P0UpkEQAAAADggQgsAoAHoU4LAAAAAOB2QWARADxEakFFK4OhAQAAAAAeiMAiAHiIvLl8ZHEwFpqh0AAAAAAAT0RgEQA8RN5cPg6zFokrAgAAAAA8EYFFAMhG1lTSDye9VF1SasVbCC0CAAAAADwPgUUAyEY7zoY53O7rnRRRtFC+BQAAAABwmyCwCADZ6I9jIQ63bz19PdVjyFcEAAAAAHgiAosAkI3iEhMdbj8cHCEptaHQWdkjAAAAAADSh8AiAGSjT9b+63C7tyV5KLQ9KzmLAAAAAAAPRGARADyAt9f/BxaZYhEAAAAAcJsgsAgAHiA5sOgIQ6EBAAAAAJ6IwCIAeAAfI2PRPsBIYBEAAAAA4IkILAKABzCGQjt4jLgiAAAAAMATEVgEAA9gFG9xWBWa0CIAAAAAwPMQWAQAD/C/jEWqtwAAAAAAbg8EFgHAA3g7KQdNviIAAAAAwBMRWAQAD+D1/1djR/HFDcevZm9nAAAAAABwAYFFAPAABXL7SpISHcynOP+fC9ndHQAAAAAA0kRgEQA8QI969zt9/HL4zWzqCQAAAAAAriGwCAAeoEiAnyQpsGAeh4/HJiRmZ3cAAAAAAEgTgUUA8AClCuRy+riDEdIAAAAAAOQoAosA4AFy+XjndBcAAAAAAHALgUUAuA2QsAgAAAAA8DQEFgHAg0Tcine4naHQAAAAAABPQ2ARADzIjZupBBbJWQQAAAAAeBgCiwDgQeITHQcQ1x+/ls09AQAAAADAOQKLAOBBElIJLA5adSSbewIAAAAAgHMEFgHAg6SWsXg1KjabewIAAAAAgHMEFgHAg8QnJuZ0FwAAAAAAcAmBRQDwIPEJFGkBAAAAANweCCwCgAcpf09ATncBAAAAAACXEFgEAA9Sv1zhnO4CAAAAAAAuIbAIAB7EYrHkdBcAAAAAAHAJgUUAAAAAAAAAbiOwCADZxGqlMAsAAAAA4M5BYBEAAAAAAACA2wgsAgAAAAAAAHAbgUUAAAAAAAAAbiOwCADZxNUpFh8ulT9rOwIAAAAAQCYgsAgAHsbby5LTXQAAAAAAIE0EFgHAw3hZCCwCAAAAADwfgUUAyCYujYQOC8viXgAAAAAAkDkILAKAJzh8WLr3XqlQIY354n3dEx2e0z0CAAAAAMApAosAkMN8EuKlF1+Uzp6VJDU6d0D9di/L4V4BAAAAAOAcgUUAyCbWVMpCv3HoT+nkSdO2Jqf/yY4uAQAAAACQbgQWASAH+SbEacj2RXbba4SclldiQg70CAAAAAAA1xBYBIAc1OXgWt0bEeLwsftvBGdzbwAAAAAAcB2BRQDIJnYDoa1W9d21PNX9q4Sez9L+AAAAAACQEQQWASCHFI8OU/kbl1N9vOq1c9nYGwAAAAAA3ENgEQBySKnIUKePVw4lsAgAAAAA8FwEFgEgm6QsCl0yynlgkYxFAAAAAIAnI7AIANnkWEikab1k5HWn+1e5dt4+GgkAAAAAgIcgsAgA2eRS+E3Teqk0MhbzxcWoTMTVrOwSAAAAAADpRmARALJJytzDtIZCS+bK0CeuRmVyjwAAAAAASD8CiwCQTRITzaHFkmkUb5GkqtfOGsufbTie6X0CAAAAACC9CCwCQA4pGeV8jkXJnLE4Y/tZJ3sCAAAAAJC9CCwCQDZJORS6VMqMxcqVJV9f06YqVIYGAAAAAHgoAosAkE1sCzxbrIkqkTJjMTBQKl/etKksxVsAAAAAAB6KwCIAZBPbjMWi0TfkY00071CypFSsmGlT4ZsRWd8xAAAAAADSgcAiAGQTq03KosP5FUuWlAoXNm3KHxsj34S4rO4aAAAAAABuI7AIANnENmPRbn5FSSpVSrrnHrvNhW5GZl2nAAAAAABIJwKLAJBNbOdYLBnlILDoIGNRku5hODQAAAAAwAMRWASAHOBOxmLhGDIWAQAAAACeh8AiAGQTq9yfY1GS7rkZnpXdAgAAAAAgXQgsAkA2sR0KXSK1wKKDjMV7YhgKDQAAAADwPAQWASCbOC3eUqiQlDu3w4zFwhRvAQAAAAB4IAKLAJBNrFbbodApAoulSiX931HGIkOhAQAAAAAeiMAiAGST5LiixZpoP8diyZJJ/ydjEQAAAABwmyCwCADZJDlf8Z6YCPkmJpgfTA4sOqwKzRyLAAAAAADPQ2ARALJJcsZiqoVbpKR5Fv39TQ8VvklgEQAAAADgeQgsAkA2sf5/zmLBW1H2D9pmKqYYDn0PgUUAAAAAgAcisAgA2SQ5YzF/bLT9g/nz/285xXDowjHMsQgAAAAA8DwEFgEgmyTPsVjgloPAYoEC/1u2y1ikKjQAAAAAwPMQWASAbGL9/5RFhxmLtoHFFBmL/vGxyh13Kyu7BgAAAACA2wgsAkA2c5ixaDsUOkXGoiQVvslwaAAAAACAZyGwCADZ5H9DoR0Ub3GSsSgxHBoAAAAA4HkILAJANjl0Oam6c5pDoclYBAAAAADcBggsAkA2mbz5lCQpf1pDoR1lLMZEZFW3AAAAAABIFwKLAJBNomITJKUyx2K+fP9bdhBYLHyTwCIAAAAAwLMQWASAbJZyKLQ1Xz7J2/t/GxwMhSZjEQAAAADgaQgsAkA2syveYjsMWiJjEQAAAABwWyCwCADZrEDK4i22hVskxxmLBBYBAAAAAB6GwCIAZLOUxVssLgQWC1EVGgAAAADgYQgsAkB2slrtMxZTDoX29VVUbn/TpntiwrO4YwAAAAAAuIfAIgBko9zxsfJNTDBvTJmxKCk6X0HTOkOhAQAAAACehsAiAGQju2xFyT5jUVJsgYKm9cIMhQYAAAAAeBgCiwCQjewqQksOMxZvpshYZI5FAAAAAICnIbAIANkof2yM/UYHgcVb/gGm9dwJcfJJiM+qbgEAAAAA4DYCiwCQjRxmLDoYCh2XJ8BuW964m1nRJQAAAAAA0oXAIgBkowK3HMyx6CBjMdbfPrCYz1G2IwAAAAAAOYTAIgBko/yOirc4CCwmOAgs5o0jsAgAAAAA8BwEFgEgG7k8FDogr902MhYBAAAAAJ6EwCIAZCNXh0LH5fa320ZgEQAAAADgSXxyugN3msOHD2vx4sXavXu3Ll++rJiYGBUoUEDlypVT/fr11a5dOxVwEEQAcHdwdSh0nKOh0LEUbwEAAAAAeA4Ci5nk5s2bGjlypJYuXWr32NWrV3X16lXt3LlT06dP18iRI9W8efMc6CWAnOYwY9HBUOjYAAfFW5hjEQAAAADgQQgsZoLY2Fh169ZN27ZtM7Z5e3urYsWKyp8/vy5cuKDz589LkqKiotSnTx9FRESoffv2OdVlADkkn4sZi/F5HGUsElgEAAAAAHgOAouZYMaMGaagYsOGDTV8+HCVLFnS2LZr1y4NGDBAFy5ckCSNGjVKjz76qCpUqJDt/QWQc1JmLCb4+sk7d267/WIdDIVmjkUAAAAAgCeheEsGxcbGatasWcZ63bp1NXXqVFNQUZJq166tuXPnKl++fJKk+Ph4TZs2LVv7CiDnFYg1V4V2VP1ZSiVjMY45FgEAAAAAnoPAYgbt3btXkZGRxnqvXr3k7e3tcN8yZcqoQ4cOxvqGDRtktVqzvI8APEf+W+asw7j//7EhJTIWAQAAAACejsBiBl2+fNm0Xq1aNaf716hRw1iOiorS9evXs6RfADxTyozF+Lz2hVskKd5RVWgyFgEAAAAAHoTAYgblS5FtFBUVlcqeSeLj403ruXLlyvQ+AfBcKedYTG0odJyjwCIZiwAAAAAAD0JgMYMeeOAB0/qmTZuc7r9lyxZjuWTJkgoIsA8eALgzeSUm2GUdxudLJWMxV24lWMyX6LxxBBYBAAAAAJ6DwGIGlS1bVk8//bSxPmHCBF29etXhvrt379ayZcuMddv5FgHc+fI7yDhMLbBo8fJSpK+5WjRzLAIAAAAAPAmBxUwwePBgFSlSRJJ04cIFvfzyy1q2bJmuXr2q+Ph4nTt3TtOnT1fXrl0VFxcnSapatapef/31nOw2gGxW4Jb9VAmJeR0Xb5GkSD9zYDFvLHMsAgAAAAA8h09Od+BOcO+992rp0qUaNWqU1q5dq0uXLmnQoEEO97VYLGrRooWGDh0qf3//bO6pWcr5Hm9HCQkJTtcBT5I/NtpuW9FSRRy+F62JiYrwzWPali8u5o5432Y2rgMAuA4A4DoAgOtAziCwmEkKFy6sBg0a6N9//9Xp06dT3a9evXp6++237Yq+ZLfExETt27cvR/uQFQ4ePJjTXQBSlbJwiyRdj72pYAfvxQsXohTpZw4s5o29eUe+bzMb1wEAXAcAcB0AwHUgexBYzARHjx7Vf/7zH505c8bYlitXLlWsWFH+/v4KDg42go2bN29Wy5Yt1blzZ/Xp00c+PvwTAHcLRxmLCU4KOEWkCCzmi43RpUzvFQAAAAAA6UNUK4POnTunzp07KywsTJKUO3du9e7dW6+++qpy585t2m/8+PFatWqVEhISNGvWLF25ckVffPFFDvUcQHYLiLtlty0xlSkRLBbZFW8JiLspJSZKXkyPCwAAAADIeQQWM2jkyJFGUDFXrlyaPXu2atWqZbdf2bJl9eWXXyowMFDTp0+XJP3yyy9q2LChmjdvnp1dliR5eXnpwQcfzPbzZraEhARTenP16tXl7e2dgz0CUhcQN9duW2CVKipbo4bd9u0xZ+wyFr1kVY0KFaS8ebOsj7cjrgMAuA4A4DoAgOuA+w4cOKDExMQMtUFgMQPOnTunv/76y1jv1q2bw6Cird69e2vbtm3GPGnffvttjgQWJd2Rw7C9vb3vyOeFO0Nxi33hFe98+SQHr1kvL29FpchYlCSfmzelggWzont3DK4DALgOAOA6AIDrQPZgPF0G7N6927T+8ssvu3Tcq6++aiwfOXJE165dy9R+AfBM/vH2Q6GVyhyLFtnPsShJiojI3E4BAAAAAJBOBBYz4MqVK8ZygQIFVKxYMZeOq1y5smn9woULmdovAJ7JGhllv9FJ8ZZIXweBxcjITOwRAAAAAADpR2AxA/z8/IzluLg4l4/zSlF4wWKxZFqfAHim41ejkoqvpJRaxqKFjEUAAAAAgGcjsJgBJUqUMJajo6N16tQpl447ceJEqu0AuDP9cSxEAfEOAoupVoW2KNLPfo5FMhYBAAAAAJ6CwGIGPPbYY6bsw4ULF7p03NKlS43lChUqqGjRopneNwCexcsi+ce5Psei5Dhj8fy5Kw72BAAAAAAg+xFYzIDChQurSZMmxvrcuXO1bds2p8fMmzdPW7ZsMdbbtWuXZf0D4DksbgYWLZIiHVSF3nnkfCb3DAAAAACA9CGwmEF9+/ZV/vz5JUkJCQl6++23NXXqVIWGhpr2CwkJ0ccff6xRo0YZ26pVq6b27dtna38B5Awvi8VujsVYLx/J1zfVYxxlLEaEXM/0vgEAAAAAkB4+Od2B212ZMmU0ZcoUdevWTdHR0YqLi9OkSZM0bdo03X///SpUqJCuX7+u48ePKzEx0Tju3nvv1fTp0+Xjwz8BcDewWGQXWIz2zSU/J/s7qgqd52Z0FvQOAAAAAAD3kbGYCR577DEtXrxY1apVM7bFxcUpKChIO3bsUFBQkBFUtFgsev7557VkyRIVK1Ysp7oMIJslZSyah0JH+eZKdX+LLA4zFnPfIrAIAAAAAPAMpMtlkgceeEDLli3Txo0btWbNGv3zzz8KCQlRdHS08uXLp9KlS6tOnTp66aWXVKlSpZzuLoBsZpHkH58ysOig6rMNR3Ms5o4hsAgAAAAA8AwEFjPZU089paeeeiqnuwHAwziaYzHKx0nGosXxHIu5GQoNAAAAAPAQDIUGgGyQNMeimxmLBBYBAAAAAB6MwCIAZANHGYvRTudYlBK8vBXjYy7vwhyLAAAAAABPQWARALKBd2KCcifEmbY5y1i0WCySpIgUlaGZYxEAAAAA4CkILAJANvC5ddNum7Oq0Mki/czBRzIWAQAAAACegsAiAGQDPwdzI0Y7yVj08fr/jMUU8yzmYY5FAAAAAICHILAIANnAJybGblu0k6rQDR+4R5IUmSL4SPEWAAAAAICnILAIANlg88FzdtuczbFYukBSpmLKjEUCiwAAAAAAT0FgEQCywYYDZ+22uTTHYoriLb4J8VJsbKb1CwAAAACA9CKwCADZICDult02ZxmLyVJmLCZtjMiMLgEAAAAAkCEEFgEgGwTE2VeFdjbHYrIYR/tEMxwaAAAAAJDzCCwCQDZwFFgsH1g0zeOiHQ2XJrAIAAAAAPAABBYBIBv4x9sPhfYrkC/N4xxmNRJYBAAAAAB4AAKLAJANHM2xeF/ZImkeR8YiAAAAAMBTEVgEgGzgaCh0fC4HhVlSIGMRAAAAAOCpCCwCQDZwlLGYkMc/zeOiff0cbCSwCAAAAADIeQQWASAbOMxY9HchsEjGIgAAAADAQxFYBIBs4Kh4S3zugDSPY45FAAAAAICnIrAIANnA30HGYmKe3GkeR8YiAAAAAMBTEVgEgGyQ/jkWCSwCAAAAADwTgUUAyAYp51i86e0ri49PmseRsQgAAAAA8FQEFgEgG/inyFiM8s2ta9GxTo/p+EgZhxmL16+GZWbXAAAAAABIFwKLAJANUmYsRvnm0u9Hrzg95o3aZR1mLJ67GJqpfQMAAAAAID0ILAJANghIURU62ieXwm/GOz2m4QNFHGYsWmIYCg0AAAAAyHkEFgEgG9hnLOaWj5clzeMcZSx6xcRkWr8AAAAAAEgvAosAkA3s51jMJR/vtC/BN338lChzANL7JoFFAAAAAEDOI7AIANkgwEHxFlcyFmWx2A2HLmiNy8yuAQAAAACQLgQWAfwfe/cdHlWZt3H8npLeIKH33qSKKIIFULGLYl/rrnVd17Lqir7q7lrXXbvuroquXVwbFkRQQVAE6b33UAMBkpCemTnvHyGTzJyTkDJnZgLfz3Vx7cxzzpzz+L5kyNzze54f7FZWplhf4H6KhTFxiqlNsCjzcujEoP0aAQAAAACIBIJFALBbQYF5KCZeblctg8WgikX2WAQAAAAARAOCRQCwm0WwWBgTJ7ezdm/BwRWLTrpCAwAAAACiAMEiANit0BwEFrhruceiqFgEAAAAAEQngkUAsFs1FYs3ntChVi8vdMcGPPdaXA8AAAAAgHAjWAQAu1Wzx+L5x7Sq1cuDKxbdxVQsAgAAAAAij2ARAOxmESyWxMXX+uXBeyzGeT2Sx1PN2QAAAAAAhAfBIgDYzWKPxQ5tm9X+5UEVi5Ik9lkEAAAAAEQYwSIA2K2BFYtFbotg0SKsBAAAAAAgnAgWAcBuFsFiaVxCrV9uWbFIsAgAAAAAiDCCRQCwmWERLO7yumr9+uA9FssHCRYBAAAAAJFFsAgANtuwY79pbOmBslq/nopFAAAAAEA0IlgEAJtl7TlgGityx9b69VQsAgAAAACiEcEiANgsOzvXNFanYJGKRQAAAABAFCJYBACbbd9lVbFoERZWg4pFAAAAAEA0IlgEAJsleEpNY1QsAgAAAAAaO4JFALBZfEODRSoWAQAAAABRiGARAGyW4CkxjVGxCAAAAABo7AgWAcBmwUuhS51u+ZyuWr+eikUAAAAAQDQiWAQAmwUHi3WpVpSoWAQAAAAARCeCRQCwWYODRSoWAQAAAABRiGARAGwWvMciFYsAAAAAgCMBwSIA2MxcsWgRFNaAikUAAAAAQDQiWAQAmwUHi8XumDq93qrC0SBYBAAAAABEGMEiANisoXsselxulTrdAWP5B/IaPC8AAAAAABqCYBEAbGbeY7FuS6El8z6LBTkHGzQnAAAAAAAaimARAOxkGEpsYMWiZN5n0V1c1KBpAQAAAADQUASLAGCnkhLTUJE7Vt2bJdXpMoUxgWEkwSIAAAAAINIIFgHATkXmALDIHavfHt++TpcJrlh0FRc3aFoAAAAAADQUwSIA2MkiWCx2x2lYx/Q6XSZ4j0V3CRWLAAAAAIDIIlgEADtVU7FYV+yxCAAAAACINgSLAGCnaoJFQ0adLhNcsegqLpKMul0DAAAAAIBQIlgEADtVEyy6nXV7+w2uWHT6fFJpaTVnAwAAAABgP4JFALCTZbAYp9apcRYnVy+4YrF8sLC+swIAAAAAoMEIFgHATtVULDrkqNtl3ASLAAAAAIDoQrAIAHaqLlisW65oWgpdPkiwCAAAAACIHIJFALBTtRWLdbxMjEUn6YKC+s0JAAAAAIAQIFgEADtVs8diXSsWi9wWwaLFtQEAAAAACBeCRQCwk1WwGBMrRx2TRcs9FgkWAQAAAAARRLAIAHYqLjYN1WsptFXFosW1AQAAAAAIF4JFALBTNUuh63wZlkIDAAAAAKIMwSIA2ClEXaFZCg0AAAAAiDYEiwBgp2q7Qtd1j0UqFgEAAAAA0YVgEQBsdGB/nmmsPhWLxa4Y8yDBIgAAAAAggggWAcBGOZbBYlw9mrewFBoAAAAAEF0IFgHARs7qukLXsWSxKIau0AAAAACA6OIO140OHDigjRs3avv27crJyVFhYaGcTqeSkpKUlpamTp06qUuXLkpOTg7XlADAdq6SwKpCnxwqccXUo2KRPRYBAAAAANHFtmDR4/Fo9uzZ+uGHHzR37lxlZmYe9jUOh0Pdu3fXiSeeqNNPP13HHXecXdMDgLBwlZQEPC92x6jOGyyKYBEAAAAAEH1CHixmZ2drwoQJ+t///qd9+/b5xw3DkCT/8r+K5xVjhmHIMAytW7dO69at0zvvvKN27drpsssu05VXXkklI4BGyRW0XLlir8S6ZovssQgAAAAAiDYhCxYPHDig119/XRMmTFDJoQqdquFhBcMwFBcXp5SUFDmdThUVFamgoMB/btXXbN++Xc8995xeffVVXXXVVbrpppuUkpISqikDgO2Cl0JXVB7SFRoAAAAA0NiFJFicMGGCnn/+eR08eDAgGMzIyNDQoUPVu3dv9ejRQz179lR6erpiYgI/IHs8Hu3evVuZmZlasWKFli5dqrlz5yo/P1+SVFBQoPHjx+t///ufbr/9dl199dV1bnwAAJHgKgmuWDwULNZxl0XLikWatwAAAAAAIqhBweK2bdt03333aenSpf5AsVmzZrrooos0evRo9evXr3aTcLvVrl07tWvXTsOGDZNUHjYuXLhQkyZN0pQpU3Tw4EHl5ubqySef1KRJk/Tkk0+qa9euDZk+ANjOVRy4x2J9KxZLXW755JBTVSrBqVgEAAAAAESQs74v/OKLL3ThhRf6Q8VjjjlGzz//vGbMmKF77rmn1qFiddxut0444QQ99thjmjVrlv7617+qa9euMgxDS5cu1SWXXKLPPvusQfcAALuZKxYP7bFYy9cPad+k/IHDYW7gQrAIAAAAAIigegeL48aNU0FBgdq3b6+XXnpJn332mc4++2y53aFvNB0XF6crrrhC33zzjZ555hl17NhRRUVFevjhh0N+LwAIJXd1S6FrWbL42Fk9Ta+tHCBYBAAAAABETr2DxaSkJP35z3/WN998o9GjR4dyTjU677zzNHnyZI0bN06JiYlhuy8A1EdwxWKx26IJSw2Gd0r3Pzbts0iwCAAAAACIoHqXF06ZMkXNmzcP5VxqzeVy6frrr9e5554bkfsDQK14vXJ5ygKG6roUOimu8m26KIaKRQAAAABA9Kh3xWKkQsVomwMAVMsi+Ktv8xZJKnYFVTvSFRoAAAAAEEH1DhYBAIdhESwWVwSLta5ZrHI5lkIDAAAAAKKILcHiWWedpddff11ZWVl2XB4AGocQVyzSvAUAAAAAEE1sCRa3bNmi559/XqNGjdJNN92kKVOmqKys7PAvBIAjiWWwWLc9FgNfS7AIAAAAAIge9W7eUhter1ezZs3SrFmzlJqaqvPPP18XXnih+vbta+dtASA62F2x6PGU/3Hb+lYOAAAAAIAlWyoWH3jgAfXp00eSZBiGDMNQbm6uPvjgA1166aU6//zz9fbbb2v//v123B4AokMNwWK9Lhe8x6JEAxcAAAAAQMTYEixed911+uyzz/TNN9/opptuUuvWrSVVhowbNmzQ008/rVNOOUV/+MMfNG3aNHm9XjumAgCRU0OwGOd21foy95zaVZJU4o4xH2Q5NAAAAAAgQmztCt21a1fdc889+vHHH/XOO+9o7NixSkpK8geMHo9H06dP1+23365TTjlFTz/9tNatW2fnlAAgfGrYY9HlrP1a6P5tUg691qLakWARAAAAABAhtgaLVZ1wwgl68sknNXv2bD377LM65ZRT5HK5/CHj/v379fbbb2vMmDG6+OKL9eGHHyovLy9c0wOA0AvRUmjHoVYvlkuhCRYBAAAAABES9h3/4+LidO655+rcc8/Vvn37NHnyZP3www9auHChPB6PJGnlypVatWqVnn76aZ122mm65JJLNGzYsHBPFQAaJuR7LFKxCAAAAACIHmGrWLSSkZGha665Ru+8847mzJmjZ555RgMHDpRUvh9jSUmJvv32W91www0aPXq03n77bRUUFERyygBQexaNVYrccRrSvkmdLlPRQZpgEQAAAAAQTSIaLFZYs2aN3nnnHf33v//V0qVL5XA4/H8qlkpv27ZNTz/9tEaNGqWJEydGesoAcHjVVCye0aN5nS5TsRujZbBIV2gAAAAAQISEfSl0hQ0bNujrr7/WpEmTtHPnzoBjhmFIknr37q0zzjhDixcv1uzZs+X1epWbm6sHH3xQy5Yt01/+8pdITB0AaqeaYHHi8l16/Oxedb5cMRWLAAAAAIAoEtZgMSsrS998842++uorrV27VlJliFghPT1d5513nsaOHatevSo/eO/du1cTJkzQG2+8odLSUn300UcaNGiQLrjggnD+JwBA7VUTLG7eX1inyyzeked/bW3uAQAAAABAONgeLObn52vq1Kn6+uuvNX/+fPl8PkmBgaLb7dYpp5yisWPHasSIEXK7zdNq3ry57rjjDvXt21e33XabJOnDDz8kWAQQvSxCv2J3rIo9vjpdJiWu/D2RrtAAAAAAgGhiS7Do8Xg0c+ZMffXVV5oxY4ZKS0slmasTe/bsqYsuukgXXHCB0tPTa3XtUaNGqWPHjtq6das2bNgQ8rkDQMhYNm+J1e+O71Cny5zUOd3/WvMFCRYBAAAAAJFhS7A4fPhw5eWVL90zDMPfhEWSmjRp4l/q3KdPn3pdv3Xr1tq6daspqASAqGIRLBa7Y3XXyZ3rdJn4mPI+WzRvAQAAAABEE1uCxdzc3IAw0eVy6aSTTtLYsWM1cuRIxcTENOj6+/btkyR17969wXMFANtYBYuuGPVtnVqny9TYFZqKRQAAAABAhNi2x6JhGOrevbvGjh2rCy64QBkZGSG79m233aa2bduqS5cuIbsmAIScRbDYsllanS/jdJRHi3SFBgAAAABEE1uCxauuukoXXXSR+vbta8fldfbZZ9tyXQAIKYtgsSzGIhw8jIpgkYpFAAAAAEA0sSVYfPjhh+24LAA0LkHBYrErRg6no5qTq3coVyRYBAAAAABEFWekJwAAR6zgYNEdq7rHipLTHyzGmQ8SLAIAAAAAIsS2PRaDGYahAwcOqLS0VD6fr06vbdOmjU2zAgAbWVUsOupTsVjDUmi6QgMAAAAAIsTWYLGgoEDjx4/X9OnTtWnTJnm93jpfw+FwaNWqVTbMDgBsFvKKRZZCAwAAAACih23B4saNG3XTTTdp165dksorFgHgqGJZsVj3yzgOxZFlTre8DqdcRpWqb4JFAAAAAECE2LLHYklJie68807t3LlTEqEigKNUiCoW/RwOFbtiAscIFgEAAAAAEWJLxeLkyZO1YcMGORwOGYahAQMG6PLLL1fv3r2VnJwsp5OeMQCOAqZgsX57LFZV5I5VkqekygDBIgAAAAAgMmwJFidNmuR/fOGFF+qpp55q8IdpAGh0TEuhY+VrYAV3eWfog1UGCBYBAAAAAJFhS+ng5s2bJUkxMTF68MEHCRUBHJ0sKhbX7S1o0CWLYoIauNAVGgAAAAAQIbYEi9nZ2XI4HOrVq5dSU1PtuAUARDefTyotDRgqdll0da6Fqt/NmDpDU7EIAAAAAIgQW4LFpKQkSVJcXJwdlweA6FdSYhoyhYK1FO+ufKsmWAQAAAAARAtbgsWOHTvKMAxt27bNjssDQPSzWKJcXM9gsVuzpMprBFc9EiwCAAAAACLElmBx1KhRkqSsrCwtWLDAjlsAQHSzCBZL3DH1ulTVfWqpWAQAAAAARAtbgsXLL79caWlpkqS///3vKg3aZwwAjnhWFYv13GOxKlOw6PGU/wEAAAAAIMxsCRbT0tL017/+VZK0cuVK3Xzzzdq+fbsdtwKA6GS5FLp+FYtVFbkt9q6lMzQAAAAAIALc9X3hK6+8cthzunXrpvXr12vu3Lk688wz1atXL/Xu3VtpaWlKSEio9b1uv/32+k4TACLDpopFy30ai4qk5OQGXxsAAAAAgLpoULBYdd+v6lSc4/V6tWrVKq1atarO9yJYBNDohLB5S1WWnaXZZxEAAAAAEAH1DhYlyTAMW8+XVKvwEgCijk1LoautWAQAAAAAIMzqHSwOGTIklPMAgCNLNUuhU+Ia9H0OFYsAAAAAgKhR70+47733XijnAQBHlmoqFn9zbNt6Xe4PwzvpX79ssQ4Wad4CAAAAAIgAW7pCA8BRL8TNWy7t30YSFYsAAAAAgOhBsAgAdgjxHotNEspfW+SOMx8kWAQAAAAAREDUB4ulpaWRngIA1F2Iu0I7D/WxYik0AAAAACBaNKyLQC0ZhqEDBw6ouLhYXq/X8hyfzyePx6OysjIVFhZq7969WrBggSZPnqxffvklHNMEgNAJ8VJop6M8WaQrNAAAAAAgWtgaLC5btkz//ve/NWfOnKOm8tDr9eq7777T999/rxUrVmjv3r3yer1q1qyZ+vbtq/PPP1+nnXaanM6oLxYF0BAhXgpd8ZZR7LK4BhWLAAAAAIAIsC1Y/P7773XXXXfJ5/PJMIx6X8dxqEqnMVi2bJkefvhhrVmzxnRsx44d2rFjh6ZOnaqBAwfqueeeU9u29esOC6ARsKlikeYtAAAAAIBoYUuwmJ+fr4ceekher9cyGKwYCw4cq54bFxenHj16aOTIkXZMMeTmzJmj2267TYWFhf6x5s2bq0OHDiorK9Pq1atVVlYmSVqyZImuueYaffTRR2rRokWkpgzATqGuWKxpKTQViwAAAACACLAlWPziiy+Um5srh8MhwzB0xhln6Mwzz1SzZs305ZdfauLEiXK73Xr11VflcrmUk5OjNWvWaOLEidqzZ48kKTk5Wa+88kqjCN62bt0aECq2adNGjzzyiEaMGOEPS/Py8vTyyy/r3XfflVRewfjYY4/p5Zdfjti8AdgoxM1bKr52oXkLAAAAACBa2LLR3+zZs/2Pr7zySr388ss677zzNHToUI0ZM0ZS+V6EhmHoxBNP1Nlnn627775b33zzjUaNGiVJ2rdvnx555BE7phdyjz76qD9U7NSpkz788EONHDkyoAIzNTVV//d//6err77aP/b9999ry5Yt4Z4ugHCwXAptU8UiS6EBAAAAABFgS7C4du3a8os7nbrtttsCjvXr18/fuGTevHkBx1JSUvTCCy+oR48eMgxDM2fO1NKlS+2YYsgsX75cs2bNklT+3/vPf/5TrVu3rvb8O++8U7Gx5cGAYRiaMWNGOKYJINyqqVjMOlhSr8s5D31PQcUiAAAAACBa2LIUOi8vTw6HQx07dlTz5s0DjiUlJaldu3batm2bli9fbnptbGys7rjjDt1+++2SpMmTJ2vAgAF2TDMkPv/8c//jCy+8UP3796/x/NTUVN1zzz3at2+f0tLS1K9fP7unCCASqmne8sWK3fW6XKzb6b+GCRWLAAAAAIAIsCVYLDr0Ibe6/RG7dOmizMxMrVu3zvL4iBEjlJycrIKCAq1cudKOKYZM1YrDyy67rFavuf766+2ZDIDoYREslrrq/5bbKiWu/LJWDWCoWAQAAAAARIAtS6FTUlIkmbs+V+jQoYMk6cCBA8rNzTUdd7vdat++vQzDiOo9CHfv3q2dO3dKkhISEg5brQjgKBIU9hW5Y6Uq+67WVcWerUXuOPNBKhYBAAAAABFgS8Vi06ZNdeDAAX+H52Dt27f3P96wYYMGDx5sOic5OVmSdPDgQTumGBIVe0lK5VWYLpdLkrR9+3Z98cUX+vHHH7Vjxw4VFRWpRYsWOv7443XJJZdo0KBBkZoygHAJChYb0rgl4DpULAIAAAAAooQtFYvHHHOMJGnr1q3KysoyHa+oWJRkuc+iVF4NKFVf9RgNMjMz/Y9btGghn8+n8ePH65xzztHLL7+sFStW6MCBAyouLlZmZqY+/fRTXXHFFRo3bpxKSurXwAFAIxEcLFo1XakHw+FUSfCSaoJFAAAAAEAE2FKxOHToUH399dcyDEN///vf9fzzzwcc79Wrl//x1KlTTXsOrl27Vtu3b5fD4VBaWpodUwyJ7Oxs/+PExEQ99thj+vDDD/1j3bp1U0ZGhrKzs7Vx40b/+MSJE5WZmam3337b3yE6EjweT8TuHSper7fG50CkuIqKVHXhc9WKxYb+7BW7YhXnrbyGUVgo7xHw81xfvA8A4H0AAO8DAHgfiAxbgsWzzz5b//jHP5SXl6cpU6YoKytLt9xyi4YPHy63262WLVuqe/fuWr9+vZYsWaLXXntNt9xyiyRpz549evDBB2UYhhwOh/r06WPHFEMiLy/P//jnn3/2Pz/99NM1bty4gCXf27Zt02OPPaaZM2dKkhYuXKjHH39cjz76aHgnfYjP59PSpUsjcm87rVixItJTACRJx+TmKr7K84qKxSEtYxv8s1fsjlFaaeXzgv37tfYI/HmuL94HAPA+AID3AQC8D4SHLUuhExMT9fvf/96/jHnRokW69dZbtWTJEv85VTsov/DCCxoxYoTGjh2r008/XatWrfIfO/PMM+2YYkiUllZ+sq8IFS+//HK98sorAaGiVL6v5KuvvqqzzjrLP/bxxx9X2xkbQOPmqPL+IFVWLJ7TKbHB1w5u4OJkawUAAAAAQATYEixK0vXXX6+rr746YI/EqnsrXnHFFerdu7f/+O7du7V69eqAsK5nz5664IIL7JpigzmCOry2b99eDz30kGm8gtPp1OOPP+5vTGMYht5//33b5wkg/JzBweKhisX2Ka4GXzu4EQzBIgAAAAAgEmxZCl3hoYce0qmnnqrXX39dK1euVIsWLfzHYmJi9Prrr+v222/3LwusCBkNw1D37t316quvyu22dYoNkpgYWHl0xRVXHHbPxJSUFJ1zzjn6+OOPJUmzZ8+2bX41cTqd6tevX0TuHUperzegvLlv377+7txAJLmC9jysCBa7d++uAR2b1u+iE3ZKkoqCGsHESRowYED9rnkE4H0AAO8DAHgfAMD7QN0tX75cPp+vQdewPbU7+eSTdfLJJys/P990rHnz5vrwww/1/fffa+bMmdqzZ4+aNGmik08+Weedd15Uh4qSlJSUFPD82GOPrdXrBg4c6A8Wt23bptLS0og0cYn2//vWh8vlOiL/u9AIBXeFPlRlGON2N/jvaHCHaUdREX/vq+B9AADvAwB4HwDA+0B4hO3/whXLf4O5XC6dddZZAXsPNhZNmwZWHaWnp9fqdRkZGQHPc3JyAqo5ATRyPp9UzVJo640S6ia4YjE4xAQAAAAAIBxs22PxaNC9e/eA51W7RNfEE7REkgQdOMJY7HlYUbHorGYP1roIrlhUUVGDrwkAAAAAQF2FPdHKyspSVlaWcnNzlZqa6t8XrKioSLGxsY1q/XvPnj0Dnm/ZskX9+/c/7Ot2797tfxwfH68mTZqEemoAIsmigrAiDHSG4Ouc4OYt8njK//AlBQAAAAAgjMJSsZiZmalHH31Uo0aN0ogRI3T55Zfr5ptv1iuvvOI/Z9q0aRo+fLiee+45HTx4MBzTarD09PSAcPGHH36o1evmz5/vf9ynTx85Q5E0AIgeFsFiibs8DAzNUui4Wt0TAAAAAAA72ZpoGYahF198UWeffbYmTJignTt3yjAM/5+qdu7cqZycHI0fP14XXHCBli9fbufUQmbMmDH+x9OnT9eGDRtqPH/Xrl2aNm2a//no0aNtmxuACLGqWHQdqlgMwVLoipDycPcEAAAAAMBOtgaLd911l1599VV5vV5TkOgI+nC9fft2/+Ndu3bphhtu0MaNG+2cXkhcdNFFSktLkySVlZVp3Lhx1VZclpaW6v7771dZWZmk8oY2Y8eODdtcAYSJ5VLoQxWLIShZNDVvqeaeAAAAAADYybZg8ZVXXtHUqVP9z/v166eHH35YH330keX5559/vgYPHizDMORwOJSXl6dx48bZNb2QSU9P1wMPPOB/vnz5cv3mN7/Rr7/+GnDepk2b9Lvf/U5z5871j911113+UBLAEaSGikVXKJq3uCyCRRq4AAAAAADCzJad/nfv3q3x48f7n99zzz266aabanzNkCFD9MEHH+j999/XE088IUlasWKFZs6cqVNPPdWOaYbMRRddpC1btujVV1+VJK1bt07XXXedWrVqpfbt2ys3N1fr1q0LeM2YMWN0zTXXRGK6AOxWQ/OWHs2TG355KhYBAAAAAFHAlorFTz/9VCUlJXI4HLr00ksPGypWdfXVV+u6667zP588ebIdUwy5u+++W08++aSaNm3qH9u9e7fmz58fECq63W7ddttt+vvf/x6JaQIIhxqWQse66/+22zSh/BqWS6GpWAQAAAAAhJktweKsWbMkle+jeMcdd9T59TfffLPc7vJiysbSxEWSLr74Yk2dOlUPPfSQTjzxRLVs2VIxMTFKTExUnz59dMMNN2jKlCm688476QQNHMmqWQod14BQUZLO7Nm8/Fo0bwEAAAAARAFblkJv375dDodD3bp1U7Nmzer8+vT0dHXo0EGbNm1SVlaWDTO0T1pamq655hqWOQNHs2oqFks8vgZd1uUs35+xyB1Xq3sCAAAAAGAnW8rmcnNzJZUHhPXVvHl5ZU5paWlI5gQAYVND85aGcB5q/FLssqhYZCk0AAAAACDMbAkWU1JSJFUGjPWxb98+SaJrMoDGp4Y9FhviUMGi9R6LVCwCAAAAAMLMlmCxdevWMgxD69evr1e4uGvXLm3cuFEOh0Nt2rSxYYYAYKMaukI3hKOiYpHmLQAAAACAKGBLsDh8+HBJktfr1X//+986v/6ll16SYRiSpBNOOCGkcwMA21mEfKFYCl2xx6JlsEjFIgAAAAAgzGwJFi+44AJ/1+M33nhDU6dOrfVrX3vtNU2cONH//Nxzzw35/ADAVjYthW6TGi+pmqXQVCwCAAAAAMLMlmCxW7duuuiii2QYhrxer+6++26NGzdOc+fO1d69e03nFxYWasaMGfrtb3+rF154QVL5kr/Ro0erV69edkwRAOxjU/OW8/u0PHQti5CSikUAAAAAQJi57brwww8/rDVr1mjlypUyDENffvmlvvzyy4Bz5s+fr6FDh+rgwYPy+XyS5F8C3b59ez366KN2TQ8A7GNTxWLThPJrFLnjanVPAAAAAADsZEvFoiTFx8frzTff1MknnyzDMAL+VDQgKCkpUU5Ojrxerz9QlKQ+ffrorbfeoiM0gMbJtuYtFdeyCClZCg0AAAAACDPbgkVJatKkicaPH6+nn35aPXv29I9XDRmratGihe6//3599NFHatu2rZ1TAwD7WC6FbnjFokM0bwEAAAAARA/blkJXNWbMGI0ZM0aZmZlatGiRtm7dqry8PJWVlSktLU0tW7bUoEGD1Lt3b3/TFwBotGyuWKR5CwAAAAAgGoQlWKzQoUMHdejQIZy3BIDws6l5S43XomIRAAAAABBmlAcCQKhZhHylroZ/j3OoYNG6YpFgEQAAAAAQZmGtWKyLt99+W2vXrpXD4dCTTz4Z6ekAQO0FhXxF7tjKdcwNUHEJj9Mlr8Mpl+GrchOWQgMAAAAAwitqKxZnzZqliRMnauLEiZGeCgDUTVCwGIrGLZLkqEgWHQ7zNalYBAAAAACEWdQGiwDQaAUHiyFo3CJVLoWWLJZDU7EIAAAAAAgzgkUACDWbKhYDrhkcLFKxCAAAAAAIM4JFAAg1uyoWq5QsmioWCRYBAAAAAGFGsAgAoWbXHotVFkObwkqWQgMAAAAAwoxgEQBCjYpFAAAAAMBRgGARAEItKOSrCAGT41wNumzV5i2mKkgqFgEAAAAAYUawCAChVk3F4vBO6aG7BRWLAAAAAIAII1gEgFDyeqWysoChiupCw2jYpR1V1kJbLoVu6A0AAAAAAKgDgkUACKWSEtNQRXWhoYYFf4FLoS32bbS4NwAAAAAAdiFYBIBQsliSXBKyisXKx0UxFsEiy6EBAAAAAGFEsAgAoWQR7lVWLDZM1WCxxKpikQYuAAAAAIAwctf3hV988UUIp2GWlZVl6/UBwBY1BYsNTBabJlSGicXuGPMJVCwCAAAAAMKo3sHiuHHjAhoJAABkHSz6l0I3LFl0OWto3iJRsQgAAAAACCuWQgNAKNVQsdgxPbHBl2+eVH4ty+YtVCwCAAAAAMKo3hWLUsOrbwDgiFNDxeIVA9uE7DaWFYsEiwAAAACAMKp3sDht2rRQzgMAjgw1VCx2DkHFYvfmSdpbUOq/ZgCWQgMAAAAAwqjewWLbtm1DOQ8AODJYBosWjVbq6aYTOmr2lgNULAIAAAAAIo49FgEglCyXQluEgPV0Wvdm5dekYhEAAAAAEGEEiwAQSjUshQ6Fis7QFfs2Hu7eAAAAAADYpd7B4nvvvSefzxfKudSJYRh6//33I3Z/ALBUQ/OWUHAc+t8id5z5IBWLAAAAAIAwqnew+MQTT+iiiy7S3LlzQzmfWpk/f74uvvhiPfHEE2G/NwDUyOaKRYfjUMWi1b6NVCwCAAAAAMKo3sFis2bNtHbtWl1//fX6/e9/r/Xr14dyXpaWLFmiG264Qddee61WrVqljIwM2+8JAHVic/OWCjRvAQAAAABEWr2Dxa+++kqnnHKKDMPQjBkzNGbMGN1666368ccfZRhGyCZYUlKiSZMm6YorrtCVV16p2bNnyzAMDRkyRBMnTgzZfQAgJGpo3pIQ42rw5SuWQtO8BQAAAAAQae76vjA9PV2vv/66PvroIz333HPKy8vTzJkzNXPmTLVo0UKnnXaaTj31VA0dOlRxcRZ7gdUgNzdXv/zyi2bMmKFp06apsLBQUvm+igkJCbr77rt1zTXX+JcEAkDUqKFisVlSw5dEV7ztWXaapmIRAAAAABBG9Q4WK1xxxRU644wz9PTTT2vSpEny+Xzas2ePJkyYoAkTJsjlcqljx47q0aOHunfvroyMDKWkpCgpKUkul0vFxcXKycnRzp07tXXrVq1cuVKZmZn+qseK/3U4HLrgggt09913q3Xr1g2dNgDYo4aKRWcIvgypuITlUmgqFgEAAAAAYdTgYFGSMjIy9I9//EM33XSTXnzxRU2fPt3fMdrj8WjTpk3atGmTpkyZUqvrVV1K7XK5NHr0aN1yyy3q1atXKKYLAPapoXmLMwRF1g7RvAUAAAAAEB1CEixW6N69u1555RVt27ZNH374ob755hvt2bMnICisWL5ctRKx6vMKbdu21QUXXKCLL75Y7dq1C+U0AcA+NSyFDm3FosUWEwSLAAAAAIAwCmmwWKF9+/a6//77df/992vZsmWaM2eOli5dqo0bN2rnzp0qKyvzn2sYhmJiYtShQwd17dpVxx57rIYOHUp1IoDGqYal0KHcFrbYZVGxyFJoAAAAAEAY2RIsVtW/f3/179/f/9wwDOXn56uwsFAOh0NJSUlKSkqyexoAEB41VCyGouFUjV2hqVgEAAAAAISR7cFiMIfDoZSUFKWkpIT71gBgv6BwzyeHypyhe6v1h5MOh4pdMYr3VlaAU7EIAAAAAAgnZ6QnAABHlKBgsdgdE9I10FWvZKpapGIRAAAAABBGBIsAEEqmYNFiyXIDVM0oi4KvTcUiAAAAACCMCBYBIJSCg0VXiIPFKjWLpgYuVCwCAAAAAMKIYBEAQslqKbRNitxxNd4bAAAAAAA7ESwCQCjZXLEYH1P5tm0KLVkKDQAAAAAII4JFAAglmysWY1xVgsXg0JKKRQAAAABAGBEsAkAo2VyxWFVRDM1bAAAAAACRQ7AIAKEUxj0WqVgEAAAAAEQSwSIAhJIpWLSxYjH42l6v5PHYdj8AAAAAAKoiWASAUPF6pbKygKFil40Vi1bVkCyHBgAAAACEiS3B4rfffqu3335b2dnZdlweAKJTSYlpyM6KxRKr/RtZDg0AAAAACBNbgsXPPvtMTz/9tEaMGKHXX3/djlsAQPSxCPVKbKxYNC2FlqhYBAAAAACEjS3B4rp162QYhrxer4499lg7bgEA0cciWLSzYtHy2lQsAgAAAADCxJZgMScnx/+4T58+dtwCAKJPmINFKhYBAAAAAJFkS7DYokUL/+OqISMAHNGsgsVwN2+hYhEAAAAAECa2BIvnn3++//Hbb79txy0AIPrUULF47eB2Ib9dkTuuVnMAAAAAAMAOtgSLv//97zV8+HAZhqH33ntPTz75pPbv32/HrQAgetRQsXjpgDahv51VNSRLoQEAAAAAYeK246KZmZm67777lJSUpO+++07vvfee3n//fXXt2lW9evVSenq6kpOT5XA4anW922+/3Y5pAkBo1VCxmBIXurfbC/u20hcrdtO8BQAAAAAQUbYEi+edd54/NHQ4HDIMQ4ZhaP369dqwYUOdr0ewCKBRsAwWy6sKnSGsDzcMQxLNWwAAAAAAkWVLsChVfvCt7Xh1alvVCAARZ7kUujz8S4oN3dutzwi89uHmAAAAAACAHWwJFocMGWLHZQEgutWwFHpgm9SQ3cZXUbEYQ7AIAAAAAIgcW4LF9957z47LAkB0s1iGXNFgJZTV10ZNFYsshQYAAAAAhIktXaEB4KhUTcWi2xnaLR0qKhYr9m883BwAAAAAALADwSIAhEo1zVtCvVVsxU61NG8BAAAAAESSbc1bqpOVlaWsrCzl5uYqNTVVAwYMkCQVFRUpNjZWLpcr3FMCgNCopnmLQ6FNFj2HurfQvAUAAAAAEElhCRYzMzP19ttva8aMGdq1a5d//KSTTtL48eMlSdOmTdPjjz+uyy67TDfddJNSUlLCMTUACJ0wVSyWenySqqlYJFgEAAAAAISJrUuhDcPQiy++qLPPPlsTJkzQzp07ZRiG/09VO3fuVE5OjsaPH68LLrhAy5cvt3NqABB61VYshpa/YpGl0AAAAACACLI1WLzrrrv06quvyuv1moLE4A6p27dv9z/etWuXbrjhBm3cuNHO6QFAaFXTvKX4UIVhqJR5qVgEAAAAAESebcHiK6+8oqlTp/qf9+vXTw8//LA++ugjy/PPP/98DR48WIZhyOFwKC8vT+PGjbNregAQetUshQ61MioWAQAAAABRwJZgcffu3f69EyXpnnvu0SeffKKrrrpKAwcOtHzNkCFD9MEHH+ihhx7yj61YsUIzZ860Y4oAEHrVLIUOteZJ5df0Ol3yOILexqlYBAAAAACEiS3B4qeffqqSkhI5HA5deumluummm2r92quvvlrXXXed//nkyZPtmCIAhF6YKhbvOqWL/3GROy7wIBWLAAAAAIAwsSVYnDVrlqTyfRTvuOOOOr/+5ptvlttd3rCaJi4AGo2gYNEnh8qc7pDfJj2xsgrSFFxSsQgAAAAACBNbgsXt27fL4XCoW7duatasWZ1fn56erg4dOsgwDGVlZdkwQwCwQVCoV+yOkRyh7gkttUmtrFI0NXAhWAQAAAAAhIktwWJubq6k8oCwvpo3by5JKi0tDcmcAMB2pmAx9PsrSlKHponV34Ol0AAAAACAMLElWExJSZFUGTDWx759+yRJaWlpIZkTANguOFi0oXGL6ZYulkIDAAAAACLDlmCxdevWMgxD69evr1e4uGvXLm3cuFEOh0Nt2rSxYYYAYAOrpdA2o3kLAAAAACBSbAkWhw8fLknyer3673//W+fXv/TSSzIMQ5J0wgknhHRuAGCboGDRtP+hHbekeQsAAAAAIEJsCRYvuOACOZ3ll37jjTc0derUWr/2tdde08SJE/3Pzz333JDPDwBsEYGl0DRvAQAAAABEii3BYrdu3XTRRRfJMAx5vV7dfffdGjdunObOnau9e/eazi8sLNSMGTP029/+Vi+88IIkyeFwaPTo0erVq5cdUwSA0IvAUmhTeFlSIvl8tt8XAAAAAAC3XRd++OGHtWbNGq1cuVKGYejLL7/Ul19+GXDO/PnzNXToUB08eFC+Qx+EK5ZAt2/fXo8++qhd0wOA0AtTV+iqLJdbl5RICQm23xsAAAAAcHSzpWJRkuLj4/Xmm2/q5JNPlmEYAX8cDockqaSkRDk5OfJ6vf5AUZL69Omjt956i47QABqXSHSFtgoWaeACAAAAAAgD24JFSWrSpInGjx+vp59+Wj179vSPVw0Zq2rRooXuv/9+ffTRR2rbtq2dUwOA0PJ4yv9UEY6l0CVW92CfRQAAAABAGNi2FLqqMWPGaMyYMcrMzNSiRYu0detW5eXlqaysTGlpaWrZsqUGDRqk3r17+5u+AECjUlJiGgpP85Y4i0EqFtE4fbZsp75ZvUfHtEzRZQPb6I6Jy7UyK19n9myuf5zXRwkxrkhPEQAAAEAVYQkWK3To0EEdOnQI5y0BIDwsqgQtqwlDfVsXFYs4Mry/cLuunbDY//y+Sav8jzdkF6hj00TdO6JrJKYGAAAAoBq2lAe+8MILWrZsmR2XBoDoZBHmhadi0eIeBItohF7/dWuNx/9cJWgEAAAAEB1sqVh89dVX9dprr6lZs2YaOXKkRo0apWHDhik21v4P2QAQEVbB4qGKxbZp8SG/XVq8W7nFHpq34Igxa/P+SE8BAAAAQB3ZuhR67969+uSTT/TJJ58oPj5ew4YN06hRozRy5Eilp6fbeWsACC/LYLE89OuakRjy253aNUNfrcyyroqkYhEAAAAAEAa2BIsjR47Ur7/+qqKiIn/n56KiIk2fPl3Tp0+X0+lUv379NGrUKJ122mnq2pU9kwA0cpZLocsrFq8cFPou945D/2u5FJqKRQAAAABAGNgSLP7nP/9RWVmZ5s+fr5kzZ+qnn37S5s2b/SGj1+vV0qVLtXTpUj3//PNq3769Ro0apVGjRum4446jMzSAxqeGisV4d+g72TocjkP3oHkLAAAAACAybFsKHRMTo2HDhmnYsGF64IEHtH37ds2cOVMzZ87UvHnzVFzlg++2bdv0zjvv6J133lFqaqpOOeUUjRo1SqeccoqSkpLsmiIAhE4NzVscDtOhBjundwt9sWK3itxxtZoLAAAAAAChZusei1W1a9dOV111la666iqVlJRo7ty5+umnn/TTTz8pMzPTf15ubq4mTZqkSZMmye126/jjj9ebb74ZrmkCQP3U0LzFjmDxwr6tdPMny6wrFlkKDQAAAAAIg7AFi1XFxcXplFNO0SmnnCJJ2rJli3766SfNnDlT8+fPV2lpqSSprKxMs2fPjsQUAaBualgKnVvkCfntmiWVVypa7rFIxSIAAAAAIAwivplhcXGxdu7cqX379qmgoEA+n08Oh8O/fxgANAo1NG/ZddCeoK97syTrrtBULKKRqdiDGQAAAEDjEvaKxdLSUi1cuFDz5s3T3LlztXz5cnk8gdU8VT9gJCQkhHuKAFB3NVQs2pWZOByV9zjcXIBo9uj36yI9BQAAAAD1YHuwWFpaqsWLF/uDxGXLlqmsrMx/PLhKITY2VgMGDNDQoUM1dOhQDRgwwO4pAkDD1VCxaFctltPhsF4KTcUiGpFtOUX623cEiwAAAEBjZEuwOH/+fM2dO9cfJFbsmSiZg0SXy6VjjjlGQ4cO1Yknnqhjjz1WcXEWXU4BIJrVULFoF4ekIpq3oBHz+gwNf3lWpKcBAAAAoJ5sCRavueYa/x6JwUGiw+FQjx49/BWJQ4YMUXJysh3TAIDwicBS6PKKRYsvYggW0Ui8NmertufWfun+uW/M1V2ndNEZPZrbOCsAAAAAtWXrUuiKUDEhIUEXX3yxRo0apf79+xMkAjjy1LQU2qZkcWXWQaWyFBqN2O0Tl9fp/G/X7NG09dlaed8IdW2WZNOsAAAAANSWrcFiRdVicXGxPvzwQ82bNy+gUjElJcXO2wNA+ERgKbQkFVKxiKNMqdenDxfv0MNn9Ij0VAAAAICjni3B4qOPPqrZs2dr7ty5OnDggKTyip3169dr/fr1eu+99+R0OtWrVy+dcMIJGjp0qI477jglJibaMR0AsF8EmrdIksfllsfhlNvwVQ4SLOIIN2NDNsEiAAAAEAVsCRYvu+wyXXbZZZKk1atXa86cOZo9e7YWLlyookMfeL1er1atWqVVq1bprbfeksvlUt++ff1B4+DBgxUba3+1DwCERAT2WKxQ5I5TSlmVMJFgEY3A+F+31vu1TqcjhDMBAAAAUF+2LoWWpN69e6t379763e9+p7KyMi1ZskSzZ8/WnDlztGLFCnk8HkmSx+PR0qVLtXTpUr3++uuKiYnRgAEDNHToUP3hD3+we5oA0DCWwWJFxaK9yWKRO5ZgEY2Kx+vTLZ8uq/frp63PlmEY/i1XAAAAAESG7cFiVTExMRoyZIiGDBmiO++8U/n5+Zo/f77mzZunBQsWaNWqVfJ6vZKk0tJSzZ8/XwsWLCBYBBD9LJdCh6tiMai6m2ARUcwwDI15a36Dr/Ph4h266th2IZgRAAAAgPoKa7AYLDk5WSNHjtTIkSNVUlKimTNn6l//+pfWrl0rh8NhWydVAAi5oGDR63DK43RJktLiY2y9NcEiGgufz9C5b87V1LV7G3ytN+dmEiwCAAAAERbRYHHVqlX65ZdfNHv2bC1atEilpaWSxNImAI1PULBY7IqRDr2Xjenb0tZbEyyisfhly/6QhIqSNGPjvpBcBwAAAED9hTVY3LFjh2bPnq3Zs2fr119/VU5Ojv9YcHVi7969NWLECI0cOTKcUwSA+gkOFquEfW1S4229dZE7LmiAYBHR6faJyyM9BQAAAAAhZGuwePDgQf3666/65ZdfNGfOHGVmZvqPBQeJ8fHxGjp0qEaOHKkRI0aoZUt7K3wAIKRMwaK9y5+rKoqhYhGNw9YD/N0EAAAAjiS2BIvPP/+85syZo5UrV8rn8/nHg8PEVq1a6dRTT9XIkSN14oknKi4uLvhSANA4mJZCx1ZzYuhZLoU2DP9SbCBa8DcSAAAAOLLYEiy+9tprls1XHA6H+vXrpxEjRmjUqFHq1auXHbcHgPCLZMVicLDo80llZVJs+MJNoDZyiz0hvd6mfQXqkpEU0msCAAAAqD3blkJXhIqJiYk66aSTNGLECI0YMULp6el23RIAIieiFYsW1d5FRQSLaFQSyko0ctsyZSU20cKW3WpVcfv1qizdeXKXMMwOAAAAgBVbgsX27dv7lzgff/zxiokJX+UOAEREDRWLzZLsDfiKgysWpfJgMS3N1vsCoTJm/a96/ftX1LwoT5K0vklrvTbgLL006Hx5XNX/qlLmNao9BgAAAMB+tgSL33//vR2XBYDoVUNXaIfNex2alkJLNHBB1Cnz+kxjDsOnf017VbcunRIw3j1nl56Z+ZbO3rxQ54z9i8pc1l9Q/rRxn+4d0dWW+QIAAAA4PFu7QgfLy8vTokWLtGfPHuXk5MjpdCopKUlt27ZVnz591KxZs3BOBwBCp5ql0Bf2bWX7rQkW0Rj8vGm/aezBuZ+YQsWqTstcpkd/+VAPnHKd5fFJq7NkGIbt4T0AAAAAa2EJFmfOnKnx48dr0aJFpoYuVfXu3VvXXXedxowZE45pAUBoeDzlf6qoWAo9fUO2bbc9sWNTzdl6oPo9FoEo8t95mQHPWxQc0P3zPjvs6+6b/7m+7zhQ0zsOsDy+M69YbdMSQjJHAAAAAHXjtPPixcXFuueee3Trrbdq4cKF8vl8/mDRMAzT41WrVmncuHH67W9/q7y8PDunBgChU1JiGqqoWMwLcRfcql68sK+kaioWCwttuy9QHzlFZQHPH5z7qZLLiqs5u5JTht6Z8rySS63/TtfwfSUAAAAAm9kWLHo8Ht10002aPHmyqUrR5XIpPT1daWlpcjorp+BwOGQYhn799VfdcMMNKrH4sA4AUafYHI6UuO1vWjW4XXlzFpZCozGo+ptAx9ws3br0W9M5Q3/zT3W74TUdjAmsQGybv183LGf/ZgAAACDa2BYsPvPMM5o/f77/eYcOHfTQQw/p22+/1YoVKzR79mzNnTtXy5cv16RJkzRu3Dh16NBBUnkF44oVK/Tcc8/ZNT0ACB2LYLGiYtFOFfvKESyiMSgq8/ofPzDvU8X6Aqt5P+82VPNa99SmJq31h9NvNb3+j4snyenzmsaLPeamMAAAAADCw5Zgcfv27Xr//ff9H3ovvvhiff3117r66qvVuXPnwAk4nerWrZuuv/56ff3117r00ksllYeLH3zwgXbt2mXHFAEgdKyCxTBULFZgj0U0BnO2HpAkxXjLdOnaWQHHvA6nHj7pav/z93uP0KIWXQLO6ZKbpTEb55qu+6cvV9owWwAAAAC1YUuw+MUXX8hzqJHBKaecoieeeEKxsYev3omNjdVjjz2mESNGSJK8Xq8+++zwG7sDQERZBov2VyxWoGIRjUHJocrCEdtWqGlJQcCxz7qfqNUZHSoHHA69MNjcyO2uhV+ZxiatzlJu0P6NAAAAAMLDlmDxl19+8T9+4IEH6vz6cePG+R/PmTMnJHMCANtYLoUOZ8UiwSKim9dXucPi2PXmf9c/6XmSaex/PU/SzqT0gLGTd6zSsVkbTOeOenW2Ckvta5QEAAAAwJotweK2bdvkcDjUsWNHderUqc6v79Spkzp37izDMLRhg/kDBABElRoqFnu3SLb99iyFRrT7Yf1eSZLT59WYDb8GHCtyx2pKp2NNrylzxejfA88xjV+1eqZpbPGOPM3YuC9EswUAAABQW7YEizk5OZKkVq1a1fsaLVq0kCQVFBQc5kwAiLAamrdcMqCN7benYhHR7saPl0qSTty5Vq0KcwKOTe04SAWxCRavkl7vf6Y8jsBfVS5e94tkGKZzJyzeEZrJAgAAAKg1W4LFpKQkSVJeXl69r3Hw4EFJUnKy/dU+4fDAAw+oZ8+e6tmzpz7//PNITwdAKNXQvOWHdXttvz3BIqLdjtzyn5GxG8zLoCd2P7Ha12Unpml6h/4BYx0OZuv43etM51pkjQAAAABsZkuw2KpVKxmGoXXr1tUrXMzNzdW6devkcDj8lYuN2cyZMwkTgSOZRYhXsRS6ohOurbcnWEQjccGGwK7OZU6XJnUZEjDmcAS+5tMew03XuWTdbNOY02EaAgAAAGAzW4LF4447TlJ5V+c333yzzq9/8803/V2lhwwZcpizo9vBgwf18MMPR3oaAOxUQ/OWU7tk2H579lhEY9A6f5+65u4OGJvZrq8OJKT4n/9ldA/9cEtgBeMX3YbWajm0IziRBAAAAGA7W4LFCy64wP/4jTfe0Lffflvr106ePFlvvPGG//nZZ58d0rmF25NPPqmsrKxITwOAnWpo3hIfY8vbbAAqFtEYDNu5xjQ2o30//+MFd52sv4zuqZHdmumawe3849mJaQHnSVLnvD0aHNQdmopFAAAAIPxs+cQ7YMAADR8+XIZhyOv16k9/+pMeeuihGjs8r1+/Xg8++KDuuece+Xw+ORwODR061F/92BixBBo4StRQsegOQ9pBsIjGYPiO1aax2W16+R8f266J//F/Lu6nP53axf/8sx7DTK+9KKi7tMfHJosAAABAuLntuvCTTz6pCy+8UDk5OTIMQ5999pk+++wzNW/eXN26dVNqaqqk8gYv69evV3Z2tiTJOLS0KSMjQ0899ZRd07NdXl6eHnroIUlSTEyM3G63ivigDxyZaqhYDEewWEywiEZg2M7AYNHjcGpe6x6W5ybGuvXM+cfomfOPkfPerzWx21D964dX5VRleHj61iV66KRr/M8/WLRD4y8doPgYlz3/AQAAAABMbFuj17JlS33wwQdq3bq1f8wwDO3Zs0dz5szR1KlTNXXqVM2ZM0d79+71B4qS1KZNG73xxhtq1aqVXdOz3ZNPPqk9e/ZIkm6++Walp6dHeEYAbFNDsOj1heH+DocKg8NFgkVEifwSjxLKSjRoz6aA8cUtuqgwJr5W19iT1FSLW3QJGDtu9wY1LToYMHbR2/MDfp8AAAAAYC9bN//q0qWLJk6cqN/97neKi6tsLmAYRsCfCgkJCbr22ms1ceJE9erVy+qSjcKMGTM0ceJESVKPHj106623RnhGAGxVw1JoX5hCDlMDF4JFRImlO/N0/O51ivF5A8Znt+1dp+v80HFgwHOnDI3atixgbOravVq7N79e8wQAAABQd7Ytha6QlpamP//5z7r99ts1b948LViwQHv27PEvkU5NTVXr1q117LHH6vjjj1dycrLdU7JVXl6evwu02+3WU089pdhYi2WKAI4cNVQsxrjC01HCtM8iwSKixJ1frNBZlvsr1i1Y/L7jQN0//7OAsTO2LtFnPYYHjM3dmqNeLVIEAAAAwH62B4sVEhMTNWLECI0YMSJct4yIxx9/3L8E+oYbblDfvn0jPCMAtquxeYu9XaH/eFJnvTxrM8EiotLMjdlatCNXf7PoCP1LlWBxWKem1V7j6XN76/5vVuuXtr1V5I5VgqfUf+z0rUtM59v8IwcAAACgCn79DqHp06fryy+/lCR17dpVt99+e4RnBCAsamreYnPF4pD2TSRRsYjoNP7XTDkMn07cFRgsbkltoZ0pGf7nN53Qsdpr3Duiq+46pYtK3LH6qe0xAce65GapS86ugDGHwlMlDAAAACDEFYsHDhzQxo0btWfPHiUmJqpdu3bq1q1bKG8RtXJzc/XII49IkpxOZ6NYAu3xeCI9hQbzer01PgfCwVlYaPqWpthdXrHolL0/a75D+9YF77FoFBXJewT8jNcG7wPR68PFO9Q5d4/SiwP3PZzdpnIf5aEdmug3A1vV+HPy9Nk99MJPm/RDx4E6c+vigGNnbF2i15pUNorz+bxHxL9vqBveBwDwPgCA94HICEmwuGzZMr388suaM2eO6f9xLVq00DXXXKNrrrkmoIHLkebxxx/X3r17JUnXX3+9BgwYEOEZ1czn82np0qWRnkbIrVixItJTwFGoS1aWghdyFrvKv1jIyzlg68/a9sxCSeaKRV9+/hH5M14bvA9El/57t5jGFrfo6n98UQeHli1bZjon2Nujm+nZvQP1z58Cx0dlLtVrA872P9+Wmamlzux6zxdHBt4HAPA+AID3gfBo8FLo//znP7ryyis1a9YseTweU8fnrKwsPfvss7rkkku0bdu2UMw56kybNk1fffWVJKlTp0668847IzwjAOHkKC0NeO51OOVxuiRJbZPt3crW4Shf9hkcLDpKSmy9L1BbA/ZuNo0tbd6pztc5JiNW9181RHsS0gLGh+9YI1Xpvs5CaAAAACB8GhQsfvzxx3rxxRdrLC91OBwyDEPr16/XjTfeqPz8/GrPbYxycnL0l7/8RVL5f+sTTzyh+Pj4CM8KQDg5g4LFYleMdCjwO7dzQljmEBwsOj0eidJ/RIF+2VtMY8uqBItN42r/q0i+19AvbQO7Sbcp2K9OeVn+5xVhOwAAAAD71buUJj8/X88++6z/F3jDMDR06FCNHj1abdu2lcfj0dq1azVx4kR/pWJmZqb+9a9/6f777w/N7KNA1SXQV199tY477rgIz6h2nE6n+vXrF+lpNJjX6w0ob+7bt69cLlcEZ4Sjkcsd+FZaNeQbdcJAxbnt+zu5zrFLmn3AtMeiJA3o0UNKTrbt3tGC94EoNmGnqWIxKzFNe5IqNw+4etRxcrtqFy5mr8/WD21666INvwaMn7RjtbaktZIkdezYUQMGtLZ6OY5gvA8A4H0AAO8Ddbd8+XL5fL4GXaPeweKUKVOUm5srh8OhuLg4PfvsszrttNMCzjnttNN088036+GHH9bEiRNlGIY+//xz3XXXXUfEfos//PCDvv76a0lS+/bt9ac//SnCM6obt9veJZqR4HK5jsj/LkS5oGXHxVWCxaR4e9/r3If+oSwO7gotyV1WJh2FPw+8D0SPpNIidcvZHTC2tHln/+O7Tumi+LjaNzrzyaFZQRWLkjR8x2q932ekpPKfCf7/D94HAPA+AID3gfCo91LouXPn+h/fd999plCxgtvt1mOPPabu3btLkvLy8rRkyZL63jZq5OTk6K9//auk8mVXjz/+uBITEyM7KQCRUVwc+PRQR+hwCl4KXT5YFPZ5AFX1zd5qGlverJP/8V9H96jT9cp8hha17Gr6+z58xyr/Y1ZCAwAAAOFT7+h2zZo1kqSkpCRddtllNd/E7daVV16pRx99VJK0cuVKnXDCCfW9dVT43//+518CnZCQoPHjx2v8+PHVnp+dXdmh8q233tI333zjf/7000+rWbNm9k0WgL2CgsUSV3mw2LdViu23Xp1Vvm+tZbBYWGj7/YGaDLDoCL20RWXFYmp83UP4MleM5rXqrlO3r/SP9d2XqSbF+cqJT6Z5CwAAABBG9Q4W9+7dK4fDoQ4dOigm5vAfDAYPHux/nJmZWd/bRo3SKs0aCgsLNWvWrFq/dt26dVq3bp3/eXFQKAGgkQmqDKzY73DF7oO237pTekLAPWuaFxBu/S2CxWVVKhbr6owezSVJs9v0DggWJWnYztWa3GWInE6iRQAAACBc6r0UuvBQJUxKSu0qctq2bet/fPCg/R+2ASBsggK8Ylf4lkJXLPtkKTSiUf+gxi1lTpfWpLeTJMW56/4rSEJM+Z6is9r2MR0bvmO1JFGxCAAAAIRRvSsWy8rKJKlW1YpS+ZLpCgUFBfW9bdT44x//qD/+8Y+1Pn/UqFHasWOHJOmpp57S2LFj7ZoagHALqjq2DPlsYhiH7hlDsIjo4vF41T97S8DY6vR2Kj20B+llA9rU+9pz2vQyjQ3bWR4svjpniy7qR1doAAAAIBzqXbFoHPo066jlLulVz/N6vfW9LQBEF8Oodil0OPgqgkUqFhFFyrw+Xf3UF0otDfw7uKx5J//jhqxYzolP1oqMDgFjg7M2yunz6vt12dW8CgAAAECo1TtYBABIKikxDYWzYtF36Ese9lhENHl3wXblLlluGl+Z0dH/2NHARcvzW3UPeJ5cVqxe+3c06JoAAAAA6oZgEQAawqL5UrE7fHssVgaLVCwietz0yVL1PGAO+Sr2V5RU780Q7x3RVZK0IChYlKQhu9fX76IAAAAA6oVgEQAawiK8K2YpNKCeFtWDa9MrG7k1SahfAP/0ub0lmSsWpcpg8alpBIwAAABAOBAsAkBDWIR3FSHfce3SbL+9QcUioszW/YWSpJ77tweMexxObWzSyv/86mPbqj4q9mxe1qyTSp2BPeiG7F4nSfq/b9doZ665mhgAAABAaNW7KzTqZvr06ZGeAgA71BAsXjW4nelYqFVWLLLHIqLD+uwCSTIthd7UpJXKXOVVir87voMGtmlY8F7qjtHS5p00JGuDf2zA3i2K9ZSp1B2j+79Zpfd+c2yD7gEAAACgZg0OFrOysvTFF1/Y+poLL7ywTtcHgLCx3GOxPFhslxZv++3ZYxHRKLm0UG3z9weMrW1aXqH46XXHaWy/1g26fq8WyVqzJ18LWnUPCBZjfR71z96iBa2664NFOwgWAQAAAJs1OFhcv369HnjggVqfbxhGnV9DsAggatVQsej12X979lhEtHE4pB4HdprG1x0KFjunJzb4Hjee0EH3fr1K81r10O+XfhtwbMju9f7GLrvzitUq1f6AHwAAADhahXWPRYfD4d8bqTYq9g4DgKhVQ7DoC8N7WGXFIkuhER0Mo+bGLc56doOu6u5TuqhJQoxlA5fjqnSGzivxNPxmAAAAAKrVoGDRMAxb/wBA1LPqCu0qDxaddfgipb5YCo1oVFOw6FDDfy4cDoduObGj1qS3VX5MYEXikCrBov0/gQAAAMDRrd5LoadNmxbKeQBA42Sxx2JRTHnId0qXdNtv3y4tQZJUGGNRsVhYaPv9gWAOh7kjtFS5x2JirCsk97l9eCc9PX2DFrXoolN2rPKP99q/XfFlJSqOiavTKgkAAAAAdVfvYLFt27ahnAcANE41LIUOx95uF/VtFXDPwIlQsYjICO4IfSAuSXsSm0iSujVLCsk92h4K1Ze06BoQLLoNn/ruy9SCVt2pWAQAAABsFtY9FgHgiGMZLMapfZPwNIxwu8rfxg2H0xwuUrGICHD4DPUIChbXprctL2W0weIWXUxjA/dsKp8LySIAAABgK4JFAGgIi6XQxa4YuSKQaBQGN3AhWEQExO3eqURPacBYxTJoOyxp0dk0NuhQsDhn6wHb7gsAAACAYBEAGqaapdCuULS+raU4d/lbeUHwPosFBWGbA1AhcfNG09i6dPuCxVUZ7VXqDNzZZcCezZKkt+Zts+2+AAAAAAgWAaBhqlkKHc5gscTjk0TFIqJDzorVprH1TdpIkm48oUNI73X9ce1V5orRyoz2AeMD9m6W0+fV9A3ZIb0fAAAAgEAEiwDQENVULPqM8E/F1BmaYBFhVlTm1YKZi0zjG5u0liR1D1Hjlgo9WyRLkpYE7bOY5ClRt5xdIb0XAAAAADOCRQBoCKs9Ft2x2pAd/mXIVCwi0v47L1Ndcnebxjc2aWXL/QyVJ/jBwaJUuc8iAAAAAPsQLAJAQ1RTsRgJBTGBnai9+eyxiPCan5mjrjmBwWJ2fIry4sorFUNdyFtRGWzVwGXgoX0WAQAAANiHYBEAGiKKgsXgpdCu0hJ5SssiMhccnVbuzjMFixXLoKXKRkOhYhjlyeLS5lbBIhWLAAAAgN0IFgGgISyCxWJ3rNITY8I2hRFdMyRZLIWWtDZzb9jmAaTmHVBKWeDPxKa0lv7Hsa7Q/tqRkVge4ufFJWljWuBy64ql0N+t3RPSewIAAACoRLAIAA0RtMdimdMlr9Ol07o1C9sUJlw9WJJUFNy8RZJRwD6LCJ9OOeb9FTdVqVg0QrwW+prB7fyPg5dDtyjKVYuCA3pjbmZobwoAAADAj2ARABoiqGKxYhm0y+kI2xRappQHilYVi65ic0UlYJeO+3eaxqo2bunRPLRdoZPi3P5O0yuadTQd75e9VZ8uozs0AAAAYBeCRQBoiGqCRXcYg8UKBRYVi+4iKhYRPt4NG01jFcFiUqxLpx5ath9Kn18/RJK0vFkn07F+2VtDfj8AAAAAlQgWAaAhgoLFYldFsBj+t9fg5i2S5KRiEWHUJcdcHbgxrXwp9OI/naqYEO+xKEnHtErRH0/qrGXNO5mO9du7RZL08RJzJSUAAACAhiNYBICGCNpjMVIdoSXrpdBui+YygB0MwzB1hC5yx2pXclON7tFc3ZqFdhl0VRf2baVNaS1VGPTz1/dQxeJ/Zm+x7d4AAADA0YxgEQAaopql0LO37g/7VKwqFtljEeGydGeeuuRmBYxtTm0pw+FUv9aptt771C4Z8jldWpnRIWD8mH2Zcvq8mrlpn633BwAAAI5WBIsA0BCmYLE83LtiYNuwT6UgJt405mSPRYTJ+a/8qDYFgYF6xf6KVw+29+fBeWhP0+AGLomeUlPYCQAAACB0CBYBoCGClkIXu2MkSclx7rBOo1uzJMul0I5CgkWER5Nd201jmw4FiwPapIVlDsut9lnM3hKWewMAAABHI4JFAGiIaioWY1zh7Qq9K6/YunkLeywiTLpW07glNT58IfvyoIpFSeq3l87QAAAAgF0IFgGgvsrKJK83YKhij0W3M7zBomTdvMXBUmiESWeLJcebmrTUH0/qHLY5WAWLFQ1cAAAAAIQewSIA1JdFNWDFUugyrxHWqfgMw7pikaXQCJNOeXtMY5vTWuqyAW3CNoc9SU21JyFw2XU/gkUAAADANgSLAFBfQfsrSlLxoapBnxHuYFEqsFwKTbCI8OiQt9c0tjW1Rdh/FpY3D6xa7JazS/FlJWGdAwAAAHC0IFgEgPqyqFisWAo9oE1qWKcyukfzapZCs8ci7JdTVKZOQUuh9ySkqTAmXr7w5oqmztAuw6de+82NZQAAAAA0HMEiANRXDcFiUZkvrFO5bkj7apq3ULEI+93wvyWmpdBb0lpICn/17sqMDqaxPvu3hXUOAAAAwNGCYBEA6stqj0VXebC49UB4A71j26ZZVix68gvCOg8cnaYv2KCmJYF/17akHgoWw5SxP3xGD0nSqoz2pmO991GxCAAAANiBYBEA6stij8WKisUYV3jfXp2OyntXlb3nQFjngaNTx2r2V5Qkb5gqFu8f2VWStDrdKljMlC/ca7IBAACAowDBIgDUl9VS6JjycK9LemJYp+JwOORzukzhYt7+vLDOA0enTnlZprGKYLFZkjnwtkNirFuSdCAhRbsTmwQc67Nvmy55d0FY5gEAAAAcTQgWAaC+athj8bTuzcI6Fceh/w1eDh1faq6qBEIteH9FqXKPxa4Z4QvZf7jlREnm5dDdcnZp8pJt2ptPd2gAAAAglAgWAaC+LJZCV+yx6HA4TMfsVHG74GAxrpQgBfbrlGsRLKa21FXHtg3rz0L35kmSpNVBwaLb8Kl7zk5NWWueJ9DYLd+Vp/cWbtPK3QcjPRUAAHAUckd6AgDQaNVQsRhuzkPhTXBn6PhS8xyBUPL5DHW0qFjcmtpco5PNDYXCYZVVZ+h928LerR1oiKIyrz5ctEOSdNWxbbUzr1iZB4p0QsemSohxSZK+WLFLl7+3UGVeQ7Eupz65drDOP6ZVJKcNAACOMgSLAFBflsFiZIKUipqwAlOwSMUi7LVsV5465Qbusbg3IVUFsQnq1DQhInOy6gzdZ1+mwltHDNSf12do+MuztGRn+T65N32y1H+sS0aiJt94gtbsydfYtyv3Di31+vTg5DUEiwAAIKwIFgGgviyCxWJ3TAQmUrn02rwUmj0WYa/Pl+/SXQcDu0JvOdS45eL+rcM6l4rOz1bBYq9925Uf5i0KgPqasmaPP1QMtmlfoXo9/aPlsZVZLIcGAADhxR6LAFBfFnssRm4pdPn/Bi+FjiVYhM1ys7KVXpwfMFbRuKVtWngrFssOBYt7E9KUHZ8ScKzP/m3+nxMg2r05LzPSUwAAAKgVgkUAqK9qlkK3bxIf9qlU17wlwVMq+dhXDvaZM3OJaWxrasvwT0SSp+LvusNhqlrsuX+HXF5vBGYF1J1hGJGeAgAAQK0QLAJAfVXTvGVUt2Zhn4pD1s1bygcLwzwbHE1a799tGqtYCh1uHm9lGLMmKFiM9XmUumNruKcE1Nk3q7L05cqsw58IAAAQBQgWAaC+qtlj0RGBFhGVS6EtqiUJFmGjThYdoSuWQoebx1cZLFrts7hl1gLTGBBNnpu5Uef/d16DrpF1kKZdAAAgfAgWAaC+LPdYjNPPm/eFfSrVNW8pHyRYhD0KSz2WweLWSFUsVg0W083BYvaCpaYxIJrc+/WqBl+j9d++0/hfqc4FAADhQbAIAPVVzVLojfvCH+QlxJS/nRfGWDSPIViETW77bLk65pqXbG5NbR6B2QRXLHYwHe+9b5t25dHQCNHJ5wvdvoq3fLpMX680b1MAAAAQagSLAFBf1QSLkRDndqlPy2TLikUjP9/iFUDDvbtwu6liMTs+RfmxierQJLwdoSWpW7NE/+OdyenKjU0MON57/zbtLywL97SAWlmZdTCk1xvz1vyQXg8AAMAKwSIA1FdQsOiTQ2VOd4QmI71+6QAVWOyxuGaLeakqECrBweKWtPKO0CvvGxH2uTRLqhKsW3SG7r1/u3weT5hnBdTO9+v2RnoKAAAAdUawCAD1FbTHYpE7VnKEv3FLBbfTYdkV+r8z1kRgNjgapJYUKL04sCJ2S2oLnde7pZLiIhOyx7gqfwZXBwWLCZ5SubdlhntKQK18sYKlywAAoPEhWASA+gqqWIzUMugKPsO6eUtZfkEEZoOjQcdqGrf8/dzeEZhNuapd2a06Q/tWrgzndIBa84Zwj0UAAIBwidyaPQBo7IKCxeKIB4uGZcVicwdLP2GPjnnmpZtb0lqodapFd/IwMVQZzqy26Az97rvf6ekbfxPOKQG14qkmWEwrzteYjXM1ZsNcdc7NUnZCqqZ1GKDPu5+o9eltwzxLAACAQASLAFBfVkuhI8hnGJYViy0IFmGTTrnmisUtqS3ljOCWAFWzGauKxd77t8nj9cntYtEGosv8bTmmsfM2ztNbU15URnFgY5fTM5fqiVnv6dnjLtSDJ18rr9Nlec0TX/pZP/1huGL4+w4AAGzCbxkAUF/VLIW+YmCbSMxGPp8sm7e0dnsjMBsc6QzDUKe8LNP4lrQWSkuIicCMyvmMymQxM7W5CoLC9j77tlkGOEAkGYa5WvHaldP0+ZdPmkLFCk4Zum/BRE357C/KKMyzPGduZo5u+3x5SOcKAABQFcEiANSXKVgsDzCSI9S0Ij0xxnIpdGkeeywi9HxGdXssNo/AbCo9flYv/2PD4TQ1cOm9b7vKPL5wTwuw9PXK3bpuwmLd+tmygPHfLv9eb095UW7j8H9XT8tcpu8/fVhJpUWWx9+cm6nlu/L05LT1+mDRdpV5+fsPAABCh2ARAOrJMO2xWF6lFan99/u2TrVcCr12qzn8ARrq46U7TUuh98WnKD82MUIzKnfjCR0Cngcvh04pK5J7145wTgmw9M2qLI15a77eW7hd43+t7Fbe9cBOvTz9tTpda+DezXrn2+flqCaIHPDsTD307Rpd8+Fixd3/jd5fuL1BcwcAAKhAsAgA9WRE2R6LkvR/FwwwjSWVldBtFCF348dL1CmoYnFLaosIzaZS8+TAcN2qgctLr05SURlbBCCy/jsv0zTmMHwa/90rSvSUBoyXOt267bRb5b57oo67+jktbd7J9NqxG37VI3M+qtW9r52wWJv2Uc0OAAAajmARAOrD45GzNPCDX0W14OUR2mNRkjq3a2YaS/SUqMRDiILQcufnm/Z+25IW+WAx2OqMdqaxNjs366uVuyMwG6DSxBXmv4M3L5uqEdtXBIx5HU6NufD/9OrAc+RzurSoZTcNu/Kf+qGD+Yukh+f8T0N3rqnV/ScspnIXAAA0HMEiANRHkXkvq4r9DU/unB7u2fgZieZlqAllJfpoyc4IzAZHKsMwqtlfMTqCxX+P7ed/bFWx2HvfNl35/qJwTgk4rLTifD3187um8ecHj9HUzoMDxopi4nT5eX/W+iatA8adMvTG1JcV6yk77P02ZFOxCAAAGo5gEQDqo7DQNFTRvCU+xhXu2VRKSDANJXpKNHUN+ywidFZn5ZuWQUvSltSWunJQ2wjMKNCtwzqpf+tUSdKmJq1U4gpsqNRzP/vLIfr8YclkNSkJDPvWNW2jR4b9xvL8AwkpGnPhQ8qPiQ8Y77N/m/5v7seHvZ9DjvpPFgAA4BCCRQCoD4tg0aojc7g53W4Vu2ICxhLLSuRw8AESobMuO9/UuEUqXwrtdkbH37XFfzpFkuR1urS+SeD2BL0JFhFlEsuKddfCL03jt532exXX8G/Lmoz2evCka03j4+Z9ql77toV0jgAAAFYIFgGgPqyCRYuOzOHmdDhUEFS9klxWJHJFhNKO3GLLpdBbUlsoNd5t8YrwqxqmB++z2LwoTxmFeeGeElCtm5dNVbOgPUtntemt6R36H/a1/x54tn5p0ytgLMbn1T9nvhXSOQIAAFghWASA+ojSikWfYZiWxSWVlWh1Vn6EZoQj0cdLdqpTXpZpfGtqC908tGMEZmTt+iHl+yuusdpncT/VXIiMojKvLnt3gf95rKdM9yyYaDrvyaGXqTbfCvmcLt00+o8qdQaG+uduXqAztixu+IQBAABqQLAIAPURpRWLLZLjlB8bGCymlBZp2S6qsxA6P2/eb1oKvS8+RQfjEtUkIaaaV4XfTSd0kCStSTd3hiZYRKT8depafbpsl//5mI1z1TZ/f8A5C1t01ZROx9b6mmsy2uvlQeeZxp+d8aZcPm/9JwsAAHAYBIsAUB9RWrHoNQzlxwQ2cEkuK+9gnVt0+C6hQG11DqpY3HKoI3SUbLEoSTqxU7ri3E6ttgoW97HPIiLjnzM2Bjy/Yfl3pnP+fsIltapWrOrxoZcpOz4lYKzvvkxdv2Ka5fl84QQAAEKBYBEA6iNKKxZLPT4djA0KFkuLJUklHl8kpoQjUGpJgdKLA5fXb05rKal8n89ocufJXbQ2vZ18QR1we1GxiCjQKXe3Rm9dEjC2K6mpvux6Qp2vlRufrL9adJB+6Nf/KdZj/mJp0Y7cOt8DAAAgGMEiANRHlFYsOhwy77HoKZHT55XPMCI0KxxprDpCbz1UseiKsmAxIzFGRTFx2praPGCcikVEwsFiT8Dz3634wXTO28ecJo+rfk2QXhtwltY0bRsw1vHgXt1oURUpSXd8saJe9wEAAKhAsAgA9RGlFYu9WiSb9liUyhu4+MgVESJWjVv8FYtR9ptF69Tyn4fVGYENXDoe3CsVFERiSjiKFZZV7nfo8nn1W4tg8c1+Z9T7+l6ny7Jq8f/mfqyEshLT+CuzNmvzPvO/ZwAAALUVZb/+A0AjEbUViw4VBO2xKJXvs0jFIkKlU565YnFLWnnFYoLbFe7p1Ojc3uXzsmrgorVrwzwbHO2q7kF6xtYlpqYt0zr016YmrRt0j096DteyZoHd2VsXHNBtSyZbnn/ZewssxwEAAGqDYBEA6iNKKxYlmfZYlMr3WSRYRKh0zq2+YjEprn5LOO3SNDFWkrQ6vb354OrVYZ4NjnZVdwq4Ys1PpuNv9q1/tWIFw+HUI8OvMo3fP+9TJZea/+1auJ29FgEAQP0RLAJAfURpxaJk3mNRklLKilgKjZDpWM0ei69d0j8Cs6kdq4rFfQuXRmAmOJpNW58tSYovK9FF638NOJYXm6Avug2t0/UePK27/nRqF9P4V11P0PyW3QLGmhUf1J2Lvq7jjAEAAGpGsAgA9RHFFYu9u7QyjVGxiFCZvj5bnYP2WNyTkKbCmHg1T46N0KwOb3WGOVjMnL0oAjPB0ew/s7dIks7ZvFApZUUBx77oNlTFdfyC6pYTO+rPI7opxhXUNMnh0MMnXW06/54FX6hJUEd3AACAhiBYBID6iOKKxfYdWpjGkqlYRIic/upsU1foimXQ/VqlRmJKtbI/IVV7EtICxuLWr4vQbHC0apVSXlFutQz6fz1PrvP12jdJUIuUOM3+40ka2y/wS6XvOg7ST237BIw1KSnQPQu+MF0nuFs1AABAbREsAkB9RHHFojcxyTSWUkrzFoRG0+J8pQXt07YltTzM7trM/HcvmgRXLXbP2SmVlUVoNjhapZQU6tzNgQ1T9sWn6IeOA2p8Xawr8Nf2kzqn+x8PbtdEn143RL5nzlfp0+eWD1ZTtfjHxV+bqhbTHvpWc7bsN50LAABwOASLAFAfFsFikTtW1x1n0Xk2zDyJiaYxlkIjFHw+o5qO0C0jMJu6WxPUwCXG51XhajpDw365RWW69+uV+njpTl2wca4SPKUBxz/rMUxlrhhJ0qYHT9P0W08MON6nZbI+uuZYuQ61lXY7Hbp/ZOAeihXcVQLIn9v11fcdAgPL1NIi3bXwK9PrHvueCl4AAFB3BIsAUB9BwWKp0y2Py62OTc2hXrh5k1JMY8llRfL5IjAZHFFe+3WrOuWZO0JvSTMvv48mvz2+PFC02mfxur9OUJmXHw7Ya9Srs/XczE2SpIvWzzEd/6jKMuhO6Yk6tWuGxl86QIPbpemsns31xW+P14V9W2vt/SP10dWDtW7cKJ3bp/pA/9L+rf2PHz3xStPxOxZ/rbSgqsUpa/fW+b8LAACAYBEA6iMoWKzYXzEaqgKtKhZTSou0M684ArPBkeSteZnqnGsRLKa20PBOTSMwo9p56uzekqTVQRWLktR97zbd8cWKcE8JR4FSj0+vzdmiaz5cpMU78iRJCWUlOmtLYNOgPQlp+qndMZKkd68cJElyOBy64YQOmn/XKZp801B1O7TNQJeMJF02sI06pdf8JdZbVwz0P/6lXR9N6xDYsb1JSYHuWDzJ9DojCv4NAwAAjQvBIgDUR3CweGh/RW8UfCjzJSabxpLLilVKVRYaaMH2XFPjFqm8eculA9pEYEa1E+cu/3VnTbq5YrHX/u16c25muKeEo8DZ43/V7z9brg8W7fCPnbllkRKDlkF/1e0E+ZwuSdKVg9qG5N6JsW6tvG+EzuzZXJL02NArTOfctfBLpZYUBIz937drQnJ/AABw9CBYBID6MFUsxkpSVHRe9iSZG2gklxbLEYG54MhjtRR6a2oLpcbHRGA2teM49Jd/W0oz5cfEBxzrvW+bPNHwg4sjyqLtOfpx4z7TuNUy6M+7l++nOP3WE/17KIZC75Yp+vamoeqSkaif2vfVjHZ9A443LSnQ7Yu/CRj7+/QN+u1Hi7W/MDD8BAAAqA7BIgDURzUVi74oCCi8SeaKxaSyogjMBEei4IrFnUnpKnHHKoR5SMg5KmJ1h8NUtdhr/w4pCiqNcWSZvMZc2RvjLdN5m+YHjOXFJmh6+/JlyiO6NbNlLq5DyfqjJ5qrFu9e+KWSg7q8v7Ngu278eKktcwEAAEcegkUAqAejmj0Wo2Ep9E6vyzSWUkqwiBAwDNMei1tSyxu3OKI5WKwyt9VBwWJKWZHaHcwO84xwpHNa/ECM2LZCTYOWHk/qMkSlbnurfRNjy/9NmNG+n35u2yfgWEbxQf1h8WTTa75YsTsqvigDarKvoFRr9+SrxOOt9pxdecXam18SxlkBwNGHYBEA6sEULFZULEbB57B8n1PFrsAPqsllNG5BwzUrylOSJ/AD2ua08s60jihebF91ZmssOkP33r9du2luhBCyquC9aIN5GfQX3YbaPhf/910Oh2XV4j0LJirJ4ssntghANJu0Kktdn5qm3v/4USe+NEs7cgP/Dnt8hn77v6Vq++j3avnX73T3lytoTgQANiFYBIC6Mgw5qqlYPKdXi0jMKMBlA9roYGxCwFhyKaEJGs6qI/TWtPK/89G8FLoqq87QvfZv17UTFkdgNjhSBQftDsOnMRvmBowVu2L0befBkuTv+myH0YcauEjStA4DNLt1r4DjzYoP6rYl5qrFaKjAB6rzf9+uVl6xR5K0ZGee3ghqwrUwq0QfLN7pf/7iz5u1fNfBsM4RAI4WBIsAUFelpXL4AjssV1QsntwlPRIzCtA5I9HUoCKlrEgfLt5RzSuAw9ubX6JOeeZ947aktlC826kLjmkVgVnVTuBSaHOw2Hv/Nv2wnuXQCJ3goH3ozrVqXXAgYOy7joNUcOhLoPGX9rdtLtcOrlKl63Do0WFWVYtfKDGost3jJVhEdFq1+6ApJPzbd+skyV+VOHFjoel1/B4EAPYgWASAuio0/7JaUbEY5zbvbxgJ+aaKxSJ9sIhfqFF/pV6fOllULG5Oa6mHz+ih5Dh3BGZVO44qyeLGJq1U5gz8Oe21b3u4p4Qj3LzMnIDnYy26QU881A1akk7qnGHbXPq2Tg14/l3HQfq1dY+AsRZFubp16bcBY1QsIlrd+Il1c6Fxk9fo9M936+JJWZq2zbxSo2q386Iyr/YcLJHH6zOdBwCoG4JFAKgri2Cx6FDFYrQ4GBMULLLHIhrI6zPUOc8cLG5JbaEHTusegRnVXtXiMY/LrQ1NWgcc771/W3gnhCPeZ8t3VT4xDNP+ih6HU193HSJJevKcXnKFcy8Bh0OPDTVXLd47f6LiPJXBi8dH4ILok1dcpl+3HrA89txPm5VXaijzoHUzlzfmZupAYanun7RKSQ9MVqu/facTX56lbTk0uAOAhiBYBIC6sqpYdMfptO7NIjAZa/mxgUuhCRbRUDvzStQxN3AptE8OZaY2r+YV0SPWFfjrTnBn6JaFuWpaxN5bsEf/vVvUJajad2b7vtqfkKqWKXG6ZWjHsM/p286DNb9lt4CxVoU5unbVdP9zCrkQjcoauEQ/45Gp+ueMjf7nC7fn6qWfNzd0WgBwVCNYBIC6qmYpdP+g5WaRFLzHYoKnVC6f9Tf4QG0Me3mWqXnLjuQMlQV1II9GTqdDbdMqfybWZFjvswiEQn6JJ+C55TLobidqVLdm2vnIGWqaGBuuqVVyOPTE0MtMw/fOnyjnoX8rqOJCJE1alaV7vlqpdxdsC+jmbEdx77MzN6rT4z9o8PMzNT9oGwMAwOERLAJAXVVTsRjWpWyHEbzHolS+z2LWwZIIzAaNXanHJxmGOh7cGzC+OS3yXdBra+Fdp/gfB1csSlJv9llEiEzfENgIaOz62aZzvug2VP8a2y9g/89w+7rr8VoV1Myoe84uXbThV0nSqiyqeBEZHy7argv+O0/P/7RJ13+0RE9N3+A/ZtfPTGZOkRbvyNNl7y0ICDIBAIdHsAgAdVVNxWJucVkEJmOtwCpYLCuOqjmi8fhxY7ZaFRxQQpX91yRpS1rLCM2o7lqkxGnC1cdKklZXU7Ho8/FhEg338JQ1/sc9921X332ZAcd/bd1DO1My1KN5UrinFsBwOPXMkItM43+e95lkGPrD58sjMCtAui3o795D367RvV+v1G/eX6hz35hr6723HijSz5v223oPADjSECwCQF1VU7G4Jis/ApOxNqyvOThJKS3SwaAlekBt3PvVKnXK22Ma35raeCoWJenygW0lSWubtjUd67l/h5bszA33lHCEMQxDy3dVVvpdbFGt+GmP4ZLsq7yy0q1ZYIgZ5y7/CPBB71O1PTmwI/WQrA0auW2ZCkq9+mjxjrDNEaiQV2z+XeW5mZv00ZKdmlNN45ZQ2lvA6g4AqAuCRQCoq2oqFn/eHD3fcKe3SDeNJZcV68sVuyMwGzR2K7MOqlOuuSP05kZUsVhVQWyCMlMCmy313r+NrQLQYA9VqVaUpIvX/WI65/PuJ4ZrOn43ntAh4PkNx5c/L3PF6IXBF5jO//O8zyVJv/lgkX7/2TKqedHopBXnq8f+7Tpu93o1K6zbl0b8dQeAunFHegIA0OhUU7GYnhg9TSx8ycmmseTSIj3+w3o9elavCMwIjV3nPHOwuKWRVSxK0iX9W+vTZbu0Or29Ohys3AuvU+4eLT2YL6lxhqWIPJ/P0FPTKveC63pgpwbtDew2u6BlN21JaxXuqem+EV2VEufWjA3ZOrZdE/3p1C6as3W/Fu/I0+v9z9RDv36sJiUF/vPP3LpYA/Zs0tIWXfTanK1yORx6ZWy/sM8bqIvk0kJdu/JH3bJsivplbw04tqR5Z33V9QS9MPgC5cSbf0eqykuyCAB1QsUiANRVNRWLY/u1jsBkrBkWwWJKKR0+UXdLdpRXenTKNS+FbowVi2f0aC5JWpMR2MDFKUNTv5oViSnhCFHi9QU8v9iiG/Rn3YeFazoBHA6Hfj+sk/537XG6f1Q3xbiceuj0HpKk/NhE/WfA2abX3Df/c//jV+ds0UGL5alAtLhi9UxtHn+TXpn+milUlKSBezfrkV8/0pr//l7XrJwu1dCgZW7mAX26dCdV7ABQSwSLAFBX1VQsDmnfJPxzqYaRZFGxWFYcgZmgsTv2+Z8kybQU2uNwantKMzVJiJ5K3dqoaJixOt28D2neYppVoP6ClwtbLYP+rEd5sPjTHyITMFbnxWPPV7Er8Gf58rWz1PHQz73PkHbm8W8Iok9iWbHenPKiPpz8rDKKD9/JvEVRrt6Z8oI+mvQPxXqsG9q9+PNmXfbeQvV/ZoZW0x0dAA6LYBEA6sgoKDCNFcbERWAmNUhOMQ+VUbGIutlfWNkFOngp9PaUZvI6XXrvykHhnlaDVGQ/q4MqFiWp9/7tYZ4NjiRVc8WOuVkakrUh4PiS5p21oWkbSdJJnQMbpkRCRmKs//GepKZ655jTAo67DJ9uWzK58rkzfM1mgNpoUpyvaR8/pN+unFbn11627hd9M/FvSi41f1lcYW9BqZ77aVNDpggARwWCRQCoo33Z5k3AC93RFixa7bFItQnq5uuV5WGi2+sxLYXe2KSVbj+ps0b3bB6JqdWb79DyN6uKxV77t4V7OjhCZBeUaPgrlUvprbpBV1QrDu/UNGzzqsnJXQKbfD173IXyKTA8vGHF90ooK18O+s3qLP19+nrNz8wJ1xSBajUrzNX0j/9PJ+xeZ3l8VXp7vTzoPL006HwtbNHV8pzTMpfpu08fUWINKzrenJupT5fuDMmcAeBIRfMWAKijzduz1SxorDAmToPbpUVkPlbatQ2eIXssou6ch75+7Ji3R24jcP84b5eueunCvhGYVcMc166JJCk7MU17E1LVvCjPf+yY7G0qKPEoKY5fj1B7hmGoxV++Cxgbu868v+Kn3YdLkp46t3dY5nU4DkdgiLihaRtN7jJY521a4B9LL87XVatn6I3+Z+ruL1dKklzOtZp0w/E6s2fja96E6LY3v0Q3frz0sOcllxbqu08f0cCg5kiStDuxiW4efbsmdRkiVfk7fu7G+Xp5+mvqlBf4JdnQXev0wTfP6OILHpDP6bK832XvLdREl1Nj+oa/8RIANAZULAJAHTmKrPdYHNgmeoLFmCappjH2WERdOQ99KOuWs8t0LLZXz3BPJyTSEmJ05aC2kqQVzToGHOtxYIcy7v+KjqCok/nbcgKetz2YrWG71gSMrcjooLWHlt9HwzLoCid1DqxafGXQeaZz/rh4UkCjC6/P0D1frbR9bjj6/PW7dfp6VVaN57h8Xn006Z+WoeJPbfto4LUvalLX4wNCRUn6pusQnXDVM1rQspvpdWM2ztPzM96s8b4XvT1fpR6fHpi8WsNfnqU/fL5cBSU0NAIAiWARAOostsQc0BXGxMkZTftPpbDHIhqupmBxQ5PGW7nxwVXHSpJWZQQuh3YbPvU8sF0fLmavRdTeqP8EVieOteoGfWgZdKwrun71vnloYLj+fceBWtO0bcBYv+ytOnX7ioCxVVn5ts8NR5//zN5S8wmGoZemv65zNi80HZracZDOvvhv2pNU/VYDexObaNRlj+untn1Mx/64eJJ+s3pGjbf/x4wNenr6Bs3ZekD/mb1F93+zuub5AsBRIrp+uwGARsBZZA7oit1R1hnXco/F8nnn8w07aumqDxZJsg4W89p1CvNsQivG5TBVLEpS3+xMXTdhSfgnhEbLE1TheolFN+hPe5Qvg76oX3QF8uf2bqFuzZL8zw2H07Jq8ZalU8I5LcDS3Qu/1O+Xfmsa/67jQI258CEV1aKRXn5soi688CGtTjc38PrP9/9RtwPV76f4yJS1Ac//fbggFACOEgSLAFBHu3bvD3he6I6V4Yiyt9OkJNNQRfMWfhFGbezKq6zM7XbAHCzmtDY3P2lMYpxOrcgwB4vH7MuMwGzQmDVPruyu3DE3SyfvWBVwfE3TtlqZ0UFOh/TYWb3CPb0aNU2M1ew/Dterl/T3j717zEgdjEkIOG/s+jlqXpgT5tnhaHKwuOYvPS9cP0f/nPmWaXx5s4667Pz7VVqHQHk/tAAA3C5JREFUL3hz4pN17thHtCchcAublLIiTZj0T8V6ymp9LQAAwSIA1FmipyTgedR1hJYkl0ulcYEfDCv2WBzH0h3Uwv+WVFZtBFcsbktuJl9CYrinFFIxLodWNutgGj8me2sEZoPGKrugRDtyK0P4q1bPNJ3zSc+TJIdDM24bFlAdGC2aJcUFLInOj03UhN6nBJwT6/Po+hXTwj01HOF25Bbpmg8XqffT05X2kLkSscLg3ev1/uRn5VRgdfCupKY676JHlBdX95+rLWmtdPU5fzLfa89GPf3z23W+HgAczQgWAaCOEssCg8WCmHid3t3chTnSnCmBy6HZYxF1UbFlqMvnVefcwM30NzRtrV4tzMvtG5OBbdKUE5+s7cmBjTT6ZlOxiNp7d0GV/TgNQ1ev+tF0znt9RkqKrqYth/Na/7NMYzctnypHUHd4oD5KPF59uWK32j/2gz5YtENr9xZUe267vL366ovHlegpDRgvcMfpggsf0rbU5vWexw+dBunvx19sGr9z0dc6f8Pcel8XAI42BIsAUEfBv9wWxsTp98M6RWYyNXCnBjZwSSklWETtVTRuaX9wr2J9gUvUNjZprcsHtonEtELmmuPK99damRFYtdg1d7cS6aCOWrr368plz8dlbVCvAzsCjv/auoc2NG2jp8/tHe6pNcjill01P6h7brec3RqVuSxCM0JjVljq0c2fLFXPv0/XxW/PV59/zNBFb88/7OuSSov05RePq3XBgYBxnxy66tx7tLBV9zrPpV/rwN+NHhl2lWa3Nm9R8N+pL6ld3t46Xx8AjkYEiwBQR8EVi4XuOMVEWadPSabO0KklBIuovdV7yru+Wu2vePZ5w6Lz73wdnNKlvHrMajl0n33bwj0dNDKGYejuLwM7JV9jUa34fu+R+sd5fXTPqV3DNbWQed2iavG6lSyHRt39edJqvTE3U+uzCzRxxW5t3l942Nc4fV598M2zGrR3s+nYfaf+Vl91G1qnOTxzfh+V/eM8Lb1nhHzPnK/rjyvfJ9jjcus3592rA0HLqTOKD+rdb5+X0+et032ASNidV6yL356vAc/O0F+mrpXHS3U5wqtxfyoAgAgw7bEYE+dfNhpV0gI3JU8rrX6pEVDVR4t36D+HmvxYdYRuO7hvmGcUehV73Vl1hj4mO1OlHn4pR/XmZeboxZ8rA48Yb5kuX/NzwDllTpf+1/Nk3Tuiq5xR+Y9EoOuHBDZk+qjXyZZNXFJKDh8KAVWNn1v3vWuf/ukdXbBpnmn89f5n6vnBY2p1jTi3U75nzpfvmfP1p1O7ylXl5zDGXfk4M7WFbjzzj6bXj9i+QvfP/6zOcwfC7caPl2riit1avuugHvt+nd5ewBekCC+CRQCoI6vmLUVlUfiNdpMmAU9TS4v45h2HlVNUpus+Wux/bhUsqnvdl59FK6tgsW/2VsWP+0a5RXQGhbX/zg/ci3PMhrlqUZQbMPZtp8Fq1rF1OKfVIP8e208PnNZNZ/Qo3zO4IDZBn/YYFnBOoqdUl6z7JRLTQyNW5jUOf1IVdyz6Svcs/MI0/n2HAbp91C2So3ZB/Y3Ht6/2WGxQ1f3E7sP07wHnmM772y8f6oSda6q9zvT12bWaC2CnyWv2BDy/+ZNlem7mRj08ZY027yv/MsjnM+Tz1e1nEagtgkUAqAufTwkWeyxuy4nCPdmCgkWpPFwEavKf2VsCPgR2tQoWuza+ZZ1WWqXEaVWG+YNn30OdoS99d0G4p4RGYkfQe/5Ny6aaznm772n6z8X9wzWlBouPcemJs3tr6s0n+sfePWaU6TyrJd9AqFy3Yppe+PEN0/jq9Ha67Pz75XG5a3WdMV0T9cRZPas9nhpvvs69p/5Wy4O+bHIbPn0w+dlqK3VPf22Ozntjrjo/8YNO/dcvWrc3v1bzA+x279er9MQP6zXo+Zm668sVih/3jZIenKxXZpm3F7CSXVCiS99ZoE6P/6DrJyxWQYnn8C/CUYtgEQDqIO9Anmms0B0XlV2hrYLFJiXlv/DyjSWqk5UfWJHbPWiPxdymzaWkwL2oGqu7Tumiwph4bUxrFTDeP3uLJOkHKlFQDU+V99AuObt0RubSgOO7kppqUpchapkSF+6phcTQjk0lST+1O0ZbUlsEHBuxfYU65e6OxLRwhLt8zU9647uXTePZ8Sk6/6KHlRufHDB+4LGz9NQ5gY2R4lwO/XJZaz10fBMlxrqqvdel/c0NyIpj4vSbc+9VsSsmYLxLbpb+Ne0/1V5r8po92nqgSD9v3q8zXpujA4Wl1Z4LhMqO3CJd8+EiDXt5Vo3n5RV79NLPm+XxGSrx+HTnlyu0K+/wBRE3f7JMny3fpcycIr27cLuGvPgz4SKqRbAIAHUwbWmmaazYHatjWqVYnB1hVsFicfk+i8HhEVDBWWWJmcvnVdfcwGAxoXePcE/JNpcPKP9guax5p4Dx1gUH1OJQF1IvITwseI3Kvxc3LP/edPytvqfL43Krsf71uXZwedd0w+HU+31GmI5fs2qGVmcdDPOscCS7duU0vT/5ObmMwP1tC9xxGnPhQ9rUJHBbgcyHTldaQoxuObGjTjwUhMe4HLpvcKpiXYdfKj2gTaqOb9/ENL6yWUfde+rvTONXr56pa1ZOP+x1t+UUK+ORqZqweMdhzwUkaVdesb5auVvbcuq2qmjs2wv0waId+nXrgcOfXIVhSG0f/V5zD70u62CJ9hw0fy74YkXgF0hr9uSr59M/akM2e7bDrHa15AAASdLc1dt1UdBYfmy8HLXc7yesLCsWy38ZKCxlr0VYq/o3uXNuluK8gd9Ox/YJrA5pzFqllleTLW3eWRdt+DXg2IC9W/R9UlNt2leg7s2TrV6Oo9i8zBxJ5U1bfrviB9PxN/qdIUnyGY0zWazabObdPqP00K8fBxy/ZtV0PTF9vd668thwTw1HGsPQnYu+0vMz3jQdKnW6NXbMg5rTNvDfneX3jlC7JuWNhZokxGjW7cO1eX+h0uNd2rhmZa1u63A4NPMPw/TDumzllXi0ZEeu/jljoyTp3wPP0egti03NY/7zw7+1pEVnLW/e+bDX/9NXK3XZgDYBDWOAYD9uyNa5b8xVsccnl9Ohf4/tpzi3UxmJsRrds7liXNZ1YPsKSjV/W06D7n1iUKXjiR2b6spBbTV9Q7YpVKywM69Yr/yyWS+MafxN/BBaVCwCQB3EFJi/pcsP6poZNYK6QkuVwSJQnaoVi733WXQV7H3kBItxbpduOKGDllp8SBywt3wPohK6Q8PCwUPLwS5d94taFeYEHJvacZC2HFpe3yY1PtxTC4l4d+VHhA1N2+iXNr0CjnfL2a31X32vrIMlOljM0jhYKy7z6sWfN1V73OXz6uXpr1mGih6HU785915932lQwHju42ebVok4HA51yUhSclzdambi3C6d26elrhzUVveOqLJ3sMOhG868QzuT0gPOT/SU6rOvnlJa8eH3Ucw6WKJ5mXWrJMPR56lp61V86PcMr8/QLZ8u0/UfLdH5/52nbk9Nk/Per+W892tdP2GxSqv8PlLX6sbamLP1gO74YkW1oWKFl36u3KPRaKRfniH0qFgEgDqIKbIKFqP0g6NFxWJaNZuPAxWqFt/23r/dfMIRFCxK0qsX91e37+abxgfsKf/F2csvzQjiD9IMQ3cu/Mp0/PUBZ0qSrhjYRhlJseGcWsiM7tE84Pl7fUZpeFBn3GtX/ajWf+ujtHi33r5ikMb0DdyrFDjz9V/18+b9lseSSws1YdIzOnezuUlWqdOty8/7s77sPjRgPCnWpRSLpiuh0Dw5cD/UfYmpuuacu/Xdp38JWJ7dLWe3Ppj8rMZc+JC8zur3cJSkUi9fTKFmNe3lXLUx5LsLtysrv0SlHp9+3LgvHFOr0SNT1ujJaeuVGOvSfy7ur6uObRfpKSHCqFgEgDqILTIHc/mxjSdYrGjesmk/ASOsVa1Y7LX/yK5YlCSX06Eex/VRTlxgQ5qKisWF23MjMS1EqVKPT0Nf+lmSNGznag3J2hBwfHNqC33Z9QRJ0ttXDDK9vrFoFVRp+b+eJ5kaWly2dpbiy0qUW+zR3V+uoHIFAZbsyK02VGx7MFs/ffSAZahY6I7VhRf+nylUlKT3fmPvz9QdJwdWr//YYYAeGn616bxzNi/UMzP/e9jrNdY9VmG/ojKv7vpyRZ1eM3Xt3qgIFSXp8R/Wy2dI+SVe3fTxUuXT1OWoR7AIAHUQU2wRLEbrUuga9ljcTLCIagRULO4LrFgscMdJHTqEeUb2i3O7tTSogUuv/dsV5ynVczM3RmZSiErTN2Rr9Z7yL2juXGSuVnxl0HnyOV1aed8Ixbob96/ZVfeGy41P9gemFZqUFOiCjeV70G05UKT1bOiPQzbvK9SQF3+2PDYwa6N+/fBeDdy72XRsd2ITjbj8KU3pPNjytS6b97O+99SuprGnj79YXwT93ZekOxd9rd8vmVzj9RrrHquw3x8nrghYUtyYFXt8enOeubklji6N+zceAAizov05prGDsY0vWPyIboWohj9LMAz1DqpYXJveVnIeeb869GqZrGVB+yy6DZ+O2ZepVVmH30sLR49z3pgrSeqUu1tj1wc2/DkYk6A3+52hns2T1LtlitXLG5V7gkKW944ZaTrn6tU/+h8XldEUDNLUtXvU9alp8lqU652zab5++t8DaptvrmRckdFBQ696Rgtada/22sdZdHEOpXZNErT94TMCBx0OXX/2XVqZ0d50/svTXtOla2eZxitY/d8AkKT/RlsQZxjKKMxT+7y96pyzW4llxYd/TRXZBaU2TQyNBXssAkAdeA+aQ4bGtBQ67VCwOCNKllIg+qw9VI3VJn+/UksDNwcv7tYjElOy3b7CUu2zaOAycM8mLWrZLQIzQjTac7DE//i++RMD9l2TpLf7nqa8uCTt+tOp4Z6aLR47q6eW7MjVd+v2SpKmdjpWuxObBDSrOXPLYqUX5Wl/Qqou+O88bX3ojGquhqPF2ePnWo7ftvgbvfjjeNPPjSR913GgLjv/fuUFbUlR1TWD26l1GJohtUmL1/pxo9T979P9Y3lxSTr/ooc194N71bwozz/ulKH3Jj+n3LhEfdfJ3CGdXBHBCko8evDbNYc/0WYun1cD9m7WSTtW6aTtq3TSjlWmRmSbU1tobuueeq/PSE3tNEi+GvYUfeKH9brjpM6mvUpx9CBYBIA6GNLE/I9qny5RumF9aqppqEkxS9VQs8+Xl3cD7GXRuKXV8QPDPJvwyDxQpAMtrDpDb5EkTVqVpfP6tAzzrBBtftxYvsl+q/z9+u2KHwKOeR1OvTToPI3u0VwJMTU3dGgsYlxOTbl5qJz3fi1J8jpd+rjnybpj8deV5/i8umTdbL0+4CxtyynWtpwitW8SpVX8iAzD0D9+elv3LphoefiNfqN122m3yuMq/1j62Fk99fCUtabz3rp8oJ2zDNC1WZJ+d3yHgKqyLWmtdNGYB/XDJw8r3lvmH4/1efTZl09p9CWPak7bwD2IWQoNSSrz+jRz4z7d8umyOm9F5PZ6NGDvZnXN2a1mRXlK9JSo0B2ng7EJ2pGcoczU5tqW0kwl7pobhSWUlej43et08vaVOmnHKp24c61SymruLN05b4865+3RFWt/VmZKM/1l2FV655hRgXvmVHHZuwv1423D6vTfhyMHwSIA1EFLR5lp7JwhXSIwk1pwu6XkZCm/ssoyrZS9FVE7wcugJanLScdFYCb2O7lzhp5a3UEeh1PuKtU0A/ZskiRd8N95WnP/SPVonhypKSLCduUV68r3F0mS7l74ZUCwIJU3N9nYtI0WXXvk/YxUDXo+7H1KQLAoSVeumanXB5wlSfp8+S7deXKU/puI8DMMvfDjG6a/MxXGnXyd/jFkrD+o6JqRqDbVVCU6nfburxhs/KX9TctVZ7ftoyvOu0+ffvX3gH8rkjwlmjTxUY24/Ektr1L9Pu6b1YpzO3Va98Au6zh6GIahEf+erTlbD9T6NTHeMl28brauWzldJ+1YpSRPyWFfk5WYpsyU5spMba7cuCSVutxKLCtRs6I8dT+wU11ysyyrhWurw8FsvTX1RV23cppuHn27NjRtYzpn5qZ9MgxDDpv3QkV0OvI2SgIAG7kLzcFcTFpaBGZSS0HLoZsUV4aMuUXmkBSoENy4pXzwyOoIXeGGE9qrxB2rNentAsYH7t0sx6FfxD9YxL6kR7M35pYHDE2LDurWpVNMx58+/mJJUkr8kfedfdOEykqYea16aGNaYJX+qdtXql1e+XLpPfmH/wCMo0QNoWKxK0aXnfdn/eP4iwOqn9aNG2W5lPLYtuH/Pau6cOSrbkN1w5l3mMablhRo6qd/UdcDO/1jK3Yf1Bmv/arjnv+JrulHkUmrsvSb9xfqvq9X6ccN+2odKrq9Ht258Ettff0GfTj5WZ25dXGtQkVJalmYqyFZG3Tx+jn63YofdOvSKbp21Y86Z/NCdc/Z1aBQsaoR21do/vt/0ugtiyyPu+6bxN6iRymCRQCoA3eheSmxkZQYgZnUUnCwWFI5/5Ne+SXMk0Fj0iuoYtHjdEndjsz9BtumlS/dXNQysFlFammReu4vDxSjbqN1hNVfvyuv2Ltn4Rem5WNfdTk+oErpSHN8hyaVTxwOTeh9iumcK9aWdwCesmZPmGaFaFTqqQwvHpz7iWWouDchVaMue0Kf9jwpYNzpKA/zzu7VQi2SA5d1vjK2nz0Trqf3jhmlu0beaBpvVZij7z99xB+0V1i0I5fA5Sgxbf1ejXlrnj5aslPPztyo01+bU6vXDd++Soveu0vPz3jTtNdhOGQlpunzbkP1ysBz9a+B52hKp0HKqWbP07TSQn3z+aPVdkWP+fMkzdlibtCEIxvBIgDUQUyROVj0JUXx8sgagsWVWQfDPBlEuzJv5YfC3kF7LO5r3V6KrXkPn8ZuQUtzN9Ihu9dLknbkFmvSqqxwTwlRwjCkZoW5umOROSj5+wmXRGBG4XNs2zQNqdKN98Ne5uY0V66eKUlavCNPHm9oKmPQuLy/cLsyHimv5r1q1Y96/Jf3TefsTmyiUy9/Sr+26WU6Fusq/1jqcjr0+fVD1L91qjo0SdALY47RCVXD7TC6uF/rao+9dOwFenToFabxTnl79N2nj6hZYa7p2PQN2SGdHyJrwbYc/euXzf4Q7S9T1+qM135VXYpTnT6vHprzkWZ8/KD67gvfF5gbmrTSW8ecphtH366ev/2PWt/6ri4Z86DuOO0W/fG0W3XOxX9Tm1ve1jVn361NaeY9pl2GT/+a9qruXPil5fWHv/KLPl260/IYjkxH3noNALCRsyAwWPTJISOx8VQsppUUymH4ZDj4Xglm/Z+ZIal8uWfrgsClO3vbddGR3r5kfitzReZxWRv03jGjJEmPTFlDE5ejyK68Yt38yVJ9s7q8Cu+++Z8ruaw44JypHQf5Q5IHTzMH00cCp9Oh724eqqYPl4dGazLaa3Hzzhq0d7P/nEF7N6v3vkytzuig2Pu/0aldMvT+VYP81cA4smUeKNS1ExZLkk7csVpvTn3ZdM7uxCYaedmTWpvRznRMkl69pL//8bBO6VpyT+S7q//z/D7ak1+iFbsP6vTuzfTqJf2V8chU//G/DrtSTUvy9cfFkwJe1+vADk357C867dLHlRtf+eXzG79u1Rk92G/xSPDFil269N2FDapCTSvO1/8m/UOjty6p9pwdyema0mmwfm3dUztSMpQfE68ET6nSiw+q/cFsdcjbq/YH96pD3l51OJitjOLAogGfHNqd1FSrMtprZbMO+qVNb81q20e7k9MPO7/imDh90GekPu8+TH+b/aFlA6bnZ7ypMqdb/x50runYZe8t1MZ2TdQ5o/xzksfr04LtuYp1OTSwTVrY902FvQgWAaAOdu7MVtXoIT82Xk5nFId0QcGiU4ZSSouUV83yBhy9covKtHZveXA+oEpgUGFvpyMzNKkwukdzzfSUqszpUozP6x8/7lDFoiQt2ZkXiakhQro9NU1FZeXVdy0LDugPS74xnfOX4b+RJCXHuXTz0A5hnV84pSXEBDyf0PvUgGBRkq5c85MeGX61pPJN/J+ctkH/irIlrAi9nKIydXpimiSpeWGO/jfpH4r1eQLOyYtN0FkX/63aUDE9MabG6sBI6ZSeqJl/GF79CQ6H7hp5o1JKC3X9yukBh47ds0lfT3xMoy95VMUx5ftGfrJsl4b/vEk3ntBBibF8DG/MHvhmdYNCxXZ5ezX5879VW6W4tHknPXriFfqq6wnyOl21vm5CWYkSy0oU6ytTsStWOfFJDS4mKIqJ059P/a0Wt+iiN6e+ZGpe9sr015SdkKqPe51sem3Xp6Zp119GKy3erXPfmKsfN+6TJF3Ut5U+vvY4uQgXjxhR/GkYAKKLYRhKKA5s3pIfk6DiMm81r4gCFo1l0kroDA2zf83e4n886FA35KoKjulvGjuSvHvlIJW4Y7W8WceA8YF7N8vt9VTzKhypVu0+6A8VJen+eZ8p0VMacM6kLsdpXuuekqQV945Qh6ZRXL0eAsM7NfU//qin+QPklat/UtU1gP+p8p6CI9e3h/bVdPq8ev+bZ9Uuf1/A8TKnS5eeP07LWljvQ3rt4Hba+choJcU1jqAtuDLZcDh10+g/6vNuQ03nnrRztd6e8oK/CZgk3fXlSn+HeTReFV/E1kffvVs0e8KfLUPFAnec7hx5k467+nlN7D6sTqGiVB4C7ktM1a7kDB1ISAnpCqUJvU/VmZf8TQVuc4Olt6e8oKE711i+7vL3FqjbU9P9oaIkTVyxW/O35YRsbog8gkUAqKW5mTmmZXD5sfEqKI3iYDGoYlGSmpTkm8/DUW3mxmw99G3lL4RWFYsnnD8ijDMKvxYp5b8oL2gV+KExwVOqvtlbIzElRNCOvMr3+jYH9+nWpd+azvnLsKskSRmJMWp3FCz5ffq8Pv7H21Oba2a7YwKOd83dreN3rwv3tBBBz8zYqKs+KA/J/jz/c52RudR0zp0jb9L3nQZVe42L+7dWrLvxfCT9/bCO6tYscNWH1+nSb869T991HGg6/7J1v+jRXz4MGPt6VZb20kG90dpXUHr4k6oxInOZfv5onCmAl6SVGe11/NXP6uVjz69zoBguP7frq/MveliF7sA9t+O9ZfriiyfUMde8F/VPm/ZrZ16xafyjJTtsmyfCr/G8iwNAhD09fb2SS4OCxZh4tU6Nj9CMasEyWKz/t6w48hwoLNU5b8wNGBsYVLGYF5ug+B5HZkfoqhbefYoWtDT/dw7JWm9xNo5kLkfl8qwH5n1iWvo1sdtQLT7URfz/Tu9xVOwVdXyVBi6SNMGqicuan8I0G0TazI3Z+vOkVZKk/ns266+zJ5jOea/3CL064Owar3NilUrYxqBtWoJW3DvCNF7qjtHYMQ9qdmtzY5r/m/uxrjjU4KjCmj18ydtYvTmvfk1Wrlg9U99+/lellZpXDn3T+TgN/c0zWp0R/VtqzOjQX5eeP07eoGrIFkW5+nriY0qt5eeMomhe8YU6I1gEgFraV1im5LKigLH8mPiIdSusFatgsbjyH/xftx4wHcfR5auVWQFLPuM8paaO0Eubd1ZifEzwS484A9ukan4rq87QGyIwG0RSRU7YPm+vblz+nen4X4ddKUmafuuJ+n/27josqvSLA/h3gu4WASUEURBMVMTujjXWbl171/Wn7lq7du26dve6dnd3gKIiKoKiNEhLx8Tvj1Hgzr0DgzScz/Pss8y59SIwce77nvNzK9vSHFqZEQr4jJqJJxzckS03q2bQu/vgS+jDYlUw5ZQvAEBVlI0Dl/9m1VV8Y2SFSR0nAzzFSfdfWtnCWIu9rLK8UzTDMk1FHb37zEegXjXWtp3XNqFubG5C6twb9swuUjHMvehXuAOkUsz2Oon/Lv0FNY7SKrvqdUKfPvOQqlpxZr5ftm2MGW3Hs+LOcSE4en41BEq8DrwI+4KBB56h+y5PXPKjv4eKjhKLhBCipOD4VI6l0BoQCsrxU2kBMxZfhH8pxcGQ8iggljlrwikuhNG8BABS6jhXiQLbPB4PtzeNR7rcEp+8DVxI1bD6tiyZ/JvXcdYHwWMOLeBrYoPOtU3QppZxWQyvzDS0yK3bG6+hi6tyS1yrpSWibahvaQ+LlLLkDBHefpa9dsz3PAoXuXIRWXwhhnSfhTSV/Fd0rO1ZN9/tFVGcpi569F2IBLkmeVqiTJw4twLaX2ervf2czHU4KWduf4jFqMMvsO1REIYdeo7G6wo3K1sgEWPzzW1YeX8/5/Y/mg/GhI5Tvnvpc0sbQ7S3L/h1yEqf+2/x3Bg3dK79fZ3KtzTojo0NerDinYNfYOOt7Yyau1yehX3BiVeRuPwuGr33PsUrapBXoZXjT8OEEFK+iNIzWAmXZJVyfnexgMRiUTrakcqBB2bCUH4ZNAB0+bFTaQ2nzOnrauKFCXMGmnNsMDS/3lSI4qgTRCoXkViCK/4xsEyKwRjfG4xtEvDw59fZitX1ynEZjBKipcr88Mu1HHpIniWfEnqNqZRO+UYCAGrHhWG21ynW9kXuQ+Brwt2s5RsTLVXw8pnNWN49me6hcJu/kSV+7DEbErnXV8eEcGy6uR1AbtMbUn5NPvkK7bc9xgHvMEw+5Yv/XoTjeSFuyGtmZ+Dk2RWYxFGjV8TjY1ynqVjsPjjfWb358f6lFe5OaYGLY5tiWVdHDGtogXa1jDG+WQ34zmqDpV0dUUNfA40t9XB0eGPOc/Soa4bf2tlDT/37mifNbDMWF23Y5/7J5wpmep9R+jxiiRQHvEO/awykfKgY7bcqEE9PT1y8eBEvXrxAdHQ0UlJSoK2tDXNzczRu3Bj9+vVD3bqV7+4cIVVBViL77nKqajn/YMmRWNTLm1gs4G4iqfzk38/Wj2Y3buE1UFx4vzLyMneAe2RuMxuhVIJmEf64VdMVY46+xKXx7O6fpPJIzJDVU5zz9CRreefR2h45NbDyNHqtMuqa6TAen7NzQ6pQDVqi3EYU/d4/xuQOk5ApVIVw9gXoa6igZ10zbOvvAg2V8tmQgORPKpViw4NPuO4fAzUhH6dfRwFSKTbf3Mr6G3lsXhtrmvQt8JyT3K1LaLSlw62GAS6OdUP33V6c269bN8Af7oOx+BGzccuIt7dxwbYJTtT2wKuIJLhU1y2N4ZJCSs0UYdvj72/c5hQbjCMXVsMpjp0sS1bRwMCes3HVptF3n7+TgwkafJ1Brirk47f27DIuTtV0crqYSyRSCPg8xoSCdl9n3LeyM4LvrDbwi06Bo6k2zHXUoDrnolLjEPMFGNxjFh4cnsOaubz67j580jPDaXt3pc519nUU1vZ0KnhHUi7RjMViEhYWhqFDh2LEiBE4evQoAgICkJiYCJFIhMTERPj5+eHgwYPo27cvZs6ciZQUKthLSEUjX18RAFLK+4xFPT1WKO+MRcorEnnyHaGz+QKgit0Qe2DB/n49wmVNCq74xyCSZi1WajEpWaieHMeqrSgBD8uaDcp9XAWfQPl8Hh5ObZHzOFVVA2drNWXso5eVhm6fnuU8TkzPxkHvMCy/SSUFKqptj4Pxy9k3uPQuWpZUBDDk3V20k1v2ns0XYHynaZAUsKzz2PBGWNTJocTGW1q61jHDx9/bK9y+rNlAXOJIHm29sRXmKXGo//ddJKR9f4dhUvx8I5Ow7VEQzP5g19ZVhlAswsxnp+F16FfOpGKklgFaD1pepKQiAAxuYFGo/fl8HsY1ZTaGGd8s97GlvgY6OpjASl9W4snGUFPpc6eoaqJH34WI0DJkXhNSHLz0N5pEBih1nm+vqNliCQ49D8PSGwHwiaCSTRUFJRaLQVBQEAYMGIBnz3LfRKmoqMDJyQnNmjWDvb09Y6r/xYsXMXToUEouElLByNdXBIBuTcp50f4ClkLbGin/xoFUTnknLPKkEtaMxSgLG0C9nM/MLWYPLOqwYt8Si0DuMkBSOZ30jcTsp6dYtRVPOLjjrXHuB7GqVl/xm+bWhmhsmXvTirM7tB+7Dtn6++wyC6Ri+Nao5Rv9jBT8dWc3a7+/G/Vh/I1wCZ7fAf1dq1foZdB5WRtqYlPfepzbpDw+RneZgc+azJu8RhnJ2H59MyCVYvlNag5WXow/7gPXv+5i8ilfpBWyYzFfIkbv90/w4uAMrL27FxoidsL4raEVmg9Zg5dmdgWeL3xhR/xYvzrnNgs9dQxpWLjEIgBs7OOMbf1dMNXDBhfHumFQfcXnmNCsJuNxQXUcw3RN0KvvfKQKmc2YNEVZOHdmCWp+Kbg5S2iibALH+GM+GP7fCyy84o9mGx7gcVB8gceSskeJxSISi8WYNm0a4uNlv/ACgQBTp07FkydPcOrUKezfvx8XLlzA3bt30adPn5zj3r17h3nz5pXRqAkh30M7iz1jUUVPh2PPcoRjxmLepdDqCjobkqrJLjEKOnIzc3WbNymj0ZSdaC0D+Bsw33A3j3gH4ddE0yU/qo1VmW09+Rjjfa+y4kvzzFY01lJFLyez0hxWubIxTyLlmnV9xKkzXwt7fHwK/QzmDfSUTOoWXVkse3AQZmnMmURBuqZY0nyQgiNkfmllCyv9cr7S4ztMbmGNd3Pacm6L0dTH2M7TWfEeH5+h3/vH+OtuIB5R4qTMnXkdid2eIQXvKKdWQgTmeh7H231TcPrccs5ZigBwvYYrPAavQoiuqVLnNddVx55B9aGhwn6f/uznVlD5jsaRQgEfE5rVxIY+zuhaJ//Xr1lt7LCokwPcrPQxqokVjgxrhCZW+vke89ysFoZ2/5VVW9Qs7QuunViI6slx+R6fLZYiKSMbB7zDcmKZIgl2eRX+50JKH32iLKJTp04hICB3eu/KlSsxbdo0aGtrM/YzMzPDqlWrMHr06JzYlStX8PLly9IaKiGkiLhmLFavXs5nrKiqAprMWYl5ZyzufUqFkkku9wg/VkyvuVsZjKTsPZSbtaglykT9r8vEqeh+5Tbr6WnWbJOT9s3x2sQ65/GdSe4w1FRFVdW0pkHO19kCFZxwaMHYri7OxkD/B6U9LFIKmkQGYKLPFVZ8RtvxCrtAv5jZCu/mtMVfvSpv/TQHE23ELe7Mue2SbRNsd+nCim+4tQO6manw2PSwpIdH8rHtURD67XtW4H4CiRgNPgdiyosLOHRhDT7tGIuAPT9h+YODcEiI4DxGxONjnscwdP3hDySqa3PuI6/L1y7N6ioCzG2XWzuxmo4aAua2g5mOmqJDi42Az8OiTrXxZEZL7BlUH0Zaqvh3SAO0sDaAnroQgxtYIGV5V0jW9mQcd65WM/zaZgzrfPaJkbh5fD6qpeSfRI9LzWbF9nrRZ5WKgBKLRXT27Nmcrz08PNCrV6989585cyZMTXPvVFy8qFxhVEJI2Wtjxn4hV9GrAEW35ZZD62fkJhaPvuR+I0SqjjdRuU2JWoSzE4twV67odmViqaeO+xbsD8Atw96UwWhIaXr45C0mcnTwzDtbMWxBR9StVs5nq5eCvEvjDtRlz9Ya+eZmaQ6HlJC8NWX5EjG23NgKPpj1Rc/aueG8XK3Nb86PcYNrdT04mCiXVKnIDDRV8eG3dpzb5rQaiXBtZg266qnxWPrgXwDAgivvuA4jJexGQAwmyy31z8sxLhS/eR7D9ePzkbBpMLz//QUbb+3AYP/7qJkck++5X5jYoOWPK7Gi6cB86442raGf87WAz8OK7rk3Nhd0dIDPr61xdnQTvJ3dFrWMtZT/5oqZvYk27k/1QMLSrjg0tCE0Vbn7AK9v2Aub63djxWsnhOPe0bmopSAJCwBn3lCpmYqKEotFkJWVhefPn+c87tGjR4HHqKqqwsPDI+exr6/iJzJCSPmilZnGDupUgA+XcolFvaxUxuOPcczHpGr5VogfYM9YTBOqAVWsIzQA7BroivuWihu4kMrpzodYPJo2H5pysxXP2DWFj2luPd3qelWr5qgiizvXzukq/7i6IwIMmPXAmkf6o3ZcGMeRpCLJW/rhJ58raBQdyNieKlTDjHYTWMct6+qIhCVd0L1u1SoZYGukhe512Mtdk9S08HPb8az45JeX0CQyAMtuvEe2uAq2mi8lp3wj0WOXJ0YdfoEPsanwifiCNbc/oNOOJ6x91URZGPfqKnz2T8PbfVOw7MG/aB/yinPlEpdILQNMazcBbsP+hmd1xwL3vzK+GWa1scPIxpa4O9kdrtWZZYzqmeuip1M16GuoKPfNlrJt/V2YAR4PP7cdj6MOHqx9ayVG4eHh2WjOdSMbwK/n6H1WRcWdZiZKCQ8Ph5qaGtLSZMkGO7uCC7ECgH6eD/kJCQklMTRCSAlQz2TXWIR2BbgDL1dnMe+MRQD481oA9g+ueskjwqSfkcKqDRRVux5sVcrnG9mS1NHBBDNGdkDEEUNUT81dtuMR/lbWSp3Hg1gihYBfOZoPEJklJ57i9Cv2Es+leerGdf66RI3Imrh8/qMTTBddA3g8HKjbDksf/svYZ+Tbm/i95cgyGiH5Xi/Dv2DP01DweUBqlqw2pmlqAuvnCwBLmv/IWTduTtta4FfR58itP7igxtIbrPhJe3dcsG2MHh9zl93yIcW265vhNuxvqM2RrWRb1tURtU210auuGYTfUUuPMD34FIcBB55B+nWi7QHvMAj4stfxvHhSCcb43sDSh+waosp4bmqLLfW74d86bZElVO69k6m2KvQ0VLC6B/tmZkUxzq0GUjJFOPYyAl6hiQAAMV+A4d1mQiCVoP/7R4z9TdKTcOfY75jnMRx/Ne4DKa/g3/GILxkw11XD66hkqAr4cDDRqjQNoCoLSiwWgY2NDV68eIHk5GR8/vwZlpaWSh0XHh6e87UeR2MFQkj5FBzCseShIiQW5ZdCZ6aCJ5XkvJDHpbI715Gqp3kEexmWZbf2ZTCSssfj8TCtpS0u29ZDdd+7OXGT9CQ4xwbjtYk1bJffQNC8DvTGtpL446o/Gl4+Dl25Jl0XbRrjuVmtnMerulfcD38lwShPncmDddti8cNDjGWyw9/exoIWwyDOZxkgKV/eRCWj4Tp2V+9V9/YxajQDsi636xqxy0DVNNCosklFALDU10DQvPawXiZXDoDHw7R2E9Eu5BVjZnSDmE+Y/vw81jXuAwCYd1n2euxhY4g7k9yr9L9lcdjjGZqTVPxGPqnoGBeKXVc3wj1S+SXp8eraeFTdEfctnHDKvjkCDbi7OOdn76D6hT6mvOHzeZjZ2g4zW9tBc+5FZIhkM29FAiGGdJ8F0eV1+NH/PuMYFYkYq+/tQ5dP3pjUYTLeG+bf5dpyyXXG42ENLbDvxwb0t1GO0C2QYqCjo4NatWpBXb3gpTEpKSl4+DC3QK+ysxwJIWXrS3o2NCrqjEUT5gwboVQCgzzdOj/FcyzxJlVOC47GLaqtW5bBSMoPw64dWbHOQS8AAKGJGfj5LNVcrAy+pGdj7fW3mPH8HGvbard+OV/3da6GeuYVoPxFKeLxePipeU0AQKiuCW7WYC6Js0iJR7c8s7NEtNSz3Ku39g4r5hH2BiPf3mbFp3T4CdkC9sysXk7VSmJoFYqVvgZMtdkNnoL1zPCH+xBW/M9H/7G65j74FI8b7/Ov40cKtu9Z/s0/+vs/gNehXwtMKvobWGCvU3uM6zQVdUdthsnkf9Gr70KscftBqaTiL61sGY+r66qjc23lukRXFH3rmTMeiwRCDO3+K9Y27su5f7tQX7w6MA1LHxyEbqbypZn+fR6OFxGFn1VKSg7NWCxlu3fvRkpK7gf6tm3Zxa5LQ1qWGI6rbn338TYGGjg/ponC7f+74IfL/kV7IWxnZ4QNfRR3j/vhgDf8o1OQmZl7x0/t+l2gELNHxjaxwi+tbBRub/jPA2QV8U3w0s4O6OPM/QYr/EsGOu/yKtL5AeDfwfVRvzp3E5EHn+Lx06nXRb7GoynNoavOPa3/gHcYVt/5WKTzG2uq4s6kZgq3/3n9PY6/KlpB3yaWetg7yFXh9tFHffA0jPtFKjY1C79nsxOLnQ75IuRq7lLJAS7mWNTRnrXfN222PkFsWtFmCM5uY4sRjbhnSCdlZMN982NG7H9BGRgrt59p2hfEa8h+Z/yiU1jPB9v6OcPDxhBcXkYkYdjhl9819ryujnODhYJaZWdeR2H+1QDlTiSVcj4PqAr4eP4zu77LN+vufcLuInbFrm2ihZMjGincPv3MG9wKjFO4XRlda5tgTY86Crf33PMUnxI4kt5KyBTlPr+5c9S7ETVpAohEcP6LPXulsFZ3d0Q3R+430B/j0tBLiY6MBTk+vCHqmHIn+2++j8WMQtbusZTUgPxits5Bz/FXE9kb5I0PPmF2a5ucDo27PEPwz4Ogwg6bwUJXHVfHK+7EPe+KP86++Vyka7SoaYDt/esp3D7kvxd4FZmscLsyhjW0wNy2im+eNt/0CMmZoiJdY0GHWhjkKvswJxaLGduiktLRYefTAs8hlkgRGJeGoW/vwzKF+bfqVc2e0cTn6LAGjOs8DU3E6GOvivItAABuT2wKE23uLp9HfSKw5MaHIp1fR02Ix1MVN2FaeTsQ/z4PV7i9MPY5d0DHEB9GbOKrKzmNPQwWXFH4vF+Q3k5mWNaltsLtnXd6ITxJuRpoivzsYY1xTWtwbssUidFofdG7967vVZfR+CYvv+gUDDj4nHNbYZwb1Ri2Rpqc2y69i8bsi9wJlMxs9nteoViEzTe3seKHHFvjrhX384ippkqRPmcA3/lZQ8H7AUWU+qwRU/x1qP9p2AvD3t6GS2xwTkw7OwOr7+3FsO6zmGPY9wwW+vn/zdBnje8klWL5gwOY63VS4S7+BhbY4dIZp+2bIUivaAnzhhY6cLPSw4uIJAh4PKjweai7hp2wL0h5/KzxTXqWmBWT8viY3Xo0AvWr4Z/bO6EmZr72q4lF+N3zOCb4XMHS5oOwzaWrUkvJO21/AhOO5H3e54Et7YxY7w++KdRnDQUqy2eNfe30oFLEKYeUWCxFr169ws6dO3MeW1tbo1077s5hJU0ilSKgCC+UmRmZ8PHxUbj9bUg8AmKK9ubOXFUMHx/FHzreRcTjfaLc9uTCfUh58ykMPnpJCrcHRCcjq4g311+//wQbMfeHwIgUUZF+DjnX8PMHL4bjiRWAb0RGsVzjle9r6KhyP+O8+ZBS5GvEqqfn+zvlF5yIgJiizazT5mXnf43wWATEKH4h5ira7JsixWdp7vfuFxwBHx/F43z3+QviM4r2S/XmQzB8hNwvIMlZEtbP4h3YHeTM0hLxzsgq57H8Mb7v3kMnifuN7OvYrOL5nXr9BrHa3C9Drz+mff81vj4PqPKR78/7zaekIn8f0uz8nwv9Qov+XFhTQwwfH8W/l+8iExFcyOc+eUKxCG5RzDdXCVbW+BgaCoSGFsvP+03AR1hkct8cCErKLpZr+L59h6xI7jejr8PSC32NAOjjvb457BNzx90y/A20stKRqqoBADh67wVaW8q+fvMxucjfR3JaRv6vr8EJCIj5vkTyN4YCUb7XeBceh4C47CJd4+2ncPgYpijc7v85CSnZUoXblfHmfRB8wH0T881bP+V/FlIpfvE+ywr/1bhvTlLCUlvA+jfz/ZxZbM+FxhrcS4XfvE8t8jW0VXj5/059+lLka6gLgAwxcMq+OWLVdWCckZuY7vLpOay/RCFIrxpSs8Tffa23wZHw8VH8fPouKhGRqdwfIJX15mMIfNS5659niov23vmb1wEfYJzGncj1Tyiu58K3SNblfi58E1y458JpLy6gXp4EGAB8UdXE/1qP5tx/XStDvI2IKPL3USyfNQp4bfyuzxqF1MNGA1li4FpI7vO2SCDETx2n4NHh2Yx9h7y7hx0uXXDPyjknlppd8N8MfdYoPL5EjK03tmK87zXO7e/1zTG71Wicq+WmVA1AZQQFBUOUmY5ssRTZkCI48ftey8vjZw1lbHftiifmtXHkwhrUTmA/BxpnJOOf27sww/scFngMw2HHVvn+2yekZyMhPf/3KiKJFK9fcye9i/RZ46vK8llDItUFULRl5bQUupSEhYVh8uTJyM7O/eWfO3cuhELK7RJSUWhnsd8ApKiU/+6g0ZrsWq6m31GUmlReDaI/sjrhRjspntFWlVy1bsh4rCYWoU1o3jepVN+nomsW6Y+G0cyZMB/1zHDKvnnO40EO7Bs0JJe5luz9bKZQFXudOzC28SHFRJ+rZTEsUkQ1kqLxx6PDrPiiFkMQpZ27qqFjDXVMdtHB40Hm8LAo/++LSpOhugDLWhjA3Zw5K/lJdUfsdWLXMd5wazsEkqIlyEn++BIx9l/+hzOpKAEPy5sOgMvIjThr36zYkooAUF3BzfSqxMfUFo2Gr8Oaxn0hUvBva5MUjX8v/Q3vg7+gU9BzsApkknKJEoulIDIyEiNHjkRMTO5d9VGjRpXZMmhCyPfRzmLeDZKAhzQV7uVr5Ql3YjGx9AdCyq3OQeyld7zG1CkcAK7YNGTFugR553z9JKpod4lJ2Zv08hIrtqlBD0bDkR9rV4B6umVIU4WHCc6y+pPbXbuwto95fR2qoqLNgiWlTCrFzqsboSNXBsbHxBqb63dnxJa3MMRoJx0IqZGCQrMb60FDyPz3+a3lCHxRZS5Zd4kNxqSXl0tzaFWLVIrNN7dj6Lu7rE0Jalro0W8h5nsMR6aQe3bm97LQFsDJULlO0ZVdmoo65rQejUbD1+FGDcUlqurHfMKVk3/g+okFaBT1vhRHSL4Hpc1LWGBgIMaOHYvIyNxlVB4eHpg1a1Y+R5U8Po8HB5Pvv/tuY6ABV1fFTwR1Q/0QnF60Got1rIzg6qq47omjjzd4Qrkai2qqhaqx6GRjCVdXxTUWHW4nF7nGorO9DVwV1D0x/pIBhydFn9bvXKc2XBXUPUnWjYfD26LXPXGp56yw7omPKAwOYUWvsZjf71Sd6Pdw+FK0Got1LPTyv8Y7H6RIuWfyBcSkQlvuzXWqijrsTZmF/OvUNIerq+K6J46P0otc98SpVk24uique+Jwj1kbTSOL/ftnJpdYtNJTh4Zq7ofoeo72cFVQY1EakQSHl0VbigkALs5OCmttfRJEweHjd9ZY/Po8oCrg5/vzdvryCQ6xRa97ku/v1Kc3iMwqWt2TujVM4OqquMaio/dTqKl/38/j2/KMrp+8Wdtsx44GLGW/Zw43ij7D1cnBFq4KaizqxKXBwavoNRbr1XVUWGMxVjMWDu8KV2MRAEK03ZB5TsioCdTpawMXADjxPg3/jW0NAHDKCIFDRFChr5GXha56/q+vkf54n1K0Got1LA3g6qp4RqrjmxfI4hetxmJdGwu4uiqusVj7fmqRayw62VvDNU+NxbzLnZzq1oHDQ8VLsQEgLjULvNhYDAx4wIinCVWxT24mEdfPJCs0EQ6+Ra+x6OLspLDG4jtEwCG46DUW8/2dig+EA8eytMKoY66DTUMaIPbQC5zyBa7WbIDOwbl/JybpSRjy7i72yc1mBABjLRUYahb8Ib5uTTO4uiqusejo5QWdItZYdLKtAVdXxTUWHW4rLp+jLGeHWnBVUGNRNToFDt5Fb6hWr25dhTUWPwmioOb5BZkFvL8d73uVVS8TAKa0/4nV5Vv+98spNRgOn5nLpwvruz5rKHg/oIhSnzVUivY+/dtnDVcAXg4p2PggCDs8Ze89orUMsKjFEPxzexfjmMWPDuGoowdiNPUZcVUBD9aG7J8rfdbIFZOSiYR0xa8tCx8fwcRXV1jxMG0jdOq/mFEmqDD0NYQw1VZDIws97B3oAj6fh2sBMdj3LAwmWqqY2coWNQ00UCdA8WcNZZXHzxrKyrss2NfEBp36L0bH4JdYeW8fGsR84jymfcgreB6ahXWNemOex/Cc+osqAh6s9NQhFMjmyiVnipAtlkBLRQB8fc8m5PPg7OwMgYBdbqRQnzUUqCyfNfiFyJ8owpNKaW5pSXn+/DkmT56MhITcWi3NmjXDtm3boKGhUerjefHiBSQS2ZsIPp+PBg0q/mwUkYhZJ8rV1ZWWl5MSwZ91Hk8O/Qq3PHfMIrUMYJ4Sn89R5UR4eE6C6JsdLp3xU8cpOY+393fB+GY1S3tkxYKeB74ff9Z5GKUl4fPW4eAjz9sBFxcgn3ouVc2NmvXRQe4DtsOYbfjwtQukZG3PshgWyeN7ngdW3/6A+EVLsfL+fkZ8t3NHjO88Leex/5y2sDehGYvKuBEQg047nqDXhyc4c3Y5Y9tbQyvUG7WRc2kh/Q2Vnqv+0ei60zPffewSIvD84C+s2YobG/TAjHYTGLH29sa4PrE5yoOK8n6AP+t8ztcCiRjPD/7MqmO5x7kDxnWezjrWwUQLZ0Y3gaMpdajnYjD/Mr5kcCcWJ/pcxtYbW1nxQL1q6DBgCYL1zL7rmsMaWuDAEPbqBsKW93c/L55UgsHv7mHJg39hkxSt8PhXxjXxY4/ZjARwHVNt1DDQwNWvzZxUBTxsaWsEVxPZDavy+jxQnhRHnoiWQpeQ8+fPY+TIkYykYuvWrbF9+/YySSoSQopOfil0uloF+Vs2MWGFTFMTGY+nnvYtpcGQ8sI/Wjabq1PwC2ZSEQC6dSuDEZVf7xu1YMUGyM1yIxVPRHwqJvqwlxxuqc/8/aekovI6OJhAR02IC7ZN8F7fnLGtbnwoun8s+sxkUjRnXkflu11NlIVj51exkoqBetXwW8sRrP3ntVc8c4oUTMwXYLpcshYAxry+gebhfqx4QEwqpp8u+uzAykYskeK3S34Kk4r9Ah5h8w12d/MILcMiJRUBoGNt9vtswq2NnRFnXMrj4786bVBn9Fb83HYcYtW5E+cuscF48t8sdM3zWuIXnZKTVASALLEUW14VfXY5KRxKLJaAjRs3YtasWcjKyp2C3KtXL2zZsgXq6lTQmJCKSn4ptKoe95KQckdVFdDXZ4Tkm7dki2nyelUilkhRZ/VtAEDXTxwf9CmxyND9t4ms2ED/3MTix7ji61RJSsfFt5/x4dBJ1syIJ+YOeGGWu4R7eTfH0h5ahRe6oANUVFVkXbXl/O/pKc5jMrKpWUVpkRSwWO2f27s4lySO7TwdaXIN6xZ0dECbWtzLuony7lrVw+HaLVnx7dc3Q0XMrk16431saQyrQnFYeQurbnGXjWgV+hqHLq1l3URNVNNC1x8WFSmpqKcuxCBXi+8+vqqZUMDqqCyhCjY07IVa43ZgabOBSBWyy4ToZqXj/OklmP78nMLzPI8u2lJwUniUWCxG2dnZmD17NjZt2sSIT5w4EatXr6YpuIRUUKKvdYi0s5kzFjPUK8iMRQAwY75pMk1PLJtxkHJhwAFZMpEvEaPLJ2bjlkQ1LaB5+VjWVl7UaOICb1NmvUDXmCDUjgsDANRacQuRRaztRkrPjYAY9NzjxdkgYatrblLdw8YQc9rWKs2hVQq66ipIX9kd+53a4bNc87CW4W/RMow928ppzR1kiii5WBoysxXXVpzy4gJn/bmVbj/gnpUzTo9qgvCFHXFseCP4zW6LPzsrrnlJCmd269FIkUvcOseFYNaz02U0ooojOUOET/HctUmdY4Jw5uwyRp1kAMgQqKB3n3nwNVFca59L2opuWNOjLky0VGFjqIkjwxtBVUgpFWUNdK2O2Uq8riapaWFhi2FwGbkRD6qz64zzIcU/t3dh0aP/qGt0OUF/BcUkKysLU6dOxdmzZ3NiQqEQS5cuxcyZM8ErhoKYhJCysfzmB0AqhU4Wc8Zitsb3N0AqdabMphlmqUVvxkEqpvAv6TlL4ZpEvYdxBrMAd2SzVgDdCGM57ujBig3yv5/z9S7PkNIcDimCIYeewyYxitW0KE5dB8dq5/6c701pQe/fiuD85FbY0JBdO3Hlvf2sD4Kf4tPQftvj0hpalXUvMA4HvMM4t/0Q8BDrb+1kH2NRFwtaDAMAOFfTgbmuOvq7VkdtBY2ySMH2D67PioXrGGO+xzBWfMHjo3CIZ//Mfr/kh+Yb7mPqKV+kFLERVkVz2jcSPXZ5gj/rPDw2Pci5WSrPMikGl079Cf1M5qoCMY+Pwd3/h/uWzoW+trqKAL+2scPnPzsj8Pf26Fybuykd4cbn87Cyex1E/9kJGioFp6I+6VdDm0HLsaTZIM7tix4fwZq7eym5WA5QYrEYiEQiTJ8+HXfu3MmJaWlpYfv27RgwYEDZDYwQUiyW3QyAqlgEFQlzNoW6gZ6CI8ohucSiTnY6NLIzy2gwpCwd84nI+XqQP7tOoONIet3iMnL1r6zYIP/7OW9mF131L+0hke8Um5qFia+usJbF7XHugExhwd2JiXI6OJhgq2s32SzoPJpH+qPPhyes/R8FJSC+iJ1MCVNKpgi+kUn4nJyJmefeoM3WR5z79X3/CP9e+ov1NxGjoYsh3f+X0wVaUadpUji9naqhhbUBK76pfnc8NWPO5lIXZ+PA5XUQys24W3nrAzxDErHlURAmnSx6d/ry7sCzULTa/BAmC6/gh/3PcOmdrIzFo6AEXAuIYe1vkJ6My6f+gGUKu1vu5A4/4ax9M4XXcrPSx4HBFb/JaXlmrKUGrxmtlNpXwhdgUYuhGNhjNtI4XqN/9T6DPx/9p/D4O4FxWH//I16E06SKkkSJxWKwZs0a3L59O+exoaEhDh48CA8P9uwGQkjFky2WsuorAoC2YQVKLJqx68eYpDNfYEMSuJeRkMolMFb2cxZIxPjx3T3GNhGPD1737mUxrHKvTtN6+OTgwozFh8GVoxYZKZ8kEimGHnoONVEWxvheZ24DD9tdu+Q8bmKlX8qjq5wS1bWxqskPrPjy+wcgkLCXPj/8FF8aw6oS9niFQHfeZbj+dRfmf17DP/c+cu7308tLOH5uFWupaLpQFX16z0OEjqzZwouZrWgGbzHRVVfB7UnuuDaBmdyS8AWY2HEKRHKd092i3uN3z+MKz3foeTguvv2M/56HwWD+ZWjMvYjlN99DWklmcfXd64VRR17iwad4xKWxa07KU8/OxJmzy+AUF8ra9mfzH7HTpQvHUbmmtbRBF0cTyP+6c800Jd/PqZoOtNUESu9/orYHOgxYigQ19oqxBU+OYpZcDd81z76gw8lIdNrphV/OvkGjdfdw4e3nIo+bcKPEYhHdvXsX+/fvz3msp6eHAwcOwMnJqQxHRQgpbvL1FQHApBp3Z7NyyZS9VMNMrjO09bKb8ApJYO1HKpdvhfs7Br9EtbRExrar1g05f1eIjJhjFULeemQPPrFnRpDy49K7aBx+EY4BAQ9ZJQCu2DTExzxdjGe0LFzdLcLtn95O2NCwJ8K1DRlxx4RwTH9+nrX/1kdByBIprgFI8nfzfQyGHXoO17/uYNwxn3z31c1MxYFLf2HLzW2smYpiHh8/dv8fHlvk1jZzrV6BbqZWAEIBHx0cTDDJ3ZoRf2lmh1Vu/Vn7z39yFO7hbxWer+ceLwz77wW+ZIiQKZJg/uV38I1MVrh/eReWmI79T0Mx6/wbnH2jfDJIPTsTp84tR0uOf6ud9Trhz+aDFR67snsdPJzaAkMbWsJYSw1/93KCqkCWLulXrxoGulYv/DdC8hW+oBPjsZaqALd+Ulzn+0l1R7QduJxVvxcAVt/bhwk+ue/Jjr1PxZcs5nNbrz1eVa50QGmhxGIRiMViLFu2LOduEI/Hw19//QV7e/syHhkhpLhpZ3E0ZtCuQPWFOJJF8p2hAWDzw6BSGAwpSyKJ7DVr2NvbrG3/1m1TyqOpWFQHD0Y2n3l3fdjbO9D9Wr+p1WbuZYakfNjyUDa7dNLLS6xteZu2AEAvp2qlMqbKbpqHDdJV1PBH8yGsbUse/gu7hAhG7Ip/DMYfzz8hRrg9DUlE152e+O9FeP4JJakUg97dg8/+6Rjmd5e1WczjY3ynqThfq2kJjpZ8s7GPM27+1Bz7B9fH42my1W6Lmw9iNQwTSiU4fn4VqicrfwPr1/NvinWspeVVRBLqrb2D0Udf4u+73DNtuWhmZ+DcmaXoEvSCte2crRsmd5gE1jTErzrXNsHstrXQ3Dr3JsiMlraIX9IZUYs64cTIJlATKj+7jihHR12I93PbYbSbFUa7WcHn19ZwMMn/89UrUxt06r8Y8ers/bbc2IohfnfyPf7cm6iiDJkoQNXZi+DKlSsIDg7OeayhoYF9+/Zh3759Sp/D2NgYq1atKoHREUKKk24WxzLhipRY5FgKbSo3Ww0ADnqHYT/VlanUdnmGQDsrjVXjLElVA+fs6INkfqo72uBkreYYFJBbm1I7OwMj39zCRo4mFaR8ufUhDg0+B6J5JLMe5iddU1y2aZjzuK6ZNrTV6C1yceDxeOjmaIp9kvaY/uI86sXmvm/WFGVh57VNaD9wKaR5ln4e9A7Dut5OMNSkepeFccA7NOfGEReeVIJeH7zwm9dxuEW959wnQ6CCId1n4Yw9c8bQxOY1i3WsJBefz0PbWsY5j0+PaoK++55iRLdf4H3wF6iLc5f+mqcm4OS5FWgzaLlS9WCDFHRKLs+8QhLQbAO7/nNBLJNicPrscjSKDmRte2xeG4N75NYK5XJmdBPOuKaqEJqq9HpQkuyMtbB7YP2cx1FJHJM55Pia2KBbv0W4fnwhdPKUq+JDin2X/0GaUI31PPbNsP9eYFB9Cwj4zCRzSEIajryMQLZYgqktbKCnofJ931AVRX8lRXDlyhXG47S0NDx4ULgnQgsLi+IcEiGkhOjJdZQDAOjrl/o4vhvXUmiOxCKpGgb4P4SmiNkk4aS9OyZ3qFtGI6oYhAI+NjfozkgsAsDkl5ewqUF3RnKElC9pWSJkiSWY5HOZtW27a1dI8nzg/Lb0jRSP/YMbwGRRNMZ1moZHh2dDIM1d6twm7DVme53CqqbMpZ/GC6/iziR3tLKrQCVHyoBUKsXhF+F4F52icMWBqigbQ/3uYNaz06jD0V34myhNfQzoORcPLdmvA2t60GtDaentLJst7WdUAzPajcf261sY25tGBeDEuZX4oddvyBLmn/gIjEvD0hsB+L2dPfhfkyhSqRQ338ciSyxBJwcTCMvJ851ILMH8K/5YfftDoY9tH/wSBy/9zSrvAgAvTWzQq88CpKuoKTx+c796NBuxHNHXUAGfB+RznwQA4GVeG736zselU39CI897WqFUgiMX1qBPn3m4YtOI81iV2Rdwe1JzRCZl4gcXc0SnZMJ62c2c7Quu+CN0QQdY6GlwHu8T8QURXzLQwsYQuuqUgARoKXSRfPyo/NRsQkjFpl8JE4tcS6FJFSCVYsbzc6zwv3XbYJqHdemPp4J5YFEXPibWjFjthHB0+fQcAHCdozslKVsxKZnQ/v0y9DJSWEukMgVC7HHuwIhVjnYH5YeRlirez22Hp+YO+LtRb9b2ZQ8OouvHZ6z4b5f8SmN4Fdof1wIw7L8XWHqDPQNRJzMNvz49jcDd47H72sZ8k4pn7dzgMnIjZ1IRAM3gLWV9viYXd7p0wQ6Xzqzt3T89w4nzK6AmKriL+sIr/ngcnFs/e9BBb3Ta8QQ9dnuhzdZHEInLR03TkUdeFjqpaJaagN1X1uP6iYWcScVnZrXQfsBSxGnq5nse+TqXpGypqwgwoZlys6TvWtXDgJ5zWGVqVCUinDy3Am1DFJfWaLv1MYYceg61ORdhteQGa7vVkhv4ks5uFvTPvY9ouO4euu/2QoO/7yE0kd3gsyqixGIRXLx4Ef7+/kX679atW2X9bRBClFDhE4tcXaEpsVjlBMamol3IK7jkWY4IAIF61dBz8o+oYaBZRiOrOE6NboLN9dmds/949B8glaLzjic47hPBcSQpK512yJb9j3pzkzVT95iDB2LlisDzqfFtsbMz1kLTGvpY5D4EAQbMBgh8SHHo0l9wknteehycgM/JmTjzOhLPQhNLcbQVx5LrAayYqigbs71OInjnWKy5txcWKYo7bQfrmGBYt5no23se6++AlJ28M0Snt52Ah9UdWfv0+PgM94/MRc0vBTc2mXTyFQDgbVQyTryKzIk/CkrAFf/SuRkmEkuw2zMEs86/wa33sTnxOx9iwZ91HodfhCt1Hp5UgmYR77D1+hZ82jkOo9/c5NzvjqUzOvZfjAQNHQDAn51rI2FJF1TXVWfs52FjyHU4KWMb+9ZTet9Ltk0wrNuvEMutGtEQZeHsmWX5Nj0qyDG593MisQQzz73Bt4brn+LTsONJMMeRVQ8lFgkhJB9JGbI7VfoZFTyxqKsLqDLr8ShaCh2TklkKAyJlYe5FP/zifZYVX9+wFwY0oNIcyujjbI7/6rRGrLoOI97k84ecupWDDnrDOyyxDEZH8noUFA+rJdfhE5EEnpR7GfTW+t1YsXFNqZ5cSdBWEyJDRQ2DesxGmlx9OP3MVNw6Ng/1Yj4x4uZ/XkO/fc/gtv4+/rrDrp1WlUk41gm2DfHBqwPTsPL+fu4bol9FaepjdqtRqDN6C/6r0wa/tLZD6opueDenbUkOmSjJzlgL96a4AwCyhCro3Wc+a6Y8ADT+/AHe//6Cn15egkAiVni+11HJsF12A85r77C2LbjyrriGna+pp19j/HEf/H33IzrueIyzr6Pw5zV/tNv2WOExKuJsOMcEYbDfXSy/vx/nTi9G+LZReHR4Nia+usKoP5nXFtdu6NR/Mb58be6hqy7Ego4O0NNQwYmRjaGrLpuBq6UqwNIu7KQtKXsCPg/96infRO14bQ+M7TyNFdfOzsDFU4vRMuz1d41j4olXOO0biQ33P+K/52GY+DVJn9cyjhnjVRHNayeEkHykZ8uWiFT4GYs8nmw5dFjuUiiu5i0AEJqYDhNtxbVoSMX15o4Xun9iLjlMUNPCXuf2WC93F58o5mxbDSub9sfau3sZ8SUP/8U5OzdI+AJ03+WJqD/YS9hI6YhNzULnHU+QmiX7sN0u5BUc5DoQvzCxwRPz2oyYmY4a+jpTR+iS8C0R5mNqi9FdfsbRC6sZ203Sk3Dr2Hz07LsATzhmaM2++BYzWtqUm5pwZe2iX+5MNaFYhMWPDmG21ynw81nMH2BQHWsb98XBum0ZzT+me9hAQ0UAdSH731Z+hhcpHR42RlAR8JAtliJeQxcd+y/BzePzGQ2QAMAwIwVbbm7D9Ofnsa1+V/zn2Jpz9mlQAvdyTXE+hew2P/yEHU+CYaSpiuXd6qBZTQOlxx+TkonpZ17j6MsI1DPXYXQql0qBvvueso6xSYxC29BXaBHuh0afP8AxPhyqEpHS10xQ08LMNuOw37l9TszRVBtPZ7TMedyspgHCF3TEq8gk1DPXpWX+5diSLo7wDElE+JcMGGio4PiIxrDQU4eptiqMFl5l7X/AqT3URdnYdoNZl1QvKw3XTizEyC6/4JhjS9ZxBflhP7tUB2GjvyRCCMlHRrbsQ2mFTywCHIlF7qXQPB6tA6ys5nidYMV2uHRBqqoG/dwLYVpLG4z/2A2/eJ9lLDN0igvFqDc3sadeJ0SnFFz7ipQMqVSK1bcDc5KKADDp5SXWflvrd5PddPmqv4s5VnWvi2qUSCkRYmluAuN4bQ84xwZjwZOjjH2MMpJx+9jvmNx+EvbW68jYJpUCl95Fo5dT1Ur8isQSrLz9Abffx8Klui7+6FQbtwNj0W+f7MOuUVoSTp9dBo8IxTUpPas5YLVbP5y1a8poVAQAIxtboqahrAyGlb4GquuqIyJPV9ZfWtmWwHdFlBE8rwOqL74OAIjV1EP7AUtx6uxyzp+1Y0I4/rm9C3/d2YPnpra4a1UPXtXs8axaLQTpmjGe6/J6HZWMTJEYuz1DkZwpwugmVjDVUcM1/2hMO507y6vbLk9ELOwIdZWCm5xIpVLUWHoDmSLZzfm8SUV5hulJGOd7HQP976Nh9Pf3Lzjm0AI/tx2PKG3m0ua3s9mzcLXUhGhuTUugy7s6ZjoImtcBgXGpsDHUhIoSN5V2uHaBhigT6+7sZsTVxCIcubgGblEBmOcxXKmu6qRwKLFICCH5eBAkSxpU+K7QAKvOokl6EvgSMetDhlRKrQsqowjPFxjmd5cRy+YLsKkBu14gyV+/eub4x8YUS5r9yLozvurefpyza0r1ysqIRCrF/EcJuB6SmxixSI5F70Avxn5fVDXxX53WOY+HNbTA/sENKMFeguQnRi1yHwINURZmPTvNiKuJRdh9bSM8wt9iersJSFXN7crZZ+9TeP/SCg0sqs7f1/r7n7Dwij8A4HZgHNbfz10ubpMYhcun/mDNxv3mqVktzGk1Cnes6nEmlo4Ob4Qf6pnnPObxeDg2ohHGHfNBcEIaBrhUx1Rq6lVmqumqo46pNvyiUwDIkovtBi7D6nv78DNHEzYAEEglaPL5A5p8zm2EEqeug2dmtXDXyhk3a7jiWbVakOapR6cxN/fGy7p7gfCb3RbbHzNnRiamZ+NOYBy6OLKbAYolUmx88AleIQloaWsEc121nKSiItWT4zDP8xhGctS+VZaIx8ex2h5Y06QffEzZCfB5Hey/67yk/BDweXAw0WbFuzqa4vK7aM5j1jfqDQ1RFpY/OMjaNtP7LDoGv8ScVqNwxbqhwoR7DqkUFilxaBz1AfVig2CXGAmt7Ew8sqiDfxr2Kvj4KoQSi4QQko/fv3al1M9MYW5QUQE0NDiOKMfkOkMLpBIYpychWou5tEWUz7IYUnE9HT8TvaXMN/oH67ZFuI4xtFQLnoFAcmmoCPBwqge0g+Pw67PTsE/MLYZvlJGMv+7sxshuM7HHKwRj3GqU4UirHt/YLEZSEQAmv7wEgdzv/n6n9khTUUdjSz2cGe2G6no0S7GksZZc8niY3WoURHw+5nqdZO0/+s1NeIS/xdDus/CsWm6CoNG6e/j8R6cqU7Ljfxe4Gw/UiQvBzWPzObvhJqtoYFab0dhVrxMjgSSvhbUh+HLditytDfF2dluIJVIIqJNRmXs83QMDD3jjWoCsyYpIIMTMtuNwxaYh/rqzG05xoQWewygjGZ2DX6Bz8AsABxGmbYQjjq2w17k9/IyYr1HRKVnotccLD4MSWOeJ/lqDOzQxHT12e8I3MhlmOmr4nJxbm/vIy/ybl6lnZ+J/z05jttdJaIkKX9M7RMcY3ma1cMG2Cc7buXHexKumo4ZhjSwxrz0lFiurSe7WChOLALCy6QDEaehg841tEMq9/teLDcalU3/iuaktTts3xz1LJ0RoGULEF0A/MxW148PRIPojXGM+okH0R5hxrPDq//4RdLLSsaT5j8X+vVVUlFgkhJB8hCbKPqCylkLr6VW8u1SWlqyQzZfPrMTih9hUuNVQvo4OqQBev0ZPX+ZsxSy+EEuaDQIAPJ7mURajqtBUhXzo62piavufcPXkIsa24X53cKhuG4w7BrS2NYKdsVYZjbLqWeyZyHiskZ2JCa/YtZi2unYFAHjOaEmzFEuJhGs2PI+H3z1GIFTHBP/c3gkVuQYU9omReHh4Nha6D8WaJn1zZthbLL6OxKVdoKlauT/KKFpBYB8fjhvHF3AmFb1N7TC4x//wQa77Npf88oaUVCwfdNVVcGVCM5x5HZmz/B0Arlk3RP0Rrhj9+gamvrgAl1jlO9NapsRh1rPTmPXsNC7aNMYqtx/wwNIpZztXUhEARh15iVFHXjJieZOKBWkU9R4HL/0Nx4SCO0CnqKjjpYkNXpvUhK+xNV4ZW+O1cY2chiz5iVjUSekxkYqpR10z7B1UH0tvBCAwLo1zn50uXRCmbYzDF9dAN4tdY7Rh9MciLb/vGPSCEot5VO5XY0IIKSasrtAVbRk0ANjZsUK1EiPhKVckf9h/LzCkITsJSSou0YKFEMoV9N9TrwOC9cwwuIEFnM11y2hkFdvybo6YkJqFQ46tMfQdM3G7++oGuI7YgKM+EfidZk2UitBkEUKSmYmpYX63YZTBrO91xboB/I1kz3GUVCw9LW2N4BmSyN7A42Fr/W54Y1QDx86vgmk6c3aIikSMFQ8OoFPwC4zo+gvCdYwhkkix6GoA1vSsWzqDL0XB8Wn445o/vEISYcoxK7NGUjRuHF8A81R28uekfXMM7zoTGSrKzeak5GHF0cfZHJK1PXEvMA5ttj4CAIj5Auxy6Yxd9Tqh0ecP6B/wCO1CfNDoc2C+TXzy6v7pGbp/eobztk0wt9VI1gzG4iCQiDHX6wQWPj7CunmQl7epHU46uOOqdUO8MrGGmE+rKYhiI5tYYWQTK3xJz8bz8C8w1VZDPbnO55dtG8N1xAYcuLwOLcO5Z39/L+9qtYr1fBUdJRYJIUQJellyd8MqYmKxFvsF0C4xqgwGQkrVixcQnmHWMMsQqGBZ04EAgENDG5bFqCqVmW3HomuQNwwzcksmWKTEY9v1LRioroNfW9tCTUgfkErasQC5G0BSKaY/P8/ab33DXgCAGvoVrJxFBTertR3+ufdRYbmNe1bOcB25AXuurEfXoOes7W1DfeFzYDrGdJ6Oc7Wa4a+7gdBQ4WNhRwdkiSUQSwAd9Yr90UYikcJm+c2cx99q632jl5GCSyf/hFVKLOvYzfW7YUbb8ay6yfnRUKIRBylfWtkZIWNld0w57YvdniGyII8H72r28P5aMkAnMw0Noj+i8ef3aBT1AW5R72H3Jf/3ez0/PkXXT97Y1KAHFrkPQbKaZrGM1zYxEgcurYN75DuF+xx18MBfTfoySh4Qoiw9DRW0rWUMAAhb0BH99nnBKzT3BlWwnhnaDlyGaS8u4DfPE6ybV4WVKlTDv3XbYnEzmq2YV8V+9SWEkBL0KiIp52vWUuhKk1iM5NgReBqSiCY19Et4QKQ0JM/5HTpysR0uXRCuY1wm46lMLPVkiakYTX3MaDseBy+vY2zv//4RRr65hV57THB1QvOyGGKVcdEvGkfkEosdg1+y6o/5GVrimnUDAMDzma1KbXwEMNVRw70pLbD0egBUhXz82bk2Rhx+AZ88r7WftQzQo99CTH9+Hivv74eaWMQ4h2FGCs6cXY75LYZhedMBWHrjPU75RuJDbBrEUil+al4T63s7s+oGVhReoYkKt6mIs3Hi/ErUjWfX1NtUvzumt5tQqBItrW2NoK1GHwUrIlUhHzsHuOL3dvawW3GTtT1ZTRP3rJxxz8o5J2aZFIOOwS8xIOABOgb7sOrOAoBQKsHPz89hkP99zGo9BocdW31/2R+pFON8r+HvO7uhnZ3BucvD6o74ue34nISosmoaaCA4gb20FQA29nXmjJOqobqeOh5McYen9wuoCXhwOyL7nCPhC7C+UW/sdOmMn3wuY+SbW6inRPmAQL1qeGFqi+dmdvA2q4U3RjUQqW2Qb+3aqopeTQghRIFnYYkAADVRFjTkO9ZVxMRitWqApiaQljv7UtGMxaYb7kOytmdpjYyUEM9jl9H0+hVGLF2oipVuP5TRiCqXtrWMcr4+VKcNun98hh/97zP22XBrBxpY1kX4oPqw0KMZciVBKpXi57PsJU6/eR5nxTY26AEpj49H0zxgqKlaGsMjeTSraYAL45rmPH4xszX4s5izSqU8PtY36o3bVi44dGktZ3OKpQ//Re34MIztPB1vP+fO6tv8MAh9nKuhvb1JyX0TJcg3Mol7g1SK7dc3o33IK9amXfU6YUa78QUmgO5NccfzsC84+zoKtUy0sKyrY777k/LPxkgTBwY3wIjDLwrcN0zXBHvrdcTeeh1RPTkO015cwE8+l9krcgCYpybg0KW/MM73Gqa2n1jo5dHVk+Ow5cZW9Proxbk9Q6CC31uOwPqGPZVO0DiaaqOVrRFW96gDXXUVvI5MwouIL3CvaYi0bDHuf4xHXTNttKlFN00JoC6U/V5ta2eEn27F5cTTVNTxd+O++LtxX1gmxaB12GvUSI5BtdRE8KUSJKhrI1pDHz6m1vAxsUGSGtXIVhYlFgkhRAFVgexFSU9+tiJQMROLPJ6szqKvb06oloIZi4DswzrVH6vYJH/8yYptce2GKG3DMhhN5cNY3szjYXKHSWgR7sdYpqiTnY4Dl9bBWtcU2X/3Kf1BVnJSqRSDDnojOJE5e8Uj7A3ahL1mxOLUdXDAqR0AQIdmapV7r0xt0GTo31h7dy8m+1xibR/udwd6mWkY1HM2MoW5SeK9XqEVLrEolUrx7/MwTDzBThwCwIInRzHqzS1W/LxtE0zqMKnA5Myvre3gYWMEDxsjTG9pWyxjJuXDsEaWmH7mNRLTs5U+JkLHCL+1GonVTfphnucxTH1xEaoSEWu/tqG+eHlgBtY37IWlzQYWmGRREWdjwqurWPbgIGezDAB4aWKD4d1m4o1xTaXHCwBvZ7dlPHY212XUh65HtaIJB1cTVeipC/Elg/37HaZrgkN123IcRb4HzeEkhBAFviUWWcuggYqZWARYy6FN079AJ5O7m1qWmL1MhlQgz5+juZ8nI5Sioo5VNFuxxCSqa2Nk158hATMh7x75Dr97HsfaO4FlNLLKa+mN9zjxin2D5HfPY6zY+oY9kaaiDgAw1FQp8bGRostQUcPUDj+hb6/fkazCnvHb66MXzp9eAo3s3M60H+O5X9PKsxln32Dk4Zec24a/uYU/H/3Hinub2mFI91lKNbhY3aNOUYdIyrETIxp/13EJGjqY1WYsnEZtwmVr7nrLKhIxZj07jZAdY7Dq7l7Ui/kEyHUrN01NwOQXF/FuzyRsvLWDM6koAQ+rm/RDsyFrC51UJOR7Cfk8BMxug419nbGiWx0McDEv6yFVWpRYJIQQBb5N1qtUiUWOztCK6ixeeRdT0qMhJWnFClZoc/3uiNXUy3n8U3N6c1/c7tRwwV+N+7DiCx4fwckdp0p/QJXcoqv+rFjjqPfoEsRcGpikqoFNDXoAANrYGcFcV71UxkcKtrlfvQL3OWvfDB6DVyJI15S1rUOID45eWAXh13qMT4ITcNU/GlKpcl1xy0Jalgj7n4birzuBeBaaiE0PPnHu1ybkFXZe28SKh+gYo2ffBUhVLbi8wsuZrWn1QSXXtpYRGlnqFbyjAoEG1dG93yL06/UbgnW4Z/vqZqXjf89Ow+fADITsGIPbR3/DxZN/4NW+qQjfPhqbbm2HTVI057HBOiZoN3AZ5rYahSxh4W/qPJrmUehjCPnGQFMFU1rYYE67WuhWx6zYz79FidewqoASi4QQosCgg94AFCQW9b7/DVyZ4mjgomg59PKb70t6NKSkvHsHnDzJCKULVfF3496M2F+9nEpzVJWSkKNJxIIWw/DCxIa5n1SCg5f/RkpcYimNrIqSSrHi/n5WeHP97khU18b8DvY4PapJGQyMKDLJ3RqHhjbElBbW2PdjfYX7+ZrYwH3warzmqPfW4+Mz7Lm6HryvDSm67vSE4H8XsPZOINKzxSU19EITS6SQSqXotecpRh99if9deAu39fc593WMC8WpcytYS1S/qGqie79F+Za0GNnYEnsG1Yd4TQ+4VKclopUdj8fDvSktUKSeRTweztg3h9PozVjedACy+IrLRVimxKF12Bt0DXoO57gQzkYw3+xw6QzXkRsYjWSUYW+sBVNtVazuURdNqZkgKSaDG1jAQKP4VizsGVQfP7lbF9v5KjJKLBJCSAH0Myr3jEV3cQLnrk/z6U5JyrlVq1hLlXY7d0SMpj4jpqFS8BI6kr/JLaxZsSyhCoZ1/xXpQmZzkFqJUTjaZiBiUzNZx5DCOfAslNX0AwB6fHzKanCRJlTFuka9IVnbE4u7OEKvGD9UkOIxuIEFNvathxGNrfLdL0rbEG0HLsczM/ZNsmF+d/HP7V2M577ZF95C67dL+O95WKHHJBJLICqmkiASiRS/nnsDgwWXIfjfBdz6EJvv/jWSonH1xCLWjc1svgD9e83lXEpqoKGCDvbGCF3QAXt/bIBRTaxopmIVoqEiQPD8Dpw3uwojTUUd8z2Gw2XkBlyrWf+7z/PGyAptBi7HTx2nFLoBxqJODvCf2w5Rf3TGrDZ29HtMio2qkI97U1qgex1TdLA3xu1JzfG/NuzPRsoa1ST/16yqhBKLhBDCITRPI4BKtRSaY8bi1GrlZzYHKQbR0ZD+x6zHlc0XYG2TvmU0oMptRbc6GNu0Bqz0mUtr/YxqYHarUaz9x76+jj2/rS+l0VVOX9KzMerIS1ZcKBZhzd29rPi6Rn0YJQBIxRanqYvOP/zJOXNx2osLWPj4CCs+7L8XyBSJcdwnAmOPvYTVkutotO4u9j0N5VwyPfWUL1TnXITqnIvY+iiowDElpmfnu/R6xa33WHfvI1IyC369rZYSjxvH5zOaQH3zU4fJuKkg2RO3pAuuTWxO3eerMAs9DTycWjzLhgMMLdHlhz/RatAKXLBVvoajn6ElhnT7Fa4jCj9L8Zsf61t813GEKMOpmg7Oj22KaxObo7WdMVb1qIvYxZ1xeFhDrO+j/O/sz62oEVZe1BKPEEI4pGblLj2qVIlFKytARQXIzu0eyA8MBBSsqJJIpOAX8e43KWW7d4OXlcUIHarTGiFytcmmcMy0I4WnoSLAzgGuAIAzryPRb9+znG2b63dHt4/P0DXoOeOYsTuXQjJ7KPiW9OGpsMK/pMNqyQ3ObVNfXkTthHBGLEpTH6vc+pXG0EgxaWtnhNuBcfnuk6Chg879/8SDw3NYdd3+eHwYcRo62Py1puY3Tmvu4GNcbmOX8C8ZGHP0JRxMtOBunfsi+PfdQGzJk0yccsoX/V3MYaKtxhpHUHwaeu/1gm9kMhxMtHBmdBNkZEvQcN29wnzLOay/ROHyyT9RKzGKtW1ps4HYW6/jd52XVB1NauhDtLoH1j/4iF/PvS3ayXg8PLB0wgNLJ9RIikaPwKfo+skbtRPCYJ6SAA1RFiK1DRCsY4r7lk444eAOb7NauUXKlVRNRw1RybKZ/Gt61EVtU+2ijZuQQjLUVMWgrwntGWdeF7h/RwdjLOzoUNLDqlAosUgIIQXQq0yJRYEAsLEBAgJyQryPgYCCkmPX38egc212sXxSTonFwLZtrPCGBj1ZsUWd6A1RcWteUy5Dz+NhTJcZeLV/GkzSk3LCRhnJuNeuD6yf3EENw8ItEavKMrLFCpOKjnGhWPbgICu+sMVQpKhqlvTQSDH6rb19gYlFAIjUNkKn/otx/8hcVEtLZGzbeGsH4tV1cLhO65xY3qRiXr33eGFic2tkiiQY29QKs86zkzFjjr7E+bFNGbGQhDTYLr+Z8zggJhXTTr/Gs+8sI1L/cyAunl4M81R2eZLdzh2x0H2owmMnNKNGXCQXn8/DL63sUMdUB7POv0FMShYmNK8JJzMdzDz3JieJVxghuqbY0qA7tjToLgtIpeBBCilP+QWQo5pYYd/TUFb87ey20FDhg8/jQUVACypJ2fKwMcSDT/GMmKm2KlraGGHnQFeoC/lQp1JCLJRYJIQQDonplXTGIiBbDp03sRgWBvXsTGSosGdjLLkeQInFiuTiRSAkhBF6ZO6Il2bM+jEffmsHYy32z5sUjZkO+9/0s5YBxneaijNnlzPird4/w54V2zBmza+lNbwKzTssEU3+4W5yIRSLsP/yOmiImDN1XxnXxB7nDgCA4yMalfgYSfHo4MDdlZZLoEF1dPnhT9w59jvrtXrflX+QoK6NKzb5/+zj0rJzmpX9dTeQc5+LftEY/t9zfIpPQ3q2GBFJmfjMkZy5+T7/2olc+BIxZnqfxZKH/0JNLGJtP1K7JSZ2nKxwFpilnjqmedhwbiNVWxdHU3RxZL6H+7GBBaRSKf6++xH/u1CEGY08HqQo3MzELf3qcSYWhXwe1ISUqCHlw7Kujui+2xMpmWLoqgtxdXwzNK1pUNbDKvcosUgIIRzOvsldhlSpZiwCnHUWHRIi8MqU/cHkURB3YxdSTm3Zwgptrd+VFbM1ollypelcrWbYWa8TxvteY8Q7blsJ/PEToEU/j/zcCIhBpx1PFG5feX8/mnz+wIiJeHxM6DQVEr7sw2pfZ/MSHSMpXupCPjJEyjVOeWVqg559FuDayYWM5LKKRIwT51agY/8leGxRp8hjOvScucxeLyMFLrFBqBcTDJP0L9DMliUa4zR0Ea2ph0D9anivXx1RWgacSUH17Ez0+/AYs71OwiU2mPOaJ+zdMaLrLzm/x/IWdnTAL61sqSERKRQej4df29jhl1a2EEmk+JySiXNvomCkqYqmNQxgt+JmwSf5DgI+D2Ob1sBuT+YNUE2a/UXKkZa2Rohc2Amvo5JRz1wHmqqUMlMG/SsRQgiHYy8jcr5mzVgUCCp2IsDRkRVqG/qKM7FIKpCQEODqVUYoRkMXxx2Kp5A7KZqZbcai6ydvWKbkLvG0SolF/Pw/YLhuTRmOrHzb/jgIk076Ktz+s/dZzPQ+y4qvaDoAXua1AQCi1T2oVmwFs7FvPYw/7qP0/g8t62JAzzk4c2YZhNLchKSmKAsXTi9Gm0HL4WtS9Nc409QEDHl3D33fP0aLcD/wobhhyzfJKhp4b2COKC0DJKhpQ12cBfOUBDSK/sA5Q/GbzfW7YUbb8ayk4qgmVljZrQ4MNVUgpGWjpAj4fB5U+TxY6WtgSovcvw+u5B8ADGlggX+HNkTElwzUW3sHCem59bqnt7TB+5hU1DLWwsKODui5xwtPgnNvTveoYwYVAR8zPGxwxjcScWmyY//qVZeen0m5o6UmpFmKhUSJRUII4fApPrcWk36GXGJRX7/QhanLlXbtWKFR8X5Yj97c+798Cdy/D3z5Iqvh16IF0KFDyY6RFN6hQ6zQHueOyBIyZ7IYatLMlrKQqqqBWa3H4MhFZhJRa+M/yJw0AWoO9mU0svItv6TiBJ8r+PvOblbc29QOS5oNgoYKH8dHNKYPrRXQ2KY1IJJIcn7+fB6wf3ADDG1oiU7bH+MGx5LjS7ZNMLrLDBy8vI4RN8hMxZ2jv6NH34XfPXPRJjEKs56dxujXN6Auzi74gDx0stPRMPqj0vtn8wX4reUI/N2oD+O9xoY+zujjXA2W+tT1mZSs7T+4YFhDC7Td+pgRX9pVdmO6up467k1pgR1PgiHk8zDJ3Rq1jJk33B9ObYH19z/hkt9n1DHTweLOshs9zua6ePlra9z7GA9rAw00t1bQPZAQUqFQYpEQQgrAmrGop1c2AykuDg5AzZpAcO7Sq3rvX0CtbRYyhaq5+0mlmOt1AviL3RABS5YA8+eXwmCJUqRS4CD757TPqT0r9nMr29IYUZVVx1QbftEpnNuO1fbAhFdX0C40N1mmJhbh7ZRZqHnhJLTU6G3ZN7GpmWiz5RHnNhVxNtbd3o3JPpdY2+I0dZH490ocq+cG5+r6rA+7pOKY2Nwao5pY4UV4EuyNtWCkJXt9ujaxOZxW3+b8OztUty0MM1Kw/vZORtwgMxXXTyzAiK4zccrBXekxuER/wuynJzHI/wEEUuWWZhfFGyMrDO86k1UXFwCcqulQUpGUCj6fh9Z2xng3py3mXHiL1Cwx5rSrBWvD3EZYTtV0sL6Ps8Jz8Hg8/NzKlvM9h4WeBgY3sCiRsRNCygbNnyeEkAKwEosVub4iIJsB0bkzI8RPT4dHeJ4i3lIpVtw/gOUcXVYBAAsWAMePl+AgSaG8eAH4+TFCT81qwd/IkrWrKi2dK1E/uVsr3sjjYXq7iRDLddF0vHEeHuM3Y/C/3hCJSz55Ud5JJFK4b3yIt5/lEkdSKXq/f4LX+6ZyJhVThWo4M3819B1t0KOuGSUVKwE1oQDNahrkJBW/ef2/Nvi9Pfcs340Ne2JJs0GsuKYoCyfOr8S265uhncXdIRoAIJWidagvLpz6Ey8PzsCQd/dKPKn4SdcUU9tNRKNh/3AmFY00VeBhQzO7SOlyMNHG6dFuuDaxOdrbK99UiRBS9dCtcUIIKYB+ptyH24qeWASATp2AHTsYoc5BL3CzZn0AwIr7BzDn6cn8zzFqlGz2o6tryYyRKI9jtuK/ddty7iqSFFwTjHy/Ke7WiE7JxGnfSNQy1sK5N58Z298a18A+p/YY+/p6TowPKZbfP4Duprbo5VStys/keBKSgA+xuTd0qqXEY+SbWxjz+jrsEyM5j8niCzGw5xzMa0/dn6sCHo+HpV0d4WKuix//9WZtX+Q+BDxIMf/JMda2Ca+uon/AQ2yq3wMX7JrgrZEVVMQi1E4IR9sQX4x4ewt14sMKHIOfoSUu2DaBt1ktfDAwR4qKOoQSCYwykmCVHAv7hAjUSoiEfWIErL9EwygjOSdBmS5UxXt9c9yzdMaNmq64aNsE4jy1FKe0kC0t3f80FKbaaljWzREqdFOIEEJIOUWJRUIIyYeqKBuaebpMAqgcicX27WVNaMTinFCvcB/MBjDy9c2Ck4oAkJYGjBkDPHtWsWtOVnQiEXD4MDPE4+OIY0vO3e2MNDnjpHjw+Tws6eKIJV1ktaiuvItGt12ejH3+cB+MIe/uMjrYdg16jtahvlh9W7dKJhajkzPx191ARCZl4N/n4RBIxOjy6TnG+l5Dj49PGQ055H3W1EP/nr/hoWVdLBbQc1FVMrB+dQysXx38WeeZG3g8LGwxDDEaeqxl0QBgmJGChU+OYOGTI4W6npjHxzGHFljbpB9ecMwszA9PKoF2VgYyhCrIFnDXurU10sSlcU3hYKINAJjRkkpXEEIIKf8osUgIIXKk0twZXXpZqewdKkNiUV8faNoUeJRbw8wh8iPmPz6CeZ7sGR7Q0JDNcjwr1331+XPAy0t2LlI27t4FPjNnxV21bogYTX3WrjpqQnRzNCulgREAaG9vzIqF6xhjY4MemP30FCO+8t5+NLd0RlqWCJqqVectmlQqRZedT/AyIgma2RmY8/wCpr68AIuU+AKPfWLugIE95iBM1wSrPaiDY1Wlqy5EUga7w/LGhj3xSc8Me6+sh1FG8nefP1MgxD6nDljbuA8CDap/1zmkPD6S1bhv7DSvaYA9g+rDwUQLPLpRRwghpIKhOfWEECIn70pRVkdooHIkFgFWnUUAWPzoP6iJmR/O4tR1gKdPgTNngEWL2OfZs6eEBkiUcuoUK/RfndasmJmOGq5OaAYd9aqTsCoPVAR8pCzvyoqvdOuPBDVmDcCmUQHo9/4xrvjHlNbwygX/mBS8DP+C8a+u4MOuCVjx4ECBScVILQOM7jwDLQavRpiuCQ4NqY+2VtTYoqpqYqWvcNsFOze4jtiA6zUKX7YjSVUDq5v0g824XZjUcfJ3JxXzk7qiGx5O80BtU21KKhJCCKmQKLFICCFydnnmdkvW4yrwXlkSiwMHypZD5yObL8CAnnMQYfl1ydf06YAqs4g+Dh8GUjkSsKTkSSTA6dOMUKZAiAu2TRixlOVdEbmoE5rVpBldZYFr9mGiujZWuvVnxZc+OIhBez0ZM6cru4SPobh46k9sv74F1dIS893Xs5oDJnScAvux27HfuT2kXxvhDHAxL4WRkvJqRbc6+W6P0DFC5/6L0emHP3HHUnEn229emthgSvufUGPCHsxtNQpR2sXbOGV6Sxss7+aIyEWdoKGS/+swIYQQUt7RtAVCCJEz6aRvztf6GSnsHSpLYtHREVi6FPjtN4W7TG83AXdquMByyXVELuoEM0NDoG9f4OjR3J2Sk4GTJ4ERI0ph0IThyRMgktnM4nrN+qzldupC+uBaHm1s0APTXlyAZUpcTswxIRxjXl9Hpx1muDi2KVQEPLyJSkZUcibcrQ0q1RLpl+FfsPXvI1iydQ5M078o3C9OXQf/1m2D3c4d8drEmrX9+Ahq2FLVNbLUw44BLlh7JxC6akKY66rj/FtmiQjweLhh3QA3rBugVkIEWoT7wS0qAEbpScgQqiJZVQNe1Rxwz9IJwXolUzJCQ4WPf3o7Y3yzmiVyfkIIIaQsVJ53p4QQUgI4azJVlsQiAMydK2vgMn8+I/xFVROzWo/BbpdOubtefIu9PzYAxo5lJhYBYPduSiyWBY5l0Kfs3VkxPp+W15W1JV1qY8EVf0YsQ0UNf7gPxq5rmxjxRY+OwKFOG2x9bIbQxHT8ffcjAMDeWAt3J7ujmq56qY27pEgkUqz830bsPr4UWqJMzn0em9fGhoY9caZWM2QKVTn3cTLTQefapiU5VFIB8Hg8jGtaE+Oa5ibsvMMS8T4mFa1sjTD/yjvsexoKAGhlawgtVVPsf1cd+53bl9oY29UyxulRTagcBSGEkEqHXtkIISQfpmkcs2hMK9mH2HnzAAMDYPZsIDsbB2q1wNyWI1lLv/Y/C5MlFtu3B2rUAEJCcjfeuwdERADVi7/+FFFAKpXNFM1DxOPjnJ0bIza/g31pjoooMNndGs9CE3H2DXMW1X6n9pj57CzqxofmxKqnxmPG83P4RYWZQHwfm4oD3mGY3bZWqYy5pATEpGDuuOU4emE1VCRi1vYP+tUws8042ZJ+BTXnujmaYmQTK3RzNIWWmhAiEbtxB6naGlnqo5GlPgBgz6D6WNjRASKJFHZGmuDxeJBIpJACEPB5cP3rDnwjv7+5CyBLHA5vZInRR19ybp/Z2paSioQQQiolqrFICCF5vI5MYjw246r3VdkSiwAweTLw5QuQmIhRXX9RWE8qPi0L4PO5ZyfeulXCgyQML18CQUGM0B2reojX0GXEFndxLL0xEYUMNFVxerQbhHKzR8V8AX5vOZy1/2yvUzBKS2LFl998X2JjLA3p2WJMnLoBhy+u4Uwq7nVqj4bD/8EFOzeFSUUtVQFOjWqCAa7VoaVGiRqiHGtDTdQyzu26zOfzIPj693hoSEMYa3HPilXWaDcrjGxihVa27NfPZV0d0dWxEr53IIQQQkCJRUIIYVhw5R3jsVlqInsns5KpvVTmBAJAI/+uqjlJja7sLre4ebMEBkUUOneOFTpt37wMBkIKQ8LRlOWcXVM8rM5MAOtlpWGe5zHWvkkZIiSkZUEiKb/NXTKyxXgfk4KEtCxG/GlIIpqP3YwzZ5axus8DwM9tx2FslxlIUdVkbcvrn97OUBXSW1hSfJzNdRE0rz3+HdKAc7uLuS429a2n8HgLPXV0ryN7b3DzJ3f0cpJ9raMmRPKyrvitvT11fCaEEFJp0W1eQgjJQ1XA/LBqyjVj0cSkdAZTRo4Nb4SBB705t/199yPW9nQCmjQBtLWBlDzNbW7ckC3PpQ9PpSLrzDnIz685a9eU8XhKC+tSGw9RjqaqACmZcjP1eDzMaTUKD47MZYQnv7yEDQ17IEivGiNutPAqjDRVcHBIQ3QpZ7OgQhLS0GvPU7yKTIKBhgoOD2uITrVNIRJLMHrTNVw8sxR6WWmMY8Q8PkZ1mYFDddvme+6zo5ugla0R9DRUSvJbIFWUpqoQPeqybxwOa2iBA0MaAgCikjOw9EburGEPG0O0sTPCGLca0P/6eyng83BmtBvrPIQQQkhlRbd7CSEkj+OvmB12WTUWDQ0Blcr9obaVrVG+2x9+ipf9G7RuzdwQFga8r9jLNCuMiAiovnzOCD03tUWEDvNnN6OlbWmOiihhbjvumpePLOrijFxiWFUiwuKHhzj3j0vLRrddnkjJLB+1BbPFEjwNScTSG+/x6mtJiYT0bHTZ6Ylxx3wwaO8TrD+6DDWTY1jHTuowqcCkYuzizujpVI2SiqRE6aqrYKBrbq1gIZ+HMW41ch7/2bk2jg1vhGVdHeH9Syvcm9ICi7s4wtow/1m2hBBCSGVGiUVCCMkHq8ZiZV0GnYeBZv4f3FtufogskUTWxEUeLYcuHRcusEO2zBky5rpqqGWsVVojIkoaXN9CYS23eS2HQ8xjvjUb5ncX9T8HKjyf7rzL8PtctKYTRRWSkAb9+ZfRdMN97PIMYW3f4xWCZtvXon3IK9a2he5DsMulc77nz1jZHYaaRat/R4iy9g+uj60/1MP/2tjh7mR3tKllnLONx+Ohv2t1/NbeHg0s9MpwlIQQQkj5QYlFQgj5KlMktzxRKq2SiUUVAR9uVvr57nPkZTglFsuQ5Px5Vuy8XRPG420/uJTWcEgh2Bhp4umMlvi7lxMODG6An5rXzNnmZ1QDe507sI7ZeGs7eFKJwnM6rbmD6ORMjDr8As033MeKm+8hEivev7itv/8J6dmKrzfA/wH+9+w0K/6fYyssbTYo33P/2tqO6imSUqUmFGBic2us6lEXza25G5kRQgghJBe9UyOEkK9EYmYzBJ2sdGiImM0HqkJiEQAeTfPId/uoIy+R6ViHXW/y9m1AUnoJjSopPR1ZV68zQhFahnhuZseIcdUKI+VDTUNN/NzKFsMaWWJeB+bS6D+aD0aakDk7r0XEO0x4dTXfc1b78xoOeIfBMyQR8y6/w96nocUy1oxsMR58ikNUUobCfdbd+6hwm1NsMHZf3cCK+5hYY0KnqfnWZF3W1REru9cp3IAJIYQQQkiposQiIYR8JZLrssrZuMW0fDVKKCl8fsENWM6+jQHatWMG4+OBV+zljqT4BB8/D/XsTEbsom1jSOWW0FIH0orBQk8Dv7WvlfM4QscIa5r0Y+238t5+mKfEKX3eiSdeod6aO3jwSflj5AXGpsJh5S202vwI1Rdfx+6vy5w/J2di7Z1AuG98gFabHyo8Xi8jBafOLod2NjMpmaCmhR96/YY0FXWFx/Z3Mcdv7e0hUOK5iBBCCCGElB1KLBJCyFfZcjPtWMuggSozY1EZP/7rzU4sAsCTJ6U/mCok/NBxVuyCbROOPUlF8UsrZpOdlW794W9gwYjpZaVhz5UN4EvkSjbk483nZLTa/Ah3PsRCLJEiO8/y6MikDNz+EIvwL+ms41IzRfCNTMJfdwMR9iU3KTj34lvcfB8D8z+vYfaFt3gSnIAHn+I5r82TSnDw8t+wT2Q2xJKAh6HdZ+Gjvnm+Y/+xgUW+2wkhhBBCSPkgLOsBEEJIeXH5XTTjcVVPLDqZ6eBNQU0hmjdnx7y8gJ9+KplBVXFSsRjWD28xYulCVdyoWZ8Rs6EOpRWKsZYaprSwxuaHQQCATKEqJnacgjvHfmfs1zn4BRY9PoJFLYYW6vzttj0GADjEh+GnjE/oK4jHuye+SAMf9zS00KxdE9gM6gW4ueGCfywGHniGDBG7pEFcWjYmnlBuRvLCx0fQ4+MzVnxRiyG4YtOowOM72psUuA8hhBBCCCl7lFgkhJCvRh5+yXhslprI3qkKJRZ3DHBBi02KlzkCAOrWBbS0gNTU3JinZ8kOrApb988JzExlzhC7UcMV6SpqjNjuga6lOSxSDNb1ckJtE21MP/MaAHDPyhm7nTti7GtmPc0FT47ipakNTtu7K3Ve3cxUjHl9A8Pf3EKDmE858Zp5d/K9CaxfiWQdfbyq2xG6DXogQ8uA83wf49IKvOawt7ex6PERVvyMXVMsbzqgwON/rF8dOur0FpUQQgghpCKgpdCEEAJAIldfEQBM076wd6wiNRYBKNcNUyAAGjdmxvz8gKSkkhlUFSaWSJFy4gwrfkGuG/QvrWzR0taolEZFiotQwMdUDxskLOmCzrVls/V+bjsObw2tWPsePb8aw97ezvd8lkkxWHNnD0J2jMHfd3YzkoqK6CQn4nfP4wjaOQ5r7+yGXkZKob+PTkHPOZu1+BtYYGTXX1i1QL9pWkMfY9xqYEMfZxwY3KDQ1yWEEEIIIWWDbgcTQgiAxIxsVqyqL4VWmpsbcPdu7mOpFHj2jLv+Ivlu1/yj0eOjFyv+rb5iB3tjXBrXFEIB3TOsyPQ0VHBxbFNEp2TCPyYFPyT/Bq9Dv0InO7cWolAqwYHL69A84h0WN/8Rn7/OLhRIxGgb8goj3t7CIP8HUClEPca81MXZmOl9FsPf3saCFsOwq15HSPiCAo/r9vEpjp5fzbpusooG+vX+Dclq7CX6f3SqjcENqsPeRPu7xkoIIYQQQsoWJRYJIQRAejb7AzhnV2hKLDKkZoqg1bQpe4OnJyUWi9mD+6+wLPojI/bUrBYitWWzE3cMcKWkYiXB5/NQTVcd1XTVsWh6L4yKD8Hxc6vAB3Nm9SSfy5jkcxlvjKyQxRfC9stn6GUVvFRZWSbpSdh2Ywsmv7yI2a1H41rNBgBXt3GpFD/5XMaGWzsglDJrM2bzBejfay78jGqwDktd0Q0aKgUnLAkhhBBCSPlFiUVCCAFwNzCOFWPVWNTRATQ0SmdA5URHB2NcD4hVuH3d/Y+YryixSIpVnad3WLELdm45X1tTw5ZK6ccGFnDd8TuGikU4cHkd5yxEp7hQpc7lY2KNw46tcdW6Ad4ZWkLEF6BaagLah/hgiN9ddAp+yXmcS2wwrpz8A0/MHbCpQQ9csmmMRHVtCMUiuEe8w5+PDqF12BvOY8d0no7r1uylzZv71aOkIiGEEEJIJUCJRUIIAbD1URArZpouV2OxCtVX/Gb3wPqosfSGwu0Lr/hjQL02qG1uDkRG5m7w9JQtieaa3UQKzXbZDWy6eZUVP/c1sdjHuVppD4mUojpmOjh8YQ2ura8H9/9NhHZ2RqGOP2frhr+a9MF9CyfW32S4jjEOOLXHAaf2cI3+iKUP/kX3T+xuzgDQLDIAzSL/hpjHR6KaFnSy0qEqESm87vS2E3Cobtucx5Z66rg6oRmq66pDT0OlUN8DIYQQQggpn2jNFCGEAHgYlMCKsWYsVsFl0Jb6GhjVmN08Iq86a+4A8rMWo6KAsLCSG1gVERCTAv6s84j5HI92Ia8Y20J0jOFjYgMA+LG+RVkMj5SyTjNGwP/6A/i17lrgvmlCVex27oi6ozajT9/5uG/pXGCi38fUFj37LUTXfovgZ2ipcD+BVAKjjGSFScVMgRA/dv8fNjXskRMb36wGnkxviTpmOpRUJIQQQgipRGjGIiGEcFATZbFrlVXBxCIALOzkgH3PClhq2bQpcOYMM+blBVjln5QkiqVmiuC4Stb5t2PwS6iLmQ2GLto2yUkUdXQwLvXxkbLRqHUj4M4lbFl/DOL9B1E/+iPqxoWCByk+6ZohwKA6Lti54ZydG1JVv690w1WbRnCt4YpJPpex8PERGGUkK31ssI4JRnT7RZbIBGCoqYL3c9vBQFP1u8ZCCCGEEELKN0osEkIIB+oIncvaUBNDG1rg0PNwhfu0fy7CTfmgtzfwww8lOrbKKD1bjMvvotF/f+5y1J6B7G7Q35ZB7xjgQkmbKqjDkG5oHquLhHR2R/viIBIIsbFhT+x1bo9JLy/jF++zqMb1vPhVhkAFa5v0xQq3AUhXUcOP9avD1kgLY91q0O8nIYQQQkglRolFQgjhYJr2hSNY9WosfnNgcIN8E4vPTe3YwWfcddqIYmlZInTY/gRPgnOX5vOkEnSTq3mXoqKOO1b18OznlmhoqV/KoyTlgYOJNp793Aq/X/bD0ZcRJXadFFVNrHH7AX837oMW4X7o8fEp6sUEQSs7A0KpGP4GFrhu3QBXrBsiXkM357j/hjUqsTERQgghhJDygxKLhJAqTyyRsmKs+opAlZ2xCAA8Hg/hCzvCYvF1zu1f1LXxXt8c9ol5Grh4e1MDl0K6+T6WkVQEALfIAJjJJbqvWjdAplCVkopVnI2RJg4Pa4SlXRxx430MHE214WFjhNjULKgIeOi20xNeoYnFci0xX4B7Vs64Z+XMiBtoqEDA5yE+NSsnNtqNSiAQQgghhFQVlFgkhFR5k0+9YsXM0tjNXKpyYhEAzHXVMcndmrODNgB4m9ViJhbj44GgIMDGplTGVxlsexzMivUO9GTFLti6YUgDathCZOyMtWBnrJXz2ExHDQDwZEZLXHz7Gatvf4CVvgbmdbCHjaEmFl31x5o7gazzhMzvgD+uBeCgdyiyxewbLrVNtLCpXz20sjVCtliC4IR0mGqrgc8DJp30xePgeLS0McK6Xk4l980SQgghhJByhRKLhJAqb+eTEFbMOimavaO5eSmMpnyb0dIm38Tij/735YLelFgshMvv5H7vpFIM8H/ICEnAQ0CTlrg9qH7pDYxUWN3rmqF7XeZNkVU96qKVrRGG/vccSRkiuJjr4tK4pqiup45dA12xa6Ar/vUOw4jDLxjHbfnBBW1ryRoFqQj4qGOmk7PtyHBa+kwIIYQQUhVRYpEQUqVlisSc8VoJkRzBWiU8mvLPPs+sKHneZgrqLPbvX4IjqjxCE9NZMbeoANh9iWLE7lk64eESaopDiqZ7XTN8/L094lKzUNNAE6pCPmP7sEaWiEnNxB9XA5AtlmCahw3a2BmV0WgJIYQQQkh5RYlFQkiV9vZzCmfcPkGuGYKuLmBiUgojKt94PB5q6GsghCMJ9pwrsejtXQqjqvguvv2MnnvYnZ8Hv7vHih1xbIU2pTAmUvkZaqrCMJ+Ozb+0ssO0FjYQS6VQEwpKcWSEEEIIIaSi4Be8CyGEVF5vPyezg1IpaifKJRYdHKgJyVcjGltyxpPUtBBgUJ0Z/NbAhSjkG5nEmVTkS8QY6P+AEcvmCzB13azSGhohEAr4lFQkhBBCCCEKUWKREFKl8TmShWZpidDOkpuRZ29fSiMq/wbVV9w0xNtUbtZiQgLw6VMJj6hiW3nrA2e8TehrmKcymwiltWkHZ2eqWUkIIYQQQggpHyixSAip0g4+C2XFWMugAUos5lHXTBstrA04t3lX46hDScuhWbLFEnxOzsQ1/2gcfhHOuc9QvzusmN7oESU8MkIIIYQQQghRHtVYJIRUWVKpFFf8Y1jxcQYZ7J0dHEphRBUDj8fD/akeGHn4BQ56hzG2eZtxJBafPQMGDCil0ZV/V95Fo9suz3z3MUxPYnXYlqirg9+7d0kOjRBCCCGEEEIKhWYsEkKqLPmk2DdNM2PZQZqxyLJ/cANW7Ln8UmgAD09ex993AyGlWouQSqUFJhUBYJzvdWiIshgx3g8/ADo6JTU0QgghhBBCCCk0SiwSQqqsUUdecsarR7OXR1NikduaHnUZj5PVNOFvwKzBWDcsALPOvcGmh0GlOLJSJpUCDx8Cs2YBPXoA7u7A6NHA7duARJKzm5+CLuR5CSRiTH55kRXnTZ9erEMmhBBCCCGEkKKixCIhhMjRDv7IDBgbAwbcNQWrup9b2bJiz+SWQxtkpsL2SxQ2PqikTVzS04FRowAPD+Cvv4CLF4HHj4F9+4B27YC6dYG7dyESSzDxhE+Bp+vz4QlqJMvNmm3WDHBzK5HhE0IIIYQQQsj3osQiIaRKEku4l+XypBLwPsh16aXZigoJ+DxkrurOiD03Yy+HbvQ5EB9iU0trWKUnPFyWUDxwQPE+/v6QtmuHfX0m4vFHjmX2efAlYvzmeZy9gWYrEkIIIYQQQsohSiwSQqqkE684Oj8DsEiOAzLkmrdQ45Z8qQiYLyXPODpDN456X1rDKT2ZmbJlz8+fF7grTyLBuAu7cOrsCmhmczQH+mqSz2U0jJabMVu9OtC/f1FHSwghhBBCCCHFjhKLhJDKLTkZWL0a+O034NgxIEbWBfqnE684d7/fyYQdpBmLBfKb3Tbn6xemtpCAx9jeMDoQAJAlkqBYZGUBW7YAw4eDv3AhdB8+BE8+IVzSFiwAXr4s1CG9Pnrh9tHfYZaawNpmlpqApQ/+ZR80cyagovKdgySEEEIIIYSQkiMs6wEQQkiJCQ8H2rQB8i5t5vOBqVORwWsFCFVZh9SMDWefhxKLBaptqp3zdYqqJgIMqsMxIfffstHnQEAqhfrci9g10BVj3Gp8/8VevwZGjABevAAgu0NmDyDLzAxBCxYArq7ff25l3b4NrF3Ljn9bFm1sDPGevcic9T9oynV3bvL5A7wP/oIh3WfhnpUzAEA7Kw3/XvoLellpzPPVrQtMm1ZS3wUhhBBCCCGEFAnNWCSEVE6RkUDbtsykIiDr0LthA3Zc2yTr5JuHnroQePaMfS5KLCrlyvimOV/LL4fWz0yFXWIkAGDcMR9MPvkKSRnZhb/IxYtAo0Y5ScW8VD9/Rq1ffwUePCj8eQsjIwMYM4b1+wN3d+DWLcDGBnc+Z0Il1AZuQ//GO7ku2QBQPTUet47Nw9HzK7Hi3n683jcV7UM4ZtFu3QqoshPghBBCCCGEEFIeUGKREFL5ZGUBXbsC7xXX9RvudwfzPI8xYu1s9IHz55k7amoCdeqUwCArn44OJujlZAYAeG7GrrPY6HNgztfbHgdDf/4VLL0RoPwFwsOBoUNlP18F+JmZEPTtC/j6Kn/ewtq5EwgKYsa0tYGDBxGaKkK1P66i3bbHAIC3xjXgPmQN7lg6s8cKKQYEPMKcpyfZXaAB2azMVq1K4BsghBBCCCGEkOJBiUVCSOXz77+Aj0+Buy15eAg9Ar1yHruG+QPR0cydOnUC1NWLe4SVEo/Hw5nRbtjSrx6ecSQW3aLYScSFV/wRFJ/GirNIpcDEicCXLwWPIzERGDAg3wTkd0tLA5YvZ4Wjl6zCSzUjtN78ENEpzOsmqmujyw9/Yp9TO+WvU78+sH59EQdLCCGEEEIIISWLEouEkMpFKgU2bmTH+XzOBOGOa5tglJYEABgRztHdt3fv4h5hpfeTuzVqtnWHmMd8iXGP8OPcf9BBb/x5zR9jjr7EJb/P3Cc9eFC2DFrejBmQjBnDjvv7A9u2FXboBduyBYiKYoSibGrDPNQCDdfdQ1BCOudhWUIVjOk8A2M6T0caR21PhnbtgLt3AX39Yho0IYQQQgghhJQMSiwSQiqXx4/ZnXrt7GR18Z4+hVRHh7GpWloiNt2UJaBq3r/OPI7PB7p3L8HBVl5DWzvipYkNI9bocyA0sjNZ+z4NTcSf1wKw72koeu7xwlV/uVmjKSnAr7+yLzJxIvDPP5Bs346IcePY2//4A4iPL8J3ISc1FdJVq1jhn1x+gJSnxMspj4d9zh3QYPh67K/bFlItLeZ2DQ1g1izg0iVAV7eYBk0IIYQQQgghJYcSi4SQymXTJnZsyhRARQVwdsbTP/5mbR4U8ABX/Y6C9+4dc4O7O2BiUkIDrdw6OpjggWVdRkxFIuZcDp2XVAp03ekJ+xU3ce1bgnHnTiBWrgZhjRrA6tU5DyPHj0eafJOdhARg6dLv/h5YDhwAT24cT81q4ZxdUwUHcHtvaIEPf20BLypKVtPz4EFZ06CEBGDNGkBNrfjGTAghhBBCCCEliBKLhJDKIzISOH6cGdPUBEaPznnYLMIM/zmyG2J0vHSIfT5aBv3dBHweJs4ayop7hL9V6vjAuDR02emJsM+JwNq17B02b2bO6hMIEPbzz+z9Nm0CwsKUG7QCUqkU6+8F4v3CFaxtf7gPAXi8Qp3PyUwHU1vYyBq+9OgBDBsm63RNCUVCCCGEEEJIBUOJRUJI5XH0KCASMWPDh+fUqnsSnAAAmN5uAiK1DAo+X69exTzAqkW9DTuB6xGmXGLxmyXD5wEREcxgo0acS9STmzZFoocHM5idXeQmKBNPvMKlDYdgHxvKiL81tMJlm0aFOpeNoSZe/toaZjqURCSEEEIIIYRUfJRYJIRUHpcvs2OTJuV86b7xAQAgXkMXw7vORIZARfG5mjUDHByKe4RVi7m5rL5lHu4R7yCQiJU6XCARY7bXKVZ8V/thyBBJOI8JnzqVHdy+HUhMVOqaYokUUqkUn+LSUO2Pq+DPOo9dniGY/vw8a9+NDXsUerbig6ktIOAX7hhCCCGEEEIIKa8osUgIqRzS0mSddPOysQFcXAAAoYnMbr23arqiW79FSFbRYJ+raVPg2LGSGmnVIjeDUCc7HfVigpQ6tGegF+y+MDsw+xlaYqLIBodfhHMek1GrFiTysxmTkwvsEB2floUxR15C5/dLEPzvAuxW3ER0ShYAwD4+HN0/PWPsn6CmhYN12yr1fQDArZ+aQ7K2J8x12Z3JCSGEEEIIIaSiosQiIaRyuHMHyJTrONylS86MstO+kexDarig3cClSLeqKQvo6wMbNwIPHwJWViU73qqiZUtWaItZklKHTn1xgRVb5SbrwDz2mA+0fruIt1HJOPvmM3xispCUJcHr2Cxk/PwL6zjRun+AjAykZYlw+0MsfCK+IC1LhO2Pg6A25wKMF17FvmehnDMhp768yIrtqtcJaSoFJwmdq+ng/pQWaFPLWKnvmRBCCCGEEEIqEmFZD4AQQorFlSvsWNeuOV8e9OZu4OFdzR4a7/2BwEDA1hZQpxllxUq+5iGAZoEvMKBvNxx/xU72fuMcE4R2ob6MWJSmPo7Uzq3bmJ4tgfPaO6xjR0ul+ODgAtuAVzkxYfRnjO/1P+x26VSo4etmpmLU65uMmJjHx+YG7BqPeR0e1hADXauDV8il0oQQQgghhBBSkdCMRUJI5SCfWFRRAdrmLlX1DvvCeVgLawNZN966dSmpWBIcHAAzM2bs2jVs7W4PF3Nd7mPAPUtwh0sXZAnzqYv5DY+HXx17sMKznp0GT8pdm1GR0a9vQCebuYz+TK2mCNE15dzf3lgL4jU9MKi+BSUVCSGEEEIIIZUeJRYJIRVfYCDw/j0z1rIloK0NAJBKpQoPnd+RGrSUKB4P6NmTGUtLg+Gje3j+SyvsHujKOsQgPRnD3t5mxLL5Amx37az0Zc/VcoO/gQUjVjshHL0/eCp9Dr5EjKkv2AnODQ17cuwNzGhpA7/ZbSmhSAghhBBCCKkyKLFICKn4rl5lx/Isg552+rXCQzs5mJTEiEhevXuzY2fOgM/nYbRbDWSv7oEvS3N/Xj+9ugxNURZj9+MOLRCpbaT0JaU8PtY27suKz356Esgn0ZxX94/PWM1jXpjY4L6FE2vfnQNcsa63M/jU8ZkQQgghhBBShVBikRBS8d27x451ls1uy8gWY8ujIM7D/tfGjmaXlYb27QEtLWbs3DlALAYACPg86KgLcW1CM+hIRZj2nN20ZVMD9tLmghys2xaRWgaMWLPIAHiEvy34YKkUc7xOssIbGvbKaQgEAO1qGWNbfxeMbVqj0OMjhBBCCCGEkIqOEouEkIrv8WPmYyMjwNkZAHD0ZYTCw5Z0cSzJUZFvNDRkHbrzio0FHj1ihDo4mMDXLBTV0hIZ8QfV6+BJ9cL/rLKEKljfsBcrPvspO2EozyP8Ldwj3zFinzX1cMSxJRZ0dIB4TQ9I1vbEjZ+aY0KzmoUeGyGEEEIIIYRUBpRYJIRUbBERQEgIM9asGcDjIVssweijLxUeqiqkp8BS06cPO3bqFPOxRIIauzezdlvbhL2kWVnbXTojSVWDEevx8RmcYoPzPY5rtqLJ/DlI+qsv/uxcm2a6EkIIIYQQQggosUgIqeiePGHHmjcHAMw890bhYXsG1S+hARFO3bsDAgEztmcPEB+f+/jgQSAggLFLsrUdYtt2RgtrAyzr6ghzXbVCXfaLuja2u3RhxX99dlrhMS7Rn9D90zNmUFcX/MmToSKgl01CCCGEEEII+YY+IRFCKjb5ZdCAbMYigM0PgxQe5mKuU0IDIpwMDIBOnZixpCRg9WrZ17GxwK+/sg7TmTcXD2a0wv2pHvitvT3CF3ZC9J+dsKRLbcxsbYvL45vCREs130uvb9gLWXwhIzbU7y6skmJY++qpCbD/6UH2SSZNAvT08v8eCSGEEEIIIaSKERa8CyGElGPyiUU+H3Bzw1X/6HwPczTVLsFBEU6//w5cvsyMbdgA/PwzMHcuEBfH3GZtDQwbxjqNsZYa5nVwyHkcvqA99l73QnyGBNoqPDxL1kBihghDG1qivb0xJFIgMuYqap4+knOMikSMzTe3oVef+QCPh7Z2Rrgwrik0ThwDlsvNVlRTA2bMKOI3TwghhBBCCCGVDyUWCSEVV1YW4O3NjDk7Azo62PrIT+Fhs9vWgqYqPf2VOg8PWROXK1dyY+npgLk59/5btgDq6kqduqFp7hLpiV1cIBQyf75GyxYCeRKLANDj41MEVA+D0aRxMNBUBb58AWbOZJ/8558Vj5EQQgghhBBCqjBaCk0Iqbh8fICMDGbsa33Fc28+KzxsZfc6JTkqkp+lS5Xbb9AgoGvX4rtunTrA+PGscK0lv8Pg1XMgMRHo1g2IimLuYGUFLFhQfOMghBBCCCGEkEqEEouEkIpLQX3Fm+/ZtfO+2fpDvRIcEClQo0ZA//7576OvD/zzT/Ffe+1aoEYNZuzLF1ky2sAAePSIfcz69YCWVvGPhRBCCCGEEEIqAUosEkIqLo6O0N5Wjui4naNT9FcTm1uX4ICIUnbuBNzcuLeZmQEXLgDVqhX/dXV1gd27ld+/Rw+gT5/iHwchhBBCCCGEVBKUWCSEVFzyMxYNDNDpdoLC3SMWdizhARGl6OsDDx8CmzbJZgp+M3Ys4OcHtGhRctfu0AGYM6fg/dzdgYMHAR6v5MZCCCGEEEIIIRUcJRYJIRVTVBQQFMQIiZs2RUKGSOEhxlqqJTwoojShEJgyBQgLA27fBsLDgV27mInGkrJiBbB5s6zbM5eOHYFr12QJUEIIIYQQQgghClFikRBSMXHUV3xYrXa+hwgF9JRX7mhqAm3aANWrl941eTxg8mTA0xNo1QrQ1gZq1pR1rV66FDh/nuoqEkIIIYQQQogShGU9AEII+S4c9RWXpBgBRty70zJowuLqCty9W9ajIIQQQgghhJAKi6bvEEIqJrkZixLw4FXNQeHu1XTVS3pEhBBCCCGEEEJIlUKJRUJIxZOdDTx7xgi9Ma6BZDVNzt3fzWlbGqMihBBCCCGEEEKqFEosEkIqnlevgPR0RuiJOXd9xaY19OFgol0aoyKEEEIIIYQQQqoUSiwSQioejsYtihKLV8Y3K+nREEIIIYQQQgghVRI1byGEVDwcicXH1R1ZMcnanqUxGkIIIYQQQgghpEqiGYuEkIpHriN0gpoW/A0tGLElXbhnMBJCCCGEEEIIIaR4UGKREFKxREcDHz8yQp7mDpDymE9nA1yrl+aoCCGEEEIIIYSQKocSi4SQioWzviJzGbSOmpAathBCCCGEEEIIISWMEouEkArlwp6zrJh8fcWwBR1LaziEEEIIIYQQQkiVRYlFQkiFsfnhJ2g/f8qKe1Wzz/n6+sRm0FGnvlSEEEIIIYQQQkhJo0/fhJAK4V10Mn4+6YPEqPeM+BsjK3xRly17jv6zE4y11MpieIQQQgghhBBCSJVDiUVCSPGSSoGnT4HPnwEXF6BGDYDHK9Ipfz77Ghvuf0KDmCBoiTIZ277VV9z6Qz1KKhJCCCGEEEIIIaWIEouEkOITGAj89BNw40ZuzMoKmDULmDIFEAgKdTqJRArh7As5j5tF+rP2eVy9NgBgYnPr7xoyIYQQQgghhBBCvg/VWCSEFI9//wXq1WMmFQEgNBSYMUOWcJRKC3XK/c9CGY+bRbxj7fPE3BE3f2pe6OESQgghhBBCCCGkaGjGIiGk6B48AEaOBCQSxfvs2gVoawN//13g0uiMbDE0f7vEirvLJRaT1LVwbd1oVDfQ/K5hE0IIIYQQQggh5PvRjEVCSNF8+QIMH55/UvGbf/4Btm8vcDeupGKNpGjYfYlixHRbtaCkIiGEEEIIIYQQUkYosUgIKZpp04CgIHZcX597/99+A6KjOTdFJmWAP+s857Z2Ia84gu2UGyMhhBBCCCGEEEKKHSUWCSHf7/Zt4OBBdnzbNiAhAXj3DjA1ZW5LTAR+/50Rkkql4M86D4vF1xVeqi0lFgkhhBBCCCGEkHKFEouEkO8jlQJ//MGO9+oFTJgg+7p2beDoUfY+u3dD6umJTJEYa25/gOB/F9j7yF2rvXxiUU8PaNjwu4ZOCCGEEEIIIYSQoqPEIiHk+9y5A9y7x4wZGAA7dzKbs7RpA/z4I+vwh/1GQ2PORcy56FfgpWrHh6N6ajwz2KYNIBAUetiEEEIIIYQQQggpHpRYJIQUnqLZijNnspc+A8CaNZBqaTFCHhF+aB/io9Tl/quWwA7SMmhCCCGEEEIIIaRMUWKREFJ49+5xz1acNo1z93AdI6xzH8iKL3p0WJakVGCahw1Eq3ugQYA3e2P79oUaMiGEEEIIIYQQQoqXsKwHQAgpJjExwKVLQHw8YGcHdOgAaGqWzLX+/psd++UXWd3DPDKyxfCJSELzjQ+g7dgZI++fgFFGcs72b7MWb9aszzpdwNx2qGWsBWRny5rE5GVmBtStWxzfCSGEEEIIIYQQQr4TJRYJqejevZMtQb56FZBIcuMaGsDw4cCqVYC+fvFdLzAQOH+eGdPVBaZPz3mYnCFC771euBMYlxNLUdXEX437YPkDZhfpRY8O42YN15y6jF0dTXF6VBOoCr9OqL5+XdZhOq927Zh1HAkhhBBCCCGEEFLqKLFISEV2/76sC3NiIntbejqwYwfw+DFw+TJgYVE819y4kb18edw4pKpr4U1IAppteKDw0E0NuuPXZ2dYsxY7BL/EszpuiF/ShX3Qf/+xY/36fe/oCSGEEEIIIYQQUkyoxiIhFdWFC0CnTtxJxbx8fYHmzYGAgKJfMykJ2LOHEZLy+bBNcoTOvMv5JhWB3FmL8o5/uoD4xZ3ZB6SmAmfOMGM6OkD37oUcOCGEEEIIIYQQQoobJRYJKarPn4Hjx4F//pH9Pz6+5K/55g0wcCCQkaHc/qGhQO/eQEpK0a67bx+QnMwInbF1Q5BeNaVPsalBd8Sp6zBies+fAjdusHc+f16WXMyrXz/ZMm9CCCGEEEIIIYSUKUoskootJgZ69+5B98EDCJKSSvfar14BrVsD1arJkny//CL7v4kJ0KUL4OdXMtdNS5NdJz2dva1/f2DpUqBxY/a2d++AqVOVvoxUKkVQfBpuvY/FzifBEM48gw+LVrD229CwZ2FGj2Gt6yBx8nT2hvnzmTUiAe5l0EOHFup6hBBCCCGEEEIIKRlUY5FUXB8/QtCmDWqFhgIApDwe0KwZsGwZ0LZtyV1XKgW2bAF+/RXIzGRvl0hkjVSaNAF27gQGDy7e60+fDrx9y4zxeMCmTcDkybLHs2cDEybIZhjmtX+/7N9m5EjOU6dlibD/WRimnPJlbevxyRu1EqMYsZcmNrhr6azUsO9OdkdLWyPZg042wL6tzNmdXl6yf9dvyc83b2S1IfMyMyvZny0hhBBCCCGEEEKURonFEhAYGIgjR47A09MTYWFhEIlEMDU1hYODA3r27ImOHTtCKKR/+iI7fBi8r0lFAOBJpbJGJe3by5J+S5cCamrFe02pFJg2Ddi8ueB9U1OBIUNkMxcXLy6e61++DOzezY4vXpybVAQAFRXZfhERwLVrzH2nTUNSi9YI1zGCZ0gixhx9qdSlpz8/z4ptaNizwO7MF8a6oVsdM2ZQRwf43/+A335jxufOldVPtLaWfT8iEXP7wIEA/e0QQgghhBBCCCHlAn1CL2YbN27Etm3bIJJLiISGhiI0NBQ3b96Es7Mz1qxZA1tb2zIaZSWhKGkolQJr1wJPnsgScdraxXfNJUuUSyrKH2NmBkyZUrRrp6YCkyax4+3asRN0ABIzxQhcvhE2Xi1gmBibuyE5Gbe7DELf3vMKTAp+4xQbjA4hPoxYtIYeDju2Yu17bUIzNLbSh76GSv4n/fln2YxKf//cWGqqrBakhQVw7x5zfxWVQi3lJoQQQgghhBBCSMmixGIxWrp0KQ4ePJjzWCgUonbt2tDQ0EBgYCASEhIAAK9fv8bw4cNx7NgxWFhYlNVwK77RoyE9fhw8Ly/u7Q8eyJJUFy8C6upFv97OncCiRey4UAiMHw/Uqwc8fSpLlkmlzH2mTZMly/r0+f7rL14MBAczQpn6BrB1GIHIOZcUHtam48+4dXw+I9Y70As/vH+Ekw4tlLr0zGdnWLHtrl2QKVQFAMxqY4clXWpDTShQ6nwAZD+TPXsADw/mv5evr+w/ef/7H+DgoPz5CSGEEEIIIYQQUqIosVhMrly5wkgqdu7cGQsXLoSxsTEAIDs7G6dOncKKFSuQnp6O2NhYTJs2DSdPngRPyVljRI6REcT37uHTzp3QffQIxqdPQyDfJfnWLdny2dOnAUEhkl7yPD25ZxxWqyY7d7NmsseTJslqKg4aBHxNJAOQJc6GDZMlHuvU4bxEUkY2/D6n4HZgLBLSsiEU8HDgWRjCv2SgXswneB9cy/qDndhsBCK1DPMd+p0aLtju0gUTX11hxDfe3I5bVi5I0NBRcKSMXUIEhr+9zYiJBEIM3bkUP9eyho56EZ5G3N1lNSPXr89/P2trYN68778OIYQQQgghhBBCih0lFotBdnY2Vq1alfO4bdu2+Oeff8Dn5zbdVlFRwaBBg2BhYYGJEydCJBLhzZs3uHDhAnr2LFxXXZKHQICk5s2R1Lw5ogcNgvOSJeB5ezP3OX9etlR49ervu0ZcHDBgAJCdzYzr6cmatLi4IPxLOuLTsnHmdRT8o41gMn4lVvw9DeqirNz9U1PxpmVnNB36F9JUlJ9ByZNKsP36ZgilzI7Jt63q4UDddkqdY06rkegZ6IXqqbnNUqqlJWLNvb0Y15mjQ3Me8zyPsa4tHDYUts61lPwOCrBsGeDtLZthqsjmzYCmZvFcjxBCCCGEEEIIIcWCEovF4Pr164iIiAAgW/68cOFCRlIxLw8PDwwaNAiHDh0CAOzdu5cSi0WQkilCuxORSM6WAuBDt/ks3AhbgMafPzB3XLMGQ99IcLhO60KdnyeV4PzpJeiWp0kMAGTxhejUeQ7uHQgGEMxxpDmCu/2KE+dWgo/cZb5OcaHYcmMrRnX5Wen6hhN9rqBZZAAjlikQYlKHSUqfI0lNC1Pa/4TT55Yz4mNe38B/jq1xq6ZrTuzB1BaoZaQFbTUBNIM/AevuME8mEAALFih1XaVoaQE3b8rOuWYNc1m0gYGsCU+3bsV3PUIIIYQQQgghhBQL7uwXKZRLl3Lr27m7u6N69er57j9o0KCcr9+8eYNQuaQVUU5algiGi65/TSrKJKlpoWu/P/DW0Iq1/65rG9Hgc2ChrjHH6yS6ffJmxWe2GYt7Vs75HnvGvjkWN/+RFR/x9jbG+V7jOILNPCUOK+4fYMWXNx2IAENLpc7xzVn7Zjhh786K3/DeA8n8lpCs7QnJ2p5wtzaEqY4aNFUEwJw5gIQ5WxEjRgB2doW6doFUVYFVq2QNWwYPlnXTPnxY1tU6b7drQgghhBBCCCGElBuUWCwiqVQKT0/PnMctWhTcDKN27dowMTHJeXzr1q0SGVtld+BZGGc8TlMXvfvMQ4KaFiOuIcrCqbPLYZKWqNT5W4f6YsnDQ6z4kdotsaW+cjPoljYbiOs1XFnxDbd2oH4BSU6eVIL9l/+BXlYaI/7OwAKrmvxQ4LXPjXGD76w28JrREtmre0Cytif63z0hW8Kd16dPsvqP8gnEAwdk9SPzEgiA+cxGMMXKwwP47z/g0CHgxx+Lp+kOIYQQQgghhBBCSgQthS6i8PBwJCUl5Tx2ds5/Fts3tWvXRkxMDADAl6sDLilQeFKGwm2BBtXxY4/ZuHTqTwjy1AesmRyDY+dXoVP/xcgWqCg8vkZSNA5fWMM4FgD8DSwwodMUpZcgS/gCDOv+K54f/BkWKbn1DdXF2Th+fhWaD1mDWE09zmNnPT2NDiE+rPjuMb+ju7MVbI20MLhBddSvrgc+X8kGQObmwNq1si7WeV28CPz+O7Bihex7CwyUdbKWN2YMYGur3LUIIYQQQgghhBBSqVFisYiCgoIYj2vUqKHUcZaWuctYQ0JCinNIVca89vZYduO9wu3XrRtgbsuRWHNvLyPeOuwNDl38C4N7/A9iPrtTtEF6Mi6f/APV5GY2pgtVMaDnHKSoFq6JSIymPn7sPhu3j/3OaIJi9yUKfndWQ+XObQSLVWChpw5dNSEEfB54t28D69mzJTFhAtasLeLS4LFjgQsXgLNnmfFVq4A7dwAHB+DMGSA5mbnd0lK2DyGEEEIIIYQQQggosVhk32YdAgCfz4exsbFSx+VdCp33HKVJJBKVyXWLi5AHxP/RHsP2PcKloHTOff5q3AeuMR8xzO8uI97//SNkXv4HY7pMR7ZABepCPoy1VNFGV4I561egTjx7mfXnFWtxasRIWOipQ0WQW0VAKpWCV+AMxq7gNeTJahbmYeTnC2nfXqjz33+AqgUglUBy6Sr4/fuDJ/fzkTo6Qrx6NVAcP7c9eyBwdwfP358Z9/SU/cdBvHs3pDo6xXN9QoqRWCzO9zEhpPKj5wFCCD0PEELoeaBsUGKxiL58+ZLztZaWlsJu0PK0tbU5z1FaJBIJfHzYy2wroj+bG+DP5gYKt/P6LUPq+PHQ8vNjxIe+u4u+kkiETZ+OVFdX6D58CKvlf0M1Opp1juj+/RHX1h0IfY8v39trp1072LZvD4ObN5nje/QIvDp1kNi6NVQSEqDLkdiTqKjg3YIFSP/wgbXte6ktW4Y6I0dCkJpa4L6fhw5FmJERUEl+Z0jl9vr167IeAiGkjNHzACGEngcIIfQ8UDoosVhEmZmZOV+rF6LRhKqqas7XWVlZxTomwiRVV8eHf/5B7fHjoS637FwzIAAOU6fme3xiq1YI/d//ij4QHg+fFi+GIDkZul5ejE2C9HQYXbmi8NDQ2bORXrt20ceQR6a1NQK2boXt3LlQi4hQuF/MDz8gjKveIiGEEEIIIYQQQqo06gpdRNn/b+/Ow2u6FjeOvyGJISERs5hDQlEdXNzSatWsouaaadXUUNLW1JZWDdWapWjRqtY8a/XS+lFDTbdKlSJXjMlFCNEGkfH3Rx77npNIcvY5JwO+n+fp8+x1zt5rrZOk28qbtdeKjzeObZ2tKEmurv/LdB/0R5IfBAlFiyp03jzd9fU1dV3M44/rzKRJKbshO0FyvnwK+/RTxdi4yY8knR81StfatXNK+6ndfuwx/blsmaJatkzzXoKXl8I+/VQXRo+WXPkbBAAAAAAAsEZa4KC8FoFTUlJSBmdaswwT3dzS3504q+TJk0e1atXK9nadLTEx0Wp6c82aNa2+J2ns2qXkLl3k8uuvmdad1LWr8s+bp8c9PJzRVWu7dyvpnXeUZ+HCdE9JdnNTUkiIfF99VebiUDts2qSE8HC5HDok3bmTEiS++KIqFCmiClndNuAg0/cBAA8d7gMAuA8A4D5g3h9//GEqy7ofgkUHFShQwDi2fCw6M5aPP+fLl8+pfbKV60M4Cy1v3rwZf67KlaV9+6RPPpE++ECymHFqKFxYmjJFeQYMUJ5MN2Wxk7e3tGCB1LmzNHq0dOjQ/97Ln1/q3VsuwcHK6++fNe3fT8WKKf8BD7hM7wMAHnrcBwBwHwDAfSB78BV2kJeXl3F869YtG3cIlmJiYoxjb2/vrOga0uPqKo0ZI/XtK333nfTrr9L585Kvr9SqldS8uVSoUPb0pWnTlP/++ks6e1aKjZWqV08JNwEAAAAAAHIxgkUHlSxZ0jhOTEzUjRs35OPjk+l1V69eNY6LFSuWJX1DJkqXlvr3T/kvpxUuLNWundO9AAAAAAAAsBmbtzioQgXrFeguXrxo03Xh4eHGcaVKlZzaJwAAAAAAACCrESw6yNfX1+pR5hMnTth03cmTJ43jatWqObtbAAAAAAAAQJYiWHSCevXqGcd79+7N9PyTJ0/q2rVrRrl+/fpZ0i8AAAAAAAAgqxAsOkGzZs2M4x07dujKlSsZnr98+XLj2M/PTwEBAVnWNwAAAAAAACArECw6QbNmzVSiRAlJUlxcnEaNGqWEhIT7nrt7926tXr3aKPfs2TNb+ggAAAAAAAA4E8GiE7i7uys4ONgo7927V6+//rrVRi4JCQlatWqVhgwZosTEREmSv7+/OnXqlO39BQAAAAAAABzlmtMdeFi0a9dOhw8f1sqVKyWlhIvNmjVTQECAPD09FRYWpuvXrxvne3t7a9asWXJ15VsAAAAAAACABw+plhN9+OGHKlKkiBYtWqT4+HglJSXdd5doPz8/zZo1S5UrV86BXgIAAAAAAACOI1h0IhcXFw0fPlyBgYFas2aN9uzZo8uXL+vOnTvy8vJS9erV1aJFCwUGBsrd3T2nuwsAAAAAAADYjWAxC/j5+WnkyJEaOXJkTncFAAAAAAAAyBJs3gIAAAAAAADANIJFAAAAAAAAAKYRLAIAAAAAAAAwjWARAAAAAAAAgGkEiwAAAAAAAABMI1gEAAAAAAAAYBrBIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgGsEiAAAAAAAAANMIFgEAAAAAAACYRrAIAAAAAAAAwDSCRQAAAAAAAACmESwCAAAAAAAAMI1gEQAAAAAAAIBpBIsAAAAAAAAATCNYBAAAAAAAAGAawSIAAAAAAAAA0wgWAQAAAAAAAJhGsAgAAAAAAADANIJFAAAAAAAAAKa5JCcnJ+d0J5A9Dh06ZFXOk+fhyJWTkpKM44flMwEwh/sAAO4DALgPAOA+YI7l10uSnn76adN1uDqrM3jwpP4Behg8jJ8JgDncBwBwHwDAfQAA94HsQXwLAAAAAAAAwDRmLD7CmBYMAAAAAADwaHLGrE7WWAQAAAAAAABgGlPWAAAAAAAAAJhGsAgAAAAAAADANIJFAAAAAAAAAKYRLAIAAAAAAAAwjWARAAAAAAAAgGkEiwAAAAAAAABMI1gEAAAAAAAAYBrBIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgGsEiAAAAAAAAANMIFgEAAAAAAACYRrAIAAAAAAAAwDSCRQAAAAAAAACmESwCAAAAAAAAMI1gEQAAAAAAAIBpBIsAAAAAAAAATCNYBAAAAAAAAGAawSIAAAAAAAAA01xzugN4NIWFhWnFihU6cOCAwsPDlZCQoBIlSsjf319t2rRR06ZN5erq/B/PS5cuacWKFdqzZ4/Onz+v2NhYFS9eXJUrV1arVq3UqlUrFShQwOntAkgru+8Df/zxhzp27Gj6uqVLl6pOnTpO6weAjM2aNUtz586Vr6+vtm/fniVtMB4AcresvA8wHgBynwMHDmjz5s06fPiwIiMjFRMTI09PT5UuXVp16tRR+/bt9dhjjzm93evXr2v16tX6+eefdebMGd26dUs+Pj4qX768mjdvrsDAQHl5eTm93YeNS3JycnJOdwKPljlz5mj+/PlKSEhI95yaNWvq008/VeXKlZ3W7ooVK/Txxx/rzp076Z5TsWJFffLJJ6pdu7bT2gWQVk7cB1atWqX333/f9HX8IgFkn6NHj6pbt26Kj4/PsmCR8QCQu2X1fYDxAJB7hIeHa+TIkfr1118zPbd169YaP368PD09ndL2tm3b9O677yo6Ojrdc4oXL66JEyeqUaNGTmnzYcWMRWSrCRMm6JtvvjHKrq6uCggIUIECBRQWFqYbN25Iko4dO6aePXtq1apV8vX1dbjdxYsXa/LkyUbZxcVFVatWlbe3t86dO6fIyEhJ0rlz59S7d28tXbpUNWrUcLhdAGnl1H3gxIkTxnGFChVUrlw5m67jr5RA9rh48aIGDx6s+Pj4LGuD8QCQu2XHfYDxAJA7nDt3Tl27dtX169eN19zc3OTv769ChQopKipKp0+f1r25cJs3b1ZYWJiWLl3qcLi4ZcsWBQcHKzEx0XitUqVKKl68uCIiIhQRESFJunr1qgYNGqS5c+fq+eefd6jNhxkzFpFttmzZojfffNMoN2/eXGPHjlWxYsUkSfHx8Vq3bp0mT55szCKoUaOG1q5dKxcXF7vbPXLkiLp162bcNP7xj39o0qRJKl++vCQpOTlZP/30k8aOHWsEGqVKldKWLVt4DApwspy6D0jSK6+8osOHD0uSPv74Y7Vr186h+gA4T2hoqPr166crV64Yrzl7phLjASB3y477gMR4AMgNEhMT9fLLLys0NFSSlDdvXg0aNEh9+/a1Cg2vXLmi6dOna8OGDcZrLVq00KxZs+xu++LFiwoMDNTt27clSf7+/poyZYrVo9b79+/XmDFjjIDRw8ND//rXv1SyZEm7232YsXkLskV8fLymTJlilF944QXNnDnTCBOklL9OdOnSRSEhIca6asePH9f333/vUNuTJ082fomoUaOGFi5caPwSIaXMVmjWrJkWL14sDw8PSdLly5f19ddfO9QuAGs5eR9ITk7WqVOnjHK1atUcqg+A82zcuFGdO3e2ChOyAuMBIPfKrvsA4wEgd1i3bp0RKkopIf+QIUPSzEQsWbKkpkyZor59+xqvbdmyRUeOHLG77RkzZhihoq+vr77++us06zfWr19fy5YtU4kSJSRJt27dUkhIiN1tPuwIFpEtfvrpJ/33v/+VlPLY49ixY5Unz/1//Bo2bKguXboY5a+++srudn///Xerm87777+v/Pnz3/fcatWq6Y033jDKX3/9tdXUaACOyan7gCSdP3/eGEC4ubnJz8/PofoAOO7KlSsaOXKkRowYkeF6h87AeADInbLzPiAxHgByi40bNxrHDRs2VGBgYIbnBwcHGyGflPJYtD2uXLmirVu3WtXr4+Nz33NLlSqld9991yivW7cuw/UYH2UEi8gWP/zwg3H8zDPPqEyZMhmebxkoHD9+XBcvXnS4XT8/Pz355JMZnt+xY0djltT169d18OBBu9oFkFZO3Qck6/WUKlWqJHd3d7vrAuC4efPmqUWLFlaPNlWuXFkDBw7MkvYYDwC5T3bfByTGA0BuEBcXp99++80ov/TSS5le4+7uroYNGxrlP/74w662t27damweWahQITVv3jzD85s2bWoEjwkJCdq2bZtd7T7sCBaR5ZKTk3XgwAGj3KBBg0yvCQgIUPHixY2yvWur7Nu3z1S7Xl5eqlmzplHesWOHXe0CsJaT9wFJOnnypHHMY09Azlu0aJExa0iSOnXqpNWrV6tChQpZ0h7jASD3ye77gMR4AMgNIiIilC9fPqNs68xhb29v4/jeWshmWY4H6tatKzc3twzPz5s3r/75z38aZcYD90ewiCwXERGhv/76yyhbDtQzEhAQYBzb8xeJ+Ph4nTlzxijbuqujo+0CSCun7gP3WM5Q4BcJIPeoWbOmvvnmG02YMMHhHR7Tw3gAyN2y4z5wD+MBIOdVqlRJhw8f1q+//qrNmzfL39/fpuvubaQi2b9Lu+Uaq7aOByzvFYwH7s81pzuAh9+5c+esypYLpWekbNmyxvGFCxdMtxseHq74+HijbOtfPx1tF0BaOXUfuMfyF4mAgACdPHlSa9eu1YEDBxQeHq6EhAQVK1ZMtWvXVsuWLdW0aVOHd6EGkL66deuqffv2evHFF7P8/zXGA0DulJ33gXsYDwC5R6FChVSoUCGbzo2JidEvv/xilO1ZHzUuLs5Y712ybzxw5coVxcbGprtO86OKYBFZ7urVq8Zxnjx5rHaAzYjlI5CWddjTbur6bG03KipKSUlJ6W4wAcA2OXUfkFLWR4uMjDTKCxcutHoM4p6IiAhFRETohx9+UM2aNTVjxgybA1AA5sydOzfb2mI8AORO2XkfkBgPAA+yRYsWKSYmxii/8MILpuu4evWqkpOTjbKt44HUv7dcvXpV5cqVM93+w4zREbLczZs3jWMPDw+bB+WWj0JY1mFPu5JUuHBhm66z/KtJcnKy1eObAOyTU/cByXp2gvS/tVUKFCigatWqqW7duqpYsaLVOceOHVOnTp30559/2tUmgNyD8QAAifEA8KA6evSoFixYYJQrVqyoxo0bm67HGeMBSYwH7oMZi8hyd+/eNY7NTBm23KUtLi7OoXbNtJ16AdfU9QAwL6fuA1LaXyQ8PT0VHBysl19+WR4eHsbr4eHhmj17tjZu3ChJio6O1uDBg7V+/XoVKVLErrYB5DzGAwAkxgPAgyg8PFyDBw+2WtJk1KhRcnU1H2Wl/nfccgOZjKTePZ7xQFrMWESWs7wJmHmEyPJmcW9LeDNSX2Nr26lvUomJiabbBmAtp+4DkvX6jkWKFNGaNWvUvXt3q18ipJT1Uz755BMNGTLEeO3SpUuaP3++Xe0CyB0YDwCQGA8AD5pLly6pd+/eVkua9OnTx67HoKW044G8efPadF3q8xgPpEWwiCxn+T9iUlKSzddZ/o+f2Tbw95P6Fwdb2059w7GnbQDWcuo+IEkTJkzQwYMHtXbtWi1fvlyVKlXK8Pw33nhDTz75pFFeuXKl3bMlAeQ8xgMAJMYDwIMkLCxMXbt2VXh4uPFaw4YN9fbbb9tdZ+rxgK0BYerzGA+kRbCILFegQAHj2My0Yct/uG2dppxeu2baTj1gsKdtANZy6j5wj5eXl2rWrJnpLxGS5OLiop49exrlO3fu6NChQ3a3DSBnMR4AcA/jASD3++2339S9e3ddunTJeK1+/foKCQlxKNRLPR6w9Q8F9j5C/SghWESW8/LyMo5v3bpltRNTRix3ffL29nao3dT12dquq6trmsVaAZiXU/cBez311FNWZcvHpwA8WBgPALAX4wEge3333Xfq3bu3bty4YbzWqFEjff7552mCQbOcMR6Qsvd3kgcFwSKyXMmSJY3jxMREq5tERizXUki9xbvZdiXp2rVrptv18fGRi4uL6bYBWMup+4C9ihYtalW2d0dqADmP8QAAezEeALLPnDlz9Pbbb1vNJAwMDNTcuXNNbf6YnuLFi1s9Dm3reMDyPBcXlzT3BRAsIhtUqFDBqnzx4kWbrrNcT8GWxxVSK1OmjNVUaXvarVixoul2AaSVU/cBe6V+NCL1wu4AHhyMBwDYi/EAkPXi4+M1YsQIhYSEWL0+YMAAffLJJ3btAH0/7u7uKl26tFG+cOGCTddZjhvKlCmTZpdoECwiG/j6+lpNFz5x4oRN1508edI4rlatmul23dzc5O/vb7pdy/OqV69uul0AaeXUfSAiIkKffvqpRo8erf79+1vVl5HUwYPlIATAg4XxAADGA0DuFBcXp6CgIG3cuNF4zdXVVRMmTFBwcLDTnxaoWbOmcWzrfYDxQOYIFpEt6tWrZxzv3bs30/NPnjxpNeW4fv362dJudHS0/vzzT4fbBZBWTtwHkpOTtXDhQq1bt047d+7Unj17bLpu9+7dxrGLi0uaNZYAPFgYDwCPNsYDQO6TkJCgoUOH6ueffzZe8/Dw0Oeff65OnTplSZt169Y1jg8cOKCkpKQMz09MTNSBAweMMuOB+yNYRLZo1qyZcbxjxw5duXIlw/OXL19uHPv5+SkgIMDhdo8dO6Zjx45leP6qVauUkJAgKWVx12eeecaudgGklRP3gbJly8rX19cor1u3TomJiRleExMTo2+//dYoN2zYUD4+PqbbBpB7MB4AHm2MB4Dc59NPP9WOHTuMso+Pj7755hs1bNgwy9ps0qSJ8ubNKyll7cSffvopw/O3bt2q69evS0qZSWk5nsD/ECwiWzRr1kwlSpSQlDLdedSoUcaAPbXdu3dr9erVRrlnz552t/vkk0+qRo0aRnn06NHp7v504sQJzZs3zyh37tzZKYvEAkiRU/eBjh07GsdhYWGaP39+uufGx8dr1KhRRujp4uKigQMH2t02gNyB8QAAxgNA7rFz5059/fXXRtnLy0tLliyx+rc6K5QqVUovvviiUZ44cWK6kx0uXbqkSZMmGeVmzZql2RAOKQgWkS3c3d0VHBxslPfu3avXX3/dat2ShIQErVq1SkOGDDH+gujv75/uNOjGjRsrICBAAQEBaty4cbptjxw50libITQ0VD179rRaTyE5OVk//vij+vTpo9u3b0tK2TFqwIAB9n9gAGnk1H2gb9++VrMUZs+erQkTJqTZmfrEiRPq27ev1V8ue/TooTp16pj/sACyDeMBAIwHgAdHYmKiJk6cqOTkZEkpwf20adNUtWpVh+rt2bOncR/I6Emn4cOHK1++fJKkK1euqFu3bjp48KDVOQcOHFD37t119epVSVLBggWtfo+BNedsrwPYoF27djp8+LBWrlwpKSVUaNasmQICAuTp6amwsDBjmrEkeXt7a9asWQ7vAlWvXj0NHz5c06dPlyT9+eefatu2rapUqSIfHx+dP3/e6q8U+fPn18yZM1WoUCGH2gWQVk7cBwoUKKDPP/9cPXr0UHR0tCTpm2++0YoVK+Tv7y9PT09dunQpzc5wL730kkaPHm13uwByF8YDwKON8QCQO2zZskXnz583ygUKFNDixYu1ePFim+soVqyYpkyZYlf7lStX1oQJEzRy5EglJSUpPDxcPXv2VPny5VWqVCldunTJauJDnjx5NHHiRJUrV86u9h4FBIvIVh9++KGKFCmiRYsWKT4+XklJSffdndHPz0+zZs1S5cqVndLugAED5OHhoWnTphmzEE6fPp3mvFKlSmnq1Kn8RRLIQjlxH6hatarWrFmjd955R4cPH5aU8pjT8ePH05ybP39+DRw4UP379zfWYAHwcGA8ADzaGA8AOW/Lli1W5du3b9u8odI9lrOP7REYGCh3d3eNGzfO+EPDhQsX0vxhwcvLSx999JGaN2/uUHsPO4JFZCsXFxcNHz5cgYGBWrNmjfbs2aPLly/rzp078vLyUvXq1dWiRQvjf3Rn6tGjh5o0aaJVq1Zp586dCg8PV0xMjDw9PeXv768mTZqoQ4cO8vT0dGq7AKzl1H2gXLlyWrFihX755Rd9//33OnLkiCIjI3X37l35+PioXLlyatSokdq0aaPSpUs7rV0AuQvjAeDRxngAyFlnzpzJ6S5Iklq0aKH69etr9erV2r59u86fP6+bN2+qYMGC8vPzU6NGjdSlSxc2bbKBS/K9B9sBAAAAAAAAwEZs3gIAAAAAAADANIJFAAAAAAAAAKYRLAIAAAAAAAAwjWARAAAAAAAAgGkEiwAAAAAAAABMI1gEAAAAAAAAYBrBIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgmmtOdwAAACArNW7cWBEREQ7Xs2TJEtWrV88JPQKyz927d9WxY0eFhoaqd+/eGjNmjPHegQMH1KtXL6N86tQph9oKCAgwjoOCgjRkyBDTdcyZM0chISFO61Nmhg4dqq1bt6p+/fr66quvlCcP8y4AADCDfzkBAACAh9TkyZMVGhqqYsWKaejQoTndnVxn5MiRyp8/v/bv36+FCxfmdHcAAHjgMGMRAAA8MkqUKCF/f3+7rvXy8nJyb4CstWvXLi1fvlySNGzYMHl6euZwj3IfX19f9e3bV/PmzdOsWbP03HPPqVq1ajndLQAAHhgEiwAA4JHRoEEDffzxxzndDSDLxcbGavz48ZIkf39/dejQIYd7lHv1799fq1ev1rVr1zRu3DgtX76cR6IBALAR/2ICAAAAD5nPP/9cFy9elCQNHz6coCwDBQsW1MCBAyVJR44c0Zo1a3K4RwAAPDgYYQAAAAAPkaioKC1evFiSVKVKFTVu3DhnO/QA6Ny5s7y9vSVJISEhunv3bs52CACABwTBIgAAAPAQ+eKLL3T79m1JKYEZMpcvXz69/PLLkqQrV64Ya1MCAICMscYiAACAHUaNGqX169dLkubPn69GjRppyZIlWrlypcLDw1W4cGFVrlxZLVq0UPfu3dNcf+vWLW3YsEE7d+7Uf/7zH0VFRcnd3V3FixdXnTp11LJlSz3zzDOm+rRv3z6tXbtWv/32myIjI+Xh4aHy5curZcuW6ty5szw9PfXtt9/qo48+kiQFBQVpyJAhVnWsW7dOo0ePlpSyscX27dszbbdx48aKiIiQlLILcfv27TM8PyIiQuvXr9eePXsUHh6u6OhoeXp6qkyZMnrmmWfUrl07+fn5ZVjHnDlzFBISIkl6//331aNHD8XFxWnjxo3asmWLwsLCdO3aNRUqVEiVKlVS48aN1aVLFxUqVCjTz3PPwYMH9f333+u3335TRESE4uPj5eXlJX9/fzVq1Ejt27dX4cKFra4ZP368li5dKillw589e/bI3d0907a+/vprTZo0SZJUsWJFbd261eZ+WoqJidHq1aslWYdljkhMTNTw4cOt+tS7d2+NGTPG4brNsvy+2yOjn8/OnTsbMz2XLFmiXr168Qg5AACZIFgEAABwgvfee09r1641yteuXdO1a9cUEBCQ5txNmzbp448/VlRUlNXrd+/e1d9//60zZ85o1apVql+/vqZMmaJSpUpl2HZUVJRGjhyp3bt3W70eHR2t6OhoHT16VMuWLdPs2bMd+ISOS0xM1MyZM7V48WLFxcVZvXfjxg3duHFDx48f15dffqnOnTtrzJgxNoVyknTy5Em99dZbOn36tNXr169f1/Xr13Xo0CEtWrRIU6dOVYMGDTKs68KFC3r33Xd18ODBNO/d+77u3btX8+fP14QJE9SkSRPj/Xbt2hnB4s2bN7Vr1y6r99OzceNGqzrstXHjRt26dUuSVK9ePYd3M09OTtbo0aOtQsU+ffoY4fPDxM/PT1WqVNHp06cVERGhHTt26MUXX8zpbgEAkKsRLAIAADho/fr16c4wCwwMtCqHhIRozpw5Vq+VKVNGZcuW1d27dxUWFqaYmBhJ0v79+9WpUyctXrw43Rl8UVFR6tatm86dO2e85ubmpoCAAOXPn1+nT59WdHS0Ll68qNdee80pM9jsERcXp8GDB1uFny4uLvLz81OxYsX0119/KTQ0VAkJCUpMTNTy5csVGhqqhQsXqmDBghnWfe7cOYWEhOjGjRuSpKJFi6py5cqKjY1VWFiY8Vjw9evXNWjQIK1fvz7dr+fJkyfVu3dvRUdHG6+5ubnJ399fBQsW1Llz53T16lVJKWHo0KFDNX36dLVo0UKSVKtWLfn7+ys0NFRSSoicWbAYFham48ePS5Ly5Mnj0Pdo06ZNxvHzzz9vdz33jBs3zir07Nu3r0aNGuVwvfYqX768GjZsaPP5+/btU2JioqSUGZyPPfZYhuc/99xzRji9adMmgkUAADJBsAgAAOCge6Fiq1atFBQUpNKlS+v06dPatm2bHn/8ceO8zZs3W4WKTz/9tEaPHq1atWoZr8XFxen777/XlClTFB0drcjISAUFBWnNmjXy8PBI0/bo0aOtQsVOnTrprbfeUpEiRSRJ8fHxWr9+vSZPnqzr168bj3pmtwkTJliFip06dVJQUJDVbMybN29q0aJFWrBggZKSknTo0CGNHTtWU6dOzbDub775RlJK6PTee+/pueeek4uLi6SUR4PnzJljfO67d+9qzpw5mjlzZpp6bt++rTfeeMMIFfPmzauBAweqb9++Vo9Qb9u2TR9++KEiIyOVmJiod999V08//bSKFy8uKWXG4ZQpUyRJO3bs0N9//53hI9gbNmwwjp955plMZ6imJzIyUr///rtVXY6YPHmyVq5caZRzOlSUpLZt26pt27Y2nTtjxgzt2bPHKI8fP17VqlXL8JoGDRroyy+/lCTt3r1bcXFxNs+aBQDgUUSwCAAA4ASNGzfW9OnTjUDr8ccftwoVY2Ji9MEHHxjlF198UbNnz5arq/VwzN3dXe3bt1ft2rXVtWtX3bx5U2fOnNGCBQs0bNgwq3P37t2rnTt3GuVXX31VI0eOtDrHzc1NnTt3VpUqVdS7d+80jyBnh19//dUqoBoxYoRee+21NOd5eXkpODhYAQEBCg4OliR999136tChg/75z39m2EbZsmW1atUqI1C9x9PTU6NHj9bVq1e1efNmSdLOnTvvGxgtXrxY4eHhRnnq1Klq1apVmraaNGmi0qVLq1u3boqNjVVMTIy+/fZbDR8+XFLKLNVp06YpISFBcXFx2rJlizp16nTfficnJ+u7774zyh06dMjwc2bkwIEDSk5OliQVKFBAFSpUsLuue4+s33O/n62MbNq0SUeOHDHd7oULF0xfcz8bN27U/PnzjfKrr75q00zQ6tWrG8e3bt3S0aNHVadOHaf0CQCAhxHBIgAAeGSsX7/e2HDFVkuWLFG9evUyPW/QoEFGqHg/a9as0V9//SVJKlSokCZNmpQmVLTk5+enN998U+PHj5ckLV++XAMHDlT+/PmNcyx3ri1XrpwRbN3PU089paCgIE2fPj3Tz+JsixYtMo6ffvrp+4aKllq3bq0ff/xRW7ZskSR9+eWXmQaLQ4cOTRMqWuratasRLN6+fVsXL160ehw6KSnJKvxs3br1fUPFe2rUqKE2bdoYG6X8+OOPxte/WLFievbZZ7Vjxw5JKeFoesHigQMHdOnSJUkpwaot6zGmx3K2YpUqVezeeOSLL77QvHnzjLLZUFFKCQidFRKadejQIb333ntG+bnnntM777xj07VFixZV0aJFjfVPf//9d4JFAAAywDZnAAAADvLw8FDNmjUzPMdyDcYXXnhB3t7emdbbpk0b5c2bV1LKRiyWM8Di4+OtHvNs3759po9sduvWTQUKFMi0XWeKjY21egTa1o1JLGeX7du3T3fv3k333Dx58mS6Fl6VKlWsyn///bdV+c8//9Tly5eNcteuXTPtY69evfTOO+9o7ty5+uyzz6zes/yc//73v63qtmS5fmHr1q0deuw2LCzMOK5atapddSxZskTTpk0zyvaEijkpPDxcQUFBxszcypUra/r06aZCVn9/f+M49WZAAADAGjMWAQDAI6NEiRJWoYEtbNlV19/fP8PgIi4uTseOHTPK6W0cklrhwoVVvnx5nT17VpL022+/qX79+pJktSmJJJtmVRUqVEhPPfWUfvnlF5vad4ajR48qPj7eKNv62S2D2vj4eP3xxx/pfsayZcvK09Mzw/oKFy5sVbbs071+3uPm5qbatWtn2kd/f/90f57uhcfR0dFKSkrS999/r379+lmdExsbaxU4O7IbtCSrx7iLFi1q+vrVq1dr0qRJRtnf39/uUDEoKEhDhgwxfd2cOXMUEhJiV5sxMTEaOHCgrl+/Linlez5v3rwM17e8H8uvneXXFAAApEWwCAAAHhkNGjTQxx9/7PR6fXx8Mnz/8uXLVmsbzpgxQzNmzDDdzpUrV4zjiIgIq/cqVqxoUx0BAQHZGiyeP3/eqmzLTMD7iYyMTPc9W2Z/3pv5eU9SUpJV+eLFi8axr6+vwxt2uLu7q02bNsbGMps2bUoTLG7btk23bt2SlDLD0HJNTnvc2xVbkukwTZLGjh1rrNEoSaGhodq6dauaN2/uUL+yQ2JiooYNG6b//Oc/klK+3zNmzLD5/wtLliG15e7gAAAgLR6FBgAAcFBms+Vu3rzplHYs64mJibF6z9YgKaN1CLPCvXUlHZVRwGO57qS9LL+e9oRy92M5A/HUqVMKDQ21et/yMej27ds73N6dO3eM48x+Ju/nXthq+bj8Rx995LSf36w0efJkq0fuR4wYoYYNG9pVl+X333JWMAAASIsZiwAAAA7KbP22hIQEq3KtWrVsesQ6Nct1AvPly2f1nuVMs4w4OhPPrNSf3d6wp0SJEs7oTroy2njHXjVq1FBAQIBOnTolKWUTl7feekuSdO3aNWPmqKurqwIDAx1uz/Iz2LtxyyuvvKLAwEB1795dycnJunr1qiZPnpwlM32dZdmyZcbMUCklpO3Tp4/d9VnObrX36wgAwKOCYBEAACCLpV7fb/DgwWrcuLFDdaYOJv/++28VLFgw0+tSz3TMiK1hZUYbq6T+7LNmzbJrNl1Ws+xn6o1dHNG+fXtNnjxZkrR582YjWPzhhx+UmJgoKWXX4mLFijncloeHhzGzMzY21vT13bt31/vvvy8XFxd17tzZ2CV7/fr1at26tZ599lmH++hsv/zyiyZOnGiUn3jiCX344YcO1Wk5S9HDw8OhugAAeNjxJzgAAIAsVrJkSavZZJcuXXK4zgoVKliVbd299sKFCxm+b9nP1Buc3E9SUlKGj8qWLFnSquyMz54VLPsZERFh02eXpJUrV2rXrl06e/bsfa9p06aNXF1djXpPnDghKWV9xXs6dOjgSNcNlmtN2rM24NixY43v/9tvv63ixYsb740bN85YDzK3CAsL07Bhw4xZsaVKlVJISIjDs3Itf57tmVkMAMCjhGARAAAgi3l6eqpq1apGef/+/TZdFx8frzFjxmjGjBlauXKlVXhYpkwZlSlTxijv27cv0/qSk5N16NChDM+xDGVsCZLSC9TueeKJJ6zCSls/++nTpzVmzBh99tln2rBhg7HTb1ax3AX63i7Umbl48aLGjh2r119/XS1atFBYWFiac4oWLarnnnvOKG/btk1//fWX8X3w8fFRo0aNnPAJpPLlyxvH//3vfx2qq3DhwhozZoxRjoiI0LRp0xyq05lu3LihgQMHGmt45s+fX5999plVGGovy6+dPZu/AADwKCFYBAAAyAbPP/+8cbx9+3arXYjTs3HjRq1du1bz58/X2LFj0wRXLVq0MI7XrVuX6WPOu3fvVnh4eIbnWM56u337dqYB1ebNmzN838fHxyq0W7p0qU2zAb/44gutXbtWs2fP1pgxY9Ls4uxsjz32mNXjyKtXr870GsvP7uPjI39///ueZzkj8f/+7/+0c+dOY5ZdYGCg3Nzc7O22FT8/P+M49W7c9mjVqpVV6Lls2TL9+uuvDtfrqPj4eA0ZMsRq9u2kSZNUs2ZNp9Rv+bWrXLmyU+oEAOBhRbAIAACQDXr06GEESAkJCRo2bFiGQWB4eLimTp1qlEuXLq0XXnjB6pxevXoZdUZFRWns2LHpBnBRUVH64IMPMu1nQECA1QxDy00xUjt58qQWLVqUaZ2vvvqqcXz27Fl99NFHGa7fuH37dm3atMkoN2vWzClrEGbE1dVVXbt2Ncrr16/Xrl270j0/IiLC6rN37Ngx3Y0+GjVqJB8fH0nSiRMntHTpUuM9y52jHfXUU08Zx6dOnTLWcHTEuHHjjLU7k5OT9e6772a4pmZ2GDt2rP79738b5TfeeEOtW7d2St2RkZGKjIw0ynXq1HFKvQAAPKwIFgEAALJByZIlNWzYMKN87Ngxde7cWXv27LEK2RITE7Vp0yZ169ZNN27cMF4fMWJEmrXjSpcurbffftsob968WQMHDkwzG/LAgQPq2rWrIiIiMu1nsWLFrAKqr776Sl988YXi4uKM12JjY7V8+XJ17dpVsbGxxhqC6WnWrJnVjM2VK1dqwIABadaFjImJ0bx58zR06FDja1KwYEEFBwdn2m9n6NOnj/Hoa3JysoKCgrR48eI0G6Hs3btXPXv2NB7DLV68uPr165duvW5ubnrppZeM8uHDhyWl7BpdrVo1p/W/bt26RigcGxurkydPOlynr6+vhgwZYpTPnTunOXPmOFyvvRYsWKB169YZ5bZt22ro0KFOq//o0aPGsbe3t6pXr+60ugEAeBixKzQAAEA26devn86ePas1a9ZIStl84rXXXlPRokVVqVIlxcXF6fz582k2Q+nfv79atWp13zr79OmjM2fOGDv47ty5U7t27VLVqlVVpEgRhYeHG4Giu7u7vLy8dPXq1Qz7GRwcrF69eikxMVHJycmaNm2aFixYID8/P8XHx+vs2bPG+ouPPfaYnnjiCS1btizd+lxcXPTJJ5+ob9++On78uNHPnTt3qnz58ipVqpSio6N14cIFqxDPzc1NU6dOtVo7MCt5enpq9uzZ6tu3r6KionT37l1NnjxZs2bNkr+/v/Lly6fz58/r8uXLxjUFChTQzJkzM93ko0OHDlqyZInVa+3bt3dq/729vVWnTh1jNt+ePXtUo0YNh+vt3bu3vvvuO/3555+SpC+//FItW7Z0St1mnDp1StOnTzfKrq6uyps3r4KDgxUbG6uEhASbZmlmNMt29+7dxnHjxo3TnYUKAABSECwCAABko4kTJyogIEBz5swxZrxFRUUpKioqzbmenp5655139Morr2RY5/jx41W2bFl99tlnio2NVXJyskJDQ63O8fb21pQpU7Ro0aJMg8U6depo+vTpev/9940+/vXXX8ZMu3uef/55TZ48WV9++WWmn9vLy0vLli3TpEmTtGbNGiMAunDhwn13qq5QoYImTZqU7Y+iBgQEaNWqVRoxYoSxwcrt27d15MiRNOdWrFhRU6dOVa1atTKtt1q1aqpevbqxK7S7u7vVLEZnadu2rREs/vzzzxowYIDDdebNm1fjx49X586dlZSUpMTERI0ZM0Zr167NdLaqM0VHR1s96p+QkGA1e9EZLINFZz6mDgDAw4pgEQAAIJv16tVLL7/8sjZs2KBffvlFoaGhun79upKSkuTl5aWAgAA9++yzatu2rYoUKWJTnf3791fr1q21atUq/fzzz4qIiFBiYqLKli2rpk2bqnv37ipatKhNayJKKRvD1K1bVytXrtSOHTt0/vx53b59W8WLF1etWrX08ssvp1nzMTP58+fX+PHj9dprr2njxo3av3+/Lly4oOjoaLm6uqpYsWKqUaOGmjZtqmbNmqV59Du7lC1bVsuWLdPu3bu1ZcsWHTp0SFevXtXdu3dVpEgR1ahRQ82bN1fr1q1N9bFp06ZGsNi4cWOrjXKcpWXLlpoyZYr+/vtvHT58WBEREfL19XW43lq1aqlHjx7GrMuTJ0/qiy++0ODBgx2uO7c4dOiQMbu3UqVK+sc//pHDPQIAIPdzSc5o5WwAAAA8VHr27KmDBw9KkoKCgqzWz0PW6tevnzEjbtGiRWrYsGGWtPPpp59q4cKFkqRhw4Zp0KBBWdLOw2bs2LHGkgITJkxQp06dcrhHAADkfiwaAgAAAGSxyMhI7d27V5JUrlw5NWjQIMva6tOnjwoUKCBJWrFihRISErKsrYdFdHS0sRN56dKl1bZt2xzuEQAADwaCRQAAACCLrVixwlhXsmvXrsbuzVmhePHi6tOnjyTp8uXL+te//pVlbT0sVq1apTt37kiS3nzzzRx7DB8AgAcNwSIAAACQhbZv364FCxZIStnEpkuXLlneZr9+/VSiRAlJ0ty5c23aLflRFRMTY2xAVKNGDWYrAgBgAsEiAAAA4EQ//PCD2rRpo969e6t58+YaNGiQ4uLiJEkjRoyQp6dnlvfB09NT48aNkySdOXNGGzZsyPI2H1SLFy/WjRs3lDdvXn300UfKk4dfkQAAsBX/agIAAABOVLZsWYWGhmr//v06d+6c8XqXLl3UsWPHbOtHkyZNjNl3M2fOVExMTLa1/aC4fPmysVP6gAEDVKNGjRzuEQAADxaCRQAAAMCJKlWqpNq1a6tgwYLy8PBQ7dq1NWXKFI0fPz7b+/LBBx/Iz89PkZGRmjNnTra3n9tNmjRJt2/fVt26dRUUFJTT3QEA4IHjkpycnJzTnQAAAAAAAADwYGHGIgAAAAAAAADTCBYBAAAAAAAAmEawCAAAAAAAAMA0gkUAAAAAAAAAphEsAgAAAAAAADCNYBEAAAAAAACAaQSLAAAAAAAAAEwjWAQAAAAAAABgGsEiAAAAAAAAANMIFgEAAAAAAACYRrAIAAAAAAAAwDSCRQAAAAAAAACmESwCAAAAAAAAMO3/Abd9TN8Qhh/2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy', silent=True)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy', silent=True)\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The script `check_A` checks visually the number of `k`s to calculate before going to the approximate value `r0**2*tb**2`. The default is 60, but in this case the presence of additional modulation for k=60 tells us that we need to increase the limit of calculated `A_k` to at least 150.\n", + "The script `check_B` does this for another important quantity in the model.\n", + "\n", + "Somewhat counter-intuitively, there might be cases where too _high_ values of k could produce numerical errors. Always run `check_A` and `check_B` to test it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTkAAAQOCAYAAAAQfzzBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAADaQ0lEQVR4nOzde5RW1X0//s/AcB8coHKJqCijMxDGGBIMBmn8SRENjaaKSmskStKIiV9JMK1oWk00GowXgtFWa1UwxICopE1sihqhBGLEXIQwXCRigBkQBLmJ3Ob2+4N6OgMIz8w8MHOY12utrLX3M+fszz7E/c97nX12TnV1dXUAAAAAAKRUi8aeAAAAAABAQwg5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSLbexJ0Dz9Pvf/75Wv0ULeTsAAABAc1RVVVWr/8lPfrLOYwg5aRL2/48ZAAAAADLl9TkAAAAAINW8yUmTcCxsV6/5Nuqx8DzQ2KwpyB7rCbLHeoLssZ4ge9K+nrKxw1fISaNo0aJF8h9wixYton///o08o4apqKiIRYsWJf0zzjgjcnMtL6gvawqyx3qC7LGeIHusJ8ieY2E9vf7667VyovpIX7QLAAAAAFCDkBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQarmNPQFIu507d8bs2bPjt7/9bezcuTPat28fb7/9dgwZMiTat2/f2NMDAAAAOOYJOaGeVqxYEQ8//HBMmTIltm7desDfO3XqFKNHj47rrrsuCgsLj/4EAQAAAJoJ29WhjrZt2xYjRoyIoqKimDRp0kEDzoiIrVu3xg9+8IMoKiqKESNGxLZt247uRAEAAACaCSEn1MHatWtj8ODBMXPmzDrdN3PmzBg8eHCsXbv2CM0MAAAAoPkSckKGtm7dGhdccEGUlJTU6/6SkpK48MILvdEJAAAAkGVCTsjQl7/85ViyZEmDxigpKYkvfelLWZoRAAAAABFCTsjIihUr6rxF/cPMnDkz/vSnP2VlLAAAAACEnJCRRx55pEmPBwAAANCcCTnhMHbu3BmTJ0/O6piTJ0+OnTt3ZnVMAAAAgOZKyAmHMXfu3Ni6dWtWx9yyZUvMnTs3q2MCAAAANFdCTjiM9evXH5FxN2zYcETGBQAAAGhuhJxwGDt27Dgi47733ntHZFwAAACA5ia3sSfQlKxcuTKmT58eCxYsiLKysqioqIhu3bpFYWFhXHTRRXH++edHbm72/8nefvvtmD59esyfPz9Wr14du3fvjq5du0bv3r1j+PDhMXz48GjXrl2dxnzttdfiP/7jP+IPf/hDvPPOO7F3797o3LlzFBUVxXnnnReXXnppncdsrvLy8o7IuB07djwi4wIAAAA0N0LO//Xggw/GI488EhUVFbV+Ly0tjdLS0nj55ZejuLg47r333ujdu3fW6k6fPj3uvvvu2LVrV63f161bF+vWrYv58+fHo48+Gvfcc0+ceeaZhx1vy5YtcfPNN8f//M//HPC3d955J955552YN29ePPzww3HPPffEoEGDsvUox6wePXockXG7d+9+RMYFAAAAaG5sV4+IO++8Mx566KEk4MzNzY1+/frFgAEDonPnzsl1JSUlMWrUqFi7dm1W6k6ZMiW+/e1vJwFnTk5OFBYWxqc+9ano1q1bct2qVavi6quvjiVLlhxyvPfeey+++MUv1go4W7VqFWecccYBY27cuDH+/u///qBhKLWde+650alTp6yO2blz5zj33HOzOiYAAABAc9XsQ85Zs2bF1KlTk/4FF1wQc+fOjZkzZ8ZTTz0V8+bNizvuuCPZ2r1p06a44YYborq6ukF1Fy5cGPfcc0/SP+uss+LFF1+Mn//85zF16tT41a9+FQ8++GASsu7atSu+9rWvHfDGZ00TJkyIFStWJP3LLrss5s2bF88++2xMnTo15s2bFw899FAS2FVWVsY3v/nNePfddxv0LMe69u3bx+jRo7M65ujRo6N9+/ZZHRMAAACguWrWIWd5eXl8//vfT/rnnXdeTJo0KY4//vjkt1atWsXIkSPjoYceSr7HuWTJknj++ecbVHvChAlRWVkZERH9+vWLxx57LE4++eTk7zk5OTFs2LCYMmVKdOjQISL2nfL95JNPHnS8DRs2xE9/+tOkf8kll8Rdd91V603UiIjzzz8/HnvsseRZduzYEVOmTGnQszQH1113XZMeDwAAAKA5a9Yh50svvRTr1q2LiH1b1G+77bZo0eLg/ySDBw+OkSNHJv3JkyfXu+6iRYti4cKFSf/WW2+Ntm3bHvTaPn36xPXXX5/0n3zyySQcremVV16JqqqqiNgXkI4bN+5D659xxhlx4YUXJn1b1g+vsLAwLr300qyMdemll8bpp5+elbEAAAAAaOYh5y9+8YukPWjQoDjhhBMOeX3NkHPJkiVRWlra4LoFBQXRv3//Q15/2WWXJW9ebt68OV577bUDrlm/fn3SPv744w97qE3NQ4zKysoymndz98QTT0RxcXGDxiguLo4nnngiSzMCAAAAIKIZh5zV1dWxYMGCpH/OOecc9p6ioqLo2rVr0p89e3a9av/mN7+pU938/Pxa4dqcOXMOuKZjx45Je+fOnYf9ZmjNU+TbtGlz2Dmw7/+HWbNm1TvoPOOMM2LWrFmRn5+f5ZkBAAAANG/NNuRcu3ZtbN++PelnGlwVFRUl7cWLF9e5bnl5ebz11ltJv1+/flmpe9pppyXt999/P/7whz8ccrxf//rXSbugoCCjORDRs2fPmD9/fp23rl966aUxb9686Nmz5xGaGQAAAEDz1WxDzlWrVtXq1zz051BOPPHEpL1mzZo61y0rK4vy8vKk36tXr6zUHThwYBQWFib9u+66K3bu3HnQsf7rv/4r5s+fn/SvvPLKjObAPvn5+fHcc8/FG2+8EePGjUtOq99f586d48Ybb4wVK1bEc8895w1OAAAAgCMkt7En0Fg2btyYtFu0aFHrRPVDqbldveYY9am7/3iZ1n333Xejqqqq1iFJOTk58d3vfjdGjx4dO3fujCVLlsTll18eY8eOjYEDB0aHDh1izZo18eyzz9Y6of0v//Iv47Of/Wydn4N9hxFNnDgx7rzzzpg9e3b87ne/i/fffz86dOgQAwYMiCFDhkT79u0be5oAAAAAx7xmG3Ju27YtaXfo0OFDT1XfX15e3kHHqE/diIjjjjsuo/tqfnOzuro6tm/ffsAbhB//+MfjmWeeidtvvz1ee+21ePPNN2Ps2LEHHa9Vq1bxhS98Ib75zW9m/OxHUs1vhKZN69at4/zzz4+PfOQjyW/FxcXRsmXLVD8XNKbKyspD9oHMWU+QPdYTZI/1BNljPe3TbEPOPXv2JO22bdtmfF/r1q2T9t69extUty61W7VqdchxPtCjR48477zz4s9//vMh3zS98MIL44tf/GKt52ksVVVVsWjRosaeRlaVlJQ09hTgmGJNQfZYT5A91hNkj/UE2dNc11OzDTlrfhezLm8y5ub+3z9Zfd7S2/+eTGvXrBtx8FT+1VdfjW9+85uxadOm5LcOHTpEYWFhtGrVKtauXRtr166NiIif//zn8eKLL8bYsWPj7//+7+v6GAAAAADQZDTbkLNly5ZJu6qqKuP7aoaU+79dmYn9Q81Ma+8fju5fe9GiRXHttdcmb3h26tQpbrnllvjc5z5XKyBdvnx53H333fGb3/wm9uzZE/fee2+89957MW7cuDo/CwAAAAA0Bc025GzXrl3S/rCt3wdTc4t6mzZtGlT3g9qZbBnff2t8zdrV1dXxrW99K3mOzp07x/Tp0+OUU045YJw+ffrEE088Ebfcckv8x3/8R0RE/Nu//Vuce+658YlPfKKOT5MdLVq0iDPOOKNRamdLZWVlrdfBP/gmJ1A/1hRkj/UE2WM9QfZYT5A9x8J6Wrx4cZ1eQjyYZhty5ufnJ+33338/qqurIycn57D37dixI2nvf/BPXet+MF7NQ4UyqZubm1vrngULFsSbb76Z9G+55ZaDBpwfaNGiRdxxxx3x29/+NtauXRvV1dXx+OOPN1rIGXHgdvy0a9my5TH3TNCYrCnIHusJssd6guyxniB7mut6avxjtRtJ9+7dk3ZlZWVs2bIlo/tqHuZz/PHHN6huRNT6fmamdbt06VIrkP3d736XtDt06BCf/exnDztemzZt4pJLLkn6r7zySoMTcwAAAABoDM025OzVq1etfmlpaUb3lZWVJe1TTz21znVPOOGEWt/TrE/d/d/SfOedd5J2r169Mj4xvU+fPkl7586dGQe9AAAAANCUNNuQs2fPnrW2my9btiyj+5YvX560a4aEmWrVqlUUFhbWuW7N6/r27VvrbzVDzf2/3Xko+x+ClMl2fQAAAABoapptyBkRMXDgwKT9yiuvHPb65cuX19pefvbZZx+Vulu3bo2lS5d+aN0ePXok7TVr1tT6fuehrFy5Mmm3adMmOnfunNF9AAAAANCUNOuQc9iwYUl7zpw5sWHDhkNeP23atKRdUFAQRUVFDa5bUlJS6wSsg5kxY0ZUVFRExL6DiwYNGlTr7zX7e/fujZ/+9KeHnUNlZWWt6z796U97kxMAAACAVGr2IWe3bt0iYl84ePPNNydh4v7mzZsXzzzzTNIfNWpUvev2798/+vXrl/RvueWWD337ctmyZfHwww8n/SuuuCLatm1b65qPfvSjceaZZyb9iRMnxp/+9KdDzuHee++Nt956K+mPHDmyTs8AAAAAAE1Fsw45W7duHTfeeGPSf+WVV+IrX/lKrcOAKioqYsaMGXHDDTdEZWVlREQUFhbG5ZdfftAxhwwZEkVFRVFUVBRDhgz50Nrjx49P3pxcsWJFjBo1qtb3Pqurq+PFF1+Ma665Jnbu3BkREV27do0xY8YcdLx//ud/Tg402rlzZ1xxxRXx4x//+IDwdM2aNfH1r389Jk+eXGvOh5orAAAAADRluY09gcZ2ySWXxOuvvx5PP/10ROwLOocNGxZFRUWRl5cXK1eujM2bNyfXd+rUKR544IHIzW3YP93AgQNj3LhxMXHixIiIWLp0aXz+85+P0047Lbp06RKrV6+utX2+bdu2MWnSpOjYseNBx/vYxz4Wd999d4wfPz4qKipi586d8d3vfjfuvffeOPXUU+O4446Ld955J/785z/Xuu/MM8+M++67r0HPAgAAAACNqdmHnBERt99+e3Tu3Dkef/zxKC8vj6qqqoOeel5QUBAPPPBA9O7dOyt1x4wZEx06dIj7778/eVvzzTffPOC6Hj16xH333RcDBgw45Hif+9zn4iMf+UjccsstsXr16oiI2L1790GfpWXLljFy5Mi45ZZbap3ODgAAAABpI+SMiJycnBg3blxcfPHF8eyzz8b8+fNj/fr1sWvXrsjPz4++ffvGhRdeGBdffHHWA8Grrroqhg4dGjNmzIi5c+dGWVlZ7NixI/Ly8qKwsDCGDh0aI0aMiLy8vIzG++QnPxn//d//HS+88ELMnj07/vjHP8amTZti7969kZ+fHyeffHIMHDgwRowYESeddFJWnwUAAAAAGoOQs4aCgoIYP358jB8/vt5jzJ49u8739OjRI8aOHRtjx46td92aWrZsGcOHD4/hw4dnZTwAAAAAaMqa9cFDAAAAAED6CTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECq5Tb2BJqSlStXxvTp02PBggVRVlYWFRUV0a1btygsLIyLLroozj///MjNzf4/2dtvvx3Tp0+P+fPnx+rVq2P37t3RtWvX6N27dwwfPjyGDx8e7dq1+9D7Z86cGbfcckuD5/HGG280eAwAAAAAONqEnP/rwQcfjEceeSQqKipq/V5aWhqlpaXx8ssvR3Fxcdx7773Ru3fvrNWdPn163H333bFr165av69bty7WrVsX8+fPj0cffTTuueeeOPPMM7NWFwAAAACOFULOiLjzzjtj6tSpST83NzeKioqiXbt2sXLlytiyZUtERJSUlMSoUaNixowZ0bNnzwbXnTJlSkyYMCHp5+TkxOmnnx6dOnWKVatWxTvvvBMREatWrYqrr746nnrqqejXr98B43Tv3j0GDx5cp9obN26s9ebmOeecU8+nAAAAAIDG1exDzlmzZtUKOC+44IK47bbb4vjjj4+IiPLy8pg5c2ZMmDAhdu3aFZs2bYobbrghnnvuucjJyal33YULF8Y999yT9M8666z43ve+FyeffHJERFRXV8dLL70Ut912W2zZsiV27doVX/va12LWrFkHbF0/55xz6hRS7tq1K0aOHJn0CwoK4oEHHqj3swAAAABAY2rWBw+Vl5fH97///aR/3nnnxaRJk5KAMyKiVatWMXLkyHjooYeS73EuWbIknn/++QbVnjBhQlRWVkZERL9+/eKxxx5LAs6IfW91Dhs2LKZMmRIdOnSIiIj169fHk08+2aC6ERG333578hZn27Zt44EHHoiOHTs2eFwAAAAAaAzNOuR86aWXYt26dRGxb4v6bbfdFi1aHPyfZPDgwbXefpw8eXK96y5atCgWLlyY9G+99dZo27btQa/t06dPXH/99Un/ySefTMLR+njhhRfipz/9adK/+eab4/TTT6/3eAAAAADQ2Jp1yPmLX/wiaQ8aNChOOOGEQ15fM+RcsmRJlJaWNrhuQUFB9O/f/5DXX3bZZclbpJs3b47XXnutXnW3bdsWt99+e9L/1Kc+FX/7t39br7EAAAAAoKlotiFndXV1LFiwIOln8k3LoqKi6Nq1a9KfPXt2vWr/5je/qVPd/Pz8KC4uTvpz5sypV937778/3n333YiIaN26ddx5550N+q4oAAAAADQFzTbkXLt2bWzfvj3p1wwRD6WoqChpL168uM51y8vL46233kr6Bzst/UjUfeONN+KZZ55J+tdcc0306tWrzuMAAAAAQFPTbEPOVatW1erXPPTnUE488cSkvWbNmjrXLSsri/Ly8qSfadDY0Lr33XdfVFVVRURE165d47rrrqvzGAAAAADQFDXbkHPjxo1Ju0WLFrVOVD+UmtvVa45Rn7r7j5dp3XfffTcJLDPxhz/8IX71q18l/WuvvTY5sR0AAAAA0i63sSfQWLZt25a0O3To8KGnqu8vLy/voGPUp25ExHHHHZfRfR07dkza1dXVsX379ujUqVNG9z7yyCNJu0ePHk3ysKGKiorGnkKD7H/i/f59oG6sKcge6wmyx3qC7LGeIHusp32abci5Z8+epN22bduM72vdunXS3rt3b4Pq1qV2q1atDjnOh1mxYkXMnTs36Y8ePbrWMzQFVVVVsWjRosaeRlaVlJQ09hTgmGJNQfZYT5A91hNkj/UE2dNc11Oz3a5e87uYmb7FGRGRm/t/uXB93j7c/55Ma9esG5F5Kv+Tn/wkaefl5cVll12W0X0AAAAAkBbNNuRs2bJl0q7L9y1rhpT7v12Zif1DzUxr7x+OZlJ7165d8bOf/SzpjxgxotZ2ewAAAAA4FjTb7ert2rVL2plu/Y6ovUW9TZs2Dar7Qe1Mto/vvzU+k9ovv/xyvP/++0l/xIgRGc7y6GrRokWcccYZjT2NBqmsrKz1OnhxcXGtIB2oG2sKssd6guyxniB7rCfInmNhPS1evLhOLyEeTLMNOfPz85P2+++/H9XV1ZGTk3PY+3bs2JG0Mz3458PqfjBezUOFMqmbm5ub0T3/9V//lbT79esXRUVFdZjp0bX/dvy0a9my5TH3TNCYrCnIHusJssd6guyxniB7mut6arbb1bt37560KysrY8uWLRndt3HjxqR9/PHHN6huRMSmTZvqXLdLly6HDWR3794dr7zyStIfPnx4HWYJAAAAAOnRbEPOXr161eqXlpZmdF9ZWVnSPvXUU+tc94QTTqj1Pc361D3llFMOe/2CBQti9+7dSf/888/PfJIAAAAAkCLNNuTs2bNnre3my5Yty+i+5cuXJ+0+ffrUuW6rVq2isLCwznVrXte3b9/DXv/qq68m7VNOOeWAUBcAAAAAjhXNNuSMiBg4cGDSrrm1+8MsX7681vbys88++6jU3bp1ayxdurROdf/whz8k7Y997GN1nCEAAAAApEezDjmHDRuWtOfMmRMbNmw45PXTpk1L2gUFBfU+yKdm3ZKSklonYB3MjBkzoqKiIiL2HVw0aNCgQ15fXl4eS5YsSfrFxcX1micAAAAApEGzDzm7desWERF79+6Nm2++OQkT9zdv3rx45plnkv6oUaPqXbd///7Rr1+/pH/LLbfUOj29pmXLlsXDDz+c9K+44opo27btIcd/6623ory8POmfccYZ9Z4rAAAAADR1zTrkbN26ddx4441J/5VXXomvfOUrtQ4DqqioiBkzZsQNN9wQlZWVERFRWFgYl19++UHHHDJkSBQVFUVRUVEMGTLkQ2uPHz8+OSF9xYoVMWrUqFrf+6yuro4XX3wxrrnmmti5c2dERHTt2jXGjBlz2OdauXJlrf5JJ5102HsAAAAAIK1yG3sCje2SSy6J119/PZ5++umI2Bd0Dhs2LIqKiiIvLy9WrlwZmzdvTq7v1KlTPPDAA5Gb27B/uoEDB8a4ceNi4sSJERGxdOnS+PznPx+nnXZadOnSJVavXl1r+3zbtm1j0qRJ0bFjx8OOXfMk9oiI4447rkFzBQAAAICmrNmHnBERt99+e3Tu3Dkef/zxKC8vj6qqqoOeel5QUBAPPPBA9O7dOyt1x4wZEx06dIj7778/eVvzzTffPOC6Hj16xH333RcDBgzIaNyahyO1bt062rRpk5X5AgAAAEBTJOSMiJycnBg3blxcfPHF8eyzz8b8+fNj/fr1sWvXrsjPz4++ffvGhRdeGBdffHG0bt06q7WvuuqqGDp0aMyYMSPmzp0bZWVlsWPHjsjLy4vCwsIYOnRojBgxIvLy8jIe84PANMJbnAAAAAAc+3Kqq6urG3sSND+vv/56VFVVRUREixYton///o08o4apqKiIRYsWJf0zzzyzwZ80gObMmoLssZ4ge6wnyB7rCbLnWFhP2ciJmvXBQwAAAABA+gk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAquU29gSakpUrV8b06dNjwYIFUVZWFhUVFdGtW7coLCyMiy66KM4///zIzc3+P9nbb78d06dPj/nz58fq1atj9+7d0bVr1+jdu3cMHz48hg8fHu3atavTmHv27In/+q//il/+8pfxxhtvxKZNmyInJye6desWH//4x+OSSy6JT3/601l/FgAAAAA42oSc/+vBBx+MRx55JCoqKmr9XlpaGqWlpfHyyy9HcXFx3HvvvdG7d++s1Z0+fXrcfffdsWvXrlq/r1u3LtatWxfz58+PRx99NO65554488wzMxpz3rx58Z3vfCfKysoO+Nvq1atj9erV8Z//+Z/x//1//198//vfj06dOmXjUQAAAACgUdiuHhF33nlnPPTQQ0nAmZubG/369YsBAwZE586dk+tKSkpi1KhRsXbt2qzUnTJlSnz7299OAs6cnJwoLCyMT33qU9GtW7fkulWrVsXVV18dS5YsOeyYP/vZz2LMmDG1As4TTjghPvWpT8VHP/rRaNmyZfL7//zP/8To0aNj586dWXkeAAAAAGgMzT7knDVrVkydOjXpX3DBBTF37tyYOXNmPPXUUzFv3ry44447ku3imzZtihtuuCGqq6sbVHfhwoVxzz33JP2zzjorXnzxxfj5z38eU6dOjV/96lfx4IMPJiHrrl274mtf+9oBb3zW9Lvf/S5uvvnmqKysjIiIoqKieOqpp2LOnDkxderU+OlPfxr/8z//E5/73OeSe5YuXRo//OEPG/QsAAAAANCYmnXIWV5eHt///veT/nnnnReTJk2K448/PvmtVatWMXLkyHjooYeS73EuWbIknn/++QbVnjBhQhJG9uvXLx577LE4+eSTk7/n5OTEsGHDYsqUKdGhQ4eIiFi/fn08+eSTBx2vsrIyvv3tbydjfvzjH48f//jHMWDAgFrXdevWLe6///4477zzkt+mT58eO3bsaNDzAAAAAEBjadYh50svvRTr1q2LiH1b1G+77bZo0eLg/ySDBw+OkSNHJv3JkyfXu+6iRYti4cKFSf/WW2+Ntm3bHvTaPn36xPXXX5/0n3zyySTIrOmll16KN998MyIi2rVrFz/4wQ/iuOOO+9A5/OM//mPS3rVrV7z66qt1fQwAAAAAaBKadcj5i1/8ImkPGjQoTjjhhENeXzPkXLJkSZSWlja4bkFBQfTv3/+Q11922WXJW6SbN2+O11577YBrZs6cmbT//u///rDPUlBQEF/96lfjuuuui/Hjx8eJJ55Yl0cAAAAAgCaj2Z6uXl1dHQsWLEj655xzzmHvKSoqiq5du8bGjRsjImL27Nlx9dVX17n2b37zmzrVzc/Pj+Li4uTtzzlz5sSnP/3p5O+7d+9OxszJyYnLL788o3l84xvfyHzSAAAAANBENds3OdeuXRvbt29P+sXFxRndV1RUlLQXL15c57rl5eXx1ltvJf1+/fo1uG5JSUns3bs3IiJ69eoV3bt3r/O8AAAAACCtmu2bnKtWrarVr3noz6HU3Na9Zs2aOtctKyuL8vLypN+rV68G133jjTeSdmFhYdJ+8803Y+bMmTF//vx4++23o6KiInr06BHnnHNOjBw5Mk4//fQ6zx8AAAAAmppmG3J+sOU8IqJFixa1TlQ/lK5dux50jPrU3X+8TOu+++67UVVVlRySVPPboN27d489e/bEpEmTYsqUKVFVVVVrnLfeeiveeuut+MlPfhKjR4+Ob37zmx962BIAAAAApEGzDTm3bduWtDt06JBx0JeXl3fQMepTNyIOeQJ6TR07dkza1dXVsX379ujUqVNERGzatCn5W+vWrePrX/96zJkzJyIiWrZsGaeffnrk5+fH22+/nbwFWllZGY899lisXbs2fvCDH0ROTk6dnyWbKioqGrV+Q+1/4v3+faBurCnIHusJssd6guyxniB7rKd9mm3IuWfPnqTdtm3bjO9r3bp10v7gO5j1rVuX2q1atfrQcWp+W/SZZ55J+ldccUV8/etfr/WW6rJly+I73/lOcojRf//3f8dHP/rRuPbaa+v0HNlUVVUVixYtarT6R0JJSUljTwGOKdYUZI/1BNljPUH2WE+QPc11PTXbfco1v4tZl+3aubn/lwvX5+3D/e/JtHbNuhG1U/maYesHAee4cePiu9/97gHb8Pv27Rs/+tGP4pOf/GTy27/+67/G5s2bM3sAAAAAAGhimm3I2bJly6S9/3crD6VmSLn/25WZ2D/UzLT2/uFozdr7bzUfMGBAXHfddR86Vps2bWLChAnJXHbt2hXPPvtsRvMAAAAAgKam2W5Xb9euXdLefwv5odR8a7JNmzYNqvtB7Zpb4DOpu3/t9u3b1/rbVVddddjxevXqFZ/+9Kfj17/+dURE/PrXv260LestWrSIM844o1FqZ0tlZWWt18GLi4trBelA3VhTkD3WE2SP9QTZYz1B9hwL62nx4sV1egnxYJptyJmfn5+033///aiurs7o8J0dO3Yk7Q8O/qlv3Q/Gq3moUCZ1c3Nza93ToUOHWtd+4hOfyGguH//4x5OQ86233sroniNl/+34adeyZctj7pmgMVlTkD3WE2SP9QTZYz1B9jTX9dRst6t37949aVdWVsaWLVsyum/jxo1Je//vXda1bkTtk9EzrdulS5dagWznzp1rXdulS5eMxvyLv/iLpJ3p8wMAAABAU9NsQ85evXrV6peWlmZ0X1lZWdI+9dRT61z3hBNOqPU9zfrUPeWUU2r97bTTTqvVf++99zIas+bhS80x4QcAAADg2NBsQ86ePXvW2m6+bNmyjO5bvnx50u7Tp0+d67Zq1SoKCwvrXLfmdX379q31t6Kiolr9P//5zxmNuWHDhqTdo0ePjO4BAAAAgKam2YacEREDBw5M2q+88sphr1++fHmt7eVnn332Uam7devWWLp06YfW7du3b63A9pe//GVG8/jtb3+btIuLizO6BwAAAACammYdcg4bNixpz5kzp9abjQczbdq0pF1QUHDAG5T1qVtSUlLrBKyDmTFjRlRUVETEvoOLBg0aVOvvrVq1ir/+679O+s8991y8++67hxxz0aJFsXjx4oPOCQAAAADSpNmHnN26dYuIiL1798bNN9+chIn7mzdvXjzzzDNJf9SoUfWu279//+jXr1/Sv+WWW2qdnl7TsmXL4uGHH076V1xxRbRt2/aA66688srkW5/btm2Lf/qnf4q9e/cedMzt27fHt771raR/4oknxpAhQ+r1LAAAAADQ2Jp1yNm6deu48cYbk/4rr7wSX/nKV2odBlRRUREzZsyIG264ISorKyMiorCwMC6//PKDjjlkyJAoKiqKoqKiQwaH48ePT05IX7FiRYwaNarW9z6rq6vjxRdfjGuuuSZ27twZERFdu3aNMWPGHHS80047La677rqkP2fOnPjSl750wFuif/zjH+MLX/hCvPnmm8lv3/rWtxw8BAAAAEBqNftk65JLLonXX389nn766YjYF3QOGzYsioqKIi8vL1auXBmbN29Oru/UqVM88MADDQ4FBw4cGOPGjYuJEydGRMTSpUvj85//fJx22mnRpUuXWL16da3t823bto1JkyZFx44dP3TMr371q1FWVhY//elPI2LfNzdHjBgRJ510UnzkIx+Jd955J1atWlXrnq997WvxV3/1Vw16FgAAAABoTM0+5IyIuP3226Nz587x+OOPR3l5eVRVVR301POCgoJ44IEHonfv3lmpO2bMmOjQoUPcf//9yduaNd+w/ECPHj3ivvvuiwEDBhxyvJYtW8aECROid+/e8fDDDydjlpaW1no7NSKiXbt28Y//+I/xhS98ISvPAgAAAACNRcgZETk5OTFu3Li4+OKL49lnn4358+fH+vXrY9euXZGfnx99+/aNCy+8MC6++OJo3bp1VmtfddVVMXTo0JgxY0bMnTs3ysrKYseOHZGXlxeFhYUxdOjQGDFiROTl5WX8LNdee218/vOfj//8z/+MOXPmRGlpaWzdujXatGkTBQUF8ZnPfCZGjhwZXbt2zeqzAAAAAEBjEHLWUFBQEOPHj4/x48fXe4zZs2fX+Z4ePXrE2LFjY+zYsfWuu7/u3bvHtddeG9dee23WxgQAAACApqhZHzwEAAAAAKSfkBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKRabmNPoClZuXJlTJ8+PRYsWBBlZWVRUVER3bp1i8LCwrjooovi/PPPj9zc7P+Tvf322zF9+vSYP39+rF69Onbv3h1du3aN3r17x/Dhw2P48OHRrl27jMZ6/PHH45577qlT/ZYtW8bSpUvrM3UAAAAAaHRCzv/14IMPxiOPPBIVFRW1fi8tLY3S0tJ4+eWXo7i4OO69997o3bt31upOnz497r777ti1a1et39etWxfr1q2L+fPnx6OPPhr33HNPnHnmmYcdT1gJAAAAQHMj5IyIO++8M6ZOnZr0c3Nzo6ioKNq1axcrV66MLVu2RERESUlJjBo1KmbMmBE9e/ZscN0pU6bEhAkTkn5OTk6cfvrp0alTp1i1alW88847ERGxatWquPrqq+Opp56Kfv36HXLM5cuXJ+2Pfexjcdxxxx12Hi1btqznEwAAAABA42v2IeesWbNqBZwXXHBB3HbbbXH88cdHRER5eXnMnDkzJkyYELt27YpNmzbFDTfcEM8991zk5OTUu+7ChQtrbSs/66yz4nvf+16cfPLJERFRXV0dL730Utx2222xZcuW2LVrV3zta1+LWbNmfejW9T179sSf//znpD9p0qSshLEAAAAA0JQ164OHysvL4/vf/37SP++882LSpElJwBkR0apVqxg5cmQ89NBDyfc4lyxZEs8//3yDak+YMCEqKysjIqJfv37x2GOPJQFnxL63OocNGxZTpkyJDh06RETE+vXr48knn/zQMd94441kzOOOO07ACQAAAECz0KxDzpdeeinWrVsXEfu2qN92223RosXB/0kGDx4cI0eOTPqTJ0+ud91FixbFwoULk/6tt94abdu2Pei1ffr0ieuvvz7pP/nkk0mQub+aW9WLiorqPT8AAAAASJNmHXL+4he/SNqDBg2KE0444ZDX1ww5lyxZEqWlpQ2uW1BQEP379z/k9ZdddlnyFunmzZvjtddeO+h1y5YtS9p9+vSp19wAAAAAIG2abchZXV0dCxYsSPrnnHPOYe8pKiqKrl27Jv3Zs2fXq/ZvfvObOtXNz8+P4uLipD9nzpyDXlcz5PQmJwAAAADNRbMNOdeuXRvbt29P+jVDxEOpGR4uXry4znXLy8vjrbfeSvqHOy0907rV1dXxxhtvJH1vcgIAAADQXDTb09VXrVpVq1/z0J9DOfHEE5P2mjVr6ly3rKwsysvLk36vXr2yUnf16tWxc+fOiIho2bJlnHbaafGrX/0qfv7zn8frr78e77zzTrRq1Sq6d+8eAwcOjEsuuSQ+9rGP1Xn+AAAAANDUNNuQc+PGjUm7RYsWtU5UP5Sa29VrjlGfuvuPl2ndd999N6qqqmodklRzq3r79u1j1KhRB7zxuWfPntixY0esXLkyfvKTn8RFF10Ud9xxR7Rv377OzwEAAAAATUWzDTm3bduWtDt06PChp6rvLy8v76Bj1KduRMRxxx2X0X0dO3ZM2tXV1bF9+/bo1KlT8lvNk9Xfe++9JODs3LlznHzyydGqVatYs2ZNvPPOO8l1P//5z+PNN9+MqVOn1hq/MVRUVDRq/Yba/8T7/ftA3VhTkD3WE2SP9QTZYz1B9lhP+zTbkHPPnj1Ju23bthnf17p166S9d+/eBtWtS+1WrVodcpyab3JGRJxyyilx8803x2c+85lo2bJl8vsf/vCHuPvuu2PRokXJfTfeeGP8+7//e8bPkG1VVVXJfI4VJSUljT0FOKZYU5A91hNkj/UE2WM9QfY01/XUbA8eqvldzEzf4oyIyM39v1y4Pm8f7n9PprVr1o04MJWv+Y3R/v37x8yZM+O8886rFXBGRHziE5+IH//4xzF48ODkt1/96lfx8ssvZzQPAAAAAGhqmu2bnDXDv6qqqozvqxlS7v92ZSb2DzUzrb1/OLp/7RdeeCHeeeedKCsri1NPPTU6dOjwoWO1bt067r333hg6dGi8//77ERHxox/9KP7qr/4qo7kAAAAAQFPSbEPOdu3aJe39t34fSs0t6m3atGlQ3Q9q19wCn0ndg9XOycmJ7t27R/fu3TOaR5cuXeJzn/tcPP300xER8fvf/z527dp1wPyOhhYtWsQZZ5xx1OtmU2VlZa3XwYuLiw94ixbInDUF2WM9QfZYT5A91hNkz7GwnhYvXlynlxAPptmGnPn5+Un7/fffj+rq6sjJyTnsfTt27EjaNQ/+qU/dD8bL5NCfmnVzc3OzclDQJz7xiSTkLC8vj3Xr1kVBQUGDx62P/bfjp13Lli2PuWeCxmRNQfZYT5A91hNkj/UE2dNc11Oz/SZnzTceKysrY8uWLRndt3HjxqR9/PHHN6huRMSmTZvqXLdLly4ZBbKHs//863NaPAAAAAA0tmYbcvbq1atWv7S0NKP7ysrKkvapp55a57onnHBCre9p1qfuKaecUue6B7P/Nv1DfccTAAAAAJqqZhty9uzZs9Z282XLlmV03/Lly5N2nz596ly3VatWUVhYWOe6Na/r27dvrb+99tpr8b3vfS+++c1vxrXXXpvxNwxqBqw5OTnRo0ePjO4DAAAAgKak2YacEREDBw5M2q+88sphr1++fHmt7eVnn332Uam7devWWLp06YfWLSsriyeffDKef/75mDt3bq2PzR7KvHnzkvbpp59+wPdCAQAAACANmnXIOWzYsKQ9Z86c2LBhwyGvnzZtWtIuKCiIoqKiBtctKSk5bCg5Y8aMqKioiIh9BxcNGjSo1t/POuusWt/ofOaZZw47h5KSkvj1r3+d9C+66KKM5g4AAAAATU2zDzm7desWERF79+6Nm2++OQkT9zdv3rxa4eGoUaPqXbd///7Rr1+/pH/LLbfUOj29pmXLlsXDDz+c9K+44opo27ZtrWtOOumkWm93Pvfcc/Hqq69+aP2NGzfGN7/5zaiuro6IfQcZ/e3f/m29ngUAAAAAGluzDjlbt24dN954Y9J/5ZVX4itf+Uqtb1VWVFTEjBkz4oYbbojKysqIiCgsLIzLL7/8oGMOGTIkioqKoqioKIYMGfKhtcePH5+8fblixYoYNWpUre99VldXx4svvhjXXHNN7Ny5MyIiunbtGmPGjDnoeDfffHPk5uZGxL7T4q+77rp46qmnYu/evck1VVVV8fLLL8fIkSNj1apVye+33357HHfccR86VwAAAABoynIbewKN7ZJLLonXX389nn766YjYF3QOGzYsioqKIi8vL1auXBmbN29Oru/UqVM88MADSaBYXwMHDoxx48bFxIkTIyJi6dKl8fnPfz5OO+206NKlS6xevbrW9vm2bdvGpEmTomPHjgcdr0+fPjFhwoQYP358VFVVxa5du+KOO+6I+++/P4qKiqJFixbx5z//Od59991a99122221ts8DAAAAQNo0+5AzYt+bjJ07d47HH388ysvLo6qq6qCnnhcUFMQDDzwQvXv3zkrdMWPGRIcOHeL+++9P3tZ88803D7iuR48ecd9998WAAQMOOd7FF18cxx9/fNx8881JQPr+++/HH/7whwOu7d69e9x6661x/vnnZ+FJAAAAAKDxCDkjIicnJ8aNGxcXX3xxPPvsszF//vxYv3597Nq1K/Lz86Nv375x4YUXxsUXXxytW7fOau2rrroqhg4dGjNmzIi5c+dGWVlZ7NixI/Ly8qKwsDCGDh0aI0aMiLy8vIzGGzRoUPzyl7+M559/PubMmRMlJSWxefPmyMnJib/4i7+I008/PYYOHRqf/exno0OHDll9FgAAAABoDELOGgoKCmL8+PExfvz4eo8xe/bsOt/To0ePGDt2bIwdO7bedWtq3bp1XHrppXHppZdmZTwAAAAAaMqa9cFDAAAAAED6CTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFKtSYScU6ZMaewpAAAAAAAp1SRCzvvuuy9++9vfNvY0AAAAAIAUahIhZ0VFRYwbNy42bNhQp/tef/31IzQjAAAAACAtmkTIOWLEiNi0aVPccMMNsXfv3ozu+dnPfhbXXHPNkZ0YAAAAANDkNYmQ89vf/nZ89KMfjcWLF8ftt99+2OsfeOCBGD9+fMaBKAAAAABw7GoSIWfr1q3jhz/8YRx33HExc+bMmDZt2kGv27t3b3zjG9+IRx55JKqrq+Ov//qvj/JMAQAAAICmpkmEnBERJ554Ytx3332Rk5MT3/ve92LhwoW1/r5p06b4whe+EC+88EJERHz961+P++67rxFmCgAAAAA0JU0m5IyI+Mu//Mu4/vrro7y8PMaOHRubNm2KiIjly5fH5ZdfHosXL462bdvGpEmT4qtf/WojzxYAAAAAaAqOesi5ffv2Q/79+uuvj3PPPTfeeeedGDt2bMyaNSuuvPLKePvtt6N79+7x4x//OC644IKjNFsAAAAAoKnLPdoFBw4cGCeddFJ89KMfjX79+kVxcXH069cvjjvuuOSa++67Ly655JJ4/fXX4/XXX4/q6uooLi6Of/3Xf41u3bod7SkDAAAAAE3YUQ85q6urY82aNbFmzZrk+5oR+77JWTP0vPPOO+O6666LPXv2xGc/+9m4++67o02bNkd7ugAAAABAE3fUQ85HH300li5dGkuXLo0lS5bE2rVrIyKitLQ0SktLawWfLVu2jLy8vCgsLIxXX301+vTpE927dz/aUwYAAAAAmrCjHnJ+5jOfic985jNJf/v27bVCz6VLl8bq1aujqqoqKioq4r333osf/vCHyfX5+fnRp0+f6Nu3bxQVFcXf/M3fHO1HAAAAAACakKMecu7vuOOOi7PPPjvOPvvs5Lddu3bFsmXLagWfK1eujIqKiti6dWu8+uqr8eqrr0aLFi2yGnKuXLkypk+fHgsWLIiysrKoqKiIbt26RWFhYVx00UVx/vnnR25u9v/J3n777Zg+fXrMnz8/Vq9eHbt3746uXbtG7969Y/jw4TF8+PBo165dg+tUV1fH6NGj4ze/+U1ERPzoRz+KgQMHNnhcAAAAAGhMjR5yHky7du3iE5/4RHziE59Iftu7d2+sWLEiCT6XLFkSf/rTn7JW88EHH4xHHnkkKioqav3+wTb6l19+OYqLi+Pee++N3r17Z63u9OnT4+67745du3bV+n3dunWxbt26mD9/fjz66KNxzz33xJlnntmgWtOmTUsCTgAAAAA4VjTJkPNgWrduHcXFxVFcXJz8VllZmZWx77zzzpg6dWrSz83NjaKiomjXrl2sXLkytmzZEhERJSUlMWrUqJgxY0b07NmzwXWnTJkSEyZMSPo5OTlx+umnR6dOnWLVqlXxzjvvRETEqlWr4uqrr46nnnoq+vXrV69aZWVlce+99zZ4zgAAAADQ1LRo7Ak0RMuWLRs8xqxZs2oFnBdccEHMnTs3Zs6cGU899VTMmzcv7rjjjmS7+KZNm+KGG26I6urqBtVduHBh3HPPPUn/rLPOihdffDF+/vOfx9SpU+NXv/pVPPjgg9G5c+eI2LeF/2tf+9oBb3xmorq6Or71rW/Fzp07GzRnAAAAAGiKUhFyVlVVHZFxy8vL4/vf/37SP++882LSpElx/PHHJ7+1atUqRo4cGQ899FDyPc4lS5bE888/36DaEyZMSN5E7devXzz22GNx8sknJ3/PycmJYcOGxZQpU6JDhw4REbF+/fp48skn61zrJz/5SSxYsKBB8wUAAACApqrJhZy7du2K119/PX7yk5/EbbfdFpdffnl88pOfPCK1XnrppVi3bl1E7Nuiftttt0WLFgf/Jxk8eHCMHDky6U+ePLnedRctWhQLFy5M+rfeemu0bdv2oNf26dMnrr/++qT/5JNP1mmbfmlpadx3330Rse+QJwAAAAA41jTqNzk3btwYy5Yti+XLl8eyZcti2bJlsWbNmlpbwaurqyMnJ+eI1P/FL36RtAcNGhQnnHDCIa8fOXJkPPXUUxGx723O0tLSOOmkkxpUt6CgIPr373/I6y+77LKYOHFiVFRUxObNm+O1116LT3/604etU11dHf/0T/+UbFO/+eab41vf+lad5wsAAAAATdlRCznfeuutJMxcunRpvPHGG/Huu+/Wumb/71weqXDzg1o1t3Cfc845h72nqKgounbtGhs3boyIiNmzZ8fVV19d59o1TzjPpG5+fn4UFxcnb3/OmTMno5Cz5jb1wYMHx4gRI4ScAAAAABxzsh5y7tmzJ954441YunRp8pbmihUrYvfu3bWuy+Tgng/e4jzcG5b1sXbt2ti+fXvSr3lq+6EUFRUlIefixYvrXLe8vDzeeuutpJ/paelFRUVJyJlJ3Zrb1PPy8uLOO++s81wBAAAAIA0aFHK+++67yTbzD97SXL169QEHBdUMNPd/O/ODfsuWLaN3797J/woKCqJ3795x6qmnfuj3Khti1apVtfo1D/05lBNPPDFpr1mzps51y8rKory8POn36tUr63X3P039pptuio985CN1nisAAAAApEGDQs5zzjmnVmh5sDBz/zc2q6ur47jjjovTTz89CgsLY9q0aRER0bNnz/jZz37WkOnUyQdvY0ZEtGjRotaJ6ofStWvXg45Rn7r7j5dp3XfffTeqqqo+9JCkH//4x/Haa69FRMSnP/3pWgcmAQAAAMCxJivb1Q+29by6ujratGkTBQUFUVhYmISahYWF0b179+S6adOmHdFvb36Ybdu2Je0OHTp8aGC4v7y8vIOOUZ+6EZmfeN6xY8ekXV1dHdu3b49OnTodcN2aNWvi/vvvj4iI9u3b26YOAAAAwDEvKyFnTk5OHH/88dG/f/8kyCwsLIxevXo1SoCZiT179iTtumyHb926ddLeu3dvg+rWpXarVq0OOU7E/21T37VrV0RE/MM//EOtbe5NWUVFRWNPoUEqKysP2QfqxpqC7LGeIHusJ8ge6wmyx3raJ2sHD7333nvRu3fv+PKXvxzt2rXL1rBHTM3vYmb6FmdERG7u//2T1SeY2/+eTGvXrBtx8P9gp06dGr/97W8jIuKss86KK6+8ss7zawxVVVWxaNGixp5GVpWUlDT2FOCYYk1B9lhPkD3WE2SP9QTZ01zXU+bp3kF8/etfj7Zt20Z1dXXs2bMn/u3f/i3OP//8eO6557I1vyOmZcuWSXv/g5IOpWZIuf/blZnYP9TMtPb+4ej+tdesWRMTJ06MiH1vh951111N9i1aAAAAAMimBoWcX/3qV2PWrFkxfPjwqK6ujurq6ti0aVP88z//c1xyySWxYMGCbM0z62q+bXqwrd8fpuYW9TZt2jSobl1q7781vmbt6urquOWWW5Jt6uPGjcv41HYAAAAASLsGb1fv3r17TJw4Ma688sq48847Y/ny5RERsWzZsrjmmmvivPPOi5tuuilOOeWUhpbKqvz8/KT9/vvvR3V1dUZvPu7YsSNpH+zgn7rU/WC8mocKZVI3Nze31j0/+tGP4ne/+11ERPTv3z+++MUv1nlejalFixZxxhlnNPY0GqSysrLW6+DFxcW13hYG6saaguyxniB7rCfIHusJsudYWE+LFy+u007rg8naNzkHDBgQP/3pT2PatGnxwx/+MLZu3RrV1dUxZ86c+NWvfhVXXnll/L//9/8yPk38SKt5wntlZWVs2bIlunTpctj7Nm7cmLSPP/74BtWNiNi0aVN85CMfqVPdLl26JIHs6tWr4wc/+EFE7Hu783vf+16dvjHaVOz/zdG0a9my5TH3TNCYrCnIHusJssd6guyxniB7mut6yuoT5+TkxJVXXhl//dd/HZMmTYoZM2ZEZWVlVFRUxNSpU+M///M/4/rrr48vfOELjZ4o77+du7S0NKOQs6ysLGmfeuqpda57wgknRKtWrZKDj0pLSzN6i7Fm3ZpvxT7++OPJNvUOHTrEXXfdlfFc7r333lpvlj7++OMZ3wsAAAAATcURiXXz8/Pj29/+dowcOTLuuuuu5MTvbdu2xYQJE+InP/lJ3HTTTTFkyJAjUT4jPXv2jE6dOsXWrVsjYt/2+jPPPPOw932wHT8iok+fPnWu26pVqygsLIwlS5YkdYcPH37Y+5YtW5a0+/btm7Rrfqtz8+bNMX/+/Iznsnjx4oyvBQAAAICm6ojua+7Tp09MnTo1Jk6cGD169Eh+X7VqVVx//fVx9dVXR8S+g3Maw8CBA5P2K6+8ctjrly9fHps2bUr6Z5999lGpu3Xr1li6dGmD6wIAAADAseiobNAfPnx4DBkyJB555JGYPHly7NmzJ6qrq+O1116LnJycRgs5hw0bFi+88EJERMyZMyc2bNhwwDcza5o2bVrSLigoiKKionrXfeKJJyIioqSkJEpKSqK4uPhDr58xY0ZUVFRExL63ZAcNGpT87e677467774749o15/yjH/2oVuAKAAAAAGl01E6oadu2bXzjG9+IX/ziFzF06NAD/v7OO+/EtGnTorKy8mhNKYYNGxbdunWLiH3bvm+++eYkTNzfvHnz4plnnkn6o0aNqnfd/v37R79+/ZL+LbfcUuv09JqWLVsWDz/8cNK/4oorom3btvWuDQAAAADHmqN+DHfPnj3joYceiieeeCJ69+4d1dXVkZOTE7t374477rgjhg8fnrxdeaS1bt06brzxxqT/yiuvxFe+8pUoLS1NfquoqIgZM2bEDTfckASwhYWFcfnllx90zCFDhkRRUVEUFRUd8puj48ePT05IX7FiRYwaNarW9z6rq6vjxRdfjGuuuSZ27twZERFdu3aNMWPG1P+BAQAAAOAY1GjnyQ8aNCh+9rOfxdSpU+Nf/uVf4r333oucnJxYvXp1fOMb34gzzjgj/vEf/zHOOuusIzqPSy65JF5//fV4+umnI2Jf0Dls2LAoKiqKvLy8WLlyZWzevDm5vlOnTvHAAw9Ebm7D/ukGDhwY48aNi4kTJ0ZExNKlS+Pzn/98nHbaadGlS5dYvXp1bNiwIbm+bdu2MWnSpOjYsWOD6gIAAADAseaov8lZU8uWLeOaa66JF154IUaMGBE5OTnJNzr/+Mc/xhe/+MUYM2ZMrFix4ojO4/bbb4/rrrsuWrVqFRERVVVVsWzZsvjtb39bK+AsKCiIH//4x9G7d++s1B0zZkzceuut0b59++S3N998M1577bVaAWePHj3iscceiwEDBmSlLgAAAAAcSxrtTc6aunTpEnfddVf87d/+bdx1112xcOHCJOycO3du/PrXv46SkpIjVj8nJyfGjRsXF198cTz77LMxf/78WL9+fezatSvy8/Ojb9++ceGFF8bFF18crVu3zmrtq666KoYOHRozZsyIuXPnRllZWezYsSPy8vKisLAwhg4dGiNGjIi8vLys1gUAAACAY0WTCDk/cMYZZ8T06dPjP/7jP+L++++PjRs3RkQctcOICgoKYvz48TF+/Ph6jzF79uw639OjR48YO3ZsjB07tt51M/XGG28c8RoAAAAAcDQ16nb1D/M3f/M3MWvWrPjSl76UbCEHAAAAADiYJhlyRkR06NAhbrrppvjZz34Wn/nMZxp7OgAAAABAE9VkQ84PnHrqqfFv//ZvjT0NAAAAAKCJavIhJwAAAADAoQg5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBquY09gaZk5cqVMX369FiwYEGUlZVFRUVFdOvWLQoLC+Oiiy6K888/P3Jzs/9P9vbbb8f06dNj/vz5sXr16ti9e3d07do1evfuHcOHD4/hw4dHu3btMh6voqIiXnzxxfjv//7vWLx4cWzevDnatGkTPXr0iP79+8fFF18cAwYMyPpzAAAAAEBjEHL+rwcffDAeeeSRqKioqPV7aWlplJaWxssvvxzFxcVx7733Ru/evbNWd/r06XH33XfHrl27av2+bt26WLduXcyfPz8effTRuOeee+LMM8887HhvvPFG/MM//EOsWLGi1u979uyJ7du3x4oVK+Lpp5+Oc889N7773e9G9+7ds/YsAAAAANAYbFePiDvvvDMeeuihJODMzc2Nfv36xYABA6Jz587JdSUlJTFq1KhYu3ZtVupOmTIlvv3tbycBZ05OThQWFsanPvWp6NatW3LdqlWr4uqrr44lS5YccrwlS5bEVVddVSvgzM/PjwEDBsQnP/nJOO6445Lf586dG1dccUW88847WXkWAAAAAGgszf5NzlmzZsXUqVOT/gUXXBC33XZbHH/88RERUV5eHjNnzowJEybErl27YtOmTXHDDTfEc889Fzk5OfWuu3DhwrjnnnuS/llnnRXf+9734uSTT46IiOrq6njppZfitttuiy1btsSuXbvia1/7WsyaNeugW9d37doV3/jGN2L79u0REdGhQ4f4p3/6p/ibv/mbaNmyZUTs28b+zDPPxN133x27d++O9evXx9e//vWYNm1avZ8DAAAAABpbs36Ts7y8PL7//e8n/fPOOy8mTZqUBJwREa1atYqRI0fGQw89lHyPc8mSJfH88883qPaECROisrIyIiL69esXjz32WBJwRux7q3PYsGExZcqU6NChQ0RErF+/Pp588smDjvf000/HmjVrknv/9V//NUaMGJEEnBH73lD9u7/7u7j77ruT3/7whz/Eb37zmwY9CwAAAAA0pmYdcr700kuxbt26iNgXAN52223RosXB/0kGDx4cI0eOTPqTJ0+ud91FixbFwoULk/6tt94abdu2Pei1ffr0ieuvvz7pP/nkk0k4WtMzzzyTtC+88MI4++yzP7T+Zz/72SgsLEz6v/zlL+syfQAAAABoUpp1yPmLX/wiaQ8aNChOOOGEQ15fM+RcsmRJlJaWNrhuQUFB9O/f/5DXX3bZZclbpJs3b47XXnut1t/fe++92LlzZ9L/3Oc+d9g5nH766Ul79erVGc0bAAAAAJqiZhtyVldXx4IFC5L+Oeecc9h7ioqKomvXrkl/9uzZ9apdc3t4JnXz8/OjuLg46c+ZM6fW3zt27Bhz5syJ3//+9zF9+vRDvsX5gQ++3RkRyXZ4AAAAAEijZhtyrl27tlbQVzNEPJSioqKkvXjx4jrXLS8vj7feeivp9+vXL2t18/Lyon///pGXl3fIsbZu3Rq///3v6zwHAAAAAGiKmm3IuWrVqlr9mof+HMqJJ56YtD846KcuysrKory8POn36tXrqNT9wI4dO+LGG29Mtrd36NAhrrjiinqPBwAAAACNLbexJ9BYNm7cmLRbtGhR60T1Q6m5Xb3mGPWpu/94mdZ99913o6qq6kMPSaqpqqoq9u7dG6tXr47/+Z//ialTpyZzyM3NjYkTJ0anTp0yfwAAAAAAaGKabci5bdu2pN2hQ4eMAsOIqLUVvOYY9akbEXHcccdldF/Hjh2TdnV1dWzfvj2jcPL//b//Fy+//PIBv/fu3Tu+853vxMCBAzOqf6RVVFQ09hQaZP8T7/fvA3VjTUH2WE+QPdYTZI/1BNljPe3TbEPOPXv2JO22bdtmfF/r1q2T9t69extUty61W7VqdchxPsy6desO+nuXLl1i3bp1UVFRkZzc3liqqqpi0aJFjTqHbCspKWnsKcAxxZqC7LGeIHusJ8ge6wmyp7mup2b7Tc6a38XM9C3OiKgVCNbn7cP978m09v5BZKap/ObNm6O4uDjOPvvs6N27d/L77373u7j55pvj7/7u7+Kdd97JaCwAAAAAaIqa7ZucLVu2TNpVVVUZ31czpNz/7cpM7B9qZlp7/3A009pz5syp9aylpaVx7733xgsvvBAREX/84x/j7//+7+PZZ5+t9ZYqAAAAAKRFsw0527Vrl7Qz3fodUXuLeps2bRpU94PamYSL+2+Nz7R2zYAzIuKkk06KH/7wh3H77bfHT37yk4iIeOONN+Kpp56K0aNHZzRmtrVo0SLOOOOMRqmdLZWVlbVeBy8uLj7g3x7InDUF2WM9QfZYT5A91hNkz7GwnhYvXlynlxAPptmGnPn5+Un7/fffj+rq6sjJyTnsfTt27Eja9TmVvGbdD8areahQJnVzc3MzuudQbrnllpgzZ068/fbbERExc+bMRgs5Iw7cjp92LVu2POaeCRqTNQXZYz1B9lhPkD3WE2RPc11PzfabnN27d0/alZWVsWXLlozu27hxY9I+/vjjG1Q3ImLTpk11rtulS5eMAtlDad26dXz2s59N+n/6059i9+7dDRoTAAAAABpDsw05e/XqVatfWlqa0X1lZWVJ+9RTT61z3RNOOKHW9zTrU/eUU06pc92DOfnkk5N2dXV1bNu2LSvjAgAAAMDR1GxDzp49e9babr5s2bKM7lu+fHnS7tOnT53rtmrVKgoLC+tct+Z1ffv2rfW3RYsWxV133RVf/epX4+qrr854Lvt/i/S4447L+F4AAAAAaCqabcgZETFw4MCk/corrxz2+uXLl9faXn722Wcflbpbt26NpUuXfmjdt99+O370ox/F7Nmz49VXX4033ngjo3ksXrw4aXft2vWAQ5EAAAAAIA2adcg5bNiwpD1nzpzYsGHDIa+fNm1a0i4oKIiioqIG1y0pKal1AtbBzJgxIyoqKiJi38FFgwYNqvX3s846q9YHZZ966qnDzmH9+vXxy1/+MukPGTIko7kDAAAAQFPT7EPObt26RUTE3r174+abb07CxP3NmzcvnnnmmaQ/atSoetft379/9OvXL+nfcssttU5Pr2nZsmXx8MMPJ/0rrrgi2rZtW+uav/iLv4ihQ4cm/WeffTZ++9vffmj9nTt3xje+8Y3koKFWrVo16snqAAAAANAQzTrkbN26ddx4441J/5VXXomvfOUrtQ4DqqioiBkzZsQNN9wQlZWVERFRWFgYl19++UHHHDJkSBQVFUVRUdEh344cP358ckL6ihUrYtSoUbW+91ldXR0vvvhiXHPNNbFz586I2LelfMyYMQcd76abbor27dtHxL7T4q+99tp4+umno7y8vNZ1r776aowcOTJef/315Lfrr7++XocoAQAAAEBTkHv4S45tl1xySbz++uvx9NNPR8S+oHPYsGFRVFQUeXl5sXLlyti8eXNyfadOneKBBx6otT28PgYOHBjjxo2LiRMnRkTE0qVL4/Of/3ycdtpp0aVLl1i9enWt7fNt27aNSZMmRceOHQ86Xs+ePeNf/uVfYsyYMbF3797YuXNn3HbbbXHvvfdGYWFhtGjRIlatWhUbN26sdd9VV10VX/3qVxv0LAAAAADQmJp9yBkRcfvtt0fnzp3j8ccfj/Ly8qiqqjroqecFBQXxwAMPRO/evbNSd8yYMdGhQ4e4//77k7c133zzzQOu69GjR9x3330xYMCAQ443aNCgmDZtWvzjP/5jvPXWWxER8d5778Xvf//7A67t1KlT/MM//MOHvpEKAAAAAGkh5IyInJycGDduXFx88cXx7LPPxvz582P9+vWxa9euyM/Pj759+8aFF14YF198cbRu3Tqrta+66qoYOnRozJgxI+bOnRtlZWWxY8eOyMvLi8LCwhg6dGiMGDEi8vLyMhqvuLg4nn/++XjhhRfixRdfjD/+8Y/x7rvvRkRE586do0+fPvGXf/mX8Td/8zfRoUOHrD4LAAAAADQGIWcNBQUFMX78+Bg/fny9x5g9e3ad7+nRo0eMHTs2xo4dW++6NbVs2TKGDx8ew4cPz8p4AAAAANCUNeuDhwAAAACA9BNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBquY09AaDx7Ny5M+bOnRvr16+PHTt2RF5eXvTo0SPOPffcaN++fWNPDwAAACAjQk5ohlasWBEPP/xwTJkyJbZu3XrA3zt16hSjR4+O6667LgoLC4/+BAEAAADqwHZ1aEa2bdsWI0aMiKKiopg0adJBA86IiK1bt8YPfvCDKCoqihEjRsS2bduO7kQBAAAA6kDICc3E2rVrY/DgwTFz5sw63Tdz5swYPHhwrF279gjNDAAAAKBhhJzQDGzdujUuuOCCKCkpqdf9JSUlceGFF3qjEwAAAGiShJzQDHz5y1+OJUuWNGiMkpKS+NKXvpSlGQEAAABkj5ATjnErVqyo8xb1DzNz5sz405/+lJWxAAAAALJFyAnHuEceeaRJjwcAAADQUEJOOIbt3LkzJk+enNUxJ0+eHDt37szqmAAAAAANIeSEY9jcuXNj69atWR1zy5YtMXfu3KyOCQAAANAQQk44hq1fv/6IjLthw4YjMi4AAABAfQg54Ri2Y8eOIzLue++9d0TGBQAAAKgPISccw/Ly8o7IuB07djwi4wIAAADUh5ATjmE9evQ4IuN27979iIwLAAAAUB9CTjiGnXvuudGpU6esjtm5c+c499xzszomAAAAQEMIOeEY1r59+xg9enRWxxw9enS0b98+q2MCAAAANISQE45x1113XZMeDwAAAKChhJxwjCssLIxLL700K2Ndeumlcfrpp2dlLAAAAIBsEXJCM/DEE09EcXFxg8YoLi6OJ554IkszAgAAAMgeISc0A/n5+TFr1qx6B51nnHFGzJo1K/Lz87M8MwAAAICGE3JCM9GzZ8+YP39+nbeuX3rppTFv3rzo2bPnEZoZAAAAQMMIOaEZyc/Pj+eeey7eeOONGDduXHTq1Omg13Xu3DluvPHGWLFiRTz33HPe4AQAAACatNzGngBw9BUWFsbEiRPjzjvvjLlz58aGDRvivffei44dO0b37t3j3HPPjfbt2zf2NAEAAAAyIuSEZqx9+/bx2c9+trGnAQAAANAgtqsDAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApJqQEwAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKkm5AQAAAAAUk3ICQAAAACkmpATAAAAAEg1IScAAAAAkGpCTgAAAAAg1YScAAAAAECqCTkBAAAAgFQTcgIAAAAAqSbkBAAAAABSTcgJAAAAAKSakBMAAAAASDUhJwAAAACQakJOAAAAACDVhJwAAAAAQKoJOQEAAACAVBNyAgAAAACpJuQEAAAAAFJNyAkAAAAApFpuY0+gKVm5cmVMnz49FixYEGVlZVFRURHdunWLwsLCuOiii+L888+P3Nzs/5O9/fbbMX369Jg/f36sXr06du/eHV27do3evXvH8OHDY/jw4dGuXbuMx6uqqoo5c+bESy+9FIsWLYqNGzfG7t27o2PHjnHSSSfFpz71qbj88sujV69eWX8WAAAAADjahJz/68EHH4xHHnkkKioqav1eWloapaWl8fLLL0dxcXHce++90bt376zVnT59etx9992xa9euWr+vW7cu1q1bF/Pnz49HH3007rnnnjjzzDMPO96yZcvipptuihUrVhzwt82bN8fmzZtj0aJF8cQTT8SVV14Z48ePj1atWmXteQAAAADgaLNdPSLuvPPOeOihh5KAMzc3N/r16xcDBgyIzp07J9eVlJTEqFGjYu3atVmpO2XKlPj2t7+dBJw5OTlRWFgYn/rUp6Jbt27JdatWrYqrr746lixZcsjxXn/99fjbv/3bWgFn27Zt42Mf+1gMHDgwTjnllOT3ysrKmDp1alx33XUHBLsAAAAAkCbNPuScNWtWTJ06NelfcMEFMXfu3Jg5c2Y89dRTMW/evLjjjjuS7eKbNm2KG264IaqrqxtUd+HChXHPPfck/bPOOitefPHF+PnPfx5Tp06NX/3qV/Hggw8mIeuuXbvia1/72gFvfH5gx44dcf3118fu3bsjYl+4+c///M/x2muvxTPPPBM/+tGP4oUXXohZs2bFZz7zmeS++fPnx8SJExv0LAAAAADQmJp1yFleXh7f//73k/55550XkyZNiuOPPz75rVWrVjFy5Mh46KGHku9xLlmyJJ5//vkG1Z4wYUJUVlZGRES/fv3isccei5NPPjn5e05OTgwbNiymTJkSHTp0iIiI9evXx5NPPnnQ8R577LF49913I2Lfm6j//u//HqNGjYo2bdrUuu7UU0+NRx99NC644ILktx/96Eexbt26Bj0PAAAAADSWZh1yvvTSS0m4l5ubG7fddlu0aHHwf5LBgwfHyJEjk/7kyZPrXXfRokWxcOHCpH/rrbdG27ZtD3ptnz594vrrr0/6Tz75ZBKO1vSzn/0saY8YMSI+9alPfWj9nJyc+M53vpMEoOXl5fHiiy/W9TEAAAAAoElo1iHnL37xi6Q9aNCgOOGEEw55fc2Qc8mSJVFaWtrgugUFBdG/f/9DXn/ZZZclb5Fu3rw5XnvttVp/X7NmTa3vhH7uc5877By6dOkSH//4x5P+4sWLM5k6AAAAADQ5zTbkrK6ujgULFiT9c84557D3FBUVRdeuXZP+7Nmz61X7N7/5TZ3q5ufnR3FxcdKfM2dOrb+vXbu21rb00047LaN5dOrUKWlv3bo1o3sAAAAAoKnJbewJNJa1a9fG9u3bk37NEPFQioqKYuPGjRFRv7cfy8vL46233kr6/fr1y7juB1vc96/76U9/Ov74xz/Gli1bYsOGDbXCy0MpKytL2scdd1xG9wAAAABAU9NsQ85Vq1bV6tc89OdQTjzxxKS9Zs2aOtctKyuL8vLypN+rV6+s1e3cuXNyGvvhlJaWxtKlS5N+QUFBRvcBAAAAQFPTbLerf/A2ZkREixYtap2ofig1t6vXHKM+dfcfL9O67777blRVVdW5dk0PPvhgVFdXJ/3zzjuvQeMBAAAAQGNptm9ybtu2LWl36NDhQ09V319eXt5Bx6hP3YjMt4l37NgxaVdXV8f27dsz3pa+v5deein+8z//M+mfffbZGW+bP1IqKioatX5D7X/i/f59oG6sKcge6wmyx3qC7LGeIHusp32abci5Z8+epN22bduM72vdunXS3rt3b4Pq1qV2q1atDjlOppYsWRI33XRTrXHHjx9fr7GypaqqKhYtWtSoc8i2kpKSxp4CHFOsKcge6wmyx3qC7LGeIHua63pqttvVa34XM9O3OCMicnP/Lxeuz9uH+9+Tae2adSPql8ovX748vvSlL8XOnTuT32666ab46Ec/WuexAAAAAKCpaLYhZ8uWLZN2Xb5vWTOk3P/tykzsH2pmWnv/cLSutX//+9/HF7/4xdi6dWvy22WXXRZf/OIX6zQOAAAAADQ1zXa7ert27ZJ2XbZ+19yi3qZNmwbV/aB2zS3wmdSta+1f/vKX8c1vfjN2796d/HbRRRfFHXfckfEYR1KLFi3ijDPOaOxpNEhlZWWt18GLi4trBelA3VhTkD3WE2SP9QTZYz1B9hwL62nx4sUNPmS72Yac+fn5Sfv999+P6urqyMnJOex9O3bsSNr1OfinZt0Pxqt5qFAmdXNzczO6JyLisccei/vvv7/WfyiXXXZZfPe7363TNv0jbf/t+GnXsmXLY+6ZoDFZU5A91hNkj/UE2WM9QfY01/XUdFKuo6x79+5Ju7KyMrZs2ZLRfRs3bkzaxx9/fIPqRkRs2rSpznW7dOly2EC2vLw8/vmf/znuvffeWgHntddeG3fddVeTCjgBAAAAoCGabdLVq1evWv3S0tKM7isrK0vap556ap3rnnDCCbW+p1mfuqeccsohr33//ffj2muvjWeeeSb5rWXLlvHtb387vvnNb9ZtwgAAAADQxDXbkLNnz561tpsvW7Yso/uWL1+etPv06VPnuq1atYrCwsI61615Xd++fT/0uu3bt8fVV18dr7zySvJb+/bt41/+5V/iyiuvrPN8AQAAAKCpa7YhZ0TEwIEDk3bNUPDDLF++vNb28rPPPvuo1N26dWssXbr0sHXff//9+NKXvhSLFy9OfuvatWv8+Mc/jvPOO69ecwUAAACApq5Zh5zDhg1L2nPmzIkNGzYc8vpp06Yl7YKCgigqKmpw3ZKSklonYB3MjBkzoqKiIiL2HVw0aNCgg15388031wo4e/XqFdOmTYt+/frVa54AAAAAkAbNPuTs1q1bRETs3bs3br755iRM3N+8efNqfeNy1KhR9a7bv3//WsHjLbfcUuv09JqWLVsWDz/8cNK/4oorom3btgdcN23atHjxxReTfs+ePWPq1Klx0kkn1XueAAAAAJAGzTrkbN26ddx4441J/5VXXomvfOUrtQ4DqqioiBkzZsQNN9wQlZWVERFRWFgYl19++UHHHDJkSBQVFUVRUVEMGTLkQ2uPHz8+OSF9xYoVMWrUqFrf+6yuro4XX3wxrrnmmti5c2dE7Nt6PmbMmAPG2rFjR0ycOLHWcz388MMHnOQOAAAAAMei3MaeQGO75JJL4vXXX4+nn346IvYFncOGDYuioqLIy8uLlStXxubNm5PrO3XqFA888EDk5jbsn27gwIExbty4JJxcunRpfP7zn4/TTjstunTpEqtXr661fb5t27YxadKk6Nix4wFj/eQnP4nt27cn/by8vLjnnnvqNJ+ioqK46aab6vk0AAAAANB4mn3IGRFx++23R+fOnePxxx+P8vLyqKqqOuip5wUFBfHAAw9E7969s1J3zJgx0aFDh7j//vuTtzXffPPNA67r0aNH3HfffTFgwICDjjNr1qxa/c2bN8f8+fPrNJe9e/fW6XoAAAAAaCqEnBGRk5MT48aNi4svvjieffbZmD9/fqxfvz527doV+fn50bdv37jwwgvj4osvjtatW2e19lVXXRVDhw6NGTNmxNy5c6OsrCx27NgReXl5UVhYGEOHDo0RI0ZEXl7eh47x1ltvZXVOAAAAAJAmQs4aCgoKYvz48TF+/Ph6jzF79uw639OjR48YO3ZsjB07tl41Fy5cWK/7AAAAAOBY0KwPHgIAAAAA0k/ICQAAAACkmpATAAAAAEg13+QEEjt37oy5c+fG+vXrkwOwevToEeeee260b9++sacHAAAAcFBCTiBWrFgRDz/8cEyZMiW2bt16wN87deoUo0ePjuuuuy4KCwuP/gQBAAAADsF2dWjGtm3bFiNGjIiioqKYNGnSQQPOiIitW7fGD37wgygqKooRI0bEtm3bju5EAQAAAA5ByAnN1Nq1a2Pw4MExc+bMOt03c+bMGDx4cKxdu/YIzQwAAACgboSc0Axt3bo1LrjggigpKanX/SUlJXHhhRd6oxMAAABoEoSc0Ax9+ctfjiVLljRojJKSkvjSl76UpRkBAAAA1J+QE5qZFStW1HmL+oeZOXNm/OlPf8rKWAAAAAD1JeSEZuaRRx5p0uMBAAAA1JWQE5qRnTt3xuTJk7M65uTJk2Pnzp1ZHRMAAACgLoSc0IzMnTs3tm7dmtUxt2zZEnPnzs3qmAAAAAB1IeSEZmT9+vVHZNwNGzYckXEBAAAAMiHkhGZkx44dR2Tc995774iMCwAAAJAJISc0I3l5eUdk3I4dOx6RcQEAAAAyIeSEZqRHjx5HZNzu3bsfkXEBAAAAMiHkhGbk3HPPjU6dOmV1zM6dO8e5556b1TEBAAAA6kLICc1I+/btY/To0Vkdc/To0dG+ffusjgkAAABQF0JOaGauu+66Jj0eAAAAQF0JOaGZKSwsjEsvvTQrY1166aVx+umnZ2UsAAAAgPoSckIz9MQTT0RxcXGDxiguLo4nnngiSzMCAAAAqD8hJzRD+fn5MWvWrHoHnWeccUbMmjUr8vPzszwzAAAAgLoTckIz1bNnz5g/f36dt65feumlMW/evOjZs+cRmhkAAABA3Qg5oRnLz8+P5557Lt54440YN25cdOrU6aDXde7cOW688cZYsWJFPPfcc97gBAAAAJqU3MaeAND4CgsLY+LEiXHnnXfG3LlzY8OGDfHee+9Fx44do3v37nHuuedG+/btG3uaAAAAAAcl5AQS7du3j89+9rONPQ0AAACAOrFdHQAAAABINSEnAAAAAJBqQk4AAAAAINWEnAAAAABAqgk5AQAAAIBUE3ICAAAAAKmW29gTAMiGnTt3xty5c2P9+vWxY8eOyMvLix49esS5554b7du3b+zpAQAAAEeQkBNItRUrVsTDDz8cU6ZMia1btx7w906dOsXo0aPjuuuui8LCwqM/QQAAAOCIs10dSKVt27bFiBEjoqioKCZNmnTQgDMiYuvWrfGDH/wgioqKYsSIEbFt27ajO1EAAADgiBNyAqmzdu3aGDx4cMycObNO982cOTMGDx4ca9euPUIzAwAAABqDkBNIla1bt8YFF1wQJSUl9bq/pKQkLrzwQm90AgAAwDFEyAmkype//OVYsmRJg8YoKSmJL33pS1maEQAAANDYhJxAaqxYsaLOW9Q/zMyZM+NPf/pTVsYCAAAAGpeQE0iFbdu2xV//9V9ndcxHHnkkq+MBAAAAjUPICTR5a9eujUGDBsWbb76Z1XEnT54cO3fuzOqYAAAAwNEn5ASatA8OGlq6dGnWx96yZUvMnTs36+MCAAAAR5eQE2jSsnHQ0KFs2LDhiI0NAAAAHB1CTqDJyuZBQx/mvffeO6LjAwAAAEeekBNoso7GwUAdO3Y84jUAAACAI0vICTRJO3fujMmTJx/xOt27dz/iNQAAAIAjS8gJNElz586NrVu3HtEanTt3jnPPPfeI1gAAAACOPCEn0CStX7/+iNcYPXp0tG/f/ojXAQAAAI4sISfQJO3YseOI17juuuuOeA3+//buPD6q+t7/+DuBRAgJSdgChoqyZFSCFlHwYmqEKgRUek2kVFuVgEuuFlvifnvrSotL2UQltZpgrbcIJq1biOAWiSiKIhqWDKAgCRAUSUgISELm9we/nDsTssxyzizJ6/l4zOMxZ+ac7/d7JvPNnPnM9/v9AAAAAABgPYKcAIJSdHS0peWnp6dr2LBhltYBAAAAAAD8gyAngKDUv39/y8pOTk5Wbm6uZeUDAAAAAAD/IsgJICilpqYqLi7O9HLPOussFRUVKTY21vSyAQAAAABAYBDkBBCUoqKilJmZaXq5e/bs0bx582S3200vGwAAAAAABAZBTgBBy4rEQNXV1VqwYIFsNpsyMjJUXV1teh0AAAAAAMC/CHICCFpJSUlKT0+3rPyCggKlpKSooqLCsjoAAAAAAID1CHICCGq5ublKTk62rPzS0lKlpaUxohMAAAAAgBBGkBNAUIuNjVVRUZHlgc4ZM2ZYVj4AAAAAALAWQU4AQS8xMVElJSWWT13ftm2bZeUDAAAAAADrEOQEEBJiY2OVn5+vsrIyzZ49W3FxcabXkZOTY3qZAAAAAADAegQ5AYSUpKQkzZ8/X9u2bVN0dLSpZefl5amurs7UMgEAAAAAgPUIcgIISZ9++qlqa2tNLfPgwYMqLi42tUwAAAAAAGA9gpwAQtK+ffssKbeystKScgEAAAAAgHUIcgIISWaP4mxSU1NjSbkAAAAAAMA6BDkBhCSz1+NsEhMTY0m5AAAAAADAOgQ5AYSk/v37W1JuQkKCJeUCAAAAAADrdA10AwDAG6mpqYqLi1NVVZVpZcbHxys1NdW08rxVV1en4uJi7du3T7W1tYqOjlb//v2VmpqqqKioQDcPAAAAAICgQ5ATQEiKiopSZmamFixYYFqZmZmZAQ0i2u12LVmyREuXLm0xeBsXF6fMzExlZWUpKSnJ/w0EAAAAACBIMV0dQMjKysoK6vLcVV1drYyMDNlsNi1cuLDV0alVVVVasGCBbDabMjIyVF1d7d+GAgAAAAAQpAhyAghZSUlJSk9PN6Ws9PR0DRs2zJSyPFFRUaGUlBQVFBR4dFxBQYFSUlJUUVFhUcsAAAAAAAgdTFcH0KZgXx8yNzdXdrtdpaWlXpeRnJys3NxcE1vlnqqqKk2cOFGbNm3y6vjS0lKlpaWppKREsbGxJrcOAAAAAIDQQZATQItCZX3I2NhYFRUVKS0tzatA54gRI7Ry5cqABAmnTZvmdYCzSWlpqWbMmKH8/HyTWgUAAAAAQOhhujoAF6G4PmRiYqJKSko8nrqenp6uNWvWKDEx0aKWtay6uloTJkzQqlWrTCmvoKBA27ZtM6UsAAAAAABCESM5nezYsUPLli3TunXrVF5eroaGBvXr109JSUm68sorddlll6lrV/Nfsr1792rZsmUqKSnRrl27dPToUfXt21eDBw/W5MmTNXnyZHXv3t3neu6++269+uqrGj16tF588UUTWo5Q097U84qKCq9GRBYUFMhut6uoqMjvAcMmsbGxys/Pl91uV05OjvLy8loM0MbHxxsjUAO1Bqe3o07bkpOTo3nz5plaJgAAAAAAoYIg5/+3ePFi5eTkqKGhweXx3bt3a/fu3XrnnXeUnJysJ554QoMHDzat3mXLlunRRx/VkSNHXB7fs2eP9uzZo5KSEj377LN6/PHHde6553pdz9tvv61XX33V1+YiRLkz9fyaa67R22+/7fWIwGBZHzIpKUnz58/XnDlzVFxcrMrKStXU1CgmJkYJCQkBXUvU1zU425KXl6dHHnkkKNZJBQAAAADA3whySpozZ47LyMauXbvKZrOpe/fu2rFjhw4ePCjpRBDnuuuu0/Lly00ZrbZ06VLNnTvX2A4LC9OwYcMUFxennTt3av/+/ZKknTt36oYbbtBLL72k4cOHe1zPl19+qbvuusvn9iL0VFdXa8aMGe1m7q6qqtKSJUt8ri+Y1oeMiorSpEmTAt0MFzNnzrQkwClJBw8eVHFxcdCdMwAAAAAA/tDp1+QsKipyCXBOnDhRxcXFKigo0EsvvaQ1a9bo4YcfNqaLf//995o1a5YcDodP9X7xxRd6/PHHje0LLrhAq1at0uuvv64XX3xRH3zwgRYvXqz4+HhJ0pEjR3TrrbeeNOKzPZ988olmzJihuro6n9qL0FNRUaGUlJR2A5xmY33Iltntdsv/Ft98842l5QMAAAAAEKw6dZCzvr5ejz32mLE9btw4LVy4UH369DEei4iI0LRp0/TUU08Z63Fu2rRJb7zxhk91z507V8ePH5ckDR8+XM8995xOO+004/mwsDBNmDBBS5cuVY8ePSRJ+/bt0wsvvOB2Hc8//7wyMzNVU1PjU1sRepqmRZu97qO7cnJyAlJvMPPHazJnzhxVVFRYXg8AAAAAAMGmUwc5V69erT179kg6MUX9/vvvV3h4yy9JSkqKpk2bZmzn5eV5Xe/GjRv1xRdfGNt//OMf1a1btxb3PfPMM3XbbbcZ2y+88IIRHG3Nzp07dfPNN+vxxx8/aY1RdA5WTot2R15eXtCNHq6rq9PKlSuVl5enxYsXKy8vTytXrvRLO+vq6nz6n+GuvXv3Ki0tLaCZ7gEAAAAACIROHeQsLCw07o8dO1annnpqm/s7Bzk3bdqk3bt3+1zvkCFDNHLkyDb3v/rqq41RpD/88IM++eSTFvdraGjQnDlzdMUVV6i4uNh4fOTIkbrmmmu8aitCjz+mRbenaX3IYGC32zV79mwlJiZq8uTJmjFjhm6//XbNmDFDkydPVmJiorKzs2W32y1rQ3FxcYsJn6zQtC4qAAAAAACdSacNcjocDq1bt87Yvuiii9o9xmazqW/fvsb2u+++61XdH330kUf1xsbGKjk52dh+7733Wtyvrq5OL774ourr6yWdGJ16yy236O9//7t69+7tVVsReoJlqnhlZWVA66+urlZGRoZsNpsWLlzYapCxqqpKCxYskM1mU0ZGhiWjIPft22d6mW1hXVQAAAAAQGfTaYOcFRUVOnTokLHtHERsi81mM+5/9dVXHtdbX1+vr7/+2th2N1u6p/WOHTtW+fn5ys7OVmRkpMftRGjy17RodwRyLVhvky4VFBQoJSXF9HUta2trTS3PHcES7AYAAAAAwB+6BroBgbJz506XbeekP20ZOHCgcf/bb7/1uN7y8nJjpKUkDRo0yLR6w8PDNW7cOGVmZmrMmDEetw2hz5/TotsTExMTkHqbki55uyZpaWmp0tLSVFJSotjYWFPaFB0dbUo5nsjLy9MjjzyiqKgov9ftrK6uTsXFxdq3b59qa2sVHR2t/v37KzU1NeBtAwAAAAB0HJ02yPndd98Z98PDw10yqrfFebq6cxne1Nu8PHfrPXDggBobG09KkhQdHc3orU7O39Oi25KQkBCQes1IutS0rmV+fr4pberfv78p5XiiaV3USZMm+b1u6cRaqEuWLNHSpUtbDLzHxcUpMzNTWVlZSkpK8n8DAQAAAAAdSqcNcjqvu9ejR49Ws6o35zwiy5u1+5of07NnT7eOcx4V53A4dOjQIcXFxXlcf7AK9SzwzTPeN9/2l2DJqh0fH6+LLrrI739XM5MuFRQUaMuWLRo2bJjPZV100UWKi4vz+yjbPXv2+P1vUF1drZtuukn/+te/2tyvaS3UBQsW6KqrrtLf/vY3l5GzwdKngI6A/gSYh/4EmIf+BJiH/nRCpw1y/vjjj8b9bt26uX2c8/qWx44d86leT+qOiIhos5xQ1tjYqI0bNwa6GaYqLS0NSL0HDx4MSL3NTZ48OSCJb+bPn29qeX/60580e/ZsU8qaPHmy/vd//9eUsty1detWv/at/fv367e//a3LusPu+Ne//qUvv/xSixcvVr9+/VrcJ1B9CuiI6E+AeehPgHnoT4B5Omt/6rSJh5zXxXR3FKd0ImN5E29GSDU/xt26neuVOm9UHm3r3bt3oJsgScrIyPB7nUePHtXrr79uapmvv/66jh49akpZgXhNevTo4be6Nm/erGuuucbjAGeTHTt2aNasWQFJ0gQAAAAACH2dNsjZpUsX435jY6PbxzkHKZuPrnRH86Cmu3U3D456Uzc6vlGjRgUs4U+TcePGuZ3Iy0yfffaZ6RndDx06pM8++8yUsgYNGqRx48aZUpa7evXqZXkdtbW1uuuuu3T99df7vFzCjh07dM8995jUMgAAAABAZ9Jpp6t3797duO/J1G/nKeqnnHKKT/U21e08Bd6der2tO1iFh4drxIgRgW6GT44fP+4yHDw5OdklkO5PM2bM0KJFiwJS9/Dhw7VixQrTspJ7YsOGDZaU26NHD5177rmmlLVixQqlpqb6nBjJHfHx8Zo+fbqlGcwrKip0ww03mHo+69at03333ad//OMf2r17t/F4IPsUEOqC6TMKCHX0J8A89CfAPB2hP3311VceDUJsSacNcjoHYQ4fPiyHw6GwsLB2j3OeSulN4p/mwZ/a2lq3Rt4519u1a9eAj9YzW/Pp+KGuS5cuATunW2+9NSBBzhEjRmjlypUBmzJ/5MgRS8qtq6sz7W/Zu3dvvfXWW0pLS7N8jZTevXvL4XBY9j6sqqrS5ZdfbknAdvXq1Ro/fryeeOIJY43OQPYpoKOhPwHmoT8B5qE/AebprP2p005XT0hIMO4fP37c7YQt3333nXG/T58+PtUrSd9//73H9fbq1cutgCw6p6SkJKWnp/u1zvT0dK1Zs0aJiYl+rddZdHS0JeWa/YNCYmKiSkpKLP8bbd++XSkpKaqoqLCk/JkzZ1o6InXTpk2s0QkAAAAAcFunDXIOGjTIZdt5WmRbysvLjftnnHGGx/WeeuqpLutpelPv6aef7nG96Fxyc3OVnJzsUxnDhg3Trbfe2uqI5fj4eGVnZ8tutys/Pz8gU9Sd9e/f35Jym/8w4au6ujqtXbtWV1xxhf7nf/5HEyZMsCxAW1paqrS0NJ/XymzObreroKDA1DJbsmPHDj300EOW1wMAAAAACH2db+zq/5eYmKi4uDhVVVVJkrZs2eLWuntbt2417p955pke1xsREaGkpCRjBNSWLVs0efLkdo/bsmWLcf+ss87yuF50LrGxsSoqKvJ6WnTT1PPExEQ98cQTKi4uVmVlpWpqahQTE6OEhASlpqZaut6jp1JTU136tBni4+OVmppqSll2u11LlizR0qVLW2xjjx49NHr0aJWWlrqM3PZVaWmpZsyYofz8fNPKzMnJMa2s9rz33nv69ttvTVsX1Rd1dXUqLi7Wvn37VFtbq+joaPXv3z/o+gIAAAAAdEadNsgpSWPGjNFbb70lSVq7dq1+9atftbn/1q1bXaaXX3jhhV7X2xTkXLt2re64444296+qqtLmzZt9rhedS9O06BkzZng06i49PV25ubnGyMyoqChNmjTJqmaaJioqSpmZmVqwYIFpZWZmZvocvKqurnbrb3D48GG99957kqSePXvq0KFDPtXrrKCgQNu2bdOwYcN8Lquurk55eXkmtMp9+fn5uvLKK/1ap7P2AtRxcXHKzMxUVlaWkpKS/N9AAAAAAEDnna4uSRMmTDDuv/fee6qsrGxz/3/+85/G/SFDhshms/lcb2lpabsj7ZYvX66GhgZJJ0bojR071qt60fnExsYqPz9fZWVlmj17dshMPfdWVlZWUJVXUVGhlJQUj6d2Hzp0SJGRkT7V3ZxZoy+Li4tNHS3rjtdff111dXV+rVOS9u7dq4suukg2m00LFy5s9byrqqq0YMEC2Ww2XXTRRdq7d69/GwoAAAAAIMjZlLn32LFjuvfee41gYnNr1qzRihUrjO3rrrvO63pHjhyp4cOHG9v33Xdfq8k1tmzZoiVLlhjbv/zlL9WtWzev60bnlJSUpPnz56uiokKFhYXKy8vTk08+qby8PBUWFqq8vFzz5s0zZaRfIJmZdCk9Pd2n16OqqkoTJ070Oov6sWPHvK67JXl5eaYECvft22dCazxz6NAhffDBB36rz26366abbtLAgQO1du1aj45du3atBg4cqJtvvll2u92iFgIAAAAAmuvUQc7IyEhlZ2cb22vXrtVNN93kkgyooaFBy5cv16xZs3T8+HFJJwIpU6dObbHM8ePHy2azyWazafz48a3Wfc899xgZ0u12u6677jqX9T4dDodWrVql6dOnG4GJvn376pZbbvH+hNHpNU09nz59umbNmqXp06dr0qRJHWo9QTOSLiUnJys3N9enMqzOPu6pgwcPqri42OdyApXtvL2R9maorq5WRkaGbDabnnvuOTU2NnpVTmNjo/72t7/JZrMpIyPD9MRPAAAAAICTdeo1OSXpqquu0oYNG/Tyyy9LOhHonDBhgmw2m6Kjo7Vjxw798MMPxv5xcXFatGiRunb17aUbM2aMZs+erfnz50uSNm/erF/84hcaOnSoevXqpV27drl8qe/WrZsWLlyomJgYn+oFOjqzki75MmXfX9nHPWVGoNCqTPDt2b9/v6XlV1RUeP2eaUtBQYHsdruKioqUmJhoatkAAAAAgP/T6YOckvTQQw8pPj5ezz//vOrr69XY2OiSzbzJkCFDtGjRIg0ePNiUem+55Rb16NFD8+bNM0Zrbt++/aT9+vfvr7/85S86//zzTakX6OjMSrrkLX9mH/dETU2NT8dXV1frueeeM6k1nnn66ad1/fXXWxIobFpawKqRt6WlpUpLS1NJSUnQrHdLpngAAAAAHQ1BTklhYWGaPXu2pkyZoldeeUUlJSXat2+fjhw5otjYWJ111llKS0vTlClTTE8G8pvf/EaXXnqpli9fruLiYpWXlxtfOJOSknTppZcqIyMjYKOngFDVlHTJbrcrJydHeXl5LSaOiY+PNzJjh2r2cXf5MhLcqpGOntZvRaDQH0sLlJaWasaMGcrPz7e0npY4BzS//vprrVu3Th999FGLSw90795dY8aM0YQJE/TTn/6UoCcAAACAkBHmcDgcgW4EOp8NGzYY692Fh4dr5MiRAW6RbxoaGrRx40Zj+9xzz/V5SQOYqynQU1lZqZqaGsXExCghIcH0IM7KlSs1efJk08ozU2FhoSZNmuTxcVVVVUpJSQmKNUbT09NNDRTa7XbZbDbTynOnPn8l+LLb7VqyZImWLl3aamb49sTGxmrGjBnKyspSUlKSuQ2E3/AZBZiH/gSYh/4EmKcj9Ccz4kShdcYA4KWmpEtWC0T2cXfEx8crNTXVq2ODKYlSQUGBtm3bZlqgcO7cuaaU466cnBzNmzfP0jqqq6s9XqqhrbIWLFigBQsWmLacg9mYeg8AAABAIsgJIESESiAjUNnH25OZmenV6xSMSZTMCBRWV1fr+uuv12uvvWZSq9yzePFi3XnnnRowYIAl5Vu5rEAwJFHyZOp9XFycsRQFo1ABAACAjo8gJ4Cg1t6UW18CGVYEToN1/dysrCyvjgvGJEp5eXl65JFHvP4bBXJ90fr6ev3Hf/yHPvzwQ9MDhVYnUJICl0TJm6n3VVVVxijUsWPH6pVXXrEsuAwAAAAg8AhyAghK7k65dQ5kuDud1srAaf/+/T3a3x+GDh0qb5ZfDtYkSgcPHlRxcbHX64taHQhsz65duywJFE6bNs0v51VaWqqpU6dq1apVltdl1tT7tWvXauDAgZo5c6buvPPOoBjZ2dKPLHFxcZJOvE+DecQ6AAAAEIwIcgIIOt6OtGtvOq2VgdMmqampiouL8zrRixW2b98um83m8bkUFxcH1Xk4q6ys9Oq4YFlf1Mxs69XV1Zo6dapWr15tQsvcs3r1ak2cOFHLly+3bERnRUWFJkyYoM2bN5tSXmNjo/72t7/pb3/7W0DXF/VmVCpZ7wEAAID2EeQEEFR8HWnX2nRaqwKnzUVFRSkzM1MLFizwuO2t6d27tw4cOOBzOZ6eS7AmUZKkmpoaj48JtvVFzUiiFMip96tWrVJKSoola3SuX79eaWlpprzvW1JQUKCtW7dq1apVfltfdO/evbr66qu1du1aj489cuSI3n//fb3//vuSgi/rPaNSAQAAEAwIcgIIKmaMtGs+Ss6qwGlrsrKyTA1yrlq1Sn/6059MCdB5ci7BmkRJkl544QVdf/31Ho3EC8b1RX1JohQMU+/NXqPTzMzw7dm8ebPOPfdcvfXWWxo1apRl9djtdj3xxBPKzc1VY2OjKWUGOut9U1Dziy++0KpVq/TJJ5+orq7OrWODfVRq84BtRESE9u/fr379+qm+vp5gLQAAQBALc3izUBvgow0bNhhf9sLDwzVy5MgAt8g3DQ0N2rhxo7F97rnnqmtXfkPwlN1ul81mM7W8YcOGKSMjw5SgSXp6utvTi62o02636/LLL9f27dtNLbc1eXl5mjFjhs91WSU5OdntUYR1dXVKTEwMuun38fHxKi8v9ypYYtZ7zAye9I3WBHJUqhWBQn8GbM8+++w2R6Wa9RnVNNU+Ly9P1dXVXrfXWaCDnt4GbHv06KGLLrpIo0eP1uDBg4Mi8NlegLalgG2ojLgNpuAz13yAeehPgHk6Qn8yI05EkBMBQZATLcnOzjZ1BGR2drZuueUWSwKn7amurlZKSopPAZvk5GSXEXJWBYFbs3LlSk2ePNm0+qzQ/DVqTTCfS2FhocdJlMx+L5jB3b7RkqqqKqWkpAR0VKonQfP2mL2eqDt69+7d6qhUXz+jfJlq7ymrp+I3D2quW7dOR44cMaVsfwdsfRlR255AnUvzIKbD4dD777/vVfA5MTHRkkCoc386evSoDh48qO+++67VpRraCzYHSzDanUCyr+fGuXSuc3Hnh5d9+/bp2LFjxnZkZKT69+8f0HNzZwkWM9pBGR2jjGBpV3R0tPr27av4+Hh169ZNUmjGJAhyImQR5ERzVoy0i4+P169//Ws99dRTppWZnZ3t9vRiX0amjRgxQitXrnQJuFgRBG7rXIJ19GNzoT4qddSoUXrnnXc8GkVo9nvBDJ70jeYmTpzol2zt7XE3aN4Wq9cTbc/YsWP1yiuvaMCAAcZj3n5GWTHV3hMtnYsnnL+ofv3111q3bp3Wrl2rw4cPm9zSlpkZKAyWc7nkkksUFhbmUeCwrUBHRUWF1q1bp48++shvS6S0dS7ufKnct2+f9u7dq88++0ybNm3S0aNH/dJuT87Fky/MngaSORfOpb1zaVrzOtBtb0/zcwuW1xzwRUxMjK688kplZGRoypQpIReTIMiJkEWQM3S19OumGb9aWzXSLjo62tQvTp5OL/ZmympLU2etCgK3dy7BGExrSXujCBcvXqzbb7/djy3yTEeYeh8REaFdu3Z5FJAKRGb49lx22WVeBVz9OT29PeHh4Zo5c6buvPNOJSUlefwZ5c+Rm+0JCwvTz372M1188cXtTgu3cmSjGZyDnmeeeaak9kdohMqX7pZGUIZK2wEA6Iiuuuoq5eXl+XXddl+ZEidyAAHw+eefO9avX+9Yv3694/PPPw90c3xWX19vnM/69esd9fX1gW6S6crKyhy///3vHXFxcQ5JJ93i4uIcs2fPdpSVlXlVfm5ubovlBuOtsLDQq9dv9uzZrb5+8fHxjuzsbIfdbm/x+MLCwoCcS1lZWcBfb3du2dnZIf/+Sk5OdlRVVbX7XlqxYkXA29rabdCgQY7y8vJ2z8HhcDjKy8sdycnJAW9zS7cJEya49bdwPpezzz474O1u6Xbeeec5li1b5igpKWn3M6qsrMxx4403OsLDwwPe7rZu3bt3d1xyySWOBx980PHQQw85HnzwQccll1zi6N69e8Dbxo0bN27cuHHjFiy35ORkt6/Ng4EZcSKCnAgIgpyho6qqypGenu7RP9P09HSPAgQOh8Px5JNPBvxDwN1bXl6e16/n4cOHHYWFhY68vDzHk08+6cjLy3MUFhY6Dh8+3OZxVgXp3DkXT//+rd169uxp2d8kPj6+zdcwmAODzrf09PQ2/xbl5eWOxMTEgLezrZs7wdqDBw86hg8fHvC2tnUbNGiQY9u2be32j08//dTRu3fvgLe3vVt0dLTj2muvdeTn57t8Rh0+fNixYsUKx6hRowLeRm7cuHHjxo0bN27m3twdSBEMzIgThQsAWlFRUaGUlBSPp18WFBQoJSVFFRUVbh8THR3tafMCpqamxutjo6KiNGnSJE2fPl2zZs3S9OnTNWnSpHanv1u1Vpk755Kbm6vk5GSf6klOTtbHH3/sczmtOXjwoIqLi1t8rqKiQg888IAl9ZqtoKBA27Zta/G5qqoqTZw40aN+FQilpaXtrn86c+bMgCYZcseuXbtks9l02223yW63n/R8dXW1MjIydMEFFwRs/U1P1NbW6n//93+VkZGhESNG6L777tO4cePUu3dvTZ06VZ999lmgmwgAAACTuXNt3pEQ5ATQoqaAirfZwUtLS5WWlqbq6mq39u/fv79X9QRCTEyM3+u0KgjszrlUVlbqwgsvVHi4dx8ZI0aMUFFRkc466yyVlJTovPPO86qc9lRWVp70WNP72J9Zrn2Vk5PT4uOhEBhs0law1m63B8W6le5obGzUM888I5vNpoyMDOP/2fbt23XuueeGzHk0t3XrVj366KN6//33A5o0BQAAANZr69q8oyHICaBFZgRUPPnVKDU11cjKaBarAoMJCQmWlNsWq4LAbZ1L00g1m82m5557zqvsyunp6VqzZo2RUCc2NlbTp0/3trltamlUaigFBpvk5eWdlKQjlAKDTebOnXvSY9XV1br88ssD0BrfFRQUKCkpSaNHj1ZSUpJ27doV6CYBAAAAbmltIEVHQ5ATwEnMDKi4+6tRVFSUMjMzTamzSWZmpumB0/j4eKWmpppapjusCAK3dS7eLlUgSV26dNHNN98su92u/Pz8kzL6+WtUaigGBqWWp96H4kVJXl6e/vM//9MY/VhRUaGxY8dq+/btAW6Z9/bv369PP/1UDocj0E0BAAAA3NbSQIqOKMzBlToCYMOGDcaosKNHj2rmzJlel3XGGWdo5cqVrT6fnZ2twsJCr8uXpJ///Od6+umnW33+F7/4hTZu3Ghsd+vWzeM6brrpJt1xxx2tPn/OOefo2LFjHpfrbO7cubrqqqtafK6iokI///nPJZ34In/w4EGf6nKWnZ2tefPmac2aNbrpppta3e/YsWP65ptvTKv3jDPOUFVVlennEh0drZdfftmnckaPHq2///3vrT5//fXX65NPPnF5zOy/y6mnntridPXGxkbt2rXLp/dbcnKyCgsLddlll5303OHDh1VeXu512a0ZOHCgevToYWyb/Xo1iYyMlCSf+2NbEhISjKC2w+HQ9u3bvRpJGwwiIyOVmJioiooKS18zAAAAAK1r/n3JE2eeeab+/e9/t/r8bbfdpnfeecfLlp2wdOlSRURESJLCw8M1cuRIj8vo6lMLABM0NjaqrKzMsvL37Nnjc/lnnnlmm8/v3LnT56mL3333XZvP2+12/fjjjz7V0db6mPX19Zb9HfLy8vTII4/o8OHDlv6tmzMzYNokKytL8+bN8/k82pt+/u2331r+Wh07dsyyOkpLS3Xrrbf69e9tReC0Jf4I1FVWVra4xmgoMvvHCwAAAACe8+X7UnsDuSoqKnz+7mfGGEymqwOwXFuZr0NJenq6hg0bFuhmmMaXLPHueOONNywtHwAAAACAJgQ5AfiFv0alDRgwwJJyk5OTlZuba0nZgeLryGAAAAAAAIIF09URcOHh4bLZbF4ff8YZZ7T5/KmnnupT+ZKMzNCtOf30012mgnuzJmffvn3bfD4pKcnnabLNE8A4i4iIkM1m08GDB7V//36f6mlJTU2NhgwZ4vbforGxUXv37lVtba3bdaSnp+vSSy/VokWLTnquoaFBu3fv9uo1HDFihFauXGm8fgkJCT6/p0477bR2n2+tDl/OpSWRkZEaNGiQwsLCTF/7MTw8XEOHDlVYWNhJz1VUVHj093VXdHS0oqKiLHkf9+vXT/Hx8cZ2KK+X2bVrVw0aNEiStGvXLjU0NAS4RQAAAACs4suanKeffnqbzycmJvr8Hbml74wecwAB8PnnnzvWr1/vWL9+vePzzz8PdHN8Vl9fb5zP+vXrHfX19YFuktdyc3Mdkky/5eXledWesrIyx+zZsx1xcXEtlhsfH+/Izs522O32dsuqqqpypKene9TusWPHOvbs2eNV263kzbm0dUtPT3cUFhZa8rcvLCxs9RySk5MtqXPu3Ll+ex/Pnj3bkrqsvq1YscI4hz179jgiIiIC3iZu3Lhx48aNGzdu3LiZf4uPj3ccPnzYqq+npjAjTsR0dQAu2kuI462EhASvjktKStL8+fNVUVGhwsJC5eXl6cknn1ReXp4KCwtVXl6uefPmubVWZmxsrPLz81VWVqbZs2cb2avbsnbtWp199tnKzs6W3W736hysEBsbq7lz55pWXkFBgTZu3Ghaec5aW6ogNjZWRUVFSk5ONr3ODz/80PQypZbfx1lZWZbUZaX4+HhNnjzZ2B4wYIB++9vfBrBFvhk+fLgKCwvVu3fvQDcFAAAACDqZmZmKiooKdDMsR5ATgIvU1FS3gn+eiI+PV2pqqk9lREVFadKkSZo+fbpmzZql6dOna9KkSV79o24KnG7evFljx45td/+qqiotWLBANptNGRkZbWap96ecnBxTy1u1apWp5TVpK8FRYmKiVq1apYiICFPrfPPNN00tT2r9fZyUlKT09HTT67NSSxc5oRislaQJEyboww8/1KRJk7Rx40adffbZgW4SAAAAEFRC9VrfUwQ5AbiIiopSZmamqWUG469GFRUVmjBhgtauXevRcQUFBUpJSVFFRYVb+9fV1WnlypXKy8vT4sWLlZeXp5UrV6qurs6bZruUm5eX51MZza1bt87U8prExMS0+fwXX3yh+vp6U+t0OBymlie1/T7Ozc21ZESqVVq6yAnFYO2ECRP01ltvGevlJiYmau3atbrssssC3DLvjBkzRv/4xz/0wAMPeL1eEgAAAOAsPT3drZmPHQGJhwCcJCsrSwsWLDC1vGBSVVWliRMnatOmTV4dX1paqrS0NJWUlLSazMlut2vJkiVaunSpqqqqTno+Li5OmZmZysrKUlJSksdtKC4ubrFcX/gaeG1Ne0sV7Nu3z5J6zdbW+7hp6v0FF1ygvXv3+rFVnmvrIic3N1d2u12lpaV+bpXnkpOTtXz58pMej42N1apVqzRx4kTLRiebrXfv3lq1apXOO+8847GbbrpJEyZM0ObNmwPYMgAAAISy5ORk5ebmBroZfsNITgAnMXNEVzD+ajRz5kyvA5xNSktLNWPGjJMer66uVkZGhmw2mxYuXNhqINLXKfBWBQbNHnHrzlIFVmRYN5s77+PExET94Q9/8FOLvNPeRY6V66Saafjw4SoqKmr1RwZJWr58edCfh3TiXDZu3OgS4JT+b1RqKI2uDQsL09ixY/Xoo4+qoKBABQUFmjt3ri655BJ179490M0DAADoVEaMGNHuNXNHw0hOAC0yY0RXMP5qZLfbVVBQYEpZBQUF2rZtmxH8qqioUFpamsevWUFBgex2u4qKipSYmOjWMVYFBkePHq3333/ftPLcWaogOjratPqs4Mn7ePDgwRa3xnsDBw506yInMTFRJSUluv766/Xaa6/5qXXuGzp0qD788MN2z6MpYOtNn/SX9PR05ebmtnouTcnS7Ha7/vKXv+j5559XY2Ojn1vpnrFjx+qVV17RgAEDTnru3nvvVV1dnYqLi7Vx40a99tpr+vjjjy1ZVsIs3bt314UXXqhx48bJ4XAoISFB5eXl+uSTT/Thhx/q8OHDgW4iAABAq6666irl5eV1qgCnJIU5gvkKEx3Whg0bjC9q4eHhGjlyZIBb5JuGhgaXzNTnnnuuunYN/d8QvA3aSSd+NVq5cqXbQTt/yc7ONnUqfnZ2tubNm6eqqiqlpKT4NEI0OTm5zSnwzvLy8locSeqruXPn6r777jOtPLvd3u4IyJUrV7pk+g4mw4cP11tvveX2+7iurk6JiYmmLyVghhUrVujqq6/26JjMzEwtXbrUmgZ5yZ33lLPq6mrNmDHDtB83zNDS9HR37N27V1dffbXHawlbpUuXLpo5c6buvPNOj0fsB9u5REVFacyYMZo4caLOOeccpaamtvoDjXPA9q233tK6det05MgRP7e4dU3n4hygPXbsmCIjI1VZWWlsx8TEGJ83ZWVlQXkuzbV0bk3B57Vr14bEzAAAAKzSs2dPXXnllcrIyNCVV14ZcjEJM+JEBDkREAQ5Q4c3AYL2RicFihUBqPj4eJWXl+u6664zJYiSnp6u/Pz8dvezKjBYWFio5557zq/n0tECg2YH0s3Q9D71dDkCu90um81mUas85+57qiV2u12LFi1STk5OQEdDeho4b4ndbldOTo6ef/55HTp0yMTWua+tkZueaDqXvLw8v/0P6NGjh1JSUnTBBRdoyJAhSkhIaDOo2Z5ABj2tPpdPPvnEsvWam4uOjtZFF12kCy64QAMHDjwpINveuTW1vbKyUjU1NUZQV5Lee+89S8/FOUjetM52dXW1SztaCza3t91SMNof59I8SO7cDm/PjXPpnOfS1g8ve/fuVX19vbEdERGhAQMGBMW5mdmvzT4XygieMoKlXTExMerTp4/i4+PVrVs3SaEZkyDIiZBFkDP0tPdFND4+3kikE2xrcDaxKjD47LPP6uabbzatPHdGqlkZsK2vr1dKSorPSxW4OypVCs7AoHRixOz06dM9OibYAoPS/4049kZGRkZQjIL09D3Vmu3bt+vSSy/Vrl27TGqZ+8z+Aaiurk6FhYV69NFH9dlnn5lSZltiY2M1c+ZMS/7POweoduzYYeq08Kap5+6M0jSDlYFCT0acmqG1wKE3IyjbCtL4Gpz19Vw8+VLpHJTp0aOHzj//fI0fP97Stnt6Lt6cm7/+DpxL5zkXd9oeiO9Q7vwvCMRrDviqI8QkCHIiZBHkDF3NLwxC6ULAqineEyZMMDWLs7sBKaum3ksnlirwNrOzN0sVBGNgUJKefPJJzZo1y+PjgiUw2MTTKd7OqqurfQ56+8rs5S/8OYW9S5cuysrK0u9+9ztLfwCyct3OUaNG6d5779XkyZMD8iXb02ChvwOB7Wnpc9ObERrB+lnb2QIGnemaD7Aa/QkwT0foTwQ5EbIIciIQFi9erNtvv930crt3727q1ER3pxabHRicMGGCli9frsrKSi1ZskR5eXkeZ333ZaRasAUGJe9GckrBERhs4ssU7ya+rM/rKyuXv/jss880ceJEHThwwPSyJen000/X6tWrNXToUEvKb4lZa13GxcVpxowZQTU6v7MF0xCcuOYDzEN/AszTEfqTGXGi0DpjAPCBVVm8zV577eDBgyouLtakSZPa3C8pKUnp6emmBQZXrVql0047zeM1/swKhuTm5sputwdFYLBJQkKCV8c1ZfYeM2aMKioqTG6V+zzJDN+Wpozr/kzgM3ToUBUWFloaYBs1apQ2btzo9ajltgRqbeIBAwboww8/9Hity2Ab/diSqKiodv8vAgAAoPMiyAnAJ00ja/bt26fa2lpFR0erf//+QfkFuX///oFugtuakiW0x+zAoDdJTE499VRlZ2f7PJW4KTB40UUXBWS9xObi4+OVmprq9fGJiYlauHChpk6damKr3Hf66aerqKjItCBbbGys8vPzLR/9KElnn3221q5d65cAYWJiotauXWtKADeYRj8mJSVp/vz5mjNnjt59912tX79ehw8fbjGxA6MfAQAA0BEQ5ATgFbvdriVLlmjp0qUtjhKKi4szEhE1ZSQMtNTUVMXFxZmarMfsqepNampq3NqvKTAYqKnEkrR582alpaWZkhQmMTFRd911l37729+a1DrvZWZm+hz0mTx5sunvOXdERERo7dq1Pme+bomVox+l/1t/058jIJsCuB119GNaWprLeyEUpy8BAAAA7eEKF4BH3E3YUVVVpQULFmjBggUBm7bZXFRUlDIzM01N1vOzn/3M1KRDTWJiYtzet2kq8dSpU7V69WrT2+KO0tJSzZgxw+e1HyWZnjTFW1lZWT6XYcV7zh2zZs2yJMDZxMzRj84C/b/CefQjaz8CAAAAoYUgJwC3eZt8pKCgQHa7XUVFRaZlR/ZWVlaWqQGnqVOnWhLk9HQtyNjYWCUnJwcsyCmd+Dtv27bN52m6Vq2d6on09HTTphub/Z5zt06rNR/9mJub63GiKim4png3Ye1HAAAAIPSEB7oBAEJDVVWVJk6c6PWU6NLSUqWlpXkVBDFTU7Ies7z++uumjzrzZi3Iuro65eXlmdoOb+Tk5PhcRqDXTjUrWU8Ts99z7TEzQOuOptGPe/bsUWFhoebOnatLLrmk1RGOUVFRGjdunB599FEVFhaqoqJC8+bNC5oAJwAAAIDQxEhOAG6ZOXOmNm3a5FMZZk5p9oWZyXpee+019e7d24RW/R9v1oIsLi72+7qPLcnLy9Mjjzzi0xReK9ZOddfAgQNNTdbTxF+Z480O0HqiafTjpEmTdO+99xpJyZqmfDPFGwAAAICVCHICaJfdbjdt3T2zpjT7wuxkPWZnmfZmqvG+fftMbYO3Dh48qOLiYp+m+kZFRemGG27QokWLTGyZe2bNmmXJkgr+SBAViIQ9bWHKNwAAAAB/Yro6gHaZMQXZyvK80ZSsx5/TiN3h7VTj2tpaC1rjncrKSp/LuPnmm01oief69etnWdlWvufS09O1Zs2agK95CwAAAACBQpATQJusWOsxLy9PdXV1ppbpjdjYWM2dOzfQzTD4MtU4GJL1NKmpqfG5jKSkJI0bN86E1njG04RPnmpK1lNWVqabbrpJ4eHefwzHxsYqOztbdrtd+fn5QTOCEwAAAAACgSAngDZZsdZj05TmYGD2qFJv1+ccMWKET2tBBjpZj7OYmBhTynnggQc0ZMgQU8pyhzcJn7yVlJSkZ599VuXl5Ro7dqxHx44aNUorVqzQnj17SNgDAAAAAP8fQU4AbbJqrUczpjT7yopRqsePH9cvfvELj44xY6pxU7KeYGDWaMjo6GgtXrzYbwFcbxI++WrAgAH68MMPVVZWptmzZ7f6N4yPjzdGba5fv15XX301yXsAAAAAwAlBTgBtsmqtRzOmNPvKilGqVVVVuuWWWzwKWpkx1TgqKkqZmZk+lWEGs0dD9uvXT0uXLlVERIRpZbbGm4RPZklKStL8+fNVUVGhwsJC5eXl6cknn1ReXp4KCwtVXl7OqE0AAAAAaAPZ1QG0yaq1Hs2a0uwLK0epTpo0SfPnz9ecOXNUXFysyspK1dTUKCYmRgkJCUpNTTV9JF5WVpYWLFhgapmesmI0ZJ8+fXTrrbdamm3d24RPZiMjOQAAAAB4hyAngDZZNVXY6gQv7vDHKFV/Bq2SkpKUnp6ugoICv9TXEqtGQ958882WBTl9SfgEAAAAAAgOTFcH0CYr1nr0Z4KXtnTEUaq5ublKTk4OSN1WjoZsCuCazdeETwAAAACA4ECQE0CbrFjrMRAJXlrSEUepxsbGqqioSIMGDfJrvf4YDWl2ANeMhE8AAAAAgOBAkBNAu8yeghzIBC/OrBilGhERoZ/+9KemlumpxMRE3XXXXX6rz1+jIZsCuL4EOmNjY01N+AQAAAAACA4EOQG0y8ypwpdddllQJHiRrBmlWl9frwkTJqiiosLUcj3V2Njol3oiIiL01ltv+W00ZGJiokpKSjx+P44aNUorVqzQnj17yFIOAAAAAB0QQU4AbjFrqvDq1auVkZGh6upqE1rlOytGlZaWliotLS2g52jVeqPN1dfX64svvvBLXU1iY2OVn5+vsrIyzZ49u9XRuPHx8caozfXr1+vqq68OimUSAAAAAADmI7s6ALc0TRVOS0tTaWmpT2UVFBTIbrerqKgo4OshWpWRvLS0VDNmzFB+fr6p5brLqvVGW1JZWem3upwlJSVp/vz5mjNnjoqLi1VZWamamhrFxMQoISFBqampBDUBAAAAoJMgyAnAbU1ThWfMmOFzULBptGNJSUnA10XMzc2V3W73OXjbXEFBgbZt2xaQqdFN641WVVVZXldNTY3ldbQlKipKkyZNCmgbAAAAAACBxXR1AB5pmio8YcIEn8tqGu0YaGYktGnNb3/7W61cuVJ1dXWml90WK9YbbU1MTIxf6gEAAAAAoDUEOQF4zG63a9WqVaaU1TTaMdASExO1atUqRUREmFruqlWrNHnyZCUmJhrrQ/qLv7LYJyQk+KUeAAAAAABaQ5ATgMdycnKCujxvffHFF6qvr7ek7KqqKi1YsEA2m81viZea1hu1Unx8vFJTUy2tAwAAAACA9hDkBOCRuro65eXlmVpmXl6e36dzt2Tfvn1+qaegoEApKSmqqKiwvK7c3FxLpuE3yczMJLkPAAAAACDgCHIC8EhxcbHpyWwOHjyo4uJiU8v0Rm1trd/qakq8ZPWITivXG5X8NyUeAAAAAIC2EOQE4BGrRjtWVlZaUq4noqOj/VqfvxIvJSYmqqSkxPSp6+np6QHJHA8AAAAAQHMEOQF4xKrRjgsXLvTLOpVt6d+/v9/r9FfipdjYWOXn56usrEy33nqrwsN9+/efnJys3Nxck1oHAAAAAIBvCHIC8IhVox03btzot3UqW5Oamqq4uDi/1+vPxEtJSUl6+umnVVZWpkGDBnlVxogRI1RUVKTY2FiTWwcAAAAAgHcIcgLwiJWjHf21TmVroqKilJmZ6fd6A5F4aejQodq4caPHU9jT09O1Zs0aJSYmWtQyAAAAAAA8R5ATgEesHu3or3UqWxOIRDqBSrzkPIV99uzZrf5d4+PjlZ2dLbvdrvz8fEZwAgAAAACCTtdANwBAaGka7bhgwQLL6mhapzIQSW2SkpKUnp6ugoICv9YbyMRLSUlJmj9/vubMmaPi4mJVVlaqpqZGMTExSkhIUGpqqqKiogLWPgAAAAAA2kOQE4DHsrKyLA1ySifWqZw3b56ldbQmNzdXdrtdpaWlfquzpqbGb3W1JioqSpMmTQp0MwAAAAAA8BhBTgAe88dox0WLFmngwIHq2rWroqOj1b9/f7+NKIyNjVVRUZHS0tL8FuiMiYnxSz0AAAAAAHREBDkBeMXq0Y7Hjx9Xdna2y2NxcXHKzMxUVlaWkpKSLKm3SWJiokpKSjR+/Hh9/vnnltYlSQkJCZbXAQAAAABAR0XiIQBeaRrtmJyc7Lc6q6qqtGDBAtlsNmVkZFiehT02NlZz5syxtA7pRGKf1NRUy+sBAAAAAKCjIsgJwGtNox3PPfdcv9ddUFCglJQUVVRUWFqP1dnkJSkzM5PEPgAAAAAA+IAgJwCfxMbG6ne/+11A6i4tLVVaWpqlIzqbsslbKSsry9LyAQAAAADo6FiT08mOHTu0bNkyrVu3TuXl5WpoaFC/fv2UlJSkK6+8Updddpm6djX/Jdu7d6+WLVumkpIS7dq1S0ePHlXfvn01ePBgTZ48WZMnT1b37t09KvPLL7/UihUr9Omnn6qyslIOh0MJCQkaPny4fvGLX+jiiy9WWFiY6eeCzql///4Bq7u0tFQzZsxQfn6+ZXVYmU0+PT1dw4YNs6RsAAAAAAA6C4Kc/9/ixYuVk5OjhoYGl8d3796t3bt365133lFycrKeeOIJDR482LR6ly1bpkcffVRHjhxxeXzPnj3as2ePSkpK9Oyzz+rxxx93a0pwfX29HnnkEb388ssnPbdz507t3LlTb775plJSUjR37lz169fPtHNB59U0pbuqqiog9RcUFGjbtm2WBQutyiafnJys3NxcU8sEAAAAAKAzIsgpac6cOXrxxReN7a5du8pms6l79+7asWOHDh48KOnEiLHrrrtOy5cvV2Jios/1Ll26VHPnzjW2w8LCNGzYMMXFxWnnzp3av3+/pBPByRtuuEEvvfSShg8f3mp5DodDv//97/X2228bj51yyimy2Wzq0qWLtm3bptraWklSSUmJbrjhBr388svq2bOnz+cCV3V1dfrwww+1b98+1dbWKiIiQvv371e/fv1UX1/f7nZ0dLSxDmRVVZVpZURHR6t///5KTU01dQ3IpindVo12dEdOTo7mzZtnWflmZ5MfMWKEVq5cqdjYWFPKAwAAAACgM+v0Qc6ioiKXAOfEiRN1//33q0+fPpJOjIwsKCjQ3LlzdeTIEX3//feaNWuW8vPzfZru/cUXX+jxxx83ti+44AL9+c9/1mmnnSbpRMBy9erVuv/++3Xw4EEdOXJEt956q4qKilqdup6bm+sS4Lz22muVnZ2tmJgYSdLRo0e1dOlSLV68WA0NDfr666/13//933rqqae8Pg+42rVrl1555RWtXLkyYKMa3REXF6fMzExlZWUpKSnJlDKtnNLtjry8PD3yyCOWJfBpyiaflpbmc6AzPT1dubm5BDgBAAAAADBJp048VF9fr8cee8zYHjdunBYuXGgEOCUpIiJC06ZN01NPPWWsx7lp0ya98cYbPtU9d+5cHT9+XJI0fPhwPffcc0aAUzoxqnPChAlaunSpevToIUnat2+fXnjhhRbL++GHH/T0008b29dcc40eeOABI8ApSd26dVNWVpYefvhh47HVq1fr888/9+lcIFVXV+uuu+5SRkaG/vnPfwZ1gFM6MbJzwYIFstlsysjIMCVxT9OU7kA5ePCgiouLLa2jKZu8N+cZFxen7Oxs2e125efnE+AEAAAAAMBEnTrIuXr1au3Zs0fSiSnq999/v8LDW35JUlJSNG3aNGM7Ly/P63o3btyoL774wtj+4x//qG7durW475lnnqnbbrvN2H7hhReM4KizV155RYcPH5Z0Iphy9913t1p/RkaGLrnkEmPbl3OBVFFRodTUVL333nuBbopXCgoKlJKSooqKCp/Lys3NVXJysgmt8k5lZaXldcTGxio/P19lZWWaPXu2sSRAc1FRURo3bpweffRRFRYWqqKiQvPmzSPJEAAAAAAAFujUQc7CwkLj/tixY3Xqqae2ub9zkHPTpk3avXu3z/UOGTJEI0eObHP/q6++2hhF+sMPP+iTTz45aZ+VK1ca9ydNmtTulF3nc/nggw9UV1fnVtvhqqqqShMnTtSmTZsC3RSflJaWKi0tzecRnU1TugcNGmRSyzxTU1Pjt7qSkpI0f/58VVRUqLCwUHl5eXryySeVl5enwsJCfffdd3r33Xd1zz33uNUnAQAAAACA9zptkNPhcGjdunXG9kUXXdTuMTabTX379jW23333Xa/q/uijjzyqNzY21mV0XPMRg1VVVdqyZYuxnZKS0m6ZF154obp06SLpxFqda9eubfcYnGzmzJkhH+BsUlpaqhkzZvhcTmJioj766CNFRESY0CrPOC/P4C9RUVGaNGmSpk+frlmzZmn69OkENQEAAAAA8LNOG+SsqKjQoUOHjG13p9jabDbj/ldffeVxvfX19fr666+N7baypbtbb1lZmRwOh0dlRkVFuawB6s25dHZ2u10FBQWBboapCgoKtG3bNp/LGTBggH7729+a0CLPJCQk+L1OAAAAAAAQeJ02yLlz506XbeeAX1sGDhxo3P/22289rre8vFz19fXGtrvTetuq1/lcIiMjNWDAAJ/LRPtycnIC3QRLmHVeWVlZppTjrvj4eKWmpvq1TgAAAAAAEBw6bZDzu+++M+6Hh4e7ZFRvi/N0decyvKm3eXnu1nvgwAE1Nja2WKa75TXf15tz6czq6uo6bMKmvLw8U9Zo9Xe29czMTKaIAwAAAADQSXUNdAMCxTnBSo8ePVrNqt5cdHR0i2V4U68k9ezZ063jnNcadDgcOnTokJHVuaqqqsX92uPruZipoaEhoPV76t1333V53TuSgwcP6t1331VaWprPZT377LMqKyvzy7qlN954Y8i9j9C648ePt7kNwH30J8A89CfAPPQnwDz0pxM6bZDzxx9/NO5369bN7eMiIyON+8eOHfOpXk/qbp7Exbkc53b481zM0tjYqI0bNwasfm98+umngW6CpdavX+/2sgfteeKJJzRr1izt2LHDlPJaMm7cONXV1YXc+wjuKy0tDXQTgA6D/gSYh/4EmIf+BJins/anTjtd3XldTHdHcUpS167/Fxf2ZtRY82Pcrdu5Xsk1Kh+oc+nMzJjOHcwOHz5sWln9+vXT888/rzFjxphWprMhQ4bogQcesKRsAAAAAAAQGjptkLNLly7Gfef1LdvjHAxsPrrSHc2DkO7W3TwI6Vx3oM6lM+voaz/26NHD1PKio6P19NNPmx7oHDp0qBYvXuyy9AIAAAAAAOh8Ou109e7duxv3m08hb4vztO5TTjnFp3qb6naeNu5Ovc3rdp6i7sm5OO/rzbmYJTw8XCNGjAhY/d7Yu3dvoJtgqfPPP1/nnnuu6eW++eabSk1NNWWNzquuukp/+9vfFBsba0LLEGyOHz/uMsUiOTnZ5QcdAO6jPwHmoT8B5qE/AebpCP3pq6++8mjgXks6bZDTOTBy+PBhORwOhYWFtXtcbW2tcb8p8Y+39TaV506yIOd6u3bt6nKMczuc92uP85Rkb87FTM2n4we78ePHKy4urkMmH4qPj9f48eMt+Zv07t1bb731ltLS0rxaI6RLly6aOXOm7rzzTg0bNsz09iF4denSJeT+TwDBiv4EmIf+BJiH/gSYp7P2p047XT0hIcG4f/z4cR08eNCt47777jvjfp8+fXyqV5K+//57j+vt1auXS0DWucwDBw643RZfz6Uzi4qKUmZmZqCbYYnMzExLp+MnJiaqpKRE6enpHh03duxY7d69W3/9618JcAIAAAAAABedNsg5aNAgl+3du3e7dVx5eblx/4wzzvC43lNPPdVl/Utv6j399NNdnnM+l7q6OrcDp851e3MunV1WVlagm2AJf5xXbGys8vPzVVZWptmzZ7c6kjg+Pl7Z2dmy2+368MMPTcv4DgAAAAAAOpbON3b1/0tMTHSZbrxlyxa31iDcunWrcf/MM8/0uN6IiAglJSUZaxJu2bJFkydPbve4LVu2GPfPOussl+fOPvtshYWFyeFwGPv+7Gc/a7O8w4cP69tvvzW2vTmXzi4pKUnp6ekqKCgIdFNMk56e7tdRkklJSZo/f77mzJmj4uJiVVZWqqamRjExMUpISFBqamqHT/IEAAAAAAB812lHckpyyfS8du3advffunWryyjJCy+80C/1VlVVafPmza3WGx0drbPPPtujMj/++GNjQdcuXbpo9OjR7R6Dk+Xm5io5OTnQzTBFcnKycnNzA1J3VFSUJk2apOnTp2vWrFmaPn26Jk2aRIATAAAAAAC4pVMHOSdMmGDcf++991RZWdnm/v/85z+N+0OGDJHNZvO53tLS0nYTsCxfvlwNDQ2STkzzHTt27En7TJw40bj/2muv6ciRI22W6XwuY8eOVc+ePd1qO1zFxsaqqKhIw4cPD3RTfDJixAgVFRWRqRwAAAAAAISkTh/k7NevnyTp2LFjuvfee41gYnNr1qzRihUrjO3rrrvO63pHjhzpEhS77777Ws2KvmXLFi1ZssTY/uUvf6lu3bqdtF9GRoa6d+8u6UQyo4cffrjV+lesWKE1a9YY29dff73H54D/k5iYqOLiYo0bNy7QTfFKenq61qxZo8TExEA3BQAAAAAAwCudOsgZGRmp7OxsY3vt2rW66aabXBLyNDQ0aPny5Zo1a5aOHz8u6cQ6glOnTm2xzPHjx8tms8lms2n8+PGt1n3PPfcYGdLtdruuu+46l/U+HQ6HVq1apenTp6uurk6S1LdvX91yyy0tltenTx/deOONxnZBQYHuuOMOl2zrR48eVU5Ojh544AHjsYsvvlgXX3xxq+2Ee2JjY/XEE08oPz9f1157bauJdIKFc0Kf/Px8RnACAAAAAICQ1mkTDzW56qqrtGHDBr388suSTgQ6J0yYIJvNpujoaO3YsUM//PCDsX9cXJwWLVqkrl19e+nGjBmj2bNna/78+ZKkzZs36xe/+IWGDh2qXr16adeuXS7T57t166aFCxcqJiam1TKzsrL01Vdf6f3335ckvfHGG3rrrbdks9kUGRmpbdu2qaamxth/4MCBeuyxx3w6D7gaNGiQsrOztWTJEn344YdGIp3IyEhVVlYqISFBx44da3c7JibGCDxWV1ebVgYJfQAAAAAAQEfU6YOckvTQQw8pPj5ezz//vOrr69XY2OiSzbzJkCFDtGjRIg0ePNiUem+55Rb16NFD8+bNM0Zrbt++/aT9+vfvr7/85S86//zz2yyva9euWrx4sR566CHl5+fL4XCovr6+xTU/R44cqUWLFqlXr16mnAtcNSXSAQAAAAAAgPUIckoKCwvT7NmzNWXKFL3yyisqKSnRvn37dOTIEcXGxuqss85SWlqapkyZosjISFPr/s1vfqNLL71Uy5cvV3FxscrLy1VbW6vo6GglJSXp0ksvVUZGhqKjo90qLzIyUn/60580bdo0/etf/9LHH3+syspKHTt2TL169dI555yjK664QhMmTFB4eKderQAAAAAAAAAdBEFOJ0OGDNE999yje+65x+sy3n33XY+P6d+/v26//XbdfvvtXtfb3DnnnKNzzjnHtPIAAAAAAACAYMVQPgAAAAAAAAAhjSAnAAAAAAAAgJBGkBMAAAAAAABASCPICQAAAAAAACCkEeQEAAAAAAAAENIIcgIAAAAAAAAIaQQ5AQAAAAAAAIQ0gpwAAAAAAAAAQhpBTgAAAAAAAAAhjSAnAAAAAAAAgJBGkBMAAAAAAABASCPICQAAAAAAACCkEeQEAAAAAAAAENIIcgIAAAAAAAAIaQQ5AQAAAAAAAIQ0gpwAAAAAAAAAQhpBTgAAAAAAAAAhjSAnAAAAAAAAgJBGkBMAAAAAAABASCPICQAAAAAAACCkEeQEAAAAAAAAENIIcgIAAAAAAAAIaQQ5AQAAAAAAAIQ0gpwAAAAAAAAAQhpBTgAAAAAAAAAhLczhcDgC3Qh0Pp999pnLdnh46MfbGxsbjfsd4XyAQKNPAeahPwHmoT8B5qE/AeYJ9f7k3H5JGjVqlMdldDWrMYAvmr+ZQ11HOx8g0OhTgHnoT4B56E+AeehPgHk6a38KvdAuAAAAAAAAADhhJCeCQigOpQYAAAAAAIDvzBh9ypqcAAAAAAAAAEIaw+cAAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0roGugFAqNuxY4eWLVumdevWqby8XA0NDerXr5+SkpJ05ZVX6rLLLlPXrnQ1dD5FRUX63e9+5/FxxcXF6t+/f6vPf/nll1qxYoU+/fRTVVZWyuFwKCEhQcOHD9cvfvELXXzxxQoLC/Ol6UBQWLRokZ555hklJibq3Xff9ejYjz76SPn5+friiy+0f/9+de3aVf3799fIkSN11VVX6fzzz/eovGPHjunNN9/UypUrtXnzZlVVVSk6OloDBgzQxRdfrIyMDJ122mkelQn4kzf96eGHH9ZLL73kUT2nnXaaVq9e3eY+DodDb7/9tl577TV99dVXOnDggLp3766EhARdeOGFysjI0JlnnulRvYBV1q1bpzfffFMbNmzQ/v37VVtba/z/P//885Wenq6zzz7b7fLMvo6jPyGUmNWfnn/+eT3++OMe1d2lSxdt3ry53f3Mvob0tzCHw+EIdCOAULV48WLl5OSooaGh1X2Sk5P1xBNPaPDgwX5sGRB4CxYsUE5OjsfHtRbkrK+v1yOPPKKXX365zeNTUlI0d+5c9evXz+O6gWDx5Zdf6tprr1V9fb1HQZna2lrdc889evvtt9vcb8qUKbr//vsVExPTbpk7duzQ7373O23btq3VfSIiInT77bfrpptu4kcGBB1v+9OvfvUrbdiwwaO62gtyVlZWavbs2frss89a3ScsLEzTp09Xdna2IiMjPaofMEt5ebnuuecerV+/vt19L7/8cj388MOKjo5udR8rruPoTwgVZvenO+64Q2+88YZHbWgvyGnFNWQgMLwM8NKcOXP04osvGttdu3aVzWZT9+7dtWPHDh08eFCSVFpaquuuu07Lly9XYmJioJoL+N2WLVuM+0lJSW4HHVu6AHU4HPr973/v8qF7yimnyGazqUuXLtq2bZtqa2slSSUlJbrhhhv08ssvq2fPnj6eBeB/u3fv1q233qr6+nqPjvvxxx81Y8YMbdy40XisR48eSkpK0vHjx2W323X06FFJ0muvvaa9e/cqNze3zS9933zzjX79618bn2mS1LdvX51xxhmqqqrStm3b5HA4VF9fr3nz5unQoUO68847PTxjwDre9ieHw6GysjJje/To0W4FSNr6rPvhhx/0m9/8Rt9++63xWFxcnIYOHaojR46orKxMDQ0NcjgcysvL0/79+zV//nyP2g2YYefOnbrmmmv0ww8/GI9FREQoKSlJMTExOnDggLZv366m8VJvvvmmduzYoZdeeqnFwIwV13H0J4QKs/uTJG3dutW4f84557j1nadLly6tPmfFNWSgMJIT8ELzabgTJ07U/fffrz59+kg68UtlQUGB5s6dqyNHjkiShg8frvz8fEa4oNP42c9+pv3790uSXnzxRY0ePdrrsppPybj22muVnZ1t/IJ49OhRLV26VIsXLzZGVl922WV66qmnfDgDwP/sdrtuvPFGVVZWGo+5O/LMeWptWFiYZs2apZkzZ6pbt26SpEOHDmnx4sX6+9//bhwzffp03XfffS2Wd/z4caWnpxsX0rGxsXr44Yc1ceJE47Ns9+7d+p//+R99/PHHxnHPPPOMfv7zn3t45oD5fOlPO3fu1MSJEyWd+DK6YcMGRURE+NSeW265Re+//76kEwGe++67T1OnTjWWNfruu+/05z//WYWFhcYxf/jDH3T99df7VC/giePHj+s///M/ZbfbJZ0IjPzXf/2XMjMzXQIulZWVmj9/vv79738bj6WlpWnRokUnlWnFdRz9CaHAiv70448/auTIkTp+/Lgk6d133/V5MJXZ15CBROIhwEP19fV67LHHjO1x48Zp4cKFRoBTOnExPG3aND311FPGB+2mTZs8HlIOhKoffvjBCHBKks1m86msp59+2ti+5ppr9MADD7hMkejWrZuysrL08MMPG4+tXr1an3/+udf1Av726quv6pe//KVLQMZd27dv17Jly4ztO+64Q7fddptxcSpJPXv21B/+8AfddtttxmMvvfSSysvLWyxzxYoVRoCza9euysnJUVpamsuPdT/5yU/03HPP6T/+4z+Mx+bNm2dceAOB4kt/klxnIwwZMsTnAOeaNWuMgIwkPfroo7rmmmtc1m3v27evFixYoP/8z/80HnvmmWeMEW6APxQUFBgBGenEe3XWrFknjShLSEjQY489pszMTOOxoqIiffHFFy77WXEdR39CqDC7P0lSWVmZcZ3Vs2dPnwOcVlxDBhJBTsBDq1ev1p49eySd+NJ3//33Kzy85a6UkpKiadOmGdt5eXl+aSMQaM5fDk899VTFxsZ6XdYrr7yiw4cPSzoxDenuu+9udd+MjAxdcsklxjZ9DqGgsrJS99xzj+6++25j9L+nXnzxReOCd/DgwZo5c2ar+/72t79VUlKSpBM/3P3jH/9ocT/nX+szMjJ03nnntbhfRESEHnvsMSMItGPHDhUXF3t1HoCvzOhPkutUQDOSlrzwwgvG/ZSUFE2ePLnVfR944AH17t1bknTw4EH961//8rl+wF2vvvqqcT8lJUVTpkxpc//s7GyXZRrefPNNl+etuI6jPyFUmN2fJNfPJ18GkjSx4hoykAhyAh5ynvIwduxYnXrqqW3u7xzk3LRpk3bv3m1Z24Bg4Rzk9PXDd+XKlcb9SZMmKSoqqs39nfvcBx98oLq6Op/qB6y0ZMkSpaWluUxPGjx4sLKystwuo7GxUW+99ZaxnZ6e3uqPb5IUHh6uX/7yl8a287FNtm7dqh07dhjbV199dZttSEhI0Lhx44ztoqIit9oOmMmM/tTE+XPM1yBndXW11q5da2xnZGS0uX9UVJTLF2H6E/zl2LFjLqMnr7jiinaPiYyMVEpKirH91VdfuTxv9nUc/Qmhwor+JJn7+WTFNWSgEeQEPOBwOLRu3Tpj+6KLLmr3GJvNpr59+xrb7mb0BEKZWR++VVVVLmU5f+i35sILLzQW1j569KjLhTAQbJ5//nmXL3BTp07VihUrNGjQILfL2Lp1q0tiIHf6ifPn1549e1xGBUhyWWMzNjZWI0aM8KjM999/Xyz7Dn8zoz81MfNL5CeffGKMkgkLC3Pr+tF5n88//1zV1dU+tQFwR0VFhU455RRje8iQIW4dFxcXZ9x3/jyy4jqO/oRQYXZ/amLmYBIrriEDjSAn4IGKigodOnTI2E5OTnbrOOd/Pi39GgN0NGZN8ysrK3MJlAwfPrzdY6KionTaaacZ2/Q5hILk5GS9+OKLmjNnTquZNFvj3N8iIiI0bNiwdo8544wzXNZaat5PnMs866yz3Eqa59zXq6urXTLeAv7kS3+SzF1XWnLtTwMHDnRrCRfn/tTY2KhNmzb51AbAHWeccYY2bNig9evX68033zSmpbanoqLCuO/8/rbiOo7+hFBhdn+STgy6KisrM7Z9/RHOimvIQOva/i4AmuzcudNl2/kDuC0DBw407vOlDx3djz/+qG+++cbYttls+uyzz/Tvf/9b69ev1969exUWFqa+fftq1KhRmjJlikvSEmfOfS4yMlIDBgxwqw0DBw402kCfQzAbPXq00tPT9fOf/9ytQGJLnPtJYmKiS+KF1oSFhenUU0/V119/LUnatWtXq2W6OwrO+bOuqUxvRtAB3jKjP0muo2T69u2rmJgYrVy5UitXrtSXX36p77//XlFRURowYIDGjh2rqVOnavDgwa2W501/6tu3r7p166ajR49KOtGfxo4d690JAR6KiYlxSQzUltraWn344YfGtvNoNSuu4+hPCDVm9SfpxHu3acZCly5dNHToUH3wwQd6/fXXtWHDBu3fv18RERFKSEjQmDFjdNVVV+mcc85ptT4rriEDjSAn4IHvvvvOuB8eHu6SUb0tztPVncsAOiLnjH9hYWF66KGH9NFHH520365du7Rr1y4VFBQoJSVFjz/+uLEwfBPn/uLcj9pDn0OoeOaZZ3wuw/k97rxYfXv69OljXKA27yfOo9jc7Xu9evVSly5djP5P34O/mdGfJNcgZ9euXXXFFVec9EN3dXW1qqurtXXrVr3wwgu67rrrdNddd7X4BdGb/iRJvXv3Nkb00J8QrJ5//nmXjOXO6zNbcR1Hf0JH1lZ/klw/n6KionTdddedNJLyxx9/VG1trXbs2KH//d//1ZVXXqmHH364xfVwrbiGDDSmqwMecF6/pUePHm0uyuvMeaoUa8Cgo3Oe9uBwOIwAZ0xMjIYPH67Ro0crMTHR5ZiSkhJNnTpVe/bscXm8qqrKuO/uL6ASfQ6di7f9xHnf5v3EedvdMsPDw10uoJ2XdwFCifOXyL179xoBzr59++q8887TyJEjXdZMO378uJYuXapbbrlF9fX1J5XnTX9qvi/9CcHoyy+/1N/+9jdj+/TTT9f48eONbSuu4+hP6Kja60+S6/esmpoaI8AZHx+vc889V+eff/5JwcrXX39d1157rWpqak6q04pryEBjJCfggR9//NG477wORXsiIyON+8eOHTO1TUCwcf5yKJ34Unj33XcrLS3NpS/Y7XY98cQT+uCDDySdWH/m1ltv1fLly439nPsLfQ5omRX9xIzPO+cygFDSPInCiBEjdM899+iCCy4wHmtsbFRJSYn+/Oc/G9NqS0pK9Kc//UkPPvigy/H0J3RE5eXluvXWW10C+/fee6/LaGY+nwD3uNOfpJO/Z51++um69957dfHFFxsJu6QTCbYeffRRbdy40TguOzvbJYgqdczvWozkBDzg/E/H3VGcklz+OTU0NJjaJiDYNF8r6dVXX9WUKVNcPgwlKSkpSc8++6wyMjKMx7Zs2aJly5YZ2/Q5oH3e9hPni+Hm/cR523k/X8oEQsGxY8dUXl5ubE+cOFH//Oc/XQKc0om+dvHFF2vFihU666yzjMeXLVt2UpDUuS+Y1UeBQNq7d69uuOEGl2mq06dPP2lqrRXXcfQndDTu9ifJ9XvWyJEjVVBQoHHjxp10rXbeeefpH//4h0u29A8++EDvvPOOy35WXEMGGiM5AQ84d+bGxka3j3Pu+BEREaa2CQg2eXl5OnDggMrLy9WvX7+T1tl0FhYWpgcffFAff/yxsU7S3//+d11//fWS6HOAO7ztJ01rZ0on95MuXboY/ch5P0/KbP7DBhAKIiMjtWHDBu3bt0/l5eUaMWJEm58jMTExmjdvnq644go1NjbK4XDo73//u/785z8b+1jRR4FA2bFjh2bOnKm9e/caj6WkpOjOO+88aV8rruPoT+hIPOlPkvTWW29p//79Ki8v1xlnnKEePXq0WnZkZKSeeOIJXXrppTp8+LCkE9+zfv7znxv7dMT+xEhOwAPdu3c37nsyzcF5CPcpp5xiapuAYNS7d2+de+65bmXRjIyM1K9+9Stje/fu3UYmTedpE570Oed96XPo6KzoJ2aUSZAToSo8PFynnnqqRo8e7XLt15ohQ4a4ZGp2zowr8VmGjuPzzz/Xr3/9a5eAzIUXXqinnnqqxUBHsH4+0Z8QDDztT9KJASIJCQkaNWqUevXq1W4dvXr10hVXXGFsf/bZZzpy5Iix3RH7E0FOwAOxsbHG/cOHD8vhcLh1nHOGNOeF6gGccN5557lsN03FcO4vzv2oPU2/VjYvA+iIvO0nbX02OX/euVtmY2Oj6urqWi0T6MicP8f27dvn8gXQm/7UfF/6EwLt9ddf1w033KCDBw8aj6Wmpuqvf/1rqz8GWHEdR39CR+BNf/KW8+dTfX29S6JXK64hA40gJ+CBhIQE4/7x48dd/im1xXl9jT59+pjeLiDUNZ/S3pSlz7nPHThwwO3y6HPoTJyzaHrST77//nvjft++fV2e86bv/fDDDy5TnZqXCXRkzT9rnDPWevtZ5rwv/QmBtHjxYt15550us9OmTJmiZ555ps1kJVZcx9GfEOq87U/eat6HnLOhW3ENGWgEOQEPDBo0yGV79+7dbh3nvID9GWecYWqbgI6g+fSIpvVlnPtcXV2dywdqW5z7Jn0OHd3pp59u3C8vL3drloHD4TDWwW1eRvPtpuUj2tP8M7F5mUBH1trnmORdf9q/f7+OHj3aYhmAv9TX1+vuu+/WU0895fL4Lbfcoscff/ykzM/NWXEdR39CqPK1P3nL3c8ns64hA43EQ4AHEhMTFRcXZ/w6v2XLFp177rntHuecZfPMM8+0qnlAwG3dulWvvvqqDhw4oAMHDujxxx9vM/FQE+cfAiTp1FNPlSSdffbZCgsLMz5wt2zZop/97GdtlnX48GGXi176HDq64cOHG/ePHDmib775RoMHD27zmK+//trlotc5O3RTmQUFBZJ0Uqbo1mzZssW4Hxsbq8TERLeOA4LJ22+/rY8//lg//PCDunbtqscff9yt45yDMj179lR0dLSx7dxHd+3apSNHjrQ7HdG5P4WFhclms7l7CoApjh07plmzZun99983HuvatasefPBBTZ061a0yrLiOoz8hFJnRnz755BO9/fbbOnDggGpqapSTk+NWRnTnz6ewsDD179/f2LbiGjLQGMkJeGjMmDHG/bVr17a7/9atW11+tbzwwgstaRcQDKqrq5Wbm6tXX31VJSUl+uSTT9w67oMPPjDux8TEKCkpSZIUHR2ts88+23jOnT738ccfG1Nmu3TpotGjR3tyCkDIGTZsmMvi8x999FG7xzgnRomPjz/pC59zv/nuu++0bdu2dst07p/On5VAKNmyZYtefPFFvfnmm3rttdfcHnlWUlJi3B81apTLc6NGjTJG6Bw/flzr1q1rtzzn/nT22We7rEMIWK2hoUG33367S0CmR48e+utf/+p2QEay5jqO/oRQY1Z/Ki8v1wsvvKA33nhDxcXFKi0tdeu4NWvWGPeHDRvm8v634hoy0AhyAh6aMGGCcf+9995TZWVlm/v/85//NO4PGTIk6P4JAGZKTk5WVFSUsb1ixYp2j9m3b59ee+01Y/vyyy93+VVy4sSJxv3XXnvNJSNgS5z73NixY9WzZ0+32g6EqrCwMF122WXG9vLly13WxmyusbFRy5cvN7YnTpyosLAwl32SkpJcpgguW7aszTbs3bvX5eJ90qRJ7jYfCCrOARWHw6FXXnml3WNWrVqlr7/+2tieMmWKy/M9e/Z0+ZG7vf50+PBhl8/FtLS0dtsAmOmJJ57Qe++9Z2z36tVLL774olJSUjwuy+zrOPoTQo1Z/emCCy5wuV5z53tWaWmpS1DyyiuvdHneimvIQCPICXhowoQJxgK9x44d07333quGhoYW912zZo3LP5/rrrvOL20EAqVHjx6aPHmysf3hhx/q3//+d6v719bW6ve//71xwXvKKado5syZLvtkZGQY05C+//57Pfzww62Wt2LFCpdfK6+//npvTgMIOddee61xkbl161Y9/fTTre67aNEiY2RmeHh4q59Nv/71r437y5Yta3UETn19ve655x7V19dLOrHcxKWXXurVeQCBNnr0aJf1xZ599llt37691f2//vpr3X///cb24MGDXX4Qb+Lcn9577z1jOYiWPPjgg/rhhx8kSVFRUbr66qs9OQXAJ8XFxXrhhReM7djYWP397393mdbqCSuu4+hPCBVm9qef/OQnLgH+/Px8ffzxx63u/9133+mOO+4wlovo1auXfvWrX520nxXXkIFEkBPwUGRkpLKzs43ttWvX6qabbnJZ66KhoUHLly/XrFmzdPz4cUknRsV4MhwdCFW/+93vFBMTY2z/4Q9/0FNPPaXDhw+77Pfpp5/qmmuu0YYNG4zHsrOzddppp7ns16dPH914443GdkFBge644w6XDIBHjx5VTk6OHnjgAeOxiy++WBdffLFp5wUEszPPPFNXXXWVsf3UU0/pz3/+s2pqaozHampq9Kc//Uk5OTnGY9OmTdPQoUNbLHPatGnGaM6GhgbddtttWrFihcsPe7t379aNN97oMl3wrrvuUmRkpGnnBvhTWFiY/vu//9vYPnz4sH7zm9/ozTffdBndUl9fr3/961+65pprdPDgQUlSRESEHnvssRaTR4wfP95lGYc//vGP+utf/+qyrtn333+v2bNnu4w6u/XWW12mEgJWOn78uP70pz8ZQZGwsDDNmzdPw4YN87pMK67j6E8IBVb0p3vvvddluYasrCy99NJLLpnaGxsb9c4772jatGnauXOn8fhDDz3U4gw3K64hAynM4U76JAAnuf/++/Xyyy8b2+Hh4bLZbIqOjtaOHTuMXwwlKS4uTv/85z/bXcQX6Cg+/vhj3XzzzS4Xm926ddOZZ56pyMhIffvtt9q3b5/LMTNnztTdd9/dYnlNARbn6bARERGy2WyKjIzUtm3bXD6IBw4cqBUrVnAhi5BVUFCg++67T9KJpHfvvvtuu8fU1tbqhhtucFmjqXv37sYyKWVlZS7TBEeMGKF//OMf6tatW6tl2u12XXfddUbCPenESIAhQ4aopqZGdrvdJfDz61//2mVUGxAMvOlPzz77rObNm+fyWFxcnIYNG6aGhgbt2LFDhw4dMp6LiIjQwoUL2xzFXFlZqV//+tcuP4zHxMRo2LBhOnbsmMrKyowR0ZI0btw4PfPMM24llgDM8Oabb7oM5oiKitJ5553nURl9+vTRY4895vKYFddx9CcEO6v602uvvaZ77rnH5fqrR48estlsCg8P1zfffOPyI4J0InbhPAK6OSuuIQOFICfgJYfDoYULF+r55593+QBtbsiQIVq0aJFPv9gAoWjTpk266667tGPHjjb3i42N1R133KFp06a1ud+xY8f00EMPKT8/X219dI0cOVKLFi1SQkKCV+0GgoE3QRnpxC/td999d7v7jxs3Tk888YTLqOvWlJWV6Y477mgz+VCXLl1000036fe//33Qrc0EeNuf3njjDT388MOqrq5uc78hQ4booYce0gUXXNBumXv37lV2drY+//zzNve7+uqr9cADDzAqGn41a9YsrVq1yqcyWutjVlzH0Z8QzKzsT2vXrtW9997bbn6QhIQE/fGPf3RZd7M1VlxDBgJBTsBHO3bs0CuvvKKSkhLt27dPR44cUWxsrM466yylpaVpypQpfKCi0zp+/LjefvttrVq1Sl9++aW+//57NTQ0qE+fPjr99NM1fvx4XX755R6NuPzyyy/1r3/9Sx9//LEqKyt17Ngx9erVS+ecc46uuOIKTZgwgV/pEfK8Dco0+eijj/Taa69p/fr1+v7773X8+HH16dNHI0eO1FVXXeXxYvcNDQ16/fXX9dZbb2nLli06cOCAIiIiNHDgQI0ZM0a/+tWvgnLKEiD51p9qa2v173//Wx988IG2bt2qqqoqdenSRX379tXZZ5+tCRMm6NJLL/XoWs/hcGj16tUqLCw0PhvDw8OVkJCgUaNG6Ze//KV++tOfenqagM8uv/zyNtegdUd7fczs6zj6E4KV1f3p2LFjeuONN/Tee++ptLRUP/zwg8LCwtS7d28NGzZMl156qSZNmqQePXp4VKfZ15D+RpATAAAAAAAAQEhjqAsAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAP9mwYYNsNptx2717d6CbBAAA0CEQ5AQAAAD8ZNOmTcb9uLg4/eQnPwlgawAAADoOgpwAAACAnzgHOZOTkwPYEgAAgI6FICcAAADgJ6WlpcZ9gpwAAADmIcgJAAAA+MHRo0e1Y8cOY5sgJwAAgHkIcgIAAAB+sHXrVh0/ftzYJsgJAABgHoKcAAAAgB84r8fZp08fDRgwIICtAQAA6FgIcgIAAAB+4BzkHD58eLv7f/nllxo/frxsNptsNptGjhypwsJCK5sIAAAQsroGugEAAABAZ+BJZvV//OMfevTRR1VfXy9JOuOMM/TUU09p6NChlrYRAAAgVBHkBAAAACz2448/avv27cZ2a0HOw4cP63/+539cRmxOnDhRf/7znxUdHW15OwEAAEIVQU4AAADAYmVlZWpoaDC2Wwpy2u123X777frmm28kSV26dFF2drZuvPFGv7UTAAAgVBHkBAAAACxWWlpq3O/Xr5/69evn8vy///1vPfjggzpy5IgkqXfv3lqwYIHGjBnj13YCAACEKoKcAAAAgMVaW4/zxx9/1Jw5c7R8+XLjsZEjR2rRokVKSEjwaxsBAABCGUFOAAAAwGItBTl3796t22+/XZs3bzae+81vfqN7771XERERfm8jAABAKCPICQAAAFjo2LFjJyUdevvtt3Xffffp0KFDkqTu3bvr4Ycf1pQpUwLVTAAAgJBGkBMAAACwUFlZmerr643toqIiFRQUGNunn366nnzySdlstkA0DwAAoEMID3QDAAAAgI7Meaq6JJcA589//nO98sorBDgBAAB8RJATAAAAsJBzkPOUU05xeW7MmDGKiYnxd5MAAAA6HIKcAAAAgIWcg5w333yzUlJSjO1HH31U77zzTiCaBQAA0KEQ5AQAAAAscuzYMdntdmM7OTlZixYtUlJSkiSpsbFRd95550lT2gEAAOAZgpwAAACARex2u0vSobPOOkvR0dHKyclRnz59JEl1dXW65ZZbtHfv3kA1EwAAIOQR5AQAAAAssnnzZuN+7969lZCQIElKTEzUkiVL1K1bN0nSd999p1tuuUW1tbUBaScAAECoI8gJAAAAWKS0tNS4f9ZZZ7k8d8455+ixxx5TWFiYJKmsrEy///3vdfz4cb+2EQAAoCMgyAkAAABYxHmtzTPPPPOk59PS0pSdnW1sr1mzRg899JBf2gYAANCREOQEAAAALFBfX++SdKj5SM4mN998szIyMoztl19+Wc8995zl7QMAAOhICHICAAAAFti2bZuOHTtmbLcW5JSkhx56SBdeeKGx/Ze//EWrVq2ytH0AAAAdCUFOAAAAwALOU9W7d++uM844o9V9IyIitHjxYg0ePFiS5HA4dNddd+nLL7+0vJ0AAAAdAUFOAAAAwALOSYeSkpIUHt72pXfPnj317LPPKj4+XpJ09OhR/dd//ZfKy8stbScAAEBHEOZwOByBbgQAAAAAAAAAeIuRnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKQR5AQAAAAAAAAQ0ghyAgAAAAAAAAhpBDkBAAAAAAAAhDSCnAAAAAAAAABCGkFOAAAAAAAAACGNICcAAAAAAACAkEaQEwAAAAAAAEBII8gJAAAAAAAAIKT9P4Hw6X/lIkbwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def safe_A(k, r0, td, tb, tau, limit=60):\n", + " if k > limit:\n", + " return r0 ** 2 * tb**2\n", + " return A(k, r0, td, tb, tau)\n", + "\n", + "\n", + "check_A(r, deadtime, bintime, max_k=250)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, we had better repeat the procedure by using `limit_k=150` this time." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSQAAAQOCAYAAADCLzaZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAACubklEQVR4nOzdf3yedX0v/ndbQBpSkiCQYEDkRxMo6TgIKpYcozjpD8fOTMDte4THTOuOUQ7M9mxHfZxN5+zUOWkrbDZTSbqjTkQSpnhKKGdgRgFBGHBIW3ojU2gDCSBNaAlIf+T7B8u9tqRtct/Xfd1J83w+HvfjcV93ruv9+VzJfbV3Xvl8rs+04eHh4QAAAAAASMH0YncAAAAAAJg6BJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAao4odgeY+B566KF9tqdPl2MDAAAATEV79uzZZ/v8888fdw2BJOO2/xsPAAAAAMbKUDcAAAAAIDVGSDJuh8uU7b1Heh4u5wTF4nqC5LieIDmuJ0iO6wmSNZmvqSRmzgokOaTp06dn32zTp0+P8847r8g9yt+uXbvi0UcfzW7PnTs3jjjC5QC5cD1BclxPkBzXEyTH9QTJmuzX1MMPP7xPTpSLyRXBAgAAAACTmkASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASM0Rxe4ApG1oaCjuvPPO+PnPfx5DQ0NRUlISzz77bFx88cVRUlJS7O4BAAAAHNYEkkwZmUwmVq9eHWvWrImBgYE3fL28vDyam5ujpaUlampq0u8gAAAAwBRgyjaHvcHBwWhqaora2tpYtWrVqGFkRMTAwECsXLkyamtro6mpKQYHB9PtKAAAAMAUIJDksNbb2xv19fXR2dk5ruM6Ozujvr4+ent7C9QzAAAAgKlJIMlha2BgIObPnx89PT05Hd/T0xMLFiwwUhIAAAAgQQJJDltLliyJDRs25FWjp6cnFi9enFCPAAAAABBIcljKZDLjnqZ9IJ2dnfHEE08kUgsAAABgqhNIclhqbW2d0PUAAAAApiqBJIedoaGhaG9vT7Rme3t7DA0NJVoTAAAAYCoSSHLY6e7ujoGBgURrbtu2Lbq7uxOtCQAAADAVCSQ57PT19RWkbn9/f0HqAgAAAEwlAkkOOzt27ChI3e3btxekLgAAAMBUIpDksFNaWlqQurNmzSpIXQAAAICpRCDJYaeqqqogdSsrKwtSFwAAAGAqEUhy2GloaIjy8vJEa1ZUVERDQ0OiNQEAAACmIoEkh52SkpJobm5OtGZzc3OUlJQkWhMAAABgKhJIclhqaWmZ0PUAAAAApiqBJIelmpqaaGxsTKRWY2NjzJ49O5FaAAAAAFOdQJLDVltbW9TV1eVVo66uLtra2hLqEQAAAAACSQ5bZWVl0dXVlXMoOXfu3Ojq6oqysrKEewYAAAAwdQkkOaxVV1fH+vXrxz19u7GxMe6+++6orq4uUM8AAAAApiaBJIe9srKy6OjoiM2bN8fSpUujvLx81P0qKipi2bJlkclkoqOjw8hIAAAAgAI4otgdgLTU1NTEihUrYvny5XHnnXfGgw8+GC+//HIcc8wxccEFF8TFF18cJSUlxe4mAAAAwGFNIMmUU1JSEgsWLIiTTjop+9q5554bRxzhcgAAAAAoNFO2AQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1AgkAQAAAIDUCCQBAAAAgNQIJAEAAACA1BxR7A5MdF//+tfjG9/4RlRXV8edd96ZaO3HHnssLrvssnEf973vfS8uuOCCRPsCAAAAAGkwQvIg/t//+3/xrW99q2D1N23aVLDaAAAAADARGSF5AFu2bIlPfvKTsXPnzoK1sXcgeeqpp8Ypp5wypuPKysoK1SUAAAAAKCiB5CgymUx87GMfi+eff76g7ewdSH7iE5+ID33oQwVtDwAAAACKzZTt/fzoRz+KD3/4w9Hf31/QdoaHh2Pz5s3Z7bPOOqug7QEAAADARGCE5L/r7++PFStWxD/90z+l0t5TTz0VQ0NDERFx5JFHxhlnnJFKuwAAAABQTEZIRsTq1atjwYIF+4SRp59+erS0tBSszb2na5922mlx1FFHFawtAAAAAJgoBJIRccMNN2RHK0ZEXH755fHDH/4wTj311IK1+fjjj2efm64NAAAAwFRhyvZe6urq4tOf/nS8853vLHhbe4+QFEgCAAAAMFUIJCPine98ZzQ2Nsb73//+mDZtWipt7h1I1tbWxuOPPx4dHR1x//33x9atW2PXrl1x/PHHx7nnnhsLFy6MD3zgA6n1DQAAAAAKRSAZEd/4xjdSbe/FF1+M5557Lrv97W9/O+6777437Nfb2xu9vb2xdu3aqKuri5UrV8Zb3/rWNLsKAAAAAIkSSBbB3qMjIyIbRs6cOTNOPfXUOPbYY+O5556LX/3qV9l9enp64vLLL4/29vaYM2dOmt19g127dhW1/STs3r37oNvA2LmeIDmuJ0iO6wmS43qCZLmmBJJFsX8gWVpaGsuWLYvf+73fi2OOOSb7+tatW+O6666LH/3oRxERMTAwEJ/85CfjlltuiYqKilT7PGLPnj3x6KOPFqXtQurp6Sl2F+Cw4XqC5LieIDmuJ0iO6wmSNRWvKatsF8HeIx8rKiri5ptvjo985CP7hJERESeffHJ89atfjauvvjr72rPPPhutra1pdRUAAAAAEiWQLILly5fHAw88EB0dHfH9738/TjvttIPuf9VVV8V5552X3f7BD34Qr732WqG7CQAAAACJM2W7SMrKyqKsrGxM+06bNi2uvPLKePjhhyMi4pVXXomHHnoo3v3udxeyi6OaPn16zJ07N/V2k7Z79+59hkTX1dXFjBkzitgjmLxcT5Ac1xMkx/UEyXE9QbIm+zX12GOPxZ49e/KqIZCcJN7+9rfvs/2rX/2qKIFkRMQRRxx+b5sZM2YclucFxeB6guS4niA5ridIjusJkjUVrylTtieJN7/5zftsDw4OFqknAAAAAJA7geQksf89I/dfAAcAAAAAJoOpNR50Aujt7Y1//Md/jBdffDF+/etfx7Jly+Kss8465HFbtmzZZ/ukk04qVBcBAAAAoGAEkikbHh6Ob3/729ntd77znWMKJO++++7s82nTpr3hnpIAAAAAMBmYsp2yk08+Oaqrq7PbnZ2dsXv37oMes2PHjvjud7+b3a6vr4/jjjuuYH0EAAAAgEIRSBbBZZddln3+5JNPRmtr6wH33blzZ3zmM5+J/v7+iHh9dGRLS0vB+wgAAAAAhSCQTNjFF18ctbW1UVtbGxdffPGo+zQ3N+8zSvK6666L5cuXx7Zt2/bZb9OmTdHc3Bx33HFH9rUrrrgiLrjggsJ0HgAAAAAKzD0ki2DmzJnx93//93HFFVfEwMBARER85zvfiRtvvDFqamqitLQ0nn322Xj66af3Oe53fud34rOf/WwRegwAAAAAyTBCskhmz54dN998c5x33nnZ13bu3BkbNmyI+++/f58w8uijj45PfepT8dWvfjVmzJhRjO4CAAAAQCKMkCyiU045JW688ca455574ic/+Uk88sgj8dxzz8VvfvObOO644+KUU06JhoaGuPTSS+Okk04qdncBAAAAIG8CyYNobGyMxsbGcR1z5513jrudiy66KC666KJxHwcAAAAAk40p2wAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAagSSAAAAAEBqBJIAAAAAQGoEkgAAAABAao4odgcmuq9//evxjW98I6qrq+POO+8sSBvPPvts3HjjjbF+/fp46qmn4tVXX40TTjghTj/99Fi0aFEsWrQoZs6cWZC2AQAAACBNAsmD+H//7//Ft771rYK2ceONN8ZXvvKVeOWVV/Z5/Zlnnolnnnkm1q9fH9/85jfjq1/9apx77rkF7QsAAAAAFJop2wewZcuW+OQnPxk7d+4sWBtr1qyJz3/+89kwctq0aVFTUxPvfOc748QTT8zu96tf/Sr+8A//MDZs2FCwvgAAAABAGgSSo8hkMvGRj3wknn/++YK18cgjj8RXv/rV7PY73vGOWLduXdx6663xne98J/7lX/4lrr/++qioqIiIiFdeeSU++clPvmEkJQAAAABMJgLJ/fzoRz+KD3/4w9Hf31/Qdr785S/H7t27IyLinHPOiW9/+9vx1re+Nfv1adOmxSWXXBJr1qyJY445JiIi+vr64h/+4R8K2i8AAAAAKCT3kPx3/f39sWLFivinf/qngrf16KOPxiOPPJLd/vM///M4+uijR933rLPOiquuuio7mvIf/uEf4o/+6I9ixowZBe8nE8vQ0FB0d3dHX19f7NixI0pLS6OqqioaGhqipKSk2N0DAAAAGBOBZESsXr06vvnNb8bQ0FD2tdNPPz0uueSSaG1tTby9tWvXZp+fccYZcd555x10/8suuyxWrFgRu3btihdffDEeeOCBePe73514v5iYMplMrF69OtasWRMDAwNv+Hp5eXk0NzdHS0tL1NTUpN9BAAAAgHEwZTsibrjhhn3CyMsvvzx++MMfxqmnnlqQ9u67777s84suuuiQ+5eVlUVdXV12+6677ipIv5hYBgcHo6mpKWpra2PVqlWjhpEREQMDA7Fy5cqora2NpqamGBwcTLejAAAAAOMgkNxLXV1dfOc734nly5dHaWlpQdrYuXNn/Nu//Vt2+5xzzhnTcbW1tdnnjz32WOL9YmLp7e2N+vr66OzsHNdxnZ2dUV9fH729vQXqGQAAAEB+TNmOiHe+853R2NgY73//+2PatGkFbWvr1q2xc+fO7PZYR2GefPLJ2edPP/104v1i4hgYGIj58+fHhg0bcjq+p6cnFixYEOvXr4+ysrKEewcAAACQHyMkI+Ib3/hG/PZv/3bBw8iIiOeff36f7RNOOGFMx+29369//evYs2dPov1i4liyZEnOYeSInp6eWLx4cUI9AgAAAEiOEZIp2//+fscee+yYjps1a1b2+fDwcLz00ktRXl6eZNfGbNeuXUVpN0m7d+8+6HaxZDKZcU/TPpDOzs7YtGlTzJ49O5F6cCAT9XqCycj1BMlxPUFyXE+QLNeUQDJ1v/nNb/bZPvroo8d03JFHHnnQOmnZs2dPPProo0Vpu5B6enqK3YWIiFixYkWi9f7qr/4qli5dmmhNOJSJcj3B4cD1BMlxPUFyXE+QrKl4TZmynbL9RxdOnz62H8ERR+ybHU/F9Pxw9+qrr8att96aaM1bb701Xn311URrAgAAAORDIJmy/QPIsd4Lcv8gc/8Rk0x+Dz30UGzfvj3Rmi+99FI89NBDidYEAAAAyIcp2ymbOXPmPtu/+c1v4qijjjrkca+99to+229605sS7ddYTZ8+PebOnVuUtpO0e/fufYZE19XVxYwZM4rYo4iHH364IHWPOeaYOPfccwtSGyIm5vUEk5XrCZLjeoLkuJ4gWZP9mnrsscfyXmxZIJmysrKyfbZ37Nixz4I1B7Jjx47s8yOOOGJMxxTK/tPHDwczZswo+nm98sorBak7NDRU9HNjapkI1xMcLlxPkBzXEyTH9QTJmorXlCnbKausrNxn+4UXXhjTcc8//3z2+XHHHRfTpk1LtF8UX2lpaUHqFjO8BgAAANifQDJlb3nLW/a5/+OWLVvGdNzWrVuzz9/2trcl3S0mgKqqqoLU3T8EBwAAACgmgWTKjjzyyKipqclub9q0aUzH7b3f2WefnXi/KL6GhoYoLy9PtGZFRUU0NDQkWhMAAAAgHwLJInjXu96VfX7vvfcecv+BgYHYuHFjdvvCCy8sSL8orpKSkmhubk60ZnNzc5SUlCRaEwAAACAfAskiuOSSS7LPe3p69llZaTQ33XRT7Nq1KyJeXxRn3rx5Be0fxdPS0jKh6wEAAADkSyBZBOedd16cc8452e3Pfvaz+6yivbdNmzbF6tWrs9sf/vCH4+ijjy54HymOmpqaaGxsTKRWY2NjzJ49O5FaAAAAAEkRSCbs4osvjtra2qitrY2LL774gPt9+tOfzq6Unclk4sorr4zHH388+/Xh4eFYt25dfPSjH42hoaGIiDjhhBPi4x//eGFPgKJra2uLurq6vGrU1dVFW1tbQj0CAAAASM4Rxe7AVPWud70rli5dGitWrIiIiI0bN8Z/+S//Jc4888w47rjj4qmnnor+/v7s/kcffXSsWrUqZs2aVawuk5KysrLo6uqKBQsWHHI6/2jmzp0bt912W5SVlRWgdwAAAAD5MUKyiD7+8Y/Hn//5n++z6MgvfvGLeOCBB/YJI6uqquLb3/52XHDBBcXoJkVQXV0d69evH/f07cbGxrj77rujurq6QD0DAAAAyI8RkkV2xRVXxG//9m/HTTfdFN3d3bF169bYsWNHlJaWRk1NTfz2b/92NDU1RWlpabG7SsrKysqio6MjMplMtLa2Rnt7ewwMDLxhv4qKimhubo6Wlhb3jAQAAAAmPIHkQTQ2No57hNqdd9457naqqqrimmuuiWuuuWbcx3L4q6mpiRUrVsTy5cuju7s7+vv7Y/v27TFr1qyorKyMhoaGfUbZAgAAAExkAkmYJEpKSmLhwoXF7gYAAABAXtxDEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIjUASAAAAAEiNQBIAAAAASI1AEgAAAABIzYQIJNesWVPsLgAAAAAAKZgQgeTXvva1+PnPf17sbgAAAAAABTYhAsldu3bF0qVLo7+/f1zHPfzwwwXqEQAAAABQCBMikGxqaooXXnghrr766njttdfGdMyPf/zj+OhHP1rYjgEAAAAAiZoQgeTnP//5mDNnTjz22GPxhS984ZD7f/3rX49Pf/rTYw4vAQAAAICJYUIEkkcddVRcd911ceyxx0ZnZ2d8//vfH3W/1157LT71qU9Fa2trDA8Pxwc/+MGUewoAAAAA5GNCBJIRESeffHJ87Wtfi2nTpsWXvvSleOSRR/b5+gsvvBAf+chH4vbbb4+IiD/+4z+Or33ta0XoKQAAAACQqwkTSEZE/Of//J/jqquuip07d8Y111wTL7zwQkREPP7443H55ZfHY489FkcffXSsWrUqPvGJTxS5twAAAADAeKUeSL700ksH/fpVV10VDQ0N8dxzz8U111wTXV1d8V//63+NZ599NiorK+O73/1uzJ8/P6XeAgAAAABJOiLtBt/1rnfFKaecEnPmzIlzzjkn6urq4pxzzoljjz02u8/Xvva1+NCHPhQPP/xwPPzwwzE8PBx1dXXxjW98I0488cS0uwwAAAAAJCT1QHJ4eDiefvrpePrpp7P3g4x4/R6SeweUy5cvj5aWlvjNb34TCxcujK985Svxpje9Ke3uAgAAAAAJSj2Q/OY3vxkbN26MjRs3xoYNG6K3tzciIrZs2RJbtmzZJ6ScMWNGlJaWRk1NTfzsZz+Ls846KyorK9PuMgAAAACQkNQDyfe85z3xnve8J7v90ksv7RNQbty4MZ566qnYs2dP7Nq1K7Zv3x7XXXdddv+ysrI466yz4uyzz47a2tr4vd/7vbRPAQAAAADIUeqB5P6OPfbYuPDCC+PCCy/MvvbKK6/Epk2b9gkpn3zyydi1a1cMDAzEz372s/jZz34W06dPF0gCAAAAwCRS9EByNDNnzoy3v/3t8fa3vz372muvvRaZTCYbUm7YsCGeeOKJIvYSAAAAABivCRlIjuaoo46Kurq6qKury762e/fuIvYIAAAAABiv6cXuQD5mzJhR7C4AAAAAAOOQ2AjJF198MR588MF48cUXY9asWTF37tx461vfmlR5AAAAAOAwkHcgOTw8HF/5ylfie9/73humUF9wwQXxZ3/2Z1FbW3vQ4yMipk2blm9XAAAAAIAJLu9A8otf/GJ8//vfzwaLe/v5z38eH/7wh+O6666LhoaG7OvPPPNM/P3f/33cfffd0dfXF9OmTYvjjjsu6urqYtGiRfHBD34wpk+f1LPJAQAAAIBR5JX6PfHEE/H9738/Il4f4bj/KMdp06bFb37zm/jUpz4VW7ZsiYiIBx98MC699NK46aab4plnnok9e/bE7t274/nnn4+f/vSn8T//5/+Myy67zAraAAAAAHAYyiuQvPXWW7MjI4eHh+PMM8+Mq666Kv7n//yfcfnll8exxx4bERGvvvpqrFq1Kl5++eX41Kc+FS+//HJE/EeIuXeYOTw8HBs3bowrr7wyNm/enE/3AAAAAIAJJq8p2w8//HD2+bx58+Jb3/rWPitfL126ND75yU/GI488EuvWrYva2tp44YUXYtq0aTE8PBxHHXVUnHrqqTF9+vTo7++PgYGBiHg9qBwYGIirrroqfvKTn8TRRx+dTzcBAAAAgAkirxGSv/zlL7PPP/WpT+0TRkZEHHfccfGNb3wjysrKYteuXXHDDTe83uj06bF06dL4+c9/Hrfeemv86Ec/ip/97Gdx0003xXve854YHh6OadOmRW9vb/zd3/1dPl0EAAAAACaQvALJHTt2RETEUUcdFXPnzh11n+OOOy7+4A/+IIaHh2NwcDCmTZsWV155ZXz84x+PN73pTfvs+1u/9VvxzW9+M6644ooYHh6O4eHh+MEPfhCvvfZaPt0EAAAAACaIvALJV199NbtC9v4L2uxt7xW2IyL+v//v/zto3c9+9rNRW1sbERHbt2+P//t//28+3QQAAAAAJoi8AskRRx111EG/fsYZZ2Sfl5SUxKmnnnrQ/WfMmBF/+Id/mN1+6KGH8usgAAAAADAhJBJIHsqsWbMi4vXFasrLy8d0zH/+z/85+3zDhg2F6BYAAAAAkLJUAsnp0/+jmSOOGNvC3ieccELMmjUrhoeHo6+vr1BdAwAAAABSlEogmauRkZXbt28vck8AAAAAgCRM6EByZDTl0NBQkXsCAAAAACQhkUByx44dce+998bAwEAS5QAAAACAw9TYbuh4CC+++GIsWbIkIiJOOumkOOecc+Kcc86JOXPmRF1dXRx33HFJNAMAAAAATHKJBJIREcPDwxER8cwzz8Szzz4b//f//t/s10488cTsPq+99lo899xz2dcAAAAAgKkjr0DyggsuiE2bNsXLL7886tdHQsr+/v6YNm1aRET09fVFQ0NDVFRUxFlnnRVnnXVWnH322TFnzpw4/fTTs/sBAAAAAIefvALJ7373uxER8ctf/jI2btwYPT09sXHjxti0aVO89NJLBzxueHg4Xnzxxbjvvvvivvvuy77+pje9KWbPnh1nn312nH322RazAQAAAIDDTCJTtk877bQ47bTT4oMf/GD2tS1btmQDyg0bNsSGDRticHBw1ONHRlK++uqr0dPTEz09PUl0CwAAAACYYBK7h+T+TjnllDjllFNi4cKF2dd6e3v3GUm5cePG+PWvf12oLgAAAAAAE0zBAsnRVFdXR3V1dXzgAx/Ivtbf3/+GkZTPP/98mt0CAAAAAFKSaiA5msrKyqisrIz3v//92deef/75fUZSbtiwoYg9BAAAAACSUvRAcjQnnHBCNDQ0RENDQ7G7AgAAAAAkaHqxOwAAAAAATB0CSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1AkkAAAAAIDUCSQAAAAAgNQJJAAAAACA1RxS7A0BuhoaGoru7O/r6+mLHjh1RWloaVVVV0dDQECUlJcXuHgAAAMCoBJIwyWQymVi9enWsWbMmBgYG3vD18vLyaG5ujpaWlqipqUm/gwAAAAAHYco2TBKDg4PR1NQUtbW1sWrVqlHDyIiIgYGBWLlyZdTW1kZTU1MMDg6m21EAAACAgxBIwiTQ29sb9fX10dnZOa7jOjs7o76+Pnp7ewvUMwAAAIDxEUjCBDcwMBDz58+Pnp6enI7v6emJBQsWGCkJAAAATAjuIbmXJ598Mm688ca4//77Y+vWrbFr16448cQTo6amJi699NL4wAc+EEcckdy37LHHHovLLrts3Md973vfiwsuuCCxfjCxLVmyJDZs2JBXjZ6enli8eHF0dHQk1CsAAACA3Agk/931118fra2tsWvXrn1e37JlS2zZsiX++Z//Oerq6uJv/uZv4vTTT0+kzU2bNiVSh8NXJpMZ9zTtA+ns7IwnnngiZs+enUg9AAAAgFwIJCNi+fLl8Z3vfCe7fcQRR0RtbW3MnDkznnzyydi2bVtEvD7K7Morr4ybbropqqur825370Dy1FNPjVNOOWVMx5WVleXdNpNDa2tr4vWuvfbaRGsCAAAAjMeUDyS7urr2CSPnz58fn/vc5+L444+PiIidO3dGZ2dnfPnLX45XXnklXnjhhbj66qujo6Mjpk2bllfbeweSn/jEJ+JDH/pQXvU4vAwNDUV7e3uiNdvb2+OLX/xilJSUJFoXAAAAYKym9KI2O3fujL/+67/Obr/vfe+LVatWZcPIiIgjjzwyfv/3fz/+9m//Nnv/yA0bNsRPfvKTvNoeHh6OzZs3Z7fPOuusvOpx+Onu7o6BgYFEa27bti26u7sTrQkAAAAwHlM6kLzjjjvimWeeiYjXp2l/7nOfi+nTR/+W1NfXx+///u9nt/MdufbUU0/F0NBQRLweep5xxhl51ePw09fXV5C6/f39BakLAAAAMBZTOpBcu3Zt9vm8efPiLW95y0H33zuQ3LBhQ2zZsiXntveern3aaafFUUcdlXMtDk87duwoSN3t27cXpC4AAADAWEzZQHJ4eDjuv//+7PZFF110yGNqa2vjhBNOyG7feeedObf/+OOPZ5+brs1oSktLC1J31qxZBakLAAAAMBZTNpDs7e2Nl156KbtdV1c3puNqa2uzzx977LGc2997hKRAktFUVVUVpG5lZWVB6gIAAACMxZRdZftXv/rVPttvfetbx3TcySefnH3+9NNP59z+3oFkbW1tPP7449HR0RH3339/bN26NXbt2hXHH398nHvuubFw4cL4wAc+kPeq3kwuDQ0NUV5enujCNhUVFdHQ0JBYPQAAAIDxmrKB5PPPP599Pn369H1W1j6Yvads711jPF588cV47rnnstvf/va347777nvDfr29vdHb2xtr166Nurq6WLly5ZiDUya/kpKSaG5ujpUrVyZWs7m5OUpKShKrBwAAADBeUzaQHBwczD4/5phjDri69v72vq/f3jXGY+/RkRGRDSNnzpwZp556ahx77LHx3HPP7TOKs6enJy6//PJob2+POXPm5NRuUnbt2lXU9pOwe/fug25PFB/72McSDSQ/9rGPHRY/PyaWyXI9wWTgeoLkuJ4gOa4nSJZragoHkr/5zW+yz48++ugxH7f3ativvfZaTm3vH0iWlpbGsmXL4vd+7/fimGOOyb6+devWuO666+JHP/pRREQMDAzEJz/5ybjllluioqIip7bztWfPnnj00UeL0nYh9fT0FLsLB/S+970v7rrrrkTqDA0NHZY/PyaWiXw9wWTjeoLkuJ4gOa4nSNZUvKam7KI2O3fuzD4f6+jIiIgjjviPDDfXkWZ7j3ysqKiIm2++OT7ykY/sE0ZGvH6/yq9+9atx9dVXZ1979tlno7W1Nad2mZw+//nPxxlnnJFXjTPOOCM+//nPJ9QjAAAAgNxN2UByxowZ2ed79uwZ83F7h5BHHnlkTm0vX748Hnjggejo6Ijvf//7cdpppx10/6uuuirOO++87PYPfvCDnEdnMvmUlpbG9ddfn3MoeeaZZ8b111+/z+0GAAAAAIplyk7ZnjlzZvb53tO3D2XvIPBNb3pTzu2XlZVFWVnZmPadNm1aXHnllfHwww9HRMQrr7wSDz30ULz73e/Ouf1cTZ8+PebOnZt6u0nbvXv3PkOi6+rq9gmpJ6L7778//uiP/ihuueWWMR/zoQ99KL71rW+N+b0GuZiM1xNMVK4nSI7rCZLjeoJkTfZr6rHHHhvX4L7RTNlAcu+A5uWXX47h4eGYNm3aIY/bsWNH9nl5eXkhujaqt7/97fts/+pXvypKIBmx77T1w8WMGTMm/Hm9+c1vjs7OzshkMtHa2hrt7e0xMDDwhv0qKiqiubk5WlpaYvbs2el3lClvMlxPMFm4niA5ridIjusJkjUVr6mpdbZ7qayszD7fvXt3bNu2LY477rhDHvf8889nnx9//PEF6dto3vzmN++znesK30x+NTU1sWLFili+fHl0d3dHf39/bN++PWbNmhWVlZXR0NAQJSUlxe4mAAAAwKimbCB56qmn7rO9ZcuWMQWSW7duzT4/1L0fk7T/PSP3XwCHqaekpCQWLlxY7G4AAAAAjMuUDSSrq6ujvLw8O+V106ZNce655x7yuMcffzz7/Kyzzhp3u729vfGP//iP8eKLL8avf/3rWLZs2ZjqbNmyZZ/tk046adxtAwAAAECxTdlVtiMi3vWud2Wf33vvvYfc//HHH48XXnghu33hhReOu83h4eH49re/HZ2dndHd3R3r168f03F333139vm0adPecE9JAAAAAJgMpnQgeckll2Sf33XXXdHf33/Q/b///e9nn59xxhlRW1s77jZPPvnkqK6uzm53dnbG7t27D3rMjh074rvf/W52u76+fkzTywEAAABgopnygeSJJ54YEa/fo/Ezn/lM7Nq1a9R977777vjhD3+Y3b7yyitzbveyyy7LPn/yySejtbX1gPvu3LkzPvOZz2TD0mnTpkVLS0vObQMAAABAMU3pQPKoo46KZcuWZbfvvffe+KM/+qN97te4a9euuOmmm+Lqq6/OjmSsqamJyy+/fNSaF198cdTW1kZtbW1cfPHFo+7T3Ny8zyjJ6667LpYvXx7btm3bZ79NmzZFc3Nz3HHHHdnXrrjiirjgggvGf7IAAAAAMAFM2UVtRnzoQx+Khx9+OH7wgx9ExOuh5CWXXBK1tbVRWloaTz75ZLz44ovZ/cvLy+PrX/96HHFE7t+6mTNnxt///d/HFVdckV1U5zvf+U7ceOONUVNTE6WlpfHss8/G008/vc9xv/M7vxOf/exnc24XAAAAAIptygeSERFf+MIXoqKiIm644YbYuXNn7NmzJzZt2vSG/c4444z4+te/Hqeffnrebc6ePTtuvvnm+NM//dN4+OGHI+L16dkbNmx4w75HH310tLS0xH/7b/8tZsyYkXfbAAAAAFAsAsl4/b6MS5cujd/93d+Nm2++OdavXx99fX3xyiuvRFlZWZx99tmxYMGC+N3f/d046qijEmv3lFNOiRtvvDHuueee+MlPfhKPPPJIPPfcc/Gb3/wmjjvuuDjllFOioaEhLr300jjppJMSaxcAAAAAikUguZczzjgjPv3pT8enP/3pnGvceeed4z7moosuiosuuijnNgEAAABgspjSi9oAAAAAAOkSSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqRFIAgAAAACpEUgCAAAAAKkRSAIAAAAAqTmi2B0App6hoaHo7u6Ovr6+2LFjR5SWlkZVVVU0NDRESUlJsbsHAAAAFJBAEkhNJpOJ1atXx5o1a2JgYOANXy8vL4/m5uZoaWmJmpqa9DsIAAAAFJwp20DBDQ4ORlNTU9TW1saqVatGDSMjIgYGBmLlypVRW1sbTU1NMTg4mG5HAQAAgIITSAIF1dvbG/X19dHZ2Tmu4zo7O6O+vj56e3sL1DMAAACgGASSQMEMDAzE/Pnzo6enJ6fje3p6YsGCBUZKAgAAwGFEIAkUzJIlS2LDhg151ejp6YnFixcn1CMAAACg2ASSQEFkMplxT9M+kM7OznjiiScSqQUAAAAUl0ASKIjW1tYJXQ8AAAAoDoEkkLihoaFob29PtGZ7e3sMDQ0lWhMAAABIn0ASSFx3d3cMDAwkWnPbtm3R3d2daE0AAAAgfQJJIHF9fX0Fqdvf31+QugAAAEB6BJJA4p5//vmC1N2+fXtB6gIAAADpEUgCiert7Y3rrruuILVnzZpVkLoAAABAegSSQGIGBgZi/vz50dvbW5D6lZWVBakLAAAApEcgCSRmyZIlsWHDhoLUrqioiIaGhoLUBgAAANIjkAQSkclkorOzs2D1m5ubo6SkpGD1AQAAgHQIJIFEtLa2FrR+S0tLQesDAAAA6RBIAnkbGhqK9vb2gtVvbGyM2bNnF6w+AAAAkB6BJJC37u7uGBgYKEjturq6aGtrK0htAAAAIH0CSSBvfX19Bal78sknR1dXV5SVlRWkPgAAAJA+gSSQtx07dhSk7tVXXx3V1dUFqQ0AAAAUh0ASyFtpaWlB6p544okFqQsAAAAUj0ASyFtVVVVB6lZWVhakLgAAAFA8Akkgbw0NDVFeXp5ozYqKimhoaEi0JgAAAFB8AkkgbyUlJdHc3Jxozebm5igpKUm0JgAAAFB8AkkgES0tLRO6HgAAADAxCCSBRNTU1ERjY2MitRobG2P27NmJ1AIAAAAmFoEkkJi2traoq6vLq0ZdXV20tbUl1CMAAABgohFIAokpKyuLrq6unEPJuXPnRldXV5SVlSXcMwAAAGCiEEgCiaquro7169ePe/p2Y2Nj3H333VFdXV2gngEAAAATgUASSFxZWVl0dHTE5s2bY+nSpVFeXj7qfhUVFbFs2bLIZDLR0dFhZCQAAABMAUcUuwPA4aumpiZWrFgRy5cvj+7u7ujv74/t27fHrFmzorKyMhoaGqKkpKTY3QQAAABSJJAECq6kpCQWLlxY7G4AAAAAE4Ap2wAAAABAagSSAAAAAEBqBJIAAAAAQGrcQxIouqGhoeju7o6+vr7YsWNHlJaWRlVVlUVvAAAA4DAkkASKJpPJxOrVq2PNmjUxMDDwhq+Xl5dHc3NztLS0RE1NTfodBAAAABJnyjaQusHBwWhqaora2tpYtWrVqGFkRMTAwECsXLkyamtro6mpKQYHB9PtKAAAAJA4gSSQqt7e3qivr4/Ozs5xHdfZ2Rn19fXR29tboJ4BAAAAaRBIAqkZGBiI+fPnR09PT07H9/T0xIIFC4yUBAAAgElMIAmkZsmSJbFhw4a8avT09MTixYsT6hEAAACQNoEkkIpMJjPuadoH0tnZGU888UQitQAAAIB0CSSBVLS2tk7oegAAAEA6BJJAwQ0NDUV7e3uiNdvb22NoaCjRmgAAAEDhCSSBguvu7o6BgYFEa27bti26u7sTrQkAAAAUnkASKLi+vr6C1O3v7y9IXQAAAKBwBJJAwe3YsaMgdbdv316QugAAAEDhCCSBgistLS1I3VmzZhWkLgAAAFA4Akmg4KqqqgpSt7KysiB1AQAAgMIRSAIF19DQEOXl5YnWrKioiIaGhkRrAgAAAIUnkAQKrqSkJJqbmxOt2dzcHCUlJYnWBAAAAApPIAmkoqWlZULXAwAAANIhkARSUVNTE42NjYnUamxsjNmzZydSCwAAAEiXQBJITVtbW9TV1eVVo66uLtra2hLqEQAAAJA2gSSQmrKysujq6so5lJw7d250dXVFWVlZwj0DAAAA0iKQBFJVXV0d69evH/f07cbGxrj77rujurq6QD0DAAAA0iCQBFJXVlYWHR0dsXnz5li6dGmUl5ePul9FRUUsW7YsMplMdHR0GBkJAAAAh4Ejit0BYOqqqamJFStWxPLly6O7uzv6+/tj+/btMWvWrKisrIyGhoYoKSkpdjcBAACABAkkgaIrKSmJhQsXFrsbAAAAQApM2QYAAAAAUiOQBAAAAABSY8o2QB6Ghoaiu7s7+vr6YseOHVFaWhpVVVXufwkAAAAHIJAEyEEmk4nVq1fHmjVrYmBg4A1fLy8vj+bm5mhpaYmampr0OwgAAAATlCnbAOMwODgYTU1NUVtbG6tWrRo1jIyIGBgYiJUrV0ZtbW00NTXF4OBguh0FAACACUogCTBGvb29UV9fH52dneM6rrOzM+rr66O3t7dAPQMAAIDJQyAJMAYDAwMxf/786Onpyen4np6eWLBggZGSAAAATHkCSYAxWLJkSWzYsCGvGj09PbF48eKEegQAAACTk0Vt4DBixefCyGQy456mfSCdnZ3xxBNPxOzZsxOpBwAAAJONQBIOA1Z8LqzW1tbE61177bWJ1gQAAIDJwpRtmMSs+Fx4Q0ND0d7enmjN9vb2GBoaSrQmAAAATBYCSZikrPicjrVr1x4w6M3Vtm3boru7O9GaAAAAMFkIJGESsuJzOnp7e+NTn/pUQWr39/cXpC4AAABMdAJJmISs+Fx4I6FvoUaSbt++vSB1AQAAYKITSMIkU4gVn3mjJELfg5k1a1bBagMAAMBEZpVtmKCGhoaiu7s7+vr6YseOHVFaWhpVVVWxdu3aRNux4vMbJRn6HkhlZWVB6wMAAMBEJZCECSaTycTq1atjzZo1oy6mMm3atETba29vjy9+8YtRUlKSaN3JrLW1taD1KyoqoqGhoaBtAAAAwERlyjZMEIODg9HU1BS1tbWxatWqA67sPDw8nGi7Vnze19DQULS3txe0jebmZgEwAAAAU5YRkjAB9Pb2xoIFC3JeNTtfVnz+D93d3QcMg5PS09MTg4ODUVZWVtB2AAAAYCIyQhKKbGQ152KFkRFWfN5bX19fwdtYt25d1NfXF2wFbwAAAJjIBJJQZIVezXksrPj8H3bs2JFKOz09PbFgwYIYHBxMpT0AAACYKASSUERprOY8FlZ8/g+lpaWptdXT0xOLFy9OrT0AAACYCASSUESFXs15LKz4vK+qqqpU2+vs7Iwnnngi1TYBAACgmASSUCRprOY8FlZ83ldDQ0OUl5en2uZECKYBAAAgLVbZhiJJYzXnsWhpaSl2F0Y1NDQU3d3d0dfXFzt27IjS0tKoqqqKhoaGggaoJSUl0dzcHCtXrixYG/trb2+PL37xi4JhAAAApgSBJBRJGqs5H0pjY2PMnj272N3YRyaTidWrV8eaNWtGDWzLy8ujubk5WlpaoqampiB9aGlpSTWQ3LZtW3R3d8fChQtTaxMAAACKxZRtKJK0VnM+kLq6umhraytqH/Y2ODgYTU1NUVtbG6tWrTrg6NGBgYFYuXJl1NbWRlNTU0FWqa6pqYnGxsbE6x5Mf39/qu0BAABAsQgkoUjSXM15f3Pnzo2urq4oKysrWh/21tvbG/X19eNecbyzszPq6+ujt7c38T61tbVFXV1d4nUPZPv27am1BQAAAMUkkIQiSXs15xGNjY1x9913R3V1dVHa39/AwEDMnz8/enp6cjq+p6cnFixYkPhIybKysujq6kotlJw1a1Yq7QAAAECxCSShSAqxmvO0adNGfb2ioiKWLVsWmUwmOjo6JszIyIiIJUuWxIYNG/Kq0dPTE4sXL06oR/+huro61q9fn8r07crKyoK3AQAAABOBRW2gSAqxmvN//+//PRYuXBj9/f2xffv2mDVrVlRWVhZ8ZepcZTKZcU/TPpDOzs544oknEl+kp6ysLDo6OiKTyURra2u0tbUlPhqzoqIiGhoaEq0JAAAAE5VAEooo6dWcr7766gm3avbBtLa2Jl7v2muvTbTmiJqamlixYkUsX748PvKRj8Q//dM/JVa7ubl5QgbGAAAAUAimbEMRJbmac2Nj46QKI4eGhqK9vT3Rmu3t7TE0NJRozf2VlJTEX//1Xydas6WlJdF6uRoaGorbbrst2tvb4/rrr4/29va47bbbCv49BQAAYGoxQhKKrK2tLTKZTM6LukRE1NXVRVtbW4K9Krzu7u4YGBhItOa2bduiu7s7Fi5cmGjd/Y0EyUlMN58IQXImk4nVq1fHmjVrRv2ZlJeXR3Nzc7S0tERNTU36HQQAAOCwYoQkFFm+qznPnTs3urq6JtRCNWPR19dXkLr9/f0Fqbu/tra2vFfgLnaQPDg4GE1NTVFbWxurVq06YEA8MDAQK1eujNra2mhqakr8HpoAAABMLQJJmAByXc25sbEx7r777qiuri5Qzwpnx44dBam7ffv2gtTd32QPknt7e6O+vn7cozw7Ozujvr4+ent7C9QzAAAADncCSZggRlZz3rx5cyxdujTKy8tH3a+ioiKWLVsWmUwmOjo6Jt3IyBGlpaUFqTtr1qyC1B3NZA2SBwYGYv78+TnfJqCnpycWLFhgpCQAAAA5cQ9JmGD2Xs25u7s7+vv7Y/v27TFr1qyorKyMhoaGw2JF5qqqqoLUraysLEjdAxkJkjOZTLS2tkZ7e/uoU58rKiqy92Es9j0jlyxZEhs2bMirRk9PTyxevDg6OjoS6hUAAABThUASJqiSkpKCL85STA0NDVFeXp7owjYVFRXR0NCQWL3xmCxBciaTSWQxnojXp28/8cQTcdpppyVSDwAAgKlBIAkURUlJSTQ3N8fKlSsTq9nc3Fz00G8iB8mDg4PxwQ9+MNGara2t8dd//deJ1gQAAODw5h6SQNG0tLRM6HqHk97e3pg3b1784he/SLRue3t7DA0NJVoTAACAw5sRkkDR1NTURGNjYyJTiBsbG4t+b8YDGRoaiu7u7ujr64sdO3ZEaWlpVFVVpTaNe2QRm40bNyZee9u2bXHbbbfFmWeemXhtAAAADk8CSaCo2traIpPJ5Lzic0REXV1dtLW1JdirZGQymVi9enWsWbNm1HtllpeXZxe6qampKVg/kljE5mD+x//4H/Gtb30rTjzxxIK1AQAAwOHDlG2gqMrKyqKrqyvq6upyOn7u3LnR1dUVZWVlCfcsd4ODg9HU1BS1tbWxatWqAy7cMzAwECtXroza2tpoamqKwcHBxPuS5CI2B9Lb2xtXX3117Nixo6DtAAAAcHgQSAJFV11dHevXr4/GxsZxHdfY2Bh33313VFdXF6hn49fb2xv19fXjDgE7Ozujvr4+ent7E+1Pa2trovUO5Mknn4wvfOELqbQFAADA5CaQBCaEsrKy6OjoiM2bN8fSpUujvLx81P0qKipi2bJlkclkoqOjY0KNjBy5V2Ou0897enpiwYIFiY2UHBoaivb29kRqjcVdd90VTz/9dGrtAQAAMDm5hyQwodTU1MSKFSti+fLl0d3dHf39/bF9+/aYNWtWVFZWprYQTC6SuFdjT09PLF68ODo6OvLuT3d39wGnixdKR0dHXHrppam2CQAAwOQikAQmpJKSkli4cGGxuzHmFbKTvFdjZ2dnPPHEE3mvGt7X15dIf8bj1ltvjaGhoTj22GNTbxsAAIDJQSAJMIrxrpCd9L0aW1tb49prr82rRjEWmXnppZfiX/7lX+J3fud3Um8bAACAyUEgCbCXwcHBWLx48SFHO46skL1y5cr43d/93eju7k60H+3t7fHFL34xr+nppaWlCfZo7Pr7+4vS7t7GOrIVAACA9AkkAf5db29vLFiwYNyL0vz4xz9OvC/btm2L7u7uvKatV1VVJdijsdu+fXtR2o0Y/8hWAAAA0meVbYDIf4XsQsh3pGFDQ8MBVysvpFmzZqXe5uDgYDQ1NUVtbW2sWrXqgIv5jIxsra2tjaampsRWNAcAAGDsBJIAkcwK2UnLd6RhSUlJNDc3J9SbsausrEy1vd7e3qivrx/3okKdnZ1RX18fvb29BeoZAAAAoxFIAlNekitkJymJkYYtLS0J9GTsjj322HjPe96TWnv5jmzt6emJBQsWGCkJAACQIoEkMOUlvUJ2UpIYaVhTUxONjY0J9GZsLr300lQXjfn93//9vEe29vT0xOWXX55QjwAAADgUgSQwpQ0NDUV7e3uxu/EGFRUV0dDQkEittra2qKurS6TWoTQ1NaXSzuDgYFxyySWxbt26ROrdcccdMX/+fCMlAQAAUiCQBKa07u7uAy6AUkzNzc2JjTQsKyuLrq6uVELJ66+/vuCh3sg9I++4445E665bt849JQEAAFIgkASmtL6+vmJ3YVRJ3/uxuro61q1bF/PmzUu07v7uuuuuaGhoKFioV+jV0N1TEgAAoPAEksCUtmPHjmJ34Q0aGxtj9uzZidXLZDKxdOnSmDNnTtx7772J1T2QDRs2FCzUS2M19J6enli8eHFB2wAAAJjKBJLAlFZaWlrsLuyjrq4u2traEqk1ODgYTU1NUVtbG6tWrRrT1PTjjjsukbYLEeqluRp6Z2dnPPHEE6m0BQAAMNUcUewOABRTVVVVsbuQNXfu3LjtttuirKws71q9vb2xYMGCcU9tfvHFF/Nue8RIqJfUaM+0V0NvbW2Na6+9NtU2RzM0NBTd3d3R19cXO3bsiNLS0qiqqoqGhoZUVzQHAABIihGSwJTW0NAQ5eXlidYsLy+P//Jf/su4jmlsbIy77747qqur826/0PdZHI+kQsRirIbe3t4eQ0NDqba5t5Gp9tXV1bFo0aJYvHhxXHPNNbF48eJYtGhRVFdXx7JlyyKTyRStjwAAALkQSAJTWklJSTQ3Nydac/HixfFP//RPsXnz5li6dOkBA8+KiopsoNTR0ZHIyMiIdO6zOFZJhXrFWA1927Zt0d3dnWqbERHPPvtsXHTRRYecaj8wMBArV66M2traaGpqshAPAAAwaZiyDUx5LS0tsXLlykTrRUTU1NTEihUrYvny5dHd3R39/f2xffv2mDVrVlRWVhZkym2a91kci5FQb+HChXnVKdZq6P39/am1lclk4m/+5m+ira0t9uzZM65jOzs74/HHH49169YlMsoWAACgkASSwJRXU1MTjY2NiQR5o62QXVJSkncgN1Zp32dxLJII9Yq1Gvr27dsL3sbg4GAsXrw47/ffxo0b49xzz43bb789zj///IR6BwAAkDxTtgEioq2tLerq6vKqkeQK2bkoxn0WxyKJUK9Yq6HPmDGjoPV7e3ujvr4+sVGtv/71r+OCCy4whRsAAJjQBJIAEVFWVhZdXV05h5Jz586Nrq6uxO4DmYti3GdxLGbNmpV3jWKthv7Vr341ent7C1K7kIsPdXZ2Rn19fcH6DgAAkA9TtgH+XXV1daxfv37c02cbGxujra2tqGFkRPHus3golZWVeR0/ODhYtKnoTz31VCxYsCDWr1+f+M+30IsP9fT0FKzvuRoaGoru7u7o6+uLHTt2RGlpaVRVVRXkfqoAAMDEJZAEEjeZQ4eysrLo6OiITCYTra2t0d7ePuqow4qKimhubo6WlpY33DOyWIp1n8WDqaioiIaGhpyP7+3tjQULFhRkFOFY9fT0xOLFi6OjoyOxmmktPlSIvo/HyL8FjzzySKxbty4eeOCBUVddLy8vz15PNTU1RegpAACQJoEkkJhMJhOrV6+ONWvWjBri5RM6pB1yFmOF7HwV6z6LB9Pc3Jzz92lkSnMhRxGOVWdnZzzxxBOJhc9pjvhMuu9jMfJvQXt7+5juZTkwMBArV66MlStXxrx58+Lmm2+Ok046KYWeAgAAxSCQBPI21lWC9w4dxjrNuZAh51gUYoXsQoWrxbrP4sG0tLTkfGyhpzSPV2tra1x77bV51ynG4kNJ9f1Qklgx/N57742TTz45lixZEn/yJ39ixCQAAByGLGoD5CXXVYIPtejG4OBgNDU1RW1tbaxateqAi7WMhJy1tbUTfmXhTCYTS5cujerq6li0aFEsXrw4rrnmmli8eHEsWrQoqqurY9myZZHJZHKq39DQEOXl5cl2Og+NjY05j8pLa0rzeLS3t4863Xi8irH4UFJ9P5gkVwzfs2dPfOtb35oU1zUAADB+RkgCOct3Su2BFt3I9b6BnZ2dkclkoqurK6qrq3PqUyEUcgTp3kpKSqK5uTlWrlyZb5fzVldXF21tbTkfX6xFbA5m27Zt0d3dndeI2cHBwfizP/uzBHs1Ntu2bYu1a9fGZZddVpD6hZxePxGu69FGNY+E/wMDA5PuXrkAAFBsAkkgZ0lMqd1/0Y1ChZzFkna42tLSUvRAsq6uLrq6unL+/hdjSvNY9ff353xssRfo+dSnPhXvfve7CxLqHa4rhh/qlhGjsUAPAAAcminbQE6SnFI7suhGRLIhZ7GNhKu5BlAjIcx4pqvW1NREY2NjTu3t79JLLx13rbPOOiv+7M/+LCoqKnJutxhTmsdq+/btOR2X73shCSOBaNLTn2+//fZUVwxPw1hvGTGavW8jcdFFF8Wzzz5buI4CAMAkZYQkkJOkp9S2trbGxz/+8cRDzjRXFt5fIUaQjkVbW1tkMpm8wq+6urr4zne+E2VlZZHJZKK1tTXa29sPGcw8/vjj8Qd/8Ad5jRLr6+vLud+FNmvWrJyOmygL9OTyfjqQJBawGa80ruve3t645JJLYuPGjXnXmogL9Jh+DgDARGCEJDBuhZhS297eHtdff32iNYt5H8JCjSAdi7Kysujq6oq6urqc2ps7d+4+U65rampixYoV0dvbGz/84Q/j/PPPP2SNfBYb2rFjR079TkNlZeW4j5loC/SM9/00miQXsBmvQl7XDz74YJx77rmJhJEjJsoCPQdbVKuxsTEaGxsTX2gLAAAORCAJjFshptRu27Yt1qxZk2jNNFYWPpBCjCAdj+rq6li/fv24p1w3NjbG3XffPep9Brdt2xZf+MIX4qGHHhpXzUOtqL6/0tLScdVPS0VFRTQ0NIz7uIm4QE8+fSr29PPrr78+8WnQI1O03/GOd8Svf/3rRGvvbbzXQhKeffbZuOiiiw7L6edDQ0Nx2223Zf+g1d7eHrfcckvccsst+7x22223Fe3/AgAARmfKNjBuhZpSm/TIuCRWRc5FoUaQfvGLXxzX9MmysrLo6Og45JTrioqK7PTqA02FTXOxoaqqqpzaKLTm5uZxT1+dqAv05PJ+GlHs6ec7d+6Md7/73XHPPfckskBP2osNpbVATyaTib/5m7+Jtra22LNnT971JsL085Hp5o888kisW7cuHnjggTEHjRYbAgCYWASSe3nyySfjxhtvjPvvvz+2bt0au3btihNPPDFqamri0ksvjQ984ANxxBHJf8ueffbZuPHGG2P9+vXx1FNPxauvvhonnHBCnH766bFo0aJYtGhRzJw5M/F2IVcTeUrt/vJZFTlXhRpBmmu4OjLlevny5dHd3R39/f2xffv2mDVrVlRWVo7pPnFp3g+zoaEhysvLJ9zCNvPnzx/3MRN1gZ5c308TZfr5U089lUiol2/Qnquenp64/PLLY926dYnXLuS9PUemn3/rW9+KxsbGaGtrS2XV85HVztvb23Oe8j4y2nPlypUxb968uPnmm+Okk05KuKdjt/+9PI888sh47rnn4sQTT4ydO3e6tycAcNgTSP6766+/PlpbW2PXrl37vL5ly5bYsmVL/PM//3PU1dXF3/zN38Tpp5+eWLs33nhjfOUrX4lXXnlln9efeeaZeOaZZ2L9+vXxzW9+M7761a/Gueeem1i7kI+JOqV2NLmuipyPQo0gzTdcLSkpySnQLMT9MA+2KElJSUk0NzfHypUrE2kzKfPnzx93CDORF+jJ5f00kaafJ7FATzFHe95xxx0xf/78uOmmmxIL9ZJckOdQOjs74/HHH49169YlMlJ1NM8++2xcdtllce+99yZa9957743q6uq48MIL49JLL43/9J/+U2oh30i4umbNmpz/WDFz5sx417veFZdcckmqfT+QQ4WrkylszeVcJkK/AWAyEkhGxPLly+M73/lOdvuII46I2tramDlzZjz55JOxbdu2iHj9l58rr7wybrrppkQ+fK9Zsya+/OUvZ7enTZsWs2fPjvLy8vjVr34Vzz33XERE/OpXv4o//MM/jO9973txzjnn5N0u5GuiTqkdTa6rIuejUCNIixGuRhTmfpjXXnvtQfdpaWmZcIFkxOshTCaTia6urjH9PzCRRxOP9/00Eaef57Pq9kQY7blu3bqor68f8/vpYB588MFYsGBBQe+Bub+NGzfGueeeG7fffvuYFrsaq6Snm49meHg47rvvvrjvvvsi4vVbXCxevLhgU7qTDFdfeeWV+OlPfxo//elPIyL9gDKfqfOHMlnP5ZhjjomLLroo3vnOd0Z1dXXBQ8v9g9PRQt5DhaljCYrTCGALcS7FCo5zGfk8mc6lr68vXnvttdi5c2eUlJTEL3/5y5gxY8akPJfJ8nMZ7x9Jkjg355LOuVRVVcVFF12UWJ8mq2nDw8PDxe5EMXV1dcUf//EfZ7fnz58fn/vc5+L444+PiNfvVdXZ2Rlf/vKXs6MYzznnnOjo6Ihp06bl3O4jjzwS//W//tfYvXt3RES84x3viC996Uvx1re+NSJe/6B8xx13xOc+97lsIFpVVRVdXV2pT99++OGHs78QTJ8+Pc4777xU2y+EXbt2xaOPPprdPvfccwsyHf9wNTQ0FNXV1YlORS0tLS1IeLN27drU7yHZ3t4eixcvLkjdj370o4nXPZhC/KwrKipi69ath/xg0NTUlEhgtHDhwtiyZUui9wisq6sb03ThQr0XkjDe99Ntt90WixYtKlyHcrRs2bJDBtz7GxwcjAsuuCB+8YtfFKhX47P3+2m8/z8Vcor2eCQxhftwOpe9g65bb701fvazn0VaH7mTDPX2/qXr3/7t3+L++++Pe++9N15++eWEez26fM5laGgo7rzzzvj5z38eQ0NDceSRR8ZRRx0VVVVV0dvbW7Rzee973xvTpk3L6Zfs4eHh+OlPf5poCDyVzuVgwXE+YYhzcS5JnMve2yP/Rt13331F++P23v/+nnXWWRGRW2DrXA6svLw8Fi1aFE1NTXHqqadOukwikZxoeAp77bXXht/73vcO19TUDNfU1Ax//OMfH969e/eo+959993Dc+bMye774x//OK+2P/zhD2drfehDHxp+5ZVXRt1v06ZNw+edd15239WrV+fVbi7+9V//dfjBBx8cfvDBB4f/9V//NfX2C2Hnzp3Zc3rwwQeHd+7cWewuTTpLly4djojEHldfffVweXl5ojUrKiqGX3755dS/N2vXrk30PEYea9eunVLnMjAwMFxXV5dXO3V1dcMDAwPDAwMDw42NjYmeQ2NjY9G+f0k85s2bNzwwMDDm98Lf/u3fFr3Poz2OPfbYcV3nW7duHZ4zZ07R+32g99N4/n/aunVr3tdIko85c+YMb926dcw/i4n8c8n1XDZv3jz8qU99arisrKzo5zDymDlz5vB73/ve4S996UvDa9euPej18vLLLw+vXbt2+Etf+tLwe9/73uGSkpKi9/9A59LZ2Tnc2dk53NbWNnzdddcNr169evgLX/jC8F/8xV9MyL57eHh4eHgc6PG+971v+IUXXsjpM1SxJJETTekRkmvXro2lS5dGxOvTtO+44454y1vecsD9//Iv/zK+973vRcTroyRz/Qv+o48+Gh/+8Iez2zfeeONB0+QbbrghvvrVr0ZExHHHHRfr16+PGTNm5NR2LoyQnLxGmwaT1LD1TCYTtbW1CfX0P+6rleQ03VxGTiWhmKMKk1bs0Z753BNv7ty5cdttt+0zFfb222+PBQsWjLvWgWQymYNOF3722Wfj1FNPjZ07dybWZpLq6urGNF24t7c33vGOd8Szzz6bUs/GZ968ebF27dpDjmgbGBiI+vr6oq4SfjCZTCZOO+20Mf3/NFHP5c1vfvO4p3AXY7r5WBxzzDHxiU98IubMmXPQ/zuHhoZi7dq18ZWvfCUeeuihIvR0fEpKSqK+vn6fETzD/z6S6P7773/Dfc0BgMI755xz4vbbby/YvbmTZoRknq666qrsyMOPfexjh9z/8ccfz+5fU1Mz/PTTT+fU7pe+9KVsjYULFx5y/4GBgX1GZ9577705tZsrIyQnn5ERGgcacVheXj68dOnS4c2bN+fVTlIjzkZGBm3evDnRvzRlMpkkvp05SXoE6bJly4pyHtddd11B/gp43XXXHbLtfEYaNTY2jjr6L82fy0QbvXagx8go0gPZtm3b8DnnnFP0fo7lPA41oi3pUbJJP84888zhF154YUz/P11yySVF7+/BHm9/+9uHf/jDHx5wNN7LL788/MMf/nD4/PPPL3pfx/oYGZ33F3/xF/uMxDv66KOL3jcPDw8PDw+Pyf841OfyiSSJnGjKBpJ79uwZvuCCC7IhX3t7+5iOu+iii7LHrFmzJqe2L7300myN5cuXj+mYvad4/9Vf/VVO7eZKIDl55DIt9UDBzVjbS2pK7YikQ85iOVzC1ba2toL8Z3uwf3NznV5dXl4+vGzZsgN+r15++eXUbgswWUK8sVwvEz3E2/txsA9xSV+ThXrMmTNneO3atQf8/2lgYGD4Ax/4QNH7OdZHWVnZPn8AG/lDw7HHHlv0vnl4eHh4eHh4TLRHsX+PHaskcqLpMUX19vbGSy+9lN2uq6sb03F7T1F97LHHxt3uzp0749/+7d+y22NdNTvfdjn89fb2Rn19/bhvJdDZ2Rn19fXR29s77jbLysqiq6trzNfP/ubOnRtdXV37TLNsa2vLud6Iurq6aGtry6tGvmpqaqKxsTGRWo2NjTmtIpyEQq2oXllZOerrub6PIyLe8pa3xLJlyw74veru7k50Gn1ExLZt26K7u/sNry9ZsmTCTaU9mJHVqvc3EVaiHo+enp4D3mIg6dXiC2Xjxo1x1VVXjXqz9F/84hdx7rnnxh133FGEnuVmcHAwVq5cGbW1tXHsscdGbW1trFq1ap/PYAAAvO5An8sPR1M2kPzVr361z/bI6taHcvLJJ2efP/300+Nud+vWrfvcS+zUU09NpV0ObwMDAzF//vycVxHu6emJBQsWxODg4LiPra6ujvXr1487fGtsbIy77777DffIKETIWSyHQ7ja0NCQXb0wKRUVFdHQ0PCG1/N9H2/cuPGg7+O+vr6c6h5Kf3//PtuFCvHOPvvsmDNnTuJ1R4wW2E2WEG9vo32Ie/bZZ+Nv//Zvi9Sj8fvlL38ZV1xxRTz11FMR8fp76hOf+ETU1tZmX5uMtm/fXuwuAABMeJPxM3gupmwg+fzzz2efT58+PY4//vgxHXfCCSeMWiOXdvevN9Z2f/3rX2dvHgoRyYzGOtjIokMpKyuLjo6O2Lx5cyxduvSAAVZFRUUsW7YsMplMdHR0HDA0TDrkLJbDIVwtKSmJ5ubmRGs2NzePujBEod/Ho404S8L+IUshPkDMnTs37rjjjli3bl3eIfeBtLe3x9DQUHZ7aGgo2tvbC9JWoe39M+jt7Y13v/vdE3ZhoQPZunVrNDU1RUVFRdTW1kZra6v/+wEApoD9P5cfrg6/ZYXHaO8RNMccc0xMnz62bLa0tHTUGrm0GxFx7LHHjum4WbNmZZ8PDw/HSy+9lPiopbEYGhqKs846K+fj3/a2t8VPfvKTA379T/7kT6Krqyvn+hER73vf++L6668/4Nebmpri8ccfj9/85jfZ1970pjfFtGnTxtzGkiVLsiu0j+a8887L+5ff5cuXx+/93u+N+rXe3t6YP39+RES89tpr8ctf/jKvtkZ0dnbGpk2bYvbs2bF+/fpoaWnJqc4JJ5wQxxxzTOzevTv++I//OE444YSorKyM97znPdkgateuXfG///f/zq4gfyCnnXZaDAwMxODg4Ki/jM+YMSOuvvrq+G//7b9lp+ru2rUr+/UvfOEL8cMf/jCn8xhxwQUXxJo1aw749Y9+9KPx4IMPHvDru3fvjtLS0nEFYh/60IfiW9/6VpSVlcWuXbuioaFhXCvQ7tmzJ4aGhmL37t2xZ8+emD59evzBH/xBfOELXxg1DHzppZdi3rx5o9Z67bXXxtzuWNxyyy3xf/7P/3lDG0m+j08//fQ46qij9nk9l3+zx+JLX/pS/N3f/V1EvP59f/LJJxNvY2hoKN7//vdHxOvvp6OPPjpeffXVRNvYtm1b1NTUZP+f27FjR+JT3NOyatWquPXWW2N4eDiefvrpxN/DaSpUkA4AwMS0/+fy8aqtrY2Ojo4Dfv3qq6+Ou+66K9fuRUTEmjVr4sgjj8yrxpQNJPcOo44++ugxH7f3L7i5/IKzd7vjaXv/H/T+ddKyZ8+e2Lx5c87Hv/rqq/Hoo48e8OsbN27Mq37E6/e8O1gbjz/+eGQymbza2LBhw0HbyGQyef8C3NPTE6eddtqoX3vmmWfy/j4dyF/91V/F0qVL47HHHkukjQsvvDAbqO8/jXLDhg15t1FWVhZXXHFFDA0NjfozSeI9dcwxxxz0571p06ZEvlfHHntsXHrppdHU1BRvfetb97m1xObNm8cVSI5m1apVccMNN2Tb2PuWEdu3by/Ye2p/SQWPxW5jRF9fX8Gmg48oRMg5mlzuJTsR7dmzZ8rcewcAgMNPPp/Lh4eHC/77axIzd6bslO29R6+NdXRkRMQRR/xHhrv3KKyx2v+Ysba9d7sRr4+QgUK49dZbEx95VUjjGdk6kc2bNy/Wrl0bS5cuHfM9bXOxffv2+Md//MdoamqKP/3TP0119NVEmUoPAABAcU3ZQHLGjBnZ5+NJdvcOFHMZnrp/ADnWtvcPMvMdGgsH8tJLL8VDDz1U7G5MOVVVVeMarZ2Eu+66K5YsWRLPPfdcwds688wz43/8j/9R8HYAAACY+KbslO2ZM2dmn49n+vPe03Df9KY35dXuSNv73+fsUO3m2nYSpk+fHrW1tTkf/7a3vS3OPffcA359zpw5ea8ifvbZZx+0jZF7YOZzD8lzzjnnoG3U1NTkfQ/Jurq6A7Zx/PHHR21tbQwODhZkqugxxxwTZ5xxRl4/6xG/9Vu/dcB7pT766KN5t/HmN7/5kO+pfBdKOdR76uyzz46XX345rzbmzJlz0DZqa2tHnbK9e/fuvO6R9+STT8af/umfxk9+8pMx/Sx2794dfX19Od0P85e//OWobRTqfVxVVfWGBYGSvFdlxOv3ON373/C0zmXHjh0FmV59xBFHxJve9Ka8388HU11dHaWlpbFz587YunXrpL6/47Rp02J4eLjY3QAA4DAz8pk5F7W1tYf8/TXf31nGM9P4gIanqM7OzuGamprhmpqa4bPPPnt4z549Yzru+uuvzx73/ve/f9zt3n///dnja2pqhp955plx93fOnDlj7m8S/vVf/3X4wQcfHH7wwQeH//Vf/zW1dgtp586d2XN68MEHh3fu3FnsLuXkuuuuG46IxB/XXXddsU+NMWpsbEzkZ97Y2Diudjdv3jy8dOnS4fLy8lHrlZSUDL/vfe8b/vKXvzy8du3a4ZdffvmAtdJ+Hyf1PfvABz7whtpr164tyLmsXbt2n3ZefvnlA37vJ/KjoqJin/fCwMDA8Lx584rer1weZ5555vDAwMDwJZdcUvS+eHh4eHh4eHh4HD6P/T8zT0RJ5ERTdsp2ZWVl9vnu3btj27ZtYzru+eefzz4//vjj82o3IuKFF14Yd7vHHXfcYXPfPPKT619MDmXvVd2ZuDKZTHR2diZSq7Ozc1yLgNTU1MSKFSuit7c3br311vjv//2/x/nnn5+ddj40NBR33XVXfPazn41FixZFdXV1LFu2bNQFpdJ+H7e1tUVdXV3e9e+4445oamraZ/XuhoaGKC8vz7v23ioqKqKhoWGf10pKSqK5uTnRdtLQ3Ny8zyrvZWVlcccddxxwFPVEtnbt2igrK4ubbropkfcTAABEvPEz8+FqygaSe68uGxGxZcuWMR23devW7PMDrYB8MG95y1v2uf9jLu2+7W1vG3e7HJ6qqqoKUnf/4JyJqbW1tej1du7cGW1tbfG3f/u38dBDDx1wQaSBgYFYuXJl1NbWviHES/t9XFZWFl1dXYmESJ2dnVFfX5+dPr1z586c/lh1MAf6QNLS0pJoO2kYrc8lJSWxZMmSIvQmd42NjTF79uyI+I/305w5c4rcq9ydf/758Y53vKPY3QAAICbn5/xcTNlAsrq6ep9RLJs2bRrTcY8//nj2+ci9CMfjyCOPjJqamnG3u/d+Z5999rjb5fCU1mgsCmtoaChuu+22aG9vj+uvvz7a29vjtttui6GhoYMe097enmg/2tvbD9rm/np7e6O+vj5uueWWcbWzf4hXjPdxdXV1rF+/PhobG/Nuq6enJxYsWBCbNm2K+vr6+MUvfpF3zb0d6ANJTU1NIv1Py94h3v4m04euurq6aGtr2+e16urquPfee+PMM88sUq9y8+Y3vzkeeuihePDBB+OBBx6IBx98MN785jcXu1sAAFPWwT4zH26mbCAZEfGud70r+/zee+895P6PP/74PlOsL7zwwlTaHRgYiI0bN+bdLoefQkzbnCrDwyeCTCYTS5cujerq6li0aFEsXrw4rrnmmli8ePEhpzl3d3fHwMBAov3Ztm1bdHd3j2nfgYGBmD9/fvT09OTU1kiINzg4WLT3cVlZWXR0dMQll1ySd3s9PT1x4YUX5vz9OJBDfSBJavp5oY0W4u1tsoSrb3vb26Krq+sNiyVFvP5++j//5/8UoVe5Oeecc+LRRx+Nt7/97dnXzj///Hj00Ucn3WjPadOmxbx58+IrX/lKfOc73/E5CQCYlA71mflwM6UDyb1/Cb3rrruiv7//oPt///vfzz7PZwXivdvt6ek55C+wN910U+zatSsiXv+FZ968eTm1y+Ep6ZFFk2mk0mQ1ODgYTU1NUVtbG6tWrTpgsHiwac6FWMk5Ig757+CIJUuW5L16eU9PTyxevDgiivc+zmQysW7dukTafOmllxKpM2IsH0hGpgvvfxuSieQtb3nLAUO8vU30cPXII4+Me++9N6qrqw+4z2QJVi+55JK45557Rj2XkdGek+E8IiLmzZsXvb29cc8998SnP/3puOKKK+K+++6LzZs3x9KlSw/5vgMAmAjq6urG9Jn5cDLlA8kTTzwxIiJee+21+MxnPpMN/vZ39913xw9/+MPs9pVXXplzu+edd16cc8452e3PfvazsWPHjlH33bRpU6xevTq7/eEPfzi7aAREJPsL8FQaHl4sI9Ocx7sYzf7TnA/0b0a+tm/ffsh9CrGYTrHex0nfhzMpc+fOHfMHkurq6vjTP/3TFHqVm//1v/7XQUO8ESPh6lj2LYarr746TjrppEPuN9GD1UsuuSRuv/32g763RkYPT+Qp3CPTze+5555Rfy4jC28988wzsXbt2vj85z8fxxxzTBF6OnZnn312rFy5Mq677rpob2+Pzs7O6OzsjC9/+cvx3ve+N2bOnFnsLgIABfC+970vfvrTn07Yz8GFMm14eHi42J0opltuuSU+85nPZLfnzZsXf/mXfxmnnHJKRETs2rUrOjs740tf+lK88sorEfH6h9xbbrkljjjiiDfUu/jii7OBQXV1ddx5552jtnv//ffHH/7hH8bIt3/OnDnx5S9/OXtfyuHh4bjjjjviz//8z7Ojp0444YS47bbbUl8B+eGHH449e/ZERMT06dPjvPPOS7X9Qti1a1c8+uij2e1zzz131J/nZDE4OBj19fV5TRetq6uL9evXT6m/yKRtYGAg6uvr8xpZOPJz6uzszI4uTFJ7e3t89KMfPeg+y5Yti5UrVybW5rJly+Laa69N/X08NDQU1dXViU99z9eZZ54ZDz744Liuxeuvvz6uueaaAvYqd2vXro2FCxeOef+bb745Lr/88gL2KDeZTGbMQXdvb28sWLAg8Sn8+crl3/ne3t645JJL9rl1TLGdc845cfvtt4/7Q/tEPJfy8vJYvHhxtLS0HPL9NTQ0FN3d3fHoo4/G7bffHvfff3/2s+lEUFJSEu9617vife97XwwPD0dlZWW89tprcdRRR0V/f392e9asWdn34ObNmyftuWzdujUeeOCBuPfeewv2R0IADl8VFRWxaNGiaGpqire+9a2TLpNIIiea8oFkRMTnPve5+MEPfpDdnj59etTW1kZpaWk8+eST8eKLL2a/Vl5eHt///vfj9NNPH7XWWAPJiIi///u/jxUrVuzz2plnnhnHHXdcPPXUU/tMnTz66KPjhhtuiAsuuCCnc8yHQHJyyOcX4Llz58Ztt9025f4ik7ampqZERhY2NjbGxz72sVi0aFECvdrXocKjQoR4FRUVsXXr1igpKUn1fXzbbbcV5HuYr72/H2PV3t5ekIA6X7mcy0QMihsbG6Ojo2NcxwwODsbixYsTG02cr3z+nZ9I59LY2BhtbW05//Gs2Ocyc+bMuPDCC2P+/PnxW7/1W9HQ0JDzfZuLGVAec8wxUV9fH+94xzvijDPOiMrKykl7LqWlpXHRRRflfC4jfe/v74/t27dnQ8uI128J9cADD4xrwbjxGAlO58+fn100c3BwcJ9+HCgYPlhQvH+NyXYuxQ6ODxRoH+x7PBnOZffu3bFz58547bXX4phjjom6urqYMWPGpDyXyfRz2fvfqJNPPjmx63r/YyIKf507l/84l8rKyrjoooviiSeeyNacbJmEQDIhw8PDsWrVqrjhhhti586dB9zvjDPOiK9//esH/Qv2eALJiIjvfve7ce211x70Qqmqqoqvfe1r8Y53vOMQZ1IYAsnJI5dftPL95Y6xyWQyOd93djSPPvpoNDQ0FCwYPJBChXh7B6FpvY8naogXMf5RhRM1XB0Z/ZrLcUmOws1HvqPHM5lMfPCDH0x89fXxSOrf+UwmE62trXHDDTckfs/UgykrK4slS5aMaRThWI2cS3t7eyrh9/nnnx+f+cxnYtGiRQVbOG7/UC/JX8SSDFLHIslzOfroo6Ouri7OP//8qKqqipNOOmmfXwjTOpf9A8t8wpC0+n44ncuh+p5EGHK4n0shfn/ycyn+tXGo88g3sHUuBzbZMwmBZMKefPLJuPnmm2P9+vXR19cXr7zySpSVlcXZZ58dCxYsiN/93d+No4466qA1xhtIRry+OMVNN90U3d3dsXXr1tixY0eUlpZGTU1N/PZv/3Y0NTVFaWlpIueYC4Hk5HOoX7QqKiqiubk50V/uOLhCTHMeHh4uyNTpgylUiLf3VPGRDw+PPPJIrFu37oC/iOb7Pp7I05zHMnV+bxNxVGHE+KY5739ckgF+rpIaPT44OBjz5s1LdarwjBkzoqWlJf74j/848X/nh4aGYu3atfGVr3wlHnrooURr7y3NEK+/vz+efPLJeOCBB+Kee+6Jl19+Oe/a45mOXQijndtYR/DsPVotjQDyUHL5pXLWrFlx/PHHR0VFRfb+64fb5z1I0+H++xOkbbJfUwJJUiGQnLxG+wBfjL9OFcLIufX19WVD/Kqqqgl5boWa5nzXXXfFf/pP/ymxmmMJjwoV4l133XUxf/78WL16daxZs2bU79XMmTOzvyCfe+65ef+sJ/IIyeuuuy6uvvrqcR0zkUYVRuQ2zXlvSd3iIFdJjx5P876Sb3vb2+KOO+6IM888s+BtZTKZ+NrXvhY33HBD9rNCPmbMmBFLliyJP/mTPynaH8xyHZ030UK80YxlhNvh8jkhYup83oM0uJ4gWZP9mkoiJ5o8ZwuMW0lJybimfU4GmUzmoKFVeXl5dtTcyD2Iiq27uzvxkWvbtm2LZ555JhobGxO7L+VYfvkv1Gjtf/iHfzhk0PnKK6/ET3/60/jpT38ajY2NMW/evLzarKqqyuv4Qspl8bKWlpYJE0jW1dVFW1tbXjXa2toik8kUZWGYdevWxQc+8IFEa1ZXV8f69esLfv/CtG/DUVNTE9/85jfjC1/4Qlx22WVx77335lxr3rx5cfPNN49pNfNCGvm/c+HChfGZz3zmsArxDsfPBQDA5CSQBCaFsd5XcGBgIFauXBkrV66cMPfH7OvrK0jd/v7+REKb8YRHhQrxxjvts7OzMzKZTHR1deU8nbahoSHKy8sn3DTniIjKyspxH1NTU5NYQJ2Pt7zlLdHV1ZX3dVdWVhZdXV2pr1bd2NiYeBg5oqysLDo6Og7LUYUnnXRS3HPPPeO+N+NkuIWIEA8AIHkCSWDCy3WqYxKhVRIKtXrg9u3b8w5tRu6RN9bwaCKFeD09PbFgwYKcFxwpKSmJ5ubmCTOqcERFRUU0NDTkdGwxRxWO+F//638ldr2NjCq8/PLL44477kik5sEkMbJzLA7HUYUjampqYsWKFbF8+fLDZlQhAADJE0gCE9rAwEDMnz8/NmzYkNPx+YZWSSjUNOeRab25TgXNZQTpRAvxenp6YvHixTnfq3AiTXMe0dzcnHNAMxJQv+td78ousJa20047LdF6ZWVlsW7dupg/f36sW7cu0dp7G284nwSjCgEAmKoEksCEtmTJkpzDyBH5hlb5KtQ0572n9e49FbTQK6xPtBCvs7MznnjiiZzOZ6JMc95bS0tLXsdXV1fHqlWr4vLLL0+oR2OXz+jOQ7npppuivr6+IKM/i317h71HFd55553x4IMPxssvvxxHHXVUHHnkkXHSSScZVQgAwGFFIAlMWJlMJrGgKJ/QKl+FmOZ8oODnQNMlkwwyJmKI19raGtdee21Ox06Eac4jxrq40KEsWrSoKFPr8xndeShJ31NyItx3cX8lJSWxYMGCfaZfT7YVFwEAYCx8wgUmrNbW1sTrHSy0GllJta+vL3bs2BGlpaVRVVWVd4hXiGnOhwp+Cj1dciKFeBER7e3t8cUvfjGnn1OxFk/ZX5L3LyzW1Pp8R3ceSlIrVU+0+y4CAMBUM73YHQAYzdDQULS3tydas729PYaGht7weiaTiaVLl0Z1dXUsWrQoFi9eHNdcc00sXrw4Fi1aFNXV1bFs2bLIZDI5t510UFPo4OdQRkK8urq6ovZjxLZt26K7uzvn46urq2PdunVx5JFHJtirsTvnnHMSWZl6b2m/R5Ia3XkoI7cn2Lx5cyxdujTKy8vHdFxFRUX2Or7nnnuEkQAAUERGSAITUnd3d+LTTUdCq5GRg4ODg2MaaTUwMBArV66MlStX5nyvuSSnOacV/BzKyGi15ubmuOWWW4rdnejv78/r+EceeSR27tyZUG/G5y/+4i8SXwk+zan1aa1OvTerOQMAwOQlkAQmpL6+voLUHQmtent7c5qi29nZGZlMJrq6usYdICUxzbkYwc/BlJWVxU033RQ//vGPo6OjI3784x/Hjh07itKX7du353V8od5zY1Go71kaU+uLsTr13qzmDAAAk48p28CEVKiAZvv2/7+9e4+Oqjr0OP4LEMQhwyTymGisymuikNiLWPR6U3N9kaCWWyf1rZWAj1SLSnzftipcakUvAoViamvi86pgRkWBiLZ2JCq2Ki0dhEyMj5KUBIEkJgQkQO4fNGfNAHlNzjmTTL6ftbrWnMk5e+/YbM6Z3+xHg+rq6pSVlRVxSBMIBJSdna36+vouXdfdac7p6emmT+s1y4knnqhrrrlGI0aMiFobnE5nt66PVpAqdT9MbYvVU+u9Xq/Wrl1r+uhOAAAAALGNQBJAj5SQkGBJuU6nUzNmzNDGjRu7VU4gEND06dO7fF3rNGev19ul63p68NPQ0KCf/vSn+vzzz6PWBrfb3a3rrfqb64zuhqntifRvri39+/fXLbfcomAwqOLi4h4ZkAMAAADo2QgkAfRIycnJlpTb3Nxs2pp6Pp9P5eXlXb6us5tyhG7C0dODnzlz5kQ1jExKSlJmZma3yrDqb64zuhumdiT0b+6GG25Qv36R3f5POukkbd68WUuWLOkR65gCAAAA6J0IJAH0SJmZmZ3ePbezkpKStGHDBlPLLCgoiPja1k05qqqqtGrVKhUVFenXv/61ioqKtGrVKlVWVmr+/Pk9PvgJBoN65513otqG3Nzcbm9YYsXfXGeYEaZ2lsfj0RNPPKHKykqdddZZXbrW6/Xqr3/9q8aMGWNR6wAAAAD0FQSSAHokh8Oh3NxcU8u85ppr9Nxzz5laZlFRkZqamrpVRuumHNOmTdPMmTM1bdo0TZkypdfsCPzEE09EuwnKy8vrdhlW/M11hhlhalcde+yxeu+992JqlC4AAACA3oNdtgH0WHl5eVqwYIFp5Z166qmqq6szrTxJqq2tld/vN3WX36amJvn9flVXV6uxsVEJCQlKTk5WZmZmjwspm5qa9PTTT0e1DV6v17RRpGb/zXW2zmhpHaU7d+5c+f1+1dTUqKGhQU6nU263u0f+zQEAAADo/QgkAfRYHo9HXq/XlDUfvV6v+vfvb0KrDldTU2NKOcFgUI8//rieeuqpIwaniYmJys3NVV5enjwejyl1dpff7zc95O2KtLQ0FRYWmlaemX9znWFmmNodraN0AQAAAMAOTNkG0KMVFhYqLS2tW2W0hlaNjY0mtSpcQ0NDt66vr69XTk6OUlNTtXDhwjYDvrq6Oi1YsECpqanKyclRfX19t+o1Q3V1ddTqTk9PV0lJienTiM34m+sMs8NUAAAAAOgtCCQB9Ggul0slJSURB0ShoVVCQoLJrTvI6XRGfG1VVZUyMjK6PCLP5/MpIyNDVVVVEddtBqtC3o54vV6tXbtWKSkpppfd3b+5zrAqTAUAAACA3oBAEkCPl5KSotLSUnm93i5dd2holZycbEXz5Ha7I7qurq5OWVlZCgQCEV0fCASUnZ2t+vp6NTU1afXq1SoqKtLixYtVVFSk1atXd3vDnY5YFfK2Z/LkyZZvsNL6N3fBBReYXraVYSoAAAAA9AasIQmgV3C5XCouLlYwGFRBQYGKioqOOLU5KSnJWGfx0LX5MjMzlZiYaOqah0lJScrMzIzo2hkzZmjjxo3dqj8QCOj000/X9u3bo7LupFUhb3vWrFmj8vJyy9dedLlcWrNmjbKysrRmzZpulzdmzBitWrWqR6wZCQAAAADRxAhJAL1K667AVVVVWrVqlYqKivTrX/9aRUVFWrVqlSorKzV//vwjhj4Oh0O5ubmmtic3NzeiXYiDwaBpG6d89tlnUVt3sjXktVtBQYFtdS1btqzb07fHjRunjz76iDASAAAAAEQgCaCXat0VeNq0aZo5c6amTZumKVOmdBgO5uXlmdqOSMuzM1BrZcW6kw6HQ9ddd51p5XVWUVGR5dPRW5mxjumaNWtYLxIAAAAA/oVAEkCf4vF4urwWZVu8Xm9EI96amppUVFRkShu6KnTdSbPceOONppXVWbW1tfL7/bbVZ9Y6pgAAAAAAAkmgT4nWxic9TWFhYben4KalpamwsDCia/1+v6nrWHZVIBDQ9OnTTSvP4/HonHPOMa28zqqpqbG1vtZ1TMvKyjRr1qw2p6onJSUpPz9fwWDQ8s13AAAAAKA3YlMboA8IBoN6/PHH9dRTT0Vl45OepnUKbnZ2dkQ7XKenp2v16tURB03V1dURXWcmn89n6sYwDzzwgP7xj3+ooqLClPI6o6Ghwba6QrWuYzp37lz5/X7V1NSooaFBTqdTbrdbmZmZEa0rCgAAAAB9BSMkgRhWX1+vnJwcpaamauHChVHb+KQniuYU3MbGxoivNZOZ61gmJCRo8eLFGjlypGlldsTpdNpW15FEuo4pAAAAAPR1BJJAjKqqqlJGRkaXd3K2YuOTnipaU3ATEhK6db1ZzN4YZsSIEaZvGtQet9ttW10AAAAAAPMwZRuIQXV1dcrKytLGjRsjur5145PS0tJes/5dU1OT/H6/qqur1djYqISEBCUnJ3dq+qzdU3CTk5NNK6s7WjeGmTJlimll7tq1y7Sy2pOUlKTMzExb6gIAAAAAmItAEohBM2bMiDiMbNW68UlxcbFJrbKGmetjtk7BtVpmZqYSExOjurFNK7M3hrFrg6Tc3FymRgMAAABAL8WUbSDGBIPBLk/Tbkvrxic9UW9eH9PhcCg3NzfazZBk/sYwdoWEdk4NBwAAAACYi0ASiDFmblRiRXlmiIX1MXtKoGb2xjBDhw41tbwj8Xq9pu0ODgAAAACwH4EkEEOamppUVFRkaplmb3zSXa3rYwYCgYiub10fM9ojJT0eT5d3+LaC2RvDTJw4sc3NgcyQlpamwsJCy8oHAAAAAFiPQBKIIX6/3/R1CVs3PukpzFwfM9oKCwuVlpYWtfqt2Bhm0KBBuu6660wts1V6erpKSkp6zUZLAAAAAIAjI5AEYkh1dbUl5Zq98UmkYm19TJfLpZKSkqiFklZtDHPjjTeaXqbX69XatWuVkpJietkAAAAAAHsRSAIxpLGx0ZJyzd74JFKxuD5mSkqKSktLozJ926p1LM2cjj5mzBgFg0EVFxczMhIAAAAAYgSBJBBDEhISLCnX7I1PIhHL62O6XC4VFxerrKxMs2bNsnQNxlZWbwxjxnT0cePG6aOPPmIDGwAAAACIMQSSQAxJTk62pFyzNz6JRF9YH9Pj8eixxx5TVVWVli9frokTJ1pSjx0bw3R3Onp6errWrFnDqEgAAAAAiEEEkkAMyczMNH10nRUbn0Qi1tfHDFVbW6vZs2fr448/Nr1sOzeGiXQ6OutFAgAAAEBsI5AEYojD4VBubq6pZVq18UlXxfr6mK3q6uqUlZWlQCBgetnRCPo6Ox09KSlJ+fn5rBcJAAAAAH3AgGg3AIC58vLytGDBAlPL6wlieX3MUDNmzNDGjRtNKy8pKUm5ubnKy8uL6lqMrdPR586dK7/fr5qaGjU0NMjpdMrtdiszM7NHBN8AAAAAAOsRSAIxpnWHY5/P1+2yrN74pCtieX3MVsFg0JT/31r97ne/01VXXdWjgj6Hw6EpU6ZEuxkAAAAAgChiyjYQg8zY4diOjU+6IpbXx2xVUFBgannz5s1Tc3OzqWUCAAAAANBdBJJADDJjh2O7Nj7prFheH1OSmpqaVFRUZGqZn332mc466yxVVVWZWi4AAAAAAN1BIAnEqFjc4djs9Sx7yvqYkuT3+1VXV2d6uZ9++qmys7NVX19vetkAAAAAAESCQBKIYbG2w3Hr+phm6EnrY0pSdXW1ZWUHAgFNnz7dsvIBAAAAAOgKNrUB+oBY2uG4sLBQwWBQgUAg4jJ62vqYktTY2Ghp+T6fT+Xl5T0qhAUAAAAA9E0EkkAfEgs7HLeuj5mdnR1RKJmenq7Vq1f3uFGgCQkJltdRUFCg+fPnW14PAAAAAADtYco2gF4nFtfHTE5OtryOoqIiNTU1WV4PAAAAAADtIZAE0CvF2vqYmZmZbf4OZqmtrZXf77e0DgAAAAAAOsKUbQC9WnvrY7aGj3V1dSopKVFpaamSk5N75JqZDodDubm5WrBggaX11NTUWFo+AAAAAAAdIZAEEBNC18cMBoN6/PHH9dRTT6muru6wcxMTE5Wbm6u8vDx5PB6bW9q2vLw8ywPJhoYGS8sHAAAAAKAjTNkGEDPq6+uVk5Oj1NRULVy48IhhpHRwxOSCBQuUmpqqnJwc1dfX29vQNng8ni6vi9lVTqfT0vIBAAAAAOgIIySBPqypqUl+v1/V1dVqbGxUQkJCj53S3JGqqqqIdt72+XwKBoMqKSnpEZvdFBYWKhgMRrSDeGe43W5LygUAAAAAoLMIJIE+qLdOaW5LXV2dsrKytHHjxoiuDwQCys7OVmlpadQ3vXG5XCopKdHkyZP16aefmlp2UlKSMjMzTS0TAAAAAICuYso20If09inNbZkxY0bEYWSrQCCg6dOnm9Si7klJSdH777+vMWPGmFpubm5urxv5CgAAAACIPQSSQB9RVVWljIwM+Xy+Ll3n8/mUkZGhqqoqi1rWPcFgsMu/U1t8Pp/Ky8tNKau7XC6XVq5caWqZeXl5ppYHAAAAAEAkCCSBPqB1SnOk6xK2TmnuiSMlCwoKenR53WHmJjder1djx441pSwAAAAAALqDQBLoA2JtSnOrpqYmFRUVmVpmUVGRmpqaTC2zOwoLC5WWltatMtLS0lRYWGhSiwAAAAAA6B4CSSDGxeqUZkny+/1troMZqdraWvn9flPL7I7WTW4iDSXT09NVUlIS9c16AAAAAABoRSAJxLhYntJcXV1tSbk1NTWWlBuplJQUlZaWdnn6ttfr1dq1a5WSkmJRywAAAAAA6DoCSSCGxfqU5sbGRkvKbWhosKTc7nC5XCouLlZZWZlmzZqlxMTEI56XlJSk/Px8BYNBFRcXMzISAAAAANDjDIh2AwBYx8opzVOmTDG13EgkJCRYUu7AgQMtKdcMHo9Hjz32mObOnSu/36+amho1NDTI6XTK7XYrMzNTDocj2s0EAAAAAKBNBJJADIv1Kc3JycmWlHvnnXeqrKxMeXl58ng8ltTRXQ6Ho0eEwgAAAAAAdBVTtoEYFutTmjMzM9ucutwdjY2NWrBggVJTU5WTk6P6+nrT6wAAAAAAoK8ikARimFVTmp1OpyXldpXD4VBubq6ldfh8PmVkZKiqqsrSegAAAAAA6CsIJIEYZtWUZrfbbUm5kcjLy7O8jkAgoOzsbEZKAgAAAABgAgJJIIZZMaU5KSlJmZmZppbZHR6PR16v1/J6AoGApk+fbnk9AAAAAADEOgJJIIZZMaU5Nze3x+3iXFhYqLS0NMvr8fl8Ki8vt7weAAAAAABiGYEkEOPMntJsxxTprnK5XCopKbEllCwoKLC8DgAAAAAAYhmBJBDjzJzS7PV6NXbsWFPKMltKSopKS0stn75dVFSkpqYmS+sAAAAAACCWEUgCfYAZU5r79eun5ORkBYNBk1plPpfLpV/96leW1lFbWyu/329pHQAAAAAAxDICSaAPMGNK84EDB7R06VKlpqYqJyenx+44bceU6pqaGsvrAAAAAAAgVhFIAn2EmVOafT6fMjIyVFVVZULLzNPU1KSioiLL62loaLC8DgAAAAAAYhWBJNCHuFwuFRcXq6ysTD/5yU/Ur1/k/wQEAgFlZ2f3qJGSfr9fdXV1ltfjdDotrwMAAAAAgFhFIAn0QR6PRzU1NTpw4EC3ygkEApo+fbpJreq+6upqW+pxu9221AMAAAAAQCwikAT6oGAwKJ/PZ0pZPp9P5eXlppTVXY2NjZbXkZSUpMzMTMvrAQAAAAAgVhFIAn2Q2Ru/2LGRTGckJCRYXkdubq4cDofl9QAAAAAAEKsIJIE+xoqNX4qKitTU1GRqmZFITk62vI68vDzL6wAAAAAAIJYRSAJ9jBUbv9TW1srv95taZiQyMzOVmJhoWfler1djx461rHwAAAAAAPoCAkmgj7Fq45eamhpLyu0Kh8Oh3NxcS8pOS0tTYWGhJWUDAAAAANCXEEgCfYxVG780NDRYUm5XWTGlOj09XSUlJXK5XKaXDQAAAABAX0MgCfQxVm384nQ6LSm3qzwej7xer2nleb1erV27VikpKaaVCQAAAABAX0YgCfQxVm38YscO151VWFiotLS0bpUxdOhQffzxxyouLmZkJAAAAAAAJhoQ7QYAsFfrxi9mb2xz2223adOmTTr++OOVnJyszMxMORwOU+voLJfLpZKSEmVnZysQCHT5+vHjx+vNN99kVCQAAAAAABZghCTQx1i18cs///lP3X///Zo+fbouvPBCpaSkKD8/X8Fg0PS6OiMlJUWlpaVdnr7t9Xr13nvvEUYCAAAAAGARAkmgD7Ji45dD1dXVacGCBUpNTVVOTo7q6+str/NQLpdLxcXFKisr06xZs5SYmHjE85KSkozwlCnaAAAAAABYiynbQB/UuvGLz+ezpT6fz6dgMKiSkpKojDz0eDx67LHHNHfuXPn9ftXU1KihoUFOp1Nutzuq08sBAAAAAOhrCCSBPqqwsFDBYDCiNRYjEQgElJ2drdLS0qiNQHQ4HJoyZUpU6gYAAAAAAAcxZRvoo1o3fhk3bpxtdQYCAU2fPt22+gAAAAAAQM9DIAn0YSkpKZo9e7atdfp8PpWXl9taJwAAAAAA6DkIJIE+rqGhwfY6CwoKbK8TAAAAAAD0DASSQB/X2Nhoe51FRUVqamqyvV4AAAAAABB9BJJAH5eQkGB7nbW1tfL7/bbXCwAAAAAAoo9AEujjkpOTo1JvTU1NVOoFAAAAAADRRSAJ9HGZmZlKTEy0vd5orF0JAAAAAACij0AS6OMcDodyc3Ntr9fpdNpeJwAAAAAAiD4CSQDKy8uzvU632217nQAAAAAAIPoGRLsBQLTt2bNHJSUl+vrrr9XY2Kj4+Hht27ZNI0aMUHNzc4fHCQkJxpTnuro608pISEhQcnKyMjMz5XA4LP1v4PF45PV65fP5LK2nVVJSkjIzM22pCwAAAAAA9CwEkuizvvrqK7388st64403evR6homJicrNzVVeXp48Ho9l9RQWFioYDCoQCFhWR6vc3FzLQ1YAAAAAANAzMWUbfU59fb0uu+wy5eTk6IUXXujRYaR0cMTkggULlJqaqpycHNXX11tSj8vlUklJiVJSUiwpP1Q0pogDAAAAAICegUASfUpVVZUyMjL0yiuvRLspEfH5fMrIyFBVVZUl5aekpGjhwoWWlN3K6/Vq7NixltYBAAAAAAB6LgJJ9Bl1dXXKysqyZUqylQKBgLKzsy0bKXnhhRca61maLS0tTYWFhZaUDQAAAAAAegcCSfQZM2bM0MaNG6PdDFMEAgFNnz7dkrIdDodyc3NNLzc9PV0lJSVyuVymlw0AAAAAAHoPAkn0CcFg0LYdpO3i8/lUXl5uSdlmr/E4efJkrV271pb1KQEAAAAAQM9GIIk+oaCgINpNsIRVv5fH45HX6zWlrMmTJ+vNN99kZCQAAAAAAJBEIIk+oKmpSUVFRdFuhiWKiorU1NRkSdmFhYVKS0vrVhlpaWlatmyZSS0CAAAAAACxgEASMc/v96uuri7azbBEbW2t/H6/JWW7XC6VlJREHEqyZiQAAAAAADgSAknEvOrq6mg3wVI1NTWWlZ2SkqLS0tIuT9/2er2sGQkAAAAAAI6IQBIxr7GxMdpNsFRDQ4Ol5btcLhUXF6usrEyzZs1SYmLiEc9LSkpSfn6+gsGgiouLGRkJAAAAAACOaEC0GwBYLSEhIdpNsJTT6bSlHo/Ho8cee0xz586V3+9XTU2NGhoa5HQ65Xa7lZmZKYfDYUtbAAAAAABA70UgiZiXnJwc7SZYyu1221qfw+HQlClTbK0TAAAAAADEDqZsI+ZlZma2Oc24t0tKSlJmZma0mwEAAAAAANBpBJKIeQ6HQ7m5udFuhiVyc3OZJg0AAAAAAHoVAkn0CXl5edFugiVi9fcCAAAAAACxi0ASfYLH45HX6412M0zl9Xo1duzYaDcDAAAAAACgSwgk0WcUFhYqLS0t2s0wRVpamgoLC6PdDAAAAAAAgC4jkESf4XK5VFJS0utDyfT0dJWUlMjlckW7KQAAAAAAAF1GIIk+JSUlRaWlpbrkkkui3ZSIeL1erV27VikpKdFuCgAAAAAAQEQIJNHnuFwuLVu2TMXFxbrqqqvkdDqj3aR2JSUlKT8/X8FgUMXFxYyMBAAAAAAAvdqAaDcAiJYTTzxR+fn5uvnmm1VbW6vt27eroaFBAwcOVE1Njdxut/bu3dvhsdPpNELC+vp608pwOp1yu93KzMyUw+GI5n8qAAAAAAAA0xBIos8bNGiQsrOzNWAA3QEAAAAAAMBqTNkGAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYBsCSQAAAAAAAAC2IZAEAAAAAAAAYJu4lpaWlmg3Aj3bxx9/HHbcr19s5NgHDhwwXsfK7wREC/0JMA/9CTAP/QkwD/0JMFdv7lOhbZekiRMndrmMAWY1Bn3HoX94sSAWfycgWuhPgHnoT4B56E+AeehPgLn6Yp/qXREsAAAAAAAAgF6NEZLost42lBgAAAAAAADmMGNEJ2tIAgAAAAAAALANQ90AAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2IZAEgAAAAAAAIBtCCQBAAAAAAAA2GZAtBsA2KmiokIvvviiPvzwQ1VWVmrfvn0aMWKEPB6PfvCDH+iCCy7QgAF0C/Q9JSUluu2227p8nd/vV3Jycps/37Bhg5YvX66//OUvqqmpUUtLi9xut8aPH6//+q//0tlnn624uLjuNB3oERYtWqSlS5cqJSVFf/zjH7t07QcffKDi4mL99a9/1bZt2zRgwAAlJydrwoQJuuSSS3T66ad3qby9e/dq5cqVWr16tT799FPV1dUpISFBxx57rM4++2zl5OTohBNO6FKZgJ0i6U9z5szR888/36V6TjjhBL311lvtntPS0qK3335bK1as0N///nft2LFDRx99tNxut84880zl5OTo5JNP7lK9gFU+/PBDrVy5UuvXr9e2bdvU2Nho/Pt/+umny+v1aty4cZ0uz+znOPoTehOz+tOTTz6pRx55pEt19+/fX59++mmH55n9DGm3uJaWlpZoNwKww+LFi1VQUKB9+/a1eU5aWpoeffRRjRo1ysaWAdG3YMECFRQUdPm6tgLJ5uZm/c///I9eeumldq/PyMjQr371K40YMaLLdQM9xYYNG3TVVVepubm5SwFKY2Oj7rnnHr399tvtnjd16lTdf//9cjqdHZZZUVGh2267TeXl5W2eEx8fr1tvvVU33HADXwigx4m0P11xxRVav359l+rqKJCsqanRrFmz9PHHH7d5TlxcnKZNm6b8/HwNHDiwS/UDZqmsrNQ999yjjz76qMNzL7roIs2ZM0cJCQltnmPFcxz9Cb2F2f3pjjvu0BtvvNGlNnQUSFrxDBkNDAVDnzB37lw9++yzxvGAAQOUmpqqo48+WhUVFaqtrZUkBQIBXXvttVq2bJlSUlKi1VzAdps2bTJeezyeTgeER3pYbGlp0e233x52gzzqqKOUmpqq/v37q7y8XI2NjZKk0tJSXXfddXrppZc0ZMiQbv4WgP22bNmim2++Wc3NzV267ttvv9X06dP1t7/9zXhv8ODB8ng82r9/v4LBoPbs2SNJWrFihbZu3arCwsJ2P6B98cUXuvrqq417miQNHz5cI0eOVF1dncrLy9XS0qLm5mbNnz9f33zzje68884u/saAdSLtTy0tLSorKzOOJ02a1Kkwo7173c6dO3XNNdfoH//4h/FeYmKixowZo927d6usrEz79u1TS0uLioqKtG3bNj322GNdajdghi+//FJXXnmldu7cabwXHx8vj8cjp9OpHTt26LPPPlPrOKSVK1eqoqJCzz///BFDFCue4+hP6C3M7k+StHnzZuP1qaee2qnPPP3792/zZ1Y8Q0YLIyQR8w6dipqVlaX7779fw4YNk3TwG0Cfz6df/epX2r17tyRp/PjxKi4uZuQI+ozvf//72rZtmyTp2Wef1aRJkyIu69BpCVdddZXy8/ONb+b27Nmjp556SosXLzZGLF9wwQVasmRJN34DwH7BYFDXX3+9ampqjPc6O6IrdHppXFycZs6cqRkzZmjQoEGSpG+++UaLFy/WM888Y1wzbdo03XfffUcsb//+/fJ6vcZDr8vl0pw5c5SVlWXcy7Zs2aKf//znWrdunXHd0qVLdd5553XxNwfM153+9OWXXyorK0vSwQ+O69evV3x8fLfac9NNN+lPf/qTpINhzH333adLL73UWNrn66+/1kMPPaRVq1YZ1/zsZz/Tj3/8427VC3TF/v379cMf/lDBYFDSwRDjJz/5iXJzc8PCkZqaGj322GN69dVXjfeys7O1aNGiw8q04jmO/oTewIr+9O2332rChAnav3+/JOmPf/xjtwc+mf0MGU1saoOY1tzcrHnz5hnH55xzjhYuXGiEkdLBB9fLL79cS5YsMW6KGzdu7PKwaqC32rlzpxFGSlJqamq3yvrNb35jHF955ZV64IEHwqYJDBo0SHl5eZozZ47x3ltvvaVPPvkk4noBu7322mu67LLLwsKTzvrss8/04osvGsd33HGHbrnlFuNBUpKGDBmin/3sZ7rllluM955//nlVVlYesczly5cbYeSAAQNUUFCg7OzssC/WvvOd7+j3v/+9/v3f/914b/78+cZDMhAt3elPUvgo/9GjR3c7jFy7dq0RnkjSww8/rCuvvDJsnfHhw4drwYIF+uEPf2i8t3TpUmPkGGAHn89nhCfSwb/VmTNnHjZSy+12a968ecrNzTXeKykp0V//+tew86x4jqM/obcwuz9JUllZmfGcNWTIkG6HkVY8Q0YTgSRi2ltvvaV//vOfkg5+QLv//vvVr9+R/+wzMjJ0+eWXG8dFRUW2tBGIttAPcscdd5xcLlfEZb388svatWuXpINTce6+++42z83JydF//ud/Gsf0OfQGNTU1uueee3T33Xcbo+q76tlnnzUeTkeNGqUZM2a0ee5Pf/pTeTweSQe/ZHvuueeOeF7ot+A5OTk67bTTjnhefHy85s2bZwQ2FRUV8vv9Ef0eQHeZ0Z+k8OlwZmyI8fTTTxuvMzIydOGFF7Z57gMPPKChQ4dKkmpra/XKK690u36gs1577TXjdUZGhqZOndru+fn5+WFLFaxcuTLs51Y8x9Gf0FuY3Z+k8PtTdwZ9tLLiGTKaCCQR00KH/Z911lk67rjj2j0/NJDcuHGjtmzZYlnbgJ4iNJDs7o1y9erVxuspU6bI4XC0e35on3v33XfV1NTUrfoBKz3++OPKzs4Om6IzatQo5eXldbqMAwcO6M033zSOvV5vm1+USVK/fv102WWXGceh17bavHmzKioqjOMf/ehH7bbB7XbrnHPOMY5LSko61XbATGb0p1ah97HuBpL19fV6//33jeOcnJx2z3c4HGEfWulPsMvevXvDRiVefPHFHV4zcOBAZWRkGMd///vfw35u9nMc/Qm9hRX9STL3/mTFM2S0EUgiZrW0tOjDDz80jv/jP/6jw2tSU1M1fPhw47izOzsCvZlZN8q6urqwskJv0G0588wzjUWb9+zZE/bQCvQ0Tz75ZNiHrUsvvVTLly/XiSee2OkyNm/eHLbpTGf6Sej965///GfYt+2SwtaEdLlcSk9P71KZf/rTn8SS4rCbGf2plZkf+P785z8bo0/i4uI69fwYes4nn3yi+vr6brUB6IyqqiodddRRxvHo0aM7dV1iYqLxOvR+ZMVzHP0JvYXZ/amVmQM/rHiGjDYCScSsqqoqffPNN8ZxWlpap64L/YfiSN9yALHGrKluZWVlYaHG+PHjO7zG4XDohBNOMI7pc+gN0tLS9Oyzz2ru3Llt7qjYltD+Fh8fr7Fjx3Z4zciRI8PWBjq0n4SWecopp3RqQ7bQvl5fXx+28ylgp+70J8ncdZCl8P50/PHHd2oZk9D+dODAAW3cuLFbbQA6Y+TIkVq/fr0++ugjrVy50pia2ZGqqirjdejftxXPcfQn9BZm9yfp4ACpsrIy47i7X5hZ8QwZbQM6PgXonb788suw49CbZXuOP/544zUf0BDrvv32W33xxRfGcWpqqj7++GO9+uqr+uijj7R161bFxcVp+PDhmjhxoqZOnRq2IUao0D43cOBAHXvssZ1qw/HHH2+0gT6HnmzSpEnyer0677zzOhX6HUloP0lJSQlb1L8tcXFxOu644/T5559Lkr766qs2y+zs6LLQe11rmZGMTAMiZUZ/ksJHnwwfPlxOp1OrV6/W6tWrtWHDBm3fvl0Oh0PHHnuszjrrLF166aUaNWpUm+VF0p+GDx+uQYMGac+ePZIO9qezzjorsl8I6CKn0xm26Ux7Ghsb9d577xnHoaPArHiOoz+htzGrP0kH/3ZbZwL0799fY8aM0bvvvqvXX39d69ev17Zt2xQfHy+3260zzjhDl1xyiU499dQ267PiGTLaCCQRs77++mvjdb9+/cJ21m5P6JTt0DKAWBS681tcXJxmz56tDz744LDzvvrqK3311Vfy+XzKyMjQI488Yiw63iq0v4T2o47Q59BbLF26tNtlhP6Nhy6E3pFhw4YZD5OH9pPQ0WGd7XvHHHOM+vfvb/R/+h7sZkZ/ksIDyQEDBujiiy8+7Evp+vp61dfXa/PmzXr66ad17bXX6q677jrih7lI+pMkDR061BgpQ39CT/Xkk0+G7Vwdup6wFc9x9CfEsvb6kxR+f3I4HLr22msPG6H47bffqrGxURUVFfq///s//eAHP9CcOXOOuH6rFc+Q0caUbcSs0PVGBg8e3O6Cr6FCpwuxZgliXejQ/5aWFiOMdDqdGj9+vCZNmqSUlJSwa0pLS3XppZcaO9i3qqurM1539ptFiT6HviXSfhJ67qH9JPS4s2X269cv7GE3dIkToDcJ/cC3detWI4wcPny4TjvtNE2YMCFsja/9+/frqaee0k033aTm5ubDyoukPx16Lv0JPdGGDRv0u9/9zjg+6aSTdO655xrHVjzH0Z8QqzrqT1L456yGhgYjjExKStJ3v/tdnX766YcFi6+//rquuuoqNTQ0HFanFc+Q0cYIScSsb7/91ngdum5CRwYOHGi83rt3r6ltAnqa0A9y0sEPcHfffbeys7PD+kIwGNSjjz6qd999V9LB9VJuvvlmLVu2zDgvtL/Q54Ajs6KfmHG/Cy0D6E0OXaA/PT1d99xzj773ve8Z7x04cEClpaV66KGHjKmlpaWl+uUvf6kHH3ww7Hr6E2JRZWWlbr755rAQ/t577w0bJcz9CeiczvQn6fDPWSeddJLuvfdenX322cZmUNLBzZsefvhh/e1vfzOuy8/PDws8pdj8rMUIScSs0H8gOjs6UlLYPyT79u0ztU1AT3Po2j6vvfaapk6dGnbjkiSPx6MnnnhCOTk5xnubNm3Siy++aBzT54CORdpPQh9cD+0noceh53WnTKA32Lt3ryorK43jrKwsvfDCC2FhpHSwr5199tlavny5TjnlFOP9F1988bBAM7QvmNVHgWjaunWrrrvuurCpmtOmTTtseqkVz3H0J8SazvYnKfxz1oQJE+Tz+XTOOecc9qx22mmn6bnnngvbNfvdd9/VH/7wh7DzrHiGjDZGSCJmhXa8AwcOdPq60E4aHx9vapuAnqaoqEg7duxQZWWlRowYcdi6kKHi4uL04IMPat26dca6Ps8884x+/OMfS6LPAZ0RaT9pXetROryf9O/f3+hHoed1pcxDv4QAeoOBAwdq/fr1qq6uVmVlpdLT09u9jzidTs2fP18XX3yxDhw4oJaWFj3zzDN66KGHjHOs6KNAtFRUVGjGjBnaunWr8V5GRobuvPPOw8614jmO/oRY0pX+JElvvvmmtm3bpsrKSo0cOVKDBw9us+yBAwfq0Ucf1fnnn69du3ZJOvg567zzzjPOicX+xAhJxKyjjz7aeN2Vof6hw5iPOuooU9sE9ERDhw7Vd7/73U7tpjhw4EBdccUVxvGWLVuMHRVDpw50pc+FnkufQ6yzop+YUSaBJHqrfv366bjjjtOkSZPCnv3aMnr06LAde0N3SJW4lyF2fPLJJ7r66qvDwpMzzzxTS5YsOWIo0VPvT/Qn9ARd7U/SwcEcbrdbEydO1DHHHNNhHcccc4wuvvhi4/jjjz/W7t27jeNY7E8EkohZLpfLeL1r1y61tLR06rrQnbJCF0EHcNBpp50Wdtw6HSG0v4T2o460fgt4aBlALIq0n7R3bwq933W2zAMHDqipqanNMoFYFnofq66uDvuwFkl/OvRc+hOi7fXXX9d1112n2tpa473MzEz99re/bTO4t+I5jv6EWBBJf4pU6P2pubk5bBNRK54ho41AEjHL7XYbr/fv3x/2D0h7QteDGDZsmOntAnq7Q6d1t+7WFtrnduzY0eny6HPoS0J3U+xKP9m+fbvxevjw4WE/i6Tv7dy5M2y6z6FlArHs0HtN6M6lkd7LQs+lPyGaFi9erDvvvDNs1tfUqVO1dOnSdjfCsOI5jv6E3i7S/hSpQ/tQ6K7YVjxDRhuBJGLWiSeeGHa8ZcuWTl0Xujj6yJEjTW0TEAsOnSLQuh5KaJ9ramoKu/m1J7Rv0ucQ60466STjdWVlZadG77e0tBjrth5axqHHrUsodOTQe+KhZQKxrK37mBRZf9q2bZv27NlzxDIAuzQ3N+vuu+/WkiVLwt6/6aab9Mgjjxy2A/ChrHiOoz+ht+puf4pUZ+9PZj1DRhub2iBmpaSkKDEx0fjWe9OmTfrud7/b4XWhuy2efPLJVjUPiLrNmzfrtdde044dO7Rjxw498sgj7W5q0yo0tJek4447TpI0btw4xcXFGTfHTZs26fvf/367Ze3atSvsAZU+h1g3fvx44/Xu3bv1xRdfaNSoUe1e8/nnn4c9oIbuEtxaps/nk6TDdgxuy6ZNm4zXLpdLKSkpnboO6EnefvttrVu3Tjt37tSAAQP0yCOPdOq60ABlyJAhSkhIMI5D++hXX32l3bt3dzglL7Q/xcXFKTU1tbO/AmCKvXv3aubMmfrTn/5kvDdgwAA9+OCDuvTSSztVhhXPcfQn9EZm9Kc///nPevvtt7Vjxw41NDSooKCgUztjh96f4uLilJycbBxb8QwZbYyQREw744wzjNfvv/9+h+dv3rw57NvAM88805J2AT1BfX29CgsL9dprr6m0tFR//vOfO3Xdu+++a7x2Op3yeDySpISEBI0bN874WWf63Lp164xpo/3799ekSZO68isAvc7YsWPDFjb/4IMPOrwmdNONpKSkwz6chfabr7/+WuXl5R2WGdo/Q++VQG+yadMmPfvss1q5cqVWrFjR6RFdpaWlxuuJEyeG/WzixInGyJf9+/frww8/7LC80P40bty4sHXzAKvt27dPt956a1h4MnjwYP32t7/tdHgiWfMcR39Cb2NWf6qsrNTTTz+tN954Q36/X4FAoFPXrV271ng9duzYsL9/K54ho41AEjFt8uTJxut33nlHNTU17Z7/wgsvGK9Hjx7d4zosYKa0tDQ5HA7jePny5R1eU11drRUrVhjHF110Udi3fVlZWcbrFStWhO0MdyShfe6ss87SkCFDOtV2oLeKi4vTBRdcYBwvW7YsbC3HQx04cEDLli0zjrOyshQXFxd2jsfjCZsm9+KLL7bbhq1bt4Y9aE+ZMqWzzQd6lNDwo6WlRS+//HKH16xZs0aff/65cTx16tSwnw8ZMiTsC+mO+tOuXbvC7ovZ2dkdtgEw06OPPqp33nnHOD7mmGP07LPPKiMjo8tlmf0cR39Cb2NWf/re974X9rzWmc9ZgUAgLED8wQ9+EPZzK54ho41AEjFt8uTJxuKve/fu1b333qt9+/Yd8dy1a9eG/UNx7bXX2tJGIFoGDx6sCy+80Dh+77339Oqrr7Z5fmNjo26//Xbj4fSoo47SjBkzws7JyckxpuJs375dc+bMabO85cuXh30L+OMf/ziSXwPoda666irjgXDz5s36zW9+0+a5ixYtMkY89uvXr81709VXX228fvHFF9sc2dLc3Kx77rlHzc3Nkg4uuXD++edH9HsA0TZp0qSw9bCeeOIJffbZZ22e//nnn+v+++83jkeNGhX25XWr0P70zjvvGEsiHMmDDz6onTt3SpIcDod+9KMfdeVXALrF7/fr6aefNo5dLpeeeeaZsKmdXWHFcxz9Cb2Fmf3pO9/5TlgYX1xcrHXr1rV5/tdff6077rjDWDLhmGOO0RVXXHHYeVY8Q0YTgSRi2sCBA5Wfn28cv//++7rhhhvC1mbYt2+fli1bppkzZ2r//v2SDo426cqQbKC3uu222+R0Oo3jn/3sZ1qyZIl27doVdt5f/vIXXXnllVq/fr3xXn5+vk444YSw84YNG6brr7/eOPb5fLrjjjvCdoLbs2ePCgoK9MADDxjvnX322Tr77LNN+72Anuzkk0/WJZdcYhwvWbJEDz30kBoaGoz3Ghoa9Mtf/lIFBQXGe5dffrnGjBlzxDIvv/xyY5Tkvn37dMstt2j58uVhX8Jt2bJF119/fdiUubvuuksDBw407XcD7BQXF6f//u//No537dqla665RitXrgwbNdLc3KxXXnlFV155pWprayVJ8fHxmjdv3hE3Jjj33HPDljL4xS9+od/+9rdh63Bt375ds2bNChvNdfPNN4dNpwOstH//fv3yl780Aoy4uDjNnz9fY8eOjbhMK57j6E/oDazoT/fee2/YkgV5eXl6/vnnw3bsPnDggP7whz/o8ssv15dffmm8P3v27CPOHLPiGTKa4lo6szUP0Mvdf//9eumll4zjfv36KTU1VQkJCaqoqDC+iZOkxMREvfDCCx0uEAvEinXr1unGG28MezAcNGiQTj75ZA0cOFD/+Mc/VF1dHXbNjBkzdPfddx+xvNYwJHRKaHx8vFJTUzVw4ECVl5eH3TSPP/54LV++nIdO9Fo+n0/33XefpIMbqv3xj3/s8JrGxkZdd911YWsKHX300cZSIWVlZWFT5dLT0/Xcc89p0KBBbZYZDAZ17bXXGpu5SQe/YR89erQaGhoUDAbDQpqrr746bLQY0BNE0p+eeOIJzZ8/P+y9xMREjR07Vvv27VNFRYW++eYb42fx8fFauHBhu6ODa2pqdPXVV4d9ie10OjV27Fjt3btXZWVlxkhjSTrnnHO0dOnSTm1aAJhh5cqVYQMvHA6HTjvttC6VMWzYMM2bNy/sPSue4+hP6Oms6k8rVqzQPffcE/b8NXjwYKWmpqpfv3764osvwgJ/6WB2ETqy+FBWPENGC4Ek+oSWlhYtXLhQTz75ZNjN7lCjR4/WokWLuvVNCNAbbdy4UXfddZcqKiraPc/lcumOO+7Q5Zdf3u55e/fu1ezZs1VcXKz2bjMTJkzQokWL5Ha7I2o30BNEEqBIB7/Bvvvuuzs8/5xzztGjjz4aNpq5LWVlZbrjjjva3dimf//+uuGGG3T77bf3uLWEgEj70xtvvKE5c+aovr6+3fNGjx6t2bNn63vf+16HZW7dulX5+fn65JNP2j3vRz/6kR544AFGG8NWM2fO1Jo1a7pVRlt9zIrnOPoTejIr+9P777+ve++9t8P9LNxut37xi1+ErRPZFiueIaOBQBJ9SkVFhV5++WWVlpaqurpau3fvlsvl0imnnKLs7GxNnTqVmx/6rP379+vtt9/WmjVrtGHDBm3fvl379u3TsGHDdNJJJ+ncc8/VRRdd1KWRjBs2bNArr7yidevWqaamRnv37tUxxxyjU089VRdffLEmT57Mt9/o9SINUFp98MEHWrFihT766CNt375d+/fv17BhwzRhwgRdcsklXV5Ifd++fXr99df15ptvatOmTdqxY4fi4+N1/PHH64wzztAVV1zRI6ftAFL3+lNjY6NeffVVvfvuu9q8ebPq6urUv39/DR8+XOPGjdPkyZN1/vnnd+lZr6WlRW+99ZZWrVpl3Bv79esnt9utiRMn6rLLLtO//du/dfXXBLrtoosuanfN1M7oqI+Z/RxHf0JPZXV/2rt3r9544w298847CgQC2rlzp+Li4jR06FCNHTtW559/vqZMmaLBgwd3qU6znyHtRiAJAAAAAAAAwDYMSwEAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAAAAAAALYhkAQAAAAAAABgGwJJAAAA4AjWr1+v1NRU439btmyJdpMAAABiAoEkAAAAcAQbN240XicmJuo73/lOFFsDAAAQOwgkAQAAgCMIDSTT0tKi2BIAAIDYQiAJAAAAHEEgEDBeE0gCAACYh0ASAAAAOMSePXtUUVFhHBNIAgAAmIdAEgAAADjE5s2btX//fuOYQBIAAMA8BJIAAADAIULXjxw2bJiOPfbYKLYGAAAgthBIAgAAAIcIDSTHjx/f4fkbNmzQueeeq9TUVKWmpmrChAlatWqVlU0EAADotQZEuwEAAABAT9OVHbafe+45Pfzww2pubpYkjRw5UkuWLNGYMWMsbSMAAEBvRSAJAAAAhPj222/12WefGcdtBZK7du3Sz3/+87CRkFlZWXrooYeUkJBgeTsBAAB6KwJJAAAAIERZWZn27dtnHB8pkAwGg7r11lv1xRdfSJL69++v/Px8XX/99ba1EwAAoLcikAQAAABCBAIB4/WIESM0YsSIsJ+/+uqrevDBB7V7925J0tChQ7VgwQKdccYZtrYTAACgtyKQBAAAAEK0tX7kt99+q7lz52rZsmXGexMmTNCiRYvkdrttbSMAAEBvRiAJAAAAhDhSILllyxbdeuut+vTTT42fXXPNNbr33nsVHx9vexsBAAB6MwJJAAAA4F/27t172IY2b7/9tu677z598803kqSjjz5ac+bM0dSpU6PVTAAAgF6NQBIAAAD4l7KyMjU3NxvHJSUl8vl8xvFJJ52kX//610pNTY1G8wAAAGJCv2g3AAAAAOgpQqdrSwoLI8877zy9/PLLhJEAAADdRCAJAAAA/EtoIHnUUUeF/eyMM86Q0+m0u0kAAAAxh0ASAAAA+JfQQPLGG29URkaGcfzwww/rD3/4QzSaBQAAEFMIJAEAAAAd3NAmGAwax2lpaVq0aJE8Ho8k6cCBA7rzzjsPm9YNAACAriGQBAAAACQFg8GwDW1OOeUUJSQkqKCgQMOGDZMkNTU16aabbtLWrVuj1UwAAIBej0ASAAAAkPTpp58ar4cOHSq32y1JSklJ0eOPP65BgwZJkr7++mvddNNNamxsjEo7AQAAejsCSQAAAEBSIBAwXp9yyilhPzv11FM1b948xcXFSZLKysp0++23a//+/ba2EQAAIBYQSAIAAAAK39Dm5JNPPuzn2dnZys/PN47Xrl2r2bNn29I2AACAWEIgCQAAgD6vubk5bEObQ0dItrrxxhuVk5NjHL/00kv6/e9/b3n7AAAAYgmBJAAAAPq88vJy7d271zhuK5CUpNmzZ+vMM880jv/3f/9Xa9assbR9AAAAsYRAEgAAAH1e6HTto48+WiNHjmzz3Pj4eC1evFijRo2SJLW0tOiuu+7Shg0bLG8nAABALCCQBAAAQJ8XuqGNx+NRv37tPyYPGTJETzzxhJKSkiRJe/bs0U9+8hNVVlZa2k4AAIBYENfS0tIS7UYAAAAAAAAA6BsYIQkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANgSSAAAAAAAAAGxDIAkAAAAAAADANv8P5Dh9B1Fuv5QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "check_B(r, deadtime, bintime, max_k=250)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 3214.76it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAAQ1CAYAAADAlJPyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT1/8H8HeAALJEquLEusBttY46q9aqtdZdrdZRq9ZRrXvPWqtWq1XRqrVq3RNna+teoHVvBSqIICKCGNmQ9fuDL/eXSwYJkIG+X8/Tp7nJzbknmNwk75xzPhK1Wq0GERERERERERERkQnsrN0BIiIiIiIiIiIiKnwYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJGCwSERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJHKzdASJ6c/n7+2PVqlUAgEaNGmHr1q35bnPq1Kk4cOAAAKBbt25YtGhRvts0h//++w/Xrl1Dnz59dN7ev39/XLlyBQAwatQojB492pLdIxPcuXMHe/fuxdWrVxEbGwu1Wg1vb2/UrFkTXbp0QcuWLSGRSMxy7LCwMOzatQuXL1/G06dPoVAoULJkSfj6+uKzzz7Dxx9/DAcH097KL126hICAANy6dQsvXryAg4MDSpUqhXr16qFbt25o0KCBSe1lZmbir7/+wt9//40HDx5AJpPBzc0NpUuXRsuWLdGjRw/4+PiY1Objx48REBCAa9euITIyEomJiXByckLx4sXx3nvvoV27dmjTpk2B/N1XrVoFf39/AAX3WizoNvft24cZM2YAAEJCQvLdPwBQq9UYNGgQLl26BADYsmULGjdubPT9zfG6ePHiBQ4fPoyzZ88iMjISCQkJcHZ2Rrly5dCoUSP07t0blStXNro9mUyG/fv349KlSwgNDYVMJgMAFCtWDNWrV0fLli3RrVs3ODs759qWWq3G+++/j5SUFJMe05gxYzBy5EiT7vMme1vf+54+fYqPPvpI2D516hTKlSuX73avX7+O58+f49NPP9V5e5s2bRAdHQ0AWLhwIbp3757vY5J5FPR7sykK+nyuVqtx8uRJHD58GHfv3sXLly9RpEgReHt744MPPkCPHj1QrVo1k/oYGxuLvXv34sqVKwgPD8fr16/h4OAALy8v1K5dG23atEHHjh2N+kyUkJCAJk2amHR8AFi8eDG6dOli8v2I3gYMFomIClBaWhpWrVqFzZs3o1OnTnqDRbJ9crkcP/zwA3bv3q11W0REBCIiIvDXX3+hefPmWLhwIUqWLFmgx/f398fatWuhUChE10dFRSEqKgqnTp1CrVq1sGTJElSqVCnX9pKTkzFlyhScPHlSdH1GRgbCwsIQFhaGffv2oXPnzpg9ezbc3d1zbTMsLAxjxozBf//9J7r+1atXePXqFR48eIANGzbgu+++w9ChQ3P9YpKamoqFCxdi7969UKvVotvkcjmSk5MRERGBgwcPokaNGvjll1/w7rvv5tpPfYKDg7F27do8398SbT59+hQ//fRTgbWXbefOnUKoaApzvS42bdqElStXIjU1Vet4Dx8+xMOHD7F161YMGTIE48aNg52d/kk3arUa27Ztw9KlS5GWlqZ1e0xMDGJiYnD69Gn4+/tjwYIFaNWqlcH+PXnyxORQkchcXr16hZ9//hkBAQH49ttvrd0dygdzvDcbyxzn89jYWIwbNw7Xr18XXZ+ZmYnXr18jNDQUW7duxVdffYXx48fD0dHRYHsKhQL+/v7YsGED5HK5Vpupqal4+vQp/v77b6xcuRLLli1DnTp1DLb58OHDXB8HEZmGwSIRUQFasGAB9uzZY+1uUD6p1WqMHTtW9EHfyckJfn5+sLe3x3///Yfk5GQAQGBgIAYOHIjdu3fDw8OjQI4/f/580QhfBwcH+Pn5oUiRIggLC8OrV68AAPfu3UP//v2xZ88elC1bVm97GRkZ+Prrr3H79m3hOldXV/j6+kKpVCI0NBTp6ekAgMOHDyMmJgYbN240+IH/8ePH+PLLL4W+AECJEiVQsWJFyGQy/Pfff1Cr1ZDL5Vi6dCkSExMxceJEve2lp6fj66+/xs2bN0XXV6pUCSVKlEBqaipCQkKQmZkJAHjw4AF69uyJ7du3w8/PT2+7+sjlckydOlXri0p+FHSbCQkJ+Oabb5CYmFgg7WV7+vQplixZYvL9zPG6UKvVmDdvHnbs2CFcZ29vDx8fH5QoUQKxsbF48uQJAEClUuG3337D69evMW/ePL1tLly4EJs3bxZd5+3tDR8fHyiVSoSHhwujF1++fInhw4dj4cKF6Natm942Nb+Ienp6olatWnr31WTqaF0iY0yYMAFBQUHW7gblkznem41ljvN5QkIC+vXrh8jISOE6T09PVKlSBWlpaQgJCYFCoYBarcamTZvw4sULLFu2TG97KpUK48aNw/Hjx0XXly9fHqVLl0ZmZiZCQ0OFH6SioqLQt29f/Pbbb2jatKnedjXP597e3qhatarefTUV9A/IRG8SBotERAWoIEMKsp6NGzeKPmz37dsX48ePF0YKpKen448//oC/vz8UCgXCw8Mxffp0Yep/fvzzzz+iULF9+/aYPXs2ihcvDiDrObZ//34sXLgQaWlpiI+Px+jRoxEQEKB3ROBPP/0kfHGRSCQYPXo0Bg8eLEwBTUxMhL+/P7Zs2QIAuHr1KpYuXYpp06bpbE+pVGLs2LFCqFi0aFHMmzcP7du3F/oQFRWFmTNn4t9//wUArF+/HvXq1RNNB9S0cOFCUajYoUMHTJo0STRdMC0tDVu3bsXKlSshl8uRlJSEESNG4OjRo0ZNZ9W0bt26Ah+1UJBtxsTE4JtvvkFYWFiBtJdNrVZj+vTpWiMDjWGO18X69etFoWL79u0xadIklC9fXrjuwYMHmDFjBh48eAAA2L17N1q1aoU2bdpotXf06FFRqFitWjXMnj0b77//vnCdSqXCyZMnMW/ePMTFxUGtVmPWrFmoXr263ul5wcHBwuU2bdpg4cKFeh8Tkbnxs8aboaDfm01hjvP5tGnThFDRyckJ06ZNw+effy5MT46Li8OCBQtw9OhRAMBff/2F9957DwMGDNDZ3u+//y4KFRs3bowZM2aIfkyUy+U4cOAAFi1ahJSUFMjlcnz33Xc4evSo3iBQ8326V69eGDVqlMG/FRHljsVbiKhQWbRoEUJCQhASEmKz6ysaY+vWrcLjeFvWmCosEhISsHr1amG7T58+mDNnjmj6kbOzM4YPHy4aNXXixAncuHEjX8eWy+Wiaa+tW7fG8uXLhVARAKRSKXr37o1Vq1YJH9bv37+PP//8U2ebjx49wq5du4TtCRMm4NtvvxUFcR4eHpgxY4ZoSt327dvx9OlTnW3u3btXCFocHBywdu1adOjQQRRsli9fHr///rtoHaOlS5dCqVRqtff48WPs3btX2O7VqxdWrFihtQZZkSJF8M0332DFihXCddHR0cKXLmPZ+hTowMBAdOvWDaGhoQXSnqYdO3bg8uXLJt/PHK+Lp0+fCmtRAllfbFesWCEKFQGgRo0a2Lx5M0qVKiVct379eq32VCoVfv75Z2G7evXq2LlzpyhUBAA7Ozu0a9cOO3fuRLFixQBkvfY075uT5hfRvIyQJbKG06dPC581uL6ibTHHe7OxzHE+v3DhAs6ePStsL1q0CH369BGteViiRAn88ssv6Nq1q3Ddr7/+KoyM1JSYmCh6T23RogU2btyodf6VSqXo1asX/vjjDzg5OQEAkpKSRI8vJ80fikxd65GIdGOwSEREpGHfvn3CWmqenp6YPHmy3n179OghWptt06ZN+Tr2iRMn8OzZMwBZgd3s2bP1riXXvHlz9O7dO9djb926VQjzKlWqhMGDB+s9/qhRo+Dr6wsgK2jZtm2bzv00g7wePXqgfv36OveTSqX46aefIJVKAWStyXju3Dmt/Y4cOSL00dPTM9fRGB999BHatWsnbP/1118G99ckl8sxZcoUYcRPQaxXVVBtJiYmYtGiRRg6dKhoinlBiYqKEsIzU6ftm+N1sXHjRmFqe7Vq1TBz5ky9o249PDwwfPhwYfvmzZt4/fq1aJ8rV64IhSoAYO7cuXBxcdHbz/Lly4u+sAcFBen9u2sGi/wiSkT5ZY73ZmOZ43yuOVK8efPm6Nixo94258yZg3feeQdA1nqh2UUZNZ04cULoo1QqxQ8//GCwMEudOnXQt29fYfuff/7R+UNmRkYGHj9+LGzzhyKigsFgkYiISMPff/8tXP7kk08MBhMAROHe+fPn8zTFNFv29CAAaNq0KcqUKWP0se/fv4+oqCjR7SqVCseOHRO2u3fvbrDohZ2dHXr16iVsa943W3BwsGh6bs+ePQ320dvbG61btxa2//nnH619sqdLA1nTTHP7mwMQTakODg4WAqrcrF27Vhit0LVrV1SvXt2o+5m7zb179+Ljjz/Gpk2boFKpAGSN7jC0LqUp1Go1ZsyYITw/p06datL9C/p1IZfLceTIEWF7xowZsLe3N9hmhw4d0K9fP4waNQrTp0/X+tKo+TwqW7Ys3nvvPYPtAeLnkUqlEqZba0pISMCLFy+EbQaLRJQf5nhvNkVBn89fv36NixcvCts9evQw2J6Liws6d+4sbOf2uaBevXooXbq0wTYB8flcJpNpfSYCgJCQEOG9w83NrUCqsxMR11gkIgtLTk7Gjh07cOzYMURGRkKhUKBkyZJo2LAhOnXqhA8++MDg/adOnSr8stmtWzet6dD79+8XRjt9/fXXmDJlClQqFf755x/89ddfePjwIeLj41GkSBGUK1cOrVq1whdffIESJUrk63Hp+sXzwIEDol9hQ0JChMv9+/fHlStXAGT9Ep1zOrS/v7+wjs3cuXPRp08fpKam4siRIzhy5AgiIiKQmJiI4sWLo1q1aujduzc+/PBDURuPHz/Grl27EBgYKIyCK1euHFq2bImvvvrK6MeckJCA/fv348KFC3j8+DFevXoFFxcXlCxZEo0bN0bnzp1zrcBXWMhkMtHIpObNm+d6nw8++AD29vZQKpVIT0/HxYsX0bZtW5OPrVarRVNUmzVrlut9/Pz8UKJECcTFxQHImvY2cOBA4fbg4GDRCCxjHo/mcZ89e4bg4GBRkKL5Yb9o0aKoXbu2UW1mr5N09uxZqNVq0ci0ly9fCpcrV66ca3tA1igLTTKZLNeF1R8+fIh169YByArtpk+fnu+1lQqqzW3btgkFRQCgbdu2mDt3LsLDw/PVv2yaU6CbN2+OHj16YPr06Ubd1xyvi+vXrwtFad599100atQo1zaLFSuGWbNm6b09Li4OdnZ2UKlUqFKlSq7tAdrPI10jFjUfe6lSpbTuYwlhYWE4cOAArl69ioiICCQnJ8PNzQ1eXl6oW7cuWrZsifbt2xsMZ58+fSr64q3rPTQ/Ll26hICAANy4cQMvXryAq6srfHx80LFjR/Tq1Quurq4mt1nQ7z8qlQpnzpxBUFAQbt68ibi4OMhkMkilUnh4eMDHxwcNGzZEt27dtKbk65Oamor9+/fj+PHjCAkJQUpKCooXL45atWqhV69eaNmypcmPW5ec/37ZVq1aJXxeKFu2LE6fPi3c1qZNG2EU78KFC7WmQ2t+plq/fj1atmwJmUyG/fv3459//kFUVBRSU1Ph7e2N2rVro2/fvlpLC9y7dw+7d+/GlStX8Pz5czg4OODdd99F27Zt0a9fP6NHcEdHR+PAgQMIDAzE06dPIZPJ4ObmhjJlyqBp06bo1q2b0e8Pts4c783GMsf5/MqVK0JYJ5FIjPr80qxZM2H0440bN/D69WsULVpUuD0+Ph4SiQRqtTpf5/N3331XdJ3mNGg/Pz+9o+TN6c6dOzh8+DCuX7+Op0+fIi0tDe7u7ihevDjq16+PNm3aaH2mJ7J1DBaJyGLu3LmDMWPGCCFXtoiICERERGDv3r348MMPsWjRInh5eRXIMZ8+fYqJEydqVZrNyMiATCbDvXv3sHHjRsyZM0e05outuXPnDiZOnChUR80WHR2N6OhonDp1Cr169cLcuXNhb2+PzZs3Y8mSJVoLvIeGhiI0NBT79+/HunXrcv1C9scff2DlypXCdJRsmZmZkMlkCA0NxdatW9GhQwf88MMP+a6KrBkM54euL1DGCAkJgVqtFrZr1qyZ631cXFzg4+MjTK25e/dunoLF6OhoUfVfY6vO+vn5CcHi3bt3RbdpfoCWSqVGVT6sWLEinJ2dhUqUd+/eFX150WyzevXqRn0o17z/69evERkZiQoVKgjXHTt2DBkZGYiNjTU6fMi5xpTmFxJdclZsnjt3bq73yY052nz33XcxceJEfPzxxwBQIMGi5hRoNzc3zJ8/36T7m+N1oblOV+PGjU3qjz4//vgjvv/+e8TFxUGhUBh1n5zPI13nMGtOg1apVFiyZAn++OMPYSRrNplMBplMhvDwcBw4cADvvvsufvrpJ6NGahakhIQETJkyBefPn9fZvzt37mDbtm1Yvny5Se0W9PtPYGAg5s+fL5oGmU0ulyM1NRXPnz/HlStXsG7dOgwZMgRjx441eI67ePEiJk+eLJyDs8XExCAmJgYnTpxAhw4d8N1335nwyK3n3LlzmD59OuLj40XXP3nyBE+ePMGff/6J0aNHY9SoUVAqlVixYgXWr1+v9dy8d+8e7t27h4CAAGzatMlgSKtUKrF8+XL88ccfWiPPX716hVevXuH+/fvYuHEjevXqhenTp+e7KrLmj7f5sWXLljydv8zx3mwsc5zPNR9PuXLljHof1Oy7SqXC/fv3RZWcN23ahMzMTLx48cLgFGhNtn4+z8jIwIwZM0Sj9bMlJCQgISEBoaGh2LVrF2rWrIlly5ZpBaNEtorBIhFZRHR0NAYPHiwEJ8WKFUPlypWRlpaGkJAQ4UvguXPn0L9/f2zdujXf4WJCQgIGDRokVKjz8PBAlSpVoFarERYWJvQlNTUV06ZNg7e3t6jQhCmyf/ENDQ0VpsyVLFlSWBMnP0JCQvDzzz8Li1uXLl0a5cuXx+vXrxEaGip8QNyzZw+qVq0KuVyOxYsXA8iqyletWjXY29sjNDRUaCMhIQGjR4/G33//rXMKTPa0yYCAANH1FSpUQKlSpZCamorQ0FBkZGQAyJrG8t9//2Hz5s35Hv1pTREREcJlR0dHo6beAFkfpLM/cGc/3/JzbADw8fEx+tjZch5bs82yZcsa9eFcIpGgTJkyQqCVM8zWbFMzHDS2j9lt5ryvk5OT0Y8ZEE8FK1u2rLBouz6//vqr8OWnU6dOeQp/zdlmjRo1MGjQIHTq1MnoL1HGyFkFevLkyUY/r7OZ43WhOYJb80v1xYsXcfjwYdy8eROxsbFwcnJC+fLl0bp1a/Tp0yfX9wUHBweTHl/OKYWVKlXS2idn4ZYXL15g//79OH/+PMLCwpCSkgJPT0/4+vqiTZs26NGjB4oUKWJ0HwxZsGCBqEq8s7MzKleuDA8PD8hkMkRGRgrBW0REBAYNGiS8F1hCQkICvvzyS1EALpVKUa1aNTg7OyMsLAwJCQl4+vQphgwZAjc3t1zbNMf7z9GjRzFp0iRR4FyyZEn4+PhAKpXi9evXePTokRBsKRQKrF27Fu7u7hgyZIjONk+ePIkxY8aI2nznnXdQqVIloY9yuVwY+Zdfzs7OwmeNu3fvCmuM+vj4COdOzUJfprp48SK2bt0qPB4fHx+UKlUK8fHxon9ff39/VK9eHUFBQdi+fTuArB8sfH19oVKpEBwcLIRfUVFRGDNmDAICAnQGtJmZmRg5ciQuXLggXCeRSFC5cmUUL14ciYmJCA0NhUKhgFKpxM6dOxEaGorff//dqCUzbJU53pvzcuyCOp/n5XNBiRIlREHpkydPRMFidv9MmaqseT53dnZG2bJltfbJeT6PjIxEQEAAgoKCEBERgfT0dLzzzjuoUaMG2rVrh88++6zA3pPHjh0rGlHs5uaGSpUqwdXVFS9fvkRkZKTw97h//z769euHQ4cOCetREtkyBotEZBHZU3GyK9x99tlnwpSthIQELFmyBPv37weQVSlv7ty5WLlyZb6OefDgQQBZH/SnTZuGjh07CsfMyMjA5s2b8csvv0ClUkGlUmHZsmWiyrSm2LBhAwDxtKJmzZoVyDSznTt3AsgayTRv3jzRr+PBwcEYMmSIMFril19+QVpaGiQSCYYPH45vvvlG+PCdmpqKn376SahC+Pz5cxw5ckS0dk629evXi77UffTRR5g4caLoS3daWhp27dqF5cuXIz09HWFhYRg/fjz++OOPXNdK08fb29uoaTnGtJMXmqNOTAlINffNOXIlL8e2s7Mz+guioWNrbuc2TVhT8eLFhS8vOdvUXGvO2L+Rl5eXMI1KV5umunTpkrCUAJA13c+Q+/fv47fffgOQdT6YMWNGvo5vjjYXLlyY7z7psm3bNuFv1aRJE52v99yY43WhGbR4e3sjNjYWs2bN0iruk5aWBplMhrt37+KPP/7AnDlz0KlTJ1Mfgk4JCQmiIgi+vr46v8Rqjsa5evUqNm/eLHz5yxYXF4e4uDgEBQVh7dq1+PHHH/M9lS17RF62b7/9Ft98842oamxGRgZ27NiBJUuWQKlUIjU1FcuWLcOaNWvydWxjzZo1SxQ69e3bF2PHjhVGLCmVShw7dgzz5s3Dq1evRNP99Sno95/4+HjMmTNHCMx8fX3x448/ao3YT0tLw549e7B06VIhtPztt98wcOBAoQBVtmfPnmHKlClCm56enpgzZw46dOggrJUnk8mwcuVKbN++Hffv38/1ceemePHiwmcNzeVUOnfurLWcSl5kT0t97733MHv2bNFItkuXLmHkyJGiHyiSk5Ph6OiISZMmoU+fPsLf6NWrV5g5cyZOnjwJIOtcGRQUpPO9ff78+aJQ8fPPP8eoUaNEFeBfv36NDRs2CCMjr1+/jtmzZxus4p4bHx+fAvmskdcR6uZ4b87LsQvqfJ6XzwVA1ntn9veD/H4uCAsLw59//ilsN2nSRHSuBLJ+tND8UevPP//E999/r7Ve7/Pnz/H8+XOcPn0aa9euxZIlS/K95M/Zs2eFUNHOzg6zZ89Gz549ReeWpKQkrFu3DuvXrweQ9TdZs2YNZs6cma9jE1kCg0UishgXFxds2bJFq7CBl5cXFi5cCFdXV+FL1LFjx3D9+nWttXxMVbRoUezatUtrJJSTkxO++eYbJCUlCeHAnTt3EBsbm+dQypxKly6NXbt2oVixYqLrq1WrhsmTJ2PSpEkAICrMMGjQING+Li4umDt3Lm7duiV8Ub548aJW0BAVFYUVK1YI2/369dO5rlmRIkUwaNAg1KpVC4MGDYJcLseVK1ewf/9+fP7553l6nM2aNTNqbR5z0fzSa0plX81RODkr1RpL836urq4GF3I39th5fTya++ZsU3Pb2Dbt7Ozg4uKCpKQkABBN+TaVTCYTfciWSqWidSVzyszMxNSpU4UAYPbs2fkeDW2ONs0hMjISS5cuBZD1+jd1CnQ2c7wuNKdapqamom/fvsI0tiJFisDX1xeOjo4IDw8X1uBMTEzExIkTIZPJ0K9fv7w8FIFarcasWbNEj01XVdacFUSzp3Db29ujQoUKKFGiBBITE/Ho0SNhSnxcXBxGjBiBefPm5VrcyJDsdUkBoHXr1jqn0zo5OQnn3+x/6wsXLiA1NVVrRFe5cuVEX6rz69q1a0J4BADDhw/HuHHjRPvY29ujY8eOqFq1Knr37q01rTknc7z/7Ny5UzjnuLu7Y8OGDTrDnCJFimDgwIGws7MTXiuvX7/GnTt3tD6LrFq1SpgB4OzsjM2bN2tNq/T09BTODf7+/gYft62oWbMmNm/erBXINGnSBN98840wnT37sS9duhTt2rUT7VusWDH8/PPPaNu2rfA6v3jxolaQd+3aNezevVvYnjx5ss7XYNGiRTF+/Hj4+flh/PjxAIAjR46gR48eeZ5l0qVLF3Tp0iVP9y0I5nhvNvexDZ3P8/K5IOe++flckP2erLn8j66Rxk+ePBEVnskO56VSKSpWrIhixYrh1atXePTokTC9PyIiAv3794e/v3++1kvVHE355Zdfok+fPlr7uLu7Y+LEiUhMTBReG8eOHWOwSIUCq0ITkcWMGTPGYLXUyZMni6YtZI/Uy4+vvvrK4PTKnG/sBfmlqyB99913WqFito8++kg0xahs2bJ6gxaJRIJWrVoJ27qm7W7evFkITMqXL59r9diGDRtiwIABwnb2qIfCSHN9p5xfrAzRXO/J2OrEOWWPkCnIY5vj8RREPzXbMEVmZia+++470TpK/fv3N7h+16+//orQ0FAAQPv27dGhQ4c8HdvcbRa07CnQaWlpAICJEyfmufqlOZ5Hml8if/zxRzx9+hROTk6YNm0aLl++jD179mDbtm0IDAzE6tWrhVEwarUaCxcuxLVr1/L0WLL98ssvolCsTp06oiql2TQriAJZ59CBAwfi9OnT+Pvvv7FlyxYcPHgQ//77L8aOHSuMPlEqlZg7d26++qk5Cii3f7uePXuifv36+OyzzzB06NB8Vac3VvasACBrRL2hUXNVq1bFmDFjcm3THO8/mgWnPv/881xHiOUMymJjY0XbmZmZoqq6Q4cONbhW28iRI41ax84WTJkyRe9rPOdSD++//77W3ypbkSJFRKGfrs8a2aMvs9vSFSpq+vTTT0Xn2o0bNxrc35ZZ87PGm/a5IPu97s6dO8J17du3R4MGDbT21ZwGDWQFimPGjMGFCxdw5MgRbNmyBUeOHEFgYCC++uor4bN1eno6xo0bp7VkjSk0z+e6pmhr+vLLL9GwYUN0794dvXv31hohT2SLGCwSkUW4uLjkOorN0dFRVHDj/PnzogWm80Lfh95sZcqUEY3qyB5RZUskEonBx+Hq6ioaLdWyZUuDo900R2TqerwnTpwQLnfq1ElrCpgumoVvwsLCCmQ9KWvQ/LXb2BGDAETr7xhbNMISx85rm5pTCXO2qbltypR3Q20aIzMzE6NGjRJVzq5bt64wgkWX+/fvC1OKsqcq5pc52jSHrVu34urVqwCywpe+ffvmuS1zPDc1v5gmJiZCKpVi/fr1+Oqrr0TrZdrZ2aFt27bYtWuXUPFToVDka5mJX3/9VajkDWSNiPrll190PjbNab52dnZYvnw5pk+fLpqqCWSN5hkxYgTWr18vPG65XI4FCxbk+X1M8xgHDhzA7du39e7r5eWFnTt34ueff8aYMWPytdaesTSnrXfv3j3Xdch69OiRa+hgjvef7du34/Lly9i7d6/WSH5dck7lzPml/sqVK0JwK5FIcv1sY2dnp3N0kq3x8vIyWIgk5w84rVu3Ntieoc8a6enpoinQ3bp1M6qPmv/Wly5dynMYZW3meG8297ENnc81ty35eNRqNWbPni0qhlK+fHm9o/M1R587OTlhy5YtGDlypNYP99lLKGkuUZKcnJyv6fea5/PNmzfrLCKVzc/PD9u2bcPChQsxatQok8JaImthsEhEFlGvXj2jqr1q/sKYvZh6XkmlUp0L8eekWTUuZxVlW1CmTJlcF7zX/NBRsWJFg/tqfmnPWckxOjoaz58/F7YrV65sVB+rVq0q6oNmxdfCRPNDbs6/jSGaH4iN+SJsqWPntU3NEVqG2sy5LpGxbZpa0TM5ORnffPONKMgoU6YM/P399f69c05XnjlzZr4XQDdHm+YQGRmJZcuWAcg6N/z4449GVe/WxxzPzZz9GTJkiMFQo1y5cpg8ebKwfffuXdy6dcvovmRbsmSJaKqtVCrFihUr9I4I7Nq1K27fvo0///wTu3fvznV0apMmTUQjr+7fv4/r16+b3E8ga9RN9t8pOTkZvXv3xuDBg7FlyxaEhYXlqc2C8uTJE9EIHGOWLXFzczNY7d6c7z+enp6oU6eOwdGKcrkcd+/eFY2kA7TPc9mBPZD1vDRm+ZQPPvgg132srUqVKgZvzxlu5Oezxp07d0Sft4z9t9Z8/mT/exVG5nhvNvexLf1ZIzdyuRwTJ07Enj17hOs8PDywevVqvRXiR44cievXr+PQoUPYs2cP6tevb/AY3bp1E63pe+LECTx79sykfmZr3769cDkmJgafffYZvv32W+zZs0ermjVRYcQ1FonIIowJ+ADtD6oxMTF5rm7p4eFh1C+nef1AZCmmBhe5hZCGAoac05UmTpyIiRMnmnR8QHvqWGGRsyiCsTT3za06sT6aVWRNObbmyK+cxzbH43F2dhbW18prm6YEiy9evMDw4cNFxQ9KlSqFP/74w+AX+tWrVwvTldu0aYPPPvvM6GNass2CplarMW3aNGEK9Lhx44yu0qmPOZ5HLi4uwnRoiURi1JqJn332GebPny+MFgsKCsJ7771nVF8yMzMxe/ZsobgW8P+hYm7rtDk7O5v0PtSvXz/RiMjAwECd0/JyU7lyZQwbNgxr164FkPVvGxgYiMDAQABZI8KaNm2KFi1aoEWLFnq/TJuDZqgIGF8JtnLlynqnh1vq/ScxMREPHjxAZGQkIiMjERUVhcePHyM8PNyoHxc1H7uxj7tcuXKiCri2yJKfNXJWNM7riM6cz8PCwpqfNcz1uaCg2zQkOTkZY8aMEc6FQNb6hL///jv8/PwM3tfNzc3g0gU59e/fX1QUJigoKE/riLds2RKdOnUS2pLL5Th58qSwJIePj49wPm/WrJnoMyFRYcBgkYgswtgvPDkXfc7r4tSAaeu82DJTPzzmZ2RSfv7eBdFOUFBQgayb9PXXX+epCEz2VEvg/xenN4ZmQQLNNkyhWV0yJSUFarXaqH9LzX7mPHZeH4+hNosWLSrcbmybKpVKtOabsX+j4OBgDBs2TDSKqXz58ti0aZPBdRXv3buH33//Xejv999/b9TxDDFHm+awZcsWIbipV6+eaP25vDLH68LV1VUIFitUqGDU1F1HR0fUrFlTGDGmOU3ZEJlMhtGjR4sqiRcpUgQrVqzId+VmXUqWLIny5csLU3JzhiimGDt2LEqWLInly5drFTeIjY3FgQMHcODAAUilUjRv3hxDhw7Nd9EzY2QX1MmWW8iUzVAVXXO//5w5cwabNm3C1atXDf6I6ODgYHBaZkJCgnDZ2MctkUjg7u5u08GiJT9r5KdQhyZjqozrcujQIRw+fDjfx580aZJJIVU2c7w3m/vYhs7nmq9rcz+e6OhoDB8+XPiRD8gqGLR+/XrUrl3b6GMbq1atWpBKpcKPDvk5ny9atAgVK1bE+vXrtc4F2T907Nq1C0WKFEGbNm0wYsSIPA+uILI0BotEZFNyrkX1poSD+ZGfD++myvllqmHDhnn6VdxQ6GNIbGys6BfovPr000/zdD/NEXA5vzgbEhcXJ1zO69pmmsdWKpV49eqVUZWGDR1bc9qfKY9Hs2JvzvXGvL29ER0dbVKbCQkJoi/yOdvU5fTp05gwYYIokKxevTrWr19v8P6ZmZmYNm2a8FyeNm1arsUacmOONs3hyZMn+OWXXwBkhQQLFiwwab0rfczxuihWrBhiYmKEy8bSfE0YEyo8fvwYw4cPFy267+npiTVr1uQ6DS4/ihcvLgSL+QnMJBIJvvzyS3Tr1g0nTpzAyZMnERQUpFVdWS6X48yZMzhz5ozO6swFLa/LhhgarWyu9x+5XI4ZM2bg0KFDOvd3cXFB5cqVUbNmTbz//vto0aKFwanL5njstsCanzVyVow2Vl7Pw5GRkQXyWeObb77J0/3M8d5sLHOcz/Papua+xjye27dvY+TIkaK/Q9myZfH7778bPTPKVA4ODvD09BQef37O51KpFKNGjUL//v3x999/49SpU7h8+bLWKM+0tDT89ddf+OeffzBr1qxCsUYrEYNFIrKInF+C9Mn5K7Ylp3aR9t971qxZuU4reZNoTmtLTU1FfHy8UUGhZrGA3NadMubY2W0aEyxqrs2T89jvvvuuaD9jRkGq1WohOMzZRvZ29hpmuip96pKzmELONnPavn075s+fLwojmzdvjhUrVuQ6Quj48ePCSAZ7e3v8+eefomlMOWlWgj98+LBo3b7s0SjmaNMcNmzYIEyBdnV1xY8//mj0fZcsWSIadaK5zpw5XhdVqlTBgwcPAJhWNMuU4kE3btzAiBEjRAFkuXLlsH79erN9Cc2m+UXRmPWFc+Pi4oIuXbqgS5cuUCgUuHPnDi5fvoyLFy/ixo0bor/L2rVrUa1aNXzyySf5Pq4+Od8rEhMTjZq6Z2g0k7nef5YtWyYKFcuWLYsuXbrgvffeg6+vL0qVKiU6L+ZWREJzZoUpz11TRnK96XL+Wxtzbn+TmOO92VjmOJ9r9sXYzwUvXrwQjdrL7fGcPHkS48ePF51ba9asiXXr1uU5ZDWW5pIzBXE+L1q0KL744gt88cUXyMjIwI0bN4Tz+d27d4XPPkqlEt9//z1q1KiBunXr5vu4RObEYJGILMLYhYlzFmvJ79pgZJqca9bFxMRYNFjs3r27qDK4pdWoUQMSiUQYOfvw4UO0aNHC4H1SUlJEH6TzGhqVLVsWnp6eQgjy8OFDoz5IBgcH6z12zZo1hctpaWl4/PhxroFKeHi46IN79erVtdrcv3+/1rENefjwoXC5aNGiKFu2rN5916xZg+XLl4uu+/zzzzF37txcq84C4i8ASqXSpFEp2VORsmWPRjFHm+ag2c+EhAST+mmoCII5Xhea55Xo6GhkZmYaNaJLc1p8zsrMmoKCgjBy5EjRF9c6depgzZo1Ro8qVqvVWLFiBV6+fImXL1+iXbt2oqq0+qhUKlEAULp0aaOOZywHBwfUr18f9evXF4LTbdu2YdWqVcK/0ebNm80aLPr4+Ii2w8LCjCpiYmgaoTnef168eIEtW7YI2x9++CFWrVpl8LmW24gkzc8lxhaYk8lkBTbV+02g69/aklM+R48ejdGjR1vseDmZ473ZWOY4n2s+nidPniAtLS3XHxo0PxdIJBKDr/WDBw9i+vTpomIvrVu3xtKlS40O+pKSkrB+/XrhfN6vXz+jRsrKZDLRoIeCPp87OTmhSZMmaNKkCcaOHYvY2FisXbsWO3bsAJD1PrRlyxYsXbq0QI9LVNBYFZqILOL27dta05x1uXjxonC5dOnSBr84UsGrWrWqaDTGv//+a9T9EhISMHXqVKxcuRL79u0TfakuTNzc3FCjRg1hW/P5qM+///4r/Lpsb2+PRo0a5fn4mlVxjTl2cHCwaEpQzul7VatWFY16vHTpUq5tBgUFCZeLFSum9WFf8/HFxcXhv//+y7VNzcdiqPLvb7/9phUqjhs3DvPnzzcqVCTzMMfromnTpsLltLQ00fNOn6SkJNG6WvrW07py5QpGjBghChXbtm2LrVu3mrRUgUQiweHDh7Fnzx6cOnUKR48eNep+d+7cEYVIeSnckp6ejvPnz2Pz5s2YO3eu6HWek6enJ0aNGiUqKGBs4JVX7777rsnnFoVCgdu3b+u93RzvP4GBgaIRiFOnTs01wNYMPADtom716tUTLsfGxhq11mdeK4O/qd577z3RCD1j/60fPXqE6dOnY/Xq1Th48KBovcvCxBzvzcYyx/n8/fffF96jlUolLl++nGubmsetUaOG3vVX//zzT0ybNk0UKvbp0werV682afSgs7MzNm7ciH379uHMmTM4deqUUfcLCgoSfX/Jy/k8MTERZ86cwYYNGzB79myDyyl4e3tjzpw5onXCzX0+JyoIDBaJyCLi4uJw5swZg/skJiaKKna2bdvW3N0qcJZco8gc7Ozs0LJlS2H7wIEDRi2yvnXrVhw4cACrV6/GjBkz8OrVK3N206zat28vXD58+LAwtVSfnTt3CpebNm2ar+n77dq1Ey6fOXMm1+qmmseuXLmy1hcNiUSCjz/+WNjes2ePwaIFKpUKe/bsEbbbt2+v9Zz29fUVTYPatWuXwT7GxMTg7Nmzwra+UVQnT54U/SJvb2+PhQsXYvjw4Qbbz6l79+4ICQkx+j/NL0ijRo0S3ZYdgpqjTXNYtGiRSf3UtGXLFr23AQX/uqhRo4ZohNL69etz/fFp165dwhcyqVSKVq1aae0THR2Nb7/9VjSyp3fv3vD398/Tmr2a/5ZBQUFG/WiSXcUZyAr9chsNpItcLsewYcOwYMEC7Ny5E6dPn871PlWqVBEuS6VSk49pipznlv379+c61ff48eMGgyBzvP9orgsHGLcm39atW0XbOadGN2nSRPR81hwRqU9u50lTFfbPGl5eXqIR+du3bzdq7crffvsNAQEBWLlyJaZPn27w/cyWmeO92RQFfT738PAQ/bCZ2/M9JSVFVDynQ4cOOve7e/cupk6dKvrbjBkzBnPnzs11KYycpFKp6EeBo0eP5nrOUigUQtE2IOscqxnKGismJgbDhw/H4sWLsXv3blEhMX0seT4nKggMFonIYgyNulAqlZg1a5bwhcDe3r5AqplamuZC8zkXYy4svv76a+GyTCbD5MmTRVMsc7p7965oPbY6deqgVq1aZu2jOfXo0UOYwhMfH4958+bp3Xfv3r24cOGCsJ3f52y7du2EL76ZmZmYOnWq3vW+Lly4gL179wrb/fv317lf3759hS8gwcHBWL16td7jr1ixQhiBaGdnp7fNL7/8Uri8a9cuvSMe5HI5pkyZInxhLFOmjM4fDGJjYzFjxgxhWyKR4KeffrLqtHgSM8frYuDAgcLl69ev47ffftPbZs7nbseOHbXW1VIqlZg4caIojOrduzfmzZuX5yI2PXv2FC4rFArMnj3b4Bp8GzduFP2I9tVXXxm19mBO7u7uopEx69atMxjKqdVqHD9+XNjOy5dfUw0aNEgY/RcfH4/Zs2frDUdiY2OxYMGCXNss6PefnJVmNZ+Xuqxbt070QwigXazF2dlZ9NzdtWuXwR9OAwICcP78eYPHNdWb9lnj8ePH+OGHHwz+uHD69GlRGNWuXbs8F0uzBeZ4bzaWOc7nmp8Lzpw5IyyZosvcuXOF85mLi4voPJstJSUFEyZMEL3+xo8fj5EjR+ptNzeax5HJZLmekxYtWiSsBQwAw4YNy1Og6+vrK1oC5pdffjH4us3IyBCdhyxxPifKLwaLRGQxsbGx6NWrl9aUj6ioKAwfPhz//POPcN3IkSO11nAqDDS/xNy6datQrqlUq1Yt9O3bV9g+c+YM+vfvrzWFLTMzE9u3b8egQYOED0j29vaYNm2aRftb0IoXL44hQ4YI2/v378eECRNE1QvT09Oxdu1azJkzR7iuZcuWotE2Ofn5+Qn/6ftS4OjoiPHjxwvbFy9exNChQ0WLpisUCuzZswejR48Wpgb5+vqKpkFqqlatGrp16yZsr1q1CgsWLBAVHUhKSsKPP/4oGmnVu3dv0S/mmnr37i2MWlQoFPj222+xd+9eUeASFRWFIUOGiKZETZo0Sec0xOXLl4sKbAwbNgyfffaZzmOTdZjjddGzZ0/RKJdly5Zh9uzZopG6KpUKR48exYABA4RRNe7u7jqrHh85ckQoLARkVRXW7EteNGjQQDTKNjAwEIMHD0ZYWJhov7i4OMyePRs//fSTcF3NmjVFfzNTaQYvT58+xZAhQ3Dnzh2t/WJjYzFu3Dhcu3ZNuE4z+NJsQ/M8NHXq1Dz3Dcgq4KD5Jf+vv/7CiBEjtNZUDgwMRJ8+fbRGD+pS0O8/TZs2FQUBc+fO1Tn68/bt2xg1ahSWLVumdZtmZfps33zzjTDiVq1WY/To0di4caMoLEhLS8OqVaswc+bMXB+3qTQ/a1y6dMlg+Gqr2rVrJxp1vHv3bgwbNkxr2mdycjLWrFmD7777TggeXVxcRO+VhZE53puNfY2b43zepk0b0Yj8WbNmYd26daLXRHx8PMaNGycKiEeOHKmzUN2mTZtEa7J26tQJw4YN03lsY3322Wd47733hO2AgACMHTsWMTExov0iIyMxatQo0ejlNm3aoHPnznk6rkQiweDBg4Xtu3fvYsSIEVrvIwAQERGBoUOHCo/dzs6uUA60oLcPFywiIoto2bIlrl69iujoaHz11VcoU6YMypUrh9evXyM0NFT0K3WHDh3y9YukNfn6+gqXnz17ho4dO6Jq1apISkrCxo0b9a4hY2umTZuGqKgo4VfqW7duoVevXihVqhR8fHyQnJyMiIgI0RcuiUSCmTNnon79+tbqdoEZPnw47t69K/xi/Oeff+LYsWPw8/ODo6Mj/vvvP9GH/3LlyokChfzo1q0bbt68id27dwPIChfbtWsHPz8/uLm5ISwsTDRyydPTEytWrDC4BuGMGTMQGhqKe/fuAcgq7LBnzx5h6nRISIhoKlTt2rUNhg6Ojo5YuXIl+vfvD5lMhtTUVMycORPLli1D5cqVhbXwNEcvffnll+jYsaNWWzExMaIvGUDW803zQ7gxfvrpp0I9eqUwKOjXhUQiwS+//ILBgwcLo0J2796NgIAAVKxYEcWKFUN4eLhopLtUKsXSpUt1LqC/bt060XZycrLJxXK+/vpr0dpWADB//nxERUUJr59///0XHTt2RKVKlVCyZEnIZDKt53vVqlWxfv36fE1ha926Nbp37y6M/Ll//z4+//xzeHt7o0KFCrC3t0dcXBzCw8NFx+7Xr5/BHzkK0tChQ/Hw4UMcO3YMAHD27FmcO3cOvr6+KFq0KKKiooQv7UWKFEGDBg1yHTVYkO8/5cuXR69evYTzqUwmw4gRI1CiRAmUK1cOKpUKz549E4WeDg4OKFasmHCdrkDU0dFReO7GxsZCLpfjp59+wurVq+Hr6wu1Wo3g4GDhvNqoUSOEhoaKfkDJD83PGvfu3UOHDh3g4+ODjIwM0bRVWyaRSLB48WIMGjQI9+/fBwCcO3cO586dg4+PD0qVKgWZTIbIyEjReqlSqRQ///xzofzxOaeCfm82hTk+5yxZsgRffvkloqKioFAosGzZMqxfvx5Vq1ZFZmYmQkJCRCMQW7durfO9Pi0tTWtJgujoaJM/F0yaNElUaMbOzg4rV65E3759hR9A/v77bxw7dgxVq1YVXvc5A79GjRrp/NHBFH369MHJkyeFGR5BQUHo2LEjypcvjzJlygDIKk6Ws8DVpEmT9AbJRLaEwSIRWUSNGjUwYMAATJw4ETKZDM+ePcOzZ89E+0ilUnz99dcYO3ZsnqetWdvHH3+MGjVqCF+S4+PjhS/FwcHBZl1frSA5Ojpi3bp1WLlyJTZt2iT84vz8+XNRVdZsJUqUwJw5c0RrBhVmDg4O8Pf3x/fff4+AgACo1WrI5XLhw7+mevXqYcWKFTp/cc+r77//HsWKFcOGDRsgl8uhUqm0CgoAWesqrlixItdqkm5ubvjjjz8wefJkYbROWloabt26pbVv69atsWTJklzXo/P19cWWLVswYcIEYYpWQkKC1nRNe3t7DB06FGPHjtXZzsmTJ7Wmlhq7kL8mzS+eZB7meF14eXlhy5Yt+PHHH3Hw4EGo1WooFAqdRYHKlCmDxYsXo2HDhlq3hYSEaBXR0PWayc2nn36qdZ2bmxu2bNmC+fPn48CBA8IPYeHh4ToLd3Tu3BnTp09HsWLFTD5+TvPnz0fRokWxZcsWYYRybGyszvVXXVxcMHz4cLNWHs/JwcEBK1aswM8//4yNGzdCpVJBrVZrrdNZtGhR/Pzzz7hy5UquwWJBv//MnDkTSUlJouI7cXFxOgPDypUrY/78+Th16pSwtprmSFBNVatWxZ49ezBy5EghGEtOThaNmgWyClusWLGiQEdh9+rVC9u3bxdC2+joaGH9z6dPn6JcuXIFdixzKlq0KHbs2IEFCxZg3759wnM8MjJSVIU4W4UKFbBgwYI8FdCwReZ4bzaWOc7n3t7e2Lp1K8aPHy+8DpKSkrReE0DWiPU5c+bo/Lx/6dIlrRD+5s2bJjy6LLrOhd7e3ti7dy+mT58uLGGgUql0ri1sb2+Pfv36Ydy4cXla0kKTnZ0d1qxZg1mzZol+TI2KihLNSslWrFgxTJgwQe9sFCJbw2CRiCymRYsWOHLkCLZt24bTp08jOjoaEokEZcqUQYsWLdCrVy9RUYjCSCqVYuvWrVi9ejVOnz6N2NhYKBQKlChRotBNi7a3t8e4cePw5Zdf4uDBg7h48SLCw8OFD3teXl6oXr06WrdujU8//dSk6nyFgaOjI3788Uf07t0bBw4cwL///ovY2FhkZmbCy8sLderUQadOndCuXbsCD8IlEgnGjRuHzp07Y9++fQgMDMTz58+RlpaGokWLonr16ujQoQM6d+6ca4XTbO7u7lizZg0uXbqEw4cP49q1a4iPj4dSqUTx4sVRr149dOvWDc2bNze6n35+fjh48CCOHDmCY8eO4eHDh3j58iWkUinKlSuHxo0b44svvjD4a7sxFVXJdpjjdeHu7o5FixZh4MCBOHz4MC5evIjnz58jOTkZHh4eqFGjBtq1a4euXbuK1pbTZO7nkaurKxYuXIghQ4Zg3759uHLlCp4+fSr00dvbG02aNMGnn35aoGvM2tvbY+rUqejduzcOHTqEa9eu4fHjx0hMTIREIkHx4sXh4+ODVq1aoWPHjkYVJ8lWUAVAJBIJJk2ahC5dumDXrl24dOkSoqOjYW9vj7Jly6J169bo168fvL29jSpaABTs+0/26MIePXrgwIEDuHXrlnDuc3V1RZkyZVCtWjW0atUKbdu2hb29PVQqlRAshoaG4s6dO6hTp45W26VKlcK+ffvwzz//4PDhw7h37x5kMhk8PDxQpUoVdOnSBV27djW50ERuihYtij179mDVqlUIDAwUfsAsWbIk4uPjC02wCGStWTlv3jwMHjwYhw4dwr///ovIyEjIZDI4ODigePHiqFmzJj7++GO0a9fO6Pe8wsIc783GMsf5vHTp0tixYwdOnDiBo0eP4s6dO4iPj4ednR28vb3x/vvvo1evXqIpyTmZ+3zu5eWFtWvX4vbt2zh48CCuX7+OmJgYpKWlwdPTE6VLl0aLFi3QqVOnXH+4NYWzszOWLFmCr776CkeOHMHNmzfx5MkTJCcnw8HBAe+88w6qVKkinM8LyywnIgCQqHMrwUdERERERG+Eo0ePYty4cRgwYICoaBIRERFRXhTOuYZERERERGSy7GVITBndSERERKQPg0UiIiIioreAUqkU1hps0aKFlXtDREREbwIGi0REREREb7ikpCRMnjwZ9+/fR4sWLUTVUomIiIjyisEiEREREdEbTqVS4fLly2jUqBGWLl1q7e4QERHRG4LFW4iIiIiI3gJPnz5F2bJlC6wiNBERERGDRSIiIiIiIiIiIjIZp0ITERERERERERGRyRgsEhERERERERERkckYLBIREREREREREZHJHKzdAbKc69evi7bt7JgrExERERERERG9jVQqlWj7/fffN7kNBotvsZxPICIiIiIiIiIiImNxyBoRERERERERERGZjCMW32JvylRozZGXb8pjIiLT8DxARDwPEBHPA0TE84BpCmImK4PFt4idnZ3wpLGzs0O9evWs3KP8UygUuH37trBdu3ZtODjwaU30NuF5gIh4HiAingeIiOcB0928eVOUE+UF41siIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjIZg0UiIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjIZg0UiIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjIZg0UiIiIiIiIiIiIyGYNFIiIiIiIiIiIiMhmDRSIiIiIiIiIiIjKZg7U7QEREREREZG1qtRoqlcra3aA8UiqVWtsSicRKvSEia3jTzwN2dnY2+XgYLBIRERER0VtHrVYjNTUViYmJSE5OhkKhsHaXKB/UarVoOywszCa/gBOR+bwN5wEHBwe4ubnBw8MDLi4uNvH4GCwSEREREdFbJTMzE5GRkZDL5dbuChUgBwd+vSV6273p5wGFQgGZTAaZTAapVAofHx84OjpatU9cY5GIiIiIiN4aDBXfTBKJBA4ODsJ/tjCKh4gs6207D8jlckRGRiIzM9Oq/Xizo1wiIiIiIqL/UavVWqGiq6urMKXM3t7eir2j/Mie2p7NVqYIEpHlvOnnAaVSKSzhkZKSAuD/w8XKlStb7bEyWCQiIiIiordCamqqKFT09vaGl5eXFXtEBUWtVouCYXt7+zcqUCCi3L3p5wF7e3s4OjrC09MTCQkJiI2NBZAVLqampsLV1dUq/eJUaCIiIiIieiskJiYKl11dXRkqEhFRoeTl5SUKEpOSkqzWFwaLRERERET0VkhOThYue3h4WLEnRERE+aP5PsZgkYiIiIiIyIzUajUUCoWw7eLiYsXeEBER5Y/m+5hCoYBarbZKPxgsEhERERHRG0+lUom2WaiFiIgKs5zvYznf5yyFwSIRERERERERERGZjMEiERERERERERERmYzBIhEREREREREREZmMwSIRERERERERERGZjMEiERERERERERERmYzBIhEREREREREREZmMwSIRERERERERFRi5XG7tLhCRhThYuwNEREREREREpgoPD8fevXtx9epVREVFITk5GS4uLihVqhQaN26MXr16wdfX16i20tLSsHfvXpw4cQKhoaFISUlBsWLFULlyZXTs2BFdu3aFo6NjoW7LElQqFXbv3o2LFy/C39/fqPusWLECv/76K0qWLIkLFy6YuYdEVNAYLBIREREREVGhIZfLsWTJEmzZsgVqtVp0W2JiIhITExEaGopt27ahb9++mDp1qsHwLSQkBN9++y2ioqJE17948QIvXrzApUuXsHnzZixbtgx+fn4G+2arbVlCbGwsRowYgfv376NRo0ZG3+/MmTMAgFatWpmpZ0RkTgwWiYiIiIiIqNCYPHkyjh49Kmz7+fmhSZMmcHNzw6tXr3D58mU8evQIarUa27dvR3x8PJYvXw47O+2VwKKiojBgwADIZDIAQPHixdGuXTuULFkSUVFROHHiBBITE/Ho0SMMHjwYu3fvRtmyZXX2y1bbspSIiAjcv3/fpPvExsbi4cOHABgsEhVWDBaJiIiIiIioUDh06JAQKkqlUsyfPx9du3aFWq1GamqqsN9ff/2FuXPnQqlU4tixYwgICMDnn3+u1d60adOE8K5FixZYvnw53NzchNsnTJiA0aNH4/r164iLi8OcOXPw+++/6+ybrbZly7JHKzo5OaFp06ZW7g0R5QWLtxAREREREVGhoBmeTZo0CV27dtW53+eff46xY8fqvF+2wMBAXL16FQDwzjvvYMWKFaLwLvv6devWoUSJEgCACxcu4Nq1a4WmLVt39uxZAEDjxo1RpEgR63aGiPKEwSIRERERERHZvCdPniA0NBQA4Obmhj59+hjc/8svv4RUKgWQNU332bNnotv37dsnXB44cCBcXV11tuPu7o7BgwcL2wcOHNDax1bbsmUZGRn4999/AXAaNFFhxmCRiMgGnH0UD//Ax7gV/draXSEiIiKyScHBwcLl6tWr51oN2dXVFcWLFxe2X7x4IVxWqVQICgoStnMLtjRvP3nypKhojK22lVdXr17FzJkz0aFDB9StWxe1atVCy5YtMWLECBw9ehQqlUq0v7+/P/z8/DBgwADhuitXrsDPzw9+fn7o37+/zuNcunQJaWlpWo9D09mzZzFp0iR8/PHHqFu3LurWrYsPP/wQQ4YMwaZNm/D6NT87E1kb11gkIrKydZciMCLgLgBAai/BoUGN0KFaSSv3ioiIiMi2tG3bFufOncOLFy8gkUhy3T8zMxMJCQnCtubIvydPniAxMVG4PreqyhUrVoSnpydkMhlkMhnCw8NRuXJlm27LVHFxcZg6dSoCAwO1bouNjUVsbCxOnz6NTZs2YdWqVfD29s7TcbKdPn0aAODr66tVeCYxMRFjxozBxYsXte73/PlzPH/+HBcuXMCqVavwww8/oGPHjvnqCxHlHYNFIiIrG3/4/6vnyZVqTP7zAYNFIiIiohzs7e1RqlQplCpVyqj9z549i4yMDABAkSJFUL58eeG2x48fC5fLlStnVHtlypQRCqpEREQIAZ6ttmWKV69eoW/fvoiMjBSua9iwIerXrw+pVIrQ0FCcOnUKSqUSd+7cwYABAxAQEAA3Nzc0a9YMLi4uiIyMxK5duwAA5cuXF6aqly5dWucxz507B0D3aMUJEyYIoWLRokXRunVr+Pj4AACio6Nx8uRJvH79GsnJyZgwYQLKli2LunXrmvy4iSj/GCwSEVlZmlw8neTe8yQr9YSIiIhykitVmHciFEcfxiI1U2nt7tgMF0d7dKzujdkf+0Jqb3srbGVmZmLFihXC9ocffghnZ2dhOy4uTrisL/jKydvbGw8ePNC6v622ZYq5c+cKoaKXlxdWrlyJhg0bivYJCQnBoEGD8PLlS0RERGD16tWYMmUK6tevj/r16+Py5ctCsFi6dGnR+o85PXz4EM+fPwegHSzeunUL58+fB5A1InPHjh3w8vIS7TN9+nQMHz4cV69ehUqlwpo1a7B27do8PXYiyh8Gi0RERERERHp8fzwUC079Z+1u2KSb0VlTdn/oUM3KPdE2f/58PHr0CEDWSMdRo0aJbk9K+v8fco2tRqwZTGre31bbMlZERAT++ecfAFl/qzVr1uC9997T2s/Pzw+LFy8WAsM9e/Zg/PjxQoEcU5w5cwYA4OnpiXr16oluu3XrlnD5iy++0AoVgaziPQsXLkTbtm0BAA8ePIBSqYS9vb3JfSGi/GGwSEREREREpMeVyFfW7oJNu/zE9v4+a9aswZ49e4TtESNGoGrVqqJ9MjMzhcuawZwhmvtp3t9W2zLWiRMnhMtt2rTRGSpma968ORo1agR7e3v4+Pjg9evXogI5xjp79iwAoGXLlrCzE4941QwHb9y4ga+++kpnG+XLl8ehQ4dQqlQpeHp6mtwHIioYDBaJiIiIiIj0aORTDCf/i7d2N2xW4wrFrN0FgVqtxooVK7BlyxbhujZt2miNVgSgFWaZSrN4jK22ZawLFy4Il9u0aZPr/lu3bjX5GJpevnyJu3ezChfqWl+xUaNGwuVjx45hwIAB+Pzzz9GsWTOt0YvVqtneaFmitw2DRSIiIiIiIj3mtPOFRAKusZiD5hqLtiAzMxOzZs3C0aNHhetatGiB5cuX6wzbXFxchMvZBV5yk56eLlx2cnKy+baMFRMTI1z29TX/v+fZs2ehUqng4OCAFi1aaN3u5+eHnj17Yt++fQCAy5cv4/Lly5BIJKhWrRqaNGmCFi1aoEGDBnB0dDR7f4nIMAaLREREREREekjt7fBDh2o2uY4gZXn58iW+/fZb3Lx5U7iuQ4cOWLJkid7gSTPAS0tLM+o4mgGeh4eHzbdlrPj4/x+RW7RoUZPvb6rsadD169fX29+5c+eiePHi2LhxozC9W61W4+HDh3j48CE2btwIV1dXfPTRR/j6669RvXp1s/ebiHSzvfJdREREREREREZ48OABevbsKQoV+/Tpg2XLlhkczebt7S1cfvHihVHHio2NFS6XKFHC5tsylkKhMPk+eZWZmYmgoCAAuqdBZ5NKpRg3bhzOnTuHOXPmoGXLllrFbFJSUnD48GF0794dv//+uzm7TUQGcMQiERERERERFTqnTp3ChAkThJF99vb2mDhxInr37p3rWoWaU36jo6ONOp7mfhUrVrT5toxVtGhRxMXFAQBev36N8uXLm9yGsa5evYqUlBQAhoPFbF5eXujbty/69u2LzMxM3LlzB5cvX8aFCxdw69YtqNVqqFQqLFmyBPXq1cP7779vtr4TkW4csUhEZINkaXJrd4GIiIjIZgUEBGDUqFFCqOjm5obly5ejd+/eRt3f29tbqCQsk8kQERFhcP/w8HC8fv0aQFYQ5+PjY/NtGUszSHz06FGu+x88eBAzZszA2rVrERwcbNKxzpw5AwDw8fFB5cqVTbqvo6MjGjRogG+//Ra7du3Cn3/+idKlSwu3Hzp0yKT2iKhgMFgkIrJBy86FWbsLRERERDYpO9hSqVQAgDJlymDHjh1o1qyZSe1oVkA+ffq0wX2zAzEAaN68uVZBGFttyxiao/zOnz+f6/4HDhzAvn378Msvv+DJkyfC9cYcO3t9xQ8//FDn7Wq1GjNmzMDnn3+OBg0aiArL5FSlShUMHDhQ2Da0LxGZD4NFIiIruhuTqPP6+Sf/s3BPiIiIiGzf/fv3MWvWLKjVagBA5cqVsWvXrjxVM+7cubNweePGjUhM1P25LDExEZs2bRK2e/bsWWjaMkaXLl2EUPD48eMIDQ3Vu29wcDCuXLkCIKvQjGaYqzn9XKnUrqD+6NEjREVFAQBat26ts32JRILw8HDcuXMHSUlJuY5CfPnypXC5VKlSBvclIvNgsEhEZEX+gY/13qZSqS3YEyIiIiLbplAoMH78eKFKsLe3NzZt2iQqeGKKJk2aoEmTJgCAuLg4DBs2TBRUAVnB1fDhw4U1CBs2bIimTZsWmraMUbVqVXzyyScAALlcjuHDh+uc4vzkyROMGTNGGCnar18/uLm5CbdrXn7+/LlWuJg9utLV1RUNGzbU2x/N6eyrVq3CsWPHdO5348YNbNu2TdjOfgxEZFks3kJEZEW/X47Ue5tSrYYdTJ/OQkRERPQmOnTokGjNwbp16+LPP/8EkDWFVi7//zWqpVKp1tTcjh07itbkA4B58+bh888/h0wmw40bN9ChQwe0b98eZcuWxbNnz/DPP/8IIwY9PT2xcOFCvf2z1baMMW/ePAQHByM8PBzR0dHo3r07WrRogVq1asHe3h4hISE4ffq0EOrWqVMHo0aNErVRtmxZSCQSqNVqREdHY+TIkXj//fdRpEgR9O/fX5gG3axZM4MVuzt37ox9+/bh6tWrkMvl+O6771CzZk3UrVsXpUqVQlpaGu7fv4+goCAhvPzkk0/yHKwSUf5I1NljyOmNd/PmTeHXJTs7O9SrV8/KPco/hUKB27dvC9t169aFgwPzcio87CYe0Xtb+qJP4ejAgeW54XmAiHgeIGMolUrRFE9fX1/Y29tbsUdkqi+++AI3b97M8/23bNmCxo0ba10fHByMUaNGCdN0dSlXrhxWr16NatWqGTyGrbZlDJlMhkmTJuW6zmLr1q2xePFieHh4aN02ceJEHDki/nzr5uaG06dPo0mTJlAqlViwYAF69Ohh8BhJSUkYO3YsAgMDDe4nkUjQs2dPzJ4922BYSW8HtVqN1NRUYdvFxSVP644WFgXxvlYQORE/cREREREREZHNCwkJMUu71apVw19//YW9e/fi+PHjePToEV6/fg1XV1dUrVoV7dq1Q69evVCkSJFC25YxPD09sX79ely6dAlHjhzB9evX8eLFCygUChQvXhz16tVDjx49DBbJWbBgAd599138+eefiImJgVqthqenJ06fPg2lUgmJRKK3cIsmd3d3bNiwARcuXMBff/2Fu3fvIiYmBunp6fDw8ECpUqXQpEkTdO7cGdWrVy+Qx09EecMRi28Rjlgksj2GRiymLeoIJweOpMgNzwNExPMAGYMjFt9sb9tIJSLS9radB2xlxCLn2BER2Sj+7ENERERERES2jMEiEZGNYq5IREREREREtozBIhGRjeJKFURERERERGTLGCwSEdko5opERERERERkyxgsEhHZKOaKREREREREZMsYLBIR2ahMpcraXSAiIiIiIiLSi8EiEZGN+u3fJ9buAhEREREREZFeDBaJiGzUyguPrd0FIiIiIiIiIr0YLBIR2ajnSRnW7gIRERERERGRXgwWiYiIiIiIiIiIyGQMFomIiIiIiIiIiMhkDBaJiIiIiIiIiIjIZAwWiYiIiIiIiIiIyGQMFomIiIiIiIiIiMhkDBaJiIiIiIiIiIjIZAwWiYiIiIiIiIiIyGQMFomIrOSpLM3aXSAiIiIiIiLKMwaLRERW4h/42NpdICIiIiIiIsozBotERFay5GyYtbtARERERERElGcO1u6ArVmxYgV+/fVXlC1bFqdPnzbpvpcuXUJAQABu3bqFFy9ewMHBAaVKlUK9evXQrVs3NGjQwEy9JiIiIiIiIiIisiwGixru3LmD9evXm3y/5ORkTJkyBSdPnhRdn5GRgbCwMISFhWHfvn3o3LkzZs+eDXd394LqMhERERERERERkVUwWPyfqKgojBw5EnK53KT7ZWRk4Ouvv8bt27eF61xdXeHr6wulUonQ0FCkp6cDAA4fPoyYmBhs3LgRjo6OBdp/IiIiIiIiIiIiS+IaiwBCQ0Px5ZdfIi4uzuT7/vTTT0KoKJFI8N133+HixYvYtWsX9u7diwsXLmDAgAHC/levXsXSpUsLrO9ERERERERERG8rUweIUcF660csHjp0CHPmzEFaWprJ93306BF27dolbE+YMAFDhw4V7ePh4YEZM2bA3d0dq1evBgBs374d/fv3R7ly5fLXeSIiIiIioreIn59fvtvo1q0bFi1aJGz3798fV65cAQBs2bIFjRs3zvcxKG8yMzNx6NAhHD9+HA8fPoRMJoOzszMqVaqEli1bonfv3ihRokSu7YSFhaFjx44mHXvfvn2oXbt2Xrv+Vtm/fz+mTZsGQPv1BABTp07FgQMHAAALFy5E9+7dzdaXv//+G1u3bsWOHTu0bnv69Cnatm0LAHmqo0HGeWtHLMbGxmLKlCmYPHlynkJFANi6dSuUSiUAoFKlShg8eLDefUeNGgVfX18AWWn6tm3b8nRMIiIiIiIiojfNvXv38Mknn2DmzJk4f/484uLiIJfLkZSUhNu3b8Pf3x8ff/wxNm/ebFRb9GZLSUnBoEGDMHbsWDx//tza3XmrvZUjFtesWYPffvsNqampwnWVKlVCu3btsHbtWqPaUKlUOHbsmLDdvXt32Nnpz2nt7OzQq1cvzJ8/HwBw7NgxTJ06NY+PgIgKu5jEdGt3gYiIiKjQmTx5ss7r1Wq1aDqkVCqFRCIBAFy4cAGXLl0SbitTpox5O0kmu3nzJgYOHIiMjAwAWcuMNWvWDHXr1oWdnR1u3bqFwMBApKWlYcGCBYiOjsb06dP1tnf//n3hcvfu3VGlSpVc+1C6dOn8PxCymFevXuHixYvW7gbhLQ0WN2zYIAoVP//8c0ydOhXHjx83uo3g4GC8evVK2G7evHmu92nWrJlw+dmzZwgODka1atWMPiYRvTkC7sRYuwtEREREhY6+WWJqtVr0Hc/FxQUSiQRXrlzB8uXLhevr16+PESNGmLubZILk5GSMHj1aCBW9vb3h7++PunXriva7ffs2vv32W8TFxWHz5s2oVasWOnfurLNNzWBx2LBhePfdd83Wf9K2aNEirenR1lCuXDmEhIRYuxtvvLd2KjQA1KpVC1u3bsX8+fPh5uZm0n2Dg4OFy1KpFFWrVs31PhUrVoSzs7OwfffuXZOOSURvjuUXwq3dBSIiIqI3WmRkJEaPHo3MzEwAQMmSJbFy5UpIpVIr9+zN5efnBz8/P7Rp08bo+2zbtk0opOri4oJNmzZphYoAULduXaxduxb29vYAgMWLFyM9XXsWkEqlwoMHDwBk1TyoUKFCXh4KERnprQwWGzVqhNWrV2Pfvn1o1KhRntqIiIgQLpctWxYODrkP/pRIJKJh90+ePMnTsYmo8At/mZr7TkRERESUJykpKRgxYgRkMhmArMEg/v7+RhX+IMvSXGJs0KBBqFy5st59a9Wqhfbt2wMA4uLicPLkSa19Hj9+LIxerVmzpjAlnojM462cCv3rr7/mu43sX1SArF++jFW8eHGEh4drtWENCoXCqscvCNnFc/RtExV2b8Lr1Nx4HiAingfIGEqlEmq1GkDWD/5qtVrYpsIv57/l9OnT8ejRI2F75syZqFu3rs5/c83rsp8Xx48fx+HDh3Hnzh28evUKnp6eqFChAj799FN07doVRYoUybVP9+7dwz///INr167h2bNneP36NSQSCdzd3VGxYkV88MEH+Pzzz/WGnf7+/li9ejUAYO/evahduzZu376Nffv24cqVK3jx4gXs7e1Rrlw5tGjRAv369YO3t3eu/Xrx4gW2b9+O8+fP48mTJ1AqlShVqhSaN2+OAQMGoEKFCpgzZw52794NANi8ebPJlbKNfX3J5XI8fPhQ2O7QoUOu92vWrBmOHj0KADh37hw+/fRT0e2a06Br1apl9te55r/T9u3b8f777+P8+fPYsWMH7t+/D5lMBg8PD9SsWROdO3dGx44d9dZn2L9/v7B25PLly9G6dWusWrUKhw4dQmJiIry9vdGwYUN89913WjnE8+fPsWfPHgQFBSEqKgpJSUnw8PBAxYoV0aJFC/Tu3Ruenp5GPaazZ89i//79uHXrFl69egUPDw9Ur14dvXr1Qrt27XS+ZjRNnToVBw8eBAAsWLDAYFXohw8fYv/+/bh8+TKePn0KuVyOokWLws/PD+3bt0fXrl3h6Oio82+ULTo6WqgYX7p0afz1118AxFWhy5QpY7AqdHJyMg4cOIBz584hJCQEMpkMRYoUgbe3Nxo1aoSuXbsarBqe89+uQ4cOePTokfBv8vz5c6jVapQqVQrNmjVDnz59UKlSJb3tGSP77579f4VCYZX3tbcyWCwI2b98AYC7u7vR99Pc9/Xr1wXZJZOoVCrcvn3basc3F1b/ojfNm/g6NTeeB4iI5wEyxMHBAQ4ODkhNTRWmVNKbZfPmzaJRcN26dcNnn30mWoNRk0qlEi6/ePEC/fr1w7Vr10T7xMXFIS4uDteuXcPWrVuxbNky+Pj46GwvKSkJs2fPxrlz53Tenp6ejri4OFy5cgW//fYbZs2ahU8++URrP81iNOnp6fjhhx+wY8cOreAgODgYwcHB2Lp1K+bNmycEKbqcO3cO06dPR1pamuj6J0+e4MmTJ9i3bx8mT54s+nE7IyND799On5xrXuoTHx8vejwlS5bM9X6a4didO3e09r9165ZwuWrVqkhNTcXTp09x//59vHr1Ci4uLqhQoQJq1apVIOcAzX+ntLQ0zJo1C3v37hXt8/LlS5w/fx7nz5/H1q1b8csvv+gM+bKn7WdfHjt2LM6cOSNc9+TJE7x48QLjxo0TPe6NGzdi/fr1wjqVmsd9+fIlrl27hvXr12PSpEn47LPP9D6WtLQ0TJ8+Xeu5+/LlSwQGBiIwMBCtWrVC06ZNhduUSqXWv4HmD3yZmZk6/01TU1OxYMECISTWFB8fj/j4eAQFBWHDhg34+eefhZGsmn+j3GhOlTf0nDx+/DgWLVokynmArH/bxMRE/Pfff9i+fTs6dOiAmTNnwsXFRauNnP92a9euxerVq0XPDwAIDw9HeHg4du7ciXHjxqFPnz5GP56clEolVCoVFAoFFAqF1T7/MFjMI80njea6ibnRTNpNeUEQERERERGRYVevXsWqVauE7dq1a2Pq1KlG33/u3LlISUmBRCLBBx98gBo1asDBwQH37t3DxYsXoVarER4ejqlTp2Lz5s1a6zXK5XIMGzZMWJPf0dERTZs2RZUqVeDi4oKkpCQ8ePAAV69ehUqlQnp6OubMmQNfX1+DU4D9/f1x5coVAFlrDdavXx/Ozs4IDw/H2bNnkZGRgfT0dEyfPh1Vq1bVua7g8ePHMWPGDCH0KVmyJFq3bo133nkHMTExOHPmDGQyGebPn2/UyMeCkJf1LjW/Rz9//lzrds0RkAkJCRgwYIDOwMXT0xMDBw5E3759C2zdzXXr1uHq1asAgCpVqqB58+ZwcnLC/fv3cfHiRWGAz9dff43NmzcbHKR0+PBhBAYGal3/4YcfikbMzp8/H/v37xe2q1WrhoYNG6Jo0aJISEjAv//+i/DwcCQnJ2POnDmQyWTo37+/VrvZz93sv5VEIkHjxo1Rp04dqNVq3Lx5E9euXcPZs2dF4W1eZGRkYMSIEaK6E9WrV0fDhg3h6uqKiIgInD59GhkZGXjy5AmGDh2KnTt3wtvbGzVr1sTYsWORmJiIjRs3AshaS/Prr78GAJPrZ+zbtw8LFiwQtj09PdGyZUuUK1cOqampuHHjBu7cuQMA+Oeff/D48WP8/vvvcHV1Ndhm9uvV19cXjRs3hru7O54+fYrTp08jOTkZCoUCS5YsQZUqVdCwYUOT+mxrGCzmkWbqrG8Ysy6av4hwiiMRERERkY2TyyFduBD2x45BYuKorTeZ2sUFyvbtIZ82DbCRYiixsbGYNm2aEJwVL14cP//8s0mhUUpKCnx8fLB48WL4+vqKbrtw4QLGjx8PpVKJ4OBgXLhwQatIyc6dO4VQ0dvbG+vWrdM5sjEkJAQjR47Eq1evoFAoEBAQgMmTJ+vt15UrV+Dp6YmFCxdqTUuOiIjA8OHD8eLFCygUCuzYsQPTpk0T7fPq1SssXLhQ+Nt06dIFU6ZMEQ2SGTNmDGbPno3z58/rDOzMwcPDA87OzsLIsvDwcGFKqz5hYWHC5fT0dCQlJQkBnVqtFlUBNlSZWCaTYcWKFQgMDMTSpUvh4eGRn4cCICvYlkgkGDNmDPr37y9a3/H27dsYN24cZDIZIiIisGrVKq1/J02BgYGws7PDiBEj0K1bNzg4OODq1asoXry4sM/BgweFUNHNzQ3z5s1Dq1atRO2o1WocOnQICxcuhFwux8qVK1G7dm289957ov02b94shIoeHh5YunQp3n//fdE+ly5dwpQpU7RG9plqzZo1QqhYpEgRfP/991ojbWNiYjBy5Eg8efIEMpkMS5cuxeLFi1G5cmVUrlwZz549E4JFV1dXDBgwwOR+3LlzR/Qc+eyzzzB58mSt0DAoKAjTp09HUlISQkJC8P3332Px4sV6271y5QqcnJwwd+5cYU3QbN9++y2+/fZbYamGrVu3Mlh8W2kGhJpD53OjOSTYmtXI7OzsDK4PUFgolUrRr08FNZydyOx2PjNqN10V8UiM5wEi4nmAjKFUKoVAQiKRwMXFxbjnycyZkBj4Avk2s799O+s7zQ8/WLsryMjIwKRJk5CQkAAg67vWypUrjaoIrDlQpEiRIti4cSPKlSuntV/79u3RqVMnHDp0CEBWKNGpUyfRPkeOHBEuz5gxA9WqVdN5zHr16mHw4MH4+eefAWSNsss5vTLn98XFixejZcuWWm3VqFEDY8aMwYwZMwBkhRo521q+fLmwFFezZs2waNEiraImLi4uWL16Nfr06SM6pzo5OYnau3DhAkJDQ3U+rmypqanYuXOnztt8fX3RokULYbtRo0Y4f/48gKxRenPmzNHbrkqlwj///CO6zs7OTuhfeHg4UlJShNukUin69u2LLl26oEKFCkLwuHv3bhw+fBgAcP36dUyZMgUbNmwwqihrTjn/nb799lsMHz5ca78mTZrA398fAwYMgFqtRkBAAL755huUL19e2EdzhiMADB8+HKNHjxa2NacxZ2ZmYs2aNcL2ihUr0KxZM5197Nu3L9LT07F48WIolUqsW7cOmzdvFm5PTk7Gpk2bhO2ff/5Z9G+U7aOPPsLSpUsxbNgw4Tp7e3ut55vmudXR0VF0e0pKirB+JwAsXLgQHTp00DpW5cqVsWbNGnTq1AkqlUoY6Ze9tqRmKJ59Tler1aJp/rr20bR69Wohz/n444+xZMkSrX5k3+bl5YUBAwZAqVTi5MmTCA0NFYWzOf/tpk6dim7dumm1VaFCBcycORNfffUVgKww2tnZ2aQBa9mUSiXs7OwglUohlUpRuXJlkz//3L1716RMSxcGi3mk+QTNuY6BIZr7Ojk5FWifTJWXk6ats7e3fyMfF729+Hw2Hc8DRMTzAOkikUhEQUrObb3+N52NdJNcvgzYQNXdBQsWiMKw6dOna4220kfzefDJJ5+Igp6cmjVrJgSLz549E91XqVRiyJAhiI6ORlxcHNq2bWvwOaYZOiYnJ2vtq7ldoUIFfPjhh3rb+uCDD4TLcXFxovuq1Wr8/fffwvbEiRP1hhiOjo6YNGkSBg4cKOqHZntHjx7FgQMH9PYFyKonoC+k6datmygg/eKLL4Rgcffu3WjUqBE6duyo875Lly4VFeUBsv7u2f178OCBcL2rqys2bdqk9UN9gwYN0KBBAzRt2lSYJn/58mXs2bMHX375pcHHpYvm36ZEiRIYPny43n/3Ro0aoWXLljh37hxUKhVOnTqFQYMG6WxLIpFojXrUdOrUKaEgbL169dC8eXOD/Rw4cCDWrl2LxMREXL58GbGxsShVqhSArNGR2YFcnTp1DD7XWrVqhYYNGwpTvnWdSw2da8+fPy/kIjVq1NC5vmi2ypUro2PHjoiNjUWFChWQnJwsTNM39Xyec5+YmBjhMdjZ2WHq1KkG22jQoAE6duwo/HiwZ88e1KtXT+djdnFxQc+ePfW29/7770MqlUIulyMjIwOvX7+Gl5eXwf7re0ya/3dwcLDKD6umR6IEQLxgbHJystH309zX2IpMRERERERkJSZWw33raARa1rJ//37RCKguXbrkuSBC/fr1Dd6uWcFZc2QckPWjRvfu3TF69GjMmzfP4Bf8zMxMRERECNu5LZOV2yyWd955R7isWbACyCpolR1AlS1bFjVq1DDY1gcffJCnkCOvPvroI7Ru3RpA1ojE8ePHY/bs2bh37x7S09ORkpKCK1euYPjw4diwYQO8vLxEI880R4p16NABJ06cwKZNm7Bt2zaDf7du3bqhZ8+ewvaGDRvy/Vg++eSTXGcmfvzxx8Ll7EBVl4oVKxr8d7h8+bJwuWbNmrn2zcHBAXXq1BG2NQsUXbhwQbiccyq1Lu3atct1H300j5VzKQFdli5dim3btuHHH380uA6pqS5duiRcrlOnjs5RyjlpjlDW/PvnVL16da0RjJocHR1F62uaMljNFvGn3DzSLO3+8uVLo+8XHx8vXNZ8UyIiIiIiIhs0Z07WiLy//gK4xuL/c3EBPv0UmD3bqt148OAB5s6dK2zXqlXL4Lp1udEM6HTRDAs1l7nSJzk5GeHh4YiKikJUVBSePHmC0NBQhISEiNbtz1npOSfNdfV00SzmkXNa45MnT4TLOdeN1KdatWq4ePGiztsWLVqkd+3C7PURy5Yti9OnTxt1LCBr6u2IESNw5coVqNVq7N69WxQWZ/P09MS6deuEQh2AeDahVCqFj4+P3ordOfXv3x/79u0DAERHRyMsLCxf4VWtWrVy3adq1arC5WfP9C+PZGjkLADRyM1t27Zh27ZtRvTw/2keOzo6WrhcpUqVXO+rb4q/MWJiYoTLxj4fzSEyMlK4bOzjqV69unD52bNnUCqVOn9AyO31Chh+zRY2DBbz6N133xUuP336FGq1Oteht2q1WvSC1WyDiIiIiIhsUPYagjawjiCJyWQyjBo1Shjt4+XlhSVLlhgcKZQbQ5VejZWeno5du3bhwIEDCAkJ0Rsa2tvbGxVOAtBaG84U2aMVAaBo0aJG3adYsWJ5Pl5euLm5YePGjdi4cSM2bNggrAeZzdHRER06dMCUKVPg5eUlzAR0cXHJ17+Zn58fihQpIkwDjoyMzFewaEygpPlvoPlvk1NuxWTyW0Dl1atXwmXNwVLGFLHJz/PD1GOZi+bfz9jHo7mfWq3WO4XZ1Ndrbj8s2DoGi3mkOdQ4LS0Njx8/RqVKlQzeJzw8XDTEVTPtJiIiIiIiIuOoVCpMmDBBGLjh4OCAn376SVh/zVqioqIwZMgQ0TRnIGsNtFKlSqFy5cqoWbOmsP7jN998Y/Y+aY6MNDbItEbQIZVKMWzYMAwaNAg3btxAZGQkFAoFSpcujXr16glLiYWFhQn9y14jMK8kEgnc3d2FYNGUZc50MWZ9O83RaYZC8NzWCtacPt+hQwfRNGdjGDN9Wp/8hPeaz0drystzPOfIQqPW6X0LMFjMo6pVq8LLy0uoOnbp0qVcg8WgoCDhcrFixYRh4kRERERERGS8FStWIDAwUNieMmWK0cVazEUul2PkyJFCqOjl5YWBAweiSZMmqFq1qtYopnPnzlmkX5oj5BITE426j7H7mYOjoyM++OADUUEaTXfu3BEu65vCmpGRYXQhL80wMb8j6IwJJjVHyuVneTTNf9f33ntPVATGVCVKlMB///2n1T998vP8yMvz0Rw0a15ojt40RHM/Ozs7uLm5FXS3CiUWb8kjiUQiWnR1z549BufFq1Qq7NmzR9hu3749020iIiIiIiITnTp1CuvWrRO2u3Xrhv79+1uxR1lOnTqF0NBQAFlTIffs2YPhw4ejbt26OqdGak4JNecIQc0187LDo9xkPw5LUKvVePXqFR49eoSkpKRc9z916pRwuUGDBqLbevTogXr16qFOnTo4e/Zsrm1FRUUhVWPtVM31D/MiZ8VqXYKDg4XLFSpUyPOxNNeRNPbf6/Xr1zpHrWoWLtHsnz5hYWFGHU8XzbUjjfl7XbhwAVOnTsWqVatEBWfyS3NpOmMeMwDcv39fuFy6dOlcC/W8LRgs5kPfvn2FcDA4OBirV6/Wu++KFSuEk7idnZ1NvPEREREREREVJk+ePMGUKVOEIK5mzZr4/vvvrdyrLDdu3BAuN2vWLNfiG5pVac1ZvKF27drCOoTPnj3LNUS5d+8eXrx4Ybb+5PTjjz/igw8+wKefforDhw8b3Pf58+fCSE97e3u0bdtWdLu7u7sQFBpTPEbzeJUqVUKZMmVM7b6IMWHmiRMnhMsfffRRno/VWKNi/blz53KtLJyZmYlPP/0UderUQZs2bfRWZz5+/Hiux87PaFvNkcWGqmJn+/vvv3HgwAH4+/uLRqvmd6CWZih9584dPH361Ki+ZLP2CGlbwmAxH6pVq4Zu3boJ26tWrcKCBQtEv7IkJSXhxx9/xNq1a4XrevfubVSlJSIiIiIiIsqSmpqKUaNGCd+3vLy8sGrVKjg5OVm5Z1k0147LXjJLn5s3b+Lo0aPCtuZ6eQXN0dERXbp0EbaXL19ucP8VK1aYrS+6aAY0AQEBBkdvLliwAJmZmQCATz75RGtNzU8++US4fOTIEYSHh+tt68mTJ9iwYYOwPWDAAJP7ntPNmzcNhmUXL17Ev//+CyCrKnB+gsX27dsLgfHLly+xZs0ag/tv3LgRcXFxUCgUSEhIEK3J2KxZM6EwSXh4uGi2ZU4PHz4UhaN56Xd2Je9bt26JljTIKS4uTgjzJBKJ6O9laoX2nMqXL49GjRoByAr29VU6z3bjxg1RsNi5c2eTj/mmYrCYTzNmzBCVlN+8eTNatGiB3r17o3fv3mjRogW2bNki3F67dm1MnTrVGl0lIiIiIiIqtGbOnClM+XR0dMTq1avzPcKsIGmu93fjxg1RcJhNrVbjr7/+wtChQ0VhYnp6uln7NmzYMCGEOnPmDL7//nshoNPsw6xZs4waRaZPSEgIQkJCjBotmO2jjz4S1hq8f/8+li5dqhW0pqWlYfr06Th27BiArOrdEydO1Gqra9euwvTizMxMDBs2TOe03bt372LgwIFISUkBANSpUwe9evUyus+GTJgwQTQaNdulS5cwZswYITgdO3ZsvtZ09PDwEBX/Wbt2LVatWqVVHEWlUmH37t3w9/cXrvv6669Fax06OjpiypQpwva8efNw8OBBrWM+ePAAw4YNy1cBFi8vL9EMzgkTJghhq6b4+HiMGjVKGIHasWNH0dRxzfUNExISRFPajTV27FghoDxx4gSmTZumc53MwMBAjBgxQggw27ZtixYtWph8vDcVi7fkk5ubG/744w9MnjxZOHmmpaXh1q1bWvu2bt0aS5YsEdJ5IqJs775+jilX9qN2XASOVmqAhY17Qi3hbz9EREREQNa6en/99Zew/d577+HmzZu4efMmgKzATjPskEqlBqdK9u7du8ALL3z66afw9/dHXFwc1Go1xo0bh127dqFWrVpwdXVFbGwsAgMDRZWslUol1Go1kpKSoFAojCo2khelSpXCnDlzhGnkO3bswJkzZ4RQLzY2FidPnsSLFy9gb28POzs74e9pZ2fez6SOjo6YM2cORo8eDbVajfXr1+PEiRNo3rw53nnnHTx79gwnTpwQiopIpVL88ssvKF26tFZbTk5OWLZsGQYMGICUlBRERkaic+fOaN26NWrUqAGFQoHbt2/j4sWLwvRzHx8frFy50qiKzrmRSqVITEzEV199hWbNmqFevXoAsoLmixcvCvu1aNGiQEZIDhs2DHfv3sXJkyehVqvh7++PgIAAtGrVCt7e3oiLi8O///4rWsuwUaNGGDlypFZb3bp1Q2BgIP7880/I5XJMmTIF27dvR9OmTeHo6Ih79+7h3LlzUCqVqFixIh4/fpznfo8ZMwa3bt3C1atXIZPJMHDgQDRq1Aj169eHi4sLwsPDcfz4cSEs9PHxwcyZM0VtuLm5wdPTEzKZDJmZmRg8eDBatWqF9PR0DBkyxKh+vP/++5g8eTIWLlwIANi/fz/OnDmDNm3aoHz58khLS8PVq1dFyxxUrFhR2J+yMFgsAO7u7lizZg0uXbqEw4cP49q1a4iPj4dSqUTx4sVRr149dOvWDc2bN7d2V4nIxtiplJh8dT9m/rsbLoqsX42bxgQjybEI/Ot/ZuXeEREREdmG169fi7avXLmCK1eu5Lm99u3bF3iw6ObmhjVr1mD48OGIj48HAFy+fBmXL1/W2tfHxwcLFy7E9OnT8eTJE6hUKjx48EA0PbWgdenSBXK5HD/++CNSU1MRExODbdu2ifZxcXHBokWLsHDhQsTExADICv7M7eOPP8bChQvx/fffIy0tDREREUJ1bU1lypTB4sWL0bBhQ71t1apVC9u2bcP48ePx+PFjKBQKnDhxQuf03ebNm2PBggVaU6rzasCAAfjvv/9w/vx5BAUFISgoSGuf/v37Y9q0aQUS2EokEqxcuRLLli3D5s2bIZfL8ezZM+zYsUPn/l26dMG8efP0Btg///wzvL29hSnid+7cEa1rCGSF+pMnT0bfvn3z3G+pVIoNGzZgzpw5OHDgAAD9r+l69eph+fLl8PLy0rrtiy++EJadu3HjhhAA9uzZU1T12ZCvvvoKxYsXx7x58/D69Wu8evUKAQEBOvft0qUL5syZI4z+pSwMFjV0794d3bt3z/P9mzRpgiZNmhRgj4joTbfy9HqMvK09TaZj+DUGi0RERESFTO3atXHkyBHs2LEDZ8+eRUREBFJTU+Hs7IwSJUrAz88PrVq1QqdOneDo6IiWLVti69atAICDBw+aNVgEsgKXpk2bYufOnTh37hyePXuGzMxMlC5dGi1btsTgwYNRqlQpUUEcXRWtzaFbt25o1KgRtm/fjqCgIERGRiIzMxOenp6oVq0a2rdvj86dOxs1A7BGjRo4cuQIjh49iuPHj+PevXtISEiAg4MDSpYsifr166Njx44FPp21SJEiWL9+PQ4fPox9+/YhJCQEKSkpKFWqFBo1aoQ+ffqgdu3aBXpMe3t7TJo0CX369MHevXvx77//IjIyEomJiXByckLZsmVRv3599OjRI9fnl0QiweTJk/HJJ59g586duHz5MmJjY+Hi4oJKlSrhs88+Q+/evQ2uXWksJycnLFq0CP369cP+/ftx+fJlPH/+HBkZGShWrBhq166Nzp07o127dnpD2LFjx+Kdd97Bvn37EBUVBblcjnfeeQexsbFGB4sA0KlTJ7Rq1Qp79+7F+fPn8d9//0Emk8HBwQHlypVDgwYN0L17d7O/Pgsridqcde3Jpty8eVMY7m1nZycMyy7MsoeyZ6tbt67Zpg8QFZRMhQrOU/+CkyITr1b1gbNSe42Sq95V0LjfMqQu7Ahnaf6nZbzJeB4gIp4HyBhKpVJYnw8AfH19C2TqI9kGtVotWmPNxcUl31Vj32a1a9cW1mD8999/hcIepM3f3x+rVq0CAIwaNQqjR4+2co/eXm/beaAg3tcKIifiJy4iIguLScxanNsrPUlnqAgA7plpAICwl6moWcrdYn0jIiIiojfPhg0b8M4778DHxwf169c3uG94eLgQKhYrVoyhIhEZxGCRiMhK3DL1V/9zl2cFiydC4xgsEhEREVG+HD58GMHBwQCAgIAA1KpVS+++f/zxh3C5UaNG5u4aERVyLDlKRGQlbnIDweL/RiyquFoFEREREeVT06ZNhcvz58/Hq1evtPZRKpX4/fffsXv3bgBZ0yILonIxEb3ZOGKRiMhK3P43KlHnbZnpkKhViEnMsGCPiIiIiOhN9PXXX2P//v2QyWS4efMmWrVqhTZt2sDHxwdSqRSxsbEICgpCdHS0cJ+hQ4eiQYMGVuw1ERUGDBaJiCwsewyioanQdlDDVZ6OpefCsOSzGpbpGBERERG9kUqUKIHNmzdjzJgxiIiIQHp6Oo4ePapzX0dHR0ydOhVffvmlhXtJRIURg0UiIisxNBUayJoOnezoYqHeEBEREdGbrFq1ajhy5AiOHj2KEydO4OHDh3j58iXUajWKFy+OsmXLok2bNujUqRNKlChh7e4SUSHBYJGIyMKyl010y9Q/FRrIChZjLNAfIiIiIno7ODo6omvXrujatau1u/LGGD16NEaPHm3tbhBZDYu3EBFZiTEjFomIiIiIiIhsFYNFIiILU/9vlUVDxVsABotERERERERk2xgsEhFZ2P9PhTY8YtEjM9UCvSEiIiIiIiLKGwaLRERWwqnQREREREREVJgxWCQisrD/DVg0qngLAMjS5GbuEREREREREZHpGCwSEVmJq5EjFlcFPbZEd4iIiIiIiIhMwmCRiMjC1Ors4i25BIv/K+4Sm5Rh9j4RERG96ezsxF99lEqllXpCRESUfznfx3K+z1kKg0UiIgszdiq0RwbXWCQiIiooEokEDg4OwnZqKoukERFR4aX5Pubg4ACJRGKVfjBYJCKyktyLt2S9UWRXkSYiIqL8cXNzEy4nJiZasSdERET5o/k+5u7ubrV+MFgkIrKw7KAwt2DR7X9ToZkrEhERFQwPDw/hckpKChISEqzYGyIiorxJSEhASkqKsG3NYNEh912IiKggqf8XFbplGle8hYiIiAqGi4sLpFIp5HI5ACA2NhbJycnw8PCAi4sL7O3trdxDyiu1Wi1ab0ypVFptWiARWcebfh5QKpVITU1FYmKiKFSUSqVwcXGxWr8YLBIRWUn2iER9soNFNedCExERFQiJRAIfHx9ERkYK4WJKSoroCxoVXiqVSrhsrSIGRGRdb9t5QCqVwsfHx6oB6pv/VyYisjGpmUpArc51xKJHJqdCExERFTRHR0f4+PhAKpVauytUgNRqNRQKhfAff5glevu8beeB7FDR0dHRqv3giEUiIgvbefMZiigyYZdLZMip0ERERObh6OiIypUrIzU1FUlJSUhKSoJCobB2tyifNP8NGRwTvZ3e9POAg4MD3N3d4e7uDhcXF5uY6s1gkYjIwpaeC0OJXKZBA5pToc3dIyIiorePRCKBq6srXF1dUapUKajVatEUOipcFAoF7t27J2xXrlwZDg78ukv0NnnTzwN2dnY2ESTm9Ob8hYmICpHcpkED/wsW1Wqh2AsRERGZj0QiYfGWQiznlEd7e3v+exK9ZXgesA6usUhEZAW5FW4BAEeVAk5KOe48S7RAj4iIiIiIiIhMw2CRiMgKjBmxCGSNWrwcKTNvZ4iIiIiIiIjygMEiEZEVuMm1g0WlRPuUzAIuREREREREZKsYLBIRWYGuqdDPXL20rmOwSERERERERLaKwSIRkYVJJLqnQse4FdO6jsEiERERERER2SoGi0REVqBrKnSMq3aw6JGZaonuEBEREREREZmMwSIRkYVJALjpGIn4nFOhiYiIiIiIqBBhsEhEZAXGjlhksEhERERERES2isEiEZGFSSQSncHiMzcdIxZ1FHkhIiIiIiIisgUMFomILEzfVOgYToUmIiIiIiKiQoTBIhGRFbjqmgqtoyq0RwaLtxAREREREZFtYrBIRGRhEgnglqkdLD530bHGIqdCExERERERkY1isEhEZAVuOQLDZKkzXju5aO/HqdBERERERERkoxgsEhFZQc7iLclSZ6RInaGCRHQ911gkIiIiIiIiW8VgkYjIwiSQaE2FTnZ0BiSSrP9rYLBIREREREREtorBIhGRhUkkuqZCFwEAJDkWEV3vkcniLURERERERGSbGCwSEVmBrqnQDnYSJEmLGNyPiIiIiIiIyFYwWCQisjAJtKtCJzs6Y0ufekhzcBRd76SQW7BnRERERERERMZjsEhEZGFSpRyOKoXoumRpEfSqWwbpOYJFZ2WmJbtGREREREREZDQGi0REFuauY3pzsqMz7OwkyLCXiq535ohFIiIiIiIislEMFomILKy0RKF1Xer/irakO+QIFjlikYiIiIiIiGwUg0UiIgvrWtFN6zrfd70BAOn2OdZYVCogUass0i8iIiIiIiIiUzBYJCKyMC+JUuu6CmXfAQCtNRYBFnAhIiIiIiIi28RgkYjIwrZdDNO+0skJgPZUaABwUjJYJCIiIiIiItvDYJGIyMJ0BYUqx6xgMdNeO1h0ZrBIRERERERENojBIhGRhekOFrOmQOdcYxEAnBUs4EJERERERES2h8EiEZGF6QoW1Y76p0I7c41FIiIiIiIiskEMFomILMxJqdC6LuN/gaLOEYtKjlgkIiIiIiIi28NgkYjIghRKlc4Ri2l2DgD0F2/5Ly7Z7H0jIiIiIiIiMgWDRSIiC0rMUMBJx9RmpTRrpGKGruItCjmWX3hs9r4RERERERERmYLBIhGRBTnYSXSOWFT8L1hMd9A9FXrNxQhzd42IiIiIiIjIJAwWiYgsyF6iO1iUC2ss6hqxyDUWiYiIiIiIyPYwWCQisiCJRHdVaIMjFlkVmoiIiIiIiGwQg0UiIgtKV+gu3vL/waLu4i1EREREREREtobBIhGRBcWnZOoOFv8XKOos3qLkVGgiIiIiIiKyPQwWiYgsSK0GnJQKrevl2SMW7TkVmoiIiIiIiAoHBotERBakhlpnMRZDU6FZvIWIiIiIiIhsEYNFIiILyhqxqKMq9P+mQOss3sI1FomIiIiIiMgGMVgkIrIgtRpw1BUs/m/Eoq41Flm8hYiIiIiIiGwRg0UiIgvTXRX6fyMWdRVv4VRoIiIiIiIiskEMFomILEgNwEmhXbyldY0yAPRMhWbxFiIiIiIiIrJBDBaJiCxIrVZrjVjMsHeAX0l3AHqqQis5YpGIiIiIiIhsD4NFIiILUkN7KrTa0QkSiQSA7qrQThyxSERERERERDaIwSIRkQXpqgqtcHQSLrN4CxERERERERUWDBaJiCxIDe2p0Erp/09/VtjZQykRn5o5FZqIiIiIiIhsEYNFIiIL0jliUSNYhESiVRmaxVuIiIiIiIjIFjFYJCKyMEMjFr94r4xWZWhnBUcsEhERERERke1hsEhEZEHRr9PhpFCIrkuGvXB5XMvKWgVcnLnGIhEREREREdkgBotERBa0+1a01ojFWI3Nhj6eWgVcWLyFiIiIiIiIbBGDRSIiC7ofm6QVFOYMEtPtORWaiIiIiIiIbB+DRSIiC1KotKtCawWLOadCs3gLERERERER2SAGi0REFqRUqrTWTMx1xKKSIxaJiIiIiIjI9jBYJCKyIDu59ujDDAcH0TZHLBIREREREVFhwGCRiMiC7HWEhDlHLLJ4CxERERERERUGDBaJiCzIPiNd67pMrTUWxVOhHVUK2KmUZu0XERERERERkakYLBIRWZC9XHu9RO01FqVa+zgpFWbrExEREREREVFeMFgkIrIgo4LFHCMWAcBZwQIuREREREREZFsYLBIRWVBKUqrWdVprLDpoj1hkZWgiIiIiIiKyNQwWiYgsyD4z9xGLObcBFnAhIiIiIiIi28NgkYjIgnQFhBkODqLtdHtdU6EZLBIREREREZFtYbBIRGRBuoqwaK+xqGMqNNdYJCIiIiIiIhvDYJGIyIJ0jljUqgqtY8Qip0ITERERERGRjWGwSERkQbqCxUwHjlgkIiIiIiKiwofBIhGRBekKFhUO4hGKLN5CREREREREhQGDRSIiC9IVEEqcnUXb6Q4s3kJERERERES2j8EiEZEFOekICIe39hNtp+sYseis5FRoIiIiIiIisi0MFomILEjXiMV6FUuItjlikYiIiIiIiAoDBotERBZU2c1B6zp7lyKibZ3BIkcsEhERERERkY1hsEhEZEGOukYeOjmJNjPstcNHJ6UcarXaXN0iIiIiIiIiMhmDRSIiC3olS9a+MkewmG6veyq0irkiERERERER2RAGi0REFuSg0DGlOWewqHONxUwE3IkxV7eIiIiIiIiITMZgkYjIQmIS03VWhdYOFnVXhf714mNzdY2IiIiIiIjIZAwWiYgsJEOh0l2Excip0OfDE8zVNSIiIiIiIiKTMVgkIrIQezsJnJQK7Ru0irdoj1h0UuoY6UhERERERERkRQwWiYgsxF4igaOugNCYqdC61mYkIiIiIiIisiIGi0REFhKfkmnkGovaU6E5YpGIiIiIiIhsDYNFIiILUUOtOyA0Yio0RywSERERERGRrWGwSERkQTmDRbmdPWAnPhU7OTlmXa/BmSMWiYiIiIiIyMYwWCQishC1WjtY1DU6sWxRZ63rORWaiIiIiIiIbA2DRSIiC1GptadC6woWASA9x/WcCk1ERERERES2hsEiEZGF/HHtKZyUCtF1uoLFDyu/o1XAxVlX0RciIiIiIiIiK2KwSERkIasCH+sYseigtd+Qxj5Id8gxYlHJEYtERERERERkWxgsEhFZkDFToRv5FNO6niMWiYiIiIiIyNYwWCQisiCnHAFhhoPuNRbh7Cy+H4u3EBERERERkY1hsEhEZEE5A0J3D1ed+2VqrbHIqdBERERERERkWxgsEhFZUM5g0b5IEZ37ZUjFwWIRBotERERERERkYxgsEhFZUM5gUZEjQMyWqLY3eD8iIiIiIiIia2OwSERkQU5KhWhbKdW9xqKji3iNRQe1CnYqpdn6RURERERERGQqBotERBZir1LCXq0SXadvxKKdk5PWdY45QkkiIiIiIiIia2KwSERkIbqmMyv1BItyHdWiOR2aiIiIiIiIbAmDRSIiC9FV2VnfiEW5g/b1DBaJiIiIiIjIljBYJCKyEFNGLGbqGLHIqdBERERERERkSxgsEhFZiK5gUe+IRR3Xc8QiERERERER2RIGi0REFuKk0B5xqC9YVNg7aN+fIxaJiIiIiIjIhjBYJCKyENOKt3DEIhEREREREdk2BotERBaieyq09lqKACDXcT2DRSIiIiIiIrIlDBaJiCzEpDUWdYxYZPEWIiIiIiIisiUMFomILMS0YJEjFomIiIiIiMi2MVgkIrIAhVJlUrCoYLBIRERERERENo7BIhGRBZwPT9A5lVl/8RYGi0RERERERGTbGCwSEVnAhiuRuoNFHQEiwKrQREREREREZPsYLBIRWUB8SgYcVdrB4tNUpc79M3UEjizeQkRERERERLaEwSIRkQWo1YCjjhGH11+k6dxfYc+p0ERERERERGTbGCwSEVmIrhGHGfYOOvflGotERERERERk63R/o6U8e/DgAfbu3Ytr167h+fPnSEtLQ9GiRVGpUiW0aNECvXv3RtGiRa3dTSKyMDWgcyp0hp29zv3lOoq6OCkYLBIREREREZHtYLBYQNLT0zFv3jwEBARo3RYfH4/4+HhcuXIFa9euxbx589CpUycr9JKIrEWlUuscsZgu4YhFIiIiIiIiKpwYLBaAzMxMDB8+HJcuXRKus7e3h6+vLzw8PBAdHY2nT58CAFJSUjBhwgQkJSWhT58+1uoyEVmYGrqnQqdL9IxY1FEVWteIRyIiIiIiIiJrYbBYANavXy8KFVu3bo05c+agdOnSwnVXr17FlClTEB0dDQCYP38+GjRogKpVq1q8v0RkeVnFW7SDwdLFPXTuL3fQPj1zKjQRERERERHZEhZvyafMzExs3LhR2G7SpAlWr14tChUBoGHDhtiyZQvc3d0BAAqFAmvWrLFoX4nIetRQw1GlHQx66w0WdayxqCOYJCIiIiIiIrIWBov5dOvWLSQnJwvbY8aMgb297qmN5cqVQ9++fYXts2fPQq1Wm72PRGR9Kj0jFuWsCk1ERERERESFFIPFfHr+/Llou2bNmgb3r1u3rnA5JSUFr169Mku/iMi2qNW6i7foChCzrtexxiKDRSIiIiIiIrIhDBbzKXtqc7aUlBSD+ysU4mDBycmpwPtERLZHpdY94jDThKrQuoJJIiIiIiIiImthsJhPVapUEW1fuHDB4P5BQUHC5dKlS8PV1dUs/SIi26IGINVR1TlD71RoHcVbOGKRiIiIiIiIbAiDxXwqX748WrVqJWwvX74c8fHxOve9du0a9u/fL2xrrrdIRG82lUr3VOhyJXUXb1HoCBwZLBIREREREZEtYbBYAKZPn47ixYsDAKKjo9GzZ0/s378f8fHxUCgUiIqKwtq1azF48GDI5VnBQI0aNdCvXz9rdpuILExXsNi3cSXdO0skSLcXT4dmsEhERERERES2RPccPDJJhQoVEBAQgPnz5+PkyZOIiYnBtGnTdO4rkUjQuXNnzJo1Cy4uLhbuqVjO9R4LI6VSaXCbyFao9BRvqVOuqM7XYvUSbsiwl8JZI0x0VCreiNdtQeN5gIh4HiAingeIiOcB62CwWEC8vLzQsmVL/Pfff4iIiNC7X7NmzTB06FCtoi+WplKpcPv2bav2wRzu3btn7S4Q6ZSSmgpHlXjEYYa9A+7dvatz/4/fUSBDx4jFN/F1W9B4HiAingeIiOcBIuJ5wDIYLBaA4OBgfPfdd3jy5IlwnZOTE3x9feHi4oLY2FghbAwMDESXLl0wcOBATJgwAQ46CjQQ0ZtHrdaeCp1pp135OZu7ox0yc6yz6KSUQ22W3hERERERERGZjqlWPkVFRWHgwIGQyWQAAGdnZ4wbNw5ffPEFnJ2dRfstW7YMR48ehVKpxMaNG/HixQssXbrUSj0nIkvSNRU6Z3CoSQLoHLGYbo7OEREREREREeUBg8V8mjdvnhAqOjk5YdOmTahfv77WfuXLl8cvv/wCHx8frF27FgDw559/onXr1ujUqZMluwwAsLOzQ+3atS1+3IKmVCpFw5tr1aoFe3t7K/aISDfns4FwVGkHi3Xr1tW5f3KGAs90BIt+evZ/m/E8QEQ8DxARzwNExPOA6e7evQuVSpWvNhgs5kNUVBTOnz8vbA8fPlxnqKhp3LhxuHTpkrBO2u+//26VYBHAGzkN297e/o18XFT4qaFrKrSD3uerVJm1BqMmR6WCz28j8DxARDwPEBHPA0TE84Bl2Fm7A4XZtWvXRNs9e/Y06n5ffPGFcPnhw4d4+fJlgfaLiGyPzjUWDUyFzrpde8Ri+MuUAu8bERERERERUV4wWMyHFy9eCJeLFi2KkiVLGnW/atWqibajo6MLtF9EZHvUamhVhTa4xqJEe8Sik1KBKFmaWfpHREREREREZCoGi/ng6OgoXJbL5Qb2FLOzE//ZJRJJgfWJiGyTGtrFW3IWZ8lJV/EWO54viIiIiIiIyEYwWMyHUqVKCZdTU1Px+PFjo+4XFhamtx0iejOpTJwKLZFIkOGQI1hUyCGB2iz9IyIiIiIiIjIVg8V8aNy4sWj04e7du426X0BAgHC5atWqKFGiRIH3jYhsi1qt1q4KbWd4jcWcIxbtoIZEmb+KXUREREREREQFhcFiPnh5eaF9+/bC9pYtW3Dp0iWD99m6dSuCgoKE7d69e5utf0RkO1TqrBGHmnIWZ9Ekge7g8ekLWQH3jIiIiIiIiChvGCzm08SJE+Hh4QEAUCqVGDp0KFavXo2EhATRfnFxcfj+++8xf/584bqaNWuiT58+Fu0vEVmHGtAesWhgKrSdjqnQAHDgWkQB94yIiIiIiIgobwzPw6NclStXDqtWrcLw4cORmpoKuVyOlStXYs2aNahYsSKKFSuGV69e4dGjR1Cp/n8KY4UKFbB27Vo4OPCfgOhtkJkph1SlFF9nYCq0o4OdzhGN5x/GFHjfiIiIiIiIiPKCIxYLQOPGjbF3717UrFlTuE4ulyM0NBSXL19GaGioECpKJBJ88skn2LdvH0qWLGmtLhORhT1PSNG6ztCIRUB31eicox6JiIiIiIiIrIXD5QpIlSpVsH//fpw7dw4nTpzAjRs3EBcXh9TUVLi7u6Ns2bJo1KgRunbtCj8/P2t3l4gszFEl17ouL8FiznUaiYiIiIiIiKyFwWIB+/DDD/Hhhx9auxtEZGMcldojDeW5VIXWFTw6KRksEhERERERkW3gVGgiIgvQFSwaqgoN6BmxyGCRiIiIiIiIbASDRSIiC9C1NmKepkIzWCQiIiIiIiIbwWCRiMgCdI5YzGUqdIaO4FFXO0RERERERETWwGCRiMgCdE+F5ohFIiIiIiIiKrwYLBIRWYCjjkAwt2CRxVuIiIiIiIjIljFYJCKygIJbY5FToYmIiIiIiMg2MFgkIrIAXVOhpUWKGLwPp0ITERERERGRLWOwSERkAbqCxQ51yhm8j65gUdeUaiIiIiIiIiJrYLBIRGQBuqZCly7ubvA+utdY5FRoIiIiIiIisg0MFomILMBJoT3SUC11NHgfToUmIiIiIiIiW8ZgkYjIAnSNWFQ7ageHmnQGizoCSiIiIiIiIiJrYLBIRGQButZGVDkYHrEocXbSuo4jFomIiIiIiMhWMFgkIrIAXcVb1I65TYXWXmNR18hHIiIiIiIiImtgsEhEZAG6AkGVQy5Toe10T4VWq9UF1i8iIiIiIiKivGKwSERkAbpGLKpyKd6SritYVMrBXJGIiIiIiIhsAYNFIiIL0Bks5lK8JV3HVGgnpRwqJotERERERERkAxgsEhFZgKNKV/GW3IJF7dulKgVUzBWJiIiIiIjIBjBYJCKygLxMhU6z0zFiUSGHGkwWiYiIiIiIyPoYLBIRWYDuYDGX4i16p0IXWLeIiIiIiIiI8ozBIhGRBegKFtW5BIsKiT2UEvFp2kmpgIrJIhEREREREdkABotERBbgqDJ9KjSgPWqRIxaJiIiIiIjIVjBYJCKyAF0jFpWOxgSL4lGNjqwKTURERERERDaCwSIRkQU4KnVUhc5lKjSgHSw6KRUMFomIiIiIiMgmMFgkIrIAqY6p0B7uLrneL1PHVGjGikRERP/H3n2HSVWefRz/Td++sPTeqzQLgh2wxI69RE00xhRjippiEk2x65tETUyiYsHYYxS7ooKgSBWk97rUXbb33Snn/WNlYOachd2dOTOz8P1cV65355mZcx6vlx3Y3973cwMAgFRAsAgACWDVCj2sV4dDvs9csUgrNAAAAAAgNRAsAkAC9Eo3f9w6DnHG4r3nDLUOFkNx3RoAAAAAAK1CsAgACeAORJ6x2OB0Sw7HQd/z/eN7WwxvCajWH4z7/gAAAAAAaCmCRQBIAFOwGHV2opXO2T7LMxanLMiP694AAAAAAGgNgkUASABP1BmLzQkWJeszFu+fsSFu+wIAAAAAoLUIFgEgAaqraiMeNzhbHywCAAAAAJAKCBYBwGar91TKG2x5K7RkFSwGJKZCAwAAAABSAMEiANjsl++ukjfUylZot/l1nqhrAQAAAACQDASLAGCzouoGeaPPWHR6mnh1JKvX0Q4NAAAAAEgFBIsAYLNjerYzB4vNrFi0ep0vQMUiAAAAACD5CBYBwGZOh2JohaZiEQAAAACQmggWAcBmhmTRCt264S2S5A0RLAIAAAAAko9gEQASoLWt0FbBIq3QAAAAAIBUQLAIAAkQXWVoFRhasTxjkVZoAAAAAEAKIFgEALsZhnzxrFgkWAQAAAAApACCRQCwmTNobl0mWAQAAAAAtHUEiwBgM4/fHAQ2OJvXCm05vMUiqAQAAAAAINEIFgHAZk6rYJGKRQAAAABAG0ewCAA2cwfMQaC/mcEiw1sAAAAAAKmKYBEAbOayCBYbnFQsAgAAAADaNoJFALCZVcUirdAAAAAAgLaOYBEAbBbvYJHhLQAAAACAVECwCAA2s26Fbt5UaM5YBAAAAACkKoJFALDZ2p0lpjVaoQEAAAAAbR3BIgDYbNuectNa84NFKhYBAAAAAKmJYBEAbOYNxXl4S4AzFgEAAAAAyUewCAA2sxq20uBsZrDothjeYhFUAgAAAACQaASLAGAzy2CxmRWLVgGkj6nQAAAAAIAUQLAIADbzhsxBoFWLsxXrVmgqFgEAAAAAyUewCAA2s65YbGawaNEKzfAWAAAAAEAqIFgEAJvFdMaiRQDpsaiABAAAAAAg0QgWAcBmVhWGzT1j8fSjepivRys0AAAAACAFECwCgM1iGd4S8tAKDQAAAABITQSLAGAzb6j1FYsOl0t+pytijWARAAAAAJAKCBYBwGaxnLHodJjPWSRYBAAAAACkAoJFALBZR4sB0M2dCp2X4TUFi1ZBJQAAAAAAiUawCAA26+pzmNaa2wr93eN6UbEIAAAAAEhJBIsAYDN3DK3Qx/duZwohCRYBAAAAAKmAYBEAbOYJtH54i8vhsKhYpBUaAAAAAJB8BIsAYDOPRRBoeJp3xqLDIdVTsQgAAAAASEEEiwBgM2/IHCzecNLAZr+f4S0AAAAAgFREsAgANnNbtELfftawZr3X4XBwxiIAAAAAICURLAKAzayCxazsjGa/n6nQAAAAAIBURLAIADZzByxal73eZr/fKljcW1Uf67YAAAAAAIgJwSIA2MwVaIh47He6JGfzP36jg0VPKKg/f7Q2LnsDAAAAAKC1CBYBwGYVFTURjxuc7iZeaS06WJSkvaWVMe0JAAAAAIBYESwCgI3Ka/2mMxGjh7EcitXrPX7OWQQAAAAAJBfBIgDYqKCqXt5Q5BmLLQ8WzRWLnqj2agAAAAAAEo1gEQBsFAwZ8gajgkWnOSg8GKtWaDcViwAAAACAJGtZ2UwMSktLtWnTJu3YsUNlZWWqqamR0+lUZmamcnNz1bdvX/Xv319ZWVmJ2hIA2C5gFSy2sGKx3k3FIgAAAAAg9dgWLAYCAc2dO1effvqpFixYoPz8/EO+x+FwaNCgQTrhhBN0xhln6LjjjrNrewCQEIGQocwYW6HrLV7vDlCxCAAAAABIrrgHi0VFRXrllVf02muvqbi4OLxuGIakxvDwwMf71gzDkGEYWr9+vdavX6/nn39ePXv21BVXXKGrr76aSkYAbZJlK3RLz1i0aJ12NNTHtC8AAAAAAGIVt2CxtLRUTz31lF555RXV1zf+wHtgeLiPYRjy+XzKzs6W0+lUbW2tqqurw6898D07duzQ3/72Nz3xxBO65pprdNNNNyk7OzteWwYA21m2Qjtb2gptUbHYQMUiAAAAACC54hIsvvLKK3rkkUdUWVkZEQx26NBB48eP17BhwzR48GANGTJEeXl58ngiq28CgYD27Nmj/Px8rVy5UsuWLdOCBQtUVVUlSaqurtaUKVP02muv6ZZbbtG1114brnwEgFS2ubhaA4ORIWDLW6HNFYvd0mLaFgAAAAAAMYspWNy+fbt+9atfadmyZeFAsWPHjrr44ot11llnaeTIkc3bhNutnj17qmfPnjrxxBMlNYaNixcv1nvvvaePPvpIlZWVKi8v1/3336/33ntP999/vwYMGBDL9gHAdu3SPfKazliMfSq0JxCweCUAAAAAAInjbO0b33rrLV100UXhUPGoo47SI488olmzZun2229vdqjYFLfbrXHjxumee+7RnDlz9Kc//UkDBgyQYRhatmyZLrvsMr3xxhsx3QMA7OZ0OGJvhbYIFr1BWqEBAAAAAMnV6mDxjjvuUHV1tXr16qW///3veuONN3TOOefIbXEWWKx8Pp+uuuoqvf/++/rLX/6iPn36qLa2VnfddVfc7wUA8WSEQrEPb7F4vSfQENO+AAAAAACIVauDxczMTP3617/W+++/r7POOiueezqo888/Xx988IHuuOMOZWRkJOy+ANAaRiAopyIHWcXjjEXVMxUaAAAAAJBcrS4v/Oijj9SpU6d47qXZXC6Xrr/+ep133nlJuT8ANJvfXFloGRQehNXr567bo++3elMAAAAAAMSu1RWLyQoVU20PAHBQDeZgMeiOPVj0BgOq8wdbvS0AAAAAAGLV6mARAHBojgbzkJXj+rfslyJWrdO+oF81BIsAAAAAgCSyJVg8++yz9dRTT6mgoMCOywNAm+H015kXfb4WXcOqYtHHVGgAAAAAQJLZEixu3bpVjzzyiCZNmqSbbrpJH330kfx+fggGcASyqFg0PLG3QvuCfhmGxYsBAAAAAEiQVg9vaY5gMKg5c+Zozpw5ysnJ0QUXXKCLLrpII0aMsPO2AJAyHBZnLIZaGCyeNqybac0X9MsQySIAAAAAIHlsqVj87W9/q+HDh0uSDMOQYRgqLy/XSy+9pMsvv1wXXHCBpk6dqpKSEjtuDwCpwzJY9LboEueO6W1a8wYDVCwCAAAAAJLKlmDxu9/9rt544w29//77uummm9StW2O1zb6QcePGjXrooYd06qmn6ic/+YlmzJihYJAhBAAOPw6LYyBa2gqdkZluWuOMRQAAAABAstk6FXrAgAG6/fbb9dlnn+n555/XJZdcoszMzHDAGAgENHPmTN1yyy069dRT9dBDD2n9+vV2bgkAEsrpN1csGi2sWAx5zcNeOGMRAAAAAJBstgaLBxo3bpzuv/9+zZ07V3/961916qmnyuVyhUPGkpISTZ06VZMnT9all16ql19+WRUVFYnaHgDYw6IV2vC2NFg0v94X8HPCIgAAAAAgqWwd3mLF5/PpvPPO03nnnafi4mJ98MEH+vTTT7V48WIFAgFJ0qpVq7R69Wo99NBDOv3003XZZZfpxBNPTPRWASBmzjgMb7EKIhvPWCRaBAAAAAAkT8IqFq106NBB1113nZ5//nnNmzdPf/nLXzRmzBhJjecx1tfX68MPP9SNN96os846S1OnTlV1dXUytwwALWN5xmLsrdDeEBWLAAAAAIDkSmqwuM/atWv1/PPP69lnn9WyZcvkcDjC/9vXKr19+3Y99NBDmjRpkqZNm5bsLQNAs1iesehtYcWiRYWj75sKbwAAAAAAkiXhrdD7bNy4Ue+++67ee+897dq1K+K5fe19w4YN05lnnqmvv/5ac+fOVTAYVHl5uX73u99p+fLl+uMf/5iMrQNAswXr601rLa1YlMOhepdbvuD+MJHhLQAAAACAZEtosFhQUKD3339f77zzjtatWydJpjPC8vLydP755+uSSy7R0KFDw+t79+7VK6+8oqeffloNDQ169dVXdfTRR+vCCy9M5H8CALTIuh2lmhS11uJgUVK9y2MOFmmGBgAAAAAkke3BYlVVlaZPn653331XixYtUigUkhQZKLrdbp166qm65JJLNGHCBLnd5m116tRJP/vZzzRixAjdfPPNkqSXX36ZYBFASuuZbj5xosbZso/ebWU1GubySKoNrzUOb4l1dwAAAAAAtJ4twWIgENDs2bP1zjvvaNasWWr4ZipqdHXikCFDdPHFF+vCCy9UXl5es649adIk9enTR9u2bdPGjRvjvncAiCuLMxZ7dc5t0SVKa/yqd0Wes9hYsQgAAAAAQPLYEiyedNJJqqiokNQYJu4bwiJJ7dq1C7c6Dx8+vFXX79atm7Zt22YKKgEg1Rj15mDRm57WomsEQoYaXJEf176gedo0AAAAAACJZEuwWF5eHhEmulwunXzyybrkkks0ceJEeSwmnLZEcXGxJGnQoEEx7xUA7LRkU6GiD2xwp/ladI1AyLCuWOSXKwAAAACAJLLtjEXDMDRo0CBdcskluvDCC9WhQ4e4Xfvmm29Wjx491L9//7hdEwDs0CfLZVpLz2p5xaJ1sBjT1gAAAAAAiIktweI111yjiy++WCNGjLDj8jrnnHNsuS4AxFumETKttc/NatE1AkFzsOgNBlQX084AAAAAAIiNLcHiXXfdZcdlAaBNMQxD2wrKzE94vS26TiAUUr3FGYu1VCwCAAAAAJLImewNAMDhasXuSnlDAfMTLQwWh3TOUoNFKzQAAAAAAMlk2xmL0QzDUGlpqRoaGhQKmVsDD6Z79+427QoA7PPr91ZrcjD2YHHyUV012xQsBmSIkkUAAAAAQPLYGixWV1drypQpmjlzpjZv3qxgMNjiazgcDq1evdqG3QGAvQqq6uWNQ7DocjpMrdAuIyTDb3FtAAAAAAASxLZgcdOmTbrpppu0e/duSY0ViwBwJHFI8sShFVqSaXiLJKmhoeWbAgAAAAAgTmw5Y7G+vl4///nPtWvXLkmEigCOTA6H4lKxaBiGGlzm3wM5GupbuzUAAAAAAGJmS8XiBx98oI0bN8rhcMgwDI0ePVpXXnmlhg0bpqysLDmdzIwBcGTwWg1ZaXGwKNPwFkky6ggWAQAAAADJY0uw+N5774W/vuiii/TAAw/I4XDYcSsASFkOOUxToYMOp1wuV4uuY8i6FXrplkINGDEgli0CAAAAANBqtpQObtmyRZLk8Xj0u9/9jlARwBHJqhXaqqX5UAzDOli8572Vrd4bAAAAAACxsiVYLCoqksPh0NChQ5WTk2PHLQAg5TlkDhYth7AcQsgwVO82vy9YTys0AAAAACB5bAkWMzMzJUk+n8+OywNAm2GqWHS2omJR1oFkWoCp0AAAAACA5LElWOzTp48Mw9D27dvtuDwAtAkOh/mMxda1QhuWwaLPajAMAAAAAAAJYkuwOGnSJElSQUGBvvrqKztuAQApzyFz+NeaYFGS6ixaoQkWAQAAAADJZEuweOWVVyo3N1eS9OCDD6qhgXY9AEcey+EtrWiFbpfuUZ3La1pPCxAsAgAAAACSx5ZgMTc3V3/6058kSatWrdIPfvAD7dixw45bAUBK88ahYtHhcFhWLKYF+aUNAAAAACB5WteTJ+nxxx8/5GsGDhyoDRs2aMGCBfrWt76loUOHatiwYcrNzVV6enqz73XLLbe0dpsAkDRV9UGLMxZbPhVaknp2bmda81GxCAAAAABIopiCRYfDccjX7XtNMBjU6tWrtXr16hbfi2ARQFu0qqAyLq3QkhTwWrRCc8YiAAAAACCJWh0sSo2TSu18vaRmhZcAkIp6t0s3B4utHN4S8PpMa2kBWqEBAAAAAMnT6mBx7Nix8dwHAByWzK3QrQwWPeaKRaZCAwAAAACSqdXB4gsvvBDPfQDAYSleFYtBj1XFIsEiAAAAACB5bJkKDQCQnKGgXEYoYi2+ZyzSCg0AAAAASB6CRQCwiduiVbm1U6FDFmcs0goNAAAAAEimlA8WGxqoyAHQNtVW1ZnW4ju8hWARAAAAAJA8MU2Fbi7DMFRaWqq6ujoFg0HL14RCIQUCAfn9ftXU1Gjv3r366quv9MEHH+jLL79MxDYBIK78deZg0U8rNAAAAADgMGFrsLh8+XL961//0rx586g8BHDEcQcCprX6eLZCU7EIAAAAAEgi24LFTz75RL/4xS8UCoVkGEarr+NwOOK4K/sFg0F9/PHH+uSTT7Ry5Urt3btXwWBQHTt21IgRI3TBBRfo9NNPl9OZ8l3oAGLkDVmdsdi6j92OHXJMa5yxCAAAAABIJluCxaqqKt15550KBoOWweC+tejA8cDX+nw+DR48WBMnTrRji7ZYvny57rrrLq1du9b03M6dO7Vz505Nnz5dY8aM0d/+9jf16NEjCbsEkCjeoLlisbXB4kXH9DGtpQWoBAcAAAAAJI8tweJbb72l8vJyORwOGYahM888U9/61rfUsWNHvf3225o2bZrcbreeeOIJuVwulZWVae3atZo2bZoKCwslSVlZWXr88cfVuXNnO7YYd/PmzdPNN9+smpqa8FqnTp3Uu3dv+f1+rVmzRn5/Y3XR0qVLdd111+nVV19tM/99AFrOqqKwtcFitw5ZCjicchuhA65vDi4BAAAAAEgUW/px586dG/766quv1j/+8Q+df/75Gj9+vCZPniypsWXYMAydcMIJOuecc3Trrbfq/fff16RJkyRJxcXF+sMf/mDH9uJu27ZtEaFi9+7d9cQTT+iLL77Qyy+/rNdff11z587Vd77znfB7du7cqXvuuSdZWwaQAJYVi60c3iJJde7IAS4MbwEAAAAAJJMtweK6desaL+506uabb454buTIkeHzBRcuXBjxXHZ2th599FENHjxYhmFo9uzZWrZsmR1bjKu77747HCr27dtXL7/8siZOnBjR2p2Tk6Pf//73uvbaa8Nrn3zyibZu3Zro7QJIEOtW6NYNb3FIqot6L63QAAAAAIBksiVYrKiokMPhUJ8+fdSpU6eI5zIzM9WzZ09J0ooVK0zv9Xq9+tnPfhZ+/MEHH9ixxbhZsWKF5syZI6kxSP2///s/devWrcnX//znP5fX21h1ZBiGZs2alYhtAkgCbyh+Zyw6HA7VuyODRVqhAQAAAADJZMsZi7W1tZLU5PmB/fv3V35+vtavX2/5/IQJE5SVlaXq6mqtWrXKji3GzZtvvhn++qKLLtKoUaMO+vqcnBzdfvvtKi4uVm5urkaOHGn3FgEkSTxboRsrFqNaoQMNqg8E5XO7WnVNAAAAAABiYUuwmJ2drbKyMtPU53169+4tSSotLVV5eblyc3MjN+V2q1evXlqzZk3KtwofWHF4xRVXNOs9119/vT2bAZBS4jkV2uGQaqMqFtOCDZq5oUjnDOvSqmsCAAAAABALW1qh27dvL8MwwhOeo/Xq1Sv89caNGy1fk5WVJUmqrKyM/wbjZM+ePdq1a5ckKT09/ZDVigCOLN5Q/KZCS1J91BmLvkBAC/LLWn09AAAAAABiYUvF4lFHHaXNmzdr27ZtKigoUJcukdU0+yoWpcYzCo899ljTNfbs2SNJTVY9poJ9Q2qkxvZul6uxHXHHjh1666239Nlnn2nnzp2qra1V586ddfzxx+uyyy7T0UcfnawtA0ig+LZCO8yt0MEGpe4nJAAAAADgcGdLxeL48eMlNYaCDz74oOn5oUOHhr+ePn266fl169Zpx44dcjgcpjbpVJKfnx/+unPnzgqFQpoyZYrOPfdc/eMf/9DKlStVWlqquro65efn63//+5+uuuoq3XHHHaqvr0/izgEkQlynQjukuuhW6IA/pX/5AgAAAAA4vNlSsXjOOefo4YcfVkVFhT766CMVFBTohz/8oU466SS53W516dJFgwYN0oYNG7R06VI9+eST+uEPfyhJKiws1O9+9zsZhiGHw6Hhw4fbscW4KCoqCn+dkZGhe+65Ry+//HJ4beDAgerQoYOKioq0adOm8Pq0adOUn5+vqVOnhidEJ0Mg0PYnygaDwYM+BpKpqTMWW/O9FwwGza3QQb+CodBh8b0cCz4HAPA5AIDPAQB8DiSHLcFiRkaGfvzjH+vBBx+Uw+HQkiVL9KMf/UgvvPCCjjvuOEmNg07uu+8+SdKjjz6qV155RXl5edq4caP8/v3nkn3rW9+yY4txUVFREf76iy++CD8+44wzdMcdd0ScJbl9+3bdc889mj17tiRp8eLFuvfee3X33XcndtPfCIVCWrZsWVLubaeVK1cmewtAmDdkHSy25ntvT3VADe7IX0R4QwEV7t6lZctqW73HwxGfAwD4HADA5wAAPgcSw5ZWaKlx8vG1114b0aZ34NmKV111lYYNGxZ+fs+ePVqzZo0aGhrCrxkyZIguvPBCu7YYswP3ui9UvPLKK/X4449HhIpS48CaJ554QmeffXZ47b///a/Wr1+fmM0CSDhv0GJ4SyvPWJQcqrNoo/b4zfcAAAAAACARbAsWJenOO+/UlClTNHbsWKWnp6tz587h5zwej5566imNHj06HC4e+H8HDRqkJ554Qm63LUWVceFwOCIe9+rVS3feeadpfR+n06l77703PPHaMAy9+OKLtu8TQHJYtUJHtzO3RL3b/F53gGARAAAAAJActqd2p5xyik455RRVVVWZnuvUqZNefvllffLJJ5o9e7YKCwvVrl07nXLKKTr//PNTOlSUGlu+D3TVVVcd8szE7OxsnXvuufrvf/8rSZo7d65t+zsYp9OpkSNHJuXe8RQMBiPKm0eMGBGezg0k21tNtEKPHj26xdfqWd2gt1zmz5euubmtut7hhM8BAHwOAOBzAACfAy23YsUKhUKhmK6RsORuX5VeNJfLpbPPPjuiRbityMzMjHh8zDHHNOt9Y8aMCQeL27dvV0NDQ1KGuKR6cNsaLpfrsPzvQttjGEaTw1ta82e0S67bNBVakvw1tfyZj8LnAAA+BwDwOQCAz4HEsLUV+nDXvn37iMd5eXnNel+HDh0iHpeVlcVrSwBSRK0/KJ/lGYsxtEJbtFHXVdW0+noAAAAAAMQi4dFtQUGBCgoKVF5erpycnHALX21trbxeb5sqUx00aFDE4wOnRB9MIBBZxUSCDhx+XE6HZbB43Yn9W33NOotWaI+/weKVAAAAAADYLyGJVn5+vqZOnapZs2Zp9+7d4fWTTz5ZU6ZMkSTNmDFD9957r6644grddNNNys7OTsTWYjJkyJCIx1u3btWoUaMO+b49e/aEv05LS1O7du3ivTUAKcAqWPz56UNbfT2rVmhPQ32rrwcAAAAAQCxsbYU2DEOPPfaYzjnnHL3yyivatWuXDMMI/+9Au3btUllZmaZMmaILL7xQK1assHNrcZGXlxcRLn766afNet+iRYvCXw8fPlxOJx3pwOHIZzGxOTMn0+KVzWPVCs1UaAAAAABAstiaaP3iF7/QE088oWAwaAoSHQ5HxOMdO3aEv969e7duvPFGbdq0yc7txcXkyZPDX8+cOVMbN2486Ot3796tGTNmhB+fddZZtu0NQHJZDW+Rz9fq69W5za3QbioWAQAAAABJYluw+Pjjj2v69OnhxyNHjtRdd92lV1991fL1F1xwgY499lgZhiGHw6GKigrdcccddm0vbi6++GLl5uZKkvx+v+644w5VVlZavrahoUG/+c1v5Pc3VhhlZWXpkksuSdheASSWVSt0TMGiRcUiZywCAAAAAJLFlmBxz5494bMTJen222/X66+/rmuuuUZjxoyxfM/YsWP10ksv6c477wyvrVy5UrNnz7Zji3GTl5en3/72t+HHK1as0Le//W3Nnz8/4nWbN2/W9773PS1YsCC89otf/CIcSgI4/FgGi54YpkJbnLHo9lOxCAAAAABIDluGt/zvf/9TfX29HA6HLr/8ct10003Nfu+1116rHTt2aOrUqZKkDz74QKeddpod24ybiy++WFu3btUTTzwhSVq/fr2++93vqmvXrurVq5fKy8u1fv36iPdMnjxZ1113XTK2CyBBooPFOpdHaVHHQLSE1VTo9duLW309AAAAAABiYUvF4pw5cyQ1nqP4s5/9rMXv/8EPfiC3uzHzbAtDXCTp1ltv1f3336/27duH1/bs2aNFixZFhIput1s333yzHnzwwWRsE0ACRQeLQa85GGwJq6nQXTyGxSsBAAAAALCfLRWLO3bskMPh0MCBA9WxY8cWvz8vL0+9e/fW5s2bVVBQYMMO7XHppZfqjDPO0DvvvKMZM2Zo8+bNKikpkcfjUd++fXXCCSfo6quvVq9evZK9VQAJEB0sBiyGr7SEVcVipmExIAYAAAAAgASwJVgsLy+X1BgQtlanTp20efNmNTS0rcEEubm5uu6662hzBmCaCh3wxBYs1lsMb3G3sc9IAAAAAMDhw5ZW6OzsbEn7A8bWKC5uPDeM4SYA2qroikW/RStzS1i1QjO8BQAAAACQLLYEi926dZNhGNqwYUOrwsXdu3dr06ZNcjgc6t69uw07BAD7mYLFGCsW6yxaqYtLqmK6JgAAAAAArWVLsHjSSSdJkoLBoJ599tkWv//vf/+7DKNxIMG4cePiujcASBRfIKoVOsaKRatW6LQArdAAAAAAgOSwJVi88MIL5XQ2Xvrpp5/W9OnTm/3eJ598UtOmTQs/Pu+88+K+PwBIBHMrdKzDW8zBYrYY3gIAAAAASA5bgsWBAwfq4osvlmEYCgaDuvXWW3XHHXdowYIF2rt3r+n1NTU1mjVrlm644QY9+uijkiSHw6GzzjpLQ4cOtWOLAGA781ToWM9YNAeT3qh7AAAAAACQKLZMhZaku+66S2vXrtWqVatkGIbefvttvf322xGvWbRokcaPH6/KykqFQiFJCrdA9+rVS3fffbdd2wMA25mCRU/8W6F9flqhAQAAAADJYUvFoiSlpaXpmWee0SmnnCLDMCL+53A4JEn19fUqKytTMBgMB4qSNHz4cD333HNMhAbQZhVXNSgtKli0amVuCaup0D7OWAQAAAAAJIltwaIktWvXTlOmTNFDDz2kIUOGhNcPDBkP1LlzZ/3mN7/Rq6++qh49eti5NQCwVVV1rWltd71h8crm8zvdCskRsRZdFQkAAAAAQKLY1gp9oMmTJ2vy5MnKz8/XkiVLtG3bNlVUVMjv9ys3N1ddunTR0UcfrWHDhoWHvgBAWxaqrTOt9e7SLraLOhyqd3uUfkCVoi9AsAgAAAAASI6EBIv79O7dW717907kLQEgKYJ19aY1w+uL+bp1rshgMY1WaAAAAABAklAeCAA2CNaZKxZDPvNU55b45yUjTZOh2zlDMV0TAAAAAIDWSmjFYktMnTpV69atk8Ph0P3335/s7QBAi5SXV5nWYq1YvHJMd1VEDYBx1JsDTAAAAAAAEiFlKxbnzJmjadOmadq0acneCgC02O69Faa1Omdsv8vJy/Aq4I2sWHQ30AoNAAAAAEiOlA0WAaAty3GYW5TroqoNW6PKEXmNNKZCAwAAAACShGARAOxg0aLcpUNO7JeNCifTCRYBAAAAAElCsAgANvhs1S7TWqzDWyTJm5Ue8djHVGgAAAAAQJIQLAKADZZsLjSt1Tpin5dVEnJFPPZSsQgAAAAASBKCRQCwgc8i8KuPcXiLJFUr8hrpgQZtL62J+boAAAAAALQUwSIA2MAqWAx6Y2+FrnObB8Dc98GqmK8LAAAAAEBLESwCgA18AXOwGPDEI1g0X+OV+Ztjvi4AAAAAAC1FsAgANvAFA6a1YByCxQaXuWIxLcgAFwAAAABA4hEsAoANLFuh41GxaBEspjPABQAAAACQBASLAGADr1XFYlzOWDRfIz1kvhcAAAAAAHYjWAQAG9hVsVhvWbFIKzQAAAAAIPHcrX3jW2+9FcdtmBUUFNh6fQCwk3Ww6Iv5ulZTodMtBsUAAAAAAGC3VgeLd9xxhxwORzz3AgCHDctgMR6t0C7zNdJCBIsAAAAAgMSjFRoAbJDYVmiCRQAAAABA4rW6YlGSDMOI1z4A4LBiFSwGLNqYW4pWaAAAAABAqmh1sDhjxox47gMADiu2tUJbTIXOYHgLAAAAACAJWh0s9ujRI577AIDDis+iijAerdC1FsEiU6EBAAAAAMnAGYsAYANvMGBaC3pib4W2DBYDBIsAAAAAgMQjWAQAG9g1vMUqWDRqa2O+LgAAAAAALdXqYPGFF15QKBSK515axDAMvfjii0m7PwAcjGWwGIfhLbVun2kt3U/FIgAAAAAg8VodLN533326+OKLtWDBgnjup1kWLVqkSy+9VPfdd1/C7w0AzRHdCl3n8kgOR8zXpRUaAAAAAJAqWh0sduzYUevWrdP111+vH//4x9qwYUM892Vp6dKluvHGG/Wd73xHq1evVocOHWy/JwC0RnTFYr3Lo9hjxaaCxfo4XBkAAAAAgJZpdbD4zjvv6NRTT5VhGJo1a5YmT56sH/3oR/rss89kGEbcNlhfX6/33ntPV111la6++mrNnTtXhmFo7NixmjZtWtzuAwDxsrm42jJYnDSwY8zXtmyFpmIRAAAAAJAE7ta+MS8vT0899ZReffVV/e1vf1NFRYVmz56t2bNnq3Pnzjr99NN12mmnafz48fL5zD8IH0x5ebm+/PJLzZo1SzNmzFBNTY2kxnMV09PTdeutt+q6666TIw5thQAQb3urGiyDxX55GTFfm1ZoAAAAAECqaHWwuM9VV12lM888Uw899JDee+89hUIhFRYW6pVXXtErr7wil8ulPn36aPDgwRo0aJA6dOig7OxsZWZmyuVyqa6uTmVlZdq1a5e2bdumVatWKT8/P1z1uO//OhwOXXjhhbr11lvVrVu3WLcNALZxOhzmYNEd88etJOtgMY1gEQAAAACQBHH5SbdDhw56+OGHddNNN+mxxx7TzJkzwxOjA4GANm/erM2bN+ujjz5q1vUObKV2uVw666yz9MMf/lBDhw6Nx3YBwFYOh/UZi/HAGYsAAAAAgFQRnxKabwwaNEiPP/64tm/frpdfflnvv/++CgsLI4LCfe3LB1YiHvh4nx49eujCCy/UpZdeqp49e8ZzmwBgK6dD8gUip0LHK1h84sqj1fCYW97Q/uvTCg0AAAAASIa4Bov79OrVS7/5zW/0m9/8RsuXL9e8efO0bNkybdq0Sbt27ZLfv7+SxzAMeTwe9e7dWwMGDNAxxxyj8ePHU50IoM2ybIWOU7B4/rAuqnV75W0gWAQAAAAAJJctweKBRo0apVGjRoUfG4ahqqoq1dTUyOFwKDMzU5mZmXZvAwASxs5g0et2qtbtVW5DTXgtPdAgwzAYaAUAAAAASCjbg8VoDodD2dnZys7OTvStASAh7Dxj0eVwmM5ZTA/Ua3VBlY7qyucqAAAAACBxnMneAAAcbpyS0qKCxQZXfH6P43Q4VOv2RaylBxpUUedv4h0AAAAAANiDYBEA4swRNbhFil/FYpbPZVGxyBmLAAAAAIDEI1gEgDhz+utNa/UujzK8rpiv7bBshW6QEfOVAQAAAABoGYJFAIizzbtKTWsNLnfchqtYnbFokCwCAAAAABKMYBEA4uy9r/NNa/Xu+LRCS1JdVLCYEWiQYYTidn0AAAAAAJqDYBEA4mzX3nLTWrzOWJTMFYuNNzC3XwMAAAAAYCeCRQCIs/SQfcNbJOtg0VVXF7frAwAAAADQHASLABBnvoDftBbPYLHO7TOtOetq43Z9AAAAAACag2ARAOLMF7Q3WLSqWHTUUrEIAAAAAEgsgkUAiLNkBIsFe8vidn0AAAAAAJrDlmDxww8/1NSpU1VUVGTH5QEgpWUYiT9j8dPl5knUAAAAAADYyZZg8Y033tBDDz2kCRMm6KmnnrLjFgCQso7vnGFaO3Zg57hdv9bijMWde0rjdn0AAAAAAJrDlmBx/fr1MgxDwWBQxxxzjB23AICUlRYyt0KP7NMpbte3qlj0+uvjdn0AAAAAAJrDlmCxrKws/PXw4cPtuAUApCyHv8G05s0wVxm2llWw2C/NEbfrAwAAAADQHLYEi50772/5OzBkBIAjgavBHCwaXnuDxQk9MuN2fQAAAAAAmsOWYPGCCy4Ifz116lQ7bgEAKctpESzKZw4DW8vqjEUfrdAAAAAAgASzJVj88Y9/rJNOOkmGYeiFF17Q/fffr5KSEjtuBQApxypYNLxpcbt+rcccUjrrCRYBAAAAAInltuOi+fn5+tWvfqXMzEx9/PHHeuGFF/Tiiy9qwIABGjp0qPLy8pSVlSWHo3lngt1yyy12bBMAbOG0OGMxvhWL5mu56uvidn0AAAAAAJrDlmDx/PPPD4eGDodDhmHIMAxt2LBBGzdubPH1CBYBtCXOBnP1oOGL5xmL5mu56mrjdn0AAAAAAJrDlmBRkgzDaNF6U5pb1QgAqaK8vNq8aPPwFjcViwAAAACABLMlWBw7dqwdlwWANqGyvMq0Ft+KRXOwWLi3PG7XBwAAAACgOWwJFl944QU7LgsAbUIXi+MUc3Iz43Z9q2Bx667iuF0fAAAAAIDmsGUqNAAcyRqqzW3J7dtnxe36l40bYFpLC1gMjAEAAAAAwEYEiwAQZ3uKzG3J3vT0uF1/8nF9TWvpVpOoAQAAAACwkW3DW5pSUFCggoIClZeXKycnR6NHj5Yk1dbWyuv1yuVyJXpLABA3eyrq5A0GTOu+zPgFi4bPp5Accmr/MKz0QIMMw2DgFQAAAAAgYRISLObn52vq1KmaNWuWdu/eHV4/+eSTNWXKFEnSjBkzdO+99+qKK67QTTfdpOzs7ERsDQDiqrTWr7SguXrQnZkRv5s4HKpze5RxQPtzeqBehiGRKwIAAAAAEsXWVmjDMPTYY4/pnHPO0SuvvKJdu3bJMIzw/w60a9culZWVacqUKbrwwgu1YsUKO7cGALbwuZ1KC/gj1gIOp+SO3+9xQoZU646cMp0eaFAo6nMVAAAAAAA72Ros/uIXv9ATTzyhYDBoChKj2/V27NgR/nr37t268cYbtWnTJju3BwBx53M7TRWL0SFgrEKGYZoM3RgsxvU2AAAAAAAclG3B4uOPP67p06eHH48cOVJ33XWXXn31VcvXX3DBBTr22GPDZ4RVVFTojjvusGt7AGALt9NpmtBc5/bE9R7BkHWwaIhkEQAAAACQOLYEi3v27AmfnShJt99+u15//XVdc801GjNmjOV7xo4dq5deekl33nlneG3lypWaPXu2HVsEANtEt0LXubxNvLJ1Gluho4PFeioWAQAAAAAJZUuw+L///U/19fVyOBy6/PLLddNNNzX7vddee62++93vhh9/8MEHdmwRAGyTbnPFYsgwVGfVCk2yCAAAAABIIFuCxTlz5khqPEfxZz/7WYvf/4Mf/EDubwYdMMQFQFtjPmMxvhWLTbdCAwAAAACQOLYEizt27JDD4dDAgQPVsWPHFr8/Ly9PvXv3lmEYKigosGGHAGAfUyt0nIPFpoe3EC0CAAAAABLHlmCxvLxcUmNA2FqdOnWSJDU0NBzilQCQWqIrFutc8W2FzvC4TJOmvaGAQoFgXO8DAAAAAMDB2BIsZmdnS9ofMLZGcXGxJCk3NzcuewKARDGfsRjfisVT+newbK82amrieh8AAAAAAA7GlmCxW7duMgxDGzZsaFW4uHv3bm3atEkOh0Pdu3e3YYcAYBPDMAWLWTlZcb1Fls9tGVYaNbVxvQ8AAAAAAAdjS7B40kknSZKCwaCeffbZFr//73//u4xvzgobN25cXPcGAHYqLasyrTV4fRavjI1VxWKIikUAAAAAQALZEixeeOGFcjobL/30009r+vTpzX7vk08+qWnTpoUfn3feeXHfHwDY5bkvNpjWttWG4n6f7l3bm9b27C2L+30AAAAAAGiKLcHiwIEDdfHFF8swDAWDQd1666264447tGDBAu3du9f0+pqaGs2aNUs33HCDHn30UUmSw+HQWWedpaFDh9qxRQCwRXlZpWmtPs5nLErS3qDLtLZic2Hc7wMAAAAAQFPcdl34rrvu0tq1a7Vq1SoZhqG3335bb7/9dsRrFi1apPHjx6uyslKhUGNFz74W6F69eunuu++2a3sAYIuskN+0VueKf7A4sFdH09qrczfq6hvifisAAAAAACzZUrEoSWlpaXrmmWd0yimnyDCMiP85HA5JUn19vcrKyhQMBsOBoiQNHz5czz33HBOhAbQ5WUbAtFbn9sT9PkFfmmmtqtxcLQkAAAAAgF1sCxYlqV27dpoyZYoeeughDRkyJLx+YMh4oM6dO+s3v/mNXn31VfXo0cPOrQGALcbkmasTM3PjOxVakqpd5rAyeho1AAAAAAB2sq0V+kCTJ0/W5MmTlZ+fryVLlmjbtm2qqKiQ3+9Xbm6uunTpoqOPPlrDhg0LD30BgLZod2G5ae2ovp3jfp/Pdlbroqg1gkUAAAAAQCIlJFjcp3fv3urdu3cibwkACdXd4jjFOovqwljt9pt/CUOwCAAAAABIJFvKAx999FEtX77cjksDQEpz1tWa1rp3aRf3+9R7faa19EB93O8DAAAAAEBTbKlYfOKJJ/Tkk0+qY8eOmjhxoiZNmqQTTzxRXm/8J6MCQCpxNpjDPVd6etzv4/eah7dQsYjDQVmtX6sLKtWrXbp6tYv/9w4AAACA+LG1FXrv3r16/fXX9frrrystLU0nnniiJk2apIkTJyovL8/OWwNAUjjr68yL6eYQMFaBNHPgkum3uDfQhqwpqNTZU+Zre1mdMjwuvXTNMZo8omuytwUAAACgCbYEixMnTtT8+fNVW1sbnvxcW1urmTNnaubMmXI6nRo5cqQmTZqk008/XQMGDLBjGwCQcMXFlaY1wxf/YDGjXY5pLdNPKzTatn/P26btZY0BeY0/qHs/XU+wCAAAAKQwW4LFf//73/L7/Vq0aJFmz56tzz//XFu2bAmHjMFgUMuWLdOyZcv0yCOPqFevXpo0aZImTZqk4447jsnQANqsrzbs0bVRa+U2fNTWWrRCZxAsoo17fM6WiMeLd5Sr3Z0fKsPj0i8nDNAvTukvp9ORpN0BAAAAiGZbK7TH49GJJ56oE088Ub/97W+1Y8cOzZ49W7Nnz9bChQtVV7e/ZW/79u16/vnn9fzzzysnJ0ennnqqJk2apFNPPVWZmZl2bREA4s5l0Qq9qTqok+J8nzqLYJFWaByOKuoCqqgL6JfvrlaXbJ+uOaZnsrcEAAAA4Bu2nrF4oJ49e+qaa67RNddco/r6ei1YsECff/65Pv/8c+Xn54dfV15ervfee0/vvfee3G63jj/+eD3zzDOJ2iYAxCQtaB6gYqTFvxW6hopFHGZKaw49fOi6l78mWAQAAABSSMKCxQP5fD6deuqpOvXUUyVJW7du1eeff67Zs2dr0aJFamho/OHC7/dr7ty5ydgiALRKWsBvWjMsBq3EqtbjM61RsYi27G+fb072FgAAAAC0UFKCxQPV1dVp165dKi4uVnV1tUKhkByOxvOT9p3JCABtRVrAourKhorFkNOlWrdX6Qfcj2ARbU2tP6i5W0vUJcun+z7dkOztAAAAAGihhAeLDQ0NWrx4sRYuXKgFCxZoxYoVCgQCEa85MFBMT49/pQ8A2CXdIlj0ZMb/c8wwDFW7fRH3ywjQCo22o7CyXqf960ut21ud7K0AAAAAaCXbg8WGhgZ9/fXX4SBx+fLl8vv3twpGVyV6vV6NHj1a48eP1/jx4zV69Gi7twgAcZOtgGntW6N7xf0+3XLSVOPxSXWV4bVMf738wZA8Lmfc7wfE2wuLdxAqAgAAAG2cLcHiokWLtGDBgnCQuO/MRMkcJLpcLh111FEaP368TjjhBB1zzDHy+cxnhwFAW9Av3RzqpWdnxf0+95w9VNV3RrZYZ/rrFOIICbQRf/p4XbK3AAAAACBGtgSL1113XZPnJDocDg0ePDhckTh27FhlZcX/h24ASAafRSu0MyP+rdAn9m2vxZ7oYLFeIXJFtBHVDcFkbwEAAABAjGxthd4XKqanp+vSSy/VpEmTNGrUKIJEAIcttz8yWAw6nHK44/9R63A4VB01GTrTX6cQySIAAAAAIEFsDRb3VS3W1dXp5Zdf1sKFCyMqFbOzs+28PQAknLchcjJzncsjj9OeMw9r3JHBYkagXrW0QuMw9+aK3bpkZLdkbwMAAACAbAoW7777bs2dO1cLFixQaWmppMbqxQ0bNmjDhg164YUX5HQ6NXToUI0bN07jx4/Xcccdp4yMDDu2AwAJU10ROYyizu2V12HTvaJaoT2hoKrrG6Q0jz03BFLAZc9/pcDD58vptOkbCwAAAECz2RIsXnHFFbriiiskSWvWrNG8efM0d+5cLV68WLW1tZKkYDCo1atXa/Xq1Xruuefkcrk0YsSIcNB47LHHyuv12rE9ALBNdCt0rdurdg57ApDoVmhJMqqqpNxMW+4HxEsgGIrp/Yu2l2lcn/Zx2g0AAACA1rK1FVqShg0bpmHDhul73/ue/H6/li5dqrlz52revHlauXKlAoGAJCkQCGjZsmVatmyZnnrqKXk8Ho0ePVrjx4/XT37yE7u3CQBxkRY1vKXO7ZFddVU1URWLkmRUV0nqYtMdgfh4c8WemN5fF2DwCwAAAJAKbA8WD+TxeDR27FiNHTtWP//5z1VVVaVFixZp4cKF+uqrr7R69WoFg40/LDQ0NGjRokX66quvCBYBtBlpwahg0eWVTQWLplZoSTKqau25GRBHv/twTUzvZ0YRAAAAkBoSGixGy8rK0sSJEzVx4kTV19dr9uzZ+uc//6l169bJ4XCEp0oDQFuRbqpY9IYHWcVb9PAWaV/FIpDaNhfXxPT+IMkiAAAAkBKSGiyuXr1aX375pebOnaslS5aooaHxB3K7fggHALulBfwRj+tc9g1SsTpjUdXV5jUgheyuqDv0iw4hxC8eAQAAgJSQ0GBx586dmjt3rubOnav58+errKws/Fx0deKwYcM0YcIETZw4MZFbBICYRJ+xWOu2bwiVVSt0/s4idbTtjkDs3li+O+ZrULAIAAAApAZbg8XKykrNnz9fX375pebNm6f8/Pzwc9FBYlpamsaPH6+JEydqwoQJ6tKF4QMA2hjDUFowqmIxwcHiUzNW64kbbbslELMXF+846POjCrfolJ2rVO1J04vDJijgMv9ThVZoAAAAIDXYEiw+8sgjmjdvnlatWqVQKBRejw4Tu3btqtNOO00TJ07UCSecIJ/Poq0PANqKQEAuIxSxVOe2rxW6xqIVurqs0rb7AfGwtdT6fMUzt36tP8x7RSftWhte+/HSD3Tm5feowpcZ8VpaoQEAAIDUYEuw+OSTT1oOX3E4HBo5cqQmTJigSZMmaejQoXbcHgCSo9Y8kbnOZWfFojlYzPTX23Y/IB4KqxpMaxPyl+vDN/4kpyL/3TC2YKPemXaPzr70z6o74M87BYsAAABAarCtFXpfqJiRkaGTTz5ZEyZM0IQJE5SXl2fXLQEgqdbmFyn61yX1CW6FzvTHPhgDSCSHEdLfZj1jChX3OXXnar34wV912YW/lb4Z7nbx1EXaducZ6tUuPZFbBQAAABDFlmCxV69e4Rbn448/Xh6Pfa2AAJAqKi3akBM9vIVgEW3NFevmaMzeLQd9zSUb5+vMbUv1Sd+jw2vjHvtC+XeeIbfLafcWAQAAADTBlmDxk08+seOyAJDS3A3mNuQ6l32/WKEVGm2dOxjQ3V++1KzX/nDZhxHB4p7Ker2+fLeuPrqHXdsDAAAAcAi2ToWOVlFRoSVLlqiwsFBlZWVyOp3KzMxUjx49NHz4cHXs2DGR2wGAuHLXWwSLNlYs1rjNwWJGgGARbcd3Vs/UoLLdEWvbsjvphG//n1ZP/Yna1VeH1y/ctFDdqoq1O6tDeG3u1hKCRQAAACCJEhIszp49W1OmTNGSJUtMA10ONGzYMH33u9/V5MmTE7EtAIgrt0W1oJ1ToWmFRlv33VUzTWt/PvFq7cnK0wvDJ+qnX78XXncbId244hPde8JV4TWGuAAAAADJZevBRHV1dbr99tv1ox/9SIsXL1YoFAoHi4ZhmL5evXq17rjjDt1www2qqKiwc2sAEHfWrdCJPWMxg1ZotBEda8p14q61EWsb23XVC8MnSpKeHHW26T3fX/GxnKFg+HHoIL+sBAAAAGA/24LFQCCgm266SR988IGpStHlcikvL0+5ublyOvdvweFwyDAMzZ8/XzfeeKPqLdoKASBVuSyCRTuHt1hdm4pFtBXnbvlKLiMUsfbGoJMUdLokSas79tYXPYZHPN+7skhnblsafkywCAAAACSXbcHiX/7yFy1atCj8uHfv3rrzzjv14YcfauXKlZo7d64WLFigFStW6L333tMdd9yh3r17S2qsYFy5cqX+9re/2bU9AIg7V4LPWJTDoeqocxY5YxFtxQWbFprW3hlwfMTjp0Z9y/Sa8zZ/Ff6aVmgAAAAguWwJFnfs2KEXX3xRDodDknTppZfq3Xff1bXXXqt+/fpFbsDp1MCBA3X99dfr3Xff1eWXXy6pMVx86aWXtHv3btP1ASAV7SksM63ZORX6gXOHmdqhqVhEKttWUiNJ8gUa9K2tX0c8V5CRqwXdBkesTRt0gupdkcdBn3FAxeL6wip7NgoAAACgWWwJFt966y0FAgFJ0qmnnqr77rtPXu+hq3a8Xq/uueceTZgwQZIUDAb1xhtv2LFFAIi7GSt3mNbsrFi8aXxvVXsiKxbbBRtsux8Qq3/N3SpJmrh9hbKiQvD3+49V6Js26H1qPGma231YxNrQ0p3qWbFXkvTFlhLN3Vpi34YBAAAAHJQtweKXX34Z/vq3v/1ti99/xx13hL+eN29eXPYEAHbLDPlNa3YGi3kZXjWkpUespVOxiBS1YneF/m/WJknShZsWmJ6PboPe55M+Y0xrB56z+IeP1sVlfwAAAABazpZgcfv27XI4HOrTp4/69u3b4vf37dtX/fr1k2EY2rhxY/w3CAA2yDYCpjU7h7dIkj8tI+JxRgPBIlLTP7/cGv769G3LIp6rdXv1qUWAKB06WJy5sSgOuwMAAADQGrYEi2VlZZKkrl27tvoanTt3liRVV1fHY0sAYLvKcvN5bwN7dLD1nlWuyOAyzWIyNZAKnpq/TZLUsaZcg8oiz0+e032YaqLOC93n6879VZyWHbF2ev4yOaImSgMAAABIPFuCxczMTElSRUVFq69RWVkpScrKyorLngDAbuUllaa100f2tPWeRY7I4TCZ/joZIQIXpK7xu82ty/OizlE8UMjp0ozeoyLWOtVWaEzhlrjvDQAAAEDL2BIsdu3aVYZhaP369a0KF8vLy7V+/Xo5HI5w5SIApLo0i8EpGTmZtt6z2h1Z5eWUoT17y229JxCLE3atNa3N6z7koO/5pM/RprUDp0MDAAAASA5bgsXjjjtOUuNU52eeeabF73/mmWfCU6XHjh0b170BgF3SAubhLUGfdXtnvNRETYWWJKPK3JINpAqrisUF3Q4eLH7aZ3SzrgMAAAAgsWwJFi+88MLw108//bQ+/PDDZr/3gw8+0NNPPx1+fM4558R1b8ny29/+VkOGDNGQIUP05ptvJns7AGxgVbEY9JqDv3iyChZVU2vrPYHWcoWCOn73+oi11Xm9VJZ28GNPtuV01q7MvIi14/fsv857qwvit0kAAAAAzWZLsDh69GiddNJJMgxDwWBQt912m+68886DTnjesGGDfve73+n2229XKBSSw+HQ+PHjw9WPbdns2bMJE4EjgC9gESz67A0Wq60GXlRTsYjUNHLvVmUGIgcMzT9EG7QkyeHQwq6DIpZ6VJWoe2WxJOnJeVvjtUUAAAAALeC268L333+/LrroIpWVlckwDL3xxht644031KlTJw0cOFA5OTmSGge8bNiwQUVFRZIkwzAkSR06dNADDzxg1/YSprKyUnfddVeytwEgAdKtgkWbKxatgsXCghJ1t/WuQOtYDm7pNtS09vNT+mn+tlItyC8Lry3sNlgXbVoQ8brj96zXW9kn6P01hXHfKwAAAIBDs6ViUZK6dOmil156Sd26dQuvGYahwsJCzZs3T9OnT9f06dM1b9487d27NxwoSlL37t319NNPq2vXrnZtL2Huv/9+FRTQogUcCaLPWAzJoZDHa+s9qy1aoV/8Yr3FK4Hks54IbQ4WH5k8wrS2sOtg09q43fxZBwAAAJLJtmBRkvr3769p06bpe9/7nnwHtAMahhHxv33S09P1ne98R9OmTdPQoeYfNNoaWqCBI0v0GYt1bo/kcNh6T6uKxTWb+WUGUstnGxu7EqKDxTJfptZ06Gn5nkDIiHj8VdeBpteMPeCcxQP/PQEAAAAgMWxrhd4nNzdXv/71r3XLLbdo4cKF+uqrr1RYWBhukc7JyVG3bt10zDHH6Pjjj1dW1sEPcG8rKioqdOedd0qSPB6P3G63amsZqAAczqJboevc9lYrSlKN21yxmBF1hh2QbI/M3qyshhoNLt0Vsb6oy0AZjsjfcfbMbQzLo4PFCl+m1uT11LCSHeG14wo2yhkKKuR06c0Vu3XpKA4BAAAAABLJ9mBxn4yMDE2YMEETJkxI1C2T6v7771dhYeOZTz/4wQ/01ltvaefOnUneFQA7ZfgjA70at09ltf4mXh0fVhWLmf46W+8JtNR7awp0wt5tpvWlnfub1r4/ro8kKRA0VyAu6DY4IljMaajVkNKdWtOhty7/z2KF/kKwCAAAACSSra3QR6pZs2Zp2rRpkqTBgwfrRz/6UZJ3BCARoisFazw+9ci1mNocR1ZnLGb6qVhE6pizpXFy86iirabnlnXuJ0m6/9yhunhEVz0y+SjdeUbj9OdAKGR6/aKDnLOY5uafNAAAAECixbVisbS0VJs2bVJhYaEyMjLUs2dPDRxoPhPpcFZRURGeAu12u/XAAw/I67W/HRJA8llVLHbKsnt4CxWLSF3V9QGd/sQ8SdLovVtMzy/v2FeSdMekQabn2qV7TGsLu5pfd/ye9Zo64owYdwoAAACgNeISLC5fvlz/+Mc/NG/ePAWDwYjnOnfurOuuu07XXXddxACXw9W9994bboG+8cYbNWKEebIlgMOTqWLR7ZND9g5vqbGsWCRYRGp4emG+/N+0NI/cuzXiuQanW2vzrAe3SNJfLzxKJz/+ZcTa8k59Ve9yyxcMhNdGF5oDSwAAAACJEXPf0L///W9dffXVmjNnjgKBgGnic0FBgf7617/qsssu0/bt2+Ox55Q1c+ZMvf3225KkAQMG6JZbbknyjgAkkqli0eOT095cUVWWFYu0QiM1bNhbLUlyGCGNijpjcXWHXgq4mv795vje7XXT+N4Ra36XR6vzekWsjSzaJocRUl3A3DoNAAAAwF4xVSz+97//1WOPPSZJcjisf3p2OBwyDEMbNmzQ97//fb3xxhuHzeTnA5WXl+sPf/iDJMnpdLaJFuhAIHDoF6W46ArZ6MdAwhiGMi0qFjNCIVu/16o86aa17Ibaw+L7u7n4HEhdDjVWK/YtL1S2vzbiuWWd+oa/burP6z8vOkp/PGOget47c//7OvfT0Qe0VWf569S/bI82te+ulxdv1xWju8XxvwBtBZ8DAPgcAMDnQHK0OlisqqrSX//613CgaBiGxo8fr7POOks9evRQIBDQunXrNG3atHClYn5+vv75z3/qN7/5TXx2n0Luvfde7d27V5J0/fXXa/To0Une0cGFQiEtW7Ys2duIu5UrVyZ7CzhCFZRU6dyotRqPTxs3bpCv1L5fMlR6zcFiVkPtYfn93Vx8DqSOkuJySdbnK674Jlh0OtSiP6/LO/UzrY0q2qpN7bvr2leWaogKW7dZHFb4HADA5wAAPgcSo9Wt0B999JHKyxt/YPD5fPrnP/+pqVOn6tvf/rZOO+00nX766br55pv14Ycf6uKLL5bUGD6++eabqq8/vNr0ZsyYoXfeeUeS1LdvX/385z9P8o4AJNrX2ypMazUen80nLEpVXnMrdHZDrcUrgcTb9+d/VNT5ipK07JuA8NqhLeti2Dfw5UCjC83XBwAAAGC/VgeLCxYsCH/9q1/9Sqeffrrl69xut+655x4NGtQ4ybGiokJLly5t7W1TTllZmf74xz9Kamz7vu+++5SWZv5BH8DhzW3xC5Mat08d01223tdwOFUZ1Q4d3XIKJIvrm2RxZNFW03PLv6lYvH74oYPFIe33T4hefkAL9T6jLCoiAQAAANiv1a3Qa9eulSRlZmbqiiuuOPhN3G5dffXVuvvuuyVJq1at0rhx41p765RyYAv0tddeq+OOOy7JO2oep9OpkSNHJnsbMQsGgxHlzSNGjJDLZW+QA1hZv77UtFbj8enME46x98av7FKlNz0iTMypr0n54xjiic+B1NVl1zpp7WZTK/TuzPbam9FO9549WCePHXDI6/y0Nl+3vLVKklSUkatdmXnqXl0Sfn7UAcHlkfRnH/vxOQCAzwEAfA603IoVKxQKxTYEsdXB4t69e+VwONS7d295PJ5Dvv7YY48Nf52fn9/a26aUTz/9VO+++64kqVevXrrtttuSvKOWcbtjmt2Tklwu12H534XUl2YxibnG7UvIn8dKb7pUvf9xtr/2iP4+4HMgdXjcTmX46zSwbE/E+r525q456c36/9WPT+qnkBz62VuN/1Bc1qlvRLDYv7xA2fU1qvRl8P97SOJzAACfAwD4HEiUVrdC19TUSJKys7Ob9foePXqEv66srGztbVNGWVmZ/vSnP0lqbIG+9957lZGRkdxNAUgab12daa3G40vIvaMHuGQ31Gre1pImXg0kzoJtZRpassO0vqpjb0nShUd1adZ1HA6Hbjm5nzb/7nSle5zhwS8HsjrHEQAAAIC9Wh3d+v1+SWpWtaLU2DK9T3V19UFe2Ta89tpr4Rbo9PR0TZkyRVOmTGny9UVFReGvn3vuOb3//vvhxw899JA6duxo32YB2M5bbxEsupMXLD69MF8n9M1LyP2BpszcWKRrireb1ld36CVJ6pjZsu+RvnkZqrzvXF23/DPTc6OKturLnsPlD4bkcbX696YAAAAAWqDVwaJhGHI4HHI4mjfz9MDXBYPB1t42ZTQ0NIS/rqmp0Zw5c5r93vXr12v9+vXhx3UWlU4A2haPxSTmhFUsRg1vyfLX6ZM1BQm5N9CUyrqAJGmYRcXi2rye2vI766Fvh+J0OiwHuOw7x3HOlhJNHMgv6wAAAIBE4Ff6ABAHnjqLYDEBFYsDO2aqwpduWnfXtv3KcLRtJ/+z8RduQy0qFtfk9VKfvNYfH7KufQ/VuyJ/Nzrym1bobaVMRQcAAAAShVMsW+mnP/2pfvrTnzb79ZMmTdLOnTslSQ888IAuueQSu7YGIAk8Vq3QCahYfODcodr7qjlYbCitsP3ewMGs2N14nnJ0xWJBRq787drFdO2Ay621eT01+oBzFYeV7JAMI6brAgAAAGgZKhYBIB6+GWh1oAZfmu23PXtIZ1MrtNR4ziKQbO5gQAPLdkesrcnrpQn9Y29VXp3XK+Jxu/pqda0uVVV9IOZrAwAAAGgegkUAiIOFa3eZ1i48rr/t9830uU3DWyQpp8EcdAKJNrBstzyhyHOV13boqWYez3xQazv0Mq0NL96un721MvaLAwAAAGgWgkUAiIPS4nLTWjDd/opFyTwVWqJiEalhWIn1+YrOOASLqy2CxX33q/O3/SFxAAAAQFsQ8xmLBQUFeuutt2x9z0UXXdSi6wNAomX4601rDV6CRRzZhhWbJ0Kvyeup7DiULK7Js65YlKTxf5+jT380Xh0zEzOZHQAAADhSxRwsbtiwQb/97W+b/XrDMFr8HoJFAKkuI2AOFgNp5sDPDpVe83TdbD/BIpJn+rpCSdJQq4rFDr00Pg7B4ob23RRwOOU2QuG1od8Milm+u0JPzNumO88YHPN9AAAAADQtoVOhHS38QcIwjBa/J1XNnDkz2VsAYKN0i2AxEcNbJKmCikWkmAdnbJRkrlis8KZrZ1aHuLRC+10ebWzXTUNLd4bXhhfnh7/+w0frCBYBAAAAm8V0xqJhGLb+DwDaCqtWaH/CKhYJFpFaZm8ulsMIhSsI91mb11NyOOL2S8Pocxa71JQrr7YiLtcGAAAAcGitrlicMWNGPPcBAG1adCt00OFU0O1JyL0JFpGKelYWKzPq+2JNXk9Jinkq9G8mDdRDMzc2TobeOD/iuWHFO/Rlz+Gx3QAAAABAs7Q6WOzRo0c89wEAbVp0xWKN2ydDiTnKgWARqWjwAS3K+6z7JljskRvbMQE3jO2lh2ZubHIyNMEiAAAAkBgxtUIDABpFVyzWeLwJu3elx2J4S0NNwu4PWBlUusu0tqF9d0nSvWcPjenagztlSTr4ZGgAAAAA9iNYBIA4sK5YTAwqFpGKBpXtNq1taNcYLKZ5XHG5x9q8ngpFVQZbTaIGAAAAYA+CRQCIA3PFok+JmkHV4PaowRl5sgXBIpJl3/C1gRYVixvbd4vrvWo9Pm3L6RSxRsUiAAAAkDgEiwAQBxn+hojH1Z7YzpBrqeiqRYJFJEtJjV+SuRV6Z1aeamz4vljdoXfE496VRcr85s9/RZ0/7vcDAAAAsB/BIgDEqKi63lyx6PYldA8V0cGin2ARyWHIkCsUVP/ygoj1fW3Qi289Na73W/vNQJgDDS3ZIUnaXVFveg4AAABA/BAsAkCM/jZ7szL9dRFrja3QiTplkYpFpI6y2oB6V+yVNxSIWN/YvruGdMrU0T1y43KfU/rlSZLlZOh97dArdlfE5V4AAAAArBEsAkCMPl+3R55QMGIt0RWLBItIFe+u3qNBZRYTodt105c/PTlu97n3nMbJ0mssgsVh3wxw+d9y8wAZAAAAAPFDsAgAMcoMmNstazzJDRZzGmqUsOkxwAG2ltRqYKk50NvYvpvyMrxxu88p/Tso0+vSGotW6GHfVCzWBYKm5wAAAADED8EiAMQow28OFmvdPiUy1osOFj2hoFTP+XJIvA17q5qoWOwe93st+NkpKk/L0q7MvIj1Yd+csUi2DgAAANiLYBEAYtRUxWIiQ40qT7ppzajgfDkk3u7KesuKxU3tusX9XsO7ZuvZK8eYzlkcULZHvkBDE+8CAAAAEC8EiwAQo3SLACPxZyxmmNa2biuweCVgr2W7KkwVi9uzOqrWpuMBDMMwTYZ2GSENKjVXTQIAAACIL4JFAIhRekOdaa3G45WRoGbobJ9bFT5zxeLTn65KyP2BA7lCQfUrjwy1N7SPf7XiPiHDeoDL8OLttEIDAAAANiNYBIAY1VZUmdZq3D71yzNXEdrhuavGqNKiFfrzZdsScn9gH8Mw1Le8wDQlfWP7+J+veKDoVmipcTL03G0ltt4XAAAAONIRLAJAjFy1Naa1Go9Pl460r0rrQJOP6moa3iJJ2f7ahNwf2GdhfpkGlZnPV7RjcMs+howmJ0OX1Phtuy8AAAAAgkUAiFm/NIdprcbtU9ectITc3+V06Jhh5oqt7AaCRSTWH6evszzbcEP7bjp9UEdb7mkYUmFGOxWnZUes75sMDQAAAMA+BIsAEKMx7d2mtRqbBlU0pS7N3HadU2+upATsVFhV30Sw2F3fH9fblnuGDENyOExVi0NKdsoVCuqzjUW23BcAAAAAwSIAxCwzUG9aS/RU6Lr0TNMardBItKW7KjQwaiJ0SA6NPfUYXTmmhy333DegZW3UOYveUED9ygv03MJ8W+4LAAAAgGARAGKWv7PYtJboisX6dHPFIq3QSIZBpZFnLObndNKfJo+27X77Bj9bnbM4tGSHXlyy07Z7AwAAAEc6gkUAiNHarYWmtURXLNZmZJnWCBaRaJ6gX30rIr8fNrTrJpfTfA5pvIQrFpsY4AIAAADAPgSLABCjDKtW6BQ4Y5FgEYm0eEeZ+pUXyGWEItY3tu8uG3PFxjMWJa3pYF2xCAAAAMA+BIsAEKMMf4NpLdEVi/VWZyw21CgYMixeDcSXYRga++gXpjZoSdrYrpucDvuSxRFdG6dB52d3Uq3bG/HckBLaoAEAAAA7ESwCQIxSoWKx2puuoCPyIz23vkb5pVQtwn5rC6skyTS4RWqcCN0hw2taj5fTBnTQgA4ZCjldWt++e8Rzw0q2S4ahFxbTEg0AAADYgWARAGKU7jcHi9ecNDihe9hZUadyX2Q7dLv6KjUEQ028A4ifL7eWSDIPbpGkDe26y+u2758bDodDc245WZK0Ji9yMnT7+mp1rinTj/633Lb7AwAAAEcygkUAiFGmv860dtvZRyV0D6cP6qQyX2Q7dLv6ahmiFRr2e2ZBviRzxWLQ4dSbd19h+/27ZPu0/PbTtC6vh+m5oSU7VesnYAcAAADsQLAIADGKboWuc3mUluZJ6B7SPS7rYJFcEQmwIL9MkjSoNDJY3JbTSdnZ5sFCdhjRLcd6MnQJbdAAAACAXQgWASBGGVGt0NWeNDlk4xhcC2cPsahYrCNYROJ4A371riyKWNvQrrutg1uiRbdCS/snQ/s5FgAAAACIO4JFAIhRdMVijdunBGYpkqRBnbJMwWJmoF6G35/YjeCI1b98j1xGZHi3sX03uZyJ+2ZY3767QlGh/pBvgsU3V5jPfwQAAAAQG4JFAIhRdMVijceX4HrFRuVRwaIkOcvLk7ATHImi26ClxonQCcwVVefxaWtu54i1YcWNweId769J3EYAAACAIwTBIgDEKDM6WHR7E9r+uU9ZWpZpzVlRlvB94MgSCjX22w8qswgWE9wKLcl0zmKfyr3K8NdpW2ltQvcBAAAAHAkIFgEgRtn+yMCi0pue8FZoSaZWaEnavb0g8RvBEWXJzsaq2EGl5lbjRFcsStI6iwEuQ0p2JnYTAAAAwBGCYBEAYpBfUq2shshgscqbnvDhLZJ1sPjGbNo/Ya+pixqnLg+MqlgMOJzamtNZ2T53QvezxiJY3DfABQAAAEB8ESwCQAyKiivkjhpYUelJnYrFPTuoWIS9stMag8PoMxa35HZRwOWW25XYf2pEt0JLBIs4cmwrqdHbK/eooLL+0C8GAACIg8SWEQDAYSaroc60Vu1NS8rwFqtgsV1ddRJ2giNJ73bpSvPXq3dlUcT6hvbdk7If62BxexJ2AiTWf5fu0rdfWqyQIWV4XPrwpnE6pX+HZG8LAAAc5qhYBIAYZNTXmNaSdsZimkWwWE+wCHs5JA0o32Na39SuW+I3I6koI1dFadkRa0M5YxGHkfpAUDe9vkxd/zRdE/71pTbsrdKLi3foqhcbQ0VJqvEH9fBnG5O7UQAAcESgYhEAYuCqqTKtVXnS5UjGVGirikWCRdjM6XSY2qClxonQybI2r6dO3rX/fNHBpTvlDAWTth8gnh6auUnPLMiXJBVWlWjIQ59Zvu79NYWJ3BYAADhCUbEIADFwVJqDxUpvepJaobNMa+3qzfsD4skhaWCZ1UTo5FQsSubJ0L5gQP3KOW8Uh4d/zd3S7NfO21pi404AAAAIFgEgJs5qq4rFtJQZ3pJLxSJsVlTdYF2xmKQzFiVpTQercxZph0bb9NX2Ml303EJd9vwirSmoVGFVQ7Pf+5v31xz6RQAAADGgFRoAYuCoaqpiMfHJ4oiB3RSSQ04Z4TVaoWG3+2ds0DtRFYt+p0vbcjonfC9juudo6a4KJkPjsFFc3aCTH/9SDcGQJOnNFebzTA9mzhYqFgEAgL2oWASAGJQXlZrWqrzJqVjcUlancl9GxBpToWG36oagqWJxc25XBZ0uHdczN6F7eeyiEZKkNXm9TM8NK9mudYUcDYC25W+fbwqHigAAAKmIYBEAYrB8nbm9stKTnDMWa/1BUzs0FYuwW7q/Xj2riiPW9p2v+MMT+iZ0Lyf3y9NfLhiubTmdVOfyRDw3pGSHhj38mQzDaOLdQPKFQobu/XS9Ov3hIw1+cKYemBH7ZOdtJTVx2BkAAIA1gkUAiMHGreapm1Xe5EyFDoQMgkUkVCAY0sAy8/mKG7+ZCH3DWHPloJ0cDoduO22AQk6X1ked8TisZIdkGNpUTMiC1LG1pEbjH/tCzl++qxP/MUcvLN6hP3y0TsU1fm0sis/n92n/mqs6P1PRAQCAPQgWASAG6fXmkCJZU6EDIUNlaZGToXMt9gfEyxdbSjSo1GoidGOo53Qm4zuhUXQ7dF5dlTrVluvDteZfBgDJcs+n67Vwe5kkaf62Ut3w2tK43yO/rFafbiiK+3UBAAAkgkUAiI3F8JZkTYW2qljM9tdKgUDiN4MjwqbiauuJ0O26JWE3+3XI8GhdEwNcgiFaoZE6nlu4PSH3WZhvPg8YAAAgHggWASAGWQ21prXKJLVCt0/3mIJFSVJ5ecL3giNDyJAGWbRCb4hqQ06074/vo7V5PUzrw4p3yJXEKkoAAADgcEOwCAAxyPKbg8UqT3oSdiIN65ylcotgsb6o2OLVQGw27K3SQzM3amBUxWK9y63t2R2TtKtGt53aX2s6mM93HFqyQ+SKAAAAQPwQLAJADLKjKhYbnG41uD1NvNpehmRZsfjFks2J3wwOayt2V+iYRz7XlpIaDSqLPGNxU243hZwundi3fZJ2Jzkc0vr25orFISU71C0nLQk7ApKrsKoh2VsAAACHKXeyNwAAbVlWQ13E4ypv8kILl8OhsjRzsBgs4WwtxNcDMzaouiGorIYadauO/PO18ZvzFdulJSdgl6RQSKr1+LQ1p7P6Vuwf1jKsZIem7qrQJSOTewYk0BqeoF+n7Fit8bvXaWDZLpWkZWt+tyGa1WukijJyD/reKQu26YnLRiVopwAA4EhCsAgAMeiiyCqQyiS1QUvSTeN76+N3zcGip5IzFhFfry5tbH8eaDERemP7xtAumSNS9t17TV7PiGCxb0Wh/u+DFbru2J4a0NHiPFIgFRmGLl//pR757Gl1ry4xPd3gdOvxo8/TXSddq1qPr6lLAAAA2IJWaACIQV4oMlis8qbprjMHJ2Uv5w7rYtkK7amsSMJucCSIboOWkj+4RZJC36QoVpOhB5fu1N/nbEn0loBWaV9bqWlv36fX3nvYMlSUJG8ooNsWv61l//mpjt+9LsE7BAAARzqCRQCIQbA8MrSr9Kbr8lHJabNsl+5RmS/LtJ5RU5mE3eBIMNBqInS75AeL++azrOlgDhaHFW/XPwgW0Qbk1Fdr+ht/1ORNC5v1+oFle/Tp63dp3K61Nu8MAABgP4JFAGglwzBMU6GrPOlyOJI3dtaqYvHD+euTsBMcCaxaofdVLF59tHl4SqJ0yfZpYMdMrbWoWBxasjMJOwJaJsNfp3en3aPjCja26H1Z/jp98OafNarQHJ6P+etsnfiPOcovrYnXNgEAAAgWAaC1qmvqlRGIOmPRm64euckb4GI1vKVdXbUKKuuTsBsc7gaVRlYs1rq92pHdQZJ03rDOydiSJMnhcOj/zh9uGSwOKdkhSaqo8yd6W0DzGIae++hRnbJztempnVl5+tEZN2voDf/SOZf8UbN7HmV6Tfv6an30xh/VOWqw0vLdFZq/rVR975uhuz/mF04AACA+CBYBoJVCVVWmtSpPmjI8riTsppFVxWJufbVeXUqVFuJvUFQr9KbcrjIcjf+0aJ/hTcaWwiaP6Kq96bkqTsuOWB9Wsl2S9MGaQqu3AUn3ndUzdfn6uab1Gb1H6ajr/6mnRp+t9Xk9Nb3fsZp0xX36/cnXml7btaZMT3/8jyantvzp43XaXVEX970DAIAjD8EiALSSUWE+u7DKmy63M3mt0JXedIUUef929dVMBEXcZdfXqEtN5MTxVBjcEsHh0Nq8yJbswaW75AwF9a+5W5OzJ+Ab/mDItNanvEB/n/mUaX1ut6G6aPLvVRH1yyPD4dQD467Q3eOvMr3n/M1f6QfLpzd5/w/XEq4DAIDYESwCQGtVmYPFSm+6nEkMFg2HUxW+jIi19nVV4Sm5QLxEVytK0sZ2yRlcdDDRk6HTgn71qdir6oZAknYESJV1AZ3y+JeRi4ahZ6b/XTkNkWf3bs/qqAsuvkvV3vQmr/enE6/W88Mnmtb/OusZ9SvbY/meWn+w5RsHAACIQrAIAK1kVFq3QidbdOtnh7pKKhYRd9HnK0opWLEoaU1eL9PasJLtfE8gKQzD0Dur9uiS5xdp4fayiOcu3jhPk7avML3nhrN/rtL0bNN6BIdDP5v0Q23JiTzbNDNQr4c+nxrjrgEAAJpGsAgArdVExWKyFUf9ANqhtpKKRcRdWwgW/3DmYK3pYB7gclRRfhJ2A0jfe22pLnpukWZsKIpY9wT9lgHgY8dcoJl9Rjfr2pW+DH3nnNsUdET+8/6yDXN1yo6Vptc7lLzqegAAcPggWASA1rKsWExusNi/Q4aK0nMi1vLqKmWEzGd5AbGwDBbbNQaLAzpkmJ5Lhj+eNVgrO/YxrR9VnC8HmQoSbGd5rZ7/aoflcz9Z+oEGRrUs78zK0+9Pvq5F9/iy53A9NepbpvW/znpWDiPy74Fbpq1gOjoAAIgZwSIAtNLOnUWmtWRXLP7ytAGmVmi3EZKnqiJJO8Lhakhp5KTxKk+admXlyeV06K8XHpWkXUVyOBzKz+6kyqjAf+Terfp6J98TSKxfvbvacj2nvlp3zn/NtP77k69TTSuO1/jjid9WWdSQl+MKNurqtZ+bXvvLJvYEAADQXASLANBKb85db1qr8ib3jMWOmV6VWJzF5SktTcJucNgyDA0piQwW17fvLjkcmvOTk3ThUV2TtDELDodWduwdsTSsZIdcoaA27DVXHQN2eXWpucpXkn6y9H3l1UX+WVzSub9esBjG0hxFGbm6b9wVpvXfz/+vnKHIgS1PL+BYAAAAEBuCRQBopfIic1iX7IpFl9NhaoWWJE9pcRJ2g8NVl5oy5TbURKyta99Dl4zsqnF92idpV01bFdUOnRb0a0DZbr25wnpaLpAoGf46/WLxO6b1X596gwxH6/+Z/o+jz9fm3C4Ra8NKdujSDfNafU0AAAArBIsA0EpdZT6bKtlnLDodDlMrtCR5y6hYRPxEVytK0vq8HvK4UvOfFdEVi5I0oihfz3+1PQm7Afa7afl0daqNbMuf032YZvYeFbF20YiDVwF/++geEY8b3B49cPzlptf9fv5rprMWAQAAYpGaPwEAQBuQ2VBrWkuFisVii4pFbznBIuLDMAwNKTUPoFjXvoecKToRZWUH8wCXEUXbtLawSvWBoMU7APt5A37d/tVbpvX7x1+hA6cLtUv36NVrjz3otZ66fJRp7T9HTdT2rI4Ra6OKtumCTQsj1jYXV7dg1wAAAJEIFgGglTLra0xrVa04aD+eRnXLVpHFGYtpVCwiTmZuLLKsWFyX11PO1MwVtaKT1WTobZKkhz/blOjtAJKkK9d9oZ5VkcdULO48QB/1PSZi7YWrj5bXffB/smd43aY1v8ujh4+/xLQeHWYOfGCmlu4sb+auAQAAIhEsAkArZTbUmdaSXbHYu32GitPMFYt5tUzARXyc+eR8DS61aIVu3z1lKxb3ZrRTYXpuxNrIvY3B4h+nr0vGlnCkMwz99Ov3TMsPjrssolpx6+9P13nDu5he11zPjDhTuzMjzz09ZedqHbtnQ8Ta9/+7rNX3AAAARzaCRQBoJauKxRqPLwk7iTRsuLk6q1fQvFegpYqq6yWZz1jckdVB1d50jexmDrVTRfQ5i4PKdssXaEjSbnCkO2HXWh1XsDFibXNuF00bOD5irXf7jPDXf/7WEMtrHdMj13Jdkuo8Pv1zzHmm9Z8teTfi8ZKd5WoIcPYiAABoOYJFAGilTH9kxWKlJz2mKZ7x0q1vd9Nacf6uJOwEh5upi3bIE/SrX3lBxPq6vMbBET8+wRxqp4roydAuI6ShJeazIoFEsKpW/OeY8xRyupp8zw/H99Ep/fJM6z8+se9B7/XUqG+p1u2NWLty3Rx1rSqJWGOYEQAAaI3k/wQMAG1Urj9yeEuVN009cpN7xqIkvbimRNXuyMrJmj17k7QbHE7qAkENKNsjd9RU2fXtG4PFTJ/5nLdUYT0ZelsSdoIj0YFDgrpXFuuy9V9GPF/t9unZEWcc9Bqds32a+eMT9fEPxmtM9xx1z0nTLycM0A1jex30fUUZuXp56GkRa95QQDcv+yBi7asdZc34LwEAAIhEsAgArZQTqI94XOlN182HqBxJBK/LqeKoAS4daitUVutP0o5wuHA5HE0MbumRhN00z3E9G9tErSdD5yd6OzhC/d+s/UOCblz5iSmc/89Rk1SelhWxlpNmDupdTofOGNxJS247TTv+cKYePn+4nN9MTfr+OHN4vs9jx1xgWrtxxSdyBwPhx/6A0bz/GAAAgAMQLAJAK7mrqyIeV3nSdOmobknazX6nDeigovTIs+461lZqynyqsxCbFbsrNMRicMu69qkbLN5/7jC1T/dolUXF4r7J0IDd/jZ7syTJYYR0/cpPTc8/frT5HMQbj286KLRy66n91THTa/ncyk59NaP3qIi1btWlOnfLV+HHtQdUVQIAADQXwSIAtEIgGFJW9BmL3nS5ncmfinvF6O4qTouqWKyrUHV9oIl3AM3z6tJdGmJxLuG6vB76XgtDkEQ5Y3Anbf7d6TppdD9ty+4U8RwVi0iE6vpAuGJ8wvYV6ldRGPH8Fz2Ga02HyO+fv114lB4+f3iL7jOsS7aW3naaXvj20fr8Jyfq7RvG6uge+3/J9NSos03v+f6Kj8Nff7i20PQ8AADAoRAsAkArfLKuUNkNUWcsetLlcyf/Y7VHbpqKoyoWfcGAXLXVSdoRDieDoyoW61we5Wd30mOTj0rSjg4tN92jJy4bpZVRA1z6VhQq22K6OxBP/1u+O/z191aYqxWfszhb8Ren9perFb+o6p6bpmuO6amT+3XQBUd11eJbT5Pjm8u8PWCciqJ+6XTOliXqUVkkSRrSKSv6csBhqbi6QUXV9Yd+IQCgWZL/EzAAtEGPfLBcrqgzssp8meqek/zhLS6nw3TGoiSpqDjxm8FhJ/qMxQ3tu+vfVxyd0oNbpMbzIa3boalahL1++8EaSVK7uipdumFuxHNVnjS9PvikiLUbD3JWYms8fvFISVKD26P/HDUp4jmXEdIN37RmL9peFjFkBjjcGIahn721Up3/NF2d//ixfvS/5QqFOFsUAGJFsAgArZBbX2Vaq/BlyOFIfit0yDBUnJZjWp/z1YYk7AaHk7zaCnWsq4xYW9e+R0ocAXAoWT6XqWJRapwMva7Q/P0MxMueysbKqKvWfq60YOQQrf8OOVnV3vSItbu/NSSu9x/Tff/fB0+PPMv0/PdWfirHN78oG/7wrLjeG0glX20v1+Nztsj4Jkt8av42zd1WktxNAcBhgGARAFoht87cPlnmy0zCTswyPC7risViKhbRekXV9ZYTodfn9VBbqPfISfNoZQdzJdiIonw9OJPQHfa7wWJoyzMjzgx/ffmobiq792x1i3Plu9u5/5/7azv00pzuwyKe71tRqDO3LZUkbSmp0Stfm7/PgbagrNav/6yu1LOrKrWzKqBAMGr6+uLtpvc8u9C8BgBoGYJFAGiF3HrzeYXlKRIs9m6XbpoKLUkdayuSsBscLv755dYmJ0K7UqBStznW5vVU0BH5T5+jirfp+a/MA2mAWJTV+nX581/J+ct3JUkj927R2IKNEa9Z276H5nUfGn782neOU06aJ+57cUb9a//pUeaqxRsPGOJyzUtLTIEMkOoaAiGN/8eX+seySv17eaUuerdQ4x+fq20l+38RvLeqwfS+PRV1pjUAQMsQLAJAK2TWVJrWUqViMdPntqxY7FBr3jPQXDM3FFlWLK7L66HTB3VMwo5a7vpTB2tju24RayOKtiVpNzic3f7uKr2x4oChLRbVis+NOENKQCgfHfy/Pvhk099XkzcuVKeasvDjP3283vZ9AfF07ctLtLkkcqje8t2VeuSLzQd9X1uouAeAVEewCACt4CgvN62V+zKSsBNrxWnmYJGKRcTC43KaJkJLjRWLPdulW7wj9QzqlKkVUecsdqkpjwhUgHh47oD2Sm/Ar2tWz4p4PuBwmgap2GVYlyxleFzhx7Uen14eelrEa7yhgL67amb48f0zOB4AbceSHWUR09cP9Pcvtqi8tvFs0zZSXA8AbQ7BIgC0QlatedhDqlQsSrJshe5QR7CI1vO4HKaKxYKMXJWnZSVpRy3XPt1rORl6RNE2fbS2MAk7wpHggs0LTUOP3u9/nAoy24cf/+Skvrbd3+d26e8Xj4hYe3rkmabX3bjiE4WnWgBtyKHOSWx/10eqaQgkaDcAcOQhWASAVkirSe1g0aoVOo9WaMTAEwpqYFlkRci69j2StJvWOW9Y5yYmQ+fr3KcXqCHAuXKIv+8cUAm4z3Mjzgh/ne5x6u8XjTC9Jp6+d3xvPXX5qPDjpV0G6KsuAyNeM6R0p8bvXhd+fM8n62UQNKINeHXpoQcOPb0g33KdP+IAEDuCRQBoha7BWtNaqgxvkaQqT7oanO6INVqhEYs1C1fKG4qs+Fif1zNJu2mdTlk+NQwbbloftXerJGnu1pIE7wiHuw41FTp765KItYKMXH3Q7zhJ0lmDO6ns3nPkSECPZprbFfH42QPCzX0ObIf+4/R1DDZCyntr5W6V1PgP+bpfvL1Kry3dlYAdAcCRh2ARAFqhdE+RaS2VKhZvGNfb1A7doY6KRbReUxOh25pnf3eZat3eiLXRe7dIksrraJVDfF2+fo48oWDE2mtDTlXA5daxPXP10Q/Gy+NKzD/HQ1GlWa8NOUX1rshfQF2x7gv5Avsn506Zz3AjpB7DMLSmoFIn/WOOLpn6VWzXkqFNRdW666O1+vPH67S9zPyLYwDAwbkP/RIAQLQhHnMAkUoVi/d8a6iK07PVvXp/BVZngkW00q7yuiYnQo/oam67T2VOj1vLO/bVuD37p96OKNomdzAgg/mgiIMF20rDX1+99nPT8y8NaxycclK/vITtSZImH9VVHpdD/mDjn/PS9Gy9M+B4Xb5+bvg17eurdeGmhXp9yMmSpHkH/LcAybarvE5ztpTol++u0o7yurhcs6CyQYMe3F+pO3XRdi2/fYKy0/gxGQCai4pFAGiF7qqPeNzgdOvJ68YlaTdm3XPTVJDRLmKtU3UphwmhVa56cXGTFYs/PMF8ZmEqczkdWta5X8RaWtCvIaU7FeLbAzF65PNNOuEfcyRJvSsKdcrO1RHPb2zXVYu6DpIkuRI8ojY33aNfTYg8V/E/w083vc7qTEgg2T7fVKxBD87QVS8ujluoKEnLd0ceE7OttFYfr2eYFwC0BMEiALSCs7ws4nG5L0NjeuQmZzNNiA4WfcGAqgvMLdzAoczZUqLBURWLfqdLW3K76Ccn9WviXanJ6XBoaSfznscUbpY/yPAWtF4oZOjX760JP/72mtmm17w8dIL0TaDociY2WJSke88ZqrG92oUfT+97tAoyIv/u+tbWJepSvb9SsbSmQUCy/d+sjar1J+Yz+vE5WxlcBAAtQLAIAK3gL45sDyvzZcrtSvwPiQdTkNnOtPblgjXmFwLNMKxke8TjTbldFXC1vVYxp0Na2rm/aX1M4Ra9uXy3xTuA5qlqCCh4QNmrVRv0y8NODX995ZjuCdlXtI9uGqcLhneRJAVcbr08bELE824jFBGKTmlimi6QSO+vSVwV4ezNxRr1l9naFcfKSAA4nBEsAkAL7a2qV25DTcRauS8z4W1thxJdsShJ785clviNoM3rUFOhLjXlEWurO/RK0m5ik+5xaXmnvgop8vt1zN7Nep1gETFwHvB3wMi9WzSyKHLwyVddBoYnqZ81uJOO7dkukdsLa5/h1dvfOz78+Pnhk0yv+c7q/e3Qd7zPL6SQXFtLag79ojhbVVCph2dtTPh9AaAtIlgEgBaq9QfVrr46Yq3Ml5mUtraDsapY3Ltpu/mFwCFEVytK0poOvZOwk9g5HA7VeNK0vn1ktdiYwi2cQYqYHPg3wDVWbdDfDG358Yl99d6Nx5ueT7TTB3WUJC3v3M90PMDovVs1unBzMraFI9z6vVW65c0VuvG/S7Uwv7E75Pv/Tc4vRf/+xZak3BcA2pq218MEAEkWqqtXeiDyzKlyX0bKVSzuyWxvWutaw4RPtMzSneUaXmwOFttqxeI+Szv319ADBtJ0qKtUz0rOIEXr7fsrwGGEdFVUG3RIDr065BRJ0v3nDJXblfzf7f/j4hEa/vAsSdILwydqzOzIEOW7q2bqNotjAwC7VNYFdNq/5qqgsnFA3nMLt+u8YZ01c+OhP5vT/fU6d8tXOmXHao0o2qq+FYVyhUIKOp3Kz+6kpZ3768sew/R+v+NU5/G1eG+L8st0xaBFIQAA3A1JREFU50drVFzt1w9O6KMfjG9bg8sAwE4EiwDQUlGDW6TGVuiUO2PRohW6S3VZwveBtqumIaBjHvlcjxWbz1hb1aG3juuZWgOLWmJp5/66at0XEWtj9m6RYRhypNgvCZD6tpfVhs9XPHnnavWOCqln9h6lPVl5kiJbppNpaOds/efqo/WdV77WS8NO00OfT5Xb2D8c49trZuvXp16vgMut8lq/ctM9SdwtjgQfrC0Ih4r7HOpsxaHF2/XrRW/o0vXzlO2vtXxN//ICTdixUr9Y8o7KfJl6bcgpenjsJdrSrmuz9lUfCOrsKfNVWuuXJP3of8vVPy9DZwzu1Kz3A8DhLvm/LgWANsZRXmFaK/dlKt3jSsJummZVsdilpizxG0Gb9fLXjRV9w6IqFoMOp9a3764fntA3CbuK3d1nD9HSztaToY9/7AsVVddbvAswC4YMXf/K1+pz76fqf/8MSQdvg5YaBwilimuO6SFJKsxsr4/6HRPxXOfacp29dYkk6TFaQpEA87c1v6uie2Wxpn74iFY8/1Ndv2pmk6FitHb11frh8o+05rmb9bfPnla7uqqDvv53H6zRjA1F4VBxn6cZagQAYQSLANBSFhWLZb5M5WV4E7+XgyhKzzENqKBiES3x9PzGH5yiW6E353ZRncenTlmp9We+ue48Y7DpTDlJOrpwsxbvKOdcLTTbl1tK9J/FO8KPPUG/Llv/ZcRr6lwevTnohPBjZwoliwdW5/7HaojLqsYhLltLEz88A0eeUHOOuTUMfWfVDK18/hZ9Z/Vnch1QZdsS3lBAv1jyjpY//1NNzG/6DMcHZ27U+c8sNK2/vnxXq+4LAIcjgkUAaCFneblprcyXmYSdHFzQ6dLejJyINSoW0RJOp0Pt6qrUvbokYn3VN4Nbzh3aORnbiovCzPbalZkXsXZsQeME0PtnbEjGltAG/eLtlRGPz96yRHlRFVDvDhirigP+jkihXDHCuwOOV2nU32UXbF6o9rWVqmkIJmlXOJKEDjFAK7OhVq++97CmfvSYaYjegYIOpza066alnfppffvuCjqa/pG3Z1WxPnn9D7pnzotytCCkTNFvYwBICs5YBIAWclgEi+W+jCTs5NAKMtqpS83+/XatZngLms/lkIZbnK+4pkMvXTWme0oMoIjFV10G6sLN+ytRelcWqXN1qQotjhEArFRHBW7ftmiDfmXoaRGPU+WMxWj1bq9eG3qKfrTso/CaLxjQVeu+UM55RydxZzgSrNxdoX9+ubXJ5/uV7dG0t+/TqKJtls83ON16bcjJemXYaZrVc0TEgJZ0f70mbF+h766aoUs3zDNVOTpl6PcL/qsBZbt1w9k/V727bVbjA0CytO2fCAAgCQIl5nCuIi0rCTs5tOgBLp1ryqVQ69qGcORxOhxNToS+bHT3JOwofkZ0zdbirgNN68cWbErCbtBWuQ4oP8xqqIkIqiWp1JepD/odF7GWqsGiJD1v0Q593eqZemjmRpVHnTEHxMuqPZUa9VdzKL/PMQUbNf/lXzYZKk49apKGfO/f+u65t+mjfseapj7Xenz6sP9xuuqC32jUd/+u9/ofZ3mdq9Z9oen/+4OyGg7d+s+QLwDYj2ARAFpo02bzuTrV6anXCi2ZB7h4QwGplKpFHJphGPpiS4llsLiqQ++Ubedsrp+d0k9fdTEHi8d90w4NNMfawv1tzxdvmK/0QEPE828MPkkN7shpyqn8vbOg2xCta98jYm387vUaXLJDb67YnaRd4XAUDBm6/Z1Vcv7yXY38y6wmX3fq9pWa+d/fq1OteXBefnZHnXXpn/W9s3+hbbldmnXfNR1668KL7tL1Z/9clZ508/12rtb7b96tzIaDD4MJNutASAA4MhAsAkALFewoMK0VulOvFfqcoZ1VGFWxKEnGnj2J3wzanFV7KiWZW6FDcmhdXk/1zDX/QNaW9M/L1OIuA0zrxxAsopm2lkRWNVm1Qb889FTTWkpXOjkcemH4RNPyd1fN1I3/Xab/+4zvD8THP+Zs0SOfbz7oaybmL9OHb/5JORYh3/Q+R+vo6x7Tp31b0abvcOg/R52usdf+VZtyu5qePmXnar037W6l++sPepntZc2bRA0AhzuCRQBooYyaKtNaKp6xeOO43qaKRUn6fN7qJOwGbc3ryxurk6IrFrfkdlGtx6dje+YmY1txk+1zqzCzvbZndYxY31exSNsnDuWeT9eHv+5cXaozoibL7sjqoNm9RkSsHZeC3zdXRB1r8MLwiQpFjaa4dvUsOUNB/eb9NXrl652J3B4OQ59vKtZt76w66GtO3Lla70y711QFLEmPHnOhzr/kDypNz45pH+vzeurEbz+sBV0Hm547bccqvfDBX+UMNT24iEFfaIs27K3S37/YrHdX7VGIylvECcEiALRQRrU5WCzzpd4Zi5eM7KaCzHam9Xnz1yR+M2hTDMPQPZ+sV7u6KvWsKo54bnWHXnI6UrzqqhmO7tE4Mf2rqHMWe1SVqFtVsWr9TMFF0wzD0HML94fuV66bYxoI8erQU2UcMI22Y6ZXD5w3LGF7bK67zhysLtn7z6TbntNJn/UeGfGaXlVFmrh9hSTpmpeWqD7A9wdazjAMXfmfrzTh33MP+roxBZv0wZt/VmbAXDH4u5Ov020TblTQ6YpY75Tp1d4/ndHiPe3NaKczL79bc7sNNT13ycb5+uvsZ5t875PzrM98BOxUUtOgneW1MqKmqG8prtGT87bq0/V7Tc/t89X2Mh3zyOf6xdurNPm5Rbpl2opEbBlHAIJFAGghR3mZaa3Cm5ptoZXtOpjWCjaZp/wCB/rfN9WKI4u2mp5b0amvPv7BCQneUfztm2i92OKcxWMLNinYxD/KAUmmqr2r1zbdBp1/5xnaftcZ2vTb03X6oE4J2V9LHNU1W9t+f4a+vOWk8Np/LIa4fGfVzPDXeXd9pEcP0cYKRLv25a/D1fBN6VNeoPen3W3Z/nzLpB/qwXGXS1G/2Jp61Rjt+dNZyk3zmN7THFXeDJ1z6Z8sKxd/vuRd3fz1+626LhBvT8zdqm5//li97vlU335piRoCjb/QWrKjTKP/Nks/fmOFznpqvn71nnV30pQF21TdEDzgcb6q6gMJ2TsObwSLANBC3urKiMcV3nSFon5znipKc/JMa12ryxK/EbQpV76wWJI0cq+5GmNFxz7q3yH1Wv9bK7piUZKO27NRi3eUJ2E3aCv+NXdr+OsBpbs0fvf6iOdX5/XS0s79JUk926WrR266stPcidxii3jdTo3psb9N+81BJ6jKkxbxmks2zAtPy631h3TbO6u0s5wz5tA8awoqD9lG3762Uh+8+Wd1qzYPmbttwo3619HnWb7vO8f1irmKvtKXofMu+YNpeJEkPTLraZ2yY6Xl+yrqODYD8WcYhh77YrMmP7tQv/9wjeoDQdU0BPTLd1fLH2z8xedrS3fpk/V7JUlPzt+mqvr9geHfZm/WD15fphH/95m+/eJiFVc3HikwZX5kcUEwZGjoQ5/pR/9brjKOgEEMCBYBoIXa1VdHPC73ZsrrSs2P0zVOc4t255qyxG8EbdLIIqtgsa8Ol2K+xy4aocWdrSZDb9BdH61Nwo7QVszduj/4+Pbaz03PvzzsNFNVVao7sHWu2puu/w0+MeL5zEC9Llsf2cL61kqGgaF5/jr74BWurlBQr733sIaV7DA9d9dJ1+jRYyc36z7juvoO/aImlKTn6NxL/qjC9MizUD2hoF5/5yH1rNhres/AB2Zq8Y4yQhnE1b/mbtWtb6/Su6sL9MCMjfrlu6s1beUe1UQd03LBswslmQNDSXp6Qb5WF1Tp1aW7dOvbK/X4nC2W99pVUaen5m/TDa9+Hf//EBwxUvMnYQBIYbn1kZNAy9IyNbxL6p2xKEm5Pboo6Ij8qO9qUQkAWBkR1Qrd4HRrffvu6prT+h/cUsl1x/ZUcUaOtuZ0jlg/fvd6rdhVkaRdoU0xDF1tNQ16mHkadKqL/oXBodqhJRGmoNmch8jZ/zL7WdMAJEn69+hzdN+4K5p8351nDIp4/NMxORGPu2b7NPvmyJB8n2yfuYp4S7uumnzR71Xvinyuc225Xnn//+SKGuZSVN2gsY9+oSEPztTnmyLPJAZa66fTIitk//nl1nDbc2u8uGSnfvaWddXtPm+vKmjybEbgUAgWAaCFoisWy3yZSvOkZiv0qJ7ttTc98h/ZXahYRHMYhqlicU2Hngq43EpP0T/vLeX+5ifd6HO1OtZVakDZwc8BAyTp2IKNGloa2d45t9tQbc3tKkka1DEzGdtqlejhoLN7jdC27MgzISfsWKm+5VQpouWcB6ngvX7lp/r5kndN628NGKefTvpBk9W/p/bP05+/NSRibUh7j/5ySnsd09mrC4Z31hc/OUmn9O+g/1x9tE7o0z78uuFdsvTm9cdZXndB96H6yek/Mq2ftGut/jDvVcv37K1uiJgUD8Tbwb6H4uXAvwc2FVXrL7M26Zi/zdbwhz/TlPkMK0LTUvewFwBIRaGQcqIqFst9GfK6UrPlzeVwaE9me3U9IEzsUlOmPRV16pqT1vQbccTrU1FoOjx/Rcc+Omtw6g2faC1/sPG3/wu6D9GV6+dEPDduz3qt3F2hEd1yrN4KSJKuWz3LtPbysNPCXy/4+SkJ3E1sQlGVKobDqReHT9TvF/w3Yv3a1bN07wlXNb4mYbtDW9dUxeL4XWv170//ZVpf1qmvrjv3NsszrDtlerX8lxMippkf6LSe6TqtZ7pGjx4tt7vxx91rj+2pa4/tKamx7f9QZzI+O/IsHVuwST9e9mHE+u/n/1cze4/S7F4jTe+ZsaHooNcEmmNmE3+Omvoj+/IS8/EBrfXBmgJdcFRX/erd1frr7E0Rz/3wf8s1pnuuxvZuF7f74fBBxSIAtERlpZxRP0qV+VL3jMVT+ndQQUa7iLUu1WVatassKftB29HU+YrfPsZ8sH1bta8Nbn63Iabnxu9ap3OeXpDoLSHFGYahzzY2/tDnDgZ0VdT5in6nS68N2R8mtktv3ZTaZLD6ofU/wyea1q5b/Zm5bxo4hEB0SaykHpVFevPt++ULRk6l3Zueo4sm/17V3nTLa235/elNhorN0dxBL7dO+L6+7tQvYs0pQy988Dfl1XJcBuLPHwzp8v98ZflcQWW95fq1L8fvbMTJzy3S55uKTaHiPt95ZUnc7oXDS2r+JAwAqarUfD5huS9TPndqfpxeNqqbdmVFToZ2GyEFd9PKhoMbGXW+oiSt6NRX3zmuV+I3YxO3y6k/njVYX3furwZnZBPHuN3rtLO8TttKapp4N45Ev/twrU5/Yp4k6axtX6tzbeT08A/7HqvijLZZ5ZqT5tGIrtkRaxvyemhut6ERa4PKduvEXWskSX/4aJ1+/d5q1TREBkNAtKcXRA6X8AT9ev3dByM6KqTGcP7yC+7QttwukqTR3XPkdTmVm+bWCX3a6+vbTlWGNzFNdw1uj64+/1eqdkeGmD2rivX09H9YBuyPfn7wITXAwUxbsUelTZxd+5v31yRkDxP+PbfJ59btrdb8bZzVDrPU/EkYAFLU7k3mdoPitBx1yU7NtuKuOWnakd3RtP7pTCa/4eBG7DVXLHpGj0rCTuz1x7OGqN7t1ded+0esj9m7RWn+evW7f0aSdoZU0xAI6ZEDJttea9EG/eLwCYnbkA3+duFR6pjpjVj7z1HmIS7fPWCIy19mbdKP/rfc9r2h7fpyS4lp7aHPn9f43eYzCX826Qf6vNeI8OOvbztNdQ+dp9J7z9GXPz1Zo7vnmt5jp/V5PfXT039oWr9o0wLdvPQD0/pt76xSbdTkXqC5iqobkr2FQzrxH3N098ecJ4pIBIsA0AL/+Xipaa04PVs5aal7ZO12i2Bx03L+QQBrgW/OHYxuhS71Zeqibx2bjC0lxIKodmhPKKhjCq1bgXBk2llep4Zvvj9y6qs1eVNkq3yZL1PvDjg+GVuLmzMGd9K2O89Q4Z/PCq+9NuRk1bkiW7qvWDdHaf79bXkvLokcYAMc6Iwn50U8vmjDPP1iyTum1z0x+mw9Ofqc8OPTB5n//ZIMU486Xa8MMZ+X+vDnz2lQifnP/k+nrWS6LpotFDJUXd9Y9Z2A+Sxx8aeP1+mT9XuTvQ2kEIJFAGiB3Vt3mdaK07ObPJQ8FVhVLPasLE7CTtAWbC6pkTfg15CoSbcrOvbR4VyDMb/bYNPa+N3rkrATpKq3V+0/QuLS9XOVHoisLPnf4JNU7/ZGv63NSfe41DFzf+tneVqW3h4wLuI1uQ01pmAVkKTp6wo15q+zNeovs/TOqj3aU1Gn+kAo/Hz/st16dvrfTe9b0HWwfj7xpoi1q49OkTN9HQ79+Mybtfmb9ux9MgINenb6Y3KGIv92fHZhvv4wnb8/cGj3frpe7l+/p+zff6gr//NV+JdXbcG3nppPgI4wgkUAaIGOtZWmtaL0HLVP4QP6d2R1MK31qmRyIax5XU4dVZwvT9QPSis79lXQ4vD9w8X87uYBLuMIFnGA295ZFf762jWzTM+/0MbboA/Gqh36Owe0QwOSVFrToAueWajluyu0ck+lLnpukbrf/Un4eV+gQa+9+7Da1VdHvK8kLUtXXvBr+aMqYzM85onQyVLhy9Q1596uoCPyx+eTdq21rL78x5wthC44qNmbivSHj/b/O+P15bt169urDvKOVjAMpfnr1ammTD0qi9S5ulQ59dVxG8Dl+tV7euTzTfxZh1K3dw8AUlBorzmQK07L1k9O6mfx6tRg1Qrdg2ARFjYWVWv0X2fpqkLz4fNfd+6vo9vOL9JbbGtOFxVk5KpLzf5hHCfuWsv0W5j0qtiridtXRKxtzemsOT2GJ2lH9vu479Hak9EuYtDGWduWqltVsXZ/88ur5xbm6/qxvZo9cReHn7/P2WI5/Xmfv856VsdaHDHx3bNvVX5OZzu31qQnLxulHx5wRuiN43rr20f30Cfr9+rBmRsjXrug+1A9PPYS/Xbh/yLW753zot7vN1brOvQMr1XUBRQMGXK7+H6AtWteiuN554ah4cXbdcKutRpRvE3DirerT8Ve9arcq4yA+dzGOpdHBRnttC6vh9bm9dLCboP0RY+jtD2nU4tvffs7qzVxQEeN6ZHY80+RWggWAaAFOtRVmNaK07PVLoUrFst9marypCnLXxde61lFKzTMvv3iYtX6QzraKljs0l83922fhF3Z7+qje+iVr3dqfrchmrxpYXi9R1WJ+lQUqqo+oCwf/2RCo2ssqhVfHnaajKhKpktHdkvQjuwXdLr08rDTdNvit8NrLiOka9bM1l/GXiJJuvG/y7S1tFZ//pa5+hdHho1F1U0+d+Xaz3XzMvOwk4fHXqL3B4y1fM8xPe0PKr4/rrfqAyFNX1eooZ2zdffZQ5TucWniwI6auaFIC7eXRbz+zydcrQs2LdSI4v1TrtOCfk396FGdfPVDCjpTp8oSqW1XRd2hX3QQQ4u366xtX+vU7St1ys7V6lRr/hmlKWlBv/pU7lWfyr06a9tS6ZuMc137Hpo2aLxeH3yyvu4yoNnX++6rX2vZ7RNa9h+Awwqt0ADQAnkWrdD3fPukJOyk+RxOh6kdmlZoRKvzB/XVjsZqvTFRwaLf6dLKDn00ultOMrZmu6lXjZEkfWlRcXbKztXK+f2HKq1J/UmNSADDsJwG/cKwiRGPO2d59YezzOd2tiXv3Rg5iOZ5i3boG1d8ElHVe88nDAY7krmaqFYdXLJDT338T9P6nO7DdOdJ11q+5+whnTSoY2Zc92fF4XDolpP76d0bx+n/Lhiu9APar9/53vG6+cS+Gte7XXitwe3R9ef8QoGoXySM27Net3/1lu37xRHMMDSqcIvu/vJFrXzuJ1o99Sd69LOndcnG+S0KFQ9mSOlO3bHwDS1+8VZ99cIv9INlH0UM6mrKit2V2rC3SntiDEvRdhEsAkALdKiLDBYbnG45crKTtJvmmX7TeNMAlx5VxVLoMO5rRYv5g43hgMMIafTerRHPre7QSw1uj5ypPKUoBh6XU09dPkpfWAWLOxrPO+rwh+mqaQgkemtIMccUbtLwku0Ra4u6DAy3QBbf/S0tufVU5d95pka28SD+3GFd9J+rj9bIbo1/x63o1E+LO0dWsAwp3amJ25dbvR1HmH/P3ar/LN5hWk/31+u/7z6kbH9txPre9Bxdff6vFHCZq8GfvXKM3rx+bNLb6jtn+/T4JSP1zvciQ/YlXQbqwXGXmV7/57kvaXjR/krG8jr+zoAUCIb054/X6bR/fqlb3lyh6vqA3lq5u9nv71ZVrDsWvK61z/1YS1/4ue6c/1/T30N2OKZws5749F/a8vT39ZsF/1NmQ+1BXz/koc/U575P9a8vt9q+N6Qe+noAoAU6Rv1GsDg9WxMGtvw8kkTql5ehz6OCRU8oqOCeArm6Hz6teoiNocZgcWDpbtMPgEs79VP3nLRkbCthQoa0pMsA1bi9EecRnbRzTfjrFxbv0A9P6JuE3SHZVu1p/KXSDSs/NT334vDGasXjeuaqfYZX7TPa/mTofa49tqeuPbanfv/hGj0wY6OeGv0tPfnJvyJe88NlH+mz3qOTtEOkgo1F1frJmyssn/v7zKc0qmhbxFpIDl177u3aaXEGdO2D58rnTq12Yqt8857xV+qCTQsjfhHnCwY09aNHdeLVDyvgcqvTH6er4aHz5HZRy3Mke/SLLfrzx43V3F9sKVF9MKRnFuQf9D2uUFDnb1qk7638ROduWSyX0bJigJAc2pbTSfk5nVSQ0U6V3gw1uNxyh4LKaqhV59py9S0vVL/yAjl18LOku9SU64E5/9HPl7yjP534bT0z8swmW/79QUO3TFuhjpleXTGme4v2jLaNYBEAWqBDVCt0cVq2jsrxJWk3zdMtx6ed2ebJ0LNmLdXp/8/eXQdEff5xAH9f0Z3SXQIiBord3V2zYzqdzp45Nzdjbm7+1KnTmZvd3ZhgIKASIql0d178/kCRL987REGO+Lz+4p7nueODwt19P/c8n88YSiySEu/r7TdNjmTN+RtYw0JbuYYjqlkO+qoo5gnwyMiB0Zijcdpb6OZlIVVFAzNPvqDEYgMkkUjguskLSsWFGBN8hzFXzOXhiGN7AMD4FmbyCK9GvD8eetixA369sxcaZXauDA7zgWFuOhJV62cNVlKxoIRsuGzykjo3PvAmpry8zhr/pfVwXLd0Z43/2q9xrUsqAoC6lBq7xTwBJvWci0f/LYRALCodb5EYhsVPTuGX1iMAAApLLkK8qX+NxUpqn8UXghi3K0oqaudnY+qLa5jlfwkW2cmV/h4JKlq4Y+qCu2Yu8DFyQLCOKQoEH78+US4uhHtSONrHBKFXlC/axwTJTDQ2ysvAjhvbMTPgEr7uNguPjB1lPu6oQ77IKRJisod5pX8GUrfRxyeEEPIJyh+FTlVWl/tRnY9RFvAQo8beFbDt6D05RENqK/G7OmnuUjp2+hnYQF+t/uzCkqatpQ7UFHl4YOLEmmsXGyTlHqQhiE7LQ+ONtwEAg8J8oF3IbE5xzsYDySpaAAB+PS0VAACLO9kCAHIUVPCvUyfGnEAswmQpySNS/0kkEvTb80jqXOOUN9h2Ywdr/JaZK37wHM0a72Krh5ltLKo9xuqgyOdhYkv2Bwf+hjb4udUI1vgq7yNwKbOTMTaz4iOkpO4RV9D9/L2QpGyZO3nLs0+LwV/Xt+PtrknYcG9/pZKKD40csbDjJDhO2g7jr/djdP/F+KtpH/gZ2lQqqQgA+QJFPDRpjA2thqHzyHUw/nofFnScjBBtE5n3cUuOwoPDS/DnrV0V1l/ceDtM5hypfyixSAghlVVQwOisDAApyrW/hhaHw8FbKceNTLNTqSEFKfW+/0L5xi0A4G9ghemta+cFX3Xh87h4vqAT7pk4s+YosdhwrbkeilfJJcnEyVKOQf/j0r30a3Wl+nsQSIH/4ZJhh1sv1vz0gKvgvtu1VdkLaVL3haXkIiqdnTRTLcrH8fProSpkJh0SVLQwtu9CiMsdo/Se0w7XpreGikLt/RvaNayJ1PFfWg2Hn74VY0xBLMTeK3+CLyqpsfjzjddfPD5SM14n58Djj7tQ+f4S+vztg5+uh2LyEX/se/IWkjKNrDLyi9Fh20P89TCqwsdrkhSJw+c3ImjvN5jx/AqjFIs0jxrZ49vO02E6fS/ajdmI31sMRqiOqfTz+p8hSVUbm1sMQuNJ29F/0Eo8NJK+K5ELCeb4XcCj/xbCuVypg/dCk3PBW3Se8e9C6i9KLBJCSCVJUtidlNOUanfjlvdipByFNs1JQV6xSMpq0hCJJRJAIoF7ucRiuGYjZCmqoptd7a4lWh0sdVTw2NgBonLdPimx2HDte1JSIN8iMxHd3gQw5mLVdHDt3XFONUUehrjW79IS/41tBqCkicuDckfgLLKT0SvqGYCSJh6zTlJDl/ouM78YwUk57AmJBDuub4dTGrORi4jDxZi+C6UemXcz1qj1zcH4PC6U+OxLZyGPj4m956GIy0yKNk8Kx+InpwAAO7yjEZWWVyNxki9r4hF/PI3JRJFIjCuvkrH66ivse/oWk4/6Y4d3NDLzi3ExKBGrrr5CSq7sJKFH/CucOb0W/gfnYmTo/QrrHCYra2Bz84FwnfA/eI7dhK3N+iFOyvv6asXh4KJNS7QbvQH9B61EsI6p1GWuKdF4cmg+vvG78OET6jIkkpKmLt5RaV82XiJ3lFgkhJBKEiazE4upynUksSjlKLRJdioC4rKkrCYNkUQCGOWmwTAvkzHub2CFR9+2Z+xYqs+UdbXhX273SfPEsI92QyT126SXN1lj+527lhaw/3OgS2kdwvpqaJMPidOdbr1Z8zMCrpR+vcNb+g4WUvclZRdi1EFfaK+8gkF7n7Dmpz+/irEhd1jjP7QZDS9z6bv+6koZgcaG0t/zvdC3wtrWFR+Jtv7lJiYc9kNMBr2W1GXe0eky57459QLaK6+g/z+PsfU+u141AHR4+xLXjq+Ez3+LMCDicYXf61Eje4ztswCmM/ZiQacpCNSTw8mRdwnGJhP+h4UdJyGXzz5irSQqxv9u7cLZM2uhWcD+sCEsJRcdtj/E5eDEmoiYyEnDuEoghJBqkB3LfkFMVar9R6EBYGjHxsjjM2vkmWUn43JIkpwiIrVNgVCE5ons+or+BtYoEDacna3FIjHumzZmjPElYtq12IBxxSJMDGQfg97r3BUAELmsKyY1gAL1gjKdbY/bt0VquR37fSOewjyLXlPqs+i0PLhvvoNjAXFS590Tw/Hn7V2s8SuW7vil1XCp9xni2qjOdE3+c5CLzLn1HsPwzMCaMVb+SPRB3xh02eFNR0MboGaJYbh8YjW8ji1j7X4vS8jh4ohDe3iO3gjPsZtw2KkjinmCGoxUOhGXh99bDIbzpG3wMpX+d9A/4gl8/lsE+3K7lQFAJJZgw+0wbHsQib2P36BY9GldrkntVzeexQkhpBZ4Hsj+9LEu1FgEgC52+nirzjzKapqTWusbz5Cas+1BFFomsOtAPTW0hbASRcrriyKRBLfM2Ltquryho50NTVZBMQCg65vnMM9m7lj3MnVBuLYxNg90hoWOijzCk4tlXe0AAIV8Bex7l1h9jwsJpj2/Vnr7QSQdfatvDj6LQXyW9GYNGoW5OHZ+AxTfJdHei1HTxVe9F0BSrsSEpbYylnSxxb5R7O7QtZWnhTbW9WE3+AJKjkRP6jW3wiPRQMnurZuv2SdgSO33OQlhu7RYHD6/EU8PzUfPaD+Z6wp4Avzl1ht2U3ZiTL9FFXZclqc3GgboNvwnrGg7DkIOO5XkkB4Ln/8Woce70hhl3Y1Iw5zTLzHlWAD67Jbe9InUXZRYJISQShJLOQrN1fvCNU6qSXp+MavOoklOKgoKi+UUEalt/nc/Ei2kJhbt0MJUq+YDkpNikRh3TZ1ZdRY7v6WGFA3Jo+h0aK0oOdo7+QW74/Fel24AgBFuxjUal7wt7GRT+vWuJj1Z81NfXIXiu+YDXXd4IzOfXmPqk1VXXkmfkEjwz5U/YZOZwBgu5vIwst9ipKqwP4R9PK891vVxgppi7W3YUh6Xy8GSLrY4O6ml1F4ZlTkSDQA9dvngWUzGlwuUfLawlFy0+vMeVJZexKC9j5Fapk5idqGwgnsyGWenYsf1bQjc9w1Ght6XuS5HoITfmg+C9dS/8U23mYjWNPzoY2+pYOcsAIg39ceZSS0ZY9a6KhD92g/iTf0r9wNU9PhcHn5pPQLtR61HuGYj1rxWYS4unvoR83zPSq27CAA3X6fgbnhqlWMhtQclFgkhpJLUczJZY87OljUfyGeISstDjBozsagoEuK8FyVLCCAWS1BQLEKLxDDGeISmIVJVNOp1t9vyisUSZCqpwdfQhjHeLDEcWlJqB5H66cfroQAAnfwsDAr3YcxlKSjjhH1bAIB6HUqKVActZQEstZUBAK91THDD3I0xb5iXiTHBJfX1ikRiNFpzjY59NgBzn53DkDAf1vj37cfD24S9w2+gsyH0VNm12uqK/s6NcH26J+Z1sMaOYU3Qx9GgdK4yR6IBoMUf92osXlJ5iy8E4cnbDBQIxTgXmIg/731oaDfhsOwdh++pFBdgzYN/8fqfGZj+/Cr4EulHfjMUVfFT65GwnLYbizpNRoKaTqVj/KatJRZ1spE6Z6he8nfVx9EAy7raQVdFACcDNRwa06zCU0pDXBshfnUPHBrjjkkeZhDwPn6i6ZGxI5p99QfO2niw5ngSMX732oNtN3eAK5ZeTqfTXw+x+EIQvUbUE5RYrGaPHj3CqlWr0L9/f7Rq1QrOzs5o1aoVBg0ahLVr1yIoiGo0EVJXCdLZx7o83G3lEMmna26qhTcaBqxxy0wqpEyAnT7RsMhKgn4+s5nPU8O68ftdnbYPcQUA3C53HJoLCTq+fSmPkEgNk0gkpfVnxwV7sY52HnHsgHxBycVbXdptVV1s9FRLv/6fez/W/HdldqkUCsU48zKBtYbUH63jQrDx7j7W+BmbVvi9+SCp9zn6VYsvG1QN6GKnh98HOGN6awsolmluVtkj0QBwi45E1zrln6/W3ig5ySESS3A2sIL3zBIJRobcRfA/s7DS5yiUhdI7QufxFbDOYxispv6N1W3HIu0zSipxOBxs6NcYl6e1Ys2dmlDyt8XncbG2tyOSf+yFwMWd0dqC3Y29rBMTWsJQXRFjmpliz4imSP2xF4aXadglS7aiCoYMXIafW7F36gLAzIDLOHZ+A5SKpZdQ2OQVjgfUMbpeoMRiNYmJicHYsWMxfvx4HD16FKGhocjIyIBQKERGRgaCg4Nx8OBBDB48GPPnz0dODu16IKSuEWSwO8Fx6shR6CGujRAh5biCNSUWCYC/Hsqor9jITg7RyNfwd0dbb0npXkrHoeu/nEIheux6t/NKIsHX/pdZa/a4dAcABCzoWJOh1Rq6Kh8agV2waYlQbeZxcJfUN+hRppbYTuoQXS+UPRL6XqOcNJw4tx6CcjuSIjQNMbnXXEg7Lxy8uDMU+PXrEnR8CzPG7coeiV56kTac1AWLLwRBawX7teC9ponh8Dr6PQ5f3ASzHOnJ4mIuD3+59YbtlF1Y3n48MpXUPiuWOe2sSr/u6WCAxB96YNfwJtg62BWJP/SAp+XHdz4u7cL80Ljsjtv31BT5ODq+Baa2+nhjMgmHi5XtxmF034XIL9coEgCGhPng2olV0M7Plnr/DtseQtSAannXV/XrWV1OoqKiMHz4cDx9+rR0TCAQwNnZGa1bt4adnR1j6/HFixcxduxYSi4SUsekxzA/xRSDA652xZ8A1hZ8HheRUuq2WGfSThICvEzIZh2DBoAnDTCxqKVc0n3xgYkTa8dJ57fP8e0Z2rVYn0084lfaWKHrmwA4pscy5p/rWZT+Xbg0UmfdvyHoaqdX+rWEw8UfzQaw1nz39Gzp19dCk2skLvJlnQtkvl9QEBbjxLn1MM5l7jYq5PExov8SZJRLnMzrYI2IZV3hYPB5CZXarKudHpwNmc8Hso5EH7i8GQrCktqjT2PYJXZI7bPJKxy5RezjvLp5Wfjr+nY8PTQfHWJlJ4n/c+yAxhO34ZtuMz/pyHNZXE5JbcXfBzgzxvXVFDG1lQVmtbWEvlrlygvMbW+NzjYlGyMcDdSwrq/0hkQAsLizbaVf6446dkCHkesQp8r+GdvFBePu0aUwzZL+enA2kK5H6jpKLFaRSCTCnDlzkJZW8qLK4/Ewe/Zs+Pj44NSpU9i/fz8uXLiAO3fuYNCgQaX3CwkJwfLly+UUNSHkc/DTmUWG05XUwBcI5BTNp4uQkli0oh2L5J3yjVvE4OCZgfQaPvWdoboi8gRK8DGyZ4y7pkTj+NVnWHNNRgMDUqcVCkU49eLDxc0s/0usNdub9gU4HDgZqFVYr6o+G9/CFPqqH3al7HfuilQl5oVnz2g/xs6s+5FUpL8ukkgkuBKShN+8wjHlWABjbsvtXWgTH8K6z3edpuKZlDIavw9whmU97aCupsjHvdltGWOyjkQ3TY7Ejw//Lb3NXXgeEam5NRInke1VUg5uVPZDEIkE4wNvImTvTMx4fgVcSN9td9ekMZqP24xxfRciXPvzGn056Kviuw7WyF3XB7PbWYHHrfrrjqG6Im587YmiDX3xcmEnuBrJPo5tq6cK3+86YNu7MjEf49vIDm1Hb0CItglrzjn1LR4cXgLH1LesuX8evan8D0BqJUosVtGpU6cQGhpaenv9+vWYM2cO1NSYn8YZGhpiw4YNmDRpUunYlStX4O/vX1OhEkKqoKBYBN1yW/hTlDVgpassp4g+XbauAesNLiUWSXaBEByJGM0Twxnjr3RMkK1YPy8CP+b7d8eEbks5Dt092h9rroUiIaugpsMiX5hQ9OHi0CwrGQPCHzPmMxVU8K9TyfFnHZW686FSdVPk8/BkXvvS2/kCRexw681a953vh12LB57G1EhspHo5briNPrsfYdEF5m6s6QFXMP35Vdb6PS7dpf4uTGxpxhqrb7SUBTg0xp0x9kLfCj95jmStXfjkNDqUqdnbduuDLx4fkW3Pozdw2eT1oQxGBawyEnD1xCrsu/IndAukH+19o66HUX0XodPIdfAzrNoHtMFLuuC3Ac5Q5POq9DjlcTgc8HlccCuRqBTwuJjZxhLtrSq32zJa0xDtRm+At5EDa84sJwV3jyxlfZh9KSQJM04EICRJ+r8pqf0osVhFZ89+eNPUrl07DBjAPg5S1vz582Fg8KGOwcWLF79YbISQ6hOemsd6A5GqpA5FXvW+0H9Jm4e4IUqTWUfFOoOOHjRk5wIToLniMuzT4qBZlMeYa4jHoN8b06zkk/ZrFu6suZ6RzwAAJ1/E12hM5MsruxNkxvMr4JXr5rnfuStyFUo+TBrbzLRGY6ttzLVVELS4Exq960C6rWkf1gdXY0LuwDC3pDbxbtqNUuc8iEzD6xT2Tro2sUHYcmsXa9zHyB7fdP1aal1FBV7DuOQc2dQEP/ZygImmUunYeo9hrAQLFxLsv7wZGoUl/76J2dIbW5AvSyKRoFgkxrTjAR+t8ccTi7DwySm82D8b3d8ESF2Tz1fAj61HwWnSXzjm2F7q30JddmtmG9z62hNHxjX/6No0ZQ10G74W56zZHaP1CrJx69hydI32Z4z/7fMGLr960d9DHdUwnuW/kKKiIjx79qz0dr9+7M545SkoKKBdu3alt1+8oELwhNQFGnxAq4D5BjtVWR0K/LrzpmFiSzPWcWjTnFSgSHrnOlK/5RQKMeqgLwCgVQL7aK/vu6Ns5Yt8NwR6qiXJksdG9khXVGXM9Yj2A0cixvP4LGl3JXWY8N2FpYKwGFOfX2PNb2/6YSfWQBd2M6yGxtFAHZHLuwIAEtR08J9TB8a8okiIb/w/fIAupuL8dUaRUIz229i76IyzU3Hi3HooiJmd0uNVtTGs//co4kvfydtQ6pHyuBys6GaPtyu7l46JuDx81Wc+cgRKjLUW2cmMBO3oQ76Ip53wNeb0i3iYr70BxSUf3+TjnhiOR/8uwMa7+6Aio9vzCbs2aDxxG35oOwb5gsrVOvyYng761fI41YXH5aCTrR5GNDWWugtZW5n5958vUMTQgd+XNjwrS624ABdO/4ghoQ8Z42IJYLTmGjz+uIvXydSPoi6hxGIVxMbGQlHxwxOHjU3ltjpraWmVfp2ezu4ySwipfQSZGawaKqnK6hBw69bTaFS5xCJPIsbmQ7flFA2Rpz2P36BAWLIjyzOOnVj0MXKAqaYSZrWxrOHIagdzLWWIuDxct2jKGNfPz0KzcsfGSf3wn19Jo5Zhrx/AIJ/ZVOG6uRtCdT7sUjTSYCYJGqqyx/M2Nx/Imv/a/zJUi/IBAGZrr+Pma2rkUhfciWDXxFQQFuPE+XVolJfBGC/i8jGs/1LEqevKfLzKdJatb6a3tij9OkLLCN91mspaMz7oNkaE3AMAHPWPg+OG28jML66xGBuqnEIhRh96htjMihO5PLEIK72P4NG/C9AsKULqmigNA/QZshojBixFtJRa5u+t6PZpp0AEPA7mdbD++EI5WdWdWYNaTZGHmFXsBKKIy8O0HrOxoeVQ1pyiSIijFzZiqpSyCk9jMjF43xO8zcivvqDJF1W3rohrGSsrK/j5+eHp06e4ePEi7O3tP34nlCQk39PU1PxS4RFCqhE3LY01lqqkUanaJLVJhCZ7l83lS4/kEAmRt/isD0dNWpcrwJ/PV4C/gRX8F3SEqVbdqSNanf4c5AIAuGrZjDXXK+oZa4zUfV+feA4AmOUno2nLO/2cZF88NkSLO5fsan6hb4Xr5m6MOb2C7NImOPFZhZh58gUkEtq5WBuJxRJsuBWGVn/eQ8/yteYkEvx1Yztax4ey7jen63R4m8juKju/ozWUBHWnbEx1WdyZueFkj2t3nLVhHwvdcWM7rN6VpckuFEJ75RXkFgpZ60j1uR2WgiKRuMI1FpmJuH10GdY8/A98CXutiMPF5uYD4Trhf7hiVfHR4FbmWvi2vRV6VWIHou93HbB7hBteLOyEng4GH10vL5Y6Kjg5oQXcjDXgYaaFS1NbQVnAw/1yTYwAABwOvu8wAYs7TGRN8SRi7Lq+DUsenQDKvTYEJebA+peb+M0rHGl5Rfj9TjhWXQlBcCLVYayN+B9fQj5GXV0d6uqV2+Kfk5ODBw8+HC2o7C5HQoh8cVPYuyxSleve0Z5IKZ+mWlMDlwbpfckr9cI8uKQw65/5GtigmCeAjoqClHs2DP0al/ytXLOUXmdx2MsE7BzmxpojdVvTxHBWp9todX1csGlZenvLYJeaDqtW+6GHPTbeDgMAbGo5hFV/bOHT09jetA9yFZQRlpKLoMQcODeQo7F1yR/3IvD9pWCpc0sen8SkwJus8V1NeuLvJr2k3mdkU2N818EaHuba1RpnXWGtyyyjAQ4H03vMRuv9c2CY92FHtFZhLo5e2Ih2ozaUHiVfcD4IO4axm4eRz5NfLMLcMy9x4nk8rHVUPvr8MybYC9tu7GDVnn4vQN8S03rMwdNK1KI21lDCxn6NoaeqiEvTWgMoaZrXe7cPHkYxTy56mGnB3UQT7iZ1Y+PRYFcjDHY1Yox5mGnJXL+p5RCkKqlj1/VtrBrG6+4fgH5+JhZ1nAQJ58PeN5FYguWXQ7DLJ7q05uv/7kfi6bwOsNEr9zdG5Ip2LNawPXv2ICfnQ72Azp07yzEaQkhlvfR/zRpLUK17b5al7Vi0zqQGLg0R911RcY+EUNYbPB9jR3mEVKu8b+QRq66HF3oWjLnW8a9QmMLexUzqrrS8krpZs/3Z9bZ2uvWCiMvDiQktkPpjT1jqNMxu6bIoCXjo7Viys+a6RVP4GDFP8OjnZ+Eb/w+7QDML6KhnbfTPY+kNdoa9uo919w+wxh8YO+LbztMZY4s728JrZhuk/dQLh8c1b7BJxfcOlusSnayihSk9v2Wta5EYhl/v7i29vcsn+ovH1lB4R6VB9ftL2P3oDTLyi/EsNhMHfaV3qdcozMWBS7/h0KXfpSYVC3gCfN9uPFqO/b1SScXUH3si7PsuaG/NLBOgrsTH3VnsnX3TWluwxuoazkca1ux17Y5h/ZeigMeuxzrf9yz2XN0CnljEGC8SiRmNpDILhDjiH1v+7kTOaMdiDXr+/Dn+/vvv0tuWlpbo0qWLXGLJKxLBccOtz76/lbYyzk9uKXN+0YVgXH5VtTo6XWx0sWWQs8z5oQd88SopB4WFH4roKl6/80kduKa0NMN3Haxkzjf74/5Ht8p/zNqe9hgko8h7bGYBeu5+XKXHB4BDo5uiqbGG1Ln7kWn4+tTLKn+Ph994QkNJelHuA74x2OglvfZIZempKMBrZmuZ82uuv8bx51XrwtrSVBN7R8reYTTpaACexGRKnet+wx+dyo0lqGqz/o6GNzHC6u6y32x0+ssHKXlVa5ayuJM1xjeX3pE0q6AYbbZ5y7xvopQdi5aZiTBYfYWxO23HEBe0s9KR+hj+cVkYd9j/04KW4upUD0bnxLLOvEzAiqvsI1dSSSRSnwcUeFw8m9dO5t02343EnidvPynm8hz0VXFyvOwjMN+eCcStcHatqk/R20Efv/aTfcys/z9PEJn+6TVoUnNL/s0840JYc97GJR0shcKS41guv9395Mcvb2NfR/RxlH6sJyI1DwP2Pa3y9zj+VTM4GahJnbv5OgVzzwV90uMZqSsiPrsQVy2bwTXlw4UeXyJGzyg/zDzRGFsGNi59I7370Rv8cT/qs+MHABMNJVydxj4u997yK69wNrBqu4zbWmhj5zBXmfNj/vPD8/iqHTUa18wESzvLPpXhufUhsqt43G9lN1uMdDMGAIhEzAuRhKx8dPv7SaUfKzQ5F41y0jA22IsxXsjjY7drDwDAAKeSY2zv/y6evM3ApGPPPzf8UrdntIK+mvRi/0cD4vDTjbAqPb66Ih/es9vInF9/OxyHnlXtIk1T6d0lBYeDNZ6jcfnUGsb8wiensO3drsVh+59CQ+nTL0EGOhvi514OMud7/v0YsVVsfjGvnaXMeoCFQhGa/8luaPKp/hzQGF3t9KTOBSflYPjBqpdaODexBax1pSfAL4UkYfHFd8/7EiCrUAihWIyUXHbCt1VcCPZf+YM1/lZND8P7L2U1a5nQ3Bh2eqrY/jAa272rlhz7rGsNGe8HZKnUtUYyuzN2ZUlrWHTJuiV+az4IC3zPMMbn+F3AXVNnnLQvSThpLb+MRhqVawJC1xrlSICU3CKkfUK9yjaxQTh46XdYZSVJnQ/Qt8TYPgsRpFf5eqHqClwAktLXDIB5rWGvp4qMgmIUCsVQVeDhV68w/Or18ef72n6t8TFn7Vqjz5DVOHP2Z2gUMd+/Tgy8Be2CHIzuuwgFFTTBWX31lcwEcdnnge1ddFnvD977pGsNGerLtca+LpoQVHHLISUWa0hMTAxmzZqF4uIPT3BLly4Fny+f/wKxRILQKrxQFhYUIiAgQOZ80Js0hCZX7c2dkYIIAQGyLzpC4tLwOqPcfPanXaQERsYgQFN2Z8/QpGwUVS2viJevI2Elkn4RGJcjrNL/Q+n3CH4FTrL0I4sv4gqq5Xs8f/Hy3QskW2BYTpW/R4pSfoW/U8HRGQhNln4kobLUOMUVf4/YFIQmS38h/io3gzWWoKLF+rmDo+MQECA7zpDETKQVVO2XKjAsGgF86S8g2UXiiv8vlNSQrqgK7cIPa6wzE5GSW8y4qHgR8hrqWdKTfi9Tiqrnd+plIFLUpD8HvozI+/zv8e55QIGLCv+/AyOzqvxzSIorfi4Mflv150ILZRECAmS/QQyJz0D0Jz73ldU6nt24xduoZMfi+5+tOv6/A0MjYFIo/cOBqKziavkeL4JCUBQv/aLkZUz+Z3+PS1bNsfDpacbYgPBHGOfTHqpFGRjtUJLMDIzIrvLPkZ1XUPHra3Q6QpOrVsxchyes8HuExKYiNLVqu8qCImMRoCO7o+OrxCzkFFet1l7g6ygEQPqHmIFBwZ/8f/Gt33koiph/S0cd2iNFpeRYWvl/sxeJhdX2XKinLL0GXeDr3Cp/DzUBp+LfqcjMKn+Pxjof/u6uWjaDt5EDPMs8t+gVZGO230VsaDUMCdmFSMgulPYwFQqKjkdAgOzn05CEDMTnSr+ArKzAiDcIUJLeWLFQVLX3zu+9DA2DXp70RO6r9Op6LgxCtob058LA6Mo9F1pkJuLM2Z+hXK4LbrZAGf0Hr0SCGvvDx7zYMATEAoERVX99rZZrjY+8Nn7WtcYnGmSjgjPhzPeF37cfjzZxwYy/EQDYffV/8DOwRoSWEbIKhchKrtz3pmuNz8cTi7DC5yhW+Bxjnd54b3PzgVjW7isU8j+tPIy0319Z1xqZBUIAlXterPXXGpXgZd4EnUf8gssnf2A1SxsY/hiXTq3BoEHLkaUo/bizWFK596ZCsQQvX0pPelfpWuOd+nKtIZZoAKha3wA6Cl0D4uPjMWHCBCQnf3jzO3HiRDoGTUgd0iiXfaGRqKpV84FUg/LHoekodMPFkYhZicVIDQMkqOlgjAPVrnnvvkljpJd7c9sn0hd8kRC/P8uCmJpR1HlqRXn4OuAKa3xTi8FyiKbu4XIAY9V3yVEOB2vajGatWfD0NNRk1CwjtYt2fjYunP6RUQsQKGlYMbrfQjw3YJ/2OdLn440pGiINBS5G2jNfP4Q8Pkb1W4xUJWatP82iPBw7vwHKxZ+eeCefziojAXeOfI/V3kekJhXjVbXRc+gaLOg05ZOTiuTj/Axt0H7UekSrs587OsW8xO2jy2Ag5fqL1E6UWPzCwsPDMXr0aMTEfNiq265dOyxcuFCOURFCPpVhHvOFTQwOkpXrRnHl8iK0mMehdQpyoFkge2cRqb/s0+KgU+7/3vtdfcWxjtKPFDdEQh4fl6xaMMa0CnPRISYQABAgY6czqTumPb8GrULmroLLls3wUt9SPgHVQcs8tEq/vmbhDm8j5rHl97sWSe2mXFyIs2fWwjmVfXzvu05TccmafTz55zbasNGUvkOSADObsJuFvNXQx8Re81jjzZIisOfqFlaHXFKNJBKMC7oNv4NzWc263jtr4wG38VtwXUoDN1J9XuuYoN3oDQjUNWPNuSdH4t6RpbCgJpN1Ah2F/oKePXuGWbNmIT39Q0KidevW2Lp1KwQC+b74cjkc2Ot//m4UK21luLnJrlXX+G0wovOrVmPRyUwXbm6y6544BviCwy9XY1FR4ZNqLDpbmcLNTXaNRfvb2VWusehiZwU3GXVP9DILYO9T9W39Lk4OcJNR9yRbIw32QVWve9LE1UVm3ZMAYQzsY6peY7Gi3ymnpNewz6xajUUnE82Kv0dIAHIk0mssGpY7Cp2irAFNdWXoqjI/wXSyMIKbm+y6J44P86tc98TZ1gJubrLrntjflV0bLTQ5F1Ea0jtD55p9GHd1tIObjBqLkrgs2PtX7SgmADRxcZZZYzGSlwD7iM+ssfjueUCBx63w/9s5MxL2KVWve1Lh71RkIOKLqlb3pLG5PtzcZNdYdPR9AkWlT///CE3ORds4ds1BHyNHLOhohe6eHxq42N+Q/nfxKZztreEmo8aiemoe7B9Xvcaia2NHmTUWU1RSYB/yaTUWAaBQKEZ0ej7O2bbC2JA7jLkB4Y9xy8INhmaWcHM0gHPBG9jHRX1O6KVMNJQqfn2Nf4XXOVV7k+1kqg03N9k1Fh0D/VDErVqNxcZWJnBzk11j0eFebpVrLDrbWcKtTI3FssednBs7wf5BBR+YSIDQd8XgBaJizPM9x1rya8shpV8v7mQNNzdmoqzobQbsX1S9xmITF2eZNRZDEAf76KrXWKzwdyotHPbpVaux6Gikjuk93dHYPg1ddj4COBz80GYMrp5czVi34OkZbGvaF9mKJfX/PuW9aGMLQ9b/ASOGx4+hXsUai87W5nBzk11j0f627PI5leVibws3GTUWFZJyYO9b9V2dro0bS62xmJxTiIKkN+AgHdLSVjyxCEcubES7OHZ36P+598PWZv1Y486GapjRoznjPaJzbjTsE6teY/GTrzVkvB+QpVLXGoKqvU93tjJFmxZWwInLrLmLNi3xa4vBWFSu1MaoV/cQqGeOn1uPLB3TVRGw3nO+R9caJQqLxYjOqPj9kGZBDrbd3IExIdJrR+fxFbCg0xTsbNLrk64py5vqYQY3NxfWeEXXGpVV2681yvvYUeBYdT10HLkOF07/iNbxzPf+dhnxuH9kCXoNXYNAvYqb2xhrKEJNkc94HuBzOXBxcQGPxy438knXGjLUl2sNbhV+19/jSCT0cciXcP78eSxbtgxFRR/+qDt27IgtW7ZASUn6hfSX5ufnB7G4JEnG5XLh7l73P4ERCpl1otzc3ORWt5LUb2/V9WGWk1J6+7meBbRfB8NMS1mOUX26gf88RqMj+7Hz+nbG+Jg+C3Dw/K+lnXDrEnoe+Dzchefxz5U/MDGQ2YCoxbjfceyP6bDWpaPQACCRSMBbdAHqhXlI3j4OCuIPybAoDQNYT/0bZyd7oL+z9Is6UjM+5XlALJbA8ucbiMksSUJ9FXiL1aDiiaEtWo39rfTCMvz7rrCS0QyDMNn8chORaXmARIL7h5ewdgT91HokVrcdCwAQbuwHbh183amLjgfEYeRBX9kLJBLsuboFkwJvsqbOWXtgyMDvIeZ+uDhf1d0eToZq6OVgAE3l2rFbsTa/H2iyyQsvE9jJGL5IiGsnVqFTDDsxN2TA9zhj51l6O351DxiqV66hS30lkUgQm1kAJQEXeqol/xaH/WKx8XYYAuIqTvy3iwnEgcubYSmjQYufvhXG9l2IECm756RZ2d0eCzva4Hl8FjZ5hZU2VlNT5OH2zDZobqpV+R+sHmv62x08j//4hzKqRfk4eW4dekT7s+bSlNTQb/Aq+Bg7su9YRsqPPaGhwK21zwO1VXXkiego9Bfwv//9DwsXLmQkFQcMGIDt27fLLalICKkCsRiGeRmMoUQVLZho1L2/5+mtLRCiw/4E0iE9lurENUDvj/K+l6WgDJ6bGyUVy+BwONg3qimyFVVw24y5y88yKwlNkqMgor+dOsUvLrM0qQiJhNWYB3i3W/FdUnFaa3NKKn6CA6PfXZDIqLU4/+kZGOWU7K7Y4R2N5ZeD8Sia6mh9SYEJ2RUnFQH8fP+g1KTiA2NHjO63iJFUBIDBro0wsqlJrUkq1nabB0rfGSnk8TG8/1JEarB39B+4vBmuyZGlt43WXEN8FXfl1mWFQhFGHfSF+dobMP3xBv56GIWX8VkY99+zCpOKfJEQPz44hNvHlstMKv7WfBA8x2yqdFJxZhtLLOlsA3UlPtpa6eDUxJa4PK0Vtg52hd93HSmpWMaUVsxd4CObGqOTjS5rXa6CMgYMWomj9uwuyzoFObh+fCV6RD2r8Htt8gqvWrDks1FisRoVFxdj8eLF2Lp1K2N8xowZ2LhxI2XKCamr0tMZu5QAIEFVu07usuhgrSs9sZgWiyJhFVugkzrFNCsZ1uXq1jwwdkILayrAX974FiUXGudtPFhzQ18/xJkX1ACpLjn5/ENZjV5Rz+CawjyyGa7ZCKfK7BJqaaZVU6HVC23LlNG4btGUlZBXFRbixwf/AQBmn36BdTfD0H7bA9wOSwGpftdDk9HiD+nHPt9b9Pgkvn98gjUeqGuGAYNWIl/QsHfJVYeudvo4M6klRrwr31BWqooGBg5agWwB8xSMWnEBzp75GY1y0krHTH68jgmH/SCsYqmmuujMywQcf/f8XSQS45tTLzDpqH+F5SitM+Jx9+hSmV2f41R10H3Yj1jUaTKK+BUnyRd2ssHBMe4Q/doP24a4QkXhw7U9h8NBTwcDzGprCRs9+nC2rNltLbFtiCv6NzbE911tsWeEG3YMayJ1bRFfgLF9F2CHWy/WnKqwEOdOr8VX5U7alHX2Jb0fkxdKLFaToqIizJ49G2fPni0d4/P5WLt2LebPnw9ONZxbJ4TIR+LrKPaYqnbNB1IN1BR5SFbWRJoSsw6dY1oMvMKrVp+D1C0dYgNZY/dMndHEiF1kngCZa3vjrG0r1vjwV/dx4GnV6ueQmlVY5kOUxY9PsuZ/bzGIsTtrQGM65v7ZOBws7jCRNTwx8CZckqNKbwvFEux9/Kbm4mpAVl99xfidL2/Os/PYcG8/a/yNuh56DV2DdGX2awKHgzpXCqY2GODcCEe+ao4n89qz5l7qW+KrPt9BDOY1o2VWEq6eXA2tMo3WDvrGlCbYGpLRh9i71XxjZNQrlEgw4eVN+B2Yx6rb994Zm1ZwG78FNy2afvR7r+/rhI39GmNsM1O6rv9EHA4HM9tY4uxkD/zc2wkqCnzY68tuECjm8jCr60z8VKbG6HsKYiH2X/kDv3r9A55YxJrPLKha7Wby+SixWA2EQiG+/fZbeHl5lY6pqqpi586dGD58uPwCI4RUixPX/VljCapaNR5HdeBwOACHg1faJoxxh/RY7HsUJZ+gSI3LLRSyjkEDwB1TF7SxlN60p6FTV+IjVl0P942ZjXQc02PhmhIln6DIJ4vNzMfmuyUNADq9ec6qa5asrIF9zl0BAJpKfOwc1gQGDbymWVX5NrLDf44dGGM8iRh/3P6b0fn20LNYCEVipOYWoVDIvmAkn8engmPm055fwZ+3/2aNpyqpo9fQNYhVl95kZnxzU+ioSG8kQj5O1jHZc7atsbLdWNa4a0o0zp/+ESrFH45Bj/33GbY/iEJDaZdQUFz55wStghwcvvAr9l79E+rF7GYueXwFzOg+C0MGLkOqivSGNGXdmOGJxZ1tPyle8nHr+shuTAgOB6vbjsW8zlOlTi/wPYMLp35kJNwBIK4BlwqQN0osVoNff/0Vt2/fLr2to6ODgwcPol07dn0AQkjdk/Ca3dkwUUWr5gOpRuWPQysLi8CPjZFTNKSm9dvzGO3LJRbz+Qp42sgWLo1ox2JFjjuwX9tHvHqAtx/pRElqh8lH/Uu+kEjw44N/WfNb3fthUkcH5PzSG8lremJa64q7UJLKWd7uKxTymCWBurx9gWGhDxhjbf53H/qrr8Jxw208fZtRgxHWPxKJBIP3PpY5Py7oNv66/hdrPFugjL5DVsmsNbe6hz3+Hi67QympmnUew3HQqRNrvG1cCI6fWw+BqLh0bPbpF/jjXsWdkusDkViCdlsffHwhgA5vX8L/wLcYGXpf6ryvgQ2aj/sDf1ei67MSn4vj45uji4wu7qRqvmpuCiudiusXb2k2AON7fwchh5226hnth0f/LkDjFOZud4Wll9HycBxepRXjclQetj6IQgIlHL84SixW0Z07d7B//4fjA5qamjhw4ACcnaUX6CWE1D15b2JZYwl19Cj0e6+k1Fk0i4+q+UCIXAS9DIdTGjOR7G3kgC6NjemIz0ectGvDGhseeh9DKriAJ7VDdoEQ10NL6vj1iPZDu7hgxny6oiq2uPeDrZ4qVBT44PPobXJ1idY0xO/NB7HGN935h7EL6+m7Y43R6flYeSWEtZ5U3uuU3NIuteWNCr6DvVf+BBfM3W55fAX0G7ISj40cpN5vQ18nrO7hQH8b1cBIQ8ZOaA4HU3p+i0tWzVlTvaOeYd/lP8AtcwR0wbkg/Ho7DC3/uIsh+57gdXIO63513dVXSXgWK+PI8zsKwmKsu7sft44th3k2u16rGBxsbDkEbcZsxCtd9nvg8mz1VBG0uDOGNmHXxCTVw1hTCX7zO2B4E6MK1x1q3Bk9h61BqhL7g2+7jHg8/nc+Jr+4hvLFNsddTcYq7wzMPx8Mt9/uIDaTPgD+kuhVoQpEIhF+/vnn0i3oHA4Hv/32G+zs7OQcGSGkOjXKZR8jqsuJxT8HuSBEx4Q1bpJI9a0aCmnHoO+ZOkORT28LPiZOXRf3TBozxuzT4yB65ieniEhlTTr67v9IIsFP9w+x5je1HIxMJTWYairVcGT1z2QPc9bYL62GI0aN2QnUPDsFK72PSn2Mq6+Sv0hsDcVR/zip4+MDb+LQpd9ZjSwKeAIMHLQC90xdZD7mIjoOWm3W93WCrB6A7ztFly+9AQCjX93D/st/gC/6UEtuycVg+MZk4szLBDhsuI0h+57U+R2/d8JT0H7rfTTZ5IV+eyr+4M41ORKP/luAJU9OspLlABCrpoPuw3/E0g4TUcxjN2hJ/KEHHn37oe7lENdGuP9NW1h+ZDcdqToNJQF2DXeDhlLFTW5vm7vBY+xveKHHPkWgIizC7mtb8e/FTdAozJV6/+TcIuoY/YVRm+IquHLlCqKjPxyRVFZWxr59+7Bv375KP4aenh42bNjwBaIjhFQXg7wM1liCSt1NLI5rZoJtUnYsKoaFolgkhoB2ItRrr5Jy0OntC9b4HVMXqIobRq2mzzXYpRFOv0zAcft2aB8bxJgbHXIXZ16OxEDnRrTrsxaSSCQ49a57d//wx2iZGMaYT1bWwBb3/gCA7vbUGb2qlnaxxX/PYlBQpmlIroIyFnWchMMXNzHWLnh6GocdO+C5gVVNh1kvSSQSfHcuEFvuRbLmpj6/ih3Xt7OSL0VcPoYNWFqpJhakenzV3AyO+urY8/gNdvmwS+7kCxTRf/BKeB1bBrcyjY4AYGzIHagWF2B0v0Uo5LNrXZ55mYAzLxPweG57tKiDXe2zC4Tou/sx8j5SV5ErFmHh0zP48cG/UBBLb9pxyrY1pveYjTRl6bUUJ3mYQV9NEfpqihBv6l/l2Mmn01QW4Pp0T6y79Rpe4anIyC+Wui5SqxHajN6I/Zc3Y0iYD2t+9Kt78Eh4jTF9F+KJkT1r/s97kVjQ0QamWsqIzcxHSm4RnAzUoUAfqlcLSixWwZUrVxi38/LycP++9HoOspiYsHcNEUJqj7cZ+WiUm8EYK+bykKYsu5tZbaehJECEZiMUc3kQlDlO45AWizXXQrG2t6McoyNf2syTz/FXdABjrJDHxyMjB3SivGKFZrW1xOmXCThh3wabvXYzdvyMDb4D838eYU2fxljejf2GlsiX8F3SnCMRY83D/1jzG1sORa6CMiy1laGpzN7RQj6NrZ4qMn/ujYdRaYhKy4eZljJ+uPYKRyXtMf35VXQu8+EGXyLGrutb0Wb0RkY3bvJ5jNZcQ1JOEWt8lt9FbL21kzVezOVhdL+FuGTdssLHHfaR44rk07U010IzU01EpObixmv28d1MJTX0HvID7h1ZCpvMBMbcoPBHOHf6JwwetBx5Aum7rP+8F4GDY5p9idC/qGMBcR9NKlpnxGPf5T9YJS3ey+UrYl7nadjj2l1mLcUJLUzxW38qX1YbtDTXwqmJJc9B62+9xrJL0kth5CooY/iApVj26Dh+eHiYtfPaJjMBDw8vxubmA7G6zRjkC5glB9x/v4OxzU0ZH7z0ctDHsfEtoKZIqbGqoPRsFURE1P9iuYQ0dBeDEtEoj3kUOklFExIpRYTrCh6XAyGPj3DNRoxxx7QY/HLztZyiIjUl3C8EDunMuqH3TRojX6AIEe1YrFAzE00AQIKaDm6YM5sXGOemoeub59j+MEoOkZGKSCQSGP5wDQAwNPQhmiYzd3LFq2pje9M+AIDAxZ1rPL76SsDjoqONHia0NEMXO72S49EcDmZ2m4mCcscRPRJeY+6z83KKtP5IzC6UmlRc+OSU1KRiEZeP4f2X4LSU2rFlCXgczPCkRkZfAo/LwfkpHrg4xQNqiuzEeoKaDroN/4n1ng0Aur8JwNUTq1idcd/79xm7RnhtkV8swvxzgWj7v/tYejEYRUIxAhOyMf9cIKYdD5B5P45EjK/9L8H/wFyZSUVvIwe4j/8Te5r0qLBBy95R7tCiD5JqnaVd7FC8sZ/MeQmHi59bj0SXEWtZ5TUAgCcRY+HT03i+fw66Rvsz5lLzilm7ua+8SsbC80HIzC9GZGpeg+m0Xt0oLVsFFy9elHcIhJAvLK9YxKqxmKCijWVd63Yt1e+72iLkjCkcyySYjHLTZdYmIfVDbqEQXd+w37DffJcka/oucUakK3sBctC5M3pGM+sqfhV0C+Mt3Ws6LFIBsViCYQeeIiO/GFyxCKu9D7PWrPMYjnyBItpYakNZQDvmvpS2liUlREJ1TPFz6xH4qVxX7p/vH8Rlq+aMbsT3I1PRzop94Uik8wpn7nrjSMTYeGcfFvieYa0t4AkwZOAyXJHSJKSswS6NsKK7Pdzp9eGLUeTz0NvJEBcmt0Knvx6y5qM1DdFh1DpcO7EKzqlvGXNt40Lw4PBiDBi0AuHa7EYja2+EYkUt3EU/7+xL/O1TUtvbOzodG2+HfeQegGPqW+y8vo1ViuS9Yi4PP7QZjY0th0L0kd3PClT2p1bjcTmIXNYVVr/clLnmnqkLmo7/E/9c2YIBEew6nDaZCbh+YhX2N+6MFe2+Qqy67O7eu3yisftRNN5/vr6ujxMU+BwkZhdBic9FUk4h3E00McXDHLfDU7DvyVsYqitidXcHqH+kPmRDQX9RhBBSAY5QCP28LMZYgqo2JrU0k3GPumF6KwupnaEd0mrvp9uk6v5+9AZdo9mJxRvv6mqNa0blOSrC4XBw62tPAMAZ29bIFigz5oe89oZaUZ48QiMyPHmbgTMvS44QTnl5nXVR/lZND3836QEAuD7Ds8bja0jKHjPb2HIIXuoyG7woiYqx//JmRlOKDtseIi2PvQOPfBCbmY+5Z16Cu/A8Rh96VjrOFwmx98qfUpOKeXwF9B+8kpVU9J/fkfEBSgtTTRwf34KSijWkvbUO+joZSJ2LV9NFpxHr4Gtgw5pzSouBz3+LWLuzAGDVlVfosdMbk474ITpN/q9PEokEeUXC0qRiZQhExVjpfQR+B+fKTCq+1DVHqzGbsK7ViI8mFQFgOu3ArfUsdFSw+CMNo9KUNTBo0HLM7TwN+VLqjQLAhKDbCP3na/xybz80ZezuBYCyh3a+vxSMBeeCsPF2GH68Hood3tGYceI5+IsvoPtOH/z7LBa/34lAyz/vftbPVh9RYpEQQiqglJnOKnKeqKoF4zreNdRIQwkhUhKLLinsAuKk/ph/9iW6vfFnjKUrquKZgTX2jWoKFyPpxc3JB51s9SDc2A95AiWcsGceH1QRFmFYKHu3CZGfFVdK6jRpFObip/v/subXeo5AIV8BPez1abfiF2akoVTaBbeYJ8CkXnMhLFdWpGViGJY/OsYYOx+YWFMh1nq+MRngLjwP7sLzGHHgKZJzCtH0tzv4333m0T6V4gKcOfszxgfdZj1GjkAJfYb8wGrU8ksfRzQx1oD3nHZY1d0efwx0xrUZnuDKal1Mqh2Hw8HPvdmdoN9LVdFA1xFrpXaL1i3IxtUTq/HT/UPgiZn1CW+8TsH+pzHo+bePXI55nnkZjw7bHqDLXw/h/vtdqC27XOn79oh6Bv8Dc7Hm4X9QFLEbtIjBwaYWg9Fy3O/wN2QnXd/bN6op+joZwEFfFdNbW2BDX9n/zqT2WN/XCaPdP/KhN4eD/zXrjybjt+CWmavUJcrCIix9fBJhe2ZgwZPT1fYhcGhyLs68jK+Wx6rrKLFICCEVUElLZo0lqmihrr/P5nM5eKlnzhp3S46i2iL1VHJOIVxSomGYl8kYv2XeBGIuD+Nb1O1duDXp/YX2wcbsenxTn18DdyHViqstvKNKSlms9D4Kg3zm736wjin2OncDAPwxiAr414TgMjUsfRvZ4ZdWI1hrVvgcQ4e3L0tvzzv7Eum0axH5xSK0/ONe6e0Tz+Nh+MM1pOYxO6ga5qbj5rEV6BPpy3qMZGUNdB7xM+6auTDGhzcxwpJ3O4McDNTwQ08HfNvemurPyYGWcsXHKrMUVdFr2Bqcs/ZgzXEhwfJHx3Dr2HKYZLObwYQm58InOp01Xl1uhCZj9qkX+ONuBO6Ep+DsywSsufYKQ/Y9xf3INHiFp+J5fNbHHwiAbXoczpxeiysnf4BTWozUNaHaxug88mcs7jhJanfsssa3MMP5Ka0QvKQLdgxrQh8k1SEzWltAwPv4hVe4tjG6DV+LKT3mIF1RVeoa3YJs/Hp3L97unIxNXntgkVn1D65mnXzx8UUNACUWCSGkAomh7B18CaraUOTX7TckXC4HgbrmrN0iTZIjEZIk+5gAqZtE4pLmFd0qqK9IPt0dMxdEajCPrbWJD4FLchTG/ftMxr1ITZFIJMgrFsE2PQ5z/C6w5hd0mgIhr+QiXpFXt5/T6wo7fTVGUf61rUewjnbyJGL8e2kT9N59CJJZIITuqquISG3YNYCvh7I/6CzPNTkSPv8uRKuEUNZclIYB2o3aAN9GzBrR8zta4+j4FuBU0OSC1BxzbRV4mGlVuCZPoIQhA7/HphaDpc63jw2C/4G5GCJlB33brQ+w0zuq9PYRv1iMOPAUC84FIq9IiKTsQuz0jsLJ53Gf9EHztVdJ6Pm3D7Y/jML8c4Ho/Jc3Bu97gjXX2L+LFdHJz8LGO3vxct9sqXXzgJJair+0Go6mX/2Je6YuUteQ+qODjS7ufdMWS7vYYuewJmhlriV7MYeDva7d0XjSdhx06gQxpD+vaRblYb7vWYTtmYETZ39Bv/DHjDIcnyIhu/Cz7lffUKVJQgipgF5GEmssXlVbDpFUvwKBIl7pmDBqjrklR+KfoEQ4GarLMTJS3a6ElPwe94xkJ7uulzsORypPwuFij2sPrH1wiDE+4/kVzNG3xKGxzeQUGbnxOgV99jwBAGzy+gcKYuYFwyWr5oz6cjoqtDOrpvC4HLxZ0Q3ma29AyOPjqz7z8eTQfKgKP1ycmeSk4eCl39F3yCqI39VLs113C0NcG2HnMDfoqla8O6k+mn2q4l0xvSOe4siFX6FenM+ae65ngd5Df0C8lA6qm/rTbt3a5sSEFph75iXisgowpZU5pniYwyc6HW23PihdI+bysLjjJPgbWGHH9e1QKy5gPIZuQTZOnF+PU7at8W2XGYhT//B/P/PkC8yUsstq890Ixu3JHubYPcINxSIxsgqEUFPkyfxgff65QFTlwItmQQ7m+57F3GfnoFHE/h1+73EjO0zrMRsv9K0q/di9HaXXrSR1h4e5NjzMS66/VBR4ePSfX4XrE1W1MaHPfPzeYhDW393Parb3Hk8ixpAwHwwJ80GqkjquWTTFNctmuGbZVOrzJZGNdiwSQkgF9NLYW+TfVtBVrC75roM1Asq9MdMuzMX/Dt+RU0TkS5l39iVUigvQKYZ5IRGpYYBwLSM5RVU//OPSDcXlCsWPC/KCSnEBikViOUXVsD1OKCxNKnaL8mPteinm8rCg45TS2/2cDKFJRz5rlKmWMvaObAoACNE1w5yuM1hrekb74ef7zKT9qRcJmH26YRw7S84phE90OoqEYryIz0JMZoH0hRIJvn12DufOrJWaVLxr0hgdR66TepGc/XPv6g6bVANTLWWcnNgS3t+2x9RWFuBwOPC01EHiDz1Ya/9z6oTm4zbDT0aibUiYD1798zWW+xyFUvGn7az65/EbaK+4DMUlF6G/+iqcf/XCg8g0rLgcgqa/3cHgvY/xLCYD3XZ4Iyjx8067aOdnY7nPUUTsnoaVPkdlJhVTlNQxq+vXaDN6o8yk4sSWZnixsBPW9nYsHVNV4OGHHg6fFRupnfo6GcJeX/pR5/ICDKzRe9gadB/2I54aVtwIRrcgG6Nf3cPeq38iduckPN83G7uvbsE3fhfQNdofVhkJUP7Ev6GGhHYsEkKIDBKJBKkh4azxxi3rx6f741uY4rC+FcaEMDuauSVFyrgHqavCU/PQ781zVuHzS9YtAA4HK7vbyymyui9BTQdnbVph2OsPR840i/IwKuQuWm8xwJO5Haj5QQ078brkyCxPLMLvXntY89ub9sEr3Q/Nqw6Nda+x2MgHo9yNMemoPwBgn3NXdHkTgHHBzA+2ljw5CT8DaxxzbF86dtQ/Dq0ttDHT0xIK/Pq5R2Lv4zeYejwAEglgoa2M6HTpyRbl4kLsuL4NXwV7SZ0/0LgzpnefjSI+O3E+vbUFVBXpUrAu0VdTRNKaHtj/JAaLLnzojvxaxwRtxvyKTXf+wTf+l1j3UxUW4qcH/+LrgMtY7zEMu117fLQm4XuZBR/eN0Sk5qH9tg+7Jp/HZ+HsZzZXck6JxrfPzmNssBdUhLJrqAo5XGxz74s1nqORoaQmc93hcc0wsmlJkw/nRupobqqJiNQ8dLPTg52+7PuRukdLWYAHs9vhXGACFPlcGKgposcunwrvc9OiKTzM3dDp7QvMfXYO/cOfsJpzlueS+gYuqezu5ZkKKjhh3xYLO05CZgW/kw1N/Xw1JoSQavDkbQbMyhW/LubyMGMQu2B2XaTI5yJA35I17pZMicX6qG/EU9bYJasWaG+lg5Xd7KTcg1TWriY9WWOz/S7CLyYTWx/Q31NNkUgk2PkiC7djSnZ2zfG7wLooSFFSxxrP0aW3T09sCQ0l2q0oD4p8Hl4s7FRyg8PBzG6z8FKX3VRs79U/4RkbzBj77mwgBvwjvf5aXScSS7DoQlDpsVJZSUXrjHg8PLxIZlJxRdtxmNhrntSkIgD0cNCvjnBJDdNTVcSCTjYQb+rPGC/kK2BO168xeMAyJKhoSb2vSU4a/ndrFyL/norlPkdL65jWFLWiPIwLuo3rx1fgxf45mPbiWoVJxYtWLeA2YQu+6zytwqRi+PddS5OK7/V0MMDMNpaUVKyndFUVMMnDHGOamaKzrR662FbiNBmHAy/zJhg8aAUcJv+F/7n3Q4aMJi8V0SzKw5SX11llcBo6SiwSQogML+KzWYnFWDVdqKsoyimi6qWvqsg6Cg0ATZKjIBZTZ+j6olAoAiQS9I5kJhbz+QrwMnPFrZltwOfR24FPtabnh6NVNy3cEKbViDHfNDkSnd8+x7yzgdRpvYbcjS3E7pclx/HMspLx44N/WWtWtx1beoH6+wBn9G9sWKMxEibnRh/q+eYqKGPIwGWsCz1lYRHOnlkL2/Q4xvi10GQEJ2bXSJw16UFkGtLKdXour0/EEzw5NB9uyVGsuXy+Akb2W4xfWo8AZDRksdBWRg97SizWdfnr+7DGztq1RuNJ27HHpbvM+zXKy8BPD/5FzM5JOHZuPQaE+XzyMenKUivKw+DXD3H0/Hok/jUeBy5vRtc3zyu8zw1zN7QZvRH9h6xCsJQPG8r6c5ALrHRVqjNkUsfwuBxcmOKBs5NaVi7BiJIO0nO7TIfR1/sxrP9SHLNvi7RP3H3oksJu8NmQ0f53QgiRgc8BzLKZXRjfquvBsJ4caxSKJUhQ1UaSsiYM8j98au2WHIkDvjGY2NJMjtGR6jLigC+cU9/AvFyS/JZZEwiVlMCrJ7/PNW1+B2usvvoKQEkTl/+598eft/9mrJnnew63zd3g/vtd3P2mDe2M+8LeH4GGRIKtN3ewmhk817Ng7C6d18G6JsMjMhwZ1xyjDvkCAMK0jTGm70KcP/0TeJIPNUr1CrJx5eRqdBi5ntGEwjs6vV41GwtPyUWnv9idfN8TiIrxy72DWOB7Rur8WzU9DBuwFE+MZJe3mNrKHCu720ONjkHXeYp8HtpaauNBVDpjPENJDdN6zsGuJj2x+fZutIkPkXp/BbEQw14/xLDXD5EjUMINczd4mbvirokzAvXMUcz79NcsvbxMuCdFoPPb5+j09gVaJISBL6lcveF7Jo2xqu1Y3DFzrXCdcGM/KjFCGJQEPPR3boR2Vjpou/U+QpJyK3W/Qr4CTtm3wSn7NuCKRWiRGIYeUX7oHu2P5olhFe6ovUHNDxnoFYUQQmRQzc5gvaC8UdeHsYwdAHWNioAHcDgI0LdE9zcBpeM2GQlodtCbEov1xPmgRCyWcgz6slVzHBnXXMo9SGWoKvIRtLgTxv77DH6xWdjr0hU/PvgXmkV5pWv6RzyBfVoMnsMU4/71w7kp9aOMQm3lk1Cy42ZY6AP0j3jCmBODgxndv4GIK72jKZGf4W5GGFXmRNkVq+aY23katt7ayVhnnZmI6ydWotPIX5D87qjn1GMBOPMiAYfHNauz9QIfv0nH/cg0aCsLMOVYgMx1dmmx+O/iJjRPYtd+BoBbZq4Y3W9R6b9NeYp8Ltb2csSCTjbVETapJcY2M2UlFt97YmSPdqM3YFCYD1Z7H5a6w/U9teICDAp/hEHhjwAAhTw+gnTM8FrbGNEaBkhW0USWggokZd4CK4iE0M3PhmlOKhxT38IxLQZ6BZ+2i7iYy8Mx+3bY0qx/hQnxsurJ23DyBWirKODxnLbQWHntk+8r5vLw2MgBj40csNZzFHhiERzSYuGU9hY2GQmwyEqCXn4meGIx7pi5Yqt73y/wE9RddfMVmBBCaoB6cjxrLEZdr97s8FJXKnkJeK5vxUgsciGBK23vrxeSsksSLf3C2bXILlk3xx90DLRKHA3U4ftdRxisvooUAH836YmFT08z1nznew4zu8/CheBEFApFUORTYutL0s/LwLabO1jjO9x645Gxo5R7EHnjcDjI+rk3/nc/EmuuhaJIJMZ2976wzEpi/T05pcXgxvGV6D7sRySpagMALgQnQn35ZfxvsAvGNTPFAd8YpOYWYZS7MRwNavduxsN+sRj33zNUWC1BIsHEwJvYcmsXaxfuextbDsHydl/JTJzvHuGG0e4mUBbQ8099M9jVCD9ce4WkHBk7qzgcnLHzxFnbVhgQ9hjznp1Fx5jAjz6uokgI9+RIuH+huttxqjrY49odO9x6Se1YXhEOZRZJBZQEPIyyV8WR0MrtWpRFxOUhSM8cQXoVH8cnJSixSAghMqgmsBOLb9X1UCSq3JGOuiB6RTcsD7rNGndPipBDNKS6nX4ZD4PcdLSJYx6DCtIxQ5RmI6qtWE0M1BSQkluE/7n3wzzfs4xjXxMDb+Cn1iMRp66LYpEEdXRTVa0iEksQnpoLDUU+GmkoISAuE+6/l3S333pzB/Tzsxjr41R1sKz9V/IIlVSSmiIf33e1w/dd7cBdeB4AsKTDBDTKTWN1inZNiYbX0WXoPvwnxKp/qKc15/RLzDn9svT2n/ci8Ghue9jXouYNidmFmHLUH/ci09DXyQC+MZkVJhWNs1Px143trB2472UpKGNKz29x0r6tzMcwVFfE+Oam9HxfTxmqK+L+7HbY9+QtBDwOJnuYIyYjH223PmCsk3C4OGvXGmftWqNpYjimvLyOMcF3oF1YteTLp0hTUsNJuzY47NgBd02dIf6MHeSjmhp/gchIfTPWUXpi8cYMT3Tb6S2HiOo/entLCCEyeHk9Q7tyY2809GGn9+kdxGorMy1l+Bmw64y1TAiVQzSkuv37LBYDwx+BC+aV61nbVnKKqH5a2MkWk4/6462GPo45tMOYkLulc4oiIRY+PY35nafKMcK672FUGq6EJMFMSxlH/GJxOzwVCjwuvu9qizXXSp6vRobcxfBQdn26md1mIqtcQxB1yvDWWgs62uC3O+GQcLiY1GseVIoLMSTMh7HGMT0W944sRd8KmjtkFghx2C8Wq3s4SJ2XhyUXgnApJAkAcMQ/TvZCiQRTX1zDr3f2MsorlOVjZI+xfRYislzjKAAw0VRCel4xrHVVsG2IKyUV6zlbPVWs7f1hR7aZljLuz26LduWSi+/5G9pgjqENFnacjK5vAjA09CF6RvnBODetWuMSgwN/Ayt4mbniprkbbli4fVbdxu+72uLp2wy4GWtidffKHZcmDVsjVT7uDTfC2scZuBqdD10VAfaOckdnW10s6mSDX72kl5Qgn4/eVRFCiAwKcbGssbfqevXuCEawjimyBcpQL84vHWsd90qOEZHqcj8yDd+/9mGNn7bzlEM09ddgl0aYfLTk6/UewxiJRQCY/vwK1rUahrCUXDQ10ZRDhHXbhaBEDNr7GOWb1ReJxKVJRcvMBOy4vp1134NOnXBeSiJ9TjurLxIrqboNfZ3w252Siz4Rl4cxfRfhxPl16FeuVqxlVhIeHF6CYf2X4paFm9TH2ng7rMLEYmRqHq6FJsFaVxXd7Krv9T0iNRevU3LhZqQBRT4XEWl5sNBWxgHfmI/e1zY9Dn/d2C6zc64YHKxrNRxrPEdByGNeyo12N8GhMe717n0K+XRtLHWgIuAhr1gkc00hXwGXrFviknVLQCKBQ1os2scGonliOJomRcA+PbbSOxoLeXyEapsgRMcEr3RM4Wtgi7umzkhXrlo5guQ1PaGrqlClxyANkxKfg7VttHF2Rkfw+fzShj8b+jXG8m520FpxpVq+j64KNeYDKLFICCEymZbroguUJBbrm5JixXaMixjH9FjkJCRDrZG+HCMjVaVRmMu6OH2rpoenhrbYO7KpfIKqhzSVBRjfvKS220t9S5y2bY3BZXZYqQiLsODpGTTbrAV9VQUcHOOOHg4Gcoy4btnxMIqVVCyLLxLiv4ubWDu74lW1Ma/zNMaYhhIf/ZwMsayr7ZcIlVSD8t1ei/gCDB3wPf69+BuGvWbuSNUqzMWVk6uxuOMk/NFsAKurQ36xGJGpebDSVWF9H7/YTHTa/hDZhUIAJV3Cfx/gXOX4zwcmYNQhX+QXf1rZFLWiPKzwOYZ5vuegIBZKXfNWTQ/j+3wns2vu3pFNKalISqWv7QXFJRcrt5jDwStdU7zSNcXuMsPa+dkwyk2HQV4GlMs1NBRxuUhTUkeysgZi1PWqtTnWDE8LbB/iSr/PpMq4XA7rdUVDSYBf+jhi2SXpHdPfG9XUGC5GGjDTUsJINxM4bbyNyDTme41v2tIHlQAlFgkhRCazconFXL4i0pRqdyH4z/W4kT0rAfXkxFV0nj1OThGRqsrML0afiKesC9Sztq0ADgcTqOt3tfpzkEvpbqSfW49gJBYBYLbfBfzRbAASoIPJRwPwZkU31htdIt37o6Oy/PjwX7SOZ5dvmNpjTulumSmtzLF1sAs1z6mjinkCjO63CLlXt2BCubrAfIkYv3vtQZvYYEzvMRsZSsyaijbrbkJbWYC+TgZQVxJALJGgnZUO7kWklSYVAWD7gyis7eUAFYWqXR796hX+SUlFjkSMr4JuY929AzDKld7dFwB2NemJxR0mso71v3dnVhso8OnIM/lAwOMifnUPDD/wFPcjP++Yc7qyOtKV1RGEmmlgMa6ZCTrY6GKKhzklFckXtaiTLYRiCe5FpMLdRAszPS0w+t9n8IlOh5ayAAdHu6NvuSaHfw93Y9VonOFpUZNh11qUWCSEEBnMs5IZt9+q67F2Q9QXPkbso2Jehy9TYrEOO+Ifi0Fh7GPQp+gY9BehqSxA/8aGOB+UiGeGtrho1QJ9Iz8c3VQRFmGVzxHM6jYLcVkFuBuRik629W8HdE3rGu2PxY9PscY3Nx+Iy9YtAJTsOPh7uPSjsqTuEHF5mNRrHt5oGGClz1HW/LDXD9E6/hUm9/wWNyzdGXPp+cU49OxDeZOd3tGs+xeJxEjLK/7sxOKrpBw8fpte+QSORIIB4Y+w+uHhCjvvhms2wrQes+Fl3kTmmh96OKC99ad11iUNg6G6Im7PbIO0vCKoKvCQVSBE1x3eCE7KqdE47PVVEZos+1i1gMfBjRme9HtMagyPy8GKbsyanXdmtUFcZgG0lAXQVGYfce5sq4sfejhgy/0IqAh4+KWPE4w0lGoq5FqNEouEECKFsKgYJjmpjLG36npoY6ktp4i+rEdG7GLYreJfISwlF7b1qFlNQ7Lw8GMkluskmqKkjnumzviaPl39Ijb1b4z4rAI8jcnEqrZjGYlFAJj6/Bo2NxuI1zomOBYQR4nFKtLPy8CBy5tZzYl8DWzwfbvxpbe/9rSs4chIVU1vbYFdPuzkHzgcrG47FuFajbDj+nYoiYoZ06Y5qbh2cjX2N+6MxR0nIVlF65O+79YHUehqp4fu9pUrAyKRSHDQNwbrb4UhpLKJGokE/SKeYPXDw2ieJLuBQDGXhy3u/bG67RjkCWRfuHay0cWCjuwmbIS8x+NyoK+mCABQUeAjcHFnpOcVQXfV1RqLIWRJFwBAVFoe2m69j7S8Yuwa3gSqCny8Ts5FL0d9uBlTDWIiXwIeFxY67NIZ73E4HKzqYY8V3ezA4YB21ZZB++UJIUSKk9f8wJcwjzLFqOthUsuaOQpSk0Y2NUaSqjaiNJg131rFh+K4P7uBDan9fvMKR//wx1ApVw/pvI0HRFweJVq+EDt9NTye1wEA4GdogyMO7RnzfIkYax8cBADs8I5G178eIiYjn/U45OP4IiH+vfgb6+hotkAZo/stQhH/w04DFQU6/lzXLO9mB0cDNZnzB5y7ot3oDYjUkF6rdELQbYT8MxMLn5yCYrnnwYpsvB2Gnrt8sOFWGGNcLJbgYlAiRhx4ip67vPEwqmRX4ua7EZh4xL9SSUWl4kJMfnENzw7Ow7kzaytMKl6zaIqm4//Eok6TZSYVk9b0QMiSzrj5tSdUqcs5+UTaKgoY28ykRr7X9iEfaoJa6qggdlUP5K/vi6+am2GIqxGWdLGlpCKpU7hcDiUVy6FXIUIIkeKVbxBr7I2GPmwF9e/zmB97OuCofxx8jBxgmfWhlpluQTbyg18B3di7GUnt9SopB4suBOFMyD3W3GHHDtBWFqCJsYYcImt4VrYdi6GvH0Ig/tCVc3joQ2x/+wJ3zFxxOzwVTX67g3vftIVzo/pZv/VL+d1rD7q9CWCNf9Pta4RpGzPGBDx681/XmGkpI3BRJ0Sm5cFUUxl3I1LRYxeztMMzQ1u0GLcZO69vYzV1AQDtwlxsvLsPc55dwKaWg7HHtXuFO//K+v5SMJQFXFwMTsT1UHYjt+uhKVjdw760K3lFLDMT8HXAFUx5cR26BdkVrg3XbIQFnSbjnE2rCkuvjGpqDD1VReipKn78hyFEhoWdbHA5JAlpecWsOT6XA2FFXbPKsdVTRVgK+6jznhFumORR/z6UJ4QwUWKREEKksMpLZY29VdeDufDTujzWBXb6arg8rRWu+tpj1CtmMqr4oQ8wp7+cIiOf499nMdAqyEGvqGeM8UQVTdw2b4Jd/RvLKbKGJ1zbGLtde2BmwGXG+J+3dqH5V39AxOUhI78YG2+HYf9odxmP0nBFpOZK7dg4I+AyZvuzO50eaNwZhxp3Zo3zufXvA6GGgMPhwFq3pBRHN3t9iDf1B3fhecaadGV1jOi/BOOCvbDl1i5oFbITG2Y5Kfjz9t9Y5X0EB5y7YLdrdwTrfjzRMe9sYIXzFSUVTbJTMDz0AUa8uie1sVB58araWO8xDLua9EQhX6HCtfb6qvi5t9NHH5OQj3Ez1kT4913x+G0GGhuqQcDlIjItD+4mmuBwgPuRaRDwOMjMF6L/P49Z929npYOJLc0wsYUZNSMjpIGjxCIhhEihmxzPGnurrl/h0ay6rIWpFtZIaeBiGfRMympSm6298RqTXz9kdYM+Yd8WIi4PY2ro6FND9mu/xlh0oWTX8w9tRmN0yF1GwqNJSjRm+l/G1mb9AAAHfWMosVhGVkExFl8Illpjr9Ob59hyaxdr3F/fCt90/Vrq4+mpVpyoIXXHiQktMGw/s3YpOBwcatwZ1y2a4jevPRgTclfqfXULsvGd71l853sW/vpWOGnfBlcsm8HPwBpibtWOy6sUF6BNbDA6xbxE5zfP4Rn/qlL3S1DRwgaPodjZpBcKBLJ3H3a20cX1GZ5IzClEI3VFOoJHqo2msoBRU9RA/cPvYecydYAXd7bFxtsfSgRYaivjzqw29LtICAFAiUVCCJHKLIVdWzBC0xBKgvpZq0uJz4WfgTUKeAJGMfwOMS8x/1wgfh/gLMfoSGUdePoWADBKxjFoAFDk18/f4dpkQScb5BQJseZaKJJVtLC6zRj8eftvxpqfHhzCKTtPxKlTB8zyJh/1x6kXCaxx64x4HD+/gXG0HCjZjTto0HLkKiiz7tPVTg+G6nRctL7o62SA1hba8IlOZ80lqmpjXN+F2O3aAxvu7kPLxDApj1CiaXIkmiZH4qcH/yJNSQ1PDO3gZ2iNEB1TvNYyRryaNpKVNZEnUISEw4VAVAyNwnyoF+dBszAPNhkJcEiPgV16HJxSY9AsKZz1e1mR11pG2OreD7tdeyC/goTieycntgSXy6Huo0Ru1vVxhLWuCv53LxI6KgJsHeJKSUVCSClKLBJCiBQ68W8Zt4UcLqI1DKDAq59H6lQV+SjkK8Db2BGd374oHXdKi8Hhy75Y08MB6kr0klHbTTziD9OsZHR585wx/kZdD97GjlCpp4nx2mhWG8vSo5Lbm/bB1BfX4JryYQeeZlEett/4C4MGLa+wllpDJC2pqJeXiQunfmTVqCvk8TFkwDK8edfEY3UrLXA5gHe6ACZaytjQl46M1ieKfB5uzGiNq6+SIRRLMPKgL2uNl3kTtB67CUNDH2LZo+NomhxZ4WPqFOSgZ7Qfekb7SZ0XcrisZm6f65JVc2x174erlu6QcCr3fuKHHg7QUhZ8fCEhXxCHw8H01haY3tpC3qEQQmqh+nmFTAghVSQOY+50iNYwgJDHh42uipwiqhleZq6ssU5vX+B5fJYcoiGfY3zQbXDBLLh+xLEDJBwuvutoLaeoGh59tQ+7kERcHuZ0mcFaMyDiMUa9O7Z5LpCdTGuIxFKaBWgW5ODKydVwTGfvJP+62zfwNvmQPOxnrYI+Vio4N6kF/h7uBh0VOgZd36go8DHY1QjD3Ywxws1Y6hoJh4sTDu3Q7Ks/0GvoDzhn7QFRJRN55VU1qRioa4bVbcbAfvIO9BuyGlesmlc6qdjRWhdz21tV6fsTQgghXxptPyGEkHJysnJhnJnMGAvTMkIbS+16exQaAH7p44jLMS6s8U5vX6JYVP+a1tQ3KbmFgESCCYE3WXP7nLsCAFZSh2+5uWvmgr9de2Dai2uM8S23duGOmQsG7X2Co181R0RqHrrY6qGluZZ8ApWz/GLmcVLl4kKcP/0TmiVFsNZuajEY+126lt620qC3tQ3N7hFu0FDiY/ejN9IXcDi4ZtkM1yybwSQ7BWOD72BY6AO0qOCYdFWJwcFzfUtcsGmJow7tEaj36Tu8NJT42DXMDSOaSk+cEkIIIbUJvQMjhJByIp8FwbXcDoVwLSPMamMpn4BqiI6KAh41ckA+XwHKwqLS8Y5vXyBGyi4iUrucfZmIdrFBsMtgNh7yNnJAiK4ZJrY0gwKfDirUpKGuRjj54sP/x6KOk9A70hemOR+6zusVZGP/5T/Qc9ia0mOdXE5Jk4pBLkY1HrM85ReLYP3Lh8S4QFSMk+d+Qbu4YNbak3aeWNp+PGOMRyfKGxw1RT52DXfDruFuSMsrQnR6Plr+cRfSXrJi1fWw0WMoNnoMhVlWMrpF+6PrmwB4JITCNuPzdwzn8RUQrGOG+6aN4WXqirumzkhXVq/UfT0ttGGlo4JjAXHgcTlY0c0OE1uaoZG6EnjUZZcQQkgdQYlFQggpR+UNux5TuFYjDNdVlUM0NYfLAYr4Ajw0dkTXMjX6HNNjERsfB5TpGkhqn8UXgrDp5Q3W+L53O7omtTSr6ZAavKmtzXH6ZXxpkiNLURVfd5+FC6d/Yqzr9iYAi56cxkaPoQAAsQTY9iCqQSUWJRIJ7NbdQnJuyYcaAlEx/r34G3pFseveXbNoirF9FrI6+VIipmHTUVGAjooC7n3TFksuBuN+ZJrMtW819LHXtTv2unYHAGgV5MAp9S3sMuJgkZUMg7wM6OZnQ0lYBAWxEHl8RWQrKCNHQRnZCsqIV9XGK20TvNIxRYy6bqWPNpe1b1RTjG9R8rz819Am4PM4UK7HpyIIIYTUX5RYJISQcgSR7MRimJYRWppp1XwwNYj7roGEl5krI7EIANf/PomuHd3kERaphODEbAgzMjE89AFjPI+vgKMO7aHE56K9NXUfrmk9HQxwe2YbdNz+sHTsknVLqUeif3pwCA+NHXHftKQD+83XKTUaa00TisT4+9EbxGcVYGwzU+x98hZxWQUASo4/Hz+/Hn0i2Y05Hhg7YsjAZSjis5tZjHGo3x/+kMrxtNTB3W/alt6+EJSIAf88rvA+GUpq8DZxYtTr/FLGNjPByu72sNdXKx2j5miEEELqMjoTRQgh5Vy++JA1Fq5lVO93w5QmFk3ZDVxsnz+q6XBIJeUVCeH8qxfGBXtBrbiAMXfKzhNZiqq4PsNTTtGR9ta6sNVjJry+6zwVwTqmjDGBWIRj5zfAOPvDMem4TOb/Z30y/rAfvjn1AmtvvIbTxtvYeLuk5t37Ri3Skor++lboN3gV8gRKrDkHfVV0M1f+4nGTuqdfY0MEL+4s7zAAAPb6qtg/yp2RVCSEEELqOkosEkJIGWl5RTBNiWONi63qf1dGpXf19x4b2SGXr8iY6xXpi/TcQnmERT7iiH8cIJFgpv8l1txu154AgLZWOjUdFimjfFfXPIESRvddhEIec5dSo7wMnDi/Dorvapya/nQdWQXFjDWZ+cWIyciX2j25rkjOKSz5vS3HIDcdt44tR/vYINbcK20T9Br6AzKVmAmZX/o44u/hbvCZ0wYKVGSRyOBgoIa/hrI/NPvSZrezgua73YgLOtrA59v24NbzDykJIYQ0PJRYJISQMk4+j4dtueYXMWq6SBLV/6fLrnZ6AIBingC3zJsw5kxzUrH3H3biisjf1GMB6BATCJdUZlfUl7rmuGvqjINj3OUUGXlvRmt2V9jnBlaY3eVr1njr+FAcvPQ7uOKS7shaK65A9C6JeDwgDqY/XYf52hvot+cRK+lYF4jFErT68x5r3C4tFnePfg/3ZHYpiud6Fug84mckqWozxjvb6GJpFztMaWUOVQU6SkoqNqGFGaa1Ni/9EO1LuzOrDbYMckH62t4Qb+qPX/s3hpYy+wg/IYQQUtfV/ytlQgj5BKJiIawyExljYVpGUFes/xet+mqK+KGHAwDgslVz1nzKsdM1HRKpJGm7Ff9q2gfgcNDPyVAOEZGy+DwuRL/2w19DXTHCzbh0fE+THtjZpBdr/bDXD7HZaw8gKUkoChZfgFgswbyzL5FbVJJwvPIqGSeex7PuW9s9epOOqPR8xljPSF88+m8h7NPZuxgfGjmi08h1SFBj7ro111LGiQktvmispH5REvCwc5gb8tb3hXhTf1yc4gE9VQWpa2d4WqBwQ8k68ab+EG7shx3DmmBUU2Op68u7MMWD6toSQghpMOr/lTIhhHwCpYQ4KIiFjLFwLSMs6mQrp4hq1qoe9ujpoI9RaxNZc70jffEiPguuRhpyiIzIYpydiiFh3oyxbIEyDjl1wsimxtCkHTK1AofDwQxPS8zwtEQ3ez1MP17SIGlu52lwSYlC27gQxvo5fheQqaiCVW3GAhwOOm5/gPgsZjmCqccCMNnDvMZ+hs+RWyiEX1wmnA3VkVskQtutZRoMSSRY+PQ01t07AJ5EzLrvVQt3DB34Paum4hh3Exwa2+xLh07qud5Ohkha0xM5hUJEp+fDyUANXC4HEokEHA7zuDKXy8H01haY3toCU1tZoNvOD8+5PC4He0a44dSLeGgpCbCkiy2cDNVr+schhBBC5IYSi4QQUob6W/YxvHCtRljewlTK6vrJVEsJ0ZqGCNQ1g3Pq29LxNnEhmHvRH1undpBjdKSsA0/fYo7fBQjeHZt971DjTshWVMHOYU1k3JPI0+imJjj8LBa3w1NRxBdg0MAVeHBkMWvH3gqfY5CAg9VtxuBBVLqcov18p1/EY+j+p1LnVIoLsOP6NowLviN1/rh9G3zVewGj+7OtniqWdrHFpJZmXyRe0jCpKfLh3OhDIrB8UrG8DtY6GOFmjGMBceBwgFXd7TG+hRnGt6DfS0IIIQ0TJRYJIaQMTng4ayxMywiqDeAo9HsCbkmVjMtWLRiJRZ5EjJQzFyCeTMXna4P/nsVg9oGHePP8CmtuW9O+AAANJdqtWBupKvJx42tP8BZdAACkqmig95Af8PDwIhjmZTLWrvQ5CrXiAizsOAkSDruCzfGAOFwOTkLjRur4tp0VFGqoftzHbL4bjgXn2E1YAMAj/hUOXvoddhnSj3L/0mo4VrUZAzGXBwDo52SIQ2Pd6feZ1Ap8HheHxzXD2t6OUORzYaZF3cgJIYQ0bA3nSpkQQioh6lEAayxcy0gOkcgP/11n1YvWLbDwKbOuYt+IJ/CPy0QzUy05REbee/o2A+P+88O3L29AqzCXMXfJqjmC9Myxvq+TnKIjlVF+V1SkViP0GroGN4+vgE5BDmPuO9+zMMxNx+Secxk7+ABg5EHf0q8DE7Kwd1TNN+sRiyXY6BWGP+5GQFNJgDU9HaQmFfkiIVb4HMOyR8fAl3L0OY+vgMk95+KYY/vSsSZGGjg7ueVHd5ERUpM4HA5s9VTlHQYhhBBSK9SOj7UJIaSWcCqzQ++919oNK7GorSyAEp+LB8ZOyFJg7sToH/EEUfF170hmfbPhVhh4YhHm+Z5jzf3WYhAAYFEnmxqOinwqDzMtxu0AA2t0H/YT0pTUWGvHhNzF7WPLYJSTKvPx9j+NKe0gDQBP3mTgp+uhOPk8DuIy49XpRmgy+IsvYNmlECTlFOF1Si7G/PuMtc4lOQr3jyzBKp8jUpOK0er6aDt6IyOpCAB6qgqUVCSEEEIIqcUosUgIIWU4p75h3I7SMECOgoqcopEPDoeDg2PcIeTxcdGK2XVVqzAXe3/ZK6fIyHsXgxMxKuQuLLOSGON++la4bdYEDvqqlIypA77raI3y/01+hjboPuwnJClrstZ7xr/Ck0ML0PHtC5mPKVh8AbGZ+Tj7MgFttt7H6quvMPyALxZekH4suSrEYonUJGJZmgU5+PPWLvgdnAePhNdS11yzaIqW435HgIE1a07Ao99jQgghhJDajBKLhBDyTkZiKsyzUxhjgbrmmNCAGre8N7SJMQDguEM71tyIV/dwIiCONU5qhkQiQVFRMZb7HGPN/d5iEMDh4LcBzjUfGPlkI5ua4PHc9ljQkbm71M/QBm1Hb0C4ZiPWfYxz03Dz2Aqsv7sPCsJiqY9r9tMNDN73hLF78Y+7ETjzMh5peUWVju9GaDKG73+Kr088R0ousyP187gs9Njlg5Rc6Y/HkYgx6cV1vPpnJub4XZDa9Tmfr4A5Xaaj99AfkKLCTqQCwNIutpWOlxBCCCGE1DyqsUgIIe94X3mI3uXGgnXN0MRYQy7xyNtQVyNcEDZHtkAZ6sX5peMDwx/BcK83+m8aBEU+T44RNkw7vKMxPPQBHNNjGeMRmoY46lByjNTTQlseoZHP0NxUC81NtcDlAL96fWgeFa5tjHajN+DU2V/gGf+KcR8uJFj85BQGhD3CrG4z4WVeue7fQ/aVdGhuZ6UDLSUBxjU3xYimxlLXPovJQM+/fSB5l5sMiMuE97ftkVMohMbyyzK/B1cswshX97Hs0TFG86fynhra4qve8/FKV/YHN13t9NDBWrcSPxkhhBBCCJEXSiwSQsg7J/67zkosBuqao1UDTZ7pqiqgkK+As7YeGBd8p3RcoygfPaOe4VJwGwx2bVj1J+XtXkQqZp8MwHOfo6y5dR7DIeTxYaKpBC1l6p5b12zo1xgz21iiUCiG08bbAIBEVW10HvELtt3cgSkvr7Pu45gei1vHV+CknSdWtP2qwiRdWfcj0wAAF4IToanMR08HAwCASCxBXFYBTDWVsOrKq9KkIgA8epMB99/vICAuS+pj8kVCjAv2wtLHJ2CfLntHcyGPjw0th+Hn1sNRzGP+nv5vsAs62+ghJjMfEgDd7fTpSD8hhBBCSC1HiUVCCHmnfH1FAAjUM0d7fsOsGuFoUNJA4phDe0ZiEQBGvLqP3Y8GUGKxBonEEnTc/hAjX91n7QSL0jDAAefOAICDo90pGVNHWeqU1HNd2sUW62+FAQCK+AJM6zEbD0ycsOXWLqgVF7DuN/S1NwaFPcJhx/bY1GIInhtYVfp7/vUwCj/feF2abARK/vZDknJYa6UlFR1SYzD55XWMD7oFw7zMCr/XOWsPzO88BRFa0p83vmlbEnfjRuqVjp8QQgghhMgXJRYJIeSdxlISi8E6pujtaCCHaORvaitzzD8XiGsW7shUUIFmUV7p3KAwH2xLSJZjdA1LoVCErju8IRAVY+39Q6z59R7DUMwTIGJZ19LkFKm7furliOj0fBz2e3fcncPBPpduuGfSGAcub2YdjQYAnkSMccF3MC74Du6aNMY/rt1x2tYT2YoV/z6cC0xkjUlLKpZlmZmA3pHPMDr4DtrFBX/053mtZYR5nafhsnULmWuefdfho49DCCGEEEJqH0osEkLIO42l7ALLVVCGkYaSnCKSLzVFPu5+0wYdtj3EKTtPTAq8WTqnIixCkzuXgBX95Bhhw7H1fhQeRqXjm+dXYZOZwJiLVtfHPueu2D3CjZKK9QSPy8GhMe64H5mKtxkfdiiGaxuj/aj1mPbiGtbdOwCtwlyp9+8QG4QOsUHYyduGW2ZNcM3SHXdMXfBC3xIi7ieWdpBIYJmVCLekKHSKeYFekc/gUK6+pyxRGgbY4DEUe527oYgv+3j+T70c0NREevMWQgghhBBSu1FikRBCABSlZUjtCN3QtbPSxZ1ZbbAsJoiRWASAKS+uY/2t11jaxU5O0TUciy4EQb0wDyu92bUVV7YbhyK+AJM96Pe1PuFwONg/yh0Tj/jjTcaH5kliLg873XrjlJ0nVnofxfTnV6EgFkp9DEWREL2jnqF31DMAJV2YX+qa45WOCaI1DJGsooFMBVWIORwIxEIIxCIIRCLoFGTDJCcVjmkxaJIcxditXBmvtYywrtVwHHLqBCGv4reaMzwtsLgzdX4mhBBCCKmrKLFICCEA/K4/RKtyY0G6Zng4p51c4qlN2lvr4oGJE0K0TRidiFskhmH63otY2mWe/IJrAMJTSnalff/4OAzymTXsAvQt8Z8jHSGtrzrZ6iFqRTcAgMXa64zdi8kqWvi26wxsbj4QS56cxPjAW1ASFVf4eMrCIrRMDEPLxLBqj1UMDq5aumOPaw+csW0F8Ud2Rj6Z1x7NTbWqPQ5CCCGEEFKzGmZHAkIIKSf72XPWWKCeOVqZa9V8MLURh4N/XLuzhqe8vA6vsBQpdyBVJZFIsPtRNOzW34Jtehy+8z3LWvN9+wkfTeCQ+uHS1NZSxyO1GuHr7t/Aatpu/OA5GlEaNVsTNlLDAKvajIHltN3oO/QHnLJvU+HvZBMjDewf3ZSSioQQQggh9QTtWCSEEAAvbvqgW7mxIF1z6q77zoQWpjiQ2xk/3z8IgVhUOj4uyAsL7wSjk217OUZXP50PSsT04yUJ79+9dkNRxDzuetO8Ca5YNgMAhCzpXOPxkZrl3Egde0a4Yc21UMbR6PcSVbXxY5vR+MlzJDq9fYHBr30wIPwRq8RDVRVzebhv0hhXLJvhilUzvNCzBD7yPGmtq4LtQ1zRw6FhNsIihBBCCKnPKLFICCEAmiRHssaCdUzlEEntNNnDHPufxuCcjQeGvvYuHdcsyoPKvweBKZRYrG5zz7wEAPQNf4J+EU8Zc0IOF3M7Twc4HNz7pi3s9dXkESKpYZM8zDHJwxyD9j6W2s0ZACQcLm6bu+G2uRu+7TIdthnx6Pj2JTwSQuGWHAnnlDdQFRZW6vsVc3kI0TFFgL4lnutbIUDfCt7GDshRqHyToKfz2qMZ7U4khBBCCKm3KLFICGnwCoqEaJ4Yzhh7pW2CXAVlOUVU+9joqgIAtjftw0gsAsC3z87jaVQqWljqyiO0ekcikWD+uUBEp+dDrSgP227+xVqzzb0vgvRKmrW0tdKp6RCJnC3qZCszscjA4SBM2xhh2sbY06RHyZhEAr38LJhnJ0O7IAeahSWNWYq5PBTz+Cjm8pCtoIw4VR0kqGp/tPlKRVqaacGduj0TQgghhNRrlFgkhDR4j249RcfCXMbYU0PqUlqWkYYiAOC2WRME6FvCLTmqdM4mMwFD5v6G3/eugKVO5XcyEen+fvQGf94r2UG79v6/rKOsScqa+MFzNABg+xDXGo+PyF9bKx38NdQVM0+++PQ7czhIUdFEisqXTfhN8jDDHwNcqJwEIYQQQkg9R4lFQkiD9+j0TXQsN/bM0AbWupQke4/D4eDuN23QYdtDbG4+EPuu/MmY/873LKx/8UTOL72hokAvLVWx0zsKAOAR/wqz/S6w5hd0moxMpZKjz2OamdRkaKQWGdnUBLNPv4RILCkd+6mXA9pZ6aDzX94V3LN6bR3siiKRGAAwtZU5FPlcCHjUG5AQQgghpKGgd36EkAaP88yXNeZraIuvPS1rPpharJ1VyVHnIw4dkKCixZhrHxuE9jEvceM1dYiuKr/YLCgXF2Lf5T/AhYQxd8XSHf86dQIA3PumLTSUBHKIkNQGWsoCLOpkU3rbVk8Vk1qao61l5Y/GBy/ujEkeZhWuMdFUwtGvmiPnl944MNqdMXdwjDtmtbXEvA7WmNfBGmqKfEoqEkIIIYQ0MLSthBDS4DVPDGPcFoMDPwNr/OtuLKeIaq+kNT1gsPoatrn3xU8P/mXM/fDwMLrudUHB+r5Q4FNy4VMJRWLcjUgDAGy4uw+O6bGM+Vy+ImZ1m1nagddYQ6nGYyS1y8+9HfFVc1PEZRXA00K7dLdwxtpe6Lj9IQLishjr/zfYBU2MNCASS9DBWhdcLgdrejggLDkX3tHpEIolrO/xdmX30q/HNTeFk6EavKPS4WmpjebUlIUQQgghpMGjxCIhpGGTSNAsKYIxFKptjGxFFZhoUvOW8vRUS2otbm3aFwuenoFWmdqUnd++QMe3L7DlfmMsLLOTinxcsUiMQXuf4HJIEnpEPcNs/4usNSvajUOUZiMAgI2uCqzoqH6Dx+Fw4GSoDidDdca4hpIAfvPLF3iQzlRLGXe+aQsAeJ2cg8a/epUer079sSdrfXNTLUooEkIIIYSQUpRYJIQ0bOHhjOQYADxtRI1bPiZTSQ1/NuuP1d5HGOM/PPwPnU1dKLH4ifY9eYvLIUkwzk7FgUubWfM3zZtgS7P+AICvPS3wUy/Hmg6RNAB2+moo3thP3mEQQgghhJA6hM6qEUIatKJHT1hjz6gjdIVeL+0CAPij2QBkKKoy5jrGBKJfxBP4x2bKI7Q66Z/HbzDjxHPwRUIcvvgrDPKZ/3YZiqqY1HMuJBwuxJv6Y/vQJtBVVZBTtIQQQgghhBDyASUWCSEN2n9/n2WN+RrSbruK2OiporONLjKV1LC5+UDW/G9ee9D615tyiKzuSc4pxNRjAQCAdfcOoH1sEGvNrK5fI0ZDHwfHuLPmCCGEEEIIIUSeKLFICGnQLMMDGbffN24hFbs2wxNAya7FRBVNxpxdRjy+9TuPS8GJ8gitzhCJJei0/SEAYHzgTSzwPcNas7NJLxxxKqmVN8KNmgkRQgghhBBCahdKLBJCGq6iIrRKCGUMheiYIkdBBRemeMgpqLqBx+Xg9kxPZCuqYFm78az5FT5HMf2Py/jn8Rs5RFc3rLwSguCkHHjGBmPn9W2s+WcG1pjXeSoAYGILMwh49JJNCCGEEEIIqV3oKoUQ0mD5nLwOZWERY+y+aWMAQA97fXmEVKd0tNEDAOxz6Yqn5epSahTlY8eNbZh61B9CkVge4dV662+FwS4tFmfO/gxFkZAxl6qkjhH9l6CQX1JLcWJLM3mESAghhBBCCCEVosQiIaTBOvPXcdbYXVNnAACfdodVSg97fUg4XMztPI011y/iKb4Kuo1fvcKxySscftTQBQBw7VUSeu3ygWFuOi6f+gH6+VmM+WIuD8P7L0GElhEA4K+hruhgoyuPUAkhhBBCCCGkQnx5B0AIIfLSPiaQNXbPxBkTW9DusMrSe9ed2NvECTub9MKM51cY83/c/htNzJsgVl0PPC4HZye1RB8nQ3mEWisc84/DqEO+0CrIwc2TP8A6k12Hcm7nafAybwIA+L6rLWZ4WtZwlIQQQgghhBBSObQlhxDSMIlEaBsXzBiKVtfHWw19/NzHUU5B1T1ftTAt/Xpxh4mIVmceIdcuzMV/FzeBJxZBJJZg+4OoGo6w9ohOy8OoQ77QKMzFlZOr4Z4cyVrze/OB2NG0DwBAV0WANT0cajpMQgghhBBCCKk0SiwSQhqmFy+gVZjLGHp/DNpIQ0keEdVJ3ez00dRYAwCQraiCaT1ms9a0jw3Cjw/+BQBcCkmq0fhqA5FYAu+oNFj9chNaBTm4dHINPBJes9b959gBizpOKr2d+ENPOpJPCCGEEEIIqdXoioUQ0iCJ795ljd03bYxlXe3kEE3dxeNy8GBOOzgbqgMAbli6Y9u7HXdlff/4BPqHPQIAnAiIq9EY5UkikWDIvidou/UBDHLTcfvYMrSJD2Gtu2bRFJN7zoWEU/Ky3N1eD1wup6bDJYQQQgghhJBPQolFQkiDFHPhOmvsnokzvutgLYdo6jZlAQ8XpniU3l7YcTL89K1Y6/699BvckiIw4qAvLgWzawvWR0GJOTgflAiH1BjcP7IEbslRrDW3zFwxeOByFPEFsNVTxVBXIxwY3azmgyWEEEIIIYSQT0SJRUJIwyMWQ+n+PcZQsrIGQnRMofuuGQn5NIbqiqVfF/IVMLL/EmQLlBlr1IoLcPbMWhjlpOLA05iaDlEutj6IRK9IX/j8txC2GQms+bsmjTFw0ArkCxRx82tPhC7tguMTWjD+PQkhhBBCCCGktqLEIiGk4Xn2DAb5mYyhO6YuAIeOnn4uJQEPw5sYld4O0zbGhN7zWOvMs1Nw4/hKeD0MhEQiqcEIa879yFTY/HIT3AXnoLx1C86f/gmaRXmsdZctm6H30DXIVVCGIp+LzrZ6coiWEEIIIYQQQj4fJRYJIQ1O2KGTrLErVs2wsJONHKKpP/aNdmfcPmPniWXtvmKtc0qLwfUTq2D4zb9QWnIRM04EIDO/uKbC/KJ+vxOODtseIj4xHXuubsHvXnvAk4hZ647at8OgQcuRLyjZmVj2KDkhhBBCCCGE1BWUWCSENCgSiQQJx8+yxq9aNsOCjpRYrAplAQ/RK7pBQ4lfOrbeYxj2OXdhrXVNicb9I0tgkhqHv33eYObJ5zUZ6hcx6+RzLDwfhMYpb/Dov4WYFHhT6rofW4/CmH4LUcwTlI61t9KtqTAJIYQQQgghpNrwP76EEELqD98XUfCMf8UYe6FngVh1PaprVw3MtJThP78jRh/yxaM3GQCHg+ndZ0OjMA9DwnwYa+3T4/Dg8GIMHLQCRwBMaWWOJkYa0FerG/8PEokEh57FwDcmE6+ScnArKA5Ln57BSp+jUBYWsdbn8xUwqedcHHNszxgPWNARCnz6nI8QQgghhBBS91BikRDSoMScvIAW5Y6mXrGkDrzVyVJHBd7ftscvN19jxeUQCHl8jO63CCfPrUO/iKeMtY3yMnDn6PeY1W0muu8sGbv5tWedqDfYftsDPIxKBwC0iQ2C7/XtcEl9I3VtrJoOBg1cDt9GdqVjbsYaeDK3Pfg8SioSQgghhBBC6ia6miGENCgqN6+zxq5YNcMvfRzlEE39tqyrHdJ+6gUAKOYJMLz/Uhy3b8NapyQqxj9Xt2D31S1QLcpH1x3eOBEQB7/YTIjFtaPBi0QiQUpuIYSikqT0Eb9YPIxKh35eBnZc34b7R5bKTCp6mbrAY+xvjKTitemt4Te/IyUVCSGEEEIIIXUa7VgkhDQY//hEoZf/A8ZYjkAJD4wb40RrCzlFVb9pKQvQ1FgD/nFZKOQrYHTfRUhS+Rvf+F9irZ388gY6xLzEtB5zMOJgydhQVyMcG98cHDl27D71Ih7D9n/YaamjIoAoLR0/PT2Duc/OQa24QOr9hBwu1rQZjXUewyDm8krH945sim72+l88bkIIIYQQQgj50mirBCGkQcgpFGL3luMwzk1jjN8ya4IivgDaKgpyiqz+uzS1VenXYi4Pc7rMwNzO0yDksF+CbDMScPvYchy6uAlmWck4+SIeA/55jKdvM0rXxGbm43/3I3HMPw4SyZfb0SiRSJBdIGQkFTUKczHt9mFE7J6G5Y+OyUwqPjG0hcfY3/Bz65GMpOKWQS6Y0NLsi8VMCCGEEEIIITWJdiwSQhqEh1FpGB76gDV+1raVlNWkOhmqK8JSWxlR6fklAxwO/tesPwL0rXDs/AYY5Gey7jMm5C6Gvn6I3a49sCFrKDyCk7ChrxO62euj+ea7peuuvzbHX4OdqzXenEIheuzygU90eumYe2I4ZgZcxujgO1AVFsq8b7ZAGSvajcO2pn0YCUUAmN3OClNbmVdrrIQQQgghhBAiT5RYJIQ0CEEJ2RhaLrEo5HBx1rYVNg+s3sQUYeJwOPixlyOmHgtAkehD45y7Zi5wm7AF/1z5E72jnrHupygS4hv/S5gRcAXHHNphe2wfLDF2Asoci97z6A32PHoDPheY2FgNU5zVIRSJceJFLO5EpGJpZ1tY6KiwHvuofyy8wlNhq6uKrz0toKLAw4bbYdh6PwpxWSW7EI2zUzE4zBvjgrzQKiH0oz/nSTtPfNdpKmI0PhxzHuLaCMPdjDGyqckn/ZsRQgghhBBCSF1AiUVCSIPgdeQy5mWnMMZumrshTVkD02gX2Rc3rrkpOljr4E5EKiYc9i8dT1TVRt8hq/F1wGX8cv8gtApzWfflS8QYE3IXY0Lu4pW2CY45tMM5Gw88M7SB5N1xaqEY2P0yB7tf5gBH40vvu9M7GsObGGHLYFdoKwuQUySE3qqrjMdfdCEIAMATi+Cc8gajo/0x5PVDeMa/qtTPdt3cDSvbjcNjIwfG+OO57dHCTKtSj0EIIYQQQgghdRElFgkhDULbp7dYYyffdShWUaCnwppgrq2Cr5qrYISbMQListB6y/2SCQ4HO5r2wSk7T6y7dwATAm+BC+m1Ex3SY7HS5yhW+hxFhqIqnhja4rGRAx4Z2eO5viVi1HRZR5CPP4/H8efxjDGtghzYZsTDJiMeTZKj0Dr+FVomvJZZM1EabyMHrGg3DrfN3Rjjx75qjkEujajjMyGEEEIIIaTeo6tpQkj9J5Fg6OuHjCERh4sztq3xZkU3OQXVcCnyefAw10bgok5w/tWrdDxJVRtTes3Fby0GY5X3YYyQUhOzLK3CXHR/E4DubwJKxwp5fMSp6iBFWQP5fAVIOBxIwIGYw4GiqBgaRfkwzkmDbkH2Z8VeyOPjhF1b7HTrhfsmjRnHsgc6G+Ln3k5o3Ej9sx6bEEIIIYQQQuoaSiwSQuo9yf37sM5MZIx5mbkgRUUTplrKcoqKOBmqQ7ixH7bcj8T8c4Gl40F65hjVfwlWpcXgO99zGB90C8rCoko9pqJICKusJFhlJVVrrK+1jLDHtQf2unRFsooWY+7QGHeMamoCLpcj/c6EEEIIIYQQUk9RYpEQUu/FbN4Os3Jjx+3boa2ltlziIR9wuRzMbGOBiLQ87HvyBjmFotK5UB1TzOw+C0vbj8eoV/cwIfAmWsd/vIlKdXmpa45Tdm1wys4Tz/UtGbsT30tY3QMG6oo1FhMhhBBCCCGE1CaUWCSE1Gsxb5OgfeEMYyyfr4CjDu1wa7CrfIIiDIp8HrYMcsGWQS5IzS2C/mpmc5VMJTXsdOuNnW69YZSTir4RT9E+JhCtEkJhnx5XbXEE6ZjhkZE9vI0dccfUBa91ZHdy1lIWIGJZV2gpC6rt+xNCCCGEEEJIXUOJRUJIvXb9l78wqVxDjpN2nshUUkNTYw05RUVk0VVVQM4vvbHgfBB2ekez5uPVdLG7SU/sbtITAKCdnw2PhFC4J0XALj0OVpmJ0M/PhG5+NhTEQnAlEnAkEnAlEgi5XGQqqiJNSQ3hWo0QoWmEMC0jhGkbwV/fCplKajLjmtPOCqu620NXVeGL/eyEEEIIIYQQUtdQYpEQUq/ZnzvCGvvHpTsAgCPlaCuRPxUFPv4a2gSz2ljC7bc7Fa5NV1bHVavmuGrV/IvEMq21Of4Y6AJlAe/jiwkhhBBCCCGkgaHEIiGk3srx9UPbuBDGWISmIe6YuSBuVXc5RUUqy9VIA/+MbIo5p18gt6ik9uJ3Hawx2cMc2x9GIbdQiAO+MdX+fZsaa2DbEFd4WupU+2MTQgghhBBCSH1CiUVCSL11a9ZyDCg3ts+5KyQcLhppKMklJvJpJrY0w9hmJsgpFEJb5cMx5G1DSupjruphD9t1tz76OI0N1WCmpQzfmEyk5H7oMG2lo4Kn89ozHpsQQgghhBBCSOVQYpEQUi9d9gpAT9/rjLEiLh97XLvD2VBdTlGRzyHgcWUm/qx1VZH5Uw/ceOQPbUUu1BW4cHNzQ26xBM9iM5FTKEQHa11olmmyIhSJcSE4EVwOB32dDMHj0pF4QgghhBBCCPkclFgkhNQ7hUIRfL//Bb1FQsb4Ycf2iFfTxa9dbeUUGfkSlAU8mKszX840lQXobKsndT2fx8UgF6OaCI0QQgghhBBC6jWuvAMghJDqtvzkM3ztf5k1vrn5IJhoKmFMM1M5REUIIYQQQgghhNQvtGOREFLvcLb/Bb2CbMbYdXM3PDewwps57eQUFSGEEEIIIYQQUr/QjkVCSL2Sk5KOxU9OssZ/bzEIAGCqpVzDERFCCCGEEEIIIfUTJRYJIfWGRCLB+kHfQj8/izH+uJEdrlo2w8ru9nKKjBBCCCGEEEIIqX8osUgIqTe8AyKx4Olp1viqtmMBDgfLu9rJISpCCCGEEEIIIaR+osQiIaTe8Jk6H9qFuYyx+8ZOuGbhjs0DnaHAp6c8QgghhBBCCCGkutBVNiGkXgi754s5fhdY4yvbjQM4HIxxN5FDVIQQQgghhBBCSP1FiUVCSN0nkeD1+OkQiEWM4UtWzXHHzBX9nAyhr6Yop+AIIYQQQgghhJD6iRKLhJA67+am3egd9YwxVszlYX6nKQCAPwY5yyMsQgghhBBCCCGkXqPEIiGkTkuIikPjNUtY41vc+yNUxxTXpreGta6qHCIjhBBCCCGEEELqN0osEkLqtBt9xsAoN50xlqiiiZ88R2JpF1t0s9eXU2SEEEIIIYQQQkj9RolFQkidtXzqWowLvsMan9NlBrIUVfFDDwc5REUIIYQQQgghhDQMlFgkhNRJ4Y/8sfjgOtb4Mfu2OOHQDgo8LhT49BRHCCGEEEIIIYR8KXTVTQipe/Lzkd1/CDSL8hjDycoamN31awDAiQkt5BEZIYQQQgghhBDSYFBikRBSt0gkeNFnOJomR7KmpvT8FikqmtBTVUBXOz05BEcIIYQQQgghhDQclFgkhNQZRUIxfu80Dq5eF1lz6z2G4oKNBwAgcllXKAt4NR0eIYQQQgghhBDSoFBikRBSZ6z/ahnm3/2PNe5l6oKVbccBAPLW9YGqIr+mQyOEEEIIIYQQQhocuvomhNQJUTv3Y/nRX1njkRoGGNl/MURcHsSb+sshMkIIIYQQQgghpGGiHYuEkFov98RpGM+aCp5EzBjPUFRFvyGrkKyihdx1feQUHSGEEEIIIYQQ0jBRYpEQUqvtmLMOCiOHQ0EsZIwXcfkY1n8pgnXNcWOGJ9VUJIQQQgghhBBCahgdhSaE1EoFRUIs6TULm2/vBhcSxpyQw8Wofotwy8IN6/s6oQt1gCaEEEIIIYQQQmocJRYJIbXO3eA4vBo5CX++uMaaE4ODSb3m4oydJ7YNccXMNpY1HyAhhBBCCCGEEEIosUgIqV2uXXkE9ckTMC3+FWuumMvDhF7zcMSpI7zntEMrC205REgIIYQQQgghhBCAEouEkFokaututFowF5pFeay5fL4CRvRbgos2LTG1lTklFQkhhBBCCCGEEDmjxCIhRP6yshA2ahJsL5+SOh2vqo3BA5fhsZEDTk9siYEujWo4QEIIIYQQQgghhJRHiUVCiNxIJBJc/nUPnNcug212stQ1TwxtMWTgMsSq6+HhnHZoTTsVCSGEEEIIIYSQWoESi4QQubhx6jbyFi3FgIjHMtf81nwQlrf7CkV8AXLX9YGygFeDERJCCCGEEEIIIaQilFgkhNSoIO8APJ36HcYFeYELidQ1CSpamND7O1y3dAcAvFrSmZKKhBBCCCGEEEJILUOJRUJIjSh49Rr/jJyHqS+uobFYKHPdBesWmNLzWySraKG7vR5OTmgJNUV6qiKEEEIIIYQQQmobulonhHwxIrEE9w9fRNKP6zDktQ9mScQy1yaqaGJBpyn4z7EjwOEg/ade0FQW1GC0hBBCCCGEEEII+RSUWCSEVCuJRILMpDQ8/HUntP47iI7xIRWuL+Tx8ZdbH/zoOQoZSmoAgJxfekNFgZ6eCCGEEEIIIYSQ2oyu3Akh1aIgvxC//7AbFueOY3CYN/oIiypcL+Jwsd+5C9Z4jsZbDX0cHOOOMe4m4HA4NRQxIYQQQgghhBBCqoISi4SQzyYpKMDLf0/jyR//YEDYIywryP7ofUQcLk7YtcGaNqMRomsGoKQ5i52+2pcOlxBCCCGEEEIIIdWIEouEkMqTSCB+FYqksxfxcPdxdH3zHK5FeXCtxF1z+Yr4x7U7/mg2AJFajQAAiT/0gL6a4peNmRBCCCGEEEIIIV8EJRYJIVJJJBLkFAjh8yAAit7eSDl3CS1ePYV5dgoaARhSyceJ0DTEbtce2NmkF9KV1QEAwo39wOXSkWdCCCGEEEIIIaQuo8QiIaRUcXwCIq7cQcyNu8j3eYyWCa/RPS/zkx8nW6CM4w5tsd+5C+6bNIaEw8W8DtZY3MkGjTSUvkDkhBBCCCGEEEIIqWmUWPwCwsPDceTIETx69AgxMTEQCoUwMDCAvb09+vfvj+7du4PPp396Ij8SoRAZga8Qfu8pTh+9gWaJ4WiREAaL7GQ4AHD4jMfM5SviknVznLJrg/M2HsgTKKGvkwFEU1pVd/jk/+3de3zPdf/H8eeONttsZnOa89gI6eCSC6VUKKEULiRUVyiEq4iu1pUcUnKISgcl5XxWulR+JBKuRHLcZcK2sDkMM9u+++77+2P5XN/vZtv3tH2Hx/12c/N+f76fz/v9/m7z9v6+9j4AAAAAAFAGEN1ys5kzZ2r27NnKycmxuZ6YmKjExET93//9n5o0aaK33npL9erV81ArcUOwWKSTJ2WJj9fezb9o1/c/K+j472pw7g/FnPtDFc0mNZfU3IUqTpYP03e1b9GqBi21rs7tuuxXToF+3ro0qZO73gUAAAAAACijCCy60fjx4/X5558beV9fX8XGxiowMFAJCQk6d+6cJGnv3r3q27evlixZoqioKE81F9e6y5dlOX5clxKOynz8uDZu3K3UA4dV4+Jp1bx4WrUvpCrEdFlekpr++cdVF/0C9X3NJtpQ62atr32L9lWqJXnl7ZU4/K56mtypkfx8vN1QEwAAAAAAKOsILLrJunXrbIKKHTp0UFxcnCIiIiRJJpNJK1as0KRJk3T58mWdPn1aQ4cO1fLly+XlxSEWkGQySefO6dKJFAVePK/f9hzWyYRE/bjtgCpnnFfljDRVzjivKhlpqpKRpvDMdHlJCv7z8YdLoEnHQiL1n6oN9HPVBvqxeiNtrxajHJ+8bmPgX2vr3/c2UI2wwBKoGQAAAAAAlHUEFt3AZDJp8uTJRv6ee+7R9OnT5e39v5lbfn5+6tmzp6KiojRw4EDl5ORo3759+uqrr9S5c2dPNBvukJMjS3q6/kg+Lb/MDJnPX9Sh30/qpiAv+Wdm6PfjKfrP/iQdT0pVsOmygrMzFWTKVGjWJVXMuqTwzIuqmJmuipmXFGK6LEkK+rPoZn/+6VBKb+VU+dC8IGKVBn8GE+srtXyY8frodvX1Rcvaqh1evpRaBAAAAAAAyjICi27w3Xff6Y8//pCUt/w5Li7OJqhorU2bNurZs6fmz58vSfr0008JLLri1CldnLtUGadOy2y26ECOt1IuZsmSmytLbq4yTWZ5WyyqGOCrCxnZ8pJF3haLvC258jfnyD83R37mnD/TJvmbc1TOnPf3ldevpI3rf94XYDYpMCdbXpKsF7RXs0rf+uefsuR0QIjiK0Zpf0Qt7a9UU/sr1dS+SrWUHFxJ8vJS8xqh2ji4lcr5esuXZc0AAAAAAKAQBBbd4OuvvzbSrVq1UvXq1Yu83zqwuG/fPiUmJqpmzZol2sbrUc7RY7rYsLHuzrrk6aaUKbny0ongikoMiVBCaDUdrlhN/61YXf8Nq67/VqyutIBg497nWtfRqoduUoCfjwdbDAAAAAAArkUEFl1ksVi0fft2I9+6detin4mNjVVkZKRSU1MlSRs2bFC/fv1KrI3Xq/0TpunmGyyoeMm3nE4FhSmlfKhOlq+opJAIJRp/IpVYIUJ/BIUb+yBKUo9m1dXppsp696aqqhDgy56eAAAAAADALQgsuig5OVkXLlww8k2aNLHrudjYWCOw+Ntvv5VI2653x0w+utnTjXBBul+AzgYE61xAsM6VC9bZgGClBQTrbECIzgUEKTUwVKfK5wUR84KJYcrwCzCerxpSTjuev1Pl/X3k5+2tkAD+OQMAAAAAgNJDJMJFR48etcnXqlXLrudq1KhhpI8fP+7OJt0wmk0Yq83r1+nO5P1uLTfLx1fZ3n55f/v4KdvHN++Pd97fWX9ey/LxU7pfgNL9A3XJL8BI5/0doHS/fOl810w+fpLyAoS9bo1Sx4aV9ZfKwcoxWxQR5K/gcj7MLgQAAAAAAGUWgUUXXZl1KEne3t6KiIiw67nIyMirlgH71YqqpAs7ftRf31iu3DNpyvXyksXLS7nK+9sir/9d+zN/5Vqul9f/gobevsry9VO2t69yvH2kqwTzyvv5KMNk1s3VKuj5O+sqLdOkaiEBqhpSTm2qhCi8vB8HnQAAAAAAgBsKgUUXnT9/3kgHBQUVehp0fsHB/ztAw7qM0pSTk+ORet2pQaVAzep3i5Fv0qSJfHw8cBCJJVc5ObmlXy8Amc3mIvMArn/0AwDoBwDQD3gGgUUXZWVlGemAgIAi7rTl7+9vpLOzs93aJnvk5ubq119/LfV6S9revXs93QQAHkY/AIB+AAD9AAD6gdLB2k0XmUwmI23vbEVJ8vX9X0z3epg5CAAAAAAAgBsLgUUXWS+7zc21fymsdTDRz8/PrW0CAAAAAAAAShpLoV0UGBhopK2XRRfHevlzuXLl3Nome3h7e6tp06alXq+7mc1mm+nNHttjEYDH0A8AoB8AQD8AgH7Acb/99ptDk+SuhsCii0JDQ430pUuXZLFY5HWVU4XzS09PN9JhYWEl0bRiWS/Hvl74+Phcl+8LgP3oBwDQDwCgHwBAP1A6WArtoipVqhhps9msc+fO2fVcamqqkY6IiHB7uwAAAAAAAICSRGDRRbVr17bJJyYm2vVcUlKSka5bt65b2wQAAAAAAACUNAKLLoqKirJZynzgwAG7njt48KCRbtiwobubBQAAAAAAAJQoAotucMcddxjprVu3Fnv/wYMHdfr0aSPfsmXLEmkXAAAAAAAAUFIILLpB+/btjfTGjRt16tSpIu9fuHChkY6OjlZsbGyJtQ0AAAAAAAAoCQQW3aB9+/aqXLmyJCk7O1svvfSScnJyrnrv5s2btXTpUiPft2/fUmkjAAAAAAAA4E4EFt3A399fI0eONPJbt27V3//+d5uDXHJycrRkyRINHTpUZrNZkhQTE6Pu3buXensBAAAAAAAAV/l6ugHXi0ceeUS7du3S4sWLJeUFF9u3b6/Y2FgFBwcrISFBZ8+eNe4PCwvTjBkz5OvLtwAAAAAAAADXHqJabvTaa6+pYsWKmjNnjkwmk3Jzc696SnR0dLRmzJihevXqeaCVAAAAAAAAgOsILLqRl5eXRowYoS5dumjZsmXasmWLTp48qcuXLys0NFSNGjVSx44d1aVLF/n7+3u6uQAAAAAAAIDTCCyWgOjoaI0ePVqjR4/2dFMAAAAAAACAEsHhLQAAAAAAAAAcRmARAAAAAAAAgMMILAIAAAAAAABwGIFFAAAAAAAAAA4jsAgAAAAAAADAYQQWAQAAAAAAADiMwCIAAAAAAAAAhxFYBAAAAAAAAOAwAosAAAAAAAAAHEZgEQAAAAAAAIDDCCwCAAAAAAAAcBiBRQAAAAAAAAAOI7AIAAAAAAAAwGEEFgEAAAAAAAA4jMAiAAAAAAAAAIcRWAQAAAAAAADgMAKLAAAAAAAAABxGYBEAAAAAAACAwwgsAgAAAAAAAHAYgUUAAAAAAAAADvOyWCwWTzcCpWPnzp02eW/v6yOunJuba6Svl/cEwDH0AwDoBwDQDwCgH3CM9ddLkm6//XaHy/B1V2Nw7cn/A3Q9uB7fEwDH0A8AoB8AQD8AgH6gdBC+BQAAAAAAAOAwZizewJgWDAAAAAAAcGNyx6xO9lgEAAAAAAAA4DCmrAEAAAAAAABwGIFFAAAAAAAAAA4jsAgAAAAAAADAYQQWAQAAAAAAADiMwCIAAAAAAAAAhxFYBAAAAAAAAOAwAosAAAAAAAAAHEZgEQAAAAAAAIDDCCwCAAAAAAAAcBiBRQAAAAAAAAAOI7AIAAAAAAAAwGEEFgEAAAAAAAA4jMAiAAAAAAAAAIcRWAQAAAAAAADgMAKLAAAAAAAAABxGYBEAAAAAAACAwwgsAgAAAAAAAHAYgUUAAAAAAAAADiOwCAAAAAAAAMBhBBYBAAAAAAAAOIzAIgAAAAAAAACHEVgEAAAAAAAA4DACiwAAAAAAAAAcRmARAAAAAAAAgMN8Pd0A3JgSEhK0aNEibd++XUlJScrJyVHlypUVExOjzp076/7775evr/t/PE+cOKFFixZpy5YtOnbsmDIzMxUZGal69erpwQcf1IMPPqjAwEC31wugoNLuB3777Tc99thjDj83f/58NW/e3G3tAFC0GTNm6L333lNUVJQ2bNhQInUwHgDKtpLsBxgPAGXP9u3btXbtWu3atUspKSlKT09XcHCwqlWrpubNm6tbt2666aab3F7v2bNntXTpUn3//fc6cuSILl26pPDwcNWqVUsdOnRQly5dFBoa6vZ6rzdeFovF4ulG4MYyc+ZMzZ49Wzk5OYXe06RJE7311luqV6+e2+pdtGiR3njjDV2+fLnQe+rUqaM333xTzZo1c1u9AAryRD+wZMkSvfLKKw4/xwcJoPTs2bNHvXv3lslkKrHAIuMBoGwr6X6A8QBQdiQlJWn06NH6+eefi723U6dOGjdunIKDg91S9/r16/Xyyy8rLS2t0HsiIyM1YcIEtW3b1i11Xq+YsYhSNX78eH3++edG3tfXV7GxsQoMDFRCQoLOnTsnSdq7d6/69u2rJUuWKCoqyuV6586dq0mTJhl5Ly8vNWjQQGFhYTp69KhSUlIkSUePHlW/fv00f/58NW7c2OV6ARTkqX7gwIEDRrp27dqqWbOmXc/xW0qgdCQmJurZZ5+VyWQqsToYDwBlW2n0A4wHgLLh6NGj6tWrl86ePWtc8/PzU0xMjEJCQnTmzBkdPnxYV+bCrV27VgkJCZo/f77LwcV169Zp5MiRMpvNxrW6desqMjJSycnJSk5OliSlpqZq8ODBeu+993T33Xe7VOf1jBmLKDXr1q3T888/b+Q7dOiguLg4RURESJJMJpNWrFihSZMmGbMIGjdurOXLl8vLy8vpenfv3q3evXsbncZf/vIXTZw4UbVq1ZIkWSwWfffdd4qLizMCGlWrVtW6detYBgW4maf6AUn629/+pl27dkmS3njjDT3yyCMulQfAfeLj4/X000/r1KlTxjV3z1RiPACUbaXRD0iMB4CywGw26+GHH1Z8fLwkycfHR4MHD9aAAQNsgoanTp3S1KlTtWrVKuNax44dNWPGDKfrTkxMVJcuXZSRkSFJiomJ0eTJk22WWm/btk1jx441AoxBQUH697//rSpVqjhd7/WMw1tQKkwmkyZPnmzk77nnHk2fPt0IJkh5v53o2bOnZs2aZeyrtm/fPn311Vcu1T1p0iTjQ0Tjxo318ccfGx8ipLzZCu3bt9fcuXMVFBQkSTp58qQ+++wzl+oFYMuT/YDFYtGhQ4eMfMOGDV0qD4D7rF69Wj169LAJJpQExgNA2VVa/QDjAaBsWLFihRFUlPKC/EOHDi0wE7FKlSqaPHmyBgwYYFxbt26ddu/e7XTd06ZNM4KKUVFR+uyzzwrs39iyZUstWLBAlStXliRdunRJs2bNcrrO6x2BRZSK7777Tn/88YekvGWPcXFx8va++o9fmzZt1LNnTyP/6aefOl3vr7/+atPpvPLKKwoICLjqvQ0bNtRzzz1n5D/77DObqdEAXOOpfkCSjh07Zgwg/Pz8FB0d7VJ5AFx36tQpjR49WqNGjSpyv0N3YDwAlE2l2Q9IjAeAsmL16tVGuk2bNurSpUuR948cOdII8kl5y6KdcerUKX3zzTc25YaHh1/13qpVq+rll1828itWrChyP8YbGYFFlIqvv/7aSLdq1UrVq1cv8n7rgMK+ffuUmJjocr3R0dG69dZbi7z/scceM2ZJnT17Vjt27HCqXgAFeaofkGz3U6pbt678/f2dLguA695//3117NjRZmlTvXr1NGjQoBKpj/EAUPaUdj8gMR4AyoLs7Gz98ssvRv6hhx4q9hl/f3+1adPGyP/2229O1f3NN98Yh0eGhISoQ4cORd5///33G4HHnJwcrV+/3ql6r3cEFlHiLBaLtm/fbuRbt25d7DOxsbGKjIw08s7urfLTTz85VG9oaKiaNGli5Ddu3OhUvQBsebIfkKSDBw8aaZY9AZ43Z84cY9aQJHXv3l1Lly5V7dq1S6Q+xgNA2VPa/YDEeAAoC5KTk1WuXDkjb+/M4bCwMCN9ZS9kR1mPB1q0aCE/P78i7/fx8dFf//pXI8944OoILKLEJScn68KFC0beeqBelNjYWCPtzG8kTCaTjhw5YuTtPdXR1XoBFOSpfuAK6xkKfJAAyo4mTZro888/1/jx410+4bEwjAeAsq00+oErGA8Anle3bl3t2rVLP//8s9auXauYmBi7nrtykIrk/Cnt1nus2jsesO4rGA9cna+nG4Dr39GjR23y1hulF6VGjRpG+vjx4w7Xm5SUJJPJZOTt/e2nq/UCKMhT/cAV1h8kYmNjdfDgQS1fvlzbt29XUlKScnJyFBERoWbNmumBBx7Q/fff7/Ip1AAK16JFC3Xr1k333ntvif9bYzwAlE2l2Q9cwXgAKDtCQkIUEhJi173p6en68ccfjbwz+6NmZ2cb+71Lzo0HTp06pczMzEL3ab5REVhEiUtNTTXS3t7eNifAFsV6CaR1Gc7Um788e+s9c+aMcnNzCz1gAoB9PNUPSHn7o6WkpBj5jz/+2GYZxBXJyclKTk7W119/rSZNmmjatGl2B0ABOOa9994rtboYDwBlU2n2AxLjAeBaNmfOHKWnpxv5e+65x+EyUlNTZbFYjLy944H8n1tSU1NVs2ZNh+u/njE6Qok7f/68kQ4KCrJ7UG69FMK6DGfqlaQKFSrY9Zz1b00sFovN8k0AzvFUPyDZzk6Q/re3SmBgoBo2bKgWLVqoTp06Nvfs3btX3bt31/79+52qE0DZwXgAgMR4ALhW7dmzRx999JGRr1Onjtq1a+dwOe4YD0hiPHAVzFhEicvKyjLSjkwZtj6lLTs726V6Hak7/wau+csB4DhP9QNSwQ8SwcHBGjlypB5++GEFBQUZ15OSkvTOO+9o9erVkqS0tDQ9++yzWrlypSpWrOhU3QA8j/EAAInxAHAtSkpK0rPPPmuzpclLL70kX1/HQ1n5/x+3PkCmKPlPj2c8UBAzFlHirDsBR5YQWXcWV46Ed0T+Z+ytO38nZTabHa4bgC1P9QOS7f6OFStW1LJly9SnTx+bDxFS3v4pb775poYOHWpcO3HihGbPnu1UvQDKBsYDACTGA8C15sSJE+rXr5/Nlib9+/d3ahm0VHA84OPjY9dz+e9jPFAQgUWUOOt/iLm5uXY/Z/0Pv7hj4K8m/wcHe+vO3+E4UzcAW57qByRp/Pjx2rFjh5YvX66FCxeqbt26Rd7/3HPP6dZbbzXyixcvdnq2JADPYzwAQGI8AFxLEhIS1KtXLyUlJRnX2rRpoxdeeMHpMvOPB+wNEOa/j/FAQQQWUeICAwONtCPThq3/47Z3mnJh9TpSd/4BgzN1A7DlqX7gitDQUDVp0qTYDxGS5OXlpb59+xr5y5cva+fOnU7XDcCzGA8AuILxAFD2/fLLL+rTp49OnDhhXGvZsqVmzZrlUlAv/3jA3l8UOLuE+kZCYBElLjQ01EhfunTJ5iSmolif+hQWFuZSvfnLs7deX1/fApu1AnCcp/oBZ9122202eevlUwCuLYwHADiL8QBQur788kv169dP586dM661bdtWH3zwQYHAoKPcMR6QSvczybWCwCJKXJUqVYy02Wy26SSKYr2XQv4j3h2tV5JOnz7tcL3h4eHy8vJyuG4AtjzVDzirUqVKNnlnT6QG4HmMBwA4i/EAUHpmzpypF154wWYmYZcuXfTee+85dPhjYSIjI22WQ9s7HrC+z8vLq0C/AAKLKAW1a9e2yScmJtr1nPV+CvYsV8ivevXqNlOlnam3Tp06DtcLoCBP9QPOyr80Iv/G7gCuHYwHADiL8QBQ8kwmk0aNGqVZs2bZXB84cKDefPNNp06Avhp/f39Vq1bNyB8/ftyu56zHDdWrVy9wSjQILKIUREVF2UwXPnDggF3PHTx40Eg3bNjQ4Xr9/PwUExPjcL3W9zVq1MjhegEU5Kl+IDk5WW+99ZbGjBmjZ555xqa8ouQPPFgPQgBcWxgPAGA8AJRN2dnZGjJkiFavXm1c8/X11fjx4zVy5Ei3rxZo0qSJkba3H2A8UDwCiygVd9xxh5HeunVrsfcfPHjQZspxy5YtS6XetLQ07d+/3+V6ARTkiX7AYrHo448/1ooVK7Rp0yZt2bLFruc2b95spL28vArssQTg2sJ4ALixMR4Ayp6cnBwNGzZM33//vXEtKChIH3zwgbp3714idbZo0cJIb9++Xbm5uUXebzabtX37diPPeODqCCyiVLRv395Ib9y4UadOnSry/oULFxrp6OhoxcbGulzv3r17tXfv3iLvX7JkiXJyciTlbe7aqlUrp+oFUJAn+oEaNWooKirKyK9YsUJms7nIZ9LT0/XFF18Y+TZt2ig8PNzhugGUHYwHgBsb4wGg7Hnrrbe0ceNGIx8eHq7PP/9cbdq0KbE677vvPvn4+EjK2zvxu+++K/L+b775RmfPnpWUN5PSejyB/yGwiFLRvn17Va5cWVLedOeXXnrJGLDnt3nzZi1dutTI9+3b1+l6b731VjVu3NjIjxkzptDTnw4cOKD333/fyPfo0cMtm8QCyOOpfuCxxx4z0gkJCZo9e3ah95pMJr300ktG0NPLy0uDBg1yum4AZQPjAQCMB4CyY9OmTfrss8+MfGhoqObNm2fzf3VJqFq1qu69914jP2HChEInO5w4cUITJ0408u3bty9wIBzyEFhEqfD399fIkSON/NatW/X3v//dZt+SnJwcLVmyREOHDjV+gxgTE1PoNOh27dopNjZWsbGxateuXaF1jx492tibIT4+Xn379rXZT8Fisejbb79V//79lZGRISnvxKiBAwc6/4YBFOCpfmDAgAE2sxTeeecdjR8/vsDJ1AcOHNCAAQNsfnP5+OOPq3nz5o6/WQClhvEAAMYDwLXDbDZrwoQJslgskvIC92+//bYaNGjgUrl9+/Y1+oGiVjqNGDFC5cqVkySdOnVKvXv31o4dO2zu2b59u/r06aPU1FRJUvny5W0+x8CWe47XAezwyCOPaNeuXVq8eLGkvKBC+/btFRsbq+DgYCUkJBjTjCUpLCxMM2bMcPkUqDvuuEMjRozQ1KlTJUn79+9X165dVb9+fYWHh+vYsWM2v6UICAjQ9OnTFRIS4lK9AAryRD8QGBioDz74QI8//rjS0tIkSZ9//rkWLVqkmJgYBQcH68SJEwVOhnvooYc0ZswYp+sFULYwHgBubIwHgLJh3bp1OnbsmJEPDAzU3LlzNXfuXLvLiIiI0OTJk52qv169eho/frxGjx6t3NxcJSUlqW/fvqpVq5aqVq2qEydO2Ex88Pb21oQJE1SzZk2n6rsREFhEqXrttddUsWJFzZkzRyaTSbm5uVc9nTE6OlozZsxQvXr13FLvwIEDFRQUpLffftuYhXD48OEC91WtWlVTpkzhN5JACfJEP9CgQQMtW7ZML774onbt2iUpb5nTvn37CtwbEBCgQYMG6ZlnnjH2YAFwfWA8ANzYGA8Anrdu3TqbfEZGht0HKl1hPfvYGV26dJG/v79effVV4xcNx48fL/CLhdDQUL3++uvq0KGDS/Vd7wgsolR5eXlpxIgR6tKli5YtW6YtW7bo5MmTunz5skJDQ9WoUSN17NjR+IfuTo8//rjuu+8+LVmyRJs2bVJSUpLS09MVHBysmJgY3XfffXr00UcVHBzs1noB2PJUP1CzZk0tWrRIP/74o7766ivt3r1bKSkpysrKUnh4uGrWrKm2bduqc+fOqlatmtvqBVC2MB4AbmyMBwDPOnLkiKebIEnq2LGjWrZsqaVLl2rDhg06duyYzp8/r/Llyys6Olpt27ZVz549ObTJDl6WKwvbAQAAAAAAAMBOHN4CAAAAAAAAwGEEFgEAAAAAAAA4jMAiAAAAAAAAAIcRWAQAAAAAAADgMAKLAAAAAAAAABxGYBEAAAAAAACAwwgsAgAAAAAAAHAYgUUAAAAAAAAADiOwCAAAAAAAAMBhBBYBAAAAAAAAOIzAIgAAAAAAAACHEVgEAAAAAAAA4DACiwAAAAAAAAAcRmARAAAAAAAAgMN8Pd0AAACAktSuXTslJye7XM68efN0xx13uKFFQOnJysrSY489pvj4ePXr109jx441Xtu+fbueeOIJI3/o0CGX6oqNjTXSQ4YM0dChQx0uY+bMmZo1a5bb2lScYcOG6ZtvvlHLli316aefytubeRcAADiC/zkBAACA69SkSZMUHx+viIgIDRs2zNPNKXNGjx6tgIAAbdu2TR9//LGnmwMAwDWHGYsAAOCGUblyZcXExDj1bGhoqJtbA5SsH374QQsXLpQkDR8+XMHBwR5uUdkTFRWlAQMG6P3339eMGTN01113qWHDhp5uFgAA1wwCiwAA4IbRunVrvfHGG55uBlDiMjMzNW7cOElSTEyMHn30UQ+3qOx65plntHTpUp0+fVqvvvqqFi5cyJJoAADsxP+YAAAAwHXmgw8+UGJioiRpxIgRBMqKUL58eQ0aNEiStHv3bi1btszDLQIA4NrBCAMAAAC4jpw5c0Zz586VJNWvX1/t2rXzbIOuAT169FBYWJgkadasWcrKyvJsgwAAuEYQWAQAAACuIx9++KEyMjIk5QXMULxy5crp4YcfliSdOnXK2JsSAAAUjT0WAQAAnPDSSy9p5cqVkqTZs2erbdu2mjdvnhYvXqykpCRVqFBB9erVU8eOHdWnT58Cz1+6dEmrVq3Spk2b9N///ldnzpyRv7+/IiMj1bx5cz3wwANq1aqVQ2366aeftHz5cv3yyy9KSUlRUFCQatWqpQceeEA9evRQcHCwvvjiC73++uuSpCFDhmjo0KE2ZaxYsUJjxoyRlHewxYYNG4qtt127dkpOTpaUdwpxt27dirw/OTlZK1eu1JYtW5SUlKS0tDQFBwerevXqatWqlR555BFFR0cXWcbMmTM1a9YsSdIrr7yixx9/XNnZ2Vq9erXWrVunhIQEnT59WiEhIapbt67atWunnj17KiQkpNj3c8WOHTv01Vdf6ZdfflFycrJMJpNCQ0MVExOjtm3bqlu3bqpQoYLNM+PGjdP8+fMl5R34s2XLFvn7+xdb12effaaJEydKkurUqaNvvvnG7nZaS09P19KlSyXZBstcYTabNWLECJs29evXT2PHjnW5bEdZf9+dUdTPZ48ePYyZnvPmzdMTTzzBEnIAAIpBYBEAAMAN/vnPf2r58uVG/vTp0zp9+rRiY2ML3LtmzRq98cYbOnPmjM31rKwsXbx4UUeOHNGSJUvUsmVLTZ48WVWrVi2y7jNnzmj06NHavHmzzfW0tDSlpaVpz549WrBggd555x0X3qHrzGazpk+frrlz5yo7O9vmtXPnzuncuXPat2+fPvnkE/Xo0UNjx461KygnSQcPHtQ//vEPHT582Ob62bNndfbsWe3cuVNz5szRlClT1Lp16yLLOn78uF5++WXt2LGjwGtXvq9bt27V7NmzNX78eN13333G64888ogRWDx//rx++OEHm9cLs3r1apsynLV69WpdunRJknTHHXe4fJq5xWLRmDFjbIKK/fv3N4LP15Po6GjVr19fhw8fVnJysjZu3Kh7773X080CAKBMI7AIAADgopUrVxY6w6xLly42+VmzZmnmzJk216pXr64aNWooKytLCQkJSk9PlyRt27ZN3bt319y5cwudwXfmzBn17t1bR48eNa75+fkpNjZWAQEBOnz4sNLS0pSYmKinnnrKLTPYnJGdna1nn33WJvjp5eWl6OhoRURE6MKFC4qPj1dOTo7MZrMWLlyo+Ph4ffzxxypfvnyRZR89elSzZs3SuXPnJEmVKlVSvXr1lJmZqYSEBGNZ8NmzZzV48GCtXLmy0K/nwYMH1a9fP6WlpRnX/Pz8FBMTo/Lly+vo0aNKTU2VlBcMHTZsmKZOnaqOHTtKkpo2baqYmBjFx8dLygsiFxdYTEhI0L59+yRJ3t7eLn2P1qxZY6Tvvvtup8u54tVXX7UJeg4YMEAvvfSSy+U6q1atWmrTpo3d9//0008ym82S8mZw3nTTTUXef9dddxnB6TVr1hBYBACgGAQWAQAAXHQlqPjggw9qyJAhqlatmg4fPqz169fr5ptvNu5bu3atTVDx9ttv15gxY9S0aVPjWnZ2tr766itNnjxZaWlpSklJ0ZAhQ7Rs2TIFBQUVqHvMmDE2QcXu3bvrH//4hypWrChJMplMWrlypSZNmqSzZ88aSz1L2/jx422Cit27d9eQIUNsZmOeP39ec+bM0UcffaTc3Fzt3LlTcXFxmjJlSpFlf/7555Lygk7//Oc/ddddd8nLy0tS3tLgmTNnGu87KytLM2fO1PTp0wuUk5GRoeeee84IKvr4+GjQoEEaMGCAzRLq9evX67XXXlNKSorMZrNefvll3X777YqMjJSUN+Nw8uTJkqSNGzfq4sWLRS7BXrVqlZFu1apVsTNUC5OSkqJff/3VpixXTJo0SYsXLzbyng4qSlLXrl3VtWtXu+6dNm2atmzZYuTHjRunhg0bFvlM69at9cknn0iSNm/erOzsbLtnzQIAcCMisAgAAOAG7dq109SpU42A1s0332wTVExPT9e//vUvI3/vvffqnXfeka+v7XDM399f3bp1U7NmzdSrVy+dP39eR44c0UcffaThw4fb3Lt161Zt2rTJyD/55JMaPXq0zT1+fn7q0aOH6tevr379+hVYglwafv75Z5sA1ahRo/TUU08VuC80NFQjR45UbGysRo4cKUn68ssv9eijj+qvf/1rkXXUqFFDS5YsMQKqVwQHB2vMmDFKTU3V2rVrJUmbNm26asBo7ty5SkpKMvJTpkzRgw8+WKCu++67T9WqVVPv3r2VmZmp9PR0ffHFFxoxYoSkvFmqb7/9tnJycpSdna1169ape/fuV223xWLRl19+aeQfffTRIt9nUbZv3y6LxSJJCgwMVO3atZ0u68qS9Suu9rNVlDVr1mj37t0O13v8+HGHn7ma1atXa/bs2Ub+ySeftGsmaKNGjYz0pUuXtGfPHjVv3twtbQIA4HpEYBEAANwwVq5caRy4Yq958+bpjjvuKPa+wYMHG0HFq1m2bJkuXLggSQoJCdHEiRMLBBWtRUdH6/nnn9e4ceMkSQsXLtSgQYMUEBBg3GN9cm3NmjWNwNbV3HbbbRoyZIimTp1a7Htxtzlz5hjp22+//apBRWudOnXSt99+q3Xr1kmSPvnkk2IDi8OGDSsQVLTWq1cvI7CYkZGhxMREm+XQubm5NsHPTp06XTWoeEXjxo3VuXNn46CUb7/91vj6R0RE6M4779TGjRsl5QVHCwssbt++XSdOnJCUF1i1Zz/GwljPVqxfv77TB498+OGHev/99428o0FFKS9A6K4goaN27typf/7zn0b+rrvu0osvvmjXs5UqVVKlSpWM/U9//fVXAosAABSBY84AAABcFBQUpCZNmhR5j/UejPfcc4/CwsKKLbdz587y8fGRlHcQi/UMMJPJZLPMs1u3bsUu2ezdu7cCAwOLrdedMjMzbZZA23swifXssp9++klZWVmF3uvt7V3sXnj169e3yV+8eNEmv3//fp08edLI9+rVq9g2PvHEE3rxxRf13nvv6d1337V5zfp9/uc//7Ep25r1/oWdOnVyadltQkKCkW7QoIFTZcybN09vv/22kXcmqOhJSUlJGjJkiDEzt169epo6dapDQdaYmBgjnf8wIAAAYIsZiwAA4IZRuXJlm6CBPew5VTcmJqbIwEV2drb27t1r5As7OCS/ChUqqFatWvr9998lSb/88otatmwpSTaHkkiya1ZVSEiIbrvtNv3444921e8Oe/bskclkMvL2vnfrQK3JZNJvv/1W6HusUaOGgoODiyyvQoUKNnnrNl1p5xV+fn5q1qxZsW2MiYkp9OfpSvA4LS1Nubm5+uqrr/T000/b3JOZmWkTcHblNGhJNsu4K1Wq5PDzS5cu1cSJE418TEyM00HFIUOGaOjQoQ4/N3PmTM2aNcupOtPT0zVo0CCdPXtWUt73/P333y9yf8ursf7aWX9NAQBAQQQWAQDADaN169Z644033F5ueHh4ka+fPHnSZm/DadOmadq0aQ7Xc+rUKSOdnJxs81qdOnXsKiM2NrZUA4vHjh2zydszE/BqUlJSCn3NntmfV2Z+XpGbm2uTT0xMNNJRUVEuH9jh7++vzp07GwfLrFmzpkBgcf369bp06ZKkvBmG1ntyOuPKqdiSHA6mSVJcXJyxR6MkxcfH65tvvlGHDh1caldpMJvNGj58uP773/9Kyvt+T5s2ze5/F9asg9TWp4MDAICCWAoNAADgouJmy50/f94t9ViXk56ebvOavYGkovYhLAlX9pV0VVEBHut9J51l/fV0Jih3NdYzEA8dOqT4+Hib162XQXfr1s3l+i5fvmyki/uZvJorwVbr5fKvv/66235+S9KkSZNsltyPGjVKbdq0caos6++/9axgAABQEDMWAQAAXFTc/m05OTk2+aZNm9q1xDo/630Cy5UrZ/Oa9Uyzorg6E89R+d+7s8GeypUru6M5hSrq4B1nNW7cWLGxsTp06JCkvENc/vGPf0iSTp8+bcwc9fX1VZcuXVyuz/o9OHtwy9/+9jd16dJFffr0kcViUWpqqiZNmlQiM33dZcGCBcbMUCkvSNu/f3+ny7Oe3ers1xEAgBsFgUUAAIASln9/v2effVbt2rVzqcz8gcmLFy+qfPnyxT6Xf6ZjUewNVhZ1sEr+9z5jxgynZtOVNOt25j/YxRXdunXTpEmTJElr1641Aotff/21zGazpLxTiyMiIlyuKygoyJjZmZmZ6fDzffr00SuvvCIvLy/16NHDOCV75cqV6tSpk+68806X2+huP/74oyZMmGDkb7nlFr322msulWk9SzEoKMilsgAAuN7xKzgAAIASVqVKFZvZZCdOnHC5zNq1a9vk7T299vjx40W+bt3O/AecXE1ubm6RS2WrVKlik3fHey8J1u1MTk62671L0uLFi/XDDz/o999/v+oznTt3lq+vr1HugQMHJOXtr3jFo48+6krTDdZ7TTqzN2BcXJzx/X/hhRcUGRlpvPbqq68a+0GWFQkJCRo+fLgxK7Zq1aqaNWuWy7NyrX+enZlZDADAjYTAIgAAQAkLDg5WgwYNjPy2bdvses5kMmns2LGaNm2aFi9ebBM8rF69uqpXr27kf/rpp2LLs1gs2rlzZ5H3WAdl7AkkFRZQu+KWW26xCVba+94PHz6ssWPH6t1339WqVauMk35LivUp0FdOoS5OYmKi4uLi9Pe//10dO3ZUQkJCgXsqVaqku+66y8ivX79eFy5cML4P4eHhatu2rRvegVSrVi0j/ccff7hUVoUKFTR27Fgjn5ycrLffftulMt3p3LlzGjRokLGHZ0BAgN59912bYKizrL92zhz+AgDAjYTAIgAAQCm4++67jfSGDRtsTiEuzOrVq7V8+XLNnj1bcXFxBQJXHTt2NNIrVqwodpnz5s2blZSUVOQ91rPeMjIyig1QrV27tsjXw8PDbYJ28+fPt2s24Icffqjly5frnXfe0dixYwuc4uxuN910k81y5KVLlxb7jPV7Dw8PV0xMzFXvs56R+H//93/atGmTMcuuS5cu8vPzc7bZNqKjo410/tO4nfHggw/aBD0XLFign3/+2eVyXWUymTR06FCb2bcTJ05UkyZN3FK+9deuXr16bikTAIDrFYFFAACAUvD4448bAaScnBwNHz68yEBgUlKSpkyZYuSrVaume+65x+aeJ554wijzzJkziouLKzQAd+bMGf3rX/8qtp2xsbE2MwytD8XI7+DBg5ozZ06xZT755JNG+vfff9frr79e5P6NGzZs0Jo1a4x8+/bt3bIHYVF8fX3Vq1cvI79y5Ur98MMPhd6fnJxs894fe+yxQg/6aNu2rcLDwyVJBw4c0Pz5843XrE+OdtVtt91mpA8dOmTs4eiKV1991di702Kx6OWXXy5yT83SEBcXp//85z9G/rnnnlOnTp3cUnZKSopSUlKMfPPmzd1SLgAA1ysCiwAAAKWgSpUqGj58uJHfu3evevTooS1bttgE2cxms9asWaPevXvr3LlzxvVRo0YV2DuuWrVqeuGFF4z82rVrNWjQoAKzIbdv365evXopOTm52HZGRETYBKg+/fRTffjhh8rOzjauZWZmauHCherVq5cyMzONPQQL0759e5sZm4sXL9bAgQML7AuZnp6u999/X8OGDTO+JuXLl9fIkSOLbbc79O/f31j6arFYNGTIEM2dO7fAQShbt25V3759jWW4kZGRevrppwst18/PTw899JCR37Vrl6S8U6MbNmzotva3aNHCCApnZmbq4MGDLpcZFRWloUOHGvmjR49q5syZLpfrrI8++kgrVqww8l27dtWwYcPcVv6ePXuMdFhYmBo1auS2sgEAuB5xKjQAAEApefrpp/X7779r2bJlkvIOn3jqqadUqVIl1a1bV9nZ2Tp27FiBw1CeeeYZPfjgg1cts3///jpy5Ihxgu+mTZv0ww8/qEGDBqpYsaKSkpKMgKK/v79CQ0OVmppaZDtHjhypJ554QmazWRaLRW+//bY++ugjRUdHy2Qy6ffffzf2X7zpppt0yy23aMGCBYWW5+XlpTfffFMDBgzQvn37jHZu2rRJtWrVUtWqVZWWlqbjx4/bBPH8/Pw0ZcoUm70DS1JwcLDeeecdDRgwQGfOnFFWVpYmTZqkGTNmKCYmRuXKldOxY8d08uRJ45nAwEBNnz692EM+Hn30Uc2bN8/mWrdu3dza/rCwMDVv3tyYzbdlyxY1btzY5XL79eunL7/8Uvv375ckffLJJ3rggQfcUrYjDh06pKlTpxp5X19f+fj4aOTIkcrMzFROTo5dszSLmmW7efNmI92uXbtCZ6ECAIA8BBYBAABK0YQJExQbG6uZM2caM97OnDmjM2fOFLg3ODhYL774ov72t78VWea4ceNUo0YNvfvuu8rMzJTFYlF8fLzNPWFhYZo8ebLmzJlTbGCxefPmmjp1ql555RWjjRcuXDBm2l1x9913a9KkSfrkk0+Kfd+hoaFasGCBJk6cqGXLlhkBoOPHj1/1pOratWtr4sSJpb4UNTY2VkuWLNGoUaOMA1YyMjK0e/fuAvfWqVNHU6ZMUdOmTYstt2HDhmrUqJFxKrS/v7/NLEZ36dq1qxFY/P777zVw4ECXy/Tx8dG4cePUo0cP5ebmymw2a+zYsVq+fHmxs1XdKS0tzWapf05Ojs3sRXewDiy6c5k6AADXKwKLAAAApeyJJ57Qww8/rFWrVunHH39UfHy8zp49q9zcXIWGhio2NlZ33nmnunbtqooVK9pV5jPPPKNOnTppyZIl+v7775WcnCyz2awaNWro/vvvV58+fVSpUiW79kSU8g6GadGihRYvXqyNGzfq2LFjysjIUGRkpJo2baqHH364wJ6PxQkICNC4ceP01FNPafXq1dq2bZuOHz+utLQ0+fr6KiIiQo0bN9b999+v9u3bF1j6XVpq1KihBQsWaPPmzVq3bp127typ1NRUZWVlqWLFimrcuLE6dOigTp06OdTG+++/3wgstmvXzuagHHd54IEHNHnyZF28eFG7du1ScnKyoqKiXC63adOmevzxx41ZlwcPHtSHH36oZ5991uWyy4qdO3cas3vr1q2rv/zlLx5uEQAAZZ+XpaidswEAAHBd6du3r3bs2CFJGjJkiM3+eShZTz/9tDEjbs6cOWrTpk2J1PPWW2/p448/liQNHz5cgwcPLpF6rjdxcXHGlgLjx49X9+7dPdwiAADKPjYNAQAAAEpYSkqKtm7dKkmqWbOmWrduXWJ19e/fX4GBgZKkRYsWKScnp8Tqul6kpaUZJ5FXq1ZNXbt29XCLAAC4NhBYBAAAAErYokWLjH0le/XqZZzeXBIiIyPVv39/SdLJkyf173//u8Tqul4sWbJEly9fliQ9//zzHluGDwDAtYbAIgAAAFCCNmzYoI8++khS3iE2PXv2LPE6n376aVWuXFmS9N5779l1WvKNKj093TiAqHHjxsxWBADAAQQWAQAAADf6+uuv1blzZ/Xr108dOnTQ4MGDlZ2dLUkaNWqUgoODS7wNwcHBevXVVyVJR44c0apVq0q8zmvV3Llzde7cOfn4+Oj111+XtzcfkQAAsBf/awIAAABuVKNGDcXHx2vbtm06evSocb1nz5567LHHSq0d9913nzH7bvr06UpPTy+1uq8VJ0+eNE5KHzhwoBo3buzhFgEAcG0hsAgAAAC4Ud26ddWsWTOVL19eQUFBatasmSZPnqxx48aVelv+9a9/KTo6WikpKZo5c2ap11/WTZw4URkZGWrRooWGDBni6eYAAHDN8bJYLBZPNwIAAAAAAADAtYUZiwAAAAAAAAAcRmARAAAAAAAAgMMILAIAAAAAAABwGIFFAAAAAAAAAA4jsAgAAAAAAADAYQQWAQAAAAAAADiMwCIAAAAAAAAAhxFYBAAAAAAAAOAwAosAAAAAAAAAHEZgEQAAAAAAAIDDCCwCAAAAAAAAcBiBRQAAAAAAAAAOI7AIAAAAAAAAwGH/D56lGL+hdWCPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime, limit_k=250)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAPkCAYAAAAOAWiuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAADtr0lEQVR4nOzdd5jU5NrH8d8WigjIAbGh2AWliQUUPRbsXbF3jxXrsQIWRLCAIr54bCgqIhYQRbErVhTEAkiRJtIF6b1snfePsLM7uzOzmZkkT5L5fq6Li8ls8uSeTJJJ7jwlJxKJRAQAAAAAAAAg6+WaDgAAAAAAAACAP5AsBAAAAAAAACCJZCEAAAAAAACArUgWAgAAAAAAAJBEshAAAAAAAADAViQLAQAAAAAAAEgiWQgAAAAAAABgK5KFAAAAAAAAACSRLAQAAAAAAACwFclCAAAAAAAAAJJIFgIAAAAAAADYimQhAAAAAAAAAElSvukAkJnx48fHTOfmkv8FAAAAAADIRqWlpTHTBx98cMplkCwMmco7BQAAAAAAAGAX1dAAAAAAAAAASKJmYeiEpRlyxRqSYflMAFLDeQAA5wEAnAcAcB5IjRMtTkkWBlxubm50R8jNzVXbtm0NR5S54uJiTZo0KTrdqlUr5eezqwLZhPMAAM4DADgPAOA8kLqJEyfG5InSQUoWAAAAAAAAgCSShQAAAAAAAAC2IlkIAAAAAAAAQBLJQgAAAAAAAABbkSwEAAAAAAAAIIlkIQAAAAAAAICtSBYCAAAAAAAAkESyEAAAAAAAAMBWJAsBAAAAAAAASCJZCAAAAAAAAGArkoUAAAAAAAAAJJEsBAAAAAAAALAVyUIAAAAAAAAAkkgWAgAAAAAAANiKZCEAAAAAAAAASSQLAQAAAAAAAGxFshAAAAAAAACAJJKFAAAAAAAAALYiWQgAAAAAAABAEslCAAAAAAAAAFuRLAQAAAAAAAAgiWQhAAAAAAAAgK1IFgIAAAAAAACQRLIQAAAAAAAAwFYkCwEAAAAAAABIIlkIAAAAAAAAYCuShQAAAAAAAAAkkSwEAAAAAAAAsBXJQgAAAAAAAACSSBYCAAAAAAAA2IpkIQAAAAAAAABJJAsBAAAAAAAAbEWyEAAAAAAAAIAkkoUAAAAAAAAAtvIsWfj000+rWbNm6tixo1erlCS9++67atasmZo1a5bW8pMnT1b37t118sknq23btjrwwAN10kkn6c4779T333+vSCTicMQAAAAAAACAGflerGTy5MkaOHCgF6uKsWjRIj3++ONpLVtUVKSHH35Yw4YNq/K3efPmad68efrkk0905JFHqnfv3tphhx0yDRcAACB7FBRIa9ZIDRpItWqZjgYAAABbuV6zcOHChbrppptUVFTk9qpirFq1Stdff73WrVuX8rKRSES33357TKKwVq1aat26tdq2bau6detG3//xxx915ZVXprUeAACArDRtmtS6tbTTTtb/06ebjggAAABbuZosnDVrli699FItX77czdVUsWTJEl155ZX666+/0lr+1Vdf1VdffRWdvuSSSzRmzBgNHz5cQ4cO1ZgxY3THHXcoP9+qmDlnzhzdd999jsQOAAAQer17S7NmWa9nzbKmAQAA4AuuJQtHjhypCy64QEuXLnVrFXH9+OOPOuecczSr7AI0RatWrdJzzz0Xnb744ovVo0cP1atXL/pe7dq11blzZ/Xq1Sv63qhRozRhwoT0AwcAAMgWb7wROz1kiJk4AAAAUIXjycKlS5eqa9eu6tKlizZv3ux08QmtW7dOffr00XXXXafVq1enXc67776rjRs3SpIaNGigLl26JJz33HPP1THHHBOdHjRoUNrrBQAAAAAAAExzNFn4wgsv6OSTT9YHH3wQfW+vvfZS586dnVxNFcOHD9cJJ5ygQYMGqbS0VJLUuHFj3X333SmX9dlnn0Vfn3LKKapTp07S+S+88MLo69GjR2vTpk0prxMAAAAAAADwA0eTha+88kpMsuz888/X8OHDtfvuuzu5mireeOMNrVmzJjp9/PHH6/3331fr1q1TKmfNmjWaXqGD7SOPPLLaZQ477DDl5eVJkrZs2aKxY8emtE4AAAAAAADAL1zps7Bly5YaMmSIHnnkkZiRg922xx576Nlnn9Vzzz2nxo0bp7z8zJkzFYlEotMtWrSodpk6deqoadOm0ekpU6akvF4AAAAAAADAD/KdLKxdu3bq1KmTjjvuOOXk5DhZdFIHHHCA/vOf/+j000+PjlCcjnnz5kVf16xZUzvvvLOt5XbddVfNnTtXkrRgwYK01w8AAAAAAACY5Giy8Pnnn3eyONt69+7tSDnLly+Pvk6lZmLFeSuWAQAAAAAAAASJo8nCoKvY72G9evVsL1exqfXatWudDCllxcXFRtfvhJKSkqTTAMKP8wAQbvEuQCtfw3AeAMB5AADnATNIFlZQWFgYfV27dm3by9WsWTNuGV4rLS3VpEmTjK3fLVOnTjUdAgDDOA8A4XJwnPequ4bhPACA8wAAzgPecGWAk6AqKiqKvs7Ntb9pKvaTGIaafQAAAAAAAMhOJAsryMvLi74uLS21vVzFBGGNGjUcjQkAAAAAAADwCs2QK6jY9LigoMD2chXnrVWrlqMxpSI3N1etWrUytn6nlJSUxFQtbtmyZUwiF0D4cR4Ask+bNm1ipjkPAOA8AIDzQOqmTJmSUgW4eEgWVtCgQYPo6w0bNthebuPGjXHLMKFik+iwyMvLC+XnAmAf5wEg/Ko7xjkPAOA8AIDzgDdohlzBjjvuGH29cuVK28stX748+nr77bd3NCYAAAAAAADAKyQLK9h9992jrzdt2qQVK1bYWm7hwoXR13vuuafjcQEAAAAAAABeIFlYwQEHHKCcnJzo9PTp06tdZuPGjVqwYEF0unnz5q7EBgAAAAAAALiNZGEFdevW1QEHHBCdHjt2bLXLjBs3LtpxZF5entq1a+dafAAAAAAAAICbSBZWctJJJ0Vff/jhh9q8eXPS+d9+++3o6w4dOqh+/fquxQYAAAAAAAC4iWRhJeeee6622WYbSdKKFSvUq1evhPMOHz5cP/zwQ3T6iiuucD0+AAAAAAAAwC2+TRZ27NhRzZo1U7NmzdSxY0fP1rv99tvr2muvjU6PGDFCd911V8zoyFu2bNGAAQPUo0eP6HtHHXWUjjrqKM/iBAAAAAAAAJyWbzoAP+rcubOmTJmi7777TpL08ccf64svvlCzZs1Us2ZN/fnnn1q/fn10/l133VWPP/64oWgBAAAAAAAAZ/i2ZqFJ+fn5euaZZ3TeeedFR0cuKirS1KlTNWHChJhEYdu2bfXWW2+pYcOGpsIFAAAAAAAAHEHNwgRq1qypRx99VBdeeKHef/99jRs3TkuXLlVhYaEaNmyo1q1b6/TTT9eJJ56o3FxyrgAAAAAAAAg+T5KFnTp1UqdOnVJa5ptvvsl4ve3bt9fMmTMzKqN169Zq3bp1xrEAAAAAAAAAfkeVOAAAAAAAAACSSBYCAAAAAAAA2IpkIQAAAAAAAABJJAsBAAAAAAAAbEWyEAAAAAAAAIAkkoUAAAAAAAAAtiJZCAAAAAAAAEASyUIAAAAAAAAAW5EsBAAAAAAAACCJZCEAAAAAAACArUgWAgAAAAAAAJBEshAAAAAAAADAViQLAQAAAAAAAEgiWQgAAAAAAABgK5KFAAAAAAAAACSRLAQAAAAAAACwFclCAAAAAEBwrV4trV9vOgoACA2ShQAAAACA4CktlW6+WWrYUGrUSHr2WdMRAUAokCwEAAAAAATPTz9Jzz9vvS4qku68U1qzxmhIABAGJAsBAAAAAMFz662x00VF0sCBZmIBgBAhWQgAAAA4afp06cMPpUWLTEcChNvKlVXf27TJ+zgAIGRIFgIAAABOeecdqU0b6ayzpFatpF9+MR0RAABASkgWAgAAAE65916rKaRk9Z32+ONGwwEAAEgVyUIAAADAKXPmxE6PGGEmDgDJ/fOP9N//SjfdVPW4BYAsl286AAAAAAAAPFNcLB16aHm/om++KS1cKNWvbzYuAPAJahYCAAAAAMIhEql+nuHDYwcgWrdOeu4592ICgIAhWQgAAAAACJ6cnPSW++67qu99+GFGoQBAmJAsBAAAAAAAACCJZCEAAAAAIIjsNDkGAKSMZCEAAAAAIBzSbZoMuKm0VHrySenss6WHH7YG2QF8jNGQAQAAAAAA3NKvn9Sli/V65Ehp0yapd2+zMQFJULMQAAAAABAONE2GH5UlCsv06WMmDsAmkoUAAAAAgOChyTEAuIJkIQAAgEmrV0tLllAbBgAAAL5AshAAAMCUl16SdtpJ2mUX6ZJLpMJC0xEBQPjxcAYAkiJZCAAAYMKmTdKdd5YnCIcOlUaNMhsTAGQrmjQDQBTJQgAAABNGjJA2box974orzMQCAAAAbEWyEAAAwISCgqrvrVnjeRgAAABARSQLAQAAAAAAAEgiWQgAAAAAAABgK5KFAAAAAAAAACSRLAQAAAAAAACwFclCAHDL339LEyZImzebjgQAAAAAAFtIFgKAG4YOlfbZRzr4YKldO2nRItMRAQiCSMR0BAAQbJxHASBjJAsBwGmRiPTAA9KWLdb01KnSa68ZDQmAD+XkmI4AAIKN8ygAuIJkIQA4bd066a+/Yt/r3t1MLAAAAAD8adMm6fHHpQcfpCUSfCXfdAAAAAAAAKSMJscIskhE6thR+vlna/q556RZs6RGjczGBYiahQDgPJrEAAAAmMF1GIJi3LjyRKEkrVolPfOMuXiACkgWAoDTuEgFAAAAkMx331V978UXPQ8DiIdkIQAAAAAgHGiaDAAZI1kIAE6jZiEAwAmLF0udOkkHHyw98YRUWmo6IsBfuOYCAFcwwAkAAADgR5dfLn3zjfV6wgRpt92kiy82GxMAAAg9ahYCAAAAfrN+fXmisMxll5mJBQDgPJrMw8dIFgKA02gSA5OefVaqX1/617+k114zHQ2AdG3ZUvU9miEDziBJA7/iPgI+QbIQAJzGjzxMmTNHuvVWq0bSmjXSNddIy5ebjgoAAP/j+g0AokgWAgAQFj16xE6Xlkp9+5qJBQAAAEAgkSwEACAsFi2q+t7Spd7HAQAAgORoDg8fI1kIAAAAAABgGs3h4RMkCwEAAPyCWgYAAAAwjGQhAACACdQeQDLsHwAAwBCShQAAAACcF4lIr78u3XijNGgQNWcBoDqcJ+ET+aYDAAAAABBCzz4r3Xab9XrAAGnVKumuu8zGhPAj2QIAGaNmIQA4jYtUAADKE4Vl7r7bTBwIL5rrI2zYp+ETJAsBAAAAAAAASCJZCAAAAAAIIlpzAIArSBYCABBm3EgBALIJzTgBIGMkCwEACAtukAAAAIKBB7rwMZKFAOA0fvgBAADM4DoMQcaDX/gEyUIAAAAAQPCQWAGkwkJp4UJp/XrTkSBESBYCAAAEQSQiDRggXXWV9Pzz1J7JVqWlpiPwt99/l/73P+nrr01HAgDuW7RIOvxwqWlTae+9pe+/Nx0RQoJkIQAAsKxcKX31lfTnn6YjQTxPPindeKM0eLB0883S44+bjggmfP656Qj866uvpHbtpP/+Vzr+eOnZZ01HBACJOfHQ74UXpAkTrNfLl0v33595mYBIFgIAAEn64w+pVSvphBOkli2lt982HREq69Ildvree83EAbOuucZ0BP7VpYtUVFQ+feut5mKBv1EzG36VatP6xx6LnR4zxrlYkNVIFgJAJgoKpG++kSZNqn7en35yPx5kt0xufp59VlqyxHpdWCg9+KAzMQF29e4tvfkmN/FlEt0w/vOPt3EEycSJpiNAkNH/IQBEkSwEgHStXi0ddph03HHSgQdKPXta7ye60T3qKG7y4D27Nz8DBsROz57tfCyIxY1prPvuky67TLrzTtORAABgBg/M4BMkCwEgXe++a3WkXqZXL2nDhsTzFxdXbSoAAIjVv79VuxUAgDDjoSF8jGQhAKTr+utjp0tLqx998dtv3YsHiIcn1AiitWtNRwAAgLu4RoOPkSwEACAseEINhAc3kQDgjDVrpL/+svoa9zuu5eATJAsBwEtcAAAAAADeGDVK2ntvaZ99pPbtpYULTUdk36hR0t13Sy+/zAMkeC7fdAAAkFVIFgIA7OD3AgAy98AD0qpV1utJk6QXX5QeecRsTHaMHCmdfXb59Jw59H0OT1GzEACcxpM/AMgM51EA6eL8gYp++SV2+tFHzcSRqptvjp3u3dtMHMha1CwEAC9RUwSwBgL65x/p5JOlRo1MRwMACKp0r6tIKPrH339Lw4ZJjRtLl14q5WZRfaZk++Hff3sXBxAHyUIA8BLJQmS7e+6RnnzSet2kifTTT9Juu5mNCQAAeG/BAqlt2/Jmwl98Ib3xhtmYTONeAT6RRWl7AABg1Pr15YlCyXpq/sIL5uKBf3GzBMCOdGsIco7xh6eeKk8UStKbb1otDwAYR7IQAIBsUFIi9esn3XCD9OGHZmKYPLnqe/TBAwBwEonA4Hj66arvTZzofRwAqqAZMgA4KRKhHxz4S9n+ePvt0rPPWq9fekkaMUI65xxjYQFJcR4l4QEAYcdvHXyMmoUA4CVu/uCmZPtXWaKwzA03uBsLAAAmkIBBkHGvAJ+gZiEApKq0VJo2Lf7fqvuB5wIAfrF8uekIAAAAUBHJbvgENQsBIBUbNkgnnii1apXe8hMmSC1aSAMHcjEAAACQCR7CIsji7b8LF3ofBxAHyUIASMVHH0lff51ZGdOmSddfL40b50xMQHXWrzcdgYWbulhsDyTDAyUAAGAIyUIASMUllzhX1q23OlcWIMVPLgwdKu28s/exAAAAIDEeCsHHSBYCgNPs/vCPH+9uHIAkFRdLGzeajgIIr8mTpZNOko4+Who1yrlyqXkKSJLyV61S3tq1zhZKkgYAkmKAEwAAACAdhYXSMcdIq1db0yedZDQcIFRKS5V7001qM3CgInl5+vumm6Snnoqdx8mkHwn67LVpk/VgtVEjKdeF+lQFBc6XCbiMmoUA4KQRI6RzzjEdBeBP3IghbN5+uzxRKFFbCXDSL78od+BASVJOSYmaPP+8tGKF4aAQOl99Je2+u7TDDtLxx0srVzpbfiQinXCCs2UCHiBZCABOev116bvvTEcB+BOJFITNjBmmIwDC67bbYiZzSkqU88ILsfPwEAqZuvPO8iT0t99Kr73mbPm//CL98EP8v3FdBB8jWQgAAAB/4QYKQJx+CnO2bDEQCEJr/XppypTY9+6+29l1fPyxs+UBHiFZCABAWFDDAgAAwJ7SUtMRAL5FshAAAADwG5L/CIJFi6xmnPfcIy1dajoahAHnPsAXGA0ZAAB4gxsAe0pKpC1bpNq1pbw809GYwb4C+N+mTVLbtuX9vb39tjR3rlSjhtm4EGx0QwH4AjULAQAA/OTAA6W6daVDDpH++st0NGYE5Wbxn39MRwCY8/LLsaMT//23NHSouXjKBOX8AbCvwsdIFgIAAPjJ1KnW/7//LvXubTQUVMPpUTOBIBk5sup7X37pbQzUQobfkRBEQJEsBAAA8KtXXjEdAUzhBhOoHscJgiybk91ff211Y9CypfT++6ajQRz0WQgAALyRzRfFsJoorlwpNW9uOhIAYcZvDeBv69dLp50mFRRY0506SQsXSrvuajYuxKBmIQAAANw1eLC0115SmzbSEUeYjgZAUM2YYToCAJl6/vnyRGGZXr3MxIKESBYCAABv0FwsVrbUfiktle67TyostKZ/+81sPEGRbP946inv4gBMiXMM5H74oTR2rIFgABeYuC5atkx68EHpoYekVau8X78kzZ5d9b0//vA+DiRFshAAAADumT1bWrzYdBSp+eADqWNH6dxzpXnzTEdTVa9e5clXIKwSJVIefDC95YBst2WL1U/gww9LPXtKhxwiFRebjgo+RbIQAICwCFtNtZISq6nK/fdbIwMjmIJ24z5hgnTOOdK330ojRkgnneS/z7B2LbWrwiISkX75RRo/3n/7WZn33pNatLC6EfjqK9PRWAMjlAnb7x7gpiFDYh/ezZ0rvfuuuXjgayQLAQAIC7/eaJZJ9abu2mulm2+WHntMat/eupkG3HbXXbHTs2ZJ48aZiSUZkiTBF4lI551nnd8OOUS66irTEVW1aJEV47Rp0uTJ0umnW4MTAGHg9+smp73zTtX3PvrI+zgQCCQLAQCAcyZPlp54wnpSnclF+Pr10muvlU8XFkoPPJBxeJKsGH//PftuEmDPd99VfW/BAs/DQBb47Ter9mqZ11+Xpk83F088PXvGThcUWDW+AWSO6xD4GMlCAADgjLFjpXbtpK5dpfPPr5rcW7TIfln//FP1vc8/zyw+yaqt2KaN1WfPxRdzoe5XfC/IBt26VX3voYc8DyOpqVOrvjdnjvdxOI1zjH9RaxrwBZKFAADAGfffb9U6KfPYY7E3ZHfc4X1MFc2YIb3ySvn0sGFW/3TZIhKRBgyQjjpKuvRSa0RE+FNxsdS/f/J5SHaEU7xmgkFXWiqNGWP1zej0futkeSSpACCKZCEAANnK6Zu2eM03S0vLX6dSs9ANjz5a9b177/U+DlNGjpRuvFH64QfprbesmpVe4AY8dbfeao14jHBLN2G/cKF05JFSjRrW/wsXOhuXk0pLrX4OjzzS6pvxP/8xHRFQzovfJz892PFTLPA9koUAAGSr6kYYDttFZcXEZbL3wuqaa2Knv/lGWr3aTCzV8VuC0ctjoawGKMJv8+b0luvVy6qpV1xs/f/II+nHEIlIgwZJJ58sXX+9tGZN+mVJ1oOIisaMkT77rHx68GBr0CCn+O1cAfjBTTdZx3XYruPgKZKFAABkq0xvCoMm3k1lNl1Ir1pV9b0NG7yPA86JRKTly6WNG01HgupMmCAdeqi0555Sv36ZPah4+eXY6ZdeSr+skSOlq6+WvvhCGjjQ6qIgE6WlVpllunSpOk+/fpmtA+GWTb/LbnnhBeu4fuqp2Pf9nFzne/cdkoUAACA7+PkiOczSuQHgpqF669dbzTt32EFq0kT66CPTESGRSEQ691xr9ON586S777a6bfDDfn7ttbHTn36a+UOE667LbPkynLOBzNx9t+kI4uPYDgSShQAAIHv54WYdSMfQoVZiR5LWrpVuu4392a9++slKElZ03XX+uGFeubLqe+k2jy6zfHlmyzuhoED6/HNr2wPwF36rAoFkIQAAYeGHG8/K/BSTn2LJJmx3d1TuG27ePOnPP9Mrq7SUmzc3xUvIzZnj7LFx9tmZJ/nCYv166fDDpVNOkTp0kP77X9MRwQlr1kiTJ/u3r91E+A20h+3kOyQLAQDmRSJSYaFUUmI6ElSUDcmDbPiMyWT757fL6wFO0pXqOXTLFmvgm7w8aaedpFGj0l83zBo5UurY0XQUzolEpJkz01v2vfekiRPLp//3P2npUmfighm//iodcIDUpo31/6+/mo7IPn5nEVAkCwEAZq1eLZ1xhlSrltXxO02Gwmf0aKlv39SWceMJM0+tgVgffCC9+qr1etkyq2ksN7bBNW6c6Qic8+239uaLd17/+++q733wQUbhwLC+faUlS6zX//wjPfGEM+WaPt+ZXj+QBMlCAIBZr74qffKJ9XrhQumOO8zGA2e9/bZ0zDHxR8T0A5MX6iQvYdrFF8dOz58fWyMLlo0braasp5wiPfccN/heuOEGe/PxXfjL559LTz8tTZnibLnDh8dOv/uus+UHxe+/W6Of//yz6UiQBfJNBwAAyHKVR2r7+WepqMhMLHDerbf6ZzTceMk5bjSBWJdcInXtKl11FQntMp07S2+8Yb3+/HNp222t7ZMNTJ0jZ882s15JWrRImj5datZMatrUXBxB07dv+YPBWrWkL76Qjj7abExh066ddY2cmysNGWKdrwGXULMQAAC4x08dkZMsrMqLzx+GhJOXn8H0PjlzpnT11dKAAWbj8JOyRGGZ//zHTBxesbu/25nP9P6cqtGjpZYtpRNPtP7/6ivTEQVHxRYEBQXSvfeaiyWsyh6ml5ZKt99uNBSEH8lCAEBqioqk/v2ti8A//jAdDdwUtJs8INs5eczedJO0YYNz5aGqICTSk8UYxt+I3r2ltWut1+vXS48+ajaeIEu3D+ogHBdOyeQYWr7c2/Uh65AsBACk5pJLrH4F+/SRDjmEhGGQZdMFOVJTUmLdJO+1l9ShQ2bHeRhuTsLwGdLRpo00Y4bZGCIR6ZdfrMRDtn4PQRa035nPP4+d/u47I2EgRDhvIaBIFgIA7Fu6NLZT6S1bpJ49zcWDWFyQJkczZPs+/lh64AFp7lwrSVN5IAy38b34w5w50rPPmo3h8sul9u2tpPU55wRz30gUs18/S8W4/BpjGSebTKOq5culL7+U/vzTdCRwgp+PA7+fa7IQyUIAgH3xOhyvPEIdgiPbLsxIFlaV6Mbhiitip6dM4WYxWz33nLl1T5smvflm+fTIkYwCGhTPP2/1q4bgmjxZatVKOukkq//GYcNMR4Sw8HPSElEkCwEACAsuvpJj+1SVKFm6bp299+xIZ7tn83eV7Qnsinr3rvre/fd7H0emgrw/pxv7zTdbtZMRXP37Wy1KJKmwUOre3Wg4rvDi2Azy8Y+sRrIQAOA/3Cz7g8nvgYtrAGEX9vNcvGQvgmPQoNhpapcHn1+ur/0SB5IiWQgAALJX0C9Yd9hB6tXLGpDED37+2erfqrDQdCTOCvp+Avf8/bd0yinSnntaI0hv2mR/Wb8mCyvG5fd9P934/P65shnfjbf8ch7ySxyIIlkIAACyQxj7LFy+XOrRQ/rmG/fXVd2F/J13SocdZvVv1aGDtGFD+usK+veC7HHrrdYIuvPmSS+8YPXVZ1c27OdB+owkK+AGvx8Dfo8PxpAsBAAA2SHMN4JXX53eck7dJCxfLv3f/5VPjx8vvf++M2VnG27ckvPb9qm8n99zj5k4ypSUWANRvPqqtH595uW5cd50sswwn9fhPr+dT9zG8YIUkCwEAADxZcNFdFg+46JFzpU1bVrqy4wYUfW9a6+1/ufmBOkK+77jxufr1Em66CLpmmukgw7KrIZvmDz9tLRwoekogFhhuQZBKJEsBADY59WNW9hvEGFGGJshO624WDr2WNNRAOHi5Xnmww/LX8+eLb3xRmblJYs93d9qE+fdadOkNm2kv/7yft3IzNy5piMAshLJQgAAYFa8wTncuJn0WxLa6Xjq1ZOeeCKzbff++9KyZc7FJIUjIRuUzxCUOOGdhx92r2w7+5ufzrurV0t9+5qOAql69VXTEYQHvxFIAclCAACylV9u4m6+2XQEzlixwqoBUVpqZv0bNkhdu0pTp6ZfxqxZzsWDWKWl3Kg5IUzb0C/n4GSCEGMqXnzRdASoTtj2uTCds9zEdvIdkoUAECbffSc99pj0xRemI8kMFwzZ5cUXreavFXl1s+DUvjZ4sLTbbtJee0mnnOLMwALpuusu+/NyrNmT6f545ZVSXp60887S118nn5fvJHwS7T981/4yerTpCAB3xTsXmXjAGbaEcEiRLAQAk5zseHzoUKljR+n++6WTT5YGDnSubASD0xdfXt7IFhW5vw63+iwsKrISdFu2WNNffil98EHm5aZr/nx3yk13/+KmQHr9dev/pUulG25w79jKhm2dDZ/RT/ye0GR/QJD54fgaOtQfccB3SBYCgElDhjhX1k03xf7YX3+9c2UDYeBWsnDsWGnlytj3rrgi83K9wI229/76S5oxw3QUQPr8dN4gyWFGYaE0Zow0fbrpSPzPL8fLO+9IX30V/29jx3obCwKBZCEAmNSnj3NlrV7tXFmJ+OWCB/CTyk2okTm/JQCcjqew0NnyEExB/U1N5Xjw27GMzK1ZIx15pPWvRQupd29318c+lLkVK6RLLkn898ce8y4Wie80IEgWAgDs48c9XPz0ffopllT5LXZu5INpxgzp7belp55Kv4xs+D6z4TM6KZ2E5KOPlo9S70ZCM6hJUljef1/69VfrdSRi7S+bNnkfx7HHSjNner/eIHryyfJj2q84L/hOvukAAAAAPOFWM+QwSXaxng0X8suWmVnvF19IZ59d3u9lUJWWSu++K61aJZ13XublZcM+50f9+1uJmDPP5ByJqq6+OnZ648bEzVvd9N130rnnSlOnJp7HD/tvshi8Ose51ZcxQo2ahQAAID4vL7K9uGB2K1mYrIy1a6W//zYz2mA6kn2WdP+WzndrIkk0bZrUunXivxcWSg89JF1wgfTyy5ntO5U/X/fuwU8UStaozxdeKN14Y/JtmW38kLBI1eWXJ/4bSVxUZmqf+OMP69wdVEE8NyBrkCwEAPgPF0/pYbsl53XNwg8+kJo2lXbdVTrhBG/6FfWjoOyX/ftboxUncuedUs+e0vDh0nXXSYMGObfusiZ9mRowwNz2/vtv6Y03yqeXLDETR5B4kWBJd39Yt076/vv4fbJmuo85uY+SuAy/6r7jCy6w9lcnjR5ddeAyIMuQLAQAk7jIBcLrjjvKb2C++cbqj84LbiWLvGyibCLhNXBg8r8/91zs9DXXpL8utz7fs89K/fq5U3Z1fvzRm/UEJfnsF6tXS7//bjUNT9Uxx0jjxyf+u53jnuscJJLoNzHVY/yPP6Qbbsg8noqOPlpq1UqaNMnZcv3q00+r/w1E1iFZCADwH24uvOGn7Vz55iAMnerPmxc7ffPN3q7fDhIv9gRpO91zj+kI4CebN0tt20r77y+NG+ds2UE6LuAvc+cmH523Ijv72dChmcUTz5Il0jPPpL7c339LV10lderk3UMUJ3TubK7fXin2e16yxNqOMIpkIQDAPj8ll+AvK1Y4W55XN6Fu91kIxBPGc6lXx0EQt50fYl62THriCWfK8sPngb+kuk907+5OHE575ZXU5o9ErBq5gwdbo0YffbQ0e3by+f2itFTq29ebdSXbX+67T9plF6sLl1tu8dc2yjIkCwEACAtTTUEXLw7GYAbZcoPrt8/pt3gAt336qXXT/csvyefz+th4/31nyknl5t3tG/10yw9SAuKvv6RZs0xHkbkhQ6QddpC23156803T0bjj229jk4NlI8QHhcmahZI1anPv3uXTzz2XfLRruCrfqxU9/fTTev7559WkSRN98803rqxjyZIlGjp0qH788UfNnz9fW7ZsUePGjbXXXnvp1FNP1amnnqptttnGVlmvvPKKnkjx6VteXp6mBXk0JgAA0vHcc5kPZkBCyR+87JfQS3//bfXd1ry5lO/Z5W92CVLyxW2nnWb9n58vffRR4vmydZsF+VzitdtuK28Ke9VV0quvmt1+996b3nLLllnxl5ZWP2+Q94/p001HEGwVE4VlunWTRo70PhZ4U7Nw8uTJGuhyh5lDhw7VKaecogEDBmjq1Klav369ioqKtHjxYv3444+67777dPbZZ2uSzU5KSfoBAGDTY49lXkY23jS7dUOUybYM4/fw8svSnntandUffXR6o1IH+eY1bIK0jxYXS3fdZTqKcAvzsTl7dmyfea+9Zg1WY1KfPukt98QT9hKFcEdQjpN4/RRu2uR9HJDkQc3ChQsX6qabblJRUZFr63jttdfUu0IWOicnR/vuu68aNGigefPmadnW6rTz5s3TlVdeqTfffFMtWrRIWuaMGTOir1u3bq369etXG0deXl6anwAAALjOrSRDkJIX2aa42KoJU3YdOnas1STsuuvK51mwoPqEDt9x9dzYRkG5wU0mjBUQwvC9BEG8/uO6dpW+/NL7WDLFYBXuKCkxHYGzPv7YzHrHj5eGDZOaNLEGo6MFgiSXk4WzZs3Stddeq+XLl7u2jt9//z2mufChhx6qxx57TE2bNpUkRSIRjRo1Sg8++KBWr16tzZs366abbtLnn3+esElyQUGB5s6dG53u37+/mjRp4tpnAABUwo05vMJNb7iNH1918J3rry9PFkYi0skn03QM7grbb5qTn+eff6yR4/fdV2rUyP5yX3whnXSSc3H4UXFx1feoZZUar4+9VH9LEsW3ZYu95e0mtfx2DvJTPL/+Kh1xRPlDxfHjpddfNxuTT7jWDHnkyJG64IILtHTpUrdWIUnq3bu3SrZm1Fu0aKGXX345miiUrFqGJ554ol577TVtu+22kqR//vlHgwcPTljmzJkzo2XWr1+fRCEAlCGxkr733rP6Hho0yF8XSckEJU7Tsm07vfuu9OCD0tdfm46ketU1e/vtNxKFgCnffivtv790+OFSixbWTbpd110X/nNvjRpV33OxtV7gFRRIAwZI/fun192EE154wZlyglh7NFM//WRmvRVbH0jWQDzr15uJxWccTxYuXbpUXbt2VZcuXbR582ani48xadIk/V6h34bu3burdu3acedt3ry5br755uj04MGDownByio2QW7WrJkzwQIAstegQdJ551l9D119dfp9/jgt7Dda2crN7/XJJ6Xzz5ceflg6/vjyUR6Dui8tWGA6AvfNnCmdfrp01FHJB9sIiqDua/Fk6wO4su+wTx9pzRrr9dKlVpLHroULrVqJYRav1li82oawHHusdOON0h13SG3bShs3eh+DU/0yXn65M+WEgdvnyXgPPk2PCu0TjiYLX3jhBZ188sn64IMPou/ttdde6ty5s5Orifr000+jr/fee2+1bds26fznnXee8reedFetWqVffvkl7nzTKzxhbt68uQORAkACQbtRCNNNmpeuvjp2+r77zMQRJEE7NoKq8jFd3WjI99wT+16FB7GOCvu5xu39+5hjpMmTrRvX446TPvlE+uEH6cwzqUmJzJXtv3b242TzVK499cYbqcXxzTepzR80QapZ6MY5bflyae1a+/NXrJk2f750993SZ585H5eTEm23wkJv4yjDtRcqcDRZ+Morr2hThX4Uzj//fA0fPly77767k6uJ+qnCCeGII46odv7ttttOLVu2jE5/++23ceermCykZiEAAD5SVCRt2BD79L64WHrpJal372DVFLObEFu1SurRw91Y0lX29D2oNxh24w5a8vL7763+3D75pOrAAl27urNOr7ZRUPe1eML0WUwYNSrc2zBIyUInFRVJV14p7bCDtOOO0sCB6ZUzYIBVqzqZoJ3bAQ+5MsBJy5Yt1bVrV7Vr186N4iVJRUVFmjNnTnS6utGNyzRr1izadHnKlClV/h6JRDRz5szoNDULAbhq3TrTESBMUr1pqm5+P15EN2smzZ1rdUb9zjvSLrtIF14ojRhh/f2JJ6RJk6QK/RdHBXU05EMOsT6zXWG+eYZ9//wj/e9/Vd9P8LAcKfrkE6lVK3vzJjom/XiOtaMsbjvxu/0Zg7oN7QjTuTyVz/L11+UDTBQUhLtJaJj3XwSeo8nCdu3aqVOnTjruuOOU4/LJbdGiRSqq8GTFbu3FXXfdNfp6QZzaB/Pnz4/WjszLy9M+++yj0aNH66OPPtLEiRO1bNky1ahRQzvuuKPat2+vc845R61bt87w0wDIWqtWmY4A8IdDDpFee02q7kFjWdJszBirD8jOncsThZLV/9VTT9nv+8rkzZjddaeSKJQyu/lw48YlTDe8QbNwoXfryrab3tNPl+rXNx1FMHFO8FZpqbR4sVS3rtSggeloqvf006YjCB+/HXN+iwdxOZosfP75550sLqnly5fHTDdu3NjWchXnW7lypUpLS5WbW94au2IT5Dp16ujyyy+vUgOxoKBAGzZs0F9//aW33npLZ5xxhnr16qU6deqk81EAAJVlw03npk0Svxvlpk+Xzj5bWrRIys21tw/06WMlGSt7+mn7yUIn9rUg769Bjt0J3LAEj5/22UxbB6Sz/z3+eGbrdIJfjhu/xOGlVPf/tWutQalGjbKShWUDrjktqN9FUOOGu9gvJLnUDNkLayt1dlrf5pO9evXqRV9HIhGtW7dODSo8Yak4EvL69eujicJ//etfatq0qWrUqKEFCxZoWYXq0B999JFmz56tIUOGxJRvQnEIRsiqPEp1olGrARPcOGk6ddzGi83xc0JJiePriVde2M4D8T5jZJ99VPL221ZzWofkRiIpdUZcUlKiyNbvLuH3auO7dey4WLJEJZ9+qsjJJ0vFxbbKLSkpUV6c9+Ptk/G2TyQSUUmGx0lOghjiqRhXKsulIiLF/Ux2vuOc0tKEMZXMnp1wW8f7LNE4bH6XMWUWFaV+Hli7VjlDhkg1aypy5ZVSrVoJ1132Pdj9DhLtZ+mqvN3duiCPRCKqfMtTcf+wu14753i72zKV34tUj1m3fgcz/X5KiovjbpvIjBlVvh8pSczTpyu/W7eMYqlcdjqfrbS0VKXFxbZ+c+Ltg2XLJ/u+7MRVWlKiHCnuNkymuLhYuaWltn8vTd1fxYsx0fk9kZy33lLeqFHWxIYNitxxh0rOPNN6KFeNVPaN6n6LU9neXoh+pzZ+n1L5/lM9nkoTbJeIUt+vEym2eaxK1jkp02siO1LZH0ojEVfvCzK5/g27wCYLCwoKYqZr165ta7kalTqKrVzO9EojxO2xxx7q1q2bjjrqKOXllZ8CJ0yYoD59+mjSpEnR5e68804NTLcDVgeUlpZG4wmTqVOnmg4BiDrYhTKdOm7jxeb0OWHb2bMVryfXTNYTL+4//vjDutHfKujngXifMWfJEm2+6y7NevFFx9az77p1SqVR3OzZs7Vh6wOzeDFOnjJFERu/r04eFwvGj9eqnXdWrYUL1bL62TVv3jztHef9ePvkbitWaIdK723evFnTMzxO6s+Zo31tzlsxroYLFmjPjNYcX0FBgf6I85nifU8zZsxQwcaN0emdlixRkwTl5p17btz3J02apO0XLVLlDmEikYgmTZqkmosWyWbPblHTpk1T0cqVMe8lOw/kbNmiFhdeqFpbB/PY8OKLmvnKK9Wes7abP1/72Ign8t//2g3dlpmzZmlLhUF63PhtkaSCLVtU+QiueL1od712zvEN58+3tT+n8nux++rV2r7Sexs2btSsBGW49TuY6fczd+7cuPtZTsWBmipIFPPed96pBhnGUrnsdD7byhUrtGDSJO27YUO1vzkbN21S3crLr1ypBZMmJf2+7MS1avVq1S0oqLKPV2fSpElx961EVlx7rTa2aKE1HTumuKbMNFm2TDtVem9LQYGmpbBPH3zTTTHTOYsWaeb772vLPtWf+VLZN3LPOivu+2Xf556rV6thCuW5rSyuvPXrdaDNee1I9XhatnRple9YkiKlpY4lCydNmmR7++f8/LMm/f676zXrmq5aJXvtQqUNGzboz0q//07eF8T7zqZPn67C9esdW0dQ+SnBn5LKGf5cG09HJCk/PzY/WjkrPW/evOjrtm3basSIETr22GNjEoWSdNBBB+mNN97QkUceGX1v9OjR+vrrr23FAQBAvfHjja6/WefOqvvbbwn/npOguVONf/7Rrv/3f2ryzDPKW7PGpehc4Kfmiy5K9L3ZWziYTW8affZZNFEoSXUnT1bdiROrXc7utspnMCr4QI0VK0yH4C8ena92GjxYe3fposbDh3uyPrclSlJnVGaW/L5mgzoVWloiuwW2ZmHl5GCpzZNe5SRj5ZqGX3zxhZYtW6ZFixZpzz331LbbbpuwrJo1a6pv3746/vjjtXHrU/nXX39dxx13nK1YAAAwba9u3TT5889tz5+7caMOuPRS5W/tDuRfX33laDw5paVqPGyYthszxtFyE4kENDnmlLB8/sbvvFPlvQbffqvVJ5xgIJrwyd20SY3ffVc5RUVa0amTiv/1r6ozeZUsCGBSIi9sNVQCft5oPGyYtv/445SXa/r441p+/vkuRGRfYJNyAd9n3FL/p59Mh1BFvt8GX2TfMSawycJtttkmZrqgoEA1a9asdrnCwsKY6VoVmrlJUk5OjnbccUftuOOOtuJo2LChTj/9dA0bNkySNH78eG3evLlKfF7Izc1Vq1apNvTxn5KSkpiqxS1btqxSsxMIkzZt2gSn7M2bPVlPixYtNHX27Oh0mM8DTm673DT6za2xZo0OrFAjq6JWrVpJlR6a5Tz1lPIq9BtcK8Gy6dr9ueeUU6n5aTJ77LFH3Pfjbdfc7as2OquzzTYZfwc5KWyDiuvK+eOPjNabSM1atWx/pv2bNZMqNEfL2XnnlNfXpk0b5YwbV+X9nJwcK4409ssD9t9fJbvsYvt6IC9Oc/nGjRurUYKmdmXbJ6dCixIvNdtvP8mDa7ZacbZLbm5uyvv8gTffrJyt/XjvMnKkSqZNq3pumDzZVlmprDs3TlKy7rbbplSGm7+xdu350EMpzZ8o5jwH7i+c2B6NGjXSv9q0UW7dyg2Mq9o2zkBejRo21L8SxJFKfA0bNlSOza6oKmrat2/Ky5TxbH/a2s9cZbVq1844hv3220/y6HOUxRrvWDYpug1ttI5w8zuv8+efcd/Psdlq0o42bdooN4VRsPd56CGVfPWV1Lq1YzFUlsr+ULduXbVs2dLT/MD+Bxwg7elGRzHemTJliu0KdYkENlm43XbbxUxv2LDB1uAiGzZsiL7Oz893ZECSgw46KJosLCoq0uLFi7X33vF6UHJf5WbWYZCXlxfKzwWUcXP/drzsBOU5vZ7KFwBhPg84+rnSfPqaV2nQsDL5+flVv/P33ktrHXalkiiUqu4rZeJu1zgX3zk5OZl/BylcsMasy6V9OqfyeqqLp+K8aexD+fn5cbdBdNum8TnjlZn0PBAn7tzcXOVWd8769deUY3NCutslVfFqIaWyf0SX2ZoolKScxYuV//rr0q23xs5k8zhIad3xjtnc3PIyIhFp2DBp9mzp5JMzX59PpLKfO1Z2CnJzcqxjy0Y8Oekem3bicDChYpcn+9M//0idOklxap2lc/xW5tX5J7ouyXe1w6Jx2dgOJs4hTm6tfJvHanTdq1crv0MHaeFCqXE1PQuuXCm99Zb1UPCyy+zvVykcu7k5Oc7fF3zxhfTLL1L79nH/7OUx4meB3QKVa/6tWLFCO9t4Gr58+fLo64YNG8b9AUvV9pVqKlQeqRkAQsPUxd4//0j9+kklJdLdd0tNm5qJA/4T1CZZ2SAI383jj5tZr1fn0njfgRPrfu21qslCE7p3lx591Hrds6fZWIJizhzpxhulxYulK6/MrCw7+9LPP6e3nF1BOM+kauDAuIlCSeH8vKhqyxZny0v1mCsokPr2lZ54IvE8q1ZZNVTLWle8+66URvN+z736qnTNNaajCITADnCyyy67xPQ3uHDhQlvLLVq0KPo6UdOlVFUeUTlZP4cAABsqXgwXFyvvsMOk/v2lZ56R2raVKozeigqcTkAE+aZk/HipQwepZUtp8GB3P0uQt5NTfFZrJBA2bnT+htArTu7zhYVWDY+//kp92bJEoSRV6pccCVx4ofTll9LUqdI996RXRqbH+4svWjWSMhXWc++DD7pbfli3G5z12WfJ//7SS+WJQkn65BNp+nR3Y3LCDTdUPw/HiKQAJwtr1Khh9bew1XSbO2bF+fbff/+Yv/3yyy967LHHdNddd+n666+33ca7YqIyJydHO+0UbwB0AEA6Gn7xRWyfcKtWWTcacN/mzdKUKdLSpaYjSSzRTetpp1k1M/74Q7rqKun337n4s8ONpB+JxKpuvVWqW1dq2NCq5RAG6RxfK1daSf327aVmzaRnn3VnPSj322/OlZXJd3HJJc7EwPkFmeB8klh126biw5oydge9M3nc8mDJtsAmCyWpfYU25mPHjq12/jVr1mjatGnR6cMOOyzm74sWLdLgwYP18ccf6/vvv4/pRDOZH374Ifp63333rdKfIgCEhoGLqvq//FL1zY8+yqzQ5culLl2k22+XDA1wEAg77GB1cL3TTtLIkdZ7Qbkxq5zgvOOO+PM58XmCfLPh19j9GpdTvvvO+n/zZumWW4yGkpaJE63+qbp3z6x25DvvWLWAJaubiR49pKKi8r8H5XyTbZw4Pr/8MvMy2D8AuIFzi6SAJwtPPPHE6OupU6dWm9x75513VLw1k7zddtupQ4cOMX8/9NBDY/owHD58eLUxTJ06VWPGjIlOn3HGGbZiBwAkMXGi6v/4o/LWr3e+7JISqxZL377S009bzZrXrXN+PSbY7JIjLWef7V7ZXojXbxbcVVhoOoJgSDDKvO+9+ab0yCPStdda06kkkDZtku68U7rpptj3V61ytuYbgueCC6T58+3Nyw19cPBdBU86DwWGDbP6O0QoBDpZ2LZtW7Vo0SI6fe+998aMdlzR9OnT9cILL0SnL7jgAtWuXTtmnt122y2mtuF7772ncePGJVz/8uXLdddddymy9UBq2LChLrroorQ+CwCgXP7RR2vf22/X/pdcoppLljhb+AcfSHPnlk+vWSM9/7yz6zBlxgzTEWSXt96SzjhDuvlm05HECnutvHiy8TPb4cV2efPN1Jt13Xqr9H//5048cJ+biZ/hw6UKFULgAhOJO87R2WHMGOmII5xt6kui2RjfJgs7duyoZs2aqVmzZurYsWPC+bp27RqtDThr1ixdfvnlmlHhZikSiejLL7/UVVddpU2bNkmSGjdurBsSdGzZrVu36DDcJSUl6ty5s958800VVng6Xlpaqq+//loXXnih5lVovtazZ0/Vr18/7c8MAIhVa8kS1ZswwdlCv/mm6nvvvefsOoLG7oXYOeeEr4Zeujcwn3wiXXqpNfKfmzU6Aae5cdNeUpJauZn000jSIfxmzTIdAYB0jR9vXSMh8PJNB5Cp9u3b64477tBTTz0lSZo2bZrOOuss7bPPPmrYsKHmz5+vpRX6Lapdu7b69++vevXqxS2vefPm6t27t7p27arS0lJt3rxZvXr1Ur9+/dSsWTPl5uZq7ty5WllpBK8HH3wwplk0AIQST/fCye7N9wcfuBpGoNgZTS8IwpJ44dwUn1fbJSz7EeB3ThxrHK/ZJ53fgkz2kyeflM46K/3l4QuBTxZK0g033KBtt91W/fr1i9YenD17dpX5dtppJz355JM65JBDkpZ35plnavvtt1e3bt2iicaNGzdqQpzaLTvuuKO6d++uE044wYFPAiArPf+8dPDBVj96AFKT6U1PusmUiiN0w3lO3cySRAye6r6zbP5Os/mzA/CXMCedOddKCkmyUJIuu+wyHX/88XrnnXf0/fffa9GiRdqwYYPq1q2r/fbbT8cff7zOPfdc1a1b11Z5HTp00FdffaWPP/5Y3377raZOnapVq1YpJydHjRo10r777qvjjz9ep5xyirbddluXPx2AULv5Zik3V3r7batjbwDIRCoX8E5dEJu+aUi0/kTvb95s9VcadvE+f7bdBF1xhdSypXTXXVJenuloAPhJtpwPvf6NNn1NEE8kIr37rukoAsWTZGGnTp3UqVOnlJb5Jl6fUtXYaaeddNttt+m2225Ledl4atasmVbsAJCy0lLpjjtIFtpVWmo6gnAJ8sWyU7HPnSt99pm0++7Saac5U2Y2WbTIdARVJds3DjhAqtDvNDLkxxvDMkOGWP8vW2Y1jQsyP29nIJkgX2fAeSbOZTfcIA0c6P16A8y3A5wAQNZZvNh0BMExerTpCMIlW25Ax46N//6UKdKBB1q1fE8/Xbr/fk/DcpyJm7JHH/V+ndVJtl9nS6LQy2Pbq6bjZetJdX39+qUXDxIjAeQ9J46zBQukI4+U8vOt/xmkC/FUt68lO/4TLbt2rVWz32urVpEoTAPJQgAAEH5btkgTJ8b/26OPSuvWlU8/9phUVORNXKZ5kUzyIqFA0sIsJ/ejimXxvSIZ9o/0PPywNGaMNYr5mDHSI4+YjghhV1BgdQnRoIG0447SO++4s57PPpP695cmT459/48/3FlfyJEsBADYx4U5wmjYsKrvZUN/dn6WavIpW2rHpsrLczbfARAMv/0WO/3SS2bigL85eU7/9NPyLiHWr499QJtiTPV+/VU5H3wgbR3YNqpvX+nUU61unQ49VPr++/Tj5X5HEslCAAi3wkLTESAIsvmiyORnd2vdJG0sOTnZvW9L8feF9eudX4+T29luWdm4n/ttf87G7wDhwj6c2OzZUq9e0oABUnFx1b+nsu0uvjj9OCqc95r26aP9brxReeefLx1ySOyD3S5dyl8XFkr33pv+OiGJZCEAhNthh9EXjR1btpiOwKwgXyx7HXtRkbR6tbfrRPqCvG+7KZMaF/FEIt5ta75TVOS3BKofjB5t9b1bVpPLpDPPlG67zZ2HFLAvneOkpETq0UO68UbpkksyW39BQWbLS8pfsUKN33uv/I3p06W33068wE8/pb8yfmckkSwEgHCbOFF6/nnTUbgvEpFefVW66CLrKWiy/ubiXTBNnepebAiPWbOktm2lhg1NR+IcJy6I/To403PPMXJ6IrfdZjoC/1u/XrrmGqlNG9ORIBEShVV9+ql0zDFW37tXXGE6Gumjj6RnnrH+D5uNG63ad9mQCB0+XPrnH6MhbPfjj1XfvOUW6/8+fZIvTPIvLSQLASDsqvsBDYPXXrNu6oYNs56C3nln6mVky4AW8XDDZc9jj9FJdjwDBpiOIP4+XFgoPfCA97H4SaKuKCp3/p4pL2/EvDpf3X+/9RDK6W0FuOm//yUx4oWpU6VWraR995X2379qP5B+4tT+MH269+u0o6DAOl/DcSQLAQD2+fUC9OqrY6effTbxvIk+Q7z+WOB/XiY6Bw/2bl2Z8Po4ffhh58t0aoCT777LOJRAW7TIdARVVVfb0y99Fj7zjLvlp8Ovv8EmzZxpOgJvVbcPzJ7tTRzZrm9fae5c6/Xff1sPE/3qjDOsJsVhNXWq860IHGg2HQYkCwEAACqjtiXgjpEjTUeAsFi+3HQE4XHaadLuu1utNDZsMB2N/73+euz0+++bicOOTz6RxoxxvtwwXycNGmQ6Al8gWQgAsC/MFwYAgPSkMsBJz56Zrytb8Rsci8Szcz79VFqwwGp6/3//ZzoaOM2JWuaVB0xMdi4uG1xk+XLp9NMzX7fXHn/cdAS+QLIQQLAVFkpvvim98QZVxpGZbL4BRVVB3h8ySSiQjIDbJk2yP2+y/THIx2g6Fi6Ufv3VdBSxOF94z4v9/sEH3V8HgufKK1M7fy9aZPWb/skn7sUUiXAechHJQgDBVVpqjfh22WXS5ZdLRxwR7j45/K6kRHriCemss6w+zOgDEDAjk5tJN25E3b6QX7VKmjLF3XWgetmWvPPS6NFS06amowCQ7Xr3tj9vnz7SU0+5F4sdd90l3Xhj9vVt6hCShQCC69tvy6u5S9L48e4+vUJyfftKXbtKH35oPZXu0cN0RKlxOqERiVhNeXbe2dlyEYsERWZWry5/PWKEf0YUTOV7vfhi9+IATOjfX9pzT+ngg6VffpGOPtp0RPALalHBpGHD7M+7caMz60y2z1d3PDz1lDRggHT99c7EkmVIFgIIrpdfrvrec895Hwcs994bO+3nkeG88Msv0p13Sv/8k3y+qVOlNWs8CQlZqKhI2rQpcfLt8MOtWsEDB0rnnuttbE5YvVr68kvTUcDJpH11N39l63LzQcG777pXth133CHNmydNmCC1b282FiDMSL4CCZEsBADADbfcYm++Vq2kAw6Qfvst9XVs3iy9/bb0wQdWs3ykLtGNQhhuIEaNkpo0kbbdVjrvvMTzffSRu0/d3UzqrFvnXtlITVhq+fbpI51/vukogiEs33mQsM0RFOyrgZdvOgAAQICEIYGS6DM4fVEzdar9eZcssfp7fOcd+8ts3iwdeqj0xx/W9NlnpxReaPTpYzoC/ykbmfbmm62RCCWriXEiX3zhTVwIr2HDpD//9GZdZefwGTPcKb9yLXkA4UVCK9j4/lxFshAAAKctWiRt2ZLaMsOHx3+/pMTq+/CPP6QTTpAuucR6f8SI8kShZNUuzEbjx5uOwJ969/YueVOddB4ybL0ByNmyRbv166eGn32m3KZNrZHvDz3U4QCRseuuc66snByra4Zkzed/+EHq2NG5dQLITitXmo4gvJyuYBDmliA+RbIQAADJ2YuNu+5yrqyuXaV+/azXr71mjTJ9xRXODiDDhZYZbm33BQv8M1BJhhqOGqXG779vTcyaZTWXnjixfIYbbjATGNzz5pvSSy9ZycJ4IhGpe3frXJiJ4mLp0Ueljz+W9ttP+t//pEaNMisTcBs1qZx10UWmIwgvp/dV9n3P0WchgHAJ8w/J7NlWk8vBg+mfzu9SaU5cnbJEYZn//Mf6P9fBn/DK68gmv/5qOgIksUfPnrFv/P671WxfktaupQl1GPXvnzhRWOb77zNfz8svSw89ZPUX+9ZbJJ4RHFu2SFOmVD+AWib8UjPdTatX0zoh6HjY7SpqFgIIrmz6gZg+XWrXTtqwwZr+4Yf4o0GjeokSykFJNJclilevdq7MKVOcKwvBE5R9v0xhofX/vHlGw0DA3Xhj7PR775mJA0jFvHnW9eCUKdbgVa+/LnXq5Px6OnRwvky/YYCs9HTpIi1eLG3caDoSuIyahQAQBI8+Wp4olKRXXrH6dEJ2GjpUWrHCdBSAGZGI1Y/ngQeajgQAvBWJlD/g27hReuABd9bDNQYS6dvX6i7CD4L2sDNgSBYCQBDE+1GeO9f7OOCupUulIUOkb75JPt8993gTD+CEDAY4iWv8eOnOO9OPB4AzsqmFh19Nn576gGpAkJSdZxjgxHM0QwYAQCq/2Cgutpr61qyZXjmzZ6cfQ+vW0rJl1uvu3aVeveLPt2hR+usAKps82XQEqfnvf01HAJOoSQLEIlmCbMZvgmuoWQggXPjBQCaGDZMaNpRq1bISEumMttm7d/rrL0sUStLDD1NbAN746Sd3y3f6vPz3386Wh2Dhdx5+8P330sUXS7feKq1aZToaIPw493uOmoUAgosnqZCkkhJnytmyRbruOmn9emv6f/+TzjxTOu641Mp59VVn4pGk+fOdKwsAwmDcONMRINtNmiR17Fg+4Nivv7JfAibk5HA/6CJqFgIAgq1//9TmT3RRMWJEeaKwzDXXpBUSQoCLTwBILltr+tx7b3miUJJ+/lmaNs1cPADgApKFAILL64tUp2qwJbN5s9Szp9S5szRmjLNlb9woTZggLV7sbLmm3X23M+VUHG26jOnmjtl6I4Zweeut1Jdh3wfgV599VvW9Fi2kBQu8jwXwq8GD3V8H1wquIlkIIFzcrA30ww/ulV3mooukhx6SXnxROvpoq2mLE+bOlQ4+2Pq3777S++87U26ZtWudLQ9AOPz8s3TffaajAAD33XuvmfWSMEE2YDRkz5EsBBAubl4wbdzoXtllPvyw/HVJidSlizPlDhwozZxpvd60SerRI71yEv0gH3hg4mUiEasfv+OOk668UlqxIr11uy3evpPqBYjTn+2335wtD/Zx8+UMRi4GkC3SqUUNIDNcr7mGAU4ABFc2PEn67rvEf0vl81ceoXfKlLTCSWjevMR/++ST2L7/Fi2Svv7a2fV7rbhY+uILqUYN6YQTyr+La691dj2XX+5sefAXL7o2MO3nn01HAADhlg3Xw24gyRQMZfs335fnSBYCgF1+uxgLwo9mkyZV+0j85htp5UqpUSMzMSVid3sWF0vHHiv9+KM1fc45Vr+JkyZJI0e6Fx/Cp2wfAkw46CDTESCo/HY9BCA7MRqyq0gWAgDck2gwlXXr/JcsjCfeBcioUbFJnvffd74PSJjnxcXngAHuryOogvAwJOgmTjQdgRmbNiXuW+7tt72NJag4PgH4AeciV9FnIQAguyS6sLB7wfHQQ46FAgDw2H33Sf/7X/y/3Xmnt7EEHTV6EGTsv8HCACeeo2YhgHCxm/BZtkz66COpXj3p3HOlvDx34wIAAOY9/XTiv/3zj3dxAN9/L911l9W9ydFHS3vtJR11lOmogGChdqFrSBYCCK50nyQtWyYdeqi0YIE1ff750jvvuLc+AACAsOB6KHMbNkgnnyxt2WJNT5pk/V+jRuplkSwB4AKaIQPIPh9+WJ4olKThw6UJE8zFk82GDPF+ndzkAACQPpJTmXvxxfJEYUVFRd7HAgQZ1/WuIVkIIPu8+WbV9z75xPs4IN1wg+kIynHzg4q4+DSL4xHwtw0bpK+/Nh1FcP35p+kIstvcudk7yBNgE82QAWSf2bNNR+CMICczyhIBmzebjaOieMmJIG9jZIZkFQAk9p//mI4g2Jy8vuBaJXX77COVlpqOAvA1ahYCgGQvMcDFWLjZTQ6xHwAAsllxsfTuu6ajCDauJcwiURgcHCvGkCwEEC6JEj7PPCNtv720667SokX2yioulgoK/FvDKBKRCgule++V/v3v9JY3JSg//PHi9Ov+gGB4/XXTEQBAZgoKTEfgX8XF9uYLynUQgKxFshBA+E2fLt12m7RypfT33/HnqZwA+vFHaYcdpNq1rSTjihXSSy+5H2uqeveW+vSx4oV7ioqkv/6y9iEgEzTdA4DweuGF8tc//ii9+mr87m9IFgLwOfosBBAu8S6+unZNvZwrrpBWr7Zer1olNW6cWVxueeghb9cX5ovbRDUGV6yQzjhDGjdOqlvX6tQdSBdNn+yhBi/gX2G+FsjUbbdJF1wgNW1qtf6QpG23lb76SjrssPL5nNyGnC+9s3mz9M47pqNAmUiE85GLqFkIIPz++iu1+TdssEZJ84vHHnOnXC4u7RkyxEoUSiQKs8mYMVZt4j/+cL7skhLnywQAr3Bzntwhh5QnCiVp40apZ0/rdSRiv6ky/KWwUGrXTrrqKtORAJ4gWQgAlfntRv7++01HkN0ef9x0BDDhrLOkG26wbvq++cbZsq+5xtnyAMBLPGxMLl7f2J9/Lm3aJF1+uVSjhvTss97HhcyMGCFNnWo6ClTEgwtXkSwEEC7pXsBy4estE9t7wwbpnnuk556L//dEMS1d6l5M8L8tW5xP2A8eLP3+u7NlAgD8bfhw6c03nS+XhIk3+vUzHQEq4/7NVfRZCCC4sv3iyO3P/9ln0rx50kknSXvt5e66vHDRRdInnyT+e7wLji1b3IsHwVHWDN1Jbds6X2aYzJkjNWxoOgqETYsWpiMIhylTTEcQTDRfBRAgJAsBQMrOJ1PJPnOPHlKvXtbrevWk0aOlAw/0JCxXrFyZPFEoZec+APjVaadxkQrnTZtmOoJwoGY0shHXiUbtNHhw/D9ke+URF9EMGQAQq6SkPFEoSevXS48+6uw6nPhhf+UV+/OuWJH5+gAAAPyGJJY/fPyx6QjCKSdHWr1atRcsMB1J1iFZCCD8Ur2ICspFl1txxhvx9913rf/99PTullsYnRgAAADuq+66m2bmrsl5443Ef3zvPe8CyTK08AAQLkFJ9PlB0LfVli3WQBGAF377zXQEAADAa7/+Ku23X/XzrVzpfizZ6LPPlPfZZ4n//tBDnoWSbUgWAgguJ2u5BT1x5hW/bScnaxb67bPBXzp0MB0BAADwWrt20u67S8uXm44E8BTNkAEgW0Ui0iOPSLVqSdttJ735prfrBoKkqMh0BAAAwIT586VNm0xHAXiKZCGA8PNTP3t+8vvvUvfuUmGhtG6ddM011mAmQeJk0pEEJgAAAACQLASAKoKSNMo0CXrHHbHTBQXSyy9nViYAAAC8E5TrVgCBQrIQQPhxERXfggVV31u1KvkyfqulaTeeX3+tfh72EwAAEDR2rnEAIEUkCwFAIlFUUbIRx5ziddLx4Yern4d9AAAABM1tt1n/MwAHAAeRLASAbBUvOfbTT9LFF3sfS7rsJvhmzXI3DgAAABNWrLD+93KgOgChR7IQAKTsrFUW7zN//bX3cfhFNu4DAAAg+KZNq9oXNQBkgGQhkIpIRBo4UNpzT6llS+m770xHBDf4rV++RIKc3HIq9qB8VwAAAG74+2/pkENMRwEgZEgWAqmYMkW6/npp3jzpjz+ks8+WCgtNR+Wu0lLphx+ksWPNJqeWLJHOOUdq3Vrq0UMqLnZvXUFOwmUbO9/VtGnuxwEAAMKvWzfTEcS3ebPpCACEDMlCIBV33RU7vXatNHSomVi8UFoqnX66dNRR0hFHSJdeai6Wa66RPvjAStj26iW99lr8+dJN9PXrZ33ebJItSdHHH7c3X7ZsDwAAkB671xQAEHAkC4FUTJ5c9b0lS7yPwytjx8aOjPv221aNSq+VllYdofe665xtgrpli/Tuu86V5wUTTXCdWuebb3pXK/f11+3NR7IQAAAAAEgWAkji/vurvvfkk97H4VUS5/LLvVmPX5hMjj34oFVjFQAAAADgK/mmAwAA3wh7/5OVpZosHD1aWrnSufX//LNzZTmBmoUAAAAAQLIQAGDT0UebjsBdJAsBAAAAgGbIQNaIRKxBQa6+WnrmmfAO5uFEwoekUXbiewcAAAAAahYCWWPAAOmmm6zXgwZJK1ZIPXuajSlTJgb48JNnnsls+bAnx374Qfr3v01HAQAAAACBQs1CIBVBTq6UJQrL9OqVXjlB3gZh8+qrpiPwt8suk267zXQUAAAAABAoJAuBTIW5dpvfP5vdxCUJzvjCvl0WLEit9mXYtwcAAAAA2ECyEEC4+D3BCf8iWQgAAAAAJAsBhEymCZ+BA6UWLZyJBQAAAACAgGGAEwDB5UYtwuuvd75Mv6ImXSy2BwAAAABQsxDIWJgTDGH5bDRNDq9+/ZwrKyz7OwAAAABkgGQhkAqSTgiTMCTHVqwwHQEAAAAAhArJQiAVYUiupMIvydFM48i27w0AAAAAgDSRLAQy5ZeEGgAAAAAAQIZIFgLwv1RqBlKLEOlasMB0BAAAAABgHMlCAMFFrc7MkFiN9dZbpiMAAAAAAONIFgJAtiJZCAAAAACohGQhgNSQYAIAAAAAILRIFgJIjGa+4UbiFwAAAABQCclCIBUkV/yP7wgAAAAAgLSRLAQyRe07AAAAAAAQEiQLASQWxFp6JG8BAAAAAEgbyUIAyFarV5uOAAAAAADgMyQLgUwFsfadXdTSAwAAAAAgq5AsBFJB8sz/wpy8BQAAAADAZSQLAQQXyVsAAAAAABxFshBIBbXWgonvDQAAAAAAW0gWAvGUlEgzZ0r//FP9vNRuAwAAAAAAIUGyEKhszRrpuOOk5s2lPfaQBg0yHZG/pFNLb/Fi6dhjpdq1pX//W1q40Pm4AAAAAABAxkgWApW9+670/ffW64ICqWtXq6ZhNnKq1uQjj0jffWdtzx9/lHr2dKbceGhyDAAAAABA2kgWApVdd13s9PLl0q+/moklLF54IXb6lVdSWz5RAtBuMnPVqtTWBwAAAABAliJZCNhBbbXgGj7cSvgCAAAAAIBqkSwEkFjQk6SRiHTPPaajAAAAAAAgMEgWAqkIevLMCX4a/bm672PePGn+fE9CAQAAAAAgDEgWIjy+/FJ67TXpn3+8Xa+fkmde8HvCtOL3UVpqLg4AAAAAAAIo33QAgCO6dZMef9x6vcMO0tix0t57O1d+sgSZ35NnmQhiIrTi9xHE+AEAAAAAMIiahQi+TZvKE4WStGyZ1L+/O+si+eQvW7Yk/zvfFwAAAAAAKSFZiOD766+q7z37rLPrIOnkT2+/nfzvfG8AAAAAAKSEZCGAcFmxwnQEAAAAAAAEFslCAOFSVGQ6AgAAAAAAAotkIZCKMA9mYpfftwEDnAAAAAAAkDaShYAdyRJkYU5IBf2zBT1+AAAAAAA8RrIQQHiRLAQAAAAAICUkCwEk5vcmx/EEMWYAAAAAAHyCZCFgBzXUyrEtAAAAAAAIrXzTAQCB0KGDNGqU6Sj8wUTNvVTX+fbb0uzZUqtW7sQDAAAAAEBIkSwE7DrzTNMReM8vtQhnz7Y/79y50iWXuBcLAAAAAAAhRjNkwK7Nm61/YbJ2rekIqjdxotS2rekoAAAAAADICiQLgWx24IHS0qWmo0jukUekggLTUQAAAAAAkBVIFgLZbN486eWXTUeR3IgRpiMAAAAAACBrkCwEst0DD5iOAAAAAAAA+ATJQgCpMTEaMgAAAAAA8ATJQgSfX0bsDSMvtm1xsfTkk9LNN0tffeX++gAAAAAAQEL5pgMAMkZNt2C78cbyfhNfeEH64gvphBPMxgQAAAAAQJaiZiGAxNxOxBYXxw6wEolIt93m7joBAAAAAEBCJAuBTGVbM2gnP29RUdX3ZsxwrnwAAAAAAJASkoUAAAAAAAAAJJEsBJAq+ogEAAAAACC0SBYCSCzbmlgDAAAAAJDlSBYi+EhoAQAAAAAAOIJkIZApmuUCAAAAAICQIFmI4CNZ5x/jxkn/+Y90zz3SunWmowEAAAAAACnKNx0AEHg0g7ZMnSodeaRUUmJNjxsn/fBD4vkjERK9AAAAAAD4DDULAaQmUYLv/vvLE4WS9OOP0syZics55xxp/XpnYwMAAAAAABkhWQggsVRqTX74YdX3Zs9OPP/IkdKwYanHBAAAAAAAXEOyEEBibjcT/u9/3S0fAAAAAACkhGQhgo8+A72VyvamT0IAAAAAAAKFZCEAAAAAAAAASYyGDCBVb74prVgh7bGH9Pjj0nbbmY4IAAAAAAA4hGQhgs90U9cwN4NO9Nm++ML6f8kSa6ASAAAAAAAQCjRDBpC+Dz+UCgpMRwEAAAAAABxCshBAZgoLTUcAAAAAAAAcQrIQyJTpZtAAAAAAAAAOIVkIBMHChdLpp0utWkmPPCKVlJiOyB4SqQAAAAAABAoDnCD4wjzASJkrr5S+/dZ6PXWqNRLxZZcZDQkAAAAAAIQPNQsBv9uwoTxRWObyy71Z9zffeLMeAAAAAADgCyQLgUy5XbPR1GjDP/wglZaaWTcAAAAAADCCZCGA+O6809589EsIAAAAAEBo0Gchgo9klXN+/13q3t3apr/9ZjoaAAAAAADgMZKFACwbNkhHHCFt2mQ6EgAAAAAAYAjJQsDvvBjt+YgjpM2bnU8Uplvr86CDpIkTpX//29l4AAAAAABAUiQLEXxeJNP8LhKRPvhAWrxYOvNMabfdUlt+7FhXwkrbxInW/z/8YDYOAAAAAACyDAOcAGFwxx1Sp07SLbdIbdpIs2aZjggAAAAAAAQQyUIgU6ZrNm7YID39dPn06tXSE094t/6cHGnePO/WBwAAAAAAXONZM+Snn35azz//vJo0aaJvvvnGlXUsWbJEQ4cO1Y8//qj58+dry5Ytaty4sfbaay+deuqpOvXUU7XNNtukVObkyZM1fPhw/frrr1q6dKkikYh23HFHtWjRQmeddZaOOuoo5ZhOFiG7zZ1b9b1XXpFeftmb9T/3nPTAA96sCwAAAAAAuMqTZOHkyZM1cOBAV9cxdOhQ9enTR5s3b455f/HixVq8eLF+/PFHvfTSS3riiSfUpk2bassrKirSww8/rGHDhlX527x58zRv3jx98sknOvLII9W7d2/tsMMOjn0WBEy6g3jY5fdk9AMPSCUlpqMAAAAAAAAOcL0Z8sKFC3XTTTepqKjItXW89tpr6tGjRzRRmJOTo/3220/t2rWLSeLNmzdPV155pf7444+k5UUiEd1+++0xicJatWqpdevWatu2rerWrRt9/8cff9SVV16pdevWOfypYJvbyToklyxRyHcDAAAAAECguJosnDVrli699FItX77ctXX8/vvveqJC/2yHHnqovvzyS3300UcaMmSIRo8erWeeeUb/+te/JEmbN2/WTTfdVKUGYkWvvvqqvvrqq+j0JZdcojFjxmj48OEaOnSoxowZozvuuEP5+VbFzDlz5ui+++5z6RMCAUayEAAAAACAQHEtWThy5EhdcMEFWrp0qVurkCT17t1bJVtrNrVo0UIvv/yymjZtGv17Tk6OTjzxRL322mvadtttJUn//POPBg8eHLe8VatW6bnnnotOX3zxxerRo4fq1asXfa927drq3LmzevXqFX1v1KhRmjBhgqOfDTb5vZluNrvgAtMRAAAAAACAFDieLFy6dKm6du2qLl26JK2954RJkybp999/j053795dtWvXjjtv8+bNdfPNN0enBw8eHE0yVvTuu+9q48aNkqQGDRqoS5cuCdd/7rnn6phjjolODxo0KMVPAIRcUZE0darpKAAAAAAAgE2OJgtfeOEFnXzyyfrggw+i7+21117q3Lmzk6uJ+vTTT6Ov9957b7Vt2zbp/Oedd1606fCqVav0yy+/VJnns88+i74+5ZRTVKdOnaRlXnjhhdHXo0eP1qZNm2zFjhChZmNyLg9uBAAAAAAAnONosvCVV16JSZadf/75Gj58uHbffXcnVxP1008/RV8fccQR1c6/3XbbqWXLltHpb7/9Nubva9as0fTp06PTRx55ZLVlHnbYYcrLy5MkbdmyRWPHjq12GcBRJCsBAAAAAIBDXOmzsGXLlhoyZIgeeeSRmJGDnVRUVKQ5c+ZEp1u0aGFruWbNmkVfT5kyJeZvM2fOVKTCgAx2yqxTp05MH4mVywQAAAAAAACCIt/Jwtq1a6dOnTrpuOOOU47LtZ0WLVqkoqKi6LTd2ou77rpr9PWCBQti/jZv3rzo65o1a2rnnXe2XebcuXPjlglkLOg1B5csMR0BAAAAAACwydFk4fPPP+9kcUktX748Zrpx48a2lqs438qVK1VaWqrc3NwqZdotr/K8leOCByrUBs1Kfv/8w4ebjgAAAAAAANjkaLLQS2vXro2Zrl+/vq3l6tWrF30diUS0bt06NWjQQJLVZ2G8+apTsal15bi8VlxcbHT9Tqg8SnW8UatjFBfH3ZHT3RapHhQlJSWKuLndq/t8Nj9/YA92AAAAAAA8Eoa8SqYCmz8oKCiIma5du7at5WrUqJGwnMLCwpTLk6wmy/HK8FppaakmTZpkbP1umTp1atK/1549W/F6l0x3Wxyc4vyLFy/WMpe2e61587TLgAFqGOdvZZ8v2efP3bRJuz71lOqNHx/cgx0AAAAAAI+EMa+SqsDmDypnesuaElcnPz/2I1estVaxD0S75VUukww0nJK3dq32v/xy5W3enHYZO77+uhp/8IFzQQEAAAAAgFBzZTRkL1RO5pWWltparnIyr2JNw7y8vJTLq1xm5ZqLQLp2fOutjBKFkrTLyy87FA0AAAAAAMgGga1ZuM0228RMFxQUxDQHTqRyM+FatWpFX1dsely5mXMyFeetWJ7XcnNz1apVK2Prd0pJSUlM0+OWLVvGJHKrSPC3Nm3aOB1aXLvssot2dmFdeePGJf179PMZ/vwAAAAAAIRF0O+lp0yZklIFuHgCmyzcbrvtYqY3bNhga1CSDRs2RF/n5+fHLFM20Enl+aqzcePGuGWYULmZdRjk5eUl/1wJ/ubVtsjLy7MSdiNGSH/+KZ10ktS2beYF5+Qk/XP08xn+/AAAAAAAhAX30gFuhrzjjjvGTK9YscLWcsuXL4++btiwoXIqJGQqlrly5UrbsVQsc/vtt7e9HHxi8WJp0iQphdqkVfTsKZ13nnTvvVL79tL33zsXHwAAAAAAgEcCmyzcZZddYvoHXLhwoa3lFi1aFH29xx57xPxt9913j77etGmT7QRkxXXvueeetpaBT7z1lrT33tKBB0qHHSYtWZJeOT17lr8uKpK6dXMkPAAAAAAAAC8FNllYo0YN7bffftHp6dOn21qu4nz7779/zN8OOOCAmJqGdsrcuHGjFixYEJ1u3ry5rTjgA5GIdN990pYt1vTvv0tDhjhTdjX9DQIAAAAAAPhRYJOFktS+ffvo67Fjx1Y7/5o1azRt2rTo9GGHHRbz97p16+qAAw5Iqcxx48ZFO47My8tTu3btql0GPrF0qTR/fux7XbumXk41fQsCAAAAAAAERaCThSeeeGL09dSpU2NG0I3nnXfeUXFxsSRrgJQOHTpUmeekk06Kvv7www+1efPmpGW+/fbb0dcdOnRQ/fr1bcUOH4hETEcAAAAAAADgK4FOFrZt21YtWrSITt97770JRzGePn26Xnjhhej0BRdcoNq1a1eZ79xzz9U222wjyRo0pVevXgnXP3z4cP3www/R6SuuuCLlzwC45pVXTEcAAAAAAAACxrfJwo4dO6pZs2Zq1qyZOnbsmHC+rl27RvsZnDVrli6//HLNmDEj+vdIJKIvv/xSV111lTZt2iRJaty4sW644Ya45W2//fa69tpro9MjRozQXXfdFTM68pYtWzRgwAD16NEj+t5RRx2lo446Kr0PC7ihwn4MAAAAAABgR77pADLVvn173XHHHXrqqackSdOmTdNZZ52lffbZRw0bNtT8+fO1dOnS6Py1a9dW//79Va9evYRldu7cWVOmTNF3330nSfr444/1xRdfqFmzZqpZs6b+/PNPrV+/Pjr/rrvuqscff9ydDwj30AwZAAAAAAAghm9rFqbihhtuUPfu3VWnTp3oe7Nnz9Yvv/wSkyjcaaed9PLLL+uQQw5JWl5+fr6eeeYZnXfeedFai0VFRZo6daomTJgQkyhs27at3nrrLTVs2NDhT4XAcCvpyMApAAAAAADAY4GvWVjmsssu0/HHH6933nlH33//vRYtWqQNGzaobt262m+//XT88cfr3HPPVd26dW2VV7NmTT366KO68MIL9f7772vcuHFaunSpCgsL1bBhQ7Vu3Vqnn366TjzxROXmhiLnGlxhTarZTUKG9fMDAAAAAADPeZIs7NSpkzp16pTSMt98803K69lpp51022236bbbbkt52URat26t1q1bO1YeXGC6OTHJOgAAAAAAEBJUiQMAAAAAAAAgiWQhAAAAAAAAgK1IFgJ+Zbd5s+lm2AAAAAAAIDRIFgIAAAAAAACQRLIQ8C9GQwYAAAAAAB4jWYjgI1kGAAAAAADgCJKFyF709QcAAAAAABCDZCGCL6xJP2pMAgAAAAAAj5EsBDJlOlk5e7bZ9QMAAAAAgNAgWQgE3fXXm44AAAAAAACEBMlCIFNu1Sy0U25hobRsmTvrBwAAAAAAWYdkIRBkJSWmIwAAAAAAACFCshDZa/Nm0xEkxwAnAAAAAADAYyQLEXzpJtVee83RMOKKRKSXX5ZuuUUaPtz99QEAAAAAAGSAZCGy14cfur+ORx+VrrtOeu456YILpFdfdX+dAAAAAAAAaSJZiOBza4ARJ9bfvXvs9DXXuBsLAAAAAABABkgWIntNmeJMOX36OFMOAAAAAACAYSQLgUytWGE6AgAAAAAAAEeQLAQAAAAAAAAgSco3HQCQ9QoKpLfekkpLpUsukbbZxv6ypvtrBAAAAAAAoUKyEMGXk2M6gvSVlkr//rf066/W9P/+J40fL+VzaAIAAAAAAO/RDBnw2k8/SUuWWK9HjSpPFErS5MnShx/aLyvIiVIAAAAAAOA7VF8CvNahg7TddtK770qvvVb17+eeK3Xq5NxozQAAAAAAADZRsxAwYe1a6YknEv99xAjvYgEAAAAAANiKZCGCL6iDfIwaZToCAAAAAACAGCQLAQAAAAAAAEgiWQgAAAAAAABgK5KFCD5GBAYAAAAAAHAEyUIgqDZvlm67zXQUAAAAAAAgREgWAkH11FPSyy+bjgIAAAAAAIQIyUIgqB54wHQEAAAAAAAgZEgWAgAAAAAAAJBEshBhEImYjgAAAAAAACAUSBYCAAAAAAAAkESyEGGQk2M6AgAAAAAAgFAgWQgAAAAAAABAEslCAAAAAAAAAFuRLARM+vZb0xEAAAAAAABEkSwETFq61HQEAAAAAAAAUSQLAQAAAAAAAEgiWYgwiERMRwAAAAAAABAKJAsRDIMGSY0bW/8GDTIdDQAAAAAAQCiRLIT/LV4sXXONtGKF9e+aa6QlS8r/npNjLjYAAAAAAIAQIVkI38vt3Tu2qXEkIj36qLmAAAAAAAAAQopkIfzv77/tvVdZxdqHFRUWSl27ZhYTAAAAAABACJEsRPAVFcV/v1Ur6bffqr7//PPSE0+4GxMAAAAAAEAAkSxEMFVslvz55/HnWblS6tu36vt33OFOTAAAAAAAAAFHshD+V90AJr16Jf7bO+84GwsAAAAAAECIkSwEAAAAAAAAIIlkIYKqYjNkAAAAAAAAOIJkIfyvumbIAAAAAAAAcATJQvgftQgBAAAAAAA8QbIQwUfNQwAAAAAAAEeQLIT/kQwEAAAAAADwBMlCAAAAAAAAAJJIFiKo6McQAAAAAADAcSQL4X80QwYAAAAAAPAEyUIAAAAAAAAAkkgWIqhohgwAAAAAAOA4koXwP5ohAwAAAAAAeIJkIQA4qUMH0xEAAAAAAJA2koUA4KSaNU1HAAAAAABA2vJNBwBkzG4z5bVrpXXr3I0FAAAAAAAgwKhZiGBKdYCTTz6Rdt9datrUnXgAAAAAAABCgGQh/C9ezcFp01Ir4557rJqFgNsYqRsAAAAAEGA0Q0YwzZ0rFRZKS5ZIGzcmn3f1amn6dG/iAgAAAAAACDBqFiK4XnlFOuig6ucrLXU/FqCM3T40AQAAAADwIWoWwv8SJV9uv92qXQgAAAAAAABHULMQ/peoDzgShQAAAAAAAI4iWQgAAAAAAABAEslCBAF9wAEAAADZpVYt0xEAQNYiWQgAAAAA8I8995R+/12l115rOhIAyEokCxF+pmomrl1rZr0AAABAkE2cKDVvrtIXXjAdCQBkJZKF8L9Mk32JBkhx2+zZZtYLAAAABNl225mOAACyGslCAHCSqeQ0AAAAAAAOIFkIAAAAAAAAQBLJQgBwFqN3AwAAAAACjGQhAAAAAAAAAEkkC5ENTNX0ooYZAAAAAAAIGJKF8D+SbgAAAAAAAJ4gWQgAAAAAAABAEslCZIOFC82sNxIxs14AAAAAAIA0kSyE/2XaDPnbb52JAwAAAAAAIORIFgIAAAAAAACQRLIQ2YDRkOElmp8DAAAAAAKMZCEAAAAAAAAASSQLAcBZ1CgFAAAAAAQYyUIAAAAAgPu6dTMdAQDABpKF8L9Ma2pR0wsAAAAwj+tyAAgEkoWAW6ZMMR0BAAAA4B+tW5uOAABgA8lChN9//2tmvVddZWa9AAAAgB/tvbfpCAAANpAshP/RXAEAAAAIPq7rASAQSBYCAAAAAAAAkESyEAAAAGG1yy6mIwBQUSRiOgIAgA35pgMAkslfsUK5Q4eaDgMAAARNQYFUo4aUy7NxAACAVHD1BF/b+557TIcAAACCKCeH/tEAv+GYBIBAIFkI36q5ZInqTpliOgwAAAAAAICsQbIQvpW/Zo3pEAAAAAAAALIKyUIAAAAAgPtohgwAgUCyEAAAAOFDUgIAEAQ1apiOAKiCZCEAAAAAAAAASSQLAQAAAABeiERMRwAAsIFkIQAAAADAfXQPAACBQLIQvpW/cqXpEAAAQFCRlAAAAEgLyUL4VqPPPjMdAgAAAACnkMQHgEAgWQhfytmyRQ2/+MJ0GAAAAN7bfntp551NRwEA8AJJdPgQyUL40p7du5sOAQAQJG3bmo4AcE5urtSzp+koAOeRFAGAQCBZCP9Zt07/+vZb01EAAIKkf39qYiFW0JMS111nOgLAeUE/LgEgS5AshP+sXm06AgBA0Bx1lDRvnjRypOlIAAAAgEAjWQgAAMKhZk2pXj3TUQDJtWhhOgIAAICkSBYCAIDwiERMRwAkt+uupiMAAABIimQhAAAA4BUS2shm9FkIAIFAshAAgGyUyyUAQo6kBAAAQFq4UwAAIBvdfrs75W6/vTvl2kWtLcC8m24yHQH8iiR+cq1bS7VqmY4CAEgWAgCQlfr1c7a8e+6R3ntPmjDB2XKBbBT0pLfbNZevusrd8mHW8cebjsCMCy6QPvnEdBQAIIlkIQA4K+g3eEB1GjWK//5xx0mdOknbbuttPEDQdOliOgJki6uvNh1BVXZqFm6zjftx+NGwYcEaAOmYY0xHAMBFJAsBAIB9tWvHf79GDW/jSIQmbijj133h2GOlo49OPo9fY7cr6PGHQYsWUrdupqNIDw9eAcA4koUA4KR4N0gtWngfB+CmeImO3Xf3Po54uMmE3+XmSl99JX30kelIEFZDhkgTJ0r77ms6EqQj3rXklVd6Hwe8wwMW+BDJQvgPJ0uEzcEHZ2//OwifnBzp8cdj3zvySGnvvc3EAwRRfr50+ummo0BYNWzon9relXGdX714D73at/c+jurwXQKhRrIQALzw+uvSWWdJjRubjgTIXPv20mefWX0U3nijNHKk6YgA+InbSQSSFMg27PMw5ZRTTEcAQ/JNBwAAWWHnnaUPPpAKC6VatUxHA2Tu5JOtf5WZvqGhGTKAZPbYQ/ryS2m//UxH4h7T5+Fk/BybSW++aToC+NnChdJuu3m/3m23lQYPlnbYwft1wzhqFsJ/uNEDAABAIpkknCZNknbZxblY/Mjv19LVJT2OPdabOPzk7LNNRwA/MzVK9s03W91mICuRLAQAAOFBrRXAPL8eh7vtJtWv79/4skFOjvTss4m/g/r1pRtu8DYmP6hTJ/nf/Z4ARjiF/VzZqpXpCHyNZCEAeCnsP7qAadxQ+R99tyJT/JYm5/ftc+aZ1ojg3bpZfTr/+ad0xRXWv99+s5o+ZjO/f39AGDRoIPXpYzoKX6NOKQAAQDY65RRroBoA8EpZIqxjR+tfmcGDzcTjR4keel10kTR0qLexAGF02GHW9U+DBqYj8TVqFsJ/eJoGAID7PvjAzHr5na8eNWSRiT32MB0BnJaTI/XsaToKZJuw/l7vuSeJQhtIFgKAk26/vep7V1/teRiAMWG9sAwjviu4oWlT60bMz8K877dvL+2/v+ko4IYwj+ANwHdIFgKAk047TTrooPLpf/9bOuooc/EAAIInyMmsV16Rrr1W2mYb05Fkn7p1pU8+MR1FckHet+GdHXaQPv5YeughacgQ09EAWYlkIQA4KT9fGjvWurB56y3p66+5MAaAsLv+etMRmPPII9K++0oNG1o39sceaw1Q8dFH1kiT++1n/R46id/V+J5/XmrUyHQUSFXfvqYj8J+cHOsBfI8e0gknmI7GfX4+p/k5NriKZCEAOK1WLemyy6SLL5Zq1DAdDQD4SxhvPF580bt1/fCD9L//ebe+6hx1lDRrlrRypXVjn5dnvX/ccdLkydLMmdbvoR+U7Xth3AeDgm1f7j//sc4dd91lOhKkqksX0xEAriNZCAAAwoOBIewZPNjcTTvJgsx06ODsfl6vnnNleSWb9qEDDjAdAdzy6qtWreRs2p/tyuQc99hjzsVR2S23WDV4e/d2bx2puPVWqV8/01EgpEgWAgAAZJNttpHOOcfc+knoZibX4ct3Rlj1t+HDTUfgLBJj7jj6aO/X6cfv8sUXpW7d3Cv/mWekG290/jycrmuvlc4+O/k8ubmx/amD6xCbfLKXA0CW8OOFFbLX0087Xyb7uP+tWWO2NhkX6Zlzchs2aiQ1b57+8qaO+bLmzqkI4r5HzULYYWLfdnOd6fa9mY01NffaK/nf+/eXxo+XfvxRatAgtbJzcoJ53sxUhw6mI/AFkoUAAARd06bpLXfxxdIeezgainF16piOwP9q1jS7/my7kQuCoH0nOTnSwIGZLQ/Av7JtoJ7qEn5OOOIIaepU99cTBNX9Blx5pTdx+BzJQgAAguCUUxL/7YUX0iuzcWNr8IEwDcRz+OHSLruYjgLJkKgJFxPf50EHWYNDIHg4/pGqbNhnBgxIbzk726ZizcAmTdJbT9hUV1uSB8+SSBYCABAMbl0s16xpNU+x25+N35uj5OZKgwaZjgJuO+MM0xGE3xVXmI6gXMXasA0aSFddZSoSwJ922810BMjEEUdI3bunvpzb12TZ2gwZkkgWAgAQDK1aJf5bponEVq2shGFYnHii6QjgtssvNx2Bu7g5izVmjJUgPuccaexYqVatzMoLSk2lPn1MR+C8oGz7oHn4Ye/XyXfpnNxcqVcv01Fk5rTTTEcAh5EsBIBUJHtyu/323sWB7HPPPaYjsHBzgEw5sQ9l+36YbcnEQw6RPvxQGjFC2n//zMsLyva76SbTEaCitm1NR5DYnntKzz5rOgr4kVcjNz/3nDfrgWdIFgJAKu68M/HfXn+9+uWDcoMC/2nUSOrRI/7fsj1xgnLZsi+E/Vzq9fcYb312t3GQ9rmyWEtKzMZhx5FHmh213C1B2l/q1y9/3batP2rgP/NM4r/dfLN3cUjhPw8HgZ3jyatk4e67e7MeeIZkIfxn5UrTEQCJJfpRvuce6YQTvI0F2Yd9zHlhq7lz6aX25w3STTticZOemdq1TUeAIPj9d+nuu60Hdd9/b50zTQ8IdsstZtfvldNPNx1BeGSSLOQ6IauRLIS/bNyo/HbtTEcBJJboBu2JJ6T8fG9jAZCZ66+XOnY0HYWzGjQwHQHCIsw3ibm50uOPm47C3/77X9MRuOvkk6ufZ889pb59pYceKq/l6cUoqUF5GODkOWLnnctf168fvgd5JmWSLAzKvpiqMP++OYhkIfxl8GDTEQDu4scJmUh00ebUfnXJJc6U41eLF0vHHy/tsot0//3S//5nOqLsRJ+FmfPTDVxQv4suXazaYk5ee954o3NlBV379qYjSO7cc01HkJqgHmd2/fqr1Yz6hhukiRPD2QTflEybIfvp98Yp1X2msB9vNlENBv4ycKDpCAAgew0caD3d/+kna8TRdPj5onLnnaVRo0xHASdwIe8cPx+zbjvqKOvflVdmXtaBB1pdkrzwQuZlhcG4cfGPU47d9IT9OG3SJPEALewzmaEZMtJEzUIA8FLYL/YQbHXqSE8+KY0caToSIHiSDYDlpaZNnSnH7k1ikG4m3foN7tXLqhm1557ulB8mQdpfTGEbwUleDXCC0GHPAQA/aNnSdASAM/xyk3PxxbHTd99tJg6v8UDCnLvvtmqpmVazZmrzJzpm/XIsB0GDBvRbjOzTq5fpCGBHpudyriuyFslCAPCDHj2kWrVMRwG/C/tN/SGHOFfWY49Jhx9ujXp68slW80D4Q1j7LNx5Z+m776TSUtOROKNRI2m//UxHAVPcOsb8eOymwov4g5KcOfxw0xHADpohI02uPAL766+/NHToUP38889atGiRiouLtcMOO2i//fbTGWecoRNOOEH5Ljx9GzNmjD7++GNNmDBBy5YtU0lJiRo3bqwDDzxQZ555po4++mjbZb3yyit64oknUlp/Xl6epk2blmrYqCgoP46A0847T2rbVtpnH9ORAOY89ph0xhlSQUHmZe2xR/r9LvpNbq79BBQX9mZ5tf2dvF5KVlbfvtLll0vr1jm3PpM4PhBUftx3c3OlO+6Q/u//TEeCZGiGnDpyEpJcSBY+88wzGjBggIqLi2PeX7hwoRYuXKivv/5aLVu2VN++fbXXXns5ss6lS5fq7rvv1i+//FLlb4sWLdKiRYv08ccf68ADD1SfPn20p43+REj6AfDc3nubjgDIXCYXWCecIE2YILVo4Vw88J8U9pE1//63Gvzwg4vB+FQmx1E6SYVEy5x5pjRvnrRmjZTouj2TJMbLL0s9e0oLF6Zfhh9wY2mfX5Je6X5nt91G89uKSET5X16e6Qj857jjTEcQCI4mCx955BENGTKkvPD8fDVr1kzbbLON/vrrL61evVqSNHXqVF1++eV655131KRJk4zWOX/+fF166aVavnx5zPt77723tt9+ey1dulTz5s2TJP3+++8699xzNXDgQB188MFJy50xY0b0devWrVW/fv1qY8njQMycXy4gAIRfv37SXXdVff+446Svv/Y+Hj8xeS4+4ADpqquk114zF0O2CMBvbtH225sOwZ+8TE7961/WPzdccw2JF79yolLHZZdJb7wR+96OO2Zerkm33io9/7y0YoXpSPwhAL8joWZn+5PQjdW4sVVjPhn2a0kOJgs///zzmEThSSedpAcffFDbb73IKyoq0ogRI9S7d29t3rxZK1as0K233qr33ntPOWl+GZs3b1bnzp1jEoXHHHOM7rvvPu2+++7R9/7880899NBD+u2337Rx40bdeOON+vDDD7XTTjvFLbegoEBz586NTvfv3z/jpCYASIrfAfppp3kfBxJfCAwa5Nxool4JwkXNqadKn35qOgr4QRD2V9OCtI2CFCvsqVPHSuTedltm5XTrJn30kbR2rTXdpYvVj6ybmjeXKlT6cNz220uTJkle3xv6tfaqX+NCuWoqSSUVxvP7+PH0E2+TI2nmoqIiPf7449HpY489Vv37948mCiWpRo0auvDCC/Xss89G+yv8448/9PHHH6e93jfffFNz5syJTl9wwQUaMGBATKJQkvbdd18NGjRIRxxxhCRp7dq1evjhhxOWO3PmTJWUlEiS6tevT6IQQLlMfzRzcmJrUWy7rfTQQ5mVCWdtu63pCBLzw9Phq65K/vdEx8gnnzgeCuJo1Mh0BN6o7lx88smpl5nk2tB3uEGHG1q2tBILn39uJQwz1aKF9Pvv0rPPSiNHSn36ZF5mdfr1c38du+zibvlBStB4EWuQtofXqvstOO00ujmqbLfdTEcQGI7cdYwaNUqLFy+WZDU9fvDBB5Wb4IbmyCOP1IUXXhidHjRoUNrrfeutt6Kv99prLz344IMJaynWrFlTffr0Uc2aNSVJX331lf7888+481ZsgtysWbO040MauPiF3zmxj3bvbtWwevZZaeJEZ0eAReb8fFF66KFVk0EDB3obw3//m/zvnMfNyc/PvCaQF5w4xhLtZ/XqWefU/v1TL/Pqq2ObXt58c1qhSZIeeST9ZYPGz+dMpGbyZOm336R//9v+Mg0aJP/7HntYx9KZZ7q/r/z0k1WLPeiC9DvK8Z+5Sy91p9xnnpHefz/zcoK0P8JRjiQLP63QrKhDhw7apZqnLRWThX/88YcWptGp8bx58/T3339Hp6+66irVqFEj6TI77LCDjj322Oh0olqN06dPj75u3rx5yrEBQLVOOcW6eN53X9ORIEjy86XHH5e2PvjSv/9tjaTtJfqQ86+XXpIaNjQdhVnr1km//iql87B3l12sBzgjR0rjxkkPPph+HPfdJ736avrLA37XvLk1gv2kSaYjKWejj3nHnHOOd+uS/JuUI5GUmSuusCoPpCvZfnHLLVI1+ZGMykfoZZwsjEQi+vnnn6PTZU19k2nWrJkaN24cnf7mm29SXu/8+fNjptu3b29ruZYtW0Zf//rrr3HnqZgspGahxzghAUBy11wjzZkjTZ0qffONVavD6XMn5+Lguegi6T//MR1F8NWvb9WAat8+8xGJ//Ofqp2o9+2bWXxlLrss+bqBdKSy71x7rXTvvcHr49cpXjSphiXMCcnBg6uvnWtSmLc9qpVxsvDvv//WunXrotMVk3HJVEzCTZkyJeX1VlynJO1oc2StBhUOxopJwTKRSEQzZ86MTlOzEAB8KtOHOYluirbZJrNyvdCkidUXVLwBcyrbdVfn1nvWWc6VlUybNt6sB8HldEJs8GBnyyvz9NNWwvCgg6zBHpxqJr7zzlatEaSmQwd3yuWGOvvst5/pCJDM00+bjiA8OL9lrYyThfPmzYuZbmrz6dKuFW5eFixYkPJ6t6l0M1dYWGhruY0bN0Zfb9q0SWvWrIn5+/z587Vp0yZJUl5envbZZx+NHj1a99xzj44//ni1bt1aBx98sE499VT17NlTkydPTjl2AICP1a7tffMiNzmZVDnuOOfKSub66/090Awy48Q+mWkZl1xSXsbhh8dPhDsR57/+Jb3+ujX6Yu/e5V0IOOGZZ6QK3es4Low3iNnUlyTCxcTxeOKJ3q/TKTxMQSaooS/JgWTh8uXLywvLzY0ZATmZis2QK5Zh18477xwzHa+WYDyV56u87op/r1Onji6//HJdd911+vDDD7Vw4UIVFBRow4YN+uuvv/TWW2/p/PPP19133x1NMCJDaewLALJUXl5myye78H79den22zMrH+mrU0f64QfppJNMR+IPXLQ6r0sXacYMq2/C0aOl7bYzHVF62rWr+l6q+0skktk+FqT9k1FBAfs+/ti9WtduSzDYKiTdc4/9eYN0fofjbLRfSm7t2rXR19tuu23CUZArq1u3btwy7GrevLnq168fbY48fPhwHXbYYUmXWb9+vb7++uuY9zZv3hwzXXEk5PXr10ebSP/rX/9S06ZNVaNGDS1YsEDLli2LzvfRRx9p9uzZGjJkiOrVq5fyZ3FScXGx0fVnKr/CoDWAH5WUlCheisqpYy/jk3IWidSsKXXooJyxY9NaPul3Wbu21LevcleuVO6QIZkFmqJIbq5ySkvjx5VATmlp3M8iSRFJ8S71ku6zxcVx98WSkhJFqtvXEyxbnOD9hDG1aiV9/LHybXbOne4xmJNgP/CTRN9hRaW1a6t06zawvZ0jESPnnEhOTrWfpzqpnIsT7Y8xIx/H239s7LPJ1mtHovIjkkqSHEtlcktLqzz5j0QiKW3fkpIS5cZZprS0NLpPJYu1uLg4/varJNFnyVPy/bvkkUcSnndS3X8TfU+ZHgcVz41OHVORSEQlKZYZ7xydSjyVt0+yZUtKS5N+Zqeui0pKSuwfhyUlto7b0nvvVSQ3t9pzf3WfIdPvOlH58Y4Ju9vbyXN6sSRdconyr7wy/t+Li5UbiTgyYmo61yTVlePG75vT5ds95hJdQyXb5xNu0+7dlVtQoNz//a/a+EpLS1VaVGTrs9q5zvMDO9vc1vVuFsj4+ywoKIi+rl27tu3lalZohmG3CXFFeXl5Ovvss/X6669LskY2PuaYY3TGGWfEnT8SiahHjx7asGFDzPuV11255uEee+yhbt266aijjlJehVosEyZMUJ8+fTRp6whg06dP15133qmBAwem/FmcUlpaGo0nqA42HQBQjcWLF2u3OO87dexxDNi3edMmze3WTS3STBba+S5rXnCB9pw0SXU97HJiyXXXaZcXX0waV2X1/vpLiXpPKiosVLyGj8nKy1u3TgfGef/vxYu1vJp9PW/9+rjLTpo0qdr9O15Mdo+JdI/B3F12UZuaNZWbxrWIn/xxzjkq3LoNbG/nSMTIOaeooCDuPpmKufPmaZ8479vdh2bNmqXNcd6vKH/VKtntPTPd/S/R9i8uKtLkBMdMxXU1WbZMO1X6e8GWLbJ/RS4tXLhQO27Zosq9tS5fvlyLKqwrUax/zp6tTTaS+ok+S8vCQtVKsMymZs305yGHqDjB9k1l/53z2GNa7UA58SxevFjLbB5/dv2z335anGKZCxYs0KpKnzGVeCrvx8mWre4zO3lPYvczzJw5U1sKC5POX7Dzzpp5xBEqqV9fbWrVUm6Fe9nKqvsMmX7XicpvGyd5v2jRIq3YOv9ON96oJi+8EP3b6mOP1RyH979ofDk5CcucNGlS3HNQ2utKIH/16rTOxW78vlUsf7+2bVVv4kTHypMSx5zoGmrmjBnaUlyc+jF4xRU62Eay8J+lS7X8jz9sbX8713l+YGebz1+wIOHvRTbJ+EFAUVFReWEpVPfNr9Ape7pPnq6//vqYAUu6dOmifv36VampOH/+fHXu3FmffPKJ6tSpE/O3yjFX7IOxbdu2GjFihI499tiYRKEkHXTQQXrjjTd05JFHRt8bPXp0lZqLAAD3bNlnH5XarHlWhY2mFYU776yZr76qKR98kN46UlTUoIGWn3uuJ+tKSwj7MCvdZhstufpq02EkV812L2rUSIVNmngUDHwvxWZjER82M1t23nn6Y9gwzRg0SMU2uzhKZv3BB2tthWt2vyutUUNLk4147ZENIRpsavrgwZrdr5+mv/WWinbaSaV16ujvm282HVZall10kVaeeqqKGjbU+oMP1qI773R8HatOOIEmqNVYfMMNKkmhslSV5a+7zsFoUrehVSuj64f/ZVyzsGISrTROs6lEKiYIa6R5o9e4cWP1799fN9xwgwoKClRaWqqXXnpJr776qpo1a6Z69epp2bJlmjNnjiQrQdm3b1/dXOGHoVat2GeZX3zxhZYtW6ZFixZpzz331LZJOlivWbOm+vbtq+OPPz46cMrrr7+u47zqAB4AECrThg5VccOGjpbpeSIggAnFf669VuvbtVNzvycNE/j7xhtNh5ASPyanfMfDbZST6Jg1eCwXN2yoLQ72Lzjr+ecz7+fWA6s7dlROSYmWXHutSnzQj+bi667TXt26Kb9Sy6wg2tSiRZX3ll1yiXZ76ikD0WSmdNttNa9XL9fKX3rRRVp800225i3J4sHINhxyiKa/+aZapvGQd/Mee2hFvIG1PLShbVvV3drlGhBPxsnCiqMSFySpxl1Zxea/lRN2qTj88MM1ZMgQ3XHHHfp7a393xcXF+uOPP2Lma9Kkifr06aO9K114VE4G5uTkaMcdd9SOO+5oa/0NGzbU6aefrmHDhkmSxo8fr82bN1cZrdkLubm5asUTAsBVO59+ulTpwrKkVy+1CdHT96DYZptt1KZNG+WkeVO9yy67xH0/7ndZoZ9dN7U4+mgpP/5Pc7J9LGfVqoR/q5lg9NWk++zq1XHfbtKkiXapbl9PsKydYyST4yjjY3DPPRP+qeTtt5V38cWZle+i3XbbTbum8Pmj28pQMijRPpmKPRN8X3b3g/3220+qbt4K/VNXx+nfgPz8/IRlVnw/t8KAgWVqpVjTZbfddlNunOvWxo0bq5GNz7XvvvtWvy0TaNOmjfLi7A877rSTdnBwm7Y56CDHyopnl1120c4OxFvviy8kSfumuXzTpk21m5Pn0TZtpHPOkeLUXK7uMzt1TJSUlNiet9nBB0u7xetgJL143L62S1R+vOuaXXfdVU0ciKf0hBOkRo2UM2qUclaujDtPoyFD1MhGWW3atLEGixowIOO4km7rFAbAtPudlTzyiPIeeMB2uQnLT+M7KR43TjX2318HVGrxmNJ6t2rWvLkUJxGebJkyuTvsUO16d9ppJ+2QoPxU1+cXduLcvWlTNQ3I50lkypQpKVXmiyfjZOF2FZ56bdy40epU2caNW8W+Ays2JU5HmzZt9Pnnn+v999/Xl19+qRkzZmjt2rVq2LCh9tprL51++uk67bTTtM0222j27NkxyzaOc5GVqoMOOiiaLCwqKtLixYurJCW9kp/gJhOAM/Lr1pUeesj6J0l77628a69NmOCBe3Jyc61zXprJwrwED3Xinkc9+n7za9RIWPsl6fk9SY2ZRFsnaXkJavzn5edXvy0SLGvn9ymT37CMf/+StHLIu+gi6ccfpeeey2wdaapuD8/Ly0tpH41uK0PJQifqzFXuHqaM3f0g386+nM42dUhOkjJj3o/TBVCqD1ASbcvc3Fzl2jlua9RI+xyZn58v7bqrtGBBbEwNGzp63nX7+jgvN9eReDONM9Vzga31J3iwVt1ndv2e5LbbpIp9rh18sPKTPPRJJx63P0PC8p9+WqpUYzzvrLMc2cdyv/zSetG6tRQvWdi3b2rn0Qzv42PKSvxHZ8qpIK9bN+va6d57bZedSvlJy2jfPvVlkv0e2PmtiMdGF3K5eXm2fgdsrc8n7MSZ6bk0LDLeAhVr4JWUlGj16tVqaKMJ1fIKTwi2d6Avkpo1a+rCCy/UhRdemHS+WbNmRV9vt912SZsZ21U5/nRGdwYQID16SCefLC1dKh17rGR4FPSslUmio04d6YILpID2V1RFsgu+ADYL9qX+/aXdd7dqUcA8mjK7z6tt3L+/1K5d+XTt2lJAuwTIWnXrSl43VT77bGn77aXXXrNqPhocZNJxF19sJULLBt689tq4tTtd0aGDvfluu83dOCpy4zomL0/q1i3lZCEycO650nvvuVP2a69Jr78uffONO+VnqYwHONl9991jphcuXGhruUWLFkVfJ2pK4oapU6dGXzdr1syRMis3v3YiAQnA59q3l848k0RhUD35pJUwtMurhFu6N+eHHy75oH8rScFNTla37fPzpXvu8SaWysKWGDv+eG/Xd+utVd/bJ95YygEUL4Hg0PWt7WM50/3zkEOkBx6wytl2WyvpE7Tf1rAdo3ZU3D8qN0N98UX315+XJ3XvLv31lzR6tHP7vR9st53022/S8OHSl19KL73k3brtDljao4f1fzbu+9kmCNd1228vjRplOorQyThZ2KRJk5hmxNPLnoBUY8aMGdHXzZs3T3v9GzZs0Jw5c2zX5hs9enT0deX26r/88osee+wx3XXXXbr++uttt/GumCDNycnRTjs5MYA8ACBt//1v8r/feGMwLn7sqlVL6tkz/t+4kA+/oH3HdeuW32hWx4nBN26/XarYN9Pdd1tJqTC49tqqDz4efzz1ckzuQzk50sMPSyUl0vr1kg9GAU5ZmH5P0nHppdaNes+e0iefSNdfbzqi4KtTRzrvPMmtUYkzLTODMQeQpngJ8UZ2epfMEnYT3bDNkS3avkK7+7Fjx1Y7/4wZM7RixYro9GGHHZbWei+55BIdfPDBOuWUUzRixIhq5581a5b+/PPP6PSxxx4b8/dFixZp8ODB+vjjj/X999/H1EJM5ocffoi+3nfffWP6cQQAGBDUGgaZXLxXlyANqtNPNx1B8NgdHdntBNEVVyT+20MPxfY35qa99pImT5ZeeUX69FOpb19v1uuFOnWsZl377GP1/ffSS96f/5zaj3Jygpf4Rrnjj5cefFA69VTTkcALXo4uznnBUrnf5GOPlYJWSem880xHgBQ4kiw88cQTo6+//fZbLV26NOn8b7/9dvT13nvvnXZz4H0qNCH56quvqp3/hRdeiFn2oEojox166KExnUIPHz682jKnTp2qMWPGRKfPOOOMapcBADiAi8eq4jWtTmc7+Wnb9upl9WFW5sgj3VmPnz5zpp56Sura1b2mnHPmSHYGcuvTJ/nf4zUPtivV72vHHa1+8E45Jf11+tXJJ0t//iktXChdd53paJAtwnTORHKvvBI7fdxx5b/L7AfOSpZ/OO446Z13pNNOs871777rTUxO1pw21Z0L0uJYsnCHrc07CgsL1a1bNxUXF8ed94cffohJwl1++eVpr/eUChd8v/32W0zSrrJ3331Xn376aXS6c+fOVUaL22233WJqOb733nsaN25cwjKXL1+uu+66S5GtB1DDhg110UUXpfw5AABpSHbx4vTFq9d9Ft55Z+z7dmuK+YHT275tW6vvpocflgYNMjYicaDUrm0l6j7+2Gwcbo4kyA0qTHCyNlXHjrHTlRMygJtSua65/HLp/vutWssnnyy9+mr6662839uRTc38zzkn+d/PP9/6bX/pJcnGoLK+066ddV3nd1xjSHIoWVizZk3dWeHGZuzYsbruuuti+vIrLi7WO++8o1tvvVUlJSWSpP3220/nn39+3DI7duyoZs2aqVmzZuqY4KRy2GGHxfQ7eMcdd1SpYbh69Wr17dtXDzzwQPS9o446KmENwG7dukWH0y4pKVHnzp315ptvqrCwMDpPaWmpvv76a1144YWaN29e9P2ePXuqfv36ccsFAPjE4Ydb/5u8EKguidK9uzUaYtOm1uhxvXp5E5cT3Liob9HCGgDhqqvc65PGi/3BrVptQbuR4iI8GIK2X3khUQuidLbVK69YTXf33tuqCRzEvhqRHWrUkB55RJoxQ/rsM+vapEyqv8lujYYbFl4277bDyd/rsrK+/tre/I8/bo1yDGMce+R7zjnnaOLEiRo2bJgkK2F44oknqlmzZqpbt67++usvrVq1Kjp/gwYN9PTTT0cTc+nIycnRY489posvvljr1q3T2rVrdfPNN2unnXbS7rvvrrVr12rOnDkxib4WLVroqaeeSlhm8+bN1bt3b3Xt2lWlpaXavHmzevXqpX79+qlZs2bKzc3V3LlztXLlypjlHnzwwZjm2ACAFN1yi9VUsHv3zMtKdONWs6b02GPOlZeqRo2sRGH//lYyMJEG/9/encfpVPd/HH9fs1vGPvaEwciSUEhSyppSlkJupaREylK0IqWSVO4k1U2hRSktN5X4taK0UMptixYKkQgRM+b3xxlnrjMz1zXXcq7rXMvr+Xh4uM6Zc77ncy3ne53rc75LOemll+w5ZqRdeHpyzTVORxB6NWsan/MZM8JzvFAme3z5AUFSMDrk5gb3XsXb+1y2rOTjxIpe1a4d3bN3Op1Mdvr4MKSnS2ecIX3zjW/bu02MGhFKlJCOHHE6ishWurS95ZUv79t2aWnS1VcbN4rhCFtvz997770aOnSokpOTJRkt8DZs2KAvv/zSkijMzMzUCy+8oLp16wZ9zHr16mnu3Lmq5XaHY9euXVq9erU2btxoJgpdLpd69eqlF154QenFjOHTo0cPzZ49W1WqVDHXHT58WGvWrNFXX31lSRRWqVJFM2bM0IABA4J+LgAQ1x56yGg95i9/fqh+/bV0/vn+H8Mue/dKu3ZJoRqy4sEHC6+zszVbqJICzZsbXZycFI6Ex+23S088Ia1aJb3/vn3leoo9VD+mXS5+qAPu4i1hiuhn52d2+nSpWjX7ygun6dPzX4tQjfPrr65drcuhGovW17kW7HpdAr1uCGLYOgTH1sFkXC6XRo0apR49eui1117TihUrtGvXLh05ckRly5bVaaedpq5du6pHjx5KSUmx7biNGjXS4sWL9cYbb2jZsmXasGGDDhw4oLS0NJ1yyik666yz1KdPH78mUmnbtq2WL1+uxYsX68MPP9T333+vffv2yeVyqWLFiqpfv746duyobt26qVSpUrY9FwBwVIUKUqlSxkD5kS6QC91GjeyPI5JcdZUxw+zWrcZy377GTLAFFXdnP5w/fJ97zojb165M0fqjfMSI/PfiZFd4X5xyivTbb6GJKZpF6+cA0Y3PHVBY+/bSTz9J+/ZFX9JwyBCpWTNp82bpnHOKvmYKt3vukdaskX7/3Yhn5MjQHOecc6TWraXVq4vftkIF4/0Np5P17V13KXfRIrkOHw7v8WFvsvCkzMxMjRs3TuPGjQu4jA8++MCv7VNTU9WvXz9bJxhJSUlRr1691KtXL9vKBACvatc2LricFC0thqIlznAqV05au1ZatEgqU0a69FLjrrldfHnN/e32nJYWunEI/RHKJMDmzVL9+qErP9r48Vq7OM/Do04dad066zq3HjZekUDj+whISbG/u2qojBhhXW7VyvgXKdq2lTZtMnqi1KwZutfV5ZI++kj6z3+ko0elCROkv/8uvI1kXF+GO1l4UlaWcr74QkmNGztz/DgWAVfnAADTffcZA0k7pUUL544dyT84o+mHYHq6McZLz57OJOHKlCn8OXriifDHEUk8JQp9SSBG4nnh6/ngabtoOp/ixZQp1uWUFGnYMGdi8Yf7RAue2HnTP9jxHRGQ7KK6QUZKl9Fo4uQwLJHizjulqVOdjqJ45cpJDRuGPgGblmaMpXzrrZE9u3KDBt7/fs45gZc9dmzhdW3aBF5eDCFZCACR5F//ktavd+7406Y5d2w7kYwIDV9/JD/5ZP6P+N69jW7GwZYZak7E8fTToS2f8wC+ysoyhjAoX95oUfjCC0bi3xdOnsMzZ1qXr7lG6tQpfzk5Obpmk0eRfir4HmZmGmPdwj+PPBLa8iPl+9ybyZOl1FSno4hM0XrN0KNHcBPn3HyzVKlS/vJllxmt7RGabsgAgCA40V0xK0u64w6padPwHztY4bg4rVfPmMnYbYIreNGmjdGd/mQrHDvfo2i9mC1K+/ZGt59HH5UOHnQ6mugSDT9Ko82IEYW75/mialX7Y/FV9+7Sf/8rvfGGMbbXbbdJ2dlGy6E9e6Rrr5Xs7LoWy5+7oUOdjsCjA2efrd+GDFHG668rqVo1uebMie33wm6XXirdeKPUsmVojxNL388w2HmeheqcDTYJXqOG9O230ksvGTfMrr7anrhiAMlCAIh348YZMxFHm3D+UEhMNFqnDB8evmM6yY7X1u4kYag5EWtiojRxovEvml6rYMXTc40GzZoFvu+ll0oZGfbFEoiLLzb+nZSSYiThQ2XMGGMCAncXXJD/+KqrpHnzQnd8u11zjdHF79ZbnY7Es6Qk7bzhBu284QY1a9ZMSUn8hPXLm28WXkc9jEgXzs9o9eqRXQc6hG7IAIDodPIOtj93soO58Bg2zBgEOhZw9z+2hPtHXyT8yOQzbJ9gxqpdsMC+OKLFjTdaJ3+58EJrwnX8ePu7ORZ1zqWlFV5Xs6b/Zc+ZI91+u0QCDsEKVb0caLnnnmtdbt06+FhimbfX+aKLwhcHIgbJQgCAVSQkAoIVqufQsGFoyg2laOhCguhDsg5S0QmrWFexotFlbcoUY3zWd96x/j0zU/ryS3tbor/yinW5Zk1pxQrrutq1mcACcDd+vFSqlPG4ZEmjFT8Cc+edzk7A6A3XpiFDshAAEHt8SWRwcREZIuV9iJQ4ilJcbJGauKtYMXRlR/L7hdhXpYoxg+awYUa354KaNpVmzLDveD16SEOGGI8zMoxW7i1bGknENm2krl2lpUs5LwB3HTtK69YZ3bC//dY4T+CZt/qjWjXp88+lK67wPqbfpZd6/pu/1yrUZ44jWQgA0e7aa63LHToEV16kJh484WIifCLhs8H77btQvl++vA8JPlxmTpkSuuMDdnPqc5eaKj3zjJSTI+3aJXXpYqy/4grps8+kd981xh0Mp0j4PkDgQvH+ReJnom5dI4FVr57TkUS/Fi2MGxTPP+95m4kTpRIlwhWRIRI/dzGCZCEARLubbzYG5pWkMmWMWY2jET/+I0c434tIed8jJQ47RcIFdFEzrLu/1oMHG2O+eRIJzwGIFAkJviXhgUBFYp0bi9/PkciO9/6MM6Svvgq+HEQEvm0AINo1ayZ9/73RPWDjRqlTJ6cjQqQL9IKQC3ZnROKPN7tiqlhRev996c8/pbPOsqdMAAjW5MlORxBaofg+j7QJThC8QD4njRoVPSEK15BRh2mvACAWlC/PLG/uuLDMx8WZbyL1dfIlrkiN3VcJCVK5ckWP/QZEkho1nI4A4dC3b/T20gAAm9CyEADiXbQnGgKNPy2tcHLi+uuDjwf+ifbPH7wLNnHv6fMRjs9NPHw2vQ1Gj8LuvNPpCCJHLJ8fV18d28/Pm2Ced7zeqJ092+kI7BFp71+8noMRhGQhAMS7SLs4CBeXS5o2Lf9ipEoVaeRIR0OKGPF4gRaLzznQc/v99+2NoyB/Xut4rZ/CoXRp6Z57nI4ielx/vVS1qtNRIBxi8fsAoXPNNU5HEDqcC3GNZCEAwCqeLgxuukn68kvp9delb7+VTjvN6YgiWyR8NkgehV6nTtKoUeE/biR8vtzF8mdt5kxp7VqpZUunI4kesZwQCEQsnx8ITHF1uN0tcwuOizdjhr3l+yrSvrtiha+vqz91Ed95fmHMQgBA/CjqwqNlSy4efBXLPw4j+WI/kmMLRCx/jqLFjTc6HUH0sfM8rFjRvrJgP+qowHh73c47Txoxwt7jzZolDRkibdki9eghXXedveUjNjRrZjQIKFcu9icushnJQgCIZnfdZX+ZXCTHvkh6j2MtEWa3aH99oj1+IBTmzXM6AsS7cNbNR44YY0Qn2Nyp8ZRTpPfes7fMiRONf/4aO1Z6+GF7Ywk3O68Nk4pIM/n7/vfqZU8sq1dLv/xi3KSpUMGeMuME3ZABINqcfbbUubMx1tSECcGXFyk/5iMljkBkZTkdgWfR/LrCN23bFr0+EpLCwcbgaX8+14hWgwdLHTs6HQVQtGDqbE/7pqXZnygMlWHDAjs/Y3WCvEC/a++7r/C64pKwLVrkPx4xwhhL3BfFfWZTU6X69UkUBiBKzloAgGniRGnpUmnSJCk5OfjyIiGhEO0KjpNz+eXOxGGXSE7EhCq2SH3OxZ2f3bqFJlnt7bgul9SkSeBl2zHDMfUWokHv3tbl88+X/vMfo5UV4ketWk5HAF9lZBiTfL31ln/7ZWaGJp5o1bSpMav4SYMHFz8u+KpV0jvvSCtXSv/+t+/H4nogZEgWAgAQrI4dpcWLpYEDpbvvjt0uZqFIqEVqki4azJzp/w8auzz0kP1lcsFvn6uucjoCSNKYMVKlSsbjChWKbm2D2Pa//zk38QYC43LFZ0K/TZvC62rXDqwsl0t6/nnp+++l9euNmyTFSU01boB66i3hCdcOIUOyEAAAO3TvbiQJ77vP6HIDhNqNN3pvXRzKC+jTTpNmz5bq1AndMSR7WiFGs1NPDWy/KVOMOgn2CeQzd/bZRrJo1Srj/3bt7I/LKd26OR1BdCiuNZVTMjLsL5OkTXQreBOwQgWpT5/gymzcWGrUKLgy4BiShQAQ72LxR3c0XLAOH25dbtXKmTicFoufv1h38vy69lpp2zZp+fLitw32WAWF43MTCZ/NJ56wxnHnnb7tV7Wq0dr5s89CExd8l5FhJA19HX8rWgQzFAGc98gjRa8PR7335JPW5VmzvG/vxDVdNFxH2i0rS3rtNWPswHPPNbpj2zHcUajF43sVJsyGDADRJhJ+wJYqJR0+7HQUhkh4PQIxbJj09tvS9u3G63n33eE7dqAXVhdcYG8cEhd5xXG5pAYNjFZJkcrfHxPx3lrQH5dcYiRjly6VGjaUBg1yOiIAkey666xdPgcOLHq7pk3tP7av3+fDhhnJ89Wrja6vds16i+D17l14rNVIx3VkyNCyEADiXcEvWV9+sE+dGppYYsmFF1qXC44h1qiRtG6d0T1t40YjKRAKgSRgPO0T7EQac+dal0uWlLp2Da7MeFBcq4tQ8KcVVNu2+eOynfTCC/bGE88uuMDoVnzNNSRUnRTPr/3tt1uXH3jAmThQvDvvzJ9V9vTTpXvuKXo7pz/PvXtLDz8cuYlCp18fIAKQLASAaFOzZmjL9+UOXSRcRNWo4f3voWgF54/bb5fKljUeV6ki3Xxz4W3KlTO6p4X6PY0Ul14qtW5tPHa5jNaUJUs6G1M0OOecwPYL5m77sGG+b5uUJE2fnv9eXnyx8V4DiA2TJkkTJhjjYD74oDR2rNMRwZM6daQvv5SOHJHWrJHq1/dv/2C+N5LotAgfxdL4rTGMMxoAosmZZ9o/WHYkJP6KkZuaKteJE9Lx4/krvbVuzM2V7r/fSBgePWqsmzgxpDEW0rGjtGGD9OOPRjfSgi2vwuWMMwqv69cv7GFIMpKnn35q/JApXz6wz3I8djdJcODebpkynv9WVJ1x5ZXSRRcZwxNUr56/TTS/X9EcO2Cn5OTwf4eGS+/e0uuvW9c1aODbvtOnS7fcYn9MwUpIcGaitbJlpZYtpa+/zl83c2b440DkmzxZ6txZ+ucfY/nBBwMvi+/qkKFlIQBEi6uvNgasj1Xekpblyxszr5YpY1wAT5mSn2jytN/ZZxtJqWnTpDffNFpFhFu1akV30Qyndu2M2ehOSkkJ7/iIBSUnG69JpM4QWVD79k5HED3KlTNa/BZ3A8KOGxRRcJMDQBSYNMk67uqFF0qZmb7te+21xpiApUqFZgzAaDRzptG6MSFB6t/f85iJiG/t20tffCE9+qjx26bgUAf+IFkYMrQsBIBo8fzzTkfgrIEDi77o9HaR0KQJMza6XNJHH0n33Sf99ZfRCuLUU52OKnp4mjEyXEiKAUDoNGpkTLTxn/8YM1f708W6dGlp3jzjn0R9LUmtWknbtjkdBaLB6acb/xCxSBYCQLxLTPR/n0i/i8cFu1WlSkZ3KV9F8usX7thODhQfjXw5T/v3l15+OX95/vz8x48/Lo0caXdUCKdIr6uBSNC8ufTkk05HgUhC3Rk9eK9Chm7IADBmjNMROMflkm66yekoipXbs6fTISBeRXLi1A7PPGNMvtOtm/TUU9KAAfl/u/rq0ByTC3tEo1ivCwAgGnFNETK0LASA4cONce3i0bhxUtWqTkdRrBPjxvl3d4sLB8A3pUt7bnVarlxYQ/ELiRsAsB91K4A8tCwEgFq1nI4gvHr3ltavl374oejZxyLxQrFGDc9/i8R4gUhgR9K8Xr3C68qWDa5MT+dspJ3LkRYPnMXnAXAGN4DhDZ+PkCFZCADx9gPA5TIG9PY02x9fugBOmjnTuty9e2S0OKSeAgD7UbcCyEOyEADiDReCKE68JdDtkpXldARWZcoUXlepkn9ldOokLVpktEgeOdI6GQoQT4JtUQsAQBRhzEIAgP9CkXAkQYVI5M/n8tFHjZZ3kaJtW+mUU6Tt2/PXzZ3rfzk9exr/AhFsXeFpf+oL3/A62aNZs6K75AMIPeoxeEMjiJChZSEAxKJzz3U6Amdx4QAnXHSR1LWrdd399/u276hR9sfjckkvvSTVr2+0irrzTqlzZ/uPE0hckVAG4M0ZZ0gNG0odOkivvup0NACAorhf87dqZf1b06bhjSXGkCwEgFg0YYJUqpTTUYQHSYP4kprqdATePfqo0QopNVW67DJp2DDf9rvrrtDE066dtHmztH+/NHmylBRlnUqcPL+56RDfbr1V2rBB+uADqUEDp6MB4hd1Mbxx/3xMmiSVKGE8Tk01rnsQMJKFABCLyaYLL5TWrQtd+bH4miE6ZGYWHhtw3jxnYinKaadJ33wjHT0qvfGGVL68b/tVrCjdfXfh9ZxrAAAAxevSxbgGe+UVae1a6ZJLnI4oqpEsBIBYVbeu0S2yoFhLPnDH2X6R/BlxuaRnn5Vq1jQeX3ON1KeP01HBk1CNWQjf8PoBAGJZwe+5Bg2kK64wbt4iKCQLASDeFPfj0alEET9q4atzzzUm7ThxQpozJ7/LSbCefda63K1bZCdOo5Wn19Sf1zpW3pdmzZyOAJ7EymcMAGIZvx9ChmQhAMSyQH7s+PKlG0lfzPygg10GDZLGj5eaNJEuvVSaPdvpiBDrpkxxOoLwmTrVuhzpzz2SvucAAAizKBvlGgBCgGQTAMmY/OPee41/TiA5EVnC8d3QpYt05ZXGrNWxbswYqUwZ6fPPpdatpeuvdzqi+NC5s/T++05HAQSubNnC6848M/xxAHGGloUAAMCKBHrk4L2Ifaef7nQE4eFyGQnCOXOkG27gsx0uDz4YfbOgA+5KlpQGDsxfTkiQHn00tMfk5l304L0KGZKFAAAACI0BAwqvO//84Msl0QT4pkULadUqqXlzpyMBAjd7tvTww9JNN0kffWSMXQxIJAtDiGQhACA8Klf2/nc7v+xDdeFQr17hdczEi1CK9ovgm26SypXLX87KMrreAgifs86Spk93Oor4k5bmdASxIzlZuu026YknSBTGqT+6d3c6hLhDshAA4L9AEhhz59ofhxTeFkZVqki9e+cvp6VJEyeG7/iIbbHYWq5cOenbb43x6u66S/rsM6MLGRDpYu18jPYbD9Hgxhuty3PmOBMHEIN2uXdFd0fdFjIMYAEA8SbSv1SvukqaN89c3NOzp8o7GE4hL78sPfmktGuX9K9/SY0bOx0RYkWkn5uBqlVLeuQRp6MA/BOr5yNCZ/p0qUYNaeNG6aKLpP79nY4IiBlHi+rdI1FXhxDJQgCIZdHUMuLkl/348cr99lu5vv1Whxs10q5rromsZGFysjRypNNRhFY0fW5i3cn34tlnpSFD8tffeqsz8YSZy8kfAfwAQSyhXg+95GSjBXW0mDBBuvde67p4mXCpOJwvAMlCAIhIY8caAzmf1Lp1YOWE6sduIBdRvsaSmamcL77QujVrlJuYSJdFQJIGDzZmNF2+XGraNDaThf7UK/yQA4DgDBkiPf+89PPPxvLdd0ulSjkaEqLEjBnGmMQnTZ7sXCzc2AsZkoUAEIluvFFaskRav14qX16aNMm+skP9I3vqVGMQ6mAkJCg3Odm3bQcPlh57zLou0OQqEKlcLmnQIOMfnHXDDdLTT+cvd+zoXCzFadSo8Dr3H3gA4leNGtI330j/93/GmMzt2jkdUeQgAeXdsGFSerq0cqXUsqW150O48V6FDM01ACAS1a4tffWVMe7NDz9InTs7HZFvpk2TRo/2f79q1QKfNfC226TSpfOXW7aU2rQJrCwAKM7IkVJmpvG4UiXpnnscDcersmWl4cPzlytVCqyOBhCbypUzJm4jURjdHnrIuhzqm0IulzHG+NNPS9dfT2v/GEXLQgCIVGlpUlaW01EUzdNdPG8/Qr3d+bv//sAvNKpVk9aulZ56ykgaxmL3TES+GjWcjiD6nXmm9NFHllVHTiblnOCpTmrY0GiN88svRv1TPshRVRs2LLzOztaKTzwhXXihMSnTZZcZMQfimmuk557LX776alvCA4C4cfHFoSl3zBjp6FHjO/SMM6QHHgjNcRy2fdQoneLemyg11WgkgJCgZSEAxJtIa65fpYp07bXBlVGvntGq8d57jW4RCA53iD17/PHC65KSpClTgi870s7NcBs7VkpMNBdzS5TQnj59it7W6c9o6dJGF99gE4WSdMklUvXq+csul3TffcGX615ez57G8BaBJgolY+KGM84wHjdrZoxvBgDwTenSxqQyoZCUZJT94YfG0DwlSoTmOA7b162bjtStm79i4sTAeyahWLQsBBA/qlSRdu92OorwCtUPajuTGkW1qgEi1c03Sykp0iefGHVK+/ZGC+DGjUNzPKeTYuGUkWFM4DJ+vJSYqJz779eJePgRkJAgffyxkSw9fFgaN05y/zEUKTIzjeEx/vnHaM3hlthFFCgqsV21avjjAOLNu+9K27ZJnTpJ9es7HU1Uy65QQRvmzVOzQ4eUWLWqceMKIUOyEAAAwFcul9FC68YbnY4kNp1/vpGIlaTsbOnbbx0NJ2zq1ZMWLXI6iuIlJkolSzodBQLRpInRGvZ//8tfN2eOc/EA8aJrV6cjiCm5aWnKbd3aaE2JkKIbMoD4EU8tdJw2bpx1ecQIz9vyvgAAEHoLFxoTWdSvL02dKnXp4nRE8SE1tfC6BH6GR7R4HxYEEC0LAcQTvvjtU1yC7557pD//lFaulM46y5jA5NNPi96W9wUA4KS77pImT7auO+ccZ2IJpUaNPH8XI3Q6dJAqVJD27ctf9+qrzsWD0Gje3JhwD4gR3NIAAPivuARfqVLS009L339vzJ5Zpkx44oI9aO2JSMdnFHYaPlyqXDl/uXdvqXZtx8JBjElOlmbMMK6NJKlfP6l7d2djgv3uvNPpCABb0bIQQPywowVbLLSCi4XnACC+hWNyDerK+FGtmrRunbRggTERyIABTkeEWNO/vzHz+T//GK0MueERey64wOkIAFuRLAQAX1WsaHQxQGAXuS1a2B8HgPjUpo1UqZK0d2/+uuefdywcxIAqVaRbbnE6CsSy0qWNf4h8JHMBuiEDgM8mTjS6kkQ7py6AqlVz5rgAYk9SkvTII/kTB3TqJPXsae8x+LEIAADiFMlCAPDVTTc5HUH0+9e/Cq/jBzmAQFx9tbR9u/TDD9J77zE2KgDAOVzPIsbQDRkAED4J3KOKClzwOoMx8vyXkWH8AwDALnwfA7QsBBBHSIDYh4soIDyotwAAiHxcGyPGkCwEAFjddpvTEQAAAAAAHEKyEADiTXF3PgcNkmrVcubYAAAAAABHkSwEED/iMVEVSBfGMmWkb76RunTxvE08vpbxhK6vAAAAQNwiWQgAKKx8eWn4cPvLJQkFeEYSHgAAABGAZCEAoGgkLgDnkWAHAABAmJEsBIBYRsIPAAJTsmThdWXLhj8OAEB4lS5deF2ZMt734ZobMYZkIQDEG1oqAdGDHx/66e67rSt69gzPgUuVkrp1s66bMyc8xwYAOOfcc6Vq1azrXnzRmVgAh5AsBBA7Tt4FvOqqov9Okszga/IhFEkKEh/Ro1076/IjjzgTRzyhjirSHz16aMdNNym3dWvpX/+Snn02fAd/8UXp2mulCy+UnnkmfIlKAIBzEhKkuXONhGFSknTLLd4n/pP4DkfMSXI6AACQZHwBL10aXBm//y4dO2Z0E5s3r/Df69SRdu8O7hjRJlQXLnaWy8VVZPr3v6W+faUffpAuu0y67jqnI4p9JNOLlpCg3YMGqepjjykpKcyXruXLS7Nnh/eYAIIzdKg0a1b+8qWXOhcLolenTtJvvzkdBeAYWhYCiAxTp0pZWcGVUaJE/nhSvXoV/jtJKf+QuIhvzZtLmzdLJ05IixYxVptTqLcAwD9jxkiNGxuPa9eWJkxwNBwAiEa0LAQQGZo2lTZsMBJUiYnBl1exYvBlxDtvyUISiQAAIBLVqyetWSPt22fc6CpRwumIACDqkCwEEDlcLlrRRBISggAAIBqlpEhVqzodBeIJ182IMXRDBgCEDxdSAAAAABDRSBYCiE0kpQBEG+otAAAARACShQCcV716eI5DF2eDrwmJUCQueA8A/3DOAAAAIMxIFgJw3qxZTkcQu0KVaLBjEhoAAAAAQMRhghMAzhk4UOrZU7rkEqcjiV3BtA70tG+DBtIppwReLgAAAAAgYpEsBOCMkiWlefOcjiI++dra0FOy8N//lo4dsy8eAAAAIJqlpDgdAWAruiEDiB9MHuAfT69Xly72lwkAAABEq/R0qW1b67rZs52JBbAByUIAsYlJAaIH7xUAAACi3ezZUps2UrVq0i23SAMGOB0REDC6IQNAvKF1HwAAAGCvhg2lzz5zOgrAFrQsBBCbSIgZgmm1x2sIAAAAAHGHZCGA+EF3V/94SxaSSAQAAACAmESyEAAQPiQZAQAAACCikSwEABTNW2KPVpqA/UimAwAAIAKQLATgm+RkpyNAuJUuXXhd5crBlUmSEfAP5wwAAADCjGQhAN8sWOB0BAi3rl2lChWs6+bOdSYWAAAAAEBYkCwEULyrrpK6d3c6CgTiwgsLr7vgAt/2TU6W5syRypUzlm++uejyAAAAAAAxg2QhgOLNnSulpjodBQJx3XVS+fL5y+XLG+t8deml0h9/SDk50vTp+d3RAx1bjTHZAAAAACCiJTkdAACEhN1JqWnT7C0vXEqWlL76SnrgAWPsszvvlEqU8K+MhBDfV2JMNsBAMh0AAAARgGQhIku1atLOnU5HgVjlb1LqlFOkWrWkjh2NLrjRqm5d6T//cToKAIEgmQ4AAIAwoxsyIsv55zsdASLBI4+Eplx/W+089ZS0YoU0caKUxL0VAAAAAEDsI1mIyJKY6HQE8Ob668NznDFjgi/DU2ucgt2J+/QJ/lgAECp0TQYAAECY0VQGgO9GjJD++9/o7io+fLj022/Su+9Kp50mPfmk0xEBgIEuxwAAAIgAJAsB+K5JE2ndOikjw+lIApeaanRzDlVX53hBayfAfpxXAAAAiAB0Q0ZkoVVF5Ctb1ukIACB+8L0IAACAMCNZCABS0ROYpKaGPw4AAAAAABxEshCRhS5Y9qpYUVqwwOkonOHvZ+mVV6zLlSoxOzcAAAAAIO6QLARiXY8e0plnOh1FZPDWna97d+nqq43HZcpITz1VdGtDAAAAAABiGMlCRBbGZrJfiRLSypX2lZecbF9ZkSQ1VXr+eemvv6Tdu6U+fZyOKDbRehjwjPMDAAAAEYBkIRAPUlKktDSno4gO6em8Vr5o167wugceCKwsbhIAnnF+AAAAIMxIFgKIDY884nQE8aViRWnEiPzlOnWkwYOdiwcAAAAAYAsG5AJiWay3SGnTRtq8WbrkEumGG5yOJv5Mn26Mibl3r3TRRcZYjwAAAACAqEayEED0+uwz/7ZnPDB7uVxSx45ORwEAAAAAsBHdkAEAACIVNzkAAAAQZiQLgVh2441ORxBZYr1bdjTo16/wukGDwh4GEJFuvrnwuhkzwh8HAAAA4hrJQiCWuU9AAUSC7t2lpk3zl+vXly6/3Ll4gEhyyinSsGH5y127Su3bOxcPAAAA4hJjFgKxavRoKSMjf5mubIgECQnGWJNz5kgnTkjXXiulpDgdFRA5nnxSGjJEOnpUatXKOGcAAACAMCJZCMSqGjWcjgAoWqlStHoFvDnjDKcjAAAAQBzjdjUAAAAAAAAASSQLEWmqVHE6gthRcDIPJvcAAAAAAADFIFmIyDJypNMRIFp07ux0BAAAAAAAxByShYgsFSs6HUHsiOUJTZKSpIce8r5NLD9/AAAAAABChGQhEC+cSJ5VrWpveY0aSTfeKK1YITVv7v/+dMUGAAAAAMArZkNGZCGZY59IeC3Xr5d+/FFavFiaODH48saPl/r2Db4cAAAAAABQJFoWAgidChWkli2lSpXsKS/YBChdkwEAAAAA8IpkIYDYFAktKwEAAAAAiDIkCxFZSPDYJyEGT29aBgIAAAAAEFIxmE0AIEm66irrsp2J2BYt7CsLAAAAAABEDJKFiCy0LLRP+fLWZTtb5T3+uHW5Uyfv2zdpUnhdnz62hQMAAAAAAOxBshCA/849V3rnHWNm4pEjpddek6ZOtW7Tv3/+4/btpYYN85eTkuyZHdkbuiwDAAAAAOC3JKcDABClunUz/p00YoS0a5e0dKnUqJH073/n/83lkj7+WBo/XvrrL2nUKKlOnfDHTMtVAAAAAAC8IlmIyEIyJ3qlpkqPPGL8K0rlytKsWeGNCQAAAAAA+IVuyEBx3FvPAQAAAAAAxDCShYgstCyEN4xDCAAAAABASJEsBAAAAAAAACCJZCFQPFo7AgAAAACAOEGyEJGFxBy84fMBAAAAAEBIkSwEEJt69y68btCgsIcBAAAAAEA0IVmIyELLMdila1epadP85dq1pQEDHAsHAAAAAIBokOR0AADCJN5mEk5IkD77THr2WSk7W7ruOiktzemoAAAAAACIaCQLAUQPfxOepUpJI0eGJBQAAAAAAGIR3ZARWeiGDAAAAAAA4BiShUC8IBELAAAAAACKQbIQAAAAAAAAgCSShYB3117rdAQAAAAAAABhQ7IQ8GbSJKcjCMzAgYXXxdtsyAAAAAAAwG8kCwFPypWTatSInrH+KlUy/q9RQxo1ytlYAAAAAABAVEpyOgAgYp1MEgbSIu/++6Xy5aXhw4v+e3q6dPBg4LEVZcMGaft2qU4dI9EZi2gdCQAAAABASNGyEAiFnj09t0icNUv66y+pY0d7j1mpktS8eewmCgEAAAAAQMiRLETEyZk61ekQDKHqfnyydVy0dG+OJLxmAAAAAACEFMlCRJzckSOdDsEQa4mpWHs+AAAAAADAdiQLEZGOVanidAj5Ak2y9etnbxzBYrw/AAAAAABQjJBNcLJ161YtWLBAq1ev1o4dO5Sdna3KlSurQYMGuuSSS9SpUyclJdl/+JUrV2rx4sVas2aNfv/9d+Xk5CgjI0NnnHGGevToofPOO8/vMtetW6eFCxfqyy+/1O7du5Wbm6sqVaqocePGuvTSS9W+fXu5aLUVe4J9T8uXtycOAAAAAACAMAlJsvCJJ57QrFmzlJ2dbVm/fft2bd++Xf/3f/+nJk2aaOrUqapbt64tx9y9e7duvfVWffHFF4X+tmPHDu3YsUOLFy/WGWecoYceekh16tQptszjx4/rvvvu0yuvvFLobz/99JN++uknLVmyRO3atdODDz6oypUr2/JcIP1++eWqOWOGs0HYkQBOTZX++Sf4cgAAAAAAAMLA9m7I999/v2bMmGEmCpOSktS4cWOdeeaZKu/W0ur777/XwIED9euvvwZ9zJ9//lm9e/culCjMzMxU69atVbt2bXPdN998o969e+vrr7/2WmZubq5GjhxpSRSmpqbq9NNPV/PmzVW6dGlz/YoVK3T11Vfrr7/+Cvq5wLC3d2+nQ6DbbiTiPQEAAAAAIKRsTRa+9957mj9/vrncpUsXffzxx1q0aJFefPFFffrpp5o0aZJKlCghSdq7d69GjBih3CASAEeOHNHQoUO1Z88ec93555+v999/X++8847mzZunpUuXavHixTrzzDMlSYcPH9aNN96oXbt2eSx3zpw5Wr58ubl85ZVXauXKlVq4cKEWLFiglStXatSoUWZX6m3btunOO+8M+HnAKic9XTsHDXI6jNBgNmQAAAAAABChbEsWHj9+XFOmTDGXO3TooMcff1yVKlUy1yUnJ6tv376aMWOGmWRbv369Fi9eHPBxX3zxRW3bts1cvuKKKzRr1iydeuqplu3q16+v5557Tuecc44k6cCBA7rvvvuKLHPfvn168sknzeX+/ftrwoQJSk9PN9elpaVp6NChmjRpkrlu2bJlWrNmTcDPBVbZTo/5F0wyz5eEYLhbyTVsGN7jAQAAAACAqGNbsnDZsmX67bffJBldj8ePH6+EhKKLb9eunfr27WsuP/fccwEf96WXXjIf161bV+PHj/c42UhKSooeeughpaSkSJKWL1+uLVu2FNrutdde0+HDhyVJ5cqV09ixYz0ev3fv3jr//PPN5WCeCwpwuuWd08e3m1sCvEh55wUAAAAAAIhftiUL33nnHfNx27ZtVb16da/buycL169fr+3bt/t9zJ9++sky5uGgQYOUnJzsdZ/KlSurQ4cO5nJRrRrfffdd83G3bt1UsmRJr2W6P5dPPvlEf//9d7GxwwdOJ+uCOb7TsRelbVtp8mSpXLmi/z5nTljDAQAAAAAAkceWZGFubq5Wr15tLp/s6utNVlaWMjIyzOUPPvjA7+P+/PPPluXWrVv7tF+TJk3Mx19++aXlb/v379eGDRvM5Xbt2hVbXps2bZSYmChJOnr0qFatWuVTHIhwdiT8nnmm8LpevYIvNxAJCdKdd0p//ln03wcMkOhGDwAAAABAXLMlWfjrr79aZgJ2T8Z5k5WVZT7+7rvv/D5uwdmHq1Sp4tN+5dxaVrknBiVp06ZNlglXGjduXGx5JUuWVK1atczlQJ4LCsuNxNZ5/urZU2rZMn95xAjJx88pAAAAAABAuNmSLPzpp58sy+6JM29q1qxpPv7ll1/8Pu7JWZVPOnbsmE/7nRyPUJL+/vtv7d+/31x2fy4pKSmqVq2aT2UG+1wQwYJJWpYuLa1aJb37rrRypfTvf9tTbqiEe9IVb15+2bpcooR0ySXOxAIAAAAAQJywJVm4Z8+e/AITEiwzIHvj3g3ZvQxfFUzkFWwl6EnB7dyP7f7YPb7iBPtcEIHsSualpEhduxpjBsJ3F18snXee8djlksaPN5KvAAAAAAAgZJLsKOTAgQPm41KlSnmcBbmg0m4//N3L8FXDhg1VpkwZszvywoUL1aZNG6/7HDx4UP/3f/9nWXfkyBHzsXsrw/T0dJ9jCfa52CU7O9uxY9slJyfH6RAkSbmScrKzlZCb63dWPTs7WyrmvQik3GKP6aOiTvyTMXv8W7ilpUlLl0rffCOVKSPVr1/sa4rYUbAeiJR6AUD4UA8AoB4AQD3gDFuShf/884/5OC0tzef9UlJSzMe+diF2l5iYqMsuu0zz5s2TZMxsfP755+sSD10Vc3NzNWHCBB06dMiy3v3Y7o/D+VzscOLECX377beOHDsWHc/O1nfffqvMAwdUzs99N23cqKPHj3vdpt7BgyobcHSF+fPetyxi3bfffqsSW7aoUZBl2y4pSfr7b4nPdlz7/vvvnQ4BgMOoBwBQDwCgHggPWxo2HXdLivjaqlCSkpLyc5WBtly6/vrrLROWjB07VtOmTSvUuu/nn3/W0KFDtWTJEpUsWdLyN/eYnXwuKMDpMf38eP8BAAAAAABigS0tCxMTE83HJ06c8Hk/96RacnJyQMfOyMjQ448/rhtuuEH//POPTpw4oWeeeUZz5sxRVlaW0tPT9fvvv2vbtm2SjKTe1KlTNXz4cLOM1NTUiHguKMDhZGHuyQRwqOJwOhkKAAAAAABQgC3JQvdZid27JBfHvbuue8LOX2effbbmz5+vUaNG6ddff5VkJO/Wr19v2a5GjRp66KGHlJmZaVlfqlQp87F712N/nov7tsE8l2AkJCSoadOmjhzbTjk5ORHRtDglNVXNmjVTQpkyfu+blZUlNW7sdZsEmyfraNasWfD7e0iQB1s24K+C9UCTJk0sN3MAxD7qAQDUAwCoB/z33Xff+dX4rSi2JAvLls0fee3w4cPKzc2Vy4dWU+5jB7p3JQ5Es2bN9N577+mNN97Q+++/r40bN+rAgQOqUKGC6tatq4svvljdu3dXiRIl9MMPP1j2dZ/J2D2OgmMbenP48OEiywg39+7QUc/hlncu5b2eAcSRlJxsjLXn9QD2Pr9g3/ukpCSPMcfU5wpRKTExkc8hEOeoBwBQDwCgHggPW17hKlWqmI9zcnL0559/qkKFCsXut2fPHvNxpUqVgo4jJSVFffv2Vd++fb1ut3nzZvNx2bJlLS0L3Z/LH3/84fOx7X4ukHLppgsAAAAAABBWtszgcOqpp1qWt2/f7tN+O3bsMB/XqVPHjlB84t6ENSsry/I39+fy999/a+/evT6V6f6cw/lcYtmxGjWcDYBkJQAAAAAAiDO2JAtr1Khh6Xq7YcMGn/bbuHGj+bhhw4YBH//QoUPatm1boRmQPfnkk0/MxwXHYmvUqJGlC7Uvz+Xw4cP65ZdfzOVgngvy/dWmjbMB5OY6e3wAAAAAAIAwsyVZKEmtW7c2H69atarY7Tdu3GhptdcmwMTQlVdeqZYtW6pbt25atGhRsdtv3rxZW7ZsMZc7dOhg+Xvp0qXVqFEjc9mX5/L555+bg0cmJiaqVatWvoYPb6K5ZZ8vicZIfH4kSAEAAAAAiGu2JQs7d+5sPv7www+1e/dur9u//PLL5uPMzMxC3YF9Va9ePfPx8uXLi93+qaeesuzbokWLQtt06dLFfPz222/ryJEjXst0fy5t27ZVmQBmz0UEisRkHgAAAAAAQAjZmiysXLmyJOnYsWO6/fbblZ2dXeS2n376qRYuXGguDxw4MODjduvWzXz81VdfaeXKlR63fe211/TOO++Yy0OHDi1y1ubevXurRIkSkqS9e/dq0qRJHstcuHChPv30U3P5qquu8it+wBF3321dvuEGZ+IAAAAAAAARxbZkYUpKikaPHm0ur1q1SkOGDLFM/JGdna1XX31VI0aMUE5OjiSpQYMGuvzyy4ss84ILLlBWVpaysrJ0wQUXFLlNmzZtLOMOjho1qlALwz///FNTp07V3W4Jkvbt2+uSSy4pssxKlSrpuuuuM5cXLVqkMWPGWGZHPnr0qGbNmqUJEyZYymzfvn2RZQIR5Y47pGHDpCZNpKuukqZMcToiAAAAAAAQAZLsLKxnz55au3atXnnlFUlGwrBz587KyspS6dKltXXrVu3bt8/cvly5cpo+fbqSkgIPw+Vy6YEHHlD//v31119/6cCBAxo+fLiqVq2qU089VQcOHNC2bdt07Ngxc5/GjRvr0Ucf9Vru0KFD9d133+mjjz6SJC1evFhLly5VVlaWUlJStGXLFh08eNDcvmbNmppCwiWyjRwpPf6401H4JyHBGEfQ7rEES5aUnnyy8Hq6XgMAAAAAENdsa1l40r333quhQ4cqOTlZknTixAlt2LBBX375pSVRmJmZqRdeeEF169YN+pj16tXT3LlzVatWLXPdrl27tHr1am3cuNFMFLpcLvXq1UsvvPCC0tPTvZaZlJSkJ554Qn369DG7Kh8/flzff/+91qxZY0kUNm/eXC+99JIqVKgQ9HNBCI0dK3XoYCTgfHEycRZIAi3QpNsVV0i33GI8TkyUHnxQqlIlsLIAAAAAAAD8ZGvLQslIyI0aNUo9evTQa6+9phUrVmjXrl06cuSIypYtq9NOO01du3ZVjx49lJKSYttxGzVqpMWLF+uNN97QsmXLtGHDBh04cEBpaWk65ZRTdNZZZ6lPnz5+TaSSkpKiyZMnq2/fvnrjjTf0+eefa/fu3Tp27JgqVKig008/XRdffLE6d+6sBF8TUHBOtWrSBx8Yj+fOlQYNcjScIrlcRuvHe+4xkoXlykmPPeZ0VAAAAAAAIE7Yniw8KTMzU+PGjdO4ceMCLuODk4kdH6Wmpqpfv37q169fwMcsyumnn67TTz/d1jIRA845R/IyoU5QKlYMTbkAAAAAAABe0BwOKI6n8QIXLfJ/HwAAAAAAgAhGshAIRM+eUuXKTkeRr2RJpyMAAAAAAAAxgGQh4pM/E5B42/bFF4OPxV2gLRKffdbZ4wMAAAAAgJhAshDwxJeE4hVXhLZ8X8yfL115pT1lAQAAAACAuEayEAhGUsjmCMpXXFLx4otDHwMAAAAAAIgLJAsRn2Kpu61dLRQBAAAAAEDcI1kIBCKWko3uSDwCAAAAABDXSBYCnpxMnAWSQCPpBgAAAAAAohDJQqA4oWpFePvthdeNHh2aYwEAAAAAAPiAZCHgScuWnv9WXMtBXxKM554rdeyYv3zRRVKrVr7F5k8sAAAAAAAAPgrDVK5AlLr//tCWn5AgvfeetHy5kfDr2DGwxF+sjp8IAAAAAADCjmQh4lOlSkWvP/ts6cgR6Z57pLp1Pe9vV4IuMVHq0sWesgAAAAAAAIJEshDxqWtXqXJl6fff89d98onRNbggp7v5On18AAAAAAAQNxizEPEpMVF6/XXptNOkatWkhx+WzjnH6aicR5dmAAAAAADiGi0LEb/atZP+9z+nowgeLQ8BAAAAAIBNaFkIAAAAAAAAQBLJQiA07Gzt9+ij9pVVHFopAgAAAAAQ10gWAsW54YbC666/3vs+do7916OHdOaZ9pUHAAAAAADgAclCoDhduliTdWeeaawLlxIlpJUrpcWLw3dMAAAAAAAQl5jgBChOYqK0YoX0yitGN90rrpASwpxnT0mRuncP7zEBAAAAAEDcIVkI+CI1VbrqKqejAAAAAAAACCm6IQMAAAAAAACQRLIQAAAAAAAAQB6ShUC0c7mcjgAAAAAAAMQIkoVAtMvNjcyyAAAAAABA1CFZCASrU6fC66pVC38cAAAAAAAAQSJZCATrwQel5OT85b59pQoVnIsHAAAAAAAgQElOBwBEvZYtpVWrpJdekqpXl265JbzHt3PMQsY/BAAAAAAgrpEsBOxw5pnGPwAAAAAAgChGN2QAAAAAAAAAkkgWAgAAAAAAAMhDshCIJhdeWHhdiRLhjwMAAAAAAMQkkoVANJk8WUpNzV8eM0ZKYuhRAAAAAABgD7IMQDRp3Vr68kvpv/+V6tSR+vVzOiIAAAAAABBDSBYC0aZpU+MfAAAAAACAzeiGDCBfbq7TEQAAAAAAAAeRLAQAAAAAAAAgiWQhAHcul9MRAAAAAAAAB5EsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWQgAAAAAAAAgD8lCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCwEkO+UUwqv69Yt/HEAAAAAAABHkCwEkK9SJenyy/OXk5OlyZOdiwcAAAAAAIRVktMBALaqVk264ALpxRedjiR6vfCC1KqVtHOnNGCA1Ly50xEBAAAAAIAwIVmI2JKQIM2fT7IwGCkp0q23Oh0FAAAAAABwAN2QEVtcLuMfAAAAAAAA/EayEAAAAAAAAIAkkoUAAAAAAAAA8pAsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWYhYw0zIAAAAAAAAAUtyOgDAb7NnS8nJ0ubN0v33Ox0NAAAAAABAzKBlIaLPNddIAwcaCUMAAAAAAADYhmQhYkturtMRAAAAAAAARC2ShYg+JAQBAAAAAABCgmQhItqOW26xrmjbVkrw8rFlghMAAAAAAICAkSxERNt72WU6ccklxkKdOtL06c4GBAAAAAAAEMOYDRkRLSc9XSdef10JSXkfVVoOAgAAAAAAhAzJQkQ+l4skIQAAAAAAQBjQDRnRi4lOAAAAAAAAbEWyELGFFogAAAAAAAABI1kIAAAAAAAAQBLJQgAAAAAAAAB5SBYCAAAAAAAAkESyEAAAAAAAAEAekoWIXsyGDAAAAAAAYCuShYgtzIYMAAAAAAAQMJKFAAAAAAAAACSRLESsoWsyAAAAAABAwEgWInrR5RgAAAAAAMBWJAsRvWhFCAAAAAAAYCuShYgttDYEAAAAAAAIGMlCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCxE9GI2ZAAAAAAAAFuRLERsYTZkAAAAAACAgJEsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWYhoxgQnAAAAAAAAtiJZiNhycoKTwYOt6+fMCX8sAAAAAAAAUSbJ6QAAW51sbThjhlSpkrRhg3TRRdKgQY6GBQAAAAAAEA1IFiJ6nWxFWJS0NOmhh8IXCwAAAAAAQAygGzIAAAAAAAAASSQLEc2Y4AQAAAAAAMBWJAsRW7x1TQYAAAAAAIBXJAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshDRi9mQAQAAAAAAbEWyELGF2ZABAAAAAAACRrIQAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIaJZ+fKF11WvHv44AAAAAAAAYgTJQkSv666TUlOt6x5/3JFQAAAAAAAAYgHJQkSvMmWkZ5+VSpWSEhKke+6RWrRwOioAAAAAAIColeR0AEBQBg6U/vUv47HL5WwsAAAAAAAAUY5kIaIfSUIAAAAAAABb0A0ZAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIQAAAAAAAIA8JAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshAAAAAAAACAJJKFAAAAAAAAAPKQLAQAAAAAAAAgiWQhAAAAAAAAgDwkCwEAAAAAAABIIlkIAAAAAAAAIA/JQgAAAAAAAACSSBYCAAAAAAAAyEOyEAAAAAAAAIAkkoUAAAAAAAAA8pAsBAAAAAAAACCJZCEAAAAAAACAPCQLAQAAAAAAAEgiWQgAAAAAAAAgD8lCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIQAAAAAAAIA8JAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshAAAAAAAACAJJKFAAAAAAAAAPKQLAQAAAAAAAAgSXLl5ubmOh0EAvf1119blhMSYiP/e+LECfNxrDwnAP6hHgBAPQCAegAA9YB/3F8vSWrZsqXfZSTZFQwiQ8EPRSyIxecEwD/UAwCoBwBQDwCgHggPUrIAAAAAAAAAJNGyMObQJBcAAAAAACA+2dH6kjELAQAAAAAAAEiiGzIAAAAAAACAPCQLAQAAAAAAAEgiWQgAAAAAAAAgD8lCAAAAAAAAAJJIFgIAAAAAAADIQ7IQAAAAAAAAgCSShQAAAAAAAADykCwEAAAAAAAAIIlkIQAAAAAAAIA8JAsBAAAAAAAASCJZCAAAAAAAACAPyUIAAAAAAAAAkkgWAgAAAAAAAMhDshAAAAAAAACAJJKFAAAAAAAAAPKQLAQAAAAAAAAgiWQhAAAAAAAAgDwkCwEAAAAAAABIIlkIAAAAAAAAIA/JQgAAAAAAAACSSBYCAAAAAAAAyEOyEAAAAAAAAIAkkoUAAAAAAAAA8iQ5HQBw0tatW7VgwQKtXr1aO3bsUHZ2tipXrqwGDRrokksuUadOnZSUxEcWcNp7772nW265xe/9Pv74Y1WtWtXj39etW6eFCxfqyy+/1O7du5Wbm6sqVaqocePGuvTSS9W+fXu5XC6fj5ebm6vly5fr7bff1nfffac//vhDJUqUUJUqVdSmTRv17t1bDRs29Pt5APFo+vTpmjlzpmrUqKEPPvjAr30/++wzvf766/rmm2/0+++/KykpSVWrVlXz5s3Vs2dPnXnmmX6Vd+zYMS1ZskTvvvuu/ve//2n//v0qXbq0qlWrpvbt26t3796qVauWX2Xu27dPCxcu1EcffaRt27bp8OHDqlChgmrVqqUuXbqoR48eKlu2rF9lArEmkHpg0qRJevHFF/06Tq1atbRs2TKv24TiO/7w4cN64403tHz5cm3atEkHDx5UuXLlVL16dV144YXq2bOnKleu7FeZQDRbvXq1lixZorVr1+r333/XoUOHzO/bM888U7169VKjRo18Li8arvWpB/K5cnNzc50OAnjiiSc0a9YsZWdne9ymSZMmmjp1qurWrRvGyAAU9Nhjj2nWrFl+7+cpWXj8+HHdd999euWVV7zu365dOz344IM+fUHv3r1bo0aN0tdff+1xG5fLpUGDBmn06NFKSUkp/gkAcWrdunW68sordfz4cb+SBIcOHdK4ceO0fPlyr9v16NFD48ePV3p6erFlbt26Vbfccou2bNnicZvk5GTdfPPNGjJkiE8/OpYvX6677rpL+/fv97hNRkaGJk+erPPOO6/Y8oBYFGg90K9fP61du9avYxWXLAzFd/zXX3+tMWPGaOfOnR63KVWqlO6++2716tWr2PKAaLZjxw6NGzdOX331VbHbdu/eXZMmTVLp0qU9bhMt1/rUA1YkC+G4+++/X/PnzzeXk5KSlJWVpRIlSmjr1q36888/zb9VqlRJr776qmrUqOFEqAAkXX/99fr4448lSQ0aNPD57trUqVNVoUIFy7rc3FzddNNNlmRCamqqsrKylJiYqC1btujQoUPm3+rWratXXnlFZcqU8Xicffv2qW/fvvrll1/MdeXKlVO9evV05MgRbdq0yXJjonv37nr00Ud9eg5AvNm+fbv69++vPXv2SJLPSYJ//vlHAwcO1LfffmuuK1WqlBo0aKCcnBxt3rxZR48eNf921llnac6cOV4v5n/88Uf179/fcl2QkZGhOnXqaP/+/dqyZYvcL2uHDBmiW2+91Wuc7733nkaPHq2cnBxzXZ06dZSRkaFff/1Vv/76q7k+MTFRM2fO1Pnnn1/s8wdiSaD1QG5urlq0aKG///5bktSqVSuffrBXrlxZDz74YJF/C8V3/Ndff61rr73WUifVqFFDNWrU0J49e/Tjjz9atp84caL69+9f7PMAotFPP/2k/v37a9++fea65ORkNWjQQOnp6frjjz/0ww8/WL5vGzZsqBdffLHIhGG0XOtTDxRGshCOKtidsUuXLho/frwqVaokybgLsWjRIj344IM6cuSIJKlx48Z6/fXX/WqiDMA+5557rn7//XdJ0vz589WqVauAy5o9e7Yefvhhc/nKK6/U6NGjzRZGR48e1fPPP68nnnjC/NLv1KmTZsyY4bHMG264QR999JEk42Lkjjvu0OWXX24OY7Bnzx498MADeuedd8x97rrrLl111VUBPw8gFm3evFnXXXeddu/eba7zNUng3vXQ5XJpxIgRGjx4sNLS0iRJf/31l5544gnNmzfP3GfQoEG64447iiwvJydHvXr10saNGyVJZcuW1aRJk9SlSxfzemD79u26++679fnnn5v7zZw5UxdeeGGRZW7fvl09evQwExkNGjTQlClTLF2qPv/8c915551m0rBUqVJ69913VaVKlWJfAyAWBFMP/PTTT+rSpYskI9mwdu1aJScnBxWP3d/xhw4dUrdu3czrmmrVqunBBx/U2WefbW6zYcMG3XHHHdqwYYMko2HDq6++qsaNGwf1XIBIk5OTo8suu0ybN2+WZNwku/HGG3XNNddYEoG7d+/Wo48+qjfffNNc17VrV02fPr1QmdFwrU89UDQmOIFjjh8/rilTppjLHTp00OOPP24mCiXjwqJv376aMWOGefKvX79eixcvDnu8AIw7eSe/SCUpKysrqLKefPJJc7l///6aMGGCpStiWlqahg4dqkmTJpnrli1bpjVr1hRZ5qeffmpePEjSQw89pP79+1vGO83IyNBjjz2myy67zFw3c+ZMy11NIN699dZbuuKKKywJAl/98MMPWrBggbk8ZswYDR8+3EwUSlKZMmV01113afjw4ea6F198UTt27CiyzIULF5qJwqSkJM2aNUtdu3a13Dg85ZRT9J///MdycT9t2jRLq0F3jz32mJkorFGjhubOnVto7KU2bdropZdeMltQHz582OsPGCCWBFMPSDJ/VEtSZmZm0InCUHzHP/300+Z1TXp6up5//nlLHSJJp512ml544QU1aNBAkpSdna1p06YF9VyASLRo0SIzUSgZ59iIESMKtRisUqWKpkyZomuuucZc99577+mbb76xbBct1/rUA0UjWQjHLFu2TL/99psk48J//PjxSkgo+iPZrl079e3b11x+7rnnwhIjACv3C//q1asHNeD/a6+9psOHD0syug6MHTvW47a9e/e2dP3zVAfMnTvXfNyuXTtddNFFHsucMGGCKlasKEn6888/9cYbb/gTPhCTdu/erXHjxmns2LFmi35/zZ8/30zQ1a1bV4MHD/a47U033WReeB8/flwvvPBCkdu5t0Ds3bu3WrRoUeR2ycnJmjJlipmU2Lp1qzlsgrvdu3dr6dKl5vLo0aMLDZNwUtWqVXXXXXeZy4sWLfI6viEQ7eyoBySZCX5JtkwoZvd3/D///GMZQ23IkCGqXbt2keWVLl1akydPNpdXrlypTZs2+fsUgIj21ltvmY/btWunHj16eN1+9OjRluGIlixZYvl7NFzrUw94RrIQjnFvFty2bVtVr17d6/buycL169dr+/btIYsNQNHck4XBtCqUpHfffdd83K1bN5UsWdLr9u51wCeffGK2CDrpwIEDWrVqlbncu3dvr+WVLFnSchH03nvv+RQ3EKueeuopde3a1dKtqG7duho6dKjPZZw4ccKShOvVq5fHG4GSlJCQoCuuuMJcdt/3pI0bN2rr1q3mcp8+fbzGUKVKFXXo0MFcLurcXrp0qdndKT093ewq6UmnTp3MZGJ2dnaxk7YA0cqOeuAk92uGYJOFofiOX7FihQ4cOCDJqIuKm7Dg9NNPt3Q55LoBseTYsWOW1nwXX3xxsfukpKSoXbt25vJ3331n+Xs0XOtTD3hGshCOyM3N1erVq83lc845p9h9srKylJGRYS77OgsbAPvYdeG/f/9+S1nuFxqetGnTRomJiZKM8U3cLxYk6YsvvjBbM7lcLp/qFfdt1qxZY14sAPFo9uzZlgvzyy+/XAsXLtSpp57qcxkbN260TEDiy7ntfh7+9ttvltZIkixjEJYtW1ZNmzb1q8yPPvpIBYfo/uyzz8zHrVq1KrZ7ZGJioqVL0ocfflhsDEA0sqMeOMnOZGEovuPd64EGDRpYfmf4Uib1AGLJr7/+qtTUVHM5MzPTp/3KlStnPnb//o+Wa33qAc9IFsIRv/76q/766y9zuUmTJj7t596SqeCdCwChZ1eXok2bNll+vPsyOHDJkiVVq1Ytc7lgHeAeW82aNX3qIu3+HE6cOKH169cXuw8Q65o0aaL58+fr/vvvL3JmQ2/cz8Pk5GTVr1+/2H3q1KljGc/Q27l92mmn+TTBmfu5feDAAcuMiZIs3YZ8HZzcvUyuQRDrgqkHJHvHOJZC8x0fbD2wZcsW/fPPPz7tB0S6OnXqaO3atfrqq6+0ZMkSc4iQ4pycAEyS5byMlmt96gHPkorfBLDfTz/9ZFl2rxS8qVmzpvm44IU/gND6559/9OOPP5rLWVlZ+vrrr/Xmm2/qq6++0s6dO+VyuZSRkaGWLVuqR48ehQYHPsm9DkhJSVG1atV8iqFmzZpmDAXrAPcyfW0BkZGRobS0NB09elSS9PPPP6tt27Y+7QvEmlatWqlXr1668MILfUrIFcX9PKxRo4ZlwHFPXC6Xqlevrm3btkkyzkNPZfp6brtfL5ws8+S+x44dM8dMDrTM3bt36+jRo5YkJxAL7KgHJGurwoyMDKWnp+vdd9/Vu+++q3Xr1mnv3r0qWbKkqlWrprZt2+ryyy9X3bp1PZYXiu9492uaQOqB7Oxs7dixw+cWWEA0SE9Pt0xA4s2hQ4e0cuVKc9n9XIiWa33qAc9IFsIRe/bsMR8nJCRYZkD2xr1ZsHsZAEJv06ZNlqb/9957r6Xp/kk///yzfv75Zy1atEjt2rXTww8/bA4ufJL7+etLc/+iti1YB7i3YPCnzIoVK5p3RalXEM9mzpwZdBnu55D7oOfFqVSpkpkstOPcrlChghITE806y73MPXv2WFo7+FpmwWuVPXv26JRTTvFpXyBa2FEPSNZkYVJSki6++OJCjQUOHDigAwcOaOPGjZo7d64GDhyo2267rcibDHZ/x584cUL79u3zu8yi6oFYTBIAvpg9e7ZlhmH38YKj4VqfesA7uiHDEe5jBZQqVcrr4Ofu3LtBMLYYEF7uTf9zc3PNRGF6eroaN26sVq1aqUaNGpZ9VqxYocsvv9zSikeSZSZRX+9eSt7rAPdlf8p039Z9eAQA/gv03Hbf1o5zOyEhwTKQuvu5XbD8MmXK+B1jwTIBWLknC3fu3GkmCjMyMtSiRQs1b97cMtZZTk6Onn/+ed1www06fvx4ofLs/o4/ePCgeTNBoh4A/LVu3To9++yz5nLt2rV1wQUXmMvRcK1PPeAdLQvhCPd+/f504UlJSTEfHzt2zNaYAHjnfuEvGRf8Y8eOVdeuXS3n5ubNmzV16lR98sknkoyxTIYNG6ZXX33V3M79/LWrDrCjXonVMUeAcImGc7vgee4+oLuv5RVVDoB8BScqatq0qcaNG6ezzjrLXHfixAmtWLFCDzzwgNkVcMWKFZo8ebImTpxo2Z96AIgcO3bs0LBhwyyJ/dtvv93SKpjrgehHy0I4wr1i8bVVoSRLBZSdnW1rTAC8KzhOyFtvvaUePXoU+sJs0KCBnnnmGfXu3dtct2HDBi1YsMBcDkUd4L7sT5knZ10rqkwA/gn03PZ2Hrovu28XaJkFy/e1zILbubdGAJDv2LFj2rFjh7ncpUsXvfzyy5ZEoWTUEe3bt9fChQt12mmnmesXLFhQKNlo93c89QAQmJ07d+rqq6+2dOcdNGiQpQuyFB3X+tQD3pEshCPcT7ATJ074vJ/7CZ2cnGxrTAC8e+6557Rq1Sq9+uqrmjt3bqFxCN25XC5NnDjR0i153rx55uNQ1AGBlun+BU+9AgQnFOehe5n+XJC7b+t+U6PgDwxfyyy4HfUFULSUlBStXbtWH374oebPn68pU6Z4PV/S09M1bdo089zMzc21XDNI9tctgf7Ypx5APNu6dav69+9vuRnQrl073XrrrYW2jYZrfeoB70gWwhElSpQwH/vTbNe9KbKvzYQB2KdixYpq1qyZTzOapaSkqF+/fuby9u3bzVnN3LsO+FMHuG9bsA4IRZkA/BOp57Z7stD9GkTyfViTQLsrAfEoISFB1atXV6tWrQqdc0XJzMy0zFDqPsOqZH/dUrALo69lUg8gXq1Zs0YDBgzQzp07zXVt2rTRjBkzikyWRer1APWA70gWwhFly5Y1Hx8+fNgyK6E37rMtuQ+KDCAytWjRwrJ8siuz+/nrfl4X5/Dhw+bjgnWAe73iT5nUK4B9Aj23vZ2HgZzbJ06c0N9//11kme7l+VNmwe2oLwB7uV8z7Nq1y/KD3O7v+PT0dEsrY+oBwLP//ve/uvrqq/Xnn3+a68477zw9/fTTHm8GRMO1PvWAdyQL4YgqVaqYj3NyciwVjzfuYyMUnLIcQOQp2FX55Cxm7nXAH3/84XN53uqAQMt03zYjI8Pn/QAUVrlyZfOxP+fh3r17zccFz8NAzu19+/ZZuii5l5mRkWH5ceB+bF9jdLlcXodiAOC/gt/r7rOp2v0dn5CQYFn2tcyC9QW/RxDrnnjiCd16662WVvg9evTQzJkzvU4yEg3X+tQD3pEshCNOPfVUy/L27dt92s99fIQ6derYGhMA+xVspl+qVClJ1jrg77//9vnHuntdUbAOqF27tvn4ZHfn4vz+++86evRokWUA8J/7ObRjxw6feg7k5ubq119/LbKMgsu+ntsFryvcy0hJSbEMpRBImdWrVy80uROA4Hi6ZpBC8x3vfi0SSD2QnJxsGZsZiCXHjx/X2LFjNWPGDMv6G264QQ8//LBlIpKiRMu1PvWAZyQL4YgaNWpYmutu2LDBp/3cZ0Zr2LCh3WEB8GDjxo2aMmWKxo4dq8GDB/t85809wS8ZP7AlqVGjRnK5XOZ6X+qAw4cPW77EC9YBjRs3Nh///PPPOnLkSLFluh/X5XIpKyur2H0AeOZ+Hh45ckQ//vhjsfts27bNkiRwnxW1YJkFZ0j1xP3cLlu2bKEL+SZNmgRVZsEYAeRbvny57r//fo0ePVpjx471eT/3H+BlypRR6dKlzeVQfMcHWw/Uq1cvZic2QHw7duyYbrrpJr311lvmuqSkJPO8dr+G9yRarvWpBzwjWQjHtG7d2ny8atWqYrffuHGj5Y5EmzZtQhIXgMIOHDigOXPm6K233tKKFSv0xRdf+LTfJ598Yj5OT09XgwYNJEmlS5dWo0aNzL/5Ugd8/vnnZrfCxMREtWrVyvL3li1bmnc5c3JytHr16mLLdD9uo0aNCo1lBsA/9evXV4UKFczlzz77rNh93CcyKF++fKELefdzfc+ePdqyZUuxZbqf2+7XG0WVuXr16mJnVSxYp3ANAni2YcMGzZ8/X0uWLNHbb7/tc4uiFStWmI9btmxp+VsovuPd64H169frr7/+8qtM6gHEouzsbN1888366KOPzHWlSpXS008/rcsvv9zncqLlWp96wDOShXBM586dzccffvihdu/e7XX7l19+2XycmZlJCyAgjJo0aaKSJUuaywsXLix2n127duntt982l7t3724ZJ6xLly7m47fffrvYu4PudUDbtm1VpkwZy9/LlClj+cJesGCB1/IOHz5sia9r165etwdQPJfLpU6dOpnLr776qtdE3IkTJ/Tqq6+ay126dCnUYqFBgwaWrkjFnds7d+60/Mjp1q1boW06duyoxMREScbYQ8uWLfNa5tKlS7Vv3z5JRusK92sYAFbuP75zc3P12muvFbvP+++/r23btpnLPXr0sPw9FN/xZ599ttLT0yUZXS6Li/Pbb7/V//73P3O5qLoFiHZTp07Vhx9+aC5XqFBB8+fPV7t27fwuKxqu9akHPCNZCMd07tzZHAj92LFjuv3225WdnV3ktp9++qklOTFw4MCwxAjAUKpUKV100UXm8sqVK/Xmm2963P7QoUMaOXKkeVGQmpqqwYMHW7bp3bu3OYPa3r17NWnSJI/lLVy4UJ9++qm5fNVVVxW53YABA8zHH374oRYtWuSxzIkTJ5o//kuWLKk+ffp43BaA76688koz4bdx40Y9+eSTHredPn262VIwISHB4/e7+7m9YMECjy0Ujh8/rnHjxun48eOSjKEPOnbsWGi7qlWr6sILLzSXJ0+e7PGm5c6dO/XAAw+Yy507d7YMsg7AqlWrVpZxwZ555hn98MMPHrfftm2bxo8fby7XrVu3yIS83d/xaWlplvUzZszQpk2biizv4MGDuuuuu8zlM844Q82aNfN4fCAaffzxx5o7d665XLZsWc2bN8/S/dcf0XCtTz3gGclCOCYlJUWjR482l1etWqUhQ4ZYxivJzs7Wq6++qhEjRignJ0eS0cLAnybQAOxxyy23mHfeJOmuu+7SjBkzdPjwYct2X375pfr376+1a9ea60aPHq1atWpZtqtUqZKuu+46c3nRokUaM2aMZTzEo0ePatasWZowYYK5rn379mrfvn2RMV5wwQWWLof33HOPnn76act4aHv37tWoUaMsdxqHDRtm6ToJIHANGzZUz549zeUZM2bogQce0MGDB811Bw8e1OTJkzVr1ixzXd++fVWvXr0iy+zbt6/ZujA7O1vDhw/XwoULLTcZt2/fruuuu87SLem2227zOBHJqFGjlJqaKknavXu3rrzyykJDLKxevVoDBgwwZ2csWbKk5doFQGEul0t33nmnuXz48GH961//0pIlSywtjY8fP6433nhD/fv3159//inJmCxgypQpRU6eEIrv+Ouvv9782+HDhzVo0CAtW7bMMjnTxo0bNXDgQPPGRmJiom6//Xa/XhMg0uXk5Gjy5MnmZ9/lcmnatGmqX79+wGVGy7U+9UDRXLm+TFMHhND48eP1yiuvmMsJCQnKyspS6dKltXXrVvNugCSVK1dOL7/8surWretEqEDc+/zzz3X99ddbvpDT0tLUsGFDpaSk6JdfftGuXbss+wwePNjjAOcnf/S7dxlMTk5WVlaWUlJStGXLFkuCoWbNmlq4cKHXxN7u3bs1YMAAy42H9PR01a9fX8eOHdOmTZvMVkeS1KFDB82cOdPSRRpAvkWLFumOO+6QZExQ9sEHHxS7z6FDh3T11Vfr+++/N9eVKFHCHEJk06ZNlu5ITZs21QsvvKC0tDSPZW7evFkDBw7U/v37zXUVKlRQZmamDh48qM2bN1sSEQMGDLC0VirK22+/rXHjxln2q1WrlqpWraqdO3da6pGEhARNmzbN0soaiBeB1APPPPOMpk2bZllXrlw51a9fX9nZ2dq6datlfLDk5GQ9/vjjRbYGPikU3/GfffaZhg4dapkxtWrVqqpVq5b++OMPbd261bL9ycnegFiyZMkSy82wkiVLqkWLFn6VUalSJU2ZMsWyLlqu9akHCiNZCMfl5ubq8ccf1+zZsy0ndUGZmZmaPn16UHc3AARv/fr1uu222wp9aRZUtmxZjRkzRn379vW63bFjx3Tvvffq9ddfl7evpObNm2v69Ok+df/buXOnRo8erTVr1njdrk+fPpowYYLHlkcAAksSSEbrwbFjxxa7fYcOHTR16lRLy2VPNm3apDFjxnid5CQxMVFDhgzRyJEjfZqx8b333tOECRMsSciCypYtq/vuu88y/hIQTwKtBxYvXqxJkybpwIEDXrfLzMzUvffeq7POOqvYMkPxHf/FF19o3Lhx+u233zxuk5aWprFjx1q6QQKxYsSIEXr//feDKsNT3RAt1/rUA1YkCxExtm7dqtdee00rVqzQrl27dOTIEZUtW1annXaaunbtqh49evCDHogQOTk5Wr58ud5//32tW7dOe/fuVXZ2tipVqqTatWvrggsuUPfu3f3q2rtu3Tq98cYb+vzzz7V7924dO3ZMFSpU0Omnn66LL75YnTt39qv1X25urpYtW6Z33nnHjDEhIUFVqlRRy5YtdcUVV+iMM84I4NkD8SXQJMFJn332md5++2199dVX2rt3r3JyclSpUiU1b95cPXv29HvQ9OzsbP33v//V0qVLtWHDBv3xxx9KTk5WzZo11bp1a/Xr189jd2ZP9u/fr4ULF+qDDz7Qzz//rAMHDqhkyZLKzMzUeeedp759+zJUAeJaMPXAoUOH9Oabb+qTTz7Rxo0btX//fiUmJiojI0ONGjVS586d1bFjR7+u80PxHX/kyBEtWrRIy5Yt0w8//KD9+/crNTVVp556qs455xz169dPNWrU8KtMIFp0797d69iiviiuboiGa33qgXwkCwEAAAAAAABIYoITAAAAAAAAAHlIFgIAAAAAAACQRLIQAAAAAAAAQB6ShQAAAAAAAAAkkSwEAAAAAAAAkIdkIQAAAAAAAABJJAsBAAAAAAAA5CFZCAAAAAAAAEASyUIAAAAAAAAAeUgWAgAAAAAAAJBEshAAAAAAAABAHpKFAAAAAAAAACSRLAQAAAAAAACQh2QhAAAAAAAAAEkkCwEAAAAAAADkIVkIAAAAAAAAQBLJQgAAAAAAAAB5SBYCAAAAAAAAkESyEAAAAAAAAEAekoUAAAAAAAAAJJEsBAAAAAAAAJDn/wH2Cmetv/GrpgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Still imperfect, but this is a _very_ high count rate case. In more typical cases, the correction is more than adequate:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 3402.34it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Calculating PDS model (update) [stingray.deadtime.model]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAAQ1CAYAAABKuwqzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT1/8H8HeAAALKcICiuMG9tXVWrVVrHVVbrXvXUa17z1pX66qraq1aV9272roXOHDjAhRkiohg2COQ/P7gx/3mkhCSkAjK+/U8fXrvzb3nnGByxyfnnI9EqVQqQURERERERERERGQiZvndACIiIiIiIiIiIvq4MQhJREREREREREREJsUgJBEREREREREREZkUg5BERERERERERERkUgxCEhERERERERERkUkxCElEREREREREREQmxSAkERERERERERERmRSDkERERERERERERGRSDEISERERERERERGRSTEISURERERERERERCbFICQRERERERERERGZFIOQREREREREREREZFIMQhIREREREREREZFJMQhJREREREREREREJmWR3w0gIgKAdevWYf369QCAJk2aYNeuXXkuc8aMGTh69CgAoHv37li2bFmeyzSF58+f486dO+jTp4/G1wcMGABvb28AwNixYzFu3Lj32TzSg4+PDw4ePIjbt28jMjISSqUSzs7OqFmzJrp164ZWrVpBIpGYpO6AgADs27cPt27dQlhYGNLT01GqVCm4u7ujS5cu+OKLL2Bhod9l/8aNGzh8+DAePHiAN2/ewMLCAi4uLqhfvz66d++ORo0a6VVeWloaTp06hX///RdPnz6FTCaDnZ0dSpcujVatWqFnz55wc3PTq8yXL1/i8OHDuHPnDkJCQhAXFwcrKyuUKFEC9erVQ/v27dG2bVuj/N3Xr1+PdevWATDed9HYZR46dAizZ88GAPj5+eW5fQCgVCoxZMgQ3LhxAwCwc+dOfPLJJzofb4rvxZs3b3DixAlcvnwZISEhiImJgbW1NcqWLYsmTZqgd+/eqFy5ss7lyWQyHDlyBDdu3IC/vz9kMhkAwNHREdWrV0erVq3QvXt3WFtb51qWUqlEw4YNkZiYqNd7Gj9+PMaMGaPXMR+zwnrtCwsLw+effy6sX7hwAWXLls1zuXfv3sXr16/x1VdfaXy9bdu2CA8PBwAsXboUPXr0yHOdZBrGvjbrw9jnc6VSifPnz+PEiRN49OgRoqOjUaRIETg7O+PTTz9Fz549Ua1aNb3aGBkZiYMHD8Lb2xuBgYGIjY2FhYUFnJycULt2bbRt2xadOnXS6Z4oJiYGTZs21at+APj111/RrVs3vY8jKgwYhCQiyifJyclYv349duzYgc6dO+cYhKSCTy6X4+eff8b+/fvVXgsKCkJQUBBOnTqFFi1aYOnSpShVqpRR61+3bh02bdqE9PR00fbQ0FCEhobiwoULqFWrFpYvX45KlSrlWl5CQgKmT5+O8+fPi7anpqYiICAAAQEBOHToELp27Yp58+ahaNGiuZYZEBCA8ePH4/nz56Lt7969w7t37/D06VNs3boVP/74I0aMGJHrQ0xSUhKWLl2KgwcPQqlUil6Ty+VISEhAUFAQjh07hho1amD16tWoUKFCru3Mia+vLzZt2mTw8e+jzLCwMPzyyy9GKy/L3r17hQCkPkz1vdi+fTvWrl2LpKQktfqePXuGZ8+eYdeuXRg+fDgmTpwIM7OcB/4olUrs3r0bK1euRHJystrrERERiIiIwMWLF7Fu3TosWbIErVu31tq+4OBgvQOQRKby7t07rFixAocPH8YPP/yQ382hPDDFtVlXpjifR0ZGYuLEibh7965oe1paGmJjY+Hv749du3Zh8ODBmDRpEiwtLbWWl56ejnXr1mHr1q2Qy+VqZSYlJSEsLAz//vsv1q5di1WrVqFOnTpay3z27Fmu74OI9MMgJBFRPlmyZAkOHDiQ382gPFIqlZgwYYLoocDKygoeHh4wNzfH8+fPkZCQAADw9PTEoEGDsH//fhQrVswo9S9atEjUc9jCwgIeHh4oUqQIAgIC8O7dOwDA48ePMWDAABw4cACurq45lpeamoqhQ4fi4cOHwjZbW1u4u7sjIyMD/v7+SElJAQCcOHECERER2LZtm9aHg5cvX6Jfv35CWwCgZMmSqFixImQyGZ4/fw6lUgm5XI6VK1ciLi4OU6ZMybG8lJQUDB06FPfv3xdtr1SpEkqWLImkpCT4+fkhLS0NAPD06VN888032LNnDzw8PHIsNydyuRwzZsxQe6jJC2OXGRMTg++//x5xcXFGKS9LWFgYli9frvdxpvheKJVKLFy4EH///bewzdzcHG5ubihZsiQiIyMRHBwMAFAoFPjjjz8QGxuLhQsX5ljm0qVLsWPHDtE2Z2dnuLm5ISMjA4GBgUKvyOjoaIwaNQpLly5F9+7dcyxT9aHVwcEBtWrVynFfVfr2AibSxeTJk+Hl5ZXfzaA8MsW1WVemOJ/HxMSgf//+CAkJEbY5ODigSpUqSE5Ohp+fH9LT06FUKrF9+3a8efMGq1atyrE8hUKBiRMn4uzZs6Lt5cqVQ+nSpZGWlgZ/f3/hx6vQ0FD07dsXf/zxB5o1a5Zjuarnc2dnZ1StWjXHfVUZ+8dmoo8Jg5BERPnEmAENyj/btm0T3Zj37dsXkyZNEnogpKSk4K+//sK6deuQnp6OwMBAzJo1S5h+IC/+++8/UQCyQ4cOmDdvHkqUKAEg8zN25MgRLF26FMnJyXj79i3GjRuHw4cP59jT8JdffhEeciQSCcaNG4dhw4YJw1Dj4uKwbt067Ny5EwBw+/ZtrFy5EjNnztRYXkZGBiZMmCAEIO3t7bFw4UJ06NBBaENoaCjmzJmDmzdvAgC2bNmC+vXri4Ykqlq6dKkoANmxY0dMnTpVNGQxOTkZu3btwtq1ayGXyxEfH4/Ro0fj9OnTOg2pVbV582aj94YwZpkRERH4/vvvERAQYJTysiiVSsyaNUutx6EuTPG92LJliygA2aFDB0ydOhXlypUTtj19+hSzZ8/G06dPAQD79+9H69at0bZtW7XyTp8+LQpAVqtWDfPmzUPDhg2FbQqFAufPn8fChQsRFRUFpVKJuXPnonr16jkOEfT19RWW27Zti6VLl+b4nohMjfcaHwdjX5v1YYrz+cyZM4UApJWVFWbOnIlvv/1WGCIdFRWFJUuW4PTp0wCAU6dOoV69ehg4cKDG8v78809RAPKTTz7B7NmzRT88yuVyHD16FMuWLUNiYiLkcjl+/PFHnD59Osegoep1ulevXhg7dqzWvxUR5Y6JaYjoo7Vs2TL4+fnBz8+vwM4HqYtdu3YJ76OwzIn1oYiJicGGDRuE9T59+mD+/PmiIVDW1tYYNWqUqDfWuXPncO/evTzVLZfLRUNv27Rpg99++00IQAKAVCpF7969sX79euHG/smTJ/jnn380lvnixQvs27dPWJ88eTJ++OEHUdCuWLFimD17tmhY3549exAWFqaxzIMHDwpBGQsLC2zatAkdO3YUBUHLlSuHP//8UzTv0sqVK5GRkaFW3suXL3Hw4EFhvVevXlizZo3anGlFihTB999/jzVr1gjbwsPDhQc0XRX0Ydienp7o3r07/P39jVKeqr///hu3bt3S+zhTfC/CwsKEuTOBzIfgNWvWiAKQAFCjRg3s2LEDLi4uwrYtW7aoladQKLBixQphvXr16ti7d68oAAkAZmZmaN++Pfbu3QtHR0cAmd891WOzU31oNaTnLVF+uHjxonCvwfkgCxZTXJt1ZYrz+bVr13D58mVhfdmyZejTp49ojsaSJUti9erV+Prrr4Vtv//+u9DjUlVcXJzomtqyZUts27ZN7fwrlUrRq1cv/PXXX7CysgIAxMfHi95fdqo/Kuk7NyURacYgJBERkYEOHTokzP3m4OCAadOm5bhvz549RXPJbd++PU91nzt3Dq9evQKQGdybN29ejnPftWjRAr1798617l27dgmBv0qVKmHYsGE51j927Fi4u7sDyAzK7N69W+N+qkG/nj17okGDBhr3k0ql+OWXXyCVSgFkziF55coVtf1OnjwptNHBwSHXXh6ff/452rdvL6yfOnVK6/6q5HI5pk+fLvQkMsb8WsYqMy4uDsuWLcOIESNEw9yNJTQ0VAi06Tt1gCm+F9u2bROG11erVg1z5szJsTdvsWLFMGrUKGH9/v37iI2NFe3j7e0tJOEAgAULFsDGxibHdpYrV070cO/l5ZXj3101CMmHViLKK1Ncm3VlivO5ag/0Fi1aoFOnTjmWOX/+fBQvXhxA5vymWQknVZ07d05oo1Qqxc8//6w16UydOnXQt29fYf2///7T+KNnamoqXr58KazzRyUi42AQkoiIyED//vuvsPzll19qDWIAEAUCr169atAw1yxZQ5QAoFmzZihTpozOdT958gShoaGi1xUKBc6cOSOs9+jRQ2tCDzMzM/Tq1UtYVz02i6+vr2iI8DfffKO1jc7OzmjTpo2w/t9//6ntkzVkG8gc6prb3xyAaFi3r6+vEMzKzaZNm4ReEF9//TWqV6+u03GmLvPgwYP44osvsH37digUCgCZvUa0zaOpD6VSidmzZwufzxkzZuh1vLG/F3K5HCdPnhTWZ8+eDXNzc61lduzYEf3798fYsWMxa9YstQdM1c+Rq6sr6tWrp7U8QPw5UigUwpBvVTExMXjz5o2wziAkEeWFKa7N+jD2+Tw2NhbXr18X1nv27Km1PBsbG3Tt2lVYz+2+oH79+ihdurTWMgHx+Vwmk6ndEwGAn5+fcO2ws7MzSpZ6IuKckERUgCUkJODvv//GmTNnEBISgvT0dJQqVQqNGzdG586d8emnn2o9fsaMGcIvpt27d1cbkn3kyBGhF9XQoUMxffp0KBQK/Pfffzh16hSePXuGt2/fokiRIihbtixat26N7777DiVLlszT+9L0S+rRo0dFv+76+fkJywMGDIC3tzeAzF+4sw/JXrdunTDvzoIFC9CnTx8kJSXh5MmTOHnyJIKCghAXF4cSJUqgWrVq6N27Nz777DNRGS9fvsS+ffvg6ekp9K4rW7YsWrVqhcGDB+v8nmNiYnDkyBFcu3YNL1++xLt372BjY4NSpUrhk08+QdeuXXPNRPihkMlkoh5PLVq0yPWYTz/9FObm5sjIyEBKSgquX7+Odu3a6V23UqkUDZNt3rx5rsd4eHigZMmSiIqKApA59G7QoEHC676+vqKeXbq8H9V6X716BV9fX1HQRfXBwN7eHrVr19apzKx5nS5fvgylUinq8RYdHS0sV65cOdfygMzeG6pkMlmuk8Y/e/YMmzdvBpAZ4Js1a1ae54IyVpm7d+8WkqUAQLt27bBgwQIEBgbmqX1ZVIdht2jRAj179sSsWbN0OtYU34u7d+8KCXcqVKiAJk2a5Fqmo6Mj5s6dm+PrUVFRMDMzg0KhQJUqVXItD1D/HGnqCan63l1cXNSOeR8CAgJw9OhR3L59G0FBQUhISICdnR2cnJxQt25dtGrVCh06dNAayA0LCxM9pGu6hubFjRs3cPjwYdy7dw9v3ryBra0t3Nzc0KlTJ/Tq1Qu2trZ6l2ns649CocClS5fg5eWF+/fvIyoqCjKZDFKpFMWKFYObmxsaN26M7t27q00LkJOkpCQcOXIEZ8+ehZ+fHxITE1GiRAnUqlULvXr1QqtWrfR+35pk//fLsn79euF+wdXVFRcvXhRea9u2rdA7eOnSpWpDslXvqbZs2YJWrVpBJpPhyJEj+O+//xAaGoqkpCQ4Ozujdu3a6Nu3r9r0Bo8fP8b+/fvh7e2N169fw8LCAhUqVEC7du3Qv39/nXuGh4eH4+jRo/D09ERYWBhkMhns7OxQpkwZNGvWDN27d9f5+lDQmeLarCtTnM+9vb2FwJ5EItHp/qV58+ZCr8p79+4hNjYW9vb2wutv376FRCKBUqnM0/m8QoUKom2qQ7E9PDxy7H1vSj4+Pjhx4gTu3r2LsLAwJCcno2jRoihRogQaNGiAtm3bqt3TExV0DEISUYHk4+OD8ePHCwGxLEFBQQgKCsLBgwfx2WefYdmyZXBycjJKnWFhYZgyZYpaxt3U1FTIZDI8fvwY27Ztw/z580Vz1BQ0Pj4+mDJlipAlNkt4eDjCw8Nx4cIF9OrVCwsWLIC5uTl27NiB5cuXq01e7+/vD39/fxw5cgSbN2/O9eHtr7/+wtq1a4UhMVnS0tIgk8ng7++PXbt2oWPHjvj555/znB1aNYicF5oetnTh5+cHpVIprNesWTPXY2xsbODm5iYM73n06JFBQcjw8HBRFmRds+96eHgIQchHjx6JXlO92ZZKpTplgKxYsSKsra2FjJyPHj0SPeiollm9enWdbuBVj4+NjUVISAjKly8vbDtz5gxSU1MRGRmpc6Ai+5xYqg8vmmTPXL1gwYJcj8mNKcqsUKECpkyZgi+++AIAjBKEVB2GbWdnh0WLFul1vCm+F6rzin3yySd6tScnixcvxk8//YSoqCikp6frdEz2z5Gmc1h+DsVWKBRYvnw5/vrrL6GHbBaZTAaZTIbAwEAcPXoUFSpUwC+//KJTD1BjiomJwfTp03H16lWN7fPx8cHu3bvx22+/6VWusa8/np6eWLRokWgoZha5XI6kpCS8fv0a3t7e2Lx5M4YPH44JEyZoPcddv34d06ZNE87BWSIiIhAREYFz586hY8eO+PHHH/V45/nnypUrmDVrFt6+fSvaHhwcjODgYPzzzz8YN24cxo4di4yMDKxZswZbtmxR+2w+fvwYjx8/xuHDh7F9+3atAd2MjAz89ttv+Ouvv9R6tL979w7v3r3DkydPsG3bNvTq1QuzZs3Kc3Zo1R9682Lnzp0Gnb9McW3WlSnO56rvp2zZsjpdB1XbrlAo8OTJE1FG6+3btyMtLQ1v3rzROgxbVUE/n6empmL27NmiUQBZYmJiEBMTA39/f+zbtw81a9bEqlWr1IKoRAUVg5BEVOCEh4dj2LBhQpDF0dERlStXRnJyMvz8/IQHxitXrmDAgAHYtWtXngORMTExGDJkiJCpr1ixYqhSpQqUSiUCAgKEtiQlJWHmzJlwdnYWJdHQR9Yvyf7+/sKwvVKlSglz+OSFn58fVqxYIUzcXbp0aZQrVw6xsbHw9/cXbiYPHDiAqlWrQi6X49dffwWQmZ2wWrVqMDc3h7+/v1BGTEwMxo0bh3///VfjMJysoZuHDx8WbS9fvjxcXFyQlJQEf39/pKamAsgcSvP8+XPs2LEjz71K81NQUJCwbGlpqdPwHyDzpjvr5jzr85aXugHAzc1N57qzZK9btUxXV1edbuQlEgnKlCkjBL+yB75Vy1QNJOraxqwysx9rZWWl83sGxMPRXF1dhQnpc/L7778LD0qdO3c2KFBsyjJr1KiBIUOGoHPnzjo/cOkiezbsadOm6fy5zmKK74Vqz3DVB/Dr16/jxIkTuH//PiIjI2FlZYVy5cqhTZs26NOnT67XBQsLC73eX/ZhjZUqVVLbJ3tSmjdv3uDIkSO4evUqAgICkJiYCAcHB7i7u6Nt27bo2bMnihQponMbtFmyZAl27dolrFtbW6Ny5cooVqwYZDIZQkJChCBdUFAQhgwZIlwL3oeYmBj069dPFCyXSqWoVq0arK2tERAQgJiYGISFhWH48OGws7PLtUxTXH9Onz6NqVOnioLTpUqVgpubG6RSKWJjY/HixQshCJaeno5NmzahaNGiGD58uMYyz58/j/Hjx4vKLF68OCpVqiS0US6XCz0K88ra2lq413j06JEwJ6qbm5tw7lRNYqav69evY9euXcL7cXNzg4uLC96+fSv69123bh2qV68OLy8v7NmzB0Dmjxvu7u5QKBTw9fUVAmWhoaEYP348Dh8+rDGYm5aWhjFjxuDatWvCNolEgsqVK6NEiRKIi4uDv78/0tPTkZGRgb1798Lf3x9//vmnTtN2FFSmuDYbUrexzueG3BeULFlSFFQNDg4WBSGz2qfPcGnV87m1tTVcXV3V9sl+Pg8JCcHhw4fh5eWFoKAgpKSkoHjx4qhRowbat2+PLl26GO2aPGHCBFFPZTs7O1SqVAm2traIjo5GSEiI8Pd48uQJ+vfvj+PHjwvzZxIVZAxCElGBkzUcKCvTX5cuXYRhYzExMVi+fDmOHDkCIDNj4IIFC7B27do81Xns2DEAmQ8FM2fORKdOnYQ6U1NTsWPHDqxevRoKhQIKhQKrVq0SZejVx9atWwGIhzY1b97cKEPd9u7dCyCzh9TChQtFv7r7+vpi+PDhQi+M1atXIzk5GRKJBKNGjcL3338v3KgnJSXhl19+EbIxvn79GidPnhTN9ZNly5YtogfAzz//HFOmTBE9oCcnJ2Pfvn347bffkJKSgoCAAEyaNAl//fVXrnO75cTZ2VmnoUG6lGMI1d4s+gRTVffN3iPGkLrNzMx0fpjUVrfqem5DlVWVKFFCeNDJXqbq3Hi6/o2cnJyEoVyaytTXjRs3hOkMgMwhh9o8efIEf/zxB4DM88Hs2bPzVL8pyly6dGme26TJ7t27hb9V06ZNNX7fc2OK74VqUMbZ2RmRkZGYO3euWuKi5ORkyGQyPHr0CH/99Rfmz5+Pzp076/sWNIqJiREleHB3d9f4wKvay+f27dvYsWOH8KCYJSoqClFRUfDy8sKmTZuwePHiPA+ny+rpl+WHH37A999/L8qem5qair///hvLly9HRkYGkpKSsGrVKmzcuDFPdetq7ty5ogBV3759MWHCBKEnVEZGBs6cOYOFCxfi3bt3oikHcmLs68/bt28xf/58Ibjm7u6OxYsXq40ESE5OxoEDB7By5UohwPnHH39g0KBBQnKtLK9evcL06dOFMh0cHDB//nx07NhRmNtPJpNh7dq12LNnD548eZLr+85NiRIlhHsN1SldunbtqjaliyGyhsbWq1cP8+bNE/WQu3HjBsaMGSP6MSMhIQGWlpaYOnUq+vTpI/yN3r17hzlz5uD8+fMAMs+VXl5eGq/tixYtEgUgv/32W4wdOxYuLi7CttjYWGzdulXocXn37l3MmzdPazb73Li5uRnlXsPQnu+muDYbUrexzueG3BcAmdfOrOeDvN4XBAQE4J9//hHWmzZtKjpXApk/cKj+APbPP//gp59+Uptf+PXr13j9+jUuXryITZs2Yfny5Xmedujy5ctCANLMzAzz5s3DN998Izq3xMfHY/PmzdiyZQuAzL/Jxo0bMWfOnDzVTfQ+MAhJRAWSjY0Ndu7cqZa0wcnJCUuXLoWtra3wwHXmzBncvXtXbe4hfdnb22Pfvn1qPaysrKzw/fffIz4+Xggk+Pj4IDIy0uAAlimVLl0a+/btg6Ojo2h7tWrVMG3aNEydOhUAREknhgwZItrXxsYGCxYswIMHD4SH6uvXr6sFJUJDQ7FmzRphvX///hrnYStSpAiGDBmCWrVqYciQIZDL5fD29saRI0fw7bffGvQ+mzdvrtNcQqai+oCsT4Zj1d492TP26kr1OFtbW62T1Otat6HvR3Xf7GWqrutappmZGWxsbBAfHw8AomHn+pLJZKIbcqlUKpoHM7u0tDTMmDFDCBbMmzcvz72sTVGmKYSEhGDlypUAMr//+g7DzmKK74XqcM+kpCT07dtXGEpXpEgRuLu7w9LSEoGBgcKcoXFxcZgyZQpkMhn69+9vyFsRKJVKzJ07V/TeNGWnzZ5JNWsYubm5OcqXL4+SJUsiLi4OL168EIblR0VFYfTo0Vi4cGGuiZu0yZpHFQDatGmjcUivlZWVcP7N+re+du0akpKS1HqKlS1bVvQAnld37twRAk0AMGrUKEycOFG0j7m5OTp16oSqVauid+/eakOrszPF9Wfv3r3COado0aLYunWrxsBPkSJFMGjQIJiZmQnfldjYWPj4+Kjdi6xfv14YWWBtbY0dO3aoDe10cHAQzg3r1q3T+r4Lipo1a2LHjh1qwZumTZvi+++/F4bUZ733lStXon379qJ9HR0dsWLFCrRr1074nl+/fl0t6Hfnzh3s379fWJ82bZrG76C9vT0mTZoEDw8PTJo0CQBw8uRJ9OzZ0+DRK926dUO3bt0MOtYYTHFtNnXd2s7nhtwXZN83L/cFWddk1SmINPVgDg4OFiXVyQrkS6VSVKxYEY6Ojnj37h1evHghTDEQFBSEAQMGYN26dXma31W1l2a/fv3Qp08ftX2KFi2KKVOmIC4uTvhunDlzhkFI+iAwOzYRFUjjx4/XmjV22rRpoqETWT0A82Lw4MFah3hmvwkw5gOaMf34449qAcgsn3/+uWiYk6ura45BGYlEgtatWwvrmoYO79ixQwiulCtXLtcsuo0bN8bAgQOF9azeFB8i1fmosj+EaaM6P5WuWZqzy+p5Y8y6TfF+jNFO1TL0kZaWhh9//FE079OAAQO0zjf2+++/w9/fHwDQoUMHdOzY0aC6TV2msWUNw05OTgYATJkyxeAsoKb4HKk+cC5evBhhYWGwsrLCzJkzcevWLRw4cAC7d++Gp6cnNmzYIPSuUSqVWLp0Ke7cuWPQe8myevVqUQCtTp06omytWVQzqQKZ59BBgwbh4sWL+Pfff7Fz504cO3YMN2/exIQJE4ReLRkZGViwYEGe2qnauyi3f7tvvvkGDRo0QJcuXTBixAi17LWmkDXaAMjsqa+tN17VqlUxfvz4XMs0xfVHNZnWt99+m2vPs+xBtcjISNF6WlqaKLvwiBEjtM4tN2bMGJ3m3SsIpk+fnuN3PPt0Ew0bNlT7W2UpUqSIKECo6V4jq1dnVlmaApCqvvrqK9G5dtu2bVr3L8jy817jY7svyLrW+fj4CNs6dOiARo0aqe2rOhQbyAw+jh8/HteuXcPJkyexc+dOnDx5Ep6enhg8eLBwb52SkoKJEyeqTZujD9XzuaZh4qr69euHxo0bo0ePHujdu7daz3uigohBSCIqcGxsbHLtHWdpaSlKJnL16lXR5NmGyOkGOUuZMmVEvUWyemoVJBKJROv7sLW1FfXCatWqldZedKo9PTW933PnzgnLnTt3VhuGpolqUp+AgACjzH+VH1R/Rde1JyIA0XxBuibEeB91G1qm6nDG7GWqrusz7F5bmbpIS0vD2LFjRRnE69atK/SM0eTJkyfCsKas4ZJ5ZYoyTWHXrl24ffs2gMxATd++fQ0uyxSfTdWH2Li4OEilUmzZsgWDBw8Wze9pZmaGdu3aYd++fULm0/T09DxNdfH7778LGc2BzJ5Wq1ev1vjeVIcam5mZ4bfffsOsWbNEw0WBzF5Co0ePxpYtW4T3LZfLsWTJEoOvY6p1HD16FA8fPsxxXycnJ+zduxcrVqzA+PHj8zQ3oK5Uh8736NEj13nTevbsmWuAwhTXnz179uDWrVs4ePCg2ggBTbIPJ80eAPD29haCvBKJJNd7GzMzM429ngoaJycnrUlWsv/Y06ZNG63labvXSElJEQ3D7t69u05tVP23vnHjhsGBq/xmimuzqevWdj5XXX+f70epVGLevHmiRC/lypXLsde/aq92Kysr7Ny5E2PGjFH7kT9rGifVaVISEhLyNAWA6vl8x44dGhNkZfHw8MDu3buxdOlSjB07Vq/ALlF+YRCSiAqc+vXr65T1VvWXy6yJ4g0llUo1JhnITjV7XvZs0gVBmTJlcp3MX/UGpWLFilr3VX3Az57RMjw8HK9fvxbWK1eurFMbq1atKmqDaubbD4nqDXH2v402qjfPujw0v6+6DS1TteeXtjKzz6Oka5n6ZjZNSEjA999/Lwp6lClTBuvWrcvx7519yPScOXPyPLm7Kco0hZCQEKxatQpA5rlh8eLFOmUxz4kpPpvZ2zN8+HCtAZCyZcti2rRpwvqjR4/w4MEDnduSZfny5aLhvlKpFGvWrMmxp+HXX3+Nhw8f4p9//sH+/ftz7fXatGlTUY+uJ0+e4O7du3q3E8jszZP1d0pISEDv3r0xbNgw7Ny5EwEBAQaVaSzBwcGinj26TJ1iZ2eHWrVq5fi6Ka8/Dg4OqFOnjtZekHK5HI8ePRL10APUz3NZwX0g83OpyxQun376aa775LcqVapofT17ICQv9xo+Pj6i+y1d/61VPz9Z/14fIlNcm01d9/u+18iNXC7HlClTcODAAWFbsWLFsGHDBo1ZsYHMXsl3797F8ePHceDAATRo0EBrHd27dxfNQXzu3Dm8evVKr3Zm6dChg7AcERGBLl264IcffsCBAwfUsnoTfYg4JyQRFTi6BAMB9ZvaiIgIg7N8FitWTKdfZA29eXpf9A1y5Baw1BaMyD5kasqUKZgyZYpe9QPqw9c+FNkTPuhKdd/csjTnRDWbrj51q/Yoy163Kd6PtbW1MB+YoWXqE4R88+YNRo0aJUrs4OLigr/++kvrw/+GDRuEIdNt27ZFly5ddK7zfZZpbEqlEjNnzhSGYU+cOFHnbKU5McXnyMbGRhiSLZFIdJrjsUuXLli0aJHQC83Lywv16tXTqS1paWmYN2+ekDgM+F8AMrd55aytrfW6DvXv31/U09LT01Pj0MDcVK5cGSNHjsSmTZsAZP7benp6wtPTE0BmT7NmzZqhZcuWaNmyZY4P3qagGoAEdM+IW7ly5RyHqL+v609cXByePn2KkJAQhISEIDQ0FC9fvkRgYKBOP0Sqvndd33fZsmVFmYALovd5r5E9s7OhPUWzfw4/FPl5r2Gq+wJjl6lNQkICxo8fL5wLgcz5FP/88094eHhoPdbOzk7r9AnZDRgwQJTwxsvLy6B5z1u1aoXOnTsLZcnlcpw/f16YFsTNzU04nzdv3lx0T0j0IWAQkogKHF0fjrJPaG3oxNuAfvPSFGT63mjmpcdTXv7exijHy8vLKPM8DR061KAEN1nDPYH/TbyvC9VkC6pl6EM1y2ZiYiKUSqVO/5aq7cxet6HvR1uZ9vb2wuu6lqlQKERz1On6N/L19cXIkSNFvaPKlSuH7du3a50H8vHjx/jzzz+F9v7000861aeNKco0hZ07dwpBnvr164vmyzOUKb4Xtra2QhCyfPnyOg0ftrS0RM2aNYWeaKpDpbWRyWQYN26cKKN6kSJFsGbNmjxnsNakVKlSKFeunDAsOHvARR8TJkxAqVKl8Ntvv6klboiMjMTRo0dx9OhRSKVStGjRAiNGjMhzQjddZCULypJbQCqLtmzCpr7+XLp0Cdu3b8ft27e1/uBoYWGhdWhoTEyMsKzr+5ZIJChatGiBDkK+z3uNvCQhUaVLtnVNjh8/jhMnTuS5/qlTp+oV0MpiimuzqevWdj5X/V6b+v2Eh4dj1KhRwg+CQGYypC1btqB27do6162rWrVqQSqVCj9Q5OV8vmzZMlSsWBFbtmxROxdk/Siyb98+FClSBG3btsXo0aMN7ohB9L4xCElEH6zsc2d9LIHEvMjLjb6+sj94NW7c2KBf27UFiLSJjIwU/bJtqK+++sqg41R71mV/yNYmKipKWDZ0LjbVujMyMvDu3TudMi5rq1t16KE+70c1c3H2+dGcnZ0RHh6uV5kxMTGih/7sZWpy8eJFTJ48WRS8rF69OrZs2aL1+LS0NMycOVP4LM+cOTPXRBS5MUWZphAcHIzVq1cDyAwoLFmyRK/5uXJiiu+Fo6MjIiIihGVdqX4ndAlAvHz5EqNGjRIlFHBwcMDGjRtzHYqXFyVKlBCCkHkJrkkkEvTr1w/du3fHuXPncP78eXh5eallmZbL5bh06RIuXbqkMUu1sRk6dYm2XtCmuv7I5XLMnj0bx48f17i/jY0NKleujJo1a6Jhw4Zo2bKl1uHTpnjvBUF+3mtkz5ytK0PPwyEhIUa51/j+++8NOs4U12ZdmeJ8bmiZqvvq8n4ePnyIMWPGiP4Orq6u+PPPP3UecaUvCwsLODg4CO8/L+dzqVSKsWPHYsCAAfj3339x4cIF3Lp1S633aHJyMk6dOoX//vsPc+fO/SDmlCViEJKICpzsD0w5yf7r+PscXkbqf++5c+fmOrTlY6I6tC4pKQlv377VKaiomgght3mydKk7q0xdgpCqcwllr7tChQqi/XTpXalUKoUgY/Yystaz5lzTlPFUk+yJIrKXmd2ePXuwaNEiUeCyRYsWWLNmTa49j86ePSv0kDA3N8c///wjGkqVnZ+fn7B84sQJ0TyDWb1cTFGmKWzdulUYhm1ra4vFixfrfOzy5ctFvVlU58UzxfeiSpUqePr0KQD9EoLpkxjp3r17GD16tChYWbZsWWzZssVkD6xZVB8qdZkPOTc2Njbo1q0bunXrhvT0dPj4+ODWrVu4fv067t27J/q7bNq0CdWqVcOXX36Z53pzkv1aERcXp9PwQW29pEx1/Vm1apUoAOnq6opu3bqhXr16cHd3h4uLi+i8mFuCDNURG/p8dvXpIfaxy/5vrcu5/WNiimuzrkxxPldti673BW/evBH1Bszt/Zw/fx6TJk0SnVtr1qyJzZs3GxyQ1ZXqtDfGOJ/b29vju+++w3fffYfU1FTcu3dPOJ8/evRIuPfJyMjATz/9hBo1aqBu3bp5rpfIlBiEJKICR9dJl7MnosnrXGakn+xz7EVERLzXIGSPHj1EGdLftxo1akAikQg9cp89e4aWLVtqPSYxMVF0021ogMnV1RUODg5CwOTZs2c63XT6+vrmWHfNmjWF5eTkZLx8+TLX4EtgYKDoJr969epqZR45ckStbm2ePXsmLNvb28PV1TXHfTdu3IjffvtNtO3bb7/FggULcs2+C4gfFjIyMvTq7ZI1HCpLVi8XU5RpCqrtjImJ0aud2hI8mOJ7oXpeCQ8PR1pamk49xVSH5mfPUK3Ky8sLY8aMET3k1qlTBxs3btS5t7JSqcSaNWsQHR2N6OhotG/fXpSdNycKhUIULChdurRO9enKwsICDRo0QIMGDYQg6+7du7F+/Xrh32jHjh0mDUK6ubmJ1gMCAnRK0KJtKKMprj9v3rzBzp07hfXPPvsM69ev1/pZy62nk+p9ia7J82QymdGGm38MNP1bv89hp+PGjcO4cePeW33ZmeLarCtTnM9V309wcDCSk5Nz/VFC9b5AIpFo/a4fO3YMs2bNEiWyadOmDVauXKlzUDA+Ph5btmwRzuf9+/fXqQeuTCYTdZAw9vncysoKTZs2RdOmTTFhwgRERkZi06ZN+PvvvwFkXod27tyJlStXGrVeImNjdmwiKnAePnyoNtRak+vXrwvLpUuX1vqQScZXtWpVUS+Pmzdv6nRcTEwMZsyYgbVr1+LQoUOiB/APiZ2dHWrUqCGsq34ec3Lz5k3hV2tzc3M0adLE4PpVswPrUrevr69oWFL2IYRVq1YV9aa8ceNGrmV6eXkJy46OjmoPBqrvLyoqCs+fP8+1TNX3oi0D8h9//KEWgJw4cSIWLVqkUwCSTMMU34tmzZoJy8nJyaLPXU7i4+NF84DlNP+Xt7c3Ro8eLQpAtmvXDrt27dJrugSJRIITJ07gwIEDuHDhAk6fPq3TcT4+PqKAkyFJaVJSUnD16lXs2LEDCxYsEH3Ps3NwcMDYsWNFyRJ0DY4ZqkKFCnqfW9LT0/Hw4cMcXzfF9cfT01PUs3HGjBm5BrtVgyOAesK6+vXrC8uRkZE6zU1qaIb0j1W9evVEPf90/bd+8eIFZs2ahQ0bNuDYsWOi+Tk/JKa4NuvKFOfzhg0bCtfojIwM3Lp1K9cyVeutUaNGjvPF/vPPP5g5c6YoANmnTx9s2LBBr16J1tbW2LZtGw4dOoRLly7hwoULOh3n5eUlen4x5HweFxeHS5cuYevWrZg3b57WKR2cnZ0xf/580bzmpj6fExkDg5BEVOBERUXh0qVLWveJi4sTZS5t166dqZtldO9zTiVTMDMzQ6tWrYT1o0eP6jSB/K5du3D06FFs2LABs2fPxrt370zZTJPq0KGDsHzixAlheGtO9u7dKyw3a9YsT1MItG/fXli+dOlSrlleVeuuXLmy2kOJRCLBF198IawfOHBAa0IGhUKBAwcOCOsdOnRQ+0y7u7uLhmLt27dPaxsjIiJw+fJlYT2n3lnnz58X/dJvbm6OpUuXYtSoUVrLz65Hjx7w8/PT+T/Vh6mxY8eKXssKmJqiTFNYtmyZXu1UtXPnzhxfA4z/vahRo4ao59OWLVty/aFq3759wsObVCpF69at1fYJDw/HDz/8IOox1Lt3b6xbt86gOYZV/y29vLx0+oElK5s1kBkgzK2XkSZyuRwjR47EkiVLsHfvXly8eDHXY6pUqSIsS6VSvevUR/Zzy5EjR3Idbnz27FmtQSNTXH9U57EDdJtDcNeuXaL17MOzmzZtKvo8q/a0zElu50l9fej3Gk5OTqKe/nv27NFprs0//vgDhw8fxtq1azFr1iyt17OCzBTXZn0Y+3xerFgx0Y+guX3eExMTRYmBOnbsqHG/R48eYcaMGaK/zfjx47FgwYJcp+PITiqVin5AOH36dK7nrPT0dCEhHZB5jlUN4OoqIiICo0aNwq+//or9+/eLkqTl5H2ez4mMgUFIIiqQtPXmyMjIwNy5c4WHB3Nzc6NkdX3fVCfRzz7R9Idi6NChwrJMJsO0adNEwzyze/TokWj+uDp16qBWrVombaMp9ezZUxhG9PbtWyxcuDDHfQ8ePIhr164J63n9zLZv3154SE5LS8OMGTNynJ/s2rVrOHjwoLA+YMAAjfv17dtXeFjx9fXFhg0bcqx/zZo1Qs9GMzOzHMvs16+fsLxv374ce1LI5XJMnz5deLgsU6aMxh8XIiMjMXv2bGFdIpHgl19+ydeh+SRmiu/FoEGDhOW7d+/ijz/+yLHM7J/dTp06qc0DlpGRgSlTpogCV71798bChQsNTtDzzTffCMvp6emYN2+e1jkDt23bJvrBbfDgwTrNlZhd0aJFRT1uNm/erDWAp1QqcfbsWWHdkAdlfQ0ZMkToVfj27VvMmzcvx0BKZGQklixZkmuZxr7+ZM+4q/q51GTz5s2iH00A9UQ01tbWos/uvn37tP7IevjwYVy9elVrvfr62O41Xr58iZ9//lnrDxEXL14UBa7at29vcCK4gsAU12ZdmeJ8rnpfcOnSJWHaFk0WLFggnM9sbGxE59ksiYmJmDx5suj7N2nSJIwZMybHcnOjWo9MJsv1nLRs2TJh7mIAGDlypEHBX3d3d9E0NKtXr9b6vU1NTRWdh97H+ZworxiEJKICKTIyEr169VIbdhIaGopRo0bhv//+E7aNGTNGbc6pD4HqA8+DBw8+yDmgatWqhb59+wrrly5dwoABA9SG0aWlpWHPnj0YMmSIcDNlbm6OmTNnvtf2GluJEiUwfPhwYf3IkSOYPHmyKItjSkoKNm3ahPnz5wvbWrVqJerFk52Hh4fwX04PEJaWlpg0aZKwfv36dYwYMUI0IXx6ejoOHDiAcePGCcOT3N3dRUMxVVWrVg3du3cX1tevX48lS5aIEirEx8dj8eLFoh5cvXv3Fv0Sr6p3795Cb8j09HT88MMPOHjwoCg4ExoaiuHDh4uGZU2dOlXjUMjffvtNlDxk5MiR6NKli8a6KX+Y4nvxzTffiHrPrFq1CvPmzRP1AFYoFDh9+jQGDhwo9NYpWrSoxuzPJ0+eFJImAZnZlVXbYohGjRqJeu96enpi2LBhCAgIEO0XFRWFefPm4ZdffhG21axZU/Q305dqkCYsLAzDhw+Hj4+P2n6RkZGYOHEi7ty5I2xTDZKplqF6HpoxY4bBbQMyk1OoBgROnTqF0aNHq80B7enpiT59+qj1StTE2NefZs2aiYIGCxYs0Nir9OHDhxg7dixWrVql9lpSUpLatu+//17oyatUKjFu3Dhs27ZNFFhITk7G+vXrMWfOnFzft75U7zVu3LihNVBbULVv317Um3n//v0YOXKk2tDThIQEbNy4ET/++KMQpLSxsRFdKz9Eprg26/odN8X5vG3btqKe/nPnzsXmzZtF34m3b99i4sSJomDymDFjNCbh2759u2gO2c6dO2PkyJEa69ZVly5dUK9ePWH98OHDmDBhAiIiIkT7hYSEYOzYsaJe0W3btkXXrl0NqlcikWDYsGHC+qNHjzB69Gi16wgABAUFYcSIEcJ7NzMz+yA7ZVDhw0mTiKjAadWqFW7fvo3w8HAMHjwYZcqUQdmyZREbGwt/f3/Rr98dO3bM0y+d+cnd3V1YfvXqFTp16oSqVasiPj4e27Zty3HOm4Jm5syZCA0NFX79fvDgAXr16gUXFxe4ubkhISEBQUFBoocziUSCOXPmoEGDBvnVbKMZNWoUHj16JPwS/c8//+DMmTPw8PCApaUlnj9/LnpQKFu2rCj4kBfdu3fH/fv3sX//fgCZgcj27dvDw8MDdnZ2CAgIEPWIcnBwwJo1a7TOmTh79mz4+/vj8ePHADKTVhw4cEAYvu3n5ycajlW7dm2tAQpLS0usXbsWAwYMgEwmQ1JSEubMmYNVq1ahcuXKwtx9qr2i+vXrh06dOqmVFRERIXogATI/b6o37Lr45ZdfPuheMR8CY38vJBIJVq9ejWHDhgm9Tfbv34/Dhw+jYsWKcHR0RGBgoKgHvVQqxcqVKzUmB9i8ebNoPSEhQe9EQEOHDhXNxQUAixYtQmhoqPD9uXnzJjp16oRKlSqhVKlSkMlkap/3qlWrYsuWLXkaRtemTRv06NFD6FH05MkTfPvtt3B2dkb58uVhbm6OqKgoBAYGiuru37+/1h9EjGnEiBF49uwZzpw5AwC4fPkyrly5And3d9jb2yM0NFR4wC9SpAgaNWqUa29EY15/ypUrh169egnnU5lMhtGjR6NkyZIoW7YsFAoFXr16JQqQWlhYwNHRUdimKXhqaWkpfHYjIyMhl8vxyy+/YMOGDXB3d4dSqYSvr69wXm3SpAn8/f1FP7bkheq9xuPHj9GxY0e4ubkhNTVVNHS2IJNIJPj1118xZMgQPHnyBABw5coVXLlyBW5ubnBxcYFMJkNISIhoflepVIoVK1Z8kD9UZ2fsa7M+THGfs3z5cvTr1w+hoaFIT0/HqlWrsGXLFlStWhVpaWnw8/MT9Wxs06aNxmt9cnKy2rQI4eHhet8XTJ06VZREx8zMDGvXrkXfvn2FH0v+/fdfnDlzBlWrVhW+99mDg02aNNH4A4U++vTpg/PnzwsjR7y8vNCpUyeUK1cOZcqUAZCZeC178q6pU6fmGHQmKkgYhCSiAqdGjRoYOHAgpkyZAplMhlevXuHVq1eifaRSKYYOHYoJEyYYPHQuv33xxReoUaOG8ED99u1b4QHa19fXpPPBGZOlpSU2b96MtWvXYvv27cIv2a9fvxZlp81SsmRJzJ8/XzTH0YfMwsIC69atw08//YTDhw9DqVRCLpcLDwqq6tevjzVr1mj8Jd9QP/30ExwdHbF161bI5XIoFAq1ZAlA5jyQa9asyTWrpp2dHf766y9MmzZN6AWUnJyMBw8eqO3bpk0bLF++PNf589zd3bFz505MnjxZGCYWExOjNmTU3NwcI0aMwIQJEzSWc/78ebXhrbomKVCl+pBKpmGK74WTkxN27tyJxYsX49ixY1AqlUhPT9eY8KhMmTL49ddf0bhxY7XX/Pz81BKEaPrO5Oarr75S22ZnZ4edO3di0aJFOHr0qPCjWWBgoMakJF27dsWsWbPg6Oiod/3ZLVq0CPb29ti5c6fQ8zkyMlLjfLE2NjYYNWqUSTOwZ2dhYYE1a9ZgxYoV2LZtGxQKBZRKpdq8ovb29lixYgW8vb1zDUIa+/ozZ84cxMfHixILRUVFaQwuVq5cGYsWLcKFCxeEueBUe5iqqlq1Kg4cOIAxY8YIQbSEhARRb1wgM2nHmjVrjNq7u1evXtizZ48Q4A0PDxfmKw0LC0PZsmWNVpcp2dvb4++//8aSJUtw6NAh4TMeEhIiysacpXz58liyZIlByUEKIlNcm3VlivO5s7Mzdu3ahUmTJgnfg/j4eLXvBJDZE37+/Pka7/dv3LihFrC/f/++Hu8uk6ZzobOzMw4ePIhZs2YJ0ygoFAqNcyGbm5ujf//+mDhxokHTaqgyMzPDxo0bMXfuXNEPr6GhoaLRLlkcHR0xefLkHEe5EBU0DEISUYHUsmVLnDx5Ert378bFixcRHh4OiUSCMmXKoGXLlujVq5co4cWHSCqVYteuXdiwYQMuXryIyMhIpKeno2TJkh/c0Gxzc3NMnDgR/fr1w7Fjx3D9+nUEBgYKN4ZOTk6oXr062rRpg6+++kqvLIUfAktLSyxevBi9e/fG0aNHcfPmTURGRiItLQ1OTk6oU6cOOnfujPbt2xs9aC6RSDBx4kR07doVhw4dgqenJ16/fo3k5GTY29ujevXq6NixI7p27ZprptcsRYsWxcaNG3Hjxg2cOHECd+7cwdu3b5GRkYESJUqgfv366N69O1q0aKFzOz08PHDs2DGcPHkSZ86cwbNnzxAdHQ2pVIqyZcvik08+wXfffaf1V3xdMstSwWGK70XRokWxbNkyDBo0CCdOnMD169fx+vVrJCQkoFixYqhRowbat2+Pr7/+WjQXnipTf45sbW2xdOlSDB8+HIcOHYK3tzfCwsKENjo7O6Np06b46quvjDonrrm5OWbMmIHevXvj+PHjuHPnDl6+fIm4uDhIJBKUKFECbm5uaN26NTp16qRT4pUsxkpuIpFIMHXqVHTr1g379u3DjRs3EB4eDnNzc7i6uqJNmzbo378/nJ2ddUrIABj3+pPVa7Fnz544evQoHjx4IJz7bG1tUaZMGVSrVg2tW7dGu3btYG5uDoVCIQQh/f394ePjgzp16qiV7eLigkOHDuG///7DiRMn8PjxY8hkMhQrVgxVqlRBt27d8PXXX+udRCM39vb2OHDgANavXw9PT0/hx85SpUrh7du3H0wQEsicY3PhwoUYNmwYjh8/jps3byIkJAQymQwWFhYoUaIEatasiS+++ALt27fX+Zr3oTDFtVlXpjifly5dGn///TfOnTuH06dPw8fHB2/fvoWZmRmcnZ3RsGFD9OrVSzQsOjtTn8+dnJywadMmPHz4EMeOHcPdu3cRERGB5ORkODg4oHTp0mjZsiU6d+6c64+8+rC2tsby5csxePBgnDx5Evfv30dwcDASEhJgYWGB4sWLo0qVKsL5/EMZPUUEABJlbukFiYiIiIio0Dl9+jQmTpyIgQMHihJCERERERniwxzDSEREREREJpU1FYo+vSaJiIiIcsIgJBERERERiWRkZAhzI7Zs2TKfW0NEREQfAwYhiYiIiIhIEB8fj2nTpuHJkydo2bKlKGssERERkaEYhCQiIiIiIoFCocCtW7fQpEkTrFy5Mr+bQ0RERB8JJqYhIiIiIiKRsLAwuLq6Gi0zNhERERGDkERERERERERERGRSHI5NREREREREREREJsUgJBEREREREREREZkUg5BERERERERERERkUhb53YD8pFQqcfXqVZw4cQIPHz7E27dvYWZmBhcXF9SsWRNdunRBixYtYGZm/FhtYmIijh49ivPnz8PPzw/x8fFwcHBAmTJl8Pnnn6N79+4oVaqU0evV1d27d0XrpvgbEBERERERERFRwadQKETrDRs21LuMQpuY5tWrV5g2bRpu376tdb969ephyZIlqFy5stHqvnv3LiZPnoyIiIgc97G1tcWcOXPQo0cPo9Wrj+xBSCIiIiIiIiIiIoBBSJ2Fh4ejf//+ePXqlbDNxsYGHh4ekEqlCAwMxNu3b4XX7OzssG/fPlStWjXPdd+9exdDhw5FSkqKsM3V1RWurq6IiorCy5cvRfsvWLAAffr0yXO9+mIQkoiIiIiIiIiINGEQUgcKhQL9+vXDvXv3AABSqRQTJkzAgAEDYGVlBSBzmPaZM2cwf/58yGQyAEDZsmXx77//wtLS0uC6ExIS8OWXX+LNmzcAgNKlS2Pp0qVo2rSpsM+zZ88wc+ZMPHv2DABgYWGBAwcOoGbNmgbXa4iPcTi2atfhj+H9EJH+eB4gIp4HiIjnASLieUB/xhiOXejmhLxw4YIQgASAn3/+Gd27dxftI5FI0LFjR7i4uKBPnz5QKBQICwvDiRMn8M033xhc9+bNm4UAZNGiRfHXX3+hQoUKon2qV6+O3bt3o0+fPvD390d6ejpWrlyJbdu2GVyvIczMzIQPmJmZGerXr/9e6ze29PR0PHz4UFivXbs2LCwK3cefqFDjeYCIeB4gIp4HiIjnAcPcv39fFCcyRKEL9x48eFBYrlOnjloAUlW9evXw2WefCevnz583uN7U1FTs379fWB8xYoRaADKLnZ0dFi9eLKx7eXnBz8/P4LqJiIiIiIiIiIjyU6EKQiqVSrx+/VqI2H711Ve5HqM6D2RwcLDBdXt6eiI2NhZAZsQ4t4QzderUEQ3B/u+//wyum4iIiIiIiIiIKD8VqiCkRCLBiRMncO/ePRw6dAhdunTJ9Zi4uDhh2dbW1uC6b9y4ISy7u7ujZMmSuR7TvHlzYfnSpUsG101ERERERERERJSfCuWg9yJFiqB27dq57peWloZr164J6zVq1DC4TtXh1LommalWrZqw/Pz5c6SmpgrJc4iIiIiIiIiIiD4UhaonpD7S0tIwZ84chIeHA8gcQj1o0CCDy3v58qWwXL58eZ2OKVu2rLCcnp6OsLAwg+snIiIiIiIiIiLKL4WyJ6QmCoVCCPR5enpi165dCAkJEV6fP38+KleubHDZMTExwrouQ7EBoESJEqL1qKgog9tARERERERERESUXxiE/H9Lly7Fzp071ba7uLhg1qxZ6NChg8Flx8fHIyMjQ1gvVqyYTscVLVpUtK46P+X7lp6enm91G4Pq31/TOhF9/HgeICKeB4iI5wEi4nkg/zAI+f9evXqlcbujoyPevHmDlJQUWFtbG1R2amqqaF3XeR0tLS21lvO+KBQKPHz4MF/qNpXHjx/ndxOIKJ/xPEBEPA8QEc8DRMTzwPvDOSH/39u3b1GtWjV8+umncHd3h5lZ5p/m2bNnWLRoEbp164aAgACDys7ei9Dc3Fyn47Lvx+g8ERERERERERF9iNgT8v/9/fffoqBfVFQU1q9fj3379gEAgoKCMGTIEBw/fhyOjo56lW1oMDH7flKpVK96iYiIiIiIiIiICgIGIf9f9kBhyZIl8dNPP6Fs2bJYsWIFACAyMhIbNmzAnDlz9Co7+zBuXYdVGzqM29jMzMxQu3btfKnbWDIyMkRdrGvVqqVzj1Qi+jjwPEBEPA8QEc8DRMTzgGEePXoEhUKRpzIYhMzFiBEjcPbsWfj4+AAAjh07hlmzZgnDtXVRtGhRmJmZCf9YCQkJOh2XfT8HBwed6zQ2C4uP66Nibm7+0b0nItIPzwNExPMAEfE8QEQ8D7w//CvroFu3bkIQMj4+HkFBQahUqZLOx5uZmaFkyZKIjIwEAERHR+t03Nu3b0XrJUqU0LlOIiIiIiIyPqVSmeeeIJR/NGXFlUgk+dQaIsoPheE8YGZmViDfE4OQOnBzcxOty2QyvcsoX768EIQMCQnR6ZjQ0FBhWSqVwtXVVe96iYiIiIgob9LT0xEbG4vY2Fidp1aigkmpVIrWAwICCuSDOhGZTmE5D1hYWMDOzg7FihWDjY1NgXiPhSoIGRgYiIMHDyIsLAwRERHYtWsXihQpkutxaWlpovVixYrpXXetWrXg7e0NAPD19dXpmGfPngnLVapUYWIaIiIiIqL3TCaT4fXr12oPrfTh4rBLIioM54H09HTIZDLIZDJIpVK4ubnB0tIyX9uk+8SGH4HExERs27YNZ8+exaNHj3Djxg2djnv06JGwLJVKUbp0ab3rbtKkibD85MkTxMXF5XrM9evXheVPP/1U7zqJiIiIiMhwiYmJiIiIYADyIyKRSGBhYSH8VxB6BhHR+1UYzwNyuRwhISFqnezet48/9KuiWrVqcHBwEIZT79mzB23bttV6TFJSEg4fPiysf/LJJ7C1tdW77qZNm6Jo0aKIj4+HXC7HoUOHMHTo0Bz3f/jwIZ4+fSqsf/nll3rXSUREREREhklPT0dYWJiwbm5uDgcHBxQrVqzQPLR+jJRKJZKSkoT1gjJEkYjen8JwHsjIyEBSUhLi4uKQmJgI4H+ByMqVK+fb+y1UQUipVIqePXti69atAABPT0+cPHkSXbp00bh/eno6ZsyYgaioKGHbiBEjDKrb2toa33zzDbZv3w4AWL9+PZo3bw4PDw+1fePj4zF79mxhvV69eqhbt65B9RIRERERkf4SExOFBDQSiQTlypXTaSonKtiUSiXMzc2FdXNz848u+EBE2hWG84C5uTksLS3h4OCAmJgYIUeJXC5HUlKSQZ3rjKFQDccGgDFjxsDZ2VlYnzlzJjZv3ozk5GTRfo8fP8agQYNw5swZYdu3336rcVj0jBkz4OHhIfyn+oupqu+//x5OTk4AMm9qBg8ejHPnzomGd/j6+mLAgAF4/vw5gMwPzowZMwx/w0REREREpLeEhARh2d7engFIIiL6IDk5OYmCjvHx8fnWlkLVExIA7Ozs8Mcff2DgwIGIjY2FXC7HqlWrsHHjRnh4eMDS0hLh4eEIDw8XHdeuXTssWLAgT3U7OTlh1apVGDVqFFJSUhATE4OxY8fCxcUFbm5uiI6ORkBAgOiYyZMno379+nmql4iIiIiI9JM1fA1AvvUYISIiMoZixYoJ17X4+Hi4uLjkSzsKXU9IIHNuyEOHDqFevXrCtuTkZDx48ADe3t6iAKSNjQ0mTZqE9evXGyV7UtOmTbFlyxaUKVNG2Pb69Wt4e3uLApDW1taYN28ehg0bluc6iYiIiIhId0qlEhkZGcK6tbV1PraGiIgob2xsbITl9PT0fEu4Vuh6QmZxc3PD/v37cfXqVZw6dQoPHjzAmzdvIJfL4eDggKpVq6J58+bo0aOHMITaWJo0aYLTp0/jyJEjOHfuHF68eAGZTAYrKyuUL18ezZs3x3fffQdXV1ej1ktERERERLnLmgsyi+rcYURERB+a7NcxhUKRL9e2QhuEzNKqVSu0atUqT2UsW7YMy5Yt0+uYIkWKoF+/fujXr1+e6iYiIiIiIiIiIiroCuVwbCIiIiIiIiIiInp/GIQkIiIiIiIiIiIik2IQkoiIiIiIiIiIiEyKQUgiIiIiIiIiIiIyKQYhiYiIiIiIiIiIyKQYhCQiIiIiIiIincnl8vxuAhF9gCzyuwFEREREREREpvT48WMcOHAAd+7cwatXr6BUKlGiRAnUrl0bnTp1Qrt27WBmplsfneTkZBw8eBDnzp2Dv78/EhMT4ejoiMqVK6NTp074+uuvYWlp+d7Leh8UCgX279+P69evY926dTods2bNGvz+++8oVaoUrl27ZuIWElFBxiAkERERERERfZTkcjkWLVqE/fv3Q6lUil4LCwtDWFgY/v33X9SpUwfLli1D5cqVtZbn5+eHH374AaGhoaLtb968wZs3b3Djxg3s2LEDq1atgoeHx3sr632IjIzE6NGj8eTJEzRp0kTn4y5dugQAaN26tYlaRkQfCgYhiYiIiIiI6KM0ZcoU/Pfff8J6rVq1ULt2bdjZ2SEkJARXrlxBSkoKfHx8MGjQIOzfvx+urq4aywoNDcXAgQMhk8kAACVKlED79u1RqlQphIaG4ty5c4iLi8OLFy8wbNiw91bW+xIUFIQnT57odUxkZCSePXsGgEFIImIQkoiIiIiIiD5Cx48fFwKQ5ubmWLZsGbp06YKkpCRhH5lMhsmTJ+P+/fuIiorCzz//jE2bNmksb+bMmULQsGXLlvjtt99gZ2cnvD558mSMGzcOd+/eRVRUFObPn48///zT5GUVZFm9IK2srNCsWbN8bg0R5TcmpiEiIiIiIqKPjmrQbuzYsejatavaPmXKlMGaNWsglUoBAJcvX8arV6/U9vP09MTt27cBAMWLF8eaNWtEQcOs7Zs3b0bJkiUBANeuXcOdO3dMWlZBd/nyZQDAJ598giJFiuRvY4go3zEISURERERERB+VV69e4fnz5wAye0H26dMnx32dnZ2FOReVSiX8/f3V9jl06JCwPGjQINja2mosq2jRohg2bJiwfvToUZOWVZClpqbi5s2bADgUm4gycTg2EZERyZLl+PteOGwszdGvgSuk5vyth4iIiOh9K1OmDO7evYvAwEBER0fD0dFR6/5paWnCclavyCwKhQJeXl7Cem4BtdatW2PZsmUAgPPnz2PRokWQSCRGL8tQt2/fxvHjx3Hnzh1EREQgIyMDTk5OqFmzJrp06YKOHTuKMoWvW7cO69evF5Xh7e0tBG6bNGmCXbt2qdVz48YNJCcnC+9Dk8uXL+PUqVN48OAB3rx5AwBwcHBA1apV0bx5c/To0QP29vZ5er9EVHAwCElEZCTxKelosOoKgt5l3mz9fS8MZ0c2zedWERERERVOtra2qF27dq77+fr6Cr0mraysUL16ddHrwcHBiIuLE8rMLVN1xYoV4eDgAJlMBplMhsDAQCHrtjHL0ldUVBRmzJgBT09PtdciIyMRGRmJixcvYvv27Vi/fj2cnZ0NqifLxYsXAQDu7u5qSXXi4uIwfvx4XL9+Xe24169f4/Xr17h27RrWr1+Pn3/+GZ06dcpTW4ioYGAQkojISHbeDRUCkABw/vlb3A+PRX1X/npLREREVNAolUp4enpi3rx5UCqVAIABAwbAyclJtN/Lly+F5bJly+pUdpkyZYTEM0FBQULg0Jhl6ePdu3fo27cvQkJChG2NGzdGgwYNIJVK4e/vjwsXLiAjIwM+Pj4YOHAgDh8+DDs7OzRv3hw2NjYICQnBvn37AADlypUThriXLl1aY51XrlwBoLkX5OTJk4UApL29Pdq0aQM3NzcAQHh4OM6fP4/Y2FgkJCRg8uTJcHV1Rd26dfV+30RUsDAISURkJCsuB6htO/74NYOQREREhYA8Q4GF5/xx+lkkktIy8rs5BYqNpTk6VXfGvC/c832qmtDQUBw5cgSvX7/GvXv3EBwcLLzWs2dPTJ48We2YqKgoYTmngFt2zs7OePr0qdrxxixLHwsWLBACkE5OTli7di0aN24s2sfPzw9DhgxBdHQ0goKCsGHDBkyfPh0NGjRAgwYNcOvWLSEIWbp0adF8ldk9e/YMr1+/BqAehHzw4AGuXr0KILOn599//60W+J01axZGjRqF27dvQ6FQYOPGjTlmLSeiDweDkERERERERHn001l/LLnwPL+bUWDdD88cgvxzx2r52o47d+5g48aNattHjBiBCRMmiOZCzBIfHy8s65rh2draWuPxxixLV0FBQfjvv/8AZCbp2bhxI+rVq6e2n4eHB3799VchuHjgwAFMmjRJbY5MXVy6dAlA5vyO9evXF7324MEDYfm7775TC0ACgJ2dHZYuXYp27doBAJ4+fYqMjAyYm5vr3RYiKjiYMYGIyISU//9/vzcJmPufL9ZeC4Q8Q5GvbSIiIiLj8w55l99NKPBuBef/3+jVq1cat2/ZsgUdO3bEjRs31F5TTVqjGhDURnU/1eONWZauzp07Jyy3bdtWYwAyS4sWLdCkSRM0bdoUX331FWJjY/WuD8hMOAMArVq1UgvsqgYS7927l2MZ5cqVw/Hjx3Hr1i1cvXqVAUiijwB7QhIRGUlOeQr9oxLQcPVVJMkzh2ZdCYjG4cGNc9ibiIiIPkRN3Bxx/vnb/G5GgfZJee0Zqt+HL7/8Ep06dYKTkxNiY2Nx//59bNy4EUFBQQgNDcXw4cOxceNGtGrVSjhGU+9IfahmszZmWbq6du2asNy2bdtc99eU6Vof0dHRePToEQDN80E2adJEWD5z5gwGDhyIb7/9Fs2bN1frFVmtWv72nCUi42IQkojIxBaffy4EIAHg6OPXCI9Nhqu9bkNwiIiIqOCb394dEgk4J6QGqnNC5rdKlSohKSkJAFCiRAl069YN7dq1w7Bhw/DgwQOkp6dj1qxZuHDhAqysrAAANjY2wvGpqak61ZOSkiIsZ5Vj7LJ0FRERISy7u5v+3+Dy5ctQKBSwsLBAy5Yt1V738PDAN998g0OHDgEAbt26hVu3bkEikaBatWpo2rQpWrZsiUaNGsHS0tLk7SWi94dBSCIiE1Iqldh1N0xt+7PIBAYhiYiIPiJSczP83LFavs95SPqzs7PDihUr0LFjR6SnpyMqKgoXLlxAp06dAIgDh8nJyTqVqRo4LFasmLBszLJ09fbt/3ro2tubPmFi1lDsBg0a5NjeBQsWoESJEti2bZswxFypVOLZs2d49uwZtm3bBltbW3z++ecYOnQoqlevbvJ2E5HpcU5IIiIjMWR4DBERERHlv3LlyqFu3brCetZwYiAzO3WWN2/e6FReZGSksFyyZEmTlKWr9PR0vY8xVFpaGry8vABoHoqdRSqVYuLEibhy5Qrmz5+PVq1aqSXqSUxMxIkTJ9CjRw/8+eefpmw2Eb0nDEISEZmQUs/tRERERGQ8CoVC1JNQm9KlSwvLCQkJwrLqEObw8HCdylLdr2LFiiYpS1eqvR8NTTSjq9u3byMxMRGA9iBkFicnJ/Tt2xdbtmyBt7c39uzZgx9//BH169cXfuBXKBRYvnw57t69a8qmE9F7wCAkEZGRsCMkERERUcFw7NgxdOjQAXXq1MH8+fN1OkYmkwnLjo7/S6Lj7OwMBwcHYZ+goCCt5QQGBgrBPnt7e7i5uZmkLF2VK1dOWH7x4kWu+x87dgyzZ8/Gpk2b4Ovrq1ddly5dAgC4ubmhcuXKeh1raWmJRo0a4YcffsC+ffvwzz//iALDx48f16s8Iip4GIQkIsoHSiX7QhIRERGZip2dHYKCgiCXy3Hp0qVce0MmJCTg3r17wnqdOnVEr6tmlb548aLWsrICcQDQokULtSl7jFmWLho2bCgsX716Ndf9jx49ikOHDmH16tUIDg4WtutSd9Z8kJ999pnG15VKJWbPno1vv/0WjRo1EiXNya5KlSoYNGiQsK5tXyL6MDAISURkQow1EhEREb1/LVq0QNGiRQFkDkH+66+/tO6/cuVKUdbsFi1aiF7v2rWrsLxt2zbExcVpLCcuLg7bt28X1r/55hu1fYxZli66desmBBDPnj0Lf3//HPf19fWFt7c3gMwkOs2bNxdeMzP7X/ggI0M9A/yLFy8QGhoKAGjTpo3G8iUSCQIDA+Hj44P4+PhcezdGR0cLyy4uLlr3JaKCj0FIIiIj0ed3acYmiYiIiEzH2toa33//vbC+du1aHDlyRG2/1NRULFu2DH///bewberUqbC2thbt17RpUzRt2hQAEBUVhZEjR4oCZEBmwGzUqFGIiooCADRu3BjNmjVTq9OYZemiatWq+PLLLwEAcrkco0aN0jjMOjg4GOPHj4dCoQAA9O/fH3Z2dsLrqsuvX79WC0Rm9dq0tbVF48aNc2xP7969heX169fjzJkzGve7d+8edu/eLaxnvQci+nBZ5HcDiIiIiIiIiIxt6NChuHfvHi5duoSMjAzMnDkTu3btwieffAIbGxtERETg2rVrQqAPAIYPH46vv/5aY3kLFy7Et99+C5lMhnv37qFjx47o0KEDXF1d8erVK/z3339Cr0YHBwcsXbo0x7YZsyxdLFy4EL6+vggMDER4eDh69OiBli1bolatWjA3N4efnx8uXryItLQ0AJnD0ceOHSsqw9XVFRKJBEqlEuHh4RgzZgwaNmyIIkWKYMCAAcJQ7ObNm8PS0jLHtnTt2hWHDh3C7du3IZfL8eOPP6JmzZqoW7cuXFxckJycjCdPnsDLy0sIdH755ZcGB2GJqOBgEJKIyISU7PNIRERElC8sLCywdu1a/PLLL9izZw+USiWePn2Kp0+fqu1ra2uLGTNmoFevXjmW5+bmhh07dmDs2LEIDQ1FXFwcDh48qLZf2bJlsWHDBlFCGFOWpYuiRYti7969mDp1Kq5evYqMjAxcvnxZCByqatOmDX799VdYWVmpldG5c2ecPHkSAITj7ezs0LVrV9y/fx9A7lmxzczMsHHjRkyYMAGenp4AgCdPnuDJkydq+0okEnzzzTeYN2+eAe+aiAoaBiGJiIxEn4nCOVckERERkelZWlpi7ty5+O6777B//37cunULr169QkpKCuzt7VG1alW0bNkS3377Lezt7XMtr1q1ajh16hQOHjyIs2fP4sWLF4iNjYWtrS2qVq2K9u3bo1evXihSpMh7LUsXDg4O2LJlC27cuIGTJ0/i7t27ePPmDdLT01GiRAnUr18fPXv2FM0Dmd2SJUtQoUIF/PPPP4iIiIBSqYSDgwMuXryIjIwMSCSSHJPSqCpatCi2bt2Ka9eu4dSpU3j06BEiIiKQkpKCYsWKwcXFBU2bNkXXrl1RvXp1o7x/Isp/EiVTtJIG9+/fF+YCMTMzQ/369fO5RXmTnp6Ohw8fCut169aFhQVj8JR3SqUS672CcMb3DU77vlF7febnVbD0wgu17VJzCb6pUwaLv6yGCk4276OphR7PA0TE8wDpKiMjQ5S8w93dHebm5vnYIjIWpVIpJKABMpOvGJJxmog+XIXxPGCM65ox4kS86yIiyoMtt0Iw/tjjHF/P6WceeYYSe++Hw/NlNF7Oagczs4/7okdERERERESFG7NjExHlwahDPnk6PlSWorEHJREREREREdHHhEFIIiIT0mW+i6eR8SZvBxEREREREVF+YhCSiIiIiIiIiIiITIpBSCKifMb0YERERERERPSxYxCSiMiEGGAkIiIiIiIiYhCSiIiIiIiIiIiITIxBSCIiIiIiIiIiIjIpBiGJiEzosM+rXPdR6pRDm4iIiIiIiOjDxSAkEZEJBUQn5XcTiIiIiIiIiPIdg5BERERERERERERkUgxCEhHlM2bQJiIiIiIioo8dg5BERERERERERERkUgxCEhERERERERERkUkxCElEZAC/NwlouvaaUcriaGwiIiIiIiL62DEISURkgFGHfHArRJbfzSAiIiIiIiL6IDAISUSkJ3mGAlcCo/O7GUREREREREQfDAYhiYj0xGzWRERERERERPphEJKISE8SiXHLUzKqSURERERERB85BiGJiPSUmJaR300gIiIiIiIi+qAwCElEpIegmCQ0XH01v5tBRERERERE9EFhEJKISA/bvEPwMibJqGVyMDYRERERERF97BiEJCLSw6Lzz/O7CURERERERGQAuVye300o1CzyuwFERERERERExubh4ZHnMrp3745ly5YJ6wMGDIC3tzcAYOfOnfjkk0/yXAcZJi0tDcePH8fZs2fx7NkzyGQyWFtbo1KlSmjVqhV69+6NkiVL5lpOQEAAOnXqpFfdhw4dQu3atQ1teqFy5MgRzJw5E4D69wkAZsyYgaNHjwIAli5dih49episLf/++y927dqFPXv2qL0WFhaGzz//HADg6uqKixcvmqwdhRmDkERE+YzJsYmIiIiIdPf48WOMHz8eYWFhou1yuRwPHz7Ew4cP8eeff2LixIkYNGhQrmXRxy0xMRFjx47F9evX4erqmt/NKdQYhCQiIiIiIqKPzrRp09S2KZVK0XBMqVQKiUQirF+7dg03btwQ1suUKWPaRpLe7t+/j0GDBiE1NRUAIJFI0Lx5c9StWxdmZmZ48OABPD09kZycjCVLliA8PByzZs3KsbwnT54Iyz169ECVKlVybUPp0qXz/kbovXn37h2uX7+e380gMAhJREREREREH6Fhw4apbVMqlUhK+l+SQRsbGyEI6e3tjd9++014rUGDBhg9erTJ20m6S0hIwLhx44QApLOzM9atW4e6deuK9nv48CF++OEHREVFYceOHahVqxa6du2qsUzVIOTIkSNRoUIFk7Wf1C1btkxtiHZ+KFu2LPz8/PK7GR89JqYhIspnW2+F4Ovt3pj+z1PEp6Tnd3OIiIiICp2QkBCMGzcOaWlpAIBSpUph7dq1kEql+dyyj5eHhwc8PDzQtm1bnY/ZvXs3oqKiAGQGkLdv364WgASAunXrYtOmTTA3NwcA/Prrr0hJSVHbT6FQ4OnTpwCAYsWKoXz58oa8FSLSEYOQREQ6kmcoTFJuiCwZJ55EYvnlAAzYe88kdRARERGRZomJiRg9ejRkMhmAzCHa69at0ympCb1fZ86cEZaHDBmCypUr57hvrVq10KFDBwBAVFQUzp8/r7bPy5cvhZ6xNWvWFA3NJyLj43BsIqJcpKZnYNj+hzjkE2Hyuk48iURaugKWFvyNiIiIiOh9mDlzJl68eCGsz507F/Xq1dP5+LNnz+L48ePw8fHBu3fv4ODggAoVKqBTp07o3r07ihQpkmsZjx8/xr///ou7d+8iPDwcsbGxkEgkKFq0KCpWrIhPP/0UvXr1yjEwum7dOqxfvx7A/zI3P3z4EAcPHoS3tzfevHkDc3NzlC1bFq1atUL//v3h7Oyca7vevHmDPXv24MqVKwgODkZGRgZcXFzQsmVLDBw4EOXLl8e8efOwf/9+AKbNGC6Xy/Hs2TNh/csvv8z1mObNm+P06dMAgCtXrqBz586i11WHYteqVctILc2Z6r/Tnj170KhRI1y5cgV79+7F48ePIZPJUKxYMdSsWRPdunVDp06dYGam+blANev0mjVr0KZNG6xbtw7Hjx9HXFwcnJ2d0bhxY4wfPx6lSpUSHfv69WscOHAAnp6eCA0NRXx8PIoVK4aKFSsKmcUdHBx0ek+XL1/GkSNHcP/+fbx79w7FihVD9erV0bt3b7Rv3z7X4/XJjv3s2TMcPnwYt27dQlhYGORyOezt7VGtWjV06NABX3/9NSwtLTX+jbKEh4ejWrVqADLn9jx16hQA/bJjJyQk4OjRo7h8+TL8/Pwgk8lQpEgRuLi4oEmTJvj666+1Zk/P/m/XsWNHvHjxAvv374eXlxdev34NpVIJFxcXNG/eHH379kWlSpW0/Rk/GAxCEhHl4vfrQfj7fvh7qy8tg0FIIiIiovdh69atot51vXr1Qu/evXU6NjY2FgMHDsStW7dE26OiohAVFYXbt29jz549+P3333Mc5hsXF4fp06fnGPBISUlBVFQUvL298ccff2DRokXo0qWL1nYplUosXboUO3bsgFKpFL3m6+sLX19f7Nq1C8uWLUPHjh1zLOfixYuYPHmyaA5NAAgODkZwcDAOHjyIuXPnam2LMclkMtH70WXotIuLi7CsKQu2piBkaGgofHx8EBMTA1tbW1SoUAF169YVhnYb04IFC7B3717RtujoaFy9ehVXr17F7t27sXHjRjg6OuZa1uTJk3Hu3DlhPTg4GFFRUZgzZ45ov82bN2PDhg3CvJqq9UZHR+POnTv4448/MGfOHHTv3j3H+pKTkzFp0iS1z250dDQ8PT3h6emJzz//HK1atcq17blJTEzEggULcOLECbXX3r59K9S3detWrF+/HlWrVs1znTk5ffo0fvrpJ6HndBa5XI64uDj4+/tj9+7d6Ny5MxYuXAhbW9tcy9y6dStWr14tSpoFAIGBgQgMDMTevXsxffp0DBw40JhvJV8wCElElItVVwLzuwlEREREZGS3b9/GqlWrhPV69erpFVSbMWMGEhMThezMtWrVglQqxcOHD3Ht2jUolUq8ePECEyZMwIEDB9Tml5TL5Rg0aJAwJ6GlpSVatmwJd3d32NjYID4+Ho8fP8bNmzehUCiQkpKCGTNmoFq1alqDLKtWrRIyfNevXx9NmjSBlZUVAgICcP78eaSmpiI5ORlTpkyBh4cHKlasqFbG6dOnMWXKFGRkZADITADzxRdfoESJEggPD8e5c+cgk8kwd+7c95Yp2pD5OVUDba9evVJ7XTUIGR0djV69euHhw4dq+zk6OmL48OEYNGiQ0eYJXbduHW7evAkAcHd3x2effQZra2s8evQIV69ehUKhwP3799GnTx8cOHAAxYoVy7GsrF552bVt21bUE1e11yoA1KhRA59++ikcHBwQHR0NLy8vvHjxAgkJCZgxYwbevXuHoUOHqpWblpaGgQMHwsfHB8D/MpTXq1cPCoUCd+/exa1bt3DhwgXcvXvX0D8RgMx/w6FDh+LBgwfCtpo1a+LTTz+Fra0tXr58ibNnzyI1NRVBQUEYMGAAjh07BhcXF9SuXRvTpk1DXFwcNm3aBACwt7fH999/D7lcDjs7O73asnfvXixYsEBYd3R0RJs2beDm5obExETcuXMH9+/fBwD8888/CAgIwO7du7XWs2/fPuH7Wq1aNTRr1gzFihVDSEgIzp49i4SEBKSnp2Px4sVwd3fHp59+qlebCxoGIYmIchEeqz6JNREREZGIXA4sXAicOgVk6zlW6NnYAF99BcybBxSQRC+RkZGYOXOmEGQrWbIk1q5dKxrKmZvExERUqFABa9asEYZ3Zrl8+TLGjBmDjIwMPH36FJcvX8YXX3wh2mfnzp1CANLFxQU7duzQmJn52bNnGDp0KGJiYpCeno79+/er9W5TdePGDTg6OmL16tVo2rSp6LXAwEAMHjwYkZGRkMvl2LlzJ+bPny/aJyYmBj/99JPwt+nZsyfmzZsHa2trYZ+pU6di+vTpuHTpksbgninY29ujSJEiSE5OBgAEBASgevXqWo9RHWafkpKC+Ph4FC1aFEBmj9Gsvz8ALFy4MMdy3r17h+XLl+PKlStYv3497O3t8/JWAAA3b96ERCLB1KlTMXToUNF8lPfu3RPmKX358iVWr16t9u+k6vLlyzAzM8P48ePx7bffwsLCAjdv3hQNwz548KAQgCxatCiWLVuGdu3aicpRKpU4dOgQfvrpJ8jlcqxYsQJ169ZFw4YNRftt3bpVCEDa29tj/fr1aNKkiWgfT09PjB8/Xq3HoL7WrFkjBCBtbGywdOlStR68r169wpAhQxAUFIR3795hyZIlWLt2LapWrYqqVasiLCxMCELa2dlh2LBhaj18c/PgwQPRZ6RHjx6YPXu2WoDxypUrmDJlCuLi4vDs2TPMmjULa9euzbHcGzduwMrKCsuWLUOnTp1Er02cOBHDhg2Dv78/AGDbtm0MQhIRERERERV6P/0ELF6c360ouP6/dxB+/jl/24HMHohTp05FTEwMgMwedmvWrNFpjkRVRYoUwZ9//oly5cqpvda6dWt06dIFx44dAwB4e3urBSEPHz4sLM+ePVtjABIAqlevjqFDh2LFihUAgEePHuXatl9++UUtAAkAlSpVwo8//ojZs2cDAK5fv662z8aNG4XAUYsWLbB48WK1hC329vZYt24dvvvuO43DnLNcvXoVz58/19rWhIQEbN26VeNrVatWFYbzSiQSNG7cGFevXgUA7N+/X9QrLTuFQqE2fDclJUUIQr58+RKJiYnCa1KpFH379sXXX3+N8uXLQ6lUwtfXF/v37xfK8fb2xrhx47Bt2zZYWOQ9nDJ27FgMGzZMbXuDBg2wfv16DBgwAEqlEvv27cPQoUM1ftayjB49GqNGjRLWs5LyAJk9F9esWSOsr1mzBs2bN1crQyKR4Ntvv0V8fDx++eUXZGRkYM2aNdi5c6ewT0JCAjZv3iysL1++XC0ACWR+dlatWoXvv/9ey19Au8TEROzevVtY1xSABIAyZcrg999/R+fOnaFQKHDu3Dm8efNGbS7MvFi5ciUUisxEpV988QWWLl2qcb/PPvsMGzduxMCBA5GRkYEzZ87gwYMHWueZnTFjhloAEgBKlSqFWbNmYfDgwQAg9IrOaZ7QDwGDkERERERERHmVbV5A0uD/h57mt19//VUUOJs1a5ZaTy9dfPnll1qDQs2aNROCkNl7C2ZkZGD48OEIDw9HVFSUkBAjJ6o9LePj47XuW758eXz22Wc5vq7ak+rNmzei15RKJf79919hffLkyTlmjJZKpZg6dSoGDRqUY12nT58Wko7kJDY2Fr/++qvG17p37y6aU/C7774TBSGbNGmiMXgDACtWrBD1hASA9PR0YVl1KLatrS22b9+OunXrivZv1KgRGjVqhGbNmmHGjBkAgFu3bmH//v3o16+f1veVm5IlS2LkyJE5vt64cWO0atUKV65cgUKhwPnz5zFkyBCN+0okEvTv3z/Hss6fP4+oqCgAmUP0NQUgVQ0cOBAbN25EXFwcbt26hdevXwvza167dk3ojVqnTh2tn7XPPvsMjRs3xu3bt7XWl5MrV64IQ+pr1KihdQ7TypUro1OnToiMjET58uURHx9vtCBkREQEvL29AQBmZmbCZyEnjRo1QqdOnXDy5EkAmZ/VnIKQNjY2+Oabb3Isq2HDhpBKpZDL5UhNTYVMJoOTk5Nhb6QA+HDDp0RERERERAWFiTICf1QKwDDCI0eOiHog9uzZE3379jWorAYNGmh9XTWTtWqPOwAwNzdHjx49MG7cOCxcuFBr0pO0tDQEBQUJ66qBNE2yB9KyK168uLCckiKedujx48dCsMrV1RU1atTQWtann376XgMin3/+Odq0aQMgs6fjpEmTMG/ePDx+/BgpKSlITEyEt7c3Ro0aha1bt8LJyQk2NjbC8arD7Tt27Ihz585h+/bt2L17t9a/W/fu3UWBopx6burjyy+/zHV+SdXes1nBV00qVqyo9d9BNXlSzZo1c22bhYUF6tSpI6zfuXNHWL527Zqw3Lp161zL0iVDdk5U62rbtm2u+69cuRK7d+/G4sWLUblyZYPrzS5rzkYgM/BatmzZXI9RzcSePXmVqurVq2udBsLS0lLovQtALaHQh4Y9IYmIiIiIiPJq/nxAIuGckJqozgmZj54+fYqffvpJWK9Vq5bWefZyoxrM00Q1sJg1v6I2CQkJCAwMRGhoKEJDQxEcHAx/f3/4+fmJsuZmz3idXYkSJbS+rpqoJGt4aZbg4GBh2d3dPdc2A5m9NDUN6waAZcuWYdmyZRpf8/DwAJAZ7MwpO7gmK1aswOjRo+Ht7Q2lUon9+/eLkq1kcXBwwObNm0WJVVTntZRKpXBzc4Obm5tO9Q4YMACHDh0CAISHhyMgICBPga6sbNzaqCYg0jb3prYeuYB4bszdu3eLhjjrQrXu8PBwYblKlSq5Hpt9vlR9RERECMu6fh5NISQkRFjW9f2ozlf66tUrZGRkaPyxIbfvK6D9O/uhYRCSiIiIiIgor6TSzPkOC8Cch6ROJpNh7NixQi8iJycnLF++XK9ENNnZ2trmuV0pKSnYt28fjh49Cj8/vxwDjObm5joFMgGIev7pK6sXJACdk684OjoaXJ8h7OzssG3bNmzbtg1bt25FbGys6HVLS0t07NgR06dPh5OTExISEgBk/l3y8m/m4eEhSowTEhKSpyCkLsEn1X8D1X+b7LRlzgaQ5+Qw7969E5ajo6N1rhfI2+dD37pMRfXvp+v7Ud1PqVQiNjZWY29Vfb+vuf0IUdAxCElEREREREQfLYVCgcmTJws9uCwsLPDLL7/onYjG2EJDQzF8+HDRUGsgc34/FxcXVK5cGTVr1hTmq8xLgg9dqfa41DXomR9BEalUipEjR2LIkCG4d+8eQkJCkJ6ejtKlS6N+/fpwcHAAkJlBO6t9WXMaGkoikaBo0aJCEDIruGkobUPws6j2etMWMM8tSY7qEP6OHTuKhlrrQpch3DnJS6Bf9fOYnwz5jGfvsZjT3KqFDYOQRERERERE9NFas2YNPD09hfVJkyYZlIjGmORyOcaMGSMEIJ2cnDBo0CA0bdoUVatWVesddeXKlffSLtWed3FxcTodo+t+pmBpaYlPP/1UlGxHlY+Pj7Cc0zDa1NRUmJub65TtWjXwmNeeeboEMVV74KnOMaov1X/XevXq5ZjgRhclS5YUMp7r0sMyL58PQz6PppAV1AbEvUK1Ud3PzMwMdnZ2xm7WB4mJaYiIiIiIiOijdOHCBWzevFlY//rrr/Hdd9/lY4syXbhwAf7+/gAyh2MeOHAAo0aNQt26dTUOz1QdlmrKnoeqc/xlBZpyk/U+3gelUol3797hxYsXuWYJBzL/zlkaNWokeq1nz56oX78+6tSpg8uXL+daVmhoKJJU5ntVna/RENkzd2vi6+srLJcvX97gulTnvdT13ys2NlZjb1jVpCyq7ctJQECATvVpojrXpS5/r2vXrmHGjBlYv369KJlOXlWoUEFY1uU9A+Ls66VLl841CVFhwSAkERERERERfXSCg4Mxffp0IWhXs2ZNUWKa/HTv3j1huXnz5rkmFlHNzmvKxBS1a9cW5k189epVrgGXx48f482bNyZrT3aLFy/Gp59+iq+++gonTpzQuu/r16+FHqTm5uZo166d6PWiRYsKQUVdEuOo1lepUiWUKVNG3+aL6BL4PHfunLD8+eefG1zXJ598IixfuXIl1wzLaWlp+Oqrr1CnTh20bds2xyzVZ8+ezbXuvPTiVe2xrC07eJZ///0XR48exbp160S9YPM6FFo1gO3j44OwsDCd2pIlv3teFyQMQhIREREREdFHJSkpCWPHjhV6yzk5OWH9+vWwsrLK55ZlUp3rLiYmRuu+9+/fx+nTp4V11fn9jM3S0hLdunUT1n/77Tet+69Zs8ZkbdFENZhz+PBhrb1ClyxZgrS0NADAl19+qTYH6Jdffiksnzx5EoGBgTmWFRwcjK1btwrrAwcO1Lvt2d2/f19rYO369eu4efMmgMzsyHkJQnbo0EEILkdHR2Pjxo1a99+2bRuioqKQnp6OmJgY0RySzZs3F5KuBAYG4sCBAzmW8+zZM1Eg1ZB2Z2U0f/DggWhaheyioqKEwJ9EIhH9vfTNVJ9duXLl0KRJEwCZPwLklPE9y71790RByK5du+pd58eKQUgiIiIiIiL6qMyZM0cYdmppaYkNGzbkueeaManOT3jv3j1RkDGLUqnEqVOnMGLECFHgMSUlxaRtGzlypBCwunTpEn766SchmKfahrlz5+rUOy0nfn5+8PPz06kXYpbPP/9cmBvxyZMnWLlypVpQNjk5GbNmzcKZM2cAZGYxnzJlilpZX3/9tTDEOS0tDSNHjtQ4dPjRo0cYNGgQEhMTAQB16tRBr169dG6zNpMnTxb1cs1y48YNjB8/XgiyTpgwIU9zUBYrVkyU2GjTpk1Yv369WuIXhUKB/fv3Y926dcK2oUOHiuZmtLS0xPTp04X1hQsX4tixY2p1Pn36FCNHjsxTchknJycMGDBAWJ88ebIQmFX19u1bjB07VujZ2qlTJ9HwddX5GGNiYkTD6nU1YcIEIZh57tw5zJw5U+O8np6enhg9erQQ7GzXrh1atmypd30fKyamISIiIiIioo/GhQsXcOrUKWG9Xr16uH//Pu7fvw+lUikKikil0lyHavbu3dvoSSW++uorrFu3DlFRUVAqlZg4cSL27duHWrVqwdbWFpGRkfD09BRl9M7IyIBSqUR8fDzS09N1SqRiCBcXF8yfP18Yyv7333/j0qVLQgAwMjIS58+fx5s3b2Bubg4zMzPhb2pmZtp+TpaWlpg/fz7GjRsHpVKJLVu24Ny5c2jRogWKFy+OV69e4dy5c0LCFKlUitWrV6N06dJqZVlZWWHVqlUYOHAgEhMTERISgq5du6JNmzaoUaMG0tPT8fDhQ1y/fl0YAu/m5oa1a9fqlNk6N1KpFHFxcRg8eDCaN2+O+vXrA8gMSl+/fl3Yr2XLlkbpeTly5Eg8evQI58+fh1KpxLp163D48GG0bt0azs7OiIqKws2bN0VzLzZp0gRjxoxRK6t79+7w9PTEP//8A7lcjunTp2PPnj1o1qwZLC0t8fjxY1y5cgUZGRmoWLEiXr58aXC7x48fjwcPHuD27duQyWQYNGgQmjRpggYNGsDGxgaBgYE4e/asEFh0c3PDnDlzRGXY2dnBwcEBMpkMaWlpGD58OJo3b46MjAwMHz5cp3Y0bNgQ06ZNw9KlSwEAR44cwaVLl9C2bVuUK1cOycnJuH37tmiqhYoVKwr7UyYGIYmIiIiIiOijERsbK1r39vaGt7e3weV16NDB6EFIOzs7bNy4EaNGjcLbt28BALdu3cKtW7fU9nVzc8PSpUsxa9YsBAcHQ6FQ4OnTp6IhssbWrVs3yOVyLF68GElJSYiIiMDu3btF+9jY2GDZsmVYunQpIiIiAGQGCU3tiy++wNKlS/HTTz8hOTkZQUFBQpZxVWXKlMGvv/6Kxo0b51hWrVq1sHv3bkyaNAkvX75Eeno6zp07p3EIcYsWLbBkyRK1Yd2GGjhwIJ4/f46rV6/Cy8sLXl5eavsMGDAAM2fONEpwVyKRYO3atVi1ahV27NgBuVyOV69e4e+//9a4f7du3bBw4cIcg90rVqyAs7OzMEzdx8dHNA8jkPkDwLRp09C3b1+D2y2VSrF161bMnz8fR48eBZDzd7p+/fr47bff4OTkpPbad999h02bNgHIDPRmBQu/+eYbjcmgNBk8eDBKlCiBhQsXIjY2Fu/evcPhw4c17tutWzfMnz9f6FVMmRiEJCLKgUKhxKqrOc8NQ0RERERkqNq1a+PkyZP4+++/cfnyZQQFBSEpKQnW1tYoWbIkPDw80Lp1a3Tu3BmWlpZo1aoVdu3aBQA4duyYSYOQQGZwplmzZti7dy+uXLmCV69eIS0tDaVLl0arVq0wbNgwuLi4iJL96BrMyavu3bujSZMm2LNnD7y8vBASEoK0tDQ4ODigWrVq6NChA7p27SrMJ6hNjRo1cPLkSZw+fRpnz57F48ePERMTAwsLC5QqVQoNGjRAp06djD6ktkiRItiyZQtOnDiBQ4cOwc/PD4mJiXBxcUGTJk3Qp08f1K5d26h1mpubY+rUqejTpw8OHjyImzdvIiQkBHFxcbCysoKrqysaNGiAnj175vr5kkgkmDZtGr788kvs3bsXt27dQmRkJGxsbFCpUiV06dIFvXv31jrXpq6srKywbNky9O/fH0eOHMGtW7fw+vVrpKamwtHREbVr10bXrl3Rvn37HAO2EyZMQPHixXHo0CGEhoZCLpejePHiiIyM1Guqhs6dO6N169Y4ePAgrl69iufPn0Mmk8HCwgJly5ZFo0aN0KNHD5N/Pz9UEqW2mVyp0Lp//77Q5dzMzEzoGv6hyupKn6Vu3bomG75AH4/DPq/w7c67773euMVfws6Kn09j43mAiHgeIF1lZGQI8wkCgLu7u1GGX1L+UyqVovngbGxs8pw5t7CrXbu2MGfkzZs3haQlpG7dunVYv349AGDs2LEYN25cPreocCqM5wFjXNeMESfiXRcRUQ5GHvLJfSciIiIioo/I1q1bUbx4cbi5uaFBgwZa9w0MDBQCkI6OjgxAEpFWDEISEeUgJsnwTG5ERERERB+iEydOwNfXFwBw+PBh1KpVK8d9//rrL2G5SZMmpm4aEX3gTJu6ioiIiIiIiIg+GM2aNROWFy1ahHfv3qntk5GRgT///BP79+8HkDk00xgZnIno48aekEREREREREQEABg6dCiOHDkCmUyG+/fvo3Xr1mjbti3c3NwglUoRGRkJLy8vhIeHC8eMGDECjRo1ysdWE9GHgEFIIiIiIiIiIgIAlCxZEjt27MD48eMRFBSElJQUnD59WuO+lpaWmDFjBvr16/eeW0lEHyIGIYmIiIiIiIhIUK1aNZw8eRKnT5/GuXPn8OzZM0RHR0OpVKJEiRJwdXVF27Zt0blzZ5QsWTK/m0tEHwgGIYmIiIiIiIhIxNLSEl9//TW+/vrr/G7KR2PcuHEYN25cfjeDKN8wMQ0RkQbXAqPzuwlEREREREREHw32hCQiUqFUKtFn9z0cePjKoOObhz1F14BbSDczx9sixfCgVEVcKlcHkEh0LiNdoTSobiIiIiIiIqKCikFIIiIVN4PfGRSANFNk4KfrezH71gG11/ZU+wxDO/4IublUp7JGHfLBvgEN9W4DERERERERUUHF4dhERCrGH3us9zHW8lQcO75YYwASAPr5XsGxY4tRRJ6qU3kHHr5CijxD73YQERERERERFVQMQhIRqbgTFqv3MWsvbUHnwDta9/ky6B6OHF8CiVKhU5kJael6t4OIiIiIiIiooGIQkogoDxpH+GP4o7M67dsh+D76Pbti4hYRERERERERFTwMQhIRGUiiVGDtxT/UtofalcDYtiMRXLSk2mtLr+2AbVpyrmVffsHs3ERERPnFzEz8mJSRwWlSiIjow5X9Opb9Ove+MAhJRGSggU8u4ZPX/qJtCVJrNO27HL/X/wr1Bq5BoL2z6HXXhBjM8D6ca9m9dt3F715BxmwuERER6UgikcDc3FxYT0lJycfWEBER5U1SUpKwbGFhAYlEki/tYBCSiMgAEqUCc27uV9u++JNeeFW0OAAg1toOUz8borbP5DtHUSY+956OY48+yntDiYiIyCC2trbCcmJiYj62hIiIKG/i4uKE5aJFi+ZbOxiEJCIywGehj1E59rVo2wsHF6xu2E207WiVprhUrrZom3WGHCMenTF5G4mIiMhwdnZ2wnJsbCySk3OfToWIiKigiYmJEf2Ylp9BSIt8q5mI6AM25PF5tW3LmnyDNAupeKNEgkmth+H+rgmizcMencOiT3sjw8wcREREVPDY2trCzMwMCoUCSqUSoaGhcHBwQLFixfJ1KBvljVKpFM2NlpGRwX9LokKmMJwHMjIykJSUhLi4OFEAUiqVwsbGJt/axSAkEZGeiqUm4pvn10XbEqTWOODRQuP+D0tVwpWyNfFZ2BNhW9mEaHQKvIOTVT4xaVuJiIjIMBYWFihbtixCQkIAZD7QRUdHIzqayeM+dAqFQljOr+QMRJS/CuN5QCqVws3NLV8DroXjL01EZETf+V5DkfQ00baD7s2RYJnzL0p/1Omotu17n9yHZCuVSv0bSEREREZha2uL0qVLf3Q9ZAozpVKJ9PR04T/eaxEVPoXxPJAVgLS0tMzXdjAISUSkJ01DsbfV+kLrMYerNsNba/HcG1++vItycVFaj/vrdqj+DSQiIiKjcXBwQJUqVVCqVClYWVnld3PICFSDD0RUOBWG84CFhQUcHR3h5uaGypUr53sAEuBwbCIivbjGv8Unr/1F2/wdy8DLtbrW49IspNhR83NMvntM2GYGJfo+u4JfPvkmx+OGHXiIIU3c8tRmIiIiyhsLCwsUL14cxYsXh1KpFA3jow9Leno6Hj9+LKxXrlwZFhZ8LCYqTArDecDMzKxA9uL/uP7KREQm1iHontq2PdVbAzqc4LfUaS8KQgJAt4CbWoOQREREVLBIJBKYmzOx3Icq+7BLc3Nz/nsSFTI8D+QfDscmItJDx5fqQcjTFRvqdKy/U1n4lCgv2vZphD9KJ3CCeyIiIiIiIvq4MQhJRKQji4x0fBH8QLQt0sYe95wr61zG8Sqfqm3r9uJWXptGREREREREVKAxCElEpKOmEb6wT0sSbTtToQGUEt1PpUcZhCQiIiIiIqJCiEFIIiIdffnyrtq2/yo00KuMB6UqIahYKdG2tqE+sE9JyFPbiIiIiIiIiAoyBiGJiHSUfT5IBSQ4V76+foVIJDhe5RPRJqkiA500BDiJiIiIiIiIPhYMQhIRqcgpyXWpxHeoF/VStM27dFVE2xTTu45jGoZka8q6TURERERERPSxYBCSiEgHzV89U9t2trx+Q7GzeLrWgMzKVrStXfBDQKk0qDwiIiIiIiKigo5BSCIiFTl0hESzcF+1bVfL1jSojgwzc1wuW0u0rUxiDKrFhBlUHhEREREREVFBxyAkEZEOmr4SByEzJGbwLl3V4PIuutVV2/Z5yEODyyMiIiIiIiIqyBiEJCLKhVV6Ghq+eSHa9rBkBSRY2hhc5oXyddS2tQ3x0bjvNu8QuC48i/KLzuHQw1cG10lERERERESUXxiEJCJSIdGQmaZh5AtYZaSLtt0oUy1P9TxzKodXtk6ibW1CH8FMkaG27/ADDxERl4pQWQr6/X0P75LS8lQ3ERERERER0fvGICQRkYoMhXpymGav1OeD9CpTPW8VSSS46FZbtMkhNRENIwO0HibPUGLNtZda9yEiIiIiIiIqaBiEJCL6f+s8NQf3moWrZ8a+7prHICSAC2711LbpMi9kWGxKnusmIiIiIiIiep8YhCQi+n/jjz1W36hUqvWEDLdzQkjRknmu74Kb+ryQrcI0tCF7k6DeW5OIiIiIiIioIGMQkohIi8qyCJRKjhVt8ypTHdAwd6S+woqVRIC9i2hb01d+kCgVeS6biIiIiIiIqCBhEJKISItGkS/Utt3MY1IaVV7ZhnXbpyWh5tsQo5VPREREREREVBAwCElEpEX9N4Fq2+44VzFa+ZqybDd/pT4HpSolR2MTERERERHRB4ZBSCIiLeppCEI+LFnRaOVryrLdVEM2biIiIiIiIqIPGYOQRFRoKRRK3AuT4UrAW6SmZ6jvoFSq9YR87lAa8VY2RmvD0+LlEGspLq+5hmzcRERERERERB8yi/xuABFRflAqlRi87z523wsHADQsa6+2j2tCNEomx4m23S9VyajtUJiZ40YZD3QMui9sqxz7Gs6J7xBp66j5IA7HJiIiIiIiog8Me0ISUaHkF5UgBCAB4G5YrNo+muaDfGDkICQA3NAwJLtZLvNCEhEREREREX1IGIQkokLpxJPIXPfRFIQ0dk9IQPO8kNqGZCvZFZKIiIiIiIg+MAxCElGhlK7IPZCnKSmNKXpC3irtjgyJ+HTM5DRERERERET0MWEQkogoB9l7QkbYOuY8T2MeJFoWgU+J8qJt9aJewiIj3eh1EREREREREeUHBiGJiDRwTI5Hhbg3om3GGIq9q299jdvvuFQVrRdJT0PN6BCN++64E4bYZHme20JERERERET0vjAISUSkQb0o4w/FntCqEmq5FNX42u1sQUgAaPz6eY5lddvunae2EBEREREREb1PDEISEWlQ+22w2rYHJSuqbetVt4xO5T2c/BlWda2JGs6ag5B3nKuobdMWhLwaGIPgmCSd6iYiIiIiIiLKbwxCElGhJMnl9Zpv1YdCPypRQW3bn73qai3HysIM/434BLVLFwMASM3NMLudeq/HxyXKI9nCUrStkZYgJABExKdqfZ2IiIiIiIiooGAQkogKpdxyY1ePDhWtp5lZ4IVjab3ruTuhFdp7lBJt+7ljNaQs+wqPprQWtqWbW6j1tKwVHQJrec6BRqUy9wzfRERERERERAUBg5BERNkplagRIw5C+jm5IsPMXO+iauQwB6SlhRlqZnste3IaqSIDdaNe6l0nERERERERUUHDICQRFUrahmO7JL6DU0qCaNtTp3ImaUdNlTkiNc8L+cIk9RIRERERERG9TwxCEhFlUyPbUGwAeFrCTW3bpM8qaQ1mDm6Ue+DSzup/vSs1ZchuFKl9XkgiIiIiIiKiDwGDkERE2dSMVk9K87S4ekBxymeVtZYzva16z8bsmld0Epb9nFwRZ1lE9Lq2DNmcEZKIiIiIiIg+FAxCEhFlo6kn5JPi6j0hXYpZay3Ho5RdrnV9XctFWFZKzHCvlDiw6RETDht5Sq7lEBERERERERVkDEISEWVTI1tPyDQzC7xwEGfG7lrTGQAg0TYeWwcO1lLR+oNSlUTrZlCidlRQ3iohIiIiIiIiymcMQhIRqVIq1YZj+zuWQbq5hbDes3ZpbPm2rlGqMzcTRzHvZwtCAkD9N4Eaj1VyPDYRERERERF9IBiEJCJSUSpJpp4ZO9t8kAcHNUJJOyuj1GcmyT0IWS/qpcZjN14Pwq+XXiAyPtUobSEiIiIiIiIyFQYhiYhUaE5Koz4fpLGoZscGAF+nskgxFw/RrpdDT8i/74djxqlnqLfqCqIT00zWRiIiIiIiIqK8YhCSiEiFpqQ0mjJjZ5HkcVJIV3txNux0cws8LlFetK3222CYKzJyLCMyPhUbbwTlqR1EREREREREpsQgJBGRCo+YcLVtz7QEIU0he3KaIulpGtulavUVzb0liYiIiIiIiAoCBiGJiFRUffdKtK6ARC0ztrG5FBXPL/mgZEW1fepFMchIREREREREHy4GIYmoUMppFLX7O3GPw+BiJZFqYfkeWvQ/GjNkR2oPQjJRNhERERERERVkDEISUaGk1BC1s0pPQ/m4KNE2f0dXreXkbUZIzXxKVoAiW8l1c8iQTURERERERPQhYBCSiAql+Wf81LZVin0Ns2x9Cp87lnlfTRIkWhZRq7f+m0DNkdP/p9TyGhEREREREVF+YxCSiAqdZHkG0hXqQTv3mFdq23LrCZmTlV1rGHRcluxDsounxKN0YkyeyiQiIiIiIiLKLwxCElGh8zouVeP27PNBAsBzR8OS0kxoqT6voz4elyivtq322+A8lUlERERERESUXxiEJCL6f+7v9O8JmVOCG0lOL+jokaYgZFTOQUgOxiYiIiIiIqKCjEFIIip0lDmE7Kpm6wmZZmaB4GIl30eT1GjqCVkzmj0hiYiIiIiI6MPEICQR0f/L3hPyhUNpKMzM86UtQfalkCC1Fm3T1hOSiIiIiIiIqCCzyO8G5Kdbt27h1KlTuH//Pt68eYOEhATY2dmhdOnSaNSoEXr06IEaNfKWXEJVTEwMmjZtqvdxv/76K7p162a0dhAVdpoSSRdNTYJLkky0zf89ZcbW1C9TKTHDk+Ju+OS1v7CtRkwozBQZGgOjcSnpUCqVeR4GTkRERERERGQKhTIIGRYWhunTp+POnTtqr8lkMshkMjx79gy7du3CV199hYULF8LOzi7P9T579izPZRCRaVSVqc8H+UKHIKQEpgv6PS5RXhSELJKehsqy13jupHmeyoDoJFQpYWuy9hAREREREREZqtAFIYOCgtCnTx/ExMQI26RSKdzd3VG0aFFER0fjxYsXUP5/V6lTp04hICAAe/bsyXMgUjUI6ezsjKpVq+p0XKlSpfJULxHlzj1GPTP2++oJmZPHJdzUttWKDs4xCHn88WtMbl3Z1M0iIiIiIiIi0luhCkJmZGRg3LhxQgDS3Nwco0ePxpAhQ0QBxsjISKxatQrHjh0DAPj6+mL27NlYs2ZNnupXDUL26tULY8eOzVN5RGQYTcOfDcmMbSxKTePDATwqUUFtW+2oYByt2kzj/inpGcZsFhEREREREZHRFKrENEeOHIG///+GNi5btgzjxo1T6+Ho7OyMX375BUOGDBG2/ffff3jw4EGe6vf19RWWq1WrlqeyiMi4qmgYjv3csXSux1lamKFScRvRtiFNyhmlTZp6QmrLkK05lElERERERESU/wpVEPL48ePCcosWLdC1a1et+0+aNEk0FPrUqVMG152amoqXL18K6x4eHgaXRUR5o6nnYSVZpGg9ycISEbZOOpW3umtNWFlknk7L2ltjZlvdplrIzRtbR7wpYi/api1DduDbJKPUS0RERERERGRshSYImZaWhnv37gnrnTt3zvUYS0tLtGjRQlh/9OiRwfX7+fkhIyNzqKSdnR3Kli1rcFlEZHyVYl+L1gPtXQAdM013qemCqJ864N7EVgic9blRk8M8KlletF5VFgFrearGff+6E4qRhx7mOLybiIiIiIiIKL8UmiBkeHg4rKyshPXKlXVL3uDg4CAsv3v3zuD6VYdie3h4QKJjcIOITM82LRkuSTLRtgAHF73KsLOyQD1Xe1iYG/e0+qS4OAhprlSgWkxYjvtvuRmCp5EJRm0DERERERERUV4VmiBkxYoVcf/+fdy5cwenTp2Cu7u7TseFh/8vY669vb2WPbVTTUrD+SCJ8lf2foIVYyPV9nlpr18Q0lQelSivtq3225yHZAPAnH+faX2diIiIiIiI6H0rVNmxAaBo0aIoWrSoTvsmJCTAy8tLWNe196QmqkFIDw8PhISE4PDhw/Dy8kJQUBBSUlJQvHhx1KhRA+3bt0eXLl1gYVHo/nmI8kX2odiA/j0h86JPfVesufZS42uaktPUyiUImZbB4dhERERERERUsBSanpCG2Lp1KxIS/jessU2bNgaVo1Qq4efnJ6z/888/6NixIzZt2oRHjx4hPj4ecrkcr1+/xsWLFzFjxgx89dVX8PHxyfN7ICJ12adMrCxTD0IGvseekIMbl4OFmeYpGp4YEIQkIiIiIiIiKmjY1S4HPj4+2LJli7BeoUIFtG3b1qCygoODkZT0v6y13t7eAACpVIqKFSvC0dER7969w4sXL6BQKAAAQUFBGDBgANatW4dWrVrl4Z0YR3p6en43IU+ykgLltE6FS3qG+POsqSdkTkHIxuXsjf59qFnKFscGN0TnbXfUXkuwtMHLYqVQMe6NsK3W2xCt5UXGp3zw31lT4HmAiHgeICKeB4iI54H8wyCkBmFhYRgzZgzkcrmwbcaMGQYPj1Ydig1kBh/HjBmDPn36wNHRUdgeHR2NP/74Azt27IBSqURKSgomTpyIw4cPo0KFCgbVbQwKhQIPHz7Mt/pN4fHjx/ndBMpHQXHZgpDZekIqIEGQfSmNx3YoDZN8H5wBtC5rjcthKWqvPSpRQRSELJfwFg4pCZBZ22ksq6SF/KP7zpoCzwNExPMAEfE8QEQ8D7w/HI6dTUREBAYNGoSoqChh2+DBgw0eig0AL1/+b643Kysr7Ny5E2PGjBEFIAGgePHimDlzJpYuXSpsS0hIwIoVKwyum4g0EY/HrpQtMU24XXGkWlgK65+5WqOGkxQ/1iuGrpVsTNaq7pU1l61pSHZNLb0hrc01D+0mIiIiIiIiyi/sCakiICAAw4YNQ0REhLCtRYsWmDJlSp7KHTNmDAYOHIiwsDAAuWfH7t69Ozw9PfHPP/8AAM6dO4dXr16hTJkyeWoHEakzU2SgQpw4CBno4CxaX9HK6b20pYmLlcbtmjNkB8GrbA1TN4mIiIiIiIjIKBiE/H/37t3DmDFj8O7dO2Hbp59+ivXr10Mqlea5fDs7u1yDj6oGDBggBCEBwMvLC99++22e22EIMzMz1K5dO1/qNpaMjAxRF+tatWrB3Nw8H1tE+cnyTQJwKrO3s2tCDKyyzRGZfT7IunXrvre2YX+E2qbHGoOQOSencXJyQt26H/Z31hR4HiAingeIiOcBIuJ5wDCPHj0S8pgYikFIACdPnsSsWbOQlpYmbPvss8+wdu1aWFtb50ubatWqBalUKsxLGRycv9lwDZ0Ps6AyNzf/6N4T6c5C5QKjMSmNgzgImd+fFT8nV8jNzCFV/G/C5JpagpBm5mb53uYPAc8DRMTzABHxPEBEPA+8P4V+Tsh169ZhypQpogBk165d8fvvv+dbABLIDHo4ODgI67GxsfnWFqKPWWWZes/DgBwyY+cXubkUvk5lRdtqvw0GlEqN++ewmYiIiIiIiCjfFNogpFwux7Rp07B+/XrR9pEjR+LXX38tEFFw1cCora1tPraE6OOhUChFQbrsSWkA9Z6QBcHj4uLkNI6piSiTEJNPrSEiIiIiIiLST/5H2vJBWloaxo0bh8uXLwvbLCwssGDBAqPPuxgfH48tW7YgOjoa0dHR6N+/P1q0aJHrcTKZDHFxccJ66dKljdouosLmcUQcBvwfe/cdHUXZxQH4t+k9IaGFhA4h9N5BpEjvFlAQREWFD7GBYgWlKCpFRIoggiC919ATagIkISG99957smW+P2JCZmc22d5yn3M8x31ndvYFtszcue+9RwIRkVWCdk2sa8fbF/Asx9ZhJmQrByukFVVwxkOatQUi77LGeuQmIs3ehbOvgJpjE0IIIYQQQgjRM40uCCkSibB8+XJWANLW1hbbtm2TKzioKCsrK+zbt6+2tqOrq6tcr3P//n0wddK1BgwYoPa5EdKYvHkkEEFp1YH9yOzS2vH2Up2xi82tkWPtoNW51eXZ3I43CBnm3IYz1jU3Gdfa9dPGtAghhBBCCCGEEJU0uuXYv/zyC27fvl372NnZGQcPHtRIABIAzM3N0bdv39rHly9fRklJSb3PEYlE2Lt3b+3jTp06oVu3bhqZHyGNQYVQXBuAlNauMIv1ON6xuU5TCWW9dJhLa85Yt9xkDc+GEEIIIYQQQghRj0YVhPTx8cGBAwdqHzs6OuKff/5B9+7dNfq6r7zySu3/FxQUYMOGDfXu/9NPPyEsLKz28fvvvw8Bra8kRGkSGZ1arISVaFlWwBpLdGiuhRnJJuuTHufUEpWm7OR1z7wU3n3/8ktS86wIIYQQQgghhBDVNJogpFgsxvr162uXOAsEAmzatAmdO3dW6bhvvvkmunTpUvsfn2nTpqFPnz61j0+dOoWPP/4Y6ensrrxJSUlYtmwZDh48WDs2ZswYTJ8+XaU5EkL4tSnO5oxJByFHtHfW1nTqJTYxRVQTN9ZYt9xkma2wy6pE2pgWIYQQQgghhBAil0ZTE9LLywuJiYm1j62trbF//37s379f7mM0bdoUGzduVPi1TUxMsG3bNrzxxhtISanOXLpy5QquXr2Kzp07o0mTJsjOzkZsbCzreYMGDcLmzZsVfj1CCJuMOB3aFWVxxhIc2UHIdwdzazFqUn1Jz+HO7uiZ8/x7zKWiGM3KC5Ft48TZ1z+lECM7cJvWEEIIIYQQQgghutCogpB1lZWV4d69ewodw83NreGdZGjRogVOnDiBr776qrYmpUQiQWRkJGdfU1NTzJ8/H5988gmsra052wkh6iFdDxIAEhxasB4vGMCtxagr4TLqQvrwBCFFEhmRV0IIIYQQQgghRAcaTRAyLi5O11OAs7Mzdu3ahaCgIJw9exb+/v5IT09HeXk5nJyc4OrqipEjR2Lq1Kno0KGDrqdLiNGQFY5rJ9UZG+BmQmqbQGZVSCDcmRuE7JqbDJ/WPTU5JUIIIYQQQgghRGWNJgh56dIljRy3bv1GefXu3Ru9e/fWwGwIIYpoU8StCZmg48Y09VGkQ7asJeiEEEIIIYQQQoguNJrGNIQQIk16OXaJuRXyrOx1NJtq9dWEjGriBrGA/bUtq0M2IYQQQgghhBCiTygISQgxevI2pklwaF5/FFDHqszMEevUkjUmKxOSEEIIIYQQQgjRJxSEJIQ0SpaiKrQqzWON6boeJIB6KkJWC3d2Zz1uVZoHx4oSzU2IEEIIIYQQQghRAwpCEkIaJb56kIl6UA9yVk/XerfzdcjuSkuyCSGEEEIIIYToOQpCEkKMHsPTH7ut1FJsAEhwaKGN6dRrZo+WaGZrIXO7rA7ZhBBCCCGEEEKIPms03bEJIaQu6XqQgH4sx25mZ4m7y4bjL78kCAQC/Hw7hrVdkQ7ZhBBCCCGEEEKIvqAgJCGkUeINQurBcmwA8Ghmh41TuwEAJwgZIVUTEqAO2YQQQgghhBBC9B8txyaEGD2+7thtC7lBSH2oCdmQUgtrJNo3Y411y03S0WwIIYQQQgghhBD5UBCSENIoSdeELDWzRI61g45mo5hwF3Y2ZNuibNgIK3Q0G0IIIYQQQgghpGEUhCSEGD2eREi0leqOnejQHBAItDMhFUVINacxAYMueamssduxOQhIKYBEwvenJ4QQQgghhBBCtIuCkISQRsdMLEKr0jzWWKJDM85+ze1kd6nWltf7unHG+JrTdM1jN6dZfyMaA7bexdvHnoLhW49OiA4cDUzFgsMBWHcjCkKxRNfTIYQQQgghhGgRBSEJIY1Oq9I8mDLsAEgyTxDy/aHttDQj2d4Z1AZmJuwMzXBn+Ttk/+OfgpicUo3MjRBFHHuaijf+DcChgFR85xWJ5WdDdD0lQgghhBBCiBZREJIQYvSkMwHbSC3FBoCkOs1elo1oj/1z+2DNeA+Nz60hYzo3hc/SYawx6ZqQAOApIwgJAJfCuU14CNG2d48HsR7vfpioo5kQQgghhBBCdMFM1xMghBBta1PME4Sskwm5bWYPbU6nQUPbObMe51k7INPGES3KCmvHZGVCAoCY6kISPVBaJdb1FAghhBBCCCE6RJmQhBCjllJQjgVHAlljDWVCGoIwlzasx50K0mEuFvLu+ygpXxtTIoQQQgghhBBCZKIgJCHEaDEMgzG7HnKWI7cuzuHsm+TQVFvTUosIZ/aSbDNGgs756bz7ngjmHyeEEEIIIYQQQrSFgpCEEKPlHZvL25SltdRybAkESLVz0da01EKeDtmEEEIIIYQQQoi+oCAkIcRoRWaV8I5LL8fOsG0Coam5NqakNop0yCaEEEIIIYQQQnSNgpCEEKMlEPCPt5Fajm0IS7Ff6eXKeszXIbtLXoq2pkMIIYQQQgghhCiEumMTQoyWgCcK6VBZCqdK9hJtQ2hK88PELvBNzEdKYQUAIN3WGYUWNnCsKqvdpytlQhI9c/xpGlZfjUC5UKLrqRBCCCGEEEJ0jDIhCSGNCl9TmmQDCEJ6NrdH/NfjEPHF6OoBgYCTDdklPxUChoI9RD+kFpbjjX/9EZldiqSCcl1PhxBCCCGEEKJjFIQkhBgtvtXY0vUgASDJQf+DkABgaiKARzO72sfSHbJtRFW8fz5CdOFkcDokjHqOxTAMjj1NxcoLYfCKyGr4CYQQQgghhBC9Q0FIQojR4qsJ2aaYJwhpAJmQfCJ4mtN0lVEX8mxIOjKLKzU9JUJqxeeVNbxTHVUiCY49TcXWO3GIy2WXTPj+WhRePxSATT6xmLzXD38/SlLnVAkhhBBCCCFaQEFIQojREvDkQhpyJqS0CGc3zpinjCDk7P1P0Pmnm3iUlK/paRGilPmHA/D6oQB8ej4UA7beRXhmce22HQ8SWPvuepio5dkRQgghhBBCVEVBSEKI0eLLhGxtRJmQ4XyZkPU0pympFGOzT5wmp0RILUaBpdipheU4GZxe+7igXIgDT54H1HNKq1j7P04uUHV6hBBCCCGEEC2jICQhxGjx1YSUbkxTZmaBXGt77UxIzeKcWqLKxIw1JisTssbxoDRNTomQWoqUgwzPLOGM/Xw7Rn2TIYQQQgghhOgcBSEJIUZLwJMKKb0cO9m+GStlcsmwdpqeltqITUwR3cSVNdZQEJIQQgghhBBCCNEFCkISQhoNASOBe0kuayzZvmnt/9tZmmLL9O7anpZKpJdkNysvgktZkY5mQ8hzjCLrsQkhhBBCCCFGj4KQhBCjJZ0H2bysEOYSMWusbhDy23EesDAzrK/FCBd3zhhlQxJ9oEgMksKVhBBCCCGEGD/DutomhBAFSK/GdpeqBwkAqfYutf9viIGQCGduELJrnuzmNIQYC5MVF3AzmttoihBCCCGEEKKfKAhJCDFa3CBkLmefFLvnmZCGuHqUt0M2ZUISPbDjQYLGX+Ol3b64F8/9XBNCCCGEEEL0DwUhCSFGSyC1INu9hJsJmcLKhDS8KGSksxtnrAsFIYmWZRRVYP2NKHx9JRyRWSWQSOT7LKmjbuTuh4kqH4MQQgghhBCieRSEJIQYrcaQCVlmboVE+2assa65tBybaE+FUIxROx7gW69I/HgzBsO338OTlAKtvf6/Aalaey1CCCGEEEKI8igISQgxWtKNadwayISUGGIUEkC4VHOatkXZsBZW6mg2pLG5HZOD6JzS2sd5ZUKcCcmQ67kG+pEjhBBCCCGEKIGCkISQRsOtJI/1uMLUHHlW9rWPTU2kw5aGIVKqOY0JGHjkU3YY0Q7vWG6G8T6/JB3MhBBCCCGEEKLPKAhJCDFaAqn12NLdsVPsXVhrtqd1a6mVeakbb3MaWpJNdEi6FIIslAhJCCGEEEJI40FBSEKI0WLFQRgG7iXsjK269SBf7eWKbi3stDMxNZNejg1Qh2yiW/JmFa+/EV3vdqFYItdxmn7nhbMh6XLtSwghhBBCCNENCkISQoxW3Wws54piWIuqWNtr6kE++HAEDs/vz8mcNBQRztwgJHXIJrok3ZleljXXIuvtkP3OsadyHSevTIhFR5+iSiRf0JIQQgghhBCifRSEJIQYrbqBEL7O2Kn/ZUIOadvEYOtBAkC2tSNy69S2BCgTkhgOST1rsg8FpKK0UiTXcQorRDj9jLIhCSGEEEII0VcUhCSEGK26iY3uDXTGNmgCASKc3VhDHvmpMJGIdTQhQuTHMAwyiitkbs8rF8p9rMIK+fclhBBCCCGEaBcFIQkhRqtubiN/JqSRBCEBREg1p7EUi9C+MFNHsyFEfhIGWHjkqcztbx0JlPtY9azsJoQQQgghhOgYBSEJIUarbiakWwk3CJli35QzZqioOQ0xVAGphfVuvx3L/ezKEp9XhhNBaXiWXqTqtAghhBBCCCFqZqbrCRBCiDa4F/MsxzaqTEhuENIzLwUXOw7SwWwIkV90TonajvWLdywAwMxEgH9e74u5fd0aeAYhhBBCCCFEWygTkhBitOp2u5bOhBSamCLLxlHbU1ILFxtzzli41HJsAOiam6yN6ZBGjGEYxOSUcsbTimTXeJQWmcV9vqpEEgarLoWr/biEEEIIIYQQ5VEQkhBitOqrCZlm6wyJial2J6Qmr/RuxRlLdGiGcjML1pgnLccmGlRcIcKLOx7gTEiGSsfZcDNaTTNiSyoo18hxCSGEEEIIIcqhICQhxGjV1x3bkDtjW5hyv7olJqaIasIOTnrmpVCnDqIxB54k4258nq6nQQghhBBCCDEQFIQkhBgtk/+ikPaVZXCoYmdFpdgZT1OaGtJLsptUlqJFWQFnv4cJFDgiqtt4O0bXUyCEEEIIIYQYEApCEkKMVkt7SwDcLEgASDPgTMi6GZ518TWn4asLueJCmLqnRBqh1EL56z7qyqWwTF1PgRBCCCGEEPIfCkISQoyW4L+qkNL1IIHnnbF3vdJLq3PSJFkdsqU9TMzXxnQI0blp+x7Bl97vhBBCCCGE6AUKQhJCjNbVqCwA3M7YAJBiX70ce24fbpMXfScjERLhLjyZkNSchjRyn5wL0fUUCCGEEEIIIaAgJCHEiH3nFQkAcC/mLseuyYR0sDLX6pw0KdqpFSRSIcouFIQkGlBcIdL1FOTml1Sg6ykQQgghhBBCAJjpegKEEKIJKQXPG9G415MJaYgEMopCVphbIt6xBToWZtSOdc2lICRRj7yyKvx0Kwa3onMQkFqo6+kQQgghhBBCDAwFIQkhRulQwPPgm5tUTUgJBEi3baLtKWlFuIs7KwjZuiQHdlVlKLGw0eGsiKFjGAaj/niA0MxiXU+FEEIIIYQQYqBoOTYhxOhJd8fOsG0Ckalx3oOJbMKtC9klL1UHMyHGxCc2lwKQhBBCCCGEEJVQEJIQYpQEdWojSnfHTrVz1vZ01EpWYxqAmtMQzXiUXKDrKRBCCCGEEEIMHAUhCSFG6fSzdACAtbASLhXsDC5DrgcJADN7tJS5Ldy5NWesa26yJqdDCCGEEEIIIYQ0iIKQhBCjcy4kA4//y9xy42lKk/pfZ2xDNaRtE/R1c+DdFuHMtxybMiGJaurLviWEEEIIIYQQeVAQkhBidJaffVb7/3xBSEPPhDQ3NYHP0uE4PK8fZ1u+tT0ybRxZY7Qcm6hKVkd2QgghhBBCCJEXBSEJIUYnuaCi9v/di3M421PsDTsTEgDsLM0wt68b7zbpbMhOBekwE4u0MS1ipCgESQghhBBCCFEVBSEJIUZNuikNAKTYGXYmZEMipOpCmkvE6FiQoaPZEEMmljBYdyMKKy+G6XoqhBBCCCGEEANHQUhCiFFzL+FmQhp6d+yG8HfIpuY0RHEbbkbjO69IXU9DZSYrLiCntFLX0yCEEEIIIaRRM9P1BAghRJPceDIhaxrTWJsb530YvuY0XfOScRZDdTAbYsj2+iXqegpqs+x0CI6+2V/X0yBEbbxjcnAlIgu5ZUK0bWKNnq72mNnDVdfTIoQQQgiRiYKQhBCj5i7VmCbHyh4V5pYAgODPXtTBjDQvXGo5NgB0yUvVwUyIoatbX9XQHQ9KoyAkMRpXwjMxdd8jMAx7fOOUrlg5upNuJkUIIYQQ0gAKQhJCjJp0Y5q6nbE7NrXV9nS0IsXeBSXmVrATPg8gdc1lL8f++ko4rkVmo1sLe2yd0R1NbCy0PU2ip04EpeFCaAY8mtvpeiqEEBk+PhfKCUACwBeXwikISQghhBC9RUFIQojRMhcL0bKsgDVmDJ2x6+rv7gj/lELWGCMwQWQTN/TPiq0d88xLBRgGEFT3Of7xZgwAwD+lECIJg3/n9dPepIneOhKYinn/Buh6Ghpjs+oSWthb4qcpXTGnD393eUJ0rUIoxrP0YjS3s0BbZxvefaJzSrU8K0IIIYQQ1RlnQTRCCAHgWprPGUs1ss7YS4e14x2Xbk5jLyyHWwm3PiZQHXgiBAD2+hpPDUg+FSIJEvPL8ca/AcgspkY1RP9kFFVgyLZ7GLztLrpsvI39j6mpGCGEEEKMBwUhCSFGi68pTZqRdcZeNKgNvBYP5oxH8NSFlF6STYi027H8gWpjwzDAj7eidT0N0ojF5JTiXnwuSitFrPGD/ikITi8CAFSJJfjWKwISCc+6a0IIIYQQA0RBSEKI0WpVmscZSzWyICQAjO/SnDPG1yHbk5rTEFLrdkxOwzsRogF7/RLR7efbeOGPBxj4212kFJTXbvviUjhr39TCCiTklyl0fLEagpbXIrMwcOsdePx0C7/fi1f5eIQQQgghANWEJIQYsVYl3CBkmp1x1YSURXo5NgB0zaNMSKI/HCtKMCY5GIPSo9EtNwmmjARVJmZIdmiGO+7d4e3eE7k2Dhp7/WfpxRo7NiGySCQM1lyNgui/QGFEVgn+8U/BV2M7y3wOXwOa+tyNy8WLnZQvPVJQLsSMvx+jUiQBAHx0NgQ9W9qrdExCCCGEEICCkIQQI8YXhDTGTEg+MU6uEAlMYMZIasc881J0OCNCqnXOS8UnAeewIPQWbERVvPt8GHgRIoEJTngMx8ZBryC4eXuNzIVhGAj+a9ZEiDakFVUgraiCNfbNlYj6g5AKvkaFSNLwTvW4GJZZG4CssccviYKQhBBCCFEZLccmhBgtV57l2Gm2jSMTUmhqjlgnV9YYBSGJLlmIhFh77xBC9/8PHwR5yQxA1jBjJHg98i6eHvwIBy5vhlNFidrntPhEMBhF08wI0XOqvqdTCss5Y7eofAEhhBBC1ICCkIQQoyWdCVllYoZca3sdzUb7wqXqQrqW5sNRA4EcQhrSOS8Vfoc/w9d+x1nZufJ6M9wbwQc+xJjEILXOa9+jJJwPzVTrMYnxSyusgH9KAUqkmsrIQ5nE2wVHAuH6/TVM2uPLqh/ZEHU2tKFgPSGEEELUgYKQhBCjJR2ETLNzVu4K0EBF8jSn6UrZkETLBqVH4v6Rz9E7O6He/YQmpvVudy/JxdVTq/FO8DU1zg5YdOypWo9HjNu5kAx02XgLA7feRf8tdxCbU6q2Y/8ko2O7b2I+MosrcTUyW673672EPIze8QA2X17GmJ0PkCG1/JsQQgghRFeoJiQhxGhJd8dOs20c9SBr8DWn8cxLgW8rTx3MhjRGLyUE4vS5DbAVVXK21dR83N9jHB617IxCKztYCSsxJD0ScyLvYWHoTViJhaznmDIS7Lm+Ha6leVg3ZI5abioUlAsb3omQ/6y5FonSKjEAIDqnFH/6JmLj1G5yP18A/vfss/QifHU5osHn34xueFn0jzdjav/fOzYXH50NwbEFA+SeIx+qnUoIIYQQdaAgJCHEqFSKqi8ObYQVcKpkZ6ikNZKmNDXCnVtzxrrmUodsoh0DMqJlBiB9XT2waMLHiJQKlFeYW8K7TS94t+mF74fOxe+3duPl6Iec5//w4DDEJib4cfBrap1zQbkQ6UUVcHe0hr0VnSIRrqC0ItbjX7xjFQtCyojl7fFLUmVa9ToRnI5jDeyTXlSBpaeCEZtbhshsbtkOWo5NCCGEEHWg5diEEKPiHZsLgL8zdnojC0JGOrtxxrrkpepgJqSx6VCQjounf+ANQP46YBZGzt3ICUBKy7BzxqvTVmHRhI9QacoNCK6/dwjvBl9Vy3wlEga+ifno+vNtdP/FG702eSNYKthEiCzT/vLDS7sf4rYKzVu234tX44y4ckq5n8W6Fh8PwrnQTIRkFEMopoAjIYQQQjSDgpCEEKOy17c6m4QvCNnYlmMXWdoiVSrw2jWPMiGJZtlVleHi6R/QvLyQs+3TF9/B56MWQdxA/cdaAgEO9BiLiS9/j0ILG87mnTd2YlLcE1WnDLPPL2LY7/eQWVwdqEnML8dmn1iVj0sah0vhWbgZnYNxux822DhGV4uax+3yhXdMDoZuu4vBv93F9ajs2m0Mw+ByRJaOZkYIIYSQxoSCkIQQoxKXV70Eu1VJLmdbY1uODQARUs1pOhRmwlJUpaPZEKPHMNhxYyc887kZt5+++A629p+h1GF9WvfE6NfWcwKRpowEhy5vQvuCDKWOW59//KmJE1EMwwDfX48CwzA4EZSGb70icCeW/Vukq9qKwelFGLPrIfySCvA4uQCT9/rVZkfSSmtCCCGEaAsFIQkhRiUwtXoJpXRTGoCCkEB10KZTQbqOZkOM3VuhNzE/3IczvrXfdKUDkDWetuiImTO/RoWpOWu8SWUpTp3/EdbC+pebEqIN9+Jy8eXlCMw56I/1N6IxetcDnApO0/W0OMQSBhtvVWf7yhODpMY0hBBCCFEHCkISQowS73LsRhiEpOY0RFvaF2Tg95u7OeNX2vXDZy++rZbX8GndEwsnfcIZ75Mdjy3ee9XyGoSoggGw48Hz+o4MA+x6mFj7WB2hvONP1RPUfJZefdNOnqYz1JiGEEIIIepAQUhCiFFypZqQALiZkADQNY+WmRI1Yxjsuv4HpxFNqp0zFk76BIxAfacbJ7qMwK8DZnHG3wu+ionx/mp7HYACL0RxDAOUVIpZYzejnzesUUdC4c4HCaofpA56lxNCCCFEWygISQgxGl9cDKv9f+nl2GVmFii0tK19vPuVXlqblzb0c3PkHQ/n6UDchYKQpI6SShEWHA6A2w/XlD7GgrBbeCkpiDUmFphg/uTPkGPD/95UxZcjF8DbvQdnfO/V3+Fcrr6u1lvuxKntWISoi08ct+axMpj/wo8UayeEEEKItlAQkhBiFFIKyvGL9/NuttLLsVPtXFgpKO8ObqO1uWmDZ3M73vF0W2dOMw9ajk3q+vJyOA4FpCK9SLmaik3LCrHJex9nfFu/afBp3VPV6fESm5hi/uTPkF/nxgJQffPht1t71PY6Ky6ENbwTIXU0FM/Tp9KK16Ny4PKtF8b/+VDXUyGEEEJII0FBSEKIUbgSkfX8AcNwgpDS9SAbTZF9gYCzJLtLfioEjERHEyL65o/7CSo9//sHh+FSUcwaS3Boju+GvaHScRuSZu+C/439gDM+L8IH4xICNfrahMhiaEv488uFuBPHLV8iLaukCiWVIi3MiBBCCCHGjIKQhBCjUCl6HlRzqCrj1KZrjPUga0gvybYRVaFNUTZrLDSDHUQiRB7dcpLwXvBVzviScUtQamGt8dc/6vkCjnmM4Iz/cXMXLEVVGn99QuTln1KAoLRC/HY3vuGd9dSSU8G6ngIhhBBCDBwFIQkhRoevM3Z6I+yMXSOCr0O2VF3IKXv9tDUdYkR+9fkLplJZtSc7D8PV9v21MwGBAMvHvoc8K3Y5gs4F6Vj16KR25kBIHbLyIAduvYu+m+9g/Y1orc5Hnf4NSNX1FAhRWHZJJd445I8ev9zGp+dDIRTTShBCCNElCkISQowOXxBSejl2YxLh7MYZk64LmVRQrq3pECPxUkIgJkote640NcMXL7yl1Xlk2zhh1ciFnPEvHp1Cm6IsnmcQojkGthpbYd4xOQ3vRIgeWXgkEEefpiEsswRb78Rh7fUoXU+JEEIaNQpCEkKMQt0Sj9KdsQHjX47d1M5C5rZwnkxIT+qQTVTBMFh37yBneFvfaYh3aqn16fzV8yXcb+XJGrMSC/HjnQNanwtp3AytJqSiPjkfquspECI3hmHgFckuP/Onb6KOZkOIfhJLGPx4Mxoz/36EDTejIaJsYaJhFIQkhBgd/kxIFx3MRHve7O8uc1ucU0tUmZixxigISVQxNe4xBmbGsMayrR2wfshrOpkPIzDB/8YugQTshlOvR97FkLQIncyJNE7GHYIEgtKKdD0FQlSSVaJcveDSShEWHQ1E23XXMXv/Y2QVVzb8JEIMwI+3ovH1lQicD83EN1cisM6Ay4YQw0BBSEKIUaibfNLQcuzBbZy0MCPt6ufmiGUj2oOv6bfYxBTRTVxZYxSEJMoSMBJ8f/9fzvjGQS+jyNJWBzOqFty8Pfb1fIkzvtl7r/GvkSVEiyQS+jwRw6DOr/5Vl8Nx4EkKkgsqcDYkA4tPBKnv4ITo0HdekazHP1DJAqJhFIQkhBgd19Jczli6bZPa/39ncBttTkcrBAIBts3sgcw143m3Sy/JblZeBJcyymghipsZ44u+2ewOvxk2TtjZe7KOZvTct8Pnodic3ZV7SHoUZsb46mhGpLFpDPHugb/dQW4pdZ8njcvOBwmsxxfCMnUzEUIIMXAUhCSEGAVWTUipTMhCCxuUWlQHJrbN7IF3BhlfELJGU1tL3vFIZ+5y7a55yTx7ElIPhsGXftyu0z8NfgXl5vzvPW3KtG2Cnwa/zBlfe/8QTCRipY75+iF/BKYWqjo10kgwRr8gGwhMLaK6esQgqPPTSAnAhBCiHhSEJIQYHekgZN2l2NVLlnnWLBu5cBduEJKWZBNFjUkKxgCpWpCpds7Y3WuijmbEtbXfDE4jqu65yZgf7q3U8Y49TcPYXQ9RWC5Uw+wIMQ7UYZjom9sxOfj6SjhOBqUZfYMoQggxZBSEJIQYF4bhdMeuG4RsrPg6ZHelICRR0BePuFmQm/vPRKWZ7O7s2lZubom1Q+dwxtc8OAJzsXKBxIJyIS6G09I70rDGEvuoEFH3VKI/jgamYuyuh/jxZgxeO+iP1VcjG34SIXooKrsEE/58iH6bffCXXxIF1IlRoiAkIcSouJQXw1IsYo1JZ0U1RpHObpwxz1xajk3k1y8zBi8lsQvx51vaYk8v/jqkuvRXj5cQ49SSNdauKAsLQm8rfcxg6gpM5NAYLxevR2XjvRNBWH8jClUUnCQ68NMtdob+jv/qN8oK4Mw64I+iKnqvEv3CMAym73uE61E5eJpWhMUngnAvnttskxBDR0FIQohREKB6iXUrnqY0aXYu2p6O3ikzt0KifTPWGC3HJor47PEZztgffaegxMJGB7Opn8jUDKuHzeOMf/H4JEyVrA1JiDwaW9LKzehsTPjTF3v9kvCtVyTePf5U11MijYxPbA6C09k3ifLK6s96vxSeha0BVOuX6JcnyYWIyi5ljf3v9DMdzUZ/CMUS/PMkGauvRuJJcoGup0PUgIKQhBCjUNMMQLoeJEDLsWtESDWnaVuUDWthZe3j1w/5IyyjWNvTIgbArTgHr0bdZ42Vm1ng975TdTSjhh3rMgIRTdgZwJ0KMjAn8q5Sx2uMtWSJ4hpDY5q6Pjobwnp8KCAVFUIK9BPt+c5L9tLr+j6NF+LL1T8ZQlSQWVLJGQuh83K8dyIIbx19irXXozB8+z3cieUmnBDDQkFIQohRoSCkbBFSzWlMwLCyIY89TcPY3Q9pOR3hWBJ0BWYM+31xoPsYZNs46WZCcpCYmOKnwa9wxr/0OwEBo/h7nGKQhHCFZZZwxsooCEk0KKu4EisvhOHNwwG4Ep6JuzKWqx4JTOVkSCqipFKEogpqSEaILpVWinDgyfNrFaGYwR6/RB3OiKgDBSEJIUZFuikNQDUha4S5cJvTdM9NYj3OLK6ETxzdYSTPWQkr8V6QF2d8W99pOpiNYg57jkK8Q3PWWPfcZMyM8VX4WBSDJPJobMux+dDfAdEUhmEwea8fNvnE4t+AVEzb90jmvvP+DcDArcplvv9yOwZNvvVCk2+98OXlcGWnK1N6UQXuxedS1jBhofMMrsIKEWfs34BUHcyEqBMFIQkhRqG2JiRlQsoU4tKWM9Y9J4kzFpdbCu+YHBwNTEVuaZU2pkb02OsRd9C0gr0c6GrbvojgCWrrG5GpGX4e9DJn/Gvf4xQpIRrRmN5VJisuqOU46UUVmPPPE/T61RurLoVDLGlMf4tEEZHZJQhIfV7LURNvlbTCCnzx3/uQYYCNt2IQqsYlsXt8E+H2w3W88McDePx0C3G5pQ0/iRBCjAgFIQkhRsWVJwiZTpmQAPgzIbvlcoOQS049w5hdD/HGvwHou9kHyQVUN6nRYhgsC7zIGf69n/7WgpS2v/tYpErdiOiXFYeJCQEKHYeWYxN5yOrG25goWhfzjUMBOBGcjpCMYvx8Owa/eMc0/CTSKKUWVmj8NTbfieWM9fzVWy3HFksYrLr0PLMypbAC2+7Fq+XYhBiqvLIqBKUVorCcW/6gsdVZbiwoCEkIMQppRdUnptLLsXOs7FFlZq6LKemdQis7pEh1Cu+RU39dlZTCChz0py7ajdWgjCj0zWZfIEU1aYUr7fvraEaKqzSzwKYBszjjX/seUygbUkALpYgcKAapmCqRhFMC5M+HVO/LmFQIxVhzNRIv73+M3Q8TVArUa+PzVVzJXf6pLrmlVciXCrRsu0tBSFJNmzc7iyqE+Ox8KCbtUbw8jTo9SMhD14230XfzHfT41RsBKQVKHYdhGAjFVNPeUFAQkhBiFM48SwfAXY5NS7HZQpq2YT1uX5QF26r6Mx1XX5XdeZIYHoZhsO1uHCb8+RAfnwupd9/3eWpB7uo9CYzAsE4f/uw1AdnWDqyx4WkRGJVS/5+/rqjsEpnlCfLKqpBVzO1qSRqfSroIUihQJJJw/74S8in73pi8fzIYP1yPwpmQDCw59Qy/K5n5xzAMPjkXqta5CcXcN6siN5wo6EEM1YIjgdhyJw5XI7N1Oo+Nt2KQ/d+5VWphBbbciVP4GDejs9Fhw03Yf3UFCw4HUINNA2BYVxGEECJDeFYJTCRitCzNZ41TEJItzKUNZ6xrXv2ZjlSfy7jseJCAj8+F4npUTr0ZGE4VJZgbyS7qX25mgQPdxmh6impXZm6FLf1ncMY/fXJW7mOcDE5Hs9VXcTEskzW+yTsWLdZcQ8vvr+G9E0GQ0OfFKBVVCPHDtSg59tNcFpWh2HYvHnllzwP2YgllqDRm0qsp/nqUhNTCct5AwXsngmCy4gJMVlzA6quRrH223o1DaKb6ajMCwMSzGQjJef5eXXs9Cn/6yp+JO3DrXcTmlCIwtRDb7sbhQQJ/p+4asn4dRPT5IFBfY5qiCiGisktkZh0LxRKcD83k3SZLlUiCbXfjsPpqJOJzy9QxTQDABalzKummMw3d1BJLGMw56I/E/HJUiSU4FJCK3Qp8holuUBCSEGLwai76m5UXwYxhn8jVrQfpbEPLskN5gpB8zWmI8drrJ9+/95tht2EtYmf+HfcYjnxre01MS+N29JmMQgsb1ti0uMfonKdYl8Xp+x4hOrsEQHUG5JeXnzfS2OuXBN+k/PqeTgxQaEYxnL7xwpprlBUuj/U3ojF210MIxRLsfJCA5quvwvlbL3x1ORwMw6BcKMbCI4Fw/tYLw7ff1/V0iYYwDIPNPtz6is/Si9F67Q00Xe2FcyEZteNb78Sxfp/WXo+C87detd+3n50PU/sci6oY/B5UBAAITC1UeOVHcHoRhmy7i4Fb7+Djc6EYsf0+dj5IkLl/WRV/N+wh2+4hMU99gR1iXEorRcgqrpQrKWCvXyJcvrsKz423Mfi3u6wbQjXkuSk04c+HeGn3w9rA+ssHHuPjc6FYez0Kfbf46M37NTyzGHll7BIHW5XIpiTaRUFIQojBy/kvjZ+/M/bzGoh/zO6ptTnpq9Cm3CBkQ3UhiXEJSitqeCeGwXvB3KXYu3tPUutc1k/yxKu9XDGuc1P0c3NU67GlFVnaYk+vCZzxjwPOK3ysLhtv4/d78dj9MBEiqYuCZaefKT1Hon9C0ovU1pSiMQlKK8KRwFT87/Qz5JcLUVolxk+3YnA7Jhfrb0TjoH8KCsqF8n0fEYN0ODAVKy7IDhyWVIpZ2eOfnucutS4TirHhZrTG5ggAAVnV55AjlQyI55YJWV26ZQVAyoViDPrtDv8cUgux9S4FTho7gYyikO033ETL769h3K6HyCmVXfqlUiTGR2dDaoOVT1IKsZunxq48JTOuR+XgZnQORu98AP+UAlwKz6rdVlQhws/e3BsMusBXAiVeTwKkRDYKQhJCDJ7kv19T/iDk80zIOX3ctDYnfSVvh2zSuA3MiEb33GTWWFCzdvB17aLW15nStQWOLRiAa+8PxeSuzdV6bD6/950KkVQ9y4WhN+Fcrngg5KvL4Sip4i69LaTluEblH2rMpbQlp4I5Y3v8ErHtHgVbGoM9ciyJzC6tQlZJJXxic2Tuc+BJCrJLNF9zt0zIn6WoqOicUt7xk8FpyC3jdv+t8Rs1qGnUIrKKEZhayLutJtnCJy4Xfz9K5t0HAMIyS1AuZAfl1t1ouIxIfYRiBvP+DeCM15fxq04NxUupGZxhoiAkIcTg1fz+tCrN5WxLs6WakHWVWNggwYEd7OlOQchGI0bGxZG0t0Jvcsb29hyv9taNvVo9bxbTy9Whnj3VI9mhGU56DGeN2Yiq8D5P1mdDSqvEvPX/VOn8SvTLtcgs/Kon2R6GSPpiGKhe2l5SqZ5gD9Fvd+Lqr49YwycuF2N2Pax3nxZrrqljSlqXW1qFH29GY8WFUCw88lTX0yF6atWlcHT72RtfX4locN8vLoUDAIorRHjvRBD6bPLBh2eeoUIo5l2uzfc9rOhZSlS2fOeOhMjLTNcTIIQQVdVc8/NlQqbau3DGGrtQlzZoV/R8WUWb4hw4VJaiyNJWh7Mi2rBejjvilqIqzI1gLxmrMjHDEc8XNDUtAMCsnq4aPX6NLf1ncBru/C/wMn4dMAtCU8XqxspaOkUMn0TCYNGxp7qeBiFGb8WFMJ1nM/lpoJavRMJg/J8PEZhKJQeIbFnFlfjVO0bh5/3vdDAO/dfEJTi9CCYCAeb3c1f39OoVnlmMMyEZcHe0wpv93emciMiNMiEJIQZPXN9ybMqE5OCrC9ktV/byDmI8DjxpeGnptNhHaFLJvut9vuMg5FlrNlPR1EQ7J6+PXT1wr1VX1lir0jzMibyn8LEo69F43U/IQ3qR5peAEmKMJHI00KiRWlihwZnIZ+QOX7Uf0z+lkAKQpEF7/BKhwMel1iGpLtKKdHVX16nLgK138M2VCLx19Cn+p6N62HQaZpgoCEkIMXj+KQUAANdSdhBSAgEybZ20PyEda2prUe926pBN6rMw9BZn7ED3sTqYieZs7T+DM/bJk7NqOZul82HjUCqjiy0hpGG7eJphNCZrr0fhyX/npoTUR5lzhr8fcc/ZK0USxOTKt2yaUdOZSt2l3rseJqK0Uv01selmr3Gi5diEEIN3JaJ6abF0JmSmrRPEJqa6mJJOfTqqA766LLuuDF8mJNWFJADQsiQPExPYBcgzbJxwtV1fHc1IM852Gow4xxboUJhZO9Y3Ox6jUkLg07qnDmdG9IW+rSozlYjRPScJPXMS4Fqaj+Zl1Q0MqkzNkGPtgFjHlohwdkd0k1b6N3nS6Ox40LibrKy+GqnrKRA9Vi4UI72oAs1sLZV6/k+3+Jdv8zWQ4VPBUydSHeLyytCTp753bmkVHK3MYGZK+W+kGgUhCSEGb49vdQDNrYTdmKaxLsX+eGQHBKcV4UxIBipF3BONcOfWkEAAkzp3QrvnNO6sBVJtfrg3TBn2e+Zw11EQmRrX6YLExBTb+k3D1tt7WeMf+Z9XOQhJN+2Ngz6E8ZqWFWJmjC9mRz/ACymhsBFVNficdNsmuN26J053HoaLHQaiykyxOqeaxtfMiRifsMwSXU+BEL0UmVWC6fseITqnFK4Olujv5qTwMWR1YJelXCiGtfnzpIyrUVn17K283pt8sGZ8F3w33gMAUFIpwqv/PMHVyGw4WJnhr9d64+VerdT6murK6iTaReFoQohRMBOL0OK/zJAaaXaNMwhpZW6Kw/P7o3j9JN7t5eaWiHNqwRrrTjUhCcNgAe9S7DFam4K26kICwL4e41BoYcMamxb3GK2LsrU2B6K/dFlgv3dWHPZ5bUXyn4vw5/U/MDEhUK4AJAC4lubjjYg7OHnhJ6TvWoBN3n/BXY/e00kF5bqeAtEwvqWihJBqW+7E1QYR04sqcTE8s4FnqG7bXXZm8o77CRp7rTXXIhGVXX0TYtfDRFyNrP79KaoQ4e1jQRCKFcvCpBu7xomCkIQQo9CylNvZML2RBiFr1LfsQbouZKvSPDhVUOaCsSgoFyIyqwSllSKIJQwOPE7Gtrtx9T6nf2YMekgty/dv3hHPmrXX5FRZVrzYUWuvVWJhg797jGONmTISfBB0RWtzIPpLFyHIDgXpOHphIwIPfoy3Qm/BUqxa1mCTylJ84n8OsX+9h93XtqMFz++kvqoUUU1OQ/XuiSBdT8FgFZQLdT0FoiSRnME1RRrIqMsmn1jW45xS+W5qKWv87upGTxtvRbPGiytF8E8p5HsKaWQoCEkIMVgisQQXw6rvILYqpc7Yigij5jRG6358Hjw33kLXn2+j75Y76PWrNxYde4qPz4XW+7y3Qm9yxrTdkOarMZ0xrVuLhndUkx19JnPG3n12DZZyZp3xoaVBxkGbiZDmYiG+v/8vwv7+H16Luq/+40vEWPzsGiL3fYCVj07BVKL/Ab5D/qkN70T0hlAsgV9iPqKySyhzSQXNV1/F8adpup5Go5WYV4Zpf/mh72YfbPKOlavLe0xOKQZuvQObLy9j/O6HyNVwgE8Z0kFHZbpxK6Im4z23jBtU3+QdyxlTBX3fGCbjKvJECGlU3j72FIcCqi9UpJvSAOzl2DN7tNTavAxBSNO2nLEeuYm4795NB7Mh6rT2ehSySqpPOGPkrBtkIRLi9Yg7rLEqEzMc8XxBLXNytDJDoRy14OytzHDu7UEwWXFBLa/bkJgmrXC1bV9MSAysHWtWXoRXo+7jULfRDT7/Dw0uaSLaVVQhxKXwLDSxNseELs0g0FIuZJ/MWBzw2oqeDdTlTbJviutt++KRa2dEO7VCpq0TRAJTWImr0Lo4B13yUjEsLRyjk5/BWUZWu0NVOTbePYBXo+7jrYkfI4ynSZm+2HInFu8M1t/5kecKy4WYtNcPvomGk2mrr0QSBp9dCMWrvV11WhKisXr934Da93FQWhg6uNhgVk/Xep/z3omg2uy+G9E5+OJSOPa+1lvjc1VFfF6Zxl9DVjb7qWfpCh2HYozGiYKQhBCDlFFUURuABOoPQjpZm+PrcZ21NjdDIL0cG6BMSGNxLUrx+m8TE/w5gYuLHQYg14bb5VAZbZvYIDi9SC3HUrcdfSazgpAAsPTpJbmCkHzorrzhyS2twpBtdxGbW31htnhIG8zt46bZF2UYvPPsOn6/tRtWYv4lmJWmZjjsOQq7e0/Eo5YeMtMznzVrj8sdBmILZsJcLMSEhEC88+waZsQ+4t1/QGYM/A99jE9ffBc7e0/Sy27a1NhEf5RWinAhLBOlVWJM794CzezYHX3PhmRQAFKNUgsrUFolhp0lXaZrU0ZRBed9/NbRpw0GIb1j2U0x9z1Kwt7XeqNKJMGzjCJ0aWanF/+WV8IzMamr9laa9PrVR+Y2kxUXMLC1EzZM9lT5deiUyzDp/hNBCCFKCMkoZj2ubzl28jfjYKsHJwD6JNLZDWKBCasTcrdcCkI2VnMj7nLGDnZTX0OaN/u7Y+XFMLUdT50udRiABIfmaFf0vFvkkPQo9MuMQUCLTjqcGdGWA0+SawOQALDHNwkvdmyqsdczFwux48YuvBNynXe7SGCCvb3G4/uhryPTtolCxxaamuNix0G42HEQuuYm4duHxzA3kvv5thSL8MfNXRiREor3xi9DqYW1Un8WYtzEEgaT9vrhXnz1OdaGmzbwXT6CFYhcdOypjmZHiPoUV3JXa/CNySM8sxhjdz1ERnElrMxMsGl6d3hFZCnc1Vqdpvz1CCcXDkA/N0etvF5Df9bHyQWY9hf/jbI+m3ywfpInpmixPA/RLqoJSQgxCq71ZEJSAJKr0swC0U7su7vdKQjZKNkIKzBNKmMq39IWV9r3V/qY30/oAhtzU9iYm2LN+C7oq6WTXmVITEyxu9dEzvj/Ai/pYDZEF1Zc4AbIb0bnaOS1HCpLcfH0DzIDkL6uHuizYBuWjluqcABSWrhLG7wxdSVGzP0JgTIaTL0eeRd3jq6CW7Fm/rzEsD1OLqgNQALVyzjPhGTocEaNA2XUa586l7+vuxGNjOJKAECFSIL/nX6GC2GZiMjSbYb3Xt9EPEoq0Okc6qoQ8TfzCU4vwuwDj5FXViXzs8DQh8SgURCSEGIUpJdjC01MkW2jv4EPfRAqVQ+sRVkhmpZR17rGZlrsI9iKKlljZzoPRZWZudLH/PYlD+StnYi8tRPx3XgPVacIABjcxkktx+HzV8+XUGnKvlkxN/IunMsVX0JOp8XGQRMrlJuX5sPn2Jd4KYnbPVgkMMGXIxZgxNyNaq/V+MCtGwbP24TVw96A0MSUs71vdjx8D69An0z1Ngwghu9yeCZn7POLYZj19yMM2HKHdzshhkidX/lHAvWzsZZXpOLlenRFKGZwPlT298uoHQ9QXCGiYKSBoiAkIcQoSC/HTrdtAkZAX3H14e2QTdmQjc5cqYY0AHC0y0iVj2thZgILM/V9Bne+3AvdWtjVZliqU46NI45J/ZmtRVVYFMLtGE6IMlxLcnH7+NfonZ3A2ZZm64wxr63HxsGvQMITJFQHkakZ1g6dixfm/Igke+5Sc7eSPHgf/wojU0I08vpEv2WXVCKtsIIzznd5X1QhwrnQTASkFmKqjOWURDUM3c4iGqKHJYBlevvYU9yM4Q+c3ovPw7Eg/Qz2kobRFTohxChIZ0LW7YxN+PF1yO6ZXX+HVmJcnCpKMCk+gDWWaeOI2216qfV1OjW14YzNUrBjfR83R4SsHI2SHyfj77l91DSz53b0mcwZ+yDoCgQM/3IhYtz+8lPfDRnXklx4H/sKXfNSONsCm7XHwPmbcM+9u9perz5+rTzRf/5W3GjD7d7qUFUOr1NrMCnuiVbmQvTDL7dj0OqH63Bfex3vHH8KiYQCYKTxMaTgnCpSCst1PQWFvHciWOa2n29T9r6hoiAkIcTgWYqq4FLBblRT05SGyPaMLwiZk6D9iRCdmRX9EBYSduH1kx7DIVZzNlabJjaY2KVZ7WMLUxN8P6GL0sfTxLXCo5YeeCzViKZjYQYmSgVpG5JaWIHCcv5ux6TxcS4vwrWT36FzQTpnm1e7vhg190ek27lodU65Ng6YPHs1/uw1gbPNWlSF0+c34KWEQJ5nEmOTW1qFr65EQPxf4PHvR8l4kMitsU20i1aYap9AiTMLvuxhfffZef1sEqiMmJxSyhk2UBSEJIQYPFeeztjplAnZoOgmrVBhyq77R0HIxmUOT9fco11e0MhrnXprIH6Y2AXLRrTHw+Uj0MPVQeljaSRjQSDAjj5TOMNLn15W+FDj//Stvagn+qVKJMGNpHIcjSxBaolynU/lZVdVhsunv0f33GTOttOdhmDGzG9QYsHNEtYGkakZPhi3FF+PmM/ZZikW4cy59bQ028iVVIrQf8sdznfV0lPPav+fgmH6oVIkRmRWCWWpapAy5xWHArjZ7YSQhlEQkhBi8KSXYgO0HFseYhNThErVheyZnci7/JROfI1Ps7ICjE1iL3NJsm+KB26eGnk9a3NTfDPOA9tm9lC5W7aZiWZOX451GYFcK3vW2KR4f7QvUKwb7OPkAvgl5atzakRNFhwLwpf387EpoAgLrmYjMlsz3UpNJGIcvvQrBmVEc7Yd8xiBuVM/h9BU+eZPaiEQ4MfBr2Hp2A8gkcoCshFV4eLptRiUHqmjyRFNYhgG0/c9QlIBd2lmUYVmg/NEMTeismHz5WV0/fk2zD6/iHeOP6WbXBqgzL3N1Vfp+1GXBAK6UWKoKAhJCDFIdX9zeIOQttpd3qavhrVrUu/24GbtWI9tRZXowBNw+eNBghpnRfTBq5H3YSoVcD7eZaRBNHQa3r4JJ2vhx8ld4WStWlCnwtwS+3qMY42ZgMGSoCsKH+t2TI5KcyHql1JQjtPPnn+/FVUxOOivmcL2G+8cwFSe2ornOwzCm5M/hUiqG7su7eozGe9O+JAzbi8sx5VTa6hrtp4oKBfi43MhmPdvALxV/H6JzC6Bd2yummZG1M0/pRBCcfXv80dnQ1iBlr8fJWP9De7NDaIaZTIhK0VUM5oQZej/lQYhhDRAujM2QJmQNT4Y2q7e7c+acbf34lmS/dHZEFTRyZZR4V2K7al6V2xtaGpriS/HdK593MvVAe8ObgOvxYMxoU7tSWXs7DOJkxX2dsh1WAkrFTrOt16RKBeKVZoLUa+wzGLO2M/ecWpf3r/o2XV85n+WM367dU/Mmfa5XgUga+zvMQ7LxrzPGW9SWYqrp1ajY36aDmZF6pq+7xG23Y3HkcBUjN39EIGphUofKzSD+1moUbczM3Vp1o1xux/C8otLiMstRXgWN1t7zbVIePx0C87feuFbrwjKjJRTfG4ZnqYW8v59CRr4ISitFOFqZBYCUwvBUPqd3vvpFgXq9ZnWzoLy8/MRGxuLlJQUFBQUoKysDCYmJrC1tYWjoyPatWuHDh06wM7OTltTIoQYCb5MyHTb+jMAG4v5/d3RxNoc16Ky8fu9eM724KbtOGO9shNwpvMwzrhPXC5e8lAtwEP0Q+uibIxMZRcnj2rSCgHNO+poRmxjOzfFzejnmT6/TO3G2WfdJE+8M6gNMksq0d/dEeamJnCxtcCVxUPwJLkAg37jBlnlkeDYEpc79GdlsTlXlOC1qHv4p/tYhY71060YlRrwEPUprRQhr0zzDYNGpoRg542dnPEw59aYNeMrVJpZaHwOytrRdwqsRVX45c7frPFm5UW4eGYthr3+M/Kt7WU8W/08froFMxMBNk3rhkldW2jtdfVRTE4p7sU/P9dhGODzi2G4/v5QpY7XUMCF6Iclp2R3Bo7JKQUArL8RjZHtnTG+S3NtTcsgbbkTi5UXwiBhgBc6OOPC24NhbyVfKCSruBItv79W+3jJsHb4Y3ZPTU2VyEkA2TdKvr8Whf8Na1/7b1whFOPT86E4EZSGtk1ssH9uH3g2001NZqLBIKRIJMKDBw9w48YN+Pn5ISkpqcHnCAQCdO7cGUOHDsW4ceMwYMAATU2PEGJEXHmCkKla7jaqz6Z0a4Ep3VrgVHA60orYnfykl2MDQM/sBN7jpBcZXhdAYyUSS2Bmqvxihlei7nPGjnUZqaGOL4rbNrMH5h8OQHROKaZ3a4n3hnA7uQNAexcbtHfhnkT2d3fE77N64MMzyjXW2NFnCmcp7ZKnVxQOQv52N46CkHrgoH8ylpx8hjIZmanVFzKqa1+QgVPnfuR0nM+1ssf0Wd+gyNJWDa+iWZsGzoKNqBLfPzjMGu+Sn4pT53/EhFe+11oty5ogy+wDT5C1ZoLcAQNjlJBXxhmre6NGUfV90zNMdc3IH2/F4MebMUq/BlHd9Sj5/o0XHXuK1O/Ga3g22lcpqv7OtjQzVek45UIxvvOKRE0C5J24PJwPy8C8fu61+9T3meiz2Yf1eOeDBHwzrrOMvYk2lQv5V2lViiQ4GZyGRYOqa98f9E/BroeJAIDcskK8fzIYPkuGcJ4XmlGM+LwyDGrthOb2lpqbeCOn9l/znJwcHDlyBMeOHUNu7vNaIzVpyzV33uqmMQsEAjAMA4ZhEBUVhaioKBw4cADu7u547bXX8Prrr1OGJCFEJunl2BWm5si3ou8MaQ5WZkgrYo/l2Dgi3bYJXEufN9HoLSMISXQvrbACcw4+gV9SAQa1ccLR+f3h7mSt8HFmRT/kjB3roj9Lsbu2sIf/J6OUfr5AIMD/hrdXOgh5tV1fxDm2QIfCzNqxwRlR6JcZg4AWneQ+DjV40L1KkRgfngmRGYAEAHWsZLQUVeHU+R/RtIK9zFVoYopXpq9CnJOr6i+iJWuHzIFjZSk+9T/HGn8xJQR/XtuORRM/1uoNi0qRBH88iMeqMXTRry1nQzLwzZUIXU+DyCm9qLpcSHJBOTb5xMJUIMDnozuhhYEGURiGwbob0dh4KwYMGKx4sRPWjPdQOoP3WmQ2SqvYvwFvHg5kByHrOXRGMbccS93MZKIbEgaY8KevzO3iOvGm90+ys4ofJuajuJJ9jvbPkxS8fzoEYgmDFvaWuP7eEPRwdVDvpAkANdaEzM/Px8aNGzFu3Djs2LEDubm5tYHFugFHhmFgYWGBpk2bonnz5rC3t2d9odR9TkpKCjZv3oxRo0Zh8+bNKC6WXb+EENJ4uZawu9Cm2zbRm4wuffLZKP6lttJLsjsWZsCuipt1QX+luvfxuRDcT8iHSMLgQUI+PjzzjLU9KK3hGmEtSvMxLI19cRnu7I6wpm1kPMNwtXayUup5jMAEu3tN5Iwveap4gxqiWxdCM7USDN7kvQ99srklL5aOXQKf1ga2bE8gwMpRi3C6EzdLZGHYbXzje0zrU9rr1/CKKiK/+n7PRRIGLx/gNlUi+q20UoR+m32w7W48ttyJw8Ctd2qb2wDA46QC9NvsgzZrr+OnW9GQ6HEdyaC0Iqy+GokyoRjlQgnWXo/Ck2Tla6DKU9tUoGB/7DkH/ZWdDtGShkp31v18AMDXXpG19UIziyux9S73N52oh1oyIY8cOYItW7aguLiYFXB0cXHBkCFD0LVrV3h4eKBLly5wdnaGuTl7GYdIJEJGRgaSkpIQEhKCoKAg+Pn5oaSkuhBvaWkp9uzZg2PHjmHZsmWYP38+1TIhpJGr+w0gnQlJTWn4zerZEotPBHHGnzVrhwmJgayxHjlJ8G3lqa2pETmdDE5nPT4Xmsl6vOpSeIPHmBHjBxOpE/IznZWrK/bL1G5YeZFdW3JwGyeljqUJO1/uhal/PVLquft6vITvHxyGlfh5HcHXI3ywctQiFFCmtcGo0EJDrdlRD7A06DJnfGu/6firl2EukWQEJnhz8mdwP/4VBmWwC/z/8OAwIp3dcaLLCK3NJ+6/hhJ93By19pr6RJuXPXxZX/rMubwIQ9Ij0Ts7Hp65KehQmIEWZQVoVlYES7EQ5hIxKkzNUWJhhWxrR6TYuyDesSWCm7XD02btEdCio9ZKDGjSHr8k5Nape5tSWIHjQWmY188dDMPgtYNPkJhfDgD46nIEBrg7YZye1vn+xz+FM7b/STIGKnF+IZEw2P3fMtz6UGjB+DQUepYOUmaWVLEe73uUhL2v9VbvpAgAFYOQycnJWLlyJYKCgmqDj02bNsWsWbMwfvx49Owp351fMzMzuLu7w93dHcOGVTdDEIlE8Pf3x8WLF+Hl5YXi4mIUFhZiw4YNuHjxIjZs2ICOHfWjgD4hRPtqfjeshZVwqixlbUu3pSAkH2cb/oYIfHUhe2UnUBDSAF2NzG5wn5kx3KXYZ3gynhoyybM5lg5vhz/uxyPhvwsbAHi/gY7s2jTJszn6uzvCP0XxDIpcGwec8BiON8O9a8dsRFVYEHYL2/pNV+MsiSZp+sKyXWEG9l77nTN+160bVo5apNkX17Byc0vMmPkNfP9dgbbF7O+Wv65uQ5hLa4Q25a/XqgmfXwzDNRmNWB4nFeDDM89QXCnCytGdsHCAOyUs1EPRrC99YiIRY0RqOKbGPcbEeH/0yG04S9ZWVAlbUSValBVy9i8zs8CDVl1xpX1/nO84CLFNWmlq6hq1x5cbaLsemY15/dzxICG/NgBZY/GJIMR/PU5b01NIstRcASCRpy6qPD46FyLXuZHhfiKILDV1hWXR31xg46f0cuyzZ89i5syZtQHI7t27Y8uWLfD29sZnn30mdwBSFjMzMwwePBhr167FvXv3sGbNGnTs2BEMwyAoKAivvPIKTp06pdJrEEIM11eXqzO+XEt5OmNTJqRCZHXIJsbHsaIEY5PYdXGS7JvCX4E6hwAQ+OkLuPjOIFibm+LCO4MxrnNTeDSzxerxHlg4wL3hA2iJQCDAWwNbK/38nX0mc8aWPL3S8BqfOtqsvQ6TFRfg9sM1hGZQWRlt0+SFpblYiCMXf+XcCMu1sse8yZ9BbKJaMwV9kGnbBFNnf4dCC3YDKDthBU6f2wDHihKtzeWGjEYsYgmDqX/54VFyAcKzSvD2sacIki6ATAyeR14Kfvb5G4l73oH38a+w4skZuQKQDbERVWFcUhA2+exD9L4P8PjgJ1gecB4uZYb1HgrP4n4WK/9bbppfLuRskw5KGiOJhMEf9xN0PQ2iI796x2LXgwRdT4PwUDoIuWrVKpSWlqJ169bYtm0bTp06hUmTJsHMTP2d6ywtLTF37lxcunQJv/76K9q2bYvy8nJ8++23an8tQoj+e5ZeVJvZ1IqnM3ZanUzIL8YoFlxpjCKc3SGUuljumZPA2U8kZvAkuaDBO4tEf02JfwJzCbs4+9lOQ+VOF5vQpRn8P3kBvVs51mYZdW9pj2vvD0XEF2OwenwXo8o+8nXtgqfN2rPGuuSnYoxUILc+KYXVXeXTiyrR81dv3i63xDCtu3cIgzOiOOOLJn6EFAf9XOaojNCmbfH61JWQSIV0Oxek49DlzRAwml/yXp/zoRnILmUvo/v0fKiOZqMZ6s5cNJivaYbBuIRAeJ38DhF/L8WKJ2fgxnPep079s2Kx9fZeJO15Gztu7ECn/DSNvp4mPUku0PUUtKJSJMbbR5/C+VsvDPntbu0NP5ECdS9lnbtEZ2vvRgtRv9VXI2XWP2UUuKFM1EvpIKStrS0+//xzXLp0CePHa6/ezdSpU3H58mWsWrUKNjY2DT+BEGJ0+m+5U/v/fEHIdLsmAKoDJp+M7KC1eRmqKjNzRDizs9d6ZSdwsr3eOR6EQb/dhefGW/jldowWZ0jUha8r9mkF6kFeWTwEfQ2sJptK55gCAXb2mcQZ/iBI+QY1J4LYF7QMwyAxrwzl9XRvJsrTVFD8heQQrHxyhjO+pf8MXOw4SCOvqUte7fvju+HzOONT4p9g9YOjOpjRc6n/BfrrepRUoP2JGBBDiEG+kBwC72Nf4tqp1Rif+FTu55WYWyGyiRvuunXD1bZ9can9ANxs0wuPW3RCip0LxAL5Ln+tRVX4IMgLEfuW4OS5DRicZnjdwmtiL4bw710X39e2UCLB9ahsHHuaivwy9k2HX7xjsf9JMgrKhXiUXIC5/zWNMWngD77uRhQWnwjCtcgsXArP5N1H2brSRD9kl1ahjM6v9I7SaYteXl5o1kw3d3lNTU3x1ltvYcqUKTp5fUKIbtW9s8m3HLsmE/LKYsXr3DVWwU3boWfO83pCjlVlaFOcjSSH5px9JQzw/bUo/G94O9hYqD/7nWiGtbASE+MDWGPZ1g6459ZVRzMyDIc9R+Fnn/1wrNMxfmaML1oV5yLN3kXh4/3pm4iVo6sztPPKqjBlrx/8kgpgZWaCfXP6YG5fN7XNnWjm4tuuqgz7rv7GGX/cohNWjVyggVfUDz8OfgX9M2MwK8aXNf6d71E8adlJZ8FXvoCFPN1wDYmsWPqz9CL4JeVjSJsm6OHqUDt+ITQDux4mwt7SDF+N7YxerRxYz9PnjPVB6ZFYd+8QxiVxG+lJEwlM8LCVJ3xa94CvaxcEN22HFPum9aZ6mouF6JKXir5ZcRieFo4Xk5/Bo55sRxMwmB3ji9kxvjjdaQi+eOEtg6kbKdbjDtiKuh6Vg+tR1SUZOrjY4P6yEWhhbwkA2CbVxTg0sxhFFULYNnCO+p1XJIDqBiSyblhG0+ofg5ct1XCmhvF8OgyP0lePugpA6tscCCG6xbsc207xwEBj96xZOyDChzXWKzuBNwgJAGVCMbwiszG7p6sWZkfUYXxCIGxF7K6n5zsOhsQI6tZpUqmFNQ52G41lTy/VjpkxEix+dhXfD3tD4ePVPen9/V48/P7L2KoQSbDkVDBe6eUKM1OlF6oQLfjFZz86FLKzZorNrTF36udG0WVXFkZggrcmfgzPwyvQNY/dvfbAlS3ou+A3mb8ZmsS3VLmxrLLrs9kHDFOd8XVkfn+82rsVAlMLMfvAk9oA1I3obCR9M4510zC/nP+iXJecKkqw8c5+LH52rd79xAIT3GjTG4e7jsKFjoNQYGWn0OsITc0R0qwdQpq1w8HuYwBU15ucGeOH+WG3660zOTvGF1PjnmBHn8lYO2QO8q3tFXptbZOo6YMQmlGMU8HpcHWwxLx+birdgGYYBj/disHxoDS0d7bBpmnd0d5FsdWNcbllOB6Uhg9HVJdLySnlvp8VWYrdWL4vGqs+m314xxccDYKNuAzzPO3Qycl4f7v1EZ3lEkIMGm9jGtsmOpiJYZPVIbs+smqsEN3wTymodztvV+zO8mcLj+7YeIP7fEuy3312DWZikcLHqhsuWXcjmrWtsELUKJoFaJO6E75eSgjE+8FenPHPXnwb8U4t1ftieqjY0gazp3+FIgtr1niTylIcvfgzzMXcBhiaklpYjr/8knAtKouzrbH8OtUETyQMsMk7FgDw9+NkVgZcXpkQXnW6AwenFWHhkafanGb9GAZzw30Q/veSegOQuVb22DD4VXR4dw8mvfI9DnYfo3AAUpYoZ3f8POhl9Fr4Owa/8SuOdBkpc9m2hUSEjwPOI3rf+3g3+KpeR7Bql2PL+B4cs/MBbkTV3zn6WXoRhmy7izXXIvH+yWDM3v9EpTnte5SMr69EICitCGdDMjDjb+WWO/94M7re7f4phfjFm0oHEaC4kv9c7VZMLi7Gl+ODm7koqdJtbePGRiNByIkTJ+LPP/9EZiZ/bQVCCFEX19J81uMKU3Pkq+mktDHh65Dds4EgpP6edjc+F8MyMXTbPZnbzcQiTI9ln+gXWVjjZpvech3f3FSADZMNc9m2Ot6n4S5t4O3egzXmVpLH+TtVFN9SOfpcqZc6G3o4VpRg79XfOeNX2vXD3p7aq4+ua5Eu7lg48RPO+JD0KGy4e1Arc4jKLkHfzXew+EQQzodyrzcqRRIsO/0MeWX6l/GnDHnexY/+a0IiXXcWqP77qrH9fjxnu664F2Xjyqk1OHx5E1qUFfLuU2Bpi++GvYEO7+7BNyPeRLImmz4JBHjs6oF5U1ei0zu7sa3vNJSYW/Hu6lxRgj+v/4HrJ79F+4IMzc1JBeIGAqTesbmYsMcXSfmyG6b98yQFpVXPa+pdi8pGXK7yS5T/9E1kPQ7JKIblFxcxZucDhY5bWFH/DY8Jf/riq8uGV8eTaF9hlQR3Urm1hYHqhItrkVnY45tY7+eEKEYjQciEhARs2bIFY8aMweLFi+Hl5QWhUHt3RgkhjYf0cuw0O2cDavuoP9LsnJFjxV5W1IunQ3Zdux8m1rudaM8XF8PqXXo0KiUETSrZJ/eX2w9ApZlFg8ce2rYJHnw4AoPbNu4M4519JnPGlgRd1sFMiCLU+XOwxXsvWpfksMbyLW2xePyHje5351znIdjabzpn/DP/s5gS+1jjr7//cTLvEsy6djxIwMQ/fevdx1AosrS0IXv9ZC831qaZ0Q/x9OBHmJAYyLu9xNwK64a8hg7v7sG6oXNRbKndhqSJji3w8ZjF6PDuHvzRZzJEMjIjxyYFI/jAh/jI/xxMJPrVACOzuBLT/vLD28eeytyHYYA1V6NYY3llVTgfmoGIrGJs8onlPCcyS/mO0Y95OnYLxQy8Y3PxwclgFJQLcTI4XenjE6KMsDz+WNWHZ0MwcY8f3j8ZjD6b7yAkvUjLMzNOGu0oIBaLce/ePdy7dw8ODg6YNm0aZs6ciR49ejT8ZEIIkYN0EJKWYitJIEBws3YYk/ysdsgjPw1WwkpUmFvyPuVWTA5KK0WwtaTmNLoW3sAFwWyerthn5OiK3dHFBj5Lh1GNQgBnOw1Gum0TVvb12KRgdMlNQaSLez3PZNPnhhDG6F48t2SHMibG++Ot0Fuc8Y/GvKdUgyJj8MULCzEsLRyDMtjLIvd7bUW/N7dqNGPtp1vyLbN8klKIZ+lF6OnqwNlWViVCRnEl2jvb6PXnkmEYvHmEP1BniKyEldjksw9Lgq7I3Od0pyH4aMx7SLVvqsWZ8cuxccSHYz/AH32mYOOd/ZgWxw2y24oqscX7L8yOfoj5kz/TbLamgi6Fc8sVSLsTn1v7/yHpRXhx5wPklclOINLU5+VGdA5e+0e+5d7lQgkyiytrm9M0dtbCSvTMSUDP7ES4l+SgVUkeXEvz4FqSDzthBUwYCUwZCUwYBmKBCXKsHZBt44Bsa0dk2zgi2qkVQpq2QWjTNiix0G7AX5/tfphQ+/8F5ULsfZSErTMolqUqjVw5fvnllzh//jxCQ0PB/JcGXlhYiH///Rf//vsvOnXqhJdffhnTp0+Hs7OzJqZACGkEbIQVrI61wH+ZkESmlS92xC/e3LvaQHVzmrpBSFNGgm55yQho0Unm8XyT8jG2s/6cbBMuASPBjBg/1liFqTmutO9X7/MGtnbCqYUDDD4AyaipXpfQ1Bx/9XwJ3/geZ41/EHwFn4xerPDxbsfkNLwTUcl3XhH4/Z7qS09tq8qx8/oOzvjZjoNxqOuLKh/fUAlNzTF36koEHPwETnUyrV0qinHk4i94cc4GiEzVe6kxbtdD1tJieUTnlHKCkAf9k7H4eDCqxBIMau2Ey4sHw9mm4cxwXYjKLkVmcWXDOwJw/PqKzPpn+qBrbhKOXfhZZvOXZLum+HDsezjfSf56xdoS4dIaM2Z9i3EJgdh5Yyc6FnKXYI9MDUPgwY+wePwynOk8TAezVE5c7vNz6d/vx9cbgASqGyFpyo1o+X8be2/yxoMPR2huMnqsXWEGJiQEYnhqGPpmxcEzLxWmjPx1DfnevzXiHZojoEVH3G7dCzfb9Eaks1ujy/avIZ2Evu1uPAUh1UAjVxYLFy7EqVOncOnSJSxevBiurtXdUxmGAcMwiImJwcaNG/HCCy/gf//7H27evAmxWL/S1wkh+s+VpzN2um3jzEiR15Jh7dDaib++EV9dyIaa06hziRjRjMHpUWgl1cDpets+9d7pjv9qLPw+Ggl3J2uZ+zRGf/acwGlWsDD0FmyE/LWE+AgABKUVYuIe/mWi8XlUc0gRASkFeOtIIP53+hmypAI10o1/lPXDg8NoW8xu3pBrZY8PXlraaC/MaiQ4tsTbE5ZzxoelR2Dd/UNqf71bMTlIKZT/8wZwb0QIxRL87/QzVImrL9gfJRdg54MEdU1R7bwiG85kqyErAMkwQKVIjC8uhqlrWgqbFuMH339XygxA7uw9Cd0XbdfLAGRdN9r1Re+F27Cl/wxIeKp1OleU4NT5n7Djxg5YCeULHuuDa/+9z/b4NrxcX18yh7NKqrD1rv7UONUkM7EIE+L9se3mbkTs+wBxe9/Dzhs7MT/cB91zkxUKQDakfVEWXo5+iO23diN8/1Kk7F6E/Ve2YHqMLyxFxlFnV5p+vKMbD42mN3Ts2BGfffYZbt++jQMHDmD27NmwtbWtDUaKRCLcunULy5YtwwsvvICNGzciKiqq4QMTQgjACawAtBy7Ie2cbRC2cjSuvcc9yefrkN07u3Gc3BmzWUosxW7rTEtx+KQ4NMOFDgNZY06VpZgbcUeh4/zzJAVCMX8Av6GOn+S5pPwyDP39Hv7xT8HOBwl4ceeD2oBTTql6Lv4HZERjecAFzvinL76DLD35vZnTp5VOX/9s56H4ve9Uzvjnj09jMs/SVV2Lzi5FSSU7+UFdAWtNkKgpm/ujs6EyV0JoFMPgK9/jOHNuA+yF5ZzNuVb2mDnjK/xv3BKDWQZaZm6Fz158B8Nf34hQl9a8+3wQ5AW/wyvQOS9Vy7NTzrIzIfj5tnxlDmQFbBiGQWhGMR4k5EEofh4Uyyurws+3Y7CZp76kqrarIdtdbzEMBqVHYtvN3UjZvQhXTn+PZU8vwSOf23xKk1qV5mFB2G2cPbcBGTsXYP+VLZgc9xhmYv3Nuib6TWtrrAYPHowNGzbgwYMH2LRpE1544QWYmprWBiTz8vKwf/9+zJgxAy+//DIOHz6MoiIq/EkIkc21JJ8zRsuxG2ZraYZxHtwl1KEubThZXn2y4rQ1LaIJDINZMewgpFhgggsdBuloQtqn7lxd3gY1T69UpxrJITqnFFvuyP5cecfmytxG2NbdiGYFcyOySmr//tTRfMNMLMKf17ZzMkyute2Dg91Gq3x8dXm5p6uup4CVLyzCE57SHfuvbIVbsW5LD0h/NPk6BleK1JdFpG5qikHir0fab0hjI6zA0Ys/Y939QzDh+Tb2du+BPgt+0/vsR1n8WnliwPwtvEF4AOiZk4hH/36GaVIlUfRRTE4pVl0Kl2tfWYmQH5wKRs9fvTFi+32M2H4fRRVClAvF6Lf5DlZdCseKC7rLxDUkjhUl+Nj/HCL+XgLfwyux7OklNC/n7x7fkEwbR0Q0cUOoS2s8a9oWT5u1R7izO7KtHXgzeRucW1UZFoTdxsUza5Gw512suX9Y59/xusIwDELSixCdXYLSShEqRbSyV15a7yZgaWmJKVOmYMqUKcjNzcXly5dx48YN+Pv7QySqjqaHhoYiLCwMGzduxNixY/HKK69g2DDDqatBCNGO+jIhZ/Zoqe3pGLwKc0uEO7uzlkr1zYqDgJGAkdEVkuhefRlfPXIS0amAXffHx707cm24TRqIfG607Y1oJ1d0LnjevbN/ViwGZkTjsauHDmfWOJRWinA7Nhf2lqY4EsjNMApKK8LoTk3VUiriU/9z6COVDV5mZoEl42gZtrQqM3PMmfo5Ag5+zKrV3LSiGIcub8LYV9dBYmKqwxk+p66gnqERa7l8SsuSPFw88wP6ybiZ+cOQufhh6By9eV8oq9LMAh+NeQ/X2/bBPq/f0LSimLXdsaoM586tx7ohr2HN0NcN/s8LAAKe4FVsTilrKffj5AKcfpYBoViCpAJuBizh6pKbgg8DL2JB2C3YKVDmpcDSFk+btcfT5h3wtHl7RDi7I83WGZm2ThCamst8nolEDOeKErQpzkb3nCT0yElE99wk9M+MQYuyhoOerUrz8J3vUXzldxznOw7C9r5T4d26p0H+Pj7KVGz1hFjC4LV/nuBMyPNzbBtzU6yZ0AUrXuzI2je3tArONuZ6U8ZAH+i0pamLiwvefPNNvPnmmyguLoaPjw8OHTqEp0+fgmEYVFZW4sqVK7hy5Qpat26NN954A6+++ipsbW11OW1CiJ6Q7owNAGl21TUhf5jQRdvTMQqBzTuwgpAOVeXoWJCBmCb8y/0a68WcPonJkV1DkK8r9tlODXfFbmyWj2yPD4e3R+efuN2PpTECE+zuPRG/+vzNGl8SdJmCkBqWX1aFUTseICSjWOY+jJpyXzsUpGP1wyOc8e+Hvo54J/25yTWla3O9ud6Ld2qJdyd8iBMXNrLGR6WE4hvf4/hh2Os6mZf0O0Jd7xFNSSkoh0AAuDlW1+Q1xN9Zz9xkXD79PdoVcetZlphbYcGkT3C2gbIghuZix0Hos2AbDl7ZjNF1mvzV+Mb3OPpnxGDelBUosLLTwQzVh+8751J4JmfsV+8YhGUq1kiqMeqbGYvvHh7BjNhHcu1faWqGu27dca1dX1xr27e6nJISPwQSE1Pk2Dgix8aR3YSSYdAtNxljkoIxOjkYY5KCOY1A6zJjJJgd44vZMb546NoFPw5+FRc7DDSoYGRcoWJLy+/G5bICkABQJhTj84thmNWjJTo2tUVCXhmm73uEkIxidHCxwblFg9C9pb06p22w9CK1JSIiAgcOHMC+ffsQFBQEgUBQ+1/Ncu3k5GRs3LgRY8aMwZkzZ3Q9ZUKIHmjJkwlZsxy7hytlejVkaFtuPbPAFh05Y31pSbZeq6/788wYbvOTs50Ga3I6ekeeC3grM1N0bCr/Dc793cei3IzdSXduxF04l1MZGU06G5JRbwCyLpUufRgGv9/cDWupAvyBzdpj84CZqhy5QY5WDecHvNnfHe6OVlg4wB1nFw3Sq+yKUx7DsbP3JM74t77HMDIlRAcz4tLXoB7DMFh+NgRt1t1A67U3sNJAl64OTwnDvaNf8AYg4xxbYNjrPxtdALJGmr0LXnrlB2wY/Crv9kkJAXhweCU6abmmn7rxfePw1TlOyKMMyPr0y4zB2TPr4H/okwYDkFUmZjjXcRBem/o5XP53GONfXYtfB85GcPP26g/2CQQIa9oG2/tNxcszvkKLJQcxfeY3ONR1FIrN629YODQ9EufPrsPTf5ZjTsQdCNTYMEdfhGUUY8wu7k3+Gi/tfohyYXUjsJpzlrjcMiw/w7050VjpLAgZExODLVu2YOzYsZg1axb++OMPhIdX16GoCTx6enpi+fLlGDlyJExMTMAwDAoLC/HVV1/h+++/19XUCSF6QjoTssLUHAWWlCktr72v9eaMBTTnBiH7ZcouJK5H176Nlqzr6fYFGZylpI9adkaKA7ceqDEzM2n4Taro+zjP2gHHuoxgjVmJhXgr9KZiB5LB/Yfr2OObqJZjGZPNPg3fEFFHgGlWzENMSghgjYkFJlg84UOINbiUsp+bIyK/GNPgfgde74ukb1/C33P7wlSO97e2fTbqbQQ3bcsaM2Uk+PfSJp0E6qXfE5qIQTIMA5FYtYvtsMwSVpONTT6xiM0p1fO8TbbZUQ9w/eS3cK7gZr/dbNMLg+ZtQghPEzxjIjExxTcj3sTs6V+iyIIbsPHMT4Xv4RV4MSlYB7NTD3l/M8uEVCOPT5fcFJw+ux5PDn2K6XH1Bx/9m3fEknFL0OqD/Zg18xuc7DICZeZWWppptSozc1zsOAgLJn+GFkv+wZypn+NW6571PqdXTiKOXPoVAQc/rm5Qpq93f5TQd4tPvdsT8svh8q0XTgSns8ZvU83vWloNQmZmZmLfvn2YOXMmpk2bhj///BOpqam1QUeGYdCkSRMsWLAAZ8+exZkzZ7B06VLs2bMH3t7eWLp0KSwsLMAwDI4ePYrz589rc/qEED0jHYRMs3OmqJgCurawx8mFA1hjT5u35+zXN0t2ENKIzimMjnRDGgA40wiXYk/ybN7gPoPbOCl83J29uQ1qPgi6opa7/mlFFXj/ZDCC0pQrRG+sCiuEDe7z/bUoiMQSpbMDbYQV2HJ7L2d8e98p7OVqGvDLtG5obm+p8PP07VevwtwSc6d+jlIz9p/FvSQX+7y26fyHo77scWWcDEpDm3U34PydFz45FwJJA7UXkwvKceZZOpKl6uR96xXB2XfdjSi1z1dTFoTexPELG2El5n5OD3QbjcmzVyPPuvGsUjnbeSgGzduEMGdu92znihJcPbUai4O9dDAz1fHVhCQNa1ZWgO03duHZgWWYGSu7WZFIYILjHsMxYu5PGDh/M3b3nqQ3n50Kc0uc6DIC415bj+5vbcfvfaeisJ6u9r2zE3DxzFp4H/sSw1INM7tbGl/Wr7QKPW52pg80XhOypKQEV69exYULF/D48WNIJNX/IHV/UM3MzPDCCy9g9uzZePHFF2Fmxp1Ws2bNsHz5cvTo0QNLly4FABw+fBjTp09XaX5+fn64dOkSAgMDkZWVhZKSEtjZ2cHV1RUDBgzA7Nmz0a1bN5Veg09eXh5OnDgBb29vxMXFobS0FM7OzmjTpg0mTJiA6dOnw9HRUe2vS4gxcS1ld8dOs6XO2IqaLBWgKbK0RYxTS1Yzk36ZsdUXjRTg1Uuyrk9n8dSDPNPZMDuQqqJjU1u8PagN9tXTGXZcZ8WzQx+37IwnLTphQGZM7VinggyMSwzC9XZ9lZqrtP2Pk7FlBp0LKKK4UoR/A7gNa+T17cNjaCPV6TPN1hnfDZun6tTq9d1LHhjdqanaj9unlQNGdXTBb3fjG95ZjSJcWmP5mPfw17XfWePT4x7hw8CL+L3fNK3NRboGZEOXjxVCMQJSC9G5qS2a2dUfFC6qEGLe4YDai9Lf7sZjRHtnvNyLv47y5fBMzNr/GEIxA3NTAc68NRCTu7YAAJTzZI2VCw3jQnbRs+vYc207bwfsDYNfxTfD5zfKc4goZ3cMmfcL/rm8hRN0MpeIsfv6DnTLTcaKUW9rNMta3Uz0oqCb4bAQCfGJ/zl8+egEHKpkL1EvM7PA7t6TsKXfdINYtRLu0gYfjXkP3wyfjyVBV/CJ/1mZDW1eSA3DvaOrcMJjGFaOehtJDg3fICbGSyNfISKRCDdv3sRHH32E4cOH45tvvoGfnx/EYnFtxiMAdOnSBatWrcKdO3ewY8cOjBs3jjcAWdeYMWPQtm1bMAyDmJiYevetT0pKCubNm4cFCxbg2LFjiIqKQkFBAUQiEQoKChAeHo6DBw9i1qxZ+PTTT1FSor6iujdu3MCkSZOwefNmBAQEoKCgAEKhEJmZmXj8+DHWrVuHKVOmwMen/lRfQhoz26pyTpHkdDtujUNSPytzU+x+pRdrTHpJdtOKYrhLXZTXiM0t1djciHxePvCYM9ayJA9D0yJZY6EurRHl7K6taemVPa/2wtNPR+H2Ev5MUKUujQUC7Oo9kTO85OllZY7G62mqYktXxRKm3m7pjcWiY0+V+jf1zE3Gp/5nOeMrRi1CsaXsTA9VNbE2x6oxymdZ1hfb8f/kBXRSoN6pOv3dYxwOe77AGf/5zt/oW0+ZD02T1BPXi8kpRacfb2HE9vto+f01HPJPqfdY1yKzOVkxO+4nyNx/w83o2v2FYgYbbkbXbpP1z6iOPEhN5lK+G3wVf137nROAFAtMsGTcEnwz4s1GGYCsUWJhg5dnfImNA1/m3f5RwAWcO7sODpWGcz5FmZDyG5MYhKB/luPHe//IDECWmVlgU/+Z6PDuHnz24jsGEYCsq9jSBj8Pehnt392LZWPeR6K97Pm/GvUA4X8vxeoHh2EtpPOVxkojQcjhw4dj2bJluHbtGiorq99cNYFHJycnzJ8/H6dPn8a5c+fw1ltvwdlZsewlV1dX1jEVlZCQgFdffRVPnjypHTM3N0f37t0xZMgQdO7cmbWM59KlS5g3b55aApFeXl5Yvnw5CgoKasfat2+PQYMGwc3NrXYsOzsbS5Ysgbe3t8qvSYgxks6CBIB0WxcdzMTwWZiyfwoC+epCyliSLU+NNqJZWSVVnLEZsX6cC8LG3BVbIBCgVysHjOpYf6bZ+kmeCh33iOcoTh3aaXGP0booW+E58lGki+/VyCy0WHMVzVdfw4s77iO/jPu+aEy+vsJd2lovhsH2m7tgLmFno91q3RNHeQJp6nT1vSGwMlc+C6q+gIBOm9YIBFgybiliHdndxC3FIhy59Avs6um2qk7cmpD8n6t78bnY5BOLtKKK2uctORWMtMIKmcfOL+cuPb4bz22aV+NBQn69j6UxDAOhirUmAeAbRT8Pcno/6Ar+vP4HZ7zS1AyvTFuF3TxNihojRmCCL19YiEUTPkKVCTfhZnK8P+4d+QJtC7kdpvXZk+QCjN7xAPP+DUBopnxNwxqLliV5OHTpV9w4+S265PNn51eZmOG3ftPQ4d09WPni28iyNexkigpzS+zoOwVd3t6F5aPfQ5Y1/0oOa1EVVj88irC/l+KVyHs6L9FBtE8jQcjCwuo03JogoampKV588UVs27YNd+/exTfffKPSEufc3Oqinp07d1b4uWKxGB9++CHy8vJq57Zs2TL4+vri9OnTOHDgAC5evAgfHx/MnDmz9nkRERH4+uuvlZ4zACQnJ+PLL7+EWFx9guvh4YEzZ87Ay8sLBw8exK1bt3DgwIHaYKRYLMann36KzEzD+kEiRBtc6+mM3UKJmlqNmfRPfwBPh+x+mfzBxvg87VxEEsXMjOZ2xT5tpN1I1aEmTrNggGKZouXmltjffSxrzJSRYPGzq+qamlwYhsHbx54ir6w6IHInLg+bDPQGQW5pFX66FY0VF0IRmMpe1qXJeNrciDsYk8zuXFllYoZlYz/Q6AvP6N4CA1o7qXQMz+Z29W7XZdZSsaUN5k5dyQm8eOSnYfvN3TqZk6zr3fG7fbH7IbshVGmVGO5rr2P2/seoFHGXS6vz0pkvYPwkpRDfekXy7K17SwMvYeeNnZzxClNzzJ7+Fc41wvIfDTnQYyzGvroO2Tz1/XrkJsH38AoMTtNMwFidBALgL78kDPrtLnzicnEkMBX7Hyfrelp6wUQixrKAiwj/eyneiLgjc7+TnYeh+1vb8cnoxQYffJRWZWaO7f2motO7u/HdsDd4GzQBQNvibBy/+DNunvgGPbITtDtJolMaq+jAMAw6d+6ML774Aj4+Pti1axfGjx8Pc3NzlY+9dOlSHD9+HHv3cguHN+T06dOIioqqffzTTz/hww8/hJ0d+wSuRYsW2LhxIxYtWlQ75uXlhadPnyo97y1btqCsrPqC3c3NDQcOHOAEY4cMGYLDhw+jefPqOgmlpaXYvn270q9JiLGSbkoDAOn//Yj/MKGLtqdj0KSzygObd+DsU19zmtJKkdrnRJTnVFGCMcnsrpsJDs15/10Jm5sj/4lyffiWZL8bfA3mPM0ZFCVvckB2SRXSi9jLmn68FS1jb/3FMAwm/OmLry5HYLNPHEZuv4+QdM13U7avLMOvPn9zxrf0n4EIF25TCX3j0cwWozro70oA/5ad8eXIBZzxBWG38WboLY2/vvTHSNbHqr5GAmdDMnBSqtOpLNKxxCqRBCsuhKLTjzflen5d+nqjb3nAeWy/xQ0iV5iaY+bMr3GlwwCeZxEAuO/eDUPe+BWhPN8tLcoKcfv415hTT/BKH2z2icXiE0G6nobe6ZcZA79/V2Db7T85JaNqPGrZGSPm/oTXpq9CbBP+2rHGosTCBuuGzkWnd/7E7l4TIZFxQ2x08jP4H/oEP945QEu0GwmNBCHnzZuHkydP4sKFC1i0aBFcXNR7YjRp0iT06tWLEziUx7lz52r/f8SIEQ02tvn0009rA4JA9dJsZWRmZuLq1eeZEZ9++qnMZegtW7ZkZV2ePn2atXybEMIfhKzJhDQ3pYrZqsixcUSyHXvZat8s2VlVX1wK1/SUiAKmxj3mLCk922lIo67JpUlRzu640aY3a6xlWQFm8WSjKkreLCsJT7TSEFc3BaQWIqBO9mOZUIx/A5VvMiOv7x8cRiup7Pok+6ZYO3SOUsdrbmehjmnJTSAQ4Pzbg2Rub2KjegKAqrb2n45L7bmBqT9u7oJHXv11F9VN2XJOW+9wfwflOdbfj5Ow2ScOcbn1BxQN5Rv6kydnsZWng3y5mQWmz/wG19r108GsDEu8U0sMe/0XXG7fn7PNSizEkUu/4tuHR/X2i/z0s4yGd2pELERCrLt3EL7/rkB/GTft8y1t8cG4pRj6xi944Kb+prf6LMfGEUteWooB8zfjrow/u7lEjC8en0LI/v9hQry/lmdItE0jV+rffvstevTooYlDq6SqqgoBAQG1j6dOndrgcywsLDBixIjax8+ePatnb9muXr0Kkag6W8je3h4TJkyod/+XXnqpNkgpEolw48YNpV6XEGOTlF99Es9XE7ImCEkUw3eKG9CCnTXnXpKL5jx/5wCw82GC+idFOCQS+S5GZlJXbIXVXQZpba74qdEunrpn/3uq3E1LZejnZariQtK5NcV+vq18E0J59MyOx7LAi5zxT0a/izJzK6WOWdPtWJvsrcwwwJ1df2tE++rfxEmezWFqotsQFyMwwaKJHyHNlv07bSeswJGLv8BSpLkapuI6351nQ9Ixeif3O1Ie4Znc2vB8MSLpRjVLTil37aCPVjw+jU0++zjjZWYWmDbzW9xo11cHszJMxZY2mDHzG2zvM4V3+/cPDuPAlS2wEKmeVU80Z2B6FPwPfYyv/E7AjOHPpt7ffQw8396JP3tPBCNovIkST1t0xKg5P+KNyZ8hxY4/Sa19URaunP4ehy/+ghYyrjuI4WtUn4LU1FRYWj6vFdexI7fuGR8nJ6fa/8/PV+7Dgdn8ZwAA/KVJREFU8PDh8xOeQYMGNbgs3dTUFEOHPq/fdfv2baVelxBjs/ZG9RJDV97l2NUXN8pmOTRWfH9dfM1pZGVD0l+35pVUijBpb8OZddbCSkxMCGCNZVk74n6rrpqamtF5d3BbhZ9zvuMgpErdBBmZGoZ+maoF0Oi7TMPfLwyD7Td3cy4cr7TrhzMqNHJa/ZKHqjNT7nXHd4GVWfWpvY25Kb77bx5O1uY4+HpftLS3hK2FKXq0tNfJ/HJsHDF/8qecJXl9s+Px8539GnvdLy6FAQACUwsxe/8TVCnZ6EWRZPIKIbd+pDqPrwtf+J3k/XcqNbPElNmrcattb+6TSL3EJqZYPvZ9fDjmPYh5glNvhnvjxolv0LSskOfZRJcsRVX46c5+PDjyObrn8tfDDHVpjVFzNuDtiR8j28ZJuxPUVwIBjnYdBc+3d2L94NdQacpt1AQAcyPvIvzvpXg/6AoEMoK7higgpUDXU9ALWgtCMgyDvLw8ZGRkIC0tTaH/1KV9+/YIDAzEkydPcOnSJXh4yHeSmJr6fCmQoyN/l6eGREY+LyrdvXt3uZ7j6fm8S6eyGZiEGJuM/7pWSi+dKzez4HSpJcrjrwtpmI0ujMG50Axcj8ppcL8JCQGwkcooOtdpMCQmynfebWx+nab4MimRqRlvNuTygAsqzUXe+BvFKpUzP9wbI1PDWGMVpuZYPuY9lSJCbZ1tVJrX4XnKLWed0q0Fnn42CqcWDkDQZ6MwzqNZ7ba5fd2Q+t1LyFs7EcErXlRpfqrwbtML64e8xhn/MPAipseoXsKAT0291JUXwhrYU3GyPnoHnsjfpOOTcyH4+XYMCiv0t77y177H8OO9fzjjJeZWmPzyavi07qmDWRmPP/pOxbRZ3/I28BiRFo6Hh1eiS652yxYQ2YakRSDwn4/w+ePTMOUJkJWbWWDVyIXo++ZvuOuuf6tD9UGZuRW+HTEfvRdsw20Z3x9OlaXYeWMn7h5ZZTSNa6iUQTX+0LOalJaWYs+ePbh16xbi4uJqu0IrQiAQICxMvScN9vb2sLeX7y5wSUkJ7t+/X/tY3uzJuqqqqljB1LZt5cuycHd/3qUzMzMTFRUVsLJSbmkQIcYiu6Q6wCKdCZlm61x70UjX44pheP7G+Dpk19echmjWm4cD5dpvFu9SbOqK3ZC64SZzUxO85NFUrqBvXbt7TcTXvsdhVachzdyIu1g1ciEyqFSEXBr67lZnl2f7yjL8zNOM5ueBL+u8WcDLvVzR57YDnqYp3pTHo5kdPJrx10wXCAQwN9V9ut0PQ+fixeRnnADwvqvb0Kd5R6Q4NJPxTOVFZZfgVoxin2lpfHFpsYwyGUcD0/D+0HZyHfe3u/EqzErzvntwBGseHuGMF5tbY/Ls1bjv3rjq22mKV/v+GDF3Iy6cWYu2xdmsbR0LM/DwyEq8Ou0L3GzbRzcTJLAWVmLt/UP42P88TGT8Yt1v5Yl3JixHlLM773bCFuXsjrGvrsOCsFv41XsfmlZwy7IMS4+A/6FPsGnATKwdMhfl5pY8RzIMNWXFGjuNBSFjY2OxePFipKdXd5Iz1CVFf/31F0pKnteAGT16tMLHyM7OZv35mzWT7+SqaVN2Y4js7Gy0bq39Lo1lVWJ4blS+e2H7Jta48PZAmdtXXgzHlchsmdvlMaajC7bNlJ1hOvvAEzxLeb6U3vK6j8JZDu8MbI1PXmgvc3u/rfeUXuJTY90ED8zs0ZJ3W2phBSbsfaTS8QHg0Ot90KeVA++2e/F5+OB0iMqv8eB/Q+FgxV9y4B//FPzsrXxGXVR2KQBuJmRNZ2wAOPssTeU6YgPdHfH3HNlLixYdC8LjFNWWx7zayxWrX+osc/uLO32RU6ZanazPX+yABf35T4SKKoQY9sdDFJZz6w2l2rkgy9oRzcuf/xn7Zcr+d8ssLIOLLbcZw9O0Isw/8lTxiUu5+u4guDny34Q5G5KBb65GNXwQhkFl5fO/z7rfAxamJgj4eISsZ2LLnXj89Vj+zBY+XZrZ4tQCbhH6GsvPhuJWbK7SxzcXCzE17jFrrNDCBrda91L4WPV95y8d2hZLh8m+mdZjk+pdPX+e4onJns15t8XllmH6/idKH1sAbrBLIhZDJHg+mlOieHfGHBtHHO46Cm+HPK/hbCER4YMgL6wZ/oZScw1IKaz338LNwQpXFw+CUMSfQfXFxVCcC81U6rVrDG/bBLtfkZ3l9MbhQATz1HJUxPx+blg1uiMkMm5WW35+EXaWpihSY6bYmodH0LKsgDUW79AcPw16WeVji2T8e/C5GZ3D+2/MMAzsLExRUsX9O5F1/GNBaVh7Q77fvibW5sjn+e7XBrGJKeZP/gyBBz+Cc8Xzc2znihL8e3kTxry2HmI1Z2/3+MVb5WNInw9/PKIddj9M5N23SqzaubNeYBh8/+AwvvU9xtlUZGGNSbPX4KEblfpQp5Bm7TBk3q84e3Y9Bmewz2ucKktx5dQaLB23BHt71d9bgKjf0NRw/H31N3jk86/SLDOzwNcj3sTvfafS6hNFCQT4p/tYXGo/EL/c2Ye3QrnfneYSMVY9OoXXIu9h2dgP4MXT1MkQ9GxpL/M33BCuNQBg/xhHKFE+nUUjQcjKykp89NFHSEtLg0AgMNgAZHBwMPbs2VP7uF27dhgzZozCxyksZAcqHBz4A0DSpLM1i4oUvyOuDhKGqQ38KKOyohJBQUEyt4cl5SEqu0Lp4wOAq4UYQUGyT/oj0/ORWFxne7HiFzKh8SkIcpT9bxCVVYwqFUtWhETHo72Y/4IxrUSk0r9D7WuER0KQzd+581lahVpeI/hZCOwt+L+dQmNKVH4Nu6oyOFSVs8bqNqVJyylEVLZqwTs7gbDe9214ao7KrxGemIagINl3xCIyC5FXodqbKjQmEUFm/D82xVUS2f8WAgECWnTAxITnGXgdCzPgWFGCQituls2f1/0xuT13CWJITpV63lMhocix4//JCokrU+416nwPWJig3n/v0Pgilf8cjLD+78LwZNW+C19MDkGTSvYcL3UYgCozxTvj1vdnDY1LQpBtgVLPlVdoVBzcKtN5tyUUCdXyGjU8m5gjPJRd8qS4tFzG3vX7rd80VhASAD4IuoIfB7+CSjPFOyZXiOr5jAIoLqtAUFAQssr4g3dhiemIylbuz1LD2VRU7/s2IjUXUbmqBbPC4lMR5FyCpGT+70OhhEF+ufoCkN1ykvAhz1L5T0a/iwo1ZFjU9/clraRKrPD7WdbxQ6NL1frZ0KRkh2Z4Z/xynDm/gTU+MjUMax4cwbcj5qv19URyNvaqj4Rhf7+FxiUhlKdZDQAUlZQgKld/l1c3iGGw7v4hfOV3grOp0MIGE19eA79WnjxPJKrKtG2C0a+tx99ev2FO1D3WNjNGgj+v/4Euean44oWFFOzSAithJdbe/xef+J+Tmf14x60b3pmwXOdZ9IYu18YBb0/8GP90G4NdN3bwBnw7FGbi8unvccxjBD4Z/a7BrTRJT09DUBB/PMEQrjUAQMI4ACquTNFIEPLy5cuIiYmpDUD27t0bc+bMQdeuXWFnZwcTE/3vh5OSkoKlS5dCKHx+Yr1q1SqYmSn+V1ZZyc6oqNscpz4WFuwLFunjENJYuZZwG0SlG9iPkCEIbN6RFYQEgD7Z8by1nx5lVvIGIYn2zIqhpdiKsDQFOjqa4/uhTpxtLWxMEVOoeADhWbP2uNmmF8YmBdeONS8vxOsRd7C/xzhVpkvUhWGw7RZ/M5rzHQfraFKN07nOQ7C9zxQsk+ok/7XfcTxs1QWXO8heRaPv1BDz1B2GwY93/8EXj09xNhVY2mLCy9/jsatumi81FhXmlnhj6gpEP2iFb3yPc7Z/5n8WHQvSMX/KZygzp1JdmjIoPRJ/e/2Grnn89ThLzSzx5ciF+KPv5Ebd9VrdvNv0Qu8F2/Cl30msenQSFhLu+dicqHuYmBCAL0cuwG4D6jqu+4Io+kEj/1oXL16s/f+ZM2fi6NGjmD17Nrp27YrWrVvDzc1Nof+0LT09HQsXLkR29vMlwm+99ZZSS7EB7rIZU1P57lpJ76dMTU1CjJFrKU8Q0vZ5ENKQz/31CV9zmn6Z/HUhL8Wrlm1FVCNgJJgR48caqzA1h1c75RpcNAZ/jWuKAxOaoZ0DN1N0TGvlL+p+6zedM7Y84IJGu8fQd578Xou8hzHJ7MzXKhMzfDx6sf63JzZCK0ctwtNm3FI3/1zZgnaFhlvAP6PEQM/ZGQY/39nPG4DMs7LDuFfXUgBSSxiBCb4bPh8LJ36MKhNuEszMWD/cOboKrYpVW1pJuCxEQmy4ewD3j3whMwB5u3VP9Fr4O7b3m2owATBDUmlmgTXD30DvBdvgLaO5j2NVGXbc3IX7Rz5Hryz9rq1L2DSSCRkfX/0mMDc3x1dffQWBAZ3UxcbG4p133qmtZQkAI0aMwIoVK5Q+pnTmp7zBROn9zM0VX1KnDiYCATyaKd91uH0Ta/TuLbu2XrfkcCSWq1YTsmtrF/TuLbsmZJenT1AlrlMT0tJC4YuN7u3d0bu37JqQHreLVa4J2aNze/SWUROyaWEFPHxVX2bVo2sX9JZRE7LYIQ8eYarXhOzVs4fMmpBBohR4pChXEzK7pBL55SK0KuGecNVdjt3KxRGlUK3wb1c3x3rft10jglDCqFYTsmtbV/TuLbsmpOeDcpVrQnbv1Ba9e8uuCelxpxgMA8TmlnIyNxRuTtOsPee9xaQVweOp6gHKXj26y6wJGW+aAY84JWpC1vkesDA1qfffu3thPDxyVK/TUu97Kj4U6VXs93ZhuRCZJQ2/B4akRXKC81fb9UUpT6dNedT3nd+9Qxv07i27JqTHDdU+FwDQ3aMDesuoCWmfWwaPR8rXhKzRs3tXdG3O38AjxyYHePSYd1tDLnUYgBinluhU8DyA0ic7HqNSQlTqIMv3b+LmYIXevXsjpbAcOMct5dGtrSuiS1SrCdnVvQl695Y9b8/QQFSZqFYTslt7N/Tu3RFBwhTAr0ClY9XHtqocv/rs44xvGjAT0c7qu+ndu3dv4Ah3GVkzWwtkl7I/z22drGEpo7hScaWotrMz5/g8IpAGj0TF6iEn5ZejQqRiLRkVVJpZYM7Uz/H4309ZZVacK0pw4vxGjHh9o1KlDDTN0coM3Tu0AYJCebfnVxngrQGGwWbvv/BxwHnOplwre7z0yg94ynNeQDTrYPcxiHdsgdPnNnCadvTLioPf4c8wa8bXeNJS9vkkkV+/zBjsv7IVPXKTeLeXmlniixfews4+k/Q2+OjRzBYJeeUqX5fqg0gXd4x5bT0Wht7CLz78jWuGpEfhyaFPsLX/DKwZ9rpeZwe7ubWSGU/Q1bWGokzUENsTMBoo2NirVy8IhUL07NkTx49zU8j1VUBAAJYuXYr8/OcXckOGDMGuXbtgba3chRwAhIWFYdasWbWPz507B0/PhuuoSD/v7Nmz6NpVOwWgAwMDIZFUf3GZmJigb9++WnldTRGJ2DWtevfurdTSeqJbJiuqa3h9+uQMfpXqajrulbW41bb6S/fPV3vh3cHydaEn1S6FZWLaPqnGRwyDvD/egFOdOoMRTdzQ7e2dvMfo2twOoZ8rlzGuDYb4PfD3oyS8c7zh+nK/eO/DZ/5nWWOLJnyEAz3GKvyaQ9o2wYMPZTfpaSxqvm+U8WHABfx2ew9r7FzHQZg18xuljyn5dZrMbckF5Wi77gZnvL7n6CN53+/K+vHOAU6GV7JdU3R9e4daL1okv07jff+If5mK765G4lfv6ps5K1/siO8ndJF5s/5EUBrmHPTnPb66DNp6B094mqxN6NIMV1VsGqiI2VEPcPLCT5zxPT3H4/3xy7Q2D0XI+nc2SAyDrbf3Ynkg98+TY2WPca+uQ3Bz2TfiieZ1zE/DxTNr0SU/lbOt0tQM/xv7Afb1HK+DmRkHc7EQ3/gex5d+JzjlOmrcceuGtyd+hDgnVy3PTjGSX6eh16/eCMlQ7QahvnEpK8LPd/7GotCbMvdJtG+G5WPew4WOg/RydcOWGd3x0UjuSjNDoo44kUbC97a21Xfr5a19qA8uXLiAhQsXsgKQo0aNwu7du1UKQAKAo6Mj63Hdbtv1kd7PyclJpXkQYiz4a0I+745toL2wdGpKtxYY2rYJe1AgQIDUkmzP/FQ4VPJn5IZnlSAkXTcNtBo1hsHMGF/WkEhgggsdlauntmx4OzVMqnH7u8dYFFqwa6ROi30MDxnLuojmeeSl4BP/c5zxFS++rZGsCXNT9sVPj5b2EAgEWDvRE3lrJyJv7UT8MNGz3tVCzjbcFQUveTRV+1z5XFk8RCuvU+O0xzBs6j+TM7742TW8FcINsBP1ETASbL+5mzcAmWXtiDGvracApB6IbdIKQ9/4BTfb9OJssxSLsPfaduy6/gcsRLrpem/IemXFw+/fFfjW9xhvALLMzAIfj34Xo+ds0PsApDHLtXHAOxM/wujX1iOiCf/qhbbF2Th3bj28Tq1G95xELc+QyEsjQci2bduCYRgkJ6uWTqotv//+O1asWIGqqudLZKZPn44dO3bAykr1E9NmzZqxlmTn5OTI9by6+wkEAri4uKg8F0KMgWtpHmcszZYa02jC45bc2k8DM6Jl7l9QQSe/6iRPOZNe2QnoKFU7zad1D+RZ85ddaEhPV+WeR54rsbDBvp4vscZMwOCzJ2fVcnyGYVB3IYsGFrUYF4bBb7f2cIrb32zTCyc8hmvkJaWz8d8Z3Kb2/63NTWFt3nB98BHtneFoxc7W/mBoO7XMrwbfd8wHQ3WzkuDLkQtwx60bZ3zHjZ0YmC5HyQ2iMAEjwY4bu7A06DJnW6ZNdQAypFk77U9MjXJ+mKDrKahNgZUdJs1eg70yMh7fC74Kn2Nfwr1Ie1nMhsxCJMTqB4fx+N9P0Sebv6bg/Vae6Pvmb9jWb7reLr/mY8ynBT6te6LPgm1YPewNVJjyl/8an/gUT//5CH/c2AmXMv1JkNC/3Ezd0MgnacyYMQCAzMxMPHmiet0mTREKhfj888+xfft21vj777+Pn3/+WW3L9CwsLODq+vyuSVISf40JaXWDuK1ateJ0yyaksWpVwg5ClplZoNDyeb00I/7d1To/ngL0gzJkXwwa80mPLshzssLbFbsTdcXWta39pkMkdcGyIOwWWvA01pJHZnElXj/kD5MVF2C68iLarb+Bo4HcZXmEa2aMLyYkBrLGhCamWD7mPY0t19o6ozt+mdoN8/q54a/XemP5CMUzySzNTHHxncEY3MYJ7ZpYY+3ELpgpo260MRCZmmHu1M+RYePEGrcSC3Hm3Aa48tSD1qXsEm69TkMiYCTYfX0H3g/24mzLsHHCmNfWI6xpG55nGo7FQ9rA2caCu9LDgIlMzfDeS//Dx6Pf5fzGAMDgjCgEHvwY06Sa1RG2ESmhCDz4EVY/PApzCbdfQ4WpOVa+sAij5vyo1prB2mLsSQFVZuZYO3Quei/YxpsdDACmjARLgq4get/7+Nj/HMzFuv87MaReKZqkkSDknDlzapcg//TTT6wMQ31RVVWFZcuW4dy550tzzMzMsG7dOnz66adqf4P06PG8q1NERIRczwkPD6/9f23VgiTEEEg34Ei3ddbLuh+Ghi9++IgnE3JQPRkpEopCqlW5sOFGZrOiuUHIs520u5TSGL01sDVnbEwn+ZfCJjs0wxHPF1hjlmJRdadsJSw4EoBjT583O0kuqMD8wwHILK40muC/dNMWdbAWVmKz91+c8W19pyHcRXMBFnNTE3z2YkccfKMfFg1qo/R55fD2zni4fCTivh6Hr8d5GP0FTIadM+ZO/ZwTXGlVmofT536EpUh/rilarLmm6ykozUQixp5r2/HuM+6fIc3WGaNf26DRz4csr/RSz1JXEwEwrF0TfDOu+hzm/ocj4LvciGodCwTY1m86xr62jhO0BwCXimKcO7cev936k5ZnS3GsKMGu63/gzrEvZXa+9mvpgX5vbsWmgbMgMWk4a10fTe7K39zP2EQ7u+GlV9ZiwaRPkGnjyLuPU2UpNnv/hWcHPsRrEXchkFHzk2iPRoKQjo6OWLNmDQAgNDQU7733HlJS9KcOkkgkwvLly+Ht7V07Zmtri927d+PVV1/VyGsOGjSo9v/9/Pxqi3nKIhaL4ef3/A7WkCF0QUlIDelMyLqdsQFamqhOafYuSLFjl4IYnB4lM+VRusM2Uc0n5/k7r9bomJ+GXlI1b3xdPZBmr3z5DuMOccjv7UGtWXX9Jnk2x1djO8PMRP6/oV8HzuKMLQm6AvvKMoXncz2KW8pFwgBnnqUrfCx9VC4UY9Wl8IZ3VNCqRyfRriiLNZZu2wQ/DJ2rluMvHdaO9fijkVQ7T1V3WvfAJ6Pf5YwPzojC7ut/UMq9ikwlYuz32oq3eWptpto5Y/Rr6xHp4q6DmQFH5/dH9vcTYKrA9ywf0S/TcG/ZCLR2el7Xf1AbxbIhQ1e+qND3vS7cde+B/m9uwQNX/oanHwZexIMjK9E5j7LmwTB4Oeo+wvb/D+8FX+XdpdLUDF+OWIARr29EhAv3RqQh+W1Gj4Z3MhYCAQ51Gw2Pt3dj48CXUWnKv5rVIz8NRy/9goCaTGEd/Jbo9zeK9ii93lh6CTOfTp06ITo6Gn5+fpgwYQI8PT3RtWtXODo6KtTsZdky9XbF++WXX3D79u3ax87Ozti7dy+6d++u1tepa9y4cdiwYQPEYjFycnJw/fp1TJggu0bJ1atXkZdXHWgxMzPD+PHU7YwQALCrKoO9sJw1RvUgNcvP1QPudbLtWpYVoHVxDpIdmnH2pUxI9aoU1X/DapZUQxoAOEtLsdViRHsXeC8ZhpPB6WjtZI3Fg9vA1tIMPkuHYfj2+3Id41mz9rjSrh8mJQTUjjlVlmLxs6vYPIAboFRGRrHsJaEfnQ1BhUiMz0Z1hEczO7W8niKuRmbhz4eJaGpngfWTPNHUVnbDwkP+6r9Z3aEgHSsfn+aMf/7CWyi2tOF5hmLcHa3ww8QuyCmtwqOkfAxp2wTfvcTNHjdUHV1sEJvLDZifeWsgUgrLsetBIkIzNdN99Y8+U9A7O4GTqbcg7DaeNW2HTTwBftIwc7EQ/17ahFeiH3C2Jds1xZjX1iG2SSsdzOw5F1sL/D2nDz45FwKhhMHaiZ746GyI3M9Xx42AnS/3RNcW9ji+oD9m79ff0mIAkG7ngtFz1uNXn7/xYeBFzvZ+WXEIPPgRvhq5AL/3nWpQdQ3VpUNBOrbc3otpcY9l7vPQtQveG78MoU11UxNX3azMTZGxejwWHAnEtajGUSO02NIGX76wEH/2moCf7/yNl3lWCgFA7+wEnDu3Ho9adsaGwa/iQsdBjfJzoUsqBSHlWRJSs49YLEZYWBjCwsIUfi11BiF9fHxw4MCB2seOjo74559/0LlzZ7W9Bp+WLVti7NixuHat+mRq/fr16NOnD1q0aMHZNz09HRs2bKh9PH78eN79CGmM+DpjZ9ix725THEw5sjJIH7f04PyQD8qI4g1C0t+9ds2M5gYhz9BSbLUZ2s4ZQ9s5c8YU8cvA2awgJAB87H8ev/edCqGMguqKkvWx+/1edaH9wwGpSPh6HFxstVdb+klyASbteb6iIzitCA+Xj5S5vybqW26+/RespGpA3XXrhn+7vqiW43svHQZnGwscfbO/Wo6nb1o5WHGCkAPcHTHjv7qU7w1pi96bfBCRVaL+FxcI8L+x78MzNxkj0tgZshvv7EesU0uc7Uw3XBRhKarCiQs/YWocN6iWaN8MY15bj3gn3dYcrbm0nN/fHfP7P8/G5AtCzujeAudCM1ljns3t8OUYxa7pZnW0wZlY9vv8hQ7Vqwlm9nCF1+LBmLhHv+srCk3N8dGY93C7dU/svfY7nCvYn0kbURW23t6LWdEP8c6E5Y2mw7ONsAJf+Z3AZ0/OwFIs4t2nyMIaX41YgF29Jxrs0mtZmttb4o/ZPdH5p1u6nopWxTu1xKvTv8So5GfYcnuvzKZDgzKicfbcBkQ0ccOvA2fhUNfRqDJTz3mZLEZeUUVuKoV8a7ozyvOfovtLd35UB7FYjPXr19ceVyAQYNOmTSoHIN9880106dKl9j9ZPvnkE1haVmcBZGZm4o033sCjR49Y+/j5+WHevHnIzq6+Y2FjY4NPP/1UpfkRYkxaUWdsreNrTjNYRl1IyoTUHteSXAxLZ9cYDnFpo3IBdWOvOadt3q174nGLTqwx95JcvB5xRy3Hl+cTV1olxpY7cWp5PXmtvMC+6eyXVIDIeoJVJmpe9jg57jGmx7HPscQCE3w45n21XAXEfjkWHVxsG95Rz83rx/2+qKl9amHGvUzo1ep5zS1zUxMMbae5hh9CU3O8Mn0VkuzZtVhNwODfy5swJE2+GuukOhhz4cxa3gBknGMLjJ6j+wCkot4d3Jb1UR7ergnCPh+N5vayM67/eb0v63Ebe1O828Me7o5WtWOTPZvDs/nzzPFxnbk3XPXV2c5D0ffN33CvFX8vgVEpoQg6sBwfBlyAKU8zFmMhYCSYG+6DiH1L8JXfCZkByHMdB6H7W39gR98pRheArNGYz8t9WvfEgPmb8c74D5FoL/tz7Jmfir3XtiN+77tY/eCwRrvLpxZWaOzYhkTpTMiBAweqcx5a4eXlhcTE57WzrK2tsX//fuzfv1/uYzRt2hQbN25U6vU7dOiAdevW4YsvvoBEIkFKSgrefPNNtGnTBi1btkR6ejqrI7aJiQnWr1+P1q0NuyYFIeokXQ8SANLtKAipSf4tOkICAUzqhDsGyuiQTTUhtWcGT+fLM5QZpH8EAvwycDaOX/yZNbzy8Wkc7DZaLUuA5LnGOPMsHesm8dcN0wSfOG4n44T8MnRpzr8sXJ0hSEtRFbbe3sMZ39l7EoKbq75Uc0rX5mjvovpybn3wci9X/HA9Cnll1RmjbZysMdGzuqHB+0Pa4mY0uxbp3D7spboCDVe4yrJtgpkzvsa9o1/Apk5TGmtRFc6fWYthb/yCGB0vH9Z39pVluHjmB4xM5a5Gi2zihnGvrkWqvfxNtzRJkZtgU7q1gNfiITgbkoFOTW2wZGi7Bp/zci9X+MTl4u9HSWhqZYKvBjmhuY0pHi4bhqvRuXCxscBEz2aseci6QeLmaAUnK3OUCcWIz1O8zq+mJDs0w+g5G7DmwRGsenQSplJNOGxFlfjt9h4sCrmBZWPfxwO3bjqaqWaMSQzCT3cPYEBmjMx90mydsXzMezjdeajRp6apelre0t4SW2f0wNxD/mqZj7ZJTEzxd8+X8G/XF7H42VV85XeC0+C0hmtpPlY/PIpvfI/jSvt+2NNzAq607w+RjBqTyjgZnI4Nk6nhsNJ/owcPHlTnPLTCy8uL9bisrAz37t1T6BhubqplmEyfPh0WFhZYvXo1CgoKAABJSUlISkpi7efo6Ii1a9fWWzeSkMbIVY5MSIqDqVeJhQ1Cm7ZBzzoNUAZkxMBUIoZY6s6xqsXkifz4umLTUmz9dLrzUMQ6tkTHwozase65yZgR49eolpQeDkjFPr8keDS3wxejOyGzuBIt7C1hZ2mm1uvALx6dQqeCDNZYlrUjvh0+T30vYiTcHK1x93/Dse9RMizNTLB4cBvYWVZfHkzo0hw9Xe3xLL267uOQtk0wsoP2b/o9bdER8yd/hpPnf2LdDGtaUYzLp9dg+Os/I5unQzABmpQX48rpNRiUEc3Z9qxpW7z0yg/IstVcNqumveTRDC95yJ+paG1uij2v9sbOWd0RFBRUO97C3hJvD5LdDbyvmwMCU4tYY7N6umLbzOrmHyYrLig4c80Sm5ji2xHzcaHjQPzt9RtvF+g+2fG4d3QV/uk2GqtGLkSGgd/Q75sZix/vHsD4xKcy9xELTLCz9yR8O3weCq20XydZF1TNhNwyozte69PKYIOQNarMzPFH36nY1+MlLH16GZ89OYOWZQW8+5oyEkyNe4KpcU+Qa2WPc50G46THcNxs00vlMjoxOaUqPd9YqC+sawDi4rS7FEmWiRMnYsiQIThx4gRu3bqFxMREFBYWwsbGBh07dsSoUaMwZ84cODsb9o8BIZrAlwkp3R2bKKe+85THLTuzgpC2okp0z0niZBU102LNucasSXkxXkxh18iKd2iOp807qHxsCiOrn8TEFJsGzMSOm7tY498+PIqznYaonInByHHrJTyrBBfDMjG1m+5qTB+s03xm/Y3qoIi5qQA7X+4FEzVFITvnpeLLRyc441+OXKC2i05NZ/9pW9cW9vhlGjcbyt7KDHf/NxyXw7NgbirAxC7NYWnGvvGkrSSis52H4qMxi/H7rT9Z450KMnD+zDqMe3UtSi3kb3rZGLgV5+Dy6e9Zv901/Jt3xIRXvkeetYMOZka05ZFrF/SfvwXfPziMz56cZQXxaywIu41Z0b74rf80bOo/0+CCc4PTIvCl30lO+Q1pt1v3xEejFyOkWTvtTExHpnRtznosqb+/YYNcbIzrvL7c3BKbBs7C9r5TMD/MGyuenEGXfNk1qV0qivF2yA28HXIDBZa2uNq2L3xa98Dt1r0Q6eym8I8g5WpUa1RByEuXLmnkuMpkhTo5OWHx4sVYvHixBmZEiPFy5VuOLXUXv3crOqlWNz9XD7wdcoM1NigjihOEbMy1Z7RpatxjmEvVczrTCJYVGbK/e4zDN77HWXVt+2bHY3qsH85rKYP1tX+e4Pzbg7DZJxZmJiZYP9kTPV11+30pFDN493hQwzvKg2Gw4+ZOTv0vX1cP7O8xVj2vAWBq98bTLNDByhxz+6q2Ckhd/ug7FW2LsrHiyRnW+OCMKJw7uw5TZ32HCnPZ9QAbE8/cZHidWo02xTmcbQ9cPTFl9ncGF2zSZwPcHfEkpVDX0+BVYW6JL0YtwpnOQ7Hn2u/onpvM2cdeWI5vfI9jWeAlbBowE7/1m4YSCz0uOcEwGJsUhC/9TmBM8rN6d020b4aVoxbhpMfwRnGOtPPlXqzHdFbOr9LMAn/1Go99PcdheswjfBxwDqNSQut9jlNlKeZE3cOcqOqVtBk2TnjYyhNhLm0Q0rQNQl3aILpJK1SayQ7cquuGq6HT+yBkVVUVLCyMKwJPCFGedB2PMjMLFFo+bw7Qo6U9Brcx3KVF+upRS/7mNHt7sUtGUE1IxUkkDH64HoVzoRnwaGqLzTO6w83Rut7mbDNj+LpiN55lvYao0swCPw+aja2397LGv3t4FOc7Dlb64qi6kZ98+1aIJBj/5/P3zp34XGSsHg8rc9UL8jMMg71+SbgamYUeLXUT2JwX7o2xScGsMZHABB+M+59aam8CQFNbC8zsblgNPDSJ713b1NYCOaVVPFtU98ULC+FenIO5kXdZ42OSn+HU+R8xa8bXGu9uqu+Gpobjwtm1nA7JQHU22PSZ31DWqJr9NrMHhm+/r+tp1Mu3lSf6vvkblj29hDUPDsOhqpyzj1NlKdbe/xcf+5/Hnl7jsbP3ZCQ76E9jHofKUiwIvY33g6/wBlPryrWyx4+DX8EffabUGxTSZwv6u6N/aycs6O+Oq5HZDS6J/mVqN7g7sT/bqiYHqBoza25ngawSzfweqAMjMMG5zkNwrvMQdMlNwbvPrmFh6E00rShu8LktywowK8YXs6TOyQstbJBl44gsG0dEOrvjjz5TENiiIwAKQtbQShCSYRjk5+ejoqICYjF/Jy6JRAKRSAShUIiysjJkZ2fjyZMnuHz5Mu7f1+8vdUKI9kh3x06zc679hRzR3hknFwyguoQaENK0LcrMLFiNAfia06y+GolL7w7W5tQM3vb78fjhevXfZVBaEWJzy/Bw+QjM+zeAd38bYQUmJrC3Vd+N7aKW+dD5keb82XMCvnh0inUzpV9WHKbFPsKFTtr/3BT9n737jm+y3v4A/nmSdO+996AtLWWWMsreGwQUFEEFRUXFjQP1uvXnHgiCyr2gooiAIoIKgrL33rN00LK6S0eS3x+laTPaJm2ejObzfr183eb7PHlybmnT5OR8z7lZjUU7MzGrZ8uHtXyx7SJmraypSPn58OUmzjY+r/JivL/pa631jzqNbvEwmj4xPmgf4gGlUon70yManb5LaPQDlBZfW5DgniGPIaj0ulbVytAL+/DDmncwYeQcow4SsCYjzu7CsjXvqv2trvVbVGdMHPksylktarCmfqTTI7zw+bgUfPTPOZy24J5v1VIZPuo0GsvaZODtf/+Lu4/9rfM8n5vFmLNrBZ7evRKrY9LweYfh2BSWYrQPcwwhUcjRPecEph7diDtO/AOX6opGzy+T2eOjTqPxf53HWn2175vDEhF8a3L7xPbB+O+eS/j9RH6D5+t6/ebvat7f9z2ze+Gdv89AqQTmbbtg1liactInFE/3uRcv9JyC0Wd3YvypLRh2bm+TP3OaPCrL4FFZhriCXPTIOYGJJ7cgadrnyHL342vsW0T9C33o0CHMmzcP27dvR2Wl5WbAiciyKZVKrDiUC0C7J2RuvaE0cwfG881hCzT2GlsukWJvQKzadM221y7BpbJcraKisRdHpO5qaQV2XizA7NXqb6T3ZRfi12N5+OnWz7ymIef3wUnjDeYvsV2hkBhezdYnxgebztZNMXZ1kCLW16WRe1BL3LRzwP91GYcPNn2ltv7S9mX4NSat2RngllQ67Ku3hfDo5WJ8szsTznZS3J8eoVVR0Zi56040OwZjeOff/8K/XH075EU3P7zSfVKLrx3v54oPRrVt8XVaI10/smIXxFfI7DF6zIv4c/lcdNGYgDv67C4sXfs+7hz+lNbgtFZNqcTje1fj/zZ/o7Pv3zdt++OBgQ/bbHJWbIIg4MHukXiweyQAyxtUo+myqzemDX0cX6QOxWtbv8WATN0tMaRKBcad2YFxZ3Yg29UbP8d1x/L4HtgWnNCs1xz6kirk6Jl9DBNObsXYM9sbnGZcX4mdI+anDsUHnUZb3JAdH2c7XCuravF1BsT7Gvw6O8DNAUkBrjiWp10ZbYiRSQH49ViewfcL9XTCp2NTAADLDmTjuhG+D2KrlNlheZueWN6mJ5yqKjDkwl7cdmobBl3Yr1eFpCbXW8UDi9oNbmUdpZtPtL9Ef/75J2bPng2FQtGiT0QFpouJbN4TvxzFx/+eh2tlGVyrbqodqz8ZO53bsFvEx7nxLWy7AuPVkpBSpQKd8s7in7BksUNrdbZfuI7BC3egpEL37oDx/93T4H3Hnd6mtdbcqdgzu0XielkVDuUWQSIAH4xqCzup6SsdbMmCdkPwzK4ValMZO+WfxfBze/BbTJdmXVMzkW2I6ltd6zNvlCHj860oKK95g/Dd/mwcfqoPnPTYqj1v6wXcKDffG4seWccw/fAfWuuP9H8AZXaOZojItpmiNXCRgwuG3PYfbFj+ItpfOa92bOKprZAp5Lhz+FNWuw3TEHbyKny+YYHO3wEAeCttPF7oOYVl7mZ29rn+iHlrg7nDULMzOAGDJryGXpeO4NWtS9Gr3ms8TSEl1/HI/jV4ZP8a5Lp4YWNYO2wLScTW4EQc8Q1vUVLSTl6Fjnln0TvrKHplHUHP7GM6t4vrct3RFZ90GInPOgy32EFLT/aJwfNrDf+gTvNXdmJqMF5ef7LB144N+XFKZyS/t0lrvXukF7ZdaDzBWzuI7b6u4c1KQlq7cjsHrIzrjpVx3SEoFWh7NRN9Lh1B76zD6J5zQq8EOQCc8A4FwO3YtURJQpaUlODFF1+EXC7XmUSsXdNMTtY/18HBAfHx8ejbt68YIRKRldh6/jo+/rfmDYauydi59T7tdHPkJ/wtMbN7JNadvNLg8Z1BuvpCnmQSshne+fuMwS8iAcChuhIjzu1WWytwcMHG8HYN3KNxyYFu2Pd4LxzPL0GIhyM8nWy7l5oplNs54L0uY/He5m/U1l/a/j1+i+5scKKgvErRogrkqluNXJcfzFUlIAHg3LUybDh9tclp2pXVCrxoxipIO3kVvvhrntb6z7HpWBOTZpTH4HuGhumaFG6q1sA3nNwwaPyr+PvH57X6w407swO//fwfjB39AoodLHjARgt5lxdh+a/voK+O4RwKCJjddwY+6zjC5HH1j/OFk0yKNcf1T1rckxYmYkTmF+VjuT+H/4Qlo8/tb2HAxQN4Yu8qDLmwv9Hzg0pv4M4Tm3Hnic0AanrgHfcJxTmPQJz3CMQ5jwBcc3LDTZk9ymX2KJc5wKG6Ch6VpfCsKIXnzVJEFOWjzfVsJNzIQnTBZciUho1xPuwbgQXthuB/bfta9hAdAI9lRGNfVmGDO1z0FeLhhL8e6IZPt5zHt/u0Jzo39LfKvYH3R8vv7oyQV//U67FHtQ3Et3d2xLL92QjzdLL4rdViUAoSHPGLxBG/SNXzqnd5Edpey0Tbq5lIunYJQaXX4V9WeOu/AuQ5e+KL9sOwJbRmN4WEn/MDECkJuWrVKhQWFkIQBCiVSgwcOBCDBw+Gr68vVq9ejZUrV0Imk2H+/PmQSqUoKCjAiRMnsHLlSuTn17yQdnV1xWeffQZ/f/8mHo2IWqtquQIZn9f1hNWZhHRh9aOxDIr3w4A4X/x1WnuaJgDs0pGE7HL5tNhhtUq/HG3ep8kDLx7Qqg5YHZOGKqnhycO2AW5IDHCFIAhoG+jWrHioeeanDsUzu35W2z7cJe8MRpzbbXDi7P3NZ1sUS0V1zRu/r3Zlah3799y1JpOQ2y9eV0temtoTe1Yj+Zp67MV2Tnis3/1GewzmIA3T0A6oM8/1Q6CbAyqqFdiXXYiBC7QHbBnqqrMHBo5/DZt/eA5xBepv8PtdOowNy1/EsHEv46qzR4sfy9K0zzuL5b++g5hC7R6sZTJ7TB36OFbE9zBDZMBLA+Nx5mppo0nIp/vEIM7PBX+evILUEA882TvahBGKKznQDUcu123bdHWwgtYAgoC/Ijvgr8gOiLuejYcOrsW0IxvgUVnW5F09KsuQnnsK6bnavcKNqUIqw4/xPbEgdQi2BSdaxSdEo9oGwMlOih/v7oybVXJM/X4/lt9KRnYM8cC+bN1T1V0dpPB10a7kTgv3wpLJXjhyuRgHc4rUjtk3sJPFWB8MTeoQgkkdQgAA3+7LQuHNaiNd2Xpdd3LHv6HJ+DdUv4IMXR/c2SJRcrHbttVtFZs0aRI+/fRTjBgxAunp6Rg9ejQAQC6XQ6lUolu3bhg6dCgef/xx/Pbbb+jXrx8A4Nq1a3jppZfECI+IrMTOzAK127pK3nMsrO+LNXO0k2LdjIa39Wa6+eGys6faWlcdLzjTP/4Xn245r3ojuvrIZfSZtxWjvtqF01da1pPG1unaiv1zXHeDr/Ng90isu78rW56YSZmdI97rMlZr/c1//weJwvAK2ZZYdeQynl1zDCfy9fvdPJFfjNmrj+CldSdQfLPaJFtvGxJZeBlzdyzTWp/b805ku/maISLbY0hPyGgfFzjby+DlbI/+cX5I8DfO0IjLrt7oP+F1nPAK0TrWOe8M/l02BxGFrWgboVKJGYfWYdv3z+hMQGa7eqP37W+ZLQE5LiUQGdE+jZ4T4eWEB7pFYHrXCPxwd2c83z8ODjIrSNTV09hfz7eHJ8JOWnOGIACfjEkxTVBGcto7BI/3nYHQB77BvYMfxW9RnVEpMc9uowqpDL9Ep2HqkNkInPk/TB32BLaFJFlFAhIAXuhf9wG+o50U393VCdsf6Yk/H0jHllkN/47OHRDfaHucx3tpJ+1HJDb+oaEmff5+W8m32Wrw+1lDlGeTkydPAgAkEgkeeughtWMpKSmQSCRQKpXYtWsXMjIyVMfc3Nzw0UcfYfz48Th16hQ2b96MgwcPIjU1VYwwicjCXStTH76hqxKSSUjjkkgEONlJUF6lY1uMIGBXYDxGndulWgoruYrg4mvIcat7w7HrUgF2XSpA0c0qjGobiLGL67YPH75chHPP92fyqxns5FUYfWan2lqxnRP+iOxg0HWe6hODd0ckGTM0m/NIzyh8uuV80yc2Yl77YXhyz0oElNVVQSRfy8TUoxvxTcrAloZokP/bpLuaUvP3NPNGGTp/+C/KqmoSpX+dvoo3hyaIHp9OSiW++PMLrSnAe/1j8Fn74UZ9KD5fGUbf79adHUMwd91Jozxmlrsfet3xNtb+/B901hhW0+ZGNnZ9+yRuH/EMNjWzdYWlcK66iXl/fdHgVOO9/jEYPeZFtb/JphbpXbM1tqHfm3UzuiIt3Mvq2380lr8ZlhiAnY9mYPvFG2gX5I4eUdb5WrXU3gmLkwdgcfIAeNwswchzuzHu1Db0zjoCrwrxpoCfd/fH5rBk/BXRHmuiu6DIwXoH5rk5qifXpRIBXSMa38W19/Fe6BDSePX2bSlB+HpXJv45V/PeaHavaER4696W3pL5HGRc7AlZQ5QkZFFREQRBQEREBPz8/NSOubi4IDQ0FJcuXcLhw9r9S+zt7fHoo49i1qxZAIC1a9cyCUlkozT/ZgaX6tqObZ0v7KzVzmD1JCQA9Mg5juVtemqdO3fdSWw5r/5vdvFGObp+/C9eHtQGw5vY5knq+l46rPWi/7fozgYNXhAE4Akdn56TYd4bmQQ/V3scu1yMCG9nvLPxTNN30lBm54hXu03C5xvmq63/Z9t3WJbQC+V2DsYK12je3nhGlYAEgB0Xb6Df/O1mieWeI39h8EX1vmVyQYKZAx8y+tRWvmVomK7vTayvCy4XVyC7sG6Q3CdjtLeqGTu5e9XZA/0mvo6Vq99E/8xDasf8yovwx08v4ene9+DjjqOsshylQ95Z/O/3D7T6X9b6Ka47pg593CKfO+ob1MbwVltTO4fiv3uyVLe/mmj57w3bh3igfROJJGtS6OiKpUl9sTSpLwSlAonXstAz+xi65xxH+/xziCrMh1uVfsNk6sty9cEJ71Cc8grBjuA22ByajEvufk3fsRVL1KNK3MVBho0zu+PI5WJ4OMoaTEC2lPU9U1o2fj9riJKELC+veQJqqJ9jdHQ0MjMzceqU7r4Rffr0gaurK0pLS3H0aPMnPhJR6xLISkiz2xqsXUHXI1t3EhIA1usYdLMnqxAjv96Fz8am4KEekcYOsdW67ZT2VuwV8fpvxZYIwGtDEhDozmnBLWUnleDFATVbrE5fKWlWEhIAFqYMwmP7fkH8jRzVWmjJNTyyfw3eTbvNKLEa08Kd2n0jzSGk+Co+2PSV1vq89sOwNzDODBHZrgA37YRXGz9XPN4rGjOWH0R5lQI9Ir1UfcTqE+PNWIm9M0aMfQlL176P206rJ8hlSgU+3PQVOuWdwQMDZ1l8sq6WnbwKL+xYjud3/qhzeEe1IMFzGVPxfucxJkuurp3eFaeulGD26obfpxkzks/HpcDHxR6n8ksxNNEf07q07iE2lk4pSHDMNxzHfMPxZeqQW4tK+JYXIbrwMiKKrsC1shxO1ZW3/qtAlUSGG46uKHBwQYGjC646ueO0Z3CrHhwlNolEQLvgpieCN9wrkhWSpiZhFhKASElINzc3FBQUNFj6Gx4eDgC4ceMGCgsL4eGh/imRTCZDWFgYjh8/jgsXLogRIhFZAc0/jpqVkKUyBxRZ+EQ8a/TyoDaY89txncd2B8ahSiKFXb2+dd1zdJ/blC+2XWASUk8ShVxrK3aZzB6/R3XS6/55rwyCRBDgo6PJObVMS6q5qqUyvNBzCpb/+o7a+pxdP2FRykBcd2r6zYUpWcRrZ6US8/+cpzUs4by7P57vOUWUh7TCojmTmdQhBP/5Q72oYHrXcPSJ9UX/OD8UlFchxscZMh1vgsX6vlbI7HH7iGfwwaav8ej+X7WO33V8M9rnn8ddw57EIf8ocYIwknb557F43Udof0V3+4csVx/cMeLpmh55JjQgzhfdIrwaTUKGeGh/4KUrGa0PZ3sZ3hvZtln3JRMRBFx19sBVZw/sCmpj7mionkB3R6QGu6sNsvn69vZ63bexvpRkOLZ3qSHKT5WXlxeUSqVq0rWmsLC6T6/OnNFdPeDqWlOGXFxcrPM4EdkezZ6Qua5efHcogvvSwhs8Vm7ngH3+MWpr7fPPwaXS8C04R/P4/K6vjOxjapOUAWBdZEeU2elX1ejn6sAEpEha+gy0Iq47dmhMnvesKMXzO5e38Mot9+7fZ7C23nRbS3i6nXLsbww/v0drffrgR1Bq72SGiGxbvJ8r3h6eCBd7KRxkEjzROxq9Y2r6EQa4OaCNv6vOBCQg7pRQhUSK2f1mYNqQx3BTqt17MPlaJnZ+9yTm7FwOmdzyJrx63CzBe5u+wu5vn2gwAflHRHt0nPKRyROQACCTSuDRQE/H2hqUXtE+8NP4u9PY6wtrYwFPh0R6WzQxFYn+rnB1kGJGejhubx/c5GCaADcHpDfQv1LXhwxN4e8MKyFriZKEbNu25pOqixcvIi9PexpdbSUkAJ19IQHg8uWaaW9spEpku9R+/ZVKrenYOewHKQofF3vclhLU4PFtIYlqt2VKBdIu626vQcYx/tRWrbWfDdiKTeKpnYDabIKAZ3tN01p++MBvFjHRd+zi3bh4vabqUMykkT6CSq7ho78Xaq0vaDcEf4eL1yOOlQuNe6ZvLK69OgTXXxuC90a21fv7ZYpv6//a9kfPSe8gU8e0dAd5Nd7csgS7v30CabnGGZDTUlKFHA8c/B2nvp6JJ/auVtt1UOum1A7P9JqGYeNexlVn8/YcbBvg1uAxe5kEfz7QDaPbBqB7pBe+ub09+sVZ59T6O3RUcPaI5GtQarl7NRLz4Z5OcJAZP0XTKdQTR5/pi6I3hmHB+FQ42TXeO9nVQYqPRydD2kDW7Kk+sQbHwKwOX0/UEiUJmZ6eDqAmgfj2229rHU9IqJukuH79eq3jJ0+eRFZWFgRB0NqqTUS2ya2yHK5VN9XWclzNN/2xtfN0bnhq5dbgRK21HtnN25Jtiy4VGFY1KigVGHt6h9pahVSGNdFdjBkWNVOYp1OzKgLq+zc0Gb9q/Hs6yKvx7j/ftOi6xlAlV2LZgZqelWZ97XxrGrbmcKaLbn54RkcS15j4lqFp9jJJk29qNZnq+7ovIBZd7voAf4el6DyeeuUCdnz3NP639n2EFmn3MTYFiUKOsae3Ye+S2fjiry/gV16k87xdgXHoOOUjvNdlnNEHMOlrgAGJxHbB7lh5Txq2zOqJqVbcx/H21GC4OdR1MQt0c8DQBMMH7OgjLcxTlOuSeTT14d3TfWIQ5F7Tn1YqEfDuiCSzJ6ryXhmEnJcGYWL74AbPuS0lqMEqyYb4OHNHDisha4iShBw6dKgqebhu3TpMnjwZmzdvRnV1zXaHgIAAxMXFQalU4sCBA1iwYIHqvvn5+Xj++edVFZBJSabfYkBElkdzKzYAXHYx7I8f6a+xv5HbghO01prbF9IWnb1a2vRJ9aTnnNTqh/pnRHsUObgYMyxqJkEQsPzuzkgKcIWzgUmY+p7LmAq5oP6ybMKpbRh4YX8D9zCdfVkFAMybjJtxeD1GndultX7/oFkcbGClTPlG+4qzJwaOfxXP9bwblRLdLfHvOr4Zp79+AJ/9Nd9kyUiH6kpMP7QeRxfPwopf3ka7qxd1nlchleG5nnejx6R3ccLHvMm8+7rWVW7ZSlFPhLcz/n6wG+5Pj8CjGVHY/FB3uDkad7SCm4MM7wxPRNughqtLqfVp4++Ks8/1x7ZHeiLvlcYTf8bWUGWin6sDXB0a//l2c5Th34d7YMejPXHi2b4YFN/0RPPURoboxPnaxmtaia08aTZBlCSks7MzHnzwQVUicd++fZg5cyYOHDigOmfixImqrz/66CP06dMH48aNw4ABA3Ds2DHVscGDB4sRIhFZgfp/HINKORnbUlx29cY5jwC1tW45JyHRsW2MtDW0taUht53Wnor9cxy3YluS9AgvHHm6L4reGNrsN+XHfMPxdfIArfVPNy6AfXVVCyNsmeWHclFYXmW2hEPc9Wx88Lf2NOyvkgfiz8gOBl3LUSbBmBjDkpZ8zyCO2uofU1FIpHin63ikT/4/7POP1nmOg7waDx1ci3OLZmDZr++g96XDEHRMpG6pmBs5eHXrUpxbNANf/vk52tzIbvDc36I6o/2UT/BO1/GQm6H6cXTbADyWEYVRbQPw30ntcXv7xofLtNYtlx1DPTF/fDt8NDoZcX6uRr32s/1iUfjGUDzdN7bJPn1kWZZONuxvkC6OdlKkR3jB28oqBaUSAWnhXoj3c8Vv07tqHb9dI6H6xlDtIoZapv57YC4Brrbx/7MpokzHBoBp06YhKysLS5cuVa3V7wV5xx134Oeff8bx48chCAIuX76MvLw8KJVK1Sejbdq0wahRo8QKkYisiGYlGMAkpDltDU5EdL1+dR6VZUi+mmnxk0YtgUFJSKUS405vV1uqkkixOkb7xR6Zn0QitOgN5PM978a409vhc7NuaFP8jRw8uXcl3uo6sZF7iu/1v06bpSeknbwK3659Hy7VFWrrF9z98WSfew2+XtHrg3Hw4EF4OUjwzbES1XqIhyNyim7q/PdjDlIcwxMDYCcVUCU3bdblQEAMut75Pmbv/QUvb/9eq9ULUNPreOKprZh4aisuuvlheZue+C26M7YGJ6JaavjbJ4lCjtQrFzDkwl6MOb0DXfJ0D+as75h3GJ7scy/WR3Uy+PGMycvZHh+OTjZrDK0dE4/Wy8W+8eeDMM+WtWuxFlKJgLXTu2Lc4t24Wa2An4s9Xugfp3ZOnJ8rhrTxw7qT2pXmzfkdGN8uCD2ivBHr44KRX2vvlLBEAW5MQgIiJiEB4MUXX0Tv3r3x5Zdf4ujRo/D3r+udYWdnhy+//BKzZs3CwYMHAdQNoVEqlYiLi8P8+fMhk4kaIhFZsPqDqXRtx86ttx37P4PbmCQmW9FU5c/WkCRMOb5JbS0j+yiTkHqQGZCE7JR3BpFF+Wprf4el4IYTt2u1Rtec3fFcxt348s/P1dZf2PEjvkvojYsaFcim9P7ms3CxN30V1ivbvkdnjYSNXJDg7qGPt6glwZREVxy+Wok9+ZXwc7HH4jvaY/3JK3hv09mWhkx68nSyw4qpXTDKDG8e5RIp3u8yFt8l9sLrW5Zi6tGNkDRQwxdRfAVP7VmJp/asRKnMAXsCY7E3IBYnvUNw3j0AV5w9UOjgDLkghVQph3tFOfzKCxFZmI/4G9lIvXIeXS6f1upn2pAcF2+8nTYe81OHNCvhSdan/uvdWT0isXj3JTNGQ4Zo6iWdcxNJSnMy9gDgIQn+yHtlME7kl6BdsBscZNqvGaZ1CdedhNTj+q4OUpRU1Oy6cneU4Zvb28PFQYbCcvPuFjEEP9SsIfpvRUZGBjIyMlBSUqJ1zM/PD9999x3+/PNPbN68Gfn5+fD09ERGRgZGjBjBBCQRqWhOxgaAHJe6wTRP9YkxZTg275/QtlprvbKO4PMOI8wQjXUxpBKSW7Ftz1cpA3Hf4T/Rtd7EeefqSnz49yKMG/OCGSMz/bbkjKwjeHbXCq31t9PGY4uO5yBDuNlL8EV/X4THJcHH1RESiYAuYZ46k5DmHhLQmo1ICsCe2Rno/NG/Znn8XFcf3DfkMXzQeQxe3P4DJpza2mAyEgBcqivQO+soemcdNXosJ7xC8H9dxuHbxD6olDU8HM7UGvvxT4/wwpHLxWprkV5OIkfU+tT/iesQ4gF3RxmKblabLR7Sn4ej5fyuWgI3Rxm6hHs2eFzZwPOrQo+E6J7ZvfD6nzWvjV4cGA+XW30r+Sfa+pgsy+fqqrt3hlQqxZAhQzBkyBBThUJEVqL+36MgHZWQtdux3RxkBk/lpJY54R2KfCcP+JcXqtZ6ZR2t+Ufjq4FGSfX9/iiVuO2UehJSAQGrYrkVuzVTChI8PGAmdi19Ui0ZMubsTgw7txtrzTgV3ZTbsb3Ki/G/tR9qJYR2BcbhP93uMN7jONtBcuuDAXdHOyQHumklVaj1O+obgUkjn8Er17Iw68AaTD26Uec2bTH8HZaCjzuOxK8xaVAKorTrF819aeFYtDNTdVsqETC+nekGa7QW9V/vCoKAldO6oP/87Q3fgSyGvUyCFwbE4Y2/Tps7FINZUhuApmJJ8HdFvJ8r/je5o2kCEgnfItWwrr90RGSzgkuuqd0ulTmg2J6ftoulyWSDIGhVQwaUFSK+keb6VEPf7dgpVy8griBXbe2f0LbI51T4Vm9fQCzmpw7VWv/8r/lwqygzQ0Q1GqpgMDZBqcCS3z9ARLH6lq1SmQPuGvakqFtU2RPS9CzofTBO+oTikf4zEfLAYtw7+FFsDEvRmlpvDPv9ovBS98mInv4l+k98A7/EpltsAjLIreGedl0jvPDZ2BRE+zijbYAbfpjSCcEettEDz5g0n1sNnF9HJjB/fDud6wKA14Yk4Jvb25s0HmvVULKxqb8DK6eZ7wNYYzJHb21LZPL9znl5ecjLy0NhYSHc3d2RmpoKACgvL4e9vT2kUlYzEVEN9enY6tuxc1y9+XGSiPTZMvxvaFuM19gu3CvrKE55h4oVVqug7xvu205pV0FwK7bteLHnXRh/aqtatXFE8RW8+89iPDjwIbPEVNuLSWwv7vgRw87v1Vqf3XcGzng1v8qqb4xP0yfpwD81tqfYwRmLkwdgcfIAeJUXY9DF/Rh48QDSck8h6dqlRrds63LaMwg7g+KxKSwFG8JTzdrf1VCTOzQ+DfuhHpF4qEekaYJppSypIo10m9Q+BDN/OqS1Lrn1B2JEkvX8TluiaG9n7Lio3XoLAP59uAfa+Dc8kZ6JPetjkiRkZmYmFi9ejE2bNiE3t66qo2fPnli4cCEAYMOGDXj99dcxceJEzJgxA25ubLpPRLcolVqDaepPxjZVdY4tuT01GF9su9DoOQ31hVzUbrBIUbUO+SUVTZ+kVGLCqS1ayz/HdWvwLoLANzKtSYGjK57qcy/+9/uHausPHFqHn+K7Y0NEe/MEJrLB5/fi5W3fa63/GN8DX6UMbNG1p6WFNXnO9PRwPL5avd/fsAS+uRSTpT9v3XByww8JvfBDQi8AgEtlOeJu5CD+Rg4Cy27Ar6wIrlXlkCoUUAgSFDk4odDeBZnufrjo7odjPmEosXc28/+LxkklAuQK9X8IR5kELw6MR1Ig35MZi4u9FKWV2h/mJAXo9z2O8nbG+evmq4a3VY9mRMHNUXfapPZDKm9nO4R4OCK7sK6NwzN9Y00RXrOZ46k3XEfP2N7RPvjP4Db4br/2bqrjz/RtNAHZXM/0jcXCHRdxw8RDbUJtZFp6U0RNQiqVSnzyySf48ssvoVAoGp3AlJOTg4KCAixcuBC//vorPvnkE6SkpIgZHhFZuNqnDPfKMrhUqyducl28ddyDjKVbpBd6R/tg87lrDZ5z2DcCNxxc1CZ+9r7EvpBNsZc2veWu3ZULSLyepba2LSgBOW66K7nuT4/AnH6xiH5zg1FiJMuwNLEPJp78FyPO7VFb/3rdJ0id+gkKHI3/wtycwovysXTtB1pVZse9QzF98CMmeV65Ly0c7/59BrlFNX9zOoZ4oG9s8yooqXUqtXfCgYAYHAhoPQPxZmdEY/elG/jn3HU42Unw6dgU3NkxROd0W2q+/03qgNv+q/587mwnxZjkQL3uf/LZvjiaV4wOH/wjRnik4fNxKQh2d8Sotg1/EFW7cUgQBCyamIpJS/ehoLwK6RFeeJpDM7V0i/BCnK8LTl+te+/w/qgkxPi64LOxKZi18rDauj4JyOa8NAjxcETeywOQ8s5fOHnDdInIFwfEm+yxLJmoScjZs2fjjz/+0Jl81Jw0mJVV92YrNzcX9913H77//nvExPCXl8jWBZVol+fn1q+EtPAqCmtkJ5Xg9xldMW7xbqw7eUXnOQqJFFtCkjDy3G7VWljJVUQW5eGCh34vqG2RPj+vd5zUfoPxQ0JGo/eJ9HZGuyB3HMotam5oZASD4v3wxyndvzMGEwTMHPAwjvx3FjzrJfvDSq5i/p+f444Rz7SahL9DdSWW//I2fG6qD4UpsXPE+FFzjFJJ5qzHADNXBxkOPNEbC3dmwkEqwcxuEZyOTa3ezG4ReHt4Is5fL4OHowx+rg7mDqlVGtU2EK8OaYOX1p0EAIR7OmHJ5A7wcbHX6/4yqQSpwR5ihki3zB/fDvenRzR5Xv2/D4Pb+CP/lUG4WlqJQHdWvOkiCALWzUjHk78exY2yKjyaEYWOoZ4Aalo7PNg9AlmFN+EglcDfTbznoTZ+LgCA+f19sOpMGT4+YJrXzuyZW0O0DsifffYZ1q9fr7qdkpKCuXPnYtmyZTrPHzlyJDp16gSlUglBEFBUVIQ5c+aIFR4RWYHabdbBpdrVeDmshBSdo50Uv03vioUTUpEUoPuTyH91bMnufemojjN1K62obnZ8rZZSidtP/Ku2pICA5fE9mrzr28MTxYqK9PTOCOP+G+S4+WB23+la6xNPbcW0o62j8lVQKvD1uo/RJe+M1rEZg2bhuE+4UR6nf5yfXuf5uTrg+f5xeLJPDFwcTN4+3ebwg0TzmtUzCjG+LpBKBMT6ujABKSKpRMCLA+KheG8kFO+NxIUXByAjmpXWlmhCuyC9ztNsoS6TSqwmAWmu594oH2f8PK0L/n6oO8amqH+fBUFAmKeTQQnI5nxMODC+5vWAq50EdyWaZleJvhXPtkCUJOTly5dVvR4B4Mknn8Ty5ctx5513on379jrv06VLF3z77bd48cUXVWtHjhzB5s2bxQiRiKyIZj9IAMh15YRgUxAEAfd1DceSyR11Ht8Upt02o1/mQb2vv3BnZrNjs1ZN9TBNu3wKUUX5amubwpJx2bXpxHu/WN8WxUYtlxrsgdX3dDHqv8X/kvrhJx1DiT7dsABJV63/d+iNLUsw6eS/WuufdBip6sNnDJ5Odka7FlFrMLtXND4erf1hIpEt6xvjAy9n/apTJayUt2g+ztp/9/9+sBt3OJiZKEnIn376CRUVFRAEARMmTMCMGTP0vu9dd92FqVOnqm6vXbtWjBCJyArUfkKnORkbUK+EZBWF+Brq6bvfPxoFDi5qa/0uHdL7H+WJX/SvmrQVd5zQTsY0tRW7Fl9TWYaRbQPx18yGhwgZTBDwwMCHcclVPbHpUl2BFb+8BbcK6x1UMOPQOszZtUJrfWtwAp7uPc30AZHJcbiceczsFoEPRrXlm3GyeZrVjA/3jNL7vtb829Nannsbegr764FuyHppIFZM7Yyu4Z7oFuGF1fd0Qe8Y83xgb80/K8YmShJyy5aaiZ6CIODRRx81+P73338/ZLKa7S+HDx9u4mwiau10VkJyO7ZJNfQyRS6RYrPGluyQkuuIv6E94Y5qNJafFZQKranYVRIpfo7VroIj23LDyQ13D3scCo2XsW1uZOOr9Z9Y5acxg8/vxed/zddaP+sRiHGjn0eVlJWLRGIJELHfGrWMrqpt7nQQz09TO6ONnwt8nO0wp18sxhqwbZaVkJarX5wvHGRSjE0JwvZHM7D1kZ4Y2da4W6LfHZFk1OvZClGSkFlZWRAEAbGxsfD1NfwJ09vbG+Hh4VAqlcjLyxMhQiKyJkE6kpA59QfTtJJP8qzV3+HttNb6ZR4yQyTWr2f2MYRo/Lz/GdEe15zd9bo/Xwq3bpvDUvByj8la6+NPb8PL2783Q0TN1yHvLH789V3IlAq19euOrhg+7iVccfY0T2BkUaJ9Wj6QiMjapAS6I8xTva+gPkNSDCHVLP+zYcMTA3D82X7I/89gvDks0aDqYOYgbVuCHtO7a/FnpY4oScjCwkIANcnE5vLzq2kWWllZaZSYiMj61KYWg0rVkzIldo4otncyfUA2rLEiq41h2knIvpeYhGxIYylznVux2+i3FRuAzhfOMr7RMJuRSQFGv+abXSfgt6jOWusvb1+GO45bRx/tpKuZWP/TS3CrKldbr5DKMHb08zjlHWqmyMgcory1E423pQRB8d5IrL4nzQwR2QaBH1tZLIlEwNrp6Ria4I92Qe54d0QSJqQ2Pijlvq6GDfCqfGc4vr1Td79va/SIHluovZroC9xU8vGxDO3H0PX8ZS2scAOFTmK3lMiIajinNaSNfgPvAD7n1idKEtLNzQ1AXTKyOa5dq5mG6+HhYZSYiMg6lFfJ8fza45i8dC9e+/MUACBYIwmZ6+Kl9nFSa/kjaska+x4f9Q1HvpP6c3XfzMMQNCqcbNWNskp8vSsTX+/KxI2yhj9YkyrkGH9qq9raTakdVsd21fuxpBIB6RHqQ5sey4g2LGAymhnpEUb/5FspSHD30MdxzkM7wfnN+o/R14DBUOYQfz0Lfy1/Eb43i7WO3TP4MfwbmmyGqMic/FwdMDE1WHXbUSbBy4PiATTcj5hajlU5lq1toBt+m94VB57sjaf6xDSZaHk8I1pnQszVQarzfEEQMKlDCLqGexojXLOK9XXBx2Oa/tux6zHdH+rq+6vwSM8oBNZrYzB3YDwc7XR/f6l1cLKTYN396Q0el0lFSae1eqJ814KCgqBUKnH69OlmJSJzc3Nx9uxZCIKA4ODgpu9ARK3GfT8cwNsbz2DZgRycyC8BlEqtnpC5LpyMbUmUggR/a0zJ9r1ZjJQrF80UkeUoqahGr8+3YfqPBzH9x4Po9fk2lFRU6zy3X+Yh+JUXqa39HtUJRRqDf5ryv0kd0D3SC24OMkxMDcYrt97Mk+mNSArAH/enY5YBTe71ccPJDSPHzkWhvfobTgd5NVatehOdL5826uMZS9urF7Hph+cRWFagdez5nlOwLLG36YMii7B0cgd8PCYZc/rFYvfsXkgO0q8FBTVNc1tvLSYhW5ekQDccfLK31t+bprZxj0nWrrBMNGCLqSXQt19mjK9hr6c0Rfu44MATvbF0cgdsnNkN/xncpkXXI+MwxlNZRkjDPXKdGkg020kNe2Q+59YRJQnZo0cPAIBcLsfXX39t8P0/+eQT1SefXbvqXwFCRNatSq7AsgM5amseFaVwrlavHst29TFlWISm+27q6gs58OIBkaKxHn+euoKjeXUVX0fzirFwR6bOc+848Y/WmiFbsWvF+rpgy6yeKHxjKJZN6QQXB5nB1yDj6R/nh0/GJGNa5zCjXve4TzhuH/kM5IL6Szm3qnKsXfEK2uedNerjtVSny6fxdwMJyHe7jMPbaeNNHxRZDJlUgkd6RuHNYYloG+hWb53v2lpq5bQuOtf7xPC1VGvj6iDDJ2OSseyuTpiRHo7549vhneGND864o30wXOzrkiy+LvZGH94htpcGtuzDVkO28/q7OWByx1D0aQWDglhnXmd0tOEJ6tpCfWN/0GwLRElCjho1ChJJzaUXLVqE9evX633fBQsWYOXKlarbw4cPN3p8RGSZquTa23c1h3QAQI5GEpJ/RMXX1I64DTqSkAOYhMSSvVlaa2uOaw9cc6iuxNgzO9TWSmUOWBOj+80jWR8xBmj9EdkRDwx8SGvd92YxNix/0WIqIoed241NPzyvcwv2px1GYE7GVJYIkE5t/FwR4cUe0M3VP84XHUM9ceU/g9X64XUK9UCPyOb37ifLNrF9MBaMT8X96RGQSgR0CfNUO16/givC2xkbZ3bHtM5hmJEejk0Pdm+yd6Kh7u4kXp/fJZM7INhDd7WvvvjXx7oZ4+VD71BHDDWgv2N9T/TSr+0Rf87qiJKEjI2NxdixY6FUKiGXy/H4449jzpw52LlzJ65cuaJ1fllZGTZt2oR77rkHH330EYCaTyQGDRqEhIQEMUIkIisRUnJNa63+ZGyyDGc9g7R61PXKPgrHqgozRWQeldUK/H48D5vPXoVSqcSVEv3+/488uwueFaVqa7/EpKHMrmUvrKn1+zplEJ7NmKq17lVRir+Wv4gBF/abIapblErM2rcGq1e9AZdq7d+FTzqMxOy+05mApAYJgoBPxiTD08hJEVvRP66mWsvHxR4HnuyN5/rH4vWhCfj7we6iD3Mgy/H60ATY1+td9+lY9RY6XcI98fUd7bFgfCqSAt2M/pS8eFIH9GxkuEdL3NmRg8yai3ML1Q1J0E5C6jNMJtLbGZH8sMwgou3Rmjt3Lk6cOIGjR49CqVRi9erVWL16tdo5u3fvRnp6OoqLi6FQ1FRA1W7DDgsLw6uvvipWeERkgXS9INbsBwlob8dm33rxNfktFgT8EdkBMw+uUy05VVeiZ/Yx/BXZQdTYLEV5lRx95m3D7ksFAGomVW69cEOv+0459rfW2rdJfYwYHZnbnR1D8d892pWxxvB/abfBs6IUz+36SW3dvbIcv618FQ8OeBBfpwwS5bEb4lRVgS/+moe7dfxsA8BbaePxQs8pTEBSk0a2DUTW3AFwff53c4dideq/gQ7zdMIbQxPNGA0Zy9jkQKw8cll1O8Ct4X52ADAw3g+7HsvA1gvXkRzohoxo292Kf29aOL7eVdcWJynAFRIbzcZFeTsj3NMJmQXlqjV9BvxYGnNNna7/3ujNYYmY/O2+Rs/nBz91RBvn4+joiK+++goZGRlQKpVq/9X+A1RUVKCgoAByuVxt+l1SUhK++eYbTsYmIp2VkOwJaXr6TCj9I0I72ThYjyqsR1cdwU8Hc5o8z9KtPnJZlYAEgK926u79qMmvrABDLqi/cMlz9tD5/STr1T/OF2kaW+KM6YWeU/Bq+h1a63YKORb98Rnm//m5ySqTU/PPYee3TzaYgHy61z14IeNukyYgl0zm75M1c7Znb1uiWs/2i1VVB0slAt4Z3nRyuV2wOx7sHqlXArI1b9WfOyAO8X41/f88HGX4ZExKE/dovQRBwLsjkuB8a/BKRpQ3JncIMXNU1un29sEY0szt3LZI1L/onp6eWLhwIVavXo2vv/4aJ0+eBNDwm1l/f39MmzYNd955J+zt7cUMjYisBLdjW4+N4e1QLUggU9b19hx4sekk5GdbzuOzLeexqKIa96aFixmiaA7lFDX5CWhD7jjxL+wUcrW1ZQm9UC3lm+7WRBAEbH64O77dl43pPx4U4wHwSo/JuCmzw5tblmgdvv/QenTNPYlpQ2bjoL9+/YsMZV9dhaf3/Iy523+AvUJ7CvxNqR3uHvo4fmrTU5TH15Qa7I6sgnLc1SkU49tpT4Cl1inezwWnrpQ2fSKRlUoL98KBJ3phV2YB4vxckBps3MKd9Agvo15PH4vvaI8wTyf0n79d7/v0iDQ8zghvZxx/pi/OXy9DmKcT7KSi1WRZhYntg9EvzgeF5dWI9HaG1EarQpujfk5LEATMHRiPdSe1Ww/WnWOKqKyDSd7hjB49GqNHj0ZmZib27duHixcvoqioCFVVVfDw8EBAQAA6dOiAxMRE1UAbIrI9up6bg3QOplFPQoox8IHU6fMdLnJwwY6gNuiZc1y11u7qRQSWXMdlPRLH0388aJVJyGq5AoMX7mj6xAbcpaNabElS35aERBbKQSbFvWnh2H2pAAu2XxTlMd7uOgFZbr5YtP5TrURg6pUL2L30CbzfeSze7DoBxQ7OxnlQpRJDz+/FB5u+Qpsb2TpPyXL1wfhRc7ArqI1RHlL+fyOw/GAu7li6t8Fz9j/R2yiPRZZhWucwLN5zqcnz/n24BwJe+cMEEVk+vultvcK9nBHuZaTncA1SiYCPRrfF7NVHW3yt7rcShY0Nu5ncIQR3dw6DUqnEoHg//HGq4UROfQ/3aN5UYkEQEO1j+DTk1srXxQG+Lo1v6bdkxnqea2zTl4u9FKWV8oZPIIOYtMwiPDwc4eHW9waTiMxHsxLyqqMbKmSslDY1Nwf9/lz8GdlBLQkJAIMu7sf/2vYXIyyLsDOzAHnFzdvmmnDtErrknVFbO+oThn3+McYIjSzU3AHxOH2lFBvPXBXl+kuT+iLTzQ8//voO/MsL1Y7JlAo8u3sF7j3yJ97sOgGLUgah1L55DdUFpQJDzu/DCzt+RPfcEw2e93dYCu4Y8TSuOHs263E02UkFCIKAUE8ObrIlT/eNwdYL13H6auNVjg4y2yho6BfrK9pzCNFdnUKNkoSc3jUCAHB/egR+PZan85ywW0M9BEHAynu6YPWRy03uLgl2d8TE1OAWx0fUmNoE56MZUXhrw5nGT27qWkaIp7Wwjb/SRGQVdH2SFVyqXgmpays2B9OILznQDXG+TX9q/EdEe621oecarlTS9PnW83r1n7Qk+XpOwNZF10CapYl9Wb7SygV7OOKvmd2w/RHxtiX/E5aMDnd/hM2hbXUe9ysvwoebvkLWgnvwyYYF6Jl1FBKFHp/yK5Voe/UiXty+DKe+monfVr7aYAKyUiLDsxlTMXD8q0ZLQALAQ90jjXYtsh6JAW448GTvJnurmmtIgan9el8aPhjVFrN6RmHDzG7wdeEHtGQ89kbYpvzyoHhM6xIGABgQ74sBt6a1N8bJToo7GuhL+NHotnigWwR+mtoZWS8NNGigzLiUQL3PJetiimf8aG/t90CGvlvhYJo6FttwavHixTh58iQEQcCbb75p7nCIyAykCjkCSwvU1jiUxjwEQcB3d3XE9B8P4nJxBWZ0Dcfrf53WOm93YByuOrrB92axam3wxf2Qyav16nH4yMoj6BnlbfT+RpZIUCpw5/FNamsKCPg2kVtIbUXXCC98OjYZT/16DBXViqbvYKBcVx8MmPA6ntm9AnO3/wBHeZXWOR6VZZh14DfMOvAbrju6YldgHA75RSHL1RfXnVwhKJVwrbqJsOKrSLx2CV1zT2l9OKTLzsB4zBz4kNH7T07rHIY3hiYAYFWBLXKykyLM0wm76g0B02Qr7/Oc7KSY3avx3y8b+VaQhZretW4HpINMit9npMPumTXNvt6jGc37e+LtbIcne3OHSWsl0fGkH+VteKsCP1ftD3L6xdYkzm3l74qpWGwScsuWLdiyZQuTkEQ2LKC0AFKl+hvzXB2VkDE+4vTEIXWdQj3VeqzpSkIqJFKsi+qIu45vVq15VpSie84J/BOWrNfjPPnLMfw1s1vLA7ZwvS8dQXix+la6v8NTkOXO6Xq25OEeUXi4RxQkT/0qyvXlEine6joRK+K6Y95fX6DfpcMNnut9swRDLuzHED2m2jck38kDc3veiUUpg6AUjLfhRvHeSK01f1fr7WFFRGTJxMi5SCWCzsFRYm6Aeb5/HGb1iESgO9t3tFYSiYChCf74/US+am1GuuEtAAfH+8JBJlH7UPiBbjXtBALdtF9vjGlrWHUt85h1uB2biCyG5hYqXdU2uiohn+4bK1pMZLi1UZ211oaf2633/Y9cLjJmOHr74UA2Mj7bgiFf7sDW89o/e3KFEnPXnYDb82sR9tqfWH8yX8dV9NfgVmwiEZzyDsWACa9j6LiXsd+vec38G3PN0Q3P9bwbMdO/xMJ2Q4yagGxIjK8LOoW2/qppUtfUMDpbeKNXu8W1PmtrZUKWTazKLzF/P1OD3bXWJnUIYQLSBiyZ3AH3pIUhLcwTLw2Mx9N9DH9v6O5ohxVTO6NtgBuC3B3w6pA2GJrgD6CmItLdUb1+7/5bCcpa3G6tP4uthCQiCim+prWmmYTsGeXNxtRmIpMIqFZov+lZH9kRckGiVsU67PwePNv7Hr2ua473UXuzCjD5232qx9564TouzR0Iz3rTHP85dw1v3Kr+LK2U465v9yH35UHNejynqgrcdnqb2lqZzB4r4lt/BSiZkSBgfVQnrI/siD6XDmPW/jUYeW437PTpBdmAnYHxWJA6BMvaZOCmnekrE3+7rytmrTyMnw7lmvyxqXWL9nHGuWtl5g5Dpxf6x+l1Ht8UU3M52UkR4eWEizfKVWsPdo/EF9sumC+oJnw6Nhm9Pq97bZUa7I62gW5mjIhMxdvZHl9NbN/i6wxLDMCwxACtdUc7KdZO74rnfjuOa2WVmJEegcFt/A26Np+O6zAJSUQWQ/PJWXMyNqA+mObwU32QFODKF9lmMiM9QueL0RtObtgWnICM7GOqtbbXLiGy8DIueFhmY/Bvdl1SS36WVsrx67HLmNKprtrkgZ8Oqd3nWlkVfjvevGrICae2wL2yXG1tZWw3lNiztQCZgCBgU3g7bApvB8+bJRh+bjeGnduDLnmnEVtwudG75rp4YWdgPDaFp2BVbDoy3Q17EW5s/m4OeH9UWyYhbUhTH1QZ4yWBh6PMoofexegYFGfB4ZIVEgQBn4xJxu1L9uJmtQKxvi54pk+MRSche0b54Ns7O2LB9gvwc3HAB6N1D2Yjao7ukd7Y/HCPBo+7OTC1pi9+p4jIYjW1HZufbprX+yOTGnwx+lt0F7UkJAAMP7cHn3cY0eR1r5RW4s0Np/Fcv1iTJZjX6dhardmz6MzVUq1zCsqr4OZo+J/S6Yf+0Fpb0pZbscn0Chxd8W1SX3ybVPPz53mzBBFF+QgqvQG3ynIoBAGVEhmy3XyQ5eqDfGdPfpxPrd7iOzqgoLwK9/xwwNyhaInwctL7XP6mUkuMbBuIq68OxoXr5Ujwd21wGvXTfWJw9lopfj5c9yGWTCLA21m/ie3GbCUwqUMIJjUwXZtITEkBrgj3dEJmQbnO43w+rsOekERksYJ1VEJm6xhMQ+bhaCdt8Nhv0dp9IUee3aX3tV/8/QQ+33qhOWE1S3Nf/zbnbonXMtEz57ja2gV3f/wZ0b55QRAZUYGjKw76R2NdVCcsb9MTK+J74NfYrtgXEIt8Fy+LTEBaXkRkTsb48Mrf1R4TUoOQFOBqhIgME93EsL0OIeyDSqbjbC9DUqBbgwlIAJjZLRLP9Y+Di33d68IHu0fCScfrRO5eotZKEAT8Nr0rBrfhgMmmMAlJRBbjcnGF2u3gEvVKyCqJFFec+eLbGhz1Ccd5jW2afS8dhufNEr2vsXDnRWOHZRB9XiY359P76Yf/1Fr7OnmASQZ5EBFZuzEpTbf16NjCRF2UtzOc7WXY9VhGi67THPPGpcDrVj9iXxftSrIHNIYh1LLk7ePUekzvqj112NfFHp1CPXHgid74dGwy1k7vig9HcSs02Z62gW74fUY6+sZoD1JlAr4O3/EQkcX4v01n1W5r9oTMdfFiosZaCAJWx6arLdkp5AZNyT6cW6z3uVVyBT7+9xzm/HYch3IMn67d3K1ASgAHsgv1Pt++ugpTjm5UW5MLEnyTPKBZj0+tx6yexp9YbSv4ut623J4agjDPhqfdCgBeGdym2dcf3y5INU3X2b55natSg92R+/IgzOoZhckdQjB/fDud5w3RqJhxlEkwIM4Pea8MQuaLA5D3yiAsmpgKXxd7uNhL8UzfWAyK17/Khr8bZGz3pYXDUVb3WnxalzBVW5oYXxc83CMKQxL8G62cJGrtXh2SoLX2dJ8YM0RimdgTkogsxqrD6oMFQjQqITUnY5NlWxmXjtn7flFbG3Nmh6r3nDHd/f1+/HAgBwDw8b/nsOuxDKQEubfomvU/sWwoSalUAq/fmpitjzFndsD3pnpydW1UJ2S7+TYvSGo1pnYOxWdbzps7DCKLZy+TYO/jvfDplgt47c9TWselEgEjkgIwIz0cC3dkGnTtNn4uWDq5Y7PicnOQ4evbU1EpV2JsciAc7aT4ZEwyAODYZd0fqs3sHon1p66oqhhndo+ERCJAAgGhnjW9H+9NC8e0zmGQK5Wwk/KDWDKvrhFe2D27F9Ycy0OUtzPG6VGZ3BQW8VJr0y3CC8MS/LH2RE3P+dvbByO5he9LWhMmIYnIYtT/xN656iY8K9QHgeSwH6RV2RqciCtO7vArr6tMHHJ+HxyrKnDTzsFoj3O1tEKVgASAimoFXl5/Ej9P66L3NZp6Aby/gWpHpYEvnacf1h5I81XKQIOuQa1Tp1BP/DClE25fstfcoVgdgV0hbY6viwP+M7gNPJ1kePKXuiFoQxP8VYm6frG+OpOQIR6OyC68qfO6kzqEwl7WvETf0skdMLKtYQmZUW0Dsfmh7lh/8gqSAtxwe2qwzvNqE5ONSY/wwu8n1IeshXvqP8SGSF9tA92aPRySz9ZkCyQSAb/cm4atF65DKhHQLcLL3CFZFH6cRkQWQ1IvC6nZDxIAclgJaVUUEil+jUlTW3OprsCgi/uN+jgXrmtPoVt15LKOMw1T/4XyySvak7EBw3pwRRfkYkDmQbW1HBdv/Batf7J0eKK/QZNRybpMSA2G4r2RULw3UmffLSJSNzsjGm8PT0SvaG880C0CSyd3UB27LSUIPs52aucferI3hicGNHg9Qz9YqjUswR+DGhlG4KURBwCMSa5JWPaM8sFrQxIwqUNIi7awvjM8Ue22n4u96jGIrM2EdkFqt+/j30SyMhKJgIxoH3SP9GY/SA1MQhKRxaj/9KwzCenCSkhrszK2m9bamDM7zBBJ40wxHfs+HQNpFif3h1zS8JRxTQn+bgh0M14VKVmuBePb4fBTfcwdhlXga3vbJQgCnukbi00P9cAXt7WDl3PdIBeZVILfpndF13BPJAW44r+T2iM5yB0vDogzehy/3pcGB1nDz+VB7o7oEaleCXNvmnGTKslB7vjuzo5IDXZHj0gv/D6jK2Tcvk0Wpl2w9pZUXa9rXhwYj1hfFwBA2wA3PMN+ekStRrO3Y69atcqIYWjLy8sT9fpEZHnqf0qkOZQGALLdWAlpaR7oFoEF2xueYv1XRCpK7BzhWlW39W3MmZ2YWV2FSpl2ZYimtcfzMKyRqhUx6ZPY0HegjVQhx7SjG7TWvzZwII0gAJ5O2t83Rzu+0WxtBEFo9na31sapiZ9vJzvt5E9GFD+0IiAt3AvbH1WfcB3q6YSdj2ag6yf/ap3fnA+kEvxd9apyWXVPGt75+wwuXi/DxPbBGJFk/L9td3QIwR0dQox+XSJjmdE1Qq2FDlCzC0BTSpA7Dj/VG4Xl1fB0smt2mwQisjzNTkLOmTOHZaVEZFTnr5epvtaZhGRPSIszMTW40SRkhcwea6K74I6TdW/2PCtKMejifqzR2Kqtyz3LDiDn5UGQNrJFzRh/ipq7BU9fI8/uQlDpDbW1v8JTcc4zqIF7NOzB7pFYf/KK2tqdHUJbFB+RJXtlUOOTjj2d7NAj0gtbL9T9jnHrHjWmS7gn/F3tkV9S2eJr6fsnyMfFHu+OSGrx4xFZs76xPni+fxw+3XIeDjIJXh+agLAGepc6yKTwd9N/twgRWQd+pEBEFiGrQL2vn+7t2KyEtDT6VI382Kan1trEk9oVKLpcKa3EHyfzmz5RBPoMu9C3aubRfb9qrS1KGWRoSBAADIz3Q5+Yut+F21KC0DHUw+BrEVmDWF8XTOnUdJJ9xdQumJEejn6xvvhsbIpe9yHbpquCllN6icQlCAJeH5qAa68OxuWXB+H+9Ahzh0REJtai6dj6bkMjImqK5taMYJ3bsVkJaWlkejTR/z2qE4rsneBeWZdoHn1ml95TsgtvVjd63Bg1+WL2hEzNP4c+WUfU1i47e2JVbHqzHtPJToo/7k/HnqxC2EsFtA/2aNEwAyJLtGRyB/g42yMjyhsuDk2/XPV3c8CC8akmiIxaC2M9a3JjGJHh2K+UyHY1Owm5YYN2bysiouY6nFukdltzO3aRvRNK7J1NGRLpobtGo31dKmT2WB3TFVOOb1KtuVWVY+iFvVgZ173J+09dth8+LvYYEOdr0jYg+vWEbPqcR/av0VpbkDpEr56Y2jHVBCWTSpAe0fT3nqzfQ90jMW/bBXOHYXIdgj2QxJ6YZGK6CiwGxPnir9NXzRANERFR69PsJGRICJseE5F4NLdjczK2ZZJJJXCxl6K0Ut7oeT+2yVBLQgLAxBNb9EpCVsmVGPzlDtzePhjf39WpJeE2qLl1/U31kvQtK8Tk45vV1iolMsxPHdrMRyRb89qQNtiZeQN7swrNHYrRpUd44aWB8Ri2aKfWMVaXkdj0rcR6dUgCdl3agaIGqvL1ad1BRERENVgHTUQWQS2Vo1QiuFQ9Cak5GfvjMcniB0V6ufrqYNzXNRxtAxquWvojsj1uOLiorY06twvuFaV6P84PB3Jw5FbFbLVcoVoXqzrSGJWQ9x9aD0d5ldrasoQM5Lk0r4qRiRnb4+Vsj92ze+H0nH54pm8s/jO48SEt1uSfh7pjULyfzmO+LvYmjoZszawekVpr/WJ9tdbSI7yQ89LABq8zsq3xp1wTERG1VkxCEpFFqL8Fyqe8GA5y9YqD+pWQI5MCcDeHDlgMB5kUCyek4vDTfRo8p0pqhxXxPdTWnKorMeHkVoMea8zi3ej4wWY4P7cWQ77cgetlLZ9sCojTE1Imr8aDB9dqrX/ScWTzHoxsWoyvC94enoi5A+PNHYrRyKQSSCQC/nqgm9r6oHg/+Lk23S+WqCVuaxeEALe6n7PUYHf0iNK968LZXvfmMSc7CZ7sHSNKfERERK1Rs5OQS5YsgUKhaPpEkSiVSixdutRsj09ExlU/maPZDxIAclxrKiEvvzwIq+7pAg8nw/vpkXn9L6mv1tqUYxsNusa5a2U4kFOEaoUSf5y6ghd+PyHaRjh9rrv2eF6Dx8af2ooQjbYCW4ITsS8gVtSYqPX7ckI7c4dgVP3ifPHztM4YmxyIh3tE4ocp4rRdIKovxMMJ2x/piTeHJeCTMcnYMLMb7AwclrFndi/4sGqXiIhIb83uCfnGG2/gp59+wvPPP4+uXbsaM6Ym7d69G2+99RaOHz+Ou+66y6SPTUTi05WEzL6VhPR3Y3WMtdoakohzHgGILqxL3PXKPoaogss47xnYrGsu2H4RHo4tT0g31NuxvEqOlYdz8fSaYzqPrz95pcFr6hpIwypIMob70sJxs0qB9SfzkeDvBiWU+GDzOXOH1SJjkoMwJjnI3GGQjYn0dsacfnHNvn9iI21IiIiISFuzk5C+vr44efIkpk2bhj59+uCJJ55AXFzz/4jr48CBA/j000+xbds2KJVK+Ppq920hIutUfzus5lAaAMhx5WAaa6cUJFia2Bcv7Vimtj7l2N94tfukZl/33b/PtDQ0nW5WK5D20b84mlds8H275J5Ct9yTamuXXH2xKja9RTGxJyQBNX1QZ/WMwqyeUQCAwvIqHMop4gRfIiIiIrJozd6O/csvv6BXr15QKpXYtGkTRo8ejZkzZ+Lvv/9W6+3WUhUVFVizZg3uuOMOTJo0SZWA7NKlC1auXGm0xyEi82pqO3Y2k5Ctwv/aam/JvvvYRghKcdt7yBVKLNhxEa/uuIG158sgVyhxIKcIV0srAOjuCfnzodxmJSAB4Mk92n+f5rUfhmppsz/7I2qQh5Md/nigG1bf08XcoRARERERNajZ74a8vb3x5ZdfYtmyZfjggw9QVFSEzZs3Y/PmzfD390f//v3Ru3dvpKenw8HBsO2ThYWF2Lp1KzZt2oQNGzagrKwMQE0fSCcnJzz++OOYMmWKaBNRicj06n940dh2bLJu5zyDsCU4ET1zjqvWogvz0P/iQfwV2UG0x31u7XG8t+ksAODX8+V4eUcBgFwIAvBJA5PWj+eXNOuxYm/kYPypbWpr5TJ7LGw3qFnXq09gV0hqhJuD9SS5Xx+aYO4QiAzSP84XG+pVGz+sY7o2ERERNa7Fr1bvuOMODBw4EO+88w7WrFkDhUKB/Px8fP/99/j+++8hlUoRERGB+Ph4xMXFwcfHB25ubnBxcYFUKsXNmzdRUFCAnJwcXLx4EUePHkVmZqYqIVH7v4IgYNSoUXj88ccRFMSeQUStTf1CtKBS9e3YCgi47OJl2oBINN8kD1BLQgLA/YfWi5qEXLjjos51pRJ4Zs0xOMikRnusZ3b/DIlGj8mvkwfgupN7o/dLCXLD+etl6B3tgzg/V3z0j3aPP372Ro3xdrbsARkOMgkqqhVIDnTD1M6h5g6HyCAvD4rH4dwi5JdUIsHfFY9lRJs7JCIiIqtjlI/MfXx88O6772LGjBn4+OOPsXHjRtXk7Orqapw7dw7nzp3DunXr9Lpe/YooqVSKQYMG4YEHHkBCAj81J7IFIcXqlZD5zh7cxtqK/JCQgQ82fQWPyjLV2uizOxFQegN5IiWbC29WN3isvEqB8irjbAcPLr6Gu4+qT/yuFiR4r/PYRu8X5umIg0/2gVKpVFX5D0/0x8AFO1TnCALwUPdIo8RJrVNKkOUOyQhwc8DOR3siv6QSbQPd4GRnvMQ/kSn0jPLByWf74UppJUI8HPkzTERE1AzN7gmpS1xcHD777DOsX78e99xzD/z9/QHUJBVr/6vV0O3atZCQEDz44INYv349PvzwQyYgiVo5tcE0GpWQ3IrdupTZOWJpUh+1NTuFHPce+dM8ARnRE3tXwV6hnvD8PqEXLnoENHq/2p//+m1Gekf7YERi3f2e6BWDIHdH4wVLrY4gCAj1aNnPyLxxKUaKRp1SqUS4lzM6h3kyeUNWy8PJDrG+LvwZJiIiaiZRSovCwsLw7LPP4tlnn8WhQ4ewfft2HDx4EGfPnkVOTg6qqqpU5yqVStjZ2SE8PBwxMTHo2LEj0tPTmXQksjG1H0DYyasQUFaodoyTsa3Hvw/3QMbnW5s878t2g/HwgbVqa9MP/YF3utwGhcQ639wFlN7AzIO/a62/m3Zbk/fVNc5NJpVg9b1dcCCnCI4yCRIDLLfKjSxH20A3ZBXebPb9e8eI86GPEWcWEhEREZGVEn1/Y7t27dCuXTvVbaVSiZKSEpSVlUEQBLi4uMDFxUXsMIjIwtW+Pw0qvaF1LIeVkFajW4R+26kP+0Vhe1AbdMs9qVqLKsrHyLO7sTouXazwRPXM7p/hXF2ptrY6Jg1HfSOavK9MorvZoyAI6BDiYZT4yDa0tG1oS5KFbw9PxJzfjus8xhwkERERERl1O7Y+BEGAm5sbAgIC4O/vzwQkEanR7AcJsBLSmkgkAt4ZnqjXufNTh2qtzd632mixtHtvExyeXYPbFu822jUb0lAV5KvdJul1/wR/V2OHRGRSn41tfBu3kqWQRERERDbP5ElIIiJdat+fhpRoJyGzWAlpVaQNVPVp+qFNBi47e6qt9c46ig55Z40Sx5HLxaiSK7HyyGWjXK8xc3b9BCcdVZD7A2L0un9DlZBEhrKTmvalnZeTHe5NC8e0LqGNVlEyBUlERERETEISkUVQ3nqLGqorCenmCwD4+8FuJo2JmmdYor9e51XK7DCv/TCt9dl7jVcNaQoRhXk6qyD/o2cVJABEejsbMySyYfekhbXo/oYkC3tFe+Paa0OwaGIqnO1lqudxnddlFpKIiIjI5jEJSUQWofYNamjxVa1jWW41lZC9Y3xNGRI1Uxs/V9zRPlivc+enDsVNqZ3a2u0ntyC06IoYoYniP9u+g4NcfSL2qpiuOKBnFSQAvNA/zthhkY0aGOeH1GD3Zt13WhfDEpivDGqjdttO0vDLSmd76xw4RURERETGwyQkEVmESrkCgO6ekFmuvlgyuYOpQ6JmEgQBSyZ3xNZZPZo896qzB5Ym9VVbs1dU45ndP4sVnlG1yz+Pu45tUluTCxLM7XmXQdcJdHc0YlRky1wcZNj8UHd8e2dHg+7XIcQdrw9JaLR349jkQNXXA+N90StavVXGPWlhDbYWeKZvrEHxEBEREVHrwyQkEVmE347nAwBCS9QrIYvsnVDs4IxxKUHmCIuaSSoR0C1Sv4FCH3QaDYXGTN/ph/9AYMl1MUIzHqUSb/+7GBKNLaj/S+qr10RsIrG4O9phUocQ9IlpuJ9u59CaqesJ/q7Y9GB37H28N4I9Gk+G/zS1MzbO7IY/H0jH79PTIdFIOHo72+OVwW207hfu6YTx7fgcTkRERGTrZOYOgIiovlCNSsgs15ot2E523MrXWp3wCcOK+G6YcGqbas1RXoWn9qzEU33uM2NkjRt+bg+GXNivtnZTaoeXu082U0RE6j4c3RYjvtqF7MKbWsd+n5EOHxd7KJVKCEJdMrGhOsgF49tBEAT0iW28Lcbz/eMwpVMoCsqrcOpKCQrKqzEyKQD+bg4t+b9CRERERK0AKyGJyGJIFHIEl6pXv9X2g6TW7Y2ut2utPXBwHfxLb5ghmqbZV1fhg02LtNY/7TACWe5+Dd4vzJPbrsl0UoM9cPGFATqP1eYd6ycgGzOpQ4jejxvm6YSUIHfc1i4Y93UNZwKSiIiIiAAwCUlEFsS/rBB2CrnaWrYrk5C24JB/FFbHpKmtuVRX4KXtP5gposY9tu8XxBXkqq3lOXvgjfSJjd7PQcaKXjItzS3TTWmoJaSrAzfPEBEREVHLMAlJRGZXXlWTeAwp0R5Kk81KSJvxerp2NeSMw+sReyPHDNE0LLwoH3N3aCdHn+95N4ocXBq9b2NDP4hMybDUJBERERFRyzEJSURm9/eZmmE0mv0ggbqekNT67Q2Mw09x3dXW7BRyvLHlf2aKSAelEvP++gKuVeo99nYHxGJxcv8m7+5sL4WLvXo15J0d9d/mSiQ2ZYNdIYmIiIiIWkaUJOTvv/+OxYsX4+rVq02fTEQ275tdlwBoT8YG2BPS1rzQcwqqJOpJugmntqFH1jEzRaRu0ol/MOz8XrU1BQQ80v8BKIWm/6R2DvPEoxlRqtuOMgke7B5p7DCJmqRvL0giIiIiImMRJQm5YsUKvPPOO+jTpw++/PJLMR6CiFqRSrkCACshWyN/V3uDzj/tHYKFKYO11udt+AIyebWxwmqWgNIb+OjvhVrr89oPw66gNnpd47aUILw+JAF/PpCOT8cm48CTvdE90tvYoRKpeWFAnNrtME9HeDjq7vHIjgFEREREJBZRkpCnTp2CUqmEXC5Hx44dxXgIImpFat/0hrASstWZd1s7g+/zarfbUWTvpLaWcvUiZu/7xVhhGU6pxKL1n8KvvEht+ZKrL57PmKL3ZfxdHSAIAvrH+eHhHlGI93M1dqREWu5LC0eMjzMAwE4q4JVBbVgJSUREREQmJ0oSsqCgQPV1UlKSGA9BRK2QZiVkucwe1x3dzBQNGcO4lCD8OKWTQffJd/HCy90na62/vO17RBTmGSs0g8w8+DuGn9+jtf7wgJkosXfW+zo+zoZVhhIZQ6S3M/Y+3gt/P9gNR57qg3vSwhs8l4WQRERERCQWUZKQ/v7+qq/rJySJiHRR3CqF1OwJmeXqA7Bax+qNTw02+D6fdRiB/X5Ramsu1RVYvO4jSBRyY4Wml9T8c3h/89da69+07Y81MWkGXSvKR/+EJZExuTvaoXeML+JYfUtEREREZiJKEnLkyJGqrxcvXizGQxBRK7L2RD6gVGpVQma7ciu2rZJLpHhw4ENQQD0J3TvrKJ7as8pkcXiVF2PFL2/BqbpSbf2sRyAe6zfDoGv9Z7B+fSOJzEnJppBEREREJBJRkpAPPvggevToAaVSiSVLluDNN9/E9evXxXgoImolfMqL4SivUltjP0jbtiuoDT7rMEJr/dWt36Lz5dOiP75UIcfSte8jWmMLuFyQ4O6hjxu0DXvHoz0xd2C8sUMkIiIiIiKyGrpHI7ZQZmYmnn76abi4uOCPP/7AkiVLsHTpUsTExCAhIQHe3t5wdXXVuyn6rFmzxAiTiCxISIn2ZOxsTsZuNRxlEtysVhh8vzkZd6Nf5kEkX8tUrdkrqrFy9RvocucHuOwq0mRppRLz/voCQy/s0zr0XMbd2B6SqPelnugdjbRwL2NGRyQabx19S0M9HM0QCRERERG1NqIkIUeMGKFKMAqCAKVSCaVSidOnT+PMmTMGX49JSKLWT7MfJMBKyNbE18UeWYU3Db7fTTsH3DXsSez87kk4yKtV6yEl17Fy9Zvoc/ubqJAZf9jLK9u+x4zDf2itL4/vjvc6jzXoWgLY15SsR6S3MzqHemBPVqFqbcF4w6fcExERERFpEmU7NgBV4lGzt1D9dX3+I6LW7WppBQDtydgAkMVKyFbjuf5xzb7vIf8oPNPrHq31rpdPYfmvb8O+ukrHvZpJqcSL25fhpR3LtA4d9QnDfYMfNXhYEmcrkbX5aWpnjGobgC5hnvjithQMSfBv+k5ERERERE0QpRKyS5cuYlyWiFqhO5bUbHdlJWTrNiE1CJ9tOY/j+SXNuv+nHUYg9cp53HvkL7X1Eef24Ic172DiyGdRJbVrUYyCUoG3/v0fntn9s9axLFcfDBv3ikF9IGuNTApoUVxEphbu5YxV9xg2+Z2IiIiIqCmiJCGXLFkixmWJqJW5WSXHxjM1yccQXZWQbqyEbC18XRyw67EMuL3we/MuIAh4qP+DaHM9Cz1yTqgdGn12F9b/9DImjJyDa87uzbq8W0UZFq/7CGPP7NA6VuDggqG3vYJL7n7NunbPKJH6VhIREREREVkR0bZjExE1pVJeN6gktFi9ErJKIkW+s4epQyIRuTi07HOvSpkdxox+EYd9I7SO9ck6gl3fPoFu2ccNvm6PrGPY9e2TDSYgh417GUd1PKY+kgPd9B7CRkRERERE1JoxCUlEFiFUYzp2jos3lAKfokjdNWd3DJjwGo76hGkdiyrKx9Zlz2LeX/MQpGPauqboglx8te5j/PvDHLS5ka11/IqTO/pNeB07ghOaHe+XE1KbfV8iIiIiIqLWRJTt2I3Jy8tDXl4eCgsL4e7ujtTUmjdo5eXlsLe3h1QqNXVIRGQmqtlTSiXCNCoh6/eDHBjPbdmtxYjEAKw5nteia1xx9sSACa9jzc+volP+Wa3jMw+uw32H/8RPcd2xNrozdgS1Qb6zJwQoEVp8Dd1zjmPE2d0YcW43JNA9AO20ZxBGj3kRJ3QkO/X1RO9opIV5Nvv+RERERERErYlJkpCZmZlYvHgxNm3ahNzcXNV6z549sXDhQgDAhg0b8Prrr2PixImYMWMG3NzcTBEaEZlRlaJmO7Z7ZRlcq26qHas/GfvdEUkmjYvEc2/XsBYnIQEgz8ULve54G1+t/wR3nPxX67idQo5JJ//FJB3HmvJrdBfcPfRxFDq6Nju+nY9moEu4Z7PvT0RERERE1NqIutdRqVTi448/xtChQ/H9998jJycHSqVS9V99OTk5KCgowMKFCzFq1CgcPnxYzNCIyAL8cfIKACBEx9bZ7FuVkBIBSA1mb8jWYkxykNGuVW7ngMnDn8Kjfe9HiZ1ji69XZO+Ex/rOwJgxL7QoAQkATnZsJUBERERERFSfqO+SZs+ejfnz50Mul2slHTUb9WdlZam+zs3NxX333YezZ7W32RFR6/HFtgsAgNBGJmNLJRzqQY0QBHzWcQSSpn2On2PTm3UJuSDBtwm9kTRtHj7tOJK9SImIiIiIiEQg2jutzz77DOvXr1fdTklJwdy5c7Fs2TKd548cORKdOnWCUqmEIAgoKirCnDlzxAqPiCzAxRvlALQnYwNAlmtNJaQAJiGpaVnufhg/+nkkT/0Mi1IG6VUZmefsgU86jETcffMxZfiTyKnXh5SIiIiIiIiMS5SekJcvX1b1egSAJ598EjNmzGj0Pl26dMG3336LpUuX4o033gAAHDlyBJs3b0bv3r3FCJOILITmZGygrhKSyBDHfMNx/6BZeLj/A+hy+TQyso4htOQqvMuLIQDIdfVGppsv/glNxgH/KNGqHqO8nUW5LhERERERkbUSJQn5008/oaKiAoIgYMKECU0mIOu76667kJWVhcWLFwMA1q5dyyQkUStV26RBVyVkdm0lJAshqRmqpHbYFpKEbSHmGWrk4mCSuW9ERERERERWQ5QSkC1btgCo6fv46KOPGnz/+++/HzJZzRs4Dqghar2yC2smYmsOplFAQK6LlzlCIhOYkR5u7hCIiIiIiIjIxEQp1cjKyoIgCIiNjYWvr+FbKr29vREeHo5z584hLy9PhAiJyJJoVkJedvFCtbTm6YmFkK3PJ2OS4etijxN5JRic4I+ZPx0yd0hGZSflTy0REREREZEmUZKQhYWFAGqSic3l5+eHc+fOobKy0lhhEZGF0uwJmcUBIa2ag0yKN4Ymqm63tiSkUtn0OURERERERLZGlO3Ybm5uAOqSkc1x7VpNUsLDw8MoMRGRZXKqqoD3zRK1tdrJ2AB7QpL1YQ6SiIiIiIhImyhJyKCgICiVSpw+fbpZicjc3FycPXsWgiAgODhYhAiJyFJo9oMEgOx6k7EFbsgmK6NkKSQREREREZEWUZKQPXr0AADI5XJ8/fXXBt//k08+Ub2J69q1q1FjIyLLomsydv1KSCJrwxQkERERERGRNlGSkKNGjYJEUnPpRYsWYf369Xrfd8GCBVi5cqXq9vDhw40eHxFZDs1+kACQVb8SkoWQZGVYCElERERERKRNlCRkbGwsxo4dC6VSCblcjscffxxz5szBzp07ceXKFa3zy8rKsGnTJtxzzz346KOPAACCIGDQoEFISEgQI0QishBhxdrPCdmshLQpbg6izEgziXvTwrXWMqKaP5SNiIiIiIiotRLtnd/cuXNx4sQJHD16FEqlEqtXr8bq1avVztm9ezfS09NRXFwMhUIBoK6XVlhYGF599VWxwiMiCxFepL0dO9OdlZC2xJr/jT8YlYQley+hSl5X/vhQj0jzBURERERERGShRKmEBABHR0d89dVXyMjIgFKpVPtPuPWOs6KiAgUFBZDL5WqN/JOSkvDNN99wMjaRDdDsCamAoFYJycE0rZ81/wu7O9ph6eSOCHJ3gJOdBA/3iMSEdhyoRkREREREpEnUPXCenp5YuHAhVq9eja+//honT54E0PDkUH9/f0ybNg133nkn7O3txQyNiCxEuMZ27MsuXqiS2pkpGiLDTUgNxvh2QahWKGEnFe2zPSIiIiIiIqtmkkZco0ePxujRo5GZmYl9+/bh4sWLKCoqQlVVFTw8PBAQEIAOHTogMTFRNdCGiGxDeJF6ErL+VmzAurfqkn6EVvCPLAgC7KTW//+DiIiIiIhILCadBhAeHo7wcO0m/kRkm9wrSuFRWaa2dsnNt4GziYiIiIiIiMhaiVJ2+NFHH+HQoUNiXJqIWonDuUUIK9YeSnPJzU/tNmvLWj/+GxMREREREbV+olRCzp8/HwsWLICvry/69u2Lfv36oXv37uzzSEQAgP3Zhej04T8YojMJyUpIW6NrN/b/jUhCjyhvnL5ago4hnkh5b5PJ4yIiIiIiIiLjEXU79pUrV7B8+XIsX74cjo6O6N69O/r164e+ffvC29tbzIcmIgv2+OojALT7QQJAprtGJWQr6BdIhlMCSI/wQnqEl7lDISIiIiIiIiMQJQnZt29f7NixA+Xl5apJ2OXl5di4cSM2btwIiUSClJQU9OvXD/3790dMTIwYYRCRhfrn3HUA2pOxASCT27FtToCrA66XVamtaQ6ZbhfkjkO5RSaMqo6Psx2uacRHREREREREhhGlJ+QXX3yBXbt24euvv8bUqVMRFRUFAFAqlVAqlZDL5Th48CA+/PBDjBgxAoMGDcLbb7+NXbt2QaFQiBESEVmgUG7HJgBP9dH+IGpEYoDa7U/GJJsqHC1f397ebI9NRERERETUWoiShAQAOzs7dO/eHc899xx+//13/PXXX5g7dy569eoFR0dHVUJSqVTi0qVL+O9//4upU6eiW7duePrpp/H777+jtLRUrPCIyEyKb1arvtbcjn1Taocrzh5qa9yN3fqNSwlCx5C6f/dpncMQ6+uidk5GtDcWjG9n6tAA1GwNJyIiIiIiopYRtSdkfaGhobjzzjtx5513oqKiAjt37sQ///yDf/75B5mZmarzCgsLsWbNGqxZswYymQxpaWn46quvTBUmEYns231Zqq81p2NnuflAKYj22QhZKA8nO2x7pCe2X7wOTyc7pAS6a/UCFQQBM9IjsOX8dSzZm9XAlYiIiIiIiMhSmSwJWZ+DgwN69eqFXr16AQAuXLiAf/75B5s3b8bu3btRWVkJAKiqqsK2bdvMESIRieQ/f54CAAhKhVYSUrMfJAB4O9ubJC4yL3uZBL1jLHMrfoK/q7lDICIiIiIisnpmLzm6efMmcnJycO3aNZSWlkKhUEAQBE7EJWqlan+z/csKYa+oVjumORkbgNm24JJl6hHlrXPdy8lO72tMS9I/qTihXRDi/Vxhrzkph4iIiIiIiAxi8krIyspK7N27F7t27cLOnTtx+PBhVFerJyJqJ2oDgJOTk6lDJCIR1X6+oNkPEgCyNIbS3JMWhowGkk5km8YmB+LZNcdQeKu3qJOdBMee7osIb2ccyilC+w82N3mNGcluWHyspMnzHGQSPNQjEgDw631pGPzljhbFTkREREREZMtET0JWVlZi//79qqTjoUOHUFVVpTpeP+EIAPb29khNTUV6ejrS09ORmpoqdohEZEKSW1nI8GLtJGT97djnn++PCG9nk8VF1sHP1QEbZnbDh/+cQ7VCiUd6Rql+TtoFuzd5/ze6e8Fe2nSlvUQA9j3eC4kBbgAAF3tpywInIiIiIiKycaIkIXfv3o2dO3eqko61PR4B7aSjVCpF27ZtkZ6ejm7duqFjx45wcHAQIywisgC16R/NfpAAcKleJSQTkNSQjqGeWDK5Y7PuOyiiprr+3rau+Ppow9WQLw1so0pAAoCSI7KJiIiIiIhaRJQk5JQpU1Q9HTWTjoIgID4+XlXp2KVLF7i6suk/ka1obDt2bU9I9t8jMcgkdRWQE+JcsOZiJfJLKnWe90jPSLU1JZiFJCIiIiIiaglRt2PXJiCdnJxw2223oV+/fmjXrh2TjkQ2TLhVCxnaSCXkIz2jTBoT2R5fJyn2PtYTPx3Jg5eTHU5fLcVbG07DQSbBx2OS4aUxlZ2VkERERERERC0jahKythry5s2b+O6777Br1y61Ckg3N7cmrkBErU1tMZpmT8gbDi4osa/Zgv3KoHhTh0U2KMDNAY9lRKtuvzwwHoIgQCrR7hnJJCQREREREVHLiJKEfPXVV7Ft2zbs3LkTN27cAFBTFXn69GmcPn0aS5YsgUQiQUJCArp27Yr09HR07twZzs7sAUfU2l0rqxlMpbkdu3Yr9v8mdYCLg+gzs4i0yNgGgIiIiIiISDSivNOfOHEiJk6cCAA4fvw4tm/fjm3btmHv3r0oLy8HAMjlchw7dgzHjh3DN998A6lUiuTkZFVSslOnTrC3t2/sYYjIyly8XobiimrYV1chsKxA7VjtVuwJqUFmiIyocbombz/dJ8YMkRAREREREVkn0cuNEhMTkZiYiHvvvRdVVVU4cOAAtm3bhu3bt+PIkSOorq4GAFRXV+PgwYM4ePAgvvzyS9jZ2SE1NRXp6el4+OGHxQ6TiExg6b4sAEBoia5+kDWVkA4yqUljItKHp5MdHu4Ric+3XgAABLk7YBZ7lxIREREREenNpHse7ezs0KVLF3Tp0gWPPfYYSkpKsHv3buzatQt79uzBsWPHIJfLAQCVlZXYvXs39uzZwyQkUSsxd91JAEBYI0NpiFoiOdANRy4Xi3LtT8YkY0gbf+SVVGBkUgD8XB1EeRwiIiIiIqLWyKyN11xdXdG3b1/07dsXFRUV2Lx5Mz7//HOcPHkSgiCopmsTUeui2Q8SqOsJSdQSz/aLxd3f7xdlkIwgCBieFGD8CxMREREREdkAsyYhjx07hq1bt2Lbtm3Yt28fKisrAdRN1Sai1klXJWSmG5OQ1HJ3dgxFh2APzFxxCFvOXzd3OERERERERHSLSZOQ2dnZ2LZtG7Zt24YdO3agoKBAdUyz6jExMRF9+vRB3759TRkiEYnkzNVS1dfhxdqVkNyOTcaSFOiGuzqFMglJRERERERkQURNQhYXF2PHjh3YunUrtm/fjszMTNUxzaSjo6Mj0tPT0bdvX/Tp0wcBAdzyRtSaFJRXqb4O09iOrYCAbFcfU4dERERERERERCYiShLyww8/xPbt23H06FEoFArVumbiMTAwEL1790bfvn3RrVs3ODiwyT9Ra1W/y4LmduxcVy9US83aHYKIiIiIiIiIRCTKu/4FCxboHCwjCAJSUlLQp08f9OvXDwkJCWI8PBFZoPqdXjW3Y9f2g0yP8DJhRGRr2G6YiIiIiIjIfEQrPapNQDo7O6Nnz57o06cP+vTpA29vb7EekogsWO3AKfeKUrhXlqsdq01CfjS6rcnjIiIiIiIiIiLxiZKEDAsLU22zTktLg52dnRgPQ0RWpLYILbxIeyhN1q2hNJ1CPU0XEBERERERERGZjChJyD///FOMyxKRFavdCqtrMname00lpFTC/bJkHPG+LlprM9LCAVRpn0xERERERESiM+kkiKKiIuzbtw/5+fkoKCiARCKBi4sLQkJCkJSUBF9fX1OGQ0QmJNyqhdQcSgMAl9z4u0/G1TPKGxFeTrh4o2brv0wi4O5OIcC1C+YNjIiIiIiIyEaZJAm5efNmLFy4EPv27dMaVlNfYmIipk6ditGjR5siLCIyIVUlpI7t2LWVkETGIpNKsHFmd/zfpjO4XlaF+7qGo2OoBw5eM3dkREREREREtknUJOTNmzfxwgsvYO3atQDqhtXUn5xd/+tjx45hzpw5WLVqFT7++GO4u7uLGR4RmVDtRuswXdux3ZiEJOOL8nHGvNvaqW5XV1ebMRoiIiIiIiLbJhHrwtXV1ZgxYwbWrl2rVf0olUrh7e0NDw8PSCR1IdQmJHfs2IH77rsPFRUVYoVHRCZWOx07QqMSslxmj6tO7nB1kJojLCIiIiIiIiIyAdEqId977z3s3r1blXgIDw/HlClT0KNHD0RFRanOUygUOHfuHLZs2YLvv/8eFy9ehFKpxJEjR/DBBx/gueeeEytEIjKh+344AACILMxXW7/g7g8IAp7qHWuGqIiIiIiIiIjIFERJQmZlZWHp0qWqBORtt92Gl19+Gfb29lrnSiQSxMbGIjY2FpMnT8Zrr72G5cuXQ6lU4ttvv8W0adMQFBQkRpgN+vjjjzFv3jyEhIRg48aNRr324cOHMX78eIPv9+2336Jz585GjYXIVDJvlGHXpQLYyasQXHpd7dgFd38AgIeTSedkEREREREREZEJibIde9WqVareW7169cIbb7yhMwGpyd7eHq+99hr69OkDAJDL5VixYoUYITbo0KFDWLhwoWjXP378uGjXJrJUr/91GgAQWnwNUqVC7VjmrSQkEREREREREbVeopQebd26VfV1c7ZTz5kzB5s2bQIAbN++HbNmzTJWaI26dOkSHnroIVRVVYn2GPWTkBEREQgLC9Prfh4eHmKFRCS6KyU1/V0ji/K0jl1gEpKIiIiIiIio1RMlCXnp0iUIgoCIiAhERkYafP/IyEhERUXh/PnzOHPmjPED1OHUqVOYPn06rlzRntxrTPWTkA8++CDGjh0r6uMRWYKGhtIAwAUPJiGJiIiIiIiIWjtRtmMXFBQAAAIDA5t9DX//msREaWmpMUJq1OrVqzFx4kTk5WlXaRmTUqnEyZMnVbcTEhJEfTwiS7HnUgEA7aE0AHCRlZBERERERERErZ4olZAuLi4oKipCUVFRs69RXFwMAHB1dTVWWFry8vLwwQcfYNWqVaI9Rn0XL15EWVkZAMDOzg4xMTEmeVwic8sqvAkAiOB2bCIiIiIiIiKbJEolZGBgIJRKJU6dOtWsRGRhYSFOnToFQRBUFZHG9sUXX2DIkCFqCcjo6GjMnDlTlMcD1LdiR0VF6TWsh6g10dyOfVNqhzwXT/MEQ0REREREREQmI0oSsnPnzgBqplt/9dVXBt//q6++Uk3X7tKli1Fjq/8YtVWJADBhwgQsX74cERERojweAJw4cUL1Nbdiky2KLFLfjp3p7gelIMrTEBERERERERFZEFHe/Y8aNUr19aJFi/D777/rfd+1a9di0aJFqttDhw41amyakpOTsWTJErz++uuibv0G1CshmYQkWyNVyBFafFVtjVuxiYiIiIiIiGyDKD0hU1NT0aNHD2zduhVyuRxPPPEEtm7dimnTpiE2NlbnfU6fPo1vvvkGK1euhFKphCAISE9PV1VVGltaWhrGjRuH/v37qyb3iq1+ErJNmzY4ceIEVqxYgZ07dyIrKwvV1dXw9fVFamoqhg4dioEDB5osNiKxyBVKAEBo8VXIlAq1YxxKQ0RERERERGQbRElCAsCbb76JMWPGoKCgAEqlEitWrMCKFSvg5+eH2NhYuLu7AwCKiopw+vRpXL1aUyGlVNYkLHx8fPDWW2+JFR7mzZsn2rV1uX79OvLz67aiLlq0CNu3b9c6Lzs7G9nZ2Vi7di2Sk5Px4YcfIjw83JSh6lS7Pd5ayeXyRm+TeK6VVgLQ7gcJABc86pKQCrnC6n/OyLLxeYCI+DxARHweICI+D5iPaEnIgIAAfPvtt5g+fTpycnIA1CQY8/PzceWKejKiNvFYW/UXHByMefPmITAwUKzwTK5+FSQAVQLSyckJERERcHd3R35+Pi5cuKA658iRI5gwYQK++eYbJCUlmTJcNQqFAgcPHjTb44vhyJEj5g7BZhRU1DyhR+qYjF2/EjI7JxsHDxaaLC4iPg8QEZ8HiIjPA0TE5wHTEXUiRHR0NFauXIl7770XDg4OqnWlUqn2Xy0nJyfcfffdWLlyZavrmaiZhHR1dcVLL72ErVu3YvXq1ViyZAnWr1+PDRs2YPTo0arzCgoK8NBDD+HGjRumDpnIKGp/xSML87WOsSckERERERERkW0QrRKyloeHB5555hnMmjULu3btwp49e5Cfn6/apu3u7o6goCB07NgRaWlpog+HMZf6FY5eXl74/vvvERUVpXVeaGgo3n33XYSHh+PTTz8FAOTm5mL+/Pl47rnnTBUukdHUfswQUaQrCRlg2mCIiIiIiIiIyCxET0LWcnZ2Rp8+fdCnTx9TPaRFef311/H000/j0qVLcHFx0ZmArO/hhx/Gli1bsH//fgDADz/8gCeffBL29vamCFeNRCJBSkqKyR/XmORyuVqJdXJyMqRSqRkjsh15xRXAyjytJGSlRIZcVy/V7ZDgEKSmRpo4OrIlfB4gIj4PEBGfB4iIzwPNc/jwYSgUiqZPbITJkpBUUxXq4eGh17mCIGDKlCmqJGR5eTn27t2Lbt26iRlig2Sy1vWjIpVKW93/J0slldYMm4nUSEJmuvtCKdR1hJBIJfw3IZPi8wAR8XmAiPg8QER8HjAdo36Xb9y4gbNnzyI/Px/Ozs4IDQ1FbGysMR/CpnTs2FHt9oULF8yWhCRqLiUAiUKOsOKrauvcik1ERERERERkO4yShDx06BA+/fRTbN++XWu0ub+/P6ZMmYIpU6aoDaehpvn4+KjdLizk5GCyPssP5iC45DrsFOrPDZnufmaKiIiIiIiIiIhMrcXTsb/44gtMmjQJW7ZsQXV1tdbk67y8PLz//vsYP348Ll26ZIyYbUZlZaXabRcXFzNFQtR8s1cf1dqKDXAyNhEREREREZEtaVEl5I8//oiPP/4YQE0PQ10EQYBSqcTp06cxffp0rFixotVOwG5IdnY2vvvuO1y/fh3Xrl3DE088gYSEhCbvp5m0DQoKEitEIlE89etRAA1MxvbgdmwiIiIiIiIiW9HsJGRJSQnef/99VfJRqVQiPT0dgwYNQkhICKqrq3Hy5EmsXLlSlUzLzMzE559/jmeffdY40VsJpVKJRYsWqW6npaXplYT8999/VV8LgqDVI5LIkuUXV+Cjf84B0B5KA7ASkoiIiIiIiMiWNHs79rp161Q9Ch0cHPD5559j8eLFmDx5Mnr37o3+/fvjoYcewu+//46xY8cCqEnG/fzzz6ioqDBO9FYiNDQUISEhqts///yzVu9MTSUlJVi6dKnqds+ePeHt7S1ajETGtnjPJSiUNV9HFmonIS8yCUlERERERERkM5qdhNy5c6fq66effhr9+/fXeZ5MJsNrr72GuLg4AEBRUREOHDjQ3Ie1WuPHj1d9ffbsWcyfP7/Bc6uqqjBnzhzk5eUBqKmCnDlzpugxEoklXKMSskoiRY4rk+pEREREREREtqLZScgTJ04AqBmWMnHixEbPlclkmDRpkur20aNHm/uwFqlfv35o06YN2rRpg379+uk855577lGrhvzkk0/w+uuv48aNG2rnHT9+HPfccw/+/PNP1dpdd92Fzp07ixM8kUjqd4nV3I59yc0XconUtAERERERERERkdk0uyfklStXIAgCwsPDYWdn1+T5nTp1Un2dmZnZ3Ie1Wk5OTliwYAHuuusuFBQUAACWLFmCZcuWIT4+Hq6ursjNzdX63owYMQLPPfecGSImapnafrGCUoHw4itqx7gVm4iIiIiIiMi2NLsSsqysDADg5uam1/n1qwCLi4ub+7BWLS4uDj/99BM6dOigWquqqsLRo0exc+dOtQSko6MjZs+ejXfffRdSKSvGyPrUVkIGlt6Ag7xa7ZiuoTR+LvYmiIqIiIiIiIiIzKHZlZBVVVUAoFcVJFCzbbtWaWlpcx/W6oWFhWHZsmXYunUr1qxZgwMHDiA/Px8VFRXw9vZGWFgYevfujZEjRyIoKMjc4RI1261CSL2H0gxPDBA7JCIiIiIiIiIyk2YnIZVKJQRBUG25bEr985qaDG1O48aNw7hx4wy6z8aNGw1+nB49eqBHjx4G34/IWqiSkEXaScgLHupJyO/v6ggPJ/0+0CAiIiIiIiIi69Ps7dhERI1Ze7wm+RhZlKd1TLMSckxyoEliIiIiIiIiIiLzYBKSiIwuu7AcG05fBQBEFF3ROq6rJyQRERERERERtV5MQhKR0f1wIEf1dYRGT8hqQYIsN1/V7VAPR9hL+VRERERERERE1JrxnT8RGd3+7ELV15o9IbNdfSCX1E18f21Igt69ZYmIiIiIiIjIOjEJSURGp1TW/K+gVGj1hKw/lCbCywlTu4SZMjQiIiIiIiIiMoNmT8eulZeXh1WrVol6nzFjxhh0fSIyr1s5SIQUX4ODvFrt2DmPuiE08X4uJoyKiIiIiIiIiMylxUnI06dP47nnntP7fKVSafB9mIQksi7KW6WQ0YXak7HPedYlId8enmSymIiIiIiIiIjIfEy6HVsQBIN6v9UmMojIutT+5kYXXtY6Vr8Ssn2wu4kiIiIiIiIiIiJzalElJJOERKRL7VNDTIF2EvJsvUpIDqQhIiIiIiIisg3NTkJu2LDBmHEQUSty7lopACCqiUpIIiIiIiIiIrINzU5ChoSEGDMOImpF9mQVAtDejl1s54SrTjVbsN0dW9ySloiIiIiIiIishEl7QhKRbYkuUB9Mc9YzELi1BfuDUW3NERIRERERERERmQGTkEQkCtfKMviXF6qtnfMIAAD0ifHBHe2DzREWEREREREREZkB90MSkSg0qyAB4PytfpAbH+xu6nCIiIiIiIiIyIxYCUlEotDsBwkA5zw5lIaIiIiIiIjIFjEJSUSiiCnQTkKeZRKSiIiIiIiIyCYxCUlEotBZCekRiHBPJzNEQ0RERERERETmxCQkEYkiSiMJqYCAi+5+cHWQmikiIiIiIiIiIjIXJiGJSBTRheqDaS65+aJKamemaIiIiIiIiIjInJiEJCKjkyjkiCzMV1ur7QepVJojIiIiIiIiIiIyJyYhicjoQkuuwV5RrbZ23uNWEtIcARERERERERGRWTEJSURGtfH0VUTrmIx9zjPADNEQERERERERkSVgEpKIjOZmlRwDFmxvcDI2ACi5H5uIiIiIiIjI5jAJSURG88+5awCAGB2VkGc9g0wdDhERERERERFZCCYhichorpVVAQCiNCZjA8A5j5rt2KyDJCIiIiIiIrI9TEISkdGsPJwLAFrbsQvtnXHd0Q0Ap2MTERERERER2SImIYnIaH46VJOE1NyOfc4jABAEc4RERERERERERBaASUgiMiqPmyXwuVmstla/HyQLIYmIiIiIiIhsD5OQRGRUuvpBnr/VD5KIiIiIiIiIbBOTkERkVNG6htJ4Bqq+VrIpJBEREREREZHNYRKSiIwqpiBXa+2cR6COM4mIiIiIiIjIVjAJSURGpasS8mz9SkhTBkNEREREREREFoFJSCIyqqhC9cnYckGCTDc/1W3uxiYiIiIiIiKyPUxCEpFRxRSoJyEz3XxRLZWpbveN9TV1SERERERERERkZkxCElGLyRVK2D+zBlKFHBFF+WrH6g+lAYD70sJMGRoRERERERERWQAmIYmoxSb8bw+qFUqEF12BTKlQO3a+3lCabhFe6BbpberwiIiIiIiIiMjMmIQkohZbdaRmC3ZcQY7WsdOeQaqv700LN1lMRERERERERGQ5mIQkIqOJv64jCekVbIZIiIiIiIiIiMiSMAlJREajsxKSSUgiIiIiIiIim8ckJBEZTewN7STk2Xo9IZVQmjIcIiIiIiIiIrIQTEISkdHEayQhL7r54aadg+p2r2gfU4dERERERERERBaASUgiMgo7eRUii/LV1upvxR7dNgBxvi6mDouIiIiIiIiILIDM3AEQkXWrrFYAAKIK8yBVKtSOnfGqmYz9+tAEPNU7BoIgmDw+IiIiIiIiIjI/VkISUYv8fDgXABB3I1fr2CmvEADA8ER/2Mv4dENERERERERkq5gVIKIWySupAADE38jWOnbak5OxiYiIiIiIiIhJSCJqIcmtLdZxBdqTsU/f2o5NRERERERERLaNSUgiahHJrTaPsRrbseWCBOc9AgAALvZsP0tERERERERky5iEJKIWUVVC3lCvhDzv4Y8qqR0AINTD0eRxEREREREREZHlYBKSiFpEAOBYVYGI4itq6/X7QTpwKA0RERERERGRTWNmgIiaTa5Q4qGfDyOm8LLWsTNedUlI4Va1JBERERERERHZJiYhiajZNpyuqX7U3IoNAKduJSGZfyQiIiIiIiIiJiGJqNmGLNwJQHcS8vStJOTGmd1MGhMRERERERERWR4mIYmoxeJ1JSFv9YTMiPIxdThEREREREREZGGYhCSiFostUE9CVkpkyHT3w9VXB0Mi4X5sIiIiIiIiIlvHJCQRtVjcjVy122c9AyGXSOHtbG+miIiIiIiIiIjIkjAJSUQt4lJZjuDS62prtVuxiYiIiIiIiIgAJiGJqIV0DaU54xVkhkiIiIiIiIiIyFIxCUlELRJXkKu1dsorxAyREBEREREREZGlYhKSiFpEVyXkaVZCEhEREREREVE9TEISUYtoTsYG2BOSiIiIiIiIiNQxCUlEzaJUKgEA8dfVk5DlMntku/mYIyQiIiIiIiIislBMQhJRs7y18QwAIE6jEvK0ZxCUAp9aiIiIiIiIiKgOMwVE1Cwv/n4CHjdL4FdepLZ+2otbsYmIiIiIiIhIHZOQRNRsuiZjn2E/SCIiIiIiIiLSwCQkETVbm+tZWmucjE1EREREREREmpiEJCKDHc6t2YKdcD1b69gJ71BTh0NEREREREREFo5JSCIyyK7MG0j7+F8AQML1S1rHmYQkIiIiIiIiIk1MQhKRQV5adxIV1QoAQOI19e3Y+U4euO7kbo6wiIiIiIiIiMiCMQlJRAb549QVAIBMXo24ghy1Y8d96qogQzwcTRoXEREREREREVkuJiGJqFmiCy/DTiFXWzvhHWamaIiIiIiIiIjIkjEJSUTNorkVGwBOeIeovlYqTRkNEREREREREVkyJiGJqFkSdQylOe5TVwl5d2cOqCEiIiIiIiKiGkxCElGzJFzXroQ8fms7toNMgrs6MglJRERERERERDWYhCSiZtFMQpbYOSLLzQcA8Mf96UgKdDNHWERERERERERkgZiEJCLDKZVaSciTXiFQCjVPKRnRPuaIioiIiIiIiIgsFJOQRGSwkJJrcK8sV1s77lOz/bp/nK85QiIiIiIiIiIiC8YkJBEZLPGa9lCaE7f6QU5MDTZ1OERERERERERk4ZiEJCK97cq8AQBIuJ6tday2EtLRjk8rRERERERERKSO2QIi0tsDPx0CACRe11UJWZOE7BPD7dhEREREREREpI5JSCLSi1KpxMGcIgDak7GrBQnOeAYBAAJcHUweGxERERERERFZNiYhiUgvCmXd15o9Ic94BqFKamfiiIiIiIiIiIjIWjAJSUR6USprspCeN0sQWFagduy4T5gZIiIiIiIiIiIia8EkJBHppbYQUnMrNgCc9A5RfS0IJgqIiIiIiIiIiKwGk5BEpBfFrUpIza3YAHDcu64S0k7KpxUiIiIiIiIiUsdsARHp5VYOEok6KiG5HZuIiIiIiIiIGsMkJBHppW47tnYl5EmvEK01IiIiIiIiIqJaTEISkV7OXC0FoN0TMsvVB8UOzuYIiYiIiIiIiIisBJOQRKSXUV/vgkN1JaIK89XWj3uHmikiIiIiIiIiIrIWTEISUZMO5xbh4o1yxN/IhlSpUDt2gv0giYiIiIiIiKgJTEISUZOyCsoBAInXtIfSnGAlJBERERERERE1gUlIImrSzBWHAGj3gwS4HZuIiIiIiIiImsYkJBE1qqJajksFNwEAba9d1Dp+vN527BgfDqghIiIiIiIiIm1MQhJRo0or5aqvU66oJyGvOLkjz9lTdXtqF/aHJCIiIiIiIiJtTEISUaOO5RUDAByrKhBXkKt27IhvBCAIqtvdIrxMGhsRERERERERWQcmIYmoUf/dU9MHMvF6ltZk7CO+EWq3lUqThUVEREREREREVoRJSCJq1A8HsgEAyVe1+0Ee1kxCmiQiIiIiIiIiIrI2TEISUaPkiprUYoo+SUiWQhIRERERERGRDkxCElGjqm8lIZOvXtA6dtQ33MTREBEREREREZE1YhKSiBpVJdddCXne3R8l9s5qa6yDJCIiIiIiIiJdmIQkogaVVFQDALzKixFScl3t2GHfSK3zuRubiIiIiIiIiHRhEpKIGrTuRD4AIPmadj/II34RWmvsCUlEREREREREujAJSUQNOppXDABIuaIjCemj3Q+SKUgiIiIiIiIi0oVJSCJqkEQQADQwGdsv0sTREBEREREREZG1YhKSiBokldQkITUnY1dKZDjpFaK2JghAWriniSIjIiIiIiIiImvCJCQRNUgiAFAqkXw1U239hHcIqqUytbXHMqLh6+JgwuiIiIiIiIiIyFrImj6FiGzV3kuFCCu+Co/KMrX1I751Q2lcHaT49+EeaBfkburwiIiIiIiIiMhKsBKSiBq04nAuUjS2YgPqSchB8X5IDfaAcKt/JBERERERERGRJlZCEpGa62WVeHTlEXy3PxuA7snYh30jVV8rORKbiIiIiIiIiJrASkgiUjN7VV0CEgDaXtM1GbuuEpI5SCIiIiIiIiJqCpOQRKRm6b5stdspV9WTkEX2Tsh081PdVrIUkoiIiIiIiIiawCQkETVIJq9G4rUstbUjPhFAvf6PTEESERERERERUVOYhCSiBsXfyIG9olpt7Ui9rdgAe0ISERERERERUdOYhCSiBumajH3Yl0lIIiIiIiIiIjIMk5BE1KDkq5laa/UnYwOAkhuyiYiIiIiIiKgJTEISUYOSdVRCHvENV7vNSkgiIiIiIiIiagqTkETUoPb559Vu57h447qTu9oac5BERERERERE1BQmIYlIJ+/yIkQUX1Fb2+8frXWekqWQRERERERERNQEJiGJSCfNKkgAOKAjCdkpzNME0RARERERERGRNWMSkohUFIq6qsaO+We1juuqhLyrY6ioMRERERERERGR9WMSkohU9mUXqr5un39O+3iAehLy0YwotPF3FT0uIiIiIiIiIrJuTEISkUp1vUrIDhpJyBsOLrjgHqC6HePjjA9HtTVZbERERERERERkvZiEJCIVe6kAAHCpLEeb69lqxw74RwNCzfFANwf8PiMdwq3bRERERERERESNkZk7ACKyHFdLKwEA7a5cgATqU69r+0FeeKE/wr2cTR4bEREREREREVkvVkISkcp9Px4EoL0VG6hLQrL6kYiIiIiIiIgMxSQkEQEAKqrlyC68CUD3ZOx9ATEAAKYgiYiIiIiIiMhQTEISEQBg4+mrqq81J2OXyexx0isEgKotJBERERERERGR3piEJCIAwPnr5QAAO3kVkq9mqh075BcJhUQKABBYC0lEREREREREBmISkojUtL2aCXtFtdrafv8Y1deshCQiIiIiIiIiQzEJSUQAAOWtadiNDaUB2BOSiIiIiIiIiAzHJCQRAQCUNTlInUnI2qE0AKdjExEREREREZHhmIQkIgDA6qOXAQAdNCZjV0mkOOITobrNFCQRERERERERGYpJSCLCtdJKbDh9FRKFHKlXLqgdO+YThkqZneo2CyGJiIiIiIiIyFBMQhIRfrlVBRl3IxeuVTfVju2rN5QGALyd7U0WFxERERERERG1DkxCEhFyiysAaG/FBoAD9YbSAIBUwlJIIiIiIiIiIjIMk5BEBKVSv8nYRERERERERETNwSQkEWHB9osAdCchD/hHqb4e3y7IZDERERERERERUevBJCSRjauSK5BVeBNQKrWSkKe8glFi76y6fW9auKnDIyIiIiIiIqJWgElIIhu3+ew1AEBUYR58bharHdvvp74Ve0iCv8niIiIiIiIiIqLWg0lIIhv36KojAICuuSe1ju0OijN1OERERERERETUCjEJSWTjrpZWAgDSLp/WOrYzsI2pwyEiIiIiIiKiVohJSCIbplAo65KQuafUjlULEuwLiFHdHp7IrdhERERERERE1DxMQhLZsL/PXgUAyOTV6Jh/Vu3YYd8IlNs5qG6HeTqZNDYiIiIiIiIiaj2YhCSyYbsyCwAA7a5egKO8Su3Y7qB4tdtz+sWaKiwiIiIiIiIiamWYhCSyYZVyBQDtrdgAsDOwLgn58qB4hHs5mywuIiIiIiIiImpdZOYOgIjMZ/nBHABA2mUdScigmqE06+9Px8B4P5PGRUREREREREStCyshiWzYsbwSAEBarvpk7GI7J5zwDgEAeDvbmTwuIiIiIiIiImpdmIQksnHuFaVIuJ6ltrY7MBYKidRMERERERERERFRa8MkJJGN63L5NCRQqq3tDoxv4GwiIiIiIiIiIsMxCUlko6pqh9Lo7AfJJCQRERERERERGQ8H0xDZmN2ZBbjru304fbUUQAOTsZmEJCIiIiIiIiIjYhKSyMbc+d0+nLmVgIRSia4aScgsVx/kuvqYITIiIiIiIiIiaq2YhNTh448/xrx58xASEoKNGzeK8hi5ublYtmwZtmzZgosXL+LmzZvw8/NDdHQ0hg0bhmHDhsHJyUmUxybbVVBeVZeABBBWfBWBZQVq57AKkoiIiIiIiIiMjUlIDYcOHcLChQtFfYxly5bh7bffRnl5udp6Tk4OcnJysGXLFnz55Zd49913kZqaKmosZFuqFQq127r6QXIoDREREREREREZGwfT1HPp0iU89NBDqKqqEu0xFi9ejJdfflmVgBQEAfHx8UhLS4O/v7/qvAsXLmDq1Kk4evSoaLGQ7VGqD8HW2ooNsBKSiIiIiIiIiIyPSchbTp06hTvvvBNXrlwR7TEOHDiAd999V3W7S5cu+OOPP/Drr79iyZIl+Oeff/Dpp5/Cy8sLAFBeXo6HHnpIq2KSqLkUGknILhqVkHJBgj0BsSaMiIiIiIiIiIhsAZOQAFavXo2JEyciLy9P1Md56623IJfLAQBt27bFokWLEB4erjouCAIGDRqExYsXw8XFBQBw+fJl/Pe//xU1LrIdinqlkFKFHJ0vn1E7fswnDKX27EVKRERERERERMZl00nIvLw8PPvss3jmmWdErzY8ePAgDhw4oLo9d+5cODo66jw3ISEBDz/8sOr2f//7X1Xykqgl/vNHXeVj26uZcKmuUDu+i/0giYiIiIiIiEgENpuE/OKLLzBkyBCsWrVKtRYdHY2ZM2eK8nhr165VfR0TE4MOHTo0ev748eMhk9XMDbp+/Tp27dolSlxkW77ccVH1dc/sY1rHdwXFmTIcIiIiIiIiIrIRNpuE/Oqrr1BWVqa6PWHCBCxfvhwRERGiPN727dtVX/fo0aPJ8z08PJCcnKy6/ffff4sSF9muHjqSkP+GtDVDJERERERERETU2snMHYC5JScn49lnn0VaWppoj1FVVYVz586pbrdtq1+ip02bNqot3IcPHxYjNLJVSiUyNJKQVx3dcMI71EwBEREREREREVFrZrNJyLS0NIwbNw79+/eHIAiiPlZWVhaqqqpUt/WttgwNrUsIZWZmGj0usi2lFdWqryOK8hFack3t+JaQJEDk3wUiIiIiIiIisk02m4ScN2+eyR7rypUrarf9/Pz0ul/9865duwaFQgGJxDw76Kurq5s+yYJpDvaxxUE/I77aqfpaswoSALaGJOm8n73E+v/9iQA+DxARnweIiM8DRMTnAXOy2SSkKRUWFqrddnd31+t+bm5uqq+VSiWKiorg6elpzND08v/t3XmAzdXj//HXrGbMMIx932esiXwQSsmaLBE+tlB9QyF8KtEnfT6ypFCiKCmp7HspyocsCWVJ1slYZ8IwDMaY/f7+8PNu3nNnvXPv3Dszz8df73Pu+33OmcHbe15z3uckJyfr999/z/V+HenIkSPOHkKuuh6bpO2nrxnlh8KOWp2zs6J1CFnK112xf53S7xeZIYn8p6DdBwBY4z4AgPsAAO4DuYcQMhfExcWZyj4+Plm6zsvLK8N2gKy6FpdsKrcMP24qx3h662Dp6qa6hiW99fIDReXOK9oAAAAAACCHCCFzQepXWbP6SrWnp/mPhynCsJXF8vdxiZibqnvtgunzPeWCleDxd+j9WpMA9azll1vDAwAAAAAA+RwhZC5IHTomJyenc6ZZ6vAy9czI3OLu7q4GDRo4pW97SUpKMk2xrl+/vjw8PJw4otyVFHZD0t21SVv+lfl6kBUqVlDDhlnbQAnIKwr6fQAA9wEA3AcAcB+w1R9//JHlPCs9hJC5wNfX11SOi4uTt7d3ptfFx8ebyoUKFbLruLIj9azMvM7DwyPffU0ZWXXksnH8UJh1CLkzVQjp5lawvj8omArafQCANe4DALgPAOA+kHucs9VyARMQEGAqR0dHZ+m6lOd5enqaNqoBsuODnWeM41apdsZOcnPXnvLBpjqLLAIAAAAAALAXQshcUKZMGVP56tWrWbruypUrxnFgYKDc2CAENkhOtig+6e6U6cIJsWocEWr6/GDp6or2Lmyqs5BBAgAAAAAAOyKEzAXly5c3red44cKFDM7+W1hYmHFctWpVew8LBcTe89eN42YXT8or2bzB0c8V6lhdU6mYr1UdAAAAAACArQghc4GXl5eCgoKM8vHjx7N0Xcrz6tSxDoqArBi9/qhx3Crc+u/ezgr1TOUAH0+1Dy7l8HEBAAAAAICCgxAylzRr1sw43r17d6bnR0VF6dixv9fua968uUPGhfwrISlZh8Jv6NcLUUZdq7CjVuftSjUTcvPzzeXrxc5gAAAAAADAfgghc0n79u2N4yNHjpi2g0/LihUrlJiYKOnuxjYtWrRw6PiQv1yPiVfrj3ar8Xs7jDqP5CQ9ePGk6byQ4uUV4VfcKPdtVEFNKxcXAAAAAACAPRFC5pJGjRqpXr2/X3sdP358urtkHz9+XPPmzTPKvXv3lo+Pj8PHiPxj5eGL2nPuuqnu/ojT8k+INdXtqlDXVH6maSWHjw0AAAAAABQ8hJB20KZNGwUHBys4OFht2rRJ97xx48YZO1yHhIRo4MCBOnHihPG5xWLRDz/8oMGDBysmJkaSVKpUKQ0dOtSxXwDynWGrDlvVPZzmq9jmEPLh6iUcNiYAAAAAAFBweTp7AAVJs2bNNGbMGM2aNUuSdOzYMXXr1k01a9ZUYGCgzp07p8uXLxvn+/j46P3331eRIkWcNWTkI49c+MOqbmeKEPLzPvfLy4PfSwAAAAAAAPsjhMxlQ4cOlZ+fn2bOnGnMdjx16pTVeWXLltWMGTPUpEmT3B4i8iGP5CSrmZAX/EsqtFg5ozzggYq5PSwAAAAAAFBAEEI6wYABA9S2bVutWLFC27dvV1hYmKKjo+Xv76+goCC1bdtWPXv2lL+/v7OHinyi8eVQBcTHmOq2Vm4g/f/lASoX85WHu5szhgYAAAAAAAoAQshUevTooR49emTrmq1bt2a7n7Jly2rUqFEaNWpUtq8FsqvNees1In+qdJ9xTP4IAAAAAAAciQXggAIgrfUgt1VuYBy7k0ICAAAAAAAHIoQE8jmvpAS1Cj9mqgsNKKvzRUsb5dEPVc/tYQEAAAAAgAKEEBLI55pe/FN+iXGmum2V7zOVH6lRIjeHBAAAAAAAChhCSCCfa3PBej3IrZUamMpeHtwKAAAAAACA45A8APlc23OHrOp+ShFCBhb2Us2Sfrk4IgAAAAAAUNAQQgL5WJG4GDW/eNJUd6REZV3yDzTKX/dvLA82pgEAAAAAAA5ECAnkY49c+ENeyUmmui1V7jeVOwSXFgAAAAAAgCMRQgL5WLs0XsX+MVUICQAAAAAA4GiEkEA+lno9yHh3T22vVN85gwEAAAAAAAUWISSQT1W6eUW1r4eb6n6uUEcxXj5OGhEAAAAAACioCCGBfKrduYNWdVuqNDSVu9cvm1vDAQAAAAAABRghJJDPHL10S5LU9tzvVp/9WKWRqfxm+6BcGRMAAAAAACjYPJ09AAA5ExOfqBk/ndaV23F6pmllNXl/hzySk9Q+1UzISJ8iOlC6uqmuYfmA3BwqAAAAAAAooAghgTyu++e/asufVyVJH/58VpLU9GKIAmOjTef9UOV+Jbt75PbwAAAAAAAAeB0byMvORMYYAWRKnc7ut6rbVO0BU3lSx2CHjQsAAAAAACAlQkggDzt2+Vaa9Z1OW4eQm6ua14Mc8o9KDhkTAAAAAABAaoSQQB625c8rVnVlbl/XAxGhprpfy9RUhF9xo1y2SCFVCPB1+PgAAAAAAAAkQkggT1uw57xVXYezB6zqUr+KXdibtSEBAAAAAEDuIYQE8jAvDzeruo5nrEPI71OFkNZXAQAAAAAAOA4hJJCHeXmY/wl7JiWqY6qZkJE+RbSvbC1TnZsbMSQAAAAAAMg9hJBAHpZ6JmSr8GMqFnfbVLepamMlu5tfvyaCBAAAAAAAuYkQEsjDvNzN/4S7hu6zOuebGk2t6txJIQEAAAAAQC4ihATyqFW//6XzUXf+rrBY9MRpcwiZ4O6hTdUaW13L69gAAAAAACA3EUICedAPJyPU+8v9prra18JUM+qSqW5HxXq6WcjP6vpeDcs7dHwAAAAAAAApEUICedDItUes6rL6KrYkvfRQNbuPCQAAAAAAID2EkEAe9OfV21Z1T6QVQlZPO4QMLOxt9zEBAAAAAACkhxASyAfK3L6uFn+dMNUdLVFJZ4qVddKIAAAAAAAA/kYICeQD3U7tlbssproNNZo5aTQAAAAAAABmhJBAPtD91C9WdWtqPeiEkQAAAAAAAFgjhATyuIDYaD12/rCp7nyRktpfpqaTRgQAAAAAAGBGCAnkMYlJyabyE6d/lVdykqluba0HJTe33BwWAAAAAABAugghgTzmy/1hpnL3U3uszuFVbAAAAAAA4EoIIYE8JCEpWc+u+N0oF06IVacz+03nRPgG6OfydXJ7aAAAAAAAAOkihATykKeXHjSVnwj9VYUT4011G2o2U7K7R24OCwAAAAAAIEOEkEAesvzQX6Zy75M7rc5ZEdQywzaGNK1k1zEBAAAAAABkhhASyCMsFoup7B8fo8dTvYp9xbeotlW+L9023N2kIf8ghAQAAAAAALnL09kDAJA1qTJIdQ3dJ5+kBFPdmlotlJTqVez2QaVUv1wRXboZpwEPVFSraiUcPVQAAAAAAAATQkggj0iVQar3iV1W56wINr+K/Umv+zSoSSV5eTDpGQAAAAAAOA8hJJBHxCclG8cBsdHqcO6A6fNLhYtpe8X6RnnRP+/X00149RoAAAAAADgf06OAPOLrA2HG8VMhu1UoKdH0+eqgFqZdsQc0rphrYwMAAAAAAMgIISSQRzy/8rBx3P/4T1afLwt+2FR2d3dz9JAAAAAAAACyhBASyANORNwyjivdvKJHwo6YPj9TtLR+rlDHKHepWybXxgYAAAAAAJAZQkggD5i46aRx3PfEDqvPl9R5RHL7e+bj/RUCcmNYAAAAAAAAWUIICeQBt+L+//qPFosGHNtm9fnXdVqbyknJqffSBgAAAAAAcB5CSMDFzdt9VptPXpEkNbxyRvUjz5s+/61MTZ0oYd4FO9lCCAkAAAAAAFwHISTgwv66EasX1/xhlIcc+Z/VOUtSzYKUpLa1Sjl0XAAAAAAAANlBCAm4qMSkZDWdvdMoeycmWO2KnejmriW1zbti31euqB6tWSI3hggAAAAAAJAlns4eAABrW0KuqP0ne0x1XU7vU4nYW6a6jdWbKMKvuFGe0qm2RrSsJrcUm9QAAAAAAAA4GyEk4GKWHAjTgCUHreqHHNliVfd5/bbG8eROtTX+sVoOHRsAAAAAAIAteB0bcDHzfzlnVVf+VqQ6nDUHk5cLB+i7ak2M8uiHqjl8bAAAAAAAALYghARczK4z16zqhhzdIg9LsqnuqzqPKtHj78nMhb2Z2AwAAAAAAFwTISTg4tyTk/R/hzdb1ad8FRsAAAAAAMCVEUICLiQ52WJV1/HsAVW+ddVUt7NCXR0rWTm3hgUAAAAAAJAjhJCAC1l2KNyqbujvm6zqPrmvQ24MBwAAAAAAwC4IIQEXknpX7Io3r+jxM/tNdZE+RbQqqGVuDgsAAAAAACBHCCEBFzb08GarDWm+qNdGcZ7eThoRAAAAAABA9rGdLuACLBaL4hLNYWOhxHg9f5hXsQEAAAAAQN5HCAk42Y8hV/Ts8kO6dCvOVN/3xA6VunPTVLe5SiOFBFa0auOD7vUdOkYAAAAAAICcIIQEnCgp2aK+X+3XtZgE8wcWi0Ye+Mbq/DmNn7CqG9K0kka0quaoIQIAAAAAAOQYa0ICTnQyIto6gJTUKvyYGl05Y6o7Vaysvq/2gNW5PRuUc9j4AAAAAAAA7IEQEnCihOTkNOvH/rbOqm5uoydkcbP+J2ux2HtUAAAAAAAA9kUICThRWgFi0LUwdQ3dZ6q75eWrRfUeS7sNRwwMAAAAAADAjgghARfzr9/WyT1VtPjpfe11s5BfmudbmAoJAAAAAABcHBvTALkkISlZK37/S+eu31HXumVUv1xRq3PK3L6up49tNdUlurnr/cZd022XCBIAAAAAALg6Qkgglzyz/JC+PhAuSZqyJUTbhreQt4d5MvKoA9+oUFKiqW5p7Yd1oWipdNtlIiQAAAAAAHB1vI4N5ILrMfFGAClJdxKStXDfedM5xWKj9eKhjVbXzmzypMPHBwAAAAAA4EjMhARywaVbcVZ1C/ac14I9fweRLx3YoKLxd0znbKraSIdLV8uw7YrFfOwzSAAAAAAAAAdhJiTgAorExWjUgW+s6ic375PhdbVK+qlR+QBHDQsAAAAAAMAumAkJ5AI3t4w/H3HoWxWPu22q21qpgXZXqGuq+2tiO+27EKUvfr2gMkUK6bU2NeXunknjAAAAAAAATkYICThZQGy0Xv51rVV9WrMgAwt7q2u9supar2xuDA0AAAAAAMAueB0bcLCY+ER9sud8up+//Ns6q1mQu8rX0U+VGpjqPN3d5O3JP1kAAAAAAJD3MBMScLAnF/2qH0OupvlZ6dvX9dKBDVb1b7QaYPUO91f9GjtkfAAAAAAAAI7GtCrAgU5H3k43gJSkCXtXyT8h1lT3Q5X7tT3VLEhJKuztYffxAQAAAAAA5AZCSMCBTkREp/tZjet/adjv31vV/7vVwDTPt1gsdhsXAAAAAABAbiKEBJzk7Z1fyDs50VS3tmZz/Va2VprnE0ECAAAAAIC8ihAScIKHwo6o55+/mOoS3dw1odXT6V7DREgAAAAAAJBXsTENYGcWi0U7TkfqVlySEpKSrT53T07SzJ8+s6r/uGFHnSxRMd12k0khAQAAAABAHkUICdhRcrJFXuO+zXDW4nN//Kgml0+Z6qIK+em/D/bNsG0iSAAAAAAAkFfxOjZgR0OWH8owgCwRc1NTdy22qp/arJeuFg7IsG02pgEAAAAAAHkVISRgJ9di4vXl/rAMz3l75xcKjDXvmH2ieAXNbtwl0/bJIAEAAAAAQF5FCAnYgcViUedP92Z4TusLf+jZIz9a1Y94bJgSPLwy78Pm0QEAAAAAADgXISRgB6eu3tbe81Hpfu6bEKdPfphrVb8s+CFtrdIwS30wExIAAAAAAORVhJCAHczacTrDz/+ze4lqRV001d3wLqyXWz+T5T5ql/a3aWwAAAAAAADORggJ5NDtuER9/Mu5dD9/MPy4xu5fb1X/auvB+qtIiSz10axyMTUoV8TmMQIAAAAAADiTp7MHAORVdxKStPlkhP7359V0z/GPj9GX38+ShyXZVL+tUgN92qB9hu13r19WNUv6qbR/IT3XrLLc3NzsMm4AAAAAAIDcRggJ2CA2IUkPf/iz9ofdyPC82VsXqPqNy6a6GE9vPd/uRVncMp6IPL/nfSpdpFCOxwoAAAAAAOBsvI4NpMNisejIxZs6HXnb6rPvT0RkGkD2Pb5dQ47+z6r+5dbPKLR4+QyvfbtzHQJIAAAAAACQbzATEkhDfGKynvriN317/LLc3KQ32wVrYvsgSdK1mHj1/OK3DK+vHXlBH//4oVX9xmpNNL9hpwyvbVIxQM81q2z74AEAAAAAAFwMISSQhv/9eUXfHr/7GrXFIv3nh5N6Z9spTe5UW14eGa/N6Bd/Ryu/eVv+CbGm+gjfAD3XYaSUztqOT9Yvqy/7NZKvlwfrPwIAAAAAgHyFEBJIw/OrDlvVxSQkaeyGoxle52ZJ1pffzVK9yAum+mS5acDjY3XZr3i61xb18VRhb/5JAgAAAACA/Ic1IYE0xCcmZ35SGqbs+lLdQ/da1b/1YB9tqdoow2v7N65oU58AAAAAAACujhASSIO7e/Zfh3728A96bd9qq/rNVRrpreZ9Mry2ZdXieqh6YLb7BAAAAAAAyAsIIYE0ZDeD7P7nL5q/5SOr+pPFK6jvE68o2d0j3WubViqmH4Y+qEKe6Z8DAAAAAACQlxFCokC5HJOkuYduavT6YzoYfiPd89yzsTHMY+cOacnGGfKwmF/hvubjry5PvqEoH/8Mr3+8Thn5ehFAAgAAAACA/ItdMFBgxCdZ9PyWq/rrdpKkaC0+EKaDY1qrtH8hfbj7jM5fv6NeDcvr0ZolszwTst3Zg1q3fop8khJM9XEenurZdbxOFS+faRsWWWz4agAAAAAAAPIOQkgUGL9ejvv/AeRd0XFJWv77X1pyIEzHLkdLkub/ck7/G/agLkTFZtpe59BftfKbt60CyCQ3d/Xr/LK2V2qQpXElk0ECAAAAAIB8jhASBca60Birun9/f8Kq7vN95zNt67nDmzVvyzyrV7Al6YW2w7S2VossjyvZQgoJAAAAAADyN0JIFAg3YhP0U1jmsxsl6asD4el+5pGcpCm7vtSrv65J8/PhbYdrwX0dszU2MkgAAAAAAJDfEUKiQNhwNCLHbZSKidLXG2eq7fnfrT5LlpuGt8t+AClJtUr65XhsAAAAAAAArowQEgXC/rD0d8LOiidC92nBD3NUJsa6nTgPTw3sNFargltlu93CXh7qWq9MjsYGAAAAAADg6gghUSCE38zaq9iplY2+pnd2fK4Bx7en+fn1Qn56stvr2lGpfrbbblurpN5oF6Tihb1tGhsAAAAAAEBeQQiJAmH90cvZOr9IXIxGHvxWr/66WkXj76R5zuGSVdSj2wSdLlYu2+PpXr+s1gz+R7avAwAAAAAAyIsIIYEUKt28oucPb9aw379Xidhb6Z63uO6jeqHtcMV4+djUzzNNK9s6RAAAAAAAgDyHEBIFm8Wi4Gvhanv+kLqf2qNHLhyRhyU53dMjfYpoWLsXtDqopc1dLu7bSE/UZR1IAAAAAABQcBBComCwWNT84kl1OHtARePvqHjsLdWIuqS6kRcynPGY0qJ6bTT+oUG67Fc8W113qVtG1UoUVqfapdUhuLQtowcAAAAAAMjTCCFRIIzZv14zt39m07U7K9TV+Iee1u4KdbN8zchW1XTpZqyealhevRqWt6lfAAAAAACA/IIQEgXCmP3rs33NlsoNNb1pT/2vckPJzS1b187unv3dsgEAAAAAAPIrQkgUCNd8/FUxOjLT80IDympNrQf1aYP2+jOwgk19fd7nfpuuAwAAAAAAyK8IIVEgDG33ojasm6xSd24adbEeXjodUFa/l6qqX8rX0fZK9fRHyarZnvWY2j8b8fo1AAAAAABASoSQKBD2lq+tssMXq9b1v5To7qFb3r666ltUFjd3u/dVyNPD7m0CAAAAAADkZYSQKDAsbu4KCazo0D5qlCjs0PYBAAAAAADyIvtPAwMKsCmd6jh7CAAAAAAAAC6HmZCAHTQoV0RL+z+gumWLOHsoAAAAAAAALocQErCD/aMflqcHE4sBAAAAAADSQmoC2AEBJAAAAAAAQPpIToAcqlTMx9lDAAAAAAAAcGmEkEA2vPNEXQ18wLzD9vAWVZ0zGAAAAAAAgDyCNSGBbHj5kRqKS0xSjRJ+OhAepUdrltTIltWcPSwAAAAAAACXRggJZFHD8kUlSYU8PTSxfZCTRwMAAAAAAJB38Do2kI7CXh6m8lf9GjtpJAAAAAAAAHkbISQKhH6Nymf7mmUDH1CV4r4q7e+tD7rXV72yRRwwMgAAAAAAgPyP17FRIIxoUUXr/riomESLUVfKz1tXbseneX6Aj6eeqFtGT9Qtk1tDBAAAAAAAyLcIIVEgNKlUTCs7l9b+iDhVK+qpPo/+Qx4eHqr/7k86HhFtdf4zTSs7YZQAAAAAAAD5EyEkCozShT3UqWpho+zm5qZNzzfXf38I0fnrMTofdUdVivuqRdVATXislhNHCgAAAAAAkL8QQqJAq1TMV5/2bujsYQAAAAAAAORrbEwDAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEMRQgIAAAAAAABwKEJIAAAAAAAAAA5FCAkAAAAAAADAoQghAQAAAAAAADgUISQAAAAAAAAAhyKEBAAAAAAAAOBQhJAAAAAAAAAAHIoQEgAAAAAAAIBDEUICAAAAAAAAcChCSAAAAAAAAAAORQgJAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FBuFovF4uxBwPXs37/fVHZ3z/t5dXJysnGcH74eANnHfQAA9wEA3AcAcB/IvpTfM0l64IEHst2Gp70Gg/wt9V+2vC6/fT0Aso/7AADuAwC4DwDgPpB7iHsBAAAAAAAAOBQzIZElTE8GAAAAAAAomOwxY5Q1IQEAAAAAAAA4FNPbAAAAAAAAADgUISQAAAAAAAAAhyKEBAAAAAAAAOBQhJAAAAAAAAAAHIoQEgAAAAAAAIBDEUICAAAAAAAAcChCSAAAAAAAAAAORQgJAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEMRQgIAAAAAAABwKEJIAAAAAAAAAA5FCAkAAAAAAADAoTydPQAgM6GhoVq2bJn27t2rsLAwJSYmqnTp0goKClKXLl3Url07eXra/6/yxYsXtWzZMu3atUvnzp1TbGysSpUqperVq+vxxx/X448/Ll9fX7v3C8Babt8H/vjjDz311FPZvu7rr79WkyZN7DYOABmbPXu2PvroI1WoUEFbt251SB88DwCuzZH3AZ4HANezd+9ebdy4UQcPHlRERISio6Pl7++vcuXKqUmTJurRo4fq1q1r936vXbumlStX6qefftLp06d1+/ZtBQYGqnLlyurQoYO6du2qgIAAu/eb37hZLBaLswcBpGfOnDmaP3++EhMT0z2nfv36evfdd1W9enW79bts2TK9/fbbunPnTrrnVK1aVe+8844aNmxot34BWHPGfWDFihV64403sn0dP3QAuefw4cPq16+fEhISHBZC8jwAuDZH3wd4HgBcR1hYmMaNG6fffvst03M7d+6sSZMmyd/f3y59b9myRa+//rqioqLSPadUqVKaMmWKWrdubZc+8ytmQsJlTZ48WV9++aVR9vT0VHBwsHx9fRUaGqrr169Lko4cOaKBAwdqxYoVqlChQo77XbRokaZNm2aU3dzcVKtWLRUrVkxnz55VRESEJOns2bMaNGiQvv76a9WrVy/H/QKw5qz7wPHjx43jKlWqqFKlSlm6jt9+ArnjwoULeuGFF5SQkOCwPngeAFxbbtwHeB4AXMPZs2fVt29fXbt2zajz8vJSUFCQihQposjISJ06dUr35tht3LhRoaGh+vrrr3McRG7atEljx45VUlKSUVetWjWVKlVK4eHhCg8PlyRduXJFw4cP10cffaRHHnkkR33mZ8yEhEvatGmTXnrpJaPcoUMHTZw4USVLlpQkJSQkaM2aNZo2bZoxO6FevXpavXq13NzcbO730KFD6tevn3GD+cc//qGpU6eqcuXKkiSLxaIff/xREydONMKPsmXLatOmTbyKBdiZs+4DkvTPf/5TBw8elCS9/fbbevLJJ3PUHgD7CQkJ0XPPPafLly8bdfaeAcXzAODacuM+IPE8ALiCpKQkde/eXSEhIZIkDw8PDR8+XEOGDDEFjJcvX9asWbO0bt06o65jx46aPXu2zX1fuHBBXbt2VUxMjCQpKChI06dPN73uvWfPHk2YMMEII/38/PT999+rTJkyNvebn7ExDVxOQkKCpk+fbpQfffRRvf/++0bwIN39rUefPn00d+5cYx24o0eP6ttvv81R39OmTTN+4KhXr54+/fRT4wcO6e4siPbt22vRokXy8/OTJF26dElffPFFjvoFYObM+4DFYtHJkyeNcu3atXPUHgD7Wb9+vXr37m0KHhyB5wHAdeXWfYDnAcA1rFmzxgggpbu/EBg5cqTVDMcyZcpo+vTpGjJkiFG3adMmHTp0yOa+33vvPSOArFChgr744gur9SabN2+uJUuWqHTp0pKk27dva+7cuTb3md8RQsLl/Pjjj/rrr78k3X31cuLEiXJ3T/uvaqtWrdSnTx+j/Pnnn9vc7++//266Qb3xxhvy8fFJ89zatWvrxRdfNMpffPGFaXo2gJxx1n1Aks6dO2c8bHh5ealGjRo5ag9Azl2+fFnjxo3Tq6++muH6jPbA8wDgmnLzPiDxPAC4ivXr1xvHrVq1UteuXTM8f+zYsUYgKN19NdsWly9f1ubNm03tBgYGpnlu2bJl9frrrxvlNWvWZLh+ZEFGCAmX89133xnHLVq0UPny5TM8P2X4cPToUV24cCHH/daoUUONGjXK8PynnnrKmH117do17du3z6Z+AVhz1n1AMq//VK1aNXl7e9vcFoCcmzdvnjp27Gh6vap69eoaNmyYQ/rjeQBwPbl9H5B4HgBcQXx8vA4cOGCUn3jiiUyv8fb2VqtWrYzyH3/8YVPfmzdvNjbGLFKkiDp06JDh+e3atTNCysTERG3ZssWmfvM7Qki4FIvFor179xrlli1bZnpNcHCwSpUqZZRtXQvml19+yVa/AQEBql+/vlHetm2bTf0CMHPmfUCSTpw4YRzz6hXgfAsXLjRmI0lSr169tHLlSlWpUsUh/fE8ALie3L4PSDwPAK4gPDxchQoVMspZnZFcrFgx4/je2s3ZlfJ5oGnTpvLy8srwfA8PDz344INGmeeBtBFCwqWEh4fr5s2bRjnlQ31GgoODjWNbftORkJCg06dPG+Ws7m6Z034BWHPWfeCelDMf+KEDcB3169fXl19+qcmTJ+d4p8v08DwAuLbcuA/cw/MA4HzVqlXTwYMH9dtvv2njxo0KCgrK0nX3NomRbN+tPuWasFl9Hkh5r+B5IG2ezh4AkNLZs2dN5ZSLwGekYsWKxvH58+ez3W9YWJgSEhKMclZ/q5rTfgFYc9Z94J6UP3QEBwfrxIkTWr16tfbu3auwsDAlJiaqZMmSatiwoTp16qR27drleDduAOlr2rSpevTooccee8zh/9Z4HgBcU27eB+7heQBwHUWKFFGRIkWydG50dLR+/vlno2zLeq7x8fHG+vSSbc8Dly9fVmxsbLrrShdUhJBwKVeuXDGO3d3dTTvhZiTla5gp27Cl39TtZbXfyMhIJScnp7t5BoCscdZ9QLq7nltERIRR/vTTT02vYtwTHh6u8PBwfffdd6pfv77ee++9LIelALLno48+yrW+eB4AXFNu3gckngeAvGzhwoWKjo42yo8++mi227hy5YosFotRzurzQOqfW65cuaJKlSplu//8jKcjuJQbN24Yx35+fll+gE/5OkbKNmzpV5KKFi2apetS/jbGYrGYXiEFYBtn3Qck86wH6e+1YHx9fVW7dm01bdpUVatWNZ1z5MgR9erVS8eOHbOpTwCug+cBABLPA0BedfjwYS1YsMAoV61aVW3atMl2O/Z4HpDE80AamAkJlxIXF2ccZ2facsrd6uLj43PUb3b6Tr04bep2AGSfs+4DkvUPHf7+/ho7dqy6d+8uPz8/oz4sLEwffPCB1q9fL0mKiorSCy+8oLVr16p48eI29Q3A+XgeACDxPADkRWFhYXrhhRdMy6q89tpr8vTMfuyV+v/xlJvjZCTlzyNptQNmQsLFpLxhZOc1ppQ3lsTExGz3m/qarPad+oaWlJSU7b4BmDnrPiCZ16MsXry4Vq1apf79+5t+4JDurvfyzjvvaOTIkUbdxYsXNX/+fJv6BeAaeB4AIPE8AOQ1Fy9e1KBBg0zLqgwePNimV7El6+cBDw+PLF2X+jyeB6wRQsKlpPxHm5ycnOXrUt4kUs9GyIrUP2Rkte/UNydb+gZg5qz7gCRNnjxZ+/bt0+rVq7V06VJVq1Ytw/NffPFFNWrUyCgvX77c5lmYAJyP5wEAEs8DQF4SGhqqvn37KiwszKhr1aqVXn75ZZvbTP08kNUwMfV5PA9YI4SES/H19TWOszN1OeV/8lmdKp1ev9npO/XDhS19AzBz1n3gnoCAANWvXz/THzgkyc3NTQMHDjTKd+7c0f79+23uG4Bz8TwA4B6eBwDXd+DAAfXv318XL1406po3b665c+fmKABM/TyQ1V8q2Poad0FCCAmXEhAQYBzfvn3btCNVRlLuflWsWLEc9Zu6vaz26+npabUQLYDsc9Z9wFaNGzc2lVO+wgUgb+F5AICteB4Actc333yjQYMG6fr160Zd69at9fHHH1uFiNllj+cBKXd/JskrCCHhUsqUKWMcJyUlmW4oGUm59kPJkiVz1K8kXb16Ndv9BgYGys3NLdt9AzBz1n3AViVKlDCVbd2ZG4Dz8TwAwFY8DwC5Z86cOXr55ZdNMxS7du2qjz76KFsbW6anVKlSpleys/o8kPI8Nzc3q/sCCCHhYqpUqWIqX7hwIUvXpVz/ISuvTKRWvnx503RtW/qtWrVqtvsFYM1Z9wFbpX49I/Wi9QDyDp4HANiK5wHA8RISEvTqq69q7ty5pvqhQ4fqnXfesWkn7LR4e3urXLlyRvn8+fNZui7lc0P58uWtdssGISRcTIUKFUxTlo8fP56l606cOGEc165dO9v9enl5KSgoKNv9pjyvTp062e4XgDVn3QfCw8P17rvvavz48Xr++edN7WUkdUiR8oEFQN7C8wAAngcA1xQfH68RI0Zo/fr1Rp2np6cmT56ssWPH2v0thPr16xvHWb0P8DyQOUJIuJxmzZoZx7t37870/BMnTpimPTdv3jxX+o2KitKxY8dy3C8Aa864D1gsFn366adas2aNtm/frl27dmXpup07dxrHbm5uVmtCAchbeB4ACjaeBwDXk5iYqFGjRumnn34y6vz8/PTxxx+rV69eDumzadOmxvHevXuVnJyc4flJSUnau3evUeZ5IG2EkHA57du3N463bdumy5cvZ3j+0qVLjeMaNWooODg4x/0eOXJER44cyfD8FStWKDExUdLdhWtbtGhhU78ArDnjPlCxYkVVqFDBKK9Zs0ZJSUkZXhMdHa2vvvrKKLdq1UqBgYHZ7huA6+B5ACjYeB4AXM+7776rbdu2GeXAwEB9+eWXatWqlcP6bNu2rTw8PCTdXevxxx9/zPD8zZs369q1a5LuztBM+TyBvxFCwuW0b99epUuXlnR3yvVrr71mPNyntnPnTq1cudIoDxw40OZ+GzVqpHr16hnl8ePHp7sL1vHjxzVv3jyj3Lt3b7ssgAvgLmfdB5566injODQ0VPPnz0/33ISEBL322mtGQOrm5qZhw4bZ3DcA18DzAACeBwDXsX37dn3xxRdGOSAgQIsXLzb9X+0IZcuW1WOPPWaUp0yZku7EiIsXL2rq1KlGuX379lab3eEuQki4HG9vb40dO9Yo7969W//3f/9nWmclMTFRK1as0MiRI43fTAYFBaU7FbtNmzYKDg5WcHCw2rRpk27f48aNM9aSCAkJ0cCBA03rP1gsFv3www8aPHiwYmJiJN3dOWvo0KG2f8EArDjrPjBkyBDT7IcPPvhAkydPttqh+/jx4xoyZIjpN6IDBgxQkyZNsv/FAsg1PA8A4HkAyDuSkpI0ZcoUWSwWSXdD/pkzZ6pWrVo5anfgwIHGfSCjN6jGjBmjQoUKSZIuX76sfv36ad++faZz9u7dq/79++vKlSuSpMKFC5t+joGZfbYOAuzsySef1MGDB7V8+XJJdwOI9u3bKzg4WP7+/goNDTWmOktSsWLFNHv27BzvhtWsWTONGTNGs2bNkiQdO3ZM3bp1U82aNRUYGKhz586Zfvvh4+Oj999/X0WKFMlRvwCsOeM+4Ovrq48//lgDBgxQVFSUJOnLL7/UsmXLFBQUJH9/f128eNFqh7wnnnhC48ePt7lfAK6F5wGgYON5AHANmzZt0rlz54yyr6+vFi1apEWLFmW5jZIlS2r69Ok29V+9enVNnjxZ48aNU3JyssLCwjRw4EBVrlxZZcuW1cWLF02TJNzd3TVlyhRVqlTJpv4KAkJIuKz//ve/Kl68uBYuXKiEhAQlJyenuUtljRo1NHv2bFWvXt0u/Q4dOlR+fn6aOXOmMbvh1KlTVueVLVtWM2bM4DedgAM54z5Qq1YtrVq1Sq+88ooOHjwo6e6rVkePHrU618fHR8OGDdPzzz9vrBkDIH/geQAo2HgeAJxv06ZNpnJMTEyWN4u6J+WsZlt07dpV3t7eevPNN41fSpw/f97qlxABAQF666231KFDhxz1l98RQsJlubm5acyYMeratatWrVqlXbt26dKlS7pz544CAgJUp04ddezY0bgp2NOAAQPUtm1brVixQtu3b1dYWJiio6Pl7++voKAgtW3bVj179pS/v79d+wVg5qz7QKVKlbRs2TL9/PPP+vbbb3Xo0CFFREQoLi5OgYGBqlSpklq3bq0uXbqoXLlydusXgGvheQAo2HgeAJzr9OnTzh6CJKljx45q3ry5Vq5cqa1bt+rcuXO6ceOGChcurBo1aqh169bq06cPG1JlgZvl3sv1AAAAAAAAAOAAbEwDAAAAAAAAwKEIIQEAAAAAAAA4FCEkAAAAAAAAAIcihAQAAAAAAADgUISQAAAAAAAAAByKEBIAAAAAAACAQxFCAgAAAAAAAHAoQkgAAAAAAAAADkUICQAAAAAAAMChCCEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEN5OnsAAAAArqBNmzYKDw/PcTuLFy9Ws2bN7DAiIPfExcXpqaeeUkhIiAYNGqQJEyYYn+3du1dPP/20UT558mSO+goODjaOR4wYoZEjR2a7jTlz5mju3Ll2G1NmRo0apc2bN6t58+b6/PPP5e7OXA4AALKL/z0BAACAAm7atGkKCQlRyZIlNWrUKGcPx+WMGzdOPj4+2rNnjz799FNnDwcAgDyJmZAAAACplC5dWkFBQTZdGxAQYOfRAI61Y8cOLV26VJI0evRo+fv7O3lErqdChQoaMmSI5s2bp9mzZ+vhhx9W7dq1nT0sAADyFEJIAACAVFq2bKm3337b2cMAHC42NlaTJk2SJAUFBalnz55OHpHrev7557Vy5UpdvXpVb775ppYuXcpr2QAAZAP/awIAAAAF1Mcff6wLFy5IksaMGUOoloHChQtr2LBhkqRDhw5p1apVTh4RAAB5C08ZAAAAQAEUGRmpRYsWSZJq1qypNm3aOHdAeUDv3r1VrFgxSdLcuXMVFxfn3AEBAJCHEEICAAAABdAnn3yimJgYSXfDNWSuUKFC6t69uyTp8uXLxlqaAAAgc6wJCQAA4ECvvfaa1q5dK0maP3++WrdurcWLF2v58uUKCwtT0aJFVb16dXXs2FH9+/e3uv727dtat26dtm/frj///FORkZHy9vZWqVKl1KRJE3Xq1EktWrTI1ph++eUXrV69WgcOHFBERIT8/PxUuXJlderUSb1795a/v7+++uorvfXWW5KkESNGaOTIkaY21qxZo/Hjx0u6u2nH1q1bM+23TZs2Cg8Pl3R3N+YePXpkeH54eLjWrl2rXbt2KSwsTFFRUfL391f58uXVokULPfnkk6pRo0aGbcyZM0dz586VJL3xxhsaMGCA4uPjtX79em3atEmhoaG6evWqihQpomrVqqlNmzbq06ePihQpkunXc8++ffv07bff6sCBAwoPD1dCQoICAgIUFBSk1q1bq0ePHipatKjpmkmTJunrr7+WdHczo127dsnb2zvTvr744gtNnTpVklS1alVt3rw5y+NMKTo6WitXrpRkDtZyIikpSWPGjDGNadCgQZowYUKO286ulH/utsjo72fv3r2NGaSLFy/W008/zWvsAABkASEkAABALvr3v/+t1atXG+WrV6/q6tWrCg4Otjp3w4YNevvttxUZGWmqj4uL061bt3T69GmtWLFCzZs31/Tp01W2bNkM+46MjNS4ceO0c+dOU31UVJSioqJ0+PBhLVmyRB988EEOvsKcS0pK0vvvv69FixYpPj7e9Nn169d1/fp1HT16VJ999pl69+6tCRMmZCnAk6QTJ07oX//6l06dOmWqv3btmq5du6b9+/dr4cKFmjFjhlq2bJlhW+fPn9frr7+uffv2WX1278919+7dmj9/viZPnqy2bdsanz/55JNGCHnjxg3t2LHD9Hl61q9fb2rDVuvXr9ft27clSc2aNcvxru4Wi0Xjx483BZCDBw82gur8pEaNGqpZs6ZOnTql8PBwbdu2TY899pizhwUAgMsjhAQAAMgla9euTXfmWteuXU3luXPnas6cOaa68uXLq2LFioqLi1NoaKiio6MlSXv27FGvXr20aNGidGcGRkZGql+/fjp79qxR5+XlpeDgYPn4+OjUqVOKiorShQsX9Oyzz9plZpwt4uPj9cILL5iCUjc3N9WoUUMlS5bUzZs3FRISosTERCUlJWnp0qUKCQnRp59+qsKFC2fY9tmzZzV37lxdv35dklSiRAlVr15dsbGxCg0NNV5NvnbtmoYPH661a9em+/08ceKEBg0apKioKKPOy8tLQUFBKly4sM6ePasrV65Iuhucjho1SrNmzVLHjh0lSQ0aNFBQUJBCQkIk3Q2cMwshQ0NDdfToUUmSu7t7jv6MNmzYYBw/8sgjNrdzz5tvvmkKSIcMGaLXXnstx+3aqnLlymrVqlWWz//ll1+UlJQk6e7M0Lp162Z4/sMPP2wE2Rs2bCCEBAAgCwghAQAAcsm9APLxxx/XiBEjVK5cOZ06dUpbtmzRfffdZ5y3ceNGUwD5wAMPaPz48WrQoIFRFx8fr2+//VbTp09XVFSUIiIiNGLECK1atUp+fn5WfY8fP94UQPbq1Uv/+te/VLx4cUlSQkKC1q5dq2nTpunatWvG66a5bfLkyaYAslevXhoxYoRplueNGze0cOFCLViwQMnJydq/f78mTpyoGTNmZNj2l19+KeluQPXvf/9bDz/8sNzc3CTdfT15zpw5xtcdFxenOXPm6P3337dqJyYmRi+++KIRQHp4eGjYsGEaMmSI6TXuLVu26L///a8iIiKUlJSk119/XQ888IBKlSol6e5MxunTp0uStm3bplu3bmX4Gvi6deuM4xYtWmQ68zU9ERER+v33301t5cS0adO0fPlyo+zsAFKSunXrpm7dumXp3Pfee0+7du0yypMmTVLt2rUzvKZly5b67LPPJEk7d+5UfHx8lmfjAgBQUBFCAgAA5KI2bdpo1qxZRvh13333mQLI6Oho/ec//zHKjz32mD744AN5epof27y9vdWjRw81bNhQffv21Y0bN3T69GktWLBAo0ePNp27e/dubd++3Sg/88wzGjdunOkcLy8v9e7dWzVr1tSgQYOsXoPODb/99pspzHr11Vf17LPPWp0XEBCgsWPHKjg4WGPHjpUkffPNN+rZs6cefPDBDPuoWLGiVqxYYYSv9/j7+2v8+PG6cuWKNm7cKEnavn17muHSokWLFBYWZpRnzJihxx9/3Kqvtm3bqly5curXr59iY2MVHR2tr776SmPGjJF0d/brzJkzlZiYqPj4eG3atEm9evVKc9wWi0XffPONUe7Zs2eGX2dG9u7dK4vFIkny9fVVlSpVbG7r3mvz96T1dysjGzZs0KFDh7Ld7/nz57N9TVrWr1+v+fPnG+VnnnkmSzNM69SpYxzfvn1bhw8fVpMmTewyJgAA8itCSAAAgFTWrl1rbCaTVYsXL1azZs0yPW/48OFGAJmWVatW6ebNm5KkIkWKaOrUqVYBZEo1atTQSy+9pEmTJkmSli5dqmHDhsnHx8c4J+UOvpUqVTJCsLQ0btxYI0aM0KxZszL9Wuxt4cKFxvEDDzyQZgCZUufOnfXDDz9o06ZNkqTPPvss0xBy1KhRVgFkSn379jVCyJiYGF24cMH0SnZycrIpKO3cuXOaAeQ99erVU5cuXYxNYH744Qfj+1+yZEk99NBD2rZtm6S7QWp6IeTevXt18eJFSXdD2KysH5melLMga9asafOmKp988onmzZtnlLMbQEp3w0R7BYrZtX//fv373/82yg8//LBeeeWVLF1bokQJlShRwliv9ffffyeEBAAgE2zjBgAAkEv8/PxUv379DM9JuWbko48+qmLFimXabpcuXeTh4SHp7iYzKWeWJSQkmF417dGjR6avjfbr10++vr6Z9mtPsbGxptews7rpSspZa7/88ovi4uLSPdfd3T3Ttftq1qxpKt+6dctUPnbsmC5dumSU+/btm+kYn376ab3yyiv66KOP9OGHH5o+S/l1/vrrr6a2U0q53mLnzp1z9OpvaGiocVyrVi2b2li8eLFmzpxplG0JIJ0pLCxMI0aMMGb8Vq9eXbNmzcpWIBsUFGQcp97oCAAAWGMmJAAAQCqlS5c2BQxZkZXdhYOCgjIMOeLj43XkyBGjnN6mKKkVLVpUlStX1pkzZyRJBw4cUPPmzSXJtOGKpCzN1ipSpIgaN26sn3/+OUv928Phw4eVkJBglLP6tacMdRMSEvTHH3+k+zVWrFhR/v7+GbZXtGhRUznlmO6N8x4vLy81bNgw0zEGBQWl+/fpXtAcFRWl5ORkffvtt3ruuedM58TGxprC6Zzsii3J9Cp5iRIlsn39ypUrNXXqVKMcFBRkcwA5YsQIjRw5MtvXzZkzR3PnzrWpz+joaA0bNkzXrl2TdPfPfN68eRmux5mWlN+7lN9TAACQNkJIAACAVFq2bKm3337b7u0GBgZm+PmlS5dMazG+9957eu+997Ldz+XLl43j8PBw02dVq1bNUhvBwcG5GkKeO3fOVM7KDMO0REREpPtZVmaV3ptRek9ycrKpfOHCBeO4QoUKOd6MxNvbW126dDE2zdmwYYNVCLllyxbdvn1b0t2ZiynXELXFvd3BJWU7eJOkiRMnGmtKSlJISIg2b96sDh065GhcuSEpKUmjR4/Wn3/+Kenun/d7772X5X8XKaUMtFPukg4AANLG69gAAAC5JLNZeDdu3LBLPynbiY6ONn2W1dApo3UTHeHeOpg5lVEYlHKdTFul/H7aEuClJeXMxpMnTyokJMT0ecpXsXv06JHj/u7cuWMcZ/Z3Mi33gtmUr+y/9dZbdvv760jTpk0zvfb/6quvqlWrVja1lfLPP+VsYwAAkDZmQgIAAOSSzNabS0xMNJUbNGiQpde8U0u5rmGhQoVMn6WcwZaRnM7wy67UX7utwVDp0qXtMZx0ZbSpkK3q1aun4OBgnTx5UtLdDWr+9a9/SZKuXr1qzEj19PRU165dc9xfyq/B1k1p/vnPf6pr167q37+/LBaLrly5omnTpjlkBrG9LFmyxJhxKt0NdAcPHmxzeylnzdr6fQQAoCAhhAQAAHARqdcjfOGFF9SmTZsctZk6xLx165YKFy6c6XWpZ1BmJKvBZkabxqT+2mfPnm3TLD1HSznO1JvW5ESPHj00bdo0SdLGjRuNEPK7775TUlKSpLu7N5csWTLHffn5+RkzRmNjY7N9ff/+/fXGG2/Izc1NvXv3NnYLX7t2rTp37qyHHnoox2O0t59//llTpkwxyvfff7/++9//5qjNlLMf/fz8ctQWAAAFAb+yAwAAcBFlypQxzVK7ePFijtusUqWKqZzVXXzPnz+f4ecpx5l685a0JCcnZ/i6bpkyZUxle3ztjpBynOHh4Vn62iVp+fLl2rFjh86cOZPmNV26dJGnp6fR7vHjxyXdXQ/ynp49e+Zk6IaUa2PaspbhxIkTjT//l19+WaVKlTI+e/PNN431K11FaGioRo8ebcy2LVu2rObOnZvj2b4p/z7bMmMZAICChhASAADARfj7+6tWrVpGec+ePVm6LiEhQRMmTNB7772n5cuXm4LG8uXLq3z58kb5l19+ybQ9i8Wi/fv3Z3hOygAnK6FTeuHbPffff78p2Mzq137q1ClNmDBBH374odatW2fseOwoKXfDvrcbd2YuXLigiRMn6v/+7//UsWNHhYaGWp1TokQJPfzww0Z5y5YtunnzpvHnEBgYqNatW9vhK5AqV65sHP/11185aqto0aKaMGGCUQ4PD9fMmTNz1KY9Xb9+XcOGDTPWHPXx8dGHH35oCk5tlfJ7Z8vGNgAAFDSEkAAAAC7kkUceMY63bt1q2o05PevXr9fq1as1f/58TZw40Srk6tixo3G8Zs2aTF+13rlzp8LCwjI8J+VsupiYmEzDrI0bN2b4eWBgoCng+/rrr7M0y/CTTz7R6tWr9cEHH2jChAlWu1nbW926dU2vRK9cuTLTa1J+7YGBgQoKCkrzvJQzHf/3v/9p+/btxuy9rl27ysvLy9Zhm9SoUcM4Tr0ruS0ef/xxU0C6ZMkS/fbbbzluN6cSEhI0cuRI06zeqVOnqn79+nZpP+X3rnr16nZpEwCA/IwQEgAAwIUMGDDACJsSExM1evToDEPDsLAwzZgxwyiXK1dOjz76qOmcp59+2mgzMjJSEydOTDesi4yM1H/+859MxxkcHGyauZhyw4/UTpw4oYULF2ba5jPPPGMcnzlzRm+99VaG601u3bpVGzZsMMrt27e3y5qJGfH09FTfvn2N8tq1a7Vjx450zw8PDzd97U899VS6m5i0bt1agYGBkqTjx4/r66+/Nj5LuYN2TjVu3Ng4PnnypLHmZE68+eabxlqjFotFr7/+eoZrgOaGiRMn6tdffzXKL774ojp37myXtiMiIhQREWGUmzRpYpd2AQDIzwghAQAAXEiZMmU0evRoo3zkyBH17t1bu3btMgVySUlJ2rBhg/r166fr168b9a+++qrVWnflypXTyy+/bJQ3btyoYcOGWc2y3Lt3r/r27avw8PBMx1myZElTmPX555/rk08+UXx8vFEXGxurpUuXqm/fvoqNjTXWPExP+/btTTNBly9frqFDh1qtYxkdHa158+Zp1KhRxvekcOHCGjt2bKbjtofBgwcbr99aLBaNGDFCixYtstrkZffu3Ro4cKDxKnCpUqX03HPPpduul5eXnnjiCaN88OBBSXd3z65du7bdxt+0aVMjQI6NjdWJEydy3GaFChU0cuRIo3z27FnNmTMnx+3aasGCBVqzZo1R7tatm0aNGmW39g8fPmwcFytWTHXq1LFb2wAA5Ffsjg0AAOBinnvuOZ05c0arVq2SdHdjjWeffVYlSpRQtWrVFB8fr3Pnzllt9PL888/r8ccfT7PNwYMH6/Tp08ZOxtu3b9eOHTtUq1YtFS9eXGFhYUb46O3trYCAAF25ciXDcY4dO1ZPP/20kpKSZLFYNHPmTC1YsEA1atRQQkKCzpw5Y6wXWbduXd1///1asmRJuu25ubnpnXfe0ZAhQ3T06FFjnNu3b1flypVVtmxZRUVF6fz586bAz8vLSzNmzDCtdehI/v7++uCDDzRkyBBFRkYqLi5O06ZN0+zZsxUUFKRChQrp3LlzunTpknGNr6+v3n///Uw3MOnZs6cWL15squvRo4ddx1+sWDE1adLEmCW4a9cu1atXL8ftDho0SN98842OHTsmSfrss8/UqVMnu7SdHSdPntSsWbOMsqenpzw8PDR27FjFxsYqMTExS7M/M5q9u3PnTuO4TZs26c5uBQAAfyOEBAAAcEFTpkxRcHCw5syZY8yki4yMVGRkpNW5/v7+euWVV/TPf/4zwzYnTZqkihUr6sMPP1RsbKwsFotCQkJM5xQrVkzTp0/XwoULMw0hmzRpolmzZumNN94wxnjz5k1jBt89jzzyiKZNm6bPPvss0687ICBAS5Ys0dSpU7Vq1SojLDp//nyaO3ZXqVJFU6dOzfXXYYODg7VixQq9+uqrxuYxMTExOnTokNW5VatW1YwZM9SgQYNM261du7bq1Klj7I7t7e1tmh1pL926dTNCyJ9++klDhw7NcZseHh6aNGmSevfureTkZCUlJWnChAlavXp1prNg7SkqKsq03EBiYqJpVqQ9pAwh7fmqPAAA+RkhJAAAgIt6+umn1b17d61bt04///yzQkJCdO3aNSUnJysgIEDBwcF66KGH1K1bNxUvXjxLbT7//PPq3LmzVqxYoZ9++knh4eFKSkpSxYoV1a5dO/Xv318lSpTI0hqO0t1Nb5o2barly5dr27ZtOnfunGJiYlSqVCk1aNBA3bt3t1qjMjM+Pj6aNGmSnn32Wa1fv1579uzR+fPnFRUVJU9PT5UsWVL16tVTu3bt1L59e6vXz3NLxYoVtWTJEu3cuVObNm3S/v37deXKFcXFxal48eKqV6+eOnTooM6dO2drjO3atTNCyDZt2pg2AbKXTp06afr06bp165YOHjyo8PBwVahQIcftNmjQQAMGDDBmc544cUKffPKJXnjhhRy37Sr2799vzBquVq2a/vGPfzh5RAAA5A1uloxW+wYAAECBNHDgQO3bt0+SNGLECNN6f3Cs5557zphpt3DhQrVq1coh/bz77rv69NNPJUmjR4/W8OHDHdJPfjNx4kRjWYPJkyerV69eTh4RAAB5A4uXAAAAAC4iIiJCu3fvliRVqlRJLVu2dFhfgwcPlq+vryRp2bJlSkxMdFhf+UVUVJSxI3u5cuXUrVs3J48IAIC8gxASAAAAcBHLli0z1sHs27evsYu1I5QqVUqDBw+WJF26dEnff/+9w/rKL1asWKE7d+5Ikl566SWnLQUAAEBeRAgJAAAAuICtW7dqwYIFku5u0NOnTx+H9/ncc8+pdOnSkqSPPvooS7tGF1TR0dHG5kr16tVjFiQAANlECAkAAAA4wXfffacuXbpo0KBB6tChg4YPH674+HhJ0quvvip/f3+Hj8Hf319vvvmmJOn06dNat26dw/vMqxYtWqTr16/Lw8NDb731ltzd+VEKAIDs4H9OAAAAwAkqVqyokJAQ7dmzR2fPnjXq+/Tpo6eeeirXxtG2bVtjVt/777+v6OjoXOs7r7h06ZKxY/zQoUNVr149J48IAIC8hxASAAAAcIJq1aqpYcOGKly4sPz8/NSwYUNNnz5dkyZNyvWx/Oc//1GNGjUUERGhOXPm5Hr/rm7q1KmKiYlR06ZNNWLECGcPBwCAPMnNYrFYnD0IAAAAAAAAAPkXMyEBAAAAAAAAOBQhJAAAAAAAAACHIoQEAAAAAAAA4FCEkAAAAAAAAAAcihASAAAAAAAAgEMRQgIAAAAAAABwKEJIAAAAAAAAAA5FCAkAAAAAAADAoQghAQAAAAAAADgUISQAAAAAAAAAhyKEBAAAAAAAAOBQhJAAAAAAAAAAHIoQEgAAAAAAAIBD/T/jAgsX9hP/ogAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 300\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime, limit_k=250)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAAPoCAYAAADOflDyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZzT1P7/8XeHYWQHuYwg7oCALCIuyEV/XPVy0cvVe6+CuKLcK9cF71fFBVxREUEQubgBLijIIgIi4i4oiqiIyi6b7CAwDDszMMzW3x9xSjvTmaZt0iTt6/l48KDpJOd8miYnyafJOT6/3+8XAAAAAAAAANggzekAAAAAAAAAACQvEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA26Ymq6Pnnn9fIkSN1wgkn6Msvv0xUtZo2bZoeeeQRSdLq1aujXn7p0qWaOnWqfvzxR2VlZcnv96t+/fpq2bKl/vGPf6hjx47y+Xymy/P7/Zo9e7ZmzpypZcuWaffu3apatarq16+v9u3bq2vXrmrevHnUcQIAAAAAAABu5PP7/X67K1m6dKmuv/56FRQUJDQBuXXrVl155ZU6cOCApOgSkAUFBXrqqaf0zjvvVDjfhRdeqMGDB+u4446LWGZWVpb69Omjn3/+udx5fD6fevbsqXvvvVcZGRmm4wUAAAAAAADcyPYE5JYtW3TdddcpOztbkhKWgNyzZ49uvPFGrVu3LvCe2QSk3+/Xf//7X82ePTvw3jHHHKNmzZqpUqVK+vXXX5WTkxP4W6NGjfTOO++oVq1aFcZzzTXXaPPmzYH36tSpoyZNmujw4cNavXq1CgsLA3/729/+puHDh5uK12qlE6RpaTypDwAAAAAAkIqKi4tDps8555yoy7D1Eew1a9aoV69egeRjomzfvl233nprSPIxGm+88UZI8vH666/Xvffeq5o1a0qS8vLyNHbsWL344osqLCzU+vXr9fDDD+ull14qt8yHHnookHw85phj9NBDD+nqq69WerrxFWRnZ2vQoEH6+OOPJUkfffSRzjrrLN10000xfQYrld7QAAAAAAAAALNsu7Xt/fffV/fu3ZWVlWVXFWHNmzdPV155pdasWRPT8nv27NHLL78cmL7uuuv0+OOPB5KPklSlShXdfvvtGjBgQOC9WbNmaeHChWHL/Oabb/TVV18Fpp955hldd911geSjJGVmZup///uf/vnPfwbeGzlyZMidlgAAAAAAAIDXWH4HZFZWloYPH64ZM2ZYXXSFDhw4oJEjR2rcuHFx3bE3bdo05ebmSjIeke7bt2+583bt2lWff/55ILn45ptv6uyzzy4z37hx4wKvL7zwQnXp0qXcMh9//HF988032r17t/bu3av33ntPPXr0iPHTWCMZHsEO3iaS4fMAiB7tAACJtgAA7QAA2oFoWfFkrKUJyFGjRunVV1/VoUOHAu81atRInTt31ujRo62sKsTUqVM1bNgw7du3L/BeZmambr75Zg0bNiyqsj755JPA67/+9a+qVq1ahfNfc801gQTk3LlzdejQoZBl9u/fr++++y4w3bVr1wrLq1atmv7+97/rzTfflCR9+umnCU9ApqWlBTautLQ0tW3bNqH1W62wsFBLliwJTLdu3Trk7lMAyY92AIBEWwCAdgAA7UAsFi1aFJInioWlad4xY8aEJB+vvvpqTZ06VaeccoqV1ZQxYcKEkORjp06d9N577+nMM8+Mqpx9+/Zp5cqVgekLL7ww4jLt27dXpUqVJBl9QwYnGyVpwYIFKioqkmSMcH3BBRdELDN4noULF2r//v2m4gcAAAAAAADcxpb7TFu1aqXx48dr4MCBqlGjhh1VhHXqqafqpZde0ssvv6zMzMyol1+9erWCBwVv2bJlxGWqVaumk08+OTC9bNmykL+vWrUq8PrEE09U7dq1I5bZvHnzwOvi4mL98ssvEZcBAAAAAAAA3MjSe0zbtWunq666Sn/+85/l8/msLLpCLVq00L/+9S9dfvnlcd02u3HjxsDrjIwMHX/88aaWO/HEE7VhwwZJCox0Ha5Ms3eCZmZmqkqVKsrLy5Mkbdq0SR06dDC1LAAAAAAAAOAmliYgR44caWVxpg0ePNiScrKzswOvo7mDMnje4DIkaefOnTGV+Yc//EG//fZb2DIBAAAAAAAAr6CXzSDB/UjWrFnT9HLBj5mX7q8xeDqaMoPnPXDggOnl7FBYWOho/fEq6YOzvGkAyY92AIBEWwCAdgAA7YBTSEAGyc/PD7yuUqWK6eUyMjLCliFJR44cibvM4DISrbi4OGR0qGSwfPlyp0MA4DDaAQASbQEA2gEAtAOJYssgNF5VUFAQeB3NsOLB/U6WvlsweDqaMktG1g5XJgAAAAAAAOAVJCCDBCf9iouLTS8XnCCsXLmyJWUG3wJcukwAAAAAAADAK3gEO0jwI9LRPPYcPO8xxxxje5mJlJaWptatWztWvxWKiopCbqlu1apVSGIYQPKjHQAg0RYAoB0AQDsQi2XLlkV1U104JCCD1KlTJ/A6JyfH9HK5ublhy5Ck2rVrx1Rm8Lyly0y04EfMk0GlSpWS7jMBiA7tAACJtgAA7QAA2oFE4RHsIPXr1w+83r17t+nlsrOzA6/r1atnSZnB82ZmZppeDgAAAAAAAHATEpBBTjnllMDrQ4cOadeuXaaW27JlS+D1aaedFvK3U089NfB68+bNpsrbuXOn8vLywpYBAAAAAAAAeAkJyCAtWrSQz+cLTK9cuTLiMrm5uSGJxebNm4f8vWXLloHXmzZt0uHDhyOWGVyvz+dTs2bNIi4DAAAAAAAAuBEJyCA1atRQixYtAtPfffddxGXmz58f6IizUqVKateuXcjfzznnnEBfAkVFRfrhhx8ilhlcb4sWLUL6kQQAAAAAAAC8hARkKZdeemng9cyZMyPesfj2228HXnfo0EG1atUK+XutWrXUvn37wPTkyZMrLC83N1czZ84MTF922WWm4gYAAAAAAADciARkKV27dlXVqlUlSbt27dKAAQPKnXfq1Kn65ptvAtM33XRT2PluuOGGwOs5c+Zo+vTp5Zb5xBNPaM+ePZKkatWqqVu3blHFDwAAAAAAALiJaxOQl1xyiZo1a6ZmzZrpkksuSVi99erVU69evQLT06dP13333RcyKnVeXp5Gjx6txx9/PPBex44d1bFjx7BlXnLJJTr//PMD04899pheeeUVHTlyJPDerl271KdPn5C7H3v37q26deta8rkAAAAAAAAAJ6Q7HYAb3X777Vq2bJm++uorSdKHH36ozz77TM2aNVNGRoZ+/fVXHTx4MDD/iSeeqCFDhlRY5rPPPqsbbrhBW7ZsUWFhoYYPH67XXntNp59+uvLz87V69WoVFBQE5r/44ot1yy232PL5AAAAAAAAgERx7R2QTkpPT9eLL76obt26BUbFLigo0PLly7Vw4cKQ5GPbtm01adKkiHcq1q9fX+PHj9fZZ58deO/gwYNauHChli9fHpJ87Natm1544QWlpfH1AAAAAAAAwNu4A7IcGRkZevrpp3XNNdfovffe0/z585WVlaX8/HzVrVtXZ555pi6//HJ17tzZdKLw+OOP16RJkzRr1ix9/PHHWrp0qXbt2qW0tDTVr19f55xzjrp3766zzjrL3g8HAAAAAAAAJEhCEpBXXXWVrrrqqqiW+fLLL+Ou9/zzz9fq1avjKuPMM8/UmWeeGXcsJXw+nzp37qzOnTtbViYAAAAAAADgVjzjCwAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAADAXfLypKwsKT/f6UhgARKQAAAAAAAAcI8lS6QWLaQGDaSzz5Z+/dXpiBAnEpAAAAAAAABwjwEDpA0bjNe//CING+ZsPIgbCUgAAAAAAAC4x/TpodOvvupMHLAMCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAALzl55+liROldeucjgQmkIAEAAAAzMjPl3bulI4ccToSAABS29ixUrt20o03SmedJX37rdMRIQISkAAAAEAka9ZIbdtK9etLLVtKy5Y5HREAAKnr3nul4mLjdU6O9OSTzsaDiEhAAgAAAJEMHSqtWGG8XrdOeuopZ+MBACCV7d0bOj1rljNxwDQSkAAAAEAkY8aETk+d6kwcAAAAHkQCEgAAAAAAAIBtSEACAAAAgJstWSK9+660ZYvTkQAAEBMSkAAAAADgVuPGSeecI3XrJp15pvTTT05HBABA1EhAAgAAAIBb9e0rFRUZr/ftkwYPdjQcAABiQQISAAAAANxq587Q6enTnYkDAIA4kIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAADAy4qLpRdekG69VZo61eloAAAAgDJIQAIAAHjZww9Ld98tvfaa1L27NGGC0xEB5i1aJL35prR0qdORAAAAG5GABAAA8LIhQ0Kn//1vZ+IAojVtmtSunbHNnnuu9MEHTkcEAABsQgISAAAgmRQUOB0BYM7990uFhcbrggKpXz9n4wEAALYhAQkAAAAg8TZtCp1eudKZOAAAgO1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAD8/LP0t79JXboYrwEAAAAAlkl3OgAAABx18KB04YVSXp4xPWeOlJUl1arlbFwAAAAAkCS4AxIAkNpeeulo8lEyXr/wgnPxAAAAAECSIQEJAEhtCxaUfe/HHxMfBwAAAAAkKRKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQCpze93OgIAAAAASGokIAEA8IodO6SPP5ZWr3Y6EgAAAAAwjQQkACC1+XxOR2DOokVS69bS3/4mnXmm9M47TkcEAAAAAKaQgAQAwAuGDZN27TJe5+dLjzzibDwAAAAAYBIJSACA/fx+aexY6aabjERaUZHTEXnPpEmh0+vWORMHgORXVCQVFDgdBQAASCLpTgcAAEgBr78u3Xrr0eldu6RnnnEuHgBAeJ9+KvXoYbTTN90kjR4tVa3qdFQAAMDjuAMSAGC/4OSjJA0Z4kwcAIDy+f1Ge13S3cNbb0nvv+9sTAAAICmQgAQAAAAgLVwobdkS+t511zkTCwAASCokIAHATn6/9NRTUuXKUs2a0vjxTkcEALDK9ddLF1+cPG17Xp7TEQAAgCRFAhIA7LRkidS/v1RYKOXkSL16SQcOOB0VAMAKb78tffWV0Vfi7NlORwMAAOBaJCABwE59+oRO5+dLr77qTCzJbNMm6ZtvpL17nY4EQKq6/XanIwAAAHAtEpAAYKetW8u+R5LMWtOnS2ecIXXsKJ15prRypdMRAUhF69Y5HQEAAIBrpSeqoueff14jR47UCSecoC+//NKWOrZv367Jkydr3rx52rRpk/Ly8pSZmalGjRqpS5cu6tKli6pWrVru8tOnT9dDDz0UdxyrV68O+/6AAQM0ceLEqMo6+eSTNWvWrLhjApAA+fnSpElSUZHRaX+1ak5HlBoGDJAOHzZeb90qjRwpvfiiszEBAAAAAAISkoBcunSpXnvtNVvrmDx5sp555hkdLrkI/d22bdu0bds2zZs3T6+++qqGDh2qNm3a2BpLeVasWOFIvQASwO+XLrpI+v57Y/p//5MWLXI0pJSxZEno9EsvkYAEAAAAABexPQG5ZcsW9e7dWwUFBbbVMXbsWA0ePDgw7fP5dPrpp6tOnTrauHGjdu7cKUnauHGjbr75Zk2cOFEtW7YsU079+vV14YUXRlV3dnZ2yB2PF1xwQdj5/H5/yHzt2rVTRkZGxPKPO+64qOIB4JCvvjqafJSkX36R3nvPsXAQBb/f6QgAAACA1HHkiPTQQ9KUKdKpp0pvvCE1bep0VLCZrQnINWvWqFevXsrOzratjsWLF2vo0KGB6fPOO0+DBg3SySefLMlI/M2aNUv9+/fX3r17dfjwYfXu3VuffvppmcexL7jggnITiOEcPnxY11xzTWC6cePGev7558POu2nTJh06dEiSVLlyZb3xxhuqXLmy6boAuNxbb5V97+WXEx8HrOHzOR0BACQebR8AIBEmTDCeGJOk336TevWS5s51NibYzrZBaN5//311795dWVlZdlUhSRo8eLCKiookSS1bttTrr78eSD5Kxt2QnTt31tixY1W9enVJ0o4dOzRu3Li4637yyScDdzVWqVJFzz//vGrWrBl23pVBgyI0btyY5COQyrjjzv34jgAAAAB79OoVOv3NN1JurjOxIGEsT0BmZWWpX79+6tu3b5n+GK22ZMkSLV68ODD92GOPqUqVKmHnbd68ue68887A9Lhx4wKJy1h89tlnei/o8coHH3xQp59+ernzr1q1KiQWACmCu0ncj+8IAAAAcFZhodMRwGaWJiBHjRqlyy67TDNmzAi816hRI91+++1WVhPw8ccfB143btxYbdu2rXD+bt26KT3deOp8z549WrBgQUz17t+/X08++WRgul27drr22msrXCb4DkgSkAAAAAAAAEgVliYgx4wZE+jnUJKuvvpqTZ06VaeccoqV1QR8HzTgg5m+G2vXrq1WrVoFpufMmRNTvc8995x2794tScrIyNDAgQPli3AHDQlIwITdu6VrrjE6IP7Pf7gNHwAAAACAJGBLH5CtWrXS+PHjNXDgQNWoUcOOKlRQUKD169cHpsONah1Os2bNAq+XLVsWdb2rV6/W1KlTA9M9e/aMmGDds2dPYCTu0jEACNKvnzES2q+/Sq+/Lg0Z4nREAAAAABLF75dmzjQGeNy/3+loklt+vvTAA9Lxx0vnnSctX+50REhylo6C3a5dO1111VX685//HPGOwHht3bpVBQUFgWmzd1meeOKJgdebN2+Out5hw4apuLhYkpSZmWnq8fLgux8zMzNVs2ZNffLJJ/rkk0+0dOlS7dq1S9WqVdPxxx+vDh066Oqrr1ajRo2ijg3wvDFjQqefekoaMMCZWAAAAAAk1r/+JZUMGHvaadKPP0p/+IOzMSWrKVOkYcOM1zt2GOv+xx+djQlJzdIE5MiRI60srkLZ2dkh05mZmaaWC55v9+7dKi4uVlqauRtBFy5cqLlBQ8PfeuutgZG1KxKcgExPT9fll1+ujRs3hsyzf/9+7d+/X6tWrdK4cePUo0cPPfDAA4E+KwEAAABbMSgXACf99tvR5KMkbdggvfGGcZcerNejR+j0Tz9JWVlS/frOxOP3O1MvEsaz2a39pW7HrlWrlqnlatasGXjt9/t14MAB1alTx9Syo0ePDrxu0KBBxIFnSgQnILdv3x54nZmZqZNOOkl+v18bNmzQvn37JElFRUUaO3as1q5dq9GjR6ty5cqm6rFLocdHoyo92nk8o5/DXuEaJK9sf2nFxWX6tPD/frd06cu54qIiFXvkc1nFzu/WTNkVtQNpfn+Z767Y73fdd+Tl/QP2YtswL55zAjMnzZ5f7wUFCd2e2HbNYT1Zi2sD9/J99pkqlX6zb18V9unjRDhJL2zbkpOTkDtOy23Xgtq2SG1fPG0j7YAzPJuAPHLkSMh0lSpVTC1XOplXupzyrFmzRl9//XVg+l//+pcyMjJMLbtq1aqQ6datW6tfv34677zzAu8VFxdr3rx5GjRokDZs2CBJmjdvnp5++mk98cQTpuqxQ3FxsZYsWeJY/XZYTt8WrnVOmPe8sv2dsnev6pV6Lyc3V5WPHFHp1ilr505t88jnsoqd320sZQe3A43279expf5+YP9+rXPZd+Tl/QP2YtuIXTTnBOHWc2leX+/V165VuKES7fpcbLvmsJ7sxbWBe9TdskWnhXmf7d0e4dqWlStXKv/3G6MSXffy5ctVFHTDWKS2z8q2kXYgMWwZhCYRSme2zT5GXfqRZrOZ7kmTJgVe16hRQ926dTO1XH5+vrZu3RqYvvTSS/X222+HJB8lI/6OHTtq6tSpOuOMMwLvT548uUwCEwAAAAAAIFn46QYk6Xk2AVk64VgyMEwkpROXZh5vPnz4sGbOnBmY7tq1q+nRvTMyMrRo0SLNmTNH48eP15AhQyqss2bNmnruuecCn8/v9+utt94yVRcAbzh+7Fg1+b//UzV+aUMKqf3VV2p8zz06ZcAApe/d63Q4AAAAABLIs49gV61aNWT6yJEjph6Jzs/PD5k+5phjIi7zxRdfKDc3NzDdtWtXk1Ea0tLS1LBhQzVs2NDU/I0bN1aHDh00b948SdK3334bVX1WSktLU+vWrR2r3wpFRUUht1S3atVKlSqV6V0ELtWmTRunQzAl7djSD/Ead0srJyfs/LW//161fv5ZRb/9JpnshzbZ2Pndli67onYgrXbtMsvXql3bE9ueF2KUJH37rdLvvz8w+YesLBX9foyDPTyzbSSY3ecEnl/vQee7wSz9XH6/dOSIVM569/w6TBDWU+y4NnAvXzmPz7K9J84ZZ5whnXKKI3W3btVKCnNeHizStmB2W6EdiN6yZctM3/hXHs8mIGuX2jBzcnJCBpgpT05QMiA9Pd3UMh999FHgdcuWLdWsWbMoIo3N2WefHUhA7tixQ0eOHDGVLLVDso3EXalSpaT7TMnMM99VmG4gfBEeI/Dl5yv9xRelJ5+0KypXs/O7jVR2SDsQ5ntK8/mU5oFtzzP7R1DyUZJ8P/yg9E2bpMaNHQoo+Xlm23CY1ecEnl/v5cRv2ec6fFj6z3+kiROlunXtrSvJsZ6sw7WBi5STAOL7SZz09PRyjwW2112pUsS6I20LsW4rtAOJ4dlHsOuXGhp+165dppbLzs4OvK5bt27EBEFeXp6+++67wHSXLl2iiDJ29eqFDmexLwEdwQJwwIIFTkcAv9/pCJLfTz+VfW/btsTHAaBidve/9d57RvJRkvbssbcuAN6Tyn0Abt8uXXGF8ePsHXdIhw45HRFgOc8mIBs2bBjSl+KWLVtMLRc8IMypp54acf4ffvhBeXl5gem//OUv5oOMQ+nRuatXr56QegEASu0TYACwyw03OB0BALjT3XdLH34orV8vjR4tvfii0xEBlvNsArJy5cpq2rRpYHrlypWmlgueL3i06fLMnz8/8PrUU0/VKVH2hzB79mwNHDhQ9957r/r27Wt6ueCEaq1atUwPegPAZUhkAQAAAKjI1Kmh0w8+6EwcgI08m4CUpPPPPz/wOvgx6fLs27dPK1asCEy3b98+4jILFy4MvD7zzDOjjNBIeI4fP14fffSRZs6cafpR8XlBnfOfc845UdcLwAV4tNe7+O4AAABSx86d0g8/SCav1wFEz9MJyM6dOwdeL1++PGQUo3CmTJmiwsJCScYgNh06dKhw/oKCAv3yyy+B6VatWkUdY7t27QKv/X6/pk2bFnGZzz//XOvXrw9M//3vf4+6XgAJxp2O3sV3BwAAkLrmzpXOOENq315q2VL68UenI3KOkz/Cc06e9DydgGzbtq1atmwZmH7ooYdCRrkOtnLlSo0aNSow3b17d1WpUqXC8tevX6+CgoLAdOvWraOOsV27diF9Tb766qtau3ZthXX2798/MN2oUaOQRCsAAAAAwGNyc43BRdq3l/r2lUr1+Q85l4AaOvTowFg7d0rDhzsTR6rjCaSk59oE5CWXXKJmzZqpWbNmuuSSS8qdr1+/foGRrNesWaMePXpo1apVgb/7/X59/vnn6tmzpw79PpJUZmambrvttogxrFu3LmT6pJNOivpz+Hw+Pfzww4Hp3Nxc3Xjjjfroo49UXFwceL+goEDvvfeerrvuOu3du1eS0c/lkCFDGA4eAAAAALysXz9jcJEffpCefVYaMsTpiFDio49CpydPdiYOIMl5PrN1/vnnq0+fPhr++68UK1as0D/+8Q81adJEdevW1aZNm5SVlRWYv0qVKhoxYoRq1qwZsezgEbMlYzCYWPzpT3/Sfffdp+eee06StHfvXt17770aMGCATj/9dBUWFmrdunU6cOBAYJnKlStrxIgRMfU7CQAAAESNx98A+7z8cuj0449LQU++AUCy83wCUpJuu+02Va9eXc8991zgLsdwjzk3aNBAw4YN07nnnmuq3OABYzIyMnTMMcfEHOOtt96qhg0basCAAdq/f78kY1CcH8P0L9G4cWM9+eSTOu+882KuD4BLcDEHAAAARMYjuEBSS4oEpCTdeOON6tSpk6ZMmaKvv/5aW7duVU5OjmrUqKGmTZuqU6dO6tq1q2rUqGG6zJJkphT73Y/BLr/8cl100UWaMWOG5s6dq1WrVmnfvn2qVKmSMjMz1aJFC3Xu3FmdOnVSRkZG3PUBSKBYT5hIUCJVcZEBwAmHDkmPPiqtWiX99a/Sf//LsRgAgARISALyqquu0lVXXRXVMl9++WXU9TRo0EB33XWX7rrrrqiXDWfgwIEaOHCgJWWVqFGjhm688UbdeOONlpYLwIW4oAEAwF3++1/pzTeN1598IlWrJt1yi7MxATBw7gwkNdcOQgMAnscdXgAAL0mF41ZJ8rFEr17OxAEACJUKx6AURwISAKxQ3i+2HEgBAAAAACmOBCQAAEg8HrMCAABwFyfPzzg3THokIAHASdwh6Ty+AwAwePHib9ky6ayzpGOPlW67TTp82OmIAABAGCQgAcBOXryYs9q+fU5HED2+NwDwhltvlZYsMY41r74qTZjgdEQAACAMEpAAAPs8+qhUt67TUQDu4/dLzz8vnXaadPbZ0g8/OB0R4D0HDkjz54e+d+utzsQCIH78AOw8ngyCjdKdDgAAkKTWrJGeftrpKAB3+vZb6Z57jNcbN0pXXSVt2SKl8dswYFpBgdMRAACsQvIz6XGWCwBOSuZfevv3dzqC2HECZL9UX8d33BE6vW2b9MUXzsTiJt9/L737rrR7t9ORAAAAwEIkIAEA9ti/3+kIzEnmJDDca/nysu/t2pX4ONxk0CCpQwepWzepTRtpwwanIwIi271bWrdOKix0OhIAAFyNBCSA1LRqldSpk9S2rfTGG9yNBQBOys+XHnnk6PRvv0kjRzoXD5zzySdOR2De1KnSKadITZpIF1/MnbsAAFSABCSA1OP3S3/7m/G44+LF0i23SN9953RUAJC6Nm0q+96wYYmPI9W54Y7w0t0TuJXfLz3wgJSba0zPmydNmmR9PTk51pcJuJUb2iA4h+8/6ZGABJB6vv9eWr8+9L3/+z976uJACgCAeeGS0W60cWPZWO+6y/p6uncvv/6JE6UFC6yvEwAAGzAKNoDUs3172fcWLUp8HACA1PPjj9LSpVK7dlLr1k5Hg1gVF9tfx86d5T+S3qaNdOCA8UPnqFHSbbfZHw9gN7pEApIad0ACAAAAiTBpktS+vdSrl3Tuud7q7xCJl5VV/t8OHDD+9/ule+5JSDiwwTnnGP2SAyABnQJIQAIAAACJcM89R++cy8+XHnrI0XA8j25ODHl5TkeQ3A4dMvoLr15dOuMM6eefrSt74UKpTx/rygMAFyMBCQAAEo/EAVJRdnbo9JIlzsQBwLyJE6U33jASkatWSbffbm35n35qbXlexrkBkNToAxIAnMSJFpJVVpb0yCPSvn1OR+IdPHoEAO5z662h0z/9JO3ZI9Wt60w8gJ04F4GNSEACSD2JSvqZOYC77SCflyc984y0dat0ww3SxRc7HRG8yO+X/vxn6ZdfKp4HAAAvKihwOgIA8BwewQYAKyTLnYw33CA9+aQ0ZoyRQJo3L/ayvLJOSIRZb8GCipOPyWTvXmnLlsSMiJvMvNJeAABi9+OPxrnmHXdUPMgSUhPnAkmPBCQAwLBvnzR9+tFpv1+6917HwnEUJ0DxWbPG6QgSY8oU6aSTpJNPli67TNq/3+mIAABwpw0bpA4dpEmTpNGjpYsu4kdghGJ7SHokIAEAhtKDI0jGL9UAyiouNkYuzc01pmfNkqZNczYmL+OiAwCS25NPSoWFR6dXrZLmznUuHiBYcbFxThe8jcJyJCABwApcPJeVbOtkwgTjTrdTTpGmTnU6Gjht2TJp27bQ93r1ciYWAMnJ7uPo2rVGdyvNmkkDB0pFRfbWh9QW7txp+fLQaZ5AgQMq79ypSh07SjVqSC1aSEuXOh1S0iIBCSD1JOrkhpOo5PHbb1KPHkZff5s3S9ddJ+3aFXt5EyZIV10l3X+/dOiQdXEicez4hZw2A4gO+0x8brhB+vJLo9uMxx6T3n3X6YgAOC0F29XjJk2S74cfjIlff5UefdTZgJIYCUgAAEorfdfJwIGh00VF0rPPxlb2u+8aycz33pOee076979jKwcApk2T/vpX6V//Ct+NRrRS8MIzZe3YYQwYFuyGG5yJBQAc1GDChNA3PvjAmUBSQLrTAQBAUot0McfFnvPMfAfr15d9b/Pm2Oor/ZjuO+9IEydKlSrFVh4A9/D7pZdflubPl9q1k/77XynNht/7N26Ubr9d+uyzo+/9+qs0b571dblZsnX1kUizZpV9j77PAAA2IgEJADCQDE2MffvKvldcTAISSAbPPiv162e8njhRysmRHn7Y2jo2bJDati076vq330qbNhn91AIVefZZqW9fp6MAgFD8qJT0eAQbAOzCQRSpysy2z/5RViqvk2T5AaQk+VjikUesr+PZZ8smH0vs3Gl9fbDGnj3SFVcY23qzZtKSJc7EUVRE8hEA4AgSkABghWS5eIZ5qZwsgvs1aiRVry7dfbeUn+90NLDSqFFOR4BYjB4tffih8XrNGunee52JIyfHmXoBIBKup5IeCUgAgD2S6SQimT5LIphZX6xTe23YYIyw/sILznSm/sknRh+IF1wgffdd4usH3Kb03bBffulMHLAGP0IiWbFtw0b0AQkkysqV0pYt0rnnSnXrOh0NUBYJofJxMgYv697deOwyUbZvl/72t6P7TadOxgjN1asnLgYAAAC4CndAAonwxhtS69bSpZdKbdoYj94A8DYStvCK4uLE1jdwYGjS/vBh6ZVXrCl7xw4jwQnrHDgg/ec/0h//KD3+uNPRRCeZ2uHt26WePaV//vPo3ZH8+IVkwvYMpDwSkIDd/H7poYeO3n2ydSv9NyExdu2SunWTTj1VuuGG8KMvA4DVFi4s+97q1RUvY+bCtF8/6fjjpYYNpT59YovN7daule65x3hct7yBZqx2993S669L8+dLn36amDrtdtxx0rhxTkdhnt9v3Ck8bpz0/vvG6+XLnY4KFUmm5Leb2LVe9+yRVq0yfhCDe5GkTnokIAG75eeXHZVyxAhHQkGKefRR6d13pU2bpEmTpEGDnI4ouXCSBCTOunXS0KFHp0eMMLo2SSZZWVLbttLzzxvtdceOiWlnxo61v45Ey86W/vUv445ZL1iwQFqx4ui03y89+KBz8QB2iCe5ePXVUvv2Rr/G0baLs2dLTZpIZ5whnX22cTwB4AgSkABSjx2/rroxGVX6kcdnn3UmDrcz891xp4Nz/H7pxReNfgyfeSaxfRkicSLtYwMGlH2vf397YnHKsGGhIxQvXSrNnetcPF7n9xtthhesXVv2vY8+sufYw/EMbvLf/0pXXhk5KThtmvTDD8Yd2++9F10djz8u7d1rvF61Sho5MrZYAcSNBCQA2IWTfO/iu4uPlQn5//1PuusuaepUozsLr/VRB2scOmTuPS97662y782fn/g4kslvvzkdAeBtP/1kJAi7d7evD/sZM6Q//9n8ucPNN0dX/nffhU4PHx7d8gAsQwISAOzixrsiERu+S+fcd1/o9NNPOxNHaWwTQGqjDXC/ffuk66+XTjrJGNyndJdIqaKgwBgc7IYbpPHjzW+72dlShw5GgnDqVGOgqvx8e2LctEmaNcvcvMF3iiO5cANA0kt3OgAAsF1hofH48dKl0sUXS5mZ1pXt9xsnYzwWWhYXZ6ljwwZjwIzWraVKlcwtw/YBJLf8fGn0aGNAtJtuMvpgAxJp0CDp7beN11u3GoMTvfqqM7GEG5wrUe655+hjx5MmGf/36BF5uSFDjORliT17jOV79rQ6QsO6dVKdOvaUDcAVuAMSQPJ7+GHj3+TJ0m23le0bMVY5OdK110pVqoR/dE7il7xkkSrfo98vHTliJO3NGjbMSCy0bWuM3JoqdyakyjbhZiSx3a1bN6O/tqeeMtqHZBv4gTbA/Ur3ff3aa87EUVgoXXqpM3VLZfs8/Ne/zC33xRdl37M7kcp+ldrsOK77/caPEdWqSX/4gzRlivV1wDQSkIDdOJA6r/QJ6GefWVPuO+8k10GMbfWoRCc23JBIOXRIuvFGI6F+/PHm9pNDh4w+GYuLjemvvpI+/JBtya327ZMeecRICtnVl5dd2KbMcUNbIhmPU37wwdHpnBx7BoSxertYu9YY8Gj06Oh+iPES9qXEe/dd405gtzD71E7JsT2Y2accALdYtMg49zl82LiLt2dPKTfX6ahSFo9gA0CsevVyOgJ388pFjlfitNu77x59NGvXLun226X16ytePx99VHYgkOuuK/+OYDjH75f+9CejKwpJGjPGSLY0aJC4+p1c3qu8+rlLtrNgr7+e+Dii8euv0tlnH72Le84c44dGIF4bNzodQWzCJSDT4rh/yavtWapJtu+pT5/Q6cOHpTfekO64w5l4Uhx3QAIAEAsrT9DckAS96abQ6Y0bpeXLK14m3MUJYmfnReq8eaFJodzcsneHe40b9hsrWfF5km2dJNKgQaFdSEyZIu3YkZi6y/ve7HocEfFLhfVodQIScEK4c6s9exIeBgy0IAAAIDy7RruUSJSEY+cdYvPnl30vkXeqRvq+2R7gtLFjy763cmXCwwBcI1wCkrY6+fEdw0YkIAHASW46yLspFi9gfcFqGzZEv0w8d+G46Q6eWGJxU/ypyO837qLNzJQaN5Zmz3Y6IgBWCtfG2nkHJG06kPRIQAKAXTiRQqpi23efcAnz4O/pp5+kv/xFuuQS6ZtvEheXWST83eeHH6S+fY0+Y9evl7p3lwoKjL/RBrgX+xLMsvoRbLY9RMKxI+kxCA1gNw62qY3vH4AbVNQW5eYaA9SUDCg0d67R9129eomJDeVz88XYnXeGTu/dK733npGITBQ3rx/A6+gDEoDFaEGAZFRcLC1aJK1e7XQkztq3T+rd2+kokKy48I0vwc76c17Jd/Dqq6GjmRcVSUOGOBNTeVJhe/HaD1YrVpR9b/fuxMdhp0cfDT+it9Ws3L7z86UJE6Rx46S8POvKRSiv7a+x8EIfkH6/NGqU1Ly5dMEF0pIlTkcEL0iFcwqXIgEJJJv8fOnyy6WzzzYOxg8/7HREzune3TgpcYqZkzQOgN7gthNuIFoVPYIdLsGyYIG98ViB/dK9EvXd2F3Pd99J7dpJixfbW49V/H7pooukHj2knj2l9u2lwkJnY8rKMu6q/u03Z+NA9BLdB2Qsvv3WuNlg9Wpjf/373zm3TnaDBhk/lJrFuYKruKwFAVxi40bp9tulO+6QNm2Kr6xEHwTnzJE++eTo9NChUnZ2YmNwg+xsadYsp6PgJMgLzHxHfI/R4WQvdrNm2TP6eKQ+IL3I6/HDG44ckR57rOz7btz+vvxS+v77o9NLlkgffhh7eb/8Il14oXT66caAQ+HuiKvI/PlSy5ZGFw8tWkhffBF7LEi8RD+C7fMZ21w0SncFsXmzkfBG8nrkEWnSJKejQIxIQAKlHT4snXOO9Mor0ujRxms3P8Lyyy/SZ58ZfS9JUq9eoX8vKpLGjEl8XE7bs8fpCMzJzzcuELZudToSBDOTQCPJ5s4LcK/r3Nm44M/NNTe/2e/AybvBrZAK+5ub96dof8h082eJRTxJvE2bpCeeqHgeq7bvN94o+97LL8deXrduxh1ma9caAw599ll0yw8ffvSx/AMHpGeeiT0WJF6iE5BffSUNHBjdMuHu4N+505Jw4GI33eR0BIgRCUigtDFjQpNXu3dLb77pXDwVefVVqU0b6bLLjP/Xrg3/qE2yXQgkk9mzpbPOkho3NvprSibJnjBgv0ptdn7/P/4ozZhhbZm//lr2vURuw5HqSvb2IlbRrpeSUaitdvPN9pSb7H77zTg/e/LJ2Ja3Yx81u00tXy6tWhX63r//HV1dU6eGTs+eHd3ycJbVfUBG2p6nTIm9bCcUFUmDB0t//rN0992hfSkjNpxbJz0SkEBp4X7djeeEya6LKr9feuiho31gbNli3LEJb8rPN/rrjPbxJjdLppMIkiNItFtvtb+OZNhHV6ww7oBJhs8STrSfa/Jke+L45BN7ugbwMjPHheeek/bvtz8WO5Q8WRNsx47ExwG41UsvGefuX34pvfCCdM89TkcEuB4JSMCrcnLKPmb83HPOxILyRZO42rZNWrfOvlgiIcnmHK8mT8rbZrz6eWAfO9qXTz4x+pdr00a69lrvb3dWrKMvv4y/jPJE0+k/DP/7X+LqWrgwcXUhNXBeWLHSCcfXXnMkDMt5/VgKVyMBCQB24QCePPguUVoyXJi5abuON5YpU4xH1+EOybB/uEE067FLF5LEAABXIwEJAACQiipK+rkpOWnWAw84HQFKeHH78bqsLOmjj8q+z3dhD9ar++XlSffe63QUAIKkOx0AACAORUXSpElGH1PXXivVq2dPPStWGKNXVq4s9e8vnXKKPfW4BRcW9uMOKfew4ruYP1965x3pxBPtGwglkvL60J0/X9q4UerYUTruuISGBJvRjoTKybGuLI6D8Po2MHhwYrtBABARCUgg2Xj9ZMEqqXJR0q3b0dFyBw+WliyxPgm5d6903nlHR/f76CNj0KPKla2txylmthW7tyeryvf7pTffNAbOatVK6ttXSnfpoZ62qmJm148V6zHeMubPly680J2Pf44YIfXpY7z+wx8YhRfulGznLH4/AyMGS7bvN1aJXg8DBiS2PsSPc8OkxyPYQGleafiiOYin4omPV77HePz669Hko2QMYvPKK7GXV952MmLE0eSjZDzm9fbbsdcD+4wZI91yi/H9PPKIkYCMR6z7USq2OV5U0fcbzXfYr1/8yUc7tpni4qPJR0navVtpw4dbX4+d3HQs+/XXyPO4KV44Z8kSqXdvp6NwD6/uFxzLAViMBCRgBgdgxMLns3fbCTfaqR2/9n76adn3vv/e+noQv//8J3SaR4+QCHPn2l9HLG3pkSNl3kobP96CYGzi9nONm28OnXZ7vJIziZ/vvkt8nW5TenRgAEgUryb8UwQJSADu9t130rRp0u7dTkeCYGbuhIH3eSHBgNh56STdS7Emq8WLORabcffd1pXlZBcL8bT/y5bFviySF+04EuHqq8vvE7oE26JjSEACZtBIOeeCC4wDSZs2xiACyc7MtlZUJI0aJT32mP3xlOeLLyIf3CNdvKxbZ108dgt3F2iwoiJj4A3aCoPd62Hr1rB3tyFKidxeE1EXCXP75eUdfe2F9s7ObaK8z//TT9aVZQf2E2uwHgF3evfd0Ce12FddhQQkUBqNlDv99pv08stORxEduy4oevY0+lbKzra23Gi3/Y8/jq++p5+Ob/lEifQ9fvWVMfJvRoYxErmVo5AivJNOks49V1q/3royV60y+lD96ivryoxHIo5FXkggRcPk5zlm82b5nBqpO9lxDuU+sX4nydY+IHXQDsUnGdaflXeiw1IkIAG4w48/Rp5n2DD743C7vXulCRPsKbu8i43yTkTifQz7zTfjWz5R1qyp+O+9e0s7dhivp0xhgJ5EWb7cGCDJCt9+K51zjnT77dLFF0svvGBNufFI5CjYiSjXRRc0ra66Ss3+/W+l79rldCiRkQQCgOR14ID03/9KV1zhdCQVy8kxnj7Jz3c6EnPiHRgPtiEBCZTGyX7iFRRIl15qbZluudi1envavNna8hD5OyosLH+5rVullStD37/1VmviSiV790q9ekl/+Yv02mvm95sXX7Sm/v79Q0d6T5VfzkvWs1vay4pYHGP1lStVb+ZMS8uEhdaskRYtir+rD7PKa+cTxQv7YDSS7fMgdl99JTVtKtWvLx0+nJg6vXQtd+ONxhNeH37odCTlmzdPatLEePqkfXt7r0W89N0hJiQgATPiOZHyWkNaXGz08ZTIX46mTDESEIBbmN3nU/0xTqsuMnv0kMaMkWbPNhK406dbU65Z4UaUj8RrbXs4yfAZ4nDCyJFOhxBZtPuY3YmfRN2Z26yZdPbZ0mWXhfY7aZeLLop+GZJsMCtR28rBg+4aKKqw0OjH/ddfpZ07nY7GfQ4dkj74wOkoyirdfj/yiJSVZbxetEjywrETrkUCEsBRW7ZIHTpIVatKrVuXvbPLLsk8uEyiLx4TeUGU4skLSzVpIl14obRihdORhLLzOy4p+/Bh6aOPQv/2r3/ZVy+8ycy2WLr9I0HkfbNmGf/KY1Ub9e231pTjRhyrnZeI72DcOOMuw3r1jB/1Yh2oraDAGMBj1arwf6/os+TkGImqkjuXP/pI8kJXF05J1B2h8Zo7N3R6yBBn4ogG7Z5rkYAEvMqOC6tnn5V++MF4vXKl8ViiV8V64HntNem446SGDaXJk62Nye3K26bowD48K/fBzZuNC+BrrrGuTCdFs27C3d108KB1saB8JftoPPuq1YNhIT52t7tm920r28ebb7auLJj/bpL9GB4vN62fI0eku+46mtCaMKHixH15DhyQOnY0bkZo0cIYANKsmTONAfkaNJC6dJH27SP56GZ5edK2bU5HgRREAhLAUaX7U5s2zZk4nLJxo/H4Z3a2tH278Qvynj1OR2Wt4mJp6FCpVSupc2dp3brIy0Q7OA1it3y5tHq1+fmdfgTcTRdgiF5F35/Z/bt3b2tiiYT2JnWV1yVMXp53BkRwE9ptdzpwIPZlP/yw7PI33BB9OTNmSPPnG6+jOffz+6V77pH27zemP/ss9X7E95JVq6SzzpJOOMHpSJCCSEACQInSd3wWFkr/+19iY7D7wuD996V+/aRffjF+Hb/uOnvrS2YVfVeRBk6oSDQXIe+8E3s9ZpRcaKxYYdwRceqp0uOPRx6wIZbHZb3GLX3tOc3NP1R5ZR1KxiNu27eXfd9tn+H++2N/tNMqxcXSAw8Y3cUcd5yzsdjNye/f62201zRsKL39dmzLhnuSIJaEZqx3G69bJ23YEPreHXfEVhbsN2RIdD92exHtl2uRgARKc9vJPhKn9MmTlHyPJ5Q+ufzxR2MkZ1jrssviS0Ka9euv9tchGXdSfP+9tGmTNGCAcZeEZM0JHieJ8YnnmJXI4x3H1vIVFkpXXeV0FOZMnmx0VVIeKx7rj2TBAmnYMPvKB5yQmyvdfbfzI7LHIpEDVyJ+Y8c6HUH5rDp2cM7hWiQgATO4QPYeq74zv9+4C/K006Rzz5V+/tmacp0Srm+9kvei7QMymQ/u8X62WbPKdtrtVZs2SYsXh753/fUVL7N0qW3hJAUzF5hOH3eSef92mxkz3DVybST/93/G/05toyX1xyIVt+tU/MxelZ0tzZvndBQVY3tKrJtukho1MkYT99JxIlbXX885ZJJLdzoAwBO8dLD1Uqxe8PXX0ptvGq83bjTuUtm40fnkgBd4ZR1FijPWfvIef9zYfrwuJ6fse5H6nnzuOXtiSQZFRdLFFzsdRSiv7KvJKivL6Qi8ZccO8/N65ZyIfTC5RfP9Ot23s5XYruM3frzx/4YNUt260iuvOBuP3b78Ujr/fGnLFmNEdyQd7oAESvPKwTKak2qvfCY3Wr8+dHrzZumbb8wvn8zrPpk/m1leubiFe3zxhXvucEnk9htrezFiROLrLPHll8bFXrL3lYXYeKX9j3U/iOfzcX6QvPhunfPqq05HkBh5eXSzkcRIQAJeNXu20xGkrlR4BCJYMpxsFhYqLSfHm30rVcTuC2CvXGB7yZAhTkdwlJu+3/LamT59EhtHieHDpT//Wbr9dql5c6ljR2ficNN3FA0rjxvxjA7sleNXNCMOwzvy8qR9+6TPP7e23PnzpbfeKvsjuVPctp26LR5E77PP7C3fq8fWJEACEvCqhQudjgCpzisH7w0bVKl9e7W96CK1vOYaVXHLCTsMVlwo+P3SqFHSBRdI11wTfjRhr3Hj/uX3Gxe+33/vzvhi5fcbd6XOm3f0c913X+g80dz5Duu3jw8+sLY8IF6Rjl2zZkknnSQde6xx57tVXnlF6tDBGFSwTRujTXZaMh0PkHxISLsKCUgAyYmTIZQYOlS+JUskSVU2bdLxFY3g6gZeOlGKJ1Yr99GZM6XevaXvvpOmTJGuvda6sq1m9fcb73pcvFj66Sdz9Vx7rfTHPxoXv1ddZe136FSb7fcbn+X//T/jn9Wfy2wMVpo7V3r0UWnCBHs/SyLXU+/eiavLrC1bnI4Abnb33dKuXfaUW7Lv5eRIAwbEVs5f/ypNnBj9cpxfJz8rvmO/39g2MzKk2rVj29aQlEhAAqV55cDqpSQFzIu0/fG9R2/06JDJurNmORSIB40ebTyGWh43tJe9ekn//Gfoe3Pn2nPhZwW37cNt20rLlkWeb9kyI7lbYsYMc4lLt/vpJ+OzlJgxQ/r558TGYGV9v/wiXXSR9PTTUo8e0hNPWFe2GXZt31u3WlOHlW3WM89YV5adnGin3dbOJdrOndLKlfaUfeRI6PQnn8RWzqefSjfeGPvyTrvjDunQIaejSE6//mrcWVt6W4vG4sXGYIwFBUY3GrfcIh08aH75VG9DkhgJSMAMGkHv4TuzTnnrMlnWsV0XZ050/G+1MWPcP0LvmDHh34/mRDcWbvqe7FB6+3366bLz9O+fmFgk29qbtMGDy74Z7rPaaezY8v/Wv7/UpIkxcvratebKC942Y707ys3csu9Z3a9fMknkd3TokNSzp1SpknTKKcad8E4rKnI6AvNuvTX+Msprn999N/6yyzN6tBSu/Zbc00aE4/cbd67Gk9yz21//evRph1j7vS/df/ORI5Lbn0BCQpCABIBoRXMhHO1Fc7wX2XZcpJd3IufmE7x4mV2PFc2XiPWTzN9BsvJK4t7qbevXX6WnnjJG8Yzl4jyWeLyyrivi90vr1klffWX0+eZ2hw87HYE3lbet0sZHNnmyNG6cVFwsbd4s3XZbYupNlu8m+O5iM6JpVz/+OLqyozVwoL3lW+3QIem666SaNaXjj5c+/NDpiCq2cKE0dWpsy4bromLv3vjiiYZV++eaNdJHH0m//WZNeSABCSSdcA1uMlyEeZHf740T1JLtg+3EHaJJznhh+4rErdvdk0/aU65bP6/d5swx7ua77Tbj0eBoPPOMkVyIVjLsH8G++y72u1Ekaf9+Y4AmO9fLffcl/rFvuE9F29gDDxh3GVv1+Owtt4ROL18efVIN5iVbu5pI06dL77xjvN67151925Z2xx3O1OuGc6Xp06Uzz5Quv1xq3Vr64QenI0oKJCABu7nhQO2GGGANO75Lto+KJXr9fPSR+XndcIKWrEii2Oftt6Xs7ND3KtqWH3pImjbN3pi8Ii8vtuXeesu446ZhQ+nqq+29U/HJJ6XVq+0rH/Gx+5iWl1dxonzYMGOQpC5d7IuhoMC+soFYlf7xjT4sy7dwodF3pJMee+zoo/J790pDhjgbT5IgAQmY4bYEzYoV5ffrREIiMXbudDqCxGGbCs+udiF4QAy3i2fbSNXtKpk+dzz7wJo11sVRIpnWrZXy842Rc0uSju++a/+jkQ8/bG/5MC/R57Bm+8b8+mvjfDYZJXqdp9I5KSq2YoU0c2ZiHhnetEnats38/NHuFxdcEN38VivdPr33njNxJJn0RFX0/PPPa+TIkTrhhBP05Zdf2lLH9u3bNXnyZM2bN0+bNm1SXl6eMjMz1ahRI3Xp0kVdunRR1apVTZU1ZswYDR06NKr6K1WqpBUmDqTff/+93n33XS1evFg7d+5Uenq6GjRooLZt2+rKK6/UueeeG1W9SDEbN0psI/Ywe/E6d27ZR37iKc+rkv3zmVHRyVSyr5/8fOMkF9GJd7s4cMDY7mrXNqYTdaGb7NtzMps1S9q3L/S97t3jHyijom3CzkE43DIKNsK78Ubz8y5aJLVoYX0Mifqei4qkQYOkKVOMAXBGj5ZOPDExdQfzyojssNekScaATAUFUt260mef2XfN+K9/GQOo+XzGaNePPx76dyvOGZYvj78MuE5C7oBcunSpXrN51KPJkyfrr3/9q0aPHq3ly5fr4MGDKigo0LZt2zRv3jw9/PDD+uc//6klS5aYKs9MIjFaOTk5uvPOO9WzZ0998MEH2rJli44cOaLc3FytW7dO06ZN0w033KAHHnhAB+0evRPRcdOF16BBdPLutP/9T9qzx+konOfhCznfyy9LEyZ4a6TKcJz8Djp0kMaPd65+r4rnePLUU9Kxxxr/HnvMupiShYfbJFvl55d9L5Y+Nb2IbSL2NifWdZebG9tyXjRpktG37fLlRvcpdgwUVVAgPfKIccy9/fbw8yTyDkg3XRMh1MMPH+1+YM8eKcqbqaIydqzxv99vdLuxY0fo32l7UQ7b74DcsmWLevfurQIb++IYO3asBg8eHJj2+Xw6/fTTVadOHW3cuFE7f2+UN27cqJtvvlkTJ05Uy5YtKyxz1apVgddnnnmmatWqFTGOSpUqlfu3I0eO6N///ndIArR69epq2rSpioqKtGbNGuX93q/PzJkztX37dr3xxhvKyMiIWC9SjM3JfKQwp04qly2TsrKkP/5Rql49IVVWuuce48X778deiF3ryysnbT//bE05Xr2YSXTcGzcaF7olBg6UbrpJOvnkxMaRCryyD6Yqvh+4xU03hU5/+aX1/foNH27cfCBJ339vbdmxYP9zr02bQqdjHcE6Wn6/9PzzUlA+Jiyvnu/BUrYmINesWaNevXopu3RH4xZavHhxyKPS5513ngYNGqSTfz8h9/v9mjVrlvr376+9e/fq8OHD6t27tz799NNyH8c+cuSINmzYEJgeMWKETjjhhLjiHDJkSCD56PP59H//93+65ZZbVKVKFUnSgQMH9OKLL+qtt96SJP3444967rnn9NBDD8VVL4Ao2HFSFe3BNt4Y7Di423nCMGyY1Lev8bmbNTNGyj3+ePvqK23aNKlNm4rn4YTJHql6EWN2eyq9fp5+uuw8jz0mjRsXf0xu4FT7mwr7d6rc7RhOKny/dvHyunPy+GL1TTcPPmhteanAy9uuV4W70760VD3vQwjbHsF+//331b17d2VlZdlVhSRp8ODBKvr9EbqWLVvq9ddfDyQfJSPZ17lzZ40dO1bVf7+zZseOHRpXwQn76tWrA2XWqlUr7uTj2rVrNXny5MD0fffdpzvvvDOQfCyp55FHHtGdd94ZeG/ixInaunVrXHUDkjgQpxKvHdz79Tsa8+rV0T3Su2SJ9Oc/xx9DuK45zKxHv9/5fctr3zdiF240yP37Ex9HMLdtf07vj241f77TEQDuEXSTiS18PuvaRre1seWh7UVp4baJSHdIWinSvuOVfSsJWZ6AzMrKUr9+/dS3b18dtrmfuiVLlmjx4sWB6cceeywkqResefPmIcm9cePGBZKMpQU/ft2sWbO44xw/fnygrkaNGumWCgav+O9//6umTZtKkgoKCjRhwoS460eKoUF1Dyu+i337pEcfle67z/6TZieUvjOnXz9zyxUWSp06GY87AbCf1ReYXLAmzrBhTkeAWE2fHn8ZnBeGatFCPjtHs7WybXvxRevKSiUFBUb3PnAXp+7G53zDVSxNQI4aNUqXXXaZZsyYEXivUaNGur28DnPj9PHHHwdeN27cWG3btq1w/m7duik93XjqfM+ePVqwYEHY+VauXBl43bx587hiLC4u1meffRaYvuqqq5SWVv5qT0tLU/fu3QPTwcsCSDF+v3Thhcajl8OHS2edJe3eXfEyeXlSnTpSvXrm6yk5MHvpAP3ee9KuXU5HYY9oLhbjvbDMz5ceeEBq0iS+ctzIrclpq/ezZEkueKn9cRLrKbXWwcCBztWdLG1LaXl5SnvqqfjLKW879Pms20bvvtuacqwU7rO5bVu5/nrpzDOdqbuoyBiU5dRTjYGDfvnFmThSQVAuCN5haQJyzJgxOhTU8e7VV1+tqVOn6pRTTrGymoDvgzriveCCCyLOX7t2bbVq1SowPWfOnLDzBScg470DctWqVdq7d29g+sILL4y4TPBn2bZtW8gdmUgAtx1EUb7PP5fGjJGs6qrAbRc1X3wReuJy4IDRyXMk+/dHTlSG46Vtf/36xNXlpfUSrTffNO6OWrfO6Uis16uX9OGHTkdRltl2xm3tEZAMkrk9x1ERvmdfpLvjcnON8ygnthe3t/3sQxV7/33piSeMAWG+/1668UanI0peXbuW/ze370cpzJY+IFu1aqXx48dr4MCBqlGjhh1VqKCgQOuDLkAjjWpdIjihuCzMwcfv92v16tWB6XjvgAxOHlauXFmnn356xGVOO+20kEfJw8WJBKMRs1cs6/exx6RLLzWSDG3aSEE/HHha8Lr45puyf585M3GxIPnZ9ISCa9x1l9MR2MvpC0Gn64/EbF+uiA3rLjXVrSs1aCBNmeJ0JNK771pf5vTpxmB49eoZCY7cXOvrqIgX9yuuk4664YbQ6cWLk7MLJTfIy3M6AsTA0lGw27Vrp6uuukp//vOf5bO5Idq6dasKgkYZM3uX5Yknnhh4vXnz5jJ/37RpU+AuzkqVKqlJkyaaO3euPvjgAy1atEg7d+5U5cqVVb9+fZ1//vm68sordWYFt3hv3Lgx8PqEE04IPAJeEZ/Pp4YNGwYSrJs2bTL12WAjL54MeEm06zc/P/SxpD17pGefld54w9q4UoUXt2+3nOx6cd25jZ3r0M6T/ljjjnUUbLds88GOHHE6Anu4cV3jqGRqd2+4QcrIkOK84SGhSp7s6tHD+CG4enXjx1GfT7riisTuP3fcYW15xcXSf/8rHTxoTL/3nvEvnPK2QysHoUkkL8bsRuGSYjk5iY/DrYYNM/pxv/VWe+sJ3p7DbdsDB6rSrFmq3b279v/pT/bGghCWJiBHjhxpZXEVys7ODpnOzMw0tVzwfLt371ZxcXFIn4zBj19Xq1ZNPXr0KHMH4pEjR5STk6N169Zp0qRJuuKKKzRgwABVq1atwjiPO+44UzFKUr169QIJyNKfFTZL5guPw4el/v2lFSukyy4zTrK8+Hmzssq+9+aboQlIN3yu776Tatd2OgrzvDTIhBdOlBOxDbphO0d0kuk7mzvX6QjsYXX7UquWcQFqdpAtpI5Jk+yvw67jZX6+9NJL0mefHX1io2PH6AaaiLc9LO8aKdbP/PPP0vbtoe/16BFdGV5t47t1czoCpIIHHjD+T2DeqDy+H35Qkx9+0HIrBvuCaZYmIBNp//79IdO1atUytVzNmjUDr/1+vw4cOKA6deoE3gt+ZPrgwYOB5OOxxx6rk08+WZUrV9bmzZu1c+fOwHwffPCB1q5dq/Hjx4eUL0n79u0LW3c0cZb+rIlWWFjoaP3xKj3aeXmjn5dI8/vL9E1Q7PerOJb1cPCg0h56KGxfB7Gu10g7rV9S6VOfouJi+QsLlfbf/yqtJEn38ccqSk+X/z//qbDsRHz/vuJiVTI5b2FhoVRYGDnWgoKoGzi/319m3cUtyv23sKDA+GVQUlpxsT39ZJSu8/d1Wt56DbdNSca+5K9g+wi3L5mOJ5ziYvleflm+BQvk++abCr+r4DJiOdAVS0f3+XLWS7Hfr+KionLLL6/dMLMPF5lcrrioKKSOaPdhJ08CAttPhP053hjNtGHl1VHhsmbaoTDM7helt4OKjk12fI9+vz9i/fEItDtH34j7c5SO2UyZ4dIUxRZ/1sDdVM88E3dRhRZ+3/HsY4WFhaqk8McGu5TEG029ZdrhONZf6X27onKsar+sUGa/iHB+VBK7r6go4rmZ/+235QvuqzrKHyWKCgsrPI+IpMK2O4rvOnBtcOiQ6WXK2xejrTtcLH6Lj3+RyilctEjpJpMwJdcUpSpyxbYeDTP7c6TjueltpajIsnUU7TlduPnt+K6Ki4tD2tqI7fSWLTZEcVRwu1fJ56swlhNeftl0uV7Pi7iB19qKgCOlHvsJ7jOxIpUrV66wnJWl+pE79dRT9eCDD6pjx46qVOnoYXjhwoV65plntGTJksBy9957r1577bWQ5fPz86OOUZIyMjLClpFoxcXFgc+YLJYvX17h35scOKDS96zt37dP62NYD03uuku1v/su7N9iXa/nRPh7YUGBKpd6b/v27cpaskTnlHpEuVLv3vq5XbsKy07E999g+3adYHLeJUuWqPKOHQrX8UFwrMds2qRWYeapSE5Ojsz/TGCPVatW6cjvj28cn5Wlhgmoc/Xq1crLz1fl7Oyw6zUnNzfsetm2bZt2VrB9ND5wQHViiCenUydt7N9fRaXuHm3w5pumTxKCt4VI+0w4B/bv17rfy6iydq3C9TK8f+9ebV25Uq3LKSP34EGtCbN+IsWTl5enFSaXy8rK0rYIn7WifTiWdWOVtWvXKqdOHaXl5KhtmL+XxB1vjGbasPLqqGjZar/+qjMiLFM5K0snjhih9P37lX311dp38cWm9wu/3x9S1ml796puqXkOHjyodUuW6GwT5UUrJzc3ZPsNV3881q5dq9zq1QPTGVu3lrsvmVU6Zt+RIxHXzcEw38eB/ftjarsSYcWKFWHb6VjEs48tWbJEbe340S5CnZLUuqBAGRHmLVHm/K2wMOY2pXR7UFE5VrVfVsjJyQnZL9Jyc8O2uSVKYq+xdq0iDcXpi3OE382bN2tPHOeZ5a3fVatX68ihQ6bXf8m1QfW1a2X2YfjN48erUZj3ly5bpvQDB2LeT9etW6eDvz+xZ9XxL1I5u4cOVX2TZe7YsUM7Sn1nx2zZEvU5t9PM7M+Rzh/Mfj+rV69WXlGRJe1BtOd04ea3o13Kzs7W1qC6Wubny3zmw3r+NWsCn73VkSM6poJ5qy9darrcZMuLOCERN9fYonT2Ofgx6oqU7oOx9N1wwX02tm3bVtOnT9fFF18cknyUpLPPPlsTJkwIGdV67ty5+uKLL0LmC+6n0myMkkLqI9OeYBY9qlJp375yk48J54XHVaNQ6fd+WuFuvhi3uzpff63j3n67zPvR/EIJuEGTu+9W3VmzVGvBAjV+4AFVW75cfq8+ngd3SLLjue1YX959JDgedvfRK6nRww/HVkcySsH97Bib7+CrUHGx6o8fr6a33aaTBw1SWqIHSjLD4W0iLT9f9ceOdTQGhOfZBGTpZF6xyf5GSifzSt8R+dlnn2nu3LmaNGmSRo4cqepBv86XlpGRoWeffTZknrfeeitknuBEotkYpdDEaOkYkXixXDCmBz1+n1BJfqJZZe1atbj2WnsKT/J1FzMH1kvD119PeJ1RY3tJfnGcQFddvVrV1q4Nee+k4cO9u914NW4A8BLaWk9oGE0fhhZ/p/VmzNCJzz+vmj//rMzp03Xy4MGWlh+L+hMnKuO335wOI8Txr78uHyNlu45nH8GuWrVqyPSRI0dCHlsuT+nHmY85JvSGXJ/Pp/r166t+fXM3otetW1eXX3653nnnHUnSzz//rMOHDwfiC37suvTj3hUJnrd0jImUlpam1q3jfSjKWUVFRSGPXbdq1arMHa3B0sL0J3rs6tWq1bSpVGq7q1CER+7btGljvqwohBtp/fiGDdWgnPoixWFXnMF8xx9vet4zPvxQvnKS+SGxRvNd/a5GBT84JErz5s2lZsZDT2km26F4NWve3BiBs3TH678rb700bNhQx1ewfYTbl6IRz7YX73Zbq3bto2WUc/d67Tp1VPOMcA/hGqrXrBlTHFWqVDG9XP3MTGW6YB+ORZMmTeRv06bcflKtijvu7ai8C4egJxzC1ecLc3dEjaVLVfzPf5qq2+fzhcSeduyxZeapWbOmzjzTqgdyQ9WoXj1i/fFo0qSJFPzdRNFPdnlq1KgR+n2buPCoGaadquXiwcNatAzXIURszu7TR/6TTopt2d695UvwKOgl320lE+f7JWrXqRO6TZSz30ZTv9Xz2q166f2ipE/ScgTasAT8kH7yySfrpGjX1fz58m3YIH/QU2ilNW/eXDr9dNNFBq4NLLiT7MzWraU9e2JevnGjRsax0QJmt8Pjpk41XWaDBg1Uv3S5YQZidTsz66aieaJ5GqtZs2aSRW13mzZtlH7uuSHv/eHTT1X7gw/KnT9RWvXooaJVq6TMTFVyMH9RolJentps3640C2NxU9vuhGXLlkV1U104nk1A1i51cpiTk2NqkJecnJzA6/T09KgGhinP2WefHUhAFhQUaNu2bWrcuLEkhQxwE1x3NHEGl+GEcAktL6tUqVLFnynMxaZvyxalX3CB9PnnUoMG5iqKsN7SfT6pdCK0qEh6+mlpxgypcWNjdMEok1DhLpUrpaWVG0+k7zch338FCeHS0iZMKPdvIbHGELfPBb86p6enH409QfEE6ixnnZW3XipVqlTxeo4z/ni2vXi32zSfT2klZZSzfYbME8Pfy+Pz+03Hn5aWFrEOt7bhge0nxrbJrLi3o/K240hxV7DdmOELLqu4WJoyJWxZsWxjpur3+ULXncXtUXrp796CzxGyzkyWGa59M/sdOcHK/TnSYF4VLrtggWVxmBXLZy/TRsZxV3M09bup3U2TQteB2WNGFOdmsYp4HlHaSy9J//d/xusKro/KtC8m4khPT5cseOosPdrPFCYWK9pDyfx26IswQGewsNcUHnxaz8y6CZmn5Camkh9AojhORLs9mo4pjvft4DtwQOkvvWRcy7pERTcdxcJNbbtXefYR7NJ3KO7atcvUctnZ2YHXdevWtSThUK9evZDp4FGrjzvuuMDr3bt3my4z+PNk/t4RMRy2bJk0aZJ15YXruHvsWOnxx6VFi6Rp06RevayrL9W4+AISScKu/m1SsC8lT4q1jYlluaeeiq0uN6ONBtzNjceie+45+rqiOzSdjp32LbkMGmTc5VmjhjRihPEe33F4Jd3ReWn9ON1epBjPJiAbNmwY0jfiFpMdwW7dujXw+tRTT7UkltKPVgf3CRlcx9atW+U3sYH7/X79FtSHglVxwgL33Vf+3w4eNBKGLVpIN91U7mOFAeEa5tIJxw8/jD5GIFE4YHvrBAve9cQTia8zlQf7om0D3CmKO/UAS/z6q/TII8a2V1Ag9ekjbdvmdFSIBufqruLZe0grV66spk2b6pff7yJbuXKlunTpEnG5lStXBl6fUarvrgULFmj27NnavXu3Dh48qNGjR5sauTo4+enz+dQg6BHdlkH9PRw+fFgbNmxQo0aNKixv/fr1IUnN0nHCpQYOlMaMMV6vXCllZTkbTzC3N7x2XOx59QLSybjdvp0kktnvIdrvy+rv16vbeSqzcj/z++3bBn7+Wbr3XmnYMKMfVC+2D2bWjRc/F2JHm+kubtv/3BYPnPfYY2Xfe+aZ6LaVVNyuaGtRDs/eASlJ559/fuD1d999F3H+ffv2acWKFYHp9u3bh/x969atGjdunD788EN9/fXXIQOXVOSbb74JvD799NND+qc8/fTTVbdu3cD0999/H7G8b7/9NvD62GOPNTquhfsNHRo6/fnnkZc5cEDq3Vvq0kV64w1r4qDBR7Ri3Wbef1867zzpT3+SFi4s+/dkP+Gy6/MFl1tQID33nHT33fbU5Qap1mZ5ab/43/8ku/r6Ky42/pUIOpeKmZfWLZLb6NHSDTc4HUXqcvK4Eu8PQ7RjiTFjhnHzSNB1d1jhrt337rUlJCAVeDoB2blz58Dr5cuXR0wYTpkyRYWFhZKMQWw6dOgQ8vfzzjsvpE/IqSZGBFu+fHlIwvCKK64I+bvP59Nf/vKXkBgqGjmouLhYU4I6mr/00ktdMTAGbHLzzdKoUdInn0i33OJ0NHCD4P090ft+tCfM33wj/fSTNHeu1KlTXKOLelIiLnB69ZLuv1964QX760JZTl/EukHJgA9Wu/BCYxCJd96RCgulnj3tqScSt6xnuF/DhtI115hLPtxxh7X9hsej9Da+eHHkZY4cMfbNVMM1V2TJ0mZeeaVxd2PHjlI5I0hLkjZvLvtesqwDO7llXzITh1tiTRGeTkC2bds25BHnhx56qNyRpleuXKlRo0YFprt3764qVaqEzHPSSSeF3BX57rvvav78+eXWn52drfvuuy/Qr2PdunV17bXXlpnv+uuvDyQRV61apZdffrncMp9//nn9+uuvkoyR+3r06FHuvPC4I0eMX9/cbtUqpyOA08wcmPfulSZPtj+WVHL48NHOvJNRqp7Ae+1Ed+dO+8ou6TvZbW2H174jJMb27cZo9M8843QksVu61Ei4VKSgQOrQQXrllcTEhFCpemx0SnFx9E+ZFBZGd5wYOtT48SIVuG37tbOrGsTEtQnISy65RM2aNVOzZs10ySWXlDtfv379Asm9NWvWqEePHloVlDDx+/36/PPP1bNnTx36vUP1zMxM3XbbbWHLe/DBBwPDqxcVFen222/XxIkTlZ+fH5inuLhYX3zxha655hpt3Lgx8P6TTz6pWrVqlSmzefPmuvLKKwPTL730kgYNGqSDBw8G3jt48KCefvppjR49OvDeNddcoyZNmpT72RGdSgcP6oQRI5R2663hHxdNtFKDF7nWgw86HQG8Yv16pyNIDiUnSgcOOBsHKhbphLa8O4LNXrTk50vz5kUXkxfl5EjPP+90FIB5pbvc8ZL+/SPP88EHzpwn794tXX21cWdavF0/kHCwTzL+QLNhg73ljxtn/HiRCoIG0vWMeNqLOXOkli2l006TXn+dtscEzw5CU+L8889Xnz59NHz4cEnSihUr9I9//ENNmjRR3bp1tWnTJmUFDQZSpUoVjRgxQjVr1gxbXvPmzTV48GD169dPxcXFOnz4sAYMGKDnnntOzZo1U1pamjZs2KDdu3eHLNe/f/+QR8JLe+SRR7RmzZrAY+Ljxo3TlClTAv07rl69WocPHw7M37p1az1I4sdSp/fureolgxBNmGAMFNO4sbNBeYHdB2W7JOMJkl2sWlccdJFspk41LoYzMqJf9qabwr8fzf7WsaM0fnz0dXtN0A+yiIBjG6IVvM28/37k+YcMsS+W0krOG/bvl+rVO/r+jBnGEzj0gw94TwXdzSWNH36Q/vMfadmyo+/95z/SH/9oJCRRLtfeARmN2267TY899piqVasWeG/t2rVasGBBSPKxQYMGev3113XuuedWWN7f//53jRkzRvXr1w+8l5ubq4ULF+qnn34KST7Wr19fL730km6I0NF0jRo1NHbs2JC7OQ8fPqzFixdr8eLFIcnHiy++WG+++WaZR8QRu6qrVh1NPkrGnSlPPOFYPCiFC6rwSOghEi9vIyX7vZs/w7XXSv/v/0lFRdEtt2+flJsbf/1+f8V9MPJokT1Yp+61Zo20ZYv5+YO/yxkzpNNPtzwkWODhh8u+F2704Wg4lQRJ9nY53GdLtfP4ZP5+rRBNG50IVm+fRUXSFVeEJh9L3H//0dfz5kl33SUNG5Z6/eRXwPN3QJa48cYb1alTJ02ZMkVff/21tm7dqpycHNWoUUNNmzZVp06d1LVrV9WoUcNUeR06dNDs2bP14Ycfas6cOVq+fLn27Nkjn8+nP/zhDzr99NPVqVMn/fWvf1X16tVNlVmzZk2NGjVK33//vWbOnKmffvpJu3btUlFRkerVq6e2bdvqyiuv1IUXXhjPqkAYVdeuLfvmhAnh7yyJ5aASlEC2nN8ff8OZaicGsJbZ7SeZTsjMfuaK5kvEfpdM69ytFiyQPv1U+tvfzC+zfXv5f4t2u2C0TXtxfPSON9+Ubr01tmV37ZK6dYv+x4RU5ET3HyNHln3PxGCg5fL5pH79Yl/eSV5skzgXSZzfu5SDSXbsTx98IGVnh/9byaDI33wjXXTR0R9Cli5N7n7do5CQBORVV12lq666Kqplvvzyy6jradCgge666y7dddddUS8bTkZGRkyxR/LHP/5Rf/zjHy0tEw6LcAdsQnESEDs3nPS58fuLNSY3fpZECvf5zayTVF9viVJUJD35pDRiROR5hw+PLgFZESvbGTe0WW7y/fdORwA79e9vDP4Qi2HDUjf5GO0xxa2DD0bzOVq0iO0OSNpUmOXUtmLmnAX2quhH5hL33x/aBo0fL40eLQU9sZuqkuIRbMBR+/dL773ndBTeZkfChSQOgIp89ZX01FP0P2iWnRdbVpWdnx/1XVNpZvrEgzts3Rr7suvWWRcH3M/pPujiadPcfv5KktbZdfDII87VbZbbt+FECDeQ1v79iY/DhUhAAvHasye25RLZOHMgMIf1hGixzXhXeYPEIPGs3I/uvtuect0iGT+TnUiWuJvbvh+3xeMVqbjeUvEzR4P1g3KQgARK83qDaXX8XOwg1j4gvb4vRWL3vpEqj2s79Rm2bXOmXislw/dvNTOPRgHwHq+0d4884kw/monile8BznLLdvLVV05HcFSyXxeZlDSD0ACeQyNkL9aveW45SUg2bIMVY7sDACSbF1+Upk1zOgrYyYoBQpEYzz/vdAQohTsggdISdVHMxTeSTapt0145+czKcjoC7ysZsObEE6VzzpEWLXLP958M+51b1qUXsK4QLS+3EYnuy9Gq/SueO7Gt3Mf/9S/p3/+2rjwAFYunr+IUQQISgPO4oDoqeF24Zb24JQ43cnrdmKl/2DD743C7/fulfv2k226TliyJfvmvv5aeeEL67Tdp4ULp2msrvqh3eruwQzJ+pvJ4OWEDJJOnnz76mv0yemPHSm++aW2ZqXQsKA/rIDLWEcpBAhJwOytOuDgImJOq6ylVP7dZ5e2Ddl8MmflezMQwZUr8sXjdX/4iDR0qvfqqdP750vr18ZW3Zo20dGlsy7K/AYDB75def738v/fvn7hYgGhwLEe02GYkkYAEkg+/ECePRH+XbDtH2bUurC6X7yyyhQulH388On3kiPTUU/GXW94gA4sXJ/cABKmAiwQkEzdvz7/8Iv3nP05HcZQb1pXbj+tujw+Iko9tOqEYhAZwilcaOzecjKUSr2wX4Xg5djjH7u0m3CPXY8faV1/btvaVXVqy7HPJ8jkARGfwYPPz0k7ALbg2qtiAAVJhodNRuA/bjSQSkIBzvHIilYg43bIu3BIHkssPP0iHD0v/7/+Zm5/t0Bvc8j3NmJGYejhxBgCEk2rHB7cc/93K6n5HkVR4BBtwSqodrIFo+f3S7NnSxx+785dUny/ySejtt0vt20sXXyxdcomUnx+53JIyk/0EN1XbQKs/d79+1pZXHju3x1TdFmJhpg3BUcnejprBOgCs5fe777g1bZrTEQCmcAckUJqZE7UvvpDuu8+4EPjXv2Krx20HLsBtrr326AAqHTo4G0s4kdqKLVukOXOOTs+dK33+ub0xIbX4fNK2bU5H4V579jgdgfUefdTpCABnpEoilesDxOLqq52OwLP8Vu9z//ynteUlGRKQQLRycqTLL5fy8ozpvn2djQfW4aQvPlZfHASP3vzdd9EtW1Rk/ECQkRFb3Wa3hYrmW7u27Hv/93/W1S2lzgVZMuE7K8uOtnfNGuncc60v12kTJjgdAeCMSZPsr4PzwNhwXAOOev/98O/TvkgiAQmUFalxeOWVo8lHr3B7g+f2+FJdrCP6Ovm9nneetGiRdOaZzsWQCF4+6U/Uo+Z2le+GdsvL37/d/vc/6eDB2JZlvSYPN+yniF9urtSrl9NRINi+fdIjj0g7dkh/+pPT0SQebUvSYBTsxCIBCURr/XpryqGxg1csXGhuvtLbtJPb+KJFxv9LlzoXA5BMvHaxNXq00xEA7pGf7+3H98ePt78v6IIC6Zln7K3DDK9cH1x5pfTVV8br6dMdDQVRcGOf6qnCa+dRNmEQGiBaaRbtNmZPMKI9ESlv/h9/jK6cWOsHko2V+wD7EzgBLWvlSqcjAJKX3y+9+KL07LNORxK7/fvtr+Puu6WpU+2vJ5KpU6Vff3U6iopt3Xo0+ZiKfD7vHssZrAYOIwEJRMuqBGQivfCCdP75TkdhvxEjjMdBVq1yOpLYkaBCNNuAV0+A4R25uU5HALjPzz87HUF07r/f6Qjis2uX/XWMGmV/HWa89prUpo00a5bTkZRv+3anI0Cs1q1zOgLv41otLh7MpAA2i9SouD0BGS4hsXlzajSWffpIgwZJ55xjDEAAuE00CUMz83p5vx4xwukIYMbu3aGjuXsBI4PDbgsWOB1BannhBacjSKzDh6XHH3c6ClSEH4BT0y23SHfe6XQUnubyTArgQm5PQHqR1UmUQ4ekgQOtLTNRvHxC4+VkWKKYWUcl24BV63PzZmncOOm336wpzyozZxoDenl1u/HyvhqtBx/01udNxOOagFd4ad8NZ98+ow/LVPP9905HUL7Zs52OwHlePXdBfN54I/Zlvd4WW4RMChAtEpDeMH++0xHA67KypHvukXr3Tmy9dpzU9uxpPNLltr72EnERwyjY8eNuLyCUG/b/VDF2rP11eLnrHic89ZTTEQCWqbx7t9MhpBRGwQailWoJSE6yYVYy/RpcVGT0m7ppU/nz2PV57Sp3925p2DBpzBh7yo+Fl7eZWGOnTXU/viPAPRLwKHLaY4/ZXkdSOXzY6QicNXeu1KCB01HExsvnXUgKKZZJASyQagnIWBUVGYmOp592/2h+MHBSctSHH1acfIyV1YmNaL+zeB4dAVIFbSEi8VKSmu05Il9WltMhwEu2b5cWLXI6CnN4XB4uQyYFiJbbE5BWn2jGWl7PnlKvXtKjj0pnn13x4y1eOpEHSrhhu+XCMjI3fE/wFvar5MF3CSCVPfyw0xGgBOejkkhAAtFLdOPhxZPn3bulCROOTufkGKNTI7VwoC3Li/uz3by6TtwQdyL3MfZnAAC85ccfnY4ACEECEoiWk3dAFhc7V3c01qwp+9748YmPw4ucSGpYlVhYtUrq21caPNjoH2jzZmvKdSu/n8GOUlmfPk5HkNj2wg0JVwAAAC/ih1xJDEIDRM+qBGS0F3Nr1kjdullTdzwOHZK+/FL6wx+kP/7R6WiSW6Iu+K2q5/33j77+4gtp6VJrynUzOzqu5wTFkJMj1agRfzlz58ZfBgAEo532PF9envxVqjgdBpBY/JgIh3EHJBAtp046n3hCWrbMmbpL7N4tnXuudMUVUocO0oMPhp8vJyexcVmFCwrrfPGF0xEkhh0DLHFyaPjLX6wpZ9w4a8pB6rBjACo4o+S4nsrHd44pYbX++99V46efnA4DQKqgLZZEAhKInlONx9tvO1NvsAkTpJUrj04PGSLt3x86j98vde4cXbluaZDdEgcA4/H2hQudjgKpyOkf+2A9ju8opfKePTrx+eedDgNuxo9RgOVIQAJO8eKv8ffcU/a90o83fvtt5HKys6WdOy0JCfCUwkL7yt63z76ynULn6RVL5Prx0jGLZBPs5qX9wetsXNfVV66097gMb+vXz+kIgKRDAhJAxaK9kJszp+K/P/aYVL++8e+BB2KPC/Ci/HxrywveP194wdqyE4VkUewOHHA6AiA13Xqr0xHAKiSTUZ533nE6AuuxvcNhDEIDlBbpYvjJJxNTj9vKtcKGDdLAgUenhw2TbrmFg2F5WC/Jx8z+Ges+PGuWufk2bZI++EBq2DC2ehAf9msAiUSbExnryDw3X2cgMr4/OIwEJOAUsweAZDpQ9OpV9r1HH5XOPjvxsbgVJ8HJLZoEZF6ePTG0aVO271YgmdCOAohGMp1r2233bqcjALyJdkYSj2ADxmi9Y8bQ0XB5rLyQ+/LLsu/l5lpXfjK47z5pxAj6JEplJfvc8OGR543lZIbkI4BUMW2a0xE4j4teWOnFF52OAICHcQckUtugQdIjjxiva9eWvv46cXdO2FUPd37ErvSAOk74+GPj388/S6edlpg62WYSJ5p1zUk+AMTP7+c4BwCAC3AHJFJbSfJRMu4KGjzYuVjKs22b0xFUjF/W7TFhAgNMJCMugsuqqA2hfQEQry1baEu8zO679tk2ACBhSEACwdw42lnr1tJPPzkdhXmcyFln587E1HPOOdIf/yh9+21i6gNS2ZIlTkcQG9p2eBU//ACAgWM5HEYCEqkhmpNPtzXMBw9Kzz7rXP12r49ly9y3zlNNbq40f750zTVOR4Jose94z9KlTkcAAACAROKcXRIJSMA50TRCU6bYF0e84r2z4LffrIkDSLRYTiSiGQXbjJdfloqLjWWScUCnO+5wOgKU4C4ywJu46AUAuAQJSKSGVDr5cvqzxnKR+uij1seRDJz+LmE9O77Tjz+WrrhCWrTI+rKBErRHAJIV7RsAJASjYAMAEAu3jGR/xRX2xJEoXPh5g5e+Jy/FisTgDl4AABxHAhJwChdIiMTtI6AjemYugmkbAMA6554rZWQ4HQXcyucjQY3UwTkmHEYCEkB8Sh/IOLBZZ+5cpyOA1UhAAkBi7dzpdATOIrlWMY65AJAw9AEJAEAs7BqEBgAAJA7HZgB2o52RxB2QSBVu/PXXjTHFyu+X9uyRqlRxOhIAAACU4KI3MtYRUsWePU5HgBTHHZAA4pOTI115pVSvntSwofTee05HBLiXmR8ekunHiUh8Pmn/fqejgBleukBPpX0IAACzXnzR6QiQ4khAAk6x62Iu0ReJ06dL779vvD5wQFq8OLH1A0757bfolzGTGFm/XuraNfqyvcjvl6691ukokGxeeMHpCAB4iZd+YAHiwbYOh5GARGqgsbXPu+86HQHgjB9/jH6Z3bvNzTd9evRle9GePdKSJU5HATO8dFfh6NFORwAAAIBSSEACAABn7N3rdAQwix/yAAAAYsN5lCQSkEgRx37xhdMhAAAAAInFRS8AwCVIQCL5HT6sOt98Y35+r5+oeekxOQAAAAAAkPRIQCLp+SZPdjqE8LyS6PRKnAC8hx9MAAAAgJRAAhLJb/9+pyMIj8QeAAAA4Ji0vDzOyQEgQUhAAgAAAEAy2rDB6Qhcre6sWU6HACAV8EOHJBKQSAWptrOn2ucFANiPYwvgTTt2OB2Bq53y9NNOhwDYa/lypyMAAkhAAqXRJxkAAACQGviBBcmsdWvpgw+cjgKQRAISAAAAkUyc6HQEAGAPEpBIdg8+6HQEgCQSkEBZnISEKrkjND/f2TgAJJ+iIqcjAAAASG4rVjgdASCJBCSAEl9/Hf59v1/64gupTp2EhgMgBUyY4HQEAAAAABIg3ekAgJTlpjst/X6pR4/wf1uxQurUKbHxAEgNixY5HQEAAABgLzdd+zuIOyABSD/8IG3Z4nQUAAAAAAAgCZGABJJNLL+uHDxofRwAAACAy/l+/tnpEAAgJZCABJzyl784HcFRJQPNAAAAAAAA6/AItiQSkEBZqdY45OSQgAQAAAAAwA6TJzsdgSuQgETyS7WEYrR4/BoAAAAAAHt88onTEbgCCUigNK/fDRhL/F7/zAAAAAAAuNHhw05H4AokIAEAAAAAAADYhgQkkOp8Pu6ABAAAAAAAtiEBieRHH5CRkYAEAAAAAAA2IQEJlOb1hGUs8ZOABAAAAADAel7PMViEBCSQ6kg+AgAAAAAAG5GARPLj14bISEICAAAAAACbkIAEAAAAAAAAYBsSkEh+3N1XMUbBBgAAAAAANiIBCYAEJAAAAAAAsA0JSCS/aPuATLVk3JYt0tKlTkcBAAAAAACSVLrTAQCuk2qD1px7rtMRAAAAAACAJMYdkECySbUEKgAAAAAAcDUSkEh+JOQAAAAAAAAcQwISAAAAAAAAgG1IQAIAAAAAAAB24KlMSSQgkQpSbWdPtVG8AQAAAACAqyVsFOznn39eI0eO1AknnKAvv/zSljq2b9+uyZMna968edq0aZPy8vKUmZmpRo0aqUuXLurSpYuqVq1qurzi4mLNmTNHs2bN0pIlS5Sdna28vDzVrFlTJ510ktq1a6err75ap5xyiqnyBgwYoIkTJ0b1mU4++WTNmjUrqmUQp1RLWAIAAAAAANgoIQnIpUuX6rXXXrO1jsmTJ+uZZ57R4cOHQ97ftm2btm3bpnnz5unVV1/V0KFD1aZNm4jlrVy5Un379tWaNWvK/G3Pnj3as2ePlixZojfeeEPXX3+9+vXrp8qVK1dY5ooVK6L7UAAAAAAAAIDH2Z6A3LJli3r37q2CggLb6hg7dqwGDx4cmPb5fDr99NNVp04dbdy4UTt37pQkbdy4UTfffLMmTpyoli1bllveokWL1LNnT+Xl5QXeq1Klipo2baqqVasqKytLGzdulCQVFRVp/Pjx2rBhg1555RWlp4dfpX6/X6tXrw5Mt2vXThkZGRE/23HHHRdxHkSQao8kcwcnAAAAAKDE4sVORwDYm4Bcs2aNevXqpezsbNvqWLx4sYYOHRqYPu+88zRo0CCdfPLJkozE36xZs9S/f3/t3btXhw8fVu/evfXpp5+GfRw7JydHd955ZyD5WKVKFd1///3q3r27jjnmmMB8GzZs0KBBgzR37lxJ0rx58zR8+HD17ds3bJybNm3SoUOHJEmVK1fWG2+8EfGOSVgk2oRcqiUsAQAAAADJ6957nY4AsG8Qmvfff1/du3dXVlaWXVVIkgYPHqyioiJJUsuWLfX6668Hko+ScTdk586dNXbsWFWvXl2StGPHDo0bNy5sea+//rp2794tSUpPT9drr72mHj16hCQfJem0007Tq6++qksvvTTw3ltvvaVt27aFLXflypWB140bNyb5CAAAAAAA7DdnjtMRANYnILOystSvXz/17du3TH+MVluyZIkWB91K/Nhjj6lKlSph523evLnuvPPOwPS4ceMCictgM2fODLzu2rWr2rVrV279Pp9PTzzxRCA5WVBQoM8//zzsvKtWrQqJBQAAAAAAAEgFliYgR40apcsuu0wzZswIvNeoUSPdfvvtVlYT8PHHHwdeN27cWG3btq1w/m7dugX6aNyzZ48WLFgQ8vfNmzfrt99+C0xffvnlEWOoW7euzjrrrMD0smXLws4XfAckCcgEo09EAAAAAAAAx1iagBwzZkygn0NJuvrqqzV16lSdcsopVlYT8P333wdeX3DBBRHnr127tlq1ahWYnlPqNuTffvst5FHrJk2amIqjTp06gdf79u0LOw8JSA8hYQkAAAAAAGAZWwahadWqlfr161fh48vxKigo0Pr16wPTFY1qHaxZs2aBx7ZL3634xz/+UUuXLtXevXuVlZUVklisyNatWwOva9WqVebve/bsCYzEXRIDAAAAAAAAkhw3OUmyOAHZrl07XXXVVfrzn/8sn80jCW/dulUFBQWBabN3WZ544omB15s3bw47z7HHHqtjjz3WVHlbtmzRihUrAtONGzcuM0/w3Y+ZmZmqWbOmPvnkE33yySdaunSpdu3apWrVqun4449Xhw4ddPXVV6tRo0am6gcAAAAAAADczNIE5MiRI60srkLZ2dkh05mZmaaWC55v9+7dKi4uVlpa7E+iv/jii/IHZbMvvvjiMvMEJyDT09N1+eWXa+PGjSHz7N+/X/v379eqVas0btw49ejRQw888ECgz0rEIdV+bUi1zwsAAAAAAFzNs9mt/fv3h0yHe/Q5nJo1awZe+/1+HThwwPSj1qXNmjVL77//fmC6ffv2YR8FD05Abt++PfA6MzNTJ510kvx+vzZs2BDoP7KoqEhjx47V2rVrNXr0aFWuXDmm+KxSWFjoaP1xKy6Obna/3/rh4RPIL8ne+48BAAAAAIAZfr9fRV7Pq1jAswnII0eOhExXqVLF1HKlk3mlyzHrl19+Ud++fUPK7devX9h5V61aFTLdunVr9evXT+edd17gveLiYs2bN0+DBg3Shg0bJEnz5s3T008/rSeeeCKmGK1QXFysJUuWOFa/FRrs3KkTopg/JydH5tLZ7lRcXKxKTgcBAAAAAACUe+iQVns8r2IFz97oVfquPLOPUZd+pLmoqCjquletWqV///vfISN+9+3bVy1atCgzb35+fsggNZdeeqnefvvtkOSjZMTfsWNHTZ06VWeccUbg/cmTJ5dJYCJKPJIMAAAAAADgGM8mIEsnHItNPmZbOnEZ7ePNP//8s2666abA49KS1K1bN910001h58/IyNCiRYs0Z84cjR8/XkOGDKmwzpo1a+q5554LfD6/36+33norqhgBAAAAAAAAt/DsI9hVq1YNmT5y5IgyMjIiLpefnx8yfcwxx5iuc/bs2brvvvuUl5cXeO+KK67QgAEDKlwuLS1NDRs2VMOGDU3V07hxY3Xo0EHz5s2TJH377bemY7RaWlqaWrdu7Vj9lqhfP6rZa9SoYVMgiVEpN9fpEAAAAAAAgKTq1aqpTZs2TocRl2XLlpm+8a88nk1A1q5dO2Q6JycnZICZ8uTk5ARep6enm1pGkl5//XU999xzISu8W7dueuqpp+IaRbs8Z599diABuWPHDh05ciSqZKmVvD4Sd5EvuiFZ0qKcHwAAAAAAIByfz+f5vIoVPPsIdv1Sd7Xt2rXL1HLZ2dmB13Xr1pUvQrKpoKBAjz76qJ599tmQ5OOtt96qp59+2pbkoyTVq1cvZDr4kW8AAAAAAADAKzybgGzYsGFIX4pbtmwxtVzwgDCnnnpqhfPm5ubq1ltv1dSpUwPvVapUSY8//rjuu+++6AKOUunRuatXr25rfQAAAAAAAIAdPHsPaOXKldW0aVP98ssvkqSVK1eqS5cuEZdbuXJl4HXwaNOlHThwQP/+97+1bNmywHvVqlXT8OHDdfHFF5uOc/bs2Zo/f7727Nmj9PR0DR061NRywQnVWrVqeb5fQk9h1GwAAAAAAGAFcgySPHwHpCSdf/75gdffffddxPn37dunFStWBKbbt28fdr7c3NwyycfMzExNmDAhquSjZCQ8x48fr48++kgzZ840/ah4Sf+PknTOOedEVSdKYWcHAAAAAABwjKcTkJ07dw68Xr58uZYvX17h/FOmTFFhYaEkYxCbDh06hJ3vwQcfDEk+nnLKKXr77bfVsmXLqGNs165d4LXf79e0adMiLvP5559r/fr1gem///3vUdeLOGzc6HQEAAAAAAAAScPTCci2bduGJAUfeuihkFGug61cuVKjRo0KTHfv3l1VqlQpM9/bb7+tzz//PDB9wgknaPz48TrppJNiirFdu3YhfU2++uqrWrt2bbnzr1+/Xv379w9MN2rUKCTRigQISv4CAAAAAAAgPq5NQF5yySVq1qyZmjVrpksuuaTc+fr16xcYyXrNmjXq0aOHVq1aFfi73+/X559/rp49e+rQoUOSjMepb7vttjJl5eTkaPjw4YHpjIwMjRo1qsyI29Hw+Xx6+OGHA9O5ubm68cYb9dFHH4WMql1QUKD33ntP1113nfbu3SvJ6OdyyJAhDNcOAAAAAAAAz/J8Zuv8889Xnz59AonDFStW6B//+IeaNGmiunXratOmTcrKygrMX6VKFY0YMUI1a9YsU9akSZN04MCBwHSNGjVMDxpTolmzZurbt2/Ie3/6059033336bnnnpMk7d27V/fee68GDBig008/XYWFhVq3bl1I3ZUrV9aIESN05plnRlU/AAAAAAAA4CaeT0BK0m233abq1avrueeeC9zlGO4x5wYNGmjYsGE699xzw5bz6aefhkzv2bMnZDAYM/Lz88O+f+utt6phw4YaMGCA9u/fL8kYFOfHH38sM2/jxo315JNP6rzzzouqbgAAAAAAAMBtkiIBKUk33nijOnXqpClTpujrr7/W1q1blZOToxo1aqhp06bq1KmTunbtqho1apRbxnqb+/67/PLLddFFF2nGjBmaO3euVq1apX379qlSpUrKzMxUixYt1LlzZ3Xq1EkZGRm2xgIAAAAAAAAkgs/v9/udDgLusmjRokD/lGlpaWrbtq3DEcWn6MknVemJJ5wOAwAAAAAApJr27aXvv3c6irhYkSdy7SA0AAAAAAAAALyPBCQAAAAAAAAA25CARPKjlwEAAAAAAOAEchKSSEAiBfiKipwOAQAAAAAAIGWRgETS882Z43QIAAAAAAAAKYsEJJKe79tvnQ4BAAAAAAAgZZGABAAAAAAAAOzg8zkdgSuQgAQAAAAAAADswCA0kkhAAgAAAAAAALARCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAGAHBqGRRAISAAAAAAAAgI1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADYwedzOgJXIAEJAAAAAAAAwDYkIAEAAAAAAAA7MAq2JBKQAAAAAAAAAGxEAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAANiBQWgkkYAEAAAAAAAAYCMSkAAAAAAAAABsQwISAAAAAAAAsIPP53QErkACEgAAAAAAAIBtSEACAAAAAAAAdmAQGkkkIAEAAAAAAADYiAQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACwA4PQSCIBCQAAAAAAAMBGJCABAAAAAAAA2IYEJAAAAAAAAGAHn8/pCFyBBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAACAHRgFWxIJSAAAAAAAAAA2IgEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAADswCA0kkhAAgAAAAAAALARCUgAAAAAAADADj6f0xG4AglIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAADswCI0kEpAAAAAAAAAAbEQCEgAAAAAAAIBtSEACAAAAAAAAdjhwwOkIXIEEJAAAAAAAAGCHX391OgJXIAEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYJj1RFT3//PMaOXKkTjjhBH355Ze21LF9+3ZNnjxZ8+bN06ZNm5SXl6fMzEw1atRIXbp0UZcuXVS1atWoyly6dKmmTp2qH3/8UVlZWfL7/apfv75atmypf/zjH+rYsaN8Pp/p8vx+v2bPnq2ZM2dq2bJl2r17t6pWrar69eurffv26tq1q5o3bx7tRwcAAAAAAABcyef3+/12V7J06VJdf/31KigosC0BOXnyZD3zzDM6fPhwufOceuqpGjp0qNq0aROxvIKCAj311FN65513Kpzvwgsv1ODBg3XcccdFLDMrK0t9+vTRzz//XO48Pp9PPXv21L333quMjIyIZdph0aJFKi4uliSlpaWpbdu2jsRhmSgSxAAAAAAAAJayP/VmKyvyRLY/gr1lyxb17t1bBQUFttUxduxYPf7444Hko8/nU9OmTdWuXbuQxODGjRt1880365dffqmwPL/fr3vuuSck+XjMMcfozDPPVNu2bVWjRo3A+/PmzdPNN9+sAwcOVFjmnj17dOONN4YkH+vUqaNzzz1XLVu2VHp6eqDuN998Uw8++KD5FQAAAAAAAAC4lK0JyDVr1uiGG25Qdna2bXUsXrxYQ4cODUyfd955+vzzz/XBBx9o/Pjxmjt3rl588UUde+yxkqTDhw+rd+/eFd4p+cYbb2j27NmB6euvv17ffvutpk6dqsmTJ+vbb79Vnz59AknD9evX6+GHH64wzoceekibN2+WZCQzn3jiCX377beaOHGipk+frq+++kpdunQJzP/RRx/prbfein6FAAAAAAAAAC5iWwLy/fffV/fu3ZWVlWVXFZKkwYMHq6ioSJLUsmVLvf766zr55JMDf/f5fOrcubPGjh2r6tWrS5J27NihcePGhS1vz549evnllwPT1113nR5//HHVrFkz8F6VKlV0++23a8CAAYH3Zs2apYULF4Yt85tvvtFXX30VmH7mmWd03XXXBRKYkpSZman//e9/+uc//xl4b+TIkcrJyTGxFgAAAAAAAAB3sjwBmZWVpX79+qlv374V3mVohSVLlmjx4sWB6ccee0xVqlQJO2/z5s115513BqbHjRsXSFwGmzZtmnJzcyUZj0j37du33Pq7du2qiy66KDD95ptvhp0vONl54YUXhtzpWNrjjz+uP/zhD5KkvXv36r333it3XgAAAAAAAMDtLE1Ajho1SpdddplmzJgReK9Ro0a6/fbbrawm4OOPPw68bty4ccROMLt16xa463DPnj1asGBBmXk++eSTwOu//vWvqlatWoVlXnPNNYHXc+fO1aFDh0L+vn//fn333XeB6a5du1ZYXrVq1fT3v/89MP3pp59WOD8AAAAAAADgZpYmIMeMGROSgLv66qs1depUnXLKKVZWE/D9998HXl9wwQUR569du7ZatWoVmJ4zZ07I3/ft26eVK1cGpi+88MKIZbZv316VKlWSJOXl5YUkGyVpwYIFgTstfT6fqTiD51m4cKH2798fcRkAAAAAAADAjWzpA7JVq1YaP368Bg4cGDJitJUKCgq0fv36wHTLli1NLdesWbPA62XLloX8bfXq1fIHDY1upsxq1aqF9DlZusxVq1YFXp944omqXbt2xDKbN28eeF1cXBxx1G4AAAAAAADArSxNQLZr104vv/yypk2bpnbt2llZdBlbt25VQUFBYNrsXZYnnnhi4HXJqNQlNm7cGHidkZGh448/3tIyzcaYmZkZ0pflpk2bTC0HAAAAAAAAuE165FnMGzlypJXFVSg7OztkOjMz09RywfPt3r1bxcXFSktLK1Om2fJKz1s6rp07d8ZU5h/+8Af99ttvYcsEAAAAAAAAvMKWR7AToXS/iLVq1TK1XM2aNQOv/X6/Dhw4EJjet29f2PkiCX7MvHRcwdPRlBk8b3CMAAAAAAAAgJdYegdkIh05ciRkOviR5YpUrly53HLy8/OjLk8yHtcOV0bp8mMts/RnTbTCwkJH64+XZzdyAAAAAADgeV7Pq1jBs7mZ0l9eyWPUkaSnh37kkhGqJYX0KWm2vNJllo4reDqaMktG1g5XZiIVFxdryZIljtVvhXOcDgAAAAAAAKQsr+dVrODZR7BLJ/OKi4tNLVc6mRd8R2Rw0s9seaXLLH2HZaxlBidGS5cJAAAAAAAAeIVnE5BVq1YNmTb7mHLpR6SPOeaYwOvgR6Sjeew5eN7g8uwqEwAAAAAAAPAKzz6CXbt27ZDpnJwcU4O85OTkBF6np6eHLFOnTp2w80WSm5sbtozScUZTZvC8pctMpLS0NLVu3dqx+gEAAAAAALysTZs2TocQl2XLlkX1VG84nk1A1q9fP2R6165dOv744yMul52dHXhdt25d+Xy+sGXu3r3bdCzBZdarV6/cOKMpM3jezMxM08vZoXS/mQAAAAAAADCHvIqHH8Fu2LBhSN+IW7ZsMbXc1q1bA69PPfXUkL+dcsopgdeHDh3Srl27TJUZXPdpp50W8rfgOjZv3myqvJ07dyovL6/cOAEAAAAAAACv8GwCsnLlymratGlgeuXKlaaWC57vjDPOCPlbixYtQu6INFNmbm5uSGKxefPmIX9v2bJl4PWmTZt0+PDhqGL0+Xxq1qxZxGUAAAAAAAAAN/JsAlKSzj///MDr7777LuL8+/bt04oVKwLT7du3D/l7jRo11KJFi6jKnD9/fuA5+EqVKqldu3Yhfz/nnHMCt9oWFRXphx9+iFhmcL0tWrQo098lAAAAAAAA4BWeTkB27tw58Hr58uVavnx5hfNPmTJFhYWFkozBYTp06FBmnksvvTTweubMmRHvWHz77bcDrzt06KBatWqF/L1WrVohic7JkydXWF5ubq5mzpwZmL7ssssqnB8AAAAAAABwM08nINu2bRvyiPNDDz1U7kjTK1eu1KhRowLT3bt3V5UqVcrM17VrV1WtWlWSMbDNgAEDyq1/6tSp+uabbwLTN910U9j5brjhhsDrOXPmaPr06eWW+cQTT2jPnj2SpGrVqqlbt27lzgsAAAAAAAC4nWsTkJdccomaNWumZs2a6ZJLLil3vn79+gX6bVyzZo169OihVatWBf7u9/v1+eefq2fPnjp06JAkY1Tp2267LWx59erVU69evQLT06dP13333RcyKnVeXp5Gjx6txx9/PPBex44d1bFjx3I/S/Dj4o899pheeeUVHTlyJPDerl271KdPn5C7H3v37q26deuW+9kBAAAAAAAAt/P8OODnn3+++vTpo+HDh0uSVqxYoX/84x9q0qSJ6tatq02bNikrKyswf5UqVTRixAjVrFmz3DJvv/12LVu2TF999ZUk6cMPP9Rnn32mZs2aKSMjQ7/++qsOHjwYmP/EE0/UkCFDKozz2Wef1Q033KAtW7aosLBQw4cP12uvvabTTz9d+fn5Wr16tQoKCgLzX3zxxbrllltiWSUAAAAAAACAa7j2Dsho3HbbbXrsscdUrVq1wHtr167VggULQpKPDRo00Ouvv65zzz23wvLS09P14osvqlu3boG7KwsKCrR8+XItXLgwJPnYtm1bTZo0KeKdivXr19f48eN19tlnB947ePCgFi5cqOXLl4ckH7t166YXXnhBaWlJ8fUAAAAAAAAghXn+DsgSN954ozp16qQpU6bo66+/1tatW5WTk6MaNWqoadOm6tSpk7p27aoaNWqYKi8jI0NPP/20rrnmGr333nuaP3++srKylJ+fr7p16+rMM8/U5Zdfrs6dO5tOFB5//PGaNGmSZs2apY8//lhLly7Vrl27lJaWpvr16+ucc85R9+7dddZZZ8WxJgAAAAAAAAD38Pn9fr/TQcBdFi1apOLiYklSWlqa2rZt63BEcfr9LlYAAAAAAICE83jqzYo8Ec/4AgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwTbodha5bt06TJ0/WDz/8oK1bt6qwsFDHHXecmjZtqiuuuEJ/+ctflJ5ufdXffvutPvzwQy1cuFA7d+5UUVGRMjMzddZZZ+nvf/+7/vSnP1W4/PTp0/XQQw/FHcfq1avDvj9gwABNnDgxqrJOPvlkzZo1K+6YAAAAAAAAACdYngV88cUXNXr0aBUWFoa8v2XLFm3ZskVffPGFWrVqpWeffVaNGjWypM6srCzdf//9WrBgQZm/bd26VVu3btWHH36os846S88884xOO+00S+qN1ooVKxypFwAAAAAAAHCKpQnIgQMHavz48UcLT09Xs2bNVLVqVa1bt0579+6VJC1fvlw9evTQlClTdMIJJ8RV56ZNm3TDDTcoOzs75P3GjRurXr16ysrK0saNGyVJixcvVteuXfXaa6/pnHPOKVNW/fr1deGFF0ZVf3Z2dsgdjxdccEHY+fx+f8h87dq1U0ZGRsTyjzvuuKjiAQAAAAAAANzE5/f7/VYU9Omnn+ruu+8OTF966aXq37+/6tWrJ0kqKCjQ9OnTNXjwYB0+fFiS1LJlS7377v9n777jpKbzP46/Zxu9s/S+wFJFQAGRQ8ACKqCCiKCcnp6I7VQsWFFAEeTw9OAUvbOCFQWPH9hAvUNQUQRREQTpoDSBVZC25fdHbsPM7vRJJpmZ1/Px4MFkNvnmM5nkm+Qz33y/b8nj8US1zsOHD2vQoEHauHGj+V6vXr10zz33qHHjxuZ769ev14MPPqjly5dLkqpUqaJ58+apTp06Ua3Xe/1Dhw41E4s5OTl6/fXXValSpVLzbt68WX379pUkZWZmauXKlcrMzIxp/XZZuXKlCgsLJUlpaWnq2LGjwxHFKMr9CwAAAAAAIGbWpN4cY0WeyJJBaI4fP67Jkyeb071799bjjz9uJh8lI+k2dOhQTZ8+3ez/cfXq1Zo/f37U63355Zd9ko+XXHKJZsyY4ZN8lKQWLVro+eefN1sn5uXlacKECVGvt9i4cePM5GPZsmX1xBNP+E0+StKaNWvM1zk5Oa5NPgIAAAAAAABWsiQBuXDhQv3000+SjMeux44dq7Q0/0X36NFDQ4cONaeff/75qNf7yiuvmK+bNWumsWPHBmxNmZWVpUmTJpmPPS9atEjr16+Pet3vv/++5s6da07fddddatGiRcD5165da75u1apV1OsFAAAAAAAAEoklCch33nnHfN29e3fVq1cv6PzeCcjVq1dr27ZtEa9z8+bN2rFjhzl95ZVXhmxVWKtWLfXu3ducjrb1ZV5ensaNG2dOd+nSRZdeemnQZbxbQJKABAAAAAAAQKqIOQFZVFSkZcuWmdOBBmHxlpubq+zsbHP6o48+ini9W7Zs8Znu2rVrWMu1a9fOfP3ll19GvF5Jmjp1qn755RdJRsvKhx56KGQ/liQgAQAAAAAAkIpiTkDu2LFDv/76qzntneALJjc313z97bffRrxe73VKxgjW4ahatar52jspGK4ffvhBs2fPNqevvPLKUn1OlrRv3z7t3r3bnPb+7AAAAAAAAEAyy4i1gM2bN/tMN2rUKKzlGjRoYL7eunVrxOstV66cz/SxY8dKvefPoUOHzNe///67Dhw44JOUDOWvf/2rOfJPdna2Ro0aFXIZ70Rndna2KlWqpHfffVfvvvuuvvnmG+3du1fly5dX3bp11b17dw0ZMkTNmjULOyYAAAAAAADArWJOQO7Zs8d8nZaW5jPydTDej2B7lxGuunXr+kyvWbNG3bp1C7lcyVaPe/bsCTsBuWLFCi1evNicHjlypCpUqBDROjMyMtS/f/9Sidu8vDzl5eVp7dq1evHFFzVixAjdcccd5ojhAAAAAAAAfi1eLPXs6XQUQEAxZ7fy8vLM1xUqVAg4+nVJFStW9FtGuFq1aqXKlSubj2LPnj07ZALyt99+04cffujz3uHDh8Ne54wZM8zXderUCTnwTDHvBOTPP/9svs7OzlbDhg1VVFSkTZs26cCBA5KkgoICvfDCC/rxxx81Y8aMkIPr2C0/P9/R9ceKFC4AAAAAIJnlN27Mva+LJXpexQox759Hjx41X5ctWzbs5bKysszXx44di3i96enpuvDCC/XSSy9JMka07tWrlwYMGOB3/qKiIj3wwAM6ePCgz/vhrnvdunX673//a07/6U9/8vkMwaxdu9Znun379hozZoxOPfVU873CwkItWbJEEydO1KZNmyRJS5Ys0cMPP6wHH3wwrPXYobCwUKtWrXJs/Vbo7HQAQAAFFSqosGxZZf5vUCsAAAAAiMb333+vlg0aqOz27U6HAj8SPa9ihZgHoTl+/PiJwsJs/SjJ59HiaDPBI0eO9Hl8+s4779TUqVNLtajcsmWLRo0apQULFqh8+fI+fws35ldeecV8XbFiRV188cVhLXfs2DFt96oA+vbtq1dffdUn+VgcR8+ePTV79my1bt3afP+1114rlcAEkPi23HOPvn/5Zf3esqXToQAAAABIcEUej3ZdfrnTYQABxdwCMj093XxdPDhLOLyTjtE+Ypydna3HH39c1157rY4eParCwkI988wzeu6555Sbm6tKlSpp9+7d2rhxoyQj6TllyhTdcMMNZhllypQJuZ7Dhw9r3rx55vTgwYN9HiEPJisrSytXrtTOnTu1fft2tW/fPujnrVSpkqZOnar+/fursLBQRUVFeumllzRx4sSw1gcgMewdNMjpEAAAAAAkkfwIBtgF4i3mBKT3yNPej2OH4v3oczhJwEBOO+00zZw5U7feeqt27NghyUhurl692me++vXra9KkScrJyfF5P5xBZD788EOf0bMHDx4cUYxpaWmqV6+e6tWrF9b8OTk56t69u5YsWSJJWrp0aUTrs1JaWprat2/v2PqBZNWhQwdJUlqlSg5HAgAAACDRtW3TRp7/jSsB9ym+/0tU3377bUSNDv2JOQFZpUoV8/WhQ4dUVFQkj8cTcjnvvhjDHYU6kA4dOui9997T3Llz9cEHH2jt2rXKy8tT9erV1axZM/Xv31/nn3++ypUrpx9//NFnWe/RuANZsGCB+bpt27bKzc2NKd5wdOrUyUxA7ty5U0ePHo0pURsLRuIGrGceV2HUlwAAAAAQTEZGhhRBt3iIL/IqFiQga9eubb4uKCjQ/v37Vb169ZDL7dmzx3xds2bNWMNQVlaWhg4dqqFDhwadb926debrKlWqhGwBeeTIEX366afm9HnnnRdboGEquU0OHDjgs60BAAAAAACARBBzerxx48Y+09u2bQtrOe+BWZo2bRprGGH77rvvzNfhtGRctmyZjhw5Yk6fffbZtsRVUsnH2cN5VBwAAAAAAKQgj4enq+BqMbeArF+/vqpWraoD/+trYM2aNWE92+49snOrVq2iXv/Bgwe1e/du1ahRw+dx8EAWL15svg4nzs8//9x83aRJk1IJ11AWLVqkzz//XPv27VNGRoYeffTRsJbzTuRWrlw57EFvAAAAAAAAADexpIOArl27mq+9H1cOZO3atdq7d6853a1bt6jWO3z4cHXu3Fnnnnuu5syZE3L+devWaf369eZ07969Qy6zYsUK8/VJJ50UcYxr1qzRzJkztWDBAs2bN8/ncwdT3P+jJHXu3Dni9QIAAAAAAABuYEkC8pxzzjFff/zxx9q1a1fQ+V999VXzdU5OTtSDujRv3tx8vWjRopDzP/XUUz7LdurUKej8x48f9xlNu127dhHH2KVLF/N1UVGR3nzzzZDLfPDBB9q4caM5PXDgwIjXCwAAAAAAALiBZQnIWrVqSZKOHTumu+66S/n5+X7n/eSTTzR79mxzesSIEVGv99xzzzVfL1++XEuXLg0475tvvql33nnHnB41alTI0bo3btyo48ePm9Pt27ePOMYuXbqoSZMm5vQzzzxTaiTukuscO3asOd2sWTOfBC+AJFNU5HQEAAAAAADYypIEZFZWlkaPHm1Of/rpp7rmmmt8+jHMz8/XG2+8oZtuukkFBQWSpJYtW2rIkCF+y+zTp49yc3OVm5urPn36+J2nW7duPv043nrrraVaQu7fv19TpkzRfffdZ77Xs2dPDRgwIOTn2rBhg890w4YNQy5Tksfj0T333GNOHzp0SJdffrkWLFigwsJC8/3jx49r7ty5GjZsmPbv3y9JyszM1OTJkxmuHQAAAAAAAAnLsszWRRddpJUrV+r111+XZCQhzznnHOXm5qpixYrasGGD9u3bZ85ftWpVPfHEEzEl1zwejyZOnKhhw4bp119/VV5enm644QbVqVNHjRs3Vl5enjZu3Khjx46Zy7Rt21aPPfZYWOV7j9QtGYPBROOMM87QbbfdpqlTp0oykqKjR4/W+PHj1aJFC+Xn52vDhg369ddfzWUyMzP1+OOPR9XvJAAbnXmm9OGHTkcBAAAAAL4YBRsuZkkLyGLjxo3TqFGjlJmZKUkqLCzUmjVr9OWXX/okH3NycjRr1iw1a9Ys5nU2b95cL774oho1amS+t3PnTi1btkxr1641k48ej0eDBg3SrFmzVKlSpbDK9h4wJisrS2XKlIk6zpEjR2rq1Kk+I3UfOHBAX375pVauXOmTfMzJydHzzz+vs846K+r1AbBJGP3NAgAAAACAEyx9ttfj8ejWW2/VwIED9eabb2rJkiXauXOnDh8+rCpVqqh169bq16+fBg4cqKysLMvW26ZNG82fP19z587VwoULtWbNGuXl5als2bJq2LChTj31VF188cURD3bz+++/m6+jbf3orX///urVq5fefvttLV68WGvXrtWBAweUnp6u7OxstWnTRuecc47OOussS7cPAJehX1cAAAAAVqN/ebiYp6iIPRS+Vq5cafZPmZaWpo4dOzocUYxohg4rFRXFtk9VqSLNmSMV923bt6/0wQfWxAYAAAAgNe3cKX3yiRRgnA04LMFTb1bkiRjdBADi6fvvpXr1nI4CAAAAQLKh8Q1czNI+IAEAIZB8BAAAAIDUMXq00xG4AglIAAAAAAAAwA433+x0BK5AAhIAnJTgfYEAAAAAAIJo1MjpCFyBBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAEKnKlZ2OAAAAAAB8MQo2XIwEJAAAAAAAAADbkIAEAAAAAABIZLR+hMuRgAQAAAAAAABgGxKQABCp++93OgIAAAAAABIGCUgAiNTVV0uNGjkdBQAAAAAACYEEJABEqlo16euvpSefjL2soqLYywAAAAAAwMVIQAJANKpVk667zukoAAAAAMAYhIaBaOBiJCABAAAAAAASWVERT1fB1UhAAgAAAAAAALANCUgAcBK/UqaOkSOdjgAAAADJjEew4WIkIAEAiIfOnZ2OAAAAAAAcQQISAJzEr5Spg+8aAAAAduFaEy5HAhIAgHjgohBw1ttvOx0BAABAyiIBCQAAgOR3wQVORwAAAJCySEACgJMYhCZ18F0Dye/++52OAADgFpUqOR0B4CokIAGkplGjnI4AAJBsRo92OgIAQKqiux+4HAlIAKnpqaecjgCphotCAACA1OHEtR/Xm3AxEpAAEC/nnut0BAAAAACSFV3+wMVIQAJAvDRo4HQEAJB4srKcjgAAAPcj+QiXy3A6AABIGTwSAQCRW75c+vJLKT1duvJKp6MJjnoeAOAkzkNwMRKQAAAAcK/27Y1/333ndCQAAIQv3i0SST7C5XgEGwCAeOCxGACQpk2TPvnE6SgAAECckYAEAACA+5HETw6VKkllyzodBQAgVV16qdMRpCwSkAAQL5ddVvq9SG6oO3e2LhYASDQkIAEAQKxefNGacoYNs6acFEICEgDi4fTTpT/8IfrlL7tM+r//sy4eAEg0sSQgr7rKujiCof8tAEAxzgnulJVlTTmZmdaUk0JIQAKA3V58Ufroo9guQmbNkurWtS4mxF/lyk5HACS2WOrQ8uWtiwPJb9AgpyMAgMh5PO5JejZuLLVpI9WoIWVnOx3NCbm51pTTqZM15aQYEpAAYLc//tG6X9qQuC66yOkIgOAWLXI6guDatpVq1YpuWR7fdhe33CAH4vb4AMDtunSRVq+W9u6VHnrI6WhO+F/9XjhggMOBpCYSkAAAxANJaLjd6ac7HUFw6enSxIlORwEAABLV/36QLPz735XXvbvDwaQeEpAA4Ha1azsdAWLFr6xIBInQ6uvqq6NbLl4tIBNhG7oBLVIBwB5dujgdgcHt9XyDBvrx73/XsWifrJDc/xldiAQkALjdM884HQFiMXiw9M9/Oh0FAAAA4smJBFXdutKIEfFfb6Kw6odCfnCMCglIAHC7gQOdjgDROukk6c03acUKuETBrFlOh4BEwI0lYI0KFZyOIDW98IL06qtOR5H8OFdEjAQkALiZVSO1AQBUdMEFTocAAKlj1arU7obGqQRVWpp06aXOrLvYaac5u/5ArGyVyiPYESMBCQBOCnXi4pe1xNa2rdMRAPBWtqy95VNnh4ftBKSGnByjKxqknmuvPfHazYk6N8eWhEhAAgBgl4cfdjqCyD33nNMRANbjBgORIEEKIFZDhzodgbOS/fF7zhNRIQEJIHXNnOl0BEh2TZs6HUHkhg93OgIAgFtFOxI9kGqaN4//Ot2aFHNrXFL0P1C6+TO5GAlIAKlryBDpL3+RqlRxOpLwtWzpdAQAklUyX0zTAtJd3P59uD0+J5Up43QESDTJfG5Jdjt2uPeYnzdPWr485mI81PdxRQISQOoqU0Z64gnpwAGnIwmfd38qgB24UQCix/GTHPgeAcQqGeqRevWk7Gyno/BvwACpc2fn1p8M368DSEACQCKpWNHpCAAAbrFsmdMRJCduLANjQBFEihZmAP6HBCQAAADia9Gi6EekPu88a2NJZI0bOx1BdEjwJa7evZ2OAEgcdJ0E+CABCQCAHa66yukIAPc680zp+uujW/Zvf3Omc3+kDhKkgbFtgPB4PNL06U5HAbgKCUgAcLOSF/pc+CeGKlWkMWOcjgJWq1bN6QggGS1KvvwysmV4BBBwtwkTpJEjnY4CsFaXLtIjjzgdBezAPVlUSEACieDGG52OAHbhpjj59OghrVrFYzfJiItNhMI+ElqTJpz7UNqQITw5kKxSuV70eKS77pK2bnU6EgQS7fkolffrGJCABBJBw4ZOR4BoTZvmdASIt9tuS9x+2VJZVlboeZL9YjOZPx8JL3fIyZF69nQ6itCS+VhwK7Y5kg37tDtxPeAoEpAAYJeXXpJuuMHpKABYhYtW9+DGzpAo26FGDWnQIGnhwsSJGQBi4X3NEK96j/o1clzbxRUJSACwy4gRXAgAyYSL1MTVtavTEaS2Dz+U3npLatrUmHb7udHt8SUr6tjkZPf3Oneu1KGDvetA8qB+dxQJSAAAgHAGDeKiNXFdfnl81hPvfYSEjT3YrkDiuPBCqV49p6MoLVmuGZLlcwRCH5BxRQISAJx09tlOR5BSCsqXdzoEuFU4g31xsekekX4X4fTxCQCpompVpyNILal+/eCmH3XcFEsKIgEJAE668UapQgWno0gZeaefriMM6uQO5cpJlSo5HcUJtWo5HQEQuVS/qbUL2xXJ7pdfpHHj4rMujie4mCfahGRaGsnMKJCABBIBlVvyqlxZWr5c+uMfnY4kZRyrU8fpENwtXjcKF1wgbdokrV8vLV4cn3XGKtlvopL988E93H5dw7GAZDZmjJE8gb1iqUeysqRbb43vOgNxe30dKau20V//ak05KYaaBwCc1qqV9OKL0u23l/4bN0FIZjVqSM2bS5mZTkcCROass/y/H22dTXccAOKF+sb9pk2THnvM6SiSk1UJ1S5duE+LAglIAEgknOiQjBJlv06UOFOBk9/F8OHSK69YV97QoVLbttaVlwjcfizRZyhSgduPw2RSUBCf9VjZWrFuXevKSkY8gh0VEpAAkOqaNHE6guRStqzTEQCwS5Uq0ssvS9nZ1pVZpox1ZblV48ZORxCZUaN4RNUJ3Mwnp1T9Xr0TvMeOORdHtKxMULs52R1s//zqq/jFkSI4swJIbi+84HQE4XPqAu3RR51Zr1Psvghq3dre8pOFlQkcINFde63TEfhq1sza8hJtxN1ataT773c6iviweiC888+3tjzYJ1UTg/HivX2PH3cujli5OXlot44dg/89lbdNlEhAAkhed9whXXGF01G435Ah0oUXOh1F/Nh9wZ1oLX1KSk+Pz3ruvjs+67FSjRpOR4Bibr3ojzauVq2kYcOsjQWxefBBpyOw37PPWnvOat06+uS1W4/pZBTvbc13G78EJNvaWqG2J0n8iJGABJBcMjOlQYOkCROkiROdjiYy4Vw02HWiq1nTnnJd5jit7kJLS4vPqOyJ2LfQtGlOR4BkNGKE8f/LLzsbB06oX9+6stw6yNa8edJVV1lbZizJj6Iibubjhe0cH97HQ4sW0ZUxYYI1sSAwjoe4IgEJILn85S/SW29J990nZWQ4HQ1cZictYsPzzDNG659U6JsuEl26OB2BvWg5EX9dukh9+hivU2n7u/mGLyMj9kFo/vUv41rkkUekzz+3Ji4rNW8uDRgQ+XL9+gX/u5u/V8BJ5cpJd911YrpOnfCWu/deacYMe2ICHEACEoDzrHys0d/F7403+k679TE3LtxtVVimjPJ5hDY8ZcpIDzwgHTgQuv+bVMKgFO6RLMm6xYtj26+SZTu4ydix0S1XPABZnz7SxRcbT2PcdZfUqZN1sTmhuAVnpUpGMgSJr7jeSKb6IxE+yyOPSAsXSi++KH3zTXjLeDxGH8FPP21vbKmM+6+44koagPOGDpWWLLGv/DFjpO7djdcdOkjjxtm3LqslwgVVgvjlvPOcDiHxlC0rffaZ9Pe/Ox0J3O7NN52OIPFUqRJ7K+NEvXFy87kt2ti2bpV+/FH64APju00GFSpIK1cax/c330g9ehjvJ9J1FFKDG+tCf3XJWWcZ3dzY1SWQm+tWt+B+wFEkIAE4z+M50XLAirJKatDASHDm5xsX0v76YSnZ2XzxI3FIGgc7dHA6hMRUpozRksdOXDAnvpNOcjoCd4hkX3bzfu/m2NwqO1vKyYnfQF6hnHFG7GV4PFLbttLgwVKTJifet2ukazcmkRAfJ5/sdASRc+sTVQjO+1F4SR7qnbgiAQkgNXg8xk1BoJuq6683fpWUjBEcp0yJX2xukAIn332h+q5yyqhRTkeAcJGUAfsAEoUV5/VA+7sdx0GiHVtVqzodQfLo3196553olm3UyNpYIpFo+2wyiSVhXbu2ZWEgciQggUTACc5+2dnGY1NHj0rr1vnvs8n71387pEAS0FFWD0p0/fXWlPPEEzzOhsQX7/qL8yJgv0DHWaDj3eNx17XMe+/ZU25urrRrl3TwoHTllfasw05uqz/T0qKPyc19I7ptO0fKymPZ6nph2jRry0PckIAEgGIejzHyZfHjU7ff7vu36dOdiSnYtF3rQWhWPXqTlWUMejBrljXlIXp/+EPwv7vl0Uq7UA8klqZNE/ec4KYkVUkcByfEe+AtqweKq1TJ2vK8ZWUZfWTCOTVqhB6Z3Umx1HMl66FwyypXLvp1utnMmcaYAb17S6+9dqI/2khRvzvO4uYgAGxh14V6vXrSTz/ZU3YymDzZ6C/yhx+MDovPPNPpiBBIo0bGAABITG65IJwwQerVK/DfreqrFsnL7n25TBmjpX5GRup1FYL4i3R/juV6tahIatVKat9e+vbb6MuJN7ecv6Lh7/HlZs2kjRvjH0s0hg93OgJ3ueYaIzGejOrXNxKPdoil3rLzR44kRQtIIJUlwi+3kT6aamWyNi1NGjlSmjo18uSjVR20x6uViJtbo4SSni499pjTUTinW7fo+04KVyLvH5E444zAj9aPHRvfWCLhhgGW4n0Tnsg3/bFYsUJ66SXpq6+MgUHsYvcxn6rfH0KbM0c65xwjEenkY5bVqwf+m/f+G+6x0qZNbPHYYdiw0n1ZTp4c/ziSdVTiWOq5aOrgp56Kfn3+UE+HVmJAG4RGAhKAtbp1M1pWWuX++60rK56eeCLyZTjRR+ezz+y9EQ/ETd/Xuec6HUHyaNXK//vNmsU3jkg8/bR0/LjTUSAe2rSRRoxg1HHERzTnuZtvjm1dzZtL778vffONdOON0ZVlhenTrfuh/qKL3PlobFaW8QPmqacadcvLLwc+B9rpiiui29e8l3HTNZkTMjOTu5sYq75ff+XE8oObk4MgJSgSkACss2SJtHixtc3RE/WCIicn8mVSpZWZlbKzjQtnJ/B9WceuG7Py5e0p142sHmQpEo8+6ty6482J1kFANOwcBTvY/M2bS337xr5upw0bJu3caU1Zbh5o7rTTpC++kFavtu+R5mD7UbVq1nRvkuzXZKGORTvul4q3aaLei8VL9+5OR5BQSEACqczqk/Xppxu/wDkdRzKx+6Q/aJC95duNfSc5tG1rT7kffxz5MuxT4bv8cukf//AdsCsBHK1fP7oFW7cOPfhUstyopfJxkCzfoRWiHYTmueesjcMpFSv6f9/7+Aj3WEnl/aqwMPDfiuvjRKxznEgKxnNd2dnWl+k0f41kEnHfS2AkIAFYL5qTIJW/M/70p+iXvfJKy8KAy9l9EW1X+cn8OJIbzJxp9Jnp8cS/Do9hn9ly773hz1y/vjR/vtH5/fLldDifClLheiTc4yfa4yyVk22JIN7fT7AEZCycfETfbez4Ttu1M/5Ppjpx5kynI0h5JCCBZHD77dI990S+XDJeICbjZ3KrMWOcjsBZ7GvJo2bN0PO4+QLcqthSZJ/+7dRTtW30aB1p0EBFXbsGn9njMQYVGzo0tR7pt3tfiLYVKqzXokXgv6VqArJLF2vLS/TtEauCAnvKDbbvJrqS+0yo87zb9zEn4yvuombwYGOAKziKBCSQDKZMkR5+OPLl3HxDnYoS7ftwoqPyZOb2i8dk9uyzTkeQ+BJp//V4tHv4cK1++20VLFli9FkXSKLVy4miTh0Gz3KLSZMC/y2Rjmt/GjeObrlI+rUNp45I9XokWAvIZN42iX78JIsdO6RNm6TZs6UyZZyOJuWRgARgPScvJpLtQoaLF8B+AwY4HQEiZWXd+Ne/WldWJHHFo353cwu22bOje3oD4fXfHO532KqV9OSTkZWRKF0RVK4c+TJ9+khnnGF9LInCjmM/nEewE/F6N1TMiX5PkojfiT+1aklNmgT8PJ5Yv6dE/57jjAQkgMCuvlp6/nn7OyFOlhNcPNi1rTh5IhmFs19nZfkeV4GWoZ5KXhdc4HQE9qhSJXBiyQ0qVIju6Q27JcKx/uijUteuxja84AJp4MDS8wSr/0r+7brrpAkTSs8XaBCali3DjzXRpEJXC27qA9KqWBLhuI2EG67L3TQKthtigCVIQAIIrGdPY6CRJk0iWy6akwQnFv9KXoBYfUFixwVOtWrWl+lGVu+z0X4Xbj92ommBEk/hbj833AwE4vZ9AM7Yvl3q0cPpKGCHnBzp88+lgwelt9+WatSIvUx/SaJgdcuZZ8a+zni4777I5g+nPvU+H5x6amTlu0EkyWkr2NUHpNsl+ijYbuLmazBEhAQkkMqS/WQFZ/z1r/HrY4V92P2qVnU6guCS4aLWDZ8hmhh69Yp+fRz7ocWyjdywTyWSwYOdjiB2/r7zYPtQx46RleWUBx+0tpsFyWg5X+zqq8P7oc1N2yRebrrJ+D8eCUgntq+bzkNuigUIIsOugjds2KDXXntNy5Yt0/bt25Wfn69atWqpZcuWGjBggM4++2xlZFi/+qVLl2r+/PlasWKFdu/erYKCAmVnZ+vkk0/WwIEDdUYEfXo8++yzejSSToglpaen6/vvvw8532effaa33npLX3/9tXbv3q2MjAzVqVNHHTt21EUXXaRTTjklovUCtkrFiya3iNcFhZXrueoqo0+9WrWsKxPOiuV8zUVx4oj3d3X++fFdXzxEsg05tyaHSpUib2XnNH/76UknlX6vXz/7Y7Fberp0223Syy9LK1daX365ctKnn0r3328k2ubNs34dVotXXT95svF/OH1AulmvXtJ//hPfdZb8jhL9WirW852dn58+IOPKlgTktGnTNGPGDOXn5/u8v23bNm3btk0ffvih2rVrpylTpqhZs2aWrHPXrl26/fbb9cUXX5T62/bt27V9+3bNnz9fJ598siZNmqSmTZuGLDOcRGKkDh48qDFjxmjRokU+7x89elQbNmzQhg0b9Oabb2rgwIEaO3asKiVKJ89ITtFW9u3bS2vXWhsL7GX1ydPufkPdINEvBiNRu7bUpo3kfV6cPFkaM8a5mMKRSt+R06LZ1mlpxs374cPWx5Mq7NrHwym3WzfjMeBU9/XXkkX3M5Z7/HHpllvCm3fgQKl+fWPEWMlI3I0da1dkpdmxL3u3VLRT27bSnDnG60Q/71gV/5QpRv0uhdcC0s33vAMGGNvl448jW87KfSHUdXqi73dOIoEYV5Y/gv3QQw9p+vTpZvIxIyNDbdu21SmnnKJqXv2CfffddxoxYoR2FJ/kYrBlyxYNHjy4VPIxJydHXbt2VROv/uu+/vprDR48WF999VXIctd6JVBOOukk9ejRI6x/gRw9elRXXXWVT/KxQoUK6tixo0466SSVLVvWfH/evHm67rrrdOzYsXA2AZJdolWMEyc6HQFShd3Hxp/+FL91R3vxGK/6Ydq0E61aL7hAuvzy+Kw3FuFsm5LbPdCTEolWDycKK/quS1RW3DAG2y/tvCG96CLpiivsKz9aw4fHXkak282tyceiIunmm40fhcORni4tWWJswwsvNF43aBC8fDcbONCa7mCuuy72MlKRd/cr4fwoXb68NGSIbeFErVw56dpr3b+/21nfN29uX9l2i0c/yBUr2r+OJGJpC8j33ntPM2fONKf79u2rsWPHqmbNmpKk48ePa86cOXrkkUd0+PBh7d27VzfddJPeeusteaI8aA4fPqxRo0Zpz5495nu9evXSPffco8aNG5vvrV+/Xg8++KCWL1+uQ4cO6brrrtO8efNUp04dv+UePXpUmzZtMqcff/xx1a9fP6oYi02ePFmrVq2SJHk8Ht100026+uqrzcTjr7/+qmnTpumll16SJH355ZeaOnWq7r777pjWC8Rd8+bGYzvvvRf/dbv9AiGYRI49Wf3jH8ZI8JD69JG2bZOOHzduFH7/3emIfDVuLG3ZcmJ61qzwlit5/XHyyZaFFDeJVnfcfPOJ124ffCnRW5XYtW+89Zb06qv2lB2LG2+UXnnF6SjiL9h+2r+/9O234ZXTpInxqLITrNpX+/Y1Pkfx47+xKm7Fh+hdeqnRH+TBg8Hne+klKTdXeuih+MQVTKdOUmam0X9ohQr+53HT+cHOWB57zPlro2gHOJ06NfR8sdY9U6YE7xMXPixrAXn8+HFN9qroe/furccff9xMPkpSZmamhg4dqunTp5v9P65evVrz58+Per0vv/yyNm7caE5fcsklmjFjhk/yUZJatGih559/XqeffrokKS8vTxMmTAhY7g8//KCC/zUXr1y5cszJxx9//FGvvfaaOX3bbbfphhtu8Gn1WLlyZd1777264YYbfD7f9u3bY1o3koDTJ7ho1n/ZZdbHkYqc/u5D6dnTd9qu1q/16tlTLiKTlWVciLuxn7unn5aKrzkuv9xooWUlO4/FVq3sK9stTj9dKltWOvts6a67nI4GsXL7uQn2c+s+8N570owZUpUq0S3v1s9lpXh8Ru91lC0rvf566GXKlpWC3J/H1VdfGV1MBGtB56bHou1YV/HnO+kkI5FXrZpxPe6V34mbSK8lhw2TFi6UunSxJx5vHTpIXvkbBGdZAnLhwoX66aefJBmPXY8dO1Zpaf6L79Gjh4YOHWpOPx9D65JXvH7lbNasmcaOHRuwNWVWVpYmTZqkrP/1B7Jo0SKtX7/e77zej1/n5uZGHV+xmTNnmgnNZs2a6eqrrw4474033qiWLVtKMhK7s8JtxQE4qeRoppGeKKxKUqTChaObPPmkcWFSvrzx2NaNN9qznlWror+ZsAv7mrv07Sv9/LN05Ig0c6axT6aaK6+M37pKtgoKVYcvWWL09fjBB5L30yfJdhzF+/OEWp+dXTu48buz4lrC7X0Y339/ZPMnWgtpOMuux23PO08aPdqesiVr66N77rGmnFiOPat/RI2Fx2N8d/v2GX3EXnCB0xGF9sor0plnhjWrx4oBcqZPj62MFGJZAvKdd94xX3fv3l31QrRW8U5Arl69Wtu2bYt4nZs3b/bpQ/LKK69UZmZm0GVq1aql3r17m9OBWl+uWbPGfN0qxpYJhYWFev/9983pQYMGBUzOSlJaWpouueQSc9p7WcBSQfZDSZGdOC+8MKZQkKDatjWSg4cOGY9t2dWJeM2a0r332lN2MG68wUZgGRm+fX5ZeeOdCDfxDRvaV3bJvhqtevw21HYN9MMDx2ZobKPIVazo/v5tR46MvQy79w32vcRlRb+ZUmKcMwO5/fbw5rNrPx89OvJWhhxzSBCWJCCLioq0bNkyc7r4MedgcnNzle31C+NHH30U8Xq3ePf1JKlr165hLdeuXTvz9Zdfful3Hu8EZKwtINeuXav9+/eb08EGqinmvQ1/+uknnxaZgCXOOMO6iwyJE1+8WL2d+d4QLfad5BKqhfFTT534geHKK41+fr3ZtT8895w95boBx5D1Yt2mr75qPAbqZsEGhklkiXQ8JHJyLRx9+8ZvXVZtSyu/E6+Bc2MSzT49fnx4/RamGhvrh0Nt29pWNkqzJAG5Y8cO/frrr+a0d4IvGO/E3rfhdo7sxXudklS7du2wlqvqNSqXd6KxWFFRkX744QdzOtYWkN7Jw8zMTLVo0SLkMk2bNvXpHzKa7QME1K2b0V9auOy+0Er2C7lw+WvVYHdH3Cm47Y/a2UoMiccNx0CsF9bF112xfJZQjw8NGSLt2SP99psxMJOVP2D506eP9Mwzzj+GFmybuqEusWv/TaRkkFXOOMMYsCVZBNs3rNhv3FB3xkMqHgvUK84Js0FVKWzbqG277TanQ0gpliQgN2/e7DPdqFGjsJZr4PUL3tatWyNeb7kS/Q8dO3YsrOUOHTpkvv7999914MABn79v2bJFv/9vdM/09HQ1b95cixcv1h133KGzzjpLJ510kjp37qzzzjtP48aN0zfffBN0fd7bp379+uYAPMF4PB6fx9hLtvYEYvLZZ8Yoc27qPBlS69aSV/cU6t69dCsjuyTCjYRFMf785z9bUg7HB1zhjjti7/pg0qTwHjstU8Z4RNVK/o7rCROkDz+UrrnG3cfZk0/6Tl99tbsGaPJ43D/KeCor2cqpQoXoB2gK9n0l+kAYVkmE6xy4l9P7zznnBP+7m489l/u9TRttv/lmp8NIGZYkIPfs2XOiwLQ0n5Gvg/F+BNu7jHDVrVvXZ9pfa0Z/Ss5Xct3efy9fvrxGjBiha665RvPmzdO2bdt09OhRHTx4UBs2bNArr7yiIUOG6PbbbzeTliV5l1+rVq2wYpTksx2j2T6AZaI5qUWyjJUnTacvEGL16qvGjfc770j//a8Uol/blBfFvnO8Vi0VvPyy1KyZDQGFMGSI77QT/VrCVyJetDdpYgy0s3Ch9OijsZcXRtcwruOG761/f+n//s9IPE6caDymHm92bYdEP5cmgssuk9q0MV57PMajl+PHS/fdZwye0KePs/HFIpH3HzfULf6cfbbTEcQukfcLf+waBMyfpk0lrzEibF1XqvF4tMfppy1SSOimeGHIy8szX1eoUCHoACveKnr9iu5dRrhatWqlypUrm49iz549W926dQu6zG+//aYPP/zQ573Dhw/7THs/Mv3bb7+Zjz9Xq1ZNjRo1UmZmprZu3ardu3eb8/3f//2ffvzxR82cOVOVSrRE8G5hWfJvwXjPG832sUp+fr5j67aCJTu5wwoKC5Ue5O/F31G4n7V4/vSiIgU7XRUUFKgoPz/kfJJUkJ+vIq99xZOfHzRmb4WFhSrMz/cbf36A90OVFS+BYovpuOnZ07sgnz95CgrC3q7hKP6O0woLI/5FKtRntPLYy8/Pl8fPcVBUVKSCCPd/ScofPFhFl1yitLvvVtpf/xp0vcG+40D7bEATJyr9p5+k775TUe/eKvzLX8zvONrvtngbWLW9w953CwrCWmdRVpbf+qPkemKN32/cYWyXIsnch4LFUnys2HFOKQqjjvWZv3p1FVx6qTHhFXtaUVFUvyznFxSY5URdp4XYNoGWT/d4Sn32gsJCn/OJX2HufyXXX1BQUKIYYzpQWf72Dx/9+vm2VI9gHwl33/NWajuGqKMiiadkbMH2yfz8/IjqrGD7j9XnimjL8z6fFAunrHDqTL/niho1pM8+k+eLL1SUnW0M6iZJDzxg/P/558rw00e+v/X5O4cXfx6/f1OI/ToMwdYZzX5XvL+WFFU5fqQr+D5drLCoyOc6MtLtF+i6IJxr6aIqVeQJcM+XP3++tH69MsLs6iyY/MJCv9u6WLTnEm/F50yfcsPclpHez0jWxOyv3GL+vr/CENfOoc5lwa41/Jo5U54LL1T68OGl/lTk8fjdJ2OpXwPdU6UVFIS1rb23Y6z3L97XKSVFfC3+P97XA4FGwg51HxAqjkhjSgWWnPOPHj1qvi4bQcfNWVlZ5utwH5/2lp6ergsvvFAvvfSSJGNE6169emnAgAF+5y8qKtIDDzyggwcP+rxfct0lW0g2adJEd911l3r27Kn09BOHzooVKzRp0iStWrXKXG706NH65z//GbD8eG4fKxQWFpqfL1F1djoAC/z8008K1uV48XcU7mctnr/10aMqH2S+rVu3at+qVWr1+++qEKLMn376Sbu99pXqW7eqaZjx7N27V7+sX6/WAWKN5Dvcs2ePtsdxnw0Um13HTY1t29TEwvI2bdqkvFWr1Hj/fkU43l7Iz2jlsbdq1SrV/vnnUsdBfn6+volw/5ek7777TpJUf/du1Qky3zfffKNOAf62fsOGgPtsUE88ceL1tm3GP0nVtm5VNG0yD/3+u36I8DgJJtx913PkiN9tU5SWJk9hoTm9fvRotbz++pDriTV+f3GXD1CveCsqKgorlm3btukXC7ezt6OHDyuSYS9+P3JEa/183rq7dqmen/lD+fHHH3WoglHLR1unldm6VcFuiwMt3/7YMWWVeG/nzz9rZ6j9sKAgou8i0PqL64JAZR0/flzfRlifhxtXQUFBxMdByfnTDxzQyQHm/ebbb1Vm61ZF073+0aNHA+6TRenpWrVqlapt2RJ2nRVs/7HymPpxwwZF23P7wYMHtS6KeimcOtNfOeZy1aoZN9Ylyqmwfr3fz+JvfY337St1Dj906JB+WLVK9XbtUt0Sfzt69KhWx3idUn/v3lLnzyNHjuj7VauUsXevOkRY3tq1a3XUq5usYpHuH4G+j9aHDwe95i32a16eNniV0WD3bpUcZeDI4cP6PsB6/MX7w7p1anL4cNBr6cKsLG2/5ho1CvCj6Kr/NYix4njZ8OOPOhikUUzj8uUjviYsadv27fqlxDZqsGdP6W35v33GW6T3M5LU/LffFGwotT0XXqjst9+OuNxiLQ8eVMktti/EtfPPP/+sXRHWfRs2btRvwY7Nli39Lud9PRxqHeE6sH+/NoVZ3/jjvR1r7tihxjHEsuHHH3WwcmW/fwtav8Yo2H1orOfvVGXJDwXHjx8/UWCYrR8l+fSFGG1GeOTIkT6Dytx5552aOnVqqRaDW7Zs0ahRo7RgwQKVL+97+ikZs3efjR07dtScOXPUu3dvn+SjJHXq1EmzZs3yGdV68eLFpVpYRrt9vNdHxhxJj0cHnGXDYzG/RtuRtkscbtLE6RAS0s9XX22+3t+7t37rFCiFCwQQzvkgXucMO9eToOe9jQ8/7HQIgSXbI55wJxuO3TUvvaS9F15oebnR+Omaa5wOwXLbbr/d+kJdVIcf9+razjIu+nyuigUxsaQFpHeirNCr1UMo3km1zCj7OcvOztbjjz+ua6+9VkePHlVhYaGeeeYZPffcc8rNzVWlSpW0e/dubdy4UZKR9JwyZYpuuOEGs4wyJUZyfP/997V7925t375dTZs2VYUKgX+vysrK0pQpU3TWWWeZg9u89NJLOvPMM815ot0+3s2Co90+iK/fOnZUpZUrnQ4DcIXtN92k1l9+6dMaznUC3KwWpadr+y23BF000OMaqe7na6/VL/37K+3oUR1p2jR5Lhr5vgH9/Kc/6UCvXk6HkRrcXue4Pb6SXB7vkebNJUk7Ro1S/RkzHI3leJ1gz4bAab+dfLIqff21z3uFETxlGbNorutcfvwhfixJQHqPRu39OHYo3o8Vl0wCRuK0007TzJkzdeutt2rHjh2SjOTm6tWrfearX7++Jk2apJycHJ/3SyYYPR6Pateurdq1SzYS96969erq37+/Xn/9dUnSV199pcOHD5vbxfux60i2j/e8sWyfWKSlpal9+/aOrDsRlXv5ZRWOHy/Pjz/Ks3y5ZeXWrRf8oboOHSJ70KV4/vQQJ6tGjRqpYYcOSi8f+qGVevXrq65XHJ7/PSoSjpo1a6p6ixZBYw1Xdna2akS4jB0ijTtcnq++srS8pk2bqqhDB6VVrx7xsiE/Y4cOKqhfXxm9e0cZnaGwTx916NBBHj/HQUZGRlTbul27dkpPT1dagIHBCj79VE07dZKOHAlYRvP/3SyUFO137/n++6iWq1C+vKX7W9hlBdg2HTp0kMIow+pjxG95YZxzPWlppZYt8nhKJZgbNmyoBjYd12UivHEoX66c38+bFuZ1S0nNW7QI+Z2F/L5CnCcCLZ/WrZsxkIuXOl26qHao9UX4w0bx+gsKCszHrqUTdUEgmZmZttXn6enpUZ+/TXv3Bpz3pJNOkqK8KQ103Zn9zDMqbmfjCXPwR8m+c2JJgerlcFSsWDGqOKP9bCGX8/M4cqDl/J3DK1SooA4dOvg9z5UpWzbm7yTNT4urssV1088/R1xeq1atpBi+v2KBPle61/1qMJWrVPEpw+/nDLL9isqWlafE+TG3U6eQ6zfLmzZN8pOAtPIYymnePKzzdCwaNmhQ6pwZ6bYMxed7CjHOwkkRrMNfPOl+GiRVr1YtaDl169VTnQg/W06zZioKsUzaKadIJRKQga4FC2+/PWhf58FUrVYt7PrGH+9lPcuWRRVDsUj32XD2qZLXA5GWE/P5OwF9++23ETWo88eSBGSVKid6XDh06JDRmXoYmXHvvhi9H6OORocOHfTee+9p7ty5+uCDD7R27Vrl5eWpevXqatasmfr376/zzz9f5cqV048//uizbLYFTZY7depkJiCPHz+un376yUx0en+2kv1PBmPl9omF96PyCC6jTh1jFGPJ0lY/6SEe3Te/oxYtpPXrQ5Znzh8ixvSMDCkjI6zPkp6ebsx74o2QyxRLS0tTWoD9LNL9L1hZ8WTbcROkRXY0zO8tgu4hioX1GXv1kjp3lmJInKY9+qjxnfqJ0RNuHCWkp6cby/n73K1bK6NLF+N1kNbnGQH+FvV3H8Ex483j8Vi6v4VdVozHrNXHiN/ywlhHuNuvVB3n7eGHpbVrjZGpoxDONVPJ+f3GHMVxLP1v24XYBiG3UbTLT57sm4CsWtXoYD/U+iJsTRFo/WZdEEC0dUw4oim71PxBls/IzAzrGPAn0D7ps/4I6qx4XUvGsp5ov+to1xntMRXusW/WExaeO0OuU+HVJ/5Eu5zfcvwJs54tdR3pZz8Puv1eflkaPPjEdIcOymjRIuT6Q30flp7ng53PLOL3nBlsP42Cz3Ixbt9o5g3VtVp6WlrE2znotcaJFZd6K+B2nDhRijIBmebx+L+nCvNaI+zzxe23h4wx47TTItqWEe9TAa4pgpUT8/k7RVmyFbxbChYUFGj//v2qHkZmfM+ePebrmjVj7erWeBx66NChGjp0aND51q1bZ76uUqVK0Eesw1Uyfu8+KGt5/fL4yy+/hF3mXq9fta1IkiIO7GpeHqzczl5d3j71lHTWWfbEYDea5odn0CAjCendMqJHD2nJEudislvnWLrQjoJT+2K0P1okyyPObhLpPnDPPcb/+/dL8+dHtmz37lKAUU8jloj7QuvWxg37xIlG3fbEE1JWyWFp4EqJuL855Q9/kD755MS0Hf3RQbrsssB/C3d/jfLHQNMFF0jjx0vPPSfVqyeVGJzUrwADqMIBd94Z/rxO1YGRXKME+iF9xQopVB/d8boePuWU0PM49DQorGfJIDSNG/uOabTtfyN6hrJ9+3bzddOm4Y6XGzvvpra5ubmWlFny0WrvpGYTr4EMtm/frqIwDuaioiLzcfKSZQA+Jkw48frMM6VZs6TevY2bWiSfcuWkv//9xGN1V15pfO9uxk0qnBLOvufkjx85OcbxHCkrf2iqUMGaJH8s23H4cOm776Rly6Ru3WKPBbFL1B8F3Xq+GT9eKm5M0L695NUXfVJxer+5446IZv/VX+Jj3LjYYkhPl+6/X9q0SVq6VGrTJvQyDzwQ2zoj5abjxOl95s9/PtGir3Fj6dprrSs7nts50nV17GhPHNEIFfuoUfGJA3FhSQvI+vXrq2rVqjpw4IAkac2aNWE947527VrzdatWraJe/8GDB7V7927VqFHD53HwQBYvXmy+LhnnF198oUWLFumXX37Rb7/9phkzZoQ1crV30tXj8aiOV+e9bdu2NV8fPnxYmzZtUrNmzYKWt3HjRp+kZuvWrUPGgBR0yy3Suef6vnfZZca/zZulOCb2EUdXXSUNGSIdOybVqGE8/hmtMPr3TDluujB3s0TYTtHe2Hg80S0b6TYp0SVM2KxqPeXxGDfbtDhMXMH2uUQ4RlNFr17G8f7LL0aruHBa88SamCle3t89mRU/XLpt33v66eB9xPnZnkdycnSsXj3VnDfPeOPqq8NLGFopOzv+T3o4xcr9wqpWoyNHGvdTO3ZIXbpIDnZ7ljCsTho7nYRGXFnSAlKSunbtar7+9NNPQ86/du1an0eMu0X5i/fw4cPVuXNnnXvuuZozZ07I+detW6f1Xn3k9S4xOML27dv14osvav78+frvf/8bsmPSYp94PVbRokULn0RoixYtfB5J/+yzz0KWt3TpUvN1tWrVLGupiSRjQdcFSFCVKhnJx1jUrm3cFCUKfz8w1a8f/ziKWX2DFe0FGBduqWXBgtiP/TJlpPffN1od3nZb6Plbtgw9T7wTDiTXnEfdE5nKlY0fhu14lDDY8XDxxcb5vlh6unTffbGv023ff4hBSPwp8ni0ZexY5X/zjfT999K//mVf3RJoe4VTv6K0Bx/0nY7le2vbVjrnnMRJPrrt2AMiYFkC8pxzzjFff/zxx9q1a1fQ+V8tHqhDUk5OTtQJNu/R7hYtWhRy/qeeespn2U4l+j449dRTfTrenj17dsgyv/vuO5+E4YASv8h4PB6dffbZ5vQbb7wRdPSgwsJCvfHGG+Z03759I+6gHg5Jtu+p+ASXbJ8rlV1xhfF/zZpG/0Sx9nUUT5dfXrrF5pNPOhMLkocb6rdIbiasGEXxn/80brbCbekzdWrs64Q9Qu07iVTHW4Eb89IyMox+oi+5xGg19sknRitMOxTXp4n2PbRubfxD4gjVf6EbuPkRbPhKtDorgVmagCwebOXYsWO66667lJ+f73feTz75xCexN2LEiKjXe67X46fLly/3SQSW9Oabb+qdd94xp0eNGlUqsdewYUOf1phvvfWWPv/884Bl7tmzR7fddpvZr2P16tV16aWXlppv+PDh5rrWrl2rf/zjHwHLfOKJJ8xWmmlpaTFtH8SZXZVXvH+NtcL/RoGHy/z978b3vmePdN55J95PhBNv+fJG4qRiRWN6zJjY+4tLhM+NxJGs+1P//k5HgGh4PEZSpWFDpyOB05o3l15/XZo3TzrtNKejcQ1Pqj55kOjJqosvtq6sRNwWib7/lRTq8yTid4SALEtAZmVlafTo0eb0p59+qmuuucanb8T8/Hy98cYbuummm1RQUCBJatmypYYMGeK3zD59+ig3N1e5ubnq06eP33m6devm04/jrbfeWqol5P79+zVlyhTd5/W4Qc+ePUu1VCx21113mcOkFxQUaNSoUXr55Zd17Ngxc57CwkJ9+OGHGjp0qDZv3my+P27cOFWuXLlUma1atdJFF11kTk+fPl0TJ07Ub7/9Zr7322+/6eGHH9aMGTPM94YOHerTyhNJ5k9/sq9sKyrrSMooefI47TTJia4Dku2knAwmTrSurOHDjRGD8/OlSZNOdBxupXD3+1S/IEqEz29lfUDd4j49ejgdgft5PNLjj594PPXss8N7VDURju9kl2p1TiT73Omnl37Pri5ZOBaiY/X+O3iw0XL37LOlv/3NuvWFu1w05cdz5OZk3k8jGZkcrmfJIDTFLrroIq1cuVKvv/66JCMJec455yg3N1cVK1bUhg0btG/fPnP+qlWr6oknnjCTfdHweDyaOHGihg0bpl9//VV5eXm64YYbVKdOHTVu3Fh5eXnauHGjT/Kwbdu2euyxxwKW2apVKz3yyCMaM2aMCgsLdfjwYY0fP15Tp05Vbm6u0tLStGnTJv3yyy8+y40dO9bnUfSS7r33Xq1bt87sV/LFF1/UG2+8YT5+/sMPP+jw4cPm/O3bt9ddd90V1XaBDU47TQqj/86EEu7JKtrBGBYuNFqp7d8v3Xxz6QFzkBr69DH+ffSRNeXZkXRE6kqmi3YnP4sTyZInnjAeK92wIf7rjtSUKRGP0BuWcL7zQYOMQUcOHpTq1jVGevX6ATypJNPxHKtkTmD+7W/GgCHFmjWT/vCHiIspStX9JTPTmfXGsk8+95zRj6qbhNp/irs9SlRuqUOaNLF/HalaFzjA8ru4cePGadSoUcr8X8VWWFioNWvW6Msvv/RJPubk5GjWrFkhR4MOR/PmzfXiiy+qUaNG5ns7d+7UsmXLtHbtWjP56PF4NGjQIM2aNUuVQvz6O3DgQD377LOq7dVp86FDh7RixQotX77cJ/lYu3ZtTZ8+XZdddlnQMitWrKgXXnjBpzXn4cOH9fXXX+vrr7/2ST727t1bzz//vMqWLRveRoD9/DxajxAaNpReeUV6912pXz+no0Ewdp5409OlDz6wr/xY+Bv917vepf+e+HntNacjCC4Rvh+33CzES6dO0Y8k7gbx3KeqVDFaiMXjB5wbb/Sd/utf7V9nMorkeHZL/RSvOujUU6VXX5W6djWuL999NzG7K4pH+SWfQqlXTzrlFHvXGQm37Lt28Dd4YijJvD0AWdwCUjKSfLfeeqsGDhyoN998U0uWLNHOnTt1+PBhValSRa1bt1a/fv00cOBAZfm78YtSmzZtNH/+fM2dO1cLFy7UmjVrlJeXp7Jly6phw4Y69dRTdfHFF0c02E337t21aNEizZ8/Xx9//LG+++477du3Tx6PRzVq1FCLFi101lln6dxzz1WFChXCKrNSpUp66qmn9Nlnn2nevHlavny59u7dq4KCAtWsWVMdO3bURRddpB48VpSYUu3mD4kn0IWN3ftuero0bZp0002RLffEE/bEU+ymm6RHHvH9/H//u73rhH8XXmh8H9OmWVdmMl7IW3HtZMfxnozbOtE59Z1MmWL8kLNqldS7t3TLLc7EgcQSab106aXONQ6I5thy6ni86CLpq6+kt94yWhBOnx6fHyKs/rxOn2O4xzvB6m3hhm3rhhhShOUJyGI5OTkaM2aMxowZE3UZH0X4uF6ZMmV06aWX+h0EJlpZWVkaNGiQBg0aZFmZknTaaafpNDqBRqziVVk6fdKPRCLFmmqGDYs8ARnp/JGqU0e67z5pwgRj+rLL6KDfKWXKGMlfKxOQVor3xelttxmjVF999Yn3OnWSsrPjGwfcLZo+xsqXtz4Ob2XLGknIRMP1Q+zC2YbZ2cZAeIiPevWk2bOlAweM+iKW4796dcnriUZXceL4darOIFmGBEZHWoCTkukEEutJmAv/+HByn6tRI/Jl4rFfjB8vbd1qPMo5axZ9TIYrEY7ZaPd3N3w2j8dI2o8caYz83qaNMQo8kocV9XHFitIZZ0S2jNdgh/DitmuyTp1Kv/fQQ/GPw0rLlknff+/Mulu0KPXW8Zo1HQikBCv2u3vu8f/+hRcarR49HqlaNft/fHAzu87rbdrYU26k3HDdEkz16oH/5vbYYSnusoBElkwVttsu/JFaGjaUcnJKv89+iZKuv953+vzzT7y2uk4uV056+mljwJDVq/0nJIAXX/T/fqD98Q9/kIYOjX29yXQN4kYVKhgt9Is1ayZddZVz8VihSxcpUNLP7v2pRF+IhVlZ2jNkSHRlue3aoEcPacEC6eKLjf3kvPOMkYNnzXI6stDcti0jNWmStYP6hLM9EnGbXXihVLWq/78l4udB1EhAAuFKxcoxEW8uUvF7skKvXk5HACSG0aOltm2N1w0aSA88cOJvkdQ/DRueeO09mmsxP611QkrEOjuVWfV9NW4c2fwZGcYAHgMGBJ6HfckdJkyQli6V5s6VVq40RjEPF9dDvpo3l/71L6lePRU1aaKNjzyiwnD68LfqWLD7+zjvPONR6w0bjGTk5MlGEttKsX6GRK5XAn32AQOk5cvjG4s/bt+2mZnGeSdSL71kfSxwFAlIwEp2XVwEKtftJxskjuHDjf4QET6rj7+WLa0tD9Hz1w/lueca/+fkGB36b9smrV1rjMYajWefPfF63Djfv1WuLF1xRXTlwnmTJ/tO33abM3EE4/EYCZlAzjwzfrEguO7dTzxKi9hcfbW0Y4cK1q9XXqRdF9glWRPF8f5c0a4vljiLrwNPOin6MqKRqPtMv36RL3PZZdbH4U+ibtMERAISCFd6uvVlJkoCsUoVpyNAMJEMvBVon8vMNH7BLfl4KeKnc2epQwenowhfItRf4VxQ+vscw4dLrVqdmL7mGqMj/2JlyhitH6NpXVKzppFw7NPnxHuNGhktVrp2lXr2lD78MLrBReAOt91mPO7Zr5/RN1uJRz/jJpZjtFo16+KIVjStgHGC3XU0N+ypJxHO+6kqnt9NvNY1ZIg7+mVv0MDpCJKKC75RIEHYUQEmysXbo486HQGCycmx5hfC+vWlf/zDGIkYzli0SBo1yukoULWqkZCfPVv64AOjH0Yr/Oc/xuivY8eW/lHrvPOkzz+X/vtf6ZRTrFkfYhfNjVZ6unT33dK770oPPyxlZVkfV7IrW9Z4/Bipgx9d4IRw6/h43bOlYpI30LZ1y33yk086HUFSIQEJhCucFpBuOmlYGUsitcpKVTNnSu+953QU1jrvPKcjCM6O471mTempp6Qbb7SuzHg9vmInJ/oorVDB6ND/7LPdVbcDdrv3XqcjkNavt2agHNgnlnqx5MBJ7dunbisjtyRZwuFkrJyHTxg+vPR7114bv/Un0j5rhZ49nY4gqZCABMLlhibgJcXz17i77nJHLPDP45H69nU6Cuv07Cn9859OR5EYF7yhYpw1K/DIg4ninnukSpUiXy4Rvj+khkQ6R3oPrOSUVE1GWcnN+9wllxit/cuXNx61/9e/nI4osbn5u46XaM/34W47N11PnHWWb//TrVoZP5gmG7dsc7fEkSRcmFEB4iCaR0zDaQGZaBcADz0U/O/enyfRPhsS27//7dvnHtwnnhdkZ58trV4tffSR9Omn4S/ntnrLbfEgNDu/M7uPoWjKb9/e6BM4UaXqjWKife6yZY3W/ocOSevWSV26OB1RZKjL4SSPR/rkE+OH+qeeMrqMSeSuPjieUkqG0wEAjujaNfJl3NgCMlb9+hmjK0ZyQ28HKy+cGbkzuHC2NRcCJwTbFv5GJC1f3r5YAgnn+0qG77RhQ+Pfpk1ORxJYsJHkK1c26ls7OZmEYITeyLn5uEy0hFYxN2/TZJMq2zoRBvNx4/Hqxphi4bb9vUwZ6c9/tncdbvvMSApJmFEBbGLHKNh2CuekkZlpDHiwYIH/vyfaxUNurvv7DXRaolxMJEKcLVpI7dr5vjdrljOxpBKr6yUry7v/fv/vp6UZj7UmcguFUGrXlk47zeko3CvRzqfhiEc9nYyPFSYz9vPkxrbwlYz7O0rje7YUCUikpmhOoMk6CnZGRnhJOycr31C/8I0ZY9z4f/55crZUhXu98orRD0+DBkaCacAApyNCpKys2xo1Mrr4KFPGeMTwscekpUul77+XRo+2bj1u9frrUo0aTkdR2jnnOB0BovXII1Lnzk5HAfiy8ryRrMkNf/c4dt73RFt2sm7/ROL2UbDdEkeS4BFsJL2iU06RZ/ly3zerVYu8ICf7gEz2k2Oo7TZ1qlRYKD33nP+/T5pkfUypLNn3Nyu1by998UV81tWpk3TKKdIzz8RnfaGwn/h3003Gv1TUsKE0b550+ulOR2K08D9+3Bi86L77nI4mcURyHROPOqB5c6N/s3isi5vM2LENA3N7kiVVhbv94/U9JfOTEoBoAYkUUDBlioq8WsUVXnqpVLFi5AWVK2dhVBZx00WLnTcHlStLzz4rLV5s3zqAZJZMycJIPoub6kg3SYXtsnKl9Oab0qpV0h/+4HQ04W9zNz9yXKaM0xEgEnYf58l0XkH0Ihkw0Ml9xo51x1rma6/5TteqJfXoEVuZgMuRgETy69FD62bM0O6LL9aOG25Q4bPPRlfOuedaGxeS14UXOh0BgHA1auR0BNbp2NHpCNyTlGjbVho8WGraNLZy7Pw8/sqONlk6bZrvdLSPnQf7vA0aRFdmPLll/4u3VP3ciSQZviN/Se3bbze6c7JbMmy/kgYOlIYONV5XqiT94x+JMeZAKvyICdvwCDZSwsFOnXSwUydJUu1om7a7sUl8Mp6Mk8GjjzodQWBW7TNu/oxAsXD294cftj+OeOnfX2rcWNqyxelIEG9XXy2tWSO9/bbx2PKTT1q/Dm464S3Y/pCZGb84Eh3HlTUS8Z6oXDnp1Velp54yWpiXL+90RM7gGEgptIAEnESFm5xatHA6Ant06GBcLF1yiTRypL3rckvCPxEvaOPFqW1jdXcYOTnWluektDRj0Jurr3Y6EsRbuXJG65kdO6T//je59utIcF3lrOLzQs2a0skn+/7NLf0XWyFV97NUviays5//atXcmXxM1f0ctiIBCVipShV7ynXqBJDKFxrwVbGi9PXX0u+/GyPd2rWvF6tQwd7yw8XFl/vUqmWMPO5t1iz/86bi91e/vvSvfzkdReJxS/+Gbt5nuSZAJJ5+2kiEZ2ZKf/yjNHy40xFFJxH2+0SIMRmx3e11//1ORwAbkIAErDJ6tHtabdkh1Ek2nJumwYNji8HNN2awzvnnOx0B3O7FF6Vu3Yxk2513Gq1yo8UNBCTplVecjsAdkv08m6xPKPjj9HfZpYv044/SsWNGne2WHxbdxunvCXBaoMFh27ePbxyBcJ1oKfqABGJ1yy3GjXA0N8CpVqHdf7/01ltOR4FQTjqp9HtDhsRv/bVqxW9dSEytW0uffeZ0FInLznNPnTql32vXzr71WWXgQHvL9ze4jN1dWYSSjNcgoT5T06bGd/Hcc5Ev62aJHDsSh5PJ0lDrtju2VEwUx6teOf98qWpV6cCBE++9915c6zVPKn6/DqEFJBCrO+4wRjCLtpKMx8hxbtGhg/2P7iJ2PXtKrVqdmM7MlMaOdS4exM6OCytueN0t2KNLdl5oN20qde3q+94//mHf+qySkSGNG2df+V27Gi3CilWtavyA6aRUveFKxi4K3PJduiWOVOPkdvd4/F8j9uoV91CiEsu24zrIGllZ0rPPnrhHvPFGqU8fZ2OCbUhAIjVZeaKO9eRjx0iVdrBqm8XSMT4n+vjweIxBDK67TrrsMunTT6UmTZyOCohcKt8Mjx4d26Ppsfj3v6URI6Szz5beeMP4USPVeTzSRx9JEydK99wjrVolZWc7HVVpqXCe9XikK690Ogr7pcJ3mQyS4Tw1apRUt+6J6YEDU6O7g2T47txi0CDpl1+MLhumTTMaPyAppVDTK8CFioqka64xknIrVhitIy6+WNqzx+nIDPE6sXKR7D61ajmXHOeCDvGUrPtb1arGgFFvvBH/ddeuLb30UvzXawcr948KFaS77w4+T3q6deuzWrIeK8H861/Sn//sdBSJg+u5wBLt+LnoImnuXN/pjz7yP292tvTNN0ZfulWqSJdfbn08ofYtu/e9VNy3A+2zPXpIL7xg/frS0915Dky0Y9flaAEJuEGfPtLttxutRNIsOiypLAEUS8ULZyl1PzcS12WXuaPlR7IeO/37Rzb/n/4kTZliTyyAm91+u1SjhvG6Rg1jOti9Rc2a0l/+Il1xRWRJJKfvV8Kt65yO001GjDC+72LlyzsXCxIOCUggkdl9MkzWGxAgUXEBDMRXvM+D1aoF77/TTdx6jTBpUuC/XX114L/5q1/T0ozESyLifJEY3Po9de8uff+90Q3P998b0/5EUg+4sc6gD8jIZWVJX35p/EAzYoT01VdORxQ7tx6HSYgEJAB3oOJHMTdd0GVluf+X3eLt9corsZc1bFjsZbhJOPWKm/Y3QDISkMuWObNut56L27YNf96RI6VTTvH/t+L6PNmO+2T7PHCHWrWk004z/reCW+sXRK5JE+m554zuVrwHrgRCIAEJIDxO970CayTz93TBBdaX6fEkzuN3F10UexmJMmolkOyaNrV/HYl0Pvj738Oft1o1ad48+2IBrGTFcZhIx3JJ8Yo91vWQPE1uwfaPRD6+XIgEJOAkTmZINX/6k31ljxljDLxhteuvt75MKxXXI2XLOhsHEgfnHiSaPn2k9983BvKBO3ToUPo9fsSKHPWxNZzYjiSmgIiRgARiZUfCA/5xkZb47rhDat7ceN2wobU3k6edJn33nTRhgnVluo3bLnbbt/edvvdeZ+IAkk08jvVYz6nxPiefc4707LPxXScCGzbMdyCK9HTOAXCvoiLprLNKv9+wYfxjAVIYCUggVuXKWVueVRf0bktUBFNUlFjxInqtW0vffCNt2iStWSN16mRt+fXrS337WlsmApsw4UQSuXVr6ZprnI0HQGyCnYv5ETCx2P19ZWZKS5ZIgwZJ558vffKJVKeOvesEYjF5su8I3eedJ9WrZ03ZlSv7TidDYjOSOuSZZ3ynb7vN2ljsxvktbjKcDgBAGALdELjpRiHc9ZFoRLlyRufVSHwXXCD9+KO0a5fUooX7BuzhghKIznXXSQ895PvejBnOxILQnLq2ys2V3nrLmXU7ycpzC+ep8FjRF32nTkai/IUXjGT5XXeFv/5Q39P06dIVVxjzpadLjz8eftnJ4M9/Nj73okXG0zF33OF0RHApEpBITYl2sncqXpKFyScz0+kI4GbRHPN16tDqBUg29epJf/nLicFfzjpL6t3b2ZjCwXULrGbVPpUM+6aT909WdRlx2mnGPyt4f6cjRhg/rq9cKXXtavxLJR6PdNVVxj8gCBKQgF2qVpUOHIh8uUguUKI5GU+bFvkySA5DhkhZWU5HASdcdJH0/POh50u0H2dCSYYbPjuwXdzPqWPRe71PPGHcTB4+LHXpIqUlQM9NyVaHIXkk677J+eSEP/zB+Ifkwj5uqQS4kgAS1BNPOB2Bf8OGOR0B4q1qVen2241HThJBsl6kO+mBB6QMr98cmzf3nQaQenVPODdVHTpI3bolRvLRCck86BniI9XqHack2qBbcI+KFY1+zr1NnOhMLEmAqwmkpnj8kvHHP0pvv23/eiJVo0Z0y/HrT+J6801pyhT39c8nsV/FS+PG0tKl0tCh0tVXS4sXOx1RfHDDgFhRR7mLm76P5s2lP/3J6SiAxJbI52k31Uew16RJUqVKxutTT6XujwHNHwA7devmdATWseoCIZEvNIBE1qWL9Nprweex62L67LOlhQtPTP/1r/asB+GhHg5fMm+rZP5s8bBixYkbUjfi+7UG2/GEWLeFnQk7vifrlSnjdATxE2r/GThQ2rRJ2rfP+FGfLq2iRgtIpKZUOEkl0mfkF0QguU2bJp1yilS5snT55dLIkU5HBJTGuSiybZBs2yvS6yY3JR+T7btwOyu3dyJdr/uTKPueHds5Ub678eN9px9+OLzlHnjA+lgSWY0aUosWJB9jRAtIAIHF88QazroS5SIHzkqUC8JUkpsrffml01EASHbF1wnp6eHNByA5cEwHds89Urly0rJlxgjgt9wSeplbbjGSbYDFSEACdgqVCCFREhm2V/LhO4Wd2L+QqNwwCnYiq1VLattWWr36xHvTpzsXj92S5XtLFGzv+Is1wWjHd5YoSc/0dGMwynBs3mz837ixbeEgtfEINoDAUvlRrESVm1v6vezs+McRC/al+OAGCkhtbqlre/b0nb7xRmvK/fvfjUSkJPXvb3T/UCwV6j+3fL+Jzu7tmEj7or9j8/TTw1/eqc/aurU7B2J0o8aNST7CViQgkZoS6WQPROKpp3yn27SRTjrJmViQeJLthjXZPg+QjB54QKpWzXidkxNbAtL7+q5PH2nbNunXX6V586QqVYIvm2z1Bde6sNott0hVq56Y7tFD6tQptjLtPu4qVpQmToy9HI6npFZQsWLpN//wh/gHkgJ4BBuwk90n1WB9HCXbhTTC06uX9Oyz0pNPGi0/pk1zOqL4Y98HgMTRp4+0fr30889SkyZGwsAqWVmpMWAA5z3EQ+3a0qpV0j//aQwqZ1VrZbu0aSN9/PGJltBW47hLGkVlyqjw6quV9uyzxhsZGdLkyc4GlaRIQAKJLDMz8N+s/qUu1EmWXwbdweORrrrK+AcA/lBfw21q1DD+hcK+CzirUSNpwgSnowhPmzb2JR+RdAr/8Q+lde4sbd0qDRoknXqq0yElJRKQSE2J+ItVtWrS/v2+7yXi5wAQPStvvlPhRj4VPiOsk2r7SzJ+Xq6L4FZ2Hm/s98lZnyG+0tOl666Lfvm//MXoexhB0Qck4KRITpbJfnGR7J8P8ZNqF6FWHjsch4CvVDsm3P553R4fAHs4fW3n9PqTRclBx+65x5k47DB1qtHfaKVKTkfiaiQgkZridRKxaj3JftJL9s+HyLA/RIbthUiRxEEg1CdAaDyN4D5OnNc4l0bukUekevWM1126SNdf72w8VsrIkO6+W5o1y+lIXI1HsAG3cdPJzI5Y3PT54Dz2h8iwvQBYhfokuZHYskYiHCeJ/F2HG3sifA8IrXt36ccfpd9+k6pXN5J2SCl840A4go02HUw0J8tEvoiwG9sGgNW4qQGic8oppd+76ab4xwHqsUTAd5TY24B7EOuUK2f8Q0riEWzAn5Ijpr3+ujNxFHPDCTvYiNuR4AQOwE2ok4Do5ORI5513YrpKFen2252LJ1bUBfDH7v2C/S5xueH+DO7DfhEUCUjAn2eekapWNV5feaV0/vlORhMdqy9orr9eSrOpyvB4uAADALgP56bg5s41Rv188EHp66+lRo2cjig83CAiFnbvPyef7Dt95532rg8A4oRHsJGaypcP/vcLLpB275by82kiXqxWLWnsWGncOG7IACCRUYf756akVDy+IyvWkZXFY9eA1caNky67TDp4UGrRQho50umIAISLa6ygaAGJ1FSjhtEJbjCZmSQfS3rgAWnLFqejAILjxI9i7AtAZNyUhEVsqP8Sg7/vaeBAad06acUK419OTvzjSjT+uoqKtg9/fy66qPR7f/iDdeUDKYIEJFLXrFnSOec4HYV97LqJaNhQqlTJnrJDceON0eDBvtM33OBMHImKGyTnsO0BlES9kJjceH2UzOJxnNStK3XsKFWsGHpevn9pwoTS7z34oHXl33ST7/1Po0b+k5IAgiIBidTVtKn0/vtOR4FEN26c1LKl8bpTp8TugN8tuJB2DtseqSzVkm8c70BoVh0nqVa/xFu7dtJVV52YvvZaqVUr68qvVk1auVK67jrp5pulL76wtoUlkCLoAxJA5LhpOaFtW+m776TDh42+RTOoVoGEQn2GYNg/3CXU98H3hUSTSonJWD5rOMf+s89Kd9xhvM7NjX5dgeTkSE8+aX25QArhThlwUqwXHcGWT6ULGqdlZvrvewYAAMQP1z5AYrH6RwMrWz0CsByPYAMA3IUbSFilU6fQ87C/wY3YLxEJ9hcAcAfq46BIQAKJLNUeNaJCTz527MOpdlxEKxWOpwoVpPvvdzoKZ11wQen3mjePfxxwn1SoAwC3697d6QicFW49RH0FJAUSkAAAwJCMydvx46WlS6U5c5yOxBkTJ/p+ry1bSj16OBcPEAuSEP4lY92dKsaOdTqC+GE/BVIefUACiSAVLri5KIFVUuF4QWRSuYVJmzbSwoXS449LVatKkyZR38LAfgBEx6rrjLZtpYYNI1umXTtj8ENvtWtbEw8A2IwWkICdKlYM/nd/FzBuuiFwUywAgOiceab0f/8nzZwp1a/vdDQIB+ff6IS73c49t/R7Q4ZYGwuSg53H4plnRr7MP/7hO926tXTyyZaEAwB2IwEJ2KlCBenCC51Zt1tbgfkbna5hQ/fGC7gJx4n1SPQAqeeii6RmzU5M16ol/fnPzsUD93LbefcPf5BeeEE69VTpvPOMH5cAIEGQgAROP913um5da8ufNUu67TZry0xkDz3kO12mjHTddc7EAsAXyTjAHdyW9Eg26enSl19K990n3XWX9PXXUvnyTkdlLfYh+zh5rvR4pCuukL74QlqwQMrJcS6WeOL6BEgKJCCB8eOlcuWM1+np0l//Gnje++7znb733tDlV6hglHnWWaX/loon06ZNpZdekpo0kVq0MAaGqFTJ6aiAxJCKdQYQL127ln6Px3ITSyRJt+rVpQkTpEcesf7H53hL5nPDSSf5TmdlORNHrDp3Lv1eixbxjwOAvc4+Wypb1ve9Z591JhYXYhAaoE8faeVK45fwtm2ljh0Dz1s8Ut3nn0vdurl75Do3X4yOGGH8AwDALfr2NRIC69cb0+XKSXfc4WxM8OXmaxvYY/JkaeBA6fhxY7pkH4iJ4oEHfJMQFSpIV1/tXDwA7FG+vNFoqbjh0qmnSoMGORuTi5CABCQpN9f4F0pmpvFruZ0S4ZGZkSNLtxQ97TRnYkFiS4T9PZWk4veRip8Z/nk80qefSg8/LP3+u3TLLck9umyvXtJjj/m+N3SoI6EAAfXrZzQSWLpUat/e6AMxETVsaPTXOG6c0Ypz6tQTT2ABSC733muMA7Fvn/F0RaK23LYBCUjASeHe+LrtF//bbpOeeUb69VdjumtXqUsXZ2NC8oh1fyehBCBaNWtKf/ub01HEx/nn+7b4rFJFuvFGZ2OKlduul2CNDh2Mf4muf3/jH4Dk17at0xG4EglIIF7cflE8bZp0002+7/nrt1KS6tQxOmx/+mmj/8ZbbrE7OkPNmqXfa9o0PusGUoHb6ykA1klLM7qUmTJFOnJEuvlmqWpVp6MC3I8fOgEgKiQggWQV6cXR8OHSU09J339vTN9yi1SjRuD5mzaVJk2KOryotG0rtWsnfffdifeeeSa+McB+XNintpo1pb17T0zbPUgVSVe4UbzqwerVjUFYkHw4l1qDc4R12rcv/V7PnvGPA4BjGAUbSBQ5OaXfq17duvKrVzf62Pn3v6XFi937CNrbbxsDBZx8sjRjhnTmmU5HhFhwYY+Spk07sV94PIk74AAAxAvnUiSCYcN8GzekpUn33x/esmmkLYBkQAtIIFFMm2aMvF2sYkXjRG6l8uWNkQbdLCdHeu89p6MAYJdLL5UaNJCWLZNOOUU64wynIwKQ6m68UZo+/cR09+7OxQIkqsxM6ZNPpLvuMrp9uO8+qV690vM984wx4GWx3r2lMmXiFycA25CABJwUyeMxXbpIDz1kPCpVsaLR/2LZsvbFBgBO6dHD+AcAkcjOtqfcG26Q5s+XNm+WKlcOv9UWAF+tWxtPWwXzxz9Ka9ZIb75pdPn0z3/GJzYAtqMtMxAvsT4e4/FI994rHTwo7dwpXXCBNXEBcJ9Ro0q/N2GC/evlMT4AiapbN6lJE3vKbtVKWrVK+uorad06qV8/e9YDwGjt+Nhj0tat0n//678bKgAJiQQkkAhSoSPxFi1Kv3fVVfGPA4kvGZJobdtKl1xyYrpHD+mcc5yLJ5mlQv0KJItAj2EOHy7NnWvvuitXljp1kmrXtnc90ahYsfR7jGgOAHAZEpCA2yRD8iQaVav69vdSpYo0Zoxj4SCBJUtC6bXXpA8/lN59V/r4YymDXlMApLh+/YzrA29z5kgvvyzVqeNMTG5w882lB+mYOtWZWJLNH/5Q+r2hQ+MfBwAkARKQANxjxgzp1VeNxy5WrZJatnQ6IsA5Ho/Up49xw03y0T6p+qMP3K1WLalcOd/37rjDmVjcJCvLGJSveNsMHSqde66zMblBrVrSo49K6enG9C23SB07OhpS0ujXz/d6tFIlI+ELAIgYdzQA3MPjMUbABeAMknGAO6SnS5MnG4mOoiKpUSPpuuucjsodRoww+sE+csQYdIZ6y3DbbdKf/ywVFkrVqjkdTfJIS5M+/dRI8B4+bByTNWo4HRUAJCRaQALxctZZpd/r2TP+cQBIXldc4Tt9/fXOxIHE1b277/QNNzgTB6SbbpJWrDBGX/76a2M0WBgqVzZa/ZF89FWlCslHO9SoYfwg8Pe/MyAKAMSABCQQL9ddZ1wwF6teXfrTn5yLB0DyefBBYyTY9HTjB4577nE6IiSa++8/ca5q3JgkttNOPlk6/3ySSgAAIOHxCDYQLxUrSsuXSxMnGr/Y33+/VLas01EBzmrYsPR7qTyQQCihBthp0kT67LO4hIIk1a+f9MMP0vbtUosWpQf8AAAAAKJAAhKIpxYtpOefdzoKwD0mTDBGLy2Wlmb0YwXAOXXq8EMAAAAALGVLAnLDhg167bXXtGzZMm3fvl35+fmqVauWWrZsqQEDBujss89Whg0jei5dulTz58/XihUrtHv3bhUUFCg7O1snn3yyBg4cqDPOOCOi8goLC/Xxxx9r4cKFWrVqlfbs2aMjR46oUqVKatiwobp06aIhQ4aocePGYZU3fvx4vex9ox2GRo0aaeHChREtA0gK3VIKcIOmTaXp041HhdPTpb/9TapZM7Yyk3nfp78zAAAAAAnI8izgtGnTNGPGDOXn5/u8v23bNm3btk0ffvih2rVrpylTpqhZs2aWrHPXrl26/fbb9cUXX5T62/bt27V9+3bNnz9fJ598siZNmqSmYXTivWbNGt15551at25dqb/t27dP+/bt06pVq/Tcc89p+PDhGjNmjDIzM4OW+f3334f/oQAgVdxwAwNdID4ef1y65ZYT03XrSrm5TkUDAAAApAxLE5APPfSQZs6ceaLwjAzl5uaqXLly2rBhg/bv3y9J+u677zRixAi98cYbql+/fkzr3LJliy677DLt2bPH5/2cnBzVrFlTu3bt0ubNmyVJX3/9tQYPHqx//vOf6ty5c8AyV65cqSuvvFJHjhwx3ytbtqxatmypcuXK+ZRZUFCgmTNnatOmTXr66acDtuwsKirSDz/8YE536dJFWVlZIT9frVq1Qs6DJJPMrbcAwEnDh0uzZhn98WZlGX3ypjEeHwAAAGA3yxKQ7733nk/ysW/fvho7dqxq/u9RuuPHj2vOnDl65JFHdPjwYe3du1c33XST3nrrLXmifKTs8OHDGjVqlE/ysVevXrrnnnt8Hotev369HnzwQS1fvlyHDh3Sddddp3nz5qmOn/6NDh48qBtuuMFMPpYtW1a33367LrnkEpUpU8acb9OmTZo4caIWL14sSVqyZIkee+wx3XnnnX5j3bJli37//XdJUmZmpp577rmQLSYBE49dAkDssrOlpUulNWukGjWkBg2cjggAAABICZb87H/8+HFNnjzZnO7du7cef/xxM/koGUm3oUOHavr06WYrwdWrV2v+/PlRr/fll1/Wxo0bzelLLrlEM2bMKNUnY4sWLfT888/r9NNPlyTl5eVpwoQJfsv817/+pV9++UWS0YLzn//8p0aMGOGTfJSkpk2b6plnnlHfvn3N91566SX99NNPfstds2aN+TonJ4fkIwDAfVLhx46sLKlDB5KPAAAAQBxZkoBcuHChmXjLyMjQ2LFjlRbgkaYePXpo6NCh5vTzMYwI/Morr5ivmzVrprFjxwZsTZmVlaVJkyaZjz0vWrRI69evLzXfvHnzzNeDBw9Wly5dAq7f4/HowQcfNJOTx48f1wcffOB33rVr15qvW7VqFeRTAQAAAAAAAMnDkgTkO++8Y77u3r276tWrF3R+7wTk6tWrtW3btojXuXnzZu3YscOcvvLKK0O2KqxVq5Z69+5tTpdsfbl161afMvv37x8yjurVq+vkk082p7/99lu/83m3gCQBiYjRLyQAAAAAAEhQMScgi4qKtGzZMnO6+DHnYHJzc5WdnW1Of/TRRxGvd8uWLT7TXbt2DWu5du3ama+//PJLn7/t2LHD51Hr5s2bh1Vm1apVzdcHDhzwOw8JSIQtFR6BBOxUossMAAAAAICzYh6EZseOHfr111/Nae8EXzC5ubnm4DGBWg0G471OSapdu3ZYy3knC72TgpJ02mmn6ZtvvtH+/fu1a9cun3mD2b59u/m6cuXKpf6+b98+7d6925zOzc0Nq1wAQBQ6dpQaNpS8WtcXeA2SBgAAAACIr5gTkJs3b/aZbtSoUVjLNfDq/H3r1q0Rr7dcuXI+08eOHSv1nj+HDh0yX//+++86cOBAqURjtWrVVK1atbDi2LZtm77//ntzOicnp9Q83onO7OxsVapUSe+++67effddffPNN9q7d6/Kly+vunXrqnv37hoyZIiaNWsW1voBACV4PNIzz0gjRkh790p//KOKLrhAWrfO6cjcjxbYSESXXiq99tqJ6Ycfdi4WAAAA+BVzArK4FaMkpaWl+Yx8HYz3I9jeZYSrbt26PtNr1qxRt27dQi5XstXjnj17wm7p6M+0adNU5NU/n3cfk/7WmZGRof79+5dK3Obl5SkvL09r167Viy++qBEjRuiOO+4wRwwHAESgXz/p55+lggLjkez8fKcjAmCXxx6TfvtN+u476eyzpZtvdjoiAAAQD6NHG9cBxS6/3LlYEFLM2a28vDzzdYUKFQKOfl1SxYoV/ZYRrlatWqly5crmo9izZ88OmYD87bff9OGHH/q8d/jw4YjXXWzhwoX697//bU5369ZNbdu2LTWfdwLy559/Nl9nZ2erYcOGKioq0qZNm8z+IwsKCvTCCy/oxx9/1IwZM0IOrmO3/AS/cS8oKAg67Tbpkkq2QSooLFRRpN9Dfr7fAzzRv08gIunpUn5+zPWAW46ltMLCUp03FxUVqSCKWPx9poKCgsjrGsBp2dnS22/7vhdgP060awIA1qMeANxzbRuz229X2po18nzyiXTyySoYNy6shgfUA86IOQF59OhR83XZsmXDXi4rK8t8fezYsYjXm56ergsvvFAvvfSSJGNE6169emnAgAF+5y8qKtIDDzyggwcP+rwfzbolY/TuO++805zOzMzUmDFj/M67du1an+n27dtrzJgxOvXUU833CgsLtWTJEk2cOFGbNm2SJC1ZskQPP/ywHnzwwahitEJhYaFWrVrl2Prt8N133zkdQlAnHT+ukinnnT//rJ0Rfg9ltm6Vvx5Zk+37BKIRaT3Q2c97ThxLjX75Rdkl3jv0++/6IYpY/H2mrVu3ah91BFKI268JANiPegCpyC3XtpaYMOHE6/37jX8Roh6Ij5hHwT5+/PiJwsJs/SjJ59HiaDPtI0eO9Hl8+s4779TUqVNLtajcsmWLRo0apQULFqh8+fI+f4sk5mJr167VVVddpd9//91n3W3atCk177Fjx3wGqenbt69effVVn+RjcRw9e/bU7Nmz1bp1a/P91157rVQCEwAAW9AHJAAAAAAbxJyATE9PN18XFhaGvZx30jHaR4yzs7P1+OOPq0yZMub6n3nmGXXv3l2DBg3SFVdcoXPPPVfnnHOO/vOf/ygjI0NTpkzxKaN42XB99dVX+uMf/2g+Li1JF198sf74xz/6nT8rK0srV67Uxx9/rJkzZ2ry5MlBP2+lSpU0depUMzFaVFRktvIEAAAAAAAAEk3Mj2B7jzzt/Th2KN6PPkeaBPR22mmnaebMmbr11lu1Y8cOSUZyc/Xq1T7z1a9fX5MmTSo1SnWFChXCXteiRYt022236ciRI+Z7AwYM0Pjx44Mul5aWpnr16qlevXphrScnJ0fdu3fXkiVLJElLly4NO0arpaWlqX379o6t3woFBQU+TarbtWvnkzh3m3Q/Ceo6deuqdocOkRVUorVvsQ6RlgMkATvqASeOpbQaNUq9V6F8ectiadSokRpSRyCJJdo1AQDrUQ8A/qXSfSL1QOS+/fbbiBod+hNzArJKlSrm60OHDqmoqEieMB7h8u6LMZZRqCXjQHnvvfc0d+5cffDBB1q7dq3y8vJUvXp1NWvWTP3799f555+vcuXK6ccff/RZ1ns07mD+9a9/aerUqT4b/OKLL9aECROieow7lE6dOpkJyJ07d+ro0aMxJWpjkWwjcaenpyfcZ0pPS5MijTnA/In22QE7xFwPNGzozLHk9aNfMU+5cpbFkp6eHnldAySwRLwmAGAt6gHAkMrHAfVAfMS8hWvXrm2+Ligo0P79+1W9evWQy+3Zs8d8XbNmzVjDUFZWloYOHaqhQ4cGnW/dunXm6ypVqoRsAXn8+HGNGzdOs2fP9nl/5MiRuu2226IPOISS2+TAgQM+2xoIib7cAOvcdJM0bdqJ6SefdCaOO+7wjUOS/vrX6Mq6+GLpzTd932vVKrqyAAAAACCImJvuNW7c2Gd627ZtYS3nPTBL06ZNYw0jbN7NbHNzc4POe+jQIY0cOdIn+Zienq4HHnjA1uSjVPpx9kgeFQcAWOxvf5OeeEK64Qbp3Xel/v2diaNhQ+nuu09MX3211KlTdGVNmCB5P2rSsaPU2d+YiAAAAAAQm5hbFIgsKAAANudJREFUQNavX19Vq1Y1B2VZs2ZNWH0HeI/s3CqGFhcHDx7U7t27VaNGDZ/HwQNZvHix+TpYnL/++quuuuoqffvtt+Z75cuX12OPPabevXuHHd+iRYv0+eefa9++fcrIyNCjjz4a1nLeidzKlSurYsWKYa8TkCQVFTkdAZA80tOlv/zF6SgMEydK110n5edLsfyA16qV9Mkn0vTpUrVq0rhx1sUIAAAAAF4s6bywa9eu5utPP/005Pxr167V3r17zelu3bpFtd7hw4erc+fOOvfcczVnzpyQ869bt07r1683pwMlEg8dOlQq+Zidna1Zs2ZFlHyUjITszJkztWDBAs2bN8/ncwdT3P+jJHWmRQoAwFvDhrElH4uddpr08stGEtLPADcAAAAAYAVLEpDnnHOO+frjjz/Wrl27gs7/6quvmq9zcnJCPgodSPPmzc3XixYtCjn/U0895bNspwCPrd11110+ycfGjRvr1VdfVdu2bSOOsUuXLubroqIivVmyvy0/PvjgA23cuNGcHjhwYMTrRQKbNKn0e0OGxD8OAAAAAAAAC1iWgKxVq5Yk6dixY7rrrruUn5/vd95PPvnEp0/FESNGRL3ec88913y9fPlyLV26NOC8b775pt555x1zetSoUX5H63711Vf1wQcfmNP169fXzJkz1bBhw6hi7NKli5o0aWJOP/PMM6VG4va2ceNGjR071pxu1qyZT4IXKeDii6X27U9MDxsmeSXbAQAAAAAAEoklCcisrCyNHj3anP700091zTXX+PRjmJ+frzfeeEM33XSTCgoKJEktW7bUkAAtu/r06aPc3Fzl5uaqT58+fufp1q2bTz+Ot956a6mWkPv379eUKVN03333me/17NlTAwYMKFXewYMH9dhjj/l8rqeeeiqm0ac9Ho/uuecec/rQoUO6/PLLtWDBAhUWFprvHz9+XHPnztWwYcO0f/9+SVJmZqYmT57McPCppkIFadky6Y03pAULjMcjAQAAAAAAEpRlma2LLrpIK1eu1Ouvvy7JSEKec845ys3NVcWKFbVhwwbt27fPnL9q1ap64oknYkqueTweTZw4UcOGDdOvv/6qvLw83XDDDapTp44aN26svLw8bdy4UceOHTOXadu2rU+S0dsrr7yiX3/91ZyuWLFi2IPGFMvNzdWdd97p894ZZ5yh2267TVOnTpVkJEVHjx6t8ePHq0WLFsrPz9eGDRt81p2ZmanHH39cJ510UkTrR5IoV47HrgEAAAAAQFKwtGnduHHjVK1aNT377LM6fvy4CgsLtWbNmlLz5eTk6IknnlCzZs1iXmfz5s314osv6uabb9bWrVslSTt37tTOnTt95vN4PLrooot0//33q3z58n7Leu+993ym9+3b5zMYTDi8k53eRo4cqXr16mn8+PHKy8uTJB04cEBffvllqXlzcnI0btw4nXrqqRGtG/DBKNgAAAAAAMAFLE1Aejwe3XrrrRo4cKDefPNNLVmyRDt37tThw4dVpUoVtW7dWv369dPAgQOVlZVl2XrbtGmj+fPna+7cuVq4cKHWrFmjvLw8lS1bVg0bNtSpp56qiy++OORgN94Dv9ihf//+6tWrl95++20tXrxYa9eu1YEDB5Senq7s7Gy1adNG55xzjs466yxLtw8AAAAAAADgFFs6F8zJydGYMWM0ZsyYqMv46KOPIpq/TJkyuvTSS3XppZdGvc6vv/466mXDVbFiRV1++eW6/PLLbV8XAAAAAAAA4DRLBqEBAAAAAAAAAH9IQALJyuNxOgIAAAAAAAASkAAAAAAAAADsQwISSFaMgg0AAAAAAFyABCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJJKuiIqcjAAAAAAAAIAEJAAAAAAAAwD4kIIFk5fE4HQEAAAAAAAAJSAAAAAAAAAD2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkkKwYBRsAAAAAALgACUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISSFZNmpR+b/TouIcBAAAAAABSGwlIIFmVKSONH39iul496cYbnYsHAAAAAACkpAynAwBgo/vvl3r3ln76SerTR6pZ0+mIAAAAAABAiiEBCSS7Hj2cjgAAAAAAAKQwHsEGAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAACAVPHHP/pOjxrlTBxIKSQgAQAAAAAAUsUDD0idOxuvTztNuuceZ+NBSsiwq+ANGzbotdde07Jly7R9+3bl5+erVq1aatmypQYMGKCzzz5bGRnWr37p0qWaP3++VqxYod27d6ugoEDZ2dk6+eSTNXDgQJ1xxhkRl/nNN99o9uzZ+vLLL7Vr1y4VFRWpdu3aatu2rS644AL17NlTHo8n7PKKioq0aNEizZs3T99++61++eUXlStXTrVr11a3bt00ePBgtWrVKuI4AQAAAAAAgmrWTPryyxPTEeQzgGjZkoCcNm2aZsyYofz8fJ/3t23bpm3btunDDz9Uu3btNGXKFDVr1sySde7atUu33367vvjii1J/2759u7Zv36758+fr5JNP1qRJk9S0adOQZR4/flwTJkzQ66+/Xupvmzdv1ubNm7VgwQL16NFDjzzyiGrVqhVWnLfeequ++uorn/ePHTumvLw8rVu3TjNnztSVV16p0aNHKysrK2SZAAAAAAAAYSPpiDiz/BHshx56SNOnTzeTjxkZGWrbtq1OOeUUVatWzZzvu+++04gRI7Rjx46Y17llyxYNHjy4VPIxJydHXbt2VZMmTcz3vv76aw0ePLhUArCkoqIi3XLLLT7JxzJlyuikk05Sx44dVbFiRfP9JUuW6IorrtCvv/4atMx9+/bp8ssv91l31apVdcopp6ht27Zmi9CioiI9//zzuuuuu0J+dgAAAAAAAMDNLE1Avvfee5o5c6Y53bdvX/33v//VnDlz9PLLL+uTTz7R+PHjVa5cOUnS3r17ddNNN6moqCjqdR4+fFijRo3Snj17zPd69eqlDz74QO+8845eeuklvf/++5o/f75OOeUUSdKhQ4d03XXXaefOnQHLfe6557Ro0SJzevjw4Vq6dKlmz56t1157TUuXLtWtt95qJg03btyoe0L0m3D33Xdr69atkoxk5oMPPqilS5fq5Zdf1pw5c/Sf//xH5513njn/ggUL9NJLL0W+UQAAAAAAAACXsCwBefz4cU2ePNmc7t27tx5//HHVrFnTfC8zM1NDhw7V9OnTzcTd6tWrNX/+/KjX+/LLL2vjxo3m9CWXXKIZM2aocePGPvO1aNFCzz//vE4//XRJUl5eniZMmOC3zH379ukf//iHOT1s2DA98MADqlSpkvle2bJlNWrUKI0fP958b+HChVqxYoXfMj/55BP95z//MacnTZqkYcOG+fSDmZ2drb/97W+68MILzfeefPJJHTx4MMgWAAAAAAAAANzLsgTkwoUL9dNPP0kyHrseO3as0tL8F9+jRw8NHTrUnH7++eejXu8rr7xivm7WrJnGjh0bcECYrKwsTZo0yexXcdGiRVq/fn2p+d58800dOnRIkvGI9J133hlw/YMHD1avXr3M6UCf5cUXXzRf9+jRw6elY0kPPPCAatSoIUnav3+/5s6dG3BeAAAAAAAAwM0sS0C+88475uvu3burXr16Qef3TkCuXr1a27Zti3idmzdv9ulD8sorr1RmZmbQZWrVqqXevXub0/5aX7777rvm63PPPVfly5cPWqb3Z1m8eLF+//13n7/n5eXp008/NacHDx4ctLzy5ctr4MCB5vR7770XdH4AAAAAAADArSxJQBYVFWnZsmXmdPFjzsHk5uYqOzvbnP7oo48iXu+WLVt8prt27RrWcu3atTNff+k99LykAwcOaM2aNeZ0jx49QpbXrVs3paenS5KOHDnik2yUpC+++EIFBQWSJI/HE9b28Z5nxYoVysvLC7kMAAAAAAAA4DaWJCB37NjhMwK0d4IvmNzcXPP1t99+G/F6S446Xbt27bCWq1q1qvnaO9koST/88IPPoDht27YNWV758uXVqFEjc7rkZ1m7dq35ukGDBqpSpUrIMlu1amW+Liws1OrVq0MuAwAAAAAAALiNJQnIzZs3+0x7J+OCadCggfm6eHToSBSPpl3s2LFjYS1X3L+jJP3+++86cOCAOe39WbKyslS3bt2wygz2WbzLLDk4TiDZ2dkqW7asOV2ytScAAAAAAACQCCxJQO7Zs+dEgWlpPiNfB+P9CLZ3GeEqmRws2ZoxkJLzea/b+7V3fKEE+yy7d++OqszigWj8lQkAAAAAAAAkggwrCvHun7BChQoBR78uqWLFin7LCFerVq1UuXJl81Hs2bNnq1u3bkGX+e233/Thhx/6vHf48GHztXdryEqVKoUdS7DP4j0dSZne85Z83Dye8vPzHVu3FYr73ww0DSD5UQ8AkKgLAFAPAKAecIolCcijR4+ar70fGw4lKyvLfB3u49Pe0tPTdeGFF+qll16SZIxo3atXLw0YMMDv/EVFRXrggQd08OBBn/e91+392qrPYsX28S4jngoLC7Vq1SpH1m2X7777zukQADiMegCARF0AgHoAAPVAvFjyCPbx48dPFBhm60dJysg4kf+MtpXdyJEjfQaVufPOOzV16tRSrRC3bNmiUaNGacGCBSpfvrzP37xjtuOzeE9HUmbxyNr+ygQAAAAAAAASgSUtIL0TZYWFhWEv551Uy8zMjGrd2dnZevzxx3Xttdfq6NGjKiws1DPPPKPnnntOubm5qlSpknbv3q2NGzdKMhKFU6ZM0Q033GCWUaZMGVs/S7RlejcDjnb7AAAAAAAAAE6yJAHpPRp1JI8Kez+q7J0EjNRpp52mmTNn6tZbb9WOHTskGQnB1atX+8xXv359TZo0STk5OT7vV6hQwXzt/Yh0JJ/Fe96Sn8WOMuMlLS1N7du3d2TdVikoKPBpUt2uXTufpDCA5Ec9AECiLgBAPQCAeiAa3377bUQN6vyxJAFZpUoV8/WhQ4dUVFQkj8cTcjnvvhi9H6OORocOHfTee+9p7ty5+uCDD7R27Vrl5eWpevXqatasmfr376/zzz9f5cqV048//uizrPfI1N5xlOwrMphDhw75LUPy3T6RlGnl9omF9+PlySA9PT3pPhOAyFAPAJCoCwBQDwCgHogXS7Zw7dq1zdcFBQXav3+/qlevHnK5PXv2mK9r1qwZcxxZWVkaOnSohg4dGnS+devWma+rVKni0wLS+7P88ssvYa872GeJtkzveb2TpAAAAAAAAECisGQQmsaNG/tMb9u2Lazltm/fbr5u2rSpFaGExbupbW5urs/fvD/L77//rr1794ZVpvdnLvlZmjRpYr7eunVrWOXt3r1bR44c8VsGAAAAAAAAkCgsSUDWr1/f5xHhNWvWhLXc2rVrzdetWrWKev0HDx7Uxo0bS418HcjixYvN1x06dPD5W5s2bXweHw/nsxw6dMgnsVjys7Rt29Z8vWXLFh0+fDhkmd7r9Xg8pRKlAAAAAAAAQCKwJAEpSV27djVff/rppyHnX7t2rU/rwm7dukW13uHDh6tz584699xzNWfOnJDzr1u3TuvXrzene/fu7fP3ihUrqk2bNuZ0OJ/l888/NzvjTE9PV5cuXXz+3rlzZ7M/gYKCAi1btixkmd7rbdOmjU8/kgAAAAAAAECisCwBec4555ivP/74Y+3atSvo/K+++qr5OicnJ+oWfs2bNzdfL1q0KOT8Tz31lM+ynTp1KjVP3759zdfz5s0L2WLR+7N0795dlStX9vl75cqVfRKsr732WtDyDh06pHnz5pnT/fr1Czo/AAAAAAAA4FaWJiBr1aolSTp27Jjuuusu5efn+533k08+0ezZs83pESNGRL3ec88913y9fPlyLV26NOC8b775pt555x1zetSoUX5H6x48eLDKlSsnSdq7d6/Gjx8fsMzZs2frk08+Maf/+Mc/+p3vsssuM19//PHHQVtrPvjgg9q3b58kqXz58rr44osDzgsAAAAAAAC4mWUJyKysLI0ePdqc/vTTT3XNNdf4DM6Sn5+vN954QzfddJMKCgokSS1bttSQIUP8ltmnTx/l5uYqNzdXffr08TtPt27dfPpxvPXWW0u1hNy/f7+mTJmi++67z3yvZ8+eGjBggN8ya9asqT//+c/m9Jw5c3Tbbbf5jEp95MgRzZgxQw888IBPmT179gz4WbwfU7///vv19NNP6+jRo+Z7e/fu1a233urT+vH6668Pa0RxAAAAAAAAwI0yrCzsoosu0sqVK/X6669LMpKQ55xzjnJzc1WxYkVt2LDBbNknSVWrVtUTTzxh9o8YDY/Ho4kTJ2rYsGH69ddflZeXpxtuuEF16tRR48aNlZeXp40bN+rYsWPmMm3bttVjjz0WtNxRo0bp22+/1X/+8x9J0vz58/X+++8rNzdXWVlZWr9+vX777Tdz/gYNGmjy5MlBy5wyZYouu+wybdu2Tfn5+Xrsscf0z3/+Uy1atNCxY8f0ww8/6Pjx4+b8vXv31tVXXx3FVgEAAAAAAADcwbIWkMXGjRunUaNGKTMzU5JUWFioNWvW6Msvv/RJPubk5GjWrFlq1qxZzOts3ry5XnzxRTVq1Mh8b+fOnVq2bJnWrl1rJh89Ho8GDRqkWbNmqVKlSkHLzMjI0LRp03TxxRebj2kfP35c3333nVasWOGTfOzYsaNeeeWVkC0Va9eurZkzZ/r0O/nbb79pxYoV+u6773ySjxdffLH+/ve/Ky3N8q8IAAAAAAAAiBtLW0BKRpLv1ltv1cCBA/Xmm29qyZIl2rlzpw4fPqwqVaqodevW6tevnwYOHKisrCzL1tumTRvNnz9fc+fO1cKFC7VmzRrl5eWpbNmyatiwoU499VRdfPHFEQ12k5WVpYcfflhDhw7V3Llz9fnnn2vXrl06duyYqlevrpNOOkn9+/fXOeecE3aisG7dunrllVe0cOFCvfPOO/rmm2+0d+9epaWlqXbt2urcubMuueQSnXzyyVFuCQAAAAAAAMA9PEVFRUVOBwF3WblypQoLCyVJaWlp6tixo8MRxSY/P1+rVq0ypzt06BDTY/8AEg/1AACJugAA9QAA6oFoWJEn4vleAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC28RQVFRU5HQTc5auvvvKZTktL/Dx1YWGh+ToZPg+AyFEPAJCoCwBQDwCgHoiU9/aSpM6dO0dcRoZVwSB5ldzREl2yfR4AkaMeACBRFwCgHgBAPRAvpHkBAAAAAAAA2IYWkAiJ5sgAAAAAAACpyYpWovQBCQAAAAAAAMA2NG0DAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2CbD6QAAO23YsEGvvfaali1bpu3btys/P1+1atVSy5YtNWDAAJ199tnKyOAwAJz23nvv6eabb454uf/+97+qU6dOwL9/8803mj17tr788kvt2rVLRUVFql27ttq2basLLrhAPXv2lMfjCXt9RUVFWrRokebNm6dvv/1Wv/zyi8qVK6fatWurW7duGjx4sFq1ahXx5wBS0RNPPKEnn3xS9evX10cffRTRsp999pneeustff3119q9e7cyMjJUp04ddezYURdddJFOOeWUiMo7duyYFixYoHfffVfff/+9Dhw4oIoVK6pu3brq2bOnBg8erEaNGkVU5r59+zR79mz95z//0caNG3Xo0CFVr15djRo1Ut++fTVw4EBVqVIlojKBZBNNPTB+/Hi9/PLLEa2nUaNGWrhwYdB57DjHHzp0SHPnztWiRYv0ww8/6LffflPVqlVVr149nXnmmbroootUq1atiMoEEtmyZcu0YMECrVy5Urt379bBgwfN8+0pp5yiQYMGqU2bNmGXlwjX+tQDJ3iKioqKnA4CsMO0adM0Y8YM5efnB5ynXbt2mjJlipo1axbHyACU9Le//U0zZsyIeLlACcjjx49rwoQJev3114Mu36NHDz3yyCNhnfR37dqlW2+9VV999VXAeTwej6688kqNHj1aWVlZoT8AkKK++eYbDR8+XMePH48o8XDw4EGNGTNGixYtCjrfwIEDNXbsWFWqVClkmRs2bNDNN9+s9evXB5wnMzNTf/nLX3TNNdeEdSOzaNEi3XvvvTpw4EDAebKzs/Xwww/rjDPOCFkekIyirQcuvfRSrVy5MqJ1hUpA2nGO/+qrr3Tbbbfp559/DjhPhQoVdN9992nQoEEhywMS2fbt2zVmzBgtX7485Lznn3++xo8fr4oVKwacJ1Gu9akHfJGARFJ66KGHNHPmTHM6IyNDubm5KleunDZs2KD9+/ebf6tZs6beeOMN1a9f34lQAUgaOXKk/vvf/0qSWrZsGfavgFOmTFH16tV93isqKtKNN97ok6AoU6aMcnNzlZ6ervXr1+vgwYPm35o1a6bXX39dlStXDrieffv2aejQodq6dav5XtWqVdW8eXMdPnxYP/zwg8+PHeeff74ee+yxsD4DkGq2bdumYcOGac+ePZIUduLh6NGjGjFihFatWmW+V6FCBbVs2VIFBQVat26djhw5Yv7t1FNP1XPPPRf0BmHTpk0aNmyYz3VBdna2mjZtqgMHDmj9+vXyvlS+5pprdPvttweN87333tPo0aNVUFBgvte0aVNlZ2drx44d2rFjh/l+enq6nnzySfXq1Svk5weSSbT1QFFRkTp16qTff/9dktSlS5ewkgC1atXSI4884vdvdpzjv/rqK1111VU+dVL9+vVVv3597dmzR5s2bfKZ/8EHH9SwYcNCfg4gEW3evFnDhg3Tvn37zPcyMzPVsmVLVapUSb/88ot+/PFHn/Ntq1at9PLLL/tNQibKtT71QGkkIJF0Sj7K2bdvX40dO1Y1a9aUZPxaMmfOHD3yyCM6fPiwJKlt27Z66623ImqeDcA6f/jDH7R7925J0syZM9WlS5eoy3r22Wf16KOPmtPDhw/X6NGjzZZQR44c0QsvvKBp06aZFxJnn322pk+fHrDMa6+9Vv/5z38kGRc4d999t4YMGWJ24bBnzx5NnDhR77zzjrnMvffeqz/+8Y9Rfw4gGa1bt05//vOftWvXLvO9cBMP3o9dejwe3XTTTbr66qtVtmxZSdKvv/6qadOm6aWXXjKXufLKK3X33Xf7La+goECDBg3S2rVrJUlVqlTR+PHj1bdvX/N6YNu2bbrvvvv0+eefm8s9+eSTOvPMM/2WuW3bNg0cONBMjrRs2VKTJ0/2eZzs888/1z333GMmIitUqKB3331XtWvXDrkNgGQQSz2wefNm9e3bV5KRwFi5cqUyMzNjisfqc/zBgwd17rnnmtc1devW1SOPPKLTTjvNnGfNmjW6++67tWbNGklGY4k33nhDbdu2jemzAG5TUFCgCy+8UOvWrZNk/PB23XXX6U9/+pNPcnHXrl167LHH9Pbbb5vv9evXT0888USpMhPhWp96wD8GoUFSOX78uCZPnmxO9+7dW48//riZfJSMi5WhQ4dq+vTpZoWyevVqzZ8/P+7xAjB+cSw+OUtSbm5uTGX94x//MKeHDRumBx54wOcxzLJly2rUqFEaP368+d7ChQu1YsUKv2V+8skn5gWJJE2aNEnDhg3z6T82Oztbf/vb33ThhRea7z355JM+v74Cqe7f//63LrnkEp+kQ7h+/PFHvfbaa+b0bbfdphtuuMFMPkpS5cqVde+99+qGG24w33v55Ze1fft2v2XOnj3bTD5mZGRoxowZ6tevn8+PkQ0bNtS//vUvnxuGqVOn+rRu9Pa3v/3NTD7Wr19fL774Yqm+rLp166ZXXnnFbOl96NChoDdFQDKJpR6QZN6oS1JOTk7MyUc7zvFPP/20eV1TqVIlvfDCCz51iCS1bt1as2bNUsuWLSVJ+fn5mjp1akyfBXCjOXPmmMlHyTjGbrrpplItG2vXrq3JkyfrT3/6k/nee++9p6+//tpnvkS51qce8I8EJJLKwoUL9dNPP0kybibGjh2rtDT/u3mPHj00dOhQc/r555+PS4wAfHnfTNSrVy+mQRnefPNNHTp0SJLx2MSdd94ZcN7Bgwf7PPYYqA548cUXzdc9evTQeeedF7DMBx54QDVq1JAk7d+/X3Pnzo0kfCAp7dq1S2PGjNGdd95pPnkQqZkzZ5pJv2bNmunqq68OOO+NN95oXswfP35cs2bN8jufd0vJwYMHq1OnTn7ny8zM1OTJk81Ex4YNG8wuI7zt2rVL77//vjk9evToUl1EFKtTp47uvfdec3rOnDlB+4sEEp0V9YAk80cDSZYM+mb1Of7o0aM+fdJdc801atKkid/yKlasqIcffticXrp0qX744YdIPwLgav/+97/N1z169NDAgQODzj969GifrpgWLFjg8/dEuNanHgiMBCSSineT6O7du6tevXpB5/dOQK5evVrbtm2zLTYA/nknIGNp/ShJ7777rvn63HPPVfny5YPO710HLF682Gy5VCwvL0+ffvqpOT148OCg5ZUvX97nwuq9994LK24gWT311FPq16+fzyNVzZo106hRo8Iuo7Cw0CexN2jQoIA/LkpSWlqaLrnkEnPae9lia9eu1YYNG8zpiy++OGgMtWvXVu/evc1pf8f2+++/bz7qValSJfMx0UDOPvtsM0GZn58fcmAdIFFZUQ8U875miDUBacc5fsmSJcrLy5Nk1EWhBpU46aSTfB635LoByeTYsWM+rQ779+8fcpmsrCz16NHDnP722299/p4I1/rUA4GRgETSKCoq0rJly8zp008/PeQyubm5ys7ONqfDHX0PgHWsupk4cOCAT1neFy+BdOvWTenp6ZKM/mK8L0Ak6YsvvjBbXXk8nrDqFe95VqxYYV6AAKno2Wef9bnYHzJkiGbPnq3GjRuHXcbatWt9BokJ59j2Pg5/+uknn1ZTknz6dKxSpYrat28fUZn/+c9/VLIb9c8++8x83aVLl5CPhqanp/s8jvXxxx+HjAFIRFbUA8WsTEDacY73rgdatmzpc58RTpnUA0gmO3bsUJkyZczpnJycsJarWrWq+dr7/J8o1/rUA4GRgETS2LFjh3799Vdzul27dmEt593iquQvLADsZ9XjVD/88INPQiCcDpzLly+vRo0amdMl6wDv2Bo0aBDW4+Hen6GwsFCrV68OuQyQ7Nq1a6eZM2fqoYce8juiZTDex2FmZqZatGgRcpmmTZv69A8Z7Nhu3bp1WIPQeR/beXl5PiNlSvJ5ZCrcDuS9y+QaBMkulnpAsrbPaMmec3ys9cD69et19OjRsJYD3K5p06ZauXKlli9frgULFpjdo4RSPEibJJ/jMlGu9akHAssIPQuQGDZv3uwz7V3RBNOgQQPzdcmbCQD2Onr0qDZt2mRO5+bm6quvvtLbb7+t5cuX6+eff5bH41F2drY6d+6sgQMHlurAuZh3HZCVlaW6deuGFUODBg3MGErWAd5lhttSIzs7W2XLltWRI0ckSVu2bFH37t3DWhZINl26dNGgQYN05plnhpXk88f7OKxfv75Pp/CBeDwe1atXTxs3bpRkHIeBygz32Pa+Xigus3jZY8eOmX1QR1vmrl27dOTIEZ/EKZAMrKgHJN/Wj9nZ2apUqZLeffddvfvuu/rmm2+0d+9elS9fXnXr1lX37t01ZMgQNWvWLGB5dpzjva9poqkH8vPztX379rBbigGJoFKlSj6DxARz8OBBLV261Jz2PhYS5VqfeiAwEpBIGnv27DFfp6Wl+Yx8HYx3k2jvMgDY74cffvB57GHcuHE+jy0U27Jli7Zs2aI5c+aoR48eevTRR80OoIt5H7/hPOrgb96SdYB3S4tIyqxRo4b56y31ClLZk08+GXMZ3seQd8f0odSsWdNMQFpxbFevXl3p6elmneVd5p49e3xaZYRbZslrlT179qhhw4ZhLQskCivqAck3AZmRkaH+/fuXaoCQl5envLw8rV27Vi+++KJGjBihO+64w+8PF1af4wsLC7Vv376Iy/RXDyRj4gEIx7PPPuszsrR3/8uJcK1PPRAcj2AjaXj3vVChQoWgHdR7834EhL7agPjyfuyhqKjITD5WqlRJbdu2VZcuXVS/fn2fZZYsWaIhQ4b4tDaS5DOCbLi/skrB6wDv6UjK9J7Xu2sIAJGL9tj2nteKYzstLc2ns3vvY7tk+ZUrV444xpJlAvDlnYD8+eefzeRjdna2OnXqpI4dO/r0HVdQUKAXXnhB1157rY4fP16qPKvP8b/99pv5A4VEPQBE6ptvvtE///lPc7pJkybq06ePOZ0I1/rUA8HRAhJJw7ufhEgeX8rKyjJfHzt2zNKYAATnfTMhGTcRd955p/r16+dzbK5bt05TpkzR4sWLJRl9w1x//fV64403zPm8j1+r6gAr6pVk7cMFiJdEOLZLHufene6HW56/cgCcUHIwqfbt22vMmDE69dRTzfcKCwu1ZMkSTZw40XwMcsmSJXr44Yf14IMP+ixPPQC4x/bt23X99df7/Fhw1113+bRe5nog8dECEknDu7IKt/WjJJ9KLT8/39KYAARXst+Vf//73xo4cGCpk3DLli31zDPPaPDgweZ7a9as0WuvvWZO21EHeE9HUmbxaHv+ygQQmWiP7WDHofe093zRllmy/HDLLDmfd6sJACccO3ZM27dvN6f79u2rV1991Sf5KBl1RM+ePTV79my1bt3afP+1114rlcC0+hxPPQBE5+eff9YVV1zh8yjzlVde6fP4tZQY1/rUA8GRgETS8D5oCwsLw17Ou5LIzMy0NCYAwT3//PP69NNP9cYbb+jFF18s1a+jN4/HowcffNDnkeyXXnrJfG1HHRBtmd4XDdQrQGzsOA69y4zkIt97Xu8fSkretIRbZsn5qC8A/7KysrRy5Up9/PHHmjlzpiZPnhz0eKlUqZKmTp1qHptFRUU+1wyS9XVLtAkE6gGksg0bNmjYsGE+PzD06NFDt99+e6l5E+Fan3ogOBKQSBrlypUzX0fSZNm7GXa4TaQBWKdGjRrq0KFDWCPZZWVl6dJLLzWnt23bZo5m5/3YRCR1gPe8JesAO8oEEBm3HtveCUjvaxAp/C5don1UC0hFaWlpqlevnrp06VLqmPMnJyfHZ2Ra75F1JevrlpKPb4ZbJvUAUtWKFSt02WWX6eeffzbf69atm6ZPn+43AefW6wHqgfCRgETSqFKlivn60KFDPqNRBuM9ypZ3x9UA3KlTp04+08WPcXsfv97HdSiHDh0yX5esA7zrlUjKpF4BrBPtsR3sOIzm2C4sLNTvv//ut0zv8iIps+R81BeAtbyvGXbu3Olzk2/1Ob5SpUo+raGpB4DA/u///k9XXHGF9u/fb753xhln6Omnnw74A0MiXOtTDwRHAhJJo3bt2ubrgoICn8osGO++JmrWrGl5XACsVfIx7eLR67zrgF9++SXs8oLVAdGW6T1vdnZ22MsBKK1WrVrm60iOw71795qvSx6H0Rzb+/bt83k8y7vM7OxsnxsO73WHG6PH4wnaDQWAyJU8r3uPomv1OT4tLc1nOtwyS9YX3I8g2U2bNk233367z9MCAwcO1JNPPhl0IJhEuNanHgiOBCSSRuPGjX2mt23bFtZy3v1NNG3a1NKYAFiv5CMKFSpUkORbB/z+++9hJwC864qSdUCTJk3M18WPeoeye/duHTlyxG8ZACLnfQxt3749rCccioqKtGPHDr9llJwO99gueV3hXUZWVpZPNxLRlFmvXr1SA3ABiE2gawbJnnO897VINPVAZmamT1/XQDI5fvy47rzzTk2fPt3n/WuvvVaPPvqoz2Ax/iTKtT71QGAkIJE06tev79NUec2aNWEt5z0iXqtWrawOC0AAa9eu1eTJk3XnnXfq6quvDvsXQu8fDSTjpl2S2rRpI4/HY74fTh1w6NAhnwuDknVA27ZtzddbtmzR4cOHQ5bpvV6Px6Pc3NyQywAIzPs4PHz4sDZt2hRymY0bN/okHrxHwy1ZZsmRcQPxPrarVKlS6uagXbt2MZVZMkYAJyxatEgPPfSQRo8erTvvvDPs5bxv6itXrqyKFSua03ac42OtB5o3b560g08gtR07dkw33nij/v3vf5vvZWRkmMe19zV8IIlyrU89EBgJSCSVrl27/n979x9TdfXHcfwFd/zoKmKMFluOmjfUWD80lv2cTaOrRXNzmahEtfljrWYpTLFckjbcnGOTjZq61Va2aVxDvYZTcFJKAtZquUxQcau2gIUFAbPBvfH9g3niCJcL2Kdv4PPx1+d8Pudz+MC453Pu+/wyx6dOnQqbv66uzuo5eeihhxx5LgD9tbW16YMPPtDBgwdVVVWl06dPD+m+EydOmOO4uDhNmTJFkjR+/Hilpqaaa0OpA2pqasyUSpfLpZkzZ1rX09LSTG9sMBhUbW1t2DL7/tzU1NR+a8MBGJ6UlBQlJCSYdHV1ddh7+m42cfPNN/f7ctD3s/7rr7/qwoULYcvs+9nu294YqMza2tqwu2leW6fQBgFCO3funHbv3q2ysjL5/f4hj3yqqqoyx2lpadY1J97xfeuBs2fP6o8//hhWmdQDGIsCgYBee+01ff755+bcuHHjtHPnTj333HNDLme0tPWpB0IjAIkxxev1muPKyko1NzcPmn/Pnj3m2OPxMFIJ+BfdfffdcrvdJu3z+cLe09TUJL/fb9IZGRnWumtz5841x36/P2wvZt864JFHHtGECROs6xMmTLAaAXv37h20vM7OTuv55s2bN2h+AOFFREToySefNOmSkpJBg3t//fWXSkpKTHru3Ln9RlZMmTLFmoYV7rPd2NhofXF66qmn+uVJT0+Xy+WS1LuWU0VFxaBlHj16VL/99puk3lEgfdswAGx9v9D39PRo3759Ye8pLy/XpUuXTHr+/PnWdSfe8Q8//LDi4uIk9U43Dfec3333nX744QeTHqhuAUa7bdu2qbKy0qQTEhK0e/duPfbYY8MuazS09akHQiMAiTHF6/Waxeq7urq0fv16BQKBAfOePHnSCnhkZ2f/K88IoNe4ceP09NNPm/SXX36pAwcOhMzf0dGh1atXm4ZGTEyMli1bZuV59tlnzc55LS0t2rx5c8jyfD6fTp48adIvvPDCgPmysrLMcWVlpUpLS0OW+fbbb5uAgtvt1sKFC0PmBTB0S5cuNUHEuro6vfvuuyHzFhUVmRGNkZGRId/vfT/be/fuDTmSoru7W3l5eeru7pbUu+xDenp6v3xJSUl64oknTLqgoCBkR2hjY6O2bNli0l6v11oIH4Bt5syZ1jpru3bt0sWLF0Pmv3TpkjZu3GjSkydPHjDI/0+/42NjY63zxcXFqq+vH7C89vZ2bdiwwaSnT5+u++67L+TPB0ajL774Qh9++KFJx8fH66OPPrKmPg/HaGjrUw+ERgASY0p0dLRycnJM+tSpU1qxYoW1/ksgEFBJSYlWrVqlYDAoqXckxHCGfwP4Z7z++uumh1CSNmzYoOLiYnV2dlr5vvrqKy1ZskTffvutOZeTk6Pk5GQrX2JiopYvX27SpaWlys3NtdaX/PPPP7Vjxw7l5+ebc7NmzdKsWbMGfMY5c+ZY0y3feust7dy501pfrqWlRWvWrLF6RF955RVr2iiAkZs2bZoWLFhg0sXFxdqyZYva29vNufb2dhUUFGjHjh3mXGZmpu68884By8zMzDSjIAOBgF599VX5fD6r4/Lnn3/W8uXLrSlZa9euDblZzJo1axQTEyNJam5u1tKlS/stL1FbW6usrCyzK6fb7bbaLgD6i4iI0JtvvmnSnZ2dev7551VWVmaNiO7u7tb+/fu1ZMkS/f7775J6N3TYunXrgBtcOPGOX7lypbnW2dmpl156SRUVFdYGWnV1dcrOzjadJS6XS+vXrx/W3wT4rwsGgyooKDD/+xERESosLFRKSsqIyxwtbX3qgYFF9AxlK0FglNm4caM++eQTk46MjNTUqVM1fvx4NTQ0mF4LSZo4caL27NmjyZMn/z8eFbjh1dTUaOXKldZLPjY2VtOmTVN0dLR++uknNTU1WfcsW7Ys5CL0VwMJfadLRkVFaerUqYqOjtaFCxesoMWkSZPk8/kGDRY2NzcrKyvL6syIi4tTSkqKurq6VF9fb0ZHSdLs2bP13nvvWdPDAfyttLRUb7zxhqTeTeSOHz8e9p6Ojg69+OKL+v777825m266ySyfUl9fb03Fuueee/Txxx8rNjY2ZJnnz59Xdna2WltbzbmEhAR5PB61t7fr/PnzVnAjKyvLGlU1EL/fr7y8POu+5ORkJSUlqbGx0apHIiMjVVhYaI0GB24UI6kHdu3apcLCQuvcxIkTlZKSokAgoIaGBmu9taioKG3fvn3AUctXOfGOr66u1ssvv2ztlJuUlKTk5GRdvnxZDQ0NVv6rG/IBY0lZWZnVweZ2u3X//fcPq4zExERt3brVOjda2vrUA/0RgMSY1NPTo+3bt+v999+3KopreTweFRUVXVcvDIDrd/bsWa1du7bfi/ha8fHxys3NVWZm5qD5urq6tGnTJn366aca7DU3Y8YMFRUVDWnqY2Njo3JycvTNN98Mmm/hwoXKz88POUIKwMgCD1LvKMd169aFzT979mxt27bNGmEdSn19vXJzcwfdiMblcmnFihVavXr1kHbqPHLkiPLz863A5rXi4+P1zjvvWOtZATeSkdYDn332mTZv3qy2trZB83k8Hm3atEkPPPBA2DKdeMefPn1aeXl5+uWXX0LmiY2N1bp166wpoMBYsWrVKpWXl19XGaHqhtHS1qcesBGAxJjW0NCgffv2qaqqSk1NTbpy5Yri4+N11113ad68eZo/fz5BAuA/IhgM6tixYyovL9eZM2fU0tKiQCCgxMRE3XHHHZozZ44yMjKGNa35zJkz2r9/v2pqatTc3Kyuri4lJCTo3nvv1TPPPCOv1zusUYo9PT2qqKjQ4cOHzTNGRkbq1ltvVVpamhYtWqTp06eP4LcHbiwjDTxcVV1dLb/fr6+//lotLS0KBoNKTEzUjBkztGDBgmEvbB8IBHTo0CEdPXpU586d0+XLlxUVFaVJkybpwQcf1OLFi0NO5Q6ltbVVPp9Px48f148//qi2tja53W55PB49/vjjyszMZJkG3NCupx7o6OjQgQMHdOLECdXV1am1tVUul0u33HKLUlNT5fV6lZ6ePqx2vhPv+CtXrqi0tFQVFRW6ePGiWltbFRMTo9tvv12PPvqoFi9erNtuu21YZQKjRUZGxqBrtQ5FuLphNLT1qQf+RgASAAAAAAAAgGNYnAoAAAAAAACAYwhAAgAAAAAAAHAMAUgAAAAAAAAAjiEACQAAAAAAAMAxBCABAAAAAAAAOIYAJAAAAAAAAADHEIAEAAAAAAAA4BgCkAAAAAAAAAAcQwASAAAAAAAAgGMIQAIAAAAAAABwDAFIAAAAAAAAAI4hAAkAAAAAAADAMQQgAQAAAAAAADiGACQAAAAAAAAAxxCABAAAAAAAAOAYApAAAAAAAAAAHEMAEgAAAAAAAIBjCEACAAAAAAAAcAwBSAAAAAAAAACOIQAJAAAAAAAAwDEEIAEAAAAAAAA45n9Mdi2nq6A9AwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].html b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].html new file mode 100644 index 000000000..d803d0242 --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].html @@ -0,0 +1,570 @@ + + + + + + + + Dynamical Power Spectra (on fake data) — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Dynamical Power Spectra (on fake data)

+
+
[1]:
+
+
+
%matplotlib inline
+
+
+
+
+
[2]:
+
+
+
# import some modules
+import numpy as np
+import matplotlib.pyplot as plt
+import stingray
+stingray.__version__
+
+
+
+
+
[2]:
+
+
+
+
+'1.1.2.dev273+g6908e954'
+
+
+
+
[3]:
+
+
+
# choose style of plots, `seaborn-talk` produce nice big figures
+plt.style.use('seaborn-talk')
+
+
+
+
+

Generate a fake lightcurve

+
+
[4]:
+
+
+
# Array of timestamps, 10000 bins from 1s to 100s
+times = np.linspace(1,100,10000)
+
+# base component of the lightcurve, poisson-like
+# the averaged count-rate is 100 counts/bin
+noise = np.random.poisson(100,10000)
+
+# time evolution of the frequency of our fake periodic signal
+# the frequency changes with a sinusoidal shape around the value 24Hz
+freq = 25 + 1.2*np.sin(2*np.pi*times/130)
+
+# Our fake periodic variability with drifting frequency
+# the amplitude of this variability is 10% of the base flux
+var = 10*np.sin(2*np.pi*freq*times)
+
+# The signal of our lightcurve is equal the base flux plus the variable flux
+signal = noise+var
+
+
+
+
+
[5]:
+
+
+
# Create the lightcurve object
+lc = stingray.Lightcurve(times, signal)
+
+
+
+
+

Visualizing the lightcurve

+
+
[6]:
+
+
+
lc.plot(labels=['Time (s)', 'Counts / bin'], title="Lightcurve")
+
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_8_0.png +
+
+
+
+

Zomming in..

+
+
[7]:
+
+
+
lc.plot(labels=['Time (s)', 'Counts / bin'], axis=[20,23,50,160], title='Zoomed in Lightcurve')
+
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_10_0.png +
+
+
+
+
+
+

A power spectrum of this lightcurve..

+
+
[8]:
+
+
+
ps = stingray.AveragedPowerspectrum(lc, segment_size=3, norm='leahy')
+
+
+
+
+
+
+
+
+33it [00:00, 19390.87it/s]
+
+
+
+
[9]:
+
+
+
plt.plot(ps.freq, ps.power, label='segment size = {}s \n number of segments = {}'.format(3, int(lc.tseg/3)))
+plt.title('Averaged Powerspectrum')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Power')
+plt.legend()
+
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.legend.Legend at 0x16960b7c0>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_13_1.png +
+
+
+

It looks like we have at least 2 frequencies.

+
+
+
+

Let’s look at the Dynamic Powerspectrum..

+
+
[10]:
+
+
+
dps = stingray.DynamicalPowerspectrum(lc, segment_size=3)
+
+
+
+
+
+
+
+
+33it [00:00, 17010.20it/s]
+33it [00:00, 17857.31it/s]
+
+
+
+
[11]:
+
+
+
extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)
+plt.imshow(dps.dyn_ps, aspect="auto", origin="lower", vmax=0.001,
+           interpolation="none", extent=extent)
+plt.title('Dynamic Powerspecttrum')
+plt.xlabel('Time (s)')
+plt.ylabel('Frequency (Hz)')
+plt.colorbar(label='Power')
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.colorbar.Colorbar at 0x16969f910>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_16_1.png +
+
+
+

It is actually only one feature drifiting along time

+

# Rebinning in Frequency

+
+
[12]:
+
+
+
print("The current frequency resolution is {}".format(dps.df))
+
+
+
+
+
+
+
+
+The current frequency resolution is 0.3333333333333333
+
+
+

Let’s rebin to a frequency resolution of 1 Hz and using the average of the power

+
+
[13]:
+
+
+
dps_new_f = dps.rebin_frequency(df_new=1.0, method="average")
+
+
+
+
+
[14]:
+
+
+
print("The new frequency resolution is {}".format(dps_new_f.df))
+
+
+
+
+
+
+
+
+The new frequency resolution is 1.0
+
+
+

Let’s see how the Dynamical Powerspectrum looks now

+
+
[15]:
+
+
+
extent = min(dps_new_f.time), max(dps_new_f.time), min(dps_new_f.freq), max(dps_new_f.freq)
+plt.imshow(dps_new_f.dyn_ps, origin="lower", aspect="auto",
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(15, 30)
+
+
+
+
+
[15]:
+
+
+
+
+(15.0, 30.0)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_24_1.png +
+
+
+
+
+

Rebin time

+

Let’s rebin our matrix in the time axis

+
+
[16]:
+
+
+
print("The current time resolution is {}".format(dps.dt))
+
+
+
+
+
+
+
+
+The current time resolution is 3.0
+
+
+

Let’s rebin to a time resolution of 4 s

+
+
[17]:
+
+
+
dps_new_t = dps.rebin_time(dt_new=6.0, method="average")
+
+
+
+
+
[18]:
+
+
+
print("The new time resolution is {}".format(dps_new_t.dt))
+
+
+
+
+
+
+
+
+The new time resolution is 6.0
+
+
+
+
[19]:
+
+
+
extent = min(dps_new_t.time), max(dps_new_t.time), min(dps_new_t.freq), max(dps_new_t.freq)
+plt.imshow(dps_new_t.dyn_ps, origin="lower", aspect="auto",
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(15,30)
+
+
+
+
+
[19]:
+
+
+
+
+(15.0, 30.0)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_31_1.png +
+
+
+

Let’s trace that drifiting feature.

+
+
[20]:
+
+
+
# By looking into the maximum power of each segment
+max_pos = dps.trace_maximum()
+
+
+
+
+
[21]:
+
+
+
plt.plot(dps.time, dps.freq[max_pos], color='red', alpha=1)
+plt.xlabel('Time (s)')
+plt.ylabel('Frequency (Hz)')
+plt.title('Detected frequency drift')
+
+
+
+
+
[21]:
+
+
+
+
+Text(0.5, 1.0, 'Detected frequency drift')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_34_1.png +
+
+
+
+
+

Overlaying this traced function with the Dynamical Powerspectrum

+
+
[22]:
+
+
+
extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)
+plt.imshow(dps.dyn_ps, aspect="auto", origin="lower", vmax=0.001,
+           interpolation="none", extent=extent, alpha=0.6)
+plt.plot(dps.time, dps.freq[max_pos], color='C3', lw=5, alpha=1, label='drifiting function')
+
+plt.ylim(15,30) # zoom-in around 24 hertz
+
+plt.title('Overlay of Drifting fuction and Dynamic Powerspecttrum')
+plt.xlabel('Time (s)')
+plt.ylabel('Frequency (Hz)')
+plt.colorbar(label='Power')
+plt.legend()
+
+
+
+
+
[22]:
+
+
+
+
+<matplotlib.legend.Legend at 0x1698d2a70>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_36_1.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb new file mode 100644 index 000000000..a27f71579 --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb @@ -0,0 +1,594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on fake data)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.1.2.dev273+g6908e954'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# import some modules\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import stingray\n", + "stingray.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# choose style of plots, `seaborn-talk` produce nice big figures\n", + "plt.style.use('seaborn-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate a fake lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Array of timestamps, 10000 bins from 1s to 100s\n", + "times = np.linspace(1,100,10000)\n", + "\n", + "# base component of the lightcurve, poisson-like\n", + "# the averaged count-rate is 100 counts/bin\n", + "noise = np.random.poisson(100,10000)\n", + "\n", + "# time evolution of the frequency of our fake periodic signal\n", + "# the frequency changes with a sinusoidal shape around the value 24Hz\n", + "freq = 25 + 1.2*np.sin(2*np.pi*times/130)\n", + "\n", + "# Our fake periodic variability with drifting frequency\n", + "# the amplitude of this variability is 10% of the base flux\n", + "var = 10*np.sin(2*np.pi*freq*times)\n", + "\n", + "# The signal of our lightcurve is equal the base flux plus the variable flux\n", + "signal = noise+var" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the lightcurve object\n", + "lc = stingray.Lightcurve(times, signal)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAKOCAYAAAD6VwfUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACorUlEQVR4nOzdd3gU5drH8d+mQAik0EvoTar0KkgRFQtiA0XFAvYuNl4VK/bejnrsR8CCBVQEEaVI7yLSkd4hkBBC+r5/YCJJNsmW2Z2Zne/nXF4n7M7O3Ls7O/PcT3W53W63AAAAAACOFWF2AAAAAAAAc5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAbK1hw4ZyuVyaNWtWmdu6XC65XC5Djrt161a5XC41bNjQkP0BAGAmEkMAAELok08+kcvl0rXXXmt2KAAAFIgyOwAAAEJl7dq1ZocAAIAlkRgCAByjRYsWZocAAIAl0ZUUAOAYpY0xXLp0qc477zwlJiYqLi5OPXv21LfffuvVWMK8vDy99tprat26tWJiYlSzZk2NGDFC+/fvL7Rd3759dd1110mSPv3004J4PHUtzcrK0ttvv63evXurcuXKiomJUaNGjXTJJZfop59+8vp9lRT/yY9nZ2frmWeeUevWrVWhQgW1b99eP/zwg1wul3r37l3i+160aJFcLpfHhHv16tW69tprVb9+fZUvX15Vq1bVeeed59VYUABA6NFiCABwvOnTp2vQoEHKyspS27Zt1aZNG23btk2XXHKJRo0aVebrhw8frkmTJqlv375q1qyZ5s2bp48//lhLlizR0qVLVb58eUnSwIEDlZOTo3nz5qlJkybq1atXwT5O/js5OVkDBw7UkiVLFBsbq9NOO01Vq1bVjh079PPPP+vQoUM699xzDXnveXl5uuiii/Trr7+qT58+atOmjbKysnTOOeeoRo0amjdvnrZs2aJGjRoVe+3//vc/SdI111xT6PFx48ZpxIgRys7OVrt27dStWzft3r1bP//8s6ZOnar//Oc/uvnmmw2JHwBgEDcAADbWoEEDtyT3zJkzy9xWkrvorS8tLc1dq1YttyT3iy++WOi5SZMmuSMjI92S3A0aNCj03JYtWwr216xZM/f27dsLntu3b5+7UaNGbknuTz/9tNDrPv74Y7ck9zXXXFNinOeff75bkrtfv37u/fv3F3ouNTXVPWPGjDLfV9E4S4u/YcOG7i1bthR77d133+2W5H788ceLPZeZmemuWrWqOyIiotB7X7FihTs6OtqdkJBQLM4FCxa4ExMT3dHR0e5169aV+P4BAKFHV1IAgKN9/fXX2rt3r9q1a6f77ruv0HODBw/WJZdcUuY+3njjDdWrV6/g3zVq1NCtt94qSZo5c6ZP8axYsUI//vijqlSpom+//VbVq1cv9HxcXJzOOOMMn/ZZlmeffdZjV9mrr75akvTZZ58Ve+6nn37SoUOH1K9fv0Lv/ZlnnlF2drZeffXVYnF2795dY8aMUXZ2tt577z1D3wMAIDAkhgAAR5szZ44kaejQoR6fv+KKK0p9fXR0tAYMGFDs8VNOOUWStHv3bp/imTZtmiTp4osvVmJiok+v9dfgwYM9Pt6hQwe1bdtWmzdv1rx58wo956kbaV5enn7++WdFRkbq4osv9rjP008/XZK0cOFCI0IHABiExBAA4Gi7du2SJDVo0MDj8yU9nq9WrVqKiio+ZD8uLk6SlJmZ6VM827dvl/RvYhlsNWrUUIUKFUp8Pj/xy08EpRNjIKdMmaJKlSoVSgAPHTqk1NRU5ebmKjExsdDkOvn/denSRZJ04MCBIL0jAIA/mHwGAACpxFk9IyJKr0Mt63mj4vBXXl5eqc+XlhRK0pVXXqkHH3xQX331ld544w2VL19eX375pbKysjRs2DBVrFixYNvc3FxJUrly5TRs2LBS91utWjUv3wEAIBRIDAEAjlanTh1J/7bUFbV169YQRiPVr19fkrRhwwavXxMdHa3s7GylpaWpUqVKhZ7bsWNHQPHUqlVLZ511lqZOnarvv/9eQ4YMKXE20mrVqikmJqZgDGH+bKwAAOujKykAwNHy1+n76quvPD7/+eefG3q8cuXKSZJycnI8Pn/WWWdJkr799lulpKR4tc/85Hb9+vXFnps+fbo/YRZycnfSjRs3auHChapfv7769u1baLuoqCgNGDBAubm5mjRpUsDHBQCEDokhAMDRhgwZoho1amjFihV69dVXCz33ww8/aOLEiYYeLykpSZK0du1aj8937NhR5513ng4dOqRLL71UBw8eLPT80aNH9euvvxZ6rF+/fpKkp59+ulDCOX369GLvyR+DBw9WQkKCpk2bppdfflnSibUbPXV7ffTRRxUVFaVbb73VY3KYm5urmTNnMvkMAFiMy+12u80OAgAAfzVs2FDbtm1Ty5YtFR8f73GbuLg4/fLLLwWJTNFb37Rp03TBBRcoOztbp556qlq3bq3t27dr/vz5uvPOO/X666+rWbNmhbp3bt26VY0aNVKDBg08djedNWuW+vXrpz59+mjWrFkFj2dmZqphw4bau3evOnXqpNatWys6OlqnnXaarrvuOknSwYMHdfbZZ2v58uWKjY1V7969VblyZe3cuVMrVqxQ586dC+1z/fr16tSpk44dO6amTZuqffv22rp1q5YtW6YHH3xQzz33XLE4y4q/qBtvvFHvv/9+oWM2b97c47bjx4/XyJEjlZmZqSZNmqhFixaKj4/Xvn37tGLFCh0+fFjvvPMOi9wDgIUwxhAAEBZKaoGTpISEhFJfO3DgQM2dO1ePPfaY5s+fr82bN6tNmzb68ssvVbt2bb3++uuGTZZSvnx5TZs2TQ8//LAWLFigFStWKC8vTzk5OQWJYbVq1TRv3jy9++67+vzzzzV//nxlZ2erVq1aOvfcczVixIhC+zzllFM0Z84cPfTQQ5o/f75++ukntWvXTpMnT1bbtm313HPPBRz3NddcU5AYdu/evcSkUDoxYU3Xrl312muvacaMGfrtt98UERGh2rVrq1evXho0aJBX60MCAEKHFkMAAErx9NNP65FHHtFtt92mt956y+xwAAAIChJDAIDj7d27Vzk5Oapbt26hx3/++WddfPHFSk9P16JFi9S1a1eTIgQAILjoSgoAcLylS5fqggsu0KmnnqqGDRsqIiJCGzZs0F9//SVJ+r//+z+SQgBAWKPFEADgeNu2bdOzzz6r2bNna+/evUpLS1PlypXVqVMn3XzzzRo8eLDZIQIAEFQkhgAAAADgcKxjCAAAAAAOxxjDIMjLy9Pu3bsVFxfncfFfAAAAAAg2t9uto0ePqk6dOoqIKL1NkMQwCHbv3q169eqZHQYAAAAAaMeOHcVm3i6KxDAI4uLiJJ34AuLj402OBgAAAIATpaamql69egX5SWlIDIMgv/tofHw8iSEAAAAAU3kzvI3JZwAAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQAAAMDhSAwBAIDjuN1uHUrLVF6e2+xQAMASSAwBAIDjjPrqD3UaO0O3TVhudigAYAkkhgAAwFGSj2XpuxW7JElTV+/VjuR0kyMCAPORGAIAAEdJz8op9O+U49kmRQIA1kFiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAAAAAOR2IIAAAAAA5HYggAAAAADkdiCAAImrkbD2ra6j1yu91mhwIAAEpBYggACIqZ6/brqg8X6eZxy/XRvK1mhwMAAEphycTw2Wef1ZAhQ9S4cWO5XC41bNjQ69c++OCDcrlcqlSpksfnMzMz9eijj6pRo0YqX768mjRporFjxyo7O9ug6AEAknT7hOUFfz/14xoTIwEAAGWJMjsATx566CFVqVJFHTt21JEjR7x+3cqVK/XKK6+oUqVKJXZbuuyyyzR58mSNGDFCPXr00IIFCzRmzBht2rRJn3zyiTFvAACgY1m5ZocAAAC8ZMnEcPPmzWrcuLEkqU2bNkpLSyvzNbm5ubrhhht0zjnnKDU1VUuXLi22zU8//aTJkydr1KhRevnllyVJ119/vRITE/XKK6/oxhtvVM+ePY19MwAAAABgcZbsSpqfFPrijTfe0Jo1a/Tmm2+WuM2ECRMkSXfffXehx/P/PW7cOJ+PCwAAAAB2Z8kWQ19t27ZNY8aM0WOPPaYGDRqUuN2SJUuUlJSkevXqFXq8Xr16qlOnjpYsWeLX8WvXrl3o33l5eX7tBwCAolKOZ+uFaeskSQ8MbKGECtEmRwQACEeWbDH01S233KLGjRtr1KhRpW63e/duJSUleXwuKSlJu3btCkZ4QNjLy3Nr5CdL1HLMNI1buM3scICw8vL09Rq/aLvGL9qul6evNzucsLDr8HGzQwAAy7F9Yvj5559r2rRpevfddxUVVXoDaHp6usqXL+/xuZiYGKWnp/sVw549ewr9t3HjRr/2A9jVjLX79Ou6/TqenatHJq02OxwgrPxvwTaPf8N/N41bZnYIAGA5tk4Mk5OTdffdd2vkyJFeTRoTGxurzMxMj89lZGQoNjbW6BABR1i396jZIQCA146km7NE1d6UDA15d77Of/N3bdpf9sR6ABBKtk4Mn3jiCR07dkw33HCDNm3aVPDf8ePH5Xa7tWnTJu3YsaNg+zp16pTYXXTXrl0ldjMFEP7W7E7VL2v2KTfP81I3sI7MnFxlZP+7FEZGdq6Wbz9c6DHAip6askZLth7W6l2puuuLFWaHAwCF2HrymW3btunYsWPq1q2bx+ebNWum1q1ba/XqE13bunTpovHjx2vHjh2FJqDZsWOHdu/erQsuuCAkcQOwlg37juqCt+YqJ8+tW/o20YMDW5gdEkqwdk+qhr2/ULm5bn0yoqs6Naisqz9crMVbk9W5QWV9fQtLDsG6pqzaU/D3X7tTTYwEobD9ULp2HE5Xj8ZVFRHhMjscr2Xn5un7lbtVOzFGPZtUMzschJCtWwwffPBBTZw4sdh/rVq1UkxMjCZOnKhXX321YPthw4ZJkl577bVC+8n/95VXXhmq0AGU4MDRTG09eCykx3x6ylrl/NNS+M6szSE9drjKC1LL6z1frtSR9GwdzczRDf9bqh3J6Vq8NVmStHTbYe1I9m+sOAAYadeR4zr7tTm68oNFeu6fWYXt4qXp63XvxD90xfuLtGzbYbPDQQhZssXws88+07ZtJwbYHzhwQFlZWRo7dqwkqUGDBho+fLgkqUePHh5f/9Zbb2nbtm269NJLCz1+3nnn6fzzz9crr7yilJQU9ejRQwsWLNCHH36oq666Sr169QriuwJQlr8PpGnwW/N0NDNHz1/SVpd1qR+S4x45bs54o3D267r9QdnvyeNZk49lKTOncPfRov8GADO8PmODjv/Tvf2/c/7WQ+e2NDki7703+++Cvx+dvFpT7uxtYjQIJUsmhh9++KFmz55d6LExY8ZIkvr06VOQGPpj4sSJGjt2rMaNG6fPPvtMSUlJevLJJzV69OiAYgYQuCd+WKOjmTmSpAe/+TNkiSGMN3X1nrI3AoAwlXwsPCocGbvtLJZMDGfNmhW018fExGjs2LEFLZAArGPzAWbpAwAAMIOtxxjCd4ePZenFn9fpyyXb5XYz+yIgSSryW9iXmqHHv/9L4xdt43cCAAAcwZIthgieRyavLpgVrWZ8jPqeUsPkiADruefLlZq/+ZAkqVHViurZlFnZAABAeKPF0GFOnir7penrTYwEsK78pFCS3pvzdylbwmpo4IWVZObk6pZxy9TvpVn6feMBs8NBSHExgv3QYggAsDH7rA0G55m4dKemrt4rSRr+4WKTowGcZ/6mg7rzixWqk1hBn1zXVVUqljM7JEujxRAAACAI5mygldC5wqPSyu7tnld8sEgH07K0ameK3vh1o9nhWB6JIQDHs/uNDwAAlI6KmrKRGAIAYENZOXlKOR4ea6UBAMxHYggAgM2kZ+XovDd+V7snpuujuVvMDgdAMeb0RZn+11598PvfSs/KMWR/4dEhFt4iMXQwZu8DAHuasGi7Nu5PkyQ9+eMak6MBYAVLtybrxs+WaeyUtXrmp7VmhwMbIjEEgFJQfwIr2vRPUggA+U6uJBq3cLuJkcCuSAwBWIZZrdi0ngMAjBX6Tph53MxKxadTNhJDB3PRcRwAAAAlIJlyFhJDAI4XzEqSaav36IK35ur1GayfBDgNhWoAdhJldgAAEM5uHrdckrRqZ4oGtqmlU2rFmRwRACD4qBaA/dBi6GB0RQdCa+WOw2aHEPa4rAFAcGXn5mnB5kM6kp5ldig+YQRV2WgxBOB4VJLYl1PHSjv1fcN6dh5Ol9st1asSa3YojucKUepzx4QVmvbXXiUlVtCs+/sqOpJ2pnDBNwkgYEYlVlYs7LrJGgHAo3mbDqrvi7PU76VZ+n3jAbPDQRB4ui1P+2uvJGnXkeP6de1+n/c5buE2Xf7fBZq2em+A0fmGu3nZSAxhaVk5eXrg6z904dvztGyb8d3wflu3Ty9MW6e9KRmG7xsAypKTm6fJK3dp8ZZks0MBfDby0yXKyXMrJ8+tEZ8sMTsciwl9TafbhNQnLTPHp+33pWbokUmrtfDvZN08bpny8kjXrITEEJY2acUufbV0p1buOKLL/7vA0H3vSE7XiE+W6j+zNuu2CcsN3bfTWLGlD7CDl3/ZoLu+WKmh7y3Qiu2MQYW9ZGTnFfydnUsBv7Dw+DyMfhdr9qQW+nd2Xl4JW8IMJIawtKmr9xT8bfRNZ9yibQV/B6M1EgDK8s6szQV/Pzr5LxMjAQA4HYmhg9HKY46snDy6TlhMad1vXPxQECLpWb51yYL1cfVAKIVq8hmELxJDB2NOjdD7askOtXx0ms5/c66O+dgvH/bHby78rNxxRAv/PmTCkSkA2gE/eQB2QmIIhNAD36xSbp5ba/akatzCbWW/IMh2JKfrscmr9fWynZaYfdMCIQBem7PhgC58e54u/+9Cfblku9nhAIDtcN+3FhJD4CRZOXlasjXZ51m2/FF0ALYZbhm/TJ8u2Kb7Jv6h1btCH8/Wg8e0/6i1Z4S1QsIMa7pt/L+TVj34zZ8mRgIA5vD1HklfB2sjMUSZvl62U80fmaqh7y5QZk6u2eEE1U2fLdWQdxfo4v/Mc8Q4wJOTwfGL/G/B9Cd3mrh0h/q+NEv9XpyljfuO+n1swCxH6Q4eNrYnp5sdAgCYjsQQZbpv4h/KysnT4q3J+nb5LrPDCZrMnFzNXH9igd4N+9K03GFTx8/ecEC3TViuX9fuC8nx7v96lSTpWFau6bMx0igI2FdunltP/rBGl723wO/r9q3jl2vljiPGBgYANkNiCJ+s3pVidghBUzQ5OJYV3q2jRe1JydCUVXs08tOlPs+OGOjEnX8fTAtsB3CsoqceSb7z/PzXXn00b4sWbUnW5e8t9Hs/93610rigAIfYl5qhZduSHTXsYsO+o3rw61WavDL8GkuizA4AcCorX0O3J6erRa14s8MAgDJNXb234O+sXP8Xy952iO6kgK9emr5BknRznyYafU4Lk6MJjSveX6SDaZn6cukOtaubqIbVKpodkmFoMQTgt9w8t376c4/tu92yVCEAoCTZuXk6cDTTUa1ivnp39mavtjNzbeCsnDxd89FitXtiekCtfQfTMgv+PrliKhyQGMKxWAg2cK/P2KBbxy/XrH/GZhqt89hftGrnkaDs+2ShmpHV6QnohEUs6RBuVu9K0eC35+nW8ctYm9UD8gj7y8tz67L3FqjL0zP09JS1ZoejD37/W53HztBTP64xOxS/bN5v3tCRXUeOa/aGA0o5nq27vlhpWhxWRmIISwtmzZKbpYcD9sZvmwzZT0lJ+sG0LN302TJDjmEFTi8kPvQdSzqEm2s/XqI/dhzRT3/u1Udzt5gdDmC42RsOaPn2I5KkD0w+x7Nz8zR2ylodTMvUh3O3aMvBY4Wet3rl456U43rSpgmtU5AYAiVwcpcRK731PSnGr3P4zbKdajlmmi57L/yXYAGC6eQuVZMMnIghJT1bIz5ZosFvzdVaC6z5Cufam2qdtXazi4yhDckyKwaWB96Z5V13U5iHxBCAZYSqtvPeiX/oeHauFm1J1jfLwm9WMX+lZeZo2uq9hQr7VmfmeBVvpGXmUPnghzd/26jf1u3XHztTwqrXAOBkRzPCr7t5uPU+IzF0sN1HjpsdQpmc3GqH0PgzjJdg8dU1Hy3WzeOW6cK35ynleLYtfn9WjvHHVbvV/onp6v/SbO03uNXB4vlwwL5evrPg77JaRax8DiD4ko9laei7C9T3xZlaYfOJ0AIVrJ/Cyh1H9N7szbaqNIR/SAwd7HB6tuZvOujTa8Lp9svkM9aRX8ilfGee9KwcLdt2olC18/BxtXtium7/fIXJURVmtwTg9gkrlJPn1q4jx/XyP1O6AzDW6zM2aPHWZG09lK6rP1psdjgFbHa5KlHK8WwNeXe+np26TreOW252OAgyEkOHu/5/S80OwTTh1vyPwtxut/7v21Xq8+JMff/HbrPDsbw8Dz+HKav2FJvcwEzzNh0yOwS//RGC2XXNxhUVZvjppOUCwrGrore2HjymjfuPGr7fQ8eylJ174te9eGuy4fuHtZAYOlx6lm9jX3xpY8vJzdPNny1T16dn6AcK5sVYuRAVDjWdCzYf0ueLd2jboXTdabGWLztJPpZldggFHpnErKawl3Dv8ouSheK7z+9FsXhLsga8MlsZ2XllvMJ6wqG8EU5IDBE0U1fv1bS/9mr/0UzdQcEcIbZixxGzQwAAwDAlDYG5fcJy5Xjq9oGgC7fElsQQQbPin3V/7CrMfuuW5pRKdc4p4xWdlZQu4uHBl2uClWemDbdCoxNZ9+z61/6jTAoDY5AYwrGK1ryFumxhh5sNAGuy5PXDpCQo1JMSzd90UM9PW6cdyen6YvF2nf/m7/p0/taQxoDQ8ffsCsZpScUXgi3K7ACA0oSyJpiaXfgrJT1bH83bosbVK+qCdnUs3YJRErvN+AmUJDMnV8cyc1WlYjnD930oLVNXfLBI0onJmfKX0li96y8NalcnKMdE6ex3tTWOHe81RZHsWguJIRyrrItRsC+3XAqtwYj76iOTVxdMsFQ7oYK6NqoS+E7D1J6U46qdUMHsMMLOgaOZunX8MqUcz9Zrl3VQqzrxZodkmoGv/a4tB4/psUGtdN1pjQzd98kTqRVdX3HX4eMkhg6wPzVDj0xarejICD11YRu+cx9QAWl9dCVF0FALBKc4ubD40vT1JkZifWe9OkeHLTTTqT/2p2Zo15Hjhu83kNr/56au05Kth7VhX5pu/MykZYgs0niRv8TKEz+sMTkSBCojO1cvTFunp35co9SMbI/bhLqkMWbyak1fs09T/tyj56auLXG7UM5KGu427juqbYess3RSOCMxhE+ccQkCgsMi5WZTHc3I0Ufztvj1Wit0m1q544hOf3GmTn9hpuH7DqSQ992KnQV/7zxsfNIaamZ81xY4vVDE+3P+1n9mbdaHc7foxWnBrXR75ZcNavx/U3T3F6XPov7zX/sK/v5q6c5StjReSbOS2oWn33VZ7+nHVbt15qtzdMbLs7WEdRSDjsQQjlXWxYgk2DryTJyG2yEVsiF1JN1zzb8/Ql1MuuuLFcrIzlMuU8MXZ+BH4pSWEJTu5V82FPz92cJtHrcx4hqQm+fWG79uVJ5bmrRyt9buSTVgrzDC7RNOJOo5eW7dMYGlz4KNxBC65qPFQekWZTeZOfZbGNYpXv91Y4nPLfz7kNo+9rNOf2GmX+cx5c/SWb0VJS0zJ6TH23YoveyNPLBCa2dRu48cV0Z2rtlhWAbXgvCUk5unCYu266ulO0qsZMwr8uXvSfn3XuLvL5fzqThPFT6+DDvam5phZDjwgMQQmr3hgEZ/s8rsMEKu6MVo4tIdJkViPaEeH1pWobm0xPDKDxbpaGaOtiena+yP1h5T5O2nmpqRrTs+X6HhHy7S1oOMq8jnqVDhb7fUUFu7J1VfWega88K0der53G8a9OZcZdm8UiyUVysrJvgo3Sfzt+qh7/7UA1+v0tfLvev6SVIHpyIxhCTp940Hvdou1LfEUHYnWrUzJWTHgnFO7tI3Z8MBw/c/d9NBvezLhDIGnLJvz9ykH/7Yrd83HtRdX64MfIdeKClsqxeQ5m86ZHYIXnvg61XatD+t1G3GLdym0577Tc/+VPKkFkb4z6zNkqSN+9M0eeWuoB4rnPh+T7L4D8gBxk7597f0wNeeK8GLlm1O/pr5BuEkJIYw1NKtyfpm2U5l5eRZvkAJeOvN3zbpWAi7LH4yb2vB33/sOBKy44aKk2csnrZ6T8HfnmZnfWTSau06clzvzflbm/YfDUlMe1KM6Z5l5Ldqx5Y5J5/XOOHA0Uzd8L+luv7TJdp/NNPscCzHjr9rp2EdQxhmze5UDXlvgdxu6c9d1m99s/vsXjCGt/ep9KxcVSxvnUvm+EXb9NZvm3R261p6/ILWXr8uNSNbWw4cU5ukBEVG2Os3EE6Fiv1HM3TOa78XeqxoWrFp/zE1rREX9Fhe+WWDGlSN1eD2SYbtMzs3Tx/O3aJjmTm6uU+ToP52wuesgFmKXlt8SfEbjp6ink2q6t3hnfTUj2v0y5p9Zb8IBYLViHDgaKaWbTscnJ2HMVoMUcy+1AzN3XhQObm+jTt55qe1BT/wT+ZvNT6wUAty5S+z7qEk3pwZD3+3WntSMvTJ/K36a7d3FTHZuXk6/425Gvz2PN3/9R+BBWkRRXNFM39WxzJzNG/TQa9al9/6bZMOWWg9x7u+WGloq/gXi7fruanr9OZvmwxf29Ptdgfl+hku9Q57UzL0n1mb9KdNhkekZebopz/3aP9R+04sMn/zIb0/5299f9KatiguVOWenNw8DX5rrm4etywkxwsnJIYo5GhGts5+bY6u+nCRRn/7p0+vPR6E2e28aSHIy3Nrf2pGwEsahEuhwAjkrPaycV/p49by/fzXXm1PPjGr5rfLGVdmtCs+WKQrP1ikYe8vLLMAtCPZv9lN8wXjemXkjH9jJv9V8PfHJ3WN9te4k5YqeHjSajX6v5/06OTVAe/XV3ZotR756RK9MG29hrw3P6Rd4P117UeLdev45Rr81jyfK6SNUtLvdea6/frUy4ru6X/RUmgV8zcf0m6Dusg7DYkhCvl88faCNca+XlZ89i5f8oVQ3T/v+GKFuj7zq24dv9yn1xUdD2L92z0QmMOlrB9o1/PfU9xbDx7Tx/O2FJpyPhTyx4Ou2pni97IW8OyRSauVm+fWvtQMTVi0XZL0vwXbdCgt09DOHcezcv1eo9Lz8ITQ/7L+2n1iDb6M7DzLd2vMysnT0n+6++1JydDCv62xgLnb7daK7Yd13SdLtG5vaMb6wjgsw+M/EkMUknLcuIWnQ9HqtP9ohqasOjGZw7S/9mrn4X8LY9sOHdM7szZr8wHvWlOsKDfPrc8WbtP7c/5WZg4XurJYoaHTrhNQhDLqYF4bcvPcuvTd+XrihzW68oNFpnXZzjKp5SNceEqncvLydDi9cPfb1AzjWsSyc91q+eg0XfSfeSVebxkCYKyi18usXN/vc8GqhH7S4ssfSda45zlduF0TSAxha8cyC99E8he7zstz64r3F+n5aet02XsLPdYAF63dDfVP25suSd8s36kxk1br6Z/W6t1Zf4cgKnOEonX517X79OOq3QF3ObYiuyajwbBi+2EdTDuRPPx94FhBDwg7CORnUNYZMG7hNvV5caZvS6841KqdKXS1dji35HfLcTDZoCdzqezQFdvpSAxhGCv93HcdOa5dR050IzuYlqm1e1JNjqg4b2qZTl5z6dUZG4IZTiHheO0e+elS3T5hhT5dsNWv1xuRfNmxYtFu54I/hbmU9Gz9unafjmYYl0S++LPvCViwTo+c3Dw9Mmm1th1K15u/bdK2Q8eCdCTjePtZzAhSV8nNZaw3CRRlt2ulGXxtXVsZhss1WZ115l6HLUxYtF07ktP13+GdVaFcpNnhGIpr+r9CncAYdTxvvsMnfrB+96CgZQh2zEzLEGgNtNvt1iXvztem/WlqVzdBk2/vZUhcZY3t8hi3u+g23h/PVfzlBXKKJMt/H7R+YuiJp9P36Z/WKi4mdEWZ0s43z5VH4febCyYjLlHbDh1Tg6oVTY8jGKwaVzAcTMvUpe/MNzuMQiat2KXPTpoIKxzRYgif/b7xoMYvCr8fhoOutziJ0RUC4bw+ptt9Ygbg7ADHz1mpZn3d3qPa9E/r0B87U7TfwJk5g8mK55lZY22OGjjO0Ip2Hk7XJ/O2BDyTrRUF4zzu8+IsvT1zk+H7tSLrXQWMM2HR9mKVWt4KRpfVjOxc3f3lyrBfG5HEEIV4e19fsPlQcAOBo5iZKHh72zGiAFPW+/xk3hY1HD3FshOXjJ2yVl2f+VVD3l0QNmM1s3IKf9b+FkRgrHAu8PrC7Xbr8v8u1OM/rNFl7wX3d7fl4DF9tXSH5m86qLNfnaPhHy5SSpDH6BZtZU0zaHkNX7tyh+uvPn9yPjsK5FrsbSXVvE0HvZ50saTx6uHWiktiCMNYoRUg3H6gsB9/xyIePpalx0vo5nrpO/P18vT1gbfIlNYNzotdfzh3i6QT4z5mbzzgdxhG/k79+UyycvJ0PMuCs/xa4BqKE0o6q0LdKro9OV07D58YL787JUMbgzT2MT0rR4PenKsHvl6lKz5YpPX7jur3jQf15m8bg3K8ktz1xUo9O3VtSI/pmT0KE2VFeduE5UrPsk6LuqeWPDM/6Ss/WKSL/jMvbCo6jUBiCMOYkZTZuRwV6Mf1yvT16vDkdL3kxyQXZkhJzw7pLG92m0L6fwtK7p69dNthvfnbJi3ffiR0Af2jpI/RLl0ui9qbkqF+L81Suyema9rqvWaHYyl2+MmEsgut2+3Wwr8PmTpZT9FLZrBmIP7xjz0eW+t+WLU7KMcrzXuzw3cG7kD5UwG/x0ILvVvxvvz3gWMFa2n646hBrdxWQWKIsOTPtcdOSebhY1l647dNOpyerbdmbtLBtEyzQyrV2B/XqN2T03X1R8FdV856txzvpWeXfXNZsPmgx8e9/kgteFMOtRd+XqddR44rKzdPN49bZq1zxlLB+C4U4YdyaZZXZ2zU5f9dqLNenaOt/0zYE67T7Wea0H39nVmbNey/C0N+XG9wqXSW49n+9yD575y/C2bBDwckhijV+3PsVXM3d6PngrMV7+X+hLR4S7Ke+WmtFm9NLvR48rGsEl5hDR/80wVx3qZDWrK1eM1cML4fowtwdl0rMDfPrXu+XKk+L87U9CBN7R8qnr7Rot9zWd/ScgtPHGD2ZLRWvE6a6Y1fT3SjzMzJ82rMmhUnBPL0nR4+lqW3ftuomev3hzyehX8f0i3jlum5qev0/LR1hvSCsOLnbmVjf1yjfi/N0jfLdpodSqns9K0+P3Wd2SEYhuUqUEjRm8jTP1mhr7/3nv5prTrUT1SNuJiA92XFRGDoewvMDiFg+wzqgjhjzT69ZbOZ58yohZ7+1159t+LEYt3bDpU8q+HMdaEvJFqBlQofW4osI1FabIEkccF6z4Hu1+12647PV+jnv/YqO9fc62/R3+oBL3plWPGe4cnob1fp579OVBL9em8fNaleKWTHvtyiLYRF2eOb9N3qXSkFFbX3TvxDl3Sqa3JEJXcvPRZAF81gtOyX9vvesO+o4cczCy2GKCSQgmvR32Eo+pJ7OsKl7y7Ql0u3B/3YgQrXG0+oXP+/pSx+64VFW5LL3OZoRrbu/nKlx+eC0YrEue+d0j6nQC6vRn3+Rs94+MfOFP24ao/pSaGRrNglMT8plKT/zNwsqeSkPtD4c3LzdNNnS9XtmRn66U/7zJBpxe/NX273iQrC3zce0F+7U8wOxyuvz9hYkMAitGgxhF9Ccc3MysnTb362Yrz9z80OzmKF1p/SChSbD6TJ7XZbbpzSX7tTfX5NuBScwuRtlMqI023rwWP6fMl29WleXT2bVJN0YsZDI5k5yUu4Kut3avSlKDs3T9GR/7Y5/LBqd0Eieuv4wM+Xaav36OzWtQpdQ41oqbXL9cyfOD9bsFWf/jO52YCWNQ2OKDhenbHB7BAcixZDBE2ghd+vlu4o+xgBHaHIvixWWDeT2y1l5uRqR3K64S2/nvZm5hgRb49sRIwfzt2iF0oYq+TN/u1SeLGysn7nXAY8u/bjxXpv9t+64v1FOpLueUxzOJ2eVj0PNgVpuYqyZOXkadm2w2V27/vhj8KzmC71MKY8EDePW64pPrQ8hvti5N749KQZr2estfc4c29ZcfZTuyAxRIGDaZn6Y+cRs8Mo8Mik1SE9XtELyY5ke88ylZWTpxd/XqdRX670ecasPLdbQ95doN4vzNSYycZ+D1sP+tcq8P0fu/Xy9PWWn2inLO/M8tyabZfxSWbyWKlgcAE+VOUJo/MOI8J++Ls/tbeEqe23njQ+tf2Tv2iqh8J5Tq5b787erCd++KvYczf+b6lemLZOOSbMfmkmo89PTxPCpRzP1pM/rNHL09crw8/ZFcuK8+Zxy3TJO/N1yTvzSy10/17CBHBGun3CikL/LqlSbcO+o7r03flBjwf2Z9F6IFOQGKLAgFdma96mQ15t63F2wDD7aT09xV4T7xT1zfKdenvmZn27YpdGlTB+rCS/bzygVTtPjEUYt9DY8Zqv/LJBy7f7Xot75+cr9OZvm/TgN6tK3Obk4opZNYZ7vZhc59e1+/yKL1itGH4t72KRn3uga2Na5G0Elbff78K/kzXqq5VebXuLh26Bu44c13NT1+njeVuLPTd9zT79Z9bmQuPbfOV2h+4+U+wzs3C9zXNT1+qjeVv05m+b9On8rYbu+0BapjKycwuGdazbe9SU9VT98fzUdX5X9FBRFzq+ftKb9pc90UtQJp9xyClBYogCR9KzDd2f3Zvys2xes31yy5Q3E5Cc7MDR4K6LeO9XfxT69/bkdK3d4904t19MWnLB24LCzsNlt86O/HSpvv/DuIWjPf3Uvl62Uw1HT9EnBhcUzeTpVh/o4s1Wvkr9vHqvUo57vi4Ha1bS+ZsLVw7uT83QUz+u8f9gRXgzRKA0Tiuwe3Mf/Xzxv5/pswZPm+92S5nZhe+F6Vn2WNA7kLXpbF58CWvnvP671vgxLr40fN3/IjGEX371MCmM027Yvpi1fn+JXQiNYHQtcbDtSC6+bMKw9xcqz4S7sVln7V1frAzq/u+b+EfZG6EYq7SEStK3K3Z5vQB4sMIe9dUf+jBEswM6cfzn8axcTVm1x+M1MRRcBf9f8of723pnjEuDPWTnuvX498W7qwdbOF5/PCExhN/W7TW2xsZXObl5IS/Uf/D73zr71Tkat3Bb2Rv/Y9P+o7r24yV6flrwFkAdv8jY7p5mJEtH0rMDbv2xm+yTWqXt1hXbqjXqReOy+818jZct6cEyd5OxY8YCOW38Oef2p2Zot49jrD3y4jzyJ77bJyzXbROW69w3fvc4sUvRZNnXQ5R1/nuzv+NZ1u49U9J7tMKSLkFnsUCveH+hOjw5XdNWB3dpkoNerCsaSla9H/qDxBB+m73+gGnH/mLxdp0yZpoufHteyI55KC1TY6es1fp9R/XIpNXFutPk5bkLFfTzvTZjo0/HycjO1eszNuptmy3eDt8ZvQ6cv8K5td/XG3Y43eD9lWLwsAIz9X5hpnq/MFO/rdunzJxcr8ekhuo3kd/75mhGjr5bsSskxwxUab+R9XuPKi2Ahcn9YcRv1ojv24yZza025GX+5kM6nJ6tm8f9OwbZ7XbbdmhRVk6exi3cpul/7TU7lJBhHUMYpmiLx+wNwUscR3/7pySVOP4mGIqOHTuSnq3YclEFcQx9d4H+Ppiml4a00+D2SQXbeXM5zMnN07crdqlKbDmt2nlEb/xmblJo80YW2/hq6Q5d2CGp7A2LCOV5bze+ls3MOtcDKUMePpal/an+15iXdU06lpWjhNhov/dfmlB/3pk5JwrOIz5ZqsgIl5rVqKSvb+kZlGN5+k59KQ97M6Oo1cvXa/ak6vw3ftf0e/qoXJS92x6seB8smsCOnbJGZ7euZVI0ZUvLzNFl7y3Qhn1H9cxFbTVpZfGx9VY4p0v6rl/5ZYPenX1iGNBLQ9qFLiATkRgiaE6e3txsRZPW1IxsQ7vCfvD731q/78RMWXd9sbJQYliiky6G/5m1Wa/8Yt0FXfcfzdCR9Gw1rxlnyP6CdR84+Vv2tvbWKjd/X2qsnzBhfEVZ8vLcGr9om3YeOa6bT29iWhw+txAGJ4yyjxvAgXu/MNOnVhkrdac1swyYm+fWur1HbTUm2wotLUXPn6Vbk/Xc1HVqVrOSx+23HkrXj6t26+KOdUMQnXWY8V1ZfVmtT+dv1V//TBRz/9clzyhuVflJoSSNLmVGdCtdYwNFYgjHycjO1Tmv/V5sbb/SEonnp60rdfKYlTuOBBSTlZNCSTrjpdk6mpmjxwa10nWnNTI7HFNYaQzgt0Z3OTOgPDNj7T6NmXwiYd2ZfFzlo0tuLfC7/GTAV1DWLuxwg/e1q56vn/eUVXv01+4UDe/R0LcXBqisj94ttyG/w792p/j+ohCU+b2pzDL6/PRmd0XPn/weLaWNfz2UdmK9WTN/Twv+9m75LU/c7nDuYB86K2yytIk3ckrphm6B+hvD2LudH/DDN8t3+rTg+8G0zKDOKGoHR/8piD7xg3HT1gdDMNcxtHIxwQqRvfjz+oK/p3hY/BzWUVZZ/emf1mrSyt265J3QLg5uhfM4X9HLR/7v3+yKg2AVQK20RqqvzP5O8pkxxhAwGokhjGOTa6Kva/QlH8vy+LiVCjGeBJLIWP29mWnboWMa8Mpsnf7CzIC7I59caLJSi6QV7UhOD8mkKOFU8wv/bS+yfMSSrYf16i8btG5v2YtrG6n4rKT2OEHJkTwb9dVKtXp0WqEuio5n0VN6/mZjZ2S2C7qSwhA7ktP1504/uud4cDwrV2v2GLMvX4R8fIBNb5wTl+7Qx/O2anD7OmaHYoqHvvtTm/anSZJun7BCM0b1MTkiAwThXNxp4NiXzxZsLeimapb9RzM09U/nzExnRS65DEmMvLnUe5q99PVffZthOhiMrkCyaJk8LP25M0XfLj8xDOC5qet0cx/zxmKHilkVBPuPBrb01fxNB3XFB4sMisZeSAwRsPV7j+qCt+YWzP4WCLfbrSs+WGipfulrg7WOmE3vyPkDyANZX80KEyr4a96mf8et5CeIoVLSx3byvffLJdv12z9T4Hu/Y79DKtHircmG7SuUSeGqnSmqk1ih2ONXf7jY0NYiowtM9v1Fec/qrWXBuKwVvVamZgSn1dzo8vvrv27UyF72GY9erOuw+8S1wEjbko8Zur9gmbh0h9khBOz9OX8H9PpRX/1hUCT2Q1dSBOzRyasNSQolacvBY0FJCv8+WHYBvqTxAc/+FLyF6Z2gpK64ME5+mWZHcroe/OZP/fzXPlPjKVvoCvi+JmA3j1tW7LGM7NyQdyF0Ipt2ogipbYfStXGf9c/Foxk5Wr79iKO6lJY5sVWRLaxaQWrk7KFmff1pmWUv/VKaoz5WwFi90soXJIYImC8TuZQlIzs4i7XePmGFjvm56G5mTmAXGKdjLEXJfF5zr4ztzRwTYZUCYNHbs0XLXiEVToWWUDHjE/P2J/Twd6tDekx/z5/fNx6w7e8vGNeziCL7tOtnYw+BfbhO/mpIDOEYTpspMZCxKEbeEzdYvHbb6wJAULqJ/fu3GQn0V0t36Eh6VqlvzSL5ntdS0mmhtrJAW0mMGGPnTQiBxrn5QJoW/n3Ip8uGp2099WT5c5fxY/CtUrFjFcFI2op+xnleHGTxlmS9PmOj9qZkBC0us/lT8fD3wWNU2gcJYwwRMntSjuuR71arXFSEnr6orapULBfS4+dPJhCM2R/9mabaybX4LpfLMnc4X8Lwdf04bx0OsLutv4XYB75epfH1EvXA2af4fky/jpgveKXQ/DXWnMalkr+TcJnx1iKXjBLl3wbW7U3VoDfnKjvX4gF7KVzOH7MVn2G2dMnHsjTs/YXKzXNr9ob9+vbW04IXnA09NvkvPXfJqWaHEXZoMUTIPPLdav26br+mrt6r56auNTscr7E2ke/u/eoPXf3RYv19wPPYzlCMrTD6EG5JF709r9jjV36wMOB9J5vYyvXHjiOlLtwbKpsPpOnMV2brrFdna8tB4yZpeH7aOg14ZbYmrTgxG2DRMm6ox/nM2XBQY39co62H0sveOAxZ4Xq6YX9wezE88f0av5JCT59MoOfnXV+s1KE035ZoKiot0/8Jb/z9uvu9NEtvzwyvSp6iH8XRjNIrGr9ZtrOgQnt5KXMvbC7hPhvuvlhyYpKc9KwcTV65S9sNvKZavRIqmEgM4Tdffze/njRT4ldLdxobjBf8HWPoj59s3m31aICf1TfLd2rOhgO6fcKKsKlrXvj3IW30MAvpybOUBtuWg+nq/9KsYo8HWtgu7dUlt0KduCHvPJyujGxfu/QU3+u9X/2hjfvTtGFfmh742rgZ4b5YskOb9qfp7i9Xenz+fwu2GXYsbyzemqwP5m4J+Yy2VlFaohOqnPHvA2VXPATymwp0qvyy+BraS9PXB3S8Z/ycgC2QwvWWg8f04s8lx33JO/P146rdkoLT/8CfHj1lvSKiyBf3/FTfPtfJK3d5fPy6j5f4tJ9wc+v45brri5U6783fTyrnhUvJI/RIDB1i+l971eHJ6WaHUcjL09draZEp7b254fk6W1S+sVPWav/RDMOmjC6tgHPr+OVlvj7Y3XMC6aqav9ZSoNbsSTWtw6zRhczUMmp3/eHrd/TN8p36u5TWNH8LYv68bMfhdLV69Gf1en6mWoyZpp2HA5uEauWOIwV/L9l6OKB9+eK7FWWf606uPbaaUHXB96elLtDzJFiJ8eeLzVt+IFi/nWXbDuv2CSs8rjdpVUW/3y99XBbiri9Wenx8e7J1ex94c04Heo7MWn9A0okW2En/JM+BTuzm5KE+JIYOceNny3Q43dj1jwK9h7352yZd9t+FhdZl8uYCMfzDxX4fs+vTvxqW9HjNudcXhEig3c1W+zGZxdszC0+Wk57lfauhHRKtY5k5+mrpDq0Pg2UqwqWQY/V3EegM3Xb4XVhNdm6e5c+LfJ6S2J2H0zX4rbk69/XfSxx6EUwz1lh9aSPfZAZpZnsnITGE3+ZuOhhwgTQ3z+3ThSktM6dQy0IoePMe/apdts3tLDCeKhCCXcm7+UCaXpq+IbgHMYBVJnVY+HfousNK/9ZwH0zL1Pd/7NYRC84kes+XK/XA16s06K25po4BNULRhbqtMM4vHL0wzdg1bw+mZer6/y0t9ri/315unlufL97u8TmrXIt8ZVQyvc2A8WllfYI3flZ8jdQxk1brj50pWrMnVfeYsKi6p/PLSHY9r3wVTpU6zEoKv/2+8aA+nLslpD+IXDvO8hbC6+KO5HTd+cUKSQq4a59dpWXm6II35xq/Yx9O9B3J6Zq14YDOalXT+DjCQJ7brbw8ty55Z762HUpXi1pxxbZxu93KyM5TTLRx9Ze+TG8+/Z8Kq6ycPH0W4nGIRrv6I/97WQTDjuR0ZebkqmmN4t+7nW0LsEtf0Xz92Z/WeTUe0lv/W7BVT/ywxrD9eSPYdRBGVbDeNzHwpMyfSGb+0w1SOjERWOH92bC8E6C8PLeWbgt8KIGv5dJwSuwCRWKIgIydslZJiRVCdryL3yk+K6RRdh72fFO3U+36/337p1aUMnuZGUL5+bnd0qQVu3TMh26NwQjv4nfm68DRTH0yb4vxOw8Ta/akFtTSr/PQXfP/vv1TXyzZoYs7Jhl2zG+WedeNvOjkUVk59u6eVDT+UM/EerKVO47ojJdnKys3T69f3l6D2/v2/YaqBWJZAIVTo6553yw3dpK2UCeFofDjqj3akxL4ZD9F14YkUTDHs1PX6v3fvb9vPvj1qiBG40x0JUXAjCxYl7WvzQbWnhZV0oQX9kkLT3TvdYIFm0vu+miFQvyBoyemhy/rfHVijXC+7NzSv6f8qciNHBM8d9OBsjdS8cmj7FA3ZJcz6WhGjrL++e5LmkyjJKFMaH0ZMxsWgnCOL9marHELPXddNcoDQUoM/Pn+1+5JNTQGT5Ugdvmd5/Nq8pmT/vYlKZR8n8DHW06uGCAxBAxQag2xgy8wwTLs/ZLXDgzax22D7CAY79367xpAIFbtPKKfV+81fL/zS6nAs7pP5m81O4SwEOoEK/82HfCspA4ut9GVFEBQhbKW35/czQrryTntJmTm+/Un0bXr95ORnVswlTvgydq9qbrw7XlBnxDMbqxwX4A5Xvx5XUGvBm+F08+HFkMEzMi1m+xaACtVCSXRw8eMXT7E90XGIUkL/04ueyOboHWvdE6ZIS/f7ROW6+ZxxWdCRHDY8f61elcqSaFFhcNQAxt0tJEkTVl1Ylz5wbTMYksxOQ2JIeCnQAsBCwxeIqCsGk4zJ5wIJae8z5MF8x3nBeHztEthwe5mrN3v8XGrTqhVVuLuVngUlkvi7bdyLCtXXy0xb9F6OJs/695aXf6Y9oNpmX693ppXVP+QGCJgoZx8Bv67+8uVphzXqoVQnwUx4TT7Iyrtrf30p/Fjj6QwOi8sgk/TWR74htkYYY5L351v6P6MrMzN35U/18P9qYHPbhsOLJkYPvvssxoyZIgaN24sl8ulhg0betwuIyND77//vgYPHqyGDRuqQoUKaty4sYYNG6a1a9d6fE1mZqYeffRRNWrUSOXLl1eTJk00duxYZWcb260P4e8/szZ5t6FFKrgnr9ytzQdCP27CiS14dlNaK8yHc4Oz5IYp5wXZk+2Fc3dgKktwMk/nepvHfjYhksIysr0ffxfqU/rJH/1fkuXVGRv8fm04lXIsmRg+9NBD+u2339SkSRNVrly5xO22bt2qG2+8UcnJyRo5cqTeeustDRs2TD///LPat2+vmTNnFnvNZZddpqeeekr9+/fX22+/rb59+2rMmDG64YYbgvmWwlqgC6nf8+UfOvf137WyyOKuVvf54h3adih4y2cEQ/4yCuEqPStXuTYcMGNUzHZ552YW7il8W8vRjGw9/N2feuDrP5ScnlXqtuFex0QlGpzI6Ft2SWtSl2XDvrSwv8Z4w5Kzkm7evFmNGzeWJLVp00ZpaZ5bOapXr64VK1aoffv2hR6/8sor1aFDB91///1aunRpweM//fSTJk+erFGjRunll1+WJF1//fVKTEzUK6+8ohtvvFE9e/YMzptCqdbsSdXwDxbpq5t7mB2KT9btPaoGVSuWvlEp5dBrP16sizoYt4C3FYW6IP7s1HUhPZ4RXpnuf02lEUKdqJk5Tsyfwne4jWuzUgLy5m+bNH7RibXufvxnAggA4XHd8ebecuNnS/XdracZdswj6dlh8MmZx5IthvlJYVmqVq1aLCmUpFatWqlNmzZavXp1occnTJggSbr77rsLPZ7/73HjxvkcK4xzNDPH7BB8ll/A8rdYPWv9AZ8XeUb4mfZXcMbxeSscCiCwp//O+bvg73BZVN7f+wGt2XCiFduPaNP+o2aHYYg9Kcf10Hd/6r9zNtuy95Jk0RbDQOXl5WnPnj2qWbNmoceXLFmipKQk1atXr9Dj9erVU506dbRkyRK/jle7du1ix0f4KO1e/dnCbSoXVXr9ipVm8Hr1lw168JwWalqjkspFWrJeyLqCUGizSsONKcP9bFQIDrdxbXb67O0oXBJcmGvtntAlS263W3/tTlXthJiQHfNkR9KNm+cjz+32c73awG+E93y5smAJrPpVKmpgm1oB7zPUwjIxfPfdd7Vnzx6NGTOm0OO7d+9Wq1atPL4mKSlJO3fuDEV4CCPzNh3SvE2HVCE6ssRtth3yr797MCzakqyL/zNf9apU0MPnev4tGI0iaAhYJMG0A5Ii+9qTctwWSfquI4GNu0doHM/K1c9/7VWbpHizQ/HouxW7Qnasl6av19szN6tKxXIhO2awPD3F8+STwZSfVJ68LvJ7czaTGFrB/PnzNWrUKLVr104PPfRQoefS09NVvnx5j6+LiYlRerp/Bfg9ewqPi0hNTVVCQoJf+4L1HEwrfUIESTpus8XldyQf188h6r4YNjlLGK/nV1Yc/V+epQyDW0HMGOdmkY8bfnrmp3V64OxTzA4DYSA3z63z3vxdfx84pvJl9PoJpZZjpqlB1Vh9cWP3kB43f1H35GNll3e8NW/TQU3507txw0beDRZtSVaNOM9l/TLj8DOQzQeO6dHJq8ve0AbCKjFctmyZzjvvPNWpU0dTpkxRTEzhJvHY2FhlZnqelTEjI0OxsbGhCBMICl8vaCnHWaLFF3ZIcIOVa/19wF6z7zqRHc7PQP2+8YCaVC9jsi/AC/d8ubLgupaZY53hP8ezc7Vu71G9PdPL5bAs7MoPFpkdQkj9b8E2s0MwhHWqSQK0fPlynXnmmUpISNDMmTOVlFR8psc6depo1y7PTfO7du3y+Bo4W9vHzV8zyO6O2XBSIU+C0drk5DGGCK4ez/5a4nN5Nv3C3W7pm2UM+fDHXV+sMDsES/n+j91mh1CqxVsPmx1CSBl9Sdof5ktzBVNYJIbLly/XgAEDFBcXp5kzZ6pBgwYet+vSpYt27dqlHTt2FHp8x44d2r17tzp37hyKcGEjRzPCI6nxJFTd6hZtSS57IziOGWP9XC7/RqjZcdbWPSkZJT43e/2BEEZirNQwviZn5gRvSMLkldZOhOBs/1uwVX1fLL72eKhZZXiHmWyfGK5YsUJnnnmmKlWqpJkzZ6pRo0Ylbjts2DBJ0muvvVbo8fx/X3nllcEKE17634KtZofgGFwAkW/+5kNmh4AQ8ncBaATXMz/Zbw1WBMcfO46YHUJI/bhqj7ZaYKI+m3amMJQlxxh+9tln2rbtRF/dAwcOKCsrS2PHjpUkNWjQQMOHD5ckbdu2TWeeeaYOHz6sO++8U/Pnz9f8+fML7euiiy5SxYonxiScd955Ov/88/XKK68oJSVFPXr00IIFC/Thhx/qqquuUq9evUL4LuHJ54t3lL0RDEJmGG5I9svmz31/0/40w+MAAMBqLJkYfvjhh5o9e3ahx/KXnujTp09BYrhlyxYdOnSipvvxxx/3uK8tW7YUJIaSNHHiRI0dO1bjxo3TZ599pqSkJD355JMaPXp0EN4JYF0kEeHDjl0dzeDvKf/7xoOGxhEMLnmf9FIrDgDBZdciliUTw1mzZnm1Xd++fX2e8jwmJkZjx44taIF0gi0HmVEQCNS4hdvNDqFMdirwr9mdanYIAABIcsbMzt6w/RhDlC2VZQkcgVaj4Fq/76jZIYSNPLf00Hd/mnJsu9biGunXdfvNDgEALIdyFIkh4FgUkM33x84jeuDrP8wOI+T2pZY8YyYAAHZn1xSTxBAATJKRnaevljpvXTYqJQAAsB4SQwewa60FAO/k5pkdgW/MWMPwxHFNOSwQNHl53OF9lZYZvmthwn92GqMfTCSGAGBzZo3XsyOSQ1jZ6l0pPm2fnWezWiELGPruArNDgEWRHJIYAo5FATm8HErLZOC8g/HNW8P1ny4N6PV3fbHCoEhQkjV7mBEZxRldJrJrEcuSy1UAAHyTmUPLQVnseqP2BjXd1jBj7b6AXr/5wDG53W5brJ2J8HDu67+bHYIlHErL0ncrdpkdhulIDB0gnAtD+JevBUMXZwYciAQKVvf2zE16afoGs8OAQ9CCesL25HR9OHeL2WGYjq6kDkA5CICVUCUBlIykEIBZSAyBMPH6rxt92p4xhuFl3MJttIaVweVycd4jbGTm5Orx7/8yOwwAYYSupECY+G3dfp+2p4AcXv4za7N6N6tmdhhe+fvgMVOO6yZzRhj5aulOfb54h9lhAAgjJIYAECaYsKJ0k1buNjsEwDCfL9pudggAwgxdSR2AWnJ4wuQzAAAAyEdiCAAAAAAOR2LoAC4Gk5kmi7XlAABBwK0dgNEYYwgEya4jx7V0a7LZYZSMQgUAAIDhMm3aMEBiCATJvI0HlZGTa3YYAIAwdCwzx+wQAJTgr92pZofgF7qSOgCTz5gjj88dABAkWw+lmx0CgDBDYggESZ7F80J6kgIAACAfiSEQJFZvMWRSIgAAAOQjMQSChC68AAAAsAsSQyBIci3el5T2QgAAAORjVlIgSPLc0i9/7TU7DAAAAKBMtBgCQXIsM0fzNh0yO4wSff/HbrNDAAAAgEWQGAJB8tG8LWaHAAAAAHiFxNABrD3SLXwdTs82OwQAAADAKySGAAAAAOBwJIYAAAAA4HAkhgAAAADgcCSGDsB6dQAAAABKQ2LoAEw+AwAAAKA0JIYAAAAA4HAkhgAAAADgcCSGAAAAAOBwJIYO4GaQIQAAAIBSkBgCAAAAgMORGDqAi/UqAAAAAJSCxBAAAAAAHI7EEAAAAAAcjsTQAZh8BgAAAEBpSAwBAAAAwOFIDAEAAADA4UgMHWD2hgNmhwAAAADAwkgMHeCt3zaaHQIAAAAAC/M7MZw9e7bOP/981ahRQ9HR0YqMjCz2X1RUlJGxAgAAAACCwK/MbcqUKbrwwguVm5ur+vXr65RTTiEJBAAAAACb8iube/zxxxUdHa0pU6borLPOMjomGMzlcrFmBQAAAIAS+dWVdPXq1brssstICgEAAAAgDPiVGFaqVElVqlQxOhYEiZvWQgAAAACl8CsxPOOMM7RgwQKjYwEAAAAA27Njw4xfieHzzz+vzZs3a+zYsbZ8007jcrnMDgEAAACAhfk1+cwTTzyh1q1b67HHHtNHH32k9u3bKzExsdh2LpdLH374YaAxIkCkhQAAAABK41di+MknnxT8vXXrVm3dutXjdiSGAAAAAGB9fiWGW7ZsMToOAAAAAIBJ/EoMGzRoYHQcCKJcxoECAAAAIeN2S3ab5sOvyWdgL+SFAAAAAErjVYvhnDlzJEldu3ZVTExMwb+9cfrpp/sXGQAAAAAgJLxKDPv27SuXy6W1a9eqefPmBf/2Rm5ubkABAgAAAACCy6vE8NFHH5XL5VK1atUK/RsAAAAAYH9eJYaPP/54qf8GAAAAAJxgxyk+mHwGAAAAABzOr+UqTrZgwQKtWLFCKSkpSkhIUIcOHdSjRw8jYgMAAAAAhIDfieHChQs1YsQIrV+/XpLkdrsLxh22aNFCH374obp3725MlAAAAACAoPErMVyxYoXOOOMMHT9+XH369FHfvn1Vq1Yt7d27VzNnztScOXM0YMAAzZ07V+3btzc4ZAAAAACwLrfbLclek3X6lRg+/PDDys7O1uTJkzVo0KBCzz322GOaPHmyLr30Uj388MOaMmWKIYECAAAAAILDr8ln5s2bp4svvrhYUphv8ODBuuiiizR37tyAggMAAAAABJ/fs5I2bdq01OebNWvm764BAAAAACHkV2LYpUsX/fHHH6Vu88cff6hr165+BQUAAAAACB2/EsOxY8dqxowZeueddzw+//bbb+vXX3/V2LFjAwoOAAAAAOzGjgvcezX5zJNPPlnssX79+un222/Xa6+9pt69e6tmzZrat2+f5s6dq40bN2rgwIGaPn26unXrZnjQAAAAAADjuNwn5lItVUSEf0MRXS6XcnNz/XqtnaWmpiohIUEpKSmKj483Oxw1HM3MsAAAAECobHz6HEVH+j2di2F8yUu8ajGcOXOmIYEBAAAAAKzHq8SwT58+wY4DAAAAAMJC2X0yrcf89k0AAAAAgKlIDAEAAADA4UgMAQAAAMDhSAwBAAAAwOFIDAEAAADAQG4bLnFPYggAAAAADud1YvjOO+9oz549wYwFAAAAAGACrxPD2267TfXq1VOPHj30wgsvaMOGDcGMCwAAAAAQIl4nhnPmzNFdd92l/fv3a/To0WrZsqVat26tMWPGaOnSpcGMEQAAAAAQRF4nhr169dLLL7+szZs3a+XKlXr00UdVrlw5Pf300+rWrZvq16+vu+66SzNnzlReXl4wYwYAAAAAy3Lbb+4ZudzuwMLeunWrvv32W02ePFnz5s2T2+1W5cqVNWjQIF100UU666yzFBMTY1S8tpCamqqEhASlpKQoPj7e7HDUcPQUs0MAAAAAHGPdUwMVEx1pdhg+5SUBz0rasGFDjRo1SrNnz9aePXv03nvvqVu3bvriiy900UUXqVq1arrkkksCPQwAAAAAIEgMXa6ievXquv766zVlyhQdOHBAn3/+uQYNGqRff/3VyMMAAAAAAAwUFawdV6pUSUOHDtXQoUOVnZ0drMMAAAAAAAIUkgXuo6OjQ3EYAAAAAIAfQpIYAgAAAACsi8QQAAAAAByOxBAAAAAAHI7EEAAAAAAMZMcF7kkMAQAAAMDhDF2uYuPGjZo2bZpiY2M1dOhQxcXFGbl7AAAAAEAQ+NViOHbsWNWrV0/JyckFj/32229q37697r77bt14443q2LFjoecBAAAAANbkV2I4ZcoUNWnSRFWqVCl4bPTo0crLy9Pjjz+um266SZs3b9Ybb7xhWKAAAAAAgODwKzHcunWrWrVqVfDvXbt2aenSpbrllls0ZswY/ec//1Hfvn317bffGhYoAAAAANhByvFss0PwmV+J4eHDhwu1Fs6bN08ul0uDBg0qeKxz587avn174BECAAAAgI04JjGsXr26du3aVfDvmTNnKjo6Wt27dy94LDs7W3l5eX4F9eyzz2rIkCFq3LixXC6XGjZsWOr2ixYt0oABAxQXF6f4+HgNHDhQK1eu9Ljt7t27dfXVV6t69eqqUKGCOnfurIkTJ/oVJwAAAAAUFeEyOwLf+TUrabt27fT9999r9erViomJ0ZdffqlevXqpQoUKBdts3bpVtWvX9iuohx56SFWqVFHHjh115MiRUrdduHCh+vbtq6SkJD355JOSpLfeeku9e/fW/Pnz1bZt24Jtk5OT1atXL+3fv1+jRo1S3bp1NWHCBA0dOlQfffSRrrvuOr/iBQAAAIB8ETbMDP1KDO+//371799f7dq1K3js3nvvLfg7NzdX8+bN04ABA/wKavPmzWrcuLEkqU2bNkpLSytx2zvvvFPlypXTnDlzlJSUJEkaOnSoWrZsqXvvvVfTp08v2Pa5557Tli1b9P333xd0ex05cqR69Oih++67T0OGDFGlSpX8ihkAAAAAJCnCZb/E0K+upH369NGPP/6oCy+8UBdddJG+/vprnXPOOQXPz58/X0lJSbrooov8Cio/KSzLpk2btGTJEg0ZMqQgKZSkpKQkDRkyRDNmzNDevXsLHp8wYYKaNGlSaCxkZGSk7rjjDiUnJ+unn37yK14AAAAAyGfDBkP/F7g/55xzCiWDJ+vdu7dWrFjhd1DeWrJkiSSpR48exZ7r3r27PvroIy1btkznnXee9uzZo127dunKK6/0uG3+/oYOHepzHEW7zPo7thIAAACA/TmmxXDEiBH6/vvvS93mxx9/1IgRI/wKylu7d++WpEKthfnyH8ufJMeXbQEAAADAX3YcY+hXYvjJJ5+UOOtnvj/++EOffvqpP7v3Wnp6uiSpfPnyxZ6LiYkptI0v2/pqz549hf7buHGjX/sBAAAAYH+RTmkx9EZGRoaiovzuqeqV2NhYSVJmZqbH45+8jS/bAgAAAIC/KpaPNDsEn/mdublKyILdbrd27NihqVOnqk6dOn4H5o38/XvqApr/WH43UV+2BQAAAAB/xcVEmx2Cz7xuMYyIiFBkZKQiI09kv48//njBv0/+LyoqSo0aNdLy5ct1+eWXBy1wSerSpYskacGCBcWeW7hwoVwulzp16iTpxAQxSUlJWrhwocdtJalz585BjBYAAAAArMnrFsPTTz+9oJVwzpw5ql+/vho2bFhsu8jISFWpUkX9+/fXDTfcYFignjRt2lSdO3fWxIkT9dRTTxW0Cu7evVsTJ05U//79VatWrYLthw0bppdeekk//PBDwZIVubm5evPNN5WYmKhzzz03qPECAAAAgBV5nRjOmjWr4O+IiAhdd911evTRR4MRkz777DNt27ZNknTgwAFlZWVp7NixkqQGDRpo+PDhBdu+/vrr6tevn3r37q077rhDkvTmm28qLy9PL7/8cqH9jh49WhMnTtQVV1yhUaNGKSkpSZ9//rmWLFmiDz74QHFxcUF5PwAAAABgZS632+329UXbtm1TYmKiEhISghGT+vbtq9mzZ3t8rk+fPoWSVOlEV9JHHnlEixYtksvlUs+ePfXss8+qY8eOxV6/a9cujR49WlOnTlVaWppatWqlBx98UJdddplh8aempiohIUEpKSmKj483bL/+ajh6itkhAAAAAI6x9bnzzA5Bkm95iV+JIUpHYggAAAA4lx0TQ79nJc3OztbkyZO1ePFiHT58WLm5ucW2cblc+vDDD/09BAAAAAAgBPxKDHfv3q0zzzxT69atU2kNjiSGAAAAAGB9fiWG9957r9auXathw4bphhtuUL169YK+mD0AAAAAIDj8yuamT5+u008/XePHjzc6HgAAAABAiHm9wP3JMjIy1K1bN6NjAQAAAACYwK/EsE2bNgXrDAIAAAAA7M2vxPD+++/X999/rzVr1hgdDwAAAAAgxPwaY1ijRg0NGjRIPXv21F133aVOnTopMTHR47ann356IPEBAAAAAILMr8Swb9++crlccrvdeuqpp+RyuUrc1tP6hgAAAAAA6/ArMXz00UdLTQYBAAAAAPbhV2L4+OOPGxwGAAAAAMAsfk0+AwAAAAAIHySGAAAAAOBwfnUljYiI8GqMocvlUk5Ojj+HAAAAAACEiF+J4emnn+4xMTxy5Ig2bNig48ePq127diUuYQEAAAAAsA6/EsNZs2aV+NzRo0d1zz33aP78+fr222/9jQsAAAAAECKGjzGMi4vTf//7X0VFRenhhx82evcAAAAAAIMFZfKZiIgI9evXT5MmTQrG7gEAAAAABgrarKQZGRk6fPhwsHYPAAAAADBIUBLDdevWaeLEiWratGkwdg8AAAAAMJBfk8+MGDHC4+M5OTnasWOH5s2bp9zcXL388ssBBQcAAAAACD6/EsNPPvmk1OdbtGih+++/X9ddd50/uwcAAAAAhJBfieGWLVs8Ph4REaHKlSurUqVKAQUFAAAAAAgdvxLDBg0aGB0HAAAAAMAkQZuVFAAAAABgDwElhhMnTtTAgQNVs2ZNlS9fXjVq1NDAgQP11VdfGRUfAAAAACDI/OpK6na7dfXVV2vChAlyu92KjIxUtWrVdPDgQU2fPl2//PKLJk+erPHjxxsdLwAAAADAYH61GP73v//V+PHj1bFjR82YMUMZGRnas2ePMjIyNGPGDHXq1ElffPGF3nvvPaPjBQAAAAAYzOV2u92+vqhr1646ePCg/vrrL1WoUKHY88ePH1fr1q1VrVo1LV682JBA7SQ1NVUJCQlKSUlRfHy82eGo4egpZocAAAAAOMbW584zOwRJvuUlfrUYrlmzRhdeeKHHpFCSKlSooAsvvFBr1qzxZ/cAAAAAgBBiVlIAAAAAcDi/EsNWrVpp0qRJysjI8Pj88ePHNWnSJLVs2TKg4AAAAAAAwedXYjhixAht3bpVffv21cyZM5WbmytJys3N1cyZM9WvXz9t27ZNI0aMMDRYAAAAAIDx/Fqu4qabbtLvv/+uzz//XAMGDFBERISqVKmi5ORk5eXlye12a+jQobrllluMjhcAAAAAYDC/WgxdLpfGjx+v8ePHq3///kpISFBycrISEhLUv39/jR8/Xl988YXRsQIAAAAAgsCvFsN8w4YN07Bhw4yKBQAAAABgAmYlBQAAAACH8zoxzMnJ0VlnnaVBgwYpOzu7xO2ysrI0aNAgDRw4UHl5eYYECQAAAAAIHq8Twy+//FK//vqrrrvuOkVHR5e4Xbly5TRy5EhNnz6dcYYAAAAAYANeJ4Zff/216tevr4svvrjMbS+88EI1atRIX375ZUDBAQAAAACCz+vEcOnSperfv7/XO+7bt6+WLVvmV1AAAAAAgNDxOjHcv3+/ateu7fWOa9eurYMHD/oVFAAAAAAgdLxODGNiYnTs2DGvd3zs2DGVL1/er6AAAAAAAKHjdWJYr149LV261OsdL126VPXq1fMrKAAAAABA6HidGPbp00fz58/3atzg8uXLNX/+fPXt2zeQ2AAAAAAAIeB1YnjbbbdJkoYMGaK1a9eWuN26det06aWXyuVy6dZbbw08QgAAAABAUEV5u2GrVq308MMPa+zYserQoYMuvfRS9e/fX3Xr1pUk7dq1S7/++qu++eYbZWZm6tFHH1WrVq2CFjgAAAAAwBheJ4aS9OSTTyo6OlpPPfWUJkyYoM8//7zQ8263W1FRUXryySf1yCOPGBooAAAAACA4fEoMJWnMmDEaPny4PvroI82bN0979+6VJNWqVUu9evXSddddp4YNGxodJwAAAAAgSHxODCWpYcOGevLJJ42OBQAAAABgAq8nnwEAAAAAhCcSQwAAAABwOBJDAAAAAHA4EkMAAAAAcDgSQwAAAABwOBJDAAB8FOEyOwIAAIxFYggAAAAADkdiCACAj1wumgwBAOGFxBAAAB+53W6zQwAAwFAkhgAA+Ii0EAAQbkgMAQAAAMDhSAwBAPARIwwBAOGGxBAAAAAAHI7EEAAAHzHGEAAQbkgMAQAAAMDhSAwBAAAAwOFIDAEAAADA4UgMAQDw0eVd6psdAgAAhiIxBADAR3USYswOAQAAQ5EYAgDgIxcLGQIAwgyJIQAAAAA4HIkhAAA+iork9gkACC/c2QAA8NFlneuZHQIAwKKGd29gdgh+ITEEAMAHvZtVU+WK5cwOAwBgUUmVK5gdgl9IDAEA8MG7V3UyOwTbufH0xmaHAAAh43abHYF/SAwBAPBBhehIs0OwnWqVaGEFAKsjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAwAcuV+iOdU0Pe055DgCwHxJDAAAs6onBbcwOwRB2naEPAJyExBAAAAAAHI7EEAAABFUou98CgNncsmc3CRJDALCw3s2qmR0CEDC6kgKA9ZEYAoCF1YqP0W39mqhGXHmzQwEAAGGMxBAALO7+s1to8cMDzA4D/3DRLxIAEIZIDAEAQFh59uK2qlu5gtlh4CTDuzfQuJHdzA4DQClIDAHAwmicAnw3rGt9Vaf7taVEuKRyURQ7ASvjF4qQuLZnQ7NDAACUonvjKkHbN3PPQKKiC7A6EkMAsDBmc0SoREVEqF29RLPDCKoBLWuaHYKjBXo9WzHmTGMCAYLMrvduEkMAAPxw94BmZodgKT2bVC3xOes0FNm0tAZJUuWK5cwOAQhrJIYASnTPgOZmhwBY1q19m+rJwa1L3eb1y9urUvmoEEVkrgk3dNfW587z+JwZ6VhMVKQJR0U4efqiNmaHAIQUiSEQAo8PamV2CD5Z99RAbRh7ju6iRcRSxl5o70JK1TCr7S8XFaGrezQsdZvODatoeI8GoQkIhTx8XkuzQ8BJWOYFvhrZq5HZIfjNrqc7iSEQZFd0q6/Tm1c3OwyfxERHMnucBV3Zrb66NKxsdhgIU+4w62bZJilB7w3vVOgxZio1j9vttm1hGeb4v3NamB2C3xhjCMCj6Ahn3AlrxceYHULYc7lcTJ5hM267lg7CxNmta+m+s5qrZnx53T2gmaqEWas1YCWLHz7DsH3FxUQpKpI0JdT4xAEY4uzWJCyAJ3YZY+iSS2e2rGF2GIa7vX8zLXpogO5mzDQQVC4Dp5lyRpW69ZAYAkHmlHEV4dQu0rJ2vNkhlKhCOXtPqOHEFpuruttjjKFbbl13WnDG9NBwCnjHIZ2MYFEkhkCQud3hNnIneC7ukOTza+pXiTU8Dit3/7u4Y12zQ/CbdT/V4HG5XEqoEG12GF6rWD5KPRqXvOwE4DQ1GJfqtZho0gq7s/03mJaWpmeeeUZt27ZVXFycqlWrpp49e+qTTz4pVrhbtGiRBgwYoLi4OMXHx2vgwIFauXKlOYFbXGnrUQHB4s8sqGe1Cu8urEWTKbt0S8QJVq5kCCWHdJxAKazYe+bNYR30vxFdS93m1LoJIYrG/uJijKsEs+L54gS2Tgzz8vJ0zjnnaMyYMerSpYtefvllPfLII8rNzdV1112n0aNHF2y7cOFC9enTR1u2bNGTTz6pJ554Qhs3blTv3r31559/mvgurOmO/ixTAN+YdQnn3mEfLjFuxKnslB9HR7r0wqWnmh0GQmBQuzqWmzXcRj+VoKJSzRy2rnpetGiR5s6dq7vvvluvvvpqweO33nqrWrRooffee0/PP/+8JOnOO+9UuXLlNGfOHCUlneiuNnToULVs2VL33nuvpk+fbsp7sCo7d34sFxmhrNw8s8NwHLPOGO4d9kIiDyvr2aSqJtzQXZL0wNerTI4GgFkqlY9SWmaO2WGEnK1bDFNTUyVJderUKfR4uXLlVK1aNVWsWFGStGnTJi1ZskRDhgwpSAolKSkpSUOGDNGMGTO0d+/e0AWOoPrtvj4+bT+0c3DHbJG3BCbCVXoyEe6fbzjlUW6RyJfmmYvamh0CUEyLWnFmhwAHoiupOWydGHbt2lWJiYl64YUXNHHiRG3fvl3r1q3T//3f/2nZsmV6/PHHJUlLliyRJPXo0aPYPrp37y63261ly5b5HUft2rUL/desGd0wiwrl77tuZd8mI6lU3j4TQ9hdtUqlD+L3NNU1N4fwQl5ofcH4yV3c0feJpcpybttaPr+mrIoJLjfF3XUGZRrAKWydGFauXFnff/+9qlSpoqFDh6pBgwZq2bKl3n77bX3zzTe64YYbJEm7d++WpEKthfnyH9u1a1foArcBI9eieeaitpZuJbimZ/Cnkrfy+y9Lg6reJdrevMeECv71Xi9t35TjAGMV/b0FunzLgJY1VTM+JqB9eNKgakXD9xmKa/VLQ9qpfJR9il82vn0ZxLp3mWt7NmTWVBjKPlemElSqVElt2rTRfffdp2+//VYffPCBmjZtqiuuuEK//PKLJCk9PV2SVL588R9PTExMoW38sWfPnkL/bdy40e99WYWRYwwv61LPsH0Z6bxTa+ujazsHpXBxMjsnhdKJWdusPBOmWTX8jaqVfN5UiLb3WoPBYt3iFaTgXatOb14tKPuNjvS9CGOFFsFLO9XV2AvbmB2GKYz4+N8Y1sGAvXgn3sBZNoPhsUGttPjhAWaHERRm/1adOvmNrRPDP//8Uz179tSZZ56pF198URdddJFGjhypuXPnqlatWrrhhhuUm5ur2NgTLR6ZmZnF9pGRkSFJBdvgHwb+HiItulrrvWc2V/8WwV/qwC236Re4QJxaN1HzRvcPybHsNOlRad9phEu6poc9FjUPNRv/FOClR89vFZLjXM1vzJEGnVpbl4RoPdeBbXzrrjygZeBliiiLlplCzU6t6uHE1p/6q6++qoyMDA0ZMqTQ47GxsTrvvPO0bds2bd26tWByGk/dRfMf89TNFMAJVl6g26qVelXLGE/pLYu+Pb+E03sJR/mVHYFWZI3o1ajQvzs1qBzYDj24oF2dMscsW9G1PRuaHYLtuVwundGyRqnbtKuXGPBxJtzQ7Z9W6dBeuXydJyFcvTSknanH9/StjyxybfN2qI2d2DoxzE/qcnNziz2Xk5NT8P9dunSRJC1YsKDYdgsXLpTL5VKnTp2CGKkNFSkY3NC7keftvN0dFWBhb4gXs7v6c3u166lzTY+GSoy1bkJtFiOKWC+bXGDwVtWK5VQ7oYLX25vdYm5kJcuH13RWh/qJumdAc7WuY/wC4a3qBDbu0Sy39WtqdghlevjclgV/33/2KZatfCvN+Ou76aNrOwe0D7O6kdr1nmeUzg0q6+Nru6h3M2utLylJrWrH6/XL20s6sd7pq5e1NzWeYLB1Ytiq1YnuKp988kmhx48cOaLJkyercuXKatq0qZo2barOnTtr4sSJBRPRSCcmpZk4caL69++vWrV8n93MSQa1q1P2RhbSrEalMrcJ1b3O7bZuq5aR2iYl6NmLnTPdfmk37wrlIpUQG63p95wesnic5JJOdXVWq+B3Aw9EdKRLE27obtmu9KUx4np1Rsua+u7W03TXAHvNaNk6yAlnlYrlgrp/I/RvWUPvX91ZLw9pp5v7NPHqNd4uadHUi3uzESqVjzJwqIgvv+HAfzwOKC6U6tJOddWvRektwqFQ0rc+uH2Spt9zun4d1Vcd6xvfG8Jstk4M7777blWpUkWjR4/W8OHD9e677+qZZ55Rhw4dtGfPHo0dO1aRkScmgXj99deVmZmp3r1767XXXtNrr72m3r17Ky8vTy+//LLJ78R6zOzb/ch5LcveqAwvD7XXrG/BEsrPwOVyaVjX+obvt6ybpBVbo18Z2l6SVCPO95kYPx3R1eBowpPVC0/3nXWKTmH9N9u5pW9wW/TsUFHgdktntqqpSzrV9Tpeb5cVSowt53WyCe/958qOXm/buHpwJ9zrHISu42bwdI/JP82b14xT/TK6kdp18hpbl5wbNGigxYsXa/jw4Zo5c6buuOMOPffcc6pXr56++eYb3XrrrQXb9uzZU7NmzVLDhg31yCOPaMyYMWratKnmzJmjdu3s0S0pVLo3rlJsavFAl6/w9vcRFeHSmQa0BJxaN1Gz7+9X6jahuj2beWmIsGLWFCaa1/Rc6P/wms46vbn/XWD6BPBaq3PS2ejPT8/IZYICYYfLRrDKXHZo0bMiX06Zizowp4PRzm1b2+ttfx3Vx5Bj1owvryYeksznLnFOz6FwZN056L3UpEkTffrpp15t26NHD/36669BjsjeBrSsobev7KgDR4vP4Go3tRKMXzfLH2ZVGkVGuGxRwCuLr2+hVe14rdmTGpRYTvbQuS01dfXeYo+bmdg1rl5RteJjNLBNLT06+a8ytx83spu+XLpDZ7WqqUcmrVbK8eygxudW4K3YSYnej9kLRGJstI6kB/fzKMrsMYb9TjG/+5avzmpVU9PX7Av5cZvXrKQN+9JCftxQKHrf8OY+QkJtnLqVK2jLwWNebettS22+ga1r+fyakrSqHa89KRnFHm9aIzx6Sti0wS9gtm4xhPHa1U1U+Sjj12Dz9joUykTGCb95J1zYir7H94Z3CnjmP28+t3pVYnXdaYEdx2j/Hd5ZE27ornpVvJsprVezanpzWAcNalcnZL89b2MrybCu/q2L+u5VnXwa37Ty0bMctRxCpwaVdVV3a7zf/w7vpNv6edfd0NexSIFeE3s3q6ZxI7vpfyO6BbYjG/HmM4uKDINaSAtIjI3W2z50C/XV0xf5v36mVZbRWPPk2V73ynHSNdwoJIYoxAp5hFW6U8E/oZ4xsn+RacvrVYnV4xe0DsmxrbyMh6/sUongb5wD29TSDIO6UIWj96/urArljK8U9MdZrWvp/rNbmB2GR59e11W9mlWzTI8Uqwjnu3YoKs26Naqi94Z30k939lZ8TLTHLppGCGQZpZjowteHeJPuf7HlvO/s+ORg/xNhpyIxhEdVKxa+eNStHJruW+HLOqXuSuWj1Lxm8GaGu6RTXX020r8JVPypFGiTlKCHz22p/i1q6Jtbevh1XKt48dJTDdmPHQtpzWpU0pBOwV+0+t2rOinWhATo7Ss6qqJFEq9w99SFJRcGrdK93qjufMHgT4WXp/cTit+zL7o09G9SlFBUmpWPjtTZrWupzj9d5SuWt/5Ir1FnNjc7hKCy8E80qEgMUUj+76BCuUi9eOmp6lA/UWMvbKPKNh0/cHbrfyeyCfY05CWzTlL4+KBW+vbWnqoQHdwCaqjXH7rh9Mb66Nou6tSgSkiPa6RJt52mIZ2Ld5Ps0biqz/vq3riq4ixYsHCp5KT1l1F99GIIWpsHtqmlNU8ODPnMeeedWlt/PTmw1G2sOsbPTrPrLXroDA23SJdYuygfFaHrTmuo6EiXRvZqpGp+tCp5+l0/f4kxFV35Th5f7E+ZvVG14M7G6TQNqob352mjy56hSAxRoiGd6+m7W08L+bgTIydgeHJwGw1oWUNntaqph4ssgxGqH72VLi7XntaoxNk0rcDTd29WrV3PJr4nZIGoelLly0fXdlbDqrE6/9TauqC9L2uInvj8YqIj9eVNPXT/2acYHGVgjPgp2KUW19vf/f1nn6JLOtbVm8M6FLQWwH9FZ9S2Kqsl248Naq2NT5+rMee3KvacN/dkT7/LiCJj0gL97X5yXZeTYgpv955lrWu3FHhPlK6NTlTcXmqxluSSeFsWvb5XI8+vt+lJar0qZYQls8YN1oyP0QfXnLiZbNx31JQYTgj9+y+t4GHT65VHwbr4tk1K0PzNh3x+nRFdxPq3qBnw4syt6sSrVZ14vfjz+oDjcYJykRHKys0L+XHb10vUbf2Cu3ZeoKzc7dGuha/wE9xzpGZ8eTWzcKVmoIp+eqc3q2ZKHKXx5adWI6689heZ3X789d20LzVDSYkV9PWynYHFYqEf/iPnt9IHc7eYHYZhaDFESHhb8+L6538IP+e0qWV2CLAAo27nRcsFpY0r82p/JlWXmDHeMRiigzArZWndqM36viycI5sqnD+XQN7bu1d1UrmoiDLHFxc9m42ojJn7YD/TJkj75Lri8wxER0aobuVYS1c0ncypZVESQxRik9+rQUJTsDhRgDWnEHNr33+nfD+taWi7Rhb1fBkTq/QupYY0vwtKqJhR6DSmArT4D/iJEM3Qarbh3RsYvnxIKC6H7eslhuAowTdupPHLN/iyvIjd+Fo4rhTgmOGqpcwTYMR9P9grGdzRv1mhf1u1qFL0Oj6wTS2teeJs/WLCjMh1K8eaVvHUqk68asT5PwOqFQRaDrBreZrEEF77dERXlQtwceqTNQ7xQHB/fqSNvZgyOirCpXKR1vwpjezdSFd1r6/z2tbWC5f+O7GHGder+JjoUvPj/w7vXOJzz17cVtUqlVNMdPHP2a4X31AZ1rW+2SGEzGODWuslAyewCXb1QLnICMNqz3s1NbfrWTc/JknCv6IjXaof4BqfpRnUruSxykZUStVOKHt8bP5x/ClwD/UwMZddREVGKMKkG1VJE819dG3J99uSWOlWa4dWRwv1dvWJNUuzsKQ+zatr6SMDjNuhxX/X153WUD/e0UvT7u6tfqeUPMvmd7eephrxJdeMmdXlSTqx3s/YC9vq7Ss7FprRzYrXq5LWUHPJpSbVK2nug/21fMyZIYklkC4k5o59KH7skipzrDRz44jT/h283yYpsNmDL+1U1xLLlnhTbqlY3rja/KITffiq1DHJFi7h2KB86JUVj54V1O72wVic/O4BJ1rxEmOjdWu/JmVsHRgjK6XzXdQhyfB9Ws0zF7ct+Pv2k8Yy929RU/NG9/dthnIPp1CgLdkeD2OR37SFL3tBRWLoABeUUlPoq/gY//qreyxoe/jRmZlEney7W3vq0fNbKbZclFrUii+xtm9Y13pqWzdB151UsG1XN6HQNr5eXCKD3SfHpmKiI31a2DYQbrktX3ERiAcGnqLR55izgHjRj/WXe07XmPNbetzWk39/TyX/sLxZtsQqhQ+jGJm82eGzKWh9ssYtI2DeFLCttg7mXWc005Q7e2nGqD6qEVf2bLBWO6+SHDALcPfGVfW/EV310pB2BYl8vqTECvpl1OkB7f+xQa0LvtebTm9c6Dmrfd9GCMf3VBSzkjrAI+e11JHj2crKyVVunltLth42O6RSBeuHV71S4RtXaWs1dajv2xpnV3arrx3J6dqTclwPn9tKp784068Y7z/7FDWuVlG3jF/u82s9zQLmBOFSMAyVxNho3drXvFkwi35d4TzToF3xm7Km96/prCveX2R2GAVcLpda10koe8OirzOg1s2qS7sEO3EYc34rPfXjGp9ec3rzkns81a3sffdlT2+tbd0EfX1zD+08fFznta3tU1yBsHIvBrujxdABasTH6H8juuqLG3uong8XgZI8f0nboHQfkAK/YZQ21i8hNlr/d04LNagaq/87p4USY0sejO+9E/HGREfq8Qta673hnVW/avDGiZTm13tDP7g9FKzSihwu/Fm82kpCWWNL2eMEO4znCRWjPgt/Zovs2cR6SxiY5dS6CQF3vbXSvcXbRMeKE7p0alBFg9snKapI+cvf62e4XHft+jZIDOGzy7rU1+onzvbpNaG4AHdpWFlf3tS91G1u6tNEs+/vp5v6lDwewuiJZNwK/oWud7NqivOzm6/dWa3MasWbwSPnneiqGeGSXihjdthg6uhFS7z3lUOlb9e6TmBjFQMVLoUbBEe/U6qr0T8TsJ1/avBbWgI5HT2dyy8bOMmTP1wul/5zZUf9/cy5GtrZOgumh/Pv3q4VRBNvNn/MuZ2QGMIQ1f2oxYo2MAG7rV8TTby5p89dQD258wxzF5v2577yeBgvSWDWWkLeHLd/ixqGHS+YlScjezXS+Ou76Yc7enmVnAVDzfjyemxQq5Ad78VL2ymufJSiI136+NouxZ4P5wKcP07+OIqW/6zcbctKrT6+iIqM0Pe3n6bvbu2p1y5rX+b2VvsO2tXzvQtpPqO+M5fL5dOkS05dl84oNs0L1aVh2WPOX7ikeIVpoGepTT8uEkOnCdat5dSk0m8Sni7I3RtX8bi2UpVS1lsKBU+1YhcGMHtZKO7nTarbY72vs1rbZ5F7bwovp9ZNVJeG5iRanpSPKmFmV5dLpzWt5td4IKPMvr+f6hk6HX/p30+rOvGa+2B/Lfi/M9TPwAQeMEpcTLQ61K9crAueEZ4aXLiy0K6F1GCqbMhwkn/Fx/g/xMbb1jgzqwd8PYdKe0sd6ycGEorhPDZuWKsuJmRIDFFIKLsKREVGaNJtpxV7vGL5KD130hTLVhDMacSd5Ja+wZ3S3Aw3nW7Mewq0Nrtj/USDEy9jxfwzLbo/vQv8lRAb7fWYSk8VOBd1DP/p7D0JVmXWnf3N7Y1htrJur0Z97EmJFdTT5HUtPTG7xc4tt67sdmJd12qVynu9xmtpUZePilBkhEvRkS69V8pavOHAyPLh5V3Cf31du+aVJIYwVUkF2csttih3VGSE7jqjWdkbeuBrt5lwrtn1Z8KFotrVSww8EAN1PqnF0OUKznphpRl1ZnNNvLmHxl9f+vhaq3jg7FMUE33i1nOnn78pI3hTxmlfNzHocTjJ3QOamx2CaaIiXPrkuq4hOVbHBtbpxRAKviScTw1uo29v7anp95yuigZMondtz4aadV9fzbyvr3o0qer3fqzWVdjq+pQy06phwrkwVgoSQ1hLGP4QG1ataFjf/Gt6NNDW584LeD9DO9czIJoQKfLZ3VLKxEEne3xQK8XHROliP7oBu93FCxs39P53rcqTWz4SY8vpw2s6a2jnuvr2lp4hH6AfEx2hLg2rqILF1jg72cljCxtUrajpd/fRFzd21z0DfE8MW5fRbd1Idh1TE6hgve+ICJdOa+p/4dmu7j/7FM1+oF9AhdnSritFKy09bRlI2pFUufjSEIHkMUa3HPpS+RoR4VLH+pUNGbJStWI53dyniepVifVp2YdAOPSSVMyV3RpoQMsaalA1VgNa1jQ7nLDCOoZAEPzfOS307NR1qlelgq49raH2pWQEvM8Il/TE4DZeb1/arXJI57rasO+ovl62U+lZuT7HUqViOSUfy/L5dSXp6sXg8HxxXo7juPa0Rrr2tBPJ3LcrdvkV18nuHtBcEREuRbpcuqXIOoBntKypM0y6OZnVPeu0plW16O9kjTqruV6Ytr7UbYu28tavGlvisi6lJSWD29dR338K106qYB/Uro5++GN3UI9R2udp5dkI7XAe1E6I8WoxdX8/5U4eWgiLHq9+AN3MO9RLVOPqFfX3gWN+78MKjLpWzn2wnzKyc1UzPqbYbOBWXV/RCL5+eqPPaaF7vvxDkvEz71YoF6kPrjkxqdiXS7Zrxtp9hu5fkn37ggaIxBCmsW5RI3A39Wmiwe2TlFAhWhXKRRqSGBpZOCsfFaknB7fRk4Pb6PUZG/XqjA0+vX5gm1r6a3eq/thxxJB4Xh5q7tTn3qhYPkr/d05Ls8MoxqxZGfO7rh7NyC4zMTTClzd2V7fG9mltMjKX6tygctATw9IEu5tbpfJRSsvMCeox7M7X7yAmOlL/G9FV3yzfqYs6JGlfasn3oLL27HK59N5VnXTmq3NOesyncIocz14l7tOaVtP0Nf8mHqW1Dt7Rv6l+WLVbR9Kzde+Zzu06LUkXtEvSgaOZ2p+aqVv7BW988aB2dfTMT+uUcjzb0P0Gep5eFMCkhWYiMQQCUvKFo1ZCTAjj8N+AVjV8TgyNFsoJSazKboUlXxiRVwS71eqeM5vrxZ9PJLildU1qVsO7GYDt0JJ1slA1CraoFa95mw4VeqxdvYRij4UTsxpcT29eXaf/08L+5ZLtAe3LiPfQtq65a4v6Kv83fFmXepq94YDW7UnV0xeVPjFejfgYzRjVR/tTM9WydlwIogwOIyprIiNcurGEydlKu9/5eq7FlovSlDt7aeWOI5q/+ZAmLArsXDfCe8M7WXoyuNKQGAKwlfJRhYdGRwSp1GXh3nMIghGnNdLBtEylHM/W6IEtStzunas6BjWOqXf11jmv/17wd7i5uU8TfTh3i1fbejNZFb/T4tWTnj6T0rpR+vMRelvx8crQdnr8+7/UsUFlnX9qHT+OZL6Y6Eh95GEt1JJUq1S+2GzIdjtPHzmvpSIiXHrg61Vmh+KVupVPjPNcvu2IYfs88Ztxe3isdGe3rqmzbbQ0V1EkhgAsrehluGP9yqpfJVbbk9PVsX6iKhkws5ydmT0FvNHMammrUC5Sjw1qXeo271zZUU1rBLcVoGXt+GITTIVixsJQfe6VY72fmXhEr0b6ZP5WpWXmaFjXevp88Y6C5+w0i6MVQg28R4J/15mLO9bVxR3rBnhscxiZzJV1DlzQLvCkuU5CjHb/M2xlQEsD1m61wHlrpnDuxVMaZiVFId0aeT8JyMnsVhsWar5cXhJ8KDiZxSXp0k7/3uzrhLDbbESES9/d2lPvXtVJn47wb/p3b87XYBXmXrz0VNWML69Wte3VraokZt06R540S2yXhsUn3yiLNwm1lSddCScl/daqVCynqXf11sfXddFTJUy8ZYWkyyj+vpWiZ2nNeHsMYzjZqXVDN9uw1Vzdo4EGt/duPFq/FjUU+c+SSA2LTOD136s7KymxgprXrKTHLyi9kqssLpdzEyOnc3ZVuwOVVMt6at0E9WxSzePsZkYI3/KV8W+se6OqalU7Xmv2pBq+byMN7VxXa/ekatuhYxpzfquyX+CFGnHeFWiqViqvgW3866oRHenS+Ou7a/WuFD354xqP2wTzdjikcz0N6VxPa3an6tw3fg94f+F28/b2WtGjcVWNvbCNNuw7qlv6ereECeynXpVY247VMVJZlRS39Wuit2duVmJstG46vXGIojLGkE51dWu/pur30qygHsfXckgoKh3uP/sU3ebDxCyVykfpyxu767d1+4stO9UmKUHzRvc3OsQC4XWnCR679+IhMYQk6fvbe4X8mK2TjGsxsfsP8WQRES59e2tPbTl4rGCskT+8van5e/MrHxWpZ8oYiJ+vtpctihXKRerNYR10x+cr/AuqBOe0qaWpq/dKku496xR1bVRFXRtVKTExlMK5MsMMxhcpXC6XrurewPD92lU4tZyhuNK6zrol3XfWKTq7dS3VSaygqpV8m8zL7FPnlr5NVCU28HUFyxIuv5HODauosw9LPJWl3ynVNXP9AcP2Fy7C5XzxFV1JYYiyFnct+gPr3ayabQeih0JMdKRaWriroTfXyw+u7qzICJfKRUXorSs6eL3vQe3q6MaTarxfuPRUPyIs7MnBbXRZ53q68fTGurZnwzK3NzInfGnIv0tx/OfK4E5cEkzh0vXVjro3sc8yHaHS9xQDxlAFSWy5yJAf0+Vy6dS6icUmPbEDJ3TZtvJbfObitjq3bfEeOEXLbaF6C1ZOyJrV9G5WajujxRB+u2dAc706Y4Pa1UvUwDa19Mn8rV6/9rOR3YIXWJiy8H3FowGtamrWfX0VFelS7QTfFv29Z0BzJcZGK7FCOQ0yoAKhelx5Pe8hwby8Sz19sWSHh1cY55KOSaoeV15RES6d1rRaidv5ezMMRWu5N4tz242duuC2qBWvBwe20OwN+7Xw7+SgHMPMz8Pbc/+bW3ro7Zmb1bNJVbVJsu6YtBmj+qjnc78V/NsKSUHlELTIwZ5qJ1TQf67spIajpxQ85nYHtyXZjufjtT0bqnUd6153jEKLIfx214BmWvX4Wfrm5h6KijD3zmenQl5pjCxAeLuvYBZa6lWJ9SopLBpDhXKRurVvU13Rrb4ignhuPTCwhc5oUaPYpEtGnk0ul0t9mlcvlhRaobDoC1/i7XdK9aKvNjSWcOHLeXZL3yb64sYeJT5f9PtpbtGa7UBahzo1qKKPru2i63v/26PAilf+KhWtV+jt36KGmlSvKEm6uGPhiU74dQaflVvBSlI0ZiPfQv8WNdT0nzVhL7HJrLXeTuhTtZL1fv++IDGEBrf3v0UmPiZaUZFln0ZeJyl+R2JtRRe7f+GSUxUZ4VJVPwsQbwz7t2vm/WefElBs/giX76lKxXL68Nou+vKm4gVuu7xHoypFypr+v6SnK0SHvtucWXzJaXo2Kbl1OBRuKmFhaW+E05jtono3K1ppUTKjuoR6mxT4+6l7s3RHVGSEvr+9l6bc2UsvXdquzO3LPGbAeygstrz/n/U5bWsbGAmk4FdcnjgfT9NPd/bWiwYMFwlYgO/3pj4nKqsqlY/SHf2bGRCQeUgMHe6CdnUMm1Ey3AVyI4yPidZzF7dV+3qJeu7ithrapZ4WP3SGZj/Qz6/9DTq1tl69rJ3GXtim0Hg8INSiIyP0+uXtCz1WvFXIetXlwUx+7j2zudqGePr9snIDb8bWFuwrxN9XKFvPuzWqotv6NfFqiZOvbuqhuBhrjLhpVSfwMb4Vy0epdZ0Ev3phBPs7io6M0GuXtVf7eol6bJBvZZI+zaor0YtlnuzWS8Nswb4OxJaLUqs68UHtFRQqowe20Jc3dtfP95xerCHAbkgMHe6NYR1sOVi9KDvUcF/etb4m3XaaLu9aX9KJJReKLs7udc2yy6WLOtTVVd0bKLqEFls7dl1xEqO+H6PO/UC6+BVdgyuQiKz8S/b2O7vjDO9qjK38Xk/2RIBropUllNcql8ul+89uoYk39yxz2zZJCVox5kzVq3KiO3z/Ft5NeOPvT6nox/DOlR0VGeFSXExUqTNABzp5S6hvFSV93xd2SNKk207Tdac18rxBCSIiXLr3rND3nPGFHZNSp0845u3aktKJ32C3xlXDYjy+NarCAMDh7FhwQBgpJTvo1riq3r6io3YcTtdzU9eFLiYvVAzyDKBRkRH64fZeWr0rVV0aBWed35Kc07a25jeorPJREUo0ebIOKhpDr3ZCjPakZJh2/A71K+uq7vU1c90B3TWgWch++8G4F342squGf7jYp9e0qBVnfCA2QIshANPZocUX3qMMab5ACleefo/nnVpbN/dpophoaxUbzm1bW9X+mezhzFY1g3KMxNhy6tWsmspHhX48bc34mDKTQm/GGFoJlWDWl39Kjb2wreaN7q+hneuZG1CAfBlbLJ1Y+9ipaDGEpVj5hhGK0Ep7/8H6bPwpUwRSQIpwSXn2KseEhL9lO6sV1IPFytcGOwjXbmEx0ZH66c7e+nNXino1M3fCn5KEw7lr9ffgzSRY5aN8u1aWN/DaarPc3bZG9Gqoj+ZtkST1ae5bMngyq5/vweSMEgUKcG3yrEHV2IK/L2jnyyytzvlE8z+XqAhXQBPevH91Z6NCCppQ1MAHcuM545+xTnHlo3SRBaf6Ljb1jHN+JpbhdkvPX9JW5SIj1LVRFV3YoYzxMiEqCHk6TKCTXNSIj9EZLWua0qLnDc7/4Dv/1NoFE9CcvFxO/qzrUREu3dTH+5l6W9WOV7Ma5i754u3yCMHg6f5kh5bpupVjNW5kN917ZnO9MtT/2XdPrONo/fcbDLQYApI+ua6rPpm3RT2aVFW9KrFlv8CBXrj0VPVuVk2t6sQHNOvWGS1r6pa+TfTOrM0GRucsb13RUb+s3af2dROLTWBkBbaobbVDjAG6rEt9Xdalvncbn1QGGnVWc83ddFDSiS6k8GzUmc31yi8bzA4DOtFyPOXO3vpjxxH1O+XfSYKev+RU9WpaTS1rx6uODxODfHVzj4An9TmZP7s6K0hdo8Ndr2bVLNt7wA6sV6KAo/lbIRXo9btRtYp6YnCbwHYS5mKiIzXEoHEGHesXnsTBFomEhVQoF+ljy3bZ7FAbHG6s+ol3rF9Zb13RQZv2p+m6nr7NEOkkN57eWG63NHX1Hq3be9S0OMw4jwK5XATrUpOUWKHYrJD+3Lea1ahkiQo3l8ul/i1q6Ld1+80OxXFcLufOfWD+mQ8YIBRlWs+HcOaFI1B2+NRIVmEnRbs9BXr+nn+q54oHpxaWPImJjtRdA5rplFpxunncsoD3Z+XKmWB+65xRsBonX+cYYwhD1C6ji4Zzf2L2U9mLhYIRfozsNlW1ov3XRvXFybNhnhrihe3DgTcTh9hJqAuVoTiadVNWY3RrVKXgb1/GIgabWWUnC9dRhIxTxxiSGDpMt0ZVg7LfpMQKuun0xqpS0fO02t7+vGilMd+bwzqaHQIs6NFBrQr+vrxL8a5Z1/c60eUwMTZaI3uHZ/fDVnU8z+z5xAWt1aF+olrXiderl7UPbVAhFozC0uhzWhZc+6/u0cDw/duFkZUzwWZkqFYofr96WXtd2qmu7jqjWcGENaEQrCVWEJgeTYJTVrYDupI6zCWdkvTbun36c1eKnjJ4TN3/ndtS/3duSzUcPcXQ/SK0Tp6hNVisUBAoy6B2dfT2zBMT5NSIC34LmJU/E5frRI36m8M6aHtyuq7p2bDYNg+f11LntK2telUqqFrF8qoeV14HjmaqQnSk2tq4Fe3tKzrqv3M2a2Cb2mpQtaLHbeokVtB3t57m876tlAaYef6dUitOX9/cU1sPHtMgg8fOWkGw8z0rXzs8sWL+Wyexgl4a4v8slr5KSqyg2/o1VfOa1lxE3czvyAqtlYPb19Hni7ebHYYpSAwdpnxUpD64povZYcAPweqeZIWbtAVCKMQtqUWteD1/SVst3nJYN/Xxf3mOkljhc/eW232iNaO0QrvL5VKnBv9OKjT++m6atGKXBrapZcllBLxd0+y8U2szM6eBSjrvOzWoXOj8sZOyfstWKOgaLRzfUyi9eUWHYpOwwTqiI53boZLEEGHBToVsWC8RLIlP0/2jkOY14/TAwBa+vzBEP+bR57TQ7xvnSpKu7BZ+3zHXRBjJyNOJpNKenPS1ud3OPU9JDBESgd5UoiJcyslz6K80yJx68UNhVp4RMRha10nQhBu6acvBY7qkY12zw4GNOeynYzjqMGA2zsF/ObetFLbickmREf/+dM2Y+S8UF46i3UXrVv53ttdQDoh3Om4SztCzSTVd2a2BYsJsVsxgcvI07ijdyRMHtU2y77jiUKAyoWTB6u3QotaJ8ZzlHNxN1Bt8OrCUkgodLrn02YiuiomOUGJstF68NHSDxM303+GddUrNOHVtWMW/bnl+CEUXNKvfE60eX6jRLTE4jDzPihY0fS14UlA1jr+/F39a7SMjXIWWWggVT7PTjjqzuc5sVVPdGlXR65e3D3lMCC6zbgMnT/72wiWn+r2f96/urLvOaKbPb+xuRFhhi66ksI2eTatp6SNnKsIlxZYL/alrRrmpVZ14/XzP6SYcObTsNE17uOI7AOznq5t6mHI/9CQxtpzev7qz2WHYgreXWytdls2qO/p0RFc989NaNa5WURd2SPJ7P/WqxOqeM5t7vX1Z63OHK2tcTRD2BrdP0gdzt0iSasb7PvV/fIUTp2ql8pyy4cBC9zrYBOeMb6xUoLSL89r6N/usWZ+1YTO5+lHiN7JLMY3VKE3L2vH6bGS3kB/3nDa11LJ2vNbuSQ3KzORWRSkbIdG2boLGXthGy7cd1s19m3j1mkfOa6mxU9ZKksdFozs1qKxl2w5Lki7vGn6zCsJElFRgM6FKToKxwL1VPH5Ba7NDKFPnBpW19J/73g29G5kcDRC+oiMjNOm2njp8LFu1EmLMDidkSAwRMld1b6Crujcoe8N/jOzVSPWrxCq+QrS6N65a7Pm3r+io8Yu2qXPDKkoKkyb/SuWZBAPORkOXfwIdIxgVGZpP3kpdlh89v5We/HGNGlWrqO9vP01xMdFmh1Sm14d10BszNqphtYo6s1UtY3bqx1diZAWBdc6I0GFMr7Xln9/loyJVK8FZ5TISQ1hKy9pxBX+7XC6d1brkG1+thBjde9YpoQirRBeUsuC3t847tbamrNqjyrHRuphp863BiSWVUlioLA8DtUmK1+pdqereuIqqVfK9i7/djejVSIPb11HF8lG2mZk2KbGCnr/U/wk4/GWlhB7m6H9KDX27YpekE0uIITyRGMJ071zZUbd/vkKx0ZF69uLQ3/D89eDAFureOPDZ4F4d2l6XdqyrlrXjVZExlDCJVdYxtEYUoWFm0So+Jkpf3dRDq3elmrL8j1VUNSAhNuqnQ/LlHHb8qh88p4VW707RwbQsvXNlR7PDCSonL8tDKRSmO6dtbc2rX1nloyJUuWI5s8Px2i1ejpUsS7moCPVrUcOQfcEgTspOvGCRnBE+8FSweXNYB93x+QpFuKR3r+qk2HJR6urjUgdOLjABTlYzPkbT7+ljdhgIMhJDWIKTBvZaTdEuZHHlrT/OBkBhUV4s2jyoXR01rl5R5SIj1KxmXJnbwztFW3/8TZ1Na7X34rCVYwvfF6pWdF7XYzNQKRccN/dpondnb5YkDW4f+JCgcMIC94CXGlSJNTuEoKiVEKPh3RsoMsKl63s1UkIsiaEZzO7KWVo3NrO7PSXGRqtdvURzgwgCI7/xBwd6N966dZ0EkkL4LDG2nO7s31QJFaJ1S98mqh7nf2JIsgOz3d6/qYZ3b6Ahnerq0fNbmR2OpdBiCHjpgvZ19PH8LVq9K1X3neX9Iql28NSFbfTUhW1Cdjw7dRkOFrrkeVb0U7n/7FN0ZquaivaiRcxpRp/TQhXLRapx9UpqXce54wQRGqPOOkWjTJ7wLVx4mxybXSlnhvpVKgb9GJXKR4W0zGMnJIaAl6IjIzTp1tN0LDOXVrUAdayfWLAO5cUdkxTJDGcowW39mpodgmXFREVoeI+GHp9rUTs4rYLhvI4hQsOJyQ5Kd//Zp+jFn9drQMsahkzqB/+RGAI+iIqMUEIsLReBcrlc+vyG7tqTclz1KodnF10g1F4Z2k5vzdyks1rVUota8WaHA7sgUQs5kuPCbuvX1FKVgE6uACMxBGCKclERalA1+F1G4B2zxzjCd0XHhV7csS5roQKAj1gq5l80fQBAEaRIhTEe0prMSOY5F8IQFzwA/yAxBAAAMIi/rQ9OabR3yvssDZ8BrIrEEABgma40FgkjJBz0VoESOeE374C3iDBBYggARZhxE6cCGXbV95TqZocQFpyQIDkV13fYBYkhDPfSkHYFfz82iIVDYT/cxKVa8TEFf1/YIcnESMJXOJxnb13RQf+5sqPZYcDGnNit0vtKAGoLEFrMSgrDXdIxSZERUnaOW5d0YoY8wBtWu/1/eG1nPfzdatVOiNGNpzc2OxxY1Pmn1jE7BNgMLaOAdZEYwnAul0sXdSAhBOyk6AyXreskaNJtp5kUDazKyet7lYQ8B75yYiuplXWsn1jwd7nICMVERZoXjMlIDAGgCNb0M0/5KEY4wF64WvjGiZdXKg+sLS4mWuNGdtPU1Xt0WZd6iohw7jfGHRgAYBmPnPfvuORrezY0LxAbMKN8zTqGvmtcvZLZIVgaXUthBb2aVdPTF7XVqXUTzQ7FVLQYAkARVlm6wYnaJCXo8xu6a3vyMSa9gS25JI05v5Ven7FBZ7Wupfb1Er16nRNb0pyCrxZ2QWIIABZgdsHBSslwjyZV1aNJVbPDAPw2slcjjezVyOwwYFEWutx6RCWFc9GVFACKCMUYQ6sXDAA4Q/W48qYe34lJiLfvOTE2OriBnKRtUoKkE5OvnHtq7ZAdF9ZCYggAAEyRUCF0Bd9gsWMdz5ODW0s6UUH1ytB2ZWxtLCdWivn7lu86o1nBhFwjTgtuC/R7wzvpngHN9fmN3RUfY//fJfxDV1IAAGAKJyYJVjC8ewM1rVFJ8THRavNPS1GoOLGF0F/1qsRq6l29te1Quk5vXj2ox6qTWEF3DWgW1GPA+mgxBIAiKpRzXp0ZS3TAG+3qBZ5EnNb03/Gjt/RpEvD+wkUok2SXy6WeTaqFPCn0HEvxxwa2rlXwd8OqsSGMxnoaV6+kfi1qKNLBSyggdEgMAUDSbf3+LaCOvbCNiZEA1jX2wrZKjI1WdKRL/x3eya99vHhpOw1qV0fXndZQ14TBkiRUqRjv0UGt1DYpQY2rVdQ7V/l3nlkJ5wjswnnV4gDgwagzT1HzmnGqFR+jTg0qmx0OYElNa1TS7w/0U3auW1UqlvNrH3USK+jNYR0Mjsw66B4buDqJFfTDHb3MDgNwHBJDAJAUGeHS4PbmrZtHT07YRRwTUwQF14DwRV0B7IKupABgAqsVFKy0jiFgJ/xyAIQLEkMgjFzQrk7B3/effYqJkQAAUFy5qMJFz6hIiqKAVdCVFAgjjw1qpYrlo1SpfGTQ1zwCAMBXTapXVItacVq396jaJMUrKbGC2SEB+AeJIRBGqlYqr2cvbmt2GPCC1YYTsVwFgFBwuVz66uYeWro1WV0aVjE7nJBIjC08UVOzmpVMigQoHYkhAFgAQ/ycJ7ECk7jAmeJjotW/RU2zwwiZclER+nREV32xeLsuaFdH8UzgBIsiMQQAIERGn9NCz01dJ0l6cUg7k6OBEZIq0xUSZevTvLr6NK9udhhAqUgMAcAC6MnpDDed3ljNalRS5Yrl1LE+62WGg9Z1EnRBuzr6YdVu3dG/GTP8ArAtEkMAMAFFR2dyuVw6o6UxXeioTLCON4Z10BvDOgS0j2t6NtQHc7dIkro1csbYOwDWQmIIAKCVAzBZvSqx+vjaLlqx/bCu6t7A7HAAOBCJIQAAgAX0a1FD/VrUMDsMAA7FqqIAAJarAADA4UgMAQAAAMDhSAwBAAAAwOFIDAHAEujKCQAAzENiCAAmYBJQAABgJSSGAADYUOeGlc0OAQAQRkgMAQCsY2gTH1zdWe3qJuj2fk11at1Es8MBAIQR1jEEAMAmBrSqqQGtapodBgAgDNFiCABgHUMAABwuLBLD5ORk3XfffWratKliYmJUvXp19evXT7///nuh7RYtWqQBAwYoLi5O8fHxGjhwoFauXGlO0AAAAABgEbbvSrpt2zb17dtXaWlpGjlypJo3b66UlBStWrVKu3btKthu4cKF6tu3r5KSkvTkk09Kkt566y317t1b8+fPV9u2bc16CwAcqHxUZKn/BgAACCXbJ4ZXXXWVcnJytGrVKtWuXbvE7e68806VK1dOc+bMUVJSkiRp6NChatmype69915Nnz49VCEDgOpViVXXRlW0eEuyujasonpVYs0OCQAAOJitE8M5c+Zo7ty5euONN1S7dm1lZ2crOztbsbGFC1ibNm3SkiVLNGLEiIKkUJKSkpI0ZMgQffzxx9q7d69q1aoV6rcAwMH+N6Kr1u09qha14swOBQAAOJytxxj+9NNPkqT69etr0KBBqlChgipWrKjmzZtr3LhxBdstWbJEktSjR49i++jevbvcbreWLVvmdxy1a9cu9F+zZs383hcA54iJjlT7eomKiaYbKQAAMJetE8P169dLkm644QYlJyfr008/1UcffaRy5cpp+PDh+vjjjyVJu3fvlqRCrYX58h87eTwiADgN6xgCAOBstu5KevToUUlSXFycZs6cqXLlykmSLrzwQjVu3FgPPfSQrrnmGqWnp0uSypcvX2wfMTExklSwjT/27NlT6N+pqalKSEjwe38AEGosVwEAgLPZusWwQoUKkqRhw4YVJIWSVLlyZV1wwQXau3ev1q9fXzDmMDMzs9g+MjIyJKnYuEQAAAAAcApbJ4Z169aVJI+TxuTPUHr48GHVqVNHkufuovmPeepmCgAAAABOYOvEsGvXrpKknTt3Fnsu/7EaNWqoS5cukqQFCxYU227hwoVyuVzq1KlTECMFAAAAAOuydWJ44YUXKi4uTuPGjVNaWlrB43v27NGkSZPUvHlzNW3aVE2bNlXnzp01ceLEgolopBOT0kycOFH9+/dnqQoAAAAAjmXryWcqV66sl156STfddJO6d++uESNGKCsrS++8846ysrL05ptvFmz7+uuvq1+/furdu7fuuOMOSdKbb76pvLw8vfzyy2a9BQAAAAAwna0TQ0m68cYbVa1aNb3wwgsaM2aMIiIi1KNHD02YMEGnnXZawXY9e/bUrFmz9Mgjj+iRRx6Ry+VSz549NXHiRLVr187EdwAAAAAA5nK5maPccPnLVaSkpCg+Pt7scACgTO2emK6U49kF/9763HkmRgMAAIzgS15i6zGGAABjUEcIAICzkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAAACAw5EYAgAAAIDDkRgCAAAAgMORGAIAVKFcpNkhAAAAE5EYAgD08pD2BX/fPaCZeYEAAABTRJkdAADAfL2aVdMn13XRobQsDW5fx+xwAABAiJEYAgAkSX1PqWF2CAAAwCR0JQUAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIeLMjuAcOR2uyVJqampJkcCAAAAwKny85H8/KQ0JIZBcPToUUlSvXr1TI4EAAAAgNMdPXpUCQkJpW7jcnuTPsIneXl52r17t+Li4uRyuUJyzGbNmkmSNm7cGJLjIbxxPsFInE8wEucTjMY5BSNZ7Xxyu906evSo6tSpo4iI0kcR0mIYBBEREapbt27IjylJ8fHxIT0uwhPnE4zE+QQjcT7BaJxTMJIVz6eyWgrzMfkMAAAAADgciSEAAAAAOBxjDAEAAADA4WgxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzEEAAAAAIcjMQQAAAAAhyMxBAAAAACHIzG0uby8PL366qtq0aKFYmJiVK9ePd177706duyY2aHBojZs2KBHH31U3bt3V/Xq1RUXF6f27dvr6aef9njerF+/XhdeeKEqV66sihUrqnfv3vrtt99MiBx2kZ6ersaNG8vlcun2228v9jznFMqSnJys++67T02bNlVMTIyqV6+ufv366ffffy+03aJFizRgwADFxcUpPj5eAwcO1MqVK80JGpaUlpamZ555Rm3btlVcXJyqVaumnj176pNPPpHb7S60LecTTvbss89qyJAhBfezhg0blrq9L+fP7t27dfXVV6t69eqqUKGCOnfurIkTJxr/Jnzkchf9VcBW7rrrLr3xxhu66KKLdM4552jt2rV688031bt3b82YMUMREeT+KGz06NF6++23dcEFF6h79+6Kjo7WzJkz9dVXX+nUU0/VwoULVaFCBUnS5s2b1bVrV0VFRenuu+9WQkKC3n//fa1evVpTp07VgAEDTH43sKL77rtP7733ntLS0nTbbbfprbfeKniOcwpl2bZtm/r27au0tDSNHDlSzZs3V0pKilatWqWzzz5bl19+uSRp4cKF6tu3r5KSkgoqIN566y3t379f8+fPV9u2bc18G7CAvLw89enTR/Pnz9c111yj7t27Kz09XZ9//rkWL16sBx54QM8//7wkzicU53K5VKVKFXXs2FHLli1TfHy8tm7d6nFbX86f5ORkde7cWfv379eoUaNUt25dTZgwQbNnz9ZHH32k6667LhRvzzM3bGv16tVul8vlvvjiiws9/sYbb7glucePH29SZLCyJUuWuI8cOVLs8Ycfftgtyf3mm28WPDZkyBB3RESEe8WKFQWPHT161F2/fn138+bN3Xl5eaEIGTaybNkyd2RkpPvll192S3LfdttthZ7nnEJZevXq5a5bt6579+7dpW7XpUsXd1xcnHvnzp0Fj+3cudMdFxfnPvPMM4MdJmxg/vz5bknuu+++u9DjmZmZ7kaNGrkTEhIKHuN8QlGbN28u+Lt169buBg0alLitL+fP/fff75bk/v777wsey8nJcXfp0sVdpUoV99GjR417Ez6iOcnGPv/8c7ndbt19992FHr/hhhsUGxurcePGmRMYLK1z585KSEgo9vhll10mSVq9erUk6dixY/r+++/Vt29ftW/fvmC7SpUq6frrr9eGDRu0ZMmSkMQMe8jNzdUNN9yggQMH6uKLLy72POcUyjJnzhzNnTtXDzzwgGrXrq3s7Gylp6cX227Tpk1asmSJhgwZoqSkpILHk5KSNGTIEM2YMUN79+4NZeiwoNTUVElSnTp1Cj1erlw5VatWTRUrVpTE+QTPGjdu7NV2vp4/EyZMUJMmTTRo0KCCxyIjI3XHHXcoOTlZP/30k3Fvwkckhja2ZMkSRUREqGvXroUej4mJ0f+3d/8xUdd/HMCfxy/5deAZU44zUAtMxSDlUEFTKn9MUsQi00QoxCy0BMvSZZ75o1k2moo1IVvotA2poJwVixiRkJMJ6pKzKw7kZCg/REsBwff3D3f39Tp+XaB3eM/HdmN7vd+fz70+22vcve7z4x0cHMwvWGSWmpoaAMCwYcMAAKdPn0ZrayumTJliMnfy5MkAwBojI6mpqaioqDC6dPROrCnqif4Lka+vL+bNmwcXFxe4ubkhICDA6MdOfZ10VUtCCJSWlt6bpMlqhYaGYvDgwfjggw+QlZWF6upqVFRUYP369SgtLYVKpQLAeqK+Mad+amtrodPpDJ95/5575/4sgY3hAHbx4kV4eXlh0KBBJmMKhQL19fVoa2uzQGY00HR0dGDLli1wcHDAkiVLANyuLwBGv37p6WM6ne7eJUlWrbKyEps2bcK7777b5Q36rCnqiVqtBnD7ypfGxkZ88cUX2L9/P5ycnBAbG4vPP/8cAGuJekcmkyE3NxdDhgzBc889Bz8/P4wZMwZpaWnIzs5GYmIiANYT9Y059WPtteZgsXemPrt+/XqnTSFw+6yhfo6Tk9O9TIsGoDVr1qC4uBjbt2/H6NGjAcBw+VZnNXZnfREBwMqVKzFq1CikpKR0OYc1RT25du0aAEAqleLnn382fH4tWLAAo0aNwoYNGxAXF8daol5zd3dHYGAg5s+fj7CwMDQ2NiItLQ1LlixBTk4OZs6cyXqiPjGnfqy91tgYDmCurq64dOlSp2MtLS2GOUTd2bhxI/bs2YMVK1Zg/fr1hri+dlpbW022YX3RnQ4ePIi8vDwUFhbC0dGxy3msKeqJ/onIixcvNvpRUyaTYf78+cjMzIRarWYtUa+cOXMGYWFhSE1NxcqVKw3xxYsXIzAwEImJifjzzz9ZT9Qn5tSPtdcaLyUdwHx8fFBfX99pcel0Onh5efFsIXVLpVJh69atePHFF/Hpp58ajelv1u/skgZ9rLNLIci2tLa2IiUlBXPnzoW3tzc0Gg00Gg2qqqoAAM3NzdBoNLhy5Qprino0fPhwAIC3t7fJmFwuBwA0NTWxlqhXUlNT0dLSgpiYGKO4q6srIiMjUVVVBa1Wy3qiPjGnfqy91tgYDmBKpRK3bt3CiRMnjOItLS0oKytDSEiIhTKjgUClUmHz5s2Ii4tDRkYGJBKJ0fj48eMxaNAgFBcXm2xbUlICAKwxwo0bN3D58mUcPXoU/v7+hteMGTMA3D6b6O/vj4yMDNYU9Uj/MDX9w7DupI8NHToUSqUSALqsJYlEgokTJ97FTGkg0H/R7ujoMBlrb283/GU9UV+YUz9yuRwKhcLwmffvuYCFPwcttlAG9dnp06e7XcfwwIEDFsqMrN3mzZsFABEbGys6Ojq6nPfss88KOzs7UVZWZojp15zz9/fnmnMk2traRFZWlslr7969AoCYM2eOyMrKEmq1WgjBmqLuNTY2CqlUKhQKhdFaXhcvXhRubm4iICDAEAsJCRFSqVTodDpDTKfTCalUKp588sl7mjdZpzVr1ggAYseOHUbxpqYmIZfLhUwmE+3t7UII1hN1r6d1DM2pnzfeeKPLdQwHDx4srl692u/595ZECCEs15ZSX61evRp79uxBdHQ05s6di3PnzmHXrl0IDw9Hfn4+7Ox4UpiMpaWlYdWqVfD19cWWLVtMamTYsGGYOXMmgNtr84SGhsLR0RHJycnw8PBAeno6zpw5g6NHj2L27NmWOAQaALRaLUaOHImkpCSj5StYU9STffv24eWXX8a4cePw0ksvoa2tDZ988glqa2vx3XffYdasWQCA48ePIyIiAsOHD8fq1asBALt370ZdXR1+/fVXBAUFWfIwyApUVVVhwoQJaGpqwgsvvIDw8HA0NjYiPT0dWq0WaWlpePXVVwGwnsjUgQMHDLdF7N69G21tbVi7di0AwM/PD7GxsYa55tRPQ0MDJk6ciIaGBqSkpEChUODw4cMoKChARkYGEhIS7uFR/ovFWlLqF+3t7WLnzp0iICBAODk5CR8fH5GcnGz0SyvRneLi4gSALl/Tp083mv/777+L+fPnC09PT+Hi4iLCw8NFXl6eZZKnAaOyslIAEElJSSZjrCnqSXZ2tpg0aZJwdXUV7u7uYubMmaKoqMhk3vHjx8UTTzwh3NzchLu7u5g1a5YoLS21QMZkrTQajVi2bJlQKBTCwcFBSKVSMW3aNJGdnW0yl/VEd5o+fXqvvysJYV791NTUiKVLl4oHHnhADBo0SDz22GPiyy+/vMtH1DOeMSQiIiIiIrJxvM6QiIiIiIjIxrExJCIiIiIisnFsDImIiIiIiGwcG0MiIiIiIiIbx8aQiIiIiIjIxrExJCIiIiIisnFsDImIiIiIiGwcG0MiIiIiIiIbx8aQiIiIiIjIxrExJCIiMoNKpYJEIkFBQYGlUzHLtGnTEBwcDCGE2duWl5fDzs4OGRkZdyEzIiKyBmwMiYjIZkkkErNeA60Z1MvKykJRURG2bt0KiURi9vZBQUF45plnsHHjRvz99993IUMiIrI0ifgvPx0SERHdB1QqlUns448/RnNzM15//XUMHjzYaCw+Ph7u7u6or6+Hr68vXF1d702ifSCEwCOPPAJHR0ecPXv2P+/n5MmTUCqV2LZtGzZs2NCPGRIRkTVgY0hERHSHESNGoKqqCpWVlRgxYoSl0+mzvLw8zJo1Czt27MC6dev6tK+xY8fin3/+QWVlJezseNEREdH9hP/ViYiIzNDZPYZarRYSiQTx8fE4f/48oqOjIZPJ4OnpiaioKGi1WgCARqNBTEwMvLy84Orqirlz5+Kvv/7q9H0aGhqwbt06jB49Gs7OzpDJZIiMjERJSYlZ+X722WcAgEWLFpmMXb16FZs3b0ZgYCCkUimkUikeeughPP/88zh16pTJ/EWLFqG6uhp5eXlm5UBERNaPjSEREVE/qaysxJQpU9Dc3IyEhASEh4cjNzcXTz31FM6dO4dJkyahvr4e8fHxmDFjBo4dO4bIyEjcunXLZD8TJkzAhx9+CIVCgaSkJERHR6O4uBiPP/44vv32217lI4RAfn4+fHx84OfnZzI2Z84cqFQqeHh4IDExEa+88gpCQ0NRUFCA3377zWR/4eHhAMDGkIjoPuRg6QSIiIjuF4WFhdi5cyfWrl1riK1YsQLp6ekICwvDO++80+lYTk4OoqOjDfFly5ahpqYGX331lVF827ZtCA0NRWJiIrRaLZydnbvNR61W4/Lly5g3b57J2NmzZ1FcXIwFCxbg66+/Nhrr6OjA1atXTbZRKpWG4yQiovsLzxgSERH1k5EjRyI5OdkoFhsbCwAYMmSIydjSpUsB3F4OQq+srAxFRUWIiYkxagoBQC6X480330RdXR1++umnHvOprq4GAHh7e3c5x8XFxSRmb28PmUxmEvf09ISzs7Nhv0REdP/gGUMiIqJ+EhQUZPJQFrlcDgB49NFHTcZ8fHwAADqdzhArLi4GADQ2Nnb61NQ//vgDAFBRUYHIyMhu82loaACATpu8sWPHIjg4GIcPH0ZVVRWioqIwdepUhISEwMnJqct9DhkyBHV1dd2+LxERDTxsDImIiPqJp6enSczBwaHHsZs3bxpijY2NAG7fx9fdvXy9WU9QfzawpaXFZMze3h75+fl47733cOTIEbz11lsAAA8PD8THx2P79u1wc3Mz2e7GjRudnmUkIqKBjZeSEhERWRF9A/n+++9DCNHla9OmTT3ua+jQoQD+32z+m0wmQ2pqKi5cuIDz589j37598Pf3x65du7Bq1SqT+bdu3cKVK1cM+yUiovsHG0MiIiIrMmnSJAD/v6S0L8aNGwd7e3uo1eoe5/r7+yMxMRGFhYVwd3fHN998YzJHrVZDCIHg4OA+50ZERNaFjSEREZEVUSqVCAsLQ25uLvbv39/pnJKSEly/fr3HfXl6eiI4OBjl5eVobW01GqusrOx0DcWmpia0trbC1dW10/cFgIiIiN4cChERDSC8x5CIiMjKHDp0CBEREUhISMDevXuhVCohlUpx4cIFnDx5EhqNBrW1tZ02b/+2cOFClJaWoqCgALNnzzbEy8vLsXDhQiiVSowZMwY+Pj64dOkScnJycPPmTcM9h3f68ccfYW9vj6ioqH49XiIisjyeMSQiIrIyfn5+OHXqFFQqFdrb25GZmYk9e/bgxIkTGD9+PDIzM+Hl5dWrfSUkJMDR0RGZmZlG8ZCQELz99tuwt7fH999/j48++gg//PADlEoljh07htdee81o/rVr15CTk4Onn34aDz74YL8dKxERWQeJEEJYOgkiIiK6e5YvX45Dhw5Bq9X+5wfH7N27F0lJSfjll18wderUfs6QiIgsjY0hERHRfa62ttbwcJnU1FSzt29pacHDDz+MyZMn48iRI3chQyIisjTeY0hERHSfk8vlOHjwoOGpohKJxKztq6qqsHz5csTHx9+dBImIyOJ4xpCIiIiIiMjG8eEzRERERERENo6NIRERERERkY1jY0hERERERGTj2BgSERERERHZODaGRERERERENo6NIRERERERkY1jY0hERERERGTj2BgSERERERHZODaGRERERERENu5/kYi7uR05OWYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], title=\"Lightcurve\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Zomming in.." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAAKOCAYAAADHxWayAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7xcVbn//5l6enooCSEh2BCuUkQIYAAFrqgoiIgoyhUBv+rFgtcrV6WoXCvywwbXgnQQCwLSRCGhBgghlFBCeu/J6WXa/v0xZ8+s9axn7b1nZs85e06e9+vFi5wpe3Zdaz3t88Qcx3EgCIIgCIIgCIIgCCERH+0dEARBEARBEARBEMYWYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiAIgiAIgiAIoSKGpiAIgiAIgiAIghAqYmgKgiCMAY477jjEYrHA//3Hf/zHaO9ypJk/fz5isRiOO+64wN+54YYbRuzc/sd//AdisRguv/zyQJ9374/58+eH8vuzZs1CLBbD6tWrQ9meIAiCMPZIjvYOCIIgCLXz/ve/H7NmzfL8zK5du3DPPfcAAPbZZ58R2CtBKLN69Wrst99+mDlzphiogiAIuwFiaAqCIIwBLr74Ys/3HcfBhz/8YQDAYYcdhksuuWQkdmu34rTTTsORRx6J8ePHj/auGNx0003o7+/HvvvuO9q7IgiCIOwmiKEpCIKwG/CDH/wA9957LyZOnIi//OUvaGpqGu1dGnOMHz8+kkYmADEwBUEQhBFHajQFQRDGOA8//DAuvfRSxGIx3HLLLdYU25deegmf+tSnMH36dKTTaey555447bTT8OSTT1q3vXXrVnz961/HW97yFjQ3N2PChAmYO3cubrrpJjiOY3zerS284YYb8NJLL+HUU0/F5MmTMW7cOLzvfe/Dc889V/rs9ddfj8MOOwxtbW3YY4898PnPfx5dXV3WfXnyySdxxhlnYNq0aUin09hrr73w8Y9/HC+88ILnuTn++OPR0dGBCRMm4L3vfS8efvhh6+e9sNVoqq93dXXhK1/5CmbMmIGmpibsv//++O53v4tcLlfVbwbFq0Zz06ZNOO+887D33nujubkZBxxwAH784x8jn88HqsW8//778Z73vAcdHR0YN24c3v/+9+P555/XPnP55Zdjv/32AwCsWbNGqxfm7sf77rsPH/7wh7HXXnshnU5j2rRpOP744/GLX/wi8HEB9lpS9fU//elPOOaYYzB+/HjEYjHs2LEDTU1NaGtrQ09PD7vdoaEhTJw4EYlEAhs2bNDe27ZtGy6++GIceOCBaG1tRUdHB4488kj8/ve/Z58JQRCEsYoYmoIgCGOY9evX46yzzkKhUMC3v/1tfOADH2A/d+edd+Lwww/HbbfdhqlTp+JjH/sYZs+ejbvuugtz587Ftddea3znjTfewCGHHIKrrroKAwMD+MhHPoI5c+bg2WefxTnnnIOzzz7burBeuHAhjjzySKxevRonnngi9t13XzzyyCM4/vjj8frrr+Oiiy7CF77wBUydOhUnnXQS8vk8fvvb3+KjH/0ou70f//jHeM973oM777wTM2bMwKmnnop99tkHf/7zn3HEEUfg73//u/Gdm2++GSeeeCLmz5+Pt7/97fjABz6AHTt24KSTTsKdd95ZwVkORmdnJ+bMmYM77rgDRx55JObOnYsNGzbg8ssvxxe/+MXQfy8I69evxxFHHIHrrrsO8XgcH/nIRzBr1ixcfvnlOPPMM32//5vf/AannHIKAODkk0/GHnvsgX/84x+YO3cu3njjjdLnDj74YJx++ukAgLa2Npxzzjml/z72sY+VPuc4Ds4//3x86EMfwn333Yf99tsPH/vYx/D2t78dr732Gr7yla+Eevw/+clPcOaZZ6JQKOCDH/wgDjvsMCSTSXzwgx9Ef38//vKXv7Dfu+eee9DZ2YkTTjgB06dPL73+4osv4h3veAd+/OMfo6+vDyeddBLmzJmDV199Feeffz7OPvvsUPdfEAQh0jiCIAjCmCSTyThz5sxxADgnnHCCk8/n2c9t3LjR6ejocAA4//d//6e9d+eddzqJRMJJJpPOiy++qL33rne9ywHgnHPOOc7Q0FDp9ddff92ZNm2aA8C55pprtO+cc845DgAHgPPzn/+89HqhUHDOPvtsB4Bz4IEHOnvttZezdOnS0vvr1q1zpkyZ4gBw5s+fr23z3nvvdQA4++67r7No0SLtvXvuucdJJpPO+PHjnR07dpReX79+vdPW1uYAcG655RbtO1deeWVpH4899lj2nHFcf/31pfPBvQ7AOe2005yBgYHSe08//bSTSCScWCzmrFq1KvBvuefxsssuC/T5Y4891gHgzJs3T3v9lFNOcQA4p59+urZfS5cudfbee+/SftN9mzlzpgPAaW5u1q5HJpNxTj31VAeA89nPflb7zqpVqxwAzsyZM6376Z77GTNmOM8//7z2Xi6Xc+65555Ax0X307b/qVTK+cc//mF876677nIAOMcddxy73Q996EPGvdPX1+fMmjXLAeBcddVV2vO2fv1659BDD3UAONddd531+AVBEMYSYmgKgiCMUS688EIHgLPPPvs4W7dutX7uu9/9bskY5XCNms997nOl1x599FEHgDNp0iSnu7vb+I5rXO2///7sto4++mjjOy+88ELJsPnd735nvP/Vr37VAeBcfvnl2uuHH364A8B55JFH2P13z4Nq2LrHfPLJJ7PfOeyww0I3NDs6Otjr8MEPftAB4Nxwww2BfysMQ3PVqlVOLBZzmpqanE2bNhnfueaaa3wNzW9+85vG9xYuXOgAcGbNmqW97mdoZjIZZ/LkyQ4A59FHH636uLj9tO3/5z//eeu+TJkyxYnFYs6aNWu097Zu3eokk0mno6PD6evrK73+61//2gHgfOYzn2G3uWjRIgeAc8ghhwQ6NkEQhEZHUmcFQRDGIH/84x/xy1/+EqlUCn/6058wdepU62cfe+wxAMA555zDvn/uuecCAB599FHjO6eddho6OjqM75x99tlIpVJYsWKFUcMGACeddJLx2v777x/o/Y0bN5Ze2759OxYuXIgpU6ZYe17OnTsXAPD000+XXnOP5VOf+hT7nXqkOB522GHsdXjrW98KQD+ukeDxxx+H4ziYO3cu9tprL+P9T37yk77bOPnkk43Xqj2e5557Djt27MCb3vSm0jWrN6eeeir7eiqVwllnnQXHcXDzzTdr791+++3I5XI444wz0NraWnr9gQceAACcccYZ7DYPOeQQtLe348UXX8Tg4GA4ByAIghBhxNAUBEEYY7z22ms4//zzAQBXXnkl5syZ4/l51xB0xVoos2fP1j4X5DvJZLKkdMoZmlwfz/b29kDvDw0NlV5btWoVgKLBGY/HNZEZ9z934b9t2zZj/23CSH49SathxowZ7Ouuoa4e10jgnoOZM2ey7wdR0eWOyT2eTCZT0f6sXbsWQNlQHQlsxw6UHS/U0LzpppsAAJ/5zGe011euXAkAOOWUU9j7MB6Po7e3F4VCATt27AjzMARBECKJtDcRBEEYQ/T29uL0009Hb28vzjzzTHz5y18e7V1iice9/Zx+77vk83kAwKRJk0qiNDbe9ra3Bdu5OhH0mEaaWCxmfS+s61TrflRLoVDwfL+lpcX63mGHHYYDDzwQr7zyCp555hkcccQReO2117Bo0SLMmjXLiLq69+KHP/xhTJw40fN3pb2QIAi7A2JoCoIgjCHOO+88vPbaazjggAPw+9//PtB3pk+fjtdffx0rV67E0UcfbbzvRmpUdU333+57lFwuV4pQqd8LGzei1traihtuuCHw96ZPn46lS5dizZo17DF7tfMYK0ybNg1AOZJI6e7uxq5du0Zsf9wIuKpW60c6nQZQdLBQcrkcNm3aVNM+feYzn8E3v/lN3HTTTTjiiCO0aCY1jGfMmIGlS5fiy1/+Mt73vvfV9LuCIAhjgWi6VwVBEISK+fnPf4477rgDbW1t+Otf/6qlonrhRmbcRTTl+uuvBwAce+yxxnfuuusuttfgrbfeimw2i/3337+uhub06dNx0EEHYf369XjmmWcCf8/d/9tuu419/9Zbbw1l/6LMMcccA6BYr7plyxbj/dtvvz3U33ONQlvP0MMOOwyTJ0/GsmXL8MQTTwTapmssL1261Hhv3rx5NfcnPfvssxGPx3HHHXdgcHCwdF/QtFkAeP/73w8A1pYogiAIuxtiaAqCIIwBFixYgG984xsAgN/97nc44IADAn/3/PPPR3t7O/71r3/hd7/7nfbePffcg1tuuQXJZFJLw507dy4OO+ww7Ny5E1/+8peRzWZL7y1btgzf/va3AQBf//rXazmsQHzve98DAJx11lmaYJFLJpPB3//+d7z++uul1z73uc+htbUV9913n2FQXX311Xjuuefqu9MRYPbs2fjABz6AwcFBXHjhhVqN6PLly0vnNSymTp2KdDqNLVu2sJHSVCqFiy++GEBRpOmll17S3s/n80Y/1OOPPx4AcM0112Dr1q3a/l944YU17/O0adNwwgknYMeOHfjGN76BdevW4eijj9aEq1wuuOAC7LPPPvjNb36DH/3oR2zN7auvvlqXHq2CIAhRRFJnBUEQxgBnnHEGstksJk6ciH/84x/4xz/+4fn5KVOm4MorrwQA7L333rjxxhtx1lln4YILLsC1116LAw44AKtXr8ZTTz2FWCyGX//613jHO96hbeO2227D8ccfjxtuuAEPP/wwjjrqKHR3d+ORRx7B0NAQzjrrLPy///f/6nbMLqeddhp+/OMf43/+539w3HHH4e1vfzve8pa3oLm5GRs2bMDixYvR29uLBx54oFSnuc8+++Caa67BZz/7WXzyk5/Ez3/+c8yePRuvvvoqXnrpJVx44YX45S9/Wfd9r5Xf//73ePDBB63v33zzzXjzm99sff/aa6/FUUcdhT//+c946qmncPTRR6O3txePPPIITj75ZCxatAhr164tRSNrIZVK4YMf/CD+9re/4ZBDDsHRRx+NlpYWTJkyBT/60Y8AFB0TS5YswY033ohDDjkERx55JGbOnIlt27bh5ZdfxpYtW+A4Tmmbn/jEJ3DllVdiyZIlOPDAA3H00Uejq6sLzzzzDE499VQMDg5izZo1Ne33Oeecg4ceegi/+tWvSn9zdHR04N5778WHPvQh/M///A+uuuoqvOMd78Bee+2Fzs5OvPzyy1i7di3OPPNMfPSjH61pnwRBEBqCUW6vIgiCIIQAhvsdBv2P62X4wgsvOGeddZaz1157OalUypkyZYrzkY98xHn88cetv7tlyxbna1/7mvOmN73JSafTTkdHh3PMMcc4N9xwg1MoFIzPu/0fr7/+es/j4LD1qXRZtGiRc8455zizZs1ympqanHHjxjlvfetbnTPOOMO55ZZbnN7eXuM7Dz30kHPsscc6bW1tTkdHh3Psscc6Dz30kDNv3rzQ+2ja9vuyyy6rqCem45TPo99/ixcvdhzHu9/khg0bnHPPPdfZc889naamJuctb3mLc8UVVziDg4NOOp124vG4MzAwoH3H1p/SxXYdt2/f7nzuc59z9tlnHyeZTFrvxTvvvNP593//d2fy5MlOKpVypk2b5rz3ve91fvWrXxmf3bJli/PZz37W2WOPPZx0Ou289a1vdX760586+Xzet4+mbf9V+vv7nXHjxjkAnObmZqezs9Pz8zt37nS+//3vO+9617ucjo4Op6mpydl3332duXPnOj/4wQ+c5cuX+/6mIAjCWCDmOIprUBAEQRAEAcCTTz6JY445BgceeCCWLFky2rsjCIIgNBhSoykIgiAIuym5XA6LFy82Xl+6dCkuuOACAPZUUUEQBEHwIpKG5g9/+EOcccYZmD17NmKxWKDG2TfffDOOPvpojBs3Du3t7TjooIPw/e9/3/hcV1cXLrzwQkyfPh3Nzc048MADce2110ICu4IgCMLuxuDgIA499FDst99+OPnkk3HmmWfiyCOPxEEHHYRXX30Vc+fOxVe/+tXR3k1BEAShAYmkGNC3vvUtTJo0CYceeig6Ozt9P3/uuefixhtvxOmnn16SIl+1apUhAJDJZHDiiSdi8eLFuPDCC3HAAQfggQcewBe/+EVs2bIFl19+eX0OSBAEQRAiSHNzMy6++GI8/PDDeO6559DZ2YnW1lYcdthh+MQnPoEvfvGLSKVSo72bgiAIQgMSyRrNlStXYvbs2QCAgw46CL29vdbm2ddddx3OO+883HTTTfj0pz/tud1rrrkGX/rSl/CLX/xCkz0//fTT8fe//x3Lli3DzJkzQzsOQRAEQRAEQRCE3ZFIGpoqXoam4zh485vfjPHjx2PRokUAgJ6eHrS3tyMWixmfP+aYY7B48WLs2LEDzc3Npdcff/xxzJ07Fz/+8Y/x3//933U7FkEQBEEQBEEQhN2BSKbOBmXp0qVYsWIF/vM//xPf//73cfXVV2Pnzp0YN24czjrrLFx55ZVob28HABQKBTz//PM49NBDNSMTAN797ncjFoth4cKFVe3H3nvvrf1dKBSwaNEidHR0sAavIAiCIAiCIAhCvXEcBz09PZg2bRri8ZGV52l4QxMA7rjjDmQyGXznO9/Bfvvth3vvvRe/+c1vsHTpUjzyyCOIxWLYtWsXBgYGMH36dGM7TU1NmDJlCjZs2BDKfhUKBcyYMSOUbQmCIAiCIAiCINTCunXrsM8++4zobza0odnT0wMA2LZtG/75z3/ihBNOAFCsuXQcBzfeeCMefPBBnHzyyejv7wdQNCo5mpubS5+plE2bNml/d3V1YcKECVi3bh3GjRtX1TYFQRAEQRAEQRBqobu7GzNmzEBHR8eI/3ZDG5otLS0AgOnTp5eMTJdzzjkHN954I+bPn4+TTz4Zra2tAIChoSF2W4ODg6XP1IqbLjtu3DgxNAVBEARBEARBGFVGo5wvkn00g+KGf/faay/jPbducteuXQCAiRMnoqWlhU2PHRoawvbt29m0WkEQBEEQBEEQBKEyGtrQ/Ld/+zc0NzezxuP69esBAHvssQcAIB6P49BDD8XixYuNqOazzz4Lx3Hwrne9q/47LQiCIAiCIAiCMMZpaEOztbUVp59+OjZv3oy//e1v2nvXXnstAOADH/hA6bWzzjoL/f39+O1vf6t99uqrr0YymcSZZ55Z/50WBEEQBEEQBEEY40SyRvPmm2/GmjVrABSFfjKZDK644goAwMyZM/HpT3+69Nkf/OAH+Ne//oVPfvKTuPDCCzFr1izcf//9uO+++/CZz3wGRx11VOmz559/Pq6//npcdNFFWL16NQ444ADcf//9+Nvf/obvfOc7mDVr1ogepyAIgiAIgiAIwlgk5jiOM9o7QTnuuOPw6KOPsu8de+yxmD9/vvba6tWr8e1vfxsPPfQQurq6sP/+++O8887D1772NaNfTGdnJ77zne/gzjvvxI4dO7D//vvji1/8Ir70pS+FViTb3d2N8ePHo6urS8SABEEQBEEQBEEYFUbTLomkodnoiKEpCIIgCIIgCMJoM5p2SUPXaAqCIAiCIAiCIAjRQwxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVTE0BQEQRAEQRAEQRBCRQxNQRAEQRAEQRAEIVQiaWj+8Ic/xBlnnIHZs2cjFoth1qxZgb/7zW9+E7FYDO3t7ez7Q0NDuPTSS7HffvuhqakJ+++/P6644gpks9mQ9l4QBEEQBEEQBGH3JjnaO8DxrW99C5MmTcKhhx6Kzs7OwN974YUXcNVVV6G9vR2O47CfOfPMM3H33Xfj3HPPxZw5c7BgwQJccsklWL58OW644YZwDkAQBEEQBEEQBGE3JpKG5ooVKzB79mwAwEEHHYTe3l7f7+TzeZx//vk4+eST0d3djeeee874zP3334+7774bF110EX72s58BAM477zxMmDABV111FS644AIcddRR4R6MIAiCIAiCIAjCbkYkU2ddI7MSfvGLX+DVV1/FL3/5S+tnbrvtNgDAV7/6Ve119+9bbrml4t8VBEEQBEEQBEEQdCIZ0ayUNWvW4JJLLsFll12GmTNnWj+3cOFCTJ8+HTNmzNBenzFjBqZNm4aFCxdW9ft777239nehUKhqO4IgCIIgCIIgCGOBSEY0K+ULX/gCZs+ejYsuusjzcxs3bsT06dPZ96ZPn44NGzbUY/cEQRAEQaiCXX0ZPLtqJ/IFXndBEARBiC4NH9G8/fbb8eCDD+KJJ55AMul9OP39/WhqamLfa25uRn9/f1X7sGnTJu3v7u5ujB8/vqptCYIgCIIADGbzeP/PH8OW7iF89NDpuOrjB4/2LgmCIAgV0NARzZ07d+KrX/0qPve5zwUS8WltbcXQ0BD73uDgIFpbW8PeRUEQBEEQquCVjV3Y0l2csx9+beso740gCIJQKQ0d0fzud7+Lvr4+nH/++Vi+fHnp9YGBATiOg+XLl6OpqalUkzlt2jRreuyGDRusabWCIAiCIIwsmVw5XTaXF+0DQRCERqOhDc01a9agr68PRxxxBPv+m9/8Zhx44IFYsmQJAODwww/HrbfeinXr1mmCQOvWrcPGjRvx4Q9/eET2WxAEQRAEb3KKsF5OajQFQRAajoY2NL/5zW/i7LPPNl6/7LLLsHLlStx8881areRZZ52FW2+9FVdffXWpjyYAXH311QCAT33qU3XfZ0EQBEEQ/FGNy4IjhqYgCEKjEUlD8+abb8aaNWsAANu2bUMmk8EVV1wBAJg5cyY+/elPAwDmzJnDfv9Xv/oV1qxZg4997GPa6x/84AfxoQ99CFdddRW6urowZ84cLFiwANdddx3OPvtsHHPMMXU8KkEQBEEQgpLPK6mzEtEUBEFoOCJpaF533XV49NFHtdcuueQSAMCxxx5bMjSr4c9//jOuuOIK3HLLLbj55psxffp0fO9738PFF19c0z4LgiAIghAeauqs4wCFgoN4PDaKeyQIgiBUQsxxJB8lbNz2Jl1dXRg3btxo744gCIIgNBz3vrQR/3nb4tLfy/73ZKQSDS2WLwiCMOKMpl0iI7YgCIIgCJEjT9Jl6d+CIAhCtBFDUxAEQRCEyJHNi6EpCILQyIihKQiCIAhC5MgX9N6ZIggkCILQWIihKQiCIAhC5JCIpiAIQmMjhqYgCIIgCJFDajQFQRAaGzE0BUEQBEGIHDRVVgxNQRCExkIMTUEQBEEQIkcur9do5qUbmyAIQkMhhqYgCIIgCJHDiGjmxdAUBEFoJMTQFARBEAQhchg1mhLRFARBaCjE0BQEQRAEIXIYqbOk3YkgCIIQbcTQFARBEAQhctDUWemjKQiC0FiIoSkIgiAIQuQQ1VlBEITGRgxNQRAEQRAiRy4vhqYgCEIjI4amIAiCIAiRg9ZkiqEpCILQWIihKQiCIAhC5MhK6qwgCEJDI4amIAiCIAiRg/bNFDEgQRCExkIMTUEQBEEQIgc1LAtiaAqCIDQUYmgKgiAIghA5cqRGUyKagiAIjYUYmoIgCIIgRA6jvYkjhqYgCEIjIYamIAiCIAiRI5cnqrN5MTQFQRAaCTE0BUEQBEGIHFRlVlJnBUEQGgsxNAVBEARBiByGGJCkzgqCIDQUYmgKgiAIghA5ctLeRBAEoaERQ1MQBEEQhMhBVWelvYkgCEJjIYamIAiCIAiRQ2o0BUEQGpvkaO+AIAiCIDQSXQNZ/HrecoxvSeGCubORSojPth5kSeqsRDQFQRAaCzE0BUEQBKECfj1vOX772EoAwLQJzTjtkH1GeY/GJhLRFARBaGzEDSsIgiAIFbBmR5/y7/5R3JOxTZb20SQ1m4IgCEK0EUNTEARBECpAtX8knbN+0Igm/VsQBEGINmJoCoIgCEIFqJG1vPR2rBuSOisIgtDYiKEpCIIgCBWgatTkJZuzbmRpexMx6gVBEBoKMTQFQRAEoQLUdFkxfupHPi8RTUEQhEZGDE1BEARBqAA1pVPqBusHNSyp4SkIgiBEGzE0BUEQBKECxNAcGQxDU6LHgiAIDYUYmoIgCIJQAarBI6mz9SNntDeRcy0IgtBIiKEpCIIgCBUgEc2RwYhoyrkWBEFoKMTQFARBEIQKyIsY0IgghqYgCEJjI4amIAiCIFSARDRHBnpu5VwLgiA0FmJoCoIgCEIFqFFM6aNZHxzHMQxLaW8iCILQWIihKQiCIAgVkNMimmJp1gPOqJSIpiAIQmMhhqYgCIIgVEBBNTTF9qkLnFEp7U0EQRAaCzE0BUEQBKECtPYmEmWrC1kmJzkvVr0gCEJDIYamIAiCIFRALi9iQPVGIpqCIAiNjxiagiAIglABmhiQGD91QWo0BUEQGh8xNAVBEAShArQ+mmL81IUckyYrqrOCIAiNhRiagiAIglABWh9NiWjWhRyj5itGvSAIQmMhhqYgCIIgVEDekRrNesNHNKWVjCAIQiMhhqYgCIIgVICWOisRzbrA12iOwo4IgiAIVSOGpiAIgiBUgJY6KxHNusCqzkpEUxAEoaEQQ1MQBEEQKkAXAxrFHRnDcH00RQxIEAShsRBDUxAEQRAqQNqb1B8uoilpyoIgCI2FGJqCIAiCUAE5SZ2tO1z0khMIEgRBEKKLGJqCIAiCEBDHcaAG1iTKVh9yTOqsnGtBEITGQgxNQRAEQQgIjWBKRLM+cOdVajQFQRAaCzE0BUEQBCEgtCZTDM36kOVqNOVcC4IwzJINXfjSbc/j5gWrR3tXBA+So70DgiAIgtAoUMNS0jnrA9fKRCKagiC4fO/eV/Hsqp2476VNmLP/ZLxpj47R3iWBQSKagiAIghAQSZ0dGTjhHznXgiC4rN7eV/r3ym19Hp8URhMxNAVBEAQhIDTQJrZPfeCil2JoCoLgoo4RA9n8KO6J4IUYmoIgCIIQkByxNOnfQjiIoSkIghdZRZm6PyOGZlQRQ3MMM5TL42+L1+Pl9V2jvSuCIAhjAioGJHZmfeBqNOm5FwRh90VNrx8QQzOyiBjQGObye17B7c+uQzwGPPL14zBrStto75IgCEJDQ+0fibLVhyxTo8nVbQqCsHuiRjQbMXX25fVduO3ZtTjp7Xvi+LftMdq7UzckojmGeX5NJ4BiDdHidbtGd2cEQRDGADRVVqJs9YEz4MWoFwQBABzH0dLr+zO5UdybynEcB1+4dRFuf3YtPn/zInQNZEd7l+qGGJpjmKyyIBrMSn6XIAhCrRhiQGL81IVcXlJnBUHgoTXcjVajWXCA9bsGAACZfAEbOwdGeY/qhxiaYxjJXxcEQQgXauyI8VMfRAxIEAQbNI1+sMFSZ+lYlsmN3WCQGJpjmLxIPwuCIIQKFakR46c+SOqsIAg2smQcbryIpj6WDYmhKTQiaqF0o3l7BEEQogjN6JTU2frAiQGJoSkIAgBkc41taNKxbCjXWPtfCWJojmHUG1kMzWjgOA4WrNiB5Vt7R3tXBEGoArpAkNTZ+sC1N5GepYIgAGZqfaOVh9F5Y2gM66hIe5MxTKNLP49Frn10BX7y4FKkEjH8/cJj8La9xo32LgmCUAHU0BTbpz5wNZpyrgVBAPT1LdB4a1yaCSOps0JDotVoZsbuTdxIPLFsO4BiWtjTK3aM8t4IglApIgY0MnA9MyWiKQgCYI4PjZ46m8k31v5XghiaY5ispM5GDlVZjKtBEsYOGzoHsGjNLjhiiIwpjNRZqRusC2xE04E8T4IgGE6ngQbro7k7pc6KoTmGEdXZ6KEa/1Q1TRg7rNvZjxOvehSnX/sUfvHw8tHeHSFEOMOykQWBvvf3V3HI9x7CNfOjdZ9yfTQBMewFQQAyucaOaNLln6TOCg2H4zgkdbaxHsKxiqqUxqWGCWODp1fuKE18jyzdOsp7I4QJ23ajQaNs23uH8IcnV2FXfxY//9cyo+5pNOEimkDjnmtBEOz86bl1OO/GhXhqxfZAnzcjmo21xjUimmNYdVbEgMYohiKXRDQjgTo42jz2QuOTUa7tWG7EvDtC+58BReMzlRiFnamRnsFyutlQroChXAGpRDT8z7bIpUQ0BWFssb13CN+682XkCg6WbunB4//9Xt/v0NKjRlvjGmJAkjorNBo0WiY1mtFAHRyzsmAas6jPnzgUxhZ87WBjPsvUaIvSvWoT/rFFOgVBaEw2dw2Wnut1OwcCOWfpWJUrOA3l1DXFgBpn3ytFDM0xCq3/azRvz1hFTU2L0qJOCBftOsvCeEzB1WM2apSN7neUBMpspQWNXA8rCIIJHYd6BrO+3+HGqkZKnzVTZ8fuelAMzTFKnqYVNNADOJZRDZAoLeqEcFGNy0bysgr+8GJAo7AjIWAamtE5EJvxLo6b0efa+Stw0v/3KP6yaP1o74owBqBGl5rSb4MTU+zPNo7yrJk6O3bX6GJojlHqGdHsHsxiR+9QaNsbaYZy+VFbUGkplY26OhV80USf5DqX+Nvi9fjy7YuxeO2u0d6VquEMnUa9xjTlN0oCZbbSAoloji7be4dw5UNL8caWXnzv7680bDRfiA5mRNPfYOTGqkYKqOxOEU0RAxqj0Ac3rBrNVzd246PXPolCAbjh3MNx1P5TQtnuSLFgxQ6cd+NCtDYlcccFR2L21PYR/X09dVYm6LGKukiW61xka/cg/uvPLyFfcPD65m489LVjR3uXqoIVA2rQGk1qNEep5VJeajQjyY7eTGl90T2YQ18mh3HNqVHeK6GRqSZ1lis9aqQWJ/SYx7KhKRHNMQpd3GbzTig1gXe/uAGD2QIy+QLueWFjzdsbaf783Dr0ZfLY1jOEB5ZsHvHf18SAxAAZs+S0FOmxO4FUwtqd/aXJddnW3oaNhEjq7MhgGx8b9b4ZK9B7pG+ocdIVhWhCsxS6A6XOMhHNiKWfrt7ehx8/+DqeWbnDeI/OGWO5xEYMzTEK5/UdDOFG7h4oDwBRe6iDoA5gvaMwQWrtTRp1dSr4oj5/4lAooqrqOQ7QPeDvtY4iYymiGeXUWWlvEk1o5KU3gFEgCF7Q9WogMSBmPRu1iOYFNz+Ha+evwKevexbd5Jh2pz6aYmiOUbjoZRj566r3shFTmDKjqPrqOI5mdERpUSeES0ZqNA2owd3ZoIYm99w2at1glCOatvmlEeedsQSNvIyGw1YYW1QjBsTNq1Gr0Vy2tRdAcd25bme/9p6kzgoNDxvRDCEC2Z9RDM0ILUqCklG8RiMdaTLqoRrw/AnBUCfBbN6B06ARrzChHujO/swo7UltcNHLRo2yRbu9CT8+NmrP0rGCmTobrcW90HjQLgmBVGc5MaAIqc7mCw7UoYqOtXQcG8qO3fWgGJpjFFaRKwRDU/VeNmJETvXGjnSDXDpBi2d+7EKfDbnW5v3f2d+YEU22j2aDGj908RMl56E1otmA885YQiKaQtiYEc3GFwOiEVdqGJsRzejse9iI6uwYpV5pBeqDbJOfjzKjmTpLBxqJaBYZyOTxhydXwXEcfO6Y2WhJJ0Z7l2qGXutc3kGq8Q+rJqhjp3OgMSOanAHUsKmzZIEXpTFdajSjCX2ORQxIqBX6TAdxXnDjcJRSZ6lDzIho7kaps2JojlHYhzD0iGbjPRiqN3bEU2dpRFM88wCAvyxah5/+YykAoL0pif84er9R3qPaoU6EbKGAFuzeliZ93nb1NWhEcwyJAdGUtSiN6bZ9adRzPVYwUmczYmgKtVFNH00uIy1ShibNFiHBHzqOjWXVWTE0xyj1Sp3tV+oxGtFQ0g3N0Y1oikhMkdc395T+/dqmHo9PNg5G2swYnkSCQg0HLzGgbL6AuxZvgOMApx4yHelkdKo8uIhao0bZjIhmlAxNa0QzOvu4O0IjL0GMAkHwgjrvqEIrB7f+7I9QJwQ6J/j9LRFNoeHgjJjBkFVno9TcOyija2h65+zvrqgTxljxjptOBbnW9P7v8hADuvuFjfjGX14CUFyEfOLd+9Z13yphLPXRpOlbURqTbI7MCNnCuyU08iKps0Kt0Gc9kOps1COaPhlshhjQGK7RjI6bWOGHP/whzjjjDMyePRuxWAyzZs1iPzc4OIjf/e53+MhHPoJZs2ahpaUFs2fPxllnnYXXXnuN/c7Q0BAuvfRS7LfffmhqasL++++PK664AtlsY6Zx2ahH6qzjOJoh0IhefDXdYqQXVaYYkKyYAN1hEaVi/lownQpyrTM0ddZDDOiFdbuUf3fWa5eqgo1oNmg6p19612hi25co7ePuiKk6K4amUBvViAFx9eT9EXJUm2MrjWjqnx/LqrORjGh+61vfwqRJk3DooYeis7PT+rnVq1fjggsuwDHHHIPPfe5zmDZtGlauXIlrr70Wd955Jx588EEcf/zx2nfOPPNM3H333Tj33HMxZ84cLFiwAJdccgmWL1+OG264ob4HNoLUI3V2MFuA+qxEyfsdlKFRjGgaA08Dnr96oJ6HKE0UtWCozsq1NlVnvVJnc+XzFUbKf5iMpfYm1KuunvfRxnZOxc4cXUzV2Wg9n0LjUU2NJleOEiVHtSkGRGo0JXV2dFmxYgVmz54NADjooIPQ29vLfm7q1KlYvHgxDj74YO31T33qUzjkkEPwjW98A88991zp9fvvvx933303LrroIvzsZz8DAJx33nmYMGECrrrqKlxwwQU46qij6nNQIwxXxzJYo8eEpjVGSTgiKNn86BmadIKWKFeRnEQ0dwsq6aOpZh6E0f83TKiADtC4vR2NPpojZMWt3NaL655YhcNmTsRHD92H/YzNkSkRzdFFUmeFsKnG0KxXr/iw8GtvQueMTL4Ax3EQi8Xqvm8jTSRTZ10j04/JkycbRiYAvP3tb8dBBx2EJUuWaK/fdtttAICvfvWr2uvu37fcckvF+xpVuEm61oeQTihRrDtbsa0XH/j54zj92qewtWfQeF+dJEc6ykTPVyNGhOtBVotoRmeiqAW51iaV9NFUDc2BiKUUjaWI5mhlWVz+91dx6zNrcdGfXsSKbbwjWdqbRBNRnRXChj7TA9m8r3OWez9K6wczVdb7b2DsRjUjGdGslUKhgE2bNmHPPffUXl+4cCGmT5+OGTNmaK/PmDED06ZNw8KFC6v6vb333tv4/dGmHn00+0iKTBSjNL9/fCVe3dQNALjz+Q34f8fuX3ovl6epvyOcOmsUh0fv/I0G6nnoHyPecanHNaE1ml4RTTX6GYaIWZhwPTMbtY+mKQY0Mvfp8i1ldek3Nvdg/6ntxmfsqrONea7HCkPkHhHVWaFWuGe6dzCHiW1p63dY1dkIzRVG+Qzto8k4LIdyBTSPwYbbkYxo1sr//d//YdOmTTjnnHO01zdu3Ijp06ez35k+fTo2bNgwErs3ItSjRtNMnY3ehL9yW1/p3zv79IUs7btEF771hv5+lJqjjybqANwXoYmiFmgEM4pOmZGGnoPuwZzV2aJHNKN1T3AGUKOKAZntTUbmONSxt8fiXLI5Z8TQHF0kdVYIG87o8nNgcGn+kVKdNWoyvWs0gbGrPDvmIppPPfUULrroIrzzne/Et771Le29/v5+NDU1sd9rbm5Gf39/Vb+5adMm7e/u7m6MHz++qm2FRT1UZ3sbIHV2c3c5XZZOiPTvkY4omgIxYnwA+nmJ0kRRC/TaSuosb2x3D+YwifFaZ6NcozmGUmfpfo/UmKQuwmyGClcLCzSuUT9WENVZIWy4taRfL01uTo2SU9KvfIY1NCNWJhIWYyqiuWjRInzwgx/EtGnTcN9996G5uVl7v7W1FUNDQ+x3BwcH0draOhK7OSKwhdI1LuL7Seps1NIBHcfBpq6yoUknxNEW4zHSKcX4AKDfR5l8YUxE/0Rh2IS7rrss6bNRVp3l0mTHiqE5UlkW6vPQa4lcSOpsNDFVZ8XQbARWbe/DtfNXYNX2Pv8PjzDcM+0X0eScYlFOnaXHyEVxadbbWGHMGJrPP/88TjzxRIwfPx7z5s1jU2SnTZtmTY/dsGGDNa22EWGb2YYtBhSxxfOu/qw2CdKFLS20Hvk+mqOj8Bh16HmJ0mRRLaPt1IgiGaZ1hk0QaCjCEU02dbZBjR/D0Byh+1RdUPVaxGRUB1QyXlZijNq8s7thpM5m8nAkyhxp8gUHn/jtAvz4wddx1m+fjtx4xRuaVUQ0IyRMRQMxfn00AYloRprnn38eJ5xwAjo6OjBv3jzMnDmT/dzhhx+ODRs2YN26ddrr69atw8aNG/Gud71rJHZ3ROAe3LBrNKO2eN7UNaD9TQcio0ZSIpqRgA7IY6GXpiltHq1nZTTgzkHXgC2iqRqa0Tp3rBhQgy60Ry11VjU0A0Q0m5LlpYqkzo4uXArgWFXLHCvs6BvClu5iNt/m7kFDv2K0qSqiyTjq+7PRcXr4ja3cODZWazQb3tBcvHgxTjzxRLS3t2PevHnYb7/9rJ8966yzAABXX3219rr796c+9al67eaIw3t7xnZ7k81dejsTQ/xnlKNMnIcrKoPiaEINbqpu3Ij4Kc7tjrCps32811r97ECEFg+ArUZzFHYkBEZDDKhQcDT1b67GL19woO5ak6LEGLVozO4GZ1SK8my0Ga3MhaBUE9HkHPWOE50WIb6qs9LeZHS5+eabsWbNGgDAtm3bkMlkcMUVVwAAZs6ciU9/+tMAgDVr1uDEE0/Erl278OUvfxlPPfUUnnrqKW1bp512Gtra2gAAH/zgB/GhD30IV111Fbq6ujBnzhwsWLAA1113Hc4++2wcc8wxI3iU9YUqXAEh9NEkhmp+2FCqd4PZXL6A8296Ds+t2YXLTzkQpx/GN/jeRAxN2iDeFAMa4dRZJnUwV3CQSoy9Br2VQCe9sSAIRI8pahP7aMCdg84BfjGhOonyBQfZvIN0MhrPCbcoatQo22i0N6ElA1yNH3XKaRFNMTRHFa6OrG8oh6kdvNCiMPrQtU7U5iNu/PSr/bXVMw5k8pFoESJ9NMtE0tC87rrr8Oijj2qvXXLJJQCAY489tmRorlq1Cjt27AAAXH755ey2Vq1aVTI0AeDPf/4zrrjiCtxyyy24+eabMX36dHzve9/DxRdfXIcjGT3qocjFeZ5HYgH4/NpOzFu6DQDw6/nLPQxNmjpL25l4/11vuJrMXN5BBMbEUYUOyGOhAbjZ3kQWx1w7IVsvTeokGszlkU5GIwGHWyA0ah9NOgSOhPONPgvcgpKeYzE0owN9NgERBIo6pgJqtAwabvysRgwIKKbPTgxlr2rD6JseRAxIDM2RY/78+YE+d9xxx1WcUtXc3IwrrriiFCEdq9SlRpNJaRyJSb9biXp0WcRDACaiSWs0Rzt1llnEZQsFtGD3tjTpeRkLEU0jTTpiE/towC1QbWJA1CgdzOQxrjlVl/2qFO5SNqrxQzNfRkKgjD4LnJFCx+6mpKTORgVbRFOILvQ554TZRhO+vYlfjSZ/DFERBDKV53ffPprRcBELGo7j1Lww5RYMtYpqsBHNEViYqAahV2pBpTWaBWdkFy2cYSuCQExftohMFNXiOA6jMCzXuaLUWTLhRqnFCeeJbtTUWbrfYY1Hm7oG8LOHluKfr24x3qPPRhAHZlNKIppRgYu6NPqYPdaJekQzLNVZABjIROPYqLPZSJ3lxIAiJnwXFpGMaO7OdPVnceZvF2B77xB+cdYhOGr/KVVth2t2XWsfTW4yGQlDKaMZmvZjoIYmNdY5IzWbLyARH5mIIjcwSqTLnAQbvb0JN2ly0bzdDdbQtKXO0ohmhCZgzpM+VlJnw1qAXnb3K3ho2Mic/1/HYdaUcvkK/Q0uRc6rRlOEtUYX7h7pHQMCbmOZyNdoVpE6azuGqKjWixhQGYloRox7X96I1zf3YHtvBjc9tabq7XCTcT1qNEfCUFIXndm8ww5KjuP4p85yEcVRjmhKpMu8h/oDpmEtWLED18xfHjmpdtahMIZ7pj61fDs+9MvHccldSzxLGfgaTX/VWSBiEc0xJAZkpM6G5Dh8fm1n6d+vb+7W3jNVpv0dmGrqbKO2khkrcBFNW4saIRrQdc5I61P4wY2f/qqz9hrNKOCfOmt+Z6ymzkpEM2LsUhbNnZYec0HgFra5goNsvoBUojr/AhdpGglDiT6gmVwBLWk9Ctk9kDMWo4YYEBfRzBWAERLL4wZGiWhyYkD+g+3GzgF88vdPw3GAp1fuxE3nvrteu1cxXDr5WBYD+tk/38CSDd1YsqEbp7xzGt693yT2c3zqrDnGFQqOcU9EqW53TIsBheAQKRQc7OwbKv1tppGbToRcvoBkwp4eq0U0x/Cz1AhwURep0Yw29XIohQWXgecf0bSlzkZjrjAMzQCps2NVDEgimhFDNeZqCaPbJuNaIgOsDP2IRDRpCqx5DJu6B4zX/Go0uW3XEy6iE7UBfzSoRgxo6ZaeUp+91zd1e394hGFFn8awQ2FrTzmTYN3OfuvnWEOT6aPJedsHI+Tp5bIgGrVukEYHw7hPd/VntD6ZQXr4UecS/YxWoykRzVGFT50VQzPKGM6eiBk0fETTTwzIljobjbnCT/xHUmeFUUM1BGvxbtgMmFrqNLkHeCRST6mBxj2MNG0W4CKaoxORdWEjmmM4pTIoNMIRRFhCNeaiVrPFR66jtY9hoh6bTdwH4Bc3PUO5QD1Ha60vDxNeDGgUdiQE6PgThuNrB0llp9eTexaooUIXZWkt2ilj5mgiqrONRxBnz2jCtzfxS50tf0dt5R6VMgt6zoNENMdq6qwYmhFjMBtORNM2GYcf0RyJvmskoskIg1AhIADIEglvboIcSc8eZxCNZQMkCPmCAzreBoloqvd31Lyz7H02hhfH6n3dZRH3AfiIPgB0EeOUc7BFZfEAjPHU2RAWoNt7h7S/A0U0ydyi3lPJeAyJ+MiKAeULDhau3hkZYZEoIaqzjUfUazS5Z7ovk/fMFFGPob2pXAXYKO1N2IhmhETvwkQMzYihLrJrimjaegxVuWDL5gujlnpqqscyqbOBIpqjnTo7ur8fRYKk0fHfK9/fkZs0udTZiPUtCxN1MUCNRhXbvU4FgbioWpRUZ7nFT6Omc9LFThgRze29urPBbK3gnyanPkOJeAyqrMBIGPVfu+MFnPF/C/D+qx+XOnoC9xz7pTkKo0vkazQt46eXyJQ6RoxvKfdYjmrqrBHRlNRZYbTwS511HAcPvLwJNy9Y7elt5YqrgeoLpfst8uWRSZ3trLZGc7RTZ8P5/ULBacj0Je74g6jOqoN01Ix1XogrWvsYJur590ydtVynrgHvVEsg+hHNRq3RrEd/vR0komksuAJFNMufGY2I5j9e2QwAWLuzH0s2RqsGfDQpFMwewYCkzkYdQ4E/YgaNbb3a7ZE+q44R45rLhmZUxYCC9NGM2nUJi6oNzUcffRQf+tCHsMceeyCVSiGRSBj/JZMialspuhiQ+cAsWLEDX7j1eVxy9yv4zaMrrduxLWyrXbDZUmOiIga0uds/ojk0yhFFboIO4/e3dg/iqB89gnf/778wf+nWmrc3knD3TxCPpHreCk60FvoZJnoZNQ9ymKjn3tauBLCnie8igkCcI2kwSoYms0Bo1NRZWm8ahhG3wy+iyfyGV41mMhFHMl4uwrKd666BLC65awkuu3uJ5wI1COr40u3hPNndsGWP9EkfzUgT9RpNW0TTFil3HN3hMa5FSZ2NyFxh9i4NIgYUjX0Pm6oswfvuuw+nnnoq8vk89t13X7z1rW8VozIkBn0imovXdZb+/fzaXdbt2BYM1S7YbB7LWhbQ2XwBTy7fjgOnjcfUDnuPEVqDx+Wx86mz/l68kYw0cYN7GDWaX/vTCyVD+3t/fxXHvXWPmrc5UnD3T5C6KG7iTMQTlk+PLGxEM2ITe5jkAqTOOo6jLVKbU/FSOiyNgrIRzYh4qYGxlTprCFbUoUbTr1YJMA1NdVwoRjTLhqZtbrv1mTW4+eli7+kZk1px3ntmV7bjwxQKjqaaW6vROpawGSiiOhtt6pG5ECY2R7FNEIh+vqM5gqmzRkSTqNCyYkDRui5hUZV1ePnllyOVSuG+++7DSSedFPY+7dYM+IgBqYaJ1wNlM2CqrXWy1c3VYqj9919ewt8Wb8DktjQe++/j0dbE3470geXOCycGlC84yBec0iKFMzS56FO9YA3NEAzdJ5fvKP175fa+mrc3knDHHyiiyUyczaloGJr1ilxHFdVwsBma9Bme2tGEdTuL6e6d/f6ps5GKaI4pMaD612gGiabQWiw9oqkbmrZF6Yqt5bFvzQ57mx0/6L3qVXe8u2FL7RMxoGhj9CKvw3yUyRWwoXMAsya3IqbKwAbAbmgGC3BEMnXWt0bT/M5YNTSrSp1dsmQJzjzzTDEy64D6kOQKjrGAURfmnoamLXW2yofQFtGsJdXqb4s3ACjK4d+4YLX1c3RQpIvOnsGs1aOqLmpGWwyIM/5rNXSdBo2kuHDnJIihmTdaYkTnPHARm5FsozOS0OgPNRpd6HM2tb2cwUDTbaOuOsu1N4lai52g1COlbkefHtE029f41/hltRrNeCBDU91GLdeDbr97QIwoF3vqrJyjKGNENEN2sGfzBZz1u6dx/JXzcdGfXqz4+9yYCgA9Q7yTh6q462JA0bgX/Wo0d6fU2aoMzfb2dkyaNCnsfRFgGoJ0YM9qEc1gilza9qtcsNkMubDac6z18EAbqbPkby6aWfquamiOch9Lztio9ffX79JFkPab0lbT9kYaXnU2QB/NOqT8hQW3kI7S/oUJTf/pGsiyEyhd2OzR0Vz69y5inHLPaZQMTW7Ma9jU2TrUaPq1N+HGPKNG01CdDWBoKuNGLb026f5J6mwZm4GyO6jOPrhkEz74i8fxy4eXjfauVEy9azT/umg9Fq0plnL9bfGGirdvW0faVGfp5yNZo0nGEbrPnHEtYkAK73vf+7BgwYKw90WA+ZDQekR1wepVgB92jabNqA1rAU0XJyp+YkCqEJAqGlH8bvk8jHrqrE8qdDW8uL5T+3tyW7qm7Y003KIxSEQzyn3BuJ6ZUYq4hok5eQK9zFhBr4+6MKCOI+5cRam/GLdAaNTUWaO9SQgLHV8xIGbMpYam1kczEUNCScWzGfXquFHLuEq/K2JAZTJ5fmweyhXGrDPN5Xt/fxWvbOzGz/75BtbtrD41ezSg1yZsQ/PWZ9Zqf1eaAmp7pruthiaZTyKYOuvnYNudajSrMjR//OMfY8WKFbjiiisaPnUvahiGJhnY1QnYqzFt2KmzvRajNqyUwG299kbvdOFJH0bV4J7QqhtafqmzIxnR5H6r1gH/RUUcqvgbjfU8ckZFJsCixZw4o3PcbB/NMboI4+7pLkZ5lh5/i1JPa3jbI546y7c3GYUdCQFTEba2A+nP5AxHkfGsBohomu1N/MWAwkqdpd+1LXZ3R7wWwmNZedZxHGxSHNqc+GCUqadjdnvvEF7e0KVvv1JDs8IaTbr/Hc1lx2VUxIDomiRQ6myEHKphUpUY0He/+10ceOCBuOyyy/CHP/wBBx98MCZMmGB8LhaL4brrrqt1H3cbCgXHEOuhN566YOvP5uE4Dlt4nSOqfe5AU+2CzdbbsFovJnVQbO+pIKLpcU7amhLY3su/xw2uI2kA0H6gQO2G4Yvr9QG+0fo12va3P5vHuITdDxZlFT22X2qEDOEw4RYIXQNZzCCvGYZmOml9j02djcjiAbCIATWow9Vob1LjfUqjmQCX5u5fo6me40Q8WHsTPXU2zBpNiWi6qIvneAxafXZvJofxrSnmW41PruBAfVQaTfyonqmzdw1rbahUWmuo7l9rOlEyFm2qs2bqbPRUZ/2E1rihdqzWaFZlaN5www2lf69evRqrV69mPyeGZmVw3kK66FIfMMcpqsi2pE21TXVyb29OlgQ3qu6jGXKNJn0Ia0mdVd9vTSfJe+Xf4c5v2EXxXvAGSPUDfr7gYAnxJDaaQWOLRPYP5bV0GAo9zijVNoy2Q2Mk4RwlXC9NevzNqbITIcgiaDBCEzCX8hSlPq6VYKZ3OVbnZRC4cdzsJ2deXxq5UL+TSsQQDxTRLN8jtTxv9LtSo1lGHWc7mlPoHsyWDLCxLAhE55dGO1Y6z4a17nEcB39ZtN54vZaI5oSWlGJo2kQoPVJnI5L9Up0Y0NhcJ1RlaK5atSrs/RDA10HSB5amHfVlcqyhqd7UHYqhWXUfTWt7k+oGrCAtS1z8UmfVhUFLKo5YDKXJz1d1dpT7aNaS8rliW6/hvWu0Ba/N0PbzGBtRkggdN5s6G6H9CxPuWDsHzKiWWgudSsSQUqLVQfrdRj2i2ahiQNxzk807SCerMzSDRDRZ1dmMPXU2EY9pEc0gqrMS0awP6rPZlIyjLZ0spT2P5V6adM3R32BpwlQcKyzH5ysbu/H65h7j9YprNLX1agoYTk22RSdpn922pvIaODKqs0Z7E1KjyYxRUXKYh0lVhubMmTPD3g8BvCeGPrB0YWdbgKkDSXtTCsCA5+f9sLc3qe7B4BY4g9k82wuRRojoOVFTUtPJOFKJeOmBVR9c1tAcwQebW5TXkupK6zOBBjQ0Lfvrd5/WW9ygFrhrOlaFMtgaTWZhrl6fVCJODAf/1Fnpo1kfuP3OFQpIVyffYLQ2AZgFV4A+muq4kArQ3iSXL2jzgtRo1gf1OU4ni07dkqE5hs8TXTtE0ajO5Ap4eUMn/m36BKST+vNbrxpNLprp7kslqCn87c2qgqx/Jl0yEdN6sA9mixoPSY/Sm5HAL6IpYkDCqMAtpoyIJhkgbJEf9UHsaK5d+tkW0aw2IsctNrZ08wX29LND5BhUYzGViCOtRUu8azRHMhIWthopVZwFaj+egUwe97y4Ecu2mF7KemAzEP1Sk0wly+gM0Hx7E/21wWwe5/zhWRz703l4ZuWOkdq10OEW/X6ps6lEXFsEBLmWtHZ9NOHFgBrT0OQWO7WMSduZiGaQ1GgqNqc+L0Ham9D5SSKa9UFdCKcTcW2B32jppJVA12FRiZqpnPOHZ3H6tQvwid8uMDQwgqSvV8Pza3exr1daa5gr8OtVW0RTXcul4nG0N+kxM9t6dSTxEyzcnfpoBopoPvbYYwCAd7/73Whubi79HYS5c+dWt2e7IQMZpkbTR/rfpvSmPrjjNEOzugHGXqNZ3fa4xcymrkHMnGz2gfRLnVUHnXQijlSivCjxbW8ygpEmri6ilprKl4gQEFD7gveK+17Frc+sRSoRwxPffC/2HNfs/6UasB1/v49DhEbSItXeJECN5r9e24JH39gGALj20RU4YvbkEdm3sOGeY25hnvGIaJqLIHObUam7AXjhn0ZNneXGi1oWoWyNpqFsa/5mL2nMTtub+KXO0oV/mDWaQ7mCNdtmdyNDIppNSuQsilG+sKBtXWwq/KPFtp4hLBh2WD6/thNbe4a0uduIaIbkmLVlmlQamStohqZ/qxJ13ZlKxtFKysf6hnIY3zK6wlTVRDSzeQf5gqM51sYCgQzN4447DrFYDK+99hre8pa3lP4OQt7Sd0kw4bxk1MNBF9jWB1H5nOrtGQw9dTYcMSDAHtHkJn7tfRLRTNkimqMtBsSlVFaZOjuUy+O1Td2hbc/FNX6yeQfPrtqJU945rabt+WFVnfWZyA0RkwiJIPE1mvpxblNUlrd224Wwok7wiKaS3p6IIZlQxV0CqM5GyNAcS6mzfBpq9cfC12j6p87SdLc8aW8S94toeqjWVgr33Z7BnBia0OfadHL3iWgaNZoRi2hSBw9dF5o1muGMV7btVGpoVhrR1BxR8RjaiAhkFO5FOo76GZ4umRwv8NnIBDI0L730UsRiMUyZMkX7WwgXbjFFjSN689pSZ/PK59Sc92rVG22/U63nmPveZktvKrNG0646m0rqhmbGN3V25CJhrKFb5YC/rWeI/W6tEU21B+JI1AtYVWd9JnJDRW/42q7d0Y+/LFqHY948Fe/eb1I4O1khXIq0UVutPOtRMqIqhXt+ODEgdYGapBHNAN72TK6AQsHRDI7RgnOuRcjPYWUwm8fFf30JW7qH8P1TD8Sb9ugYmYhmgIg1UMzOGd8aNz5D25tw9xzN7AmzRhMo1h1P7Wjy/N5AJo8/L1qH8S0pnPKOaZG4V8OGZiZohmYE0hXrRdRrNKmDh67z6lWjaYuM1qI629GkGpr+685UIo54PKa1RYnC9TEVvfVzYmuJtdsampdffrnn30I4cGkIXgqrgIcYkBbR9E9F8EONMDUl46X9qtaw4b5na4JMFyq0j6YmBkRTZ33EgEYy5ZJbwISZemz7jeDbLKBHGaDDFGBxHAcFB0ZKiDWi6XOf0vvHvY5fvWMxnl/bid89vgoL/ue9mNCarmGvq4ONaJLrrGYW1Ms7nssXMJDNa6lI4f8Gvyin6AuDGJJxpUYzYP3QYC5vtC8aDbjoZSNENO97aRPuemEjAOD/Hl2JK894Z+iGZjDVWX77ah/GPIlYxBXHNjf0eanWVgo3JgdpcfKHJ1fhp/9YCqCYRfS+A/aseh+iSobUaKrZUlFY3NcLo0YzYqmzVISL1rTXq0bTtp1aVGfbmwJENIkYEAC0NSVLn7eVlI0k1OGcJ9fAtnYuBlLGVj9aEQOKEIEimuTmtEY0LakI1UZP1ElEzX2vWgyIWQhUnTqr1Y3YWyeMduosNyhXaxjaBvha0t6ogRCWoblkQxcO/9+Hcfj//gsvrw/W99OvvQk9fvc6L9lQTCceyOaxbGtvtbtcE0Ha2KjPYT0aTG/tGcScHz2Cd//vw3jk9S2hb98laB9No0YzUVlEE4hOi5NG7aO5ftdA6d/uWMsdSy3OKlZ1NmCau6paatRoJuwqxQAT0axhHOSuZRBBoMVrO0v/fpGpnx8LUNVZta3EmFadDSjCOFpQES46dwd19lSK1dCscO2gjkN0vUqFjejvuuu9qDk9uB7FKjZf2FhUnq3ZPbxgwQIsXrwYXV1dGD9+PA455BDMmTMnjH3b7eDEgIZ8pOE5z5rjONrCVn1wqzUe1MXwhNYUtg7XmFUbkeMWM5sDGpr0GDIBajQdxxnV1Fl6TVyqHfBti/FajqezX5+swhjwsvkCPvTLJ0p//2XROvzbPuNLf1fb3sSs0SwY13i0Fj686izJRFBTZ+tgQP35ufWlOtA/PrsO731bfaIr3KKcj2gqWQfJOIloemdtuEQlxbhR+2j2K60CXEOMi8RWOyblCw529nGqs+T6WsYodXGo3hPJeAwJ5X7hdo9mBdRi+HNjUpAWJ2orhrHaD2+IzLVRrdG896WNeGrFDvzHUbPwlj07at4ezaKK0rECwI5eGtH0qdEMycGeJdlk7vxbaaaYTQzIcYrRWZpKmiUZDwA0p0et16c/k0M8FqupLps6u4KIAQFjU3m2akPz6aefxrnnnoulS4upIo7jlOo23/a2t+G6667DkUceGc5e7iawYkC0lQe5ebloCJ0nNQ9RFYtax3E0D54a0azW+815nK01mmTS9opophJxpJJmjaZt4Bup/ou2hU+1nnfbfteywKKRqEq9khy/fWyl9verRMDI5qjwS33hajTpNR4tryZ3TEZEU3Eq5QoOMrmC0fusFlZt7yv9u57ed+5Yg/TR9GpXkbE8E1FpcdKoYkDq2O86pPh0/uqOZVd/xph7AO5ZtUQ0ledVS51NxJGIVRbRrM3QZFJnA0Q01bl4rBqa6nE1JeNoT6s1mtEwvjZ2DuDLty9GwQGWbu7BX79wVM3bpHNLPbJQasGo0Ryh1Fn1vLQ1JZDpL/5NDXM/bGJAQPG+ooZmjswnADRBoFruxRfWdeLTv38G8XgMd3z+SLxtr3FVbYeOI0YqrWWMiso8FyZVGZqLFy/G+973PgwMDODYY4/Fcccdh7322gubN2/GvHnz8Nhjj+GEE07AE088gYMPPjjkXR67sH00aUSzQAc884Gig4hWozmcilCJmFPxO+W/x7eU695srRwcB54LZ+57W3uGWGlnuhiiHh+alpfW2psMG5qWiT8s9TU/bL9j8+5Xu71a0t52EUNzsMbF0podffjFw8u01/bo0Nul2I7D1qjZhS42M3knMoIN3DWg15k+6wOZfKiG5tod/aV/13PRyx1rfyaPoVweTcny4oDWaGp11PRaWvY3zJrhanFrjSmNENHUDc3wI5pcfSbAZx9wqFEIdVxIkj6a3D1HIxjVjqvF/eMimv6Gpnp+R8qBOdLQ51gds6JiXK/a3ld6Rl/ZGE4Kc1TmFhs0Zd3sVlAfMaCcZmgmS2uIWiKa7cTQ5IIjXI1mWKmzf120vqRV8bfFG/A/J1draOrn3HGgCdpZxYDG4NhRlaH57W9/G9lsFnfffTdOOeUU7b3LLrsMd999Nz72sY/h29/+Nu67775QdnR3gEsNo54hOglynjU6sbcp3qCCU3xfrXnxgz60WkST7M/yrT345O+eQb7g4KbPvRsHThsPDlvT8x29Q9hjHDVG/CKaelqeljqb8zM0R+ahti18wo5o0sGsEmjqbC0Le8dx8J27lhjXiv5tS/X1i2hyNSfGYmCUUme5icIZfu7cBTN91vsUIZQwWLOzHNG0RQjDwOaV7RrIYo+O8rhD09u1iGZAb3sUUmdtx9sINZpqb1p33LH1cqsGTnG2+Fv28VpFj2iWv5MghiZnHNMIBr2nKoGv0fQfS3a3iCbtoxmVBbK6j4PZcHqgGmJAEYto+tVo0ns6jHVPvqA73VRDr5aIZls6iVgMpeAGd6614MJwWn1YadyqU6mW7XBru1zBQXp4LLOKAY3BiGZVLvQnn3wSH/3oRw0j0+UjH/kITjvtNDzxxBPs+wIPV6NJB29qsHApAvQGb6b57RVOwrQOVBMDIvvz1+c3YGvPEHb0ZfDHZ9dZt2nbB1qnydU20gdR6+2V4MWARjt1NhtyTaXXpF5tVJOmztZiaK7Z0Y/Hl203Xjdb0/D76qfEaqQC5aKdOgvo9xr10oa5cBnI5LFF6c1Zz0Wv7fmhqYa0lkd7RgMugqIQ0bRFLhvB0OQimmwfzSrHJKuhGVR11iIGlPJphwOYC8Ka1LfZGs0KU2cjYnSFjXpc6WQcaSVrISoLZOrM5MTJKt7mKM0tL6zrxLE/nYePXfsUejzuQTOi6V33HkYml5k5Vzb0MvnqxYAS8RhaFccAtxbQUmeTZdVZl1pUZ9V5ppa5029s9VadtbOzL4Mf3v8afv/4yoaYd4AaVGff9KY3eb7/5je/udpN77YEUZ2lRdxsWgFZKLSkaCF1ZQ+POqimEsV+RS70RlcXmDv7+VQq7nsutMUJNyB69tE0FrHRSJ21LXyqVu0lC3eVagcf2v+wFjEgTn0S8O8L6+JneJn1DxFKnbWlSauGJpM6GxZrd/Zrf2fqKC5gu9fo4q6iGs0Iq87ahs5GmPDVBZsbMQyzvYktddZsXO6fOqt+J1hEM7w+mlwNaJAazQHl/I5VQ5M+x+kIRjTp/cv19a0UOiZlcoURcVL/4P7XsGZHP55bswvf/fur1s+ZNZo+Ec0QnI/0erfVENHUa7JjaEl7tzjRVKnjruqsooBcw9yv1kjWYmj6dRmwpc76rbuumbccv3lsJa647zU8/Fr9FOXDpCpD8/DDD8eLL77o+ZkXX3wR7373u6vaqd2VAU4MyMi1pxFN74cQYAzNCh8e9UFvTSf1ehmPtDev1EWbsUtbnHAPK30QjRrNpNpHcziiOcqps1aV2Kr7aJa/15zSH+NqIxJGjWYNESSbseVXc+zi1/ybFQMi53i0lAFtCy71nNBzG2YvzdU7+rS/6+lMsS3oPQ3NpN7rlj4DtvMXhdRZ2/1qWzSMFr1DOdzy9Bo8ubycVaBFNN3UWdbQrDYjorzY1a4vdQoFSJ3VF5L+NZr9NKJZw7jO12h6P5+O42ipyWM1dXbIK3U2IsdM9yOMiCZ3bCPRS/PZVTtL//7LovXsZ/ozOcMYM8SA6lCjSdeRam1lpdtXx6FETA9mcIamOoakElxEs/r5VJ1najlPbHmYst/2iKb3b76ysSyo+Prmnir3bmSpytC84oor8K9//QvXXnst+/6vf/1rPPzww7jiiitq2rndjUARTVqjyTxQdFBprTV1VlkEt6UTupAHXSQq++vlVbLV0FDlWW7SNwzNHF3Emu1NbA9vLf3WKsG2IA+jj6apyFbdNrsMQ7OGQdbmraNpz8q+qosWzumibZ/x0NJr3BO1iKay4DYMzRCNKFUICKjvAtCrRlPbByIiorarCJpaGYXUvEaJaF710Bv4zl1L8KnfP4NXhxcm/ZwYELPb1Y4fanqh6tz0qg9TP2er0UwmSESTGVt6Q1SdraaP5lCuoAnmjVUxIE11lkQ0o9L/jxoHVHugGrh0xqio7HKZBGYfTe9U2mqg60hVgbiSsZpmKCTi1ND0Tp0tRzRV1dnq59MhzWFUQwq+b0ST/57ffB1WDelIEkgM6Hvf+57x2vHHH4///M//xNVXX433vOc92HPPPbFlyxY88cQTWLZsGd7//vfjoYcewhFHHBH6To9VBpiH0xBPCSCzTT9j1mjWENFsSiKZ8Foklv/2imjaIgPU0OQ8SvmCg1y+UNoPrYm0UaNZsG7H6/WwsZ3zMPpo0oh11TWaA+GJAdkWekZEU/l7fEu5P6t/exNz4jRqNEMSAxrM5vHn59ZhQmsap7xzmu/nbfe2+mzUM3VWFQIq/m797nHbtjtpjaYyYad9au6sqbMRiGhaazSjZWdi0ZpyJOS5NTvx9mnjdENz+Lpx92q1GRGqgdqSTpSigHRBqn5uYmsKA13F/VINTbVOMhGP+0c0yWKUq7MMSjU1mnQejkp0L2w8U2dDUCm//snVOGTfCfjIwdND2UegjhHNETA0m1NxzeHbPZjFuGZdNG4H07vWr71JwYG2hqoGo0azyogmfZ6pocnNjepvJ0OOaGqpsyFHNMOo0VSduFFxdvgRyNC8/PLLre8tW7YMy5YtM15/4IEH8OCDD+KSSy6peud2NwY5dS0a0SQ3J+vt8UudrcXQTCe0RaKXIqxXRDOoGJA1upFTDU1lEUsimqU+mqOtOhsgnbKy7ZW/RxX1qvXm7+ojfTRDLoQHmBpN5XPjFEPTbxI3oiRMjWZY3r7fPrYSV/3zjdLvnnqI9yLI2npmhMSA1kQhokmiCOoEm0rENdXroKqkUTA0ramzEYtocuOwev7K7U3M71Z7v6jXsTlgRHNCaxobh52L6vOqZrzQ1FkuG4Y+6zVFNJmx2i+iScersWpoeqnO1hrRvPTuV/DoG9tww1PAO/aZgP2mtNW8j4Dp9Apjm4AZRa8HMya2YtnW3tLfr23sxhGzJ2uf2cGIcA3m/CP82byDZA1ivJ41mhXoAtAMhXgshlafGk11HexqVIRmaObUiGb115hzWOWCpM76RIPVsagW0aORJJChOW/evHrvhwCgn+kdaIqnBIlolm/geKy4sIvHyqH6WlJnW9MJzZDzrNH0Sp21PGQ0oullaLY1mZ+ptI/miKXOBhCIqQTP1NkqIxI03bGWiKa90N0u5DSu2XtyUTEi6TmmvUlIhuZNC9aU/v3VO17ARw6e5tmH1h69Vms09c/4pQpXgmFo1tGZYoue03uJPqNJJXW24OgteaKsOtsoqbPqNXcXXeo4XlKdZZ7TqtP5le+pzk06Hqnbn6C09OnRVGdJ6qzyvHH7TFPl8gWn4n7R3P65dA/kPLdHHUdjNnU272Vo1vZ8qj0v39jSU7WhWQ/VWW4M5cqWwobOo0tYQ9M/dZYzejL5AlpQvaWp3uOJeEx75itxtNDnrSgGVEHqbKmPZlhiQGo/3HBT8NXX1GubTsRL95iXw6ZQcLSSoDGVOnvsscfWez8E8CkC6k1XKJjNwvlCaTN/PZmIlx7+SidB1WvSmk5q0Qgvb3XvkH1ytu3DLhIJsT3oQ5rXSV/E6n00oyEGFMT4qHZ7NGJddUSzPzzVWasYENmmuq/jlLY5Q7mC1nfS2D5Tc1IvQ9Mhk/1L67vwzhkTrJ/3cyrkmDTfsCKa2XwBGzoHtNcy+ULVi24/bKIrNIqg1rqkkjEtKwLQ+4up17G9KclG5EYLW+ps1MSA1HPYN5RHoeBozo3c8D3BpndVOSbaIppeNbgTW9Pl/WQMYaA6MSCg8n7RXtvP5Is14LZ+jPT5jUq9YtioKfBFp251xgWHKrgUptpnGDWafESz/ot8Ok+oxrjLNiaiSaNinJJyrWsf9V5IxmNV1+vSMahSMSA3s60tXYfU2SrvQ+vYakmdbU6phqZ9nuvN5LRa8EZJna0+QVsIHU58Rb3ROaXWvkzOWAhTqWhAb4FR6QAzQCKaWuos2Sd1f/NkcWPbR3WAop7pIMIgmpc1EUcqGcUaTZsYUHW/n/EwNKuJSAzl8oxyXfgRTS9xK7U/K+CdPmtG0p269dF8294d2t+3PbPW8/M2RWV3nwfZep9wjKgNuwaMCc5xamv34EU1Ec00aW8C6OOBeh3VKDdXWjDS2ETMohbRpKmz1EjPMU5Ll0wo6fz2rBf1bzWiqdZUa3NYXE+15tKUuWe92nvedi290mfp8ztWI5qq4FM6GUdTSi9ToWuRoAxm89rcUIuhOWKqsyMwHtHffWVDt/EZLqJpdCtgnumaDc2CPqZXm0ZtGJpx/9RZrRQjHr0+mkHEH9U1knq8Xr9Jx6BGSZ0VQzNCcB57dWDnBgvHYQSDlIfQXdDpSrGVTQaq8deWTmppb16ps4B9sa+mcqgGRiZX0Dzj1jS6XJ79DI1o+tVojlTqbOg1moo3sSkVhxqsqmbRSxVngRojmgGlu9V7lYoceE3kXJTEiGgOmk4Yji3dg/jKHxfjW397mc0qoNu958WNnuIgfqqz3G+EFa1bQ3poln67TgvfavtopogIhbpo0dKplbGhFhXksLCLAUXL0NQjmmb7g1yB97gD4bRc8kqdtUU01Zo3Kvahps7mhtNiXRzH8e21Vwm259frmR8gZS9R6SkZNprqbDKuObBrcWjRc1vL+TNrNENQnWX2Z0QimuRYlm/rNRzAXM9qv/YmAIye7C59Qzmc/ftncOJVj+Kl9Z3WfVPbm6SS1SsQ84amjxgQiawDuqGZYdYDQXAcR9v3audN+9jK12iqx+t17qgDdyQEqcJADM0IwabOqgIOlgmQpgmon3MfQk0ptgYxoJZ0QvMue4kBAfbBOG+JWgB6q4cgEU3aU6mSGs2R8jxblUirVXik4ioevU2DwAkmhKU6q05AuYKjRSTUfR3Xot8HXukvpoCMObHkCk6gCe83j67E3S9sxG3PrMVfnzd7ldEIz0A2j7sWb7Buz5omPbwv3HkNa8JYQ3poutRLnERdwKjODr8aTSOiqZxjdV9V50MkUmctC4ioiQFphmYmb8wtuXzBvhgKwUALKgakOhnVZ0Drq0dSZwG9NcBQrsDusy367IdtrO4asD+jojpbpFrnZDc5t0M1POtme5PaI5qcQMtILPK5UpOlpHdikBpN7lm3GfP3vbQJTyzfjmVbe/Hbx1Za942uu6rtqUqzn6ihyaWHZrUabtfQ1DO7qkmfpfdvtfezbQ2gXgf13y2aoWm/9+lzIhFNoSIKBYfvo6lG9ywTIOetdnEn6DQT5QuK1keziYgB+fTAs7WYoGqj2u9pnm3/yJjqWUsn45pR7X6f80h6bT9sbP2Yqo1oZjwW7tVENHexEun5qlOhbN46gNzTJAqi3qeVRTSdqr3Oy7aWJ+4V23qN92ljaqCYPms7N9bo9fA+c895WM2/qRCQS70iLOr9O0mJTpl9NPVFSYrUzukRTd75EGVDM3IRTSIGRIXmCo7doKo+XYyPaGbzegRSvWdam9TPKdk7ynlOxb1TrW3jRPVOvMojmmbqbLTuh7DQVGcZQ7PaeyfMiGZd2puwc8sIpM4yv7uE1GluD6A6yz3rtnlKrfnkts19P2WkzgY/N1x7kxafiGaOzCeA3kcTqC7iTA30au9DuxOvvD31I1pE0yNzhz4nUqMpVITNc6JH7io3NFNhpM5SMSAteqbvE30we4b4QV5bTJKUSfXhsavOKnn0Hml5XERTrR8KM6LpZZQF6a1YCTR1RE1nrmaBxUU0C071+6d560gNqXpPa6Ifibi28PQ0NMl+2VJlgng1dypGNrco4e6R1zf3YN3OAeN1wL5QdbfDTZxh1ftYDc06RVhUkYmJbWVDk9aSUGdQ8BpNNXU2uoZmlTZNXaDRSi51FrDPOdXWjatjRRN55tXTpo5P6gJLNUjV55uLaNLj46i2braaGk1jgVrniOY185fj8P/9F37xsNlarp54tTeh71dCD3FI13L+DNXZEFJnuTYX9VadLRQcdv59ZaNepxmkjyYX3Q+i7u11Hag2RlOyOmEomg0Sj8U0YR+/Gk137dOSSkAdJqoxwuh5q/Y+tLc44yOaagaIVxTVrNEUQ1OoAJu3Xn2YbdEvmsKhGn+JYQOzltRZtf6EtjehDxTN+7dFNNUFahOZsPottToqrrHiOLoITDqptzdxBwqqZOm3/UoYzObxqd8/jaN+9AieWLad/Yzt2vkt6nL5Au5avAEfveZJnPT/PYoX1nUCoOIqsZojmjZlvmol69V0GNp+ZShvqcWK6xNMr8VJAfDpeNykQBcwHGo0lyrv0n1UWbOTT1O1Xuu8R0QzrBrNEU6dVWutO5QU+FzB0c6bX42me24cR++Hqtdojr6haRO5ipIYECeK5adorlJtloUtogmA3At2J5TrpNEdUDHNkQboEWTbgjL8Gs1opM72Z3K4+p/LsK1nCL94eJmRPVBP/FNnq3tG6QK6Fn0Aeu4Hs4Waxw7WiVlnMSBbNO2VDeWIZqHgaI5SlyDtTbxax/ntA/2+GdEMfv2M9iYkosnNjWqGmFvKFSMGajVGmHHeQo5oaqmzmhhQwNRZMgZl82b/8CgS2NC89tprsWnTpnruy26N1dAMUJjsHdEsXmJOICcoekQz4WnU0G3bFgF6fn9cVwxTvmNLOXUHsmK/tPLrQSKa6m+FIQb0yOtb8eTyHdjUNYir/rmU/YztnHv9/j9f3YJjfzofX73jBTy/thNvbOnF74ZrJsy+hGaNZr7gYEv3YKD0V1t6UbUCLOo9aKTOKteC1hOrxoqXkUijtjnLgOuXPuM4juYR3sWcB9tAvn4XH9G0XetSRJN51sPoo1koOFhrFQOqjyGU1wxNu5iTX40mZ2AAev22pM4Gg96vtoimvW699iyLljQxDAtlR4KeVq+nu7n3SZ5ELIidqUVobHVKYddoVqI6W4sCqx+9g7nSGJMrOKG07wgKjWimE3VKnQ2xvQlQe/osN6bXO5pkm0de39xTChZ0DWTZMcmIaHI1mpa1lWpseaVxamN6Um9vUsn18xMD4iLHOaJ466Ku7apJbaYpx37HsXxrL35w/2t4crkeYLDqNKiqs5Zx0Os3OadSI0Q1AxuaX/rSlzBjxgzMmTMHP/nJT/DGG2/Uc792O2wLTdW7YfPQeokBlWs0q0+dVb3htI+moSjIKH9y0BYsrZYGvX6ps/RYivVfZsQ1k9ePwSWMBcG2nnIdw+ube9jt6UIZ/qm7/ZkcLrz9eaMnolszoU5CSaZG03Ec/Mf1z+KIHzyMb/71Jd9j4AwsoPookjqIGqmzqqFJGrMHMTQLxLkADEc08+a++g3C/Zm8tj/cok2tL5ykpIeu38UbdbaMAXeS4YQuwkid3d47ZPUk100MKK8amrrRoKVgkZoao4/m8Dmjz4Ma0VTHodc3d+OoHz6Mo3/0CJZv1cUxKE8u346zf/8Mfv/4Sr/D8cU2BkdJDMg0NPOscInNc16tF191/jQnSaRy+PrT8Zo6odz36RxGI5rquGETZRnJGk1u/q6Xc4c+4yMpCKLWwTcl44jFqu+fqGKIAYUY0QRqT5/l25vU2dC0lVPlCtjYOQiAV5wtfsYU/6IESp31imiS8h01dbaSyLa6FozHipFJvz6a6vigrkdVQaDqIprEgU3ECykX/ekF/PaxlfjcjQu1tYM9olneft6S9VVJ6izQGHWagQ3Nxx57DF/5ylewdetWXHzxxTjggANw4IEH4pJLLsFzzz1Xz33cLRjI2BeIruFiGxjMHmm6EaL+H6g8dbbPQwyITqZUkKXH2t5ESe+N05QH1bj2Tu+gA2E6aemjqaXO6oubWtPe1PPTn8ljY9eg8Rn12qmGrm1Rs2HXAN9XtbQgL38vTYzrXKGADZ0DeHw4jfcvi9b7Ghpdlom42lQo9bhoTZ4epdej7+2aRzL4AtJWo+kX0aRpR5woknrt9pvSVvq3tUbTmjrrFdGsfbGo1tnGYnqKeN3EgJRr0UHEGGwRzXSiuEBV7wn3fqHXUK/RLL/3l+fWY2PXIDZ0DuAvi+wKwADwrb+9jCeWb8cV972GdZaIb1CsqbMRimjShUomX2DTPm3RimprNNX7nqbLu9ukc1izJcVWy8oh7U0Akjobdo2mLXW2gogmUD9Fc/os09Yq9cJxHCMzAQCaEiEYmmG2N6lHRLOKucWLv7+4ET97aCmb9ur1my7bhw3M7YziLGA+22x7kyCpswFrNFNxs71JUAc+VZgG9DUSN19miaPdJcj6wQvOsW67Fx3HwZLhNObBbAGrtpfLVmxjqFoiop6elqA1moyzy8/RVK/MikoIbGgec8wx+NnPfoYVK1bghRdewKWXXop0Oo3//d//xRFHHIF9990XX/nKVzBv3jwUoqSM0CDY0sKK6oCml1eF3miat4cVA6rs+qiL4JaUXQyITkSAh+osMTB0ERglomlLnc26EU1iaCbivu1NzHSt2h5Eqhi6bIsZYbH1mHOjj5RtFrU39zi0HlZMRFO9ZgXHTAmhhJ06q08eeopVxjOiWTYseiwRBG4BaavR9JtsqJBC92CObZ3iMlsxNG0RTdUQ5p47zqkURkRTXQh3NCWrlpuvBHUB05xKaMc74JE6C4BN96aTuqo6qy4C1AnXq5YXKPZJddnEOIEqIUjtzWjDLVS295jjiW1BU3XqrBrtSvHOPDqHmRHNYUNT1RmIx0paA3R7gH2hVXWPYmvqrH0sCdJ/NyyoETFSEc0cySRxDYtqUyZV6FjvlbLpB7dmqDW9mI9oVnfeX9nYhQtvX4xfPrIcX7hlkdUQoL+517jm0r/d51ltbaI5c4kgGGdo2q6VljrrcT3VZzSV1NubVNJTVXXelQ1Nfj1Y+m1G8BLQU2fDqNEEvEphHKPNErd/Ku41ofNF4BpNZgzyimj+et5yHPr9f+JnD/ElXSNFVWJA73jHO3DZZZdh8eLFWLlyJX76059iv/32w69//WuccMIJ2GOPPfDZz34W99xzDwYHa5vYdxdUQ5M4b0sDgs1LQh9EmpYK0BrNyiZgz4gm6QtEx0xrH03VEEnYI5q2h7wU0SQDoVmjaS5gqQx2rdEe+qAv38q0yPDw9nMLO5unsmRoaoM8qdFk1Or8FgCcCA4QjhhQIgZrehVNkWtX0i9tTgrufOXyDnsdbdtw4SKYRmsOZX9nT20v/dtWo2kTO3FfZ8WAQkh/UY2vcS0pfQFYp+hKnji11AiVGmmhzb3dz7uUI16kRrOF76NpU+9j91F5v9Y6z0YwNLlnnXNchZ06qy6uDDGg4feoEUedfqUUW3UOi8eNVGvN0LSKAdXuJFOPo5L2JkD9njm63bAUq31/l9xX7vjSFMI4QxfQtZw7rs1VrRFNzuCqNqL54rqymM8zq3bi6ZU72c/Rc7DX+LKh6TpI1dRZ1RAF9Oe7kj6aqnPZa91AdTaq7amqteOLmYbmYNbs+WuLaKqGZjXPBWto2gxyMn7a1jUq7rhGM2A01Vmv9iZMVoWtNVp/Joef/2sZdvVncc38FegKoc1PtdSsOjtr1ixcdNFFePTRR7Fp0yb85je/wRFHHIE//vGPOO200zBlyhScfvrpYezrmEb1iNJ2H2Xjgr95jR5eakSFEQOqJHU2X3C0gac1ndBrNJVt8b2mbMaCuo/V1GjyqVg2MSB1EKCNfStNJaZQbzZnaKq/YSotBotAAErqbEEf5GlEk27Tb9CvpxhQIm5v5pwjxxGkRtMW0axmMcBJw6v1qoWCo+2jmjq7tWfImJi8xE7ce4CbzMIQulEXax3NuqHJ9QINgxxxGLVq/c/UsUFPhQRIOn+g1NlyX1f1/veLwKn7WKvoUkMYmsx4to2LaNpSZ6sV0fEY41yHBB2vqdOtXBpQ/lw6GUecps4GiWhWqzqrfG+SR8seFV4Zs06GJtnuSKXOmnPtsP6D6kSschwzxYCqHw/5Gs3wU2er7X1MnSbXzF/u+5vpRBxT2ptKf7vrA9UhPX1Ci/b9QUWZn58zLdliauu4oKmziepb3Wg1msPnpoU4oOj8mGXmEyCM1Flzn4PUsgL2dY2KW6NJl3yqoek1bnHOLttx7uzLlK5RvuBYM8RGglDbm0ydOhXnnXce7rvvPmzbtg233347TjnlFDz88MNh/syYRJ0sxrfohqa7gLamznpENBM1ps7SB5z20Sw4ZSEMLmUliBhQIk5VZ/nIhUpZDMic/PxUZ8NOnaUy58u4iKbqJQ8U0SwvDCe2lu8Hd3Go9SVMmPVu9Lz4LQDshmbtYkCJOFGky6vXV/FMxmNanZ+tvpdzDGRy1dZomgtwNc2KRmBUQxOAIdZEr2VLmolosvVc5jWrFC2i2ZysSWk6KHo/s5j2bNkcRmmP1Fl6DtSFQ8EpH4d6D3gZeVQ4quaIpiXNzVa7ORpwzzpnaPqpI1eKnrWhLy3c54iO503JuNb7zv1tvTTAFI9Sr7ktG6Ba41+9tya2qan8Xqmz5nt1i2iOkhgQ/d2mRHFsCyNzIsz2Jtz9a8vYCQoXJa1W7ZPOKY8v244Xh9uWab9JFH6ndpSdHqWIprJOmD6RGprF+8KvrzNFi2jmC1YxHDqmV9vqRsvAG37O28gayauFX0qLaNYqBhTcYUQddXoE2duJZ0Y0g/V2ZyOalvHPENhixBJHirr10Wxvb8fHP/5x3H777di2bVu9fmbMoHr/qaFZimhabl66cFUn/FpTZ6m0dFs6ySgAFrfH3cj2iKbukbLJWVtTZ7OuAalvp6iCF7yPZnFfalsQ0HO0bIupPKuLAflHVFVDc5riqeQ8/qlE3IgyGyJNfhFNqxhQ+BFNdYCm6Tdqjaa1vtfinWUNTZ/UWb+IppnKmcSUdlV5Vjc0aSRZS50dfs9m7NSaAqcuhMe1pLS62HoJk2j9DuNxkjrrU6OZ0KPwgNk+gT4rgxkzu8Pr2Oi9Uus5tgnFNGRE07IQrDYSqC88E1oJiHt+/DJQOHXaVCJeinTQ7QHBsmYqQctISAUT1BpJMSB63cIQEgv2u/rxlFNny89o9e1NSOpsyKqztaQN0t6+Ln2ZXFVCK1x2ya/mmVFNOhZObitHNN1U+B2eEc3ifWEbmwJH6gI4pFKJmHYf0P33gguMUGc8vcdzjHEK0PYm9TU06Wdt6xoVd7/pNVFVuj0NTWY9YzOow6x7rpW6GZoqqVTK/0O7OeqizIxoDnumAosB6VEGoPrUWTqBtpDUWcBeXwV41Wgq+5iIWSOa1sGQiWi6C2u/Gs22kA1NGlHuHswZC7ucl6HJTARqSoxmaHI1mok4EnE9DZHeK14G42A2r3kx1fTVcCKacaTVxYiy71QMqF2LaPKLA+45yBUKfK8zn1TJnUwtrOr9NuqSEnHsM7G19DcVBKJRffVau/ttMzRrXTCq3s5xzSlNfbmWCIEXtEZTT53ln2N3/FAdVq4RniHPMxWVcZ979b7xMvLoe7WeY3tEMxrqfkAFNZqWhUcYNZpJEoXk1GRjseFsBxJ5dxy93jrN1vQqEU1bH80QUmeblEiD1/ZGUgzIiGjWmA4+lOPb31ACpc6GJAYUtqFZS42mzWgoONUdLzff//PVLVi6WRcRpGOh6uB0I5lbesoaKHuNb9Yym9w53fY8284xfd1LDMel6DDS14VBzw1naKZJOZBRHmaJaLanaxQDYvbZdhw0zVY9T7axwr32NErclDLXrMZ38wV2PU0z6lyoUVqt3kYYjIihKfijLuhb0wlt8rXVI7rQGg19wneNr+pSZ9VJLJUopkCqD3Zxe3x9FeDVokI3RCqu0WQGUXdh7Zc625KKa972WlNnuUUGTZ9Vf8Mm6a+iRjSnM4ZmJm9f1OULjhH99kqdpZOwKipQtepsFWJAybheo2mPaJr7lM077MLZK90N4FOqtNRZurhKxrGPkqJEI5r0vLdohmbxvUHLxFDrglEXA0pqbQfqpzpb3m4iEdMiuO7ioKhGXb7OaS6i6UaySMokrfVznzX1vvGKwNF7pVZDk6aEa+9Fw85krzX3ml11trp7hUY4aN043Q9XP0C9D7K5gnE93fE8zmwPAHqtYkDVXRCbGJDXPMGKAdXL0MyHd09v6BzAsT+Zj4O/90/889UtgX83HiuvLWyK4pUQphhQ2KmzXvuirm/uWLgWR//oEfzw/teq2t68pVu1v7XymGQck9UazWEH6abOsqE5bUIzmrV51i+iyb/uFalT0Z7l4Z6q1Sid62uF4jMei8XQmuLXhMV9Nx2XAFWdDUcMyC/Y4TJkyeBRybs1kzR1NkBE07aWsRnUNM02kx29CUoMzYigtRBJJ1glN9sNGKS9SZKJ8gVBnUDdSTdos3XAq72JuuDw6KNprdE0DcgUE9F0G+7qaSiJ0iLHtt82HMfBk8u3a95HzqNEBYFs7U0A/hhVMaDpJHW2QGowqfePi2h6TZbqJByPAVM7yhNatRFNdZEXp6mzWh9NfXHaHkAMyLaA5Lzy1YgB7ewrD9B+EU3al5Ged9WpkKl7RFNJnaViQCOQOpuKxzXD2j1OOt64z6d+z5pZEa6XXP1ceZuqs8J+bEZEs8YaTdrf0eu3RougkQTbQrB6MSDdaZQiWRbq/4Hy+aPjtS1yRp1pLrR0ofSZENq06CId9vPKjT31qtGk17cWB9U/X9mMzd2DyOQKuGPhWs/P0lROFzUaU42hmckVjOeyljQ/NnW2BjEgr2NSo+k/euB1bOgcwG8eW4m1O+z9em3Pl2EYkKi+Kga0o3cIuXwBW5WI5t7jW7T71XUSV1yjGTiiaWaTpRlDl9I7lMPnb34On/zd01i9vU933iljakvadFq65Mg84VIPMaDAqbPK5yqNaDan/A1Nm+q1zaA2UmfrNB4FQQzNiEANujRT02YboOgCVU9LNb2OlSw61f1yvUVJEtG0KUYCwdub2Ppo2tub5I3308yxAsUoEx20q43w3vjUanzq98/g369+rNSsl1voLNuqp8F4GppkAeM4jjV1FigeM00dSWnRoYJxTF4TtxrRnNCaDtw82At1IE0GVJ1NJuLoaFLEN6xiQJYUcsZQ80uf4Rpme0Y0E3HMmOQR0SSfb2UimvWq0VQnoo7mpHZP1Cu6QtOe1HvHHZe4qDAA1hChaqOxWEzz0nMCF94RzeoMzc7+DC65awl++MBr2oJCFf2hmR3VCgK9uK4Tl9/zChau3lnV9ylBr3X47U30KENCqxsfNjTz5txERato+nmacUyoEQFb6lgY7U3UccvLAOfuq7r10STbrWXcUOdnv4W5LV1Rz76qfF84NcwotTfxOib3nDmOo9X2U5E4FdvzRa+jqTpbTp3d1Z/Fxs5BLYtiGjU0fUqu7Nli9kid7fvuXKPWadrWDn98di3+8coWPLViB65/chXb3gTwblXC/TYAbR1Z7z6adN2d0RzoPjWaZK4Ikjpr6+NrjWjS1NkQlO2rRQzNiKBOVM3E0CwpLVomTurRzJJFPlB96qxqRLkeJiOi6RqazHb7M3lfae1UPG6NaPq3N2E85El9/6hQTDoZ1+rXKonwPrZse+nf814vprpw0vbLtugRTc0DR/pe0t/vHsxp53LaBL0/VnExpqet0BpNw9D0WPSohtWElpQ26IUR0aR1WOrETaPvaupsJlcofdZxnJLxan0OmAHXTwzIr0ZTvTaJeDG6ptdoVmBoDu+/LXJZay9NrUazZWQimjSFqZWNaPIRKi2iOXyeh8jiCgArMKQaLF4GQLU1mr94eDlufnoNfvPoStz9wgZ2e1TOv5qIZi5fwBduWYQbnlqNz9+8qOrnTSWo59qeOlv5cXDp0UltTBrOQGEWiCmSOkvnES4Crrc3CTd1VusHmvaPaGYZ8TVg5Go0q22zQbfl51RU31fv/XQV6ZIqnMBJtefOJtxjE7sLgqG2qxyvO2bTZ7/TI1XX3qbOLohEI5oAsGRjuR9nazpRLJdgWs3Y7ltrH82AEU1t7k6YPVVt99OKbeW10ZbuIba9CQDWaVn6bSJC56KnzlY+n3JOhaCR3yARTfd1LzGgfMFhlX6tEU2r6mx4Ss61IoZmRFAXGEbqbIV9NDm56DBSZ11j0BADYuogVThPKY2EWGs0iaqsC1ujyXjIi9soGN5BbRFUwSJc/T034sZN9EbqrJZiGCMqsfr12E6EO4yIZq5g9CWkaWWmGJBHjaYyII1vTWmDHq1DCAqtZbOlV2k9XxNxLXUWKBqKK7b14rgr5+OEqx7F6u191gUkd595eemHcnk2aqp6pvXU7OI5Vms0t/cOaZMg3bcmRgSJExwAak+d1VRnm1N6pGgEIppUddYdO+hCpSzaZYq7+D3PnCqpl4FXbUTzmVU7Sv9eurn8LNO+ryo2oSAvdvVnsbGrmP62sy/jGQkJSlDPtW3hUU0kkJ7nZCLOtq/hUt78UmdZMSBlO7aIXvXtTcrf01JnA86/LrXW/tswDM0anBOqU8IvXZXOoS5aFKsKhxYX0axWuMQ2NwxmC1U7cej5nthajiy68wv93Z2ehqYtYEAiiSS7Y3xLSnO2vLyhbGjuPb65WCPJpM5aazSZdnS5fMH4vFU0iBmrg9Robu4qp/tmye+pz7i6JjSCKZYazXqmzm7tGcSjb2yz9sPWHOg+7U3MPpp8OygVWx9fu+rsGBUDWrZsGX75y1/iuuuuQ09Pj/8XhBLqIrOVps7mTC++SpBCaU4gJwjqtt0HP0Xam2Tz5iJRhXsQaOqDVXVWeeDUQYTro5lmUvLcz1BvbFpNK6zgfKiDZ89gbtjoM7+/oy+jpWXqIid6/RIdVFTF2nHNSaMdy1CuoA1kbI0mFQPyMDTUCN7E1rQ2WVVbK0ML/DnBiDzpcZhM6BFNoDhZ3LxgDdbs6MfK7X3486J1HurLvKFpUwO1pVOp3mhuMqUy8hs6y/U49L7WjCkfMaAwU2fHtSRJVkR9Fr1UZl5dHAxWUqPJ1HmXDAzNIDWzO7wMI1qnF+QcZ/MFLSNBjYYUPAxNW785L+gi2ysSEpSg45k9Ja6ayCwxNIkzzV1M0vRawJybuHR1AIgraXVqmnKQFlqVoKnOJnUjmBtLbA6iTJ361tEFo61GNQiqseG3ENWyhywRzWrmCy4lsNroi5dDrdr0WZpl0dZkOtPMiKb9t2zrOK9UzKZkscXP5Laykfvy+rKh6Tqjm5lspEpqNCtRXdVrNIMrEG/uLq9vMvmCtlZQn/EWi4K5TVwOgJ4Zl8lXrATOOSOGcgV0D2bxvisfxTl/eBaX3vNK8XXaBsYicqjijn9mH03/3uq2OmO76myDRzSvuOIKzJgxAzt37iy99sgjj+Dggw/GV7/6VVxwwQU49NBDtfcFb/qNiKbZm0odMNQFOY2o0SgDAM2wqkx1VlfDBYrpDWr2bFnIo7qIZjIRt/bRVB84NdrlPjRDOdMQoKmzmbxZo5lkoiRB0CKag1nPKJQa1cyRulmqtKiiRjSndDQZjZAzuYJhuNKIJjUsgqrOTmhJaZNVtV4wmg7DTUD0finWcuqKyz2DOS3Ks6s/azUsuPm04NijWDuYtFn3N1w4wYPmVAJ7KIJJ65T0WSpmw91n1hrNGiITjuMYYkDVKABWivrs0BpN10lF7+9yH02zRpOLIOtOCjMyVonqbJCoxoptvdp4oT4f6gKBPpfVRNBo2mAttWQuwWs0/ReQQaHOMjomldW/9ZKJ4mf1WuIgYkB6e5PyOVTnJVvTdD/U79EFIHev2VLeuYhRGBgRzRocVKox7LcQtUc0zTKfSuBSAqsdrzwNTSZ9dlvPEL502/P42h0vWHtt0rUDFzUzIppM7X95e3wEjzpKufOtKs/SiCagp2CWDM0KajQr6SNJ5zogWERzS3c5opnLO0arOxfVaFTvcTrOqvOIem3yBadi44pXnXWwcNXOUvbTw69tGf5s5amztj6atAyD67VqS521jT+modlgEc377rsP+++/PyZNmlR67eKLL0ahUMDll1+Oz3/+81ixYgV+8YtfhLajYx01ykFrNLl6xHFKY/v+rO65oXVlQDips63KQ8wtoG0DC6ceqrc3iaFVHVSU41EfOHXg4YwVro9m8TNMjWaVhrc6ofQM5tBPWsvMmlyu31MNTSPVlVlku6iKs1Pam5CMx7R2LMXFmD7I0+gQ9Zp6qs4qk+LEtjSrXFcpNB2Gc5zYJowOojyrTtqZXKFiVUxbxMO2GOjsz5TvP4sAhq3FCe1hm4qbkXPV0FQXbAM11GgOkci6kTpbp+gK7Z2oq86a0UfAYjgwEc2yQcqo06oRTY/7gQr0BFmUv7apW/tbjTLmPSKa1aTO0ojmrhE0NMNUnTUimpb2Jn4RzVzB0Y3RRAyx4cFPFRdyo8eFgqM5aMYpPairrtH0aEXFLSBt91S9VB5NQ7P6caOSGk11DNFUZ2ut0WQiNW4/1UrhnJcuu/rM37n56TW476VN+NviDbjjOV51l64dtLWKa2iS393lYWiq+6j2TPcUAxo+x6ogkBrh2ns8E9HM8eMvt30X7h6wG5rmWO2nOjuUy+uZXvkC1FOnigG1WlRnjTR95Rqr0Wag8vRZW+qsOme7++KlOsulvgLl8YPOS+r6CODXpKojWX3m7KqzVAyoPo6vIFRlaK5evRpvf/vbS39v2LABzz33HL7whS/gkksuwTXXXIPjjjsOd955Z2g7OtZRb+SWVIJNNcxZBijquclrdW81ps4qD6ra1yjFeastCxTuYdfamxAREcfhmw13NDOps5oojrmAdX+Legep0mFQ1O30DuWMh3zfyW3K++WJIEcGZe78uaiKs1PbmxCLmWI6upc1Znj7jRpND4NRXdxObNUjYWG1N+EEI+g+uudEb3GSLTWndr9baeTIJgi0o6+8XdUTms07pUi+TdJ/xiRFEGhnv/ZdlxS5z9zjVZ1Kk5RUqFoiE3SxNq4lqStN1ym6onmjaXuT4QWwzXBgI5pqSlSpNs88h3pE035vGzWaAc7xqxuJoamcW/XeU7NEALPuJgh0MRBG6mxQL36oNZo0ChmPGwZk8XPeNZo0dVZ9T12EloS1snkt/V6dF6tu01JQDU2zDINiy1AYqT6aNUU0VUPTZ6zX9RIsqbNVHDPniHac6lKf6e+rrbq6mIim2p5q3U6+PpquHbgyHzonefXttK3jDDEgxbB3zzcVBHJxBQObmbIX23zJrXv41FH/+9tNpeYcyipbu3X9iWy+YO1NzM0l7ndU1HuxjZQZVSoIxGlSZHJ5zQB15xD62Yy2BrdENPNmRDMRj5kClj5iQKpuR9A+mg0X0dy1a5cWzXzyyScRi8VwyimnlF5717vehbVreQ+RYKJOVq3pBCueot586gAFEI+PFtGsLXVW9RarDzGtCVT3k8It9PUHLW4OEO4iVdlXrUazZIiakx81zLjUWc4ACIIe0cxqk0NTMq4Zaeq+0bpZr9RdLXV22IPp5cFKxnXV2XzBMTxqQWs0J7TSiGbtYkBJI3V22ElA9tE9JzQ1SU1x5VLr/LB5/FTP6v5T27T3XI+0TUbdGtEseFznghnRnKx4qIMYQa9v7sYvHl5miE3RNJn2pqRWR1Wvnn40dZbzQtsMBy4VkksX444jqxmaHqmz5NkKcj+/tknXF9BSZ1VDk6bOhhDRrKXfn0ut7U2qMZDowiiVjLF9UjPaOGhGrOnzrRmaTISUioSMDyGiqSsL+/c8tosB1eeZo07D2lJng0c0qThN6d+aU7zyfbGlBFYzZtHvqCUOXFq6Oh7YxgbqbGxjWmiYYkD251jLTKshoqlSjmiaQn42gz1o6myYNZqblbRZoOhYpAr1LroYkNqJwMyecGkiiv6hRDTzekSzmHVRYFJn7ftY/q5p/CdiMc2ZCvCps+rcsNe4cieCwO1NGq1Gc+rUqdiwoSz5Pm/ePKRSKRx55JGl17LZLApV1kjsjqiLzOZ0gm0HoT7Y41p0w0w1eLim2FWnzqoRTeXB55Ug+evtKwZEFqjF3zXrC9qVdGH3oeHEWor/Lg82g9mCsUCsNnVW/WzvoB7RbGtKWrdr1u6ZizAX3dBsGt5ne38o2i4lV3CMCJaXN0s1NCe1pbW+hdUOTuotlojF2DoeLt0O0CPXO3ozmjJsJl+oeAHZM8RP+mp60z4TW7Vnzl2UZBhHhvt5l/Wdao0miVxr90NRUVPd/0oimv2ZHD593bO46p9v4Jw/PKvd0+qk0t6URDIRN5wt9YCKAbWkyteOa29iMzTdY2FVZzn1UuWZ8Ypw0/f8zrHjOHiVSZ11HSdeqbPViAFRIRSvSEhQaq3RrMZAowujZJyvT9YimnGzBjdXcKxjOmdoUn0CtaSk2hpNr57HXEqcLeV95CKadsEz322R1Fmv7VBxmtK/LYriQbGpaVbl8FDOTTymj69cWrpqQNjUwIcMQ9OsHaysvYktoulvaE72jWia2UhW1VlmHVhZ6qw5FvqlUauKs8Vt2MWA1BRlTdndI6IZixFhyQpb/3BR/WzeMQT8BjJ5z9RZ29jjjq1q6mw8rq9Xi7/Jpc4qqdJKy7v+bN6YexzHMZyY9RqPglCVofnOd74T99xzD5YsWYLly5fjjjvuwDHHHIOWlrKXf/Xq1dh7771D29GxDk2dVZU/udTZjuaUVren57Dr6WwANQyD33CcGBDA101ZazQDtDdpSup1hq6nWn3ggqrOAnoUhBpmNHWWS1OwoS6oegZzGMjqhjiX5gfo1ySViOmqs2TA36ZE8KYMe2S1iCZZ2BRrPkl7E0tE89E3tuGYHz+C8296rnQfaGJAranAEc18wcGaHX3s4kQdaG2ps0YKTNyNaJYn3zU7+7TPZHLBDE114LanzuoG9oTW8u+6C/4sM9kDxRRjF3VA90qdzRLPKABNRdDPCLrvpU0lReINnQOaUaL10Bw21GvtbxcEXdQrxioF2gyHJOOUCaw6qz5bHo6zStubbO0ZMmp3Cw7Q6/bLc+yGZjViQKbqbLCIZvdgFr95dAXuf3mT8V5w1VnLYqiaGk2mDpeLWOvjoHl9s6T+XM3ESTB9OdWIRToRJ30va49o0tTZSmo06xXRpM9ywaneIUi/53Xv2BxGulO8CkPTMj5Xk+pHjTO1FQknBhQooqmksDYl42hT7rFqxIDshiZNnTWzO2yps25Esylp6it49X+lVBvRDFqjuaWbMTRJtpeLteUdzZ4gRlq7ltpcaUSTP376en825ykGZAvmuCroNKIZi8UMpzRFfU5c8SegmGZO57XBrNnbN4wezdVSlaH5jW98A52dnXjnO9+Jt771rejq6sLXv/710vv5fB5PPvkkDjvssNB2dKyjemxojSYnBpRKxInCI586WxZcUEVJgk/AWtsVxcPEGVRW1VlODIgcSyzG99K012gWjObMaS2iaTc0m0jqLJemYEMd5HozOa2+pDWdIAasMvCQ+hbPiKYiBjS1FNEsb5emg6Rpz7qCOci4i8pfP7Ic63cN4J+vbsG8pdtQKDia97XY3kT1ivLnJl9w8OFfPYFjfzofl9y9hH3fJRmnNabuBMhHNMcp13nNjn7tM0UxIP/rpS4wbJPNTmJoqt8pGZrMZA+ACEJYnj2mXyr1jE5qKy8c/EQ9nlqxQ/tbvffVSchNx+LqvMOGOrVaNTEgM3VLNRySJN2b7idXw8c5KTzbm1RYo0nrM106h4VEVM9xGKmz1arO/uiB1/HDB17HF299Hs+s1O+LoAt09XNpknFQaYSMCtDFYryhmWXnJlKjydR+AXoE3I0I6GJ1CWuvzUrQazT9U2dHukaTW/hXmz5L99HLULTNtWmfujw/woxo0n2kwnKUAWV+C5o6q439rgOKjEE9gznreki9v1TnJhUtpC3ZAL3UwmVcc7IUxVPnbjc6Z3sOWDEgjz6SxuuMoak6xLltGRHNXEHLfooHEQMyBJ/0cZhLbQ4K9yxTMSB3f7wjmpYo8vB9okc0XW0Rbx2Vbkb8yYWuccJUcg6DqgzNY489Fvfeey9OPfVUnHbaafjLX/6Ck08+ufT+U089henTp+O0004LbUfHMo7j6BHNNK86S6NinPpZ8XP6Yrf4+erEgPqYPpru79Pt2SapXiZ1kUZCANIDaciNhiips4qnynGKA52thk6dCA3DLKTUWcfRe162pknqrGJcZsmC3JbK7DiO0d6EHo+ROpswazRtqrPblG2v29mP7sGs1hakmDpr1nlQXtnYhVeGF+W3P7vOGHRpexOtNycToQfK96oqBrR6hx7RHAqYOqumTFUT0SynzvJefG0y09LW9c/TfqlGRLM9WETTcRwsWEENCsXQVCahDiaiWa/oind7E06wizcc3GeAilwBpiqp+n+6D8b+FcznwMtRQdNmXdxoiPpV6kmvro8mMTSZqAvFcRz889Utpb+f9HBAeMEtZF3sYhYF1linDhaARKI9VIU10aqCY42cxRkjUjWWm5MJVjugUrwimqwYkE11tm6Gpvl71SrP0giml2icTRit1vYmnAFIfy8o+viRQDPT11dFTZW0XS9qvOoaAsPGHHOv2ZxG6vao1oZ6L3HneyoT0VSNDm7utqfOMoYmJ4ZjM5iJkr66n7bvcTWauqCcKgbEtzcx+zLr47CeOlt7jWY2b9ZjsqmzWbsx7OJeC01pN24Gg1hDUxMDatbeoynCNFMGAIbqpDwfhKT/R3hOPvlkzbhUec973oPFixdXvVO7G3SAa0klfGvaUrT3pPYglreXYAzNSlJntYimrb0JU1+l0svkyasLQHcfW5vMiKa6r+1EMGgoZ7b5KP/b3p/K6KNZwYKELmq3KoZmW1PCGqnMkgU0V3cGFI1i9X4oiQGlVMNZP59GhDTvGNfCnUDU67mtd8ioW6Gps7aFh2pg5wsOVm7rw9unjdNec0nGY2hio1L6Z1w1UtULvWGXrgQYtL2JZmgGEAOyRTQ5ZT2ARDSHG0PHYjGjD6SqJkdTZxPxmCYG4deTlU7S6qJAnYTcOjUuEhg2tB5cTV10FYKtNZpaurdpiLgGCG2D4jiOdn95Pb/cImsgm0cHSXt1oa1NXNxFY14bt4rp/nnG+H1pfSe+fPtiTGpL4/rPvttYULpUkzq7sWtQe/5WbtOFoYIaOOo90ZxKaAv+XMEB0cHBxs4BnHbNk+jP5PHbT78Lc/afXHovy6TEUucXYKqNA2bqrDXVmoloavcWUd8Oo0YznQjSR3N0U2e99qHSbXlFw62psz5RLD9sYkDVGOq6Uag7vjhDUx2Pbaq7tEZTW6eU2puY98Wu/oymeuui3kN0XOjL5DB+2OHJ99E0I5pqvR7Xmsw2PnLpmZyhZbum3P2gpu5y32NTZxmjC4CWotxvUZ1NKOsGF84REATHcSyqs6Zzuz+TN1VntSwbi6OOqfV31bT9jHRVDGhyWxPSiXjpc3SN2zVgGtgNJwZ07rnn4p577vH8zL333otzzz23qp3a3aCTREs6waYg0LQjXZWrfGNxghV++d821O2qDz7fjNtmaPqnzha3b0Y0bTWaQPG82MWA1JpG/fymqVBKBQ8gHQDUgbM1nSTpD3zUpRjR5A1StbUJoIgBeUY0zZ51tI7BvYfUAXt7z5BW59eaTqApqSse2xYeO8h+vrFFV+qk6TB+EXr1fKg1mnS8HsrlAy0gdUPTXwxoclsaE9vMiKYt7VO9V/OKgIneVzJupJhrol/JuNYyiPZkVZm/dJvxmnrf9nCpsyMQ0aS11lQ8ZSCb9xB3MZ8VNnVWm4AdYxL3qo3kJnyvOk1bRNN9TtT02ERMb7mh7sdPHlyK1Tv68fzaTlx+zyvW36OL7CCG5uK1u7S/V24z65iDMKQZmvpSgFvo/G3xBmzpHkLPYA63P7tWe4+LbqR8U2fN1OhiexNLjSbT3oQuxr3UvINCs21SCd4p6GIz8kZKDMhrH3y3VUHqLDW4uH8HjWiu39WPvy1ej119GWvqbM2GZjLu2xNar9G0RDSVY2pK0oimmzrLGJqWOk1N1LHZ3j2AKuUDRQODokU0mbnbFlgIWqNp68HsV6MZJKKZzRf0NFLlGefq/QF+rFHR15HBI5rFkgHm9VzBcEL0Z5gaTeVvm6Hp1mhyqbNenRCGSIuVcS0pEpjR949z3lTjBAqLqgzNG264AS+88ILnZ1588UXceOON1Wx+t4OmvVgjmqrXmPSsG8zyDyIX0awkvUWtP2uxiAFxipEqvcxNTxeoAF/8rS461JRKoPjwqWl56jlTj1c1dOOx4gInjNRZQK85aCUpz+oAT9ub6Iur8jGqabMdTcnSRKluVx083b6EmuHPpM66k7Y6WG3rHdImQzeixwkKUHaQSXQpNTRJxFpXozNr99QUU3qdVTI5s/6UQiOFXOpsoeDoarvtaUzwqdFUr1kraQxdVknW04DofUZT5G1ZCZR5S7car9lSZ90aV/W3K1209Q7l8P9uXoRP/HYBVm3vs35Ou69JjSZQXCDYDIcUO4Yo98TwPZMiEU06CXs9v3nmXrFFjvszOe1Y1WiD601Wfyoej0EtD1IXD08s3176998WlxXaKTRtsHfIXtvlsnhtp/b3qu19Wtpu8D6aqsiJfy2imgFA27Do45sb0fRJneXKOjwi4JzqLFWF5upCK8FxHKP0hGvTomJVnR3JiGaFKYKlbVWSOpvn59pKRcf6hnL4yK+exNfueBGfv3mRtaVP7amzuo4F99yrr9nKRKjxqm3TrYPkDE2L8qym3pvSW6Kpa0EudTadjGsaBgAwbXx1EU3u/qxEdVbfv+IzogVIyPl0HAdbmD6anKYIQLKGlHkzS9bBlGpTZ21rHU7Ez69G0+bksrU3AXhxPBc6T4xrTnoa1Fw6esNFNIMwODiIZLLqzNzdCjW/OhYzDRauqDuZiJGHWvWmmOlJ1abOqovfNl8xINUzVd4GH9E0BwuuEbI6GNJem0MeaVY21dmykmXlqbP5gmN4vLaSGk3bQkdfbMeNdEAXVQhoipJ2YxMDcq9DgqSMcR6xXF4/X9t69NRZN6LHSaRTdvbpE8Ybm6mhqS/WOE+netwJZZClE6mKm47pRToRR4dP+kzngFmbOlFTnc2Wfq+0XeUY1GcBUFWSHe3zNMKtLuSaUwktHd1mAPUO5bBw9U7jdXVbnBhQLbVTf3luHR58ZTOeXrkT1z2x0vo5Gv2h4ilFQ9PfcChFqJjUWVqjSVtMhBXRXLq5p/R8J+MxHDZzYuk9LnU2GY9ZI5pB4RYEflHNF9Z1an8PZPPYpEQKwohocnOEmuZLz6GfAcnV1rLZNjl7H03OuUlbbnDGaCXQ7yTi3grhQHWpsxs7B/D7x1caac9BqK8YkEfqbM5cVwDexgXHi+s7S47KZ1fvNDKOSvtWhaFO7x3OKFRRW5rY5jotkpvge3CzEU3Lc0yfAa5dCj0Wde6ZQtJx957ARzT925sEi2jaVWfNZ9nL6bCrP2u8liU1mlYxIJvgHhPRbFecwDZFYw5r6nRAQ1PtIevX3kTLjAmgo0Kj/uNaUladCO7zQIMamjQv2sVxHKxduxYPPPAApk2bVvWO7U6ohkNbOolYjF+Y00HU1oZCb4BbfepsoaCLFFnFgIYfKvVGVqND3GKKEwPSBxazRrMlpasKDmXtixI1ckIl8Olngy7MuIFZjWi2pROaAatOlNTjbzN09R6a5XPYZDE0S3VOpObT8FTnCkafsG09Q4biLKB7RXNMdBQwU2fNiKaeGsLV8eiRAyWi2eRhaOYLbC87lbSR3mQOutRQntiqRzQ7fSKazak4215Ij/DFNIdHjkY0U8Eimk8u384+s1qNZshiQKsVtd/NXUPsZ7joT1MyrjmZ+rM56znknF+cYZ8kzyp1ouQKjlUlla3RtJzn9Uo98L6TW7Vm76XUWeU0JuIxTaBGjWjS2qsdvfw55EQbujwEgTK5Al7e0GW8rhosgdubaEYa7Rdpnje15yddZOmLPy6iaWa92FJnbXXRccaoN/vWquNq5Qsr6pig9e9sexPlXASJ7nUNZPHRa57CFfe9htOvfariyB33+UrbONi25ak6azF8bA5vG2uJkriKOh7aFv5e0PGjycNpmi/oKq/W1FmyTe5+4O41W4sTL2PYGtFU7uspJH1Wi2gmzTWhbeynvbaL3wke0fSt0STfo4qzpd/M6XOmi3ovqCJu3Biisse48vnY3DVgvG/D6/rTe2eAS51VjsPWMs+9Xwra+qj4f73vtf79bqa7QatHRJNNna2iXVBYBDY04/E4EokEEsPF8Zdffnnpb/W/ZDKJ/fbbD88//zw+8YlP1G3HxxLq4OJ6KZoYyXC6qGu2pDiy9TJVpM5SL44mBuTT3kStkaOTILdABUhufWnh7hXFzSOjtg1RhFds7U1cKXbVEA26IOHOGzXEaZpf+d/6NUlbvFdaD812NaLJS3Zzi/Gi6qxZo0kX2Dv6MlpNKGdoAvzigabOrt81oBnAhhhQUp80AFNIxqWjmRdOAYYjmj6OEtpUm2vavLNPTzVNJeK8GJDFSIrFYmzqCq3RVO+HbEGv0WxJJ3xTuwC+PhMgqbMhiwGp19c2XnDRn1gsZhyTzXDgok+cinSKPKuc48OqksqmOvLnWT2Hk1rTJVEOAOgajk7QeiL9GMrb2mucrgq4hGmb4jgO63H3imi+tqmbvZZqnWbQa62LAelLAa7lU4/isKHnkKu31uvQva4vTZ3lU62TzP1CjQDOuK0E7p5OMg4RFfVcqA4GWxuxH97/WqlWbVd/Fhs6gy+GAf76+rXtCbqt4O1NEuy/g9x7a3baDU11zlMd7EGj09Q48xIDogtv20Jcj5pTZePie5XUaNK1QJul1s5WEzulQxcE0iOa5pqwZtVZ5poWCg6bncBpMbhs7ubvc/W6xDVDU3c49zOGc5oxNPeZWD4f63dVYGh6XP8BYlT2Z/LM/VNuC6WuUZoYhy+XOuuVddg1YM7v7R5rnG5ODGgUazQD57bOnTu3FMV87LHHsO+++2LWrFnG5xKJBCZNmoT3vve9OP/880Pb0bGMaji4C2TugaWeHK7wG+AVXatJnaUGoipcwuWTqwPSpFZ7ewmzf2Jx3zjVWZpK15RKlIzQIZJmZe+jqdYimYYZ59nj8Fu4tDYltdRa9/OO4xiqjFQl1kWPaCqGplZzWj6eUtNzkoYYi+nXOJM3vXL5goNV28uREDd1lLY6GMzmjbTlHX1mhGbZlh4csu/E0rZdqBhQyXFC6lZdPCOauYLVW+iSTsS1Os8eJnVbq88cdoqoqbNu30T9/tKzOFrTiZJxzUU0Uwlzkao6JppJRNP12lIv7YqtfHqdLaLJ9dGsRAAM0CO+GcsEzEV/gKIsvfuMetVo0rri4n6az3OKPKvc9edUUgHdMHSxpc52kXM4oUVt9p4d/h3d+25LnaXG+ZINXTj2LVON/agk5Q4whYBc1IhmNZ5ro0aTMdDVzBQzddast+bKA6goGhA8dTYe9zNca6/RpGN8Mm7Wv1NUR/GEllRJEZh7bp5fuwt/XLiO/GaFEU3m87b0Uz+GjBrNgKqzilNXF48rlBS4bdgimqlEDONayuN2JlfAym29+NTvn0EmV8BNn3s3Dpw23n4w0I37dFLXseCa2tO/uX03Ipqqk51JCXexPcfUeWnryWyriaWCQHsrEU0ujZk6dLlWUi6s6ixjaNKsInes9opu2zJjVCeJ3t7ELMMY15zyTZ2lhqbf/ehiS53O5jkxoDx7rrJ5B+lkTDs/Tcl46VyUIppcH02PGk19fi/eL5oYqFGjGa0+moENzfnz55f+HY/H8dnPfhaXXnppPfZpt0M1HNwoCaeKShexNtEWLiVRncwLTvGGVz1zHP3ES6Iagnwz7vI+qAqevUM57WGniys2ojlUbBlBFxJ0IAuSltfLRACr6Svq97m2dIJNn6C1nSmiRqoOSlqNZjtfo6mLAXE1mkyaZTbPLrCXbSkvUCdYIpo05RYAdvaa3to3VEOT1CCo93PZcWIuTgG9vQklVzBbt1CakqRG02fQdY9XS/ceFmWx1WgCw06h4etVimiSuhWasj5opM6aXttxxNC0eVpVD6WmOutGNCsU6VBRU6Nt3+WiPwDQki7/7kDWXqOZ1NpfmM6qVMkppKfpcwtzq5x8BTV1qhd4fEuK1OyaqbNxj9RZujBZMpzu2jOYRWd/FjMmtVr7B3ZaREQAvT4zGY+Vjnvldj6iqUrge5EYNqg4dVgXdX+N1FkmoplgFuS62BNfm2S/X8wxjkZ9/NJc/aAGdtJwCnpHE9VevGY9WgHfuvNl4/uV1iJyxqBNkMgLx3EqimjSWkXu30B5sW1jzU5eXGxcc8rI5Prr8+uxaTjl8ronVuGqjx9s3a77HXW/vFRnuflwKFcw5j+aMsw5ibksG5sYUM4wNPlaO9vco64LJrWltf1t8oloNqcSyOZzxvZL32HmGtbQpL0sGTEgun2qOFv+TTMwAsAQlnPHberso+wzsbX074FsHjv7MpjM9B819sMjdZbeKwNZs0YTKBr36WTcOOdu5kq5vUn5O1xEk2ZDcMGodkbTxIXLlGmI1FmVVatW4Stf+UrY+7Lbot9Ew6mzKfOBpd5gm2gL1zw7ZUwG/pNbP/E0qRMKl06kRTSV1Nls3tENsDydzIdrNElE0zTQSOosWcSqg7G6wNeUXBlFTr8ImW2/Ka3pJIm+DF83xrC2SearaXOTLDWaVHXW3WZpe4WCsa9DOb7R+uod5UnfvWbNxKCiCxvHcYzUWQBYurlstNJaNvV+zheKfRBt7U28DE3AP00sndQjmtygyy1mVcMCKF4LW59WgKokczWacWMRraXOphKs15ZiS3mxps622J1VQdkZIHWWi/4AQGtKF7cIIu5S9rKb5ztF0vQ5I8iWTm3ro8nRRZR7J3CpsyTlyRbRpM6Zlzd0Yd3Ofhx/5Xy85yfzcP2Tq1ivM+CdOrtYMTSPe+sepX/bUmdVh58XiVjM06MOEDEgcp+qWSGcyA+bGl1yguoGqS1dPc4YmjQCrrfMqdyD7ycG5NdHU02dpffpbc+sxetENI37nB9hRTT5um/7OaPCSy7UAedlODuOgzWWiOa4lpThkFRLHFSnaJB9tCnEurCGgk+NoiHkV+DneMBuaJpt6ngxIFuqstqbc9oEPUWfWxOqz4F6PtjUWe74OcceXcPFuYimfn632Go01dRZZTyljlp33eM1JwPA1PYm7T4Kmj5ri2hy2WA9g1n2mg8xa3W69gF4MaA0s6Z2Ue8Ld92hrpeNGk1WDKhyx1tYVGVozpw5E+PHe6cwCMFRvViul0IfcIcHDA+FR9UbwwntVGdolverJZ3Q0g/0uikzFUOtdwP0B8EWCaERTS41jxabc3336L/VXpeTh40pziD0w29B0JpOsP0x6UBtekXL76seRXVSsIsBuRFNnxpNxisH6H0q3YV1kkym1NPXl8mzCxK1lyZtb0K93lTURY1u0TRdip9keToZ19IeOfl8rlaMCrh0DWSsi16A1hRzk2DMqFPzam8C8NE2a0Qzly/9X71Gbo0rVZ21CeZQHEdv/WIzUmn0pxzR1Bd3tnPIRaiyZFFHv5PNF9i0TptAFKs6G6BGc3xLCuNbzJpdTWiN9q/1iGiu3zWA79/7aqkm+k/PrWebagNAp0UMaEfvkLZI/9hh00v/3tA5wJYb0HHYRiLhr67aTVJn1ftJLw1wI5rcgtx0LqlzSSZX0IxWNTIWpEaT+0wlcE5BW5mDi25ols83fW7+8cpm9jcrMYgLBd7RUk2NJt/eImDqrPJM0lILr/Tbzv6sNZI/rjlplFioY/3yrb2ao8dvH2kfTapYzp0zv4iekTrrpTobQAwoTSKamhiQxYl+0oF7luaqMw/fV9s2J+Sn7pv6W25mmwp7/GxvTbKmCaA6a41oKtunEUrVCB9gDGcudTYej2F6FXWaVkOTcdLbhJ7KeipKxlRSNe6HU2dJaRHgnTqriwgWz4nepcE/dbZevbSDUHX/kWw2i7vvvhvPPvssdu3ahTzT1DUWi+G6666raQd3B7iweBMZIAGacmEK47hwEwJtbJsdbh5//8ub8Na9OnDQdNNxYGttAvBiQLaIJlA0jtz0BSPtYnhbdMClg1kqETfqQTJkYa9+Vj1WFzftxKZO2NmfwbWPrsCEljTOf89+ei2nX0SzKalNou7v8nU/auqsukD19xpzIgFaHVHeQSxGDU0+dVZFXZQ2p8r1h3Ty4dJmAV151hQDIouRHI106deuJZWw7m+/z3GkE3FdlGNYNY4uOtTfA8p1z67RNpAp6IYPOQYtAu/20SS1uOp9li842jPVnEqUvLbuvcIZ0eo90d6ULF0X9xi4Hlvqcbn4pbS5dA/mtGcmaOqs+6xQMSCb4ZCImxMrt7iikU9usW8zKiqJaNI6VzUa2DWQRaHgaOmxiRjpo6k+x8w5e+jVLaV/b+4aqDii+eSKHaV/dzQncdxb90A8VnYWrdrehwP2GqddOzoOp5Nx9nrSiCb1qA9mdVGnglO8Vq7jj6+9NOcILhoRNHWWM+rpGMK1zKkEY6xOxEgKMJM6m1UNTTWiqX92uaXWOqijE7BHCyvpF+j1u0H7aKarjGiqQkCpRAyOU75O41pShnNMNbwGsnls7BrQUiO99jGViBsZI0O5fMl44YxqztigtZLUeVgUNzSP2VajSQ0lmxiQV+rsgv95L3b0ZjBjkn4uOCE/9Tmg72fzBSTiqtJvsIimPXXWrjq7xWJoqr8ZNwzNRMlRXEqd9YloAsD0CS2lnsjrd9nFp1S4EiFgOKJJ3tvVx19bLqKpnvM8Ix7FtzfRz+8AE9H06qNZSVuXkaAqQ3Pjxo048cQT8frrr3t6ycXQDIYqVtPK1GhyN29qWBjHxRbRdG9iKjCSzRfwkwdfxx8XrkM6GcfDFx1rDFrqIE8jL7Ruyt2mS3tTUqsPUhfD5gJ1OKJJcs7pRMgZ1zYxINuCenLJ0FS86Mp5/dUjy/H7J1YBAGZMasGH3lFu0ROkRlMVScgx5wUYViO1LOr0Jur2OhiXoDWa2bxj1NxS1EVpUzION+OYTr7bGSEgoNguZWdfBpPa0oYYEBUbyZAJkN6f7c1Ju6EZIKJpRiezuqFJRCNcWlKJsqFp1Bfq95RfRDNJokSAHjVzDbIWpW6GrxvSF7KuoemOCzRNxo1o0gVgNl8wXuOg3lqrvL2l1rqVRDSD1FHb2lUU/++dFl58nZ+HKopoeogBFZxi3S4dW7nU2Vy+4Gvk7OrPGi2CXDhDc2dfBt+/99XS34fPmoTmVAIzJrWWopwrt/Vh/6nt2vcmEkNzXHNSU5pWj4Xre+nCRaEGM2VDk4sycEYfdZYW/6//rtXQZM41XYzbxtWgGDWacbPOmqKJASnp1jS1Xe25rFJJjaYttdXP+Rb0d71SZ7n0aIAxND22sUYp1ZgxqRV7jWvGU8MOlI7mpJY6OZTNG2qay7f2ehua5H6gZSADmbKhOZAJdvxqRI9GzYFyKQilayBriLvlC46WRVR0qlrEgHL2uac1nUTrJHP5To93MJvX1o3U8M7k9ZrUoKqz5trMTJ0NGtEc8IhocqrsWvZEnJ/PVEGgoKrO1j6q2YJxLDstadGcAJN6Trg+mnEmdZb+Hpc6a+u/CvCps6NJVamzX//61/Haa6/hE5/4BB555BEsW7YMq1atMv5buXJl2Ps7JlFTId1ms1wKQlYrgo5bBwhucWwW7Bfw9Modpe0/tsxsoaDd3E36AEXrpgDT46nWyanHaBheXERzKMd4zeKGAFKQRayK25vSljq7cM2u0r9f29Stfdc/dTapRypz5uIZGK7zYLz9AOltp1xfm4GQLDkS9EUdtxjnUkhV1EWSfm+RQVZZqE6f0KJNBm76rCEGZEQ0dVEXOsF41Wn6NSdPJ+PoaE5qfS7p4t3moGgmNT1U9VjFr0aTqgsD+oLdrafxmjAA/fyr56VkaCrbbEklWMErIHidpmFoWhbCtC7SNSyayXkJEqEqRbyYxZWZOms+hzajgmucHaxGM6U9D0Ax24E6UDgxoKCNsZdv4yNcNHXWcRx8868vldRME/EYvvy+NwMAZk9pK31u5bY+47cnE0PT1jqIGpr0mnPRV/U8cq0OUoyhmWUin+ozkskV7KnWTM0nrenlBIgqgRoM8RhN2dXPS6HgaE5eTQxIOQ41mplOxLWFcCU1mrZn2M/5FnRbXmMEVU53oeOi1/2vKs7OnNSKjx22T+nvQ/edqGfu5AtGSqAtKuxCx2ujBl65ZznDIlBEkxg3OaZUxaVzwD7vAMV1lBrRdI+Xtg+hGUE2OCE/9Z6lAQNqMPICN1xEk67hhteZliy7wWzemqlha28C0HYtZkSTS50FqmtxYkv55ow2W1o0mzqrpjMzqbPuIVCHqspAVl03uBFNL9XZMRDRfOihhzB37lzceuutYe/PboneR3M4dZYMuIDZf8kmBqR73T1SZ5XvcAN4n+ZF0W+VBOM5ph5PW49As72JJaLJGGhGRJNRqXR/n8NNneVqKR3HwSpl8We0ZfEVA0oQkSHzurm/Tfsrlo9Jn9S4f6u4A3uCLIY4D6ut9stFTZ3VUpTJAKwaIlM6mjClPY0X1xdVNd/Y0oMjZ0+GOk7aDE2vov4OjzpNX0MzEUc8HsO45lTJeKBGtm7Q6BFNF5r2mSLHoPfqdFVndeOZHpc6aZUimmoEkOk5qz7b4xRDwb0uPYwQEMBHNINADU3bwpFOhu6xtpLFgbpQU587bmLlU2f1lKK6RTSV5318SwrNqYSWSt3ZnzVSwvUoW/H/QQ3NZUqquQpNy7r92XX4p5J2+7UT3oyDZ0wAAMye2o55w31WV27vNQwFWqM5zuLAMVNn/SOamqHJOI0SjKqw3iJjuK7LSJ1Vsg2UfYoHiGjWWqNJa6xjsZhx/6lQp4UtdVZtUTRrSqsmcldJ7ZTN6eM3JnKw0bvANZrl8xwbbl/lXgvPiKaSOjtzchtOO2Q6kok4BjI5nHbIPrjsnldK79MaTQBYYXHOqN9xKUY0ieGlXC/O4cQpjxr3GFlL5YlRqNLZn9FUYg1DM6mLAbljk1kDyfRuYuBak6n71mKkztISm2DOB2rQu/odVDXY7TbwxLLt2vfV+8UrouknbkQzoVzUqHfg1Fnl2remE6Vnyq89mgqfOmtm7nBiQF7jjF9Es49Ewv3KpEaaqiKag4ODOOKII8Lel90Wtb1JO2Noug9sjjxgtnz4LFkMAbohApgKmCu2mZLjqpeUesI4Q8ksxLcZwrw3TB0E+zM51mumG0AFa8TJz9DkpKR39mW0xSYdYPxSnFqbEmztKncctibgqlGn12jyE025j6buyecmvi4PNct0UhclaLa0zgH01NnJbWm8Zc+O0t+uMiDt5eq2T3Apps7yBghgj7wAumPGdiyAvugzDE1mwQuYHlQvMSA2okkiO9TBoy7YXQOT245LjqRaqYZkOXXWbG0CVBZpUNlJUqOD1mi6l7clTZ9j1XBQI5pm9IkqPAIkMpYvsNEDW0SBU6PlFuWO45A+msXzTHtp0pQnrm4wqIz8MsX4UB0r6n7k8gVc+dDS0t+Hz5qILxz3ptLfaqpsMaKp/zat0bQ9V3GaOmtENBlDU60n09qW8LW1AIl8cj2eC47VCcSpfdLMBJrZUSls2QnTD9SF3kvjSG24ixq9ftMe7VW11wLsUZdqFpbcc11N6iwANDGlPhxqRHPfSa2IxWL48Dun4czD90U6GTfWPTR11k95lo4fceLkVOeywBFNov5KjaFc3mEzJwBgZ18W85ZuxaI1O0ufVbG1N6HnMEjJA8AJ+RFDkwQM6L3nd/zl7+kOGW4/C8P1t5u7BvHff32p9PqB08Zp85R6TRIxamiaEU29LVqwiGYQITybQ5fDNrQMMS1l1Mw0d9zixIC0NWmg1Fm+LY6t9n80qcrQPOigg7BmzZqw92W3pU8z6FxD08ylz5JJOkhE0514Y7GY4TlWC5y5pvCeYkBq3UHeTBkzelhpqb36ZO56w1QPTTavC6fEYsNtMpL6NnVvozLgWVIqJg+nzmrnYngbaqsPwIxo+qU4taWTmtFSivSyXnJeYUyPaPqnznLtTTjVWcC7bcLE1pSmKtxkubcAPXV2cltak1t3U6TV+ask302EHvQ0Ov16tdcS0Rz+HTWNjfYmtIlIUcVUW4otwEc0aeon9bj2DJWvgft80HYgKnTBoS5ky6mz5W2qqbWViHSo0NY1NsVaev3c+6eFps5alaGZ1FlfsRheeIN7rfi6ud/cYqo/k9fGTddJQe8haoioUTZ38UAdM3uNK7YgaG9K4q2KU2atEt1R6+PVe3VXf1aLMP/wo+/QjNvZU9XU2V7jfjFqNFv45ypJHUGVps6qDhnGQONqcN1nQxsLcwWrE0gvd+AdE15GYRBypDxF3c/i+ySiSZ5XKkLmos6vb5raXnWP2zDFgCpVnfVyDOoiffZtqD00Z042ay2p6J2ROrut19No4Nqd2VqceBma+YJTSlWnWRbUaZ8r2Guyf/Lg6/js9Qtx+rUL8NTy7WzqrFbT7kY0qzQ0AWqc6Y65lpT3nMBFdLnraXtGaUS1P5PHl/+4uDSGpRIx/PCj/6atz1TnCU2d1a+dGy20O39d1IhmfyZvFWZSUe8NvxZrNjJ50+GsOu05leJyexN+TQjo96rrLLCJAVGnINdrdKSpytD8xje+gXvuuQevvvqq/4cFX7g+mr41bYk4G3VyHIekd/ELu0FS4Lyhc8CYrGh7ExU/MaAUMTTVwnvuIQP0nHNA9+ynhtMz2ojSpy390jYAuYYmlzq7kkR1e4cqS51tSSV8I71cb8CyOq0+YamTt93QHE6dJYt2bhFhS/cAzBS7Zg/1ONUQmdSeJoq3rkfP9FLSHqi2+xQIXqPJnZemCiOaqgFJU2dtyn8AH4mkAkd0kO8h9ZQAXaR5e5i11NnhBQAVsXFxI8kugVNne2mNIG+wcQ4tQD+Hgx5iQFz7C3/V2QLr8KlEdZaLiNP7YxxraJqps1zdoLowS8RjuOW8d+PL730Tbj3vCBw4fVzpPXW9vK9iaPYp9x19jvcar/fN20+p0ezL5LG1uxyNjsfMlj0dTcFqNLsGsrj92bV4bnUxEsOKAVlqNF3DjLv3uEiIJoKRt/fR5IwZuuClbZ4qJcfMTVytqUu/UjsVi+mpybmCU3I+qKUp++/RThaVtddoVtXepFLVWSbbgPvbax+3KPcna2iS7VDHW2d/lu3hzP22e+/YSng4o2owV1wX/fvVj+Hw//0X/u/RFUzqrFmjabvXnlM0H/7+0iZDQI2mzvbZUmcrMjTpPGs3lM1+25WLAXkJQ10zbzmeXbWz9Pf/nHwA3rHPBO0ceqfOMhFNy7yjskdHk7beDZI+q94P41q8I5o2yhHN8rbU61EWAyp/h1OdpYEC39RZ5X3V8dyUjPu2ixsJqtqDPfbYA6eccgqOOuoofOUrX8Fhhx2GCRMmsJ+dO3duLfu3W8D20WSU3GgRNCcGRCct9cEtPtzFz1EjCijK46ttTvSIZuViQHTB6aI37S7vXyt5INTFnzsBqQvt7sGsXQyIGZhjMWBSKyMGNLz/RkRziEY07ZNwSyqBeJzW8wx74DQvOSfewy8qg6jOuq+bEU1zX6kwgQoVPrFFywHd0JzclmYVj1mPHYlo6o4TEtH0NDR1Y83w/rr3ijJZ0IJ+W/9VKgZku78Am+qsfq3pd7jUWa+URc+IZtaMaNKUn1QixtazecH1CMvmC8axcNEfwDTA1XtBnfxpujdVb3R/T2tkbYnW2xbrbI0mE8lQz2E8BrSnmdTZ/qzW3iQe0yOapdRZ0qLoTXt04KKT3goA2OsV3VB0mTGpRfu7cyCDPTqaDbEOOg5QQ3J7b3khn07GS+JyLraIZpxkWVx2zytwnOKY+a+LjtXOj4u6aOfq9zhVYS4aoUcMC8QJpGRZMM4vWjqR9DAKg0B1EAAqWuWR0pZKGLV0mXwBsYIevd5/avWps7ZnuC8sQ9NjjOAEn1y8+ie6qOcgFgOrHqvOed2DWdaAW761V6t7VOEcVba5jK/RzOPplTtKjoEbn1rtGTUH7KUqxr7lCsbznIzHNaFFa0TTMv9z0OdEL6WKa3OCmg4NWGpUmfvTVrJEI5q3PbO29O8TDtgTnz16FgBan6+XI2jHol47V9E1QEQzHo9h2oSWkiL3+l0DeMc+E9jP0u0D9lp2P7gaTfV6uOed76NpHxPUccZdV6sGZGY4EySViOulNC0pjH48s0pD87jjjkMsFoPjOPj+97+vpdxRuP6ago5ah8CJAQGMGl88jqZU+WYdZHLDASq+Ud4mlwq1fGuv1dCkuf2coUTTBpuZQYLuo/pw0UJ1NdXT/T11od3Zn7VOftwANLE1Xfo9mkYMoNR3yYV68TMenmc30soJamS0PoLm4spdJFNvsjpANaX4AZVrb2JbjHtJXtNaLpp+o7JTq9Fs0mTLSw2JGY8dXYzQekYVLzGgrJYKlDCiUVyNppf6n9beRDGShrI0Yq6Pc2wfTdI2pZheWT4f6r3v3u9ei2NakzWOU53VJhb9vKUTZTGboAtaLmKQyRVAgt5s9AcwIwjq9KCeaz3N0RT5STOGSFF11jwOW0ShwKTZDTCLKbV+uaM5VVrwqA6YXf0Z7frSiHE5oqkbmio0IukyfUILYrFylLOzP4s9OpqZXsKmx18V1tAMzYTpzbbVaCYTulPE3Q/HAZ5dtTOAGJCZncCqCjOiQZqAWq5gdQJxxoz2WdrjsIJIoUst/e1a0klWgGtj52Dp+Y/FajM0bYZgVRFNZm0WVAzISJ31yIBxUVub7DWu2VBIBfRrbFP2XLa1F0fOnsy+x/WYps5DF5vCqjpXbOkeNEpY6LHn8rz4HqWjOckIqMVYhyU1NOlz7wU1rPPas1l8zt05wUyd5dJki5H5OPM8A/q9QO9/VefiS8fvX7IVbAaiV3uTQVbZ3X5e9pmoGppBIppq6mx1Ec2y6qySOqtFNIfX6YwYkOpUo9dlgMkupMGf/qE8xrfGdXHA5mRF7ZPqRVWG5qWXXuppXNbKD3/4Qzz//PNYtGgRVq1ahZkzZ2L16tXWzz/zzDP49re/jWeeeQaxWAxHHXUUfvSjH+Hggw82Prtx40ZcfPHFeOCBB9Db24sDDzwQ3/zmN3HGGWfU7Xj8UCNn7qDDps6SlIFmcGkFpsfMRb2R1cWpC1V001J6aeqsln7BRzRtfT5ttXmJeAwtqURpMlBVUt2BSY3Y7CCiJVofTWYAclubAGY6HmCmztLFlVfqrJv+oqfEchFNN3XW9JLTCVo1LpssA7Pbt1OPDhWM+wDwrtGcQKwIdYE8SBYfav+/Se1p7Tq4KSNUDKi4TX0x4t3eJNhAT1O6AaVG0yN11paep9aw+LU38Y9olg0lzsvvLoC8Fp1DxHmjplm5i8Iej4gmrXkKAhfR5Pafi/4AulNqIJu3inTRtFNbuhg1Hrjope3Z5IwNquwLmIqzLupz0UXEgGx9NNUFC11M79HBG5oTWtOaSrL7rNK0PW7eVXtjqs9mUyphPEc0AuoSj8Wsi7ZtPUN8RFNLnTWNEE5VOEgNrq0coom5l7XWE0ZEk0n5yxe0emIKX6Np32YfEcyj5zCTK2hps9MntKAlnfBsJeOFLVpYrHk3sw4q3ZZtjHAc/boYqbMVRjT3nWRGM+l2bHV1nJ6ECxcNV+cIv4jmUDaPPq1lkf65StubaNvOFTSns3sf6m3dzIim7bm3QbUxNIdgwtTqcHEcx3r9M/kCmuPl7doyfbwir7Mml9P8banAcXKcnMNbvR40OKGyz4RWADsABGtxMqSlzlYb0TSjrlx7E9omC6gtdRYo6j+Mb00RzYZUVfXbYVPV2bz88stD3g2db33rW5g0aRIOPfRQdHZ2en726aefxnHHHYfp06fje9/7HgDgV7/6Fd7znvfgqaeewr/927+VPrtz504cc8wx2Lp1Ky666CLss88+uO222/Dxj38cf/jDH/DZz362nofFks3rHtxSZIxEQoZyZgqaOqkODSvTUpVFdZJUIwPcwoG2OFEfaJrWSlVTuYnIljrrJSrQ1lQ2NNUoQzkdsrwf23v0BbE6eHET7uS2JvZ912O3Zofu9eodskfBKO7Dn0qqixI3Xcz0/nECE9SbrKvO2jyAZvQgb1mMe7U3mWikzqqRPX0yoqmzKxn1UNreBDDrbzSHA7leNHV2SnuabTTPTTRu+pp3jaZ6r1qicTR1NkCNJlc/krYYmu4CyCsKM6gtchJsQ2zVSKKGRZDaKQpnaHILEFuttRHRVHwYuoqovuAxm4Cb902WpFy72FLXgvbRVO8P3dDUxYAK5JjVNSfXRzNoRHNcSxITWlVDM2Nsy7aIG9ecKj0bNKI5bXwzDp4xAS+s68R73jzFSJEvH4tZJ+2yrWfImmbokmEUSbl6SXXsZw3NQsGIUrrojiquRjPmWaP5ysYufPb6hYjFgG994AB85ODpxjGxY7VHb87HlbYNe45rYgW41Hn1TXsUVYJV4TqavuiFej+0pRNaymx/Jo/xLcENTba9iaVG02xJ5mFoWuZJdX7l6jPpdmwRTa9emlxNfYvF4c3WaPqo9zYNZ6mo2QfFlH//sXUol2fvf3UecR0GarTZ5mS2YYgBkdIdm7qplyNyKFfQtmtz1NJWNy4dzUlt7Aka0eSy4lSjq5lxNLuoyrMbAhialajO2iilzlojmg4cxyHzSPH/Xqmz2lpcUatPJWKltUxnfxb7TKQZTimrUN5IMvpVogwrVqzA7NmzARQVbnt77QPLl7/8ZaTTaTz22GOYPr04cXz84x/HAQccgK9//et46KGHSp/90Y9+hFWrVuGee+7BKaecAgD43Oc+hzlz5uC//uu/cMYZZ6C9vZ39nXrRT+S73RpN94F1B0Mq852Mxw3vTzEfn0Y01dTZ8r+51FmviCZtb0LT/bhohK02QovMksVNMWJTnGB0MaDi76mLQBrRVI+PG8imdDSxn83mC9jSM2gspgazupfYS7TBPT9JstApkHNTatnAiEEYkuYeRfb0dS3CbOmjyU2sLoYYkEUxuHcop00ik9v1ont3ocZFNGkzZ33SpRFNfWjae3wLb2h6RDQ9Dc0gNZoZfdEbRHVWrx8x63G1fU+Z94xXRLMpGWeFg9SUaHre1HMeVHSEPlcAv3jMBqzRVCdQrUaTRDTp/qW4e5uob6vf5wjaR7ObaW0C6FHxXf1ZLQ04EbOlzurOARVXgZbS0ZzChNZ0aTFui2jy31Wcb4qh2TQcCfnT5+dgycYuvGP6ePzjlS3cJpCIx62Lv209Q3DgfR65Z5nLeskyhpx6TziOPt6oTiC/1Nl0IuHZ3uSPz67D1mEl0a/88QU8uXw7Lv/wgVqWAJcOTlO8XQazedz1wobS3x96xzTjHGZzjjavvmm4HU3VNZrKZye0ptGXKS+g+zM57OzLYGJryshQYbfFRjR5Q8tQSzVSZ5VxyWKs0R6aHOrzwvUvBCowNIcdjpWkzg5mC/C6HOp8W76n7aqzKkNEUdm9V2mP8v5Mni23CQpdd+n3dFxzhmuK9x7rg+J9ofaI5R21QPFeoPfWzMmtWlTWlj1BFX05ISf1uqmK7ZR9JuktTvzQajSrFQPyqdEEisEjLnVWPSdm6qwaxS3bCBNa0yV1ZFfssYeo0EcholnZHTxCuEamH8uXL8fChQtxxhlnlIxMAJg+fTrOOOMM/Otf/8LmzZtLr992223Yf//9S0YmACQSCVx44YXYuXMn7r///vAOIiC9JI1LXbyqC1uqlJgihhxQHCjMGk0+ysfV3Kza3qctlLlwPbctLp0tlaCquJZ6Hlr3pvyOXqNpps7aFqb03y6TlTpEOtHT+kwX9SH1WhC4140OoNmCKeIEEC+5mzpLRES0diPWPprFzyRIdNsPqnhNDU1bexMa7ZrcljbSdh1H7/3Iqc4a4lbE4aC2N+loSlrbnbARTaa9Ce0hGrSPppcYkFbPOZwKrKeTuosSfphtKaXOmgtydbsuTcm4Nia476lRDXqevHpzcfRncr5Ny13ylueYpqrZFH6pAWkTwEiSsYaLaNqeTc4A5QxNe0STpM56tDcpp84q14yM0VPa08azBwx7/LWa4uJz5pW6Xf5u+XuqM8Z9DtLJOA7dd2JRBdm2wPNKne0dqqpGk1Pk9RMNAnSnql/qLK2hthmFgOlA+dNz6/Ef1y/UogtUVZgeh3rvPbhkc+m8pJNxnHrwdOMaZfJ5Q3GWHle1fTRpdPp3j63C8VfOx9E/egQbOv0X1nx7E35f6LjkmTprOR61Ti5I6qyK6uDZ3D1o7RXo294k42do5o2WKtz+UYeyet/YhIqGsnrqrHsOW4lg10Amz4oaBYV2I1DH6RSJaOqt1ezRXDo2e82LNIsDAGZO0h0LXiI+KrrDu/ibunaI/dyoYlPrd/X79tJUx+1q25v4RTSB4rnjxIB0p3B5XzKkbE5dI09S5ic31VzNcBrXnDJ+fzSoag/i8TgSiYTvf8lkfQOmCxcuBADMmTPHeO/II4+E4zhYtGgRAGDTpk3YsGEDjjzySPaz6vYqZe+999b+e/Ob3xz4u9TboA6Kao0j/VwqHtPeB4bz8T1UZ9WHmxOGyeYdrY5CHXDNPpp63QrX90n3JJbfzzPRrtLvKAtltkbTw9NUSY0mNZRthqa6wAqSOmtInxORk7LSoul51yMh9olchUs/C9CbGHuP11UuJ7aR1Fk1TU25dmrabFs6geZUwohu07U9H9EsGItElYNnTCid02PePMV6/F6CEuOqqdHUonE53XObJPcq9UQTo8pdjNh6uroGjd6wnkQ0Sb1fk5bSXHyPEwoo73NlC9odTNQYsNRoBkid7SctYvQaTX2xZgrfuOdPT63k6qEqiWj2Z/PGosOm3OvXR1M97nLqrHLNiIMomYhrfWddihFNPXoK6JH3IBFN1ZjiFny2nmqJuDl2uWzrsRiaPqqzNMsCoHW95thV3G7O+AxgqdEk54eKoqn0DpkL6WdX7cTC4RYuxe+Yz6+e2lve5h0L15X+ffJBe2F8a1FEirYRW7ndTJ2tukZT+WxrOqHdEzctWA2g6Hh6+DU+cq1tq4IaTTp2GKmzARxaqpNyD+YZoNtR2XdSq3ZebVFNfawpft6WncOmg+fyrCI/3T8arVfvtePeOhUnvX1PTJ/QgqP2L4sWZYiQWSl1lsxhfZlcoEwGG9RJ7FWjmdEi9Pb7sDJD05yT9yWp0rbrTMenJqb8igpw2VBTZ/syeU+NCnX7QPHZqqb/ZKlGU2tvop+PfMGxRDT1NakLdYyqc7w2Zww/XzQ7xxakGEmqsgTnzp3LFid3dnbijTfewMDAAN75zndaW56ExcaNGwFAi2a6uK9t2LCh4s+OJL1EcEf16KgPo5E6mzAjmoPZvLHIt6fO8oPpim19mD2c3tPZV75hqfeU9oE0U2vi1iJ8zcAwUmf5iKa7WPeSnfZTnVU9jVRemwoBueiGplfqLB/RpIZmsrS4MtNXtOhVym4wqHCqs0GYMalF83p7RTTVhTMVAgLMGkNqLJXFgPSFolet7oTWNO75z6OxeG0nTjpwL/zXn19kj4NG2oFyTQtNnXUcpzRu6SlWvJFEnxF6T1FPdP9QXksnLafOmtfunTMmYPzwM5X0iGgOkgUHt9gOmnkQJKLJ1WcC/GKYa9tD92Egm9dUiVWHBnVQqM+JasTR88MJXdlrNM3XHcesOQpSo9k1kNXEfOKGGFDx/0MeEU2gmD6r9hMEiuOa+gyWUmcDRDZUw1itW+c+bzMmE/G4JlCmsq1niI3CDtjKIZhIPlejWTbk9I33K9tVj4FNnSURX72lin6f2FLIlm7pwRHDKqZ89ole/w4UFVQXrNxRev3Md80o/TuViCM7XGO3ekeftoB3U2e9mrN7QQ2Q1nS5vZN6DbyMJW5bLlWnzmqt1pjnM1/Q5nOqcl7eDn9/jm9JIRGPlebpdbsGcMi+E43P+bY38YloDmULnoa/u80Eidar40xTMo7ffuZdAICbF6zGUyt2DG+bOCKV+UGtazT6N1dao0lF9zxqNFVHFhX90zVC9HNiq6MG+HGHRrCtEU1iV3A6H+p18xID2qOjGcl4rPRcrNvVj4mW+45utzlZdOLkKlRzds+LGkWmDr9iK6/y3+4cwvUjB/RevYBuaKrPkZs6SyOanMNxpKnK0Jw/f771vZ6eHnzta1/DU089hTvvvLPa/QpEf38x+tbUZHrHmpubtc9U8tlK2bRpk/Z3d3c3xo8fH+i7/UxrExd10KWps8lhz5RalD6UKxg9cxK2iKYl9WT51l6c+PY9kc0XtBoJWvNBm63TSauJLIrVh9jW6B3Qo0R6jaZ3RJNGF1gxoHZeDAgA3tjSw263N2DqbEkMiBjOxeJ+PXUFoKmzASKaloGZ87AGYd9JrXh6ZdmTb9RokvQbF7W1yaRhcSXaAJraAZzqrF/qLAC8aY8OvGmPDgD2RbZX6qxqMOQKDvoy+VJqqbW9icX44PaB80SzqbNMRPPfD9zT+BzA9NFUxYBSCdbQHPAwNLUocoAFrdXQ9BUDKv8O9eCq33WvJ2BG9W0ptimyqOPEU2yCBzYDdDCb1/aTCii4qM9FwSlP5sCwYBsT0Rz0eI4BYM9xzQC6Sn/HYsVxT3eMDKfOWqLBKmpEc8BipKn7zJGI27dPnQWl1y0RTfc3EsQBRQXjSqmzZD/VYLMe0TTFgKjhZWvBAAC9ygKsOVXWP1i6uTz2cwJX6nG4To4/PVeOZs6Y1KK120gn4yXnz6sbu0uvT25Llxa6+mI/uBgQNUDa0kk2UqMaVI5TzBagkQ3W0LSJATGlMSp+EU3aXspqaFruwdZ0AuNbUiVDc5MlNVj9bffZowJv5X+b+zmYK7Cq1C5c6mwubxpz5X3QjT6bcm+b4jDoG8ppYkCVRzR140xPB4+zTm7ALN2Jx2Kl82VGNL1rNCkzqaFpEzc02jeZa0iupyRHIh7DXuObS/WZm7oG8Y59rB/X1jnNKVcZujJDk0udpUGDfMHR+zGzfcbL7/cTY1ddd6iGsxvRVNdo41uiYWiGvgcdHR347W9/i2QyiW9/+9thb16jtbV48w4NmeIVg4OD2mcq+exIohoytL5KHYho2k8qXqzho8acLrQTIwXY5c/aI5rFlBR1QQWYqqQ0isWlvdF6NxduUeKiRonUCVRNs+KiWNTDyi3u9fYm+q2/bAufiqMqz3pJmLtOAqPHVqGATM6cNDjJfDrQq9gjmmaNZhCoh9FTDEi5dmoN2BRm0ZQv2COatI7H6z6g2BYgnu1NyDGphqOthYKqYkedMXRxlUzozpT+Ib3vZknshDGiT3r7XuXPefXRpGJAZLHtOI4WAWpJ2ccQqurKwfXQBCprb8I9n0AxkqcaU1qkqOBov2Hr/wvwKW+2Z9OmBtmfySOn1Mro6UblfaTtQFRDPB7j25voEU3zXFDl2famJOLxGEmDqkQMiHe+cc4p23MWj8Ws9ZsAn1Y3YBnTS2M1qd2m9zb3OYrWDF7NsmB6w6YStL0JTZ0tz3mHzSxHw1Qno5aREGeOY/g+u2vxxtJrHz9shjUTaZ0iQrKPMuaqC+1q+2g2JRPs+AeUF6dd/VmccNWjOPyKf+HRN7Zpn6mkRtOW1u7i10ZJVZCNxextdmz3eHtTEtOUco+NNkOTuQ9btAwL1bCy1GgyKdal/WMcuzkS0VSdblS8zdaLVBUEouUGtYgBDZFyKtovV90f1UHm9ud1odffK3WWjWhOphFN+zikHQvj8OYUWG2o4mtbGGeZiuboT8UrPu9AeVzSUmeJg4f2XXXnENt1UR166URcW7tOZMot1DXa1I4mtrxopKmLqRuPx3H88cfjrrvuqsfmS0ybNg0An/LqvuamxVby2ZFEU3YlqXheNZruIGVIWXsI7QRJnXVrH6iXlE4M9KFQH4x4rNwTU903Fy7NivsddUBRj4WTnvbysLrYUmcBaB57dS1WaY0m3Q9qhJcEOrTz50Y09UWEis0rlWIM1yAcsPe40mQ5pb3JKH7nZMUBfaHteqVpXZQR0XSL3RP6QtHrPqBUVKM5vK22dELbN1UQyDZRVpI6CxDl2UyOX3CT2s79p7aVarUA/djphK7eE8UaTf2+GSQCYG1kDAki0qFiaynApsNZaq1ti98376kretMotmoIqNeB3htcypstcmkzQBeu3okjf/gI3vOTeVi3s5/UaJavaXMqYcjTu9AsirLqrN1hBLgRzTLueKY6Gl3ngRqFtjlbbD3fuNocqxgQSakLgk3gjUvnzzO9BjnVWYr67HBCWF41mjRtWr2/DlXSLpdu7inV7HIRTSpqVCg4WtnBCW8vZycUj6e8n+ri1iZGV20fTTd1lsO9f+57eRNWbOtD92AONzy5yrotF1vqrHrt3Pldhcu0UFEdWONbUtbx3jbOt6aTmDZBaVfRyRsNnIFmc5raWvbYxICKGWTmPZGzCP4B9Lzk2ecEMJW6a0qd9WhvkojHrJGzIS2ipxtaNNKt9cD2EQNKJWKGJoS9RlN/vYWUYQC64eVnRO2pOPU2d3kbmjSiGfS8q04H91n2EgOijgnXSWXLbNL6hpLnfWKrmTqrKo9PaW8amxFNl8HBQezatatemwcAHH744QCABQsWGO89/fTTiMViOOywwwAUBXumT5+Op59+mv0sALzrXe+q497yeAnutKn1iqQHontzGwOZpeUAYBcDUn+nFNH0mRi8ohF+A7xNRAQoNrTmUB96bmFFBwU+dbb8UHoNIm9W0vvUxYnXgqDc3kQ/nmyeT5ehfUgB06OmYtvf6ms0W3HFqQfh6DdNxo9P/zdD7a3JIgakGZrtbkRTn3TzRGillDqbUic4PfrutdgEvBYg9ohmLBbTHBfqM2QVAyJCNtp2mWugLxBy+gTMpEkDwEkH7qX9rdbG0dRZvY9m3Jg06LhgiAGFFdH06V2p3vfUg+vylj07tL/pPas+a+rYQWsHOdXYSmo0AeCXjyzH9t4hbOgcwC1Pr7HWaAJmtN/Fljrr1d4EMFucuE4eTugpmBhQ8OiQTQE5GY9VnH6vRTSZcghaW2uLirl9CTn01kO6cVbMntAX7rQnp4vjOJqz9lAlotk9mCvVzPrVaBbb6+jHQedt9RlVDU01Yu1Xo3nTgtU49qfzcM385drr1GlpMzTdZ0TNTKJp8WwfzeF+3BROZ0CF6++rsotxUHLYhEvamhL4/9s783A5qjrvf6u3u+fe3NysN/sCJCQkQBJCQiQBlFVEVlEjuxvi4DqOoiBuoyMvo4g6IyIqAzhxw3kGfEEEGWUJMODgK4RlSIQQ1uzL3br7/aNTfc/51TlV1d3V3dU338/z8JDbt291ddWpc85v+/4mdg0/N5u3eyOaWSFE5859tn2IrUbTVt+qfkepbmzrKSzrigcs17FVOCz7K4loCrV/7RlJJISTO6e918XTszmrX6sBSzaL6XynjG71zPU2p5Z82ZQ6W35E05vNqCJrNMMaaOp60b8vVVl9hOSYlqmz7ne2aTX4aTCoa9OW3QPY3T+kvX9se5Mxq6bWVMXQfPrpp7F27VrMnj27GocvMnv2bCxevBhr164tiv0ABeGftWvX4phjjsGECcObunPPPRfPP/88/uM//qP4WjabxXXXXYeuri6cdNJJVT1fE2qahkydVX/eqgjzqCmxXu+VX0Rz+HarbVXU6MrOviHsGRgqhuEBb9qsPJYUA0oXJ3hzVMzUa9BlksXQVD8vTETTI9ySSWrpKTaPak97BpOUBU2Nag1Z6isKxy8cW26ahnJ546KhKzIGR0KkmqHLsMJjaY9ySzqJdy2din+7eBmOnTve83vbvdO8ZftqNGW9qTV1VtTxmIwyGzZD269GE9D7IO7Ya45oqmqyfnLppuuvbjJ392e1Dbc7BtVrBgDHS0MzpV8/Fb/UWUCfFwBvT7a0tlkIU6NpXoyDajTVMZBIOEZJ9QOFoSmfUVlDZ3vfHsMGMWv5bjYDVFWtfObVndbUWcCe5lcQA1LOwdDexHQdZOqsO5+Z6tzCiAHZpPhN77c5pKSjCQjexGl9NANUZwsRTbOh6TiONX1WS50VY18aBE0iopnPo5ga3S9aBMzqadfu6/p96bPmiKYe0TYprJu+F6AbmmorArl+qvQNZvHVO57Cxjf34P/c9YxmpKnpngVD03zv3XujGtfyepkM3HzeLHoX1GYnKHNCdWB1+/T4tI3xtkxKc0KbUmflfSmmzlram5gcVn1DWatolHpuUjHb5nSTNZr6HkJJnRXnGKatkQ1pnMkxHUYMSEY0/VRn5fnJ51SmzQLhxYCkwzufz/tG+CRhU2eHRC/U5rS9r7BEXS+k+JJ7LJVBS+qsrgasps6aM30A3Wmzbc+gZ6/R05FBcwwimmWJAV144YXG14eGhvDiiy/iT3/6E7LZLK655pqyTuqnP/0pNm7cCAB4/fXXMTAwgC9/+csAgGnTpmHNmjXF937rW9/C6tWrsXLlSlx22WUAgOuuuw65XM7z+Z/5zGewdu1avPvd78bHP/5x9Pb24tZbb8UjjzyCG264AR0d+kaoFqiTmhQDare0+lANSI/3KqsYUx4vkr4Iu0we3Yo/vzQsTvHmrgFsUzyhpubPMnXEZCTpE/zw720bVMDH0FQeFpMgkExPlK0o1GgmYI+gLZrSpUlm77Kkzo5uS2seMjdl0d00uRPFwFDOGO01pUnoNZrmlNBB4VksN6IZlHIiHRguptRZT3sTmTpraW+iRw/8J0Nr6qxPRBOwtzhRBThsgiMqCcd8jmq6u4xouseVzaIP6dWFwkxOBxcZHZOR7m2illouRLbFy0YpYkD+/XBT6BvUjyVTZ/0imnrqbPQRTZX1r+zUepFKw1IqbrskHT2imQ0Z0ZSps8MRTf35ALziLyZMjjfA/MxYIwmOg41bdDG8ZTPH4PdPv2Z8P6DXuxn7aGrK5N4aTb0O14FJ4FE9X/l9pOGUTia0SAFQGBeZhON5b1tTEgeO78C6fa1N1r+yA0cfMFaLVg5/Dz36GGRoqj+rc+donz7OKlt2DxT/biiXx+u7+ot/qz7DTSFSZ9XohrwGNhXq/qGs5zv5PevuuRT/3uAIChvRtGauNOmps1v3DGLPwJBmaJsECQHdeagaU32miO5gThNotJ2bnLNtEU15XWwlG2rJQ6XtTeTaLXUDbPXB/SJ1VP07Gf32rdEUP0shIMC7X1PPT0U1JAeyOewZyGp7Vz8xIECkziqGphsRd1N65ViQNap+qHsMKXIIhBcDsqXO6n1D9WOpa9OW3QOaodm2L7gSh4hmWYbmTTfd5Pv7gw46CJ/61KdwwQUXlHN4/PCHP8Qf/vAH7bXPf/7zAICjjz5aMzSXL1+O++67D1dccQWuuOIKOI6D5cuXY+3atVi4cKF2jDFjxuBPf/oTPvOZz+D666/Hrl27MG/ePNx2220455xzyjpXP8K0E9Dam4j6qvZmc0QzrSk86t6rsKmzKt1tGbSkk0VP0eu7+gMjmjKKZRJXMaWCAbrHVBrDttRZNX3OFGEISp2VTZRNHvSjZvfgq6cvwD//7tnia7rq7PB5j27NaIamKsKSUjZN0gPuLjzqhJrb53n3U50FCtdz94DZ0Cw17S3IE2hKWQH02l23VYVMA7a3N9FVZ02tQGyUpDqrnI+WOquce5g+miq2Z0eNaO7sG9JSt9x7PG1MKza+WdjEz+hp80SP/FVn9eiYHBfqcyojOoDucAkzH9nFgEzGnblGEzDflzmeiKb+N2r2gDp3eMWAvBGHSgzNl0XtjjTcbKmzSdHeJBciMwHwRjSLhqahzs2vjYD8e4nps20OqWTCwYvC0JxmiESoaAJvxrY+9vIKQJ+D06kETJamOkbk99klaqgzqYQnbd+9//K97c0pHDChXTE0CxHurGFtkmJn3hRg/9RBF3UcaZkG4rpItWs12i6zY+yps4Xvq6rVS5Ebm+OpfygH6XL3Myzcc/E77pY9YVNnzdeuvSmJieK5eXlbn5aNJT+3WMKTUh3ehWtgGo9AIS3TWqOpRTTVsV2K6qw5dVZ1bu/pz2qGSKmGptYLejCrCaJJ1Vmtj6bYfzhOeYamdIZOHdPmOUdbBoNHDEisI1KkspyI5gPPv4H33PAwAOCWi5fhyFljPGnUNkMzmXA8a4qWOjuU9axF6X1lCe7rHvGoohiQOXXWL1VYfZb2DmY1p3bPvl61cajRLMvQfOGFF4yvJxIJjB49Gu3t7cbfh8WvfYqJI488Evfcc0+o9/b29uKnP/1pGWdVOrv6BtGj/Kz28XPRIpoZn4jmHnNE0y81Q24qbFGj5nQCPR0ZvLilMEjf2NmvPdCmjZaeT26O2oVJnZUerDFtGa2nlIueOusdtkGps2PadEMzkXCw+sCxuHf962jLJPG5k+fh3KVT4DgOOpp040H9ni5ysVSdBHr9Rk6XKncFYsREOyijwgEGlHytVDGgoHQKW43mHkNNsSYGlPVGNN3FQ6biBLU3USmlRlOdWGUvTRc1ZchWo6l9vuXZsfV9BYbv8UePmYNP/vzPaEkn8YP3eevApYKzioyOyfNQn1NjvaohHdOP0vpo2u+f3AD0drV4SgPCRjQ9hqYpomnZNIcxNCWyBtwa0fSIARX+r7ek8Y6b9qYU2ptSxe/r1lga23eESKErLaJpNzQ/tGoW/u62JwAAx80dh7Ed3lZgKvb2Jl7n15BILwT0cW97/lWDzJs6K1WhHQxmRY18LocWJLWxlU46aEoltVRuV3lWNrcHvPObbEfiTZ01X+PRIWs05TyiClVpTsukPXXWjYLsFhHNXC5fdHTZI5re1/1SJeVrpuOq84pfL0M/MaDmdBJj2jJFZ9jm7XvDGZpaP+992UMW0aNtewY8vciLx1O+Y1KL1ufFvksZsyJLQX+eh8dAmxADUqfGUlNn2zSjdUhzviQTjk+Nph7RdDD8s7ynA2pGkMwmCxPRDCkGJPcpslQkMKI5angOc8vCfvHYpmJUdO1jL+LIWWM8a0ohddb7HI9uzXjSU9X9aL8oCQKG1wl3bsnKPpoGh5aeOqtGNPXnXT5LavcEN7jSsBHNadOmRX0eI5IdyuJ2zV3rcdMDG3D+8un4xNsOLL6uhsU9qbNqRFNZfFSDsckT0fQp0rYsgC3pJHram4qG5pu7B7RUF9PC4NdsfbhGc3iAFybjHFLJhO8GNZFwMKmzGRve1L3r6mRmSp31q5MBgLEd3u/wL2sW4+EX3sTBkzo1w1HdEKubGT9DU13w1XMZzJqFkjxtULL5wEiIXypcKTWaUiLbhExZce/dbkPfV10MKO+JKrhjRabO2qTebedsPM+gGs1Ws6EpU9D8jgfYo0nqM/u/b+gtclyxpDMOn4zF00ejsyVtTENXnQ4e1VmtVUZB9VB1xGzTDE2DSFaJbRS27NIjD+4G0Vij6ZOZIK/jAeO9zsewNZpu3bM7rEz976yqs5b2JjYKUWP93DtbbBFN3QgZFgNSNmyWVOzxo5qw6/XC93UN26CIpm0TblWdNTwzfhHNE+ZPwAeOnomtuwfwyeMPxB/Wv258r4vqadfUNItznP75Mmqgjhnb2qQ+9/L7S1XoTCrhMZLcMWpqI6aKUz372k5Pa6Z0cQOopknmPMIocm7KWO65PXVWH7veiObwuYePaHoVOoFCWqbr2LAamobUV1PbJpWMcHhLVENzjJ+hacsc2efIndTVUjQ0ZZ1mmBrNoqCMKU8berN7z7lZUmf9ajTl91E/V12zW4SonPpZpUY09XKOrPbMp0SNpnrN/FL+/SKanhpN4VwzZUbYUmflNkY6LGVEM1B1VpQpvLK9Dy8o6/Tz+/qySsdDcyppfI6729IeQ7NTpM5K52YqUWi75P7VYDYXmDqrXl9NDEh8346mlBYtVVs1ue384hDRrP8ZjGB27fNEvrazD9+59zns7BvC9+57Xlv0/PpoqpE1rRG3psQnI5r2dDabF6k5k9QifoWIZngxIJkemjFM8MBwHryWZmJYtEx1mqWKAcnJT0Y0gcIEvnLOWI/RqBr4ekRzeHLwj2jqE4ap6brR0BQKo6bzlbiboFIyZ00CJRI5Fnfvk1xXDSHXyNLbm+Q8vQuHU2dFRNMgnGPD5pXz66MJ+EQ0S0ydDRPRVBu/j25Na9dw2pg2o5EJeOudVUzOB/U6qs+p6dxtmwqVfD6PxzZuwa8efwk7lflITTsy/e2gIfpjOxepOAuEj2jK72FqqO62nfjYz57AUV//Pe58cnPx9VIwpeWb5j+gELkwtjcRzgET6hznZozI5yOfz1sdIiryWXUpqUYzUYjy/cOJc/GNMxdiXEezMaIpU7VctNKJotqyqK1V3p9O6j2ebY4v9XyTQhnXU6OZSHg+051jTFoIB04YHpN9gzm8uGWPUET3OvGkQ1BteTH8mi2iGa5Gc7tQkt5pi2imkh7ntIt7raWwjeoo9EudlZhqz1WCVGe1iKafGFBAiYIq1CdbnKif6zjD40/dI7nXxVSfGYTN0JR9EbWMM/H8a5F15XhtEfbR1B3lQ3qapl8fTTFv+UWp/Ws09bl7iiGiGba9iXTUqYamqVRE0pxOas7mV3b04YU3dhd//t/XdiGfz2vfPZNMICEivy6mtO9OjxiQN3NDikcFpc7m88PriV+NpuM42r7i2dcMEc1GNzTXrl2LE044AePHj0dTUxPGjRuHE044Af/+7/8e1fk1NDv7CgPk/728o+iNH8rltZoLvz6a7ZbaG00MSHjr/DbvtsW8JZ3UIn5v7OovTQwoqxsg7gQqvU2uN9GvvQkQwtA0ePBl9FZ6zHra7YubRE7ULurkKg1X9W+k4WBSjmxKSo9h1rePJmCenN1r7Tjh2xME1TUA3uh6QTbbK6gBeJ0O6v4l4aC4EdMimtnSVGdtPQRLqdF0DU0pg+9XB1Z8j8UDq14ndQEzLa429BpNe+qs+zypYyMwdVZE10388++exRnfexAf+9mftdfVmqh+w6Y0a4j+2M5F1mcC3nuuGrly7lCPb+p/N5jN488vbcOvHt+El7buxf+5+xkA9kinDZMTy1cMSDEywooBAcB7jpiGVMJBV2saJx8y0fjeAUtJgiSVNEe2TJ9tjWga+ouYDM1xymuq9153HiaMn6VGNL36Ad7PTzj+/RpVJ2A6WRBmkmuce14mh25Xa0ZLrVv/6k5jlD4lMjaC7om1RrNteBz59dH0RDSV7yk/25aB4W5O5bOiZuiYDErb6wMBc7WfQikgxIB81mLbBt+dZ9V+jDKiKaNs7rrTIgzNfD5vjWj6oZ6XHBNhajQBPWtDndOkqFwlhqan5ZY2Tye0tUy9r6qjuxDRK8/QVI3r8aOajFHHsO1N5HhQHRZh9jGA7jB95pWdmnN2Z/8QXt/Zr7c22Xf+UlASCGNoZj1ruHSQyawvU0QTGL7Gmuqs4TurjtCNbw7vQcYWazTrnzpblqGZz+exZs0avOtd78Jdd92FLVu2oLu7G1u3bsVdd92Fc889F+95z3uiPteGw41oPrV5h/a6OpH7RTTbm8wbHH0i09Ot/AQ6bJ7WQu2DEtHcPRBco6lsFHJ5EXkpps6a00a0NCtDyqfZ0Bw+d1PUIbBGs92/3khF7UtnU53tbEnhxPmFNhVHzOjWRIxkWpRp0ZATxp4BYWgaIiGm1/S6kZCGZoicfZmisbt/yCNE5Hph1fFYkMc3j0GvAl/4iKZVDKiMiKaMIKif7TiO8frYzk9d1FWbZsroUgxNe72W5mU2RDTVeq6g87ZtLP9zX/RPZcKoZk1Ay6g6a4j+2M7FlDrrOHqN4y4lciM3J6oBYdokZnM5bRPizl9ZS0qbDdPcYkudTST08e0aKUHtTQDghPkTsO5zx+Ghfzi2uHmWz3f/kMyGsJ+/SRDIGNG0iXAYro3J0JSvFZ2Hpv6TSbuh6XEMmpxoAaIz2qbdIoo25JM6C+iR9mde2WlsD6ZHNIPviS1a06WMI3UTG1ijaUn5z6QSOFzpB7p0Rnfx36b2JgCwS41olpk6G2RcyzTEfD4fur2J7fiuoamus7KXpow0u6hzUT5fuIamHppBqFk1MsqdtcyF0nGpCg2p41tdb/cMZDXHns3JakONjg5m81pEzFujaRb8kcJz8p7qa7e9RnNat1cIqPA3lnnI4PBS51DVYSH3KDbU9NmH/neL5/fPvb5LMz7dEpRyIpoDhvYm6aQeeS3oWJgimvrnuc+6JgZk+M5qSr66B3HX7zAZbNWmrDP413/9V/zbv/0bDjvsMPzud79DX18fNm/ejL6+Pvzud7/D4Ycfjttuuw3/8i//EvX5NhRuEf9fX9YNTXWS02o0RY2VVKF1sTWxLrQ3sbeMsD3chRpNJaK5s19XFzWmzoq0KHUC3beIyrQHd7KypZm49HY1e14LSp2VE7rccMj2Jn6omzY1yiLrkL77nsNw98feglsvWaalT2k1i4ZUK6CwmKrvKxiaAamzhvunC2qEMzSD6hqAwsZTNaJ29Q95Ni3uAi6jE+r3UBcOvQG0v1NEUpLqbIChaRONKB4zQFRHRT6zLpO7zerJJrRNS0B7E0A3SIIimvKam1AX79nj2rHqwLH4P+cs1D4nsL2JrNFUzsVx9F69KrZUSE9EUzU0LRth9Rzdf6vX05YholJK6mxKps6WENEECpsW9XvKMdY/KCKaSfuxTHOiUTXRYqya5o4xbU2elPxxHfrc7N4LLcJhSDkF9BZXQY5BwPzMqddTnZvd7yrnEZPqrDoOVEGg9a/uNEamZPQqyOgyfZeOppT2Xr2XYUCNZp8ahdRLaBZO6cKPL1yKL582H184ZV7xd25d/R7hlNlliY6qRJ06u3dQd6L6qc4CFkMzM1yj6fKyT+qsegy50e4bKM/Q1CKaPkJXtkAAoBv66rhqVZwfuytMnZXZSGrkPyVTZ9U+moP6vFVuRPMwxfnxlgN6YMLmNDNpTahzpGoQmlqbmVCzFh5+4U3P759/bReefGlb8We3DZfpuncbSrC8fTT15znhyPGip1q7v5LXxL03Wo1mQERTZTh1tv4RzbLEgH74wx9i+vTpuP/++9HSMvzgJ5NJHHPMMfjDH/6Agw8+GD/84Q/xgQ98ILKTbTTcjdNfRURTfaD9+mh22CKafn001dTZ0KqzyaIUMuC2N/EXA5ILulr74U48iYQuXOJ6+gcD0nB6u/xVyox9NMV3cxwHk0e34KWte5FMOJjZE14JWUudVRdmMbk6jmNJCVQ9hjlRV6N7WgezwzL0gX00AzY1oSOaISfotqbUsHqhkMZvyySLURDpLFC/hyaM4Kc6W6YYUFMqgYSje/KC2pv4KRoDwZFBFZnu7jK5hIimpuAszs1co2lWug0UAzJsIPP5PLYpG9tvvWsRDp5U6PP5+6eGeygaxYB8HEbqNZwyutWqjqmKJNjEgAC79Lt6LurzqSr8uXQ0p7TrZVK3Ns0tttraZEJ3pIRtb2LDG9HU++75bTiNEU2TY8oyR5gimsmEg+62DN5QBKLGjdI3WsUsFVMkUDojB82bbMC88TQJcKnXKFRE06dGEwAOUOo0n311Fw6b1lX82Y1MyYwDTUU8ZOpsV5s+rvxqNLf5iAFpa8m+a3H0AWMBeCN8ewazXkOz3xwdVQlSnQ1MnTX0BVUJNDQN49Y1xPQazb2akr/tWZEGyd7BrCfroM8gMNbRnNJbLvm0N7H10Uwl9fVpd78loqmmu/YPYVBVKC7Z0LSv71IMSK/R1NNHB7L2e+pnaL5lTg/+Zc3h2LZnAO9Y1Gs8D9t3MiVcqIam2iYnTGYWoKfObhXZAkBBEEgte1k4uQuAec3vNhh1noimiPY6jrdG0ygGJK6JO3f5qc4C9ufJLYez6QTUkrLO4K9//StOO+00zchUaWlpwWmnnYa//vWvFZ1co7Nzb6GuTR3EgJ5aFbaPpopqyEj5bL/6R5sXqTmd0FJnX9yyR9u4m1Jnvb3tLGJFysNjTrPyDsFJxojm8LmHEQMCgK+8cwFWzunBF0892NO7zg/1uu9VmiwPhez76N2YmBfANuHFDNqgBkU5g5RkXWxKhRJZq6p51tSaVDHO1O+hbmDViIwcq+WmzqaSuoKuFOfoVBaGHX2DyAmF5MJnizowU4qyTXXWYkBNGR0+oqkt/DKiKSTnASkG5F+z4lcLBhTqv9RNkvqsB/XGs9UlAWIzb0ibLf6dcn47fcSAghwRQzk9c8D0zMpShHkTR3kWaVNE01ajmXAcrabIjWjqkYHwS6zcYEvxLX9D05DlYRjHNkPTVKMJePsPj233ps7mhLhFsY+mT41mmIhmUFqqKpLjvi7Tsd37r44tVWRvklLzt2XPgDElUE2FlP0XjXXzxg1qxvoe+Wzt8Ilo+n12a1qfi/oGsp66+lCps4bWH0FRXL0swm5o+inlFo9laglUFAMavl8DQzktJdckugd455K9g1ltv2ITJ5rR0wb1sdDFgFRjLe/rNFUdg6pzRNsL+IkBlZg625JOwvI4G/poKjWaQ/paY2txVvg7e+qs4zg4/uAJOGfJVGv2VNj2JoB+/7TU2bARzYC933Ov7cKflYjmIZMLjlZjRNNQgqWuGUOiH7o7F3lqNA37dFnWMBA6omkev8XU2RhENOtv6o5gdvYPYf0rOyG6PRR7Sg5l9d6JnvYmFkW5tF9E008NzCf9UBUDkhED00ZLbiJ2W9TUTIpvtjQTl/LEgLzf7egDxuKnFx2B9y4rrR1Ph0EIB9BTnPwMI3XzLFu/qPdAnTT2DgzpKXemGk3DhFFWRDOkJ1B1fOzuH7LWOUkDV/0eWhqRSMUsRQzINnZlzYl8n1oXlc8XnsmgPnjmiKb5/GyLXfliQKJG05BOrW7q1DS7oD6apvYm24WH12Zomv7W1jsOAI49aFxxs/POQyd7/talnNRZE7J2bjCbRz6f18Rd5HM9e1w7Zo3Va4hMPXpNxmfh3BOagZY1RDTDpKkXj5fUVVP7h/T1wc/QNLZ8Mlwz2xxhe/5kTWZnS1qLNu8dzGLQUJNUOKb++aUbmgERTUPqLODtewnYI5ot2hyctWwA9Wi6fk/809VdZFTc77n0rdH0GQ/S0bSjb9Czlu+yGK0qRoXpgLlaM0p8Ippj2jIelV6JOaJZOP7Y9iZtLt6spM/anDJp8Vz1DWa1sdjRnDIaZp0tac0BbxMD8qiISgEry5hVz0kK+AwEjDE/HMexOkAL6tL6OuwiHWR+jsbBkPOSjbBiQICe3aKOpbBz64RR/obmIxu2aM/coildACyGpsGok4EP1TB0jUc5J6mPpUl1Fhh+5vYo98W0NwkyNBs2ojlv3jz8+te/Rl9fn/H3e/fuxa9//WvMnTu3opNrdHb0DeKpzTs9r7veIZmO6GlvEiKiqavO2lM45N+ptGSSHs918XfppPGBlsaFGt5Xi9fVxc+N5Aa1N3EbM6uoE5PJe29SCCsXGUl202dMTclNSOlzW52Vmk64uz+E6qxPexPAmyoNmDeWYSdo3cuqq86qC6P8DPV7JLWIpr7ADUYQ0UwnHe0ayPdJI2H7nkHPoik9iaWkztraC/QanCU2dAVne0TTXTBUUQrViWVKT01bNhUuUi5efV6DlCRN6ZIuR8wcg999/Gj89vKVOGnBBM/fuqjjQ/0unvYmAX1iZaQJ2Bdp8KnRnD2u3VM7ajLYmtNJ45hIJPSIvamPZqmLvOw1q6VK+jwjYcWAbOrUptRZwGtodjSndBXPAa/KYqpoaMo6frMDCggvqqNFh1RDU3mvOg8WazQtTrI2ofZpMqh0x6Gcz/3TSF1k5FxLlw/oo6mmb/o5HjIp3aBSU55dVEE3v9TZZ17diX/5w/N4ccuefefoX6Mp54q88jCHbW1iOpb7s1qOo2YnbVKUZ/16O0qH916xeTdFfdoyKa2+z+bMGMzlfLM7VMNulzV1VkQ0Q2Yy2LA5QNOiRlP9nD6RPVNue5Mw2By30mEJ6OtdkCaBCdlLU6I+UxNGNWPcvveb5h+p9ZFOOh4Hj+rUShazIvQsC1UMyJ173X7Rw+9zU2cDVGcNqbOtmeHWRw3b3uTCCy/Ehg0bsGrVKtx7773I7qtZyGazuPfee7F69Wps3LgRF154YaQn22js7BvCXzdv97zuRnx2e9pF6JuFppS3Lxgg25sM38I+j5JnuNTZlnQSo5rTxs+yFRrLY2leHC11Vo+4Av5qlS4yqinVVWV0opzJzkZLOqmrYboRzZw6+dsNW9lSwuaFll7MfoPCqHZck9dfXfwM97fNMDGFjWjqqbNZLe1KHatyLKjfQ61hk8qEWkSzzBrNpKg58W4w9H5g2/cOejaTcpNdihiQabEb12GWdLehGlEyOmQSlinlXPw2CwB81aXVvzXVbQUpus4a246DJozyjWDYnltpoNnay7gMihpNoLAZkjWaKrPHtmPW2GBDEzBndSQTjieiKT+zVCEGqcyspQP6XIOwhqZ73mFeA0yGZtrTLkIamq6hlxAbJzU6X25EU0+d9QrQye8y3N5k+LPVeU1NN83ldWO42EdTOILKEQOS40d9j4yIbRNN6W2ps6axpc5dsrE8oF8z9Vjq3LFj7yDee8PD+NqdT+OiHz+CfF7/zqbaWU/at/IsahHNEKJ8cu2Ta9gkS4uTfu1ZsRuafQNZvZVHOmlU5mxrSmnRMFsfzayP6mzh+5idI+q6qdb69w/ltHFYjqFpy4ZL7tPNcFHHgN5KKyHKsqTqbGWGpnU9N6wVWupsgMq6iSBDU8VNmwW85+g43udYtoEB9L1wqljnbX/e3WHgOMIJsO/eaKqzIcWA1MBRHMSAytqdf+ADH8C5556LdevW4bjjjkNzczPGjx+P5uZmHHfccVi3bh3OOussfOhDH4r6fBuK51/fhSc37fC87hpcUsVTShc7jmOs01QHo5ayIjzgMupmm7Ca0wVhF9MiYPKWmI6thvdtim/F1FlNodC8wZF1mnKTJTeEpdYx+OE4jrGXZujUWS3Vyt4LTzXWQqnOBtVoGox2U8StFDEgl939Q9ijpp/5RjQtqbPK+efyuoCPX4RY/q1KOpHQDc2UXBwcrU5TGpqm+2gyEq01mobrW0raLBAQ0RSS84A9Smbuo2mux3FRU4bkIhrUhD0onS4MNgPHU6MZGNHMecSOCilKSkTTlDorIpq2NFmTIFDS0Z0U2ZzXIC9VWl6dzweyORGlKU111rbBMI15q6HZbohoZnTnoXSOqBFA1Ymiq85KJ6jJiWZI0VSup6lGU35+sb2J8l51TTWlmw4fx1RflcPAkL8RECblTq5X7n3O5vJaPSlQEANyI4Ra2wvD56jPzZumiGa/2dBUHRXrX9mJ13YWjNRnXt2F3QO6KJVpzZZzknrsoFZpEnn9ZKbGJEuLE7/of0tGccgP6RHNZkvWVltTEgv3pVECeq25LI/xKwdSv0/WksUj525VEKqcvY1NpC6VSFgNzT4hRujnaPQLaITB5KwAbGJA5vMNu48Z05bxnGNLOomZPd7WK+r9NpXUyDropnTSt4VNSolWush1Sf1dWuwdASkGFC6iqXaRiEN7k7JUZx3Hwb/927/hlFNOwY033ojHH38cW7ZsQWdnJw499FBceOGFOPfcc6M+14bjxS17sWm39yF0H2jVu9WqqHiqtGVSnpoNW91b32AW2/YOT+py42jbrLmT7Ji2Jry6Q/eC2hYGOZnusaSEqBO460XU1SrDRTTluUsPvm3iKpf2plQxhckt4NfTY3wMTbEI6Wq1w9dNnTQ8YkAhjZ2gGk2joRm6RlM3ttXDaxFNT3sTixiQzz0KWqzMaYCF4/ulzgIF4+H1fRun7XsHtU2H6XPL7aPpUooQkDyHoVy+qKSYz+c9kvOF/5vPxRyJVQyXUiOaAWJAfl78sNgi2d4aTf/xMZT1RjQHsjm9RrNZV3Kc0t3qeWZMBhsAdBkM0GRCF57J5fOeHoSlepO1qP9geDEgU22pbZwYI5qWqLOMaI5qTut1jYaIpnpPkwkHyA6/d/g9MqLp/fygNhq2NESt5UxRddacjSGfX1XhtZg6K3omDvikaNrOu0uWgggjejCbQ3M6iZ19gx5Nh4F9Wg5NQiXZNB7U7/OmIaLpXrN8Xv8eHc3p4tr/0jZdvXYghHCbScjKRY1oBinOAt6aROkgUp3QaosTP4VmNbNq70BOM6paDMYCUBgnF6yYjoF9115VUPVrV+Gp0fQRsnORxvQ2UdJQKlaV76SuaaClzsqIpo+jMegZCKIUMSBbdlBLOpz5kkg4GNfRrKVZT+9pw+TRLfhfIdTpKs4ChjGUTnrWWHmdAGCPoYWNFAMypc4C+/axA27LqMJ7dDEg73c27dHjFtEsy9B0Offcc2lQlkExdday+KmYUqJsYjv9QznNKO30pOtYogf7Hp6ejiZA9G63Ki4mHE22e48l1UPWkAK6N8wWCZE1bnJikhHNKFNnAf26u15ufZH3SwfUvVI2NVk1Krinf6hk1dmEI6TUDdfSlEITvkZTFwNSP0ut35RjoV+LqoczNIMUc/2az/ulzgKixcneAYxu0w0OSUk1moaJv+SIplhcB7N5ZFJOYUFSNp2m9iYq5ojm8LFNgj5qKtJo0YKhkhrNsNief7mgB4oBGWs09Q3y/N5RcJxCLegRM7qRTDjo7WrBqOYUduxzJtlqa8OmzkrPf6mbRL1Juj0bQmKuW7dkARjuVfjUWVmjmfOMK9XxlEo6wL4hpjpNvDWa4Qw21QhR109N/EWrn/PWaKplF/JZV6OkRTEg4QiyqZuazsXFT3UWGF4TZX2my469g5713DTXqe0PXjdENN3UWemUUde7TVt1Q7N/SE/hNs3V8jvbUmdDGZpSTVdE51QntGo8hBVKkjWazemEcU1sb0qhozmNTx5/oOd30vngF9G0zQFqfW9bJqmtoUHp2UHYUmdTCUdzYmups4O6o1tmy6loEe6yxIDM843JX2lzjKsO4yDGj2rSxsrMnjZM6W7F3XhVe98CJXXW1PbMrYN273dB4bdgvLtj3hTR9LTDUSOaWg92dVwVap2DUmdNAkXqvF1oseJ5S02pf0x1P8Q1uNQBaZsYTK+rC6ms6dnmE6GwbdbcFiQ9ptRZn1QXdcFRhWLUCdSYOhsgBgR4N3zSsJORB5MoQyUYU2c1A9kvOic84CHEgPYM6nUjYVJn5YJv2iyaxk9ZqbMDQ1ralVz81euhfo+ENlbtn2tLoXbxU9D0S50F9GhUIXXW3ztvjAxaHAumFKXJpUY0xTm7z4fHaHFTZ63q0aY0eyV11mAsqvNFZ4tM7/OPhpaiGmzDmmUhxkqQI0K2NwG8NZoze9rx/fcejg8ePQtfO30BgML4/OI7DsbMnjZ8eNUsTB1jdhKYUmcTor43JyLQQBmGpqiLCtvmwKTE7VfXLElYdiJqPVwmmUB7c8ojrOLXLkgdF351Z0bjpYSIplbDLzZ18r3qvJZIONpGdoepN6c4D5tTtXiOhvOWThyvoVk4T5m9NHxeg55n0JRCHxTRdOdweSx1nXhlhy7y2D8oU7gNqbPieVWNFk0MKIShKb+XJ6JpqdHUHQD6OeoOb111tiWTNGYQmfQNXFLC+eAf0bSksYp0b1vv5XKc6DahHKnSbqvR9KjOGsoSKjk/29xUSkTTFrU1IdvbTe9p9SiOz+xp05zS8tl2x6W6PzC1HNuj1XkbsiL8IprKvweyhci7n0geUHASyTGnRjQdx6l7i5PQd2poaAgnnXQSmpqa8Mtf/hLptDnSNTAwgDPOOAODg4O44447kCgzpWokY6rRtE0MphpNdYLSJtChnB6h8BEgGH5tuJmsSXnWJgYEFB4KdwnZa63RNIgBhYhoytRZee6ylqqaEU1T6qx/jaYeRbKlv8kmzaWqzsrJ2nQtTc2byxUDUtMj5eKfSjpuxoeuOuuYnSKSciKa7mIflDqrRr937B0KlGY3LWy2+51J6h5OAJhi2TDYkEa2awhLo8VdLEqr0TSnSbn4zRfBfTTtm6uw2BxN0lsd5IgYEs8Z4KrO6k6t4w+egOMP1lVw33noZN8WLIC9xZN6+jKimUo4geNaotVoeiKa9msQto9m4bzsz5Jkek8b3rFoEv7zfzbjA0fPRDqZ0OaPvsGsNg4Ab8N6l70+EU2T8WKKelijQ5pQi+7oy+fzvv2qWzPJ4rmp7zP1wAOCDU1Tbamf0BYwvJG3RjT7hjC6VR/fxjYgAWJAuyyGpuq4zYr7OZCVTejN+wj5Ny6yvUkQ0lCX85pqrKriRnrqrExxtBuaTamk1u+7+LkW5z8gxIByeV9hO9tzKK/jzLFt+Ns+lV+VciKatvYmfjWasmez3/w/UKGT0TYvmlL4bdevFMG9cR26oTmjpx0zhaGpCgEB3rnGnfdaM8niuFN1E/ZV5+it/vZ9T98aTTWiKYQk94o9gMkJnkg46GpJaz1le0QmSlM6gd3yD2tI6BH8s5/9DPfccw8uuOACq5EJAJlMBhdddBHuuusu3HbbbZGcZKNie/6KEU2Ll1XFGNHUIob6BOoXoTAt3OrfGyOaPguDHtE0Kwq2GFJn9ZQ78xAMqtGUHvxyJmM/2pWFd1f/kEd5L2zqbN9gVvNI2cSAdvYNadfFNLnKjYW8n9Ws0dwjxICkN1H97DDtTSRBhorR0DRENE0bUfmMBIsBhYuuAAVvodwIlS4GJCKa2aCIZgmps0l94cqLAjC/DIig1FmbsEUp2DYp8juWkzrbP5TVUo/LNYYBc41mwnE89YBB6e9BSAEOvRbK/twaVWdtUQPDOmCLaALAt951KP7yxePxibcVUghl70n9eXI0lWHZv3D4HORcZjJegrM6TO+VRkD/kFAfbtLvpS3Dw5T2BohWXkaBNkN6m6ddl7dGE9BFYFR27PW2ZQpykqkbT5fdhuwcwN5KDfBGNE1rtuPY1UwrbW8ijaZmEfU3CSXJsd+iZlYNZPUazYxZDMiWZQZ4Bf/86tVtz6EcA1IBO+jv/bDtJ1NJvY+mes20Gs1UUqTxD/+usBcKl9JvI5LU2RIMTRnRnNHTilk9+vU+RKnPLJyjzdAcvrbuuFHv0e4AZ1UhAg7Pe+RnDmZzWqZg4bPN31nu08eKvXy9W5yE/vSf//znmDp1Kk4//fTA95522mmYMWMGfvazn1V0co3OOUumFP+9SFGzch9om+S6imkB0PtoDv+7bzDrG6EwLRAtmqFpimjaFwZ1srC2NxFpVkC4SMiYtoz2cMjNv0ydjTqi2e5jBAJBYkDD30ntWwbYI5pbhaS9sUYzoIm96ZwKNQT6a82hU2eH37erf0j0orOfi7ooqfdXCvfof1966qw7noNqNGUEZiDA0DTWaPpM1Oqinkw4mNgZXk4d8G5k3bEmhWXc71aSGJBP7RSgjzsZtQtqjRJJRDNAoKz4voDxYeqjqW4mC59VvqFpmgeTAamzpnS8IKS4W1gxoFJqNE3XIej+qffDr72JvJ/qcft80oBNa5PpmbM5Wew9DvNa1AswRzRNDPcD1c9j94A5Zbd43oaxKp8t2TMvsEazT29/BYQRAzLUaFoimn6G5kA2q/U8tpWpmAyTbC6vGc9hajQ97U08bd+Gv2MuPzwP+UX/tTVgKKs5C5pT9vYmNtTxmg1QnbXNA6aIpomyIpoW1VlTe5N8Pr+vNZPu6LY5DrK5vOY8r1/qbAmGpmhxMn1MGzpb05imlEosndHte47ueahjqSjQp7ym7vmKc4hI57emzgpDc++AOatJIvf6ci9fSvS3GoQeIY8++iiOOeaY0AdetWoVHnvssbJOaqTw9ycchOvOPRQ//+CROGLm8CB2FwzVW1FKRFMdtHLSVRcq6eUwPdzqABxjMDRtYkCAWd0P0CdGrebI1N7E6tlyiob6zLFtWNCrpzVUs70JoC+8O/uGvHVIvgqqZu8WoJ+nbmjqGwzTjxbbtAAAdBlJREFUhkqmFHkMTYtyoy0FJIh2UaPpp36mRTSVDZE3RS78AqMiPebqsdV7YRT3UdIw94pes6ZNk8lg81tM1fs4YVRzyemSUrXXXdRtaZg2Q9NUsyKvh4xkbNMcU6VFNCOp0QwQKHMJjGiKNkKAN/W4koimFGIBCilPfmJApnS8IGStjy0bQmJSnbUbmvbsgDBI56Ffzb163/q0DVhw6mxQjabtc+SmTs7BshzFqtBpEAMC7E7V4nl7InJJz3wue+a568v2PV7jELBENANSZ3eJ7w0Ml4EMZPVno73Jvs73D+qtg2zzmxSyAgr7EXUMh1Od1Y8v6+DlGHCfc796Zj0Kn9Oidy0ZmxiQfZ3UnBmePpqyRjN4zAKFGnIT5USjrBFNUaMJFM5f9slsFmJA6rWVa0hZ7U0sY8jY3sTy/UsxnqZ0D2fIjW5NF8fhV9+5AMtmduPTJxyI+WKPaVKdBfRnrNmgm7DHJAaklVP5pM4m9XGlzjUtaXNnisJ3EhFNmTpb54hm6BrN1157DRMnTgx94IkTJ+KNN94o66RGCqlkAm9fOAkA8F/PDl+L4YimuS+himnC0COG9gEk071MtSN6RLM0MaCuloynHQqgT/LSkwjIRu/28//iqQfjfUdOw9TuNs/iJjdWQQ3dS0WvTxzUemgC/jVjmqHpG9Ec/owtIs3JmDorazTFz6aNdDrpoCmV9Mi5h0Hvo5lFOmF3jKjXw9beBCh4/uQ1cc8ziKZkQqgfOp7PDlKR9ab6hfOg+olNqddCXdDCYotoqoaSek42D7nJwyu/38BQDlDWoG0+qrO2FCuXMG2KgrAZf3JzEdjeJJf3OIOkNzjK1Fm3tY7mbMvrUeiyIprK5k5G4vwMzbZMqqioW3x/KamzJVwbmTo74NNfWL0+qqKr3PgYI5om49NyDdTjJUWNpt4GxfEYfX7CKfI7AEL4LoRom0lICijcH3c+c41Ie0RzUETsElqKsktQy4e9g1mPQySddHwVPPuHcqH0CUwZEFt26/sDP8d18Tji+rV7UmeF8NBQDh3wb2+i3vO9gyKiaWlv4ic2I9ublKM6K59DKU7jUl6NZriIJlAYe9JJ1yzEgNTxEsbhEYTNUW/MyrJ8l7CihgBw2NTROG7uePzpuTfw8bcdWHx2VszuwYrZPeZz9EQ0Cz+rtbvF1Fnl+6hq2KY+mlkhBqR+jDd11r+Hpovcp8uIZr1bnIQ2NJubm7F7d/hy0t27d6OpyRsh218xRfbKrdFUJzI/NSm5wBnTEjKqoVla6uyMnjasf3Wn5/Xg9ibhIiGO42D2uA7j76otBiRVZ2VTcn8xoOHvtFfk2GvtTRSPqdxghFGdlRsx07VMmSKaIWXB1dqYXf1D2ufJ1Bx1o6ilzorNUG9Xi8eoLqSRBW90M6kEoOxb3PEclDorBbOCDE2TIe632Ksb1VKFgADvfTPVaKr30KRqCYRLnVW/+8BQTtuEy/nClGKl3ie/zVVYggTKiscPjGh6+2j2DUVnaMrsEHdca300o6jRVP5GNcwA/w1dIuGgvSlVNE5thghgSZ0tQf9eOm70/sL2OemN3WqadrAielAfTf29SlRA1EPpKf/e9dSaOmuoAQeCxYDkfbJF8bToxVCA6uzeIV0V1DIWwqQT7uof8kT//DaihVph1ZlgSZ0VrdYAYMtupd1aSzrUOi1rXKUojxwD7mf5tZ1R58a+wayWxt2cLqNG06esQM5V1nRv8b6xHU3oaEoV05tt7wuDyUhO7VtnPYbmUM4T0cykEtbSCa/KdBmGpi2TzfByFKmzjuPghvMWYyibC+0U9bTIcSOayvkERjTdPppSpVjxCCasEc0c9g4OH8svQKCuTy3ppCHdvL4RzdCfPmXKFDz66KOhD/zoo49iypQpwW/cT1ANwmExoPL6aKoPik2Rqy2T9EbAjJvq4ddMC6KMcqhM7zF74LSIq3IOrhcxjBhQELXso7mrxNRZ9Tup9xiQ0V77Qma6V14xIBk9MG/W5BgJ3UdTMSYHhnKaMSwXMnVDaRMDAoDLjpnt+ZywW9wwqbOm+6IZmgN6ywjT+0vpownoTo9plvYYfhTS6PSUGcDH0LSpzhojsYaI5j627dUN/iBlTJkypdbmlWvEmf7O5DwLVJ3N5TziSTKiGZSe7YeMaJqiXdlcBDWayn2WqY9BG061bt1miADmObeU++dXo+mXzq+OPRnZMm08jYam5ZraajSHcvlAh26Ltbl94Zilqs56I5rmNVSPXgTVaA5q49vm+AoT5dktDc2U1xmp0j+U1VJnbXOhVgqyz6mgRjTDpM0C3vlNRuesqbM+EU1Zp98nIpqmNdG3RtMiciV/ZzoX2/scxzHWaZZXo+k9d/e5MBqaov63OZ3U7oPawqWUvZANWS7inp/JOWYz1EsRA3IpZb/pddAXPk+9tu4+SD1HPaLpnUOyOSkeZavRzGPvwPC19jOsu5V9ek+H9zlrmBrNo48+Gg888ECousv//u//xgMPPIBVq1ZVcm4jimbN27cvojlgF1cZft27SKmbLltE05SuY0ovVc8rnUxoRcWpfV5yGzMthqY6kWmexKHw7U2C8PTRjNhjo9Vo9g95Umf9zlu9PzJfX01RsxXsN1miEXIB9ooBGTZrhpqMcmo0AV1cxdTexMXP0HzbwRPw0WPnaK9JoSUbtlRhrb1JQIRyrxRYMb2/xBrNdy2ZiuZ0At1tGZxxuH+bDBt6n619EU2L0WJWukyE6kWo3hsZPfFkCQQICenpdOVGNA1zUonXH7CJAVWvRtM9VsKnRrMcL7K6YfEYmgHHU+csv/earkMp10a9P7KPplcJ23weXR5F9GCDDbAb0NYazWwuOKJpmQ9NaW8ANPVto0NQnLc9oqluKr2qs6qBurNPNw7tvXRDRjSFUWZzXgEFQyRM6qyqmupmOqkRTb9WaSrymkqjKZVM6I7NQTeiadaJALz9vLUazbS5vYltfS6cg2po6vNO6BpNw+szDcqzUYkBuffN5HzUyl0ccy2nO/48ZURlzP2JhOPZr9iyKqJInS0Hb+ps4fNOWlBoj5VwgBPmF/6tpc4aajSTokYzrBiQun/0MzTVHqzTur378oaJaF566aUAgLPOOgtPPfWU9X1PP/00zjzzTDiOgw9/+MOVn+EIQVeH9bY3sdUDBPXRTBgmBMDW9y04eqMKAnW1ZnxTGmdYagrs7Vfc9iZ28YiweNqbRJ46qy/ypaTOqguIqiws/8Z2z6294jwRTTFRG65lypAWFXaC9vPoyklPnUj9DE0AuPzYOVio9KwaPypcir0tojt9zPA4NHmEW+TGWNuQ+DtfbJ+tsvqgcXj4s8fh4c8ei4mdpddoAvpzUOyjaYtoGpxLUjDDRS7oqlGwVUllHGVo+uwXDQXgK+kfFtPfmerOgzzRg9nqqs42pZLamDelzmbzERiaynffUUKNJiAimr5iZdGlzso+mp62JZZr7o1omrIxgp1tLtY+mmFSZ30UOoFCpEkdO3ssPaOHz1t/zVZ+YupTuEMxNNU0/B17vTWaJspKnU2VljprW7MPmjhc5vL05oKh+eYuNaIZcp73qM4ahPEMCrd+DkSZ7q3XaCYMiu7eWl4VPYPHP6Jp7aNpmPuk895xypu3THuLYkRTzuvZrPYdmtNJOI7jmUOKhqbcC5U598vnxHYYmxhQORHNUrCJAR07dzz+8KlV+NNnjsFhU0cDEKmzakTTTZ0VmS+hxICGclofTb9923Fzx+Nt88Zj9rh2jyMfsI/BWhG6RnPevHn43Oc+hy9/+cs49NBDceaZZ+KYY47B5MkFD/6mTZtwzz334Be/+AX6+/vxhS98AfPmzavaiTcaspcfoIfYbZHDoD6aQGEQyWiDaXELivYABUGg515zj+HvgZwRIqLZlPJ+77BiQH5UO3W23Sd1NuH4RwC0TYmPcIRtUxAmPQwIGdFMOp5JJuwE3ZpJegRGXOS4VMekGokzXadEwsHNFx+BS37yKB763y24ZOXMUOdji2hedNQM9A1mkU4mcPZib7q+bAFUTo1mkNiUjAaWiim6UUpE0xaVcY89lPMqM2qtkAxRF1OKlcpgBJkJJkPEWCMbpr2JrNGMMKIJFNJn3bRJ16mjRjRzMnW2DAEGdY5WazSTQnjIhOp8849oGtLWSnD4+YlreaIUNkPTM3+HTJ0N4YSTPet2KQa7yXFrb2/iaP92DWp1IxmmxMFmaMp6LEDPMpjS3YInN20HEG3q7K4+U42mfbz0D+U0hWmb0+2gCYqh+coO5PN5PP3KsIbD5NHhnHBBfTSBwn7KFZXrK0Y07Q4AWaevPqcthtRZPyEgQN+3yJR9b0TTfE9Ma8qscXpEM5O011r74aft4bYZU0s0TA4yed792SyAtPa8yxZPpZBOOlAzxcO2unKpvaE5/PO0MW3W9w5o82HhdU+NpjJkrKmzubyv0r/8/H9932Lr7/20XGpBaEMTAK6++mqk02l86Utfwi233IJbb71V+30+n0cqlcLVV1+NK664ItITbXTUidxN2wgTFjfVaMoFuCmVxE7o3m9TRNM0sUmjRhUECmquPKYtg47mlFcd0aKK607ugyG8o0G0Z1JIOCg2ZC83dc96fGWi3juoN3gOMmrV3/vV85gWUMBnMxVgaJpVZ72biLD5+o7joC2TMsrkyyiA1t5kyL7xdOloTuPWS5Yhlw9vANjEkNqaUvj0CQdZ/046eYJVZ02bx+pO1NrmuIwaTb8NZiaVKHpG1e++bY9dnEV+JhAU0YywRtMwPgPFgHJe5cS9AbVTpdLZmsHL2/sAhIto+imC21DvrWoghcnYUHtp+hmaJuO+pIimT7sg+TzZ5kqZihw2ddb2vWw1mtlcXnPYmLI07O1Nho+ZTiTQB10hNuw52nQOjO1N1IhmdzkRzeAt3a5+3XGaSXnbr6gMCAE1a0Rzwqjiv7fuGcTrO/vxxIvbiq+pvcT9COqjKd/jRuP0tlU+huaAvp6bVGf9SoYA/9RZaTCFbW8CeDNywhWVeDHtJ9VzziQTGMwOOx9NDjI5xtwU5UFNZbr8OVUe3zY91y91Vj8hP8M2SFlYX99zyFnFgPQ5Qe12VIlh3TARTZfPf/7zWLNmDW688Ub86U9/wiuvvAIAmDBhAo466ihccMEFmD59etTn2fBoNZpu6uyA/wJoe11O9KYNTbmps5qh6SMEBOwrXu9pw59f2q69rj4sMs0KiKb/XiLh4LCpo/Hoxq1oyyQ9nsBKkQa+2tg+aNNnW4j9enup2CYtuRkIE9FMiRQgxyktpa+tKekxNE1pRWr6jLqxS/hsYB3HQSnrlLx+YY0bGYEZCIpoGmsEo3VkeI+vejIDVGdNqbM+G0z12NaIpmG+MKVYqegpk+VdH5MBaTY0/Y8/ZKjRlIZmpRFN9Rq5Xnz19As1mpVFNG01mmHGXyU1mqUklkjHzZCPEWKNaIZQnTX30bREhyw1mkPZvKbi2WESA7Js4NRzt0V8w6jO2iOayjM/VBg76pjVUmf79LrKSgRSTLW/fhvR/iF/Z4LLxM5mzfH8h2dex6Zte4u/L9fQNBlNJoVbP0NcvS67B/RraRID8qvPBGREU8wzskeszdA0PHTTRaTM1L84DOaI5vDnZVKJ4v5TigG5Y8HUBkX9P1BZJplXOMwS0TSM9VL3MeXQJJzL/oam/xyiZpFkc/a+qzJ1Vn1fJYZ1w7Q3UZk+fTquvvrqqM9lRGOK7O3pD45oGlNnxQRl2piZFjfTZkW2ujhiRjduemADAGDJ9G7jOanMMBiatvYm7iI6FEHqLAB869xD8evHN+Go2T0ecaBK8RiaSj1b0KbXNvnKiTGTSmgpLMPvC2eAyvpCYy+6hB7RbNlXfxGWQtRV74VmlE5X1SVFak1UBEV0bcgaTT1tLFzqZjnKeqWQFptjwKePpkkp12cRsvXDVFVnTfOFW9/pPq8yRUxva1He9TE5R0qtkQWAbDaPQceeOhu2hY4fXUIoDfCmzpo2bKWgy+Sr2RDBGwV1zvLbWJiem1Lunyd1NucX0axH6uzwv4dyuUDVWZtRoZ6T7fqEicRaazRVB1A251GcneoX0bQ8D2FTZ7XyloDUWRnRtH224ziYO2EU1m3YAgD42SMvFn83ujUdWpHb00czIKJZVJ0N2d5EiqA1pxMeZ72fPgEgMngCasHtYkDh5r5yMNUdq+csUz1NTs2kmP+LNZohxkIYPDWalvnZFEhpLXEfUw5+6ddB73Vxx4JM5w/bRzOrRI9LaeciqbcYUFmGJikdrVZxKIdcLq+JCpTURzNURNO7uLltFFTDRm6qjz94Ar597qHY0z+Edx7Wa/k2w8zo8UYStfYmQgwon89HEgkBCj0ZL13tbZcRBS3ppJaaq0Z/glNnw3u/WzMpbw/NEIIXpvOwRTQzwtAsBdO4NI1J28IbpaEpJ8uwx1Y9orm8voE3p86WbuhUiuokCOyjaYxo+hkWupfUZdtus8KlSiaVwNCAdyMHFIw7l3Lvs+n5N4k/BGU+DOZyENUDmuBHFOOwU1FKTVhTZxXnQDk1mtZshuDxpzrb/MarMaJZwuWRjpshLcIRHNFMJx3PeA3fR9NW76YamqJGM0AMyNbexBZpUAklBmRLnVUMjcFsDtuFAdSr1DT2D+W0mt1SxYC62zLF/sUFw1uPfgeJAYVJnQWAAyd0FA3NRzduLb6+cEpXaMNAnovsowmYI5qDPinN6pwuI7oF1VkR0Qys0TQ7VoHwNZqVONmDyOxT5rX1OpY9km2ZGOr8b7rOlUU0haPcMgmZVMirnTYLeM/Pz9C0p84m9v1fT+e399FUM5v0mv+KIpqN0t6EVIZqDA4M5bBnMKuJrNgWiGTCuyiHaQgsPcbFvw2IhiYSDk5dOAnvWjo1VLjdpDwrI2gq/SIdoNK6qWrhOI5mZKn1bEGTq20BMW0OZI8woBTV2WDDKy1UZ0v1mJq8/aaxqp5LkOpsuXj7aJYe0QR0ZUdjC4VUAnJPFHX7HImmDFuMIJoXf5Mjws/QVM9dradW08FDKWN6IpqV1+qYnn/TghpUo5nN5bVoLaDXTkUxz6ips8WUKK29CSKNaKqEGX9Hzekp/nv5rDHW90lDIeGgpOhAq9L/Vzpu5DNpekZNauZhVWetNZrK38sazV0Bonv29ibmdFwVU7uVTCqBQ6d2ASgoas8ytKwAvNEL1eHY0ZzyPJNv7FLKN0o0NMd1DJfEGNub+IoB+fdKVVGVZ1XCps2656Niuj+qM8ot1fATS/Krly4rddZnvpP1zlbHseU6hlVh90PuXwBvjaaLbG+ijgXT/K8ZmgEieX6E2b8AZoddLfpCppIJzQHnN4bszgRvRHMw69dHU3cKq87SVp++60EwormfIAeimooJ+HvQ2ptSehQmIT0t3kFkFyDQlb4qfWBNvTT1iKZ+btKbWEoD3VrT3jRcb7JVMzSDUmfD1WgCFm+tZdKKQnW21PQLczsA/4hm1VJnQ3xfE3KM7+jzj047joOWdDIw8hkler2WqzprNlrM6tH2+UP9/p/91ZPYvH0v3v+WWVoKmU1hWqb3qaips+VHNA0RZcP4D4ooF7I09BT0vQHqx6ViTJ1VjpuLor2J7dkPMf4OntSJ2y9dgc3b9+LYueOt75PPTamRlWZRbqE/TzKd33vdTU7QsEal3RBX0lyFAbdLOT+zGJBlkxgiddZm8N3wvsW466+vYsWsHusaK5uzq89jV2vaU77xhtIqxNpH0/JdxnY0FRVgd/YPadfBpEyuMjCUE3V59mdJFQRSKcXQVA3snvaMUdXUWKMZsr2JpGBolpY6axsPCQee8w0SipEcNXssfvHfL/l+fhjaMknNeZHUajSHr8dANicUztXsGa+hOTAUzukQRNj2Jumko2WXAZWlkZZCJpUoOiz9xpA9ddZNQx7+fTaXL0EMSFWdbdzU2fju8kcYcrHZIgxNWy8vwCvJLjdnpo2ZKXUW8C+SL4fpBkNTq/8Qx98lFGrjGtEEdCNLTZ0NMo5tk685dTZ8RFO+HqY5ekrWaJY4WZlTZ8OL5ZSiZhmEJ6IZMoomx/iOvfaWM7a/qbYYkC5/7qbOmtMwS41oHqcYHf1DOXzzrmdw+c8e15wnYeaLQY+hWXmtdfiIZunXP3JDU02dLYo86NEzW11tWCqJaAKFFMUT5k/03QDK+avUW+f3PMlxYLruRqG6sKmz1ujQ8DnJnnVaGzGDirttTlSPY1unbPdlTHsTzl06FVN96hJlVEk1Cjpb0kgnE9pzrRqaYectl3EdzcV/7/b00fRXnZWps35j68AJlUc0Z49rx9mLJ6OrNY3LjzvA+B5ddbZwbn0D9mfPdo8zyQSSCcfz/lJUZ7XXDQ9TKaqzAPC5k+cWHX9Xvb38FoHSIWxLnfW2N0la3udVLq+sRjOcw8t1/KpUu7WJy4H7HCeZZAIzLZkJQLAzQdNg8BUD0p1P6hpmSiEOS9B4rjaMaNYI6TFTDc1UwvF9YKVSnpzkTItv2NTZSnPdg/p8Bkc042tolp06W6mhaUvl2pfKMdzSJUREM1Vp6my4dgAmI7fwejVTZ8MdW3pE/SIwLvI6VbtGUy4wQGkRTT9D87JjZmNCZzO+dsdTRYfJHU++ol0/vxpNF3VzmsvltdT/slVnTRszw3xWTuaDavRF4dCaO3E4WuP2EPaIAVUc0bRtSqN7jjy9Lkt0BslnQ60dlOPApKyp1rq6mMZ0WCXawnuHP1edc7w1mt7nxBa9Uo9jG39R1agNZnPYphiarlNjVPNw79bXdwZHNG3q0+OUdMxdQsE2sI/mYC506mx7UwpTulvw4pZhtdmZPW1WR5aNb5y5EF/P560p3aa+5HtFb0zt/RZD2t2feJVuw9doqpjWO7tSsvkY3W0ZPPgPx+K1Hf2+joog/FJnm4STw5o6a1Asj65GUzi8fKYhtW+q+3Mt+KczD8G/PbQRK+eMxdgOe0qzzQHm3mN9Tspp0VmbSNNgVqbOlv+dj5s3Hp0tKbwY/NaqwIhmjZCTzZuKodma8VfQkl5Yj+qsYSKzSqqLnPpyer1JJnY2az9nxESlTiCy52Y1C+IrRYtoKsIpQc3jTX3qAPOkbEqZ9lv01WsbqkYz4fjWzAZhciSYlZDDL7zlIntZhjU+pEdUHYO2hVI6YKqfOqssRAFiQKl9Qg8qfg4jx3Fw9uIpuOcTqzBd2bioEckwypjq+ah/C5RvyJkMVNMYDXrmTEjV2UpZMLkTXzptPs5ZPAWfPWmu57hSDKis9iYhhcAqQc65pTZcTycT2nj1e55MbUHC9ng2bcRtTjh9XlTuSVYamt7Pts2JWo1miRHNMPjVaHbucxSPahmea7UaTct8lEw4xnPy1GiKesbAGs0S6rEPHK+nz5YSzVTx2xPJiOZgNqedo3S82eZHt5+rN6IZVKNpS5U0GZqmTCN/FezmdLIiIxPw6j+EFwNSU2f1FFsAwulQ/rxaiuaCvD+1Sp09YHwHvviO+Thunr0UAbA/jytmFermNfEooXWgOitlLeeegeDOFGHoaW/CPZ9YVfbfV0p8d/kjDDeq4rJl97B3MqgeQBoj3oimPgAdBxhliWjKjUAUnqHJijoeoBvCjqOnpXgimg2SOqtGNIMMnFIimqYF0NfQVI4tN99m1dmE5giY1NXseY8fJkM4qBm0SqSqs2m5MIU/tnqd9f6E5mstHTDVFwMaPv5QgBhQ4WfpgQ9+jrvbMjh1kVlJ2hbRNNXoFM7RX2kxLGHbm5g2IUH3f++gXaSmXNYsm4avn3lIMaKpiwHlNQGiSGs0I+yDJp/VcubgZs1xY88QMDmgTNk2pvtj7qMZHFlUsysGcznteQ8rbgaIGs0S6u7DktaiF3lsV9YY1wDqUJSEVUPUT0VSfp9MMqE931IMqCmVQGpfCqkJNfUYCHa6zRWCQIv2CSNFiTo/9w9mtVo2wLuu2sbNOYunFH5fco2mZb0zOUcMz261HZeANyrr295k0Jw6q14XN7o2oCkQRxjR9JmH5HpcC9XZUjA9jxcfNQPLZxcMTXVOkoamb+qsMq4r/c61igKboKFZI6TBtUWJkAVtEj0RzYD2JqOa09ZFQ0ZDo8h17+3SDU05Yajfe3eDps7q7U38z7kUhUJzRNN+T9QJLUz0IJV0cOqiSXj7wklYMXsMLlk503psE6aNmbm9SQ1SZ2WqcAljxzbJWvvReWo0axfRHCz20VSbiuufLxc2W4sGySmHTDS+Hkp1NmuPaJZ7fUzjwzQnhY18quwdqI4olYo67HOyvUkZc2sYVdVK8aTOlnFtbBkCcuNpmhdMTg1j6qw1EuQ9Hy3ir3yf3f1DWj1UhyGiaUuTVI9jSgGWn1sqmTARTUNNqfxbiUyxa21KapFcb42mOX3UpVQBPykIVG5E0w+tXdxgTsteALybclP08PTDevHhVYX2aF7V2XJrNE1ReFMpQPX3PTIqm9ac1D6ps8r5qmu9Ow6qV6PpH+FV8RO/qweyJdcph0wsZr0A+v2W/ahVZ6XufMppLRCD0rnjTOOeeQPSrChZlhLRlDWaclMnDRObgiRgSp2t3NCcNsYrCKSibUo8Ec34+jpU1T81OhK0qbZNvsYaTYMh56cAqB5bbsRMm6FMMoHWTArXnXuo9Zh+hK3RrIsYUAljx2poWjZXta7RVL/LYDF1toSIZsjn+IDxHZgzrh3Pvrar+FpGiI6o2Go01R6aQPmGnLmPacjoVjrpmU9U+iOu0TQhxYCqVaMZpWqgvBa2Rul+qBt5LXVWKtoa5oVOg1PD9D6bInSTogRpeq96T7aJ3pQmx1lzutDOKK8PaVGjGb4cIiyyRtOcOhtcOy2RoiFtmZT2vT2ps/u+QyaV8EQG3ffbztvEIZM7i9ezoyllVaKtBD111hDRNMyHk0e34KWthdrRo2b34BtnHFJ0ilfSR1PFNA+a5q5qryeAVwzIGtH0SZ1V90Ducz4YUoE4iNIimtKxGq9946KpXWjNFPb3y2eNwTVnL9S+j1/fVXUbkxFzgjquayWAVA3idbdGOKrXY4uo0fTDozrr6YWp/+xXeC8f7igG73nLpxeN4RWzx3h+rxpOHtXZWEc0bUX8Qamz4et5SlGdlb8LU6NZ6fU1GZqm62IzNCJNnS1TDAiwj3NrjaaMaFbQLywMmupsQI2m6eegvm8qJy3Qo5pdrWlrvZBJDAIopCSqlGvImcaHMXXW1NIlYLPRNxRtjaYJ9Xvn8npdaHl9NEsTDikHeS3LuXfqRnyLT1mB6djm9iaGiKYtM8TU/sZSo6kab4BZddZxHKOjxma82j63VGSanGrQuRv8Uc2lG5qm+kQ1kruzr7SIpsxCCjKSpnS34nMnzcWiKV34xpmHVKXsQJ0j+kW/wVTCMY6nz5x4EKaPacW7lkzBD89frI1VWdoUNJ/aMnjCi5vVIqIZTnV2IGtXnVXHjTs+1VTqStI55TjyuyT1Up0Ny7iOZvz2796CH52/BD+5cKlnjlLnj/5Be+qsOn76BnPacxq3dOFSYESzhqjpbqoYUJD3TAoYeFNn9QFoq7cCDKmzEQze7rYMbn3/Mjz8whacunCS5/eqt3BXv77wx7tG096L1A9rzzWjWmhpqbO60FJw9KDSiHFYlUabwVZV1dkSvMJ2Q9N8fvK5qLYHWkujy/mrzgLeMRI2dRYATj5kIr51z7PFn21ps4BPRFOKAZV5fUzX32RoGt8XULc4mDVLyEeJjAburVAZsdL2JmGQ16JUMSAA6OloAjYX/q2OizD1n6bxVkrUx3QtbDWa20TJg21ubcmkNFXLwnHMtVNB5xIW9ZgD2ZwWGXaNBFUMSKXTEukEvI3d2zJJzcDuH9JT8oYNzeFrM66jCa/tU7ktp/f1xStn4uISyzRKQX1O+gaz2Ds4fI62Pc0ph0zCKYd49yfAsGCcOwZkD1NJpRHN2tRoSjEgZe8gI5qW2nJ13LhBAnWcmlLRw+JVzfeJ0ntqNONnukwd02oVcFK/a9jU2deVdkaA/74+7jCiWUOabBHNgNTZoD6acnPit3GsRuosAMzv7cRFR80wSkCrk4TqDUsGKK/VG5vyXHAfzfDeb6kMB4RXnfXWQ5nSzyqMaIYUA6pFRNNTo1nCsW09qEx1YIBumDpO9QwVF1NEs8/SRxPwGp6lKNIdML4DB4wf7gnmt4DJxt7D5xiN6qwpMmA2NMO9z0a1IghyXKipTuWku1prNCM0NL39d0u/NmPbzVL/0pFpmivNfTTDpc4C5uuqzYvK91Ejmn695IwCZwF9NB2nMkep1spgKIfdAwZD0xDRnD2uHSfOn2A9rjS0WjJJT4Ru626vgq16XScpugtyY1ztnsJhkKqzaj12udGuE/dlekwe3YJDJnf5vtdao2nUSfCqhNfC0JRrt6rhINXEtdTZgBpNVfwryCD3Q+5F/XziHk2CmEU0g1D3wKqSLKA7+tTggdo3N+H47+vjDg3NGqKLAakRTf+HxtNH00dsBwiIaHpUZ6s/BNSFT+1hGOdoJmCvnQ2KbpXi/TZGNH3uycGTOov/njdRr30x9tGscEEzXYO6tTfxRDRLMDRLFFlRn6l0MlF1h4i6IQ/qowl4z7vUhfftimd/anf4pvIuUgyo/BrN8sWASpm7bKlulSIjmup1Kau9iXWcRrexkteinHun9mVUCZPOb4rGGVNnS6hXVcepOlbU2npbvSPgNTSlE9TW07OSeUHWaO4yRDRHt+mby1UHjsUvP7zctzxGfpe2TMoTeVL3H+68qs55UuBPO+8Y6Cp4Umc10ZTynpVvnHEIfvGh5bjrY28JLo+xps7a0r3199fCWPf00VTOTaqJW1Nn1RrNfYamnuJdm4imXBNq1d4kKlSjX9YTJ7X2JsPXQK0Z727LVN3ZXU3iF38ewagbIzX9IEhNSk4YQcZil6Ehtos6kBNObYrStdRZVaEw5g+OzQMedN4l1WiaxIB8NqhfOGUeDhzfjmk9bVgo1PxMm+lKIzmma2Aar7Yob3XFgEqo0bRFNEP00azFM6Ia6qHEgCqIaAKF1Lb1r+7Elt0D+OCqWdb3ZUTkwCVb1RrNcKlmqUQhUiCNXhO1EAOSlBPRdNtMyNTkqkY0y3hGbRFNOd+YNtTGPprGiKZtHvWv0bTd6x7LOQNmQ9PvZ6DyeUHWaKrZPu6af/y8CfhW17N4bWcfzl8+HZ85cW7ghtNTz5ZJojld6GftDqs3FTFC99q95YAePLlpO1IJB287eDz+88nNnmMnE05ZqdZRo85/fYNZLUpUbpZWIuHg8GmjQ73XnjprdzKrqdk1iWiKvYU1ddZTo2mJaO4LEmipsxVENOXzU1J7kwaLaJpqw13U721zrvnNXY0ADc0aYjMgggrPPUXdskZTqs62+aXCDf9tSzpZk9RVrb3JgF0KP27YDE3bZFD8fQk1mub2Jj6evUwS56+YYfydMaJZoffZZAib25uYx1GUmxJve5Pw363kGk0toln9Z0T9Lm5aqr8YkPTwljaVt2SS+M67Dwt8X5PYkBTPMafXP5Y7j5i82KZ7ZRrHqaSDZEhDM0qHh3bcEpQSw9JkUP+sZo1mWamzhhIJwJSW641wmuYPx3E8TgObISefhYRIbbdt9se0+UUB/bOGTA67Su+JamzI3pbuBr6zNY0/fGoVdg9kfesyVaRTrS2TguMUrvuOfUaCqd/rx996IBZP78a07laj+mzhnOtvZAL6nqd/SG9vUgvRlFLamwDufK1kc9Whj6YmBqRlqmTtqbPN/qmzfgZUEN6Ips9cKtY7WylMXPFL29drwc3XYEx746bNAkydrSm2VK+gTaL0GslNl4xuhFWdrVUDV/VzGiqiWUYPM6C0iKZpUSy3lUE1VGeNEU2D8WmbIKO8x5VENEtvb2L2/lYL9T4N5nLI5/Pa5kmevxwj1dpc2cSAhiIS2jHdQ7PqrDktPGxkoFZiQCrlPsem8SaFvypBrh9RGprScSDvb1eLXeFY3suwNZph54UeyzkD3ufHU1Nnah1V4bygriPbFOVeQM9iSiUToY1MwBuddedrW5qjex7JhIPVB47DzLHt1rEbh7RZwBTRrDx1thRsaZ62Z8lb+lCL1FkRpVdrNH3FgIb/Tl3/dxrEgGx9XsPgaW/iM5fK5zNsO6+44GtoOmYHgEqjRzTjMWvsJ9g2uzbRmeHfC0NTCvqU0EdTnSBrZ2gqKcP9akQz3oamrUYzyMCx1miGjWiWeV+qUaPZkk5CHtZ0zrYoQlVrNKMwNEO0N6lFmlNGRDSHcnmogbqg9ibV2lypDgRbjWYlzoSksfYynBhQKuGEHl+1EgNSKae9CRAsdlMptYxoyuve6asfEE4wRV4LT2TEcq97fCOawtCUtabViGgq67haMwn4b0yDkIqc7nezZU6Zvoe1zU4NnG5haBIRTbVGsxZplaVHNMPXI0aFXKf92pv0heij6QYJdvRFVKOZkvOQ/b3ePpqNZWja9pKALoJki3SPaaOhSUJik+MPimhO7W7FnHEFlcil07s975eGiV+NppY6W6OH1R7RjPfwkyJMLoGps6WIARlrNMu7LqZJqlIjyXEcz4Jl2rDYIprV7KOZjCR11hbRrG2NpvosDOVyHqVHv/Ym6aS5b1wUqCI0A5YazUoMTVOExFyjaXaihP3sakU0/VJyyxEDsv1dlGNQbpL9Igk2xtkimgHpcKYemi7eiKZfGqL6c7gI7RjfGk17c3vALHYWZY3mDpHpU+4aABgimvu+m80oMAodWT4/LllI6hzRP5jV2grVovWF7bm3RjTFmK2Fwe4VA7LUaPpGNJU+mgNDyOXy0anOerIf7NekVhk81aIplbDvkTTRMVs2RmOnzrJGs4bYPNxBNZqJhINffHg5HtuwFctmjvH83iMGFFJ1tlYF1er57RoBEU2bwqpLoWZNVw0DbKqzERqa4ryiasvR1pTSItEmx0ht2puIxbokMSBLKliI4nu/KExUaKmzWT1tFvAXA6rmcyw93y5qj8pK6o3MYkCm1FlzjWbYOaRaG2Tb3iidDB9tlZgjmtHd46D01jC0N6XQnE5otX5AsJKkb+st5W/TSXvdr1xHw6pXliIG5K3RjN6JZ/v79uZURdoJNoXORVO68NjGrZ73myOalvkyJroK6nzYN5TTDc0aKOknEo4mruQStmymlLWrXDxiQJb2Jh7VWeX6qYZkPl9oF6S+tzLVWeHw8rkmnpY9DZY66zgO2ppSWl9fF3WdsKbOMqJJwmJL3wsj5DGqOY3VB42z1PRJMaBwqrO1aG0C6JOCWksRF++ojdZMEqb1Psxia6zpMfydsb1JmZtKrxc+mvurLlgt6aS5X6fls8qJltiQi3UpG/lSxYCOmtODlXN60N2WwQfeYldljQrZ6kBGNOWzqm4ESxUCKgVbjWY2F02NpifVMmGOzpruUzLhhM6KqFpEM2QEoxSMNZoRRkA8Ec0yro3jOMb02YpSZ5VsG785tkn8LmzbIz9BDW/qbPXFgGybSlNpQimYxIAA4ORDJprPo4TxVot69TCo8+HAUA57apw6C5idD7YSEm97k+pfR78ovVQT77ekzkqdipe379V+rqyPZniHl8wGbDRDEzCnwzsOAtsoAYxokhKw9fILimgGMX1MKyZ1NuPl7X04dGqXb19OdTGvhxiQStxTZx3HQXtGj+YB4dJeUkkHUrgvdESzTAeAtyl0NJtrdYK0jVXbhruaYkClLNa2ulfbZi+dTOCnFx2BXC5fEzl/LXU2m0e/iGjK81QNmWqKX1jFgBRDsxLvvBw3VoeAYa5IJxIlRDSrM9fYHCmVOPFM0aQo1T7lM1muIu/Y9ia8uEXfeHqjpSLbxqesQ73HvoZmYETTkn7mE9H0igEFHzNK1VmVSjbvgF0M6NApXejtasGmbfo9M82BtohmXJzD0pGzXYkU1SJ1FihciwHDayY8NZq1EAMS40Cdp6WauK2PpnR6bN7Wp/1ckaFZghiQ3EM2Wh9NwKLW7wQ7tADWaJISsG12K41IpJIJ/OLDy/FPZx6CG9632DftJlOH1Fnb94576ixgTp8Ns9iGrXtJJxMGI6K8x1Ju2qOSUG/TDE2LQJLlXkba3qQqEU3/a1SrnnGq80JGNFMJx3Mv1TFSzXoVNXrUnzXXaJqEUsIir79trnBT1VRSJaSnNlJE0/S3ldTsSTx1lGXeP1NEUx5LXp+wZR2+hqa4PnL+tN2THr+Iphh3nrnU4Kio9J7YnAd+wiFh8NZoFn52HMcY1TR9D7efqyQ+qbP6eWxVVHtrFtE0XJ+w80FN6v6TCe06JS01mrv7h7QyH/1vHM1g3axENDOpRGWZGyW0N5GlL43W3gQwG5pyf2FNnfVRzG4E4jFr7CfYInuVpsoAwMTOFpy1eIqv4AEAzN4nKgQAB07oqPhzw2Cb+OPeRxMwtzgJ48k2bSJsGxMpCFTu5B2mWXo5qI4Qm1PEtgGJNKIZUizEhG0MxiUVTPU2D+X0Gs0gFdJ6RDS1Gs0KooVyY+YXCTS1vwg7vqoViUklHEzsbPa8Xsm4qnrqrLgW5aa3j+vwfm9TKrSKr6GpZNv4tX/wZDaEyHRIJRyM8qkna/UIpwTPpRXXaFruaSWKswDQkpaqs8M/n2IwNK1psiFT2OuBdEhtVSKatYp2GevGQ7Y3qZXBrrfJUZ+v4WuktisBvOeq7oFe3j4c0ayktQlgiGiO8NRZkwNJRjRt48KvB3AjEI9d1n5CWEOjmpw4fyI+c+JB+ODRs3DRUTNq8pm2zWNc0nD8MEc0Q6TOGms0wzkayk2dlfUhUaULqu13bK14aiEGJK+LrR7GhC3qF5cxqG5ahkRE0+Sgmt7TVvz3DOXfUaMbmsPGbzai9iZy4+q3gTClSNa7RtNxHHzvvYdjprgHlWx2jY4Fy9xRDp7U2TKvjTGiKecgWaPpozqr/q1feYKn1U+IiOaY9ozvRja4RtN0T6pTo1mxoWmJaALAgt5OT/szm6FpWofiGtHcrkQ0axXtKiWi6Yne1chgV0tdbO1N9gz4C8+p4/FlJe26EiEgwDv3+w0t1bFQTZX1amJMnfVkoXnHRUdTqmZlbtWi8e5WA1PNiGZYMqkEPnj0LHzmxIPQ5aMAGCW2ti5x2eT7YWpxEsarW4p4hNwYRKU6K/tUlYtqbNsjmpbU2SjFgCpYrE3OjkwyUZG6Y5ToYkB5UTPjPfdjDxqHD62ahdMWTcJlx8yp2nlp6oRZc41mJUacdBb4LaheoZkSajSruLFbNKULd16+Ep982wHFe/WORZPKPp4pfbiaYkCRGpqeiKao0fRZc9Sx5p86KyOa/lFUILjGSRqaXqdd7Wo0KzU0be1NgIJj5G3zJmi/txm85ohmPLaM3tRZpUazjqmzsYtoKvdefc799hjyd+2KQanWaFZaS+wVA7Kf04ETOoqft3had0WfWy+MqbNiuJjGRaOnzQIUA6opps2u49RO/bVeWKNJMUnD8cMkfhNmg2FapG1/J4v2y/WUV0t1NpwYUO1TZ0s5tsmAiUsaGKAvsoPZnCYGZDI8UskE/v6Eg6p+XlYxIMXorOQ5lvfQb5Moo0rppFP3PpouTakkPnLMHJy3fDpe39mPmWPbg//Ieqxqp86KCGAFYkCSIGeQXx9N9b1+G3F5LcLUaPopzgLedFMpcFUdQ9N83U3lGqVga2/ictbiyfjZoy8Wf7bVhJoimnFZsx2n0GvUdcjtVebLeqbO2lVnhTBPzSKaSuqsJaIpkfOP6mzfvEONaFY2TuVz6+eUbm9KYe0Hj8QDz71pTP9uBIyps54Ufe99afS0WYARzZpiiuy1ZSrrmdUITDDUMAHxV50FKkidNdb0mO+z6nFuSpUfZQtqLVAuK2b3GP+tfbZlIx+lmE4i4WjfsZTxYzJgatE0OyzqvRrK5dEXENGsFeqGRK3L1COa5Z+fHKN+aePezX8ifOpsjebYjuZ0RUYmYBMNi+785eYm2oimvzMobB9NvxpN76Y9OFpkMopVpAMtjLBatSKalYoBjWnPFI2ttkwS3WKjevi00Th/+XS0pJP46DGzrVkEJq2AWojYhMU2L8YyolmH9iYAsHj66OK/D5s2/G/b2E0ahOdUR/MrSo1mR1OlqbOlZSgdNGEULjxqBsaNMu8n447JgWSai+VrfmrZjQIjmjXEtIlqRJnmUpnZ04ZZY9vw/Ou7tddHdOqsqUbTVqOrjIFKjIpq1WiunNOD296/DLv7h7DqwHGWzzZfk6jvcSaZwGC24L0uxZA2RdXjkgYG6Bu4MBHNWhGmj2Yl7U3kGPWt0TS0CAivOhufex2EaQ6I0tlQigiHH+NGmWo0/Q003z6aZabOhlGjDopoBtVomub8ims0LffUtOaUQmsmhS+9Yz5uXfc3vGfZVI8h6TgOrjr1YFz59nmhFepd4hLRBApZKjuEkI37ei0wjTObArc02mslhPjRY+ZgancrJo9uxSGTu4qv28auaZ5RI5eqs7Hi1FnZz3eEB1xM+ham75xKONr6GjR3NQI0NGuIaQKs1HvZCBRk1Sfh2/c8q70ep0XLhun+hDFQjKqzFkEPVfGwEqPCW6MZzWLmOA6WzRzj/9mWaxJ1e5CFU7rwwPNvoimVwAHjw6smm7IJ4uSd1yKaskazjuep1WgO5bB3IIv1r+7EXkVAopK0VDlm/TaJJiXQONRoRo05khTd5tnbuqO8a2Oqe/RGF4ePnUw4vkZUOqLUWdP3CYoKyN6LnvTiEhyHYalWRBMAzjh8Ms44fLLve4IyZ+IsBgTYsx/iqDrrHbO1S519zxHTPK/bHFem122p3JWLAclnrKLDxZ52QwTYtHZmkglt/WdEk5SEabO7P0Q0gYKsutfQjP/MYppkwyy2paRatUUW0ZQ1mrXbXNuivFGnLH7vPYfjN//zMhZPG+2rYCkxRTTj0toE0De2Q7mcZshVs09mELKx9ynX/Zc3M6GSGs2KVGfDtzepdo1mlFS7RjOqSEImlcDo1rQmxCLv50ETRmHamFZsfHMPTpw/wdfxpEU0fWvIRE27J9JtqHMK2KzJPpph2ptU6qiqVo1mVJjVj+MzZ9ragNVqviytj2bwGK0lVqVhwzW1OYcqHafeTIT4jK1qYNK3MM296VQC6B/+2a//b6MQjxltP8Ek+lNLxdl6csD4Dswe147nXttVfK0RUmdNSmFhUmeNG5MQqrOVGJretLXaXd9apc52tqaxZpnXQxuE6brGSQxIqs7uHhhOCbMJMNUCOWalkQlUlqIt/7a0PpreeiL758TnXgdR7T6a3rqg8o81tqNJMzSlAFky4eC3f/cW/HXzdiyaMlr+uUb4Gk3/ejej6myQGJBHddZfPReopupsPJzPGYPREafMANtcUbMazRJ6q9ZLddZGKS1tbAZl1H00a1VHXy9MqcamfZPcl4yEiObIdiHEDJO3qJY9NOvNyQt0tbBGiDKYDM0wm1tvWoi9nqxNEwMqfzyEUTCrFrbPijp1tlwcx/FsTOq92KuoY2owKyKa6fo5o8Jspisx4uRmza8Hnqm34f4S0YzSKeKdm8p/DqQgkKmlUksmicOndQfeA/U7+o07TxpiiBrNIDGgplRC+7swLWCqZ2hWlpIYFeZxGJ85s7EimlJZvr7zUSk1mrbxGHWNZpycGNXAFFQyjRfp1BoJ7U3iM2vsB+zPEU0AOFnIUr/whjc6EjdM9TJh0ofkIuT3N6qzwU91M/gz62dI1SqiWQnS0x2nTZN6nYbiFNEMcY0irdH0cbTIaFnKx3kT9Dlxptp9NKOMaI7r0BUgK4lulysGFEVE03EcLX3WO5eGj16FxeZ8rOfzrmJWP47PnFn3iKZhrIdVna136mwqmfD0cATMxnu1ajRLaW8yEjBdR9M9kM8d25uQkjBtIPaXGk0AHvGWvsGc5Z3xwRzRDKE6KyZRv42iWmtYSbNuqXhXy821rWdnXCKagHcDEqd6I62NSC6HPf3xqNEMY+BsfHNP2cd3HH2z7ScGJKNl6WQi9Ma3kep/ql0b50lvrWCD54loVhCVUO+ln8Eq19FQNZoG4SKJ+pwFqeeaPrccTNer0rYRURH3cgNrRLOOqbM2x5ccK3Ew2E3j12S822o0K41oBrVCGmmY9nahUmcZ0SSlYIxo7geqsypfOGVe8d/vO7L0WrtaY67RDH5s5MbQb1Ny4vyJmDCqGZlUAucunVr6Se7DK2BRw4hmjcSAKkGmZZrS/OqFeu/yeWBnvxLRrGPWg2ncyrVxweTOij5DXWxbfCL60vgopb1JI21iPO07kuX31jUhn9WKUmdFSmolkZr5vaOK/16g/FvimVsD0lxHNadCGYWq0zeMsFoUatCmOTouEU2TIRcHA8nF1gaoVs7Nyvpo1n8+MjmvahnR9IiSNdAcXQ6mvaS5vYlaq56ouN1RHGj8b9BAFDYMhY2ky/4U0QSA85dPL05cpx/aW+ezCabs1Fkxifr9TXdbBn/8+9XYPZAtSUnV85khlBKrhU3hNk61cTItM06bJnkuO/YOC6zUc44wjdt5k0bh62ccgvf9cB36BrM44zD/NgpBpBMOBvb92zeiaVCdDTvG4zQOgwjqE1kpcp6oVAzI79il8M5De5FKJjA4lMM7fdYGWV7giWiW2fC8VXHoSIO5GjWagPn5irPqbL1TPlVMc0Ut50qTg8bmtJEGXBzWnoLYk96H1FyjWZ2IplcMqKLDxR7TXtIY0VTuQU97JlInY72Ix4y2n+A4DppSCS1ldH+LaCYSDs5ePKXepxEa02QaKnU2UdpmMZVMoLOl8pofecxaYfusOG3wZQpqnFJn5Zjarhma9ZsjHMdBJpnAQHZ4zlo8rRsHT+rEg/9wLLK5fMWpvVpE0+dY0qhMlxLRbKBdTFD7jkqRhlglkQRv6mz55+o4Dk5dOCnwfYE1mmWqNraWmDobhbFgUlKuRBAuSswp3PF5jkznV6u0WaDEiGba3xlSD4wRYZPqbK0MzRitx9WgKVUQrxvKDUeazH00h18LasvUKIzsOxtDpBduf4toNhomR0CYDYbcFNfCqJH1brWMaDakGFBM+2gCekSz3ql0cuO+dEY3gIIBFEX9qPo8+W2yPTU9yURo8ZlGEpqodpqdt3VH+cef2t1a/HdXa7omjqUg1Vk5JoKEgFxa/FJnS2hXVQoyfb+SGv2oiXtE03R+fqrVUVNKjabnmY7B2mMav6b5d5QlRdb2elikGFacymyqgeM4nmwFYx9N5RkbCT00ARqaNUem7+1PqrONSGs6CTkXhOujWd30NxuaRH8NBVBs1yROdRfSyROniKa8fmpEs5ZeehN7lFYrALB4+uhIj68+G36ON09EM+GENpLi5PAIIsiQqhTH0a9bJRu8Kd2tuHT1LEzpbsFnT5wbxekFEpSGKG91WENTHXue1gtV6KNZ+Bz9GHFJmwUaQXW2vqmzxoimZR001V3XG3ONZria4ULkPVoxrEaao8tF7veN7U00Q5MRTVIGUhBof+qj2YgkEo5ncgiz2HpqNGtkaKa0iGYNxYBsNZox8lJ6+2jG59zkvdqtGHdxS6+XLS0q5fiDJwAopGEeNs1uxHramyQTVhEqSZxSuIPw9tyL/jlW56dKnUGfOv4g/Nenj8HZS2pTEiE3uPJnx3G0ZzvsZq2rZdggbRFzvsmAiOK+yGPEyfFsim4xdXYYU3Q3bB/NOBhV5oimOYotr2tHczqS2kF13YuTU7payHRj0/6IqbOkYuSEE6eFhZiRHr1wqbP18WDWK3XW1t4kThv8WPfR9LlX9WxvIumuQk+vK98+D7/5yArc/bG3+KYOymuUSjrGcWeKajRUjaZH7Cb6+69G6OKw6S0FOZeanmN13gm7WTt7yWR0NKUwpi2DdyzSa0VN16gaEc1K696ixPT9YpU6azAqpYOgmlSkOhvX1FmLoS4j7VGNU/VZbrR5qByk09i0bZrfO6zivtjH8dpIxGdW20/wRDRjtIkkZtqbUngV/cWfwxhwctKsR0SzlpvrRMLxKCoDMTM0ZXuTGG2abIY6UH9nlHpfzzgseqVox3FwyOSuwPd5hFMSCUvD+5Qn3beR+miW0hqpXKKMaNaaREIXqDI58QqGdOH3Y0Omzh4+rRvrPnccHMeblmmaK6JwHsq1JE7ZC+Y+mvF5jswRzVoK4JlqNEOqzsZgPgqbOgsUemm+vnN4DxSVobm/RTSlI9W0fl28cibaMil0taZx7NxxtTq1qlL/0b6fIT1GcVpYiBl1ckglnFApI9LzW7saTdVDWNvH27R4xslLKSOatbonYUgkHE9tmUu9nVH/ePoCpJMODhzfgY+99YC6nYenbi5prtE0RUXjNA6D8EQ0q+AwiqpGs16oG2JTdEhtEzWpqyX0cVsySWPtX7Xam3hqNGO0HzApkMap3MAY0ayp6mz49U5eyzj0cA6bOgsYIppNlQkBuajXoRHnoVKRz7dJDKi9KYVL3jITZy2eMiJamwCMaNYcqs42HuokGzZKKDeH9Yho1tqQSiUdiEBSrLyUcmMSp00TUHBODAzlPK/Xe444Z8lUnHzIJLRlknVd+DyqswnHmMpnEq+IU2Q9iGq3NwH0TXIjXRuXtqYUdvYXegC2GZ6PjxwzG1+74ymsOnAcFiipaOVirNGMoo9mKr6GZiZpEoGJj3Ou2RTRrHPqrO1ZyiQTaE4Pt7brqFCxNQrCqs4C3nEZVURTzdZpycRnbFWLMBHNkcjIv7MxQ3qMGNGMP+pkGHahlRvgphot0Kk6qriZJs04eSk9EU3DRqqepC33q559NF3am1J19656+yUmjGPclGrcUBHNGihUam0FGujauLx32VQAwMGTRmHhlC7P789dOhVPfOFt+Pa5h0YjWlIr1dkY7Qdinzpb54imSYjMNs8kEg4+sno2mtMJnHn4ZPSWEGWvFuYaTUtE02NoRmMon7u08BzPHNuGpTPGRHLMOCP3+3HaH1WT+Mxq+wmMaDYeakQz7KYvHjWaNU6dNYlyxChqKOt34pC+pJJOJSBDwoV6sfhs7uqJNMQLEU1zjaakkYyparc3AfRofiNdG5ePHDMH7102DW1NKavxE2U2RbVUZ+Nco2kWA4rPWDEZwvVub+L3LH3kmDn4yDFzqnlKJWFyfodOnY0oonne8ul4x6JJaM2kYlXKUi08fTQbcO4th/jMavsJMt0jDtEK4o9WoxlyoY1DH81ap4bGPqKZkRHNeC1sppqftkz9I4lxQTpO0oaIZiph7u9W63rlSkjtq9fN7RNgqobqrPqsmuqEGoGu1to1Mzf20YzE0Iyv6qzpOYrTnGmqpa2lQrexRjNGhngQpaTOjhIRzCjHaS2f43rTLso64rQ/qibxmTX2E9TJsSWdbEhv8v6G6mUOmzrkUcisVeqssvjVOs3JlPoZp/EdRkmynpgcA3FqbVJvTGJAUuUxnUwEtruIO47jaBu+amzu1WvUSGnF9aJqNZqyj2aMIpqm1NQ4jRWTIWwyPquFOaIZrzXFj5LEgKpUo7m/0S5ElBppXaqExnkqRghqGpxJtILEj/YyDE25MalHRLPmNZpGuff4TKRxNzSNaaA0NIuY2puYnjPTdWykSAOg10plqpDirUU0Y/SMxpVa9dGMU42mycERh/6PLiajsqaps8a2Oo3zLBnbm9hqND2ps/UXM2pE5J5/f5l74zNr7CeonmqmzTYGuqEZNnVWbIBrZNTMGNtW/PdM5d+1wCSYEafUECkUETfVWdP1q6WKYtzxigF525tkUgnjs9Zo6aHqd6jG3DG9Z3humD6mtvNEI+I4+lhLJpxInGiyTjxOhqbJ6IhT6qy5j2Z9I5oNZWjGQHV2f0Net5htQaoGR0uNUSOaFAJqDLpah713YZ0Dsn6jVhHNK98+D5M6mzF7XDsOmzq6Jp/pIqNGjhMvj52nRjNG3nmAEc0g5PVJJb3tTTKW1NlG2gACMqIZ/Ti98pR5GNfRhJlj27Fkem3niUYlmXAwtK9wNionlSeiGaMNvLHWOUY7Y6OhWdOIZmNnTpSSOisNJEY0y0Mqosdpf1RN4jOr7Seo6R5xqscgdo6dOx69XS14dUcf3r1PjjsIuRGxTeBRM66jGZ87eV5NPksi61PiFM0EgGbZnzBG3nnAnMrLGs1h5DOVTnjFgJpSjV+jCeiRhWoYmuNGNePKtx8c+XFHMulkAv37+txGNXfI48Qpomkad3EqNzCKAbFGMzSMaNYetjchNWHWuPbiv+co/ybxpb0phfs/vRrb9w6iuy2cQlq9VGfriTQE4ra5lw2h47RpAsw1P6aekPsr6v1K7IuWyzGWSSWMbWsaKdIA6I6puPV73V9Rx1BUSsBxrtE0GR2m9P56Uf+IZmNnTpRUoynG5SgammXhSZ1toPFSCRwtNeboOWPxqeMPxMvb9uIjx8yu9+mQkCQTTmgjE/AuQnGLnlUDOWnGbRL1iAHFzPg3qfYyvX4YNR3dfb48tdCphHEz3EgbQEB3TMWt3+v+ijqGospQibehaRIDis9YrHdE09jOq4HmGdP9Dd9Hk6mz5SAjmkydJVUhkXBw6WoamCMdaTTsFxHNmKfOxl0MyBR1a6UydRH1frnPl0xVs9VoNlJKGyAjmo117iMV1dER1XwuDbc4ldOYxl2c+tHWPaK5H4kBqU72ZMLx9NUk4ZCOpLjtkapFfGYNQkYQnojmfmBoeiKaMTPkpAc8bht4k4FEZephtN6PbkQzbOpsA20AAWDxtO7ivw+bRrGeOKA6gqJyUmnqwqlErNaJRMLxzJFxmjNTyYRnzal3e5NGimiWIgY0sbMF7zy0FwkHOH/5dGoHlElTKuFRr94f4C6GkCpQr/Ym9URG5OLmrYt9H02mzvqipm+5nmFTjabpWWu0Bf1jbz0AB03swIRRzTVXjyZm0skqRDSVY8YpbdYlk0pgIJsr/hyn1FkAaE4lsHsgW/y53mJAcYr4BmGq/bbVaALAtecswpdPmx+rqHuj4TgO2ptT2LZnEEDjtd0ql8Z5KghpIDzN5WPkqa4WcuGN2+Y+mXAwqbMZQEFMZvyo5jqfkY7J8KUY0DALJ3dhxewxSCUcfODomQC8zo2R0t4kmXBwyiGTsHh6d/CbSU1Q57OoHIdxNzRlhCtuhlSTMCxNdZvVwqg6G7MsHj9MzpKgcU0js3LUNT1mvu6qwVFDSBWQG+Cm/WBGkalEcTM0AeDqd8zH9//wPE6YPwETOuNvaDJFaZhkwsG/XbxMe01ufNOphLHWNY5jkTQWqmERVURTPU4cDU35PeNW164awgmndm3EAEsfzQaaZ+S9TSW8fYlJ9KjKs/uLGFDDj6pdu3bhq1/9KhYsWICOjg709PRg+fLluOmmm5DP57X3PvzwwzjuuOPQ0dGBUaNG4YQTTsATTzxRnxMnIxq5AY5T7U21kJuQOKaFHDdvPH7+oeW4eOXMep+KB9PGpY1iQL5IA7LJGtEc+c8fqS566mw0z+XKOT3FteFtB4+P5JhRohpuqYQDJ2ZzuhrBbEkna3p+pjmlkRxaMnpZSyN9f0aNCsetvKhaxM+FVgK5XA4nnngiHnjgAZx33nm47LLLsGfPHtx666244IIL8NRTT+HrX/86AOChhx7CqlWr0Nvbi6uvvhoA8J3vfAcrV67EAw88gAULFtTzq5ARhkdEYT+YxKWyZ6P1Lqw3po1LS7qhp+iqY+pXa0r/op1JKkXroxnR3DZ+VDP++OnV+NuWPTg8hqJPqgpp3GraAd04aqlxmcFIU52VacikOqiZC43kmKiEht7FPPzww/jjH/+Iyy+/HNdee23x9Q9/+MM46KCD8C//8i9FQ/OjH/0oMpkM7r//fvT29gIAzj77bMydOxef+MQncNddd9XlO5CRiad2bD8wNKUC6P7irYsKU1oaI5r+mMSAGNEk1aAaqbMAMG5UM8bFrF7cRevnGkPHoWoctWRq+4w3uuqsjGAyolkbxrQPt4rpaG5oEyw0DT2yduzYAQCYNGmS9nomk0FPTw/a2toAAM899xweeeQRnHXWWUUjEwB6e3tx1lln4Xe/+x1eeeWV2p04GfGYREpGOp72Jg206MYBc3sTGpp+mNSdWaNJqoHWR3M/mM8B3fiIfUSzxhE505zSSA4tT0SThmZNeN+R0zGuowkzx7bh1IW9wX8wAmhoc3rp0qXo6urCN77xDUyfPh1HHHEE9uzZgx//+Md47LHH8P3vfx8A8MgjjwAAjjzySM8xli1bhhtvvBGPPfYYTj755LLOY+LEidrPuVzO8k6yv5DeD2s0G0EMKM6YDCT20fQnbHuTRkppI/FES53dD+ZzQG93EXtDMwaps4205nkjmnRq1oJFU7rwwGeOQcJx9hsxoIbexYwePRq/+c1vcPHFF+Pss88uvt7R0YFf/OIXOO200wAAL7/8MgBo0UwX97VNmzZV/4TJfkN7cwodTSns7B9CUyqB7rZM8B81OHLhjaMYUJxhRLN0TKJb8jo6zv6j7keqhzqu4mh0VQPVaRPHmntdDKjWqbMjrUZz/xjTcWB/U/dtaEMTANrb2zF//nyceuqpWL58ObZs2YLrr78e7373u3H77bfjrW99K/bs2QMAaGpq8vx9c3OhNsJ9Tzls3rxZ+3nHjh3o7Ows+3ik8UknE/insxbi1nV/w+mH9e4XkSm58MZxYxJnTJuU/WHcVIKpFlqm0zbS5o/El2SVajTjjBrlimO6cD1TZ6WTq9EcWlSdJbWioXcxTz75JJYvX45rr70WH/zgB4uvn3vuuZg/fz4uueQSPP/882htbQUA9Pf3e47R19cHAMX3EBIVJ8yfgBPmT6j3adQM6eVnRLM0TF5ORjT9kUZkJplAOsUUbhI96f0wdTYT8xpNNaJZa6ecx7HaYPOMt0aTaw2pDvGbOUrg2muvRV9fH8466yzt9dbWVpx88snYuHEjNmzYUBQLMqXHuq+Z0moJIeGRG/pGW3jrjVTtBWrvpW80pHHelEp46qMbSaCDxBe1/GHMflAKAYg+mjHMUFHPr7nmEU253jXWPEMxIFIrGnpkuUZiNpv1/G5oaKj4/yVLlgAAHnzwQc/7HnroITiOg8MPP7yKZ0rIyEcaSo2URhQHZCSuNZPkNQzAE9FMJZBOUf2YRM/5y2dg4ZQuLJ81Bu88dHK9T6cmxF0MaEZPW/HfM8e2+bwzeqSTq9Ecq57UWdZokirR0CNr3rx5AICbbrpJe33btm24/fbbMXr0aMyePRuzZ8/G4sWLsXbt2qIwEFAQCVq7di2OOeYYTJiw/6Q4ElINksKjyz6apSE3KkybDUYakemkVwyo0TaAJJ7MHteO2y9dgVsuWYaxHV69h5FIJjk8B8Wxj+bZS6ZgzbJpePcRU/GeI6bW9LPlvJKM4fXxw3Eczdhk6iypFg1do3n55ZfjJz/5CT7zmc/gySefxIoVK7Blyxb84Ac/wObNm3H99dcjuW+i/Na3voXVq1dj5cqVuOyyywAA1113HXK5HK655pp6fg1CRgQUA6oMaSBRCCgYU0RTeuoZ0SSkPOIe0RzVnMaXTptfl8/2ps423jyTSSUwkC2042PqLKkWDb2TmTZtGtatW4err74a99xzD2677Ta0tLRg0aJFuOaaa3D66acX37t8+XLcd999uOKKK3DFFVfAcRwsX74ca9euxcKFC+v4LQgZGbC9SWVIw5wRzWAcx0Ey4SCbywMopIM1ukgHIXGhKeZiQPVE1mQ2okMrk0oA+zQya13jSvYfGtrQBIBZs2bhxz/+caj3HnnkkbjnnnuqfEaE7J80es1KvZEiNjQ0w5FSDU1DH03WuRJSHp0t6eK/O5obfrsYKTJVttHEgACI1NnGO3/SGHBkEUIiQdbwcINfGt6IJjd2YUiJ/oas0SQkGk6cPxGzxrahqzWNNcum1ft0YoWnRrMB5xlVeZaGJqkW3MkQQiJBLrQUAyoNb40mI5ph6GhOY/dAQXm8syXNGk1CImJCZzPu+cSqep9GLBkpNZouTUydJVWCLgxCSCTI1M9GU+GrNzIiTEMzHB9ePQvN6QSOmzsOcyeM8lzHRkxpI4TEG49jtRENTabOkhrAiCYhJBIY0awMaRC1NnF6DsP7jpyO9x05vfizk9d/34gbQEJIvHEcB6mEg6F99eGNOM8wdZbUAo4sQkgkUO2zMjw1mkxlKgvZH45tdggh1UCdWxpxnpk9rr3471lj233eSUj50GVOCIkEGZGjGFBpeGo0GdEsm3TSwb6yzYaMNBBC4k9hzSv0oUw2YIr+FSfPxYRRzZja3YojZ42p9+mQEQp3MoSQSJAeXabOloaMALexRrNs0qkEXEuTkXVCSDXQIpoNOM90tWbwyeMPrPdpkBFO47lgCCGxRIqwUAyoNNIpqs5GhRpdZ0STEFINVOOS8wwhZmhoEkIiQaYOMaJZGlK1l300yyejRRq4zBFCokedWxoxoklILeAKTAiJhPQIkHuvJx4xIEY0y0aNDnMcEkKqQZIRTUICoaFJCImEkdBXrJ54+mhSDKhsVGEljkNCSDVo9BpNQmoBDU1CSCSkhGoqN/il4emjyYhm2dDQJIRUG71Gk9tpQkzwySCERIL06HKDXxpMnY2ONCMNhJAqwxpNQoKhoUkIiQS2N6mMjOyjSTGgsmFEkxBSbbTUWaqsE2KEhiYhJBJk6ic3+KXRlNIjmO2s0SwbRjQJIdVGnVs4zxBihoYmISQSPBFNLrwl0dmaxlGzewAAy2Z2Y2xHU53PqHHRI5pc5ggh0ZPiPENIIHSZE0IiQfaBpKFZOj++cCn++vIOzJ3YUe9TaWhUQ5ORBkJINUgyoklIIDQ0CSGRkGREs2KSCQcLJnfW+zQaHjV1Vo5LQgiJAs4zhATDWD8hJBLSUnWWYkCkTjCiSQipNkmqzhISCA1NQkgkyAgmI5qkXmSoOksIqTJ6H03OM4SYoKFJCImEVJI1miQejGpJF//d0Zz2eSchhJQHVWcJCYY1moSQSJALbYILL6kT7z5iKv7wzOtIJx2ccVhvvU+HEDICUZXWqTpLiBkamoSQSJDtTejhJfXigPEduPeTq+p9GoSQEUxLengL3ZymoUmICT4ZhJBI8LQ3oRgQIYSQEcpph05CUyqBzpY0Tpg/od6nQ0gsYUSTEBIJiYQDxwHy+cLPrNEkhBAyUlk5ZyzWfe44JBMO2pu4nSbEBJ8MQkhkpBMJDGRzAGhoEkIIGdl0tlBsjBA/mDpLCIkM1bikGBAhhBBCyP4LDU1CSGSogkAUAyKEEEII2X+hoUkIiQzVuExQDIgQQgghZL+FhiYhJDJSyeEphRFNQgghhJD9FxqahJDIyCiGZjJJQ5MQQgghZH+FhiYhJDKOmNENAGhJJ3FIb2edz4YQQgghhNQLtjchhETGP55xCN528HgcOGEUxrQ31ft0CCGEEEJInaChSQiJjEwqgRPmT6z3aRBCCCGEkDrD1FlCCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERMqIMDS3bNmCT37yk5g9ezaam5sxduxYrF69Gv/1X/+lve/hhx/Gcccdh46ODowaNQonnHACnnjiifqcNCGEEEIIIYSMUFL1PoFK2bhxI1atWoVdu3bhoosuwgEHHIDt27fjf/7nf7Bp06bi+x566CGsWrUKvb29uPrqqwEA3/nOd7By5Uo88MADWLBgQb2+AiGEEEIIIYSMKJx8Pp+v90lUwsqVK7FhwwasW7cOEydOtL5v6dKlePrpp/HUU0+ht7cXALBp0ybMnTsXy5Ytw1133RXZOe3YsQOdnZ3Yvn07Ro0aFdlxCSGEEEIIISQs9bRLGjp19v7778cf//hHfPrTn8bEiRMxODiIPXv2eN733HPP4ZFHHsFZZ51VNDIBoLe3F2eddRZ+97vf4ZVXXqnlqRNCCCGEEELIiKWhDc077rgDADB16lS8/e1vR0tLC9ra2nDAAQfg5ptvLr7vkUceAQAceeSRnmMsW7YM+Xwejz32WNnnMXHiRO2/OXPmlH0sQgghhBBCCGl0GtrQXL9+PQDgkksuwZYtW/DjH/8YN954IzKZDNasWYMf/ehHAICXX34ZALRopouaRksIIYQQQgghpHIaWgxo586dAICOjg7ce++9yGQyAIDTTjsNM2fOxGc/+1mcd955xXTapqYmzzGam5sBwJhyG5bNmzdrP7u50IQQQgghhBCyP9LQEc2WlhYAwLnnnls0MgFg9OjROPXUU/HKK69g/fr1aG1tBQD09/d7jtHX1wcAxfcQQgghhBBCCKmMhjY0J0+eDACYMGGC53euAu3WrVsxadIkAOb0WPc1U1otIYQQQgghhJDSaWhDc+nSpQCAl156yfM797Vx48ZhyZIlAIAHH3zQ876HHnoIjuPg8MMPr+KZEkIIIYQQQsj+Q0P30dy6dSumTZuGUaNG4emnn0Z7ezuAQs3knDlz0NvbWxQMWrJkCdavX4+nn366GOF8+eWXcdBBB2Hp0qX43e9+F9l5sY8mIYQQQgghpN7U0y5paDGg0aNH45vf/CY+8IEPYNmyZbjwwgsxMDCA733vexgYGMB1111XfO+3vvUtrF69GitXrsRll10GALjuuuuQy+VwzTXX1OsrEEIIIYQQQsiIo6Ejmi6//OUv8Y1vfANPPvkkEokEjjzySFx55ZVYsWKF9r4HH3wQV1xxBR5++GE4joPly5fja1/7Gg477LBIz4cRTUIIIYQQQki9qaddMiIMzbhBQ5MQQgghhBBSb+pplzS0GBAhhBBCCCGEkPhBQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGEREqq3icwEsnn8wCAHTt21PlMCCGEEEIIIfsrrj3i2ie1hIZmFZg9ezYAYMqUKXU+E0IIIYQQQsj+zs6dO9HZ2VnTz6ShWQUSiQR6enrw3HPPwXGcep8OiRFz5swBADz77LN1PhMSJzguiAmOC2KDY4OY4LggJmbPno18Po9JkybV/LNpaFaBRCKBRCJRc68BiT+JRKEsetSoUXU+ExInOC6ICY4LYoNjg5jguCAmkskkgOHxUUsoBkQIIYQQQgghJFJoaBJCCCGEEEIIiRQnXw8JIkIIIYQQQgghIxZGNAkhhBBCCCGERAoNTUIIIYQQQgghkUJDkxBCCCGEEEJIpNDQJIQQQgghhBASKTQ0CSGEEEIIIYRECg1NQgghhBBCCCGRQkOTEEIIIYQQQkik0NAkhBBCCCGEEBIpNDQJIYQQQgghhEQKDU1CCCGEEEIIIZFCQ5MQQgghhBBCSKTQ0CSEEEIIIYQQEik0NAkhhBBCCCGERAoNTcEzzzyDL3zhC1i2bBnGjh2Ljo4OLFq0CF/5ylewe/duz/vXr1+P0047DaNHj0ZbWxtWrlyJ3//+9yV9ZhTHINWl1uPiqquuguM4xv+++c1vRvnVSAWUMi7WrVuHj370o1ixYgXa29vhOA5uuummkj/z5Zdfxvve9z6MHTsWLS0tWLx4MdauXRvRNyJRUOtxcdNNN1nni4985CMRfjNSKWHHRj6fx80334x3vetdmD17NlpbWzF16lSceuqpePjhh0v6zO3bt+Oyyy5Db28vmpubcfDBB+N73/se8vl81F+PlEmtx8V9991nnTNOOeWUanxFUialrCfXXHMNVq1ahYkTJ6KpqQkTJ07E6tWr8atf/aqkz4xyzkiV/BcjnBtvvBHXX389Tj31VLznPe9BOp3GvffeiyuuuAL//u//joceeggtLS0AgOeffx7Lly9HKpXCpz/9aXR2duIHP/gBjj/+eNx555047rjjAj8vimOQ6lPrceFy7bXXoqenR3vt8MMPj/S7kfIpZVzccccduP7663HQQQdh4cKFeOCBB0r+vC1btuCoo47Ca6+9ho9//OOYPHkybrnlFpx99tm48cYbccEFF0T9FUkZ1HpcuHz2s5/F3LlztdcOPPDAir4LiZawY6O/vx9r1qzBokWL8K53vQszZszA5s2b8f3vfx9HHnkkfvKTn+C9731v4OcNDAzgrW99Kx5//HFcdtllmDt3Lu688058+MMfxquvvoqrrrqq+l+aBFLrceHy/ve/HytXrtRemzx5ctRfj1RAKevJunXrMH36dJx00kno6enBli1bsHbtWpx++um4+uqr8fnPfz7w8yKfM/JE45FHHslv27bN8/rnPve5PID8ddddV3ztrLPOyicSifzjjz9efG3nzp35qVOn5g844IB8LpcL/LwojkGqT63HxZVXXpkHkH/hhReiOH1SJUoZF6+88kp+165d+Xw+n1+7dm0eQP5HP/pRSZ/3qU99Kg8g/5vf/Kb42tDQUH7JkiX57u7u/M6dO8v7IiRSaj0ufvSjH+UB5O+9995KTpvUgLBjY3BwMH/fffd53vfKK6/kx4wZkx83blw+m80Gft7111+fB5D/9re/rb1++umn59PpdH7Dhg1lfhMSJbUeF/fee29Zcw2pPaWsJyYGBwfzhxxySL69vT0/NDQU+HlRzxlMnRUsXrwYnZ2dntfPOeccAMBf/vIXAMDu3bvxm9/8BqtWrcKiRYuK72tvb8fFF1+MZ555Bo888ojvZ0VxDFIbajkuJDt27MDQ0FD5J0+qRthxAQDjx49HW1tbRZ93yy23YNasWXj7299efC2ZTOKyyy7Dli1bcMcdd1R0fBINtR4XKjt37sTAwEBkxyPREnZspFIpHH300Z73jR8/HkcffTRee+01vPbaa4Gfd8stt6C1tRWXXHKJ9vrll1+OwcFB/OxnPyvna5CIqfW4UNm9ezf6+vrKOGtSC0pZT0ykUin09vZi9+7dGBwcDPy8qOcMGpoheemllwAUHmYA+J//+R/09/fjyCOP9Lx32bJlABBoUERxDFJfqjEuVA455BB0dnaiubkZy5cvx5133hnBWZNqI8dFFGzevBmbNm0qjiMVzheNQTXGhcqpp56KUaNGobm5GQsXLsTNN99clc8h0VPK2HjppZeQyWTQ1dXl+75cLof//u//xqGHHorm5mbtd0uXLoXjOJwzYk41xoXK3/3d36G9vR0tLS044IAD8K1vfYu1uw2C39jYsmULXn/9dTz11FO4+uqr8dvf/harV6/2zAOSaswZrNEMQTabxZe+9CWkUim8+93vBlAQ5ACA3t5ez/vd1zZt2uR73CiOQepHtcYFAHR1deH9738/li9fjtGjR2P9+vX453/+Z5x88sm48cYbcf7550f3RUikmMZFFHC+aGyqNS4AoLW1Fe9+97txzDHHYNy4cXjhhRdw/fXXY82aNXj++edx5ZVXRvp5JFpKGRt33HEH1q1bhzVr1gRuGrdu3Yq9e/ca54ympib09PRwzogx1RoXAJBOp3HqqafipJNOwqRJk/Dyyy/jhz/8IS6//HI88cQT+NGPfhTV1yBVIGhsHHDAAXjzzTcBFCKaZ5xxBr773e8GHrcacwYNzRBcfvnlePDBB/HVr361KKywZ88eAIULL3Efcvc9NqI4Bqkf1RoX7rElF154IebPn4+PfexjOPPMM9He3l7B2ZNqYRoXUcD5orGp1rgAgLPPPhtnn3229toHPvABLF68GF/+8pdx3nnnYfr06ZF+JomOsGPj2WefxZo1a9Db24trrrkm8Lh+cwZQmDc4Z8SXao0LAFixYgVuv/127bVLLrkEJ510Em666SZcfPHFWLFiRUXnT6pH0Nj45S9/ib6+PmzatAlr167F3r17sXPnTowdO9b3uNWYM5g6G8DnP/95fOc738H73/9+/MM//EPx9dbWVgBAf3+/52/cXHf3PTaiOAapD9UcFzbGjBmDD37wg9i2bVtFypSketjGRRRwvmhcqjkubDQ1NeGTn/wkhoaGcNddd9XkM0nphB0bL7zwAo499lg4joM777wzcMMI+M8ZQGHe4JwRT6o5LmwkEoniZ/3nf/5n2cch1SXM2HjLW96Ct73tbbjgggtwxx13oKOjAytWrMDWrVt9j12NOYOGpg9XXXUVvvzlL+OCCy7A97//fe13kyZNAmBOVXNfM4Weoz4GqT3VHhd+uFGJN954o+xjkOrgNy6igPNFY1LtceEH54t4E3ZsbNiwAatXr8auXbtw9913Y8GCBaGOP3r0aLS0tBjnjP7+frzxxhucM2JItceFH5wz4k2568l5552HV155Bb/85S9931eNOYOGpoWrrroKX/ziF3HeeefhhhtugOM42u8XLFiApqYmPPjgg56/feihhwAUlKL8iOIYpLbUYlz48eyzzwKonpgIKY+gcREFEydORG9vb3EcqXC+iCe1GBd+cL6IL2HHxoYNG7Bq1Sps374dd999Nw499NDQn5FIJHDYYYfh8ccf90Qo1q1bh3w+zzkjZtRiXPjBOSO+VLKe7N27F0BBJMiPqswZJTVD2U/44he/mAeQX7NmjW8/ojPPPDOfSCTyTzzxRPE1t1/inDlztH6J27Ztyz/11FP5119/vexjkPpSq3ExODho7Jn0t7/9Ld/d3Z0fM2ZMfs+ePRF9K1IpYceFSlC/xN27d+efeuqp/Msvv6y9/slPftLaR7Orqyu/Y8eOsr8HiZZajos33njD895t27blZ8+enc9kMvkXX3yx5PMn1SPs2NiwYUN++vTp+c7Ozvy6det8jzkwMJB/6qmn8hs3btRe/853vmPtiZdKpdirOUbUclyY5oy+vr78ihUr8gDyDz/8cHlfglSFMGNj165dxl7aQ0ND+WOPPTYPIH///fcXX6/VnOHk89QxVrn++uvxkY98BFOnTsWXvvQlJBJ60Hf8+PF461vfCgB47rnnsHTpUqTTaXzsYx/DqFGj8IMf/ABPPvkk/vM//xPHH3988e9uuukmXHDBBbjyyitx1VVXFV8v5RikftRyXGzbtg0zZszAaaedhrlz5xZVZ2+44Qbs2rULt956K84666yafXdip5RxsXHjRvz0pz8FAPy///f/cNttt+H0008veqLXrFmDadOmAQDuu+8+rF69Gueddx5uuumm4vHefPNNHH744XjzzTfx8Y9/HL29vbj11ltx33334YYbbsBFF11Ug29Ngqj1uJg0aRKOPvpoLFiwAOPGjcOGDRtw4403YvPmzbjmmmvw8Y9/vAbfmoQh7NjYuXMnFi5ciBdeeAGXXXYZli5d6jnWW9/61mLkacOGDZgxYwaOPvpo3HfffcX3DAwMYPny5fjzn/+Mj370o5g7dy7uuOMO/OpXv8IVV1yBL33pS1X9viQctR4XS5YswaRJk3D44YcXVWdvvvlmPPvss7jsssvw7W9/u6rfl4Qn7Nh44okncPTRR+PMM8/EgQceiO7ubmzatAm33nor1q9f71k3ajZnlGSW7gecd955eQDW/44++mjt/X/961/zp556ar6zszPf0tKSX7FiRf7uu+/2HPdHP/pRHkD+yiuv9Pwu7DFI/ajluOjr68tfdNFF+fnz5+e7urryqVQqP2HChPwZZ5xBL2PMKGVc3Hvvvb7vvffeez3vPe+88zyf+dJLL+Xf+9735seMGZNvamrKH3roofnbbrut+l+WhKbW4+LjH/94/rDDDst3d3fnU6lUfsyYMfkTTzwx/9vf/rY2X5iEJuzYeOGFF3zfJ8eG+365FuXz+fzWrVvzl156aX7ixIn5TCaTnzt3bv66665jxlSMqPW4+Md//Mf8smXL8j09PflUKpXv7OzMr1q1Kn/LLbfU7kuTUIQdG6+//nr+0ksvzR9yyCH50aNHF9eC4447Ln/zzTd7nvdazRmMaBJCCCGEEEIIiRSKARFCCCGEEEIIiRQamoQQQgghhBBCIoWGJiGEEEIIIYSQSKGhSQghhBBCCCEkUmhoEkIIIYQQQgiJFBqahBBCCCGEEEIihYYmIYQQQgghhJBIoaFJCCGEEEIIISRSaGgSQgghhBBCCIkUGpqEEEJICVx11VVwHAf33XdfvU+lJFauXIlFixYhn8+X/Ld//vOfkUgkcMMNN1ThzAghhIxEaGgSQgjZb3Ecp6T/Gs24dFm7di3++Mc/4stf/jIcxyn57xcuXIgzzjgDn//857Fr164qnCEhhJCRhpMvx7VJCCGEjACuuuoqz2v//M//jO3bt+Pv/u7v0NXVpf3u/PPPR3t7O9544w1MnToVra2ttTnRCsjn8zjooIOQTqfxl7/8pezjPProo1iyZAm+8pWv4LOf/WyEZ0gIIWQkQkOTEEIIUZg+fTo2btyIF154AdOnT6/36VTM3Xffjbe97W34+te/jk9/+tMVHWvevHnYvXs3XnjhBSQSTIoihBBih6sEIYQQUgKmGs0NGzbAcRycf/75eOaZZ/DOd74To0ePRmdnJ97xjndgw4YNAIDnnnsOZ511Fnp6etDa2oqTTjoJ//u//2v8nDfffBOf/vSnceCBB6K5uRmjR4/GySefjIceeqik8/3hD38IADjnnHM8v9uxYwe++MUvYv78+ejo6EBHRwdmzZqFd73rXXj88cc97z/nnHPwt7/9DXfffXdJ50AIIWT/g4YmIYQQEhEvvPACjjzySGzfvh0XXXQRVqxYgd/85jc47rjj8NRTT+GII47AG2+8gfPPPx+rVq3CnXfeiZNPPhm5XM5znMMOOwz/9E//hN7eXlx66aV45zvfiQcffBBvectb8B//8R+hziefz+P3v/89Jk2ahGnTpnl+d8IJJ+Cqq67CqFGjcMkll+BDH/oQli5divvuuw8PP/yw53grVqwAABqahBBCAknV+wQIIYSQkcL999+Pb37zm/jEJz5RfO39738/fvCDH2D58uW44oorjL+7/fbb8c53vrP4+vve9z689NJL+OUvf6m9/pWvfAVLly7FJZdcgg0bNqC5udn3fNavX4/XX38db3/72z2/+8tf/oIHH3wQp512Gn71q19pv8tms9ixY4fnb5YsWVL8noQQQogfjGgSQgghETFjxgx87GMf015bs2YNAKC7u9vzu/e+970ACu1DXJ544gn88Y9/xFlnnaUZmQAwceJEfOpTn8Krr76Ke+65J/B8/va3vwEAJkyYYH1PS0uL57VkMonRo0d7Xu/s7ERzc3PxuIQQQogNRjQJIYSQiFi4cKFHJGfixIkAgEMOOcTzu0mTJgEANm3aVHztwQcfBABs2bLFqIr77LPPAgCefvppnHzyyb7n8+abbwKA0WicN28eFi1ahFtvvRUbN27EO97xDhx11FFYvHgxMpmM9Zjd3d149dVXfT+XEEIIoaFJCCGERERnZ6fntVQqFfi7wcHB4mtbtmwBUKiD9KuFDNPP0o1W9vX1eX6XTCbx+9//HldffTV+/vOf4+///u8BAKNGjcL555+Pr371q2hra/P83d69e41RUEIIIUSFqbOEEEJIjHAN0q997WvI5/PW/6688srAY40bNw7AsPEqGT16NK699lq8+OKLeOaZZ/Cv//qvmDNnDr797W/jIx/5iOf9uVwO27ZtKx6XEEIIsUFDkxBCCIkRRxxxBIDhFNpKOPjgg5FMJrF+/frA986ZMweXXHIJ7r//frS3t+PXv/615z3r169HPp/HokWLKj43QgghIxsamoQQQkiMWLJkCZYvX47f/OY3uPHGG43veeihh7Bnz57AY3V2dmLRokX485//jP7+fu13L7zwgrGH59atW9Hf34/W1lbj5wLA6tWrw3wVQggh+zGs0SSEEEJixi233ILVq1fjoosuwne/+10sWbIEHR0dePHFF/Hoo4/iueeew+bNm43GoOT000/HY489hvvuuw/HH3988fU///nPOP3007FkyRLMnTsXkyZNwmuvvYbbb78dg4ODxZpNlbvuugvJZBLveMc7Iv2+hBBCRh6MaBJCCCExY9q0aXj88cdx1VVXYWhoCD/5yU/wne98B+vWrcOCBQvwk5/8BD09PaGOddFFFyGdTuMnP/mJ9vrixYvxmc98BslkEr/97W9xzTXX4P/+3/+LJUuW4M4778RHP/pR7f07d+7E7bffjlNOOQVTpkyJ7LsSQggZmTj5fD5f75MghBBCSPW4+OKLccstt2DDhg1lC/l897vfxaWXXor/+q//wlFHHRXxGRJCCBlp0NAkhBBCRjibN28uiv1ce+21Jf99X18fZs+ejWXLluHnP/95Fc6QEELISIM1moQQQsgIZ+LEibj55puLqrGO45T09xs3bsTFF1+M888/vzonSAghZMTBiCYhhBBCCCGEkEihGBAhhBBCCCGEkEihoUkIIYQQQgghJFJoaBJCCCGEEEIIiRQamoQQQgghhBBCIoWGJiGEEEIIIYSQSKGhSQghhBBCCCEkUmhoEkIIIYQQQgiJFBqahBBCCCGEEEIihYYmIYQQQgghhJBI+f/WFM/4vyl1qgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], axis=[20,23,50,160], title='Zoomed in Lightcurve')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A power spectrum of this lightcurve.." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 19390.87it/s]\n" + ] + } + ], + "source": [ + "ps = stingray.AveragedPowerspectrum(lc, segment_size=3, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAKOCAYAAADtdZcdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADo8ElEQVR4nOzdd3hUZfrG8XsmPSGE3nsRGwiIXaqg/lZRQcBFRWy7tnXXggXLim3ta1m7NEXXtay6KuqCCOiqYO8gRYr0moSQPvP+/ogzOWfmTDKTmZCT5Pu5Li6TM2fOnAxIcvM87/N6jDFGAAAAAACE8Nb1DQAAAAAA3InACAAAAABwRGAEAAAAADgiMAIAAAAAHBEYAQAAAACOCIwAAAAAAEcERgAAAACAIwIjAAAAAMARgREAAAAA4IjACAAuVlBQoCZNmsjj8WjQoEF1fTuNhsfjkcfjqdFzrL+aNGmiQw45RDfeeKN2795dS3cLAEDt8RhjTF3fBADA2axZs3T++ecHP//+++918MEH1+EdNQ6BsBjLt8jAc04//XQ1adJEkrR+/XotWbJERUVF6tq1qz7++GN17Ngx8TeMhFq0aJGGDx+uoUOHatGiRXV9OwBQp6gwAoCLzZ49W5LUoUMH2+dwr/vvv1+zZ8/W7Nmz9cEHH+i7775Tly5dtG7dOk2ZMqWubw8AgJgQGAHApX755Rd99NFHysrK0qxZsyRJL7zwgsrLy+v4zhCLXr166bbbbpMkvfnmm/z+AQDqFQIjALjUs88+K2OMxo4dq+OPP1777beftmzZovfee8923umnny6Px6MZM2ZEvNYll1wij8eju+++23bc7/fr+eef14gRI9SiRQulpaWpR48e+stf/qKtW7eGXWf27NnyeDw699xztW3bNl188cXq0qWLUlJSdMUVV0iS9uzZo6eeekqnnHKKevbsqYyMDDVt2lSHH364Hn744SoD07x58zRs2DA1adJEzZo108iRI7V48WItWrRIHo9Hw4YNc3zeunXrdNlll6lXr15KT09Xs2bNNHz4cL322msRX2v16tWaOHGiWrVqpczMTB1yyCF64oknIp4fj4EDB0qSCgsLtX379uDxbdu26eqrr9Z+++0XvO8hQ4boueeeC2uHDfwezpkzx3Y8NzdXycnJ8ng8uv3228Neu127dkpNTVVBQYHteEFBgf72t79p4MCBys7OVmZmpvr376/7779fpaWlYdc599xz5fF4NHv2bH311Vc67bTT1KZNG3m9Xr3xxhuSpKKiIv3jH//QYYcdptatWys9PV0dOnTQkCFD9Le//c12Peufpe3bt+uiiy5Sx44dlZ6erj59+uhvf/ub430EzJ07VyeddJLatGmj1NRUde7cWeeff75++eWXiM9Zu3atLr/8cvXp00eZmZlq1qyZ+vbtq6uvvlrr1q0Lfp3Dhw+XJC1evNi2JtX652/YsGHyeDxatGiR3n//fR1//PFq0aKFPB6PvvnmG0lSt27d5PF4tHbtWsf7ibRW1np8+vTpGjBggDIzM9WhQwddfvnlwd/LXbt26c9//rO6dOmi9PR0HXjggXQhAEg8AwBwHb/fb7p27WokmQULFhhjjLnzzjuNJHP66afbzv3Pf/5jJJkhQ4Y4XqukpMQ0b97ceL1e8+uvvwaPl5aWmlNPPdVIMk2aNDHDhg0zY8eONT169DCSTMeOHc3q1att15o1a5aRZH73u9+ZLl26mNatW5uxY8eaMWPGmFtuucUYY8xHH31kJJl27dqZoUOHmt///vdmxIgRJj093UgyJ598svH7/WH3OWvWLOPxeIwkc8QRR5iJEyea/v37G6/Xa6644gojyQwdOjTsefPnzzfZ2dlGkunTp48ZO3asGTp0aPD1pk6dGvac7777zjRv3txIMj169DC///3vzbBhw4zX6zV/+ctfjCQT67fIwHPWrFkT9tj//ve/4OM7d+40xhjz888/mw4dOhhJplOnTmbChAnmxBNPNGlpaUaSOfPMM23v08svv2wkmXPPPdd27ddffz147WHDhtke+/77740kc/TRR9uOr1+/3vTp0yf4+/S73/3OnHTSSaZly5bB65SUlNieM3nyZCPJXHDBBSY1NdXst99+5ve//70ZOXKkefvtt43P5zPDhg0zkkyzZs3MSSedZCZOnGiGDRtm2rRpY9LS0mzXC/xZGj16tOnevbtp2bKlOf30083JJ59sMjMzjSRz4oknmvLy8rD385JLLjGSTGpqqjnmmGPMuHHjzIEHHmgkmZycHLN06dKw57zzzjumSZMmRpLp0qWLOf30081pp51mDj74YCPJzJo1yxhjzDPPPGNOOOEEI8m0bdvWTJ48OfjrrrvuCl5v6NChRpK56KKLjMfjMf379zcTJ040xx57rPn222+NMSb4/7DTnwljTMQ/Z4HjV199tUlLSzMnnniiOfXUU02LFi2MJDNy5EizY8cO07t3b9OxY0czYcIEM2TIkOD/P88++6zj6wFATRAYAcCFFixYEPzBNhAafv31V+P1ek1qamowdBhTEfxat25tPB6P4w+mr776avCHTKtrrrkmeHzz5s3B4z6fz9xwww1Gkhk8eLDtOYEf8gOhsaCgIOz1fv31V/PBBx+EhcItW7aYgQMHGknmxRdftD22fv16k5mZaTwej3nppZdsjz3yyCPB1wwNjBs3bjTNmjUzKSkpYddctmxZWOg2piKM9+/f30gyF198sS2QfPjhh8GwksjAeO211xpJpnPnzsFjgwYNMpLM5MmTbeFs+fLlwSD5+OOPB49v377deDwe07VrV9u1L7/8ciPJ9O3b16SlpZnCwsLgYw8//LCRZG666Sbb13/EEUcEA0lxcXHwsd27dwfD0s0332x7nUBglGRuvfXWsN/fRYsWGUnm0EMPDftzUV5ebvs9MMb+Z2nIkCEmLy8v+Ni6deuC/3Dx8MMP25732GOPGUmmf//+ZuXKlbbHnnjiieA/ApSVlQWPr127NhgWH3jgAePz+WzPW7Zsmfnpp5+Cny9cuDDiP1AEBAKjNWyGijcwtmvXzvz888/B4xs2bDCtW7c2ksxBBx1kfv/739v+7Dz55JNGkunevXvE+waAWBEYAcCFJk2aZCSZG2+80XZ81KhRRpL5xz/+YTv+5z//2Ugyt912W9i1AlXEOXPmBI/t2LHDpKenm+bNm5sdO3aEPcfn85lDDjnESApWS4yp/CE/NTXVrFu3Luava968eUaSGTdunO34tGnTjCRzyimnOD4vEHBCf4APhN6//vWvjs/797//bSSZMWPGBI8tXrzYSDKtWrUye/fuDXvOVVddlbDA+Ouvv5q7777bpKSkGEnmnnvusd1DixYtTH5+fti1Au9zz549bcf79etnJJlVq1YFjx100EGmW7du5sEHHzSSzLx584KPBX7vP/jgg+CxuXPnBt9Lp0rvpk2bTGpqqmnZsqXt8UBgPOCAA8IClzGVFdC//OUv1b9Zlq/R4/GYH374Iezxf/3rX8HwF1BeXm7atWtnvF5vWFgMGD16tJFk/vOf/wSPBf7/OO+886K6t1gC4wknnBDxnHgD4zPPPBP2WKDa3rRp07D/d8vLy4NV4rVr10a8LwCIBWsYAcBl9uzZo3//+9+SpMmTJ9seC3weuk4pcDx0fdvOnTv1zjvvKDs7W2PHjg0eX7RokYqLizVixAi1bNky7B68Xq+OPfZYSdKSJUvCHh8wYIC6dOkS8Wswxmjx4sW64447dOmll+q8887TueeeqyeffFKStGLFCtv5H374oSTpjDPOcLzexIkTHY+/++67kqTx48c7Pj5kyJCwr2Hx4sWSpNNOO02ZmZlhz5k0aVLErysa3bt3D65B69y5s66//nqVlZXp0ksvDU5JDXy9Y8aMUXZ2dtg1zj77bKWkpGj16tXauHFj8PiIESMkSR988IEkaevWrfrxxx81YsSIsMf8fr8WL16s9PR0HX300cFrBN6zcePGOa6fa9++vXr37q2dO3dq5cqVYY+fcsop8nrDf3wYMGCAkpKSNHPmTD355JPatm1bFO+WdMghh+iggw4KOz5+/HilpaXpl19+Cb4H33zzjbZs2aIBAwaoV69ejtdz+j0PrPu94IILorqnWJx22mkJv2bA8ccfH3asZ8+ekqRDDz007P/dpKQkdevWTZK0adOmWrsvAI1Lcl3fAADA7uWXX1ZhYaGOPvpo9e7d2/bY2LFj1bRpU3355Zf64YcfgnsyDhw4UAcffLB++OEHffrppzrqqKMkSS+++KLKysp01lln2cJRYDDIv//972o3qLcOaQno2rVrxPO3bNmi0047TUuXLo14Tn5+vu3zQCCIdN1IxwNfR9++fSO+lmT/GgKvFfjBOlSk49EK7MPo8XiUmZmpHj166KSTTtL+++8fdg/du3d3vEZycrK6dOkSDIyBvRtHjBihhx56SAsWLNAf/vCHYDgcMWKE+vbtq9atW2vBggWSpC+//FK5ubkaMWKE0tLSgtcOvGeXX365Lr/88iq/lu3bt2u//fazHYv0e9GrVy89/PDDmjJlii655BJdcskl6tWrlwYPHqzTTz9dv/vd7xz/rEV6v71erzp37qxVq1Zpw4YN6tixY/Dev/zyy5j+3K5fv16S1KdPnyqfUxNV/b8Qr06dOoUdC+zx6fSY9fGSkpJauy8AjQuBEQBcJlA9XLduXbDKZxX4QXn27Nm6//77g8fPOeccXXvttXruueeCgTFQcQytVPp8PknSgQceqMMOO6zK+3Gq/mRkZEQ8/8ILL9TSpUs1ePBg3XrrrerXr59ycnKUnJysFStWqE+fPmETQEO/tlBOFS3r13HmmWcqJSWlyq9jX7n//vvjDp2RDB06VElJSVq4cKEk2QKjx+PR8OHD9e9//1t5eXm2x6wC79mIESPUuXPnKl/Pqfpc1e/9ZZddptNPP11vv/22FixYoI8++kizZs3SrFmzdNxxx+m9995TcnLNf/QI3HuXLl2Ck0wjOeKII4IfVxcu41HV+1EVv99f7TmR/txX9xgAJBKBEQBcZPXq1frf//4nqaIKZW1HDPXCCy/o7rvvDv4AfvbZZ2vq1Kl66aWX9PDDD2vNmjX67LPP1LVrVw0dOtT23EBQGDhwYELH8O/du1fvvvuukpKS9NZbbyknJ8f2+KpVqxyf16FDB/38889av369rX0yINK2BIEK1G233RZs1atOoFoX2EYh2tdKpMA9RNoCory8PFgVC5wrSU2bNtWhhx6qzz77TD/88IM++OADHXDAAWrfvr2kihD48ssva9GiRREDY+D3/swzz6yVFs127drpwgsv1IUXXihJWrp0qSZOnKgFCxZoxowZuuiii2znR/p98Pv9+vXXXyVVvgeBe+/SpUtMf267dOmin3/+WStWrFCrVq1i/ZJqLDU1VZLCtjSRFPzaAMDt+OcpAHCRwA/BY8aMkakYTOb4q3fv3mF7MrZv316jRo3S7t279dZbb+m5556TVLEmL7TCctxxxyklJUXvvfee4w+zNZWXlye/36/s7OywsChVtMg6GTx4sCTppZdecnz8X//6l+PxE088UZL06quvRn2PgTVub7zxhoqKisIef+GFF6K+Vk1Z72HPnj2O91BWVqaePXvaAqNUGQBnzZqlX375xRYIAx+/++67+t///qfs7OywCnJN3rN4HHHEEcHw+N1334U9/s0332jZsmVhx//973+rpKRE3bt3D7ZfHn744WrRooU+++yzmAJXYC3gzJkzozo/EPSq2jM0Gh06dJAk/fzzz2GPzZs3L65rA8C+QmAEAJfw+/3BkHf22WdXee5ZZ50lKXz4zTnnnCNJevbZZ4PBJ3DMql27drrkkku0Y8cOjRkzxrHSlZubq6eeeiqmH5rbtm2rZs2aKTc3NywcPv/88xHD2AUXXKCMjAz95z//CQ78CXjiiSf06aefOj5vypQpys7O1rRp0zRjxoxgy2KAMUaff/655s+fHzw2ZMgQ9evXT9u3b9c111xje87HH3+sJ554Iuqvt6aGDBmiQw89NLjxellZWfCxlStX6sYbb5QkXX311WHPDYTCxx9/XFJF+A/o3bu3OnfurGeffVaFhYUaPHhwWAvomDFjNGDAAL333nu68sorw9aTShVV1ueffz6mr+mDDz7Qu+++G/bnpbS0NPj+Ow1KMsbosssuswXnDRs2aOrUqZJkW2eZkpKim266SaWlpTr11FP1zTffhF2vsLBQ//znP7V169bgsauuukpZWVmaOXOmHnnkkbB20OXLl2v58uXBzwMhfdWqVXGFxkDb7P3336+9e/cGj3/55Ze6+eaba3xdANin6mg6KwAgxPz584Obnlv3xnOycuXK4PYW1j0ZCwsLTdOmTYNj+UM3bLcqKSkxY8eONZJMSkqKOfzww82ECRPMuHHjzMCBA01ycrKRZIqKioLPCWyFMHny5IjXvffee4Ovf8wxx5iJEycGt+i4/vrrjaSwvQSNMWb69OnBjcePPPJIM3HiRDNgwADj9XqDew2OGjXK8X1r1qyZkWQ6depkTjjhBHPmmWeaE044wbRt29ZIMtddd53tOd9++23wOT179jS///3vzYgRI0xSUlJwC4ZYv0UGnhNpC4VQP//8c3C/xc6dO5szzjjD/N///Z9JS0szkszEiRMdt70oLCw0qampRpLxer1m165dtset+yXef//9jq+9bt0620b3Q4YMMWeeeaY55ZRTTO/evY0kc8QRRzheN9Keg4FtPZo1a2aOO+644PUC+wbut99+Zvfu3cHzA3+WRo8ebbp162ZatWplxo0bZ0455RSTlZUV/P227pMZ8Kc//Sm4JceAAQPM6aefbiZMmGCOOOKI4Pu3bNky23Peeuut4B6bXbt2NePGjTNjxowxffv2dfy6BgwYENxG5OyzzzYXXHCBuffee4OPB7bVWLhwoeP7YUzF3pnt27c3kkzHjh3N2LFjzdFHH22Sk5PN1KlTq91Ww0l1/w9Gc18AEAsCIwC4xFlnnWUkmT/84Q9RnX/44Yc77sl44YUXBn/gfPLJJ6u9zmuvvWZOPvlk07ZtW5OSkmJatWpl+vXrZy6++GLz3nvv2c6NJjAaU7GH3mGHHWays7NNTk6OGTZsmJk7d65Zs2ZNxMBojDHvvvuuGTx4sMnMzDRNmzY1w4cPN++//76ZM2dOMEQ52bhxo7n22mtN3759TVZWlsnIyDDdu3c3o0aNMg899JDZuHFj2HNWrFhhJkyYYFq0aGHS09PNwQcfbP7xj38Yv9+/TwKjMcZs3brVXHnllaZXr14mNTXVZGdnm2OPPdbMnj3bMSwGDBkyxEgyAwcODHvsueeeC97LV199FfEahYWF5qGHHjLHHHOMadasmUlJSTEdOnQwRx55pLnpppts+28aU31gXLlypfnrX/9qhg0bZjp16mTS0tJM69atzaBBg8x9991n8vLybOdb/yxt2bLFnH/++aZdu3YmNTXV9O7d29x+++1V/sPJBx98YMaPH286duxoUlNTTfPmzc2BBx5oJk+ebF577TVTWlrqeI8XXXSR6d69u0lNTTXNmjUzffv2NVOmTAnbV3TNmjVmwoQJpm3btiYpKSlsX8Zog9mqVavMuHHjTPPmzU16errp37+/mTlzpjGm+n0YnRAYAexrHmMijKoDAMAl/vCHP2j69Om67777gnsZon6bPXu2zjvvPE2ePDmhg5cAAInFGkYAgCusXbvWcc/H5557TjNnzlRqaqomTpxYB3cGAEDjxbYaAABXePvtt3XFFVdowIAB6tq1q0pLS7Vs2TKtWrVKHo9HDz/8cNjEUAAAULsIjAAAVxgyZIjOOussffzxx/r5559VXFysVq1aacyYMbriiiuCW1EAAIB9hzWMAAAAAABHrGEEAAAAADiiJXUf8vv92rRpk7Kzs+XxeOr6dgAAAAA0QsYY7dmzRx06dJDXW3UNkcC4D23atEmdO3eu69sAAAAAAP3666/q1KlTlecQGPeh7OxsSRW/MU2bNq3juwEAAADQGOXn56tz587BfFIVAuM+FGhDbdq0KYERAAAAQJ2KZpkcQ28AAAAAAI4IjAAAAAAARwRGAAAAAIAjAiMAAAAAwBGBEQAAAADgiMAIAAAAAHDEthoAAAAWpaWlys3NlTEmqpHzAOAGgb+zmjVrptTU1IRdl8AIAADwG7/frx07dqhdu3byemnEAlC/+P1+bdmyJaF/h/E3IQAAwG92796tli1bEhYB1Eter1ctW7ZUbm5u4q6ZsCsBAADUc+Xl5UpLS6vr2wCAGktLS1NZWVnCrkdgBAAAAAA4IjACAAD8hiE3ABqCRP5dRmAEAAAAADgiMAIAAAAAHBEYAQAAAACOCIwAAADAPrBo0SJ5PB7Nnj27rm8FiBqBEQAAALBYtGiRpk2bltC97Bqibdu26bzzzlO/fv3UokULpaenq1evXrrgggu0atWqur49JEhyXd8AAAAA4CaLFi3SrbfeqnPPPVfNmjVL2HWHDBmioqIipaSkJOyadWn37t1asWKFjj/+eHXt2lUZGRlauXKlZs6cqVdeeUVLlizRgQceWNe3iTgRGAEAAIB9wOv1Kj09va5vI2H69Omjjz/+OOz4uHHjdPjhh+vRRx/V448/Xgd3hkSiJRUAAKCRKS4u1rRp09SnTx9lZmaqWbNm6tu3r6655pqwc99//30df/zxatasmdLT09WvXz89+eSTjtd94okn1KdPH6Wlpal379569NFHNXv2bHk8Hi1atCh43rRp0+TxePTTTz/piiuuUPv27ZWZmanjjjtOP//8syTptdde08CBA5WRkaFu3brp6aefdnzNaO+vW7duGjZsmJYvX66TTjpJ2dnZysnJ0bhx47Rly5bgeeeee65uvfVWSVL37t3l8Xjk8Xg0bdq0Kt/TH3/8UePHj1fHjh2Vlpamdu3aafjw4Zo7d27wHKc1jN26dQu+RuivYcOG2V7jiy++0JgxY9SqVSulpaWpT58+uvPOO1VeXl7lve1rXbt2lVRRgbSK5j2C+1BhBACgEdu9t1RZaclKTebfkBuTyy67TDNnztQ555yjq666SuXl5Vq5cqU++OAD23lPP/20Lr74Yh155JG68cYblZWVpfnz5+uSSy7R6tWrdd999wXPveeee3T99ddr4MCBuuuuu1RYWKj77rtPrVu3jngfkydPVpMmTXTDDTdo+/bteuCBB3TCCSfo9ttv17XXXqtLLrlE559/vmbMmKGLLrpIBx54oI499tga3Z8kbdy4UcOGDdOYMWN033336dtvv9VTTz2l/Px8zZs3T5J00UUXKT8/X6+//roefPBBtWrVSpLUr1+/iF/Hzp07NWLECEnSxRdfrK5du2rHjh364osvtHTpUp100kkRn/vQQw+poKDAdmzp0qV69NFH1bZt2+CxuXPnauzYserVq5euvvpqtWjRQp9++qn++te/6ptvvtErr7wS8TUC8vLyVFZWVu15kpSZmanMzMyozi0rKwtee9WqVcFw/bvf/S54TjzvEeqYwT6Tl5dnJJm8vLy6vhUAAMwzH642Xa972xz3wCKzt6Ssrm/HFbZu3VrXt7BPNG/e3Pzf//1fleds2rTJpKWlmYkTJ4Y99uc//9l4vV6zevVqY4wxO3fuNOnp6aZv376mqKgoeN7mzZtN06ZNjSSzcOHC4PFbbrnFSDInn3yy8fv9weMPP/ywkWSys7PN+vXrg8e3bdtm0tLSzO9///sa3Z8xxnTt2tVIMi+99JLt3EsvvdRIMsuXLw+7vzVr1lT5HgX85z//cbx2qIULFxpJZtasWRHPWbNmjWnTpo3p2bOn2bFjhzHGmKKiItO2bVszePBgU1Zm/3/173//e9j7G8nQoUONpKh+3XLLLdVeL+Ctt96yPbdt27bmgQcesJ0T7XuExKju77JYcgn/nAgAQCP1z8/WS5JWbSvQ52t3V3M2GpKcnBz9+OOP+uGHHyKe8+qrr6qkpEQXXHCBduzYYfs1evRo+f1+vf/++5Kk+fPnq7i4WJdccoltjV67du101llnRXyNP//5z/J4PMHPBw8eLEk65ZRT1Llz5+Dx1q1bq0+fPlq5cmWN7i+gQ4cOmjBhgu1YoOplvXascnJyJEnvvvuu8vPza3ydvLw8nXzyySotLdXcuXPVsmVLSRXv79atW3XeeecpNzfX9rUGqniBCmlVHnjgAc2fPz+qX+ecc07U933kkUdq/vz5evPNN3X33Xerffv22r17t61VNlHvEfY9WlIBAGik9pZU/jBXXOarwzvBvvbQQw9p0qRJ6tu3r3r06KHhw4dr9OjRGj16tLzeinrCsmXLJEkjR46MeJ2tW7dKktasWSOpYghKKKdjAT169LB93rx5c0kVawdDNW/eXOvWrQt+Hsv9RXo9ScFQtnPnzojXqc7QoUN1zjnnaPbs2XrhhRd02GGHaeTIkTrjjDOinhJaXl6u8ePHa8WKFXrvvfds71vgaz3//PMjPj/0a3Vy6KGHRnUvsWrVqlXw92H06NGaNGmS+vXrp23btumpp56SlJj3CHWDwAgAQCNVWu4Pfuz3mzq8E+xrp556qtauXat33nlHixcv1vvvv68ZM2Zo8ODBev/995WamipjKv5MPPfcc2rfvr3jdZwCWCySkpJiOh64J+vHsdxfpOuGXrsmnn32WV1zzTV699139dFHH+mBBx7QnXfeqYceekh/+tOfqn3+pZdeqvnz52v69OnBqmfovd13333q37+/4/M7dOhQ7Wvs2rVLpaWl1X8xkpo0aaImTZpEda7TvYwcOVIzZszQI488orS0NEnxv0eoGwRGAAAaKVtgJC82Oi1atNDZZ5+ts88+W8YYXX/99br33nv1n//8R+PHj1fv3r0l2atHkXTr1k2S9PPPP4eFncDU00SL5f5iZW2TjcXBBx+sgw8+WNdcc41yc3N1xBFH6Prrr9dll11W5TXvu+8+PfPMM7r22mt1wQUXhD0e+FqzsrLi+lrHjh2rxYsXR3XuLbfcUu1k2KoUFRXJ5/MpPz/fNviopu8R6g5rGAEAaKRKLIHRF2d1BfWHz+dTbm6u7ZjH49GAAQMkVVShJGnChAlKS0vTLbfcoqKiorDr5OXlqaSkRJI0atQopaWl6YknnlBxcXHwnC1btuiFF16ola8jlvuLVaCyFngvqrNr1y75/X7bsWbNmql79+4qLCy0vSehXn/9dV133XUaM2aM7r77bsdzTjjhBLVp00Z333234z0VFRVpz5491d5notcwRmqD/emnn7RgwQL17NkzGBbjeY9Qt6gwAgDQCPn9RuWWsiItqY3Hnj171L59e51yyikaMGCA2rRpozVr1uiJJ55Q8+bNNXr0aElSp06d9MQTT+jCCy/UAQccoEmTJqlr167avn27vv/+e73xxhv66aef1K1bN7Vs2VK33HKLbrjhBh1zzDE6++yzVVhYqKefflr77befvvjii4RXj2K5v1gdeeSRkqTrrrtOZ511ltLT04OVMSfPPfecHnzwQY0ZM0a9evVSSkqKFi9erP/+97+aMGGCMjIyHJ+3c+dOnX322crMzNSJJ54YFq7btm2rUaNGKSsrS88995xOO+009enTR+eff7569eql3NxcLV++XK+99ppef/31sH0bQyV6DeNdd92l+fPn66STTlK3bt1kjNEPP/ygOXPmqKysTI899ljw3Jq+R6h7BEYAABqhUp/9X/p9BMZGIzMzU1dccYUWLFig999/XwUFBcEAOXXqVNtauPPOO0/77bef7r//fj311FPKzc1Vq1at1KdPH91+++1q165d8NypU6eqadOmevjhh3X99derS5cuuuaaa2SM0RdffFErgSCW+4vFMccco3vuuUdPPvmk/vCHP6i8vFy33HJLxMA4bNgwff3113r77be1efNmJSUlqXv37rr//vurXJu3Z88eFRYWSqrY/zHU0KFDNWrUKEkVVcbPP/9cd999t55//nlt375dzZs3V8+ePXXVVVdVuU9kbTn55JO1YcMGvfzyy9q2bZt8Pp86duyo8ePHa8qUKTrooIOC59b0PULd85h4V/giavn5+crJyVFeXp6aNm1a17cDAGjE8orKdMitlWP47x3XTxMGda7iGY3Dtm3b1KZNm7q+jQbl8ssv16OPPqrNmzfXOMABiE11f5fFkktYwwgAQCNkHXgjxT8hEnBag7Z582Y999xzOvjggwmLQD1FSyoAAI1QeEtqHd0IGoxFixbpmmuu0dixY9WpUyetXbtWzzzzjAoKCiIOcwHgfgRGAAAaoZIyn+1zpqRG5vcb5RaV1fVtRNQsI0Veb91vR9CrVy/17NlTzzzzjHbu3Kn09HQNGjRIU6dOTfi2FwD2HQIjAACNUGiFkSmpkeUWlWng7fPr+jYi+urmUWqRlVrXt6FevXrpjTfeqOvbAJBgrGEEAKARCl3D6KfCCABwQGAEAKARCg2MbKuB+mD27NnyeDxatGhRXd9KjXzzzTc67rjj1Lx5c3k8Hk2bNq2ubwmolutaUlesWKHnn39e8+bN0+rVq1VcXKyePXtq/PjxuuKKK5SVlWU7/+eff9Z1112nxYsXq7S0VAMHDtStt96qESNGRP2aibgGAAD1CRXG6DXLSNFXN4+q69uIqFlGSl3fAqJQXl6u008/XWVlZbr99tvVrFmzOtk7saF444039M0339SL0P3ss8/qn//8p3788Uft2LFD2dnZ6tWrly666CJNmjRJSUlJwXO3bdum6667Tl9++aU2bNigwsJCderUSUOHDtXUqVPVq1evfX7/rguMM2fO1GOPPaZTTjlFZ511llJSUrRw4ULddNNNevnll7VkyZLgxq+rV6/W0UcfreTkZF177bXKycnRM888oxNOOEHvvvtuVAusE3ENAADqmxKmpEbN6/W4Yo0g6rdffvlFv/zyix544AE2qk+AN954Q88++2y9CIxfffWVmjdvrssuu0xt2rRRQUGB5s6dq/POO08fffSRZsyYETx39+7dWrFihY4//nh17dpVGRkZWrlypWbOnKlXXnlFS5Ys0YEHHrhP7991gXHcuHGaOnWqcnJygscuvvhi9e7dW3feeadmzJgR/J9s6tSpys3N1Zdffqn+/ftLks455xwddNBBuuyyy7R8+XJ5PFVPDUvENQAAqG9KyqgwAtXZs2ePsrOzE3KtLVu2SJJatGiRkOuh/nj44YfDjv3lL3/RSSedpFmzZunOO+8M7lPap08fffzxx2Hnjxs3TocffrgeffRRPf7447V+z1auW8M4aNAgW1gMOOOMMyRJP/zwgyRp7969evPNNzVs2LBg0JOkJk2a6MILL9SKFSv0+eefV/laibgGAAD1EVNS4eTcc8+Vx+NRXl6eLrnkErVp00bp6ek65phjtHTpUtu5Va0nHDZsmLp162Y71q1bNw0bNkzffvutRo4cqSZNmqhNmza6+uqrVV5eruLiYk2ZMkUdO3ZUenq6hgwZomXLljneZ3l5uaZNm6auXbsqLS1N/fr107/+9S/Hc7/44guNGTNGrVq1Ulpamvr06aM777xT5eXljvf8yy+/aNy4cWrRooWaNm1a7Xu2du1aTZo0SW3btlVaWpp69uypG264QYWFhbZrDx06VJJ03nnnyePxyOPxaO3atRGvu2vXLl155ZXq2bOn0tPT1bJlSx166KG67777ws596aWXdOyxxyo7O1uZmZk64ogj9Oqrr4ad5/P5dPvtt6tr165KT09Xv3799NJLL2natGlh9xP4s7Bz506de+65atWqlbKzs3XaaacFw+/TTz+tAw44QOnp6dp///31n//8x/Frifb+PB6Pzj33XH366acaOnSosrKy1LJlS1144YUqKCiwvZ/PPvts8DmBX7Nnz5Yk/frrrzr//PODfz7atGmjo48+Ovgct+jatauMMcrLy4vqXKmiArmvua7CGMmGDRskSW3btpUkfffddyopKdFRRx0Vdu6RRx4pSfr88891+OGHR7xmIq5Rlfbt29s+9/vp9wEAuEPY0BsqjLA44YQT1Lp1a/31r3/Vzp079fe//10nnXSS1qxZE1fFbcOGDRo1apTOOOMMjRs3TvPmzdPf//53JScn68cff1RRUZGuv/567dixQ/fff79OO+00LVu2TF6vvcZx3XXXae/evbr00kslSbNmzdLEiRNVXFysc889N3je3LlzNXbsWPXq1UtXX321WrRooU8//VR//etf9c033+iVV16xXbegoEBDhw7VMcccozvvvFPbtm2r8utZt26dDj/8cOXl5enSSy9V7969tWjRIt111136+OOPtWDBAiUnJ+vGG2/UMccco7/97W/64x//qMGDB0uSWrduHfHa48eP14cffqiLL75Y/fr1U1FRkZYtW6ZFixbpmmuuCZ5300036c4779SJJ56o22+/XV6vV6+//rrGjx+vRx99VJdddlnw3D/96U968sknNXz4cE2ZMkXbt2/XpZdequ7du0e8jxNPPFGdOnXSbbfdplWrVumRRx7RmDFjNHbsWD399NO64IILlJ6erkceeUTjxo3TihUrbNeL5f6kisFAJ598ss477zydeeaZWrRokWbMmCGv16unn35aknTjjTfK7/fro48+0pw5c4LPPfroo1VeXq5Ro0Zp48aNuvTSS7XffvspLy9P3333nT766CNNnjy5yt/TsrKyqAJcQKtWraI+Ny8vT2VlZdq9e7f++9//aubMmdpvv/0c1yUG7qOsrEyrVq0Ktt7+7ne/i/r1EsbUA+Xl5eaoo44yycnJZvny5cYYY1599VUjyTz++ONh5//4449Gkpk6dWqV103ENarSrl072682bdoYSSYvL6/G1wQAIBFeWLLOdL3u7eCvB/67vK5vyRW2bt1a17dQpyZPnmwkmUsuucR2/OWXXzaSzJNPPhk8NmvWLCPJLFy4MOw6Q4cONV27drUd69q1q5FkXn75ZdvxgQMHGo/HY0455RTj9/uDxx9++GEjybz33nthr9mlSxeTm5sbPJ6bm2u6dOlimjdvbgoLC40xxhQVFZm2bduawYMHm7KyMttr/v3vfw+796FDhxpJ5sYbb6z6TbI488wzjSQzd+5c2/EpU6YYSWb69OnBYwsXLjSSzKxZs6q9bm5uruPvQ6gvv/wy4s+rp556qsnOzjb5+fnGGGN++OEHI8mccMIJxufzBc/77rvvjNfrNZLMmjVrgscDfxYuvfRS23WvvPJKI8l07tzZ9jPtt99+aySZ66+/vkb3Z4wxkozH4zFLliyxnfu73/3OJCcnmz179oTdX6jAfdxzzz1hj0Uj8PsU7a9YHHroocHneTweM2rUKLN69WrHc9966y3b67Rt29Y88MADUb9WdX+X5eXlRZ1LXNeS6uSKK67Qp59+qttuu019+vSRpGCZPy0tLez89PR02zmRJOIaVdm8ebPt18qVK2t8LQAAEqm03Gf7nI5UWF155ZW2zwOT4+P9WaZjx44aP3687dixxx4rY4wuv/xy29yIQBXO6TUvueQS2xKmnJwcXXzxxdq9e3ewRXb+/PnaunWrzjvvPOXm5mrHjh3BX4Eqzbx588KuPWXKlKi+Fr/frzfffFMDBgwIq/pMnTo1WEmriYyMDKWlpWnp0qVVtq2+8MIL8ng8mjx5su3r27Fjh0455RTt2bNHn376qSTp7bffllSxds5ase3bt69OOOGEiK9xxRVX2D4P/L6cc845tpbdfv36qWnTprbfr1juL+Coo47SEUccYTs2YsQIlZeXV/leBAT+XCxcuLDaCrGTQw45RPPnz4/6Vywef/xxzZ8/X88995wmTJgQrDY6OfLIIzV//ny9+eabuvvuu9W+fXvt3r07rJV6X3B9S+rNN9+sRx99VH/84x81derU4PHMzExJUklJSdhziouLbedEkohrAABQH4WuYaQlFVY9evSwfd6yZUtJ0s6dO+O6rlPrY/PmzR0fCxx3es0DDjgg7FhgcuQvv/wiScH1j+eff37E+9m6davt89atW6tZs2YRz7favn27CgoKdNBBB4U91qJFC7Vv3z54L7FKTU3VQw89pL/85S/q3r27DjzwQI0YMUKnnXaajjvuuOB5y5YtkzFG+++/f8RrBb7GNWvWSFKw+GLVp08fvfvuu47PD/2zEOn3K/CY9fcrlvuL9HpSbH/+unbtqhtvvFF33XWX2rdvr/79++u4447T+PHjddhhh1X7/ObNm9faLgnWZW6TJk3S1KlTNWTIEH333Xfq2bOn7dxWrVoF72P06NGaNGmS+vXrp23btumpp56qlfuLxNWBcdq0abrjjjt03nnn6cknn7Q91qFDB0nSxo0bw54XONaxY8cqr5+IawAAUB+FTUmlxAgL675wVsbyDwtVTZGPVAWJdN1oXzMWgefdd999tuGGVoGfBQPcVCi4+OKLdeqpp2ru3LlavHixXn31VT366KM644wzggN+jDHyeDx69913I75/ToE2FpGuG83vV03ur6o/I9H+Wbjjjjt0/vnna+7cufroo480ffp03Xfffbr22mt1zz33VPnc0tJS7dq1K6rXkRScbloTkydP1t13363Zs2fr9ttvr/LcDh06aOTIkZoxY4YeeeQRxw7J2uLawDht2jTdeuutmjx5sqZPnx72l1Lfvn2VlpYWVsaWpCVLlkiqmLhalURcAwCA+iiswkhgRIwC20M4/XC9Zs0apaSk1NprL1u2TKeeeqrt2E8//SSpskLVu3dvSVJWVlatVIxat26t7Oxs/fjjj2GP7d69W5s3b44YVKPVvn17XXjhhbrwwgvl8/k0adIkvfjii7r66qt12GGHqXfv3nrvvffUpUsXx6qrVWBq7c8//xxWxfv555/jus9IYrm/WFW37V2PHj10+eWX6/LLL1dxcbFOOOEE3Xvvvbr66qvVpk2biM/75JNPNHz48Kjvo6b/oCFJRUVFkpz/H4p0vs/nU35+fpUDkxLNlWsYb7vtNt16662aNGmSZs6cGTYZS6rY+mL06NFatGiRvv322+DxgoICTZ8+Xb1797aVffPy8rR8+XLt2LGjxtcAAKChYEoq4rXffvtJkt5//33b8RdffFGbNm2q1dd+4oknbJMs8/Ly9OSTT6pZs2bB7StOOOEEtWnTRnfffbfjD+RFRUXas2dPje/B6/Vq9OjR+vrrr/Xee+/ZHrv77rvl9/s1ZsyYGl27sLAwbI5GUlKS+vXrJ6kyYEyaNEmSdMMNN8jns69LluztnqNHj5ZUsSegdXL/999/r//+9781us/qxHJ/sWrSpImk8LAVmCxqlZ6eHgys1W1Lkeg1jOXl5RFbaf/xj39IqtydQYr8nvz0009asGCBevbsuU/DouTCCuNjjz2mW265RV26dNHIkSP1z3/+0/Z427ZtNWrUKEnSXXfdpQULFuj444/XlVdeqaZNm+qZZ57Rxo0bNXfuXNu/PLz++us677zzdMsttwTH0sZ6DQAAGoqSkMBIXkSs+vTpo5EjR+qpp56SMUb9+/fXN998o9dff129evUK+6E9kVq1aqUjjjhC5513nqSKbTXWr1+v6dOnB9tKs7Ky9Nxzz+m0005Tnz59dP7556tXr17Kzc3V8uXL9dprr+n111/XsGHDanwff/vb3zR//nyddtppuvTSS9WrVy99+OGHeumllzRkyJBqt3CIZMWKFRo6dKjGjBmjgw8+WM2bN9eyZcv0xBNPqHv37sHBM4cddpimTZumadOmqX///ho/frw6dOigzZs368svv9Q777yj0tJSSRWtn3/84x/19NNPa+TIkRozZoy2b9+uxx57TAMGDNCXX36Z8J97Y7m/WB155JF69NFHdemll+qkk05SSkqKjjjiCH377bf64x//qNNPP119+vRRkyZN9OWXX2r69Ok64ogjHNdwWiV6DWNBQYE6deoU/L1s27attmzZojfeeENffPGFjjvuOJ155pnB8++66y7Nnz9fJ510krp16yZjjH744QfNmTNHZWVleuyxxxJ2b9FyXWD8/PPPJUnr1693/J9s6NChwcDYq1cvffzxx7r++ut19913q7S0VAMHDtR7770X9W90Iq4BAEB9Q0sqEmHOnDm6/PLL9cILL2jOnDkaPHiwFi5cqEsuuSSqiZY1dc899+ijjz7SY489pq1bt2q//fbTCy+8YPvBW6qoMn7++ee6++679fzzz2v79u1q3ry5evbsqauuuipYsauprl27aunSpfrrX/+q559/Xrm5uerUqZOmTp2qm266ScnJNftRu3Pnzjr//PO1cOFCvfHGGyopKVHHjh31hz/8Qdddd51treUtt9yiQYMG6ZFHHtFDDz2kvXv3qk2bNjr44IP1yCOP2K77+OOPq0OHDpoxY4amTJmiPn366IknntBnn32mL7/8UhkZGXG9H05iub9YTJw4UV9//bX+9a9/6ZVXXpHf79esWbM0dOhQjR07VosWLdILL7wgn8+nLl266IYbbtDVV1+dwK8sOpmZmbrsssv04Ycfat68ecrNzVV2drYOOuig4GBP67rNk08+WRs2bNDLL7+sbdu2yefzBacLT5kyJe41qTXhMfE03iIm+fn5ysnJUV5enm0MMQAA+9rVL3+rf3+1Ifj5mUd00d/G9K3DO3KHbdu2Vbm+CWiIRo8erQ8++ED5+flVDp1B/VHd32Wx5BJXrmEEAAC1K7TCyJRUoOELDFmx+u677/Tuu+9qxIgRhEU4cl1LKgAAqH2l5fYBFH4ajoAG79lnn9Vzzz2nk046Sa1bt9by5cv19NNPKzU1Vbfddltd3x5cisAIAEAjFDYl1R/hRAANxsCBA/X666/rkUce0a5du5Sdna0RI0bolltu0YABA+r69uBSBEYAABqhsJZUKoxAg3f44YfX2hYaaLhYwwgAQCMUXmEkMAIAwhEYAQBohEL3YaTCCABwQmAEAKARCq0wEhgrsNsYgIYgkX+XERgBAGiEaEkFAESDwAgAQCMU2pLKlNQKycnJKikpqevbAIAaKykpUUpKSsKuR2AEAKARCp2SSitmhebNm2vnzp3y+XzVnwwALuPz+bRr1y41a9YsYddkWw0AABqhsJZUAqMkyev1qlWrVtq5c6eMMfJ4PHV9SwAQlcDfWS1btpTXm7i6IIERAOBaxhgt+WWXOjbLUJeWmXV9Ow1KSbm9gsYaxkqpqalq06ZNXd8GALgCgREA4FoPzl+hRz5YpfQUr+ZdMZTQmEBMSQUARIM1jAAA11q8cockqbjMr6Vrdtbx3TQc5T6/QguKVBgBAE4IjAAA1yq3DGYJneqJmgsdeCMpLEACACARGAEALmateoW2UKLmnN5LP4kRAOCAwAgAcC3rujqnqhhqxqlay5RUAIATAiMAwLWsFcaSMgJjolBhBABEi8AIAHAtW0sqG6knjFOFkbwIAHBCYAQAuJa1TZI1jInj9F4yJRUA4ITACABwLb8l1xAYE8d5SiqBEQAQjsAIAHAte0sqgTFRqDACAKJFYAQAuJa1JZV9GBOnpDx8PSgVRgCAEwIjAMC1/OzDWCscp6SSFwEADgiMAADXYuhN7aAlFQAQLQIjAMC1fD7WMNYGp/eSwAgAcEJgBAC4FhXG2uG0HtSwhhEA4IDACABwLR9rGGuFY0sqgREA4IDACABwLT9TUmuF03tJxy8AwAmBEQDgWlQYa4fzlFQqjACAcARGAIArGWNsWz0w9CZxmJIKAIgWgREA4Eqh+YUKY+KU+nxhx6gwAgCcEBgBAK5U7rcHRNYwJo5jSyoVRgCAAwIjAMCVQvKiSsvDq2KoGcehN1QYAQAOCIwAAFcKDTCsYUwc5wpjHdwIAMD1CIwAAFcKHcLCGsbEYUoqACBaBEYAgCuFrqnzG6mcKmNClDi8j7SkAgCcEBgBAK7kFGBoS00MpwqjMRVbmQAAYEVgBAC4ktPUTtpSEyPS+8hejACAUARGAIArlRMYa01JhImz5EUAQCgCIwDAlZyqXezFmBiRgjeDbwAAoQiMAABXcgovBMbEiLQWlJZUAEAoAiMAwJWcwgstqYkRcQ0jFUYAQAgCIwDAlZwqjExJTYxIgdHw9gIAQhAYAQCu5JQNqTAmBhVGAEC0CIwAAFeiJbX2RFoLyhpGAEAoAiMAwJUcA6PPeTsIxIYpqQCAaBEYAQCu5NQeSYUxMUqYkgoAiBKBEQDgSuzDWDuMMVQYAQBRIzACAFzJcUoqgTFuZb7IodDP2wsACOHKwHjXXXdp/Pjx6tGjhzwej7p16+Z43tq1a+XxeKr89cILL1T7erNnz474/D/96U8J/uoAANFwXsNIoolXSXnkdaBMSQUAhEqu6xtwcsMNN6hFixYaOHCgcnNzI57XunVrzZkzx/GxP/3pTyoqKtIJJ5wQ0+secMABtmN9+vSJ+vkAgMTxMyW1VlT1HrKGEQAQypWBcfXq1erRo4ck6eCDD1ZBQYHjeVlZWTr77LPDjn/66afKy8vTuHHj1KpVq6hfd9SoURo2bFiN7hkAkFjlrGGsFVVVaQ0VRgBACFe2pAbCYk1Nnz5dknThhRfG/Nw9e/aotLQ0rtcHAMSPKam1o8oKI4ERABDClRXGeBQUFOjll19W165dNWrUqJiee8opp2jPnj3yeDzq27evrrnmGscKZrTat29v+9zPNAEAiBotqbUj9D1M9nqC1VxaUgEAoRpcYHzppZdUUFCgKVOmyOuNroCamZmpM888UyNGjFCbNm20Zs0aPfbYY5o0aZJWr16tW265pZbvGgAQiqE3tcPa1pua5JXHU9n+y79rAgBCNbjAOH36dHm9Xp133nlRP2fChAmaMGGC7dhFF12kQYMG6Y477tDkyZMjTmqtyubNm22f5+fnKycnJ+brAEBjxLYatcMWGJO9tveZfRgBAKFcuYaxpn766SctWbJEo0aNUpcuXeK6VlpamqZMmaLy8nLNmzcvQXcIAIiWUzGRoTfxKw0JjF6PJ/g5axgBAKEaVGCcMWOGpJoNu3ESqCru2LEjIdcDAESPoTe1w9rWm5bslbcyLzquGwUANG4NJjCWlpZqzpw5at26tU499dSEXHPlypWSpLZt2ybkegCA6PkcFtSxhjF+oRXGJEtiZOgNACBUgwmMb775prZv365JkyYpJSXF8ZzCwkItX748bG3hzp07w87Ny8vTPffco9TUVJ1wwgm1cs8AgMicsmFpuW/f30gDUxoy9MYWGGlJBQCEcOXQmzlz5mjdunWSpO3bt6u0tFR33HGHJKlr166aNGlS2HOiaUf97LPPNHz4cE2ePFmzZ88OHu/bt6+GDh2qvn37qk2bNlq7dq1mzpypzZs364EHHlCnTp0S+NUBAKLBthq1o9RXGbpTk73yWNYwkhcBAKFcGRhnzJihxYsX247dfPPNkqShQ4eGBcZff/1V8+bN09FHH60DDjgg5tebOHGiFi1apHnz5gUnmR5++OGaNWsW1UUAqCOOaxhpSY1bSVlIS6qHllQAQGSuDIyLFi2K6fzOnTvL56u+TWnYsGEyDj+APPDAAzG9HgCg9jnuw0iFMW6hQ29oSQUAVKXBrGEEADQsTnsCsq1G/OxDb5LktfwkwJRUAEAoAiMAwJWoMNaOkpChN9Z9GMmLAIBQBEYAgCsRGGuH9T1MYw0jAKAaBEYAgCs5hRdaUuNnXcOYmuyV12utMBIYAQB2BEYAgCsxJbV22KakJlFhBABUjcAIAHAl9mGsHdZ9GNNSvLLkRSqMAIAwBEYAgCs5FRMJjPErDRl6k0RLKgCgCgRGAIAr0ZJaO+zbaoTsw8jbCwAIQWAEALiSU0uqz29YZxensKE31m01eG8BACEIjAAAVyqPEF5oS42PbehNMi2pAICqERgBAK4UKbwQGONjqzAmeWXJi45twACAxo3ACABwpUitpyXlPsfjiI51L8u0lCRaUgEAVSIwAgBcKXJgpMIYD2uFNi0pdOgNgREAYEdgBAC4UsSWVEZ5xqXKKankRQBACAIjAMCVIlW7WMMYn9ApqR5LS6phDSMAIASBEQDgSgy9qR3WNaCpSV4lWYfe0JIKAAhBYAQAuFJ5hP5IWlLjY1vDmBLakkpgBADYERgBAK4UKbxQYYyPbQ1jkpcpqQCAKhEYAQCuFCm8EBjjEzr0xhYYyYsAgBAERgCAK0Wa2Mm2GvEJHXrDthoAgKoQGAEArhSxwsgaxhrz+43KLEk8Ldkrr9daYSQwAgDsCIwAAFdiW43ECw3bqUlJTEkFAFSJwAgAcCWG3iReaDtvWgprGAEAVSMwAgBcKVK1y7qPIGITGrZTk2hJBQBUjcAIAHAlWlITL6wlNdmrJA9DbwAAkREYAQCuFKnaRWCsubAKY8jQGwIjACAUgREA4EoRK4xMSa0xazuvxyMlez1KsvwkYGhJBQCEIDACAFyJltTEs753qUleeTwe29CbSIOGAACNF4ERAOBK1pZUS6YJm/SJ6FkDY1pyxY8AtsDIWwsACEFgBAC4krXCmJGSFPyYltSas1UYkyve0yTrlFTWMAIAQhAYAQCuFDEwUmGssRJfeIXRGhhpSQUAhCIwAgBcyRpe0gmMCWGvMFb8CGBt92UfRgBAKAIjAMCVrJ2nmakExkQoCRl6I8m2DyMtqQCAUARGAIArWcNLRiprGBPBNvQmxakldZ/fEgDA5QiMAABXoiU18UK31ZDsU1KpMAIAQhEYAQCu5I8w9Ma6+TxiU2p571IdttVgDSMAIBSBEQDgStYKI2sYE8PazpsanJJa+biPCiMAIASBEQDgSuW+SBVGAmNNObakeqkwAgAiIzACAFzJGl7SGXqTECUO22pYp6RSYQQAhCIwAgBcyRdhDSMtqTVnm5KaXPGe2tcw7vNbAgC4HIERAOBK1gojgTExnCqMtKQCAKpCYAQAuJKPfRgTzvrepQVbUisfpyUVABCKwAgAcCVaUhOv1GkNo5c1jACAyAiMAABXsmYXttVIjBKHKakeyxpGOlIBAKEIjAAAVyr3V4Yba0tqud/ITyWsRkrLfcGPHSuMJEYAQAgCIwDAlSx5UemWllSJdYw1ZZ+SyrYaAIDqERgBAK7kizAlVbK3ViJ61qDNlFQAQDQIjAAAV4o0JVWSSiytlYie89CbysepMAIAQhEYAQCuE7pGMbTCyOCbmil1GHrj9VgrjPv8lgAALkdgBAC4TujwldAKI4GxZkocKoy2wEhiBACEcGVgvOuuuzR+/Hj16NFDHo9H3bp1i3juueeeK4/H4/jr1Vdfjfo1N23apHPOOUetW7dWRkaGBg0apFdeeSUBXw0AIFahrZGpSV5Zltox9KaG7ENvKkI4U1IBAFVJrusbcHLDDTeoRYsWGjhwoHJzc6N6zpw5c8KOHX744VE9d9euXTr22GO1bds2XXXVVerUqZP++c9/asKECZo5c6bOO++8WG4fABCn0MDo9XqUmuxVcVlF4KHCWDMlDlNSqTACAKriysC4evVq9ejRQ5J08MEHq6CgoNrnnH322TV+vbvvvltr1qzRm2++qdGjR0uSLrjgAh111FGaMmWKxo8fryZNmtT4+gCA2IRWupI8HqUmERjj5Tgl1VK5ZUoqACCUK1tSA2ExFsYY5efny++P/YeIf/7zn+rZs2cwLEpSUlKSLr/8cu3atUvvvPNOzNcEANRcaKXL65XSLINvCIw14zwllZZUAEBkrgyMNZGTk6OcnBxlZGRo1KhRWrp0aVTP27x5szZu3Kgjjzwy7LHAsc8//7xG99S+fXvbr969e9foOgDQ2IS2pAYqjAElrGGsEccpqdZ9GHlbAQAhXNmSGot27drpyiuv1KGHHqqsrCx9++23euihhzR48GC98847GjlyZJXP37RpkySpY8eOYY8Fjm3cuDHxNw4AiCi00pXs9QbX3ElUGGvKun9lsMJoWcPIPowAgFD1PjDefffdts9PO+00nXnmmerfv78uueQSrVy5ssrnFxYWSpLS0tLCHktPT7edE6vNmzfbPs/Pz1dOTk6NrgUAjUlopcvrrQw4EoGxJsp9fts+i45Db2hJBQCEaDAtqVa9e/fWhAkTtGrVKq1YsaLKczMzMyVJJSUlYY8VFxfbzgEA7BvlIYkx6bcpqQEExtiFbkUSHHpj+UmAwAgACNUgA6Ok4N6NO3bsqPK8Dh06SHJuOw0cc2pXBQDUnrAKY+gaRgJjzEJDNi2pAIBoNNjAGGhFbdu2bZXntW/fXh07dtSSJUvCHgscGzRoUOJvEAAQUdi2GmEVRl/oU1CN0MCYllQxddY2JZXACAAIUa8D4969e4Nto1Zff/21XnnlFR1wwAHq2bNn8HhhYaGWL18etrZw4sSJWr16td56663gMZ/Pp3/84x9q1qyZfve739XeFwEACOM4JdUaGJmSGrPQqmzg/fRYKox0pAIAQrly6M2cOXO0bt06SdL27dtVWlqqO+64Q5LUtWtXTZo0SVJFFfH//u//dNppp6l3797BKakzZ85UUlKSnn76adt1P/vsMw0fPlyTJ0/W7Nmzg8evv/56vfLKKzrzzDN11VVXqWPHjnrxxRf1+eefa/r06crOzt43XzgAQFL4Wjqv196SyhrG2EUKjOzDCACoiisD44wZM7R48WLbsZtvvlmSNHTo0GBgbNeunUaOHKmFCxfqhRdeUFFRkdq3b68zzjhDU6dO1f777x/V67Vs2VIff/yxrr/+ej322GMqKCjQgQceqH/9618644wzEvvFAQCqZa0wJv8WaBh6Ex/re5bs9QSDImsYAQBVcWVgXLRoUVTntWvXTnPmzIn6usOGDZOJ8K+nHTt2jOlaAIDaYw0uXofAWEJLasysbbzW95IpqQCAqtTrNYwAgIbJGhgDFbC05KTgMSqMsbO+Z9bAyNAbAEBVCIwAANexrqULBJo0WlLjYguMlvWgXktLKnkRABCKwAgAcB2/tSX1tzzDGsb4lFi2IrG1pFoCo2R/7wEAIDACAFzH1pIaWMOYxLYa8YimJVViUioAwI7ACABwHaeWVCqM8bGGbOt60KSQCiPrGAEAVgRGAIDr+C15kMCYGCURKowheVEUGAEAVgRGAIDr2CqMnvCW1NBN6FE9a8hOS6IlFQAQHQIjAMB1fJYSo9M+jFQYYxf1GkZaUgEAFgRGAIDr+KppSS1h6E3MIrWkMiUVAFAVAiMAwHVsU1I97MOYCLaWVFtgtJ/npyUVAGBBYAQAuI41tHidttWw7CmI6JT6nPdhZA0jAKAqBEYAgOs4VRhtaxhpSY2ZbQ2jJXx7vaEtqfvslgAA9QCBEQDgOn6HfRitewfSkhq7iENvQvdhpMIIALAgMAIAXMdWYWRKakJYq7IMvQEARIvACABwnXK/wxpGAmNcSsoiBMaQnwQYegMAsCIwAgBcx29bw1jxX9vQG9Ywxsy6FYm1vTesJZUKIwDAgsAIAHAdn8MaRmtVrMxnaJ2MUaRtNUKnpFJhBABYERgBAK5jDYNeh30YJaqMsYo0JdXj8chaZORtBQBYERgBAK5T3dAbSSphHWNMisqc92GU7INvqDACAKwIjAAA1/FZMkswMCaFVBgJjDFZs2Nv8OP2Oem2x6zrGFnDCACwIjACAFzHH0WFkZbU6OUWlmr7npLg5/u1zbY9bp2USoURAGBFYAQAuE65bUpqhMBIhTFqK7YWBD9OS/aqc4tM2+NUGAEAkRAYAQCuY61yBfZhTPbah7MQGKO3Yuue4Me92jQJm4xqX8O4z24LAFAPEBgBAK7jc6gwejwe26RUAmP0VloCY2g7qlQZyiVaUgEAdgRGAIDrOE1JleyDb0p9PiE61pbU3m2bhD1ufY9pSQUAWBEYAQCu49SSKkmpyUnBj9lWI3ort1kqjG0cKozWllQCIwDAgsAIAHAda5Ur2RIYaUmN3a69pdpRUBr83LEl1bKkkbwIALAiMAIAXMdnrTB6rBVGAmOsrANvMlKS1Kl5Rtg5tpZU1jACACwIjAAA1/H5rGsYK4/b1zASGKOxMmRCqjdkQqpESyoAIDICIwDAdaxVLtvQGyqMMatu4I3E0BsAQGQERgCA61irXJFaUhl6E50V1WypIdnXMNKSCgCwIjACAFwnYoUxiQpjrFZuq6ww7hehwmhtUzUERgCABYERAOA61uWJDL2puR0FJdq1t3JCam+HLTUkKcljbUmt9dsCANQjBEYAgOv4I2yrYQuMJJtqWdtRs1KT1LFZ+IRUiSmpAIDICIwAANeJ1JKaxhrGmKy0DLzp1TbbcUKqxJRUAEBkBEYAgOtYJ3V6mZJaY7aBN22c1y9Kktfy04CfCiMAwILACABwHWtgtK6vSyMwxsRaYYw0IVUKXcNIYAQAVCIwAgBcx9qS6o00JdXn26f3VN8YY7RiW2WFMdIejJL9PabCCACwIjACAFzHH6HCSEtq9LYXlCi3sCz4efQVxlq9LQBAPUNgBAC4jq0l1fKdisAYPWs7anZastrnpEc81zb0hgojAMCCwAgAcB2/bUpq5beq1KSk4Mdsq1E168CbXm2byONxnpAqMfQGABAZgREA4DrRVBhLygiMVVlhHXjTJnI7qhSyDyNDbwAAFgRGAIDrlFu31Yi0hpEKY5VWbo1u4I1kf48JjAAAKwIjAMB17C2pzoGxhDWMERlj7HswVjHwRrIHRjpSAQBWBEYAgOvYW1It+zAmMfQmGtv2lCi/uDz4eXWB0daSSmIEAFgQGAEAruO3ZEFr9SsthcAYDWt1MTs9WW2bplV5Pi2pAIBICIwAANfxRWpJTWINYzRsA2/aZlc5IVWyDxbyExgBABYERgCA60RqSWUfxuis2mYNjFUPvJFCKoy0pAIALAiMAADXsQ29iTQllcAYUV5RafDjNtnp1Z7vtYRyCowAACsCIwDAdcp9tKTGo7DUF/w4Ky2p2vOtoZyWVACAlSsD41133aXx48erR48e8ng86tatm+N5xcXFeuaZZ3TqqaeqW7duysjIUI8ePTRx4kQtW7Ys6tebPXu2PB6P468//elPCfqqAADRslYYvbSkxswaGDNSk6s9nympAIBIqv8uUgduuOEGtWjRQgMHDlRubm7E89auXas//vGPOvbYY3XBBReoQ4cO+uWXX/TEE0/otdde03vvvafhw4fH9LoHHHCA7VifPn1q+mUAAGrItoaRltSYFVkCY2ZK9RVGLxVGAEAErgyMq1evVo8ePSRJBx98sAoKChzPa926tb7++mv179/fdvyss87SgAEDdM011+iLL76I+nVHjRqlYcOG1fS2AQAJYp+SWnk8LdnekmqMqXYCaGO0t7RyD8bM1GgCY+XHfiqMAAALVwbGQFisTsuWLdWyZcuw4wceeKAOPvhg/fDDDzG/9p49e5SWlqbU1NSYnwsASAxrlcta/UpNsoefknK/0qOooDU2tgpjWowtqRRuAQAWrlzDGC+/36/Nmzerbdu2MT3vlFNOUdOmTZWenq5DDjlEzz//fFz30b59e9uv3r17x3U9AGgsrBXG5CTnllSJwTeRWNcwRlVhtE1JpcIIAKjkygpjvJ588klt3rxZN998c1TnZ2Zm6swzz9SIESPUpk0brVmzRo899pgmTZqk1atX65ZbbqnlOwYAWPl8ESqMoYGRdYyOCi0tqRlRVGCt60R9rGEEAFg0uMD4ySef6KqrrtIhhxyiG264IarnTJgwQRMmTLAdu+iiizRo0CDdcccdmjx5csRJrVXZvHmz7fP8/Hzl5OTEfB0AaGzsaxgJjLEo8/lVZgncWVG0pLKGEQAQSYNqSf3yyy910kknqUOHDpo7d67S06vfrDiStLQ0TZkyReXl5Zo3b14C7xIAUB1rp6m1+pVGYKyWtR1VoiUVABCfBhMYv/rqK40aNUo5OTlauHChOnbsGPc1A1XFHTt2xH0tAED0Iu3DmOz1yDoUlTWM4aztqJKUEUVgpCUVABBJgwiMX331lUaOHKns7GwtXLhQXbt2Tch1V65cKUkxD88BAMTHtg+jJTB6PB6lJrEXY1XCKozRrGFkSioAIIJ6Hxi//vprjRo1Sk2aNNHChQvVvXv3iOcWFhZq+fLlYWsLd+7cGXZuXl6e7rnnHqWmpuqEE05I+H0DACKLtK2GZF/HWEJgDGPdUiM12avkpOq/1Vv3sjS0pAIALFw59GbOnDlat26dJGn79u0qLS3VHXfcIUnq2rWrJk2aJElat26dRo0apd27d+vPf/6zPvnkE33yySe2a40ZM0ZZWVmSpM8++0zDhw/X5MmTNXv27OA5ffv21dChQ9W3b1+1adNGa9eu1cyZM7V582Y98MAD6tSp0z74qgEAAbZtNbz2wJiWnKQ9qmi7LCmzV9MQ+5YakmTNlD4CIwDAwpWBccaMGVq8eLHtWGCLjKFDhwYD45o1a4LVwWnTpjlea82aNcHAGMnEiRO1aNEizZs3LzjJ9PDDD9esWbOoLgJAHSiP0JIqSc0yU7SjoESStKuwdJ/eV32w17KGMZp2VIk1jACAyFwZGBctWhTVecOGDYupdSbS+Q888EDU1wAA1L6qWlLbZKdp1bYCSdK2/JJ9el/1gbUlNTOKLTUkpqQCACKr92sYAQANT6R9GCWpdXZa8OPtBQTGUDVpSfVSYQQAREBgBAC4ijFG1iJX6MyW1k0sgXEPgTGUdVuNjGhbUm0VxoTfEgCgHiMwAgBcJbTCFdqSaqswEhjDWCuMWdG2pFreYz+JEQBgQWAEALhK6JTO0JbUNk0rA+M2AmMYa2DMYEoqACBOBEYAgKv4Q7ZWDFvD2CQ9+DEVxnBFNZiSyhpGAEAkcQXGpKQknXXWWYm6FwAAVB6SGKsaerNrbwkBJ8TeOIfeUGAEAFjFFRizs7PVpUuXRN0LAADhFcYq1jD6jbSTSak2NdlWwxrKCeAAAKu4AuOAAQP0008/JepeAAAIW0PnDakwNstIUUpS5THWMdoV1qQl1RoYKTECACziCozXXXed3nnnHc2fPz9R9wMAaORCK1yhFUav16NWTdiLMZIaDb1hSioAIILoelUi2LZtm0488UT93//9n0477TQddthhateunTwh39wl6ZxzzonnpQAAjYS/mgqjVNGWujmvWBKDb0LVbFuNyo9D338AQOMWV2A899xz5fF4ZIzRa6+9ptdee02SbIHRGCOPx0NgBABEJazC6BQYm7AXYySFNRl6Y2tJTfgtAQDqsbgC46xZsxJ1HwAASAoPjMkOgdG6FyOB0c66hjEjyjWMtKQCACKJKzBOnjw5UfcBAICk8MDodVjmQIUxMnuFkSmpAID4xDX0BgCARAud0unYkppNYIzEvq1GdBVGD2sYAQARJCQw/uc//9EZZ5yhQw45RL169QoeX7Zsme69915t3LgxES8DAGgEQlsiHfKiLTBu21Nc27dUbxhj7NtqRDsl1fImExgBAFZxtaQaY3T22WfrX//6lyQpIyNDRUVFwcdbtGihG2+8UT6fT1OnTo3vTgEAjYK1wuj1yHHyduvs9ODHVBgrlZT7Zc3bmSlRtqR6aEkFADiLq8L4yCOP6MUXX9SFF16oXbt2acqUKbbH27Ztq2OPPVZz586N6yYBAI2HNbA4taNKUhtLhXFvqU97S8odz2tsrOsXpehbUr22CmNCbwkAUM/FFRhnzpypgQMH6qmnnlJOTo7jvwL36tVLa9eujedlAACNiN9f+bHTwBtJamUZeiNJOwqoMkr2CalSDNtqUGEEAEQQV2BcuXKlhg4dWuU5rVq10o4dO+J5GQBAI2JtSXXaUkOSMlKTlG3ZlH4bbamSwiuM6cnRrmGs/Jg1jAAAq7gCY2pqqgoKCqo859dff1XTpk3jeRkAQCPis5QYvRECo8SkVCf2LTWSqnz/rLzswwgAiCCuwHjIIYfo/fffV1lZmePje/bs0fz58zVo0KB4XgYA0Ij4LC2pkdYwSgRGJzWZkCqF7MNIhREAYBFXYLzwwgu1Zs0anXvuuWGVxh07dujMM8/Ujh07dNFFF8V1kwCAxsM29CbCGkaJrTWcWPdgzIghMNrXMCb0lgAA9Vxc22pMmjRJ77//vubMmaN///vfatasmSTpwAMP1OrVq1VWVqYLL7xQp556aiLuFQDQCFjX0NGSGpu91pbUKLfUkOyB0VBhBABYxFVhlKRnn31WzzzzjPbff39t375dxhgtX75cvXv31lNPPaWnn346EfcJAGgkalJhJDBWKLK2pEa5pYZESyoAILK4KowBF1xwgS644AIVFRVp9+7dysnJUVZWViIuDQBoZKyBpao1jG2y04Mfb49yW40tecX6dkOuhu7XWukp0Qeq+iJ06E20rFNS2VYDAGCVkMAYkJGRoYyMjEReEgDQyFindEY79GZbfvWBcW9JuY5/cLHyi8t1av8Oevj3A+K7UReyBsaMGrakMiUVAGAVV0vqkUceqRtvvFHvv/++iosZOAAAiF95tIGxSWVg3Lm3tNrK2De/5iq/uKJlc/GK7XHepTtZp6RmxdCSaguM5EUAgEVcFcbvvvtOn332me6++26lpqbqiCOO0HHHHacRI0boyCOPVFJSw2v3AQDULmuFq6ptBK0VRp/faHdhqVpZQmQo6wTR0A3uG4qat6SyhhEA4CyuwJibm6tPP/1U77//vhYsWKBPPvlEH374oaZNm6bMzEwde+yxGjFihEaMGKFDDz00UfcMAGjAol3D2CIrVUleT7CyuH1PSZWBsbi8MkyVlvvl85sqr18fFZbQkgoASKy4AmNqaqqGDh2qoUOH6vbbb1dBQYEWL16sDz74QB988IHmzZunefPmyePxqLy8vPoLAgAaPZ+twhg50CV5PWqZlaptv01I3banRAe0j3zd4jL7BoOFpeXKTk+J72ZdprCMCiMAILESOvSmSZMmGjBggHbv3q1du3Zp48aN2rFjRyJfAgDQwPmjrDBKFW2pgcBY3dYaxWX2NtSiUl+DC4w13VbD+jYbU7EXo6eKsA4AaDziDoy7du3SwoULg1XFFStWyBijFi1aaOjQoRoxYoSOO+64RNwrAKAR8FkKgdEExoBYA2NDXMdoW8MYw7Yh3pD32W+kJPIiAEBxBsYBAwbo+++/lzFGWVlZGjx4sC688EKNGDFC/fv3518nAQAxi3ZbDUlqY91aY0/V07pLykNbUhteYNxrG3oT/bf4pJDv1w1xfScAoGbiCozffvutPB6PRo0apeuvv16DBw9mMioAIC62bTWq+YfHeCqMRWUNb219TVtSQ8Ohn3WMAIDfxLUP45VXXql+/fpp/vz5Ou6449S8eXOddNJJevDBB/Xtt98m6h4BAI2IdehKaKtkKOtejLSk1nxbjdBcXt2elgCAxiOuCuMDDzwgqWIdY2AN4wcffKB3331XHo9HLVu21PDhw3Xcccfpj3/8Y0JuGADQsPljqjCmBz/eXlBdYGz4LanWrymWbTWoMAIAIomrwhjQokULjRs3To8//riWL1+uDRs26IEHHpDX69Wrr76qSy+9NBEvAwBoBHyxrGFsaqkw5lcdGIscpqQ2NIWWltSsWFpSQ4K53x/hRABAo5OwbTX27t2rDz/8UAsWLNCCBQv0/fffy//bd5zs7OxEvQwAoIHz17AldU9JuYpKfcqI0IrZ0FtS/X5jq6LG0pIa+j6zFyMAICCuwLh48WJ98MEHWrBggT7//HOVl5fLGKOMjAwNHz5cI0aM0IgRI3TYYYcl6n4BAA2crcJYzaBO69AbSdpRUKLOLTIdzw1vSW1YQ29CK6gZMUxJ9TpMSQUAQIozMA4fPlySlJKSosMOOyy45+JRRx2l1NTUhNwgAKBxsVa3krxVr5zISktWZmpSsFq4bU/kwFhS3rBbUveGBOBY9mEMbUk1VBgBAL+JKzBOmTJFI0aM0ODBg5WVlZWoewIANGI+nzUwVn9+m+w0rd1ZKEnaXsVejGEtqWUNKzCGBuBYttUIzeW0pAIAAuIKjPfee2+i7gMAAEmhFcbqN49vbQuMkQffhLakNrQKo3VNZpLXo9Ro0rblfCtaUgEAAQkberN582Z98803ys3NVU5OjgYMGKD27dsn6vIAgEbCuq1G6No6J9Z1jFUHxtChNw1rDaP168lMSZInivcuIPR9ZkoqACAg7sC4fv16XXLJJXrvvffCHjvhhBP0+OOPq1u3bvG+DACgkYi5wmiZlLqtqsBY3rCnpFq/nljaUSWHwEhLKgDgN3EFxi1btuiYY47Rxo0b1a1bNw0ZMkTt27fX5s2b9dFHH+m9997T4MGD9fnnn6tdu3aJumcAQAPms1S3QoexOIm+wth4WlIzY5iQKjm0pBIYAQC/iSsw3nHHHdq4caPuueceXXXVVUpKqvwXTZ/PpwcffFDXXnut7rjjDj366KNx3ywAoOGLZR9GSWqTnR78eHtBFYGxtKFXGCtbUjNimJAqSaFvs581jACA30S/It7B3LlzNXLkSF1zzTW2sChJSUlJmjJlikaNGqW33347rpsEADQe1oEryVEOvQmossIY2pLawKak2iuMsQVGj8djC41UGAEAAXEFxs2bN+uwww6r8pxBgwZpy5Yt8bwMAKARsQbGaCqMoYHRqTrm8xuV+ezHixrY0Jsi2xrG2BuIrOsYmZIKAAiIKzDm5ORo/fr1VZ7z66+/qmnTpvG8DACgEbGGlVjXMJb7jXKLysLOCZ2QKjXEllRLYIyxJVWyh3MKjACAgLgC4zHHHKNXX31VS5cudXz8s88+0yuvvKJjjz02npcBADQisU5JbZmVavt8197SsHOcAmNDG3qz17qtRowtqZI9nFNhBAAExBUYb7rpJhljNHjwYE2ePFmzZs3Su+++q1mzZmny5Mk69thjZYzRDTfcENN177rrLo0fP149evSQx+OpdluOpUuXauTIkcrOzlbTpk114okn6ptvvonpNRNxDQBA/GLdhzE5yWvbpN4pCBaXh28s2NAqjEVxbKsh2cM5axgBAAFxTUkdOHCgXn31VU2ePFlz5szR888/H3zMGKMWLVpo5syZGjRoUEzXveGGG9SiRQsNHDhQubm5VZ67ZMkSDRs2TB07dtRtt90mSXr00Uc1ePBgffLJJ+rbt2+1r5eIawAAEsPWkhrlP2tmpCaptKgiFBY6rE10rDCW+eT3m6jWSdYH8WyrIUnWbM6UVABAQFyBUZJOPvlkrV+/Xm+88Ya+/vpr5eXlKScnRwMGDNBpp52mrKysmK+5evVq9ejRQ5J08MEHq6CgIOK5f/7zn5WamqoPP/xQHTt2lCRNmDBBBxxwgK6++mrNmzev2tdLxDUAAInhi3FbDamiBTPvt7WLTtNPnQKjVDE5tSbhyo3i2VZDslcYyYsAgIAaf5dcv369Pv/8c3m9Xh122GE666yzdNZZZyXkpgJhsTqrVq3S559/rvPPPz8Y9CSpY8eOGj9+vGbNmqUtW7aoXbt2tXoNAEDixLqthlRRYQwI3W9RkorLwltSpYqqXH0KjKXlfv3lX19r7c5C/W3MwRrQpXnwsXi21ZBYwwgAcFajNYxTpkxRjx49NGHCBI0bN07du3fX9ddfn+h7q9bnn38uSTrqqKPCHjvyyCNljNGXX35Z69eIpH379rZfvXv3rtF1AKAxiXVKqmQPSE5rE0siVBjr2+Cbd3/YrHd/2KJlm/P14PsrbY8Vxruthq3CSGAEAFSIOTC++OKL+vvf/y5jjPbff3/16dNHfr9f9913n1555ZXauMeINm3aJEm2ymBA4NjGjRtr/RoAgMTx16QlNaUyIDm1pBZFCIz1bfDNL9v3Bj9evc2+XKMo3m01LG81FUYAQEDMgXH69OlKTk7Wf//7X/3444/66aef9O6778rr9Wr69Om1cY8RFRYWSpLS0tLCHktPT7edU5vXiGTz5s22XytXrqz+SQDQyNWkwmhtSS1yHHoTqSU1/Fw325pfHPx4S36xyn2VX1cit9WgwggACIg5MH733XcaPXq0Ro4cGTx2/PHHa/To0fr6668TenPVyczMlCSVlJSEPVZcXGw7pzavAQBIHEsGimnoTYBT1TDS0Jv61pJqDYw+v9HmvMrPi2hJBQDUgpgD4+7du7X//vuHHT/ggAO0e/fuhNxUtDp06CDJuWU0cMyp1TTR1wAAJI41rCTVYOiN8z6MDaMldUu+/R83N+YWBT+Oe+iNdR9G54IsAKARijkw+v1+x/bN1NRU+f379jvMYYcdJkn69NNPwx5bsmSJPB6PDj300Fq/BgAgcWpj6E3EltQIlUe3slYYJWnjbmtgjHNbDaakAgAc1GhKqifKb+C1rVevXho0aJBeeeWV4PAaqWKQzSuvvKIRI0bYtsPYsWOHli9frry8vBpfAwBQu2yBMeqWVMvQmxhaUp224HCrknKfdu0ttR3b8FtgLPP5VearfN+yatCSav3WbmhJBQD8pkabTz3wwAN65plnbMfy8/MlSV26dAk73+PxaN26dVFff86cOcHzt2/frtLSUt1xxx2SpK5du2rSpEnBcx9++GENHz5cgwcP1uWXXy5J+sc//iG/368HHnjAdt1HH31Ut956q2bNmqVzzz23RtcAANSumgRGa0WtqCx8kE2kbTXq09Cbbfnha+035lYMZQsNyXG3pBIYAQC/qVFgzM/PDwbEUBs2bIjrhiRpxowZWrx4se3YzTffLEkaOnSoLTAeffTRWrRokW666SbddNNN8ng8Ovroo/XKK6/okEMOier1EnENAEBi+GqyrUZ1Lanl9b8lNbQdVapcwxgafDNqEBi9tKQCABzEHBj3xTrFRYsWxXT+UUcdpQULFlR73rRp0zRt2rS4rgEAqF3+WlnDWP+npG51qDAGWlLDKow1WcPIlFQAgIMarWEEAKC2+GxTUqN7ToZlDaPjlNSILan1JzBucagwbsotkt9vbF9zarJXydG+cRb2CmPN7hEA0PAQGAEArmKtMHqjrDBa1zA6rUssijQltR4Fxm0OgbHMZ7RtT0ncW2pI7MMIAHBGYAQAuIqvBvswWkOS0xYa1gqjNYMW1aOhN04VRqli8M1ey9dRk3ZUSUqyvC9+1jACAH5DYAQAuEq5rwZTUlOrrjBaA2OzjBTLufWnwrglzzkwbthdZGtJzazBlhoSU1IBAM4IjAAAV/HHWWF0CoEllqpj86zU4MdF9WhK6rY9lUNvrG/Lht1FCWlJte6xTIURABBAYAQAuIovzimpJeX+sG0hissrA1WLzMrAWF8qjMYYW4WxT7umwY835hbZqqoZNW5Jta5hrNElAAANEIERAOAq1rAS7T6M1impUnjl0NqSaq0w1pfAmF9cbvuaDu3aLPjxxgRVGG0tqSRGAMBvCIwAAFepUYUxpKoWuo7ROgjHWmGsL0NvQiekDujcPPjxht2F9sBYwzWMTEkFADghMAIAXMUWGGsw9EYK34uxvlcYrRNSWzVJVbdWmcHPN+YWqbAk/imp1reaCiMAIIDACABwFWt1K9qW1LRkry3whAZBa2BsaR16U18Co2X9Ytum6erUvDIwFpf5tWF3UfDzGreksoYRAOCAwAgAcJVyS1pJjjIwejweZVrWMYYFxnLnKamFZT6ZetB+aZ2Q2rZpulo3SVNqUuW38JXb9gQ/piUVAJBIBEYAgKtYt3TwRrmGUbK3pVorhz6/Uak1MGam2B/zVT7mVqEVRq/Xo/bN0oPH1u4sDH5c05ZUa4WRllQAQACBEQDgKr4a7MMohe7FWLmmr6TcXm20Vhil+tGWutWyhrFd04qg2Kl5RvCYNeCFrueMFlNSAQBOCIwAAFexD72J/nnW/QetW1BYJ6RK9impUv0YfGMNjG2bpkmSOjbLcDw3q4YtqdZibn1o0wUA7BsERgCAq9S0JdVeYbQGxpAKYz0MjNYpqW1zAhXGTMdzE7IPI4ERAPAbAiMAwFVq2pIaaQ1jaGDMTEtSarLX8Vw38vmNtluG3gRaUiNVGDMSsoaxRpcAADRABEYAgKv4LWElpqE3KZWtmJFaUpO8HqUkeSOud3SjHQUltm0u2gYCY3PnwGidFhsLpqQCAJwQGAEArlJuSYzJSfEPvSm2DL1J/62yaJ0kWljm7gqjdUJqarI3OOW1U6TAmFazCqO1mMvQGwBAAIERAOAaxhhbNS0pwWsYA22rkdpX3Sh04I3nt/ekXdN0x5bdRKxhpMIIAAggMAIAXCO0sOVNwBrGEktLalpyxTnWtk23D72xBcbsyr0Xk5O8wfWMVpkpNWxJtYRzPxVGAMBvCIwAANcIbYVMdIUxPaXi2549XLp7DaPThNQAp3WMNW1JZUoqAMAJgREA4BqhrZCxTEmNVDUssgXGQIXROVy60db88AmpAZ0cJqXWtCXVy5RUAIADAiMAwDVCK4wxtaRaBtkUlVmG3lhaUhMZGMt9fi1esV0/bcqv0fOjFbqG0cpp8E16cvyB0VBhBAD8pmYLHQAAqAWhrZC11pIaYQuOWMz8eI3+9s5ySdLblx+rgzvm1Og61bEHxqpbUjNSkmIK2VZJln9CZkoqACCACiMAwDV8vpq3pEYaemPfVsOpwlizNYzv/rAl+PHiFdtrdI1oWLfVCG1J7dgs0/Z5Vg3XL0r2ai5rGAEAAQRGAIBrhFUYE7CGsbZaUtfvLAx+nFdUVqNrVKeo1Kf84spAG1phDG1Jzajh+kWJKakAAGcERgCAa4QGlUS0pJZYWk7THKekxh4Y9xSXaefe0uDneYW1Exit7ahSeGBs38z+eU231JDs7zV5EQAQQGAEALhGaIXRG8N3KWsItK5bLK6FKanrLNVFqfYqjNYtNZqmJ4dVENOSk2yDcGq6pYZESyoAwBmBEQDgGmH7MMbUkmpflxiY9GlrSf1tDWOGpX21JhXGfRUYrRXGdiF7MAZ0tGytUdMtNaSQCiMlRgDAbwiMAADX8Ifs/+eNpSXV0o7pN1JJecXFrENvMlK9v51r3YKjBoFx117b5/nFtR8YQ9tRAzo2rxx8kxFPSypTUgEADgiMAADXiGfoTXqq/VtaoHJoa0lN0JTUdTv2UUtqXknw40iBsXvLysDYMiu1xq/lYQ0jAMABgREA4Bq+kBJjbENv7NW1wt+CYpHDlNR4h96EVhj3SUtqhMB41pFd1aNVljrkpOvsI7vW+LWs4dzPGkYAwG9q3rsCAECC+Sx50eNRTJvQZ6TY1+8V/VY5tA+9+a0l1boFRw1aUteHrGHcU1wun9/EVBGNhq0lNcIaxrZN07Xg6qHym9gqsqGs4ZyWVABAABVGAIBrWINKLNVFqSIspSVXflsLTD+1b6sR/5TU4jKfNodsdyFJBcWxt7ZWxzoltW12WsTzPB5P3GHVS4URAOCAwAgAcA1rUImluhjgFASLq2lJLS33x1RR27C7UE55KtFtqcYYbcuvXMMYaUpqoljfbiqMAIAAAiMAwDXiqTBK9lbT4NCbcuvQm4pve6Htq7EMvlkbMvAmIFJg3JJXrKcWr9Z3G3Kjfg1J2l1YplJLj26kNYyJwhpGAIAT1jACAFzDOiW1Ji2WGY4VRusaxvCWVKkiXGanp0T1Gut2xRYYr3zpG336y05lpibp0+uPU05mdK+zJa+yHTXJ61HLJpFbUhPBa9uHsVZfCgBQj1BhBAC4hnXD+JosyXPaLqO6ltSKc6Nfx7hu517H406B0Rijz9buCr7G8i35Ub/Otj2VgbFVk9SED9QJZb1+6PYmAIDGi8AIAHCNcktgTE6K/VuUtdW0qMypwlhxzdQkry0gxRYYnSuM+cXhgTH/t+mpofcUjZ0FpcGPW9VydVFiDSMAwBmBEQDgGvYKY/xDb/x+o5LyygpjIFB6PB5l2sJl9GsYY6kw7t5bavs8lj0fd1me2yIrNern1ZT1/TZUGAEAvyEwAgBcw76GMfbnhw69sYZFqbIlVXJe71idcp9fG3YXBT/v0Tor+LFTYNwZGhhjqTBanttyHwRGWlIBAE4IjAAA14h3Sqo1BBaV+WztqJKUllL5ba8mezFuyi22tc3265gT/DiaCmMsra87Cyq31GiRVfstqbbAyNAbAMBvCIwAANdI7D6M5bYtNaTQCmP4FhzVWbersh21eWaKOrfIDH6e7xAYdxUmpiW1ZZParzB6bFNSqTACACoQGAEArmGtbCViWw3rhFRJSk+ufLwmFca1loE3XVpmqallKw6nCuOu+tSS6mEfRgBAOAIjAMA14m5JtQ6yKbW3pHo9UkpS5TWdtuCoznrLwJtuLTOVk1EZGJ0qjPG0pO7roTfWNaOsYQQABBAYAQCuYQuMcbek+kK21EiytV2GhstoWLfU6NoiU00zYqwwRhlMQ5+7L1pSvbSkAgAcEBgBAK5hn5Jak5ZU+7pEa0uqdf2iFBIuo2wVtQXGlln2CmNxeBjcHbqGMcrXKSn3qaCk8nr7fOgNFUYAwG+Sqz8FAIB9I+59GFOsIdA+9CY92f5vpLEOvTHG2IbedG2ZadvGI6+oTMYYWxUzdFuNaFtSQyuT+3ofRj9TUgEAv6HCCABwjUS3pJaEtKRGPrf6VtFte0psFcuuLbPUNKMyMPr8RntDAmHoGsbQbT4i2VlQ+byUJI+aptf+v+9ap9Iy9AYAEFCvA+O0adPk8Xgi/kpJSan2GsOGDYv4/C+++GIffBUAgABfnNtq2PZhDGlJTasyMFYf5KztqJmpSWrVJNXWkiqFr2MMrRTWpMLYPDPVVrWsLdYhQz7WMAIAflOvW1LHjh2rXr16hR3/7rvvdN9992n06NFRXadVq1Z68MEHw4736NEj7nsEAETPb5uSGvvzrS2ihaU+25rBjJTQltTYht6s3WltR82Sx+NRk7RkJXk9wYCVV1imjs0yJEllPn/YusaaBMZ90Y4qSV7L20OFEQAQUK8DY79+/dSvX7+w4xdddJEk6YILLojqOllZWTr77LMTem8AgNjFO/QmM6zCWEVLakpsFcb1IRNSpYrN7pumJ2t3YUVlMb+4ssIYOvBGiqEldR9PSJXsaxipMAIAAup1S6qTvXv36l//+pc6deqkE088Mern+f1+5efny/CvqgBQZ+Jdw2itGpb6/NprmTQavobRUo2MIsjZKoytMoMfR9paY/fe8G02oq8wlgQ/3hcTUiX7+01eBAAENLjA+Morryg/P1/nnnuukpKSqn+CpI0bN6pJkybKyclRkyZNNHbsWC1fvjzue2nfvr3tV+/eveO+JgA0ZIkceiMpWPmTpPQqW1KrH3qzfpe1wpgV/DgnQmAMXb8oRR8YrUNvWu6rllT2YQQAOKjXLalOZsyYIY/Ho/PPPz+q87t3765jjjlG/fr1U1JSkpYuXapHH31UCxYs0P/+9z/17du3lu8YABDgi3tbDfu3NWtbaHpyfENv1u6orDB2a1lZYbTtxVhNYKxJS+q+WsPIPowAACcNKjD+/PPP+t///qfjjjtO3bt3j+o5s2bNsn0+btw4nXLKKRo2bJiuuuoqzZ8/v8b3s3nzZtvn+fn5ysnJqfH1AKCh88e5hjEjtMJoCV6hU1JjGXqTW1hqG2DTpaVzS6otMDqsYSwsLQ/bq9HJrjpZw1j5MWsYAQABDaoldcaMGZKkCy+8MK7rDB48WEOGDNHChQtVVFSUiFsDAETBZ9kwPqkGFcbUZK+SLclnVxUtqaETVauy1jLwJjXJq/Y5GcHPI7Wkhu7BKFWsDSy1fpER2AJjHbSkUmAEAAQ0mMBYXl6u5557Ti1bttSYMWPivl63bt3k8/m0e/fuBNwdACAa/jj3YZTslUNraAsfemOpMJb5qly3t84y8KZTiwxb9bNpevRrGKXotvDYWVC3Q29oSQUABDSYwPjWW29p69atOvvss5WWFv8315UrVyo5OVktWrRIwN0BAKJR7rPuw1izwJgZKTCGrGHMCAmQxeWRg9w6S4WxW8ss22OxDL2Rqq9mhu7fWCdrGGlJBQD8psEExkA7aqS9Fzdv3qzly5ersLDym35eXp58vvBv3HPnztXHH3+sUaNGKT09vXZuGAAQxrYPY1INK4yWILjHtq1G5CmpUtVBbsPuyu8dXVpk2h6L2JLqsIZRqqhmViW0lXXftaTaP2dSKgBAaiBDbzZt2qT33ntPhx9+eMSpplOnTtWzzz6rhQsXatiwYZKkhQsX6qqrrtLo0aPVo0cPJScn67PPPtPzzz+vVq1a6aGHHtp3XwQAwBZSalphzEh1/tYWGhBDt+CoqlV0a35li2i7HPs/JNqmpFoqgzVtSbVOSE3yemzXr02hU2n9xsirmv0eAAAajgYRGGfPni2fzxfzsJs+ffpo0KBBevvtt7V161aVlZWpU6dOuvjii3XDDTeoY8eOtXTHAAAnvjinpErhQTAgtCU19POqKoxb84uDH7dtal/20DSj8ltpdUNvqnsdyR40m2em1HgtZ6xC32+fMQ3jhwQAQFwaxPeCG264QTfccEOV58yePVuzZ8+2HTvggAP08ssv1+KdAQBi4Y9zH0YpcmBMC2lJ9Xo9ykhJCraIFpaWOz1NkrRtT2WFsW125ApjIDAaY2yVQqvqWlLrYg9GyaHCWP0wVwBAI9Bg1jACAOo/67CVpBp+hwodZhMQOiVVCp+U6qSk3Ger+rVpGjkwlpb7VVzmU1GZTyXllYkrNbnyiymqIphK0i7bhNR9GBgdKowAABAYAQCuUastqQ6B0bquMdLawu2W6qIU3pIausYwv6gsbP1ix2aV+zbGUmFsuY+21JDC14wyKRUAIBEYAQAu4ktAS2qkoTfpyeHf8qzhMtLaQms7amZqkpqk2a+fnW4PjHlFZdq9t3ItY2qyV62aVFYKq1vDWGctqSFvj6HCCAAQgREA4CLWwJi8TyqMleEvUoVxm23gTbo8IUE2yetRdpp98M3OvZa20szUqF4nYFdB3QRGKowAACcERgCAa/gtVa2aTgeNJTBmplgrjM5rC61barTJdm4RbRoy+Ma6B2OLrFRlpFjXMEY/JdVamaxtTlNSAQAgMAIAXMOXkH0YIwXGalpSI6wt3BpSYXQSOil1l6UltUVWqjItFcZIrxNgq07uwzWMoZVTpqQCACQCIwDARXyWkFLjoTcxTEmNZuhNNBVGa2CsGHpT+ZzmWalRvU7Arjpawxj6fvupMAIA1ED2YQQANAyJaUmNNPSm6m01Ig+9qb7C2DTDuoax3F5hzExRclJ0Lak+v1FuUeVzW+7LllTWMAIAHBAYAQCuUastqalOLamWVtGIFcbKwNimafUVxoopqdYqYZrKLf2dVbWk7i4slbWwV5dTUqkwAgAkWlIBAC5i21YjgUNvPB4pNSn8W569VbT6oTdRr2G0Db1JsbXDVlVhtLajejxS88x9GBipMAIAHFBhBAC4RiK21XCqMKYnJ4UNdZFCp6SGB7niMp/yLC2i0QTG/OIyW/BrnpWqcsvXVVTmHEwlaadlS41mGSk1XsdZE6EVXfIiAECiwggAcBHrVg41DUsZDsNtnCakSiEVRodW0W2W6qIU3dCbsJbUzNSo1kpKdTfwRgqv6NKSCgCQCIwAABfxW1tSa7iG0WnojdOE1NBznYKcdeBNdlqystKcG3Os+zDmFpba92FskhpDS2plQG25D7fUCLCGdFpSAQASgREA4CL2CmPNruG0hjFSYGyWWRn0rOEwwLalRoSBN5I9MG7YXWRr56yoMFYGTadKZsCOgrqrMEqStchIYAQASARGAICL+BJQYXRaw5iW7PztrnurrODHG3YXqTgkzFknpEZavyjZW1JDK5XNQlpSox1602IfbqkRYH3P6UgFAEgERgCAi/gTsIYxlgpj91ZZCmQkY6S1O/faHt8axR6Mkj0wWmWnJSs12VujKakt66DCaGtJJTECAERgBAC4SLkv/sCYnhz90Jv0lCR1bJYR/PyX7fbAuC3altR058AYqBLaht6U+WQihLGdljWMddGSap2USksqAEAiMAIAXCQRFUav1xM2KTVShVGSerZuEvx49bYC22O2ltTs2CuMgX0UrYHR5zcq8zmHMVuFscm+H3pj7QJmSioAQCIwAgBcxFrVCt0XMBahbalOW20E2ALj9siBsaoKY2qy1/E1AlXC0McitaW6qiWVCiMAQARGAICLWAtvofsCxiJ08E1VFcYerSsH36yuoiW1qjWMknOVMRgYQ+6nsKw87Fy/32h3YVnYc/cla2CkwggAkAiMAAAX8ddShTHSGkbJXmH8ZXtBcH3h3pJy7SmpDHZVtaRKUtOM8D0aY6kw5hWV2ap6dVFhtE5J9fv3+csDAFyIwAgAcA1bS2pcFUZ7eEtzGIQT0LNNZYVxb6kvuPfitj0ltvOqakmVnCuMgTWMyUlepVo2lgzdekOSdlraUSWpeV23pFJhBACIwAgAcBFrG2Q8LamZMQy9ad0kTdnplQEzsI7Run4xJyOlymsEzgnVIqvymLUtNXS/R8m+frFperJSkvb9t2h7hZHACAAgMAIAXKS8DlpSPR6PejgMvrFWGNtWU12UpKaOgbHyeda2VKcK4y7Llhp1MSFVkryWt4k1jAAAicAIAHARf8JaUqOvMEpST8vgm8BejNusW2pUM/BGqr7CaNuLsZqW1LoYeCOxDyMAIByBEQDgGr4E7MMohQ+ZSU+u+tud09Yati01qhl4I0lN0yOvYZSqb0ndWVD3gdHLlFQAQAgCIwDANexDb2p+nfCW1OoqjJbAuC0QGGNrSa1qWw0pmpbUut2DUbKvYfQxJRUAIAIjAMBFrC2p3jjWMIZOSY2lJXVTXrEKS8ttFcaatKQmeT22qmOGrSU1fB9Gt7WkUmEEAEgERgCAiySqJTWWoTeS1KVlpu31ftm+N+ahN6GBsXlmiq3F01phdJ6SWvl6tKQCANyCwAgAcA1rG2Rip6RWXWFMS05SlxaZwc9Xby+wr2GMosIYOiXVun4x9J4ch95Y1jC2qqMpqdY2YIbeAAAkAiMAwEV8/srEGM8+jLFOSZWkHq0q21K//TXPFuraZMdeYQytElrbZIuq2YexziqMTEkFAIQgMAIAXMMaUpIT2pJafWDs2aZy8M0nq3fYHmudiMBouYeikAqjMUa7C90VGOlIBQBIBEYAgItYi1pxVRhTQofeVP/tzjr4ZvmWPcGPW2SlKi25+sAZtoYxK/qW1PzicpX5Kr/4lk3qaOiN5T33kRgBACIwAgBcxLatRiLXMEYR+Kxba1hF044qVYTSVMsiwBaZoS2plgpjSEuqtR1VcseUVFpSAQASgREA4CK1NyU1ijWMEQJjNFtqSJLH41HTjMrKZiwtqdYJqU3SkqOqaNYGa0ZnSioAQCIwAgBcJHH7MMa2rYZUEfCaZ6aEHY9mS42AZpaqYmhbaWYV+zDusExIrat2VCmkJZUKIwBABEYAgIskqsLYNL0y+Hk90VUYJee21GgrjJI0dmBHSRXhc1ifNrbH7C2pfttj1i01WtZRO6pkf8/JiwAASUqu/hQAAGqf329skzmT4vgnzU7NM3RMr5b6eNVOjRnQKerA2KN1lr5Yt9t2LJo9GAMuHdZLJxzUTu1z0pWZav8Wa29JtVcYrS2pLbLqZg9GyV7V9ZMYAQAiMAIAXCJ0KmeSt+aJ0ePx6PkLjtCG3UXq3CIz6uc5VhijHHpT1TUk2QJk6NAba0tqK7e0pLKGEQAgWlIBAC4RumYunimpUkVojCUsSvG3pFYlI7XyW27otho799b9HoxSRftuAGsYAQASgREA4BKhUznjKDDWWM82tRgYLXtDVjUltWUTd7SkGiqMAAARGAEALhFWYYxj6E1NdW6eoZSkytf1eBLXImqdklruNyrzVQ6+2enGllR/FScCABoNAiMAwBX8IQEl3pbUmkhO8qpry6zg562apCk5nuk7FqFbfVjbUq1rGOu0JZU1jACAEARGAIArhAYUbx1UGCWpZ+vKwNgmxoE3VQkNjIG2VL/faHehdVsNd7SkMiUVACARGAEALlEeUmKsiwqjZB980y5B6xcl+7YaUuWk1LyiMls7bp22pFre8tA1pQCAxonACABwhbCW1KS6CYzjB3VWRkqSkrweTTisc8Kum5Lkta2PLPxtL0brhFRJak5LKgDARdiHEQDgCmH7MNZRhbF7qyx9ftNIFZaUq00CK4xSRZWxzFcRFIt/qzDuLKickJqTkaKUBK2ZrIkkWlIBACGoMAIAXCE0oNTFlNSAJmnJCQ+Lkn0dY2DojbXC2LIOq4uSfQ0jU1IBABKBEQDgEqHbanjrqMJYmzJTKxt7HANjHa5flOwtqaxhBABIBEYAgEuEtaTWYYWxtlgH3zi1pNblhFRJsnbDEhgBAFIDCYwej8fxV5MmTap/8m/eeecdHX300crKylKLFi00fvx4rVmzphbvGgBgFdqS2gDzonNLqnUPxjquMCbZWlIJjACABjT0ZvDgwfrjH/9oO5aSkhLVc1977TWNGzdOhxxyiO677z7l5eXpoYce0jHHHKMvvvhCHTp0qI1bBgBYlFsCitdT8Y+BDU2mJTAG9mHcZWlJbVXHaxit7zkVRgCA1IACY48ePXT22WfH/LyysjJdfvnl6ty5sz766KNgVfL//u//dOihh2ratGl6+umnE327AIAQ1opWsrdBNMCESbe0pAb2YdxhaUltUceB0doGTIURACA1kJbUgNLSUhUUFMT0nMWLF2vTpk268MILbS2s/fv317Bhw/TSSy+prKws0bcKAAhhrWg10LxoqzAG9mHcZRt6U9drGK0Vxjq8EQCAazSYb8mvvvqqMjMzlZ2drTZt2ujyyy9XXl5etc/7/PPPJUlHHXVU2GNHHnmk8vPztWLFihrdU/v27W2/evfuXaPrAEBjYK1o1dUejLXN3pJasW+Fq6aksg8jACBEg2hJPfzwwzV+/Hj16tVL+fn5euedd/Too49q8eLF+uSTT6ocfrNp0yZJUseOHcMeCxzbuHGjDjrooNq5eQCApNAKY8MMjPaW1HL5/Ea7C637MNZ1hbHy49CptQCAxqlBBMalS5faPj/nnHPUr18/3XjjjXr44Yd14403RnxuYWGhJCktLfybdHp6uu2cWG3evNn2eX5+vnJycmp0LQBo6KwbxTfELTWk0JZUn3YXlsqay9xUYWQNIwBAakAtqaGuueYapaamau7cuVWel5mZKUkqKSkJe6y4uNh2DgCg9pT7KxNjw21Jrfx32qJSn21LDY9Hap7pnsBIgREAIDXgwJiSkqIOHTpox44dVZ4X2DJj48aNYY8Fjjm1qwIAEsuSFxtJS6pPOy0TUptnptZ5ZZUpqQCAUA02MBYXF2vDhg1q27ZtlecddthhkqRPP/007LElS5aoadOm2m+//WrlHgEAlaxr5pIbaGAM3YfRNvCmjrfUkEICIyVGAIAaQGDcuXOn4/Gbb75Z5eXlGj16dPDY5s2btXz5ctuaxKFDh6p9+/aaPn26bUuOb7/9VosWLdL48eOVkpJSe18AAECSfSqnt8G2pNrXMO500R6MUkVbbABTUgEAUgMYenPHHXdoyZIlGj58uLp06aKCggK98847WrhwoY444ghdfvnlwXOnTp2qZ599VgsXLtSwYcMkVbSuPvzwwzrjjDM0ePBg/eEPf1B+fr4efPBBtW7dWrfeemsdfWUA0LjYttVooBXGsJZUS4WxVR3vwSjZ1476qTACANQAAuOwYcP0008/6dlnn9XOnTuVlJSk3r17684779RVV10VnHRalfHjxysjI0N33HGHpkyZorS0NB133HG65557WL8IAPuItQWyoQbGKltS63hCqhTaklqHNwIAcI16HxhPPfVUnXrqqVGdO3v2bM2ePdvxsZNPPlknn3xyAu8MABALe0tqHd5ILcpIsbaklruuJdXaCkxLKgBAagBrGAEADUN5I2hJzUi1t6TuslUY674l1fq2MyUVACARGAEALmFdM9dwh95UNvaU+Yy25BcHP3fblFTWMAIAJAIjAMAlrBWt5KSGGRitLamStDnXXYHRS2AEAIQgMAIAXME2JbWBVhitLamSvQ3XDS2p1vedllQAgERgBAC4hK0ltYGuYcwMCYxWrqgwepiSCgCwIzACAFzB56/8uKFWGFOSvEp2CMNJXo9yMlLq4I7sbC2pVBgBACIwAgBcwtcIKoxSeFuqJDXPTHXF15xk+amANYwAAInACABwCZ+lxNhQK4xS+OAbSWrVpO7bUaWQllQqjAAAERgBAC5hXTPXUPdhlJzXMbZ0SWBkWw0AQCgCIwDAFaxr5hpyYMyw7MUY0CKr7iekSlQYAQDhCIwAAFewrmFs0IExJfxbrxsmpEr2wEiBEQAgERgBAC5hrWh5G/AaxkyHCqNb1jBag7qPxAgAEIERAOAS9pbUOryRWuY0JdUtLanW952WVACARGAEALhE42lJde/QG4+HfRgBAHYERgCAKzSellSHwOiSNYzW7UzIiwAAicAIAHAJXyOZkpruWGF0S0sqaxgBAHYERgCAKzSWllQ378PopSUVABCCwAgAcAXb0JtG1JKakuRRdlr45NS6YM3pVBgBABKBEQDgEj5/5ccNucIY2pLaMivNNmymLtlaUqkwAgBEYAQAuITfUtHyNuDAGLoPYwuXDLyR7O87BUYAgERgBAC4hK+RtqS6Zf2iZH/fqTACACQCIwDAJcob6ZTUVi6ZkCrZh96whhEAIBEYAQAu4W+k+zC6qyW18mOmpAIAJAIjAMAlrBWt5KSGGxgz3NySaqns+qkwAgBEYAQAuERjqTBmhE1JdVFgtO7DaCRDaASARo/ACABwBWuFMakBf3cKG3qT5aI1jCFrR+lKBQA04G/JAID6pLFMSXVzS2poZZdJqQAAAiMAwBUayz6MWWn2fRjdNCU1NKizjhEAQGAEALhCbmFZ8OOskM3tG5Km6Ska3LuVJGlAl2bq1Dyjju+okjfkpwICIwCg4X5HBgDUK5tyi4Ifd3RRiKoNs849TN9tzNPBHXLkcVH7bej+l7SkAgAIjACAOuf3G23KKw5+3qFZww6MyUleDezSvK5vI0zoGka/v45uBADgGrSkAgDq3M69pSotr0wnHZql1+HdNF5hgZGWVABo9AiMAIA6Z21HTU3yqpWLtppoTMJaUgmMANDoERgBAHVuoyUwdmiW3qCnpLpZ2JRU1jACQKNHYAQA1LlNtsDYsNcvupkn5KcCKowAAAIjAKDObSQwukJohZEpqQAAAiMAoM5RYXSH0DWMFBgBAARGAECd25RbuaVGJwJjnQmdkkqFEQBAYAQA1DlaUt0hdNYQaxgBAARGAECdKir1adfe0uDn7MFYd0JbUpmSCgAgMAJAPVNa7tef/vmVTn30f/p+Q15d307cNuUV2T6nwlh3PB6PrF2p5EU4WbY5X7M/XqNte4qrPxlAvUdgBIB65j/fbNTb323WtxvydO9/l9f17cTNOvCmZVaq0lOS6vBukOKt/NGgoKSsDu8EbrSjoERnPPWppr31ky574au6vh0A+wCBEQDqmW9+zQ1+/P3GPJl6vs5s4+7KwNixOdXFuta7bZPgx5+v3V2HdwI3+mD5NuUXl0uq+POxt6S8ju8IQG0jMGKfMsbolS9+1eOLVqmAbzJAjSzbnB/8OLewTFvzS+rwbuJn21Ijh8BY147u2TL48Serd9bhncCN/rdyh+3zNTv21tGdANhXCIzYp+b/tFXXvPqd7n3vZz0w7+e6vh2g3vH7jZZv2WM7tmxLfoSz64eNli01WL9Y947u2Sr48edrdqm03F+HdwM38fuNPl5FYAQaGwIj9qkPlm8LfvzfH7bU+1Y6YF/7dXehCkt9tmM/hwTI+sZWYWRCap07rHsLJf82LbWozKdvN+TW7Q3BNZZtyddOy0RjSfplO4ERaOgIjNinvl6fG/x4U16xft1VFPlkAGGs7agByx2O1SfWKakdqTDWuSZpyTqkc7Pg55+soi0VFULbUSVpzY6COriT+skYo/U7C9muBvUOgRH7zJ7iMq3YZq+ELFnDDyJALH7aHF5NDG1RrU/8fqPNlpZUht64g30dY3hIQOP0v1XhfxZ+oSU1an/659cact9CTZq5lA4r1CsERuwz323IU+jfj0t+ITACsXCqMK7eXlBv15ntKChRqa/y3lnD6A5HWQLj1+tzVRTSBo3Gp7jMp8/W7Ao7vmb7XsJPFLbkFWvu95slSR+v2qmft9bff+hD40NgxD7z9frw8exLfwn/5oOa21tSrqte/kaXvvBlg99QeVNukR6cvyJsAEND5xQYy3xGv9TTtrCNlvWLqcletcxKrcO7QcDALs2VmlzxI0Kpz68v1vF3dWP3xdrdKvntH6Y8nsrje0rKtb2gfk9q3he+C1kL/P2GvLq5EaAG6nVgXLFihf7617/qyCOPVOvWrZWdna3+/fvrzjvv1N690bVIDBs2TB6Px/HXF198UctfQeNi3TsuYGNukX7dVbjvb6aBevbTtXrtq4165/stenzh6rq+nVpjjNHFz3+phxes1LmzPms0f4byi8u0wbJnYVpy5V/h9XXwzSZrO2qzDHmsP4mizqSnJGlQ1+bBz9leAx+t2h78+IjuLZSZmhT8fA2Db6r1w0Z7QPxxU/1ee47GJbmubyAeM2fO1GOPPaZTTjlFZ511llJSUrRw4ULddNNNevnll7VkyRJlZFTf3tSqVSs9+OCDYcd79OhRG7fdKBljbANvrJb8slOdW2Tu2xtqoL5aV1nFdaroNhTf/Jqr737719kyn9Gnq2P7M2SMUUFJubLTU2rrFmvFcsv6xbRkrwb3bqX3l1VMHl62eY9O7V9HNxaHjbmVYZ+BN+5ydM+WwaBIYIR14M3g3q21p7g8GHrW7NirI3q0jPRUSPouJDB+v7HxVRjzisokI+Vk1q/vvajngXHcuHGaOnWqcnJygscuvvhi9e7dW3feeadmzJihP/3pT9VeJysrS2effXZt3mqj9+uuItsobusPIkt+2aXxgzrX1a01KMssgeLnrXvk8xsleRtexeblLzbYPv9+Y54mHBbdn6HiMp8mPrNE3/6aq+tO3F8XDe3peF5puV+3vvWjcgvLdO2JfdS1ZVbc9x0vaztqn3bZOqhDTjAw/lxP92LcZNuDkS013OSonq0krZAkfb8hV/nFZWpaz/6Rxeqd7zfr41U79IfBPdStVd3//1yf7CwosVXEhvRurWWb84PHGHxTNWNMWAvqT5vyG+z3aCefrN6hi577UiU+v546+1AN379NXd9Sjfy6q1CZqUlq2SStrm9ln6rXLamDBg2yhcWAM844Q5L0ww8/RH0tv9+v/Px8Fm7Xkq9/rax2dchJ16n9OwQ/X9oAJqXuKCjRrW/9qKcWr5avjsZl5xaW2taDFZf5tb4BtmoWlfr01rebbMd+2BT9v9S+98MWfb0+V34jPbF4dcT/51/64le9sHS95n6/WWc+s9QVa0KtgfGAdk21f7vs4Of1dVLqRtsejFQY3aRfpxxl/dZ26DfSZ/V4zfmKrXt0+Ytf64Wl6zX+qU8rKh37wL8+W6+Bt8/Xn1/8WmW++jmYSpI+tlSYm2em6KAOTdWjdZPgMTftxbgpt0j//nKDK/7ODtiUVxy2f2VRmU+/bK+fa89jlVtYqiv+9Y32lJSrtNyvG17/vl4O0nrtqw0afO9CHXvPwka3BrVeB8ZINmyoqD60bds2qvM3btyoJk2aKCcnR02aNNHYsWO1fPnyuO+jffv2tl+9e/eO+5r1lbUddUCX5jrS0rqyYXeRNuyu38Hmvvd+1qyP1+qud5fr7/N/rpN7WOaw3UJ9rTpV5b0fN6ugpNx2bNnmfJVH+cPYez9sCX6cW1gW9k084FvLmtuNuUW6YPYX2hvyuvuaLTC2z9b+7ZsGP9+cV6y8wn3zQ3AibSIwulZKkleHd28R/Lw+t6X+94ctwX/M276nRPe+F//3+OqU+fy6c+4y7dpbqje/3aRnPvql1l8zFrmFpZrxvzVaGsW08v+trFy/eHSvVvJ6PephqdK6ZejWnuIyjX38E139yrca+cBizf9pa1zXM8Zo/k9bNf+nrXHtnRgpXMTyj5312U1v/KBteyoHI23OK3bd/w/RePaTtZIqwv69/639v0PcpMEFRp/Pp9tvv13Jyck688wzqz2/e/fuuvbaazVr1iy98soruvTSS/Xuu+/qiCOO0Pfff78P7rhx+Nryw3f/zs3UpUWm2jWtbD+r79NSrQN9Hl+02nFz49r2k8P0TKcQWd+9/PmGsGPFZX6tiuJfagtLy7VoxTbbsdXbnJ+3KuT49xvz9OcXv446mCaaz29sY9gPaN9UXVpkKj2l8q/x5fXwHwisgZE1jO5zdM9WwY/rYj/G4jJfQjp/Fq3Ybvv8haXr9WUtT379fmOe9lj+kemh91e6qqJ0+Ytf6/a3f9JZ05dqRRVbPBhj7OsXe1X8mehuCYzrdxbW2d+NVs99uk5b8isqi/nF5frDc1/orneW1bi6++wna/WH577QH577Qv/+Kvx7T7S+35jrfHyD89/ZTyxarXNnfaavGsAsgv98s1Fvf7c57PgTi1Zra757qsDV2VNcZlt3+tHKHbZ/WG7oGlxgvOKKK/Tpp5/qtttuU58+fao9f9asWbrzzjt1xhlnaNy4cbrvvvs0b948FRQU6KqrrorrXjZv3mz7tXLlyriu52bGGN059yeN+vtivf2dvV2wuMynnyz/ijagSzN5PB4d2aPyX67r836Mxhit27XX8rl05cvfaMc+HjPutN3Cvpqc+enqnbrvv8u1tpbXsazfWahPLX9WUpMq/wr7YWP1YenDFdtVXGb/wWG1QyuVMUarHX6wW7B8m25966c6aV1fs2Ov7d73b99USV6P+rStv22phaXl2m2pihIY3ce6H+PyLXu0cx/+vfbmt5t0yK3zdOw9C/Xmt5tq/P9dbmGp4xCwqa9977h/aVGpT7sidB5YlZb7q6w6fRpSkS0t92vqa9/HValKlK/W79ZHv4XAcr/RG19vjHjuLzv2alNe5Q/2x/b+LTC2rgyM5X6jXy0TnOtCYWm5pjtUrZ768Bf9/ukl2pwX2/3tLSnXIx+sCn4+L45q5XeWCmN2euX4EKcK49Jfduqe95Zr0c/bdcnzX6qk3P2tm69/vUHT3vwxLOBuzivSzW9ULg87qEPT4NdfVObT/f+tm46smvh87S6F/q/72MJVzic3QA0qMN5888169NFH9cc//lFTp06t8XUGDx6sIUOGaOHChSoqqtu/AOuLb37N1TMfrdHKbQW65pXvbGHpx035KvNV/F+W7PXo4I4V606tE9WW1ON1jNv2lISFkO17SnT1y9+G/WCwJa9YL3/+q1bWwoa9ToFxX1Sclv6yU2dOX6LHFq7WJS98Vath6tUvfw1+3Kl5hkYdVNl2Hjqy3Im1HTXAKRhuLyjRnuLKykD/zs2CH89Zsq5OWmmsv78dm2UoJ6Ni+EiferyO0VpdlKR2OQy9cZsD2zdVM8tEwyX/3959R0V1bX8A/96BGYYuSO+KNEHAgr1gwxY19uTlZzSJMSbRF0u6SWwpLy/FZ42Jpj190ZimRmNiQxNjw4IV7IgURUB6Z+7vD5w758zcgQFBivuzlmvJzIW5wGXu2efsvc8DygYRRREf/ZGI0goNUnOK8c+Np/DEuqO4klH7a/yvy5nSQE/FbEVz6XYB97es0Yj48uB1dFqyG13e3Y3fzxmuimj9eekOOi7ehb4fxRpdJZGbCD16PRub4m7KHP1g6QdW1QVD7OpiGydreDlUdaS2UyvhxDT+uN7IaanfHU2WJqBU5gr4ttZ1zj5x4y5GLD+I40mmX7/rj9zgJg7091E0lSiK3P1pbEdP6f8X0vIMxgl/nNf9Lm7nleKXk8aD+abgZPJdzPn+NL45lISxqw/h6W/icC41FxqNiFd+OIO8e/dStVKB5Y93xD8H6MqzfjyZYtK9uynQnwACqv5uqludb0laTMC4cOFCvPvuu3jqqaewZs2a+/56fn5+qKysxN27zT8d4EFgBxHF5ZX44k/dzYid2W3vYQe1sqqJAlvHeDO7mGt+0ZwYW1U7cOkO1h2s+jmk5xbjna3n0PffsXj1pzMYuuwvLN19qd6aIJRXanD5tuHN+kZ2EYrKTKu7O5eai3mbT2PjsWSTX7ekvBKv/XQG2hgxIT2vwbrlVWpE/HhClxI0obM3wj11Ta9quumUVlRib0KGweNyAePVDN33YGNhjv8+05VrMPP+b4nYdd4w+GxIfP2irnYx2E33/+aWkprKdEh1srGQ3htI06FQCOjBvFc/qLTUi7fzcTObvyccupqFYcv+wr92Jpr8vgYA+y/q0lEHh7hibCfdgH3Z3stIyizE9cxCTPriMJZsv4Di8kpoRGDp7stGJ8A+2JmIwrJKpNwtxlcHrxs8X1ahwfEk3b2PLcH44LeERk3FS84qMpg8u5JRIPteCEBaiQSA3u2cuOfaMquMjdn4pqS8Ep8z445JXbzx66zeGN7BTXosu7AML3530qQVu6KyCm4cA1QFb3X5vaXcLeYyKR7v5iP9v6C0AklZbIaSiL2JfPC+phGb6ZliWzyfVbYvMQOPrDiIR1f/jYNXdNfOG8NC4O9sgyd7+krBvCgC7+5onKyd2jpsJBNu9UOyytgiAsaFCxdi0aJFmDJlCtatW1cvGz9fvnwZ5ubmcHR0rPlgYlAL8t/DSbhzr8CZrV/syKzU+LW2gqudbnbSlML7puhGlq5hT7CbLfoE6G6o//79IuZujke/f+/Hfw/fQNm9ALFSI2LZ3ssY99khg1q5urh6p0D62gCkNt2iCNlAUl/sxQxMWHMYP51MwRs/n8WhK6YNCpfuvoSkLL5h0V96tUL15dDVTCktShCAcZ090YEJGM/fa1Fu/POzuHoiLblBElsP6e9sDTu1El8/FcUN+ub9cBrJWQ+uWRMbMLZ31wWvwcz/L93Kr1O6W1FZBbbGpzbIynd1+PpFWl1sqnoyaalys+wNYTezysLuOlBeKWLNgat4ZMVBk4JGjUbEAeY9qV+QM94a0R4O91ZNyyo0eObbOAxb9ifikvgJ4ou382XrwBNv5XF/j3+cv2Uw4D2dkoPi8qrAxEwh4Nunu0ob3eeXVuDtLecabZD81d/XDVLrgKrvQ19pRSW3Uto7QC9g5Brf1D1gvJFVeF9B9ObjN6Uxh7lCwHP92sJOrcSqf3TCwpHtpXvi7bxSbNULcOSsP3xDNi25Lp0x2bo3F1sLBLvZcen355jtSq7eKeTGFACQlFWE384aX+3WJ4pinQJMjUbExVv5tUqBFUVR9roB+DTcPgFOmNzdFwBgYW6GN4YFS88duZZ9382JGlpuUTm3rcz/ddcF/dtOp+FGVs3XviiKzbpTcrMPGBcvXoxFixZh8uTJ+Oqrr6BQyH9L6enpSExMRFGR7g8xNzcXlZWGfxg7duzA33//jcGDB0OtfrgGMadv5mDat8fxya6LBp0ojdFoRBy/wd9oS8o1+OLPqwCAeKZDaqRPK+n/giCgWxsmLbW5BoxM/WIbJ2t8MjECTjYqAFV1HT+fTOWCOdaZlFyMWP4Xvjp4/b7qWi4wb2R+ra3gz8z61rTqtOVUKp799rg0uAGAb+51AqvO6Zs5sqmZfzVQwx9278Ve/k7wcrBCqIcuYKypRfkfzIw6e7NOuVuMknL+fYBthON/r3W8u70lvpoaBYt7KW35JRUmz1bXB3bgamyFUbviUVsvbYrHS5viMXLlQdx8gFuxUIfU5qEH0/jmWmZhrWvB6mJ3gm4A+Xy0P5Y9FglnW90E47U7hSa915xPy+NKJKIDneForcL8Ee2lx67e4euD2droLfGG6YD6KYJJWUVcQyqAD6zDvewR5GaLV4bo+irsunAb38fdlK2hbEg5RWX4nkmJZSdtd503HLTvOKPrSm2uELiaVoBfYbxexxXGX0+nIfrj/ej779g6TRyXVWiwZv9V6eNxnbyktFlBEDC1VxuMDHeXnl/757Vq77dyq4taZ+qQPskGjOFeVfesME/d+zabHbMvUT5wWr3f+BZQrBM3stFxyW70+te+WjfMmffDaQz5z58YsfygwT3RmDMpuUhn6lsXjw7lxh8AYKc2x0fjI6BgZn6GhLpxHZjf/y0Bd02oG66LDUdu4Ln1xxFXi3RkfUevZ0mZVLYW5nhrRHt43Cuh0IjAmgM1l6n8fDIVjyw/eF/n0ZiadcC4atUqLFiwAD4+Phg0aBC+++47bNiwQfq3e/du6dg33ngDISEhOHbsmPRYbGwsAgIC8NJLL2HZsmVYtWoVpkyZglGjRsHJyQn/+c9/GuG7ajyVGhEzN57EnoTbWLHvCgZ9cgA7z6bX+CZ1LbMAOTLt/NcfuYHzablcqmlHbwfuGDYt9ej15vlHxK6w+ba2houtGp9OjDQ4rrW1Cm8OD8bhNwZw+1CWVmiwePsFPLr6b+w8m16nmUFu9cnDTi9N0fiq0ZcHr2P29/Go0HvNPQm3q00RLqvQ4LWfzujqgpgB1uFrWfU+CMotKudmMSd08QIA2Fsp4eOoq1Mx1qK8UiNyNTrP9mkDbSKCKIJLCQL4VUd/F91eY+097LB4dKj08dnUXLy/I6EO31Ht3C0skzr/AXzA6GitggszkE6oZVrqiRt3pdndknINdlZTt5VXUo4j17JMHkzUJPUudUhtDvydrblr7NCVhp3cu5Vbwq1OxLR3w+hIT+yb14+rJzalQ+H+i7o09PbudnC5lyUwrpMnt3IKVA1sP50YgXkxgdJjW+NTuffkSo0oG0Tqp3iyAaM2pffJHn7c+b/+81l0WPgHJq45jA9/T8S+xNv11mm0olIjey/539FkaXLQ1sIcH0+IkJ6Lv5mDW8zgXxRFfP13kvTx8A7usFPr6lkBoI0TsxdjHWsYv4+7CVGsuhe+/vPZWk/C/XwyRco+UQhVEwz6nu3bVvr/5YwCbtVZ34YjN6TtllRmCozr5CU9d7YOdYzsqqS2h0MYM9nJBox7mLIJtjFgQnqeQadffcVllZj9fTxyispxK68E0749bnIjuhtZhfjlXuOjKxkFJq/4sfflcC97PNnDD7vm9MOnEyMQ7GYLD3s1Vj3RyaA+XRAEvD2ivXQfTsoqQrf39+KlTadw5FqWScHxmZQcvPnLWcReNCw10TpyLQtvbTmHP87fxuQvj9a5DpVNR+3axhFqpRmmM9fUTydSuL8dfTlFZXjvtwRcvJ2PCWsOy6axN3XNOmCMi4sDACQnJ2PKlCmYPHky9++9996r9vODgoLQpUsXbN++HfPnz8fcuXNx8OBBzJgxA/Hx8QgMDKz281ua2MQMrmbkVl4Jnv/fSTzz7fFqVx3YNB4Pe7XUjKOkXIPZm+Kl5xyslFwROsC/Id7IKnogM9f1jU1F0H5/fQOd8ebwYJgpBClQ/Ou1/pje1x/u9pZY9lhHrPxHR+lnBVTN1D3/v5MY/OkBbDyWXKubJrf65GbHNUKR65QqiiI+/D0RS7ZfkB6zU5ujtXXVyqhGBDYeNV7LuHr/FS4QXTopEub3Zg+LyirrrRW4RiPi9M0cLNlxQQpC7dTmGBKqq0thZ2qNtSg/dj1bSi9SCMAjER7wctAFKGzNIsDX4vgzm1MDwMQu3lzTgm8P38AOmZbh9YmdELBWmXFBMoAaf9/VWbmP795sbCBVUanB5HVH8dgXRzB29aFa1ZAZk0orjM2CIAhccNXQ+zGyq4uudhZS6rmtWon+QS7Sc6dNGPyxg+zoIGfp/4Ig4P0xHaT3vEEhLtgztx/GdvLC6EhPaSB7O6+Uy345ci0Lt/MMO8WyjUpKyitxgnkP1G5NYqYQ8O/x4VCa6VZaSis0OJaUjc/2X8XT3xzHtP8er/F7qsmp5Lvo/O4edHt/L34+mSINvksrKrkA8B/dfNDL34mbDNh9QRcAnEzO4VbHpvbyM3gtdmuN23mltd6rVhRFnGcm+q5nFmKtkdU9ORWVGqxmVhdHR3rCz8na4LhQD3uu/vLzP68aHANUBV3s6uKkKG/EMM3Vzqbm1iqVWBRF+RVGLz5gFEUROUVlOMFka80eFMjVD38WK3/OWsv3XebGcNmFZZj69TGTOv7+rLdqbuo97XcmYNTel80UAsZ28sLvs/vi0BsD0SfAWfZzO3jZYzwTjJdVarA1Pg2PfXEEA++Ng4z9rMsrNXj2v8fx3dFkPPvtcaOlPezvsqRcg2nfHq/TOJObALr3Xjgpykd6/yir1BhdlQaAD3+/KP0eVGYK7r2ouWjWAeM333wDURSN/tu/f7/BsdHR0dJjISEh2Lx5M65evYqCggKUlpbi6tWrWLVqFTw9PQ1fsIVbf+SG7OP7EjMweOkBbD4u39mNLezv2c4J03q3kT6+zPwRd/RxMKgvbeNkzaUZNbX9GPNKyrHo1/OYuzleqo9giaLI1RuwAfH0vv44vSAGx98ahOl9/WGlMuc+95FwD+ya0xf99d44rmUW4o2fz6LPh7EmNVYRRZHbgzHE3Q4hTF1b4q18gzfdz/+8hs+Ym6yrnQV+mNETT/bwkx7bFCcftF68lc+1kh7XyQsjwt3RyUe3evzX5brXMWprIuZ+H4+o9/Zg9Kq/uWY3oyM9ueYoYWzjGyMrjOwsaJSfI5xsLLhAkF1RLCyt4AKZdi784EMQBLw7JgztmJXH134606BbirC/3yA3Wy61B+BXHGvT+OZsSi5iL/K/q7jrd2UHfUevZ+P0vZnyC+l5+Pfv998OPS2XAsbmgt2P8fDVzAatv2NXNwaFuHLXe4S37u/9zM3calML9bfT6B/swj3v52SN2Feisf/laKybEiWtPrrZq7kAmR1Ms/9nV8UT0vOkmuZTyTnSBJfSTEBnX917Y6CrLVY83hEdPO2lujrW/ot37rtr5OLtF5BbXI7MglLM3Xwaz284iayCUmw9lSal55orBEzt5QeFQuACIjYT41umNCHCy57rQaDl42jFfR/Xa/k+mJ5bwjWEAYCVsVdMTo3fdjoNyfeOFQTgBZnVRS12RejItWzZ1ab/Hb2BzALdwP75aH8pyAOAzIIyLgWzJjezi5FbrPv+5FYY80oqcDO7GAcu3ZFWhe3U5ujs64AX+uu+n2NJ2Ua7vF68lS8baCdlFWH6f49XmxUiiqK0uqgVezGjxuD/SkY+N7nKTuSa6t0xYXiub1vYqfnx0bU7VeMgY6uqcUnZ0sRNhUbE8r2G29Zdvp2PfYn86mNGfime+ea4wfd2O68E726/gHmbTyMjn//9ZheWcRPk2sw4S5UZnumjG+9+d+yGbDB6Mvku10zw+Wh/tNWbiG4OmnXASOrPjaxCbmXhzeHB6MTUG5aUV+0fJXczOM40vInyc8DUXn5cG3YtuZtN1X6MuhvzQRObrTwIxWWVePrrOHz9dxJ+PpmK/+y5ZHDM3aJybvsFv9Z8cGFjYV5tEyZXOzW+fqorfpjRAwP1BjMZ+aV45cczNaZ3ZuSXcjOI7T3sEMSkpGYXluEOU8NTqRGx7i9dOkRbJ2v89HxPBLnZ4vGu3tJKYWZBmUGaVVmFBq/+eFraJsXJxgJvPxICAFyzn7rWMZZXavDSpng8t/4Efj6VKqUFaSnNBDzZw5d7jG18I9eiXKMRue9jaFjVTc1YwMhe42YKAT6OhrPVVipzrH6iEyzvBa4FpRV44X8na0zVFEURGXklOHw1CxuO3MCiX89j5ncn8dn+q9UOtIzVL2oF13FrjZWxhjfZskqNbGMT/Wvhm0NJRjtmZheW4WTy3WqDikqNyKXwUEpq08bWrqXllhg05qgN7T6nKXcNv0ZeSTkOM9fV4Pau3PMRXq2k/+eXVlSbBslup2GnNpe9B9mplbIrUo9G6iaNfz+XjuKyShSXVXJbbbw0KADejrrrVjsxxaavdfR2gKWK7/47NMwdv87qjTMLYvDds90wb3CgVA8FoFadqvWduHEXp5i+AUDVKlDM0j+xjBlUj4rwgLt91bnHtNcN9A9fzUJuUTlu55VwjVam9vKTvZepzBXwZrI1atv4hm0kolVSrsGiXy/IHM2r1IhYyUxeDgtzQwCzL62+PgFO3Hul/opQUVkF1hzQTaROjPKCRytLuNmpue1DapPWeCZVd6ybnRoutlW/Z2dbC66J2tnUXK6Ld3SQC5RmCvRu58Td49jVVC2NRsSbv5yVSktcbC0wtaef9PzxG3fx8g+G23xpnbhxVwq6tUorNAbBlj52Vd3f2ZqbRDWVhbkZ3hgegmPzB2HppAhE+fFlS1uN7A+65wJ/br+eSTNo2saOcyyZSeYL6XmY/X08NBoRRWUVWLbnMqI/2o91B6/jp5MpmL0pnrt3sXW19pZKtGfuwZO7+0rBbkm5Bk99HYe8Et0EQUWlBvN/0e1D6dfaSjZlujmggJEAqKpr0PJysMQzvdvixxk98cHYDrC1qPpjqJTZ3Dcjnx84dPZ1hK1aiWf7tIU+tuENqw+TJrL/YkaT2NS4rEKD5zac4Jr5yNVYsrVvKnMFdwOojSg/R3w5NQp/zO6LsZ106VC5xeVcQC6HbXhjb6mEu70aHvZqbnNgNk3x8NUsaZZZEID107pJDQJc7NQYEqYbPGzQW3Ve9Ot5aZUJAJaMDkUrq6qUjD6BupXSs6m5JqXBsMoqNJj53UlsO23Ywa6Dpz1mDWiHnS/1MRgQsDO1BaUVuK5Xj3g6JYer/9POghoLGNn/+zpacfu2sQJdbbHk0TDp4wvpefjByCo8UFXj0PndPej6/l48vvYI3tpyDl//nYTtZ9Lx4e+J6P/xfgxZ+ic+3X0J51JzufojY1tqaLEpqUmZhSguqzmdOfFWHnfDZ9Oj9dNSNRr5Tniv/njGoDnW9jNp6P7BXoxdfQhPfnXMaPOsO/ml0sQDAHg6UMDYlHk7WnHBUW3TUnOKyrD9TBpe+eE0un+wFwM/OYB+H+3HVr16wAMX70jXhY2FuUGTFQdrFZfJEX/T+Gocu51GnwBnmJuZPuQZGuYmNbgqLKvE7oTb2HXhFgrv/W1ZmCswLMwNQ5lVFW163hHmZ9Nd7/xZ1hbm6OnvhFkDA7hB5Nb4tDqnfH95UBcEsSt/WYVlXObENOYe3b1ta+l+UaERse/ibfzvyA0pAHGyscDwDrqmMfrY1ZLaNr5h01GtmMB6T8Jt7Kmhjm77mTRuhevF/u2qPV4QBG6V8bez6dJK5tU7BRi7+pC0uqg0E/B8dDvp89hVxjO16JTK1i92YL4GwJdTxN+8y9XbDgxxkV6bXTXdl5jB/cwA4PvjN7lU1oWjQvHOI+0xMkLXK2H7mXR8tEs+K+QnI/s81pSW+odMOmpdqZVmGNPRCz/M6Il/je0gPb4nIcMg00kURexOuKX3GLgJkYz8Em7V9M3hwXi8q7f08e4Lt/HC/05iwMcHsHTPJa7p36GrWVywzE4AdWvjyGU82KqVmDtYV76WeCsf0/97XDrnbw/f4O7fi0eHNdvtoyhgJCgpr+TSTZ/o5gszhQCFQsDjXX3wFJNiuu10GjfzcoJJR3WwUkrdsZ7s4cutMgoCECEzuwsA0cG6QCOzoKxOXcjqU6VGxOzvT+FPvUHz1TsFBjdxdlsFH0crg1TB2gpys8WnEyPRjeketv9i9emdF7jtFuwgCAIEQeBXnZgVqm2ndW+iPf1bG6zsaFtfA1X1qdo3u81xN7mJhdGRHhjGDCI6eNpLQYco1m61uKS8EjM2nOACmHAve3w8IQLH5g/Er7N6Y15MENq5GM4eO1ir+BbletcPW2MR4d1KSn1kO7ldzSiUJirYDqk1pY2M7+yFUcxNWT+tR6uwtAJvbz1XYxB98XY+lu+9jEdWHET7d37HIyv+wtzN8Vx9hlzA2M7FRhocakTgsgmbm69i6mHaOFnjpYG6zZT3X8rg/s5P3cxBBpOSrZ3QSLlbjPfuNf0RRRGf7b+Kmd+dklbF/7qcice/OMJ1qdRiB69qpULa5oA0XT3b6ib3TN2PMb+kHE9/E4dOS3Zj5nen8MOJFCmVrFIj4s2fz3J14Gw6ar8gZ1iYGw6u2FVGY41v5LbTqA1btRIxzCB4y6lULh01JtQNtmolN1A+mXwXN7IKceqm7r7I1qBVZ3RHT6iVVUOygtIKbK9DXfTNbH5/xU8mRODVoUFczSRQtZdiew/d+4jKXMFluGw/nY7vmFXOJ7r5yP4etNpwW2vUrvENv1WBL9cUaOGv541Ofmm3ptKKae/Kdc02ZmSEhzSxqxGrGr9tjU/FqBUHueyMJ7r5cvcVdpXvbC3GKFz9oqd+wKj7+IcTKdIG92YKAf2YCdghoW5cN9rxnx3Gwm3ncTO7CHfyS/HBb7rGa/2DnDEszA0KhYCPxodzK3af7b+KnXrbc5SUV2L7Gd0kbV/mdatLS03NKeYC56Fh9xcwsoaHu0uN9ApKK3BQL2Pp0u0Cgz1aAWDH2XRcurfKuJ7ZxszBSonxnb2xeHQYl2r++/lb3GQy6/3fEqQtMOTqF1lTevphCpP5dORaNuZtPo20nGJ8ygTpj4S7cz/f5oYCRoLtZ9KlLqcqcwUmRXlzz7MdPa9nFnJvEuwKXGdfRyllRX+VMcjV1qC7mpaLrRoRzMzbvoTqZxUbkihWDWB+O2u4miKKMNiTi11h9NNr6HM/2MYONaWF6NcvagXJpCmWVlRiJzOgYIMdrW5tHBHoqguU1h+5gdM3c/DWFl1aRbCbLT5gZgGBqpsc21TA1P0Yi8sqMe3b49z32dO/NTZN747xnb2kFJ7qsDdzNmAURZHbToNdDWCDweLySunGwe7BaEqKzRQm9edkco7s3oy/nU1HETPwsbEwR7iXPcZ09MTUnn6y105phQbnUvO4bVkEgU8/1bIwN+P2Q6spLfXqnQJukPBCtD8GMAPGm9nFXPdfdia5k08rrk5547Fk7Eu8jTd/OYsPf080eK2zqbkY/9khg5ok/S016mP/XNKwerbj92M0pY5x5b4r2JeYIbvvH1C1ejfn+3hUVGpQXqnhOh7G6KWjarGTj8Ya31xIN9xOo7bGdNS9Px64dIebBNM2vurk4yDV4Ysi8K+didIKqcpcgY5GMmv02amVGNFB93p1SUtl91f0sFdjRLg7Xohuh60v9pbeNxQC8E9mckiLDY73JmZwK21PMBvNy2EDxtrWMLIZMmGe9nj30TBp382Uu8VYvV9+U/RfT/Ori3LfkxylmQJP9/aTPl5/5AZe2hQvrRwDwGNR3nid2ScQ0KudTTGt8Y1Gwze8CdNfYWQCXLbTfGdfBylzBwAUCgEzmdXT4vJKfHMoCf0+isW4zw5JgaZaqcDi0WHSe6laaYYvJnfhfj9vbz2PnCLdxOXehAyprEZlrsBH48Ol9M3q0lLZ/goe9mruHny/7NRKrsRFfzy2J4FPhdVmHIgisGzPZRSVVXA9OSb38IOlygxKMwU+e6Izd68EqsYuU3v64eupUdJjV+8UYtOxZNzJL+V6ccgFjIIg4J2Rodz4YvuZdIxa+bd0XdlYmOPtR9obfG5zQgEj4f6wHungDkdrFfe8v7MN92bAbnrLFmDr554/07sNhoa6wcfRyuDNV9+AYN3AYG8NAVJDev+3BHzPrLZ2a+OIICYFUj8V5Ibelhr1hR28X8koqLYBAJ+uqDtXto7x4u2qY/ZfvKO7OZgpMDTUMM1IEARulXHLqVTM2HBCClrs1Ob4fHJngyY+ANA3kK9jrOmmWlhagSlfH+MGYtFBzvhqapTs1zeG39NK9/P4Pu4mF/iws6BONiqu0F47+GA7purvJyWnk08rruMqu4KrxTbtGdvRE2cXxmDbzN5YOikSC0eFIvblaPwxuy/mDAqUDQi12jnbwNpC/ucSzEwWfP13kmzgqrUq9oq0p5SXgyUe7VjVWZBN9Ttwb+AuioY1oPNigrifzTPfHsfGY7q/G3d7NZcOlZRVhLGfHcLxpGzsS7yN93ZcwKe7dTXBVL/YPLCrZVmFZbh0u/rVpIz8Enx7OEn62FZtjuEd3PCvsR3w1ogQ6fGTyTlYvf8qjl7Llt6fzBUCooNc9L8kACCSGbwnpOfJ1g7HMvcRdjuN2ugT4CzdDys1us3QnWxU0oBWoRC4wJadkOvs41Cr9DM2Ze5Uco5sx2P9plxaucXl2Mzsr/hUrzZQ3lulae9hh20ze+PzyZ2x9cXe3P53Wv0CnWXT70d0cK/xZ8eufl27U2hyQ6S7emmyoR52CPO0x/8x95/PD1wzyBqp1GtyEtPelVutq8njXX24UhstK5UZ/jMpEv8aF27we2O/fm5xuewKl74b2UVcjwP9oMrYOQ8KMbzux3T0xOvDgqXzBqpWSNnaw9mDAuGt10HbwVqFNf/XWVplziwoxZLtuhXJn0/q7k2DQlzgaqeW0mEB42mp7CRiTKhbvU/4sffq3Rducb0c2CyEIaFumDVAN1mw42w63t2RwC2CsH0P7K2U+HJqlNRpfGCwC/6Y3RcLR4Wif7ALd99auucy91qO1ioEymQ5AVVB538ei+TGweyE1csxgXCtY8lSU0EB40PuTEoOl9Lzf3oNRbTYVcZfz6Sh8l6x8DlmdrCLXsCoVpphzeTO+PPV/kZv/FrsG9T5tLxq97Opq5q2qThw6Q7WMkXS4V72WDelCzdDrH/jkttSoz60c7HhBtHG9hkqKqvgZnTZNKMQJvC4dLsAFZUabGOC/X5BzrA3kgY4ppMXrO/VkxSVVUpd4QQBWPZ4R6PBcW+mffatvBKjra6Bqt/Hc+tP4BhTGzq4vSs+n9y51jn++p1SRVFEclYRt21IT//W3EyrIAjcHotX7xSgUiNyP09/E1YYBUHg/j62xPNp28lZRVz964Qu3gY3V0EQEORmi5cGBeD32X0R/85gbH6uB5Y8GobJ3X3RtY0jOnjaY+GoUBjTm1n9SUjPw4jlf3FNK9jvk530eT7aXxpYsmlQ2nS+hPR8blAyJNQNaqUZPpkYKa0EsOPDUA87bHmxF5Y/FsnNit/JL8X4NYfx9DfHsfav69zPWX+bENI0udipuVX3mtJSP9t/FSXlVQM9e0slDr42AKuf6IzHuvrgmd5tMIwZFC7be5lrwtStrSNXV8sK9dB1GC2vFLlJMy1j22nUhtJMwW34rjUywoOrhzRWvyW3GlGdzr4O3M9Xf5Xx2PVs9PpwH3r9ax9e/uE0d0/bdCxZWs2wVplhUlc+U0hlrsCQUDeDOjotawtz9GVWdbSm9mojczSvLbMXY0FphdRk7UpGPsZ/dgi9/rVPtrsnmx1jpTJDm3v3lXkxQXCy0W1X8PQ3cVxg+evpNK65zkuDTFtd1LJVK/G43qppsJstfp3VG48yWyaxXGzVcGcaE7HNbIxhVxc9W1lyjXOAqu7k+o8B/AS6liAImNHPH4feGID5w0O4c9Ge/zO95X9XQW62XH3nTydTcODSHWQWlHJ/J2M7Vm1xMYIpNZFLS80qKOXu2/dbvyhncHtXqQFfXkmF9F6TkV+CeGbMOri9Kx6N9ODu7d8xpTPjOnka/IzbOFlj99y+OL0gBl9OjeL+5l4dEiRNnGQXluHdHboxRPe2jtWWHamVZlj3ZBQC9MYNYZ52mMx0oG+uKGB8yK0/rFtdDPWwk+0iB1TdILVj3Dv5pTh8NQvxN3Ok2TmVuaJWM3z6Qj3s4Gqn+6OuKQ2TlV9SXu1m9+dSczFhzSGEvP07F0Do+y/TQtzf2RrfPNUVtmolQj3kV6+AhlthFASBW2WMNfLzuHgrXxqsmysE7o0vkAkYyyo0OJ+Wx6VyyKWjatlYmGMssz+S1txBgVy6rD7PVpbcytOfRrqlVmpEzPk+nltZHBHujtVPdKq2VsYY9trLL6kKouf9EM8NoD4cF27wefqNb25mF0krqfrPV2c001HxSkYBl7r8EzOD6+VgydWnGtPKSoWubRwxubsvljwahs3P9cCvs3qjVzvDAZ3W+M7eGMMMdvLvdW59e8s5XLtTgK8OXsekzw9j8KcHpL8XNzs1xnfW/Z7ZgPHwtSyUlFdyNaAh7nbSdR7p3Qoz+vHd3gYEu2Dzcz3gaqeGIAh4eUgQFo6sPg3Hw17NbedCmjZT92NMzy3G/47oBm7T+7blAkDtPojaPQArNSKOMNsqDQ6RT0cFqgZm7Eq8fh1jVkEpt51GTROW1Rkj8z6oHVhrdW/b2mBbAKD2AaMgVPUN0PrlVKq0enohLQ/PfBsnrZz8eCIFT6w9iqyCUpRXavANc/+aFOVjtASkOmy3VKAq9TfSyJiA5WpnwTWsuX6nELGJGRiz6hCO37iL1JxivM/U2WmxGTvt3e2kwbi9pRLvj+kgjTky8ksx9atjyC0qR0WlhltdHBJqWu2ivul921b1HRCqajS3vNirxvd7ro7RhMY3Z5l0aTYLRksQBIPH/VpbVZvZYqtW4tm+bfHnq/2xdFIEurZxRJSfA1Y90Uma+JPzQnQ7LlvqzZ/PYuPRZOle4Gitkup8o4NcuLRU/ayvvQm6FHMHK6VBdll9aGWlQk/mfrfzXloq20nWycYCEV6tYG6mwKwB8g2Pnult2IARqCrjkJuQ8na0wtPMJAlbSmJKPbK9lRLfPN1VqpM1Uwh499EOslvoNDcUMD7EcorKuI6Uk7v7Gk0rcLVTc38sW+NTuf0XI7zs6zTQ19IPkPYlmlbH+O/fE9Fh4S50e38vPvojkWvTnltUjre3nMPIlQcRl3RXKnC/INPGO+VuEfYxq3ivDwuRUpFCmZvE5Yx8aVY3r6Sc2/ahPmsYAaA/0wzo0NUs2eJ/NjBp52LD/Q7s1EpulXLFvssovZfWYaUyw6BqBmQAMFlvtXlwe9cau9AB4DbplduPURRFvL31HFeXMLi9K5ZNiqz2hlcdJxsLbsb11R/PII65PheMDDVI1QEMA0a2Q6qzrYXRFQ59ga62XP3o1ntpqRqNyAWM4zp53XdjJGPMFAI+nRiBf48Ll5pnAFUp5wM+OYDF2y/g6PVsrpbsuX5tuWumh39rqdlASbkGcUnZXA3okFD+mnlpUAAGBrtAZa7As33a4IvJnQ1SZqf2aoPlj3eUZm2tVGboG+iM14YGY8uLvfDnq/25elvStLH7MR65lmV0sm7lvivS5IujtYpr86/lYK3CxxMiZD9/cA2rFnwdIz94/+VUKjeg7WRiHaHs63jZc6sX7VxsDAb5KnMFBuq9n1oqzbjmPKYa29FT+hvMLS7HznPpSM4qwpSvj3HpjUBVD4HRq/7Gin1XpCwQhQA81cuv1q8LVGX6sG9PT8n8zuQIgsD9jD7dfQlPfxuHfGZl6tTNHIPmV2zDG3ZiFqhKc3xrhG6y6XJGAaavP46fTqbwq4sDA1EXTjYWiH05GiffHoz3xnQwKaultp1S2WPCjVwL+mmqA4JdTUrvVJopMKajFzY/1wM/zOhZY7CrMlfgw/Hh0u83NacYnzJbhY2K8JDuv5YqMy7r6ze9tFQ2HXVwe9dadR+ujeFMBsIfF26hvFLDdc4dFOIi3U9HRXgY1CYOCnGp01YfL/T3NyjNAkyfAPJsZYktL/bCvMGB+G5aN5MmXZoDChgfYj+eSJECCFu1OUZFGl9xAvT3pbqFv5nVoS5+Na+a1IRNwzh4JbPGPe22n0mT9iTKLCjFqtir6PvvWDzzTRzWHLiKAZ/sx/ojN6BfTvHFn4b7GH0fd1M6zt1ejf5MClOIm530JlteKeLyvbodtkbMTCHU+8bjPdo6SW3dSys0OHLNcDb/Qjo/Q6uPnYXfw8zMxbR3NdgbTF+gqy3+cS9tp5NPK3w6McKkYIetYzxyLcsgFfjT3Ze4lJFubRyx4vGO933TYVcZ2WZMg0JcMaGL4SoBYNgplQ0YTalfZHFp2/Fp0GhEHL2ejZS7ulSqcTKrFfVJEARMjPLGtpm9DdJiWK2slHi6VxuuVhWo2l+SrW/65u8kXGT2ttLvhGdhboYvp0YhcfFQzB/R3ujvcFSEB/56tT+2z+qN0wti8N+nu+L5aH9EerdqsMEGaRjd2zpKKz/5JRUGdd1AVbdOtvP28/38jdbe9g10NghwQj3saqxrjTTSKVUURXzP1PKN6eh1X9eYIPBNX/6vm4/sgF4/La+Ln4PRLXmq42Ct4v7OvjqYhMlfHcWdfN1WSF2Z+23K3WJuxW1omJvs5JgpWttYSNttdGvjWO1WGvrYJmJHr2cb3HdF0TBziA8YDVcJn+ndhlvtOXo9G6//fFb6eGioG1eGUVtmCoFrLlOTDsw1dy41t9otwM6n5SKOScM11hRG//uWq1+sL5Herbi0VfZ3pH9vkktLLS6rxKrYK/iTmQhuiHRUrZhQN2llLqeoHPsv8o2n2ElvczOFQeMjue3dTGGnVmKOXpqzs62FyRlHAOBmr8asgQHoZmKX5OaA7tQPKY1G5PbYG9/Zq8YmI0PC3KSZz/zSCq4uqz5SEnq1ay3dYEvK5TcP10q5W4Q3mBuHlkasaprzr52J3OofWyj+65l0biWyvFLDDTAei/LhBhiWKjNulkpbx8imo3o5WNZ5dcwYS5UZN6Mll6Zb04buxlZu2BTK6rz3aBji5g/CjzN6wtbEFKdubVpLBfYl5RocT7qLnKIyXEjLw7I9l7Fin67rXXt3O6yd0qVe9iUKkxlwtLZW4V/jOhidsWVrFG/llXArFbW5OQDgiuXTcksQl5TNNbvp1sYRPvW8Cm1MoKstts7shYlMoOxhr8bUnn747tluOD5/EN4ZKR/gsWmpbCqSX2srLqWJZcpEgqudGmGe9vX+d0IerFZWKm416O8rhu/Ty/deljqFOttacE1M5Lw2NJib4BhmQot+dl/fa5mFyL2XqnkyOYfraqjf9bsunu7VBv8eF46PxocbTZ/uF+jMrex3v4+B4mNM/eHZ1FzuXrNwZCi+f647tw0Oa1odB8labw4Pwel3YrBpevdaBbxtnAwn2FxsLbgJqL1MSURxWSWuMRN0xgK/t0aEcNcDG+TUtnbxfrHbYuTL7PmrpdGIeGvLOWmV27OVJbq1lZ9U7+zrIE0MO9lY1Mvke3XmDg4y6LcQILNqHh3kIqUZl1ZosGDbefT/eD8++uOi9Ldtqzavtkzifjlaq9Cd+bkt2X5BWuRQKxXorVdzOzLCQwoix3Xykm3uZKrHu/pw477ubVs/9J286c79kLpbVAY3JoWvphs6UFVXwKaNsjr53H/AaKUy5+pj9hpJS62o1GD2pngpPUetVGBGP3+DInCgqhPoPwe0w8HXB0g1kpUaEeuY5jZ7E25Le8yZKQTZAQY7C3ju3ox6Etfwpv7qF1lcHeNFfm88jUZEIrsHo8wNN1gmiHSwUhq80RojCAKcbS1qlUZpbWGOzr6662Hyl0cRuXg3hi//C0uZFBi/1lb49umudaq1kdPBy/B7/WBsB9mmAlo+jlZSYT1QtWm4Vm0DRs9WltzM/8Zjydh5TpfKM65zw64u6rNSmePf4yPw++w+2PlSH/z9+gAsHBWKnv5O1a64GNuvbkhY/XfCI80Tm5aq3/jm2p0C/MzsRzqzf7sasxnUSjN8OSUKg0JcMLaTp0lBj7+zjdSYC9Btr8F2Co30blUv6c4KRdXK/YQu3kbfCy1VZpjUpereYWGuwMjw6jN2qtOjbWvZEod/DgzAlJ5+EAQBcwYHYtljkVxQ18mnVb3ci+2tlLX+W9fPyAj3sse2mb3xNLN6/OclXeZQwq08KaBSmgkIrGYyaumkSHTx5b+vYWFuspOkDcnBWgVvR93Kt7E6xk1xN3EqOUf6eMHI9kZLdpxtLbDqH50wobMXvniyc51WpWvDUmVmsCXW2E5eBr9vS5UZN/748UQKt2ehlcoMn06MbPBN6IeF6VY62eZrfQKcDV7bTCHg88mdcXpBDD4aH35f9ytzMwU+GNsBlkozWKvMuOv4YUUB40OqtY0FNk3vgV1z+mLByPa1aO5heBMMdLWpVVpHddjNg/clZMi2514Ze4VLOXz7kfZ4fVgw/nq1P76Y3Bl9AqpSOQcGu+CPOX0xNyYI9pZKLrXl+7ibuHtvBZLdjH5gsAsXSGvJNb650UB7MLLYBjMpd4u5rqPJ2UXc3lFyN0+5LRqGdXBv8FUeto5RLmvHxdYC65/pJu1fVh/0VxgndvHi9haTozRTcKt+BUzNjSkdUvWN7sh3S9UWzFsqzWqV3lWfgt3sEOJuZ/LNM8DFRnbyZWgDph6R5oXNfIhLyuZa3i/be1mqa/SwV3OrZdXxaW2FdVOiTB6EmikEruPn6Zs5KCitwK/M/qKP1cPqYm3MH9EeX0+Nwh+z+95XNoEgCHiMaX4DVPUY0E+TGx3piU3TuyPAxQYe9mosHh1W59e8X4NCXKXthcZ09MTm53rAzV6NPgHOUmZScXklDt8rrTjPdBANcLGtNlBSK82w9sku0vYdKnPFA19d1Ar3bCX9X66OMauglNuPdlCIS433oUHtXfHRhIh6CfZN0dPfCf+81yTGr7WV0b+TETL3LDOFgP/r7oP9r0RjsJF9UuvTkFA3yN26jDXFMlMIsLdU1kuvgCg/R5x6ZzCOzh+Ejg/od9OUmb7RGWmRAl1tjc7syekf7AJbC3OumL2zb/2lUPQPdgG2ngdQldZ38XY+gpn9BOOSsg06pP3j3o3V3EyBmFA3xIS6QRRFgwHy4918sHLfFeSXVqC4vBLrj9zA6EgP/MV08nzCyEorWx+XeCsPFZUaLk2oobYF8Ha0QjsXGylQjL2YgQBXW4iiiI1xukDX1c5Ctki7jZM1VGYKrvPn6Gq6o9aXRzt6Ys3+q9x1ohCqWpOHe9nj9WHBda6zMcbFTo3oIGfsv3gHga42Jm+S6+9sw20ArVWXYvnhYe5YsPU8KvSi5GEd3GBjpIarqREEAf0CnbGJWalxs1PXqYEHaZmi/BxhrhBQoRFRUq7BqeS7qNSIWPPnNfzJtOmfOSDgvpqh1STCu5XUWfV0Sg52nNFN0lipzPDIA3ivY6nMFVX3sHrwWJQ3Nh5Lxo2sIozv7IVFo0JlJ306+Thg15y+jb76b21hjtiXo5FdWMbtN2dtYY7u/q2l62Jvwm30D3KptuGNHAdrFX55oRe2xaci3KsVNy54kDp42WPHve2KzspsrfHBzkTkFlelR6uVCiwYaXwrpMY0NyYIj3fzgYOVyugETXSQC5xtLaT62aGhbnhlaFCts2/uh7OtBbr6OXIlUIKAevs7q0lDr6A2J81jBEOaDLXSDEPD3PADU5tVny2VvRysEOxmi8R7GxbvTciQbgx3C8swe1O8tGLlZqfGv8bKpx3IPWanVuKJ7r5Yc6Cq6c03h5KQzdQ5ejtaoo+RfHw23bOkXINrmYVcwOjXQCmpANA/yFkKGPclZuCZ3m2xYNs5bGBa1ndrI18vozRTwN/FRtqnzN1ejagGrpEAqtIz/5jTF2dTc9HaWgX3VpZwtbVo8AYn657sgvNpeQhwtamxJlfL39kGu8GnP1sqzeBeh012HaxV6BfobNCGfPwDTke9X/oB45BQ1wbr7kqaHxsLc0R4t8KJe5kez/73OPL0Onh6O1oabTZVX9jGN/E3c7m69UfC3ZvNJI2cVlYq/DG7L+7kl9Y4udbYwaKW0kwhuzn5oBAXJmDMwJLRIhcwmroll72lstH3s2PrGM+l5qFSI0qNWY5d5+vWZw0IqPeJ0frkbl99YylLlRk2PtsNf5y/jZ7+rRttlW14B3cuYOzk41Cv2UnENJSSSmpNv2FKl3pcYQT4ur29Cbdx4sZdvPbjGfT+cJ+0ea8gAEsnRcJBZlWtOk/18pPSY7ILy7i9qx7v6mN0UGynVnKF4seT7nL5/H5ODXdTYGfSjifdxYwNJ7hg0cvBEq8ODTL6+ZHeuhvcqAiPBzbw92hliSGhbuji5wjPVpYPpBumuZkCEd6tTA4WAfluqG2drev8cxqtt/GzZytLdDcS0DdVPds5cftGNWQnPNI8sfXm+sFigIsNvpwS1eCp7+zWGpkFpVzd2KQoH8NPaGbUSrMmHXCYir2np+dWNRe7eEvXsM2UFcamgt1mq7i8Et8cSsLBy5lISM/DW1t0jfj8na3r3KWzKWnnYosX+7dr1JRM/e7cNW0JRhoGBYyk1nr4t5aaewwMduGKwOsDu//PyeQcjPvsEL4/fpOr13sxul2tN0UGqjo1julo2CFUaSZgQufq613YGjm2mYkgVK2MNpQuvo7STHmFRsRuZh+iYDdb/Px8z2pf/4Xodujp3xqDQlzxopHNbR9mcrWK95NyMyjEhdvEelwnz2a3OmdvqcTsgQFQmSkwItz9vjo+kpaJbXyjFeXngC+ndMEfs/vWqtShrtzt1bIrDe1cbO5r70VSv7wcrLga+y/+vCqVSQiCfP19U2VvqeT2+1uy/QL+78ujGLbsL1y6resxsOTRsAZvYPOwcLVTS0GipdIMj4Q3Tj+Ah13zzdcgjcZMIeC7Z7shKasIbZ2s6z0dJtLbAQ5WSty91yadZak0w5M9fDH7Pgrep/dri80nbnLtuWNC3WpMcQj1tJNqFw4xW36426kbNM9dZa5AnwAn7GQ2UAeq9kP74skuNXYZ9Xa0wnfPdm+w82vu/J0Mg8O61C9qWanM8XSvNlgZewWO1iqjdbFN3ayBAZgR7U/bYBBZ3do4YliYG/YmZqBfoDNm9Gtbr/XsphAEARFerbAngU8pfyzKu8mkaZIqg0JcpNKI387q7mVtWlsb3aOzqeod4IRrmfJbagDAo5EeshMqpO4+nRSBP87dQgcv+xax6t4cNa+/UtJkmJsp7mtQXR0zhYChYW7YeIxvjz4pyhuPhLubvB+gMf7ONhgc4opdzEoduzGzMezWGpVMU5OG2lKD1T/IhQsYh3dweyAtrR8G9lZKONmokFmgq3+636L+eTGBGBnhAfdW6nrbNqQxULBIjFEoBHz2f52h0YiNuoIe6W3PBYxKM0E2i4Q0roEhrtwevFrG9l9syuYODoRaaYaE9DzcyS9FZkEZsgtLoRGrJhvnjzCt4RoxnZ1aiQldHmzXY8KjgJE0Sa8OCYaVyhwqcwUejfSsl720WM9H+2N3wm2IIhDkaoseJqTcGauzaMj6Ra2RER749nASLt7Kx5SefnhzeAhXY0buT1tnG2QW6Irq/V3ubxJAEIR6v2YJaYoaO92arWMEgMHtXdG6mr1XSeMI97TnOm5qhXqY1vCmKWllpcKbw0O4xyo1IvJLymFvWfs9LAlpDihgJE2Sg7XK5G0R6qKjjwM+e6ITjl7PxpQefia9wTvZWMDdXo303BLucR/Hhl9htFSZYfus3igsq2zWnf+aKn9nGxy714VNEBq26y0hpP6Ee7WCIEAqMWgJzW5aIoVCwMBgF677MtC8Gt5Ux0wh1Nt+1IQ0RZRvRB5aQ8PcsWBkKPycTA8O5GZD/e5jg+baEASBgsUGwnZK9XawolRfQpoJe0slnu7VBkBV98TeRrZGIo1voEx3y5YSMBLS0lHASEgtyN3cHkQNI2lYg9u7QmlWtco8vAN1YCOkOXn7kfY4v2gI1k3pQqn6TVjvdk6wYDqHuturKX2YkGaClisIqQW5DYZ9HtAKI2k4vq2tsWtOP9zIKkQvWqEgpNlpbp02H0aWKjP0aueEfYkZAGh1kZDmhFYYCamFME/+BudkY0Fpoi1EGydrRAe5UGdQQghpIE/20G0zNCqSutkS0lzQSJeQWnCzU6O1tQpZhVVbMDyo+kVCCCGkuYsOcsHvs/ugvEJEB6/m1yGVkIcVTaUTUguCIHD7RlH9IiGEEGK6YDc7ChYJaWYoYCSkloaGuUn/7xfk3IhnQgghhBBCSMOilFRCaumxKB84WqlgphAwSKZNOCGEEEIIIS0FBYyE1JKZQsAw2nqBEEIIIYQ8BCgllRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogs88Y+gYeJKIoAgLy8vEY+E0IIIYQQQsjDShuPaOOT6lDA+ADl5+cDALy9vRv5TAghhBBCCCEPu/z8fNjb21d7jCCaElaSeqHRaJCWlgZbW1sIgvDAXz8gIAAAcPny5Qf+2qTloOuI1Be6lkh9oWuJ1Ae6jkh9aQ7XkiiKyM/Ph4eHBxSK6qsUaYXxAVIoFPDy8mrU1wcAOzu7RjsH0vzRdUTqC11LpL7QtUTqA11HpL40l2upppVFLWp6QwghhBBCCCFEFgWMhBBCCCGEEEJkUQ0jIYQQQgghhBBZtMJICCGEEEIIIUQWBYyEEEIIIYQQQmRRwEgIIYQQQgghRBYFjIQQQgghhBBCZFHASAghhBBCCCFEFgWMhBBCCCGEEEJkUcBICCGEEEIIIUQWBYyEEEIIIYQQQmRRwEgIIYQQQgghRBYFjIQQQgghhBBCZFHASAghhBBCCCFEFgWMhBBCCCGEEEJkUcBICCGEEEIIIUQWBYwtnEajwdKlSxEcHAy1Wg1vb2/MmzcPhYWFjX1qpIn64IMPMGHCBLRt2xaCIMDPz6/a448ePYpBgwbB1tYWdnZ2GDp0KOLj4x/IuZKm69KlS3jnnXfQvXt3ODs7w9bWFpGRkXjvvfdk338uXryIRx99FA4ODrC2tkafPn2wb9++Rjhz0tRcvHgRTzzxBEJCQmBvbw8rKysEBwdj7ty5SE9Plz2eriViiqKiIuleN3PmTIPn6VoixgiCIPvPxsbG4NiWcB2ZN/YJkIY1Z84cLF++HGPGjMG8efOQkJCA5cuX49SpU9izZw8UCpozILw333wTjo6O6NSpE3Jycqo99siRI4iOjoanpycWL14MAFi5ciX69OmDQ4cOoUOHDg/gjElT9NVXX2HVqlUYNWoUnnjiCSiVSsTGxuKtt97C5s2bceTIEVhaWgIArl69ip49e8Lc3Byvvvoq7O3tsXbtWgwZMgQ7d+7EoEGDGvm7IY0pJSUF6enpGDNmDLy8vGBubo6zZ8/iiy++wKZNmxAfHw8XFxcAdC2R2nnnnXdw584d2efoWiI16dOnD6ZPn849plQquY9bzHUkkhbr3LlzoiAI4tixY7nHly9fLgIQ//e//zXSmZGm7OrVq9L/Q0NDRV9fX6PHRkVFiba2tmJKSor0WEpKimhraysOHjy4IU+TNHFxcXFiTk6OwePz588XAYgrVqyQHpswYYKoUCjEU6dOSY/l5+eLPj4+YmBgoKjRaB7EKZNmZvPmzSIA8cMPP5Qeo2uJmOrEiROimZmZ+Mknn4gAxBdffJF7nq4lUh0A4pQpU2o8rqVcR7S81IJt3LgRoihi9uzZ3OPPPvssrKyssGHDhsY5MdKktW3b1qTjrly5gri4OEyYMAGenp7S456enpgwYQL27NmDW7duNdRpkiauS5cusLe3N3h80qRJAIBz584BAAoLC7Ft2zZER0cjMjJSOs7GxgbTpk3DpUuXEBcX90DOmTQvvr6+AIC7d+8CoGuJmK6yshLPPvsshg4dirFjxxo8T9cSMVVZWRkKCgpkn2tJ1xEFjC1YXFwcFAoFunbtyj2uVqsRGRnZbC5S0jRpr58ePXoYPNe9e3eIoogTJ0486NMiTVxKSgoAwNXVFQBw5swZlJaWGr2OANB7FQEAlJSUIDMzEykpKdi1axeee+45AMDw4cMB0LVETLd06VIkJiZi5cqVss/TtURM8eOPP8LKygq2trZwcXHBrFmzkJubKz3fkq4jqmFswdLS0uDk5AQLCwuD5zw9PXHo0CGUlZVBpVI1wtmR5i4tLQ0AuNVFLe1jqampD/ScSNNWWVmJJUuWwNzcHP/4xz8A0HVETLdu3TrMmjVL+tjPzw8bNmxAnz59ANC1RExz/fp1LFiwAO+88w78/PyQlJRkcAxdS6QmXbt2xYQJE9CuXTvk5eXht99+w8qVK3HgwAEcOnQINjY2Leo6ooCxBSsqKpINFoGqVUbtMRQwkrooKioCANlrjL2+CNGaPXs2Dh8+jPfffx9BQUEA6Doipnv00UcRHByMgoICnDp1Ctu2bUNmZqb0PF1LxBQzZsxA27ZtMXfuXKPH0LVEanL06FHu4yeffBLh4eGYP38+li1bhvnz57eo64gCxhbMysoKGRkZss+VlJRIxxBSF9prp7S01OA5ur6IvrfffhsrV67E9OnT8cYbb0iP03VETOXl5QUvLy8AVcHjuHHjEBUVhaKiIrzxxht0LZEabdiwAbt378aff/5p0M2SRdcSqYtXXnkFixYtwo4dOzB//vwWdR1RDWML5uHhgczMTNkLNTU1FU5OTrS6SOrMw8MDgHw6hfYxuTQM8vBZuHAh3n33XTz11FNYs2YN9xxdR6SuwsPD0bFjR6xevRoAXUukeqWlpZg7dy6GDx8ONzc3XLlyBVeuXMGNGzcAALm5ubhy5QpycnLoWiJ1olQqpbE30LLekyhgbMGioqKg0Whw7Ngx7vGSkhLEx8ejS5cujXRmpCWIiooCABw+fNjguSNHjkAQBHTu3PlBnxZpYhYuXIhFixZhypQpWLduHQRB4J7v0KEDLCwsjF5HAOi9ihhVXFyM7OxsAHQtkeoVFxfjzp072LFjBwICAqR/0dHRAKpWHwMCArBu3Tq6lkidlJSUICUlRWrq1qKuo8be14M0nDNnzlS7D+P69esb6cxIc1HTPoxdunQRbW1txdTUVOmx1NRU0dbWVhw4cOADOEPSlC1atEgEIE6ePFmsrKw0etz48eNFhUIhxsfHS49p96kKCAhoNvtUkYaRnp4u+/i+fftEhUIhDhgwQHqMriViTFlZmfjDDz8Y/Fu9erUIQBw6dKj4ww8/iBcvXhRFka4lYlxmZqbs4y+//LLB3rAt5ToSRFEUGzdkJQ1p1qxZWLlyJcaMGYPhw4cjISEBy5cvR69evbBv3z4oFLTITHjr16+XUnRWrFiBsrIyzJs3D0DVvmeTJ0+Wjj106BD69+8PLy8vqXvhihUrcPv2bfz999+IiIh48N8AaRJWrVqFmTNnwsfHB0uWLDF4r3F1dcXgwYMBVO3p2bVrVyiVSsyZMwd2dnZYu3Ytzp49ix07dmDIkCGN8S2QJmLMmDFIT0/HgAED4Ovri5KSEpw4cQKbNm2ClZUV9u/fL+1xRtcSqa2kpCS0adMGL774IrfNBl1LxJg5c+bgyJEj6N+/P3x8fFBQUIDffvsNsbGx6NatG2JjY2FpaQmgBV1HjR2xkoZVUVEhfvzxx2JgYKCoUqlEDw8Pcc6cOWJ+fn5jnxppovr16ycCkP3Xr18/g+MPHTokDhgwQLS2thZtbGzEmJgY8cSJEw/+xEmTMmXKFKPXkdy1dOHCBXHUqFGivb29aGlpKfbq1UvcvXt345w8aVK+//57ccSIEaKXl5doYWEhqtVqMSgoSJw5c6Z448YNg+PpWiK1cf36dRGA+OKLLxo8R9cSkbNlyxYxJiZG9PDwEC0sLEQrKysxIiJCfO+998Ti4mKD41vCdUQrjIQQQgghhBBCZFE+IiGEEEIIIYQQWRQwEkIIIYQQQgiRRQEjIYQQQgghhBBZFDASQgghhBBCCJFFASMhhBBCCCGEEFkUMBJCCCGEEEIIkUUBIyGEEEIIIYQQWRQwEkIIIYQQQgiRRQEjIYQQQgghhBBZFDASQgghpF689dZbsLS0RFpa2gN9XVEU0blzZ/Tp0+eBvi4hhDwMKGAkhBDSpAiCUO2/LVu2NPYpEhnJycn49NNP8eKLL8LDw0N6PCkpCYIgoHfv3kY/V3uMn59fnV5bEAQsXrwYBw8exI8//linr0EIIUSeeWOfACGEEKLP1tYWc+fOlX0uODj4AZ8NMcWSJUtQVlaGl19+uVFef8SIEQgLC8P8+fMxbtw4CILQKOdBCCEtDQWMhBBCmhw7OzssXLiwsU+DmCg3NxffffcdYmJi4Obm1mjnMXnyZLz22mvYu3cvBg0a1GjnQQghLQmlpBJCCGl29u/fD0EQsHDhQhw7dgwjRoyAo6MjBEFAUlKSdNyOHTswZMgQODo6wsLCAkFBQVi4cCGKi4sNvqYoili5ciVCQ0OhVqvh6emJmTNnIjc3F35+fgbpklOnTjV4Pbnz05ecnIwZM2bAz88PFhYWcHFxwcSJE5GQkGBwrPZ1CwsL8corr8DHxwcWFhZo164dPvzwQ4iiKPvzOXbsGCZNmgRPT09YWFjA3d0dMTEx2Lx5MwAgMTERgiBg8ODBsp8viiL8/f1hbW2N3Nxc2WNYGzduRFFRESZNmlTjsbVRU3qy/s9X+/pffvllvZ4HIYQ8zGiFkRBCSLN1+PBhfPDBB+jduzeefvppZGZmQqVSAQDeeecdLFmyBC4uLhg9ejRat26NY8eOYdGiRdi3bx/27t0LpVIpfa3Zs2dj+fLlcHd3x/Tp06FUKrF161YcPXoUZWVl0te9H8ePH0dMTAxyc3MxbNgwTJgwAenp6fj555+xc+dOxMbGokuXLtznlJeXY8iQIUhLS8OwYcNgbm6OLVu24PXXX0dJSQkWLFjAHb927Vo8//zzMDc3x6hRo9CuXTtkZGQgLi4Oq1evxsSJExEcHIz+/ftj7969uHbtGtq2bct9jT179uDatWt4+umnYW9vX+P3tWfPHgBAz5497/MnxNP/3rTWr1+Pa9euwcrKinvc19cXnp6e2LNnD0RRpLRUQgipBxQwEkIIaXLy8vJkV+eCg4Px2GOPSR/v2rULa9aswXPPPccdt2fPHixZsgR9+/bFr7/+Cjs7O+m5d999F2+//TZWrlyJOXPmAAAOHTqE5cuXw9/fH8eOHYOjoyMA4L333kP//v2Rnp4OX1/f+/qeysvLMXHiRJSUlODgwYPo0aOH9FxCQgK6du2KadOmIT4+nvu8tLQ0REREYPfu3bC0tARQFUgFBgZi6dKlePPNN6XA98KFC3jhhRdgb2+PgwcPIiQkhPtaN2/elP7//PPPIzY2FmvXrsUHH3zAHffFF18AAKZPn27S93bw4EHY2dkhICDA6DHJyclG04xzcnJkH5c7/uuvv8a1a9fQo0cP/POf/zR4PioqClu2bEFCQgLat29vyukTQgipjkgIIYQ0IQCM/hs9erQoiqIYGxsrAhAjIyNlv8bo0aNFAGJCQoLBcxUVFaKTk5PYpUsX6bFp06aJAMSvvvrK4Hjta/n6+nKPT5kyRQQgXr9+3ejnLFiwQHrsl19+EQGIr732muw5z5kzRwQgnjt3TnrM19dXBCBevnzZ4Pgnn3xSBCCePXtWemzmzJkiAPE///mP7GuwysrKRDc3N9HV1VUsKyuTHr99+7aoVCrFiIiIGr+GKIpiaWmpCEAMCAiQff769evV/k7Zf/o/Y3179uwRlUql2LZtWzEjI0P2mBkzZogAxJ07d5p0/oQQQqpHK4yEEEKaHE9PT6SkpNR4XNeuXWUfP3z4MFQqFTZt2iT7vEqlQmJiovTxyZMnAQD9+vUzOLZ3794wMzMz5bSrdfjwYQDAtWvXZFfOLl68CKCqvjA0NFR63N7eHu3atTM43tvbGwBw9+5d6bEjR44AAIYMGVLj+SiVSkybNg3vvvsutm7divHjxwOoWsErLy83WLU1JisrCwDg4OBQ7XG9evXCwYMHZZ9LSkpCmzZtqv38CxcuYNy4cbCxscFvv/0GZ2dn2eO0q8OZmZk1nTohhBATUMBICCGk2TLWkTM7OxsVFRVYtGiRSV9H29jF1dXV4Dlzc3M4OTnV/SSZcwKAH374odrjCgoKuI9btWole5y5edUtvLKyUnpMm9rp6elp0jlNnz4dH3zwAT7//HOMHz8eoihi3bp1sLa2xhNPPGHS19CmyZaUlJh0fF3cunULw4cPR3FxMXbv3o2goCCjx2obGmnPixBCyP2hLqmEEEKaLWNNTezt7WFpaYnKykqIomj0H3s8ANy+fdvga1VUVMiuVikUCul5fXI1edrX2LhxY7XnNGXKlJq/cSO0wWVqaqpJx3t7e+ORRx6Rmt/s27cPV65cwWOPPcbVfdb0miqVSgqI61tRURFGjhyJGzdu4KuvvkLfvn2rPV674uni4tIg50MIIQ8bChgJIYS0ON26dUNxcTFOnz5t0vGdOnUCABw4cMDguYMHD3KreFraFEy2kYzW8ePHZc8J0KWmNoTu3bsDAP744w+TP+f555+HKIpYu3ZtrZvdaHXo0AFpaWnIz8+v1efVRKPR4B//+AeOHz+OxYsXm7TqmZiYCIVCgQ4dOtTruRBCyMOKAkZCCCEtzksvvQSgKvCRWzXMycnBqVOnpI+nTp0KoKorKrtSVlJSgjfeeEP2NbT1k2vXruUeP3v2LJYtW2Zw/OjRo+Hn54fVq1fLBnQajQb79++v/hurgXY7jcWLF3M1mlpydaExMTHw9/fHunXrsGXLFkRGRhqtDTUmOjoaGo1GNlC+H3PnzsXWrVsxZcoUvP322zUeX1paivj4eHTs2NFoKi8hhJDaoRpGQgghLU5MTAwWLVqEBQsWoF27dhg+fDj8/PyQm5uL69ev48CBA5g6dSrWrFkDoKohy6xZs7BixQqEhYVh/Pjx0j6MDg4OcHd3N3iN0aNHIyAgABs3bkRKSgq6deuG5ORkbN26FaNHj8bmzZu541UqFX766ScMGTIEQ4cORd++fREeHg6VSoXk5GQcPnwYmZmZ91UL2L59e6xevRozZsxAZGQkRo0ahYCAAGRmZiIuLg729vaIjY3lPkcQBMyYMQOvvPIKAJjc7IY1duxYfPLJJ9i1axf69+9f5/NnHTt2DMuWLYNarYanp6dso6Do6GhER0dLH+/fvx9lZWUYN25cvZwDIYQQChgJIYS0UO+88w769OmDFStW4MCBA/jll1/g4OAAb29vzJ07F08++SR3/LJlyxAYGIhVq1bh888/R+vWrTFmzBi8//77iIiIMPj6arUae/fuxcsvv4zdu3cjLi4OYWFh+O677+Do6GgQMAJVqa9nzpzBJ598gh07dmDdunUwNzeHh4cHoqOj6yXQefbZZxEWFoaPP/4Y+/fvx5YtW+Dk5ITw8HBMmzZN9nOmTp2KV199FVZWViY3u2H17NkT4eHh2LBhA9577z2pvvN+FBUVAaha5X3//feNHscGjOvXr4dKpcIzzzxz369PCCGkiiCyVf+EEEIIMeDn5wegavuHlmjPnj0YPHgwpk2bZpBia6oNGzZg8uTJ2LZtG0aOHFnPZ1izO3fuwM/PD48//jjWrVv3wF+fEEJaKgoYCSGEkBq09IBxyJAh2LVrF06dOoXIyMg6fQ1RFNG1a1epltFYB9uGMm/ePHzxxRe4dOmSbAoxIYSQuqGUVEIIIeQhdPbsWWzfvh1xcXHYtWsXxo0bV+dgEaiqhVy7di22bNmCW7duPfCgzdXVFevXr6dgkRBC6hmtMBJCCCE1aIkrjN988w2eeuop2NvbY8iQIfjss8/g6OjY2KdFCCGkiaGAkRBCCCGEEEKILNqHkRBCCCGEEEKILAoYCSGEEEIIIYTIooCREEIIIYQQQogsChgJIYQQQgghhMiigJEQQgghhBBCiCwKGAkhhBBCCCGEyKKAkRBCCCGEEEKILAoYCSGEEEIIIYTI+n+apcKotWH7CwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(ps.freq, ps.power, label='segment size = {}s \\n number of segments = {}'.format(3, int(lc.tseg/3)))\n", + "plt.title('Averaged Powerspectrum')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It looks like we have at least 2 frequencies. \n", + "# Let's look at the Dynamic Powerspectrum.." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 17010.20it/s]\n", + "33it [00:00, 17857.31it/s]\n" + ] + } + ], + "source": [ + "dps = stingray.DynamicalPowerspectrum(lc, segment_size=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAKOCAYAAAARYLzXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjbklEQVR4nOzdd3iUZfr28e9MeicQSkgh9NCbICAdFEUQRBEr6Cp2XRGxrGtDVFxUFLtgL1gQK2ABBCwoSFc6EkpCCz2EtJnn/YM3+RkTyoQrMSbnZw+O3Z155pw+k3vu+7ovl+M4DiIiIiIiIlIpuf/uGyAiIiIiIiJ/Hw0KRUREREREKjENCkVERERERCoxDQpFREREREQqMQ0KRUREREREKjENCkVERERERCoxDQpFREREREQqMQ0KRUREREREKjENCkVERERERCoxDQpFpEBSUhIul6vgn9vtJioqiqSkJM4991weeeQRtmzZ8nffzHLlwQcfxOVy8eCDD5b6dfz5X0BAALGxsZx33nl88803pXbdIiIiUvFpUCgiRfTt25fhw4czbNgwzjrrLOLj45k7dy7//e9/qVu3Lv/+97/Jysr6u29mpVO/fn2GDx/O8OHDOf/884mIiOCLL76gb9++PPLII3/3zZOT1KNHD1wuF3Pnzi32/Llz5+JyuejRo0eZ3i4REam8/P/uGyAi5c/dd99d5A/S7Oxs3n77bUaPHs3EiRP5448/+Oyzz3C7K/dvSzfffDMXX3wxMTExpX5dXbp04Y033ij4/16vlwceeICxY8dy//33M3jwYJo0aVLqt0NEREQqlsr915yInLSgoCCuueYa5s+fT0hICF9++SWvvvrq332z/nYxMTEkJyeXyaDwr9xuNw899BD16tXD6/XyySeflPltEBERkX8+DQpFxCctWrTgtttuA+Cpp54qOP3RRx/F5XJx8803H/OyTz/9NC6XixEjRhScduWVV+JyuXjjjTdYs2YNF1xwATExMQQHB9O2bVs++OCDYrN++eUXRo0aRbt27ahRowZBQUEkJCRw+eWX89tvvxV7mT9f14oVKxg0aBDVqlUjMjKS3r178+uvvxYc+/rrr9OuXTvCwsKoUaMG1113HQcOHCiSeaKawh9//JGhQ4cSHx9PUFAQNWvWpHPnzowbN44jR44c87E6WW63m9atWwOwefPmQud99tlnnHXWWVStWpWgoCDq1q3L9ddfX+S4nTt34nK5qF+/fpH8UaNG4XK5CA0NJScnp9B5L774Ii6Xi3vuuafI5X788UeGDBlC7dq1CQwMpFatWlx00UUsW7asyLEpKSm4XC6SkpLIzc3l0UcfpVmzZoSEhBTcN4Bly5Zx6aWX0qBBA0JCQoiOjqZRo0ZceeWVLFmypFBmfn1sSkoKH374IR07diQ8PJwqVaowYMAAli5deszHdPfu3dx99900a9aM0NBQIiIi6NixI5MnT8ZxnGIv4/V6effddznzzDOJiYkpeD3269ePd999t9D9nDdvHgA9e/YsVCc6d+5crrzySnr27AnAvHnzCp3/59n7Py9BnTVrVsHz7HK5Ch7jPz8GxcnPPd7pkydPpk2bNoSGhlK7dm1uueUWMjIyANi7dy+33noriYmJBAcH07Rp00Iz2SIi8g/iiIj8f3Xq1HEA57vvvjvucStXrnQAB3BSU1Mdx3GcnTt3OoGBgU5UVJSTkZFR7OUaN27sAM7ixYsLThs+fLgDOLfccosTFhbmNGnSxBk6dKjToUOHgut49913i2T17t3b8ff3d1q1auWcd955zvnnn+80atTIAZyQkBBn3rx5RS6Tf1033nijExIS4rRq1coZOnSo06xZMwdwwsPDndWrVzsjR450goKCnL59+zqDBg1yqlat6gBOr169imQ+8MADDuA88MADRc4bM2ZMwX1o3bq1c/HFFzt9+/Z1EhMTHcDZtGnTcR/nv17H8OHDiz2/T58+BY9hvjvuuMMBHD8/P6dnz57OxRdf7DRs2NABnCpVqjg///xzoYymTZs6gJOSklLo9FatWhXch7lz5xY674ILLnAA55tvvil0+rhx4xyXy+W43W6nQ4cOzpAhQ5x27do5gBMYGOh8/vnnhY7ftGmTAzgJCQnOueee6wQHBzt9+/Z1LrroImfQoEGO4zjO119/7fj7+zuA065dO+eiiy5yzjvvPKd169aO2+12HnvssUKZ+a/lf//73w7gdOrUybnkkkuc5s2bO4ATFBTkzJ49u8hjuWzZMqdWrVoO4NSpU8cZOHCgc+aZZzoREREO4Fx66aVFLpOVleX069fPAZyAgACne/fuziWXXOJ0797diY6OdurUqeM4juPs3r3bGT58uFOzZk0HcPr27esMHz684N/q1audSZMmOX379nUAp2bNmoXO//N97N69uwM41113neNyuZzWrVs7l1xyidOlSxdn+fLlhR6DY73O8p/XY50+atQoJygoyDn77LOdgQMHFrwP+vTp46SnpzsNGzZ04uLinIsuusjp1q2b43K5HMB58803i70+EREpvzQoFJECJzso9Hg8TmBgoAM43377bcHpl112mQM4kyZNKnKZ2bNnO4DToUOHQqfnD9QA5/HHHy903vjx4x3AqVu3bpG8mTNnOjt37ixy+qRJkxzASU5Odrxe7zGv65lnnik43ev1OpdffrkDOM2aNXNq1arlrF27tuD8rVu3OjExMcUOjI41KJw6dWrBAGzWrFmFzvN6vc6cOXOc/fv3F7n9xTneoHDHjh0FA5ZXX33VcRzH+eKLLxzAiYqKcn755ZeCYz0ejzN69GgHcBITE52srKyC826++WYHcF577bWC09LT0x2Xy+W0aNHCAZz77ruv0H2oVq2aExgY6GRmZhac/uWXXxbk/3nw7ziO8/nnnzv+/v5OVFSUs2fPnoLT8weFgJOUlFTsIKZHjx4O4Lz//vtFzktNTXV+//33Qqflv5bdbrczbdq0QueNHTvWAZzatWsXuu2HDx92kpKSHMB56qmnHI/HU3Detm3bnLZt2xZ6nP/62LVo0cL5448/Cp2XlZXlzJgxo9Bp+QO6Y73PvvvuOwdwunfvXuz5f84AnNdff73YY051UPjX98G2bduc6tWrF7xPLr74Yic7O7vg/JdeeumY71cRESnfNCgUkQInOyh0HKdgNuXPf6QvWLCgYCbnr4YMGVLsH7D5A7WOHTsWuUxOTo4THR1d7AzW8XTu3NkBnN9++63Y6zrjjDOKXGbZsmUFfwwXN6i97bbbHMB58MEHC51+rEFhy5YtzWZNihsUHj582Pnhhx+c9u3bF8wqHTx40HEcx+nZs6cDOGPHji2SlZub69SvX98BnLfffrvg9GnTpjmAc/nllxec9tFHHxUMFKOjo53OnTsXnLd06VIHcLp161YoP//2zJkzp9j7cssttxQZlP95UDhlypRiL5c/k7lv375jP1B/kv9aHjJkSJHzvF5vQd5bb71VcPrzzz/vAM6wYcOKzVy8eLEDOG3atCk4bceOHU5AQIDj7+/vbNy48aRum+WgsG/fvsc85lQHhcd7H0RGRjrp6emFzsvLy3OqVavm8/tVRET+fqopFJES8Xq9AIVqkjp27Ejbtm1ZvHhxofq8HTt28OmnnxIdHc3QoUOLzTv77LOLnBYQEEDdunUBSEtLK3L+rl27ePXVVxk1ahTXXHMNV155JVdeeSU7duwAYN26dcVe11lnnVXktD/X0x3v/OJux19t376dFStWEBoayiWXXHLC40/Wm2++WVDvFRYWRpcuXVi0aBEJCQl8+eWXREREkJeXx08//QTA8OHDi2T4+/szbNgwgILaNjhao+Z2u5kzZ07Bafn/u0+fPvTo0YNFixYV1JPln9erV6+C49PT01m0aBExMTHHbKfQrVs3AH7++edizx84cGCxp5922mkAXH755SxYsACPx1PscX912WWXFTnN5XJx6aWXAjB//vyC02fOnAnAkCFDis1q06YN4eHhLF++vKAly5w5c8jNzaVHjx7Uq1fvpG6TpUGDBpVa9vHeB+3ataNatWqFzvPz8yMpKQk4ufeJiIiUH2pJISI+83g87N+/H4CqVasWOu/mm2/mX//6Fy+99BKTJ08Gjm5WkZuby/DhwwkJCSk2MyEhodjTIyIigKMtMf7shRdeYNSoUcftl3jw4MFiT4+Pjy9yWnh4+Emd/9fbUZwtW7YAULduXQICAk54/MmqX78+Xbp0AY4O7qpVq0aHDh3o378/QUFBAOzZs4fs7GwCAwOJi4srNid/8JKamlpwWnR0NK1bt2bJkiWsWbOG5ORkZs+eTYMGDUhISKBXr1588sknzJ8/n379+jF79myg8KBw06ZNwNHB4YlalezevbvIaTVq1Djm62PcuHGsWbOG6dOnM336dMLDw+nQoQN9+vRh+PDh1K5du9jL5Q9SjnX6tm3bCk77448/ABgwYMBxbzscfZzj4uIKnuvGjRuf8DKloU6dOqWWfbz3QXHn/fn8k3mfiIhI+aFBoYj47Pfffy/YibJ58+aFzrv44ou54447eP/993nyySeJiIhg0qRJAFx//fXHzPSl3+GiRYu4+eab8ff356mnnqJ///7Ex8cXDCguvfRSpkyZcsydIk90Xafae7G4HR0t/LVPobVevXqxZMkS5syZQ0REBOvWreO6664DoHfv3gDMnj2bs846i++//57Q0FA6duxYcPn82buqVauecGCVnJxc5LRjDQgBYmNjWbBgAT/88AMzZ85k/vz5fP/998yZM4eHH36Yjz76iHPPPdfn+/xn+bf/vPPOIzo6+rjH5g/CS+u5PlnHe8yOJ3+m/3iO9z6o7P1JRUQqGg0KRcRnU6ZMAaBZs2bUqlWr0HkhISFcffXVjB8/nrfeeoukpCS2bNlCr169zGZTPv74YxzH4dZbb2XkyJFFzt+wYYPJ9ZRU/qznpk2byM3NNZ0tPJFq1aoRFBREdnY227ZtK3YGNn9G7K8zib169eKJJ54oGBTmnwbQpEkTYmNjmTNnDosWLeLQoUOcddZZhe5b/nWFhoaWyuDV7XbTrVu3giWoBw8e5LHHHmPcuHGMGDGi2CWLmzdvplWrVkVOz2/T8OfHICEhgbVr13LrrbcWDIJPJDExETj2UuW/U2BgIEDBkt8/27p1a1nfHBERKcf0U5+I+GTlypVMnDgRONrDrjg33HADbrebl19+mZdeeqngNCt79+4Fil9yumbNmuP2oCsLsbGxtGjRgszMzGP2WSwt/v7+dO7cGYC33nqryPkej4e3334bgO7duxc6r2vXrgQEBBT0vnO5XAU98+BoX73ly5fz4YcfAoWXjsLRAVbz5s3Ztm0bv/zyi+n9Kk5kZCSPPvoogYGBbN++vdglqe+9916R0xzH4f333wf+r8YR/q+uderUqSd9G3r27ElAQADfffddwfLZE8kfrOXl5ZXo/JOVv6R27dq1Rc775ptvTilbREQqFg0KReSkZGdn8+qrr9KtWzcyMzMZOHBgsRuZwNFaun79+vH7778zY8YMatWqZbohRv7Sw7feeqvQLEh6ejpXXXXVKf8xbeG+++4D4NZbb+W7774rcv7cuXM5cOBAqVx3/uzp+PHjC2344/V6+e9//8uGDRtITEwssqFKeHg47du3Z8+ePXz44Ye0aNGC6tWrF5zfu3dvHMcpGOj/dVAIMGbMGAAuueSSQhvZ5MvJyeGLL75gzZo1Pt2nJ598slD9X75vv/2WnJwcIiMjqVKlSpHzp06dymeffVbotMcff5zffvuNWrVqceGFFxacfu211xIfH8/LL7/MuHHjiq2LW7VqFdOmTSv4/zVr1uTaa68lLy+PwYMHs3nz5kLHZ2dnF2xgky9/dnL16tXF3tf88zds2HBKr+X8Af0TTzzB4cOHC05fvHhxwetTREQEtHxURIoxbty4guV/mZmZ7NixgyVLlnD48GHcbje33XYbjz322HHrim666Sa+/PJLAK655hr8/e0+bq666iomTJjAkiVLCjZfyc3NZe7cudSuXZtBgwbx6aefml1fSQwZMoT77ruPhx9+mF69etGmTRuSk5PZt28fq1atYsuWLWzatImoqCjz6x4wYACjRo3iySefpGPHjnTv3p2aNWuyePFi1q1bR5UqVfjggw8K6uL+rFevXvz0009kZWUVGfTl//+srCyioqJo27Ztkcuff/75PP7449xzzz306NGDpk2b0qhRI4KDg0lNTWXp0qVkZGQwc+bMYusKj+Xhhx9m9OjRNG3alOTkZAIDA9m0aVPBjORjjz1W7DLdm266iUGDBtG5c2fq1KnDb7/9xsqVKwkKCuKtt94iNDS04NiIiAi+/PJL+vfvzz333MNTTz1Fy5YtqVWrFvv372flypVs2bKFoUOHMnjw4ILLPfHEE6xfv55vvvmGRo0accYZZ1CrVi22b9/O8uXLiYyMLFiumv8YvfHGG4wePZpvv/2WGjVqADB69GgaN25MnTp1aNOmDUuXLqVly5a0a9eOoKAgGjduzOjRo0/6Mbvpppt4+eWX+fnnn2ncuDGnn346O3bsYOHChYwePZrHHnvspLNERKRi00yhiBTx9ddf8+abb/LWW2/x1VdfsWXLFrp3784jjzxCSkoKEyZMIDg4+LgZPXr0ICAgAD8/P6699lrT2xcdHc2iRYv417/+RUhICNOnT2flypVcffXV/Pzzz6Uy0CqJMWPG8N1333H++eeTlpbG1KlTWbJkCfHx8fzvf/8rUo9p6YknnuCTTz6hZ8+eLFmyhKlTp5KVlcW1117L0qVLC20Q82d/Hgj+dVCYlJRUsHNp9+7d8fPzKzbjzjvvZNGiRQwfPpzMzExmzpzJjBkz2LVrF+eccw7vvPMOXbt29en+PPfcc1xxxRU4jsPs2bP59NNP2b17NxdddBE//vgjN954Y7GXGzlyJO+99x65ubl89tlnbN68mX79+vHjjz9y5plnFjm+VatWrFixgocffpg6deqwcOFCpk6dysqVK0lKSuLRRx/lkUceKXSZ4OBgZsyYwWuvvUanTp1YunQpH3/8MRs3bqRz586MGzeu0PHnnXceL7zwAsnJycyaNYtXX32VV199le3btxccM23aNC666CL27t3LlClTePXVV5k+fbpPj1lMTAzff/89F154IZmZmcyYMYPMzExeeeUVHn30UZ+yRESkYnM5x9qeT0TkFLz77rtcfvnlnHfeeUWW74mUtqSkJDZv3symTZuO2ZZCREREjtJMoYiYy87OLpiJuO222/7eGyMiIiIix6VBoYiYef3117nqqqto2bIlq1at4pxzzim0e6WIiIjI8Xi9XiZMmEBycjLBwcEkJCQwatSoQhtmWV5+xowZdO7cmbCwMKpWrcqQIUOK3U164cKF3HrrrZxxxhmEh4fjcrmO234pOzub+++/n7p16xIUFET9+vUZO3Ysubm5J3U/ypoGhSJiZt68ebzxxhukp6dz+eWX88477/zdN0lERET+QUaOHMntt99O06ZNefbZZxkyZAgTJ05kwIABeL1e08tPmzaN/v37c+TIEcaPH8/o0aOZP38+Z5xxRpHetzNmzOD5559n//79xfa//auhQ4cWbDb3/PPP06NHD+677z5GjBjh2wNSVhwREREREZG/2W+//ea4XC5n8ODBhU6fOHGiAzjvvvuu2eVzcnKc2rVrO4mJic6hQ4cKTl+6dKnjdrudESNGFMrYsWOHk5GR4TiO43z00UcO4Lz++uvF3o7p06c7gHP77bcXOv322293AOfHH3887v34O2imUERERERE/nZTpkzBcZwi+xGMGDGC0NDQE65A8uXy8+bNIy0tjWuuuYbw8PCC01u3bk2PHj344IMPCi31rFmzJmFhYSd1P9577z2g6L4K+f+/PK6kKpd9Cl0uV7Gnh4WFFWpUDbB27Vruuusu5s2bR05ODm3btuWhhx4qtqnyqfB6vaSlpREREXHM2yciIiIiFZvjOBw6dIjatWsft1/v3ykrK4ucnJwyua5GjRoV+dv4zy12fLFo0SLcbjcdOnQodHpwcDCtW7dm0aJFZpfP/9+dOnUqktOxY0fmzJnDunXraNasWYnuR1xcHAkJCYVOT0hIoHbt2ie8H3+HcjkoBOjatWuR3mZ/bUyc3wPK39+fO++8k6ioKCZNmkTfvn2ZOXMmffr0Mbs9aWlpRZ5YEREREamctm7dSnx8/N99M4rIysqibp1wduzylMn1ud1uqlevbjJpkpaWRkxMDEFBQUXOi4uL46effiInJ4fAwMBTvnx+zWBcXFyxxwKkpqaWaFCYlpZG06ZNiz0vLi6Obdu2+ZxZ2srtoLBevXpcfvnlxz3mnnvuYf/+/SxevJjWrVsDMGzYMJo1a8ZNN93EmjVrzGb1IiIiAOjaciT+fkVfaCXhPpBpkgPghNrcpnz7m9o1/84Ltp1Zrb5on1mWZ/V6syyArW8V/wFQEkkP2b0+ALaOCTHL8q6INMsCiH/8F9O8Q0Pam2VF/HFyu52dtKVrzaL8GiaZZQGQbvfemrpgnlkWwAVtTrcLM27Pe+Dc5mZZVRbvMssCIMD2a97ZVrJf/4tz4K2aZlkA0TfZfWbmJtUwywLwBPmZZaV1K/6P4ZKq+9w6s6wDPRqYZQFUWZR24oNOkmf3HrOsPCeX73M+KfjbsLzJyclhxy4PmxcnERlRujOZBw95qdMuhXXr1hEZeep/G2RmZhY7oIOjs335xxxrUOjL5TMzj35mFHf8n48tiRPdjpLmlqZyOyiEoy/qnJycQut88x0+fJjPP/+cHj16FAwIAcLDw7nmmmu4//77WbRoUZHp45LKH1z6+wXZDQr97H7BcYxuUz6/wGCzLCfQdlBo9fgDuFwBJz7IB36hdo+bv+HrA8DP8IcDV5Dd/QTwt34eAgyfB3/jX1oN76uf8fset90fm9Z/iPi7LP8Qth0Umr7erJ9TP+NBoeHz4Bdme1/93XlmWY6/7Wecy99uUOgOth0UWr63/A3fCwD+7vL7fX80s3yXE0VGuImMsHvtlYXQ0FB27Sr+x7GsrKyCYywun//f2dnZJbqu4wkNDS02Nz+7pLmlqXwuhAamTp1KaGgoERER1KhRg1tuuYUDBw4UnL9ixQqys7OPuQ4YOKX1urGxsYX+NWzYsMRZIiIiIiJlyYuDt9T/Y/sjW+3atUlPTy92QJWamkpMTMwxZwl9vXzt2rULTi/uWCh+aenJ3o/icvOzS5pbmsrlTGGHDh0YMmQIDRo04ODBg8yYMYPnnnuOefPm8dNPPxEeHn7S64DNrfrD7Jd+x9/u4c/q0sQsCyA3zO7Xr5rT7JamALiCDX+Vj6ttlgVQa7LhL98Hd9plAXVG2c14rb7NdsmMX9NGpnlRH/1qF9aisV0WsO71E/c2OlnJjx40ywJwMo+YZZ150ZVmWQCB1feaZa16oLpZFkCT0YbL0KPtlu4DeNb+YZrHaXZL5IOftp0pdA7vNsvyX7PFLAsgp2N9s6x6Y5eaZQFsv7qtWdYVN3xllgXwwopuZln1L7Wr4XKc8tl8vCJo374933zzDQsXLqRr164Fp2dlZbFs2TK6dTv+a8KXy7dvf7TUZMGCBUX2Ifn555+JjIykUaOS/X3Svn173n33XbZu3VpoT5KtW7eSlpbGeeedV6Lc0lQuZwp/+eUX7rjjDgYNGsSwYcN4//33eeSRR1i5ciXPPPMMQKmuA4ajuyb9+d/69ba1ZyIiIiIipcXjeMvkn6WhQ4ficrl4+umnC50+adIkMjMzueyyywpO27hxI2vWrCnx5bt3705sbCyTJ08u1N1g+fLlzJ07lyFDhhTZ5PJkXXLJJQBFbkf+///z7SgvyuVMYXFGjx7NQw89xPTp07n33ntLdR2wiIiIiIiUrRYtWnDTTTfx3HPPMXjwYPr168fq1auZOHEi3bt359JLLy04tnfv3mzevBnnT5uH+XL5gIAAnnnmGYYOHUrXrl0ZMWIEBw8eZMKECVSvXp2HHnqo0G3bvHkzb7/9NgC///47AF988UXBTqJXXHEFderUAeDcc8+lf//+PPXUUxw4cIBOnTqxYMECXn31VS6//HK6dOlSOg/gKfjHDAoDAgIK1glD6a4DPh53eBhuq80YPHa/roRssts1EOCMx+2WfM7KPMMsC2D3aXZZDe+yXYbjzou1C/PartM/2LqWWVbyc7Y7JDqpO0zzcnrYLdF02T4NJD+y3y7MeJMDp3Fds6yAtbbL9/f1slt+57/L9nGLm55llvX7U7b166OmzzLNe6273dJb15J0sywAT57dRjNHBtlsUpcvdOZysyx39RizLIAaz/9klvVmwNlmWQCNP9lqluU9yabjJ8Pt5IDxxtSl4WhNofGXWDHXYe3pp58mKSmJV155henTpxMTE8Mtt9zCmDFjTqovpC+XHzJkCCEhIYwdO5Y77riDoKAgevfuzeOPP15kHLFp0ybuu+++QqdNmzaNadOmAdClS5eCQSHARx99xNixY3nnnXd4++23iYuLY8yYMdx9990lfWhK1T9mUJiVlcW2bdsKNpFp0aIFQUFBLFiwoMixP//8MwCnnWY4ehARERERkVLl5+fHqFGjGDVq1HGPS0lJOaXL5+vfvz/9+/c/4XE9evQoNCt5IsHBwYwdO5axY8ee9GX+TuWupnDPnuL7yNx3333k5eUxYMAA4GjriQEDBjB37lyWL/+/X+AyMjKYPHkyDRs2NGtHISIiIiLyT1L6O48e/Y9UDOVupnDs2LH8/PPP9OzZk8TERDIyMpgxYwbfffcdp59+OrfcckvBsY899hizZ8/mrLPOYuTIkURGRjJp0iRSU1OZPn16ue8fIyIiIiIi8ncrd4PCHj16sGrVKt5880327NmDn58fDRs25JFHHuH2228v2FkUoEGDBvz444/cfffdjBs3jpycHNq2bctXX31VZGtZK3kN48Coqe2udnYb4dR6ebFZFkDPiFVmWYun2bYviL/O7nE7UquGWRbA4Si7t1ROl3pmWQDZUXYLA0JibJ/Tnf3s6h0B4t783SzLc8C27YNdYxBIG1W0T+upCDpgVxsS0MT2NZIRZ/f6rfGr5bMAmz9tYJaV2d52Ac9ztw41zUt52O410vB12/e9/6rNZlnha23r9PcNbmOWFbY9xywLYNuIOic+6CTVfWKlWRYAMVXtshra3U882bDCLq60eBwHjw/LHUt6HVIxlLtB4cCBAxk4cOBJH9+kSRM+++yzUrxFIiIiIiIiFVe5GxSKiIiIiMip+afuPip/j3K30YyIiIiIiIiUHc0U+sgvMxc/P5uxdNzHdr3ePM3taloAnjwvySzLe8Su5yHAzqdamGVFHLS9bXsutWtclHjZerMsgMjoKmZZTpRtvVjgQbs6UQBi7WpF/Wra9WUDYO8Bs6iE6bvNsgD+eMimXhrAvdL2NZL42EKzLFegUa/Z/2/f4JZmWYeSbHfyq/3uRtO86LqNzbL8DmeaZQEQGGAWdbCZYS0bEL3Y8L26y7a/Y50su1o7V7xtnWhG/WizrOAv7T5DvE6uWVZp8uLg0UyhnCTNFIqIiIiIiFRiGhSKiIiIiIhUYlo+6iPvyrV4XTZLVHJ72G1RHfjbVrMsANx2PR79E+PNsgACDtttJz/j9+/MsgC6rTzfLGv943avD4DGj9gtI9s82LaVR9L7qaZ5nrQdZlnbb2xnlgUQ/1meWZZjuBQVoO5VaWZZrjpxZlkAJCWYRWU2ijHLAsgJt/u8bHjPErMsAOolmsa57V6+ZNW0XTYeEFbbLCtqge13qpOVZZblOZhhlgXwx6Aws6y4eUFmWQBBe7LNsvzj7F4feLPB7uOy1GijGfGFZgpFREREREQqMc0UioiIiIhUMGpeL77QTKGIiIiIiEglpplCH7laJ+Pys1kzn9Lfblv0xuvstuIG2HCD3RbVDV7aYpYFEPjdCrOsRm/cYJYF0HCSXZFBssuuLg4gs63dc5r0VopZFkD9z2xbK6wb0cgsK3aubd3e4Ok/m2VNbZNklgXgNmxb4v3D9n3vrmbXIsCdZ/vLdo2L7O7rwf22tcRVvrVtu1PjI7tWSq4I27YleVu3mWV5jW8bXrtWI3v+1cEsC6DBw3bfqa4Qu7Y2AJ4GdrXJuYl27YXy8rL+ITWFR/+V9nVIxaCZQhERERERkUpMM4UiIiIiIhWMpwya15d2vpQdzRSKiIiIiIhUYpop9NE7U94hMsJmLN1vxE0mOQBOTq5ZFkCDFzfbhQXZ1U4CrHuirVlWgw8yzbIAvLvSzbLSrm1llgVwsFmOWVbyzipmWQAbzjximrfzkiizrNhZO82yAD4+r7NZVsqdtcyyAOq+uN4sa+u/7d6nAPFPLjTLCkzfY5YFsPffdr0Aw9NtP8vT+zc2zas+265+Mr2nXe9JAJfXridutbnGvX/97H6Dr/aa3XsBYM8wuxrFmB9sa+H52a7e0T862iwLx+77tDR5nKP/Svs6pGLQTKGIiIiIiEglpplCEREREZEKRruPii80KPTR5a064++yaf8Q4ve7SQ7Amv+1MMsCSH5wg1mW13ipVoMP7JYGBvxhu9Rl63V2Sz5Dd9p+1Ial2b3d4182XF4MpF5huwwy5ne75ahOqu1rxF3F7vWb9Pl+sywAoiPNohI/3m6WBeB12S1syevUzCwLIGZYil1YLdsFPMEr95nmeRJrmmXFzE81ywI43NTutm270K6FD0Dct3bfg35Rdu9TAHeu3fq/vOq2ty0g126J8erb7dpbeI9kwV1mcSLlgpaPioiIiIiIVGKaKRQRERERqWC8uPDgKvXrkIpBM4UiIiIiIiKVmGYKfZTXIRn8g22yQv1McgAa37PKLAvgwRVzzLIeGHCFWRaA/6oUsywnKMgsCyDhE7saGW9EiFkWwL5xeWZZqcNizbIAXJm2LSn899jU/QJknNXcLAsgL8TuV9XI9xeZZQFkn23XRuK8/802ywL49mK7bfOD1tjWsuXtNazb27PXLgvY8W+7FigAsT8eNMvKaG5bSxy2KMUsK3C/7Wcc2XYtDNbfnWyWBVD/Q7vnlN/s9iMA2Hd+G7Ms/yN2n73erH/G7JjXOfqvtK9DKgbNFIqIiIiIiFRimikUEREREalgPGVQU1ja+VJ2NCj0UeDKTfi7Am2yDLdYz27fyCwL4L56GWZZ7qAUsyyAXZfbLSep8cVGsywAb1SYaZ6lKgO32IU1TLLLAlIH227/XnvKerOs8A0pZlkA7lo1zLJyO9oubQ36aolZ1rfb7JZ7AjjrN9llhYaaZQH4NTX8/E3bZZcFxL212jTPFWTz/QeQW7+uWRbArgH1zbJi3rBdmu3Js1u+7/jbtd4A2DjEsBVNFdvPpCqGLVXO/++vZllZGXk8+IBZnEi5oEGhiIiIiEgFo5lC8YVqCkVERERERCoxzRSKiIiIiFQwXseF1ynlPoWlnC9lR4NCX7ncR/8Z2Dy5tkkOQNYWuy34ARrMsdtjOOeMZmZZACF7vGZZ3vjqZlkAful2W3t70223pncFGL7d03baZQFVNkSZ5pFrt/2749jut71tYLxZVs1Fh82yALbec7pZVuL/7Op3wPb1mzq8iVkWQECG3WvkcFw1syyAOo8sNM1zJTQwy4paa9gKAcipatfGxy8hziwLwAm2q8UMq3/ALAsg/nbDlkAej10W4KlqV+/YK8yuvjbDa/d3iEh5oUGhiIiIiEgFo5pC8YVqCkVERERERCoxzRSKiIiIiFQwHtx4Snn+x3bBsPydNCj0UVbbuvj7B5tkBc62qzGIXZ1llgXgF2NX15IdaPuB5Jdtt5Z/ZyfbWrYD7YPMspIfsXt9AKR3suuPF/OVbX/H0J/WmeZ5jxi+H1o0tMsC4t7fYJa1p69dXzaAOl/Y1bFuv+E0syyA6kvt6p6C9tvWicb8sMMsK/MF29vmF29Xuw7gWf2HWZarqe3r15KTkWmalxsXbZZV83+2rxFvuF3ezK/eN8sCOKffpWZZ9512tllWnjcHeMMsT6Q80PJRERERERGRSkwzhSIiIiIiFYxTBi0pHLWkqDA0KPTRln5+uEP8TLKSH1xvkgMwY/m3ZlkAva+42iwr9Ge75XIAuO0+gIK/sd0SPfYDuyVC2S0TzbIAolLsllQ6sTFmWQDpY/NM86pfbtcyw1m9ySwLwHLhV8z3aYZpsPamWLOssFSzKAByw+2+rqpOWWKWBUCk3bb5QffbPQcAubVt/2A73MFuOWrk9JVmWQDVnrcp7QBYMaeRWRbAx8OeMsu6s8uFZlkAnh12n5cd77zeLAsgeuPvZll/vJpkluXJzILhZnEi5YIGhSIiIiIiFYxaUogvVFMoIiIiIiJSiWmmUERERESkgvE4bjxOKbeksN0MV/5GGhT6qNoSN35GLRY2jGxgkgOQPMl22/z6f9gVBK16qp5ZFkDyDXY1BkfObmuWBRCcble3t62XbUuK+m/Y1Y0cbmxbUxj8mu3yE8ez3SwrZVQrsyyAepPstvTPS9lilgXw89D3zLIuvO42syyA0AV2bUscl+3rLbN9kllW6GbbOmdvqO3nSOTaA2ZZrtBQsyyAHePrmmXVyrOtc779y2vNspwE2z/y/Q8eMsva09L2vVX1S7v7Gv9CgFlWXp4Hu09ykfJBg0IRERERkQrGiwtvKVeKeU23T5O/k2oKRUREREREKjHNFIqIiIiIVDDafVR8oUGhj6otTMffL8gkK+Ynuyn3zPpVzbIAtlwQZ5ZV56NcsywAp7ldLeaRajY9J/OFrc80y6r3oe3jtvX8WmZZiR9uM8sC8O7YZZq3blITs6xGj+81ywLITapplrX1Ott63WF97WqT/Wt6zLIADndtbJYVtnq3WRbABeO/Mct64cNzzbIAEr45bJoXsG2fWda2y21r4eO+3GGWldHMtm7a5bX7vnes/3KLN/xu+DrHLAtg9+CmZln+R+yeA0+u1yxLpLzQoFBEREREpIIpm91HVVNYUaimUEREREREpBLTTKGPnCB/HD+bhy27VrhJDkDoItvNkT0hdks09zW22wYaIPabpWZZIbVsW1Jkx0eZZfnPXmyWBRDaspNZ1uc/fmqWBTCgdV/TPOeA3Tb8rtQUsyyAtGvtlrYmPbnSLAvAFR5mlpXTqIpZFsC+BnZfV+FLbZe4TW9V3SyrXnXbz3Inx/a+eg5mmGWF7kwyywJw5dktWQ7darvslt82mEW5WjUyywJwttq18PGPDDbLAoh5z64FlTu6illWntf2fVVaju4+Wro1f6WdL2VHM4UiIiIiIiKVmAaFIiIiIiIilZiWj4qIiIiIVDBe3HjUvF5OkgaFPnLWb8Zx2dTIuao3N8kBoGoVuywgq4rdh0jsc7+aZQE4hlt7h245aJYF4Npp174gu1c7syyAqh8vN8sa8JVtDSCO7fbeERvtWo04dWLNsgCqrs0zy8rsblefCLC9i93j1uBJuxoqgIBDiWZZnljbFj4Zp8ebZR1Msm2TE9zLtv1GzHC7+qGo9bZ1ezlx0WZZgSm2j9u+QW3MsqrM2WiWBeB47T5//fbY1ZwCuGra1evmbU2zy3JsW0aJlAcaFIqIiIiIVDBqSSG+UE2hiIiIiIhIJaaZQhERERGRCsaLG69qCuUkaVDoo92Xt8Iv0KYPT/R6wz43e/fbZQF5ITXNslzBQWZZAJvutqvFzImxq+8CSB65xSwrO9r27Zk5qKVZVkac7ZdM3NO2dadxr/5mluWqZlenBBC8065v556WoWZZAHXvXmAX1tiu1ylAwA92z6k7obZZFkBU2h6zrEPxSWZZANUu2Gqal31GM7OsfY3s+okC1FhoVyO+/ma7GlaA+g/a9df1tGxolgWQdo9df8eM3Xa9TgEiV9l9XsZ/athPz5sNm+3iRMoDDQpFRERERCoYj+PC45Ruc/nSzpeyo5pCERERERGRSkwzhT6qujoLf6NHzX/Rapsg4FC/VmZZAO48uzXiB861W24EEPGHXVa1exfZhQFrXj3NLKvhq1lmWQB+K+0euCNXtjDLAvB2aGqa51q23iwrJ6maWRaAf4bdVuY13rZrMwLgWH24AWl9a5hlAdT+wG5p4KGWtrdtd2u731frPrrELAvAFW/bUiVosV2rkVqLbGuRPIcOmWU5o4y/U6sZtkH5zbYlRe0Lsu3CjNsLbb+9k1mWY1hm4ziG5T+lyFMGfQo9qimsMDRTKCIiIiIiUolpplBEREREpILxOm68pdyn0Ks+hRWGZgpFREREREQqMc0U+mhbn2DcwTYtKeID7GrtIlbvNcsCiJizyyzLe/iIWRaAX40YsywnMtIsC6DRNYvNsvyq2rZC2DXUrpVH80tWmWUBpP+cYJq373y7msfoFfvNsgD2trJ7Xquu8TPLAlj/ut3j1nicXZsGACfT7nMk4nfb27Y32bBG0W37W60rz67dAMC2q+y+t6I22bYECt5pVxtXbbrN93w+7x6772hv60ZmWQD7G9q1kTgcZ7sTZcJX+82yXGF2LXxcXn+wK3MWKRc0KBQRERERqWC00Yz4QstHRUREREREKjHNFIqIiIiIVDBeSr+5vG0TEvk7aVDoo3ovp+DvDjTJOtgpySQH4GAduzo7gGorg8yyNp0fYZYFUPcTu15UeQ1rmWUBBCxaaxdm2DMOIHi/3Uf30i9s+wombbXtu1Vtl817FMDJMuzhBVT9KMUsy5tte9u82XY1ipl1bOt1g1atM8vyz6pilgWQ9GaKWZZT17a+tvk7hp9JQMb9dp+ZgfvtenYC+K/fZpZVNT3KLAvA26S+WZY707ZHXvQUuxrxX7b8apYFcPWgLmZZ28+2+3z7p/QpFPGFBoUiIiIiIhWMFzfeUq4UK+18KTt6JkVERERERCoxzRT6aM1/4nGH2GxVnfil3Y5NNb7ZbJYF4Klht21+/XfSzbIAcmrZLUd1Z9tu147h0q/MBNtlt5Hz/jDLilpkvF37QbslwQDu6tXswqpVscsCNv7bbhlZg9d3mmUBNLl7k1mWy6h1T76cLq3NspyVdu8FAFyGv69G2rUHAPAzrvgJ2Z5pluWXavvd4Bg20V53nWGbEcATbdd+o+Z3tn+6ZfbpYJbVL9mu7QOA55Ddd4Nfk4ZmWXiyYb9dXGnxOG48pdy8vrTzpezomRQREREREanENFMoIiIiIlLBeHHhpbR3Hy3dfCk7mikUERERERGpxDRT6KOGo1bg7wowyXJXsdvyettljc2yAGpPWmaWNWPDT2ZZAO3vvcEsq8asrWZZAN7ocLOsgEy7GhRruXFVTfP8du42zSPbbrvwnLrVzbIAGr5o95rLjTesnQQCPHb1Zzv6xJplAUT9YfecBtSwbeGTWd/u/RD6o20LieXn2D4PnsY2338Afn52LQIAvAczzLKC021/M6+ywO6+hu7IMssC8D9i14Lqi9VzzbIA+sW1tQsz/HwzzSpFqikUX+iZFBERERERqcQ0UygiIiIiUsF4cOMp5fmf0s6XsqNnUkREREREpBLTTKGP/OJj8XPbrL/fcVZtkxyA2vP2m2UBeI8cMcvq1+18syyAGtl2NVn9vl5ulgXw7G89zLJC5oWYZQGExdQzy/I/YltP4e3b0jRv6zl2WZGrjT8mWyWaRYXssX0ewkLs7mvNaevMsgCyWyaZZR1oZVtTGPXtGrOslFubm2UBxM216ysItr1d93S36+sKUHWG3X1N/GKPWRZAlynLzLJ+7NfALAsgcpXd49Yvvp1ZFoB/nXizrLz1dn1YPU6uWZZIeaFBoYiIiIhIBeN1XHidUm5JUcr5Una0fFRERERERKQS00yhj7wRoXj9bJaP1nhnhUkOgLdFfbMsAL+ICLOs3Fp2rTcA/H7+zSxrerdGZlkAMT1CzbJCdtgu+wrcttc0z5IndYdpXpMf7V6/3oRaZlkAR+LCzLJCUw6aZQFsOc+utUJkzYZmWQBB++2WLUYtM26BEmS3pX/i+MVmWQCZZ7cyzdvWx25WIGq17e/STna2WVbq2bbtXn4Y3NQsy1vT7nsGgN/SzaK23N/JLAvAsi967fk1zLLy8rJg3jSzvNLiLYONZryaX6ow9EyKiIiIiIhUYpopFBERERGpYLyOG28pN5cv7XwpO3omRUREREREKjHNFPrItW0nLlegTVbN6iY5AF6vY5YFsHeAXf1D9KcrzbIA1k6w2/K68X9WmWUBRP5uV7e3erRtLWbc9FizrMg5tu0G1j7b2jSvybMHzLLch2xrO8N/tavf8STY1cgAtDp3tVlWjtfPLAsg8zy7msKNo5LNsgCC9tnVnXpsvl4KJL1n18IHoPWoLLOsRwZ8ZpYFMHLhtWZZ8ZPsatcBUm6xazVSY4ltO4RQw5rYpPHLzLIA9l5gVxMbtHWfWZafx65+tTR5cOGxLMw8xnVIxaCZQhERERERkUpMM4UiIiIiIhWMagrFF3omRUREREREKjHNFPrIOXIEx2VT25LVrp5JDkDwshSzLIDoLLt6xwMDWphlATQevcw0z9KhZLs+b00ftu3dl9GsplnWjqG2NVmNX7btt8cOuz50mR1te4AGTV9klrX/TLvPEACny36zLP/EeLMsACd7j1lWjSVesyyAiDlrzLIyujc2ywLAuN481N+unu2qe283ywLYdZXdfXVctp9xTR/dbJa1o1+iWRZA0KFDZlkuP9ta4rCddq83z0a758Dj2NZ1lhYPpV/zZ1ftLX83zRSKiIiIiIhUYpopFBERERGpYFRTKL7QoNBH3pw8vC6bqfjDsXZ7jwftsFvuCeDautMsy9uyilkWgDfHbtnGhifbm2UBJH1hd9u2nh9nlgWQMOUPs6ywH2234953tu2SueCaoWZZYUtst/R3atq1kYjcdMQsC2DbPZ3Msuo8Z7ulP0afuwDhX9m2yXFFRphlhW0yXkrtZ/sH297z7JYHRsfb3teojXZ/0uxqF26WBZCXmmaWVWtWgFkWQJ5ju8TYUsCspWZZ2+4+3SzLk50FT0wzyxMpDzS8FxERERERqcQ0UygiIiIiUsF4HDeeUl7eWdr5Unb0TIqIiIiISLng9XqZMGECycnJBAcHk5CQwKhRozh8+HCpXH7GjBl07tyZsLAwqlatypAhQ9i0aVOxx65du5ZBgwYRHR1NWFgYXbt2Zc6cOcUeu2XLFq677joaNGhASEgIcXFxDBgwgPnz55/cA1HGNFPoI3egP26XzXr+6A+XmOQAZHe3bfsQctiuVik8NccsCyC7b1uzrIajfzXLAvCLr22WFb/FdmtvgoPMolIvsm2FUHvyctM8PHabZHtaNDTLAvDbtd8uzLDODqD6cruaWCcvzywLwGlS1yzLfdC2FtNr2ALFu8KunhvA1bSRaV52Pbv69S1n2dXVA9R/wO47teavthvtu6vZtSs6nGy7h8DmO+zqnMNTbP+sDEuzax9T5+NdZll5nmzWm6WVHgcX3lJuSeGUQv7IkSOZOHEi559/PqNGjWL16tVMnDiRpUuXMmvWLNzu489p+XL5adOmceGFF9KqVSvGjx/PgQMHePrppznjjDP49ddfqV37//6u27hxI507d8bf358777yTqKgoJk2aRN++fZk5cyZ9+vQpODYtLY127dqRl5fHddddR8OGDUlLS2PSpEn07NmTzz//nHPPPdf8sTsVGhSKiIiIiMjf7vfff+fZZ59l8ODBfPzxxwWn161bl1tvvZX333+fSy+91OTyubm53HLLLSQkJPD9998THn50g6lzzjmHdu3a8eCDD/LKK68UZNxzzz3s37+fxYsX07p1awCGDRtGs2bNuOmmm1izZg2u//9j7Ztvvkl6ejqffvopAwcOLMi45JJLaNiwIZMmTSp3g0ItHxURERERqWDyawpL+5+lKVOm4DgOt912W6HTR4wYQWhoKO+8847Z5efNm0daWhrXXHNNwYAQoHXr1vTo0YMPPviA3NyjK2gOHz7M559/To8ePQoGhADh4eFcc801rFu3jkWLFhWcfvDg0d2V/zzTCFCrVi3cbjdhYWEnfCzKWrmfKczMzKR58+Zs2rSJm266ieeee67Q+WvXruWuu+5i3rx55OTk0LZtWx566CF69epVOjeoQR3ws1mGl94+2iQHIOiQ7ZbSwf52Sxfd2bbLcEL22i392nO5bUuKmAV2y8iczdvMsgCyOzczywo8aPt6O3R2c9u8BLvXb62nfzLLAiDObonxvuRgsyyA6m/bbf9+pJftkvYjMYZfV06kXRZQ5W27di8HLutolgUQssf283dvE7t2COuHvWCWBVAv/DqzrPBNtsv3o/6wex7CZiwzywJost6u/ZErM8ssC2D9LXXMsqJ/s1uu7HjKbxuPf7pFixbhdrvp0KFDodODg4Np3bp1oYHXqV4+/3936lS0HVPHjh2ZM2cO69ato1mzZqxYsYLs7OxjHpufl3+9Z511FuPGjePGG29k/PjxBctHx4wZQ3h4OKNGjTqJR6NslfuZwvvvv5/du4v/Qzt/be+CBQu48847GT9+PBkZGfTt25dZs2aV8S0VERERESkfvI6rTP4BNGzYkNjY2IJ/JZWWlkZMTAxBQUUnYOLi4khPTycn59h7Vfhy+bS0tILTizsWIDU11edjAXr27Mnzzz/Ppk2b6NmzJ/Hx8XTo0IG1a9fy888/07at3f4YVsr1oHDJkiU8/fTTPPTQQ8Wen7+29+uvv+aee+7hxhtv5Pvvv6d27drcdNNNOOW4IauIiIiIiPyfzMzMYgd0cHS2L/8Yi8vn/3dxx5/KsfmqV6/Oaaedxvjx4/nss88KNrI599xz2bp16zHvw9+l3C4f9Xg8jBgxgrPPPpvBgwcXmWY90dre+++/v9A0roiIiIhIZeHBjaeU53/y89evX09k5KkvzQ8NDWXXruJ3is3Kyio4xuLy+f+dnZ1teizApEmTuPHGG1m6dCnNm/9fiUzfvn1p27Yt99xzzwnrI8tauR0UTpgwgTVr1hTaOejPfF3b66u/Tn17vUe3RXbWb8axakkRaVcP5PfLKrMsAK9jtw20344QsywAV6zd9tnuPNvZZNN6iroJdllA0PLie+6URLVDdjUoAH479pnmRc4+ZJblbWdXiwngbLHbFr3e8HVmWQAZ8+PNsrwBttuUu3Pt3quHY23/SPK/yK4OMHrlfrMsAFeaXZ0zQNVR4Sc+6CT163mhWRZAYj27763u434wywL4pYPd4+ZXy+47ECC3eoRZVkCabSuaf5/3pVnWjGft6pzd3qIDA7FRu3ZtVq1aRXZ2dpFZudTUVGJiYggMPHZ9qC+Xz98EJjU1lSZNmhQ5Fv5vaeifj/2rvx4L8Nhjj5GcnFxoQAjQokULkpOTmTdv3jHvw9+lXC4f3bRpEw888AD3338/SUlJxR7j69peEREREZHKoixrCq20b98er9fLwoULC52elZXFsmXLOO2008wu37790c0GFyxYUCTn559/JjIykkaNjvZ6bdGiBUFBQcc8FiiUnZqaiucYPZPz8vLIM+7la6FcDgqvv/566tWrx+23337MY0qyttcX27dvL/Rv/fp/QptSEREREZF/pqFDh+JyuXj66acLnT5p0iQyMzO57LLLCk7buHEja9asKfHlu3fvTmxsLJMnTyYjI6Pg9OXLlzN37lyGDBlCQMDR1YHh4eEMGDCAuXPnsnz58oJjMzIymDx5Mg0bNiy0OrFp06YFm8r82YIFC1i3bl3BgLQ8KXfLR9955x2+/fZb5s+fX/BEFMfXtb0iIiIiIlJ+tWjRoqAF3eDBg+nXrx+rV69m4sSJdO/evVDj+t69e7N58+ZCG0v6cvmAgACeeeYZhg4dSteuXRkxYgQHDx5kwoQJVK9evchGl4899hizZ8/mrLPOYuTIkURGRjJp0iRSU1OZPn16QeN6gAcffJDBgwdz5plncv3119OwYUPWr1/Piy++SGBgIA888EApPoolU64GhdnZ2dx+++3069ePWrVqsWHDBuD/loEeOHCADRs2EBMT4/PaXivu+FjcRn0K/TbZ1RZln2Hb582da1ebEbBtj1kWQN66jWZZVQ37MQLs62xXkxU9P8UsC2DNM3b9nmp9bvMeyBcSZtf7DCAw1a4fFcvX2mUBVIkyi9rxRH2zLICQdcfv/+SL3UNt6548wXY1hQEZJz7GF5GfLzPLch2nVqYkPMl273uA0GF2NYqeeNt+kdsut1uONX9XA7MsgJD6dp+ZeattVy7tHGRXvx4/1baGdfoZds+DNyPdLMvj5JpllSYvbrylvCiwNPKffvppkpKSeOWVV5g+fToxMTHccsstjBkzBrf7xNfny+WHDBlCSEgIY8eO5Y477iAoKIjevXvz+OOPFxlHNGjQgB9//JG7776bcePGFfRH/+qrr+jTp0+hYwcOHMi3337L+PHjee211zhw4ADR0dH07duX++67r9AmmeVFuRoUHjlyhN27dzN9+nSmT59e5Px33nmHd955h/Hjx3P99df7tLZXRERERETKNz8/P0aNGnXCBu8pKSmndPl8/fv3p3///id1bJMmTfjss89O6thevXrRq1evkzq2PChXg8KwsDA++uijIqfv3r2bG2+8kbPPPpurr76ali1bFqztnTZtGsuXL6dVq1bAsdf2ioiIiIhUFh7Hhcd4I5jirkMqhnI1KAwICODCC4tuUZ3/S0D9+vULne/L2l4rnqphuPyNWkms/8MmB8g+3bZ9AYadGia8+6FdGHBHi7PMso4k2i3lA+h/73dmWe807G2WBdDw6sVmWVm9WpplAQSuTDHNcwzblvjVtF0G6d1/wCzrrifeMssCuP20q8yyku4ruorjVGx48nSzrAav7zTLAtj+r7ZmWTVfWXjig3zgWm7btiT12nZmWWE7it+Zr6Ti3rf74sqKiD3xQT4IybUrF/F2aW2WBRD7wq9mWbbPKHjbNznxQSfJ/ze7tkxuxw3/jBWkIietXA0KfeXL2l4RERERkcqiNFpGFHcdUjH8IwaFSUlJhXYW+jNf1vaKiIiIiIhIYf+IQaGIiIiIiJw8x3HjdUp391GnlPOl7GhQ6KONF4biDrGpKUw+2MgkByDiR7u18gCbnqtplnV7vS5mWQDupnatRrYOsy0KmDGmh1lWVjfb6oyc7i3Msg4m2X50hKTZvd4AnFV2bUvSRtjuYlzrp/1mWc+1MosCoEZfu1Y0WefaNuYN22b3h0dubdtaYsvnNKtPG7MsgODttv03cgwfOm/vg3ZhQOz5a0580EkKi7Jtl5Hd1q61wuFY2xY+0Yvs3ltbRtrV1wLUef43s6yUW+1ad3mys+B/ZnEi5YIGhSIiIiIiFYwHFx5KeffRUs6XsqM5XxERERERkUpMM4UiIiIiIhWM1yn93UG9hi3M5O+lQaGPGk1Kx98vyCZs916bHCC3ZZJZFkDdEXY9FF21a5llAXj/2GKWVfNT2357wXtyzLKa/M+2l1pOXbt+ezUXZJplAXiXr7bN625XlxX7jl1NCwBuuy/o3NPs6pIBIr63e997k2zf91suCDTLyow16jX7/4XsDjHLOlLDrq4ToPHTtnV7Cd8Y/tlgmQVk97Or//U7Yvs8ZFe1u69Vv15vlgWw5b36Zlk1XrGt01/3ot1tq/1RnllWXm4eG8zSRMoHDQpFRERERCoYbxnsPlra+VJ29EyKiIiIiIhUYpop9JGzLQ3HZbOMyVW/jkkOQGYNu6VVANkXNjXLinlzsVkWgLeD3W3bdZrtWvu8ana/syQ/E2GWBeD+YZlZlismxiwLwB0aaprn9dgVOWx9M94sCyDh+nSzrMANtkuMPQftlhq6Vh4yywJo9LLhUtlflthlAf5JiXZhObbL7/DaLoM82CDMLCt60S6zLICghSvNsvwa1DXLAsiNrG6W5U2wXZqd+F+715xn9a9mWQBfvPSjWdZtV3Q1y8pzjN+nIuWABoUiIiIiIhWMFxfeUm4ZUdr5Una0fFRERERERKQS00yhiIiIiEgF43FceEq5JUVp50vZ0aDQR67gIFxGNYU7u1Q1yQEIOGzbKCZ6zRGzLCfXrk0DgP/arWZZDd+0rY3b0dXuOd080C4LoM46o1YqAMbPaU7HJqZ5mwYGmGU5223rdalmty369m7VzLIA9rWyq59s+kiqWRaAO8WufnLDwx3NsgDi59i9H4JW2rXcAdg2rKFpXtXVdrVU3i22rxH/BMP63yzbz7iwb+xa23gzbVsC0cTuNZLXq61ZFsCoNlXMslytattlebJhuVmcSLmgQaGIiIiISAWjlhTiCz2TIiIiIiIilZhmCkVEREREKhgvLrylXPOn3UcrDg0KfbTpxib4BQebZIUYthiLXrbPLgxgQ4pZlBNkWMsGZLdKMsvyBNpOlgcdsKvtjP1is1kWAFWizKIcj23vM0+Q7fPQ5OntZln7To81ywLY086uDjB8u8csCyD2S8Marzy72kmAHefVM8sK3WH7R0zQ8k1mWduHJptlASRMtavBBvCm7zXL2j3Mtv7ML9suK2S37es3eI5df9K9/+pklgWwaOyLZlm9rrzGLAvAWz/OLMu9zq5e1+3Y1pyKlAcaFIqIiIiIVDBOGfQpdDRTWGGoplBERERERKQS00yhj+p+uAt/P5vlkN4Im2WopcFdza4dghNiu3z0YB27FgEx79vuKR1m+bhl2rUFAchua7f8LruK7UdH1M/GS9xi7JbKVlm+xywLgN12y+9cRkvZ8+Wl7TDLcgfatQUBCNtpt1TWZbvqlrxGCWZZsVNWm2UB2DYrAjx2D17191aYZQFknNXcLCv426VmWQCHBp9mlpVZy3Zm5pzGXc2yAg7bPm7ueolmWd6Gdu9TrycbbO9qqfA6ZVBTqD6FFYZmCkVERERERCoxzRSKiIiIiFQw6lMovtAzKSIiIiIiUolpptBHroxMXG6brarTu9cwyQH72oy9A1uYZVVZsd8sCyBmoWH7Da9tawUny25PdCehplkWQHoLu9rO2i8tMcsCWDWhpWle41vsbl/Dn23rJTYMq2uWlbdmo1kWAB2a2WWt2GCXBextYvd1Ff/tAbMsAPeBTLOsIx3qm2UBBH6z2DTPP96uRcC2C+zqxQCqbLRrI+Gun2SWBbCvkd1v8EnP29adEmv3t4h/nm3B7pbBdi2B4r8yrOc2rK0VKS80KBQRERERqWC00Yz4QstHRUREREREKjHNFIqIiIiIVDDeMmheX9r5UnY0KPwbVX/brsmNu2Z1sywAvxy77lYbL402ywKo/75hTaGfn10W4E2qZRe21LZuJC7Nrnefq4pdFkDySNuaWKdFY7OsDefsMssC2HuWXS/Lqjm5ZlkA2WF2vQV3/Lu1WRZA3NzDZlnO4t/NsgB2X9XJLCsvxPYPLP8rO9rmZdl9N9R+ZZlZFoCTa1dTuPkOu76CAGFpdo+bZ5/hdyDgH233eb56pG0tfOPJdvfVtd2u56zLm2OWJVJeaFAoIiIiIlLBqKZQfKGaQhERERERkUpMM4U+ymweh39AsElW4De7TXIAXAcOmmUB4NQ2i6r3kG37gsyzWpllhe+OMMsC8K5JMcvac3l7syyAyBS7dhmz3nvNLAugX8vepnnnv/edWdbLTw80ywJoPGyNWdb+hbZLsw/Xsls++vstL5hlAfT76HyzLKd5slkWQPWFhlvdZ2aZZQF4o8Js8wLtltyvf8jusxzAG2rXYqjhzQvMsgA2vNXaLGt/I7vlygD177NrW9Lw3UizLIDDdQ2/o5PssvJys2C6WVyp0Uyh+EIzhSIiIiIiIpWYZgpFRERERCoYzRSKLzRTKCIiIiIiUolpptBHoWt24O8OMsnK7djcJAdg7UUhZlkAjV9MN8vacVVbsyyA2C+3mGXl7bSr6wTwq1rFLOtwrO2vb9V+zTTLOrvu6WZZAPuGNjLN+/DGOmZZ3ttst3/f28vuecju2cAsC2BXZ7tt889bf7ZZFoAr2679Rm4t25Yqe1rYff5GbPWYZQEE7bWrJQZw59jdvvp3/myWBeCflGiWtem/tnV7jW+1azF0qKft56U7xGafBADniG2bnPA5KXZhn4WbReUdzlZN4Z+uQyoGzRSKiIiIiIhUYhoUioiIiIiIVGJaPioiIiIiUsE4gJfSXd5pV3QgfzcNCn20v31tsz6FkdNXmuQAxNWwq08EyI6zq7mp+dZysyyAtH+1Nsuq+bJtTSEuu8n3nGjbj9o1o+z6lTW6Os8sC6DK27a1RX4N6tplfVHTLAsg9wy758H/sO3zELPQrrYo671aZlkAAbnb7bJW29UlA8Q4drVsfovt+lgC9Fts97gBfNkixizLPz7OLAtg7Y12/XXrfnnELAvAFW33neoJMP4jP8DuT0HXlh1mWQAE2ezhAODpmWaX5djWToqUBxoUioiIiIhUMNpoRnyhmkIREREREZFKTDOFPtrRx4M7xGZL7vCP7LamD9182CwLYNdDdsvSYm+qapYFELbDbkv0rXecZpYFkNXMbslRwycPmmUBZCbaLVvMOredWRZA2DzbJXNbB9otXYxKMW4RsNJu6eLW4Q3NsgDiv9prlnUkIcIsC2DD/+yWGgZttFsmC5A0fplZ1oGBrc2yAGYOjjfN855h97w6qzabZQE0emKjXVie7dLsLVcnm2XVHr/ALAtg1786mmXV+HiVWRbAhmdjzbLqDbf7TnU5brDt9lIqNFMovtBMoYiIiIiISCWmmUIRERERkQpGM4XiC80UioiIiIiIVGKaKfRRg9ey8fe3+VXEHWZX4zVz+rtmWQD9WvSyCwu3u58Akd9vssv6JsssC2DrtXatQbJq2749cyLsfgOq8vshsyyAff2bmuYlTt1mlpWZbNuSYuf5DcyyQncad4j6w67eMTTL9nFLvtWu3nHvuU3MsgByOtrlRX1p16oIYNv1rUzzas85YJaV27yOWRaA/5INpnnlVVb/9qZ5NX5KN8s6cKZd7SRAw3vsWlxknGn3XsjLzYKvPjTLKy2aKRRfaKZQRERERESkEtNMoYiIiIhIBeM4LpxSnskr7XwpO5opFBERERERqcQ0U+gj/9Q9+LsDTbLyjtjVs/VL7maWBUBcNbMo7+ZUsyyArK529We5EX5mWQBRm+x62oX+sd8sCyDz9BizLHd2rlkWQNUF203zAt60ayDlf6/tfa3+5gqzrH0XtTXLAnAFBphltf94nVkWwFuLO5llJd+4zCwLwF3bri9mbiu7mlOAuOeXmOa56iWaZR2qadvLMiq2hlmWs8X2eytxil297paL7Z4DgLC1XrOsnOH7zLIAdofWNsvKrmo3o+XJ/mf8+ezFhZdSriks5XwpO5opFBERERERqcQ0KBQREREREanE/hnz3+VI3s5d4LJZYuXXqL5JDgB7bJdsbDmvullW4pe2vz0EzV5mlnXk4tPMsgCi3ltklpV5ju3SwOpf27XyGD5vgVkWwMT/XGyaFzQmzywrIMtuKSqAy2W31CYg027ZF4AruopZ1qI+Nsvs8zXas9QsK69zC7MsAPcPy+yyUoPMsgDcNew+ywE4eNgsKjzF9r46qXbtC/Zd2NosC6DKmgyzrPiZdu1ZAA62sCstANu/RarP2myWdaBjgllWXq5dqUhpUksK8YVmCkVERERERCoxzRSKiIiIiFQwakkhvtBMoYiIiIiISCWmmUIf+dVPws/Ppg7C+4fdFtXpw9qZZQHUeSfFLMuJCjfLAqBFY7OoKh/Ybte++b+nm2XVeXShWRbAqpdam2W9fuE5ZlkAUbvt6kYAnLAQs6wdZ9q1GwCogV3LgciV6WZZAJ6YSLswyywgr6XdNvxBS/4wywJwWiabZe1pG22WBVB99lbTvJ197Z6HGvPsagABDp7d3Cyr6tcbzbIANt3Y0CyrynrbWuLcMLuZnuoX2v1dA5DXupFZ1qF4uxZUnmzbdlalRTWF4gvNFIqIiIiIiFRimikUEREREalgVFMovtCg0Efezal4jVpSuILttuOOWWG33TVAyrAks6zo9bZbN/sftls6E7bLcituSHpimVmWK8lu+2yA5GfttpJ3Zdq2acjbuds0z9u1pVlW9LocsyyA3Ci7933w7gNmWQDOr3bLKtc9394sC6DBlFyzLFeo3fJiAGej3RLN6nsPmWUBZDaLNc2r9trPZlnpwzqaZQHsaeWYZfll1zXLAqj73BqzrNwPw8yyAALOt/scyT29iVkWQOAfdt8NsS+tNcvKc3JZbZYmUj5oUCgiIiIiUsE4ZVBTqJnCikM1hSIiIiIiIpWYZgpFRERERCoYB3DsVlUf8zqkYtCg0EdOywY4/sEmWZmxdnUtoTOWmWUB1FlvuKX/JU3NsgCqbztiluWE2jyX+XKSbespLAVt3W+Wte6GmmZZAPXvSDHN8z9gV/Po+NsuqLh+yqdmWRNvutgsC2DXxXZ1rNWW2v6pkNbF7usqcZlt3d7ewXY1rJGb7D7fAD6a/Ixp3rCzrjTLqj4v1SwLoOqqKLOsjMRQsywAcvPMoty9bduMOKF29zVwy16zLADniN37wV2/jl2WJxvsykRFygUNCkVEREREKhgvLlyUcp/CUs6XsqOaQhERERERkUpMg0IREREREZFKTMtHfZRVPQT/AJs6tPDVe0xyADwe216A6/9jVwfY6MU0syyAbQPjzLLiP0o3ywLw+tstowgx7BkHcKhbQ7OsuO/sekUCbHjydNO8yA12v3fFfmBbOPLs9UPtwvzsogAiN9s9rxEfLjLLAvCeYVe3546MMMsCyKpm977PrmJby3bZBdeb5rk3rTfL2vLvtmZZAHU+tKtRjEzZYZYFQIhd/frmUc3NsgCqrrJ731dZYfd3DcC+F6qYZUWMtXtv5eX9M+ZU1LxefPHPeFWLiIiIiIhIqdBMoYiIiIhIBeN1XLhKeSbPq5nCCkODQh+Fph3G389ma+mcOLvts4MOxphlAdS/d7FZ1q4r2pllAdT4NdMsK6eBbWuF4NQMuzB/27dn8N4cs6yApRvNsgAa/xJkmrf3rPpmWZkd7bIAgmYuMcvadpftstukN+yWLDdcZPuHwvcv2y2/q7nd9vUW9+V2s6zVd9p+ltc0fh68OblmWfGzD5plATj77fLWTkwyywJw+dm1aKn6jW27l58mvGSW1WCK7XLlxtfbLQnOseu4g8ZBUhFpUCgiIiIiUsE4Thk0r1f3+gpDNYUiIiIiIiKVmGYKRUREREQqGO0+Kr7QoNBXhnPxKSPstoGuNrOeWRZAtc9+N8uq+sZCsywAl5/dPvx+1aLNsgDydu4yy/rjsY5mWQCNnttiluVplGiWBeDevNM0L/qTFWZZTjPbmsJXUuaZZV0y6jSzLIBDHeye199vizXLAqi5cpVZlreBYXERsHGIXYuLpuPs6hMBnEOHTfNcNaubZWVF2dZ2ejo2MMtqMNyu9hcgt08bs6zg1L1mWQBnJ9p9jjQKX22WBUCwXS2xO8/uby7LLJHyQoNCEREREZEKRjOF4gvVFIqIiIiIiFRimikUEREREalg1KdQfKFBoY8y6kbgH2Czxr3uy3Z94/bZlVIczevf1Cyr6k9pZlkAeTXs+js2fNG2/mHWR53Msup+YdePEcCzw65uzx0WYpYFsH607Qs4cL/dl1SdV9aaZQEMHjPaLKvmD5vMsgBy6tcyy9p4kW29WPJyu33PrWtYG75l17vvcGO7mj2AkPm7TfMsd5/fcmagYRpErTcMO6etYRgE7zxilrW3jW0tfPQmu+fBMexjCbDlumZmWY7h2jhPtj8ssssTKQ+0fFRERERERKQS00yhiIiIiEgFo+b14otTGhSuWbOGLVu2kJ6eTkhICDVq1KBFixZERkZa3b5yZ09TP/yCbFoixP5kN1EbkGn7rqzyyTK7sOoxdlkAi34zi1rT2Xb5Uu12dtu/p3YPM8sCiI5tZ5YVtch2SXDQHtuahMQX7V4jec3rmmUBVH9vuV2YYXsAgAP17ZYFJ//Xrq0NAG6710hu4zizLIADDewet5if7NraALgi7dplAGweZtf+qP5HB8yyAPx27DPLWjWmtlkWQNP/pptlVT1iu0TT6/GYZeV1tlvuCVBtVZ5Z1uFadu2sPDkaCUnF4/OgcM6cObz66qvMmjWL9PSiH3Jut5s2bdpw4YUX8q9//YuYGOMBgYiIiIiIHNfRmcLSbklRqvFShk56UDht2jTuvfde1q1bh+M4xMXFMXDgQGrVqkXVqlU5cuQIe/bsYc2aNSxbtoxff/2VBx54gGHDhjFmzBhq1qxZmvdDRERERERESuCkBoXdunXjhx9+oHnz5owbN46hQ4eSmJh4zONzcnL47rvvePvtt3n33Xd5//33efvttznvvPPMbriIiIiIiBRPzevFFyc1KMzMzOTLL7+kX79+JxUaGBhI37596du3L7t372bcuHGsW7fulG5oeVHn6WX4u2zq0JzmdtvwpwwIMMsCiHw/2yzrwBnxZlkA23vY1Xo0mGJbmxG4Za9ZVtJ7dlkAzj67+h1vnl2dB0DEVtsaLwLs9tBaP8y2tULd0CZmWUG/2H6uVn031Swro7/tlv7hv9vVZAVus31vZbez+4zLq25bA5jR1rbuNOHZZWZZa55qbpYF0HiSXVbTB3fYhQGed+3q2TgnxS4LcCfYfacGLt1olgWQ8rxdDeuGnq+YZR085CX6DbM4kXLhpP5y+vXXX0t8BdWrV+fJJ58s8eVFRERERMQ3Dra9RY91HVIxqE+hiIiIiIhIJVaiQeGYMWN44oknyMnJOeYx8+bNY8yYMSW+YSIiIiIiUjL5NYWl/U8qBpfj+L6ZrNvtxuVy0blzZz799FOqVatW5JiHHnqIMWPG4DHsf/N3OnjwIFFRUfQKu8SsptDlZ1djsP1y29qMnCi7LL9j/3ZQIm7DMsAjNW0XPjR4dbtZ1pYLbftkJby+3ixrxwV29bAAVdfY1bAC7L3drl9k7vyin2+n4u4RH5hlTb71fLMsgKA5K8yy3CHBZlkAxNYwi3I2bzPLAqCxXS9L1449ZlkA+3va1WQBRM/dZJblRIabZQE4oXb1v4fr2N62kM8WmmW5/O1qpgEODT7NLsy4P0HU73a9Jy1vW54nm9lrn+LAgQPlsjd3/t+s9d76D36hxp/Ff+HJzOKPYY+W28dCTl6Jl4/WrVuXH3/8kU6dOrFhwwbL2yQiIiIiIqfCKaN/UiGUeFA4bNgwXnvtNTZv3kynTp348ccfLW+XiIiIiIiIlIFTWoNw5ZVXkpCQwAUXXECfPn14/fXXufjii61uW7mUek0L/IJspuLjJtgtJzmQbLtMt/Gdy82y0i9tY5YFEPPeUrMsVx3bdhnrH7Fbd1vrfdu2D66IMLOsWp/Ybju+elyCad6m0+yWaJ5zyRlmWQBv/tjfLCvkd9uWFK6YqmZZEVNt140fvNZuuX0JqiaOa9vZ0WZZXn+7LABPsO19jZ5nVz9k3X4jIM1uqWHwLts2T36N7Zbcew2XyQKE7rRbvu9/wLYUwBti9zy4t+02y8JrXBdTWsqi5k81hRXGKe8+2rt3b3766Sdq1qzJZZddxqOPPmpxu0REREREpJLxer1MmDCB5ORkgoODSUhIYNSoURw+fHL7Bfh6+RkzZtC5c2fCwsKoWrUqQ4YMYdOm4uun165dy6BBg4iOjiYsLIyuXbsyZ86cY96WVatWcemllxIbG0tQUBDx8fGcf/757Ny586TuS1kyaUnRtGlTfvnlF9q2bct9993H1VdfTW6ubVNwERERERGp2EaOHMntt99O06ZNefbZZxkyZAgTJ05kwIABeL1e08tPmzaN/v37c+TIEcaPH8/o0aOZP38+Z5xxBmlpaYWO3bhxI507d2bBggXceeedjB8/noyMDPr27cusWbOK3I6vv/6adu3asWLFCm699VZefPFFbr75ZrxeLwcPHjy1B6kUmG1hVbNmTebPn88ll1zC66+/TkhIiFW0iIiIiIj4wHHMN4Qt9jos/f777zz77LMMHjyYjz/+uOD0unXrcuutt/L+++9z6aWXmlw+NzeXW265hYSEBL7//nvCw4/uOnzOOefQrl07HnzwQV555ZWCjHvuuYf9+/ezePFiWrduDRzdY6VZs2bcdNNNrFmzBpfr6HLaXbt2cemll9KjRw8+//xzAgJsl6SXBtN9jUNCQvjkk08YOXIkEydOLHhgfLF27VrGjBnDkiVLSEtLIzc3l8TERPr168fo0aOJjY0tcvxdd93FvHnzyMnJoW3btjz00EP06tXL6m4VEvNbDv7+JhOs+FWPMckBSH7JcNtmwJNtVxdQ9fWfzbIAcrvb1SgGpu43ywKo9rndjyHhq3aZZQFg2B5mw9OxJz7IB03vsGvlAdA47QazrOBrbOslPIa7g1erlmwXBoR+97tZ1sF/2b5GwO716wq0aSuUr86HqWZZm4fGmWUBxM3KMs1zDmeaZfmnZ5hlATgZdrfNtWCzWRZA2q2dzbKi19rWs4Uu32qWtfYp2/d9tZl236nRv9ntlO91tBqutEyZMgXHcbjtttsKnT5ixAjuvvtu3nnnneMOCn25/Lx580hLS2PMmDEFA0KA1q1b06NHDz744AOef/55AgICOHz4MJ9//jk9evQoGBAChIeHc80113D//fezaNEiOnToAMBLL73E3r17+d///kdAQACZmZkEBASU68FhiQaFx5u6dblcPP3001x22WVkZvr+Ab1t2za2b9/O+eefT3x8PP7+/qxcuZJXXnmF999/n2XLllGjxtF+VfnTuP7+/tx5551ERUUxadIk+vbty8yZM+nTp09J7p6IiIiIyD9aWTSXz89v2LAhbvf/TZps316yH3sXLVqE2+0uGFzlCw4OpnXr1ixatMjs8vn/u1OnTkVyOnbsyJw5c1i3bh3NmjVjxYoVZGdnH/PY/Lz8650xYwaRkZHs37+f1q1bs3z5ctxuN507d+app56iffv2J/FolC3bDqh/UtI727t3b3r37l3k9G7dunHRRRfxxhtvcOeddwK+TeOKiIiIiEj5lZaWRkxMDEFBRXfZjYuL46effiInJ4fAY6z48OXy+TWDcXFFV2jkn5aamkqzZs1O+th8a9euJS8vj7PPPpshQ4Zw3333kZKSwtixY+nRowcLFy6kWbNmJ3o4ylSpDQqt1alTB4B9+44uk/R1GldEREREpNJwXKXfMuL/569fv57IyMhTjsvMzCx2QAdHZ/vyjznWoNCXy+evaCzu+D8f++f/PpljAQ4dOoTH4+Gyyy7jjTfeKDi9Xbt29OzZkzFjxvDBB3btsyyc9KCwXr16Poe7XC42bixZP7OsrCwyMjLIyspi1apV3HXXXQD069cPwOdpXF/9tXYxf8ls0I+r8HfZ1KN4GySZ5ACwIcUuC/CLOvU3dj5vxsltIXyyAtMOmGU5YYYFXkD0nD/Msnb1r2+WBVDzG7u6kQY3pJhlAaQOs/21rP5Eu9oRl/X6f8OqfG+MXV9MACfPrjemY9xLLb2t3WdS9V9sfw91tqSd+KCT5JdlW1O4tbftZ5z3HLv3aoO39phlATgnuV39yXAH2z5usa+vNMty1a5plgVwpLldv976ly8zywJwB9t9jmT0a22WlZebBV98aJYn/yc0NJRdu4rfUyErK6vgGIvL5/93djH7aJzKsXB0n5WMjAyuvPLKQsf26NGDxMRE5s6de8z78Hc56W/GlJQUn8NPZenm5MmTueWWWwr+f1JSEu+88w5du3YF8HkaV0RERESksvgn7j5au3ZtVq1aRXZ2dpFZudTUVGJiYo45S+jr5WvXrl1wepMmTYocC/83pvjzsX/112MB4uPjWbNmDbVq1SpyfGxsLEuWLDnmffi7nPQ2mps2bSry79Zbb8XlchV73qZNm/jjj5LPmgwaNIhvv/2WTz75hPvvv58qVaqQnp5ecL6v07i+2r59e6F/69evL3GWiIiIiIgcX/v27fF6vSxcuLDQ6VlZWSxbtozTTjvN7PL5+58sWLCgSM7PP/9MZGQkjRo1AqBFixYEBQUd81igUHb+SsVt27YVOX7btm0Fm2aWJyc9U5hf0/dn0dHRxzzvVMXHxxMff3RJw6BBg7jgggto3749mZmZ3HPPPT5P41pxhYTgMlo+eqiR3dKvsLUnbubpi63X2S0Rchn/ipTw6hqzrIOtGpplAVTZvd8sq8YC26VVHsOlhl/98qVZFkDf2nZLggEOXnC6WVbYJ7+aZQH4J9otD8yKDT/xQT7Ydmlbs6yGj60yywKottTuNZIzK9EsCyBgdIJZVrXf7NoBAexsb7uMt/7LKWZZnhrRZlkA+89vaZZVdelesywAZ6td252qr6ef+CAfbHvE7nnwjzNuReO2q4cLX2/3GZLnsX2flhrn//8r7eswNHToUB599FGefvrpgtWBAJMmTSIzM5PLLrus4LSNGzeSm5tLcnJyiS7fvXt3YmNjmTx5MiNHjixoS7F8+XLmzp3LVVddVdBCIjw8nAEDBjBt2jSWL19Oq1atAMjIyGDy5Mk0bNiwUMnaFVdcwVtvvcVLL73E2WefXXD6F198QWpqKiNGjLB6yMz8YzaaadmyJW3atOGFF17gnnvu8XkaV0REREREyq8WLVpw00038dxzzzF48GD69evH6tWrmThxIt27dy/Uo7B3795s3rwZ509rWH25fEBAAM888wxDhw6la9eujBgxgoMHDzJhwgSqV6/OQw89VOi2PfbYY8yePZuzzjqLkSNHEhkZyaRJk0hNTWX69OmFyub69OnDJZdcwpQpU+jXrx/9+/dn8+bNPPvss8TGxvLggw+W3oNYQv+YQSHAkSNH2Lv36K93vk7jioiIiIhUFmXZp9DS008/TVJSEq+88grTp08nJiaGW265hTFjxhTqhWhx+SFDhhASEsLYsWO54447CAoKonfv3jz++ONFJpcaNGjAjz/+yN133824cePIycmhbdu2fPXVV8X2Rn/rrbdo1aoVr732GiNHjiQqKooLL7yQRx55pGByqzwpd4PCHTt2FFuU+d133/Hbb7/Ro0cPwPdpXBERERERKd/8/PwYNWoUo0aNOu5xx9oE82Qvn69///7079//pI5t0qQJn3322Ukd6+/vz1133VXQQaG8K3eDwhtuuIHt27fTq1cv6tSpQ1ZWFosXL+b9998nIiKCJ598suBYX6ZxrWS3SsLjb7NVdcBBu+3f0261nRUN2W23SLzqa0Vnc09FTk+7uqfAgx6zLAAC7N5Szkn8GuaLva3stvT/z0672h2Arfd1Ns1LesluY6iUD5uc+CAfxLxtV+vc7SHb99aSCxuYZWV2amSWBRD87VK7rKtti2D2d7Cr7Yz4ZLFZFkCd5bZ1e6vG2e0hUPsrP7MsgD2t7L7zq/6Sa5YF4Gnue1uvY9l3kW1NYVCqXd10nsv2e8u/jl27jAPNq5hl5eVmgW3ZtMjfrtwNCi+55BLeeust3n77bXbv3o3L5aJOnTpcd911jB49msTE/9sgwNdpXBERERGRSqO0N5qRCuOkB4XdunUrctqWLVuOeR4c7VM4b948n27QRRddxEUXXXTSx/syjSsiIiIiIiKFnfSg8IcffvD5vNJYvikiIiIiIsf3T91oRv4eJz0o3LRpU2nejn+MgAWr8XcFmGT5xVQzyQGolVndLAvAvfB3uzB/21XKgStS7MKMb9uBLnXNsjxBth+00W/+bJa17DO71y7Aqt9fMM3rO7aNWVb0B3a1QAARy+36lS280a6+FsAdbdfv1C/Htncqfnb1ZzmJMWZZAK3uXG6WtemrELMsAFewbZ/C5AkZZlnujEyzLIAqP9nV6Xt27jLLAgjw2LXIcnJt6x3TphnWTf9UxS4LiH92iVlWlV/t6h3/MX0KRXxwSs3rRURERESkHPoHNq+Xv4/tNlEiIiIiIiLyj3JSM4XH6h3oi507d1KzZs1TyigPXP5+uFw2Sw6dQ3bLcAL+sG2tsHmUXY/HhGfsln8A7D6vsVmWx3ZlFdWXHTbL8t++zywLYPv1Hc2yan20ziwLoOvN15nmRdbdaZZV5edUsywA7/4DZlmH28eaZQGEf/SLWVZAQKBZFsDBwXZLZfc0t12anfVoK7OsbU/YLrsN2Ge7RL7B42vMsg51a2iWBeB/xO6xCzb8fgY41Mru75+ccNvf86uF7TDLCv7O9rY5Hrvn1GXYMgq3cTurUuP6//9K+zqkIjipd2+9evW466672LXL9zX206dPp3379rz88ss+X1ZERERERERK10kNCm+//Xaee+454uPjGTBgAG+//TYbN24s9tjDhw8zb9487r33XurUqcN5552Hy+Vi0KBBlrdbRERERESOxSmjf1IhnNRc+tixY7nuuusYM2YMU6ZMYcaMGQBERkZSs2ZNoqOjycrKYu/evaSlpeH1enEch5YtW/Loo49y2WWXleqdEBERERERkZI56QXWCQkJTJo0iSeffJL33nuPWbNm8eOPP7Ju3f/VFgUGBtK6dWt69OjB4MGD6dSpU6nc6L+TKzAQl8umVsazf79JDoCf4XbtADWW5tiFuW1rDG6662OzrI/6dTbLAvBEhZllHWlYwywLoOO/lppl/THZtu5pTzPb12/417vNsrzNbFtSuHbZ3bZDibaPW5XYU6sdL8T4M2l7X7t2A9GLbNoK5Qubscwsq8ncULMsAPxsP39zWtu13Yn4dZtZFkBmC7u2D9uvaG6WBVBlg913amiGbT2b9xm7llbuA3vMsgBctey+B3Oj7d5beXn/kH0atfuo+MDnqtvIyEiuv/56rr/+egByc3PZs2cPISEhREVFmd9AERERERERKT2nvBVTQEDAKe9MKiIiIiIihhzX0X+lfR1SIdjuVV0JeA9l4HXZLD3a+MTpJjkAjZ/bbpYFELxpr1mWJyvbLAvgpbGDzbKi05aZZQE4KblmWQGO7RLNmSvbmWU1qbrFLAsg6ZnfTPO82XavOXe23bJFAFdSgllWzV+PmGUBePftN8tyx9q2IGr6kF2bkSONbW/bvqF27TKqfV38Jm4lteu8+qZ5Iel2n0v+tauZZQG4c+xu24FGtp+/mbXslizXHbPYLAvAc3pTsyzXEdvve+fgIbMs/0i78g48tvdTpDz4hyyKFhERERERkdKgmUIRERERkQrGcY7+K+3rkIpBM4UiIiIiIiKVmGYKfZRxbmv8A4JNsho/kWKSA7D+VrttwgHyIuzqKRreutksC6DKR3atFQi0aS+S78CFrc2yTO8n0PiGlWZZjsu2sNyyBhDAr1pVs6xNA6PNsgCqbLB7b1X9Kc0sC8AJCTHLOpxs21IldKFdrV3ALNv3VuhZdjWF2c3tak4BavxkVx8OQLZda4WNj0SYZQHUv3WrWVbjnw6aZcHRdlZWnADbP912nm7XqqF2tt1nL4CTtsMsy/9AhlmWy/sPqSlUSwrxgWYKRUREREREKrESDQoPHbLbDUpERERERIzlt6Qo7X9SZvz8/LjssstKJbtEg8LatWtz7bXXsmjRIuvbIyIiIiIiIn8RERFBYmJiqWSXaGF6jRo1mDx5Mq+++iqtW7fmuuuu49JLLyU8PNz69pU7kd+txd9lUxvgfGb3eDW82rZPIZl2/c+yu7cyywIIStljlpVySZxZFoB/h31mWdW+s+3htenKJLOspGdt+woeuKC1aV61H+1q7eo8utAsCyC3m+37wVJG94ZmWaGptj0U975tV6tU7Tq7GioAl2GNojsq0iwLYMPz8aZ5DR62y6p/4za7MGDr1clmWTEr7HrOAri8doVXm/vZ1hTW+dKwr+tB2/e9E2jX3/Fwq9pmWXm5WZBqFldqXM7Rf6V9HVJ22rRpw6pVq0olu0QzhRs3buTrr79m8ODB/Pbbb9xwww3Url2b6667jl9//dX6NoqIiIiIiFRqd911FzNmzODbb781zy7xz01nnnkmZ555Jrt37+a1115j8uTJTJo0icmTJ9O6dWuuv/56Lr30UsLCwixvr4iIiIiInIh2H61wdu3axdlnn80555zDoEGDaN++PbVq1cJVzK7ww4YN8ynb5Th2bSdnz57NpEmT+PTTT8nNzSUsLIxLL72UG2+8kZYtW1pdzd/i4MGDREVF0bvqlfi7bZaPevbaLTW07h76ddoys6zT777BLAvgl3EvmmWde8ZAsyyw3YZ/7quTzLIAmr54o1lWtd89ZlkAodN+Mc3zq17dLsxtW0S/98x6ZlkRW223RU87w64lReLTy8yyALb8u7VZVuRmu7YgAP5Zdp+/EWv3m2WVhg2X2S3jrXvvz2ZZAF+n2i3jPadeR7MsAHdsTbOsvZ1izbIAqnzxu1mWK9TuMwTAiY2xy/ptnVlWnpPLd3kfc+DAASIjbZd8W8j/mzXh6TG4Q2zaqB2L90gWW2+7v9w+FhWN2+3G5XLx1+HbnweFjuPgcrnweHz7W810YXr9+vWpV68ekZGRpKenc/jwYV555RUmTZrEhRdeyMsvv0yVKlUsr1JERERERP6qLHYH1e6jZer1118vtexTHhR6PB4+++wzXn75ZWbPno3X66V+/frcddddXHnllSxdupTx48fz0Ucf4efnx3vvvWdxu0VERERERCqN4cOHl1p2iQeFKSkpTJo0iddff52dO3fidrsZMGAAN9xwA2eddVbBcX369KFPnz4MHjyYr776yuRGi4iIiIjIcaimUHxQokFh3759C2YFa9Wqxb333su1115LfPyxt75u3749n332WYlvaHnhxNXA8QsyyXLH29UYHK4bYZZ11DKzJMsaQGvTf/znvyZP1qobXjDLsq4TTX2zrWneH2e+ZpbV+DXb+1r/zZ12Ye4SbSB9TFVX29RLA9AoyS4LqDN1h1mWs2O3WRZQbIF/SW2+qblZFkB149YKDd5ON8tK/XcnsyyAHtecZpYV3CLLLAsgJ9SuWifyfdse0RvGdTDLSvw6xywLIC/Ezy4swe57Ji83C2Z+bJYn4qvPPvuM9957jzVr1nD48GE2bNgAwOrVq/niiy+47LLLiIvzre1aiT6lvv32W3r27MkNN9zAoEGD8Pc/ccyAAQOoXduuR4yIiIiIiEhl4TgOl19+Oe+//z4AISEhHDnyf/1Bq1atyr333ovH4+Gee+7xKbtEPzOvXr2a2bNnc+GFF57UgBCgefPmpboOVkRERERE/j+njP5JmZk4cSJTpkzhmmuuYe/evdxxxx2Fzq9ZsyZdunRh+vTpPmeXaFDYuHHjklxMRERERERESuC1116jbdu2vPzyy0RFRRVbvtCgQQNSUlJ8zi7R8tGPPvqIF198kbfffrvY9aqpqakMGzaMm266icGDB5fkKsqtLedUwS/IpudLnS/s+hQG7s8zy6pMzq5jV0sBkN3Lrh/nd69PNsuyZl0n2uIpux6KAJ1nXG+WVc1l+zOoZ+Nmsyyno239mf8Ru/59rq12NYAAREeZRR3pmmyWBRD6y0azrPhxC8yyAFLvtK3bS9hqV+MV97VtbSe799plGff+9Yu0q/vP7dTCLAugyhq7rKDlKXZhQHBEuFmWN93u9ZHn2NZOlhptNFPhrF+/nhtuOP5eBzExMaSn+17/XaKZwsmTJ7Nv375jFjDGxcWxf/9+Jk8uv3/UioiIiIiI/FMEBgaSkZFx3GO2bt1KZGSkz9klGhSuXLmS9u3bH/eY9u3bs2LFipLEi4iIiIjIqchvXl/a/6TMtGrVilmzZpGbW/zO0ocOHeLbb7/ltNN83425RMtH9+7dS40aNY57TEmnLsu714c9R3iEzTbw151xmUkOwIJWU8yyrJ1xm91SPoDRj7xjlnXk7NZmWQChc1ebZfXrdr5ZFkB2YlWzrNnvvGqWBbDydrt2GdZOe8C2JYVfvUS7sPVpdlmAv9djluU9cNAsC4B6vm2tfTxha2yXLW4eYbccNX7CYrMsgDpv2i1tBcitV8ssy73wd7MsAHddu/eWK9O2JYUnxvdf7Y/F9dNysyyAiBC7Vg2rx9Q3ywJo8IFdSxVvvRizrLy8LJhrFidy0q655hqGDx/OlVdeycsvv1zovPT0dK666irS09O57rrrfM4u0aAwJiamoB/Gsaxfv54qVaqUJF5ERERERE6Byzn6r7SvQ8rOFVdcwaxZs3j77bf5+OOPC8ZaTZs2ZePGjeTm5nLNNdcwcOBAn7NLNOV1xhln8Pnnn7Nu3bpiz1+7di2ff/45Xbt2LUm8iIiIiIiI/MWbb77JpEmTSE5OZvfu3TiOw5o1a2jYsCEvv/wyr7zySolySzQovOOOO8jNzaVLly4899xzrFu3jsOHD7Nu3TqeffZZunTpQl5eXpHeGSIiIiIiUgbUp7DCuvrqq1m2bBkZGRls27aNQ4cO8dtvvzFixIgSZ5Zo+Wj79u154YUXuOmmm/j3v/9d5Hw/Pz9efPFFTj/99BLfsPLqjruvxz/ApiXFghdKNpIvCx3usaujqvrHIbMsgNu/sqvFbPL7TrMsgMPd7GqLwn6z3dL/UGKgWdYrB2qbZQFcG2VbG2cpZoltbZzrSLZdWESYXRZAjl39TnZ729qikMUpZlmrH6hnlgUQus0uy2nVyC4M8GYbtysqpidWybNs6vPz7e1w/L0OfBH9ie1GeQe72tU7VtlkVx8O4P7Brraz6caaZlkAeZvsWvik39jZLMuT46imUMqFkJAQQkJCTLJKNCgEGDFiBF26dOGFF17gl19+Yf/+/VSpUoWOHTtyww030KRJE5MbKCIiIiIiUtl17NiR3r1707NnT7p06UJwsM1EFZzCoBCgSZMmPPvss1a3RURERERERIqxYsUKFi5cyLhx4wgMDOT000+nd+/e9OrVi44dO+Ln51fi7FMaFIqIiIiIiEjp279/PwsWLGDWrFnMnj2bn376ifnz5/Pggw8SGhpKly5d6NWrF7169aJdu3Y+ZbscxylxiajH42Ht2rXs27cPj6f4/lbdunUraXy5cvDgQaKioti3rh6RRn0Kz15zrkkOwLav65hlASS+utYs68hptvU7wT+uMcvK7GG7zNmda1dxvXmAbb1N40l2tZ2ekACzLAC/Q4Z1dsDMb943zbPU8G27et2ITWZRANT41e414iyx69kJ4OneyizrcKxdfS1A1EdLzLLSPrKtxczYZtcfD6DxPavMslxBts9DynWNzbKckv/YXqy6U8tv32bP6vVmWXuv7GiWBRCzeJ9Z1p620WZZnpwslr17LwcOHCAy0vY9ZiH/b9Y6j4/Fbbi8sDjerCw23/XfcvtYVHQZGRnMmzePOXPmMGfOHFasOFoP7XK5yMvzraa8xDOFDz/8MBMmTODAgQPHPe5Yg0UREREREREpmfDwcNq0acO+ffvYu3cvqamppKeX7EeoEg0K//e///HAAw8QFRXFFVdcQUJCAv7+WokqIiIiIlIuOK6j/0r7OqRM7d27l++++65gdnDdunU4jkPVqlXp3r07vXr1onfv3j7nlmgkN2nSJOLi4liyZAnVq1cvSYQAW2fZLfmsM822fYF7qt2ynsAei8yyANy17La8DptntxQVYPcFzcyynNAcsyyAfc3slnV4Am2/BMIuOf6Kg4pk/RUvmmWddeFwsywAb4DdmrnUu2xbEjmGq6mrL7dt0+A9zW4Zuus72zYjRtUOBVyGPwDnNYw3ywLwM/zI9ATZZQHsb2HXRiJ4j13rGIDd/TuZZUWvtX1v7exst+SzxiK79kJ5HtuSB5GT1aZNG1auXInjOISFhdG1a1euueYaevXqRevWrXGdQtugEn26b926lREjRmhAKCIiIiJSHpVFc3k1ry9Ty5cvx+VyceaZZ3L33XfTtWvXU9px9M9K9BtizZo1fS5eFBERERERkZIZOXIkLVu25Ntvv6V3795ER0dz7rnnMmHCBJYvX35K2SWaKbzooov45JNPyM7OJijIeI2FiIiIiIicGs0UVjhPPvkkcLSuML+mcM6cOcycOROXy0W1atXo2bMnvXv35tprr/Upu0QtKTIzM+nbty9VqlRh4sSJ1K1b19eIf5z87X3bXTQWvwCb7X2rfr/NJAdgwxN29QoANd+z28I4ZGeWWRbAuuvs2iE0+Z9djQEA23fZZdW0XZ69dWANs6yESbbtBja+lGCaZykvNdQ0b+PFL5llnX3uZWZZAO5MuzoZz9oNZlkAf7zX2iwr+psQsyyAmJ/s3vdrbo0xywJoMj7NNM+bvtcs60j3pmZZAIH77IoKc6rYtssIXbjRLMtjXYu5IdUsa99ZDc2yAKqs2G+WtbOLbUuK3179B7SkePSRsmlJ8Z/y+1hUFmlpaXz44YeMGzeO3bt3l11LiubNm5Obm0taWhozZswgKiqKKlWqFDnO5XKxcaPdB6GIiIiIiJyYyzn6r7SvQ/4ehw8fZv78+cyePZvZs2ezcuVKvF4vABERET7nlWhQ6PV68ff3JzExseC04iYcSzAJKSIiIiIiIn+R36h+9uzZLFq0iLy8PBzHISQkhJ49e9KrVy969epF+/btfc4u0aAwJSWlJBcTEREREZGyoJrCCqdnz54ABAQE0L59+4KehJ06dSIw8NSWvavjvI/yAl04Rj3a8uLs6gDrXbPJLAvAXSXKLMuzw7DODmh6n12t3aHT4syyAELD7dbu++05ZJYFUGOxXb3YoZ6NzLIA7m31sWnehzt8/4XsWHKetqvFBBh/Vn2zrK+mv2uWBXBOvY5mWXv/Zdf7DGB9D7v+jj3eHWGWBZBbw/dlOsfSZGyKWRaAk2vb087JtvscCZmz0iwLYMc1bc2yDiV5zbIA6n9t14vVb5/tHgKeBnbfg1Grbb+3tj1s12hz5el2nyEHD3mJftUsTuSk3XHHHfTq1YuuXbsSFmbb1/aUB4WrV69mzZo1ZGRkcMUVV1jcJhERERERORWaKaxw/ve//5Vadol/glmyZAlt27alefPmXHjhhVx55ZUF582bN4/Q0FA+//xzi9soIiIiIiIi/9/27duZOXMmU6ZMYcaMGWzfvv2U8ko0U7hmzRp69OgBwG233cbatWuZOXNmwfndunWjWrVqTJ06lfPOO++UbmB5U2VdJv7+NstKvp72lkkOwLmdBphlAezqZbfldY2vfNsS90T29LBrXxC1IdMsC8CV6zHLOtTSdtli8E67ZV+Ra3eYZQG837GZad7aB+qYZdVMPPExvnhtal+zrNHXvmCWBTDzj5/Nss7tZNtSpc8f/zLLClm8xiwLwBVq1+LCW6uaWRYAf9i1PgJwNW1gluXeY9sSqOoqu8+42lNtHzdvmF1rm0Gf/mSWBTCtRW2zLFey3esD4O6m35rmiVQEW7Zs4YYbbuCrr74qcl7fvn154YUXSEpK8jm3RIPCBx54AK/Xy+LFi2ncuDEPPfRQoUGhy+WiU6dOLFq0qCTxIiIiIiJyCtSSouLZsWMHZ5xxBqmpqSQlJdGtWzdiY2PZvn0733//PV999RVdu3Zl0aJF1KpVy6fsEg0K586dy+DBg2ncuPExj0lMTOTrr78uSbyIiIiIiIj8ydixY0lNTeXxxx/n9ttvx8/Pr+A8j8fDhAkTuPPOOxk7dizPPfecT9klqik8cOAAsbGxxz0mJyeHvDzbZYMiIiIiInISHFfZ/JMyM336dPr06cPo0aMLDQgB/Pz8uOOOOzjzzDP58ssvfc4u0UxhbGwsq1evPu4xK1asKNF61vIuYPdB/N02dQvndjjXJAdg9Wjb1gp1ZthtY36gs119F0D0J3bbmG+9pZVZFkBmbbuawuTn95hlAbhy7X6kyWhj3Mpja4ZpXvLEUyu2/rOsujFmWQBVVhpu2X6tXZS1DSPs6pIBbj5/hlnWl1d3N8sC8FtvV39mWZcMcNbPW03zXpzW3Cyr7ljbVko7r0gyy0pcaduSIq+VXSuaaS2OmGUB+MX6tsTsePY1q2KWBXBZhO33oMg/3fbt27n00kuPe8xpp53GvHnzfM4u0Uxh3759mTlzJgsXLiz2/G+++Yb58+dz7rl2gx4RERERETlJThn9kzITFRXFli1bjnvM1q1biYyM9Dm7RIPCe++9l4iICHr16sV//vMfVq1aBcBHH33EyJEjGTBgANWrV2fUqFEliRcREREREZE/OeOMM5g6dSq//PJLsecvXLiQjz76iC5duvicXaLlowkJCXzzzTdcdNFFjBs3ruD0iy++GMdxSEpK4uOPP6ZmzZoliRcRERERkVOg3Ucrnv/+97/MmDGDrl27cskll9CjRw9q1arFjh07mDt3LlOmTMHtdvOf//zH5+wSDQrh6HrVdevWMX36dBYsWMDevXuJiori9NNPZ+DAgQQEBJQ0ulxz9uzDcQWaZHkO2vVoSn7UrgYQwKle1SwraM0GsyyAg+e3M8tKeHqJWRbA42vmmmXd/bBt78nsZnb9HQMybDeRcqcfMM1L72nXXDD6Q9vXiBNo8/kB0Pvyq82yAGa/86pZVo3FtjVZfa9YZZY14YbeZlkAVX4+9k7cvho3arJZFsCEQReY5sUm2r33d13V1iwLIP5ru88RV3CQWRZA4La9dmFxx9/oz1e7etvV/2YklN9NR85bf7ZZVu7hHOAVszyRk9W2bVumTp3K8OHDefvtt3nnnXcKznMch6pVq/Laa69x2mmn+Zxd4kEhgL+/PwMHDmTgwIGnEiMiIiIiIpbKouZPM4Vlrn///mzZsoVPP/2UpUuXcuDAAaKiomjTpg2DBg0iLCysRLmnNCgUERERERGR0rVlyxYWLVqE2+2mffv2XHbZZVx22WVm+SUaFI4ZM+akjnO5XNx3330luYpy60iHBvj7B5tkhSzZbJID4Nm12ywLwJ1x2C4ryW7ZIsDuNiXaH6lYecFtzLIA7u5nt2zROXT83aV8FfpQmlnW9jfqmmUBBFWzbV9Q7dd0s6xtN9stVwZIeD/FLCtohV2Wte+ff9k4sWS/fBanyQN2rw+AbefbvX6fPru/WRYAYbbL+Q7F2/2WHPu13WcSgCdth1lWZo8WZlkAwT8cv42XLw70t71tljM9q697wS7MWO6t0WZZeR6b1mSlrgxqCjVTWDbuuOMOnn76aRzn6APudrsZNWpUob1dTlWJPt0ffPDBY57nch39AnIcp0IOCkVERERERMrClClTeOqpp3C5XCQnJ+M4DmvXrmX8+PG0a9eOIUOGmFxPiQaF3333XbGn79+/n0WLFjFx4kTOPfdcrr/++lO6cSIiIiIiUgKqKawQJk+ejL+/PzNmzKBPnz7A0Z7w5557LpMnT/57B4Xdu3c/5nkDBw5k6NChdOjQgYsvvrjEN0xERERERKQyW7FiBQMGDCgYEAKcddZZDBgwgB9++MHsekplo5kWLVowcOBAHn300Qq3M6nX3403wKamzRVktzV95qAOZlkA++v7mWXFv7DMLAug/nt2W4UfSYwwywLIiwoxy/I3bF0AkNvvkFlWTEPbFhLeZXbtBgCclslmWe4csygAnMN29brbL29mlgXQ7Fm71gq5Le3uJ8C67m+aZXkjQ82yAGJfWGyW5Yq17e/rrN1kmhcd3dQsy8k8YpYFkNPdrtYu5Jf1ZlkArohwsyznSts9BALeqG6aZynDm2WW5T6YaZfl/YfUFEqFsG/fPpKTi/5d06RJE7744guz67HbseMvEhMT+e2330orXkREREREjsUpo39SqrxeL0FBRSdEAgMD8XrtegKX2qDwl19+ISTEbtZERERERESkssnfyLM0lWj56JYtxW+Vn5eXx9atW5k0aRI//PADF1100SndOBERERER8Z2rDFpSlHrLCwHgySefZNKkSYVOO3jwIHB0deZfuVwuNm/2rfVdiQaFSUlJxx2xOo5Dw4YNeeKJJ0oSX66F7MzE389jknWkaaxJDkB6S7saQICsRLtCKqeJbU87d8p2s6x9Z1Y1ywKIn2LXW3D3YNt6serz7HqCeX7fYJYF4A6z60EHsH54FbOsxJm2tSOHetrVO8Z+YFv3lHp5Q7Os2i8ZL0Q59v5mPlt7bZRdGPDH4F/Mss7tNMAsC2Dt/1qZ5jX890KzLG9bu/pEgODN++3C/Gy/UwM+sMs6+LVt3envE8pvb8GhHS8wy9pwfW2zLG9WFjxsFidyQgcPHiwYBP7Vtm3bTK6jRIPCYcOGFTsodLvdREdH06FDBwYOHFjs+lcRERERERE5Mcu6weMp0aDwjTfeML4ZIiIiIiIi8ncolZYUFZnfrv34uY1mQKODbXKAGkvyzLIAgr7NNcvadH6kWRZA3YfslszFfl/8VHxJObl2j9uhRNui4qrb7JbduusmmGUBbLrEdjlUyA7DrDWGYUBInt171cm17ZdRY4ldi4DsKgFmWdb+GPyyad6Zl1xllhXylt37FCBin+1nnKkVtsufHT+7JcvumGpmWQC5l9lluS+1y7J2wGvbZgTDz8v6b9h9lud5svnDLK0UqXm9+KDUdh8VERERERGR8q9EM4X16tUr0ZW5XC42btxYosuKiIiIiMjJ0e6j4osSDQq9Xi+5ubls3350mYufnx8xMTGkp6fj8RzdmTM2NpbAwMBCl3McvXJERERERETKkxINClesWEGfPn2oU6cOjz32GF26dMHPzw+Px8P333/PPffcg9frZdasWURERFjf5r/Vvk7x+AfY1AJWWbLbJAcA66aW6XvNouqvNv4xICzELMp8P6cYuxYXWXVs68Vyu7YwywpctM4sC6DuM+mmeQd727V98KbvMcsCcIWFmmV5DtjWi23tZffeiptn28rjrAuGm2Xtu9e27mnRlNfNsppPvNEsCyDxC9vXL43qm0Xt7lzdLAsgZvE+s6yhH84yywKYMvRMs6yVt5XfFhKXnjbINC/tQrvXW80FB8yyvB7bliWlSvMxcpJKVFN47733sn//fubOnUv37t3x+//9fPz8/OjRowffffcde/fu5d577zW9sSIiIiIiImKrRIPCTz75hIEDBxZZHpovODiYgQMHMm3atFO6cSIiIiIiIlK6SrR8dM+ePeSeYOv93Nxc9uwxXrZSDkTN+A1/V/GDYV/ltWlkkgMQkGa3bAZgy+RaZlltam0zywLYNL6JWVbkTylmWQBbLrdb6tL0gc1mWQDeKnZLuVOvtVuKCjDhRtsWAeObZpll7bi6nVkWQEai3VqevBi7FigAm/rZLUurH3W9WRbAd4OfMcuadqi5WZa13261XRr48b9sWwLdMftis6zHer1vlgXw2pXnmWU99fxFZlkAh4aXTfPpkujX7XyzrM1XxZplAdSZbNe2JK9RnFmWN89jllWq1JJCfFCimcL69eszdepUDhwofn32vn37mDp1aol3KRUREREREZGyUaJB4fXXX09aWhodOnTgrbfeIiUlhSNHjpCSksKbb77J6aefzo4dO7jpppusb6+IiIiIiJxAfkuK0v4nFUOJlo/efPPNrF+/nmeffZarrrqqyPmO43DLLbdw4422u6iJiIiIiIiIrRINCgGeeeYZLr74Yl577TWWLl3KgQMHiIqKom3btlx55ZV07tzZ8naWG57m9XH527SkcGfa1QOtvdl2HX/dp+y2k0/fa3vbop7fYpaVtznGLAsgYYZdawXn4CGzLACXYV5W9WizLIBHbij649KpCKm10yyr1o+29brumZlmWd5dtq08Wi+3+yGvwXMLzLIArpt8jVnW4Qa2dXafZ9jVF81561WzLIALwm3bllww8BXTPEtZr880y7oycpdZljWPY1uf6Mqw+0zKTMwzywJw+du1fnAvXGWX5djWc5ca1RSKD0o8KATo1KkTnTp1srotIiIiIiIiUsZOaVAoIiIiIiLlT1nU/KmmsOIo0UYzAB6Ph2eeeYbTTz+dqKgo/P3/b3y5bNkybrzxRtatW2dyI0VERERERKR0lGimMCsri7PPPpvvv/+eatWqERERQUZGRsH5devW5fXXX6datWo8/PDDZje2PMioE4JfgE1NYeT7v5jkACRWa2uWBeD4u+yyAuxqAgC8g+zqHzbek2SWBVDv44wTH3SS7l023ywL4KFrrjbL8sTZ9QEECJyz0jTPGxRklpXZ0rYmNvxXuxpFV7ztbcuoY1erVDvKtm7PdeiwWVZYSol/Dy1W3Ul/mGVtzLX7DAGoHxBumleelec6QEvnDhxmG5hg933fZKJtDbZz2O773snNsctSTWHh65AKoUTfjI8//jjz58/n4YcfZseOHVxzTeENAKKioujevTtff/21yY0UEREREZGKz+v1MmHCBJKTkwkODiYhIYFRo0Zx+PDJ/Tjo6+VnzJhB586dCQsLo2rVqgwZMoRNmzYVe+zatWsZNGgQ0dHRhIWF0bVrV+bMmXPC27RixQoCAgJwuVxMnTr1pO5HWSvRoHDKlCl069aN//znP7jdblyuor8y1a1bl61bt57yDRQRERERER85ZfTP2MiRI7n99ttp2rQpzz77LEOGDGHixIkMGDAAr/fEK1p8ufy0adPo378/R44cYfz48YwePZr58+dzxhlnkJaWVujYjRs30rlzZxYsWMCdd97J+PHjycjIoG/fvsyaNeuYt8fr9TJixAiCg21WGpaWEi0fTUlJ4bzzzjvuMVFRUezbZ7uMoDyof/0aAsICTbKWxdrt3PrA9e+YZQEsPFzPLGvJrW3MsgD8PXZL3OLm2m6f7c6yW1LyeK/jv8d85W1st0Qo+b49ZlkAh8+0fY2UvFq6qLRL7JYcAdTdU9Msy8+wrQ1AzFK7LE9yHbswwJ1p9zykPmj7V8z+Ca3Nsm7+IsAsC2DPBc1N8xY++qJZ1nzbVehc9fn1Zlkh222XGFdfZvf6DU23XSabmWz3mbT5ylCzLOD/tXfn4VGWZ/vHv5PJvgeCEPYtLCJKFRBRClZU1GLVilStWwVfW4qKtbZaFKQutdZiXVoruNTXaq3VFt66b4gLKCKgsoOEfYcEQsg28/z+4EcqDSiDZyBkzs9x5LCdPDnzZHhmuee+r/uCoJEsqst9uvstiFSAbtW4fcncuXN54IEHOO+883j++edrbm/Xrh3XXHMNf/vb37joooskP19VVcXIkSNp1aoV7777LpmZu5bbn3HGGRx33HGMHTuWRx75Txuem266ieLiYmbOnEmPHj0AuPTSS+nWrRsjRoxgwYIFe50oe+CBB5g7dy433ngjY8aM+Ub3T106oGe9jIwMNm/+6jeFRUVFNGoU+4N50aJF3HrrrfTp04cmTZqQlZVFjx49uOOOO/Y67Xug07hmZmZmZg3V7t1H6/pL6ZlnniEIAq677ro9bh8+fDjp6ek89dRXT4LE8vPvvPMOa9asYdiwYTUDQoAePXowYMAAnn32Waqqdn34umPHDiZPnsyAAQNqBoQAmZmZDBs2jEWLFjFjxoxa57Ny5UpGjx7N2LFjad269X7eC4fGAQ0Ke/bsyUsvvbTPtbkbNmyoWZ8bq8cee4zx48fToUMHbr31Vu655x46d+7M6NGj6du3Lzt37qw59kCncc3MzMzMTKOwsJCCgoKarwM1Y8YMEhIS6N279x63p6am0qNHj70OvA7053f/7731XO/Tpw/btm2r6aTw6aefUlFRsc9jv5z3ZT/+8Y9p3759rUFqfXRAg8JrrrmG9evXM3jw4FptJ+bMmcPgwYPZsWMHI0eOjDn7/PPPZ9WqVfz1r39l5MiRXH311Tz77LP86le/4tNPP+XRRx+tOXb3NO6rr77KTTfdxE9+8hPeffddmjdvzogRIwgCb4lkZmZmZnY4WLNmDfn5+aTsZRfxFi1asGnTJior970cO5af310z2KJFi70eC7B69eqYj93t2Wef5aWXXuLhhx/eo3VffXVAZ3jWWWcxevRobr/9drp27Upy8q4au8zMTHbu3EkQBIwbN47+/fvHnN2zZ8+93j506FDuuOMOPv/8c+Drp3FvvfVWZsyYUeuTgm9q81WNSQxrtrtv1FFXD/To8cfJsgBWPd5MltVi9hJZFkC0VLdle8qrn8iyANZcc7wsq/kE7UZNaTt1BTxB41xZFkAoqv0AJ/mVmbKs9i/JogAIH9FElhVtrasFAkjdEpFlFXfKkGUBlH5Pd25tR2nbPhDa+fXH7Kd5f+gsywLo/NA2aV7Hp3V1ewXvax/3nd6YK8ta9WQrWRZAyn1LZVmrrta+3rd4/HNZVpdZ2o00Ko7S/TtElhbpstySYs/fASxevJjs7G/eiqisrGyvAzqgZqOWsrKymrHHN/n5srJdLU/2dvyXj/3yf/fnWICtW7dy7bXXMnz48L3OLtZHB1xJPW7cOF577TUGDx5MTk4O4XCYtLQ0zjjjDF599VVGjx6tPE9WrVoFQNOmu94EHeg07v768hR4QUEBhYWFB5xlZmZmZmZfLT09nYqKir1+r7y8vOYYxc/v/u/ejv8mxwL8/Oc/JwgCfvOb3+zzXOubA5opXLFiBcnJyQwcOJCBAweqz6mWSCTCr3/9axITE2t2DDqQaVwzMzMzs7hwGDavb968OfPmzaOioqLWrNzq1avJz8/f5yxhrD/fvHnzmtu7du1a61j4z5jiy8f+t/8+9pNPPuGxxx7jtttuY/PmzTWbc27YsGsH3HXr1rFkyRJatWq1z1nNQ+GAZgrbtWvHzTffrD6XfbruuuuYNm0a48aNo3PnXUtrYp3GjdXatWv3+Fq8ePEBZ5mZmZmZ2Vfr1asX0WiUjz76aI/by8vLmT179j7LzA7k53v16gXAtGnTauVMnz6d7OxsOnXqBED37t1JSUnZ57HwnxK4FStWEAQBt956K4WFhTVfv/jFLwAYOXIkhYWFfPbZZ1/5txxsBzRTmJubS35+vvpc9uqWW27hwQcf5KqrruKmm26quT3WaVyV6Kq1REOaPlLpSbqi0+g3GADvTcvL13z9Qftpw1Btn6xS4Y6+HR7TziZ3OE/34UHFP3JlWQBBtrDGa3OxLgtIWVwkzSsaq1u/32Zs7ReAbyRL9+8Q3rxdlgWQVqnr25lepO0B2vgDXV6Qrq17isxb9PUH7afrjxc2iwRmH6mtjQufnyPLkj4nAVX/ypVltfq+9rUhenQnWVbzP2tr4YMkXW/MUKW21i51ia63YFT4njAhqIS9b8Bfr9RFy4i9/Q6loUOHcuedd3LffffRr1+/mtsnTJhAWVkZF198cc1tS5cupaqqii5duhzQz/fv35+CggImTpzIqFGjatpSzJkzhylTpnDFFVeQ9P8fH5mZmQwePJgXXniBOXPmcMwxxwBQWlrKxIkTKSwsrNnHpHfv3jz33HO1/rYpU6bw0EMP8bOf/Yw+ffrQoUMHxV0mc0Cjkj59+jBrlvaFa2/Gjh3L7bffzhVXXMHDDz+8x/dimcY1MzMzM7P6rXv37owYMYIHH3yQ8847jzPPPJP58+dz//33079//z0a159yyiksX758j24Dsfx8UlISf/jDHxg6dCj9+vVj+PDhbNu2jfHjx9OkSRNuu+22Pc7trrvu4s033+S0005j1KhRZGdnM2HCBFavXs2LL75Y07i+efPmnH/++bX+ttL/v1Finz599vr9Q+2ABoVjx46lX79+TJw4kWHDhqnPqeZ33HbbbVx22WVMnDix5o7eLZZpXDMzMzOzuHIY1hQC3HfffbRt25ZHHnmEF198kfz8fEaOHMm4ceNISPj6yrdYfn7IkCGkpaVx++23c8MNN5CSksIpp5zC3XffXWtyqWPHjrz//vv88pe/5De/+Q2VlZUce+yxvPLKKwdlj5W6FgoOoJnfuHHj+OCDD3j99dfp0aMHvXv3plmzZrUGbqFQiFtuuSXmkxo3bhxjxozhkksu4YknntjnBTBkyBBeeOEFPvnkkz2mcbt160ZKSgoLFy6sdU4Hatu2beTk5PCd1AtIDO27wDUW0R665SRH/1G7LnneebolR/KlWpm6otzEFbqlKQDlR7aUZaUuWifLAghSNdctQFln7fLxKRMmSPPOOv67ujDhMm+A+dfq2r3kz9I8v+3W+O9zZFmh9DRZFkB0u66NREJWpiwLIJSm+1uXDhOujweafSRezveqbpVQ6Cs2izgQlX26fv1B+ylp+777oB2ISEpYlpW0RVsuEsnWvUaHN4vbvRTrlsiX/VW3XLl6RwXTznmAkpISSRsGtd3vWbuMvJNwivY92H+LVJSz4IGb6+19YfvvgGcKd5s1a9Y+l5IeyKDwoYceYsyYMbRu3ZqBAwfy9NNP7/H9pk2bcuqppwL7P41rZmZmZhZPDseaQjt0DmhQ+Pbbb6vPo8bu3oIrVqzgsssuq/X9/v371wwKG/o0rpmZmZmZWV3b70Hh5MmT6dKlC506daJ///51dkJPPPEETzzxxH4f37VrVyZNmlRn52NmZmZmdtg5TGsK7dDY70Hhueeey5gxY7j11ltrbnv22Wd59tlneeGFF+rk5OqlhAQIHVB7x1oS126V5ADMPa2RLAtgRx9d3VMoon3GSHl5hiwr6KTdDjhlVbEsq3q1ri0IQGJL4W68127UZQFnnXSONC+6RXd+C+7tJssC6Pyobh/zaKLmuWi30kHdZVnZ05bLsgCCSl2N17b+HWVZAOv66koVllz4R1kWwBn/vOjrD4pBqENbWVZlgbb+SPn8G6zQtqSIfFvXmil5VbksCyDIEdb/binWZQE7+uoeqxnnL5BlVQfamlOz+mC/B4V7249mwYIFnqUzMzMzM6tvPFNoMdB+zGxmZmZmZmaHFQ8KzczMzMzM4pi2AVccCArbEoQ1ffJK2ut6ZWXP19UnAiSX6HpbJX32hSwLYMkzx8iymv1N1/MQIGPpNl1Y7C1Ev9KOowtkWWnX63pHAVTnJ0nzSo9rKsvq/Ki2J1ioslqWte5XsigAcv6i62cVPSJPlgXaF6vMSTOFadB289GyrMLIj2VZAAVtItK8rJm6WrvEHdpelhv6HSHLavqmtr/jul66noyt3xLXm+/YKctaNqKLLAsgc6XudXDbpbq6zkhlOfxZFldnQv//q65/hzUMMc0Uuu+fmZmZmZlZwxLTh6/33nsvEyZMqPn/27btmhVp3br1Xo8PhUIsX67dgc7MzMzMzL6GN5qxGMQ0KNy2bVvNQPDLVq1aJTuh+i5hexkJYc1ynIwX5klyAIqHHi/LAsiZVyzLqjqmvSwLoMOwRbKsUHq6LAtg5eWFsqyqW3XtAQDaX6W73yKd9v5B0IFKXF8szctdqWtJseoC7fV71f/8nyzr38e3lWUBRLfrlgWHGmvb5ATClSrVJ+mWewIkf7JEltVpgXZJZZCtK1MACMp17RAi6doKliZ/+1SWVd1N+7hvc+8nurBuutcZgE3fypVltR3/mSwLIBTWbX1R3lPX3qK6ukKWZVZf7PczcjQarcvzMDMzMzMzkVCw66uuf4c1DN591MzMzMzMLI5591EzMzMzs4bGNYUWAw8KYxTasZNQgqamsGhcH0kOQHWW9lEZTcyVZTV+Y5ksCyBSKdwqPKJtrdBklq7OIOkdWdQuTRrLoto+qKuhAnjtE239ZOdr58iywhXax9a/e+nqMdcM095vVVm6rHaPalvRLP1xO1lWmzHTZVkAQZquDjDSWtdWASBhfpE0T1l3mjRL2/ah6thOsqyW92if4z555lhZVvM/C+sTgfxlunYZ83+vbUlx5FhdC5Rwua49S1CtbfViVh94UGhmZmZm1hB5Js/2k2sKzczMzMzM4phnCs3MzMzMGhjvPmqx8KAwRhWdCogkpkqy2t4yTZIDkJCqOaeavGa6upagbKcsCyCUmiLLipaWyrIA0r7YLMuKZmn7lSHs81Z0jbZPVttc7atKuFGeLKvp9BJZFkDQqa0s64hPtI8tAt2/w7rBuhpAgBZTKmVZa35+giwLIGuFrmVTzxtmyrIApjzdS5rX6l9rZFnBlq2yLIDklbrn3ylzxLVx/1opy9p0wbdkWQA7m+heG7pcp6vnBggKdO9FQlHd85syy6y+8PJRMzMzMzOzOOaZQjMzMzOzhsYtKSwGHhTGKGXRWhITNNs3V/c5WpIDsPj8dFkWQKfHtsiydnbWbRMOEK7QLdVKnqtb0gNQVZAry0paulaWBRDZpFtalbBWu7R124VHSfMSdxTIspK/WC/LAig5oZUsqyxfu9jjiEd1Sxebrm8pywKYf6OupUqXP+ie3wBYpnseWTyvgywLoMVS7XK+SHW1LCshO1uWBVDVXLds/Mi7N8qyANYN0j0etnbXvQYCpK0Jy7JCbbWP+8i8RbKsrf10bcAilQnwoSzOrF7woNDMzMzMrIHxRjMWC9cUmpmZmZmZxTHPFJqZmZmZNTSuKbQYeFAYo6CqiiBBs31zWXNdXVbh6NmyLICSs3vIsnKnLpNlAQRZGbKsyKZNsiyApBRNvSnAyou0tUUZa3UtAnLnFsuyAI6Yrt2avqRrriwrab22frI6Vbf9e9aqiCwLINy0iSxr1XebybIAOv9UV++YkJcrywIgK1MWVdpaW2f363+9L837zRnny7KCJO1bkMTFunYZZGrr9LOLqmRZldm61xmAsua6GsWSbrq6ToDcYl19eP4zs2RZ1YGuRY5ZfeFBoZmZmZlZA+OaQouFawrNzMzMzMzimGcKzczMzMwaGtcUWgw8KIzR4p93JCE1VZLV/p8VkhwAwro+QwBpG3Xr5as3aOv2EhOFl22gfTaLCnsBFowX1scA4Ua6Wo9fznhLlgXwbc1Dqkav0T+WZUWXr5JlAUyf8rwsa1Cb3rIsgC1DjpVlFby7TZYFEOqqq7GNLvhClgXw8hfTZVldH/mJLAvglzdfLc3LLdbdd5vO0tZNl7ZsJMtq/cp2WRZAypuzZVmn3antU/juA8fLsjJX7JBlAZCoe2/zxa++JcuKlpfD7X+X5ZnVBx4UmpmZmZk1NJ4ptBi4ptDMzMzMzCyOeaYwRoV3LyQxpNkOeuO5R0pyADKydFkAm7onybKym/aSZQFk/+NjWVa4W2dZFkB1rq59QUK5bgtzgLUn5Miy7u6ruz4A7tpRJs3LOU63NDuoqpZlAZzZ5duyrFCq9iPakna6zwlzFmrPLWGzcDlqc227jDNP1rVpaL34Q1kWQPTEo6V5NNI9j1Rl6NqzALS5S/faEEpNkWUBlHy/pyxr3oC5siyAH304WZb1yP1ny7IAdE1yoOu3dUufq3ZUol2EXje8+6jFwjOFZmZmZmZmccyDQjMzMzMzszjm5aNmZmZmZg2NN5qxGHhQGKPiUzsTTtLsn5+3aKckB2DxDzV1jrsdeY+uHUJ10UpZFmhrPSLzl8iyACoH6bb0jzbR/pumnrVelrWoVXtZFkCnB7XXSNIWXY3ipsu0bR+OeG25LEvZAgUgoqxR/Fz72FrwqK5uusnL2nqxxArd/VbdM1+WBZC6JSLNC+/U3XcFb2+RZQFU9O8uy0r9WHv9phTrapNDBUfIsgAmHaurXy/IFVfahXR1pzsHbJBlVQfamn+z+sCDQjMzMzOzBiYUBITE/Zj39jusYXBNoZmZmZmZWRzzTKGZmZmZWUPjmkKLgQeFMcp6/hMSQ5oebeE8Xb+njKIusiyA0m66moWV1zeVZQF0uU1Xs7D6mh6yLIDWExfKss55d74sC+Dp68+SZXWapa0bKbqigzSvxTs7ZFl5C7U9FBf8vLUsq/Of0mVZAKndi2VZCVmZsiyAwss/04WFw7ostH9rtF1zWRZAqEpbUxj6YpUuLEHbpzCtWPfvECRpa7orcnVvtzZ8X/ua2vbxUllWVNxztqpnoS6ss+6xFakuh3f/Jcszqw88KDQzMzMza2DcvN5i4ZpCMzMzMzOzOOaZwhh1nxohJVMzlp4yvrMkByB3iXaJUMYXJbKs5lNyZVkAwfbtsqyW934sywKIVOu2qZ7w2+/JsgCCFrqscGVLXRjQ+uViaV6oVNfuJZqjXaJJfoUsKlSl2+YeoMXPo7ow8RLNcEvd0q/KNo1lWQCLLtAtNexyk3bZ+Jazda08ANZfpStV6DRihiwLQHnFRXeWC9MgZ26xLCttU4YsCyAo1/2toVRNy67dVvfX5bX5P937GiKVuqy65JpCi4FnCs3MzMzMzOKYZwrNzMzMzBoY1xRaLDxTaGZmZmZmFsc8UxijmWOPJTFJs8a98cotkhyAyLxFsiyASEj3eUFOqXaLdZo2kUVVttLWFlVn6B5SR0xZI8sC2Pht3b9D8ibttuMot7lHW+KQUKzdmr7Nk+10YeKawp2dCmRZlVm6xylA5vO6+t+kUl3LEoAOf9e1GdkwpJssC6Dpm6uledlL82RZq246QZYF0Hqy7jU1mKtrLwSQUK6rJU4q1tbrRoWPh+KhXWVZAJFk3bN5dXaKLqv6MJkec02hxcAzhWZmZmZmZnHMg0IzMzMzM7M45uWjMUqdtoDEkGY5WRDRtZFIbNNKlgXw4geTZVlnHa9bkgZAla7tQ8L7c2RZAJx2nCyquGczWRZA3l+mybISWmlbUkTba/NCO4TbyYdCuixg56itsqzUodtkWQApm3JlWWkztMufpU13GuUq0/jiXN2ytPb/1LZCKLpQ+9hq8qnu+bfVbz+SZQFwVCdZVNUpx8qyAMIrimVZCas2yrIANl7SS5Z1xNva5cobTs+XZW3soWtvEakApsri6ow3mrFYeKbQzMzMzMwsjnmm0MzMzMysofFGMxYDzxSamZmZmZnFMc8UxmjDhUcRTtasS+94sa6NxJbRunX3AP2vukqWVTZQu312o7mlsqxVV3SQZQEkCAufmt+jqwEEOPoTXW3c7FHadgMJU2dL8zi+uywqPK9IlgWQfeZ2WVZ132NkWWrhrExtXoLueSS0Y6csC6DdpEpZVki81X3rP8yW5tFe134jGtX+rQuvTZNldfnpAlkWQPZrurrTDxe2l2UBdHpY95q6+SRtC6oud2ySZUUWzZJlVQdVzJel1S3X/Nn+8kyhmZmZmZlZHPNMoZmZmZlZQxMEu77q+ndYg+CZQjMzMzMzszjmmcIYZa6OkJikKRzb+ktdb8HkBctlWQCrR3SWZbV7TlcTAEClrk9Wm4e091soI12WFU3T1ccA3NPsA1nWgMyesiyA9A5tpXlFA4X1bKcepcsCKvKisqzGc7Q9FJtM1fUWXPqjFrIsgPZ/1fVmW/G9I2RZAI3mV8uywjulHRlJTNc+j4RKdPVny/52pCwLgB26qIS8XF0YsO0cXd1ps4Hat26RDN1zUu58Xc00QEXLHFlWSqCrxQwiFbBEFldn3KfQYuGZQjMzMzMzszjmmUIzMzMzs4bGfQotBh4UxqgqI4EgSTPBmv6mriVFENUt/wBo+6+tsqzgixWyLAA6tpVFhdI07UV2i24tlmVtuPRbsiyA7r/vIctqPW+1LAtgc98CaV6b8XN0YQnaBRWhVrq/NViu/XcICnTLKtvfr3t+U8ufkyvNW987WZbV7rFVsiwAMjOkcdUrdNdc+6u0Sw2DlrrH1s4uzWRZAMkluuWjeXO2yLIAir6va2nV+q5PZVkAKe10LVBYLyxlCXT/nmb1hZePmpmZmZmZxTHPFJqZmZmZNTCh6K6vuv4d1jB4ptDMzMzMzCyOeaYwRrlzi0kMp0iyopW6NenhFtqarOoU3aWRWNBUlgVQNLiRLCtrRa4sC6DRx7qahW0DdsqyABYPeEKWddYzZ8qyAJJ3aD9qVG4nv/kR7Zb+Od9dKssKhcOyLID1A3V1VBkbtG0fsj8okmUl37hOlgVQPUPXXmje6JayLIDC/62Q5iWV6/JKe7WRZQGkrS2TZZU1S5JlAaQt3iDLCsrKZVkA7SaUyLK2nq9tV5T3rm5Pgh0n6lptVVeVw+uyuLrjjWYsBp4pNDMzMzMzi2OeKTQzMzMza2DcvN5i4ZlCMzMzMzOzOOaZwhgF4RBBOCTJSsjLk+TsChP3UvuNrg9S9LosWRZA43nVsqy7xj8sywK4dNJPZFkdL/5QlgXQ5+KrZVmNk9fKsgDS1mlrZKrX6GrGGv1A2+ctKqwDTBD32WzyyEeyrHBejiwLoLxHO1lWydO6voIA2cKn30ZztTWAiZt3SPMiwl6sK09vK8sC6HKLrodiRnZ7WRbA1j4tZFnZS7T9HUPzl8my8qavkWUBrB+kqztt+qbu+qiOah+ndSYIdn3V9e+wBsEzhWZmZmZmZnHMM4VmZmZmZg2MawotFh4UxihhRzkJCZpHQFXH5pIcgEi69p8y5ftfyLKiHYTLZIG0SbolbnfM/b4sC6DT+rmyrIQ2um3uAfL++ZksK2ipbYGS8OkSaV6oULfUMFRZJcsC2NJf97hP3q5t5VGVoVs8krtIu2wx8c2ZsqymBbrWGwCRjbpWNIt+f5wsCyB/Zro0r/Ga9bKsZu9qSjF2CwmXLKfMXSnLAkjJ170Orvu2ri0TQEab7rKscIX2OSmSqrtGFl2tW8IbLS+HMbI4s3rBg0IzMzMzs4bGfQotBq4pNDMzMzMzi2OeKTQzMzMza2BcU2ix8KAwRtG164mGNNuZrz1PV1uUWCaLAqDZR7q2D1+cr21JkdP9BFlW46d0dUoACTm6vzXSWHu/Bc1yZVnhBctlWQChNrpaD4A1A5vIsgJdBwkAygp0r6AJ1drFHk1m6eqBQhURWRZAuFVLWVb1am1LlcQWuhrbLg9vlWUBLLxJ21Llf365WJb12xeOkmUBbD5a9+/QfKq4lvjHuhrbFjfpalgBFvwiW5bVddxmWRZAxjzd82WwvVSWVR2tpEiWZlY/ePmomZmZmZlZHPNMoZmZmZlZQ+Pm9RYDzxSamZmZmZnFMc8UxiochpCmyKj57z+U5ACU/FvXlw0g9GZTWVZVjra2qNFfdHWAFacdK8sCSF+0UZaVsGKDLAsgWlwiy6o8UVsLlPTRAmleVaaupjBrpbgXYJbus7i2f1ooywJ46dM3ZVmD2vSWZQEU3dBTltX6Qd1jASDaWFeTFarQ1rJ1uUVb4/V8aTdZVvvSWbIsADq1lUUtujxXlgWQ84oub8klsigAOg2boQsT9wDdeqKuljj30y2yLCIVoH1o1QlvNGOx8EyhmZmZmZlZHPNMoZmZmZlZQ+Pm9RYDDwpjVNG7E5HEVElWyjTdkrlGPwvJsgCCtCRZVpcb58uyANb95HhZVqha+2yWvEXXRiJhnXb5aEKmbmv6pOJyWRbAph8cI81rPF/XUuXm3/1FlgVw/5nflWV1e024HAo45ZIrZVmpzbXXb+uXi2VZlb07ybIAStpq2hQBNPnbp7IsgK1nd5fmZS/T9T+qTte9zgAkvf+5LKvLH46QZQFQrSujCDLTZVkAZOlet7L+Ju6PdcEKWVRQUSHLIlqpyzKrJzwoNDMzMzNrYFxTaLFwTaGZmZmZmVkc80yhmZmZmVlDEw12fdX177AGwYPCGCUXV5Co6UhBKFlXhxJN1WUBBL/TbdkeGiRcxw9U6sofaDNhkS4MKOvdXpaV2lnbZiQ6a64sKxzRthk5YvM2ad7m/rptzB84+VRZFsCqC3TtXkJn7ZBlAdBVmCV+o1DaTvfAT/+nrh0QwBF5ebKsqLCtAkDeW19I8xDWZf3z89dlWQDf+8FVsqztBSmyLIDc6atlWaVdG8myADJWrpFlbRijfBKBVSN1720K79M9FkJRbasis/rAg0IzMzMzs4bGu49aDFxTaGZmZmZmFsc8KDQzMzMzM4tjXj4ao/CGYsIJmlqDbSfremVlvqrrzwSw7IOjZVkZV7aSZQG0uucjXZiwPxNAxifCnkoRbc1CNFH3cA/la2taggRtn83GbxbJsqKl2rq9ph/q+niVnNhGlgWw+UhRwTTQboW2B13qRl0tW7hbZ1kWQGhzsSwroVzb/2zFFR2lea1fWC/LOnXUSFkWQNaHs2RZ5T86TpYFsLOzrpY4bZ22T2xC0yayrJWnafc3yBW2Oa5er+udWh1UybLqUoiD0JKibuPtIPJMoZmZmZmZWRzzTKGZmZmZWUMTBLu+6vp3WIPgQWGMyjs2JTExVZKVMXmmJAcg2vNIWRZAsw91LQcy3lsoywLYPli3rCfrPe127fPG6JbzFT6lXUaWVCRcziduSRGs2yzNCzXStQjYeMFRsiyApq/qlhgnziqWZQFkzz5CllXWKV+WBZC8Vfd4qMpPl2UBJK1cK8uqKmwuywLYedROaV7FjFxZVjRJu/As3Ep33zV7TdemAaB6+SpZVvEPe8uyABJbpcmyOo6dI8sCqOyja3ER7tBWlhVEKkDc7cXsUPOg0MzMzMysgQkFB6Gm0BOFDYZrCs3MzMzMrF6IRqOMHz+eLl26kJqaSqtWrfjZz37Gjh37t/FbrD//0ksv0bdvXzIyMmjUqBFDhgxh2bJlez124cKFnHPOOeTl5ZGRkUG/fv146623ah33zjvvMGLECLp37052djZNmjThxBNP5JlnniGop0tuPSg0MzMzM2togoP0JTZq1Ciuv/56jjzySB544AGGDBnC/fffz+DBg4lGv35n9lh+/oUXXuC73/0uO3fu5J577uHnP/85U6dO5cQTT2TNmj2XkS9dupS+ffsybdo0brzxRu655x5KS0s5/fTTeeONN/Y49he/+AWTJk1iwIAB/O53v+Pmm28mEolw0UUXcdVVV33zO6kOhIL6OlytZ7Zt20ZOTg4D24wgUdSSIrJKV7NQ9t1jZVkAmdfq6h+iP9e2L1h0SaYsq/AZXXsAgFCVrtZu65HZsiyA1K3COtHpS2VZAJXdta0VEj+YK8tadZ12a/rkEt1T7g5ttxcSS3U1XrlLtHWnObN028mrRfJ1rW0S5u790+n6IujYWpaVsEJXiwmw+Uxdq5FRo/8mywK4ZdIPZFmNtB2oyH9H93pPVPuWcsfRBbKsdOHrVnW0kje3PEFJSQnZ2drXaoXd71lPOnmsbB+MfamuLue9t8fK7ou5c+fSvXt3zj33XJ5//vma2x944AGuueYa/vrXv3LRRRdJfr6qqoq2bduSmJjI3Llzyczc9f5y9uzZHHfccVx55ZU88sgjNRkXXHABzz//PDNnzqRHjx4AlJaW0q1bN1JTU1mwYAGh0K7X0XfeeYeTTjqJcPg/rZ6i0Sgnn3wyU6dO5bPPPuOoo7R7FnxT9XKm8K677mLIkCG0b9+eUChE27Ztv/L4Dz/8kIEDB5KVlUV2djaDBg1i9uzZB+VczczMzMzqm1AQHJQvpd3LK6+77ro9bh8+fDjp6ek89dRTsp9/5513WLNmDcOGDasZEAL06NGDAQMG8Oyzz1JVtasn5Y4dO5g8eTIDBgyoGRACZGZmMmzYMBYtWsSMGTNqbu/fv/8eA0KAhIQEzj//fAA+/1z86Y5AvRwU3nzzzbz11lt06NCBvLyv3kVw+vTp9O/fn2XLljFu3Dhuu+02Fi9eTL9+/fjss88O0hmbmZmZmcWnwsJCCgoKar4O1IwZM0hISKB37z132U1NTaVHjx57DLy+6c/v/t8nnHBCrZw+ffqwbds2Fi1aBMCnn35KRUXFPo/9ct5XWbVq18x806ZNv/bYg61eDgqXLl3K5s2bef3112ne/Ku3mL7mmmtITk5m6tSpjBo1ilGjRjF16lRCoRA/+9nPDtIZm5mZmZnVI9GD9CW0Zs0a8vPzSUmpXarVokULNm3aRGXlvlsUxfLzu2sGW7RosddjAVavXh3zsV91bo888gjt27fnpJNO+spjD4V62ZKiffv2+3XckiVLmDFjBj/60Y/2+Edq0aIFQ4YM4fHHH2fdunU0a9ZMdm7RjHSiYU1NYShN1xsoGtb2ewpdqvu8YOFo3d8J0P7vVbKsxOXaOqVo6f7tjLU/8rc2lmUBBFtLZFmVx7STZQFU5Al7KAIpBbpP4Fo/Ml+WBVA0ofYLyoHKfzZDlgWQM3erLOulN/4uywI481unybJKT2grywJYOUiX1fytbrowIOeVedK80JqNurCqal0W0PjjTbKs+8cMlWUBdPpIWD8pvt+2nNRSlpW5qkKWBZD2tq4+HGEfSyIVsEUX1xAsXrxYUlNYVla21wEd7Jrt231McnLyN/75srJd+0rs7fgvH/vl/+7Psfs6r3PPPZfS0lImT55MUpL2fY9CvZwp3F9fN+0bBAEzZ+oaxJuZmZmZHQ4Ox5rC9PR0Kir2/uFCeXl5zTGKn9/9370d/02O3dv3zznnHD7++GMef/xx+vXrt8/zP5Tq5Uzh/lJM5e7Lf6+H3p8tcM3MzMzM7MA0b96cefPmUVFRUWtWbvXq1eTn5+9zljDWn99dorZ69Wq6du1a61j4z3jiy8f+t/8+9st2DwjfeOMNHn30UX74wx/u+48/xA7rQeE3nco9ENG0RKKJminfcLJu6rg6Vbt8NMjULfnsOrpIlgUQ2aRbIhR01C6D3DBYl9f0b8JlM0DVtzrIspK2aB9XyfO163CiJdt0YV32bzn7/mo3qliWVdJbu3y0okDXWuGMztpPQqOlumWLmy9pIssC6Po/62RZqy7TtVUAyNnHMqoD1ihHFrXpeN1zEkBllu51cGdT7exHYvkRsqysmbp2VgCRFN39lrxC9/oMsOn7x8iylDNakcpyWCyLsy/p1asXr732Gh999NEeM2rl5eXMnj2bb3/727Kf79WrFwDTpk1j4MCBe+RMnz6d7OxsOnXqBED37t1JSUlh2rRptX7n9OnTAejZs+cet+8eEL722ms88sgjXHHFFftzFxwyh/Xy0W8ylft11q5du8fX4sV+9JuZmZnZYeIwbF4/dOhQQqEQ99133x63T5gwgbKyMi6++OKa25YuXcqCBQsO+Of79+9PQUEBEydOpLS0tOb2OXPmMGXKFIYMGVJT+5eZmcngwYOZMmUKc+bMqTm2tLSUiRMnUlhYuMeOpxUVFZx77rm89tprPPzwwwwbNuyA75OD5bCeKTzQqVwzMzMzM6tfunfvzogRI3jwwQc577zzOPPMM5k/fz73338//fv336Nx/SmnnMLy5csJvjQLHMvPJyUl8Yc//IGhQ4fSr18/hg8fzrZt2xg/fjxNmjThtttu2+Pc7rrrLt58801OO+00Ro0aRXZ2NhMmTGD16tW8+OKLNY3rAS6++GJeeeUVBg4cuNf+ikcffTRHH320+u77Rg7rQeGXp33/ewQ+ffp0QqEQxx133KE4NTMzMzOzQycIdn3V9e8Qu++++2jbti2PPPIIL774Ivn5+YwcOZJx48aRkPD1ixxj+fkhQ4aQlpbG7bffzg033EBKSgqnnHIKd999d62JpY4dO/L+++/zy1/+kt/85jdUVlZy7LHH1gz+vuzjjz8G4I033uCNN96odY5jxoypd4PCUBDU9dXyzRx11FGUlpZSVFS01+/36tWLhQsXsmDBgpqZwzVr1tClSxd69+6913+IA7Ft2zZycnLoeOOdhFNSJZn5n+u2ld50lHZ83/RjXduH9Pm6ehsAIrpNfyJNcmVZAMGcBV9/0H5KENacAhT/Uzdr3ujHuusDILJae40EVfvuYRSrytN7fv1BMUgu0Z1br4dnybIAnn1N1zep5Zvaa2TT0fveWCBWmau0G4f98JYXZVmTu+XLsgB2nNf76w+KQfabuue4SKfWsiyA8KIVsqxQlq6+FmBrX13bh7zpB7aB3r4su6SVLCtvYUSWBZD1T90O8iFhfW11UMlbO56hpKRE0oZBbfd71m+feAuJiZr3rPtSXV3O1Pd/XW/vC9t/9XKm8H//939Zvnw5ABs3bqSyspLbb78dgDZt2nDJJZfUHPuHP/yBk08+mX79+jFy5EgAHnjgAaLRKPfee+/BP3kzMzMzs0MsFOz6quvfYQ1DvRwUPvroo7zzzjt73HbLLbcAu4pCvzwo7Nu3L1OmTGH06NGMHj2aUChE3759ee655zjmGN2uVWZmZmZmZg1RvRwUTpkyJabjTzjhBN588826OZn/0ubheSSGNMuYooW6JRv5aLemT1tRIsuKrtdtJQ9Q3avr1x+0n4JEbSuPcKBblrb0ce3W9BTronJWz9eFAdfP1y6DHHPLlbKsrOU7ZVkARWfpHquR63rJsgBah3VLW5OmfibLAigoPVKWlbhIu/zuueJBsqz0rIWyLIDMotKvPygGoRzd8rDENdpWNGt+2E2W1XS6sK0NkPv5VllWdJP2fqtorCst2NopLMsCyCnUtXmKLlkuywoCXflPnTpMawrt0DisW1KYmZmZmZnZN1MvZwrNzMzMzOzAhaK7vur6d1jD4JlCMzMzMzOzOOaZwhhtO7kziUma7X2zXvlckgNQ2lvb6yTjtVWyrFCmtt4xPH2uLqvZEbIsgKBRniyr8AZtLWZk/QZZVqhboSwL4IY/ads+NFtRJssKz14sywJov6ONLKuqUZosCyBxu66msOgWbY/YpO26+t+8Jro6JYDU9RWyrFC2thVCJF3XygMgJKxnC7pq/x3yZ+se95E0bUugIEF3/VZ8W1dfC9DpptmyrFB7bZuRjX10LVqarF4vy0oIEkDbdaduuKbQYuCZQjMzMzMzszjmmUIzMzMzs4Ym+P9fdf07rEHwTKGZmZmZmVkc80xhjDImfUxiSFNrEOqoq6dotEBX0wKw6QfHyLIa/+9MWRZAtLeuniK8YpMsC4B/aOpNAbhC+/AMt24py6rMSpFlAbR4Q9fDCyBhs67H2ItLPpBlAZzVW1d3mrjgC1kWQPUJuj5v7X4zR5YFQKe2sqjQ8rWyLICgWtezbP3Qo2RZAEdMWSfNe2nx+7KsQWe1lWUBXPfE32RZfzx5oCwLYM1gXa1d0xnbZVmg7T3JGl3dHkCTS3V9Nldn6x5bkYpy+JMszqxe8KDQzMzMzKyBCQUBoTreCKau8+3g8fJRMzMzMzOzOOaZwhhtuPp4wimaJYLN/qxbVhleskyWBdDobV1W5KQeujAgeZmutcKqIW1lWQAtvqdrM7LhfN1SPoCUEl2H2XCF9pPBdX3TpXlNPtHlnXnKEFkWQGT1EllWODdXlgWQtHWnLCuUqH15iX6+SJa1+DfaFiiFt34qy2r66kpZFsDWvrpl4wBn9j9PF1akbfdyz7WXyLLStsyTZQEUPLNDlhXdrl0+uvmiXrKsvPm65Z4AC5fqShW6vKlrp1IdqWC+LK0OuSWFxcAzhWZmZmZmZnHMM4VmZmZmZg1NAOgWCe37d1iD4JlCMzMzMzOzOOaZwhhF+xcTShetcf+zJgaAhLAwDHacq6u5yZmurZGJrNfVFLZ4NUOWBVB2YmdZVv5zuvpEgKBzG1lWeGOJLAugIqeFNC95iq4dQvRbXWVZAKEeupYq0c8WyrIAEsp07TJI0r68lJ11rCyr469mybIASs/sIctK/9dHsiyAnIXCdgMA23Q1Y2XC+w0gpbhKlrX13O6yLICdjXWfwWeu1U795D4lvOYSQrosoOsvdNdvtF1zWVYQ0bWhqUvefdRi4ZlCMzMzMzOzOOaZQjMzMzOzhibgIOw+WrfxdvB4ptDMzMzMzCyOeaYwRk3+lEpioqZP4bJbdDUy2V/IogA44s1VsqwgI02WBRD01NVkMa9IlwUUn9pEF5bQRZcFpE9fKsuKCGszALYMLpPmZa3S1QNVZWifJjPmrNaFFTTTZQGRFbpzqz5B22fzpLHTZVlzZraSZQFkvSd8Am7cSJcFRGZr++0ltm8ry8pcoOsbB7B4TKYsq8OlH8uyAMqu7S3LynpBe24JjXJlWc/M/rcsC+CCVn1lWYlJSbKsIFopy6pT7lNoMfBMoZmZmZmZWRzzoNDMzMzMzCyOeflojJI3lpEYjkiyOjyzQ5IDsPVo4VbyQFBeIcuKrFwjywLYcPXxsqykLtolbollumUU6R8skWUBrL1Q11oh0HZAoWqrdnvv1nfrlsyt+EWhLAsgulm3ZC6UlSXLAkho01KWtelozTL73WZdols2nsB2WRZAKCVZlrXsMl3rGIA242dL85RCZeXSvA5X6NofLRvTS5YF0OH382VZG67QnltI85YGgAu7n6kLA7ZcriujqE7TtcuIVJbDBFlc3YkC2i4he/8d1iB4ptDMzMzMzCyOeabQzMzMzKyBcfN6i4VnCs3MzMzMzOKYZwpjVNkknaioJUUkWTcmD6k/qKmskkUV3abbihugw30LdGFN83VZQKikVBeWmqLLApq/pGszotb0IWGbBmB1ku6pbcvl2tq4zOyjZVmrLtA9TgFS5+nax7T501xZFsAX1+tqCo+YmS3LAsh8T1f/O2/EH2VZAKffdZw0T/lJ8o6jC4RpkDa1RJaVKX66fGnu27Kss07UXr/B1mJdlvC9A0DeQl27oqpsXe1vdZX276wzbklhMfBMoZmZmZmZWRzzTKGZmZmZWUPjmUKLgWcKzczMzMzM4phnCmNU0j6FcLKm1qvRvJ2SHID0uWtlWQDVW7fKstrd/oksC+CLXx0ry6rK0n7ClVDRWJZV+Btdrz2AUHKSLKt6ua4fGEBis6bSvDXf7yDLavae7rEAEFqmq59sW6btoRhJ1tXJBG2ay7IA2t3zuSwr2q2dLAuQ1iaf3uJbsiyAhDRtbfLW3s1kWTsvLJZlAYR3dpJlZa3S9k7tcddPZFk7/kf7utXpT7pGc39971lZFsDFx2bIsorP7CjLilQeJm+fPVNoMfBMoZmZmZmZWRw7TD7qMDMzMzOz/RYFQgfhd1iD4EFhjFI3R0lM0jwCEj/7QpIDEKRolwiFEoWXxtG6JT0ACVW6Z7jkrdpny8ZzI7KsLd/tKssC2NpZ97d2uHebLAtgwS+1y/kK3tP9O2zrnCPLAsgO6f4dKnK1T+HZUxbLsqLttMtHw43zZFnbWqfLsgByXtctp64Y1FOWBZA2VbsMvdHVy2VZ0bN3yLIAQlmZsqxmz2uf44p+1VmWFSRoX+8X3KFb/nzBRSNkWQDbBulaAuUu0ZXsVFeXy7LM6gsPCs3MzMzMGphQEBCq45q/us63g8c1hWZmZmZmZnHMg0IzMzMzM7M45uWjMYqkhSBJUxMULSuT5ADQoZUuCwin69bxR+culWUBtEbXbiC8TttuIFpcIssKhbWf2TR6OSzLCqWlybIAMlZo/9bsd3S1caEs3ZboAFTq2j7krN8iywKo3qJ7PITaFsiyAIJE3fWb+Y8ZsiwAcrJlUckllbIsgOpvaduWcJbusbX9jKNkWQA5n6yXZa39kbYmNnWrrhVNs7c3yrIAtl7aW5ZV0l4WBUCjp2fKspR1yaGo9nFaZ9ySwmLgmUIzMzMzM7M45plCMzMzM7OGJhpAqI5n8qKeKWwoPFNoZmZmZmYWxzxTGKOcz0tIDGv601Sf2F2SA5C0VttTKZKvq5FZP1hb75i7RFeTlbpAVwMIsPRmXY1Ms+m6XnsACZW6T/OSSqtlWQAtH58vzdtxkq6OKvX/PpJlAew8R1e/k/n+MlkWQMIxut6YoS/WyLIAik/T9XnLq9Jev2vPaCnLOuLxT2RZAF/cdqw0L+OYY2RZzd7V1sRGJupeG5Z+rK2JLXxc9/wbEtb+AjT+RJiXoJ1rWD1S17ez5SubZFlBpAJ0Jax1xzWFFgPPFJqZmZmZmcUxzxSamZmZmTU4B2GmEM8UNhQeFMYokpVMKDFFklWVrrv7E3LTZVkA4UUrZFllN+q2kgdoOmGhLCv6Ld2SNICOj67ThW3focsCih46QpbV6reatiy7BZXa7b23dtI9tpr2/5YsC2DDsbrHQ/rL2mXj4eQkWVa0VVNZFkDOS3N1Ybk5uiyg0cIKWda2c7XXW8fHNkjzQhW6x+rWPi1kWQC5F+haNUTu1f2bAgRJusd9QlttSUYkVfe4D4uXjSfu1D1WQ1t1z5eHTUsKsxh4UGhmZmZm1tC4ptBi4JpCMzMzMzOzOOaZQjMzMzOzhiYaUOc1f+5T2GB4UBijhPIICWHNduZVLVIlOQAZn2u3qI6W6+opOozT1mZEhNvJh6q0bR+iWbrazpJe2pqsfq3nyLKWz9Leb0GCtkax4PfTZFmhRF29DUD7OWmyrA2XatsNNJ44XRfWorEuC0iI6K65JVdpa7I6PKWrZSvu2ESWBUBIXP8rfG3IfXmeLAsgWqE7t66/1NbGRZs20oWJny/Dy3W9FaIl22VZAM3e2SzLWnlhe1lWpKIcHpTFmdULHhSamZmZmTU0QXTXV13/DmsQXFNoZmZmZmYWxzwoNDMzMzMzi2NePhqjhNUbSUhIlmTlrFgryQFYcUUXWRZAi/t0/faic3V9BQESC5rJsuZfq+k5uVvn35XJsq4d+6wsC+DJk3rKsoLqTbIsgMRm2vrJaImwH1WK9hqJlumukZC2tJNld/SRZXW4XVfDCkD71rosbUkWkYVLdFkDdf1EAYJVutcZgOpvFcqywh9qawpDwj6bpGhe53cra5Upy0pfru1PunFwB1lW8cnlsiyAjr/T9QNs9S9dnWh1tIIFsrQ65JYUFgPPFJqZmZmZmcUxzxSamZmZmTU0bklhMfCgMEaRTZsIhTRLVLb/QLdUq9UT2iWay0b3lmW1//MXsiyAYOdOWVbzydp2A2v767Ydf/KsAbIsAKq2yKJCydqlVdHSHdK8recdLcvK+euHsiyAcH6+LCuqvXxp9ytdS4qEtsLlnkBZyyxZVsdHte0Glt3SV5aVvk77BiuhUZ40b8NxurY7LT7XtWcB+GJUN1lW69d0y7wB1vYNy7KaJubIsgCavrxcltV4ovaxRZLutSbaraMuK6L79zSrLzwoNDMzMzNraFxTaDFwTaGZmZmZmVkc80yhmZmZmVlDE3AQZgrrNt4OHg8KYxTOziIc0qxxz/tI1/ah+Du6bcIBbhj6gizrhcd7ybIAAmG7gcx/zZRlAeQIWytEc3U1VABlJ3WWZWUs3SrLqgvFZ+tqFBt/0EaWBRCk6AoB8+doazErT9e1LQkv014j1enChS07tdvmt7pDV3ea2FzXcgcg0kxbU9jiJd3rVmRbqSwLoMPDuvr18q4tZFkA7SbpHqvhzdr7rbKdrg3K+h+0lWUBJJXqRhzVqbpeNJGKcvhUFmdWL3hQaGZmZmbW0Lim0GLgmkIzMzMzM7M45plCMzMzM7OGJhoFogfhd1hD4EFhjEJ5OYQSUiRZS35UIMkBaP9csSwL4IWBx8qyVn+/lSwLIKGypSyr4P90/ZkAosJ6RxppawpXDtLVU3R5QLtcZO1AXU0LQNu7SmRZQaK2H1V1owxZVtJqXe9JgPBSXQ/Qiu7aPoXZH66UZc0bq60T7XKd7npTC2/eLs0L0jSvfwChJO1bkOg23d+aMld3vQHSOtaqYzrIsgDCH82TZbXcqH29J6xb0BZdXCTLqg6qmC9LM6sfvHzUzMzMzMwsjnmm0MzMzMysofFGMxYDDwpj1OixEpIyNC0pqq4XbhW+cJkuCwgy0mVZzZ9eKMsCCGXqlt9Vtte1kABI2pypC1uxVpcFdJ6oWxhQ1UT4dwJH/HGaNG/tdSfIslo8qf13SNywSReWl6vLAhpNqpJlbb1ooywLkNatdPmjcJk3EErVLakMSrXtBtRtH8KNcmVZoc7tZFkAQVi31HtHG93rDEDmQl2LloR3Z8myAMLt2+rCSrTLlUnUvU3deMVxsqxIZTk8/pwsz6w+8KDQzMzMzKyh8UyhxcA1hWZmZmZmZnHMM4VmZmZmZg1NNADqeCYv6pnChsKDwhhtvLEVieFUSVZVY01tIkCookKWBZAgrM14efH7siyAMwb9QBcmnisPlejqd4Lm2nrHUFVElhVN1rZpKP3B8dK8pFLdi9TaH3SRZQHkLqmUZa3vqXsOAVjzdAtZVsH2BbIsgOpOuq3uEzdp657KTuwky0reors+ALa1T5Pm5T0/W5ZV3K1QlgWQ+1mxLCv9xdmyLAA66tqghDtqazGp1r02LL9M2y6j9UTd80jeIt37pOpq7Xsus/rAg0IzMzMzswYmCKIEQd02l6/rfDt4XFNoZmZmZmYWxzxTGKPw+mLCCZrtxzd+p7UkByA3o7csCyB9bbks64xBumVfAKsGNZJllbavlmUBHHmH7nOW6NLlsiyAhQ8fJcs68tb1siyAorNbSvOiGbp/18LHtcv5QtM+lWW1flO7jDchN0eW9fCsybIsgP6vXSfL6nqv9n4rz9XlJZVqP6vN+et0aV6ose75N6FaW4u07chcWdaYf2nbPtw3SLc0e2O/ZrIsgB0tQrKspjO0z5c7e7aXZS0/U/eWN7ozCu/K4upOENR9zZ93H20wPFNoZmZmZmYWxzxTaGZmZmbW0AQHYfdRzxQ2GJ4pNDMzMzMzi2OeKYzRmf+aQ1qm5m77x48aS3IAwjurZFkA0TnzZVmL/3qMLAugw8XTZFmrbzxBlgUQbZQlywon6Oo8ALrcu0OWFS0ukWUBFP5FV8sGsPpW3SeXkTTtlv6pbXW1xBVtdc8hAClfbJRlXXjDDbIsgA4bdbVK0XRtK4+s5boa7FXfSZdlATRPPE6al/D+XFlWVYb2c+lGf50py/r9C9rXrdXXF8iymv/uQ1kWQGNhCyrEr1trr9Zdv51vniPLqg4qWSlLq0PRKITqeHdQ7z7aYHim0MzMzMzMLI55UGhmZmZmZhbHvHzUzMzMzKyh8UYzFgMPCmP04sAOJIY09ShFf5LEANDu4oW6MGDpPcfLsjres12WBfDKal3/qDPO7CrLAqjM19UDlR2prbPLm71ZlhVqoq1lC3boarIASrfkybJ2XqntZdnxnkxZVtLGMlkWQDRXd245r2ufk6r+oTu3nffp6rsAKjN1i27a3PWxLAsg1FnX5w0glJkhy8p/b50sC2D7d78ly8p8WVd/BtDq0QWyrLLTj5VlAWTM1/WdXXearh8jQIundPdb0E7YMzlSAfN0cWb1gQeFZmZmZmYNTBCNEtTxRjOBN5ppMFxTaGZmZmZmFsc8Uxij8m+1JzExVZLV7uLZkhyAxIKmsiyAti/qtn8Pb9K2Lzj9nEtkWQlRbSuPxDd1W6Ln9jhSlgUQ2qZrSbHh9DayLIBGj+najACkrugry8oqSpJlAfC5bs1RtFp8/bbT/bsGjXNlWQBJQ7fJsqLHRGRZABlLi2VZQZL2ZXljH91SaoDGE3XL+cIh7efSWQt0913J2T1kWQDhCt1sSnWq9n5L26grLWj6d+3r/bof6F4Hd55SKsuKlEXgUllc3XFNocXAM4VmZmZmZmZxzDOFZmZmZmYNTTSAkGcKbf94ptDMzMzMzCyOeaYwRklvzyYxpKkxKjtP1/Yha+oSWRZAeKduG/5gu7YlRXWhrn4yZbluK26ArS8WyrIik7UtKfL/rKtla/IPXW0GQOk5vaV5OUt19Ts5f/1QlgWw8I+9ZFldf79JlgUQXaN7PCz6cydZFkB0R74sq93z4k+2N+hqstY901qWBVBwg/Y5Lpqoe9uw5PqOsiyAVm/oauGzX/xMlgXaVh6hJG2d8/oLj5ZlNX1xmSwLoGCSLm9NWNeeJVIprjWvK0EA1PHuoJ4pbDA8U2hmZmZmZhbHPFNoZmZmZtbABNGAoI5rCgPPFDYYnik0MzMzMzOLY54pjFVCGEJhSVTmq59LcgBITtZlAYnrdb2Glo7qJssCaPfPYllW2bHafnv512+VZQXLZ8myAEId28my/jHlWVkWwPnHaXp/7vbSrNdkWacWXS7LAsgW9lLb0VlXZweQsaVYltXpnnJZFkCTh1fLsj79/ChZFkDzolxd1tXFsixAXu8TVOvqzTs+sVGWBRBZrKs/K7lAV/sLkPX3GbKsyLePkWUBpG8S9u1M0z6XU6nrxXrEQx/IsqoDbY/YOhNEqfuawjrOt4PGM4VmZmZmZmZxzINCMzMzMzOzOOblo7FSTsUn6MbkodQUWRZAkKpbjtrut3NkWWorrusizes6eqcsq/rYzrIsgHCZbrlLt3//VJYFcGTyGmnemcecKstKqvhClgWQ1uZIWVbmXG27gS2n6dpIJG/XLinadEljWVaz5R/LsgBo10oWtexK3bb5AG0fnCvNiww4Vpa1M0f7FiTcLk+WlbhTe/1Wnqa731aeor3fOv15nSxrzZnNZVkABc/p2m2Fc3VtnoKgEoplcXXGG81YLDxTaGZmZmZmFsc8U2hmZmZm1tB4oxmLgQeF+2n39Lhyx6mEoFKXFU2SZQEEkQpdlvDvVIvu1O6QWB3V3W/V1dpzCyK6XQOjO7VPHcr7DSCICq858fUbqdT9u6rvt0iV8NyqtG8UqoXPSVHxzoEJwnOLVIifk8TXr/J5qbpK+zwSVOmWsUUSQrIs0J5btFz8/Ku8foXPbwDV9fS5fPfjqr4vnaymCur4FKs5THZita8VCur7FV1PrFq1ilatdHUjZmZmZnb4WrlyJS1btjzUp1FLeXk57dq1Y906Xb3oV2nWrBnLli0jNVXcksQOKg8K91M0GmXNmjVkZWURCmk/QbRDo7CwEIDFixcf4jOx+sbXhu2NrwvbG18X8ScIArZv307z5s1JEG4aqFReXk5l5cFZqZWcnOwBYQPg5aP7KSEhoV5+GmQHbvcTeXZ29iE+E6tvfG3Y3vi6sL3xdRGfcnJ0u5nWhdTUVA/ULCb18+MNMzMzMzMzOyg8KDQzMzMzM4tjrik0MzMzMzOLY54pNDMzMzMzi2MeFJqZmZmZmcUxDwrNzMzMzMzimAeFZmZmZmZmccyDQjMzMzMzszjmQaGZmZmZmVkc86DQzMzMzMwsjnlQaGZmZmZmFsc8KDQzMzMzM4tjHhSamZmZmZnFMQ8KzczMzMzM4pgHhWZmZmZmZnHMg0IzMzMzM7M45kGhNUiLFi3i1ltvpU+fPjRp0oSsrCx69OjBHXfcwY4dO2odv3DhQs455xzy8vLIyMigX79+vPXWW4fgzO1gKysro3379oRCIX7605/W+r6vjfiyZcsWbrjhBjp27EhqaipNmjTh5JNP5t13393juA8//JCBAweSlZVFdnY2gwYNYvbs2YfmpK1OlZaWcuedd9K9e3eysrLIz8+nb9++PPHEEwRBsMexvi7M7HCVeKhPwKwuPPbYYzz00EOcffbZXHzxxSQlJfH2228zevRo/v73vzN9+nTS0tIAWLp0KX379iUxMZEbb7yRnJwcJkyYwOmnn87LL7/MwIEDD/FfY3Xp1ltvZePGjXv9nq+N+LJ8+XIGDBhAaWkpV155JZ06daKkpIRPP/2U1atX1xw3ffp0BgwYQIsWLRg3bhwADz74IP369eODDz6ge/fuh+pPMLFoNMoZZ5zBBx98wGWXXcbIkSMpKyvjmWee4YorrmD+/PncfffdgK8LMzvMBWYN0IwZM4Li4uJat//qV78KgOCBBx6ouW3IkCFBQkJCMGvWrJrbtm/fHrRu3Tro1KlTEI1GD8Yp2yEwc+bMIBwOB/fee28ABCNGjNjj+7424stJJ50UtGzZMlizZs1XHterV68gKysrWLVqVc1tq1atCrKysoJTTz21rk/TDqIPPvggAILrrrtuj9srKiqCdu3aBTk5OTW3+bows8OZl49ag9SzZ09ycnJq3T506FAAPv/8cwB27NjB5MmTGTBgAD169Kg5LjMzk2HDhrFo0SJmzJhxUM7ZDq5IJMLw4cMZNGgQ5513Xq3v+9qIL1OnTuW9997jxhtvpKCggKqqKsrKymodt2TJEmbMmMGQIUNo0aJFze0tWrRgyJAhvPHGG6xbt+5gnrrVoW3btgHQvHnzPW5PTk4mPz+fjIwMwNeFmR3+PCi0uLJq1SoAmjZtCsCnn35KRUUFJ5xwQq1j+/TpA+A3/g3U+PHjWbBgAQ8++OBev+9rI7689NJLALRu3ZrBgweTlpZGRkYGnTp14qmnnqo5bve/+b6uiyAImDlz5sE5aatzvXv3Jjc3l9/+9rc899xzrFixggULFnDTTTcxc+ZMxo4dC/i6MLPDn2sKLW5EIhF+/etfk5iYyEUXXQTAmjVrAPb4ZHe33bd9uZbIGoZly5YxZswYbr31Vtq2bUtRUVGtY3xtxJeFCxcCMHz4cAoLC/nLX/5CZWUl9957L5dccglVVVVcccUVvi7iTF5eHpMnT2bYsGFccMEFNbdnZWXx/PPPc8455wB+vjCzw58HhRY3rrvuOqZNm8add95J586dAWqWh6WkpNQ6PjU1dY9jrOG4+uqrad++Pddff/0+j/G1EV+2b98O7Hqz//bbb5OcnAzAOeecQ/v27bn55pu57LLLfF3EoczMTI466ijOPvts+vbty5YtW3jooYe46KKLmDRpEqeeeqqvCzM77HlQaHHhlltu4cEHH+Sqq67ipptuqrk9PT0dgIqKilo/U15evscx1jA89dRTvP7660ydOpWkpKR9HudrI77s3o34wgsvrBkQwq6ZorPPPpsnn3yShQsX+rqIM5999hl9+/Zl/PjxXH311TW3X3jhhRx11FEMHz6cpUuX+rows8OeawqtwRs7diy33347V1xxBQ8//PAe39u9ecDelvXsvm1vy4Hs8FRRUcH111/PmWeeSbNmzViyZAlLlixh+fLlAJSUlLBkyRKKi4t9bcSZli1bAtCsWbNa3ysoKABg69atvi7izPjx4ykvL2fIkCF73J6ens5ZZ53F8uXLKSoq8nVhZoc9DwqtQRs7diy33XYbl112GRMnTiQUCu3x/e7du5OSksK0adNq/ez06dOBXTuZWsOwc+dONm7cyIsvvkhhYWHN14ABA4Bds4iFhYVMnDjR10ac6d27N/Cfzai+bPdtRxxxBL169QLY53URCoU47rjj6vBM7WDaPaCLRCK1vlddXV3zX18XZna4CwVBEBzqkzCrC+PGjWPMmDFccsklPPHEEyQk7P0zkCFDhvDCCy/wySefcMwxxwBQWlpKt27dSElJYeHChbUGk3Z4qqqqYtKkSbVu37hxIz/5yU8YNGgQV155JUcffTSdOnXytRFHtm7dSps2bcjOzmbBggVkZmYCsHbtWgoLC2nRokXNZjS9evVi4cKFLFiwoGaGaM2aNXTp0oXevXvzxhtvHLK/w7RGjRrFfffdx913382NN95Yc3txcTFHHnkk5eXlbNy4kXA47OvCzA5rHhRag/TQQw/x05/+lNatW/PrX/+61oCwadOmnHrqqcCu/lK9e/cmKSmJUaNGkZ2dzYQJE/jss8948cUXOf300w/Fn2AHUVFREe3atWPEiBF7tKjwtRFfHnnkEf7nf/6Hbt268aMf/YjKykr+9Kc/sXbtWv79739z2mmnAfDBBx9w8skn07JlS0aOHAnAAw88wPr163n//fdrPkCww9/y5cs59thj2bp1KxdffDEnnngiW7ZsYcKECRQVFfHQQw/xk5/8BPB1YWaHuW/Q+N6s3rrssssCYJ9f/fv33+P4efPmBWeffXaQk5MTpKWlBSeeeGLw+uuvH5qTt4Nu2bJlARCMGDGi1vd8bcSX559/Pjj++OOD9PT0IDMzMzj11FOD9957r9ZxH3zwQfCd73wnyMjICDIzM4PTTjstmDlz5iE4Y6trS5YsCS699NKgRYsWQWJiYpCVlRX069cveP7552sd6+vCzA5Xnik0MzMzMzOLY95oxszMzMzMLI55UGhmZmZmZhbHPCg0MzMzMzOLYx4UmpmZmZmZxTEPCs3MzMzMzOKYB4VmZmZmZmZxzINCMzMzMzOzOOZBoZmZmZmZWRzzoNDMzMzMzCyOeVBoZnaYGzt2LKFQiClTphzqU4lJv3796NGjB0EQxPyzc+bMISEhgYkTJ9bBmZmZmcUXDwrNzOqRUCgU09fhNhDc7bnnnuO9997j9ttvJxQKxfzzxxxzDN///ve55ZZbKC0trYMzNDMzix+h4EA+ojUzszoxduzYWrfdd999lJSUcO2115Kbm7vH9y6//HIyMzPZtGkTrVu3Jj09/eCc6DcQBAFdunQhKSmJzz///IBzPv74Y3r16sUdd9zBzTffLDxDMzOz+OJBoZlZPde2bVuWL1/OsmXLaNu27aE+nW/s9ddf57TTTuPuu+/mxhtv/EZZRx55JDt27GDZsmUkJHjxi5mZ2YHwK6iZ2WFubzWFRUVFhEIhLr/8chYtWsS5555LXl4eOTk5fO9736OoqAiAJUuWMGTIEPLz80lPT+fMM8/kiy++2Ovv2bx5MzfeeCOdO3cmNTWVvLw8zjrrLKZPnx7T+T766KMADB06tNb3tm3bxm233cZRRx1FVlYWWVlZdOjQgR/84AfMmjWr1vFDhw5lxYoVvP766zGdg5mZmf2HB4VmZg3YsmXLOOGEEygpKeHKK6/kxBNPZPLkyQwcOJD58+dz/PHHs2nTJi6//HIGDBjAyy+/zFlnnUU0Gq2Vc+yxx3LPPffQokULRowYwbnnnsu0adP49re/zf/93//t1/kEQcBbb71F8+bNadOmTa3vDRo0iLFjx5Kdnc3w4cP58Y9/TO/evZkyZQoffvhhrbwTTzwRwINCMzOzbyDxUJ+AmZnVnalTp/K73/2On/3sZzW3XXXVVUyYMIG+ffsyevTovX5v0qRJnHvuuTW3X3rppaxatYoXXnhhj9vvuOMOevfuzfDhwykqKiI1NfUrz2fhwoVs3LiRwYMH1/re559/zrRp0zjnnHP45z//ucf3IpEI27Ztq/UzvXr1qvk7zczM7MB4ptDMrAFr164do0aN2uO2Sy65BIBGjRrV+t4Pf/hDYFfLh91mz57Ne++9x5AhQ/YYEAIUFBTw85//nPXr1/Pmm29+7fmsWLECgGbNmu3zmLS0tFq3hcNh8vLyat2ek5NDampqTa6ZmZnFzjOFZmYN2DHHHFNrA5aCggIAjj766Frfa968OQCrV6+uuW3atGkAbNmyZa+7oy5evBiABQsWcNZZZ33l+WzevBlgrwO8I488kh49evDMM8+wfPlyvve973HSSSfRs2dPkpOT95nZqFEj1q9f/5W/18zMzPbNg0IzswYsJyen1m2JiYlf+72qqqqa27Zs2QLsqtv7qtq9/ekXuHsWsLy8vNb3wuEwb731FuPGjeMf//gHv/jFLwDIzs7m8ssv58477yQjI6PWz+3cuXOvs4tmZma2f7x81MzMvtLuweNdd91FEAT7/BozZszXZh1xxBHAfwaa/y0vL4/x48ezcuVKFi1axCOPPEJhYSH3338/P/3pT2sdH41GKS4ursk1MzOz2HlQaGZmX+n4448H/rOM9Jvo1q0b4XCYhQsXfu2xhYWFDB8+nKlTp5KZmcm//vWvWscsXLiQIAjo0aPHNz43MzOzeOVBoZmZfaVevXrRt29fJk+ezGOPPbbXY6ZPn05ZWdnXZuXk5NCjRw/mzJlDRUXFHt9btmzZXnskbt26lYqKCtLT0/f6ewFOPvnk/flTzMzMbC9cU2hmZl/r6aef5uSTT+bKK6/kj3/8I7169SIrK4uVK1fy8ccfs2TJEtauXbvXgdt/O++885g5cyZTpkzh9NNPr7l9zpw5nHfeefTq1YuuXbvSvHlzNmzYwKRJk6iqqqqpMfyy1157jXA4zPe+9z3p32tmZhZPPFNoZmZfq02bNsyaNYuxY8dSXV3Nk08+yYMPPshHH31E9+7defLJJ8nPz9+vrCuvvJKkpCSefPLJPW7v2bMnv/zlLwmHw7zyyivce++9vPrqq/Tq1YuXX36Za665Zo/jt2/fzqRJk/jud79Lq1atZH+rmZlZvAkFQRAc6pMwM7P4MmzYMJ5++mmKiooOeJOYP/7xj4wYMYJ3332Xk046SXyGZmZm8cODQjMzO+jWrl1bs5HM+PHjY/758vJyOnbsSJ8+ffjHP/5RB2doZmYWP1xTaGZmB11BQQFPPfVUze6hoVAopp9fvnw5w4YN4/LLL6+bEzQzM4sjnik0MzMzMzOLY95oxszMzMzMLI55UGhmZmZmZhbHPCg0MzMzMzOLYx4UmpmZmZmZxTEPCs3MzMzMzOKYB4VmZmZmZmZxzINCMzMzMzOzOOZBoZmZmZmZWRzzoNDMzMzMzCyO/T9SDGb06jskaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\", vmax=0.001,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.title('Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It is actually only one feature drifiting along time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 0.3333333333333333\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dps.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 1 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_f = dps.rebin_frequency(df_new=1.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 1.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dps_new_f.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAJlCAYAAAAPYLm5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABabUlEQVR4nO3deXwUdZ7/8Xd17lswiCGcKocHQ5RjOIYJCOjIoD9EYhCW4ccsYXABfyDIDo5gwuWyjBvkWJVrcETRcWFWd0BXHUVRYGCc8eZeiEOCCiLkIgdd9fuDSW/FBKE7326a8Ho+HvWAVH/rU1Xd1d355PP9fstyHMcRAAAAAECS5LnYBwAAAAAA4YQkCQAAAABcSJIAAAAAwIUkCQAAAABcSJIAAAAAwIUkCQAAAABcSJIAAAAAwIUkCQAAAABcSJIAAAAAwIUkCQAAAABc/E6S9u7dq1GjRun6669XSkqK4uPj1alTJz344IM6evRove2HDh2qJk2aKCEhQX379tVbb71l5OABAAAAwDTLcRzHnw3++Mc/av78+erZs6datmypyMhIffLJJ/rNb36j5ORkffjhh7rqqqskSQcPHlSPHj0UGRmpKVOmKCUlRStXrtSnn36qV199VQMHDgzKSQEAAABAoPxOks7lpZde0r333quFCxdqxowZkqR7771XGzZs0AcffKCMjAxJUmlpqW688UbFxsZqz549sizLxO4BAAAAwAhjY5LatGkjSfr2228lSWVlZXrllVfUr18/X4IkSYmJiRo3bpz27dunXbt2mdo9AAAAABgRcJJUUVGh48eP68iRI3r99df1i1/8QpI0ePBgSdLHH3+syspK9erVq862PXv2lCSSJAAAAABhJzLQDVetWqXJkyf7fm7btq3WrVunvn37SpKKiookSenp6XW2rVlXWFgY6O6VlpZW62fbtvXBBx8oKSmJLnwAAACXIcdxVFJSohYtWsjjCd9JnCsqKlRVVRWSfUVHRys2NjYk+2pMAk6Shg4dqk6dOqm0tFR//etf9corr+j48eO+x8vLyyVJMTExdbateaFq2phg27ZatWplLB4AAAAuTX/729/UsmXLi30Y9aqoqFC7Non68mtvSPZ39dVX69ChQyRKfgo4SWrZsqXv4hs6dKjuuecede/eXeXl5Zo5c6bi4+MlSZWVlXW2raiokCRfm0B8d7rxU6dO6YorrlDfiLsUaUUFHNfNijYTR5Icr20slmT42CpC85eMQFhREUbj2QbP1RMbbSyWJMk2d4140pobiyVJ9vETRuOZvOas6IA/xurlnDH3peVJTDAWS5Kc06fNxTL8mSTbyBxAkiRPgtkvcvt03e+hQFkRZv8ybfKzXJLkMfeZ6Rj8Q6YkKcrg99bpCmOxJMkxeP1GJJt935u8fh3TlQvL3PvBE1f3j+qBOONU693y/1BSUpKReMFQVVWlL7/2quCDtkpOCm61q7jEVpuuh1VVVUWS5Cdjv1384Ac/0M0336x///d/18yZM9WiRQtJ9Xepq1lXX1e8QNV0sYu0oswlSZa5X4Idy+xfC8wem7kvB9Msy+wvwLbBc/UYfA0kSZbBJMlj5sumhm34XE1ec5ah93sNxzpjLJbHY/p5M/c5YvozSWH83rINvrcsy+wfbkxfv0aTJIPvBUmSwXM1ff2a/EyKCOPr1/j3vckkyfDzdikMvUhMspSYFNzjtBX+z0O4Mpq+nj59WidOnP2Lc+fOnRUTE6Pt27fXabdjxw5JUrdu3UzuHgAAAAAazO8k6csvv6x3/dtvv61PP/3UN3NdYmKi7rzzTm3ZskUfffSRr11paalWrVql9u3bq0ePHgEeNgAAAHDp8jp2SBYExu++TPfff7+OHj2qW2+9VW3atFFFRYU++OADvfDCC0pKStLjjz/ua/vYY4/pj3/8o2677TZNnTpVycnJWrlypQoLC7Vp06ZLohQKAAAA4PLid5J033336be//a2effZZHTt2TJZlqU2bNvrFL36hhx56SK1bt/a1ve666/T+++/rl7/8pf7lX/5FVVVVuuWWW/Taa69p4MCBRk8EAAAAuFTYcmQruOPCgx2/MfM7Sbr33nt17733XnD766+/Xi+//LK/uwEAAACAiyJ877IFAAAAABeB2fmVAQAAAJyXLVvBnlYh+HtovKgkAQAAAIALlSQAAAAgxLyOI68T3IkVgh2/MaOSBAAAAAAuVJIAAACAEGMK8PBGJQkAAAAAXKgkAQAAACFmy5GXSlLYopIEAAAAAC5UkgAAAIAQY0xSeKOSBAAAAAAuVJIAAACAEOM+SeGNShIAAAAAuFBJAgAAAELM/vsS7H0gMFSSAAAAAMCFJAkAAAAAXOhuBwAAAISYNwQ3kw12/MaMShIAAAAAuFBJAgAAAELM65xdgr0PBIZKEgAAAAC4UEkCAAAAQowpwMMblSQAAAAAcKGSBAAAAISYLUteWUHfBwJDJQkAAAAAXKgkAQAAACFmO2eXYO8DgWl0SZLj9cqxzBTInNOnjcSRJCsiwlgsSZLXayyUU11lLJYkRTRrZiyWU1JiLJYkeWJjjMYzyUpMMBbrzKECY7EkKbJNK6PxzhT8zVgsK8JsQdypMvh+qKo2F0uSXVFpLJblMdsFwxMfby6Yoc/wGiaPzak09xpIkmP4GnGqzX1vmWbJ4LmavkaizcUz/ZpGpF5pLJZ98pSxWJJkl5cbi2XqeXOcM0biAI0uSQIAAADCnTcEY5KCHb8xY0wSAAAAALiQJAEAAACAC93tAAAAgBCju114o5IEAAAAAC5UkgAAAIAQsx1LthPkm8kGOX5jRiUJAAAAAFyoJAEAAAAhxpik8EYlCQAAAABcqCQBAAAAIeaVR94g1yu8QY3euFFJAgAAAAAXKkkAAABAiDkhmN3OYXa7gFFJAgAAAAAXKkkAAABAiDG7XXijkgQAAAAALlSSAAAAgBDzOh55nSDPbucENXyjRiUJAAAAAFxIkgAAAADAhe52AAAAQIjZsmQHuV5hi/52gaKSBAAAAOCC2Lat/Px8derUSbGxsWrVqpWmTZumsrKyoGy/efNm9e7dWwkJCWratKmysrJ06NChc8bftGmTBg4cqCZNmig+Pl4dOnTQpEmT/D5PkiQAAAAgxGqmAA/2YtrUqVP14IMP6oYbbtDSpUuVlZWlJUuW6M4775Rt20a337hxo4YMGaLTp09r0aJFeuihh/Tuu++qT58+KioqqhM7Ly9PQ4YMUWRkpPLy8rRkyRKNGDFCR44c8fs86W4HAAAA4Lw+++wzLV26VMOGDdOGDRt869u1a6cHHnhAL7zwgkaOHGlk++rqak2ePFmtWrXS1q1blZiYKEm644471LVrV+Xm5mrFihW+GG+++aZyc3M1Z84czZo1q8HnSiUJAAAACLGaKcCDvZi0fv16OY6jKVOm1Fqfk5Oj+Ph4rVu3ztj277zzjoqKijRu3DhfgiRJGRkZ6tevn1588UVVV1f71i9YsEBXXXWVZs6cKUkqLS29oMrWuZAkAQAAADivXbt2yePxqEePHrXWx8bGKiMjQ7t27TK2fc3/e/XqVSdOz549VVxcrH379kmSysrK9O677+qHP/yhVq9erfT0dCUlJSkxMVEjRozQV1995fe5kiQBAAAAIXZ2drvgL5LUvn17paWl+ZZAFRUVKTU1VTExMXUeS09P1/Hjx1VVVWVk+5oxR+np6fW2laTCwkJJ0oEDB+T1erVjxw79v//3/5STk6ONGzdqwoQJeumll9S/f3+Vl5f7da6MSQIAAABwXuXl5fUmONLZalBNm+jo6AZvX5PU1Nfe3VaSSkpKJEnHjh3TypUrNW7cOEnS3XffreTkZOXl5emZZ57R/ffff0HnKVFJAgAAAELOlkfeIC8192Hav3+/jh496lsCFR8fr8rKynofq6io8LUxsX3Nv/W1/27buLg4SZLH49Ho0aNrtR0zZowkacuWLec8rvqQJAEAAAA4rxYtWuj48eP1Ji6FhYVKTU09ZxXJ3+1btGjhW19fW+l/u921bNlSktSkSZM6laea7oXffvvtec/PjSQJAAAACLFLcXa77t27y7Zt7dy5s9b6iooKffjhh+rWrZux7bt37y5J2r59e504O3bsUHJysjp06CBJat68uVq3bq0TJ07UGXtUc4+kq6666gLP8iySJAAAAADnlZ2dLcuytHjx4lrrV65cqfLyco0aNcq37uDBg9qzZ0/A22dmZiotLU2rVq1SaWmpb/1HH32kLVu2KCsrS1FRUb71o0ePluM4evrpp2vFfvLJJyVJgwcP9utcmbgBAAAACDHbNWYoePtwjMbr3LmzJk6cqGXLlmnYsGEaPHiwdu/erSVLligzM7PWjWQHDBiggoICOY4T0PZRUVF64oknlJ2drb59+yonJ0fFxcXKz89Xs2bNlJeXV+vYZsyYoQ0bNmj69Onat2+funTpovfee0/PPfecbr31VmVnZ/t1riRJAAAAAC7I4sWL1bZtW61YsUKbNm1SamqqJk+erDlz5sjjOX/S58/2WVlZiouL07x58zR9+nTFxMRowIABWrhwYZ2pwZOTk7V161bNmjVLL7/8slavXq2WLVvq4Ycf1qxZsxQREeHXeVqOO727hBUXFyslJUX9rKGKtKLOv0GIWX6+MOeN9z2D4vxl+zlv/PlENGtmLJbz9ykdjbmAN+/FYsXHGYvl/eaEsViSFNmmldF4Zwr+ZiyW5xxTiQbKPsesO4GISEoyFkuSvKVlxmJZHstYLEnyfM9sRn4z/HlpkmPw+ggGp/rMxT6Ec7IizH3+Ol7bWCzJ7LGZ/p7xNLnCWCz75CljsSSzvz9YkWZ+dzvjVOvt6pd06tQpJScnG4lpWs3vrM9/eJPik4L7eVde4tXIjE/D+vkIV36/k/ft26fZs2erZ8+eatasmZKSkpSRkaH58+errKzuF/j27dt11113qWXLloqLi9O1116rnJwc/c///I+REwAAAAAuNV7HCsmCwPjd3W7NmjVavny57rrrLo0aNUpRUVF6++239cgjj+h3v/udduzY4Zur/LXXXtNPf/pTXXvttZo0aZJSU1P12WefacWKFdqwYYM++eSTeu+iCwAAAAAXi99J0vDhwzVz5kylpKT41k2YMEHt27fX/PnztXr1ak2aNEmSlJ+fr4iICG3btk2pqam+9jfeeKNycnL00ksvacqUKQ0/CxcrIkKWZaZ06WnSxEgcSXIMd2kzymO21GsXFxuNZ5In2lxXTO8ps+cZYbjbmEnewi8v9iGcm+muLXHmuj3apyuMxZIMd5Ez3KXNZM9t091srUhzw2+dM2a7s3lSzHZ/cbzmumSa7srqeL3GYllRhrvV2wa77xk8T0myi829H5yqamOxzgY0OGLD1OfbJVQ5qbnha3D30ShG1VwUfr8y3bp1q5Ug1aiZMeLTTz/1rSsuLlZsbKyafCfZqLk5VEJCgr+7BwAAAICgMpa+1tyoqXnz5r51t99+u0pKSjRmzBh99NFHKiws1H//939r2rRpuv766zVixAhTuwcAAAAuGbbjCcmCwBjpg+D1ejV37lxFRkbWmt985syZ+vrrr7VmzRo999xzvvWDBw/W+vXrldSAmZ/S0tJq/WybLJUDAAAAuGwZSZKmTJmi7du3a8GCBerYsaNvfUREhNLT0zVw4EDdfffdatq0qd5//30tXbpUI0aM0Msvv1zrTrkAAADA5YAxSeGtwUnSrFmztGzZMo0fP14zZ86s9dj//b//V9u2bdNnn33mm/Hu7rvv1nXXXaf7779fzzzzjMaNGxfQfo8ePVrr55o55wEAAACgIRqUvubm5mrevHkaO3asnnrqqVqPffHFF3ruuef005/+1Jcg1cjKypIkvfPOOw3ZPQAAAHBJshX8eyUxGCVwASdJubm5ysvL05gxY7Rq1SpZVu0pFwsLCyWdHa/0XWf+PoXqGcNTqQIAAABAQwWUJM2ZM0d5eXkaPXq01qxZI0899ynp2LGjIiIi9J//+Z86efJkrcfWrl0rSerevXsguwcAAAAuabY8IVkQGL/HJC1fvlyPPvqoWrdurYEDB+r555+v9Xjz5s01aNAgNW3aVFOmTNHjjz+um2++WTk5Ob6JG5577jlde+21AY9HAgAAAIBg8TtJ2rVrl6SzY47GjBlT5/HMzEwNGjRIkrRo0SJ17NhRq1at0oIFC1RZWan09HTdf//9ys3NVXKy2TuNAwAAAEBD+Z0krV271tdd7nwsy1JOTo5ycnL83Q0AAADQaHkdj7xBvtlrsOM3ZjxzAAAAAOBi5GayAAAAAC6cLUu2rPM3bOA+EBgqSQAAAADgQiUJAAAACDHGJIU3njkAAAAAcKGSBAAAAISYVx55g1yvCHb8xoxnDgAAAABcqCQBAAAAIWY7lmwnyLPbBTl+Y0YlCQAAAABcqCQBAAAAIWaHYEySTT0kYDxzAAAAAOBCJQkAAAAIMdvxyA7yfYyCHb8x45kDAAAAABeSJAAAAABwobsdAAAAEGJeWfIquFN0Bzt+Y0YlCQAAAABcqCQBAAAAIcbEDeGNZw4AAAAAXKgkAQAAACHmVfDHDHmDGr1xo5IEAAAAAC5UkgAAAIAQY0xSeOOZAwAAAAAXKkkAAABAiHkdj7xBrvQEO35jxjMHAAAAAC6NrpJkRUfJsqKNxLK//dZIHElSRIS5WJL2rbjRWCzHNjuzSt9O+43FuiLqtLFYknSiyty5Tk/bYSyWJN392mRjsSJKzV5vHRbsMRrPio8zFssuLjEWS5KcikpzwTxm31ueuARjsbzFpcZiSZJl8DPOijT71eR4bWOxjB9bVbXReCaPz6mqMhZLkqyUZGOxvMe+MRZLMnv9Gn/fW+biOY6594IkWTEx5oJ5Dc3D5lw687k5smQHeXY7J8jxGzMqSQAAAADg0ugqSQAAAEC4Y0xSeOOZAwAAAAAXkiQAAAAAcKG7HQAAABBitmPJdoI7sUKw4zdmVJIAAAAAwIVKEgAAABBiXnnkDXK9ItjxGzOeOQAAAABwoZIEAAAAhBhjksIblSQAAAAAcKGSBAAAAISYLY/sINcrgh2/MeOZAwAAAAAXKkkAAABAiHkdS94gjxkKdvzGjEoSAAAAALhQSQIAAABCjNntwhuVJAAAAABwIUkCAAAAABe62wEAAAAh5jge2U5w6xVOkOM3ZjxzAAAAAOBCJQkAAAAIMa8seRXkKcCDHL8xo5IEAAAAAC5UkgAAAIAQs53gT9FtO0EN36hRSQIAAAAAFypJAAAAQIjZIZjdLtjxGzOeOQAAAABwoZIEAAAAhJgtS3aQZ58LdvzGjEoSAAAAALhQSQIAAABCzOtY8gZ5drtgx2/MqCQBAAAAgAtJEgAAABBiNbPbBXsxfty2rfz8fHXq1EmxsbFq1aqVpk2bprKysqBsv3nzZvXu3VsJCQlq2rSpsrKydOjQoTrtcnNzZVlWvcuvf/1rv8+T7nYAAAAALsjUqVO1ZMkS3X333Zo2bZp2796tJUuW6K9//avefPNNeTzfn5j5s/3GjRs1fPhwdenSRYsWLdKpU6e0ePFi9enTR3/+85/VokWLOvHz8/OVmppaa13Xrl39Pk+SJAAAAADn9dlnn2np0qUaNmyYNmzY4Fvfrl07PfDAA3rhhRc0cuRII9tXV1dr8uTJatWqlbZu3arExERJ0h133KGuXbsqNzdXK1asqLOPoUOHqm3btg0+V7rbAQAAACFmy5LtBHkxPAX4+vXr5TiOpkyZUmt9Tk6O4uPjtW7dOmPbv/POOyoqKtK4ceN8CZIkZWRkqF+/fnrxxRdVXV1d736Ki4t15swZ/07uO0iSAAAAAJzXrl275PF41KNHj1rrY2NjlZGRoV27dhnbvub/vXr1qhOnZ8+eKi4u1r59++o89oMf/EApKSmKjY1V79699eqrr17w+bmRJAEAAAAh5vz9ZrLBXJy/V5Lat2+vtLQ03xKooqIipaamKiYmps5j6enpOn78uKqqqoxsX1RU5FtfX1tJKiws9K274oorNH78eC1dulQvv/yyHnvsMRUUFOinP/2p1q5d69d5SgGMSdq3b5/WrVun119/XQcPHlRFRYWuvfZaZWVlacqUKUpISKizzaZNm5Sfn68PPvhAlZWVatmypW677TYtW7bM7wM+n1Hv7VF8UoSRWIv23W4kjiQtv/E5Y7Ek6aHJXYzFin/rU2OxJOmb5CRjsY4VN6xU+l2O97SxWDMjbzUWS5I66TNjsU7/+AZjsSRpT14Ho/Hu+dFOY7E+u+9aY7EkSUeOmovl9ZqLJckuvbCZgy4Gx+C5euJijcWSJMt2jMYzyXHMHptTVX/Xk4BiVZ/7F51ARERHG4vliY4yFss02+BrIEneanPfgxHJiedv5AeTn0me+HgzcZwqqdhIKNSjvLy83gRHOlsNqmkTfY73uz/bl5eXS1K97d1ta3y3C58k/fznP9dNN92kqVOnavjw4bW67Z2P35WkNWvWKD8/X9dee61mz56tRYsWqWPHjnrkkUfUu3dvnT5d+5fQvLw8DRkyRJGRkcrLy9OSJUs0YsQIHTlyxN9dAwAAAI1C0Mcj/X2RpP379+vo0aO+JVDx8fGqrKys97GKigpfGxPb1/xbX/sL2ZckXXnllZowYYJOnjypbdu2fW/b7/K7kjR8+HDNnDlTKSkpvnUTJkxQ+/btNX/+fK1evVqTJk2SJL355pvKzc3VnDlzNGvWLH93BQAAACBMtGjRQp9//rkqKyvrVHgKCwuVmpp6ziqSv9vXTO9dWFio66+/vk5bqf6ueN9VM9Pd8ePHz9vWze9KUrdu3WolSDWys7MlSZ9++r9dtxYsWKCrrrpKM2fOlCSVlpbKtm1/dwkAAAA0KpfizWS7d+8u27a1c2ftbvMVFRX68MMP1a1bN2Pbd+/eXZK0ffv2OnF27Nih5ORkdehw/uEA+/fvlyQ1b978vG3djD1zNd3nag6grKxM7777rn74wx9q9erVSk9PV1JSkhITEzVixAh99dVXpnYNAAAAIMiys7NlWZYWL15ca/3KlStVXl6uUaNG+dYdPHhQe/bsCXj7zMxMpaWladWqVSotLfWt/+ijj7RlyxZlZWUpKurs+MQzZ87o1KlTdY73b3/7m5588kldeeWV6t27t1/nauRmsl6vV3PnzlVkZKTvBlAHDhyQ1+vVjh079Prrr+uXv/ylunTpoq1bt+qJJ57Qxx9/rD//+c/n7Ut4Lt+dmYMKFQAAAC4V7jFDwdyHSZ07d9bEiRO1bNkyDRs2TIMHD9bu3bu1ZMkSZWZm1rqR7IABA1RQUFBrghp/to+KitITTzyh7Oxs9e3bVzk5OSouLlZ+fr6aNWumvLw8X9vS0lK1a9dOQ4cO1fXXX68mTZpo7969vgRr/fr1iouL8+tcjSRJU6ZM0fbt27VgwQJ17NhRklRSUiJJOnbsmFauXKlx48ZJku6++24lJycrLy9PzzzzjO6//34ThwAAAAAgyBYvXqy2bdtqxYoV2rRpk1JTUzV58mTNmTNHHs/5O6n5s31WVpbi4uI0b948TZ8+XTExMRowYIAWLlxYazxSXFyc7rnnHv3pT3/Sf/7nf6q0tFSpqakaOHCgZsyYUee+TBeiwUnSrFmztGzZMo0fP9439qjmYCXJ4/Fo9OjRtbYZM2aM8vLytGXLloCTpO/OzFFcXFzvWCkAAAAg3NTcyyjY+zAtIiJC06ZN07Rp07633eHDhxu0fY0hQ4ZoyJAh39smJiZGq1atuqB4F6pBY5Jyc3M1b948jR07Vk899VStx1q2bClJatKkSZ3ZK2q6yn377bcN2T0AAAAAGBdwJSk3N1d5eXkaM2aMVq1aJcuqnak2b95crVu31t/+9jeVl5fXGntUM8nDVVddFejuAQAAgEvWpTgm6XISUCVpzpw5ysvL0+jRo7VmzZpz9j8cPXq0HMfR008/XWv9k08+KUkaPHhwILsHAAAAgKDxu5K0fPlyPfroo2rdurUGDhyo559/vtbjzZs316BBgyRJM2bM0IYNGzR9+nTt27dPXbp00XvvvafnnntOt956q+/eSgAAAAAQLvxOknbt2iVJ+uKLLzRmzJg6j2dmZvqSpOTkZG3dulWzZs3Syy+/rNWrV6tly5Z6+OGHNWvWLEVERDTw8AEAAIBLD93twpvfSdLatWu1du3aC26fmpqqJ5980tfFDgAAAADCmZH7JAEAAAC4cFSSwluDpgAHAAAAgMaGShIAAAAQYlSSwhuVJAAAAABwoZIEAAAAhJgjyVZwKz1OUKM3blSSAAAAAMCFShIAAAAQYoxJCm9UkgAAAADAhUoSAAAAEGJUksIblSQAAAAAcCFJAgAAAAAXutsBAAAAIUZ3u/BGJQkAAAAAXKgkAQAAACFGJSm8UUkCAAAAABcqSQAAAECIOY4lJ8iVnmDHb8yoJAEAAACAC5UkAAAAIMRsWbIV5DFJQY7fmFFJAgAAAAAXKkkAAABAiDG7XXijkgQAAAAALlSSAAAAgBBjdrvw1uiSpPVDeyvSE2MkVurxQiNxJOlRz63GYklSQvQBY7G8FZXGYkmSLHNvSKf6jLFYkmRFGCyeeswWYk0eW9w7nxmLJUmdDlxtNN6fN3czFuvEwlJjsSQpPsbcuTZ5wDEWS5KcQ18Yi+VJiDcWS5KsluaeN+fIl8ZiSZJTVWUslicu1lgsSVKFuWOTJOdMtbFYVoyZ71Ifj7nvBisxwVgsSbJPlRiL5YmOMhbrbEBz3w2mv1M9KcnGYllJiWbi2JVSsZFQuMw1uiQJAAAACHeMSQpvjEkCAAAAABeSJAAAAABwobsdAAAAEGJM3BDeqCQBAAAAgAuVJAAAACDEnBBM3EAlKXBUkgAAAADAhUoSAAAAEGKOJMfs7fTq3QcCQyUJAAAAAFyoJAEAAAAhZsuSpSDfTDbI8RszKkkAAAAA4EIlCQAAAAgx7pMU3qgkAQAAAIALlSQAAAAgxGzHkhXkSk+w78PUmFFJAgAAAAAXkiQAAAAAcKG7HQAAABBijhOCm8lyN9mAUUkCAAAAABcqSQAAAECIMQV4eKOSBAAAAAAuVJIAAACAEKOSFN6oJAEAAACAC5UkAAAAIMS4mWx4o5IEAAAAAC5UkgAAAIAQ4z5J4Y1KEgAAAAC4UEkCAAAAQuxsJSnYs9sFNXyjRiUJAAAAAFyoJAEAAAAhxn2SwhuVJAAAAABwIUkCAAAAABe62wEAAAAh5vx9CfY+EBgqSQAAAADgQiUJAAAACDEmbghvVJIAAAAAwKXRVZK8RV/JsqKMxPJc2dRIHElySsuMxZIkp6LSWCwrIsJYLElG71xmRZm9RD1NrjAWy3v8G2OxJLP9hi3L7F+O7ENfGI0Xd8zcc9dii7n3giTJY+5vR7sfv8lYLEmy4q8wFqvjpP3GYkmSVVFlLFZY96GPNPuZZMWZ/VtlRHS0sVh2pdn3luO1jcWyi08aiyVJlsfcZ6YVG2csliTZpyuMxfLExBiLJUmbP3nLWKx2L483Esc+XSFNNRIq+BiUFNb8+nTet2+fZs+erZ49e6pZs2ZKSkpSRkaG5s+fr7Ky708CnnzySVmWJcuydPz48QYdNAAAAAAEi19/EluzZo2WL1+uu+66S6NGjVJUVJTefvttPfLII/rd736nHTt2KC6u7l9QioqK9Mtf/lKJiYkqLS01dvAAAADAJSkEY5LEmKSA+ZUkDR8+XDNnzlRKSopv3YQJE9S+fXvNnz9fq1ev1qRJk+psN3HiRF177bW68cYbtW7duoYfNQAAAAAEiV/d7bp161YrQaqRnZ0tSfr000/rPPb73/9er7zyip566ilFmB77AgAAAFyCHCc0i2m2bSs/P1+dOnVSbGysWrVqpWnTpp136E2g22/evFm9e/dWQkKCmjZtqqysLB06dOi8+2noUB8jI0aPHDkiSWrevHmt9cXFxZo0aZJ+8YtfqEePHiZ2BQAAAOAimTp1qh588EHdcMMNWrp0qbKysrRkyRLdeeedsu3zT9Diz/YbN27UkCFDdPr0aS1atEgPPfSQ3n33XfXp00dFRUXn3Id7qE+gGjxNj9fr1dy5cxUZGamRI0fWeuyf//mfZdu2HnvssYbupo60tLRaP1/IiwIAAACEg0vxPkmfffaZli5dqmHDhmnDhg2+9e3atdMDDzygF154oU4+EOj21dXVmjx5slq1aqWtW7f6Ep477rhDXbt2VW5urlasWFHvfkwM9WlwJWnKlCnavn275syZo44dO/rWv//++3r66af1b//2b/V20QMAAABw6Vi/fr0cx9GUKVNqrc/JyVF8fPx5ExJ/tn/nnXdUVFSkcePG1aoIZWRkqF+/fnrxxRdVXV1dZx+mhvo0KEmaNWuWli1bpvHjx2vmzJm+9VVVVRo/frwGDhyo++67ryG7OKejR4/WWvbvN3vPDwAAACBoHCs0i0G7du2Sx+OpM4wmNjZWGRkZ2rVrl7Hta/7fq1evOnF69uyp4uJi7du3r9Z6k0N9Ak6ScnNzNW/ePI0dO1ZPPfVUrceWL1+uPXv26MEHH9SBAwd8S0lJiSTp0KFD+p//+Z8GHTgAAACA82vfvr3S0tJ8S6CKioqUmpqqmHpuTJyenq7jx4+rqurcNxf3Z/uaMUfp6en1tpWkwsLCWutNDvUJaExSbm6u8vLyNGbMGK1atUqWVTtLLSgokG3buuOOO+rdvkePHkpISOCeSQAAAMAlory8vN4ERzpbDappEx0d3eDty8vLJane9u62NWqG+jz33HNGhvr4nSTNmTNHeXl5Gj16tNasWSOPp24xauzYsfrRj35UZ/3y5cu1ZcsWrVmzRk2aNAnsiAEAAIBLXLCm6P7uPiRp//79Sk5ObnC8+Ph4ff311/U+VlFR4WtjYvuafysrK8/bNhhDffxKkpYvX65HH31UrVu31sCBA/X888/Xerx58+YaNGiQunTpoi5dutTZ/g9/+IMk6c4771RqamoDDhsAAABAKLVo0UKff/65Kisr61R4CgsLlZqaes4qkr/bt2jRwrf++uuvr9NW+t9udzVDfR5//HEdOHDA18491Ke4uFjXXHPNBZ+rX0lSzQCqL774QmPGjKnzeGZmpgYNGuRPSAAAAODy4/x9CfY+DOrevbtef/117dy5U3379vWtr6io0Icffqgf//jHxrbv3r27JGn79u0aOHBgrTg7duxQcnKyOnToICk4Q338mrhh7dq1chznnMuWLVsuaHuqSAAAAMClJTs7W5ZlafHixbXWr1y5UuXl5Ro1apRv3cGDB7Vnz56At8/MzFRaWppWrVpVK7n56KOPtGXLFmVlZSkqKkrS2aE+L730Up2lX79+kqQ1a9b4fb+kBt9MFgAAAIB/LsWbyXbu3FkTJ07UsmXLNGzYMA0ePFi7d+/WkiVLlJmZWetGsgMGDFBBQYEc18Arf7aPiorSE088oezsbPXt21c5OTkqLi5Wfn6+mjVrpry8PF/bYAz1IUkCAAAAcEEWL16stm3basWKFdq0aZNSU1M1efJkzZkzp94J3RqyfVZWluLi4jRv3jxNnz5dMTExGjBggBYuXFjv1OAmkSQBAAAAF0OwxyQFQUREhKZNm6Zp06Z9b7vDhw83aPsaQ4YM0ZAhQ/w9TElnh/qsXbs2oG0DvpksAAAAADRGVJIAAACAELsUxyRdTqgkAQAAAIALlSQAAAAg1C7B+yRdTqgkAQAAAIALSRIAAAAAuNDdDgAAAAg56+9LsPeBQFBJAgAAAAAXKkkAAABAqDFxQ1ijkgQAAAAALlSSAAAAgFCjkhTWqCQBAAAAgAuVJAAAACDUHOvsEux9ICBUkgAAAADAhUoSAAAAEGKOc3YJ9j4QGCpJAAAAAOBCJQkAAAAINWa3C2tUkgAAAADApdFVkqzoKFlWtJFY9omTRuJIZ4/LJCvazDlKklNZaSyWaaafN+/Xx43GM8kTF2sslh3Gr6kkOV7bWCwrNsZYLEmyy04bi9VxykfGYklSxNVXGYtVvrGpsViS1DbphLFYXw4yFkqSFNHkCmOxvMe/MRZLkqwYs9evvN7wjCXJqTD3uWR5zM7Y5YmPNxbLijX3WS5JnmZXGou1Z0ozY7Ek6Y6ftDAWq9PBz4zEOeNU6YiRSCHA7HZhjUoSAAAAALiQJAEAAACAS6PrbgcAAACEO8s5uwR7HwgMlSQAAAAAcKGSBAAAAIQaU4CHNSpJAAAAAOBCJQkAAAAINaYAD2tUkgAAAADAhUoSAAAAEGqMSQprVJIAAAAAwIVKEgAAABBqVJLCGpUkAAAAAHChkgQAAACEGpWksEYlCQAAAABcqCQBAAAAocZ9ksIalSQAAAAAcCFJAgAAAAAXutsBAAAAIWY5Z5dg7wOBoZIEAAAAAC5UkgAAAIBQYwrwsEYlCQAAAABcSJIAAAAAwIUkCQAAAABcGJMEAAAAhJilEMxuF9zwjRqVJAAAAABwoZIEAAAAhJpjnV2CvQ8EhEoSAAAAALhQSQIAAABCjfskhTUqSQAAAADgQpIEAAAAAC50twMAAABCje52YY1KEgAAAAC4UEkCAAAAQsxyQnAzWSpJAaOSBAAAAAAuVJIAAACAUGNMUlhrdEmSU+2VY50xEsuKMFdoc86YOaYaVkSEsVieJk2MxZIk+9tvjcVyqk0/b+ZeUysh3lgsSbKLS43FMnmekuRJvdJoPLvE3LnaVVXGYkmSFRXGH4uWuTunx2WdNBZLkr5s09JYrB+8u9tYLEl6aesNxmIlFlxrLJYktXqxwGg8+9uTxmJ5EhOMxZIk++QpY7E8VzY1FkuSnNIyY7EiXzT3PpWk1vGFxmJZd5UbiyVJ3hPmvu9NcRzvxT4ENBJh/NsAAAAA0EhRSQprjEkCAAAAABe/kqR9+/Zp9uzZ6tmzp5o1a6akpCRlZGRo/vz5Kiv731K14zhat26dRowYoeuuu07x8fFq3bq17rrrLv3pT38yfhIAAADApaRmdrtgLwiMX0nSmjVrlJ+fr2uvvVazZ8/WokWL1LFjRz3yyCPq3bu3Tp8+LUmqrKzU6NGjtXfvXo0YMUJLly7V+PHj9Ze//EW9evXSunXrgnIyAAAAANBQfo1JGj58uGbOnKmUlBTfugkTJqh9+/aaP3++Vq9erUmTJikyMlJbtmxRZmZmre1zcnJ04403atq0aRo5cqQ8Hnr7AQAA4DLkWGeXYO8DAfErS+nWrVutBKlGdna2JOnTTz+VJEVGRtZJkCSpefPmyszM1Ndff62vv/46kOMFAAAAgKAyMrvdkSNHJJ1Ngi6kbXR0tK644goTuwYAAAAuPcxuF9YanCR5vV7NnTtXkZGRGjly5Pe23bx5s3bu3KnRo0crNja2QftNS0ur9bNt2w2KBwAAAACSgSRpypQp2r59uxYsWKCOHTues93+/fs1evRopaen6/HHH2/obgEAAAAgKBqUJM2aNUvLli3T+PHjNXPmzHO2O3TokAYMGCDLsvTqq6+qWbNmDdmtJOno0aO1fi4uLq53vBQAAAAQbkIxRTdTgAcu4CQpNzdX8+bN09ixY/XUU0+ds93hw4fVv39/lZaW6o9//KM6d+4c6C4BAAAAIOgCSpJyc3OVl5enMWPGaNWqVbKs+qcXPHz4sPr166dTp07pzTff1M0339yggwUAAAAaBSZuCGt+J0lz5sxRXl6eRo8erTVr1pzzXkcFBQXq37+/Tp48qTfeeENdu3Zt8MECAAAAQLD5dZ+k5cuX69FHH1Xr1q01cOBAPf/881q3bp1veeONNyRJJSUl6t+/vw4fPqyf/exn2rt3b61269at01dffRWUEwIAAADCnvO/45KCtQSjkmTbtvLz89WpUyfFxsaqVatWmjZtmsrKyoKy/ebNm9W7d28lJCSoadOmysrK0qFDh+q0e/zxx9WvXz+lpaUpJiZGaWlp6t+/v37/+98HdJ5+VZJ27dolSfriiy80ZsyYOo9nZmZq0KBB+uabb3wHv3Tp0npjvf322xd0XyUAAAAA4WHq1KlasmSJ7r77bk2bNk27d+/WkiVL9Ne//lVvvvnmOXuZBbL9xo0bNXz4cHXp0kWLFi3SqVOntHjxYvXp00d//vOf1aJFC1/bnTt3qm3btho8eLBSU1N14sQJvfTSSxo2bJjmzJmjWbNm+XWefiVJa9eu1dq1a8/brm3btnIcOkECAAAA9boExyR99tlnWrp0qYYNG6YNGzb41rdr104PPPCAXnjhhe+9b6o/21dXV2vy5Mlq1aqVtm7dqsTEREnSHXfcoa5duyo3N1crVqzwxXjxxRfr7G/KlCnq2rWr/vVf/1UPP/ywIiIiLvhc/epuBwAAAODytH79ejmOoylTptRan5OTo/j4eK1bt87Y9u+8846Kioo0btw4X4IkSRkZGerXr59efPFFVVdXf+/+IiMjlZ6errKysvO2/S6SJAAAACDUnBAtBu3atUsej0c9evSotT42NlYZGRm+oTkmtq/5f69everE6dmzp4qLi7Vv3746j504cULHjh3T7t27NWfOHL322mvq37+/YmNjL/g8pQbeTBYAAABAeGvfvn2tsT5Hjx4NKE5RUZFSU1MVExNT57H09HRt27ZNVVVVio6ObvD2RUVFvvX1tZWkwsJC3XjjjbUe69Chg7755htJZytJ99xzj/793//dvxMVSRIAAAAQcr4Z6IK8D5PKy8vrTXAk+So15eXl50yS/Nm+vLxckupt7277XRs3blRFRYUKCwv10ksv6fTp0yopKVGzZs3Oc3a1kSQBAAAAjdj+/fuVnJzc4Djx8fH6+uuv632soqLC18bE9jX/VlZW+rWvH//4x77/jx07Vvfdd5/69Omjzz//XE2aNDnnsX0XY5IAAAAAnFeLFi10/PjxehOXwsJCpaamnrOK5O/2NdN7FxYW1ttWqr8r3neNGTNGX375pTZu3Hjetm4kSQAAAADOq3v37rJtWzt37qy1vqKiQh9++KG6detmbPvu3btLkrZv314nzo4dO5ScnKwOHTqc95hPnz4t6eyEDv4gSQIAAABwXtnZ2bIsS4sXL661fuXKlSovL9eoUaN86w4ePKg9e/YEvH1mZqbS0tK0atUqlZaW+tZ/9NFH2rJli7KyshQVFSVJKisrq9Wmhtfr1fLlyyWdnRHPH4xJAgAAAELtEryZbOfOnTVx4kQtW7ZMw4YN0+DBg7V7924tWbJEmZmZtW4kO2DAABUUFMhxnIC2j4qK0hNPPKHs7Gz17dtXOTk5Ki4uVn5+vpo1a6a8vDxf2/379yszM1PDhw9Xx44d1bRpUxUWFmr9+vXau3evxowZo759+/p1riRJAAAAAC7I4sWL1bZtW61YsUKbNm1SamqqJk+erDlz5tSaZtzE9llZWYqLi9O8efM0ffp0xcTEaMCAAVq4cGGt8UgtW7bU6NGjtXXrVv3+979XSUmJUlJSdPPNN2vWrFm1kq8LRZIEAAAAhNilOAW4JEVERGjatGmaNm3a97Y7fPhwg7avMWTIEA0ZMuR726SmpmrZsmUXFO9CMSYJAAAAAFyoJAEAAAAXQ7DHJCFgVJIAAAAAwIVKEgAAABBql+DsdpcTKkkAAAAA4EIlCQAAAAixS3V2u8sFlSQAAAAAcKGSBAAAAIQaY5LCWqNLkjwpyfJ4oo3EckpKjMSRpIjUK43FkiSnstJYLLu42FgsSbLi4szFsixjsSTJNvi8WbbhTx6PuXO1EhOMxZIk77cnjcaTwefOY/hc7dIyc8Ec21wsSY7BY/MWlxqLJUnW5weNxfrk1ibGYklSp8j/MRbrq2HXGYslSXv+5Sqj8fpdd8pYrG8qzf6K8OMrTxiL9dLf2hiLJUk/vMrcse37SbyxWJJ0wOBXtCep2lwwSVZEhLFY9unTRuI4jtlzxOWL7nYAAAAA4NLoKkkAAABAuGPihvBGJQkAAAAAXKgkAQAAAKHGxA1hjUoSAAAAALhQSQIAAABCjUpSWKOSBAAAAAAuVJIAAACAEGN2u/BGJQkAAAAAXKgkAQAAAKHGmKSwRiUJAAAAAFyoJAEAAAChRiUprFFJAgAAAAAXKkkAAABAiDG7XXijkgQAAAAALiRJAAAAAOBCdzsAAAAg1Ji4IaxRSQIAAAAAFypJAAAAQIgxcUN4o5IEAAAAAC5UkgAAAIBQY0xSWKOSBAAAAAAuVJIAAACAUKOSFNaoJAEAAACAC5UkAAAAIMSsvy/B3gcCQyUJAAAAAFyoJAEAAAChxpiksEYlCQAAAABcqCQBAAAAIWY5Z5dg7wOBoZIEAAAAAC4kSQAAAADgQnc7AAAAINSYuCGsUUkCAAAAABcqSQAAAMDFQKUnbFFJAgAAAACXRldJ8n7zjSwrykgsT0yMkTiS5JSUGoslSY4Txn968HrNhTp92lgsSYq4qpmxWN5j3xiLJUmWxzIWyzZ8vXmSk43Gc0pKjMXynjxpLJYkeeLjzQUz+F6QJPuUuefNijL78W9FRxuLZRu8PiTJsc19Xl7934XGYklS8w1lRuMVldvGYjnV3xqLJUlvJrQyFquJfcxYLEnac9rc34ytCMPXb/UZY7G8J04aiyVJVkSEsVimPns9TpVk9m0VNEwBHt6oJAEAAACAS6OrJAEAAABhj9ntwhqVJAAAAABw8TtJ2rdvn2bPnq2ePXuqWbNmSkpKUkZGhubPn6+ysrqdQPfu3auhQ4eqSZMmSkhIUN++ffXWW28ZOXgAAADgUlQzJinYCwLjd5K0Zs0a5efn69prr9Xs2bO1aNEidezYUY888oh69+6t066B9gcPHlTv3r21fft2zZgxQ4sWLVJpaaluv/12vfnmm0ZPBAAAAABM8HtM0vDhwzVz5kylpKT41k2YMEHt27fX/PnztXr1ak2aNEmSNHPmTJ08eVIffPCBMjIyJEk/+9nPdOONN2rixInas2ePLMvcjF4AAADAJYExSWHN70pSt27daiVINbKzsyVJn376qSSprKxMr7zyivr16+dLkCQpMTFR48aN0759+7Rr164ADxsAAAAAgsPYxA1HjhyRJDVv3lyS9PHHH6uyslK9evWq07Znz56SRJIEAAAAIOwYmQLc6/Vq7ty5ioyM1MiRIyVJRUVFkqT09PQ67WvWFRYGflO+tLS0Wj/btrkb6AEAAADBxM1kw5uRJGnKlCnavn27FixYoI4dO0qSysvLJUkxMTF12sfGxtZqAwAAAADhosFJ0qxZs7Rs2TKNHz9eM2fO9K2Pj4+XJFVWVtbZpqKiolabQBw9erTWz8XFxfWOlQIAAADCDhM3hLUGjUnKzc3VvHnzNHbsWD311FO1HmvRooWk+rvU1ayrryseAAAAAFxMAVeScnNzlZeXpzFjxmjVqlV1pvLu3LmzYmJitH379jrb7tixQ9LZmfIAAACAyw6VpLAWUCVpzpw5ysvL0+jRo7VmzRp5PHXDJCYm6s4779SWLVv00Ucf+daXlpZq1apVat++vXr06BH4kQMAAABAEPhdSVq+fLkeffRRtW7dWgMHDtTzzz9f6/HmzZtr0KBBkqTHHntMf/zjH3Xbbbdp6tSpSk5O1sqVK1VYWKhNmzZxI1kAAABclpjdLrz5nSTV3Nvoiy++0JgxY+o8npmZ6UuSrrvuOr3//vv65S9/qX/5l39RVVWVbrnlFr322msaOHBgAw8dAAAAAMzzO0lau3at1q5de8Htr7/+er388sv+7gYAAABovBiTFNYaNLsdAAAAADQ2Rm4mCwAAAODCWY4jywluqSfY8RszKkkAAAAA4EIlCQAAAAg1xiSFNSpJAAAAAOBCkgQAAAAALiRJAAAAQIjV3Ew22Itptm0rPz9fnTp1UmxsrFq1aqVp06aprKwsKNtv3rxZvXv3VkJCgpo2baqsrCwdOnSoVhvHcbRu3TqNGDFC1113neLj49W6dWvddddd+tOf/hTQeZIkAQAAALggU6dO1YMPPqgbbrhBS5cuVVZWlpYsWaI777xTtm0b3X7jxo0aMmSITp8+rUWLFumhhx7Su+++qz59+qioqMjXrrKyUqNHj9bevXs1YsQILV26VOPHj9df/vIX9erVS+vWrfP7PJm4AQAAAAi1S3Dihs8++0xLly7VsGHDtGHDBt/6du3a6YEHHtALL7ygkSNHGtm+urpakydPVqtWrbR161YlJiZKku644w517dpVubm5WrFihSQpMjJSW7ZsUWZmZq395eTk6MYbb9S0adM0cuRIeTwXXh+ikgQAAADgvNavXy/HcTRlypRa63NychQfH3/eio0/27/zzjsqKirSuHHjfAmSJGVkZKhfv3568cUXVV1dLelskvTdBEmSmjdvrszMTH399df6+uuv/TpXkiQAAAAgxC7FMUm7du2Sx+NRjx49aq2PjY1VRkaGdu3aZWz7mv/36tWrTpyePXuquLhY+/btO+8xHzlyRNHR0briiivO29aNJAkAAABoxNq3b6+0tDTfEqiioiKlpqYqJiamzmPp6ek6fvy4qqqqjGxfM+YoPT293raSVFhY+L3Hu3nzZu3cuVPZ2dmKjY393rbfRZIEAAAAhJoTosWg8vLyehMcSb4kpLy83Mj2Nf/W1/5C9rV//36NHj1a6enpevzxx8/Z7lyYuAEAAABoxPbv36/k5OQGx4mPjz/n2J6KigpfGxPb1/xbWVnp974OHTqkAQMGyLIsvfrqq2rWrNk5j+lcqCQBAAAAIXYpjklq0aKFjh8/Xm/iUlhYqNTUVEVHRxvZvkWLFr719bWV6u+Kd/jwYfXv31+lpaV644031Llz5ws7ue8gSQIAAABwXt27d5dt29q5c2et9RUVFfrwww/VrVs3Y9t3795dkrR9+/Y6cXbs2KHk5GR16NCh1vrDhw+rX79+OnXqlN544w3dfPPNfp2fG0kSAAAAEGqX4Jik7OxsWZalxYsX11q/cuVKlZeXa9SoUb51Bw8e1J49ewLePjMzU2lpaVq1apVKS0t96z/66CNt2bJFWVlZioqK8q0vKChQ//79dfLkSb3++uvq2rVrg86VMUkAAAAAzqtz586aOHGili1bpmHDhmnw4MHavXu3lixZoszMzFo3kh0wYIAKCgrkOE5A20dFRemJJ55Qdna2+vbtq5ycHBUXFys/P1/NmjVTXl6er21JSYn69++vw4cPa/Lkydq7d6/27t1b69gHDRqk5s2bX/C5NrokyYqIkGVFGInleG0jcSTJqafvZUNYlmU0XriyvqdfayCcktLzN7pAntj6Z2cJlFN9xlgsz/cMmgyEffKU0XgmRTRtYjagyfdWVbW5WJL0PdOq+ss5Y+56kyS71Nx7y/T73hNnMN4Zr7lYkpzSMqPxbIPXnCc66vyN/GCfrjAXzGv2dbDOMdtWIIyep8y/DkZ5DHZIcgyVPEzFwTktXrxYbdu21YoVK7Rp0yalpqZq8uTJmjNnjjwXcE34s31WVpbi4uI0b948TZ8+XTExMRowYIAWLlxYazzSN998o0OHDkmSli5dWu9+3377bb+SJMtxGsfVVFxcrJSUFPWPvEeRlqEPFMvgm99jNqkxmSSZvgSsCDNJqiQ5pr8IDR6baUaTpMQEY7EkyTb8i5xJnuTE8zfyRxgnSU4YJ0km36umkyST8TwpDZ8dys0+/o3ZeGGcJBn9riFJCg8mkyRDzjhVeqv8BZ06dcrIbG7BUPM7a9d75ysyyr979/jrTHWFPvjdr8L6+QhX4Xd1AwAAAMBF1Oi62wEAAABhz3GC3z2wcXQYuyioJAEAAACAC5UkAAAAIMSCcbPX+vaBwFBJAgAAAAAXKkkAAABAqAXhZq/17gMBoZIEAAAAAC5UkgAAAIAQs+yzS7D3gcBQSQIAAAAAFypJAAAAQKgxJimsUUkCAAAAABcqSQAAAECIcZ+k8EYlCQAAAABcSJIAAAAAwIXudgAAAECoOc7ZJdj7QECoJAEAAACAC5UkAAAAIMSYuCG8UUkCAAAAABcqSQAAAECocTPZsEYlCQAAAABcqCQBAAAAIcaYpPBGJQkAAAAAXKgkAQAAAKHGfZLCGpUkAAAAAHChkgQAAACEGGOSwhuVJAAAAABwoZIEAAAAhBr3SQprVJIAAAAAwIUkCQAAAABc6G4HAAAAhBgTN4Q3KkkAAAAA4EIlCQAAAAg12zm7BHsfCAiVJAAAAABwoZIEAAAAhBpTgIc1kqTvYUWZe3qsmBhjsSTJOX3aXDCv11wsSXb1GYPBzB6bTL4OhkvYjuHXwSRPcqLRePapYmOxnLJyY7EkyXHMva6euFhjsc4GNFf8tyLNfvx7mjQxFsspKTEWS5KcikpzsaINfvbK7PV2NqBtLJRdae55kyQrOtpYrIjUK43FkiTb4OdIRGKCsVimmf6esU9XGItl7vPSMhQHlzuSJAAAACDELIVgdrvghm/UGJMEAAAAAC5UkgAAAIBQc5yzS7D3gYBQSQIAAAAAF7+TpMcee0xZWVm65pprZFmW2rZt+73tX331VQ0YMEBXX321EhIS1LFjR02fPl1fffVVoMcMAAAAXNIsJzQLAuN3d7uHH35YTZs21S233KKTJ09+b9uVK1dq/Pjx6tq1q/75n/9ZCQkJ2rVrlxYvXqyNGzfqk08+UUJC+M4CAwAAAODy43eSdPDgQV1zzTWSpJtuukmlpaXnbPvrX/9aaWlpeu+99xQbe3Zqx/Hjx6t58+aaP3++3njjDQ0dOjSwIwcAAACAIPA7SapJkC5EcXGxmjZt6kuQarRo0UKSqCIBAADg8sTNZMNaUCduuP322/X5559r2rRp2r17t/72t79p48aNmjt3rjIzM3XrrbcGc/cAAAAA4LegTgH+xBNPqLy8XE888YT+7d/+zbd+7NixevrppxURERFw7LS0tFo/27a5u4wDAAAAwWQ5jqwgT9Ed7PiNWVCTpKioKLVu3Vp333237rzzTsXHx+u///u/tWbNGkVERGjlypXB3D0AAAAA+C1oSZJt2/rJT36iM2fO6P3335dlWZKk4cOH68orr9TChQuVnZ2tgQMHBhT/6NGjtX4uLi5WSkpKg48bAAAACDr770uw94GABG1M0nvvvaetW7fqnnvu8SVINbKysiRJ77zzTrB2DwAAAAABCVolqbCwUJLk9XrrPHbmzJla/wIAAACXE8YkhbegVZJuuOEGSdJzzz2n6urqWo+tXbtWktS9e/dg7R4AAAAAAuJ3JenZZ59VQUGBJOnYsWOqqqrSvHnzJElt2rTR6NGjJUldunTRPffcow0bNqhbt276h3/4B9/EDf/1X/+lnj176v/8n/9j8FQAAACASwT3SQprfidJq1evrjOWaNasWZKkzMxMX5IkSc8//7wWL16s5557TrNnz5Zt22rTpo1mzpypX/3qVw2aAhwAAAAAgsHvJGnLli0X3DY6OlozZszQjBkz/N0NAAAA0Hg5ztkl2PtAQII2JgkAAAAALkVBvZksAAAAgLos5+wS7H0gMFSSAAAAAMCFJAkAAAAAXOhuBwAAAIQaEzeENSpJAAAAAOBCJQkAAAAIMcs+uwR7HwgMlSQAAAAAcKGSBAAAAIQaY5LCGpUkAAAAAHChkgQAAACEmvP3Jdj7QECoJAEAAACAC5UkAAAAIMQsx5EV5DFDwY7fmFFJAgAAAAAXKkkAAABAqDG7XVijkgQAAADggti2rfz8fHXq1EmxsbFq1aqVpk2bprKysqBsv3nzZvXu3VsJCQlq2rSpsrKydOjQoTrtdu7cqQceeEB9+vRRYmKiLMvS2rVrAz5PkiQAAAAg1BxJdpCXIBSSpk6dqgcffFA33HCDli5dqqysLC1ZskR33nmnbNs2uv3GjRs1ZMgQnT59WosWLdJDDz2kd999V3369FFRUVGttps3b9by5ct18uRJdenSpcHn2ei621nRUbKsaDPBIiLMxJFkl5QYiyVJnvh4Y7Ec7/kvaP94zYWyLHOxJMlr7tisSLNvHys6ylwwj9nnzYoyeGySrLg4Y7Hs0lJjsSQpsvlVxmJ5j39jLJZk9nkz/d7yfnPCaDyTIppdaSyWU3phfym9UBFNrjAaz+Q1Z/J7RpKcqipjsYy/t0x+niclmYslyYox9DuNJOdUsbFYkmQZ/K6x4mLNxLE9ktm3KVw+++wzLV26VMOGDdOGDRt869u1a6cHHnhAL7zwgkaOHGlk++rqak2ePFmtWrXS1q1blZiYKEm644471LVrV+Xm5mrFihW+GPfff78eeughJSQk6D/+4z+0bdu2Bp0rlSQAAAAA57V+/Xo5jqMpU6bUWp+Tk6P4+HitW7fO2PbvvPOOioqKNG7cOF+CJEkZGRnq16+fXnzxRVVXV/vWN2/eXAkJCYGf3HeQJAEAAAAhVjMFeLAXk3bt2iWPx6MePXrUWh8bG6uMjAzt2rXL2PY1/+/Vq1edOD179lRxcbH27dsX6KmcF0kSAAAA0Ii1b99eaWlpviVQRUVFSk1NVUxMTJ3H0tPTdfz4cVV9T9daf7avGXOUnp5eb1tJKiwsDOg8LkSjG5MEAAAAhD1HIZgC3Gy48vLyehMc6Ww1qKZNdHT9Y+n82b68vFyS6m3vbhssJEkAAABAI7Z//34lJyc3OE58fLy+/vrreh+rqKjwtTGxfc2/lZWVAe2roehuBwAAAIRazc1kg70Y1KJFCx0/frzexKWwsFCpqannrCL5u32LFi186+trK9XfFc8UkiQAAAAA59W9e3fZtq2dO3fWWl9RUaEPP/xQ3bp1M7Z99+7dJUnbt2+vE2fHjh1KTk5Whw4dAj2V8yJJAgAAAEIt2DeSrVkMys7OlmVZWrx4ca31K1euVHl5uUaNGuVbd/DgQe3Zsyfg7TMzM5WWlqZVq1ap1HVPxI8++khbtmxRVlaWogzfx9GNMUkAAAAAzqtz586aOHGili1bpmHDhmnw4MHavXu3lixZoszMzFo3kh0wYIAKCgrkuLr8+bN9VFSUnnjiCWVnZ6tv377KyclRcXGx8vPz1axZM+Xl5dU6toKCAj377LOSzt60VpL+67/+S0eOHJEkjR49Wm3atLngcyVJAgAAAEIsGPcxqm8fpi1evFht27bVihUrtGnTJqWmpmry5MmaM2eOPJ7zd1LzZ/usrCzFxcVp3rx5mj59umJiYjRgwAAtXLiwznikQ4cOadasWbXWbdy4URs3bpQk/ehHP/IrSbIcJ9hzD4ZGcXGxUlJSdGv8CEVa5x4w5peICDNxJDmnTxuLJUkeg7N52KcrjMWSJMfrNRjMbJ3YMviaWpGG/8Zg8thi659eM+B4hsvZdpm5KTttVwnehMjmVxmL5T3+jbFYkmTFxZkLZpt9b5n+HDEpotmVxmI5pWXGYkmSJynx/I38YPKaM/k9I0nO99w7xe9YZ84YiyWZ/Ty3kpKMxZIkK8bQ7zSS7FPFxmJJZn+38VyRYiTOGbtKf/zmNzp16pSR2dyCoeZ31gE3zVBkhNnv6+86463UHz/917B+PsIVlSQAAAAg1IIw+1y9+0BAmLgBAAAAAFxIkgAAAADAhe52AAAAQKjR3S6sUUkCAAAAABcqSQAAAECoUUkKa1SSAAAAAMCFShIAAAAQarYkKwT7QECoJAEAAACAC5UkAAAAIMQsx5EV5DFDwY7fmFFJAgAAAAAXKkkAAABAqDG7XVijkgQAAAAALlSSAAAAgFCzHckKcqXHppIUKCpJAAAAAOBCJQkAAAAINcYkhTUqSQAAAADgQpIEAAAAAC50twMAAABCLgTd7UR3u0BRSQIAAAAAFypJAAAAQKgxcUNYo5IEAAAAAC5UkgAAAIBQsx0FfcwQN5MNGJUkAAAAAHBpdJUkKzZWlifaSCynrNxIHEnyXJFiLJYk2SWlxmJZsTHGYkmSU2rw2KLNvJY+Xq+xUKZfU8drm4tVUWEsliQ5pw3HM/k6xMUZiyVJzpkz5mIZ/gueJzbWWCzv8ePGYkmSJz7eXDCD14ckyeD1a/L6kMx+lkuSFWPu89xbWmYsliRZERHGYpn8DJHMfteY/vw1/V41yeT73j5VYiaOU20kTkg49tkl2PtAQKgkAQAAAIBLo6skAQAAAGGP2e3CGpUkAAAAAHChkgQAAACEGrPbhTUqSQAAAADgQiUJAAAACDXGJIU1vytJjz32mLKysnTNNdfIsiy1bdv2vNs8++yz6tOnj5KTk5WYmKibbrpJc+fODeR4AQAAACCo/K4kPfzww2ratKluueUWnTx58rztf/7zn+uZZ57RPffco3/4h3+Qx+PRoUOHVFBQEMjxAgAAAEBQ+Z0kHTx4UNdcc40k6aabblLp99w4dPXq1frNb36j3/72txo9enTgRwkAAAA0Jo5C0N0uuOEbM7+729UkSOfjOI4ee+wx3XLLLb4EqaSkRA59IwEAAACEsaDNbrd3714dPHhQvXv31ty5c3XllVcqOTlZV1xxhSZMmPC9FSgAAACgUauZuCHYCwIStNnt9u7dK0l68cUXVVVVpUceeUTt2rXTH/7wBz399NPau3ev3nrrLVmWFVD8tLS0Wj/btt3gYwYAAACAoCVJJSUlkqRjx47pjTfe0MCBAyVJ99xzjxzH0TPPPKPXXntNd9xxR7AOAQAAAAhPti0pyH/kp4gQsKB1t4uLi5Mkpaen+xKkGmPGjJEkbdmyJeD4R48erbXs378/4FgAAAAAUCNolaSWLVtKkq6++uo6j9V0lfv222+DtXsAAAAgfHEz2bAWtEpS586dFRsbq8LCwjqPHTlyRJJ01VVXBWv3AAAAABCQoCVJ8fHxuueee/Tll1/q97//fa3HnnzySUnS4MGDg7V7AAAAIHwxu11Y87u73bPPPquCggJJZydlqKqq0rx58yRJbdq0qXXT2AULFujNN9/UyJEjNXnyZLVt21abN2/Wpk2b9LOf/Uy9e/c2dBoAAAAAYIbfSdLq1av1zjvv1Fo3a9YsSVJmZmatJKl169basWOHfvWrX+k3v/mNTp06pWuvvVa//vWvNXXq1AYeOgAAAHCJsh1JQa702FSSAuV3kuTvjHRt27bVc8895+9uAAAAAOCiCNqYJAAAAAC4FAVtCnAAAAAA9XMcW44T3Ju9Bjt+Y0YlCQAAAABcqCQBAAAAoeY4wZ9YgSnAA0YlCQAAAABcqCQBAAAAoeaEYApwKkkBo5IEAAAAAC5UkgAAAIBQs23JCvLsc8xuFzAqSQAAAADgQiUJAAAACDXGJIU1KkkAAAAA4EIlCQAAAAgxx7blBHlMksOYpIBRSQIAAAAAFypJAAAAQKgxJimsUUkCAAAAAJdGV0lyKiqM9e+0oqONxJEk++QpY7EkKaJZqrFY3hPfGoslSVZERFjGkiQrJsZYLO83Zp83T3KisVhOVZWxWJLkVJ8xGs/yWMZi2YaPLSI6ylgsk+cpSU5JibFYJj/fJMkuKzMXzGP2fR8Ra+59b0Ua/tr0es3GM8iKMnuuHpOfv6VmnzfL4Pve8ZodA2LyeZPp79S4WHPBDFU8LMeWqo2EwmWu0SVJAAAAQNizHcmiu124orsdAAAAALhQSQIAAABCzXEkBXmKbipJAaOSBAAAAAAuVJIAAACAEHNsR06QxyQ5VJICRiUJAAAAAFyoJAEAAACh5tgK/pikIMdvxKgkAQAAAIALlSQAAAAgxBiTFN6oJAEAAACAC5UkAAAAINQYkxTWqCQBAAAAgEujqSTV9Ll8Zu8iJScnX+SjAQAAQKgVFxerVasXLomxOGdULQX5MM+oOrg7aMQaTZJUUlIiSWrVqtVFPhIAAABcTCUlJUpJSbnYh1Gv6OhoXX311Xrvy80h2d/VV1+t6OjokOyrMbGcSyHVvgC2bauoqEhJSUmyLOtiHw4MaN++vSRp//79F/lIEE64LnAuXBuoD9fF5cVxHJWUlKhFixbyeMJ3VElFRYWqqqpCsq/o6GjFxsaGZF+NSaOpJHk8HrVs2fJiHwYMqvlwo/sk3LgucC5cG6gP18XlJ1wrSG6xsbEkLmEufFNsAAAAALgISJIAAAAAwKXRjEkCAAAAABOoJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJAEAAACAC0kSAAAAALiQJOGi2Ldvn2bPnq2ePXuqWbNmSkpKUkZGhubPn6+ysrI67ffu3auhQ4eqSZMmSkhIUN++ffXWW29dhCNHqJWXl+uaa66RZVmaNGlSnce5Ni4vJ06c0PTp03XdddcpNjZWzZo1U//+/bV169Za7f70pz9p4MCBSkpKUnJysn7yk5/oww8/vDgHjaAqLS3VggUL1LlzZyUlJSk1NVW9e/fW2rVr5ThOrbZcFwAuVOTFPgBcntasWaPly5frrrvu0qhRoxQVFaW3335bjzzyiH73u99px44diouLkyQdPHhQvXv3VmRkpGbMmKGUlBStXLlSt99+u1599VUNHDjwIp8Ngmn27Nk6duxYvY9xbVxeCgoK1K9fP5WWluof//Ef1aFDB506dUoff/yxCgsLfe127Nihfv36KT09XXPmzJEkLVu2TH379tW2bdvUuXPni3UKMMy2bd1xxx3atm2bxowZo8mTJ6u8vFzr16/X2LFjtXv3bi1cuFAS1wUAPznARbBr1y7n5MmTddb/6le/ciQ5S5cu9a3LyspyPB6P89e//tW3rqSkxGndurXToUMHx7btUBwyLoIPPvjAiYiIcB5//HFHkjNx4sRaj3NtXF5+9KMfOS1btnSKioq+t1337t2dpKQk58iRI751R44ccZKSkpxBgwYF+zARQtu2bXMkOVOmTKm1vrKy0mnXrp2TkpLiW8d1AcAfdLfDRdGtWzelpKTUWZ+dnS1J+vTTTyVJZWVleuWVV9SvXz9lZGT42iUmJmrcuHHat2+fdu3aFZJjRmh5vV7l5OToJz/5iYYNG1bnca6Ny8u7776r9957TzNmzFBaWpqqq6tVXl5ep92BAwe0a9cuZWVlKT093bc+PT1dWVlZevPNN/Xll1+G8tARRMXFxZKkFi1a1FofHR2t1NRUJSQkSOK6AOA/kiSElSNHjkiSmjdvLkn6+OOPVVlZqV69etVp27NnT0niF+FGKj8/X3v27NGyZcvqfZxr4/KyefNmSVLr1q115513Ki4uTgkJCerQoYPWrVvna1fzmp/runAcRx988EFoDhpB16NHD11xxRX613/9V7300kv64osvtGfPHs2cOVMffPCBcnNzJXFdAPAfY5IQNrxer+bOnavIyEiNHDlSklRUVCRJtf7yV6NmnXssAhqHQ4cO6dFHH9Xs2bPVtm1bHT58uE4bro3Ly969eyVJOTk5at++vZ555hlVVVXp8ccf1+jRo1VdXa2xY8dyXVxmmjRpoldeeUXjxo3Tvffe61uflJSkDRs2aOjQoZL4vADgP5IkhI0pU6Zo+/btWrBggTp27ChJvu40MTExddrHxsbWaoPGY8KECbrmmmv04IMPnrMN18blpaSkRNLZX37ffvttRUdHS5KGDh2qa665Rg8//LDGjBnDdXEZSkxM1E033aS77rpLvXv31okTJ7R8+XKNHDlSL7/8sgYNGsR1AcBvJEkIC7NmzdKyZcs0fvx4zZw507c+Pj5eklRZWVlnm4qKilpt0DisW7dOb7zxht59911FRUWdsx3XxuWlZrbL++67z5cgSWcrCXfddZd++9vfau/evVwXl5lPPvlEvXv3Vn5+viZMmOBbf9999+mmm25STk6ODh48yHUBwG+MScJFl5ubq3nz5mns2LF66qmnaj1WMxi3vm4QNevq6z6BS1NlZaUefPBBDR48WFdffbUOHDigAwcOqKCgQJJ06tQpHThwQCdPnuTauMy0bNlSknT11VfXeSwtLU2S9O2333JdXGby8/NVUVGhrKysWuvj4+P105/+VAUFBTp8+DDXBQC/kSThosrNzVVeXp7GjBmjVatWybKsWo937txZMTEx2r59e51td+zYIensTHloHE6fPq1jx45p06ZNat++vW/p16+fpLNVpvbt22vVqlVcG5eZHj16SPrfyV3catZdddVV6t69uySd87qwLEtdu3YN4pEilGoSHK/XW+exM2fO+P7lugDgL8txvnM7aiBE5syZo0cffVSjR4/W2rVr5fHUn7NnZWVp48aN+stf/qIuXbpIOnuH9RtvvFExMTHau3dvneQKl6bq6mq9/PLLddYfO3ZM//RP/6Sf/OQn+sd//Ef94Ac/UIcOHbg2LiPffvut2rRpo+TkZO3Zs0eJiYmSpKNHj6p9+/ZKT0/3Te7QvXt37d27V3v27PFVEIqKitSpUyf16NFDb7755kU7D5g1depULV68WAsXLtSMGTN860+ePKkbbrhBFRUVOnbsmCIiIrguAPiFJAkXxfLlyzVp0iS1bt1ac+fOrZMgNW/eXIMGDZJ09v4WPXr0UFRUlKZOnark5GStXLlSn3zyiTZt2qTbb7/9YpwCQujw4cNq166dJk6cWGtKcK6Ny8uKFSv0i1/8QjfeeKN+/vOfq6qqSk8++aSOHj2qP/zhD7rtttskSdu2bVP//v3VsmVLTZ48WZK0dOlSffXVV3r//fd9CTUufQUFBbrlllv07bffatSoUerTp49OnDihlStX6vDhw1q+fLn+6Z/+SRLXBQA/Xcw72eLyNWbMGEfSOZfMzMxa7T///HPnrrvuclJSUpy4uDinT58+zhtvvHFxDh4hd+jQIUeSM3HixDqPcW1cXjZs2OD88Ic/dOLj453ExERn0KBBznvvvVen3bZt25xbb73VSUhIcBITE53bbrvN+eCDDy7CESPYDhw44PzsZz9z0tPTncjISCcpKcnp27evs2HDhjptuS4AXCgqSQAAAADgwsQNAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAOBCkgQAAAAALiRJAAAAAODy/wEmIrk3CQEdXQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_f.time), max(dps_new_f.time), min(dps_new_f.freq), max(dps_new_f.freq)\n", + "plt.imshow(dps_new_f.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15, 30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 3.0\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dps.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 4 s" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_t = dps.rebin_time(dt_new=6.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 6.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dps_new_t.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAJlCAYAAAAPYLm5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABouklEQVR4nO3deXxU9dn///eZ7CEJS4NIAsgquFBQgSKWX0BAK4pfQSMIpRRLUG/ABlArVpQgYL25uUECLmxFC4JyQ9UWtdUq4gKa0uJCZZEClgRFihJIyDbn/P7ATCcmzDCTmTknk9fz8ZiHcuYs13wy2zXXZzEsy7IEAAAAAJAkuewOAAAAAACchCQJAAAAALyQJAEAAACAF5IkAAAAAPBCkgQAAAAAXkiSAAAAAMALSRIAAAAAeCFJAgAAAAAvJEkAAAAA4IUkCQAAAAC8BJwk7dmzR2PGjNFFF12kpk2bKjk5Wd26ddO0adN05MiROve/6aab1Lx5czVp0kT9+/fXm2++GZLgAQAAACDUDMuyrEAO+Mtf/qK5c+eqb9++atOmjWJjY/XJJ5/ot7/9rdLS0rRz506dd955kqT9+/erT58+io2NVW5urpo2barly5fr008/1auvvqrBgweH5UEBAAAAQLACTpLOZsOGDbr11lv12GOP6b777pMk3Xrrrdq4caN27Nihnj17SpJOnTqlSy65RImJidq9e7cMwwjF5QEAAAAgJEI2JumCCy6QJH3zzTeSpJKSEr388ssaMGCAJ0GSpJSUFE2YMEF79+5VQUFBqC4PAAAAACERdJJUVlamY8eO6fDhw/rzn/+sO+64Q5I0dOhQSdLHH3+s8vJyXXnllbWO7du3rySRJAEAAABwnNhgD1yxYoWmTJni+Xf79u21Zs0a9e/fX5JUVFQkScrMzKx1bPW2wsLCYC+v1q1b1/i3aZrasWOHUlNT6cIHAADQCFmWpZMnTyojI0Mul3MncS4rK1NFRUVErhUfH6/ExMSIXCuaBJ0k3XTTTerWrZtOnTqlv//973r55Zd17Ngxz/2lpaWSpISEhFrHVv+hqvcJBdM01bZt25CdDwAAAA3Tv/71L7Vp08buMOpUVlamDhek6Muj7ohc7/zzz9eBAwdIlAIUdJLUpk0bz5Pvpptu0s0336zevXurtLRUM2bMUHJysiSpvLy81rFlZWWS5NknGN+fbvzEiRNq1qyZfqzrFWvEBX3esArNHBnhRRWuXoyYGLtDaPAsd2Q+NGAfXif1Y8Q79DPOi3m6zO4QfHP657GrAbxGTGe+V1epUu/qFaWmptodyllVVFToy6NuHdrRXmmp4a12FZ80dcEVB1VRUUGSFKCgk6Tv++EPf6jLLrtMTzzxhGbMmKGMjAxJdXepq95WV1e8YFV3sYs14pybJMnhb8oSSVI9GUYD+GBzOMtwbvcIhAavk/oxjHi7Q/DLNJz5Bfo/HP553BBeI059r/7uT9sQhl6kpBpKSQ1vnKac3w5OFdJn+OnTp3X8+HFJUvfu3ZWQkKBt27bV2m/79u2SpF69eoXy8gAAAABQbwEnSV9++WWd29966y19+umnnpnrUlJSNGzYMG3ZskUfffSRZ79Tp05pxYoV6tKli/r06RNk2AAAAEDD5bbMiNwQnIC729111106cuSIrr76al1wwQUqKyvTjh07tH79eqWmpmrBggWefR999FH95S9/0TXXXKOpU6cqLS1Ny5cvV2FhoTZv3twgSqEAAAAAGpeAk6TbbrtNzz77rH73u9/p66+/lmEYuuCCC3THHXfo3nvvVbt27Tz7du7cWe+9957uv/9+/eY3v1FFRYUuv/xyvfbaaxo8eHBIH4iH4XJsP1kjhqSwvizT2f3InR6fJLmaBD9hSiRYJaGb9bIxahCTIrgc/l7o8MlDrMoqu0Pwy+nPQ6dPEONKcv4AezOEMxSHluH4IWfVTFkywxxsuM8fzQJOkm699Vbdeuut57z/RRddpJdeeinQywAAAACALZxZcgEAAAAAm4RsCnAAAAAA58aUqXBPqxD+K0QvKkkAAAAA4IVKEgAAABBhbsuS2wrvxArhPn80o5IEAAAAAF6oJAEAAAARxhTgzkYlCQAAAAC8UEkCAAAAIsyUJTeVJMeikgQAAAAAXqgkAQAAABHGmCRni7okyXAZMgzD7jDqFhNjdwR+WRUVdofgm+Hs4qfhcuhzz4tjXx/fMeKc/bZkxDo7PvN0md0h+FfptjsC31zOfq824pz9GpYkw3D268Qynf3F0SwpsTuEhosprxEizn4XAwAAAKIQ6yQ5m7N/lgcAAACACKOSBAAAAESY+d0t3NdAcKgkAQAAAIAXkiQAAAAA8EJ3OwAAACDC3BFYTDbc549mVJIAAAAAwAuVJAAAACDC3NaZW7ivgeBQSQIAAAAAL1SSAAAAgAhjCnBno5IEAAAAAF6oJAEAAAARZsqQW0bYr4HgRF2SZFVVyTIc+oRwu+2OwD/L4SP8HPqnrWaZDm+/BsCqrLI7BJ+cHp/hcviLRJJlOTtGV3yc3SH4ZJaX2x2CX45/J3T4Z52RkGB3CP459DuNYVmSs9+m0UDQ3Q4AAACIMNOKzC3kcZumFi5cqG7duikxMVFt27bV9OnTVVJSEvLjX3jhBY0fP149evRQXFycDMPQwYMHz+k6r776qgzDkGEY+utf/xrIQ5REkgQAAADgHE2dOlXTpk3TxRdfrPz8fGVnZ2vx4sUaNmyYTNP/VBGBHP/EE09o/fr1SkpKUqdOnc45xpKSEt11111KSUkJ+PFVi7rudgAAAIDTuSMwJinU59+1a5fy8/M1YsQIbdy40bO9Q4cOuvvuu7V+/XqNHj06ZMc/++yzysjIUGxsrCZPnqw9e/acU5wPPvigqqqqNHHiRP3v//5vEI+UShIAAACAc7Bu3TpZlqXc3Nwa23NycpScnKw1a9aE9Ph27dopNjawms5f//pX5efna9GiRUpNTQ3oWG8kSQAAAAD8KigokMvlUp8+fWpsT0xMVM+ePVVQUBDW4/2pqqpSTk6OrrnmGt1yyy31Ohfd7QAAAIAIi2R3uy5dusjl+k9t5MiRI0Gdr6ioSOnp6UqoYwbGzMxMvf/++6qoqFB8fHxYjvdnwYIF2rNnjzZt2hTU8d6oJAEAAADwq7S0tM4ERzpTDareJ1zH+7J//37l5eVp5syZ6tChQ1Dn8EYlCQAAAIgw0zJkhnnduOrz79u3T2lpafU+X3Jyso4ePVrnfWVlZZ59wnW8L3feeac6dOige+65J6jjv48kCQAAAIBfGRkZ+sc//qHy8vJaFaHCwkKlp6f77CpX3+PP5ve//73eeOMNrVq1SocOHfJsP378uCTp8OHDatasmTp27Fij26EvdLcDAAAAIqx6TFK4b6HUu3dvmaapDz/8sMb2srIy7dy5U7169Qrr8WdTnRjdfvvt6tKli+eWn58vSRo+fLi6dOniSZrOBUkSAAAAAL9GjhwpwzC0aNGiGtuXL1+u0tJSjRkzxrNt//792r17d9DHB+KGG27Qhg0bat2ys7MlSY899pg2bNgQUJdDuttFkBETY3cIflmmZXcIPjm+DS3/K03bzX2qxO4QfHN6GxrO/m3JqqqyOwS/XN8NzkVwjNg4u0Pwz+GvY8d/1gW4LowdzIoKu0Ook2W57Q7hnLnlkjvM9YpQt0b37t01adIkLVmyRCNGjNDQoUP12WefafHixcrKyqqxEOygQYN06NAhWZYV1PGStHXrVm3dulXSmfWPJGnJkiVq1qyZpDOLxkpS586d1blz51rxfvrpp5Kkq6++OuAqlfNfhQAAAAAcYdGiRWrfvr2WLVumzZs3Kz09XVOmTNHs2bPPabxPIMe/+eabysvLq7FtwYIFnv+vTpLCwbC807sGrLi4WE2bNtUA/T/FGs78la0h/DLk+F/XqCTVm9P/xo5vQ4dXkmQ6/1dUKkn1Y7kd/hqRHP86dvr7oCvJ+a8RM8hpmsOtyqrUFutFnThxIiSzuYVD9XfWv3zSTk1Sw/uZUnLS1KDuXzi6PZzK4Z/2AAAAABBZzi9tAAAAAFEmHLPP1XUNBIdKEgAAAAB4oZIEAAAARJjbcslthXl2O2cPv3M0KkkAAAAA4IUkCQAAAAC80N0OAAAAiDBThsww1ytM0d8uWFSSAAAAAMALlSQAAAAgwpgC3NlIkiLI6St8S5IrMcHuEHwyy8rtDsGnhrBKusqd3YaW2+4IfDNczv7AsSxnxydJcjm7E4NZWmp3CL65YuyOoMEzYpzdhpbD36eBxoAkCQAAAIiwyEwB7vwf6J3K2T/nAQAAAECEUUkCAAAAIuzM7Hbh7SId7vNHMypJAAAAAOCFShIAAAAQYaZccrNOkmNRSQIAAAAAL1SSAAAAgAhjdjtno5IEAAAAAF6oJAEAAAARZsolkzFJjkUlCQAAAAC8kCQBAAAAgJeAu9vt3btXa9as0Z///Gft379fZWVl6tSpk7Kzs5Wbm6smTZrU2H/btm169NFH9be//U3//ve/lZGRoauvvlozZsxQx44dQ/ZAqhlx8TKMuJCfNxSsqkq7Q/DLLCu3OwTfTLfdEfhkVTj/b2xVVdkdgm+Gsxe+s0y6LtSX099njFiH90Q3GsDvm5ZpdwQ+GfHO/J5QzSwttTsERIDbMuS2wvuZF+7zR7OAPwlWrVqlpUuX6sYbb9SYMWMUFxent956Sw8++KBeeOEFbd++XUlJSZKk1157Tddff706deqkyZMnKz09Xbt27dKyZcu0ceNGffLJJ8rMzAz5gwIAAACAYAWcJN1yyy2aMWOGmjZt6tl25513qkuXLpo7d65WrlypyZMnS5IWLlyomJgYvf/++0pPT/fsf8kllygnJ0cbNmxQbm5u/R8FAAAA0IC4I7CYrJuJG4IW8F+mV69eNRKkaiNHjpQkffrpp55txcXFSkxMVPPmzWvsm5GRIUm1uuYBAAAAgN1Clr4ePnxYktSqVSvPtmuvvVYnT57UuHHj9NFHH6mwsFB/+tOfNH36dF100UUaNWpUqC4PAAAANBim5YrIDcEJyehUt9utRx55RLGxsRo9erRn+4wZM3T06FGtWrVKa9eu9WwfOnSo1q1bp9TU1KCv2bp16xr/Nk1nDxIFAAAA0DCEJEnKzc3Vtm3bNG/ePHXt2tWzPSYmRpmZmRo8eLCGDx+uFi1a6L333lN+fr5GjRqll156SXFxzp5hBgAAAAg1xiQ5W72TpJkzZ2rJkiWaOHGiZsyYUeO+n//853r//fe1a9cuz4x3w4cPV+fOnXXXXXfpmWee0YQJE4K67pEjR2r8u7i4uM6xUgAAAAAQiHqlr7NmzdKcOXM0fvx4PfXUUzXu++KLL7R27Vpdf/31ngSpWnZ2tiTp7bffrs/lAQAAgAbJ1H/WSgrXjcEowQs6SZo1a5by8vI0btw4rVixQsb3FoAsLCyUdGa80vdVfbeYZZXTF7UEAAAA0OgElSTNnj1beXl5Gjt2rFatWiWXq/ZpunbtqpiYGL344ov69ttva9y3evVqSVLv3r2DuTwAAADQoJlyReSG4AQ8Jmnp0qV6+OGH1a5dOw0ePFjPPfdcjftbtWqlIUOGqEWLFsrNzdWCBQt02WWXKScnxzNxw9q1a9WpU6egxyMBAAAAQLgEnCQVFBRIOjPmaNy4cbXuz8rK0pAhQyRJ8+fPV9euXbVixQrNmzdP5eXlyszM1F133aVZs2YpLS2tnuHXZrndsgxnZs2u5GS7Q/DLLCmxOwTfXDF2R+CTVVlhdwgNnhHr8BkvLWf38LZMZ77/1WDW7obtKK6QTPwaNlZVpd0h+GXEx9sdgk9O/6wzYp39HJTOfN8ColnAr8LVq1d7usv5YxiGcnJylJOTE+hlAAAAgKjltlxyh3mx13CfP5rRcgAAAADgxfn1XAAAACDKmDJkyvC/Yz2vgeBQSQIAAAAAL1SSAAAAgAhjTJKz0XIAAAAA4IVKEgAAABBhbrnkDnO9Itznj2a0HAAAAAB4oZIEAAAARJhpGTKtMM9uF+bzRzMqSQAAAADghUoSAAAAEGFmBMYkmdRDghZ1SZIrPlYuI87uMOpklpbaHYJ/rhi7I/DJ1STZ7hB8ssrK7Q7BL8vttjsEn6zKCrtD8M3hrxHD5fyuFUZ8ot0h+GSWldkdgk+uRGe3nyRZVVV2h+CTEevsrz9Oj09y/mcJUF/OfxUCAAAAUca0XDLDvI5RuM8fzWg5AAAAAPBCkgQAAAAAXuhuBwAAAESYW4bcCu840nCfP5pRSQIAAAAAL1SSAAAAgAhj4gZno+UAAAAAwAuVJAAAACDC3Ar/mCFWswoelSQAAAAA8EIlCQAAAIgwxiQ5Gy0HAAAAAF6oJAEAAAAR5rZccoe50hPu80ezqEuSzLJymYZpdxh1iklLszsEv4zkJLtD8Knq6DG7Q/Appqnz/8buE8V2h+Cb4eyF74yYGLtD8M1y5vufN8uy7A7BJyPW2R+NTm8/STISEuwOwSeztNTuEHyyTOf/jYFoR3oJAAAARJglQ2aYb1YYZs8zTVMLFy5Ut27dlJiYqLZt22r69OkqKSkJ+fEvvPCCxo8frx49eiguLk6GYejgwYN1nvfll1/W+PHj1a1bNzVp0kQZGRkaPHiwXnvttaAeJ0kSAAAAgHMydepUTZs2TRdffLHy8/OVnZ2txYsXa9iwYTJN/70ZAjn+iSee0Pr165WUlKROnTr5PO/EiRP13nvvadiwYXr88ceVm5urwsJCXXfddZo7d27Aj9PZfQoAAACAKNQQxyTt2rVL+fn5GjFihDZu3OjZ3qFDB919991av369Ro8eHbLjn332WWVkZCg2NlaTJ0/Wnj17znru5557TldffXWNbZMnT9Zll12mvLw8/dd//ZeaN29+zo+VShIAAAAAv9atWyfLspSbm1tje05OjpKTk7VmzZqQHt+uXTvFnuM40e8nSJKUnJysG264QZWVlT4TrLqQJAEAAADwq6CgQC6XS3369KmxPTExUT179lRBQUFYjw/G4cOHJUmtWrUK6DiSJAAAACDCTMuIyE2SunTpotatW3tuwSoqKlJ6eroS6pjBMjMzU8eOHVNFRUXYjg/URx99pE2bNql///7q0KFDQMeSJAEAAADwq7S0tM4ERzpTDareJ1zHB+Lrr7/WiBEjlJSUpBUrVgR8PBM3AAAAABHmlkvuMNcrqs+/b98+pYVgvc7k5GQdPXq0zvvKyso8+4Tr+HN1/PhxDRkyREVFRdq8ebMuvPDCgM9BJQkAAACAXxkZGTp27JjKy8tr3VdYWKj09HTFx8eH7fhzcfz4cQ0ePFi7d+/Wiy++WOeEDueCJAkAAACIsEiOSQqV3r17yzRNffjhhzW2l5WVaefOnerVq1dYj/enOkH6xz/+od///ve69tprgz4XSRIAAAAAv0aOHCnDMLRo0aIa25cvX67S0lKNGTPGs23//v3avXt30McH6ptvvtGQIUO0a9cubdy4Udddd13Q55KicUySK0YyYuyOok5GaordIfj1xZj2dofg0ye5f7I7BJ86vDbB7hD86jb5H3aH4JORnGR3CD65/33c7hB8MmKc+f7nzQrhzEXh4PQ2tCqr7A6h4TOc/Rux05+DkqQQVyhCxbBMqYG8REy5ZIa5XhHq83fv3l2TJk3SkiVLNGLECA0dOlSfffaZFi9erKysrBoLwQ4aNEiHDh2SZVlBHS9JW7du1datWyVJf/3rXyVJS5YsUbNmzSRJDz74oGffIUOG6G9/+5tuu+02ffPNN7XWXOrXr586dux4zo81+pIkAAAAAGGxaNEitW/fXsuWLdPmzZuVnp6uKVOmaPbs2XK5/CdlgRz/5ptvKi8vr8a2BQsWeP7fO0nasWOHpDML1q5bt67WdX/7298GlCQZlnd614AVFxeradOmGuAaoVgjzu5w6hTbOrBFrOzg/ErSE3aH4BOVpPqjklQ/DeEXaMvttjsEn5zehpbp/I9tI87Zv8E6vRrn9OegJMky7Y6gTlVWpd6q2qgTJ06EZDa3cKj+znrXOyOUkBLe76zlpyr1ZP9Njm4Pp3J2vRkAAAAAIszZP/UAAAAAUSgcs8/VdQ0Eh0oSAAAAAHghSQIAAAAAL3S3AwAAACLMslwyrfDWK6wwnz+a0XIAAAAA4IVKEgAAABBhbhlyK7wTK4T7/NGMShIAAAAAeKGSBAAAAESYaYV/iu4GsPa0Y0VdkmTExMgwnLlS9fH/r53dIfjlDu/Cz/V2beZldofgU9PJ8XaH4NfXt/WwOwSf0p/dYXcIDZrVED4RDWd3YrCqquwOwScjzvnvM1ZFhd0hNHDO/B7jzXK77Q6hTpblzLjQ8ERdkgQAAAA4nRmB2e3Cff5oRssBAAAAgBcqSQAAAECEmTJkhnn2uXCfP5pRSQIAAAAAL1SSAAAAgAhzW4bcYZ7dLtznj2ZUkgAAAADAC5UkAAAAIMKY3c7ZaDkAAAAA8EKSBAAAAABe6G4HAAAARJgpQ2aYJ1ZgCvDgUUkCAAAAAC9RV0lypTaRyxVvdxh1aprzL7tD8KvZ/yu2OwSfTMPZeX2rpR/YHYJfh3/1I7tD8CkmvYXdIfhU9eVXdofgm+m2OwL/XDF2R+CTEevsj0bL3QD+xpZldwS+Gc7+dd2qqrQ7BL9cCQl2h1Anl2VIZXZHcW6sCCwma1FJClrA3zj37t2rhx56SH379lXLli2Vmpqqnj17au7cuSopKanzmM2bN2vw4MFq3ry5kpOTdeGFF2ry5Mn1Dh4AAAAAQi3gn8tWrVqlpUuX6sYbb9SYMWMUFxent956Sw8++KBeeOEFbd++XUlJSZ798/LyNGvWLF177bXKy8tTcnKyvvjiC3388cchfSAAAABAQ2FaERiTxGKyQQs4Sbrllls0Y8YMNW3a1LPtzjvvVJcuXTR37lytXLnSUyV64403NGvWLM2ePVszZ84MXdQAAAAAECYBd7fr1atXjQSp2siRIyVJn376qWfbvHnzdN5552nGjBmSpFOnTsk0zWBjBQAAAKJC9WKy4b4hOCFrucOHD0uSWrVqJUkqKSnR1q1b9aMf/UgrV65UZmamUlNTlZKSolGjRumrrxw++BkAAABAoxSSKXzcbrceeeQRxcbGavTo0ZKkzz//XG63W9u3b9ef//xn3X///erRo4feeecdPf744/r444/117/+VcnJyUFds3Xr1jX+TYUKAAAADQVjkpwtJElSbm6utm3bpnnz5qlr166SpJMnT0qSvv76ay1fvlwTJkyQJA0fPlxpaWnKy8vTM888o7vuuisUIQAAAABASNS7u93MmTO1ZMkSTZw40TP2SJJnhjuXy6WxY8fWOGbcuHGSpC1btgR93SNHjtS47du3L+hzAQAAAJFkfrdOUrhvCE69kqRZs2Zpzpw5Gj9+vJ566qka97Vp00aS1Lx5cyV8b8Gx6q5y33zzTX0uDwAAAAAhF3R3u1mzZikvL0/jxo3TihUrZHxv9epWrVqpXbt2+te//qXS0tIaY4+qJ3k477zzgr08AAAA0GAxJsnZgqokzZ49W3l5eRo7dqxWrVoll6vu04wdO1aWZenpp5+usf3JJ5+UJA0dOjSYywMAAABA2ARcSVq6dKkefvhhtWvXToMHD9Zzzz1X4/5WrVppyJAhkqT77rtPGzdu1D333KO9e/eqR48eevfdd7V27VpdffXVnrWVQulfP79QMQmJIT9vKLTL3m13CH6ZFRV2h9CgGS7n/2LTfvU/7Q7Bp1NXtLM7BJ8SNzt8+QJXjN0R+GXEOD9GZ3PbHYB/DeB56Gim8//GZlmZ3SHUybQq7Q4BUSLgJKmgoECS9MUXX3gmYPCWlZXlSZLS0tL0zjvvaObMmXrppZe0cuVKtWnTRg888IBmzpypGD4oAQAA0AjR3c7ZAk6SVq9erdWrV5/z/unp6XryySc9XewAAAAAwMlCsk4SAAAAgHNHJcnZ6r1OEgAAAABEEypJAAAAQIRRSXI2KkkAAAAA4IVKEgAAABBhliRT4a30WGE9e3SjkgQAAAAAXqgkAQAAABHGmCRno5IEAAAAAF6oJAEAAAARRiXJ2aIuSSrtXCFXkjMLZOaJYrtD8MsynT3Ez3A5/MUeE2N3BH5VffW13SH4VN6svd0h+JSckGB3CD6Z5eV2h3AOHP46cfj7jOH09kO9WZZpdwh+GQ79vDMsS6qyOwpEA2dmEwAAAABgk6irJAEAAABOR3c7Z6OSBAAAAABeqCQBAAAAEUYlydmoJAEAAACAFypJAAAAQIRZliErzJWecJ8/mlFJAgAAAAAvVJIAAACACDNlyFSYxySF+fzRjEoSAAAAAHihkgQAAABEGLPbORuVJAAAAADwQiUJAAAAiDBmt3O2qEuSuj54ULGueLvDqJMV6/zmtsrK7A7BN5ez29CIibE7BL8Mhz8Pj/a2OwLfWvwp1e4QfDLcpt0h+Ody+Ie2adkdgW9WA/gbGw7vqOLw56AR78zvMTU49nXi8OceGgyeSQAAAECEVY9JCvct5HGbphYuXKhu3bopMTFRbdu21fTp01VSUhLy41944QWNHz9ePXr0UFxcnAzD0MGDB8967qKiIv3sZz9Ty5YtlZSUpF69emnDhg1BPU6SJAAAAADnZOrUqZo2bZouvvhi5efnKzs7W4sXL9awYcNkmv4r3YEc/8QTT2j9+vVKSkpSp06dfJ73+PHj+vGPf6xNmzbprrvu0uOPP66UlBTdeuut+u1vfxvw43R2vxsAAAAAjrBr1y7l5+drxIgR2rhxo2d7hw4ddPfdd2v9+vUaPXp0yI5/9tlnlZGRodjYWE2ePFl79uw567l/85vf6MCBA3r55Zc1bNgwSdIvfvELXXnllbrnnnuUnZ2tlJSUc36sVJIAAACACKueuCHct1Bat26dLMtSbm5uje05OTlKTk7WmjVrQnp8u3btFHuOY6mfe+45derUyZMgSVJMTIymTJmi48eP65VXXjmn81QjSQIAAADgV0FBgVwul/r06VNje2Jionr27KmCgoKwHn82R44cUWFhofr27VvrvuptgZ6bJAkAAACIMCsCkzZUV5K6dOmi1q1be27BKioqUnp6uhISEmrdl5mZqWPHjqmioiJsx/s6b/U56jqvJBUWFgZ0TpIkAAAAAH6VlpbWmeBIZ6pB1fuE63hf55VU57mDPS8TNwAAAAARZkmywrzcVPXp9+3bp7S0tHqfLzk5WUePHq3zvrLv1tpMTk4O2/G+zitJ5eXlITsvlSQAAAAAfmVkZOjYsWN1JiOFhYVKT09XvI/FkOt7vK/zVp+jrvNKdXfF84UkCQAAAIgwU0ZEbqHUu3dvmaapDz/8sMb2srIy7dy5U7169Qrr8WfTunVrZWZmavv27bXuq94W6LlJkgAAAAD4NXLkSBmGoUWLFtXYvnz5cpWWlmrMmDGebfv379fu3buDPj5Qt912m/bv368//OEPnm1ut1v5+flq1qyZhg4dGtD5om5Mkll8UqYRZ3cYdTKCKB9Gmuu7wW1OZdZRnnWUyiq7I/DPFdpflUKt64O77A7Bp8JfdLc7BJ/OX/S+3SH45Qqiv3kkWXLbHYJPVoWz45MkI8buCHyzKsM8EKS+LNPuCPwyYhz6R24AbVctHOsY1XWNUOrevbsmTZqkJUuWaMSIERo6dKg+++wzLV68WFlZWTUWgh00aJAOHToky2vgVSDHS9LWrVu1detWSdJf//pXSdKSJUvUrFkzSdKDDz7o2ff+++/Xhg0bNHr0aE2bNk2ZmZlat26dCgoKtGLFCqWmpgb0WKMuSQIAAAAQHosWLVL79u21bNkybd68Wenp6ZoyZYpmz54tl8t/J7VAjn/zzTeVl5dXY9uCBQs8/++dJP3gBz/Qe++9p/vvv19Lly7VqVOndPHFF2v9+vUaOXJkwI/TsKxwz6sRGcXFxWratKkGxt6sWCpJwTOd/QuM0ytJRqwzn3s1OLyS5PTXSRGVpHpzfCXJ7exKjRXEGiKR5tgqw3cs0+FffRpANcSpf+Mqq1JvVW3UiRMnQjKbWzhUf2e99IV7FZNc93TYoeIuLdent853dHs4FWOSAAAAAMALSRIAAAAAeGFMEgAAABBhlhWBxWQd3rPUyagkAQAAAIAXKkkAAABAhDXEKcAbEypJAAAAAOCFShIAAAAQYVSSnI1KEgAAAAB4oZIEAAAARJhpGTLCXOkxqSQFLfqSJMN15uZA5unTdofgn8PnijRinf2Utdxuu0Pwy5WYbHcIvjm8Ddv8/l92h+BTlSvG7hD8MpIS7Q7BJ/ObE3aH4JvD36cbAiPG2a8Ty9lvg5Kc+3lsWKZUZXcUiAbOfIYDAAAAUYx1kpzNmSUXAAAAALAJlSQAAAAgws5UksI9u11YTx/VqCQBAAAAgBcqSQAAAECEsU6Ss1FJAgAAAAAvJEkAAAAA4IXudgAAAECEWd/dwn0NBIdKEgAAAAB4oZIEAAAARBgTNzgblSQAAAAA8BJ1lSRXk0S5jHi7w6iTecq0O4QGzzKd3bvWcDn/Fxvz1Cm7Q/DJlZBgdwg+/fvHmXaH4NMP3nb++0xVYZHdITRshvPfZ5z+Xi2zwu4IfHIlJ9sdgn9OfR5aMXZHcO4YlORoAVWS9u7dq4ceekh9+/ZVy5YtlZqaqp49e2ru3LkqKSnxeeyTTz4pwzBkGIaOHTtWr6ABAAAAIFwCqiStWrVKS5cu1Y033qgxY8YoLi5Ob731lh588EG98MIL2r59u5KSkmodV1RUpPvvv18pKSk65fBfsQEAAICwi8CYJDEmKWgBJUm33HKLZsyYoaZNm3q23XnnnerSpYvmzp2rlStXavLkybWOmzRpkjp16qRLLrlEa9asqX/UAAAAABAmAXW369WrV40EqdrIkSMlSZ9++mmt+37/+9/r5Zdf1lNPPaWYmAbUTxQAAAAIE8uKzA3BCcnsdocPH5YktWrVqsb24uJiTZ48WXfccYf69OkTiksBAAAAQFjVe3Y7t9utRx55RLGxsRo9enSN+371q1/JNE09+uij9b1MLa1bt67xb9N0/oxOAAAAgMQ6SU5X7yQpNzdX27Zt07x589S1a1fP9vfee09PP/201q5dW2cXPQAAAABwonolSTNnztSSJUs0ceJEzZgxw7O9oqJCEydO1ODBg3XbbbfVO8i6HDlypMa/i4uLScYAAADQMFhG+Gefo5IUtKCTpFmzZmnOnDkaP368nnrqqRr3LV26VLt379aCBQv0+eefe7afPHlSknTgwAEVFxerY8eOwV4eAAAAAMIiqCRp1qxZysvL07hx47RixQoZ31t1+dChQzJNU9ddd12dx/fp00dNmjRhzSQAAAAAjhNwkjR79mzl5eVp7NixWrVqlVyu2hPkjR8/Xj/+8Y9rbV+6dKm2bNmiVatWqXnz5sFFDAAAADRwkZiimynAgxdQkrR06VI9/PDDateunQYPHqznnnuuxv2tWrXSkCFD1KNHD/Xo0aPW8X/84x8lScOGDVN6eno9wj4794mTMoy4sJy7vlwJCXaH4JdZUWl3CD65Ep3dhubp03aH4Jfh8PXKnP4c/MGWL+wOwaeKDufZHYJfsd98a3cIPpmlpXaH4FNMaqrdIfjl9Da05PD3QYe3nyTFXHyh3SHUyXCXS7vtjgLRIKAkqaCgQJL0xRdfaNy4cbXuz8rK0pAhQ0ITGQAAABCtrO9u4b4GghLQYrKrV6+WZVlnvW3ZsuWcjg9XFQkAAAAA6qve6yQBAAAACAyLyTpbQJUkAAAAAIh2VJIAAAAAOzBmyLGoJAEAAACAFypJAAAAQIQxJsnZqCQBAAAAgBcqSQAAAECksU6So1FJAgAAAAAvJEkAAAAA4CX6uttZkahdBscsL7c7BP8Mh+fNhsMHIDq9/SRZpjNfHw1FVdERu0PwKaZ1C7tD8MuIj7c7BJ9iYmLsDsEns7TU7hD8c/p7oVVpdwQ+GbHO/3r22d3N7A6hTubpMinX7ijOlfHdLdzXQDAc/i4GAAAAAJHl/J8qAAAAgGjDxA2ORiUJAAAAALxQSQIAAAAijUqSo1FJAgAAAAAvVJIAAACASLOMM7dwXwNBoZIEAAAAAF6oJAEAAAARZlnfLe8Z5msgOFSSAAAAAMALlSQAAAAg0pjdztGoJAEAAACAFypJAAAAQKQxu52jRV+S5IqRjBi7o6ib6bY7Ar+MWIe23Xes8nK7Q/DJFR9ndwh+WW7T7hAaNKvK2e33z1tS7Q7Br87znf2hbZ4qszsE3wzndwKxKivsDsE3l7M/6xTj8PgkXfybL+0OoU5VZrkO2x0EooLz32kBAAAAIIJIkgAAAIAIM6zI3ELNNE0tXLhQ3bp1U2Jiotq2bavp06erpKQkLMe/8sor6tevn5o0aaIWLVooOztbBw4cqHPfbdu26cYbb1SbNm2UlJSkTp06KScnR//85z8DfpwkSQAAAADOydSpUzVt2jRdfPHFys/PV3Z2thYvXqxhw4bJNP13SQ/k+E2bNumGG27Q6dOnNX/+fN17773aunWrrrrqKhUVFdXY97XXXtOPf/xj7d69W5MnT1Z+fr5uvPFGPffcc+rVq5cKCwsDepzRNyYJAAAAcLoGOAX4rl27lJ+frxEjRmjjxo2e7R06dNDdd9+t9evXa/To0SE5vrKyUlOmTFHbtm31zjvvKCUlRZJ03XXX6YorrtCsWbO0bNkyzzkWLlyomJgYvf/++0pPT/dsv+SSS5STk6MNGzYoNzf3nB8rlSQAAAAAfq1bt06WZdVKNnJycpScnKw1a9aE7Pi3335bRUVFmjBhgidBkqSePXtqwIABev7551VZWenZXlxcrMTERDVv3rzGuTMyMiRJTZo0CeShkiQBAAAAEVc9BXi4byFUUFAgl8ulPn361NiemJionj17qqCgIGTHV///lVdeWes8ffv2VXFxsfbu3evZdu211+rkyZMaN26cPvroIxUWFupPf/qTpk+frosuukijRo0K6LGSJAEAAABRrEuXLmrdurXnFqyioiKlp6crISGh1n2ZmZk6duyYKirOvgRAIMdXjznKzMysc19JNcYZzZgxQ3fddZf+7//+Tz179lSbNm30k5/8RB07dtT27duVmhrYEhmMSQIAAAAirQGOSSotLa0zwZHOVIOq94mPj6/38aWlpZJU5/7e+1aLiYlRZmamBg8erOHDh6tFixZ67733lJ+fr1GjRumll15SXNy5r2dJkgQAAABEsX379iktLa3e50lOTtbRo0frvK+srMyzTyiOr/5veXn5OV3r5z//ud5//33t2rVLSUlJkqThw4erc+fOuuuuu/TMM89owoQJPh+fN7rbAQAAAJFmRegWQhkZGTp27FidiUthYaHS09PPWkUK9PjqCRfqmrq7elt1t7svvvhCa9eu1fXXX+9JkKplZ2dLOjMRRCBIkgAAAAD41bt3b5mmqQ8//LDG9rKyMu3cuVO9evUK2fG9e/eWdGaB2O/bvn270tLSdOGFF0r6T9Lkdrtr7VtVVVXjv+eK7nYRZJylD6aTWD4G2zmBERNjdwg+md+Vfx3NCO1MN6FmxJ57f2E7OP052OmRj+0OwS+zW3u7Q/DJ2rHL7hB8c/hrWJLkcvbrRGbtL1JOYsQm2h2CXyeuCH7wfzhVVZZJh+yO4hw1wDFJI0eO1Lx587Ro0SL179/fs3358uUqLS3VmDFjPNv279+vyspKdevWLajjs7Ky1Lp1a61YsUJTp071TAP+0UcfacuWLRo/frxnjFHXrl0VExOjF198UfPmzVOzZs0851m9erWk/yRd54okCQAAAIBf3bt316RJk7RkyRKNGDFCQ4cO1WeffabFixcrKyurxkKygwYN0qFDh2RZVlDHx8XF6fHHH9fIkSPVv39/5eTkqLi4WAsXLlTLli2Vl5fn2bdFixbKzc3VggULdNlllyknJ8czccPatWvVqVOngMYjSSRJAAAAQOSFYR2jOq8RYosWLVL79u21bNkybd68Wenp6ZoyZYpmz54tl8v/SJ5Ajs/OzlZSUpLmzJmje+65RwkJCRo0aJAee+yxWlODz58/X127dtWKFSs0b948lZeXKzMzU3fddZdmzZoV8MQVhuWd3jVgxcXFatq0qQa4RijWcGZ3HSPO+Tkp3e3qxwqwv6stHN5Vx+nd7WSZdkfgU4Po1kt3u/px+GtYkmQ4fMizw7vbuZo0sTsEv07+5FK7Q6hTVWWZCl6aqRMnToRkNrdwqP7O2nb+HLmSwtu10jxdpn/d+6Cj28OpHP4uBgAAAACR5fzSBgAAABBlDOvMLdzXQHCoJAEAAACAFypJAAAAQKQ1wCnAGxMqSQAAAADghSQJAAAAALyQJAEAAACAF8YkAQAAABFmKAKz24X39FEt6pIkw2XIcOhCe0as85vb6YvJOl2D+Bs7fcFblzNfv9WsSoePgq2otDsCv45d5uwFDVvuTbU7BJ+ssnK7Q/DLcjt8sdbE8C7gWV+u1BS7Q/Cr6Y4jdodQpyrT+a8PNAzO/0YHAAAARBvLOHML9zUQFMYkAQAAAIAXKkkAAABApLFOkqNRSQIAAAAALyRJAAAAAOCF7nYAAABApNHdztGoJAEAAACAFypJAAAAQIQZVgQWk6WSFDQqSQAAAADghUoSAAAAEGmMSXI0KkkAAAAA4CXqKkmWaclyagfM8nK7I/DLiImxOwSfLLfb7hB8cnr7SZIRF293CL6ZDn39VjOd/RyUy7A7Ar/+3cvZbdjyOWfH1xD+xqp0dhua5abdIfj0zykd7Q7Br47zPrY7hDqZVoXdIZw7KkmORiUJAAAAALwElCTt3btXDz30kPr27auWLVsqNTVVPXv21Ny5c1VSUuLZz7IsrVmzRqNGjVLnzp2VnJysdu3a6cYbb9QHH3wQ8gcBAAAANCTVs9uF+4bgBJQkrVq1SgsXLlSnTp300EMPaf78+eratasefPBB9evXT6dPn5YklZeXa+zYsdqzZ49GjRql/Px8TZw4UX/729905ZVXas2aNWF5MAAAAABQXwGNSbrllls0Y8YMNW3a1LPtzjvvVJcuXTR37lytXLlSkydPVmxsrLZs2aKsrKwax+fk5OiSSy7R9OnTNXr0aLlc9PYDAABAI2QZZ27hvgaCElCW0qtXrxoJUrWRI0dKkj799FNJUmxsbK0ESZJatWqlrKwsHT16VEePHg0mXgAAAAAIq5DMbnf48GFJZ5Kgc9k3Pj5ezZo1C8WlAQAAgIaH2e0crd5Jktvt1iOPPKLY2FiNHj3a576vvPKKPvzwQ40dO1aJiYn1um7r1q1r/Ns0nT2dJwAAAICGod5JUm5urrZt26Z58+apa9euZ91v3759Gjt2rDIzM7VgwYL6XhYAAAAAwqJeSdLMmTO1ZMkSTZw4UTNmzDjrfgcOHNCgQYNkGIZeffVVtWzZsj6XlSQdOXKkxr+Li4vrHC8FAAAAOE0kpuhmCvDgBZ0kzZo1S3PmzNH48eP11FNPnXW/gwcPauDAgTp16pT+8pe/qHv37sFeEgAAAADCLqgkadasWcrLy9O4ceO0YsUKGUbd0wsePHhQAwYM0IkTJ/TGG2/osssuq1ewAAAAQFRg4gZHCzhJmj17tvLy8jR27FitWrXqrGsdHTp0SAMHDtS3336r119/XVdccUW9gz0Xhss4a9JmN8vttjsE/yyHv5pcMXZH4JMRG5IJI8PKLCuzOwTfHP43drwY57dft2mf2h2CT8U3/NDuEHxK+b8Cu0Pwy+nvhUZCgt0h+NTh9yftDsEvq7zc7hDqZFmVdoeAKBHQu9jSpUv18MMPq127dho8eLCee+65Gve3atVKQ4YM0cmTJzVw4EAdPHhQU6ZM0Z49e7Rnz54a+w4ZMuScpgwHAAAAok4ExiRRSQpeQElSQcGZX6+++OILjRs3rtb9WVlZGjJkiP7973/rwIEDkqT8/Pw6z/XWW2+RJAEAAABwnICSpNWrV2v16tV+92vfvr0sp3fbAgAAAOzCmCRHq3tAEQAAAAA0Us4eWQkAAABEIypJjkYlCQAAAAC8UEkCAAAAIsyIwOx2YZ89L4pRSQIAAAAALyRJAAAAAOCFJAkAAAAAvJAkAQAAAICXqJu4wXK7ZRnOzP1cCQl2h+BfTIzdEfhklZfbHYJPpsPjk6SYtDS7Q/DJLC21OwSfjKQmdofgk5GUaHcI/jn0PbpaVYJhdwg+xaSl2B2CX1Zlld0h+ObwBe+Lspz9Pi1JGR859XXs1LjqwBTgjtaAnkkAAAAAEH5RV0kCAAAAnI4pwJ2NShIAAAAAeKGSBAAAANiBSo9jUUkCAAAAAC9UkgAAAIBIY3Y7R6OSBAAAAABeqCQBAAAAEcbsds5GJQkAAAAAvFBJAgAAACKNMUmORiUJAAAAALxEXyXJcJ25OZBlOT+dNxweo2U6Oz45vP0kySwvtzsEnyy32+4QfLJKS+0OwSfD4X/fhiClsMLuEHz6ctTFdofgV+sX/2l3CD7946EL7A7Bp26/+sTuEPyyXIbdIdTNcmhcaHCiL0kCAAAAHI6JG5zNmSUXAAAAALAJSRIAAAAQaVaEbiFmmqYWLlyobt26KTExUW3bttX06dNVUlISluNfeeUV9evXT02aNFGLFi2UnZ2tAwcOnPX8mzdv1uDBg9W8eXMlJyfrwgsv1OTJkwN+nCRJAAAAAM7J1KlTNW3aNF188cXKz89Xdna2Fi9erGHDhsk0zZAev2nTJt1www06ffq05s+fr3vvvVdbt27VVVddpaKiolrnzsvL0w033KDY2Fjl5eVp8eLFGjVqlA4fPhzw42RMEgAAABBpDXAK8F27dik/P18jRozQxo0bPds7dOigu+++W+vXr9fo0aNDcnxlZaWmTJmitm3b6p133lFKSook6brrrtMVV1yhWbNmadmyZZ5zvPHGG5o1a5Zmz56tmTNn1vuxUkkCAAAA4Ne6detkWZZyc3NrbM/JyVFycrLWrFkTsuPffvttFRUVacKECZ4ESZJ69uypAQMG6Pnnn1dlZaVn+7x583TeeedpxowZkqRTp06dU2XrbEiSAAAAgAirnt0u3LdQKigokMvlUp8+fWpsT0xMVM+ePVVQUBCy46v//8orr6x1nr59+6q4uFh79+6VJJWUlGjr1q360Y9+pJUrVyozM1OpqalKSUnRqFGj9NVXXwX8WEmSAAAAgCjWpUsXtW7d2nMLVlFRkdLT05WQkFDrvszMTB07dkwVFWdfay6Q46vHHGVmZta5ryQVFhZKkj7//HO53W5t375dv/zlL5WTk6NNmzbpzjvv1IYNGzRw4ECVBrjOIWOSAAAAgEhrgGOSSktL60xwpDPVoOp94uPj6318dVJT1/7e+0rSyZMnJUlff/21li9frgkTJkiShg8frrS0NOXl5emZZ57RXXfddU6PU6KSBAAAAES1ffv26ciRI55bsJKTk1VeXl7nfWVlZZ59QnF89X/r2v/7+yYlJUmSXC6Xxo4dW2PfcePGSZK2bNly1rjqQpIEAAAARFoDXCcpIyNDx44dqzNxKSwsVHp6+lmrSIEen5GR4dle177Sf7rdtWnTRpLUvHnzWpWn6u6F33zzjd/H540kCQAAAIBfvXv3lmma+vDDD2tsLysr086dO9WrV6+QHd+7d29J0rZt22qdZ/v27UpLS9OFF14oSWrVqpXatWun48eP1xp7VL1G0nnnnXeOj/IMxiRFktttdwR+mT4G2zmB4ePXCScw4s9eYnYKy+F/YxkO/+3GCn460YhwevtJsqoq/e9ko4SPD9odgk/f3tTZ7hD8Wv6rP9gdgk9jV+baHYJPZklgA8xt4dD3Qsty9vuLt3DMPlfXNUJp5MiRmjdvnhYtWqT+/ft7ti9fvlylpaUaM2aMZ9v+/ftVWVmpbt26BXV8VlaWWrdurRUrVmjq1KmeacA/+ugjbdmyRePHj1dcXJxn/7Fjx2ru3Ll6+umnNXXqVM/2J598UpI0dOjQgB4rSRIAAAAAv7p3765JkyZpyZIlGjFihIYOHarPPvtMixcvVlZWVo2FZAcNGqRDhw7Jsqygjo+Li9Pjjz+ukSNHqn///srJyVFxcbEWLlyoli1bKi8vr0Zs9913nzZu3Kh77rlHe/fuVY8ePfTuu+9q7dq1uvrqqzVy5MiAHitJEgAAAIBzsmjRIrVv317Lli3T5s2blZ6erilTpmj27Nlyufz3Zgjk+OzsbCUlJWnOnDm65557lJCQoEGDBumxxx6rNTV4Wlqa3nnnHc2cOVMvvfSSVq5cqTZt2uiBBx7QzJkzFRMTE9DjNCzv9K4BKy4uVtOmTTXANUKxRpz/A2xguAy7Q/DLcniXQOd3t3N2fJLzu9tZlVV2h+CbQ7uYVDNinfn+583p3e1iftDC7hB82v2Q87vbbRiWb3cIPjm9u13beR/YHYJ/Dn0vrLIqtcV6USdOnFBaWprd4dSp+jtrtynzFJOQGNZrucvLtDv/AUe3h1M5v/M6AAAAAEQQ3e0AAACACGuIEzc0JlSSAAAAAMALlSQAAAAg0sKw2Gud10BQqCQBAAAAgBcqSQAAAECkUUlyNCpJAAAAAOCFShIAAAAQYcZ3t3BfA8GJuiTJ1SRJLsOZC3oaCc6My5v738ftDsE3hy92a5aU2h1Cg+dKTLA7BJ/MsnK7Q/DNoQs8enMlOPtv7D7+rd0h+NTtod12h+DXzIevtTsEn9qV7rA7BJ8aQg8pV3Ky3SHUyWVVSCV2R4FoEHVJEgAAAOB4jElyNMYkAQAAAIAXKkkAAABAhBnWmVu4r4HgUEkCAAAAAC8kSQAAAADghe52AAAAQKQxcYOjUUkCAAAAAC9UkgAAAAA7UOlxLCpJAAAAAOCFShIAAAAQYUwB7mxUkgAAAADAS9RVksyS0zKNKrvDqJNRUWF3CP5Z/ORQL6bb7gj8c8XYHYFPZmmp3SH4Zhh2R+CbEWd3BA2eEefsj0bzdJndIfhlVTrzc7ia0//Ghsvh7zNy7vPQtCrtDuHcMbudo1FJAgAAAAAvASdJe/fu1UMPPaS+ffuqZcuWSk1NVc+ePTV37lyVlJTU2n/Pnj266aab1Lx5czVp0kT9+/fXm2++GZLgAQAAgIaoekxSuG8ITsBJ0qpVq7Rw4UJ16tRJDz30kObPn6+uXbvqwQcfVL9+/XT69GnPvvv371e/fv20bds23XfffZo/f75OnTqla6+9Vm+88UZIHwgAAAAAhELAnXJvueUWzZgxQ02bNvVsu/POO9WlSxfNnTtXK1eu1OTJkyVJM2bM0LfffqsdO3aoZ8+ekqSf/exnuuSSSzRp0iTt3r1bhtP79wMAAAChxpgkRwu4ktSrV68aCVK1kSNHSpI+/fRTSVJJSYlefvllDRgwwJMgSVJKSoomTJigvXv3qqCgIMiwAQAAACA8QjZxw+HDhyVJrVq1kiR9/PHHKi8v15VXXllr3759+0oSSRIAAAAAxwnJHJhut1uPPPKIYmNjNXr0aElSUVGRJCkzM7PW/tXbCgsLg75m69ata/zbNM2gzwUAAABEEovJOltIkqTc3Fxt27ZN8+bNU9euXSVJpd+tdZKQkFBr/8TExBr7AAAAAIBT1DtJmjlzppYsWaKJEydqxowZnu3JycmSpPLy8lrHlJWV1dgnGEeOHKnx7+Li4jrHSgEAAACOw8QNjlavMUmzZs3SnDlzNH78eD311FM17svIyJBUd5e66m11dcUDAAAAADsFXUmaNWuW8vLyNG7cOK1YsaLWVN7du3dXQkKCtm3bVuvY7du3SzozUx4AAADQ6FBJcrSgkqTZs2crLy9PY8eO1apVq+Ry1S5IpaSkaNiwYdq0aZM++ugj9ejRQ5J06tQprVixQl26dFGfPn3qF31dLFOSMydxsOroeug0ru/GiyE4ltttdwj+mc6O0YgNyVDJsHH639jp8UmSVVVpdwg+uZKS7A6hwXP6Goim0z+PrQbwzdapf2PLmd8B0fAE/G1k6dKlevjhh9WuXTsNHjxYzz33XI37W7VqpSFDhkiSHn30Uf3lL3/RNddco6lTpyotLU3Lly9XYWGhNm/e7Pg3UQAAACAcmN3O2QJOkqrXNvriiy80bty4WvdnZWV5kqTOnTvrvffe0/3336/f/OY3qqio0OWXX67XXntNgwcPrmfoAAAAABB6ASdJq1ev1urVq895/4suukgvvfRSoJcBAAAAohdjkhytXrPbAQAAAEC0cfYIaQAAACAKGZYlI8yTdIT7/NGMShIAAAAAeKGSBAAAAEQaY5IcjUoSAAAAAHghSQIAAAAAL3S3AwAAACKMxWSdjUoSAAAAAHihkhRBruRku0PwyywrtzsEhFlMWprdIfjkPnnS7hB8ciUk2B2CT2ZZmd0hNHhWZZXdIfhkud12h+CfZdodgW+Gw38jNuwO4Bw4/W/cEDBxg6M5/F0CAAAAACKLShIAAAAQYYxJcjYqSQAAAADghUoSAAAAEGmMSXI0KkkAAAAA4IVKEgAAABBhjElyNipJAAAAAOCFShIAAAAQaYxJcjQqSQAAAADghSQJAAAAALzQ3Q4AAACwARMrOFf0JUlWJDp4BscsK7c7BP8s0+4IGjbLmc89b1ZFhd0h+GTExtkdgk9mRaXdIfjmirE7ggbPlZZidwg+ub85YXcI/hl0VIl6jv0bu5z6NRANTPQlSQAAAIDTWVb4f1xtAD/eOpVTfwYAAAAAAFuQJAEAAAARVr2YbLhvoWaaphYuXKhu3bopMTFRbdu21fTp01VSUhKW41955RX169dPTZo0UYsWLZSdna0DBw74vc6TTz4pwzBkGIaOHTsW0GOUSJIAAAAAnKOpU6dq2rRpuvjii5Wfn6/s7GwtXrxYw4YNk2n6H9seyPGbNm3SDTfcoNOnT2v+/Pm69957tXXrVl111VUqKio66zWKiop0//33KyUl+DGmjEkCAAAAIq0BLia7a9cu5efna8SIEdq4caNne4cOHXT33Xdr/fr1Gj16dEiOr6ys1JQpU9S2bVu98847noTnuuuu0xVXXKFZs2Zp2bJldV5n0qRJ6tSpky655BKtWbMmqMdKJQkAAACAX+vWrZNlWcrNza2xPScnR8nJyX4TkkCOf/vtt1VUVKQJEybUqAj17NlTAwYM0PPPP6/Kytozzv7+97/Xyy+/rKeeekoxMcHP+EqSBAAAAESYYUbmFkoFBQVyuVzq06dPje2JiYnq2bOnCgoKQnZ89f9feeWVtc7Tt29fFRcXa+/evTW2FxcXa/LkybrjjjtqXSNQJEkAAABAFOvSpYtat27tuQWrqKhI6enpSkhIqHVfZmamjh07pgof6zEGcnz1mKPMzMw695WkwsLCGtt/9atfyTRNPfroo+f+oM6CMUkAAABApDXAMUmlpaV1JjjSmWpQ9T7x8fH1Pr60tFSS6tzfe99q7733np5++mmtXbtWTZs2PcdHdHYkSQAAAEAU27dvn9LS0up9nuTkZB09erTO+8rKyjz7hOL46v+Wl5f73beiokITJ07U4MGDddttt53LQ/GL7nYAAABAhDXEdZIyMjJ07NixOhOXwsJCpaenn7WKFOjxGRkZnu117Sv9p9vd0qVLtXv3bk2bNk2ff/6553by5ElJ0oEDB/TPf/4zoMdKkgQAAADAr969e8s0TX344Yc1tpeVlWnnzp3q1atXyI7v3bu3JGnbtm21zrN9+3alpaXpwgsvlCQdOnRIpmnquuuuU5cuXTy3TZs2SZL69OmjH/7whwE91qjrbmfExsownPmwLDPcHU/rz/CR/TuC2213BD5ZDo9PksyK2tNlOonhMuwOwSdXfJzdIfhkVVXZHYJfTo/RPHVuq8bj7Ix6TLsLyao8+8B3p3B9NybEaVyWJZXZHUX0GjlypObNm6dFixapf//+nu3Lly9XaWmpxowZ49m2f/9+VVZWqlu3bkEdn5WVpdatW2vFihWaOnWqZxrwjz76SFu2bNH48eMVF3fmM3n8+PH68Y9/XCvepUuXasuWLVq1apWaN28e0GN1ZjYBAAAARDPLOnML9zVCqHv37po0aZKWLFmiESNGaOjQofrss8+0ePFiZWVl1VhIdtCgQTp06JAsrxgCOT4uLk6PP/64Ro4cqf79+ysnJ0fFxcVauHChWrZsqby8PM++PXr0UI8ePWrF+8c//lGSNGzYMKWnpwf0WEmSAAAAAJyTRYsWqX379lq2bJk2b96s9PR0TZkyRbNnz5bL5X8kTyDHZ2dnKykpSXPmzNE999yjhIQEDRo0SI899lidU4OHkmFZ4U5hI6O4uFhNmzbVwNibFWs4sztMg+huF+fwvNnh3dkaQnc7Gc4eiuj07nZGrLNfI07vyiY5P0bjLNPTOoVV6ez2k+huV190twtelVWhN8te0IkTJ0Iym1s4VH9n/dGwRxQbF952rKos0wd/mOno9nAqZ39bAgAAAIAIc/ZPogAAAEA0aoCLyTYmVJIAAAAAwAuVJAAAACDCwrHYa13XQHCoJAEAAACAFypJAAAAQKQ1wHWSGhMqSQAAAADghUoSAAAAEGGMSXK2qEuSrKoqWYYzF6N0+iKUkmRVOHsBO6cvUGjEx9sdgl8NYSFKRzuH1cTt5PSFWiVJLme/jq3ycrtD8M2hn3HerCrT7hAatIbwfcEsK7M7hDqZVqXdISBKOP9VCAAAAEQb1klyNGf/JAoAAAAAEUaSBAAAAABe6G4HAAAARBgTNzgblSQAAAAA8EIlCQAAAIg00zpzC/c1EBQqSQAAAADghUoSAAAAEGlMAe5oVJIAAAAAwAuVJAAAACDCDEVgdrvwnj6qUUkCAAAAAC9RV0ky4uJlGHF2h1EnI8b5OalVVWV3CD5ZbrfdIfjWAGaRiUlLsTsEn8xTJXaH4JNVUWF3CD4ZcfF2h+CfZdodgU+W5fDfXi3nv8/IcHYbulIc/j548qTdIfhlJCTYHUKdDMslldsdxTmyrPC/nhvC+4VDOf9bOwAAAABEUMBJ0qOPPqrs7Gx17NhRhmGoffv2Pvd/9dVXNWjQIJ1//vlq0qSJunbtqnvuuUdfffVVsDEDAAAADZphReaG4ATc3e6BBx5QixYtdPnll+vbb7/1ue/y5cs1ceJEXXHFFfrVr36lJk2aqKCgQIsWLdKmTZv0ySefqEmTJsHGDgAAAAAhF3CStH//fnXs2FGSdOmll+rUqVNn3fd//ud/1Lp1a7377rtKTEyUJE2cOFGtWrXS3Llz9frrr+umm24KLnIAAAAACIOAk6TqBOlcFBcXq0WLFp4EqVpGRoYkUUUCAABA48Riso4W1okbrr32Wv3jH//Q9OnT9dlnn+lf//qXNm3apEceeURZWVm6+uqrw3l5AAAAAAhYWKcAf/zxx1VaWqrHH39c//u//+vZPn78eD399NOKiYkJ+tytW7eu8W/TdPaUsgAAAEA1w7JkhHmK7nCfP5qFNUmKi4tTu3btNHz4cA0bNkzJycn605/+pFWrVikmJkbLly8P5+UBAAAAIGBhS5JM09RPfvITVVVV6b333pPx3cJyt9xyi37wgx/oscce08iRIzV48OCgzn/kyJEa/y4uLlbTpk3rHTcAAAAQduZ3t3BfA0EJ25ikd999V++8845uvvlmT4JULTs7W5L09ttvh+vyAAAAABCUsFWSCgsLJUlut7vWfVVVVTX+CwAAADQmjElytrAlSRdffLEkae3atZo6dari4uI8961evVqS1Lt375Bf16qqlGX4388OViVP1Hpz+ovdoc89b+apErtD8Mmq44cVRzHCOilovRnBz4cTOfWYtCcSXAkJdofgk1VRaXcIfllVzo7RqqiwOwSfDIc/ByXntqFlOfu5h4Yj4CTpd7/7nQ4dOiRJ+vrrr1VRUaE5c+ZIki644AKNHTtWktSjRw/dfPPN2rhxo3r16qWf/vSnnokb/vCHP6hv3776f//v/4XwoQAAAAANBOskOVrASdLKlStrjSWaOXOmJCkrK8uTJEnSc889p0WLFmnt2rV66KGHZJqmLrjgAs2YMUO//vWv6zUFOAAAAACEQ8BJ0pYtW8553/j4eN1333267777Ar0MAAAAEL0sK/zDCJw+TMHBnN25HgAAAAAiLKyLyQIAAACozbDO3MJ9DQSHShIAAAAAeCFJAgAAAAAvdLcDAAAAIo2JGxyNShIAAAAAeKGSBAAAAESYYZ65hfsaCA6VJAAAAADwQiUpgoyEBLtD8M/ttjsCnyyHxyfT4fFJksvhL3vD2b/dGHHObj+rosLuEPwy4uPtDsEns7TU7hB8awhjDAzD7gh8c/hnidNfI5LUAJ6FzseYJEdz9rcRAAAAAIgwZ/8kCgAAAEQjS+EvyVFIChqVJAAAAADwQiUJAAAAiDDDsmSEecxQuM8fzagkAQAAAIAXKkkAAABApDG7naNRSQIAAAAAL1SSAAAAgEizJJkRuAaCQiUJAAAAALyQJAEAAACAF7rbAQAAABHGFODOFn1JkuE6c3Mgq7LK7hD8s8LdObaeHP5iNxIS7A7BL6c/Dw2XYXcIvpkOfw7GxNgdgl9WebndIfjmcnYbupIT7Q7BL7O01O4QfLKc/jq2O4Bz4dDvWpKLcTgIiehLkgAAAACnsxSBKcDDe/po5tSfAQAAAADAFiRJAAAAQKRVLyYb7luImaaphQsXqlu3bkpMTFTbtm01ffp0lZSUhOX4V155Rf369VOTJk3UokULZWdn68CBAzX2sSxLa9as0ahRo9S5c2clJyerXbt2uvHGG/XBBx8E9ThJkgAAAACck6lTp2ratGm6+OKLlZ+fr+zsbC1evFjDhg2Tafof2x7I8Zs2bdINN9yg06dPa/78+br33nu1detWXXXVVSoqKvLsV15errFjx2rPnj0aNWqU8vPzNXHiRP3tb3/TlVdeqTVr1gT8OBmTBAAAAESaqfDP0hHi+bh27dql/Px8jRgxQhs3bvRs79Chg+6++26tX79eo0ePDsnxlZWVmjJlitq2bat33nlHKSkpkqTrrrtOV1xxhWbNmqVly5ZJkmJjY7VlyxZlZWXVuF5OTo4uueQSTZ8+XaNHj5bLde71ISpJAAAAAPxat26dLMtSbm5uje05OTlKTk72W7EJ5Pi3335bRUVFmjBhgidBkqSePXtqwIABev7551VZWSnpTJL0/QRJklq1aqWsrCwdPXpUR48eDeixkiQBAAAAEVa9TlK4b6FUUFAgl8ulPn361NiemJionj17qqCgIGTHV///lVdeWes8ffv2VXFxsfbu3es35sOHDys+Pl7NmjXzu683kiQAAAAginXp0kWtW7f23IJVVFSk9PR0JdSxLmRmZqaOHTumioqKkBxfPeYoMzOzzn0lqbCw0Ge8r7zyij788EONHDlSiYmBrTHHmCQAAAAg0sI0+1yta4RQaWlpnQmOJE8SUlpaqvj4+HofX/rdotR17e+979ns27dPY8eOVWZmphYsWHDW/c6GJAkAAACIYvv27VNaWlq9z5OcnHzWsT1lZWWefUJxfPV/y8vLA77WgQMHNGjQIBmGoVdffVUtW7Y8a0xnQ3c7AAAAAH5lZGTo2LFjdSYuhYWFSk9PP2sVKdDjMzIyPNvr2lequyvewYMHNXDgQJ06dUqvv/66unfvfm4P7ntIkgAAAIBIa4CLyfbu3VumaerDDz+ssb2srEw7d+5Ur169QnZ87969JUnbtm2rdZ7t27crLS1NF154YY3tBw8e1IABA3TixAm9/vrruuyyywJ6fN6irrudERcrw3Dmw7J8DGRzjHD3jY1yVh2/jDhN7Pmt7A7Bp6qjx+wOwSdXUpzdIfjUEJ6DMsK9MEj9xDRvancIPrm/OWF3CH65zjLmwClMp79OYmLsjgCo08iRIzVv3jwtWrRI/fv392xfvny5SktLNWbMGM+2/fv3q7KyUt26dQvq+KysLLVu3VorVqzQ1KlTPdOAf/TRR9qyZYvGjx+vuLj/fCYfOnRIAwcO1LfffqvXX39dV1xxRb0eqzOzCQAAACCaNcCJG7p3765JkyZpyZIlGjFihIYOHarPPvtMixcvVlZWVo2FZAcNGqRDhw7J8oohkOPj4uL0+OOPa+TIkerfv79ycnJUXFyshQsXqmXLlsrLy/Pse/LkSQ0cOFAHDx7UlClTtGfPHu3Zs6dG7EOGDFGrVuf+QzFJEgAAAIBzsmjRIrVv317Lli3T5s2blZ6erilTpmj27NlyufyP5Ank+OzsbCUlJWnOnDm65557lJCQoEGDBumxxx6rMR7p3//+tw4cOCBJys/Pr/O6b731VkBJkmFZ0dG/qri4WE2bNtXAhFsVazizOwzd7eAEdLerH1dSYOssRFpD6G5nud12h+BTTIvmdofgU4PobhfvzM/hak7vbuf6rluRk5klZ5962U5VVqW2mJt04sSJkMzmFg7V31kHdZ2u2Jjwdk2tcpfrL3sWOLo9nIqJGwAAAADAC93tAAAAgAgzLEtGmHvwhPv80YxKEgAAAAB4oZIEAAAARFoDnN2uMaGSBAAAAABeqCQBAAAAkWZakhHmSo9JJSlYVJIAAAAAwAuVJAAAACDSGJPkaNGXJLndkuHMApkRH293CH5ZlVV2h9CgGTExdofgV9WXX9kdgm+GYXcEPpklJXaH4JMR5/z3GcnZi8m6j39jdwi+OfQzzptV5fDPEqe3ocMXXJac+3lnWKZk2h0FooHD3yUAAAAAILKir5IEAAAAOF4EutuJ7nbBopIEAAAAAF6oJAEAAACRxsQNjkYlCQAAAAC8UEkCAAAAIs20FPYxQywmGzQqSQAAAADghUoSAAAAEGmWeeYW7msgKFSSAAAAAMALlSQAAAAg0pjdztGoJAEAAACAFypJqMl02x2Bb64YuyPwyYjjJVVvDu8/bVVV2R1Cg+dKSrI7BJ+sSof/jR3+GpEkixm16sU8fdruEBosy6q0O4Rzx+x2jkYlCQAAAAC88LM3AAAAEGmMSXK0gCtJjz76qLKzs9WxY0cZhqH27dv7PeZ3v/udrrrqKqWlpSklJUWXXnqpHnnkkWDiBQAAAICwCriS9MADD6hFixa6/PLL9e233/rd//bbb9czzzyjm2++WT/96U/lcrl04MABHTp0KJh4AQAAACCsAk6S9u/fr44dO0qSLr30Up06deqs+65cuVK//e1v9eyzz2rs2LHBRwkAAABEE0sR6G4X3tNHs4C721UnSP5YlqVHH31Ul19+uSdBOnnypCz6RgIAAABwsLDNbrdnzx7t379f/fr10yOPPKIf/OAHSktLU7NmzXTnnXf6rEABAAAAUa164oZw3xCUsM1ut2fPHknS888/r4qKCj344IPq0KGD/vjHP+rpp5/Wnj179Oabb8owjKDO37p16xr/Nk3nrxsBAAAAwPnCliSdPHlSkvT111/r9ddf1+DBgyVJN998syzL0jPPPKPXXntN1113XbhCAAAAAJzJNCWF+Ud+ighBC1t3u6TvVlTPzMz0JEjVxo0bJ0nasmVL0Oc/cuRIjdu+ffuCPhcAAAAAVAtbJalNmzaSpPPPP7/WfdVd5b755ptwXR4AAABwLhaTdbSwJUndu3dXYmKiCgsLa913+PBhSdJ5550X8utaVVWyghznFG5GTIzdIfhlxMXbHYJvlsPLxg3gb6zKKrsj8Mkynf2GbiQk2B1Cg2eWltodgm8O/QxBCBlh60gTEkZsnN0h+GVVVdodAhBWYXuXSE5O1s0336wvv/xSv//972vc9+STT0qShg4dGq7LAwAAAM7F7HaOFnAl6Xe/+50OHTok6cykDBUVFZozZ44k6YILLqixaOy8efP0xhtvaPTo0ZoyZYrat2+vV155RZs3b9bPfvYz9evXL0QPAwAAAABCI+AkaeXKlXr77bdrbJs5c6YkKSsrq0aS1K5dO23fvl2//vWv9dvf/lYnTpxQp06d9D//8z+aOnVqPUMHAAAAGijTkhTmSo/Du7A7WcBJUqAz0rVv315r164N9DIAAAAAYAtnj1wEAAAAgAgL2+x2AAAAAOpmWaasMM/aG+7zRzMqSQAAAADghUoSAAAAEGmWFf6JFZgCPGhUkgAAAADAC5UkAAAAINKsCEwBTiUpaFSSAAAAAMBL1FWSXKkpchnxdodRJ+v0abtD8Mty+qJjptvuCHyrqLA7Ar8st8PbEPViNYDnoFwxdkfgkxHj9Pic//umWVZmdwh+OHvGL6sBvE0bsXF2h1Anw5JUaXcU58g0JSPMz0Vmtwua899pAQAAACCCoq6SBAAAADgeY5IcjUoSAAAAAHihkgQAAABEmGWassI8JsliTFLQqCQBAAAAgBcqSQAAAECkMSbJ0agkAQAAAIAXkiQAAAAA8EJ3OwAAACDSTOu71W/DiO52QaOSBAAAAABeqCQBAAAAkWZZksI8RTeVpKBFXZJklpyWaVTZHUbdTLfdEfhnGHZH4JMR6/CnrLsB/I2dvmaCw9/QrUq7I/DNiI2zOwS/rMoKu0PwLSbG7gh8Misc/iSUZMTF2x2CT45/Dob7i3MIGDHOfK8xLENy/ksEDYDDv3ECAAAA0ccyLVlhHpNkOfyHRydjTBIAAAAAeKGSBAAAAESaZSr8Y5Kc33XTqagkAQAAAIAXKkkAAABAhDEmydmoJAEAAACAFypJAAAAQKQxJsnRqCQBAAAAgJeoqSRV97n83aHHlZaWZnM0AAAAiLTi4mK1bftCgxiLU6VKKcxhVrGybtCiJkk6efKkJKlt27Y2RwIAAAA7nTx5Uk2bNrU7jDrFx8fr/PPP17tfvhKR651//vmKj4+PyLWiiWE1hFT7HJimqaKiIqWmpsowDLvDOasuXbpIkvbt22dzJM5E+/hG+5wdbeMb7eMb7XN2tI1vtI9vkW4fy7J08uRJZWRkyOVy7qiSsrIyVVRURORa8fHxSkxMjMi1oknUVJJcLpfatGljdxh+Vb9g6RJYN9rHN9rn7Ggb32gf32ifs6NtfKN9fLOjfZxaQfKWmJhI4uJwzk2xAQAAAMAGJEkAAAAA4CVqxiQBAAAAQChQSQIAAAAALyRJAAAAAOCFJAkAAAAAvJAkAQAAAIAXkiQAAAAA8EKSBAAAAABeSJIAAAAAwAtJEgAAAAB4IUkCAAAAAC8kSQAAAADghSQJAAAAALyQJAEAAACAF5KkEHv00UeVnZ2tjh07yjAMtW/f3uf+H3zwgQYPHqzU1FSlpaXpJz/5iXbu3BmRWCNt7969euihh9S3b1+1bNlSqamp6tmzp+bOnauSkpJa++/Zs0c33XSTmjdvriZNmqh///568803bYg8Mvbs2aMxY8booosuUtOmTZWcnKxu3bpp2rRpOnLkSJ37N6b2+b7S0lLP62zy5Mm17m9s7WMYRp23lJSUWvs2trapdvz4cd1zzz3q3LmzEhMT1bJlSw0cOFDvvPNOjf0a0/vyrFmzzvrcMQxDcXFxNfZvjM+dU6dOad68eerevbtSU1OVnp6ufv36afXq1bIsq8a+jem5I0lfffWV7rzzTrVt21bx8fFq166dfvnLX+rbb7+ttW9jfO6gYYu1O4Bo88ADD6hFixa6/PLL63yT8LZ9+3YNGDBAmZmZmj17tiRpyZIl6t+/v95//3117949AhFHzqpVq7R06VLdeOONGjNmjOLi4vTWW2/pwQcf1AsvvKDt27crKSlJkrR//37169dPsbGxuu+++9S0aVMtX75c1157rV599VUNHjzY5kcTeocPH9aRI0c0fPhwtWnTRrGxsfrkk0+0bNkyrV+/Xjt37tR5550nqXG2z/c99NBD+vrrr+u8r7G2T//+/TVx4sQa277/Jbexts2hQ4c0YMAAnTp1Sr/4xS904YUX6sSJE/r4449VWFjo2a+xvS+PGDFCnTt3rrX9448/1vz58zVs2DDPtsb43DFNU9ddd53ef/99jRs3TlOmTFFpaanWrVun8ePH67PPPtNjjz0mqfE9d44ePaof/ehHKioq0h133KFLL71Un376qZ588klt3bpV7733npKTkyU1zucOooCFkNq/f7/n/y+55BLrggsuOOu+vXv3tlJTU63Dhw97th0+fNhKTU21hgwZEs4wbVFQUGB9++23tbb/+te/tiRZ+fn5nm3Z2dmWy+Wy/v73v3u2nTx50mrXrp114YUXWqZpRiJkR3jhhRcsSdZjjz3m2dbY22fHjh1WTEyMtWDBAkuSNWnSpBr3N8b2kWSNGzfO736NsW0sy7J+/OMfW23atLGKiop87tfY3pfPZuLEiZYk649//KNnW2N87rz//vuWJCs3N7fG9vLycqtDhw5W06ZNPdsa23Pnl7/8pSXJeu6552psf+655yxJ1iOPPOLZ1hifO2j4SJLCyFeStG/fPkuSdfvtt9e67/bbb7cMw7COHDkS5gid4eOPP7YkWXfccYdlWZZ16tQpKyEhwbr66qtr7Tt79mxLkvXBBx9EOkzbfPDBB5Yk6/7777csi/apqqqyLr/8cuv666+3Dhw4UCtJaqztU50klZeXWydPnqxzn8baNm+//bYlyVq8eLFlWZZVUVFhlZSU1NqP9+UzTp06ZaWlpVlt2rSxqqqqPNsa43PntddesyRZ//3f/13rvt69e1sZGRmWZTXO584Pf/hDKykpqVaC43a7rcTERKtjx46WZTXe5w4aPsYk2aSgoECSdOWVV9a6r2/fvrIsSzt27Ih0WLY4fPiwJKlVq1aSznTzKC8vP2vbSP9pv2hUVlamY8eO6fDhw/rzn/+sO+64Q5I0dOhQSbTPwoULtXv3bi1ZsqTO+xtz+/zf//2fkpOTlZqaqvPOO09TpkzRiRMnPPc31rZ55ZVXJEnt2rXTsGHDlJSUpCZNmujCCy/UmjVrPPvxvnzGhg0bVFxcrJ///OeKiYmR1HifO3369FGzZs303//939qwYYO++OIL7d69WzNmzNCOHTs0a9YsSY3zuVNeXq7ExEQZhlFju8vlUlJSkv75z3/q2LFjjfa5g4aPMUk2KSoqkiRlZmbWuq96m3c/+Wjldrv1yCOPKDY2VqNHj5ZE26xYsUJTpkzx/Lt9+/Zas2aN+vfvL6lxt8+BAwf08MMP66GHHlL79u118ODBWvs01vbp06ePsrOz1blzZxUXF+uVV17RkiVL9Pbbb+v9999XSkpKo22bPXv2SJJycnLUpUsXPfPMM6qoqNCCBQs0duxYVVZWavz48Y22fb5v5cqVMgxDt99+u2dbY22b5s2b6+WXX9aECRN06623eranpqZq48aNuummmyQ1zva55JJLtGfPHu3cuVM9e/b0bN+5c6e++eYbSdIXX3zRKNsG0YEkySalpaWSpISEhFr3JSYm1tgnmuXm5mrbtm2aN2+eunbtKom2uemmm9StWzedOnVKf//73/Xyyy/r2LFjnvsbc/vceeed6tixo6ZNm3bWfRpr+3zwwQc1/v2zn/1MP/zhD/XrX/9ajz/+uH7961832rY5efKkpDNfbN966y3Fx8dLOvNa69ixox544AGNGzeu0baPtz179ujdd9/VoEGD1KFDB8/2xtw2KSkpuvTSS3XjjTeqX79+On78uJYuXarRo0frpZde0pAhQxpl++Tm5urFF1/UrbfeqkWLFunSSy/Vrl27lJubq7i4OFVWVqq0tLRRtg2iA93tbFI940t5eXmt+8rKymrsE61mzpypJUuWaOLEiZoxY4Zne2NvmzZt2mjw4MG66aablJeXp2eeeUb33XefHn30UUmNt33WrFmj119/XU8++WStGdu8Ndb2qcu9996r+Ph4bd68WVLjbZvqWTNvu+02T4IknakS3Hjjjfryyy+1Z8+eRts+3lauXClJmjBhQo3tjbVtPvnkE/Xr109DhgzR/PnzNXz4cP3iF7/Qu+++q/PPP185OTlyu92Nsn369++v9evX6+TJk7r++ut1wQUXaNiwYRo4cKBuuOEGSVJaWlqjbBtEB5Ikm2RkZEiqu8Rcva2u0nS0mDVrlubMmaPx48frqaeeqnFfY2+b7/vhD3+oyy67TE888YSkxtk+5eXlmjZtmoYOHarzzz9fn3/+uT7//HMdOnRIknTixAl9/vnn+vbbbxtl+5xNXFycMjIyPJXIxto2bdq0kSSdf/75te5r3bq1JOmbb75ptO1TraqqSs8++6x+8IMfaPjw4TXua6xts3DhQpWVlSk7O7vG9uTkZF1//fU6dOiQDh482GjbJzs7W4cPH9bf//53bd26VUVFRXrqqad0+PBhxcbGqnPnzo22bdDwkSTZpHfv3pKkbdu21bpv+/btMgxDV1xxRaTDiohZs2YpLy9P48aN04oVK2oN+uzevbsSEhLO2jaS1KtXr4jE6hSnT5/W8ePHJTXO9jl9+rS+/vprbd68WV26dPHcBgwYIOlMlalLly5asWJFo2yfsykrK9Phw4c9k6I01rbp06ePpP9MEuOtett5553XqN+XJekPf/iDvvrqK/30pz+t1TWqsT53qr/Eu93uWvdVVVV5/tuYnzsxMTHq2bOn+vfvr/POO09ffvml/v73vysrK0vJycmN9rmDKGDz7HpRzd86Sb169bJSU1OtwsJCz7bCwkIrNTXVGjRoUAQijLy8vDxLkjV27FjL7Xafdb9bbrnFcrlc1s6dOz3bqtdU6NKlS1SuqXC26WHffPNNy+Vy1Zg+tbG1T0VFhbVhw4ZatyeeeMKSZP3kJz+xNmzYYO3Zs8eyrMbXPseOHatz+z333FNrja3G1jaWZVnHjx+3UlNTrczMzBrToxcVFVlNmjSxLrzwQs+2xvi+XO3666+3JFkff/xxnfc3xudObm5urdeQZVnWN998Y7Vu3dpq3ry5Z5r0xvzcqeZ2u63s7GzLMAzrzTff9GxvjM8dNHyGZVmWrVlalPnd737n6QKUn5+viooKTZ8+XZJ0wQUXaOzYsZ5933//fQ0cOFBt2rTxzGaWn5+vr776Su+995569OgR+QcQRkuXLtXkyZPVrl07PfLII3K5ahYyW7VqpSFDhkiSPv/8c/Xp00dxcXGaOnWq0tLStHz5cn3yySfavHmzrr32WjseQlgNHz5cR44c0dVXX60LLrhAZWVl2rFjh9avX6/k5GRt2bLFM4NQY2yfuhw8eFAdOnTQpEmTakwJ3tjaZ+rUqdq+fbsGDhyodu3a6dSpU3rllVf01ltv6Uc/+pHeeustz7icxtY21ZYtW6Y77rhDl1xyiW6//XZVVFToySef1JEjR/THP/5R11xzjaTG975craioSO3atdMVV1xRaxKQao3xuXPo0CFdfvnl+uabbzRmzBhdddVVOn78uJYvX66DBw9q6dKl+q//+i9Jje+5c+rUKfXp00fDhw9Xhw4ddOLECa1bt047duzQ3Llz9cADD3j2bYzPHUQBu7O0aJOVlWVJqvOWlZVVa//333/fuvrqq60mTZpYKSkp1jXXXGPt2LEj8oFHwLhx487aNnW1zz/+8Q/rxhtvtJo2bWolJSVZV111lfX666/bE3wEPP/889b1119vtWnTxkpISLASExOtrl27WpMnT7YOHTpUa//G1j51qWsx2WqNqX1efPFF65prrrEyMjKshIQEKzk52erRo4c1d+5c6/Tp07X2b0xt423jxo3Wj370Iys5OdlKSUmxhgwZYr377ru19mtM78vV5s6da0myli1b5nO/xvjc+fzzz62f/exnVmZmphUbG2ulpqZa/fv3tzZu3Fhr38b03CkvL7dGjRpltW/f3kpISLCaN29uXXPNNdZrr71W5/6N8bmDho1KEgAAAAB4YeIGAAAAAPBCkgQAAAAAXkiSAAAAAMALSRIAAAAAeCFJAgAAAAAvJEkAAAAA4IUkCQAAAAC8kCQBAAAAgBeSJAAAAADwQpIEAAAAAF5IkgAAAADAC0kSAAAAAHghSQIAAAAAL/8/Rk9TKOaD12kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_t.time), max(dps_new_t.time), min(dps_new_t.freq), max(dps_new_t.freq)\n", + "plt.imshow(dps_new_t.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15,30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's trace that drifiting feature." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# By looking into the maximum power of each segment\n", + "max_pos = dps.trace_maximum()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Detected frequency drift')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAKOCAYAAAAf5QD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJbUlEQVR4nOzdd3gU9drG8XtDSAiQhGqooYuKKCpNLICKjS5NUAxIC8UjoqKodNBjRQUEKUFEUQSpih5RQY4iRTwoKFKESFWkJnSSzPvHvJvJSkuWTX5bvp/ryuU8syV3kiXm2Zl5fi7LsiwBAAAAAIJKmOkAAAAAAADfo9kDAAAAgCBEswcAAAAAQYhmDwAAAACCEM0eAAAAAAQhmj0AAAAACEI0ewAAAAAQhGj2AAAAACAI0ewBAAAAQBCi2QOAPFCxYkW5XK7Mj7CwMMXGxqpixYpq2rSpRo8erR07dpiOGVTeeecduVwudenSJUeP279/vx5++GGVLVtW4eHhcrlcGjZsWK5khFmNGjWSy+XSsmXLfPrYdevW6Z577lGxYsUUFhbm9ecAgEsVbjoAAISSu+66S6VKlZIkHTt2THv37tWyZcu0ePFiDRkyRP369dOLL76oAgUK+OTzuVwuSZJlWT55Pm8kJyerUqVKqlChgpKTk43lyK7u3btrwYIFqlq1qtq3b6+IiAjVqlXLdCwEiKNHj6p58+batWuX6tevr2rVqiksLEylSpXSsGHDNHz4cA0dOpQ3EADkCZo9AMhDTz/9tBo1auSx79SpU5oxY4aefPJJvfnmm9q2bZsWLFigsDBOvshrp0+f1qeffqqoqCj973//U+HChU1Hgp969913dfz4ccXHx3vsX716tXbt2qVbbrlFy5cvN5QOAGz8JQEAhkVGRqp79+5avny5oqKi9Mknn2jq1KmmY4WkP//8U2lpabrsssto9HBB8fHxuuKKK1SwYEGP/bt27ZIkVa5c2UQsAPBAswcAfqJmzZrq37+/JOm111475302bNigLl26KD4+XpGRkSpevLiaNm161vVA7uvV3LJeL5h1v9t3332ndu3aqUyZMoqIiFCpUqXUvn17rVu37rx59+3bp2eeeUbXXHONChcurOjoaF1xxRVKTEzUhg0bJEnDhg1TpUqVJEl//PGHR4aKFSue9ZyffvqpmjZtqssuu0wREREqX768Hn74YW3btu28OT766CPVq1dPBQsWVPHixdW8eXP9+OOP573/+bhcLlWoUOGcWd3c114mJyfro48+0s0336zY2Fi5XC4dPnw4837Z/Tll9eOPP6pZs2YqUqSIChcurPr162v27NlKTk4+5/dr2bJlcrlcZx0pdrvYNYs5zZj1ezFjxgzVrl1bBQsWVLFixdS2bVv9/vvv5/3akpOT9cgjj6h69eoqWLCgihQpopo1a+rxxx/XH3/8IUmaOXOmXC6XmjVrdt7nmT9/vlwul5o0aXLe+/xTamqqnnzySVWoUEGRkZGqVKmSnnzySR07duy8j8l6Pd6XX36pO++8U8WKFZPL5cr8N/HPa/bcP4+EhARJ0vTp0zO/Z40aNVLFihU1fPhwSdLw4cM9Xl+c0gkgt3AaJwD4kU6dOumFF17Qb7/9pj179qhMmTKZt7333nt6+OGHdebMGV177bWqV6+e9uzZo//85z/67LPP9NZbbykxMVGSVLVqVSUkJGj69OmSlPkH6Lm8+OKLGjRokFwul2rXrq2bb75Z27Zt0+zZs7VgwQLNmTNHzZs393jM2rVrde+992rfvn267LLLdMcddyh//vzatm2bJk+erFKlSunqq69WrVq11KZNG3388ccqVKiQ2rZtm/kcJUqU8HjOPn36aMKECYqIiFCdOnVUunRp/frrr5o2bZrmzp2rL774QnXr1vV4zOjRo/Xcc88pLCxMt9xyi0qXLq0ffvhBDRo0UNeuXXP0vU9ISNDRo0fPmfWfXnrpJU2YMEE33nijmjZtqs2bN2c2Qjn5Obl99dVXatq0qU6dOqWrr75aV199tZKTk9W+fXs9+uijOfo6ssObjG7PPPOMXnnlFd1666269957tXLlSn388cdasWKF1q9fr+LFi3vc/7PPPlP79u119OhRxcfH695771V6erq2bt2q1157TTVr1lSXLl3Utm1bPfbYY/rss8+0Y8eOs06PlKQJEyZIknr37p2trzM1NVUNGzbU//73PxUtWlTNmjVTWlqaJk6cqOXLlytfvnwXfPyHH36oSZMm6dprr9Xdd9+tnTt3nvf06lKlSikhIUFbt27Vd999pypVqujmm2+WJF1xxRXav3+/vvzyS/3000+69tprPa4D5ZpQALnGAgDkugoVKliSrKVLl17wfunp6VZERIQlyVqyZEnm/v/9739W/vz5rdjYWOvLL7/0eMz3339vFSlSxMqfP7/122+/edwmybrQr/pPPvnEkmTFx8dba9eu9bht4cKFVnh4uBUbG2sdOHAgc39KSopVpkwZS5I1YMAA69SpUx6P27Fjh/XDDz9k1tu3b7ckWRUqVDhvjvHjx1uSrFq1allbtmzxuG3ChAmWJKty5crWmTNnMvevXbvWCgsLsyIjI62vvvoqc396err1r3/9K/NrT0hIOO/n/aeLZXX/HPPnz2/95z//Oet2b35Ox44ds0qXLm1JskaPHu3xmI8++sgKCws7Z6alS5dakqyGDRueM+u0adPO+fVf6mupZMmS1vr16zP3p6amWvXq1bMkWcOHD/d4THJyslW4cGFLkvXqq69a6enpHrdv3LjR+vXXXzPrZ5991pJkPfvss2d9PVu3brVcLpdVpkwZj9fBhTz66KOWJKtu3brWwYMHM/fv3r3buvzyyzO/pn/+u2zYsGHmbdOmTTvnc7vv88/Hnu/7blmWNXToUEuSNXTo0GzlB4BLxWmcAOBHwsLCVKxYMUnSgQMHMvc///zzOnPmjMaMGaPbb7/d4zH169fX4MGDdebMGb399ts5+nzu08reeecdXX/99R63NW/eXL1799aRI0f03nvvZe6fMmWK9uzZo9tuu02vvvqqIiIiPB5Xvnx53XDDDdnOkJ6erpEjRyosLEyzZ89W1apVPW5PTExU8+bNtW3bNi1evDhz/7hx45SRkaGHH35Yt912W+b+sLAwvfTSSx5HRX3t4Ycf1p133nnWfm9+TnPmzNHevXtVo0YNDRo0yOMx7dq1U6tWrXya/VJfSyNGjNDVV1+dWRcuXFhPPPGEJGnp0qUe933ttdd09OhRde3aVQMGDDjrqNgVV1yhK6+8MrNOTExUvnz5lJSUpLS0NI/7vv3227IsSz169FB4+MVPTDp+/LimTJkiSRo7dqyKFi2aeVuZMmX0yiuvXPQ57rrrrhwv3QEA/oRmDwD8TEZGhiRn2YSMjAz95z//Ub58+XTfffed8zG33nqrJGnlypXZ/jz79+/XmjVrVKJEifNe93Wu5/38888l2Q2PL6xbt05//vmnrrvuurMavQvl+OabbyRJDzzwwFn3j4yMVLt27XyS71zO1YB5+3Nyfx0dO3Y85/WUnTt39kHiS8uY1T333HPWvurVq0uS9uzZ47Hf/Vrp1q1btvKVK1dOLVu21N69ezV//vzM/adOndK0adOUL18+9ejRI1vPtXbtWh07dkxVq1Y96/RfyX4zo0iRIhd8Dl832gCQ17hmDwD8SHp6euagj6xH+FJSUiTpon+c/v3339n+XNu3b5dkN30XW+Yh6/O6F393/4F/qdzDV9auXXvOZud8OXbv3i1J5xz0cqH9vuAe5JKVtz+nvPw6fPFaKl++/Fn7oqOjJdlNWVbevFb69eunuXPnauLEiZnXTc6ePVv79+9Xq1atVLZs2Ww9z8W+r5L9c8w6WOdctwNAIKPZAwA/8ssvv+j06dOSlHmqXHp6uiQpIiJCHTt2vODj/zn05ELcz1usWLGzBrD80xVXXJG5fbGGLKfcOeLj49W4ceML3rdevXo+/dzeioqKOmtfbv2cvOU+QpyVLzLmZP1Hb14rjRs31lVXXaWvv/5aW7ZsUbVq1TRx4kRJ2R/M4ivn+jkDQCCh2QMAP/LBBx9IkmrUqKFSpUpJsv/oLlCgQOZ1VJGRkT75XO4jNAULFtQ777yT7cfFx8dr48aN2rx5s2rXru2zHPHx8TnKUbZsWW3btk1//PHHOY/2JCcnX3K2nPD25+TO7l6C4J/O93W4r5U8evToOW/fuXOnzzJ6Kz4+Xps2bdLmzZtz1OD27dtXffv21cSJE9WlSxd99913qlq1ao6WXLjY9/VitwFAMOCaPQDwE+vXr9ebb74pSXr88ccz94eHh+uOO+5Qenq6x3VM2ZE/f35JOmvYhWT/MXz11Vdr165dWrVqVbaf0z2YJCkpKVv3dzcl58ogSXXr1lWxYsW0evXqczYo5+O+tmzmzJln3Xb69GnNmTMn28/lC97+nNxfx4cffijLss66/f333z/n49wDaLZt26YzZ86cdfsXX3zhs4zeyulrxa1z586Kjo7W9OnT9frrr0uSevXqlaMjhTfccIMKFSqkLVu26Icffjjr9k8//fSCp3Dmhov9WwAAX6PZAwDDTp06palTp+rWW2/V8ePH1bJly7PWxRsyZIjCw8PVp0+fc/6Rnp6erqVLl541VMN9dGPjxo3n/NwjRoyQZA8HcQ8Kyer06dNatGiRfvvtt8x93bt3V+nSpfXVV1/pqaeeyjzt1G3nzp1au3ZtZl2yZElFRETor7/+0qFDh876HPnz59dzzz2n06dPq2XLludcyP348eOaOXOm/vrrr8x9ffv2VVhYmKZOneqxEHhGRoaefvrpzGu28pI3P6e2bduqVKlSWr9+vV566SWP+8+dO1dz58495+eqWLGiKlasqEOHDmW+SSBJlmVp9OjRWrFihc8yemvAgAEqVKiQkpKS9Oabb551aulvv/3m8dpyi46OVkJCgg4cOKCkpCRFRkbmeN3EggULZg4ReuSRRzwau71792ZOEM1LF/v3CAA+Z3jpBwAICe712e666y4rISHBSkhIsNq1a2fdcsstVqFChSxJVlhYmNW/f3/rxIkT53yO9957z4qMjLQkWVWqVLGaNm1qdezY0brtttusokWLWpKsCRMmeDzmsccey1wbrUOHDla3bt2sbt26edznxRdfzFzL7aqrrrJatWpl3X///dYtt9ySuUbaZ5995vGYVatWWSVKlLAkWXFxcVbr1q2ttm3bWtdff70VFhZ21jpirVu3zlwrrlOnTla3bt2sp556yuM+/fr1syRZLpfLuu6666w2bdpY7du3t+rVq5f5dW/cuNHjMcOHD8/83jVq1Mjq2LGjVa1aNSsyMtLq1atXrq2zt3379vM+hzc/py+++CLzMTVr1rQ6duxo3XjjjZakzDUDz5Xpvffey1wPrl69elabNm2sqlWrWoUKFbIeeeSR83793mR0f56cft8WLVpkFSxYMPP2tm3bWq1bt7Zq1qx5wXXsNm7cmPk5H3zwwXPe52JSUlKsa6+91pJkFStWzGrTpo3VsmVLq3DhwladOnUyv8fnW2fvQutierPO3t69ezO/F7fccovVpUsXq1u3btaCBQu8+voA4GJo9gAgD7ibBPeHy+WyoqOjrQoVKlj33nuvNXr0aGvHjh0XfZ7Nmzdbffr0sS6//HIrKirKKlSokFW1alWrefPm1qRJkzwWP7csyzp+/Lg1YMAAq1KlSlb+/PnP+wf72rVrrYSEBKtixYpWZGSkFRMTY1WvXt1q166d9d5771lHjx496zF79uyxHn/8cat69epWgQIFrOjoaOuKK66w+vTpY/3yyy8e992/f7/VrVs3q1y5clZ4ePh5G4Ovv/7aateunVW2bFkrIiLCKlq0qHXVVVdZCQkJ1ty5c63Tp0+f9ZgPPvjAqlOnjhUVFWUVKVLEuueee6w1a9Zc8I/u8/FFs2dZOf85WZZlrVmzxrr33nutmJgYq1ChQladOnWsmTNnXjTTrFmzrOuvv96KjIy0ihQpYrVs2dL65ZdfLvr15zSjt82eZVnWli1brF69elmVKlWyIiIirCJFilg1a9a0nnjiCeuPP/447/exXLlyliTru+++O+99LubIkSPW448/bpUvX96KiIiw4uPjrccee8xKTU09b8OWW82eZdmv8UaNGlmxsbGWy+VikXUAucplWee4QAAAAPiF5ORkVapUSRUqVMjzoTMmfffdd7r55pt1zTXX6KeffjIdBwACEtfsAQAAv2JZloYOHSpJ6t+/v9kwABDAWHoBAAD4hYULF2r+/Plat26d/ve//6lmzZrq3Lmz6VgAELA4sgcAAPzCjz/+qGnTpmnbtm1q0aKFFi5cqPBw3pcGAG9xzR4AAAAABCGO7AEAAABAEOLciGzKyMjQnj17FB0dLZfLZToOAAAAgBBkWZZSU1NVpkwZhYVd+NgdzV427dmzR+XLlzcdAwAAAAC0c+dOlStX7oL3odnLpujoaEn2NzUmJsZwGgAAAAChKCUlReXLl8/sTy6EZi+b3KduxsTE0OwBAAAAMCo7l5YxoAUAAAAAghDNHgAAAAAEIZo9AAAAAAhCNHsAAAAAEIRo9gAAAAAgCNHsAQAAAEAQotkDAAAAgCBEswcAAAAAQYhmDwAAAACCEM0eAAAAAAQhmj0AAAAACEI0ewAAAAAQhGj2AAAAACAI0ewBAAAAQBCi2QMAAACAIESzBwAAAABBiGYPAAAAAIIQzR4AAAAABCGaPQAAAAAIQjR7AAAAABCEwk0HAELeiRNScrLpFP6nQgWpYEHTKQAAAAIWzR5g0i+/SLffLv31l+kk/qdYMemLL6QbbjCdBAAAICBxGidgyoEDUosWNHrnc/Cg1LKltHev6SQAAAABiWYPMOHMGaltW2nbNtNJ/Nvu3VKrVtLJk6aTAAAABByaPcCE/v2lZcuc+tlnJcviw/3x4ovO92b1aqlnT3s/AAAAso1mD8hrEydKb73l1K1aSSNGGIvjl558UnrwQaeeMUN65RVzeQAAAAIQzR6Ql5Ytkx55xKlr1rQbmTD+KXpwuaTJk6W6dZ19Tz0lffqpuUwAAAABhr8wgbyybZvUpo2UlmbXJUpICxdKhQubzeWvChSQ5s+XypSxa8uSOnaUfv3VaCwAAIBAQbMH5IWUFHvy5sGDdh0eLn38sVSxotFYfq90abvhK1DArlNT7e/jgQNGYwEAAAQCmj0gt2Vk2Nef/fKLs2/8eOnWW81lCiR16khTpzr1779L7dvbE00BAABwXjR7QG577jlp0SKn7tfPni6J7OvUSRo0yKm//loaMMBcHgAAgABAswfkppkzpRdecOrbb5fGjDGXJ5CNGmWfwuk2bpw0aZK5PAAAAH6OZg/ILWvWSN26OXXVqtJHH9nX6yHnwsKk996Trr7a2de3r/TNN+YyAQAA+DGaPSA37NkjtWwpnTxp19HR9uTNYsXM5gp07u9j8eJ2nZZmTzjdvt1sLgAAAD9Eswf42okT9kLpe/fatcslffihdOWVRmMFjUqVpDlznCOkBw7Yp3empprNBQAA4Gdo9gBfsiypRw/7FE63F1+U7r3XXKZg1KiRNHasU2/YIHXubE8+BQAAgCSaPcC3XnpJev99p+7cWXriCXN5glliotSnj1MvWCANGWIuDwAAgJ+h2QN8ZdEiz+UB6te3p0W6XOYyBbvXX5caN3bq0aPtU2YBAABAswf4xC+/2GvBWZZdly0rzZ0rFShgNlewy59fmj1bqlzZ2de1q7R2rblMAAAAfoJmD7hU7gEhR4/adYEC0vz5UunSRmOFjOLF7Qmd0dF2ffKkPQnVPSAHAAAgRNHsAZfizBmpXTtp2zZn3zvvSLVrG4sUkmrUsBewd58yu3u31Lq1s/QFAABACKLZAy5F//7S0qVO/eyzUocOxuKEtGbNpBdecOpVq6SePZ1TawEAAEIMzR7grYkTpbfecupWraQRI4zFgaSBA6UHH3TqGTOkV14xlwcAAMAgmj3AG8uWSY884tQ1a9qNRRj/pIxyuaTJk6W6dZ19Tz0lLV5sLhMAAIAh/GUK5NS2bVLbtlJaml2XKGGv8Va4sNlcsBUoIM2bJ5UpY9eWJXXsKG3caDYXAABAHqPZA3IiNdWe9HjggF2Hh0tz5kiVKpnNBU9lytgTUd1LX6SkSM2bSwcPGo0FAACQl2j2gOzKyLCvB9uwwdk3frzUsKG5TDi/OnWkqVOd+vffpfbt7QmqAAAAIYBmD8iu556z13Nz69fPnvYI/9WpkzRokFN/9ZU0YIC5PAAAAHko3HQAwGf27pWWL3eupfOlbds8x/rffrs0ZozvPw98b9Qo+2jsokV2PW6cFBMjXXWV7z9XvnzSTTdJ5cv7/rkBAAByyGVZLEKVHSkpKYqNjdWRI0cUExNjOg7+acsWqUEDaf/+3P9cVapIq1dLxYrl/ueCb6SmSjfeKP3yS+5/rpgY6dtv7QmtAAAAPpaTvoTTOBH4jhyRWrTIm0YvOto+lZNGL7C4f27Fi+f+50pJybvXIwAAwAVwGicCW3q6PVb/t9+cfddcY59O52uxsfai6blx+h9yX+XK0uef2+vuHTrk++e3LGndOns7OdlenuOLL6SICN9/LgAAgGyg2UNgGzRI+uwzp37sMem118zlgX+rXdse0pJbhgyRRo60t7/5Rnr0UWnChNz7fAAAABfAaZwIXO++K738slPfdZf00kvm8gDDhkmtWzv1xInSW28ZiwMAAEIbzR4C08qVUo8eTn355dKHH9qLnAOmhIXZb0Jcc42z71//kr7+2lwmAAAQsmj2EHh27ZJatZJOn7br2Fh7+EaRIiZTAbbChaUFC6QSJew6PV1q185e1B0AACAP0ewhsBw/bjd6f/1l12Fh0kcfSdWrG40FeKhYUZo7V8qf364PHrQndKakGI0FAABCC80eAodlSd26SWvXOvtefVW6805zmYDzueUWz+v1fv1VeuAB+0gfAABAHqDZQ+B4/nn7ujy3rl3taYeAv+re3b5mz+2TT6RnnzWXBwAAhBSaPQSG+fOl555z6gYN7JH2LpexSEC2vPqqdMcdTv3ii9J775nLAwAAQgbNHvzfzz9LDz7o1OXL29dDRUaaywRkV3i4NGuWVLWqs697d2nVKnOZAABASKDZg3/7+297sMWxY3ZdsKA9eTMuzmwuICeKFZMWLZJiYuz61Cl7Pb7du83mAgAAQY1mD/7r9GmpbVvpjz+cfe++K9WqZSwS4LUrrrCvOQ37/1+7e/fak2VPnDAaCwAABC+aPfgny5IeeURavtzZN3So1KaNuUzApbrnHumll5z6hx/sCbOWZS4TAAAIWjR78E/jx0uTJjl1mzbSkCHm8gC+MmCAlJDg1B98IP373+byAACAoEWzB//z1VdS//5OXauWNH26c/obEMhcLmniRKl+fWffs8/a16ICAAD4EH89w79s3Sq1a+csPH3ZZdKCBVKhQmZzAb5UoIA0b55UrpxdW5a94PqGDWZzAQCAoEKzB/9x5Ig9efPQIbvOn99eYiE+3mwuIDeUKmW/kREVZddHj9qv//37zeYCAABBg2YP/iE9XerUSdq40dk3caJ0003mMgG57frrpXfecert2+0j22fOGIsEAACCB80e/MMzz0iLFzt1//7Sww8biwPkmfbtpcGDnXrZMunRR43FAQAAwYNmD+bNmOE5jv6uu6SXXzaXB8hrw4bZi6y7TZhgfwAAAFwCmj2YtWqV1KOHU19+ub3wdHi4uUxAXgsLk959V7rmGmffI49IS5eaywQAAAIezR7M2bVLatVKOnXKrmNj7fHzRYqYTAWYUbiwPbClRAm7Tk+X2raVfv/dbC4AABCw/K7Z27x5s4YMGaL69eurZMmSio6OVq1atTR69GgdO3bsnI/59NNPdccdd6ho0aIqWLCgLr/8cvXr1y+PkyNHTpywG70//7TrsDBp1iypenWjsQCjKla0J9Dmz2/XBw/aEzpTUozGAgAAgcnvmr2kpCSNGTNGVapU0ZAhQ/Tyyy+revXqeu6559SgQQOdOHHC4/7Dhw9Xs2bNFB4eruHDh+vNN9/U/fffr127dhn6CnBRlmUPX1m71tn3yiv2tXpAqLvlFumtt5z611+lBx901p4EAADIJpdlWZbpEFn98MMPqlatmmJjYz32P/fccxo9erTGjh2bedTuyy+/VJMmTTRixAgNzjrNLhekpKQoNjZWR44cUUxMTK5+rqD3/PPSs886ddeu0tSpkstlLhPgbx59VHrzTad++mnphRfM5QEAAH4hJ32J3x3Zq1279lmNniR16NBBkrRhw4bMfc8//7wuu+wyDRo0SJJ09OhRZWRk5E1QeGfBAs9Gr0EDe+ogjR7g6dVXpTvucOp//1t6/31zeQAAQMDxu2bvfNynZcbFxUmSjh07puXLl6tevXqaOnWqypYtq+joaBUuXFj333+//vrrr0v6fKVLl/b4qFat2iV/DSFv/Xr7dDS38uXt65MiI81lAvxVeLh9HWvVqs6+nj2lffvMZQIAAAElIJq99PR0jRw5UuHh4erUqZMkaevWrUpPT9fKlSv16KOPqkePHpo7d64SExM1e/ZsNW7cWMePHzecHJn277cHTRw9atcFC9pH+f6/eQdwDsWKSYsWSdHRdn38uJSUZDYTAAAIGAHR7PXv31/ff/+9RowYoer/P60xNTVVkvT3339r3LhxGjZsmFq3bq3XXntNgwcP1saNGzV9+nSvP+fevXs9PrZs2eKTryUknT5tj5BPTnb2TZ8uXXedsUhAwLjiCikx0anffpthLQAAIFv8vtkbPHiwxo0bp549e2ZemydJUVFRkqSwsDB17tzZ4zEJCQmSpGXLluVZTpyHZUn/+pf0zTfOvqFD7eYPQPb06uVsJydL//mPsSgAACBw+HWzN2zYMI0aNUpdu3bVxIkTPW4rV66cJKlo0aKK/Mc1X6VLl5YkHTp0KG+C4vzeess+EuHWpo00ZIi5PEAgqlLFc2mSrEszAAAAnIffNnvDhg3T8OHDlZCQoClTpsj1j2mNcXFxio+P18GDB8+6Ns89zOWyyy7Ls7w4h6++ssfHu117rX36ZpjfvuwA/9Wnj7O9eLHnadEAAADn4Jd/dY8YMULDhw9X586dlZSUpLDzNAedO3eWZVl6O+uRI0kTJkyQJN177725nhXnsXWr1K6dc21RyZL2QJZChczmAgJV06b2BFvJPj36H7/3AAAA/snvFlUfP368+vXrp/j4eI0cOfKsRi8uLk5NmjSRZC8oWK9ePW3evFk9e/bUtddeq2+//Vbvv/++brvtNn3xxRfKly+fT3KxqHoOpKRI9etLGzfadf780tKl0k03mc0FBLrRo6XnnrO3S5aUdu5k6RIAAEJMTvoSv2v2unTpcsEpmg0bNvQYvLJ//34NHjxYCxYs0P79+1WuXDl17NhRgwcPVoECBXyWi2Yvm9LTpZYtpU8/dfZNnSo9/LC5TECw+PNP++heWppdv/++9P/L0QAAgNAQ0M2ev6LZy6annpJeesmp+/eXxowxFgcIOh06SB99ZG/ffLP03/+azQMAAPJUTvoSv7xmDwFqxgzPRu+uu6SXXzaXBwhGWQe1fPuttH69uSwAAMCv0ezBN1atknr0cOrLL5c+/FAKDzeXCQhGt94qXXWVU///QCoAAIB/otnDpdu9W2rVSjp1yq5jY6WFC6UiRUymAoKTyyX17u3UM2ZIqanm8gAAAL9Fs4dLc+KE3ej9+addh4VJs2ZJ1asbjQUEtc6dpYIF7e2jR6X33jObBwAA+CWaPXjPsuwpmz/84Ox75RX7Wj0AuSc2VnrwQaeeMMH+9wgAAJAFzR6898IL9nV5bl272tM3AeS+rKdyrl8vrVhhLgsAAPBLNHvwzoIF0rPPOnWDBvbRBZfLXCYglNSqJdWv79RvvWUsCgAA8E80e8i59eulBx5w6vLlpblzpchIc5mAUJR1GYY5c6R9+8xlAQAAfodmDzmzf7/UooV07JhdFyxoH+WLizObCwhF7dpJxYvb26dPS0lJZvMAAAC/QrOH7Dt9WmrbVkpOdvZNny5dd52xSEBIK1DAHpLk9vbbUnq6uTwAAMCv0OwheyxL+te/pG++cfYNHWo3fwDM6dXL2U5Olj7/3FgUAADgX2j2kD1vvWUfNXBr00YaMsRcHgC2KlU8lzuZMMFcFgAA4Fdo9nBxX30lPfqoU197rX36ZhgvH8AvZB3Usnix56nWAAAgZPHXOi5s61Z7CIT7OqCSJe2BLIUKmc0FwNG0qT0VV7JPuc56FB4AAIQsmj2cX0qKPXnz0CG7zp9fmjdPqlDBbC4AnvLl87x2b+pU6dQpc3kAAIBfoNnDuaWnS506SRs3OvsmTpRuuslcJgDn162bFB5ub//9t/Txx2bzAAAA42j2cG7PPCN9+qlT9+/vOeIdgH8pVcoenOTGoBYAAEIezR7O9t570ksvOfVdd0kvv2wuD4Ds6d3b2f72W2n9enNZAACAcTR78LRqldS9u1Nffrn04YfO6WEA/Nett0pXXeXUHN0DACCk0ezBsWuX1KqVM9ghNlZauFAqUsRkKgDZ5XJ5Ht2bMUNKTTWXBwAAGEWzB9uJE3aj9+efdh0WJs2aJVWvbjQWgBzq3FkqWNDePnrUPi0bAACEJJo92OtyPfywtHats++VV+xr9QAElthY6cEHnXrCBPvfOAAACDk0e5BeeMG+Ls+ta1d7+iaAwJT1VM7166UVK8xlAQAAxtDshboFC6Rnn3XqBg3sIwEul7lMAC5NrVpS/fpO/dZbxqIAAABzaPZC2fr10gMPOHX58tLcuVJkpLlMAHyjTx9ne84cad8+c1kAAIARNHuh6u+/pRYtpGPH7LpgQfsoX1yc2VwAfKNdO6l4cXv79GkpKclsHgAAkOdo9kLR6dNS27ZScrKzb/p06brrjEUC4GMFCtiDl9zefltKTzeXBwAA5DmavVBjWdK//iUtX+7sGzrUbv4ABJdevZzt5GTp88+NRQEAAHmPZi/UvPWW/Q6/W5s20pAh5vIAyD1Vqkh33+3UEyaYywIAAPIczV4o+eor6dFHnfraa+3TN8N4GQBBK+syDIsXe56+DQAAghp/5YeKrVvtgQ3ua3ZKlrQHshQqZDYXgNzVtKk9aVeyT+POemQfAAAENZq9UHDkiD1589Ahu86fX5o3T6pQwWwuALkvXz7Pa/emTpVOnTKXBwAA5BmavWCXnm6vpbdxo7Nv4kTpppvMZQKQt7p1k8LD7e2//5Y+/thsHgAAkCdo9oLdM89In37q1P37e45jBxD8SpWyhzG5MagFAICQQLMXzGbMkF56yambNJFeftlcHgDmZB3U8u230vr15rIAAIA8QbMXrFatknr0cOrLL5dmzXJO5QIQWm69VbrqKqfm6B4AAEGPZi8Y7doltWrlDGGIjZUWLpSKFjUaC4BBLpfn0b0ZM6TUVHN5AABArqPZCzbHj9uN3p9/2nVYmH1Er3p1o7EA+IHOnaWCBe3to0el994zmwcAAOQqmr1gYln21L21a519r7wi3XWXuUwA/EdsrPTgg049YYL9ewMAAAQlmr1g8sIL0ocfOnWXLvb0TQBwy3oq5/r10nffmcsCAAByFc1esFiwQHr2Wadu0MBeT8/lMpcJgP+pVUuqX9+pGdQCAEDQotkLBuvX2wunu5UvL82dK0VGmssEwH/16eNsz5kj7dtnLgsAAMg1NHuB7u+/pRYtpGPH7LpgQfsoX1yc2VwA/Fe7dlLx4vb26dNSUpLZPAAAIFfQ7AWy06eltm2l5GRn3zvvSNddZyoRgEBQoID08MNO/fbbUnq6uTwAACBX0OwFKsuS/vUvaflyZ9+QIfY79gBwMb16OdvJydLnnxuLAgAAcgfNXqB66y373Xi3Nm2koUPN5QEQWKpUke6+26nHjzeXBQAA5AqavUD03/9Kjz7q1NdeK02fbi+gDgDZlXUZhs8+kyZPNpcFAAD4HN1BILr2Wumee+ztkiXtgSyFCpnNBCDwNG1q/z5x69PH89RwAAAQ0Gj2AlFMjDR/vjRokL3EQoUKphMBCET58tm/Q9yTOdPS7FPCsw59AgAAAYtmL1Dlyyc9/7x0882mkwAIZJUr22vthYfb9f799nIuqalmcwEAgEtGswcAoa5RI2nsWKdev1566CEpI8NYJAAAcOlo9gAAUmKifc2e2/z5TPgFACDA0ewBAGyvvy41buzUo0ZJs2YZiwMAAC4NzR4AwJY/vzR7tn0dn1uXLtLatcYiAQAA79HsAQAcxYtLCxdK0dF2ffKk1LKltHev2VwAACDHaPYAAJ5q1JBmzpRcLrvevVtq3dpu/AAAQMCg2QMAnK1ZM+mFF5x61SqpVy/JssxlAgAAOUKzBwA4t4EDpQcecOp335VefdVcHgAAkCM0ewCAc3O5pMmTpTp1nH0DB0qLF5vLBAAAso1mDwBwflFR9pp7ZcrYtWVJHTtKGzcajQUAAC6OZg8AcGFlytgNX2SkXaekSC1aSAcPGo0FAAAujGYPAHBxdepISUlOvXWr1KGDlJZmLhMAALggmj0AQPZ06iQ9/bRTf/mlNGCAuTwAAOCCaPYAANk3erTUvLlTjx1rD3EBAAB+h2YPAJB9YWHS++/bC6+79ekjLV9uLhMAADgnmj0AQM5ER0sLF0rFitl1WprUpo2UnGw0FgAA8ESzBwDIucqVpTlzpPBwu96/X2rZUjp61GwuAACQiWYPAOCdxo2lN9906p9/ljp3ljIyzGUCAACZaPYAAN7r3dv+cJs/Xxo61FgcAADg8Ltmb/PmzRoyZIjq16+vkiVLKjo6WrVq1dLo0aN17Ngxj/sOGzZMLpfrnB+vvPKKoa8AAELMG29IjRo59ahR0qxZxuIAAABbuOkA/5SUlKTx48erRYsWeuCBB5Q/f34tXbpUzz33nD766COtXLlSUVFRHo8ZM2aMSpQo4bHvhhtuyMvYABC68ue3r9+rU0favt3e17WrVLWqxO9iAACM8btmr23btho0aJBiY2Mz9yUmJqpatWoaPXq0pk6dqn79+nk8plWrVqpYsWIeJwUAZCpeXFq0SKpf3x7ScuKE1KqVtGaNVKqU6XQAAIQkvzuNs3bt2h6NnluHDh0kSRs2bDjn41JSUpSWlpar2QAAF1CjhjRzpuRy2fWuXVLr1tLJk2ZzAQAQovyu2TufXbt2SZLi4uLOuu2aa65RbGysChQooAYNGuizzz675M9XunRpj49q1apd8nMCQNBr3lx6/nmnXrlS6tVLsixzmQAACFEB0eylp6dr5MiRCg8PV6dOnTL3FylSRD179tTYsWO1YMECvfDCC/rjjz/UtGlTvfPOO+YCA0Aoe+opKcvvar37rvTqq+byAAAQolyW5f9vtz7yyCMaN26cnn/+eQ0aNOiC9z1w4ICuvvpqnTx5Ujt37lThwoV9kiElJUWxsbE6cuSIYmJifPKcABC0TpyQGja0r9mT7FM7P/lEuvdes7kAAAhwOelL/P7I3uDBgzVu3Dj17Nnzoo2eJBUvXlyJiYk6fPiwVqxYkQcJAQBniYqS5s2TSpe2a8uSOnaUNm40mwsAgBDi183esGHDNGrUKHXt2lUTJ07M9uPckzn379+fS8kAABdVtqy9yHpkpF2npEgtWkgHDxqNBQBAqPDbZm/YsGEaPny4EhISNGXKFLnc092yYcuWLZLOPcwFAJCH6taVkpKceutWqUMHienJAADkOr9s9kaMGKHhw4erc+fOSkpKUljY2THT0tJ05MiRs/bv3LlTEyZMUPHixdWgQYO8iAsAuJBOnaSnn3bqL7+UBgwwlwcAgBDhd4uqjx8/XkOHDlV8fLzuuOMOzZw50+P2uLg4NWnSREePHlWlSpXUqlUrXXnllSpatKg2bdqkKVOm6OjRo/rggw8UFRVl6KsAAHgYPVr65Rd74XVJGjtWqllT6tHDbC4AAIKY303j7NKli6ZPn37e2xs2bKhly5bp1KlT6tu3r1atWqVdu3bp6NGjKlGihG666SYNHDhQdevW9WkupnECwCVKSZEaNLCbPkkKD5e++kq69VazuQAACCA56Uv8rtnzVzR7AOAD27ZJdeo4Q1pKlLCXZ/j/wVoAAODCgmrpBQBAEKlcWZozxz6qJ0n790stW0pHj5rNBQBAEKLZAwDkrcaNpTffdOqff5Y6d5YyMsxlAgAgCNHsAQDyXu/e9ofb/PnS0KHG4gAAEIxo9gAAZrzxhn2Uz23UKGnWLHN5AAAIMjR7AAAz8ueXZs+WKlVy9nXtKv34o7lMAAAEEZo9AIA5xYvba+8VLmzXJ07YA1v+/NNsLgAAggDNHgDArBo1pJkzJZfLrnftklq3lk6eNJsLAIAAR7MHADCveXPp+eedeuVKqVcviaVgAQDwGs0eAMA/PPWU9MADTv3uu9Jrr5nLAwBAgKPZAwD4B5dLmjxZqlPH2TdwoPTZZ+YyAQAQwGj2AAD+IyrKXnOvdGm7zsiQ7r9f2rjRaCwAAAIRzR4AwL+UKWM3fJGRdp2SIrVoIR08aDQWAACBhmYPAOB/6taVkpKceutWqUMHKS3NXCYAAAIMzR4AwD916iQ9/bRTf/mlNGCAuTwAAAQYmj0AgP8aPdpelsFt7Fh7iAsAALgomj0AgP8KC5Pef99eeN2tb1/pv/81lwkAgABBswcA8G/R0dLChVKxYnZ95ox0331ScrLRWAAA+DuaPQCA/6tcWZozRwoPt+v9+6WWLaWjR83mAgDAj9HsAQACQ+PG0ptvOvXPP0uPPmouDwAAfo5mDwAQOHr3tj/c3n1X+vNPc3kAAPBjNHsAgMAyZoxUsqS9nZYmTZliNg8AAH6KZg8AEFgiI6Vu3Zx60iQpPd1cHgAA/BTNHgAg8PTqJblc9vbOndKnn5rNAwCAH6LZAwAEnooVpXvvdeq33jIWBQAAf0WzBwAITH36ONv/+Y/0++/msgAA4Ido9gAAgemuu+wjfG4TJxqLAgCAP6LZAwAEpnz57Gv33KZNk06eNJcHAAA/Q7MHAAhcDz8sRUTY2wcOSLNnm80DAIAfodkDAASuyy6T2rZ1aga1AACQiWYPABDYsg5qWblS+t//zGUBAMCP0OwBAAJbgwZSzZpOPWGCuSwAAPiR8Et58G+//aYdO3Zo//79ioqK0mWXXaaaNWsqJibGV/kAALgwl0vq3ds5wvf++9LLL0uxsWZzAQBgWI6bva+//lpTp07Vl19+qf379591e1hYmK677jq1bdtWDz/8sEqUKOGToAAAnNeDD0oDB0pHj0rHj0szZkj9+plOBQCAUS7Lsqzs3HHu3Ll69tlntXnzZlmWpbJly6pOnToqVaqUihUrphMnTujAgQP67bfftG7dOp0+fVqRkZF66KGHNGLECMXFxeX215KrUlJSFBsbqyNHjnDkEgD8UZ8+zimcV14p/fKLfdQPAIAgkpO+JFvN3q233qpvv/1WV199tTp37qwOHTooPj7+vPc/ffq0li5dqhkzZmj+/PnKly+fZsyYoRYtWuT8q/ETNHsA4OfWr5euucaply2TGjY0FgcAgNyQk74kW6dxHj9+XJ988onuvffebAWIiIjQXXfdpbvuukt///23/v3vf2vz5s3ZeiwAAF6pWVO6+Wbp22/tesIEmj0AQEjL9mmcoY4jewAQAGbOlB54wN4OD5d27pRKlTKbCQAAH8pJX8LSCwCA4NGmjVSypL2dliZNnWo2DwAABnnV7I0YMUKvvPKKTp8+fd77fPPNNxoxYoTXwQAAyLHISKlbN6d++20pPd1cHgAADPKq2Rs2bJieeuop3X777Tpw4MA577Ns2TINHz78ksIBAJBjvXo5Uzh37pQ+/dRsHgAADPH6NM5KlSrpu+++04033qitW7f6MhMAAN6rWFHKOlDMvRwDAAAhxutm76GHHlJSUpL++OMP3Xjjjfruu+98mQsAAO/17u1sf/659Pvv5rIAAGDIJQ1o6dKlixYvXqwzZ87ojjvu0IcffuirXAAAeO/uu+0jfG5vv20sCgAAplzyNM7bb79dK1asUFxcnB544AE9//zzvsgFAID38uWzr91zS0qSTp40lwcAAAN8svTCVVddpVWrVun666/X4MGD1a1bN505c8YXTw0AgHcefliKiLC3DxyQZs82mwcAgDzms3X24uLitHz5cjVv3lzTpk3TmDFjfPXUAADk3GWXSW3bOjWDWgAAIcani6pHRUVp3rx5+te//qUTJ0748qkBAMi5rINavv9eWrfOWBQAAPKay7IsKzeeeM2aNTp+/LgaNmyYG0+f51JSUhQbG6sjR44oJibGdBwAQHZYlnTttdL69XbdsyfDWgAAAS0nfYlPj+xlVadOnaBp9AAAAcrl8jy699570pEj5vIAAJCHcq3ZAwDALzz4oFS4sL19/Lg0Y4bZPAAA5JHw7N6xcuXKOX5yl8ul31nIFgBgUnS01LmzM6BlwgSpb1/7qB8AAEEs29fshYXl/CCgy+VSenp6jh/nj7hmDwAC2Pr10jXXOPWyZRKXGgAAAlBO+pJsH9nbvn37WfvGjBmjsWPHatu2bTlPCQBAXqlZU7r5Zunbb+16wgSaPQBA0Mt2s1ehQoWz9hUtWvS8twEA4Fd693aavY8/lv78UypVymwmAAByEQNaAAChoU0bqWRJezstTZo61WweAAByGc0eACA0REZK3bo59dtvS0FyXTkAAOdCswcACB29ejlTOHfulD791GweAAByEc0eACB0VKwo3XuvU7uXYwAAIAjR7AEAQkvv3s72559LrAcLAAhS2Z7Geeutt561b8eOHee9TbLX2fvmm2+8jAYAQC64+277CF9ysl2//bb00ksmEwEAkCtYVD2bWFQdAILIv/8tDRpkbxcvLu3aJRUoYDYTAADZkGeLqgMAEJAeflgaMkQ6c0Y6cECaPVvq3Nl0KgAAfOqSFlUHACAgXXaZ1K6dNHOmXU+YQLMHAAg6DGgBAISmrINavv9eWrfOWBQAAHJDtpq9P//885I/0V9//XXJzwEAgM/cdJNUs6ZTswwDACDIZKvZq1y5sp566int27cvx5/g008/VZ06dfT222/n+LEAAOQal8vz6N7770tHjpjLAwCAj2Wr2RswYIDGjRuncuXKqXnz5poxY4Z+P8+6RMeOHdM333yjZ599VhUqVFCLFi3kcrnUqlUrX+YGAODSPfigVLiwvX3smDRjhtk8AAD4ULaXXti5c6dGjBihDz74QCdOnJAkxcTEKC4uTkWLFtXJkyd18OBB7dmzRxkZGbIsS9dcc42efPJJPfDAA7n6ReQFll4AgCDVp49zCudVV0kbNthH/QAA8EM56Uuy3exlffKZM2fqyy+/1HfffedxLV5ERIRq1qypRo0a6b777tONN97o3Vfgh2j2ACBIrV8vXXONUy9bJjVsaCwOAAAXkqvN3j+dOXNGBw4cUFRUlGJjYy/lqfwazR4ABLFbbpG+/dbe7tBB+vBDs3kAADiPnPQll7z0Qv78+VWqVCmfNXqbN2/WkCFDVL9+fZUsWVLR0dGqVauWRo8erWPHjl3wsRMmTJDL5ZLL5dL+/ft9kgcAEAKyDmqZO1fywRRqAABM87t19pKSkjRmzBhVqVJFQ4YM0csvv6zq1avrueeeU4MGDTKvF/ynPXv26Omnn1Zh94X2AABkV5s2UsmS9vaZM9LUqWbzAADgA37X7LVt21a7du3S+++/r0ceeUSJiYmaNWuWnn32Wf3888+aep7/Afft21dVqlRh6icAIOciI6Vu3Zz67bel9HRzeQAA/uHIEenSrnozyu+avdq1a5/zlNAOHTpIkjZs2HDWbfPmzdPChQs1ceJE5cuXL9czAgCCUK9ezhTOnTulTz81mwcAYF7bttJ119lvAh49ajpNjvlds3c+u3btkiTFxcV57E9JSVG/fv3Uq1cv1a1b12efr3Tp0h4f1apV89lzAwD8UMWK0r33OvXAgdLhw6bSAABM27xZ+vJL6aefpMRE6bvvTCfKsYBo9tLT0zVy5EiFh4erU6dOHrc99dRTysjI0AsvvGAoHQAgaPTv72xv2iR17MjpnAAQqiZOdLarVJGaNDGXxUsB0ez1799f33//vUaMGKHq1atn7v/uu+/09ttv67XXXvP5sg979+71+NiyZYtPnx8A4IfuuEN6/HGn/vxz+wgfACC0HD8uTZvm1ImJUlhAtE4evEqcmprq6xznNXjwYI0bN049e/bUoEGDMvefPn1aPXv21B133KGOHTvmWR4AQJB78UXpnnuc+rXXpHfeMRYHAGDArFnOqfyRkVLXrkbjeMurZq9MmTLq2bOn1qxZ4+s8HoYNG6ZRo0apa9eumpj1MKqk8ePH67ffftOAAQO0devWzA93I7p9+3Zt27YtV/MBAIJQvnzSBx9IV1zh7OvVS1qxwlwmAEDemjDB2e7QQSpe3FyWS+CyrJzPEq1SpYq2b98ul8ulWrVqqVevXurUqZNP17gbNmyYhg8froSEBCUlJSnsH4dN+/fvrzfeeOOCz1GoUCEd9dHUnJysVA8ACAJbtkj16kmHDtn1ZZdJa9ZI8fFmcwEActcPP0h16jj1ypX2/w/8RE76Eq+aPUlasmSJJk2apIULFyotLU2FChVSx44d1aNHD9WuXdur4G4jRozQ0KFD1blzZ73zzjtnNXqS9NNPP53zOrrx48dr2bJlSkpKUtGiRX227h7NHgCEoC+/lO6+2xnSct110n//KxUqZDYXACD3dOsmJSXZ29ddJ61d6yzN4wfypNlz+/vvv5WUlKQpU6bo999/zzzal5iYqE6dOqlQDv+HOH78ePXr10/x8fEaOXLkWY1eXFycmlxgEk6XLl00ffp0/f333ypRooRXX9O50OwBQIh6803p0Uedul07+1oOP/ofPwDARw4dksqWlU6csOtJk6QePcxm+oc8bfay+uqrrzR58mTNnz9fZ86cUaFChdSpUyf16dNH11xzTbaew92snU/Dhg21bNmyiz6eZg8A4BOWJfXsKU2Z4uwbPlwaMsRcJgBA7nj9demxx+ztmBhpzx6/O5vDWLOXnJysSZMmacqUKdq/f79cLpcsy5LL5VLbtm319ttvq0iRIr76dHmKZg8AQtjp0/ayDP/9r7NvzhypTRtzmQAAvmVZ9nCuzZvt+pFH7LM7/ExO+pJLXiwiPT1dc+fO1V133aWqVavq3//+t2JjY/Xyyy9r3759+uKLL3THHXdo9uzZ6tOnz6V+OgAA8l5EhPTxx1KFCs6+hx6SfvrJXCYAgG99/bXT6ElS797msviI10f2kpOTNXnyZE2bNk1//fWXwsLC1KxZM/Xu3Vt33nnnWfe/7777tGzZMh08ePCSQ5vAkT0AgH7+WWrQQDp2zK7j4+0JnZddZjYXAODStW1rv7EnSY0aSUuXGo1zPrl+ZM99FO+FF16QJD377LPavn275s2bd85GT5Lq1KmjI0eOePPpAADwD9dcI82Y4dQ7dtincp4+bS4TAODS7d4tzZ/v1EFwVE/ystlbsmSJGjZsqI8++kg7duzQiBEjVK5cuQs+pnnz5kpyjzAFACBQtW4tjRjh1N9+K/XpY1/rAQAITFOmOMvslCol+Wj5NtPCvXnQxo0bVb169Rw95uqrr9bVV1/tzacDAMC/PPectGGD9NFHdj11qlSzpucSDQCAwHDmjL3Eglv37va12kHAqyN7OW30AAAIKi6XNG2adP31zr4BA6QvvjCXCQDgnUWL7CUWJCkszF5uJ0h41ezNnj1bt912m3bv3n3O23fv3q3bb79dc+fOvaRwAAD4rYIF7es74uLsOiND6tDBc5IbAMD/TZjgbDdvLpUvby6Lj3nV7E2ZMkWHDh1S2bJlz3l72bJldfjwYU3JugAtAADBpnx5ad4853Sfw4elFi3s/wIA/N/mzdKXXzp1kAxmcfOq2Vu/fr3q1KlzwfvUqVNHP//8s1ehAAAIGDfe6Hmtx6ZNUseOzoX+AAD/NXGis12litSkibksucCrZu/gwYO67CJrCpUoUUL79+/3KhQAAAElIUF6/HGn/vxzaeBAc3kAABd3/Lj0zjtOnZhoX7MXRLz6akqUKKGtW7de8D5btmxRkSJFvHl6AAACz4svSnff7dSvveb5RwQAwL/MmiUdOmRvR0ZKXbuazZMLvGr2brrpJi1cuFCbz3MR+qZNm7Rw4ULdcsstlxQOAICAkS+f9MEHUtaJ1b16SStWmMsEADi/rINZOnSQihc3lyWXeNXsPfHEEzpz5oxuvvlmjRs3Tps3b9axY8e0efNmjR07VjfffLPS0tL0xBNP+DovAAD+q0gRe4S3+8yW06el++6Tdu40mQoA8E8//CCtWePUQTaYxc1lWZblzQMnT56svn37Kv0cF6Dny5dPb731lrp3737JAf1FSkqKYmNjdeTIEcXExJiOAwDwZ0uWSPfc4wxpue466b//lQoVMpsLAGDr1k1KSrK3r7tOWrvWXkM1AOSkL/G62ZOkjRs36q233tKqVat0+PBhFSlSRPXr11fv3r115ZVXevu0folmDwCQI2++KT36qFO3a2dfHxIgf0wAQNA6dEgqW1Y6ccKuJ02SevQwmykH8qzZCyU0ewCAHLEsqWdPKeuas8OHS0OGmMsEAJBef1167DF7OyZG2rMnoM68yElfElyzRQEA8BculzR+vHTzzc6+oUOljz82lwkAQp1lea6tl5AQUI1eToVfyoPT09O1adMmHTp06JzX7knSrbfeeimfAgCAwBURYTd3depIO3bY+x56yJ7YefXVZrMBQChaulTatMmpExPNZckDXjd7I0eO1JgxY3TkyJEL3u98TSAAACHhssukhQulm26Sjh2zF/F95hl7HwAgb731lrPdqJF01VXGouQFr5q9l156SUOHDlVsbKw6d+6s8uXLKzz8kg4SAgAQvK691v4DIyHBrj/91D7SFx9vNhcAhJI9e6T58506SJdbyMqrDm3y5MkqW7asfvzxR5UsWdLXmQAACD6dOtlH9HbvljIy7Olvo0aZTgUAoWPyZGdJnFKlpFatjMbJC14NaNm5c6datWpFowcAQHaFh9vTOd0mT7YXXQcA5L60NPv3rlv37vZ11UHOq2YvLi5OaWlpvs4CAEBw695dypfP3t63T5o3z2weAAgVixbZZ1ZIUliY55tvQcyrZq99+/ZasmSJTp065es8AAAErzJlpNatnTrroAAAQO7J+vu2eXOpfHlzWfKQV83e8OHDVbp0abVt21bbt2/3dSYAAIJX1oEAy5dLv/xiLgsAhILNm6Uvv3TqEBjM4ubVgJarr75aZ86c0Z49e7R48WLFxsaqSJEiZ93P5XLp999/v9SMAAAEj8aN7XX23Os8TZwojR1rNhMABLOsi6hXqSI1aWIuSx7z6sheRkaGwsPDFR8fr/j4eMXGxsqyrLM+MjIyfJ0XAIDA5nJ5vqs8fbp09Ki5PAAQzE6ckN55x6kTE+1r9kKEy7Isy3SIQJCSkqLY2FgdOXJEMTExpuMAAALZ4cP29XsnTtj122+HzLAAAMhT77wjde1qb0dG2kNaihc3GulS5aQvCZ22FgAAf1GkiL3unttbb0m89woAvpd1MEuHDgHf6OXUJTd7Gzdu1Lx58zRjxgxf5AEAIDRkPZXzp5+klSvNZQGAYLR2rbRmjVOH0GAWN6+bvR9//FHXX3+9rr76arVt21ZdunTJvO2bb75RwYIFtXDhQl9kBAAg+Nxwg1S3rlNPmGAuCwAEo6y/V6+7TqpXz1wWQ7xq9n777Tc1atRIW7duVf/+/XXPPfd43H7rrbeqePHimjNnjk9CAgAQlLK+yzxrlrR/v7ksABBMDh2SZs506t697QFZIcarZm/o0KHKyMjQmjVr9Oqrr6pOnToet7tcLt14441ak/WwKQAA8NShg1S0qL19+rQ0bZrZPAAQLN591xmCFRPjeZ10CPGq2Vu2bJnuu+8+Va9e/bz3iY+P1549e7wOBgBA0IuKcqbESfZaUCxbBACXxrI8T+FMSJAKFTKXxyCvmr0jR46odOnSF7zP6dOnlZaW5lUoAABCRmKis71tm/TFF+ayAEAwWLpU2rTJqbP+ng0xXjV7pUuX1saNGy94n59//lkVK1b05ukBAAgd1apJTZo4NYNaAODSZP092qiRdNVVxqKY5lWzd9ddd+mzzz7T6tWrz3n7F198oeXLl6tp06aXFA4AgJCQdVDLJ59IO3aYywIAgWzPHmnePKcOweUWsvKq2Xv22WcVHR2t2267Tc8884x+/fVXSdLs2bP12GOPqXnz5ipZsqQef/xxn4YFACAoNW8ulS1rb2dkSJMmmc0DAIFqyhQpPd3eLlVKatXKaBzTXJZlWd488IcfflD79u2VnJzsPJnLJcuyVLFiRX388ce67rrrfJXTuJSUFMXGxurIkSOKiYkxHQcAEGxGjJCGDrW3L7tM2rlTiogwmwkAAklamlSxorR7t10/95w0cqTRSLkhJ32J182eJKWlpenTTz/V999/r4MHDyo2Nlb16tVTy5YtlT9/fm+f1i/R7AEActWePVJ8vPOO9Icf2kszAACyZ9486b777O2wMCk5WSpf3mik3JBnzV4oodkDAOS6du2kOXPs7YYNpWXLjMYBgIBy553SkiX2dsuW0vz5RuPklpz0JV5dswcAAHJB1kEC33wj/fKLuSwAEEi2bHEaPSnkB7O4hXvzoBEjRmTrfi6XS4MHD/bmUwAAEHoaN5aqV3fWh5o4URo71mwmAAgEEyc621WqeC5pE8K8Oo0zLOz8BwRdLpckybIsuVwupbuvPQhwnMYJAMgTb7wh9e9vb0dH29fyFS5sNBIA+LUTJ+yJxocO2fXLL0tPPGE2Uy7KSV/i1ZG9pUuXnnP/4cOHtWbNGr355ptq2rSpEkN4tXoAALySkCANGmT/8ZKaKs2cKfXsaToVAPivWbOcRi8yUura1WweP5IrA1rWr1+vunXr6sMPP1TLli19/fRGcGQPAJBnuneXpk61t2vVkn78Ufr/M2cAAP9Qr560erW9/dBD0vTpZvPkMuMDWmrWrKmWLVvq+eefz42nBwAguGUdLLBunbRypbEoAODX1q51Gj2JwSz/kGvTOOPj47Vhw4bcenoAAILXDTdIdes69YQJ5rIAgD/L+vuxVi37KB8y5Vqzt2rVKkVFReXW0wMAENyyvjs9a5a0f7+5LADgjw4dsq9rduvTh1Pe/8GrAS07duw45/60tDTt3LlTkydP1rfffqv27dtfUjgAAEJWhw7SgAH2HzOnT0vTpklPPmk6FQD4j3fftYdZSVJMjNSpk9k8fsirZq9ixYqZSyyci2VZqlatml555RWvgwEAENKiouyJcq+9ZtcTJ0qPPy5dYPkjAAgZluV5CmdCglSokLk8fsqrZu+hhx46Z7MXFhamokWLqm7dumrZsqUiIyMvOSAAACErMdFp9rZtk774Qrr7brOZAMAfLF0qbdrk1Cz5dk5eNXvvvPOOj2MAAICzVKsmNWkiLVli1xMm0OwBgOR5VK9RI+mqq4xF8WecCwIAgD/LOqjlk0+k81w3DwAhY88ead48p2a5hfOi2QMAwJ81by6VLWtvZ2RIkyaZzQMApk2ZIqWn29txcVKrVkbj+DOvTuOsXLmyV5/M5XLp999/9+qxAACEpPBwqWdPaehQu548WRoyRIqIMJsLAExIS/N806tHD34fXoBXR/YyMjJ06tQpJScnKzk5WTt37tSJEye0c+fOzH2nTp2SZVkeHxkZGb7ODwBA8OveXcqXz97et8/z9CUACCWLFkm7d9vbYWH2m2E4L6+avZ9//llly5ZV/fr1tXTpUp08eVJ79+7VyZMn9fXXX6tevXoqV66cfv75Z23fvt3jAwAA5FCZMlLr1k6ddTABAISSrL//mjeXypc3lyUAeNXsPfvsszp8+LCWLVumhg0bKt//v9uYL18+NWrUSEuXLtXBgwf17LPP+jQsAAAhK+sAgm++kX75xVwWADBhyxZnOrHEYJZs8KrZmzdvnlq2bKmI85wfW6BAAbVs2VJz5869pHAAAOD/NW4sVa/u1BMnmssCACZk/b1XpYq9NA0uyKtm78CBAzpz5swF73PmzBkdOHDAq1AAAOAfXC7Pd7GnT5eOHjWXBwDy0okT0rRpTp2YaF+zhwvy6jtUpUoVzZkzR0eOHDnn7YcOHdKcOXO8ntoJAADOISFBioqyt1NTpZkzzeYBgLwya5Z06JC9HRkpde1qNk+A8KrZS0xM1J49e1S3bl29++67Sk5O1okTJ5ScnKzp06erXr16+vPPP9W3b19f5wUAIHQVKSJ16uTUEyZIlmUsDgDkmayDWTp0kIoXN5clgLgsy7v/Szz66KMaO3asXC7XWbdZlqVHHnlEb7zxxiUH9BcpKSmKjY3VkSNHFBMTYzoOACBUrV0r1a7t1CtWSDfeaC4PAOS2f/7e+/57qX59c3kMy0lf4tWi6pL0xhtv6P7771dSUpL+97//6ciRI4qNjdX111+vLl26qEGDBt4+NQAAOJ8bbpDq1pVWr7brCRNo9gAEt6xH9WrVkurVMxYl0Hh9ZC/UcGQPAOA33nnHuV4lIsJeYLhECaORACBXHDoklS1rD2iRpEmTpB49zGYyLCd9CSNsAAAINB06SEWL2tunT3tOqAOAYPLuu06jFxPjed0yLsrrZi89PV1vvPGG6tWrp9jYWIWHO2eErlu3Tn369NHmzZt9EhIAAGQRFeU5iW7iRCkjw1weAMgNluV5CmdCglSokLk8AcirZu/kyZO6/fbbNWDAAG3fvl3R0dHKejZopUqVNG3aNM2YMcNnQQEAQBaJic72tm3SF1+YywIAuWHpUmnTJqfO+nsP2eJVs/fiiy9q+fLlGjlypP788091797d4/bY2Fg1bNhQ//nPf3L83Js3b9aQIUNUv359lSxZUtHR0apVq5ZGjx6tY8eOedz31VdfVaNGjVS6dGlFRkaqdOnSaty4sebNm+fNlwUAQOCoVk1q0sSps777DQDBIOvvtYYNpauuMpclQHnV7H3wwQe69dZb9cwzzygsLOycyy9UqlRJO3fuzPFzJyUlacyYMapSpYqGDBmil19+WdWrV9dzzz2nBg0a6IT7nF1Jq1evVsWKFfXYY49pwoQJevzxx3X8+HHdd999GjlypDdfGgAAgaN3b2f7k0+kHTvMZQEAX9qzR8p6AKdPH3NZAphXSy8kJyerRYsWF7xPbGysDrlXuc+Btm3batCgQYqNjc3cl5iYqGrVqmn06NGaOnWq+vXrJ0maNWvWWY/v37+/brjhBr300kt65plnlC9fvhxnAAAgIDRvbk+p273bvmZv0iRp1CjTqQDg0k2ZIqWn29txcVKrVkbjBCqvjuwVKlRIBw4cuOB9kpOTVaxYsRw/d+3atT0aPbcOHTpIkjZs2HDBx4eHh6ts2bI6duyYzpw5k+PPDwBAwAgPl3r2dOopU+zpnAAQyNLS7Dev3Hr0sJeZQY55dWSvdu3aWrx4sY4dO6ZC55iIs2/fPi1evFh33nnnJQd027VrlyQpLi7urNsOHjyo9PR07d+/X7Nnz9bnn3+uxo0bq0CBAl5/vtKlS3vUGUw5AwD4o+7dpREj7HfA//rLPu3p/98gBYCAtGiRfcaCJIWFeb6phRzx6sjev/71L/31119q3rz5Wcsr/PTTT2revLmOHTumRx55xCch09PTNXLkSIWHh6vTOdbWuPzyy3XZZZfpqquu0siRI9WmTRt9+OGHPvncAAD4tTJlpNatnZpBLQACXdbfY82aSeXLm8sS4Lw6ste0aVM999xzGjVqlK688kpF/P9h1cKFC+vEiROyLEsjRoxQw4YNfRKyf//++v777/X888+revXqZ90+d+5cnTx5Urt379bs2bN14sQJpaamqmTJkl5/zr1793rU7pXqAQDwO717S3Pm2NvffCP98otUo4bZTADgjS1bpCVLnJrBLJfEZWVdIC+HvvzyS40bN04rV67UwYMHFRsbq3r16unRRx9Vk6zjoC/B4MGDNWrUKPXs2VNvv/12th7TsWNHLVu2TL/++quKFi3qkxzuZu/IkSOKiYnxyXMCAOATliVdeaWzHlW/ftLYsWYzAYA3Hn9ceu01e7tKFWnzZvtUTmTKSV/i1Xdux44d+vPPP3XHHXdo/vz5+vPPP3X69Gn9/fff+uSTT3zW6A0bNkyjRo1S165dNXHixGw/LiEhQX/++afmzp3rkxwAAPg1l8tzGYbp06WjR83lAQBvnDghTZvm1ImJNHqXyKvvXqVKlfTMM8/4OouHYcOGafjw4UpISNCUKVPOuZbf+bjX4jt48GBuxQMAwL8kJEhRUfZ2aqo0c6bZPACQU7NmSe6l2yIjpa5dzeYJAl41e0WKFFGJEiV8nSXTiBEjNHz4cHXu3FlJSUkKO0dHf+zYMR09x7uW6enpGj9+vCSpfv36uZYRAAC/UqSIlHWI2YQJ9umdABAosg5mad9eKl7cXJYg4dWAlvr16+t///ufr7NIksaPH6+hQ4cqPj5ed9xxh2b+453JuLg4NWnSRFu2bFHDhg3Vtm1bVa9eXcWKFdPu3bv1wQcfaNOmTUpISNAtt9ySKxkBAPBLvXtLU6fa2+vWSStXSjfeaDQSAGTL2rXS6tVOzWAWn/Cq2Rs2bJhuueUWTZkyRd27d/dpoDVr1kiyrwtMSEg46/aGDRuqSZMmKleunDp37qz//ve/mjdvnlJTUxUbG6vrrrtOgwcPPucSDQAABLUbbpDq1nX+YJowgWYPQGDIelSvVi2pXj1jUYKJV9M4R4wYoRUrVmjJkiWqVauW6tatq1KlSp11XZ3L5dLgwYN9FtYkpnECAALCO+8417lERNgLE+fipRcAcMkOHZLKlrUHtEjSpElSjx5mM/mxnPQlXjV757qG7pxP7nIpPT09p0/vl2j2AAAB4cQJ+48m95CDl16SnnzSbCYAuJA33pD697e3Y2KkPXukQoWMRvJnOelLvDqNc+nSpV4FAwAAuSwqyj6y516nauJEe90qxpcD8EeW5XkK50MP0ej5ULaP7C1cuFBXXHGFLr/88tzO5Jc4sgcACBhbtkhZ/3/92WfS3XebywMA5/P119Lttzv1L79IV11lLk8AyJVF1Vu3bq0PP/zQY9+sWbN03333eZcSAADkjmrVpCZNnDrru+YA4E+y/n5q2JBGz8ey3eyd6wDgb7/9pgULFvg0EAAA8IHevZ3tTz6RduwwlwUAzmXPHmnePKfO+nsLPsEJ/AAABKPmze1BLZKUkWFPtwMAfzJliuQe5hgXJ7VubTZPEKLZAwAgGIWHSz17OvWUKdLp0+byAEBWaWmeb0J1724vFwOfotkDACBYde8u5ctnb//1l+fpUgBg0qJF9jqgkj0tOOubU/CZHDV7/1w0HQAA+LEyZTxPi2JQCwB/kfX3UbNmUny8uSxBLNtLL4SFhSkmJsZjvGdKSopSU1NV1n1NwD+f3OXSH3/84ZukhrH0AgAgIP1zrPmGDVKNGubyAADLw1ySXFtUPSUlRSkpKWft37VrV84SAgCAvNG4sVS9urRpk11PnCiNHWs2E4DQNnGis125snTnneayBLlsn8aZkZHh1QcAADDI5fIcZz59unT0qLk8AELbiRPStGlOnZhoX7OHXMF3FgCAYJeQIEVF2dupqdLMmWbzAAhds2ZJhw7Z25GRUteuZvMEOZo9AACCXZEiUqdOTj1hgpS9S/YBwLeyDmZp314qUcJclhBAswcAQCjIeirnunXSypXGogAIUWvXSqtXO3XW30vIFTR7AACEghtukOrWdWqWYQCQ17L+3qlVS6pf31iUUEGzBwBAqMj6LvqsWdL+/eayAAgthw55Xi/cu7c9QAq5imYPAIBQ0aGDVLSovX36tOdEPADITe++a0/ilKSYGM/riJFraPYAAAgVUVGek+8mTpRYJglAbrMsz1M4H3pIKlzYXJ4QQrMHAEAoSUx0trdtk774wlwWAKFh6VJp0yanzvp7CLmKZg8AgFBSrZrUpIlTM6gFQG7L+numYUOpRg1zWUIMzR4AAKEm66CWTz6RduwwlwVAcNuzR5o3z6lZbiFP0ewBABBqmjeXypa1tzMypEmTzOYBELymTJHS0+3tuDipdWuzeUIMzR4AAKEmPFzq2dOpJ0+2p3MCgC+lpXm+mdS9uxQRYS5PCKLZAwAgFHXvbjd9krRvn+dpVgDgC4sWSbt329thYZ5vMiFP0OwBABCKypSRWrVyaga1APC1rL9XmjWT4uPNZQlRNHsAAISqrIMSvvlG+uUXc1kABJctW6QlS5yawSxG0OwBABCqGjeWqld36okTzWUBEFyy/j6pXFm6805zWUIYzR4AAKHK5fJ8t336dOnoUXN5AASHEyekadOcOjHRvmYPeY7vOgAAoSwhQYqKsrdTU6WZM83mARD4Zs2SDh2ytyMjpa5dzeYJYTR7AACEsiJFpE6dnHrCBMmyjMUBEASyDmZp314qUcJclhBHswcAQKjLeirnunXSypXGogAIcGvXSqtXOzWDWYyi2QMAINTdcINUt65TswwDAG9l/f1Rq5ZUv76xKKDZAwAAkue777NmSfv3m8sCIDAdOuR53W/v3vYgKBhDswcAAKQOHaSiRe3t06c9J+kBQHa8+649iVOSYmI8rweGETR7AADAnsiZdWLexIlSRoa5PAACi2V5nsL50ENS4cLm8kASzR4AAHBLTHS2t22TvvjCXBYAgWXpUmnTJqfO+vsExtDsAQAAW7VqUpMmTs2gFgDZlfX3RcOGUo0a5rIgE80eAABwZB3U8skn0o4d5rIACAx79kjz5jk1yy34DZo9AADgaN5cKlvW3s7IkCZNMpsHgP+bMkVKT7e34+Kk1q3N5kEmmj0AAOAID5d69nTqyZPt6ZwAcC5paZ5vCnXvLkVEmMsDDzR7AADAU/fudtMnSfv2eZ6eBQBZLVok7d5tb4eFeb5ZBONo9gAAgKcyZaRWrZyaQS0Azifr74dmzaT4eHNZcBaaPQAAcLasAxa++Ub65RdzWQD4py1bpCVLnJrBLH6HZg8AAJytcWOpenWnnjjRXBYA/inr74XKlaU77zSXBedEswcAAM7mcnm+Sz99unT0qLk8APzLiRPStGlOnZhoX7MHv8JPBAAAnFtCghQVZW+npkpPP202DwD/MWuWdOiQvR0ZKXXtajYPzolmDwAAnFuRIp5/wI0fz7p7AGxZB7O0by+VKGEuC86LZg8AAJzfv/8tXX21U/ftaw9sARC61q6VVq92agaz+C2aPQAAcH7R0dLChVLx4nadlia1aSNt3242FwBzsh7Vq1VLql/fWBRcGM0eAAC4sEqVpI8/dhZaP3BAatHCvo4PQGg5fFiaOdOpe/e2BzrBL9HsAQCAi2vYUBo3zqk3bJA6d5YyMsxlApD3pk+3J3FKUkyM1KmT2Ty4IJo9AACQPb162dfsuS1YIA0ZYi4PgLxlWZ6ncD70kFS4sLk8uCiaPQAAkH1jxki33ebUo0dLH35oLg+AvLN0qbRpk1MzmMXv0ewBAIDsy59f+ugjqUoVZ1/XrtIPP5jLBCBvZD2q17ChdNVV5rIgW2j2AABAzhQvbk/ojI6265MnpVatpL17jcYCkIv27JHmz3dqjuoFBJo9AACQc1ddJX3wgTOFb/duu+E7edJoLAC5ZMoUe+kVSYqLk1q3NpsH2UKzBwAAvNO0qb3outvq1VLPnvYQBwDBIy1NmjTJqbt3lyIizOVBttHsAQAA7z35pPTgg049Y4b0yivm8gDwvUWL7KP3khQWZr+pg4BAswcAALznckmTJ0t16zr7nnpK+vRTc5kA+FbWwSzNmknx8eayIEdo9gAAwKUpUMAe3FCmjF1bltSxo/Trr0ZjAfCBLVukJUucmsEsAYVmDwAAXLrSpe2Gr0ABu05NlVq0kA4cMBoLwCWaONHZrlxZuvNOc1mQYzR7AADAN+rUkaZOderff5fat5fOnDGXCYD3TpyQpk1z6sRE+5o9BAx+WgAAwHc6dZIGDXLqr7+WBgwwlweA92bNkg4dsrcjI6WuXc3mQY7R7AEAAN8aNco+hdNt3DjPse0AAkPWwSzt20slSpjLAq/Q7AEAAN8KC5Pee0+qUcPZ17ev9M035jIByJm1a+21M90YzBKQaPYAAIDvRUdLCxdKxYvbdVqa1KaNtH272VwAsifrUb1ataT69Y1Fgfdo9gAAQO6oXFmaM0cKD7frAwfs0ztTU83mAnBhhw9LM2c6de/e9pqaCDg0ewAAIPc0aiSNHevUGzZInTtLGRnGIgG4iOnT7UmckhQTYw9eQkCi2QMAALkrMVHq08epFyyQhgwxlwfA+VmW5ymcDz0kFS5sLg8uid81e5s3b9aQIUNUv359lSxZUtHR0apVq5ZGjx6tY8eOZd7Psiy99957uv/++1W1alUVLFhQ8fHxatGihVatWmXwKwAAAGd5/XWpcWOnHj1a+vBDY3EAnMfSpdKmTU7NYJaA5rIsyzIdIqunn35a48ePV4sWLVS/fn3lz59fS5cu1UcffaRrrrlGK1euVFRUlE6ePKmoqCjVqlVLTZs2VaVKlbR3715NnDhRe/bs0bvvvqsHH3zQZ7lSUlIUGxurI0eOKCYmxmfPCwBAyDhwQKpbV9q2za4LFJD++1+pdm2zuQA42rWzr7WVpIYNpWXLjMbB2XLSl/hds/fDDz+oWrVqio2N9dj/3HPPafTo0Ro7dqz69euntLQ0fffdd2rYsKHH/f766y/VqFFD+fLl0969exUW5puDlzR7AAD4wC+/SDfe6AxpKVtWWrNGKl3abC4A0p49UoUK9vRcyT763qGD2Uw4S076Er87jbN27dpnNXqS1OH/X2gbNmyQJIWHh5/V6ElSXFycGjZsqH379mnfvn25GxYAAORMjRr2lD/3ZL/du6XWraWTJ83mAiBNmeI0enFx9r9NBDS/a/bOZ9euXZLsZi47942IiFCRIkW8/nylS5f2+KhWrZrXzwUAALJo1kx64QWnXrVK6tnTHgwBwIy0NGnSJKfu3l2KiDCXBz4REM1eenq6Ro4cqfDwcHW6yOjXxYsXa/Xq1erQoYMKFCiQRwkBAECODBwoPfCAU8+YIb3yirk8QKhbtMg+0i5JYWH2GzAIeOGmA2RH//799f333+v5559X9erVz3u/LVu2qHPnzipbtqxeffXVS/qce/fu9ajd58YCAAAfcLmkyZOlzZvta/Yk6amnpKuukpo2NZsNCEVZl1to1kyKjzeXBT7j90f2Bg8erHHjxqlnz54aNGjQee+3fft23X777XK5XPrss89UsmTJPEwJAAByLCpKmj9fKlPGri1L6thR+vVXo7GAkLNli7RkiVOz3ELQ8Otmb9iwYRo1apS6du2qiRMnnvd+ycnJaty4sY4ePaolS5aoZs2aeZgSAAB4rUwZu+FzX3qRmiq1aGEv0wAgb2T9O7tyZenOO81lgU/5bbM3bNgwDR8+XAkJCZoyZYpc7qld/5CcnKxGjRrpyJEjWrJkia677ro8TgoAAC5JnTrS1KlO/fvvUvv20pkz5jIBoeLECWnaNKdOTLSv2UNQ8Muf5IgRIzR8+HB17txZSUlJ510r748//lDjxo11+PBhffHFF7rhhhvyOCkAAPCJTp2kp5926q+/lgYMMJcHCBWzZkmHDtnbkZFS165m88Cn/G5R9fHjx6tfv36Kj4/XyJEjz2r04uLi1KRJE6Wmpuraa6/V9u3b9cgjj6hu3bpnPVeTJk2ytVRDdrCoOgAAuSwjQ2rVyp4K6Pb220wFBHJTvXrS6tX2dufO0rvvms2Di8pJX+J3zV6XLl00ffr0897esGFDLVu2TMnJyapUqdIFn2vp0qVq1KiRT3LR7AEAkAdSU6Ubb5R++cWuw8OlL7+UGjY0mwsIRmvXSrVrO/WKFfa/P/i1gG72/BXNHgAAeWTbNqluXWdIS/Hi9vIMF3mTF0AOde/uXC9bq5b044/2sijwaznpS/zymj0AABDCKleW5syxj+pJdtPXooV91A+Abxw+LM2c6dS9e9PoBSGaPQAA4H8aNZLGjnXqDRvs64kyMoxFAoLK9On2JE5JiomxhyQh6NDsAQAA/5SY6Lm484IF0pAh5vIAwcKypAkTnPqhh6TChc3lQa6h2QMAAP7rjTekxo2devRo6cMPzeUBgsHSpdKmTU6dmGguC3IVzR4AAPBf+fNLs2fb1/G5de0q/fCDuUxAoMt6VK9hQ6lGDXNZkKto9gAAgH8rXlxauFCKjrbrkyft9fj27jUaCwhIe/ZI8+c7ddZTpRF0aPYAAID/q1HDnhzonha4e7fUurXd+AHIvilTpLQ0ezsuzv53hKBFswcAAAJDs2bSCy849apVUs+e9rAJABeXliZNmuTU3btLERHm8iDX0ewBAIDAMXCg9MADTj1jhvTKK+byAIFk0SL7qLgkhYXZb5YgqNHsAQCAwOFySZMnS3XqOPueekr69FNzmYBAkXUwS7NmUny8uSzIEzR7AAAgsERF2QMmypSxa8uSOnaUNm40Ggvwa1u2SEuWODWDWUICzR4AAAg8ZcrYDV+BAnadmio1by4dPGg0FuC3Jk50titXlu6801wW5BmaPQAAEJjq1JGmTnXq33+X2reXzpwxlwnwRydOSNOmOXVion3NHoIeP2UAABC4OnWSnn7aqb/6ShowwFwewB/NmiUdOmRvR0ZKXbuazYM8Q7MHAAAC2+jR9imcbuPGeY6XB0Jd1sEs7dtLJUqYy4I8RbMHAAACW1iY9P779sLrbn37SsuXm8sE+Iu1a6XVq52awSwhhWYPAAAEvuhoaeFCqXhxu05Lk9q0kZKTjcYCjMt6VK9WLal+fWNRkPdo9gAAQHCoXFmaM0cKD7fr/fulFi3sSZ1AKDp8WJo506l797bXqkTIoNkDAADBo1EjaexYp16/XurcWcrIMBYJMGb6dHsSpyTFxNgDjRBSaPYAAEBwSUz0vC5pwQJpyBBzeQATLMvzFM6HHpIKFzaXB0bQ7AEAgODzxhtS48ZOPXq0PX4eCBVLl0qbNjl1YqK5LDCGZg8AAASf/Pml2bPt6/jcunSxJxMCoSDrUb2GDT2n1SJk0OwBAIDgVLy4PaEzOtquT56UWraU9u41mwvIbXv2SPPnOzXLLYQsmj0AABC8atSwpxG6JxDu3i21bm03fkCwmjLFXn5EkuLi7Nc8QhLNHgAACG7NmkkvvODUq1ZJPXvaAyyAYJOWJk2a5NTdu0sREebywCiaPQAAEPwGDpQeeMCpZ8yQXnnFXB4gtyxaZB/BlqSwMPuNDYQsmj0AABD8XC5p8mSpTh1n31NPSYsXm8sE5Iasg1maNZPi481lgXE0ewAAIDRERdlDK8qUsWvLkjp2lDZuNBoL8JktW6QlS5yawSwhj2YPAACEjjJl7IavQAG7TkmRmjeXDh40GgvwiYkTne3KlaU77zSXBX6BZg8AAISWOnWkqVOd+vffpfbtpTNnzGUCLtWJE9K0aU6dmGhfs4eQxisAAACEnk6dpEGDnPqrr6QBA8zlAS7VrFnSoUP2dmSk1LWr2TzwCzR7AAAgNI0aZZ/C6TZunOfIeiCQZB3M0r69VKKEuSzwGzR7AAAgNIWFSe+/by+87ta3r7R8ublMgDfWrpVWr3ZqBrPg/9HsAQCA0BUdLS1cKBUvbtdpaVKbNlJystFYQI5kPapXq5ZUv76xKPAvNHsAACC0Va4szZkjhYfb9f79UosWUmqq2VxAdhw+LM2c6dS9e9vrSgKi2QMAAJAaNZLGjnXq9eulzp2ljAxjkYBsmT7dnsQp2UeqO3Uymwd+hWYPAABAskfV9+nj1AsWSEOGmMsDXIxleZ7CmZAgFS5sLg/8Ds0eAACA2+uvS40bO/Xo0fZIe8AfLV0qbdrk1ImJ5rLAL9HsAQAAuOXPL82ebV/H59aliz3tEPA3WY/qNWzoOVkWEM0eAACAp+LF7Qmd0dF2ffKk1LKltHev2VxAVnv2SPPmOTXLLeAcaPYAAAD+qUYNe8Khe6rh7t1S69Z24wf4gylTpPR0ezsuzn59Av9AswcAAHAuzZpJL7zg1KtWST172kMxAJPS0qRJk5y6e3cpIsJcHvgtmj0AAIDzGThQeuABp54xQ3rlFXN5AElatMg+2ixJYWH2mxDAOdDsAQAAnI/LJU2eLNWp4+x76ilp8WJzmYCsg1maNZPi481lgV+j2QMAALiQqChp/nypTBm7tiypY0dp40ajsRCitmyRlixxagaz4AJo9gAAAC6mTBm74StQwK5TUqTmzaWDB43GQgh66SVnu3Jl6c47zWWB36PZAwAAyI46daSpU53699+l9u2lM2fMZUJoSUqyp3C6JSba1+wB58GrAwAAILs6dZIGDXLqr76SBgwwlweh47vv7ObO7corOYUTF0WzBwAAkBOjRtmncLqNG+c5Bh/wtR07pPvuc44iFy0qLVwoFS5sNhf8Hs0eAABAToSFSe+/by+87ta3r7R8ublMCF7HjkktWkj79tl1vnzS7NlS1apmcyEg0OwBAADkVHS0fWSleHG7TkuT2rSRkpONxkKQyciQEhKkn35y9r3+unT77cYiIbDQ7AEAAHijcmVpzhwpPNyu9++3j8CkpprNheAxcqT08cdO3bOnfRQZyCaaPQAAAG81aiSNHevU69dLnTvbR2SAS/Hxx9KwYU596632a83lMhYJgYdmDwAA4FIkJkp9+jj1ggXS0KHm8iDwrVsnPfSQU1esaB9FjogwlQgBimYPAADgUr3+utS4sVOPGiXNmmUsDgLYX3/ZpwMfP27XhQrZbyCULGk2FwISzR4AAMClyp/fnpBYubKzr0sXae1aY5EQgE6dspdY2LnT2ffee9I115jLhIBGswcAAOALxYvbEzqjo+365EmpZUtp716zuRAYLMteJH3FCmffqFFSq1bGIiHw0ewBAAD4So0a0syZzhCN3bul1q3txg+4kDfekKZNc+r775eeecZcHgQFmj0AAABfatZMeuEFp161yh6Zb1nmMsG//ec/0uOPO/UNN0hTpzJ5E5eMZg8AAMDXBg6UHnjAqWfMkF591Vwe+K9Nm6QOHZzlOkqVkubPlwoWNBoLwYFmDwAAwNdcLmnyZKlOHWffwIHS4sXmMsH/HDpkT948csSuIyOlefOkcuXM5kLQoNkDAADIDVFR9hGaMmXs2rKkjh2ljRuNxoKfSEuzXw+bNzv7Jk+W6tc3lwlBh2YPAAAgt5QpYzd8BQrYdUqK1Ly5dPCg0VjwAwMH2tfquT35pNS5s7k8CEo0ewAAALmpTh172Ibb779L7dvbR3YQmpKSpDFjnLppU8+hPoCP0OwBAADktk6dpEGDnPqrr6QBA8zlgTnffSclJjr1lVfay3Xky2cuE4IWzR4AAEBeGDXKPoXTbexY+xothI4dO6T77pPOnLHrokWlhQulmBizuRC0aPYAAADyQliY9P779sLrbn36SMuXm8uEvHPsmD15c98+u86XT5o9W6pa1WwuBDWaPQAAgLwSHW0fySle3K7T0qQ2baTkZKOxkMsyMqSEBOmnn5x9r78u3X67sUgIDTR7AAAAealyZWnOHCk83K7375datpSOHjWbC7ln5Ejp44+dumdPqW9fc3kQMvyu2du8ebOGDBmi+vXrq2TJkoqOjlatWrU0evRoHTt2zOO+q1ev1r/+9S/ddNNNKly4sFwul9555x0zwQEAALKrUSP7mj23n3+2x+5nZBiLhFzy8cfSsGFOfeut9s/e5TIWCaHD75q9pKQkjRkzRlWqVNGQIUP08ssvq3r16nruuefUoEEDnThxIvO+ixcv1vjx43X48GFde+21BlMDAADkUGKifc2e2/z50tChxuIgF6xbJz30kFNXrGgf1Y2IMJUIIcZlWZZlOkRWP/zwg6pVq6bY2FiP/c8995xGjx6tsWPHql+/fpKkv/76S4ULF1ahQoU0Z84ctWvXTtOmTVOXLl18nislJUWxsbE6cuSIYpiYBAAAfOHMGemuu6SlS519H34odehgLhN846+/7DUWd+6060KFpBUrpGuuMZsLAS8nfYnfHdmrXbv2WY2eJHX4/196GzZsyNwXFxenQoUK5Vk2AAAAn8qf357IWLmys69rV2ntWnOZcOlOnbKXWHA3epL03ns0eshz4aYDZNeuXbsk2Q1eXihdurRHncE59AAAIDcUL25P6LzxRik1VTpxwh7Y8sMPUqlSptMhpyzLPj13xQpn36hRUqtWxiIhdPndkb1zSU9P18iRIxUeHq5OnTqZjgMAAOBbNWpIM2c6Qzt275Zat5ZOnjSbCzn3xhtSUpJT33+/9Mwz5vIgpAVEs9e/f399//33GjFihKpXr54nn3Pv3r0eH1u2bMmTzwsAAEJUs2bSCy849cqVUq9e9pEiBIb//Ed6/HGnvuEGaepUJm/CGL9v9gYPHqxx48apZ8+eGjRokOk4AAAAuWfgQOmBB5z63XelV181lwfZt2mTPVjHfelPqVL2hNWCBY3GQmjz62Zv2LBhGjVqlLp27aqJEyeajgMAAJC7XC5p8mR7iqPbwIHS4sXmMuHiDh+WWrSQjhyx68hIad48qVw5o7EAv232hg0bpuHDhyshIUFTpkyRi8PfAAAgFERF2UeEypSxa8uSOnaUNm40GgvnkZZmX5e3ebOzb/JkqX59c5mA/+eXzd6IESM0fPhwde7cWUlJSQoL88uYAAAAuaNMGbvhK1DArlNS7CNHBw8ajYVzGDjQvlbP7cknpc6dzeUBsvC7pRfGjx+voUOHKj4+XnfccYdmzpzpcXtcXJyaNGkiSfrjjz80Y8YMSdIvv/wiSVq0aFHmMg2dO3dWhQoV8jA9AACAj9SpYw/3cF/Dt3WrfU3YZ59J4X73J1xoSkqSxoxx6qZNPYfsAIa5LMu/Rjx16dJF06dPP+/tDRs21LJlyyRJy5YtU+PGjc9736VLl6pRo0Y+yZWTleoBAAB85plnPBuIRx6R3nzTXB7YvvtOatxYOnPGrq+80p6gyt+JyGU56Uv8rtnzVzR7AADAiIwMe0HuRYucfZMmST16GIsU8nbssI+87ttn10WLSqtXS1Wrms2FkJCTvoSL4QAAAPxZWJj0/vv2wutuffpIy5ebyxTKjh2TWrZ0Gr18+aTZs2n04Jdo9gAAAPxddLS0cKFUvLhdp6VJbdpIyclGY4WcjAypSxdp3Tpn3+uvS7ffbigQcGE0ewAAAIGgcmVpzhxnOMv+/fYRpqNHzeYKJSNH2j8Dt549pb59zeUBLoJmDwAAIFA0aiSNHevUP/9sj/nPyDAWKWR8/LE0bJhT33qr/bNgLWj4MZo9AACAQJKYaF+z5zZ/vjR0qLE4IWHdOumhh5y6YkX7CF9EhKlEQLbQ7AEAAASa11+3x/67jRolzZplLE5Q27fPPl32+HG7LlRIWrBAKlnSbC4gG2j2AAAAAk3+/PYEyMqVnX1dukhr1xqLFJROnZLuu89easHtvfeka64xlwnIAZo9AACAQFS8uD2hMzrark+etI9A/fmn2VzBwrLs02W/+87ZN2qUveYhECBo9gAAAAJVjRrSzJnOkJDdu6XWre3GD5fmjTekpCSn7tBBeuYZc3kAL9DsAQAABLJmzaQXXnDqlSulXr3sI1PwzhdfSI8/7tQ33GA3fkzeRICh2QMAAAh0AwdKDz7o1O++K736qrk8gWzzZvsonns5i1Kl7ImnBQsajQV4g2YPAAAg0Llc0uTJUt26zr6BA6XFi81lCkSHD0vNm9v/laTISGnePKlcOZOpAK/R7AEAAASDAgXsxqRMGbu2LKljR2njRrO5AkVamnT//faRPbdJk6T69c1lAi4RzR4AAECwKFPGPuWwQAG7TkmRWrSQDh40GisgPPWU9J//OPUTT3gupA4EIJo9AACAYFKnjjR1qlNv3Wpfg5aWZi6Tv3vnHem115z63nulf//bWBzAV2j2AAAAgk2nTtKgQU795ZfSgAHm8vizFSvs6aVuV15pL2eRL5+5TICP0OwBAAAEo1Gj7GEjbmPH2kNc4Nixw16X8PRpuy5a1F6oPjbWbC7AR8JNBwAAAEAuCAuT3n9fuvFG6Zdf7H19+thryIXxfr8k6ccfpX377O18+aTZs6WqVc1mAnyIZg8AACBYRUfbR6rq1pUOHLCv25szx3Qq/zRmjHT77aZTAD7F2zoAAADBrHJlu8EL5z3+8+rRQ+rXz3QKwOf4Vw8AABDsGjWyB5F8/rmUnm46jX+pVEl68EF7YXogyNDsAQAAhII6dewPACGD0zgBAAAAIAjR7AEAAABAEKLZAwAAAIAgRLMHAAAAAEGIZg8AAAAAghDNHgAAAAAEIZo9AAAAAAhCNHsAAAAAEIRo9gAAAAAgCNHsAQAAAEAQotkDAAAAgCBEswcAAAAAQYhmDwAAAACCEM0eAAAAAAQhmj0AAAAACEI0ewAAAAAQhGj2AAAAACAI0ewBAAAAQBCi2QMAAACAIESzBwAAAABBiGYPAAAAAIJQuOkAgcKyLElSSkqK4SQAAAAAQpW7H3H3JxdCs5dNqampkqTy5csbTgIAAAAg1KWmpio2NvaC93FZ2WkJoYyMDO3Zs0fR0dFyuVxeP0+1atUkSVu2bPFVNCATry/kNl5jyG28xpCbeH0ht+XFa8yyLKWmpqpMmTIKC7vwVXkc2cumsLAwlStXzifPI0kxMTGX/FzAP/H6Qm7jNYbcxmsMuYnXF3JbXr3GLnZEz40BLQAAAAAQhGj2AAAAACAIcc0eAAAAAAQhjuwBAAAAQBCi2QMAAACAIESzBwAAAABBiGYPAAAAAIIQzR4AAAAABCGaPQAAAAAIQjR7AAAAABCEaPYAAAAAIAjR7AEAAABAEKLZAwAAAIAgRLMHAAAAAEGIZg8AAAAAghDNHgAAAAAEIZq9PJCRkaExY8boiiuuUIECBVS+fHk9/vjjOnbsmOloCCCbN2/WkCFDVL9+fZUsWVLR0dGqVauWRo8efc7X0qZNm9SqVSsVLVpUhQoV0i233KKvv/7aQHIEquPHj6ty5cpyuVzq16/fWbfzGoO3Dh48qCeeeEJVq1ZVgQIFVLJkSTVu3Fj//e9/Pe63atUq3XHHHYqOjlZMTIzuvvturVu3zkxoBISjR4/q+eefV82aNRUdHa0SJUqoQYMGeuedd2RZlsd9eX3hQl544QW1a9cu8/+DFStWvOD9c/J62rNnjx566CGVLFlSUVFRql27tmbPnu37L0KSy/rnKx8+9+ijj+rNN99U69atdc8992jjxo0aO3asbrnlFn355ZcKC6PnxsU9/fTTGj9+vFq0aKH69esrf/78Wrp0qT766CNdc801WrlypaKioiRJv//+u+rWravw8HD1799fsbGxmjx5sjZs2KDPPvtMd9xxh+GvBoHgiSee0Ntvv62jR4+qb9++GjduXOZtvMbgrT/++EONGjXS0aNH1a1bN11++eU6cuSIfv75Z9111126//77JUkrV65Uo0aNVLZs2cw3G8aNG6d9+/ZpxYoVqlmzpskvA34oIyNDDRs21IoVK5SQkKD69evr+PHj+uCDD7R69WoNHDhQL774oiReX7g4l8ulYsWK6frrr9fatWsVExOj5OTkc943J6+ngwcPqnbt2tq3b58GDBigcuXKaebMmfrmm2+UlJSkrl27+vYLsZCrNmzYYLlcLuu+++7z2P/mm29akqz333/fUDIEmjVr1liHDx8+a/+zzz5rSbLGjh2bua9du3ZWWFiY9b///S9zX2pqqhUfH29dfvnlVkZGRl5ERgBbu3atlS9fPuvVV1+1JFl9+/b1uJ3XGLx18803W+XKlbP27NlzwfvVqVPHio6Otnbt2pW5b9euXVZ0dLTVpEmT3I6JALRixQpLktW/f3+P/adOnbIqVapkxcbGZu7j9YWL+f333zO3a9SoYVWoUOG8983J6+nJJ5+0JFkLFy7M3JeWlmbVqVPHKlasmJWamuq7L8KyLA4p5bIPPvhAlmWpf//+Hvt79OihggUL6r333jMTDAGndu3aio2NPWt/hw4dJEkbNmyQJB07dkwLFy5Uo0aNVKtWrcz7FS5cWN27d9fmzZu1Zs2aPMmMwJSenq4ePXro7rvv1n333XfW7bzG4K3ly5fr22+/1cCBA1W6dGmdOXNGx48fP+t+W7du1Zo1a9SuXTuVLVs2c3/ZsmXVrl07ffnll/rzzz/zMjoCQEpKiiSpTJkyHvsjIiJUokQJFSpUSBKvL2RP5cqVs3W/nL6eZs6cqSpVqqh58+aZ+/Lly6dHHnlEBw8e1OLFi333RYhr9nLdmjVrFBYWprp163rsL1CggGrVqsUfRLhku3btkiTFxcVJkn7++WedOnVKN95441n3rV+/viTxusMFjRkzRr/99pvHaZtZ8RqDt9x/xMTHx6t58+aKiopSoUKFdPnll3u8+el+/ZzvNWZZltauXZs3oREw6tatqyJFiuill17S7NmztWPHDv32228aNGiQ1q5dq2HDhkni9QXfysnrae/evdq9e3fm/yv/ed+sz+crNHu5bM+ePSpRooQiIyPPuq1s2bLav3+/Tp8+bSAZgkF6erpGjhyp8PBwderUSZL9mpPk8e6Sm3vf7t278y4kAsr27ds1dOhQDRky5LwXo/Mag7c2bdokyT675eDBg5o+fbqSkpIUERGhzp07a9q0aZJ4jcE7RYsW1cKFC1WsWDG1b99eFSpU0JVXXqnx48fr448/Vo8ePSTx+oJv5eT1ZOK1F+7TZ8NZjh8/fs5GT7KP7rnvExERkZexECT69++v77//Xs8//7yqV68uSZmnRJ3rdZf1NQecS2JioipXrqwBAwac9z68xuCt1NRUSVJ0dLSWLl2a+f++Vq1aqXLlynrmmWeUkJDAawxeK1y4sK6++mq1aNFCDRo00MGDBzV+/Hh16tRJCxYsUJMmTXh9wady8noy8dqj2ctlBQsW1L59+85528mTJzPvA+TU4MGDNW7cOPXs2VODBg3K3O9+PZ06deqsx/Caw4W89957WrJkiZYvX678+fOf9368xuAt98Tgjh07erzJWbRoUbVo0ULvvvuuNm3axGsMXlm/fr0aNGigMWPGKDExMXN/x44ddfXVV6tHjx76/fffeX3Bp3LyejLx2uM0zlxWpkwZ7d+//5w/1N27d6tEiRIc1UOODRs2TKNGjVLXrl01ceJEj9vcF6af6zQA975znT6A0Hbq1CkNGDBA9957r0qVKqWtW7dq69at+uOPPyRJR44c0datW3X48GFeY/BauXLlJEmlSpU667bSpUtLkg4dOsRrDF4ZM2aMTp48qXbt2nnsL1iwoJo2bao//vhDycnJvL7gUzl5PZl47dHs5bI6deooIyNDq1ev9th/8uRJrVu3TrVr1zaUDIFq2LBhGj58uBISEjRlyhS5XC6P22vWrKnIyEh9//33Zz125cqVksTrDmc5ceKE/v77b3366aeqVq1a5kejRo0k2Uf9qlWrpilTpvAag9fcw8rcg6Wycu+77LLLVKdOHUk672vM5XLphhtuyMWkCETuP5bT09PPui0tLS3zv7y+4Es5eT2VLl1aZcuWzfx/5T/vK+XC/z99upADzvLzzz9fcJ29GTNmGEqGQDR8+HBLktW5c2crPT39vPdr27atFRYWZq1bty5zn3sNtGrVqrEGGs5y+vRpa/bs2Wd9vPXWW5Yk6+6777Zmz55tbdq0ybIsXmPwzsGDB63o6GirbNmyHmtJ7dmzxypUqJB1+eWXZ+6rXbu2FR0dbe3evTtz3+7du63o6Gjr9ttvz9PcCAz9+/e3JFkvvviix/5Dhw5ZpUuXtooWLWqlpaVZlsXrCzlzsXX2cvJ6euKJJ867zl6RIkWslJQUn2Z3WZZl+bZ9xD898sgjGjdunFq3bq17771XGzdu1JtvvqmbbrpJX3/9tcLCOMCKixs/frz69eun+Ph4jRw58qzXTVxcnJo0aSLJXvOlbt26yp8/vx577DHFxMRo8uTJWr9+vT799FPdddddJr4EBKDk5GRVqlRJffv29ViKgdcYvDVp0iT16tVLNWrU0MMPP6zTp09rwoQJ2rt3rz755BPdeeedkqQVK1aocePGKleunB555BFJ0tixY/XXX3/pu+++07XXXmvyy4Af+uOPP3T99dfr0KFDeuCBB3TTTTfp4MGDmjx5spKTkzV+/Hj16dNHEq8vXNyMGTMyL2UYO3asTp8+rccff1ySVKFCBXXu3Dnzvjl5PR04cEA33HCDDhw4oAEDBqhs2bL64IMPtGzZMk2ZMkXdunXz7Rfi09YR55SWlma98sor1uWXX25FRERYZcqUsR577DGPdzWBi0lISLAknfejYcOGHvf/9ddfrRYtWlixsbFWVFSUddNNN1lLliwxEx4Ba/v27ZYkq2/fvmfdxmsM3vr444+tevXqWQULFrQKFy5sNWnSxPr222/Put+KFSus2267zSpUqJBVuHBh684777TWrl1rIDECxdatW62HHnrIKlu2rBUeHm5FR0dbt9xyi/Xxxx+fdV9eX7iQhg0bZvtvLsvK2etp165d1oMPPmgVL17cioyMtK677jrrww8/zJWvgyN7AAAAABCEOH8QAAAAAIIQzR4AAAAABCGaPQAAAAAIQjR7AAAAABCEaPYAAAAAIAjR7AEAAABAEKLZAwAAAIAgRLMHAAAAAEGIZg8AAAAAghDNHgAg5A0bNkwul0vLli0zHSVHbrnlFtWqVUuWZeX4sT/99JPCwsI0ZcqUXEgGAPAHNHsAgKDicrly9BFoDZ7b7Nmz9e2332rUqFFyuVw5fvy1116rNm3aaPDgwTp69GguJATwf+3dX0hUWxTH8Z93MszUaUQijdIoqeyfhKOlEglRkYWNIPZQMaAThFFEZBFBFlhEhRHhQ1EPEvYilfZgJYlYoIVhglCaNKMWYqmlUSmWcx+iudc7k2Zm6tzvB3xZa5991nkZWO6z9wHGm4/zV/4dCADABJWTk+MWO3/+vLq7u7Vv3z7NmDFjUM5qtSogIEAdHR2aO3eu/P39/0yho+B0OrVo0SL5+vqqvr7+l+epqamR2WxWbm6ujhw58hsrBABMBDR7AACvFxERoebmZtntdkVERIx3OaNWVlam9evX6/Tp08rOzh7VXFFRUfr48aPsdrv++osXfgDAm/CrDgD43/O0Z8/hcMjHx0dWq1WNjY2yWCwymUwyGo1KSUmRw+GQJDU1NSktLU0hISHy9/fXpk2b9PLlS4/36ezsVHZ2thYuXCg/Pz+ZTCYlJyerurp6RPVeuXJFkpSenu6W6+np0fHjx7V06VIFBgYqMDBQ8+fP17Zt21RbW+s2Pj09XS0tLSorKxtRDQCAiY9mDwCAIdjtdq1evVrd3d3KyMhQQkKCSkpKtG7dOj179kxxcXHq6OiQ1WrV2rVrVVpaquTkZA0MDLjNs3LlSp05c0azZ89WVlaWLBaLqqqqtGbNGt2+ffun6nE6nSovL1dYWJjCw8Pdchs3blROTo6CgoJks9m0e/duxcbGqqKiQo8ePXKbLyEhQZJo9gDAC00Z7wIAAJjIKisrdfbsWR04cMAV27Vrly5fvqz4+HgdPXrUY664uFgWi8UV37lzp169eqUbN24Miufm5io2NlY2m00Oh0N+fn5D1tPQ0KC3b99qy5Ytbrn6+npVVVVp69atunnz5qDc169f1dPT43aN2Wx2PScAwLuwsgcAwBDmzZun/fv3D4rt2LFDkhQcHOyW2759u6Rvnzb47unTp3r48KHS0tIGNXqSFBoaqoMHD6q9vV33798ftp6WlhZJ0qxZs344Ztq0aW4xg8Egk8nkFjcajfLz83PNCwDwHqzsAQAwhBUrVrgdXBIaGipJWr58uVsuLCxMkvT69WtXrKqqSpLU1dXl8bTQFy9eSJKeP3+u5OTkIevp7OyUJI+NW1RUlKKjo3X9+nU1NzcrJSVFiYmJiomJ0dSpU384Z3BwsNrb24e8LwBg8qHZAwBgCEaj0S02ZcqUYXP9/f2uWFdXl6Rv++KG2hv3M9+7+75q19vb65YzGAwqLy/XiRMnVFRUpEOHDkmSgoKCZLVadfLkSU2fPt3tus+fP3tcDQQATG68xgkAwBj73hSeOnVKTqfzh3/Hjh0bdq6ZM2dK+qeB/C+TyaS8vDy1traqsbFRly5dUmRkpC5cuKA9e/a4jR8YGND79+9d8wIAvAfNHgAAYywuLk7SP69zjsaSJUtkMBjU0NAw7NjIyEjZbDZVVlYqICBAt27dchvT0NAgp9Op6OjoUdcGAJhYaPYAABhjZrNZ8fHxKikp0dWrVz2Oqa6u1qdPn4ady2g0Kjo6WnV1derr6xuUs9vtHr/x9+7dO/X19cnf39/jfSUpKSnpZx4FADCJsGcPAIA/oLCwUElJScrIyFB+fr7MZrMCAwPV2tqqmpoaNTU1qa2tzWND9l+pqal68uSJKioqtGHDBle8rq5OqampMpvNWrx4scLCwvTmzRsVFxerv7/ftYfv3+7duyeDwaCUlJTf+rwAgPHHyh4AAH9AeHi4amtrlZOToy9fvqigoEAXL17U48ePtWzZMhUUFCgkJOSn5srIyJCvr68KCgoGxWNiYnT48GEZDAbduXNH586d0927d2U2m1VaWqq9e/cOGv/hwwcVFxdr8+bNmjNnzm97VgDAxODjdDqd410EAAAYmczMTBUWFsrhcPzy4Sr5+fnKysrSgwcPlJiY+JsrBACMN5o9AAAmoba2NtcBLHl5eSO+vre3VwsWLNCqVatUVFQ0BhUCAMYbe/YAAJiEQkNDde3aNddpmj4+PiO6vrm5WZmZmbJarWNTIABg3LGyBwAAAABeiANaAAAAAMAL0ewBAAAAgBei2QMAAAAAL0SzBwAAAABeiGYPAAAAALwQzR4AAAAAeCGaPQAAAADwQjR7AAAAAOCFaPYAAAAAwAv9Day/PA0pOpH6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dps.time, dps.freq[max_pos], color='red', alpha=1)\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.title('Detected frequency drift')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Overlaying this traced function with the Dynamical Powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAKOCAYAAAARYLzXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsr0lEQVR4nOzdd3xT5dsG8CtJ996bDkrZo+y9p2yQjcoQEESRIQIiUBBRQWT/UDYuEJWlgCJ7Q0WGzDJaCi20tKV7pG3O+wdvIrFJm5an6bq+fvJRz3nOfe6kOUme8yyZJEkSiIiIiIiIqEKSl3QCREREREREVHJYKSQiIiIiIqrAWCkkIiIiIiKqwFgpJCIiIiIiqsBYKSQiIiIiIqrAWCkkIiIiIiKqwFgpJCIiIiIiqsBYKSQiIiIiIqrAWCkkIiIiIiKqwFgpLCE5OTnYuHEjunXrBg8PD5iZmcHV1RVt27bFsmXLkJ6eXtIpGqRdu3aQyWQ4duxYSaciTHh4OAYOHAg3NzcoFArIZDJs2bKlwONkMpnWw8TEBI6OjqhSpQr69++PZcuW4enTpy+VW0hICGQyGUJCQvLsi4uLw+jRo+Ht7Q0TExO95XQpC39HlUqFBQsWoGrVqjAzM4NMJkO7du1KOi0tW7ZsgUwmw8iRI0s6lVJv5MiRBl9b/z3mxYeNjQ28vLzQtm1bTJs2DaGhocWXdBl07NixYr9W1Od48SGXy+Ho6IjWrVvj66+/Rm5ubrGdn4iIXp5JSSdQEd2/fx+9evXCjRs3YGJigubNm8PHxwdxcXE4ffo0Tpw4gWXLlmHPnj2oX79+SadboahUKrz66qu4dOkS6tatiy5dusDExARVqlQxOMarr74KGxsbAEBKSgoePXqEffv2YdeuXZg5cybmzp2LmTNnQqFQCM19zJgx2LNnD6pUqYJBgwbBzMwMwcHBOHbsGNq3b4+2bduW6kpfQVauXIl58+bB0dERffr0gbW1NapXr27UHPz9/fHgwQOEh4fD39/fqOemf9WrVw/BwcEAgKysLMTHx+PSpUs4ceIEvvzyS3Tq1AmbN2+Gj49PySZawVhbW2PAgAEAnt/4vHPnDk6dOoVTp05hz5492Lt3L0xM+LOjtAsJCcH8+fMxb948vTcWZTIZAECSJCNmRkTFiZ/ORhYTE4NWrVrh8ePH6Nq1KzZu3Ahvb2/N/uTkZEyePBmbN29G27ZtERoaimrVqpVgxhVLREQELl26BH9/f1y6dAlyeeEb07/44os8FYaUlBSsXbsWc+fOxUcffYTo6GisWbOm0LHfeecdDBkyBC4uLlrblUol9u3bB0tLS1y6dElTKQVgUEXwm2++QXp6Onx9fQudk7Hs3LkTAPDzzz+jQ4cOJZyNbv369UOzZs1gb29f0qmUa3379tX5Y/XPP//E5MmTcejQIbRu3Rrnz5+Hm5ub8RMsRZo0aYKbN2/Cysqq2M/l4uKSp+X3wIED6NWrFw4cOICNGzfirbfeKvY8iIio8Nh91MjefvttPH78GC1atMDevXu1KoQAYGdnh02bNmHIkCFISUnB66+/XkKZVkyPHj0CAPj5+RWpQqiPra0tPvjgA+zduxdyuRz/+9//8OeffxY6jouLC6pXr56nUvjkyRPk5OTAzc1Nq0JoKF9fX1SvXt0oPxyLSv23qVy5cglnop+9vT2qV68OT0/Pkk6lQurcuTPOnTuHGjVqICIiAlOmTCnplEqclZUVqlevXmI3fF555RXN99gvv/xSIjkQEVHBWCk0orCwMOzatQsAsHr1apiZmektu2LFCpiZmSE0NBRHjhwBAMTHx8Pc3BzW1tZISUnReVxWVhYcHR2hUCgQFRWlte/p06eYOXMmatWqBSsrK9ja2qJZs2bYsGGDzi4gL44zO3ToELp06QInJyfIZDJcvnw53+d6/fp1zJkzB82bN4enpyfMzMzg4eGBfv364fTp03nKjxs3DjKZDF988YXemJMnT4ZMJsMnn3yS77lfFBsbi2nTpqFq1aqwsLCAg4MD2rRpg2+++UbrOUdEREAmk6Ft27YAgOPHj2vGxojsJtilSxcMHjwYAPDll19q7XtxvOC9e/fw2muvwdPTEwqFAsuXL89TRk0mk8HPzw8A8ODBA61xPSNHjkT79u3zPKf/jjHSN6bwxe1nz55Ft27d4ODgACsrK7Rq1QqHDx/W+1z/+usv9OjRAw4ODrC1tUWLFi2wc+dOzWtt6OuqziE8PBwAEBAQoHkO6nwLGhPp7+8PmUyGiIiIPPuUSiXWrFmD1q1bw9HRERYWFggICMCrr76K/fv3A/h3zNSDBw/y5PBi3ILGFO7Zs0dzHZmbmyMgIADjx4/XxH3Ri6+TSqXC8uXLUatWLVhYWMDd3R2jR49GbGysQa+hWmxsLJYvX44uXbrA398fFhYWcHR01FwTurw4Ji0rKwvz5s1DlSpVYG5uDh8fH0yePBlpaWk6j1UqlVi0aJHm+vP29sZbb7310mNr82Nra6u5Xn788UdER0cDAM6cOQOZTIY6deroPfby5cuQyWSoWrWq5vPhxb9pUlIS3nvvPVSqVAnm5uYIDAzE/PnzkZOTkyfWgwcPsGjRIrRt2xY+Pj4wNzeHi4sLunbtit9++03n+V88V3x8PN5++234+PjA0tISdevWxbZt2zRlT506ha5du8LR0RE2Njbo3r07bt26lSdmQWMKIyIi8O6776JatWqwsrKCg4MD6tSpg2nTpul8XxZFgwYNACBPvKtXr2L48OHw9vaGmZkZ3N3d9X5H1KhRAzKZDA8fPtTa/uuvv2quw5MnT2rtu3nzJmQyGZo3b54n3oMHDzBx4kRUqVJF893Qvn17TY+E/3rxM2THjh1o1aoV7O3tIZPJkJiYCAB4/Pgxpk+fjlq1asHOzg42Njbw8/NDnz598PPPP2vFe3FM7d9//41evXrB2dkZ1tbWaNasGXbs2KH39VQqlVi9ejVatGgBBwcHWFhYoEaNGpgzZ47e3wYAcPr0aQwePFjzfnR3d0eLFi3w2WefISMjQ/M858+fDwCYP3++1udcSEiI5j2q9t+xpGqGfJ8VNK7YkO+l48ePo1OnTrC3t4ejoyP69u2LO3fuAHg+HGTp0qWoVasWLC0t4e3tjRkzZkCpVOp9jYgqMnYfNaJ9+/ZBkiTUrl27wLGCbm5u6Nq1K3799Vf8+uuv6NChA5ydndGjRw/s2rULP//8M0aNGpXnuL179yIxMRFdunTRaoW8cuUKunXrhidPnsDPzw9dunRBeno6zp07h7Fjx+Lo0aP4/vvvdeayfft2rFu3DvXq1UO3bt3w8OHDAlvRli1bhk2bNqFmzZpo0KABrKysEBYWht27d+PXX3/Fd999hyFDhmjKT5w4EevXr8e6deswbdo0rS8XAEhPT8fWrVthamqKN998M99zq4WFhaF9+/aIjo6Gj48P+vTpg+TkZBw9ehQnT57EH3/8ge+++04zWcWIESPw5MkT/PHHH3B3d0e3bt0AIE+r3MsaNmwYtm3bhpMnTyI7OxumpqZ58m7UqBFsbW3Rpk0bpKWl5duCN2LECKSmpuKXX37RGtMDAK1atdL5nAAUajzevn37sHz5cs174Pr16zh9+jS6deuGw4cPo02bNlrlDx48iF69ekGpVKJOnTqoXbs2Hjx4gFdffRVTp041+LwA0K1bN/j7++Pnn39GWlqa1phNDw+PQsX6r4SEBHTr1g2hoaGwsrJCy5Yt4ezsjIcPH+KPP/5AfHw8unfvDg8PD4wYMUJnDgAMap2dPn06vvjiCygUCrRp0wbu7u64ePEivv76a/z444/4/fff0bRpU53Hvv7669i9ezfatWuHoKAgnD59Gps3b0ZoaCj++usvmJubG/R8Dx48iClTpsDX1xdBQUFo3rw5oqKicObMGZw8eRLnz5/X261ZqVSia9euuHLlCtq2bYtq1arh5MmTWLFiBW7evIk//vhDq3xubi769OmD33//HdbW1ujcuTPMzc3xyy+/4M8//8y3cvayOnfuDBcXF8TFxeHYsWMYNmwYWrRogeDgYFy+fBmnTp1Cq1at8hy3du1aAMD48ePzfAYlJiaiefPmSEhIQOvWrZGYmIiTJ08iJCQEUVFRWLdunVb5b7/9FnPmzEFQUBBq1aoFBwcHRERE4ODBgzh48CAWL16M6dOn68z/2bNnaNasGTIyMtCyZUs8efIEJ0+exLBhw6BSqWBpaYkhQ4agYcOG6NKlC/766y8cOHAAFy9exPXr1w3+zDpw4AAGDRqE1NRU+Pr6onv37sjNzcXdu3fx5Zdfok6dOkImTUpOTgYArffpzp07MXToUCiVStSrVw9t27ZFeHg4du/ejb1792L16tWYMGGCpnyHDh1w69YtHDlyBCNGjNBsf/HG1JEjR9C6des8+/7b3fzQoUPo378/UlJSUK1aNfTo0QPx8fE4d+4cjh07hlmzZmHRokU6n8vixYuxdu1aNG/eHD169EBYWBhkMhkeP36M+vXrIyYmBgEBAejYsSNMTU3x6NEjHDp0CFlZWVqfzWrnzp3D+PHj4evriy5duiA6OhqnTp3C4MGDcffuXXz44Yda5RMTE9G9e3ecPXsWTk5OaNKkCaysrBAaGoqFCxdi165dOHHiBJycnLSO+/jjjzF37lwAQHBwMFq3bo1nz57h5s2bmDVrFoYMGQJ/f38MGDAAhw4dwpUrV7TG7qqPc3FxwYgRI7B161YA0Ppb6FLY77PC2LNnD1atWoUmTZqga9euuHjxIvbs2YPz58/j6tWrmDBhAv744w+0b98eAQEBOHbsGBYvXoynT59i06ZNQnIgKlckMprXXntNAiCNHj3aoPLz58+XAEitW7fWbNu9e7cEQGrXrp3OY3r27CkBkL777jvNtrS0NMnf318CIH355ZdSbm6uZt+jR4+kBg0aSACkjRs3asVq27atBEACIG3evFnn+dRljh49qrX92LFjUkRERJ7y+/btk0xNTSVHR0cpLS1Na1/Lli0lANKff/6Z57iNGzdKAKRBgwbpzEOXRo0aSQCkESNGSFlZWZrtt27dkry8vCQA0v/+9z+tY44ePSoBkNq2bWvwedTUr1V4eHi+5R49eqQpe+fOHc32efPmabaPGTNGUiqVeY5Vl5k3b57W9vDwcAmA5Ofnl+cYQ56Tvr+jertMJpO2bdum2a5SqaR33nlHAiC1b99e65jU1FTJw8NDAiAtWbJEa9/u3bslhUKhN9f8+Pn56X199eVf0LHq66V9+/ZSbGys1r7k5GTp0KFDBucgSZK0efNmzXvuRb/++qsEQLK3t5fOnz+v2Z6bmytNnz5dAiD5+vpKmZmZmn3qvykAKSgoSIqMjNTsi4mJkQICAiQA0tatW3XmosuNGzekCxcu5Nl+9+5dydfXVwIgnT17Vmuf+v0DQGrevLmUkJCgdZy9vb0EQDp+/LjWccuWLZMASJUrV9bKPTExUXOt5/fZosuIESN0vv916dSpkwRAmj17tmbb+vXrJQDS8OHD85RPTk6WbGxsJAsLCyk+Pl6zXf03BSD169dPysjI0Ow7d+6cpFAoJJlMluc9ceHCBenGjRt5zhMaGirZ29tLJiYmWq/Lf881ZMgQrc+tdevWSQAkb29vydHRUdq1a5dmX2ZmptSuXTsJgBQSEqIVU9/1HxERIdnY2EgApKVLl2p9L0iSJN28eVNn/rqoz6HrmlapVFLTpk0lANLrr78uSZIkRUdHS7a2thIA6auvvtIqv3PnTkmhUEgmJibSlStXNNt//vlnCYD0xhtvaJWvU6eO5OPjIzk4OGh9V0qSJPXr108CoHUdR0VFSQ4ODpKpqanWZ5r6Oauv8cOHD2vtU283NTWV/vjjjzzPMyQkRAIgTZgwIc++lJQU6cyZM1rb1O9lANLUqVO1Xv9Dhw5J5ubmklwul/7++2+t4wYOHCgBkIYNGyYlJSVptmdkZGhiql/n/752Dg4OeT7TVCqVdOTIESkxMVGzTd/3zIvUuetjyPeZOt/C/r5Qb5fL5Xmug/bt20sApFq1akk1atSQHj9+rNl/9epVydTUVOf1SkSSxEqhEXXr1k0CIM2cOdOg8l999ZUEQKpRo4Zmm1KplFxcXCSZTCY9ePBAq3xsbKxkYmIi2draalW41qxZo/PLVO3ixYsSAKl+/fpa29UfvF27dtWbY0E/xnUZNmyYBED67bfftLZv27ZNAiC9+uqreY5p3Lhxoc5z/PhxCYDk5OQkJScn59mv/vEVGBiotd0YlcLMzExN2XPnzmm2q79EnZ2dpZSUFJ3HllSlcPDgwXmOefr0qQRAMjMz0/rC37JliwRAqlevns5zDRo0qFRUCv/++2/Ne+TZs2cvnYMk6a8Uqn+oLFy4MM8x2dnZUmBgoARA+vbbbzXbX6wUHjhwIM9xS5YskQBII0eONCj3gqgrHe+//77WdvX7Ry6XS9evX89z3MSJE3VWRtSV1h9//DHPMVeuXJFkMlmxVgqHDBkiAZDGjx+v2Zaeni45OjpK5ubmUlxcnFZ59efkf/926r+pra1tnhsHkiRJPXr0kABIW7ZsMfh5fPjhhxIAafXq1TrPZWdnlye/nJwcycXFRW+lVt8NQ33X/6RJkyQA0qhRowzOWx9dlcLs7Gzp5s2bmpuhcrlcc8NBfcOzU6dOOuOp/85vvvmmZlt8fLwkk8mkSpUqabbFxsZKMplMGjlypNSnTx/J1NRU892Xm5srOTk5Sebm5loVefVNmLlz5+o89y+//KK5AfAi9bX/1ltv6Tzu7bfflgBoVVLyo36OPj4+WpV/tfHjx0uA9k3ka9euaW4SvXgDSS0tLU1yd3eXTExMtG5s1K1bt1A3kERWCvP7PnvZSmF+1wGg+wZz3759C329ElUUHFNYikk6xvmZmppi6NChkCQJ3377rda+bdu2IScnBwMHDtTqnnHgwAEAwMCBA3Wep379+rCxscGVK1eQmZmZZ3/fvn2LlH9SUhK+//57fPDBBxg7dixGjhyJkSNH4tq1awCedyt50auvvgoPDw/s2bMHT5480Wy/ePEiQkNDUb16dYPX2jpx4gSA57NB2tra5tn/2muvwdTUFPfu3csz9rK4qVQqzX//t4saAHTq1KlIk8UUp1deeSXPNhcXFzg5OUGpVCIuLk6zXf3aDxo0SGesYcOGFU+ShfT7778DAPr37w8HB4diO09OTg7OnDkDQHdXKxMTE7zxxhsAno/7/C9TU1N06tQpz3b1rMTqMXOGys7OxoEDBzBv3jyMHz8eo0aNwsiRIzVjnv57Xar5+vqiZs2aBuXx8OFDhIeHw9zcXGeXubp166Ju3bqFyruw1NfZi9eYpaUlRo0ahaysLGzevFmr/ItdR3Vp2LAhXF1d82zP7++QkZGBnTt34sMPP8S4ceM0n4HqMVL6XuuGDRvC2dlZa5tCodCMHe7SpUueYwIDA/XmoYv6/W9od3xDvDim2dTUFDVq1MB3330HS0tLbNy4Ec2aNQPw72eEvq6Ho0ePBqB9PTg5OaFevXp4+PChZszY0aNHIUkSOnTogA4dOiA7O1szrvDy5ctISEhA8+bNYWFhoYlT0Pehuiv8uXPndO7X933YqFEjAMCsWbOwd+9eg9caHjBggM75BV577TUA/75WwL9/s969e+vsMm5lZYVGjRohJycHf/31F4Dn4xyvXr0KKysrDB061KCcRCrO77P8rgNTU1PNeHpd+wv7uUlUEXBMoRGpv+RjYmIMKq+eROK/40NGjBiBVatW4dtvv8Xs2bM129UTRah/YKrdv38fANCrV68CzxkfH59nRlT1D5HC2LVrF0aPHq0ZgK+LepyJmqmpKcaNG4cFCxZgw4YN+OijjwAU/GNNF3VFLyAgQOd+ExMT+Pr6aiqF/33OxenFCtR/x30ARXu9i1ulSpV0bre1tUVCQgKysrI029Svvb7nUVqeX2RkJAAU+5Iv8fHxyMrKgpmZmd73mXpGVV03KDw8PHSu7aa+2fHia1+QW7duoU+fPnorI0De61Itv/fAf/NQP49KlSrpHX/s7++PK1euGJR3Uaivs/9eY2+//TaWLVumNX751KlTuHbtGoKDgzUVl/8qzPMHnk/qMWjQoHx/fOp7rfWtr6j+ca1rv3qfoe+H4nj/vzimWS6Xw87ODrVr10bfvn21vscK+nzWdz106NABly9fxuHDhxEUFKQ1ZvDZs2cAno8j7Nq1q97xhOrvw4LGtOqbDEnf59eIESNw7NgxfPPNN+jTpw9MTExQr149tGvXDq+99prW2LwX6ZtwS71dPevyi7kvXboUS5cuNSh/9d85ICAgz/h1YyjOz/v8rgMPDw+dawEX9johqkhYKTSiBg0a4Pvvv8eFCxcMKh8aGqo57kUNGzZErVq1cP36dZw/fx5NmzbFzZs3cfHiRfj7++eZ9CM3NxfA87uLjo6O+Z5T191HS0tLg/JVe/jwIYYNG4bMzEzMnj0bQ4cOhb+/P6ysrCCTyfDhhx/i008/1dkS+tZbb2HRokVYv349PvzwQ6SkpGD79u2wsrIqcEB7WXHp0iUAz7+cdP0gKOzrbQxFWZ5DVytoUWO9rBdbZ9X05VfaiHy9BgwYgLCwMPTt2xczZsxAtWrVYGdnB4VCgYMHD6Jr1656F6Muib9bUUmSpJkhuXbt2lr7AgMD0a1bNxw4cACHDx9Gp06d8NVXXwGA1sQm/1WY55+Wlob+/fsjNjYWY8eOxYQJExAYGAgbGxvI5XKsW7cOb731VpFfaxF/i+J4/+tap1CkDh064Msvv8SRI0cwfvx4HDlyBNWqVYO3tze8vb3h7u6uqQyqZ+3+b6VQ/X04bNiwIlWS9H0+y+VybN26FTNmzMBvv/2Go0eP4syZM7h48SKWLl2KOXPmYMGCBYU+n67cmzRpgho1auRbVl0ZK+nPuZf5PtP1uf2i/K6DsvR5RVRasFJoRD169MD777+P69ev49KlS/nOQBobG4uDBw8CAHr27Jln/xtvvIEZM2bgm2++QdOmTbVaCf/7JVCpUiXcvn0bkyZNQseOHQU+I9327duHzMxMvPrqq1i4cGGe/Xfv3tV7rJeXF/r164effvoJ+/btQ0REBNLS0jB69OhCdfFTt8io76z+V05OjuYOqjFbCQFoppVv27atzhagss7LywvAv3eo/0vXshAvS939KjU1Nc++nJwcPH78OM929bpt+bWaieDs7Axzc3NkZWXh0aNHOluc1O/T4nwv3rp1C9evX4e7uzt+/vnnPHfR87suC0v9PB4+fAiVSqXzB1pxvA/UDh48iISEBJiYmOjscv7OO+/gwIEDWLt2LYKDg/Hzzz/Dzs4Ow4cPF3L+kydPIjY2Fg0bNswzKykg9rUuKl9fX9y+fRthYWHCZ1guiLe3N27duoX79++jZcuWefbrux7atGkDExMTHDt2DJGRkbh7965WRb59+/bYsWMHYmNjcerUKdjY2KBJkyZaMSpVqoS7d+9iwYIFmq6EItWsWRM1a9bEBx98gJycHPz8888YOXIkFi5ciGHDhuWZ9Vnfsh/q6+PF10D92dGlSxd8/PHHBuWjPiY8PFznbNclKb/PbQB5lh8houLFWylGVK1aNfTu3RvA8x8l2dnZesu+9957UCqVaNiwoc7xRK+99hrkcjl+/PFHZGZmapaT+G/XUQCaZQj+u05ScUlISACgu7tVXFxcgYu2T5w4EQDw1Vdf4euvvwaQ/x18XdStpbt379a5btP333+P7OxsBAYGGrVSePDgQc36U9OmTTPKOdVfvLrWUisO6inh9a2z9eJaa6KoK6K3b9/Os+/o0aM6n7t6PMrOnTuRlJRk0HmK8lqamJigRYsWAKBzLcDc3FzN+GD1OpnFQX1dqtcK+6/t27cLO1elSpXg7++PrKwsneu+Xbt2DVevXhV2vhelpKRoFq0fNmyYzmVLunXrhsDAQOzduxeffPIJsrKy8Prrr8Pa2lpIDvl9BiqVSr1r4RmT+v1fElPzqz+f9a2NqR7v+d/rwdbWFo0aNcLTp081a9292BLYoUMHqFQqfPbZZ0hNTUWrVq3yVIKM+X1oYmKCIUOGoE2bNpAkCf/880+eMj///LPO3wI//PADAGj1/FHnvmvXrgJb0dQ8PT1Rp04dpKen48cffzToGEM+59Sv68t8r+T3uX3r1i29NxaJqHiwUmhka9euhbu7O86cOYPevXvnGW+SnJyMN998E9u3b4eNjU2eyWTUvLy80KlTJ8THx2P69Ol4+PAhWrZsqfPO57hx4+Dj44Ovv/4an332mc6+9Ddu3BD2Q0V9J/SXX37RGj+ZlpaGMWPG5DvOEHj+Q6B27drYv38/rl+/joYNG2oG8RuqTZs2aNiwIRISEjBp0iStL907d+5oxmIaq2KWkpKCL774Ar1794ZKpcK7776rcxB8cVBXeu/evWuUiuHAgQPh5uaGS5cuYdmyZVr7fv31V/z000/Cz6l+Lf/3v/9pLeh+9+5dvPvuuzqPadCggWZ9sgEDBmiN9QSe/81eXAMN+Pe1vHnzZqHyU1dSlixZopkAAnjePeqjjz7C3bt34evrq3fyCxGCgoIgl8tx7do1rUW+JUnCokWL8iz8/bLUr/usWbO0xkUlJyfj7bff1tt18mUcOnQIzZo1w82bN1G5cmW9467kcjkmTJiAnJwcTeWiMGOWC6L+DDxy5IjWD97s7GxMnjwZ9+7dE3auopo6dSqsra2xadMmrFy5Mk8l49atW7h161axnHvs2LGwsbHBoUOHsH79eq19e/fuxXfffQcTExNMmjQpz7HqSuDatWshk8m0PkfVPWHU49D/23UUAN5//33Y2toiJCQEGzdu1HTJVJMkCaGhoQXevPyvb775RjM04EWPHj3SjJ1V90540cOHDzF79myt6+HYsWPYtGkT5HK55iYp8HzoSO/evXH9+nUMHz5c5/wEMTExeV7TOXPmAAAmTZqEo0eP5jnm2LFjWjfGDPmcK+pn4YvUf7tvv/1W65qIiYnBm2++aXDFl4jEKH9910o5T09PnDx5Er1798bvv/8Of39/tGjRAl5eXoiPj8epU6eQnp4Ob29v7N69O99xAyNGjMDBgwexevVqzf/rYmtri99++w09e/bErFmz8OWXX6Ju3brw8PBAYmIi/vnnH0RGRmLw4MHo37//Sz/HXr16oV69erhy5QqqVq2Kdu3awcTEBCdOnIBcLseoUaPyzPz3XxMnTtS0Dha2lVDthx9+QPv27bFlyxYcPnwYLVq0QHJyMo4cOYKsrCwMHTpU6A9Btffff18zmD01NRWPHj3CpUuXoFQqYW5ujkWLFmHGjBnCz6uPn58f6tevj0uXLqFu3bpo2LAhzM3NUa1aNb2LZ78MGxsbbN26Fb1798bUqVOxZcsW1KpVC5GRkThz5gwmTZqEFStW6Jxxr6iGDBmCL774AteuXUOtWrXQsmVLJCUl4fz58+jbty8yMzN1dtPasmULunbtikOHDsHPzw+tW7eGo6Oj5m/WqFEjrS7X/fr1w7FjxzB8+HB06dJF06X5888/zzNb5It69eqFadOmYenSpWjWrBnatm2rWbw+LCwMDg4O+PHHHw1ehL4oXF1dMX78ePzvf/9D+/bt0a5dO7i6uuLixYu4f/8+3n//fXzxxRfCzjdp0iT8/vvv+PPPP1G9enV07NgRZmZmOHr0KGxtbdG7d2/s3bu3SLF3796t6V6nVCoRHx+PS5cuaSbX6Nq1KzZu3Jhvt8jRo0djzpw5yMjIQKtWrfKMPXwZDRo0QPfu3bF//37Uq1cPHTt2hI2NDc6cOYOEhAS8++67WLVqlbDzFYW/vz+2b9+OwYMH47333sOXX36Jxo0baxav/+eff7B58+Y83R1F8PT0xNatWzF06FCMGzcOa9euRY0aNRAREYEzZ85AJpNhzZo1Omeo7dChAxYtWoTMzEwEBwdrXXeVK1eGn5+f5lrXVSn08/PDzp07MXDgQIwZMwYhISGoVasWnJ2dER8fj8uXLyMmJgYzZsxA586dDX5OO3fuxIgRI1CpUiXUq1cP9vb2iI2NxcmTJ5GZmYlBgwahadOmeY576623sGLFCuzZswcNGzbE48ePceLECahUKixYsAANGzbUKr9161b06tUL27dvx969exEcHAw/Pz9kZmYiLCwMN27cgJubG8aOHas5ZuDAgZgzZw4+/vhjdOjQAfXr10f16tXx7Nkz3LhxA5GRkQgPD4e9vT2A59ePlZUVdu7ciTZt2iAwMBAKhQK9e/fW9Hbq168fli1bho4dO6JDhw6a77wNGzYY/Jq1adMGnTt3xp9//on69eujTZs2yM7Oxvnz51GvXj20aNFCM3MzERlByayEQUqlUlq3bp3UpUsXyc3NTTI1NZWcnZ2lVq1aSV988YWUmppaYIz09HTJzs5OAiBZWFhoLT6rS0JCgvTxxx9LjRo1kmxtbSVzc3PJ19dXatOmjbRo0SLp7t27WuUNWYNQX5mkpCRpypQpUpUqVSRzc3PJ29tbGj16tPTo0SOD1kC6e/euhP9f7Pu/i9wXRkxMjCYPMzMzydbWVmrVqpW0ZcsWSaVS5SkvYp1C9UMul0v29vZSYGCg1LdvX2nZsmXS06dP9R5vyOtSlHUK1fsHDRokubu7axaPf/E5FrQeVGEXhZckSTp//rzUrVs3yc7OTrK2tpaaNm0q7dixQzp58qQEPF8IvTAKWiMwJiZGGjVqlOTm5iaZmZlJ1apVk5YsWSLl5ubme2xGRoa0bNkyqUmTJpKtra1kYWEh+fv7SwMHDsyzPmBubq708ccfS9WrV5fMzc3zrE2pb51CtV27dkmdOnXSLJ7t6+srjRs3TmdeBf1Ni/Jezc3NldasWSPVrVtXsrKykpydnaUePXpIZ86c0RuvoPPk95wzMzOljz/+WHP9eXp6SqNHj5aePHlS4Bplury44Lf6YWVlJXl6ekqtW7eWpk2bJoWGhhocr1WrVhIA6fvvv9dbpqC/qb5rUv3ca9SoIVlYWEhubm7SoEGDpBs3buiNWdC58rse9b1fCvr73blzR3rrrbekgIAAyczMTHJwcJDq1Kkjvf/++3nWwtUnv8Xr83P58mVp6NChkoeHh2Rqaiq5uLhIffr0kU6ePKn3mIyMDM21N3Xq1Dz7R48eLQGQHB0dtRaE/6+oqCjpgw8+kOrUqSNZW1tLlpaWUkBAgNS5c2dp+fLlUlRUlFb5gj5/jh8/Lk2aNElq1KiR5jPIx8dH6tixo7Rt2zYpJydHq/yL7//Q0FDplVdekRwcHCRLS0upcePG0rZt2/Tmnp2dLW3evFnq2LGj5OzsLJmYmEju7u5Sw4YNpalTp0qnT5/WedzRo0elfv36Se7u7pKpqank5uYmtWjRQlq8eLHWWo6SJElHjhyR2rVrJ9nb22vWFH3xPZ6eni5NnTpVCggIkExNTfOsW2jI95kkSVJqaqo0efJkydvbWzIzM5P8/f2lDz/8UMrIyCjS91JBn5uG5kVUEckkqRj68BC9pE8++QQfffSRplWJyg/133bixImaVm4iY4uMjETlypXh5OSER48eCW25JirIyJEjsXXrVmzevBkjR44s6XSIiDimkEqf+Ph4rFixAgqFQu94MCrdnjx5ojWOTO2PP/7AokWLAOieFInIWObPn4/c3FxMmDCBFUIiIqrwSl2l8Pbt2xg+fDhq1KgBe3t7WFlZoXr16pg6darOaeVv376Nvn37wtHREdbW1mjdurVmfSIqW5YsWYI33ngDwcHBePr0KcaNG4cqVaqUdFpUBH/99Rd8fX0RHByMvn37on///qhduza6deuG9PR0zJo1K89U8UTF7cyZMxgzZgzatGmDTZs2wdPTE1OnTi3ptIiI6AUqlQrLli1D9erVYWFhgUqVKmHatGlIS0srluP379+PFi1awNraGk5OThg4cCDCw8PzlLtw4QImTZqEli1bwsbGBjKZLN+1WbOysjB37lwEBATA3NwcgYGBWLhwYb6rD5SkUjfRzKNHj/D48WP069cPPj4+MDExwT///IN169Zh+/btuHz5Mtzc3AAA9+7dQ4sWLWBiYoIPPvgA9vb2WL9+Pbp27YoDBw7oXMqBSq99+/bh+PHjcHd3x7vvvovFixeXdEpURHXq1MG4ceNw/PhxHD9+HKmpqXB0dES3bt0wfvx49OnTp6RTpAooLCwMGzduhLW1Ndq3b49ly5ZpJtcgIqLSYcqUKVi5ciX69euHadOm4ebNm1i5ciUuXbqEQ4cO6Vz7tqjH79y5EwMGDEC9evWwZMkSJCUlYfny5WjZsiX++usvzdIpwPPK45o1a1C9enXUq1evwImQBg8ejD179mD06NFo3rw5zp49izlz5uDu3bv5ViZLTEkPajTUjh07JADS559/rtk2cOBASS6XS5cuXdJsS0lJkXx9faWqVavqnEiEiIiIiIhKn2vXrkkymUzq37+/1vaVK1cWODFYYY9XKpWSl5eX5OvrK6WkpGi2X7p0SZLL5dLYsWO1Yjx58kQzEeRPP/2U72Rp+/bt0zkh1tSpUyUAeieEKkmlrvuoPn5+fgCAZ8+eAXi+5t3evXvRrl07BAcHa8rZ2NhgzJgxCAsLQ2hoaEmkSkREREREhbRt2zZIkoTJkydrbR87diysrKzw3XffCTv++PHjiI6OxpgxYzTLqgBAcHAw2rVrhx9//FGrq6e7uzusra0Neh4//PADAOTJQ/3/BT2PklDquo+qZWZmIjU1FZmZmbhx44ZmXbfu3bsDAK5evYqsrCw0b948z7HNmjUDAISGhhZ53JKnp6fW/6tUKly8eBG2traQyWRFiklEREREZZskSUhJSYGXl1eBXRlLSmZmJpRKpdHOV7Vq1Ty/j3XNBVKQ0NBQyOXyPL/fLSwsEBwcXGCDT2GOV/+3vrrEkSNHEBYWhlq1ahXpeXh7e6NSpUpa2ytVqgQvL69S2XBVaiuFGzZs0Jp50t/fH9999x1at24NAIiOjgYAeHt75zlWvS0qKkpYPiqVKs8floiIiIgqpocPH8LHx6ek08gjMzMTAf6ueBKTarRzyuVyuLq6vnTDSXR0NFxcXGBubp5nn7e3N86cOQOlUql31ujCHG9oXaIolcLo6GjUrFlT5z5vb2+dM7SXtFJbKezbty+qV6+O1NRUXLp0CXv37kVcXJxmf3p6OgDo/KNbWFholSmK/97dSEpKgoODA0JGLIGFmWWR42pxcRITBwDiEsTFAgATcW8NSfCdKpmzo7hgpoIvgWRxH8AptV2ExQIAu1uJwmJJmVnCYgFAUmMPofHsLz0VFkumUAiLJZpkLeizSB0vNq7gQoZydxUXC0Bqpbyf9UVlG5EhLBYA4FmysFCJTcVeC7nWYpcilgReDi6hRf+O1ikhUVws0Us4ywW+cA624mIByHGwEBZLcUfczXgAkAn8LZJV3bPgQgbKzEzHpx++BltbsX8LUZRKJZ7EpOLB9UmwsxX32alPckoW/GqtRFhYGOzs7F4qVnp6us7f9oD273t9lcLCHF+cdYmC8niZOkpxKbWVQh8fH83dl759++LVV19F48aNNdPZW1lZAXg+3et/ZWZmAoCmjAjqOx8WZpbiKoUW4vKDmeAfOQIrSxLE/qiWmYt83QRfAlkqYaGyLQ3rt24oC3NxlXPRw5GzrEQ/V8OmrTZEqa4UWgiuFIr6bAPEfr4ByLEU98PVwkLwEABzcdOLWwi+FnKsBFcKBX5kWoj7kz5nJvBmlehKocjPEZHfgQByBH6OKER+hkBspVAm+DsVQKkfTmRnaw47u+KvFIpkZWWF2NhYnfsM+X1fmOOLsy5hZWWlM646tsg6iiilsyO0DnXr1kX9+vXxv//9DwA0U8Tq6iKq3qarOZiIiIiIqLyTjPiPKF5eXoiLi9NZoYqKioKLi4veVsLCHl+cdQkvLy+9w9iioqJKZR2lzFQKASAjIwMJCc+7SdapUwfm5uY4e/ZsnnLnzp0DADRq1Mio+RERERERUdE0btwYKpUKFy5c0NqemZmJy5cvF/jbvjDHN27cGAD01iXs7OxQtWrVIj+PqKgoPHz4UGv7w4cPER0dXSrrKKWuUvjkyROd248ePYpr165pZha1sbFBr169cOzYMVy5ckVTLjU1FRs2bEBQUFCRZx4lIiIiIirLVJCM9hBl8ODBkMlkWL58udb29evXIz09HcOHD9dsu3fvHm7dulXk49u2bQtPT09s2LABqan/zglx5coVHDt2DAMHDoSpqWmRnsfQoUMBIE8e6v9/MY/SotSNKZwwYQIeP36MDh06wM/PD5mZmbh48SK2b98OW1tbLF26VFP2008/xeHDh9GlSxdMmTIFdnZ2WL9+PaKiorBv375S39ebiIiIiIieq1OnDiZOnIjVq1ejf//+6N69O27evImVK1eibdu2GDZsmKZsx44d8eDBA0gvjAEuzPGmpqZYsWIFBg8ejNatW2Ps2LFITk7GsmXL4Orqivnz52vl9uDBA3z77bcAgOvXrwMAfv31V81Moq+//rpmXfUePXqgZ8+e+PLLL5GUlITmzZvj7Nmz2LhxI1577TW0atWqeF7AlyCTJNGjqV/Ojh078M033+DKlSt4+vQpZDIZ/Pz80LlzZ0yfPh2+vr5a5W/evImZM2fi+PHjUCqVaNCgAUJCQtCpUyeheSUnJ8Pe3h6fvf01LMzFDKTOquYuJA4AmF15WHChQnjW2U9YLJngd5jjad2tyUWRUc1NWCwAsLr/TFgsyVLs4HDJRNxEB5PeOS8sFgCs/EDsci9ZDQKExTK//EBYLACQOzkIi6X0eLlZ3v7rWVVxnUfcfi/8+lT5kdLFTaaVO0XgzM8AFL+ImzEl17pod6X1SfYXe+/X+Vy8sFgqW7ETLWR4ivs7WD0UN1kVACAhSVgo6/fEdvJ6tl/c96B5lLjnCQAQeG9fshD3nZqZmY6Znw5DUlLSS8+2WRzUv1mfRk41ykQzyclZcPX9UtjrkZubi+XLl2PdunWIiIiAi4sLBg8ejAULFmgtMu/v75+nUliY49V+++03LFy4EFevXoW5uTk6duyIzz//HIGBgVrljh07hvbt2+vN++jRo2jXrp3m/zMzM7Fw4UJ89913ePz4Mby9vTFq1CjMnDmzyC2QxanUtRQOGjQIgwYNMrh8jRo1sGfPnmLMiIiIiIiIjEGhUGDatGmYNm1avuUiIiJe6ni1nj17omfPngWWa9euXZ4KaH4sLCywcOFCLFy40OBjSlKpqxQSERGRYWQywN3NEh7uNjA1zdsbINtabKuSmbW9uGAClxsAgFxLcb0hFP45wmIBALLELVtiIrL5DICyvriWJHk1Z2GxhFPkfy1kZ+cgNioZsVFpwlckKSmiZwbN7zxU9rFSSEREVAbJZEBwXVdUqeIDU1NznePoc83EViBM3ARWlgr4kV5YKlNx8eTKXGGxAAA54uLJ3cX+TXNtBK4FKPp1E0me//tDkiQEVVPi7u0H+OfC43JTMSQyFCuFREREZZC7myWqVPGBmZnoVeCJKh6ZTAYzM3NUqeaHmKhkxDwSPK60BKgkCSoj1G6NcQ4qfqVuSQoiIiIq2PMuo8U/iQRRRWJqagY379I3eQxRcWNLIRERURlkaqrg0ktEgslkMpialo+fx9L/P4xxHir72FJIRERERERUgZWPWyFERERERKShggSVEdrxjHEOKn5sKSQiIiIiIqrAWCkkIiIiIiKqwFgpJCIiojKrUZO66PdqT4PL/7jte3i52uPM6ZNa2yMfRGDUG8NQu3pleHg7YdLkiQCg9d8G5dO0HvoN6GVw+eLyIPwB3hj4Omr4VIObhQveHfNOSadUoO07foBHJWecPnuqpFMpFyQj/kNlH8cUFlJOJWfkWFgLiaXIUAmJAwBJHfyExQIAsxRxF7j16fvCYgFAbjVfYbFMMsX9DQCIXYxZ8KyCaT7i1jLbnewjLBYAJPQIFBrP+USssFjxYz2ExQIAm/NmwmIF9RJ7bUV+7SYslrKyu7BYAGB686G4WN+I/QGT7i9uWQiLy5EGl5VVtYcsU5lvGROl2Hu/2Y7ifjYoMgQFkj1/qEwNKy4pnv9bpdA+5r1Jb+PW9Wt49/334WHnCn9/f+1pFV/47yVLP0PtWnXwSrceek6iXR5m4l431VPDvrfeHfkubt66jvfemQo3Nzf4+wVA9TTv94osN//3kGinz57GmXOnMW70W7C3t9feqfr/Fy1XBeTmAiYKYedVmRp+LeRamiDDy0rv/swMVoKo/GGlkIiIiCqMV4cMQe9XX4WZ2b83aLKysnDh7BmMHDsO49+dBJPUXM2+iLvRUCi0KydLly3GoIFDdVYKTx+/UOJLhWRlZeH8hbMYPXIM3h5fuloIz5w7jaUrvsDgAUPyVAoH9h+Ivr36av1tqOhU0r/17OI+D5V9rBQSERGVEwl9uwI5OSWdRsFMTeHwxxGjnjI1JQU2trZQKBR5KnlxsbGQJAkOjo55jrOwKFwvC3NzcS3HRfU07unz5+OQ9/mUZrr+NkRkHBxTSEREVF7k5ADZ2WXjUUhRUY/w1piRqBboi6qVK+GN1wYjIjxcZ1kfB3tMmTABp44fQ79uXVHV2wsjhwwBAOz4/nv4ONjjzMnnYwqnTJiApnVqAwCWff4ZfBzs4eHjhNNnno9r8/BxwqQpz8cURj6MhIeP0/M4P22Dh4+T5qHWqFneMYWNGtdFv/49cedOGIa/NgiBVSohqKov3hwzArGxMXnyv3HjGgYP7o+Ayt6oUbMy3p00AfHx8fDwdNTkos+kKRPRqFk9AM9bND0qOWvG6Z0+ewoelZyxfccPeY+b9i48/LW7kPcb3BeNWjbEk5gnGP/uW6hWNwgB1f0w5PVBuHf/Xp4YSqUSq79ahY6vtEdAdT8E1QlEl16dsXHrRs05lq74AgDQpHUjePi7wcPfDUuWLQYAbP9pOzz83XD67GmtuPEJ8Zg5ezoaNK6DSgEeaNC4DmbOno6EZwla5bbv+AEePs44dfoE/vfVajRt2RC+lT3RonUT7Nie9zmXd5IRH1T2saWQiIiISrWkpET079Md0VFReH3EaFStWg1nz57GgP69kJmpe3Di1cuXsP/XvRj2xggMGDpUb+zXRo1CrTp1EPLhLHTr2ROv9OoNRaYKVYOq5inr7OyM1Su+wjvvjUezps3x2rARBj+HJ08eo/+rvfDKKz0wd858XL9xDd9+uwWpKSn48cedmnL3799Dn77doVJJGPPmOHh4euLw4T8xdNgAg87zxmsjUbtWHcydPxvdu/VA91eeT8JTtUpVhN0NMzhftfSMdPQd1BsN6zfErOkfIvJRJDZsXo+RY9/AsYMnNC17SqUSQ94YjDPnTqNd63Z4td8AmJtb4NatG9j/+z68OeJNvDHsDaSmpmD/H/uxYM7HcHJ6XpmuWb2m3vMnJyejV59XEB5xH0MHD0edOnVx7do/2PrNZpw+fRIHfvsTNja2Wscs+mwhMjMz8frwETA3M8fWbzdh8qQJ8A+ojCZNmxX6NSCqCFgpJCIiolLtf6tX4mFkJL5csRpDhr4GABg5egzmfjQTG9Z9pfOY2zdvYtvu3Wjdrn2+sRs2aQI3d3eEfDgLNWrVxquDB2uNKXyRtZU1Brw6CO+8Nx6+vv4Y8Oogg59DePh9fP31JvTp3U+zTS6XY8uWjbh79w6qVAkCAHz62UKkpKRg754DaNLkeQXmzdHjMO6t0bh69XKB52nUsDHc3Nwxd/5s1KhRCwP6/5tjUSqFCQnxeHvc23hn/Luabc5Ozvj40wU4ceo42rftAABYt+lrnDl3GpPefg8ffjBbK4ZKpdLkVqN6Tez/Yz+6dXkFvpUKnjhuzdqVuB9+D59+shijRryp2V6rVm18+NEMrFm7CjOmf6h1jFKpxO/7DmnGJvbs0QtNWzbE5k3rKlSlkIvXU2Gw+ygRERGVar8f2AdXVzcMHKTd4jfx3cl6j6lZu06BFUJj8vDw1KoQAkCrlm0AAPfDn3fFzM3NxeHDf6J+/YaaCqHa+PGGL4shklwux5iRY7W2tWrRGgBwP+Lf7rs7d/8CB3sHTJ00TWeMotr/+z44O7vg9eHarbJvvDYSzs4u2P/7vjzHjHxjtNZkNZ6eXqgcWAXhOrq8EtFzrBQSERFRqRb5IAIBlQPzTELi7u6Rd1mD/1e5itilbl6Wn2/epaMc/7/75LNnzwAA8fFxSE9PQ2BglTxlq+jYZgwe7h55Jttx/P8JbJ69MKYvPCIcVQKrFHpinoI8jIxElcAqMDHR7txmYmKCwMqBiHzwIM8xfn46XmtHJ618KwIJgMoID7YTlg/sPkpERFRemJSRr3VTAxcVfAmWlvrXmSsJ8nxm1ZQk4/yslkH/Uhm5ubpnrZXLSz7vwtKXcylNl6hUKCPfHkRERFQQp91/aG94iW57uohcvB6FWLze188f4ffvITc3V6u1MCbmCZKSksTlVMKcnV1gZWWNe/fu5tl3V8e2wlK38CUmJubZ9yAyb4tbYVQOqIy79+4iKysr32U5CruGo6+fH+7eu4ucnByt1sKcnBzcu38PvjpaBek5Y80Myrp2+cDuo0RERFSqde3WHU+fxuKnHdu0tq9ZtbxE8rG2tkFi4jPhcRUKBTp06IRLly7iwoVzWvu++mrNS8f39fWFiYkJTpw6rrU99OIFXLx08aVi9+/7KhKTErF89bI8+15sUbS2tgYAJCYlGhT3la7dER8fh++3fau1/bsfvkF8fBy6d+tR9KSJSIMthURERFSqvf3Oe9i18ydMn/oerl65gmrVquPMmVO4+FconJydjZ5PwwYNcfLkcaxaswI+3j6QyYC+fV4VEnvmjNk4duwIhg4biNGjxsDTywuHDh1EfHw8gMK3tL3I2toGgwcOxffbvsX4iWPRonlL3L9/Fz/+tB01q9fE9ZvXixx77Khx+PPwQSxb9SUuX7mEtm3awdzcHLfDbuPe/bv46ftfAAAN6zcEACz8bAH69xkAC3NzVKtWHTWq1dAZd+KESfj1t72YNfsD/PPPVdSuXQfXrv2DH7Z/hyqBVTBxwrs6jyOiwmGlkIiIiEo1BwcH7Np7APPnzsbPO7YDAJq1aIGfd/6KQQN6Gz2fzz75ArM+mo4Vq5YiNTUVgLhKYZUqQdi9ax/mL5iDDRu+hrmFOTp16opPP/0CTZsGv/RELgvmLYQkSTjw+z78cfAA6tapi282fotvf/j2pSqFZmZm2P7NDny1YS127tmJTxcvgrm5OQICKmPIwCGack0aNcVHM+fgm++34v1ZU5GTk4Np772vt1JoZ2eHvbv3Y8nSz3Dw4O/YvuMHuLq44o3XR2L6tJl51iikf6kggyqfcaQiz0Nln0wqraOES5nk5GTY29vj07GrYGFmKSSm3MZGSBwAyHUSFwsAZBGPhcYTSWYpcGYzweNtMqu4CIulMhH7IWsZGl5wIQPJrMRcA2rvzrstNN7KGQWvfWWozAb+wmIBgNUDceOfcu3FTqQhyxX3dZBrKfaeo+JulLBYKn9PYbEAwH3gE2Gx4r7UP6nHfzXoVh1VaxUww6bgzzih8SSVuFiA2IFNubrXKSwyE8P/rvpcuXoZXbt3xOwZc/DuxPcEJPVcrvPL56aRJfb9pkhRCgxm+PMMu3Uffx+L0Ls/MysdM5e8gaSkJNjZ2QlITiz1b9Y7EZNga6d/fKcoKclZCPJfWWpfDzIMWwqJiIiISpGMjAxYWv57802SJKxZuwoA0KZ125JKi8oYSTLOjKtsXiofWCkkIiIiKkU6dW2Lli1bo0b1mkhPT8efh/7AufNn0ad3P9SrG1zS6RFROcRKIREREVEp0rVLd/x56Hf8/MtPyM3NgW8lX8yYPgvvvC2u2yiVf+rF5Y1xHir7WCkkIiIiKkXmfhSCuR+F6N6pYl89IhKPlUIiIiIionJGggySEWYGNcY5qPhx8XoiIqKyiL/DiIoHG2OpAmJLIRERURmUnZUNSZJeajFzItImSRKys3NKOg0huE4hFQZbComIiMqg2AfPkJ2TXdJpEJUr2dlKxD4St54sUVnBSiEREVEZFBv+DHdvhEOZrYTEhcKIXookSVAqs3D39gPEPkwp6XSEkIz4oLKP3UeJiIjKIEkl4Z8j9xATngA3P0eYmpnmLWSiEHtShcB7ySrBE9mLrBiL7j5oZiYulipXXCwA2X463jdFlSr2/WYamy4umK7rQ00CsrNzEPsoCbEPU7gYO1VIrBQSERGVUZJKQsy9BMTcS9C5X2ZlKfZ8lubCYsmylMJiAQByxVUyVcliW4rkjg7CYklKsa/bs+E24oJFWImLBcDxaKTAYPbiYpURHFNIhcFKYSHJ5ArI5GLuhEmZWULiAIAiTuwd1/jO/sJiOR0W+KEOILWeu7BYKsFXgO1DcV/W8qQ0YbEAIKlNgLBYdhdjhcUCgC+2txEaz8IlWVgsq/BEYbEAQErPEBYry0/sjxyLi+HCYikUYi+uzAa+wmKlegkLBQDIOeAjLNazAWKbKBTpYkeJuP7xRFiszCA3YbEAQKEU99qZCPx+BoBMH1thsXItxP5Nrc3FjZ8zDRNbOZAErskoE9nKLTIWUSnBdzUREREREVEFxpZCIiIiIqJyRoIMksTF68kwbCkkIiIiIiKqwNhSSERERERUznCiGSoMthQSERERERFVYGwpJCIiIiIqZyRJBpUxxhQa4RxU/NhSSEREREREVIGxpZCIiIiIqJyRIDPKzKCcfbR8YEshERERERFRBcaWQiIiIiKicoazj1JhsKWQiIiIiIioAmNLYWEpFICJQkgoKT1DSBwAgFzsXRq7yBxxwWRic2vX9ZKwWBdXVRYWCwBUlubCYmW72QmLBQCVWz4UFuvpKUlYLABI9RR7f8r8eqqwWJKXi7BYAICUFGGhspzEvm5W9vbiggn+TEqqmSssllWEmM9wNbNr4q4tjzAzYbEAADKx75FcH3HXg8WDRGGxAEDp7SAsVlIzL2GxAMAqVtx3qiJL3LUAAKrDtsJiyTLEffYCgMxeXG65VuKuLZVc4G+kYsSWQioMthQSERERERFVYGwpJCIiIiIqZ6T/fxjjPFT2saWQiIiIiIioAmOlkIiIiIiIqAJj91EiIiIionLm+UQzxd/+w4lmyge2FBIREREREVVgbCkkIiIiIipnVJIMKskIS1IY4RxU/NhSSEREREREVIGxpZCIiIiIqJyRIINkhPF+xjgHFT+2FBIREREREVVgbCkkIiIiIipnns8+aoQxhWwpLBdYKSwkKSsLkiSmgfXpgAAhcQDA/WiSsFgAYBKfJiyWlJMjLBYAnNhfX1gsq8SHwmIBAOJzhYVSSJKwWABwLcpXWCwP6wRhsQDA+Ui00Hgi33OyHJWwWAAAZydhoWwfKIXFAgApPV1YLJm9nbBYAOD5W7KwWNnuYnNLbyTu2rK+/lRYLABIqecqNJ5ZqrjPJbm9tbBYACDLEZdbhpvYz1+lnUJYLJffIoXFAgBZgKe4WEqx3/dSZpawWHILM3GxMrOFxSIqLUpd99GwsDDMnTsXzZo1g6urK2xtbREcHIxPPvkEaWl5Kypnz55F79694ePjA0tLSwQGBmLs2LG4f/9+CWRPRERERFTy1GMKjfGgsq/UtRRu2rQJa9asQe/evTF8+HCYmpri6NGj+Oijj7Bjxw6cO3cOlpaWAIDff/8dPXr0QGBgIN555x24uLjg+vXrWLduHX755Rf8888/8Pb2LuFnREREREREVHqVukrhgAEDMGvWLNjb22u2jR8/HkFBQfjkk0+wceNGvPPOOwCAZcuWQaFQ4MyZM3BxcdGUr1WrFsaOHYuffvoJkydPNvZTICIiIiIqUVynkAqj1HUfbdSokVaFUG3w4MEAgGvXrmm2JScnw8LCAo6Ojlplvby8AADW1mLHKxAREREREZU3pa6lUJ9Hjx4BANzd3TXbunbtinPnzmHEiBGYPn06XFxccO3aNUybNg01atTAkCFDinw+T0/tgdcqleDJJoiIiIiIiEqBMlEpzM3NxccffwwTExMMGzZMs33WrFmIjY3Fpk2b8P3332u2d+/eHdu2bYOtrW1JpEtEREREVKK4eD0VRpmoFE6ePBlnz57FokWLUK1aNc12hUIBb29vdOrUCf369YOTkxNOnz6NVatWYciQIdizZw9MTU2LdM7Hjx9r/X9ycrLObq1ERERERERlWamvFM6ZMwerV6/GuHHjMGvWLK19I0eOxJkzZ3D9+nXNjKT9+vVDlSpVMGHCBGzduhVjxowpibSJiIiIiEqMZKSJZiRONFMulLqJZl4UEhKChQsXYtSoUfjqq6+09kVGRuL7779Hjx49NBVCtYEDBwIAjh8/brRciYiIiIiIyqJS21IYEhKC+fPnY8SIEdiwYQNkMu27EFFRUQCejzf8r5ycHK1/ExERERFVJBxTSIVRKlsKFyxYgPnz5+P111/Hpk2bIJfnTbNatWpQKBTYvXs3EhMTtfZt2bIFANC4cWMjZEtERERERFR2lbqWwjVr1mDevHnw9fVFp06d8MMPP2jtd3d3R+fOneHk5ITJkydj6dKlqF+/PsaOHauZaOb7779HYGBgsYwnzKrtA5mlmPUP3Q/GC4kDALEdnIXFAoBcC0lYLPcfE4TFAgDLi5HiginEXgIZDSsJiyX0eQJw/yFKYDSxdwUlwa36MoFrlMbXsxIWCwAsY8VdW9b3E4XFAgDJrGgTc+mS5SF29meziKfCYiluPRQWCwDMavoKi5Xj7SQsFgDY3ksTGg85eXvnFNXTvhbCYgGA63Zx3zUe9zKFxQIAmAj8rlGIvZ+fEmAmLJZ9juD1oZOShYWSZ2QJiyXLEherOKkgg8oIrXjGOAcVv1JXKQwNDQXwfMzgiBEj8uxv27YtOnfuDABYsmQJqlWrhg0bNmDRokXIysqCt7c3JkyYgJCQENjZ2Rk1dyIiIiIiorKm1FUKt2zZoun+WRCZTIaxY8di7NixxZsUEREREVEZwjGFVBilckwhERERERERGUepaykkIiIiIqKXozLSOoXGOAcVP7YUEhERERERVWBsKSQiIiIiKmc4+ygVBlsKiYiIiIiIKjBWComIiIiIiCowdh8lIiIiIipnuCQFFQZbComIiIiIiCowthQSEREREZUznGiGCoOVwkKyuB0LC3NLIbGkt82FxAEAt2+ShMUCACizhYXKCfIRFgsATOLThMWKb+wgLBYAyAPShcWyvm0jLBYAxDV3FhbL+Wi0sFgAkNGgktB41vcShcVyOhAhLBYA5Aq+HkTKCnITFsssUdxnCACkj7IWFsv6ezNhsQDA5OZDYbFklhbCYgHA06GOQuO57hMY64dn4oIBeNbSQ1gsm6hcYbEAQKaShMWKr6MQFgsAnK/mCIslyxR73UMh7rlm+TiIi5VhKiwWUWnBSiERERERUTkjSTJIRlhY3hjnoOLHMYVEREREREQVGFsKiYiIiIjKGY4ppMJgSyEREREREVEFxpZCIiIiIqJyhmMKqTDYUkhERERERFSBsaWQiIiIiKickWCc8X7iFlyhksSWQiIiIiIiogqMLYVEREREROWMBBkko7QUckxhecCWQiIiIiIiogqMlUIiIiIiIqIKjN1HiYiIiIjKGZUkg8oIy0UY4xxU/FgpLCyF/PlDAOnLJCFxAECSxM79NGnxQ2GxPtvVVlgsAJj55mVhsVYvDhYWCwCyHtoKi/XOrAvCYgFAyPF2wmJl1fAQFgsALM/fFxpPshX3d5BZWwmLBQBKB4WwWDKVtbBYAJDmKS438xvRwmIBQObdSuKCVRH7eanIcRAWy/xJurBYAOC6L1tovKdNxb3nXHbHCosFAHM7HhMWa9XsysJiAYDM3k5YLNtwe2GxAMAkPEZcMDNTcbEAwMNFWCjTG+J+1+QqM4TForxUKhVWrFiBr7/+GhEREXB1dcWgQYOwYMECWFsX/BlU2OP379+PhQsX4sqVKzA3N0fHjh2xePFiBAQE5Cl7+/ZtzJgxA8ePH4dSqUSDBg0wf/58dOjQIU/ZyMhIfPLJJzh8+DCioqLg5OSEBg0aYPr06WjTpk3RXpxixO6jRERERETljHqiGWM8RJoyZQqmTp2KmjVrYtWqVRg4cCBWrlyJXr16QaVSCT1+586d6NmzJzIyMrBkyRJMnz4dJ06cQMuWLREdrX1z8969e2jRogXOnj2LDz74AEuWLEFqaiq6du2KQ4cOaZWNjo5Gw4YNsWPHDgwYMACrV6/G+PHjceXKFbRv3x779u17+RdKMLYUEhERERFRibt+/TpWrVqF/v3745dfftFsDwgIwKRJk7B9+3YMGzZMyPHZ2dl49913UalSJZw8eRI2NjYAgFdeeQUNGzZESEgI1q1bp4kxa9YsJCYm4uLFiwgODgYAvPHGG6hVqxYmTpyIW7duQSZ7XkHeunUr4uLisHv3bvTp00cTY+jQoQgKCsL69evRo0ePl3/BBGJLIRERERFROaOCzGgPUbZt2wZJkjB58mSt7WPHjoWVlRW+++47YccfP34c0dHRGDNmjKZCCADBwcFo164dfvzxR2RnP++Cn5aWhr1796Jdu3aaCiEA2NjYYMyYMQgLC0NoaKhme3JyMgDAy8tLKw8PDw/I5XKDusEaGyuFRERERERU4kJDQyGXy9GkSROt7RYWFggODtaqeL3s8er/bt68eZ44zZo1Q3JyMsLCwgAAV69eRVZWlt6yL8YDgC5dugAA3n77bRw7dgxRUVEIDQ3F0KFDYWNjg2nTpuX7PEoCK4VEREREROWMJBnvAQBBQUHw9PTUPIoiOjoaLi4uMDc3z7PP29sbcXFxUCqVQo5Xjxn09vbWWRYAoqKiCl0WANq3b481a9YgPDwc7du3h4+PD5o0aYLbt2/j3LlzaNCggd7nUFJYKSQiIiIiohKXnp6us0IHPG/tU5cRcbz637rKv0xZNVdXVzRq1AhLlizBnj17sGTJEiQlJaFHjx54+FDcbLiicKIZIiIiIqJyRgU5VEZo/1Gf486dO7Cze7nlV6ysrBAbq3u5mszMTE0ZEcer/52VlSW0LACsX78eb7/9Ni5duoTatWtrtnft2hUNGjTArFmzChwfaWxsKSQiIiIiohLn5eWFuLg4nZWvqKgouLi4wMzMTMjx6klgXuz2+WJZ4N+uoYUpCwCffvopqlevrlUhBIA6deqgevXqOH78uN7nUFJYKSQiIiIiKmeMPaZQhMaNG0OlUuHChQta2zMzM3H58mU0atRI2PGNGzcGAJw9ezZPnHPnzsHOzg5Vq1YF8LwyZ25urrcsAK3YUVFRyM3N1ZljTk4OcnJy8n0eJYGVQiIiIiIiKnGDBw+GTCbD8uXLtbavX78e6enpGD58uGbbvXv3cOvWrSIf37ZtW3h6emLDhg1ITU3VbL9y5QqOHTuGgQMHwtTUFMDzpSd69eqFY8eO4cqVK5qyqamp2LBhA4KCgrRmPK1Zs6ZmUpkXnT17FmFhYZoKaWnCMYVERERERFTi6tSpg4kTJ2L16tXo378/unfvjps3b2LlypVo27at1sL1HTt2xIMHDyC90FRZmONNTU2xYsUKDB48GK1bt8bYsWORnJyMZcuWwdXVFfPnz9fK7dNPP8Xhw4fRpUsXTJkyBXZ2dli/fj2ioqKwb98+zcL1ABASEoL+/fujc+fOGD9+PIKCgnDnzh2sXbsWZmZmmDdvXjG+ikUjkySRjb7lV3JyMuzt7fHZ7G2wsNA/wLWkZDnrnmmpqN4fdlJoPCpfPtvVVmi8lOpiu1F8UuO0sFhzT4t9rq7nksUFk4nt7JHlKW4xXfO4TGGxAADKbHGxklILLlMYMnELNye08yq4UCHYPNLdfamozOL0z/pXWIk1bYXFAgCrWHHP1TRF4PsNgMpM3LUqv5t3TNPLeNrPX1gspxti328qU3HXlsD11ZGZkYa577+KpKSkl55YpTiof7Nuvb4cVraWxX6+9JQMjKg1WdjrkZubi+XLl2PdunWIiIiAi4sLBg8ejAULFmgtMu/v75+nUliY49V+++03LFy4EFevXoW5uTk6duyIzz//HIGBgXnK3rx5EzNnzsTx48ehVCrRoEEDhISEoFOnTnnKHjlyBEuWLMGFCxeQlJQER0dHtGnTBnPmzEFwcPBLv06isaWQiIiIiIhKBYVCgWnTphW4wHtERMRLHa/Ws2dP9OzZ06CyNWrUwJ49ewwq26FDB3To0MGgsqUBK4VU5qjSc5C4+z4y/o6DKrP0DdQtTjJzBSzrusDh1cpQ2JiWdDpERERUSqkgg0pkE2k+56Gyj5VCKjMkSULqsWjEfnkFObEZJZ1OiUk79QTPtt+B23t1Ydu1klYfdiIiIiKiwmKlkMoE5cNUxC69jLSzMSWdSqmQm5CFx/NCkbgnAu7Tg2FeufSNaSAiIqKSI0kySFLx3zg2xjmo+LFSSKWaKjMXCd/eRsI3tyEpVSWdTqmT8fdTRLx2CE7DguA8ugbkVrykiYiIiKhw+AuSSq3UM08Q+8VlZEellXQqpVuuhIRvw5D8x0O4Ta0Hm3Ze7FJKRERUwUmQQTLCeD9jnIOKHyuFVOpkP0lH7LIrSD0WXdKplCk5sRmInnkO1s3d4TYtGGaV8k67TERERET0X6wUUqkhZauQsO0O4jfehJQpdq2jiiTtbAwihv0JpzeqwemNapCbK0o6JSIiIjIy1f8/jHEeKvtYKaRSIf3iU8QsvgRlRIrBxygczOAyoTbMg+yLMbPSQ/kgBU/XXEOuAYuCS0oV4jfcRPLvkXCbFgybFh5GyJCIiIiIyiJWCqlE5cRlIHblP0j546HhB8kA+74BcJ1QGwp7s+JLrpSxrOUEmzZeiN9wA8923ANypQKPyX6Uhqgpp2HTzgtuU+rB1MPKCJkSERFRSePso1QYrBRSiZByVEj85T7ivr4OVZrhC9CbV3eA+4z6sKzpVIzZlV4KG1O4Ta4Hux7+iFl8CZlX4w06LvVYNNLOxcD5zRpwGhoEmam8mDMlIiIiorKClcJCSqhtCXMrMa0tzlfThcQBAJOMstOjO+OfeMQsvoSssCSDj5HbmMJlQi049KsMmULcHamVswKExQKAnOrewmJNHXFK7z6LIHv4ft0Wyfse4Onqf5CbqCwwnpSZi7g115C87wHcP6gPq4auRc5tZr/jRT5WlwWH2gmNt/haW2GxRE/XIz1NEBcrwEtYLACQZxfc+mywZ8niYgGAlaWwUMogsd2pzcKfCovl+Pt9YbEA4FnXykLjOT0Td0PJ4YbhwwUMkiLuOxUQeC0AMLGwEBYrt7K47xkAsHoiLpbJQ8NuVBpKZmEuLJaUKm4mc1VWhrBYxUmSZFCxpZAMxEohGU1OYhbi1lxD0t6IQh1n190Xru/UgYmzuC/V8kAml8G+lz9s2njh6dprSNodbtDvGGVECh6+fQK2XSvBbVIdmLiI+7FNRERERGUPK4WUh0yVi5RjUVDeT4ZkwLg1Q0jKXCTujoAqueAWLTWzynZw/yAYVvWL3qJVESjszeAxswHse/kj5vNLyLqdaNBxKX88RNqpx7DvEyBu0Xu5DGZ+trBp4wm5GWc9JSIiIioLWCkkLc6PbqPm6Z2IThLXHaqwZFYmcBlTA46Dq0BmwrFvhrKs5QS/zR2QuOs+4tZehyo1u8BjVGk5ePbDHeG5mHhawX1qPdi0Edu9kYiIiAzDxeupMFgpJACAeVoiapzdC8/7l0s0D9uO3nB9ry5M3TlLZlHIFDI4DgiEbXtvPF39D5L3R5ZIHjmP0xE1/SysW3nAbVowzLysSyQPIiIiIioYK4UVnEyVC79rJxF08Q+YZGeVWB6mlWzg/n4wrJu5l1gO5YmJswU85zWGfW9/xCy+DOV9wZN+GCjt1BNEhB6E88jqcHytKruUEhERGQkXr6fCYKWwAnN8fB+1Tv0M22cCpx4rJJm5nBWGYmRV3xX+33bEsx/vIm79DUgZuUbPQcpSIe7rG0jaHwn36cGwbsqKPxEREVFpwkphBWSWkYJq53+DT1hoiebBroXGITORw2l4Vdh28sHTFVeRcjiqRPLIfpiKR5NOwbaTz/Muwm6c9ZSIiKi4SJIcklT8czMY4xxU/FgprEhUKvjePIuqofthqiy5NXY4CUnJMHW3gteiZkg7F4OYLy4j+2FqieSRcugRUs88gcvYGnAcxMmEiIiIiEoaK4UVhH1sJGqd+hn2cY8MPkZuZQKHwVWgsDMVk4RMBjNva1g394DMlBWBkmLdzB0B2zsj7XwMsh+mQlKJWXZElZaDZzvuQpVc8KynUnoOnq74B0m/PYD79PpCzk9ERET/kmDQ8sVCzkNlHyuF5ZxpZhqqhh5ApZtnISvEZcuFzcs3mYkcNi09hcd1GBiIuDXXkLQ3wqDyynvJeDj+OJrUz8CVbn2RZWMrPCciIiIiyh8rheWVpIJ32F+ofv5XmGWmGXxYqoM7rrfqjzfmxBZjclRemTiYw2N2Q9j38kfM4kvIupNk0HEBly7A++Y/uNqlF+43bglJzpZkIiKil8F1CqkwWCkspBHNjsHWzlxIrO8CmwiJAwAzfC5o/jvzThJiF19CxtV4g4+XWSjg/GYNVB0ahIamYiuEi3e0FRqvS9/zwmJl1/YRFgsAzG6Lm8l11Rdiu1XmOImb0GfK6FP57res6wy/LR2Q+Mt9xH11Har0nAJjmmVmoNHeHWh150+4fRAMy5pOotJ9KYt+Ffv+lbmIe16yWMMq3YaSS+ImFpcyMoXFAgC4OAgLZf4kRVgsAIhv5SEsluPhB8JiAYDz2adC4+W62AmLJYt4LCwWAMhcHMXFUhb8mVUYKhsLYbFk9wwfBmIIC1NfYbGe9HYRFgsAXP8SN2O25GojLFZOIW62E5UVpe52fFhYGObOnYtmzZrB1dUVtra2CA4OxieffIK0NN0X4b59+9CpUyc4OjrCysoKVatWxTvvvGPkzEtebmo2YpdfwYMRhwtVIbRp54WAH7vA+Y1qHOtHwshM5HAcXAUBP3WBbddKBh+XefMZIkcfxZPP/0ZusrIYMyQiIiq/JMl4Dyr7Sl1L4aZNm7BmzRr07t0bw4cPh6mpKY4ePYqPPvoIO3bswLlz52Bp+e84t/nz5yMkJARdu3bF/PnzYWVlhcjISFy9erUEn4WRSRKS/3yI2OVXkRtn+N15U29ruE2rVyxjy4jUTFws4bWgCdJ6+yN2yWUoIwxopZGApJ3hSD0aDdd3asOuux9kcnZPISIiIioOpa5SOGDAAMyaNQv29vaabePHj0dQUBA++eQTbNy4UdMKeOjQIYSEhGDBggWYM2dOSaVcomyinqLuhl/x+Oo9g4+Rmcnh9EY1OL1eDXILLhhPxmHdyA3+33VCwg93EL/pJqTMgrsF5T7LwpOPLyL590h4LWoGhZ2ZETIlIiIq+1SSDCojrCGoknjTtjwodX0FGzVqpFUhVBs8eDAA4Nq1a5ptixYtgpubG2bNmgUASE1NhUolbkxMaabIUqLG9wfRYeoquBWiQmjd3B3+P3SGy9iarBCS0clM5XAeUQ0B2zvDpq3h61Smhz7Fo6mnoVKKG19CRERERM+VukqhPo8ePR9Y7e7uDgBIS0vDiRMn0LRpU2zcuBHe3t6wtbWFjY0NhgwZgpiYmJc6n6enp9YjKCjopZ+DKB6hN9HxvRWotvM45DmG/Ug2cbOE12fN4L2sJcwqiRtsTVQUpp7W8F7cHN5LW8DUy8qgYzL/SUDMZ5cgcfACERERkVClrvuoLrm5ufj4449hYmKCYcOGAQDu3r2L3NxcnDt3DgcPHsTMmTNRr149nDx5EitWrMDVq1fx119/wcrKsB+cZYFVTALqbNoHz79uGX6QQgbHoUFwebMG5FZl4s9NFYhNK09YNXJDwje3kfDNbUjZ+bf0J+97APMqdnAaVtVIGRIREZVNXLyeCqNM1BImT56Ms2fPYtGiRahWrRoAICXl+WQVT58+xfr16zFmzBgAQL9+/WBnZ4f58+dj69atmDBhQpHO+fix9lTZycnJOru1GoM8OwdV9pxEtV+OQVGIabItG7jAfXp9mFcWN4U4kWhyCwVcxtWEXbdKiFl6Benn8m/lf7rqH5j528GmhbhlAIiIiIgqslLffXTOnDlYvXo1xo0bpxk7CEAzA6lcLsfrr7+udcyIESMAAMeOHTNansXF9cpdtJ+6CjW3HTK4QqhwModHSGNU+l8bVgipzDDztYXP8pbwWtQUJq75rOmlAh5/dB5ZEcnGS46IiKiMUS9eb4wHlX2luqUwJCQECxcuxKhRo/DVV19p7fPxeb7ouKOjI8zNtReT9/R8vsTCs2fPjJNoMbCIT0LtLQfgc+Yfww+SAw6vBsLlrZpQ2HKWRip7ZDIZbDv6wLyKPR6MPgpVarbOcqq0HES9fxZ+m9pzRlIiIiKil1RqWwpDQkIwf/58jBgxAhs2bIBMpn0Xwt3dHb6+vkhISEB6errWPvWkNG5ubkbLVxRZTi4C955Cx0nLC1UhtKjlCL/NHeD+fjArhFTmmfnZwuuTJvl+QmU/TEX07POQcirGjMNERESFwcXrqTBKZaVwwYIFmD9/Pl5//XVs2rQJcrnuNF9//XVIkoSvv/5aa/vatWsBAN27dy/2XEVyuhmBdtPXoM7WAzDNVBp0jNLGEpfe6gPfDe1hUd2xmDMkMh7rZh5wnVQ33zLpF2LxdGUhWtOJiIiIKI9S1310zZo1mDdvHnx9fdGpUyf88MMPWvvd3d3RuXNnAMAHH3yAX375Be+//z7CwsJQr149nDp1Ct9//z06dOigWdtQpJ93toaFpbWQWDOGnQQA5CRk4unqa0je96BQx9v39ofLxNqo4yD+z/jprrbCYlnHZQqLBQA/XWsiLJZntNhxaVlB4iY/MY9OEhYLADKdxK1LeTLDQVgsAGhtmahzu+OQKsi6m4Tk3/RfG89+vAuzKnZw6B0gNCc1m0ix719ZtuGTRRXIQnCvAAOXuDFEtr+rsFgAYPogXlisxz1dhMUCADORIxV83AUGg/iWdJnIsUNixyGl+4sbQ2916ZGwWACQWcVJWCzLODG/QdRM7kYLi+X5VOw8Bqo4cdd9crtAYbEy00vdz2edjDXej2MKy4dS964ODQ0FAERGRmomjHlR27ZtNZVCOzs7nDx5EnPmzMGePXuwceNG+Pj44MMPP8ScOXOgUJTuxdmlXAmJu+8jbu11qFJ0j53SxTzIHu4f1IdlXedizI6o5MlkMrjPqA9lZCoyr+r/cRDz+SWY+drCKljsj30iIiKiiqDUVQq3bNmCLVu2GFzexcUFa9eu1XQZLSvsYyIR+eZRZN40/Baz3MoELuNrweHVypCZlMqev0TCyc0U8P6sGR6MOoKcmAzdhXIkRM88B7/N7WHqKfYuOhERUVmkggwqqfhb8VRsKSwXWLMwMtPMdNQ58hNab19WqAqhbddKCPipCxwHV2GFkCocE2cLeH/RAjIL/a3/uc+yEDX9LFTpArtnEhEREVUApa6lsNySJPjcDEXNU3thnpFq8GFm/rZwnx4Mq0ZlbyZVIpEsqjrAc15jRM86p7dM1p0kPJ4fCq9Pm0Em551LIiKquIw1MyhnHy0fWCk0Atu4aNQ5+jOco+8bfIzMQgHnN2vAaWgQZKZsGSQCANsO3nAeWwPx62/qLZN6LBrxG2/CZWxNI2ZGREREVHaxUliMFMpMVDv3OwIun4BcMnwGOJt2XnCbUg+mHlbFmB1R2eQ8ugay7iYj9WiU3jLxG27CvLIdbDv6GDEzIiIiorKJlcLiIEnwvHMZtU7shmWa4csKmHpbw21aPdi09CzG5IjKNplcBs95jRAZlYqsMP3X1+P5f8HUxwYW1RyMlxwREVGpYZwlKUQvL0Mlg/0SBbN+FoNmu9ai0YGtBlcIZWZyOI+pAf8fOrNCSGQAuaUJvJe0gMLRXG8ZKSsXUdPPICde7DqDREREROUNK4WCKLKVqHZmH9p9txiuD8MMPs66uTv8f+gMl7E1Ic9nZkUi0mbqYQWvz5sBJvrvUObEZCBqxlmolOIWZSciIioLJCM+qOxjpVAA9/vX0O67z1A19E/IVYb9+MywcYDXZ83gvawlzCrZFHOGROWTVT0XeMxskG+ZzH8SEPPZJUicHo2IiIhIJ44pfAmWSfGofXwnPMKvG3yMSi7H/frtENakK4LbXyi+5IgqCPte/si6l4Rn2+7qLZO87wHMg+zhNDTIiJkRERGVHEmSQTLC4vXGOAcVP1YKC2nSwLOwsTDBs+/vIH7bTUhZhs8qatnABe7T66NGZTv0wAWsfFJHWF7PbjgLiwUATv/ECIuV7e8iLBYAeOx+LCxWVjUPYbEAQCawl+Ljrg7iggHwOJkhLNbf39QQFgsALme+3ILzMqkB6ntuhctj/V23n668CvMAW1g3K9zffNLE8y+V23/NOddWWCyLeGGhAAC2D8SNvzS5ESksFgDkBombSdbuntgfMJYXHwiLlfSWq7BYAJD5zEJoPI9d4j5/YSk2twxncX/XjC6VhMUCAOe/DV+fuEB21uJiAZAepwmLlVrNXlgsALCxMBUWS6EU11tEkc2eJ1T+sPtoIaVdjEXE8EOI++q6wRVChZM5POc3RqX/tYF5ZbtizpCo4pHkClxtORRptvncgFAB0bMvQPkgxXiJERERlRCVER9U9rFSWEjR088iO9LAO35ywGFgIAJ2dIFdN1/IZGxeJyouOWaWuNR2BLJN9bc+qFKz8ej9M8hNVhoxMyIiIqLSjZXCYmJRyxF+mzvA/f1gKGzNSjodogoh3c4VV1sNy/eTLTsyFdEfnYeUw3ubRERUfqnHFBrjQWUfK4WCye3M4D6rAXw3tIdFdceSToeowon3rArXSXXzLZN+PhaRbx1HZliicZIiIiIiKsU40YxA9r394TKxNkwc9C+oTUTFz3FIFSjvJSPp1wi9ZTKvJeDBiMNwGBAIl7dqQWEjbkIDIiKiEifJnj+McR4q81gpFMA8yB7uH9SHZV2xM4ASUdHIZDK4fRAM5YMUZFzNZ4pOFZC44x5SDkfB7b06sO1SiWN/iYiIqMJh99GXILcygdvUevDb0oEVQqJSRm6mgNdnzWDibllg2dz4TDyeG4pHE08iKzzZCNkREREVL84+SoXBSmER2XathICfusBxcBXITPgyEpVGJs4W8P6iBWSWCoPKp198iojhh/B0zT9QZbzc2olEREREZQVrM4Vk6mcLnzWt4bWgCUxcCm6BIKKSZVHVAZX+1wYmHlaGHZArIeGbMIQPPoiUo1GQJC5STEREROUbK4WF5Le+HawbuZV0GkRUCJY1nRCwvTOcRlQDTAwbM5gTk4HomecQNeU0lI8MXJuUiIiolJAgM9qDyj5WCguJXUWJyia5pQlc364N/+87waqRq8HHpZ2NQcTQPxG34QZUWbnFmCERERFRyWANh4gqFHN/O/isbg3Pj5tA4WJh0DGSUoX49TcRMexPpJ55UswZEhERCSAZ8UFlHpekKEHPboqbsdTpUpKwWAAgf8uwiTkMYbI0QlgsAJDZ2wmLZRYWIywWAKQ28BQXzExsq1S6l7gxsCrBnxxmjTPEBiyATCaDXZdKsG7hgfj1N/Dsp3tAbsHfatmP0hA15TRs2nnBbWo9mLobOE7xBR83O16UlHVa8XVzYbEAQFKIu0+Y2DVAWCxA7DJYto/EXluSv4e4YLfFrnNrIbpXl8D3iMrdQVgsAJALnBtKJXjZ0gxva2GxTFPFvn9T6lQWFssqRmxuyYGF/4zVxzYiU1gsRWaWsFhEpQVbComowlLYmMJtyvNlZSwKsaxM6rFohA86iPhvb0PK5mTcRERU+qggM9qDyj5WComowrOo6gDfr9vCY3ZDKBzMDDpGysxF3OpriHjtENIvPi3mDImIiIiKDyuFREQAZHIZ7Hv7I2BHV9j3C4ChNz6VESl4+PYJRM+7gJx4cd2TiIiIXookM96DyjxWComIXqCwN4PHzAbw3dge5tUcDD4u5feHCB/4B57tuAsph11KiYiIqOxgpZCISAfLWk7w29wBbu8HQ25j2KwTqrQcxC69ggejjiDjn/hizpCIiEg/STLeg8o+VgqJiPSQKWRwHBiIgB1dYNfd1+DjssKSEDnmGJ4suojcJM5SR0RERKUbK4VERAUwcbaA57zGqPRVG5hVNnxJlKQ9EQgfeBCJe8IhqXgrlYiIjIfLFFJhsFJIRGQgq/qu8P+2I1zfrQOZpWFreeYmKRGz6G9Ejj2GzLDE4k2QiIiIqAhYKSQiKgSZiRxOr1VFwI9dYNPB2+DjMq8l4MGIw4hZehm5qdnFmCEREREgQWa0B5V9rBQSERWBqbsVvD9tBp8VLWHqY23YQSogccc9hA86iOTfIyFxdD4RERGVAqwUEhG9BOtmHvD/oTOcx9WEzNywj9Tc+Ew8nheKh2+fRNb95GLOkIiIiCh/JiWdQFmzbE9LWFga2CpQAOe7CULiAEDsADE5qdkdthEWy6yyrbBYAPC4jWFjuQzh8UeGsFgAYHPpsbhY98S+bs/qiYvneErc8wSAp7WchMabe7e5sFiqZ2aGFazbATaz4tD4p1/gc/26QYdk/P0UEa8dgtPwIDiPrgG5ZeE+kmXZYtdDlClzhMVyPPBIWCwAeDqmkrBYykTDlhgxlFmMuBlmM93E5uZ5MFFoPCknV1isHCuxP0Hs74n7O+QU8losiFnEU2GxJDdHYbEAwPG0uOVz0mu6CYsFAHZ304XFSq5iJSxWZrq466A4GWu5CHZ6KR/YUkhEJEiqiwuOjh+Ho+PGINXRwB9uuRISvglD+OCDSDkaxS6lREREZHRsKSQiEkkmw6O6dfGkWjXU/uMgah4+AkVuwXeVc2IyED3zHKybu8Pt/WCY+YhrrScioorHWJPAcKKZ8oEthURExSDH3ByXe/fCb7Nm4nHVqgYfl3Y2BhFD/0TSgchizI6IiIjoX6wUEhEVo2QPdxx6dyJOjhyBdDvDFr6XlCo8CQlFyvHoYs6OiIjKK/WYQmM8qOxjpZCIqLjJZIho1BB758yG45AqBn/yPg4JRdbdpOLNjYiIiCo8VgqJiIwk29ISblPqwW9rR1jUdS6wvJSeg6j3zyAnUdysikREVEFIMuM9qMxjpZCIyMgsqjrA9+u28JjdEAqH/Je8yH6cjuhZ5yAJXn6CiIiISI2VQiKiEiCTy2Df2x8BO7rCvo9/vmUz/o5DzNLLXK6CiIgMJhnxQWUfK4VERCVIYW8Gjw8bwuHVyvmWS9oVjsRf7hspKyIiIqpIWCkkIioF3KbWg1VD13zLxH55BWl/xRopIyIiKtMkGSQjPDimsHxgpZCIqBSQmcjh9WlTmHpb6y+UKyF61nkoH6UaLzEiIiIq90xKOoGyRmX6/CEklkM+P/4KyfWbOGGxAEBmZSksliopRVgsAPDcYyMsVqafg7BYAGBmLujNAUCeliksFgDYRuYIi5VVzV1YLADo7vO30HgXk/yFxco5bCssFgAcrJlPa6AJYLqgBzze3QV5erbOIqpkJW5PvYAnq/th0jvnhea2anb+XVgLI62luFgA8HHV48JiLT3fWlgsAMi1tRAWy3N/vLBYACDl5oqNlyPuc8TsVpSwWACQ1MpXWKwsZ7GjpFxvZAiLJUsX99sBACQ3B2GxLJ+I/d561ltcC9TcAHGfIcnJWVgkLBpR6cCWQiKiUiQ7wAlxszvl2xvH7MEzuHxyCFIuh/cTEZFunGiGCuOlWgpv3bqFyMhIxMXFwdLSEm5ubqhTpw7s7OxE5UdEVOFkNPdD4pimcFyvvyXQ6lwk4r6ygOvEOkbMjIiIiMqjQlcKjxw5go0bN+LQoUOIi8vbZVEul6N+/foYMGAARo8eDRcXFyGJEhFVJMlDgmEangCbQ3f0lkn4Jgxmle1h/4q4bnNERFROGKsZj02F5YLBlcKdO3di9uzZCAsLgyRJ8Pb2Rp8+feDh4QEnJydkZGQgPj4et27dwuXLl/HXX39h3rx5eOONN7BgwQK4u4sdg0REVK7JZIh/vy1MHyXB/Jb+GUdjFl2EWSUbWNZ2MmJyREREVJ4YVCls06YNTp06hdq1a+Ozzz7D4MGD4eur/860UqnE0aNH8e233+L777/H9u3b8e2336J3797CEiciKvfMTPB0QVd4TPgFJvHpOotIShWiZpyF3+YOMHUTN0EUERGVbZolI4xwHir7DJpoJj09Hb/99huuXr2K6dOn51shBAAzMzN07doV3333HcLDwzFmzBiEhYUJSZiIqCLJdbHG04+7QWWm0F8mLhPRH5yFKlPsTJNERERUMRjUUvjXX38V+QSurq5YunRpkY8nIqrolNXdED+9HVw/Oay3TObNZ3jyyUV4LmgMmYx3bYmIiMhwXJKCiKgMSO8YhKRh9fMtk3LwIRK23jZSRkRERFReFKlSuGDBAnzxxRdQKpV6yxw/fhwLFiwocmJERKQtcXQTpDf3y7dM3FfXkXoi2kgZERFRaSVBZrQHlX1FqhSGhIRgxowZ6NixI+Lj43WWOXbsGObPn/9SyRER0QvkMsTN7gilv6P+MhIQPS8UWfeSjJcXERERlWlF7j4aEBCA06dPo3nz5rh7967InIiISA/JygxPF76CXDsL/WXScxD1/hnkJGYZMTMiIipVJCM+qMwr9OL1am+88QZ8fX3x1ltvoXnz5ti9ezdatmwpMrdSySomGxYW+rvNFsak8WeFxAGA1Z/XFRYLAFKq59MSUUi211TCYgFAWjVx67FZxor5W6rJcsU910xvW2GxAMA0JUdcrCdiW6FCP/MSGi+mp7OwWHaCl/8783ctIXHchrmg4/pVQK7ub+Ps6HREzzqPSqtaQWZi2P2/dz+5LyQ3AFj9uY2wWACwPE7c94vZgyfCYj0PaCoslGQv9nXD02dCw8k8XcXFSssUFgsArB+L+4xz+Fvs6yaZmQmLFTzhnrBYAHBpgYOwWDIPce8PAOjmeVNoPCLS76Ummhk5ciT279+P7OxsdOrUCdu3bxeVFxER5SO2ShDc3w/Ot0zG308Rs/SyUfIhIqoocpLKRi8MNhRSYbz07KMdO3bEmTNn4O7ujuHDh2PRokUvFS8sLAxz585Fs2bN4OrqCltbWwQHB+OTTz5BWlpavseuXbsWMpkMMpkMcXFxL5UHEVFp59C/MhxerZxvmaSd4Xj2s9iWBSKiiirtXAwihv1Z0mmUayqVCsuWLUP16tVhYWGBSpUqYdq0aQXWA4p6/P79+9GiRQtYW1vDyckJAwcORHh4uM6yt2/fRt++feHo6Ahra2u0bt0aR44c0ZvLjRs3MGzYMHh6esLc3Bw+Pj7o168fYmJiDHouxiRkSYqaNWvi/PnzaNCgAebMmYM333wT2dnZRYq1adMmLFu2DIGBgZg7dy6WLFmCatWq4aOPPkKLFi2QkZGh87jo6GjMnDkTNjaCu94QEZViblPrwaph/l22Yr+8grS/Yo2UERFR+aSMTEH0R+chZeSWdCrl2pQpUzB16lTUrFkTq1atwsCBA7Fy5Ur06tULKlXBw3QKc/zOnTvRs2dPZGRkYMmSJZg+fTpOnDiBli1bIjpaeybve/fuoUWLFjh79iw++OADLFmyBKmpqejatSsOHTqUJ48//vgDDRs2xNWrVzFp0iSsXbsW77zzDlQqFZKTk1/uRSoGRR5T+F/u7u44ceIEhg4dis2bN8PS0rJIcQYMGIBZs2bB3t5es238+PEICgrCJ598go0bN+Kdd97Jc9zEiRMRGBiIWrVq4bvvvivy8yAiKktkJnJ4fdoUD0YdRXaUnruouRKiJp+G0+tV4TSiOuQWCuMmSURUxuWmKPFo2hmoUorW6FEijNW3U+A5rl+/jlWrVqF///745ZdfNNsDAgIwadIkbN++HcOGDRNyfHZ2Nt59911UqlQJJ0+e1DQsvfLKK2jYsCFCQkKwbt06TYxZs2YhMTERFy9eRHBwMIDnc6zUqlULEydOxK1btyCTPV+eIzY2FsOGDUO7du2wd+9emJqKG3teXIQuXm9paYldu3Zh0qRJelv0CtKoUSOtCqHa4MGDAQDXrl3Ls2/Xrl3Yu3cvvvrqKygU/LFDRBWLwt4c3l+0gNxK/30+KVuF+E23EDH0IFJPPTZidkREZZuUo0L0RxeQHZla0qmUe9u2bYMkSZg8ebLW9rFjx8LKyqrAhp/CHH/8+HFER0djzJgxWj0Ng4OD0a5dO/z444+ano9paWnYu3cv2rVrp6kQAoCNjQ3GjBmDsLAwhIaGarZ/9dVXSEhIwOLFi2Fqaor09PQi96I0liJVClUqFebOnatzn0wmw/Lly3H+/Pl8+9gW1qNHjwA8b5F8UXJyMt555x289dZbaNKkibDzeXp6aj2CgoKExSYiEs28sh08P26CgtYQzo5OR9S0M4iafgbZjw0bn0FEVJE9XXMN6edK3xiwgkiSzGgPAAgKCtL67VwUoaGhkMvleX7TW1hYIDg4WKvi9bLHq/+7efPmeeI0a9YMycnJCAsLAwBcvXoVWVlZesu+GA94Pk7Rzs4OiYmJCA4OhrW1NSwsLNC6desCn0NJEdpS+KLGjRujbdu2QmLl5ubi448/homJSZ4m4xkzZkClUuHTTz8Vci4iorLKppUnXN6ubVDZ1BOPET74T8RvuQUpW+yyMURE5UXSbxF49sOdkk6jwoiOjoaLiwvMzc3z7PP29kZcXByUSv3LiRXmePWYQW9vb51lASAqKqrQZYHnE9Lk5OSgW7duCA4Oxs8//4zFixfj2rVraNeuHa5fv673OZQUYWMKi9PkyZNx9uxZLFq0CNWqVdNsP336NL7++mt8//33OrucvozHj7W7VyUnJws/BxGRaE6vV4XyfjKSD0QWWFbKykXc2utIPhAJt+nBsG7kZoQMiYjKhoyr8Yj57FJJp1Fm3LlzB3Z2di8VIz09XWeFDnje2qcuY6Zn7c/CHJ+eng4AOsu/WPbFfxtSFgBSUlKQm5uL4cOHY8uWLZrtDRs2RPv27bFgwQL8+OOPOvMsKQZXCitXzn/ac11kMhnu3Xu5qdDnzJmD1atXY9y4cZg1a5Zmu1KpxLhx49CpUycMHTr0pc5BRFReyGQyeHzUEApHczzbdsegCQCUESl4NPEkbLtUgtt7dWDiUrSJwoiIyovsJ+mI+uAse1IYmZWVFWJjdc+WnZmZqSkj4nj1v7Oy8q47+TJlgefzrKSmpmLkyJFaZdu1awdfX18cO3ZM73MoKQZXCiMiIgodXD0DT1GFhIRg4cKFGDVqFL766iutfWvWrMGtW7ewdOlS3L17V7M9JSUFABAeHo7k5OQiVWaJiMoymYkcbu/VhV2XSohZfAmZN54ZdFzKwYdIO/UYzuNqwnFgIGQmxTbCgIio1FJl5CBq+hnkPisbi9TrVQZnH/Xy8sKNGzeQlZWVp1UuKioKLi4uelsJC3u8l5eXZnuNGjXylAX+7Rr6Ytn/+m9ZAPDx8cGtW7fg4eGRp7ynpyf+/vtvvc+hpBj8jR8eHp7nMWnSJMhkMp37wsPDcf/+/SInFhISgvnz52PEiBHYsGFDngrmgwcPoFKp8MorryAoKEjz2LlzJwCgSZMmqFu3bpHPT0RU1lnUcITvhvZwn1EfcjvDpsNWpefg6fKreDDiCDKuxhdzhkREpYukkvB4wV/ICksq6VQqpMaNG0OlUuHChQta2zMzM3H58mU0atRI2PGNGzcGAJw9ezZPnHPnzsHOzg5Vq1YFANSpUwfm5uZ6ywLQiq2e6EY9UeaLHj16BDe30jdcw+CWQj8/vzzbHB0d9e57GQsWLMD8+fPx+uuvY9OmTZDL89ZdR40ahVatWuXZvmbNGhw7dgybNm3S5CeSIiUDCuXLtYCqrf60jpA4APC4i9jn6nxN3MKsGYFOwmIBgNWlvHdpiiqhvY+wWACgdBDXzcTjmNiZIWW54v6mWb4OwmIBgFmC2LuxHkfEfZlnu9gUXKgQnKMyxQVrXXARmUIGh/6VYdPeG09X/4Pk3x4YFDrrbhIixx6DfS9/uEysDRNH3WM09IltJfYzqX39vMsRFdU/31QVFgsAZLGGtcQaJFdsV7WaMwXmBuD4JS9hsVz2xwmLBQDJTZ2FxXKKEtu8kuvjKizWpQVip7WX27/cGLAXpXvp79ZXFE0sjL8ERPymW0g9kv/vDKfXqwLzOPlMcRg8eDAWLVqE5cuXo3Xrf7/k1q9fj/T0dAwfPlyz7d69e8jOzkb16tWLdHzbtm3h6emJDRs2YMqUKZplKa5cuYJjx45h1KhRmvUFbWxs0KtXL+zcuRNXrlxBvXr1AACpqanYsGEDgoKCtGY8ff311/HNN9/gq6++Qrdu3TTbf/31V0RFRWHs2LGiXjJhSt1EM2vWrMG8efPg6+uLTp064YcfftDa7+7ujs6dO6NevXqaP8iLfvvtNwBAr1694OLiYpSciYhKOxNHc3jOaQT73v6IXXwZWXcNqzgn/RqBlONRcJ1QG/Z9AyCTi7kpRkRU2qQciUL8+hv5lrFp5wWbEdWBefuMlFXFUqdOHUycOBGrV69G//790b17d9y8eRMrV65E27ZttVYh6NixIx48eABJkop0vKmpKVasWIHBgwejdevWGDt2LJKTk7Fs2TK4urpi/vz5Wrl9+umnOHz4MLp06YIpU6bAzs4O69evR1RUFPbt26fVq1E958m2bdvQvXt39OzZEw8ePMCqVavg6emJkJCQ4nsRi6jUVQrVa3dERkZixIgRefa3bdsWnTt3NnZaRETlglU9F/ht7YBnP91D3LobkNJzCjxGlZyNmM8vIem3CLhPrw+LGuJ7YRARlaTMsEQ8np//+nHmVezhOa8xUnPE9bwpThL+XUOwuM8j0vLly+Hv749169Zh3759cHFxwbvvvosFCxbo7D34MscPHDgQlpaWWLhwId5//32Ym5ujY8eO+Pzzz/MsP1GlShWcPn0aM2fOxGeffQalUokGDRrg999/R6dOnfLk8c0336BevXrYtGkTpkyZAnt7ewwYMACffPKJZoxiaVLqKoVbtmzRmrrV2McTEZV3MhM5nIYGwa6TD2JXXEXKn3nHPOiSef0ZHow6AodXK8NlQm0obAwbp0hEVJrlJGQiavpZSJn6K3sKR3N4f9EccisTILlsVArLKoVCgWnTpmHatGn5ltM3Caahx6v17NkTPXv2NKhsjRo1sGfPHoPKmpiYYMaMGZgxY4ZB5Usap5YjIqqgTFwt4bWwKXxWt4aZn4FjJyUg8ef7iBx9BNkx6QWXJyIqxVTKXETPOIecJ/l8npnI4PVpM5h6WhsvMSIjY6WQiKiCs27sBr/vOsFlQi3IzBUGHaN8kIqo6Wehyii4+ykRUWkkSRJiF18ucKZl9w/qw6p+GZynQjLig8o8g7uPtmnTJs+2yMhIvfuA5+sUHj9+vIipERGRscjNFHAeWR12XSohdtkVpJ54XOAxWbcT8eTjv+D5SdOXXpeWiMjYEn+8i6RfI/It4zAoEA59AoyTEFEJMrhSeOrUqULv448EIqKyxdTLGt5LWiD11GPEfnEZ2Y/z7yKacjgKZpVvwWVMjXzLERGVJmnnYhC74mq+ZayauMHtvbK75vXzRjxjTDRD5YHBlcLw8PDizIOIiEoRm1aesGrkioQtt5HwXRikbP3r58WvvwHzQDvYtvfWW4aIqLRQRqYg+qPzQD7LgppWsoHXJ00hM+FIK6oYXmrxeiIiKr/kFiZwGV8Ldt19ETXzHJT3kvWWfRwSClNva1hUdTBegkREhZSbosSjaWegSsnWW0ZubQLvL5pDYWdmxMyKgbHG+7GpsFzg7Q8iIsqXma8tfL5oAYWD/h9IUmYuoqafRU5CphEzIyIynJSjQvRHF5Admaq/kBzwXNgU5v52xkuMqBQwqFL45MmTlz5RTEzMS8cgIqKSYeplDa/PmgEK/eNTcp6kI3rmuXy7mhIRlZSnq/9B+rn8f4+6vlMHNi08jJQRUelhUPfRypUr491338W0adPg5uZWqBPs27cPISEh6NWrF+bOnVukJEsTKTUDkv4eB4WLlZEhJhAAjwOCF1K1FbcWj8mTp8JiAUBGsK+wWE6HI4XFAoD+C8KExdq5T+zg9hwvR2GxFJlif/TLUsVdCwCQWs1JWCyri2LfI1AY3Gu/QMs2tRIWCwCmjNY/oRgAWNV3hfsH9RHz6d96y2RciUfM4kuwC2gLCJxsrFazgmdDNdShttWFxQIAq/vuwmL165z/36CwDq9tIDSevZO4az+lhbjPcgBwvCHuc0RmKu46BQCTxDRxwRzEtmClVBf33ZDlWHonGNz1QzZqbrubb5nojsE43Kk3EJv/88hI5RqtVP4Y1FI4depUrF69Gj4+PujVqxe+/fZb3Lt3T2fZtLQ0HD9+HLNnz4afnx969+4NmUyGvn37isybiIhKgEPfADgMCsy3TNLeCARcPmGkjIiI8pdxNR7V1+zLt0xidR/cmthD6M0sorLEoFthCxcuxFtvvYUFCxZg27Zt2L9/PwDAzs4O7u7ucHR0RGZmJhISEhAdHQ2VSgVJklC3bl0sWrQIw4cPL9YnQURExuP2Xl0oI1KQfiFWb5laJ3YhxckdcX5iW+WIiAoj+0k6oj44C3mO/h5VmS52+OfDwZAEtxATlSUGTzRTqVIlrF+/HtHR0VizZg369esHCwsLhIWF4fz587hy5QpiYmIQHByMqVOn4vTp07h8+TIrhERE5YzMRA6vhU1h6qO/m7lMktBw/xZYP9NfcSQiKk6qjBxETT+D3GdZesvkmpng6uwhUDraGDEzI5GM+KAyr9C3ROzs7DB+/HiMHz8eAJCdnY34+HhYWlrC3t5eeIJERFT6KOzN4P1FC0S+eRSqtBydZcyyMtBk73qcHDIVOeaWRs6QiCoySSXh8YK/kBWWlG+5G5P7IqWKp5GyIiq9XnpJClNTU3h4eLBCSERUwZgH2MHz4yZAPkNwbJ7FouH+rYCKM5ISkfHEb7qJ1CNR+ZYJH9wGsa1rGSmjEiDJjPegMo/rFBIRUZHZtPSE6zt18i3j9uAmap7aa6SMiKiiSzkShfj1N/MtE9u8Ou4Pa2echIjKAFYKiYjopTgOD4Jd9/yXFwj8+yh8blwwUkZEVFFlhiXi8fzQfMuk+LvjxpR+gJwtXERqrBQSEdFLkclkcJ/ZABa1818fsu7h7XCMDjdSVkRU0eQkZCJq+llImfpnGlXaW+HqnCHItTQzYmZEpR8rhURE9NLk5gp4L24OEzf9E8oocnPR6LeNsEh5ZsTMiKgiUClzET3jHHKe6F9YXmUixz+zBiHTzcF4iRGVEawUEhGRECbOFvBe3Bwyc4XeMhbpKWj86wYospVGzIyIyjNJkhC7+DIyrsbnW+72+B5IrOVnpKxKAS5JQYXASiEREQljUcMRHnMa5lvGIfYR6h38AZD4S4KIXl7ij3eR9GtEvmUe9mqC6K4NjJMQURlUpEphSkqK6DyIiKicsOtcCWFNuuRbxvvOJQRdOGikjIiovEo7F4PYFVfzLWPVxA133uxqpIyIio9CocDw4cOLJXahF68HAC8vLwwdOhRjx45F48aNRedUqmUHuEBhYS0klmlkgpA4ACClpAqLBQCyLHFdu2TOjsJiAUCqr7jZwlSmlYTFAoCdq/KfaKNQMsW9PwDArFf+C/gWRtJZZ2GxAMDERux7xPqBuOshsZ3YrkaOf+XfvakwTB6JiyVazxU2iJ7lhdRj0XrLVD+7Hx36JMC2vbcBEcVNCuH5q9jPy2fB4t6/h1fWFRYLAGAudnbFLEdxHYzsr4v7TAIAVZK4eMqqhrwnDWd694mwWBl1xeYmUkibY0Y9nzIyBdEfnQfyWQbVtJINvD5pipytNsLOq8oUFoqoUGxtbeHrm/9s30VVpE93Nzc3bNiwAc2aNUPDhg2xbt06pKaK/ZIlIqKySyaXwXNeY5hXsc+33OOQUGSGJRonKSIqN3JTlHg07QxUKdl6y8htTOH9RXMo7CroTKMcU1ju1K9fHzdu3CiW2EWqFN67dw9//PEH+vfvj2vXrmHChAnw8vLCW2+9hb/++kt0jkREVAbJrUzgvaQ5FA76f5BJmbmI+uAschJ4652IDCPlqBD90QVkR+bTICEHPD9uAnN/O+MlRlTMZsyYgf379+PPP/8UHrtI3UcBoHPnzujcuTOePn2KTZs2YcOGDVi/fj02bNiA4OBgjB8/HsOGDYO1tZiulkREVPaYelnD67NmeDjxJJCr+3ZyzuN0RM86j0qrW0NmyvnPiCh/T9dcQ/q5mHzLuL5TBzYtPIyUUSllrFY8thQaTWxsLLp164ZXXnkFffv2RePGjeHh4QGZLO9QgTfeeKNQsYtcKVRzdXXFjBkzMGPGDBw+fBjr16/H7t27MX78eEybNg3Dhg3D22+/jbp1BY+TICKiMsGqvivcP6iPmE//1lsm43IcYpZcgvusBjq/3IiIACDptwg8++FOvmXsevjBcViQkTIiMp6RI0dCJpNBkiTs3LkTO3fuBACt701JkiCTyYxfKXxRYGAgKleuDDs7O8TFxSEtLQ3r1q3D+vXrMWDAAHz99ddwcHAQeUoiIioDHPoGIOteEhJ33NNbJmlPBMwD7eE4uIoRMyOisiLjajxiPruUbxmLOk5wn1mfN5cAALL/fxjjPGQMmzdvLrbYL10pzM3NxZ49e/D111/j8OHDUKlUCAwMxIwZMzBy5EhcunQJS5YswU8//QSFQoEffvhBRN5ERFTGuL1XF8qIFKRfiNVbJnb5FZj528K6qbsRMyOi0i77STqiPjgLKVv/VKMmbpbw/rw55GYKI2ZGZDwjRowotthFrhRGRERg/fr12Lx5M2JiYiCXy9GrVy9MmDABXbr8uz5Vp06d0KlTJ/Tv3x+///67kKSJiKjskZnI4bWwKR6MPoLsR2m6C6mA6Nnn4bepPcx8bY2bIBGVSqqMHERNP4PcZ1l6y8jMFfD+ogVMnC2MmFkpxzGFVAhFGtHftWtXVKlSBZ9++ikAYPbs2QgPD8euXbu0KoQvaty4MZIEriFERERlj8LeDN5ftIDcWv89SVVKNqKmn0Vuqv6p5omoYpAkCY8X/IWssPx/Q3rOawSLag7GSYqohO3ZsweDBw9GvXr1UKXKv0Mubt68icWLFyMqKqrQMYvUUvjnn3+iffv2mDBhAvr27QsTk4LD9OrVC15eXkU5HRERlSPmAXbw/LgJoqad0XuHWRmRgscfnYf30paQKThehaiiit94C6lH8v+B6zy6Omw7+hgpI6KSI0kSXnvtNWzfvh0AYGlpiYyMDM1+JycnzJ49G7m5uZg1a1ahYheppfDmzZs4fPgwBgwYYFCFEABq165drP1giYio7LBp6QnXd+rkWybtbAyerv7HSBkRUWmTciQK8evzX6jbpp0XnMfWNFJGRCVr5cqV2LZtG8aMGYOEhAS8//77Wvvd3d3RqlUr7Nu3r9Cxi1QprFatWlEOIyIi0nAcHgS77r75lnn2wx0k7XtgpIyIqLTIDEvE4/mh+ZYxr2IPz3mNIZOzNwFVDJs2bUKDBg3w9ddfw97eXucsu1WqVEFEREShYxep++hPP/2EtWvX4ttvv4W3t3ee/VH/1959x0dVJWwc/016bySEJHSMUkQQ6cXQLYioiCiKyAquK7LKoigWRAEbuqjgrivIYlnLWvaVFQtNRDQIKkUUEkBCSUJP78nc9w+WrNkUMsPJkGSe737mw3rn3OeeJHfuzJlzzzmpqdx6661MmTKF6667zplD1FuWhw3L0K1MNi9zs2MVdW1tLAsgP8rcAtLh6w4aywKI2mRuJZXiCLMD0u3+3sayPGrZC19bZQsLjWUFNS04cyEHWAfTjebR3NyCxbYyY1EAWEXVT5TgqKxeZm/Jf/xLczN+lsXV7uf0GN2DocmvELWn+oZf6pNb8GkRhP9FTYzUzfLzMZJzWuhX5hqtttAQY1kA1uHjRvMCAmKMZVnFxcayAMriK38ecZb3vupnyHWGzc/XWJbVJ8dYFoBnYv2b0Kn0ZCGp9ydiFVZ/AfYI9yFqfk9K/AGr9IyZtgJz55utyOy5W2c00Uyjs3v3bv7whz/UWCYyMpLjxx2/9jv1yX/JkiVkZGRU2SAEiIuLIzMzkyVLljgTLyIibsLu4836eyaQFxFabRnP0jJSH0ik5Ei+C2smIueCVWIn7YGNlB6u4fXuZaPpUz3xiglwXcVE6gEfHx9yc3NrLHPw4EFCQhz/gtGpRuFPP/1Ejx49aizTo0cPtm/f7ky8iIi4kcKwEL6aNpFSn+p72stOFpF6fyL2wjP3CIhIw2RZFkee3ULB9hM1lmsyowt+Xc3cOdCoWTbXPcQlunTpwurVqykpqXp27pycHFatWkX37t0dznaqUXjy5EmaNm1aYxlnuy5FRMT9ZLRuzsbJY2ssU5SUyeE5P2BZuldJpDHKfG8PWctTaiwTPLYtwVe3ck2FROqZSZMmsW/fPm677bZKPYbHjx9n3LhxHD9+nN///vcOZzs1aCkyMpI9e/bUWGb37t2EhYU5Ey8iIm5of++uhB46TOePV1dbJmf1IXzahhB5ewcX1kxE6lrexiMcfbHmO8z8ekYRMbWTi2rU8Nn+83DFccQ1xo8fz+rVq3nzzTf58MMPy9taHTt2ZO/evZSUlDBp0iRGjRrlcLZTPYX9+vVj+fLlJCcnV/l8UlISy5cvZ8CAAc7Ei4iIm9p+3XAOdL+wxjInXv2FnC8dX5hXROqn4gM5pD3yHdirL+PVIpCoud2xeZmbCE+kIXr99ddZvHgx7du359ixY1iWxa5du4iPj+dvf/sbr776qlO5Tr2y7rvvPkpKSujfvz+LFi0iOTmZvLw8kpOTWbhwIf3796e0tLTS2hkiIiI18vAg8fc3kdGi5lku02dvpjA50zV1EpE6U5ZTTOp932LPqXqMFIAtyIum83vhGWJ25uBGz3LhQ1zq9ttvZ+vWreTm5nLo0CFycnLYsWMHkydPdjrTqUZhjx49+Mtf/kJmZib33HMPHTp0ICQkhA4dOnDvvfeSlZXFX//6V3r16uV0xURExD2V+vny1bSJFAYHVlvGKiwj9f5ESk+aW2pFRFzLKrNIf3QTxftrmE3RA6LmdMendf1bOkPkXPP39yc2NpbAwOrfL2vL6T74yZMns23bNu666y4uueQS2rVrxyWXXMKUKVPYtm0bkyZNOuvKiYiIe8qLimD9PROwe1b/NlV6OJ+0md9hldRwz5mI1FvHFv1EXuKRGsuE392JgD7m1lAVach69+7Nww8/zOrVqyksNPul6Fmtjt2hQwcWLlxoqi4iIiLljl3Qlk0TrqP30g+qLVOw9ThH5m8hemY3bDZNdyDSUGR9kkLG27trLBM0ogUhN7VzUY1E6r/t27ezadMmnn76aXx8fOjVqxdDhgxh8ODB9O7dG09PT6ezz6pRKCIiUpf2DupN2MHDtF+1odoyWR+n4NsulPCx57mwZiLirILtJzjy9JYay/h1jqDJA130ZY/Ib2RmZpKYmMjq1atZs2YN3377LevXr2f27NkEBATQv39/Bg8ezODBg7nkkkscyj6rRmFZWRlJSUlkZGRQVlZWZZlLL730bA4hIiJu7sebR9ItK5n8TUerLXP0hW34tA4msJduMxOpz0oO55M6I7HG2769mvoT90wfynyc7/UQLUnRGPn4+JCQkEBCQgJz5swhNzeXr776irVr17J27VpWrlzJypUrsdlslJaWOpTtdKNwzpw5LFiwgKysrBrLVddYbKi8s0vwLi42klUSE2okByA3zuwUzSURjp1INbFiIo1lAdhO1HzOOSK/w9kPzP2t8M0njWXlXFzz7IuOCk4293uzpx0zlgVg8/U1mne0T4CxrIgd5l4LAEUXNDOWFfp99Y0kZ2T2amosK3S9yY8JXsTO7cX+362l5FBe1UXskPbwd7RaOgifljVPSHF4gL/BusG8i/cZy1r0zEXGsgAOj25uNC/6vRRjWVZLs9c4r5MF5sI8zL6nejo/IWAlhT+HmAsDHhuzzmheTewFpaTOSKQso6jaMjZfT+Ke64tXEz9eeaqzsWMfvdTcZ66ifN1oJ/VDUFAQF198MRkZGZw8eZLU1FSOHz/uVJZTZ/Wzzz7LY489RmhoKOPHj6dFixZ4eekFIiIidcMz1Ie45/py4PYvsedV3VC355SQet+3tFw6GM8gbxfXUERqYlkWh+d8T1FSZo3lYh7rjt8FYS6pU6PnquUitCSFS508eZIvv/yyvHcwOTkZy7KIiIggISGBwYMHM2TIEIdznWrJLV68mLi4OH788UeioqKciRAREXGIb5sQYub0JHX6t9V+CCnen0v6I98R93w/bJ66qUmkvjjx2i5y1qTWWKbJ7R0IHmK2d1ukMbn44ov56aefsCyLwMBABgwYwKRJkxg8eDBdu3Y9qzG4TjUKDx48yOTJk9UgFBERlwrqF0PU3Z05tvCnasvkJR7h2KKfaHqP2VsxRcQ5OWtTObH4lxrLBA2MpcmkDi6qkZtQT2Gjs23bNmw2G8OGDePBBx9kwIABZzXj6G85ddN8dHS0w4MXRURETAi/OZ6QK1vWWCbj7d0cnvsDpZnVj10SkbpXmJxJ+uObayzje14oMY/1wOah3n2RmkybNo2LLrqIVatWMWTIEMLDwxkxYgQLFixg27ZtZ5XtVE/hDTfcwL/+9S+KiorwNTxBhIiISE1sNhvRD3aj+EAuhTuqn9wp698p5HyVRtRdnQgd1UYfOEVcrPRkIan3J2IVVj/poGe4L3HP9cEjQHNTiJzJ888/D5waV3h6TOHatWv57LPPsNlsNGnShEGDBjFkyBDuuOMOh7Kd6il8/PHHiYmJ4frrr2ffPnOzromIiNSGh68ncc/2watpzTOJ2rOLOfL0Fg5MWkfhrgwX1U5ErBI7aQ9upPRwfvWFvGzEPt0b7xizM4GLNHYRERFcf/31/OUvf2HXrl0cOnSI559/Hg8PDz744APuuusuhzOd+lrmwgsvpKSkhLS0ND799FNCQ0MJCwurVM5ms7F3715nDiEiIlIjryZ+xM3vw4E7vsIqqnn5o8KfT7J/4lrCRrfDu093SgLMLVsiIhVZlsWRZ7dQsO1EjeWiZ1xMQFezy1bJb2hMYaOWl5fH+vXrWbNmDWvWrOGnn37Cbj+1/mdwcM1LM1XFqUah3W7Hy8uLli3/O6bDsiqfEVVtExERMcWvfTjNHr2E9Ec2nbmwHTLf38s1XzzJ96NHsa9ndziLmdpEpGqZ7+0ha3lKjWXCbmhH2Kg2rqmQSCNxeqH6NWvWsHnzZkpLS7EsC39/fwYNGsTgwYMZPHgwPXr0cDjbqUZhSkqKM7uJiIgYFzKsBVaJnSNP/4hVZD9jef/sHAb8/S3iN2zku5uuJyvW7CLqIu4sb+MRjr64vcYyAT2banZgEScMGjQIAG9vb3r06FG+JmGfPn3w8fE5q2yN6hURkQYv9MpW+HeN5Oift5H3dXqt9mm2ew8j5z7LL0MGsn3E5ZT6aeI0kbNRfCCHtEe+gxq+m/FuEUTsvF7YvJya1kLErd13330MHjyYAQMGEBhodizuWTcKd+7cya5du8jNzWX8+PEm6iQiIuIwn9hAmj/Xl9z1aRz58zZK02uY4OI/POx2Lly1ljbf/8jmMddy4OIuuqVUxAllOcWk3vct9pySast4BHoR91wfPEPOrkdDakljChudZ599ts6ynW4U/vjjj0yaNKnCmhinG4VfffUVV1xxBe+++y5XX3312deyHvHIycej2ExWWUComSAg+GDNkyw4ymunubzjXf2MZQFEfnLUWFbongJjWQBWmbnfW1GE2Q+mgRlZxrJskeHGsgBO9Agxmudt7kfF+7DBMMDbfubbG2vLKjO7XmzwAUMXN6A0wMxius4IujSWgJ5NObEsiZNvJkHpmT+xBGZkMvDVvxPYJ5qm07vi0yKo1sd7YUnfs6luBT4Ts41lAfjlFxrNM+qQuWs5AAaXHLEFmf0Gvuw1c1m2nuayTLHKLNIf3UTx/tzqC3lAkzmXYG/lT4FVfcOxAoPXy6hEc6+twqIzf+EkUtfS09PZunUrmZmZhIaGcvHFFxMT4/xwCKf67nft2sXAgQPZs2cP9957L1dccUWF5y+99FKaNGnCBx984HTFREREnOXh50XUnZ1o8/YwAno2rfV+eYlHSBm3iuOLf8Few9pqIvJfxxb9RF7ikRrLhE3piH/faBfVSKTxOnDgACNGjKB58+ZcddVV3HLLLYwcOZLmzZtz5ZVXOj33i1ONwsceewy73c7mzZt5/vnnK81wY7PZ6NOnD5s3b3Y4Ozk5mVmzZtG7d2+ioqIIDg6ma9euzJs3j7y8vPJylmXx1ltvceONN3LeeecREBBAy5Ytufrqq/nuu++c+bFERKSR8WkVTPOX+hMzrxdeUbW7a8EqtnNiyU5Sxq0i95vajU8UcVdZn6SQ8fbuGssEjmhB8Lh2LqqRnGazXPcQ1zh8+DD9+vXjs88+o1WrVowfP54ZM2Ywfvx4Wrduzeeff86AAQM4fPiww9lONQrXrVvHddddxwUXXFBtmZYtW5KWluZw9tKlS1mwYAHt2rVj1qxZzJ8/nwsuuIBHHnmEvn37UlBw6na/oqIixo8fT1JSEjfeeCMLFy7kjjvu4Mcff6RPnz689dZbzvxoIiLSyNhsNkKGNqfNe8MJHxcPnrW7zbAkNY/UP31L6gOJlNS0ALeImyrYfoIjT2+psYxP53AiHrgIm8bqipy1uXPnkpqayjPPPMPu3btZtmwZTz31FMuWLSM5OZlnn32W1NRU5s6d63C2U2MKs7KyznjPanFxMaWljo93uf7665k5cyahof8db3fnnXcSHx/PvHnzeO2117j77rvx8vJi3bp1JCQkVNh/8uTJdOrUienTpzNu3Dg8PDS7lYiIgEegN03vuYjQEa048swWCrbXvLD2abnr0sjbeIQmt3cg4qZ4bN56XxEpOZJP6gOJWCXVj/vzbOpH1NM9sPmcuzHG7s32n4crjiOusGLFCoYOHcr9999f6TlPT0/uu+8+Vq1axSeffMKiRYscynbqnS0mJoadO3fWWGb79u20bt3a4ezu3btXaBCeNnbsWAB27NgBgJeXV6UGIUB0dDQJCQkcPXqUo0cND2IXEZEGz/e8UFr8LYFmj16CZ3jtlqGwCss4/vIOUm5ZTf73em8R92YvKCX1/kTKThZVW8bm60nUsz3xbGJ2sjkRd5aenn7Ghem7d+/uuttHL7vsMj777DM2bdpU5fMrV65k/fr1jBgxwpn4Kh06dAg41eirTVkfHx/CwsKcPl5MTEyFR3x8vNNZIiJSv9g8bIRe1Zo2/xxO2Oi2tf6iuzglh4NTviZt1iZKj5udvVikIbAsi8NzvqcoKbPGchGPdsWnfZhL6iTVsFz4EJcIDQ3lwIEDNZY5ePAgISGOz+ruVKPw4YcfJjg4mMGDB/PQQw/xyy+/APD+++8zbdo0Ro4cSVRUFNOnT3cmvpKysjLmzJmDl5cX48aNq7Hsp59+yqZNmxg7dix+fvp2SkREqucZ4kP0jItpuXQQfh1qv9RKzhcH2XfDSjLe24PNrllKxX2ceG0XOWtSaywT8rvzCRwa56IaibiPfv368cEHH1Q7qeamTZt4//336d+/v8PZTo0pbNGiBStXruSGG27g6aefLt9+4403YlkWrVu35sMPP6xVr15t3HvvvSQmJvLkk0/WOLnN7t27GT9+PHFxcTz//PNndcz09IozzmVnZ1d5W6uIiDR8/h0jaPnaIDL/71eO//XnGhfgPs2eV8rRP2+jb5Nj/NxvNJnRreu+oiLnUM6XqZxY/EuNZfwTmhE6qfrPaiLivEceeYRPP/2UAQMGcNNNNzFw4ECaNWvG4cOHWbduHe+88w4eHh489NBDDmc7vXh99+7dSU5OZsWKFSQmJnLy5ElCQ0Pp1asXo0aNwtvb29noCh599FEWLVrEHXfcwcyZM6stt2/fPoYMGYLNZuOzzz4jKirKyPFFRMQ92DxthI9uR/CgOI4t2kH2iv212i/kRBp9li/k4AU9Seo5ghK/2i98L9JQFCZnkj675qXGvM8Loclj3bB5aOIRkbrQrVs3PvjgAyZMmMCbb75ZYbUFy7KIiIhg6dKldO/e3eFspxuFcGqyl1GjRjFq1KizianW7NmzmTt3LhMnTuSVV16ptlxKSgqDBg0iNzeXNWvW0Llz5zqpj4iINH5eEX7EzOpO6MjWHJm/heK92bXar0XSJqJTdpDUcwSHLugJNs1SKo1D6clCUu9PxCqs/lZpzzAfop7tiUfAWX20FNM03q/Rueqqqzhw4AD/93//x5YtW8jKyiI0NJSLL76Ya665hsDAQKdy6+0rd/bs2Tz++ONMmDCBJUuWVLu+TUpKCgMHDiQrK4vVq1dz8cUXu7imIiLSGAVcHEnrN4aQ8c89HF+8Eyv/zMss+RTl0/nr92mR9B0/9xtNdmRzF9RUpO5YJXbSHtxIaU1rdXrZiH26D7bYANdVTMTNHDhwgM2bN+Ph4UGPHj24+eabufnmm43lO9UofOKJJ2pVzmaz8eijjzqV//jjjzN+/HiWLl1a7VqD+/fvZ9CgQWRmZrJq1SouueQSh4/lqPy24dj9nWuB/y//AzlGcgAwvShsbp6xqKjDhr+m8jVzazLUwRdoQWbODYCSCMfX+axJWby5Qf9eKUeMZQE0WZtrNK+wfTNjWZbB1wIAvj7GoqyCQmNZABntzdUtLNns+fvi3/oYy8q/4szjBSvo3xO/Dllc9PoKmif+VKtdwo4eoN/HCwgb3Y7I33fEM7h2v9vH1w50rG5nELHd7GuLaHNDM3Lbmb3NNmh/DY0WB3W/o+Zltxy1eXFHY1mzhqwzlnUmlmVx5NktFGyreU3P6BkXE3BxJIvmdTJ6/Mxu5s63kF/NzRZs2cxe3+qKzTr1cMVxpG7dd999vPDCC1jWqV+2h4cH06dPrzC3y9lyqlE4e/bsap873aNnWZZTjcKXX36Zxx57jJYtWzJ06FDefvvtCs9HR0czbNgwcnJyGDRoECkpKUydOpWkpCSSkpIqlB02bJixyW5ERMR9FTYJZdOfxpGybTddXvuY4PRaLHxvh8z395Kz5hBRf7yIkMtbVHvXi0h9lPneHrKWp9RYJuyGdoSNauOaCom4oXfeeYc///nP2Gw22rdvj2VZJCUlMX/+fC655BLGjBlj5DhONQq//PLLKrdnZmayefNmXnrpJUaMGMGdd97pcPbmzacGMR84cIAJEyZUej4hIYFhw4Zx4sQJ9u3bB8DChQurracahSIiYsrRLvGsef5e4pd/TfsP1+JZcuYeg7KTRRyevZms5fuIvv9ifNs6vn6UiKvlbTzC0Re311gmoGdTmt5zkYtqJOKelixZgpeXF59++ilDhw4FTq0JP2LECJYsWXJuG4UJCQnVPjdq1CjGjh1Lz549ufHGGx3OXrZsGcuWLTtjudatW5d3oYqIiLiK3duLpNGDONi/C13+/gkxP9TuVsOCH4+Tcstqwm+KJ/L2DpqQQ+qt4gM5pD3yHdirL+PdPJDYub2weWlCJZG6tH37dkaOHFneIAQYPnw4I0eOZMOGDcaOUyev5M6dOzNq1CiefPLJuogXERE55/KjI0h88Fbi5vfBK6aWE2yUWWS8lcy+sSvJWZuqLzel3inLKSb1vm9rXKvTI9CLuOf74hlqbhyyiFQtIyOD9u3bV9reoUMHMjIyjB2nzr7eadmyJTt27KireBERkXoh6NJY2rw7jIiJ7cGrdmMGS48WkDZzI6nTvqH4oOHJYEScZJVZpD+6ieL9NZyTHhAztxe+rXUbdL1nufAhdcZut+Pr61tpu4+PD3Z7Dd35DqqzRuF3332Hv79/XcWLiIjUGx5+XkTd2Yk2bw8joGfTWu+Xl3iElHGrOL74F+w1rAEn4grHFv1EXmLNs0tH3d2ZoL7mZngWkTNzxSRlTg1oOHDgQJXbS0tLOXjwIIsXL2bDhg3ccMMNZ1U5ERGRhsSnVTDNX+pPzppUjr2wjdJjZ142xCq2c2LJTrI/O0DM0Gaktzc7rb9IbWR9kkLG27trLBNyZUvCx8W7qEZytmz/ebjiOFK3nn/+eRYvXlxhW3Z2NnDq7sz/ZbPZ2L9/v0PHcKpR2Lp16xpbrJZlER8fz3PPPedMvIiISINls9kIGdqcoD7RHF+yk4z39kDZme+vKknNI+H1VzjY6SK2XDWa/LAIF9RWBAq2n+DI01tqLON3YQTRD3bTsioi50B2dnZ5I/B/HTp0yMgxnGoU3nrrrVVeFDw8PAgPD6dnz56MGjWqyvtfRURE3IFHoDdN77mI0BGtarUA+Gktft5OTPIudgy5nOR+g7B7aZZSqTslR/JJfSARq6T6sUleTf2Je7YPHr6eLqyZiABGxw3WxKl3mtosGSEiIiLge14oLf6WQPaK/RxbtIOyjKIz7uNVUkzXz5fT5sdN/HD1GI62O98FNRV3Yy8oJfX+RMpOVn9O2nw9iXu2D15N/FxYMxFxNS0uIyIiUsdsNhuhV7WmzT+HEza6ba0H4YQePczgJQvp/e7r+GVn1W0lxa1YlsXhOd9TlJRZY7lms7rj1yHcNZUSszT7qDhA96Q4yH9HGn4+ZmZVtbeMNpID4JmZbywL4OR4c1NNtwjNNJYFcGKluVnP/PbW7nau2jrZK8pYVsy/zdbNCjD3LW/mgDhjWQBjBq43mrdydvXrazkqq18rY1kARRHm3j3tQWZnq5x34TpjWY/4JxjLAvjTxWuMZW0pNHv+OsIzxIfoGRcTclUrjj67lcKdtVtjqvW272m7ZyuRv+9E2Oi2tV4wfEs/s7OAf7Cru7Gsay/43lgWwDevX2Qsa/U6cz8nQGHv+vep+cTSXeSsSa2xzN4OA1m5dShsrV3myb6hZ1+x34jYcNRYlj06zFiWVabbaKXxcapR2LZtW6cOZrPZ2Lt3r1P7ioiINBb+HSNo+dogsj7ex7G/7KhxofDT7HmlHP3zNrI+SSF6xsX4d27igppKY5TzZSonXv2lxjJH4jqyt9NgF9VI6oSrevHq33ce4gSnGoV2u52SkhLS09MB8PT0JDIykuPHj1NWduqb65iYGHx8fCrsZ1k6a0RERABsnjbCrmtL0MBYji3aQfaK2k0fXpScxYFJ6wi9ujWRUy7EK0yTukntFSZnkj57c41lckKbsaPnaLBplJGIu3Dq1b59+3bi4uLo3bs3X375JYWFhaSnp1NYWMjatWvp1asXzZs3Z/v27ezbt6/CQ0RERP7LK8KPmFndafG3BHzOq/2t+1nLU9g3ZiWZ/7cPy64vXeXMSk8Wknp/IlZh9beeF/sEsKXfzZR56csGEXfiVKPw4YcfJjMzk3Xr1pGQkICn56l7qz09PRk4cCBffvklJ0+e5OGHHzZaWRERkcYqoGskrV8fQtQ9nbEF1O5GHnt2MUee+pEDk9ZRuKt24xPFPdkLy0h7cCOlh6ufg8Bu82Rr33EUBmpiGRF341Sj8F//+hejRo2qdHvoaX5+fowaNYqPPvrorConIiLiTmxeHkSMO5827w0neGjzWu9X+PNJ9k9cy5HntlKWU1yHNZSGKHdDOik3rTzjWpk7u40kM6q1ayolIvWKU43CEydOUFJS86D4kpISTpwwO3uiiIiIO/Bu6k/svF40X9gf75ZBtdvJDpnv72XfDSvJ+uyAxvELJel5pN7/LanTv6UkreZZyvef15vUtmZnXZVzTEtSiAOcahS2a9eODz74gKysqtdMysjI4IMPPnB6llIRERGBwJ7RtP7HUCLv7ITNt3Zv2WUnizg8ezMH71qPLSWzbiso9ZK9uIwTy3axb+wqctenn7H8iabtSO5yhQtqJiL1lVONwjvvvJO0tDR69uzJG2+8QUpKCgUFBaSkpPD666/Tq1cvDh8+zJQpU0zXV0RExK14+HjSZGJ7Wr87nMABMbXer+DH4/hNXIH3X3+EfHNrd0r9lrf5KPtvWc3xv/6MVXTmtUzzgpqwrc9YLA+tvdfY2Fz4kIbPqSUp7r77bnbv3s3ChQuZOHFipecty2Lq1KncddddZ11BERERAZ/YQJo/15fc9Wkc+fM2StNrvh0QwFZm4f3OL3iuTqFkanfKElqATR/hGqPSYwUcfXE7OasO1XofjxAftva5mVKfgDqsmYg0BE41CgFefPFFbrzxRpYuXcqWLVvIysoiNDSUbt26cdttt9G3b1+T9RQREREg6NJYAno25cSyJE6+mQSlZx7Q43EsH99Z6ynrFUvxPT2wmge7oKbiClapnYz393Li1V+w55fWej+/juHEPN6Dz//ZtA5rJ+eUFq8XBzjdKATo06cPffr0MVUXERERqQUPPy+i7uxE6BUtOfLcVvI3Ha3Vfp7fpeF3278pHdeJkps7ge9ZfQyQcyx/23GOPruVoj1Vz/FQFY8Qb6L+cCGho9pg81SvsYiconcDB9njorD7mbnNwlZ85nv9a+vIoFBjWQBNVpsbf5KbV/vFmGvD/6aTxrLKTtRyVr9aCt+RayzLKiwylgWAwbySYLO3Gn32D7N3FniHZBvLCt175lv0HGHbYW65ACvH3PkGMPfQQGNZTb/81VgWwD829DeWVRTlZywLYHuRua/Jp03c4FB5n1bBNH+pPzlrUjn2wjZKjxWecR9bsR3vZT8RsOpXmt7XlaC+zWp9vIu7fO1Q/VypZMLPxrL6+Jm7hphmYVGaUcTxRTvI/mS/Q/uGXNWKyLsvxCvctzzLVmTumlQcYe5zDYDNw6mpL6rO2nfmCXdqnVVcYCyrTqmnUBzg9KutrKyMF198kV69ehEaGoqX13/bl1u3buWuu+4iOTnZSCVFRESkajabjZChzWnz3nDCx8VDLXt/SlLzSJ32DakPJFJSw4LmUn9YdovMj34l5YaVDjUIfc4LpcWrCTR79JLyBqGIyG851VNYWFjI5Zdfztdff02TJk0IDg4mN/e/31i3adOGv//97zRp0oQ5c+YYq6yIiIhUzSPQm6b3XEToiFYceXbLGRcqPy13XRp5G4/Q5PYORNwUj83bXO+MmFO4M4Mj87dQ+HNGrffxCPCiyR0dCRvTFpuX/q4iUj2nrhDPPPMM69evZ86cORw+fJhJkyZVeD40NJSEhAS++OILI5UUERGR2vE9L5QWf0ug2azueNayV8gqLOP4yztIuWU1+T8cq+MaiiPKcoo5Mn8L+yeudahBGDysOa3/OYzwm85Tg1AaFLvdzoIFC2jfvj1+fn60aNGC6dOnk5eXVyf7f/rpp/Tt25fAwEAiIiIYM2YM+/btq7JsUlIS11xzDeHh4QQGBjJgwADWrl17xjpt374db29vbDYbH3zwQa1+Dldz6irxzjvvcOmll/LQQw/h4eGBrYrprdu0acPBgwfPuoIiIiLiGJvNRuiIVrT553DCRret9UJixSk5HLxrPWmzNlF64szjE6XuWJZF1qf72TdmJZkf/FrrcVverYJovqg/MXN74hXlX7eVlPrNcuHDoGnTpvGnP/2Jjh07snDhQsaMGcNLL73EyJEjsdvtRvf/6KOPuOqqqygoKGD+/Pncf//9rF+/nn79+pGWllah7N69e+nbty+JiYnMmDGD+fPnk5uby2WXXcbq1aurrY/dbmfy5Mn4+Zkdz26aU7ePpqSkcPXVV9dYJjQ0lIyM2n+jJSIiImZ5hvgQPeNiQq5qxdFnt1K4s3bvyzlfHCRvQzqRv+9E2GjdeuhqRXuzODJ/KwVbjtd6H5uvJ01+157wm3ULsDRcP//8MwsXLuS6667jww8/LN/epk0b/vjHP/Luu+8ybtw4I/uXlJQwdepUWrRowddff01Q0KnJB6+44gouueQSZs+ezauvvlqeMXPmTDIzM/nhhx/o2rUrALfeeiudOnViypQp7Nq1q8qOsoULF/Lzzz8zY8YMHnvssbP6/dQlp64agYGBnDhR81iFlJQUIiIinKqUiIiImOPfMYKWrw2i6YyueAR712ofe14pR/+8jf0T11LwU+3GJ8rZseeXcvSl7aSMX+NQgzDw0hhavzuUiNsuUINQytlc+DDlnXfewbIs7r333grbJ0+eTEBAAG+99Zax/b/66ivS0tKYNGlSeYMQoGvXrgwcOJD33nuPkpJTs/Hn5eWxfPlyBg4cWN4gBAgKCmLSpEkkJyezefPmSvU5ePAgjzzyCLNnz6Zly5a1/C2cG05dObp3786nn35a7b25R48eLb8/V0RERM49m6eN8NHtaPPP4YSMaFXr/YqSszgwaR2H5/1AaabhpXIEOHWraM6aQ+y7YSUZ/9gNZbW7H887NoDY5/sQN78P3rGBdVxLkZrFx8cTExNT/nDG5s2b8fDwoGfPnhW2+/n50bVr1yobXs7uf/r/V7Xmeu/evcnOzi5fSWH79u0UFRVVW/a3eb/1hz/8gbZt21ZqpNZHTjUK//jHP3LkyBFGjhxZadmJbdu2MXLkSPLy8pg6daqRSoqIiIgZXhF+xMzqTou/JeDTrvbryGYtTzk1vu3jfVh2LUxmSvGBHA7ds4G0h76j9Fjt1r+zeXsQ8bv2tHpnGEH9nfvwLVIfpaWlERkZia9v5Umy4uLiOH78OMXF1a+t6cj+p8cMxsXFVVkWIDU11eGyp7333nt8+umnvPLKKxWW7quvnKrhiBEjeOSRR5g7dy4dOnTAx8cHONWFWlBQgGVZPPHEEyQkJBitrIiIiJgR0DWS1m8MIeOfezi+eCdWfukZ97FnF3PkyR/JWp5C9IyL8bsgrO4r2kjZC8s4+fouTr6ZjFVy5skzTgvo1ZSm93XFp2XQmQuLe3Px4vW7d+8mJKT2XzRVJT8/v8oGHVA+UUt+fn552+Ns9s/PP7U+a1Xlf1v2t//WpixARkYG99xzD5MnT66yd7E+cvrG8yeeeIKVK1cycuRIQkND8fT0xN/fnyuuuIIvvviCRx55xGQ9RURExDCblwcR486nzXvDCR7avNb7Fe44yf7b1nDk+a2U5ZbUYQ0bp9wN6aTctJITS3fVukHoFeVP7JO9iHuxnxqE0mgFBARQVFT1beqFhYXlZUzsf/rfqsqfTVmA+++/H8uyePrpp6uta33jVE/hgQMH8PHxYejQoQwdOtR0nURERMSFvJv6EzuvF3mjWnNk/lZKDuSeeSc7ZP5zLzmrD9H0nosIvqxFlTPvyX+VpOdx9M/byF2fXvudPG2E33gekbd3wCPQG8slXT/SKLi4p9CE2NhYfvnlF4qKiir1yqWmphIZGVltL6Gj+8fGxpZv79ChQ6Wy8N9bQ39b9n/9b9kff/yRpUuX8vjjj3PixInyyTmPHj0KwOHDh9mzZw8tWrSotlfzXHCqp7BNmzY89NBDpusiIiIi51Bgz2ha/2MokXd2wuZbu48IZSeLSH9sMwfv+pqiX7PruIYNk1Vi58SyXewbu8qhBqF/10havzmEpn+8CI/A2s0aK9KQ9ejRA7vdzqZNmypsLywsZOvWrXTv3t3Y/j169AAgMTGxUs7GjRsJCQnh/PPPB6Bz5874+vpWWxYozz5w4ACWZTFr1izi4+PLHw888AAAU6dOJT4+np9++qnGn8XVnOopDAsLIzIy0nRdGoTCCG/wr/4bCkf4b95nJAcgItDwNLceBr/t9TQ7Pbb9r9UPMHbUscubGMsCiNpibma+Kx5JPnMhB3zyZn9jWfYws7eLeSalnbmQAyyDA7qLm4caywLwTck/c6HaCjdbt6IIc1/32vzNLtJrKzT32vI9YbY3K3J87ZcOOJNjZWZn94zydPxbaA8fT5pMbE/wZS04+udt5H1du0ZMwY/HSLllNRHj4mnyuw54BLh2YoU+fvWzQZr3/VGOzt9KcUpOrffxDPcl6o+dCbmiZaXe14V/6W22guHmXg/N1hq8vgFWDROKOKzszGNmz0lWHWtoffdjx47lySef5IUXXmDAgAHl2xcvXkx+fj4333xz+ba9e/dSUlJC+/btndo/ISGBmJgYlixZwrRp08qXpdi2bRvr1q1j4sSJeHuf+jImKCiIkSNH8tFHH7Ft2za6dOkCQG5uLkuWLCE+Pr58xtOePXvy/vvvV/rZ1q1bx8svv8z06dPp3bs37dq1M/ErM8apK3bv3r3ZsmWL6bqIiIhIPeETG0jz5/qSuz6NI3/eRml6LT7wl1mcfDOZ7JUHaTqtC0EDY932ltLS4wUcffEnclYerP1ONggb3ZbIOzvhGWzmC2iRhqRz585MmTKFRYsWcd1113HllVeyc+dOXnrpJRISEiosXD9kyBD279+PZVlO7e/t7c2LL77I2LFjGTBgAJMnTyY7O5sFCxYQFRXF448/XqFuTz31FGvWrGH48OFMmzaNkJAQFi9eTGpqKitWrCi/1sXGxnL99ddX+tlyc0/dlt+7d+8qnz/XnGoUzp49mwEDBrBkyRImTZpkuk4iIiJSTwRdGktAz6acWJbEyTeToPTMPcqlRwpIe3AjgX2iaTq9Kz4t3GdiFKvUTsb7eznx6i/YazGj62l+ncKJvv9i/DqE12HtxK00wDGFAC+88AKtW7fm1VdfZcWKFURGRjJ16lSeeOIJPDzOfPeZI/uPGTMGf39/5s6dy3333Yevry9DhgzhmWeeqbT8xHnnncc333zDgw8+yNNPP01xcTHdunXj888/bxRzrDjVKPzss88YOHAgv//97/nrX/9Kz549adasWaVvA202G48++qiRioqIiMi54eHnRdSdnQi9oiVHnttK/qajtdovL/EIKeNWETqyNZ4hjb/nywLyvk6naE9WrffxCPEm6q4LCR3VBpvJoRsiDZSnpyfTp09n+vTpNZZLSUk5q/1Pu+qqq7jqqqtqVbZDhw58/PHHtSr7v2677TZuu+02p/Z1Bad7Ck/bsmVLtbeSqlEoIiLSePi0Cqb5S/3JWX2IYy9up/RY4Rn3sYrtZH74qwtq1/CEXNWKqLs74xVef2YgFBH35FSj8MsvvzRdDxEREWkAbDYbIcNaENS3GceX7CTjvT1QpmUSHOF7XihNZ3QloIt7TtonIvVPrRuFy5cvp3379px//vkkJCTUZZ1ERESknvMI9KbpPRcRcmUrjj67hYLtJ851leo9jwAvmtzRkfAx7bB5mZ2ZW6SSBjqmUM6NWl+Rrr32Wt59990K29577z2uu+4645USERGRhsEvPpQWf0ug2aOX4KnbIKsVPKw5bf45nIib4tUgFJF6p9Y9hb+d7vW0Xbt2OT3YUkRERBoHm4eN0KtaE3RpLMdf+ZnMj35V78F/+LQKoun9FxPYo+m5roq4G/UUigNcu7KsiIiINFqeIT5Ez7iYkKtacfTZrRTuzDjXVTpnbL6eNPlde8LHxePh43muqyMiUiM1CkVERMQo/44RtPz7IAq2HKfo12y3m4jGM9SHwD7ReIbqdloRaRjUKBQRERHjbDYbAd2iCOgWda6rIuKWbP95uOI40vA51Cj838Xp3VHUpUfwD/Y3knUotK2RHICrLv3OWBbAviJz02QfeK+FsSwAT7u5b5zDku3GsgBsJWXGsr5Y0MVYFoAVbS6r2fI8c2FAUQez54jJd6jMHub+pgCRucHGsjyKzdYt6KC5LKtZE3NhAMWlxqIyRxqLAiB/tbnz993tZm8zzO0WazRv5jVfGcvaXWIsCoDXt5ubGd07y+znneCD5s5fn9wcY1kAxc1CjGWd6OtjLAsAK9BYVLM15n5vtqJ8Y1ki9YVDjcLnn3+exYsXl/93dnY2AC1btqyyvM1mY//+/WdRPREREREREalLDjUKs7OzyxuCv3Xo0CFjFRIRERERERHXqXWj0G43e5udiIiIiIjUES1JIQ7Q6qkiIiIiIiJuTI1CERERERERN6ZGoYiIiIiIiBvTOoUiIiIiIo2NxhSKA9RTKCIiIiIi4sbUUygiIiIi0sjY/vNwxXGk4VNPoYiIiIiIiBtTo1BERERERMSN6fZRB+X9I4Ay3wAjWQFRZUZyADY83dJYFkDmhFBjWWEHjxnLArCKioxlef9ywFgWQOagNsaywjZkGMsC8C4uMZZlBZl5DZxms8yOUvf62dzfNWqHsSgAbMFBxrKsiBBjWQBeeXZjWfnRPsayAIq6mKtbk3+au4YAYCs2FpU+NtpYFkD0ukKjeY9uSjCWFbrX7Os+emeasayMieHGsgC81ph7H8y4tJWxLICwb8393podMPuxsjQuwliWdeyEuaziAmNZdUoTzYgD1FMoIiIiIiLixupdozA5OZlZs2bRu3dvoqKiCA4OpmvXrsybN4+8vLxK5ZOSkrjmmmsIDw8nMDCQAQMGsHbt2nNQcxERERGR+sFmue4hDV+9axQuXbqUBQsW0K5dO2bNmsX8+fO54IILeOSRR+jbty8FBf/tst+7dy99+/YlMTGRGTNmMH/+fHJzc7nssstYvXr1OfwpREREREREGoZ6N6bw+uuvZ+bMmYSG/ndM25133kl8fDzz5s3jtdde4+677wZg5syZZGZm8sMPP9C1a1cAbr31Vjp16sSUKVPYtWsXNpsmyhUREREREalOvesp7N69e4UG4Wljx44FYMeOU7M+5OXlsXz5cgYOHFjeIAQICgpi0qRJJCcns3nzZpfUWUREREREpKGqdz2F1Tl06BAA0dGnZmbbvn07RUVF9OnTp1LZ3r17A7B582Z69uzp1PFiYmIq/Lfdbm7mOxERERGROqXZR8UB9a6nsCplZWXMmTMHLy8vxo0bB0Ba2qkplOPi4iqVP70tNTXVdZUUERERERFpgBpET+G9995LYmIiTz75JBdccAEA+fn5APj6+lYq7+fnV6GMM9LT0yv8d3Z2dpW3tYqIiIiIiDRk9b6n8NFHH2XRokXccccdzJw5s3x7QMCpxbOLqljIvLCwsEIZERERERERqVq97imcPXs2c+fOZeLEibzyyisVnouNjQWqvkX09Laqbi0VEREREXELGu8ntVRvewpnz57N448/zoQJE1iyZEmlpSU6d+6Mr68viYmJlfbduHEjcGomUxEREREREalevewpfOKJJ3j88ccZP348S5cuxcOjcts1KCiIkSNH8tFHH7Ft2za6dOkCQG5uLkuWLCE+Pt7pmUdrYmVkYfkUG8ny8fQ0kgNgFZup02lhyzKNZeV0jzWWBVAUYS4r6ttMc2FAVLejxrJKf/Q3lgVg+Vcef+u0XOfH61bF68gJo3knRrY1ltXk378aywLAz9zfwSOv0FgWgE+ZuVmWfU6UGcsCCNxrrm6Wj9m3Pivd3Ot+aJuDxrIADsaEG83z+Ju565LRaxJQdpe5uoW/kmksC8CKizaWFbb+gLEsAAx+FqHM7Ove+2i2sSzLx8dYlg2zP2ddsVmnHq44jjR89a5R+PLLL/PYY4/RsmVLhg4dyttvv13h+ejoaIYNGwbAU089xZo1axg+fDjTpk0jJCSExYsXk5qayooVK7RwvYiIiIiIyBnUu0bh6QXnDxw4wIQJEyo9n5CQUN4oPO+88/jmm2948MEHefrppykuLqZbt258/vnnDB061KX1FhERERERaYjqXaNw2bJlLFu2rNblO3TowMcff1x3FRIREREREWnE6u1EMyIiIiIiIlL36l1PoYiIiIiInCXLOvVwxXGkwVNPoYiIiIiIiBtTo1BERERERMSNqVEoIiIiIiLixjSmUERERESkkdHi9eII9RSKiIiIiIi4MfUUioiIiIg0NtZ/Hq44jjR4ahQ6yPaf/5lg+XkbyQGIe6DMWBZA+ishxrKCf80zlgUQlGrwtC0pNZcFFPw7wliWN1nGsgAoNXeOFLdqYiwLYPr4r43mLXo62FxYpLm/KUD6IHOvraCDxqJO5X1/yFyYj4+5LMAqKjSWZfP1M5YF4BEeZixr3Y9tjWUBhOwz+97gnW3upLPl5RvLArA+jTGX1TTAWBaA3cvcjVmeUWavSSY/i9jyzL1OAaz8ImNZxX8IMpeV6wF/MxYnUi+oUSgiIiIi0sjY/vNwxXGk4dOYQhERERERETemnkIRERERkcZGYwrFAeopFBERERERcWNqFIqIiIiIiLgxNQpFRERERETcmBqFIiIiIiIibkwTzYiIiIiINDaaaEYcoJ5CERERERERN6aeQhERERGRRsZmnXq44jjS8KmnUERERERExI2pp9BRNtuphwEeWXlGcgDSXgg0lgVQ3DbEXJjdXBSA944UY1lWdJSxLACvjHxjWfbMLGNZAB7hYebChuSYywIWze9qNM/KyzWWdfj6GGNZANHfFBnLsjzNXItOK7owzliW396TxrIArNIyY1mFnc2+7rPbmfs7zOmxzlgWwMItPY3mEdXEWFRZqJ+xLDB7/eVkprkswIqPNZZlyywxlgVg9/c2lmXLKzCWBVDcztxr1edvR4xl2YvM/pwi9YF6CkVERERERNyYegpFRERERBobzT4qDlBPoYiIiIiIiBtTo1BERERERMSNqVEoIiIiIiLixtQoFBERERERcWOaaEZEREREpJGx2U89XHEcafjUUygiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDGNKRQRERERaWRs1qmHK44jDZ96CkVERERERNyYegodZDVtguUXYCSrMNLXSA6A3+F8Y1kAngVl5rJSjxvLAjg2qbmxrJDvzb4EfI8VmguzzH71VhQXaizL532DPydgD/I0mlfYMsRYVvQ3xcayAGxl5qZpy7rSWBQA/onexrKsEDPXydNMfoPpu+2AwTRokhdnLOtRe4KxLIDQJmanBfTbn2ksy6PI3PkGkBMfbCwrZJe590CArNbm3msikrKMZQF4FJUYyzoxsJmxLADfDHPvgwW9Y41lFebnwSvG4uqQ9Z+HK44jDZ16CkVERERERNyYegpFRERERBobdRSKA9RTKCIiIiIi4sbUUygiIiIi0tiop1AcoJ5CERERERERN6aeQhERERGRRsb2n4crjiMNn3oKRURERERE3JgahSIiIiIiIm5Mt4+KiIiIiDQ2lnXq4YrjSIOnnkIRERERERE3pkahiIiIiIiIG9Ptow6yFRVjM/Rr892SbiQHoKB7G2NZAP7p+cayyppHGssCiHrzqLkwHx9zWUBGn6bGsspGxBnLAoh864ixLCs6wlgWgEe2ufMNIOBkrrGsjO5mz98Bl243lvXTU02MZQFYhYXmwoICzWUBlsH57eznmX1teR44Ziwr+rC3sSwAy8/XbF5JqbEsu4/Z76WDN6cay7LHmn3dN1l1wFxYrLn3GYDcFv7GspqsNvc3AMDD3Ou+tJW535tnobnXgUh9oUahiIiIiEhjo8XrxQG6fVRERERERMSNqadQRERERKSRsVmnHq44jjR86ikUERERERFxY+opFBERERFpbDSmUBygnkIRERERERE3pkahiIiIiIiIG1OjUERERERExI2pUSgiIiIiIuLGNNGMiIiIiEgjY8NFS1LU/SHEBdRTKCIiIiIi4sbUU+ggW1ExNkO/tmNXtzGSA2D3MxYFgOUZYCwrcOdxY1kA9tIyY1k2e6GxLIDgg6XGsjx3G4s6JTjQWFSTG48ZywL45UCs0bzofx4yluVR2sRYFsBPT0YYy8rsH2csC6DM4HUkcoPZ1/2xBHN/hyb/3mcsCwBvb2NR9ghz5weALf2E0Tyr0Nw10/OguWs5QFnLpsaywkebvcYd2NzSWFbY+gPGsgCCjpv7KHh4TDNjWQAxn2Qay7KV2A1mNZA1GCzr1MMVx5EGTz2FIiIiIiIibkyNQhERERERETdWLxuFTz31FGPGjKFt27bYbDZat25dY/nPPvuMIUOG0KxZMwIDA7ngggu47777OHLkiGsqLCIiIiIiZ81ut7NgwQLat2+Pn58fLVq0YPr06eTl5dXJ/p9++il9+/YlMDCQiIgIxowZw759VQ8zSEpK4pprriE8PJzAwEAGDBjA2rVrK5X76quvmDJlCp07dyYkJISoqCj69evHO++8g1VPb7etl43Chx56iLVr19KuXTvCw8NrLLt48WKuvPJKsrKyeOCBB1iwYAGXXnopL7zwAn369Kn1CSQiIiIi0mhYLnwYNG3aNP70pz/RsWNHFi5cyJgxY3jppZcYOXIkdvuZx4Y6sv9HH33EVVddRUFBAfPnz+f+++9n/fr19OvXj7S0tApl9+7dS9++fUlMTGTGjBnMnz+f3NxcLrvsMlavXl2h7AMPPMDHH3/MwIEDee6553jooYcoKytj3Lhx3HHHHWf/S6oD9XKimb1799K2bVsALrzwQnJzc6st+9xzzxETE8OGDRvw8zs1S8Idd9xBdHQ08+bNY9WqVVxzzTWuqLaIiIiIiDjp559/ZuHChVx33XV8+OGH5dvbtGnDH//4R959913GjRtnZP+SkhKmTp1KixYt+PrrrwkKCgLgiiuu4JJLLmH27Nm8+uqr5RkzZ84kMzOTH374ga5duwJw66230qlTJ6ZMmcKuXbuw2U4t0PHMM8/Qv39/PD09y/e/5557GDRoEEuWLOGee+7hwgsvPPtfmEH1sqfwdIOwNrKzswkPDy9vEJ4WG3tqNsPAQHMzLoqIiIiINAQ2Fz5MOX175b333lth++TJkwkICOCtt94ytv9XX31FWloakyZNKm8QAnTt2pWBAwfy3nvvUVJSAkBeXh7Lly9n4MCB5Q1CgKCgICZNmkRycjKbN28u356QkFChQQjg4eHB9ddfD8COHTvO+LtwtXrZKHTEZZddxi+//ML06dPZuXMnBw8e5KOPPmLOnDkkJCQwePBgp3JjYmIqPOLj4w3XXERERESkcYiPj6/w2dkZmzdvxsPDg549e1bY7ufnR9euXSs0vM52/9P/v0+fPpVyevfuTXZ2NsnJyQBs376doqKiasv+Nq8mhw6dWjIrOjr6jGVdrcE3Cl988UXGjBnDiy++SMeOHWnZsiWjR4/miiuuYNWqVZVa6SIiIiIijZ7dhQ9D0tLSiIyMxNfXt9JzcXFxHD9+nOLiYiP7nx4zGBdXec3f09tSU1MdLltT3V599VXatm1L//79ayx7LtTLMYWO8Pb2pmXLllx77bWMHDmSgIAAvvjiC5YuXYqnpyeLFy92Kjc9Pb3Cf2dnZxMaGmqiyiIiIiIijcru3bsJCQk5q4z8/PwqG3RA+VCx/Px8fHx8znr//Px8gCrL/7bsb/+tTdnq6nXttdeSm5vL8uXL8fb2rrbsudKgG4V2u53LL7+c0tJSvvnmm/LBnddffz1NmjThmWeeYezYsQwdOvQc11RERERExNXq5/IH1QkICODo0aNVPldYWFhexsT+p/8tKioyWraq56+55hq+//57Xn/9dQYMGFBt/c+lBn376IYNG/j6668ZPXp0eYPwtDFjxgCnBpGKiIiIiEj9Fhsby/Hjx6tsfKWmphIZGVltL6Gj+5+elLKq2z5Pbzt9a6gjZX/rdINw9erVLFmyhFtuuaXaup9rDbqn8PQfoaysrNJzpaWlFf41pTQ6jFK/6r+hcETkx78ayQGwGe6GtoUGG8uyikuMZQHYvM2dtlYVF42z4X28+uVTHGX5VX/Rc465+cFOvNfUWBZAEzMvqXIeAeZmHQ75tcBYFoAV3cRYVvCB6sdVOMXgF8rZXcz9nABhyZWv887KHF77Ga5rw++kuV9cq+H7jWUBJG9qbTQvfGumsSwrr/pbrZzhlWFuXeLkQ82MZQHEbD1pLCu3ewtjWQAlQebeG5r985CxLADL4GcRm8EFw01mSUU9evRg5cqVbNq0qUKPWmFhIVu3buXSSy81tn+PHj0ASExMrHRX4caNGwkJCeH8888HoHPnzvj6+pKYmFjpmBs3bgSge/fuFbafbhCuXLmSV199lYkTJ9bmV3DONOiewo4dOwLwj3/8o3zK2NOWLVsG/PcPLiIiIiLiNhrg4vVjx47FZrPxwgsvVNi+ePFi8vPzufnmm8u37d27l127djm9f0JCAjExMSxZsqTCmujbtm1j3bp1jBkzpnzsX1BQECNHjmTdunVs27atvGxubi5LliwhPj6+woynRUVFXHvttaxcuZJXXnmFSZMmOf07cZV62VP45ptvsn//qW9Ljx07RnFxMXPnzgWgVatWjB8/HoAuXbowevRoPvzwQ7p3784tt9xSPtHMv//9b3r37s2oUaPO2c8hIiIiIiK107lzZ6ZMmcKiRYu47rrruPLKK9m5cycvvfQSCQkJFRauHzJkCPv378f6Tc+tI/t7e3vz4osvMnbsWAYMGMDkyZPJzs5mwYIFREVF8fjjj1eo21NPPcWaNWsYPnw406ZNIyQkhMWLF5OamsqKFSsqDGW7+eab+fzzzxk6dGiV6ytedNFFXHTRRaZ/fWelXjYKX3vttUpjAR999FHgVKv+dKMQ4O233+aFF17gH//4B7NmzcJut9OqVStmzpzJww8/rCUpRERERMQNGe7Gq/E45rzwwgu0bt2aV199lRUrVhAZGcnUqVN54okn8PA4802Ojuw/ZswY/P39mTt3Lvfddx++vr4MGTKEZ555ptIYwfPOO49vvvmGBx98kKeffpri4mK6detW3vj7re+//x6A1atXs3r16kp1fOyxx+pdo9BmWboxujZOL0kxb94H+BkaU+iRdMBIDtTzMYV5ZsdkYfCUNT2m0CMywliW8TGFxebG11qBVU/37KzSALPfT/kczDCWZYWYHfBo2cyN37H7Gv7Sy+C7QX6s2WuS/1FzYwpzWpk93zSm0DmmxxTaAvyNZaVffnbT6v+vmM+yjGXlnh9uLAvMjikMW292TCEGP4vYg/2MZRUW5vPQYzeQlZV11ksw1IXyz6xz3zf2mbUmhYX5PPzImHr7+5DaqZc9hSIiIiIi4jybderhiuNIw9egJ5oRERERERGRs6OeQhERERGRxqZhDimUc0Q9hSIiIiIiIm5MPYUiIiIiIo2MxhSKI9RTKCIiIiIi4sbUUygiIiIi0uhoUKHUnhqFDvI6komXb7GRLHvb5kZyAI52M7umXdNv84xllUSbW2cIwKPU3MXHM83cenYAZaHm1gPyPGZuXSsAe665v6kty+wadIU9Y43meRSZWyfJ63iOsSyAwrbm1hgrNri+GEDwBnNrpwbnhBnLAjg8PMhYVrO15l4LABw3dx05mh5lLAsg7JjZdePsdnPrRdr8zK0rCGavvzFfmH3dZ3cy97rPizP7Adwn0+B1pEmYuSzASj9qLCs/vo2xrMKCEmNZIvWFGoUiIiIiIo2NOgrFARpTKCIiIiIi4sbUKBQREREREXFjun1URERERKSx0e2j4gD1FIqIiIiIiLgx9RSKiIiIiDQ66iqU2lNPoYiIiIiIiBtTT6GIiIiISGOjjkJxgHoKRURERERE3Jh6CkVEREREGhmbZWGz6r4bzxXHkLqnnkIRERERERE3pp5CB1lldqyyMiNZxWHeRnIAmn580FgWQEGXFsayAnYfN5YFYPn5mMvKzTWWBeDp5WksK6NnlLEsAJ+sSGNZAWn5xrIAgn81m1cQE2AsyzPb3OsUwO5tM5bll2E3lgXgERJkLCujc6ixLIDod/cby7IFmDs/APDzNRZVFOFnLAvg6j/sMZr3+cJLzIV5mv1e2uNolrkwX3PvMwB+J8x8bgAo9TP70a04zFwvT0FsoLEsgIACc9eRoE3mPid5FRcYy6pTGlMoDlBPoYiIiIiIiBtTT6GIiIiISKOjrkKpPfUUioiIiIiIuDE1CkVERERERNyYbh8VEREREWlsdPeoOEA9hSIiIiIiIm5MPYUiIiIiIo2NegrFAeopFBERERERcWPqKRQRERERaWws69TDFceRBk89hSIiIiIiIm5MPYUiIiIiIo2OBhVK7amnUERERERExI2pp9BBR4dF4RsYaCQrcmuJkRwAPMy2731ySo1l2XNyjWUBeHiEGMuyDN8Hb+XmGcsKXZ1lLAvAFhhgLOvymbuMZQHEexuN46mPE4xlWSczjGUBPDD9R2NZL81sYywLIO+SlsayQvcUGMsCsDWLMpZlHT5uLAtg6rxfjWXN/nqgsSyAf/2fudcCgH/+MWNZuZ3N/U0BisLNvDcDRPxcaCwLwGvXIWNZHa+xG8sC2P2lueuI38liY1kAeNiMRR27soWxrKL8PFhsLK7uqKNQHKCeQhERERERETemnkIRERERkcZIvXhSS+opFBERERERcWPqKRQRERERaWRsloXNBWsIuuIYUvfUUygiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDE1CkVERERERNyYJpoREREREWlsLOvUwxXHkQZPPYUiIiIiIiJuTD2FIiIiIiKNjXoKxQFqFDqo6RdH8PP1N5KVe3GMkRwAHz9zWQC5cZ7GsvxDWhvLAvD7cb+xLFtstLEsAHuAj7EsW0mZsSyArLZmzluAL541d34AfF5UbDTPv1WpubAyu7ksYOFj5xvLsnmbfSMuiLQZy/I/YiwKAFteobmwsBBzWcDCP19iLCvi6D5jWQD2dnFG8wg0dx0p8zV3vgFEfGbwvcHb7Mejgm6tjGWlP59mLAug38ztxrK+XnuRsSyAYINZMfHHjWUV5OYbyxKpL9QoFBERERFpbKz/PFxxHGnwNKZQRERERETEjamnUERERESk0VFXodSeegpFRERERETcmHoKRUREREQaG3UUigPUUygiIiIiIuLG1FMoIiIiItLYWPZTD1ccRxo89RSKiIiIiIi4MTUKRURERERE3JhuHxURERERaWw00Yw4QD2FIiIiIiIibkw9hQ7K7xiN3T/QSFbAkRIjOQBHe3kaywKIWZlpLMt+IsNYFoDNy9xpax0+ZiwLoLRTS2NZVpDZv6l352xjWUfCI41lAUSvM3uOeOYVG8vK7dPaWBZA8C8njWXZc3ONZQHYvQ1+3Zt21FwWcPjWGGNZwTu8jWUBeJSa+73ZWwUZywLwyjM7AYRHibnrb2hSnrEsgNLz44xlee03e/565ZeZCwsNNpcFbJtrrm6hAceNZZ1iM5ZU8nyOsazS4gJjWXXKsk49XHEcafDUUygiIiIiIuLG1CgUERERERFxY/WyUfjUU08xZswY2rZti81mo3Xr1mfc580336Rfv36EhIQQFBTEhRdeyJw5c+q+siIiIiIiIg1YvRxT+NBDDxEREUG3bt3IzMw8Y/nf/e53vP7664wePZpbbrkFDw8P9u3bx/79++u+siIiIiIi9Y3GFIoD6mWjcO/evbRt2xaACy+8kNwaJlN47bXX+Pvf/84bb7zB+PHjXVVFERERERGRRqFe3j56ukF4JpZl8dRTT9GtW7fyBmFOTg6WvrEQEREREXdmufAhDV69bBTWVlJSEnv37qVv377MmTOHJk2aEBISQlhYGHfeeWeNPYxnEhMTU+ERHx9vsOYiIiIiIiL1Q728fbS2kpKSAHjvvfcoLi7mkUceoU2bNnzyySf87W9/IykpibVr12KzmVvnRkRERESk3rPspx6uOI40eA26UZiTc2oh0mPHjrFq1SqGDh0KwOjRo7Esi9dff53PP/+cK664wuHs9PT0Cv+dnZ1NaGjo2VdaRERERESkHmnQt4/6+/sDEBcXV94gPG3ChAkArFu3ztXVEhERERERaTAadKOwefPmADRr1qzSczExMQBkZGS4tE4iIiIiIiINSYO+fbRz5874+fmRmppa6blDhw4B0LRpU6PH9N9yAD8ffyNZtgAzOQA+Jyo3jM9GUWywsayTQ0OMZQE0++S4sayMwS2MZQFEbDhiLKvr/elnLuSATe93NpYVfdDc3wDgRN8oo3lhyUXGsgIOFxvLAjg8PMJYVvRXPsayALzjCoxl2Xz9jGUBNF2WZi7Mw+w4c5M/qxVpdpiCrczwWJ/jmeayDA/39873NZZleZr9eFQa4GksK6eb2ffUJt+au15aRWavl2WtDH6Ga2butWUvzDeWJVJfNOiewoCAAEaPHs3hw4f517/+VeG5v/71rwBceeWV56JqIiIiIiLnzunF613xkAavXvYUvvnmm+zfvx84NYlMcXExc+fOBaBVq1YVFql/8sknWb16NePGjWPq1Km0bt2aTz/9lBUrVnDrrbfSt2/fc/IziIiIiIiINAT1slH42muv8dVXX1XY9uijjwKQkJBQoVHYsmVLNm7cyMMPP8zf//53srKyaNeuHc899xzTpk1zab1FREREROoFVy0sr47CRqFeNgodnTG0devW/OMf/6ibyoiIiIiIiDRi9bJRKCIiIiIizrMsC8sFC8tbGlPYKDToiWZERERERETk7KinUERERESksdGYQnGAegpFRERERETcmHoKRUREREQaG1etIagxhY2CegpFRERERETcmHoKRUREREQaG/UUigPUKHRQ7HQ7AcFmpvdNXhNtJAcg4KjZKYd9jhUYywpLDjCWBUBhobGo8FX7jWUBWPYyY1kbVnYxlgVghZnL8igLNxcGROzIN5pHUYmxKMvfx1gWAEHm6mYrM3e+AYR9aPA64mEzlwV4hIcayyqNCDSWBXCsu7m30mb/OmwsCyC/S4zRvOwBvsayot8xe/01ySox9zoF8E8zd43zzjX3NwDDP6u3t7ksIPN8c3kR2819rvEoLDWWJVJf6PZRERERERERN6aeQhERERGRRkdrUkjtqadQRERERETEjamnUERERESksbEssGuiGakd9RSKiIiIiIi4MTUKRURERERE3JgahSIiIiIiIm5MYwpFRERERBobLV4vDlBPoYiIiIiIiBtTT6GIiIiISGOjnkJxgHoKRURERERE3Jh6Ch104JOW+PkHGskKPJlnJAfASj9qLAvAstmMZfkXhRrLAiAkyFhUWbi5LAC7r7nvWYKTsoxlAeTEm/s7eOUWG8sC4FiG2TyDbPlmL5NNEpuYCyuzm8sCSqLNnSOlvsHGsgD8tuw3luVZaPb8jfo+3FhWziUxxrIAQnZlGs3zOxZgLCvj8rbGsgAitpt7TyXtiLksgJJSY1Ge+Wa/z7eKzL0eCrqbPX/tXuZ6oOx+5q7l9gby8dmyLCwX9OK54hhS99RTKCIiIiIi4sYaxlcdIiIiIiJSexpTKA5QT6GIiIiIiIgbU6NQRERERETEjen2URERERGRxka3j4oD1FMoIiIiIiLixtRTKCIiIiLS2KinUBygRmEtnV6DpbAw31hmWWGhsSyruMBYFgAG1yn0KPI2lmVaaaHZznK7Ze73Zi8yd64BFBaYe7l7GTx3ASgyfP6aVOZpNK600M9YVpnhc6TY4DlSajf3WgDA4DXOZvZPSlmhr7Esk69TAB/D50iZwZd+Ub65tfvA7Puz6fdUm8G/g2Uz+3sz+doqLDC4ViRQZDCusLDMYNapv2d9X5+vsNjwe/U5Po7ULZtV38/oeuLQoUO0aNHiXFdDREREROqBgwcP0rx583NdjUoKCwtp06YNhw8fdtkxmzVrxr59+/DzM/fFp7iWGoW1ZLfbSUtLIzg4GJvBXjQ5t+Lj4wHYvXv3Oa6J1Cc6L6QqOi+kOjo33ItlWeTk5BAbG4uHR/2cnqOwsJDi4mKXHc/Hx0cNwgZOt4/WkoeHR738NkjOzumLeUhIyDmuidQnOi+kKjovpDo6N9xPaGjoua5Cjfz8/NRIE4fUz683RERERERExCXUKBQREREREXFjGlMoIiIiIiLixtRTKCIiIiIi4sbUKBQREREREXFjahSKiIiIiIi4MTUKRURERERE3JgahSIiIiIiIm5MjUIRERERERE3pkahiIiIiIiIG1OjUERERERExI2pUSgiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDE1CkVERERERNyYGoUiIiIiIiJuTI1CabSSk5OZNWsWvXv3JioqiuDgYLp27cq8efPIy8urVD4pKYlrrrmG8PBwAgMDGTBgAGvXrj0HNRdXys/Pp23btthsNu6+++5Kz+u8cC8nT57kvvvu47zzzsPPz4+oqCgGDRrE119/XaHcd999x9ChQwkODiYkJITLL7+crVu3nptKS53Lzc3lySefpHPnzgQHBxMZGUnfvn1ZtmwZlmVVKKtzQ0QaIq9zXQGRurJ06VJefvllrr76am6++Wa8vb358ssveeSRR/jnP//Jxo0b8ff3B2Dv3r307dsXLy8vZsyYQWhoKIsXL+ayyy7js88+Y+jQoef4p5G6MmvWLI4dO1blczov3Mv+/fsZOHAgubm53H777Zx//vlkZWWxfft2UlNTy8tt3LiRgQMHEhcXxxNPPAHAokWLGDBgAN9++y2dO3c+Vz+C1AG73c4VV1zBt99+y4QJE5g6dSr5+fm88847TJw4kZ07d/LMM88AOjdEpAGzRBqpzZs3W5mZmZW2P/zwwxZgLVy4sHzbmDFjLA8PD2vLli3l23JycqyWLVta559/vmW3211RZXGxH374wfL09LSef/55C7CmTJlS4XmdF+6lf//+VvPmza20tLQay/Xo0cMKDg62Dh06VL7t0KFDVnBwsDVs2LC6rqa42LfffmsB1r333lthe1FRkdWmTRsrNDS0fJvODRFpqHT7qDRa3bt3JzQ0tNL2sWPHArBjxw4A8vLyWL58OQMHDqRr167l5YKCgpg0aRLJycls3rzZJXUW1ykrK2Py5MlcfvnlXHfddZWe13nhXtavX8+GDRuYMWMGMTExlJSUkJ+fX6ncnj172Lx5M2PGjCEuLq58e1xcHGPGjGH16tUcPnzYlVWXOpadnQ1AbGxshe0+Pj5ERkYSGBgI6NwQkYZNjUJxO4cOHQIgOjoagO3bt1NUVESfPn0qle3duzeAPvw3QgsWLGDXrl0sWrSoyud1XriXTz/9FICWLVsycuRI/P39CQwM5Pzzz+ett94qL3f6b17deWFZFj/88INrKi0u0bNnT8LCwnj22Wd5//33OXDgALt27WLmzJn88MMPzJ49G9C5ISINm8YUilspKytjzpw5eHl5MW7cOADS0tIAKnyze9rpbb8dTyQN3759+3jssceYNWsWrVu3JiUlpVIZnRfuJSkpCYDJkycTHx/P66+/TnFxMc8//zzjx4+npKSEiRMn6rxwQ+Hh4SxfvpxJkyZxww03lG8PDg7mww8/5JprrgF0zRCRhk2NQnEr9957L4mJiTz55JNccMEFAOW3iPn6+lYq7+fnV6GMNA533nknbdu25U9/+lO1ZXReuJecnBzg1Af9L7/8Eh8fHwCuueYa2rZty0MPPcSECRN0XripoKAgLrzwQq6++mr69u3LyZMnefnllxk3bhwff/wxw4YN07khIg2aGoXiNh599FEWLVrEHXfcwcyZM8u3BwQEAFBUVFRpn8LCwgplpOF76623WLVqFevXr8fb27vacjov3MvpmYhvuumm8gYhnOoluvrqq3njjTdISkrSeeGGfvrpJ/r27cuCBQu48847y7ffdNNNXHjhhUyePJm9e/fq3BCRBk1jCsUtzJ49m7lz5zJx4kReeeWVCs+dnjygqtt6Tm+r6nYgaXiKior405/+xJVXXkmzZs3Ys2cPe/bsYf/+/QBkZWWxZ88eMjMzdV64mebNmwPQrFmzSs/FxMQAkJGRofPCDS1YsIDCwkLGjBlTYXtAQAAjRoxg//79pKSk6NwQkQZNjUJp9GbPns3jjz/OhAkTWLJkCTabrcLznTt3xtfXl8TExEr7bty4ETg1k6k0fAUFBRw7dowVK1YQHx9f/hg4cCBwqhcxPj6eJUuW6LxwMz179gT+OxHVb53e1rRpU3r06AFQ7Xlhs9m45JJL6rCm4mqnG3RlZWWVnistLS3/V+eGiDRkNsuyrHNdCZG68sQTT/DYY48xfvx4li1bhodH1d+DjBkzho8++ogff/yRLl26AJCbm0unTp3w9fUlKSmpUmNSGp6SkhI+/vjjStuPHTvGXXfdxeWXX87tt9/ORRddxPnnn6/zwo1kZGTQqlUrQkJC2LVrF0FBQQCkp6cTHx9PXFxc+WQ0PXr0ICkpiV27dpX3DqWlpdG+fXt69uzJ6tWrz9nPIeZNmzaNF154gWeeeYYZM2aUb8/MzKRjx44UFhZy7NgxPD09dW6ISIOlRqE0Wi+//DJ33303LVu2ZM6cOZUahNHR0QwbNgw4tb5Uz5498fb2Ztq0aYSEhLB48WJ++uknVqxYwWWXXXYufgRxkZSUFNq0acOUKVMqLFGh88K9vPrqq/z+97+nU6dO/O53v6O4uJi//vWvpKen88knnzB8+HAAvv32WwYNGkTz5s2ZOnUqAAsXLuTIkSN888035V8gSOOwf/9+unXrRkZGBjfffDP9+vXj5MmTLF68mJSUFF5++WXuuusuQOeGiDRgZ7HwvUi9NmHCBAuo9pGQkFCh/C+//GJdffXVVmhoqOXv72/169fPWrVq1bmpvLjUvn37LMCaMmVKped0XriXDz/80OrVq5cVEBBgBQUFWcOGDbM2bNhQqdy3335rDR482AoMDLSCgoKs4cOHWz/88MM5qLG4wp49e6xbb73ViouLs7y8vKzg4GBrwIAB1ocffliprM4NEWmI1FMoIiIiIiLixjTRjIiIiIiIiBtTo1BERERERMSNqVEoIiIiIiLixtQoFBERERERcWNqFIqIiIiIiLgxNQpFRERERETcmBqFIiIiIiIibkyNQhERERERETemRqGIiIiIiIgbU6NQRKSBmz17NjabjXXr1p3rqjhkwIABdO3aFcuyHN5327ZteHh4sGTJkjqomYiIiHtRo1BEpB6x2WwOPRpaQ/C0999/nw0bNjB37lxsNpvD+3fp0oXRo0fz6KOPkpubWwc1FBERcR82y5mvaEVEpE7Mnj270rYXXniBrKws7rnnHsLCwio8d9tttxEUFMTx48dp2bIlAQEBrqnoWbAsi/bt2+Pt7c2OHTuczvn+++/p0aMH8+bN46GHHjJYQxEREfeiRqGISD3XunVr9u/fz759+2jduvW5rs5ZW7VqFcOHD+eZZ55hxowZZ5XVsWNH8vLy2LdvHx4euvlFRETEGXoHFRFp4KoaU5iSkoLNZuO2224jOTmZa6+9lvDwcEJDQxk1ahQpKSkA7NmzhzFjxhAZGUlAQABXXnklv/76a5XHOXHiBDNmzOCCCy7Az8+P8PBwRowYwcaNGx2q72uvvQbA2LFjKz2XnZ3N448/zoUXXkhwcDDBwcG0a9eOG2+8kS1btlQqP3bsWA4cOMCqVascqoOIiIj8lxqFIiKN2L59++jTpw9ZWVncfvvt9OvXj+XLlzN06FB27txJr169OH78OLfddhsDBw7ks88+Y8SIEdjt9ko53bp1Y/78+cTFxTFlyhSuvfZaEhMTufTSS/n3v/9dq/pYlsXatWuJjY2lVatWlZ67/PLLmT17NiEhIUyePJk//OEP9OzZk3Xr1vHdd99VyuvXrx+AGoUiIiJnwetcV0BEROrO+vXree6555g+fXr5tjvuuIPFixfTt29fHnnkkSqf+/jjj7n22mvLt996660cOnSIjz76qML2efPm0bNnTyZPnkxKSgp+fn411icpKYljx44xcuTISs/t2LGDxMRErrnmGv71r39VeK6srIzs7OxK+/To0aP85xQRERHnqKdQRKQRa9OmDdOmTauwbfz48QBERERUeu6WW24BTi35cNrWrVvZsGEDY8aMqdAgBIiJieH+++/nyJEjrFmz5oz1OXDgAADNmjWrtoy/v3+lbZ6enoSHh1faHhoaip+fX3muiIiIOE49hSIijViXLl0qTcASExMDwEUXXVTpudjYWABSU1PLtyUmJgJw8uTJKmdH3b17NwC7du1ixIgRNdbnxIkTAFU28Dp27EjXrl1555132L9/P6NGjaJ///50794dHx+fajMjIiI4cuRIjccVERGR6qlRKCLSiIWGhlba5uXldcbnSkpKyredPHkSODVur6axe7VZL/B0L2BhYWGl5zw9PVm7di1PPPEEH3zwAQ888AAAISEh3HbbbTz55JMEBgZW2q+goKDK3kURERGpHd0+KiIiNTrdeHzqqaewLKvax2OPPXbGrKZNmwL/bWj+r/DwcBYsWMDBgwdJTk7m1VdfJT4+npdeeom77767Unm73U5mZmZ5roiIiDhOjUIREalRr169gP/eRno2OnXqhKenJ0lJSWcsGx8fz+TJk1m/fj1BQUH83//9X6UySUlJWJZF165dz7puIiIi7kqNQhERqVGPHj3o27cvy5cvZ+nSpVWW2bhxI/n5+WfMCg0NpWvXrmzbto2ioqIKz+3bt6/KNRIzMjIoKioiICCgyuMCDBo0qDY/ioiIiFRBYwpFROSM3n77bQYNGsTtt9/OX/7yF3r06EFwcDAHDx7k+++/Z8+ePaSnp1fZcPtf1113HT/88APr1q3jsssuK9++bds2rrvuOnr06EGHDh2IjY3l6NGjfPzxx5SUlJSPMfytlStX4unpyahRo4z+vCIiIu5EPYUiInJGrVq1YsuWLcyePZvS0lLeeOMNFi1axKZNm+jcuTNvvPEGkZGRtcq6/fbb8fb25o033qiwvXv37jz44IN4enry+eef8/zzz/PFF1/Qo0cPPvvsM/74xz9WKJ+Tk8PHH3/MVVddRYsWLYz9rCIiIu7GZlmWda4rISIi7mXSpEm8/fbbpKSkOD1JzF/+8hemTJnC119/Tf/+/Q3XUERExH2oUSgiIi6Xnp5ePpHMggULHN6/sLCQ8847j969e/PBBx/UQQ1FRETch8YUioiIy8XExPDWW2+Vzx5qs9kc2n///v1MmjSJ2267rW4qKCIi4kbUUygiIiIiIuLGNNGMiIiIiIiIG1OjUERERERExI2pUSgiIiIiIuLG1CgUERERERFxY2oUioiIiIiIuDE1CkVERERERNyYGoUiIiIiIiJuTI1CERERERERN6ZGoYiIiIiIiBv7fyglalur9KVyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\", vmax=0.001,\n", + " interpolation=\"none\", extent=extent, alpha=0.6)\n", + "plt.plot(dps.time, dps.freq[max_pos], color='C3', lw=5, alpha=1, label='drifiting function')\n", + "\n", + "plt.ylim(15,30) # zoom-in around 24 hertz\n", + "\n", + "plt.title('Overlay of Drifting fuction and Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')\n", + "plt.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].html b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].html new file mode 100644 index 000000000..cc84b9cef --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].html @@ -0,0 +1,513 @@ + + + + + + + + Dynamical Power Spectra (on real data) — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Dynamical Power Spectra (on real data)

+
+
[1]:
+
+
+
%matplotlib inline
+
+
+
+
+
[2]:
+
+
+
# load auxiliary libraries
+import numpy as np
+import matplotlib.pyplot as plt
+from astropy.io import fits
+
+# import stingray
+import stingray
+
+plt.style.use('seaborn-talk')
+
+
+
+
+
+

All starts with a lightcurve..

+

Open the event file with astropy.io.fits

+
+
[3]:
+
+
+
f = fits.open('emr_cleaned.fits')
+
+
+
+

The time resolution is stored in the header of the first extension under the Keyword TIMEDEL

+
+
[4]:
+
+
+
dt = f[1].header['TIMEDEL']
+
+
+
+

The collumn TIME of the first extension stores the time of each event

+
+
[5]:
+
+
+
toa = f[1].data['Time']
+
+
+
+

Let’s create a Lightcurve from the Events time of arrival witha a given time resolution

+
+
[6]:
+
+
+
lc = stingray.Lightcurve.make_lightcurve(toa=toa, dt=dt)
+
+
+
+
+
[7]:
+
+
+
lc.plot()
+
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_12_0.png +
+
+
+
+
+

DynamicPowerspectrum

+

Let’s create a dynamic powerspectrum with the a segment size of 16s and the powers with a “leahy” normalization

+
+
[8]:
+
+
+
dynspec = stingray.DynamicalPowerspectrum(lc=lc, segment_size=16, norm='leahy')
+
+
+
+

The dyn_ps attribute stores the power matrix, each column corresponds to the powerspectrum of each segment of the light curve

+
+
[9]:
+
+
+
dynspec.dyn_ps
+
+
+
+
+
[9]:
+
+
+
+
+array([[  2.01901704e+00,   2.32485459e+00,   5.14704363e+00, ...,
+          9.76872866e-01,   9.49269045e-01,   4.60522187e+02],
+       [  2.93960257e+00,   2.48892516e+00,   3.39280288e+00, ...,
+          6.23511732e+00,   4.27550837e+00,   1.06261843e+02],
+       [  3.64619904e+00,   1.58266627e+00,   3.42614944e-01, ...,
+          1.16952148e+00,   3.54994270e+00,   4.56956463e+01],
+       ...,
+       [  1.69311108e+00,   5.18784072e-01,   1.57151667e+00, ...,
+          1.09923562e+00,   3.40274378e-01,   2.53108287e+00],
+       [  2.95675687e-01,   2.47939959e+00,   2.84930818e+00, ...,
+          2.99674579e-01,   1.48585951e+00,   7.49068264e+00],
+       [  8.84156884e-01,   1.65514790e+00,   4.17385519e-01, ...,
+          7.54942692e+00,   9.99801389e-01,   2.03835451e-01]])
+
+
+

To plot the DynamicalPowerspectrum matrix, we use the attributes time and freq to set the extend of the image axis. have a look at the documentation of matplotlib’s imshow().

+
+
[10]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)
+
+plt.imshow(dynspec.dyn_ps, origin="lower left", aspect="auto", vmin=1.98, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(700,850)
+
+
+
+
+
[10]:
+
+
+
+
+(700, 850)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_20_1.png +
+
+
+
[11]:
+
+
+
print("The dynamical powerspectrun has {} frequency bins and {} time bins".format(len(dynspec.freq), len(dynspec.time)))
+
+
+
+
+
+
+
+
+The dynamical powerspectrun has 65535 frequency bins and 104 time bins
+
+
+
+

# Rebinning in Frequency

+
+
[12]:
+
+
+
print("The current frequency resolution is {}".format(dynspec.df))
+
+
+
+
+
+
+
+
+The current frequency resolution is 0.0625
+
+
+

Let’s rebin to a frequency resolution of 2 Hz and using the average of the power

+
+
[13]:
+
+
+
dynspec.rebin_frequency(df_new=2.0, method="average")
+
+
+
+
+
[14]:
+
+
+
print("The new frequency resolution is {}".format(dynspec.df))
+
+
+
+
+
+
+
+
+The new frequency resolution is 2.0
+
+
+

Let’s see how the Dynamical Powerspectrum looks now

+
+
[15]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=1.98, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(500, 1000)
+
+
+
+
+
[15]:
+
+
+
+
+(500, 1000)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_29_1.png +
+
+
+
[16]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=2.0, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(700,850)
+
+
+
+
+
[16]:
+
+
+
+
+(700, 850)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_30_1.png +
+
+
+
+

Rebin time

+

Let’s try to improve the visualization by rebinnin our matrix in the time axis

+
+
[17]:
+
+
+
print("The current time resolution is {}".format(dynspec.dt))
+
+
+
+
+
+
+
+
+The current time resolution is 16.0
+
+
+

Let’s rebin to a time resolution of 64 s

+
+
[18]:
+
+
+
dynspec.rebin_time(dt_new=64.0, method="average")
+
+
+
+
+
[19]:
+
+
+
print("The new time resolution is {}".format(dynspec.dt))
+
+
+
+
+
+
+
+
+The new time resolution is 64.0
+
+
+
+
[20]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=2.0, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(700,850)
+
+
+
+
+
[20]:
+
+
+
+
+(700, 850)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_37_1.png +
+
+
+
+

Trace maximun

+

Let’s use the method trace_maximum() to find the index of the maximum on each powerspectrum in a certain frequency range. For example, between 755 and 782Hz)

+
+
[21]:
+
+
+
tracing = dynspec.trace_maximum(min_freq=755, max_freq=782)
+
+
+
+

This is how the trace function looks like

+
+
[22]:
+
+
+
plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=1)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_42_0.png +
+
+

Let’s plot it on top of the dynamic spectrum

+
+
[23]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=2.0, vmax=3.0,
+           interpolation="none", extent=extent, alpha=0.7)
+plt.colorbar()
+plt.ylim(740,800)
+plt.plot(dynspec.time, dynspec.freq[tracing], color='red', lw=3, alpha=1)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_44_0.png +
+
+

The spike at 400 Hz is probably a statistical fluctutations, tracing by the maximum power can be dangerous!

+

We will implement better methods in the future, stay tunned ;)

+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb new file mode 100644 index 000000000..1f9070de3 --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb @@ -0,0 +1,627 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on real data)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# load auxiliary libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from astropy.io import fits\n", + "\n", + "# import stingray\n", + "import stingray\n", + "\n", + "plt.style.use('seaborn-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# All starts with a lightcurve.." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Open the event file with astropy.io.fits" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "f = fits.open('emr_cleaned.fits')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution is stored in the header of the first extension under the Keyword `TIMEDEL`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = f[1].header['TIMEDEL']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The collumn `TIME` of the first extension stores the time of each event" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "toa = f[1].data['Time']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a Lightcurve from the Events time of arrival witha a given time resolution" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lc = stingray.Lightcurve.make_lightcurve(toa=toa, dt=dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAHACAYAAAD9fy9UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4ZGddJ/rvL2kIkEACCT1yDwMkXmkIcJAhIJ7IxVFg\nAJ3DjAxHZFAmiqigcDwPjIBoAJUH4w1yniGaGQUVOCg3IRAOyj0JSSCYbkJIQsilk0463Z1rd/o9\nf1TtTvXu3b1r39/a9fk8z352Va21ar311rtWfde7btVaCwAAfTpsrQsAAMDBCWsAAB0T1gAAOias\nAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHduw2jM87rjj2vHHH7/aswUA6MZ55513\nQ2vtgeOMu+ph7fjjj8+555672rMFAOhGVV0x7rh2gwIAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1\nAICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA0LF5w1pVnVlVu6tq18jfqatROACAaTfujdz/srX2\nX1e0JAAAHMBuUACAjo0b1l5UVTdW1ZaqekdVHbWQmVTVsVV1QlWdsGfPnkUUE4Bp1VrLy8/8an7h\nzK9m79621sWhE7fvvisv/LPP5/UfuGiti7Lixglrpyf5/iTHJXlBkh9LcsYC5/OqJJuTbN66desC\nJwVgmp17xU359CVb85lLtuZL39m21sWhE//zS1fk/Cu3531f/W5uuWN9dwTNG9Zaa+e11q5rre1t\nrV2c5NeS/ExVHbGA+Zye5MQkJ27cuHGRRQVgGt2++659j+/Ys3cNS0JPdo0EtPXe37qYY9Zm6qTG\nnqC1ba21La21LRs2jHtOAwAA41y648VVdczw8WOS/GGSf2it3b7ShQMAmHbj9Ky9MsllVXVLkk8m\n+VKSl61oqQAASDLGddZaa89YhXIAADAH11kDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPW\nAAA6JqwB0LW23m/8CPMQ1gCYGGPflBrWEWENAKBjwhoAQMeENQBgorV1fmCjsAYATJyaoiMYhTUA\ngI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQC6Nnpt+qrpuRAqzBDWAAA6\nJqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQCAjglrAMBEa/OPMtGENQBg4kzT9ZGFNQCAjglr\nAAAdE9YAADomrAHQtdbuPnx8ig5Tgn2ENQCAjglrAAAdE9YAADomrAEAE6et9yvhjhDWAICJtt5P\nPBHWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQCAjglrAEyMWu8X1GJR1vv1cYU1ALq2\n3n+IWZxpCu7CGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUA\ngI4JawAAHRPWAJgYlSm6ISQMLSisVdVhVfWFqmpV9dCVKhQAAAML7Vn79SS3rkRBAGBOba0LAGtr\n7LBWVSckOTXJa1euOMvn0q07s+W6ndl1x545h7fWcvY3r8tNt9w5x7S7cvvuu+adx/U778h1O25f\nclmT5MuXbcsV22455Djbdt2Ra26+bd/z1lo2X7szu+/au994B3t9xk233Jnvbb9tzmHz+dZ1O3PH\nnrvrZtcde/KdG27J1dtvy41z1OVqml0/u+7Yk8tvOHSdttZyybU7sucgdTWuvXsH73PX3qX9quy+\na282X7szrY3/PnfsuSvfum7+aW69c08uu35Xrtx2a3bcvvuA4VdsuyU753j9qptuzfZbl++7vebm\n27Jt1x3L9n6jtt96Z666abztyUu37txvOb9ux+25YVa5Zr7XvbO+1xtvuXO/tjaOHbfvzpXbDl22\nnfOMc83N+y9ns5/PmL2czuXq7bfNuf5baVt33J6tO5dnvTnbnrv25pJrdyxo+TmU781TR7fvviuX\nbt2ZJPnODYPl51Dzv/m23fnujQf/fm++9dDD79rb8sVvb5tz/X3LGOu7udrLUr6Pmd+aO/ccuP6c\na31y3Y7bc/3OlVn2Zwy+k137lXE51s1rbcM4I1XVYUn+RwZBbftCZ1JVxyY5Nkk2bdq00MkX7MMX\nfC+vft8FSZIHHHnPnP+GZx4wzq+9/4J8+IKrkySXn/ZT+17/5MXX5hfPOi+PeuCR+fRrnnHQeey6\nY0+e9NazkyTnv+GZecCR91x0eT/29Wty6v86P0ly4RuflaPvc48Dxrl99115wu8O5veV3z4lG+93\nr5z1pSvyxg9fnKc95ric9fIn7xv3YK8ngzDw+Ld8KknyL6/78Tz0/vcZu5wfOO+qvObvLszjH35M\nPnTqU5MkT3/7Ofst/Jt/9zk5YsPhY7/ncpmrfp562mdy822788FT/11Oevj955zujz99ad559pb8\n9GMflD/5zyctev5v+8QleffnLsuLn/SwnPaixy76fX7prPPymUu25g0//YN5+cmPHGuanzvjyzn3\nipvy9hc9Nv/xSQ876Hg/8Yf/X66+ebBSvueGw7Lld39y37ALv7s9z//Tz+eoIzbkG2969r7Xr9x2\na57+jnOSJJe+9Sez4fClHea6dcftecrvfyZJcslbnpN73WP52spde1se9+ZB2/7sa5+R44878qDj\nzqwjfuQhR+cfX3Vytu26I0/+vU8nSS5+07Nz5BGDVeObP/LNnPmFy/PSpzwib37+DycZtLWThsvQ\nl/6vU/J9R99rrPI98S1n58679ubjr35afuBB95tznCe99ezcvntvPvKqk/PDDzl6v2HXzaq77bfu\nnrMuP/S1q/Lr778wmx52TD78y0+dcz5Xb78t/+60wbSruczefOvu/G/Der7od56V+93rwHXdUvza\n+y/IRy66Jq955gl51SmPWdJ7XXXTrTn5bYO2/623/mTuMUfbf8GffSH/es2O/JcffUTO+tIV+15/\n9SmPya8/84T9xm2tZdObPpkkOfs3np5Hb7zvfsP37m3Z9OaZ4T+WR2886oD5/ebfXZgPfu17SZIv\nvP5/z4OPufe+YU9/+znZdsud+btXPiVPOv4BB0x77c0HLntL/T4O9lsz1/rkxlvu3LeMfeNNz85R\nR4wVP8Y2k4+f9yf/ki3X7cpfvOSkPOeHH5R3fmpL/vgzl+YFj39I3vl/PG5Z57maxl3zvjrJta21\nDy1yPq9KsjnJ5q1bty7yLcZ32scv2ff4YL09M0Fttj/61JYkybevP/QWyjev3rHv8Ve+c+NCi7if\nmaCWJBdcNXcWvnyk1+1z37ohSfLGD1+cJPnn4fMZB3s9yX5bNZ+8+LoFlfOtH/vXJMnXrry7jLPr\n99qbV2aLeT5z1c/Ntw226v7yC5cfdLp3nj34vj9y0TVLmv+7P3dZkuR9X/3ukt7nM5cMlo+3fOSb\nY09z7hU3JUl+96OHnubqke9m9pbwX37x8iQ5oCf6o1+/u15m6nMpPrvl+n2PrzxED8Ji7Lr97rJ/\n5KK5l+8ZM+uIr3/v5iTJly67exm+5Nqd+x6fOWw7f/XFu3+IR3s1ztk8/vrszmHv7fsP0UZu3z0Y\n52++cuUBw2baRjIIEqPzHi3T731s8Nku/O7Bt6vP/te7l/2tO1a2p2PU+d+9ad/jr19187K//8xy\n/IfD9fhSfOIb1+57vG3X3L8j/3rN4HdgNKglybs+/a0Dxr1zpPf+A+d/75DDP/S1q+ac30xQS/b/\nDpNk23Bd/N7Pf2fOaedqL0v9Pg72WzPX+uTLl23b9/iSa3ZkOcx1qsmW6wa9au/81OA7+OPPXJok\n+dDXDqzzSTJvtK2qRyd5TZInLmE+pyf56yTZuHHj5iW8DwDAVBmnZ+3kJA9M8o2quiHJTDfQRVV1\n6jgzaa1ta61taa1t2bBhebs+AQDWs3GS098mOXvk+UOTfDHJs5JcMucUAAAsi3nDWmvt1oxcrqOq\nZqa5trW2a+6pAABYDgveJ9lauzxzH9cHAMAyc7spAICOCWsAAB0T1gCYGOUgHKaQsLYsJvs2FjDt\nmmUY6JiwtkirvXW3TLe6mwrLdV9AptN8y3bvzav38i2GMM20E9YmkL0AByq1siL8SB7aWra6iQxl\nk1jmWA6Wm9pcOGENGCvs1nJ0J1tLM9T75tWytPdFGieIL7R0qxru55iXYw2XZl2GtUluE5O+C6/H\n4k9ye1jP9Eot3uzyd/3DTZLVq/MFBT3tYGKsy7AGTJ/1tKtqrk9io2P96PG77LFM3E1Ym2Utu757\nN+m9fkwPyzGwnghrAAAdE9ammH6y9UVvEsDAelsdCmsAAB0T1pbBJB3Ktd62NgBgvRPWsrgD52Ue\nWD8maYMLmD7C2oRYrh+TafhRmoKPyAqaf0Os9xbWe/mWxoYy00hYm0DLtStzPa307N5dGdMQ7pdC\nu1uY9XQtPFhNwhrAKlqu6xUKPquny42WidtSuLu8q1GfXX5nSyCsAWOt95fjp0HAYJ8FNKi1+OFd\n09uhrch7rl4lWsqXn7AG68Sk3WFi4joGOuYae5NvNb9C7WXyCGud6fnndpwFvMfyWzHB/iYt2MO0\nE9aAqTOJ+X0Sy8zcfJcslLC2DGyjQl/m6zma9I6lCS8+K2ghbdsxpJNDWFskW0bQl0kPYKNW87NY\nl5FkfV3LaR0S1mbRXmHyLfQ4xXWU84B1SFibxUr74ByUzDRwQgpTyeq9a8LahHBswQKoqqm0Whlr\nNbZZlvJZbFPB+iOsTSAb/gdSJayF0vIWRJCExRHWYJ2w+46poJknmbxqWO3V03pbHQprU8xGLqy+\n5VrulquXSm/X/FTR8lqR45/X+ZckrLGs1tnGzNQY53tbji1VwWB5LPWr6KEXtvddyGtZRUtZTg5W\n7rnec6W+g9U6Ga2DZrxqhDVgjUzRmnaFrfeanIaQv5rhdb23l/VoXYa11d5qnKQVyTRtiQDAerAu\nw9rqkHomhW9qbq6bBzAZhLVMVs9Y73qsyh7LRF+mLbhO2+eFSSesLQO7FmH9sDgDvRHWgKkz6XcE\nmezSs5IW0mk66cvBNBHWJoRrKo3PCoiV1HvrWmj57BkgiS7lzglrE2i5TvFeT8umHxzWZENkhdrd\nNGxUAeMT1mbxmw93cyA6y0lzgsUR1hZt+dY6k9IrZD27vqz9D+eaF2BNLNshDcvzNoyhx42Wpfxu\nrHUn9GrMv8OvbEmENWCsFX/vtwdisiw2bKxWO1zL1j4pG/CsHmFtGay3BA8A9ENYWzSbPrBQtmtg\nfivRAbCay57lfPkJa7BOTN6uk4krcLcm77tnttX8Dqehuay3ZUJYg3XC7vjlsd5W8uuBps20E9am\n2IIvnrkipVh5k1puAMaz3i+GLqz1ZsLbW4+nuMNs035mq6V09Vk1Lr+aom5wYa0D09PcVoeV4nhU\n0+KsVfsaN2DaYOrftG8ssHDC2gSaoo2JBVAprD6tDlgNwhpwUOu1k2bSj2+Z/b1Myvc0IcVMsvpl\nXb47W4z/RpPSbhDWlsVSV/yrud9drxxrSfNbvmVwuepymo77WU8Wuit1vrGXc9fsXO+knS2NsLZI\n2h2wGO4NOnn0QC0v9blwwhow3lZ15xso62v9v74+zVw6b07dl4/pIqxl/9WiHjOYPrb0gZ4Ja8Cq\nmYRM5LIKfZuGDeqVOAFmPd4bdJouUyOszTJF3/2CqZr1Za1XdNPwo7ta1CULMVd7mfQzpNf7Rpaw\nBqwL62tVvb4+DbA0whoAQMeEtQmxbKf7T3ZP91gO+Ig6KVhGve8u6rt0i7PWu+xhrQlrU2w9ZRjH\n7LAWXOgTWA1jhbWqemtVfaeqdlTV1qr6+6p6+EoXblIsdaNvdHXf+1b7fCa79JNtJXKD73N9WquO\nqmnuIZv0dTtra9yetbOSPK61dr8kxye5Msn7VqpQk2A5fxdtnAPzsp5YN5ZjnT9pvxsTVtzu1EK3\ndKrqyCRvSvKy1tqxC53hE5/4xHbuuecudLIF+aE3fiK33HnXis6DlfHSpzwif/XFK+Yc9ss//qj8\n6TnfnnPYr/z4o/Mn51y6kkXbz/3vc4/cdOvuZXmvF570kHzw/O8ty3utR8/5oe/LJy6+dq2LsWgn\nPfyYnH/l9rUuxrye+Ij755qbb8/3tt+21kVhnbnnhsNy5569+732kGPuPW9b+4dfeWou/O72vOHD\nFy97mU59xqOy4fDD8tOPfVBO+Df3Xfb3H0dVnddae+JY444b1qrqPyf58yT3S7InyW+01k4fc9pj\nkxybJJs2bdp8wQUXjDXPxTr+9R9d0fcHANaHy0/7qTWZ70LC2tgnGLTW/rq1dnSSByX5nSRfX0CZ\nXpVkc5LNW7duXcBkAADTbcFng7bWrk1yRpKPVNUDxpzs9CQnJjlx48aNC50lAMDUWuylOzYkOTLJ\ng8cZubW2rbW2pbW2ZcOGDYucJQDA9Jk3rFXVYVX1K1W1cfj8oUn+NMnlSS5Z2eIBAEy3cXvW/n2S\nb1TVLUm+nOTWJD/RWtuzYiUDACDz7pNsre3NIKwBALDK3G4KAKBjwhoAQMeENQCAjglrAAAdE9YA\nADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA\n0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeENQCA\njglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0\nTFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBj\nwhoAQMeENQCAjglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB2b\nN6xV1duq6uKq2lFVV1fVGVX1gNUoHADAtBunZ+2uJC9JcmySTUkemuTMFSwTAABDG+YbobX22yNP\nr6+qdyX525UrEgAAM+YNa3M4JcmFC5mgqo7NoGcumzZtWsQsAQCW3/Gv/+i+x2//mcfmPz7xYWtY\nmrkt6ASDqnpRklcmefUC5/OqJJuTbN66desCJwUAWHm/9fcXrXUR5jR2WKuqn01yRpLntdbOX+B8\nTk9yYpITN27cuMBJAQCm11hhrapeluTdSZ7bWjtnoTNprW1rrW1prW3ZsGExe14BAKbTOJfu+NUk\nf5Dk2a21z698kQAAmDFON9e7kuxJck5V7XuxtXbUShUKAICBcS7dUfONAwDAynC7KQCAjglrAAAd\nE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiY\nsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWENAKBjwhoAQMeE\nNQCAjglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOias\nAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHRMWAMA6JiwBgDQMWEN\nAKBjwhoAQMeENQCAjglrAAAdE9YAADomrAEAdExYAwDomLAGANAxYQ0AoGPCGgBAx4Q1AICOCWsA\nAB0T1gAAOiasAQB0TFgDAOjYWGGtql5cVf9cVTuqas9KFwoAgIENY453U5I/S3LvJO9ZueIAADBq\nrJ611to/tdb+JsllK1weAIA18+ef/XZu333XWhdjP6tyzFpVHVtVJ1TVCXv22IsKAPTpbZ+4JFfe\neOtaF2M/q3WCwauSbE6yeevWras0SwCAhfvWdbvWugj7Wa2wdnqSE5OcuHHjxlWaJQDA5FuVsNZa\n29Za29Ja27Jhw7jnNAAAMFZyqqrDk9wjyT2Hz+81HHRHa62tUNkAAFZd1VqXYH/j9qz9lyS3Jfmn\nJIcPH9+W5BErVC4AADL+pTvObK3VHH+Xr3D5AABWVWcda243BQDQM2ENAKBjwhoAwIhJPcEAAIA1\nIKwBAOynr641YQ0AoGPCGgBAx4Q1AIARTjAAAGBswhoAQMeENQCAEZ3tBRXWAAB6JqwBAIyozs4w\nENYAADomrAEAdExYAwAY0ddOUGENAKBrwhoAwIjOzi8Q1gAAeiasAQB0TFgDABhhNygAAGMT1gAA\nRlRnF+8Q1gAAOiasAQB0TFgDABjV115QYQ0AoGfCGgDAiM461oQ1AICeCWsAAB0T1gAARlRntzAQ\n1gAAOiasAQCM6KtfTVgDAOiasAYA0DFhDQBgRGfnFwhrAAA9E9YAAEZUZ6cYCGsAAB0T1gAAOias\nAQCMcIIBAABjE9YAAEZ01rEmrAEA9ExYAwDomLAGADCqs/2gwhoAQMeENQCAEe5gAADA2IQ1AICO\nCWsAACPcwQAAgLEJawAAIzrrWBPWAAB6JqwBAHRMWAMAGFGdnWEgrAEAdExYAwAY0VnHmrAGANAz\nYQ0AoGPCGgDAiM72go4X1qrq8Kp6R1VdX1U7q+oDVXXcShcOAGDajduz9vokz0/y5CQPHb521oqU\nCACAfTaMOd4vJnlza+2yJKmq30pyaVU9orV2xYqVDgBgys3bs1ZVxyR5eJLzZl5rrX07yY4km8aZ\nSVUdW1UnVNUJe/bsWWxZAQBW3APve8RaF2E/4+wGve/w/82zXt+e5H5jzudVSTYn2bx169YxJ1m8\n//7cH1zxeQAA69Mjjj1yrYuwn3F2g+4c/j961uvHZNC7No7Tk/x1kmzcuHHzmNMs2sue+si87KmP\nXOnZAACsuHl71lpr25NcmeSkmdeq6lEZ9KpdNM5MWmvbWmtbWmtbNmwY9zA5AADGPRv0PUleV1WP\nrKqjk7w9yT+11i5fsZIBADD22aCnJbl/kq8mOSLJp5K8ZKUKBQDAwFhhrbV2V5LXDv8AAFglbjcF\nANAxYQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQB0TFgDAOiYsAYA0DFhDQCgY8IaAEDHqrW2\nujOsuj7JFas60+TwJP8myXVJ7lrleU86dbd46m5p1N/iqbvFU3dLo/7G94jW2gPHGXHVw9paqKoT\nkmxOcmJrbctal2eSqLvFU3dLo/4WT90tnrpbGvW3MuwGBQDomLAGANCxaQlr25K8afifhVF3i6fu\nlkb9LZ66Wzx1tzTqbwVMxTFrAACTalp61gAAJpKwBgDQMWENAKBjwhoAQMeENQCAjglrAAAdE9YA\nADomrAEAdGxiw1pVva2qLq6qHVV1dVWdUVUPGBn+81W1t6p2jfz9zaz3eGJVfaWqbq2qb1fVS1b/\nk6yNqjqzqnbPqp9TZ43z0mG93FpVX66qJ8waPpX1N2x3o/V2W1W1qjpJuztQVb24qv55uKzumWP4\nktpZVW2sqg9W1c6qun64bpjYdduoQ9XdsN6+UFU3VdUNVfXxqvqRkeHHD9vlLSNt8apZ7zGtdbfk\n5XQ9110yb/39xay62zVsa78xHD7VbW9FtNYm8i/J7yV5fJJ7JHlgko8n+YeR4T+f5NJDTH90kuuT\nvC7JEUmemWRXkqes9Wdbpfo7M8n/c4jhJye5JcmzhvXzW0muS3I/9XdAXb01ycXDx9rdgZ/52Un+\nU5JfSLJnudtZkk8l+eBw3H+bZEuS1631516FuvvlYX0cOaybtya5Jsl9hsOPT9KSPPQQ7z+tdbfk\n5XQ919189TfHuM9MsjvJg7W9Ffo+1roAy/ZBkuck2THyfL6F8WVJrsjwllvD185K8t61/iyrVF9n\n5tBh7S+TnDXyvIb19X+qv/3qacPwB/JXh8+1u4N/9mfM8aO5pHaW5JHDH4VHjQx/eZLvrPXnXem6\nm2Ocew3r4qTh80P+YE5z3S11OZ2WujtY/c0xzt8n+eDIc21vmf/WU5fjKUkunPXaw6rq2qr6blW9\nr6oeOTJsU5KvtWErGTp/+Pq0eFFV3VhVW6rqHVV11MiwTUnOm3kyrKcLcnf9qL+B/5DBluFfjbym\n3Y1vqe1sU5KbW2vfnjX8+Kq634qVuk+nJLk1ybdmvf7l4W6mz1bVM0Zen/a6W8pyOu11t09VfV+S\n5yf5izkGa3vLZF2Etap6UZJXJnn1yMufS/IjSR6c5ElJbk/yqao6cjj8vklunvVW25NMS0M5Pcn3\nJzkuyQuS/FiSM0aGz1c/015/M34pyftba9uHz7W7hVlqOzvY8GSK6rSqTkjy3iSvaa3tHL58Q5Kn\nZNCLcXySDyT5eFU9djh8mutuqcvpNNfdbC9PcmUGuzVnaHvLbOLDWlX9bAYh43mttfNnXm+tXdZa\n29Ja29tauzbJK5I8KMmPDkfZmUGPyKhjkuxYhWKvudbaea2164b1c3GSX0vyM1V1xHCU+epnqusv\nSarqURn0ZuzbotTuFmyp7exgw2eGrXtV9YNJzknyB6210ba4q7X2pdbana21W1prpyf55yQ/Oxxl\nautuGZbTqa27UcMTAl6R5D2jvZDa3vKb6LBWVS9L8u4kz22tnTPP6DMNqYb/L0zyuFnjnJQDd6VO\ni7nq56SZgVVVGZzQceHI8Gmvv19KcmFr7cuHGEe7O7SltrMLkxxdVf921vDLW2uzt9zXnao6Kcln\nk5zWWnv7GJO07N8Wp7buZlnocqruBp6TQcj9H2OMq+0txVofNLfYvyS/mmRbkicdZPhPJXloBo3j\nAUnek8EBo0cNhx+Twdk+v5nB2T4/kXV+Vt6s+nlxkmOGjx+T5AtJPjAy/ORhfZySuc/Sm/b6u2eS\nrUl+Sbubt64Oz+Dg92cl2TN8fK9hHS25nWWw++XvM9h9MnNW2evX+nOvQt09NclNSV5xkGl/NMkP\nZ3ASzL2S/GIGu/ueoO6Wvpyu57qbr/5Gxvlwkr/R9lbh+1jrAiyhIbUMThXeNfo3MvwdSa7O4LIA\n1wwbxQmz3uNJSb6S5LYklyV5yVp/rlWsv88muXFYP99J8kczP5Aj47x0WC+3DevpCbOGT3P9vTiD\nXSJHzXoZH8XSAAAE/0lEQVRduzuwrn5+uLzO/jt+OdpZko0ZXAJgZwbHyrw9yWFr/blXuu4y2PW5\nd/Y6MMnThtP+pySXDtvitgx2Qz1T3eX45VhO13PdzVd/w+EPySDE/dgc005121uJvxpWGgAAHZro\nY9YAANY7YQ0AoGPCGgBAx4Q1AICOCWsAAB0T1gAAOiasAQBdqKojq+rbVbVnjHFfOhz31qr6clU9\nYdbwF1bVRVW1q6o2D29POTr8yVX1uaraXlXXVdVZVXXsyPC3VdXFVbWjqq6uqjOq6gEL/DyvHZZx\nZ1V9q6pOXcj0M4Q1AGDFVdXxVTXfxV1Py+BC7fO918lJ/jzJf0ty/wxuFv+xqrrfcPiPJvmfGdz3\n+n5JXpvkf1XVk4fDD0/ykQzu3vPAJD+Q5MFJ/nhkNncleUmSY5NsyuCuF2eO8VFnyvi8JG9K8nOt\ntftmcAHwd1TVM8d9jxnCGgCw5qrq6UmeluRtY4z+iiQfbK19srV2RwZ3pbg9yQuGw1+Y5J9aa59p\nre1trf1jks9ncE/nZHAj+eOSvLe1tru1dmOSv80glCVJWmu/3Vr72nD49UneleQZs8r8iqr6RlXd\nXFVfq6pnjQx+dJKLWmtfGr7fF5NcNDqPcQlrAMCaqqr7JDkjyX/N4FaS89mU5LyZJ21wO6YLcncQ\nqtx94/gZhyV53HD8G5O8O8nLq+qIqtqYwW0EP3SIeZ6SwU3oZ8r8iiSvS/JzGfTu/d9JPlhVjx6O\n8r4k962qp1bVYVX1tCQnJPnEGJ/vgIIDAKyl30/yj621c8cc/75Jbp712vYMdnkmyUeTPKeqnllV\nG6rqBUmeOjI8Sf4ugx64W5Jcl8G9dn9/rplV1YuSvDLJq0defnWSN7fWLhz23n0sg3v2vng4fGsG\n9509J8mdw///vbX2jTE/4z7CGgCwIqrqz4YH8G/PYBdgZp4P/14/PP7sJ5O8cQFvvTODXZmjjkmy\nI0laa5/NIFz9UQah6ecz6Om6YViGxyT5eJK3Jrn3cNpvZ45er+GJCWckeV5r7fyRQY9M8qejnyfJ\nj2dwk/skeUMGvW6PS3KPDHr9fr2qXr6Az5lEWAMAVkhr7dTW2jGttWOSPHb42jEjf6cl+YkkD0ty\nZVXdkOTDSQ6vqhuq6rkHeesLk5w086SqKsnjM7KbsrV2ZmvtR1prD2itPT/JiUk+Oxy8KcmNrbWZ\nY9ZuTnJ6kqdV1TEj7/uyDHaXPre1ds6sMlyR5BdmfZ6jWmv/bTj8CUk+0Fr7Zhu4OMn/m+Rgn+mg\nhDUAYC39UZLHZNAD9bgMjlu7a/j47INMc0aSF1bVKVV1RJLfTHJEhsecDXd9nlRVh1fV0VX1lgwC\n4TuH05+X5JiqeslwnPsm+ZUkl7XWtg/f41eT/EGSZ7fWPj9HGd6Z5Heq6nE1cO+qOrmqvn84/PNJ\nXjDsxUtV/UCS/5CRY+3GtWGhEwAALJfW2o4Md18mSVVdP3z9qpHXfjuDS2D80HDYvwyvWXZGkgcl\n+XqSfz98ryQ5PMl7MuhNaxkcL3Zya+264fTfGR6H9jtJ/iSDcPjVJM8fKdq7kuxJcs6g425feY8a\n/j+jqu5M8t4MdonuTnJ+BpcJSQZnqB6d5FNVdVySGzM4Tu60hdZRDU6gAACgR3aDAgB0TFgDAOiY\nsAYA0DFhDQCgY8IaAEDHhDUAgI4JawAAHRPWAAA6JqwBAHTs/wd0ixt4VWwjSAAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DynamicPowerspectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a dynamic powerspectrum with the a segment size of 16s and the powers with a \"leahy\" normalization" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dynspec = stingray.DynamicalPowerspectrum(lc=lc, segment_size=16, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dyn_ps attribute stores the power matrix, each column corresponds to the powerspectrum of each segment of the light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 2.01901704e+00, 2.32485459e+00, 5.14704363e+00, ...,\n", + " 9.76872866e-01, 9.49269045e-01, 4.60522187e+02],\n", + " [ 2.93960257e+00, 2.48892516e+00, 3.39280288e+00, ...,\n", + " 6.23511732e+00, 4.27550837e+00, 1.06261843e+02],\n", + " [ 3.64619904e+00, 1.58266627e+00, 3.42614944e-01, ...,\n", + " 1.16952148e+00, 3.54994270e+00, 4.56956463e+01],\n", + " ..., \n", + " [ 1.69311108e+00, 5.18784072e-01, 1.57151667e+00, ...,\n", + " 1.09923562e+00, 3.40274378e-01, 2.53108287e+00],\n", + " [ 2.95675687e-01, 2.47939959e+00, 2.84930818e+00, ...,\n", + " 2.99674579e-01, 1.48585951e+00, 7.49068264e+00],\n", + " [ 8.84156884e-01, 1.65514790e+00, 4.17385519e-01, ...,\n", + " 7.54942692e+00, 9.99801389e-01, 2.03835451e-01]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dynspec.dyn_ps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To plot the DynamicalPowerspectrum matrix, we use the attributes `time` and `freq` to set the extend of the image axis. have a look at the documentation of matplotlib's `imshow()`." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(700, 850)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXd4FUX3/9kkEHronZBODyhdpYOBYC+IggiiYC/Yy2vF\nghXFBooiSnlRikgLUgREkCZEagoJLdKr9CTz+yO8vy/nnCEzd5zdewP38zw8PLM5OzO7d3f2zCmf\n4wghIIgggggiiCCCCCKIf4cQf08giCCCCCKIIIII4mJAUKkKIogggggiiCCCsICgUhVEEEEEEUQQ\nQQRhAUGlKogggggiiCCCCMICgkpVEEEEEUQQQQQRhAUElaoggggiiCCCCCIICwgqVUEEEUQQQQQR\nRBAWEFSqgggiiCCCCCKIix6O47zhOE6W4zhHHcfZ6zjOj47jRBYi391xnA2O45x0HGe94zhXq8YI\nKlVBBBFEEEEEEcSlgO8AoJkQohwARAHAdgCYKBN0HCcGAKYAwFsAEHHu/6mO40QVNkBQqQoiiCCC\nCCKIIC56CCE2CyGOnGs6AJAPAPUuIH4XAKwWQnwvhDgjhBgHAGvOHb8gwqzNNogggggiiCCCCMJF\nOI5TCQAqnXfogBDigA/n3wEAnwNAOQDIBYAhFxBtCgCrybE1545fEEVSqSruhIsSUBodOx1ZCrXD\nt59wbfyERNx32tZKXOifk6iZV6k0E2lQax/uJ7UUk8mriM8LPXhcOb/88ryfkMN4zvQadEHnmFuF\nX1fDGvvYMdbPqQhy4CyTYfdZcn90ZFTnyM7TkQlEiAg8xzPluUyTiP3Kfui1OuHhfKzTp1G7ZAPe\nz8lNuJ1bmT8vYfvVz7QO6LMYeobXNXWOqN+D9QeqoHbxXer5Gb8HAfZMmb4bqnNMx7d1f3Suq2rj\nU0xm7/oSPvdjC7bWqTzyzp0+dhByTx13LExRG0mdSosDB/NsdZcJALHntV8FgFd0TxZCjAeA8Y7j\nVAeAgQDw1wVEywLAEXLsMAA0Kqx/pygWVG7RtIRYkVIHHUuq2Qy1U3LWsvOozP6fE5hM5WvTfJ6P\nbCyKdg8NZsdKTfnD57F2vHAFO1bnjd+V59VeXga1cwbVZjL5qZt9no/Ofd71DJ9zrWHqOevgTPeW\nqF18zkor/cqua/XpM+zY89GtlOfR+2ELFZZWZMcOXXnQ53505mx6Xad74N/n19FfKs/R6Vc2n+T2\nN+IDR/5hMnn7sKJjel30vIa/92UyG6/4XtmPzthZb7dlxzp1xuNntzrJZOgc6y3px2SibktVzon2\nI5tjWEwUauduzVb2629kv4Hva9QLy5hMSNmyqJ1/7BiT0bk/f0/DO47UVhOYjMk6EZoQy47lpWUW\nOr9WSTtg1bpTnipVBd/sC8aD+4TQGulrAeC28w75ZKk6H47jVAWArQAQKYQ4SP42DQCyhRCPnXfs\nIwCoI4S46UJ9FklLVVpqKeUDKPt7aCPsOq187Rar8yps/AP/CWUypabg9qlrWzGZEj+vQG2ZAtX5\nL7yTXtCE75p3tqEfGN8VKFMk9Exnx44PU5+ns1hRJUpHwZX1s/fBK4iMej66fVM4LZuwY2LlhTZL\nF4ZMgTqT1AK1i6esUvZjS+mTKyh2+qH44nAtdiwvI8v3wSTIb3cZaocs+VN5Tp1b1rNjwzdEofbs\nRhKzoQain+Uf+2zS/nsI37gA4PsoU6B07rUOTJQo2dg9uvdG7dlzeAyxjsLfacA9qC17D6gSJZ1P\n/JXsmMl86HvQveWdkp7wGhBWi788ubtyUJsqULLx6fzSzPSPfwUBAPmQb6u7PCGE79YPOcIAoDQA\n1AQAuqCuA4BO5NjlADCvsA6LpKWqnFNRtHa6FCoTGhfNjtFF19YOPa/j5Xz8X9cUOj8AvZ0ShZuW\nEB0lRkfG1lgUw7K4Ze+Z6NbK83Y9iz846x/5jMkwK+Ygbh2oPMrs91GNBQAQuhAvoHmdcpiMyVgy\ntHr+ftSuMEZ9XaYwmaPOsxBWtw47NnPZz6jd6JMHmEztN323kJr+piGN66P27LlqBSG0XhyTyduS\noRxfBpN3zEtLqwxpX+CNZf+2vzGZ35sW97lfW9cltZBuSUZt2btra93UmY+q7z/EfDgqDnpqqWre\nNFz8PodvhExQombWaiFEC7UkhuM4IQDwAABMEkLsdRynNgCMAIBmABAvhMgl8rFQoOkOBIDJAHAr\nAIwCgEZCiOwLjlMUlaqIEjVE2ygcgK8yeQJ4uziYILRKFXYs7Rls3s244wsmY7pYquDm/XJrkZGB\nftzOVJPE9cyn8Ygcpkq4Dp7aja0j71bn1hGde/TldvwRujfyKuU5pnM22YDojNX1jrvZsepvbkXt\nzE/qM5ll7+F3w9amILRcOXYs7+hR5Xk6Y+2bjq3na1r8l8n48wMsOy9u3P1MJvYpdxRzU4XWy/XF\nlgWbIm1US3YsYdC/D2+4xJWqGQDQAgqsU4cB4FcAeEkIkek4Th8AGCmEKHPeOd0B4H0AiIECN+Hj\nQoi5hY1TJN1/8fUOwayUyf+6H52X4Zk9/GUYVs3OC7t1PD4v5g4+n9gnSbDrHep+TRfP17N8f2Fl\nYw0/FIXac9vHGM3HBDqm9yojJbFI89V968xZZ4GXIfVysrlRG6qkmPXPhbKDfQN1w5jE2wHwmKrk\nTtwSM2vhj6id3ZMHxRe/FrO/VIzYbTQfipBSPMg4/wQO/tVRoGTQeV6qXEdCECS/u+n7fOy2NuSI\nHeU5I+dzLvOUej7UxV71U241pNcaO/E+JhM3ZLlyLC830CZj0VhQAIC8x3ECSUISX49NlMWM4fg5\nOP2e+v7ZRoH7z78GHCFEPgAkF/L3cQAwjhybAwBzfBmnSFqqqjesKPqM74qO0Y+Sl5YqL8fKmpjI\njqW1H+vK2LbiLdx0O9Dz+mZ3ZDL7rjisHKvVc8Ql9i3febvpQgi0fqhSlTaAxwNl3oYtQ9tzeWB4\nZBhOkLBlVdXpZ9cUnqRT66YNyvMez8Apix/GSdIaNeCltUSG0IY4ESdvIw9DSR+B3efxD3MXu851\nvLAVy7wRw2WOzsZW93I9eDwQONiAkrJLbbG1tXbYWqdCSpRgMrO3YkVGNlb26zjkYMtAifJKztv5\nPI+lq7YKJ9QUm4vjyfxhqbq8abhYMqe6lb7K1NxuZKnyCkVSqdKJqTKF0ULoSJ5P4Z2SR/uOmcfd\nJ1u7fo3aww7EMxlZgLsNmH4kj96Od1jL3le7Pk1dUC/uxcHjK5vxxAJbH3tZP4/k4J3rlhacYuLk\n9TjeZPHno4zGt4X8Dthl+cuEb4z68adb3pbr03Qs0+eFukh3dOXWvS1344+yqZss/ROieD3EFS+T\nLE8deBmzKbvPie/huLwaH5hlLbvlIjTpN6hUuYugUkXgZUDh8lOYt6NNCf4hp+PveFFCT7AIp1Pr\nZCtdLHBrsZLh4N08eP3tF7Bi06Uk52JJ7oCzb/PStzIZCp3rar66Fzu2uvkk1Hbz+Y35BX/Y72rG\n3Qo0qFhHsZDd50p9t6O26LzrwpMtBCbJGDLYUuYTxmALady73M2ad+iQcj462PsQXzv+fB4nbVAL\nJYCZ6zfyD75B294aZykXhbhXW8oZha3rTP+YJ+rEP1I4VY8/lKrLmhYXi2bbUaoiau0IKlW2YapU\nuaUwlV7MA8yPt1cT/7mFpPU8BmTaC9hdamrluHEjvq4jeTwmxZ8WL9lHQWzBWZ/fZyxgMn3qqFOn\nZai3qhhqyyxMbmVMyqDTd5/NO1G7ahjn3jFxecnmV/8rrDQU+4ev5TXfUe/+D9+JFa3y36nds7be\nbx1lxE0Xd2gDblWGfLxu62QIZg/lymp5EtIlu686oNcmoyLIP65Wqrr2wYp66EJ1FrUMTovGqD1n\nOucMM1GMQxJ5goSM9sFkLB0cyccb6PbvPsFkak/Cm7bcv3H8ob+UqoWzq1npq0KtnUGlyjZ0yD9t\nwVb2SdsnecBlufHqgEG3PhTbX+Efik2D1B8KW1mENHXcNG3cBJnv0QBenlXp7x1z+kd8jltvdWeO\nph97yqMzc+Uso35MsO1V/vxuvhc/v502XM9kinfbhto7fmzMZOq8R0qiLvedINMUuvcrrDr+QOXu\n3qOcky2rnAw5Uxuids0bNyrP8RI6z/jZrs2ZTLF5OCs4rAa3tsxcjeOYTd2sXrkI/UH+GVSqAhzx\nTUqKj37CQY86O2sao1NuAldqAolPpCj0c3puFDv2a+NpPvd7uB/fRf/xtjomRAfbXsN9133Jzm5c\nhtFH+KI7qYEds3fm+/j5zbjdjF6DwtR1NfMEDsjtWYqX+Yj/Dluq0u/kwbeqsd3E7ml83ah+wyaJ\npO+g94zSZgB4m2Cz737+jlX5XP0u7LsPn7fmJfVvSC1OAAA3fvoLar+3qAeTSbh/BTtmAzTzEECe\nfUihoyxSK+ofw9QB5jq/c+Z4/rvHSjLEVaDB7NmjP4CTf+/wVKlq1rS4mD+7qpW+KtfaFVSqbEPH\nUhW7kmdgZLbkiz6FP/lNGn/MyQopUaUt69G9O7h5PusZnI4vIzBlZv4YblHJP6W+z9N34XThcKcY\nk/G3tYii0tIK7Nj46IWorTNn0ZbX43SWrUPt+JU88Di9Ja61908vfu+XDvfdmhVosS2y+XRcfwNq\nh1+dbWUsmWuv6id2CEKTu+KYN1n2nU4/OuWRdj/Or6MFYVAfUv0XJjMkiitaqjn5m/OpZ9trUZuS\nvgLYyxCkcDNeilbUoNU0bMEf7r9mTYuLX2bzMBkTVK2VE1SqbEMnpmp4Nl8YGxTH8T9FkdzSzQ/g\nzufwwlz7LTWPTKBdl5fp1abnmVqGbF2HPz+SOvPpfm0fJjPnZ0Qf46nSl9eJV0yYNw5n03qthJ7u\nibPtwmeqOebcfO4o0r/l9yz+LnV8lK3nN9AUQQp/vnNBpcpdFEnyTx08FiWrhWUHtuInaEmGhPvU\nOxOdl1FWgLV7V8xVIguopkoULZJaAHzttli0e1zNA8xpfUKdsRp+yq19G3OwtS962iBJP7it+3Fx\n66Mkg447yQQ1l5dlx3La8OB11XwajOL3Xqf2H7+H45hMi/9gN+IqGQGlS/dZdg10rBHbljKZh+ua\nJT+o5nOhOdmAzj3MHMefu9g+OOPYRIHSHV9HZsVpvr4F4T8IAMgrggYcExRJS5VpoDrbEV/Pi1qa\nFLYNKc2z3XQyXUw+AuGLeHzO6Q6+s0tTll0AgLoz8EJEgzT9DVucQrJ+mr2FFYJqI8z4aPb/nMCO\nVb7WVu1PNQLNCqU6R/c8E8iIETc85Ls73VpM03TOds8Y1TXxz604lb7MD4Wn0evCCedu5zmk5qaX\nv3NYdF127NSX+Js1v+F0ZT+BZlGX4XQysT7O+vclaQACI1C9adPiYvasylb6qlX774C2VBVJpapE\nzToiauAQdKzOG2YfQYp+W3ag9th6vHArhS1rjQ78HWfkFj0ATb0HMAsoDynLrS75x9RWF6oMyRSh\nA/dwC6BDaKkqfmMnCN5L2gXTe0ZRYamk/M+VtPC7GUxcPvW+5s9U1It2atT12oQ3MqbJCDv+gxW/\nOh23c6EuO9mhQHfDa2F+bXYoIhxTBqxMi2YyCXevYsco0j8lhKUPmjHFU/wzh5fcKtMdUxjIQk+o\n58RUwbYR0+UP919QqQpwuEn+qQO3FrSXtnKT+WsxODbB65ght+BPUj03PxwZ33PXSFxf7BoJjeMf\nilmLp1oZP7lhB9TOO3zEqB+T36fx6hB2bPo8/HFr256XidnTFvOqeRn70yH1JDu2KLGkz/2YzocW\nzQ0rw91WspqgJnMyfca3/4CrDUTeqrbmB1pMYLtUnjzzYmUcXiALQdj9Bm5XvV5NhGq6TnVdjzcy\nT1WUlPHR6Ec1H39YqhKbFhMzLSlVkbV3B7RSddHEVIkrcEbV3B+/ZTJa3Dsa/C+22JT5OTy40xZ0\nrn33o3g3Vf0jtfVPdl31vsEWgjKSzbdOTMix3uqCsCa/hexeULqC2Cf0io6WXYIXisxYSakWUiRX\ndu0P7cLKB8300wdWomREsEMq4p21TqyYDBN34Oejdx3ubosBbBnib5MeaKajaUyRl5uLXc/g+1Fr\nGH+fsq7RKOciKbJsEnukYx2xFb9lel/peZSuwHQ+SxJ5NngS0DlyhakqpzpjsMVBNXrK1aid0Z2f\n8wfZtFUDOx4a1yEA8oqe/cYIF62lSufjun8wf2Erj/TdPWCLINTL+A6ZVWF983yf+wm0dPwx239j\nx/pHXqU8L7QSdl1lPMU/QNHPesfifaQPj3mLGOd9dfl/C537Qz/2pm6QQKOBYLxDEtLZ2Cfxb2rL\nFSuDrMTVxgd8Z4Y3RdrX2Lig48aTwS1XuWk/uZ0xaWjYAvdiUXXmTClbKF2LP9x/iYnFxHRLlqro\nOkFLVcBi9cs8g6j9bpwZVvInM64Qk52klx+K92tIsnMkO2IVdLL2TGGy6NUIK2M0Vt4BHPuT1k9C\ncNiPH3LL9aqjQNkK3PcSUgLK63zfyNjia7O1kdGRoQqUDKYKlOza8wTeJCXX4uclDTWxqJs9PyZK\nlK1YVBm01t8bSDLTCu76dFOJotDythzBLm1ejdR7CADwfcteNHHRKFW2rD4lAStRYbX5SvT3tZGk\nH/V82v91I5NZ3ATH0ei8MLdv5prPhPq+28PtfVjtKFAy2HLt2RhbFzJ3hcxtqYKb1xoaj4NtZQWe\np+7E70HSww8zmVJT1RlndI5VwDtrn5vKY8aH2OqUeZua3d7NWDGd9Y4GxQMA1HnD99/Q9DpMMmx1\nrotmQgLYy4akSpSbGxlbCq0Oyaz3cCAPPDWO+Q1aSpXjONUB4CMA6HzunD8B4HEhxDoiNwwAngaA\nO4UQ3593vAUAfAYAjQHgbwB4+fy/24DJAqr3EPNj1b7HcSoyDbzlCziu6MBlEqkm/BAFdUtN4PU8\neSDiczzrqcK3dtyathYHHbilMIkreT/OUjtzjr+flzjRmTc12ZvGDOV3wDEXIYv+ZDJUiaJ8aQAA\nN5LErCU5I/lgn+Km6Uam48B7UTsceCo55YHS4YDKmsCZ66Nvx64Q02c87nFidbqNy2wlfHG24sAK\n+vL9XajzuprMV3d8FWTz04n/SRtNXIQDuXWL9l0G7ChQ/k7eoeMfu427i6OWYtf4gSsPuTqnIHyH\nVkyV4zhTAKAsAPQCgOMAMBQAbgeASHGuA8dxWgHAVwBQGQCe/p/S5DhOBABkAMB7ADAcANoDwFQA\n6CaEMMpvlsVUuWm2NoHOx4TWdjKp66Q7lo4MTRd2vuIMuKV/tLQDNIBOqrKbzOw6MH3G+mzGafP9\nyu1X9m0rLs4UJ6/Hypipq1wHJu+3l2tCxgf8Axg3xE4MnEzp1SEK9hKBtv6aINA2kW6N5Y/sv8aJ\nxcXkmXZiqupHXgSUCo7jpALAp0KIkefa9aDA71NFCLHfcZxwAFgFAIMAYAIAvHieUjUAAF4BgKjz\nFLDvACBXCDFAe6KOUwkAKgEAlIGILW2cbtoXWVSgtTBRHz+Alom6W6/+qJ3zOE/dDlscgdqy7D9b\nQZn+5GUyhb0sz8C/Vi/xSAZ2IcsKM9MCvaEL7TB2e/mbBlpwPYB/+a5ez+IWyf9Et2THTMaK+XEw\nasc/Yoenyhb8+Sz4I1C9cWJxMWmmnTI1jSIDu0yNrlJ1JwD0PffvGAC8AQCthBDtzv39LQAoJYR4\n1HGcbMBK1XAoUKhuOK+/x6HARajNIeA4zisA8DIAQHEoAe2da3RP/VeQMfrOXPoTavt7YWQEghIz\nP8XWYTz2J+YZO8SIIaVwjcXZGXw+Whw+Gq4ACluLFaXoAABwfl8nkfQOoQ0xQemseZOU5+hYLRPG\ncHdx9PPeZcHmdiGK+ny1oj4ojceBjUrgxIwmMPnYUr4pAICEQb7X4zMNwPcyA64oJkiY4tDMeNSu\n0DOdyQRaNiJd29PvxEk3/rJUXSpKlW6g+lIAuAsA9kJBMsEOAOgB8P/jpW4FYKQf/0NZoOQ5AIcB\noJyPcx0BAOMBAIpDuFFtB1q2ovab6hiDFadlC2OxQs8B8NaCoaNE8RdWR8ZsPrvvprFQJ5jMtkk4\noKxuL55Vk9XjK9yP5BELq0vLFfH5mLlHeT8y0I+pyYf0QnOioAGosnNYPUngbiJ6XrQkeJz1+xl3\nQRU7Ekr6VXYjBVWicp7kAdU138PPuC0FKn4lL8vy7sFYn/spv7aYUiZ9BA+oNqmNCKC3nmRNTETt\n6N6pyr51ns2YqYOZzK1XYEvQWo2ylG666uPH4o1CjIQORacflmSiwRl248Z9TOaDVByuUmIFz1Lu\ncifZXIB6c6EzZzq/NHFA2a9tCIBgoPr/4DhOCADMA4AUALgJAE5BQXL5EsdxGgPANwDwoBDinwt0\ncQwAosix8gDAWQkLgRDiAAAcAABo0bQEpKT4rgDIlCgKW7spygmT3KgCkxEncerrjF28KOs1tZqz\nYxS2FDYdGZ2Fuuon6vssU6JMkLtth1KGXtfen3i0f/NX8O5utaRgr7xvcsCRLBzEGpz4Hi88nEqK\nPveI44pF/gmunFLQWBtbH66EB8xieEwU2mvSajCZ4tfhXe6hN6OYTMiTmFo0rKuEdZZARrK6+Ikk\n1K4hCbCmQcRVP9OwDt/Mg/2THvZdqZGBbi4A+Ltp61mQlXwZRn/nC+6x/z0O3q1OAKCkszrX3rM1\n937k7uAlglSoEsZpMeIGZaN23lGfPn8XRFGy/uWLS0OpUrr/HMepDAD7AKCBEGLzeccPAMDrAPAB\nAJxP8lMBAE4AwHQhRJ9zMVUvCyGizjvX55iq8xFogeqysWeewAy+H8dJ0vY0+qFw8yVyi4zUy/gB\nKcP7aLxr3TKQK0zUBWbi/tKdk78XQmoJmvbwO0wmthjeSV++iqe3mRQD/iCb39chUfgjaes9+HsI\nV0xrfICVHzfLqajOkZ2X8Z2kzNGdPINTB7beZyoTO/E+JlPvS2z9yNvE3WQm8PL30elney63HXSa\n8iRqxz3mHkmvjd/UHzFVjRKLi/EzqqkFNdCs7s6Adv/pxlRtAYC5APAsAJyGAkvVFwDQ4Fz7fCwD\ngHcAYLwQ4oDjOOUBIP3csY8BoB0ATAPL2X8UrioopBBoSoMZRmMdHIA/JrJivGe7YktVsXn+Zev1\ndKwQ7F6CfDWNXdZbPFYs+jk7CpLMGkAtZbKiy5W+8n3XHGiQBRW3CscuLzcVbHrevTs4pcL21seV\n/VBcse4MO7bhGLaUTYqZz2TonE/34DFVIWdxJuaCsaOV/Zy4ibsIS+7mgfv+jO/LelPyjmlsQs4k\n4e9gSC7/9lBXsK13JfKP0uyYzvOy52GsmK997jMmY8tlSfvRoQSR4Ux3/Cwu/BqXQvJHTFXDxOLi\n+xlmRccpmtfdcVEoVQ2ggBKhNRQEFGUAwGtCiJ8kstlwXqD6uWMtoYDVpgkU8FS99G94qiLCq4sr\navVBx3Kz1aZ++iC3fpYH6JYfa+cDXBSz23QQ2giXFMnbwK0Vbu2QZdC59uO34A/Vbx9LOJc04GZm\nFEXP5t3Zsdy/d/vcjww61+GE4cgAkZtrNJZOzJnO5oIWoc7LyFKOTWsTAgBUCMVJFKa/qc7HttPd\nmH+r+Bx1vJ0MWooF3YAAaG1C3ILOnPfdJ2HX/8Kehfh8yBJPDjbCz0KlLy0l6jTmXgln59+obVro\nXAeBaKlqkBguxs7gbn0TtKq7regrVYEGHUuVDvxtWtbB0Ttw7MaJapybqPqH6niOJzI2oPb7cY2U\n51DeKgCAcjfgSM3ZW7mp20slb9ezJPkghS9Wc2aOQ22d+cnqpNUZala81NbzEtoAZyLNmv8Dk/HS\nrerPd+WLbbzG4311cY3H08ncevTrVxoFjAlsbYhM4+TcRKCFTeiMHVoFx9fl7eOB4TpjtX0SuzHL\njedrmT9DItyi8vCHpepSUqoumjI1FDoPbacNvAR5cdjmcz+2QAMwAQBWDsXxP1rs3BLG8Pfj1ONf\ntxHHRUxvyGUotWTDT3nQdR2DyummC0itt/FYcyxxE5kqUDLo/GYlF+F4g5Md9jAZkzgVW1xNppbE\nhMW4YOLZL0pwGQMiy+hi6hqPMgXKn0pn5vuJTObeq7FrcUET7qbSGU/nuvYP4uuLacamPzFr3S9K\nGZ3nt2J1bO2cabjWmzxTpv3S390W8agXCAaqBzBsxVTJkLSJZIB04dkfoRVwJt+sDQt5P+SFSP+Y\nx0p0aoWtRzvb8CBIeh3jjlViMmPr8VgfFTr/xeMJ6IJ+9HbOEl0hFZdFkLn/KPpt4Rl6JnOWIbRa\nVTyfPXuZDL2HDT/jimC5LKwu6hQ0NgWNeQAwdw0FOrx0g7dc0wu1V15uh8cr0OPdAAB2P86tYNSC\nTSs4AOhVccifj9/VkC78fd7+Eh6/zy0LmMySRKxQ75zMreUb2mKrsmzTtvFB7Go1/X0ODMRKZtXf\nuMUrb0sGausozzpW1NDyEUyGugR1nvlOA+5hxxZ+Q6hoCGH0H+tHwtF/dnmq4dRPDBdf/yyp6G2A\nK6OyAtpSVSSVqvDIOqLGM4+iY/EP4zRfNy1MOosudT2Ez7LDX3TmF05GWrwbtq7JylpkXTeq0H51\nYau0DoUti4oMNIj419FmFgw355g+BickOIc575FOVpFb7go3x9o1BX9ca920gcnogMborHmJZ3na\nclmabNpk/FfzGpdF7ZrLyzKZbyKXKPsOtCxcW3BzQxZwiTmKc3TPU8EfMVVBpSrAIbNUtUvFGTJ0\nVwTg7cckakVJ1M5udZLJVFiKiyUfuvIgk6Gg9dYA3Ku5RneoAAC/NPhZeV6gxaXZgq04CBkajMQ7\n8k2DzbKMvFSq3IKbyis97+V93FryahXflbpmb3GLSrURdugb0j6XbJKut7NJ8hKU6btHF14hYUsL\nXj6LQuf5nbwTb0Burs2t7qp+ZX3bUnRoqAUAwIPlsQKplVBSrDg7Js7yjNbz4R+lqoT4cnpttaAG\n2kdnBrRSddHEVL1YGdcPs0U+Z5rFklKbxEJJ5qOjRFHoKFCm8Uk6rOI695X206XvQMn4ym4YwWL/\nV6YzmckFhruyAAAgAElEQVQNqrJj/oSMx+beyKskkhiRJA4t6VWz5zfQAtVN0PQdrqBUp/dHMjal\nR5g7tB2TafU8flcrjOEZX/QZ17n2agZxhAAAZ6/G34YFY75iMtL38H4SXvApDy+otAonteRLSN9X\nv+J7zKYpaBksWeCAreBsqkTZ2oweyeebYx3QmElZvOp04KEdKsgUKFr9wJS41yYEAOQDT7K6GFEk\nLVUtmpYQK1IKNwHbStF382Oy7368wFf5nC/wtszGFG5a6bycj85Ytnhkemd1ZseoYuw055YPsdp3\ny4eb12HrXu9+DMfR1FzANwn5qXizY0/ht/PcxS7g/MNxfX0n29QprSMDnWNyh5uYzKxFU9gxL58F\nyvGkw+/kb1fj4Tvx2vrHMDNXMIWpNSu5/Y2ofeQyvhks8wNnqjeB06IxaotV61HbH5aqeoklxKjp\nkVb66hidHtCWqiKpVJkGqvtzF/90Ji/L0qUk5pGx5WenvD8AnPvHliur+auc66vySAO+F0s8O15+\ntHVBi3LnZm27gKR92PqdY+bdzY7F91tjPrFCIJtPzA84/b1uw7+ZzMJG6kLnex/Cyo9OSaXtr3CF\nKfIVO9mhps/dnkfwnKp9rJ6PjFi01BQ7H3KdYHYKL2kFdGDLpZzc5VYmM2buGNS+sw4nr7W1BqkK\nlPtLqfp8Oo8HNkGX6LSAVqouGvefP+NEWrzEFYtKpPbU+8k3MpkuC39E7SOzOO9BRDLOPtG5Lhl5\nIq22bquQq0yBMlIiJAoUHeuDg5w3a8SSrqitc11e76Lp9Yc047b/2bPGezYfCp2x4sFMgcq/Cvcd\n8hu/90f6YleN7DeMBxwjk/muhB6gm46V+YJT/f+gCkJkF98tTgVjqe/r1bfchdoO6DGl6yhRp3vi\nBI0ln0hqD07Bc8z4gMcexf6IXV4yNvfhsTjT8u47hzCZ8t/ZIdfst609aqfkLGYySbVJzVSN9UUG\nne8KP8apT6qGqqkybCmUVIkKBAjhQJ64NNx/F41SpbOAhTZMQO1+UznfyTf1fNemaRkSGWhqLgCf\n8z9TwpkMTbylBJAAnL/o0F38g7PiMmz+bn/DICbT83VMDVEmlJfH0LnPJpYY049SbCffmb61goMl\nGZQyPiUTZT5/7UajOVH8cyu3PFAXgr938Yfq44SNSjzbHCK+952+ItzFjbaplcUEc3/8FrVl9/TA\nvZLSRxrs3+Ezccaxzu8VN0T9W9CYHQCAaxddjtrxEgXK5F25MpW7Q0+cxsHZSW1lmz+sWLjFNyWD\njIrGhA+sKCQfBMFRJN1/pjFVtkBLeIRE8bnMWjwVtaNncz6RBs9i5UNGaqdzHSZs6f4GZSyXkW3a\nMv3TIr60gK8uikKck62x3LL8yubT4+reqJ2/fjOT0emn5YvYYlzxa/diFE3Oe3FvEyazshl2e+sq\na3T8kLKciiH/2DGtvlTj07FKL67CZI6dxdnWJ0by9Pkyk9QKW8u12KI0tCoPm6DFvWWFvQMt9tNE\nCXcr7tUf7r+EJiXFiOnRakENdI/ZFHT/2UZaZiVmNqc7vpMp/Ac8uADT5I8c/AmTeS0G77hO3iDJ\nGpmGLRZHm/GgQ/ogZ+XwrB7ogZsdB97LRMJBzW9FlSjZC5x6BludnoriuylbH1KqMEVN5PEvVInS\nWXTqf8mzwjbnqIkA73oduyKoa1YGN5mKde4rJSYEAKg2F1tQZv6hLuRtijZP4RimCFCX8JBB51pn\nz53ocz8J33KXe+wKTEx7eDbnhTJxD0vjyTTcoVpJLyTTMPmyq5mMDqGtLeVQdl+jyftyvD0nyfyF\nzmeSOnSg1fN8rKFV1dmIa3L+i2UkGcm2Eo6ozK5nJPF1Y7AXYtafc43GovCS4iEIeyiSlqpyZWqJ\n1o0H44Mr+I7GLWS/jj94WwbaySy5lKHDQiy1csTjgM/84+rMJFkZH2epHSXK39YsnY8t3XCUTFIX\nJzYdyy3QmpgAvHabrXsog8m1hpYrx47lHT3qcz8A9uZI+7kpoxuTmRKHLeiyfmmJLZmVkMaq5b5b\nncmUWo9ri85cMZPJuMVZJoOXSgwN7dApSyUr3pzZB1f8SLsLf5/8UfsvvklJ8dF0vskxQc+YDUFL\nlXUcP8mUKC8XeKpE6Yy190G+w6n6qe8BsP6mQnBrkaEKFACPa5JZGY70wS6V5e9+oZzP3B/GMJlf\nT+IgyrdieZ02Hdh67kwpQXRgqkTZgE4cmAw6HGpugRKzAgBsIhbSJn/cwWT+am0n+UDnHau3SkJC\nBWoiTQqZFYpagk5dy633VInSSRII61CZyVAlylYslM49zO3cnMnMzxntylgyyAqkU0w7jmtefs5D\nbCH6Odyeeyt+No7m+6MG36UTqF4kLVUlatcRtR96HB2Lft5OZgmFzI1IP0qmL9GMXTiYspjDaQVM\nFuKcqTy7rM6AXajdeznnThpX3w7jrVswvc80QSFvYxqTyfgQWz4yb1MrZzLozHH3tAZM5qWG+GNy\ncxm1BcPNBd5L2GKB96flTHafvziM44qmNuSxSDr9SK2NhMzSraoKMpg+UyElcNxV+uuXMZnYp+ys\n415SMdjCq1vx96BNCf496F4X/+5ztql/90CIqYpvUkp88BPPbjfBdbF/BbSlqkgqVbJAdfrgpI3i\nRWuzrsE133ReqtezeEzTf6J53ybw54tvujCmf4ItDfEPSawMbYiVZ3mqcnw3LXC0nlpOG3UAr02X\ngi1XhAlMLV46Fkka4xb1Ol/g52znpUhUY12sCDR3pAwRv3FW7yNX8ZIqJrD1jLt1z/6WbHZSW02w\nMrYJXYIMNkIJ/OH+i2tSSrz/U4JaUAM3xK4LaKWqSLr/0lJLKR8uqkABaCoNpLBtq3B3PnYAfD75\n7fjOLQR8Z3eWvbC0NpnMfULZwGVM4FIlikKiRFHUG42DVKM0gsdl0PlNdZQonX6Lwu7XlruElnyR\noe7L2H0t2571SMZuMcrHpQt67w/lnWAyvetwF7sK2W/whICoFzQoUjrihJbMO7hVIWGQOslEB7Zc\nwToZk3CVWcakCZ+Tm3GDJu8hVaBM+5GBcvfJ1l9bG01ad5YZHIQdJdlX5Al/uB29R5FUqnRgvqMg\nbYNad6YwjRPReRlpbTJaygAAIOQwDvKW8Zmf+QUvDsW7qTmpTEkY6XmJ7/PYltQneOFhPpadxTzQ\n4tCGZXEFd/tLWLGIfM2M+fv3poQLyLCWpoyTSwUvLTo6CpQMxf/KRu2saxYwmR6JmCrCJjGtzjMV\nPQfTuMjGr2iwmbH1jOsoZ23X3SyZAZbJ7yDZjC7yfTN61SOD2bHS4DvjfOOP+DpVKwu/h7umyGhv\n8HWZvgfZrczqEwZhBxeN+4+iZ+tr2LHcHTuVfU/aiReZXrXNOI10QF8aSnsAIKc+UEGHsXunpPDv\nwEh1tp2X7khbY6d9g62PCQPUjMO61x7o1iup1fJtvOjL2LkzhuPnLmIz32VW+cJ3agov3V06v2G7\nVP7OLUnEsT+hlblLLG+/77v9/YP4WkILGp8WPLg83OFB6LQ8lKyygZdcY/620AY63EoUCmnKXZb5\n6zahNs2UXT97OBw/sMNTs1Fsk9Li7Wk8U9EEveLWBN1/tqHj/gNQK1Bnu/Jsj14uxWrrfCh0uKNo\n8CsAwH3lcRC6tKq9xkt8pI+6XIgOTAqwuhmvRJUopyUnYZzz03c+9yuDl9asnZP5brf2zdhlm9yU\np8ivXUese8/yOZpYVWTXntzpFnKEVxYIrcZ53vh8fP89dM6hCpQMJgoUAL8/CYt5RqnOHGnhagCA\n6iPVPG+2FNgGo9ShAxTDs7mi/liU2j1Ls6R1MqQDDWkjecytW9mqs2dzlyUHian6i2d4eoH8SyT7\nr0gqVTrQ2+2q+6G+cAC9Mix0/J4tk3k/uzAni86cqQIFwBfPxDV8E5J6udoiSekIksaZKRZUiXLT\nJabD7cL75mP1vOI6cmS7Rj/2PvYmO1mqQMmQt48voMkNO6D2rI2LlP0cv5lTIVw2lHwAgX8AaXkm\nnWLftqDze43YtpTJJBTDmwJbMU1p7cfy+Wi4VcMP8XfXLSuUrJ9Iye9Kkf4R3pA9FqUeS5al/Fdr\nrPDf248XHt45KBK1qWUGgNcwlJXfceseJgz2LpbOZM7+iqm6VFAk3X9lKtYRiV0eRcdKT8a+70Bz\ny9DAVgCA0F8xK3PoQq7lzao3C7XdzJJjO2sZu/Jz7qQ8e3ldXe4cyGTCFpLnRVKA1U3Ycg/MPYFd\nRVeX4u6kQHPV+JOLzRZ01huaLAIAsPY5dUUAmaUq9DRet6t8zt/LkETsbhEbuZVQ5PpeO9PNAHOT\n8W0pvW66pv3piqWks8v++QmO5O731P0X06S0GDqVx/GaoE/8iqD7zzZCDh1nShSF6QvSpS/+4Iae\n4ovOwUalUFunuOm88V+zY3SOVIGSyei8RLKCp8ldKEsct+jQfmh5CpvQ+X0y38VWDRmHDe3nyCzO\nhcJIB4HHVJkulvt/xmnCq5tPMurHLffWEzJrQI46A8/Wot+MxAuv5THFDKeu4c9viRmYriHQ4nou\ne4MrTNR1tTaHJ1XopdqbXWt+qu81FE0VAmrRNymqrjtW7PwBqB0nyZDWiRvUeedtJSHFf483qDGS\ntZWO1WnD9UxmYaOfUNtEoWyVxONp3YYA55LJ/iuSliodniovofPiyQJQkzbcitrhV2fbmhKDLcvd\nrmfxrrnW23yxopkttW7ibiqduKusiTgGJbq3mqqhKCDQFIIGq/nealNztQXDreBbU/jT4iW7rjZP\nk/qJ33vngrLZt1uJA15adGxBGt823E58mw5M3Jo9etyO2su3fAVHTuR4quFENykjXptix1LVL+GP\ngLZUFUmlqpxTUbR2uvh8Hn3Y6G4GQL6jCXQ4lxF+qT+5EkOvvdvtA5jM3maY36T6R/69F2eS8HtT\nPEVNJFkUUBQUi7QvcbBtwr3qOBFZgG69h9ahtjir5r/SgZtxeunfYld9/F3q4skynL0aP7/F5vLn\nd+8DJC7tM713TkfR6dm8O2rn/r1bq28TuKVgB1oYhwy0gPyIASOZzDuxPDnGK7ywFd/DwdftgC2p\n3pJ/RjcpI16ZYlb6i6J/wrKAVqqKpPvPFPTlo9xNgQidxUqmRKmQF87JCm0pUTpzpgtRnaF8bBMl\nypbCkv1fvgBE3WbHUqbl+nyfZ4LW+xgnKeRu22E0/tbxePyYO/g901GiqNIgC9DNeQL/zjXet/OM\nuWmFokqUlANqNuaACjnGl9LMXjjxo+ULPEZRR4kyVT62941B7ZrvmilVh/pjN3yFMeqwgCN9+fO7\n/B1e+omCJp6YZs2dvAG7kBd/NorJ0HsoKx+1TkIIyvvB7XeGcgXKnxa4N2LwWH/7IVBdCAjW/gtk\nJDQpIT6dHoWOubUTMP1I06rtK4d+fgFJ3/qVwa0X9sRNPONrySd4F5bcqBOTmbVhoSvzkSHnafzR\nPn05jxfQcRua3kPqOhteQ60I7s/jrs4+dXCWk+y5o1l7eYePMBm3XCz+tq5RmTuy+HM3Ptq7504H\ngebKkv2GtFh05KtqJS/jex4YF9fXTuUHt4hyZaBcbHGPcVcahZfvQd/sjkxm3xWHlf08l4nXu44l\n81HbH2VqohqXES9NsXOfBtZbGtCWqiKpVJUrXVO0aTgIHZOVVKFg2W1jJdltz/pOaCgDfdHozgkA\noOQ074qgugVb2TC65wUaaJHY/FOcTNLWtfbbgi1TY+txAtxA+5D7E7TsEgBfJ7R+mxvu5AdX/KU8\nz8tn3M2PvUkQuum1587DdAnzG07XOk81vq17QXm0AAD+fEGdwakDr2LO/FFQOapxWfGiJaXq3nq/\nBbRSVTTdfydOscUxcxzePcX2Ue+cZAoUrXn2chVeZoNWCteJE5EpUG5ZDGg8DABAVk/fi0nrwM1+\nbC0yVGbYAZoJCbCgCQ6cvz+dp59/Hs8zC2dvVe9u6ZwO3cW5mlbkYEum7Dq+64u5zlJyvmMytqDz\nUXxmD57jD39x2pCtXXHWq5dKns5GS28+agVK2ndtQi4soekw/Uh6GZRvksknK/ny28c81oiiWklc\np9PWhsyWgksVKNl5suzrrBuw+1EnA9g08zAQN1YCgu6/gIZpoLoO/MknonueST+n50ahtizTkMYU\nVL+Bk+rpgM75qtSbmEzp7lt97pfWtQMAKLkXP78DHua0FB/8fjVq68QLye571z53s2OhvxLl3cP3\nqfmf+ezY6st8X7g+yOabiyFR7pRn8nfmY6BxYoXVxdZG3Tg5t64jbvx9TCb2SfXGwWQsKSfXo/gd\nX/eMWokxHUt1ju55bsHW2h8Igep1G5cVz0/mmy4T3Fd/cUBbqoqkUmVKqRBSGlsj8o/z2BZ/m+xV\nMPWzmywy1LUFwN1btK4UAMCy9wgzu8Zus81aWs4EICKZW4tUcJOY0Nazse01rrDUfQkrNrYW+DPd\nudWy+BzfGZ8PzeTWvY8bTETtNiV48oOtdyWvE16Q/6lVnMnIKAsuZbhFgEnLWQFIqjFYcl3JmPxV\nHIWmY7nZj8lYMpiMT/v1R0xV3cZlxTOT7ehBD9b/NahU2YaOpWrnc9yqUfstHIQZu5IrDWlPY7LE\nI9HhTOZ4Lfw8/jDwfSbzUDquUF9qEBNhZnV/MxXbwq5nCJfVMHeyCmWQWpMWqlPiA40vSHattNTR\nzJVqslhb83GzH7cgu4c3pCeh9skOe4z6phsOEzewTfg76JsiND6GHdt5XXXU1skE9TIwXIa9JKmk\n9c+PM5mEB9TEtD2S70Dt/LU8rEQHNkIi/BFTFdm4nHj6Rzt60MMNFga0UlUkY6oSEk9ASkrhL4RO\nKm5mSx5UHAr4A1xxIROBiqTd6P6STKZ4N6ww6RSDMF0sbLkRr3gcm/7L/teMrJAqUaYLY0gzygau\n7mdejpq53usPkK2PAK0VqQPZ5sJWcVed69LhGstvh+MhQ5ao4yF1fp/6v/EA87q9fA8wl10nVaKS\nNl3DO+qiLupuaiGlcjq/hY7M1re5FTWGxJ5Scl8AgPVtxqF2x/VRTKbG1ep1gcJNi/FTu/FzJ6uP\nypKbHlDHxspgqkRRBNrGJQiOIqlUyWDysL26lZcreTmmuUSycPRs1ZMdy+tYDbVpnT8ZbC0WlFAQ\nACBhUVPUTuvwLZOhStS++/kCSz/I1KUKAFBzvnoT9MW231B73BG+8ViSaGchopDdw+0/YEqOHsm8\nvEuKpLyLW4ucab+0TE/tZDMrYdpX+Pd4q91kJtO77CHUls1Zh2tMR4mi0PnYRv/MXZ867xitDSkr\na0STVSZn/chkbgbsJjNV1N0k0mz4KaZUiHlW/bxQBQoAoPtmvAb+2nganw/4rgjK0PoZnLVd/jt1\nyRfZWFSJkt2fy1/DY1WRlJexFWBuC4GqeOVBMFA9YOFmoLoOdF4aykVEeYhk/dhyw7R6jlNFVPjW\nTh2/tC/wxyThPjUthI4rVgZbcU46uGIIttL9/gEnKpSNX28VLmC8pQUvR2QLtmJk3HLbZXzIY23i\nHncnzsl4A9KK8NlpUCO4CdNnvOfl2I2Zu9vMjakDlnjyMM/s0ylo3yMGPx8y+pFAw8EZuLbnyst5\nbU/6mw1My2IyoxOifR47pGxZdiz/GM6ONFGm/RFTVadxOTHkB74+mGBIw1+C7j9/wEsXT6DxMJkq\nUDplNbKuw6nBjbN4qR/q/pMpUPT+JL7P+9GxinUYjIPVSvxsxv1VFog7Z6Leb7P7FK4An38V544K\n+c27netije+UW+9B5m1cEe35Di6VMnP1HOVYPTYcZjKPVchWjq8z59DjmP6EkxxowpJyRud86lqe\nji9316qVKLd4j2SB4jr9hFbBSkK7Ffx3XpLI41xNxtKB3hqN22M3V1aeY6JAyUAVKBlMLJ1pfmBU\nv5RQJC1VOtl/2yZxhvXNV2FeHy/pEtI/4lp6/KNmDL6qsbwMeI/4rRI7tmFmPdTWsUrZmo+pMt39\nur6oLVat1+qbIm4ctxLGPuVOZp8MXlKCUPibfoSWFjItK+SE4+SUOVnqbDMZmr+Kn4XKI9VuKhla\nPS+xPI9RP1O0LE6VP/jHNG9jGmofu42vU79/qM7so6i0tAI7duDKQxLJwmHrXQmtzNepvP3uKBc6\nFiYvERiWqgjxqCVL1VMN5wYtVbaRllpK+WKdPsR3PNOPl/J5LFsfEx0FSqdvN/31tgjzamvUVBy3\nYylqy9yj1ix5bWgdP35dVImSXfuA7e3YsaW/4srr13fjH2CqnnW7jRezDl2wF8+n8y4mk0WCiGXk\ntW4pz6bWWFtjjdmOY/BqhJWRnKfsmtWxW/GmnfJRMg61yJHq90Cn7wqSOB6dflYSQtkecXyO/PeR\ndP6hcnhegPtKTtvhZbbo3xo1J6nip6P0yZ75RiOwlX3Dw5xbq+0TOLyg3AT198BaRYAAsFQJAMgP\nkn8GLnRiql7aygPDX4vBXDdu7r7DYqJQO3drtvIcNy0YYTVwOrOOG4YrIwApU8YWfo4Eme/ygHdq\nvTEF3YHKdp+Blvrv5nPnlstH59mk9S4BACp+rWGlo2VgLMU5ycaKJ6WpaGab7Lydubye5J2DcGr9\nzk58f5p+p3v1Ph9Mxxam60qfsNY3BbW86FhdAs0aa2rBNkGgU5T4g1KhduMI8cgkrtSb4JlGc4KW\nKn+AKlAAPGZItitjKeCgzl6SYccNuPPUJ6cxGZ20aEp6OG+cHcoAHTinecSJST+2FCgvs6d0r/Oa\nDXh3O6MRd3u4tVjuftyMLmHOCezeos8YAOf20lPO+Fh6146VqD2P8Ota+6y6vtrJ61sRGT5SjIbV\nh6K2xCpGCVRj+B4Fkp5x73f+lHCxfio57/bNmIKjf7m9TEbnWTQJjjaFlxxqgbbZ0hmfsqO3V4eg\nMbRK4gq4F8gDT/U4v+GisVSFVccUBrJsGLcYht3Evvvw7r/KF2bpwybQWTz/6cX95EuH84Bliisf\nw+Zw2TnJTTqjdt6Bg8p+dbD1HW5RicAbf1j1GrcymN5XWgtMxnVDg7NnNyqv7DdnKqd9qHmj7zQU\nst/5jqxOqG0SDyPDaOLGAwAYGHmVlb5tIdDi0ry0bDYYyRNGIl/1PSaSxqUBALRdgZWz35tyVnwv\n4U+2dFMl7585mFR1aeIUJqO6Dn9Yqmo1Ki8emGTnPX+x8cyAtlRdNEqVCfY+xHeAVT+xQ1xJ4aX5\nWQf+zlg0WWS6X9uHycz5mXPmUOjcZ0oUSZMaLjTH4dn4eXksyo6J2xZMn9/vSMzblUseZDIxd6if\nF+oSXDnUjrKauIZ/E96tjvmuvNwQhZYrx47N2rzYSt+2roNymAEAHDuJlZ/aN6uLUOtA+txpFJj2\nEv50lctkrr7lLtSe+yPnEjQBHftSVaocxxkGANcAQB0A+AcAZgLAM0KIC+7WHcd5EgDuB4CqALAb\nAD4UQvCgufPPuZSUKrd2JqGN6rFjeRu2WOlbB4G2szbp298WQVvzOX6LpFbZj2oOH53xwmphf9a2\nEdzVWOsm9UcxpCkunH2oSQST0amjR68juQMvnD1rEd5Jy65zx4tYEa0z1CxblFogY542czt76YLy\nErLnrslwbJmq+Y6dTF0Zfj2JA5WHNeFW7vwTatcUHavpO9y6Vn24HR48SoKbcI9ZOIgO0sdgpTO+\nPyedtfFM+UupGvzf9lb6ernJz6ZK1ZsA8AMU5A6VB4CxAHBWCHHdBeSvA4AJANBFCLHccZy2ADAP\nAG4QQvxyoXG0Yqocx6kOAB8BQOdz5/wJAI8LIdY5jtMPAO4DgAZQQPuyEgCeFkL8dd75LQDgMwBo\nDAB/A8DLQojvdcbWBS3ySQt8AhguapSPBgBSplFqBn6alwuqzi6owyDM57Ro1CgmoxPjZWJNc9Pa\npwNbcVcyaGVPWRqLlqlZ34bX/uvU/V7UlhVPzl+3CbVL1OTM4xQyjjD+3HFXBIX8WVDLxE7E7uK4\nIVzpM1GivOSzM4WbfHo1wY5lnsrQCgUAANEDcemunEGNmcwdA/G3auqOpkyGPi/rciSGg6cLn58u\niu8pphYygPQZ/6+acsDN+FA3IQAg388xVUKI589r7nMc5yMA4Gyu/4c4AEgVQiw/d/4yx3FSAaAp\nAPw7pQoKFKKyAJAAAMcBYCgAzHAcJ/Lc8ZcB4HcoKHH3EgDMdRwnVghxwnGcCACYDQDvAUA7AGgP\nAFMdx8kUQhhtJU9HloK052icCllk31X3o8MdtSOJc45069UftX/JGcNkaPpy0vrdTGbN0UjU3nfF\nYSZjAtlLdPSnoz734+ZiTpnIP67JP/6UEFRHeZXBzaDVQFiwzkfImXzUTvuck0km3I9juiJf4lbV\n+sNOovYingiqdc9MrEeyfjJzCFfSEPV913m/u226lsmEwA5l3zr44CAvKkwRvghn5R47w2OROvfn\nm/JiBgk0vTbxNWhSAzy+rY3U1TdzZSjvKF6D1j3NlaEHduHfLCI5QzmWqUvulsyu5Mh+JhP1gh1F\nvfnqXqjds3VtJhO3Q20dHrENu+VvXnMvk7FV2zOAEeo4zvlU9weEMOKJ6AIA6wr5+0QAuNtxnCsB\nYBkAXAkFOpAkLeX/oOX+O6edfSqEGHmuXQ8ANgNAFSHEfiJbAgBOAkBzIcQax3EGAMArABAlzg3m\nOM53AJArhOCEPReeQyUAqAQAUAYitrRxuume6hMo30zka2bm8KKIQHcjmloV6EL9WS2+ePk7SFV1\njul5snNarsWxLCubhWqNbzIfHaR/gl2m8Q+pyTbdtDDZeg/8vZaYbCYaL+dxizouZbdwxboz7BgN\ncLdGENowgR2j5Ki0bA0AL10zeCdPhMluhTcpMgV3YAQ/poLJBtEf7r+ajSqIgRM7WulraOK0vwGg\nxnmHXhVCvOJLH47j3AwAYwCggxBCWpjXcZwwAHgRAJ4H+P+FCx8TQnxSWN+6lqp3AaCv4zhTAOAY\nAJHloK0AACAASURBVAwCgN+oQnUOXQDgBACkn2s3BYA/Bdbe1gAALyFfOB6GAosYlK32D6SsLXzR\nN7VGhF2GrUWyF5YWXM25j7/4tT/CHypZqZId/yGxJK8XPQVOZ0GjbOUAAHOmq72/9ixMuHYLLez6\nb6Az/pijVVE7v91lTEanqLDOWDofE5kSZdKPCU5dwy1n9Z7Em8V8JuFt5q7WeSQswJHsTaM/xsqI\nLCzbTVeNTl/JXW5F7VqbXAxUN7i2sak8RjEOfC/ALQOfo3rOD8b9qpQpsCkUDmohBACYBPzYxYIC\n8k9retweAOh4XtsnK5XjOLcCwEgAuO5CCtU5/AcA7gCAZgCwCQAaAsB0x3FOCiFGX+gkXaVqKQDc\nBQB7oWBt2AEAPSSTTQCAbwDgCSHE//JnywLAESJ6GAB4ukzhGAEA4wEAju0ps8WWG4qCpqTLPsDz\nc/D9lHLm3IA/HoulHwV8LLH57Uyixg04/sVWWra3lhkuYxKnQePmZH3r3J9Gy/hunGY96X7EeUYi\n/yhNqI8n+UvON0yGXmubp+5jMhHjAqs4MXvGP1PH6ZWYwekkZEqUzvgMhKyWEtXK+nkzi8/n+Wiu\n+FHQuMqEsbyUTFq/RYWOrQtbmcNSHrxN6RLJwkEtiwDcumhrDYq7kytQtjZbOuPvH4StThPqu0dp\nY9JPSGJ9yVHcD01wcVyKE/MQeUKINLUYxznP2fsAcK0QYqlCvDkATBZC/E8p2OA4zjQAuBYALqhU\nKd1/juOEAEAGAKQAwDNQsO3vBwBvAUBjIcSec3INoSB46yMhxDvnnT8cClx/N5x37HEAuFMIwVkH\nNSDL/tN5IA8MxC9IpdH8BQlpjB/S/PWbTaYIYXVxbcKZy35mMnSO+fMlxXi72InvMIHpQu0sqIXa\nspIrFJnvc4Up9gmsRLjp8jk6Oxa1y/XIVJ4DALDzOWxt1CkeLYPOdSSMwR/u6OfV8R7+DrKmVAMy\nmgFa5uOW3ouYzPKm3n0I0j/GSsPWW0YyGVv3sF0qtqLqFBTWRfYbeL2TxQfpPJtxv/ZH7VgJlYaJ\noiODW+5ZL98DY0qFW/ujtrPUd+usDvzh/qvRqIK4a8K/p0ECABjWdLJp9t8jUODt6i6E4EG8XP45\nAOgPANcIIdIdx2kAADMAYIwQ4vULnadjqaoIANFQoCz9L9Lwq3OcD20BYJrjOJdDQfDW60KIEeT8\ndQBwAzl2ORQeIOYz9D6u6n5mz53o2VgUpcO4G5EakumuA4BnhZnC1o5LR4mioAqUbD5ugipRumPr\nWMp07mPzP9X2Gh0lSgf7B+OPrazQrw50nhcanCyT2UCyt6KnD2IyCcAtSqr59Ojem8nkp+JNks67\nm/SIe0ooVaJsfvypEiXr+/JVt6F2let40kIGScSRWe/d8hy4mSxD+6b3AkB+P0yg8644EvejCULL\nY4qUvMPUUeQ9BDg23X+m+AgKkukWOs7/zUUIUQYAwHGcPgAw8n9tKAh7igCAXxzHqQwAB6GAkuHt\nwgbRDVTfAgBzAeBZADgNBZaqLwCgPhQEjM2AAhqFLyXnloeC+Kp3AOBjKMgAnAYA3Uyz/2o3jhAP\nT8IfhnmNcZael4G2pgithmNtZv05l8m4RT3g790d7bv9A/xDWvWJrah9rJ0shM8d2Lx2t7IPSy+u\nwo4db7/Px9npwRadhc59PdabWy1//4Bk/xneQ6Z4SYoMt1l2GI+tw/wdIolTMyC31Ffm3bHoBOE7\nqDWWbiT8DfoctEraAavWnfJUw6neqKLoN96OperdZj8WfUb1c2av9wCgNQAUgwJ34GtCiJ8cx1kI\nAB2gIDj9fPQQQiw5d35LKChP1QQKeKpe+jc8VTL335lf6qJ28W6YEwUg8Ej9aI2zah+7F6iuQ9SY\nl46VmKwJPC26TGnsrljT4r9Mxq3F+/UsbrH9T7SaY8kEHVJ5sOmixJJW+va3S64oQuedo267+Ed4\nFmGgZ7jq4rqNODZ3esNKF5C0Dzef32rLsIIyti53F7v1m8n6Da1HWOhDuC4ya/4Pyn5M5tOz9TVM\nJnfHTqO+z4c/3H/VG1UUfcfbydh/v9mkgFaqtALVhRCbAKDnBf7WSXacyKwEAHX057/AwkY/obbM\nRN39epxwmJKjLkXiZpCojhJlKx6Hj7+VyVBE36720Mrus1uWmVbh6rgaqYvjNRyLtOYldamU3w7E\nMhkA7malRbpLLOfxkzSOSKoQjCAKwcNqhUAG2rcTxl9xkZur7McEW4fxVPL0O/G9Nn0WLnsTx139\nKSF8bLSsUaH9XqhvFSbt5Ab1XrXxtcZ/xwPV6bXLQF01szbyeDLZnB8sj2Mtp4NaqaKKGICeMhYW\nFUmOuOeW39OWuIsl60toXDRqz1o8lcno/M6jjqhjNDY/jO9PyGmui9hS8mg/4gr+2zgWlKog3IVu\n9l9AISHxBKSk+P5RFiv/Qm2dc2hwMABANKl0b4sw78A9/KNkEptV/ys+57qg9rTufhxbztY9xT9c\nJgplXieej6BzXbbS6KuQa9/+/D/KfvI66cWpFT+ALVoy07/Oc1ZlZYhSxsTlE/0zJwfs0xrHr+nw\nVOmMLVMi7Lmv1fPZkDNOKWOm8EuURaIEb73Z7NqpEqV7v6jcoDS+SRqVgMlHqSIGwJUxrRgzmUWH\ncDxRfiddUG6vTffJ1iD1fHQwKAK/45OhKpPR4Uyjhc1NiprLIKv9R6+VFmIHAHisQnah5/gDQgDk\n+T+myhMUydp/EaGVRZuS2HB2eHIN1C49jNczC/21MEoKc8hq/xX/DD/s0+JTmIytD04gvDSFwRYN\nhO55qn5s3i9/xq34m9zSFvpsxrvvcfU527TOnEdv/w21B0aqC7g2k1AerSU0Ym7eZ9OC3IH+3Jne\nM0r2+XIVrqCYXGtYHf5M2XClyaBz7TQ7HAAgdxtWendNacRkKBHrc5mpTGZAyj2onfAATvLwh/uv\nWsOKove4JCt9fXz5xIB2/xVJpcq0oHJYTBRq527NZjK0ZtWmK9UuQjdhsngemhnPjlXoqeajsZWq\nTOFm3ArtO2sir6cS99Jx1M7P4jt2cZZnXpqMrwMa+wMAUJN4fUpP5jvkrePxWDGS1Ha3IHMdzboG\nF4Cd+ds0JuPWu3Imia+pC7/5ysrYISVwRl7+qVMXkPQNGd9x0lfYh8vSyGoa6uBkSjQ7trgJdovJ\n7sfRO3BSwLL31DVTbb0H2f/l72rUbVxJcAu5XfDzGzafFzB2C7J7GDN5MGqX3s4tyDXf/fe1GoNK\nlbu4aJUqN3dTFKEVKrBjeYcO+dyPDnTm/PcQvtut8YHvQfAD07LYsdEJePF+N5t/BJ6KUhcG9TJg\n2FacnK3YMC+zKmWgmZYlp6npCmR4JAPTE4y49WYmI/5Uk6q6ZbENNG4iUxy4l7sfV72qjlWjOJ3M\nkzrySmC3c6kpZsH9LBHmsquZjCy7maLZ2zh2bu2zZiEIJve+3xa+2XplKq7ZF/OsHVoTGY7fjDdb\nso0VOEQXkny/H8/AhNEfxjVAbX8oVVUbVhK3fd/dSl+fNB8fVKpso0XTEmJFCjefng9bVpY5J3iB\nU/qQpn3TnMkkDPDfrkfn2ssuqcyO2aIsOD4Hx3KU7q4OiteBl8qIbr+24r5MxjJ9xumHq3zmWSbz\n65eYHSW5G+fwyduAOXxokWwAgC0teN8q2Pqdj9/CLYK7umE+sITBSg5AV2H6roTG4/No5i6Ae9nO\n/ba1ZzI0wNwWKiytyI5NjF6A2g2W8opnkbf+xY5R0OsarFGzT6cff2eV037Wnj6N2n2v3Q0bU894\nrlTd8j0rwmKEz5uPCypVtmHq/tOBzkeS1v6TmY2pe4K6JgDsKQQ0pot+7Exhyxqgkz3lJdxUzsJq\n8PpdDWfuQe3Uy/k7d2QWTt2OSM5gMpRxX4dt383sVR2Y9C2LcxpWDffT86obmAx1P7oZp+caNPmu\nvIypCrT4LQo3rbytn8VJP3+8zRMSElfg8mK0tJgunGKYD23ONrUFudlbD7Bj1UYU7pXwl6XqUlGq\nimT2nzGI6TRlF1+92z2I/dqlpnITbBhgJUr2Mr65H+9w3FyIqBIVaBYdfypQMujMufbyMuzYzjY8\na9DWoi9ToiioEqXzO8fMHchkyj6Kra+yTMzTc6NQOxyymcyOF0hB8DfULmade0EDxQGAsVnI4rd0\nELtgAGpnduZ1GClsvU8yV3licXVZGtlYtt7n3M4krmgB3yDaCsp3i2pFhhm78HUUc8yKiJenmd5j\nuUwNwEqUzI04tl7hnhUAvbhOOsdqwN85tzbZ/waWCyoHNIqkUhXRKA+SJmFz85CK2PwtfRmJVU4m\nUwqwEpU+ltMBbO36tXKOlCjS33E0thYrf2eKeQWZAiUDvR8t1/rOom2Kxst5Yej1jFZA3Y9OGr2O\njAxuPS+m/dZ7FJMC9yzGg2dTcnCmrq1rkClQOn0P2MKJjL+ph8mOddaAQ3mUnxmgt/pbz6AzFq0W\nAQDQ8R5M7/FrDivAYc3KfU0trCzaWn9lYRM/xs5TntcnByd6nMjnCtSNtTGVo8780j7j9I8/JX+M\n2joxru7DgXyhpo25GBB0/1lAaBVeLiRvn7pciFu7Oxm83G3qQKef3dNw7FqNV/lLaRIIbavkigw6\n45+8ni+EJX8ipv5WTZhMyjSciepvBZdeK43VAuAEt5S4EYCTNyY36cxk8g4cRO2w6tWYTO5u7GaV\n/RZdNl6H2q/FcIvXazF4I2Xrg+w05ynyYvUGiSRG5jhuuovtg63sMi640IVqChkvLUwlF+HfbPco\n/ixEjDPLflRB9ht+ehhrlDIeL4pAe+dM5uMP91+VhpXFjWOl/OE+48uWYwPa/VcklSpZoLrJBy+5\nYQcmQ4tPBporTad8SlHkL/Iym8tUCdVx39hSvPx9P/zZzzUbeObsjEY8w9afsPWuuFk3zsskCp2x\nmw7DSnf1j8zKcuV3wErmLxPULlwZ3HrnAj3r1F9K1fVjedkdE4xu+W1AK1VF0v2XllrK6CFNTsTW\nraMTOUFo6e6+V/R2y1IkO09Wf87U8qIaSwa3FC+dfhZL6IIoqZ+M0M/WnA/nm7lvTM6xJSMDvR+d\n+/G4q2IacYN0fFvPgi0Fat/93E1U5XPsTjJ9d9quw/QRy3ImM5mh++uj9tdrOdVJfD9sTTL9IDf/\nM18pY2rl1sHO5/C1yVzD60hpodYHeeWH8t+pfx8dRnWTd95URmesiN8wc/2XUTOYjI5bU2esQ/1x\nPxXGuEcDoYtLiVG9SCpVpmVq8vZjv3bp7pzQkEKrX8EXtORa3BxPseI0TjeXFQf20rWno6DE/dof\ntWMldcC8dGseXoDTq1uG75VI4aBz091mj+Q7JH37XpLC9MMprsAFrp3f1bUZZaBjUQUKwJ4iuv9n\nXL5kdfNJRv2YPeNm/epcO1WidOYXD9wdp/OMy5ImRkdi9viWL3IFZfXXvpc+MlWyumwk9QHfUp/z\nxzBJbcRh6vO8LERPIYuZpKXMyvHKULDnv1ih6DWCf3t2PYuva/0jnKOLQkfppPQbzrYlyn6DMMcl\n5f5zC7IHu95o/KJtGWinLlpoAi/0O+tX3xd4LxHagDO8523CDO9uuiypTI967ZhM/rFjqP1mFk9n\nbh5enB3TCiYlPGYyDjN/ul4DDbRUCQDA7035vaeg97DtE/cxmXIT1DE7JhsZnRgvUwzL4hnIzcI5\nfx6FWy7cQKOlCLQQjfyruEzIb3Ysgiag19AqaQesWnfKU7NR5QaVRc9vr7fS19jWXwe0+69IKlWm\ngeqTd+IF9ebavjN/AwSeAkdhOr+cJ/FO6a8hajZjN6GzoNFdvE7WnptxEf5e4G/ehC11tGis7nxC\nmuIkgdmzJxj1Q+Hv9+mJDBwY/n4cDx4/eDd2n6wcqt4QeX1d1N224WE7zOPiSj7nuT+MKfQcXaR9\nhb+DCfescq2f7Nfxbxj1H+4C8zIJSKdfnd8ruSN2O+elZfo8lj+UqkoNqojkMXaUqu/bjA4qVbYh\nU6rcylxzJDtCQRhqvbSyyOBWMGVYdF0mM3PpT4Wec6nBy2BgfwYeyxDoiQ2y5zc3i9MTqED5uAAA\nNj6IlRjTa6d1OnVqdALo1YGkbO2/JU5hMm4ph7JakdMbVpJI/nvI5nxNGiaaPNvxb6N+6LXLSoCl\nPmnnWTCByVofVKrcxUUTU0Vx5he+oOpx75CdG1GgZLhsKE8lryohZVONZaoMuaVQmnyAAHiNsfBZ\n/i0F4iXcDAZ2y5pm+hHwZ0aTzth0AyCDTj8yUtOkN/B5W4fxIOOYZ3wPupbBFo9YEqiv1fQ3/SAb\nX+uQKPcIf6mlCiRxnVSJSh/DS4nF98dueJ1rl9VQTfoAn5cxnHtA4h6zQxWh8+4e6UPH95/r8Xzk\nw6URqF4kLVUlatURdQcPQcciX1ErMTRWQydOQwf+dmm4taDZ2unb4oWS9RM9fRA7RpFwn1nBYIqd\nz/Ndau031c8djbH4ZdIY5TlePj/OglrsmOi8S3meiXJ2pjtPxjhZCbNd63AV+ZteQ6ef0UdwyaJJ\nDXgJIxqS0Hwpf563tBurHF82x5ypDVG73IRyTGbp8C+UfScs7ofa0b1TleeElOCZsvmnSPquhIsN\nVqhr9ulA59nc9Qx+n09E8iD0rTeORG0dGh5T0Dm3e2gwk6EFr02eX39QKlRsUEUkfXOjlb4mtv0y\noC1VRVKpKl+/quj41S3o2PH2mGxTZ9GlHDEAALM2Ly70HADOFpy3R5Zx5j/424JBCR5FGU4Dkb8W\nZ83J5jz8UBRqz25UXjm26UeSfuyLz9Gzru19CC/MVT/hSpaXBIuqcwAABmzHgfo5bY4xGR245f7z\nd7C0P38vXej0HdIYUzrkr9/sytgAAD3ir0Tt2elLmYyt66f0BEeuUmdxy2DrfTK5Lh1mdlm/me9j\nK5Soxj0pqtJL/nD/XUpKVZF0/+VvyVUqUTqL3C2ZXZmMW4v3noe5leNkdazQbhkgSTHWGEtnjjr3\nx2RRkVesz/J5fm5+AHWgq0RRyJQoCltp6xSyfmh6t8y9FFJazWl0rDdevMtO5NYjnXt99mq89hWb\ny4OK6XU0GsHd6bWJO/3N/fWYzG+dsMUtJWcBk7Hlck89c0op06N7byIzUTmWKWTjN38FW6xXz3Vz\ns3Vc2U9IqVKoPTuDvzvUEpQfx+voTIr5HrW7dOY8a/O/H43asjnHTsTZoZk53GoXPY1aDtXhFzLQ\n8WWlbXR+i4SvMTGurK6fys2bJsyU0H+LYJmaAEaglamRgb5oyVuSmUxeJ5yZlbiGbx7erY7LUXi5\nmzLtx1bmWMZ3mDk57k5eAJviZAovfbG4yVSJpO/zoRlXAPKsK5O+bcGWkkkz4EJyuUz5sXZIBXXm\nfOAePJ9Vr5lRlLil4GeOl3y0JcHjXs0HACBtNMmSG2iWbbd/MFHOXub3/qqHsauq9GROA+ElaCbz\n4kffYzK96/D3mcLW+5T2BS5NJQtJ8Crxwy/uv/pVRZevb1YLauDHK78IaEvVRaNU0WrrdKcC4G3q\nq5fuNorh2XwH2KB4KYnkv4fOnA8M5DFelUb7/kGW3ee+2R1Re98Vh33uV3csLzPpZPDn87v3p/pM\npur1dtxJJvDy9zEnxMR1Brf9yWPXMvpgBUX3GtxKftj7AFc0qn7mO7nm1nckgftPq995L11yXmav\n2hrLRj9BpcpdFEn3H5QuCdAYBznKlCiKkLJlUZsSPgLISB/tBLPLYOIW6nb7AHaM1r5KqqnegclA\nmXfz0rcyGTpH6t4B4C4emQJlsjjIZewoURTRKdylkCBhHqcwXeDdUphMx+a/j4+T8wEmCqU045Zy\nlC1XB1TbuocyzM+Zjg805DJuWtdM3jEdBUrnnpkoULJ+dK798tc5m/yaHLNQCgpbsXNuUVfoYPdj\n+Htw1qWi1YVBQDD7L6Ch4/5zM9hVh3CS9h0zmWdyxD/snYncrV2ZjkvMzUBfW1xfFJe9Kfloa8RP\n6cDLj6Qp7k/PQO3P4+Os9Oum5Xf3o/hZNC3Y6xYOzkhgx7rVwta+1ZfZiztx63lJG8UzOBu8dxC1\ndUgpdWBrHdeB8f1pk4iaGQ+FMpG4vurQBQoagwYAkH/ihM/9UPjDUlWhflXRcfStVvqadtVnAW2p\numiVKhlhn4xvhkJnITo9Nwq1w6/OZjLbX8bjR74msdbsUsdLdV2PrWnzGpdlMiZwc6dky4RPYUvR\nyHyP88jEPmmWxh/9Ew5kzbp+FJPxMp7NpG/T34fWQqQZnQAA1ZbhDNs9bY/qTNEI/s7IswHZfabF\nmwEAyvXASguNgQOQM8Gr4GbgfI8Y/N7N3qp+52Tz6fwXDopf0KS00Xxo3+1SecX2JYmcGsIt5M7D\n9RPnN5zOZGz8PkGlyl0UTfefBmQKlK0MOKpEyRUCMtar6rFoMCMAADTG7kgdpmJbOzcduDmWzm/R\n4mVs+q8EardDuQy+ntDruC69u9Z8snJGKWVMIOPfSgA135bOM371rf1Ru1hd/kzlbtuh7IcWk5bx\nmu1pq+Y1y3wXKwQ0zkgG2Xy6X9uHHNnAZLykZtDBwQH42mVu1lKdyyv7qfg1f+6TvvbdAnj0dr7h\n0KmXqAPKU6Wj9HoZL/ViZR4jSDPpTOdDy0dNblCVyYR13V7o2AAA72bj3+KpKHWptUCAAIB8EXT/\nBSxMy9RQ/HNra3aszA9qlxzNMCuZlHUBycJhopA0X92LHVvdfJLyvEAL3KR4dSuPV3o5hrMgqyC7\npzHz7kbtrV2/ZjI6H9uYqRIX7oPuuHBv38xr9vUvhxdm2e+z/RVsIS2bxd/vCt/aSRLYn4ctBn3q\nXMlkTPqu/yV3vdZ92Y6VmYJmmALwLFPZZodmb5l+bGNXYkvIZ7X0FBhb1k8b/boJ0/saWqkiaucd\nOHgByf9Dm3Vn2bHlTYspz9MBJdjNWhbJZKJe8D0O7dV9PFDv5Sp4s0Pvlz8sVeXrVxXtvrzNSl8z\n2n8S0JaqS0qpOnwn3hWW/44/xFlvY5noZ91JGwcomqn2OqBMxbWGuRfbkj0U/15b7uZWjp6teqJ2\n7k41W7hMqZlQXx2tbfo700K2zlIzC6Ct33niDvybVQjl8R22nqHQytjSmrdfzaMju89N38HK2Lqn\nzQqCm7gRk+tzvjZKJCyDm65xHY4wE3yx7Td27L66V6G2mxam/A5YEQ5ZxOOVvFQgaWasLCs240Ns\nUcq8jXNiebXxDSpV7qJIKlUtmpYQK1IwKZxb2RU6/VCWWwCA2CfwjlPWz/Tj+EP1aTwPZDWZT/rH\n3AK39RZcbkF2LygVwzVThjCZzN54MfA3bxZF7HyeHRk1Bgf/zv/ODt0GAIBo2xS124/klqu48D2o\nPeyj25kMzbqydc9kZWFKLMWL/uwtS6yMZTrn/HbkI7nE96BeAF7ypdPafkym4jVpRn2rcPxm/s7p\ncDW5udnRsWr0LY8tbg8Q5chNmD4vo7djpW5gJJ+ziWLc5ENuIa35ru8W0jFHuWtPx8qc1+ly1J43\nTm1RN4E/lKqI+tXEVaPsKFWzOowIaKWqSMZUpaWWUj5c3etK4pPgjORY4dB5iOMm8Ow/qqoO3skD\nSbNbnURtp0VjJrNlEC7xopPaHv8IX8yTHlFfx2NR2MIUBxJXRG9+SAXZPaSlbPIyuAu18Wp1JhTt\nOw74B5ly5izm8ajGO1tn2TrUlsZlkPParlzDZDKJUcV08WxGLn/tZZwpfrZLH/KmK7iyWB02Kc/T\nUaKoO2fWX5wtHQC70o4v56VAqhC9Im8jV7JMPshXPcKVKjdhoozJap3+DmolypbVR2fOWRNxJp2s\nzmDtsDLsmGo+OtdQ43eeWUczHRMGqSsvyCzaE0C9cIcuxOuC7P7oWObpefTdcQ7z7EQvcKlQKhRJ\npUoH4ixXoHR2Jn89rqYDYGOtWq+UWTyLx25EktIbc6Z/z2S63cYtLypQNmEAgBBSK3TdU9w10vPy\nJNTO3b2HyVDI4tKWfoStYvW+4TwyOvEDG9uRzJsMLhPaCJcrmfXLf5kMVUTfeJr/pm+Qtm68m0lc\nXGZLrtXZ+nANq0Y+XJJgV/eyCM36CateDbVlzx1VonSuYWOOxP03VH2eCbdXaeAbGZ0adW5aev0Z\nR5n9uqyou/oZ1ynWbAv0Ws/MPcxkEjSSkpgSUz6CydgqukyVqI4D72Uy4YAVPxpPJgQvHB2EPRRJ\npap2k39g2M94EWsWHo7aOpl9x8fyj5stt0fP5jh7LPIV32vEAQD8koOJPWPmclLK+P44yLvme6ZF\nfVOUMhTlfl7HD36EmzIFqt4qHAD6cU2+A1x+ir78kh1WvrqOnQmSasuC5Pli5FZMTM5U7qqpCZyy\nwMZ8Wr7Ald6K39iJJdQBVaL8HX9oCyaFfnc+zzdEMmXVFj+be8qZRIgsXaa/89+53DOgQnKTzuwY\nrQ1pi+BWR4GiVDkAZnQ54bPNapZ6DhHM/gtoRIRVEW0jcMXrvEO40OSIbbxKevpZvHP8OI6X3tCB\nSWCtDG7tEk05uihki95ekvFVNZRzxBTFDyC1uOlkgQLY43yyFRPo1jMlK31E3cU6kJVB+fNF363D\ntpC0nvNmpTQuJ5EsHIH2ewEANP8TbzhsEovaQNrXPCwm4W47wfQZw3Gca9xjZjx0JjBVcJPb42/a\nrMW8ZqnOOvFIDnZZLvoOtzPGfwAn9+zwVMMpV6+aaD3yDrWgBuZ1Gh6MqbKN+EbHYFbKQnSMPmwJ\nxfjHPqEYtkyNINYtAABx+jRqu5lFQt1iURocSzow5ejSAVWi/JnBCADQeDnmJqp1E+cm0kFEKlaM\nTQ3kYTFR7FjmXXgL7GbJF7cCzIc07Co5Dz9nOmPLyqAkfYbPO9Sfu44qjMHvhi1r1pCKklJMGtxE\nNsaWnWfTSmdLidrxI471fKHJbCYztl4ddkyFSr9zugJb61T5Tb7rDHHj72PHTEmBKXR+ZxpXh6+u\nvQAAIABJREFUKrOuAWBXnlyBw9arpI8wVcQ2gTfGQdhFkVSqZDB7GU8rJWy5d2To2Qpzl+RKZGhG\nCA1m1B3flvLjVjwOJaQE4LQCsrFrSQgeVQitUIEdm7XwR+VYeh+8bCYT8xkOgJUpbIyr6SvukttM\n6pnJPgIZd/ienamVoScpj+GWQrCvFb9DK97EfT+/J5HJ6IAqCKYKrg7RqMl7afp+ycbKOovdZJT2\nAAAg/VNsoZXxrtW5BceM9snhlvmxgJUqnWeh2oK/ucxX6uunFS3OflWdyRxsjldTnrLAoaNAyWDy\nm+mcI+PW0vnO0SoPOqTBXiDo/gtg6FAqmMKfBJi2XAjvHoxlMtRff+ImHmBeaorvRJamVgUKHSWm\nc/97mIwt7h2dOT6zh89xLck/CLTyMjr9TDzGlcy3vsCZfNU/VFs/uaIBMOfncahtOueQpg1Qe/bs\nCUyGXsc39TjDuz9x7DZOvfL7h5yviMLW76zzjpm6rij8PWe3EGjxfibudH9QKpStV120+JyvDyb4\ntcsHAe3+K5JKlU7tP1pHCYCXAZAh0GuD7X2Iv0QmhX5tLQ6hCVyB0ymmmvUWVsbC6/Pgzpo3qgOz\nbaFDKqa3eL7yFiajc39O3MiV1ZCz+B0rMYPvHI/0xR/ciO/5rtmWm8HfsT6qsWRwa862FH5/f/x3\n/EcSR/m6HdLd0GqYd2nTa1xZTRisDpgOq00s8xISXp3fY9iBeNRedDO3WtI1yEuuPBkRbN5R92pe\nqkDn3CppB6xadyqoVLmEi1ap8jLo0B6nEJfZNqkJatft9Zey352TG7FjtW9Wu8kO9yOM82N5jNfA\nNOz3H50QzWRs7WxpBpyXSpYu3HK9uqkMmTy/+6bXY8eqXMcVTxtj6aDkomrs2MkOagoQCuMMtCew\nEpP6BKdvMOnXTciuNf7X/qgdc4eddVMHOvdext2nQ2FjMpa/YbKWHJkVx2QikiXcM+fBX5aq5p/1\ntdLXoq7vB5Uq29BRqnTqdcngpambIuMD7h6IG4ItFtTCAwAQ/RxWfkKrVGEyefv2obabO3QdUBK7\nqBfNgvRDG+Bd66z5PzAZL60sOves+as8Xmr1yzheys05m9RFk6HaMpwlt6etJJPO0vvkFMPElXO2\n8XfZnx9J2XXSmpPx/Xg8pA7ouwJg/r6YwGStyBzPf4uMjmOU/bR8Eb8bskLRXkKnXFP893jOMU/z\nOY/bgbPRbdXJ1EGguP8u++xOK30t6fpeUKmyDZ3af/22cROsbNGn0PlI6tS2s6V8jCElGfpLSjLY\nglvuExlM7oejka2pA8rmDiBndKc4dS1X1BeNHKU8j14rTT4AkCcgqLB/EP/YVh6l/gjRossyDjW3\nLEw6FgNbG6LeWTx7qnoJvAZsai5LD3EHIaV5RvLsdPyx9drN6mb2IQUleZ25JoXJmMzH3y5uf4aM\nyMiXKR1MoLj/gkpVAEOmVO18Dn8oar9l9qGgMTGlpvoevG0K2eIQPQsHZ2clf6XsR8da0vB3bord\neAVmdA8087iXkP0WN6QnsWMmLidb6LHhMDs2u1F5V8Yy/bhRxEwezI7FP+zOO6YzH1kGZZsrcKmh\nfVfw+0wtxtRarDsfnXfsZArfBJRMUm8C/KkY53bh5Llh8zFJsZtZy7ZiJHVgcp9P9+Q1OcNnquPS\nbPym/rBUlUmoLpp9xmtxmmBpt3cDWqm6aCgVZEqUCXSUKJ0H+7lMXG7hrVgeTKmzqCTcg7PbejTl\n9dVoJhQtUFswR9zemMNL4niJ47dg5bX0j/y+exkMTPuJW8jLA2V0+oYdazmAuCs0mMgPzuCFs1de\nPkl5ng4ey8Ftmyn6KiQncpc8JcaNl5Rz8WcGWkaORvadpNSPiRIlm49OLTdZeRfZnGzAlqWKKlAy\nmP7Oex/EG+g/X5CUIyJ9L3LpfplCR4GSgV4XJTkFAMjs5TutShD2UCSVqoTEE5CSgl++y1biSr9V\nr1cXtnVzp0SVKFtj5a/jBWrpeSGSosI6CzwNit+c853RHHUgU6JMxtKRyRyHlczYPvz+0H5iJfdQ\n9iGrqEHYSuO+jq2pxGSSrrHjanUro0kHs1Lns2MtXsJKZ6Wv+P2y5c6hcTyxEmWkXSomAG71561M\npnRxXDe0OGxjMrTMiEmJEQCuRLn5AbxuI+eXmt6QP4sUzmU08UX9vOiwpZv+zlU/JaSzn6rPoXxc\nAAAhFXDoQKwkSP/oHVhpKTeeZ+X602UpVbgDVIkSlwhPlZZS5ThOdSio6Nb53Dl/AsDjQoh15/7e\nDwBeBoAaAPAXADwghFh93vktAOAzAGgMAH8DwMtCCGNTSVpqKfbgVAWuRFG8sFVj50gKgZqynNva\nfev0E1YXc3Zt/A/PjNIhOTz9j7p+ognSvuSm7oR78U5NluVDC0ybzocqUc6CWkxGdMbp3abmeRnO\nVMMf3NoLeByYzu9ssinQgYxfKu3uMqgtI4WkkM25ksb7Y8vayAKhc7gM7fvQ25wWssKz6jlTJcr0\nI+mmJVHneZkOWKmKTuG1RRP+xFanq2++i8nMzfmWHPHOuqaDiI28bmj1b9JQW1ZFdNl7xJL5Hpcx\nIXCVyZztil2mC8aOVp4nfQ4corwERIiPEyT/REKOMwUAygJALwA4DgBDAeB2AIgEgCsBIAUAbgSA\nRQDwKAA8AQDxQoijjuNEAEAGFDyOwwGgPQBMBYBuQggjjaVMpTqicdJj6FjZiXgHUWkpJzQ8cCWu\nD+glE7kM/4+9Lw/Qqfr/f9+ZYez7bsbsky3aSNaUGoZPhXYpKrQR+mhREqWSTyWlQkX7HpWdCqWU\nJLLOjBkMI2TfmZn7+2P0+3ovnPOczr3P82he/537nHvOufc595z3eS+vt61N8dyfcU6lw4e4Q3fy\nLViw2HkXd3Ku/nrgpJ2pC/kCm3CTkGRZAeo8DaCXhFqHBoLC3ilRT0Nqa55RLcv3TUop+zIV5v08\n7dJclTp5Knf35vPXJAl0OJC16rQtwatAEy9JXm0h+zk8PzJvkcyqGH6u9a3u576FuvlG/ymC41NV\n2z33Fb5XmGBJ2uiQ9qnSFapWAsB413UnnCyfAwDrAKA6ADwPABGu6/Y8+ZsDRbk6Hndd923HcXoD\nwBMAEO+e7MxxnHcBIN91Xe64cvoxVAUoOlaVg4rrWzhX6N56WngZudZlNRbgpjfiQh7tn6YXAADI\nuVodXaaDlHexGSazp3qRkeAnCWNaN+LYuGQlq2MLXvlm/ZO2TNBiBc7zNaI65ydL73A9Ks+cz/25\nvOLWiijDQ9JnZQWeQ9CW47xpX1dc3wuVS+w8yOropD6yBcmPMuJ7fJAKNe6zYEf2Hbwem/bKfaIm\n3NXpm5tLAdzl+Ds8nsZlgjLrcNDL+gFco570gDqVDiUS/n70eFRu2XErLFtxzHehqvHLvay09XPH\nZ0NaqNL1qRoDALec1FgdAIC+APCD67p/OY7TFACm/F3RdV3XcZzfAaDpyUtNAWC5i6W33wAg0PjK\n/lBkYoTjQs4+k8nvJWUAFaIkhneqIk+9W+DeuduOvT7xIXKKF96+rUXf2nvVEKJsCUM691H/CgDu\nY+GnM73UzpKmJEmtYAIrWIPNHlI7lMtq5h/fKsen5ROokUNQB0kf8ai9ZFD/FyaQ2omg5q3vvMuS\nrbcGqdeFc8few+rUASzQUvZ0qR0JJu/atN2I8tj0WnjgAKujgwqzsKAzy5oAx+tkj8aaM7YeA8/9\nmvRArrJvCTQbQ4nnsOnTAf/NcC78e3L/6QpViwHgNgDYAUX5YHMBoNPJ38oDAM0xshcAKmj+rouX\nAeADAICSEM3iY8+ZjDUxki+ULcGLOqkOqcLTskzch7+szxuwKuKGZzIekzpeYv8snLqmQif+fmz5\nB+m0Q02UOuZJeTzCoiuQHLI6ZIwtVxxndX5siskt/TzFH3NPsDrRDhbOdNo15f+i0HkuSorrJZ7O\n4YedoQmYS6ugPf+YqQ+R335XFHWeU5tVC7bvsNKXKXTW6Fnrv0dlqoUvug+XJY65Ul/j/7XAlbyq\n1KBj/HMgd2VIfEj97k32p7KLONHzobaY6Jm2k+HygIVi2INSqHIcJwIA5kOR31Q3ADgKALcCwPeO\n4zSGIs1VRXJbJQD4eyc9AADxwu8BJUNyXXcXAOwCAIiOi4GMR/FHknMViaJ5lE9IW2pj6qQ630cH\nTGlDHl4dp2+RxkxPSjqO66aQhCgKP+kSTHy8bAqmI7Kxo2+LUtxpVkfA9lMrR/uKqssnTP5WPGhJ\ngKJ8Thm3cbOzyXNsfZhvXHWftUOrQjFo0H3s2qI8bJaXnoFSZ3j5zZkimMSVtkzlktaHQiLpTfsa\n95Vel5PymqDW2MAFKAC9Q9Pwndi0uKTpTlYnJOGGiL+8D9DRVFUBgAQAeMl13b8FoTccxxkNAJcA\nwAoA+P+z8aRP1fkA8MXJSysA4BrS5gUnrxshevNhxrD8zqU8iscEfjqpmvRFBSipHS0ti4bxVRpf\nxkQcFZfaN3DCOqntw914yLNO6DZN0qpzj4QTV2IT/bdTOMmquZ/Ihco6OvBzw+NzaqZGHfW8M9XM\n5DxNyDaHmglQ+3qQxNXvqzVepacJZvlp6ueg3GNeRr/ZElD8ZCeX6uy8G//P1V+zE3ji5bdTeTE2\nle9ppU77FGw3gWCgMAhmx2BA11F9PQDMBYCHAeAYFGmqXgeA+gBQBwBmA8DVAPAD8Oi/SgCQCQDP\nAcA4AGgDANPgH0T/mSZU1plcSUtxRNWGZkdZnQFZOMKrcxlex2QhSvi6D6ujk/1dBzqRY8HEsbnx\n7NqCxtNQ2XQhojkVJdMRbafjVZxx3iSRa7ARbMd5PzWSxcCg77XfFh4xubE5Zh730uysGh8AwJA/\nscP9zyM4tUnpL9Upi3T6MjHL67ZNsfY49iUc3LADq0P9DaUI1+pT8aG6MIX76rpL/zjjWIIR/Vc2\npbZbf9zt6ooa+C396bPCUf0aKKJE2AQAJaCIIuE613WzASDbcZx7AGAS/B9PVfrfWi3Xdfc6jpMO\nAOMBYCQU8VTdZSpQAQA4kZEQWRE7ghfswdF2ovMtSTRMkwwDAPz8Bv6oqwm+WeOS66NyZ42P6nhH\nvjhsOIHz+tkSoCToCFE69AQ6C0indEzxMGvmB6wO/X+oAAUAkF6f5m/kFmPazvYB3CyUPDhwrYYk\nQIVj+H2wT8SdL+xIrvzpWV/BhDQ3OsZhF4XD03k0l066GYk1u9SOCFSOeZrPcfqOjnfkXHClq2Wf\n8R4J3ga04EN+aeAClMlcoEKNBNEKQLSLEqmpmVmXj0fH4b2AlPOfoe7KAN80DL1vxYV/D/nnWZP7\nj8JLNfbRLnixLDU98JOTTt+n698rRNIIput4lKXEmk3hp9nBpB2bPE3Zz5KoHg3iSAl7exKB9l3j\nMwdCsE2N4eizozNmnVyjtkCZ4gEAEnGUPMz9dAqrQ8f91VZ+aDMJSNDBmyQRPADAHRrJ4DeOIuTL\nj/LvgJuC7XwrEiaR5+hjKaF9xmSeGzG1tzq1j87czPmwKSpTn9JgaKrKpNRxU8dyYlkTrOjyVEhr\nqsJSqLqoaSn3lzmYRdzPxXrTSPxRxz3OP+qC9tjpMfK73zwdkxcINZJI0/Hsm5mMyvsX87BxHcJJ\nP4Vea2aYb2J42w2mn/keoe2LhvEIq2nDx6CytGnaEj4op9DisTxnn8l/QbXXAFyD7aeGcsZhrlGm\nmnEAAGiOU0pFruOpdGauW4TKV2VSrSHAsXaBaw5H53CSyocSJJ/IM0N6r5QqQ8dUP/swJzt+MVkK\ntw4cXh0Kgqn1LhaqvEVY5v7TgekGrHNf01/UH+z8998KuK/WK7uxOj80+QKV2/e+k9UpOUedU8sE\nOj4YOqA+aAB8o6CnTwB+Au3cvDOrk79lK7tGseQ8QsKYbva/21r0xmzkG8WQeCw0mJphdEwIJg7T\nEZREB7gQpeOo3qAE50qqN1ItaDFixrHKW8TxNJiA+1/bjyfj9QpUqwnA/x9pzOOEtjLuxr4+qb3V\npnEd06vOZn9eNBdibDmqU66xW9dzriZb2sZPtuD1pcuAgUJL6nVh22B8cKj9gno+1/+BRwrRXKum\npvtQMPdJCEP9jRHCUlMlmf+Oz4tD5ZJX8JPbjntIdvPH+IK64Aj2VXjiPi5dR88KPOLN1kRv9ju1\nqgMsPQ+H6HvpbNp4GX4/qy4043ahsCUI6jxDVDx37szfuFk5HlMhPOkTfPqmWeRP17aqr86tr2F1\n8rM3qsejEYyhAz8FUdrXfVu5ZiSzGTdXe9E3AMDvx3BfJpqa07VN4aV2pHPLq1CZfgfSfaZRsM1+\nw0z+VbpksDp+wtZzte6PU86U/dy7dDOZU7DZMKUXNxke6o7nIh1PsDRVyS9whYAJ/rjqyZDWVIWl\nUCWZ/3Rg64RD1d+PNOGRHJSgzsvTA3VktbVpm1MI2BHgQt05ORThVbQdFaYB9ATqnI+aoHLCjd6l\nGqLw08SSOJcfvqQNT9WOBC8DCbzq39Y33/niLqzOjJ+ns2smfekgHH0CVSgWqrxFWJr/MlaWUU4u\nyqcEAFCvC55HkoO5nkBAT6U8TYKfYcjUhNBsBfd/WZpHyFE11Mblv+fcX58lzVe2o2pXgpQvyxZZ\nYjgIZxufJA66w7xLDG3iuC+2o8UYHni7tjZknTo67Uqmafpc2Xlv8joaZlY/Dy5eCpmRDb0hOr1u\nnjoISHqGzFfwGp1ynz/JigEAZm7l/rORDj6UmAq4TX7De9jKC7hSJBTXO9f990T/haVQJYFOpJaD\neBhyuTXYp0BwEzGakIdmJ7JrZTtmCzXPDOmjon5NjZfwDPF1AeewqjJZ2JBHBTwcONDmL3ZNZ6Mw\neYc04ahOu7pt24KX/a+/gwi9w7zbkHXasWWO1YHJfJHyMLb9A6fJ0aEryHidpy+hxMIZvQQW+KF4\njLa0SRJsHVw6JXO6ESm03wQ0n6QEk//5w/pcOvsQ1BKbiRCl81/Q7AgAAEP79kXldM6coQW9ORS4\nZWnPbXgPKfjavxRPp+LfkvsvLM1/5SvFuOe3GYCulV2LI3Yk3xLKYVRznFnEF4WtjTVzHPfLSBmA\nFwdbGztNSgrgr8ky1EghTfvS4fbSwR0ZWAC4vhznn6FjkvzrnqqBif90niP3Mb7Zxj5lhyKAmXMM\ngw1C8fR9KiLKlmXXCg8dQmXTtcS07bZ3481eIs2k97W5tx+rU2aqNwKKBFv0JxufIprfx8xywZo8\nh5c+cB2J795sIRJT9Q6bp+XCryuO+irhlE6u4yY+31ddUQNrrhkR0ua/sBSqJEd1ncnfikTXlRO0\nSRGNcVRa4SoeuUaR+TIXhrK7T0DlYPsnUeQIkUgJGhxLXm1uVRdXZtd2tdoj1AwedN49TVkBoJe2\nwqR/6d1TM4yOBiHYoM913rM8QvD3h9VRepQstmC/Or2oxN3U9mF8YNPhDLP1Xf55Pxdwa73EBVwT\nYcPWGCUCzJyOOK2T6XpHozPrjfCO/8sE0pgTpuNMGFLqLqcEjtZ0T3D2dlvjuWcr8bElgSjB8Kkq\nnVzHTfifHaFqbddioco6TMk/dWC0EEUICXILuRZBhWCbtyhsmY5M63RavReVB1beqByPBJN3SCPk\nAMyj5PwE1V5RzRUAfx+SP1t+RRw2H7mA+4kcS8d+i4erc2+CX57BpjMdShAJR67BZjopHx9F5DnJ\n7FrB+ixUDvY3Z3pI8VPTa9JOZE3OBVewfYfyvmOd8Jxa8OYkVqdjPbyfuvnckcOW0JnwFRYEqGk4\n2DB5zmAJVfFjuBbUBOu6PRHSQtVZ41NFYWuRkersvh1reaq8xU+yJpuA1FfBpZhEdMNt/FswYeJt\nfzvPM1hyNj5hPbbjXFZn0Xa8UZUG7rdy8UPYUX7n2zzUXceRlQpROv/Xkau5jwxNdaGzkeoKUNR0\npmM2k/iKTJjYJa3G0vNw/5IPHH3+OzaXY3W2tDio7D96Jp4vnL0IIO1t3H9JUAtQOnxXUkJjHY4u\nHUTVroXKM5bNZnVyTuD3k1CCv0Odw5eXpiKvoPP9zFw+V1lHAqWrkdfxX5V1TPq+YCQP8Ml5nPjT\nXcWqhJwpOtTG82/DWaup0sGBG7mz6zkDscN0Xgse2ecn6AIm5bAaGC85oAbWrgRTHwMqsFFhzSb2\nzEhB5V/O/5TV8TIk3CufC1salK5reH7LuyqpfZisRYVVqojKBXu5r5hX8DbiVt0OdRCu/LaZX48O\ndObh+L2chuarhlVROWMSj5rO6Yy1Rba00yuP84NLk5JYQ0wPaADcHCs9O+WGSx5o5pwdTDOrKWj/\nFz6B3+H6z1+EwztzfdVUlUqu68Y/Z0dTtb778GJNVaii/Ef8Q5v8AlkcNE76fp42TQQoCWIY8ktY\nyEwB9UIkaby+ewsvwquPcxb2wfFcW0Oh856pEGVLYNEVoKjG4q44O7nBbGlapzbkaVhqZWLB5rUU\nbiazBR0hSue5tj1AWKufV2sE29wnOF2D2umaOddf8h+hzteoLM5NYvqkWjvpPlNhXqcOFaDk/nj/\nLYZgAaWixrogwWSdPPAY3/t/1nh2yswugfqGpd7Otajnj8I+XssfVfv2mf5f1Cohmdx3fnUOKv92\n0cfK8VSbiIXQDe6h09T0FuGnvjHDv0pTpcPxEZUYj8pSFGGoRSI5F+Hs87O/es+oHZPniKzMHcwL\n9gTPwTx3mBDJ9mTgzq4RTXi+tcKV6qAFU9iaU1Rzd1Us96n6vgnWBnip0bny2ttQ2flxBatDcfA6\nHvhR7lMiDAk5DeHyLcq2vYLOgeivAr6ZVYvEkX1i8EFyAru2oTc2UUqJhymkMVJmelus9H6Sf350\ngK9Bk8+JY9dUfUnjo8TKkUe4kFd3IfbpoofK07VtMh4bCIZPVankum6cJU1VRrGmKnRAhajs0Vxb\nktkzcJJMP2kX3s1dzK71JFp905NSnSWYZmHVhMasDuXAkgQorxaHwnbns2sRC5ejso4AJZoLvu2N\nysm3LGd1dNuioM+f8Sr3+9Lx/6GcSjlXTWR1OnXEwuCeyWWEljATurFWjPgISXUcUAtROtqStE/J\nN9eAs2qb5DTUGw+HiWaTClAAAOdMJqaZPIETS5gbJ8rVVI6RosWDd7FrFd/DGh1bAvaInQ3ZNdr2\nngLuypBWBx+K5uSp2dN1BChTULOh+H4eUc8FHZjcF1WXT478rXlG/XuKECD/dBxnNAB0AYBYADgI\nADMA4CHXdU8bnu04Tg0AGHPyvhIAkA0A6a7rnvYlh6WmSkpT8/pezLgmmT10QLPW04z1AN5F3hS0\nv4Bd00nMrOpb975gwtbJ1tZz6nBASfDyPVPunRIHhFPz6NDiXrMFkzFL/mSm6wJFzBLsmK7j2K+D\n6IW12LVj7ewkQpZABXXT6DZbnE+Jn2NtRkp/bq6t+AM2Y95Sk2vpxqeksmsU55Fz0+/8zGYNXu0Z\nOu+05WAsTK+aMxYO7vLZpyqprltvNBfqTZB53eNGmirHcZ4GgE8BYBUAVAKAdwDghOu6QvgBgOM4\npQBgKQAsAYBHAGA3ADQAgFzXdU/L1xKWmqrMjMqQfvl16FrB2kxUljQ6NYSTIoVJJElULDdF6GSf\np+1QAUoXNLRdOul3WIUd7odU2aAcjy3oPLsUeQPkUvXX+OLp1Zi/+LQNu7Z0lECdQdGcR0yO+GgK\nKg9PvJDVeXXTD6h8j+Cbtf52tRaVIrIq582i8HKB17lv151YWKz6hvp/pk7gAACVAd9nKkDR57g5\npz2rs6VF4CbuyAYp7NrMb7BPYJ/cVqzOfCHlVvwX9Ip6c5WgI0Tl/Rdrj/4YzP2KGv2EMz2sznuf\n1dHhEcvOI/x+/fn82dd6FyqPBy5A5U3FmrI6XdewOqNrkjnuo6ZTQuKnWOjQ8Wlt9hhfN2k0ennS\nTkSQfKosItJxnFP/9F2u6+46be2TcF136CnFnY7jvAQAn5zhltugSPi6x3XdEyevKVN/hKWmql7j\nCu4Dn+IT1vRG2K6udbKN4ZvbnC2YnkDaFNxW+Jqz2OwjYn1bIv/cdwuPaqRqftPxqPo2ha0Tupe8\nWRKOzY1HZed5ni/xu8lqYsQdX2Kz3fJmH7E6fkaumVBFDMpay67dMwObVVPu5/NQ593rCF4U0mEn\nPxf7XUnv57JemEsr5wbedk6nN/hFBWzNTQkFLk9uTfPN6cCaqb41byfih8DXSdP5G1EGm70LD6vT\n8RzrzIXX6BmBRy7biqzWidY0eT9B8alKquvGPiscnA2Qdf2wbQBQ+5RLI1zXfSLQdhzHGQMALVzX\n5Sfoot8/AoAaALANADoCwE4AmOC67otnajcsNVW78yrCRyM6oWvliDSutzhwE4/OfVSIoizWAAAz\n52MB+JdjJ1idGfvt2OIpJAHKFkcXbUdaiBZM4o6aJn1RHLqWOzDTE7qkwdDRGlJIOeEkHybe9jSh\njvrZalyNneDTK7UTanlDR7C9vzpNjc7i3bEMd3JuMCYXlaV8m7QduiEC6AlRJjxV0n9TgnBppXLK\nJQANtxXWtsP3sU4pVDPFtQh+knbagokABWBvzDpCFIWJAAVgppnSuUcvWlPddqiY8i3qb7YDwKWn\nlJVaKgrHcboDwF0AIC20f6MaALQHgIEA0BsAmgDAbMdxdriuy1Wxf7cdjpoqKfovMgUnNS7I5Clo\nqKPzvA8nszqJc+9A5ZRenFjTFnfJ5WuwKTeqw2Zlu1I7Ha+6BZXdX1cp27GFz7dwAa57DNeUUbgt\nm6Ly3M/eZnWCaY4MRYQai7afHEt+aulo2inJryfYG5ctfjSvnmPLI1xQX90fmw29pKL5/GAFVJ6Y\nypPeN16GNXnP1+YUBmN2J6Hy/MY8ZyoF5WYDAGj0LTZ1SpHnZ3X0X1JdN+YZO5qqDTcM+0fRf47j\nXAcAEwCgu+u6352h3lQAaOa6bswp18YCQB3Xda8/7X1ni1BlgvLfc1PNZ0nzUTkcNlu0SjtoAAAg\nAElEQVQd7OpDzCeTzIgId/cmbPKTeTvUVCNBR/NAsfNu3q7kZ0UxdQv2G+kaw7VQFE/ncF+ToQn8\nvgbLsLJ3bG3OdWNrDrVYgbWdM3N5epkqXXCuP2nDOf8pwr3zGPeRCbV5b+sgo7rHFJLv2sw/vvWk\nLwB7ZkOqQW8eXYLVseVeYOv/yL8Mu21EfavOKGFrPNI9zBdKMHHr9G2LRFQ1N4IhVEUn1XVjnuY5\nPU2QfeNjxkKV4zi9AeB5APiP67rc8RrXHQ4Ad7quG3vKtbEAUNt1XcEpoAhhaf6zhQNt/mLXbDkr\n2sLGUSTbugYfjQRJiFJByp12orz6W6QC0457+Kn1cFesDSgzVa0NSO/AzazUgCsvRGohimJUbmfh\nKo8mW3shNmiZksVe9gc2+zxUNZPVofdVAXWyZJq7DACgwfztuN1XA1+opfHo3OdnuLmX7VAU7OJR\n2bQvnVyEEo7P45QBJoEwOtARNEz8MwEALu2DiYJLfyf5/KrNdjpClFfuDlId6lAeUYrnDZ2VbeKe\noobO/0UPlW07BcFR3QWA4FMqDACA4QCQ5rqujq13CgA85DjOvQDwOgA0BoAeAHDfGfs5WzVVOglx\nM4Soms7nr0TlV+qqGZi9/EB0Ig0pGZ41Nb8QyQa/qGkFbG2kR+Zg0sNF505ldRLn347KKbdyFT7F\n1oe5kHcoDgtHOVdz/ykJoabRofDT1CmZfGKeCZx4VULZRTiS71BbLuDaQta72E0g4U2+Gcz/IHCq\nE5ozFEDOGxqO+HMg/u9XPKhmHk95j5uDMm/BEa7nC9qNGq+o51RkI8w8XrB6PatDvw1qMgTgZkM/\nvyevtFlB0VQl1nVjnr7XSlvZNz1qSqngQpFbJ3L+dF233Mnfe0CRI3q5U+65FABeBIBUKPKkHOu6\n7vgz9hOOQpXEU+Wnz4VOOzrtOiVKorJ74ri1tlUQ1djzsICSfQWneAhHPycTIY8KdAAApTsJPm+F\nPNjBBLbMOTrPtmkE3gDjhtsRfCTQMV/0ON9Ifx0ZOFUEfQYAgLhZhCtqyUpWx09fMVW7uvCSzoIK\nQxF8CRLNwyZ96eCBLKy9ej6Zm7h1YPIf6pr8VaD+vQAA29JwdPOSR15idaIdbnqlsPGegyVU1R1l\nR6jKudlMqPIL/2rzn60F1XSiS0KUCWwxQKcA0fJIEU6ERVsSKm5ah298ZwDnVvt2Cg5Jl8xUqWBG\nREhh8v+UTsth17wU/GzNM535S4WotFWcL2hOY35qtwGRg+oN9em7YwI2F0uCYMR5mJuIkwxwRNXm\nVB5eCVEXjuACZbUJak0V9dsD4L57pmOuNTbwKE+TCDQJ0pivLIN9vJ5XtmIurFKYCFASpCCpGuRa\n9FC175oOwiroJvz0N0YIS02VqaM6dbLuOuhbVmdhk9LKdvbNxL4RFdO5X0Qwo4PGbOQ+DzT7u5d8\nTvt6YEfWJWNeZ3VMT98qBFur0PZuLhyW/tKOcEgxfSv3LelSl3OvBRN+fgd+apjCUWPrZf/Uj4j6\nEEnQaXfK5h/YtdpRmM3ez6jTv77mfp3V/oN9G7d+wbVrdbspOSM9wyMbsMb27qs2wfo/jvqvqXrK\nkqaqR2hrqsJSqNIx/20bzM0DtV9Qmzmc6GhUdo9x7p1wXLxtRbosO4a1axdGl2R1kt/HJ/KsHlI+\ns3/uGyDdl1aX55pwvsFeve5lW5Xt6oJq5T6sr0GOJMBkTu24l8/xGuPxHJfS7Sw9T80Mv+F5LBhn\n3aQWjD2NtiMaUkrSa7UvDXi1BmwYw/2ukoaY+V1lTMA+o6n91L65B6/nkX3lPjFzTFch822elivl\nNrVPpA42fYL9QeOf4/ucCfXMhcu5/nPZ+WqS1Zc34UCz1BI8u4dXgR8HbsT/aTDS1EQnxrh1nrQj\nVG28ZWixUGUbOpqqYJ/4dEDHeO2GDqyOFKGoaseWWdPLsF+dvtIb4fQgM1dzSpFQ+09DDbb8RGzB\nFtu0VOeqNZgDUCJP1BmPrTn1aDZuuy2PnfGV2NPLCE5bJrjFR7HQMjKRC146fSd9gmkOaGJkU9Ag\nBgCADZdjvsOWg3iOu/IfqxMzU+j8N3SOAfB51vSXm1A5a/AbcCQrz3+haqQloapnaAtVYelT5ZSK\nhsgkrIYtWINVsMF2QKVt77xL4m7C9+kIUKYYur2JlXacZjQi0My/gr6f9LZdWZ2Zq3G0n/R/0Rxf\n1crxcOHvGn2pbMd0btD7kj/gC+rb3bCjr+lGwUwRffmcqjYRazUkTaKfBKHUXCKxnN+dqaYVUPV9\nuv5V93W4+XZWZ9/tWFu99Cm1plXCqERcZ5RQJ/tZ/B8mPmwvGlBn485+Dvef8hyn6TCZH70388wf\neS1w/tGoOJ6GJX8TZuDXeQaaVggAIHmuWogxeS4qQAEANHoFRyiuflHgffsY92Vr79ER1FfkfYjK\nzcty+o9i2ENYaqp0zH86H2N60yvYtZkr5p2xXaltLwU4rwTBdiuPsGuLr8b552Ys/pLVMek/4w1+\nqGg4Auf1oznZALhvwqoWPDNAMCME/8l9fkEiYqXO4rY2nBc2coFgcDzuPxw0yBQ0oTAAwOE6WKOS\nPNiOJoT6fQIALB3FhTod2PJbDPX/Rwe2Ii+91Myb/F/1f+jJ6sRdf2bam6BE/yXEuLVHnpHeSRub\nbn2kWFMVKqCTdlcfTsYHME+4duZ2dOrofNTnPcM5WRosxpqhehA4T5Q0nqHVOG9LWo7aSZ+C+i4A\n8I869U7OMk5zwMnvxz+TZeIX/VA5BdRkpP9kTCbtmLQraRJptJ0tUAEKACB/fj3ct5nLmRa8oqWo\n8z/ui8n6GmznnUoZCtImq9tuuUIdSVz4DdcM+fmNeeUz5GU7FLbauWiYQC2Sp6YWodfihP2AkSZf\ngcm/nSzu/F8MewhLTZXkU1XvZ+z4t/libgb683584qz1ktpx3c+T9dH/cF+XUl8HHjkmjZlmPL+3\nUi6rQ0HTmQAA1HhVHYJNEWon3a5rOHHkXZWw87qppkpKnD0sATsMmzoj+7nhZLyJD4Kpd3DB2CuN\n7YkOPIKxxHzsmG66sVN/lx9f5A746Q1xjtWCvXYSWZuOucXv17JrZUtiIUrKG2rr2wzHbzzUx+yl\n5qz+JLxuU/qRoGmqRljSVN1WrKnyBVSIkjQoZecHLkA2f4SfKCq1wqazuZ9OYXXo5JfU+vll8Lym\nkVsAAIWtcTtS9nfqryVpA0wWmRqgFjrT23Vj1ySeFhXez+VpmHrEtlLep/N+6LMP3Ma/x7SG1dk1\nHaS+g+dH9WU8Oqgc0XqZCFAA9jaBpqPxorsiT8r9Z2c8JmPO68u1LnE4JaexAFeepBShvi5F7SxU\ntqPqW4LOmLtkdGJ1lpz3mbptIT2SLc2QTjtR8VgjOePHr5T3SO1mvoL5yO67lFsOBlfB64ufUZ4S\nbGnprryuFyo7i83m1A+5Y1C5x3D1OuoPgpumxi+EpaaqSZMS7vSZOBnyHfVao7KUb44yA4fa6UpC\nqPvseIlt0xqgcu1r1hq1E+qnVgCAjElYm5XTeZLyHj+DMWxBjPK8tDsq73yBUz7ULo8JSo+1+5PV\n2dsTHy7i+nGn608Sv0Fl6f0UXIoDCSIXqMP8TZN9h5ovn6lAQOk9pAMixe7pnPNp6QWfBNy3qQaQ\nRhcX7NnjWV9e+V2Z1Gmelgu/rvCZpyohxq09or+Vtjbd9nBIa6rCUqiyRalANzIAvpl17NyD1Yn8\nC5sDJCfrUCM99Go8e2/lm0mld9SO0BRv7uPM1h/1xaf2EiO3szoF7TFPlM7/LplZD8Tgjfy3Ydw5\n+KMDldm1KU3wxiDxmlFEVuBs5QX7sdBA04cAmLFfSzAxPXxzhAs6zyUJuSE9wrG58ai8oPE0VsdP\nATLUhBrJX2peg68DbscWgu1TZTKeUPOZ1EFYCVVPWBKqehULVdYhRf9RvLyHZ3af3ohvihTBFFCi\nF3LBQjqR24BXpyAJXvr+6PQ/4zCOOx6XXJ/VoeZiKYLGT56fUDNp6JBCRiXGszr52Rs9Gc/GUVyY\nj3808KjGLUOFJNBPq7Usfw7C9+1PoaEXAKn3eMOkD2BvTtniu6II9vylCLVn91PjRRE0n6rhloSq\n3qEtVJ01PlU6E3I6qIWqYKppbQlQOmzyOs+Zfvl17NqcvE+V7dCkqFkv8g05eZCdNBY6kIQoim4p\nK1B5xsDWrI6Or9o539/K6iTMwY7XVftw7igdvi8T2BKMdVi1dQQoU+QQPqcEDT4nnfmjI0DJ7xCX\n+XHIu2hEXQQzIo+uAQDmyZEpdPqnmQ5Mnz1zPPbx0ole1enLT61hh1WYH2zt9XaSwBdDxlkjVPl5\n0jf5qL3UTvB2eJ3s0YRk8CG+Kem0ozNGungmA9+QTZ697CLuTE7vK2jPiTUjSaJonUVPdN5+ibMp\n0/viYSWrw3JFTuJkl2mTAt8At/fnwvPvjwTuNxhs7QQlb6TJtgH0hCg6xnNf5NGrhSSPrY5QpYP8\ny6Wci4G/M+k9Z7zOzdWX9sGuC9GgTkGjA63DX2fuNrFgktoHkCZHpvkCAXjOQGlOUV8s6oclQWrn\n0LVYYCr7GadRye46AZUb5/I5VfdZPIcufkgIboLAXSJs7RlDqmxA5U8j1S4K1uECgPvvcFQ/a4Qq\nr05cppNfJwecn5sZFaKOXMMXaq84hGhEj9SXzmL+RTKPBLroDryAVX3THiM1g4ap/KutfHO7qq4X\ngwEov5WfOL0yIXhr0gi8Lx3UGaPBL/W0uq/zn+Yb6XImdHv3nlNBbUbMG8IF7D8GqQVsE1Naqbkr\n2DWTZ5WSLuu0Q4Wo1cc5kTHjTPsmhtUpezkXolTjqStEROscRlXtSu3o3qdC0je9UTnvwPiA27CB\nMPQ0MkJY+lRFx8W4tYbej66l3m2Hz8krHxkJJh9IVK2a7Fr+n9yBmyLzJWyCqyEcbJc8xzl7KILp\nbKqFCCFZcKFa3e2V1lCCLQHFdDw67VAyyR+bSibLfy+8CrXXFXI6dbwRlWfN/kjrPlX/EmgwCg1E\nMUWw/TGpWezL4Tz3atnP1YJXqPlMqvoOiqN6fIxb6/EBVtrafMdDxT5VthG9+bCREEUhTezqP1ZC\n5Z0t9yrvk9ThXml9dAQoHW2AhLT37GzaFPt6cJ+qiu/jU+qBG3gdnSSkbFPasozV0UGfXMrlwslj\nrflKOHw9m7N1ecDt2DIh6N7H0JxE//2iZvvXgZdOvCeuxGtxibmc1NRkPDow3UgPF3LeLief86GZ\n9Kez2VMhSspjWv31wAUtLwWLlHexBrvEMP7NzW+MtU4/5E1gdeBlXJTGbPIcOlHTWS8IvqgkHVLm\nFG52zr7yTVRuPQBni1iX+5L2OK0i/PQ3RghLTZVO9F+wNQ1etSu1c8kDmCW6wod28pCZbm6X97wD\nlaO+4YKOnxFEOhvH4W7YRFnmC/UJ1UuMyObvrEUpQQtH4JX5L9iRoDoINZqDbQ9gk1zt57npiP7P\nI7vcxOrQZPESwlFD6mWdc8dik22d58x852xZJdrciwWbMlPN1hdqqdA5ZFMEJfovPsat9dj96ooa\n2NznwWJNlR/w0zRisnh7qXmoAIFrdP7qy09Ky55QJ249nkbnMu+LClGmC6OtjUKnjo4QlTGZnwo/\nuxS/s6EJ3FfN5DkkAcor7Yjo3P+dmvBSp6/4X2g+Se7/YsvX0VczswYkIYpieCKdU2oBSoKtd3bP\nVq4dmZOndh43GY9OndYrecaGsqDO2ECFKJ1nd1tJWihcNl3LTISovAe5nxx9LonP7kQ5XI4fj0mT\nnX3qw1kxzKHUVDmOsxoATiV9igSAUgBwIQCsAICnAeBmAKgEABsBYITrup+dcv9FAPAqADQGgG0A\nMNx13ff+yaBtkX/aQjA5R3RBzR4bO3N5OuV+tYZLZwOMaIIpDApXrtMZIsPmT0ky6evU3FGm/gyH\nZieictmOfOF+YSM3cUhJhE1gIlhElC/PrhUeOCDU9Gc8EiIbpKDyzG8+ZXWCqfn1E9KYKent593b\nsjo6miovEW4+Q1L/Nv3ZKCbuw5LX5w1qGLVDcVbxVMXHuLUftaOp2tQ3zDVVruui+HjHcUYBwDWu\n6/7mOM4AAOgJAO2h6Ih1NQB84jjOKtd11zmOUxEAZgHA/wCgDQC0BYCpjuNscF3X2NsxtclhmDPH\nm4+YJrvVydOWOPcOdi07D9u1g73A0zB1L6O5qPbK9NklIUo1HtM6VIiSn92OACWhw823ozKlgQDg\nqZdo2iUA/qxRsTzqqbAiPsrOmsudnO2Zatglz2AyzyIb8lQpM+fj6LKOV93C6ri/rlK2bSZo6AlQ\nO+4jaWFesUMNYQqTd7/lEYF49Rn8HFExPHR2Uw9M7CxSv6zaT+p4Z02wJUSZoLAdp3kpHLYLlb9p\niPMwNk877OmYRLjwr/GpCsj85zhOFADcDgDPnLyUDAALXdddf7I8zXGcXVCklVoHAN0A4DAAPOcW\nqcTmOY4zFQD6AkBAQpXjOFUBoCoAQDmoqPwAjIUYR/3Pa/E5CQlOTWDrlGjL/8WrqCdTmIznyJwE\nVmfRuVON+t93CzaX7G7MD4AdO2Bn6PUXnWB1dPLLffwQTpSaVkedKFVKoQS5uJjesB2rQpMKm4L+\nPw1f4/QEsWAn/Y4O3JZNUbngRx16AC5A0TFedis/WDUdg4WGWhoJynWffflQQpfwitn72TQCj3Fd\nH7WgbgtUgJKQv2Uru1Z3NL6mswbMsbQeB/twTBGxcDm7ltULm5TTOuAxZ7hY6CqGXQTqU3UNAFQE\ngHdOlicBwPuO4zQEgPUA0PVkm4tO/t4UAJa72Mb4GxRptwJFfwAYDgBwHMzIy3SEj6T/esP0/fKm\nxexa/zi8KXppRqT3XXntbazO3M/eVrZj0refC5FOX6XTcvhFzNWqPWZKQyHdN47OO2GB15mbdL5I\noO00++16Vofy/LQcfBer8/4BLEj0KK9eiKUxZ72HT9LJT6o3UlvzRcqxmNuyLCrXsaTg+fadN5V1\n0l40+9+lb545PoPaZ6fLap4wuH9lO0nm/aSZ8aodL335TMYstbv/ZnyIq/AB369Se5/ZpzUomipw\nisk/T4N+APCx67p7T5azAeB7KDrKFQLAMQDo6brujpO/lweAfaSNvQDAVzs1XgaADwAASkL0ekVd\nrcmfMVFIqNxFzQxs9sHyDbHEgtqkjrqdzfkHlX0fS1dTPDigPqFnTPCOKoI+V8L0PqyOzn+hgxYr\nsGZoSdMSp6n5f9BdPHXmQsf/4KTcG5+Spj/ur+ZPvM72S/aza6rxVBHMSVSoKy8w3r/zEY6ufQfO\nHG17OlSby1mzTVDvZywM6bz3mesWsWtpdfA79NMfR8tZ+pKmQh3e1rdbsTDUZSoPotAS1PM2obKp\nn55X5jVbFAY647FGmaLRl/Q/z83Dh1oxKEkQoigiawbPHHlGFJv/MBzHSQKAywHgVMeSVwEgBQAS\noMio0AKKTIAHXdedCwAHACCeNFUJANS7A4HrursAYBcAQAWnCvvd5NSR2pczYNINR/rQIsriBb7w\nEOc00un/xKXblH2ZLUTKW7SQ2k+d+sJ0zLROqpBmQ8eEqrOZrd5fm1z5Szke3WhEnWed/fX7yjoU\nO9qoT5OSP4VkDlDB1EFX59kp947OOzxyNY+g3HyxneTEtszp07cuI3XMhBqKuZ/raYtpf5nv8AhO\nM2ZvO4EOUkRp79e/RGVJ+2lLYAo1ihQK5yd+qNWBzpwq2L6DXSuGfwhEU9UPAFa4rnvq7LwQAF5x\nXffv486PjuN8DwDpADAXiqIDryHtXHDyulU0+R/21ait4b9gCipESWGtKx7EJ8mrMjuyOjSBspc+\nTKp7/Eb2cyQX4YPcxW53b1ynymReR+c5DrTBQtSuPtzhvOokOwl6daDzP8/ezEkp6X06ApSXJhdb\nJg2KCoNy2bUTXwoVA+zb5n0lHByW7nd0b9XFJDl8K7VPnpTY/JKLcWTukhzub5jUQz3PdtxLHOfH\n8/WXClH13+A58qIHYhNR5Uzufxg9Q33YK/sVFnp1lCR+rolJS800uHSMR7vwA0ip6fgAwiwQwfKp\n+pdoqrTIPx3HKQkAWwBgmOu6E065PgEAGgLAja7rbnUc52IAmAkAA13XfddxnEoAkAkAzwHAOCiK\nAJwGAFf8k+g/ifxT54PIeRpvphm9OC/T8J04GbCOqcgUftr0aW4wmhdMakenr6jEeFYnP3ujcjwU\noSYISuM5WHiUXSsXoV4c6bidZueyOnvq44i8/Qnc/+BoHGbWTr3DDhu4zsKsAy+JIy/tg83DUgLf\nYAY/HO/ITeXfvYXHaPp9d764C7tGAxD85Nzzsh0d3JuJTdrjU3gEpwmOdeL/YZmNe1G5YG0mq+OV\nP5lXhLtBoVSIi3VrP2SJUuHeIeFNqXAS3aCIm4raMYZAkcD0i+M4FQBgOwA877ruuwAAruvudRwn\nHQDGA8BIKOKpuuufCFT/BAlDcbfn7uaRSHX+542Gy3TRi6yMT6SmHyz12Xlou5nZg2LGD9PYNZMF\n1U+BaesXjdi1ut1Wo7LueIzMSd2asDqV3sVzs5JOX5YimiQBymQuXHldL3bNEchhVX1JoNoJ0/ny\neDbW6IxMlMxmgbdNBSjTdiRIEZymJlsKr747L8f34Ae9UDnOUlTlgjfN/kPqM3m4azlW55L/qh3M\ndUB53/ykLCmGHsIyTY0O+Wfv9ZvYtcnnYH4TP7UjoUZGaoqsd0k0V8/AfXjCARmvce1NztUTlfd5\nqW2kyHidjzH1Liwg+TnHm/3OE1c/VQNzjUl9RdXFO8OGfnGszro7sVZZ4oZL6aVm8tdBsE3jJgi2\npoqa/5Y/aqYJbzwOH3TrPssFps2P477qjQwuR5cJNo7iLgjxj6p1DSb/V2QyNun+tPkd2Hf0T381\nVfVi3doPDbTS1qb7/hvSmqqzVqiiEj2ArLr1C7Y2N572A2BCDP4Yg70p+BleTaFDKLhtMK9T+wXv\ncoPtno7NE1W62GHI9tLcprMBnv8U3gB1yEhNx0P9b+IeN1N26/xfUzb/gMq1o7jmwc/QfwkHSQaA\nckIGAJ3xBNOkLvVN02dVm+ifUUN6Pw1ex3PclgAn9TV2Tzwqz2ok6asDbzskzH/1Yt06D9oRqjb2\nLxaqrEMSqtqtxDnFFjbhwkfmeBwRkt1VyEpOYGvRSVkazcfTzIxvi4KSWUpElm3/6IrKElfT4a74\n/Xw/nr8fW+9Dxwnd5FR2d2YWu/ZaSvIZ2wUAaDEEczVVfJ+r54/NjWfXoq/cqBwTRebb3OS07LJX\nULlyZBlWx+Td77ybn4h/eBRnqe8awzVeJqC0BwAAmy/mkbEqlF5Yk1070g4njpWE59X9uVBHYctv\nRee/iCiF/e0Kj3KfPArdvmg9uiEDAHywEfsIVe6sPlROIgIlAECfeq2V99kC5RYr2K8OFKfR2AA8\nmMhUwI2Kw767+Zt4EAWFcUQ0YYGf09iEeahYqAo2zpqEypIQRVE+S51IUmfyO+djnxx3+erT1Pw/\nSALUhvexKe3Htq+wOjfegZ37Sszlzslta2JBQnqG0oCFKJ2UImlTeTv7ZyWhcoVOG1gdHSwdhc05\nneemK8ejs1hRAUqC9H6W5GESz45rerA60Veq/2cJdNydL6zF6lRexoUoG6j+GhdWuwqmTRswEaAk\nUAFKgsTGnfaMHe0RRf1J3PeS+vGIDuaX/AeVC4UNed9MPF91fWR01qnqtfAmPUPj+6knaOUojIVM\nDSoaHSGKYlYmJ1bWiTqlzyE9V9PRWHiP+byQ1ZFY31WQ+qJEvRLHnE47l9+CTePRqXtR2dnIBWdf\nEH76GyOcNZqqUIdXkRzSfV769ZiMUeckqdOXzvg+yuWb7Y2xXKthAilqL2If5pMqyDATMk1wogPn\nRqLM3l6ad2zNu8ZLsABbsKIiq7O2nx0tVHoHvHFJyYr330Scij9UOxXv6cU1gpWn+Ge6ognTAfTy\nfX6yBY/x+hj+HCaCaHr7a9m1md99FnA7fvoo6rRta/01RdlF1VH5i+R5rA7tP3s0/k+3vPQiHNuS\n67+maoglTdWAYk2VL/hqK44OysvnmqGEEvgUZit8WAJt+/Ke3LE2Cpaxa6p2dOp4uciYtKNzkpSQ\n/AE2ySUJzN8UOgKU9H6m7McsxB/W5yoDdylP8DxTY0HNHIfNqikDzIgIdUhevZoLpk7fkvM6BY28\nFIGzshh9FwAAc/I+EWpSkPf8obovSYDSCeqg7zV1CuduolHLEv46t6SyjvwfqjX8ZmsHN8O3uQ//\nibUH8zr7WgfOoaQzPlOh13SeUdgSvA613YnKHaMvZnXm5OH1ha4TO107GuViyAhLTVXF6Jpuyzr4\ndEtt3U/mcIK4YQmch4TC5GTSqeONrE7hSkyqt2EM/6jrLMYbTulpdlijJZgIgjRvGwBA8i3eRPuF\nGk+VLrzin5E2gV+exiZTPyNTg60NsNGuzbaDDVtaQhMEmy/OKyEmKqYuu7anFfap+vHF11mdUHP2\np5yEdcZg7X2wfKrq/teOpirn/mJNlX24LsCx42esoiNASdD5QJoPxafJyivVJ56kIQJjOIkKW/Sq\ndwsIUwk/xzftRMBj3HDZZN6ZRuLhLZ8THqhfuTnnppu+VbbDnNnBO3PKgCwsBI9Lrm/UTurbXNMQ\n9Rhdv/j/zDcPs7nQcgX+Lh6rtorVSa/LHeVVEPtujs2hR2pzrUfpL9UUD16RHupApy9bOUJtCnmh\nzgXnJeh7bDie+7zR72fHl/x7rnE1/uYl36h911dCZS/Nf04U3o7d/HxWR6dtRuw8CBeDk1AZ/jUJ\nlcNSU6XlUxXBndK3PIRVpZKz69mAcDih++mHoOrbZv+2NG4RTfgmMGv2RwG3IyEctYKFrYmf3g9q\nwVR6Bp30SBRSLkIqLL66iTv/3hOHo+Ykze93bV9GZd1Iu8hqVVG54C/vUo+4LYyc7uwAACAASURB\nVHHyX+dHdZaxYGs2deoUXIoPF5ELeKofk3VKh4PKTzoUiqBpqh4YpK6ogZyBD4S0pursFaoswUsC\nwePzMMlh5KiqrI70oYcSNn/KnbfrXcd9jyiCKVRJ+OtrrDWs9h/uwKyzgEU25CkzqDN03tSGrE6d\nrmu0xukFbM1xHeFjzwzOH1e9P87vZpLmCIBrSGO6c1+tUHM8NgXVnknJ4YNpVqUJjQF4UmOpnYRZ\nd6JyTqc3WB0/NZu2BB36XDoppiRs+B8OoqiYwWUjyu1FuQ2n3ToDdq7Z5a9QFWtRqBoU2kJVWJr/\nUpschjlzzrxg2DoJeLmglryCsr5zFngKncWhU/rN7Frh7+pNm/mKpbTi7ZCovfjbeLQbDzo2wyFC\ncFjWkOCQIr1tV3aNClGU5RtAL9xdJ5rsiPoxrGmTdL6Dtnf3ZXWoMKSD7c25djieJEKWuJLWEGb4\n1Ls2sjo6AsLqS0gWrTxWxeh7Pp7G1+/ob/B4JFONCXTXLWp+vLAvNzs3+aUBKp/3Ezdvbb8kcAoD\nnXdIBSgAwSl/0a2sTmwM1rjZchTXqZPzDNcwZeQF7se4p4Cb10yFKIqk/+JgnQuX89V22cQIVN7Y\nHHM4HguWIiX89DdGOGs0VX0z8E41MRVvyDYxcyvWHqV8cyerU2URJvv8dSRP3hxMZ2AJXhEjRpTh\nHEyFh/HC46VJSidsXAeU7RkAYNkT6kX3qjV4o/iqIddIUuy+nfdV5S07PmU0iKN5tDppuC1To5cO\n1aHuOK/TV3r9tqyOCXeThIjzuIZ01swPUFl6Vkpiuv75pqxOyr1mEa1nI/w0r5v0FRTzX2ysW3ew\nJU3V4NDWVIWlUHVR01LuL3NwVIZf9mgvMShrLbv2YjI+bdpiraZOkQBmp22dj5rm8wKQc3qp2g4H\nvys/o5UkbH6C5EV7wju/wbwHcV9/DORcUosIifg9E4S5MFpNpGnyPpr8xveNlRcEvt5lvsJNWSn3\nBVeI8NO0RxFq3GcSaPYDKfOBiSlYglf8fjoIG5+q2Fg3ZpAdoSr7gWKhyjoq16/uXv5Wd3Ttk8Rv\nUFlngha051FQkd/558NE+Yuyr1WnhfFy09apQ7VOVOOki1DzbaF90bx2AAA1XjUTUN7NxTxdPWO5\nWZUiqjZnXZ+xbDYqeynkHeuEfXaiZ3GfHR34+R9Sk23+Vm7/ezQbj6dtKVbFM58d0zlu+h9SHzcT\nk26w4af2nkZ1AwDsuRKbzhJv5uOJbHQOKhesXh9w3wAAcw9jjfHzyY1YHZ12QlaoGmhJqPpvsVBl\nHZL5b3t/fGqu+XJoRfZ5uTDr9EUh+TMk3LhSeV/jZdhe/83bLVidmuNC6917CVtCg1cboK05JfGs\nZfUI3N/E1nhsscmHmrb6r378PVeb4B8zuw685DVzLmqMyu6vnBJEB8F00pfqfH4Q5/HrXo6bdL2a\nd4euxYf3lfNfgoO7fWZU/xcJVWHpqC7BlhDFPsYYvnhDoZolmqZmkT4YyikkwZZzPX2uE7uFI7oG\nZn+Ghaj2PTkrfOa4M/cNADBiJ/bv+LGpmhFawoEb8HjKf6xmXbcJnQW1UyIeo5RYd9FrE/EF7oKn\n1RdlrdZxrh+Rzf/DkZ0xoS0VoKTx6MDUxEKxrTVPUG4CmrYGgLOu64z51k3cF+qduEUBtyP9XzoR\ntsYayXSikZyp1kjqPMeV3W9jdQ7MOojKUt7QzPuxtmbD5fy5UhfithNu4hQPdIxSku51C3Ae07jh\nfA8xEc506kxU1rCHsp9hU3VEsBjVw09/Y4SzRlNFQbOLA3DWdS+5Qtr3xs7r301WhwZL0OFS0QFN\n3pzVnhN72jptRlbH+akKdu48Tc3/w58DeXqZCBxpDzXGB+6HBWDvubYM5WNcfR/2I/JSy5E5BQv4\nKb3UaY6obwkAQO5qbFrccIOaJbqwDedY+qspDtUuFPzda70Y+GGnxYoT7NqSprjxBzdw2o7nkrjw\nYYLcR/H/HDtK/QzHOnOC0OgZZiZTWwg1agg6nlb392N1yn1qx1fNVoCEn/6QfrUTDPNfqZhYN+Z+\nO5qqDQ8Wa6p8Qc6zWG2e8LBaZd6p003CVe4sboKSc3AIrURzAIBpDiLPSeZVDISoNzdzIsKYKPyh\nLTgSwerY+qh1hCiKFQ9yJ2cvI8VM2k2cz33wbC26GYxWgJv/qBAljXFfIfYBuT6Gj2dD3rTTjvVv\n7OqDv6eqk/j3VON7ZTNGGFGd80ulAX5npgIU850bxX3n1tyL5+IlOXexOhU+wBpRvwUokywKErZN\nw4Ewta/h65+JyTYqIU6ohdtZ/BL3IYWXztyuBBrdW3Qfnr86ApOX681N67B/n5RbVAc6mnn2X8Ti\nRcD5Ux3tWwxznDWaKhOHz4wTXA2aWkJttlO1q3ufrXZSlmJTSGYznkyaQgqvPlYDO6GXmGuHW8VL\n2DqRJr+PnVSdukdYHclJlYKSiALIRKI2IGmPIr7HuRmlZ60/CQsSsa1zWZ15Db5G5TG7k1id177t\ngMo6iaJ1mMdtwUt/qTEb8WaWm1+J1aGpjuosKc/qTK6HJdO293DOsPYjeEJyqrmTYPJtvC78P3d5\n9P/owBa9hq25QLXwAAAzV8z7x+0C6P1fGz9ugsplFpVjdVQa/aBpqgYMttLWhocGF2uqQgW2WHa5\naVHdjtTXJwd5TjwT6AhRh7tiZ0WX8zQy2/u+W7gTesX38GZi+g4bTMQbuxT6n/Ea1t7kXM09EWz5\n9WTlCU5MBAmT72DXUntj7ZGpAGWyAc77WG3CldqJAw2THAmcm9+YCwTZeVjTkDaA90UFv6QSfL54\nFQlq2k7GW3i9Tr2dHy6GxONvI+NNvsanAr5v1YTGrE7a5AOovCjPbI7bMntLAlQwI3WldnbejbVQ\n1V+z48if9S4/pBQewsJrzlV2/p/0hu2U7cj/l7KrYgQZZ62mSkLrAdiGT4UIAICD12HhQ7Lxa1EP\nEE2QxGhOhYbUu70LedYZc4dVeIGXNlLWTl2+ED2+AQsaIxO52czEpNBuJdceDa2mDl+m7djiLwo2\nQi1yzRg0T6cQCBJM8loJoe6vBGBPW26jXV1Qmhkd7acO/KRm0GnXvYQTqG5rja0kdcZ4E3zVPC0X\nfl1x1H9NVX9LmqqHQ1tTddYIVU40NoG5x7j2xmTBoL4uALK/i6qvodubsDq/9cUf1uwv31WOx0t4\n5dy5417u4E1V1DSnFQBPyaDbvw3YfO9P5+D5MjSBzykdHO+InaFLzjbz49HRxFCEmgAnjYeykZsy\nkUeUx4eJWeu589jZQrbpJx7ZgClbnknia6It2PJhCjXorNE0t+gfF2PW/GAJVbH32RGqsh4JbaEq\nLM1/Uu4/qk4tEIQqCp3FShKgtg/AQsLvD5s5WQPgCKbEL3g0TAr4x9zsVYi8jso6+RHukD/bwBk3\n1HwwALgQZdp2Xmv8ucbPPk1FBXI64khU6gQOYE9Ypbxmqy7kucpoXw9t5+P5nShE5feFhShbz+Cl\nuUvnvogm9dm1t2dgTq4akTzTgklfpsiYQBI89+MCv4kQJf2HFy7DNBiSyf2n/dgHMLIC90HTEbpp\nMuIJMZJTvJ33+vIm7DvXP46TBNPAihqCKZ8lZxdyYBbDO4SlULX6UBU492ccTVdnrzphMM+rxT+q\nAVnrULlzGc4pRIWEtHH8o9LJReg0wxFM2d2EaJhutG/1Bywm2Twfb25+Otf7eRpv9AqP5jKhPbDl\nbCq11WogjyZbnMdpDXg73oyny+o9rE7DH29B5dhr1SSMtsxtYh1B8FNB+g//vB8fiGq9pOYmMoUt\nX6TClevYNR1Wfh3Q//6LPN4/T/zOQYUo6R1uzsc8VX3qqR3gpfdRDdR+izSJMAB3HaCQEipDcyxE\nTVzLP0Jb/zMVomz5VDHri7vrNDU9RvgZxYwQluY/ndx/92byD298Co/MorCVniOY2PIIN7fFPKO2\nz0dWrYLKBbt2G/VvwvOjA1uC4Ee5fDwXv/cAKmfcZkZ2GVm5Mrs2c/V3AbfjJeh7bPtHV1andFoO\nKu/4kmtLalyNN3vJhJt1MxYWg/3sFDoC1GM7OH3D0vOwH1hha/5cUXvxgaxwFReOvERkzRqoXLB9\nB6uT+xl2npeEZx2BgKZVOtKoLqtTYr6aV81EoLV5ADJpm7az9jhP3TUwHq+JXvr7qRCU6L+6sW69\ne+2Y/zIfDW3zX1gKVTrknxJC3bn02g0dWJ0Dbf4KuF2anw8AYFZW4IKNl6HBlB+n+st8zFHfqBfh\nPwcRzYMB2aQubC3CV63hJ8WvGlY1GlMoIXcYF+ZjnwztxNk62PABH0/WpVOU9/lJqyKBkqia0DBI\n/et8BzRjAoB51gS/cLYELahQLFR5i7AUqpLPLeP+b1oKuqajhaKQPqJWK7G9rVzHbFYn1GDro6Zh\n4al32OGpikzlHEcFGTxFhVfYeytW61d6h/tFmKjwT1fPK+y+HT9Hlbf4c1DBxkSoAeDPlfnKxaxO\n8ofYb9FZ7E3QgE34uQFSTqHju3hqqNR7sM+mrqZGZ9ybn8BzQaIt0YFOJPOJK/HaocNxZ+t7Ojib\nu1borNsm33zzR3jS5cpv4+9Qei6TZMk0Eh0AIOoo3q9Lfc19flVzKCiO6nVj3Xr3WBKqHisWqqxD\nMv9ReBmd42eo8sHrsUml3Cc8Is7WRqFDJ2ELm4fjBX9tP+7sT2HLYdhv4Yj217n1NazOpV/hoAWJ\nzsJG3wDefRvLjvFcliaRjqbm62BG0gVb4JbglSnNy2fNexD/93WeMxMEbVFwqO4x7VsHpusd1VDS\nDAVBE6rutiRUDQttoSosHdUl+GWPluBlX5IQZQOZb3PuqOwrsKP8FX/2ZnUoY7cp6o3Ai2XaCLP3\nZStikcIrqgYAgCOJ3NQ3pArW3A0RInZM5riXG7ut95j8HZ5nST3MNtJOKdjRd1YmZyK3dQAx8TOa\nsYyHa/p5+LM1pxu+JqT2yVMHg2gJLd2wdk9rjq9SR/HZIos1Fbz8jBalQlTCTJyH9s99Lxv1XQw9\nhKVQlbm2InRulk6u4l1oQB5PcArAE7WqYOtjFAlCG1PnXzNHVpMPNPuKt5TtlKzFd/YZPrIrm2wC\nV3a/jV1zfuJZ7FV9SWOWnNAL9vDIOQq6uX677E1Wx+QdFbg8ytMrmD67znMlgVpQ1/l/Sswsr6xD\nEdG0AbtWuEKd/1OnbSpE6dyjk7RbasvLiFaq+ZhTXT0e6ds9/2lCB/CKJDxjLqs9Bdzpm2JO4wr8\nGokWlfzikjTSTumAPruUxJxm3XhhIzfdD44Xog8tIPVObIrd46rfqRdwws8oZoSwFKrcEycgfyve\n8Kn/AFzEP9iNo/CkjX/UTnoD0xMgjQYKZkSI1LbU7kWPY5+CqsDfYcPxePF0HuF9UXNOzZ/4wpj8\nAaYe0CED3fkl5ydb3kz9XDrvMOOxc9i1pAfUY9LZXE1OwOl1ubbRBE/m8AjXYQnkUBLJE3DHLMF5\nx7a0OMjqmAjYNAFs0X24TP2VAADi261k11TQEaBMtRP0mpT49/oYvCZVzOaCspfaNB1/Q+bgLmhR\nuXDK35ksRGFsG4zX8cqRdgQfSYDSeT/pl3ZHZckXVIeXj1KCSHPqgSysYbqyDFcCeCk8F8MOzhqf\nKj85lkLdjKjTDnUsBTBLoLz1C+5wWbfbaqGmNwh2CDbjgJFywBGHfz9NCLbm1JubeaLdmCgsVKV3\nuJ7VKSiHMx3kXsl9xWKfshOxGVkJ59KcuWYhq0OffeddXDtQ/fXAD1terhOUogSA05R4Gbm28yt8\nmKh+lTo1lA5svTNKCwHAqSFsmUdTF3JNeMJNWBNOGc0BOCHnppF83sU9rnZ4t7EfBMunKu4uOz5V\nGY+Htk9VWApVOrn/vPRVuPAJrK1Z9oQZp5FOXzrQ6YsmVC4z1cwJ3c/37GdI+p8DCTXDWL2N3hbx\nnwlMn5VmBKg5zj9n4EmCcEZJIIMd2m6rncyXcJBJ9nWc4DWYhzipPy8Fda8cwU3fz96eWLD5ebTh\nOq6Ru9IrmPwXwaJUiOtnSagaHtpCVVia/ySkt78WlefkfcbqmHx8U/bXYNeqTcQnirSJ6o006RPO\nop08EJuObG3IkvmEClFaC9w1Pfk1DUZfkzHbWsw3nOAmKB1QIUqXmyiY6njzdxZ4X6YbqdsK1+lT\nT912/Td42Pq6PLzhtRzMvyf6XJJvy6Yt1VD54/bSRir5YwaOlPuJafg69T1+ClCm/XkpQNkS8nT6\n2kUsyAlf9mV1UkGd5/WyFdhR/ttz1SmDbEF6rvOIiyJN8RQUuP8en6qzRlNFnb5nzf2I3UcnoJem\nK1PeIxPYWogpkeaKIaY5DdXIfhafEhMfNvNvi2yI+clmzv9EeY+X5j/d+2yNKZT6Nn0/ZRdVR+VD\nbXdqta3qa//NnOG9wgdY0NFpd/hOvk7oEGlSSH2164s38lLT9XiH/PSj9HM8Jgi18ZjCLwqMoJj/\n6sS68ZY0VeufCG1NVVgKVbZ8qmxh592CX8Zr3jjB+7mJ5zzNnythqJ3nMsHu3nw8VSarx0NNnyUO\ncfX8t1NwkuH2q69mdXRyoPkJLzeTqLpY7UMDQ0wRDj6KJt8cdTIG4ASPJRbUZnVOXLpN2bYEP4Wh\nrPewqmPDZZNZHcq9lp+9kdWxlZyY+sGZ+MAB2OOyCrf5GxTzX51YN76vJaFqRLFQZR1lasa6KTfg\nP2jeQ2NQuYeQcNSrk0BkIx4VVrAaO3NKJrn83C0Bj0eCyeKQ9SI/xScPCvwUr9OXl9oSr/yVdPry\nsj/Td7+I5P9uy0m8fR1zp443orKUHFinHVtzyoRMV6dt08APHbZyHYSDtkbLEfxtbPpNeEQtMBmb\npi9piso61Cu6/ZuMxy+fwKAJVX0sCVUji4Uq69DJ/SfxvcQ8Hdp5yHI+bMqu0cgSLx26bbQrtd1q\nIPd/oZtZvZ+5H8KkWEze+PpenqR13Jr2qGyaEFYHXmo+/Jx3TjSOyHOPcRoKW6DPtfgopwwYmaim\nhtCZr0kf43lGDwlSO9J7jvwOa+kK2qu1dH4HWng1XwZlcYqJjmXU8yPYDvcUh67F2ulK921mdaan\nzkLlYH+Xqr4BAC69sw8qR8/kdCiqdoJm/vuXCFVh6ah+LKE0ZD2JVdJxb2MeHRMBCgCgxYN4Ya4I\nah4iqZ2kbzFLdPItaoLDal+WVtY55/tb2bUy9+HQdh0+GC81Q/Ta4jwe9ZTalYQmXyycEsleNrVh\ndVYlFrAQJeUZ9NIxe9ed2BRR9Q1+sk6YhRmNU8FOTkXjEzoRojJf5jnGUvp7k6KoVSnOd2UypyQ4\nY/A+sec2iUxRLZxRIUp6zx1uvp2Mj7dD79uSz4Mo7iCRj7rfpYkQo1NHEqB02qGUG2l1WrM6FFI7\nq48fQWVTQswfxuHsENJ7bXkjXuvLC2t9MLV96U2vYNeid6qFKApG++LyhO5ew4HgO6o7jjMaALoA\nQCwAHASAGQDwkOu6uzXuvRsAXgWAYa7rPnWmumEpVEXnHIHknoGnS9FZvHWEKIrOl/yHXasPf6Hy\n2nf4afyBi+ah8jvPqg8P69u8w66l3eCfatkEUl8JYKZqp6DavYx2bxuNx6QOABeipI2ifW9vDlU0\n4rWofxz1KgnhVaaVQeXs7kKof387mgev5tnxjjxCr8w2/P1UfpsfLtLetvNc8z/AGQl0BEGpL1sB\nLTpjPn8UTy+zXCO9jElfpqBCVOZ4QeC/Fwv8lPEdQG+MP76A533aR/wenVyEJv9h4uf9WB16kCnY\nyQM2dKCaL83TgsOoDsE3ihUAwC0AsAoAKgHAOwAwBQCuOtNNjuPEAcADAPDHmer9jbAUqkyR1o1u\nMIEzMEu4fAZ3UqWpE1JuzWV1vgKcA+7nPB7eDc+q+6dkc5RoDgCgzb34Iy4DXBOR8wxe0CR/Bi8j\nxUxAzaOUuVi3b1Pzxa3rc5V1Nr6OtTOpc/iYzMyIvM7NOdgcqiOEp31ox+xhKqDkDsMb15q71VGn\nJWfzE/uBa3DyZu4WziGN71h6M1JHoyHDvrxsa1cf/D3XGM8FgitW9ELlCA1Nng4ia3IqmoLtOwJu\nJ+Iw12xSmERi6uKPgWQuDlTfo7O2ZXefwC9i8nat/zjjLenAduZvNxiaKsuIdBzn1LDvXa6rfijX\ndYeeUtzpOM5LAKAOFwd4EwAeBQDO9SIgLH2qpOg/ClP7uJ91VPdI9/kZ1q/TV9a7nARlw+U4Osh0\nM6FcUaY8URSUhgEAYN8L+ahcrmM2qyO9j/OXYkdsmFuF1SnVZTsqV+jEU11kTMIbeWofLjTo0FD4\n6b+l0072c2TMD9qJHpXS1JQrg730l13I10s/HYZpRCCNBtRF5jhBWzNAzTsXan5Oha1xX3sacHeH\nijdsReVvGn7F6tAxb/rkXFZnXet3z3iPLu7IyEHl68vtU47HS9D/UMqNeGMsPqRQP7n7r94AmX8c\n8dWnqnTtWDfhDjs+VWtHDd4G+Mw0wnXdJwJtx3GcMQDQwnXdNmeo0w8A0l3XvdpxnAUAMF9l/lMK\nVY7jrAaAuFMuRQJAKQC40HXd3xzHSQKA/wHAZSd/XwsAbVzXPXHy/ougyBbZGAC2AcBw13XfO2On\nCkiO6jQCb+a8j9l9tiKIgslCLN2z5RH8EdG8ehJe3rSYXZt+AC9OUqJS1fgA+BijatVkdfL/xIIG\nDbcG4CHXwXYStSW8StA6lZIUODT9jd+gm2TED+pnP1s4l4J5QJPg57O2up+brirMxtrxwgMHtPq3\nMR6ddsKBr00H1Gd05oLPWZ2xe+JReVajSqgcjOi/0rVj3YTbLQlVTw/+HQBuOOWSlqbqVDiO0x2K\nTH/tXNf97TR16gHAYigSvLZaE6qEjkYBwDWu6zZyHKc6AKwAgIkA8CIUOX+dDwC/ua5b6DhORQDI\ngiKhaywAtAWAqQBwheu6xkdWneg/Hfh5cjvWifuARM8K3OlQgs6CQZnG74lTO5LagpfUDFq8NoRH\n7LdhgpnVoF1pTMEW/CjG7OaO+/Mb8/x7wQR9jqa/3MTq1LpGnfjYFkw24MxXBG3SfVibJJGRpvTH\nwsje42VYnWPt/mTXDtyA2yr/sdoXtMMqLugMqYK1pqFGw2AK5yKcD9D9VR0VLPk5VVuGzY+Vp6i3\nrWa/cx68pedFCjXPDJ0AicgFojxwRpwFQtU/iv5zHOc6AJgAAN1d1/3uDPXmAsDnrutOOFleALaF\nKsdxogAgFwCecV13nOM4zwBAe9d1+WpRVL83ADwBAPHuyY4cx3kXAPJd1+0t3aMDHaHKdAM2MVf4\neQoyxcYn8XPFD/OO/8VWO6FGRWALpvNl6hbMtt01pjmrY9L/039xnrWFTdSRqLQdMb3MnViANf1/\nqDPyr53jWZ0Zv8xQtmMrak51jwRPTXQtuDkUlmCfUVua+c4XpLE6VPPsJeh4zpnM5138o94kJ9YZ\nj5fmdBt9BU2o6m1JqHrGXKg6KZM8DwD/cV2Xm2twXRcAdsP/udhXBIDjUKQ0Oq3JMFBH9WtONvy3\n92t7AMh1HGcGAFwCAFsAYLTruu+f/L0pACx3seT2GwDwpHIKOI5TFaDIs7tpo5IwZ/4/V/VL91Ah\nqvJi7iPzUcK3ynZ0FjA/SeNOVOL8QDb6lkD9EEwXB5P+9/Xg8v2SMTjKJ71hO1anYC/3lfAKpvPl\nwW34O56Tp6Y9kDYc6sgqCVBVF1dG5V2t9ij7ogIUgL2Nizojz8njApRXwpCxT+D/8FyUHN4jypQh\ndUw1pLwOdQvQoX2QwMfknQBlotVOaskzHVBdka15eKg710j6mUuTHlziIHgZLgJFCFAqDACA4QCQ\n5rqujpmIOm5/CgDfQ5FQdvp+AtRUzQOALX9rmRzHyQKABCiyb06DIiHrawDo4LruD47jvAkAUa7r\n3nZKG70B4FHXdZO1Oy667wkoeiFQEkpBW6dLILdrI9S0Tn4KXn6CmkuoqcRLRFaryq4V/IVN8jZP\ntu1WYu4dHS2QLUjPsfI4dui+7v1BrE7ymzh9yp5mtVgdHZOTznhszd/CdjhoImIhp13xU6ugusfr\n+ygdAaUiCAdIz978ESxYVH5bLVjQxN4AAHM/nYLKwfaZpG136sTN4IUrsBk8ohRPmVB49Ci7diqC\npalK7GVHU7XmWTNN1UnNUz4AIDI213XLnfy9BwBM+Lss3L8AbJr/TjqkZwLAJa7r/nzy2nIAOOS6\nbutT6k0DgAzXdR90HGcsFJn+rjnl90EA0NN1XTWNMu7//2uqykdVW9+q+g3o9xm/4Th1PxdLP2G6\nwO6+HZv/Dsbwb6reSDPCVJPxmMCW+cSmwEQ3rtoL+XuVUqFQdFmNNUEvLu3A6qT0WqZs53A3PJ7v\nX+Gh2179Pxlv8HUu9c7gOtOrQNnlAcwY5m2ZESX4SWMi9RWZnIDKMxdNZXWooPPLM2qtZcwSvndt\naYF9Px/cwKmBnkvi0X4msCUYU3i5Z4Sz+S/xNktC1eizh1G9HwCs+FugOonfAUDSOP0tqa2AIpPh\nqbjg5PWAcNK7fxcAQAWnCrPht78d0/d/lzeJtWGi6t/wPDcn1ZuF/Tu+fedNo75MbOhT9nP+Fx0s\nfUrt2xJZAUf7Fezfz+oEU0vnpamGovRCHrF4pB03e2R3JczN95qZOvtXxiaM6RoClJRvbueNOMTa\n1PS6+QlsOlrbV80dFWoClI6gMzuHa29onZYrjrM6PzYtGfB4dP6LloN5SieJ6Vvr2/iG5hs1O0wU\nZKnN+ZWJGYqSrEp4s94P/CLJoiCZ6gHUpnqd93PJf/G7/knI/EDv03lf+2fx4BCJRkUFrw6RQSH/\ndCEUyD99gZZQ5ThOSQDoBQDDyE8TAOB7x3GuAYCvAKAdAFwJAKNP/j4VAJ5zHGcIAIwDgDYA0BUA\nOP/+PwQlA7SnqdKp453PkE6dvhmYU6l7OTNhiApRh2YnsjplCX+TlxwxhBw42wAAIABJREFUFH5q\noSQBSoJO/5c8EPjirfMcUsLeuLmnH+vp2pFQ7wmstUx7gt+TNwQLXn8MUgtePdbxJOLv149R1rm1\nAs5QID3D3ZlZ7BqFibZIR4A6dyxnK68D+B1Sct0i4PGU/0jPpLr2uHpjnNNgurLOnhkpqHzwJ54K\nas09+H/tGMcDJNwTWPCkiasBuMZW77u04+uYf/mF7FqFD8h4PrCzTkkCFJ13Fw3nvo6/jlBHJeuA\n9tVvC553m04os7IU4x9Ay/znOM6NUESbUMd13YPkt+sA4CkAiAGAHCgi4vr0lN+bAcB4ADgXiniq\nHveEp0ojCWqohb/rbKQsF+F7gfuxmOLof/jiuXDCRFS29g4dro2esxX7xOgIr6mLeFoWJwsna45/\nTO2DYZpY9vI1PONBVAeczNXPXHsimmNB+M+WnGJhxYPq9CVe+SdJCKYpTaevFkO4hqni+/hbrfkT\n5317J24RKlMBHACgwod2vnkvo3lT38ZCwmNdP2V1dARjk/69nHeUiiapBDdZhpqLCAXXVPmfULl0\nrVg36VY75r/VY0Lb/BeWjOrRcTFurUfvR9dS7/rlNLX/Gfy0oW8ayU+ycY/7F90R6v5kOvDy//KS\nENREaOh41S3sWn55rFWZ//5brI6q73AApQgBMKMJETXIq7DGVocEVwc0ohKAR1WaCosSvPpfqY8V\nADcRegmv1ik/NeGmfSV9g5mITHLgBsWnqlasm9TTklD1v2KhyjokTZWf0TgmaLCMW1rH1lb7oHjp\nZK2Cjimr8gquSp45H6cH0Rnf0S5cK3bvC5gV/9yS21idgfEt2TUbMH3PlNkfAKBg9fqA2/ZSgLvs\n1jtQ+Uh1njuNakck38KkB/zTmlKMyOY+Z8MTuYnHBMfT8Hp9tAr/dm1pjyj8FNwlUBoIAICk/6qf\n1dbBwStfVC8PDjQd0ZVlzBI8U9h6P82XX4fKawdMhkOZ24qFKo8QlgmVU5schjlzAj/RBVMTs/bC\nfH6RWCgvGMnt7NWpA6iPkSXpl1/H6vz0DcnsruErprM4lJrONY1vTqcnYn5CNoFNbZaOD55p2ybQ\nefcl5mOBRCcdbTAFKAktSnGG6gFZ61B5XHJ9o7ZLzsGHne+k+SskoaaYvhW/5y51udC3tyfWuF30\nONfAVRW4iG5ax90bTPDCRtx2o5LCs/438PnqZ1CJLe2ezjolvXcqROk8l04gjE47j2arn71NLezj\nlVsi8OhWGwg2T5VfCEuhKmNlGaMPcsERdcZzP1XLFNVf947lfMeXeIOpcfU6VuebI3ijKlibyeqk\nLOiF64znIek0Io76Jehi93Sc+LhKlwyjdih03tfeW/nmVukd/v80mIgdlOuBmpZCwvu5mNw3rU4r\nVsfkhN57Myf+7bAKbww6aWv8NHvowEvBNGkp5v7R6kvwCaRClPzsoKwDI9XdS6DjlrTljUpizrRQ\n0/Dr4JaNl7Jr78UvCLgdnWf4sD4/NX0I6pOUyb7yV1++BlWbiNegtpymSmgbEz8fCZZw8y8Rqs4a\n8x+F9OEnf4ft0VntJ7M6wVwcMl8ScoPdH7jqXXqG/MvwAh/1rTpk3xa83JB12qUcXVXeUguvl/1x\niF379tyy7FruY9j8GPsUF6oyx2HH9OxrOXdUwpd9UTn1bm98BAE44/1bPbhz/ewvcQQnzTkGwPOO\nmRARAoS+6d4WJJ+qDxJw6jHpGaJiKTUCQH4uj5A0gck3RRN7A/Dk3rnDuFk+9kmzA4cK0jN0y8IB\n5ofa7mR1sp8lKcke5uuCLbPmMRdrs+7Jbc/qUI4urxAsn6rkHnbMf6teCG3zX1gKVRc1LeX+Mgcz\nyJuYnCjhIgDA9EZ84TMB9UHx03zip3N9sAUmHezqQ4hPafIBMA8IMNEeSWZVSSsYTNAxTzvEo56u\nKWtnE/DTn8yk3W2DuYBQ+wVvBAQJOs91wuVJfK9KwVrKwsNB4Cf6h5CenT7r1Rd0YnUKtu9QtkOR\nOoW7XyQMDZ80MH9DFRG95ZHX4eiGrf4KVTUtClUvFgtV1qGjqaLmFACAHrHYpKKzeEu5ng7WxWay\nmuPMmMhpX5T3BwCgzhjc9rFOzVidh19+B5VfTG6gHI8pdISII1djp/NFr01kdWwJdU4JHO1G+XIA\nzDQhGW8Jp/Hbzcgtaf5ImjtSd0yR52Ce3YL1al4mW6BM7QAAZb7whgYi1EyNtvrKeu98Vif5lsCj\nt2zCK3oCqZ3IVEyKWZCh5nOS0Ln1Naicn71RY4Qcx9LxWho9UycdHIfOs2/5vBEqr77kfVaH3ifx\nmqWMx/Qs+Vu2Bjy+YFAqlLEoVP1RLFTZh6SpajUQR6UteHE8u09yFDWByUJU72duOtp8MTcx2ejL\nFE4zzF9ETUAAAL+TFB4PJfDN1isE2+QT7BQVh67F7/poJe4jWHMGNu3lb/uT1fFzTvkaqUX9miyt\nbV7OO1Mna+rKkNQjuMJZMHHVml3s2lcNcX5PHdN07qOCyXIUPtRK/9eV3W9D5chV2axO4YEDuI5G\nlLBXCIb5798kVJ01jurlSCqHEmN5dBCFzmIZmcJZxXWcS2k7k2K55iwNcJ2dd/GTiUlfEpgJ6tLu\nrE7BUp5ni2LIrVh4jQA7SWvHbuTaPkqXoLMh7yjggmrPWO70rWpHQrAFuC4ZtVF5euosfiNxag72\nmH2NAtMgizWB1A5NEfTtlDeU99mk0sjKw/6g76/nScInDe6GygsmmaXu0kFUQhwqz1j8pbIvLykV\nyi7CzPCSTxVtp1N6Q1ankF3hcH7CWdd07snqWYVdy7jVm8MO11QFyQwcfvobI4SlUCVRKuhMQJrG\nQuce54BamyS1E72wlvK+qNq4jk70X+I87jCcnYcJHvVoDj5X9iW1IwlR6r7Ui2eDkmWU7drSGETF\n1xOummkMdISxpqNxhGCtl9TmYvm5ME8XFcolBJsTK7IBToMi+Y4FU3NGHZoBAL5Inqdshx52pDFv\n/vRcUkc9Ht1n1/kP35lhZs4yARWixMwCgE1Xpv+zzn1UiJLyZNL/I+N17jeYygnuldhxD9d4LX8M\nZyhIP5/ncH06nWuvKEwOfyzQwOWavWLYQ1ia/ySfqm3TsB/RyuYfsvtsLdY6/DPB1HwUthaEoR/M\nhAaKlzdhjVv/ODMtkM6z0/xhNHcYADeJlf2M+/nY2rQP3MijM398gefxo2gwgdAujLDjgydhd28S\n6ThZHdGUMOcOVqdmTZxzrWK6mf8WNXOYmjiCSXViarK0tQZI7WzLx0ECveq1VrajA50wfgkm/3Nh\nO+5jFrHQwIzZogm/tmQlKoaD68Dq40dQeXA8/y902llEAm5HJeLnDJb5L+UmO+a/lS+FtvnvrBGq\nwhFebRQRjTnp4ay5Hyn7CjWm4nDoK5iRlmL4fRz2NczflOtZX17B1julZKAAeoSgx+bGo3L0lRtZ\nnSPX4GCM0tPUFBjSc1G264qlOAVFxOX8P/RTyNTRirXriylBJDJfW32p7pFw4AZ+ICr/MT6kdV+7\ng9X5vAHWKO26kws6De/AjOo0n6PuGCkyXuVZJhqOxtrqGT99HXBfQROqbrQkVI0rFqqsQ4dSwU/o\nZGQPtYgm6YNNvcc7biSvEMzNX7d/nTrVf6yEyjtb7jVqh0KKXi21G3PmRH73G6tzNqDNSi6gfN9E\nYEtUYNLmH9i1PkQzJH2XHePwNyZFpoYDvNLKOVHc+8TNFzJPEERWw/5jBX9xc5bJtyIlkB/0wgeo\n/FpKMqujA+bTWr8tq1Owfz+7psLGj7mWLv6GM2vpghX9928RqsLSp0qCyUe95zZ+6qj8NlZ167Wr\nHg9V10swPZVFlMH+SDp8NDoClK2TpIS0bpg7ZeMgXmd9G0wV0SWD89HopIUxgduKv2dnsfpZTYVe\nSYhStSP11XA8NjXS6CVdeEXImTmeC3n1HyNM+QWcc4luODqM95IAZfKN1Yvivjaqe4r6Un9jtnzX\nvDxMeBVsIAlQzkWNUXn9vTxjw4hLsP/W+/U5OarJeEp9zf+vEbF4nVqe9yqrY9KXiQAlIf6m1co6\nIeNTFX76GyOEpabK1PynszgN3Y4l/2Xn87B1kw1Hcl6s8WrwCAS95KNhJ6OhnFSv8hS18KozxqwX\nsZYweRD3uzJ59pSlfDHPbKbOmRUOZKiU/ybjtteM2vZK8MqYxLnYUvtgp2vTkHTa/zlv8rkZPyxw\nwkfpuWji6o3/4VkWs69T59LU6U/kRhqK15yYp+2sN14GP9C5mfAI/y8oPcKfd1zA6tQY79/aSpHx\nmmAF8DBDAsX+m/Ca+NPzeI4FRVNVI9ZNvcGOpmrFK6GtqTprhSpbDqg67NdeLjI6oKR6MxfwyD6T\nvqTkoVLuKxOY/D/GWjHSztEufNGjPiA5HzZldRJuWsGu+QkTIca9hD8HDQH3UiOZ8HUfVE7t511E\nms77oe8j62auzUrpT4IdNByhdUBJcQEASn+J592mT85ldeKuV1Od+AkvHfCD6caRNZa7cSQPtJMJ\nI7JCBVSWNFXH52FaipJXbDLqS/UdBMWn6l8kVJ015j8Ke+G66vQhttTj0iKT3uF6VC5Yw5MKU2Zi\nKUwcAIcYR8XUZTUGL5yNys8l8QWews+FMfGzfuxaygA1qzcd4y/H+MbefCLVIgjPJVAYPJCF1e/P\nJzdidVTjkSC9w4Y/3oLKa/LeU95HBSgJV1zfi10ru3Abr2gAEyFKdITuRxyhBVONTjuJX2DzY8p9\nGqzwBgKU1P9lt6qjhHVcCSRYO6BV5mm6CvbwdF6q/qmzPwB3+E95j2sJM/Ow1lR6rtILa6LytJQ5\nyvHQ/J8APAeojgBlut7NXIed10Xus9cxxU5JUAtVoSaYnhHhp78xwlkrVEkItYgmFZ9IEbAQpbPA\nnvvzzexaHSJUSekN7pyLzRWpYMcnxPS+0Tl4w3sowagrhubR3Axj+hxjL6CLtdpXwvwUj8tDfuMh\n6btvx6dtneTR8z6ZoqwjCbQ0MbSXJuVSGnORQmqn5AgzUmBV2zrf9+7+3KTslb+SBJ0xzlz9nbKO\nznikiEmKxAeFuYnPDXrrpgZfW415PIJS7RJvBlNBp+zneL3T4vdb3JPVWZuHM2GEipDlFAtVZx90\nJpdzIdY0zP6a52hqcx/eYL5/ZQKro7MQmQh5OnXq1d7NrtEFRGfT9tKsuf9mvPlX+ICfEs+L5puQ\nCWyZsiRQNb6pVoEm7dVxwB9c7Xt2beVb6pXLZIwpwDU6iRH9lHVoX63u58KZDvFqZE0c2k4T5gIA\nNHoFO+nHAPeriRseOPHqgxvsmN9qvsz7rroYa4Z2tVJrhQC8OyBK7VDncffXVcrxvLwnjtV5Kwsf\nQGpczSkvdMZjghk/T7fSts46njifEzSnAI6wNT9kY9S7js9NHSGzGN4hLIUqJ7okRNbDaouCrJzT\n1P4/aPlcLFNHU7BEsq8ob/EVUr43CunZqYOjzmZnyhfUuQz5Lz7g7WSc8C83oq12TO+r/ULgjrU6\nhI+mgjGNjK32KxfU64/AOc5mCu20+P1aVK74KRe80j615TsX+D1SXzSX2+WleZ3nAu9KxAcJWDOk\nuyHaCiTIm4pTszStyf0od7bEQpTpnJp+NTctmrRD67yfy1OA3ZndjV2jYMLQXE6CG/sZ1mzq8G+l\n3MopSjImY9OvTXb9sMG/RFP1r3ZUlzBiJ15kfmxa0qgdCp3FYevDPEJw1QAewquC9DFO3YIXg64x\n3GnW5J0F24RKF8KUXstYHZ12wmEB88pBWLpnw/NYwE56QO1vIvnjHDsf586M+pb/PzrP9dB2PMbf\nueXTV+z4EpOILm/20Wlq/h+8nGPSO7xkBc7v+VNTOwEsOt/Pvlu403fF9+w4fevATyLjjDewz3RO\nOs8DSWHa14778B5R45XAD2PBclSv392Oo/ry10PbUf2sFap0UNCeh+Ier4iVd4tenahsx/QD2fA/\nsnH9N3iLDkDwBSSKUBN0vHxnSUtxFNqGZpy40qvx2GqHPgMAwKt11XPaliB4LB1TMUTP5E7yXmk2\nJQR7/no1RlvzZeMo7jwe/6jaBzAcNTq2Dqw2/tNiocpbhKVQpcOo/lc//sEuG875eCiCSca3t6dA\nRvoRPtmbsjLrLESFbfDxP+J7gzxcmn35eZL8f+xdd3gWxdY/m4Tee0sgIQXpIEVAERQ0FAuKYkcR\nBa9evSr2jg27FEEUEESxoBQLJYBSVESKSIeEFFoAqVIFksz3R3K/m3POkJl3nN193/D+nodHZ3N2\nZnbf3dkzp/yOyVgt3r6Xyawdwq2GSUswOWDqxZOZjJ+LvuxZTZyMs65qL89jMnNGjkDtvtHc8hBs\nHzed+dC0eVGFv0+JtwfOMC9TELYMwOtNp4d5dd7KKZhbSydQHACg3JIaqE0LCOuCxvLpuKGtKVUS\nNnBK+CuDzliVfsas639dpGZdNx0r2BT11I+wvtFoEO53WU4KHMnzWKmqYVGp+iCsVFmHzFJl8mDf\nsnknO9a/4v6A+5HBS6WBIiqGMwzn7ODXagI65x5X8+wTsUId2Ev7SVx0B5NJ6zoJtb28h35b8mSg\nc+qZyItZ5x23E4eWNgpTD2T0VSdjmI6lAy8tQ25xqJlu2Jq/yxX8k61x1YT4m83CHXRA55SwcACT\nib8l8A2Y3++Yl5Y8G/2aIrJaVdT+9fB0+OvMPu+VqmstKVUfBrdSFZqB6iVLQlS9+uRo4IuKrLzB\nFODHVJC9RJdtuhK152cHXvhS1rfsHFoIdFpjZbfGoKn1Gd/wj+2hXLzg3xjDY8VYv7KPAo+ZPafR\n/RacVRR5XG1R2fE0v/c6Ad2MALMvl9F5Nv38KOl8tGXWYbqWmGbl6lyHjsy6h+yURjEFHSupMS+5\ntZtUjLj8bm7x0omDM1HCbSlnsnN2PIuvK+alwLNHZfCSMHr2uh9Ru33y0YD7CEMfIalUidOnISdr\ne5Ey2Y/xj0ndNwIP6pM92C3fwDtH2UcqAggviosKAq2kbitIVHbtP5zEViidlzx9Cl9NeyaWI2Px\nDB63LA82uYG8dFEumPKRsp9L7sQM5rLafyZKi63fYs9/+HtZewSeo62Pko6i07sT3ZzZAx1fRoh5\n0VocyP9zi+nKfgB4qZbLVnKKiZRmmMXbVFmlCQi0ogQAQE1y7A+N/BpTRZSiV/NLJUdxtqosHERn\nc6GjRFGm/CXv8zhck/dJ+ls0SULt2QumBjyWH7X/HDh3eKqKjftPB0+mY2bkrmV4LImXgZvJ6zHH\n0cNVM84iqejH0g4n2GKhVP0CAHR4FMepVJriXrC/bHzKch5zHefwMenbb2oIE2S8zj9cF3fBSvjC\nzbxmn2nGpgncuh9+z8/LpAW/3XZeIqoBjt3N2cZJRClozUUAvbqLu4fg807U5t/m+EfVNVMp6G/j\nR6B6uRox4rw+dtx/v48Pu//sw3HAIcSQ4hQudpsu4T3qWsadD45OP/TlBAB4uCp2CfoZJC8778ic\neImMup8LnsCB0JUh8Iwe2Xxk11UJAi8t0f1mTs4XuUjtSpONHwNqDh+dfk6JM1hmPWdm17E8eKk0\n0LEaPs5/ZxrJlwhqBUoGt9yIpkqEDrykUHDTTRZsCQlRDWNRe9bPM5mMzhzTRpKSRZKSVzpKFEXp\njvuVMvJnKvANaxjBh5BUqpySJSGiAY59ovXvpIGbxAW37x6+s64xNvAK9To41qKOUkb2wrR+Re1q\ndGvRq9gznR2jY3XbeBWTqdz9n++mdGES1xMJagUqqnYtdixnz94AZ3f2OVFcVQ/TAcjuWQohhtRZ\ndC/tzwkNf5w8IeB+kibzOm2pGnXa3MK+b7nFq8ZVOJNO57ru3sGD/akr2vi6SCHmlOn2MkOZa7F3\nOyazaNw45Vg0A0+2vlA2+5TseUymVwvsOcjdr3Yxma4LORlZShkdUCVKNp+mowhL/zC1xan6lbw+\nqy18+Bf+gWjoBwDAVRu9d+/pwAlBr5gJQtP9F1FNdCjRAx0zpRqgODQrEbVTWnzMZHQCr/1054SC\ned5PN6IMGcSySTMPdceX3XvK0K1T5NgUwWZV0EFEM0ykmbeeM/BnP0oChj/iMjQgV+faa/1akR2b\n3EBd/FYHpRbjArmnukgqHbQnRcuX88xZKentDFIi6D51YWh6nwEAMq/HmWE6ZXyKC0zeFUr0CaBH\n9kmt41FHTzEZWs3j0B18019t9WHULjOKW8WmJ8xH7SajsWKYNeEd+Dt7h7fuv+oxovHVD1npa9VH\nQ8LuP+sQQqlEmSoWVXrjgMv2bwxhMpt3jUbtSCdC2a8MdI4X3c/rotGd4+kefEdaci4nOQx07Pyx\n8P3ZNb0pk1nfAddCdJXCILoNOZJrZSwZKv1QBrWvqtdDIqVR/qceD8p3hFqJYnQJCVxxzztxgh1j\n45PfQ/YhpUqLjFpElhlrAr0gXnU/dd/EH3udJ0H2TA3Y3hm1J9ZfwmRsxRBJlSgKokRF1al9FkGM\nWj/jb2LeDzy8IKIbdl3JlNXN84hi8by9mC4KnXtGS2VV/Dxw977p2DLQxIqku7jS2fYubMVd+SLn\nQ7xmDFZ03vviSiZTn3jGl7/K+6HXMT2BX3uP+ljfiMnBc84WatqVMMwRmkqVBkz90fS8tFtlDzZn\nYjcZi4JWKQfgBZ51FChbVp/y0yvwgySxUIcTyzhuJc89JYqi1PXYtaf1QZTB0PJLCw0ffCSSyfTr\nuxi1v9hMlU6A2BtwMobsQ0phqkDpsMCXnYVdrbTcjE0kfIaTFmQVClKycRFqWYHn8qQwtJdW1Fmr\n5rJjsr4r0ljCz3lftGj5r2+N/Udz8wI6SpQObGX40sxU+VpG2uPV/daXFPvW+WZEVMBrsuwajt6I\nlaoKX3hXqaMonCvZf8VGqdr6Ll5AEh7iD5LOh/zoDbgfnV20m+42ahI2zjQ0CkiV9PMp7UdNKnpZ\nvzvYsewnyyrHsgWdD2D5Hjjz0uZvqqdgq+e47MUSqB0La5mMydimSoNOKR2Rk4Par9fi8xm1oQFq\nf99UXXhXdl1tn+uolKHWz/J5areZ05pbbOnzGlGuHJPRIWLVAQ3MBuBxRTof+3aleFxc1Yl2Ykh7\ntb4ctXP3cooHHdAMOFkVg2Yj1HGmFLasWbYUbNONZt5RzDH1UibfZLcvRebzRZCEAJwjSlVIxlSV\nrhcjGgzG6Zn1XzArr0DR48pbUHvud1POIvk/uOoCs9T331dgN4xOtfVQyBZyayyaGQQAUH4btx7V\neRs/d09n8Ht2MSmJpzNHWoYEAGDtcpyNaVorMqIVLhqe98dGJmMS86YDKcHi181QW0ZLcex6/Hv8\nMoKTzuqM5Sf8ziKUja8TYE7Pa/d7PyZT9Qo7wdmnk7GVpWTKSqN+bClR25/HSl79oWYWJpOx3YIv\nlArVY0STK+3EVK2cFI6pso6S2ceZEpU6BisNSfdypUHnQd75ZKWAz9GBNNh0AU3tN1t0daCjRFHY\nykzSUc7+vrI9kyn9HZ5z6jgeT0Z3qbZS5GW7353TuMUiZQjua+bx8pK+EgKeo6yWWzyY1Xej2Hl5\nZdSuK7kdLDarbFkupDhHBp1UcjlRrh3l2cvSJCaEj6Z9y2SuSsNxgfLxsRKlc39kChQ974Fs/q5u\naYtpQ7SeBQm85M0qrWZHYGPRDQAAwPg330VtN3nFKP69C89nzW2e6lP/j3PF/ReSlipT8k+TBVXr\n4acZPACQMvMT5Vi0sG3DJ8xM8Sz9nRT5BQCIu1HtKqJw2vHrmvsNvi6/rQEHBmKXz8qX1MGdtBYW\nAEDugYPsmA5oSjqNaZJB5zncn8tdR7fE4PR/NwN0TWDL1agDv3mZUseSTYDki5E0GLtmZPPp2fMm\n1M5bs0k5P6/hZaYu7UdWE5SWtPLyPaBxagAAFT9TW4xzFmDm/h+afMtkhh+KRe05TSszGR2ofgu/\nLFVNe9uxVK2YHNyWqrBSRRBmIf4fZHPu0Ru7R0804LEkS8bgDC+dosu27qGt39imq4b2Zet+HLiL\np1yX6ItjWfZmVGcyY5In4fmU5endqrGLM0x+e0qbAQAwbxqmY7F5DyMT4lA7d2um8hw316B9/8LP\nYo333eH7A/CXZoaGUQCYeQFkcC2UYTS2VO1+bQSc2uY9pcK5olSFpPtPhge24iynkQk8lTxuzl2o\nndlTzS/itzWApsTPmfcFk+l5+Y2oLcv4Mnlh5TI4cL6MrDg9iS2l1i39sdQyBwd0JDLKblx11chA\nlSiqQAHwOCed66g2nn+4Ul4kv3NPfh3fr8DH3k1QK1Vuwsv4LZPzpu3kloi+0dhi4YB73GMyzF4y\nQylDr6PrwLuZTClQZxPr/D6/P0uIYN83s2YFO2O4LQVKB53WcNqgpS1LBtxP/FTcz8GDvDyb6xBh\n919Qo1y1GNG014PomJs131Rw0z/upcXL1qJny8Viogj++Q1XpmteraYVMIXJHCMrV2LHcg//5cpY\nMtBivHl/8yw+k7F2Psm5tf6ugRfwhIfNeIce3I03psPr8ABmnTlS7rV61244i2TR8zEZ2/TdjWjZ\nmB2bM0fCoWDQN4VsjuevvAG1KXP92c6jiJ+KKS8SHjRbs/c8hJ+z2u+6R1jqZxC6rLTZrF+/k0gG\nNr4v7r9qMaJZLzuWquWfBrelKiSVKqn7j5SEgGXq2JYdz/CPQMzLLr2gETxzjPIwuRmT0u02XK4k\n6gdeg82WWV0Hbln3TvXiAbKlZtvZjVOXC4Ce24X1I4npMmED14EtJXxoBn9enm/IebIoaBHzYfEt\nziJpH7ICz7Q+YVRsfSYzaymOd2n/FKciqDIp8HqWsvu+/7sk1F7VZiqTsfUeuvlM6Yz15314va05\n2j1laP8g/NtX/9A7d2Sbofx5OV4X6zA6zPWRiQ3Zsdy0DIlk0fMJipiqsFIV3GjbsrRYnsK1+MKQ\nvdSUOO14N74DLDNTbd491g+b/n8Zzkn1vLQe2ejXZt/FATJKA1pOjhhoAAAgAElEQVT+ASD475kO\n07aXcPPj72XAu04/dZfh9ebDmEVMpoSDN1u6166zLlCLTvlkTmhL+dlswfSeRVbBHGWzNyxU9kNp\ncAAAvvwGh3b0i+YKdnGAiXejffIOWLnmb0+VqvLVYkSznnaUqt+mhJUq67AVqO7mBzGnG97FH3yA\nZ3Otbofjo/z+QNvKjoz7Dsdu0Cwo0/mE4v2xiW934ftIizC7CfqxAwDIPXQItcdt/5nJZOfg8j93\nj72fd06WIFqSxiZCkUMt2DZAsvn0SUtG7ZmJKcp+ZNdwzUZMG3JP5V1M5rKbBqD2/M8navWtgpvZ\norHL8XvwQTS3nHnFAeiHpap8tRjRrMeDakEN/PbZI2GlyjZkSpVJNowMthQLiitSe7JjZ7ruVvbj\n1uIpG2vTaVxb7sHYwAtHAwTfgu+7de8HXAYmpfH3yn7cXOD9Vg4pDt2OrQhVPnbPVaMDuiGSucp1\n0H09Zr9e0IyXfdL5LboMHsSO7eqK643GD/EuplTn2dz9MF876ryjLvmi6lcXoUbI6SaCxlJ1jihV\nyuw/x3E2AEDhOhKRAFAaANoIIX4vJPc6ADwGALcJIT4tdLwt5OeDNQOA3QDwfOG/myCpxQlISaEf\nD/V5Wi8xLeKrUX9O9jJu/wpzPNW/nmd86fTjFnQ+trL7NelITWU/qn51z3OrH8YxBABJ92C3r+6i\nrLVz7IZL+by+LpGJ7JmJXdGy59mtVHKda7V17w9+n8SOVb3COyXKlPjVBDIlio+lvoeLs2VFqNW/\n4S9/4ySBl/vczGTy1qqTOEwUFKGRV+7metfrkutQO3fLVtfGorC1ITLlG1StE6mCs+Z7gXD239lO\ncJxXAKCPEKJpoWPtAWA8AFQHgMf+qzQ5jlMJALYCwFsAMBwALgaAGQBwmRDCeCWVWapMPjgn+/CP\na7On8UO7ZEc8k9HJGNKByZwzh/HYgLgn8a2UvdSJnxKi0cfsEI3qzPmvWzlhXt1B6agtYxDXGosS\nry5XK68yZL6K72vqHWoSURlMA+XTP8N9x98c+IdMhogWPBvy6i9wUeEZTXj8mJcwsa4lfsKDgaPP\nx1TsC5t+w2S8tPy66c7xk6vJFoJtPqaw5d1o/SquaVjzPTtu8KCwVFWNEc2T7Viqln0R3JaqgJQq\nx3GiAGAHAAwTQowsOFYKAFYCwCDIr5X+TCGlagAAvAAAsaJgIMdxPgGAHCHEAD6CHtyMqbIls/cB\nbP6uNdK9OJGtw7HSkt5PXY2+13kXs2O5R44oz/OTXVlnrJ6NOjMZWoRUB86P9dgxcSmP7zCBl5a7\nvpt4YdtBlbDy0fL1e5lM7RFqV42fVB62xv7zXu6mqjkm8Hc1/U2+2Yl/FG9csh/hY9V9y50PJ0Dx\nUSBt9OPlnL2k4DC5Ll9iqs4hpSpQ8s8+AFAJACYXOvYCAPwohPjVcdjv1BIAVgusuf0OAJxSWgHH\ncaoBQDUAgPLAeX50YPISd1hzhh2j/ZxM4an2fzTHDJjJI9178akSpffCLlHK2CJPlCGyejXUlhVy\n1emHLzI/nUUysH7nnjeLHbv08rvYsRLz1AVfIxtjd5+Oa08GOm+d65jWuCY7NrMpVjxrb1B/2N20\nIHhpnaBp6iYKlAxbb+GWTSBJabZcuv/kPBvofcEV7Nh9aZgSZHQid/PamqNOP8fm4t/ZlkvXa+Jg\nFaRZ7oQwus2n2LOy/iZ//HCOD5yjfiBQpWowAHwphDgM8P/xUtcDwNmeogoAQFkNDwNAxQDHBQC4\nHwCeBwCoUOsYpPxR9KJy8E6+cxz97EjUfjaOu2ru3UWsPu04MSJFmWQeFJ981lvyP9hiDzZ5iZuN\n5NaJ0vvwy7Yym38oWg3D532YOYLJ0Pua/ahkh/6mO0GrpoHZOh+pEqBWoOSLrvI0rWvb8TS+jzf0\nW8Rknq+xUdnv7PlfonaPBtwNLs5wNmcKnXpmJjvyFm/xZ5MW2k1/m7uUdYK1Zy+erpQxsQa4yekm\ng8kcdWQiyvGyU3sGtERtmVvqDAmi0hmr/m98rO0X8CxpFeT3lbzPkvVY553v2YNUq9CIQbMFU+WM\nVtRY0QrTdhwX/hRUplm+xRXa7j/HceIBIA0AOgohfnMcpyQArAKAR4QQKQUyWYDdf8Mh3/XXp1A/\nD0F+MPv5AU0UW6q2dHAuC+R0z6FTXsYkYNj0RTs1Lxa1S12eZdQPhZumbp1+bLmOdDLQ3HTbJXyG\n2abjH/GvQoAMwe7SAACWZUkTBM7Wt9FYGv36HR8U5rj7H6r9wilBDlx4SCLpDnR+izez8Dv/aCzf\nOKj6PVvfheGX+69Fdzvuv1+/Kj7uv8EAsEYI8VtBuy4ANAWAKYXcflUA4H3HcXoKIW4BgDWQ7zIs\njPMLjgcEIcQBADgAAFDR4YzUFDoPm5vM1nS34KaVReccai2psbQyk/k0dpGyb50dui3LEOuHsuaD\nPSuQThp/j6tulRxdrzxP535svZm4cB9xT0G5tD9m1/9x8gRlP7J7uOsJbDmrB9yCQalObP1eMlCq\nCpl1QqfvT3b8gtqbz3CLyisNvVMinHbN2TGdAtwUfsdCMVAlGABSs2qjdvyn3GcUufB3dozCZH1p\ntoyTiNKkJNN7SGWOz+Vs6Y/GFj0/3bGCFeHsv8JC+VapnQDwrBDig4JjkQBQh4j+CgBvAMBnQogD\njuNUhnzr1hsAMBIAOgPATPiH2X8yRnW3Foe0EXy3kPgfvKPwOwjSS4uXW8H+MmjFDJFit+UjSjMZ\nN+8PLd8ycf9FTCar/UnU3vpJayaT3o0TGJrM6VRP7HpdNGGcUT860Ck7MnYbJgS9pwG/PzpIXFEK\ntdPa2SkCfWAgDxOoNsEOxYPOe5BzKeHE+tGME0tnfBkaf4hdrfVfMIsxiyhbFrXzTpw4i6Q3oNfe\nq/XlTGb26nnKfnTelZ3TcD3J6L52ssNNUetXHF2ztyNOQPLFUlUlRrTs9h8rfS2d9mixsFRdC/nc\nVFP+e0AIkQv5itb/w3GcXAA4VGBVAiHEYcdxegHAaAB4EfJ5qu75JwoVAEDq2rLsYacxFltvUpeO\nOX7dBUym3Ne/oTZVoACAWUya/tqUiUSDOy+WLYuXrR2XmzI66BuNf3fZdVFeqna/8yDag2nYapkA\n/HeX3zNa/+4kk+mylhxrsZrJAE7IM74/kacDjwY1VTJ1arfFlSivlBmYimMSJyTxxI/KJehHmtfS\n3PkUVvKiX+Xzo4knQ2tIqDMmeOf+++FTbCXs8Ng9TKbSp+pnUTaWzvjO1+qMXx3M2Yrvtc4adCyP\nx6vSTZFOPz3q8+8rP49nwercn4MDsNK94hUZ1UrR89Mdi37DdGIEtd5djfjeMOwhJBnVdSxVpkGh\nwW5elaVlr3t4jESyaJheZ+qH2BKSNCjwYsX/ZHyTsXTG9jQLS+L2kMX/BDq29vgG/chkqDtUrJJs\nJMj64mXs3BJJjsn4vZhKhO7iTeEl5YTNvinpbOlpPCyg8ifqPXBkRWwdMaFnAdB77rqu74PaOvGh\nUXVqs2OzVs1FbWq1A9Cz3Ok8m1lf4o147A2cxNOrxCW/LFWtLrVjqfplevGwVAU9bLmcTB5+Wwtc\nuz84e/ucMdhdIuO1SX4Lj08XSgCA2n02obbpQk2VKFk/H/5lKX+ZILIyp9KYvXExatuigYhqwAsR\nz/r1O2U/Ovf16DiuVFUAtVJl6xmn0LlnTUbzD07MSvwspo3ilt/E+7HlV2fOWS/Lit+qrysuBceK\nJQ3grjRKJSLbxZsoCDJE1cPvQc6u7LNIFg2bmwCK02fwJ6C2hgIlg8496rxWnUlNIbuuUpCF2qkf\n8e9r0p04UzdnNy8mzbIRJTGBFKbrpuw7ooJpOIifdBthFCOlisL04W/YKge1Zc4Ua9lKBF/O4/Em\nDT8MfJGjCpQMOvM7chOPJ6v4OTZJa8U9AedKMinjk3uYsnO4t2DoKFC64/NFzmhKRpDG8dDadqCO\n4yl1WD1WRt8P2LH9fXCK/C0xFzIZOsctEioPXjtzN5OhSpTsvezVvR9q511UlsmkTJ3EjlEk18Nx\ncfLnACtROgpv2+c4U3y18e6V8dF57+i8L7p/MJMpN+03dozimeqBJ+/ooPGbfF1QFxczg3TOEdgV\nnbKTv0+2QiIoqbRJebb2yT7Fu4WeU8wIIalUyWKqbCHvj41KGVreRufBzu3KGSQWfPaRsh+dXcee\nB/GLtuYxtTtQ1k9kFZx2TBUoU5hyN/nJwGzz+fJyp0hrM8qgUyCY/2aS33A0vi5b1/nMnzzbjRYf\nz/y8JZOJuwknFXcdeDeTKbURW1ojmISuoozj4mxZk2TccMnj7dzX/lt2sGO3VMCkuzpz1FGg3HRN\nU6Sf+Zkdu5ckREgV7K59UXv2omnKsaTXQOrD2noW5Fxs2JomK1s28IoFRY7lR+0/B8LZf0GNsjVj\nRNJ1D6FjNcaqd3O0vlvcU/yc0/MboHbJy7YxmVA0r0YuxFrM7Eazled4qcS42Y+tsdyMbTmdjF0Y\nB//FSRDXtP9c2Y9b98iUfsTPZ0FGLvlobZzxdX8DbjnTGWvv/aQM1Sgz11Gvy25A7c2DOJ/Sea9m\nsGO5e3ngNUVULCZnzcnarpyTzn3d+i7/2Cc8FPgGbNuLXCHYfBdWKq09L9E0oYRblGy9OzRTFQBg\n1iq8CaAF3K1CUQ/Vj5iqClViRKuudmKqfp4Z3DFVIalUmdb+o3BK8YdfnFKnapt8gJ/fxzMEl7Us\noRxL1a9sfJriK4Ms7VdnV0itCJStVxfbpuJ+olZVYDLr/0NK/ViinJAVGbbFlEzL7wDIS/BQNF6F\njcab2uScRfJ/kF3reT/jClAN+nH3jpekkBS2fkOd82Tn0EzMp6pvUfZren90NnEUVhV3yuu2LPC4\nHhlszVG2/l6y8iBq/9icK8YmKG6cT0WBKqtUUfWjoHKFytH2lKpvHgsrVbYhU6pC0XpE57w75xiT\nuaO+2oytlTpdoiRqy8qQ6HwUe194NWrnZJpZ8qhMm1X9mEz1K1OV8/GbNbrUYpxVdKoLD4i1Bb+v\n1c+xTJ6p3m16MBma8RX3zSAmk/QvO1aEg99j6o6qV6if5+zHJNm9D3J3vlu/vanSqwOdvqNq10Lt\nnD17leO7af3087syaTt3a9LvgQl8sVRVjhatu9hRqn76NriVqpCMqTIFdQfo1JmSfgRIkCpNG9ft\nh0L2wtA4CJ2XOu09noUVcRJHj8Q/ynfNiYvuQO2GN8vmzJUoE9DrqA78g7P1U3yfE26V8Du5BN3F\n89tE/JGmfFMAAE3G4My5SElZPfrh1OEdsqUMefmhSFp8OzsWRwosUEVVBr1rV2d8VXiYL4G2PqQ6\nSpROEkPyG5LxNaxQtO+mo3gGpw7Hkg507tFukpW8VuLOdusZl8EktlI2n8uvvwO1nV/M7iF/FswU\nKEq4S7nifAtUP0cQkpYqGU9V22dx1owpK3LaJOx7T7xDHdS74xm+u4wkXsR1D6l3m24yoesgshYO\ncp7x+ywmc1U9XoTaK9jicZEhFCybthDsO/3i6qrRua5DsxKZTIVSPCQhqjuPj/ITGW9gl1PDx9S1\nM938TZ02OARCyqGmARqLmnsJ3zV5eV3xKzA5ano7TlMR1TAWtXMyslDbN0vVxZYsVd+FLVWewFZp\nCapE6X3IuUzjsXhX6GbGmVsfrlKOOuYrrwsvuTL/c1xypVeXa5nM7MXTixxbhlD4IJsqxme6Y2W+\nxAKzciVTSN06HQoDGUwYu03JHJuNpO+Kej5dBnO3Xenv7Ljt3PpI6imd/DwZcaU64g6UAcvy8c2u\nVaZEuYXUifhdkfGR6ShROtdOlShb68vpHnxzuvAjXlLKZKxZP89E7ebv4vfrzMf+FGsPZ/8FMUxj\nqkwWkL6beJbNtMbYomOLJVrnvH6buEtjYCV1HA9Lq50gIcwbiAnzaBwWAI/F0ulHB0fmxLNjFXum\no7bpfaZ1yW5fzXm8JjZqwI65BVsWyYhyPIg377japU0hI1WVcYKZwC2rmAy2lB+TepIyuHntJn1l\nfsELkqdePFl5Hh2LkpoCmBGb6lzXvnt4hqBOpjdF6pj27Fhmnw+LHFsGN59DWi1DVinDpG9q3Zp2\n22zYt/GA55aq8zvbsVQt+T64LVXFRqmiJs/T4zj92/zGakJHLwN0dcb2030iTQEnhUl1Urt1cOZy\n/o6UmBe4ckbr/AEAZF4V+OIpg5tB1ibju/ksDM/CFAGNS3KSTL8/Qm6NHZmEFfzc1HQmozOWm+79\nrJewslG+Fc8wpYkewZaQ4OY6ZeveRzZthNqz539p1A9DhCRrOs8OZalqnfDF/VcpWpx/0QNW+loy\n+3EjpcpxnNcB4AoAiAGAYwAwCwAeF0IcPIt8LwB4BABaQH6x0fUA8JQQ4qeixglJ91+tZifhoW+w\ntWHIBFJMtZuknItBYUlbC6GXLihbH1tpcde9gZuOqUsKAODWq7D75sdJ45Xz0fstJAevUp6mlanl\nd1yPtx9AHieoOk82v5bLb0JtGdu/W8qirJ+oGFwiKK9zDd73l9h97eb7bXqtbV7AStWqgVN532S9\ni5vFyVCTIPDanbbuRyisiU1HUQZzM4/Dm1l43WxR0sz6qQPVunkOM6rnAsCtkK8cVQaAyQAwCc7+\nhagCAKMAYCHkK2F3A8Acx3EaCyE4k24Bio2lygSyWmXnt8K70qOd9zMZHQZzW/EmbqWbUz87gDyY\nXgXZWK9nYsblx+P4fdZBsNFkyH6fno06o3be0aOujaVz/XTxfjSWEzXSvmUxb3+1xi7u8lO5Mm0r\nccBLax9FZA2uVOXu2xdwP25aS7w+z0Y/Mndb0r045u3vK7hM6e/txMVRV2fcjWqOLluZjzuf5BuS\nDfcHzrkng8kcg8ZSdaElS9Wcx/8AgMKsuQeECJwm3nGcHgAwVQhRUSn8v3P2AMC9QojpZ5UpLkrV\nX7fgj0eVafzhy/s78IKeOpA96L07XonaOdvOqthah6wgbewzOA7BSwWuZ8+bmMyBV3GobZXeacqx\n3cTh/vieVfuWlysyjTOypRDQOda4M4vJ0HIu1E0EABD7rBkJJYVbnEZ+fnBk/dhS4NykKzAdz++N\nCoXOvaexnnO3cUUs2F3TMth67mgZtTIz8f3xS6lq08mOUrV47uO7AaBOoUNDhRAvBNqP4zhvAkAH\nIURnpXC+fHMAWA0AjYUQZ/1gFRulylagup9p4k9ncJmLiZU4/ocBTCa9W+DuClvY/hzfldV/MfCS\nHX4v7pEJcaiduzXT0/FNFnga+wOgF/9jC6kf4AymRuNOMhmxcr1X0zGCm3FGXn60RUdeC9H5dY1E\nEsPPmE36/AAAJA1WuyO9hFvrVEQFXkHClpWbgrv/fGBUrxQt2nS830pfi1Oe+MeWKsdx+kK+66+L\nEOJ3DfmaAPAzAEwXQjxRlGxIxlTJoGNq737znagdCfxe2ooFOH4ddXmpF1iqQMnGSgBOgJn4Oubo\nagjeWSJ0FCgdeB3oS5GbnqWUcdN6c/l1mBTTWar+IMoUKNr3zOPlmUyfcpi5X2fOJ1Pi2LGkZPwB\n1Nmeya6dbhQSblOTvM7Yya0TZSOwBcP0WaDkuYn/5gWE3YozyruIy0Qd5TxVc+ZQ4kwzRcffRAuz\nsUosqoPa1Dor66fh9MFMhv6ulJz0bHOkcFoTTqzVajoHtxQoAHf5/IIEuUIINbPuWeA4zvUA8AEA\nXKWpUNUFgPkAMA8AnlTKFxdLlS1ENcCkojuvjWEy9eZhpTh3g7p+mJfZMH7DLWufDH/NTkDtSr22\nGvWT+Rqp0/aEXtr20AzMkdOhNM/qccutOmT3+UxmfZs85ViqfmXju+kuphuQcl9zJYZij+QDKAuC\nN5kPhYzcd+O96vhD2ncria74ei3iKm/IY+BkYQtpk/Fvn9iffxtoXBONaTLFVRu5UeDbJrzmpVcw\nfTafTMdxVsPiOeUEhem1e2kRjGjVBLXz/sChDH65/9p2sGOpWjTvCWNKBcdxBgDA2wBwpRCCZ1Bx\n+VgA+AEAZgghHtEaIxSVqjJ1YkTsnQ+jY9HDsMXkeF8eHF02Gy9OOuZxW0gdz5+BzF44481UsaCF\nSWVFoXVe6lcz8aL75K2cYNG0BIMKbiqUtMixToFjm7s9PykDZGiy9FbUjh3MOYZyD0izjIscX+c6\nKWcOAMCYejgI3tYHRxYwTNcJGahrZs4WnkHtZ6yN1+P/eS++jzXH8HuYOg678pLu5m48LxULt2L5\nZCWUbNX79Mpd7ItSVdGiUjXfTKlyHOcBAHgeAHoIIZR+ZsdxzgOABQAwSQjxjPY4oahU2bJUbf+q\nOTtW/3rMOqz1oF/bnx8ktbjarOYWhFWtI9gxG5DtiP/gxOdKeMmtZQo/Y+AAeAapKMl/57oL8O9c\n/iu1JUZcyMea99Uk5XwYLPHh5HWWMOcbUA+YItifKRl05rjtRWwh3XzX+8pzdMfSuY5av+LEp/R3\nmzCZCjOwFUxWjN0WdOoDUth6FrYO51bChAftsI/TmM3ZS2YwGa8U5XNYqRKQX4wAWR2EEOUL/n4L\nAHxQqD0RAO4AAMqoPFgIMeWs4xQXperAXXhxWvkiX5x0HlonCoeZiRxeEKLMYlxJ/WQX9yqp51yK\nSzJE/chLMvitWJjAz6QBHXRfz2MeFjTjwaUUex/g1pFaIwOPO/OSaDRnQX12zFZtObficWQINld5\n+md4Plu7TlKe07sTp8zJyVL/FjWWVmbH9nfBfEQ6yhC1VgMAPBXHqQ9U0Hl+KWEzAK9T5+Z7sG0o\nflcbPM/fU5qI42YMKYXOdUbF8neXPi/9t+DM8+euXQ+Z6455qlRVrBgt2l7wbyt9LVzwZFAzqodk\noLoTFQWRVTG/TLXxJAbmRX4ejZup8zPfsVOeFJ2XOv0tvsOhgaOUoRoA4MFY/MLKx5J0TdAnLZkc\n4Upej6tuJUfUWVlx33D3XxLg+zNkKw/KfLfvdaidt4bHuph8AEUnnuGkc38odH5TmQL1xQ7+G94Y\ng39DEwUKACCyWtUi56MLet7BAZxSoepE/K7oKFC5l/D4rciF2IKR25XLuPX7hALibyYfdg3y4ZTs\nb9kx081E+tt4Xdp601gm0/plzFfXppQdt7eWMk8UKN1+bCnqm+8mcXGcG5U9v6Yud7qWyt4LGrJS\nDrhFm1q8sq6vw2Sih+H3+ZYKONxhRIRW5Uj7CDzcMyQRkpaqti1Li+UpOIBch4TRS/4ZLz8Cu4fg\nD3udt80+7Cb3xzQtesfXzVA75jqz1Hs650sG3MVkDjTDWWGy+3OsH/4A/TKcf4BksLVrThtJMs4e\nULsIUz+U3PtB+N5TBnEAgJwdO5V9uwW/EzZ0Poq92/dG7VnLZynn0+4PvkFb0Uriei0G8NuCTWFK\ntqkzFt2U0A0JAI85q5At8W7MDDxJwC3rrB/uv4oVo0XbdpYsVT8Gt6UqJJUq05gqP5UqHRlaKgUA\nYMX5uPxE73a9mAwtZuq3kkfh94c02ODltZouzCYubtmzOWvFbNRu8RZn8q/zDlZyZfUbk+4J3ILs\nJdwMqLZHYcD7oUH5WR/FMplNF36i7IeOdf5L/2IyNd5XZ9RSa+eCzz5iMm5l0yZ+wuecWwcn/WR0\n5/Pp1e161E4bUJ3JNHwMX3tEi/OYTN7azeyYG/BLqWrX9j4rff248KmgVqpC0v3nJqgbZva6H5kM\nfUHbP8VfxqptsaVMj5OFy3CXAc/U6rwWZzVOPsJfap1FZtz2n1H77voX8QlpgI7V7mnJ/SFcWg2n\nSXhkJOZvCmqlWzvETskgGUw/gDS2RsYpROsj3hJzIZOJTGyI2rMX80oJdPxDubzOV5VIXhyZYmZi\nCu5X4rqiTPl5u9Ru3rXZEioCkqjcsyHPEKSeg1avceWsFmDlzFSZn3IUZ4tObsRpVVT9yvqWyTy1\nF6fxv1pLXU7FFDIXrrMUu+9pog6AntuSQkeBkoEqUR0e5fVHT92LEz9WP6N+5/cP5m5wut6mZfM4\nXFoZI7m/7Hf+qsixAXjBeFmx+Gq/VEHtAxceYjJ87ODaXJwVAoKh9p8nKDaWKltBzVFxDVA7J3Ob\n6TQRYpeXYcey2nMGahO4ZYHb+inP+Eq4FacWnp7fgMnMbPwFaleK4NdO4eZunGLfPXyBrTHW7CNA\ny8DolIAxhc616vB20V3ynLlfMBmd+6hDkukWTGNb6HX128TT4QdWwsfu3SWpn/gT7ue893g/OjFD\nrF/Nj6St9U6Hn02HUPb9xAR2TAVbCoGsfuPsNfOV/VKLKLWGBiNs/O6+WKoqWLRULQpbqnyB7IW9\n7CbM3BwhYSfPq1TOyviUG+mD6B+4EDE6mS6Mbu1M0i+dyI51ugHvHCtcxlOOK2WrlajL+2IG8XnZ\nHzMZt65LpkDR+/zhX9xsOK1xTXaMKlFu7hz1LG64LVOMq6dgS5DpczfzihGo/ei/ZQkbathiJ9fp\nx2mD2a+ncg5RmAqUi4iTbyYAfu5lob/MvTSZW2wbEiVGl77B9B5RlEw6YmUsE7QZyu9HdY1qEBSy\nAth0ztKEmj54c6ETR02zsQF4RvbOaU2ZTHRfNcs6OFjPSdmlriwgQ1BaqkAAhKABxwQhaamSBaqb\nPEim7oEm72PXQ8xLPPCZ8q3UkbA924qn8JLDxwRpI/jHNuN6HAhuK8uHmtAB9MzopjidjDdMJVO4\nWd8WTO6HrJzLNdHqFPldT2C3ar3XzJIf6i7DMTvZHdQJJDrw8hnPeI1bNtP6Y1eRThmUkHHVWMDu\nh3nwOI2d04EtV/2JPE4nQd8DankFMLO+yua86CR2WcrY272K+fWj9l/FCvVE+/PtWKp+WPJ02FJl\nG6lry3q2GMnGiQH14kBJ62RxCbRvaYAuoTDIfowvViZp62kf8/iKjMtwPEPLN3jcSu3hgS+MVIGy\nCVsL0dEbsOK39F0+Z1nfCyeOZ8dU58lIBtP7qe+RSWyYjnt3U0EAACAASURBVAIlV2rIfX1NfV8z\nP+eUF9Ah8KoFpmSbOjDpZ8B2Tq9B53jewh1MZrbBWH5nPtra3Kx9RBLn9A4+L6oeX7ho0o0Wt2Ab\nbhkyWRMzrv2AH7yW9svn81j6OqUMvYfDJOPrvN9dB2Leh0UTxin7Yd+ZwGoPhxEgQtJSVSo2WtR+\n9gF0rMQBrB/q1m6zAVsLYShkyf19Jf5Il/7OvTgEk4+ArXuoS0Vgy9pIY6GWtfpaeY7pWDo4eCdJ\nJf/IrEi3rQQAk351YI2EsXYtdixnD8+YpDgyJx61K/bkRbL9Br1HbZ/lbruVL2HLnenvHuyWO1kV\njuqf48SPstO5dYvG7k1tzMvdUJhuJNqs6ofaq9rgDHLfLFWt+SbdBD/89ExQW6pCUqmSuf8oTF/O\ntEnYZ554B2cw15HRgVts025+cJqOwi8G5YPRHd/LUiB+w9bvE9k4EbVzN6W5Np9gU3TccoPLxmr7\nHFYaTKsz0L47runLZKgSJZtPj6tvY8fECmwdoUo5AFfM/X7HvFynKPymz7E1nx1PY0/FxvsCz3b2\nRakqX09c0MqOUrXgl+BWqkLS/bf+WDVo9BOutxd7Q+CpyKYM5iZKVN4PMiVQ/fJFlMOB83nHaRki\nvRd0AqFLGCihS9BZ9KKJ67PDDp7yvCzbHXdfMCpQJh+KzFd5jE7CFFzAOHfDFiZDlShT5ePuHZiu\nISWbF2t3y9J66HZ+7cuHBW7lkIGeJ+MCopmOsrGq0WBpSXUGk/lUrvAnn4+WgvsJO8bHkhwkiTC2\nLEMnruWxR2X2Yj6nrTeUYjJ0jrJKFPGP4AQAnTkn9+FKJyxX13A1uXZbCQKy+TScfydqJ408xWRi\nXsHrb/IrfCynFL73NAY4a987yvmFYY6QtFTZKqgsA+UT+XESj5mJm41ZuzN7cZn+2y5G7b0djzAZ\nioiWPBVpzhwcmzX1WCUmMyEpjh1TwdYiI6OK+CBandGkA1uWB6pEbL+AK6Y6/cjGj6yFMwJz9/IP\npy0Eu+WOFpcGAMjoi+NUOj7ClfCKnwX+IbUVH2TrfTKFqdXQT+uRm2EK9LzWr3LrRs33sGJRYhEv\n1fJ90pyAx5bh6Qw8n1ca2lnL/IRvlqqW3G1sggVLnw1qS1VIKlWVStQQHatgU3rufnXwXbBnydla\nPGlxaQBJbUQXYXKfaaA4AECFL+1UiA82ZD/Kkw3qvhk4caWbMCGCzRzGn7u4J+08dybKR/yPA5gM\npQnxO/aH1nv7eRQPlqYElAAAs379TjkfP91ttiCbs63MVBMcn9uQHSvXI8Oz8be9iN+xMnu5brT6\naQnBbiH4plS1sKRU/RrcSlVIuv9ETq6WEkVhstsdfZi77e6rzDN9TMZyb7epPufENdyqUHaGO+SN\nOteuo0Dp9NNhzRkmM7QG5oiR3XeaDZl4++9MxhbWPSSJg3gTz6nXFl7yJSUbl3xpPJbv4uu/aOcD\n03URTgRJBPX9kClQtABs7tbMfzaxIkB/1/RszrPmZfyLjlJTbhp+55KncZnUsdwSQxFRlrPkuxWH\nJpOhpMmzfvlGed7AVP4sTOh/NZnfZEk/QGS8i8HzUoEyDU9JHh34Mx6GPYSkpUqHUV2GxEV3oHbD\nm8+dh43en7iUgUwmaUDgsWK2XAE0qxBAL7OQ9t0jjiuLlIiVpm3r9Hs26CzEO54lwaX/MgvuDzb4\nafn10hUq/fj76CIEcE85tLXZsrWJpBZTAICxB/D7tKp1BJOhdVRpDVXZfLzMvqYxrgDyOFcb6Lnh\nMGq/e/1vsGP9Ec8tVR2ac9e/CeYvey6oLVXFRqmiiF/B64elt+PMyF7hz/u4y6fslTjN9pcW6lpu\nXrqFaDwBgHlMgQrt/shlx1a0ikRtv1P23bz3qe9jpbLReB73JVZpsDITRDbhRbpzN6ai9tEbuet1\n6TtqclYTmH64aCzWr2+pecRk/Vz4IO7nl+F6fGQmCIUMVy8VYzrWxeuuYTJLms9A7Vf3N2Iyi1uo\nKzaY3HtbLlRK/AwgJ382gY3fy5cyNeXriQ7NOEGuCeb/9nxYqbKNMgl1Rdxbg9CxetfiD47O4q1T\n204HsrGSJmH/ceod6rRsWx9t0ZGTMM6bxsvAmMxHdY7sPJkMzSCScbt4ueAfvg3HKlT+hLuyoupw\nbpmc3bzmmwl07nWv5peidukZkUzm+MW8ZIcJqDsp7wQvzEyx71v+AbwvcTFqy/h5TH7nv27limCl\nT+3E4OlYP+dmEredz5ZGnbXDacc5lig1gw7Sp/B1M/4WO+smhd/31QQygua6b9iJmdR5V+hm+GJi\nX/ArpupcUapCMqaqRPrfTIkygY4CpcPVJPNzx5G07DZZ6jpX9viCZMfUL+yRm/CHSsd/Ly7k/erF\nPKj7piR21SH1LJKqsdTXTpUoWT+9unKeIdiNm7QsCwDAxPo/BTwfuQymXTh+sUREAzoLs44SpRPL\nR+vo0dgb2XmnerZjMqXmrEBtmQJFEwBy2vOSOPWvVysR/H7w1HaKAwN5kL4tQkzKmwVglnhiokDJ\noKNAmb6HwaZEneqFn8VSs1ecRfJ/WPcgd+/3noJjJE0Y33VBvQmvkL/7wqguQK+4YjFASFqqTCkV\nbFk+KA+IOKVedHXgpWvPtEaeicm83dP8o1B1Iv4o6FgebN0f035krNnb7sCM2DqZSE7bZuyYWLke\ntYNtF7/3Ab77rt8XB+1+mziXyfjpvvYbOr9hwwWYmyixv16CRJvV+Asliyui5VPeiOeWKh2YJBtI\nSUyvvAW1Ze5sukmb99UkJmPyvOwfzJXe6h+YVQlQzcfLdUpH5lRvrBiu/mkkHD2801NLVaVydUWH\nJnYsVfNWvhC2VHkBnY+9zoNNK4xv6DhF2Y/swW73O7ayVL1CbWXRUVA6PcyD/Sp8Ebjbw7TIsMlL\nXVVSef7IzViJOtiEv+OUQchWFpaOTLfbeCD/1I/fY8cqReD4Dp0aeVSBkqHhPD6+KXM/hS3r56mR\nuD1hE3ft5XXGriKdHbqWMvIVfw8S/+OO+8+W0ifrRyerUgaqRNn6kEc1jGXHZi3BcU7msUfqEI2E\nKVj5cdN6T/vpmcA3DjQLN/cSnuRyzcbAXe5ekpGWmoWta45QW6HDMEdIKlVJLU5ASgp+KFu8jV1y\na7PVGVaZkurzcX2xAtD4K87Wu4kwHMse7KrEVWW660hafDtqp74jCaz9ws5Oya3ATRko4WNFo170\nYPRxAa7A9Ivmz4tbyLh8AjtGi3JHJnLOnNw0OynfNCaQurMB9J6FCMCuIlsfE5kCpfVsOkR5l1jq\nG03E1x4ruXYT2Mwui6xcSSljMv6FM3lAtZeWxPhH1ffaZD5DtnKrWNISXJUj7oSkKsclWAGR9fPM\nlj6oPaO3unyUqStU5xmnrui/SKjjqRE+8f+FoFfMBMXW/Sdz1cz6PQW1H93DAy7Xnq++H8HmmqHo\nsvYkO6aTMWMCWUwVNdnbUs5k953GXVUszV2xC5tyzhwKnfEPDuBKFXVj2vpwymSajcAbh3qv2+Gk\nksUDVZvgjiIxeCcfizLw9+x5E5PJWxN49pTOe9onLZkdm5mI1wk3CUIZ1cm3g5jMb73fZcdui6Gl\nhsyeKdU5Mhy6g/+GVSYF7krzO6tRRyYyCbv3Zy+axmS+PY6TOkYn8oxbk/nEzbmLySQNXMmOBQo/\nsv8qlasrOjTmz7YJ5q0aGtruP8dxNgBA4ejSSAAoDQBtAKAZANwDAI0BIBcAVgDAY0KIdYXObwsA\nYwpkdwPA80KIT//JpGWWKvqQxn+Pg3plMinZPOCSWgNsIXUM52FKuhfzMLlJ0ja3D36gl4z5kMmY\nLHK2Yh5MQSuwy8a+dWlX1P40dpHRWCtekWRwTnTHZC+TqQdqJSptMiYxzej+kbLv4z2OMZlqxFBm\n+mzy6+AKP3/n7KSf68wndTwn903uov59aGFbU7cmnU8ScG62mtnl2DFVP7owUfhNFCg3Ictq1CLJ\n1LhnVImiSUoAANHD1O+lye9jQ4EKKoSgAccEAVuqHMd5BQD6CCGaOo5zHwCkAsBSAMgBgOcA4E4A\niBdCnHAcpxIAbAWAtwBgOABcDAAzAOAyIYTxVliH/NNLThjTfnc/jBfmtY/YIYXUWRijl5VnMjs7\n8I+rCby05Nna/fpJZOkm3Aya7Xr33ahNYzd0+6Fw0+0cWaMGah/8mNf+q9Rra5Fjy8Z30+Wuc54M\nXj7DW9/BMZIJD9upkKADnX4iF3Iti8ZH2ZqPl/x+sjlfsgGz0r+bgDeet165BzauPe2tpapsXdGh\n0d1qQQ3M++PF0LZUFYbjOFGQrzQNAwAQQowmf38JAJ4CgPMA4HcAuBYATgDAGyJfe5vvOM4MABgE\nEFigguM41QCgGgBAeRbCbLbIRcXWl4y0PZBpSfs92/gUdd4hFcffcU8hoDIdh0gK24J6IdTJfKSE\nfaauRx3XiK3UZHrPdAn8/FTGZPQEFG7dHwCARdnjlDJUidHpW8vKEcE5ulJ24jg42XxyEvANqdRr\nDe/H4Ddt/tvN7Fhd2Kg8r/N9OCMqYRk/J7sDp4bQmZMOF5wJ+m/hZbomc4oyJaxtgK7tz2T2fYvX\npeNLqzKZ+CZ4Y2n6rtgKZaDQ6afNUAlVD8lqXLu5HmqfzONenDDsIdBA9T6Qn5TFCzLloxvkK1H/\njdRrCQCrBTaH/Q4APPpbjfsB4HkAgNMavDFaisWaeCZTsad6In/eiy1Md/37OyZz4dprUbs82Akg\ntrVr/jWbB7zD27h52Q28IO38L9UFaZ+qvgW1F2u4VE1dI24F1+syILsVtyKDDi+UzrVmvI5jYho+\nbmY01rmO3H04M0rr99l0Be+o207aMxP5gyj4MqZ4nUxZk9/00T184y8Je2agJWAmjpa8B4YhCSZK\nVOp4bgBIugu7oSY34i5TisiKPPUk98gR5XlGm5Rl/E7XuIq0ZedV5ptz1XxkGLqvScD9mK4B2Y/g\nb0/dt7jrMfNV/H5POQ+/3wcEXp+9gnOOuP8CVaoGA8CXQojD9A+O4yQBwEQAGCKE+O/WqgIA/EVE\nD4NZstcoAPgMAKBExSpb/u6KY5R06sRRRadiz3TlOf02ccbsgZWKrgIOADBuLK4sb6pU0RpRyXV5\nfShbLyw9b75GQVoZetSnC3MOk9n+FY6D0FEQZEj8FO/UGkoMoF5aj2wpTM3f4bEbAIErbDrEq7um\nN2UylFzXtJSNzrO56CShB2j8PZOJG4ddB0l3c1fj44T5vIKG5VUHOtf1Zm2z+Eyd+5P1Eg8MX38n\npve4ol4b5VgyZL2M+87sJYkbhMCVzLGH67FjM5pg1cZNglCd+zp742KljM5YB+7C97CaZA2ixc83\naWSny3CyNY5JvGojJ/L8tgkef+dTWBE7MyGc/ecmtGOqHMeJh3wLVEchxG/kb00AYD4AjBBCvFHo\n+HAAiBVC9Cl07CEAuE0IgSNqA4BpQWX60OZ04wvRD5/gCN3e7XoxGZ2CvNT0/tN7Hyjn4zdpXOJk\noqA8obZgpL/JF3yaFj08i++mHozlnDAUL2XiD+ezcZxp2wTd13N3yoJmmAld97fYNhUrh5sv+oTJ\n6PTjFmQuwpzMbZ6NX1xB72vG7VyJqP+COoCZlkfa151b4Z1IvkbTahBSzidSQH5r10nK+cTN4nEv\nVIHVeTeyXuHrwpYBaoZ5W640nfNoPdaao/nv5WesrlvwJfuvbF3RMZFz75kgZe3LQR1TFYhS9Qbk\nB5i3JsfPB4C5APCSEGIU+dsAyM/2iy107BMAyBFCcN+SJio2qiU6fIDTrsWluwLup9RiTlZ4qoud\nWm5uwZbiRWu7AeiVJqHsvIvGjWMyOgrckN1Yp17fhtcwODUvFo/VbKZyfjKYLMx0fgDyOVJQ1xoA\nQNptgZcr8Rv0fjT8mrMhZ1zHNwoUbl2rbEMU9YMdctS8LphqJWJx4HXtAPylEJCNV1zZ7LcN5Ru0\nJXe+idqUgkIX9J61eo1bkGuNVCvP1igeiFtVx6VK4Y9SVUd0TLCkVK17JfSVKsdxSgLATgB4Vgjx\nQaHjFwLA95BPo8C+ro7jVIZ869YbADASADoDwExwIftPB24tcm5m/ohOuDiys5QH1urMp/vNuBzG\ngs/UqfamoOM3WXork4m5Ts0qrgNavFRWd8uE3d5N2Pq4pb/FXXLxj2DTvk7x24Pfc16d6s/gyIC8\nP9RB16bX1e4PHB+1ohUPQo9qgON4crbxYGkK6mIGANh0oZq41wS21oDRh3m80rdNqinP0xlrz4Nc\n+ag93A7XmQ4OzUpE7eWtv2IyfiqCfiumtqxiFLQfX5SqMnVEx4Q71YIaSFn/arFQqm4EgA8BoK4Q\n4lih4wsBoAvkB6cXRk8hxE8FMu0AYDQANId8nqrn/ilPlY5SNTSD71qfb6iOO9ApoGmyoB3rxz+A\nvwxXx6TowE8Kg5szL2Ey2S8noPaiCdyaReHljrn+b5z3J/MJnL4UudCsfIitRTeqHg8yO3whzlYt\nP9UsbX1/7nHU7vn8I0ym6kdqUlMKN101OtBJ6//zm/NQu+bVm43GsnU/KN9VzCtqF5QuaFzeqWp8\nrU+9XW1F/Ws2fp8p5YRN0Gu9Nasrk9nXCYf06jxTz2Xw9/mhofehdpWP+T4/bQR+pmRM/pRoOmfP\nXibj1oY+silPu8zdUHQgelipchdagepCiC8A4AvJcf5F5TIrAIAzX1oGf7EkKdcaD3bZpdiKMdvS\nR6DSvzhVw4m80wH3I2MwpwHMpi9sROnSqD0nQ/3RltUQLAVYEZXNJ3UsfiRi5/OFaO8iHKey8T6z\n4E6d331BNrfc6cDW4ni4P3YbVp7MF/hfhs/GY081G/sW4gqR1WakkF3n/kHE1Smpl0rTu91UnnW4\nkU7n4HVByvNzJ44rOtCkBJOhwf6y99LRSCyQKVE66PgIpkSptInHCdZdrUFK+aT699BRov6+giQO\nfW+WqUuP/X0lt6KWlmQBU9Daoi/yik6wPJsE5Q/jMjo0CzIlSgVb5KimGcC+QB09USwQkmVq2rYs\nLZanqNN6KeK+JxlEg9RkhX7DT3JL2Yu/4TTOPnk41r16eF4Gier006P3LeyYWI2z5GTcZzlZWKHW\nIiuszl0+uft5po9XyL2Ex5jpWPP2/AdbYqqv54HYJrFQtixeo7b9wo4llcCWzKD5KP1DyO7Zg7vx\nhn94Hc7ifd54nMCy+S6eIXjRA1ij/nkkj7fr8Md1qL2s1ddMxq3EHDeRPQNTKtS9hrvKvSSeVrks\n2yfvgJVr/vbcUtUpzjiMGmHupmGhb6kKRcge0CRiQfl2F1eqrqpnJ8PMFvxc0Lvfws21Jm4x2Yuv\nU/1dJ55hwPbOqN2lspqDJaoOT1DQuc+RjbllkbIlUQVKBi1+J4kCte8erMDWGGtW5NhkgV8wxSwG\nr/YIOzE7JpuCDmvOsGPLWmKr0/0NzAKY6y7D2aIT6//EZNyMx0kbibOLEx9Qc1LJxyJ0J5LE5gbP\nkeeMl6SDcl+T8UdyGWrxslUSzJbb2fT3KfONmu/KpF8Z6Bwv/A83D5cH/FvQsVKFf5uzcwEhaaky\nLVOjA7fIJGUvbPyPWHNPv1TNCyWzGNAPns58tj/Hg1brv4g/gFJlqDsO+k6/mVtUYp8JPAfBVqBv\nr6bcI/3ntTiORlYsOO8iPFbEz2bmeS0mf4lSl7M78KxTmo4PAHC6It6AnulGaeIA1neYEvBYSUs4\na3XcjTr0lhhO22bsmFhpJ2lh9xD8TNd52yxFXgdlFuM4mpNd1C4gW8+47DxTGZ350PNkYQvXRAce\n4UE5+AAABtbnPHwUe+/Hv/Pix99mMpUicBWHHoTDDEBeDYLCS4oH175hfTDX9m/rP4Ajx3Z5b6mK\nvcNKX3M3vxbUlqqQVKpk7j+dB5C6ZmRWhfgVOK4ovd3fTMaW4qVjNrYFkwXVTd6s9k9hl4KsSOtN\nm/G2ecSo65iMjFtGNb7fqe22+vb6Oij8zMKy1XePq3lxB7FiHTsWaL8ymK4TOvcjt6vEPbsIW5WP\nXc8Vi19GYDedrU2k33BLQZHBS4XJBEHh/itdR3RqcLuVvuamvh7USlVIuv9S15ZVKgCyh/Zwuzqo\nXV6iVFElynSBn3YM84mkjuNuxfOG4iwsWRxf7HK848pqf1IipYbOnPtu+lN5js59bkVofWQfrior\nsBIlOrZkMp9jAxOslrEQj/Y3BsPLnSx1mR7vy+MKy01Tu4ESV+D6jWnt1Dt2U9hIAbcJvm7YIWs1\nnXPPy29E7TPdeWaqXjCyeiyqQNmEW7/zjJ08KL3LH5iiRUaRYkvRMbH2yeCW1dDk2Qy7/9xFSCpV\nSS1OQEpK0Q+X/MMV+FimD/aEq5NRO2kTj99KIxxC8TwOGrY+ga1ZUcCDem3tggZVwpahaVCTyej0\n/QehRpJ9uGg/JbK4+2QWua6ud3G2Z1rUVwadOUcvw8VVd3Y4xmT8NutvO1gFtaMlCpTOWDpKlI5r\nmuLJdO4OZAv6BL7BzOw5HrX//Dd3Tdd8D1skI1qcx2Ty1mJ6hHES99Kg+EtRO2kyL0hbiYTlObP2\nM5kqvdPYMQqd3yJvPZ5zCU1PaI8G1N3GXXLbX6D30ez5NXlebSnGMrdiVVDzzNlSmIKNg+qyfneg\ndoRGhmlwQITL1AQzdLL/TF+GWzbjwq1TzotmMl6ahE12RgO387gEmZJAQeOKnDz+bMz7+uOA5+Ol\nqXvrJ5zsMioLu3RjnzUL8M7rzPuO+MmMbdtkfNU5Msj62fcvEvD+vhkPb7VfsJL3WdxCrfHdAuN8\nGiax2uXxQswq6HxsT6bEMZklzWcUeQ4AwKBUXBP0wyRJ7r/GnKzxHlWryo7lHjiI2nk/8LU3ohsm\nY7Vl0dFB6keSItB38ixGE9DroETCAGZkwl4qcBT+uP9qi04xPC7TBHO3vhnU7r+QVKq8ZFQ/ncx/\nu5Ipgb+wOoHqtJ4XAMCRmzDfyq9vj2Uy9DqyvmzBZGJvCDyoWAZawPO+ypzZusOjmEOn5DHu2Czz\njZprxkuYfqT8jHMafiiWycxpWtmVsfyOtcn4DPfd8Gb1R9vLuLCtwzm5b3o/O+S+UrQnbPHLeRyY\nW9d//Doem8Wy/yzBzQB8E9iiOtk9szE7VqfPJqM5BQpfyD/PIaUqJN1/TokoiKpOWGz34nggW6bG\nMk/wHOPZE9UfE6dNUyLD+07Pxi4VWYpxxc8JoSFPdGHQUaBkCxGN76CuCQCACVuxNeDbqziFQSVQ\nkzBufx73s2mwGbGnLdBSOlX6lWcyMgZzkzl2XsuTHypF4li575tWYTIUOgqUjMlfh4ndLbfQkK0b\n2LEXnsY1wZa+yzcOTUepC3BTmFp+TZTFhAclz8aDgbuX9C08WK53+96SvjW7ChA6CpSpJYYWqta5\nBlsWfhnGbMMu5HsbqLMTZdCJgaMyr+7nbOmLW5Rhx9RjebeOFokQNOCYICSVqsTGR2BWSkqRMjo+\ndB1I+ZM0+FXEKv7xoJhylO96VLC1gMj7+UIpU0OiRFE4P2ImdFmx6yhS2Mg4zmgq3rE36Bd45haA\nvVqEOnimuro0ynedurJjOh8YSmZ5f4OzCBaCLVfE2G08huke8hG6ZzbnPqtJViHZ2NFgJ8uTHqPK\nfT7cUbxo2RgAgLoa1yXrm5WO2clZz03WBVvuLdP3OSdzm1JG595f3hdnms3L5mELOnOML4E3V7JC\n9HO24t/Q9NtDZR7ayi1Xi4FbuEzG8hwCACThJMUR55T7j8JNvza1ENA6f7qwFUwZtLuXInC6B86Y\nLDlXXYdRB9LMUI0yMabI64JjseZ/ruYj04HpszBgC/5wTWzENS8/KRXOJei8l5nDOB9Z3JPucMGZ\nyvTsga3cc+ayqmY8yNqQC45mF6/vG8tkcjKyUPuBrXwjMzIBJzu8mslDEtqUKqmcj1Ec2HhJHNhd\nOKxE57fIeI0/GzVX4XCL8l9hy6Iv7r9StUWnereqBTUwN/PtsPvPC9hINbUJk2LJspfoig24tp6p\npSoUOYUWfqTO7KNov/p6dmx566+U55kqUTrPnUyJCrRfAICeiWr27wN340V25VBeUoRiInClSuc3\npAHL8xt/pzxHhmDLwjKBzkdSB6ZZy6kTebH4zOQJqN10FLeU6VgAaQyVfD6biQy/r7uewVaeGG7Y\nZJDdj94XXIHaOTuylOfp/M5PxfFMQ521dcfXmNB2Y6dPledIraHEKaIz57T+/P1OfiIYNzsCQJwb\nxf/OKUuVSfBth8fuYTKVPlXHpPhpGcp+jLs01j2IY5Z0MpHGX9eLydAdqLUA0EYJ7FjuFnUhV4oz\n3fnHpcQCTEMR1TCWycz6eSZqdx0ooW+YwJW8YLPWBLuFKacb/31Mav+FIg4O4FaFqhPVyrxNJnaT\nfkzgZYB5uSU12LHjF+9DbR3XtCkiWmKXXN4abwLOAcyeDX8sVbVEpzo3W+lr7rbhYUtVKENHgZLB\nq/RY2VhUgdKdzyOLbkDtpLV2Ck7rvPizF5oVVz3VE7sIy27lmTisPh9xDcggU6B0IGO2Tu8fgdqZ\nPcYzGXqtOoV+ZfDyI2kytkyBcq08h4/voAwrXpFYDV9Rj296HX6GBcj6GZqBf/umo+5nMtHDsOWM\nZn0C8MzP6Qnz+fgk7jWuBE880QHlOrtbUkaHKlGy5yXhc7w5jx9i9l0JxTCOcw3ntFLllCqllCmx\nqA47dqbrbjemYw3mLkKzvm1Ay9Q9mqdyX3Q+XtD2djzi3nxoGjtwYlPZPWxQFit+y7qquZJMC/0G\nu4JiiszPMeN+3E1rmAydY2TFikwm94j6+XDLwmPLumQKN/vWwfMNsZVSx/Uoo84wuY4vjvJsWhp0\nTgPOAQCS6wZuzZJlYsY0zZFIFo1MSbxUw/l405YIgRe49wXhQPXghmlBZZ26fjqgY9F0fADuV+/V\n/FImM3vdj6its+hGlC7Njs3JwLseNxfvYNv92+rXAfqg9wAAIABJREFUlIh11CEcj/RJFo/LoOzb\nMuUw4xp1DTZbsMVBlbMA19L8ocm3yrHdvK5av2IlKv0dnilFg3ZNQe/P2MP1mMzMFnhDJnLUH1ab\nrj4vkx9M+rYVH2orAD8UsP05HNpR/0W1Ykrhi/uvZC3RqdaNakENzN05Mqjdf8VGqbIFkxd/wPbO\nTCa7w9F/PLZs/K3vct6hhIewUiXboc/evKTIfmXY9iLfKTV4DseAeLlYhcKHwxb8/rh5OR/K2/VT\nC75xMIGx4u7g702ExKKd97d6QxYVjRWtnJ2cWkQHbmb8mjwLsvhH6r4PtvfJFnR+C1kWIQ2Cl1mh\n4p5Qr60UiZIySzR4nc4vrFS5i5BUqmyVqXGr3IxuPy1+x8/12vPd+y20Fk/yMTEla3PLdZT2nsTC\nc63awmPr47L3AZ4AUGukeqdIi0U7v3LXlVv37MzlfO0pMS/wrLRDt/OPQJWP3Unr1z3PpB8v4ZYr\nVgbTvhuvwhEgm9pwa5qXLuXIppjwMusazuUX83Lg1hn4gZcbg247+TGXEEwVCnxTqmreoBbUwNxd\no4JaqQrJmKrUtWWNMkkomg+XkPG9EfgLa2rGpkqUzu5FB/u/S2LHtNiVDZQoWSq5Dnni1J34uvpF\n82unoAoUgD3qjB5X34basiLQLd5Ws3qXWVyLHTvZhStRFCaKxVN7eTmi7z7HMSA6z7OOomOiQOmC\njt9js5odXDZnWx+uRitLoPaWtmeYjKrfs/VtAjdd7m5Rz5iOlbsBkwvHqDmUpUgbhTdgGY0la4cG\nibMO6LUmLeHlWHSe365344xjW8XigwPhgspBjXLVY0TjKx9Cx+iib7q7+/tKbKYt/R035VLelp9H\nmn3sdUDjbxLvsxMTQvmvAADur4JJIf3eWXsZLE3HoozMAHILk0nfph/7ndNw6aO8dZWYTP0XAlei\npEzfb+F+dH7TXpdcx46Z0GKEAmhWWlrXSUzG5Bk/lsfdiuUjuDu04YzBeD7XmK1BwZaQQKGjnMms\nqMuHFe0CM8XsXTwwvFc9nvFLwRQvidsuVeG2AwA41QsnvZSaHXiGtj+WqpqiUw1Llqrs98KWKtuI\nPHBcuXPW+XDJPxRkkfmO91PpF6x80Jp5+VCXIqEwJf7T+eA1moBf4vurSEjjXNqRuhkUb+ujQM/7\n835OXzB2CqcD6FA60sr4Xe/Cu9RSwBfLDR2n4AMS417yC4Hf+3UPSyg43lJfxwWP42eq8hY71iw3\n3V06z4tTArNoizOnmUy9T7E1K/lm9+LSqDINwDdXyffZee5l+PMbzDx+OieSyUT3VZuUDt9GqhZ8\non5eZPM7MicetZe3VBPcmmLnU9g63YvnIzCkjuXJKvS7IvVAaNQbPngefu7WjnfPQmoVAgDywuSf\nQQtbger0hQEAiMJ1baH2u3znb7Lo6xS2dTPGy+S8U4K7PUo5JdgxG2P5nfqfewnebS6Y8hGTabH8\nJnYs71ecqr3+P1xBiZt9F2pf2YpbvKiLSfYb9qiPN2c62WQH7+Sa14qXA9/Fe5kt2mENf+6WtVQ/\ndxS2XHIDUzPZsX7l/wq439T3+cc26V/cEk7htOZK1dxZUySSGH4Gs3uZDHLoDkm83yQ7CTW2rl1n\nbHrey/vPYzI2kjh8sVSVqCk6VeOWbBPM3ft+UFuqio1SRVmydQgepSRtCweg9tZL1CVGTF+0GzMx\nzcKhCw8q+zkwkC8gVz6wGLWXtuT1qvw088uuvdkI7HKq97pB8Kmk7/PGcVfW5ruxonPhfwYzGZpq\nr6tE0Pv4dAY/77VWF6M2zcSU9eM35YWXSJtMuHf6q7l3jDcgEcTKkqfmDHMzZV/nOi7ZcDU7VvIy\nO4WHbSEyCVuPZi+apjxHxuc0a/ks1G7/FHeTUYVJhmCjb6CldWb99r2VsUwQVqrcRUgqVbLsPy8/\nJvsHY8Wm+gf8Ja/wU3XUPtp5P5PxMiPErX5SzxxnMqbElW4hsgYuY3GsUxyTKfON2mKgA52Fumcj\nTsExZ8tPyvN0frPu6zGVx6NV05Xn6IxFP5oAALmp6r6DPWZHB7YsD6bwMlNMNufn92FLmYnV8Gx9\nUwQ7HQutrQkAUG2cO0kcMjb5hLsx513ecb7+XrURV5X4tgnOoPRNqara10pfc/8cG9RKVUjGVMmy\n/3RwMgV/TMskc7N+6gT8W2X2lJUUwW1ZLbmjnbNQ22/Lg61+aE28UnPslLJxE7n7cB2wMt/sO4tk\n0bDnnuUKlK3fhypR1gJ0JZaHix7AFr9yX9tJopBh66etUTv9Um5BptdKs/gAzDP5VGOZypgqR1SO\n0rMA6FG0ZLCMY37tVImyFUfp5QbRVDFN+5hYUW/nCpTOtb5+IBG1p0y6jMnUeRtb62Vs8nM0xroq\nrQc5skd5jvsQ5wyjekgqVaZY0nwGastSaqkSJc3A6I0zMGCWWrEIhR06y1D5mJve4550L7VeheNz\nG7JjFR7Drk5a8BlA7947P+II1LnnzWIyfiu4r2dipaWVhJQyfiquMZYAZjXG6EdaNueK1XFmn8yR\nZnKtf97HYx0TbsUfHNm7S5/f81/iz+/v2YHHk8lk8jpjJS/ip9VMpu+mP1F7UKVsrb4p3FRQGpKA\n6eQn7Fjc3FzvbLnknvmzuVKmdzu8g55l6beoo1GiRxbzSzf0NBsQgGcEUqqe0yPN1oQw9BCS7j/T\nMjUmqPJLVXZMJ/ZJB27NOetlbqLecqfGx4QS5GmQ40kDqgnPkLiUM0nT2KOLJfGXdI5pI3iwf8b1\nY4s8R4YBW3g8youf4CD0jfeaFaXWgWyxPFkXqySmnFxews+PrSzo+9LWG1F7Z4djyn68dElF1anN\njuXsxlYEXTcVlVt+ilvg2pdyJ6lEhqajcCwjLYwMwLP/fntdnYGscz9otiaAPGNThd0zeVmjes/j\n9pw5nwfcL4C3XF+qfton74CVa/721v0XVUN0rHyNlb5SDowLavdfWKnyETqL1RJCW/NKQzvXldOt\nDTsW9QOnDFDBS7emmxk8OjIR5TjNwpy0X5TjuxXv4uUzfvQGrtAufVet0A5KzUDtD5O4tZHCy8yx\nMDCi4hqwYzmZ7gTF24pV8zLmTHZ/bpiD14D+FXn8LB1/1+N8Y0WTddxKkPAlpiqqhuhYsY+VvlIO\njQ9qpSok3X9JLU5ASkrRL42tHWhUbH12LCdru/I8ityunCBOh4PqdDJ+dkqCusSI7NpN4l+kL+wm\nnMWixdTuIWTp1TpzbL0Cc43VlPCMyRQoNwOEbYxlq98KX3KXQfKX+LxDsxKZzJjt+P2JAvW7E2wf\nUlPYyi7TqfwgO++yG3Am8/wvdTKZ+TEanC0LzKbXceRmroRX/EztdrKVAcesWW04LYVYhbm1IipU\nYDJ5R3Hih0zBlClRKuhkO9uK2wvDW4SkUmUaqK4DvjCb9UMXlT3dOKdQ0iJ1PwsnqmO8KGQyP2eT\nGnlfG8ZOGLgETX+r1InYmqbzW+ikW8tQ82qsRNm0lujcj7hvB6F20j08G9FWgC5FiUV12LEzXXcX\nObZ8LKWIFDrX5VW6OQBARAvMDySL09MZ25a1RlZqSOc8WZwXBZsjrf8JetltOuumiVW700P3sGN7\n3sPelcR/qzeITg4nnrxbw4qq82zGf0niGB9SK4+2nl+drFzu/jsR8DhWEIJeMRMUG/cf5W+qNsE7\ndmcZkvuQWnIzeS05L3cZES1xvIAsNoDOp+4yvnPL7nCUHVOBZtAAACTejrmIvCTnM0Xy+iPs2MNV\nMySSin4spd+Hwi6VFnQ+XovH+VBmbTfjnGiJKZnFVueZyp7RBLXrXrORyaj6lUH3uqhVhVpUZOP5\n/byYXH9krZpMJnfvn+xYsMPL2L3IJrj26+wFU1Hbt5iqCpxvzQQphyeE3X9eQEeJoi+o7OU0WYje\nzJLsTJavC7gfHZi+nHlrNtnpW6MIqYm1z9b9GZ7Fd/UPxqoLIWu5l5pV5Mc07kfWS1jhjwW1+yQy\nke+ac9PUCpxbH1KqlAPoPVMl5mF3dWUrszEHVaJMlfl1F3yGz9F4Di58kFtdjt6MmdnrgPqeAujx\nmunAHk2IO1ZUNxUoWgw+6S51aIUO0t80C0EwIcGVIXdjqtF5rkKIc6ZMTbFRqmi9pa6t+OKU3UH9\ngpq4GVqU5KlrnlpQDPpuNUwSp/EJjjHIPfwXk6Fwk21aZywKHQVKBjd/n9hnA7fEyPiC6Byjl5VX\n9rJ1OI9tSXgQbwJkLgT4C1s+tvWqwkSiNepLm3y03fwtdN7LXdNx/E29a3ldO5Nn/ETNCCaztj22\nGOtQRQAA9LgaW8LnfmPHEm5672298/Er8Fqa3o4XmLZl1c3shUMrOt3Ild4KX6hdebuewGtO/KOB\nFzUH0FO8Dn6PrVArzp/KZOi10njazTtGqAdyAyHoFTNBsVGqaAwKZ4RxT9HRcee8msljZJ6Kw4rg\nzie5QiBLTTaBjvXoli07cLvCASaj8wG0xSSd1wVzAcnmvOdBfM9qa/C/2GTI9vLDRTGh/s/KvmU8\nVToVASiih5lZdXU+tsG+AdH53fUC5yXzec9UGVFbwr1kXacwHatDBcx9lg7RTMat50OmQOncw5q/\nq+kbem44rOxHB1WvwFYoHQsptc5GCM7CHoY9hGRMlaxMzb278I5ctsPRQbDHIbg5H5O4Kx34nSL/\n95VYeS39nZ2SNDJse5Gb/hs8p1ZaKLFpuR6Bu/oAAOJ/wBlfCbepg5VtQTaf69K7o7asXJNOPxSy\n54e6frWslu2bs0M7H8duiui+3FLlFqRcVg14XBEsWxtw336WiXETsutqMhpb4rv24a40k2+E32sZ\nzWKkGYwAAFG1a6H2gW64ksiG2cPh+IEd3sZURVYXHcrwWo8mmHd8slFMleM4rwPAFQAQAwDHAGAW\nADwuhDgr8aTjOD0A4G0AaAgA6QDwsBBiXpHjFBelyksuIFq1nlasl53n5oJGAxNt+dT3f5fEjlW/\nMvC+U8dwosbMPh+itq3fb9+/uFJT432s1OjEB7VZzf3/q1pz9w2Fl4uu3wu8zjN9RmBS0yvqcX40\nt2DLNe3mfXZz00RZ33fczzOQY2/Gz73I4TJ+xl35/fuYINjmQ+ELT1VkNdGhtCWl6sQnpkrVqwDw\nFQCsh/zwzskAcEYIcdVZ5BsWyA4CgKkAcD0AfAgATYUQWWcdJxSVqrKJdUXiOwPRMZoSLzq1ZOc5\nSzWCQAh0XhAZQ3b0q2o3FC2YKav1RFmIaaaUbI6yFzhtJM56Om8kd+fkbsXKouzaO67BRTEr9jQr\n2Oula8JLt4cMJgp2t9sGsmM65Kx+WiNkYzf8GsdzVF3LFdNq470rfRRslmgKnTABm3DrfkgTLdIJ\nx1OerLBR4NB55intAYAZ9YHs/nRZexK1F7coo+xHBrcU/qBgVA8CpYqiwAo1VQjBM5Dy/z4UAC4V\nQnQudOwnAFgghBh6tn5DMqYqauvfTImiMFGgZNBZZHQUKJ3ARB2ZyGq8bI7WHBthJYoqULqgShSt\nmQfAy9J4uXOzxSVlinZP83pzVTpSXhj1/YiCwNntZbDFlWSazZUIgRdZdvN5sXU/KHp1uZYd08nW\npNBVoNKnYCtU/C1mbl63rD57utVix26YjuPAPljdmcmcH4fJYWXuYpPn1bQGps7YwbaWqfpJFTxW\n1nUIsFlQOdJxnMJulANCGF1UNwAoSlFoCcAW4t8Ljp8VIalUFVfIXqK/ryDxQN+r44Gu2HCIHbu/\nCtlxaQQ4ykAXlY5DeHbZr9m8GLENmH78dQKz6Xnf7+JKzaX384zJstOx0lBVQpegM0dbO1mdflu/\niq9DFkAtLsRjORJFkO2AV1/PZKr0Tgt4jqZB1zQb0rT2H6O3qMg3srM3L8HtxdOV/ZzuwYvflpyL\ni9/qlo8yVaIoLl2Hg5Ztfch/f05d1y8ReJzTiSY05EBd8sXWhsjUMkRBC58DACTXw+tkyi6z32/I\nVhxDZbJJ8I/80xqlQi0A2FKoPRQAXgikA8dx+gLAPQDQpQixCgBAY3sOAwCn5y/cdyi6/9yMqdJB\nsMcY6MBLsk1bi5UMblEzyPo9PZ/X/Sp5WXDXRbMF2VhnumMF4GDjUkym1504Q/HVWjzAevBOrPQu\nTOexfKldPkbtfhndmMyRrnj9m7ud8w7p3PtTvbHys2jcOGU/Ulf5EOxyqvi5RpkWCcGsjB9NB16u\nL1H1sGaes0uWf20HdI4Npw9mMon3483n3vt5rGWtkdjD0J9kPwMATCbPpqyihC0XqsnmQgbV+L7E\nVEVUEx1K9rDS17xTn/0BADcUOhSQpcpxnOsB4AMA6CuEWFiE3EwAyBJCPFjo2AgAiBFCcNN0AULS\nUqVTpsZNpUGnn2k78QLaN5pbdExAa9QByOvUqUCrygMAnBiHK90n3b2CybilvNJsHQCAmFcCd6u6\nqVwvbPoNO6Zj8Uv6GLsEK9/OZZYP4zt7FWwp2DKXcu6BsybE/D8yr4tE7aR7+O/16pNYiZLPD8ek\npGZ/LJHBSPu8ETu2evsY5Vh6HyWlCMO8E5wp/te3ScHpz80scDLQ8y6+dxCT0bmORivxvE3fHx0l\nis65VxNuJKDceDrPeAYpwQUA0ONjzOP1xxNjmEzySNzP5EYxTAYAK1GZr5kRe1I4UfzT27PnTeQI\n51rU+X0im+J3I3fDlrNIegcBAMKe+y9XCGGUjeU4zgDIz+a7UgjBi7lirAGAS8ix8wFgQZFjhKKl\nSlamxhbcskIlLrqDydDAdOrqA9Bz90EE/rjJAkBtuZd6d8KJEibFpU2hs8Bmfs7d3XE3qePrdO7P\nBY/zeKnfXsfKkMmuHoB/lGTz6TIIfzgvfIlbPqglyO9A7L0P4CSOI+efYjKRe0uidtptagVT57pk\nRXTnfjdFeZ7OWCZWhd053B1ZJwq7LE2VqtYv801JzTHqossUOuNTclQAOUGqCl5ay037yXidhA78\nwb+XOhbI9Lfxpjp+iFmMF6WHWfzBh0wmGAPVKzpVRYeoy630NT/nS9PsvwcA4HkA6CGE4BYDLh8P\n+YRwAwFgGtjK/nMcZwMAFPZ7RAJAaQBoI4T43XGc/gUTrVMwgXuFEKsKnd8WAMYAQDMA2A0Azwsh\nPlVdUFFwU6kyYfSVvYzbhuKPSYPn7ZB4RsXWZ8dmLf1WOZ9QBM1YLLc9ksnUfUt9X/f8hxCEjrDz\nW8jg94dCZz7USikjmA024khaMSHzKvXH5FQvHsO0aDx35emMT0Gvo/GHXKnZNIhbR2yMbRPbv8I8\nXfWvX3cWyaIR7FmVbgaY06oFtGKBbHxr94duqAEgeS2OqaXuYz/cf0GiVAkAyAEAtLMTQpQv+Pst\nAPDBf9sFxwrzVGUAwEPWeaocx3kFAPoIIZo6jnMRAKQAwDUAsBgA/gMAQwAgUQhxxHGcSgCwFQDe\nAoDhAHAxAMwAgMuEEMZ51KYxVWmTcAxIxuUTmIyX/FIUblnJZOf9+W9OA1HzPbfY24NrgXUTtuLH\n3LxnOuP3TLwQH4jjrpG89Wq3s1txItSCAMAtXDr3MPcSXuz7mtHzUfu+yjzWpuE8THkhW0uajMGK\nVszLZu+Xrfg6Uxmd+eicd+JavEmiSR662DYVK4IN+pkpgrQo9e4BnAj2ZE38fYx9Rv3ZGprBEws6\nlMbKj879araK04+sb4ODvU1+C7+UqgsiLrPS14K8qUFdUDkgpcpxnCgA2AEAw4QQIx3H+RgAIoQQ\ntxX83QGALAB4TgjxcYH/8gUAiBUFAzmO8wkA5AghBsjGKGLsagBQDQCgPFTa0sHBPxB9uLh/Wq8A\nLMWemZwosnafwPsxha2FkcrEzb2LySTdiQN7TRdPWksuN5VzWXm5mNsaK/4LCdfNw3ZStRl+4OU5\nUhp/j9pav8VC7mrMvUTtanQrmF52DuXk0uHj0oEt5fXY9RewY+W/skMV0foVrHjVHK2neAWbJdGk\nH8r+D8ArANCNMABXYP3etHm5iRyUimk6+pbniQ1Bq1RZ8i4tEF8XK6XqOshnIa0rhDjsOM4fADBJ\nCDG8kMw3AJAuhHjYcZzhkK9Q9Sn094cA4DYhBN8iFj32C5DvZgQAOAGyKL7gQyTkp3/uBQA7THfB\nhfD1hT6K+zWGry/0Udyv0evrayCEqOHBOP8Px3HmAkB1S93tF0LYSSV0AYFm/w0GgC+FEIcL2mfj\ncaio+fdAMAoAPiv4f1OyL09RQFC2BQC6mmYrBDPC1xf6KO7XGL6+0Edxv8bifn0AAMGsBNmGtlJV\nEAnfDQAKBzMcBYBKRLQy5Bce/O/fYyV/5zZLBQqUqKBXpMIII4wwwggjjHMT6gqx/8NgAFgjhCgc\nTLAG8nkbAOD/Y6paw/+o39cAMCKf86FoavgwwggjjDDCCCOMkIOWUuU4TkkAuAMAxpI/jQOAax3H\n6eY4TikAeBQASkF+hh8U/Lec4ziPOo5TynGc7pCfKcjzoYsnDkA+hX5xtbCFry/0UdyvMXx9oY/i\nfo3F/frOKWgFqjuOcyPkK0J1hRDHyN/6Q36G3395qv5FeKraAcBoAGgO+TxVz/1TnqowwggjjDDC\nCCOMYENIMqqHEUYYYYQRRhhhBBsCiakKI4wwwggjjDDCCOMsCCtVYYQRRhhhhBFGGBYQVqrCCCOM\nMMIII4wwLCCsVIURRhhhhBFGGGFYQFipCiOMMMIII4wwwrCAsFIVRhhhhBFGGGGEYQFhpSqMMMII\nI4wwwgjDAsJK1T+A4zgRjuMsdRxHOI4TXeh4f8dx0h3HOeE4zm+O47Qh57V1HGd5wd/THce51fvZ\nFw3Hcbo7jrPMcZxjjuPsdxxnTKG/FYfrq+04zpeO4+xzHOeQ4zg/Oo7TstDfQ+YaHce50XGcnxzH\nOeI4To7k7//oWhzHqek4znTHcY4W3K/XHcfxdO0o6hoLrm9pwe+433GcOY7jNCcyQX2Nqt+wkNzr\nBesNnX9IX5/jOPGO48xwHOevgn/LHMcpUejvQX19BXMo6hmNLJjTjoI5rnMc5zoiE/TXGIYGhBDh\nf4b/AGAIACwAAAEA0QXHLgKA4wBwOeSX7HkMAPYCQMWCv1cCgH0A8HjB3y8DgGMA0NHv6yl0XV0B\n4DAAXFcwx9IAcH5xub6CeU4HgPkAUAUASgLAGwCwAwCcULtGAEgGgJsA4E4AyCF/+8fXUnCfphfI\nNgSAVAB4PIiu8b6CeZcruIZXIL96Q9lQucairq+QTHsAWAsA2QBwa6HjIX19AFCj4JpeKJhfJAC0\nBYCI/2vv3mPkrMo4jn9/tEC5tF0BMQokRYFSiLa0EEBaIwFUSKBQIWJALmJFEEEjKMGoiDGUSyAF\n5eIaiyLRKBdNBVEIbYBSvFBoKUaCBaqoXNbaC4KU0sc/njP0ZdhtZ7sDu+/090netPM+Z2bPszs7\n+8w5551Tl/xayPHskuNY8jXmaGA1sGedcvTRwvNgsDtQ1wPYA1hCbhhdLap+BNxYaSdgKXByuX1q\nua1KmxuBWYOdU6U/84EZfcRqn1/p0yLg9MrtseXnuENdcySL4eYX8wHlAuxavi/vq8RPA54aKjn2\n0mZE6XPjjUBtcuwrv/KH9lHgQOBp3lhU1To/4GLgwfXcpzb5rSfHq4CfNp37F3BsHXP00ffhocON\nUIZcfwicS47oVI0HXt/7MPLZ/0g534g/XM43LKjEB5Wkbch3xMMlLSjTKXMl7Vua1Dq/isvIzcDf\nKWkE8Fng/ojooXNyhIHnMh5YERFLmuJjJI16y3o9MIcALwFPlNudkOOFwD0RMb+XWN3zOxj4u6Tb\nJS2TtEjSCZV43fMD6Ab2lrRXmQo8FhgO3FvinZCjkT9U679zgGcj4jZJY5piI4EVTeeWA6NajA+2\nd5Br7T4JHA78hSwe75C0B/XPr2EecDLwPPAaOfV3eIl1So4w8Fz6ilParGxPN9ujPEdnAV+OiFXl\ndK1zLG9ojiNHxXtT6/zI0eH9gE8AU8kia7akpRFxP/XPD+BJ4D5gMbAWeAX4VEQ8X+KdkKPhher9\nJmk3ci3VWX00WUXOeVd1se5Jv6H4YGv8IZoVEYsiYjU5PL858EHqn19jpPFuciRjNLA1uQ7nPknv\nogNyrBhoLn3FG7EhQ9JewBzg8oi4rhKqbY6StiCLxM9HxIt9NKttfsUqYH5E3BwRayLiLuBO4KhK\nvM75AVwD7ENO421Brpm6TtJHSrwTcjRcVG2MyeTCysWSesghWIBFks4EFgITG40lifxlWlhOLeTN\n7zgnVuKDKiJWkGs2ojlUjlrnV2xHvrjNjIiVEbE6In5A/j4cSGfk2DDQXBYCoyW9tyn+dHmuDAmS\nJgJzybWAlzaF65zje4C9gZvKVHwPsAtwraSbSps65wc5Hd38ekPlXN3zA5gE/DgilkbE2oh4gBy5\nOqLEOyFHAy9U7+9BjmrsXDkOIH/59wW2JYuuF8l1Hb1dbdVFXuVxXokfyhC7Oq707RlgL3KK+Cvk\nosrRnZBf6efjwNXkFWPDySt2VpNX1dQqR/JqqRHkFX5ryv9HsO5KxgHlQl51dDM5zdC46uj8IZTj\nQcB/gOl93HfI57ie/Ibxxtebncmp6i8A23dAfiJfQ18lr4jbjJz+e6nR/zrk10KO15NF1E6l7f7A\nv8kpwNrk6KOF58Fgd6DuBzCGytV/5dxJ5Bz6y8AfgElN99mvnH+5tDvx7exzCzkJuAh4lpy3nwNM\n6JT8Sh/HAbcDPeRahYeAqXXMETiFdSOJ1WNMO3IBdiQv5V5Vvl+XUi53Hwo5lufn2vJHqHpMqUuO\nG/oZNrV9upf+1zo/cs3Y4+THfywGjqtTfi08R0cB1wH/KH38K3BB3XL0seFD5YdlZmZmZgPgNVVm\nZmZmbeCiyszMzKwNXFSZmZmZtYGLKjMzM7M2cFFlZmZm1gYuqszMzMzawEWVmZlt0iRtI2mJpDUt\ntD2ptH1J0u8lTWqKTyubQr8o6XFJxzXF95c/QCT5AAAD3klEQVR0r6Tlkp6TdKOk7SvxSyQ9Jmml\npH9K6pa0XT/zObf0cZWkJ8puH/Y2cFFlZmYdS9IYSRv6QMYZwFMtPNZk4FrgDHLz+VvIzeZHlfgB\nwE+AL5If+HkuucXQ/iU+DPg18AC53dk4ciuiqypf5jXgRGB7YDz5Kfo3tJBqo49HAd8CToiIkeSH\n/14m6bBWH8M2nosqMzPbZEn6EDAFuKSF5tOBWyPidxHxCnAZ8D/gmBKfBvw2Iu6J3ONvNjAPOL3E\nRwM7kBvWvxoRy4Cfk8UTABFxQUQ8XOIvADOBDzf1ebqkxZJWSHq4sjEzwG7Aooh4sDzefGBR9WvY\nW8dFlZmZbZIkbQ10A58h9x/ckPHkllYARG5J8gjrChaVo2ozymbJpYi6HjhN0paSdgSOB25bz9c8\nhMpm7ZKmA18FTiBHy74G3Cppt9LkZ8BISQdJ2kzSFGAP4M4W8rMBclFlZmabqouB2RHxpxbbjyT3\nCq1aTk71Qe4n+jFJh0kaLukYcsPvUZX2vyBHtP5Lbm6+tvTjTSR9HPgccE7l9DnARRGxsIyG3UHu\nf3l8iT9Pbrw8h9wkfg7wzYhY3GKONgAuqszMrKNIuqYsBF9OTn3RuF2O88v6qMOBb/TjoVeRU3hV\nXcBKgIiYSxZBV5DFzSnkyFFP6cPuwG+A7wBblfsuoZdRpLLAvRs4KiIWVEK7At+r5gMcDOxU4l8n\nR7EmAJuTo2hfknRaP/K0jeSiyszMOkpEnBkRXRHRBXygnOuqHDOAQ4FdgL9J6gF+BQyT1CPpyD4e\neiEwsXFDkoB9qEzPRcQNEfH+iNguIqYCY4G5JTweWBYRjTVVK4CrgSmSuiqPeyo5TXhkRMxp6sNS\n4NNN+WwbEWeU+CTgloj4c6THgF8CfeVkbeSiyszMNkVXALuTIzoTyHVVr5X/393HfbqBaZIOkbQl\ncB6wJWVNVJnymyhpmKTRkr5NFm5Xlvs/BHRJOrG0GQmcBTwZEcvLY5wNXA58NCLm9dKHK4ELJU1Q\n2krSZEl7lvg84JgyKoakccDRVNaC2Vtn+GB3wMzM7O0WESsp03YAkl4o55+pnLuA/GiCvUvs/vKZ\nT93Au4FHgSPKYwEMA75Pjk4FuZ5pckQ8V+7/VFkndSHwXbKI+yMwtdK1mcAaYE4OhL3e323Lv92S\nVgOzyKnAV4EF5Mc3QF6ROBq4S9IOwDJyHdeMjfxWWT8oL14wMzMzs4Hw9J+ZmZlZG7ioMjMzM2sD\nF1VmZmZmbeCiyszMzKwNXFSZmZmZtYGLKjMzM7M2cFFlZmZm1gYuqszMzMzawEWVmZmZWRv8H85F\nHcv3sqrlAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)\n", + "\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower left\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The dynamical powerspectrun has 65535 frequency bins and 104 time bins\n" + ] + } + ], + "source": [ + "print(\"The dynamical powerspectrun has {} frequency bins and {} time bins\".format(len(dynspec.freq), len(dynspec.time)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 0.0625\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 2 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dynspec.rebin_frequency(df_new=2.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 2.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1000)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHBCAYAAABTzg6OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXd4VcX29jvnpBOSUEIagYQUmiKKehW7qCj2fu299+61\nXMu1e+1d7AUVC3bBilcQrr0rKRAgCTWUBBJCcs58f4Dfz1V0D+ceAoR5n8cH986cXWdmr1nvWu8y\n1lp4eHh4eHh4eHisXYTW9QV4eHh4eHh4eGwM8EaXh4eHh4eHh0cHwBtdHh4eHh4eHh4dAG90eXh4\neHh4eHh0ALzR5eHh4eHh4eHRAfBGl4eHh4eHh4dHB8AbXR4eHh4eHh4eHQAno8sY83djzGfGmEZj\nTLvy92ONMdXGmGZjzH+NMcPY37c0xnyx+u/Vxpij2d97GWNeM8Y0GWMWGGNuNcZ4g9DDw8PDw8Oj\nQ2CMudEYM2O1rTPfGPOKMabPX7Tf0xjzszGmxRjzkzFmj6BzuBo2iwE8COB85aTbA3gIwBkAugF4\nFcC7xpiM1X/PBPDe6v3dAJwO4GFjzLZ/OMzzq//tDeBvAA4EcInjtXl4eHh4eHh4/K94FsBQa20G\ngCIAswC8qDU0xvQD8BqAmwFkrv53nDGm6K9O4GR0WWsnWGtfADBd+fMpAF6z1r5vrW0FcDuAFVhl\nOAHAQQCaAdxmrW211n4AYByAU1dfeDGA3QBcYq1daq2dDuBWrDLOPDw8PDw8PDzWOqy1v1lrl67e\nNACiAPr/SfPjAHxtrX3OWrvSWvs8gG9W7/9TJMThOjcD8NTvG9Zaa4z5bvX+3//+raX1hr4BcMwf\n/r7UWlvN/l5kjMmw1ja6XIQxpgeAHqs3G6y1DWt8Jx4eHh4eHh4bNJg9AKyBTWCMORKr2LsMAO0A\nLvyTppsB+Jrt+wb/Z/uoiIfR1RXAUrZvCVZd8P/yd6xu42R0ATgHwDUAEEIYGaa748/+HCYkHYEr\neqeQ7eRZzYHHacvtIo8tIuMkEhYup79JTRFtbMsKsr2yX6pok9hg6G9CRrQJLabnQhd5nGgi/V1o\nibx3k5hIz9XWJtognR7brJQPI1RMa4JGpgU/MO05R+nlIHmJUmu0Kfgd2vIkst2+JFG06ZEtu+qS\n+gyyHW5aIdrYJHoss2KlvADD3lk4LI+zkv7OJMg2iNL7t9GoaNKezZ6j7C5ImE/7S2tv+eyTa2mb\n1IHyOMvnpJFtrU8FXh+AxIYWsq3dVyywXdPEPsP6i0mQ02h7EX324arWuFyPBvV5LKb9rDVbzh1J\nc9j8ovWpSIS2SUqSbVYq/TUOCPWXzzXK54E0eV+tvei8nVwT3Kc0tPekz9UqX8vEufQZanMQbxM3\npMk5ui2D3rvLuXn/bYk0YWW0RRn1aw8jd+liGxZFghu6oxpAyR+2rwNwrcsPrbVjAIwxxuQCOAnA\nj3/S9M9sl8F/dfx4GF1NWMVn/hFZWHXTv/+9SPl74x/+rv3+97+54j4AYwAgDenT/mZGrMFPdYTS\nu4p9v11BvxzlZ3wReJzaE4eLfakLgwuN9xg9hV7PgEGiTfS7X8j2jJuHiDZ5z9OJqT1VGpPpY6fS\nHZtsKtq05NFBnvoWN/KBhJwceq66etEmuvlQsp00Wy5AUh+nH9GmHRaKNhx1J8jn3JxHP779xskP\nRHjiN4HHbn+IxlIufKu3aHP0KRPEvjeu2Y1sZ3xaJdpEi/LItvlFsviGG2bdskSb9hkzyXa4Ww/R\nxrbS+482ySG24NBtaZsEOf/m3Pc52a66aBvRpvRC2qcGPi+nm2+u34Jsp74RPJ7mHybfc+6zdF7U\n7isWtG89TOxL+Jj2+3D3bNFm4b30/XTbuzIu16NBex55L/1GtmtOHiDaFN5A32E4s5toE1m8mGwn\nFMiY4vaaWXQHXyAAgA2e7zhSR+eIfS07zaOnGryJaFNxdjLZLjtezlMuWHgwHQcresr76n0TfYba\nHFRwy+diXzxglDl69m70m9X75uBzh3v2IttTFr78v11YDGhYFMEXE/40Xn2NEc6rbAKlBdeY+bLW\nzjXGjAYw3RjTx1q7iDX5M9vlLx1F8TC6vgfw/2dOY4wBsDlWBZj9/vcD2G+2WL3/979nGmP6rY7n\n+v3vNX/gVgOx2nXYAABpZfmYfyedZHKupas4++3PgcfUJu4+77pe0f8hc7pcdXd9iX6Q2kfIyT2c\nRd/nkv4Zok3X79i5JihetShdHVqXNcwX0rgPjdqKbC84dWvRJvvhKWIfR9359HqKzpJeABcjq3Vv\nej3a5BZKo56KLhOk56JpB7od7iY/PvYa6jnNsXIF+eE90kjPKJ1PtiMLlbHP9tmQ9DjMP5Eaqr3u\nl/dafQc1fEoumiraiN/8WxpLJRcHv8MFZ9APUv+bpTFZfQNtg2HyuKmgRtaMF6RnvviI78l2zuiv\nRBvTt4Bsh5OlR4Y/+8jOW4g23ADnBhYAmM3pQjaizCXd9l5Athcfv61s81Twc3ZBymI5v3CPc8rW\nst+FutC5ghtYGubeJz1LPfdlO2IwsDSsPFWOp1BX6rWKfvWTaFN2PN2eda00hIofov21bUCBaJO0\njN5Hz0eD31esBhbviy4LwXlbyefT9zFq3M++VN57cgO9rx6P0/uy1oGGiTMsgCji451ejYi1tiIO\nx0kA0AVAPgBudH0PYBe2bwsAHwYdMBDGmDCARABJq7d/H3mtAEYDGG+MeRrAJADnAUjGqmB5rP73\nNmPMJQDuBbADVgXZ7w4A1toZxpgPV7c5EUBPAJcBeMTl2tSbqlqBXvvTlV4s04AZJr2EKW8Fr8Q5\nuIEFAAl9C+mOj+Tk3rInNSq044R7UGOg+5PBE0NaT+kBaRzfj2x3GTVTtEkeTyeC7GiwO3jJMfJj\nU3gIvUbtKCv2oQbdp48+KtqMzA88PUwyXfUu+adcTYVBDTzt42Mm032aYTbt2c3FPttIP/4DrpGL\noLqjaZzmnsfJifung6nHUJsWhZG1jfR6YuoPZDOaFNsHMvsh+g7bth8q2hRdRdssO0waeNzDyg0s\nAGjbjS5IkhXKJPITHe8VD8sFQf/zlpFt7cNW8aD8HUf5mXQOOLVCeiYfLafjySjfk66f9STb094o\nF23yplAjY+4lcoGSd4CcF2quoB/bglslxRZdTp/jwlPlWOWGRt9MOTZqmAHO+wYAJBTRcSe8Ywoi\n06QhH9qMcdTf/yra2O1oX+xzrRxP0+5mC5SxLaJNxpjgRQvvm/O2ThZt+txD+3QoiztHgPotqTGb\nP1Gea9Y19J32+EnOnJEF1Ng3kTLRptcUtviQp1oHsIjYuBpda4zVMlVnAhhrrZ1vjOmNVQxaDYDf\nlJ88A+ASY8wRWKXOcChWGV3HKG3/P1wlI44B0AJgAoDw6v9vAdDXWjtp9YWOxio+8xAAo34PgLfW\nLgEwavUFLQHwKIDTrbV/HJlHrb6WOgBfAHgdwG2O1+bh4eHh4eHh8b9iFICfjDHLAfwXq5QXdrPW\nthtjjjLG/P+V2+rkv4MAXIVVsV1XADjQWlvzVycwNk6u4PUJmck5dnj+UWRfpBeNsbBfSvqs8hnq\n4i07NtjF23CKXB3yWCxt9cxXy1ow7oo9qOekpadsk/VMfCgKF3CKRKNHZl9JV2OFNwa72+efKV3g\n4ZW0Xx53geR139uVeogi8+aLNgm5NC6k/qAS0abXg/QaEwplvFb77FqyXXmP9NqUnRe8Ml7XyP6c\njoPniiaKNiPzpdcqFsy5kL7XvDsV+pdRXNz7AgDhgXS1Hvk1tvio+nE0JjL/wF/+pOVfI1xaTLaX\nD5AxXaVX0WPXbrNMtOHgtCXgFgahHutjSpfZXetEm0Un0vHc/Qk5ns2WNGbKKnTerH/S99zn+uAx\n37K/nBPnb0Hnt77XKMfZmsYxhXkCEIBIpaZstOaY9TI9V59D5Tdj8Tu0b7rE7jUeIeeOjBfiM3fw\ncIGSi9f8uP+1H6HRLurQQPotNku2k8c7UBeOSMuv+dpau2XcDhhHxCOma/2DCcGymA5uZC08TRpL\nA66fS7Y1tyt3k3MDCwASCmjn4QaWBtsuCaPkd78k2+FdZdxXvLD4OGZQPSMHa4+x1E2uOYOLn6fG\niUt0ADd6NDxQuLfY16+FfgDqlfgFniWqffj5vWdPkJP2Skb1hpSkTA08Li+yRIYpVo+hRk7Jkd+J\nNpxWiTrQKmayPM7igymNEfkq2KWfkJcr9lXeRYNvS/8pP365Uxwyp/LocWyOpF5M7Zqrv0y/RY7v\nfgfSsTr/DRlczsMSNNg51LhPqZoh2tS+TbcXnC6vJ3dcNdnWYsN4PFKf6/8r2oSUrObpU+g8VVIq\nY9w0I4tDM7I4uJGlPfu+4yktml4hacr/PEQDuLfZ6hDRJnMUnccrb1Pe86V0/IaVcAo1tpIh7YP0\nwDbcyJp7vpLkcTd9PpqBVXc5/V3OF5JGXsLeoRZjxo2syvv+JtqUnSP70PqAOMd0rbfwpXY8PDw8\nPDw8PDoAnZJezDDdbTwkIzTwVZPLikkDp6cGDJGBpa3/olICWiYVX1nxVZWGlSOl13XOcLqKKnpd\nemQ41dG2hzxO4vtfBbaZuSd1sJaNkdRLaCZNDecBoq6YcxF9Pt1/ky6q5He+FPvWGhyC27Vsq/zP\n6Mq3fjsZsMuzZFceJr0J2ftNc7lKgpljZWp638OYRIMSSB+aJD1t8UBoqJROmb0npU37Pi29lb/e\nQj3Q+TlLRJv0JPqcNVqudS/q9UybKgO+l+xBqe+MKpkJHZpOkyO0bGnuAZ93ruwbOffGljEX3YGG\nL0w/WPapwvepv5973wFg2aHUm5L+svSk1NxIPVKlj0kpGZ71qAXb81CNARf+INqYdJaVqczRzQfS\na04bF5v3h2dQu8wlWkJJlCUsu9CNz8+eLPYdVbgd2VYTSkZTD/T0Q2hWfO19d2FF7ewOpRc33yzJ\nfvqe9KjHisyC2Z5eXN+gTdwrcqicQNIEmZoeq5HF0f0H2qfNLdK1mlAYLDrIjSwukQAAiw+kH3pN\nd+nYAz8i259eI4X3uMGZ8MNs0YbTiVxQFZD6TS37yokhfYGkTGJB3h0OHyQWJ6LJZVQ8QifX8tPc\nDLXpjDrsp1CHs69iFJKSbcUpUJe4mYRJMlPT9i8l21qGWOJEauz33Vk+j0UnsHggh6xZDTwmsmFz\nSeoPvI8aj5HvZCxWAXusdrCs3FHwOpVRSBsnDTO+BF16lPxAZj5P++9vz0jpibJjaRttaRtL1lis\nBlbl/ZJmsmF6VeVnyA89N6brL1YWBP8OvqaiK1kmqzLmU8cHG+nFr9N5ctptUmKk7NxgA2pFFiV5\njBJj1vUbahhWnFMo2vS7lMktDJfXY6ZSinbuvpI6LD3m2z+/2NVI6E3j9LiBpcG0SjLLfk0Xz8WJ\n9Pswf8m6ofmiMWkMbHjw9KKHh4eHh4eHRwegU9KLyX0Kbd5l55F9A++idJVdrAQ0X0QDa7vWyGP3\neCx4RW8SWRB/W7DHKpzTS+w7YCJdIb06ULZpPoi5yV+LzU1e8xJd7fS5Xwp0hj5zWI2xJAJNkT6h\nXxFtM70m8Lg8gw2ILYut6XDpuTBsCERkhR8sKafrk5KHqkWbX26UK+Hyk6S3NB6o/Yf0OPT4hfoZ\nNXV3/hxn7S8z71wEHnlg+NIBch4ZcBel5qpOllmhRVfT8VT1nNQ6Kz2a9juhcQcAEbo6b6+VtGAs\n0OiZgfdQz9uvF8rqAJk/0k7UtLXUgeL3Nftq+U4L/8U82VynCnpShQvC5TSTN1Ih+7RL9qL4zVaS\njh7/xrNk2yVDdkK99Hzx37lkGrsglCI969EVsmQXB88AzX5FJkMMnkhp418OVK55pmQNOJYeTeeu\ntLkyVCLxw9jU9/+IdZG9OHSzJPvRe/L7Fit6FtR5etHDw8PDw8PDQ8PGQi92Sk+XFkjP45FWbtJX\n/M6wZxH6VHp2uL6M5k1oPJKuSDRlY75at8uU9Pocqljd1l3GayFMFyQJ3yi1/WKoQ1f5lJSnSKyj\nHrzSx+eINi5eq7WF6uell6TgBVYO5W35vvhqPlQtvSRcpX7m9TJVPaKEobVnUy9n2WgpomE+lyrs\n8UDNv5R0+leph9cmKkWOmbyKFrx9/pmvkO0XBkiNHR7/k/8fpR8q8XNrC/POodez1dHyudcfRCUr\nbJYstRL5mSYj2G1lHE9TMY2JdFE317xq5afT/qp5OHO+lDFCzz9xD9k+vs/2geevfECRFzhr/ZQX\n+B0uVQ408EoZWc9KBoPHszXnywGe+RGrNKOU8Hr3+w/ItouX76Iq6TG7o5TquPGyXwCQw15X1mc1\nok37HCqNxKtrTFk6DkvbF3S4p+uD96TXPVb0Kqhfbz1dG43RxcvKpFwgaa/IDdS9Gf4kWBxVEzXl\nGUcubbjgIgBEuP6PUkh23tl08uCFiDVUPC774sCLmWaQUgqHi5jmTAnOcIyX+18DD1pdea28npS9\n6XvWqF6exaXRqOEMVvcyT7rC23sodS8dDKpwNp1sYs3UFNej6Lol8D4dp/GvZamaCD12glLqSnyk\nlNJSPNhe08bj4AYWAOROoSWYXKiy6E7SkA8vo32IByYDst9rfZ6X8Io08NJuEo3vSXHfjL0kLcgR\n2UWpM8n6gkbbRhfQxKFosywnxNFwsiIY7RKW4UJlOvQXlzqGfC5LbJbjoOdr9L1GGv+yjvH/hHAZ\nLRvlIvBa8ZBipJ+x5mXqONYFvbjZZkl2wrs9gxs6Iq/3nPXW6PL0ooeHh4eHh8c6xcYhjdpZja6u\naYhsRVc7yQ3MBT9CrjyTsij94ZLSrSnJVzxJPQzlJwQHNwqvloKE/Dy5M4b1iBbcze+VK7ADQN4n\nrJjqYrny40/jl6vlNZefSp+9pvGUVEc9bTZJRrdHmBcpeQ/RREQJuJRt0sBXuaZEegXmbCc9XQmb\n0xV1eIVcUWdNp31z5shS0absVqqU3rSLLI7c7TxapDx8iNQ5ijDPlkYplV9IA5htq6SveEJCUx+Z\nCJ1/O/W68qBjAEivpz0mabyU4nB5PxwFb0uKuH0GfT68ZBUAtHelz6f4cnlu8QYVSmn6iVSuo891\ncr5ZtgN9z6mvSy8FL6icsZecSzT5myiT1XDx2mvB3DxhYkUPOeG0b0p19iJzZB+XmvAS9huHhADF\ns8WxuD/VG0vsLWm4pQPocTSZCZf5n1c26flIbNIpdraiWxYAzau18C06L/S6SvbNWBMvPOKDzkkv\ndsm32ww4lezjtJeL/o4GXsuvfe482YjRgJp2llZjbn2CSZZCieNn0InJJTah9gr5Yes6i65pVnSX\nH2wXPSJew6zbe3Iy0crucPAPS/bDcuLkHzb+UVvb4BS1Zuy7YG3dB6fvAWDhpvSae98c/E45NQQA\nNsTiFjUDIoZ5zIX218q6fH/pg2R7p1NPFW202MFAcL04wCnmjceQAsC8kSyW8DiHUAkl61CrUdtR\n4HMt8CfzLQMPF0iqlAZN7eGUps29R/ZNHvKxdHMZUsCFYBOKZaywXUYpWS18QMxBj8r+E9qEZh5H\nfwguWeUCTsVXvXgnmud1rDjqkM0S7TtxpBf79J7r6UUPDw8PDw8PDwELRDqf/0dFp/R0ZSbn2uEF\nR5F9WkkJDpfixKFNqJbXrH27izZ8RR/uL+ki7k6ObiIDZMNL6ArJpknvU0d7XP4IrVzNYQd+Sran\nbqaIXjG4qFxXPCrpzvJTg1XhzTCa8aMFPfMg46RaWR5mwQ501T3y3EmizaQrpcehy9es36VJpX+e\n8cl13gAlAUChtGbcSL1Nxf+IjeqY9TL1ePS7VNLIkZ40sSCaKL2VPIlAC0rXMoRjwaxrWGC0rCzl\nVp2AwSnBRYHw8CrTrIvnjwdYm2apHRVVAvC5xtT8s+UY63V/bOr2HHzeTHlT9t/lOzLvjtJ/E3Jo\nQgnPsgOAMKs0wDNJtWPXXiYp9LR59IX0fEmWE+JsBK9KAbhVplh+CD1/l1fikxGqJSzkfES/K79c\nKr2FnJasupvOW/X/vhutszrY0zUk0b4ZR09XceH66+nqlEbX2qy9yFGplADpm0czfpJ2nynauIBn\nnyUtlJQkdzGnfioH2Y/f0A9H6QXBNKpLnMj8s5SJ/IHgibzhJJaN9nhsxoE4rhKvtTyPzh1Fd8hs\nQj65rvxAUgT8HXIJEgBYNFIKuC4aTM9ffEV87tUF4U+kjENkFzopax/jJZtTA6//g1LYc8XN9Jkl\n71ETwxVKtExQjJzHKK0z+Z5HRJvdDzuebK+tuo+u4LVVS8dKY8lMjs818pR/QGYfz3hBylr0eIsu\nAEJtSrwhkxxwofc0OIVlMFQ8Ib+ZuR9Qcqb750rsnoPQKAeXAgKA5mxqvDXnSTukJY/S0eVnxpY9\n6CJy7RJiwDO6IymSzJq9BzWKk5bQ+5rx5J1omdOxRtemQxLtG3E0ukrWY6PL04seHh4eHh4e6xAG\nkViywjZAdEqjK9qtC5bvRlcODYPpqqX4LqkBU3UFpaK0zCWOsmODA1Q18NWppouV8DHNVNJSanng\ncdV7UsCvbAKlSRuVUjjhlXSVmzZOrrR4qaLEUYqe1APKRTJkP08ppVhThRPyaFV6LcuN+6NCmhYR\n83RpnkkXMcW2LjKj0MWzNeNmemyNFuS0dnNRhmgz4J806PnbB6THrhuop6tF0SPk2a0rd5N6X8l7\nSJo2Hki9RoqRYirti8V7niyalE8KLrfEvbdmpfQUtBTS56oVvXdBLnP4al6txcfT997tKfneuT7c\nnKM3EW16PSi9y3Muoh7M4iNioxJnvMKEg7+SYRAuZaNi8ZBl/CBpynnb0Nni8KtkoP8ENr9d9eYY\n0eb6fnTe7HWx1MVacBuldns8FuzFCnWRGcx8fmndW9KULuXbIttR2l+j5itPpOEc5SfL/lv88V+f\np9au30leGzo6pdEVXtKMrm9TGmlpER1kmtBd1qYLA4/NBenUtN1TWRrxo3Iy1YysWMCF/womyjbj\nWQ0zLeuw+nZ6zSXj5HHqD6OxaTl7B0+2PKUaAHr8SGPVEpZI+so00TYNO0mR1YXsNiKZSu3DU2jM\nhUY9iLiZFVJAVTOyOLT3zAUfU+5QDFWH7+HKHDqZp46Xxn5FO42Z6jY++Jq7TQs2eV3qufF6mgCw\nopiavKo4KsOc7dLFvvaL6TNM+1p+jDmq7pQLi9ILg2n1JBYiyYVrAcCk0YWN1qe6vkTPVXe5pHFd\njJW6E+m9594tf6NlCEfZzF7xoCKk6UCFFR4SLCAbL8z6J72PFbnSKC4ZS/e98p+Rok2Xn6gBww0s\nDU07yLl/7r9ouEDRW/J3vApGyVHSEBLC3LFktkIaWU/NknGlx/cRuzYIWADRzhfppKJTGl0eHh4e\nHh4eGw48vbghIykJpk8B2VX4Ll3JaMJ33fauJNucvgLcyixoHg+O0BBKFy0dlCXadH2RrpY1t3Tt\nzvQVllwiz809W1rAOf9dzhRJX2FblpWZI3Vrooto5l9zjhxIvaZST1LklwrRhiPzOSkumdDCsoJe\nDc4kUsFKndic2GqAaRo97ayUSctO8nfFoNTL9Fvl+ykdQ59rSAnkn785pRZ6j1cukmV2dftI0iou\nopCzr2J1FSfJQPHmHHo9yy7V6gbS3zXnyuVu7ydowPesPeUV8r7Y7zV5PVwvTytpw+tM5r8nM+hW\n5tNsvfDc+aINF5R18Wpp6PU19QJr9Rl7TZbPzLJk0j7Xx+ZdeZx5U/Z84FLRJm0uPf/ikdJz3e/I\n4KSBPtcHP6PlB9Mxn/m5DAVwUbDjQfrlJ0oarq17sBeYe7Z4diXg5tlyYUfmXEj7pubVcqGsOeZe\nQI/b5qBX6RE7OqfR5eHh4eHh4bFBwGLj8XRtNJIRPBW9tkp6acrOorEAdluZZm2m0Fix8EApE9Ca\nT71EWiwLj7Fwia9o3Ut6uvr8k+rUzNs2uCjr9FukJ6UfSxrg5UcAGdvjoui9cqTM2k2dTnWFtOKu\nvDTQ/GFS1b/gQ+qhMsuk54LH22jeqHkjqLRCRo2M6XKJa3JBaLOBYl+8ynJwfa+Fx8t3GEtJHU1n\nLjKtimxrhc2XDaXPNdwiPVT8uVY9J7W8So9ecy0vu52MW1xaQj1mESU0zDDnRrdpSryhg9QDr+hQ\nc4V8F32vcdDpYh7NyMKGP2kZcD1bygD8xhIaP5f1vtS8sivpWNAqacwcy3TdzpLewViKuLeOkvNd\n8rvUm63pqM3Zk5Yey39Lxty15zBmwUH5XwOfT3ipKUBWP3GpfLI2EVSmbl0UvB48JMmOeVvKHcWK\noX1r11vJiI3G6NoQwYN4Z5wlDbx+z9BsNC60CciPsRDadMTSo+nksXiAHJd9tqU0YGiEnPC4QZXw\nbaVswyZ3rSwRp3C4yCkga86pJZkUmikWmM0Hi33RNEqxuXywwz2k4G6ECWDy7DQgNvHPWMGN8n3u\n/kS0mbAJXXzweo2ADDhvHyGNk3ALNeS56Kr2u9YsuSDo8mp8RCnD5TSDT1s0HPEr1Y96YYDUTFux\nLwuwfksuvPhCa2WmFBXlYQgatFAA20QVZF3GAadfAaCxPzWm+74pjWueBeqyoHVpEy8kTpQ1Ytt2\nnkO2J9TLsctDN7TFR92BlAfUSpzVM+o9/zZlLG8zhG5PlYKuLhjNKOOdxl9AtufecC9aa2q90bWW\n4OlFDw8PDw8Pj3WGjYle3GiMrpV70hVj0ngZdJ1QRFckLqWDtCKx4blUDqJ9tgwCd8HMh+nqNOMN\n6ZWccQRdQRfeWCPaNBxNvQDdn1SkDZgniXuRACDzObqiTlEC+xfNoiu9lMMKRJv0sfQ4zUqx5NZM\nGgl84lVvijavDmS6YYskFSRCYcskvRjNoBIAoc+C6axlh8rSIo1HNol9fS6kfaH6OukpEDSTQ+50\n4fPVYt90lnKvBSZzapnTyq5InkR1up6/T6bu9wQ99vJ8WSqIq3JZh3mXFzoHgIxq6hnVKP3oR1RS\nRPPC7vMzfV/3vzZKtCm6mt7X4uMkXf/gzXS7G+RzbulBvVZSYQ9I+5J60ZIVepGrmQPANldRr9kv\nh0gPb2SrL9S2AAAgAElEQVSeTAAQYEW4NS9NXgxF1Fvy5N12YSW7QsvlHBSLph+XogCAfo/XkO2f\nf5MeqnJQT5cmtcOhzfVLB9I5WvPn9Pqa3uvc8+Q186Lcmudtj0OPJ9uaZ/2UPtvTHY8qF9TBsDCI\nQM4PnREbjdGVvJB+kLXPGjeyuPsfkBSA/VLGAtSfSQfMkqHSde1SN/DtLWm5k9MP3l606cliCpoO\nkNfMjSxtElrJMnVKz5eUBa9/OPCyKtEmmemPLX5HUqIYSze7VMgPyacTXyXbLhMeKoPLLWnxU3bn\nYB0fjqypsvxI+stywl3APshaHI9L3M4MZixpwr1d6vuJfRyxGlkcvLbfomEyZ4wX9Sh4V37kf2Pl\ncvq+J6mp9195mmxrfUHEVrJ6gAAAZmRpJbzeHkzp6CLFWOJ0/YJt5DX3+EbSgBxLmJauLObjFsOl\nCWv+8i2PNaoJPE50BxlPN3t3ahz1VUJPXYwsbiCMlGyrmJNNijTMXGqpcvS5QXk+j9M+VH6CvLHa\nf9B5UquVmdCbLioX7CZTCsvPoH2o8l5pJJedS6/RDJJzNEf/J84Q+4om03PxkBBALp75t2ixjU+4\nhYeOjcbo8vDw8PDw8Fg/EXVxc3cCdM5A+v45dquHjyL7qmZQp27CIhrgDACF79MAc5eMtbmvy2y0\n3AOoN4UHjgNA4jTqKam6SGaIlT7JMn4WLRVtmran3g2tfE90J7qC1cpHcPACtUBspTxcgk81hNgq\nt2WEpHEfeOBesn1hkaR5BIwc2OFMGvAdWSKfc81LNIi18CG5XplxkhxLpcfQZ81pbkBmczaXykD6\npMW0b9ZdLD1LzQsphTTwqhrRZv4BtJ+lLJKEDad2s9+QWW0zT6M6c71vUrwArOSSSyFi7kUCZOJH\n9udS027B8CViXxC49xBwK/3F4eJNqHhMxvQOuoYlwdTVizY8kD75vRi16ELS8xbZkQaq8+oWAFB/\nMfW4tPaQfZxnfJY+rGQLMtpNDZLngeExfpvCzMupjWeueZg2VdL17/5I6+U4edsVzGQhBZq3m1fu\nSDpAeoUTH6Ee8dTXgzPeEwqkS9E2U9bHJNMx9/nCsVi6cn6HWkADhiTbJ96SoSixYruiGT6QviMR\nMhapCW1kn1aDioO7k/vWy1p6XMiTG1jq9UyShgcnJIovlynVEZatsmg7KdrZ/QnmTj5K+QCwFGVO\nZwFA89bUeGtvlR/jBGZ08bpwAPDrrfRjXPy6pDuzzqLdrtcDSqZOf5oKnvyO/Ni8chONVXOSG1Am\n8ooraUyKJjBbdDj9IGiZkoVj5HDiWWPtaTJuIVJBJ/zkCvkB4DF3vUYPEW2aetPza2n6jSXU6Oox\nWhrpvHpcuyK/0HX74HggFyOLwyWz9oxcWTzueqw5RVzygjTUeK/XxEjLT6cfu9QFwXKcAy+TGY7t\nLCNVQ9LS2DKNxeIiqmQU/lhDtitVKZk1z4jVnkb7rnSs8rqyAFB3GZ1/86bKGE2XBePl33xKtm8s\nVWqHsvlEEwR2MbKenz2ZbB9VuJ1o0+9FOg61cxm2M2MvOQcAdN/8s5W4ryfot6ZlsDS6WnrQeWLR\nYNpXWh+QmeIe8UOnNLo8PDw8PDw8NhQYRHgZhU6KzkkvdqBOF/eOAUBbV/pMe09sE20SP6Qrtqqn\npeeCU1PxgovwqYtWlIZlh1FPW2ORHEiFb1AvCRfaBGSB4H57KZ6Cw6hfonkLmZnI6Zhl42Ww+dJm\nKpqZ9L704GU/Qr2FoXRZmDnaJLMXY8FQ5bV/J514MWE+S/Lo9WBs2l48ezP9Zekx40WwVQ05Jtpp\nvwousKxR3xUX0Pfa77L4JAxoumFJX1Bvt8t7X3Si9CKt6E49DPn/Vihah2eoeTx63b/m79V8LOkd\nu6tMGIkF1bfT+y+7VmpMcW2+EMuKBIDKY+jYLLkoPkKjWhhE+dM0UL3iuIdEm1goR54MAABJd9KE\nifbTeV4vsN+r9J2+ub8MyG/vSX8Xi67ZuhBH7T8kxT76Zvyqde9cXOnpxXWNhW9RqrDn/tJ9u/xd\n+tEOP8Dzr2RsjdlKxgsUHxScUcM5/HB85jaENhkg9i0ZQmNg5u4kHdxFl9F7T7xGxs2Yz6nRpdWC\nDLVRg1MT+XOp7dd1JjWo2kbJDxufpGt3LZFtRtGJqf+l8n2l/0Dfl2pw8sVJP5liDgdl+XCZNPq4\nuOaPuyiZd6DXrVHE066kGXylF8gPUuYBLG7owT+50AB0fZN+pCqelvRe2XE0Rmj2ldI46HNbMO3P\nqbLmzQpFk15fr/niseouScXzZxZJkYsGE6b7XEQ8eRgAAIS6MCJXMTIWDaRGRoZidOU8LGN7Gt6m\n813zZGUuY8Ur8s6RmZJRJvgbunOxaBPZhfapzEmyb+beTcdzl/Gpok3LcTR8Iqo4BLiRVfGInIP6\nn0VXLbxKhgbNeCpmmasj/6EYWExSQ1O2r72CZUEq8Y+LWui80OVXKRj9xG37ke1ulUpmLfuZi/SE\nR8diozG6PDw8PDw8PNZPeHHUDRhtuV1QexK18Jtn09VOTyWwdOEXlLYo+S44CyczT7p4efmeutFy\nlZl7AF2lyBYSWqmKpfdSl2xTgcxSevzCu8n2yXecL9qk3sGCsB9S9IEYY6sFt3M0nCJplewxlFrQ\n6rm1p5jANlwjRwuA516I6A+/iTYt+9Ng6fTPZ4g23CuxIk/Siw27BZfm0UrGcCw4SHo8IgdQL+M3\nW74k2ozMp++s5l/y2RftEUy7cbHPbk8rv3mP9tg+7ZJ65hmfRYfLFfY8F7qTeTx4SRkAUMooBmLA\nvXPEvl5TKT1T+W8lziSPJke4UDha4oX5nHpYraJ3lRFcNUr15Nhx1NuU1SQTYxZsTsdY5GeZpTrr\nZerJSVsm+z2fu5YdL+n59BoavvD1CPk8yqcHZ+M1vke92flPyvnOxbPFoQnc9nyDvg8tC3JpGZ0X\nui+StSDDK8QugS570nlB82RnT6R0iMtdbiheLWs3npiujeMuPTw8PDw8PDzWMTplIH1690K76R7U\nm8NLz1TfIeM5yq6ky0quut3R4HIDLmU7XHSOXMBjzgCg5yPBXhKXckKxgKecA0DCMnZfSjzF9DE0\nDiP1K1kOpfClGrLdMlB6FHmiQaz6Y7zUFABE6uaS7blnyPhPrfwKBw+Sz/tQ6qpxeQqXwtlaXEi3\nCpocoulHib64iaxOYL8Njn8Ml1LvQaRK8UQyXTeXsbvgDMUL+9CaB+DPvF4ep+8/1/w4TX+Xc1KX\nOjp+tBJVWjFrrKTvZ+nu/UUTPice9utc0WbswFz1Wv8KWqxc/9HUEzrjOilL0OdQOX6DMOsaJU7w\nOtp/q+5UYvcuXPMAfFH1AMCyclpHIP2XhaJNWw71/CX+IL3dkcZGsS8WJBTzSgTBVTo41kUgffmm\nqfa+N6WXMFbs2e/X9TaQvlMaXZkpeXbbouPIPv6xcQGnrwCg9n46gDSdLj7IYxngAFDxIKW9ys+U\n7neubbO8vzSwyk+kdMzCUxWD6tHgjwTPGotFLBWQE8P0Y+Rz5nUDW5TyRl2n0gmlcdsi0UYTiw2C\nS7C7ix6aKxqPpMfKGCOPw4PQC2+URhj/AEWT5NguunLNjYGDf5XGPq97uSEi1FVmiJne1MiIpstS\nNHO3pb/TDOLHZ00i26eOPEG0mb03DUMo+EjSV5s+TimuH7aI33w97xzaX3LuCzbsXeaOJcfKNo37\nLiPbsRhYsWLmWCmsXHJRcH1cF3HfaraoKztRhi/0+Jj2oUX7Klp9DpnhHHv9LHXmJhxJn33dbrK4\nFF9UcXija+2iU8Z0eXh4eHh4eGwYsMBGU/C6c3q6knrZ4dmHk33tc6TrnGP21cyb8C9lRcBU4sFL\nV8SIsbXSA3HASeeQbS2AmCMhT9IB0cV0RbRyuNSJmT+Muvvzbw9e9Wo6OtMPoXIHSUuUsjuMcXRZ\nYScUSomGpVtTD1n69GWizfJiGvibtESGn3J1bI2u4dTu23VSUXufAkmBhrvRlWZksUy5X1uYcbNS\n5uYftJ81Ha5QWvXBlFb181Q4rOSotaMpFyvqL5G0k0ufjgWaZyfrmWCP4pwLGR18Z4yaaYfJd8ip\nw4rRUlqh/JTgRBiuU5bwkez33MMaUqIZeLFoF5kNrQA374tCdgPA7GeLyHaBg4TPCdMkDffUYBq0\n33iIdJx0fZE+58p75LsYcDULyFeoRJei9y5jLrQZK0tXNUu04UlJ02+l/bf2nrvQWju7Qz1dZZum\n2TvfkKXwYsV+JT96T1dHIpqWhOVbMC2fKN3WYlD6vMu0kJgwIQC0x8nIqv43HZyZIRkjlPoVpbQ0\nfStOc2kUF58Iys6TbbqnSfouCNE75ORRNEJmYAXBhbKIKEZzxg80ZkjLDDzqeVqCY9wgWUqJo61c\n0p3zWN2zQc8rBs3wZrEv2kazxuYOV2p1sgyjUyvkfTxw9mFkO/H9YAOcG1iArMPZpU7GPvGyVbyW\nHSAn/HC51EjjsSya8RYLrFKWyEym11zwsaTqnJaXTBOs8QiZnTx3dxovVfSiFD/m0BYNBR9RA1zm\nF0rqOes1OU9wAwsAmg+k192lSmb5cWgxS2BGlhbfx2OohHaVgoTpMnOUz2/Vf5fxqWWfsd9sJj/U\nBQetuSDok/2lsDLPD+QGlobMCoU6dIjXEkbWR7K/lIwIHj9RB61ADi4kvMDKTHGP+KFTGl0eHh4e\nHh4eGwYsgOhGQi92SqPLLG0WGlKpn9Ig8Jb35O/s19QNHVEyAcW5WBkTAAjX0QwWjdosuZiumkZe\nrGW+0eDKhpOkd6W9C12Za1rmSUuDPcUpbwdr5Cw/hK2eRwQHqT84c5LYd+6OR5Dt7G8lLci9Epr2\njovmFfdsaddzZt/tyfbMvWXwdPGBzMPgSMuHWTJGaoOkQzju+OeRYl/WVEZRKL+bez71QhQ8IUvq\nLBhE7+2bq2Vpk7JnafkTl5I6i7ZWirF/Sz05LpUINIiMrMnB4lV8LAMy43TUtFGiTdu1dJ7Qkhoy\nxgSeXkAL1AaLy+Z0IwD0nkA9IIsOlvOE5t3mCSQyZ1di5g1yvkuZQOccTffJKSyDQcvE5iWPys6S\n80u4P/VsRT6XXi1emo1TmwAQSqNPJNosvdQuqLyfzollZwffu5ZhHs6n/S56oVJmjB9nK+lRtF/S\nBIVh30r/6SvjaVHu0idoQpSZydyJHYSI9eKoGyxMOIxwJo2lqV5E6aGUE2WGGi/VUXe+pIR7v08/\nJGUPS0HBj1+m8RMZM4tEGxdXNY/P6vF4bPXk2tKpgaBRQVuMpfXkvhwq6Ygus9Z8YtprypliXxno\nM+QTRTzBZQHO2VOhUEBrZxRfHttz5hM5ALTXUkHDzOeC6z2lzpd01bJdaXmn9GkyNiz3bhY3M0SW\nhEpk9u0W158h2iTtvubp65nPyf68Yg86fhKDQ2vUeDobDl4Bc1mJ5QOkETgyn++pF20Su7WQ7fkn\ny4VOj8do/1i5p4yXGvwvGoZQvZNC70XpBzGpURryXLA00+EZAm7ZrlyGpffBMl6LZzhqsVguRtaK\nfWn4QspbcpHXOJQaHmlKySOtTiuHZmRx2JU08EyT6+BztCag2v9hOg5b9pJ9gYeyhIokddjOF5CK\n0gOP3VuRJY2Unixq5qszZVxc8RQWusH+bu2aSwx5uKNTGl0eHh4eHh4eGwYsjM9e3JCRYbrbvxla\ns0a4pZUVE9eCSn09mHLTIIpr71sh2oQH0TaRX2Qb7ulq7S+W6ghP/Ebs6yjwewAA1FNXtVY6o+Ix\n6gEpeV66wMOfBN8XzxrrMUXqhkXTaWHd+mvkufKY1hoPNgeA0H8oNbX8IJl40OXVNdcEAyACj02b\nvEYuIqoFt/NnbRLkmqp5H1p+RevjXMC1vUZmQLXtRr0kXDwWAMwwmiWrUX6LWGHmpKelrlD6y8HP\nlWtuLd5fZuiWnkk1lBYMlzpHHNHtJZ237EpafD1jr2ANQI1SWnwEfYbzt5MUevlpwRmGLtCC5CNK\nUWUOp5JQDCHFw9o4IItsa8H/saD+YknJtjOHM9f808DFdQEpsKvNC0lVdM5pr5PeUxfwsepSyii0\niXzOrfmUlkz5VrrMIgtochEXkK694kG0Tq/rUK6vZNMu9qZxMhs+Vvy97CufvdiRMCnJCJdSBWbu\npufxL4CkZ2IVwMw9nXI42vCZtwOlO3sqSX+//Iu6octPlhlryw9mcVbjlKw2VmdSmxQXbE0/douG\nyg//9IMeIdujBssP5ML96cDpebwc9OW7BGfeuYCn5VfeKt3/XLKi9wFyAhZ1zj4NzhJaMFSuyrq8\nKtvxrDU1tocp6bssg27/brzYd2ERvf+mg+Sc4/Kx04wsDm5kVT0nP0ilRwc/x+770MWGpvS/eQ6l\nqHvdL99htKlJ7ONwMbLCg+m8EV4kKXVuZGn04uzdKJ0YbpXfMC5Um/WMvB4e59X7SZmdpsmQ8GtK\nGi+NN36vc3foLtpkP0yvsXWUQp+9S4+t1TftGmYGuGgRW5zV8iIZKZj5G3v2LgZnYqI8OK9qEJFX\nvf+HtL/e9eIBoo3I7lRQfRN9rv0uDTZuoz/J55wyl85lJjVVtOFG1qa9achDQ1JwNq5H7OiURpeH\nh4eHh4fHhgEvjrqBQ6MXXeBSjoVnK9qvZIbYkmOox2HFwXKFzcsH8ZI/ADDoVqplU3NkoWjjEjTK\naR4N0SRqf3OhQkCKoc7aK0u0cbkeroUUzpLHmXME1bPKGysTFrhLPtayREJXSKnhyKEFza/cVmpw\naWKS8YAQQYSbRs/SdynNvqBBlsIpPSbYQxXOpoHqnLLQoNZwrKKr6vAF8h0mXUwpk+h30i3MM7ka\n+8ks0YzpVH9obSZwVN9O54CSS6Tngie01I3KEW24912DpgEWZWVlNK+Ri9hm3eUsI/aW+AjM8oxU\nAGgYTmueaqwCn8tm7yFp9vYu9JtW8B/puUloovvaMqSny0WM2gV2OE0+MErG5YxbaH9xSeaZfov0\n7PdjvwtnZIg2XDeMz+tTfxuNpc31HUovFm+abq9/TSoBxIpjy/+73tKLG4dp6eHh4eHh4eGxjtEp\n6UWbkYbW7SlHrinQc2ieLY6K4+gKOr9IKlb3eI/GqUSelSUdOLRi1ksOpcd28iIpmHEQXe1oRY/5\nskbEOQGIMAX63g7q83MvkN6NECsDlDBqoWiTfRP1SmhlMczmdNU7/2AphdHCFAj6XqusIB08Wxya\n5yDcHBz8GiuaD6J9obFQShDkOghxTx36Ctke2VspXcQ8MFqx+KYdqORK47E9RZvvt36BbI/aWb4f\nfuzmJDmeEr4LDqTnXqtofxmPKQpVxydGHXNfl17H3o/QvqAFPUdYTE7S9lIugydMaIkpkZ7S2xNm\nchRaf+3yhYz34Si4dc3lUxpOUSpMfEtj7toVhiBzBo3/1JIP6kbQe01eIpmavKl0gnFJyglWZHQD\nZzkAIGkZfReaZhr3bPFYXUAm6uRNcVC+y5Hj0g6m8ipRxmpYK6tUdAS8OOoGDBO1SFxGJz0hjLjj\ngeJ3M46i7m0tALLsnOAPwIIT6MDr/qScuJYeTT8KK7sqmivfr7kuVtfP5CAr2oHV23PQpNGMHKw5\nY4vcu4INxfAY+dGIllIqNVQmddXMImoEdq2TlFLy3pRmcRU15Zh1LTUe+1wr70ujZDm0j2/NwTSA\nOatCJjFkvEDfj4vYpYaR+TwbT07cmpHFUbs7fY7lB0hqc5eRJ5PtpIpguoaLegIyi1cTG+bZi93H\ny8y81iFFgefnqL9UKXvzMg08bpwvhSxTz6HB7amHB1PfvT6YLfa1K0YWB89sBWTyTsXDMnyh/HSH\nRRwbL63vF4kmyXvUkO3IPjKw3z4mwwMCEZJzYn+WCV75isygnnUavfviT+Sh+XvNvy0+tGn3H+X7\n+u1cOlrLxwUfxyUTOvUNuVCfeT399mQo+tHdnopNh3BtwlogYjcOo2vjuEsPDw8PDw8Pj3WMTunp\nwrIWUVx3rz3/TrajVTLdNm+KpNQ4eOV7rYgv92zxshRAbFRh0+GKh+ol6gFp2kFSdVzle2WX+MRI\nai7w+p3odtm5wSs2jTJJWETlKJb3lwrjyRMobZA6U3oKUl+n25qiNvdQhbpIjxn3bLkGsrtov+X0\nZVT4O8G8l1YSaiVTqM67Q1Eh/5BqcCXsJuUh+HsNr5TewfIzgjXsUr+jx66+QV5z0VV0rGjFvh9V\n5OA4uGTEip2kZ4eXunIZl5oHZM7p9D7KTw32HCw7SI6Vz+6nEixSMd+tWL0LisZp5bTXHI2v5Yl9\nuT3ps2+qlIkxvZjHjGv1AcCga2niEK/mAABVL1M6PPde+X7afg2On3bxbM07l/aPHOVcAu3yOfd5\nLdi3ceAvNBHliVv3E224RppGZfb95/rnxXKDQVQEuXROdE6jS0FzHxrXlPKDbJMyk2YZaoy5iaz5\n5FX0rNSqiiX6hxtYrmgZSj+0sZYTCjOK76pbnxJt7iqlxoimdbaQ6nOi7EmZ3dnO4l3CRYpBzPTH\n1Dg0RpO6UIDNu8hsT/7BdskUBNwEdrmR9a8Z0ui6upgaZto75JlKWv9teINmuuVAGl0xi7wy8Pp6\niU2lf9Ly//DYoXuLfeFSGmMSqZoReByj0Mhcm+/Aw2WNuW/eZAKNrbIkimFTQNWdso+XXsjo4Nfk\nM906g5Zgys6T99VvHD0/F3kGANOsxOBwcc0YM/G4cVR+sux3vJ8lL+ov2vBs38zvZRTVghF0nsqs\nkTFuuQ/S8aQFCyS+v+b32j5CxjZGkoN/J0qqReSo43OHVk5o3CD6XLsheI5euIW8+6xnA38mwMNN\nohPiI1y7JrDw9KKHh4eHh4eHh0cc0Sl1utKyC+2Agy4g+7r9nSqBh0ZIKoqDlzoBgKTFdFU54wCp\ng1J0NV2luJSYiBUVj1APiEvZEE31e9Ruh9Edc6TukqZ8zcFXjCkzZEB+u1LIdq2BaXAl1C8STdoK\nafKBTZJrkZCDSr0GoXM0cZlsNFVxuzJwXSxkyuBtFw8QB88ABYDqS6hmUd/R8nm4ZITFgkUnSC9A\n9uvU66n1w8jO1H2qlcdaeCo9ds9H40PFtO6tqLQ7UMQc4h0DaNyRepfj5YV0Rf5UmqBQv41U/udZ\nhtGtJPWuaVMFQZt/tXJTsaDuMjYub5XUIQ8ziC5fLtpwLDpR9t/uT7AC6SMl/RlJpWOsywz5nF29\n6/8r/ms/QqNd1KFcX99NutrLXo2frNZZAyautzpdnZJeTFi4HD1G044+pysdZLnbSSrKTKbGiDbA\nuYmato1S+8shbsYFC1jsiFHs4/LT1vzDsVepvOZos6z9yOHyYeNioBqNymPMVmwqRV9Tvquh51ay\nKV1EB7kcRNtwGdNlWZbUzD2lkVz8qTw0h5aZmDqPvTQHA0sDFx9dOlLKL2Qyo0ujTJK/pjVHpx8o\nFw3lF7HjKNmCawtRJXefG1nTlXJP/S4LHge9nqGGc4jVmASASA9qZCzvK41bThUmNEtKiWe7JjaK\nJmgaTKnD8pMkLZY5lRrArmEJVc/S2NPsCZIry3yO0kiakVN3AZO+SJQf/pU70YVNvAyjWI/D62WG\nJslFJjeymg+UMXddJ7H4QsXo4oYyN7AAoP4SVsppglz48dJJVVofd7BbeYiFbW6R52LyIVzWp82h\n1F28YWEQtRtHTJenFz08PDw8PDw8OgCdkl6MtQyQ3Y6ukLjnK1Ykf5or9lVPoLRB75uCM2Mqn95C\n7Cs7bs1pnmOnSWr1mf7S2yTAyvdomlfRnegKO2GJpFG5m1wrops2hXpkmnaRKWxp41iQukNfdiqd\n4VIgV4FJlt6EZfvQPrU26aEZLw4h2/2OkRm6tk0GhgehfVfpAUn4ONgLER5E31nkF+lN5cHtWtkb\nlzYuWcUcC9+SfSr7EJr0YltbRRuXcbCuEe5Btd8iDdK74gJeNqrlAxncnv0tHeP120tPcZg9xvzb\n46OLpYHTvS5Ur0sSjpatHWJFsGt3ld6a8qdpSEFTiSy9NX8Y/Z2L59YFyw6TSR5BRe/XBb3YZ5MM\ne9ErMuM4Vpw/8CNPL24I4EaWJh1gBxSR7eZC2YZnrM15uli02fxkqua+4Kbg6xtwaa3Yx4kNXhsS\nkPUhNQOLT66Zo6pEm4qH6GQ28F6ZdQgW+2SU2l8udcYMq83W3FM6ZVtOohNKVrX8QPLYI1sYHEvn\nYmAtOENRnm6UH9+FQ9lkOpeLkwIJP1M6b9nOMvsrfSIVlzRd5cQN5p6fdZmcc/q+zmry/SQNM45I\nsnz2fOLQpDjwc3CMWYiVxVuxj5x4uZEVGiJpXDgYWRw5l8l9kTYHAs/ByOJZhhWnKsrg7LGWXhAb\nrcNrkALSyOLK9oAu1cLR/Vw6w0Sqgo2lliPkIsol1pTXkGyfLec7DpE9CNlftZqf+Z+yTHWlnidH\nxkQ5L1RdTMdq2blyLmvfhS6WkxfJWpDlD9JMXyjUd3vNmoepaAZW9b/pvGna6bzReu+6yV6M+uxF\nDw8PDw8PDw+PeKFT0ovp3XrboTufR/bxkgkt+8sV9bytaT07tUYh8yRxL1Ks0MQ2bQK1ie3XstwH\nL3/CRSLXJjRxvi7z6CrORTOH00cAkF5PxZCCXOL/C3gA/HvvvyjaDL/wdLLNyyYBwLJDJf2Q/nLH\nZpvFA+HBdPXeniVr9MVCvfP6kQDQ9VPqPWjcWVK7Qy+n55o+QtK4VY9Qb3LFTk+LNrIEkkT1GNqm\n5Eh5nxVPUro1PUsGK+cfSD0nbXtIr6PL2Gg8gnol2hRh416fyhJDkUql/gtDyZeUBvz8GRm+YFmJ\nT7uzzBzNU0pAcST0LiDbDTtLb3vb4dQ7l3mP9Oa6BNdzL+PsW2R2Ru8j6POJVza5lr3Y4xnq5au8\nXfYFFy+nC13Pwb1aAND9J9qHeFmgdUEvFm6Sac97WV5rrLhk0PueXvTw8PDw8PDw4NiY6MVO6enS\nAuqPDcEAACAASURBVOl5cKWW5s3jfzTPRdZnNWS79nAZU8DjVHo9GBwHsehtGdTbfZ/glQxCdCk6\n+0p5zWAK2oU3Bl8PX80DQLiBpq8nLZaDJG8qjaviEhKATE3XVq+JE2m5keW39BZtksbTFSRfTQN6\nKZFYwOU7bILicbhfPlcep7L8cbnOSTuH7otMk/F0CQW0Rkx7Xf2fX+waYMg38j5+2CK4ZEtKLfUe\naAXAOcwwqQnGvbfLD5H9t8sra8dbyJM+gNj12ILAqwUAQKRR0ZFgaDiF9jsuheMKF82rYd/Kahtf\nnk9/pz0fHqOZN0nOrY1FtI9nVcqEjqQYVfM5hDbeLcF9s+o52RcGXE7jrNSyRKwaQeo8OSdmf0fv\nVbvP+otZAe5/O+iGbSq/PVySRpOx4XGcvKD85wtewtKV8zvU09V7k0x77ljJeMSKywaP956udY2F\nm1KDoeAWGdjJhSI1aoiH2SY19RNtFm1KP1oy3wdIyM2h11cnA127iz0S3MgqfkZmJrazmoS8phgA\n5H5OPwDlJ0hDqPJeeq5kRStVM7I4XCiCuc8Wke2lx0oKp994uq1Niq3v0+Mk71ETeG4NS7alxuTA\naxXRV+V3tYfQgNjcPZQPQCmlxrRsQThkC8YCbmABwIyb6Ed00A3yuVafII1gDj6Ztyv0OEfMBtY2\nNHPTRQ9NMyDMVlRzqv5K+VZd6DSOWWfIBJfE4ZRO65slB1SPnYKNLJearC5jbtJ18jipnwaXsao4\n9iGyvfOnp4g22oIkCLzsGAAsG0wTErQyWy5GFkfRk9JYmn0YTeZJ203S7P1upvPC/GGyTco8qoul\nFZIrfI/OJ1VKljVPOKrdRWrI9WYspUuizPLNKdUbnaSI5XUAIr72ooeHh4eHh4fH2oW1xtOLGzIy\n0gvs1kNpMdlN76PK5D8NCy5crVF+2ZfQ56XJC6zYlwbpp7wVvFrUwBXgc2+SwbENZ1AaTisV4VLO\novYfTDX5ZoUqY/RdJCdLtJl+CKVRiv8RGx3ScBJd6S3eWQa6Zkylq0pNzTzcQt9X3htSxoArrnN6\nApCr5+Xj5Sq8ZVyO2NfzkeD75yn/lhcrBlB1NytKmyz774BL6btfq0kVrLxS/U4y6NlFi4mXpNKC\n3XmxZK6oDcSmSzX7Fel9Kj6feptc6GlNkiD3HnrvsWq/ce3A0BdS2sBFe02T9ODF3zkVDgDRbtSb\nwpXTXcHps5QG+d3p/iTTyxsspVMiPzPpFOaZBIDrxz5BtnmxeA2x0r8uqL+U3nvhW7LE2uDnaUiB\n5oHmWmJalQ4XTL+Nzq29htBEjB/PfhrLKuZ2qNupYHCWPXPs9nE73lWbvLPG9KIx5lYA+wAoBLAM\nwDsALrPW/ulkYoy5GMAZWEVozQVwl7X2wb88T6c0umIUR+X0ov02mA7h2YOA/Nhp9eT4BKMJa9ay\neIrlfeXHOGMa/WDzyV6DWntxCHtePbqJNlqsEQfPRGzJlf1L0+UKQs2/5DPMn0yfB4/xcgUXZ01c\nLp8zp6J4LAcAlF4YnIG08DR5Hzmv0tg9bTLlzzX7O2mEamWZOCpG03vtf6asLTLnbDpX5d4VbIDb\nDKlX55JdxRcWTX3kOMh6hn2MWXYa4NY3Y0Gf/8r7mvW34Bp8fDyrIqsO4O+9TV6OGqPJdblcNLk0\nOs8lC1IcRzGWoilsYeFANfNyYQCAlTRg1qUerIbQ0EFke9oJ0ugqO88ho5AZa06G2tbSUKw6gr7Y\nAffImE2u01XxuLQpZuz1GNnee7v95XFmUAFgrtH487lPYXnFnA43uk57ace4He+aTd+Kxei6CcDL\nAH4CkAXgGQBt1tr9/qT9fgBeADDCWjvVGLMtgA8BHGCt/eDPzhMXf54xpocx5mljzFxjzFJjzBhj\nTLc//P1YY0y1MabZGPNfY8ww9vstjTFfrP57tTHm6Hhcl4eHh4eHh8f6DQsgChO3/2K6BmuvsNZ+\na61ts9YuAHAPgJ3/4ielAH6w1k5d/fspAH4AoChF/x/iFdP1DIAVAMoAJGKV9fcsgH2MMdsDeAjA\ngQA+BXAegHeNMWXW2kZjTCaA9wD8G8AOAHYEMM4YU736JtYKKh+QWVJlZ9Eg3qVHS28GLxIbUpSe\nV7xGqY7sg+Wqjuf3aCvh/M/oijrhcUWhuRtb0coWonzFyHzZZvptlErtd6l89Jwi0egRrURLPFB0\ndWxdoWUCDVJPHSnpxeR3qYdMzSRlBa9DbXJgu9CSGt0YZfSipq1TcjE9Tu0V8ly9J9LtlSPlQq9g\nPF1nmcHSa5Qxk/YiF09trODeOUlYS6heLZbFi6g2EigqnpDPZ+CltH/M+lswhaMVFndJKOEeIU6d\nAcBK9kDULFHFcxJhhd5dYFrkHMTLK7WnhUUbno1XfYRMAcpit5blkBcSmTdf7Jt5Hcvy+0xec+LH\nzJOv9IUoU6Cffqj0/o88j1K7WhkgXtbLZQ6oPCZNtCk7h35XXAqbawXSR4Jec+W9sgRd2bnU07V8\nIvUoRps6Rah32Bjzx4m8wVq7pnzsCAB/VWb8RQAnGmO2AzAFwHYAygGM/4vf/O9GlzGmC4C9AGxu\nrW1ave8mABONMX0AnALgNWvt+6v/djuAs7DKCHsawEEAmgHcZldxnR8YY8YBOHX1jbheRw8APQAg\nHdIQ4nQIN7AAoOnv9GPHDSwNWqmKtgh10ycpLmc+4ZefKAeQ+Zy+b/UzwqgoTeqh/AR6r+FSWZao\nW3AVDGFk8TgaQMbSzPqnnIR6/ELvxCVjjU/+AJDwHf34ajFMrc/TSaf2fklZlJ1Nz9/zSvlhCbFM\nvK5KhZvsh2OT4uCZotZhVHJZEkA+o7qdEkWb4ivokJqjZLJGWGyclr7uUrJFZC+y2DkgfnEq4XQW\nt6jEfVXdwsecMr6VGnxBcDGwhn8v464+30waWRzhIZQW1MZc/d9kiEOOQxhpQr8ish1NkzUT27rS\nztjlB4X2YtuFHyrluCYGy/HwbPFwdrZo0/eaNV/U7faTnBdeu3F3sq0tRDnq95ODLjuNLkj6PjdT\ntLGMth1wvaRsF7EFfka1zNbmMXguKDs3eG5N2mEhPc+rLiZfvGEQiW8gfQ6APw6w6wBc63w1xhwM\n4HQAO/1Fs/kAXgHwCf6PNTzfWvuXiunxMGnNH/77Hb9fwFCscrU99fsfrLXWGPMd/s8FtxmAby0N\nLvsGwDFreB3nALgGAFYitvgJDw8PDw8Pj47FKnHUuIaRzQOlBp1Xc8aYQwE8AmA/a+1fBcpeDeBI\nrLJzfgUwCMCbxpgWa+3jf/aj/9nostYuM8ZMBHCtMeZ4rKIXr1j95wwAXQHwKM4lq/8Gh7+74j4A\nYwAgMb3btLZtmUeB6dTwDENAlnZJYEWXAQAtNIC5fa4swdFlT7qSWbmnzJ4ZdM0csm2VoNFl2xaR\n7fTPJK0y6xQqfpeYuky0OaOS/u6GW5VSFY+teZbdyiFFos3sXSllUnS1g2imkkTA6daQUtC4jRWS\nXVokj5OyhGb5ca8WIL1xbf3lKrP0TuoByX7YzQnLkzM0/TNe6iW5Qa74eAZqn5elZ4kH2oZ2l+95\n9tUsk+pfsdHB3LOlJWfwTER+bgBo7UbfT+mFwXOj5u2JLqNUfN2FcnxzilZFd8bnxeh54/hif0nj\nAvR9zb1AoaYOotfcpJRSOv+sV8S+mSdTPavPN5OpvdEF9N5WbCeFNDn17uIDSZgsF/qhT6graXL/\nR0Sb4SFaaivrG0kvhjNpNmWkKrio+oebSE9gBoJZDJ51WHackrDAKOIFu8lC1en1vDSa9HRlPicz\nGoOgFfuuH0kzqHPuC+7zPfelCS/VtlM4LSLWWgd1cQpjzAkA7gCwr7V2ckDzYQBetdb+zhP9bIx5\nHcC+ANae0bUaRwO4E6usvRVYddG7AVgIoAkQfF8WgOrV/98EoEj5+xrl667maxsAIDM5B6nTqDEU\nZVmGCcuDYz54lkes0LLqwp9S6qV1JznBpLPvupYGz+MFlh0m44GmDaayEpqBxTNhtHgBLmXAFfwB\noOgTur30KCUu7nk64S04XtZ8c5Fa4Ofv1VfWc2ufRY0DLf4m50s6KSZfLw28WHN8XTJgu71Dud0M\nhY7mAhEzLhsi2rR1pR+2fq9K4zG8gr5Dl/vSxFoTmFjr3luMFG0iu1BKXzPwZtzMDEMlPqnxOkoV\nZuxVLdpw5N+mfCDZwsakSSHL9orgY/NYOU1hnEs0zLhIzjep79N77z5Kkae4i26mvSYXDS+8Jrmx\nynvouBtYKI30hp0oRayFU1TfQY9TcpFss/g4eh/dnpZjd/Y7RWR7u9aDRJvGIrrYyD1L0oLLd6TG\niZPUA4/3A0ScV8PJcoGStJSOjvAnCgd5Nt3kdQzjiSN+o9Tuc6fLedPFyHIJbVkXiMQnry9mGGPO\nxSq2bKS11iUVfjKA440xj1trK40xAwEcgD8wexriYnRZa+sAHP77tjFmb6wyvqZiVSDaFn/4mwGw\nOYDXVu/6fvWF/hFb4K8D2Dw8PDw8PDw6ASxMvOnFWHAPVjlzP1llpqyCtTYdAIwxRwF45PdtALdj\nlUPpA2NMTwCLsEpy4pa/OklcdLqMMf0BLMAqWnAYVtF8z1lrr1udvTgewP4AJmFV9uJFAH7PXswC\nUAngNgD3YlUG4+sAdo81ezGloNAWnnUB2Vd0FT0UL3UCyCBjLkgJAKXnMwpSERSMzKVeKxfxQhch\nwHhB84aljw12t4dSaKBtdIXUiopuTymlD8Y+Jdr0e5nSCC56OBpKvqTXU72VvB6nYG6m+xRPzSeX\ngHMXhIZQ6sdFpJIHqQNugeqcyqy4UXqf+DhQtd9GHEq25+wiA6N5XVLNc9E+mCZ+aAHFjUeyQOQx\nsk+59IV4wUX0lcOlnI+rltaCM+j8lv1Q8FRqhysCqiyZR9OZy5gZH708Dj6XAEBokuxn4ncsoUQL\nTeC1eOu3V/wPzAaIRV8QkJp+XWdIj86wo2jZqjn7ywzHWcfTeargVunV4jVitTCIICHh/9qP0GgX\ndagFlDu4uz12zJpra/4Zbh/6SqevvbgjgOuxyuqrA3C/tfYeALDWTjLGnAlgNIA8AD8CGGWtbVz9\n9yXGmFEAHlh9jDkATl+bchEeHh4eHh4e6w+i65he7ChsNIr0PIhXy07tc10wH966F10hzdpLHoin\n6XLPAQD8du9Asp0ySwa6ptBMXvR6QEndZ2nftlHGQSwZQfW1VnSXi5gEFv7DZQMAoNcXNN9heV9Z\ncHXhJtSO7/2xUnJoV/o8NEXtWKDJSjQMpt6w3FelFyuyID5BrBGHeKBh38ryPV9vTvsQL/0CAPO3\noCvfrrUyRqjrf6ikhxYDGNqEeszmD5eVB3o+Stc7XBUdkHpsmgwJD3J28eby6wOAmoPoynxFgUzd\n73829ci4eJddYtVcoHmosj5i78LBw7jkGOlFWlZIx2qvb+S9p86Qquwu3louyRDLOACABBZLaRtl\nMg9C9D6adpRlkdLGBcsbzDuH9kWXGCYVhl7PhDrpDXPxTq4tJOTKkmI8aUtLQFp8OI3zSq+T4yBI\n4mRdebqOHrN7cENH3DF0bKf3dK33KPgPtSp4WRdXJLTQj13ZucGudK3WoRaoHgRtkLVPryHbWo01\nTlHIXB6J+W/Ij1/jYpoPkfGuzFJqGEzPr1FBhcyHySdtAKLchwsVlPjrLLEv+zP6sdPSJzjttGR7\nmbWa9QUNYtUCrrXsPB48zg0sQAZ4RyZLCiWH5dG4BBA3K5luXT+jVFTPRyVNOetlSidmdpFJHriX\nBie3FUhZ0w/+wyk2eRiO6E/yevom0wzQhZvLe3cxsnhAdeJnUkCUL0EXnagIwz5BOzAfXwBglYVW\n0PVYJd6760xqpGvUXXBKkA5uZGmLlsZiumhpyZbf4sKxdNxppXkSimhWX9obcv6bfRUdP0WvSiMw\nbzRNntEq6LbtRo1po/gVuOGhGVh8Lp07XL7TggfY9SghF1xsufs+wUl1WlY8N+61fnfBlS+S7ac2\nkcbtwlNon+4xet2TStYCkXUf09Uh2GiMLg8PDw8PD4/1E+tBIH2HYKMxulp6Ur4sk9FyAFB1IpVW\nKHpTuskTv2RV7rUyQFvT1UXi+3JVJ9Tv35Krbu4hcyma66JazAucAkDW/nS1mvcPuYasH8E8BTsN\nEm36vhHsWeIyElxCIlbMP0CW73HRH+NetMxvFSmBmbPpjm2kZEP6rNioeq3cSeBvFFkJvsLX5AVc\nvCJnD55Itt8cJAPyuRdgKfOIAPGjZ+p2oWNMU8g/7Ff6Dm977UDR5t2jbyfbZx10mjwZK8ScVS09\nF217UNZCG9+ad5tjxg1USyyhRX50+t5NvclG0fNrL5UuRMO8pfPPlF5YnsSgBZxnfca2RQtgOQu5\nSFaSRSLZbJ6skV7pwhvo9fDyWABQczV9ZppCfSLTZDSJMlaCj9SWA6SuW/pkSo/nt8uSOnNOoXRe\nzv1yvuGeLZ6QBOgeMg7h2TKyv6SF6Ddi+T7Se5k9hXkimVfWNG8csVXrChtNTBdHt8lSYLHpGEpb\n2KXyw8bjZLT6dkK3Rxkc4ZIisr14a8nhZ71FPwBVV28i2mg1EjlcsrZW7EMnnbQaRStKoX44zJb0\nGudsJ6mg3HvoRKnRpsv2pR9srVRQ6yg62afWKmWAcmnc2eUPPi3a3FE6WOzj6PoZFZtsYqUzXBHq\nKsnd+UfSZ7Z0J6mvVXJkcNbWJl/TyfKnYdJwjsXg5SW0AKBxK5qV2fUT2Tfe+pmKto0qkLpCvL/Y\nryRlLZ79RXmiTeVZtOTRgNuCjR4tO5jruLmU+NEo/ZZc+mFV45WY4X7Rcy+IJrxvLj5e0p3x0obS\nDLP0OdRM1+6DU7BRWX0K2V/Q+aTiZBkPWjiefouSGmX8Gg8L0WIATYRec90eMmuWz0EumH6LfPb9\nWEajS3aplpVZdSQ1DMvPdKjjFC+wfvjfHx5G47K6DnU79RrUwx7+3J5xO979w8b4mC4PDw8PDw8P\nDw0RrtHRSbHRGl2/viJXSG1H0u3CG2pEm6IvKPVUs7WkFnjZn+QPpdueZ3ZlaOUsmBta82qFu9Hs\ns/YBsgxF1fl0BVl0uPR0pc6lqt8uXq3IztJzkbiIHqdbpVKZmR9nG0lTcs8Wp2MBWbZJC6pN6EK9\nEJpXi2dxRZVA4O8nU8q4H6SnK7qTdOXzlblWlDvndRqU3/ORYLqRl2QCgJ+GUb2khW9JujVhLJ3Y\nuK4PABx0JvVQfX6EkqU6hFLNm18pC0zvdhKl79LyZos20Xb61hYdJ68HO/B+L599GXMMuNCos66V\nnp0+17KszG4yu/PXWyk9X36qkkxzoExi4LDMA671zdb3i8j2EqUSXI/NBop90e9/DTw/B6cbXcET\nCyoekw6G5lxKL5adpZyLVSOoOE16wMs/ZTtmShV/k03pcK04fCzo95qSlckQ6SHHSmsZ/R4YZaIq\nfp3u3Oo72YO/HErHnIveotZ/eaJDxYn0ObfesHEYP+sKndLoas/uggWH0sk7kbENuXfJQd9wEv0N\nl2MAgC+eofET2dtKGuOTJ0aTbS22JcQmyoqLJc9fegz9YGs0T3stnXRa8uSHtvAhOuu4ZGRx4xIA\nPn+ZGhX5t8tnyOeTlGQprBniE0GrnGA45cgNLA2V98kPXdk51Hjj8TgAMGsb6trP/l5WmOM0QsUj\nsp5m6bOxze48psslM5GXZAKACKtFmXOxQo9PC6aiPv2V9o9wqryv4vupUf5ONym/UDqevrOIVmOT\nUd3hgfJDEhMUSn/2FfS+uIEFKNSPIsapGlni/A5NWPwlF9EEgNI96DMsRo1o08IMMwBI3iP4/PEC\nl08ZcK80TriY78G/yoXF6wdQWr38JBnnytE2TGbnCZmYSXIRxeephafKOZFLpzQVy+zFhDwaltGa\nKVNQl/WmnaFbhZzv+CLzy/eVVFaGyXc/LPYNGHwm2S55KFjGZtBNNFNyyRyXCpvxxVooeL3eolMa\nXR4eHh4eHh4bCgyimnhmJ0SnDKTvmtnbDtv2HLJPyzDi4FkuLto/XH8GANryqSfnqudk8PYFt55B\ntjUXeMNQuh7rf7mS4dhMaR3u7QCAlGvm0OvbeY5ow6FpPGnZcBxmK+rZsl/Ka571T0rrFI+R18Pp\nV/Vcm1M6JrxgiWjDPYGxgj/XFT1ktLAW7M9FQ2ccJYPAXUR5xXFjLPETL3BtNZHdCSA8kHohIr9W\nijaVT9PnWnac5M/6f0Wf9cezpDe3z6VsHCj9J5bSPGElO7n+WNrvcu5VRIsLqEfcKtlp9UfREIeC\nsYpXgnnsWjaVZccSmuTkMXMUFdMtulp6OF3eoQvqx9HwgB//Nka0cXnWJ1XQd/Z4uRTc5cLBc7eR\n5XLy7ggeTzzgveJ0mRWqFffm4MW+QxH5PeWFxHkCEAAkv0u9p1oB7rRDqVc4daTs4/wb1raDZBqC\nBIDXhThq9qCe9sBn9o7b8UZv9cx6G0jfKY0ul+zFjgSnLQGgx+PBNM/8s6hxoinSc2jU1K+30sl9\nwCOK+/+7XwKP7QIe16SJ0FY9R9uUHi3b1L5KP2y9D1Guj/VdLpkAyPRxnskJANMuLiLbZ+85XrR5\nb7CWLE8Ra604cRyH2LDpt8o+lf0tfR4ulKyLoKuGyvupUZ5XKoUs2yKUIum2tzS6OOouU+KsnqLq\n6iZF0pQN21PqPVYZkniptNdfQu+jz6v1og0XNtbAa27O3ktmXef/R4Y4uEjHNB5B6cy5O8hgI5cs\nOq7sr33U+aIlcbFSt5XNQZrUQ9uO1IjQskvFHNSi0GVfBFOX3DDTalzmTKHz7bxtJaXvAp7VHOoh\nY7HamcyGJmYbbqEGuJYNHIR1ZXTt/8w+cTve41s9vd4aXZ5e9PDw8PDw8Fhn8Ir0GzhMSjLCRTTD\nyKUWWUIxK/8SlSu/WFzwIYdUqiXHSs9FzqOUEtV8kpyeGXC+dDln/5d6HJpKpFZUtD9d9Y69/d+i\nzUl9tifbvA4lACS/R93kcy+QnoveLwUHavY++OfANjxLtC1dxgRwEnBlifR05X9G3/N7F0mv1gym\n0VN8uULXNEnxWt6DeMkfAKg7kvbVjBrZYcJcgHKxnKC6vhjsPd3me0ZFbaZQY6zum1aSpOzsYKq5\n2SGDj0Pz2izdkdJM9SPkSCg/PdizxQUwk5Yq/fATJT0wBogkEz63OIIHoL/79iTRZt/WS+X5m2mi\nzm/nySDw9F/peCk/M/gZanUmuWinplUVbafvrKlUzkFdmFN4zpnSUZH9fbCIKPcK85AHAGhlc4da\nXknxbHF88T7Vmdv1S9l/ao6n717Th+NZzVqWM4cmZhtmyV8rFW9Y0nQ6notfp2EJ3x+zcRg/6wqd\n0ujy8PDw8PDw2HCwsQTSd0qjq7VHAqqOp7EZqQOpz6PgMhl8WnU0/Y0WfMox8zrpyeGlKVwUo4ec\n9YPY93VacOHWvLepL0UrNtvajaUsPyW9FNy7sdd9cvXcO4Wu4pbly+7Do20yp0tvQspbNE5E8/5w\nGQUefA8Afa6nz7nmYVnKo/wVuj3+pSdEG66UrsWGcc9W1V1Kev8FwZ4Co0gZaPIlHNLTFpum0tTN\n6Dhw0fpZeJqSTv9IcJ9WVdgDoMUipbHVevnpsRWrT32d9rvaK2SfKqqhXomG7WTiQ/cJNOBdi/vi\nRY4bv5WJD/1uo9UtbH/pDeMxOacwbzMAND4hE35y76Y6XeUniibARywo/3bZhHuTtSLLA7+m88D4\nd2R1jbzJdL7NnCpLBfGZQlONr76D9le7nzIOL2SB6z2kHA/3bIX7y9JoLuxIv7uoR776GumJq7mR\nxuEVXRl42JgTmXicYEiJG+TPeUg6nWvfCTkUj48zLIyXjNigkRxFuJQGi+cewMQClQ99nwlS2I7D\nDqdimyWPyRpisaiczPqbpFVSDqdW1twdpdVVdhYdiDxDCwD+dpkiOMnAKaT82yWltMChOn39pfRD\nlrmrFGLFPFp2wn5XIdswFL8iBTE5CZdaG9ydx7fIbCceXD/sdkk1jJ9N6ZrS/eTHZ/pt8jmH2Rzc\n7wV5HxdN+phsn/bpcaJN+UlrXuqFZ1YBQLen6XHm7C0n2MRN6e/ypig9OsR0hLaUArcuwcqzrmEB\n50omp0ajcHCNNq7PpiF1vhxPkdk02zXzuZmizWIWgJ7QKum07vvQ83dXjO0oT2JSgp6jH9EMw9AI\nGd5QfqLMzObUP6f9AQAjpOHDwY2TpUdLI+eni2kfKpkps5G5MaDNkdX/pscuuViOsbKr6eK0fVh/\n5UgUqbMVvTq+rRhYnErtNknO9QtHUEM56xk5Tvu+I4WDg5DxnZx/Xb4rPExFux6OcVtS+n5Jc3Bo\nh0fs6JxGl4eHh4eHh8cGg+hGUgaoU0pGZKbk2uG9jyH7nNKzmUp8LKU0NGhaP5ElS+m2UlInPDE4\nqNdFC4ljxb6Shgu30LUfl1oAZKLBvBH5os3iwbQ/lf9Det5CeZR++OUSSUcgidKmxS/KftranVJl\nnBZzRcv+9HmkvhFjsVnFm8FlLVz0tbRgZR7ukPFCbPfKoUlGZFXSZ5/1wyLRZkU+DYSOpEgF7ZS3\ng58jVwLnVDgA9HmIeoDmHyrL5bhIsPCSRz1/kB6I5b1pJYZ5+8vkiJKj1pzedJET0TT/uEyABl4q\nCACS96gh25r8gosOoSg3NVSWT+MUqCbL0j5H8XivJfCqEy4ajS7QSmZlPxzc7/j8/+st0jvX5x26\n3XTKUtEmez8agM+14ACgvY5Kk3A6FgC6zKaTSe7d1Lu8LiQjug/MtiOfPDBux3tx29HrrWRE5zS6\nErLttpn0BVZfRCeLoqvWnK5xRXgQjeeYs3NP0YbXOdMmqgUjqdu352TpcnbJsHFBj8lUF2budSWi\nzRxWLue5E+4Wba4olgYdB6fhyu+TlEn7bEp9zBwrM5DyH6XXoxmKPIOuNVMGa7rE3HFwYUkAG0ZN\ntAAAIABJREFUWL6JfIfJ7ziUjIkTrpxOP+K3bCtrwfBYOQ08pk17rtW303dYcol8hitH0jnPJsh5\nvCOfDwdfsABui5Z4Ye551OD9/rIHRZstr6YiyqmLZUb10mJp8PZ+mn6gXYRzudgwANhv40M1xSLE\nWvsPJfP5ZgetQlZmrGFfaShy2s0Mk/eOnyjl2LL7ZqIJX1hw8VYASJxODc6KO+Q8UXoajRN0yV6M\nFVzLcdZT9N3MuPhRtFTVe6NrLcHTix4eHh4eHh7rFBtL9mKn9HRl9M+xf3v4SLrTIWjUBVxZOaFR\n0g/2a7o6FPpfAGwazajRtFtWfkB/l7S7DOp1AS/crVGtnEbQCirzDJ+KU6UHj5fOqLtcrlYLbokt\n8y4IfIUL6NmcQdAC0Lv/TFeerkrPnFqovEIGnJf+k+kKlcj+ovUPjpnXM6quUNJHfcfSiU0NsI4B\nmmZbqI16ZTSPWc0N9Jo1DzT3HpjJa67yr6HyAaVAOktMOeo3OW9c8/kBZFsLZI8XuOq4llSQUChL\nA1WcwzxL3WW2dvnJ7Lq3lt5kngyhqaDXnEG/If2OjO398CzmqvOkt734Cto/Rv4kg+Q/HC6fB0f7\nYMoiuCj4azBbUp2uyvNkebDSY+g74+rzANDwIvV+adUbeHUCruEGABWPUeeOeMeQCQv9XqOFxr/4\n7iE0LqvrWE/XgF52xBMHx+14r2z3sPd0dShqwzCXMYHLREqrtO5KM+gAIGlC8OS5YCirYH9XcNxV\n+wxpLNW9Rt3ZBQfJ39XMohIWXS4rEG3CzOZrHCCNpUHXBhtrpVMoRfHVPf+Pve8Mr6Lqot5zb3oF\n0kglgSSA8gqKKAo2UEFEEbECotgVFQX7a2/YEEUUu1ixYadYQLELFsQCKZBAICQkkN4g9873A7/v\nc++1dQ73DcVk1vP4+Mzl5JaZM2f2WXvttXG+yh5iuU9iwL5Z9AzTAiwZHE394QsYM30Ep5pr+6AW\nKnIef0BqAdb6N/mDJONUrKiTaRVZ4UdE5NmX6zAM/G6JiKj8NB5kJS7H9JBf9uUzCLA0hFXydXJb\nJ7y9yw7hQVe3hfg+Vig3/qicgHrDpnj+WVrap3UoT1PKdCMRUdoSHhia6GY0m4vgOn5FtGCyeSRP\nfcsAS0OvUKzEk0GWZjew6ipuE9DrGtSHyhSSNw5b/FRn8vWm05f4HVcp60K3D3iQZbK2mVSbakFf\n7sZMduzvhxsL2eJHSjCIiHx/8CrmyFI8rzLI+mDqEBizdSKXHaR+ghXDgQZZEnLzlX3W3wz8C7TU\nYefjxVzIxYAz+Sm+Adh0QgKMCa7EoE9CVoXKdnOt+R2DcdpTaJ9BlwsXLly4cOHiXwGbOk71YrsM\nuiy/TZ5GvoP2iUodbecnBd7dr0XGI2kZr3iSKR0iom638L/TqtFST3auPguL4TRW+uPIgJSez5mc\n7LmYRig7kfsIxT+FgvyCAfyzYgm/X8sI4f2zANmEuPw18JqEZKTu76GkNYiLWDdehSxA7jx+7N1X\nqQpSmC2J+u7cny2mBFm18sH883/8BFMow1JQRBv/lBDsamJl6XnlN+XROJJmcrZJqQlFKCmlfWfz\n9PhnT+OfmQiatWbETvB0x/vJE8bZHq1Kteoc/nfYEtusmlLeq7fui75ulRdyQXXSEqzMO3kAX19+\nq0OGM/95zgTmTsTzFbmJr1uaD99xOdjixwrmS7ulSBwkAy+F/UREcav454cVYSVrawDFPJLV0pA4\nC+fYR7O4CDyEcB3vQpxR1T5LVu1mPoHpPJNm51I+IKvSiQg97ZT7W/o/+r5BJu7bD4UH4jE4p7T2\nZBKlV/P3iVnHv48nEKPJNoBrjvovht3cYnRTS6Qt5gGL6lIs9CTdvnZ+35B6pZdeNtcU+AqxZ6IM\nGPAWI0p9lQcnjQfg4iof/K1D0HE9aAlf8D1KiiByFU/Ravem1ENVDkXNW84E55Ss1KF1e1/RHorF\nbPOhGJjZg4VNgOKkHvM5X3Crj8bUR8KzPMAc9iQGWCbWIBSkUPcBBFkNp6AeKfIt53QZmm1iULpq\nOE9bJFTgOZOpMLsJnbg9Sfx9pPEoEWoJ457Bz9LmvYSsQDWxX5BBDxFR4hK+8FspGLomPMfnQtFN\nWLHr68/v54KZeL16PSL67cEIotAKvsnTAnvy4Lm39+Nao+ITMHjMfk5YBygO8FvO4/dPeB5u6qRr\nvdbHUOrntNSuXHNkSpLIzCJHbqg1vWH0Or6eaAGW7CGpVYrL+1vTsHoG8k2m91PUnmoBpkSoiHer\ns3EtiRHHst8oEVH681wL5tvC39hjo1G3i7ZDuwy6XLhw4cKFCxf/DtjkMl0dEraXX3ST3lvq+4hq\nK82LCNpQaOaoX3CK2RuFaQTpuxS60NmHydvkzB97atE4UisIkKhP4+cw9wL0+TGpl90yi0/N2BHO\nVXaJb2E1j0n1otzpaf3lTL7ztn4ofl1zFt+N7nMbpqLKLnJm4yQ0Vsv7GTdL9B1VCmNkG5n1t+HO\nPGs2n/fSk4tI9+WS8Iv5ohnDbu8lmLevnCvf1F6QT/FrppmKyiq/nhciyycNQ004yJvOfB1ee/E2\n/rt6PYpMionH3roTOSuSrum/FaZUCsWzC1F0bZI+23o4Z6oTluMaFJHH15zE77A6zzuBi9kH/IKM\n2Xd9ObNVMAvZweAEXmmX/CKyWHK91YoqZPpZY/9JsP+al5esVA+0Mlumja/chEUnRR/xVUhWcmrY\ncDQGMjnvYop4b0BHCbrcMgUXLly4cOHChYvdgHbp0xXrjbcHRoxkr20byD1OtuyDUtukR/kuRStx\nD/+RazVWP4QaKqlZqj8Vd2xRbzo3qpb6jZpxKMgfOIXrF1b1RxZLlu5rAueyd3kLJGgQrkBr8KwV\nH0jI0n1V4Cxa6jSMQW1CzOeckTFx3Q4URg2EA4R9CBfRBlrOLvUuqy9GZilnMmeErAEopLeXOxcf\nmPgBSU1k8anYZD79rl3j2aaJwtNe50Ue83/6CMaMOIJ7txScj5quHm/Vs2PvFrQAMGk7JmHiwK4V\n5WjMrET+43j/5F7K7zupYSIyY+OkPnXzUei4Hvf0znd9qF2IzHH0nbzopeIAZN6kPko2VSciynyA\nr7f+RmT2pXWK3YL61Izv+eevP3jX6aFke6OwtbjeadpgJ+Q/yde2srtnUkvxht1KO8X2SrIHP3V6\nm73fgiMe3Wt9utpl0BVjdbEPtoay16SJndWMwUlzGtLiEhG/8ZRN6wYUBwcCzaPHt1WkxgK8Vt4E\nIWhW0gp1Z/DFPPo154V8wzyk29PG7L4O9fLB2pyA5yeQdk9aK4+2MuQMFBuv47819b5dE6xo0DYE\nt1bwa79wxuEwJpD2SoFCVhF3HoBp9pjjeNA1YAWm5X44mAvOtQetCQJpe2OCwpfRnDR7PHpnyV6L\nG6bg80fOoc3vYbsc7/s8vWnS41KDNATdOroPjKk4mJcSmPioadW3pUfwz+qyGtf6sA94wCmfD0To\nwaX1rC0dzIt5En7CNUgGxZsvwyAwdg1Pt2qbOk8kD/D6fImB4tf38Q1+pyVYTV5yNt+cpTy453sv\nxvZKsg996ow2e79FR8zca4MuN73owoULFy5cuHCxG9Auma7IhHS716ir2GtdnmubXbd0OO/yBpZi\ny9Sh9GAhItrcn+9akucoKZ3uXPjr/8U55ddWkC05iMyaJbcVZEq0fACmg7d1EsJSA4+akv/iLjN6\nPX+f2LVNMEYyXVqD8tZNKJKXqJ6AKVnZfNckhWTSXkmmjImI0qbw36alwQJJd1ZeqLROyuNWBp6l\nyMjIe6MhLRzGlB7LmQotlWkCmZ4JWaoI6QWzJVNMRESbz+VFLwmzldZF4hyWH4RpsNRXud2BxkDL\n77z5gBAYs6vaaplCNkjXOiHIwg/5N0R6m6i2gOZ+T62c5bRq62GI3ZkbMOzOZuhp30XBa6tmcDbO\nJK1cfCfel5k3//M6uUeYrp5J9sCnzmyz9/v4yEf2WqarXVYv9k6poGV3zWavDftjAh/03Ur4O5lG\nUT1xfuXUddSbuODJSkRPi2KGJ/3ytK7yIsjSNBdUzf/OV4ktLwJJSwYaYAXywNZaXvj8/DunLEWt\nhMl7v7GBLzCnKW3Z5PXSUokyJZD8ilkALNNB2eOdA0OTxVR70FZ+wB8uXU/A71gv9XRK0BVcwueQ\nVusqr5n0gjOFJUwg8VFDFN6Tn/v+P6Oj1cJnBrPjxMfw/AR/zIO1CiVQjH+Gp5209KIWZEnIudlV\n+RO5Kqy7HQPpbrfy35H6Mb6P9LQjIsq7lG8KZOsXIkxBbroUn1Gad5dEZV8emCZPd/4bNcAyMBGV\naduGp70wxv8Y3zCGv+dsilvwqNKH83KD9GYAUKsgf+aV1xsOxY1ftN95XZC9gSkX103pYadV+u5u\ndCTLCDe96MKFCxcuXLhwsRvQLtOLmpDeBGVX8p1m14eVNhQGbJhssyCFim0JKbD+bfLjMKbnc5ew\nY1VcPlA0AFeYQClc7/qoshMUu9OGMbiD9LTyORe9ApsK+0p5q6Kyi3EXnrKQ/92+bxTDmJUHGMzv\nAHbYpsJoeX0y3lf8mlbzKkyPktKSTbGl5xQRUVNvzm6Efo1MV/+vecPghbMHwxgTn7DdCVkFGah/\nnoTmA2XFcp8ufz02EM5YwI+lKJsIi0xCFmO3gsTHd35dkB0fiPQG7SZ/19iVMwsmxRnVZynp8Zf4\n52uMvL8TT682J4bBGM3PED5fpOdlap4IBe/a9QkEjScrXSCKeFqyZDhe57T7xDoZYJsvCROJgSan\nSL+bj5Ep7B+/fZTqanZv9WJMzyR7wBPj2uz9lgyZsdemFztM0AUPvyexyk7tmyUgtTyajkdWv9ke\nnL/B5fzht+p6bA2Re25g2hWJrefyhaqt9G0ajOwgHP5G+7vi1/eDMd2n8cSXp0op3RfB0bo3sNqp\n22nOFglV83nFT+fjUd/h6YsaKk8Np/ebstGk0kTL4tmPV5b5V6IRbPDnyXzMiZha8NXWwmsSlxTw\noGZ2DrbDMkrFBwCTVkqbpuKDxCSlVXExvw8SnsD7oOV4Xj6/YRyaePYY61zJKnVEWlsymeaxlfVH\n/natynn7PmhbE1IgqqzLsN8qfB8lkG/O4ZYZsl0YEVaBLu+HKT/QiMZipbhP9G0NtIpYzqEtJ2JL\ns6Z4viYnP7TrNsZr7xM9fa/DeVd0Lx8TlI1rWfopvJpSpoeJ0NxXswrZZxqfG825/Br/8P0sqqvd\nvUFXdM+u9oGz2y7o+nzoQ3tt0OWmF124cOHChQsXLnYD2qWQniLDifpwRiPjXS4Mt7vxlilERGTA\ndElmy6h5tGJAKXd1uefiZ22dKBiq550ZKq1SJ+EL/p01cls2HrZbUT7t3bcnO17wCbY/GXwFUvBO\nCC9DvxnJv2aejulOj9iZt5ZsgDGl13JWpNtpuKNtGcHZDUvpPFz9Kz8/LZORsdquqMDT7+YpvmBF\ntCpZAK2IQTJbngismi36iJtUptXibw3qyne1q27IgjFP9OHpzW3DcP4eIKqiusYgc7z6Ls785b6k\nXGdhxGqFYdrJOpCndk1YLQ0aswXfR5jymrBamych80aCJ0hUmK5ABMyyZRURkedLfK1epNgiFiNz\n4m/mRQLa/RMkXvMo12d5v2bHMevO42xp2j3O1zBQbzzJDmopyE7iWKv0NTGILr6L3wf9j0IGmgY5\nz7vcgcXsePXyTMe/kawWEVaFpi5GwkpeZ3mNLRvv090Bu4MI6dtl0GU1tZBnVTF7zZ/LqXxveTX8\nXZ6oYEn6FidBzKu8gkSj2yXWjsancZaBoblJkCVR2xvTlJHznKtw1tzDA4+gRvztg4/jFVk1fqyw\n0XoCOkGaEBIRBaXyoLh1I/YRlIuHfzCmI1Lu54t78d2oSQlq4L+1qVczjMmZ0DYO9PnPIeOd8wxP\nYQUpAW/jQbxasKonao2ke/m8DVjtNCaN21HkTMa0kwx4Qz7CNHeSCPpWT8P0rx3Jf4eJ031TH0xx\nlR3Mg8B0g6y7TMcSEbXG8GCgqjfaU2yP4nNh0HIMIH58lFekapWSbQWZxh1x1CkwRtO4Ra7mFagR\nH2GQXj+EX59tQ/D+8bbwHUhZfzxnUvsq9YdERF1W8a2eNPokIvI3OLu5S3lH+UjcNEitWuajzlKS\niNcxrS07BCQtx0rW2P35ef75YwzeMsh5fmw/kutTuw/CTggSUmdKRERCqoCrxN4Lv9yptFO46UUX\nLly4cOHChYvdgA4jpN+T0ATWJkan0nPF+9lPMKbyIs7caJVnskVKt1twTOk1ouLygcB2752/5kLf\nqkHOHe0bTlGqggRjFpSWin8YwvdxJv3uGkfjZ0W848zOyXSe1qtNg6T7TUTzx/2OLOwbdwxnx52/\nxupJnxBLe7vibjmQtlVqiyolzSVR8CKfv3GfY1Vm4hL+fUxSbpsvxXReWBVnZGLmOnsamcDEzFaD\nZDTbqigGKm2JqOgeFEuHbuGsgdH9rLx3IJV2WtGLlAfIijki9FGTqXAiovoBvGgg0MpEaXq7+c1M\nGFNTw+/57inogegZyu/D/KcHwJjEL3lCyWT+SHNoIqLQX4r5Z12fA2O6v82zD55teP2svHXsWHpE\n7glz1Kjcrna/xyc4DzTE18c84ArpXbhw4cKFCxcuOjI6DNMlO6kHV6GczaSNjImXl2xtUjAed/j7\n3Ml39Jr1hGwH03mZ4mdVwpmCvNnYEDf3Amc9kv8I/ndayxaJ0KXYCqe2hWtgQo8thjHeGN5eg8JR\nNyPF5J5+WPbtX/GH43eULJqR5szCTd62YaKFzCI8p1suQFYk7uk953ml7bpN5oK0TQj/HM+zlcJZ\nCF/BWsf31Yo8pJXCFYUoRJ61H2fMTFjGoCy0UcibxC01NJf2QDzBJNtMRJS0mN/PReOSYcxvF85i\nxyNSD4AxUlckdXt/B9lgWut4EQi7rWnlPBWcmTVph6VZgzQN5PNj3ZnI0oSu5WtFxu3K+iu6Yqw5\nDXVo2VP5fRCUitdHKyyQWH8bP4dZj2AGw1fDbVr8h2JhStDP3ILGCkE7CF9VleP3kbD219zvucZN\nPq+WrZhNtfUbdzvT1fexs9vs/b459v69lunqMEFXyU385ki/K7D0WSAPcemfRITCSUupcFxzKhfg\nZ7+K1ZVrb+DBo1blFwhMWpJokLR40OLA+qlJU7+Ub1CcG7wsj7/QA4Wlmp9VIGir9GugkOc1uBYr\nl0yE6tKvrturmM4zedisfZWLrrsbVPkFCpONTvnlQvT8KI6RD6CywfjgD2rk62HcswG2NxLpK62d\nkKcPD2DsPAxcZYVaxSVK66JfMAiV7ZWG/Yb+bC89zlPWmlmriXxB3qtZr2IK+4/reYVu7+sxmJVB\nhZZeNPEbM4E0FtXaahXN5cFI1pkGLc0MNhZtBa2CmbrzgjFfLG5og9fyoLjyGF6M8MeHM6ihsmQ3\nB13J9n9mtV3Q9d2w+/baoMtNL7pw4cKFCxcuXOwGdBimC3AQMku0jDMFJgJibzaWLBeex9NuWTcE\ntltO+pan4coPcXYTz38KU0q9ruC/y5OEHlPUwnfU2o5S+lmFLsBUVexXcey4ZvAWGCPbr/R8Chm8\nQBgqrf1I2VC+WzbxalKxWFgZDEU2aNxqfO3Jm8ew46AmvN+a4rmAufMcAz82Zd5tGs4Z1YQfnZuE\nbzlfSYk+s/PnqOkkFHOHv8tFztIRnogotJafD2nJQoSl8aumosdezhW7pjmxBpNWNFKUvvVsPD/S\nEqbkZmSXOw/irETUcGTDNJ+w5Lc4k+Sfi+YBJZ/wFGziz+i+H7FCyCAMmKayq5Tv8xVPb5qwshq8\nvbl43LcKO0NIaKnm1qJ1ysg9B3n/lPfHoobMm3f+vtQscjL/y99HyiJWvz2DGit2P9PV59Fz2uz9\nvh9+717LdLVLny4N8oF4x4cDYUxyKg8GKpR2FjLF1pKBgZlJkCUpedkPiwiDLJMgMPdCDISseB4I\nmfYNlAhuQP8oic4hPNVRqDxog0VxnhZgSV2RSV82TVdUf6f0SMPv0/cc7hNWOhD1L1d0+5QdzyTU\ntjy3HvsYxv7OUyYbh8XDmK4znFOVhS9zzd3h2Up6ZmCR4/tIJC3Eh4/zVcbUjwywiDAVbxLw5j+B\nwUnuxfy9c65wnr+FD+P9nX2lc0WjSaWvDLL8h6GO0vMl10QmLsJrs170aE38AYOe0Dv5nPaKe5mI\naNbUWfDaZfZl/L2H4BxLI54G1Nru+NJF+x4l6JK6s8hS3FgEGmRJvPPpq+z4xFTcZMJn19U7jgkU\nNQu4BjDuAkz1rr5GtHvy4vnJuZxvGjLfbYMvRxhgEeG923kVr3gMalbcoXcxbCLydxBzVDe96MKF\nCxcuXLhwsRvQYdKL0ttHE42aQLJNml+RpPvDtuLOQfoImQgwNX+ilLdFk9hodHqWDJDqVbVJuMt/\nh4J8+buC63HudH6B76zUhqv385RJ6Uh0IU+c5Xx95I7NJPVRu7AHvLZlBd/Nd5uPTvtBdVwIbeKz\nRkS05kHOuPjikM3InciLDTSxdOxa/nfhPyJz4qvEVG4gkO2efL/n/c3I/49NU5SUUgBNhCVrQoQV\ne5pnm/Qf00TGsuqx5eNMGFNSzjs6+FtxX9prBk/bBlqsYfXnwn7Pg1id5jsKOzFIaFWqngbO0qss\nn6jS1Srmqk/hLF7l8VjQIlsl+RdjQYv0s9JYtbJr+D1Wvz4GxgQl8M9PnIdC8djlotl3gMx+4UP8\n3o3/GZmYTi85s7cyPa59H5MG8tL/zLMKO51k3Pa/F/jsCZ+uyJxke5+ZE9vs/X4YMW2vTS92mKDL\nBLKayP8bLqay12LoRtQj1T7Cg6zwaVgltWUfvlgkzMabV+qztNShhDcB9Vq+igrHvwsy6GPYVpC9\n2ZqPRH2dZskgEZTJaXvNWNOkigwqUt9GI8v8Wfy6xxRgZj7tXazayr+bP8SzZuH9VnwFfy3rDAx4\n687gD4CRN34GY5buh6XxEs0jeRAc9iGmBa1g/vD1JmJKVLZlkteCCK/H1nMV/diL/DrnPYq2Cd5Y\nrjc06YcYMKRdiLI+yp6o1ZhppsgN/H20asr1t/AAM6oEP6vqaB5k9BiHVi4yFU9klo7fndg2nH/H\nA+7GquZld/MxEW+jTk+uv1obNpNepg1j+D1fk4VSkiCRKdQ26jJ4NOkXKdckIlyXZJqbiKjbAqHR\nVDbGErVjMc3e+UNuAeOT5qj+T/dI0NVrptKAOED8NOKevTboctOLLly4cOHChQsXuwEdRkgvqxVr\ne2Aarsv3PO211aAFiNYko36BEJYuxR2S7wBMo0hIZmtiHoqeH7/uVHasCZqNEMyngqxUJCLaMJ6n\nuEwYh+K78Bwmf8ul2mEf4e5d7vnTvkMqfUODSNsq5KbcQWrVeglz+Y7Rr7Q+Ca7mO+GUZ1AYvOox\nbMsR+w1n9axvcC5EHOg8F/wTeAsSE1ZLmusSEUUX8d2yZjqbfw5P68T/pKRVXuRMV82B6EUXtZHf\nT12exxRXwUucKcgdj/O3/jT8HU6QzAoRsqfS2JLILD0TuZnP34Y0rAz0bHfOIEjBudbgvsvzjm9j\nxGpplZHbo/nn95iL1dHSSNPkvEqmSRvz2yL8jpvv4hzAthOwFY5MxWvQmC2JtCnCjPRBvHe3RziT\nPSbMloTdF6UkLfF8nYjWamIks2VQgV/bDXmVmFp+naUf2bYbv1Y+fNfCJiK7gwjpO0x60cTUVKZw\nQquwjisij9/QJr3iNAxYwR/sy5VKyfxnRf+28wLr31b5Ab/J409Asz5pzmr/8BuMaR3CUz+a8amJ\n6aDEmun4UO0+j+uqpNmjKaTzdeETWD6eM5UHNHYz6lbWX8BzSCa/yxTyIVV/SCaMMQmmZa/DnAnY\nq1PqVLKnYCBkkpKVaD5BsYwo5QGe/ePvMMYEJr/LBFI+sHEYVgOnzeGSApMek0HJ2JlBurKbpP3z\nZ+M5DKnk64KpbQB0UPiojXo/thEC1QAGojeU151Il47AZwkLmvp9MM0e/p7zfWkF8Q2t3WpSH+wM\nudYSma1LTj1994SmKyInxc59+Lw2e79fRt7lphdduHDhwoULFy46MtpletEKDqKgeF7Z5g9yDtyj\nX+O7/pzlKHg8KpZXrT2Vi4acJgJvyWytvRfTXrnnOe9qpejZP6A3jEmawoWSWkrUxEdHMluaZ1BE\nmTNzKnt99Zjq7J+kQYphy8cgIyPb02gidbnvlOatREQ5l7UNsyWrlIiwUin8Xef0iIbkRG6ApvVd\ny32BF35YJm1LDNIYkWuqYcjW/TmTZPVERlMzQ5UwYbZqxvH33haN93urSBclT8dr2l3c8wWKDZR1\nYB/+vgorDH8ThmuJRO+HFVatkr+m3bsaNk7kxQdZHzn/jWRAiJAFaViE613UTaJS9Bdk0mU7I43V\nklWYXT9D9l/OF20NklW8Gqsl+zNK02AirPoON+gvKt+XiIjEe0vTayIz42vZCsyE1Sp4DNeyjPlc\nloFnec+gHSbdVLTLoMuFCxcuXLhw8e9BR9F0tc+gy2+DLkeyWCYoGIDMyZpIvutvOKUPjDnh1iXs\neMl/ULQv0f16xTm4eyY7bl1bDGPkDlLTPsndscaA5J8TzY5zJhucr85ohXH0ZC7C/HEOZrDld9S8\nmVqj+LZHc1Zu6Mr3aFrTZdleI2optg2RjXZzLkO9n9TklD/XGcZoWjkJzX/HBFIDozEFskWMtnEs\nmMEZoURFktJpHZ+veZNQKN55f87Mdv0Y/aQqhvP7p8fjzk7XjScrHnLCOkArKHmeS32MLCxMWEcN\nmt7RCSYWLIVno+4re464iorGTHXxP8NZa5T/DJe8hBehT1d6E/eGihyOTPGWDzlb2roIpTTSd08r\njKGBoiDAgxyMbH/lK9z5LgxEREEVnFnKm4EsbJJYBrRnyBrR+L3bs/idQ4Vms/yQwJgt7qSFAAAg\nAElEQVTs0HXOrKfsXJEzfve1x3JhhnYZdG2PC6PSM3hgEVrNF6/59zwIfzfhwNHseNWtmTAmYZlz\nn7wlb/GHltYnb9UUvsD2fgQX0/Un8ps17WOsWDM16fwrZEUSEVFOsJJCcoDWdueX42QVGxqWSrNA\naX5JRFR+uXNFX8o8bgy7SWk51PVNLrSVARaRYaohi4ul408wa2tSM54v5rEvB5ZKTf2Uz4+tZ+Fv\n/f6+2ex4yDnnw5jsq/jnS4NOIqLVM3hFY6dlGHSFbeVLvtbLLvss5/52/iP4Q2JrT3xoSZvT2147\nE8Z4b+DH6Q+icLzyIn7OhmELR0DV2XiepQGwlsLJfZ4XETSmoVlrZBFP+6cuRePc5oxO7Di8EY1h\ne7yGwmwpV9A2dbnn77y4vuQmvC/TR/L7t3E0bkikv9aGgc5ViKRUEVMoBoYS8nrkTMLAo7YvX1vl\nfaHBWoLnPv1+fm8ELcZK0haRFgxSqitlv8rep2BKtO40vomRaW4iIn89/z7asyfQQHVXwrZdpsuF\nCxcuXLhw4WK3oKP0XmyXlhGx4cn2Id15S4GGHnz3pTlxT8jj7Rle3IC73PVf8LRFxu3I0sgWJB6l\nUXVrKn+toh+mIGWDYK0sP+yDnfflMilxD0pFGqB0dCY7Tn4Ny7WliFXucIl0F2kJE+d0E8hzFsj5\nIiKqFp5t0q+NCO0YiIgy53P2QrPZMIEsGoic55w2OGwlWl98exIvny8fgv5aCd9xNlATIstdth2E\naeT8c7j3kGxcTYSN6Gc8ehqMCa3macnYVwJjCwFK+kqyK7VnKo7eSzjDa4VjKxqZyuz/M6ZWFz7L\nG6SbtL4KFNI2hgjT4dJmQoOJ9YTG/PW6QTDywbjfL5rE52bGHbvufMg1WraI0v/Ieb6YrK2BQvrV\nRb2B94EJay9RKhqvr33xIWoqK9mtEVB4dordffqFbfZ+f5x0+15rGdEumS67uYV8q7h2p/5w/tCs\nnYQ0+ct9RZVUM+owMoi/VvoOmkumnsHTXqqeQ7yWoDxH/ruWa06uvwEfALjcO6O1HNsCydRL/JMY\nVCTO4rqdYi3VcJfok6cEWNJf5vjTcXH99VTxHT/DIFD2pZNeY0RmQZbvSF61FfJrMYwJr3T21tE8\nryS8udj70deFB9yHPokPtm8P4nNB2ypViPTql/tp1a/F/LPewNZFa+bzijBNiSV1TTIoJCLKvZgH\nhtrD+BVhoZTSDfvSmfTOM+ld59lPtPlSeiZKTyevYnK6bR/eMqvkaKxMTFvM5QM/7o/3QSLxea9p\nzI4/YBg7buiPWrWI7zHNLzc/CaNxjPxl4cvWwJjWXvzzTPpepn4KQ8gnDDm14EQGWZUX4qY3/inn\nim5pgNypUPGZ+5yv9XKTR6Rs9JR0p0zPrx+COteQWp7i09ZWqBBehvKFqhy+senUDXtc2jXc31DT\nfUlNb9gWPhM8bWMjttNoh/yPinYZdLlw4cKFCxcu/j1wNV3tDHJ3IatOiIiSPxG7uHzc+Uk0bIyG\n10wcvGV1VV1f3PndNZ5TxdHfIJMi3cwt2bCXiAqu5N46WYqoNvEF3oonT2EluvzMd1pZr2LFmk/4\nhsnqSiKilC+4yPi+K5QqskJ+/H4uClRPTj6Bf1YRfp+twr/Ji1ploOm13WHoAi5kH/0HsoUv3n4C\nvBbULJqfGzhYf3LHYfBaxS383McUwhBIR5s0Qm7x4xIg0yEmKWKTdKcmaH6gmJ/7q89EnyNPgmAP\nViBDNWIob4fVOhS9kCRK7kEmJetGfg4jlUJFyRT0eKgYByVytlCbU0FZvDvCoCuRyY4q4+cndD4W\nptSpFZ+c6Sq8FzMtPa4W814pMrG+5a9pJMiaB/n39qRhqq77BsHkVDr7UlXvg9QHesIjOufxtHrQ\nciw2kuxtoPIF2WUhRVEPyPSdhvxzeZFUrvJ1Mt/ma87WQxXWMZyv/13+gCHkKebr5JbJPF/SuqSD\nUE57CO1T0xWcYB/SeQx7rfEgHniELnDuV7Z1Ii7KWn80RyiBUCBcqrSQIEIbie3H4uIa/LGzDkN2\no9dMK4tf5+Xjmadj+XjVOfychdRjcmrjEP7bcy/FFaZsMl+obpn0MozRjGklikQVlxZwSng7Y/VV\nyXNc+5QyWlnNAsVinq6ioc72Ak2jMB3SkMQ1J1oqRqZDvFvrYYxWiSghLTSa98f2SnLeBaWnwZjG\nffl5lT36iLDC0bMUe3VKbP0QNUy1v/BAKP1T3ByFlPGKQqu+Ccb8cQc3Xu59FUbAvuoaeE3C25v3\n+7MaUYMnU6ubL8UHeNIyDGC8G3lrK01XJIMBS1mSNANZ+CxhUCpTm0T4W6X8g4ioWlTkdnopgLWW\niLxCQ2vSyknOMSKcZ0+v/wrGZARx6wsTyxEZbBMR2XX8PtTOocQVhbj5mJmNLY92FnuiDVBYdqqd\nef9FbfZ+eWNudTVdLly4cOHChQsXGtof/aOjXQZdvqhQqh/MBcuyYXDZlbhjTHuPC0I1VmvTu7zN\njvdjZEUSHxe7wzZiE1Vz1EF8ZxVWjCkCk9YhQc3O3zF2IRd8t36Kot6o+3n+LrgW04u5l3KGTBqY\nEhF1fYSfwxuSx8GYoJv4ZkyK+ImIUr7gCRH/YbijLRzLvW1yL0HmLWU0P6+eSKw2rThjP3gtaRFn\njVpLN8GYNT9xQWwPcma6tDQlurghZDrERDOrtTbxiaqo4I8x3SqxdTAyXTFznYsPCs/g1+f4B1G4\nLo2Mu4xEo9pEwbSpBS6CkWnOSYIhvWbw9LjGakmhuMY0aWyPhDeGp0mb8OuQdxMyOU378tRTsPL5\noTX8nk98E9lbn2DpfQojtLkPT09pVZjyt5a9i+3Kasv5bIw6G9eXoKN5Vahm9OwTPoRaVWboYi5p\nMGFPj3znanjN28LPT+ZgZEa93/EctdYWTlaLy4wBEVH895y9fLQ3epZtP5avQWE/oSeXCYvmYteh\nXQZdnupGCLI8YXxh6PqwQpsrFTUS9jc8yIIAi3ChpBA0l5QT36v0wCsezRUMwQ0wBH6HSYAVulT5\nnUdwvY3m6A1GsHPwbaxgvrhrmi6JiBL8YTIEzJ6B+jqfYjIoEdzAF3LPl7i45n7p+DYAf4NyMRS0\nbuT6CS3A7HENP69aCknOsw3z8GGTNkY8bD7BNMa6fH7tNZ0VdEIwKDtvGaHox0QK3yTAkpVnRERh\n5fzB9tstGNyGkrNcYNB8/uB//bmhMEbeTyFFWB9cfxwPQiMwy05/3MkDvNzznW0DZHUlEZHvN/6d\nu92K640WOIdF8hBcWxd8wfy8buuHlbVeUeUXvBxtYhI/d74XrCD+qOl6Euqs5KokN5Q7wAMWzehZ\nSiUspfw2pJWfNe2eO/YC4aLfggK/DQN5WjD/SbwPcr9y3trIClBfCK6/MnDV+k7KlL523eXf5V/H\nnz0tD7eRJcvOYC8wR7Us6z4iGklE6URUT0Tzieg627b/Nj9tWVYiET3w598FE9FaIhph2zYKjP8E\nmuu4cOHChQsXLlzsTtht+F9g8BHReCKKI6K+RJRGKrWwA5ZlhRHRYiLaRkQ9iagTEY2jHQHb36Jd\nCuljrC72wRbuYp1QfyqvAop6E1mAhG94W46KQ6sd31cT5Mf/zFMS/hVI7Uvq3BeJjJnnK6z8k5DV\nRbnTMPWy+naeVuk1sxLGWC2ctTLxT9LSeRX9+C486VHcvZfczHeeJ52MIta3Fg1ix0GNuFNKv5O/\nt5bW0HbdEtJMcWEhfmdVRCsMFb3ZmY6f5dOqZsX7tAw7AIZsGM931D3GOadMdieK78T7oPv9nD3w\n19XBGAlNJC/TietvReZCMzKWkC2qiseiF5LWtkpCriXBjUi3yErSXYnSa/F8pNy/8+ajWiVrcxxn\nsWIW4VoWvZCnwqqvxVRzwbkizf8MsuRBm3iav7lHIo4RlbWyKIcI5Qu7EpJFS1mEJIiUjmgslsyO\naM+Vzqt55ahmjipbRNnC83XjwzOopWT3mqOG9Ui1M+67uM3er+DUW1YQ0el/eWmLbds7lVe1LGs4\nEb1h27ZaCm1Z1kVEdBMRdbdtW6mL19EmTJdlWV0ty3rdsqwKy7KqLMtaYllW37/8+wTLstZYltVo\nWdb3lmX1F39/oGVZy/789zWWZY1vi+/lwoULFy5cuNj7YdtWm/1HRElElPeX/y4P4CsNJaJ/0lYc\nRUQFRDTHsqwtlmWttizrKqc3bROmy7Kst4komohOI6IGIrqLiM4kogwiGkREHxHRaCJaSkSTiWgq\nEeXYtl1rWVYsERUS0YNE9DARHU5E7xDRMbZtB1QzbMJ0ae7YPZ/mu+wNx3SCMSkP7PwOqXG04qPz\nDmfRZJkzkVLqrFhPeOO57stXoQiaB3INjDcPGSrp0SOZHSLDVhkCG25QChYEU6CJRrVG4k7wRKNn\nmglzIjUgnRcq7Y3E+ZFWFESGdhTCaoGIqGBqNj+eMBvGmJSiw2floKVG1YGcGajJxn1X5htcK+fL\nU0zB2ggmdgOtomHw5v4opG+O4+tY9+vwWpReIxgH5V6WbX9MdGiBQtoo2F5sMyNbMGkdMII+wXXK\nJ6RoyQ85r1saK61pIHEQ/95bJqJuMWkx1yxpYvK2gom1jQlqhMefSfup+4owO3L6K1eyY28zruNB\nQn9vYtWhoeS/fI6n363McQd7oD1iGdEj1U6bdkmbvd+a02/+n5guy7LG0I7U4hG2bf/0N2M+pR2B\n2ZVENJuI9iOiRUQ02bbtV/72vdso6FpJRI/Ztv3kn8c9iWg1ESUQ0XQi8ti2fdaf/2bRjl4kt9i2\n/YJlWROJ6DYiyrT//DKWZb1ERK22bU+Un/UP3yGOduRiKSqia97B+09i/+6t5dVNm4ZgkJP6Pq9m\nspvQN0eKtzVhdFSBSB2GYL2CFIDWnY7GiNGv85uhZkE2jIkdsfMPxIr3e8Jrx6TzQEMzzVzVv236\nQ0gReFNpFIzJuZwvXnVn4PlZOv0xdjzqiFNgjK+QV+9svA6DwMhN/B7Q+iqaYLPSWirxsZ1fPKEQ\ng7CNSsEsDORzLnM2KJUBOH3n/EAqvhsDzMz/GgSYMuhT1hqrngfyrWVo/rltOBcnt3TC4CT6NX6v\nBLppkFVkshCCiKj8chG8LcG13Pc7Bu4SUlxut+L9JdPsT0+cBWPu6I6p5raCbFulpr4NIIOBzHdQ\nvtDvFR5g/rg/bghkq6+K/XHtMGkVJH+X1YBVh9q1d3zfJEx3mhT8SGyagmuJDJy1QoNNh/B5L1v8\nEDl7TbaToCtgny7Lsk4loieJaIxt25/9w7h3iGiAbdtpf3ntYSJKsW0bm8j+ibYS0j9ARCdblpXw\np7jsQiL6yrbtStohSPt/SfY/A6sVf75Of/7/Z5tHfz/95d9NcTn9SSVu225WWebChQsXLly42LOw\nqc3TiwHhTxLoSSI64Z8Crj+xgnTZ/j8yWW1lGfE1EZ1NRJtpRwVACREd9+e/RRORNLKpJqIYw383\nxaNE9CoRUVi3kLyoe/kupeVsvgNI/hyrQIHy1rrKC0hrCiIz2waJjCtQ3F71Oj+OuwiZtwZRqq85\n7VedzZmKhBNxpyPl+L4jsSzfSyrLyiBdx8uHKULkMfzztUa/h3/KO85HleBvH9VvODtuzcEpYwki\nsNMavDoxv3KmQrt+0hIhdBGeCxNWS0uBrn6Ai/t7XobvLS08ek9HC4LNQlir7Whru/P7IMYge6ax\nWg2LOIsV/DAKf6W7vMYCrHqAz5ecCch0yfdBdyJEIKlwImQ36hdhijZpOL/O/iXYjoWGOH+WJ4tf\nU18BNqWWhSB33GnGao38nafDP9wX/QTlXNRS8ZLZ0ph9bQ2U2B7Ln0OrrsTG0D6F2ZKwl/NG0Ak/\n4yOs8AF+H+S8gN6F2+N4MY9nqTODd08R/s4bs/j50Fgt31H8mnk/w/tbMm/bD8FrIWUYmgQjfTXP\n4Gw6HW1IJENmfe1cjLXLYRPRnreMuIKIbiWiYbZtm1S5zCGi6yzLmkRETxBRH9pRvXjZP/3R/xx0\nWZblIaJPaYdu62QiaiaiCUT0pWVZfYiojojkHdaJiP7vLK8jokzl352bc/0Ff+ZrtxARxQYnUPNo\n/uj0beEmlZKm1lB5Pi4w0lAwuAGrkrzN/LMrL8MHQLKomKsahEGg9NPa8hhW/Mi+gRo6v8BvTs0s\nMOQj7u8i/XmIiAoe4Sm+nMn42dJwMu4ZNKCUWolhKTCEvMP5edYWBhkcWYqezdOHLzqRb2EKziRI\ntnxi8+I3C629+/JUrrUFq127duNBn5ZmKjqLX3v5MCYi6iLa9/iOxAe01G9o7U/WH80FQf2HYLsR\n79ni+rRisCR/hfZAypnAX2sYg2nT7RH8YRxWjec+7APnB79JkCF1Te/si+m8s4hXzVojML1oiXm3\n8VhFzvCxc3sakwfkhfkYrN1/JzcT7kT4gF7z3z7s2ESTGPkxelVZwmOwfDAG4N2vdX7v6gmiDZCS\n5vcP5ucjeDXqUxN+5nOzcDwGnFnv8TVZrhNEqKe7adQEGBOUJuaQT1kXlCBLonp/rvW0VmIA2nmO\nuOelVICIKnpz0+akb9G4V0pbHl/HK8NPPt5ZB9tO8QjtWLY++2sPY9u2o4iILMsaR0RP/t9j27bX\nWZY1gohmENH9RFRKRLfZtv26fOO/oi2Yri5ElEVEj9i2/X8DpWf+NBo7hHao///f6v+npmt/Inr7\nz5d+IaKTxHseQP9cNeDChQsXLly4aCfY0+5VtkNe8k9x/Cvitc9pRzxjjP856LJtu9KyrHwimmRZ\n1vVE1EI7mK5oIlpJRJVEtMiyrBeI6CvaUb0YSjsqFOnP/99vWdY1RDSTiA6jHZWOxwT8nUKCyZ/F\n6ZP1k/hOJuMO51SQiSCzYCbuzHOv4bvBzuE7K0/bgZYjeArp69JFMGawjzcJbYnFHVKX5/jvkKwW\nEVHzSM7qXTh9Hox5eX+emrJ6orBfVrpZoVhp9t0DT7DjYa8olXltdAfK3apJlWjFxSgcb04Q7T5+\nMKg2JaLa3ryyLHQrCn+7XMCvs1auIJmtkrf64JhT+Lxbq5Sh5HzOj7X2JxF9uIi3+kRci3xbeIHC\nuttR+NtjNi9esRtRrLxxIv8ddbnIFORM4vM3/1lkanM/4Mdaexi/dC9XqoFltd5Zp2riXl58UPgc\nsiTZ9/J0eHM8zmc5NzXmwvszlx0o5upq4/fmK51TNSbMlqy8llXXRET0B/+O8UoveCk72PoUrgtB\nz/Nz1HwCZhoko6nxzZ0/FsfLlMIUUWDjOxTXaK9o9eVfiYzv1gCadEv2mwiLpmKUdVPOoKDNmAxK\nLOaMs1aYIuUml4rGFevsxfA3uwXtzzJURVtVL/amHZYPB9MOK/xCIrrDtu33/vz3CbSjQjGZiH4l\nokts2/7xL38/gIgeI6L/ENEm2lHZ+HKg38fEMmLtq/ig7z6WU/eaEWB9GleUhNTjMhi9mmsIbKV6\ncd3x/GGslfYWvMjTQ3YzasxyL9x5g0VZgk9EFJbHH/zrxmMLmYyn+aKjBRmBQEuDyfSmrH4iIiLx\nXNF6L5qkRD39eBl+6W14T0gDVc2Y0Kkq6O8QvpQ31Gs6AhfKxpPFw+9tfPidl88fJA/ffKbjZ8es\nVVowCd2MFjjbLTygMmkDZIJAbT8ktCBQttAJSkMtlmzHokHOqZdOeBzG3DH2HP6CUiUq7TJW3YVt\neHIvdk6bmiBQixNpoRFegR6Q4at4P1Gt6k9WhRadmwljtJS5hHUgD9LXjcSAKuM25zSct4ivd1rq\nu2kUD/q0fqcSstKWCDWJWt/WuuH8d8X8itWdFYO4JtJkven9o3MVujyn3/3+JNU2lO5WgVVo91Q7\n9a5JzgMNUTTuvwFXL+5qtImQ3rbtVUR0/D/8+4tE9OI//PtyIsJtjQsXLly4cOGineN/qzr8N6HD\ntAGSDa8rxmEaNnoD38WFfIKpF28MTw9tPR7bysSs5WkUrRWDRNX8HHit8/GiwWknrPipHMVZGima\nJzITEEshqR2qVG7+xlOHku3QYCLa17DlAr4zj3s6MBbp2fVcJHpexuCA3ke2zuiusASlVytGsIs4\nGwgpJQVa+sHE92n9bcIY8RMs4Fg7mt8HPa5G5i+oK2fetBSFTBfJAgoNssUOkVkrqUBQNBfTRTnX\ncPbAbsDzk38TP/c9H0XWZuOJ/LcnzUSGRv5Wk9+ptS5qTuNrUsJXuE/W7nkTyGKimjvwfIQ8xtm4\nsA+R7fF25kL18hfRADj0FZ6Ol75qRMg8tqZgCp+WcRZWKwTRUuZO0EyLVaPpACDX3/qj0eBWTdsK\nyBZmXWYjY2aytsp5Jttj7QmfrtDuaXbKHW3HdBWfdWP7Zrr2NljBQRSUwCv/WjdxOjnuWVyopAFn\niFKhVvQ0L/POOBUXD6mPCoMRuMDIAIuIKKh7JjuW/bmIiOKX8QeJpaRMCi8S3/kj1NaQQQ9HE9iH\n8IdddQ4W+Cd+5Pw+JkGWXHC1xfb8UVzzVnExpiMSf+T9SWV6jUgPsiRi1mOqOfZJnraoPQf1N1Jb\ntOpK/I65Fzh+PKZVFHTuyYPH/KcwHdL1Mx5wx8xVDEu78U4IFyz+EsY8m5vFjjcPxerboFP5/Gho\nwfkiK309fXGj4/+Fj0l7Fpc2mToseg3TTiRiR188XotOa5zbrNnNfEMSlIXp+lZRbWrSG1JW+P0d\nZO/H0Bpcy9YN5+co+zic9/+/yPzvIbs1BHuxelELsuD7zOSSi26XYspP6h0DCbA0aAGWNNgtPxsD\n+YTZfF0wkR0E16FqUwbA2hpk0iPWBHKeyd9pNbWVfacLDe0y6HLhwoULFy5c/EtgU4dJL7bLoGtb\nl1BaP54zChlvcTGwrxTNJaVIVKOcVw16iR0PIxTkR2zgzEnjSJSrRX7Hd5BF9+AOKaoPT00lnAhD\niPzCk+aSDBiSN5H38jvqq/NhjOdTYdQ4PQnGhG/kaUmtmkemUhMVgkhWENYfhlWQUfncz8r3B5rH\nmuxypSdNgvInMsGu9SzUjCslNM+06iKxgy3AHaxMP6R/iExBWxkaykrWxE+QfYJU4UHoaecRzOjz\np6Gk09uZC6zlZxMRrcvk877bLc6MYt7UcHgtfomzcaT8HdmXoWjeCufvvekxTOEknIheVfA+wcHs\nuCkH15Ky8ZyVlj0viYjIy1mHKiT5CDsvEkW9KXq7KpXG/hj+l7InHxEyZKHzsThCFsLEjkBfqsKX\nOSudk4K/NXUIv1e3H4LMkiVS3SYtqk5bhWv9G727wmsS0mBXsloaOq92NuUtH4CFKWnTflRG7jyk\neW3EBvw+9g98/trCW6w9So72JrTLoMuFCxcuXLhw8S9CB4n12mXQFbK5kdIe5but1mbum6O1nhk0\nmbMJa6ehDmNYCh+jlp2v5KLnqiHo5VW5Hxfs5p+DZecD/ss9gtY8iDvReMHcRBfDEJpTy0uNI1aj\nRqf0HS78nTzjLRgztxcv+95yPu4y457hu0GpLdnxHfnuq6IvTsOSE7mWJvMN1B6VHMO1R51WIT2d\n+DXXvPlWoXZOWiJorFb+k/zzcy/CHb8UlxMRtSraDIDYaWql6aDvc35XI2wdjN85Zi5numpykO2J\nFV+xNVaxlejHNV31KVggQL3q8TUB2aBd02uFv+fMQuSfz9WVuReik7y0D0k4EU2nNk3lQuTk6ajF\nkvqxYMWKIr2Wa8qkx52G7DmKN57jX+nvnYuEd0DwNjpr3LLH84WqcZTSToj4OTIpQJIsPhHRgDV8\n3TwvFsfM2+dwdlx6dDyMkdq98HVKBwPpA/gLri/ll/B1ctq5c2DMY9Ny4TUneLOz4DXZkmmLpjET\nWnsoiNpjTJebXvzXwrZt8jsEWfvMvhT+bttBfLJdOvBTGPPGh9zjavtHeLPGlPBALGEEVnYFHc37\nPM6ZgH3pWk/iAtUeozCdt/Z+UVWntNuYs3EUO/7826dhzLBUTv+/8clhMMYbw8WmMsDSUDEGRftR\nY/mDbMQTeJMfFsPTibPPxYeN9zBR4ah8H3ggKYaYctGRnkJEGGSp/SIvwQdJtId/nlbFJtMY0ryQ\niChMpHnClaKKQFCXgaJZKR2vHY2B0eZhPKWUM8G51Uknxe8rdi4PH7VAPvop/tu1CjoTSE87WaVJ\nRGQ3OlfkakFWIPAW8HWhVUunicBj3T14DqPfwc1Y7MvOwvW60/nfSYNODSU3YYVl1rN8k2L3xkps\nudmpzVACZ3EsNzpERNFJfC6OOArXhS55fB0Y9pxivkx8felaUAwj7O3b2LGlyE1k2lYLbj1ih/Tw\nJeifV/Q430Dmvoi9ZqXXm29NMQyRVbNxv+G9K1dbKf73vWfQkNVFwGiXQZcLFy5cuHDh4l+EDpJe\nbJc+XbERKfbAnpw7z5/IPa5yXkCquHg03+NbrciKfHje/ez40m7o+ySbstZlomnEzbfNYcdXLT8d\nxmSdufPtJ9coTvvPHMx9aa+/9UIYE13Cd/ivvIyNfg9//mp23P0hTL30XszP68rJWJYvRdiBov40\nvlPXhOxlk/nOvOsjbcNSSGsMIj0d0vQRTwFYs3C3HHs1Zz1l+6c9Da2gpHg2Z4lkC6K9EdKrr3UA\nqtJlGyATh3wt7S/9z+oXYXFG7Jmic0W3ZPysFUpPHQEpUici6nU19xfLmY+pVOlMHii8MXzd9NVi\nexoJuUYSBbYuaIzziP8MYcetvbC4qGwgt0lI/BGZJdkVw7Of0hRbKSaSkJYMngQslKntz9n16mz0\nSUz8ga/RoRuxmbVJitoJe8SnKyvNTr718jZ7v3UTr3d9unYnWpItWnsjrx7at2sxO952HV/wiIiC\nhonUYTQGpOP/OJt/1sWYFkx4gtPbERF47Wdm8xs44TSsyCIPv/E8+yBtLzUFwfkRMGbaWB74dInB\nhVwulBMHnwFjEvuJZF0y/vbpyUvZ8bCv0Ltq8yQeCJ176XwYkxDEv8/zPVFfF1vZ4/UAACAASURB\nVHYhf7C8PwN1Vr3e5ym/zsdhyqJyPz5XUu9zDsw07YaVhOcjfBhvzRPUDR90reeLa+bBBTd/Nk/n\n9b4Oqzl91XwR1tIzvWbztj92MH6W9AjSPIzST3E2jjTq22cAWdkb1IjPg8yZPOjTHvwbL+XnMP3N\n9TBGVsxZNZgez7+K37u9LscHv09Um0YNV8bIF6pwTTKBDLCIiErG8pZCrf1RxymhBTBSw6oBzrUy\nf0l4HmoB1uZL+boQvhXXjnIR3x5/KAZUdgOvjNQqfZO/5scycCQiKrpFmIga9OvdfBmmXxNn8b8r\nG4nnNPExPqb2KnyfbbH8cX3NUx/AmBnZSnmrQPGdomJ4oahwXNE2G1MXOtpl0OXChQsXLly4+JfA\nJqIO4tPVLtOL4UnpdvbYKey1rt9zQWFzAqb8wjdwFmDdKGy7M+usJ9nxQ0NGwBhJFWvNiSVKbsad\njWwAK6u4iIgSTnRuDxMIpN8LEVbGaA3BQ5ZzBqbkBdyJ+lbw85p1VDGM2fwKZ7aiSpEhiviWU+lS\nkE6EIvnqs1Co3eklzkwethJTDREeLqpdOOkIGGPiGyabyxIR0S/8nEkBrwYTVkLbvUtWwgpGB3iP\ncJLXWhD5D+MpLW8zXh9fGN/TydQdEc6hoCVt41ekpX+D8nkRgz8D03nS161hDFbfRs4LjLGT8OZy\nNmrjcSjs71zAK+hMm4jLtl5a+ynpbt8pH5ufV/XklavxCzB91VbtctoKm6bwtTTtJWSlTb6ziUje\nxEleIigT10T/Zl5lra1lzSeIBtybcMxb7z7Djg+ZOQXGpNzPnyuyE8tvHz1M9VtKdm96MTPN7nrL\nFW32fuvPu85NL+5OBG9uAO2OSZm3DD8zlGfo/bdJo0isRovZxhfKDVdiQNX1YdGKQau6FjR9glK5\nJBeG9aMxxZX2EU87yQeLhi8efwpeO+BcrjtLugkX6bxZPAXqWYsP9R6Cpl9wMQYQA5svZsflEzEQ\nyljgnI5Zex9/sJw+7CsYU34ZD07en46BWfhWUUG31KyCbuP1/Np3e6kYxrQaBFmZy3j6ue8DWH3b\nlfh51VJsnkj+EPU34DWUQVbsV6hBKb+Pp2TDF+LD5pP1vDb9+MEnwRgyCLJM2j1JhExD883tR3Kz\n4bpjsEw/Wry1FmDJaq/aHjCEYsXzWTNrtcQ6EbUJ02kmQVblhThf45/inyd7mRIRBTfwFW/N5ZgW\n7DGOv0+/n/E7/jyI96PVAgbZg1XrESj1qLMOmgtj5m3h77P+YJy/XVbx89q8P0oTxjzMg9APTxsE\nY3wGfVK3deZrcphB5WZrMaa1pT41cgOmtcM+4GtO3uO4MT5t6Hh2nBa8FcZsF2a2nlbx5Gt/PMxe\nhXYZdLlw4cKFCxcu/kXoIMFeu0wvxlhd7IOtof84pkwRKqYu4pSzZqQpIUWJRERZd/Ddu5YuKnjR\n2edIUte+UNyJBudxQ8G6w7BKyiS9KbHlPPxdiR/y1kW+cqVtiYBMoRAR2eGc/dq6HzYyiV/CmwGv\nvgYp+dkjn2XHdxSegJ8/i/uojboXvdeeeW04O37u3EdhzPWXc+atx83YfHb5G1ipKXfdVbnBMCb+\nN+ETtrhtUmzFr+P3ifycM10mrU20e6XrDM6q5T+Nov3cC8xSYXsTZGoq+SFkxKUhsjRCJcKqR1nx\naApp3AtGlqS3+GmLKrZAIb8zEVH5BTyNHKs0Da/O4fdG0szABN3y809dsQ7GmLQBktD880LrOPM3\n8vYlMObDW3g15ZePPQljDpt0ETuOVNr3SJPibx98Asbst4x7gDXl4drafZ7w7lrGWeo9Ur2YmWZ3\nvWlym73f+guuddOLexqyMuaKC9+GMW+/g3StRMsI/nDJvAVtCkwC2dBCrimT5exERH6hD9B6v8sK\nqKh8TAXJhEDNeGczxbhnlT55N/BzGNSMi718GPvy18AYiabbseKm9SVekZV9JVZoTb9yX3bc/dtK\nGPPlSB50rW/pAmOSjuAPzcvvvAzGeDvxa9rix1tHfUAL/UZIdWcYI60mAn2ISp3XMPR4heAoZBzO\nhbiv+PkIrcL5nC9SG7kXYLpVppSa4vGcxS0pZsfbu+PDsDmBB+lRqzBlsuAz3kFh30cx/Zo2zfkh\nrl1Dibr+POiKrKr+m5H/H5rthomuaNPFPFjRLE+2HIzv3UnMl0D7iQYCextuModM5OvLDYlfwpjT\nJjpreo5YydNuizbtA2NK1vDzcV4sbjrn5fJ04vZk1D96buHXp/NQXBPlpvLVZ4+BMQ2D+Ap8yNUX\nw5ioSh5MX//aKzDmtsvOg9ck0q7jwezG4Rg7rT2Zp4O7B+Y17CJAdJigy4ULFy5cuHCxd8Jqf0k3\nFR0m6EpezFNhbzyOO+qacZwa6NwpCsasP0O0Y+mHlHPaPXw3Klv1EBGFC9sc2bYoUGhVShKxrzqn\nfbydkZExYQokZBUVEZElmMDmVUiBS8iWJUREsXlcKF5+CPqP5ZIQnyoGh5EzeaFB2M9oOlg2iH/H\n317DHXYS4fmRolkrEStiJTRWyys8wKwgvHUls1UwCyvvci/gu/6gZCXN4uGcqioC9/M5nfE99mdc\nfzAXS2NJBVGB8OB68NQXYMxjOVzwrvUa7PE6Zw96PqdUmon2Tq0bkT2Vpp2an5QtWjvVjsCK1E5f\nFrPjyV9h2uneS7nn37NPPwxjJh0oWCyFBTWBxmp5hejbvxYF3met5Ofx5k9PgTG9buCp9gWrv4Ax\n2XP59fnyV5ybPqFEiGvECtR3p3NPu2XTsK/i8ODj2bHmNVazgF/DylWYEh0azQ1li2EE0boxvOL0\nw4vvhzFjr+em0q/f9yCMuSCDm2xffc9FMOaHZ/lv7fXVWfiFxvK0drdbcU0asILfQR+U85Zv21/Z\nA22AbOowmi4tY+XChQsXLly4cOGijdFhmC7JHuQ/gxq73PN5hI/F0US9ruKaIN8W1JfIhslaE2qp\nBdB27yYo+S/XWaXfreiKsnjJdGsRCkulpswXoDu2ROkxqKGSui8iZAIltGa88vqYeHBJFoeIaN0C\n7kuVojgyH/AEZz03DMRGspqPWsgbnDH87n4Uv15RynVWhXWo0bkt8z12fFAoCvIf2MrnlPc0vIZy\nnrVuCqzl0FZB9Gml+1cUctb1hsfPhTFZN/Jz/cSc42CMdx9eQOL7A934s6/i88NSvJD+uJ6zer2m\nKFoswWxJqxkiopmX8ms46VnU6FTszzVU07PRET6YOBM45hfU7CRUcPsOOzcVxnx/L7I9A/38O2nz\njoj/1t5Pog7ulgXcriPnKrwPK+dzxuyIi7DNWM9fOat48kIUEp0Xy+di7ouXwJjtnfgM/s8M/M53\nXsjbns0mZAe3fcDvsR5KQcmTQiPZYwZe5+yr+Pwd0g19sYqm83M/LAVbx8nuEaFKA4HhJ3I7iIgD\nMROz6L8PsOOBWdhap2wOX+t/ufZxdnzQp3vCd81yzVH/zYjulGb3O5xXQoR9yG9yWRlIROSp4g/S\nVTeiKD33XL5QbjkfH/RxzzhXhEmTzNZoTL54P+MVjVo12tm9ebropTwsBoh9l6d+wrdgiBeyyDnl\n6OnLBe/+X7CCz5vNA5javugbJr2PZJqDCCtHvXEYvGkBrxO0VG/KF/x8RK7Fh/GqqVxoGxyJYmF7\nHabYwjfzhSR1Mb63p4ynMfIfQtPO7mOd+9KVvcuvT9eTlOsTz+e0rxJ78knR9/rz8Prcci4X+o6O\nxGuRO58/pHKfUfrbiTY7JffifZB+7iZ2vHkMpohDa3gIHvWmc8Vu4UvYs7DnFcXseMHvn8GYPjP5\ngz71fvysAT/x+fHKckyPLx/O04nj0tErSl6LBb98AmOOOe0ceM0O4psL2UeQiCh0KQ9Ct1+BkgJ5\nj69VersmzeOpuciN6DFF363k30dpmQXV0JbyEBbPq+K78X72ZfHPLzxyDow58BYe0M26EXvN3nko\nN75ePx4rsSPK+ffp8i72IM2/nRf85N60Esa09ucbts0HYls4uVmtPxVTtCbzXm6wtx3Kv98Py2ZR\nXe2G3Vu92C3dTr6h7aoX111yzV5bveimF124cOHChQsXLnYD2mV60appBGar9FqeJqjPRaYi93xu\n0ZC0GNtySDQlBrYhsH/gOyKlRSyVTebfuccFuIt6bxT3gEkrwl1m8BbOZpj4j2mQu16r/74wxvcj\nd7vffC4KtbPm8WOrDj1pSq/mvz3lQUz5Fb7MmYrs8c5O5dl34jnccDFnPSOL8Jqmv8/3J+Hv4W7V\nCIo1SOt+nEnSWK2ie/mOPn8CppT6fMevR/DnyJjll3HmpMuHyGK1xPLfGr8SPZUemDaWHc9oRsY8\nsht/n8OeQZuAl1ZxZjbmA2QLfVW8QMKESdYKL2SKOvcibG/kU9zUJVq68N/adCK2w8oN45Y0Wa+j\nWGHk51PZcesFOO+GT+IdFDRR+Celc+C1447lDesXKm2jjh7L073eX5ANkzYkvZ/AdKtMWq+bgnOh\n22niLzSPv4GcyS8djOmzjLd5mjLzvzgXpPv+sLFKg+ne3F7mnJfRJiZxIP9d8b/iMyO4jt8bmh9b\nt0W8RZbm2O/9lj974oOxiKB2LJ/TNd2RMxnwI3+kr+qP7blk0VboRl445NkeqNjlf0T7S7qpaJfp\nRRNzVBNo1V+J3/GFcd/LlIe40PtMLcS2O9Oz+QOyZgHqDiq28EoUbwk+sLOn8wdH8/5ZMCb407Yx\n25TwHXUAvCZTorINDxFR/C98znVaiSk3kypM2f4kaR4+RC/8jgffs3MCq/6SWH+LYq77BabPgpfz\n76S13Wk8mc+zjSfiQtn7Vv6Q2pYRD2MKx3Gd12F98Rz++hJPa3cajcaet/fg+rGJX0+EMcN68QB8\nzQDn6tugrriJqRmcyY6/monGkSP24/fy5lHYvkf6yllLUPtU8gnXNiZ/h995wyX8IRq8PBrGnDCW\nB0I/7u+cMNB8umzx8NXmRtMoHpRGf496zNYyFADJ3qnhl2OlpncsDyJMzI5LbsJ535TBz1nuhShV\nWHc7/7tOBRiEBjfydUEzdd4wj6+b6WOxSlUzkJWQMghfYRF+lvAl1Kq3tx/LM1jbonH7XHYyP889\nxjlvDqUBLxGa8Gqb3ooDuQyiFh8H1P36f9607BFz1G7pdvJ1bZhenOSmF124cOHChQsXLjo0OizT\nVX457thiSjjDEP4uVth4Y/hOovBG3G1kiZ2EbAlCRLTmRs44RBfjd4x/kr+PSTsWrUCAWvmu0qTh\ndcUlSiWgaN3RmIjZaelsr0G6tNtBuDvccghPS1YegPO05908TWqFo/jUt5lX4pjsggPGQXjui4T7\n89Wj3oMxb5/FU8S0Ahmqxvnp7LhpO1Yv0ttcJB/3Mza8bo0VfkTKftbTwtML22NQ3F46iF/7sC34\nRilPiZSWH9kNuf54MnCHLz2mZAstIqKsOfzzwwqQ/Wkt2cCOJUtBRLRtCi8IiBmPnm1a8QF81qd8\njlt3IzNZn8rPq8m9s/1oTGVWXobpqmSliEJi64ecMazKw2KVHlP5d2odgp9ffCKfi70eQL8v6Ymm\n+cyVXMPZOa2hvVa8IyGrmKGCWYHaEcTAO1E+D1oGYLq+Kodf565fYtGJbDIvm7wTYaN37XnQKn5G\nIN6Ke4Tpyki3k6+7ss3eb91lV++1TFe71HSZwD8Ub+ioG/nDxuqWDmNa15Ww467fYf5b2kHU/gcX\n3Kwb+EIwIa8ExtwXeTo7Dmp0DpBt0TqIiOieIh483pjl3O6oan9McSXM5pWbzjafRAWPYYo2bBMP\nstLvwoWh6UG+emQrD5FdpTwwqQrS+rB1fgEX9ywRt09vHQVjfFfxxb3HODz39e/wIDTuN9Tueb7i\nn6/Nlu0jRdqpHN9HzqGtk5XFPZIHUHUZGMyuvYHrUiI24Tqe+LhoG2XQmiZ7Nl759cO5Fqzbkg0w\nRiL44x+U1/hx+YV4nZuS+O9IvxPn76kpPKU/JxX7gpoEWRLhBZgCTD4J146W44QFwUJM+cU+yDcE\nTQdj4sMkxdb1Wm6PoZnONp/A513YB7ihle+94Volhe/hm1xtA1nXjV+f2ENQHyVbb/n3w2BpzWT+\neLTL0UA1ewq/hlrf1KQKXm0rAywiohrRjitWMSgtfJiPyb4ysN6UEi3H87lif+kcpO4KdBRHeje9\n6MKFCxcuXLhwsRvQYZkujX43YU6C0tPYsZaC3CSaa4dv1WxWOV44ZyS8lvytSB0eiO1GTDYHF93F\nBYpx5LyT6f2gQoHLzx6EVUGDHhfnoy+KYaWgGnkdotQzuLDV+QzqABNapQF38Z2czci8Gc9P42jO\nflVhFyBClyNE5k2B7SIlsxW8EhmhzcIzTqvyk1W9JvPHjxt82OGXX4GshOwtLlktIiwgibsEGbP1\np3LGWatkbT2Z/3ZNtK8Jzp0Q9zsygZZIm8rKUiKi+z/jMzZHYbW8+3JvppLj0BdQNhvXGtFrKUfJ\nbJkUvaR+DkPU6yoRNZzPRfm7iIi2R/D9PSbziG5YwyuCp6EtltF8zXqVM22ta4thjJR8WAXIjPYY\nt/MG0dqaSPXOkgbJbElPRCKiIwfyoi2Ny5WykKqDsOJyn1vEfTCfzxXLdq7g3SXoIExXhw26pGs8\nEdLiZVcqGqqH+YIv3d6J8OGy9Vxnx/WC81GjkyvWV2kzYYqkRbziSQtyJLTgROoMpMaAiOibvly/\nIKuEiIhalUoh+Cyhpyh9B6Oc9Bu5xkyzwpC/o+RmvKaxhc53e2MCf2jkPItpHi1oz3+KU/daZZeE\nVrm0+hT+mFrzBva3G5bCNVxF03DeybS2hvW38XOUcZtzGiNpJo6RRqz5D6KNg3+z0AmeghFe5wLn\nGZvzAn9AagHW1on8fHR53jmAmTDrAxgztxdfO6SGU4NWveiL5r9VCyYlGsZg6luaDauf/xnaQVRe\nxM+H1JAS6dfVCXYxhgPRSkpNYloPbhmhBR4LF85lx0f+dhK+0bHF7FD+TiKi+KfF5tCPd6+JJY3s\nbJJ7Pqas5YZRky/EruQ6wdrsGBjzgzDH7qr0ek0QzvpJX6KRsNQ2So2ttVHrkuqireCmF124cOHC\nhQsXLnYDOkz1IqS0Akg1ECF7oDEH+c+J3c+5uPsJBAnfdILXto7iDJmvwrlvlsY+SZ8aU6G442eZ\ntPtQYO0vBLOhin3sdwEalDrAExEBr7UO4CmT+hRkZEKrcbcc+TOv5DKZd1ol1Zrb+K7bhF0JtE3I\nnoTW1kUaYHp7otfaxvv4faC1QApfyteApiOVeSjWQ63CUQrwPf2QhfWv4IauWvupgvHc4FYzPpUI\ntO1YW0FLpYaXc+E69lY1g7znfZHI/jek8XsjrBKNe6UvoWc/ZHv8K519ACWCktHouWYQz3REvoX3\nl/The+Khh2HMlEznbIisNk28GH3dwMsrGFkrezumHP+KPVW9mHp121UvFk12qxdduHDhwoULFy50\ndJCG1+0y6LJjI6hlMNfSNITzTGrkPGQcTDRLktmyD8VyZBNm674iviM6/RWM8qXoetkXqHFIOZDr\nXUIXItO15gG+i+pxDe6MJRNowmr5F6OlhmeoKF/3OzOpmo+ZX5aCD8Rm37sKG19FnV5dGd91x/6B\nmfmYuSiWbh7KNUJBGtMlfptfYfBMmC2JiDLc0fqO5ILqkBWo3fNVc2+qTVNQB9fYnwvMc6egs70J\noykRie4H+L6K3jB2Dr/fW4eiuLz5anE+bLwWIMBXbCUkWuLRH05yNN2vxes37FpnZqv4LlHkoRRi\n5M9GC5jcF7gmsjEFv2NrGH/IxbzqbGGhzUOpa7U7Y0mJr0qI0pX72Rbz3uNBdjta0V45ItAqHIFN\no5QMQSg/h80XIGO19T/8C5iwWhrqfuIayS4b8h3/RmO1pL9XoMyki8DQLoMuzzY/hW/gPbAknSwp\nXyKl7YRidknLuIeR9c0vMESm7zYfgbT0DaN5SiLWef01evDaiieNFmRJbD6Oe+0kLMNUZnUfvphG\n3qqZB/Kn5sax6H+T/AVPObZGIQXubeJpA7kgE6FQu/Gg7jCmdDCf4pnzsRqtfABPJ6ZPKoYxeVO4\nK5kmMNaofOnbowUDcoxJ38CBv2Ba5YdRvNyr6Eh80KZ9ylMSMsDSEFqNgXPCczzo1AIsb29+7bVC\nh9JrRI/Npdi7TmLtNDw/Tq1NiIg2ys9Sahr+uI0HELmXVsKYoEThu6e02ZIVfKuuxj6CWXP5A1vz\nDZPmtetvxQC4cyqatXqLeJAT8d3OB8Aa7izCk3aziEVMTJzzz1NKYs8TRScX4GcVPMKvfc5k50Cx\n7Ag0fU0UNUnNIzFwlZW+VQcr/Xon8muvFerkPs/bwnliUCS//lJemW4raututzgHR2tF+le7L/bK\nIMsmt3rRhQsXLly4cOFit6CDBF3tUkgfG9rVPjRtPHuttYjbJmyaijuS5Om7Zgeg2iYk8N2OdEgm\nQuZEo4qDhGu+HYnsBm3nKUjN9btlBN9l1mZgPJ7whDOb0HAKZxA1YancVcodJRH+LtkJgAhLyk1a\nhHgiI+G1snM4O9j1+RUwxt/o7F2jtTbZNIn/1q6PBDbH5A6/9yNlMGb9ydzKwKvoZVPfEcL+Emfn\ndg0ypSTvLw1ak/CMO5zPhzeOMxW+LeghRyIVBWwUYRGDUVNhxRuv+R7OXDTMTYYxcSu5fYf9Izqn\nS5f28E04x/yhfE5ZX+PclK1oiIiaB3LRtcqiCeQ/jmxP70c5Y6axlXFfcwa84FkUrnd5zrmlWfKX\n/JzVZeG9GkghiJw/REQNh/BiDG0NkjYfdh2ysJ4EPs8a+uBc0LoBOGGLkqaMe3rnJQaS+SIiSljB\nn/nRr3G2cI8I6dPT7dQpV7XZ+xVNmeoK6XcntncKpo0n8AU1aSZ/KOyqAIuIKP8JvnjlXow3tFXI\nj01SShpkMFI7Ft8nbIvoKWnh/RS6gC8M6CpENG41f0C/0isNxtSn8IcfLptEUb/zh5/mwqQFWTCm\nE69kMvE/yX8yF17LHi/mghKYSXhNdCtEREfx1zxLnSvdNKR/ynUhmuFj2uM8hbT1FEw1BxJkbRs+\nAF9cxOeLFsDYEfz6aAFWzXjR/kQxEVWDLDnmcPFbP0dfKvlZnd/BllnSm6nnVNSqhR7Lz3MoFcMY\nk61sQxK/V6pyMHhKfoifMxPvQCKirDu4nGLDxzCEqifwB3LupfhQrxMyjMgolFxsGcTPYxcD82Xt\nBEkfwiiDom9pbExEFL+S3ytR6zCYre7BH32pSmBmhXBl3qqHUYcWuplfQ1spsvYN5fOux9WKUa5Y\nT7QAS96HEb/i3LQbuHzAH4YnWgZZH5XyQP6gYXvGHLWjtAFql0GXCxcuXLhw4eJfhA4SdLXL9KLm\n0+XN4SJrk8a6Grz7cKakNRbTeVqqcFfBpLGtRFD3THitti+v2op4B2n8lo/5361bjykczZFZovAl\nzib4GxQ3foUd3JOQon3y4pZWE5NboVwwbLcoLUFEJZf1AzJf8vPXPor+ZxmnInMjIYW+WrNm2fol\nZa7i9G/gBxeI6Fm22SIiqjyKp5pDa7CCLfy93TdfKj/ga0D8CVhFJtPj62Ygi5V6MqYc4X1kZeAW\nZFNXTce2O5mZfC6GHOOc/g0U0tG88nBkPb+/19mTTLJ4GoMnEagPoMwsVPZD9n97Ai9W0da21iG8\nMKY5Hteyu6c9xY6l874G/2H7w2shRfx3yVQ4EXoMWpl4P1m1nA2T77On0otpV7ZdenHt1XtverFd\nBl1RndPtvkN5v8HID7j9g6aPkpYRa07BarScy9vGXHLbMD4fQj4KzEDVxOZC3sDlB2GgGNTA54Gm\nB9oWLUwQFX2S1Ez5G9DAzwSBtKJpK9QuxKZvMcdxmwLNcLG6D1Z81nbjSc/tMXi/SRsSzRxVtkVq\nK9SfhunoTSNE5WgjBpgJ3/PXAjHODRRaX8X6ATw4WX8yBmay0kxLm8r7MCgDH1omqW8JTx/FoPM3\nUVE9WqmoFpsfk/ZlGppOQr2W1jfWCaVXY3pTti/Sfkf9ObxKNnGUszmp1sdQ07RJyDWo+TBM6W/t\nLcx098aKPgFZ6Zv2STWMkVIFk+u1YR43pS2+5ilqKizd/UHX5DYMuq7Ze4MuN73owoULFy5cuNhj\nsGxX0/Wvhqe6ATy3TK6nZIlyluKYfoJIWoEsMDTNlW0piHBHrbUSWXMG94aK/1kRRb7pnE60g4QJ\n4jqlXY1SZSghvc3yn0amIO57PqUS5+GOFgTnirD/ujPeYsdzb8Mdvmxzsy0KpfRb9uei2pwrnH+n\nZLU05F0QC6/1fmgTvterO5/W0dhnk6pQE8i0ilaskRQkBOcfYfrMRNy+q6C1UopcxdMqnmpkwySD\nGLLI+d4xYbXWTEe2MPc5McdbkDqWKWMtpS+xrTv+rpBgXMbLhvEUn9bMeo1oQN75d7wPEz/jqaeG\nDGdz0tBq9JCLEMyWZiotPQ/LD8R2XPZAztxoBVEm7HrkJr4uVJ2Dgvxl9zinRGUa2V+OaXfJUhc8\nhkxg6mJ+vHEIDKGcy/hvNfF8NWminjaGp7k32ruGVXexA+0y6DJB0Vy86bPOdNZifX+j0FARLtwy\nyCq/HCnepEf5zRD6CBocZl8i6vo2oE1Apy+5VqT6AqXusIEvgpGfYWWXCUoH80VZMy+U0Jboygv5\nAhf/FD4Q5vbCIEsi9g9Or/siFZPV7c6ViDJ4i/0NAwpZKq+mmZXUTyDQdF+toTvP9vsH40Miovyf\n+64RoTN5AB7gKjZeh/dB+iIenPjDURNj0mPTF8+7GmRfhcHkarFJ2GcaPiDtUP75pcfg/ZTyCf+7\nHlPxsyrOFXP8NVxbTGxIZL+/wmMx9Zx8MG424o/l95TUhhHpVXQSDcJKRttY2MIEtzIHjU/jP+PH\nmqm0TPea2KtI2xgiIquJz/GWWEyPNybwc1azHwaKEGQtxlTz/N4fsOPhlEOKYQAAIABJREFUJ46H\nMXYI//ycSbh2SFPrzPfxPvDmctlDTT+cm1FvOF/TvRYdpA2QSZW9CxcuXLhw4cKFi/8RHYbpsvrv\nK14ILIFsUh0oW71EVDgTwU1HYMrECuLsl92KjlbVo3iKwp+psD1VovWL47chqj4L6fbQKuedSOm1\nnM0IrsPznPQtF9Wa0OTS+4yIqNsH/L1D5+O1iTXQCscs4uJT24/fSAqhpQiayEzQ3HI8pmSru/Nd\nbdIsZP5iX+E7WFlFS0Tk+4OnAT1foei4YQxn9TyjFIG1qASUzCSRwk4qffJI9MlLvU9JBYnjiovx\ns6omivYwFyn3oGDDZAUmEVHvm7g5XqtBlVuSYgYq7x/tmkozUG2OS/apMVdhqYUMIbIUjZZL/sA2\nYyEiHZ/+CbJqloGhrfTvy39VSbEF8zOScWpgRRUy3Sv7hBIRhfzO070tcZiCDFrCTZLLJmOVdcYC\nzmzFFuPaJtPGPYYiizSM+PloGoXfJ2I+zyxYWlGFqHhX+F6Yd1vGYaoZm005Qxqxtr69h9gyV9Pl\nwoULFy5cuHCx69FRhPTt0jJC8+mSKLlJaRybx/cS0e+i/ULLUJ5718S4BbM4m5BzGebw687gu6iI\nMkVoq7hqO0HT8WiMB3yWEPX6KlFjVvE+9wNq+jEOxmS9ynVngfqhmbQBkjApudcQiM1FzTgUT0s2\nyhRl73JdSteTnNsZyYbKRESrruK6JhPPNBNo7Xt8+/BWOFlnoO6qaBrfQad+jroZE6sUKboOXoda\nLBOWUTpvD0vD5uPWAfxaLHr/ZRijCaolwHNqJs5D+VnSkZ2IyNtJFGyEol7KrxQ1aKy4hCyM2XAc\n8nEmus3i17nvVObpzho8DWvvE82ar3NmzDQrjINv4d955QH4jKu8iH9W0uc4p3x5nBmVaxIRrks1\nC7JhTOwI/j5VZyObuzstVySkb+M3G16imuay3SqwCktLt9Mvm9Jm71d4w5S91jKiXQZdGX1i7Klv\n8pvxw32xbUsgKH2HVxl2nY7pPBnkbD8Wr73shaaZ/BU+zPt4aUJ/Ka705WPlXZNIIWlGkjJdJVNV\nRGaeYCaQfjPpLxbCGBODQ9k/M20Opvz8WTzNoj3YAoE8F0SBn4+2gkllojWAt3GxlzsbqrYVZMEC\nEfbS0wTfsq+j1svUV1jk+PmBzF+tR2DKk/z+bhmstHYK5s+syN9RPuAv43Nc82KT90rcbxi4rhuF\nz8dAzIXX3YHBQLdbeDCg+T7FFvPNam0GppplOyMTaH5s687h613G00p1tAhCZbsjIqJJN77JjrWW\nZtb+XJLiqcMUrcm8CwSB9ik1AZhjb+Nz6puyuVSzrXz3B12T2jDounHvDbrc9KILFy5cuHDhYs/B\n9en6d6MmL5QWHi5dxfnuR2s3IpsBF8zB9EPOaPTccoJktYiIil7jlHz36YpTuYGFhcZsSdR055cZ\n/egVEbbW9NmAGTBx2u9UyHfGJqyWbG9BhB49aoGA2PWasCSyEIKIKKiOp38DZbXk+SEyS7HVnslZ\nLI/yY2Urk9g8ZGB8wbxguVZJk5YP4mmm3EuRNZGeV81H9IEx8ndJVktD7f4oCo8QTNfGkckwJvUl\nXpyh+YjJaybTa0RE0V/ydLjmVC6TcMGf4Jrg7cS7E7QqzdClN5+3vgnGJP7E7UOCFuNn5S6ElwAa\n2xP3LvdnaklBFk2iOR7XqSDRsSCyDNOUgbSE0vzYUu/lr/kOwgbc8p7v9CKm7l55Edd/CSu/mB0H\nmhWSth+tm9D6R6LLajyHsn1a8nuYZZH+fVonhFalCOivsG3neeAicLTLoMtu9cGiawXxn2rX1Dq+\nT845uMANWMGfdsv7IZUutSOHX3IhjMk6gz/ISm5AOjnNWU4B3en99ahHkg8OmYYiwlSUpmvKf5yn\nKXtNQe2GSQAhdVYy/UmEKdCC29FXrcc1BpoP8d5Rq1CrJlNIWsVl3DM7H2wToUebpxXfW9asyT6h\nREQxc/n1yX8eA8PYn7jeR7YEISKSOYNYJWPRFI9zUSLvCZ56yTnH+bqbeONNve8VGPPE+/zBEVKL\n59DErNU6kAeG3hZ8sJn0lJQISsEgkDzCjUcJuhoyea1Z+Lt4vYLaKH0V/wm+T2stXwM1DaDUvuZM\nx2rOwpk8hZ+obBb9Xgz6nNA8EteFyLxKduxbhulxqYPzVdfAGBP4+nH/MZMWRBpMgizZf/WtBx+E\nIedkDGbH2gZy/fX8eqXeize4TBFnzOMGuNYGDOZ2C1ymy4ULFy5cuHDhYjfADbr+vfDFRVL18Xxn\nFbuGiyCrsjFd1SrMnjWn9B/O57v1hlMwDTfiSJ7aDM93FrWmTcMdiWTMBl5zMYwJpGKu7DClmqcv\nP1+nHPc1jNnwJp8uJk2YtQIBmU7UhP1y52fCasmKUCKi6Nec3dXvWTCfHT888UwYs+YBfn6i1qPO\nVHYZ0F6TaUIiPEcmFZ+55ym7buGLpaWIrUyeVvH9ngdjYoudK99kpkUyyURE9DEXQnefiu9b8DJP\nmczOgSFExP8u7iVkHU3Wa1lEUTUZGb0wkYbr8g4WXvjr6vi3UyonpceUV0gXiIi2R3A2LFqRPDT1\n5qkpTaqgwaSoQmLYb8j+z1oqpAAKE5h1Jn9NY2DqRvFz1tIJz730M+z0C7LS8t7Q0mdSGF4zEl3r\nY192Ph8lV/Lf3m0ZMkD2ducOD7KQSr2Gwmfu/ENOgyEtI3hrJ+mhRkSUeq8zMypbA/llC7pNrmf6\nrkS7rF48sG+YvewjXt4ry7xlSTcRkbeZn4uEJwwe9EqqzhYZx7Ij8FEvDR5bRqDBYtjHXIOilYGv\nvZc/JKxMTAsmvslVXPWpmBJNmrnzlTGWUr6utbBpC3iio/8Pe18dX9WVfb9uXoQYMYLFiQAV6u1M\njbpQdxfqMnV3mbrL1I16S91LvUO9pUKFkgQIJGgIhAAhIXm5vz/o/L7svfb0Ht48Ag13fT799HMf\nJ0/uPffcfdZee21+LV0GzpYGRPdUyxvNqQ9/bRkkWxV9iarFT+1JXGU36AZOt3oF8qHposGzoO0X\nyi7iubnVeBkEjx3GLWNigWWPsaSvXJgLnuTgTQdiTdvzw5hMX3O4ynjhNrKydmkmPxQs3Y7GtCvl\nPZ+4iMfoB9KcU3mdWFimNG/XB/emdNkQLH2f51Tyjiveu9MZytC24QLWuFmbQXobpbd0aW9kQVeu\nFj7PWs+GfXPFcWfDdBqjjbATFvLmsGWYNEwdcfknNObhf28jji3rn8hgZRHRzIGri2ZVm0r/fOa9\ngX9jWZdUP6BaXV3N52fCtTIdPuS8aeL4y3kvYkHHnO6tXiwo8ktOil/1YvXlq2/1YhjShggRIkSI\nECFCdAN6ZHrx5+Y+KHtNiterIFNY/e/gHVxENW71CgtojN5ZZY9nCnzC2bJyKXF+8Gm2qOJDf5cp\nCdNLRmmBKy9gwW7nVMnAtJwTLJR2wcpitSws2ZLTCNOPkGmEmm3G0JjtjpSCc2sXPmdTyaL1NQoY\ndAqp9DJOKSUM4Mq7zhiZLY2yS+T8tZqoP/ucPO51IrPY6bMk65rxMVcyzT5EMgV9P+c5laUqoJYa\nLVu0uW/OKwtpjJayL3oum8ak7SwZhsVGqyDNqtVez8xx+Xnynm+4OPg+6HsPrxPNqiWVi4hfs1oW\nLFZLe9FZyP+R70Nd5di2B4vSe70h51SvJqMysbRYHHfWTaMx+p4iHygAtSMlu1J6WTAzWb8Hs9vR\n2czcaDRu3Fsc93ngVxqTru7L9xZvTWNSNzBaWynM2laWweTfz56DLhh4k5xnI/fdisY0nCsZ+ZzP\n2DC69J/yGlprdOIsmSadcJO8xm1XriIh/RqCHple7O3l+ptFdhKvRbeWWiwXt/fa2zglUHG2XDyt\nHm8Fb8iFofrkgTRm0Ply0VlwOH9W7reqUmdi8A0dq3Gk1kZ4jYbLdassadfaFgteEt/ADWdL1tfq\nyac1VFWPGfoOw8BVQz8AotNn0hi9MFk93yYdJdn2qpGsK0oYZpRnZ8nUbsJYtpqI9JYPCa9PLo3p\nnFxHr8WC+kuUMe21wemjVxpYc7dPoXyIJ6zHupmlfWTaafLh/N7WedTQ1gpWVaYGObmDq9h0hwUA\nyN+T06RBcDF9taBta976+k0a4+J+b763ck9fWsTdI7SJc+PJHMxGVGYu97HgYKnmHj4flacGnw8X\nxGK/YPVtjcU81oLL3NTp+Vg7V2iJg0sXhljwtf8hWvx53Z9ePDGO6cUrVt/0Yo9kukKECBEiRIgQ\nfxGE5qh/bfiZaejcVO4QEz+SO+r8LziN0bh5szjuNTdY8pY1mcXtum3JoPODxbCpjfw+mtmafoHh\n5XWbrISp35c9gwrvUe1GDA+uLpUu0jtKAGjZWe7qtBGfhaN/YV+fxwbLih+dwgC4WtEzUhYurYv8\nRJkicEmJpkxlVq1qZPA19NrYVDBh/J8bEQLAxKvlea04k3fCmkXrcnjfRQcye6qZLevca1Zkn2Af\nSbzzzrP02vZHHCs/+7XgdI0FzR7o9iwA4P8gU0g1F7Ix7KAL5Zxq+4bZn84P5PlI3IHTaRrZ3zJ7\nGlz/yWbMFrQo3B/HqTKrQlj3BExw6F2afx+zWJF8mT5rNgoCEjrk09KF1bKMadNeDv47zWzp7wdw\nheXQK+p4jDru2IF975I+kM8MKx09eBe5vhlZSsxbW5kW8xDU3K369Z7G50IzW1aBix+Rn2UVmGi/\nRcv8OMTKQ48MukKECBEiRIgQfyGsIUxXz9V0eduL1/wtJPNluQvX3KV2G6fzbkPvSIZczZ5Ksbha\ndyesLvd93pXC0q55zTQmUqQ0BYbOyMXaoH1XKXJOeYeV69rSY6mxPSweI2v+u1KYSaF2PR8ybZNw\nthTsLinMoDG9Zks9m9U422oYXHaDtKhwKae3NDG9J8rf9uOFXFI+YvsDxHFHHvt0aR1PrNBaPcuv\nSNt15IziuaCtFCzBedeW8t5NamKmdnG5tJpY70rWzk3c2KHNjXJBj7Sx3cv8KmmV0vde1sVNUVYu\nZRfyb3dhL13eR59ngM/1Rj+w+/64DSSTv+uvfM+/szZnBOIBq5m1tnxZ3+i09SP3mY8Jk56Wb1R+\nWGxtvfRzZUlfttFJWih5z5lb8pjiK1fcsmfeSL7uLpo7zTJqhnGVaLoGFvmlx8dP0zXx6lDTtcqR\nWC3F7RMMcWXlE0o1msAP8crTJRU77QKe+CVPKfF4Ep9mPzlJHFsieb0wWT5UjaqSK5Hbt6F1gLx/\nil8yxKeZ8gHtG94yOm1qofDj4AebDrKqH+JKs6rj5SJkpZTqd5WRWOF1RkVqH5VCOjGJxnQp36eU\ntzgIdNmalFzOC55+1CU6VMQOuYODdm0KuU3N8TRmxpFynm28NT/Ex7+u2oQYRQwakY+5EMQ7VP6y\nt8a9S2N25j8jZH8og33LvFYHipv8xHPs5cmyUMYKsBbvLx82Vnq815vy/p53DN/fOsiyDDqt4EhD\nB1l5n7NHmbeNTHFZ8zBjBv9W3T903AZcsEAC87WD00zasBlgsb8uggFYLjB/Gy74yXxOrm8/78Sp\nQ0DeGy6pZgt93ubAJwhz36ii1/L3nyCOx07hOaXPT9kMfp/GN+VrC8f1oTGl10gpSd549gTT86P+\nRe6JWrR/fIoaQsSG0KcrRIgQIUKECLHK4GGZkD5e/8X0HTzvRs/zfvU8r8XzvBme5z3keR6Xktt/\ne7Lneb7neZcGjl1T0ovdiQVvS5firBGxebdod+EhZxk7uIhk41xsHJqP5J2oFlw2Hctj8h4J3r27\nQJfKz9mxiMYktcp5md7ArtIuqTItFK87hNOLLq7b9NlGix2rQMEFsZTBa8E3ACReLJm/uj05TVp6\nqbyGLsybdgoH3FjPGedJVm3gzXyedZoyYthl1B0tG4Bb16vmX5LFKn+OCyb0fLlkMs+fawdJVsKy\ncnFpIeMCzWw178ssrJckX2sbzAUu2pMLYN+y+Ycym9ylCPjcR+N0fxtFL1MOkbSni1VJrHCxRdFN\n5a3WW9ptfsZOXLCg23wt3YXPc/K7kjl/ZNpnNGar988Ux1XHurV70mg6XnXgeGjFr+mqSC+mDizy\nS4+NX3rx92tWPL3oed51AF4A8AuAbABPAOjwfX/PgL8rAfAhgFYAo33fv+bPxq8x6UUX6DTBO+89\nR2MOnrKdOJ51TTmNyRphuGtqbLquPP6GW8/oVkE1DrQ9taUA4KfIy2xVtPiby/RMv/e42mmxalVk\nGbrWXSu/Y+klho5nI7kA547itIZu8RMdxufZBdrMMXsS57wiVfK9vcWco+0sknS/38kamUg9p2SX\nrC+Do+QxvJi6BFm1t8uHf8ZbTFL3/0Y+AEqNbJFuN1W/IT/oC8aqh8vE2PyABo6VmjuXSjPrXPT7\nlgNDDd2ipf5SrjQr/kreBzrAsmAFWN4m8t6dshcHtxWPyHNmBalNW7DpbBCi6/L8tRZx3TLMuuet\n1kQaek38/ZTeNEZXvy2p4NRY0fvBm0Gd/rVyqW3Zct5nTWEtIQVZqo8rAERVr0NrI5r3lvRsyx/P\nZq3FX8vNV/2pvHZMvk6+97G8X0IVVjzIqr3DuH5d8qTdOImfK7duOlwcu5j7/gUR8Txv+Zxtk+/7\nXJa+HHzfv3i5w0bP8+4EMNrhsx4BcAmAk12+WJheDBEiRIgQIUKsOsQxtfhHerEfgInL/XdaDN9q\newDcrHc5eJ53IoDFvu8/7/qmcWG6PM/7FcDyOYgIgF4ANvJ9/3vP844EcAWAAQB+BnCK7/vjlvv7\njQHcC2AdADMBXOH7/lMxf5/kJCT2l2kkF08c7VVlNhS9XzJJVe8YLI1y545msGjTqp7U0Cmk8h2C\nqWJLkL94PyUg5r7MSFQVYdMO4u1Y8VNS9Gx5EfX7xpJCS7QUyWmX2sV/887EseJ454HBO2WrO4Bu\n5L35hSwiffkTeX56T+K9yMCX1G83ihom3MvFGb0nyt/auh3vqAddoDzJNmbxa8EnkllLfS22FJdm\nJ4veDv4b6zrrzgdm1wPFJsBoZu3iT5S8QLIZ2Z9zCnL+FnK3XnQNp5Rmq+bVKc3MVrZnyWtvVSYm\nTJEsVuYUFkYvWkcWwfQymK5+X0rWaPbfWRg97QXJqhUfwOyy1QlBi/S1px3g1ppIr4lVpxiDPJmJ\nSnqPWZvotrLLg+XY1nu86sBhtNDKKgpe16dfqIpFbjDmgmqjtWAdLkbwuuQ5W1TI60LS4fI6+zVc\n1VymToeu8AaArbaVjNSPj65LY7Jr5X1g+flp3HQ2v0+kn1yTEjIlg+ctWkVcTHyVTrMBbLPc8Z+y\nXBqe5+0H4CQAw/9kTDGASwEEU8bLIS5Bl+/7ooTE87xrAez9R8C1JYD7AOwD4FMAZwB42/O8St/3\nWzzPywLwDoBbAGwFYGsAr3ieN8n3/ZhEBv7SDroZH1J59OOLt6S/a99Npl6W5PLpqTpJGSzubvQ0\nUxVQ/lZc5+ySMJ+l7A0KE4y+YypgsXryad0BVfSBg7WimZwqm3i/1EGUH8qBR+prwRVQ+vtY2GVP\n3TOGFzON/O/ZjmHGuep8bMifPXiovB+jE9jQtV71wCt6jh8bJW/xqpHylvo8L/jKW3YUqTFIPJbs\nzXPTUxGUnqsAUPdPlSI2+uTpIGvuCYYNyUPyoRCdz+k0HWRZLZgSF8sHog6wXGH1UQyCbqcDAJNH\nytdiKfcH7CBLo/gA+TC22i1N3YOD2bJ5MiXb6dAyy4Je36z5AqULtuZd6quq6vtKI/2rzuPSnVmS\n06LW5N7PctCV/wOnHDWSW+R3zv+S1/qsp+S8t0xNZ58o530fQxumUXknj2m4SKbi+yA++jod7AJA\n4gT5HPEHKZ3rxB7RezHq+35Mk97zvAMAPABgT9/3/6xf4MMArvF9P7gh6HKIe0jreV4igGOw7EsD\nwPEAXvZ9/z3f99sB3AygDcuCMADYF8sEaDf5vt/u+/77AF4BIDtWhwgRIkSIECF6Jvw4/hcjPM8b\niWWxyx6+738cMHxHANd5njfX87y5ALYAcJHneWP/7I9WhpB+byzbFDzxx/F6AEb95x993/c9z/vx\nj9f/8+8/+LKM8nsAR6zIh3qelwcgDwAy0voD60nx5G7jZFuQ4d8ydf3xK1JUXPo0i8l1qsXc+Sk0\nbpBKr/X708uyDLFU1R19EueL3rlbGhxG5zLTqhu3/n4si0YrD5WshOWRE02X59CqMNSNW/02rkzs\n+lGmNaxqQd3Sx/qsAiWetu7H2VtL4W8fg+kacKu8Fv7QShpj+XtpNJ7ETLTVfkUjlgrHjLGcatai\nWctgMbNOHrv4LmU2cBIyIU0WQ8w4fj0a0/8OxcJexgxrwoGSwQxOYNuGoYlL5NWfsxfPu/JD5Rzy\nF3FFauEH8vu4pLUtnF4r5/hdFZwm1JixHbNaVirVpQ2RZid9I+c3fz15tqu4JzemXSF/f/HW3Dop\n8Ws5f13YwSX5/HjK+1y2XJp7hFGJ/aScm3NPNFjYB+LDJGnGzIL2Iaw63qHQyoD2ZMy/P/g3pExg\nEibaJBlnX0klfJ/vi+7Aqu696Hne6Vgmg9rZ932Xi6Rp8BcAjAVw65/90coIuk4E8Lzv+/+xN84E\nsECNaQbQ2/HfXXEalp0wdCxpQaRG0s4D95EPm09e5oAhsqmcjFMinFoo+mdwDzOtyXFZgHUFHWBr\nGoLw/LW70GstF0lCs7WEl+SSN1T/NENbU/2YNFysOpaDnARDn6VRf48yNb0gjcb4KjjQ1VgmjNSd\n/jvL3HG3DZUJbfAnmSlIF3Skx1aJrYMs7dgPcAAz7Xh+iBe/KB9a1oM272G5mHMymmFVsmrF1ICx\n+jYHGtUDMfcKw923acVd9HN+52ApsU4+XGbuxPe3TqelT+HvrIP79AHcQUCj60P+rKuuUY79RkpJ\nB679vnK0JXGojtYaoZZSTitVnRS8qSy+Knh9a6TuBMGbhtnb8Z2Y9ZTUxi3dNbiyNV4BloXcsfJ5\nEE1h/a4OsvSmE+C+ii4yERdY2lMNbQnjNfSI9GIsuBPLlv+PveWeJb7vZwCA53mHAXjgP8e+74sg\nw/O8dgAtvu//6UmPa9DleV45lin+l7/DFoLT4dkAJi3376XGvwcLHiTuBvAMACQnpE4MGBsiRIgQ\nIUKEWF2wipku3/f/dEfs+/7TAJ7+k3/fxuVz4s10nQjgJ9/3l6dJfgLw/9V83rIQcgMALy/373ur\n99kQAaWaGn94cDQBQG8vF9H5vENdHvkPMrvS63NJ93ctnEBjnL6LIYTW0GJ2i9WadYbc7Qz4N/+m\nzmy5s2quYJle8dXBO6QZr8j04sC3eEzvn9QuzmC1NJO0a+UWNGbA3vK8WtyYNu3syuV0p67Qsqq4\n/GQ5xe3WNMG7wXhh4C3xMYXUrJaF3N+ZKZhy+ABxbKV5Gi6S8+76Y0bRmAd23EEcaz80gJnRtGpm\nAUqfUUxBPsuVq1UvyspTmYWdfkFwe6PoRpLdLnmZ19iUtySz4xmshPYby3iBv4/2vUs6hRmqnInB\nDIy/lixe8b7kZVEbYgJA6ZGSiV20HbMXvWrkvO81kas5J6l+ooOe5hZVDbtLXzedigeA9uxghrd1\nH3mdh15giNLVubeqS3UP1HRD5hwL+6V7gAKAX7PiHnaa1bLQ/z5mGF1iEhfTV/o+qrLW94MLEeKO\n/1GL9VdC3IT0nuclAzgawP3qnx4CsK/nedt7npcC4DwAKVgmlscf/0/3PO88z/NSPM/bActE9g/G\n67uFCBEiRIgQIUKsasStDZDneQdjWaA00Pf9RerfjgRwJf7Pp+tk5dO1CYB7AKyLZT5dl/8vPl2x\ntgHSDU377Mm6nXlvSAF17u5clRrJlrv1aDMzVFrE2ufB2HQHhV9JN+yGvy36LyNXDJrtAICSh+X5\n8DKYLdS7Jm8j1s5NOkDK9QY5NAeefxTv5nUbk1jbFLXuK3fYmT/zbv7Ytz4Qxw9WDaIxVjcAbcXh\nGZoPXRBgQc+XeRszi1V1gmok/gC3JOn/qRRxNe7Gn33G+h+J47cOZ3uVyCxZjGEJ++uel8UshQ+y\n+73VwobGqCKCrr4sJu/6SbKnutUUAPx2hXyfojd5z6mtDSxE8qRPWFcL33N+h2QL9BwDgF6Nckzi\nfNazaZ+siFHAAcPeRa85ut0SAET6ygISFwYmXrC+jz5nFrTGbclwXl/a8uQct7oK+FtI1qphO17L\nit+V3oD+t6yL08j6jBWQC7ZcIYsoAMCiA3i+WIxqLAh6Pq2SNkD9i/zyI+PXBujXm1e8DVB3oUf2\nXkzPK/LX2UX2sur9rLzx9MIJAFD9yqKzeTHT0FQ2AJRcHtyaZ7PRv4njUd/z+2T8Jh/QfcbzoqTb\nylgeXLoPm4u40oLuY2illFzQdJz8rf3eYeNIlweA7rHWq4nnsq7wifTj/mn6OutWRgC3M+rYYSMa\nk/QBBxCRj2V6yhvJGX2X86gfUlOu4M8fdKNMa1t9OCffpNJF58cWqOpUrj+RzVF1MNm+KweB806U\nAUtrTTaNqT3sPnFc9hq7yVSdLIOllkO5SjT3KxkYdk6uozEpn8rArH1bDsB1Wt2lCKb6UV7/h14n\nH8atg7l9jktFrJVe1D33dNoJcEs9xYI9f+Mg49nLRojj9JfiE0C0HMLXWa/1Cb160ZguVTFNLYgA\npL8Y/B1djFhXFnQKGwC8L1ZIlQMAaLhY/oa6R27Dkpn13R90HRHHoOuW1TfoCtsAhQgRIkSIECFC\ndAN6JNOV2r/IrzhMRs0FT8nUWM25zD7pdiyxQqfCcp/m3aqTBYLCjPM45afFh5ZQW6e0rHSWZiFS\n3onNS6ZZ+eZozxyAUy1pL/OOcspzMjVVdjD3LtI+YTrlBQCTT5Q7fEs4rjsRRM5iJnDGWJmuKh7D\nKaX2q7ngNu1Uua9xYRcivdktxS9ThQWpnKrrSpSfZfmWxQuDv5OCgj1wAAAgAElEQVSf/93NzLxl\nPi8ZB6tBb8nb8j6YawjOdeGFBe3UrtONADDzbFWYcpvR4kcxeF0/G4XQDmumTl9d8MSTNOb8myRj\nZ4m7qUl4FjfXrt9nAL0WUbe4i22NhQWHy2tmpepcoBtDT9vM0foiAC4pfYuJ7JqsxOMO67ElpHe5\nx3Saf/DD7IMVTZMM+KICliH0fkZla1QrLoA7RZR/yyzfpFNlijpxulw3v5j9HBYsnd3tTFfF4fFj\nun65dfVlunpk0BWrpqv+UtXqxTAdbDxZBhW95vP5a1OVOn3H8QPa+1npo1LZQFW3TbFaZwx6TFZ/\nzd6JtSw61YC/DaMxvvK4mnQQfx+XXl+xwFo8vKispNJaMfN91h5Mr3XkSq1G4rf8MJ54s6TpLY+y\nWKFb6qQ081qWNlv+1iV5TED3vzP4oanbpqT9ZJj7qtRy5/YcLM3aTC74hdfF9sDW/j/NG/enMS46\nFT0/6g7mIMO6V+n7OBjMUlWxYSSsffhcqpUtaN1kNJXXkv33lO3LXhm9FY3pyOC/K7t4xTeQS/Yy\n2vc4tPXSUo1JZ/J9WP4vmW61pBs6qLECGp3OK77/VxqjNUpaBwYAXa3S4NZKR2dNkOn5jps5Xd/4\njlxvrcrNKTfINaDvt1wlmtgqX4t10xsL9H3xRePzWLB0TvcHXYfFMei6bfUNusL0YogQIUKECBEi\nRDdgjWG6tHhbu24D3G3dEiJrp+doGqd5Ip/8WY/MZVh4kKLtJ3JqqutHKbanVAMA5MtKrqjR2Fb7\n38wbYjRrvl95ZxnNiTUsZ+WaUyW7Uf4Mv8/MbeXO2HJa1uJXLXy1UHM3i2HLXpVpgwWDuGoqda7c\nZaa9YrAvmh38itOdLtBFDYBbaqP6YblpqzouuAO23sECbu2DVjc0H6lS1k8YaTiVko22BHsruziD\nx4oaB28xDf/vLIxO6FAudj9zRbUlF5jyrHyvskNYYK3TbpZXoGaJNEMExNaiykSCWpccultY0FKJ\nqQfwM67qmOD7J5Y16NQaXn8f2GYbcVx9MxfzVF4rK1dnbM8FUS4pYpd7JQirpHqxX5yZrttXX6Zr\nZbQBWuXwkpOQOFC23bCCLA0dZJlVL6qdhtFFxQlZb0ta3AzwFN7+6X16bbeNZNsfnf4EuLff0iN5\njA6yOnbi+Zo8Ty46nUZapexi9dAyqP2ssuAOT/66UnewuITfR1cXuaQF8z7k13Sahz8JSFjSIY45\nQeAGK8DSaZW2fKOVyHGq76VhxTFlH3lekxfwurnXYdIp8tv1g2dw7e1G6qVavndnKn9WwUfN4thb\nwtW3Xoc8H1ZFodODI2nFl7KmbYrptayn5fy1rA26NpH6MatibMiVUrtnhQ+6AtaqftXhgk4hA8C8\nk1kfVbZ3cBWbDrJ0D0UAGPSkPB9zduTUbvNQ+S2H3MrXou5wea4LbzTuVRVk6TQuALTnyTW5I5Pn\nr14XBr9vbHT40/nrqCDLstEp/pd8HtxTWUVjAHkOBx3Kgf2cY+Wa3P9zthnS31lrFAFg4Fj5HLl6\nCqcpT/3n6eI49zElG1kFPIz3x39rAsL0YogQIUKECBEiRDegR6YXM7ML/fWHnyFem7613BGVnxdb\npaKuTMx5nN9HGzN21jfQGA0r7RRRtP2k47lp7k4jJE3+86VcYZP87oqLMl3M+SwRtt4lpdRzejFe\n/kC6VVB7ZT8ak/SlTNG6pAhcKqJi/bv2EexVlfalHGOlducdoypiH+V5V3ubZKQqzubCB6f5G0O6\naMnehghbGY3qSjgAyPlFpgF1Sr270XiSPD/a582Ci09W4qBSGqNZPV2NCwD+D5IR13MeANoreN67\nSByOrZaVbt8uYi+v8RvKG3rem8zkWAbRsUDPIRej2mmXM9tT9uJccRzNYOZ43jqyCjT/RUOQ75Ci\n1unXaWfy+lt4g1w3/c2YwUuaJv3grDS3rl5PbuFndyztjRL7y/nzxdzR3S6kT+tX5FccGr/04s93\nrL7pxR4ZdMVaveiicdAP1glnsclq1UnBi0XQZwMA5qjFw3C2b1K0tOXKnlgig7XOqVzV1p3QaVuv\nkFMWuvTZgn5ADjqM9S4Lt5LncP7R/IDMGbXiC9WsM3mxt8xZLcsMgtKyzDiXA96BN0k9h2UroR8S\nTg75m6xLY6bsKR9I5c/MpTHefPlZsRruxgKXDcF1U/gePOp+aZhs9WfU1aYV98dm3OtSiTf5GTlm\n0KGxWXxYUoCk9+Rm7LDfeeP39BC5ObSqiBcPUX0mv+PzUTdSrl2F18dW7dr1oVynEraPzzplpSmn\n7CX1uwkdHGO49Kx1sePRlZGekWvW9irW+qL7rc4+jcd4O8wTx333+p3GaGjD5IY7b0d7ffeao65J\nQVeP1HSFCBEiRIgQIf468Hoe/2NijQm6NHWvaXsAmLeJ3NU1HcdVJr1Vlil9SvCGIGGdIfTapMNk\n1WH5VT/QGJdUWP7XMhVlCbw1szXpGabAi0fJqTD8Zt7lfbGeEhVvyiwJvgnuT0a/y2C1Jt8od1+V\nj3I7lua15a/VrJYFk9VSHmUtBzOT0jRMjim7KH7tPhKLZcpIs1oAF0i0bc+FF2Wnyd/faaREdUrY\n6n1YqrLRLjVkVjuWJflSMmpVX0W32VAcW2mxBYfJ9859g1OQc1Xa9GImbZB1oJwvmgEGgNLLVNHJ\nVhvQmATFdOm5CrDRcmQtTsvFxGwZ95xmtSxoVgtgYbjFUKVmqfTZkczID/yCe0YGQV93AIhsL6/9\n6Aa+Vw8s5HOtsdV4ub6MHcYFP/37q1TmbP4NM16VBRP9b+Y0Zf1ZshCkaH/+rOxfZYZizmbc6ipT\nHRc+zxIMXYIz8Blmseqy5bPGEv/r61z0nixwmbNgFUU/a0jQFQrpQ4QIESJEiBAhugE9kunq7JuO\n2YfICF/vsq2S+7ZcGYMOOj8+bMac65l/KttD7uIshkozUqUPGTHyx3J3qJtSA9xQefAlLNT+7VLJ\n8iVpVgusM9AaA4Ab+ybNYR+zsguDdU4H7PS5OP7hmiwaU3lasLh98X6StTIb7Spdo26Yu+y1wI+K\nGROvVZ48M1gsHVFuC12T9d4Y6JwZ7Iw+dVd5PcoNC425J0g2oc9DfD4WHijPq3XOZv9LjllwP4vt\nXfSPWU/L97aYN6sgQGPm1vI6Z4xmzZBmBpYMZbY5cTelJXRoH7akiDV4ybHUDBhM8tSrmM3oSpa/\ntewi/o5L12XPLQ1/nMwIDGRilGDpDeftsZY4bjRqcCo+kccH7X08v88xct73HcMaszFXSgYzDXzP\n93pTzTujiEG3n5p+AZ/nov3lGjhLsWMAsG2R1JrWfsDFNLrVec1tXBxRdogsaIk2zaMxxTdI1tPv\nYJsWfX0iM2XHFPKG6y6sIUxXjwy6EucsDgyy9GICAAUzZNXW709yamHQg/I4YSynBTXyruOWOhpW\nsFSu0g8mVfyxPNYBFsDtPTLHTacxabUyyOoazr9dB1laxA8Ag0+QuamEUk7h0C3tcYp23AYywJx3\nDIthmzaQoWr6VPbs0b0ore+siw909SngVoFqQbdIqTuZU815Y+RqY/lSzTpLBby3c8CrBbu6VxsA\npM2Q5/WOOn6fczaS3zlqFNto4a+Fyn8E+6bNG6mqMh+L0bRYwTIa1d/H2ni5iMDnnGr0QFWoGSWj\niuLRK0+XnDuBt2yZz8nrc+REDjAfP0Zu6nQPUgBIeSu48lkbci7YnduelV8wUxzPW5uNaXUVneUD\nmKsyqXNG8v1szaEgWHITXcWb4NAut7/RJ1S/UrINi+31+m+a2Tq0qLKCLA1dcDNppAyI225fBWGB\nv+ZousL0YogQIUKECBEiRDegR1pGpOcV+evsIsvDExS90vt1FrG6CNddhL+d2ymx8kcOnLyFOLWe\n0dBCUwD49BTJklgl7rWK+au8g3dVDTvINOBFxzxPY54YzOxXEMbM4O+z80AuCAiCZc1hWYMEff6G\n3x1EY7w32T6kz4NKUF3JXkhHvinpytuuO5jGuKTPXFDzhJy/eR+zOPi5K28Wx0efeQ6NWVgoWUWr\nlVMkW84Fy/LEBYsOlHMzYzSzbLrVldnKScES0sdip6JbNAHcpimSk0NjtB+bZdlQe4xkW1wbWWum\nLame5QIl78j0ouWsr6FZR4CZR6v9lN8l2Tir4bWGiy3KyoT2X9PeaxZ00QcApI+UhRe9jjP+ULH9\nfjLLMqJZMmNSe0g6jal6THaBqL+S2f+CfSWrpz0iv+ocg5au7m0DlNa3yK86MH6WET/ds/paRvTI\noMvy6dKmgp0NnGKLBdNe4Gqig6tkkDX2DL4RFxbLh10sPbIsaIoeAPwsuVBWH68VBED5ucHpIu2v\nVf0w6xcqDpfpVisVk9IsF2Ct2QEAf3OZHpq6GzfnKb1EnrPqx1goUva0PLZarVQ/ovoaHsvVYF2q\nis1KK2u/GwAYdL78ji6tTdrymN7P+VBWM7Wtx+loXcVWf6mhQbkmPjpFHbyhhR8SlM4zfntkrvL7\nMtLjkbUHi+PorxNdv6aADgbmb11KY1IbZbunut35d1mms4EwUujkn2f89inPyY1Xn1f5PsgczSnA\n6gflfC1/mlOQLSVyDepI5+/Y957g+aKDo4bj+DoXPiGvmZUa02nKuTvy5nDtYpmmbB8en16iuiUT\nADRuIM/PQKOi28UDUW+0XMyh9YYF4E2L1aJKpxfT/839ehdvLSvB9Xn/7c3bsXhuN/t09S3yBx8Q\nv6Drx3tX36ArTC+GCBEiRIgQIUJ0A9YYpssF9ZdJZqDon0bKRKUJOocy4+BC07vghGq5I3qwilNT\nscBq5L14Z7mjTp/KYliXFi0u6dfVDbpAoa0vswJp0+X+pNPoim05WMeSarbSTC4O/S5wEa67QDde\nTh5jsIMOruyxIJLPu/eWreW9YVWpanF9R29msazfoaGrBUuuiI099LeQ58f7PD7nB+D2NF2twZWK\nFha8LbsaZI0Irhi24FIIoq9rtJG9+Vww7Ur5WWV3s5+VrvxzacFkofpeWaRUdQpX4+qOAZavWtNx\nKpX5cPB9abFzmsm35AxBTNvX/odo8bs/vTh4/zgyXfetvkxXj6xetOBiCklBlmFEGFUl202G8eni\nXeQNdOy+79GYD9ZhbYRGvIKsGlW6X/EsV8/U7y6D76Hnz6QxCevLKpeE+UYVWQxB1uQbjLScspWw\nqtFqjpcPzapjgh+YVtl36lz520tH1dEYl/6DFnpNUYalCayxaBsh5yaVswPI/0IaKjZu3kxjNv9J\npha+GVFKY1pUZ6A8o+fnwb/INNcDV+9LY6zKSA0dZCWkswYlobe8D1zOs/0wlvdKtYM9BSdnGFZ/\n0QFfBFeI6WA7ZTZvYqpPlcfln9MQamd0cRn/LguzRsqAzilNaBi4Zo0I7quobVmyxvHaUficfNBb\nhYD6uupNMMBrtLWBLL5SjnExQHAJsHRvUwCoOiX4PtBBlg6IAQ6yFu/PBs2ZY+SmN7mJ06+aQolX\nn9vuQFi9GCJEiBAhQoQIESJuWGOYroSllv2ohG6G7NIIecFgDs/Lz5G7n/fe24q/D1Y8lWClnZaU\nS++WeUN5/56hNjtWGsM7VO6sdGUVAMw6SgrnC1/l3bsLdIWPZrUsJM3myreqY+rE8bxjmDHr84wU\nvFtNjjVmvj6YXsvfUzIwupITACqOYHF96hOLxfHCrXjfbTFbGjMul1WXqWXc8uiL9aRRZPMRJfwd\n75VjOjuZc7j29f3E8aBnjCbqqjBl2t0s/O31unwtpYXvQZ0GtATEXWXSN81iJdpHyvna56U8GhML\nLEY8YZhkt62VZWmWXFrnbMTfp/zQ4Ll4yuVniONee/D8SZ/IovR+30gW2iIRZp2hUn53xpYm1dfQ\nwc7KCZa8Q8OqONdVh99ddR+NiaXyOWNqfDgKK9UbGVopjnuP5/s7qv3pjPtAZwS8L+MjdVnp8BGa\no/6V4SUkICFNpTIcXHabFbvORd5ApJ/sx6gDLABYsrfq6/Vq8EPVosn1gmLpepLVa21bc+BR/ozU\nL/hG2XflqXLhnHMKU/uLNpL9yX4bypWSVSdyBZZGYru8u+qu5e+8tJ+sItMl+BZyH+XgoFqlBEre\n5UfC9K2VS/sxnFKZ+Zp80FbsFWyKCwAz75LBUtPoATSm/Cz50OxUvf0A1mpYDzatS8l+ks+H/rtJ\nt3DKZPCtck5Zn6Wrf5PGsLYxp1rOFxfNkt/BnxZpVsH9oFIak/SktOvIfJ5/e90/5TzTfRYBoOEl\neQ5LRnI1WnS81AhpfRvAlhUzb+Xz7ILso9Xnb88mvb/fxamoytODLTOWDOi+p5yupC17rI7G6Hlv\nafegNgnW5nCRcgKJJcACWHOXOZ2fIdqwdN33OQD+Ue3PdFAIsB2FNlUG3PSysQRZc9+QD77OMz9b\n4feIC9aQoCtML4YIESJEiBAhQnQDeiTT1V6WjKk3yVRc6Ylyh9huCGRdjAejZdLrp3knNtu0GAYN\nnZ7pKOFdXWSRFLxPOoi70+vvrL2rADchqUbaXE6a9DXSZ0GIDK6g1+ZXSTF56SWxpTU0ozh9G95D\nJDfL16w0c8UDkk14azw3JHTaLX/I7YMytpeMQ8YL/Gcu6RhdAGClSRNuk7v+iT8wuzLkJsliWf5s\nsaSH8u+Pj89c1+LF9FpngUy9RHtxMUJG/RJ6TUObgVpoq5cs8Iyj2HMqY4a8o1LnBgvrKx/nwoeE\nAtkKx2I4NbNlMSBZE/l8aLw+nb28djpR3j8WsxRLBWFiGae1S/8lU2GdDka51mdrr7fExgwaU3L5\nis/Fs2q5fc9tR8hUXfrLzLZnj5UeZeOP4sKq1n1kyjzvJ5ZlNB8h2S/rGZI8Xa7/1rreeLJ8n74P\nGW2c1pXyiT57yGszyedCq5UND2uOkL5HBl0hQoQIESJEiL8QwqDrr4vI/AiyXpY7oKYRMrpvy2Ub\nkpb9lefKyazFmrS/LPeteoh3Yy7MktbEeIZDvuZkOk4Pth2JbrshvXbWQ8+I43OfOobGDHpC7rI/\nv+N+GrPz6BXXRkw5uC+9NuDLYGZA7+hrz2Fxu2b5Kl7l95n5qhT/R67kHa1mdkastyONadtdMqeW\n+D1hT9aXBJdvMLS/FQDk/Sq/pdV5oPUGyZxUjGEWa9YJcic87soxNGb7w4+Vn+XgLTb1atapDPhC\nfufkd4ObJ1sWDVrM7qKJmHkOaxIH3CrZQcsioeLMFXeb15YJAKDNMbrGs1eUnhtWd4viA6RFDQzN\nm2UHof0E9yzgZtYNt8szWTmd79Ulm8t5n/oaz/sZ58lzbTm3U5HS43yetZWCvxZb5vjfyvPRth3P\nl5RFki2NlhfQmITxNeL49gruruEhWB/11fdyDlWOZy1dmkP3tuxg2S/ZP2h/QQBorZBra/59Bm/t\nYI8RYuWhZ5qjZhT4m65/snhNG5YmGmLczsl1K/xZrfvygpv2crCIVaPmHkMMe+qKv48F7a/lYnJq\nYekucuFOXNRBYzqvkIFH0hWcEo2XeeySvVTBgvFAiAWWJ1i8qoCsdGvjFjKtYxUE1F8iF9gIn3oM\nvEk+7CzBbt8vZFFFzC111P1j3TtZn0mR8bc/cyre2tjQZxXJtO1vFw2kMdqUUleDAcCUA+R5tsxs\nNRIMH76uXziAigdc+ou2HMopYxfPNOt8JNwn01y//sa9KPV5tVptDS6Rlb3+dryBdGnlpKuac7/j\nCr7FVXIz1uuN4PnTcohxzp6NoZWTAd1CJ/dFXiemnyyvYcTIhPuK/mip5K17ZpFsmbVkgiE3uUiu\nHQnrcTDZ9ZPceOp19MdP7sSi+Q3dao6anl/kD93rrLi937hHzgnNUUOECBEiRIgQIQihZcRfHIuX\nMJuinMBdWC0tbgSAxh2lyLDyyNjYKO3OffDmzG6Mi1NxaUe2tKMIlt3a0OmhGecyvV2wu9xFzTmG\nWYkBM6S9gNXoV6erSq7kHa0Ls6XTcJ2zZtMYTdMXXs8MSOZY2SR84Va8C6++z3BBV0zOrO2MggkH\n3WrRtfI76ebNAKdJ8x7m3XzUgdnW875pF/ZCKj8suKhiwZayfD77VE4Ra3gbcTuWznEyHVJ1Ctsm\naEQn1NBrxVfzaxra2qDkdmYuZpwvx3Sw0T5Kr1Eu5FYDYyUU3/ysk2hMJuQ1XFjMa0JveoVhnY9J\nn8nrXHWp4cemRPG9x6fQGH+kZLZmncnrwsAHg+1CdOP7+vP4fejBfMxaNGTgPpLJt1itaVfI9y6+\niu/5hQdLhizr9xYeUyQJoWzDg6tgjGSXW9Zihmr23vIeG3IGs4Xt68p1M/Ejvl46rb7dobxGTlBk\npV5HE/zYWkaFcEOPTC9mZhX6G25+mnhtYaH0Yur7OvcQc6nU0b2surK4pYP/3S/yOMZ0VSx9+yzo\nlMQco5OI1rJojxqAfZasLveRPpL+d2nr0j6C9SYpbwfrfzTa9uAf5pJ+0L918t6pNKb8vPhU57ng\nxikcyF9QJtPPVpop50Op+YjOnhPT52utU/Q39i3TlaMpTZzvrN9RBvtWVdns0+VDIu9XjkAtg1KN\n6kdkJqHq2GBfN93vDjB63nmcZWlVv117cllwSR2m/5sD8sVbyzXJ9G8yNEvTt5VVmAlGOjpjhlSV\n5XzF1ZN6Q6TXJIDXpekvc+BcsG98dETai84yytXrkt/hUF36LQeTH74pf6sVmBGM1nFdyXKb6ydy\n4JywVKYTXSQYlr/hoGvl30XX47Ry5AeZ2p00St7vDRfdj7ZJ07s3vdinyF9rz/ilF797LEwvhggR\nIkSIECFC2Oh5/I+JHhl0eS2tSB4jd7odquWFxWqtM07uQH7ZiGvPdAVJ40m820gaKl9rz+FNQz+1\nobZSmdqrRXvUAMyqeUYD49a+8nflf8e/S4uVOw33cN2ENW0msxKRqSvu6xMLqwWwi3/aNG7ArX+p\n5SGkf2uvrYy0htMXMhK3XXIHa13njgNk+uEC7vZEsMTTsfixNR1riO3fnBT4dw37yGRm4StJNMbF\nL6mL/4ygxcp5XzB7utbVMm1seY2dUC3v3dsv4uIVDW9DTl+5MFva/X5nzrITNKtlIdo0j180XhsY\nkex6YguniLWY3cWfrbU/XzCd3rRYLRf2afqFyovuBmaWJh4vc7mJLQbbo9qKaXYMcGtwXfhRsPcb\n4Zuf6aWIWpN9o/VWLLA8GWerFmb9DuGMTucmUlyfMk4y+97i0DN9ZaJHBl0WXPqK6SCrfTcj7fWW\nDBAsU8gFh8vUT+9pwY9DywwvpnZCZdyOpe84uXgkzufFpLNApi0Wb8opizkbypvRK+fgrfQgqUWY\nN5IXxdzHVjxVp81kAaDmVPlbdeUOwKmy385lBUzmL/K9l2bFtuWqu4rTm7rVjGmc++SKf5ZVLm5p\n0YJgBT3zHpPnKO8Y3jRM3vFRcbxO5mE0pkBZeER687lP30EGSwlfc4uq7CfkOYsluASAB6ukNGD+\nRRwkZ6pKX6+NH5D6870UTk3p6641nAAQXV+mflzaJLkiskTmE61qwQTVDmz+Xhyc9D2+Thz3Hh5c\n9WfJKaDkFFZVqBVkaehqyjmnBm+QJv6D5QJDz5JzccpBnLaN5MjA0FoVdIVw3495QxCdLFO0iw7g\nYH/WFvIec7EumfUqVyYWnCM3wlHDbDhpjtycDrxZ6jPrff6b7kBojhoiRIgQIUKECNEdWEOCrh4r\npN/o71JI/+aj94rjfQoNNbmCKVqdr9pXdMW6715xWDvqpcOlcDPpPRYQRypkvmrqAdx0uehmuYNs\n23kDGhNNlkyXS5rFMqDUwuyIVdnl0CYkXtAVc/644NRD6z68W838mP2bvFS5y3YpLLCgq60GPVxH\nY8w2MjFgkmrObDV113BJfRd+xS1bvnt2mDju4ilO/mM6zQ0A0STJFFgVa1OvkuewapvJNGbmKHmv\nWLvvzn1lOi9/T2aRdv1Vtv15bzh7lP1+S6k4rjyaCwbmHyWZlEV7cAq9aP9f6DWCJfBOlXvuyOec\nGuvaVN4bLgJvl7lgwd9cMmTx8vOzoOdCqpHZ7fsvOe+qH+DMx9CbZRVztHYKjUlU7Z6QxFzH4qGy\nyjr9l5k0prM+uGpXI1LF865r8lRx/O40+czYdOd6fPdTW7cL6dfeLX5C+m+fCIX03Yql2cCUfWWA\noIOsSD92X649S07QQS9xj6z2PnJMyjvBeqQ5rzGV3ncv+YCufYqDHDTKJ1BCB98HZa86lPcukL+j\ni4sOkVBeKo7TJrIlgl5QIn3yaMySjWUKx3IhTxgmz0fUcOtOLJFGjZ1T62mMXlCi1cFaJEvfsahM\nBgPpRrGcNhlMWszBtpfJqbFYFkqrQuyxo+4Wx4fmn0JjIoulXm3QBbFVXLoEWdOuVCX3Vwanhhr+\nxvdTx2XyOMEoNNNBcfqLsdm0tA+UKbelZ/L8zf3B4ZyNkodW6nDM3+RcWLppKY0Zcm6dHLMNd5PI\n/6heHfPX6VLaRgCY/7LUaDb+zt+x4mx5nSOG3nFelazOTs3jzaoXlZGppdHUFcppk7h7Q1QFWVHj\nfDRXyDUxs4HTvw3byMdaZh0NQe4EKY3oSAuOMapO5N+lV4HJN7CcIpoqz09/Y4plPievRZexlpDu\n1mFtsdZEHQTutuXe4rimIQa9w/8KP0wvhggRIkSIECFCdA/CoOuvi5Rprag66c9F55aH0RMHviOO\nz/zlVP67ZLkjMrIhtCMZeDoLE/X+rOLwYLNJS4DZ1ld+A5aMAtV3SqF4+aHMSjSpCrH5I/g7lx0s\nj5u3Zw+Y2btLIefgbzlF6zVJk0GrP6HfJt9HMysAsyKF1xm7OrV77zSqltLVqdcpHQDw1Je0BPEx\n1ySpqse2PL4trxgk2a9KxMb2xOJhZKH0VpmKWud7ZgrGbyhXUc1wAkDvyfLEaoNMAGjQVW0GE9mx\ngzw//a/i1GHp1fL7LKxkNiFDzQWrfY42Gp36OJebRr6SQukjZhgAACAASURBVO2Bt/A916kE5ymT\neE1auKFkJVr7svg/7yFmPFq+kEx+xTXBTGTnlKn0Wo56zTYADmb7O9Jl5sGFlY588j29lvdJ4J+h\npE0yZJFPeW31kuV9MO1cZpevrJUM/Jkvj6Qxg86X60Dezxw56DmtTVctdC00KrHVay5mzBa0DEEX\nPvizYrXPDuGCHhl0hQgRIkSIECH+GvAQphfXSGg2IQuxNUWN9s8Rx97vdTSm/kUpNu2dxj46WSOk\nx0rKfOZSkj+VjMPEh1jsWXWo3IlaO628b6WGK/sJbhtSc6f8u8oz+PxkNEiXbX8pW2Frr6FZZzGL\n1e8rybT1MszV+94rd++WaL9TifatYgS/XbJqOY8zi9W+K5/XuEEVY2S8wCyWtt7I+Z21fEv6K98y\no9DBhdnSDv1Td2X+tFS1jPl1+xwaA0jdTkcud2+wmC0NFyuBlEZ5Ppq2YM3Q0G+lmPunmwxrA4XO\nXNZCaU4v8Qu2wih8Wt67tYbWp0z5SVlMaarS7aSvz75hTUfze5c+J4XYDYa9QNHZ0jrGpTWaxaRo\nf60Bn7MljTWn6X0ukO+TXcu6yfSXHIp3FEOmC4kA1qe2DeDPuqtCMrPlG3EbIE9ZXzRXscfVUuXl\naNkM5X0u7x9r/mqkTg9+fOsOKgB7TVJ3FD8Gf7J4oAcW9VlYY4Kurq2kUD1hLFPOun2FZfKn+4ol\n78CCc7wshdkt5/JNX3ynpHATxgZX93RmMO2bFJWLxeB/jKcxCw+UwZIWbQJAo3qo589tpjF9fggW\nm/oJcoxFk/Pf8Gvzh8gHdJ9feSHo2EkWpyT+xhU/kcEV4jg6kc0CXdBcIQ2tCnRFEoCuluCUQNeW\n3F5pST8ZCFoPFhdvMw5pgjHD6m+nUHppcNDTMayUXvMT5LyPfMzpolnKtNjFT89Ce74SfKtCDACY\ntIkUpWcYKVot2p9+Dm8atr5DCdc3Mb6zetAnLeB7R3/W5PP4/i69U91PRvuwHMveS31+1uMcGE46\nSj7oS66oozE1/5KShsEP8xzvTFNpZGNtdUHfcXLzM2Mr3iClvySPFx3IG8is92T/V6uiUKPyHzwX\nnHwS1Sau5AouCtJYugtv4Jq2kBtjbxOuNk1YLM9PkZEyTlBBed3u3Oex6BpOvYfoPqwxQVeIECFC\nhAgRYvVEmF7sYdC7L0sgq5mtyNqDeczjchfVWl1BY1LelqxE7qM0hGC1Y2ntL3e5eb8ZnmAqNeW3\n85iM0ao03Phdmkmx3MdyRgW3KZk7TKai+o4N/BP0/4pTZS7u3DMulixJ4XvTaUzLIao7gMF01V8q\n38faQfa7W762ZAcW3iZ9EOyTlfAZ/66ug+R3rLvGaAmlek5rl3aArQu6DDdqjYE3BzNL1q7b/1am\ntVuK2bZAFxtYrEQszFbrvlxQkvayZCqsVJ1Oj2dOYYq1PVeu/Dkv8JNg0rNSCmDZBOjCi8oHWez+\n2wX9xXHVwcEi6AWHGcyOkaKdcF4f+fmjWL7g+Zw61ah6TNnN/PgbjSlxMNKn9mQRg7X/QFZIlHzA\n76OvYdH7Rqs2B48/3R1hzgGGG/9YqWnQxUYA0LiJ/PzK04LTn9N25t9erCyldBs7AGhTa04SXwq0\n9ZOMb9rM4EhGM6747fPAv4k7fITViz0NC9WDLfP5YC2J1TpDG0cmFfODrfhteRzJz6cxJ3whH0jX\nXs83dNG1K/5AslpwJFbLtMqM7difqH+ySqtsz4alugJrynWGTuXiFf/OLgGW9skCgOH7yHTVlNe5\nOq4zVQautMAAKH1BLq4udrf6AeEKS3em52Lm8zG9NQVZXcPZ+y3rGjkXWvfnwMNfpN7nWzbN1Eg7\nkgNO7zdlrNkVvKq6tDfSARYAJPaX5pLTDmdTyMozVnxuzjf0Ujq41b3+AKD6fpma6qybRmN6zZZV\nzvo3AEDnLNkmyUUDBwD9xsoHO+l2ABQ7WJLN3FquA/0dpr3lr6V1Vgnr8H3gq4DOSn0PfkzKHjpy\nONh3gpJBdPTm9K8/TW7iWvfk66ODrLkn8Hzp86A80RVn8TXURtyXTOZU/Cl3q1S8EZQuLJYyiLyH\ngi8ymUH7HKCHiB/WmKArRIgQIUKECLF6QrPDPRVrTNCl2QQtiAeAgmdVxdEZvFse9KJMhXlfMgug\nm7l2pXJX4fsqZVoyF7G5h+uGqwms+0XOl7JaMO/XdhrjK/+qPn2DOyiUXczfec4p8rzqCkNX1F+i\nUn4G6/f5M2rn9wuPyW+X1TtdWSw3dxHXJ5bK5toWczHlWWYZyw5RLtuqmhIAmlXaYmEx77qTFKHa\n//bg81p7EM+7qq2Mwo8YoFm05B1ZPK15rdQMo+uCgtW0Wzc772zgNLJmhAbeMpvGuLyPRkIHs3MJ\nqm2VlcYN8gkEgIyp8r1r/8GVZqWXyt/hml7Mekq+1nSckbKulevAnA2ZNSp6RZ4jFy+6uevy+/T7\nRB5bacqau2TauOoxThPqv0s0OkzMP0L+1ohxDXUxUaSNx3S1ScbH8lrT0KwWwIL8eUP4sasrdK8e\nxGxhYaH0TKs/m59hAz6ThQ61t/N8GXK3bEXW+ZC6qifxutEtCNOLf11UDWvFmDEyZbX+9bJtSsu6\nXDqftrM0S0xfymW73iWcctTo+iW4gqXhJblYFO7HlZJk7GmYF2r6WLfbsJDyHdtBTFX6qKKbWVOg\n29xoA1PALcgaM0Nem533PZLGlN4tqznbjdY4OvDQVgcAgEa5CCVM4getTifq8w7wuddBIQAMuokf\nEtPUuPahXIVZcbi8hmnv8+d3PCD1P1bKOtooNXf37fQ4jbkdnKaNBQnKcLL6XjZqTGyRKS4rDdeg\n5l3p43U0RgdH7bvxHE95S1Z/NR9hBBlKYzbvGB6T+6gckzmN57g2lzR7tCpbFAu9p8k1KPcxzt1p\nWYQVYFn99WZvK81R+73MGws9XxYexue1emNZ4Vg+knuHtuwtg2mtfwS49YzVJ7TkLaVPNYyMNRaX\ncj/PvNfk30WH8P2k0e8JrvrWxIvV9qzXyzI9X/csa3zz75NzqtjqNauOtcE2AEw7WG78XPSYZ49q\notdeP0v+jvqP5T24dKHRJy5E3NAjg64QIUKECBEixF8Ha0r1ouf3QEOy3l6uv5m3/Up576U7y7Rb\nylxmLuZuICtj8h7mHf7JNXLn+dA2W9MYvRvUu14ASJ8hd+KTDuJdyqAXZc7Raq/hgqlXS2ag/5ec\nbJh/oqx2KriYZelWik1DC6qttNPs0xTbZNiI9f9csk/Zd7GX19xLS8XxogI+hzpdY8FKWff7Wqae\nZm7FFWMDb1rxFKz24wE49TLjfP4+mVPl/t0qKNEpid61LLbve4/8zlb1bd9PJSti+SVplshiiOqe\nHyaOSw9iViIWZH3GzMWCLZkZCIJLdacF3cbFpYVLrJj/Fldr558opRJWulWnM7NfNDy41pLsjsVQ\nEbs90GClHTDtCjmn+33DeoqUdyTredjvXDn69BDJJM14he+n4rPkWuYv5IbtLoxmLLAqfXUVuoXW\nfWSK1jJIDsLX/odo8ecFmzLGERk5Rf56258Rt/f74qXzxvm+H6yRWQXokUFXVkp/f/OCw8RrWoNj\nGdQlN6tUwle8uOsquq6fJtAYDZd01Tm1vFDdWsF6hSC4pExihYvOysWE1kVboxf79FnG4jpeXlOd\nLnGFSz/CmiekxqL4eS771ikuwC2toi0rit/iNGXCNBksuiz2/uasMfO+kBozz9DERDPk+Zg+3HCk\nf0huGqxephGVRpl4Jac2ExfLtb30kuC5OvkmY44rb+G8r/j73PH+E+L4jN2OpTG1R8h0WtGHPO+S\n3uPUu4Y27nX5GxckZHK/SMuAWLu7F9wYm7ayc3uZ1k/8MLaqXY3Gk/gaRtTy62IIHGvAq6GDOQAo\nvmrFz5k2+wWAnGo5h9KmsbP99B3lBsDSmKU1yg2Tizu/C7Q0YNb1d6J9akMYdK0khOnFECFChAgR\nIsQqRZhe/AvDSi+6pKviBe3t02U0bc97JD7skwu2+1mmuD74x5Y0RgujXTyDXGD5YlUfKXfrVg/H\nRNXGpXNqPY0ZOk7uGT56hsXc/b+Uv10zPQDQtntwdVHSYnmfaHEswFWIALCkj9wwpjTz/aaZSM0Q\nAW6Gjy6sxLDv5fcZv2Hw/V/zOFdSVR4lU9S6ihYAMhpk+jl9PDOafqpso+LSsiVW6J6jVjsszYCn\nXsDfufZryVwnLmRSwMVjz4XxnXOqaju2kK9X46Zca6/b2lj3oTbSTHmbmVqdFhz2zSE0ZsDeku1f\nvB+b18bCylgtsxK/k0VKusIQ4LVr0cacaej15oqncl2qk11gFTvpcz//KL6fqCesx/NuwaHy3Lv4\nuuk5VvP8bWidU9/tTNf628WP6fr85ZDpChEiRIgQIUKEsNHz+B8TawzTFS/Eoum6eyq3Vdjl49PF\nceXRhlZC72TidK0sV3QtbrfKo6NzpchY+5EBbJdhOYy35cudecXZbi7bGomDSsVxZx2zYbpN0spE\nyqf96bX24VJMPussPh9RpdvXnlwA0OdHKXq22glpWFYGs0fJ9jBLOw3PoAOlXsvSuMULtXdI9snP\n5c+qPDK48CMWAXHbHsyMVl0qtZX1W7BlxORrJFNR8g6zLXUjpFfVoAuCmW2rNVl0Atu7xALNCgPA\nhI2CXbd0hwvL2V6z0m99+QaN0cJ53c4HAIY8KC16rI4gLthvgtTzvTS0L43Rlgyd9Sy2rxklmeOq\nE3+hMX67nB8Wozj5AFlYVXEjWwp5GbLAxvo+WntVdUowW6evDQB0Ncp1vOHpUnE8+ZyHsKR2Rrcy\nXZk5Rf7628SP6frs1dWX6Vpjgi79sCt4l0XXeoGbeQ4/IBdWyoXKMkH0VOd5fWPGE9qvyUVMHsnJ\nodc6hpWKY51udEXN3fLhV/ARj3F5ICYOkAFM50z2B4oXXNI8Cb3kQ9Tv5AdW9O8s6tWFBPp3Afzb\n5r7BQXG/Y+QDqWkX9gN64Oo7xPEFZZzmcXnY6EA5dQ6vEfnfyu/zzrvP0ZidC2RRRc0oNkctfk7m\n3nXlmSt0cLD4ChaXZ+wyOab31tDB7JR/8OZDi7Cth3HrdTKQbpjN9+Wgx+TxvMEpNCb/fg7opqi2\nYgM/4/lqFX7EAzX/4nmn050WdJpr4Fs8N3VBVPWj/FxNaJYBprWpc/FA/CsiUlEmjq10vd5s9HpD\nPsNWRfXimhR0henFECFChAgRIsSqg+/HLZOzuqNHBl1+Zho6N5PUsHYvd0k6WTv8gg/kDtpqF7Vg\nX7mj7/0s77TmjZQ7Uas82kVMrpktyyZg0snSZ6niCGaxEj5l9336rG2loDryMad9dANYEw5p05XF\nbHXswM72UM2rteAaALK/k0UEk6/l0v3Sg4LZQet31f1TzoXSPXgu6PnaUsapqIuGDlevcNpLM1va\nLgMASkcpRiiRlwn9Ppbv0sxz5O/KNLKEaao7QqzJYJ32ytgltvfR7Y0sxnfSmYPFcellLJrXLvFR\n3VQYwMLXJbPj/Y09/yaPlPdK3zFuD6Zoobz2TUPZ9qNtuLw+WYZ9nuUxqKHZFYvV0i1+Kk/nMf2+\nkWur1WpLn9ecPsxodv7K0giNuoMlu51dywx02Vkyvdm4eTON0WL/pBq2hEGmTB3Gwj4BzLYn5GTT\nmE713roQYhnkazvNO1r988orMvszhNWLf2G4aLoWHcAUeFKrDKEs+l0HNfPW4l5+bapirfgxbsEx\n9G3ZA++XjTh8m36hSoneENvNoFOQbesV05gkFXjoFCkARDeRerbIV6xxqL5TBjWF7/H8Sn1NLihL\n9mJtjR6j/a6WvShTU1ZQqo0+raaqSQtkUFr2QnDq2aouyvuBA9eu8VK/of2bgPh5OCFBlcmuRD2b\nTs9MPbCAxpSMVn37Ykzh6HvOqkDVPkv5P3I6Le1d+XcJ1hxvkR5Kkd69A8d0Gi2qEj+S95M2VQaA\n5DHB112nJf0IG9Um/Mpp07rz5Dnr/xX7jSW/G5xe1Onoxu1YI0RVdQ7QekwA8BfLdKvl/aZhaUaL\nb5fR/cLdeCMaSzWlS/spa9ObuEAGwJZWLRZJitn2TI9J4Cxhcp1c3/QGapWkF7ML/Q2Gxy+9OPb1\n88P0YogQIUKECBEihImex/+Y6JFMV1ZKf3/zwsPFa4vWkd4tJn0bQ2WiBZeWF1qM66UxYzbwRcmc\nTNuMy9p0pc6r26xDY1x2jN7G8u8mnsosQMkLcpdt+frEC5q2nzuMz49urq3Tn4CdAqXPUi7669/J\nlLz2s7J22Euz+V5yqVrTiG5j/A7VusnyUetSXl6dm7ADfNJsydJEqyfRGL2jtxjfKddJpq/sYv6d\nkcFS7B+dyIyvhpXudKme1JVda13NrJr2mbN81bKfkL8jIZ3bNnmpMs3jJSXxZzmkx/Ucd6pINTzc\nOtcqpdeS6mWFmlUw4SJxSFDrUldrK43RsFpC9ftQsp5dvfl+1qywBZfCId3sXDc6t2D6mPVXPmZx\nKjxY9O4gek0XeVjfR2tZXBqCN57M1+L7y+4Tx/r5tKqYrg23ih/T9e83V1+mq0cGXSmDCvyC604R\nrw26W/5OKy3oYlhKNgWT61b4+wHAyInyofDEHtvRmP1ek1YTL+/GWiOXz9c3nmXs6QLdyy+WnoEA\ngL/JXnpWuyV8KNMaW+XzA3vssF70WjwQ+ZhTmdFtlVbDMCY0y7PnyDSy9dCafKN6SBiV8tpAte4a\nXkxLL5VjDpzAD/7RQ6V2xbISGDNZBmtLp3PgUXFmbDYfGrNPV7307uI5pXsvltzB556sDPQcA+x5\nFgcsGVNGr7UpK46c3YKtH6xgxWVNqn6Yny1Vx8UpZR0n6OrSpFmsj9LpZ+t+6ihQNijGfZiwVKbV\nY2kLZMG659Jmyc/PrOe0dsMOcoype42TNCBSqQK6FqNfpLKM0J8VBl0rFywQCBEiRIgQIUKE6C74\nALr8+P0XAzzPu9HzvF89z2vxPG+G53kPeZ7HZof/N36E53kfeZ431/O8+Z7njfU8b6ugz+mRmq5e\nM6KoulymWnTFSJ/vjDSGfmFTo5nqJPZw0tA+S3324LKgJ7dTu6aFTJPfd9s+4jg/LbjC0PLgioXZ\n0g1zAW6aazWttTyDNCafLmP9QQZp0vy43OWOfYLTIy5YdKBkBzNGBzM0E2pZFJ55Tqk4HnArMzJz\nt+a/y6qR16PpYq5QK7tBvraoMJjBG3SNUSmpUkGa1QKYPZiwERcfpJ2YIY6LH+BruuBweV6znoqN\n+Rr4tmrkbYwpPWjFGapoKi9tEReGNQak7szVaLpWcObZRjpaZQrbB7DYPe8ReVx9v2HoehxLJaZd\nrpqoXx0bK60LRizRvEuaUjORv9/BrH3FmZLpsgpjItlybnbkclWm93lwmlbLKZoHZ9CY3O8kS62Z\nZAvENAEYUivTz9Ycn3e0vK6a2QbYk6zqGGYzozXx8aJbJVj1SbcogMMB/AIgG8ATAEYB2PO/jM8B\ncDeAjwEsAnA8gHc8zxvq+77h1L0MPTLoiqYnoXljqXnJVEGXk8v2N0xLe6Wq8q9pHo1pniSD436W\nDmO6UVqskPeQvPEsewqNulNYx1P4keo/aLhKa6Q28h2wZG+5MGTM4uVD64HSvuC04KBD5aKodSOA\noa0x3O+9dnkNZ2/LOqe8XznICcLQ8zhIrr1greA/NBaNlnL5UOizR/C5ZzMKLpVHEwfgUWMualgP\nMo1+nygbEkPXlPu11Am6JEM8w3rCpdeiDu5dAnsXLZ8F3RfPRbeo08MAa/kG3BZj5bHqDJFaz+fQ\nqsTO/0mmuXSQAQBzN5AzTa83ANDaX2aZeEsHzN1SBou5jxmDFFzS094GrGvqUjomo60tVRAmNrKt\nRHtvqVlNMCZw/Q1yYz5wHx6jEWvQo4Msq89j1SHxSRnrjiS6G0kPQcTzvOV/aJPv+03/dTQA3/cv\nXu6w0fO8OwGM/pPxT6uX7vM87woAmwD4rwttmF4MESJEiBAhQqxSeH78/gPQD8DE5f47LYavtD0A\n547mnuetC6APgD8VEfZIIX3B2tn+yc9vKV579zJpHKl9oCy49CiMFywPmGNufUUcPz2kkMbEAqsV\nTdciyYZ1LeTdYSzQ7BgApL4qz/2cUzj1oisTuxNWZWB0gOxZ2GWkr2ZuyYyQLjawxNJZdZKxS/zQ\n6MOpoNNHQOwppJUF3bvO7C8aAyyPp8atB4jjnFGxFYvEAl05CXBfPCvt1LCnvA+tlLXGk/Xcx/WI\noi3otcX7SfbLxZfKMtLcab+jxPEpT7xEY+6rlFWqumoVACacL408q44NZm102hIACo6WTNKS4bNp\njAv0PT75bu7P2OdZycA3rse8WskV8pq5+LpZqH5Qrv9VJwQzrJaXYs3DkpG3jLA1NJNc/eLtaJ1T\n371C+qxCf6O/xxIX2fh0zIU/AjhouZcCma7l4XnefliWWhzu+34gbe55Xl8AnwF42ff9C/9sbI9M\nL4YIESJEiBAh1lhEfd+PiSHxPO8AAA8A2NMx4BoI4H0A7wG4KHB8vJguz/N2AHANgHWwrP/IaN/3\nT/nj344EcAWAAVhGvZ3i+/645f52YwD3/vG3MwFc4fv+U7F+F8uRXrd2yfmKNVVdWZKpsHy6ap+S\nnk6DT2Gfo1h2NkhixVZyg9QUDPiKy5Fn/l3GzZbYs/4SyYqUPcPFALpc+96pn9GYU0oke2jtaBcN\nkXo2i1F0sZ5Yuos8P288fDeN2a9QXlPr+7h4Q9H3e4X1WwP3+S3w77TvEsDeS9pXDQBeGsq77HjA\nKnGPqs1x+XnBjJBuUQIAczaS8y6rhudv1tNSt9NyKIunc76RTIWLxsvySGvPletYxaW8VsbSeN5y\n/dZCbe3vBwDz1pPMjtYoumLeMUqkbgisZ5/G56Pf3cGsmfanW1TEzEnvZxy0Vw5u6vp+dnHDt+ZL\nygIpvrK8sxIylSoyyoKtrnWkRtJPZKWN7nzQtnvwfTDoEfaH6yiSLLllV5Q5Xa7tszZj77eCf0tn\n+6Rv2Ftm8kWyWKT8Fl63WkdLZV7KTnXieJVYRmQV+hv/LX5M1yfvXRiTZYTneSMB3ApgD9/3mVbm\n8aUAPgTwiu/75zp9RjyCLs/ztgHwKoDjALwBwAOwlu/733uetyWAMQD2AfApgDMAnAOg0vf9Fs/z\nsgDUArgFwB0AtgbwCoAdfd+PaaUaNizJf/1tOdGPL97yv4z+76i5mwWqLr0FtcGji2jf28SolFT+\nMi5mjrp3HMD943TqAeD0gyVudzFGrPxWLsCTRxh0u2FoGAuajlO9/Ro4KJ26u1xMrb5wsWDuiYan\n0ng+P0l1MqjonG389pXVrsfwMGofIdch66HlIrTV1YsdafxZfR7svhSfngsWXPoIzvmHDGCuOfNR\nGnNXBRd1BMFKiWqPvURdpANgaaHcxLgYqK5M6PZPAFB3iKza3WB3ftBPGCUD00X8Nqh4UFYod2k/\nKQD+UrmWRvL70JiufBnwWqarLYfI+Zv9Gley+ipYs4JJ3aqt3w5cZd15p0wjW8bcsSBhGM9DF4NZ\nHchH2mUM8Ovbd2BxUzenF3vHOeh6f8WDLs/zTscycmgX3/cDdwWe5w0B8AGAUb7vX+r6OfES0l8P\n4H7f91/0fb/d9/225Wi547Esz/me7/vtAG7GMibsP7Ug+wJoBXDTH3/7PpYFXSesyBfwPC/P87wq\nz/OqOldey7kQIUKECBEiRM/DnQB6A/jY87xF//nvP//oed5hyx8DuABAAYAzlx/ved5hf/Yh/zPT\n5XleOoAWALcD2A5AMZb5XJzr+/53nuf9iGWR4B3L/c1rACb5vn+253l3ACj1fX/v5f79LABH+L7P\n/VD++/e4EsuiVCSjF7b2dv+fftd/g96NdtZNC/wby6NHl5BbbR8is6Vrc2dDsEeYBS3SnzOSbRQy\n3pSUfO5THOgvOEBuHHo/y6mHOafK39r3nuA0h25WDADFVyvLCEM02tWmGska7XPqd5B/V/IO//ba\ng+SYytPjw4YBxm40gfc5XT8Gpy7jhdZ9JMuZ9gr/Vp2m9RYxg6d3/fOfzKYxKXdJliblnZXXNkpj\nxrk8p4pUk3mXohgXVrg7QbIEAEPvWECv9X5I/tb5WwTbibikUl3QsQM3AJ8+XLL/pZc5OO0/ajjt\nG95UGjrTkJDLc7P2TJleLHuNW6xpHzerGEJbREy+wbAPuXDFGV/LbzE6X9rEdOzE5yfpveDzo5uY\nrw4Nr3v3LvQ33uwfcXu/jz+4aLV1pI+HkD4HyxizQwDsCuB3AOcCePsPn4xMAHpVaMayiBIO/+6K\nuwE8AwDJSDEaqagPOMJI1akeXVoLBQBF1wYHEdrAsOok/pum41XrlxqmrqftIjn4oms56HLRSugU\nUtFbNIRgheJWkKUxYLRsd2KRjomFMh1RfJWD/kQFWBZ0f0IAKP1EjTF0X0Oulfo+8zurhSpq9daL\ncHWTC92vYVUl6SBHexEBQOtAaaqaWcsVqFYaUGPmDlJjZgXOkaGV4nhWAz/YqlSQZfl0+Z2cEg6C\nVX2rex0WP8+bIf1wsbyr/O9+EcdWgFV3rbx3Sy/pvjSqVdXWacwFlyBLo3UAz7vE90rF8W4DuRr+\ng3Xkhi2lkYP0XnP5vTWqH5HPyJKXgueqS59SfwCnICvvkfNj5u6c2u2dI9fWqXvy96k6WQZdVoCl\n++y6+OnpAAsAOreTwWxrX76ftCNkZO3B/D6/Bj4eVw1cjCh7AOKRXvzPyv6Y7/vjfd9fimXpxiQA\nm//x73ouZGMZOwaHf3eC7/tNvu9X+75f7YX2YyFChAgRIkSI1Qz/M9Pl+/4Cz/PqwOSI/8d/PwH4\n/9sRz/M8ABsAePmPl34CsLf62w2xAqZkGp356WjcX+5G0+bKMNrqPK/FrlaV30yH5tGDz5Bf3WKN\ntPvzlOuZeTtkxKfi+NsHeIfvUgXk0vA6sUA2eXZxUWzuAwAAIABJREFUzLfgIpKPNU0aC3Qlk1XN\nOOlmeX7Kz+MKw7e+flMcj1hvRxpj/fZY2rG07MPFEJnPSZZRV1YBgHYJ+91ohFz+tBQiW+mzvvfK\n+WGlnaIq7bTXhryU6NrfjuHMyLh4kiUoR/z2wdyQPKKYLs1qAez7tKiYmYtiB9NvzWzFy89v1plG\nqyDF93f0NugAgxAaPF22e3LpRJBRxyk2X1W2fWD2S5DY5ik+iR+tK6+hZm0AN+8uDYvd1lgykP3z\n0urkGrR4W/7t+ar9VMpILnbSxSqewXZrZsvyZOxMlURB+ovMsCZ+JO+VNCO9qO9VfZ8CXMnfe6Ji\nxH8PLNpbKfB6oGeohXj5dN0L4AzP854FUA3gbADtAL7AMibrXc/zHscy87AzAKRgmVgef/z/Js/z\nzgNwF4CtsExkz081R/gRoD1H3Qy+mtTG3+lqIt2CAwBS95LVaFO25gdJ+Q3yweZFeTJ1KYq3/1ec\n1Pr2Jpnmic539nYT0EGW1V6jU7fX6Mc2Bm3rSQo+5TPWIrlUOLr0Q9Tl7Alj2eRPp4fqd+SMdOkz\n8mHTtB+nlLRtwqyz+OH30iKZRrACrJonONVReWRwkKU1KNnf83u/rYwrdx7IgZBG1Ql8zrq2kCXl\nVvpMV3Zl1RoPY3X808X8fZIhH6LJX3Gq1VfX8NYXH6IxZ5eqaiuHB62lB5qyy33i2OUcrm94S47f\nWgXyRoBl6X80tB6o/x3Bc2XOa1yxlvA263/8+azz0tD6o1i0RwA/xOd28Jyqv1R+VtE1sRn5ao2k\nS/reauWkV9vsN/mJ0Lqv3JCUHsEBjNZEL9yHg8mMF+T5mDfEsIP4QKYTXTJtln6r4SW5tpc0ltMY\nHWT5au2HHyzliDv+Q9GsAYhX0HULlmmzPgLQC8APAHb1fX8BgM88zzsFwEP4P5+uEb7vtwCA7/vN\nnueNAHAPgKuxzKfrpFjtIkKECBEiRIgQIVZH9Mg2QJnZhf4GW50uXpu2i/Jrepqr2CIL5GtVT7FR\n44SNpPBXi8IBI322KdPSk/eTXe11g9xYYXn9TD1IisALbgzeZbpU6ph/p9pgWEaxuoKuPYs1eCkL\n5F5vaSaPyf1e7Q5/4V2vFnxHJ9TQGIJxvazm5xqaIQK4+MC6Pi4VsHqezd6Z36ctX7K7rUXMnlae\nKnfdi/c3qvOM1IaGTmPEUuXmigWHKebtaWZGXeadbhpe8Qyf94kbd9BrGjX/kucsXt5vlsmqNmiu\nv4xZ2N9OvpdeK3tVOu7otkQWrMKh0rtlYYGL8bP1OxIWyrVVZxUAoPoxyRJVjQxOPVvehX0+ktc1\nanjjbf+DzBp8OJJ/u/ZJtKDZ9q5kTi9qKYD/d86ORFVbsXlnMLvcOVZVA8/nZ3feI//7c2SVVC9m\nFvibbHRq3N7vo08vWW2rF3tk0GU50seCSLbW9wOdQ0vlmJ+Mh3iXDBg2+JJTbuM2kEGEVWWyeJD8\nfBdTPU2JA0Day/KhMMUoa668XwaKViAwdbQMRvJeYAPVRYfJRbn/3uzqrxd3l4rQrM841fvr2/Kc\nFV7nEEw6lGJbmHyjPGeVo+byoLnN9JKTEawO8owAT1f+xaqP0uafabM5MEubJdPj9Tuk0pjyh6Tz\ndnRALo1xeWgRjIB39t9kOq/fXXyd9bzXc96CDsgBIJopK0Ajk1nbGJ0rH9jWvVt3lUwhFd/IzzB9\nfuYfxffl3G3ltag68Rca4+K0r1P6AJD1i9QaxdpXtvF19fvf5rmQf39wMKAryv2D+R7L2S1406RT\nwnPaWYc2cyt5zmafwM9nXbVr9abUKWqr12zDdvLaV53DOWttoG1t4BaUy2dGyetcBRlLtfT8t+R9\nMOH0x7C4Zma3B12bbhi/oOvDf6++QVdY5hciRIgQIUKECNEN6JFMV6/CIr/w9LPEa2VKJLrnbyxK\nf30tZlOCMOkZFuOWHyp3RJanklV9RmOUYaof4Rg5sljukKJx8mCxDA470yV1bvVV1AJmy8xQ70R/\n5GI9TL9AMjIuKdFFBzDLp0WsLnBppVR7B+9EK84M9jGzoKvzWrflQofEJZKRqtudxbgVZ8X2+Ro1\no+S1T57KHksFn0qmIPmLX2mMi7eahmmUq3zcpl7NjFDJ5fL+1q1OAKCzV/Dmve+98rP0PASAgpvV\nnHJo42T9rrJ75L3aMZRTxlYBiUYkP59ei5ZxpbNG03pS4tDvHWa3/TTJ/M3YuR+Nya6VKVnLBFf3\nJbXaGUW3lYUokY+DCyZ0wQ3gds46P5DnOnGH4BS/C6x512u+zHxkTOIih7YB8lpMHcFy66G3yIrc\nGXvyfMmulc+D9hx+H10JXfukPIczLrsH7ZOndz/TtcEpcXu/D8deutoyXfES0ocIESJEiBAhQqw4\nfMBbQ8xRe2TQlZu1EIfs+m/x2tcvymj+9bVYG6EZDs1uWKg6izUfk56XZfmlBwWzWi2HMnOS86PK\n2c9kfZCLHikWJH3A+qAko4GyhkubDs1sWZqY1rWDWZKl70vH/owdYxM0ax1G6qvB2rn0Ut6tuuy6\ntSgcANY+Tc7F6cN5vmjdTmWL0SBdHbePYD8gq3xeo/LoYG2YRqzrpRa3lz09k8bsPUH6pr1wQvDc\nyH3U8KJTXQXq72atT0et3Bz3+YWF9d5Ga4ljS7vWvqs891bXhSalYbK8A12waPMyei2jVs5PiwHP\nyJffsWsBi+S7VFHQggtZE9nvbnnPW3YzcGjUndgs53j9RcwOFl4vz2PtIcz4lkcUY3YZ++5N/1wW\npuTvM4DG6BZZJqOoNJt9P+bngZ8sv2PXZGbVlg6Wa4efzHdUzanSe63swmD2v+kcPod61ifXSM2m\n1xaqjlYmemTQtaguDV8fLels/wcOsjR2u/djcfz4fSNoTPpMmUqYvRlP0AHPyDFNxzHlnPewXGCz\nf2ERdsOusn1F4ZvGo00FXbqKC+CKI6t6xvtSPuhjrV6k9zV6SvrjZCrKeiAkzOZzppG8oxRzW4Hr\nl7fcL44tbyYdZOkHJgAkLZQP3wF780PEai2V2F+mPNtyeb40/G0Rvaahf1vvZziV6G0iA7GWEr69\n6bERY6WmrkCdMdwwGn1HVvrWH2lUU54kzWrP+IED3n98c4g4LjfSR0H95ACuKl5SzfMl6T15X46a\n9hmN2fq588TxICOOTZkfLG7XQVasRR5Ji/i8dlXLymvrftbtwVwCZ2tTpasVl6hUGQAkv8uBj8b8\ndeXapQMs8/s4VGW2X1xKr+l0tCVc17CKYnSBS/MmHLxZPoQaqXPl+jL00joa8/utHFxr6MCw6CXj\nPlDHZc/LazNr/oq35ooLeqDUyUKPDLpChAgRIkSIEH8hrBkxV88U0rtYRuidOgAs7idZiL5fM92u\n3XsTy0p4TKv0pInODt7luaD+UqMBd4zOzisNKgU563Rmf5aq3sguDa8taI+er2+4j8a4uI5rWEL6\nxf2lmDzzed69upSUW9DeXS6+XRYaT1JtboazVUn5tYqBiTBDRd5QMc67uSfK7zNvM07VuaSjVzfo\nwhirKOZvP8nf+tV6nAbrTlgC7/zXJMPs0og5Xpj7BrdOyrxPWuRM25VZ4crTZMrPulc1ZWcJ63X2\nQWceAKs9GI/RbvzZ382mMc0by+KDeUP5d5VcseJrYMPFhq/a43XiuO7IUhoTxCCuEp+ujAJ/s2En\nx+39PvjystVWSL/GBF0zzpMTdODNPPFqb5M3UMXZ/GCtvk/qf0re5POnaXsX6ModwK16h/7GSCM0\nbyg1FlbAoKGrjQBg+nDpy1VyK38/XbFm6SDaNpCBqtXOYtKt8lqUnxP8na3f3tFPpiysqqlYYJ2f\neL23hZo71dwczbomF4PSnM+lh9L8LfhBq80/+3zLD4mcx1dcf2T5w5W8KTcoLudQV3sCQNdiaSYZ\nq55NQ593AKg8Q/XBdEihW9D9Vssuik3Tpa8XED/DVt1X0mx5pNKi9cezOWr/r9V1dtDLzjjfqBzd\nRUoKvDNZlzdrSznHdUWqBb1BAIB+o6XnlZXq9VJUZe86FTSmtUjO1/kVnGAaeEvwd3QxCXbB7NPl\ned15pPzsJw/9ELN+7f6g62/rnhS393v/q8tX26ArTC+GCBEiRIgQIVYteiABZGGNYbpiQf4X2fRa\n4+YseA+CrtACgGj1pBV+n1ln8s6v1zx5/XJ+W0hj2vJldcqsv3Gqo+wWKZ72h5TSGK9DCna7fuSG\n1xpWJZNOt3Zux55giR+teAWd5Ye2uED6DKXNWUpjXHbdmrFzcpqPI7RYWacAASAhU+76E9K5Y0Dj\nLpINzBnF7IpmpKqPjE/a1oJu/dL3o2Qa0+cDKQrvnDmLxuh5Vn0es57l50pmYMpzw2hM2cHj/197\n5x3fVXX+8c/JgITsQEJYIUASQVpUkCKi1o1VKS7q3opVq7Za62rrqnuPqpVarHsUrXWBC7fYioO6\nCCuAhJGEACEJmef3x/fLr3kG3MuXkJDwvF8vXnrvPbnfe+6959znPHPTFxtlcgkNKHm4OLi4NX82\nANBSTcfqVQullu+GwfQ+a+4MTYsWi328ndYmFnjAAqAHLXBW/JO+v1qlCk78TlJrtGI/Og5zH5Hz\nBM/uXv9GgWjT/eBSsr1hgswkX7Y3zUuYP0POHWGqQHDifiSLlq+6idpEe01QNIohSl3Nu5dqPYfe\nL7P6r7yD9ov/VkeZF/f40Tltdr43P73aNF2dAa7Onr9A1mcsRPAHmqMJWIuvpb+l2fR5CoKMUhlV\nwiPvNBE6pV9f+luvy7DmpZfT64lXovLz7qbXqPkU8FI8mj8b96doTJPje8AfaRRQ474ylUBcEhWo\nWhTfmuR9qdm2Nld+1HmsVZiEt/E9ZakT5MrkunUDqeDebXoIE5cSUdjCIgr7z5IRYst+RT+0Nb1l\n+R5NyOLkT6d+X4fdJ6N4y39JfytjkfTX6jGPTvhavT1XTaego373lmgzLf5Asp31qBS6lh1HP9DF\nN8lyKDzGL4yAtfp0aXZ6mLkjae8C94/iApYGF7A0wgpPYdrx63ap0mzbtHgp2W7sL99xx4Sukoek\nAFN8BJ2nNPP8kkPo+9qjTM4LOV9QM/LaSdItg0f2cgFLQyuxlrAbnd+ak6SZPZYPaFyFNFP2miB9\nwThcyFqupIPIn0HHYeUYuejtNYHOAQns++BWdoD/oUfseWc6GSZ0GYZhGIbRYTh4uC5oddMw8+IW\nEsaZ0Y+jqzjNwTmMqrjqNLrKDqOl0BKNzjuFrmiHPCd/i68yeJQmACCOqqWb91HyfTXT90mLHOJm\n0v7PSE1g3QiaCDB5vlSTr/op1YalrJSaQO48vfxiuTrMWER1IM3d5Ao7TPBBrMT3otqDmrHSHB2m\n2HkYfmAJJ8PkQtqWxBfS3EPN8xdtouWWoZnhyvehK3otGIAHY6i56dg4CFMGqK3gxeKBcAXjVXiy\n4xDfgtI/KdHI2bT/O10k5ztu8guD5nYw5g46nmfvJrVPPIgivl6qUMKYBfm7UDFOlkAafDaNAP3s\nYzn/9n+Hzksrxiqledhrnz01tqAKrrXyqdLFoHnufLGvNR1hXsxI6ev32LntzItvfHbNdmteNKGr\nFWtPogLVyr3kYC3+Zdt8/Lj/0YqxUrXf547gybTpADoxxVqTLyGPTihNK6S6O5baaPWHKVFkMUR3\nah+bQY/R1Aqab0mY6CtO3URpHqnJox/a9FJpTjv3vufFvgdK9yPbmqmDC6HcjAsAR7Os7JMzpImY\n+1nxVBRA7OkoOpKao6mfSso0GZlXyqpA9JsixwGvsqAJEAW/px+7kofl+1s8mb6/fN4AgIwSagbT\nEs5yX89Y/Dy3hsaD6TcpaZYcG9pikMOFI80fkycO1rLv8zmo7Gi5+KgeROdk7qenwVOpAEDOQ8zE\npqX+qWRmQB6pCGDVRGrW1lJPhCGWtDFafdzaPPreZzwh70+Qv1+HCV3DJrfZ+d6Yfe12K3RZvn/D\nMAzDMIx2YIfRdC1+jjonD7iXmQgALD2IqmIH3yVNbM1rWM09bmoAYjI3hIpw1GofsueXMHCAaMKd\nYddPknl9Up+n2oPKs5XV4VPU8dg3SXNeyZ3MQTZVaoSKTqUashUXSS1W9W7UmTtHiWrLfIyuKlf8\nRsnr88Q8sq1FHW44nGq2UkoqRRv+LFyivJ41v5BOvVnTqKmF5zEDgIQ+eWRbi86LBV6iBJDPTLtn\nNf2oNqHwGVmmyDXQ8zTkSE1tGBPOql/R32/cX9a0HHAqXfU3jJaJNbtV0kSwa4dliDbp86gze3xV\njWjTkk7ngLJ9ZQQz10RqGoekL0vJdnOFfKdS3qeReLUXSadnbuYPGwnN3Qy0UlvbCi06r+VrGdjA\nCaNt52i1TLnLh5ZrrfBZGiTVmCY1o41pdG5P+Udw7jMtCpK7BmguINvq+fC5BQB8Nh0b/Lc7TNM1\n9Ow2O98bn1+33Wq6zJHeMAzDMIyOw6IXOzeNeSlYdhpdQfd6lmqf4j6Uq5aBrLZty2ilGPB/qG/G\nwhvlyiZhA10k5F8T7Jvl1gUXPQ7j6Mq1WoB0LOVaLUBqyJJWB48AXy+L+hadT8897z6pVePk3SPv\nD1+fLbxVat6yWe6jvLvkeerfor4SCQeKJkhZSHOvhfGtqTpOajc0P5XVrFRR9j9kWguu2frNfJnD\n6Mo7ziDb638qtTQ8BYKmieQkl8vnnHcX1RTEDSsSbZq/oxrEWCeS3PvZM7tftim5i2XjV3wUeS/S\n5G0W6VS0u8P9nGpGy7QxHO4rBsj0FFoW/frjqXbljJmviDZ/328c2fYJimZdoXIkDZ7JVOJiuCbU\n7SzzYrXMCdZQ8Yz8LUo2fl6uR8uNxzVbCf37yTasaPmaiXIcrBtE5/5hdy8TbdYPp1q1pFekr67U\nZUtWnUd/K0z2+/bUOqpa8zbSpBux0SXNi6nZA/yIAy4i+zTn2yC0yvMv3HI72T4tfy/RJkzUIa9n\nl75IfvzClHngSSG1vFg835drkc980QSaIyfv3/J6erxA76EWCdj/VZb4tKf82Gi16oLQynT0+kts\nTqtBaA7ovoZ+fFccIz9QzUlKHUP2jawZIc2LRadsebmnWOFm0ViiygCgbgaNOkweL6MO+XunRbJy\nJ/nqfClU1I2hCxI3X75TSRX03k+e/LJo89oBVDhoKzPutuTFH6gwsOtjF4k2/d+RzzC+kY5fXjsU\nACqPoibZgmOD85Z1NDxwqCVRuiWHyYVXfSwLmjpcLiAzMuj9yfl5+wlLGrzWbM9Zcq4vG0+FyeRK\nOY/zPGbJ79G/ef/s57Dm+1Xta17s0dePLT6rzc4346vrzbxoGIZhGIah0gUVQBpdUuiKa2hBytLa\nzbbh+YEAmSMo/WmpaTrtaanZ4qSsoIYLnhsJABp2pteXtp90tMWTgT+larY4iZVUBT/3bJlBe6c/\n01X/ES9LzeC0F6hW7fbzpog2d9xJtQnacmndCXSVyVdeABC3685kW9NqhcnqH89MY9wsphEmXDvn\nwdjKAFWeKTV2nDDOwXzVCwCJtXRVW7aPPHfRhcEa3zC56Nx91Am8+3vSDDfvHao9zf9A/hbXQA/7\nVGqxfjiTmr5dgzQp8Qn7X3fLzOlA22i24kZQR/G49VJ7ybPvl94gn1efj+g8UX6mnLOOPpT+VuFK\nafr+7gapmS0+i2oVZREiIPNzmodqyWVynuoziz5X1yg1Jy3dqXYyTCqZMGiZ/st2oxq7Hqvkhzo5\nxJivGko1ZIUnB+cTDBOYosHzfc09VwZMdK+i1/Pvc+4UbY5mFZi0cK2+ifQaw5gy635KzbotPrhP\nRux0SfOiFr3I63g15slpKEwNPu6/MPKvMv/O05/Sj9aA6fI8vHzP+l/ID21tLzoQ8z6S5SO0Gnwc\nHl2l+aDwfi2+XKrt8yfJvgahCZxhEnJyX7CiC6SwwAWYno9IwYxHUtUOShdtUr9hJtFe8t248Cma\ng+veQhmh5ccqyWI/2XJTas0x0g8u/V2a0FCLhuORbWtG5og2ac9smySvaR/0Evuq96YJbWOJpIqV\nMDm4whCm1JXG/DvpeM6cK5cfvY+j+ZHcybIN92HiEX5AuCg/jRllNLJWq6e58gLa/973xZaItfxc\n+jySKxR3ii/oOAyTKFerz7hqH/re93xEya3YRgltq06l/ar4iewX93PV4HkbE6qkAB5mwcjRoqwX\n/Il+DwqfphHDs76fgrW1Sg2mbUhGjz5+bOGZbXa+Gf+9wcyLhmEYhmEYAo8dxry4w2i6OFoh2zCl\nF7jZy62XZpXl42l5mtw/t1+pFW1lvtvh35LtigtkVJBXIo44vMB03f4yupOX3dEomUpXWqmZ8h72\nTKErvTBFa8OgmeV4vq+2hK+EtdIzPLJNKzwMphFqypLlPXiAQsKA/qKNlrU/iLg0qfkLU8C5mRUb\n/2F/6cydWE0X1H1vi22srDqfRZGFGHPcmRoAMt+gmrbG4TJTedyHrPg5Mx8BwPKDqVYvY6KsINBW\n73QY4rOyxL7R71LN0qxdggsda+ZxrmHmEX1AuKg+bk5cdYTMZ5X7PJ2nwmTMb1dC5FIMAw9CAYBu\ni5griWLajEnryXJNftr8Rvvn6Uru48cWnhHcMCQzvr7RNF3tSVNOClYdSwf+2NOYn8Ho2D60LV9+\nG9gml6nFS6bIUiJX7/0S2X56aF/RJhYGPrdc7JuVTU1hQ2ZLExMXQjUBlCf2DCNgxWfKJJXFp1Pz\nJq9DCcjJtOEQeQ95lBJPjaFdY+qy2KL1ODwEHtDN09nfUOFEm35baqiPUkK6FHIWHU1NJn0+ltFW\nfDC3ZCuePDKjSCBhBKyEwQVin/uEfiAHfyffBe6TWP8z5Rm+Tp9h7ZHS/MqFLM1EW1VEPy793ldM\nOFXUhB/3oTTpc2p2kqZVfj1LekpBJB+lgeeOpT4iIEvz1GTLqX7WLrRvLXtJ8yIXMDUTPieMgHXj\nImnyu3IQTb+j/RY3CmqLzH4z6XhKXCR9+Wp2o35w/B0DZOJgLSVNw5tUKO9+hRxz0//1BNnWzLgl\nD9G+a+Xmwnha8fMklcnnnn8d7ce8u+iYq7/toxC/tA2wPF2GYRiGYRjbHtcFrW4aXVLoSiivESvN\nuNOkaSMWeL6oMLmiis+Wq6hn07jqXGoTfjqHmt3eG5Es2iy4nZpIip6Q6vaUH4JLbHZbT5cZKy+U\nK8je9wavYKtepZFDWYcFO3+GMRFouXfKLmXXuOca0abva3Q76XupCQyzguQamPKzpJYkv0opf/LZ\n14Hn5qVD4hrkkm/An7bc7Lb0Z9KklL+IahW1e8/NkmFMkj5Zji+RPFdJpsvRNA6cHi8qjsnMRNJt\njXyq+fdTLXUYDV4YVu2uaBNYnlOuXQCAZZfT97ffzcozZh8i7qAPAINfkve1+wrat+7/lRo7rjXS\n8vfxqMuCqxTtEzMjJ1bIsdHyLZ0Hfn3JBaJND2x5LsWBL8mAkmUH0cjVxJ2l+TeMxi77O1nCjNOD\n1Wiu2Ftqug77yWH8CkUbTbMVC2HOw11kii6ilo/VXokONtqMLil01Q9KxsIbmQp39Jd641b4cfRv\nmlLk7YklIadmGkv+lEaj8fQHAPDeiOAPbfGfaPSiqA0JIHF0cJqCtEV0oKUujs2kH0bI4r5hWj1C\nnhk8aansVxyzFOYdKU2/bjcalelLpW8NjxzySsJFLgz0f100iVk7zmuzNe8nazjG9aA+XC21m0+J\nAugf8TAxWxum0v5rWfzXnkQ//ntfLD+Yc1g3tHeTvwvf3yv9BIsnBwtiCX1ZZKQSoRvL8+EfKACY\nezb9sA58OfjjXH2cFJaaegSv7F13KswWXhwu+pQ/Z91sS9OeaEmLC0LI+ksOodfYb6YcP6t+Ts29\nWt8LXqDbYlEF6fOnRbvmBbuniudRmyuvufe/aVLe+XfJZ7jT1XTOyZ5WIdo0MfeBhvHS1ajbjM82\nfbFbATczA0DiR8ELwQ7BNF2GYRiGYRjbGA9A0bR2Rbpk9GJaRn+/214Xkn1NKXQlE6ZifBi03ENh\nyovwumLlB8oEh1r5oPaCJxUFYssTozk9q+ahALTadXHZ1Hzm02REX/O3JcHnZlqkJb+Wjq4tLN3N\noHtkfjTuhA0A5f+iZuQwpUQS3+0j9jXuS82iWuRd2rPbJgeXBtcK+wSpGQ2T946jafmWjKealEGX\ny3ERylQX5veZqazblzIZqaax4/B8WmpUWYxO8m0FN2tXFck1eJ87t03kdcXLxWJfzpELyXaYxKOx\n5i3j+ftW3ST1oLlX0G/G6t2kuZ7XW607Qtbi5TkZtWvmeffC9F0jjEM+t7xw141P/dvtH72Y1Mfv\nOfDUNjvf9JJbLHrRMAzDMAxD4s282Jlx1bVIepOusufdToXewn8En2fhLdIXavBldGUTRqu14Cmp\nORlyAvUxy3pUOldywuTIqZgs2+T8nabLWPR7qU0ofICmuWhStFp9Z1FflrI9gh2RU2fILPbLLqFa\niQHPLhZtqsbR0i/1GXLhVTWcDlLuEAoACf1oKo6mZdKnq+rIEWQ7bXFw8fGK0+R91jSTsRTJXf2Q\nzA21/C/UuT1OpjZDj5X0uca/K8uxzL+basiG3i3vR8kvqRY2Q1Fw8vcurrviSC//LBCthEzyRcMC\n/y51KX1mWm4x14MGojQNlhpFfs++v19qan0c7VnxeUp4fwhti0ugebHiCuVzD6NdXne81HryEmbx\nvWRZJO5L2KKUAeJ+TIW/CdamxveWZW4W3U+1O/kT5LxQxXLo9Xpbzgt1w1lqnTekL9S8e1hwkTIv\ntHz9Pf2tCaKJ8AHsXii1WJyK4fKT2jOOvkMpi9eLNj6G/Fpu9x+JfVyzpeXqQ4iC4B2CCV2dGC/V\nszkh/BT55FX02GrRhjuo1h4lJ+WEGtpqyAnBP85L9QCyXI8WcZNQQM2SvR5Wkm/y5I2K4pgLj0v/\nICdg7BFsauBm08Z8mcOozx30PJoiPe1ZKoR7M8C/AAAgAElEQVRqteP4mbXJXhOyOFyg0kqLzGUf\nn+I/SmfUWB3pubo/c4YU1NKeCc4XxVlzshQMiy6jQkWTElE4+HJae1Iz+fF71Dx3vmgTJvdbGPqd\nTZ2Tq5Uxl/kPushq2Et+kBLepuPJKXVLeaLTol8Fl5/SCCPs+0YaCaIJWNzhWyvjlP2pXPjxMeWS\nZeQzp9ta+dHrd0uwkBXGlJr9HK11u/BmJTk1i4Mpf1i6FGTcFGx2G3ojNVOGCR7R3BcWX0wDbHK+\nCP5tHy/3rRpJzZSDXpbPOW4XurCYd4rMaTfwNRqwkTRXPvdvWU5ILXKeJ8rV3CKMbUfXFLoMwzAM\nw+g8mKar89LQLwWl59OVFC83ItcRQNUw2ib96WDTUI8X2sYhXytCXTeRqrOTX5JmjENepWHerwyX\nzp7N8+jKr+D3C0WbZcy0kDU3Nr0NL9DrfpBmU27q0Io3L72KmSBvCNayucTgMiY8rxkADPkty1Mz\nWmrnuFlleYx5zLSi2NyRdf5NiobqHvrMVkyUuYfWDKWTVp8P5TNcfAXVqIYJCNBMfpXMFLT6TFlc\ne/DvtlyzpWkredb6S26R5/3N4ceR7eIzpHaZp02oz5JqifSngjU7jal0nuCFowHgsNFU05X1UbZo\nUzVOatI5yw+m2pW0Z2Sb5iyppXHvUI1z0/7BudZyHpL3tekA+r5wbSEAfH8b7WvhyVLTlfo8nSfj\nGxSHcza/JXxYINpsKKDPLLFwkGgTplD2kqvp+M2/Vo7dAdcHj2defkrLx1Z6PR0rXMMJAP4rOg6H\nXCJ/i8/R/d6Wc+s9+84k2w90lylY+Pheztw9Gh9vv4Cc/8eiFzs3SX0H+IKzLyb7+ADS8u+sK6aJ\nI1Ofi+3l44MjbqxU347pQ004S8YEJ6QrP1fx1/qC/d2sOfIP2yhKKozJpK2Y/zgts1N4soyEiyVi\njeeFAoDag6hPF/d1CXs97YlW769yD2rmSayTQheP2p33d2k6LDpVClkc/iEp+IPywWY5ghIU4a2Z\nlVOq+LF8Pr3v2/IIujA5nuJGyGS2c8+iy7GiC9tmUcUjBQHANdFxmFwmfX1a2MdYK5nVUiwjnz1L\nyusSu8k2ysc/iDB1OHkEHSB9jXjEMBAu95xLoHqC+gOVGoVsEfPDtOGizcAzqRA670r5PQizaKg8\nm46DnKfk/MvLfIVBq5XpMumzb1okfd442nyn5UVsTYdEL3bP83v2O6nNzjd90R0WvWgYhmEYhiHx\ngN8xii92SU1Xusv2Y9wBZF/Zb+nKt+/t2yb/DCBzKGV+Lh12ucmvrZh3n3QyLn6UrqD9bJmyecEd\nzFH8Vnl93MyjwQMCqobKqLYmtvjSnkXN0bQfGbNkpeZYNG08wzcgy9WM+Fwu8uaMjG2c8FX/wH/J\n89T0pmufOMVfty6XXlO/N6VpqmXO92JfEAmDZMTc0qOoaapmNxkqWXgS1fTF7yzzLnGNaix53gBg\nETO3Ft4hc6/NvZtqe/j1AVI7qI3Bta/RAIGe58pAg2//yCLxXpTZzJNeYZqdNtKshzG/amjP2a+n\nmiWvaJq4lmahEond/zFq1k/+WLplNO9cQLbLd1VMomxoaNU/Sv5GlReaGZnnTtQizPk8IEpWAfjh\nCvrNKHhcapa4O0X9YUrm/1eDowXXMHN9z3/J6hqXzP6QbN96/AnyRP+WUaFbSsdounr7Pfso/YmR\n6Yvv3m41XTuM0NVWlP+SDo4+06Vdval0idjHWXcCFXLC+JJgjxFiV302nTzSL5PCSf1P6aSjlRxq\nKKAq53NGfiDavHQDvaeNPeS4zP7blvvxJAwuEPuaFpaSbc2cFkZwjR9Ok5NqZUP4R71F0f/mzqbj\npGKE7HvhE9I3jSdnDZOGRBMM44bQj2aYpK9hqAqZ+iKIWJNUthX8nc79XEqumk8kp/Is9vH7a/C9\n0Er8vHX7vWT7mAPkB4VHfJY8EJySQEtPEStcUF41TqaVyPmEukbwVAtAOEEoDNxknfOl1Hw0JdFx\nl/2FEmEew9jQIpabeqWSbfdRcCk5jVXnsXfzgW234I8FXipt1vcPY11NmQld2wgzLxqGYRiG0XHs\nQI70O6zQFT+zr9jXvF+wuYpH+MRWrAHIOItqpMr6SO0Tz2dVnyU1IMvH0keY/LN1oo0bRVcyQ6bK\nSCaunXsHUv2fhi0PLNAcOZtHUQfmJmUFueA2uurt+6GSbWc4jTLk5TYAYC2L5kxViuFmf0MHe/ar\nUhvGnYXTnpFPfv1EqalILadRff3fkcWRl71An0/S69JZuucU+t7FamaK70mj6LKflNFotTNoRNjS\nJTKaM/1ralLKu0eu3stepCa1vkpBcs6jSz4U+w6543eBvzX4Kdr3xjwts1swXLOlaWF9d9p3LXfW\nkc/wd0HmMRNIK6VaxoXDIwwBGWXI3SsAIJ750WvRt1zXtFKJ2i0+g/5dmNJfWhDDkNvo4HRpqaIN\ndynQcnCJKL9bgjVLWp65BFDtV4sSjBA/gH5Hvr1Ujsvic+nv81yGgDRTiuAnQJjrNZN+LFo+/wWb\nFP3mHe23GV3Q6qaxwwpdmoBV8jC1x+98c7los25XakZpSJUzZdazwRngez1EX7D+7yh+EGy7++vS\nN6DxUDrBaRFA8bV0dtXMn7zyvVb1nkccab8VJsIxjJo+qZJOOhUj5Kua/wqtgde4v/z4hPGTSaqi\nd3rDKGnK1FJ6cDTz1Qbm41aXI/sR9yGNmEtbKgUz/vH3NcGRXry+HAA0K+YhTvJ4GnI/rJcU5LU0\nH5xeqcFRWzzC8ZQTpM9Q33XUhDT3z/Kj3j2X3o/8SdKni9fFq0+TKSOOv/x1sv368FLRhieL7Ra3\nk2yjmLGD6LFYvhu8woSW/Hi14jeZ+zbdrhkgTXU8U/uK30iBKu8uKjCogtneNIJQq60aVO9Po2WE\nHIfDXqJz8tzd5Vjp/w5dINWPl1YmbX7jNOZSwT1uroz25G4QxeeWijachWdK/7r8a6nQlTBwgGjD\n5+3Vu8k0JIlD6dgIk9KIC6mNj3ZAyogdiB1W6DIMwzAMYzthB9F0dUlH+ozEXD82+xiyb90+dNXU\nY7lUocZ/TlenWj4TXq6B59EBgHmPsRp4y+VKlDtPa+p2t5Q6Iocp18CdwgFg8As0erG5h6JteY9q\nBo7/Xmqonh5KtViLn5OJ9wb+gkbPaE77A6+OwZE0hLpdU9s3DKLq/rgPYsuvFUrLp0SINeZlku03\npv1dtBn71dFkO/1nC2K5RFFXsfDX227FyhONalpYzoInZU6lISd2XL6zVS/JMVc7h5qjB98gr69h\nHDUHawlD6w9l9+e14PsTJrI21ug4DV5CzCdIzZ9jEY5tFhzxEzl3rBxDNUtafjaep6x5ndTChqHq\nVKZBfEWxNFRSDeuip2Vi40HH0+TUo76QGsU37xtHttf3l3PZoHupia95zVrRhs8vWp4unuiUu6gA\nMpJ21U+opn3utLtQW760fR3pu+X6PXOObbPzTS+7f7t1pFe8CAzDMAzDMIy2pkuaF31TE5rLqe0/\nZRrd5qs8ACi9mGqo6vpKN80hz1K7via19p/GnNtfkn4YPA9VyrTYMl/z1BOFt0qfHa4hCyNpc60W\nINMCcK0WAKw9kV6PptUKU1qE+4ksPlQ65Od+RleV2j0sO4WuDuvOCs7AXvGydFDtNSHYQbUlXWbZ\nrtiV7hvfV/osrfgL9c3IKpLa5zDpMbaVZouHvAPA2qF0bBS9LpoINK0WDwjQggH482iZIR37c+9n\nzsosVxMg8zVVl8is35lMeaBpuxOvoufxb4smQrPFNRAAkFRBn/O6wVK5EEYr3HiwXNCvGUyd/dUS\nPyFS24jzniI16ZmP0XNrGvBB11HfqxYln1Tvz5Rq0Qyu2dKcyV0tfWZe0Rplz6Hn4VotDbdQGd/n\n0Psxezd5n5Mn0rGS/Tfp++nY3BqXJPOGhclAz3Mgcj9lAMjpt4Zs9zqMXvMCv+UZ9LcaD6Blx0iO\n2iWFrjD4HvIj7tgz5wIWAFQPpCaAWc9Kp/Cix+lAHPyS/H0uIPByEoCMWNNU8jy/V1mMNQHjc2iU\nHRdagXCmhdUTqDki40nZZuHx9ONSrHy0uBlwxI3yQ1t9RUXg9aQtpg914P0ySomL1ll3yqgpjlZD\nseR8Kc72mkG3uVkDAIrPoc9Zi8iKBc3UPORPtEyJi5cfOv5h++yq+0WboU+ev8XXo0ayhoi4THmE\nmmh9nLxD3HQZxmw55FIlB1dc8Iff70+dnhcoCUOHnEDnhZwv5Ec04R262JAioPyoawlDNafrxDdo\ndHTzvnKxkVhBx2rVrpmiTcYTdH7hApaGthgL9Tltoc+15hgZMLHv7+lc9p9d5WKI11ftP0KOy6Xf\nUFNmYQgrd8FVwX1feKscc3mzgnvfVmZbXqO29AYlD99kmqSYu8y4uR+1ybVsMV3Q1UnDzIuGYRiG\nYRjtQBd1pM/xY7Ooc3JLQR+yzQvCavAK8gDQ9wVq5tFKTHB4kVYAWPQkdWYsOFYWSg3jFBkGnsah\n/CDp8M2zkGsFaauOohnx+SoYkCkAavokijYZT265GYxnqwZkkeUZZVLrqJnz2gTFsb/yLJmZ3LNm\nXJsKhMt6zishPHPF7aLNsbddSrbzpn4l2tSPo6vaxDdk6DwP7y/fVT7DmkHUXFR8TrAz9/7/lWaL\nd34s88GJ62Eh/1lXSTNLzT5SM8tpYcW1efAIILVGTYtlhYcwLP0DHbsDru/YLOSTS6R5+rcfTSLb\nxacraVGY5i/jfakNW7sXTR/CXScAqdnnbhGAzDbffZ0cLNX96PXw0kGA1OzPe1Smkik6LTgFDC9p\npqWNWfI8tT7kT4qtDA9PQxKvFIfnuQvz35TpMrqvpGOsUtFeZv198xUwZtW/jnUtle3rSJ+Y6/fM\nPjq4YUimr3pou3Wk75LmxYaeSVh6Ks2d0/szaudPVKIF1w+hURy9P5WRMWGELB7Z1ZwsFYoFxwb7\ncIURsirPZGVLHlHqld1G/WayZogmwNv9yWbFk9JkkfvucrKtJYYtv5CaLPocIaM7ObzGGQDkMhNO\n43fBKvrDRh+q7A1OeMsnnbn3yXJLiw6fQrY1YS7nP9J3pHx3+k6FEbA00pfQu33BwHGiTS7o+9Ko\nmZQUIYtTehTdPnAXKbwtGUMnd83ENX8yfafe+XFsfe/xLR1z9afKBQFHK+uC94Pzw3EhKz4zQ7TZ\nsDs9921THhRtrhwkdsnfYguUpHnSxLTqIHpfYymzBQCXTj9e7Cu+MIQfKTP5cQELAMp+x+ra3irn\nraVXMSH0BtmmZjqNMM84U/rT5T1DXT7mviR9utZPokJf/vNy7ghTmmfV7nRe6PeWaBJKyOIL2KUX\nyLmjha1rBi2U40k1h/PzsO0sOXRFlLdPSSbbrlQmgd32+B0mI72ZFw3DMAzDMNqBLqnpakkE6vKo\nzL98D+rE2/8mqb5dvw9d/aS9L7UklSx6Z/XOogkGX05XJJrzNF+ra9nDteKynJpDaA6unlOlI/AN\nu79Ith+95kDRZt4wurLKUPyJefZljfWLqWYgvlAu+Zvn04zn/W9SNHo30c2h6TJHGXen9hmKA7ys\nRy7guZCKJ0tT2XjQ1anWr6ZkaYYLpdlipkqvFDYPk+eJs2qUdFzvN5s6EM97SGqEik+kvzVfy+gN\nqjHTzHAFe7CyJUrpIp9DIze1d37pL2ikcRgN8PID5G/lslIv8+6TZrCiC6j2Z+Uv5ADnWeGvHBRc\nqFqDO9JrmuPsv9GSXdxsCYQzXSYvlwM6lLaHtelWLbURmmaLwzVbq8+Qc2L2IWysKCWYqvemc3Jf\nBAfTaNRfJe8jp3tVsOYlLoWZxxV3HZ7TTytL5MfR+WXQP2SAyew7qUl2XYHUmfS/hWkvW2TQSd1Q\nGtnb8juqvWw5rwM0Th7w3qIXOy8OaEmkL05SJfsApMv6djzsfP7NcmIYxAQqaTGX6ltuQ9dYeKyM\nXRqyjO774Yxhos3gS+mk3DjmR6LNI8WszM2EnvK3rqZCKBdEwsJLi2iReGFKgvT8iPZ98d3SjJD6\nPJ1gtLpjVa8Wke2aD3NEm4LHqY/QutH9RRte2oQLjgDgFsToBsEmaveJtAnwdB1atBOPqIyTwbei\nhmT3r5NlI0aYkimaELpmCr3mtJWKL1+I6MVua7f8IxBGgBh6rUyIuYL5zjUdska0wcPBv8/f8bpe\nUujRfCKDyFgQ7sO06le0r9rChqdl0eB+VWGuWatXyRdsmpl0wR1UqGhOk7PH0AfocrW+l3x/w5Ts\n0sybHB4pyn0CAQDML1BLkNzCUj1okc+8NNo8mekB6az27fQf5D38hRKxzBH3h5lNnVcmjvbAzIuG\nYRiGYRhGW9EloxfT0/v73UfTPEI8GkRb5c0/na5Gh90mHaObv5sn9sVCfE9qVtGS88WSQDW+l9Ri\n8eLEWs6e+Hfp/eGlIgCg5ctvyfbKEDnBVp+umBGm0hVa+bnK6oy9ljl/UVbYMby72mpVi2Lj8KSv\nWgRm3URpZkqbTe2bTT9Ieyc3UbTUyCi/+OIhZLu5JLZSQRwtP1zW99SBWSudxMtWtcwJNoUv/b1i\nGvsTfV+0ZJdcg6lF1nITjnae8j3o2Fir+NoPujJYK83PnfqwdC4v/SttU50vtaA88k4zEyYMoFrX\nsgkyqXPfF2Vkok9lZavSpUaoejA1x5cdLLVofd6mc2LaM/K9X3MyfYcyH1cSsbKggdIz5G8VntQ2\nJaH4HKgWZ+cm/FkyejwujZriuZZYQ8tFpyXYDUTJyQgloSyn8iz6LNbsJ3+ba7f7flxHtv/z2Z+x\nrnpZ+0YvJuT4sWkT2+x8M9Y8YtGL7Ul9FrDgF7RrxTNpm8T/yomq+AwqZMVqGnO70dpsyw6SEVDp\npXTSSX1OTmZcyNKSBab8g5m9lAmGTwTzjpa+R0Xv0m0uYAEQE0HeJ3IS4mLQ6h9LwSibbec8qGTs\nZ5FMZalSOOh7+5aH4a/4ifz49H2PbmuCWZg0F6kzpeDRxBKN8shWIFzdwjBCFn/O6w+VZoz1efQj\nmvv5etGmaicqBGZ9IH8rjJD1s2+oae714cHPa9ExMgluQh3d1/e24PNopuZs9kpn7SnvD8eNVj5+\n6+mHTIvoyx5N72vWo/KDyRc2ThEUm1g/ktZI07cWUT3+a/rezfiRdKdIZVam/Dq5aEh6Jfi914Ss\nIDQBi1cRaHpC+TwdQN0puFAKAE1LfxD7OO4LalrecKgyLkP4UXLBzHWXkX9Vx9H5pC5HyjP5T7BU\nRIqAtfxilkLoTjkOavvQc2tJgnm6DrHo9FQIM9qWLil0GYZhGIbRSfB+hykD1DXNiy7bj3EHkH3c\nuXPhybK24KBnqFNv81xZMqateG0ZNecd2k+a/Djxw4rEPm7uXPFP6Wzf5xjapvZw5bfYa5D8kqwP\nxiMs46qUPGbLaHSRV7QJ7mPqKK4loV03lq622sr0oKntN+RS7VfSK7LvscLN2HEfSTNGyZ+p6WXo\ng/K+zj2LakuLlBxL3EFXc8h3o6gW1n0jNWhNu9PnXDFCmvN6lFM98IBfS7P7uol01a1pYfk7Xd9X\namS6fUJzva0fL59h9yqaKHLJ+O6iTeHj9PeXHia1akLjECIvX6zwqGYt4IYnNubjC9BdCpYfS/MU\n5v5ZakVKHqSareJzg997HuACAJXjZGRxEFq5nNzP6CSkaf9LHmLX/MvYxmqY81SdRq+xLlfRUD1F\nneQ194EwrLyAzoG975PPa8VFtE3ePW2TcJdH8S6/5R7UL1navubF+F5+bMqENjvfjOpHt1vzojnS\nG4ZhGIZhtANdUtM14EcZ/qLnqN1a82ngNL1FnVRXvC39BdScUozF19EV0pCpcnXawrIAh8nJFYaE\nAulou24kLYGUsrRWtIlbS/ctP7i3aDP1krvI9mWDpI8ZRyu4OvBV+ltc8wVIXxr/H+njUDKVaojU\nMiZdhPksR0+PFXK9FCZfEqf2KPkMe7xAtWg8Yz8A1O9HHZE130auGQ3zjq/4tdR65t0d3C/upJ/7\nuVIihfnouETpfxPHxiVylMCUedIfNOh6eMBA5LeCAyg4fI4CgBXvKPPUjVv+LhT9Rz7neaODU8fw\nVA/zj39ItNn/lDPJdpi0Dhph7hm/nj4fym8cTwGjjYOm7lTZk/5026TL0Lhk/jdk+7xPTxJtwhRx\n52gl6MbMplaEx9/bi2wvv7VjNF17JB/WZud7o+axLdZ0OeduAXA4gAEA1gN4FcBl3nsZ5fa/vzkE\nwB0ABgNYAOBi7/0bm/2drih0aeZFjhadV3UjzU/S8wzpKL5wMo0i6/eBjA7R6mZxeDK8NYXSwZub\nG3i5DQB46Jf3k+3rBgebKWOGC6EHSIdV7uxZXSxTPsZiEuB5qgCg8kCaG6ryUPksBp9A89/wemqA\n/ADEZ0kTyupDqblGc6yf93d574tODX4XBEpyVIESbdVWbJhATS9JLwc/r3XHy1p6cSwSRTMX8bxG\nTYtkXcUw8PHE8x6FpekA+n4kvC2FA2EyVqI7O5o1LIlz5mPSdBmmFiVH+4gv+BN1QufJoQFgyR/p\nvJB/XbBQyJ8pAKwaRU3dmfOlcL30BDrnaK4JPJqy+1cy757fQAVOTcDjgnvJIzJPYtEpMcwBIeCl\nlQCgIZN+z8OUDuJ86t/GOr+6nYWunn6PpDYUumofj0XouhHA8wC+RiQF52MAGr33P99E+8HRtpMB\nPAdgEiJZ/IZ770s39TtmXjQMwzAMY4fGe3+l9/4L732j974cwD0A9t3Mn5wKYLb3/gnvfYP3/kkA\nn0f3b5IdJnqRr2A39FRKtpxZSv9Gyfqdfx3dp2Ug1sp5cPhKvOd66QDPYzk089F1twZrtuJ2oef2\nd0lHbc8KTA+bLV+N70ZRzdaS56VDc/4v6Mpq/b2xlUjhaM8i4wm6L/NZxVzEgw9CmDVq9pIBC1yz\npZkRVK0WK/Gz+Bol9cVHVMPafZU0/6opPBijvqBvzOxR8h3XyoJwuGZr2QvDRZt+R1FzSBjTy7LL\n5MpcK4kSBK/4AADNG6jGQ9Xfs2dR8qBME7DzDdQVQBvLXLOlvQt1g6lZcsUYaboLkxVd/DYvOwNd\nA5NQFxwJFkazVTGZvq/Vg2UbTbPFiWdJzsMEBdXmyXu2djh9zr3vlWbtwtcCL0eUYFoS4h2PH76T\naFM5iibAGXqzDBbhI+7ahXIOunqw1MBzcj5m9U/2lO8P/87xgAEAGHZ7Ob0+pbpGu+PR1hnp451z\nrXOwVHrvlYRtm+UAAErJ8P9nFwD8YX4e3b9JuqTQ1dAvBYsuoJPFoCtY+R7FXBXG1MpzZaVMk6aX\nskvpx8Ur+sS0pXRSrNpJNkobRfuQ++5y0aZkMvXXyn9DKeHAFMUJ+38n2zC+GxUsOuZPCk7W1221\nUsQxBLxOX7NSLmbE57Rjc0bKvvOJvHk/KaQmVNO/C2NOC+OnAQCuGxUEs7+TH8PEN2iZnVgDp9+4\nfxzZ7jZJvs9pzwYLR/GZNFKyz11SmI2FATNkSR3eV75AAIB5p9DrGXKJ7EPtT6jpu4cmW7Px3bdA\n1u3jOZ60cmHNLPfa6jF5og0XQge8HWytmVwifcUeOYzVSdXmKOWjuWIs/b2hH8prXLsnXTBqyZd5\nnUkZ7xmOfjdTAcErSUT5vKnlYyueFuMFMHhUdU2VXKCIuUJxG6k7hF7z8v3lHao+nQrg1+8v/fJW\nn0EXElqZpPI9lZJUDG4O71kgF3muXppktwvatvZibwCtk7FdC+CasH/snDsawC8B/HQzzdIA8Azq\nawBICb4VXVLoMgzDMAxjh2UlqGkwtJbLOTcJwF8A/Nx7vzmHvGoAPPN5JgBpSmpFlxS6ulc2ofBR\nqkJtZE6jTYpqnZda0YrxLh9HV5D966WJgq/QNJOAK6Ar8/SnZPFd7ujanCXPw1X78TvJ2iY831iY\niDUNHonY52OpDev+KlX3NyfJlXmY/ETfXUdX4cXnyGfx2RVUld4NIQozK6tVfoXz7pFO4TtdQR3X\nedmZTbHkUnqNN576mGjz4DNKPZoAtNxmWi6mIOJzZAHw5nI6duafKLUAxSxL/fzHZRb/wlPZPVNM\npKJky1dSC5s/I9gfNsz7y6n7p9R2175EtXq5E2XE5eozmAZ6hnT+T3yPnrvup9I8znnkUBn845qp\ncSpsoEHx1dQ01qSUsEn/igbvBBueZQZ2ANiwJzW7VQ9QXDf+ysZ4YYFoE6bSQFuRWEZziw09X84v\nC/9A3+mCmaIJ+r1NtU/+O5n3LreeOuTXKFUpuGZLM6H7eqqRrzpoiGjTdAINtMs9TVZmqP8RnVu7\nNdDzuor2Fws8AN+25sVm773sfADOudMRiUac4L3/KKD5VwD2Y/tGQpQQZ7/RFaMXk/sM8INOu5js\nG/jUErIdplSExqKbNm+2BGRkzNrB0jwjJiEFXk7If/GNaMOj8ZYcIie8Ib8NNinxNBfxG6Q5JEwY\nOq9RmDlXlpnxn30deJ4wVB9Lfyv3PGlmKZtKnVB6PqPUEcyjpsym0iWyDTOHaPXUGsZL4aDbDCoI\nagL4monUN67yR/LeD36R3kcthUaYFA08CvS7PxSINkXnb7kAoxFLvcj106XT0B8KXyXb9x04XrTh\nz4ybqgBgwGN08aGZrEv+Qj+IhU/IhUXVTvRd0MYyT2o66W25IHh6qEzQzOGRtM1V4RKRhlnY8IjC\n/jNl+ReezDehjxRUecJWTTD7/g76bs4Yf7doc8jMC8l20WnSRhwmspaXaktcq7gdXE/vY8KBcsyH\ngQvgVQfKezjkhC2PpNWirFfsQX3cuiuJDOrY4xl4dfCczSOPv55+N2oq2zdlRLrL9nskHNxm53uz\n6dlYohcvBHA1gEO894E1oJxzQwD8F8CZAKahvaIXnXOPOucanXPrW/07j7U5xTm3wDlX65z71Dk3\nih3f3Tn37+jxBc45maTEMAzDMAxj2zPYQCcAABA+SURBVHAPgHQAM1vLMxsPOudObL3tvV8A4CgA\nv0fEt+tKAEduTuAC2kDT5Zx7FECT9/6sTRzfC8AMAEcCeA/ARQAuAVDkvV/nnMsAMB/A7QDuBrAP\ngBcBHOS93/IkIwDyds72Jz5FHVDnjAzu54bD6Soq+U0ZuNA0lmqf4t+NLQcLX4k3S79SDLierlK0\niJ+GPLqqDJMjrK0Q5lgAyw+iSy3N5BVfRLUZWrJJnpMslsSfYeH9qB4unWFTF1HzTOUusoi5pk3g\neXxqD5W5h3qU0dWxpsXi92OnCVJzXvmnArLNtWyA1J6uHCv7kfsAvdc80ScAFEwJoTVikVMppdJs\nkf8Q1d4u+rX0Qe3GlDta+ROugS459UHR5pB8uvD1TVKLVfYizd/X8I28PwW/p8959SuyUHXWTTSf\nVJi8YVp+uJYh1MykaYnrjpARasn/pBqgkr/KRX/R35hDtZPKjVjznXGqXqVzV9ZhsmxUGEqvp885\nZRep7sn5uXTV4MRSAilW1r1O55fsM2S0aSzlpubdK91ECv5F3+nSiXLMFf+Nac2ZBaUj8nSlu2w/\nJu6gNjvfWy3PbbdlgNrDeHs2gBc2Zml1zt0G4HxEhLC/IyIp1gK41UckwDedcy8iknAstNDlnOsJ\noCcApCIjUMji0XGArLkX30dG/KCGTlR1h8sJr2xvGrHX7305uU88kTrF/GfX4Cg/HokHALW7UNVw\n/cvyA9BL+UAHEqdcD0s3UDZemhrWD6QRKD0myYmhIY0qWLMVoSuMkBVGMOMZ+jXTYcVY+i445dXh\n/kgto2VU0KpfSeGkz0zqv9mQKpXL6/9AzR/dnpM+Zbxv1bfKa0wezvyjZBPMP5EK6UN+GywUpy2W\nN6TmJwVkO+llKXTF19C+8gg2AChjNefyr5FtSp+lyWLjn5FjN4O94nv/6hzRJiWeCRCK0NX/GtbX\nZsWcx0zN2YfL8cUjQMP4S2mmw/re1N9PJlEAuq0JjjTu/a6c6huy6HeV+2MCMl1I/mlLRZu6aVRY\nTD5XvuOxClmcvH/TO7kkRwrF3EtxwW1yrGZ8FyxTxBfS5MsLb0wVbQpuofPdfo9K4e2dH1OzeosS\nucnh/rwAULYn9cErulCOFZ6cuugC2Wa7dShq2+jF7Za20nRNRORZVgB4CcC13vv10eNfAnjUe393\nq795CcAC7/3Fzrm7ARR4749odfw3AE723odOr+6cuwYReywQEeKC8yJ0PPGIhLauRLh5ubNh/ev8\ndPU+Wv86P129j+3dv4Heexlhsw1xzk1H7BlJNCq894e04fnajLbQdN0H4DIA5QCGAZgKYAqA46PH\nN5XLIj3k8S25jqei/x9LIrR2J5q8bS6AfWOJtNjesf51frp6H61/nZ+u3seu3j8A2F4FpG3BVjvS\ne+9ne+9Xeu9bvPffAPg1gGOccxs14UG5LGLKdaFcR6X3viT6b7sXuAzDMAzD2LHYFrUXN9orNxrN\nv0Ikd0Vkp3MOwG74X3r9rwBw7+KR2Hz6fcMwDMMwjE5FW6SMOM45lxn9/yJEEov9y3u/MZHRFABH\nOecOiGq/LkXEH/TF6PEXAaQ45y51znV3zh2IiJP9w1t7bZ2ASkTKE3RVzZz1r/PT1fto/ev8dPU+\ndvX+7VC0hSP9uwBGICJIrUJEiLrGe7+uVZtTEKl71AeRZGLneu9ntzo+GsCfAfwYwHIAf/TeP7FV\nF2YYhmEYhrEd0SUz0huGYRiGYWxvbAufLsMwDMMwDINhQpdhGIZhGEY7YEKXYRiGYRhGO2BCl2EY\nhmEYRjtgQpdhGIZhGEY7YEKXYRiGYRhGO2BCl2EYhmEYRjtgQtc2xDkX55z72DnnnXP9W+0/xTm3\nwDlX65z71Dk3iv3d7s65f0ePL3DOndT+Vx+Mc+5A59ws59x651yFc+6BVsc6dR+dc3nOuWedc+XO\nuSrn3DvOuV1aHe9U/YtWjvjAObfOOdekHN+q/jjncp1zLzjnqqP37BbnXLvNL5vrX7RvH0efY4Vz\n7nXn3I9Zm07bP9buluh8w69/u+5f9BqC3tEhzrkXnXNro/9mOecSWx3frvsY8I7GR69nafT6/uuc\nO4a12a77Z4TEe2//ttE/AJcAeAuRepT9o/v2AlAD4GBEsvj/DsBKAOnR4xkAygFcFj1+EID1AMZ2\ndH9Y3/YFsAbAMdHrTAIwsqv0EcALAN4EkAWgG4BbASxFpKZop+sfgPEAjgdwBoAmdmyr+xO9Vy9E\n2w4GUALgsu2kf+dHrzklev03IFL5okdX6F+rNj8BMAdAGYCTWu3f7vsX4hnmRPt1TfQa4wHsDiCu\ns/QxoH8XRvu3EyJzzBEAGgAM7Sz9s38h34OOvoCu+g9AMYAFiBTzbi10/R3A463aOQCLAZwa3T49\nuu1atXkcwNSO7hPr3ycAbt7EsU7fx+jH65xW2ztFn2Ovztw/RIRlPuFvVX8ADIremyGtjp8JYNH2\n0D+lTVL0ejcuEjp9/6If4v8CGAugFFTo6jT928w7ehOAWZv5m07Tx030714AT7N9ywEc09n6Z/82\n/89Uj9uAqEr3bwB+i4g2qDW7APj/upM+Mjq+jO7fePyL6P6NfN7qeIfjnEtBZFWd4Jz7PGqyedc5\nt3u0SafvI4DbECnUnuOcSwIwGcCH3vsKdI3+tWZr+7MLgLXe+wXseIFzLn2bXXXsHACgFsC86HZX\n6N81AN7x3n+iHOsK/dsPwFLn3KvOudXOuTnOuRNbHe/sfZwCYLhzbueoqfEYAAkA3o8e7+z9M6Ik\ndPQFdFEuArDCe/+ic66AHUsDsJbtWwMgPeTx7YEsRPwBjwfwMwDfIyJgvuacK0bX6ONHAE5FpIh7\nMyKmxZ9Fj3WF/rVma/uzqeOItlnXNpe59UTfz6kALvHeV0d3d+r+RRc7kxDRqmt06v5F6QVgNIBj\nAUxERAh72Tm32Hv/ITp/HxcC+ADA1wBaANQDONl7vyp6vLP3z4himq42xjlXiIgv16820aQaEZt7\nazLxv0ERdHx7YOPHaqr3fo73vgER9X8igD3RyfsY1VS+hYgmJANAD0T8gD5wzvVGJ++fwtb2Z1PH\nNx7bLnDO7QxgJoDbvfcPtTrUafvnnOuGiBB5vvd+/Saaddr+taIawCfe+39475u8928CmA7g562O\nd+Y+PgBgN0TMhN0Q8dl6yDl3cPR4Z++fEcWErrZnL0ScPr92zlUgouIFgDnOufMAfAVg5MbGzjmH\nyGD7KrrrK8gV68hWxzsc7/1aRPxGPD8U/dfZ+5iNyOR3j/d+nfe+wXv/V0TGy1h0/v5xtrY/XwHI\ncM4NZsdLo+9Kh+OcGwngXUT8EG9lhztz//oCGA7gyaiZvwLAAAAPOueejLbpzP3byJeQ8w1a7evs\nfRwF4DHv/WLvfYv3/mNENF+HRo939v4ZG+lop7Ku9g8RrUj/Vv/2QGRi2B1AKiJC2XpE/Eq0SLFM\nRKJULo0ePxDbWWRf9DovBfADgJ0RMVP/DhHHz4yu0EcAcwHch0jEWwIiEUcNiEQFdbr+IRLtlYRI\nhGJT9P+T8L9ozK3qDyKRU/9AxJSxMXLq8u2kf+MAVAE4exN/25n7Fw863/RHxBR+AYCenaV/IZ7h\nHgAaEYnqi0PEvFi7sQ+doY8B/fsLIkJWv2jbMQAqETExdor+2b+Q70FHX0BX/wegAK2iF6P7TkHE\nhl8H4N8ARrG/GR3dXxdtd1J7XnPIfjkA1wFYgYjvwEwAu3aVPgIYBuBVABWI+ErMBjCxs/YPwGn4\nnyay9b+CtugPgFxEwtWro/fsVkTD+Tu6f9F3syX6kWr9b++u0D+lbaly/dt1/0K+o5MQWQzVIOL7\nNKkz9THgHU0H8BCAZdHrmw/gys7UP/sX7p+LPizDMAzDMAxjG2I+XYZhGIZhGO2ACV2GYRiGYRjt\ngAldhmEYhmEY7YAJXYZhGIZhGO2ACV2GYRiGYRjtgAldhmEYhmEY7YAJXYZhGIaxGZxzKc65Bc65\nphBtT4m2rXXOfeqcG8WOHxUt2L3eOTfXOTeJHR/jnHvfObfGObfSOfe4c65nq+O3OOe+cc6tc86V\nOeemOOeyt7A/v41eY7Vzbl60WorRDpjQZRiGYeywOOcKnHNBCStvBrAoxLn2AvAggHMBZAGYBuA1\n51x69PgeAJ4A8GtEEqL+FpESTmOix+MBvALgY0TKyQ1DpNTTva1+phnASQB6AtgFkSoEj4bo6sZr\n/DmAawGc6L1PQyQx8m3OuYPCnsOIHRO6DMMwDGMTOOf2AbA3gFtCND8bwAve+ze89/UAbgOwAcCR\n0eNHAZjhvX/HR2osvgzgIwDnRI9nAOgFYKr3vtF7vxrAc4gIVwAA7/2V3vsvosfLAdwDYF92zWc7\n5752zq11zn3RqnA2ABQCmOO9nxU93ycA5rT+DWPbYUKXYRiGYSg453oAmALgLERqPwaxCyIlwwAA\nPlLy5Uv8T6Bx0X+tiUO0mHVUyPoLgDOdc92dc7kAjgPw4mZ+8wD8r/A1nHNnA7gMwImIaNuuAvCC\nc64w2uQZAGnOuXHOuTjn3N4AigFMD9E/YysxocswDMMwdG4C8LL3/rOQ7dMQqdXamjWImBKBSD3X\nQ5xzBznnEpxzRyJSkD29VfvnEdGI1SBSeL4leh0C59zRAH4J4KJWuy8CcJ33/quoNu01ROqPHhc9\nvgqRwtgzATRE/3u19/7rkH00tgITugzDMIwdCufcA1FH9TWImNawcTv67/Kof9bPAPxxC05djYiJ\nsDWZANYBgPf+XUSEpDsREX5OQ0TzVBG9hiIArwO4AUBy9G8XQNFCRR3wpwD4uff+81aHBgH4c+v+\nANgPQL/o8T8gogXbFUAiIlq43zjnztyCfhoxYkKXYRiGsUPhvT/Pe5/pvc8EMCK6L7PVv5sBHAhg\nAIAlzrkKAC8BiHfOVTjnJmzi1F8BGLlxwznnAOyGVuY/7/2j3vsfe++zvfcTAewE4N3o4V0ArPbe\nb/TpWgvgPgB7O+cyW533dETMkBO89zPZNSwGcAbrT6r3/tzo8VEApnnvv/URvgHwTwCb6pPRhpjQ\nZRiGYRiSOwEUIaIR2hURv67m6P+/tYm/mQLgKOfcAc657gAuBdAdUZ+sqElxpHMu3jmX4Zy7HhHB\n7q7o388GkOmcOynaJg3ArwAs9N6viZ7jQgC3Axjvvf9IuYa7AFzjnNvVRUh2zu3lnBsaPf4RgCOj\nWjU454YBOAKtfNGMbUdCR1+AYRiGYWxveO/XIWoWBADnXHl0/w+t9l2JSOqF4dFjH0ZzXk0B0AfA\nfwEcGj0XAMQDeBgR7ZZHxJ9qL+/9yujfL4r6aV0D4H5EhLz/AJjY6tLuAdAEYGZEkfb/15sa/e8U\n51wDgKmImBobAXyOSHoKIBJRmQHgTedcLwCrEfEjuznGW2VsAS4SXGEYhmEYhmFsS8y8aBiGYRiG\n0Q6Y0GUYhmEYhtEOmNBlGIZhGIbRDpjQZRiGYRiG0Q6Y0GUYhmEYhtEOmNBlGIZhGIbRDpjQZRiG\nYRiG0Q6Y0GUYhmEYhtEOmNBlGIZhGIbRDvwfpc+j0tl9V14AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(500, 1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(700, 850)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4VdXVxt+dezNASAKEQJgDJAFUBMEBwRkrilZxwAnH\nOlGtYx2qta3VOqHWea6tRRyraOuAOFsnRBlUBDIwQ4AAgQQSSHLv3d8fiV9Zex04N9d7ISHv73ny\n8KzNOvM+Ozv7vGstY60FIYQQQgj5eSTt6hMghBBCCNkd4KSKEEIIISQOcFJFCCGEEBIHOKkihBBC\nCIkDnFQRQgghhMQBTqoIIYQQQuIAJ1WEEEIIIXGAkypCCCGE7PYYY243xiw2xlQZY8qNMa8aY3rt\nwP9oY8yPxpgtxpi5xpij/I7BSRUhhBBCWgPPARhirc0EkAdgGYCXvByNMX0BTAFwJ4Csxn9fN8bk\n7egAnFQRQgghZLfHWrvAWlvZaBoAEQD9t+N+LoCZ1trJ1to6a+3zAGY1tm+XYNzOlhBCCCEkgRhj\nsgFkb9O03lq7vgnbnwngcQCZAEIArtmO62AAM522WY3t26VFTqo6dQzYvJ7Joq24tKN0qtmqtivc\nu0Zu831b5VPXNV3YKauq9Qm0ayPtiK6fGGoXEHaw3GM/DiYlRTeGQ8K04YjvfhJK2zRpe9xnF6/r\nsiny/njdw2j23W/vzcJe+H077ZTuPK/qLcollCOfe/J67WMj+t7X9pF9KHVxjfKJF6F8ee+Dpfr+\n2Ex5PqZKn48JytfehkLax3lmtq4u6vNsKvW58t5nddTvStVa6RNc6/8+hTulq7bAOv/tEoU7tgDb\nGV8cTHKyatvaWT6f1JX++wl11sePZlyqd7ZLjmKbWDHJsm+G8/THFFMufUyl/ztX21Nfe+ryxFyH\naZOm2uwW/7EsKpzfPXWdtUvqcud3Rn29sLeiGnW21sTnhKJj9OHpdn1FOF67Wwig3zb2nwHcEu3G\n1toXALxgjMkFcAGAH7bjmgGg0mnbCGDPHe2/RU6q8nomY8a0nqLt6GPHC9vO/lFtN23aHGGP7jZE\n+Sy/YISwe97+pfKxQ+R2SbX6l9Ka4ZnC7vyI3o9LsLvWy9mKjcIOV1X57ieRmD1kf7Iz9X12Cfbo\nrdrquncQdmCrvof227m++35l6lfCPrXHgXo/Q+QfFubL75TP2lPkdl2e+175RKr1IFxy61BhF5wz\na/sn+zMp/+sAYXc+YYHyqRu5n7BT3v1G+QQ65gg7vHat8nGfWWjx0qjPs6mscN6548bpd+X9J+Xz\nyXniK+XjUnGC7gsd/+6/XaJYdvEI1dbr1ijGhdzuqq34cjlW9L3B/7rKT9PHj2ZcWn2m3C73Qf9t\nYiWYkyvsykf0H77Bh7KFnfqO7uMuJdcNV20FV05v4tlFR1L+ANUWmavf1ViI7CN/9yy9TP8xWnCt\nfJ9DK8uE/bX9MC7n0hTWV4QxY9p29eBNItC1ZBPkJ7uoV6m2xVq72hjzNIBFxphe1toKx2UTGrRU\n29IewA5/CbfISRUhhBBCWgYWQARx+8oSttYWx2lfQQDpALoBcCdV3wE43GkbCuCDHe3QWOvx2aWZ\nk2k62gPMqCZvt+Zy+RdXl4f1X1zTyvxXs1Zf7fzldn/i/nIru1Ye64drHlM+A56+VNi9/6TPx+zj\nrDB5rOSV/0YeK5q/YrecsL9qS6qXfSp99nLlE1q1Wh77Uv1XdLc3lwl7wBtlymfusPi8qMGu8i9k\n9/y2h/t8ek3R5xhatEQ2GI+Vd+c9DOZ2US61A+WKRfAzvZo29Bv5me69R0Yqn+xndt1qjRfBvnnC\nVvcrRkoe1KsTaO98xtykP631elv2qdSpeiVk2b8GCbvtB/qzc6cnm36fK8frc8563n9FpfIsvV11\nrvx01u1e//e56ky9n8wX5PGDvXsqn0iHDGFv7aJXmFKmfdvk47vHBoDaY+RqrNfziYWtv9RjWdvF\nclFi+bEdlU/3uxMz/pdd5zEm3iOPteJG7dPjTukTPlyupn/7zaOoqlqxUz//DRucar98V6+4xkJa\nt8UzrbX7NnU7Y0wSgEsBvGKtLTfG9ADwMIAhAAqstSHHvx8aPg1eAOA1AOMAPAVgT2vtku0dh9F/\nhBBCCGkNjAEw1xhTDeBrADUAjrTWhowx440x/y/StdYuBHASgJvRoK26CcCJO5pQAfz8RwghhJAE\n0vD5b9d+FbPWRtAwqdre/z8P4Hmn7V0A7zblOJxUEUIIISShxFFT1azh5z9CCCGEkDiw2wjVXcFw\nj0d0aHtkq3+ukEC2FCKG17sBAQD2lyJVG9Bz0+TVMhXCvJt0QpHCi+IjsNxwrgwd7/DPxAmR6472\nD9n328Zru8Uv6nxq+bfJXFGmwk0ZAoRWr5H7eWlv5dPndC3odln3ZqGwO/1SB5cEBhaoNlMl0yzU\nFuQqn8An/mkW3H2H55don4+7CTtytI4ktrW1vse6uHiRsJ8q7Kt8ognYiIWkNJ3Dx30vV1+lxbe5\nD/iLgddfJN+D7Kf1e1A3Wupbl52tc+fknzXb91iB/D7CDpcuVj7B7s7z8hhL3GtPStf5lMJ75+t9\nL5BBHOENG7Z/sj9t4xH8UFcgzzHpM33tw2bLFYaZ++jxLtBBpkgx7TOVj0rL4YyjAIAZ20sZtM05\nOn1o40m6b9bkyHNMZBqIxXfKftfnRt3vltwufUzBZuXT+1T/a3cpeeQA1TbgNtkX6wdIgfg33z6K\nqk0rd6pQfZ/BKfbTqXpsjIWs7stjEqrvLPj5jxBCCCEJZVdrqnYW/PxHCCGEEBIHuFJFCCGEkIRh\nAYRbyUoVJ1WEEEIISSit5fNfyxSqp3ezwwdcLNoCG6Xwz7ZJVduF5zU9s33k4H1UmyvmTBqyh95u\nzjzffW88W4oX2z/nLzAPFGhRsdkqs0SHlq/w3U80+37n0ynK55BL5X1v88YM3/0mDR6o2iLfzffd\nzhXWuqJ0AFh1jRQ1d/2rFqTWHyU1jSas+/yKI2SB2rartI6zLkM1qezFXrgi3mhExUgKqKaV10lR\nqlcmZ/dYRX/or3zyr5FZqkNHDFM+lf3k/eg0SYvtS+6W70bhs7oklvseuOcHALaXFLBG0zdiJZZs\n3Gsn6BqCcLpHzuM7N0u9uo5pHsEQkRgK2EaR7d/LZ+UN8h51vytxwvBYKHtdj9HdTvQfo5f+WY4v\nQ47UNfw2jPQIZnJwg0xKvtb1UPv+zr8PhQ+T2dHrsvS6SJt/73hM/tp+iCpbsVOF6kMGp9j3p+b4\nO0ZB5+5lFKoTQgghpHViAYRb4AJOLHBSRQghhJCE0jpSfzL6jxBCCCEkLnClihBCCCEJw8Iy+q9Z\ns6UWmCszTkf6S5G1WaOzTZc8OFzYXb/Qu273ihTxemUYdll0SpZqy5vj4egQjTDdZfMenVSbnzAR\nABbdJYWkydVap3jAsTKjb2Vki/KJRpju4iU8DuRI0WJ47Vrlo4TpHhmYXWH6ktu0qNi91ur+Out4\n4fnxERoX/03rJ/s/KY+XNK9O+dQeOEDYFQN1oIUrTH9txXTlc3IP2cddUboXwY9mqrbsT6RQvuRe\nnRU/ki6F0NEEZ9QN7qPaVh0oM2T3+M53N57Z7cNZbYRdsYfOTl7fTvaFA/7cRvl8/4DM7p/zROJE\n6G7m+mMPGqt8QouWqLb0eauFnfpJR+VTfYh8p1yRMwAk1cpnWL6vvmddHnZE5x7amOy5IWGboP7V\nYkMh1eYS6JQt7LXHFyqfmlz5DHv91b96RuaLOsP7yhukCD33a11xI33oOmF/P3WA8ukJf1F++PAy\nYffdP3s7nv/DKwM+nOoMuvc2UyzgER+0W8LPf4QQQgghcaBlrlQRQgghpEVg0XqE6pxUEUIIISSB\nGITd5G67KVF9/jPG5BpjXjbGrDXGbDDGfGSMGezhd7cxxhpjznLa9zXGzDDG1BhjFrr/TwghhBDS\n0okqo7oxZgqADACnAqgG8BcAZwDoZRt3YIzZH8DfAHQCcL21dnJjexaAUgD3AngAwCEAXgfwC2tt\nTArQTNPRHmBGxbJpQgjsocWU0WRvjxw0RNhJn2t1+/oLpfA6+2/6li27RQoue92ihZPRZB6PhqzP\npcCy8iAdEOCyZez+qs0VvLvCdQAwaVKsHU2m+K3H6WOlvRWFuN7NYB5lNmpX/Bv4xCOztcPouTrz\n+JQ//ULYmf9dpI/liPkDXTprnzXlvsd3SUrX4uRIdbXvdiXPykzsnT5OUT45HywVdmhlmfJxWXex\nDjZI2yjHKTegJFYqxw9XbVnP++/bDUgovPDbuJyPF4vv8Lgf6+Rf/bG+z7Gw+EX19zT6nCGjC8KH\na1F84GP5bgSytbi+5oB+wk59xz/jfTSsfkNXddi0sa2we3dfp3xSfiH7b/GTOmAj91M5dmS+4N9/\nIofqSh3BWaXCLr15L+XT71+bhG3qtPjfzpdjh62XgTG7IqP6Xnun2Nfe1kFWsTCg16pmnVE9WqF6\nPoBXrbUbrLV1AJ4B0ANANgAYY1Ib2y4B4IY2nQSgBsBEa22ttfZ9NEyqLkYTMMZkG2MKjTGFttV8\nnSWEEEJaPuHGT4A/96e5E+2k6h4AJxljcowxaWiYEH1urf1pan8LgI+2s/I0GMBsK5fEZjW2N4XL\nARQBKKqDDoknhBBCCNmVRCtU/wLAuQDKAYQBLAdwDNCglwIwDsCQ7WybAaDSadsIQCcO2TEPA3gB\nAFKQWtTEbQkhhBCyC7BAi1hlige+K1XGmCQAHwAoAZAFoC2A2wF8ZozpAuAfAC6z1m7ezi42NW63\nLe0BaGHJDrDWrrfWFltriw3TaxFCCCEthog1cflp7kQzO+kIoA+AB621VdbaOmvt3xq3PQPAngCe\nN8asM8asA9ATwOPGmOcbt/8OehVraGM7IYQQQshuQbTRf0UA3gPwOwC1AM4B8ASAgY32tnwFYCKA\nF6y1640x7dGwyjURwEMADgbwBuIc/Vf8hIz6Sq5workA9LnJ/3BrLpdRcqpEAwCznyyXUnxuW+Uz\n4BYZyRFep6Pkqk85QNhZ03V0W2jFSnmsJ3R0W+EE/+g2O0JK2MyX/nPawMfdVFtVrSwpkn60jlJL\nSpM+bhQfAIQ3yi/CgT37a58f/b/yupGFsZTRAYDQKBnJFvxQl26p+JWOwur498SVMPHDKxKp8BL/\naKm60TJwJvVDHXUa6N5V2KGly333Gyjoq9rCJbJ/XFaio2If7e9EZkUReRnsrvtm8RW9hd33Bv1s\ngn3zhO1VAsbFjcAFgC7vy3d18dk9lc8Pv35E2GO664i4suvleNNtYnRRfCZZRlq6EV5AbBG/XuV/\nUC7HrvD6Ct/9uGMAANSN3FPYizwS67RZKMeKnn/xGH/3lVFxpae3Uz79rpUReLFGyi7/g7yHve/T\n70qkpkY2eJTTMrNkqS6TqsfEaCJuXaIZN93fV9PnPomq6pU7dclnj71T7OS3cuOyr2G9lzfr6L9o\nNVVj0ZASYSmAZDSkSBhnrV3oOhpjwgA2WGvXA4C1dqMxZgyARwHcCmAVgAmxTqgIIYQQ0nKwMAi3\nEtlOVJMqa+18AMdG6Zvn0fYNAL3EQgghhBCym8AyNYQQQghJKC1BZB4POKkihBBCSMJoTSkVohKq\nNze8hOorbpSCwh53xla2IRbhs/mou2qzR0iBedKQPZTPwtNlpon8SVrMXvqHNsJ2y0HEyrI/jlBt\nvW71v2dueYWkT2fHdHz3eXX7rEb5BKbPlcfql6d8wkWlqi0WVl8tzyf3/p1X9gPQ9zVYqRPcRubM\n891P2bVOyaLJSvaI0Oo1vvtZ+Lw8n37jY3vO0RBNcEj5pdKn82PaJ2mvAcJefYgug5JcLce7Dv9M\nnLQz0D9f2NH01fUXaVF8pzk6W4395gdhHzl3k/J56aGj5H6e0te6/gKnDNYz2sd9V/MmLVE+827u\nIewBv52rfFxBd6BDB+UT3rBBtcVC2XXO+HKP7i8LX5BB6f3O1CJ0l2iCMeKGWzoLQKCgjzx2Vhvt\ns0iWgtpwlAw+mDv1AVSvX75TZzgD9k61f39T/56MhZF5i3cLoTohhBBCSAwYhC2F6oQQQgghPwsL\nINJKov9ax1USQgghhCQYrlQRQgghJKFQqN6M8RKqu3gJw12hb1J6uvZxstoGe+tMyaUXS1Fm3u9j\nE7vmfNle2GtHbPTdxjOj+q9lFu2gR/ZgWyszLnsJQuuPktq/5Pe+VT4Zn3US9qaD1ymfkodkpvgB\nj+sMzOH5JarNj2BeL9W25kgpfsz+W2zPIvSB3HfwyGXKZ/wCnfH+6ZtOltvVRJRPTY7826X9c/7n\n6NXvVh0j+13nb7U42X4rBcIV53tkgf9H0+/R1uN0v0t7SwZxeImsUyvl+NLulenKJ5jbRdgLftdH\n+eRfpbdLFFVnDhd25gv+x954tr529zmvuEkHh2QcJLN6Z43RYva1E/S+c1+SY1n9a7o+/ar3ZB/q\n8q0Ofkids1jY0WRLX3OFvo6u/5VjVzRBFV4E8h0hduni7Xj+D6/s+qGVZR6eu47aY2X1gzX7JSuf\nXrc0PThm6a26b/T+o+x37hiw4N/3o3rdzhWqFw5qYx/9T15c9nVU3wXNWqjOz3+EEEIIIXGAn/8I\nIYQQklAireTzH1eqCCGEEELiAFeqCCGEEJIwGjKqt441nN1mUuWKiG/7txbwdespxbbl++jLd7OK\n1/XqpHyiEaZHk+HdFaZHI5wvnKAzvAcypUg1mozZXgQ31fv6dEjZIuwlHuLklA1ymddLlF43WuoM\nU6ZpUbxLaIkWj1ce4WTNNvp89vjVj8Jec2CV8rmy9wfCfhSFyuepJYeotszvpdC47JiuyscrQ7hL\nyaShwh6Rr7M0h0bIfhdNiEnOW1r4HI5iOzfbtStKB3T1geyn/d+L4sc8Ai0ulfvOv8q//5b+dbhq\ny7/GX1C+7BYn47yHONgVptsDBysf85WsbJA9tVj5rHSy9HeZoYXiyXfI55OUkaF8Hrj+cdV2tf21\nsDuN0ve+O5bLhv0HKR/bM1c2eAjVV94gr6PdCh2MEasw3eX1T18R9vHd99uO5zbHrtIBG/Fiw9sy\nG3mnc/X9Kb5R+kQ8fqsWXCn7VK+3f/65AVqUDuh3t+N8+TsksFU/v8TTepJ/to6rJIQQQghJMLvN\nShUhhBBCmh+tKaM6J1WEEEIISShhy+g/QgghhBASJbtNRvV1F0uBcqenYsus7YrFXaE4AKy7RB4r\nrUIL/9r962thu5mCAZ0t2N0vAHR5tUjYJqOd8nEF3F7Zr9usktdhZ/6ofNzjJ2/WfSPreSm4LHn4\nAOUz8C4pkF11fG/lk/O4//NxBZdeWeBdXGEpAFTOlsEGeW/pZxqolAL8aDO+L7pb3rNQJy32L7xA\nivDdvgoA7UtlxvuUb7TwObIpPoLcQGE/YYeLF/pu45VFu8tDTc8A7YqeAaD73XI/gZwc5RNeu1Y2\nJAX0ziNSgl/9bl/lUrZGVjGw9frvyoH3Vcpjx5D9HwCS9hogT+/BzdpplM7S7+JVRSFQLc+7329j\nyzi/6TQp+F/zSy2mzz9rtrDd6gOARwUCD1H8yt/JcXLLMi3KNzny+F1fTVE+mdOXyvNZtVr5RMPC\ne+R7mDNLj3eZL/rfV7cigFeg0LSyOcIe3W2I8ln8ogyICM7TgUs9b2v6O+fytf0QVbZipy4b9RuU\nbu96Y4C/YxScmj+rWWdU5+c/QgghhCSUCKP/CCGEEEJItHClihBCCCEJg8k/CSGEEELigIVpNdF/\nu41QPRoC/fOFHS7S2aYjB+8j7JSVWhxd8agUyWbcqsXj6we1FbaXcN4VoHplS3dxs6cDQLhKZwhX\n23XpLLdZU74dzzhg5MsTOmKocgl+ONN3N8GuMttzrIJUN/N3mzf0fS55RAruM4u0ELr7lCWqrWii\nFKnmPxBSPguvlvvqe+Yc5bN5nDz+MX/4VPl8tneaanOpO1pmoE559xvfbQKdslVbeN16YbvPAtDP\nY+M5HgL8SbLfu/cZAEx7KdJ3hdE7G/c6NuyhfdpJrbRn4MXy30tRfsZyPdau+8VWYeefra/dfaZA\ndM91ZxIaNUzYgyZ+p3xm3yLHgbQ39Xvojr9Jn+n7EWifJezwxkrl477zlX30+kGwRj6PTk96BM+4\ngvsZP2ifGFj2Jx2w0fs/8jrsbB1M5LL5VF1ZIOPf8p7ZWin+3xVC9T6D2tlbp+wVl32dU/g1heqE\nEEIIab0w+SchhBBCyM/EWrD2HyGEEEIIiR6uVBFCCCEkgRhE0DqE6pxUEUIIISRhWLSez3+7zaQq\naYgM0akq0CUQ2n8lS0JUnakjJzJfkGUJdCwXsPUtGbmR+ZUuHRDeT0d3uLjRfucULVc+T/32ZGGn\nveUfIeiFSZHlHuqP0sETS8+RZT6iicJa+md9nV2/dEquTPtW+bh0m66f17LN8pyDR/ruBhvO0xFo\nHSfLSCmveNfkDfKFz31Cn/P8p3XpjfafyXO03+gIonZf+PeFunNllGk0kX7Vp+hIuoxSWcrG7Nlf\n+RRdIMv/dPZ4PJkvyOi/quG61FDb12X0nxvpBwAl/5QRXwXnfq18ak7S1+GHG20G6IjS5X/Q9z2a\nMh9t18hSQ5t76FIpSfX+UdPtVkofr/vTfpLvbqKK9Ftxk77W+kx5/H6TdSRzZO4CYUdzX93oOwCA\n4zNf7wZr/ix/3dSO1WOQW9LJC69oP5fca2XpJXNXP+VTnx7FL/kYov3MPnuqtrqcNsLOXKz7jxvt\n5/5OA4DInHnCruyjr6GdE+238AVZEqf2pp9f6oZsn91mUkUIIYSQ5gmTfxJCCCGE/EwsDCKtJPln\n65g6EkIIIYQkGK5UEUIIISSh8PNfC6M6T5aKafcvLYitdIS9bVfXK59oSqN0ftRf6Dfm/M+FPfMh\n3aGKn5blJyZpTTHS4C9ML//3AHl+JyxQPpFsWd4m+T0tCO1bu49qcym7Tgpie//J/14smqjF4/1e\nkYLqsuFzlU8Qm1SbS1KaFHRvOGqL8un0lhTW2i1blU9KlVyatvV1yqfgPP/SOl50fV4KUGuO1WVH\nOh7nL0YueVaqfwvO03285B55r/tdp8XR+df4HkoR2BpRbUl7yX7nip4BoODcWb77Xnm8DAcpmOJ/\nPl5ljgKFUoyc7FG9KSk9XdiR6mrl4wZW9P62o/IJr6+Qx/YoH9XhWadEz6NakJ+6VpYw6nVLdCLi\n0BGyL/S4w387/QQ10ZSPikYovvpKjzIsUYwV7jMMFy/cjuf2twGAyoPkdmlYr3za9e4p7Oox+r1M\nfafp5YC8ysskO3b7KPaz4hfaq5tT4ar73fqeRg6SwvR+TlmsdVaPkYnGAoi0kui/1nGVhBBCCCEJ\nZrdZqSKEEEJIc8QgzOSfhBBCCCE/D37+I4QQQgghTcJY658ZuLmRFcyxB2adKNqqRhUKO/1VLeJ1\n6feNzlp9WNZ8YT9T2Ef5RCNmd1l8hxZr97lJi4j9MPvprN6B8o3yfJbqzOyxkJShs5xXjN1L2O2f\n09fgnqP9pulZiQFgy9j9hV02TgcW9Bvvn/XdpeQhLRguuMK/v0TDtLI5qm10tyEenk2naqoU5Ha4\n1mOh2X2f6/Q9C5cuFnY0mZsD+fo92Disi7CNx1DS7pXpujEGNp0uqx/UZehPCfVtZVvug1rE677z\nC/fTQQtJgwcKO/LdfOXjEujSWbWF15QLO9hHZ6WPlK+Ttodw3otFTpbsvmfqfqeOdZDuh0mfy+3c\nPgYA7X8nM8pHcz+8KH5SCsG7fhRQPhkvy/7iNQZFNvkHsJh95Thlv9WBMLFghuls6XamFKZnf9FB\n+awfqbPZu0QOloFCSZ/5j21eY1neW7IyhhuU9LX9EFW2Yqd+i+uxV5a97JWRcdnXTXtOnWmt1en4\nmwn8/EcIIYSQhGGt4ec/QgghhBASPVypIoQQQkhCCXOl6n8YY3KNMS8bY9YaYzYYYz4yxgxu/L9z\njDFfNravM8ZMNcYMcrbf1xgzwxhTY4xZaIw5KxEXQwghhJDmhQUQgYnLT6wYY+42xvxojKkyxpQZ\nY542xujMvnKbaxvnLJuMMSXGmEv9jhPtStVjADIAFAKoBvAXAG8ZY3o1tv8JwJcAQgD+COA9Y0w/\na22NMSYLwFQA9wI4GMAhAF43xiy01jZdqQ0AkQjsFpkVNhphuouXSHVRsEDYW8YOVT5H3/qpsD/d\nu43vsbxE6cEe3YUdWrHSdz9eou+QY7uZrgGg+AKZnTf/an8BcVJHndH3sGvkdcx5zv8cy67X2ZXr\n20lVc+8/6vuzOVcKWfuN19nltx4nxextP9KC1EhNjbC9ROmB9jLr+qp/dlU+XpnqXWIVpbsZqL1E\n1pnHyCzRYeUBLLxPCrq7eLwWGUtkIMOCK3X/zf5cBlZ0eXep8lk9RmadL3xYZ6F3tetbTthf+bT5\nt3yu5xTpQAu32kCwezflE1pZJuxYgwZiEWK7onQvSn+lzzn/GXmHvITqxY/re1Z4pn+lheKnpDC8\n7WI3rzfQc4sUXmceo7OBr/mPc/On6qCbnMfl+9vlK51hHgf6ZycPOlnOYw26CayVWd+L7h2ufHKn\ny3vv9TukdLIUj/d9Wh8r2Rk7ohGle5GyTAYtuOM6AJRMkr+PCs6JT4BNKyEM4CwAc9GQ1H4SgGcB\nHO/lbIw5HsCfAYyy1k43xhwI4ANjTIm19v3tHSTa9bh8AK9aazdYa+sAPAOgB4Bsa+2j1tr3rbXV\n1tpaALcByAXw02/2kwDUAJhora1tPJnXAVwc5bF/usBsY0yhMaYwooZqQgghhDRPDMI2KS4/AAI/\nzQUaf7KjOQNr7U3W2tnW2npr7VoADwI4bAeb5AP43lo7vXH7rwB8D2Dwjo4T7aTqHgAnGWNyjDFp\naJgQfW6tXefhOwoNk6iSRnswgNlW5m6Y5XdiHlwOoAhAUZ3VK0yEEEIIaX40JP80cfkB0AWNc4HG\nn8tjPK1RAL7bwf+/BCDDGDPSGJNkjDkYDV/r3t3RTqP9/PcFgHMBlKNhCW05gGNcJ2NMIYB/APit\ntfanZCIbJIDcAAAgAElEQVQZANwKnBsBeKwP75CHAbwAACkmraiJ2xJCCCGk5bMGcoVJV8v2wRhz\nMoAJAA7dgVs5gFcBfIz/LUBdZa3dYdIz30mVMSYJwAcApqHhU95WAOcA+MwYs5e1dk2j3x4A3gdw\nr7X2iW12sQlAnrPb9gA8ashvH2vtejTevKykqFb7CCGEENIMCMcvg1PYWlsc68bGmHEAngRwvLV2\n1g5c/wDgTABDAMwHsAeA/xhjtlhrn9neRtGsVHUE0AfAg9banyZCfzPG3A3gQABvGGOGomFJ7DZr\n7cPO9t8BGOu0DcWOl912SH2ntlgzTgoIUyulzurNu+9T250zaIywF9ymBd05M+SD98oY/ukbUtgb\n7NlD+cy/QYrQB96ns64vP1H69JjaVvmE55eoNj8ic7WgumCSFKRGo0rzEon+cISbLViLMoO5MtN2\nt4ladF1+qRavu+S+LK+j/EIPgezL8o8GV5QORJddOdJHPsPOJ2jBrhdVZ0gBbOaLsWUQ7/6uFDpv\nOEMLa7+67wlhHzn+V8qn32+djNR76z6+4BEpdu3wtc5s3aYiImxXBA4ABefKNq8+ZUfIr/wb+ush\nx5XJ/+X505RP8Hppe/Wp9RfI/jFa68IVleP1fc56Xt7Dkod11ur+T8vF9y09debvtoulT4+PtZC/\nNq+TsFOqtyifgsl6O7dCg1cgTOHF/sJw95mtuFG/lz2Ol/d66y+1cN7NBr7mwKZXOgAAm5ri6+M+\nj4LLtVh70xAZaNLv2ijeyw/1OJ53h/x9kPTpTOVTH0Um9DVXyPuaP07PCWpOlGOX17uLTTLYwBX2\nA/GrqBFPLP7/090uxRhzPoD7APzSWvuFj/swAK9Za38qL/GjMeYNAL9Eg67cE9+pY6NuqhjAZcaY\ndGNM0BjzKzR81vveGDMSwIcAfu8xoQIaROnpxpjrjDGpxpgjAZwI4Cm/YxNCCCGE/FyMMVegIQvB\n6CgmVECD7OlEY0xB4/YD0bBApGfW2xDtetxYAH0BLEXDJ7jLAIyz1i5CQ3qFLAD3G2M2b/NzMABY\nazcCGANgHBq0VE8BmBBzOgVCCCGEtCgiSIrLz8/gQTRouT/edq7y038aY8Zva6MhQO91AO83tk8D\n8AaAu3Z0kKiE6tba+QCO3c7/HR7F9t8A0GvGhBBCCCEJxtodf3+01j4P4Plt7BCA3zX+RA3L1BBC\nCCEkYVgLhJuBpmpnwEkVIYQQQhJKcxCq7wyMzMnZMshKy7Ujepwt2moKc4Sd8q6OfHHLX/x9+Ujl\ns+oTGQHS8y86yghJMloqkKNTPER6yPNZN1Sn5cp+WsrKao/ZT/mkTvWP4HEJZOtyRuH1FdKnkz7n\n1eMKhd1lskeU3KZN0nYiXwDv6BeXuqPltXo9r2hw71ks9wvQUWBuBBgALPQoddHnzVphJ30aW9ST\nW77FLd3ixYjvdFTYjOP6CnvtKB0d1OmrtcIOF5Uqn6TBA4Vtg1rLUHRBurALL9XnPH7BCmE/8MA4\n5ZO2QY5BGS/HFkEZC5tP9Yj+e0+WqTFtdBmf0CoZzTvE47G//5SM0HNLucST8n/rSDG3rFLoiGG+\n+wl+tEMNLgDvaMjCa2VJIBPUf68vvUpGgva83WNsjRfOGI2IV1GnphPN2BorNSfJ+9p2io5qjCaS\n2WX11TLysPT5v2LL6uU7dYbTZY+O9vTnR8dlXw8NfWmmtXbfuOwsAXClihBCCCEJoyGlQtzyVDVr\nOKkihBBCSEIJo3V8/msdU0dCCCGEkATDlSpCCCGEJIyfCiq3BlrkpMrW1iG0aIlo23SELEsQmaBL\nmkwaIB9q0C5TPj0h21a8tqfy6XGyLGESXlOufOC0ZXvoP29c+L2wb75eC0BT9Wa+eAkn1zslXrL/\npkWzrpB2mVfJijuluNRLlF52ndzu6DP0seadsErYIY8SERglRc6ueBqITphuRw4RdmCOLv3Tdm3I\ndz/RlLoI5vVSbeFsWcLkwL/re/blYH9h+vqL5DP8crCX8Fnes30vW6c8lrypyyG5RL6TYm1XSA9o\nYbqXgPl5Rz/dNXeR8gmtXuN7PtPKpBB6dLchyicwsEDYXiWeAv3zpV0XUT71e/UR9vKjtFC95/ty\nvJmzj36mOZDPx70GABgz6Ahhb9m3r/JJ+1LXj3cDRlxRuhcpX2sfO1Bea1KXzsrHHd96TtPBTbbW\nCdhol658XGG6W1YIALKf8RfzV5wvt+tQrEv7mC/kvXYDY4DogmOS9pIdeMVRWqie4pRI87oGs49T\nJmy2LoNV0V+K6zOdcl8AYDdWC9tLfu+ec9o6eX5J/kNdAmg9mqrWcZWEEEIIIQmmRa5UEUIIIaTl\nEGklQnVOqgghhBCSMFpTRnV+/iOEEEIIiQO7zUqVK7wunawzfXedJkXEocVLffe7ZWW7mM4n2DVX\n2NVDdWbru04fJOz0b3QG3UD7LNlg9Dx44bVSmJj3ey2UzH5GiqxLHtKi4uzZct95k7WQPxqNY/dP\npIj2nqu1iHf0cime/M8ALRo9MVtm4LWLViifTafJjNiBei2idTMTa2kykPzet/LY89Yqn8l/OE61\nBbc6e3vbQ/y6RJof/ukg5VJ+qxSpZmmNtcrAXzdaJxVOmSavoz4SUD5uIEM0WfGjyfBecLnuv/cs\nkf3u+lMu1MfqIsW/rkgeAI49aKz0ObSD8nGf67LxWgidd7O8h220BlwJffvcrR+G6SoF3V6C4WD3\nbsI+6HL9zqWvl/csZZoOMqn5pQ4SSHtTPo9FE/W19r1eXmukulr5wMnI7XUdat89tDA8f8UewjZr\nN3rsSbJhT/2u6joPmg4LauSxpn+/Hc//EWvFhshcKe7v6pHA3M1Y7kXxhfL3SMFl2ifv5TJhbzyk\nj/KpbyNXezqULtY7WiTH7fKr5bFDn+6aKiqtRai+20yqCCGEENL8aMiozs9/hBBCCCEkSrhSRQgh\nhJCEwug/QgghhJCfSWvKqG6s3TWitZ9DVqCTHd7ueNG2dUR/YbuCXS82nq3Fne2f88/omyiCPXVW\n8dByKc4OHz5U+QQ+nuW7782nSkF3u1d0dvDFLw4Wdp8zvlM+7j1L2axl3ytlkmhPAXP5b6S48+Yr\nJiufpwp1dmmXJbfL8/ES6bsktdUZxZc9J0Whbtb8n0PoAxkgETxSBwC41I7RGaCrc+XfQB3/rq81\naW8psk5aX6XPZ2WZanMJZGYKu25YvvZx+l3QIwP01j1lnw5+qEsL2BGy35kvdb9zWfuf/qqtZo4U\nvPd8Twuqk1dXyoZNWrw9/3b5vAb8RquTI1u3+p5jIF/2KbO5Rvm42eTXXaLHpM7TtejbrJRZzsPr\n1isfJaD2GOpzH/hSNzokZciKAG42d0Bfa9hDQF11hhyDMl/0r1AQ6/m4uH0M0P3s6WWfK59eQSny\n9srk7xLs0V21RSrlexjNOV9RqjPgP5Q/wMOzaXxtP0SVrdipM5yOA3Ps6H+cGJd9vXTg0zOttTpK\np5nAlSpCCCGEJBRG/xFCCCGE/Fwso/8IIYQQQkgT4EoVIYQQQhKGBaP/mjWRjDRsOVgK9lKdTNZr\nLtdZbru/LjOoe4nSV07ZU+53Wqby6fRkYsTsrigdALC/zLqeukQLUqPJch6o9cojLunwjhRw176X\np3wy7qwVdrCqVvkUXC5F3rXHatF150ekQPamruOVT/BG+RL2uFOLart/Wi9se6AWpJaelSbP7zIt\nnHeF6SaoX42Ks/R1dHq7VNjhtToT+7KZUrjaF/5C9dR3dAboVN+tgMj3Utzq/9QBs+9eqi3sZNqO\nJhhi48F5qq3dv/S9dik9Uz6fox9MUz4L95PC8JzjdSr0QBcny/macuVj+spzrCvUouKB90kxe9hD\nlB7IlqJ4N0s94C3WVueTKp9qTRf9i8cVpQNA3V695fl8oseFlI1Smd7pRV3ZwO0fdqQWYq/Zu42w\ncx7X4597raveGKh8Nq2WR0s9P0/5pB61RNhudntAZzkPHTFM+QQ/kgER0QQ/HP7ataotUCufR5/h\nHlnpnYzuoRUr9X5ycoS9cax+57K/Wi3sh3RsCMKHyUCl5Jk62380IvhdAT//EUIIIYSQqGmRK1WE\nEEIIaRm0pjxVnFQRQgghJKG0lkkVP/8RQgghhMSBFrlSZSprlDAdRs6CuzysRc3WEZd6kfRFlrA7\nPan344pLTUqK8nHFgm7GYQBYOq6rsJM36/NxryMaUXryJ11142EzhBnsmqtclHD/Oa+9LxFWNPn4\n2yzXwklXINvvnnnKJ7yxUrW5BDdLobr5SgtSC2KIK7AhjzvtcbGuMN1LlN/3BnkCXlmz3eCHZf8a\npHx6jftBHssjkGBZkcxq7pXN3s34HPpWZwx3qT9KJzBOfk9WLYhGlL7hPH3taWvku7vgxj2VTzJ0\nJnaXEe/LAIDXnjpC+bgBEkmLlyqf6uPkM0ybr481/85+wi68WAvVXQIDC1RbeL4UGve6VY83YY99\npS6Vmb69xoWIMyyFh2nRt/lijrCTvtZ9IeeLaEYdSdex+qa5o5LZT/dx9xVzRemArg4Bj6og7Rzb\n65074hKZ0b1bna6iUDZcjl3FT+yvfAqjSAzvjhPhFK1Cd8X+buZ4AMAnMmDEKxDF3a7091IUX/tQ\nbJnsfw4WrSdPVYucVBFCCCGk5dBaUirw8x8hhBBCSBzgShUhhBBCEodtPUJ1TqoIIYQQkjBaU0oF\nfv4jhBBCCIkDxnpETjR3Mk1He4AZ1eTtak46QNhtp+hopQ5fyAjBDSP9o3o2nq0jS7JnyrIR4XnF\nyiewZ3/pk+FRiMQpgeDForvl8fNv1dsU3SkjQAb+dZXe0VZZcia0eo3vsTF8b9VUPlTG3nR+TEc0\nrbhJlhE6bpz2eeNteV3BGv2XTo875HZlr++hfLqdqCMLFUkBYU5boaPNRnfTJTxcgn1660bnHQst\n8S9TU3+kLr2x9FwZ65N/ti47sitZdosuDdX7dhkhaOvrfPez9j/9VZtblmb5zfpYPf+i+5BLMFdG\nRy49t5/y6X63/35qTpRjSbBGx+ilTPtWtSWKVb/V96Prff7X4RI5eB/VtjVHhhGmv6n7XdsPZdR0\nzW91dHHRhbL8UP8napRPYLUcN+vydSRz0mfy+OW/0dfuRnkmEjeyMPed5crHLUHmFdnnRox7/V7p\nMF/6WI/I3cV3yO2ss3Sy4qH7Ubti+U5dNsrs38Xu94QuRRYLHx1x/0xrrQ5Hbibw8x8hhBBCEkZr\nSqnAz3+EEEIIIXGAK1WEEEIISSi2laxUcVJFCCGEkITSWpJ/7rZC9ZKHDlBtA57cKOwVo7OVT9e/\nNl3guPU4Xbog7S1ZFiYpPV35RKqrffcdyMwUdriqSvmYfWRZD1O0WPlEaqQo1AT1fNqzNIsPZddr\nkWi3ifIeVp41XPlkTW56qQSTrMsBRSN83nSaPH7Wm1rI796fJbdrkWje7/3r3bjPCwBKnbIrxec+\nrnyiEcG7BHv3VG0b9+8m7YKA8sl7qUzYoUVLmnzsaHEFua4YFwAih0px9Jp92yifrZ3kONXnRv0s\nVl0j+6LXu7x5nBwXoimtEyvBvnnCtsn6nQsXlQp7xWu6RE/ae7pPhdLkL6jcB/3HLXvgYNXmVdbJ\nD69SQznT5JgTWrW6yfuNlsUvyuvoc0bTrwEANp0ux4WMl/zHpDsWz1Bt4yddJezAVr1dcIu0cx+I\nTUi/4kbZx3vc6dHHnTI+7V6R1/W1/RBVtmKnznAy+ufafR47Oy77+uzIeylUJ4QQQkjrxLai5J8U\nqhNCCCGExAGuVBFCCCEkobQWoXpUK1XGmFxjzMvGmLXGmA3GmI+MMYO3+f9zjDELjTE1xpivjTHD\nnO33NcbMaPz/hcaYs+J9IYQQQghpjjTkqYrHT3MnKqG6MWYKgAwApwKoBvAXAGcA6AVgJIBpAE4E\n8CmAKwH8FkCBtbbKGJMFoBTAvQAeAHAIgNcB/MJa66/89SAzvbsdvtcloi2pUgqNV/1CZk4GgG5T\nFgnbbtmifMIbK4Vde+x+yqdtscz6a1O1gDoyd4Gwq0/Wwvn016RItuKtQuXT8Tidid2P1W8MVG1H\n9ZLnUxvRi5RF+9Y3+VheLPvXIHmsMi3SL7hSiierT9H35+MHHxP22OEnKB83U3HZtVo4365MZiLP\nfKHpInkAWDvBQ6D7RNO7sEnVmfNtrcxm7xVoUXCFv6jaDJNCZzvzR99tlt6qr6v3H/2vy0so72Kr\nNgs7vGGD8gmNktnjazvovpn+qnPtSVqAj4jOau4S6CSDU8Lr1iuf8ksdwfv7WnQdLlmk2mLBrSzw\n+IWPKZ/b+zY9iCFagnm9hB1Ntn8vXAF171f1PRv0irxnc3TydiQNkRUR1g7LUj7Zz0TRN53KBnbT\nZuXj9ez9CLTX5+P+zoiGNVfocarLQ47ofP9Bymf1SBn4kbZO//5u/9yO78+uEKq3K+xqBz1yblz2\nNX303c1aqB6tpiofwKvW2g3W2joAzwDoASAbwEUAplhr37PW1gK4B8BWNEyyAOAkADUAJlpra621\n76NhUnVxU07UGJNtjCk0xhRaG/HfgBBCCCHNAmtNXH6aO9FOqu4BcJIxJscYk4aGCdHn1tp1AAYD\n+P9CabZh6WtOYzsa/51t5ZLYrG3+P1ouB1AEoKgupP/qIIQQQkjzwwKt5vNftJOqLwAEAJQD2IyG\n1aeLGv8vA4C7/rkRQGaU/x8tDwPoD6B/SrCdny8hhBBCyE7Fd1JljEkC8AGAEgBZANoCuB3AZ8aY\nLgA2NbZvS3sAP2Wp9Pv/qLDWrrfWFltrixtOiRBCCCHNHtuQqyoeP80dX6G6MaYTgLUABlprF2zT\nvh7ABWjQThlr7TmN7QbAUgB/sNb+0xhzPoA/WWvzttn2OQAha+35sZx0+wGd7SFPnyra6s+UwlWb\nqcXR4fklsRwuLmR9rrO3Vx4khZKBLp2Vz9bBUkia/N63ej/jnYzhz/sLse1ILX41X8zx3S6YKwMA\n1h7dV/l0eFYKJaeV6f0eduFFwk5bq9MQJ5VI0WykoJfysd/8IOwtY3V2+4zvy4XtlUG8/iipe/S6\nz9HglfW96EF5rwsv1VmZg11zZUOS/sNh3RFSfOslSPXLphwtm9+VzzXtng7KJ/jhTGF7iXgXPJAv\n7ILzZiqfXUnlO/mqLWuMzHKOD3voDUet0G0O8RKBe3HMj7I6xNQ92ysfNyDCDYbwwiswJ/Xtb3y3\nW3SXDHYItddBA4UTdL+PBfdYBf9Yq3xC2XL8N1/6Z12/bbG+zj/00ffDJXKQfL+TPtfjnSucL71L\nvysd3mwrbK+qE25ljvKz9lY+ObOkPMYdI3eFUD29oKsd8NCv4rKvWWPuaNlC9UbdVDGAy4wx6caY\noDHmV2j4rPc9gKfRoLcaZYxJBXAdgFQ0iNHR+G+6MeY6Y0yqMeZINEzEnkrA9RBCCCGE7BKiTf45\nFg0pEZYCSEZDioRx1tpFABYZYy5Fw+SqK4AfAIyx1lYBgLV2ozFmDIBHAdwKYBWACbGmUyCEEEJI\ny8Gi9ST/jGpSZa2dD+DYHfz/JACTdvD/3wDQ32UIIYQQspvTMiL34gEV34QQQgghcaBF1v6zJRHU\njpFivEh1tbCTcmRmXi/WX6AzSadtlIlFk6t1otHglpCwV11Zp3y6nyQzWbuidAAIfNxN2Jse1hmq\n207xz6LtCtNDRwxTPsGPpEDYS5Reer8UOedfrYWSodVrhN3h2TXKZ9Npcj+juykXBEbJ++qKKQFA\nSV09fAL9pdC4zRtaDBtSLRoTii2sJFDgCPXX6YzhOb11m8uS8+V+etzxpfJp/1yZsO0InerNFaZ7\n+Sw/SopdBx1ZpHyCZzh9OrRS+bj31SuztCtM9wokqG8j/7ZL3ahFzqlT/cXSbpCArdfvpT1Q3o//\nDNIZzM/GSNlwpL52t9+tPFoHmXR/t1y1Kdys2TN0H7+geLFqu/+WM4SdCf2uLv7jUGHn/d5fcZE6\ndZZqC+T3EXb5obnKp+/v/PcdVUDNcCm8TvpRX3vnWfJdLT03R5/PazK4PKmwn/IJFy8U9i1jzlQ+\ngS5Onw57ZO33EKa7VA6V9yz4na4IkDVZvvNudQQAqNhTZiLq8nmF8gn/KN/nx5Z+LuyTjt2045NN\nEC0hci8etMhJFSGEEEJaDq1FU8XPf4QQQgghcYArVYQQQghJGA2JO1vHShUnVYQQQghJKIz+I4QQ\nQgghUdMyV6pSU4B8WQJi+XGyjEbP23X0lEv2M/4RK25EHADkXy0jkTq19S9l4EX4cBnN9VnZO8rn\nkPDFwq7N0lEj7SfJ63Aj/QCg9hh5jhc9MEX5TBoo9x3sm6d8vEq8uHx5/xPCHv2yLomDOEWChItk\nSZGkjAzlE9kko13WX6ijPrd0ln9F9fpalzlyI0wBYNNeMvIobZ0uP9HpPFnSxCN+SEX7LfvXIOXT\na5yMDCu5SL++hU639yrP0XaQvP5Nx+goucgmGa267I8jlE+fh2XZk0hNjfJZc6GMRK0coK++4HIZ\nBVb8tH6fCqdKO7Bnf+XjRj15Yb6S9+OcsRd7eMnI3YWTdf8t/IuMPt7aSXdot2+afXQ0l/123vZO\n9f95prCPattyufx72Ks6fTTRfluPk9GYaW/p6NlwqYzAyy7VEXluia11f9fvQeoz8h65YxKgozx1\n7DWQ9a68Z+2/1scKLV0u97Offp9MUL4/XmXMqs6U43/mC/5lnwIekYbpr8kobj26eOxnzUbVlr1k\nlbDD63X0nxtleamskIOl9sMojh5/GP1HCCGEEBIHWoumip//CCGEEELiAFeqCCGEEJIwLEyrWani\npIoQQgghCaWVSKpgbAtUj2WajvYAM2qHPqWT91Ft+WfNFnbkYO2zuWeqsFM2aalk+oJ1siFZz02X\nntBJ2D3u1ML5kmeliNdu1SL0wglaOOpH5FB9XcnzpFh6+XkFyqfHY1LE6yXMjgU7Ugt93TI5K27U\nQmgXr3tY+lentM41Wkga2KNQ2Mtv18+r24lS/LrxbC1mb/+cv/DXi9RPZYmK2kNXK58tJ0jBcJt/\n6+d+ftFSYT9y06n6YM4fgxklVcol8t387Z3qdqk/al/Vlvzet03ej1tKBvAuJ+OHl3C+162yfwRy\ndPmS8Nq1vvt2g1P+ccITyueOk8cL287+Ufm4QRNFd+nSWQWX+ZehioYlt+v+Go1QffO4A4TdZm29\n8kmZK/tdeJ1Hya1O2cJeerEOJPAqveSSNHig3M/xHZRPz9v8y7kkLXSCQzxKKNWOkUL51Hf8SyGF\nRnmUAPvQKQEW1ONLzbGyZFDGd3oMWHdwd2FHM970/zZZtRXtK5+he0+nF/0NlTVlO3XZKC2/u+09\n8ZK47Kv45D/NtNbqAamZwJUqQgghhCQOJv8khBBCCIkTLe+jWEww+o8QQgghJA5wUkUIIYSQhGKt\nictPrBhj7jbG/GiMqTLGlBljnjbGdPTZprMx5p/GmPWN280xxnTb0Ta7z+c/I2929vtpyiV0hBQZ\nemUeb58mt6scq0XWkay2wrbfzlU+PeYVC7virULlU3CcPH5Smj7nDU523KzntRDbpEpxfdKns5UP\nnCy/PabqTLyxCNPdewro++qK0gGg4nwprPUSoUfDx6fcK+yLrjlI+YSdZ9HtRL2fxXfK8+lzoxaJ\nrr5ai6O7v71GHqt4ofJxheleGZe9hOkut04+Q9g9l29SPotObifs9Fe1KD3QQYp/wxs2aB8nQzai\nEKUHc7uottBqeX9iEaV7UT9AZ293henWoz8vvEc+5/5/1dnBM0vk35q399VjQLCrFGuHPM7RzeSf\ntkoHohQ/IQMUunyu/87NmuyfxdtLlJ40RArj19+uRejpD8tAnMAns5SPbSvHu/J/D9D7eU5mNfcS\npavn010HEkTmyICRHumDlY86v5k6SMDN2x/I1DnnoxGmu7iidEAHX2w5WvcX9/326i8198t3t91K\n/7HVFaUDwPKb5TjV8y/yWVi71ePoiacZxMSFAZwFYC6A9gAmAXgWwPFezsaYNAAfApgOoD+ACgAD\nAWz28v+J3WdSRQghhJDdnYAxZttVivXWWh2S6mCtvWkbc60x5kEAr+xgk3PRMPm61Fr70+xVz+Ad\n+PmPEEIIIQnDIq6f/7oAKNrm5/IYT2sUAF0c9X8cDqAEwLONn/8WGGOu9tspV6oIIYQQkjgsgPil\nVFgD4LBtbN9VKhdjzMkAJgA4dAdundAwsboKwPkA9gbwrjGm3Fr7/PY24qSKEEIIIS2FsLW22N/N\nG2PMOABPAjjeWqtFhP9jE4CV1toHG+1vjTGTAZwAYPeaVJlgAIH2UrQfXi+F1x3+qYWb1afI7MFe\nF7/on1JQnneaFonWHi0z8eoc0Vro2/E43QeCPWQG3dCKlcqn49dS6AuPLNGLL5PZ0Xu9q3V04enf\ne5xl0zH77iXsDf311ed85L+fjv/wzxZsR0iRqvlSr9ROOOYCYa+/SAdz5Hwjsym7YljAW5jukrnU\nlb8CbZ+R+95yVk+9YZL8yj7vmmzlUjhBC9xd3EzSXnQYKIXYrhAaALp9JM+n3Su6j4f7yCzw5/9X\ni3r/0b+3sNeO7qt8kk6TWcU3b01VPt1PkjKFwECd7T88v0TYeU9p5YKbLX3RCx6Z/GWibUQ664zd\n7Rf6i+nt1lphu+8yoN9nVzDsRaUTmLI9ak6SY1nqBi1YXjhG3ut+x8ZWESBSI4MCggGPKhOv+meG\nX/K4DGTIu6TMdxuvdz4WwlW6sgCSZODAugv1u9LpKXnPNp7jUWlhkvRJ3qRl6G5Wc6+qBm5Vh1hR\n/cy5TqXi30k0A6E6jDHnA7gPwC+ttV/4uM8B4JW5fYdXQk0VIYQQQhKLjdNPjBhjrgBwL4DRUUyo\ngIbIwGxjzGXGmIAxZjCA8QCm7GgjTqoIIYQQsrvzIIBMAB8bYzb/9PPTfxpjxm9rW2uXAhgD4EIA\nVfVuPe0AACAASURBVABeBXCLtfblHR2kRX7+I4QQQkhL4ecl7owH1ucEGsXnzzttnwDYpynH4aSK\nEEIIIYmlGWiqdgYtclJVl52GFWfJrL49X14i7NBKLYJss1YKUL2y7BYdPEnYo+GRHXe5FD1ucYTr\nAJD2xQJhL7lNCxzb7i0zWXc+QbnAhKUodOHl+cpnwYWPCXvUfy9QPuH38oSdNFGLpdNWyutyxcGA\nzh6f45FoOyk9XdhbDttD+bQtWiePVaozW0cjUg3/WCTsbI/UbK6sNthbi8lDS5f7HqvtFC3GrV4k\nry2yVItN3YzLvd/srHyw/yBpz/jB93y8cAM0Or2rjxVeUy7Pb589lY91AhsmnfgL5ZPUVqq+vYJD\nluXJ7M69/uwv1l5wg34vO3/gVBbwyDLuZhDPv0SL/5PSZXbwFU/owIbcsf7Z4xGUQ2dtgc4mv+oc\nKeTPe0mPSTZJ/vG8YQ/9x3SWatF9Mdint/IJZ8lnv/lULYJPqZSi6pRp+trtSDkGdjxOV0gomTRU\n2P26r1U+PUfJsSMyTPc7OAFHS2/V42bvP8p+dvL8cuXz2kCPd8wlIhXbrijdiw7zdBUDd66wZn9d\nGaPbxB0FmUVP7bHyd02bFTooSYngI7tImd5KaZGTKkIIIYS0ECx2+ee/nQWF6oQQQgghcYArVYQQ\nQghJLNRUEUIIIYTEg9bx+a9FTqqS11Sj6/1SVBhy0rVOK9NiyoMvk1mIS+/tr3xGd5Ni7YBHBnNX\nHF1x5AjtM0QKj4sueEz5HPC7Xwt70UQtysyZKa8rY4lywbNVUpSZNm+F8lk1RWa7vuKR15TPiwO6\nCbvifH0+bib0mhMPUD7tFksxZ/k+ycpny4lSKN/3RS0YXjZaCrw7eCQczvnvKmGHFi3RTg5eovTi\nx2U25cJfz1A+bpZ8AAh7ZGd3sWEpFE19W2cnV9n1ffcaHZWH9FFt7f4lhb1VhRnKJ2O2tEPt2ygf\nO1RWH6juoQW64YFaSOtS/m8ZdNLrSa1KSH1HC9NdFkxoJ+zCCVpUbHp2FXbuWJ3ZevVV8n3OfUCL\n693s7YGPPYTZVVKIHU3fzH9G/zkfTV8ILV6q2gov1m2xkFQjs7V7LTgUnCOF2K6gGgBSId87O9Mj\nqsRhwYWPq7b9F8px8+Is7fNGvhyXVo3uqnzal8rApTaLNyifcLEMdrCzdH9Zf5EcJ2+7aJLyeXyi\nDjDyI9izh250xo4Krwzv8UlCT2KkRU6qCCGEENKC4Oc/QgghhJA40EomVYz+I4QQQgiJA1ypIoQQ\nQkjisABaSZ4qTqoIIYQQklBsK/n813InVT7Rfns+cqnapO4Auc2lIz5QPi+9OUzYkamdlE/W0jxh\ndzhWl59IPWqJsJ89T0eObTlpo7D7ekQiLbpLRnf0/Z0upTBpxfHC/mjW35TP6G6y1MS/3tUlK0zq\nGmG7kX5erB5Xq9r6nikj4o56RnezgzOKhf3UhX2VT+BQee0dntXnE0uUXKCTLtHjRvt5RY8eduFF\nqi19lvzrK7R6jfJxy0RUjtf3Pm2jEyG4YqXeTwxU9Q6otnaOXXFytfJZfYx8DwrOm6l83L87dQwh\nkPGStDec5xGt9LhTKuVdHR0ZDYUT5DMMdOigfMwW3V9dvKL9YsEUL5MN++6lfNyyT4vu1nexw2u6\nv2S85B8NWX2yjIBLf02XWXJZcaOOZO79lCy5ZfrmKR83srGyt474dUfA4if2Vz7pnWVfPHakLr/T\nYbEcB0b/U5cSA2TZq84eZbAUHmXL3PI/XlGWxhmEHrnoVOWz6BF5Pwqf0VGxdraMhgwt11Hcwa65\nwu743Ubl45bl2ni2fOfCb/v3HRI7LXdSRQghhJCWAVeqCCGEEELiQCvRVDH6jxBCCCEkDvhOqowx\nPxpjNm/zs8UYY40xQ40xAWPM3caY5caYTcaYH4wxpzjb72uMmWGMqTHGLDTGnJW4yyGEEEJIc8PY\n+Pw0d4xtoiTfGHM7gLHW2j2NMVcA+B2AwwEUAzgBwCsA9rbWLjDGZAEoBXAvgAcAHALgdQC/sNb6\nq6C3Q1abrvbAfr8SbUUXyjIn/Z/RJQcWj5MCZVOvXPDmxROFfWnvg7TT8L2FWdWnrXK5+bZnhX3l\njNOVT78ztRjaj9LJ+6i2pw6UZRFuvlkLqjOWbhH25Jd12ZxDn7lO2Hl3zVI+/b+Qqsz5l+2hT3L6\n97otBmpOkkLbtlO00Lb8Mims7fxonETGUYiKAaD6XSmwDz6oRfDtbpCC0/rDVimfXUnAQ6C76G9S\noNv71B921unEjpGfF6zzngKA+UrW8DDJKcrH1svyJYvu1uL6vjfI4avyHV2GpMMpMoDF9OmpfNyS\nV16UTBqq2gZcKYXX+e9r4XPRvh4DXAyY1FRh21p/sb87RgKIaVzwChg5pmCkPJ89dJDLqhFS8N/l\nGx2MYb6UfSEwsED5hOeX+J9kkgwGCXbWwU2b95Pv04ZCrbzpMkOO0SkrKpSPl1C+qXxtP0SVrdip\n3+JSe/ewXX9/ZVz2tfSS62daa/eNy84SQJM+/xljggB+BeDJxqZ8AJ9aa4tsA28AWA/gp99IJwGo\nATDRWltrrX0fDZOqi5t6osaYbGNMoTGm0Fo3voEQQgghZNfSVE3VWABZAH5aGnkawJ7GmD0aPwWe\nggbx+38b/38wgNlWLofNamxvKpcDKAJQVBeuiWFzQgghhOx8TINQPR4/zZymRv9dAuBla+1PyTEW\nAfgMwFw0pMeoBXC2tba88f8zAFQ6+9gIQH9v8OdhAC8AQEqgrf+aOSGEEEKaBy1ADxUPop5UGWP6\nARgFYFuBwWMACgD0AbAcwHAAbxhjNltr3wOwCUCes6v2AKqaeqLW2vVo+LSIrDZdm7o5IYQQQkhC\nacpK1SUAvrPWbqsWHgbgEWvtT+q5L40xnwEYA+A9AN+h4ZPhtgxtbI+Z2m5JKP1DG9HWP1dmLw7/\nqLOcB8dIUXN9hp46nzH3fGFHLtKiw+ynpUg1vY0Wkj6UP0DYXU9KVT4ugcJ+qi1cvFDYKcVtlM/E\nswYJu32aFndGtm4V9vn7naR8ugyVwlbTQ09eH+j6urBHT9c5zddOkMLecy6fqnxygpuEPam/FvEG\nf71a2P95WGfaHviGFLN3OHKY8lk3WN77rvf5i9ntLJ3dPtA+S7WlH71I2MFcLYi152oxtIubXXrA\nVVrU6z5Dr4zUAx+WC8M2WWdUj8yRGe/DVfpvnGiE6VuPk8dPe2vGdjx3zJLbZH8J1ugl/p5/lRnd\nvcTSq6+Q++nx8kLlEx62p7CTKrWUYP518p0vnOCRgXp/+c5ljdH3Syk/oxCle+GK0gFg5TkDhR3e\n179Pe4m+3UoLXkQlTHfxEKWvu0Q+nzbrtTZ29YHy2R87LFf5RLaslQ3f6Huf6wwVrtgeAJb9Xv4+\n6Hm7/z1c+2sdtJDzuPx9sGqsFs7nPCF9ki7XmevrsmTW9d/+413lc3/+QNXmsuwWue/eb8uxFnPj\nE8zTZFrJSlVUmipjTAqA8wA84fzXFwDGG2O6N/odAOAwAD+NgK8DSDfGXGeMSTXGHAngRABP/fxT\nJ4QQQkiLwMbpp5kTrVD9JABpAJ532q8D8COAGcaYTY3/f5+19jkAaNRejQEwDg1aqqcATPg56RQI\nIYQQQpojUX3+s9a+BOAlj/YqABMaf7a37TcA9HcKQgghhOz+WLSIyL14wNp/hBBCCEkoLSEbejxo\nckb15kDbLj1twWnXiLYuX0mB7tbOOst522VSkLvkJJ39+uHznhT2X0ceqXzc7Lhpb/oLdFfcpIWJ\nPe6QgsHVb2gRYu5YLZiOB7XH7qfaUt+W6s7IwTp7e2D6j8Je9mKh3vlsmTGj1yidBbhiUi9hp6/S\n2Z/TPpOC6kiNf36yqjOGq7bMF6XQeMR3dcqnbUCKcd+/WGfSdzMwe5G09wDVFvl+ge92LtGIir3E\nt9GIigMFUkgbLlmknZyM2ElbdUBCuI0U1rrZygHdh5I+m+17ftHglfHezHcE3R4ZzCNz5bPYMlYv\nord5IzbBvUswT/bxsuN6KJ8OxbIvJr/3bVT7DvSXGdzDRaXKp+pM+S5kFW1SPhsHyMzjHd+cp3y8\nAhl2JWuukGNpt2d1pYNozjnYN0/YoUVLlE/SEFkxwg3y8NxvVy2uD61xxPWRsPKpPUaOyW1W6uf1\nr3eeFfaI+69RPm4gTvUpMpjn+w8exOaK5Ts3o3qvnrbb9VfFZV9LLr+2WWdU50oVIYQQQhJLy1u/\niYmmZlQnhBBCCCEecFJFCCGEEBIH+PmPEEIIIQmltQjVW+SkKlhejc6PSDHeqiuleDH3QZ011pUG\n9vxRuWDibYOcljXKJ/1LKaou88iO2+VhefwkrcNWdP2zXjgMOGLKZSd3Uz49plYI2xXjevHJ00+r\ntsEzzhB29xu0UHL+k1LAHFyYrHz6OpmJ371Mi65HbJVZOMp+pcXjedP8hemL75QZjk85+gvls+ZK\nKZyfOlGLnNMqZO9I/VJnb/ei7DonK/M/Ysua3evrdGEPuetS5dMF8r56idJNUL7SNuQhMHeE6Rmf\n6aoB6+6QIvjUqTpD9nuOmP7Y/Y9VPqEohOl2hKyvHlVAwD0Vqi18uMxmv3mgzoDfztE0e4nSN54j\n+1RlP63pbV8is4FnTfbIul4r+3S7Mi1OjkaYXvErncW7499lqr+K87VPSrX8LVZylc7sn3+2PO9B\nHo9rzjAnK7+HyDp0hKxkEPxopvIpfU4GLTx04IvKZ8o6qT9eMXyz8uk4T/b7umH5yueERz4U9tQT\nta45VKwz7rvUd0gTdkp+H+UTLpUBEqFVq5VPzUlSLJ6+XI9tqVPlmFP08AHK57RDThd2j+Ry5RMa\nKQNakkLObGZXBae1kpQK/PxHCCGEEBIHWuRKFSGEEEJaCC2kxEw84KSKEEIIIYmllUyq+PmPEEII\nISQOcKWKEEIIIQmltUT/tcgyNZmmoz3AjNqhj1vKAAC6v1UmbK+yBC7LbtH76XWLjix0KXlWRsMU\nnKejYVQJhDQ9xw3MWyLs6kN1GZRoyuS4bDhPRwt1ekOWYAhvrFQ+Lm4pDgCwbWXEzIbBHZVPh/dL\nhF10U4Hyefz4Z4T9p5LjlU/ag3LfY+79SPk8+/xoYT9z0cPK58ZfXyLsnrcUK5/vXtJRg9k/ykik\nDQN06ZhOP2wRdtKn8SnVsvjFwaot42NZnqnTU18pHxevd6XLQ7KPFz+hy7kUTohPOZedyeooooQD\nOTnCDq9dq3xMsoyks/U6ejVeuOVUgOjGrp3J2l/L8aR9ib4fGwrlu9H5Mf9xNBpOna+j7V4ZqEvF\n+FE5Xpe4Sq2SUZ6jb/9U+Uy76VBhf/rUU8rn0IsvFnbbFTqqsapQRil/8cATymev6eOFXVeUqXz6\nviJL9NjZMsz9a/shqmzFzi1T07On7XHV1XHZ16Jrf9usy9Tw8x8hhBBCSBzg5z9CCCGEJJaW91Es\nJjipIoQQQkjCMLb1aKr4+Y8QQgghJA7sNitV6y6RQsnLfz1F+Ux5bajvfuqPkvq3aETpXqSVOIJl\no3WBkTnzVJuLWxAivWi9r0/VGVpwmfmiLEfR4VktYF5+vRTxBrbq83EFzKEly7STw6a/7OlxPvI6\n8q/R13XfNXK7fl9qny+Ozxb28q1aFJ992CphX/mn3yifQHv5Z1QoElA+XqLmYFcpiE3ZqEu+2G9l\nbZRYhcfTnLIwo3XFIiUoTz1N94UOn8qyGqkb9J+QJY/IEhmFE75WPm5pki05umRR+w+k4D/cr7vy\nqc2RgQ3p87Uw/O3P3xD2oAd0GZ9uE/3fVa9n6FKzX56w097b4LtNIFMLhsNVVR6ekvLfyHfOLb8F\nABXDteg60+kvXgEj0byb8eKQC2WJlZs7a0H36Wdf7rufg7+Xg87Usj2Uz6pSGUhwQdaTymdKnnwP\n6rt1UD72NlnqKGuULjXk3tdXntYBUtWHyPdn5FUTlE/6ehmscsNrLymfWy85X7W59L5WlmIqG6NL\nMS0aJ/tin/jExfx8WKaGEEIIIYREy26zUkUIIYSQZkor0VRxUkUIIYSQhEKhOiGEEEIIiZrdZqUq\n930pRn7lSS3u3HS6FB22/76d8ik5U06n2w71yMx+lxSTLrpLZydv6yb5jVPm+nDxQl8fV5TuRVJ6\numqLRujrEuifrxsjMgtx/Twt4nWpPuUA1ZY5TwqE147QWc4LIbN6lw7UmdnbPSbFne1mVSif1QdL\ngfv8FwYqn87Q9ye0Sj5ok5utfNQ2HqL0QHtHcBrUr+bobkOEXfKQvmeuoDzQSZ+P2xPbP6eDFkxE\nCty7Tc9QPmXDZZUA7QEsvE2+G3ef/pzyebxA9qGQx37yX5Di38Kn52sn51rD63RgA/YfJO0ZPygX\nG5CC2urjhymfjI9lX7zqm8+Vz8SLzhb2k88+pHwuHyyfu+nTW59PFPpeL1F6IL+PsMOli5XP+AUr\nhH3Leycrn8LrZIDEu4t10ELB5F8L+6sf9lM+4X7S7rRZVyh46245Jk+/R2cV/0XyL4XtvhcAUPGW\nU9Vhflvlc3i7UmF7yfqXntZD2G9eOlH5nHXdtcJ+8d57lc9FvQ4S9vW3XaJ8Zkx6XNiF/z1H+QTO\nkven1616TBo2W46/76yWxw5F8fshIbSSlardZlJFCCGEkGYI81QRQgghhJCmwJUqQgghhCSWVrJS\nxUkVIYQQQhLL/7V33uFVVVkbf1duQiCQAoEAoYUWUFSkqFj41EEHe0H51BEdO/Y69rHO2FBnLGPF\nGcvYGzo6Kjb0sxeqKELovZcAoSQ3+/vjXmay9jpwbsIN5Cbv73nuo2ufdco+Z5+TzTnvWouTqtTC\nF/9Oe9IKJYvP0wI9PxM5APS4SAu4K9evNz6++LfLdVbom+4JToPEt4kw/3otlG9/V0BW7/Y6S3XF\n/AV2Q15G96B+1YSFgwtMm591HWgdup2mr1vxq8kU/7uATPEveqLLNPtFe/47Rcpu+7M9h73/rmXW\nCwesNT5L3+5p2pq8lKfsr/9ihbUXL9CC8pLSVsbn5s5vK3tAY5vR/Z4VWoQfOX6p8fHPWaBYOwFW\n9tLjJeh8XDr9V2Xf8PBZxqfoJn2uR/7DZqSOdNd9jZbMND5d/6Cvs7S1gSi/3KQDUYovXm18fGH6\n4sttIMqDl+hrePFImyF7aV89Fu7vZrOuRzBO2SdOOMf4FKzW5xDFNjN6kFh7v6g+pqBxB2iB+a6P\n2iz0t7+rRc3d/2BFzCveLVb2QWfvYXyKJ2gR/LGfTjI+5+UuVHaPpy8wPptb6BG8x332mG85/3ll\nP4kuxse9rZ/RXUfaZ/RIr0JBt/vtde56lR6/gzpeZXxmPqDP/eDCA4zPtMd0hvfGi230weGHnazs\nnH1sMNF7N9+r7H06X2p8lv5dV/OYcMOjyt57jK1YQJJHvZlUEUIIIaRuQqE6IYQQQghJGE6qCCGE\nEEKSAD//EUIIIaR2aSCf/8QlKdP3jiQ7t73rc4AW6GW+/4Oy0/bc1ayXtqJU2b/cYsWuxef8qOxV\nZ9hs6c2fsaJHs6/eOiN3RXam9flSCyVnvdTb+JzeSwu4/zllb+OTP0pnC26yrNz4pH8y1rT5RLxs\n5NEpJXY7HXSG4bV9C41Pk7d1lnM/szNgszsHZXiviZh+VkB2+8LPdZhAVsly4zPlmpbKTm9mz6HM\naWLamizRgtN2HwUIwxdqQfm0vxUZl66njrfr+ZsZpcd04fG/GJ+0bC24r1xrBeaRHJ3hft5wm9n6\nxnNeUvYJzew5K35HC417Pr7OHs8afQ1n32erGHQ8TY+FFf9r74PMNVpQnTXKBjb4lDzb17T1uEAL\nw9+fboMWdv+rFkcX3huetfql7212+x+OeEDZp3bY3/j41+K9X//P+AweYjNru4j+yCBfTTA+GZ+1\nVXblhTbnffQXnRl+xgt9jE/hqxnKzppr70s3/mdlmwoBAKKr15i2MGb/yd7PFZ03KnvGb542Pnvf\noMfmX29+xPjc0U8HTSz4va2ikLVUX+fc18YZn+l36oz7Xa/93vhg717KXLKXvQ9aP6zHWdnxdkwl\nMu5NUNIBOuP8D+MeQenaBQnk6U8ejQs7uKLhVyZlW1NvvXKsc65/UjZWC/DzHyGEEEJIEuDnP0II\nIYTULqn3UaxGcFJFCCGEkNqlgUyq+PmPEEIIISQJ8E0VIYQQQmoNQcNJ/pmSkyopLTPRfouu1OUm\n1va00VvF5+loqbYftTc+PmVtbJBE8wSOsXLiFGUHvRJcerE+5i5n2Ai9f59wkLKLpgeUzVm5RNl+\nZF2i+NF+aXvYsiwVk3T01JLzOhifore9hrX2mBdfofve5q82wqrkOR291f10G3nj0+Umew4XXqID\nRbJm2KvR6S1tZ75no6kSISp2vIgXiRoU6Tf7Dh3lNPXMx4zPrl/rKD35tJ3xmb5Yl8Bp9a/Gxmdj\nnj7GVhM3G5+/3qFLZjy80T4Rm3XS53HAs/acvfCLLhfV/O0s41NZVqZ9EoiuXX+CjYxq+oaOjOp+\n5kS7r8qg4lSaTfm6r5uODCh51UQP8q4v2e0e86kuaVJ+lh0bh17ylbIHF+5pfEYvfM60HXHwicp+\nb6E99789UUdRyi/2fIz21tv1EVu2xy+yNfNaW0Kpsx4ugZF+0kdHwC06yEYItn9tjrKLbrJjYeVZ\n+l4ZPMyes5bdFiv7nOcuNj6t99N/I1pO2mR8Mkp1myu390rRe956QWPsW122p1WGjbJce5Iuw7Wm\ni31O9flRR2JO7W//zsGL6G80f6WyZXP4PVArNJBJFT//EUIIIYQkgZR8U0UIIYSQFME1nM9/oW+q\nRORnEVlX5bdBRJyI9I0v7yoio0RkTfz3rYhkVFm/v4h8LyJlIjJDRIbVZocIIYQQUsdwSfrVEBG5\nJz6fKRWRhSIyUkRaJLjuBfF5zx/DfEMnVc65Xs65Zlt+AP4C4Bfn3DgRaQXgCwATAXQE0ALAxQCi\n8QPJBfA+gDcQkyKdD+BxEbFpcgkhhBBCaocogGEA8gH0BtAewDNhK4lIJwBXAfgpkZ1Uq0yNiKQD\nmAfgLufcQyJyF4CDnXMDtuJ/JoBbARS5+I5E5J8AKpxzZya8Y48caeH2kUHhjiGUPGgPu/W32u55\n2c/GZ+EAXfrjqunW5/5uWpS58t1i47NihS5VkDHXlrLpMmKyssv7dTc+kc/CBdw1wS9vAASU1gko\nC9NyvB5TeeOXGZ/otBmh+19xtt52q5cnGZ/hE7T49rHu3UK3mwjzbrSC3faflZm2tO/09XEVFcZn\n49G6tNDc4yuNz643zFN2eWdbQmn6MC0636/PVOMz5VldaqPpkMXG58/dRyn7jC/OMj6Deuptz90n\nvGRQpLkN4Vh3oB6v//fok8bn8B4Dlb1iiC2b0/xZLViu/MQGSCz6ULe1/cperzkX63Pf+HtbLuTw\n03TQxASrKTYElWWpXKfPWdDY8EXwWV9PNz7RVatC14tcscT4ZA7Vz6mg7fjMv96O+7JO+riLz7dl\nWOberNdrPs2O8Yz13rl/J2A7r+2u7I5DE/o7ZkjvpMdCxZx5xmfBtfqY291jg2WiB+tgmc05VjEz\n/wR9fhIJqIm0amXaosv0czIoUGjZ3voeK+1qt935+m0HenznPkGpW7lDy9Q0advBdT4zOWVqptyV\nnDI1InIYgFedczkhfh8DGAngAgAfO+f+vC3/6grVjwOQC2BLOMrBAOaJyL9FZKWITBKRU6v49wYw\n3umZ27h4e7UQkXwRKRaRYgd7wxJCCCGkbiIuOT8AkS1zgfgvv4aHNAixr2xbP2aR4QDWO+deSXSj\n1RWqDwfwinNuddxuCWAvACcBOBaxSdY7IjLHOfclgGwAfmztagDbnBluhUsA3AIAm2FDXwkhhBBS\n72kNoOqr9NsQ+yKWMCJyAmJypAO34dMRwB8BBH6J2xoJT6pEpCtiM7uq32TWAvjGOfd63P5IRD4A\ncAyAL+PLi7xN5QEorc5BxnkYwIsA0AiZ9rsHIYQQQuomyYv+WwLgoCr2iuqsLCJDATwB4Bjn3La+\n1T4F4M/OuQXV2X513lQNBzDROVc1w94EAEEili2nbyJinwyr0hchr9yCcM6tQPzk5SQm2CeEEELI\nzmY7I/c8os65aTVZMa7zvh/A0c65r0LcDwXQT0TuiNu5APYSkcHOuYFbWykhobqINAIwH8BNzrkn\nqrQPQCz6byiAfyH2Ku3fAAY5574RkTwAJQBGAHgIwEAAbwE41DkXnjZ5KyQiVF96oRVc5s7R2Wcz\n//2D8UlrrMXAM262KtXON+hDl4xGxmfWLf2UnT3bHmP+U3o7Sy61x9z6IS2eTPOycwMAKrTGrHLy\nr9bHY8W5VmCeN11/Vi1rbfuV/fK3ps0nva0nsk63c/eVB+hs9ssCZIfdb9UBAGlNbTbuisVWoFtb\n+BmhAWDmUP0l+8rj/mV83j5Z33+Vk+z1WfdBF2Vv2JxhfNLf0P+YaPnjSuNTkdfEtPmkeRmVy3Ps\ndV44UAdNZAb8W7D1IzqDOVyA1tF7vqQXdTQuFbPnKrvkmX7Gp+tT+pgzShYan+iSpdr2RMYAsOHa\n1crOGWqDKCrXrjVtPps+LNLHc3ue8VnfXj9LErl3ogfZY158qZU7tBtig2N8lv2rh7JLp9p/jHa9\n2gsAGGifd7OO02Oh+K4S4xNdHv6ywBeGd/xXQADLFLttn9JT9NeYnJfCzysCKh34YzNwtUzd9+je\n9vm7qqe+zgWfLzU+fmCO28/KiuVr/a4h6O9B1CuQUDjCiuvD2ClC9TYdXJffJ0eo/suImgnVReRS\nxCREhznn7B9/6++XXHkNsfnO/c65rf7hSVSoPgRAYwAvVG10zn0L4HcA7kHsU9/DAH6/ZcIU114d\ngdikazWAJwGcvz0TKkIIIYSkFkkUqteUBxHTc4+pmnvzP8cncmpV2zk3v+oPwCYApduaUAEJHbjF\nwgAAIABJREFUfv5zzr0M4OWtLHsNsRnc1tb9AcDeW1tOCCGEkHrOTs6o7pzb5ts559wL8F4cecsP\nSmQ/rP1HCCGEEJIEWPuPEEIIIbVKQ6n9V28nVRWHrjZtWddsVLb4gmoAFYt0BurCr2wW5PTOnZS9\ntndr41P0Ry0bO/XX+cbn/qb/q+yMsvBRVznhF9N25yydmfiGzuFfW1f0i5q2/JE6ujQ7dCtAycP7\nmLYmCyPKbn+XFVOuHaozUHcNEN76sudEBMSJUHa8PeasUVp0vWaYTU2S+7wVxHYer+0Hyo81PuVX\nb1B2t9PsMW16XY+hVpMDMph/q8eUvYJA+WE603bjReuMT+XEKcpeebEVxJY31WNxY6fNxmfTzfo8\nZi2y47flE/qYfVF6EMV/s8LsOUfogICOX1oxsE9kjI2WbjZG28vOtgEbG1rrrwTt77Tjd2j7scp+\nof2RxicRYbpP5q82ervdECvhKD9Ei/kzPh5rfFrerVXN5fvZrx8Lr9HXPkj43PJ6HeAdJErfdLge\nd5nvWx2wn7F8/lUBVQvS9MeT6M82e05pkfbJ7WcDSNxY/TyRgACfkit1gIYsbmx8fCF/2hfjjU/B\nUu/8BFSLWHuSfp5kv2LHxoz7tU/Xq6ovQg9i82Ct6XZf7yRJcwOZVPHzHyGEEEJIEqi3b6oIIYQQ\nUgdIbp6qOg0nVYQQQgipNST+awjw8x8hhBBCSBKot2+qCo+3gu4gYa9PpHWBsoOyri8+T4tbm6wM\nyCTt8eKpg01bm7FetvTeuxif8C0DF9x6mbKbI1yIuOs9VvxqJPl77258BnhidvT+zvhEmjdXdtB5\nb3eCvT41wQ8aqJg1x/jMvdXL5HyrFYBuPEqL+1f2sv+uyjUtlk631Excmu8J02W8FeiuPEOPu+bP\n2Ovc6AM9XhMZP9FM2+YLdJdeZEXFm7wE3b4oHQBWvlus7IJzbdnP+SfrbPJt/mrPYcVQ3Xd/jAFA\ndNUq0xZG/k9WyI+//6TM2XdYMfv9H+sz2z1AlB7prvu14CgbGJO5Un8Taf6sPYdBWdZ9YXrlAXsa\nn7QvJyi7MGBoBl1Xn9wjpivb7xcAVGTpf58HDClcM0Of1xFdrU8iz+ii53WwQ8U8GwTkV7mQqbOM\nT7fTyhLYm0fAMxFrN9o2D1+YHtmlu/EZuL8W19uaAcBy72/Pyr3Ljc8uN+rz02j0j8oWV4N+J4MG\n8vmPb6oIIYQQQpJAvX1TRQghhJC6AfNUEUIIIYQkgwYyqeLnP0IIIYSQJCDOpd70MUdauH1k0DZ9\nIi3zTZufCXjJJVak2fphreZMb1dofCoWaAnhqt9bIasvOJ02ci/jU3yuFcHXBL+vQRmPE8Ht11vZ\n8vXE0HXSO3UwbRVz5lV73/PfsFmRO12rBZXR6VZsarZzg72m2XO1qDgoM/oKL7N260+tTDRIBD/t\ncS1wLz7/e+PjE2nVyrRNvV6rdmec/LjxGVyoxciz/2zHnZ/JP4h5N+lz1OFPNRPXR3J0lvOSG+01\nrGiphbQ5kxoZn+Yl2ifzPXtfRHp4WaunTjc+q0/X5yPvuXDR9ymPvWd8Xt3FCsrDiOTZMIbKzu2V\n7cbbqgE+G4611RCavB0+poJYcY4+H/lPJSeTtqTbDxyuwlaeCCNIrP3eJ68p+4BJQ4xP08NmKtu/\ndwEg/+/hfS15To+F7qfbDPzTntTP7eLzwp/ZZUNsxYac8bpSx9o9bBWO0k76vLZ+KPy+jBRbtb+f\n0d3/G/b1kpexZvOSHZrhIKt1B9f9pCuTsq1JD1851jnXP9xz58DPf4QQQgipPVzD0VTx8x8hhBBC\nSBLgmypCCCGE1C4N5E0VJ1WEEEIIqVX4+Y8QQgghhCRMvYn+M6VRalCyArARVUHRVNOe0oEHxef8\naHxqQv5XtvTG6sN14YZoqS3z4ZNIRN6aUwcYn9wXbFRcGEFRT9HVa8LX69VD2ZWNAiKKEoiWqhFp\nEbuvAbspe337JsYnc6UtCdF4rI5ESmjciQ28mf1nfT2KbgyPXio73kYZZY2yZYPqEnNut5FanW7W\nfU3vUmR85t6fpeygMlSZn+uovU0HLjY+PkElYCKf6SiwyK7Fxif6yzRlz7zb9qvk9MeU7UdvBrHy\nTLudFk8nJ2ovEYJK8jTxAsUSiUoLIm23nsqubGYjQdd10Pddk2X2njPXx4sMBYKjQ8OI5LcwbesG\n6m03ectGYm48WkdsPvrwg8bnyiJ7Xn2W/Us/E9ucvdL4RJctC91OGN+5T1DqVu7Y6L+CDq7HicmJ\n/pvwGKP/CCGEENKA4ec/QgghhBCSMHxTRQghhJDaw4HRf4QQQgghSYGTqrqLy8lC+b5ap7ahif6S\nGVTaIZEyLL4wXfba3fgkIky/Z5YWDJ/83BXGp9MtWvD54+c9jU/7vTcrO+PjscbHF8l2uc4KW30h\nfyKi9M0fdTJtjQ71SrVUht8pkmEFqdGfp2qffrbESW2x8I0epm3dokxl5022X8abvWrPffmBfZSd\n9rkVqksf3bcgAX4iwnSfJos3mjZ/jEfGTTU+lRv1eksutaV91u61Qdk9Lp1tfGoSDNIsgQpGFTPt\nvvKf0uVCKr3zDgDll23yWqxQ3b8P8JktTeKzuaCZ3Y6nkw+65wZfFy5Mn3ObPvf+MwEASh6xAQnF\n/1in7A2FTY1PhfdMbPZq+D0fNA7T27dTdmVWlvGpLNMlpYLu58qx4YEnzaofK5M0lg6xz4VoptZz\nbwgIJFjZWz8DExGlB7FhrFdubJm9dxPBL7/ml14jtUtKTqoIIYQQkhoIGo5QnZMqQgghhNQuDWRS\nxeg/QgghhJAkwDdVhBBCCKlVJAUTjdeElJxUpW2OovE8nbU7OqVE2RuO1VluASte9wXEgBURux9+\nMj5+xvJlB7c3PjccpUWPeX0qjY9P5xvCxcrSfzfTFiSS9VlxtBbB53+71PiU7t5S2U1v2mB8fBad\nbo+n7ZgVyq7IaWx8ImVagB8kYk3Lzlb2pn2tkHTBwAxld/7XOuOzeIDeTodzrQC05BqdGb7g0cTE\nnWmfj1d2kIDa91l/ohUeN31dBzbsNSFqfMYfqcfdrN9YcXLH0Trjvi9KD6LRGvuw6/KUtoNE6X7m\n8yCB+aIrtWi2cIzNtu/vfdadVuibyL2xwNtX2wnWZ8qd3ZVdfIENaElEzB4p7qq3e62thtD1eX3P\nR8bY7bg03ft5f7RBA9nt7LlPm7FQ2Y3HhlcxSIQ/zfrBtN3UWdtBgQ1+lvWp51kxO6CDDYqH231N\n/4uuLNDtynDl+uKDW5m2Vl5G9c2H7WV8Gn2g979igM3eXny2Dkqaf4Pte/FT3vVpbJ938y/Rmfsr\nA/7ydrwt/Jkz6y59b3S+3t4XdVKY3oBSKvDzHyGEEEJIEkjJN1WEEEIISR0Y/UcIIYQQkgwayKSK\nn/8IIYQQQpKAuBRU5Oc2au32a3OKaquYv0DZiy+3gsI2D9SOgC+9gxWqR1vnKdv9OLlm227bRm+n\naRPjI+UVyq6YY9NWl/9WZ6Av7ZRhfPJHhouBy47XIuusUd8ZH18U6gtCAduvikUB2a93LVZ29Jdp\noccn6fbl69Jz9PG0etKKk1FpheGJsPRiPc4K/lazMeYLdHv+xV7D+UN1hvu0zcYFhW/MUHbF4iU1\nOp70doV6OwsWbsXzv8y70d5zHe4IPx9pTbXgvnL9+tB1jJgcVkwfaV1gfZboAI203rsYn/UjtLh/\n0/NtjE+LiXpflZN+NT6bDtfjrsmCtcansrF3H35vA2MkM9O0Veyng2yCRPA+JX+zARK7/EWPj6Bg\ng+ZftVD2zCdtwEjzZ/WzI0jM3tarNrCuS47xCXqehOGPHwDYOHBXZQc9gyI5ev/Rtfb6RAq0CH5j\n747GJ+PD8AobPivPssEYLf5R/aoKvnAdAArG6gAJPwjmO/cJSt1KnSq+lmnasoPrdZStKlITfnj2\nqrHOuf7hnjsHfv4jhBBCSO2Seu9vagQ//xFCCCGEJAG+qSKEEEJI7eEY/UcIIYQQkhw4qaq7lOc1\nwsJjtGi34FEtVK8tUToATHtMZ2sPysqMefOVuf6EgCzab4SLMn0B97r/HWB8Gi/XmYAbS4AG0RNT\n5gfs65RftRj5pZ6FxmddYUTZQXmTsybr7VQE+AQJ041PnhblJ6KsnPaPPUxb99O1ADRIzO68hPdB\n4tcgAXXFoNXKjoyxIt7ozzaDu0+Hj7RQ3g+8AIA2D+pztuYUmyW6JsL0ikH9bOMnY5UZJPqWJjpz\ndJAovfQUPV5zXrIZshMRprv991R29CubLn3tyd6+XrcC4pLndGbrnpfOMD5NBuvs5E0wy/iE10cA\nylrrcbaquIXxafOgPmdLLgnIVh6QIbvwTp0xfInVK2PNqfp8dL/Ynvt1R+tnWVa2DYRZtf8UZTdH\nAoLqgD+glRP1drImhm9m7q32fLScqO+VprNtFYXV3XQAQJuA+xmNtM+0R+z91HiJvoaV6bZjlYfo\nk9/lGnt+0rL0kzJIlO7fh5kTZxsft07fK5WN7PH4wvTRC/W9svfgMrMOSR4pOakihBBCSGog4Oc/\nQgghhJDkkILpm2oCo/8IIYQQQpJA6KRKRH4WkXVVfhtExIlIX8/vnnj7MK+9v4h8LyJlIjLDX04I\nIYSQ+o245PzqOqGTKudcL+dcsy0/AH8B8Itz7j8pfEVkbwCHA1hUdV0RyQXwPoA3ADQHcD6Ax0Uk\nQFZJCCGEkHqHS+KvjlOtMjUikg5gHoC7nHMPxdsyAfwI4DwALwH4o3Pu+fiyMwHcCqDIxXckIv8E\nUOGcO7OmB50jLdw+Mki1pXfqoOygUi2JEOnWWdmVeTZqpKYlZ2pC+SE6IiTj47Fb8fwv6e3bmbZ1\nfXRb43dsxOL6D7ooe8EcGyNYPNyWe/ApeVZHWLn1VrpXfGFAxOROJC07W9kSsf/eiK5eY9oSQfrp\nkiJu7M/Gxy+7MuPxDsan6KRJofuaf4OOlmp/p40cW3qh9mn7vB3P0dLS0H35pXW6XWmjy3zS27Q2\nbSsG6Xuu8SpbMijzvfBxlyyWvt1T2QXH2hI0fj9m/a2V8elwYvhzwr9Xo8uWG5+pD9mI1k6dlyk7\n87ezQ/dVU/ySRSsPtKVavrnvcWUPLtzT+PiRjUFRjT6RvFzTlsh9uP5EHW29bE97P29upeOSg55t\nlQP7KHtDQSPjc9uIp5Q9ouvuocfn9u1t2tKn66jp6LJlxgdpOvo60rWT9SnV0ZB+aaadUaamWYsO\nbvfBlydlW9++/Id6VabmOAC5AJ6r0nYrgE+dc9+IDeXvDWC80zO3cQBOq+Z+ISL5iGcCaAZ7oxFC\nCCGkbiKJ5CGpB1R3UjUcwCvOudVATC8FYCgA+8+SGNkA/H9WrAZgK2mGcwmAWwBgMzbVYHVCCCGE\n7BRS4NNdMkg4+k9EugIYBODxuN0IwNMALnLO2exrMdYC5rVSHoDwbwuWhwH0ANCjEWzVdkIIIYSQ\nnUl13lQNBzDRObclXWshgF4AXqjy2a85gMdE5HDn3KkAJiL2ybAqfePt1cI5twLACgDIEZuZmBBC\nCCF1k1SI3EsGCQnV42+l5gO4yTn3RLwtAqCt5/oNgBEAXnTOrRCRPAAl8baHAAwE8BaAQ51zCdQ6\nCCY7r73b88DLVFuQ8NrH7afFgdNPsiUZul8WLrZNhIrfaIF5+qfhAvMg/GOWrwPmowO0kHXxgGbG\nJWOdvs5p5cYF5c20Jq7gESsk9Uu8uIqgIjThzLtJi1Y7/Kn2ygr5rPp3d9PW/MgSZUd6dDM+q/ds\nadrWdtIvezfn2Pup6I/eUA8qI1RLifHKhtjySPOP0kJwWR8xPgXf6WPMfT4590Ui+KJ9ACgboK/H\nnBPt+So+W5el8YM8ABvoESScr0mpn6DxEp2qS8ls9ErCAPa5FWlpg0Oiy1eE7n/TkbbESua/qy/u\nX3yFLQvT5q/63tx4lO3HqnPWKrvtcVOMj2HvAEH39z+FruY/g8oPtKLvFbvqrxmJiOJ3Nouu9IJM\nRtvr7pe8SuR6zX1Nn+c51zyBjTMW7FihevMOrvegy8IdE+DrN66uF0L1IQAaA3hhS4NzLorYROs/\niEgUwKr4WyU451aLyBEAHgFwO2IpF87fngkVIYQQQkhdJKFJlXPuZQAvJ+BXFND2AwD7TxtCCCGE\nNAgayuc/lqkhhBBCCEkCLKhMCCGEkNqlgbypSslJlawpS0iYbtbzRN7dA7SLe4zT+r1Jfe1IiB6k\nM4ZHPhtnfHxhemTXYuMzfZgWpRaMs9nRmr7+nWnzqUzXLxxzZ1vxeJO3ws+XL6Sd9oQVv7b8Vg+Z\nlq9Y4XxlWVnovq763ZvKfvVPbYxP2fFaZL25mX2xuty7Pt2uCBdU+6L0IKZeYEXpPe+da9qyX1lo\n2kIJEKVvOE6f+0SuVxDrT9DnrOkbdvy0zdCZ0HPfteLgyvXra7T/ZBBdtcq0Nf1lsbIjq2zVAD8A\nIJHqA4mI0meOsFW1uj+ls1TLps3Gx8/Sn8gzq6J7e9OWkZFh2pYcqbPQ5z9lZaoz79HH3cIm8kfL\nj2Ype13H8AyNmatsX31huuxlRejuBz3Olu6dbXwq99PC6zYP2Id0IsExzRbpYIw1wwYYn29HhGeB\n9wMZKrzs5LED0vdzycM2OKTDh9pn3qFWJ979Ut1XW1fA4ovSg+g4VJ/3RW5DAltOLgJ+/iOEEEII\nIdUgJd9UEUIIISRFcK7W0sbUNTipIoQQQkitws9/hBBCCCEkYertm6oZL1rRYdffTQhdb+w1WoSe\nASt29YXpSy+0WW0LHtUCwrRH1xqfbudqwWXl3AXGJ+dLLWZfd4atRS3rdXr0Jl+G9zOIBQfqOXbx\n8HDRd5CsdcXZWiCb/3cron11FytM98mevEzvq5nNgJ9WYcWuPr7gPfsnKzaNTteC3W6X2767Vq1C\n91VTKjJr8O8bL5M+AGQt2hi6WvYrum/JKh6/6Cp7H7R/f7neVxMrunZjAxTUHtEWetx3/YO9PtMe\n12L/Xf9s7yc00vtfeHihcWk7epGyu1xjx++K0/UYb/6izV6eiKDaz6A+a3BT45M/IMu2HaaPKb29\nFe53uTY8x/KG3+rE1D3vs8EY6FKkzCU97X2Y/5W2fVE6AFQM0hnuC/4WLrIOCvCRDZuUvb65/TO2\nvkBXCVi9h70WvjC94uOOxmf0rv9S9uGHnWx8XKYeU90vscEh0n83ZXcZ1cj4pBfp/Zf29QuWAFlv\nhgcu1VkayJuqejupIoQQQkjdgJ//CCGEEEJIwvBNFSGEEEJqDwegsmG8quKkihBCCCG1S8OYU9Wf\nSVXabj2VbfPVJkYiWZgrD+yj7Kxl4blvyw9aFOoTxNrDPUFj50zjE1lZquxweSxQeorNMJy5Mvxr\nsC9GblRq75SCr1cqO5HMwNMeszW3i97SEupGo380Pjnjw7fd9F3tVOmsNDtS3FXZ0WkzjE902TLT\n5rN5cH/TtrqrvoZ+EANgxeOR7l3s/ktm6oZvJxmfjcfq85h2hM2Kn/meFlWvPMtmDG/xj3CRs0/b\n+22//Gu/4ly7rxXn6mMuPt9mHnfjtZh96UVWFL/L9Tqrd0VAZnafgkdmmzb/mIOuad5z+vwE/b1I\nb6dF8Bt7WOExvMoLWQvtlhb9UmDaMm/SgR4dRttAGMwPEOp7ZHyo76lfn+9jfNIz9BkpOqn6YwMA\n0j/RfXX7B2Qw/0mP8fIWVqSf9uU0ZS+80ga9dHpXZ33PnWX/IviZ8rscYvs1GPoYNx1hA2P8+ynS\no5vxif44WfsYD/vcXn66za7f8U3TFIp/f0ffDg9AIjWn3kyqCCGEEFI3aShCdU6qCCGEEFK7NJCM\n6oz+I4QQQghJApxUEUIIIaRWEZecX433L3KPiPwsIqUislBERopIi234HyEin4rIchFZJSJfiMjA\n8H6m4Cu5HGnh9pFB2/SZf70VsraYqgWXQdlp/ay/vrgSAEoe1CLv7pdZ4d/6E3UW76xFm4yPfFWD\nzOcBWbSDBMs+adlaYFm51gpbl76txf6bfrDjrfM/5ym7Ys4845MI6W1a6+0sXhK6zsajrZi98TtW\n1Owj6fordyKZrteebIX82S/XTOC5cNSuyi48/pfQdYKE6lOu1tm3i8+zWbxrwrwb7b1S3qtM2V0C\nqhHM/rMWwLb/dLPxSf80PPBD9tpd2WmzFhqf6PIVodsZvVAfo58xGwDS9tBj/P0PXjY+Qev5LLlE\nn7PWD1uRvr+vykm/Wp/GjZUtTWy28mgCgvsg/Ptl7pHWJygowGfWS72V3fmUiTU6nll36fHS+fpw\nwfumI22gRb/b9Zia3M8GnvhVHVqPsYFCFTNnKzu9rRW8VyxarOyV79oM7y2O0sL5NafaZ0fuCztP\nHO5n2/968UtYs3lJTWO5akR2TnvXf8AlSdnWZx9dN9Y5Z6NHQhCROwG8BmAygDwAzwEod84dsxX/\nUwGUARgDYB2AcwHcC2AX59xW//BRU0UIIYSQVCEiIlVntyucc6H/6nLO3VDFXCYiDwJ4dRv+L3hN\nj4nILQD2ArDVSRU//xFCCCGk1hAA4lxSfgBaA5ha5VfTV2CDACT82lVEdgfQEoAtbFkFvqkihBBC\nSO2SrMrtwBIAB1Wxw7UBHiJyAoDzARyYoH8BgDcA3OecK9mWLydVhBBCCEkVos65aeFuwYjIUABP\nADjGOTcuAf9CAB8B+BDA9WH+nFQRQgghpFaROhAUJyJnArgfwNHOua8S8C8C8AmAUc65PyS0j1SM\n/uuwW4674jUdXfd+r7ykbHv+G72U3f7egIICXrRd9OC+xiUyRk+AI3m5xmfao52V3TUgwiq9qKOy\nK2bPNT6bvFIkftkEwEaTmZInANx+OspHvq5ZlM/iK3RkVLunfzY+0dVrwrdzud5O4ciA4+naQZlB\nEVY1wT8XQM3PR7LwI0qbvm6jV9N676LsyolTjE9tUTZkH9PmR9j6kUgAUOGVU0nvYMtzVMybH7r/\nmozfJZfayMfWf9PHHD3QjoVoIy1HzZpsIxYrFnoRZwHP2kVX6v23nGSjhGedYJ9BxReER+35zL3F\n9rXjbTpq0b/nACB3to6WXdPJ/lu8zYM2+jGMSL6NLp53lo6YbP+4la/4kculv7PRdsNv1vVcXupZ\naHz80mZpa9cbn5pGN4cRFHHb4Y7qn8Mg/PvHbdRj6puVr2NN+dIdGv2Xk93e7dX/oqRs69PPbqhp\n9N+lAG4BcJhzLjR0WkR6AvgYwDPOuT8muh8K1QkhhBBS33kQQA6AMSKybstvy0IRObWqDeBaAO0A\nXF7VP55qYavw8x8hhBBCahG308vUOOe2+XYunkLhhSr2mQDOrO5+OKkihBBCSK3SUAoq8/MfIYQQ\nQkgSSEmhem6kpRuQdZRqq1yvRYaR1gVmveiSpcqe9g+rdSs+68ckHCEw80Vd6qLbCFvCo3JCeLmS\nRPDFtq0fChc8+qVbgMTKt1T8xivjE1CGZONRujxG43cTENWmBQQEVEZtWwiJiJwrD+xj11ujxZw1\nvTb++QESK9Wy7n+12Datwt6XS/vpfwN1fXGl8alskqHs0q7NjM/igXrb3S+2gneIflNeERCMkUi/\nfBIpNeSXgAGAtv/QonP/fk90X00/14EM0dLS0O0EkZaVpY+nrMz4RHr1ULaU2mPe3KWV3u7n42t0\nPEFi7dw39LamPmRLXBUP13rdWXfua3yy52g7c7Udm0u8GIVuVyanLIv06WXa3Hgb+FKjbfvlqyoD\n/hYm8AyKtNTloxIpqRQU1LHg2HJlt3srw/hkjdL3aqRHN+MTnTp9m/v+zn2CUrdyBwvV27m9+1yY\nlG198sUfayRU31Hw8x8hhBBCag8HSPKSf9Zp+PmPEEIIISQJ8E0VIYQQQmqXFJQa1QROqgghhBBS\nuzSMOVVqTqpcZWWoULUygYzdQaL0fuP1h9+xfewX0tELdebzg8491/h0+Z0WgM6/xopvC20CdUMi\nglhfmL7+BCuCbPqGFjgGidJLHtbrdb/UCswTESf7wnQ/4ztgs77PvNOKirtc903ovvxtp/+yxPj4\nQv6MtfbubvF0zQTCSy/U2w4SmLf8VNt+lnwAaPaqFvZOe8rqMJuP1WMx+vPU0OPLDoi72NDKjkWf\naU9pwX3x2eEBHDO84AzAVgm49P6Xjc+T7+hs/5lr7DlMRJjuZ5NP22xFHDURpvtC5FijF1gRcF+W\nFeUoO/Pf9nqlJZApPhGaf2hrvEY36eALX5QOAPOv12Oh292Tjc+0x/X1Car84NKsUD6MzYfZ50LW\nlMXKrggQpac1bqzsyo0bq71vAHB99XjB9zZ7eyIkIkz3BfevPnC/8Tmj4wHKTu/UwfjMvdqrMnGv\nDUryK1q0f3W2PpYlVgBPkkdKTqoIIYQQkjrUhdp/OwJOqgghhBBSuzSQSRWj/wghhBBCkgDfVBFC\nCCGk9nAAGkieqpScVEVbNEXpYVoYmVuyTtlrim0m6fImOols/t+tEHr8GVpQuOG4bONz5P6dlJ05\nywpAfQpHWEGhL3jf78rzjU/2y9XPTLzwQNuW0UdnSj7uSNv3Ba944tsEXtdGmjc3bdFVq5Tti9IB\nQPrp85yIKH3dUCvAb/aaFuAH5YS//ZKPlf2304can5n36PPTbI5NOFzwqL2GflvQMfrnqGL23ICj\n1BSfEy4MD8qKn9ZFj83otBnGJ3dmuWmrEZ/o7PXdL7OC4anP6UzsTxaHbzbvufCxEETlxCnKXj3Q\nCvIzW+rnRt6r44yPK9fVD4KEyG5/LcoXr1oDAJQ31fdTVkCVh8276nMYGWOPJ4j1J+px1vT1gKz4\nHodMXmvaHhujM4YHCfl9YXpQ1YJVx+tAgo3N7bnPWqb3lTvenrOKOfOUHZQxXDbr8btmn7bGJ5Hn\n5uyr9D1edFLoKoFEvWoDQdfQzwJ/dt9jjU/5bzvrhg/tM6Dw3nmmzafNX/UzyXmZ/bFhutS1AAAg\nAElEQVR8x3+gErgGo6ni5z9CCCGEkCSQkm+qCCGEEJJC8E0VIYQQQghJlNBJlYj8LCLrqvw2iIgT\nkb4icrqIfC0iq0RkuYi8LyK7e+v3F5HvRaRMRGaIyLDa6w4hhBBC6hzOJedXxxFXzYMUkTsAHOec\n6yUiFwGYBuBrxDTCNwM4C0BX51yZiOQCmA7gPgAPAPgfAKMAHOqcq5kaFUD/3o3d96N1ttnBhVo4\nuvRiK5SMbNR9zX8q/BCCspO7iBY4LvyNDWsoPl9nFS//rc2QnREgRPSZdacWULuiDcan7SuNlL22\nvf2qW/CIFVnXJSSjkWlLy9HBBtEVK43PmmFewMKLVhSftocWalZO+MX4+FmzZ13cw/h0usNer0i7\nNspORIQexOw/6+tc9Ec7NvebqAXUX/e256wmrD3JZsMuK9D/3ip81mba9rOKrx5sz5kvGPYrBABA\n2W92U/bmHPtvvZwXw4XH827yMuevsz6+iHfZ+fsan7U6gTi63TbJ+PgZ3n3hOGDF4xtGdzY+TQbP\nsgdZSyy41j4T292TwHMhzQtgqYwG+4WQ3q5Q2W3esKL4RUc3UXZ02TJ7OHv01HapzWZf2keL1wff\n9rnx+cdnOqKn+6VW7J/epUjZbuUq4xNNoHrHoqv0uZ901aOh6/h/0wBg2uO68sQuf7SBKFNG6HG2\ny+XTlP3NurexpmK5jcSpRXKzCt2AHrbySE34cMLtY51z9g9qHaFan/9EJB2xSdMTAOCce8Q595Fz\nbr1zbhOAPwFoA2DLqB8CoAzACOfcJufcR4hNqs6r7oGKSL6IFItIcUW07s9WCSGEENKwqK6m6jgA\nuQCe28ryQYhNorYUouoNYLzTr8PGxduryyUApgKYunR5zf6lRAghhJAdjziXlF9dp7qTquEAXnHO\nrfYXiEgxgKcBXOWc25IQJRuA/250NYAcVJ+HAfQA0KOgZSTMlxBCCCF1hQaiqUp4UiUiXRF7E/V4\nwLJdAYwBcJ9zrurytYi92apKHoBql4p3zq1wzk1zzk1Lj+zQz8GEEEIIIaFU503VcAATnXNKzSci\nfQF8BuBu59wIb52JAHy1Xd94OyGEEELqPUl6S5UCb6oSSv4pIo0AnAHgJq99fwDvArjGOTcyYNVR\nAEaIyNUAHgIwEMDxAA7djmPGT6tbocubw1Vbd+jIjYK/2aiWSDcv+iagbETUKzeRM9GWUphydUtl\np68KP41BkX6n/LpQ2S/1LDQ+4snHul+12PhULNJtay63UT51nc0H72Ha5v5ed376wZ8an0N+p0tE\nBEUmLd1HvyxtOcG4mFIkHW+14yctv4Vpq2m0n48f7bf0QnsNX3tJ243PsQ+YZgt1oZ4mn/5kfJYN\n66Psgi9shFX21OnKrtjfRiLJV/pEZr8aXq6p9M02pq3ZYTpSdv05NiLPZ+bd1qfLdfqaLbgu/D5o\n9biNslz1qI6w8iP9gkikTExQpN/iBO7VgvE24jft8/HK3nT4XsYn8319PRovt+Mlva0XvbrIPl/8\neyq9fTvjMvMcXR4p6P7xWXR4hmmLrrJj0WfZ3rrsU/5TvxqfLO++/HTt/tanf7iMZMlvdBRh/lOz\nQ9cJou39+nycfuL/2H1dUaTs7C8WGp8ut+hr4TZtNj6NFunzOuUvujbUxtsbb/NYawWHlJgQJYNE\n31QNAdAYwAte+58R+7z3Vy+X1UAAiGuvjgAwFDEt1ZMAzt+edAqEEEIIIXWRhN5UOedeBvByQPvB\nCaz7A4C9w/wIIYQQUk+x6RzrJaz9RwghhJBaJRXSISQD1v4jhBBCCEkC1S5TUxfIkRZuHxmk2tx+\nOp+ofB0eYDjjXit27Xp1uGC48O3Zyi65pJPx6Xyd3k7pKbYUSIvvtCi0YuZs4+OT3qmDaauYMy90\nvUhxV92wdLnxqVyvBbGu3IogE2HhH/Q5K7zPilZ9oXH3p6xANjo9vIRHeof2yq6YNz90HRcgui45\nU7+0LT4noCTNLt1NWzRXl9XAt7akSVpjLQxN80riAEDF/AWBx1pd5l+vz337u8IFw6Pmf2/ajm+v\nv9gH9b28QJcRmn66Ff4Wnx1eiinSS5e3if48NXQd/5wCQOXGjcpe/NYuxqfNcVNCt+1TNsSWoMl6\nM1yYHvECYd4b/6HxCSpFkghGYN7JBt34Y3HFufZ5F9mk7bznwuWuJQ/Z8xFU4qUmRLxgkKDSVD7T\nHrXqkuIL7Ziu0fEkMDb9Mk/Zr4SXVArcl/dc8INnksV37hOUupU7tkxNk7Zuv6IzkrKtD369u06X\nqeHnP0IIIYTUHg5AZeq9wKkJ/PxHCCGEEJIE+KaKEEIIIbVIaiTuTAacVBFCCCGkduGkqg7TrAkq\n++qs0Glf6AzDzb+y2a9X7a9Fj41XhGv18maWm7aKBTrTbefrbOZbn6wlAdvxhOm+wBuwIu95J1qh\neuGDi5TtKiqMT3TaDGX7glAAWH+UPqdZo8LFp2dOnWPantbaTiOqBYAunpBfArI0+xnwA4Xrkep/\nwc6YY7M2F58TLhSXjQHC/SkloeuV3KHFyF2vskJWXwgeTWC760+wgmFfmB507suLWiv7+PbGxfDe\nJ6+ZtkNPOVPZHUfVTE3gi3/TdutpfCon66zZM27uY3w636DHVMV3zY3P5o90UEmjQ+349cn5xvrY\nO8ziV2cIwu+r308AiOT55VMDMp8HZUL3yB9pReiRHF3bvvREO6bSyvUfw0RE6RuPtuLxxu+Ei8d9\nYXpQ36Or1yh7lxvtveLXVYge1Nf4RD4bp+ygDPzdDtfPzQ0HGhes2E3/Hcl+xfqUPKjF7N0vs88A\nX5juC+ABwHmxIDkv2u2UPKyvYfdLkhNEQBIjNSdVhBBCCEkd+KaKEEIIIWQ7YfQfIYQQQgipDnxT\nRQghhJBaxAGuYRT/qzcZ1bH37tr+/iez3vQHtPCv2+VW5Of79Lj5F+MTLS1N8Eh3DmtODcje/p4W\nA0dXrTI+6Z5YPCjL9+w7dFbmohut+LX8kH7Kzvh4rPFZcokWhW62elR0/LcWpFY2sf8G8DPnV35i\nhfwZF+vs2xs62p01XrROb2eSFQzPvcUKWTv+yROBVvoSWYsvJAWA3F+1AnX8jY8anyMPOE7ZFQU5\nxicoo3ttsWaYHme5z9v7ad1Q3ddmrwWIZgfsocz0pfb+Kitupexef7L9LNlrk2nz2XzYXsqObLTX\na1VxprJbPmnHeCL3QSLBB7Pu1NvxxfaAPc+APdd7jjcumOBp+QdPtud19G4BYygJRJrbIAH/mbPH\nOBsoNKlvcv4eTf+n7ny30wJOUCJ4f1c2FjQxLhnrdNjCgv+x2f473h5e2cBn9Wk2A37eP8Mz3m84\nVgcJNHlbBwjslIzqma3dfm1/l5RtfTDngTqdUZ2f/wghhBBCkgA//xFCCCGk9mhAQnVOqgghhBBS\nu6Sg1Kgm8PMfIYQQQkgSqDdCdT8z8JS7bVbmHk9vULb7wYrZfRZebcXJHZ7RglNplGFX9NoqZtms\nzL6YM0g8vuIcLVZM32Cv1/pCPTfu+Oo8ezzeq9eKefOtTwJED9aZiSNjxm3F879Me2Iv01Y8/Ae9\nnV49jM/co/OV3e5uK/ZMy87Wdos841OZ3VTbAVmrk0WkVSvTFl2mM7inF3U0PhWz5yrbF/sDwIKD\nGym7z0FTjc/Po/S49zPyByGf2mz2af+7UdnvTfrE+Awu3NO0+fj3ZSJBHntNsOLxt2ZqMXu7IT8b\nnw3HeQLdt8IzeK8+PUAM/JwWA0d6dDM+0anTQ7ftk0iVhyD8ew4AxLuf0z63QuySR7zM2heFZ9Ye\nvXCCafOv88x77Dnrcq0+Z36AAmCDFPyxAdjxEfRc8DPwB7H2ZC3uz37ZBlH4LPuX3VerY/S+Ejk/\nke5djM/i+/Xfgw0/5hsfX8yetkdAZQEvgGbOq7sbn07/u+2/aztFqN6otduv4KSkbOuDBQ/XaaE6\nP/8RQgghpBZpOAWV+fmPEEIIISQJ8E0VIYQQQmoPB6CyYST/5KSKEEIIIbVLA/n8V2+E6juSle8W\nK7vFUdNqtJ1pj2lhbfFFNvO4ZOh5r9sUnjW69Hc2A3POi1qoueoMKzZt/kx4tt5EiLQuUPbyw7oa\nn0br9b9ams7fYHwSyQ6e3raNsuecbkWi7e6pfjZjSbf/3nAVFQGe4UTytUA5uiJcnLzpwyLT1uSa\nLGXPOt6K8jvdovuakHC+vRWqB2XT91l0pQ7iaPuX8PPsnwsAmHe2J64fYbdT8pAnun6+zG7cq6Jw\n40wrKr6jixYV+4JmIDFRcyL4wvTSowKetV5AS3nPgKCBABG6T9A9X5mutci+AL+mBI2X2ad1Unb7\nu6p/zyXK/Ov1uAvaV3onXVmhYo4N3knvUqTshYcVGp+CR/W2KwbZAJL0T/Rz++9zvzQ+A0dfoezi\nc38wPomw8kz93G7xdPWv6U4RqmcUuP3yT0zKtj5Y8hiF6oQQQghpwKTgC5yawEkVIYQQQmoR12Ay\nqjP6jxBCCCEkCfBNFSGEEEJqDwc4x+g/QgghhJDtp4F8/mtQkyq/3MR7Y143PifOOETZK2/rZHxa\nHGWj9HykTy9lu/G2rEbxBbqMxsy7A8o/XKejO9I72+NxXgSRH+kHANJ/N2W3fH+G8dn4Wx1QkfHh\nj8Znzu36GDvdbKNPyvrrY2z+rPWRDF1yxfWxJSISoWLRYmXnTbfnxz9nbp2NHKvsqCMWpcL+qypt\nzkLTtqmvHlPpn9qxkUi034z7dPRWs3ftl/nMCToSqZMNbkO5dw3n929kfNp9pqOc3JS5xicRCj9f\no+y0BMqOBJ2L1t9vNG0+3S/VJU78CDAAaO9VpfEj/YIIivRL672LsmcNaW58uj45W9kVC+zYSKQE\njU909w6mLRGNRtA9v/5EWyrGJ1KsI3N/vaSl8el+iT73m7q3Nj4dPtBjIejPZ9nx+nj8UjsAsLF5\nRNm5M+zY8KP9/GctAFR4z9ug6Mi8d7RPqwm5dl/fNlP2wuH22THzT/qZeLatQoViVD/ab8b99ph9\nsffdM2xJmvv20OtVrl9f7X2TmtOgJlWEEEII2Qk0kOg/CtUJIYQQQpIA31QRQgghpPZwjmVqCCGE\nEEKSQgP5/JeSZWpyMwrcvi2HqrbokqVJ2fa0R73SMRd+b3wiu3TX+85ubDf0vRUQ+mz+SAuoGx06\nJ4EjtGw4Vh9zk7ftMfti7fnH2VIT7Z6ZouzoqlXGZ9MReyk78z0rwFx6oRYR+6UeAGD0Qq2yHlwY\nLir2txu07d3G2i/ab4/R5ydnuq3Q0Oa1qcoOElSXPGyFv7lTtbB2fTt7P3W+Xgv1fSE0AGxopwWx\nQed1R5Leob2yK+bND10nLSvLtE27cw9ld7s8QBi+567Kzv7bEuOz5oAVoftfPlwLhjPX2GuxKVdf\n+5ZP2CCKiCe4X368FUJnLdMli4KuV6uvdRmhZfutNj6zX9Hnp+gkW5rJf94AQHRKifbp1tn6TJ9l\n2mqLygP0/Zv2pY2i8J9BFbPs884vcRX0XF94tX4OFN5rny/+s2L1HrbEVJvP9bNiXXv77Oj4qi5v\nE1Tuxmf2n23A0X6HTFb2TyN3Mz7Np2lRftoX4eWJgojkacF95XpdAuzb8g9QWrlix5apibR0+zY9\nOinbGr32GZapIYQQQkjDxfHzHyGEEELI9uIazOc/Rv8RQgghhCQBvqkihBBCSO3h0GAyqqekUD1H\nWrh9ZJBqGzn3S2Wf2/EAs97mwVrbtjHfzin9zMSbDt/L+GS+r0Wpbt/exke+mWjafBZe4wkuR1jB\npc+yC6wIstVjWmzrC20Bm9laMjONT8nftWC427CaCSUTIW2PnsqunPRr+EoD9jBNi/fVAu82f7Xn\n0BfxBgl4F1+ur0W7F0qMz4a+Nlt7o9E26/yOYtORdmxKVNuNPrAC6rm36r52vDV83K08y467Fv+w\nIu8w3P42ICGyfrOyKyf8Uu3t1pT0NjY7+KxzdZbxDn8KPz/JIrJrsWmbc6zNct7pKT0+o8uW1Wh/\nmw/TYyhovPgEjbvMf+v15t1kg0r881jxm37GZ2NLXR2i2as2sMFfL6iKwZphAdnIPXKft9v2WXG2\nHvf5fw8f85H8FqYtkaoKNcEPEACADL9CQkG+Mr+Z+TTWbFi0Y4XqafluQKPDkrKtDze9WKeF6vz8\nRwghhBCSBPj5jxBCCCG1hgPgGsjnP06qCCGEEFJ7OAe4hpFSIfTzn4j8LCLrqvw2iIgTkb7x5aeL\nyAwRKROR70Skn7d+fxH5Pr58hogMq63OEEIIIYT4iMg98flMqYgsFJGRImIFcHqdw+LrbBCRySLy\n27D9hL6pcs6pdMIicgeA45xz40TkAACPATgewOcALgPwnoh0d86VikgugPcB3AdgIID/ATBKRGY4\n56qvct1CVmNIT53l+PAftH3gDzPMav/3RiNld3p2pvHx8+76ovQglvVtatoKEuhdIsJ0n2EXjTZt\nox/TwnRflA4AkV49lD313ObGp9swLdxM262n8alsps8hvg3IAN2qlbJdWZndjidMl3Q7FF2FdzUC\n9tUmXGuKpQe1UXZ+gFC9zQPetQjIUJ2IKH35eVbQ3fLJ6otbExG2NvnMCror169X9urT7PFkz9Kv\n4WfebX26XKePOXt+ufHxr9niC/Y2Pq0f1uc1epvtV+TY8GzpPkFC5PQNul+LjttsfLqdpoMvKtfb\nsdnho3XKXnpRQCb/R8Lv3Uun6zH+UDd7P/ksHGRF6e3vsvuKmhaLL7IO+if0yj3124PuH1ifeX/U\n/W97kM2uH/lOi6ETEfeXtc4wbS2+0BnLV55ir3POS/qmN/1EYoLyRMhcG/7JatoTWrhfPLxm1RBW\nnOuJ4keG9yHjZ5uV3lTC8J4lzm2q/sElgTrw+S8KYBiAyQDyADwH4BkAxwQ5i0gXAG8COA/AqwCG\nIjZ/6eWcm721nVRLqC4i6QDOAvBEvOlcAG865z50sSt1L4CNiE2yAGAIgDIAI5xzm5xzHwEYFT/I\naiEi+SJSLCLFroG8RiSEEELqBa4yOT8gsmUuEP/lh+0aAJxzNzjnxjvnyp1zywA8COCgbazyewBj\nnXPPO+c2O+deADAu3r5VqpVSQURORGx2V+icWy0iEwA845x7oIrP2wBmOOeuFJEHABQ5546rsvwK\nAKc55/omvOPYercCuCVulgGYsnXvOkMEQGsAS5DYPy5TDfYv9anvfWT/Up/63scd3b9OzrlW4W7J\nQ0Q+AGBfw9aMPABV857c5py7tQbHdC+AAc65gVtZ/haA2c65y6u0PQigg3NuyNa2W12h+nAArzjn\ntlQGzQawxvNZDSAnweXV4WEAL8b/f4VzrvrfDHYwIlIMYCqAg5xz03b28SQb9i/1qe99ZP9Sn/re\nx/rePwBwziUnSRViX60AVH07Ve25gIicAOB8AAduw21r8xdbYb0KCU+qRKQrgEEAqn74XQsg13PN\nAzCjyvKigOVW9BNCfBJV5ydShBBCCKkdtncuICJDEZMwHeOcG7cN163Nb7Y5f6mOpmo4gInOue+q\ntE0E8J/PeCIiAPrE27cs91O+9q2ynBBCCCGk1hGRMxGbUB3tnBsT4q7mN3FC5y8JTapEpBGAMwA8\n7i0aCWCIiAwSkUwAVwPIREyMjvh/m4rI1SKSKSKHICZifzKR/dYDVgC4DfX3DRv7l/rU9z6yf6lP\nfe9jfe9fnUBELkUsE8Fg59xXCazyHID+InKKiDQSkVMRm1Q9u839JCJUF5GTEZsIFTrn1nnLTgdw\nK4C2AH4CcIFzbmyV5XsBeATA7gAWAbjZOfd8Ah0ihBBCCNluRMQhljVJ5ZRwzjWLLz8VwBNb7Hjb\nYQDuB9AFwEwAVzjnPtzmflKxoDIhhBBCSF2DBZUJIYQQQpIAJ1WEEEIIIUmAkypCCCGEkCTASRUh\nhBBCSBLgpIoQQgghJAlwUkUIIYQQkgQ4qSKEEEIISQKcVG0HIpImIl+LiBOR9lXaTxeRGSJSJiLf\niUg/b73+IvJ9fPkMERm2449+24jIISLyrYisE5HlIvJolWX1oX9tROQVEVkmIqtE5FMR6V1lecr0\nUUROFpEvRKRURCoClm9XX0SkQETeFJG18fN1j4js0GfHtvoY79/X8eu4XETeF5HdPZ863cewa1jF\n757488Y//pTun4h0FZFRIrIm/vtWRDKqLK/T/Ysfw7bGaCR+TPPix/iTiJzo+dT5PpIEcM7xV8Mf\ngKsAfAzAAWgfbzsAwHoAv0WsZM81AJYAyIkvzwWwDMC18eWHAlgHYN+d3Z8q/ToIsWrcJ8aPsTGA\nvvWlf/HjfBPARwCaA2gEYASAeQAk1foIYDCAUwCcBaDCW7bdfYmfpzfjvl0ATANwbR3q40Xx424a\n78MdiFVvyEqVPm6rf1V89gYwCcBCAMOqtKd0/wC0ivfp1vjxRQD0B5CWKv1LoI+XxvvYA7FnzHEA\nNgPomUp95C+BcbCzDyBVfwCKAcxArGB01UnVswD+WcVPAMwB8Pu4fWbclio+/wTw9M7uU5Xj+QbA\n3VtZlvL9ix/TJADDq9g94texZar2EbHJsP8w366+AOgcPy9dqyw/G8CsutLHAJ/G8WPe8g+BlOnj\n1voX/0P7E4B9AcyGnlSldP8A3AXg222skzL920YfHwLwkte2CMCJqdhH/rb+46vDGhB/5foPAH9A\n7I1OVXoD+E/tQxcb/RPi7VuWj4+3b2FcleU7FRFpiti/iNNFZFz8c8pnItI/7pLS/avCvYgVA28l\nIo0BnAfgS+fcctSfPgLb35feANY452Z4y4tEJKfWjnr7GASgDEBJ3K4PfbwVwKfOuW8ClqV6/w4G\nME9E/i0iK0VkksTqsG0h1fsHACMB9BKRXeOfAk8EkA7g/+LL60MfCWIXlVSfywAsds6NEpEib1k2\ngDVe22oAOQku39k0R0xrdwqAwwH8itjk8T0RKUbq928LXwH4PYClAKKIffo7PL6svvQR2P6+bG05\n4j6lyTnM5BAfo08DuMo5tzbenNJ9jP+DZihib8WDSOn+IfZ2eC8AJwE4FrFJ1jsiMsc59yVSv39A\nrBjvFwAmA6hErKjvac65pfHl9aGPBBSqVxsR6YaYlurirbisReybd1Xy8N9BH7Z8Z7PlD9HTzrlJ\nzrnNiL2ezwCwH1K/f1veNH6M2JuMXABZiOlwvhCR1qgHfazC9vZla8u3LKsziMiuAMYAuM8593iV\nRSnbRxFphNgk8SLn3LqtuKVs/+KsBfCNc+5151yFc+4jAB8AOKbK8lTuHwA8CqAPYp/xGiGmmXpc\nRH4bX14f+kjASVVNOAAxYeVkEVmO2CtYAJgkIhcCmAig7xZnERHEbqaJ8aaJsP/i7Ftl+U7FObcG\nMc2G8xfFfyndvzgtEHu4PeicK3XObXbOPYXY/bAv6kcft7C9fZkIIFdEunjLZ8fHSp1ARPoC+Awx\nLeAIb3Eq97EQQC8AL8Q/xS8H0AHAYyLyQtwnlfsHxD5H+88bVGlL9f4BQD8Azznn5jjnKp1zXyP2\n5uqI+PL60EcCUKhe3R9ibzXaV/kNQOzm7w+gGWKTrnWI6TqCoq3yEIvyuDq+/BDUsei4+LHNB7Ar\nYp+Ir0FMVJlbH/oXP86pAB5GLGIsHbGInc2IRdWkVB8Ri5ZqjFiEX0X8/xvjv5GM29UXxKKOXkfs\nM8OWqKPr6lAf9wewCsC5W1m3zvdxG/2LQD9v2iP2qfoSAPn1oH+C2DO0HLGIuDTEPv+VbTn+VOhf\nAn18ArFJVLu47z4AViD2CTBl+shfAuNgZx9Aqv8AFKFK9F+87XTEvqFvAPA9gH7eOnvF2zfE/Ybt\nyGNOoE8C4HYAixH7bj8GwJ71pX/xY9wFwL8BLEdMqzAWwLGp2EcAZ+C/bxKr/oqS0RcABYiFcq+N\nn68RiIe714U+xsdnZfyPUNXfwFTpY9g19HxnBxx/SvcPMc3YVMTSf0wGMDSV+pfAGM0B8DiABfFj\nnA7ghlTrI3/hP4lfLEIIIYQQsh1QU0UIIYQQkgQ4qSKEEEIISQKcVBFCCCGEJAFOqgghhBBCkgAn\nVYQQQgghSYCTKkIIIYSQJMBJFSGEkAaNiDQVkRkiUpGA7+lx3zIR+U5E+nnLh8SLQq8TkakiMtRb\nvo+I/J+IrBaRJSLyTxHJr7L8HhH5WURKRWShiIwUkRbV7M8f4se4VkRK4tU+yA6AkypCCCH1FhEp\nEpGwhIx3A5iVwLYOAPAYgAsQKz7/BmLF5nPiywcAeB7A5Ygl/PwDYiWG9okvjwB4F8DXiJU72wWx\nUkQPVdlNFMAwAPkAeiOWRf+ZBLq65RiPAXAbgFOdc9mIJf+9V0QOTXQbpOZwUkUIIaTBIiL/A2Ag\ngHsScD8XwJvOuQ+dc5sA3AtgI4Dj48uHABjtnPvUxWr8vQPgKwDD48tzAbRErGB9uXNuJYBXEZs8\nAQCcczc458bHly8D8CCAg7xjPldEJovIGhEZX6UwMwB0AzDJOfdtfHvfAJhUdR+k9uCkihBCSINE\nRLIAjARwDmL1B8PojVhJKwCAi5UkmYD/Tlgk/qtKGuLFkuOTqCcAnC0imSJSAOBkAKO2sc9BqFKs\nXUTOBXAtgFMRe1t2I4A3RaRb3OVlANkisr+IpInIQADFAD5IoH9kO+GkihBCSEPlLgDvOOd+TNA/\nG7FaoVVZjdinPiBWT/QwETlURNJF5HjECn7nVPF/DbE3WusRK25eGT8Og4icAOB8AJdVab4MwO3O\nuYnxt2HvIVb/8uT48qWIFV4eg1iR+DEAbnHOTU6wj2Q74KSKEEJIvUJEHo0LwVcj9ukLW+z477q4\nPupwADdXY9NrEfuEV5U8AKUA4Jz7DLFJ0F8Qm9ycgdibo+XxY+gO4H0AdwBoEl93BgLeIsUF7iMB\nHOOcG1dlUWcAj1TtD4CDAbSLL78JsbdYewLIQOwt2hUicnY1+klqCCdVhBBC6iSTI4UAAAHqSURB\nVBXOuQudc3nOuTwAe8Tb8qr87gZwCIAOAOaKyHIAbwOIiMhyETl6K5ueCKDvFkNEBEAfVPk855x7\nxjm3u3OuhXPuWAA9AHwWX9wbwErn3BZN1RoADwMYKCJ5VbZ7JmKfCY92zo3xjmEOgLO8/jRzzl0Q\nX94PwBvOuV9cjJ8BvAVga30iSYSTKkIIIQ2RvwDojtgbnT0R01VF4///8VbWGQlgiIgMEpFMAFcD\nyERcExX/5NdXRCIikisif0Js4vbX+PpjAeSJyLC4TzaAiwHMdM6tjm/jUgD3ARjsnPsq4Bj+CuBW\nEdlTYjQRkQNEpGd8+VcAjo+/FYOI7ALgOFTRgpHaI31nHwAhhBCyo3HOlSL+2Q4ARGRZvH1+lbYb\nEEtN0Cu+7Mt4zqeRANoC+AnAEfFtAUAEwJOIvZ1yiOmZDnDOLYmvPyuuk7oVwN8Qm8T9AODYKof2\nIIAKAGNiL8L+c7zN4v8dKSKbATyN2KfAcgDjEEvfAMQiEnMBfCQiLQGsREzHdXcNTxWpBhILXiCE\nEEIIIdsDP/8RQgghhCQBTqoIIYQQQpIAJ1WEEEIIIUmAkypCCCGEkCTASRUhhBBCSBLgpIoQQggh\nJAlwUkUIIYQQkgQ4qSKEEEIISQKcVBFCCCGEJIH/B+0rP3LvNV/wAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try to improve the visualization by rebinnin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 16.0\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 64 s" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "dynspec.rebin_time(dt_new=64.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 64.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(700, 850)" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xmc3FWd7//Xp6p6STpJZ9+BkI0lSCAEBBSBAVFxQxxm\nA9f7G2HGwTuLzJ3rLDqO3hkQx4uMI+B4RxlRYNA4Iw7IqoNsgawQIAkhCSH73p100klVfX5/VAU7\nbdJd1d9Ppau63s/Hox7QVfV916leT875nHPM3RERERGRZFL93QARERGRgUCdKhEREZEA6lSJiIiI\nBFCnSkRERCSAOlUiIiIiAdSpEhEREQmgTpWIiIhIAHWqREREZMAzsy+b2WozazOzLWZ2n5kd38Pz\n321my8xsn5m9aGaX9fYa6lSJiIhIPfg34Ax3HwZMAV4H7j7SE81sKvAj4O+B1uJ/55nZlJ5eQJ0q\nERERGfDc/RV331380IA8cNJRnv4xYIG7f8/dD7j7XcDC4v1HlQlrrYiIiEgFmdkoYFSXu7a7+/Yy\nrv894JvAMCAL/OlRnjobWNDtvoXF+4+qJjtV6aEtnhk9InFO09p9Aa0BS1lIjufyITnVxJoaQ3Jy\ngxpCclK79obkyNF56+CQHNvdEZIzUFkqZqLB89X1e8eamxJn+P7OgJYMTPvZywHvjPmjVaJ3Xdzi\n23fkouJWAdO6fPy3wBdKvdjdvw9838zGA/8DeOEoTx0K7O523y5gVk/5NdmpyowewfjPX58456Rr\nlwa0BlKDmkNycm1tITnVJDN5SkhO2+xxITmD5z0bkiNH1/n2s0Nymv7ruZCcgSo1uCUkJ7+3uv6h\nkZ46I3FG7uWVAS0ZmJ71R4/5a27fkWP+z45aD16W9ISV7Rw+ZVfyKFVX7r7JzL4FvGZmx7v7jm5P\naadQS9XVcKDHP9Q12akSERGR2uBAnrAR0Zy7rwjKygAtwESge6dqCXBxt/vmAI/0FlhzmtZ0MPOT\nzyfO2f7J85I3Bhj5/54Oydl2bUx7Rt8e054IPij5UD7A0Be2hOREDUCnT0n+r2mA/MrVITkHLupx\nmr9kDY90LyEoX7WNMLX/9rkhOcMfifk9ntve/Xd336SGDgnJsQljQ3Lya9aF5GiUaSByct6/08xm\nlgL+ELjX3beY2WTgVmAN8MoRLrkTuMHMfhf4IXAVhU7VR3p6Ha3+ExERkXpwOfCime0FngU6gEvd\nPWtmV5vZnkNPdPdVwJXAX1Gorfoc8CF3X9PTC9TkSJWIiIjUhsL0n/dvG9zzFDpVR3v8LuCubvc9\nCDxYzuuoUyUiIiIVFVhTVdU0/SciIiISoCZHqiyTIT1yTOKcqALz1Oknh+RUU4F5lNzQmEL1zJ7q\n2rMoqpg2dcapITkRBeYABy+bmzij4aHki0giDb3nmZCcsEUOI5LvsQeQ3bQ5JCczeVJIjmezITmZ\nE09InJFdvTagJZAZH7OVS9TXqlY5Ts77d/rvWKnJTpWIiIjUjv6uqTpWNP0nIiIiEkAjVSIiIlIx\nDuTqZKRKnSoRERGpqHqZ/qvJTpXnsuR37uzvZrwpv/RIm7HWttzFc0Jy0o8vDMnxUSNDcrb80fkh\nOWP/6amQnPzil2JyLjwzJOdgSzpxRszR1wNXrop+dwFk31jf3004TESRedSJB+0zYxYVDPqP+i5U\nryc12akSERGR2uCg1X8iIiIiEepj60+t/hMREREJoZEqERERqRjHtfqvqrUMIn/GaYlj7MnFAY2p\nPlv/4LzEGWNui9mFOsre86eH5Iy7PWa379TMaSE5W98+NiQn6nSAYRPGJ86I2Vcb0ifFfM33zohZ\n5NB8//yQnF0fSf7zCZDpjPkjNeTe6vpZt7NmJc5448LWgJbAhH+MWZBS9xxy9dGn0vSfiIiISITa\nHKkSERGRmuDUT6G6OlUiIiJSQUYO6+9GHBMlTf+Z2Xgzu8fMtprZTjN7zMxmH+F5N5qZm9k13e6f\na2bzzazDzFZ1f1xERESk1pU6UvXPwFBgJrAX+BJwv5kd717Y0cvMzgHeA2zseqGZtQIPADcDFwDv\nAOaZ2Sp371t17Z59A7LIPHX6ySE5Y74ZU7RcTZp/ElMkHFUraXv3heSMfXxDSE5UcfiB6RMSZ6Q2\nbgpoCeSWvxqS07w8JCbMsNUx3zupX1bX78D06FEhObkFyxJnpM+LOTkBixldOXDZWSE5jT+LWWhz\nrDmQV6H6YaYD97n7Tnc/AHwbmAyMAjCzpuJ91wIHul17JdAB3OTune7+MDAP+FQ5DTWzUWY208xm\net3MzoqIiNS+XHEKMOmt2pXaqfoKcKWZjTGzZgodol+6+7bi418AHjvKyNNsYNGhEa2ihcX7y3E9\nsBxYfoDOMi8VERERqaxSp/+eBD4GbAFywDoKU32Y2VzgKuCMo1w7FNjd7b5dwLAy23or8H2ARpqq\nbEBfREREjsShJkaZIvQ6UmVmKeARYCXQCgwGvgw8YWbjgH8FPu3ue44S0V68rqvhQFs5DXX37e6+\nwt1XmLbXEhERqRl5t5BbtSuldzISOBG4xd3b3P2Au/9L8drfBWYBd5nZNjPbBhwHfNPM7ipev4Rf\nH8WaU7xfREREZEDodfrP3beZ2Qrg02b2F0An8FEK03o/Ae7rdsnTwE0Up+ooFKXfZGY3AF+nsALw\nQ8A7+9poS6dIDyl39vDX5drKGiw7qvzbjzbzWZ5Ue/XUim29LuYojTG3VddKxKgVStn1Mav2qk3q\niUWJM9JjxgS0BGgdEhKTX7MuJGfjp88JyZl0d8yqxlxISpxt750ZkjPmv5P/bI39p5jjZdIjRoTk\n1OqqvSj1NP1Xak3VFRS2RFgLNACvAle5+6ruTzSzHLDT3bcDuPsuM7sc+AbwRQpbLlzX5+0URERE\npGY4Rq5OynZK6lS5+8vAe0t87pQj3PccEPPPPBEREZEqpGNqREREpKJqocg8gjpVIiIiUjGqqapy\nnsuHFZlHyA2O+TQ2rtkakhOx33xUgbmdOSskxxclP7oCILdte0hOtUmPGxuSk9u8JXnG1pjv49ys\n40JyGjZsDskZf0tM8XNUgXn2kpijTw4OTYfkjPhuzO+MqCOXIuR27uzvJkiNqclOlYiIiNQKI+cq\nVBcRERFJxIF8naz+q493KSIiIlJhGqkSERGRilKheh1Iz5wWE/RQzG65+ebmkBxrakqcEbbzeFCB\neZS9H35rSM6wV3aF5LB+U0hMRIE5QGbK8Ykz9k+N2VE989iCkJyIhRsANve0kJzs0MaQnF3TY3JG\n3659mKWy3Ounpqo+3qWIiIhIhdX1SJWIiIhUXr5Opv80UiUiIiISQCNVIiIiUjGFHdXrYwynJjtV\n3jqYzgvOTpzTsuD1gNbEye/f399NeNMbV00JyRn/fzeE5Gy79ryQnIY9HpKTW7Y8JCeqcL7lh8+G\n5OTeSP71yqyprp+rKKkVMe/rwG+cHJJTbQXm6RlTQ3JyK18LyYlw4N3J/84AND74XEhO7VKhuoiI\niIiUoSZHqkRERKQ21NOO6upUiYiISEXlXKv/RERERKRENTlSZbs7aPppQOHfpInJMwJlxo8LyfEh\ngxNnjJu/N6AlcYasz4XkNN8/PyRn10diCueH/1t1FRt7NtvfTQi366MxX6vRD8UUUA/6ccz3YJTs\nJWeF5Kx+Z8wO7yf+RfLPc+r0mMUAzRvaQ3IIak9+6SshOceaY1r9JyIiIhIhr9V/IiIiIlIqjVSJ\niIhIxWjzTxEREZEAjtXN6r+67lTlxwwPyUmNGBaSk32xeooQ7dX+bsHhogrM97/vnJCcxr35kBxr\niCnu9ezBkBw8+Y7zfv7sgIaAPbUkJGf4nTGLAfZdNjckp3Hb9pCcqEUFmUcXhORMbI7ZfTxC59iW\nkJyGR2I+N1I/6rpTJSIiIpWnzT9FREREEnJHZ/+JiIiISOk0UiUiIiIVZORRobqIiIhIIk79TP/V\nZKfKmhrJTJ6SPGjrruQZQHb9hpCc1BmnhuTkWpKvKGtYuzWgJbDpvceH5Iz7wbKQnIa9MSumGp9Z\nG5LDoOaQmLbLzgzJabnv2cQZmZfWJG8IkA9aGUkq5l/IDQ89H5KTfH1lQdTxMlGr/wY/G3OMT8SB\nVNW2ai8TdCRa1N8aqZya7FSJiIhI7dDmnyIiIiIJOUa+Tjb/rI+uo4iIiEiFaaRKREREKkrTf1XM\nOw+QfW1NfzfjTVFHnwx6cGFITjqT/Mua3b8/oCUw+o6gwsqZ00JiMk/FFLznOjtDcqJEFJgDpIYO\nTZyR27U7oCWQHhZz/FOurS0kJ0pU0TJBBeZRckHH70RIjxgRkpPbuTMkp94LzB3I18nqv/p4lyIi\nIiIVVpMjVSIiIlIrjJw2/xQRERFJRtN/IiIiIlKWmhypsnSK9JDkRayv/8FpAa2BSTc+FZITtdOy\nZ5PvGp458YSAlkB2dczO47nlr4bkRMlfGLODeeOKjSE52Y2bQnJ8f/UU4NuI1pigKitUz7e193cT\nDhNWON8Q8+cku+b1xBlRBebVVvBeyzT9JyIiIpKQu2n6T0RERERKp5EqERERqaicRqp+xczGm9k9\nZrbVzHaa2WNmNrv42EfN7Kni/dvM7AEze0u36+ea2Xwz6zCzVWZ2TSXejIiIiFQXB/JYyK2vzOxG\nM1tmZm1mtsHMvmVmI3u55rPFPku7ma00sz/s7XVKHan6Z2AoMBPYC3wJuN/Mji/e/3ngKSAL/A3w\nkJlNc/cOM2sFHgBuBi4A3gHMM7NV7v50ia9/GM/lQ3ZJHv3iwcQZA5bFFBXu+a1zQ3KG3PtMSE6U\n1C8WheQkX1JQsO3a80JyGtuSL5cYumZfQEtgz+imkJzmtetCcqLk22MK1f1tZ4TkZJ9cHJKTmTol\nJCdC2+/F/N4Z9v3q+r0jieSAa4AXgeHAncB3gA8c6clm9gHgb4FL3P0ZMzsPeMTMVrr7w0d7kVLH\n46YD97n7Tnc/AHwbmAyMcvdvuPvD7r7X3TuBvwPGAycXr70S6ABucvfOYmPmAZ8q8bUPvcFRZjbT\nzGY6+XIuFRERkX5j5DwVcgPSh/oCxduoUlrg7p9z90XuftDdtwK3ABf1cMl0YKm7P1O8/mlgKTC7\np9cptVP1FeBKMxtjZs0UOkS/dPdtR3juJRQ6USuLH88GFrl7138CL+ytYUdwPbAcWH6A6ln2LSIi\nIkdX2PzTQm7AOIp9geLt+j426xJgSQ+P3w0MNbO3mVnKzC6gMFv3YE+hpU7/PQl8DNhCYQhtHfCe\n7k8ys5nAvwJ/5u6HxriHAt1PWN0FlLvR1K3A9wEaaVpe5rUiIiJS+zZz+AhT2Sd5m9mHgeuAC3t4\n2hbgPuBxfjUA9cfu/mJP2b12qswsBTwC/IzCVN5+4KPAE2Z2mrtvLj7vVOBh4GZ3v61LRDswpVvs\ncKCsoih3307xkzes59oyERERqSK5uB2ccu6+oq8Xm9lVwO3AB9x9YQ9P/Wvg94AzgJeBU4H/NLN9\n7v7to11UykjVSOBE4BZ3P9QR+hczuxE4D/ixmc2hMCT2d+5+a7frlwBXdLtvDj0Pu/Xo4PgW3vjk\n+X29/E3HPdh9AK1v2gdgMXb2tTUhOUPXbQjJidptvtq8+rWY753Jj+ZCcprvn584I3fxnICWwODV\nMTuhR1Vg+vnlViwc2YHWxpCcpgeeC8mxs2aF5GQXLAvJSQ0enDhj+I9iiu+jvnc2X5/87xXAuFtj\nTu841pw3p+76lZl9Avgq8H53f7KXp58F/NDdXyp+vMzMfgy8n0Jd+RH12nUs1k2tAD5tZi1mljGz\nT1KY1ltqZm8DHgX+8ggdKigUpbeY2Q1m1mRmlwIfAu7o7bVFREREkjKzz1DYheBdJXSooFD29CEz\nm1G8/hQKA0QLerqo1PG4K4CpwFoKU3CfBq5y99cobK/QCnzNzPZ0uV0A4O67gMuBqyjUUt0BXNfX\n7RRERESktuRJhdwSuIVCLffjXfsqhx40s6u7fkxhgd484OHi/T8Dfgz8Q08vUlKhuru/DLz3KI9d\nXML1zwHnlPJaIiIiIpHce55/dPe7gLu6fJwF/qJ4K5mOqREREZGKcYdcFdRUHQvqVImIiEhFVUOh\n+rFQk52qTIczdlHyI2bsYMyKqdaHY7bNimkNpEeXtMFsj3Lbyt7644j84IGQnCiZE08IycmuXhuS\nc/LNr4fkZNfHrLLk3NMTR+yaGnO8zKjHe1rtXLrMpIkhOdlszFqwqFV7By+bG5Iz6OVNITlRRy7l\nOzqCkqpHra7ak/LVZKdKREREakNhS4WwfaqqmjpVIiIiUlE56mP6rz66jiIiIiIVppEqERERqZhD\nByrXg5rsVKX2Zxn8yubEObn1MQWafvqMkBwW7AyJiSgyt6aYYuOtH4s5smT0HTF7xWbXxBSG7/tg\nzLZrg/4j+bEwkdKrNibOGPXM1oCWQOqMU0Ny2qcMCcnJNcYM7LeuHBGSw0PPh8REFZgPROnpJ8YE\npWK+d3IrVoXkHHv1U1NVH+9SREREpMJqcqRKREREake+TgrV1akSERGRiqmnHdU1/SciIiISoDZH\nqvI5vH1P78/rRdhu34teCYlJzzopJKdzXPLC3MxjCwJaAruDavjHR+2EPmZYSE5UgXnUrtgNQUXL\nua3Ji8x3ffS8gJbAoO0xJdSDfhzztbJMzK/LXLa6SsM733t2SE7zQ0tCcqrpFAbb1xmSE3VCRS2r\nl0L12uxUiYiISE0o7Kiu6T8RERERKZFGqkRERKSitPpPREREJCHtqF7lPJsjt31HfzfjV/K5kJjc\nSytCchobTkmcse89McWrk/475nOTXb02JCe9K2Y365h3Bc2rY76Po9qTam5OnDHqP18KaAnkp00O\nycldeGZITuoXi0JyrKExJCeqoLvpp8+F5HhISoxVX4lZLDHthpiTHKIWIeWWLQ/JkcqpyU6ViIiI\n1A6t/hMRERFJyrX6T0RERETKoJEqERERqRhHq/+q2+Bm7ORZiWNSHUG75S5/NSQHDyr1XJm8qNsn\nJ//8Agxe3RaSkw0qNiao2Dh9SsxW8bmXV4bkRMnv3584IzN+bEBLwBcsC8mptuH4/NnJF5IA2FMx\nO5hHWfvFmOLwKV9emDjjpFteD2gJ+KiRITn5xtr8UxtJ038iIiIiUjJ1n0VERKRitE+ViIiISJB6\n6VRp+k9EREQkQG2OVHXsxxcFFLEGFSFGFS2zcUtMzphRiSOa758f0BDIh6RUYe9/07aQmAPvmhuS\n0/iz50NyInjLoJCcfVecE5Iz6Mcx38uZCeNDcrJVVmAe5YS/idl9PGK5zoYPnhCQAmO/8VRITtpi\nRmmiTk441pz62aeqNjtVIiIiUjPqZUuFqhsAEBEREalFGqkSERGRyvH6KVRXp0pEREQqpp62VND0\nn4iIiEiA+h6pClqR4el0SE5q5IiQnINjhyXOyGxOngGw+92nhuQM/+/VITlRsptjVmoOXrYxJCcb\nkhIjt2x5SM6gmFNqwmQ3burvJlTE7mvODclp3hmzNq3lxeSf56hVe6mhQ0NyyEWtg65d9TJSVd+d\nKhEREamoetpSQdN/IiIiIgE0UiUiIiIV5XUyUqVOlYiIiFRUvWz+Wdedqty27TFBQTlRpYz2WvKM\nqOMQhtz7TEhONRViAxy89KyYoEcWhMRkxo8Lyclu2pw4I3PCcQEtAd+zNyQnt31HSE6Ujg+9NSRn\n8LxnQ3JavxfzMxqlmn7WX/nKKSE5M6+LOSpJql9dd6pERESksryONv9UobqIiIhIAI1UiYiISEXV\nS6F6SSNVZjbezO4xs61mttPMHjOz2V0e/6iZrTKzDjN71szO6nb9XDObX3x8lZldE/1GREREpBoV\n9qmKuFW7Ukeq/hkYCswE9gJfAu43s+OBtwHfBD4E/AL4n8B/mdkMd28zs1bgAeBm4ALgHcA8M1vl\n7k/3qdUtg/AzZvf+vF6k5sds2ezZaiqthFU3J98heeY/rAxoCey6dEZIztA1HSE5PLM0JKYhqMA8\nSm77zv5uwptyG5IXuwP4wQMhOZaJGZCP+jnPNVX/H4a+qLYC/AhRBeZRC1uq7feO/LpSa6qmA/e5\n+053PwB8G5gMjAJ+H/iRuz/k7p3AV4D9FDpZAFcCHcBN7t7p7g8D84BPldNQMxtlZjPNbKa7tvwX\nERGpFe4Wcqt2pXaqvgJcaWZjzKyZQofol+6+DZgNvNl9dncHFhfvp/jfRcX7D1nY5fFSXQ8sB5Yf\nOBiz1FpEREQqy6Fupv9K7VQ9CaSBLcAeCqNPv198bCiwu9vzdwHDSny8VLcCJwEnNTa0lHmpiIiI\nSGX12qkysxTwCLASaAUGA18GnjCzcUB78f6uhgNtxf/v7fGSuPt2d1/h7isKTRIREZGq54W9qiJu\n1a6UCs6RwInALe5+qCP0L2Z2I3AesASYc+jJZmbAmcCPinctAa7oljmneH+feMrIDk5efNpQZQXm\nmSnHh+RM+2zyHZKjdlTfN/qkkJwR88vqgx9V1Fc8M3VKSI7vjSnAz23eEpJz4F1zE2c0/uz5gJbE\nOXhh8kUtAJlHY4qEh95dXTuYp4eVO2lwZFEF5vkLz0yc0bB+V0BLIPfq6pCczL6o36i1q16Oqel1\nyKdYN7UC+LSZtZhZxsw+SWFabynwLQr1VpeYWRNwA9BEoRid4n9bzOwGM2sys0spFLHfUYH3IyIi\nItIvSh3uuYLClghrgQbgVeAqd38NeM3M/pBC52oC8AJw+aFRLXffZWaXA98AvghsBK7r83YKIiIi\nUjOc+tn8s6ROlbu/DLy3h8fvBO7s4fHngHPKbp2IiIjUuNpYuRdBFd8iIiIiAWry7D9r7wjZWXbf\nFTGDZ81bY3Z+zj65OCQnc+IJiTOyq9cGtATG/tNTITnVtaQAfNuO/m7CYXZfk3wXfYDW7yUvos5M\nnhTQEsi+sT4kp2lDzCIHggq6D545LSQn9YtFITm5tqDPT5CDQwIWIe3eE9ASsKamkJzU7v0hObW8\n7XUtrNyLUJOdKhEREakd9VJTpek/ERERkQAaqRIREZGKKWzcWR8jVepUiYiISEVp9Z+IiIiIlKyu\nR6oG/Xh+fzfhMBv/7PyQnAlPJl/5sm92zMrIavscp0+ZEZJjHTGrebLjhofkRKzai7LnjJjVf81B\nq//YFnNkiY2M+VpFrdqrNhFHHAE0/fS5xBkWtALVOztjcl5aGZJTy7T6T0RERCRAvdRUafpPRERE\nJIBGqkRERKRiHKubkSp1qkRERKSi6qSkqjY7VdaQITN6XOKc/bMmB7QGOofHfBonfDXmSBc/b3bi\njKgCcz8/eVsAMi+/HpJje/aF5OQ2borJmTomJKdx3NiQnNzmLYkzmu+P+d5JBx0Ls29O8mObAAat\n2h6SEyU1dGhIjqVjqkCaHlsakpMOKDKPOuIoc1zM34jsujdCcqT61WSnSkRERGqENv8UERERCVIn\n839a/SciIiISQJ0qERERqSh3C7n1lZndaGbLzKzNzDaY2bfMbGQv14w1s++a2fbidYvNbGJP19Tm\n9J87ns0mjmlaF7PTcubRVSE5qcGDQ3J48bXEEfmAZgDYU0tCcnIhKZA6YUJIjgcVnqYfXxiSw4gR\nMTlVJD/tuJCczN7kvysAcq+uDslJB32t9lwYczpAy6ttITn+4ishOVFF5hFUYB6nCnZUzwHXAC8C\nw4E7ge8AHzjSk82sGXgUeAY4CdgBnAL0eGRJbXaqREREpB6lzWxml4+3u3uvS3Pd/XNdPtxqZrcA\n9/ZwyccodL7+0N0PFu9b1tvraPpPREREKsYJnf4bByzvcru+j826BOhpKuViYCXwneL03ytm9ie9\nhWqkSkRERCrHgbgtFTYDF3X5uOwN5Mzsw8B1wIU9PG00hY7VHwOfAE4HHjSzLe5+19EuUqdKRERE\nakXO3Vf09WIzuwq4HfiAu/dU1NoOrHf3W4ofP29m3wM+CAysTpVnc+S2Jd/dOJOpsrc/9fiQmHxA\nwWhmfPId6wGymzaH5KTOODUkJ7/4pZCczZ85PyRn3NdjdtHff/a0kJz2yQ2JM0a80hHQEiBokUPq\nnLeE5ETJ79kbkhN16kHYopSmppAc7+wMyYmQOSFmsUR27bqQnFpWBYXqmNkngK8C73f3J3t5+mJg\n7hHu7/GdqKZKREREKsuDbn1kZp8BbgbeVUKHCgorA0eZ2afNLG1ms4GrgR/1dJE6VSIiIjLQ3QIM\nAx43sz2HboceNLOru37s7muBy4H/D2gD7gO+4O739PQiVTb/JSIiIgNLso07I3gvDSgWn9/V7b6f\nA2eW8zrqVImIiEhlVUFN1bFQm52qlkFwWvLi0+0zWgIaAweHTA3J6Rwe05NvmXNe4ozhdz4d0JI4\nUQXmUaIKzKM0PPR8SE6PZzaUKDN1SkAK+PDWmJxlyU8YADh40ZyQnPTPY3bRb/vdc0Nyhv/H0pCc\n1KiI7x7YPzP5IpnMowsCWgIcONj7c0S6qM1OlYiIiNQGp9+n/44VFaqLiIiIBNBIlYiIiFSWaqpE\nREREItTH9F9Ndqpyg1LsOG1I4pyxD6wOaA28/FcnhOSk98bMxra+lnyP5PRJ0wNaAms/PDYkZ8oP\n1ofkZFevDcmpNukxY0JyfMKoxBmbzh0R0BIYfceakJwoUQXmUYb94JmQnKgd1fMdMTvpb/q/yRco\nHLdrVkBLoO2E5H9nAAb/aFNIjlS/muxUiYiISA3R9J+IiIhIgDrpVGn1n4iIiEgAjVSJiIhI5ThQ\nJ/tUqVMlIiIiFeV1Mv1Xk52q7CDYcXryr9D2M2JW7UXNFc/4+1dCcjZfdXLijCHLXw1oCewLWE0G\ncav2dl8Tc7THiPsWh+Tk9+8PybFMOiQntzT59+D49pifq2xISvWJWqmZ27o1JCc9bFhIzqarY1bc\nTf5w8iOyov5+D9s5JSQnP3RoTE57e0iOVE5NdqpERESkhmikSkRERCRAndRUafWfiIiISIBeO1Vm\ntszM9nS57TMzN7M5ZpY2sxvNbJ2ZtZvZC2b2m92un2tm882sw8xWmdk1lXs7IiIiUm3MY27Vrtfp\nP3c/rPrjFMEsAAAgAElEQVTQzL4MXOHuC83sM8BHgIuBFcAHgXvN7EV3f8XMWoEHgJuBC4B3APPM\nbJW797kaMbMXxjzf16t/5WBLdQ3UdZwXczRM+5TkGa2XnpU8BJhx/bMhOVFavxdztMeWa88LyRl9\ne/KiXIDsxphjMDKTJibOqLajgFJBRcIHz5oRkkOVHXeTa2sLyRnzzZjv5Q2fPT9xxsSbnwpoCeRe\nfyMkJz1pQkhOzRaqO3VTU1VWr8LMMsAngduLd00HfuHuy73gx8B24LTi41cCHcBN7t7p7g8D84BP\nldtQMxtlZjPNbKZ71GlVIiIiIjHKHaq5AmgF7ix+/C1glpmdWpwK/E0Ko1//XXx8NrDI/bAdKhYW\n7y/X9cByYHl2f4321kVEROqOFQrVI25VrtzVf9cC97j7ruLHrwFPAC9SOOy8E/iIu28pPj4U2N0t\nYxfQl41RbgW+D5BpHrq8D9eLiIhIf6iT6b+SO1VmNg24BOhaTPLPwAzgRGAdcC7wYzPb4+4PAe3A\nlG5Rw4GyJ/HdfTuFqUVaRh1X7uUiIiIiFVXOSNW1wBJ371p5fBbwT+5+qDL1KTN7ArgceAhYQmHK\nsKs5xfv7LNcEbScmLzIfszhmz+ZBDyV6O29KDW8NyZmxMPkQ6eb3TQ1oCez8x5gdzL0p5p85Mz4d\nUzgfVmD+GzELAjKPLQjJya7fEJITITN1SkjO/ikxu/pHfY4Hqr0ffmtITkSReWb8uICWQL59T0jO\nzvMmheQMXbsuJKdf1MlIVUk9EzNrBD4O3NbtoSeBq81sUvF5bwUuAg799pkHtJjZDWbWZGaXAh8C\n7kjedBEREakJHnSrcqUO91wJNAN3dbv/BmAZMN/M2ouPf9Xd/w2gWHt1OXAVhVqqO4DrkmynICIi\nIlKNSpr+c/e7gbuPcH8bcF3xdrRrnwPO6WsDRUREpIY5NbFyL4LO/hMREZGKqoXd0CPUZKeqYa8z\n/tkDiXM2n9UY0BqY/JPOkBw6Y3Kyu7rvYlG+VDamUH3kCzH/Ohn53edCcjb9SfLdmgHGfy1mx+ZU\nrro2sk1PPzFxRu7V1QEtgexra0JyMkE5pNIxOflcSEw6aGFLLuD3BUDLD2MWgaRHJ19YkN20OaAl\ncRr2VNfPuVROTXaqREREpIbUyUhVdR1+JyIiIlKj1KkSERERCaDpPxEREakoFapXMWvroOGh5xPn\nTH4ooDFA5sQTQnI6T4jZ+blh577EGU1tMYWVu6fEFPe+9n9iduWY+c2YHYlj9uKHxlVben9SCTyg\nwBxg47snJM4Y+08xheqp00+Oydm9NySHdMz3clQBftulMZ+fxl0x382bz24KyRm76GDijMYHtwe0\nJM7gNWWfzHZENV3uXidbKmj6T0RERCRATY5UiYiISI2okSNmIqhTJSIiIpVVJ50qTf+JiIiIBNBI\nlYiIiFSUVv/VgcyE8SE52dVrQ3IaNsYcrZDfvz9xxuAlAQ0Btv1NzLEw2daYoz1e+ptxITkz/l/M\nSs3sk4tDcqJErdyLkF/6SkxOSEr1abkv5liYKMc9EbP6Lz12TPKQSROTZwD7vxvzJ3L1SzFHCs34\nTEhM/6iTTpWm/0REREQC1PVIlYiIiBwDdTJSpU6ViIiIVIx5/dRUafpPREREJEBNjlTlRrbQ9p5z\nE+cM+/4zAa2JE1FgDpAaPDhxRr6jI6AlcPwXnwrJ2fezmGNYct+OKVS3J5MfkwSQOi3mqJGdZwwP\nyRn+cnviDDsYs6hgz7SY4t7B86qroLvaRC3Yee33p4bk5E5JfqzQjL/YEdAS2P2DSSE5wz8Y056a\npmNqRERERKRUNTlSJSIiIjWkTmqq1KkSERGRilKhuoiIiIiUrCZHqtI79oYUmWcvOSugNdDQdiAk\nx597ISQnqsg8xDlvCYkZ8kfJi1cBciNicqKk9u4LyWn9Xszu49mL5yTOyKdjClKHvNYWkmPTYxY5\nvPLHY0NyTvnSmpCcA9MnhOS88dnOkJyRd8UsUNg4tjlxxhtXHBfQEmg7KRuSk94zKCQnYK/5/lMn\nI1U12akSERGRGqF9qkRERESkHBqpEhERkcqqk5EqdapERESkstSpqnKWvBg28+iCgIbUzfdK38yP\nKb4/cFHyAmqAbEs6JGfYL2J2ob58TMzO7PNOjSlh3faW5EXC474es4s+p8fsNr/xXTEF3ZMfiSla\nXvOJaSE57/utmM/zgj+J+dma+ZUlITlt9yZvT1j9TtAm4Km1MYXq6eHJTxmwtpjfgXJktdupEhER\nkZqgQnURERERKZk6VSIiIiIBNP0nIiIilVUn03+12akysHTyYjs7eXpAYyD/Ysxu1iu/G1MwOuNj\nC0NyqknTyk0hOev/x5SQnM7bYnLm/SDmfWVOiNlBOnfxrsQZeza+NaAlMGxle0jO7pNidvpumx4z\nsN+8NSSGpR+LKeRvSO0PyVl1dkzOoJ8m/wR1PBGzcGPGnTG7zaeXrAzJyQWcluEe8/NQ3ouqpkpE\nREREylCbI1UiIiJSO+pkpEqdKhEREamsOulUafpPREREJIBGqkRERKRijPopVK/NTtWQwWTPPj1x\nTOOGtoDGxDnpazGrZ/IBGanBgwNSIHvWSTE5TywKyTn+ixtCcqLMeK4pJOfJ78as/ju4NHnG8OfX\nJw8B8lu2heQ0tCX/XQGQ2RtzZsnBYTF/XV75w2EhOeP/O2bCYkRHzPE7I96bfKVc05UjA1oC9nTM\n0Tuv/+/zQ3Im/33QEVD9oU46VZr+ExEREQlQmyNVIiIiUhu0T9WvmNkyM9vT5bbPzNzM5hQfn2Zm\n88xsd/H2jJk1dLl+rpnNN7MOM1tlZtdU8g2JiIhIlfGgWx+Z2Y3F/kybmW0ws2+ZWUnzxGb2B8V+\nz1/19txeO1XuPsvdhxy6Af8IvOTuC81sDPAEsAQ4HhgJ/BGQKzakFXgA+CEwArgOuM3MzivljYiI\niIgEyAHXAKOA2cBk4Du9XWRmJwB/BrxQyouUNf1nZhngk8DfF+/6U+B1d/9Cl6c93+X/rwQ6gJvc\n3YGHzWwe8Cng6XJe+zDtHaQfT34Uy/o/jike9PeNDcmZ9GjyI0KidJ5/SkhOwyMLQnIyE8aH5GQ3\nxhwLw7kxxc9PfH9ISE724t0hOVO+lDxj1ccnJQ8BWl+dGJKT3hdTYB5VJJyeMTUkh1RMSey2c2OO\ndLF9MUe6RBj6i5hjYWzK8SE5U/51VUhONiSln/Tz9J+7f67Lh1vN7Bbg3hIu/Tbwl8AflPI65f5U\nXgG0AncWP74YWGdmPzWzHWa21Myu7vL82cCiYofqkIXF+8tiZqPMbKaZzfSQ9W0iIiJyLJjH3ID0\nob5A8Taqj026hMIs29HbbHYtsNfd7yk1tNxC9WuBe9z90JDKaOBs4LeBD1LoZP3EzNa6+y+BoUD3\nf0LvAvqyFvh64PMAB6iefxGJiIjIMTMOWN7l478FvlBOgJl9mEI50oU9POd44K+Ac8vJLrlTZWbT\nKPTsutZDtQNPu/t9xY8fNrMHgQ8Avyw+PqVb1HCgLxtE3Qp8H6CRpuW9PFdERESqRdz032bgoi4f\nby/nYjO7Crgd+IC791RH9C/Al9y9rI33yhmpuhZY4u7PdrlvMTD9CM899OlbQmHKsKs59DLkdiTu\nvp3iJ29YaQX7IiIi0t8SrtzrJufuK/pyoZl9Avgq8H53f7KXp78TOMvMvlz8uBU428ze5e4XHO2i\nkjpVZtYIfBz4624P3Q48YWZXAP9JYSjtMuDG4uPzgJvM7Abg68AFwIeKje0zS6VIDUq+4/fEOxYn\nzgBgakwxI+mYgtoIUQXmne85OySHB56LyQmyZW5MgfmB1pAYJn+tofcnleDgyHTijGm3vRbQkrhF\nBSObm0Ny2j/81pCcoT+N2aU7NS6mwHz08ztCcnxozCkMEXLbY95TprExJKfz5JjFG+lNm0Ny6pGZ\nfYZCCdG73L2UPyjdj6n4dwq7HXy1p4tKLVS/EmgG7up6p7s/A/wehU5UO4Upuo+5+9PFx3cBlwNX\nUailugO47tDjIiIiMvAFFqr31S0U6rkf77r35pvtM7u668fu/kbXG9AJtLl7jz3bkkaq3P1u4O6j\nPPbvFHpwR7v2OeCcUl5HREREBqD+31Khx6kgd7+LbgNH3R6/qJTX0dl/IiIiIgF09p+IiIhUVL2c\n/VebnarGBmzK5MQx1t6RvC3A9jOGh+SMfDimwDdC/oIzQ3KaqqzAPBVUtDz2+T29P6kEmTfKWg18\nVD6oKSRn1cfHJc6Y8mjQrvVBrLUv2+L9usEb94fk5PfH5OQm93XPw8Oll8bs9p0aXT2rsg9eNjcm\n6KHne39OCdJRJznUsjrpVGn6T0RERCRAbY5UiYiISG2I3aeqqqlTJSIiIhVjxVs90PSfiIiISICa\nHKny/Z3kXurTLvUV0fq9N0JyciEpMdIdB0Jyqm3ENzUqppg2/8zSkByOS77gAiC3MmaRw5S/TJ6z\n56qYnceH/PuzvT+pBBa0K3Zm176QHIK+B3NPxpwIkQ9JgXx7e1BScg1BBeZRDl56VkhO1EkX/aLa\n/hhUiEaqRERERALU5EiViIiI1A7tUyUiIiISoU46VZr+ExEREQmgkaoI554ekxNV/BzAFyzr7yZU\nRHb9hv5uwmFe/+3jQ3Im3hyzWCJCY1s1LbkAH9YSkpNbtjwkZ8BKpWNiTp2ROCM7PObkhNSTS0Jy\nmtfuDMmprp+sMtXJSJU6VSIiIlI5Xj81VZr+ExEREQmgkSoRERGprDoZqVKnSkRERCpK038iIiIi\nUrK6HqlKzT4lJCfsyBKpvCpbqTnx5qdCcqrJ4Fc2h+Ts+N1zQ3KGz4s5zqX9d2LaM/TuZ0JyoqSG\nDg3J8QMxR1vlX3wlcUbUaIGdOSsmZ9vukJyaVicjVXXdqRIREZHK0/SfiIiIiJRMI1UiIiJSOY6m\n/0RERERCqFNVvaypkczkKYlzskteTt4YwN92RkjOgeENITlNP30uJGcg2jtpUEhOzMEncdLTT4wJ\nat+bOCK7dl1AQ2BYUE7eLCQnqsA8d9GckJz0zxeG5OTb20NyBqSXXg2JyXZ2huRI9avJTpWIiIjU\nBqN+CtXVqRIREZHKqpNOlVb/iYiIiATQSJWIiIhUlHl9DFXVZKfKOw+QfW1NfzfjTek9MUWITU/G\n7PycmXJ84gzftz+gJZDbvCUkZ/c1MbtZt36vunaz3nfFOSE5gx9YEpLjAQW1dlbMLtQsXRkSYw0x\nv+YOnnNySM7ms5tDcib+PCQGm3taSM622TE7s4/69tOJM9LDhgW0BPZeGPM1b/7J/JCcmlVHWypo\n+k9EREQkQE2OVImIiEjt0Oo/ERERkQh10qnS9J+IiIhIAI1UBbC1G0Jy0qNHheTkt2xLntHREdCS\nONVWYB6lY3Q6JGdQFe3Y7AuW9XcTDtN5yeyQnKZHFoXkTPxFLiQnSufomFMGxv7HipCciM9Orq0t\nIEUF5pE0/SciIiISoU46VZr+ExEREQmgkSoRERGpHNf0n4iIiEgMdaqkVLldu/u7CYc75y2JI9Kr\nNwU0BHJbt4bkVJvMhPEhOWN/siokp7pKn2NkTjguJujB50Ji0ieeEJKTb20JyWHFmpCYxqDPT9T3\n4K6PnJc4o2FfPqAl0Lz9YEhO+vGFITlS/dSpEhERkYoxNP0nIiIiEqNODlTW6j8RERGRAL12qsxs\nmZnt6XLbZ2ZuZnO6Pe/G4v3XdLt/rpnNN7MOM1vV/XEREREZ2MxjbtWu106Vu89y9yGHbsA/Ai+5\n+5uVd2Z2DvAeYGPXa82sFXgA+CEwArgOuM3MklciioiISPXzwFuVK6umyswywCeBv+9yXxPwbeBT\nwA+6XXIl0AHc5O4OPGxm84rPfTpBu6UHucENiTN8+sSAloAN0NV/2Y0xqyMz48eF5KRnTgvJya1I\nvhoxdfrJAS2B7NJXQnKijn/Krl4bkrPtUzH/phy9OOYoqY1/en5IzoR/fCokZ/i/BfxpOPf05BlA\nquNASE4+FXMcFfmBuM53YCm3UP0KoBW4s8t9XwAec/enzaz782cDi4odqkMWAh8p83Uxs1HAKIAh\ntJZ7uYiIiPQTi9nlouqV26m6FrjH3XdBoV4KuAo44yjPHwp038RpFzCszNcFuB74PMABqufwWBER\nEelFDUzdRSh59Z+ZTQMuAW4rftwI/CvwaXffc5TL2uHXhpWGA305QvxW4CTgpEaa+nC5iIiISOWU\nM1J1LbDE3Z8tfjwRmAXc1WXabwTwTTN7j7tfDSyhMGXY1Zzi/WVx9+3AdoBhNrLcy0VERKSf1MLK\nvQgldaqKo1IfB/66y93rgOO7PfVp4Cbg+8WP5wE3mdkNwNeBC4APAe/se5PBMmnSw5N3rHLbdyTO\nqEY7Tk4+kjfmtoG5jiB7yVkhOanOmILR7C8Xh+TseufUkJzhAYXq+aAC89zFc3p/Uimq7IiQ0XdU\n18/W+Kf39ncTDhOx6CL3zNKAlkBYGdCv1xvXF6duNv8sdaTqSqAZuOvQHe6eA97o+iQzywE7i6NK\nuPsuM7sc+AbwRQpbLlzn7tX1W0VEREQkoZI6Ve5+N3B3Cc+bcoT7ngPOKbtlIiIiMiDUy/SfjqkR\nERERCaADlUVERKSy6mSkqiY7VZ7NhRSZ25mzAloDvmhZSE5m8qSQnIgi8+xvBBV0H4gp6G5Y+lpI\nDo8uiMmpMiG7UFeZxhdidjCvtj2o0ydND8nJD20OyeHpshdjH9GBd80NyWn82fOJM9p/59yAlsDw\nx2N+7+Q2bwnJqVWGpv9EREREpAw1OVIlIiIiNcJdWyqIiIiIRND0n4iIiIiUrDZHqgwsk7zpUQXm\nnHt6SEzbhEEhOYPfWJ84I/NYdRV023GTY4La+nLspPQHaxkckpMaPyYkJ/9izE7xHdNGhOQ0/ddz\nITnWFHOWakSBOcDBS5MvktkctDPi0LtjCsxTp50ckhP1Pdgv6mSkqjY7VSIiIlIzNP0nIiIiIiXT\nSJWIiIhUjgP5+hiqUqdKREREKqs++lQ12qly8Gy2v1vxK88sDYmJKcsFa2hMnJF9+2kBLYHGpWtC\ncrLr3gjJCWMWkxO0d4u/7YyQHHtyceKM1BmnBrQEsotfCsmpNunOfH834TC5s08JyUn9Mvn3DkDz\nxj2JM6b/6fKAlkCqpSUkp6YLzKUstdmpEhERkZpRL4Xq6lSJiIhIZdXJjupa/SciIiISQJ0qERER\nqSjzmFufX9/sRjNbZmZtZrbBzL5lZiN7eP7lZvaYmW0zs51m9oSZXdDb69T19F8maJdu37cvJCe3\nbXtITmpK8veVeSKm+D5XTQsKIgUNZaeGDg3JyQcUmAN0vvfsxBlNP43Z6TszflxIzsETx4fkZHbs\nDcnh0ZjTCtKjjvr3oDxBBeZRds9KvuP8kKDDMlJjRoXk5PcGfe/UKqcaVv/lgGuAF4HhwJ3Ad4AP\nHOX5I4BbgceBPcDvAw+Y2Snuvu5oL1LXnSoRERGpKWkzm9nl4+3u3uuIhLt/rsuHW83sFuDeHp5/\nV7e7vmlmnwfOBo7aqdL0n4iIiFSMAeYecgPGAcu73K7vY7MuAZaU/B7M3gKMBl7o6XkaqRIREZHK\nituebTNwUZePy66bMbMPA9cBF5b4/LHAD4Gb3X1lT89Vp0pERERqRc7dV/T1YjO7Crgd+IC7Lyzh\n+ROBh4GHgP/d2/PVqRIREZGKsirYp8rMPgF8FXi/uz9ZwvOnAI8C89z9s6W8Rm12qloGwWlvSRyT\nnd/j1GjJUqefHJLD9h0hMbmVr4XkSOXl29v7uwmHiVq5FyG7aXNITsPgQSE53hbztWr/7XNDcobe\n80xIzv73nROS03z//JCclnXJV1NbJuZPW3bN6yE5da8KVv+Z2WeAzwPvcvdef9GZ2cnAI8B33P2v\nSn0dFaqLiIjIQHcLMAx43Mz2HLodetDMru76MfC/gEnAH3d9vpld3dOL1OZIlYiIiNQI7/djatzd\nenn8LuCuLh9/AvhEua+jTpWIiIhUVL0cqKzpPxEREZEAtTlStXcfBBWZR0i1dYTk5KtgdcRAZw2N\nITl+8EBITvvvxBQtt7yxPyQnVWVHlkTIvramv5twmKH3xBxHlZ5+YkjOjlNi/gxMvD8kBnu65P0Y\nj6rafpPmLp4TkpN+vNcdAKpXnfx9q81OlYiIiNQGB4vb/LOqafpPREREJIBGqkRERKSyNP0nIiIi\nEqA++lT13ana8Ofnh+RMvOmpkJyBKD1jan834TBRu82nT50ZktOyvjMkJ6rA/OBlcxNnZAfHVBW0\nPPRiSE6+I2YhSbXJvbo6JGfiL4aE5MjR7TipKSRnzOMhMVJBdd2pEhERkcqrhrP/jgV1qkRERKSy\n6qRTpdV/IiIiIgE0UiUiIiKV40Cd7FNVk52q/IgW9l761sQ5E7/ydEBrIDNhfEhOduOmkJwVt52T\nOGPmdfMDWhJXGH7w0rNCcjgxeSE2QHpBzPtKvbQiJCfKrmkNiTPGfTf5jthQhQXmqXRMTj4XEpOZ\nPCkkhw07QmI8aIf3CFFF/FHG3Bbzt6ZWGV43NVWa/hMREREJUJMjVSIiIlJDNFIlIiIiIqXqtVNl\nZsvMbE+X2z4zczObY2YfNbOnzGynmW0zswfM7C3drp9rZvPNrMPMVpnZNZV7OyIiIlJ13GNuVa7X\n6T93n9X1YzP7MnCFuy80s/OAzwNPAVngb4CHzGyau3eYWSvwAHAzcAHwDmCema1y9z5X7uXTsL81\n+SDbsOHDE2cA5MaPCsnZ8e6YQs+Z1w28osjmRTGFp9bYGJKT3R5T3Lvnt84NyRly7zMhOaNe2Jc4\nIzVuTEBLIL96bUhO7qI5ITlNq7aE5GTXvRGT88b6kJwoUacnRCxu2fHJ8wJaAqPvWRqS0/bDcSE5\nQ94ds0DmmKuj1X9l9UzMLAN8ErgdwN2/4e4Pu/ted+8E/g4YD5xcvORKoAO4yd073f1hYB7wqXIb\namajzGymmc0kXydfHREREakZ5Q73XAG0Ance5fFLKHSiVhY/ng0scj9szG5h8f5yXQ8sB5Yf3Len\nD5eLiIhIfzD3kFu1K7dTdS1wj7vv6v6Amc0E/hX4M3dvL949FNjd7am7gGHlNhS4FTgJOKlhkA4A\nFRERqRmqqTqcmU2jMBL1a5PVZnYq8DBws7vf1uWhdmBKt6cPB9rKbai7bwe2Awwec1y5l4uIiIhU\nVDkjVdcCS9z92a53mtkc4OfAP7j7Td2uWQKc0e2+OcX7RUREZMALGqUaKCNVZtYIfBz46273vw24\nH/hzd//WES6dB9xkZjcAX6ewAvBDwDsTtJmG3QcY92DylUH5fclXOgHsnzA4JGfsQzGrnbIhKTHS\np84MyVn5sZgVllP/V5WtjAz6JeHn96VM8delfrk4cUbUcSWZKceH5PDzhSExUT9X+bd3/3dm3zSu\n2RqS480xK2KjjqSK0LIp5quV37s3JGfbgqDVf1TP57gsTk10iCKUOlJ1JdAM3NXt/i9RKFz/Wre9\nrC4AKNZeXQ5cRaGW6g7guiTbKYiIiIhUo5JGqtz9buDuI9x/cQnXPgckP+FXREREalOd7ISks/9E\nRESkomphO4QIOvtPREREJIB5DfYeh9lIf6tdkjgnf8GZAa0hrGua+sWimKAqkh7Wly3Jfl2urexd\nOI4oqqDbnqquBax21qzen1RSkCWO8OdfDGhIFUqlY3LyuZCYzITxITnZjZtCcqQ2POuP0uY7kv+g\nl6F10AQ/f8rHQ7IefOUfFrj73JCwCtD0n4iIiFSOA/naG8DpC03/iYiIiATQSJWIiIhUUG1s3BlB\nnSoRERGpLHWqqljLIDj99MQxja9vC2gMZNeuC8nJXTwnJCf9eMwO0hGiCsyjVFuBeRRfsCwkZ8Of\nn584Y+LzAQ0hbufxiF3igbAC8ygqMD+63VefG5IzctGOkJzcSytCcqT61WanSkRERGqHRqpERERE\nEtLqPxEREREph0aqREREpIIcvD4O/6vJTpUdzJLZuDNxTlSBeZSoAvP09BOThzQ2JM8A9k+O2VHd\ncjFDx+mObEzOouUhOSv+T0wx9vQ/fSYk57g7khe826SJAS2BA+mYTZ/To0aG5OS2xxQtWybm1+62\nT5wdkjPqW0+H5ERJNTcnzmi9K+bngVNnxuRI3dRUafpPREREJEBNjlSJiIhIjaijQnV1qkRERKSy\nNP0nIiIiIqWqyZEqz2TIjR2eOCcdVIztGzaH5Ox/+ykhOc1PvJQ4I9/REdASyE07JySn+SfzQ3Ki\nRK1jGR9UT7vvipjPc9O2A4kzGrbvDWgJNGyNyYkqMI9iTU0hOVEF5nt+K2b38SH//mxITn7//sQZ\nmRNPCGgJbHnrqJCcMdvHhuTkNm8JyekXdTJSVZOdKhEREakV9XOgsqb/RERERAJopEpEREQqx4G8\nNv8UERERSa5Opv9qs1PVsQ9/7oXEMbmApkRq/NnzITmpqVMSZ+RfW5M4A2DI86+H5MTsg159Dg6O\n2TV8yL3VU8ifb2gMydl/2eyQnKbk6zZC5ffGFOBb0Oc5qsA86o9mesyYxBm5desDWgJ7J00KyRlZ\nywXmUpba7FSJiIhI7dBIlYiIiEhSXjc7qmv1n4iIiEgAjVSJiIhI5Ti4a/WfiIiISHJ1Mv1X152q\n1f9wXkjOiX8Rc1yEZWK+HPmt20NyImQ3burvJhwmE7AyEiAbtDpy1OLdITmdl80NyWl4KPkKVD+Y\n/KgbgKafPheSM1BFfZ7trFkhOemdMasaI362dn485nf7cV+O+d2emTQxJCe7fkNIjlROXXeqRERE\n5Biok9V/KlQXERERCaCRKhEREakcdx1TIyIiIhKiTqb/6rpTNfXzC0Ny0iccF5KTXbsuJCc1Pvkx\nD7S3J88A0qfODMlZ977RITljFgcVUQ9uDsnJL445Q6UhJCXG3t98a0hOy30xx6dkphwfkpMfMjgm\n508SZaoAAA7BSURBVMVXQnKi+IJlITlRR0llJoxPnJEP+suWCfrdTq4+RmmkzjtVIiIiUnmu6T8R\nERGRpLxupv+0+k9EREQkgEaqREREpHIc7ahezWxQM6mZJyfOSe3cE9CauALzKPnWmILaCLmXVoTk\nHL875muFWUhM9o31ITlRMuPHheRkN21OnBFVYB4l90bMLtSejSnFzkyeFJIT9j2YSofE+LmnheRk\nn1qSOGP0v+0MaAlkOztDcgSok7P/NP0nIiIiEqAmR6pERESkNjjgmv4TERERSchd03+HmNkyM9vT\n5bbPzNzM5hQf/6iZrTKzDjN71szO6nb9XDObX3x8lZldU6k3IyIiItKdmd1Y7M+0mdkGM/uWmY3s\n5Zp3F6/ZZ2Yvmtllvb1OryNV7j6r24t8GbjC3Rea2duBbwIfAn4B/E/gv8xshru3mVkr8ABwM3AB\n8A5gnpmtcvene3vto9k/Ks3Kj4zo6+VvmnZDde1sHMWffzFxRmpw0O7R+2MKPbPrY4qNB6q9c2J2\nDR/0REfijFRLzPfOnrknhOQ03z8/JCdKVIH5/vefE5KTb4hZvNHy08UhORGTRK4C86pTBdN/OeAa\n4EVgOHAn8B3gA0d6splNBX4EfAq4F7iKQv9llruvOdqLlFWobmYZ4JPA7cW7fh/4kbs/5O6dwFeA\n/RQ6WQBXAh3ATe7e6e4PA/OKjSyLmY0ys5lmNrNeDmYUEREZEDwfc4P0ob5A8TaqpJd3/5y7L3L3\ng+6+FbgFuKiHSz4GLHD377n7AXe/C1hYvP+oyq2pugJopdDDA5hNoad3qNFuZouL9x96fJH7YVup\nLgQ+UubrAlwPfB7gwIYNHas/+2cv9yHjMKuTBvxKGhgHbKbQG659e49478B7n0dWe+/zp/f15arK\nvM+2oJyfBOXU4tezFP/5a1/zgfk+f53eZzIxQ8BlaGfnzx7x+2IOcC2MMi3v8vHfAl/oQ84lQE/7\nd8wGFnS7byG/6t8cUbmdqmuBe9x9V/HjocDubs/ZBQwr8fFy3Ap8v/j/2919ex8yKsLMZlL4Il/k\n7jEbM1Uhvc+BRe9zYNH7HFgG0vt093dHZRVHprqOTpXdFzCzDwPXARf28LSj9V9mHeG5byq5U2Vm\n0yj07M7rcnc7hZGrroYDq7o8PuUIj5f9b9liJ6pqOlIiIiJybCXtC5jZVRRKmD7g7gt7eOrR+jc9\n9l/Kqam6Flji7l23S14CzOnSWAPO5FdDakuAM7rlzKHnITcRERGRUGb2CQodqve7++O9PP2w/k1R\nr/2XkjpVZtYIfBy4rdtD3wKuNLNLzKwJuAFoolCMTvG/LWZ2g5k1mdmlFIrY7yjldWvIdgrzugN9\nJE3vc2DR+xxY9D4Hlnp5n8eEmX2Gwk4E73L3J0u45E5grpn9rpk1mtnVFDpV3+3xdQ6vIT9qY36H\nQkdoorvv6fbYRykUiU0AXgD+wN0XdHn8bOAbwFuAjcDfuPv3SnhDIiIiIomZmQNZ4LD9Ntx9SPHx\nq4HbD31cvO/dwFeBqcBrwJ+4+0M9vk4pnSoRERER6ZkOVBYREREJoE6ViIiISAB1qkREREQCqFMl\nIiIiEkCdKhEREZEA6lSJiIiIBFCnSkRERCSAOlUlMLOUmT1lZm5mk7vc/1EzW2VmHWb2rJmd1e26\nuWY2v/j4KjO75ti3vjRmdqmZPWNme8xsm5n9c5fHBsT7NLPxZnaPmW01s51m9piZze7yeE2+TzP7\nHTN7wszazCx7hMcTvS8zG2tmPzKz9uLn7kYzO+a/O3p6n8X3+FTx67rN/v/27jzGzqoO4/j3aQuU\npZ1hNQokZd+CLS0ISGsgUBASKGCJECqrFVkEDWswasUQyhIIoCzWWBSJRqFokEUhtAFKcaHQUoyI\nBSqILGPtBmgp/fnH7wx9uczQKXOhd955Psmb9r7n3Dvnmblz59xzznuPdK+k3Rvq9PmcDfUuL69J\njTlqkVPSdpLulLS4HI9JWqdS3udzShpY2vViaedTksY31OkTOa2ICB+rOYBzgQeAALYq50YDbwAH\nk1vzXAC8Cgwt5W3A68CFpXwssAzYd23n6SLf/uTu2+NLWwcDI2uYcxpwP7AxsC5wBfAioL6cEzgE\nOA44BVjRUNbrXOV7Nq3U3Rb4G3Bhi+U8s7R9w5LjUnIHhw3qlLNS5zPAXOBlYELlfC1yApuXbJNK\nOwcCewIDapbz7JJzJ/J16EhgObBzX8vpo/w81nYDWv0AdgTmkxtDVztVPwFurdQTsAA4sdw+udxW\npc6twNS1namLjLOAyd2U1SnnXOC0yu2dys90szrkJDvHjS/avcoFbFO+R9tVyk8Fnm+lnF3UGVza\n3fnmoDY5yx/Xp4B9gRd4b6eqFjmBy4DHPuA+dcl5HfDzhnP/Asb31Zz9/fAQ4QcoQ6g/Bs4jR3Kq\nhgPv7nEY+Wx+spzvLH+inO80u1LeEiRtSL7rHSRpdpk6mSFpz1KlFjmLK8kNwDeXNBj4CvBIRHRQ\nr5xVvc01HFgcEfMbyodJGvqRtbr3DgTeBJ4tt+uUcxLwYETM6qKsLjkPAF6UdLekhZLmKvdm61SX\nnFOA3STtWqYCxwODgIdKeV1y9huD1nYDWtw5wCsRcaekYQ1lQ4DFDecWAUN7WN4qNibX1h0HHAr8\nlexE3iNpR+qTE2AmcCLwGvAOOfV3aCmrU86q3ubqrpxSZ0lzmtk85Xk7FTg3IpaW07XIWd7sHEOO\nnHelFjnJ0eO9gC8C48hO1l2SFkTEI9Qn53PAw8A8YCW52e+XIuK1Ul6XnP2GR6q6IWl7ci3VWd1U\nWUrOYVe1s+pJvLryVtH5R2dqRMyNiOXk0Ps6wGepSc4y6vgAOXLRBmxArrt5WNInqEnOLvQ2V3fl\nnWUtRdKuwHTgqoi4qVLU53NKWpfsLJ4ZEcu6qdbncxZLgVkRcXtErIiI+4H7gCMq5XXIeQOwBzmN\nty65ZuomSQeX8rrk7DfcqereaHKx5DxJHeSQKsBcSWcAc4CRnZUlifzlmFNOzeH97yZHVspbQkQs\nJtdlRGNROWqRE9iEfOG6NiKWRMTyiPgR+TuwL/XJ2ai3ueYAbZK2bSh/oTx3WoakkcAMcn3gFQ3F\ndcj5KWA34LYyTd8BbA3cKOm2UqcOOSGnqBtfk6icq0vOUcBPI2JBRKyMiEfJkavDSnldcvYfa3tR\nV6se5EjGVpVjH/IXek9gI7LTtYxcu9HVVVXt5FUb55fyg2iRq8W6yHo+8BKwKzklfAG5WLKtZjmf\nAa4nrxAbRF6Ns5y8YqbP5iSvjBpMXuG3ovx/MKuuauxVLvLqotvJ6YTOq4suarGc+wH/ASZ2c986\n5BzIe1+TtiKnsL8GbFqjnCJfb98mr4YbQE7/vdmZo0Y5byY7UVuWunsD/yanAPtUTh/l57G2G9BX\nDmAYlav/yrkTyDnxt4A/AqMa7rNXOf9WqTfh42zzGmQTcAnwCjkfPx0YUcOcuwB3Ax3kOoTHgXF9\nPSdwEqtGFqvHsGbkArYgL9leWr53V1AubW+VnOU5u7L8wakeY+qUs4u6L3SRoxY5ybVjz5AfCTIP\nOKZuOcmO0E3AP0s7/w5c3Bdz+shD5YdiZmZmZr3gNVVmZmZmTeBOlZmZmVkTuFNlZmZm1gTuVJmZ\nmZk1gTtVZmZmZk3gTpWZmZlZE7hTZWZm/ZqkDSXNl7SiB3VPKHXflPQHSaMayo8uG0Avk/SMpGMa\nyveW9JCkRZJelXSrpE0r5ZdLelrSEkkvS5oiaZM1zHNeaeNSSc+WXUDsY+BOlZmZ1ZakYZJW94GM\nk4Hne/BYo4EbgdPJzejvIDefH1rK9wF+Bnyd/GDP88hthfYu5QOB3wKPktug7UJuP3Rd5cu8A0wA\nNgWGk5+cf0sPona28Qjgu8DxETGE/PDfKyWN7elj2IfnTpWZmfVbkj4HjAEu70H1icC0iPh9RPwP\nuBL4L3BUKT8a+F1EPBi5l99dwEzgtFLeBmxGbmD/dkQsBH5Jdp4AiIiLI+KJUv46cC2wf0ObJ0qa\nJ2mxpCcqGzADbA/MjYjHyuPNAuZWv4Z9dNypMjOzfknSBsAU4MvkXoOrM5zc3gqAyC1JnmRVh0Xl\nqBpA2RS5dKJuBk6VtJ6kLYBjgTs/4GseSGXjdkkTgQuB48nRsm8C0yRtX6r8AhgiaT9JAySNAXYE\n7utBPusld6rMzKy/ugy4KyL+3MP6Q8h9Q6sWkVN9kHuLfl7SWEmDJB1FbvY9tFL/V+SI1hvk5uYr\nSzveR9IXgK8C51ROnwNcEhFzymjYPeTel8eW8tfIDZankxvGTwe+ExHzepjResGdKjMzqxVJN5SF\n4IvIqS86b5fjorI+6lDg22vw0EvJKbyqdmAJQETMIDtBV5Odm5PIkaOO0oYdgHuBS4H1y33n08Uo\nUlngPgU4IiJmV4q2AX5QzQMcAGxZyr9FjmKNANYhR9G+IenUNchpH5I7VWZmVisRcUZEtEdEO/Dp\ncq69ckwGDgK2Bv4hqQP4DTBQUoekw7t56DnAyM4bkgTsQWV6LiJuiYjdI2KTiBgH7ATMKMXDgYUR\n0bmmajFwPTBGUnvlcU8mpwkPj4jpDW1YAJzSkGejiDi9lI8C7oiIv0R6Gvg10F0mayJ3qszMrD+6\nGtiBHNEZQa6reqf8/4Fu7jMFOFrSgZLWA84H1qOsiSpTfiMlDZTUJul7ZMftmnL/x4F2SRNKnSHA\nWcBzEbGoPMbZwFXAIRExs4s2XANMkjRCaX1JoyXtXMpnAkeVUTEk7QIcSWUtmH10Bq3tBpiZmX3c\nImIJZdoOQNLr5fxLlXMXkx9NsFspe6R85tMU4JPAU8Bh5bEABgI/JEenglzPNDoiXi33f76sk5oE\nfJ/sxP0JGFdp2rXACmB6DoS9296Nyr9TJC0HppJTgW8Ds8mPb4C8IrENuF/SZsBCch3X5A/5rbI1\noLx4wczMzMx6w9N/ZmZmZk3gTpWZmZlZE7hTZWZmZtYE7lSZmZmZNYE7VWZmZmZN4E6VmZmZWRO4\nU2VmZmbWBO5UmZmZmTWBO1VmZmZmTfB/wLDVl3YO+B4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Trace maximun" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use the method `trace_maximum()` to find the index of the maximum on each powerspectrum in a certain frequency range. For example, between 755 and 782Hz)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "tracing = dynspec.trace_maximum(min_freq=755, max_freq=782)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is how the trace function looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAHACAYAAADa0a68AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xec1dW97//XGobepQiCChZQsSsoUY819gbqTfOcRBKF\nq6YczTE5N8n5xRyTk54Yk9gSvTcnplwLii22WCOgiB3FrggIIr0zw7p/fGb9vnvGGWbvme/e3/Z+\nPh7zmDW7rr0ZZt6zPqs47z0iIiIikk91SXdARERERKpHYU9EREQkxxT2RERERHJMYU9EREQkxxT2\nRERERHJMYU9EREQkxxT2RERERHJMYU9EREQkxxT2RERERHJMYU9EREQkx+qT7kBHDB482I8aNSrp\nboiIiIgk5plnnlnmvR/S3u0yGfZGjRrFnDlzku6GiIiISGKcc++WczuVcUVERERyTGFPREREJMcU\n9kRERERyTGFPREREJMcU9kRERERyTGFPREREJMcU9kRERERyTGFPREREJMcU9kRERERyTGFPRERE\nJMcU9kRERERyTGFPREREJMcU9kRERERyTGFPREREJMfqk+5AKs2ZA8cck3Qvyjd2LPz979C3b9I9\nyb777oOLLoL/+i8455ykeyMiItJpCnut2boV1qxJuhflmzMHHn0UTj016Z5k3/e/D2++Cb/7ncKe\niIjkgsJea3bbDf7v/026F+U5/3xYtQo++ijpnmTf4sXwxBPWfv/9ZPsiIiISE4W91my3XXZGdb7z\nHYW9uEyfDt5bW2FPRERyQgs0sm7QIPu8fHmy/ciDW26J2qtX24eIiEjGKexl3Xbb2WeN7HXO0qU2\n77HUwoXJ9EVERCRGCntZF0b2FPY65/bbbWFOz57RZSrliohIDijsZZ3KuPG4+Wb7fMopMGSItRX2\nREQkBxT2sk5l3M5btgweftjaZ58NI0daW2FPRERyQGEv61TG7bw77oDGRujRA04+WWFPRERyRWEv\n61TG7bywCvfEE+0Ukh13tK8V9kREJAcU9rIulHHXrYNNm5LtSxatWAEPPmjtsLeiRvZERCRHFPay\nLozsgUq5HTFjBjQ0QLdu0XFzCnsiIpIjCntZVxr2VMqtXCjhnnAC9Otn7RD2li+H9euT6ZeIiEhM\n2g17zrmXnXNrSz42OOe8c+5A51wX59yPnHMLnHNrnHMvOufObnH/g51zTznn1jvn3nTOnVu9l1NA\nGtnruFWr4P77rX12ybdtCHugjZVFRCTz2g173vtx3vs+4QP4OTDPez8XuAj4Z+A4oB/wHeBPzrk9\nAJxz/YF7gVuBgcA04Brn3MSqvJoi6tkTune3tsJeZe66CzZvhq5d4bTTostHjIjaKuWKiEjGVVTG\ndc7VA1OAa5su2g141Hs/35vbgY+AvZuunwysB37svd/kvX8AmA5cEEvvBZzTityOCiXc446DgQOj\ny3v1iha+KOyJiEjGVTpn70ygP/CHpq+vB8Y55/ZqKumeDdQDjzVdvx/wrPfelzzG3KbLK+KcG+Sc\nG+OcG9PQ0FDp3fNNe+1Vbs0auPdea5999sev1yINERHJiUrD3lTgr977lU1fvwU8DrwEbAL+DzDV\ne7+06fq+wKoWj7ESK/lW6svAfGD+0qVL27ttsegUjcrdc49tVdOlC5xxxsevV9gTEZGcKDvsOed2\nBY4Frim5+LfAAcBooBvwSWxO3vFN16/BRgJLDQBWd6CvVwFjgbFDhw7twN1zTGXcyoUS7jHHNF/k\nEijsiYhITlQysjcVeN57P7vksoOAP3jv3/Xeb/XeP4mN9J3cdP3zwP4tHufApssr4r3/yHv/mvf+\ntfr6+krvnm8q41Zm3Tq4+25rt1bCBYU9ERHJjbLCnnOuG/AFmo/qAfwD+JxzbkTT7Q4BjgKeabp+\nOtDbOfdvzrnuzrnjgEnAdZ3vuvz/VMatzL33woYNUFcHZ57Z+m0U9kREJCfKHdmbDPQAbmpx+b8B\nLwNPOefWNF3/M+/9fwM0ze07GTgHm6t3HTDNez8zhr5LoDJuZUIJ98gjoa0pASHsLV2qY+hERCTT\nyqqHeu//AvyllctXY3vnTdvGfZ8GJnS0g1IGlXHLt2GD7a8H0Vm4rSndWHnRIhg9urr9EhERqRId\nl5YHpWXcZrvcyMfcd5/N2XMOJk1q+3alYU+lXBERyTCFvTwII3tbtsDatcn2Je1CCfeII2DYsLZv\n17dvdFauwp6IiGSYwl4elG4donl7bdu0CWbMsHZbq3BLaZGGiIjkgMJeHpSGPc3ba9sDD9jJGQCT\nJ7d/e4U9ERHJAYW9PCg911Vhr22hhPuJT8CIEe3fXmFPRERyQGEvD7p1szlmoDJuWzZvhjvusHY5\nJVxQ2BMRkVxQ2MsLbb+ybX//O6xsOtL5rLPKu4/CnoiI5IDCXl7oFI1tCyXcCRNgp53Ku08Ie4sX\n20pnERGRDFLYy4u0n6Jx661w6qnw2mu1f+4tW2D6dGuXW8KFKOx5Dx98EH+/REREaqCsEzQkA9Je\nxv3P/4Tnn7fTKGbPhq5da/fcjzwSheByS7jQfGPlBQtgxx1j7ZaIiEgtaGQvL9Jexg0jY88+Cz/5\nSW2fO5RwDzwQdtml/PsNGAC9ellb8/ZERCSjFPbyIs1l3K1bYdmy6OvLL4d582rz3A0NHSvhgh2p\npkUaIiKScQp7eZHmMu7KldDYaO3u3W0blClTosuq6fHH4cMPrV1p2AOFPRERyTyFvbxIcxk3hC2A\nX/zCPs+eDVdeWf3nDiXc/faD3Xev/P4KeyIiknEKe3kRRvZWrLCyaZqUhr3PfQ7OO8/a3/oWvP56\n9Z63sRFuu83aHRnVA4U9ERHJPIW9vAhhz/to8+C0CGEvnPTxs5/B8OGwcSN88YvVC6dPPhktDFHY\nExGRglLYy4tQxoX0lXJD2BsyxBY9DBwI11xjlz3+OFx9dXWeN5Rwx42DPfbo2GOEsLdoUW3mGIqI\niMRMYS8vwsgepG9FbmnYC04/HT77WWt/4xvwzjvxPufWrbaRM3R8VA+isNfYCEuWdL5fIiIiNaaw\nlxcDBkBd0z9nmkf2Sl15pV22bh2cf76VoOMyezYsXGjtOMIeqJQrIiKZpLCXF3V1Vh6F7IS9wYPh\nN7+x9oMPwu9/H99zhhLu2LFWxu2owYNtuxhQ2BMRkUxS2MuTtG6/0lbYAxt1mzzZ2pdeGk+g8j4K\ne2efbfMEO0obK4uISMYp7OVJWk/R2FbYc85G9wYOhNWrYerUzpdzn34a3nvP2p0p4QYKeyIikmEK\ne3mS1lM0thX2AIYNizZYvuceuOmmzj1fGNXbdVfbTLmzFPZERCTDFPbyJI1lXO/bD3sA554LJ59s\n7a98JdofryPPF1cJN1DYExGRDFPYy5M0lnHXrLGzcGHbYc85uPZa6NfPTgG56KKOlXOffRbeftva\ncZRwQWFPREQyTWEvT9JYxi09Km1bYQ8sVP3sZ9a+7bZohK4S4T6jRsFBB1V+/7b6BbaVS9qOohMR\nEWmHwl6epLGMW0nYAzs+7dhjrX3RRbBsWfnP5T3cfLO14yrhQhT2Nm+urD8iIiIpoLCXJ2ks44aw\n16WLbfzcHufg+uuhd2+771e/Wv5zvfgivPGGteMq4YI2VhYRkUxT2MuTEPZK58klLYS9wYOjEz7a\nM3o0/PCH1v7Tn2DGjPLuF0q4O+4IEyZU1s9tGToU6uutrbAnIiIZo7CXJ6GMC+kZ3StnJW5rLrwQ\nDj/c2tOm2aKN9oSwd9ZZ8ZVwwULqiBHWVtgTEZGMUdjLkzCyB9kPe3V1cMMN0KMHLF5sp2tsy7x5\n8Mor1o6zhBtoRa6IiGSUwl6elIa9tCzS6GjYA9h9d7jiCmvfeCPcd1/btw2jesOHw8SJlT9XexT2\nREQkoxT28qR3b+ja1dp5CHsAX/taNP/u/PPtSLXWlJZwy50bWAmFPRERySiFvTxxLn0rcjsb9rp0\nsXJut26wYAF885sfv838+bYSF6pTwgWFPRERySyFvbxJ28bKnQ17AOPGwX/8h7Wvvhoefrj59WFU\nb+jQaFFH3ErDXkdO9hAREUmIwl7e5DHsAVx2Gey/v7W/9CVYty66LoS9yZNtJLAaQtjbsKG8lcEi\nIiIpobCXN2H7lTSUcdevtw/ofNjr2tUWadTXw1tvwbe/bZe/8QY895y1q1XCBW2sLCIimaWwlzdp\nGtmr9Ki09uy/fzRn78or4ckn4dZb7evBg+HIIzv/HG0ZNixa+KGwJyIiGaKwlzd5DntgI3rjxtm8\nuSlT4M9/tssnTYpOuaiG+nrb1gUU9kREJFMU9vImlHHTEPaWLrXPpauEO6t7d1udW1dnq3Cff94u\nr2YJN9CKXBERySCFvbxJ09YrYWRvu+3iXTgxYULzEzUGDoSjj47v8duisCciIhmksJc3pWXcpLcI\niWslbmsuv9xO2ABbhRs2k64mhT0REcmgKk5ykkSEMu6mTbYStnfv5PpSzbDXs6cdn/bHP8KFF8b/\n+K1R2BMRkQxS2Mub0rlxy5enI+wNHVqdxx89Gr7zneo8dmtC2FuwwEZNnavdc4uIiHSQyrh5Uxr2\nkl6kUc2RvSSEsLd2bdtn9IqIiKSMwl7ehDIuKOzFTRsri4hIBins5U337lHpNukVuXkLezvsELUV\n9kREJCMU9vIoLRsr5y3sdesG229vbYU9ERHJCIW9PErDxsqbNsGaNdbOS9gDrcgVEZHMUdjLozRs\nrFyNo9LSQGFPREQyRmEvj9JQxlXYExERSQWFvTxKW9gbPDi5fsRtxx3ts8KeiIhkhMJeHoU5e2ko\n4w4YUJujzGpFI3siIpIxCnt5lKaRvTyVcCEKeytX2ubKIiIiKaewl0cKe9VTurHywoXJ9UNERKRM\nCnt5VFrG3bo1mT7kNeyNGBG1VcoVEZEMUNjLozCyt3Vrcme45jXs9egRLThR2BMRkQxQ2MujEPYg\nuVJuXsMeaJGGiIhkisJeHoUyLiS3IldhT0REJBUU9vJo4EBwztoa2Yufwp6IiGSIwl4edeli+9tB\nMmFvyxZYscLaCnsiIiKJUtjLq1DKTSLslT6nwp6IiEiiFPbyKizSSGLOXl7PxQ1C2Fu2DDZuTLYv\nIiIi7VDYy6skN1YuStgDbawsIiKpp7CXV2kIe3362L50eaONlUVEJEMU9vKq9BSNWsvzSlywEBsW\nwCjsiYhIyins5VUaRvbyGvZAizRERCQzFPbySmGvuhT2REQkIxT28kpl3OpS2BMRkYxQ2MurMLK3\nahU0NNT2uRX2REREUqPdsOece9k5t7bkY4NzzjvnDnTOXdPiurVN113SdN9RTV+vK7levx1rIYQ9\nqP3onsKeiIhIarQb9rz347z3fcIH8HNgnvd+rvd+WovrJgENwF9aPMzYktuNbPkcUgWhjAsKe9UQ\nwt6SJbB5c7J9ERER2YaKyrjOuXpgCnBtGzeZCtzpvV/U2Y5JJ5WO7NVykcbWrdHzFSHseQ+LFyfb\nFxERkW2odM7emUB/4A8tr3DODQPOAK5p5X6znXMfOucecc4dVXEv7fEHOefGOOfGNNR6DloW9e0L\n9fXWrmXYW77cAh8UI+yBSrkiIpJqlYa9qcBfvfcrW7nui8B7wAMlly0DJgKjgVHArcC9zrl9K+8q\nXwbmA/OXLl3agbsXjHPJrMjN+1FpQb9+trkyKOyJiEiqlR32nHO7AsfSysidc64OOB+4znvvw+Xe\n+7Xe+1ne+83e+3Xe+6uAx4FzOtDXq4CxwNihQ4d24O4FlMRee0UJe85pkYaIiGRCJSN7U4Hnvfez\nW7nuRGA4cEMZj+MBV8Hz2p28/8h7/5r3/rX6UJ6UbUsy7PXoAb171+55k6CwJyIiGVBW2HPOdQO+\nQOvz8cCC4G3e+w9LL3TOHeqc29s5V++c6+GcuwA4EpjeiT5LuZIs4w4ZYqNfeRbC3oIFyfZDRERk\nG8odIpsM9ABuanmFc24EcApW4m1pNPCf2KjfRmAecJr3/pkO9VYqk+TIXp5LuIFG9kREJAPKCnve\n+7/w8b3zwnUL23oc7/2fgT93uHfSOQp71aWwJyIiGaDj0vJMYa+6QthbvLj2R9KJiIiUSWEvz5Ke\ns5d3Iext3QoffJBsX0RERNqgsJdnGtmrLm2sLCIiGaCwl2ch7G3YYB+1EDa8LkLY22476NnT2gp7\nIiKSUgp7eRbKuFCbUq73sGyZtYsQ9rSxsoiIZIDCXp6FkT2oTSl35cpooUIRwh4o7ImISOop7OVZ\n6cheLcJeUY5KK6WwJyIiKaewl2c9e0ZzympRxlXYExERSR2Fvbyr5YrcEPa6doX+/av/fGmgsCci\nIimnsJd3SYS9IpyLG4Swt3Ch7bcnIiKSMgp7eVfLjZWLtMdeEMJeQ0O07YyIiEiKKOzlXVIje0Wh\njZVFRCTlFPbyTmGvugYPhm7drK2wJyIiKaSwl3cq41ZXXR2MGGFthT0REUkhhb2808he9WlFroiI\npJjCXt4p7FWfwp6IiKSYwl7ehbC3fLmdXVst3ivsKeyJiEgKKezlXZiz19AAa9ZU73nWroVNm6yt\nsCciIpIaCnt5F0b2oLql3CIelRaUhr1qjp6KiIh0gMJe3insVV8Ie5s21WZupIiISAUU9vJu4MCo\nXc3tV0LY69Kl+XMWgTZWFhGRFFPYy7v6eujf39q1GNkbNMj2niuS7be3kAsKeyIikjoF+61cULXY\nfqWoK3HBgt4OO1hbYU9ERFJGYa8IanGKRpHDHmhFroiIpJbCXhFoZK/6FPZERCSlFPaKQGGv+hT2\nREQkpRT2ikBl3OpT2BMRkZRS2CsCjexVnzZWFhGRlFLYKwKFveoLYW/dOli1Ktm+iIiIlFDYK4Jq\nl3E3bLCQAwp7oFKuiIikisJeEYSRvZUrobEx/scv8lFpwfDh4Jy1FfZERCRFFPaKIIQ972HFivgf\nX2EPunaFYcOsvWBBsn0REREpobBXBCHsQXVKuaVhr/S5ikYrckVEJIUU9oogzNmD6izSCGFvu+3s\nLN6iUtgTEZEUUtgrgv797fxWqG7YK2oJN1DYExGRFFLYKwLnqrsiV2HPKOyJiEgKKewVRQh7Gtmr\nnh13tM8KeyIikiIKe0VRzY2VFfZMGNlbvdo+REREUkBhryhC2FMZt3pKN1ZeuDC5foiIiJRQ2CsK\nlXGrb4cdorZKuSIikhIKe0WhMm71de8OQ4daW2FPRERSQmGvKKoV9jZvhlWrrF30sAdakSsiIqmj\nsFcU1dp6ZdmyqK2wp7AnIiKpo7BXFNUa2dO5uM0p7ImISMoo7BVFCHvr1sGmTfE9bmnYGzw4vsfN\nKoU9ERFJGYW9oig9HzfOUm4Ie/362QKFolPYExGRlFHYK4owsgfxlnK1Ere5EPaWL4f165Pti4iI\nCAp7xVGtsLd0qX1W2DPaWFlERFJGYa8oevWCHj2sXY0yrsKeGTEiaquUKyIiKaCwVyTVOEVDYa+5\nXr2i91lhT0REUkBhr0iqsf2Kwt7HaZGGiIikiMJekYSwpzJudSnsiYhIiijsFYnKuLWhsCciIimi\nsFckcZdxGxqiUcKhQ+N5zDxQ2BMRkRRR2CuSuMu4paFRI3sRhT0REUkRhb0iibuMq3NxWxfC3tKl\n8R5NJyIi0gEKe0USdxlXYa91pRsrL1pUveeZMweWLave44uIpMXy5fD000n3IrMU9oqktIzrfecf\nL4S93r2hZ8/OP15elIa9apVyr7kGxo+H00+vzuOLiKTJpz4FEybAL36RdE8ySWGvSEIZd/NmWLeu\n84+nlbit69sX+vWzdjXC3jvvwNe/bu2ZM+PdSkdEJG0aGuCxx6z9v/4XvP56sv3JIIW9Ion7fFyF\nvbZVa5GG93D++c3D+lNPxfscIiJp8tZbNkgBsHEjfPGLsHVrsn3KGIW9IlHYq51qhb3f/x4efNDa\nvXrZ51mz4n0OEZE0mTev+dePPw6//W0yfckohb0iCWVciKf0p7DXtmqEvfffh0svtfbkyfDpT1tb\nYU9E8iyEvb32gs98xtrf/Ca8/XZyfcoYhb0i6drV5pOBRvaqLe6w5z1MnQqrV8PAgfCb38DEiXbd\nrFkqaYhIfpWGvV/9yn7nrFtnU1riWGxYAAp7RRPn9isKe22LO+zddBPcc4+1r7wShg2DQw+1r1et\ngvnz43keEZG0KQ17gwfbH7sADz1kU1ukXQp7RRPnKRoKe20LYW/xYtiypXOP9cEH8JWvWPvkk+Hc\nc629557RSK1KuSKSR42N8Mor1t5rL/t89tk2lQVsaotOK2qXwl7RxHWKxtat0WMo7H1cCHveW+Dr\njIsvhhUrbDuXa68F5+zyLl1s3ylQ2BORfHr3XVuBC1HYc85G9wYOtKktU6eqnNsOhb2iiauMu2KF\n/cUFCnutiWtj5VtugVtvtfbPftb8caH5vD0RkbwJJdwuXWDMmOjyYcNsSgvYFJebbqp93zJEYa9o\n4irj6qi0bRswINoapaNhb9kyuPBCax97rO0t1VKYt/fSS7BmTceeR0QkrULY22036N69+XXnngun\nnGLtr3zFprxIqxT2iiauMq7C3rY5BzvuaO2Ohr2vftXe59694frro/JtqUMOsc9bt9pZuSIieVK6\nOKMl5+zoyH79rNp04YUq57ZBYa9o4irjhrDXvTv06dO5x8qrzqzInTED/vQna//whzB6dOu3GzzY\n/uIFlXJFJH+2FfbAfs7+7GfWnj7dpr7IxyjsFU3cZdwhQ1ofcZKOh72VK2HaNGsffnhUym1LKOUq\n7IlInnjfftgDm+Jy7LHWvugimwIjzbQb9pxzLzvn1pZ8bHDOeefcgc65a1pct7bpuktK7n+wc+4p\n59x659ybzrlzq/uSZJtCGXfFis5txKttV9rX0bB36aW2grdHD7jhBqhr579padhTCUNE8mLBgugc\n8G2FPedsqkvv3va76atfrU3/MqTdsOe9H+e97xM+gJ8D87z3c73301pcNwloAP4C4JzrD9wL3AoM\nBKYB1zjnJlbrBUk7wsje1q02gtRRCnvt60jYu/9+C3gAV1wBu+/e/n1C2Fu6FN55p6IuioikVhjV\ncw7Gjt32bUePtikvYFNgZsyobt8ypqIyrnOuHpgCXNvGTaYCd3rvFzV9PRlYD/zYe7/Je/8AMB24\noNKOOucGOefGOOfGNDQ0VHp3CULYg86VchX22hfC3qJF0TY127JmjR3/A7Z/3te+Vt7z7LuvjQKC\nSrkikh8h7O2yC/Ts2f7tL7wQjjjC2tOmWQVLgMrn7J0J9Af+0PIK59ww4AzgmpKL9wOe9b5ZbWlu\n0+WV+jIwH5i/dOnSDtxdgKiMC51bpKGw174Q9hobYcmS9m//jW/Ae+9Bt242utelS3nP07UrHHyw\ntRX2RCQvypmvV6quzo5P69HDpsJcemn1+pYxlYa9qcBfvfet1f++CLwHPFByWV9gVYvbrQT6Vfi8\nAFcBY4GxQ4cO7cDdBbD938IcMIW96qpkY+VHHoGrr7b2f/wHjBtX2XNpkYaI5E2lYQ9s6ssVV1j7\nxhvhvvvi71cGlR32nHO7AsfSfOQuXFcHnA9c12IUbw02ElhqALC60o567z/y3r/mvX+tvr6+0rtL\nUFdnR8yAyrjVNmhQtAnotsLeunXRhsn77w+XXVb5c4Ww9+yz0dFCIiJZVe5K3NZ87WvRUZLnn29H\nqhVcJSN7U4HnvfezW7nuRGA4cEOLy58H9m9x2YFNl0tSOrvXnvcKe+VwrrxFGt/5Drz1FtTX21+i\nXbtW/lwh7G3ZYoFPRCTLFi+GVU2FwUrDXpcuNhWmWzdb0fvNb8bfv4wpK+w557oBX6CVUb0mU4Hb\nvPcftrh8OtDbOfdvzrnuzrnjsBW713WwvxKHzp6isXq1hQpQ2GtPe2Fv5kz45S+t/e//biN7HTFi\nRPRcKuWKSNa9/HLU3mOPyu8/bpxNiQGbIvPII7F0K6vKHdmbDPQAPnbSsHNuBHAKrQTBprl9JwPn\nYHP1rgOmee9ndrTDEoPOjuzpqLTybSvsbdwIU6bYSOm4cfCtb3XuucLo3kz99xKRjAsl3J137vgp\nTZddBgccYO0vfjHas6+Aygp73vu/eO/7ee/XtnLdQu99vff+0Tbu+7T3foL3vqf3fhfv/R8722np\npM6eoqGwV75thb3vfQ9efdXmUd5ww8cP+a6UFmmISF50dL5eqa5d7Wdrfb1Nlfn2t+PpWwbpuLQi\n6mwZN4S9+npb3SttayvsPfMM/PjH1r700mgycWeEsLdgASxc2PnHExFJShxhD2xqzL//u7WvvBKe\nfLJzj5dRCntFFFcZd/BgnYvbnhD2Fi6MjqfbvBnOO8/239t9d7j88nie68ADLYADzG5tHZWISAZ4\nH83Z62zYA5siM26cPe6UKYXcsUBhr4jiKuOqhNu+EPY2b44O5/6v/4IXX7SgfMMN5e0MX46ePaMF\nHirlikhWLV0anX4RR9jr3t12Oqirg/nz4/sDO0MU9ooorjKuwl77Wm6s/MIL0YafX/4yHH54vM83\nsenYaYU9EcmqUMIF2HPPeB5z/Hj4+tet/ZOfwJw58TxuRijsFVEY2VuzxkacKqWwV76hQ6PS6jvv\nWAmhocEO7f7BD+J/vjBvb86caHscEZEsCWFvxAjo3/Jchk747ndhzBibQjNlSsd+/2WUwl4RhbAH\nHTsoWmGvfHV19gMLbCXYM89Y+/rroXfv+J8vhL0NG6xULCKSNXEtzmipZ0+bOuOc/Xysxh/cKaWw\nV0ShjAsdK+Uq7FUmlHJfecU+X3ABHHtsdZ5r9Ojo30WlXBHJomqFPYDDDrMpNADf/75NrSkAhb0i\nKh3ZU9irvtJ5eyNHRluuVINz2m9PRLKtmmEPbERv9GibUnPeefY55xT2iqh3bzszEDq2IldhrzKl\nYe+66+Kdg9IahT0Ryaply2w1LlQv7PXuDb/7nbXnzrWfyzmnsFdEznV8Re66dTYfDBT2yjVpEvTt\nayvBTjqp+s8Xwt7rr3d8xbWISBLCdBeoXtgDOOYY+PSnrf3H/B/spbBXVB3dWDn8xQUKe+U67DBY\nudKW+9fxGRrSAAAgAElEQVTC+PHRZtfaXFlEsiSUcIcNaz6/vBrOPdc+z5zZ+pGWOaKwV1Qd3VhZ\n5+J2TF0N/6v17Qt7721tlXJFJEuqPV+v1HHHQb9+1r7ttuo/X4IU9oqqoyN7IeyVloIlfTRvT0Sy\nqJZhr3t3OP10a99yS/WfL0EKe0XV0Tl7IewNGgRdusTbJ4lPCHuzZ0dn8oqIpF0twx7A2Wfb5yee\ngMWLa/OcCVDYK6rOlnFVwk23EPZWr4ZXX022LyIi5Vi5EhYtsnatwt7xx0OfPuA9TJ9em+dMgMJe\nUXW2jKuwl2577BHNRZk5M9m+iIiUo1YrcUv17AmnnWbtHJdyFfaKqrNlXIW9dKurg0MOsbbm7YlI\nFoQS7uDBtf0dE0q5jz7afMeJHFHYK6rOlnGHDo23PxI/LdIQkSyp9Xy94MQToVcvm998++21fe4a\nUdgrqhD2Nm6E9evLv59G9rIjhL2XX7a5eyIiaZZU2OvVC045xdo331zb564Rhb2iKt02pZJSrsJe\ndoQyrvfw9NPJ9kVEpD1JhT2ISrkPP2xHtuWMwl5RhZE9UNjLq0GDYMwYa6uUKyJptmYNvPeetZMI\neyefDD16QGMj3HFH7Z+/yhT2iqp0ZK/ceXsbN8LatdZW2MsGzdsTkSxIYiVuqT59orPLc7gqV2Gv\nqLp3h969rV3uyJ6OSsue0rDnfbJ9ERFpSyjhDhhg5+ImIZRyH3wQVqxIpg9VorBXZJXutaewlz0h\n7C1bBm+9lWxfRETaUjpfz7lk+nDqqdCtGzQ0wIwZyfShShT2iqzS7VdKw17pnD9Jr332sU1DQaVc\nEUmvJBdnBP36wQknWDtnpVyFvSKrdGPlEPYGDoSuXavTJ4lXfT2MH29thT0RSas0hD2ISrn33w+r\nViXblxgp7BVZR8u4KuFmixZpiEiarVsH77xj7aTD3umn22DG5s1w113J9iVGCntF1tEyrsJetoSw\n99xzsGFDsn0REWlp/vxoAVnSYW/AAPjkJ62do1Kuwl6RaWSvGMLmyg0NMHdusn0REWkplHD79IGR\nI5PtC0Sl3Hvvtf3/ckBhr8g6OmdPYS9bdtgBdtrJ2irlikjapGElbqkzzrD5zps2wT33JN2bWCjs\nFZnKuMWheXsiklZpWZwRbLcdHHOMtXNyVq7CXpGVhr1yNtxV2MsuhT0RSau0hT2ISrn33GMLSDJO\nYa/IQhm3sbG8JeYKe9kVwt7779uHiEgabNwIb75p7TSFvTPPhLo6W9R2771J96bTFPaKrHRj5PZK\nuVu2wMqV1lbYy54DDoj2RtTonoikxWuvwdat1h43Ltm+lBoyBI46yto5WJWrsFdkpWGvvUUay5ZF\nbYW97OnRwwIfKOyJSHqEEm6vXtFCsrQIpdy77sr8tlUKe0U2YEC08qm9sKdzcbNP8/ZEJG1C2Ntz\nTyubpsmkSfY7ct06uO++pHvTKSl7Z6WmunSxwAftl3EV9rIvhL1nnrHd4UVEkpbGxRnBsGFwxBHW\nzngpV2Gv6MrdWDmEvb59oXv36vZJqiOEvY0b4YUXku2LiAikO+wBnHOOfZ4xw/bdyyiFvaIrd2Nl\nrcTNvlGjYPvtra1SrogkbfNmeP11a6c17E2ebJ/XrIEHHki2L52gsFd0lY7sKexll3Oatye1Vc7+\nnXm1ZYttayVte+MNO8YR0hv2dtgBDjvM2hku5SrsFV25p2go7OWDwp7UyvTp0K0b/OIXSfek9l59\n1ULCoYdmfhVnVYUSbvfuMHp0sn3ZlrAq9447MjvfWWGv6DSyVywh7L35ZvNFNyJx+9GPbNTmd79L\nuie11dgI551n21XNmQPf/W7SPUqvEPb22MMWDKZVKOWuXAkPPZRsXzpIYa/oNGevWA4+ONreYPbs\nZPsi+fXee9H317x50YbsRfCrXzUfOf/pT+Hpp5PrT5qlfXFGsNNOcMgh1s5oKVdhr+hUxi2WPn1g\nn32srVKuVMtttzX/uihh54034FvfsvZnPwtjx9rpEOedl+mVnFWTlbAHUSn39tttPmbGKOwVncq4\nxaN5e1JtLUc/ivC9tnUrfOlLNkdv2DD49a/h97+3hVEvvww/+EHSPUyXhgaYP9/aWQh7Z51ln5cv\nh0ceSbQrHaGwV3ShjLtqVbQqqqXGxigMKuxlXwh7Tz2l1YISv4UL4R//sPaIEfa5CGHvmmvg0Uej\n9sCBtorzK1+xy37wA3juueT6lzZvvhktdshC2Bs9Gg46yNoZLOUq7BVd6fm4K1a0fpvly6MtFBT2\nsi+EvTVr4JVXku2L5M/06fa5b1/4+tetPWtWvrdheecduOwya3/603DGGdF13/8+7LKL/TE9ZUom\nS4BVEUq4XbvCrrsm25dyhVLu9OltD46klMJe0ZWGvbZKuToqLV/GjImOySvCiIvUVhj1OO00OOoo\nay9fbvPZ8sh7uOACOz91yBBboFGqd+9oRfKzz8JPflL7PqZRCHtjxljgy4IQ9j78EB5/PNm+VEhh\nr+hCGRcU9oqiri5aWaawJ3FasgQee8za55wDe+9tYQfy+712443RyQq//nXrPyOPPhqmTbP25ZdH\nQafIsrQ4I9htN9h/f2tnrJSrsFd0fftCfb2121qRG8Jez57RD27JNi3SkGqYPt1Gunr3hhNOsJ8t\n48fbdXn8Xlu4EC65xNqTJkXnqLbmRz+CHXe0eWpTpmi+bBbDHkSje7fdlql/Q4W9onOu/RW5Womb\nPyHszZtni3NE4hBGO0491f44hPz+YeG9jdatWmWLMX7zG/t52pZ+/eC666w9ezZceWVt+plGjY12\nyghkN+x98AE8+WSyfamAwp60v7Gywl7+TJhgn723VbkinfXhh9GWFOEXIkRh7/nnYf36mnerav70\nJ7jrLmv/8pcwfHj79znxRPjCF6z9rW/B669XrXup9s47sHGjtbMW9saOtekJkKlSrsKetL+xssJe\n/my3nf3QgvyNuEgybr/dRmx69oSTToouD/NDGxvhmWeS6VvcliyJtlQ56ST4538u/74//7kFw40b\n4YtftP35iiaUcLt0gd13T7YvHRH+mLnllsz8+ynsSftl3KVL7bPCXr7ktbwmyQijHCef3Hxu77Bh\nMGqUtfPyvXbxxfbHcd++cO212y7ftjRwoO3DB7ai8+qrq9PHNAthb7fdoHv3ZPvSESHsLVqUme9p\nhT1RGbeoSsNenvdAk+r76KPogPjSEm6Qpz8sbrklCrY/+5ktuqjU6afDZz5j7W98w8qaRZLVxRnB\nXnvBHntYOyOlXIU9URm3qMIv4DzvgSa1MWOGlWm7d4dTTvn49eF7bebMbP9h8dFHcNFF1j72WDse\nraN+9Sv7mbpuHZx/frbfl0plPew517yUm4F/O4U90WrcoirCHmhSG2F048QTrbTZUgh7ixfDggW1\n61fcvvpVm9bSqxdcf31l5duWBg+2ffkAHnzQztEtgq1bo5N7xo1Lti+dEcLeggXw9NPJ9qUMCnuy\n7bC3dSssW2Zthb18yfseaFIbK1dGmwq3VsIF24i2WzdrZ/V77c474aabrP3DH9pZqZ11zjm2Px/A\npZfC++93/jHTbsECG82E7I7sAey7r805hEyUchX2ZNtz9laujDaOVNjLnzzNpZJk3Hmnnffatasd\nkdaa7t3hwAOtncXvtZUroxMwDjssKuV2lnPw29/aoo3Vq2Hq1EyUBDsllHDr6uyotKzKWClXYU+i\nkb0NG+yjlI5Ky7e87oEmtRNGNY4/Hvr3b/t2Wf7D4utft5WXPXrADTdYUInLsGHRBsv33BONHuZV\nCHu77BJtvJ1V4cSUt9+2c49TTGFPorAHH1+kobCXb3ncA01qZ/VquO8+a2/rqDCIwt7cubBpU3X7\nFacHHojm0/3nf1ZnNOrcc23LGrD9+z74IP7nSIusL84odcABUTk/5aVchT2Jyrjw8VJuCHtdu9px\nP5IvedwDTWrn7rstuNXX23Yi2xLC3qZNNpKcBWvW2EpZsFNn/vVfq/M8ztl+ff36wYoVto9fXuUp\n7JWWcm++OdWlXIU9KW9kb+jQzq08k/TKcnlNkhVGM447zuadbctOO9kfF5Cd77VvfhPefdf+2L3h\nBjvxoVpGjoSf/tTat95q4SFvvM9X2IMo7L3xBrz4YrJ92QaFPbF5KL16WbutkT2VcPMrL3ugSW2t\nXWtzzKDtVbilnMvWHxaPPmqLJwD+4z9qs03Il75k+/eBLQIJOyHkxaJFVvqH/IS98eOjjbVTXMpV\n2BPT1opchb38K90DrQhbP0g87rnHznft0gXOOKO8+2Ql7K1fb+fWgm0b841v1OZ5nbP9+3r3tp+9\nX/1qbZ63VsKoHkQnUGRdRkq5Cnti2jpFQ2Ev//KwB5rUXhjFOPpo2yC4HBMn2ue334YlS6rTrzh8\n5zvw5ps2F/GGG6yMWyujR9s+fgB/+pOdTpIXIeyNGtX8/OSsC2Hv1VebB9oUUdgT09bGygp7+Zf1\nPdCk9tavt8UZUF4JNzjooGje2+zZ8fcrDrNmwS9+Ye1vftNWXNbahRfC4Ydbe9o02+cvD/I2Xy84\n9FDYYQdrp7SUq7AnRmXcYiudtyfSnr/9zQJfXR2ceWb59+vd204egHT+YbFxI0yZYqW4vfaCb387\nmX7U1dl2Lz162PSKSy9Nph9xe/ll+5y3sFdXB2edZW2FPUk1lXGLLat7oEkywi+0f/on2H77yu6b\n5nl73/uendtaV2fl2+7dk+vLmDG2rx9YX8J+hlmVx5W4pcII90svWTk3ZRT2xLRWxvVeYa8osrgH\nmiRj40Y7Ig0qK+EG4XvtqaeioxjT4Jln4Mc/tvYll0QbjifpX//V9vcD2+8vrGTNoiVLbA9ByGfY\nO+yw6A+fW29Nti+taDfsOededs6tLfnY4JzzzrkDm67f1Tk33Tm3quljlnOua9N1o5puu67k/lru\nl0atlXHXrIHNm62tsJdvWdwDTZJx//227YpzMGlS5fcPYW/duqisl7TNm61829gIu+9uI3xp0KWL\njep16wYLFtgcwqwqXbiw557J9aNaunRJdSm33bDnvR/nve8TPoCfA/O893Odc0OAx4HngZ2A7YCL\ngZZ/ro0teYyRMb8GiUNrZVwdlVYcWdsDTZITfpEddlg0Kb0Su+8ebcCclu+1H/4QXnjB/h/8/vfp\nOrN13Djb5w/g6qvhkUcS7U6HhbA3cmR+T2MKI93PPWebLKdIRWVc51w9MAW4tumiS4D3vPff9d6v\n8t43eu/neO+3xt1RqbLSMm7YJ0hhr1hC2Pvzn21ieJwfJ5+crpKddMymTdFWIO2dhduW0j8s0rAg\n6NVX4YorrH3xxXDEEcn2pzWXXWZbJIHt/7duXbL96Yg8z9cLjjgi+l2ZslJupXP2zgT6A39o+vpo\nYIFz7m7n3HLn3AvOuc+1cr/ZzrkPnXOPOOeO6khHnXODnHNjnHNjGhoaOvIQsi0h7DU0WPkWorDX\npQsMGJBMv6R2TjwxOhJv06Z4P+6910ZOJNseeghWrbL25Mkdf5w0jSLfeCNs2QIjRsAPfpB0b1rX\ntav1s74e3noruVXCnVGEsFdfH01tuP32ZPvSQn2Ft58K/NV7Hzb9GQyMBz4FnIGFvzudc+96758A\nlgETgblAV2xU8F7n3CHe+0p/8n8Z+P8Ali5dWuFdpV1hzh5YKbdfvyjsDR5sq9Mk3/bbzxZnvP12\nvI87ZYqNGM+alcyeZRKfUMKdONHKcR0Vwt6rr9qk/fbO1a0W76PXdO650KdPMv0ox/7725y9K66A\nK6+0kdVPfCLpXpWvCGEPYOpUG+E79dSke9JM2WHPObcrcCwW3oI1wEzvfZiN+IBz7m/A6cAT3vu1\nQPjTbTNwlXPuNOAcoNKwdxXwJ4ChQ4fOr/C+0p4wsgf2i3nUKK3ELaJ99rGPOB16qG3AO2sW/M//\nGe9jS+1s2RKNVnRkFW6psMIUbFXuCSd07vE66tlnbaQMOv+aauHb34bp021hy5QpNjesR4+ke9W+\nDz+Mfp/kPewdeGC0SX2KVDJcMxV43ntfuu35c0BrB8Ft63A4D7gKntfu5P1H3vvXvPev1ddXOiAp\n7Sr9yzqsyFXYkziEI7LSULKTjvv736OtM8Kqw44aMCBakZnk90UY1dt5ZzvdI+26d7fVuXV1MH8+\nXH550j0qzyuvRO08rsTNgLLCnnOuG/AF4JoWV10LHOqcO9M5V+ecOxo4Hri96X6HOuf2ds7VO+d6\nOOcuAI4Epsf2CiQe9fXQv7+1w4pchT2JQyjZvfbax09okewIwWj8eAtHnZX0vD3v7eB6sFE9V/EY\nRDImTIhO1PjJT2DOnGT7U45Qwh02rPmUIamZckf2JgM9gJtKL/TezwI+C/wIK+leBXzeex+WWI3G\ngt8qYCHwz8Bp3vtnOt91iV3LjZUV9iQO48dHv0ifeirZvkjHNDRY+RDiK3eGsDd7NmxNYAOHF1+M\ntsfIQgm31OWX2xY2jY1Wzg37oaZVUebrpVhZYc97/xfvfb+mOXgtr7vZez/We9/be7+39/7mkuv+\n7L3frem6Qd77I7z3D8T5AiRGCntSDf362V5hoFJuVj36aPRzobMl3CCEvRUr4PXX43nMSoSRypEj\nm88hzIKePa2c65yF1rSuIg5C2As/B6TmtMRSIi1P0VDYk7gkXbKTzgnB6IADYNdd43nMceOgd29r\nJ/F9EV7TWWdlc7eBww+HL3/Z2t//frq3NtLIXuIy+B0uVdPyFA2FPYlL0iU76bjGRrjtNmvHWe7s\n0iUaUat12Js3L1o0kLUSbqkf/ABGj7Yy+3nn2ee0WbECFi+2tsJeYhT2JFJaxl2/3j5AYU86L4S9\nVatsFaFkxxNPQNjbNO5glNRK7TCqN3x4tvaqa6l3b7j+emvPnQs//Wmy/WlN6Upchb3EKOxJpLSM\nq6PSJE577hmdh6lSbraEYLTPPjBmTLyPHf4IeOGF2h4BlvUSbqljj4ULLrD2d7/bPFylQSjhDhli\nG/RLIjL+XS6xKi3jKuxJnOrqkivZScdt3Rqd8dnRs3C35ZBDouep1RYi8+fbogbIdgm31I9/bAtN\nNm2ys3PTdA615uulgsKeRErLuCHsOdf8dA2RjtIijeyZOTOab1WNYDR0KOyyi7Vr9X0RwuvQobbI\nIQ/694frrrP2zJnwq18l259SCnupoLAnkVDGXbkSPvgguqxLl+T6JPkRwt5LL8GaNcn2RcoTyp17\n7VW9kw9q/UdAeE2TJ+frZ9tJJ8HnP2/tb30r2kMwaQp7qaCwJ5Ewgud9tO+VSrgSl9KS3dNPJ9sX\nad/WrVEwqma5szTs+W2dtBmDN9+083AhPyXcUj//uZ1SsWEDfOlLya98X70aFiywtsJeohT2JFJa\nrg0rJhX2JC6DB8Nuu1lbpdz0e+opeP99a9ci7H3wAbz3XvWeB6LwOmgQHHlkdZ8rCdttB1dfbe1H\nH4Vrr022P6++GrUV9hKlsCeR0rAX/pMq7EmcNG8vO0IwGjMG9t67es+z337Qvbu1Z87c9m07K7ym\nSZPsPPA8OvNM+NSnrH3ZZfDuu8n1JZRwBw6E7bdPrh+isCcl+vWL5rCojCvVUMuSnXSc981LuOFs\n42ro1g0OOsja1fwj4J13ohW/eSzhlrrqKhtJX7sWzj8/uf9rL79sn/faq7rfQ9IuhT2JOBct0tiy\nxT4r7EmcQtj78EN4++1k+yJte+aZaESoFsGoFiO+YRXuwIFwzDHVe540GDIEfv1raz/wANx4YzL9\n0OKM1FDYk+ZabrOisCdx2ndfO8QdVMpNszCqt8susP/+1X++EPaefdb2iquG8JrOOAO6dq3Oc6TJ\n//gfVtIFuOQSWLiw9n1Q2EsNhT1pLozsBQp7EqeuXeHgg62tsJdOtSzhBiHsbd4crZaN04IF0fdb\n3ku4gXPw29/CgAF2TOG0abUt565bZ6VzUNhLAYU9aU4je1JtWqSRbs8/b1uUQO2C0ciRsMMO1q7G\n98Vtt9nnfv3guOPif/y0Gj4cfvlLa991F/z5z7V7bq3ETRWFPWlOYU+qrbRkt2FDsn2Rjwujejvv\nHI3CVptz1f0joLSEG1b+FsW//IttuAzw5S/DkiW1ed5Qwu3bF0aMqM1zSpsU9qQ5lXGl2sIv9YaG\n6pTspOO8h5tvtnatSrhBtcLeokXwj39Yuygl3FLO2X57ffvauecXX1yb5y2dr6eVuIlT2JPmWo7s\nDR6cTD8kv3bYAXbc0doq5abLyy/Da69Zu9bBKIS9d9+NzuONw/TpFmL79IHjj4/vcbNkxx3hpz+1\n9i23RCOd1aTFGamisCfNlYa9/v1tDyyRuGneXjqFUb2RI2HChNo+90EHRft8zp4d3+OGYHPaadCj\nR3yPmzXnnx9tOXPRRfDRR9V9PoW9VFHYk+ZKy7gq4Uq1KOylUwhGZ50FdTX+9dCrl52mAfF9XyxZ\nAo89Zu0ilnBLOQe/+529z0uXwte+Vr3n2rAB3nrL2gp7qaCwJ82Vjuwp7Em1hLC3YEEy+3/Jx82b\nF43GJBWMJk60z3GFvenTYetWCzgnnhjPY2bZ6NHwwx9a+49/tBW61fDaa/a+g8JeSijsSXMKe1IL\nBxwQbWwbZ8lOOi6cMDF8OHziE8n0IfwR8PTTtoCns8JI5SmnWOATK+Eedpi1p06FlSvjf47wR0Ov\nXrDTTvE/vlRMYU+aUxlXaqFnz+hkBpVy0yEEo8mTa1/CDULYW78eXnqpc4/14YfwyCPWLnoJt1Rd\nHdxwg81fXLQIvv71+J8jhL0990zue0ma0b+CNKeRPamV8It95sxk+yFWdnvhBWsnGYx23TX6GdTZ\nPwLuuAMaGy3UnHxy5/uWJ2PGwPe+Z+3f/97Oz41TCHvjxsX7uNJh9Ul3QFKmVy/74bhxo8KeVNeh\nh8JVV8GcObBlS/LnlV5xBTz3nB0a37dvsn2ptVDCHTIEjjgiuX6EzZXvvtvC3rRpHX+sMFJ50km2\n7Yo0d8kl9h499ZSN5oYTTOLw7rv2WfP1UkNhTz5u7Fg7MmnPPZPuieRZGNnbuNFGlQ46KLm+vPce\nfOc71j7qqNptPJsWIRhNmhRtf5KU0rDXUcuXw0MPWVsl3NZ16WLl3AMPhLVro/0V43TIIfE/pnSI\nwp583PTpNl/mhBOS7onk2ejRNpL04Yf2iz3JsBfOTgULPkUKe2+9BXPnWvucc5LtC0R/BMyfb6Gt\n5ak+5ZgxwxZ4dO8Op54ab//yZNw4eOKJ6sybHTUKjjwy/seVDlHYk48bPdo+RKoplOzuvNN+2Vx0\nUXJ9KT1R4LHHbH+27bdPrj+1FEq4gwbZqGbSxo+37w3vbaV2ONe1EuHf84QToF+/ePuXN+PH24fk\nmhZoiEhy0rC58sKF0dmpYCFj+vTk+lNrpSXc+hT8/d+/fzTXqyPfF6tWwf33W1slXBFAYU9EkhTC\n3htvwLJlyfQhlHD79oUzzrB2ODYs79591yboQ7qCUWf+CLjzzmjBz2mnxdsvkYxS2BOR5IwfH+3D\nldTmyqVnp557rrUfecTmEuZdKOEOHBidm5oGIezNnh2dxFCu8O/5yU/CgAHx9kskoxT2RCQ5ffvC\n3ntbO4lS7gcfwOOPW/vss21+WM+eFjBuv732/am1EIzOOCP5rW9KhbC3apUt1CjX6tXwt79ZO00j\nlSIJU9gTkWQlOW9v+nSbo9e7t52d2rt3tAFv6aKNPHr//WhD67QFoz33jPY6rOT74u67YdMmm3sY\nSvIiorAnIgkrLdk1Ntb2uUvPTu3Z09oh+Dz0EHz0UW37U0thrmK/fnDcccn2paUuXWDCBGtXEvbC\nv+cxx3RsyxaRnFLYE5FkhbC3Zg28+mrtnrf07NTS/eVOOcX2Z2tstP3a8ioEo9NPt9ebNpWO+K5d\nC/fcY+20jVSKJExhT0SSNXasbbcBtS3l3n67zc3r2bP5Xm59+0Zf57WUu3ixbaYL6Q1GIey99JL9\nIdCee++101jq6uDMM6vbN5GMUdgTkWTV1UXHKtUy7IUgd/LJNlevVAhADzwAK1fWrk+1EuYq9ukD\nxx+fdG9aF74ntm6185PbE/49jzpK53qLtKCwJyLJq/UijY8+2vbZqaeeCt262X5td95Zmz7VUghG\np54azVVMmyFDYLfdrN3e98X69bY4A9I7UimSIIU9EUleCHsvv2zbZ1TbjBk2J697d5uj11L//tGI\nV95KuUuXwqOPWjvtwajcPwLuuw/WrbNj1iZPrn6/RDJGYU9EkhdWXnofnehQTSHAnXhitMVHSyEI\n3XdfbQJorUyfbqXRXr06du5sLZWGPe/bvl349/ynfyrOmcYiFVDYE5HkDRoEY8ZYu9ql3JUrbS4e\nbHtk6/TTbb+2TZvgrruq26daKt1uplevZPvSnhD2li6Fd95p/TYbN0al9rSPVIokRGFPRNKhVvP2\nZswo7+zUgQOj/efyUspdtgweftjaWQhG++4LPXpYu63viwceiFbrqoQr0iqFPRFJh3JLdp0Vgtvx\nx0dbvrQlBKJ777V93LLujjtsrmKPHtFJIWnWtSscfLC12wp74d/zsMNghx1q0y+RjFHYE5F0CGHv\no4/gzTer8xyrV9scPChvZOuMM+w0h40bow17sywEo5NOsm1XsiB8X4Sj3Upt2mQBFrIxUimSEIU9\nEUmHffaJtgGpVin3rrtg8+byz04dPBiOPtraWS/lrlgBDz5o7SwFoxD2nn0WNmxoft1DD8GqVdZW\nCVekTQp7IpIO9fUwfry1qxX2QmA77jibk1eOEIzuvtv2c8uqGTOgocH2Dzz11KR7U74Q9hoaLPCV\nCv+ehxwCO+1U236JZIjCnoikRzUXaaxda3PvoLKRrUmT7JSP9evhb3+Lv1+1EoLRCSdAv37J9qUS\nI0bAyJHWLv2+2LLFjryDbI1UiiRAYU9E0iOEveefj38U7Z57bO5dly7llXCDoUPhyCOtndVS7qpV\ncLVO2hkAABWHSURBVP/91s5iMGrtj4CHH7bSNMBZZ9W+TyIZorAnIulRWrKbOzfexw5B7eijbS5e\nJUJAuvNOC4xZE+YqtrfdTFq1FvbCv+dBB8Ho0bXvk0iGKOyJSHoMHw4772ztOEu5nT07ddIkO4pr\n7dpoNW+W3Hyzfa5krmKahLC3YAEsXGh/DEyfbpdlcaRSpMYU9kQkXaoxb+9vf7PAV1cHZ55Z+f2H\nD4fDD7d21kq5a9ZEcw3POSfZvnTUgQfaAh6A2bPhscdsg2hQ2BMpg8KeiKRLNcJeHGenhlAxY4bt\n75YVd99t/S13u5k06tkT9t/f2rNmRf+e++8Pu+2WXL9EMkJhT0TSJYS9hQvh/fc7/3hxnZ0a9nFb\nvTrary4LQjA65hjYbrtk+9IZ4fviH/+A226ztkb1RMqisCci6XLAAbYXHMQzunfffTbXzrnObbw7\nciRMnGjtrJRy162LTv7IejAKYe/JJ2HJEmtn/TWJ1IjCnoikS/fuFvggnrAXgtnhh9vcu84I4eL2\n2211a9rde6+dOtHRuYppEoJ2sPfeMHZsMn0RyRiFPRFJn7jm7W3aZHPsIJ5RoLCf28qVts9b2oWg\ne9RRMGRIol3ptNGjm78GjeqJlE1hT0TSJ4S9OXM6N4L24IM2xw7iOTt1552jI93SXsrdsMH214N8\nBCPnou8LyMdrEqkRhT0RSZ/wS33TJjtNo6NCIJs4MTpyq7NCyJg+3fZ7S6v77rM5e87ZPoF5cNRR\n9nnvvWGvvRLtikiWKOyJSPrsvHO0RUpHS7mbN1fn7NTwWB99BI8+Gt/jxi0E3SOOgGHDku1LXC6+\nGK66Cm691UKsiJRFYU9E0qe0ZNfRsPfwwza3DuI9O3WXXWyTX4hOpkibjRvjnauYFt26WeAbMybp\nnohkisKeiKRTZ8NeGNkaPz46gi0uIUDddhs0Nsb72HF44AE7OQPimasoIpmmsCci6RTC3ltvwdKl\nld232menhpHCDz+Exx+P//E7KwTdT3wCRoxIti8ikjiFPRFJp4MPtv3hwM5DrcSjj9qcOoi3hBuM\nGQP77mvttK3K3bwZ7rjD2lk9C1dEYqWwJyLp1KcP7LOPtSst5YYAdsABsOuu8fYrCCOGt94KW7dW\n5zk64qGHYNUqa6uEKyIo7IlImnVk3l5jY23OTg2P/cEHdoRXWoSge8ghsNNOyfZFRFJBYU9E0isc\nkfXUU+UvhHj88WiOXzXD3p57Rnu9paWUu2VLdbabEZFMU9gTkfQKI3tr18K8eeXdJwSvffet/hYd\naSvlPvIILF9u7WrMVRSRTFLYE5H02n13GDjQ2uWUcrduteAFtRnZCs/x/vs2+pi0EHQPOsjOkhUR\nQWFPRNKsrs7mnkF5Ye/JJ20OHdQm7O29dzR6mHQpt9rbzYhIZinsiUi6VbJIIwSuvfayOXXV5lwU\nrG65Bbyv/nO25bHHbN8/UAlXRJppN+w55152zq0t+djgnPPOuQObrt/VOTfdObeq6WOWc65ryf0P\nds495Zxb75x70zl3bjVfkIjkTAh78+ZFx5+1ptYl3CA817vvwpw5tXvelkLQ3W8/K3+LiDRpN+x5\n78d57/uED+DnwDzv/Vzn3BDgceB5YCdgO+BioBHAOdcfuBe4FRgITAOucc5NrMqrEZH8mTAhaj/9\ndNu3e+opmzsHtQ17++9v5+VCcqXcWm03IyKZVFEZ1zlXD0wBrm266BLgPe/9d733q7z3jd77Od77\nsCxtMrAe+LH3fpP3/gFgOnBBTP0XkbwbOBD22MPaM2e2fbsQtMaMsbl0teJcdFJFUqXcf/wDliyx\ntsKeiLRQ6Zy9M4H+wB+avj4aWOCcu9s5t9w594Jz7nMlt98PeNb7Zj/95jZdXhHn3CDn3Bjn3JiG\nhoZK7y4iWdbevD3vo7B39tkWwGopBKy33oLnnqvtc0P02vfeOwrGIiJNKg17U4G/eu/DxJnB2Ojd\njcBQ4FLg9865w5uu7wusavEYK4F+Hejrl4H5wPyllR6KLiLZVhr2Whs5e+YZmzMHyYxsHXQQ7Lyz\ntWtdyk1qrqKIZEbZYc85tytwLHBNycVrgJne+1u89w1NZdq/AaeXXN+/xUMNAFZ3oK9XAWOBsUOH\nDu3A3UUks0LYW7ECXn/949eHgLXrrjaHrtZKV+XefHNtS7mzZsGiRdZW2BORVlQysjcVeN57P7vk\nsueA1n6qhcueB1r+5D2w6fKKeO8/8t6/5r1/rb6+vtK7i0iWjRsHvXtbu2UpN+kSbhCC1uuvw0sv\n1e55w2vfY4/o+DYRkRJlhT3nXDfgCzQf1QNbqHGoc+5M51ydc+5o4Hig6XBGpgO9nXP/5pzr7pw7\nDpgEXBdL70WkGOrrYfx4a7cMe889B2++ae0kR7YmTICRI61dq1JuWoKuiKRauSN7k4EewE2lF3rv\nZwGfBX6ElWyvAj7vvZ/ZdP1K4GTgHGyu3nXAtHC9iEjZ2lqkEcLOzjvb3Lmk1NVFmxnXKuw9/TQs\nWGBtlXBFpA1lhT3v/V+89/2892tbue5m7/1Y731v7/3e3vubW1z/tPd+gve+p/d+F+/9H+PqvIgU\nSAh7L7wA69ZZ23ubIwfpGNkKgWvePPuotvDad9sN9t23+s8nIpmk49JEJBvCGbmNjbb6FmxuXFiw\nkYaRrU98AoYPt3a1R/dUwhWRMinsiUg2DBsGo0ZZO5RyQ9gZObL5SRtJqauDyZOtXe2wN3cuvPOO\ntdMQdEUktRT2RCQ7JjadtNgy7J11lgWtNAjB68UXYf786j1PeO2jRsGBB1bveUQk81Ly01FEpAxh\n3t7Mmc3nxaVpZOuIIyDsBRo2O46bSrgiUgGFPRHJjhD2PvgAfvELaw8fbnPl0qJLl+qXcl94Ad54\nw9ppCroikkoKeyKSHfvvD927W/uGG+xzmkq4QQhgzz4b7QEYpxAid9wxHXMVRSTVUvYTUkRkG7p1\ni+anbd1qn9M4snXkkTBokLXjLuWmbbsZEUk9hT0RyZZQygWbG3f44cn1pS319TBpkrXjLuXOmxct\n/Ehj0BWR1NEhsyKSLaVhb/JkmyOXRmefDb/7nZ1yMWVKfP185RX7vMMOzd8LEZE2KOyJSLZMnGil\nS+/TPbJ1zDEwcCCsWAE33hj/46dxrqKIpJLCnohky4472uKMlSstUKVV167wxz/C//7f0fzCuAwc\nCN/6VryPKSK55bz3SfehYgcffLCfM2dO0t0QERERSYxz7hnv/cHt3U41ABEREZEcU9gTERERyTGF\nPREREZEcU9gTERERyTGFPREREZEcU9gTERERyTGFPREREZEcU9gTERERyTGFPREREZEcU9gTERER\nyTGFPREREZEcU9gTERERyTGFPREREZEcU9gTERERyTGFPREREZEcc977pPtQMefch8D7wPbAEqAx\n2R4lqgt6H0DvQ6D3weh9MHofjN4Ho/fB5Ol92Nl7P6S9G2Uy7AE458YA84Gx3vvXku5PUvQ+GL0P\nRu+D0ftg9D4YvQ9G74Mp4vugMq6IiIhIjinsiYiIiORYlsPeR8DlTZ+LTO+D0ftg9D4YvQ9G74PR\n+2D0PpjCvQ+ZnbMnIiIiIu3L8sieiIiIiLRDYU9EREQkxxT2RERERHJMYU9EREQkxxT2RERERHJM\nYU9EREQkxxT2RERERHJMYU9EREQkx1IX9pxzP3LOveycW+2cW+Scu945t12L2/yLc+5N59x659xs\n59xBLa4/2Dn3VNP1bzrnzq3tq4iXc67OOfekc84750aWXF6Y98E5d5xzbpZzbq1zbplz7rcl1xXi\nfXDODXPO/dU596FzboVz7u/Ouf1Krs/d++Cc+7Rz7vGmnwcNrVzfqdfsnBvqnLvNObem6X39kXMu\njT8X23wfmt6DJ5u+J5Y55+51zu3T4ja5fx9a3O5HTT8vW77OQrwPzrldnXPTnXOrmj5mOee6llyf\n+/fBOdelqd8Lml7Hi865s1vcJhfvQ1m896n6AH4AHAB0BYYA9wIzSq4/HFgHHA90By4DlgD9mq7v\nD3wIfKPp+k8Ca4GJSb+2TrwnlwIPAh4YWbT3ATgKWAmc3fRaegAHFvB9uA14ABgIdAN+DCwAXF7f\nB+AE4DPAFKChxXWdfs1N7+dtTbfdBXgN+EbSr7vC9+GiptfWu+l1fh9YDPQq0vtQcpsJwAvAIuDc\nkssL8T5gvzcXAd9teh1dgIOBuoK9D19peh/GYj8jzwQ2A3vk7X0o671KugNl/GOeCKwu+fr/AP9d\n8rUD3gU+3/T1eU1fu5Lb/DdwY9KvpYOvfwzwJrA/zcNeYd4HYCbwwzauK9L78AIwteTrsU3fE4Pz\n/j5ggb/lD/NOvWZgdNP7t2vJ9V8E3k769VbyPrRymx5Nryv8QVSY9wH7pf0iMBF4h+ZhrxDvA/Bf\nwKxt3Kco78OvgD+3uGwxcHZe34dtfWRhOPJY4PmSr/cDnglfePsXeK7p8nD9s02XB3NLrs+MpuHi\nG4CvYyNbpQrxPjjnemN/qdc75+Y2lakecc4d3HSTQrwPTX4CTHbODXHO9QAuAJ7w3i+jWO9D0NnX\nvB+wynv/ZovrRznn+lWt19V3LLAeeL3p6yK9D98F/u69n9nKdUV5H44GFjjn7nbOLXfOveCc+1zJ\n9UV5H64Hxjnn9moq6Z4N1AOPNV1flPcBsBeeWs65s4BpwJElF/cFVrW46UqgX5nXZ8lXgQ+899Od\nc6NaXFeU92EgNrf0M8BJwKtY+L3HOTeG4rwPAP8APg8sBRqxEu5JTdcV6X0IOvua27qeptusjqeb\ntdP0f+JG4FLv/ZqmiwvxPjT9AXgOVgVpTSHeB2ykfzzwKeAMLPzd6Zx713v/BMV5H94CHgdeArYC\nm4B/9t4vbbq+KO8DkMIFGoFz7hwsmZ/uvZ9bctUarH5eagDRG9/e9ZngnNsNm6t3cRs3KcT7gL0O\nsKH1F7z3m7EyRVfgExTkfWga5X0QG63pD/TC5mY97pzbnoK8Dy109jW3dX24LlOcc3sBDwM/9d5f\nU3JV7t8H51w3LORe5L1f28bNcv8+NFkDzPTe3+K9b/DePwD8DTi95PoivA+/xeb/j8bmOH8SuMY5\nd3zT9UV5H4CUhj33/9q79xi7qiqO499fp6Y8WmZoCYkCSSW8KoGOU0kxnRpNAZWklNaQkFAJDxuE\nqGhChdSogDEUMJAKijgmJTwSwtugCGpoQygveTi1mDSKgAFiZSh9IGhbWPyx9tjTmztwJ6CdOef3\nSU5m5u59zz17zdzb1f04WzoTuB6YHxGrWooHgb5KXZG/0MFKeev/7PrYdSh4POgnJ9qukzREdh8D\nrJV0Hg2JQ0RsJufeRGtRORoRB2Aq+aG1IiK2RMS2iPgF+R7+NM2JQ9UHbfMg0C3p4JbyF8rf3bgh\nqQ9YTc5tvaKluAlx+BhwJHBLmeoxBBwEXCfpllKnCXGAnMrQ+nlJ5bGmxGEWcGNEvBgR70TEI2RP\n34mlvClxSLt70mDrQa6geQ04ZoTyfnLFzDzar8DrIVfYLC3lxzEOVh22aedewIGV41jyzfopYHJT\n4lDashR4CfgEOfXg2+RE2+6GxWE9cA256nIiuQJtG7lKrJZxIFcS7kGuuN1Rvt+DnSuQP1CbydV2\nd5DDMsOr7S7a3e0eZRzmAK8DS0Z4bhPi0MWun5cHktMcvg5Ma1AcRP5bsZ1cfTqBHMZ9c7idDYrD\n9WRyd0CpO5vMLb5ctzh0FKvdfQFtfnlR/lDfqB4tdU4nx+PfAp4AZrWUH1Mef6vUW/z/uv7/YVym\nU1mN26Q4lDfupcA/yDkTq4DeBsZhBvBrYIicS/IUsKDOcQDOYGcvbvWY/mG0GdifvLXC1hLXKyi3\nqBhLx3vFobwf3mn9zATmNikObeq+0KadjYgDOXdxPXlronXAKU2LA5mg/Qx4ubTjr8CyOsahk0Ol\nQWZmZmZWQ2Nyzp6ZmZmZfTic7JmZmZnVmJM9MzMzsxpzsmdmZmZWY072zMzMzGrMyZ6ZmZlZjTnZ\nMzMzs9qQtLek5yTt6KDu6aXum5IelzSrpXyRpLWS3pC0vmzlWi2fLekhSZskbZB0k6RplfLLJT0r\naYukVyQNSJo6yvZcUK5xq6S/lF20RsXJnpmZmY0LkqZLer8bBC8Hnu/gXP3AdcC5wL7AncB9kvYp\n5ccCNwPfJG/SfAG5Jd/sUt4F/Ap4hNzedAa5dd+PKy/zNrAYmAbMJHd3uaGDpg5f40nAJcBpETGF\nvJH8lZKO7/Qc4GTPzMzMakLSZ4C5wOUdVF8C3BURv42I/wBXAv8GFpbyRcADEfFg5P669wJrgHNK\neTewH7AyIrZHxEbgNjKpAyAilkXEM6X8VWAF8NmWa14iaZ2kzZKekXRCpfgQYG1EPFbO9yiwtvoa\nnXCyZ2ZmZuOepL2AAeAr5Lar72cmue0kAJFbiv2RnYmUylE1Aegt9TeSe/CeLWmSpP2BU4G73+M1\n5wGDlWteAlwInEb2Ln4HuEvSIaXKrcAUSXMkTZA0FzgMuL+D9u1y0WZmZmbj3WXAvRHxZIf1p5D7\njFdtIodsIfci/4Kk4yVNlLQQmFMpB7id7AH8F7CB3Kf6snYvJulLwFeB8ysPnw9cGhGDpffwPnK/\n61NL+T+BO8pj28rX70fEug7bCDjZMzMzszFM0k/LAohN5BAmwz+X46Iy/+6LwPdGceqt5FBsVQ+w\nBSAiVpPJ2VVk0nUG2dM2VK7hUOA3wA+BPctzn6NNr1tZ2DEAnBQRT1eKPg78pNoe4HPAAaX8u2Sv\nXy/wEbLX8VuSzh5FO53smZmZ2dgVEedFRE9E9ABHl8d6Ksdy4DjgIODvkoaAXwJdkoYkzR/h1INA\n3/APkgR8ksowa0TcEBFHRcTUiFgAHA6sLsUzgY0RMTxnbzNwDTBXUk/lvGeSw73zI2JVyzW8CJzV\n0p7JEXFuKZ8F3BkRf470LHAPMFKb2nKyZ2ZmZuPdVcChZA9YLzlv7+3y/e9HeM4AsEjSPEmTgKXA\nJMqcuzJ02yepS1K3pB+QCeXV5flPAT2SFpc6U4CvAX+LiE3lHN8AfgR8PiLWtLmGq4GLJfUq7Smp\nX9IRpXwNsLD0IiJpBnAylbmGnZg4mspmZmZmY01EbKEMvwJIerU8/lLlsWXkLUyOLGUPl3vWDQAf\nBf4EnFjOBdAF/JzszQtyvlx/RGwoz3++zMO7GLiWTC7/ACyoXNoKYAewKjsO/3u9k8vXAUnbgJXk\nkO524GnyNi+QK4S7gd9J2g/YSM4TXD6a+CgXn5iZmZlZHXkY18zMzKzGnOyZmZmZ1ZiTPTMzM7Ma\nc7JnZmZmVmNO9szMzMxqzMmemZmZWY052TMzMzOrMSd7ZmZmZjXmZM/MzMysxt4FJQwW3KcU3HEA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=1)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot it on top of the dynamic spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHBCAYAAABAGU56AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecnFW5wPHfmdnZ3nv6pvdeKCGk0EtCCCBeREWkWVD0\n6vWq14t6r4qIKHJVEEQFwQQCCTWEQAqk996z2fRs32yb3Wnn/jGT3dlks23O7MzsPt/PZz+Z9533\nfebsZssz5zlFaa0RQgghhBCBsYS6AUIIIYQQXYEkVUIIIYQQBkhSJYQQQghhgCRVQgghhBAGSFIl\nhBBCCGGAJFVCCCGEEAZIUiWEEEIIYUCbkiqlVK5SaoFSqlgpVa6UWq6UGuv3/JeUUkeUUrVKqQ1K\nqYkX3D9JKbXR9/wRpdS9pj8RIYQQQohLUUr9Qil1VClVqZQqUkotVEr1beH6G5VSe5RSdqXUbqXU\n9a29Rlt7qv4EpANDgBxgM/Ce8roK+DPwNSANeBP4QCmV7GtUCrDEdz4NeAR4Til1RRtfWwghhBAi\nUK8A47TWyUAecByY39yFSqkBwFvAr4AU37+LlFJ5Lb1AW5OqQcBCrXW51toB/BXoDWQADwJvaa0/\n0lrXA78B6oDbfffOA2qBJ7XW9VrrZcAi4KE2vrYQQgghREC01vu11ud8hwrwAEMvcfmXgS1a639q\nrR1a61eBrb7zl9TWpOo3wDylVJZSKhZvQrRaa10CjAW2+DVaA9t95/H9u0033Q9nq9/zbaKUylBK\nDfF9ZLTnXiGEEEJEvgtygXbnA0qpe5RS54Bq4NvATy9xaZPcxqfV3CWqje1Ygzc7KwLcwAngJt9z\nScC5C66vAJLb+HxbPQo8DhAVFU3P3IHtvL0Z9fWBxwAIs+0TnZmxAcewlTsNtAQ88TYjcSxOj5E4\n1DnMxAk3SpmJY2Iv0HBqC3jfj5pgqDmepMB/PgEsVXVG4pjiSTT0eVWH1+dlgo6PMRJH1Qb+N6vo\nXKHDpZ1mGtRGN1zTR5eWGft/PQL4JwA/49KJ0UW01q8BrymlcoGvArsucemlcpeRLcVvNalSSlmA\nj4GleEt5dcCXgM+UUqOAKrz1Rn+peD9xfM/nNfN8ZWuvfYFngdcAMtJ7HPjql3/Zztsvpg4eDzgG\ngPa4jcQx5exXLtWb2XY93zxjoCVQM7aHkThxRYYS4AMFZuKEGWU1k7xqd+DJdDi1BUBZrEbimPo5\nt08L/OcTIO6zA0bimFJ/uZnPK2Z9eH1eJrjHDjISx7rjcMAxnn7nF3YDTWmX0tJyNnw0ykisqJyS\nKpqW7Eo7EkdrfVYp9QKQr5Tqq7Uuu+CSS+U2LeYubSn/pQP9gWe01pW+2uKLvnuvAHYAE85frJRS\nwHjfeXz/jrsg5gS/59tEa12qtT6otT5oUWZ+SQohhBAiuLTWeAx9AO7zuYDvo0NJlU8UkAD0bOa5\nJrmNT6u5S6s9VVrrEqXUQeAbSqn/BOrx9lQlATuBEuBDpdQ/gNV4a5QxeAej4/v3SaXU94E/ANPw\nDmK/rrXXFkIIIUSEU/FgG20o2MaONcFbdfs68LrWukgp1RtvBawA2N/MLS8D31dK/Rve1QvuwptU\nfbGl12nrmKq5wFPAMcAGHAbu0lrn4+06+zrwAtADb33yZq11JYDWukIpdTPwR+DnwBngEa31uja+\nthBCCCEila7F42xXcSpYbgb+WymVgHd81ErgWq21Syn1BeB5rXUigNb6iFJqHvBb4CUgH7hda13Q\n0gu0KanSWu8Dbmnh+ZfxZnWXen4TMKUtryWEEEKIrkMDnhDP6NJae/AmVZd6/lXg1QvOfQh82J7X\naWtPlRBCCCFEuykVh7KNMRTtwlUOwoskVUIIIYQIGq1rcTu2h7oZnSIikyptAXdM4DMArWG2FII1\nO8tInNy/BT4l2dCqUDiSexmJk3jQzCxgU//j1pwcI3G0obXSPBUVRuK4xg8OOEbUtkMGWmKOe1R/\nI3EsOwOfzg7htxSCJS7eSBxTSyHoUYGvQWgtrTbQEvCcKTQSx+ow9Rs1MmnM/e4NdxGZVAkhhBAi\nMigVj8XWrk1UWrDNUJzgkKRKCCGEEEGjdS0up5T/hBBCCCECEg6z/zqLJFVCCCGECBql4rEaK/+F\nxXpXlyRJlRBCCCGCRutanFL+E0IIIYQIjAbcWsp/QgghhBABUSqOqOhxhqLtMhQnOCSpEkIIIUTQ\naG3HIYt/CiGEEEIERqNxy+w/IYQQQojAKBWPzTbeULTdhuIEhyRVQgghhAgarWupd4T3SuimSFIl\nhBBCiKDqLrsfRmRSpWrrse4IfHNTx2VDDLQGoitdRuK49+UbiWPNyQ44hruwyEBLIOX9fUbihNtm\nnLqyKtRNaKJ2xlAjceJXBr4prjUjw0BLwF1aaiROVFmtkTgY2njYPbCHkThq9xEjcTx2Q18fQ1yx\nloBjWGvqDLQElM1mJk6Nw0icSE1MlIonOlrKf0IIIYQQAfFoO3aZ/SeEEEIIEThP95j8J0mVEEII\nIYJHqXhijJX/ZPFPIYQQQnRTHl1LrZT/hBBCCCEC50GFugmdQpIqIYQQQgSNUvHEGVv8c4ehOMEh\nSZUQQgghgsbjqaVGyn9CCCGEEIFzS/lPCCGEECIwyhJPnLHZf+G93Y0kVUIIIYQIGo/HTo0jvMdC\nmSJJlRBCCCGCyqOl/CeEEEIIERCLJZ74mLGGom02FCc4unVSFb3hYKib0ET53OFG4qTtswccw5Fn\naLPpMPsaW3r3NBJH1TuNxHGnJhiJY2IjZFPqBpjZUNlmaENlKmuMhFFJZv6vTG2EHG5c4wcbiWPb\nfCjgGMrQpt6eSjM/5/rEGSNxIpXbU0tV/c5QN6NTdOukSgghhBDBpnBrS6gb0SkkqRJCCCFE0FhU\nHInGyn8bDMUJDkmqhBBCCBE0bm2nUsp/QgghhBCBsRrtqVpvKE5wSFIlhBBCiKDRKFlSQQghhBAi\nUG5dy7n6XaFuRqeQpEoIIYQQQWNV8STHjDEUbY2hOMEhSZUQQgghgsat7VRIT5UQQgghRGA04EbW\nqRJCCCGECIhVxZESM9pQtE8NxQkOSaqEEEIIETRubae8bk+om9EpJKkSQgghRNBoFB5kSYXwFWXF\nmpoacBhn30wDjQFngtVInLTF+4zEYWj/gEMY2wh5WOBtAbCcLDYSR9U5jMTxlJWbiZObbCROlIGf\nBwBPRUXAMWybzHzvWOLijcRxDMw2Eif6bKWROKaY+vpgMfPHzrazwEgci4HNkN2GNuO2Zpr5G+Eu\nKTESJ1KZLf+tMBQnOCIzqRJCCCFERHB77JTV7Q51MzqFJFVCCCGECBoNeGT2nxBCCCFEYKIscaTF\njDIU7WNDcYJDkiohhBBCBI3LU0dJ3d5QN6NTSFIlhBBCiKDxlv9k9p8QQgghRECiLHGkxY40FG2p\noTjBIUmVEEIIIYLG5bFTUmdoyaAwJ0mVEEIIIYJGAx4t5T8hhBBCiIBEWeLIMFb++8BQnOCQpEoI\nIYQQQePy1FEs5T8hhBBCiMBJ+U8IIYQQIkBWFUdG7AhD0d41FCc4IjOp0qA9noDDRJXUGGgMWHae\nMRMnJsZIHI4XBhwi8K+uz/6jRsKYao8lK91IHG1og1TLriNG4pCYaCZOGNE9zGxma61zG4njORP4\nzxWAxdD/Vd3InkbixJ6pNRJHHz9pJI6pzZBN6O4bIZvi0naK6vaHuhmdotXNeJRSe5RS1X4fdqWU\nVkpNUEpZlVI/UUod9T33mVJqzAX3T1JKbVRK1Sqljiil7g3epyOEEEKIcKJRuLXFyEe4a7WnSmvd\nZMi+UuoXwFyt9Val1PeBe4FrgJPAT4GlSqkhWusqpVQKsAR4CpgGXA0sUkod0VqvM/upCCGEECLc\n2FQs2bHDQt2MTtGu8p9SKgq4H/iV79RdwJ+01vm+5x8HvgfcDrwMzANqgSe11hpYppRaBDwEtCup\nUkplABkAOWm92nOrEEIIIULEqes4W3cg1M3oFO3tS5sLpOBNmACU78OfAsb5Ho8FtvkSqvO2+s63\n16PAAeBATV1VB24XQgghRGfTKDxYjHyEu/YOVH8YWKC1rvAdvwd8Qyn1PnAC+BlgBZJ9zycB5y6I\nUeH3fHs8C7wGkBCb1D1SXiGEECLCSfmvGUqpgXjHTl3hd/oJIAH4yPfvS8A+4PyUiSog74JQqUBl\nexuqtS4FSgF6ZvRr7+1CCCGECAGnp46z9u7RF9KevrSHgR1a6w3nT2it67XW/6G17q+1zsY7IH0A\nsNJ3yQ4aS4HnTfCdF0IIIUQXpwE3yshHuGtTT5VSKhq4D/jJBedzgVitdYFSqg/wZ7wD0Jf6LlkE\nPOmbJfgHvDMAbweuM9J6IYQQQoQ1myWWXCn/NTEPiAVeveB8b+BfSqleeEt9bwD/eX5guta6Qil1\nM/BH4OfAGeARWU5BCCGE6B6cnjpO2w+Guhmdok1JldZ6PjC/mfObgcGt3LsJmNKh1gkhhBAiwik8\nEVC6MyEyt6kRQgghRESwWWLIjR0a6mZ0CkmqhBBCCBE0Dk89p+2HQt2MThGZSZXbjaey3asyXMRq\nCbOFxHKyjITxGNjY1JqaaqAl4K6oaP2iNrD072skjufocSNxKm4dbiRO6nv7jMRxDuphJI490xpw\njMST9QZaAtrQZtxqcJ6ROKZou5mvT/QGM2NUTG1Wrmw2I3G002kkjgnWLDO/k93FxUbiRLJI2LfP\nhMhMqoQQQggREWyWWHrGDwlpG5RSvwZuBfoA1cD7wA+01mUt3PM94GtANnAW+J3W+k8tvY4kVUII\nIYQIGoennpO1IS//uYF7gd14FyF/Gfg7MKe5i5VSc/DuEnON1nq9UuoK4GOl1CGt9bJLvYgkVUII\nIYQIKo82NvvPqpTy7/Yq9e240iKt9Y/8DouVUs8Ar7dwyyBgp9Z6ve/+dUqpnXj3LpakSgghhBCd\nz6Zi6BlnrPyXA/jvefMz4KcdiHMNLe/uMh+4Xyk1Fe+i5lOBIcCHLQWVpEoIIYQQQWO4/FcIzPA7\nbrWX6kJKqTuAR4DpLVxWBCwEVtC4pd9jWuvdLcWWpEoIIYQQQeVu11bDLYfSWnd46qtS6i7geWCO\n1nprC5f+BLgH7/7F+4ARwDtKKbvW+q+XukmSKiGEEEIEjc0SS+/4Fjdf6RRKqa8AvwVma63XtHL5\nROBNrfVe3/EepdRiYDYgSZUQQgghOp/DU8/x2sMhbYNS6lvA48ANvu3zWrMGuE8p9Vet9SGl1HBg\nLt4Zg5ckSZUQQgghgibaEhMOPVXPAC5ghVKNMxG11okASqkvAM+fPwZ+A6QAy5RSmUAZ8AbwREsv\nIkmVEEIIIYLG4anneM2RkLZB65bXdNBavwq86nfsAv7T99FmklQJIYQQIqgMrlMV1iSpEkIIIUTQ\n2Cwx9IkfFOpmdIrITKpio8HAJqlVPWMCbwvgis01EyfRTCYfM3BYwDESVuw30BJzTG2EbIqpjZBN\nsW43swZMYuuXtMqak2MgCuiEBCNxOH7WSBjXqIFG4lh2mymD2K8eaiROwoYCI3FUUpKROM6egW/m\nbtlpaFC0y2UmTjfn8NRzLMTlv84SmUmVEEIIISKEwoOU/4QQQgghAhIt5T8hhBBCiMDVe+opqJXy\nnxBCCCFEwFpZ0aDLkKRKCCGEEEETbYmhn5T/hBBCCCEC43DXc7QmP9TN6BSSVAkhhBAiaLTM/hNC\nCCGECFy0JZp+8QNC3YxOIUmVEEIIIYLG4XGQX3M01M3oFJJUCSGEECJoNODRllA3o1NIUiWEEEKI\noImxxNA/oX+om9EpJKkSQgghRNDUe+rJry4IdTM6RUQmVe5oC9X9YgOOk7Kl0EBr4OTnso3EsdQb\nCUP8WR1wDEuvngZaAsVXphiJk/1pqZE47sIiI3HCjSXZzNeZ9MA3xS0famJbZkheaubn0xRTGyGb\nEvfpASNxPEaiAPVmfoGVPxAfcIzMmr4GWgK12XFG4sSsKzcSJ3LJ7D8hhBBCiIBFW6IZIOU/IYQQ\nQojA1HscHJbynxBCCCFEgDR4ZO8/IYQQQojAxFhjGJgo5T8hhBBCiIDUues5JOU/IYQQQojASflP\nCCGEECJAMdYYBiXmhboZnUKSKiGEEEIETb3bwaGqY6FuRqeQpEoIIYQQQaNBFv8UQgghhAhUrCVa\nyn9CCCGEEIGq8zg4KOU/IYQQQojAyey/MOaJgaq8wDcNrupvZiNkU3osPGkkTsXU3gHHiD112kBL\nwJEW+Aa9YG4j5NoZQ43ESVxz1Egcj9NhJI6yWozEcRcE/j2YZjfzc+U2EiX8mNr82lN5zkgcS1zg\nGxgDVMwws4lxxhP7A44R+F8Hr/jqHCNxtKGvscdeayROZ4uxRDM4qV+om9EpIjKpEkIIIURkqPM4\nOFB1PNTN6BSSVAkhhBAieDRoU92HYU6SKiGEEEIETaw1hiFS/hNCCCGECEyd28H+Sin/CSGEEEIE\nRCOz/4QQQgghAhZrjWaolP+EEEIIIQJT53awT8p/4cvqcpFSVhZ4IEO9kW6bleoUM2vPdGVWlwu3\n1Qqqe3QDCyGE8Jb/tJT/wlfvgmP89r4HQt2MJnZPGMczP/svtMXMIoxdTf8DB/n6L55EWxS/eupX\nlGdmhrpJQgghOkGcNZphKWYWh33bSJTgicikKhyN2rqd/gcPkT/MzIrdXUl8dTWPPPEUab7exVnv\nfsCbX/lSiFslhBCiM9jdDvaeOxHqZnSKiEyq3FYrFclmtj8JVFxNLTEO71YjPY6flKTqQlrzxT8+\nR0ZxScOpwXv2hbBBQgghOlOsJZphyWZ6qt41EiV4IjKpOtMjj//57m8CjuOKCbzGe+P787npgwUA\n9N19ku1DOh6zfmiPgNsDYGLrtYSxgwIPAtz8k9eYvH1tk3N5Bw7T90+7cEZFG3mN9ohfecBInIob\nhhmJk7w08H3OANzl5UbiWNMzAo5hap9GU0ztbecaaObnk91HzMQxxNR+cslLzHwvl80dHnCM9MVm\n3rh5/N4MBsKSkW4kDhG691+d28m+btJTJQOAAlSY27h5cW6hmQ2Ru4qM0jPcsuvi9xVR2k3viu7x\nAyaEEMI7UN3ER7hrtadKKbUH8F9gwgrEAhOBHcAvgXuAVKAA+JnWeqHf/ZOAPwGjgDPA41rrfxpq\nf8j5J1U5ZyWpOs/qdnL3omeIcXtLo8WJWZxK7c24k9sA6FdawNHMgaFsohBCiE4Qa41mWHIfI7He\nNxIleFpNqrTWI/2PlVK/AOZqrbcqpb4FfBGYCRwEbgNeV0rt1lrvV0qlAEuAp4BpwNXAIqXUEa31\nOsOfS0gUZffEoyxYtIf00iKinA5cts4va4Wba1a+Tu8z3jKHS1l5Y+LnyaoqbJJUCSGE6Pq8A9W7\nR6dDu8p/Sqko4H7ged+pQcAqrfUB7bUYKMXbKwUwD6gFntRa12utlwGLgIfa21ClVIZSaohSaojH\n427v7UHjskVTmuEdxGTRmuyi0yFuUegNKNjN1WsbJ74uG34DZ1J6ciy9f8O5PuXHsYTR/6MQQojg\nkfJf8+YCKcDLvuMXgFeVUiOAA8Dtvpif+p4fC2zTWmu/GFvx9m6116PA4wC11ec6cHvwFOX2Iqvk\nLOAtAZ7ulRfaBoVQXG0Vdy1+Fgve//LDWYNYN3AqAOfiU6mISyXVXkGM20GPc6c5lWamS1gIIUR4\nirVGMzzFzO/6D41ECZ72JlUPAwu01hW+43zgM2A34AHqgS9qrc9P/0kCLsyAKoDkDrT1WeA1gPjE\nFDNTuAw5m9Obkbu3AN18XJXWzHvvOVKqvOtR1cQn8eb4u9CqsUP0WHoeqae2A9CvrECSKiGE6OLq\n3A72dJPJSW0u/ymlBgLXAM/5nf4TMB7oD0QD1wHPKaWu9z1fhbdny18qUNnehmqtS7XWB7XWBy0W\na3tvD6omg9ULT4WwJaE1adsnjDywseH4zdlfpzq2af5ckNFYAsyTcVVCCNHlaYMf4a49PVUPAzu0\n1hv8zk0E/k9rfcx3vFYp9RlwM/AR3tmBcy+IM8F3vsuQGYCQVXKKW5f+reF4/aQb2D9kEtYdh5tc\ndywjr+Fx37IClPY06ckSQgjRtcRZoxlhqPy3zEiU4GlTUqWUigbuA35ywVNrgC8opd7VWp9SSl0G\nzAAe8z2/CHhSKfV94A94ZwDejrdHq8vwT6qyC0+hPG50iHvTYux2HDExnbIXodXl5HOLniHa5V0+\noTCzNx9c2/ywueLELGqiE0hw1JDgqCWzupjipJygt1EIIURo2N0Odsvsvybm4V2b6tULzn8f2ANs\nVEpV+Z7/rdb6FQDf2KubgbvwjqX6C/BIV1lO4Tx7fCKVSakA2FxO0ktDu6L06C2bePqrX+bXjzzA\n2E0bWr8hQNev+Be9zh4FwGm1sWDeY7hsMc1frBTH0huXPZOlFYQQooszNPOvy8z+01rPB+Y3c74S\neMT3cal7NwFTOtrASFGY25vkKu/4/ZzCU5RmGdrSogNmLlmCzekktbycbzz5BJ/NupbX77uf+rg4\n4681KH8H09Y3rpr+4bX3cjanXwt3eEuAI87uBbzjqjbnXWa8XUIIIcJDnDWakYbKf8uNRAmeiNz7\nLxwV5vZm8KHdgHdc1d5Rk0LWlt7HC5ocT1v+McP27OKvjz5G/lAze9YBJNSc4863/6/h+MCg8ayb\nfFOr9x1Lz2t43K+swFh7hBBChB+728Huiu5R/ovIpMpjg9qcwMcKpeSbWXwyevtRzlXGNhz32baP\nFMvodsdRCQkBtyW+rorUZjbXzSos5D9+8iNWj7qBlWNvxdPKmK+Kybktv5DW3LPoeZKrvb1zVUkp\nvPKVb1GbbGtyWfVXh150a6F7EHWbXiK2ro5UewX1s9Moy25lF2hD36k9njezGoepjZA9Y8xsXG3Z\nebj1i9rAXVZqJI4J1hwzY+2cOUlG4pj6GndV9Vdc/LPeESY2Q7amphpoCWh7nZE41cPMbKgcV1xs\nJE5n04COhKl7BkRkUhWOSpIak4KsysKQtSOnvHFJh1MZ/Vg/fBa3bJhPrNOORWuu3vUhg07v5a2p\n91GS2vES5dTPPmTU7k0Nx6994VGqk9v2i8xjtXJk2FBGbvdOAh2ydx/rW0uqhBBCRKQ4azQjU3u3\nfmEbrDQSJXgkqTKk2D+pqirypuWq8wfV+SdVhWm92DVgCsezBzF37T/of/YgAD1Lj/Pw+79i2cR5\nbBw6vd3tzD1znNsW/73heNWMW9k3cmK7YhwaMbwhqRq8dy/rZ0xv1/1CCCEig93tYHd591jDURYI\nMqQyLoW6KO+MtzinnYT66pC048KkCuBcYjovX/dtlk66A5fFm0fb3E5u3riAez9+lqTaimZjNSfK\n6eBLf3+aaKd3+YRTPfN4d077dx06NGJEw+PBewLv7hdCCBG+ZPafaB+lKEnKpne5dyn+rKpCamLN\njOVoj5yKxg2dzydVAFpZWDfiWo70GM681X8j15d8DTqzj6+987+8d8U97O03odX4s995hZ6nvWu9\nOmzRvHLfd3DZotvdzvwhg3FFRRHlctHz5EkSKyupTu7I7kVCCCHCmcny36etXxJSklQZ1CSpqiyi\nIMvMIOS2Uh4P2X5JVVFqr4uuKUrrxQs3/4BZ29/lyj0fo9DEO2r43KoX2D7gMpZMuZv66OaXXhi+\nZwvTV77XcPz23Ps426Nvh9rqjImhYOBABh3wDhwftHcf2y+XpRWEEKKrsbsc7JLyn2ivi8ZVdbL0\nqiJsbifgLUfWxiY2e53bamPZxHn8/frHqEhonJUyLn8DX3v3f+lXeOiiexIrK7jn1WcbjnePmsya\naTcG1N5DI4c3PB6yd29AsYQQQoSn87P/THyEO+mpMsh/u5XMECRVzY2nasmx3CH8efZ/cfPGBYzN\n9668nlpTxn1Lf8dyVz4f3HIPbpvNu3zCq8+SVHUOgHPJafzrnm8EPBD/0IgR3PTWYgAG75GkSggh\nuqL4qGhGp5kp/60xEiV4JKkyqDjZv6eq85dVyG2SVLXtG7g+Oo5FV93Hgd6jmb3+NeIctSg013yy\nmGH7t/PKlx5jyMFdjNi7teGeV7/4LWqSUgJu7+Hhw/AohUVr+uYfJcZuD8qq70IIIUKn1uVkZ1n3\nKP9JUmVQeUIGLmUlSrtJsZ8j2lmHwxbb+o2GtLenyt/evImcyB7IbWteZtAZ72y8XqcK+N5vvtfk\nuuWzbuPgsHGBNxaoTUzkVL++9Ck4htXjYeCBA+wdZya2EEKIcBL+M/dMkKTKII/FSlliBtm+0l9m\nVRGn0zs2kLsjcioak6qitJ7tvr8qPpVXr/0mk/ev4trti4l2OohyuRqeP9F7AO/f+gUjbT3v0IgR\n9CnwziYcvGefJFVCCNHFxFltjO7A36TmrDUSJXgkqTKsOCmnIanKqirutKQqxmEnrdq7xYhbWShJ\nbmWbmUvQysLG4TPZcf1V3Pvy7+lzIh/wLZ/w5e94x1gZdGjEcGZ9sASAwXtlvSohhOhq7G4nO8tO\nt35hFyBJlWElydng+97pzHFV/ksplKT0wG0N7L+2MLcPv//uE8xY/g4DjuxjxbVzKco1M9DQ30G/\nRUAHHDyI1ek0nrgJIYQILS3lv/BlrdOkHXC1fmErKgaZ+fQzNjkbHhfFZzQ8zjx3Fu10NndLs1Q7\nrr1QTsnxhsdnE7JwV7R9lfRm2+LJxWOxsfzaO1h+7flz7Y+TVNDyD5KHDEoycsgsLSTa4WDE6nwK\n+g+76LrE5Rcv89ARFXOGt35RG6S+Y6ZXTXnCa46wpUfgmxh7zph5M+EuNBPHYigOquVNyNtMm9nI\n3WJgA3YAT02NkTgx68xsVm4xsAhwoL//TIuqC6+f884WZ7UxxlD5b72RKMETkUlVOCtJ9JsBWN15\nO4r7r6R+toOlv1DJHziCzFLvH74BR/Y2m1QJIYSITN2p/CeLfxpWnJjV8Di9phSrJ/AetbZoklSl\nRFZSdWSgXwnwiKxXJYQQXYoO/d5/SqlfK6X2KKUqlVKnlVIvKKXSW7knWyn1D6VUqe++7UqpFrvc\npKfKMGcAxoPaAAAgAElEQVRUNBVxqaTaK7BqD+k1ZU1WWg8KrZvM/CtM7hHc1zMsf0BjUtX/6H6U\nx4O2SL4vhBBdQVxUtLHZfxs6fqsbuBfYDaQCLwN/B+Y0d7FSKhb4BG/FcShQBgwHqlt6EUmqgqA4\nMYtUu7emn1VVFPSkKrWmjFhXPQC10fFUxXT+Rs6BKMnqQWVSKslVFcTba8g9c5wzvfJC3SwhhBAG\n1LocJst/VqXUEL/jUq11aWs3aa1/5HdYrJR6Bni9hVu+jDf5+rrW+vyA5z2tvY50BwRBkz0AO2Fc\nlX/przC1Z8Dbx3Q6pcgf2DiAfEC+lACFEKIrMVj+ywEO+H082sEmXQPsaOH5mcAh4O++8t9+pdR3\nWgsqPVVB4D+uqjM2Vs45559UtW8l9XCRP2AE47avA2DAkX2smXZziFskhBDChPioaMammyn/bYJC\nYIbfqVZ7qS6klLoDeASY3sJlmXgTq8eArwBjgA+VUkVa61cvdZMkVUHg31OVGYqeqgiU7zdYfeCR\nPd7tyCOtx00IIcRFal0OdpQaK/+5tdYHO3qzUuou4HlgjtZ6awuXVgGntNbP+I43K6X+CdwGXDKp\nkvJfEPj3VGVWF6N0BxZ4aocmM/8iNKk63bMf9th4AFIqy8koPRviFgkhhDBFazMfgVBKfQVvQjVb\na72ilcu3A829YoutkJ6qIKiNSaQmOp4ERy0xbgfJ9krOxacG5bWiXA4yfCVGD4rilB5Q3/FFRENF\nW6wc7T+MEfu8bxwGHNlHaWZkzWIUQghxsXirufLf5g7ep5T6FvA4cIPWelMbbvk78AOl1DeA54BR\nwBeAb7Z0kyRVQVKSmEVCmXej4KzqoqAlVVmVZ7H40veypCycUdERmVSBtwTYmFTtZdNls0LcIiGE\nEIGqdTnZUXom1M14BnABK5Tf0BKtdSKAUuoLwPPnj7XWx5RSNwO/A57EuwHdT7XWC1p6EUmqgqQ4\nMZt+vqQqs7qYw9lDWrmjY5qOp4rsnp38ATIDUAghuqJAS3eBv37LK4f6Bp+/esG5lcD49ryOJFVB\nUpzUOTMAc7vAIPXzjvcbjDPKhs3lJLv4DEmV5VQlp4W6WUIIIQIQF2VjbIaZv09bjEQJnohMqlRt\nPdbtgW+wm7HdQGMAa87Fi3uWOobAng8AyK6vaPaaCzmz2r9oZ/bakobHp4eMxNU/l6hqR7vjXMhW\na+ZtRW122+dCOInmWP/BDDrk7aXqd2of23pOBaDwi4ONtKfnkpLWL2oDM1viQtQZMxu/agMbIQOU\nT2hx14Y2SXnf0EbIeb2NxFE19UbiYGiVf1MbRdvHmvn6RNWY+W6uGGwzEiclP/CtvaK2VhpoiTkx\nhbVG4gR3ylPw2F1OdpR0j73/IjKpigQlfvvvZVUEqZasNblFxxoOz2b3C87rdKIjQ0Y0JFUDD+1l\n2+SpIW6REEKIQEhPlQjYuaQMnNZobG4HCXVVxNVVY49NNPoaiTXnSLBXAVAfHUtFalYrd4S/w0NG\ncsP7CwEYeFDGVQkhRKSzh8dA9U4h61QFiVYWSlIbSzKZQeitatJLldUXrSL/v/PowKF4fJ9Hr5MF\nxNbWhLhFQgghAqYNfYQ56akKopLUnvQoPQF4S4Ancs2MCzrPP6kqzO5rNHao1MXFc7JvHn2P5WPR\nmgFH9rN39MRQN0sIIUQHxUXZGJsp5T8RoGK/JQ6C01N1vOFxVxhPdd6RwSPoeywf8JYAJakSQojI\n5R2oLuU/EaCS1OAOVr+w/NdVHBnstw/gIRlXJYQQEU/KfyJQJUHsqbK4XWSVnGw47irlP2iaVPU7\neogopwMHZqZrCyGE6FxxVhtjM8wsTi3lv26sNCUHj1JYtCa1qpQolwNXVLSR2JllZ4jyeNeXKU/O\npC42wUjccFCVkkphTk9yCk9jc7nol3+IfZkjWr9RCCFE2JHynzDCbbVRnuRd9FOhyTx31ljsrjhI\n3d/hISMbHg+SEqAQQkQ0rZWRj3AnPVVBVpKaS0aldwXlzPIznM0wkwB11UHq5x0ZMoKpny0DZFyV\nEEJEMu/sPzPlv61GogSPJFVBVpzag6HHdwCQec5c92dXW0n9Qv7jqvof3o9yu9FWawhbJIQQoiPs\nLic7iqX8JwwoSWvMzrPKzX1T5TTpqep65b/SzGzK0zIAiKuz0+dYQWgbJIQQouNk9l/XZ01LMxLH\nXVh0yecKPbENjzNLTrR4bVRZ2zbXjXPUklpVCoDTEsW5YhdRvkVGATzOwDdUjikIOAQAlXcP7+Cd\nisPDRjB53WcADDy8h6Oj+wfcnhOfTw04BkDPj9u/+XVz3PvyjcQxxdRmyCZ4Ck62flE3FrP2QKib\n0ETmXjMzdC0pKYEHSc8IPAbg/I6Zfoczx81MJOrxgpEwnS4uKtrY4p9S/uvmihOzGx5n1JRg8bjx\nWAIrY2X7lRGLk3MCjheuDg8d3pBUDdmzl49vvzXELRJCCNFedpdDyn/CjHpbLJUx3l6NKI+b1Nry\ngGPmnjvd8Lgwxczgv3B0aFjjDMDBu/eBjoC+XyGEEE1pUIY+wp30VHWC4qRskuurAMiqLqYsMTOg\neNl+SzMUJpvpUg1HZ3r1oSYhkYSaapLPVZJz6jSFvXuFullCCCHaIc4WzdgsWfxTGFKcmMXAkiMA\nZFUVcSC3o+OMvHIqu0dPlbZYODx0OGO3bgJgyO59klQJIUSEsTsd7CiS8p8wpDipcVxVVnVxQLGU\n9pDj31PVhZMqgMNDG5dWGLx7XwhbIoQQomMUaEMfYU56qjpBSWJWw+Os6kvP/muLtJoyot3e2X1V\nMUnUxJqZhRau/JOqIbtlEVAhhIg0cVE2xmbnGokl5T/RpKcqs6rYO+BadSzjzukmg9TPO95/AI7o\naKIdDrIKi0grLqU8y8x0aSGEEMFndznZUWhum7ZwJuW/TlAVk0RdVAwAca46En2D1jsix285haJu\nkFS5o2zkDxracDx4j/RWCSFERDG18KfM/hMAKEVxUjZ9yr0LdGZVFVMdm9yhUP5J1dlukFQBHB42\ngmF7dwHeweobZ0wzFjvzTCHx1TUcHzzAWEwhRPdmcbrovfsoxQN6YE9JDHVzQi7OJuU/YVhxol9S\nVV3E0ayBHYrT3cp/AIf8B6vvMTNY3ep0ctvLr3PTgsVYtOZv3/0aq2+6xkhsIUT3NvuJfzFl4Srq\nEmJ594f3sHTMLR0e8tEV2J1OdhRJ+U8Y1GSwelXHBqtHu+pJqykDwK0slCTlGGlbuDs6aCgu32bK\nvQuOk1DV8fIpQM+CE/zXoz/klvmLsPgWFL397/OJcgS+vY8QonuLO1fNhMWrAYitqeOu/3qJR574\nDQmVgf3eingy+0+YVJzkPwOwY8sqZFWexeIrKpcmZuGymtlrK9w5YmM5PmgAAw4cAmDQnv3suHxy\nu+Moj4dr3vqAO1/8Jzans8lzqWXlTP1oJatuvd5Im4UQ3dOoj7YQ5XI3OTdp7XoG7T/A3779TfZM\nGB+iloWOlP/CnCcpFvvVQ1u/sBVxn3behqRFia2vVdXaRsjZZY2bJp9Nzrnk9ZaYmA608IK21NcH\nHAMga4GZct3JKY1J1dj87Zy6bUi77k8pLOOun7/E4A2NA92dUTbyB4xk6MHtANzyytvsyb0Oj7UN\neynuO9Su178US9/eRuJUDzCzYWvCCXvAMZTbY6AlYM818znFrA+vjYfDjamN5c9eb+aPpqdPXcAx\nev6j2kBLoObT9s80Hv3a5obHp3rl0etUAeB94/adx/+HT++6jncevRtnbOC/pyOF3Smz/4RhFfFp\nuHwbHyfXVRLjbP8vjtxK/+1pusd4qvOOjm9MovpvO9iue8cs3chjn/vvJgnV6R55PPOtJ3n5i9+n\nJt47kDSjrJBxO1ababAQottJLy1iYL73jaTbYuHP33icvzz8I6rSGycmXf3GMr73pf+m976joWpm\naMjsPy+l1B6gn98pKxALTAQeAu694JYE4N+11k/77p8E/AkYBZwBHtda/zPwpkcWj8VKaUImOVWF\ngHew+sm0vu2KkeOXVJ3tJuOpzisYN7jhca/9x7DZ63HGtfxOL7aqlrlP/JPxS9Y3nPMoxcrpc/no\n+s/jjvKWT1dPvZUbls0HYOaKt9g2bhraIu83hBDtM2Hzpw2P9w8bT3VSKntHTeaJ23/J53/5EqM/\n3QpAbsFpvnv/z/jwgbl8/OXZeKLa0DseweJsNsbmSPkPAK31SP9jpdQvgLla663AI76P889dB3wA\nzPcdpwBLgKeAacDVwCKl1BGt9TpTn0SkKE7MakiqMquK25dUaU1uZeNyCt2tp6o2NZGzA3uRe+QU\nVpebvrvyOTLl0nsoDty4j889/iKpheUN58p6ZDB/7nc42n9Ek2vXTL2J6asWE+uoI7fwBCP2bmLP\nqMuC9rkIIbogrZm8aWXD4ZbJVzc8rk5P4cXfPMbl76xi3tP/JMZej9Xt5pbn32TE2h288rNHKO3d\ndd8o251Odkr572JKqSjgfuD5S1zyMPCu1vr8vP95QC3wpNa6Xmu9DFiEt4erXZRSGUqpIUqpIR6P\nu/UbwlAgewAm150jzlcytEfFci4uxWjbIsHR8Y29VZcqAUbVO7nl6fk89MhvmiRUm2dP5fcLfn5R\nQgVgj09i3ZU3Nhxfs3yhd9V7IYRoo94n88kpPAVAfXQsu0dPaXqBUqy/bQa/fvUX5I/x+1226zA/\n+MKPuXzxyq79e0fKf82aC6QAL1/4hFIqF7gNuMXv9Fhgm9ZNvlO2Al9s5+sCPAo8DlBbda4Dt4de\ncQB7AOY0GU+V2y3XPCkYP4QrFq4EIK+ZpKrHwePc/V8v0OPwqYZzNamJvPXjL7H7mkktxv5s2myu\nWv0+NpeTPiePMPjQDg4NGWe0/UKIrmvipsbS386xl+OIiW32utLeOTz73I+55uX3uOmFRVjdbmLs\n9fzbL//KqNXbmP+j+6lO71pvmuOjbIzNMVNd2dz6JSHV3qTqYWCB1rqimee+ChwHlvmdSwIuzIAq\ngI4sJ/4s8BpAfFJKRE7nadJT1c61qvwHqZ9NNlObjjT+g9X77TyCxenCY4tCuT1M++dSbvjTIqKc\nroZr9k8dzcL//gpVWamtxq5KSmPT5Gu4ct2HAMxa/pYkVUKINlEeNxO2fNZw7F/6a44nysqy+29j\n3xVj+OLjz5Fb4C3ujP50K3m7D/OvH3+VPdMmBLXNnanW6WTHWSn/NaGUGghcAzzXzHMW4EHgLxf0\nSlXh7dnylwpUtrehWutSrfVBrfVBiyUyB/WVJmTiwdvDlFZbjtXtauWORt155t9553LTKevhneIc\nXeeg1/5jpJ4u4aGHn+SWZ95oSKgcsdEs+uEX+dsfHmtTQnXeihlzcfu+twbl76ZfwX7zn4QQossZ\nfHAXKZXe4QaVSakcHDKmTfedHN6fp17+Oas+d13DuaSySh76999x9y//SnRt4MtLhA0p/13kYWCH\n1npDM8/dCPQAXrrg/A68JUN/E3znux1nVDTn4lO9CZX2kFFTSlFy2wYn5khPFeAtAaaf8c5xuPYv\n75C34zCx1Y1rK50Y2Z/5//MAJXntTzwr0rLZNv5qJm1ZAcCs5W/yt/t/bKbhQogua9KmVQ2Pt06c\n1ra17nycsTG89b0vsXfqOO75nxdIKfEWgq5cvJLBW/bxyk8f4djoQcbb3JniDc7+6xLlP6VUNHAf\n8JNLXPIw8JbW+sLR14uAJ5VS3wf+gHcG4O3AdXRTxYlZpNV639FkVRe1Kamyul1k+g1sb2si1hUd\nHT+YCR94k6pha3Y1nHdbLay4/1Y+eeBWPLaOr2m7fObtTNi6EovWjNi/hZ6nj3K6Z/+A2y2E6Jps\njnrG7GhctmXz5OkdirP/ijE88dov+dyv/874TzYCkHWikMce/DkffeU2ln71wv6JyFHrdLJTyn9N\nzMO7NtWrFz6hlOqFd3D6RWVB39irm4G78I6l+gvwSHdcTuG84sT2j6vKqi7Cqr2rVJfFp+OI6j4r\n8V7o6ISLV9Iv6ZPNc3/9Icu+NjeghAqgOLs3u0Zd3nA8c8VbAcUTQnRto3ZtJLbeW6YrzO7FyT4D\nOhyrNjWJv//ym7zy04exJ8QBYPFobvzrYu7+1YWFoAgj5b9GWuv5+Naeaua5Uy3F0VpvAqZc6vnu\npiN7AMog9UbFebmU9s4i46T3a7dh3nTe++7dOOKbn2nTEStmzmPsLm/eP2bnWpZe/2+UZPU0Fl8I\n0XX4l/42T54e+Mxspdh881UcGT+ML/zseQZv9Y7tvPzdTzk2sRe7e7VtvFY4ibfZGJtr5m/XJiNR\ngici9/6LZP49VZltTKouWk6hO1OKV576BhPfXcuBqaM5dPnI1u9pp1O9B7J/6HiGHdiGRWtmrlzE\nG3d9w/jrCCEiW0LVOYbt29ZwvHXSNGOxy3tk8sc//pB7f/ock5Z63+TN2bGIE2l9OBdvZr/GzlLr\ndLLjTPco/0VkUmWpqjOyGbJnjJnBf1Z722fxlfTOgDXex5k1JVgG9UUrbxVWHypo9p6mg9RbH4Bt\najNkIwbnGQkT+3zjLJhy+vFxYj/YAbHtnPLgSWzb1+azcXMYdsD7y3LilpV8Om4u55Iz2/dibaDq\nW95Eu63iV540Esc9emDAMbTFzBpqcWdrjcShh5kxiKfmtH0maUt6Lyg0EsfVI91InNLbnUbiJK0y\ns5F2eWp0wDFKLzfzs1rbq+WFpie9uxqrx/t5HxoxjILLsoGLvw4We8c/p398+yH67TxC1pki4lx1\n3Ln1dV6a+mDD3w0RXiIyqYpk9rgkquOSSbRXEu1ykFJZSkVKVov3SPmv8x3vPYyCXsPIO7Ufq8fN\n1M3v8cGs+0LdLCFEGLliReOCn+tnmuul8leXEM+LP3mU/3j0caxuD3llBUw/uIKVQ68JyusFg5T/\nRFCVpPck8ZR3qa6sslMtJlUJ9dUk1VcB4LDaKE8w8+5UtG7VZbeR95Z3PMOkXctZdfnt1MR3rZWO\nhRAdk336DAP3e3d2cFmtbJo2NWivlT9yCO9++U7mvvQ6ADMOLudI1iBOpPcL2muaVOtwslPKfyJY\nijN6kXfK+8c6s+w0h/pfeuXuJuOpknKky7cTHc4by6ns/vQqOorN5eSKLUv4eNrnQ90sIUQYuGxl\n4wrquyZPoCY5Kaiv98G9tzNu8Ubyygqwag93bl3An6Z/i3qbuUk6wRJvszHGUE/VRiNRgkeSqhAo\nSW+cSZZVeqqFK2WQekgpxaeX3ca/vft7AC7b/hGrJ8+mLjYhxA0TQoSU1ly+3K/0NyM4pb8mL2m1\nsHDC3Xxj5TPEuepIry3n1l1v8+aEu4P+2oGqdXafnirp9giB4oxeDY+zylpOqnIlqQqpfYMnU+xL\ngmMddi7b/lGIWySECLX+Bw+Te/oMAPa4OHZc1vKG7aaci0/lnbG3NxyPO7mdMSe3tXBHGJF1qkSw\nFKc3JlWZrfZUnWl43JaZf8IsrSx8OuU27vjwzwBcsXUJayfehJn5UkKISHS53wD1LVddgTOm8xZk\n3t1rDIOLDjLhxBYAZu98mxNp/cJ6vK3JgepS/hMXqUzyrooe7aonoa6a+NpKauOTL7rO4nGT7bfq\nemE33p4mlHYOu5JZa98grbKEBHsVk3YuZ13yiFA3SwgRAlaXiymrVjccr5t5dae34f3Rs+lXVkBG\nTSmxrnru3LqAv059CI+l7XsOdia7lP9EMGllaTququx0s9el15Ri83jXwDoXm4w9WsbyhILHGsXq\nybMbjqdufh+ru+1rkwkhuo7h23aSfM47e7s8I50Dozv/DZYjKoY3JtyN2zdxqW/5cWYcXN7p7WgX\nKf+JYCrO6EnPoqMAZJad4ljvYRddI+OpwsfWUTOYse4tkmrPkVJdxriT29jSb3KomyXCjNXlYvSm\nrRwfmEdZdnbrN0SYtLMl9Nubz/4po6hLjA91c0LCf22qDTOuQltD0zt0Kq0Pnwy7juv3LQVg+sEV\nHMkaxLGM8NsAPs5mY2wPM3/DNhiJEjySVIWI/7iqS80AbO9K6iJ4XFHRrJl0Czd++hoA0w6tZFuf\nCWHb3S46n3K7+dZPf8HIbTuoTE3hp//3OyrTzKzCHmrK42Hawo+57Y//IrreSXlWGq/+5GEOTBkV\n6qZ1qhi7nfHrGkf1rJs5PYStgdWDrmZQ0SEGlOZjQXPn1tf544xvUWeLC2m7LmR3ONl5Wsp/Ioia\nlv+aT6qkpyq8bBp7LbW+5RQyassYeXpXiFskwsmNb77NyG3efZOSK85x7dvvhbhFZiQXl/O17/yG\nu55+meh67xSNtOJyvvmtJ5j3u1ew1ZnZaikSjF+3kRjfNmCn+vXhZP/QLr6plYU3J3yOWl8SlWqv\nYM6OxaDDsE4m5T8RTP7LKmReYkyV/8w/SapCzxEdx/rxNzJr3ZsATD+0kt29xsiCrIK8g4e47Z//\nanJu5ntL+PCOudQmJYaoVYEbt3wjn3/iJRIqqxvOeZTC4vujPXPBUoZt3M3LP/0aJXT9yRv+s/7W\nzbwalJl9LgNRGZfC22Pn8W+bXwVg9OmdHMwewva+E0PcskZx0TbG9DTzN2y9kSjBE8FJVeDfzJad\nhw20o2PJc6nHhVtZsGoPaZUlRO07iDOqcdPNGGcdafYKAFzKSkmi+c18O8UlNoluL9eowDf6BXDH\nBpYArZ5+K1O3vE+Mo46cqkJGXH+SgzPHdjjepBQz34PrvnHx7NGOqOwX+Ga2qe/tM9ASIK+3kTDl\n481MNc/Y3vzmutH1dh754++Icjd9Ps5u55YXl7B85p1Nzhdda6aUP/kqM1/nwy9e/LMVU1fL7I9e\nYvzuxiTCg2L15bNZP/FG5ix9kWGHtwLQ4+gp/v0rj7Ppuzew/YGZaGtgP2O1qw38rJvq0fD7M5Nc\nVs7IbTsbjjfMnNbmP0OqOPCfKwBLQvOTlfYPvozN5UeZdGQtALfufoeTvYdTltTMFmiWzn8TaHc4\n2XlKyn8iiNyWKMoSMhqOM6uLmzzvP56qJCkLtyWC898upDY+iQ2Trms4nvaXJeHZ1S46zZz3XiKz\n1PvzWhcTx7JZjStcX7X2PWyOulA1rUPyju3l0Re/1yShKk/O5K9feJyls+7lXEomr9z1Axbf9BAO\nm3d9piiPmyue+oDb7v0TSSdKQ9X0oJqyag0WjweA/aNHUpZ96T1bQ+HDCbdTnOSdHBHjcnDH2n9g\n8TT/RiAUlKGPcCd/qUOoODGLLF8ylVVdxJnUxpJg00HqUvoLJ59NncOVm5YQ5XTRa1cBeRsPUHDZ\nxbM3Rdc3ZtcaJm9tnMq+eM6D7Bg9lYnbVpBeXkRCbRWXbVrG6qmzW4gSHqwuJ9d+uoCr1r+Lxa+r\nZ+voq3nvuvupj/Wb7acUm8ZfS36/kdz5zv/R9/QhAHpuPsrds3/LZz+Zy4F5k8OiPGaKf+lvw8zg\nb0vTXs6oGN688ss8sOxpojxuepcdZ+auD/hkbOi/9+Js5sp/64xECR5JqkKoJLHxnU7WBT1VuTLz\nL2xVJaWx/fYrmfS695fstL8skaSqG0otL2Le4ucajreNnca2cd7ZYKum3cbt77wAwNWfvcO6y27E\nHWULSTvbIqfoOHe98yw9io41nKuNS2TxjQ+xZ/jll7yvNL0HL3zp50xfs4hZaxdicXuIrqnnmv9c\nQP9P9rLyf++kLj1yx5Sdl3viJP0PHQHAGRXF5quuCHGLmncmvQ+fjLmVG7a/DcBVez/mSO4wCnIG\nh7RddqeU/0QnON9VC5BVdenynwxSDz9rv3IdHt/Ykf4bDtBrR36IWyQ6k/K4uXvhH4irqwWgLC2b\nxXMebHh+84RZVCZ6l1NIqSpj4raVoWhm6zwepm54j6//7T+bJFQHB4zlDw881WJC1RDCYmXFtDt5\na8GjVOQ1jv0csGwXn7/lKfquNDTGLoQuX/FZw+Odl00M68kH64bN5EjOUAAsaOate5m4+poQt6r7\nkJ6qECpu0lPVuB2N0h5yqqT8F84q+mSx+6bJjHnPuxTdVS9+yIJnvx7iVonOMnPVIgYUeJMFt8XC\n/Lu+TV1s4yBily2az66awy0fvgzA9E8Xs3nCLDwhWiiyOQmnKpj2H2/QY13jGwJnlI0PZ32R9RNv\naHfprmhsX15/+7tc+ev3GPWad8B0fEkVtz74IrvvuZK1P7gVV3zn7ZFnjNYXzPoL7dpUrdHKwqLL\n7+VrS54gwVFDiv0cczbOZ8FV94esHCvlP9Ep/Huq0qtLsXjceCxWUmoriHV510KpiY6nOiYpVE0U\nLVj94A0NSdXQFTvJPniKoiG9WrlLRLq+xw9y7fIFDcefzLyLY/0uLv+un3I9M1e9Rby9msyys4zZ\nvZbtY8NgLI7WDHh7O5c//g4xVY2D6E/lDuD1OY9Sktnx72FXfAyf/uwOCmaNYOYPF5BQXAXAqNfW\n0mvdIT75zT0Uje0b8KfQmQbuO0DWWe+b3prEBHZNnhDiFrWuKj6Fty+7h3s+85agR5zcwYT8dWwd\neGVI2mN3Otkl5T8RbI6oGM7FeqfCR2k3abVlQDOLfnahwZ5dScnAnuy7ZlzD8dQXPwxha0RniKmr\n5fOv/w6rbxbY0X7DWDH9jmavdcTEseaKWxqOZ6x6C+W7L1SiK2qZ/u35TP/u6w0JlUcpVlw5j+e/\n/L8BJVT+jk8fzoL3vkf+daMbzqUdLWbe3c8y6dmPUK7wmZXWmiuWN/ZSbb7qClzR4Ts2zt+B3qPZ\nOOiqhuObtrxFRmVhaBpjauHPCJhoLT1VIVacmE1KnXdzzqyqYkoTs8j1W/RTSn/hbfWDNzH8k+0A\njPxwMyu/OZvyvl1vzzfhddu7L5JR7u21qIuJZ8Fd326xpLfmipu4evXbxDjq6FF4nGEHtrCxX+vj\nlIKhx+rDTPuPN0g4W9lwrrJvOv+a8R2O9x5q/PXq0hP58I9fZuhbm5j2P4uJrqnH4vYw5Q9L6btq\nH6iuQlAAACAASURBVJ88dQ/n8sJrWYILWZ1OJn+6puF4/ayrQ9ia9vto/Fzyig6RXVlItNvBnWv/\nwQ9D0I64aBujDZX/1hqJEjySVIVYcVIWg0q8C0BmVRexnxEXDFKXmX/h7Myofhy5cgQD1+7F4tHc\n/L/zOXLl8Dbf3ye2vNnzjvQ4ztw6HE9cZLwr7g7G7fiMidtXNRy/NfdhytNaTqDt8Umsn3I901e/\nA8CslW+y8brLOrX32VLvYtKvlzDy703/HB24ezIbf3wLx+ebT6gaKMWBO6ZwespArv3+a/TYUgBA\n7o7jfG7O06z54Rz2fv7ysO2NH7VlO4lV3tXkS7MyOTSy7T/b4cAZFc3CK+/joY+eIsrjpmf5SbCY\nWSi4PeyO7lP+k6QqxIoT/WcAet8B51Q1dtFKT1X4W/3gjQxcuxeAgWv3NjwOVMa64+x8+lYjsURg\n0ksKuf3tvzQcbxk/gx1jrmrhjkafTZ3DleuXYHM56XvyEEP37uTAyI6vwt9eU3/4JoMWb284tmck\nsPaX8zh+XedtK1PVJ4PFr36DcS+uYMozS7E63djsDmb890LyVuxlxS8/hz0z/MaO+g9QXz9zGjoE\nq5EHqjCtF8vGzuGmbYtC2g4VAaU7EySpCrEmyypUF2NzOcioLgG820L4J10iPB2bNJiCSYPJ23zI\naNxeb+7m8KNXUtvfzDYromMsbjdffulpYuu9yyeUpuewePYDbb6/KjmNzRNmccXGpQDc8O7CTkuq\nBize1iShOj5rGGt+NY+6rM5PYLTVwraHr+HEVUO59t9fI/2I981j3oq93H3LU6z85V0UXDOq09t1\nKbG1NYxbv7nhONJKf/42DJ3OoLP7GXwmNMtbxEfbGN3LTAfBmtYvCSlJqkLMfwHQzOpisqsKG1Yz\nLk3MbLIfoAhTSrHwtw8yceFqYitr23VrTnTlRecyVxeQvK8I5dEM+PN6dj95s6mWig644YPX6Z9/\nAPAun/Cvzz2GIyauXTFWTbuNKZuXYfV4GLZ3F3mHD1AwKIhlNyDxeBlX/PfbDceH7pjA6ifvDHmp\nrWRkb95Y/B0uf+p9xv7Du/5TfFk1Nz/yN/beNYXDM79DfVz7vr7BMHbbeqIdDgCOD+jP6X6RNWvR\nn1YWFl32BR5c9jTYXZ3++rUOJ7tOSvkvfClQBrphVW8z45U8x092+N7qmETstljinHXEuurJHVQC\nvnXmjk0YyJnH2r+5aI/fH+lwe8KV7XSFkTil15np+XN92DROJdm8329Qu+PEfXrgonP90o/yAN5S\nU8/5u1lQciOVcaktxrFmmRnw6xkT+CKBdeVmkoX403YjcWp7dXzG3aA9+7hhyRsNx2/f83m239T+\nz6+UXDZsmcaVK71jsm58dyHPfffHHW4XQMHvL73htMXt4v43/0p0tXdpltKUHF7P+hqOZ2IvujZK\nOQNqx3ln/t3RrusXcjPbLh/MvO0LSfZN1hnxxkZ+tPZbvPrzhykY2/FVwB17Ujp873mTNjWOn9vb\n50p6Lu/418lScDrg9gB46us7fG8VVp6Z+R1479dG2tIeCin/ic6ivCW+vuXHAZi8onFps5MDI/ed\nkei4Yxn9KUjPI6+sgCjtZuqRz1gyKvT7d3U3cdU1PPD07xs20T0waiRL5t3e4XhL7ryDy1d9ikVr\nxmzbRK/jBZzqm2eotU1N3/Q2fc56J8C4LVYW3vh1HNEXJ1ShdiR7MP8349vM3vk2o0/vBCDzVDGP\nPvgLPr7vVpY+NJf/b+++46Sq7v+Pvz7bd+ldqkhHRJQioqAoYkFFRE0saERjsJtoetPkm/wSjSlq\nbDGWYK9oUFFAULGgKEqX3psU6VuG3fP7495dxg1smzO7s7Pv5+MxD7jtM+csu8Nn7+fcc4rSqv+/\nqUbbt9Ft0TwgGIYxt+eJ1d6GeChMqZn/8rPT/ZX/PqjidWZ2J3AO0B7YA7wB/Mw5t70C114HPAD8\nxjn3h7LOVVKVALY0OJBUtV21tmT/uk6H11STpIa933UoHT95AoD+q2fxXtdT2JeZuEtjJB3nGPPg\nwzT/Olg+am+9evz7h7fgYpgRfWP7dnxx/ED6fTwTgNMnvszjN9zmpbnROqxfzEmzDpT9ph1/ARta\ndfL+Pr7kZuTwQr+L+eqwnpwz9zWy9+eRUuQ4/bGJ9Px4Hk/9fhxfH9GmWtvUf+YMUlxwa2Vlh17s\nbqBxjbHITYzyXyEwBpgPNAbGA08AI8u6yMwOB24D5lXkTWrfowxJKHq5mmhKququpS27saFR8B9J\nRmGEQSsSfXaW5DJo+rsMfP/A78Tjb7qOb1o0L+OKinnzwgMThfb75ENabPJTFiqWlb+XCyY/eCAh\naNuTD/ueXc5VCcCMue2O4f6ht7C0/4FpC9ovWsVtY37L4OengKu++tFxH79b8vc5vSr2lKeUo4Yn\n/3TO/dI594VzLuKc2wLcAwytwKWPAr8Cyr2jBbpTlRAOllTl5mSzrVXsH+JSS5nxftehXPzZMwAM\nXPkxH3Q5ifz0xCvhJJsWGzdx2UOPlGzPGD6Mz088ATxMhr66S2cW9D6WXvO+IMUVMfyNCTxz9Q2x\nBwZwjnOnPU7j3dsA2JdZj1dOv7ZWTQOwM6cxD/6/n3LSM5M55/4XSYvsJyM/wgV/eYpeM77k2du/\nz64WTeLahtbrVtNuzSogWAtxYdfj4vp+dUF2Rjq923kr/6WaWbeoXducc9uqEGoYMKesE8xsHLDX\nOfd8WAIsl5KqBBA9rUKx9Ud0qFUfhuLfwta92FK/BS32bCF7fx4DV83k/a5Da7pZSS11/36uufvv\nZOUGS7hsatOa5665yut7vD3yQnrN+wKA42dMZ9Ko7/BNs9gfNDhm0QyOWvpJyfZ/h13NrlpYtnIp\nKbw35kyWHN+Ly37zMG2XBkMiesycz08v/hUv/mIsc04bELf3H/DRgbmpvurcj/zMnLi9V12RWxBh\n3lpv5b9WQPQTPr8D7qhMADO7ALgWOOTq2GbWAfg1UKklEPS/dgLYkdOESKkBhOs6aZB6XecshRld\nDvzMD1r+Aen7K/eElVTOuc++QKclwXxj+1NTeeTH/h/vX9b9SJZ1C0pcaYX7GTbptXKuKF/THZsZ\n8d74ku3Peg1lUZf4JR7VYWOX9vz9P7cz7fIRFIXTQNTbuZcrf/5PLr39X2Ttqdz0JRVhRUUM+PjA\nU39zjkyABbCThb/y32age9Trvso0w8wuAh4BRjrnZpdx6r+BPzjn1lcmvu5UJQBnKWyr3/xbCylr\nPJUAzGl3DKcunkrj3B3UL9hLvzWzmNkpOZ5ESjTd5i1gxIsvl2y/evmlrO5a+WkyymXGWyMv5Ma7\n/w+AwdMn89bIi9jTsGrTAKQU7ueCtx8gMxI8br+lSWveOukyb82tSYUZ6Uy85bssHNyHS2//F003\nBVWeAW98SOfZi3n6d9ewom8Pb+/Xeckimm4PJl/eU68By46ovpnvk1l2Rjq923sr/xU655ZU5Voz\nGwv8FTjXOVfePKLDgX5m9sdwuxEwwMzOcM4dMttWUpUgttRvUSqp0p0qgaKUVGZ0OYlz5wVrxw1e\nNoNZHQfW2KPRySpnz55g+oRwMPSio3vz9vnnxe39Fh7dl7WHH0H71SvJKCjg1Lcn8t+LxlQp1imf\nvEK7zSsA2J+SystnXE8kycbeLe/Xg7889wdG3/UkA94MHtpounErN4z7M++OOYs3rxtNYUbs62QO\n+Ojdkr/PHngihan6OfMhtyDC/DU1+/Sfmd0M3A6c4ZybVYFL2pfafpFgFsm/lnWRvmMSROnlaNYf\noaRKArM79OeUxdOoX7CHRnk76bPuS2Z36F+tbWi5egPdZy3g8+GD2NcoyaZ2cI4r/vkgTbcGd0H2\nNKjPo7feHN8xjWa8de6FXPPPvwBw8pQ3mXz2+eTl1KtUmI5rFzL4s9dLtt854SI2tuzos6UJI69+\nDs/8fhwLTjqWi/70BPV27iXFOU598k26z5zH3FMP/EwUfl21pLLvrAM3Lz49YShUfa5NiRbjk3ue\n3APsB6Zb1KoCzrn6AGZ2GfBw8bZz7luzeptZPrDLObeZMiipShDRg9W3tmpBbn0NjpTA/tR0Puo8\nmNMXvQXAkKXv8kX7vjirniGRLdZs4qdjf0P2vjxOfmkydz7xByJZmdXy3tXhxKnT6P/hgUl3n7jp\nBnY0axb39/1ywPFsat2WwzauJzt3HydPncTbIy+s8PXZeXsYPfmhkmWtlrfvxcfHnhWv5iaMOacd\nx8o+Xbnkd/+mx8z5ALRdurZkQLsPW1u0YmWX7jRdoKzKB5/lvxlVvM45V+b6TM65p4Gnyzg+tCLv\no6QqQaxu1pGCjHQyCiLMP+6Ymm6OJJhPOw5kyLJ3yY7k0XzvNnptmM/8tkfH/X1TI/sZe/v9ZO8L\nnoZrvWoDF9zzFM/97Oq4v3d1aLV+A5c+/O+S7ffOGM6XgwZWy3u7lFQmnzOaKx4Jxtme+tZEpp1x\nLpHMCiSszjHynUdptPcbAPZm1WfC8HHVlmjXtF0tmvDwfT9m8AtTOffe58nI97PUTrEPTjmjxtdI\nTCaJUP6rLkqqEsTurIbc9Y/f0X7ZKj49VQOR5dvy07OYecQJnLJkGgAnL53O/Da94/7Bf/YjL3H4\nohXf2jdkwjQWHt+HuSdXbwnSt9RIhGvu/juZ4XpqG9u15fnv+50+oTyfnnAyZ7/yHM22baHB7p2c\n+O4U3j3jnHKvO+G9qRy5/LOS7ddOu4bd9eM7f1PCMeOD7w5n0YlH02fqZ2TkHbirVLil6ndStzVv\nxSeDh3pooNRFtTKpclmZFPbqGHOctO1+Fmz1JbL4cFZwOM2nAFT9Ny8PcxSSUpHfliugsPOhF32t\nVJyFfhaJbvF8VeaIi582f6344NpV208mMnQG6bkRDtu1iUHnLGP1qUcCsGian4liC1ce+Hu3BfMY\n/uSB8Trbmreg2dZg2ZbL/u/frKx/FDua/m+ZrN4yP19jt2OXlzipuR0Pun/0U8/RcVnwfRVJS+PR\nm26l0GWReoiPhdQ8Pwns/pzowSWpvD1qFJc+Gkw2etqkCUw/+3QK0w/9fdFq/XoueurA3bXpZ5/B\nOzdUfdbvJgv89Ktevp8F6uv/vnKzzOcDn3Lst/cNim1R75xNAEWweGV5p1bIlgt7ln9SBTR7aZGX\nONXNZ/nv/fJPqVG1MqkSqYvymtZjwSWDOOax4GOl74PvsPqUnnG5W1Vv9y7GPhD1NNxRffj3zbfx\nq1/cStNtW6m/Zzffe/Ae7v3FHbVyktru8+cyfOKrJduvXjqGtUfUzPp4H546jHNeeoGGO3fSdNs2\njn//PT4cdtpBz02NRPj+PX8rubu2oX07Xvj+96qzuSKVllsQYV4dKf/Vvk9DkTps7tiTKUwPFvU9\n7MvVtPnUzx28b3GOy/79AE22h0/D1W/AE9fdwt4GDXn8+h+WTMTYc/5cTnsj9okrq1u93bsYe989\nJQnjgj7H8M6Ic2usPZHMTKacc2BN1zMnvIIVFh703FHPPcPhK4JybCQtjYd//iMKkuihAUliNbz2\nX3XRnSqRWmTvYY34avQAej0/E4C+D7zDhoF+J6gcPG0KfT+dWbI9ftxN7GwaLHey9MijePu8Czjr\n1ZcAGPX8Uyzu1Zs1neIwSWY8OMflDz1Ak2+CtVF3N2jIE9ffVON3294740zOfPUV6u3dS6tNG+k3\n82M+O/HbJb2ec+dwxmsH7q69dNXlrOvUsZpbKlJ52Rnp9O6g8p+IJKAvfnAKPV/8hJQiR/uPltJy\nzhoW4SepabV+HRc9+WjJ9nunncnc/t9eUHbiBRfTY94cjli+lNTCQq6+72/8vz/9lfwsv8u5xMOQ\nd6Zw7KwD6+P95/ob2dWk5tfHy8vJYfpZIzjnpRcBOOuVl/nshBNLSrv1dwV314rNP+ZY3jlvRI20\nVaSy9PSfiCSs3R2aseycY+n232DZqmMfnsZ7F54ac9y0SISr/xk1Xqdte14aM/Z/zisKB3X/+uc/\nIisvj1abNnDR+Ed56gc3xtyGeDps3Vq+88SBhHH6GWcxr1/irI83bcQ5DJ/4XzLz82m/ehW9P/+M\nef0HBJOTPvBPGn8TTJ+wq2FDHr8xzpOTiniUnZHOUZ4Gqr9X/ik1SkmVSC30xbhTSpKqTlPmc9gJ\na9jUJrZZ+M9+7Wk6rDowXufRm2475JxJW1u15tmx4xj7YHD3ZPD0qSzs05fZA0+IqQ3xkhaJcPW9\nfyejIFiQen379rx8eWIN8N7TsCHvDz+d4a9PBGDEKy8xr19/Tpr8Nsd8dmBVjf/ccBO7GzfGz3O+\nIvFXl+5U6VcdkVpoe7fWrBh+VMn28Ekvl3F2+bov/JJhUw6M15lwyRWsP7xjmdd8MmQoswYdWFf0\nskfup8m2LTG1I15GPfsUHVYFj8dH0tN59OZbiWQk3gDvKeeeRyQt+F2385IlDH1rEt/5z+Mlx985\n62zm9avd84NJHeTAPL0Sne5UidRSX4w7lU5TgmU6+s2awZsjL2Fbi8rfYq+/eydjnogar9OnL9PP\nLH8CSsx45upxdFr6Fc22bqHe3r2Mvf8fPHvCDxOqNNVzzpcMf/2/JdsvX1Z+wlhTdjRrxsennMpJ\nUyYDlMxfBbC+QwdevvyKmmqaSJVlZ6RzlKeB6u96iRI/SqpEaqmv+3Rg7Qldaf/RUlJcEcMmT+CF\ny66rXBDnuGT8P2m0s3i8TiP+c23Fx+vk1qvPYzfeym2/+xUprohuixYwuN4kZhx7dmW7Exc5+XsY\ne/+9Jdvzju3L9LMSo22H8vZ5oxj8zlRSig6U9yLp6Tzyw1vZn5FRgy0TqZrcggjzV6v8JyIJbvZ1\nw0r+fvxH79Dom8rNZj74/bfoPffAeJ3x1xaP16m45d178ub5F5Vsn/L5q7T9ekUZV1QT5xg161ka\n7QgTxkaN+M/1NyX8mm5bDmvNp6WmU3jpiivZ0OHwGmqRiAeap0pEEt2GgZ3ZdOzhHPbFatL27+eU\nqa/x6kUVW7/usA1rGPXigfE6751yNvOPrdp4nTdHf4ee876k89LFpLgiLpj2Lx4afTsFGTU3zcJx\nyz+k+8aFJdtP3HAzuxtVLmGsKZNGX0jfT2aSUVDAnP4DmH7mWTXdJJEqy8lIp/fhKv+JSKIzY/a1\nwxgx7jEATnz/bSafdSH76jcs87K0SAHfe/RvZESCp+E2tOnAaxdU/Wm4otRUHrsxmGYhO3cfTXdv\nYcRHz/Dq0KurHDMWLXdu5PQ5B8ZRvTPiHBYc07dG2lIVG9u3589//DOt169j9vGDEv7umkhZcgsi\nzF9VN8p/tTKpstx8UubFvjzH9pF+Frl0Axp5idNszl4vcXyI9GjvJU7qnGV+4jRp4iVOYTjXT8y6\nd/QSZuF7sd/JWZjSmaO7TKXdsjVkFuRz0vwJvH7NhWVec949T9J23SoAIhnpPHrn9eR1jtDyhaov\n5A31ef3kK7norQcAOGbpR3x25iA+O2FIOdcdXM7Gqk3KmRYpYPTf/056UdCXde078uoFV5CSH1ti\n4msx25TWFfuNvZAmrKMJLafvOUQgP6M3dnUvOwGvKCuI5XvHr+z5lVuU+VCsZQsvcVpO3eglzsEX\nL6olakHpzodykyozWwBEF/NTgSygn3Nutpl1Bu4GimcfXAQMcc5Fwuv7Aw8ARwEbgdudc0/564JI\nHWfG21eM5Orf/hOAoS+9zdRLR5BXL+egpx85cw7Dnn+rZPvlmy5lY2c/SfS8HifSfs8Cjv8gmKLv\n0kcfZGXXbmxr0cpL/Io45/XxtN60BoBIWgaP3nCbBniL1KBsj+W/6V6ixE+5SZVzrlf0tpn9ERgV\nJlQtgBnAv4ArgT3AsYQJtZk1AiYRJF1DgJOACWa23Dn3scd+iNRps08ZyLntXqTlus3k7N7HkAnv\nMGXM/y4S3GD7Tq74v4dKtuedeCzvjx7utS3PjR1H5yVf0eLrzeTs28fY+//B337zB4pSU72+z8H0\nXPg5J814o2T7tfOuZFNbPwmjiFRNbn7dKf9V6v6xmaUBVwEPh7tuBdY45+5wzu10zhU65z5zzhU/\nCzwa2Afc5ZzLd85NASYAP/DUfhEBXGoKky8fWbJ96nOTSM8vKHWS4/I//ouG3+wCYGezxjz5yx94\nH6+Tl5PDYzfeSmFYnuqyeBFnhgswx1P93Tu4+Ln7Srbn9xrARyecGff3FREpVtkxVaOARsD4cPsU\nYK2ZvQEMAtYBdzrnng6P9wG+cM5FV1NnA5dXtqFm1gxoBtCqYevKXi6S9D45czBnP/oyTb7eTqPt\nOxn0+ru8f8HpJceHvjSZoz7+smR7/K/HsaeJn/E0pa3s2p03LvguI198FoCzX3mer3r3YUW3HnF5\nPysq4pJn76XBnp0A7GrQhOe/e4MGeIskgOzMdI7yVP6b5iVK/FQ2qRoHPO+c2xFuNwcGAN8FziNI\nsiaa2Wrn3AdAA2BnqRg7gKp8kt8E3A6wN/8QAzdF6rDC9DSmXHo23/nHkwAMf+p1PjjvVIrS0miz\nfA3n3/9syblTLz6LRQOPjmt7Jo26kJ7z5tD1q4WkFhVx1T//xh/+/Hfycup5f6/BH7xBz6++KNl+\n5tKb2VvfzwMkIhKb3PwIC1T++7ZwQPow4KGo3buBj51zLznn9oflvbeAkVHHS3+yNQZ2VaGt9wHd\nge71MutX4XKR5PfhyFPY3bgBAM02b+O4tz8kPb+Aq357P+nh01lrux7Of6/9btzb4lJSeeyGH7Ev\nJxgw33zL11zy2L+8v0/rDas4d+L4ku3pQ89jSfdjvL+PiMRAk3/+j3HAHOfcJ1H7vgS6HOTc4q7P\nISgZRusb7q8U59w2YBtAm8btKnu5SJ0Qycpk2nfP4ryHXwDg9Ccn0nHhCtqsXAdAQWYGj//uBvZn\npFdLe75p3oKnv38919x7NwADP3yPBX2O5dMhQ73ETy/I5/In/0Za4X4A1rXtxJsjLvMSW0T8yM5I\np5en8t87XqLET4WSKjPLIHi67zelDj0MzDCzUcB/gZOB04E7w+MTgLvM7CfAvQRPAJ4P+H3cSERK\nvHfBcE5/aiLZe3M5bM1GDltzYI6cl24Zw6aObau1PZ8PGkyvObM54b1gNMQljz/Mim492Noq9g/Z\ncyc+wWGb1wJQkJ7BU2N+RGFa9SSMIlIxuQV1p/xX0TtVownmpno6eqdzbqaZXUqQRD0NrAS+Vzxd\ngnNuh5mNAO4Hfk8wT9W1mk5BJH7y6ufw3gWnc+b41761/8uT+vPBeace4qr4ev5719Bl8SJabtpI\ndm4u1939/1jas1eZ16TtK/tef0ZBPsfNOjBrzaujrubrVrqLLZKIrBaU7nyoUFLlnHsOeO4Qx14E\nXizj2lnAcVVqnYhUybTvnsmpz08iI5xWYUfzJjz9i+/X2NNw+dnZPHrjrfz09p+TWlhI23VraLtu\njbf4c3sPZObxugEukoiyM9Lp1dFP+W+qlyjxUyuXqRGRsu1p0pCpl4xgxBOvsj8tlf/89lr2NmpQ\no21a3bkrr33nMkY/O778kyvhm8bNeeE712v6BJEElZsfYcFKlf9EpBZ7/ZoLWXlUV7a3auZtGZpY\nTT73fNZ16EiLr8v/gM3YWX69oDA1jQW9+rOvXnzm2xIRP1T+S2QpRkpmZsxhmr69wkNjgFZ+Ft0k\nJXF+0/a1EHKkb1cvcZi91E8cT3Z2iX0hZICIpymbmr928B/ljfSHLdB0fsXiFNaPfZHew94qO2Ha\nThu206b8tuyvwOLX+4HZX1OPrw95SoN0P+v+5Q7q7iVO9mcrvcSxxn7m4Wq4zM+8fy479s9kX4p2\n7/YSJzXNz3+RkXbNvMRJ2bGj/JMSUHZmOr2O8FP+m+IlSvzUzqRKREREaoXc/AgLVqj8JyIiIhI7\nlf9EREREYpOdofKfiIiISMzyCiIsrCPlv9hHpYqIiIiI7lSJiIhI/GR5LP9N9hIlfpRUiYiISNzk\n5ded8p+SKhEREYkvPf0nIiIiEhufk3++7SVK/CipEhERkbjR5J8iIiIinpirG/U/JVUiIiISN9mZ\n6RzZyU/57y0vUeKndiZVaWnQsnnMYSw330NjYHcnP6vi1v9ys5c4PrgjO3uJk55gCyGneFpct9Gy\nXC9xUrf6WfjVZaR7ibNpWOOYY7ScW4GFkKtTvRwvYTK/KfASpyjiJw7NG3gJk7LKT1nGGtb3EseH\nwmM8LeT+pZ/Pr5RvEuxnoprl5kdYuFzlPxEREZHYOLC6Uf1TUiUiIiLxk52ZzpGd/ZT/JnmJEj9K\nqkRERCRucvMjLFym8p+IiIhIzKyopltQPZRUiYiISNz4LP+96SVK/CipEhERkbhR+U9ERETEA3Oa\n/FNEREQkZllZ6RzZxU/57w0vUeJHSZWIiIjETV5ehIVLVf4TERERiUlWpu5UiYiIiMQsLz/CIg1U\nFxEREfGgboxTr6VJVUGEorXra7oVJXLe3eolTiLNjZaSH/ESJ9F+jqyBn0VoWbzKT5zmsS8MDlC0\n0c9vgS2fij1O3ondPbQEsj5c7CWOpfn5mEvZ62khZE/fg0WLVviJ4yUKkLvPV6SYpXpaCNmXwj5d\nvMRJnbPMS5zq5rP897qXKPFTO5MqERERqRXy8iMs0kB1ERERkVg50DxVIiIiIrHJzszgyK6tvcSa\n6CVK/CipEhERkbjJzStg0ZKNNd2MaqGkSkREROKrblT/lFSJiIhI/GRnZdDTU/nvv16ixI+SKhER\nEYmb3LwCvlL5T0RERMSDorpR/1NSJSIiInGTnZlOj25+yn+veYkSP0qqREREJG5y8yJ8tVjlPxER\nEZGYWPiqC5RUiYiISNxkZaXTo5uftf8SnZIqH7p39BPH1yK9Hrjla2q6CXFRuH1bTTfhW7YMbuEl\nTtNX/Szq7UPavkRaGhxcTpaXOEVr1nmJk7Qs1UuYlPaxj70prJfhoSVgi1Z6iZP+9R4vcRLrjMSa\nvgAAFt1JREFUJ6vi8upQ+S+lphsgIiIiyc2cn1eV39/sTjNbYGa7zGyDmT1iZk3LOH+EmU0zs61m\n9o2ZzTCzIeW9j+5UiYiISNwE5T8/T//FoBAYA8wHGgPjgSeAkYc4vwlwHzAd2ANcA0wys57OubWH\nehMlVSIiIhI3nst/qWbWLWp7m3Ou3HEdzrlfRm1uMbN7gBfKOP/pUrseNLPbgQHAIZMqlf9EREQk\nvpzz84JWwOKo101VbNEwYE5FTzaz3kBzYF5Z5+lOlYiIiMRNlsfJP4HNwNCo7Uo/fWRmFwDXAidX\n8PyWwMvA3c65pWWdq6RKRERE4iYvL8Lir7yV/wqdc0uqerGZXQQ8DIx0zs2uwPltgCnAZOAX5Z2v\npEpERETiy9X82n9mNhb4K3Cuc+7DCpzfEXgHmOCc+3FF3kNJlYiIiMRNVlY6PXq0qdE2mNnNwO3A\nGc65WRU4vwcwFXjCOffrir6PkioRERGJm7y8CF8t2lDTzbgH2A9MNzuwaI5zrj6AmV0GPFy8DfwM\naAv80Mx+GBVn3EGeDCyhpEpERETixzmshst/zrkylx8ME6Wno7bHAmMr+z5KqkRERCRusrIz/JX/\nXvMTJl6UVImIiEjc5OUW8NVXNV7+qxZ1OqlK6djeS5yiBFoIWcqRYItfN311kZc4iSRz3Q4vcfac\n1N1LnHof+1kUN3eIn/Zkz1jsJY4vKdk5XuK4/REvcXwsXF1mnacycTp18BNn1z4vcWorA6yo5p/+\nqw7lJlVmtgA4PGpXKpAF9AOOBh4Dor9jJjrnLom6vj/wAHAUsBG43Tn3VOxNFxERkUSXleWx/DfR\nT5h4KTepcs71it42sz8Co5xzs83saGCFc67Lwa41s0bAJOBuYAhwEjDBzJY75z6OufUiIiKS0PLy\nChLh6b9qUam1/8wsDbiKYDbSihhNcBfrLudcvnNuCjAB+EGlWhm8dzMz62Zm3YpcUWUvFxERkZri\nPL0SXGXHVI0CGgHjo/a1N7NNQAT4EPiFc654EEMf4AvnvvUs5Wzg8iq09SaCibvYm7+nCpeLiIhI\ndcvKyqBHT0/lvzf8hImXyiZV44DnnXPFI1HfB3oDy4CWwJ+BKWbWxzm3F2gA7CwVYwfQsAptvQ94\nBqBeZv3EGukpIiIiB5WXW8BXC9fXdDOqRYWTKjPrDAwDBhXvc86tiDplk5ldQ5A0HU+wXs5uoGOp\nUI2BXZVtqHNuG+Fq1G0at6vs5SIiIlJDanryz+pSmTtV44A5zrlPyjin+KtW/ETrHIKSYbS+4X4R\nERFJclnZ6XT3Vf6b5CdMvFQoqTKzDOBK4Del9p9NkCCtB5oQlP+2AjPDUyYAd5nZT4B7CZ4APB8Y\n7qHtIiIikuDyciMsXqin/6KNJpibqvQigkOBT4E9wAKgKTDcObcHIBx7NQK4iKAs+C/gWk2nICIi\nUocUeXoluArdqXLOPQc8d5D9PwF+Us61s4DjqtQ6ERERqdWystLpcaSn8t9kP2HipU4vUyMiIiLx\nlZcbYfECPf0nIiIiEpOs7HS69/J0p2qKnzDxUjuTqvQ0Ulu1ijlM4aq1HhoD9OzkJUykXqqXOOmf\nLfUSJxnlN830EsdPFH9SWsf+8wBAbn7MIQq3bPHQEMj2FKfI0/K6vhZCLjqqs5c4KfOXe4lTlFu3\nF/st09qNXsIURvwsNl1b5eUWsHi+7lSJiIiIxE7zVImIiIjEJis7g+692voJ9o6fMPGipEpERETi\nRuU/EREREU+0TI2IiIhIjLKyPJb/pvsJEy9KqkRERCRugvLfuppuRrVQUiUiIiLxpfKfiIiISGyy\nstPpfpSn8t97fsLEi5IqERERiZu83AIWz1P5T0RERCR2RTXdgOqhpEpERETiJis7g+692/kJ9oGf\nMPGipEpERETiJm9fAUvmelprN8HVzqQqsp/CzZtruhUlUnL9LJaZvmiFlzipLVvEHMMV+OlT0Y4d\nXuLsG9rdS5ycd/0siutLwcBuXuJkzl7pJY7zsPCrde7goSXAKj+L2Vpaipc4+7v6+U17R9cML3Ga\nzvcSButyuJc4u47I9hKnwZSvYo6Rkp3joSWQf5Sff/P0WUu8xKnV9PSfiIiISGyysjPo5qv895Gf\nMPGipEpERETiJi9X5T8RERERP1T+ExEREYlNVnY63Xq39xNspp8w8aKkSkREROImKP+tqelmVAsl\nVSIiIhI/DpX/RERERGKVlZPhr/z3qZ8w8aKkSkREROImb18BS+ao/CciIiISO5X/RERERGKTlZ1B\ntz6eyn+f+wkTL0qqREREJG7ycgtY8qXKfyIiIiKxcU7lP6mELdu9hElp2NBLHLdzV8wxivLzPbTE\nn0RbCNmX/IZ+FvvN8LAQsi9ueWL9Rhrp09VLnPQv/Sx43nR+kZc4vkQa+lngudEnG7zE8fHVKcrd\n5yGKFkL2JSsng259PC20/oWfMPGipEpERETiJm9fAUu+XF3TzagWSqpEREQkvlT+ExEREYlNUP47\n3E+wOX7CxIuSKhEREYmboPy3qqabUS2UVImIiEj8OAdFifWARrwoqRIREZG4ycrJpNsxnsp/8/2E\niRclVSIiIhI3efvyWfKFnv4TERERiZ2e/hMRERGJTVZOhr/y30I/YeJFSZWIiIjETd6+ApbMXlXT\nzagWSqpEREQkfhw4p6f/RERERGKSlZNB92M7+gmW4MvAKqnyoGjv3ppuwrd17RhziJTN38TeDqBo\n104vcRJNapMmXuI0mrXJS5xk/B0wtUULP4FmL/USJqVVSy9xXE6Wlzhs2OwlTJqnr4+v78G9Q3vE\nHCOtwM+g6PTd+73ESZm33Euc2ipvXz6LP19Z082oFkqqREREJG6ycjLp3rejn2B+fgeIGyVVIiIi\nEje6UyUiIiLiiwaqi4iIiMQmKyeD7n2P8BMswYenKakSERGRuMnbW8Diz1fUdDOqhZIqERERiSOH\nK9IyNSIiIiIxycrJpHs/T+W/VX7CxIuSKhEREYmbvH35LP5M5T8RERGR2DhA5T8RERGR2GTVy6R7\nf0/lv7V+wsSLkioRERGJm7y9+SyeleBzIXiipEpERETiyOGcyn9SSxVlpsYepHXT2GMAJOmCyoXf\n+FlwOrVxYy9xUtq09hKnaMPGmGOkdGznoSVQuGqdlzgpDRt6iVO4+WsvcXadEfuCwQANV+Z7ifPN\neT29xGny2iIvceq9+1XsQbp3jD0GkJLvZ0HlIvPwmQzgCv3EqWZZOZl079/JT7D1fsLES7lJlZkt\nAA6P2pUKZAH9nHOzo867E/gpcLlz7qmo/f2BB4CjgI3A7dHHRUREJHnl7ctn8afLarQNYY5yDtAe\n2AO8AfzMObe9jGvOBP4KdCKYy/1W59zkst4npbyGOOd6OefqF7+AvwELSyVUxwFnESRN0Q1qBEwC\nXgaaANcCD5nZoPLeV0RERJKAA+ecl1cMCoExQDOgD9AOeOJQJ5tZJ+AV4E9Ao/DPCWbWsaw3qVT5\nz8zSgKvC4MX7MoFHgR8Az5a6ZDSwD7jLBV+NKWY2ITz340q+dzOCLwatGvopdYiIiEh8ZdXLpMeA\nzn6CTSTVzLpF7dnmnNtW3mXOuV9GbW4xs3uAF8q45HvA51GVtafN7Npw/+8OdZFVJvMzswuB8UAb\n59yOcN+fgBzn3C1mtgr4dXEjzOwfQEfn3KioGD8iKBH2rfAbB9fdAdwebu4D/BTw/UgFWgGbCbLh\nZKV+Jhf1M7mon8klXv083DnXwmO8cpnZW0BzT+EaA9EZ2u+cc3dUoU1/AY53zg05xPFXgVXOuR9G\n7bsHaO+cG32ouJUdqD4OeD4qoeoPXAQcc4jzGwClRyrvAKoycvQ+4Jnw7xXKTKtLmDUvBoY655bU\ndHviRf1MLupnclE/k0sy9dM5d6avWNFVq1ClcwEzu4BgONLJZZx2qPylV1mxK5xUmVlnYBgwKNzO\nAB4HbnDO7TnEZbuBjqX2NQZ2VfR9i4VJVMIkUiIiIlK9Ys0FzOwi4GFgZPTY8IPYTTCWKlq5+Uu5\nA9WjjAPmOOc+CbfbEGRsT5vZVjPbSjCq/kEzezo8Zw7/exerb7hfREREpFqY2ViChOpc59z0ck6f\nQ5CvRCs3f6lQUhXelboSeChq91qgA0HSVPzaAPwSuDk8ZwJQz8x+YmaZZnYacD7wr4q8by2yjWDg\nWrLfSVM/k4v6mVzUz+RSV/pZLczsZuBu4Azn3IcVuGQ80N/MLjGzDDO7jCCp+k+Z71ORgepmdjFB\nItSmjFIfpQeqh/sGAPcDvQmmXPit5qkSERGR6mJmDtgPfGvW3HCqKMKk6eHi7XBf9DxVK4AflTdP\nVaWe/hMRERGRg6vMmCoREREROQQlVSIiIiIeKKkSERER8UBJlYiIiIgHSqpEREREPFBSJSIiIuKB\nkioRERERD5RUVYCZpZjZR2bmzKxd1P4rzGy5me0zs0/MrF+p6/qb2afh8eVmNqb6W18xZnaamc00\nsz3hskMPRB1Lin6a2WFm9ryZbTGzb8xsmpn1iTpeK/tpZheb2Qwz22Vm+w9yPKZ+mVlLM3vFzHaH\nX7s7zazaPzvK6mfYx4/Cf9etZjbJzHqXOqfW97PUeXeGn0ml+5EU/TSzzmY2wcx2hq+ZZpYedbzW\n99PMUsN2rQ3bOc/MLix1Tq3op4Scc3qV8wJuA6YCDmgX7hsM7AVOBzKBnwKbgYbh8UbAFuBn4fHh\nwB5gUE335yD9G0qw+vaFYVuzgL5J2M9XgClAEyADuItguSWrzf0EzgAuAa4C9pc6FnO/wq/ZK+G5\nnYAlwM8SrJ83hG2vF/bjjwQrOOQkUz+jzjkOmEuwNNiYqP1J0U+gRdi3O8J2pgL9gZQk6+fNYT+7\nE3wOjQIKgB61rZ96hf8eNd2ARH8B3YDlBGsbRidV/wGejDrPgNXA98LtseG2RZ3zJPB4TffpIH38\nGPjzIY4lUz/nAuOitruH/6bNk6GfBMlx6Q/tmPoFHBF+jTpHHb8aWJlI/TzIOVlhu4t/OUiafob/\nuc4DBgGr+HZSlRT9BP4EzCzjmmTp573As6X2bQQurK39rOsv3SIsQ3gL9THgxwR3cqL1AT4v3nDB\nd/OX4f7i41+E+4vNjjqeEMysHsFvvWlmNjssnbxrZv3DU5Kin6G/AKPNrIWZZQE/AD5wzm0lufoZ\nLdZ+9QF2OueWlzre0cwaxq3VsRsG7AOWhtvJ1M87gGnOuY8PcixZ+nkKsNbM3jCz7WY214K12Yol\nSz8fAXqZ2ZFhKfBCIA14PzyeLP2sM9JqugEJ7hZgk3Nugpl1LHWsAbCz1L4dQMMKHk8UTQjG1l0C\nnAV8RZBEvmlm3UiefgJ8CHwP+BooJCj9nRUeS6Z+Rou1X4c6TnjOLj/N9Cf8vn0cuM05tzvcnRT9\nDH/ZuYjgzvnBJEU/Ce4eDwC+C5xHkGRNNLPVzrkPSJ5+rgBmAPOBIoLFfi93zn0dHk+WftYZulN1\nCGbWhWAs1Y2HOGU3QQ07WmMOfBOXdzxRFP+n87hzbq5zroDg1ns6cAJJ0s/wruNUgjsXjYAcgnE3\nM8ysFUnSz4OItV+HOl58LKGY2ZHAdOBu59xDUYdqfT/NLIMgWbzBObfnEKfV+n6GdgMfO+decs7t\nd85NAd4CRkYdT4Z+PgAcS1DGyyAYM/WQmZ0eHk+WftYZSqoObTDBYMn5ZraV4JYqwFwzux6YA/Qt\nPtnMjOCHY064aw7/+9tk36jjCcE5t5NgXIYrfSh8JUU/gaYEH1z3OOd2OecKnHP/JvgZGETy9LO0\nWPs1B2hkZp1KHV8Vfu8kDDPrC7xLMD7wrlKHk6GfbYBewNNhmX4r0B540MyeDs9Jhn5CUKIu/ZlE\n1L5k6Wc/YLxzbrVzrsg59xHBnasR4fFk6WfdUdODuhL1RXAno13U63iCH+j+QH2CpGsPwdiNgz1V\n1ZjgqY2fhMdPI0GeFjtIX38CrAOOJCgJ/5RgsGSjJOvnYuA+gifE0giexikgeGKm1vaT4MmoLIIn\n/PaHf8/iwFONMfWL4OmilwjKCcVPF/08wfp5IvANcM0hrk2Gfqby7c+kdgQl7JuAZknUTyP4vI0Q\nPA2XQlD+21fcjyTq58MESVTb8NyBwDaCEmCt6qde4b9HTTegtryAjkQ9/Rfuu4KgJp4LfAr0K3XN\ngHB/bnjemOpscyX6ZsDvgU0E9fjpwDFJ2M+ewBvAVoJxCJ8D59X2fgJXcuDOYvSro49+AS0JHtne\nHX7t7iJ8tD1R+hl+zxaF/+FEv4YkUz8Pcu6qg/QjKfpJMHZsMcGUIPOBi5KtnwSJ0EPA+rCdy4Bf\n1sZ+6hW8LPxHEREREZEYaEyViIiIiAdKqkREREQ8UFIlIiIi4oGSKhEREREPlFSJiIiIeKCkSkRE\nRMQDJVUiIlKnmVk9M1tuZvsrcO4V4bn7zOwTM+tX6vjocAHoPWa22MwuKnV8oJm9b2Y7zGyzmT1p\nZs2ijt9pZgvMbJeZbTCzR8ysaSX78+OwjbvNbGm4CohUAyVVIiKStMyso5mVNyHjn4GVFYg1GHgQ\nuI5gMfqXCRafbxgePx54CvghwcSePyZYVmhgeDwVeB34iGAZtJ4Eyw/dG/U2hcAYoBnQh2Dm/Ccq\n0NXiNo4Efgdc5pxrQDD571/MbHhFY0jVKakSEZE6y8xOAoYAd1bg9GuAV5xzk51z+cBfgDzg/PD4\naOBt59w0F6zlNxH4EBgXHm8ENCdYwD7inNsOvECQPAHgnPulc+6L8PgW4B5gaKk2X2Nm881sp5l9\nEbUAM0AXYK5zbmYY72NgbvR7SPwoqRIRkTrJzHKAR4DvE6w1WJ4+BMtbAeCCJUm+5EDCYuErWgrh\noshhEvUwcLWZZZpZS+BiYEIZ7zmMqIXbzewa4GfAZQR3y34FvGJmXcJTngMamNmJZpZiZkOAbsBb\nFeifxEhJlYiI1FV/AiY65z6r4PkNCNYNjbaDoNQHwdqiZ5rZcDNLM7PzCRb7bhh1/osEd7T2Eixu\nXhS243+Y2QXAtcAtUbtvAX7vnJsT3g17k2Dty4vD418TLLA8nWDB+OnA7c65+RXso8RASZWIiCQV\nM3sgHAi+g6D0RfF2+Pp5OD7qLOC3lQi9m6CEF60xsAvAOfcuQRL0N4Lk5kqCO0dbwzZ0BSYBfwSy\nw2uXc5C7SOEA90eAkc652VGHjgDuj+4PcArQNjz+G4K7WMcA6QR30X5kZldXop9SRUqqREQkqTjn\nrnfONXbONQaODvc1jnr9GTgNaA+sMbOtwGtAqpltNbNzDxF6DtC3eMPMDDiWqPKcc+4J51xv51xT\n59x5QHfg3fBwH2C7c654TNVO4D5giJk1joo7lqBMeK5zbnqpNqwGrirVn/rOuevC4/2Al51zC11g\nAfAqcKg+iUdKqkREpC76G9CV4I7OMQTjqgrDv089xDWPAKPNbJiZZQI/ATIJx0SFJb++ZpZqZo3M\n7P8IEre/h9d/DjQ2szHhOQ2AG4EVzrkdYYybgbuBM5xzHx6kDX8H7jCzYyyQbWaDzaxHePxD4Pzw\nrhhm1hMYRdRYMImftJpugIiISHVzzu0iLNsBmNmWcP+6qH2/JJiaoFd47INwzqdHgNbAPGBEGAsg\nFfgXwd0pRzCeabBzbnN4/cpwnNQdwD8JkrhZwHlRTbsH2A9MD26ElbS3fvjnI2ZWADxOUAqMALMJ\npm+A4InERsAUM2sObCcYx/XnKn6ppBIseHhBRERERGKh8p+IiIiIB0qqRERERDxQUiUiIiLigZIq\nEREREQ+UVImIiIh4oKRKRERExAMlVSIiIiIeKKkSERER8UBJlYiIiIgH/x/dhQzluCKFiQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent, alpha=0.7)\n", + "plt.colorbar()\n", + "plt.ylim(740,800)\n", + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', lw=3, alpha=1)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "The spike at 400 Hz is probably a statistical fluctutations, tracing by the maximum power can be dangerous!\n", + "\n", + "We will implement better methods in the future, stay tunned ;)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/EventList/EventList Tutorial.html b/notebooks/EventList/EventList Tutorial.html new file mode 100644 index 000000000..287f1879a --- /dev/null +++ b/notebooks/EventList/EventList Tutorial.html @@ -0,0 +1,1806 @@ + + + + + + + + Contents — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the basics of creating an event list object and carrying out various operations such as simulating time and energies, joining, storing and retrieving event lists.

+
+
+

Setup

+

Import some useful libraries.

+
+
[1]:
+
+
+
import numpy as np
+
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import some relevant stingray classes.

+
+
[2]:
+
+
+
from stingray import EventList, Lightcurve
+
+
+
+
+

Creating EventList from Photon Arrival Times

+

Given photon arrival times, an eventlist object can be created. Times are assumed to be seconds from a reference MJD, that can optionally be specified with the mjdref keyword and attribute.

+
+
[3]:
+
+
+
times = [0.5, 1.1, 2.2, 3.7]
+mjdref=58000.
+
+
+
+

Create event list object by passing arrival times as argument.

+
+
[4]:
+
+
+
ev = EventList(times, mjdref=mjdref)
+ev.time
+
+
+
+
+
[4]:
+
+
+
+
+array([0.5, 1.1, 2.2, 3.7])
+
+
+

One can add all sorts of data to the EventList object, it is very flexible. In general, we suggest to stick with easily interpretable attributes, like energy or pi.

+
ev.energy = [0., 3., 4., 20.]
+
+
+

is the same as

+
+
[5]:
+
+
+
energy = [0., 3., 4., 20.]
+ev = EventList(times, energy=energy, mjdref=mjdref)
+
+
+
+

It is always recommended to specify the good time intervals (GTIs) of the event list, as the time intervals where the instrument was fully operational. If not specified, GTIs are defined automatically as the first and the last event time.

+
+
[6]:
+
+
+
gti = [[0, 4]]
+ev = EventList(times, gti=gti, energy=energy, mjdref=mjdref)
+
+
+
+
+
+
+

Roundtrip to Astropy-compatible formats

+

EventList has the following methods that allow an easy roundtrip to Astropy objects: to_astropy_table, to_astropy_timeseries, from_astropy_table, from_astropy_timeseries

+

This allows a better interoperability with the Astropy ecosystem.

+

In this roundtrip, a Table or Timeseries object is created, having as columns time and all other attributes of the same size (e.g. pi, energy), and the rest of the attributes (e.g. gti, mjdref) in the table’s metadata.

+
+
[7]:
+
+
+
table = ev.to_astropy_table()
+table
+
+
+
+
+
[7]:
+
+
+
+
Table length=4 + + + + + + + +
energytime
float64float64
0.00.5
3.01.1
4.02.2
20.03.7
+
+

When converting to Timeseries, times are transformed into astropy.time.TimeDelta objects.

+
+
[8]:
+
+
+
timeseries = ev.to_astropy_timeseries()
+timeseries
+
+
+
+
+
[8]:
+
+
+
+
TimeSeries length=4 + + + + + + + +
timeenergy
objectfloat64
5.787037037037037e-060.0
1.2731481481481482e-053.0
2.5462962962962965e-054.0
4.282407407407408e-0520.0
+
+
+
[9]:
+
+
+
table.meta
+
+
+
+
+
[9]:
+
+
+
+
+OrderedDict([('dt', 0),
+             ('gti', array([[0, 4]])),
+             ('mjdref', 58000.0),
+             ('ncounts', 4),
+             ('notes', '')])
+
+
+

Of course, these objects can be converted back to event lists. The user should be careful in defining the proper column names and metadata so that the final object is a valid EventList

+
+
[10]:
+
+
+
table_ev = EventList.from_astropy_table(table)
+table_ts = EventList.from_astropy_timeseries(timeseries)
+
+
+
+
+
[11]:
+
+
+
table_ev.time, table_ts.time
+
+
+
+
+
[11]:
+
+
+
+
+(array([0.5, 1.1, 2.2, 3.7]), array([0.5, 1.1, 2.2, 3.7]))
+
+
+
+

Loading and writing EventList objects

+

We made it possible to save and load data in a number of different formats.

+

The general syntax is

+
ev = EventList.read(filename, format)
+
+ev.write(filename, format)
+
+
+

There are three main blocks of formats that might be useful:

+
    +
  1. (read-only) HEASoft-compatible formats -> read event data from HEASOFT-supported missions

  2. +
  3. pickle: reading and saving EventLists from/to Python pickle objects

  4. +
  5. Any format compatible with astropy.table.Table objects.

  6. +
+
+
+
+

Loading an EventList from an X-ray observation in HEASoft-compatible format

+

Loading event data from HEASoft-supported missions in FITS format is easy. It’s sufficient to use the read method with hea or, equivalently, ogip, as format.

+

Beware: please use hea or ogip, not fits! It would make the roundrip to Astropy tables more complicated, as Astropy supports a generic FITS writer which is not necessarily compatible with HEASoft.

+
+
[12]:
+
+
+
ev = EventList.read('events.fits', 'ogip')
+
+
+
+

Times are saved to the time attribute, GTIs to the gti attribute, MJDREF to the mjdref attribute, etc.

+
+
[13]:
+
+
+
ev.time[:10]
+
+
+
+
+
[13]:
+
+
+
+
+array([80000000.23635569, 80000001.47479323, 80000001.78458866,
+       80000002.78943624, 80000003.42859936, 80000004.07943003,
+       80000006.09310323, 80000007.18041813, 80000008.17602143,
+       80000008.20403489], dtype=float128)
+
+
+
+
[14]:
+
+
+
ev.mjdref
+
+
+
+
+
[14]:
+
+
+
+
+55197.00076601852
+
+
+
+
[15]:
+
+
+
ev.gti
+
+
+
+
+
[15]:
+
+
+
+
+array([[80000000., 80001025.]], dtype=float128)
+
+
+
+
+

Roundtrip to pickle objects

+

It is possible to save and load eventlist objects using pickle.

+
+
[16]:
+
+
+
ev.write("events.p", "pickle")
+ev2 = EventList.read("events.p", "pickle")
+
+np.allclose(ev2.time, ev.time), np.allclose(ev2.gti, ev.gti)
+
+
+
+
+
[16]:
+
+
+
+
+(True, True)
+
+
+
+
+

Roundtrip to Astropy-compatible formats

+

If the read and write methods receive a format which is not hea, ogip, or pickle, the event list is transformed into an Astropy Table object with the methods described above, and the readers and writers from the Table class are used instead. This allows to extend the save/load operations to a large number of formats, including hdf5 and enhanced CSV (ascii.ecsv).

+

Note that columns coming from the EVENTS (or equivalent) fits extension, those having the same length as time, when converting to astropy tables they become columns of the table. All the others, including gti, are treated as metadata.

+

Care should be used in selecting formats that preserve metadata. For example, simple CSV format loses all metadata, including MJDREF, GTIs etc.

+
+
[17]:
+
+
+
ev.write("events.hdf5", "hdf5")
+ev3 = EventList.read("events.hdf5", "hdf5")
+ev3.time[:10]
+
+
+
+
+
[17]:
+
+
+
+
+array([80000000.23635569, 80000001.47479323, 80000001.78458866,
+       80000002.78943624, 80000003.42859936, 80000004.07943003,
+       80000006.09310323, 80000007.18041813, 80000008.17602143,
+       80000008.20403489], dtype=float128)
+
+
+
+
[18]:
+
+
+
# Try the round trip again to verify that everything works
+
+ev.write("events.ecsv", "ascii.ecsv")
+ev4 = EventList.read("events.ecsv", "ascii.ecsv")
+!cat events.ecsv
+ev4.time[:10]
+
+
+
+
+
+
+
+
+# %ECSV 1.0
+# ---
+# datatype:
+# - {name: energy, datatype: float32}
+# - {name: pi, datatype: float32}
+# - {name: time, datatype: float128}
+# meta: !!omap
+# - {dt: 0}
+# - gti: !numpy.ndarray
+#     buffer: !!binary |
+#       QUFBQUFBQ0FscGdaUURHRnBuOEFBQUFBQUFBZ0FKZVlHVUF4aGFaL0FBQT0=
+#     dtype: float128
+#     order: C
+#     shape: !!python/tuple [1, 2]
+# - {header: 'XTENSION= ''BINTABLE''           / binary table extension                         BITPIX  =                    8 / array
+#     data type                                NAXIS   =                    2 / number of array dimensions                     NAXIS1  =                   12
+#     / length of dimension 1                          NAXIS2  =                 1000 / length of dimension 2                          PCOUNT  =                    0
+#     / number of group parameters                     GCOUNT  =                    1 / number of groups                               TFIELDS
+#     =                    2 / number of table fields                         TTYPE1  = ''TIME    ''                                                            TFORM1  =
+#     ''1D      ''                                                            TTYPE2  = ''PI      ''                                                            TFORM2  =
+#     ''1J      ''                                                            EXTNAME = ''EVENTS  ''           / extension name                                 OBSERVER=
+#     ''Edwige Bubble''                                                       TELESCOP= ''NuSTAR  ''           / Telescope (mission) name                       INSTRUME=
+#     ''FPMA    ''           / Instrument name                                OBS_ID  = ''00000000001''        / Observation ID                                 TARG_ID
+#     =                    0 / Target ID                                      OBJECT  = ''Fake X-1''           / Name of observed object                        RA_OBJ  =                  0.0
+#     / [deg] R.A. Object                              DEC_OBJ =                  0.0 / [deg] Dec Object                               RA_NOM  =                  0.0
+#     / Right Ascension used for barycenter correctionsDEC_NOM =                  0.0 / Declination used for barycenter corrections    RA_PNT  =                  0.0
+#     / [deg] RA pointing                              DEC_PNT =                  0.0 / [deg] Dec pointing                             PA_PNT  =                  0.0
+#     / [deg] Position angle (roll)                    EQUINOX =               2000.0 / Equinox of celestial coord system              RADECSYS=
+#     ''FK5     ''           / Coordinate Reference System                    TASSIGN = ''SATELLITE''          / Time assigned by onboard
+#     clock                 TIMESYS = ''TDB     ''           / All times in this file are TDB                 MJDREFI =                55197
+#     / TDB time reference; Modified Julian Day (int)  MJDREFF =        0.00076601852 / TDB time reference; Modified Julian Day (frac)
+#     TIMEREF = ''SOLARSYSTEM''        / Times are pathlength-corrected to barycenter   CLOCKAPP=                    F / TRUE if timestamps
+#     corrected by gnd sware      TIMEUNIT= ''s       ''           / unit for time keywords                         TSTART  =           80000000.0
+#     / Elapsed seconds since MJDREF at start of file  TSTOP   =           80001025.0 / Elapsed seconds since MJDREF at end of file    LIVETIME=               1025.0
+#     / On-source time                                 TIMEZERO=                  0.0 / Time Zero                                      COMMENT
+#     FITS (Flexible Image Transport System) format is defined in ''Astronomy aCOMMENT nd Astrophysics'', volume 376, page 359; bibcode:
+#     2001A&A...376..359H    COMMENT MJDREFI+MJDREFF = epoch of Jan 1, 2010, in TT time system.              HISTORY File modified by
+#     user ''meo'' with fv  on 2015-08-17T14:10:02             HISTORY File modified by user ''meo'' with fv  on 2015-08-17T14:48:52             END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             '}
+# - {instr: fpma}
+# - {mission: nustar}
+# - {mjdref: 55197.00076601852}
+# - {ncounts: 1000}
+# - {notes: ''}
+# - {timeref: solarsystem}
+# - {timesys: tdb}
+# schema: astropy-2.0
+energy pi time
+8.56 174.0 80000000.23635569215
+33.039997 786.0 80000001.47479322553
+7.9999995 160.0 80000001.78458866477
+27.84 656.0 80000002.789436236024
+8.84 181.0 80000003.428599357605
+13.92 308.0 80000004.079430028796
+37.839996 906.0 80000006.09310323
+40.559998 974.0 80000007.180418133736
+5.8799996 107.0 80000008.176021426916
+41.239998 991.0 80000008.204034894705
+33.64 801.0 80000009.69214613736
+8.72 178.0 80000010.36281684041
+17.32 393.0 80000010.78324916959
+6.56 124.0 80000011.8733625412
+21.28 492.0 80000013.92633379996
+10.24 216.0 80000014.204483643174
+10.68 227.0 80000014.26073910296
+26.68 627.0 80000015.256171390414
+3.96 59.0 80000018.08373501897
+13.96 309.0 80000018.83911728859
+28.32 668.0 80000019.98157013953
+38.319996 918.0 80000020.76013682783
+17.76 404.0 80000021.14855520427
+12.64 276.0 80000022.02460347116
+29.76 704.0 80000023.50157275796
+24.08 562.0 80000023.61806283891
+10.400001 220.0 80000024.97833034396
+41.519997 998.0 80000025.95996727049
+4.24 66.0 80000026.16019311547
+23.32 543.0 80000027.089139238
+41.399998 995.0 80000028.596908301115
+19.72 453.0 80000031.065731182694
+36.559998 874.0 80000031.10555113852
+38.399998 920.0 80000032.516511276364
+24.28 567.0 80000032.808356150985
+29.48 697.0 80000033.18797942996
+36.76 879.0 80000033.85146795213
+10.6 225.0 80000034.861510172486
+20.0 460.0 80000038.22435864806
+3.3600001 44.0 80000038.39090189338
+15.08 337.0 80000042.41919325292
+22.48 522.0 80000043.69195660949
+4.24 66.0 80000045.52997684479
+21.88 507.0 80000052.78282105923
+39.6 950.0 80000052.919592529535
+3.24 41.0 80000054.28180256486
+14.32 318.0 80000056.48970986903
+7.4399996 146.0 80000057.49698485434
+7.9599996 159.0 80000058.55781446397
+21.36 494.0 80000059.284333616495
+35.159996 839.0 80000060.359298199415
+21.64 501.0 80000063.666031733155
+36.44 871.0 80000064.78927731514
+35.319996 843.0 80000067.341705307364
+26.08 612.0 80000068.267971634865
+12.12 263.0 80000070.24889309704
+11.400001 245.0 80000072.99266758561
+35.839996 856.0 80000073.4422865361
+6.68 127.0 80000073.81521306932
+28.4 670.0 80000074.7710172981
+22.08 512.0 80000076.15446573496
+29.64 701.0 80000076.61943152547
+34.319996 818.0 80000078.37191092968
+9.04 186.0 80000079.364117503166
+42.399998 1020.0 80000080.12182110548
+14.08 312.0 80000080.4114151746
+12.64 276.0 80000083.704568862915
+26.16 614.0 80000084.38392549753
+21.12 488.0 80000084.49645087123
+7.7599998 154.0 80000084.73323458433
+5.64 101.0 80000085.518022567034
+4.2799997 67.0 80000086.06328216195
+39.039997 936.0 80000087.00356020033
+14.88 332.0 80000087.108956605196
+11.24 241.0 80000087.3983823657
+42.199997 1015.0 80000088.44739763439
+28.16 664.0 80000088.72279639542
+2.48 22.0 80000089.15565529466
+42.28 1017.0 80000090.20357654989
+5.32 93.0 80000090.7642698288
+14.28 317.0 80000090.80305439234
+40.319996 968.0 80000091.500082850456
+18.44 421.0 80000092.158643990755
+32.239998 766.0 80000092.89413803816
+4.4 70.0 80000094.805209457874
+38.879997 932.0 80000095.04941494763
+32.199997 765.0 80000096.56686630845
+30.4 720.0 80000096.91533789039
+35.719997 853.0 80000098.67825654149
+29.32 693.0 80000098.92884159088
+17.199999 390.0 80000099.199268594384
+37.92 908.0 80000100.14995288849
+1.96 9.0 80000100.935947969556
+13.12 288.0 80000102.76762147248
+30.6 725.0 80000103.05724072456
+34.239998 816.0 80000104.193173110485
+8.88 182.0 80000107.33343601227
+29.6 700.0 80000107.40127386153
+8.24 166.0 80000107.56737007201
+39.76 954.0 80000109.40503971279
+41.399998 995.0 80000109.51361806691
+32.399998 770.0 80000111.27798360586
+20.2 465.0 80000112.93057106435
+22.36 519.0 80000113.545409321785
+41.559998 999.0 80000113.71510283649
+36.64 876.0 80000115.363516911864
+5.12 88.0 80000116.62624913454
+24.32 568.0 80000117.5390470773
+11.4800005 247.0 80000118.313546299934
+10.0 210.0 80000118.64352825284
+13.36 294.0 80000119.64161340892
+4.48 72.0 80000119.70217871666
+5.68 102.0 80000119.87085522711
+25.76 604.0 80000120.67677563429
+1.9200001 8.0 80000121.80093438923
+2.92 33.0 80000122.09129279852
+5.12 88.0 80000122.545517489314
+33.32 793.0 80000122.93073017895
+13.76 304.0 80000123.276563555
+37.159996 889.0 80000125.506356075406
+30.56 724.0 80000125.6568851918
+37.079998 887.0 80000127.336458325386
+6.4399996 121.0 80000127.45361994207
+11.96 259.0 80000128.36573840678
+14.08 312.0 80000129.43040788174
+14.36 319.0 80000130.30537183583
+34.239998 816.0 80000131.993975520134
+29.92 708.0 80000132.51598034799
+21.8 505.0 80000132.877141192555
+10.84 231.0 80000134.958766937256
+15.72 353.0 80000136.26415735483
+9.32 193.0 80000136.271308645606
+38.44 921.0 80000136.491618439555
+34.559998 824.0 80000136.59682570398
+29.64 701.0 80000136.81391918659
+13.6 300.0 80000137.111403808
+15.0 335.0 80000137.99286413193
+8.2 165.0 80000140.02283409238
+31.0 735.0 80000141.585879951715
+18.12 413.0 80000141.88128243387
+27.64 651.0 80000142.301297202706
+29.44 696.0 80000144.258596763015
+4.32 68.0 80000146.35952179134
+9.92 208.0 80000146.431891173124
+26.6 625.0 80000146.93531550467
+32.719997 778.0 80000147.86272408068
+4.4 70.0 80000148.20213320851
+14.04 311.0 80000148.998638793826
+10.76 229.0 80000150.13331639767
+8.12 163.0 80000150.40001221001
+31.96 759.0 80000150.51030369103
+41.6 1000.0 80000158.27798460424
+2.96 34.0 80000158.565826013684
+19.76 454.0 80000160.18738743663
+14.440001 321.0 80000162.67192919552
+11.72 253.0 80000163.52692268789
+37.44 896.0 80000164.03886182606
+32.84 781.0 80000164.495729878545
+17.24 391.0 80000165.17495532334
+3.44 46.0 80000166.38718263805
+25.76 604.0 80000168.38902553916
+25.44 596.0 80000169.68685694039
+23.56 549.0 80000169.713349059224
+19.08 437.0 80000170.805011570454
+41.039997 986.0 80000172.42077590525
+2.16 14.0 80000172.43760578334
+2.16 14.0 80000174.10814335942
+37.28 892.0 80000174.15144339204
+30.76 729.0 80000174.80246704817
+28.24 666.0 80000174.83830589056
+23.52 548.0 80000176.110384613276
+33.399998 795.0 80000176.43801294267
+7.08 137.0 80000177.71353569627
+39.12 938.0 80000178.329968214035
+9.44 196.0 80000180.91684667766
+6.56 124.0 80000181.358734831214
+24.96 584.0 80000182.17984089255
+14.08 312.0 80000182.2385392189
+29.92 708.0 80000183.21093174815
+8.52 173.0 80000183.68284714222
+23.92 558.0 80000184.32184153795
+33.96 809.0 80000187.16848820448
+13.0 285.0 80000188.89809964597
+2.56 24.0 80000189.59268042445
+8.52 173.0 80000190.39239893854
+29.6 700.0 80000190.987773641944
+8.04 161.0 80000191.39765946567
+9.84 206.0 80000191.63218219578
+37.399998 895.0 80000191.7998701334
+37.48 897.0 80000194.591946706176
+2.44 21.0 80000195.17524069548
+
+33.039997 786.0 80000195.60482543707
+15.4 345.0 80000197.01553657651
+20.56 474.0 80000198.18857589364
+12.8 280.0 80000199.30817961693
+20.16 464.0 80000200.066078454256
+1.6800001 2.0 80000201.68090777099
+12.04 261.0 80000202.814891934395
+18.32 418.0 80000203.25650832057
+40.359997 969.0 80000203.48255087435
+34.28 817.0 80000204.7061804533
+34.64 826.0 80000207.248482748866
+30.4 720.0 80000208.40996426344
+28.76 679.0 80000208.54558329284
+3.6 50.0 80000212.2733836025
+39.399998 945.0 80000213.37501113117
+23.64 551.0 80000214.05003093183
+10.24 216.0 80000214.76189556718
+15.440001 346.0 80000214.94751133025
+33.839996 806.0 80000215.30322690308
+2.88 32.0 80000215.606552898884
+17.56 399.0 80000216.67295819521
+17.199999 390.0 80000216.721879810095
+22.0 510.0 80000217.02722400427
+7.3199997 143.0 80000218.21801964939
+6.3199997 118.0 80000223.690936505795
+40.519997 973.0 80000224.71057784557
+10.6 225.0 80000224.88408643007
+31.08 737.0 80000225.81306296587
+21.0 485.0 80000228.288003221154
+15.64 351.0 80000229.47965101898
+34.719997 828.0 80000229.982017084956
+25.88 607.0 80000230.13939705491
+16.52 373.0 80000230.207446575165
+1.8 5.0 80000233.628895014524
+33.0 785.0 80000233.858214601874
+36.879997 882.0 80000235.58721217513
+1.76 4.0 80000236.03008031845
+42.239998 1016.0 80000239.206377997994
+31.119999 738.0 80000240.66440632939
+34.159996 814.0 80000241.05537928641
+13.56 299.0 80000242.91226673126
+18.92 433.0 80000243.34091578424
+22.44 521.0 80000246.23444570601
+40.8 980.0 80000246.39591316879
+21.28 492.0 80000248.63243843615
+24.28 567.0 80000249.259784281254
+9.56 199.0 80000249.85402186215
+5.04 86.0 80000250.17666938901
+3.0 35.0 80000251.49163559079
+25.44 596.0 80000251.50295473635
+24.4 570.0 80000252.06601053476
+30.56 724.0 80000252.272911697626
+38.12 913.0 80000252.985514968634
+38.8 930.0 80000253.836741268635
+30.76 729.0 80000255.06581965089
+41.719997 1003.0 80000255.60727831721
+41.64 1001.0 80000256.902037888765
+19.8 455.0 80000258.60432396829
+42.359997 1019.0 80000260.50080451369
+25.6 600.0 80000260.75552198291
+11.56 249.0 80000260.88460493088
+33.839996 806.0 80000261.36898006499
+37.48 897.0 80000262.92271217704
+18.2 415.0 80000262.99845524132
+23.36 544.0 80000263.33590015769
+40.96 984.0 80000264.96524555981
+9.28 192.0 80000265.84508921206
+10.84 231.0 80000266.91673760116
+4.44 71.0 80000268.235334053636
+22.76 529.0 80000271.489329367876
+23.96 559.0 80000271.64101035893
+35.879997 857.0 80000271.98798702657
+11.16 239.0 80000273.71523039043
+36.199997 865.0 80000275.30799421668
+32.76 779.0 80000275.81958813965
+27.32 643.0 80000276.46777294576
+27.0 635.0 80000277.24329108
+11.360001 244.0 80000277.80254943669
+3.08 37.0 80000278.42643971741
+18.68 427.0 80000278.52543953061
+5.8399997 106.0 80000278.78952820599
+25.24 591.0 80000279.13904826343
+11.400001 245.0 80000279.32166413963
+6.72 128.0 80000279.47431126237
+34.6 825.0 80000281.05502511561
+14.2 315.0 80000281.66787202656
+18.08 412.0 80000281.735276550055
+14.16 314.0 80000283.60641156137
+12.4800005 272.0 80000284.68940325081
+22.72 528.0 80000284.771769434214
+7.2 140.0 80000285.59601339698
+37.519997 898.0 80000287.934347867966
+37.559998 899.0 80000288.457227408886
+25.36 594.0 80000288.84559759498
+37.039997 886.0 80000289.283936053514
+32.48 772.0 80000289.74665103853
+21.36 494.0 80000290.772457659245
+1.64 1.0 80000290.879882499576
+19.32 443.0 80000291.225027650595
+21.84 506.0 80000291.23198154569
+2.8 30.0 80000293.356203347445
+31.92 758.0 80000296.29710520804
+32.52 773.0 80000297.10793355107
+37.159996 889.0 80000298.52665117383
+12.64 276.0 80000298.93143287301
+7.4399996 146.0 80000299.927507817745
+17.199999 390.0 80000300.818491622806
+2.52 23.0 80000302.07161732018
+2.56 24.0 80000302.72473844886
+36.319996 868.0 80000305.32900521159
+4.52 73.0 80000305.93047915399
+3.24 41.0 80000306.89711469412
+16.64 376.0 80000309.568026304245
+4.4 70.0 80000310.67230030894
+18.36 419.0 80000311.17736788094
+8.24 166.0 80000311.37703952193
+20.12 463.0 80000313.92710117996
+36.76 879.0 80000316.52630840242
+3.6399999 51.0 80000316.576121881604
+2.56 24.0 80000316.61531569064
+4.68 77.0 80000316.991498693824
+30.92 733.0 80000318.496204048395
+4.44 71.0 80000318.759574487805
+25.72 603.0 80000318.99812464416
+24.16 564.0 80000323.19316992164
+39.64 951.0 80000323.76615965366
+2.6799998 27.0 80000324.23196092248
+30.8 730.0 80000325.30946139991
+13.68 302.0 80000325.49627235532
+40.64 976.0 80000325.76096495986
+9.04 186.0 80000326.018922537565
+23.56 549.0 80000328.51117782295
+32.12 763.0 80000330.33366891742
+21.16 489.0 80000331.37347571552
+38.8 930.0 80000332.161390304565
+6.2 115.0 80000332.54631538689
+37.319996 893.0 80000333.515790537
+2.6799998 27.0 80000335.46171656251
+27.8 655.0 80000336.63410934806
+38.92 933.0 80000339.03143580258
+5.7599998 104.0 80000339.16872346401
+18.32 418.0 80000340.030776798725
+5.8399997 106.0 80000340.41478018463
+17.48 397.0 80000340.533760264516
+33.32 793.0 80000341.72407652438
+11.360001 244.0 80000344.206543818116
+24.88 582.0 80000344.78012427688
+32.96 784.0 80000345.00482337177
+2.52 23.0 80000345.26880034804
+13.2 290.0 80000345.654379203916
+34.359997 819.0 80000345.975308820605
+42.359997 1019.0 80000346.41354955733
+7.8799996 157.0 80000346.86677853763
+39.6 950.0 80000347.32460169494
+9.32 193.0 80000347.35750260949
+16.0 360.0 80000349.31582227349
+37.879997 907.0 80000351.124539494514
+19.44 446.0 80000352.37143753469
+36.76 879.0 80000353.196565657854
+2.24 16.0 80000354.17744512856
+30.88 732.0 80000355.20202793181
+39.8 955.0 80000355.60426925123
+40.12 963.0 80000355.82318587601
+16.4 370.0 80000356.5162641108
+10.360001 219.0 80000357.642409190536
+4.12 63.0 80000359.16175606847
+7.68 152.0 80000359.8546615839
+4.12 63.0 80000362.5537327677
+20.8 480.0 80000362.92154058814
+17.199999 390.0 80000363.773983463645
+39.999996 960.0 80000365.48620200157
+36.319996 868.0 80000368.489620789886
+19.6 450.0 80000369.631684705615
+41.679996 1002.0 80000370.6534255296
+39.159996 939.0 80000371.82940942049
+34.399998 820.0 80000373.43823419511
+29.28 692.0 80000373.8585408777
+39.039997 936.0 80000374.209455892444
+34.44 821.0 80000374.64683301747
+2.96 34.0 80000375.620239943266
+32.36 769.0 80000378.87894229591
+35.999996 860.0 80000378.97707155347
+14.28 317.0 80000379.42757484317
+37.839996 906.0 80000379.917373120785
+8.92 183.0 80000381.10625052452
+37.239998 891.0 80000382.077453806996
+31.039999 736.0 80000382.17598539591
+34.079998 812.0 80000382.22633959353
+25.84 606.0 80000382.22792515159
+27.6 650.0 80000382.55412106216
+2.8 30.0 80000383.94620233774
+37.12 888.0 80000384.37110866606
+28.16 664.0 80000387.30780394375
+20.44 471.0 80000387.87746040523
+25.119999 588.0 80000388.37795352936
+2.6799998 27.0 80000389.268874913454
+37.199997 890.0 80000392.62231977284
+28.16 664.0 80000393.17818275094
+11.52 248.0 80000393.43643279374
+2.6 25.0 80000395.12563699484
+15.6 350.0 80000395.77989049256
+6.48 122.0 80000396.31284117699
+32.039997 761.0 80000399.1847140342
+37.92 908.0 80000399.54459910095
+16.84 381.0 80000400.72491231561
+20.64 476.0 80000403.17735889554
+8.88 182.0 80000403.54358610511
+20.72 478.0 80000404.22769507766
+5.4 95.0 80000404.47602318227
+42.479996 1022.0 80000404.67004515231
+16.64 376.0 80000408.95574080944
+7.16 139.0 80000410.03962627053
+16.72 378.0 80000410.75551979244
+8.52 173.0 80000412.09823872149
+31.8 755.0 80000412.219870209694
+1.9200001 8.0 80000412.81054663658
+21.96 509.0 80000414.8682410419
+24.44 571.0 80000415.37962676585
+27.92 658.0 80000416.70795631409
+24.56 574.0 80000417.1444568038
+37.039997 886.0 80000418.38563929498
+1.96 9.0 80000420.47344271839
+8.88 182.0 80000420.53409618139
+26.48 622.0 80000420.80564555526
+41.719997 1003.0 80000420.863403081894
+5.96 109.0 80000420.942480519414
+35.8 855.0 80000422.02582614124
+8.44 171.0 80000422.79813404381
+12.76 279.0 80000424.42955330014
+7.8399997 156.0 80000424.81564453244
+7.4799995 147.0 80000425.28199738264
+40.319996 968.0 80000425.867245197296
+33.719997 803.0 80000426.62731541693
+40.12 963.0 80000427.133511930704
+14.52 323.0 80000427.36044855416
+7.0 135.0 80000428.54412809014
+15.56 349.0 80000428.88726851344
+30.6 725.0 80000429.38063727319
+19.6 450.0 80000432.95051422715
+3.08 37.0 80000434.64868846536
+2.4 20.0 80000435.51728320122
+39.76 954.0 80000436.24377171695
+23.64 551.0 80000437.577606111765
+9.48 197.0 80000438.05216662586
+34.039997 811.0 80000438.70308248699
+2.3600001 19.0 80000442.052734196186
+27.36 644.0 80000442.764658123255
+14.4800005 322.0 80000443.238895997405
+12.76 279.0 80000445.098355308175
+14.6 325.0 80000446.023702159524
+32.879997 782.0 80000446.16962249577
+10.92 233.0 80000448.83636845648
+7.7999997 155.0 80000450.061449572444
+9.12 188.0 80000450.52947856486
+32.079998 762.0 80000450.55909974873
+28.32 668.0 80000451.879113674164
+22.28 517.0 80000452.064453706145
+10.08 212.0 80000452.13652163744
+26.32 618.0 80000452.9472001791
+35.399998 845.0 80000453.03071194887
+9.48 197.0 80000454.07206726074
+3.32 43.0 80000456.48143340647
+34.399998 820.0 80000458.18602730334
+11.56 249.0 80000459.0324331224
+4.2799997 67.0 80000459.4572635144
+32.36 769.0 80000459.920432657
+41.239998 991.0 80000464.06256014109
+10.76 229.0 80000464.33307418227
+34.079998 812.0 80000466.34134361148
+26.84 631.0 80000467.24169912934
+16.119999 363.0 80000467.884447038174
+40.319996 968.0 80000468.7550342083
+10.72 228.0 80000469.84887549281
+22.52 523.0 80000469.8745007813
+39.92 958.0 80000472.20344258845
+27.4 645.0 80000472.30986727774
+31.84 756.0 80000473.21885484457
+15.440001 346.0 80000473.694500654936
+17.24 391.0 80000476.0327218622
+32.84 781.0 80000476.96122226119
+39.28 942.0 80000480.92292739451
+35.319996 843.0 80000481.06054444611
+4.4 70.0 80000481.37218731642
+24.36 569.0 80000481.933602169156
+26.16 614.0 80000481.98567260802
+40.879997 982.0 80000482.9210729748
+40.479996 972.0 80000483.857440814376
+4.64 76.0 80000484.32165810466
+39.8 955.0 80000484.80663745105
+29.16 689.0 80000486.771085351706
+11.84 256.0 80000487.217004179955
+14.16 314.0 80000487.990593642
+28.92 683.0 80000491.276099190116
+37.999996 910.0 80000491.747016862035
+6.4399996 121.0 80000493.35879443586
+25.2 590.0 80000494.31928488612
+12.16 264.0 80000495.14925374091
+14.6 325.0 80000495.4605127275
+20.64 476.0 80000496.37845928967
+5.16 89.0 80000496.85824956
+19.88 457.0 80000497.20662690699
+35.92 858.0 80000502.43506611884
+25.8 605.0 80000502.71769653261
+17.119999 388.0 80000502.80815401673
+36.159996 864.0 80000504.42526854575
+21.4 495.0 80000505.48890078068
+12.4800005 272.0 80000506.024649724364
+21.92 508.0 80000506.17142087221
+4.56 74.0 80000508.07841642201
+4.72 78.0 80000508.71263246238
+31.56 749.0 80000509.140583753586
+28.119999 663.0 80000509.95569059253
+27.28 642.0 80000510.86728909612
+12.04 261.0 80000512.479585409164
+30.199999 715.0 80000516.56570722163
+33.36 794.0 80000516.99862577021
+5.16 89.0 80000517.344923987985
+11.12 238.0 80000519.38823206723
+11.32 243.0 80000519.57560668886
+5.0 85.0 80000519.58020955324
+33.239998 791.0 80000520.51779472828
+6.3999996 120.0 80000520.546872377396
+9.72 203.0 80000521.153368234634
+30.64 726.0 80000521.42145887017
+21.96 509.0 80000521.63308496773
+12.6 275.0 80000523.057834371924
+8.36 169.0 80000525.05073848367
+10.56 224.0 80000527.819232299924
+29.24 691.0 80000531.12523216009
+24.6 575.0 80000532.10568276048
+40.8 980.0 80000533.20108996332
+17.0 385.0 80000534.29738210142
+23.48 547.0 80000534.340845018625
+18.28 417.0 80000534.83431440592
+2.08 12.0 80000534.87653042376
+41.92 1008.0 80000534.895185917616
+8.52 173.0 80000535.94042633474
+19.84 456.0 80000537.48509004712
+10.400001 220.0 80000538.26394830644
+23.92 558.0 80000540.002261936665
+37.719997 903.0 80000540.1134250015
+13.84 306.0 80000546.718622386456
+4.32 68.0 80000546.84028501809
+18.56 424.0 80000547.30754908919
+3.08 37.0 80000549.5327937603
+27.88 657.0 80000550.56298401952
+29.0 685.0 80000550.60222132504
+35.159996 839.0 80000552.734096348286
+38.519997 923.0 80000553.922179594636
+5.52 98.0 80000555.44246518612
+18.56 424.0 80000558.82404534519
+39.319996 943.0 80000558.947059229016
+32.399998 770.0 80000559.282619684935
+33.0 785.0 80000560.58969677985
+29.72 703.0 80000560.70387540758
+10.24 216.0 80000561.323437169194
+17.88 407.0 80000562.679025664926
+27.44 646.0 80000563.71705073118
+14.4800005 322.0 80000563.95132599771
+25.24 591.0 80000564.861919119954
+23.24 541.0 80000565.76752875745
+37.92 908.0 80000565.78528097272
+24.92 583.0 80000566.29958720505
+31.88 757.0 80000567.06900238991
+42.359997 1019.0 80000569.15245625377
+11.68 252.0 80000570.583770141006
+11.56 249.0 80000571.260604158044
+22.48 522.0 80000572.77767854929
+24.64 576.0 80000574.140301436186
+28.119999 663.0 80000574.51526069641
+3.28 42.0 80000577.082364201546
+35.559998 849.0 80000578.60487310588
+5.72 103.0 80000579.25371134281
+3.4 45.0 80000579.63681046665
+6.3199997 118.0 80000581.21821717918
+6.3199997 118.0 80000582.04014620185
+22.12 513.0 80000583.46193483472
+9.5199995 198.0 80000586.03360375762
+3.48 47.0 80000589.798507750034
+31.72 753.0 80000591.46542161703
+2.88 32.0 80000591.97941620648
+10.8 230.0 80000593.13316428661
+15.84 356.0 80000594.042805209756
+15.56 349.0 80000594.91821274161
+37.159996 889.0 80000595.397889867425
+28.16 664.0 80000595.763835296035
+6.8399997 131.0 80000596.830532982945
+37.559998 899.0 80000598.901824980974
+31.16 739.0 80000599.64194495976
+28.88 682.0 80000600.793473765254
+31.56 749.0 80000602.10744164884
+7.8399997 156.0 80000602.55246156454
+17.24 391.0 80000603.4955958724
+7.12 138.0 80000606.650620505214
+2.16 14.0 80000608.090855017304
+37.879997 907.0 80000609.993093535304
+4.7999997 80.0 80000610.186307400465
+15.56 349.0 80000611.37006236613
+30.48 722.0 80000611.83906060457
+19.96 459.0 80000611.8572294265
+34.64 826.0 80000611.95349282026
+41.839996 1006.0 80000613.84575891495
+23.2 540.0 80000617.17802332342
+17.56 399.0 80000617.24794691801
+34.559998 824.0 80000617.35718101263
+28.16 664.0 80000617.732587218285
+20.64 476.0 80000618.9578525275
+28.84 681.0 80000619.30346444249
+39.239998 941.0 80000621.2265856415
+18.16 414.0 80000621.38765838742
+7.9999995 160.0 80000621.735619053245
+33.079998 787.0 80000623.792137786746
+37.64 901.0 80000623.85770910978
+2.6 25.0 80000626.21549396217
+31.039999 736.0 80000627.16449086368
+33.12 788.0 80000628.88948699832
+39.319996 943.0 80000630.68285809457
+11.32 243.0 80000630.789920687675
+30.48 722.0 80000632.821838498116
+27.199999 640.0 80000632.881889894605
+24.84 581.0 80000634.78217072785
+20.28 467.0 80000635.002951964736
+33.679996 802.0 80000635.41563603282
+36.199997 865.0 80000635.88681785762
+8.56 174.0 80000637.371477141976
+35.519997 848.0 80000642.38429802656
+30.4 720.0 80000643.78843893111
+25.44 596.0 80000644.600917607546
+11.68 252.0 80000644.882760211825
+10.28 217.0 80000645.594902947545
+9.2 190.0 80000645.93502403796
+16.439999 371.0 80000646.383003011346
+2.6399999 26.0 80000646.53795617819
+34.64 826.0 80000647.63100332022
+22.84 531.0 80000648.47574129701
+5.12 88.0 80000649.00771085918
+42.079998 1012.0 80000649.114930674434
+24.92 583.0 80000650.1061706841
+22.88 532.0 80000655.68533721566
+24.68 577.0 80000657.16480255127
+26.68 627.0 80000657.258827999234
+19.8 455.0 80000657.33367057145
+35.64 851.0 80000658.74945259094
+2.08 12.0 80000660.18671748042
+17.439999 396.0 80000660.63745248318
+33.999996 810.0 80000661.82945792377
+6.48 122.0 80000661.90170559287
+17.16 389.0 80000662.26141363382
+33.32 793.0 80000662.64840815961
+41.64 1001.0 80000663.12676268816
+14.56 324.0 80000663.227578774095
+24.44 571.0 80000664.475006356835
+3.3600001 44.0 80000664.552283763885
+17.24 391.0 80000665.17621576786
+27.4 645.0 80000666.08528217673
+39.079998 937.0 80000670.71755500138
+7.72 153.0 80000671.198174357414
+6.8799996 132.0 80000673.345912232995
+34.199997 815.0 80000674.87888632715
+35.28 842.0 80000676.18293096125
+11.64 251.0 80000676.64919489622
+40.359997 969.0 80000676.80372226238
+31.44 746.0 80000678.275382354856
+11.8 255.0 80000680.48982979357
+
+26.24 616.0 80000684.38221885264
+2.8 30.0 80000685.43452076614
+22.0 510.0 80000686.74407067895
+31.199999 740.0 80000686.81872756779
+30.84 731.0 80000688.30932036042
+42.319996 1018.0 80000688.81981065869
+20.16 464.0 80000691.197261437774
+16.4 370.0 80000692.15807239711
+27.92 658.0 80000693.03427194059
+10.360001 219.0 80000694.3066085726
+36.8 880.0 80000694.962600558996
+40.44 971.0 80000697.02309130132
+38.48 922.0 80000698.11148573458
+21.56 499.0 80000698.516439035535
+40.28 967.0 80000699.06620439887
+42.44 1021.0 80000701.39014860988
+27.76 654.0 80000701.87561401725
+11.8 255.0 80000702.62369687855
+27.88 657.0 80000702.988359063864
+39.159996 939.0 80000705.296378955245
+23.96 559.0 80000705.433091163635
+11.440001 246.0 80000705.599841311574
+2.8400002 31.0 80000709.3684746474
+12.2 265.0 80000709.77955941856
+3.7199998 53.0 80000709.794584959745
+11.2 240.0 80000709.846471622586
+27.0 635.0 80000711.9785169363
+19.4 445.0 80000712.899810910225
+1.9200001 8.0 80000713.0795609951
+21.96 509.0 80000713.76596863568
+36.48 872.0 80000716.780457377434
+22.039999 511.0 80000717.29924210906
+17.32 393.0 80000720.5562723279
+12.68 277.0 80000720.58715964854
+41.239998 991.0 80000722.03180555999
+29.32 693.0 80000722.03699606657
+7.9599996 159.0 80000722.478862181306
+29.96 709.0 80000723.87889204919
+5.52 98.0 80000724.7961999625
+37.44 896.0 80000726.34677195549
+40.28 967.0 80000727.47035036981
+26.84 631.0 80000728.90236452222
+41.92 1008.0 80000729.3514444083
+26.16 614.0 80000730.33039654791
+4.2 65.0 80000730.81428743899
+4.4 70.0 80000731.42920610309
+16.359999 369.0 80000732.61377693713
+14.04 311.0 80000733.754086226225
+17.08 387.0 80000733.79874679446
+3.52 48.0 80000733.991308033466
+38.28 917.0 80000734.417156770825
+1.96 9.0 80000738.45621095598
+11.08 237.0 80000739.78259626031
+39.319996 943.0 80000739.904296547174
+29.36 694.0 80000742.26487219334
+20.8 480.0 80000742.58448088169
+18.0 410.0 80000743.84713715315
+7.0 135.0 80000745.445721656084
+33.32 793.0 80000745.704266637564
+4.96 84.0 80000746.49740232527
+2.88 32.0 80000748.3739194572
+40.76 979.0 80000749.18420062959
+39.559998 949.0 80000749.238480210304
+40.8 980.0 80000749.36030867696
+15.36 344.0 80000751.06558699906
+35.64 851.0 80000751.55830208957
+39.479996 947.0 80000752.70824530721
+9.12 188.0 80000752.72337460518
+20.64 476.0 80000752.881983697414
+29.52 698.0 80000753.15865902603
+35.28 842.0 80000753.76198838651
+27.92 658.0 80000754.23456764221
+18.08 412.0 80000754.3275937736
+35.76 854.0 80000755.37613813579
+26.56 624.0 80000756.66476659477
+6.7599998 129.0 80000758.372802481055
+23.48 547.0 80000759.07206888497
+29.16 689.0 80000759.892510056496
+36.48 872.0 80000761.603752076626
+17.16 389.0 80000762.42036630213
+11.0 235.0 80000765.06811144948
+31.76 754.0 80000765.382397055626
+35.44 846.0 80000765.4667224288
+41.28 992.0 80000765.93857854605
+37.039997 886.0 80000767.26963350177
+25.72 603.0 80000767.7786257714
+20.28 467.0 80000770.32975102961
+7.3999996 145.0 80000771.69804634154
+3.32 43.0 80000773.945546999574
+37.399998 895.0 80000774.221253693104
+10.92 233.0 80000775.89942243695
+24.6 575.0 80000777.312041819096
+12.4800005 272.0 80000777.77507701516
+31.72 753.0 80000777.79259891808
+12.360001 269.0 80000779.33480271697
+22.64 526.0 80000779.554390221834
+36.999996 885.0 80000780.81437155604
+29.28 692.0 80000780.933462917805
+35.159996 839.0 80000781.15924490988
+24.64 576.0 80000781.26206161082
+25.119999 588.0 80000781.72611118853
+4.7599998 79.0 80000782.172751545906
+20.28 467.0 80000783.125701248646
+38.64 926.0 80000785.342386975884
+4.92 83.0 80000785.36341136694
+34.6 825.0 80000785.92007930577
+20.56 474.0 80000786.1086602211
+17.279999 392.0 80000786.253573834896
+33.6 800.0 80000787.553292140365
+32.32 768.0 80000787.658161982894
+4.68 77.0 80000790.072870031
+24.64 576.0 80000792.274298503995
+9.44 196.0 80000792.443054273725
+17.52 398.0 80000792.46565423906
+14.4800005 322.0 80000792.808876529336
+33.879997 807.0 80000795.87703709304
+32.719997 778.0 80000795.91278010607
+5.44 96.0 80000797.14426906407
+11.04 236.0 80000797.26987493038
+34.719997 828.0 80000798.51847578585
+2.2 15.0 80000799.48481544852
+31.72 753.0 80000799.881970733404
+31.039999 736.0 80000803.51909430325
+18.52 423.0 80000803.731096595526
+32.16 764.0 80000803.883781552315
+40.92 983.0 80000805.29773187637
+18.0 410.0 80000805.306009307504
+17.32 393.0 80000807.21232941747
+11.88 257.0 80000808.28512185812
+21.36 494.0 80000808.454649567604
+2.48 22.0 80000808.523783952
+41.76 1004.0 80000809.73774009943
+39.92 958.0 80000810.001270249486
+13.12 288.0 80000810.86777666211
+41.319996 993.0 80000811.438306853175
+6.16 114.0 80000812.21489995718
+28.199999 665.0 80000815.07969661057
+29.56 699.0 80000815.974775359035
+19.44 446.0 80000816.16485761106
+3.32 43.0 80000816.704811513424
+33.679996 802.0 80000816.80518731475
+6.68 127.0 80000816.81600318849
+3.1599998 39.0 80000819.00975045562
+19.32 443.0 80000819.48453132808
+34.079998 812.0 80000821.329228281975
+8.8 180.0 80000821.52698163688
+36.319996 868.0 80000822.00912617147
+34.199997 815.0 80000824.46000294387
+10.52 223.0 80000824.66023361683
+11.28 242.0 80000825.05113039911
+25.0 585.0 80000827.12451052666
+3.96 59.0 80000827.4073446542
+24.68 577.0 80000828.5048404783
+38.159996 914.0 80000828.622610628605
+31.88 757.0 80000828.63124883175
+24.0 560.0 80000829.2215629518
+20.6 475.0 80000829.66059269011
+5.32 93.0 80000830.33870181441
+13.76 304.0 80000831.20006233454
+11.88 257.0 80000831.21613633633
+15.16 339.0 80000832.059845909476
+21.84 506.0 80000832.423598602414
+13.6 300.0 80000833.69929590821
+34.999996 835.0 80000834.46965831518
+41.159996 989.0 80000836.12533031404
+8.12 163.0 80000836.71061439812
+28.4 670.0 80000836.78514607251
+19.56 449.0 80000837.03853216767
+12.88 282.0 80000839.699784219265
+5.2799997 92.0 80000841.037233412266
+31.76 754.0 80000843.41804847121
+35.48 847.0 80000844.98050430417
+31.199999 740.0 80000845.57550364733
+28.76 679.0 80000850.37028862536
+24.039999 561.0 80000850.423752725124
+41.839996 1006.0 80000851.28334981203
+36.76 879.0 80000851.615449771285
+17.4 395.0 80000851.654990166426
+38.999996 935.0 80000851.67317868769
+12.32 268.0 80000852.59776712954
+11.2 240.0 80000854.87065626681
+7.4399996 146.0 80000855.74864292145
+14.76 329.0 80000855.829678565264
+7.2799997 142.0 80000856.83493223786
+21.36 494.0 80000858.589912459254
+26.28 617.0 80000859.1553748399
+37.44 896.0 80000859.18091611564
+5.56 99.0 80000859.44560496509
+21.44 496.0 80000859.509354412556
+25.28 592.0 80000860.59416265786
+24.96 584.0 80000861.303189352155
+19.4 445.0 80000861.96652762592
+10.92 233.0 80000863.23499922454
+20.24 466.0 80000864.197188302875
+7.04 136.0 80000865.590956673026
+42.319996 1018.0 80000865.72700405121
+33.6 800.0 80000866.084478631616
+31.8 755.0 80000866.50517678261
+32.8 780.0 80000866.850857138634
+41.239998 991.0 80000867.7263391763
+22.0 510.0 80000868.06848114729
+14.4800005 322.0 80000869.2763479501
+34.44 821.0 80000870.65760450065
+19.72 453.0 80000871.05340576172
+23.28 542.0 80000873.14886234701
+38.239998 916.0 80000874.297571882606
+36.039997 861.0 80000874.73376466334
+22.28 517.0 80000879.41517931223
+33.999996 810.0 80000881.185400635004
+15.6 350.0 80000882.22257082164
+21.56 499.0 80000884.97935457528
+27.84 656.0 80000885.29664757848
+11.72 253.0 80000886.4507638216
+37.8 905.0 80000888.94126729667
+23.28 542.0 80000889.59991361201
+33.079998 787.0 80000890.74508482218
+32.719997 778.0 80000893.32567283511
+13.32 293.0 80000893.43082770705
+35.48 847.0 80000893.56059738994
+4.68 77.0 80000894.35489681363
+39.64 951.0 80000897.77023650706
+23.039999 536.0 80000899.03790041804
+14.4 320.0 80000899.37754881382
+18.4 420.0 80000900.8128515929
+10.84 231.0 80000901.414481043816
+20.32 468.0 80000901.48123975098
+42.359997 1019.0 80000901.93236474693
+25.2 590.0 80000901.972453475
+23.64 551.0 80000902.81782488525
+38.399998 920.0 80000903.59163464606
+30.199999 715.0 80000903.92151616514
+13.4800005 297.0 80000904.27971172333
+11.76 254.0 80000904.998699590564
+16.76 379.0 80000905.63441582024
+13.2 290.0 80000905.648124307394
+2.04 11.0 80000906.234885290265
+12.64 276.0 80000907.07798694074
+9.16 189.0 80000908.87027671933
+25.52 598.0 80000909.368400886655
+4.56 74.0 80000909.811767444015
+27.24 641.0 80000910.33445057273
+17.199999 390.0 80000910.60975474119
+2.16 14.0 80000911.29370170832
+34.519997 823.0 80000913.69095006585
+12.2 265.0 80000914.1802495867
+26.88 632.0 80000914.66017211974
+28.199999 665.0 80000916.50571863353
+42.399998 1020.0 80000916.718121901155
+37.44 896.0 80000919.645673155785
+27.6 650.0 80000920.63476088643
+18.88 432.0 80000922.45012420416
+8.48 172.0 80000925.23763982952
+12.28 267.0 80000926.283655911684
+28.32 668.0 80000926.6409278512
+30.96 734.0 80000928.05741724372
+32.079998 762.0 80000933.627166330814
+39.44 946.0 80000933.76277536154
+30.24 716.0 80000934.16055440903
+6.7599998 129.0 80000935.81169986725
+24.48 572.0 80000936.16736589372
+14.6 325.0 80000936.44196587801
+25.68 602.0 80000936.549025550485
+11.4800005 247.0 80000938.685712620616
+6.2 115.0 80000939.08911083639
+36.239998 866.0 80000940.29467050731
+27.28 642.0 80000941.77238176763
+4.2799997 67.0 80000942.128024578094
+12.92 283.0 80000942.38229085505
+20.96 484.0 80000944.63000917435
+9.64 201.0 80000945.404179006815
+14.32 318.0 80000945.718157589436
+8.32 168.0 80000945.91892364621
+42.28 1017.0 80000948.791864678264
+29.32 693.0 80000948.85667587817
+2.32 18.0 80000949.93122699857
+2.6399999 26.0 80000950.1588781476
+8.44 171.0 80000950.502268999815
+39.8 955.0 80000951.22832208872
+21.08 487.0 80000951.838016077876
+20.32 468.0 80000952.52954874933
+33.96 809.0 80000952.626723498106
+21.68 502.0 80000956.18126910925
+33.079998 787.0 80000956.38345962763
+23.76 554.0 80000957.466738790274
+8.32 168.0 80000959.38979135454
+14.28 317.0 80000960.34404800832
+29.92 708.0 80000962.452562466264
+11.64 251.0 80000964.24332383275
+25.6 600.0 80000966.99032564461
+28.36 669.0 80000967.36089865863
+15.4 345.0 80000968.338882282376
+25.48 597.0 80000968.875151097775
+16.72 378.0 80000969.143758147955
+14.76 329.0 80000971.409240707755
+19.6 450.0 80000974.77004908025
+28.76 679.0 80000974.80595380068
+38.359997 919.0 80000975.64050154388
+40.6 975.0 80000975.95903091133
+4.2 65.0 80000980.43536031246
+3.1599998 39.0 80000980.572394132614
+41.679996 1002.0 80000981.61112074554
+17.439999 396.0 80000981.74807231128
+40.239998 966.0 80000983.25735516846
+36.359997 869.0 80000985.01507012546
+18.12 413.0 80000985.20637777448
+38.28 917.0 80000986.77888666093
+40.479996 972.0 80000988.17710210383
+29.72 703.0 80000988.92275629938
+16.96 384.0 80000990.097374781966
+30.8 730.0 80000990.79127365351
+21.72 503.0 80000991.06344228983
+42.28 1017.0 80000991.80377283692
+28.24 666.0 80000993.049590453506
+7.04 136.0 80000994.441833391786
+36.28 867.0 80000994.527631640434
+24.4 570.0 80000995.25695282221
+21.76 504.0 80000995.29652753472
+11.52 248.0 80000995.99297225475
+41.319996 993.0 80000996.40901064873
+35.239998 841.0 80000996.557712092996
+10.52 223.0 80000997.22821688652
+33.96 809.0 80000997.405183792114
+11.96 259.0 80000997.93263950944
+15.440001 346.0 80000998.813208565116
+30.92 733.0 80000999.3882278502
+3.96 59.0 80000999.59336720407
+18.36 419.0 80001000.09518702328
+32.039997 761.0 80001001.49414373934
+28.48 672.0 80001002.54425382614
+39.8 955.0 80001003.1178855896
+18.72 428.0 80001003.56476637721
+7.52 148.0 80001005.884933292866
+9.68 202.0 80001007.618157073855
+3.6799998 52.0 80001009.596397176385
+13.56 299.0 80001015.068401411176
+40.519997 973.0 80001015.44013249874
+24.0 560.0 80001017.39824913442
+34.12 813.0 80001017.49642172456
+25.88 607.0 80001017.91779854894
+7.3199997 143.0 80001017.95813263953
+12.84 281.0 80001018.01935687661
+6.56 124.0 80001023.587887212634
+30.64 726.0 80001023.69297429919
+
+
+
+
[18]:
+
+
+
+
+array([80000000.23635569, 80000001.47479323, 80000001.78458866,
+       80000002.78943624, 80000003.42859936, 80000004.07943003,
+       80000006.09310323, 80000007.18041813, 80000008.17602143,
+       80000008.20403489], dtype=float128)
+
+
+
+

Transforming a Lightcurve into an EventList.

+

Event lists can be obtained from light curves, where the standard followed is as follows: as many events are created as the counts in the lightcurve at the time specified by time bins.

+

To demonstrate this, let us define a light curve.

+
+
[19]:
+
+
+
times = np.arange(3)
+counts = np.floor(np.random.rand(3)*5)
+lc = Lightcurve(times, counts, skip_checks=True, dt=1.)
+
+
+
+
+
[20]:
+
+
+
lc.time, lc.counts
+
+
+
+
+
[20]:
+
+
+
+
+(array([0, 1, 2]), array([1., 4., 3.]))
+
+
+

Now, eventlist can be loaded by calling static from_lc() method.

+
+
[21]:
+
+
+
ev = EventList.from_lc(lc)
+ev.time
+
+
+
+
+
[21]:
+
+
+
+
+array([0, 1, 1, 1, 1, 2, 2, 2])
+
+
+
+
+

Simulating EventList from Lightcurve

+

An arguably better way is having proper random events, reproducing the initial light curve within the errors. Stingray does this by using the inverse CDF method, using the light curve as a binned probability distribution. Please note that in this case we will have to create the EventList object before (in technical terms, simulate_times is not a static method.). See simulation tutorial for more details.

+
+
[22]:
+
+
+
ev = EventList()
+ev.simulate_times(lc)
+ev.time
+
+
+
+
+
[22]:
+
+
+
+
+array([0.60459939, 0.8644437 , 1.47100837, 1.54281243, 1.80725171,
+       2.47032653])
+
+
+
+
+

Creating a light curve from an EventList object

+

After simulating event list, the original light curve can be recovered. Let’s demonstrate by creating a light curve.

+
+
[23]:
+
+
+
dt = 1.
+times = np.arange(50)
+counts = np.floor(np.random.rand(50)*50000)
+lc = Lightcurve(times, counts, skip_checks=True, dt=1.)
+
+
+
+

Simulate an event list.

+
+
[24]:
+
+
+
ev = EventList()
+ev = ev.from_lc(lc)
+
+
+
+
+
[25]:
+
+
+
ev.gti
+
+
+
+
+
[25]:
+
+
+
+
+array([[-0.5, 49.5]])
+
+
+

Recover original light curve curve using to_lc() method. Here, dt defines time resolution, tstart the starting time, and tseg the total time duration.

+
+
[26]:
+
+
+
lc_new = ev.to_lc(dt=1)
+
+
+
+

Let us verify that this has worked properly, by comparing the input and output light curves

+
+
[27]:
+
+
+
plt.plot(lc.time, lc.counts,'r-', lc_new.counts, 'g-', drawstyle="steps-mid")
+plt.xlabel('Times')
+plt.ylabel('Counts')
+
+
+
+
+
[27]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/notebooks_EventList_EventList_Tutorial_54_1.png +
+
+

… and their difference

+
+
[28]:
+
+
+
plt.plot(lc.time, lc.counts - lc_new.counts, 'g-', drawstyle="steps-mid")
+plt.xlabel('Times')
+plt.ylabel('Counts')
+
+
+
+
+
[28]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/notebooks_EventList_EventList_Tutorial_56_1.png +
+
+

As can be seen from the figure above, the recovered light curve is aligned with the original light curve.

+
+
+

Simulating Energies

+

In order to simulate photon energies, a spectral distribution needs to be passed. The spectrum input is a two-dimensional array, with the energies in keV in the first dimension and the number of counts in the second. The count array will be normalized before the simulation: the raw counts do not matter, but only the ratio of the counts in each bin to the total. Again, the energies are simulated using an inverse CDF method.

+
+
[29]:
+
+
+
spectrum = [[1, 2, 3, 4, 5, 6],[1000, 2040, 1000, 3000, 4020, 2070]]
+
+
+
+
+
[30]:
+
+
+
ev = EventList(time=np.sort(np.random.uniform(0, 1000, 12)))
+ev.simulate_energies(spectrum)
+
+
+
+
+
[31]:
+
+
+
ev.energy
+
+
+
+
+
[31]:
+
+
+
+
+array([4.84164641, 3.62741142, 3.68169619, 4.70867585, 4.92065534,
+       4.93644725, 2.26749277, 5.45959615, 3.01137686, 4.86366818,
+       0.63048041, 6.26300006])
+
+
+
+
+

Joining EventLists

+

Two event lists can also be joined together. If the GTI do not overlap, the event times and GTIs are appended. Otherwise, the GTIs are crossed (i.e., only the overlapping parts are saved) and the events merged together.

+
+
[32]:
+
+
+
ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])
+ev2 = EventList(time=[4,5], gti=[[3.5, 5.5]])
+ev = ev1.join(ev2)
+ev.time, ev.gti
+
+
+
+
+
[32]:
+
+
+
+
+(array([1, 2, 3, 4, 5]), array([[0.5, 5.5]]))
+
+
+
+
[33]:
+
+
+
ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])
+ev2 = EventList(time=[1.2, 3.3, 5.6], gti=[[0.6, 7.8]])
+ev = ev1.join(ev2)
+ev.time, ev.gti
+
+
+
+
+
[33]:
+
+
+
+
+(array([1. , 1.2, 2. , 3. , 3.3, 5.6]), array([[0.6, 3.5]]))
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/EventList/EventList Tutorial.ipynb b/notebooks/EventList/EventList Tutorial.ipynb new file mode 100644 index 000000000..1a5f3488a --- /dev/null +++ b/notebooks/EventList/EventList Tutorial.ipynb @@ -0,0 +1,2007 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating an event list object and carrying out various operations such as simulating time and energies, joining, storing and retrieving event lists." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some relevant stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import EventList, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating EventList from Photon Arrival Times" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given photon arrival times, an eventlist object can be created. Times are assumed to be seconds from a reference MJD, that can optionally be specified with the `mjdref` keyword and attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "times = [0.5, 1.1, 2.2, 3.7]\n", + "mjdref=58000." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create event list object by passing arrival times as argument." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.5, 1.1, 2.2, 3.7])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList(times, mjdref=mjdref)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One can add all sorts of data to the `EventList` object, it is very flexible. In general, we suggest to stick with easily interpretable attributes, like `energy` or `pi`.\n", + "\n", + "```\n", + "ev.energy = [0., 3., 4., 20.]\n", + "```\n", + "\n", + "is the same as " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "energy = [0., 3., 4., 20.]\n", + "ev = EventList(times, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is always recommended to specify the good time intervals (GTIs) of the event list, as the time intervals where the instrument was fully operational. If not specified, GTIs are defined automatically as the first and the last event time." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [[0, 4]]\n", + "ev = EventList(times, gti=gti, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "`EventList` has the following methods that allow an easy roundtrip to Astropy objects: `to_astropy_table`, `to_astropy_timeseries`, `from_astropy_table`, `from_astropy_timeseries`\n", + "\n", + "This allows a better interoperability with the Astropy ecosystem. \n", + "\n", + "In this roundtrip, a `Table` or `Timeseries` object is created, having as columns `time` and all other attributes of the same size (e.g. `pi`, `energy`), and the rest of the attributes (e.g. `gti`, `mjdref`) in the table's metadata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Table length=4\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
energytime
float64float64
0.00.5
3.01.1
4.02.2
20.03.7
" + ], + "text/plain": [ + "\n", + " energy time \n", + "float64 float64\n", + "------- -------\n", + " 0.0 0.5\n", + " 3.0 1.1\n", + " 4.0 2.2\n", + " 20.0 3.7" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table = ev.to_astropy_table()\n", + "table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When converting to `Timeseries`, times are transformed into `astropy.time.TimeDelta` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
TimeSeries length=4\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timeenergy
objectfloat64
5.787037037037037e-060.0
1.2731481481481482e-053.0
2.5462962962962965e-054.0
4.282407407407408e-0520.0
" + ], + "text/plain": [ + "\n", + " time energy\n", + " object float64\n", + "---------------------- -------\n", + " 5.787037037037037e-06 0.0\n", + "1.2731481481481482e-05 3.0\n", + "2.5462962962962965e-05 4.0\n", + " 4.282407407407408e-05 20.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "timeseries = ev.to_astropy_timeseries()\n", + "timeseries" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('dt', 0),\n", + " ('gti', array([[0, 4]])),\n", + " ('mjdref', 58000.0),\n", + " ('ncounts', 4),\n", + " ('notes', '')])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table.meta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, these objects can be converted back to event lists. The user should be careful in defining the proper column names and metadata so that the final object is a valid `EventList`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "table_ev = EventList.from_astropy_table(table)\n", + "table_ts = EventList.from_astropy_timeseries(timeseries)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0.5, 1.1, 2.2, 3.7]), array([0.5, 1.1, 2.2, 3.7]))" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table_ev.time, table_ts.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Loading and writing EventList objects\n", + "\n", + "We made it possible to save and load data in a number of different formats.\n", + "\n", + "The general syntax is\n", + "\n", + "```\n", + "ev = EventList.read(filename, format)\n", + "\n", + "ev.write(filename, format)\n", + "\n", + "```\n", + "\n", + "There are three main blocks of formats that might be useful:\n", + "\n", + "1. (read-only) HEASoft-compatible formats -> read event data from HEASOFT-supported missions\n", + "\n", + "2. `pickle`: reading and saving EventLists from/to Python pickle objects\n", + "\n", + "3. Any format compatible with `astropy.table.Table` objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading an EventList from an X-ray observation in HEASoft-compatible format\n", + "\n", + "Loading event data from HEASoft-supported missions in FITS format is easy. It's sufficient to use the `read` method with `hea` or, equivalently, `ogip`, as format. \n", + "\n", + "Beware: please use `hea` or `ogip`, not `fits`! It would make the roundrip to Astropy tables more complicated, as Astropy supports a generic FITS writer which is not necessarily compatible with HEASoft." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList.read('events.fits', 'ogip')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Times are saved to the `time` attribute, GTIs to the `gti` attribute, MJDREF to the `mjdref` attribute, etc. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "55197.00076601852" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.mjdref" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[80000000., 80001025.]], dtype=float128)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to pickle objects\n", + "\n", + "It is possible to save and load eventlist objects using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(True, True)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.p\", \"pickle\")\n", + "ev2 = EventList.read(\"events.p\", \"pickle\")\n", + "\n", + "np.allclose(ev2.time, ev.time), np.allclose(ev2.gti, ev.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "If the `read` and `write` methods receive a format which is not `hea`, `ogip`, or `pickle`, the event list is transformed into an `Astropy` `Table` object with the methods described above, and the readers and writers from the `Table` class are used instead. This allows to extend the save/load operations to a large number of formats, including `hdf5` and enhanced CSV (`ascii.ecsv`).\n", + "\n", + "Note that columns coming from the `EVENTS` (or equivalent) fits extension, those having the same length as `time`, when converting to `astropy` tables they become columns of the table. All the others, including `gti`, are treated as metadata.\n", + "\n", + "Care should be used in selecting formats that preserve metadata. For example, simple CSV format loses all metadata, including MJDREF, GTIs etc." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.hdf5\", \"hdf5\")\n", + "ev3 = EventList.read(\"events.hdf5\", \"hdf5\")\n", + "ev3.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# %ECSV 1.0\r\n", + "# ---\r\n", + "# datatype:\r\n", + "# - {name: energy, datatype: float32}\r\n", + "# - {name: pi, datatype: float32}\r\n", + "# - {name: time, datatype: float128}\r\n", + "# meta: !!omap\r\n", + "# - {dt: 0}\r\n", + "# - gti: !numpy.ndarray\r\n", + "# buffer: !!binary |\r\n", + "# QUFBQUFBQ0FscGdaUURHRnBuOEFBQUFBQUFBZ0FKZVlHVUF4aGFaL0FBQT0=\r\n", + "# dtype: float128\r\n", + "# order: C\r\n", + "# shape: !!python/tuple [1, 2]\r\n", + "# - {header: 'XTENSION= ''BINTABLE'' / binary table extension BITPIX = 8 / array\r\n", + "# data type NAXIS = 2 / number of array dimensions NAXIS1 = 12\r\n", + "# / length of dimension 1 NAXIS2 = 1000 / length of dimension 2 PCOUNT = 0\r\n", + "# / number of group parameters GCOUNT = 1 / number of groups TFIELDS\r\n", + "# = 2 / number of table fields TTYPE1 = ''TIME '' TFORM1 =\r\n", + "# ''1D '' TTYPE2 = ''PI '' TFORM2 =\r\n", + "# ''1J '' EXTNAME = ''EVENTS '' / extension name OBSERVER=\r\n", + "# ''Edwige Bubble'' TELESCOP= ''NuSTAR '' / Telescope (mission) name INSTRUME=\r\n", + "# ''FPMA '' / Instrument name OBS_ID = ''00000000001'' / Observation ID TARG_ID\r\n", + "# = 0 / Target ID OBJECT = ''Fake X-1'' / Name of observed object RA_OBJ = 0.0\r\n", + "# / [deg] R.A. Object DEC_OBJ = 0.0 / [deg] Dec Object RA_NOM = 0.0\r\n", + "# / Right Ascension used for barycenter correctionsDEC_NOM = 0.0 / Declination used for barycenter corrections RA_PNT = 0.0\r\n", + "# / [deg] RA pointing DEC_PNT = 0.0 / [deg] Dec pointing PA_PNT = 0.0\r\n", + "# / [deg] Position angle (roll) EQUINOX = 2000.0 / Equinox of celestial coord system RADECSYS=\r\n", + "# ''FK5 '' / Coordinate Reference System TASSIGN = ''SATELLITE'' / Time assigned by onboard\r\n", + "# clock TIMESYS = ''TDB '' / All times in this file are TDB MJDREFI = 55197\r\n", + "# / TDB time reference; Modified Julian Day (int) MJDREFF = 0.00076601852 / TDB time reference; Modified Julian Day (frac)\r\n", + "# TIMEREF = ''SOLARSYSTEM'' / Times are pathlength-corrected to barycenter CLOCKAPP= F / TRUE if timestamps\r\n", + "# corrected by gnd sware TIMEUNIT= ''s '' / unit for time keywords TSTART = 80000000.0\r\n", + "# / Elapsed seconds since MJDREF at start of file TSTOP = 80001025.0 / Elapsed seconds since MJDREF at end of file LIVETIME= 1025.0\r\n", + "# / On-source time TIMEZERO= 0.0 / Time Zero COMMENT\r\n", + "# FITS (Flexible Image Transport System) format is defined in ''Astronomy aCOMMENT nd Astrophysics'', volume 376, page 359; bibcode:\r\n", + "# 2001A&A...376..359H COMMENT MJDREFI+MJDREFF = epoch of Jan 1, 2010, in TT time system. HISTORY File modified by\r\n", + "# user ''meo'' with fv on 2015-08-17T14:10:02 HISTORY File modified by user ''meo'' with fv on 2015-08-17T14:48:52 END '}\r\n", + "# - {instr: fpma}\r\n", + "# - {mission: nustar}\r\n", + "# - {mjdref: 55197.00076601852}\r\n", + "# - {ncounts: 1000}\r\n", + "# - {notes: ''}\r\n", + "# - {timeref: solarsystem}\r\n", + "# - {timesys: tdb}\r\n", + "# schema: astropy-2.0\r\n", + "energy pi time\r\n", + "8.56 174.0 80000000.23635569215\r\n", + "33.039997 786.0 80000001.47479322553\r\n", + "7.9999995 160.0 80000001.78458866477\r\n", + "27.84 656.0 80000002.789436236024\r\n", + "8.84 181.0 80000003.428599357605\r\n", + "13.92 308.0 80000004.079430028796\r\n", + "37.839996 906.0 80000006.09310323\r\n", + "40.559998 974.0 80000007.180418133736\r\n", + "5.8799996 107.0 80000008.176021426916\r\n", + "41.239998 991.0 80000008.204034894705\r\n", + "33.64 801.0 80000009.69214613736\r\n", + "8.72 178.0 80000010.36281684041\r\n", + "17.32 393.0 80000010.78324916959\r\n", + "6.56 124.0 80000011.8733625412\r\n", + "21.28 492.0 80000013.92633379996\r\n", + "10.24 216.0 80000014.204483643174\r\n", + "10.68 227.0 80000014.26073910296\r\n", + "26.68 627.0 80000015.256171390414\r\n", + "3.96 59.0 80000018.08373501897\r\n", + "13.96 309.0 80000018.83911728859\r\n", + "28.32 668.0 80000019.98157013953\r\n", + "38.319996 918.0 80000020.76013682783\r\n", + "17.76 404.0 80000021.14855520427\r\n", + "12.64 276.0 80000022.02460347116\r\n", + "29.76 704.0 80000023.50157275796\r\n", + "24.08 562.0 80000023.61806283891\r\n", + "10.400001 220.0 80000024.97833034396\r\n", + "41.519997 998.0 80000025.95996727049\r\n", + "4.24 66.0 80000026.16019311547\r\n", + "23.32 543.0 80000027.089139238\r\n", + "41.399998 995.0 80000028.596908301115\r\n", + "19.72 453.0 80000031.065731182694\r\n", + "36.559998 874.0 80000031.10555113852\r\n", + "38.399998 920.0 80000032.516511276364\r\n", + "24.28 567.0 80000032.808356150985\r\n", + "29.48 697.0 80000033.18797942996\r\n", + "36.76 879.0 80000033.85146795213\r\n", + "10.6 225.0 80000034.861510172486\r\n", + "20.0 460.0 80000038.22435864806\r\n", + "3.3600001 44.0 80000038.39090189338\r\n", + "15.08 337.0 80000042.41919325292\r\n", + "22.48 522.0 80000043.69195660949\r\n", + "4.24 66.0 80000045.52997684479\r\n", + "21.88 507.0 80000052.78282105923\r\n", + "39.6 950.0 80000052.919592529535\r\n", + "3.24 41.0 80000054.28180256486\r\n", + "14.32 318.0 80000056.48970986903\r\n", + "7.4399996 146.0 80000057.49698485434\r\n", + "7.9599996 159.0 80000058.55781446397\r\n", + "21.36 494.0 80000059.284333616495\r\n", + "35.159996 839.0 80000060.359298199415\r\n", + "21.64 501.0 80000063.666031733155\r\n", + "36.44 871.0 80000064.78927731514\r\n", + "35.319996 843.0 80000067.341705307364\r\n", + "26.08 612.0 80000068.267971634865\r\n", + "12.12 263.0 80000070.24889309704\r\n", + "11.400001 245.0 80000072.99266758561\r\n", + "35.839996 856.0 80000073.4422865361\r\n", + "6.68 127.0 80000073.81521306932\r\n", + "28.4 670.0 80000074.7710172981\r\n", + "22.08 512.0 80000076.15446573496\r\n", + "29.64 701.0 80000076.61943152547\r\n", + "34.319996 818.0 80000078.37191092968\r\n", + "9.04 186.0 80000079.364117503166\r\n", + "42.399998 1020.0 80000080.12182110548\r\n", + "14.08 312.0 80000080.4114151746\r\n", + "12.64 276.0 80000083.704568862915\r\n", + "26.16 614.0 80000084.38392549753\r\n", + "21.12 488.0 80000084.49645087123\r\n", + "7.7599998 154.0 80000084.73323458433\r\n", + "5.64 101.0 80000085.518022567034\r\n", + "4.2799997 67.0 80000086.06328216195\r\n", + "39.039997 936.0 80000087.00356020033\r\n", + "14.88 332.0 80000087.108956605196\r\n", + "11.24 241.0 80000087.3983823657\r\n", + "42.199997 1015.0 80000088.44739763439\r\n", + "28.16 664.0 80000088.72279639542\r\n", + "2.48 22.0 80000089.15565529466\r\n", + "42.28 1017.0 80000090.20357654989\r\n", + "5.32 93.0 80000090.7642698288\r\n", + "14.28 317.0 80000090.80305439234\r\n", + "40.319996 968.0 80000091.500082850456\r\n", + "18.44 421.0 80000092.158643990755\r\n", + "32.239998 766.0 80000092.89413803816\r\n", + "4.4 70.0 80000094.805209457874\r\n", + "38.879997 932.0 80000095.04941494763\r\n", + "32.199997 765.0 80000096.56686630845\r\n", + "30.4 720.0 80000096.91533789039\r\n", + "35.719997 853.0 80000098.67825654149\r\n", + "29.32 693.0 80000098.92884159088\r\n", + "17.199999 390.0 80000099.199268594384\r\n", + "37.92 908.0 80000100.14995288849\r\n", + "1.96 9.0 80000100.935947969556\r\n", + "13.12 288.0 80000102.76762147248\r\n", + "30.6 725.0 80000103.05724072456\r\n", + "34.239998 816.0 80000104.193173110485\r\n", + "8.88 182.0 80000107.33343601227\r\n", + "29.6 700.0 80000107.40127386153\r\n", + "8.24 166.0 80000107.56737007201\r\n", + "39.76 954.0 80000109.40503971279\r\n", + "41.399998 995.0 80000109.51361806691\r\n", + "32.399998 770.0 80000111.27798360586\r\n", + "20.2 465.0 80000112.93057106435\r\n", + "22.36 519.0 80000113.545409321785\r\n", + "41.559998 999.0 80000113.71510283649\r\n", + "36.64 876.0 80000115.363516911864\r\n", + "5.12 88.0 80000116.62624913454\r\n", + "24.32 568.0 80000117.5390470773\r\n", + "11.4800005 247.0 80000118.313546299934\r\n", + "10.0 210.0 80000118.64352825284\r\n", + "13.36 294.0 80000119.64161340892\r\n", + "4.48 72.0 80000119.70217871666\r\n", + "5.68 102.0 80000119.87085522711\r\n", + "25.76 604.0 80000120.67677563429\r\n", + "1.9200001 8.0 80000121.80093438923\r\n", + "2.92 33.0 80000122.09129279852\r\n", + "5.12 88.0 80000122.545517489314\r\n", + "33.32 793.0 80000122.93073017895\r\n", + "13.76 304.0 80000123.276563555\r\n", + "37.159996 889.0 80000125.506356075406\r\n", + "30.56 724.0 80000125.6568851918\r\n", + "37.079998 887.0 80000127.336458325386\r\n", + "6.4399996 121.0 80000127.45361994207\r\n", + "11.96 259.0 80000128.36573840678\r\n", + "14.08 312.0 80000129.43040788174\r\n", + "14.36 319.0 80000130.30537183583\r\n", + "34.239998 816.0 80000131.993975520134\r\n", + "29.92 708.0 80000132.51598034799\r\n", + "21.8 505.0 80000132.877141192555\r\n", + "10.84 231.0 80000134.958766937256\r\n", + "15.72 353.0 80000136.26415735483\r\n", + "9.32 193.0 80000136.271308645606\r\n", + "38.44 921.0 80000136.491618439555\r\n", + "34.559998 824.0 80000136.59682570398\r\n", + "29.64 701.0 80000136.81391918659\r\n", + "13.6 300.0 80000137.111403808\r\n", + "15.0 335.0 80000137.99286413193\r\n", + "8.2 165.0 80000140.02283409238\r\n", + "31.0 735.0 80000141.585879951715\r\n", + "18.12 413.0 80000141.88128243387\r\n", + "27.64 651.0 80000142.301297202706\r\n", + "29.44 696.0 80000144.258596763015\r\n", + "4.32 68.0 80000146.35952179134\r\n", + "9.92 208.0 80000146.431891173124\r\n", + "26.6 625.0 80000146.93531550467\r\n", + "32.719997 778.0 80000147.86272408068\r\n", + "4.4 70.0 80000148.20213320851\r\n", + "14.04 311.0 80000148.998638793826\r\n", + "10.76 229.0 80000150.13331639767\r\n", + "8.12 163.0 80000150.40001221001\r\n", + "31.96 759.0 80000150.51030369103\r\n", + "41.6 1000.0 80000158.27798460424\r\n", + "2.96 34.0 80000158.565826013684\r\n", + "19.76 454.0 80000160.18738743663\r\n", + "14.440001 321.0 80000162.67192919552\r\n", + "11.72 253.0 80000163.52692268789\r\n", + "37.44 896.0 80000164.03886182606\r\n", + "32.84 781.0 80000164.495729878545\r\n", + "17.24 391.0 80000165.17495532334\r\n", + "3.44 46.0 80000166.38718263805\r\n", + "25.76 604.0 80000168.38902553916\r\n", + "25.44 596.0 80000169.68685694039\r\n", + "23.56 549.0 80000169.713349059224\r\n", + "19.08 437.0 80000170.805011570454\r\n", + "41.039997 986.0 80000172.42077590525\r\n", + "2.16 14.0 80000172.43760578334\r\n", + "2.16 14.0 80000174.10814335942\r\n", + "37.28 892.0 80000174.15144339204\r\n", + "30.76 729.0 80000174.80246704817\r\n", + "28.24 666.0 80000174.83830589056\r\n", + "23.52 548.0 80000176.110384613276\r\n", + "33.399998 795.0 80000176.43801294267\r\n", + "7.08 137.0 80000177.71353569627\r\n", + "39.12 938.0 80000178.329968214035\r\n", + "9.44 196.0 80000180.91684667766\r\n", + "6.56 124.0 80000181.358734831214\r\n", + "24.96 584.0 80000182.17984089255\r\n", + "14.08 312.0 80000182.2385392189\r\n", + "29.92 708.0 80000183.21093174815\r\n", + "8.52 173.0 80000183.68284714222\r\n", + "23.92 558.0 80000184.32184153795\r\n", + "33.96 809.0 80000187.16848820448\r\n", + "13.0 285.0 80000188.89809964597\r\n", + "2.56 24.0 80000189.59268042445\r\n", + "8.52 173.0 80000190.39239893854\r\n", + "29.6 700.0 80000190.987773641944\r\n", + "8.04 161.0 80000191.39765946567\r\n", + "9.84 206.0 80000191.63218219578\r\n", + "37.399998 895.0 80000191.7998701334\r\n", + "37.48 897.0 80000194.591946706176\r\n", + "2.44 21.0 80000195.17524069548\r\n", + "22.72 528.0 80000195.27073279023\r", + "\r\n", + "33.039997 786.0 80000195.60482543707\r\n", + "15.4 345.0 80000197.01553657651\r\n", + "20.56 474.0 80000198.18857589364\r\n", + "12.8 280.0 80000199.30817961693\r\n", + "20.16 464.0 80000200.066078454256\r\n", + "1.6800001 2.0 80000201.68090777099\r\n", + "12.04 261.0 80000202.814891934395\r\n", + "18.32 418.0 80000203.25650832057\r\n", + "40.359997 969.0 80000203.48255087435\r\n", + "34.28 817.0 80000204.7061804533\r\n", + "34.64 826.0 80000207.248482748866\r\n", + "30.4 720.0 80000208.40996426344\r\n", + "28.76 679.0 80000208.54558329284\r\n", + "3.6 50.0 80000212.2733836025\r\n", + "39.399998 945.0 80000213.37501113117\r\n", + "23.64 551.0 80000214.05003093183\r\n", + "10.24 216.0 80000214.76189556718\r\n", + "15.440001 346.0 80000214.94751133025\r\n", + "33.839996 806.0 80000215.30322690308\r\n", + "2.88 32.0 80000215.606552898884\r\n", + "17.56 399.0 80000216.67295819521\r\n", + "17.199999 390.0 80000216.721879810095\r\n", + "22.0 510.0 80000217.02722400427\r\n", + "7.3199997 143.0 80000218.21801964939\r\n", + "6.3199997 118.0 80000223.690936505795\r\n", + "40.519997 973.0 80000224.71057784557\r\n", + "10.6 225.0 80000224.88408643007\r\n", + "31.08 737.0 80000225.81306296587\r\n", + "21.0 485.0 80000228.288003221154\r\n", + "15.64 351.0 80000229.47965101898\r\n", + "34.719997 828.0 80000229.982017084956\r\n", + "25.88 607.0 80000230.13939705491\r\n", + "16.52 373.0 80000230.207446575165\r\n", + "1.8 5.0 80000233.628895014524\r\n", + "33.0 785.0 80000233.858214601874\r\n", + "36.879997 882.0 80000235.58721217513\r\n", + "1.76 4.0 80000236.03008031845\r\n", + "42.239998 1016.0 80000239.206377997994\r\n", + "31.119999 738.0 80000240.66440632939\r\n", + "34.159996 814.0 80000241.05537928641\r\n", + "13.56 299.0 80000242.91226673126\r\n", + "18.92 433.0 80000243.34091578424\r\n", + "22.44 521.0 80000246.23444570601\r\n", + "40.8 980.0 80000246.39591316879\r\n", + "21.28 492.0 80000248.63243843615\r\n", + "24.28 567.0 80000249.259784281254\r\n", + "9.56 199.0 80000249.85402186215\r\n", + "5.04 86.0 80000250.17666938901\r\n", + "3.0 35.0 80000251.49163559079\r\n", + "25.44 596.0 80000251.50295473635\r\n", + "24.4 570.0 80000252.06601053476\r\n", + "30.56 724.0 80000252.272911697626\r\n", + "38.12 913.0 80000252.985514968634\r\n", + "38.8 930.0 80000253.836741268635\r\n", + "30.76 729.0 80000255.06581965089\r\n", + "41.719997 1003.0 80000255.60727831721\r\n", + "41.64 1001.0 80000256.902037888765\r\n", + "19.8 455.0 80000258.60432396829\r\n", + "42.359997 1019.0 80000260.50080451369\r\n", + "25.6 600.0 80000260.75552198291\r\n", + "11.56 249.0 80000260.88460493088\r\n", + "33.839996 806.0 80000261.36898006499\r\n", + "37.48 897.0 80000262.92271217704\r\n", + "18.2 415.0 80000262.99845524132\r\n", + "23.36 544.0 80000263.33590015769\r\n", + "40.96 984.0 80000264.96524555981\r\n", + "9.28 192.0 80000265.84508921206\r\n", + "10.84 231.0 80000266.91673760116\r\n", + "4.44 71.0 80000268.235334053636\r\n", + "22.76 529.0 80000271.489329367876\r\n", + "23.96 559.0 80000271.64101035893\r\n", + "35.879997 857.0 80000271.98798702657\r\n", + "11.16 239.0 80000273.71523039043\r\n", + "36.199997 865.0 80000275.30799421668\r\n", + "32.76 779.0 80000275.81958813965\r\n", + "27.32 643.0 80000276.46777294576\r\n", + "27.0 635.0 80000277.24329108\r\n", + "11.360001 244.0 80000277.80254943669\r\n", + "3.08 37.0 80000278.42643971741\r\n", + "18.68 427.0 80000278.52543953061\r\n", + "5.8399997 106.0 80000278.78952820599\r\n", + "25.24 591.0 80000279.13904826343\r\n", + "11.400001 245.0 80000279.32166413963\r\n", + "6.72 128.0 80000279.47431126237\r\n", + "34.6 825.0 80000281.05502511561\r\n", + "14.2 315.0 80000281.66787202656\r\n", + "18.08 412.0 80000281.735276550055\r\n", + "14.16 314.0 80000283.60641156137\r\n", + "12.4800005 272.0 80000284.68940325081\r\n", + "22.72 528.0 80000284.771769434214\r\n", + "7.2 140.0 80000285.59601339698\r\n", + "37.519997 898.0 80000287.934347867966\r\n", + "37.559998 899.0 80000288.457227408886\r\n", + "25.36 594.0 80000288.84559759498\r\n", + "37.039997 886.0 80000289.283936053514\r\n", + "32.48 772.0 80000289.74665103853\r\n", + "21.36 494.0 80000290.772457659245\r\n", + "1.64 1.0 80000290.879882499576\r\n", + "19.32 443.0 80000291.225027650595\r\n", + "21.84 506.0 80000291.23198154569\r\n", + "2.8 30.0 80000293.356203347445\r\n", + "31.92 758.0 80000296.29710520804\r\n", + "32.52 773.0 80000297.10793355107\r\n", + "37.159996 889.0 80000298.52665117383\r\n", + "12.64 276.0 80000298.93143287301\r\n", + "7.4399996 146.0 80000299.927507817745\r\n", + "17.199999 390.0 80000300.818491622806\r\n", + "2.52 23.0 80000302.07161732018\r\n", + "2.56 24.0 80000302.72473844886\r\n", + "36.319996 868.0 80000305.32900521159\r\n", + "4.52 73.0 80000305.93047915399\r\n", + "3.24 41.0 80000306.89711469412\r\n", + "16.64 376.0 80000309.568026304245\r\n", + "4.4 70.0 80000310.67230030894\r\n", + "18.36 419.0 80000311.17736788094\r\n", + "8.24 166.0 80000311.37703952193\r\n", + "20.12 463.0 80000313.92710117996\r\n", + "36.76 879.0 80000316.52630840242\r\n", + "3.6399999 51.0 80000316.576121881604\r\n", + "2.56 24.0 80000316.61531569064\r\n", + "4.68 77.0 80000316.991498693824\r\n", + "30.92 733.0 80000318.496204048395\r\n", + "4.44 71.0 80000318.759574487805\r\n", + "25.72 603.0 80000318.99812464416\r\n", + "24.16 564.0 80000323.19316992164\r\n", + "39.64 951.0 80000323.76615965366\r\n", + "2.6799998 27.0 80000324.23196092248\r\n", + "30.8 730.0 80000325.30946139991\r\n", + "13.68 302.0 80000325.49627235532\r\n", + "40.64 976.0 80000325.76096495986\r\n", + "9.04 186.0 80000326.018922537565\r\n", + "23.56 549.0 80000328.51117782295\r\n", + "32.12 763.0 80000330.33366891742\r\n", + "21.16 489.0 80000331.37347571552\r\n", + "38.8 930.0 80000332.161390304565\r\n", + "6.2 115.0 80000332.54631538689\r\n", + "37.319996 893.0 80000333.515790537\r\n", + "2.6799998 27.0 80000335.46171656251\r\n", + "27.8 655.0 80000336.63410934806\r\n", + "38.92 933.0 80000339.03143580258\r\n", + "5.7599998 104.0 80000339.16872346401\r\n", + "18.32 418.0 80000340.030776798725\r\n", + "5.8399997 106.0 80000340.41478018463\r\n", + "17.48 397.0 80000340.533760264516\r\n", + "33.32 793.0 80000341.72407652438\r\n", + "11.360001 244.0 80000344.206543818116\r\n", + "24.88 582.0 80000344.78012427688\r\n", + "32.96 784.0 80000345.00482337177\r\n", + "2.52 23.0 80000345.26880034804\r\n", + "13.2 290.0 80000345.654379203916\r\n", + "34.359997 819.0 80000345.975308820605\r\n", + "42.359997 1019.0 80000346.41354955733\r\n", + "7.8799996 157.0 80000346.86677853763\r\n", + "39.6 950.0 80000347.32460169494\r\n", + "9.32 193.0 80000347.35750260949\r\n", + "16.0 360.0 80000349.31582227349\r\n", + "37.879997 907.0 80000351.124539494514\r\n", + "19.44 446.0 80000352.37143753469\r\n", + "36.76 879.0 80000353.196565657854\r\n", + "2.24 16.0 80000354.17744512856\r\n", + "30.88 732.0 80000355.20202793181\r\n", + "39.8 955.0 80000355.60426925123\r\n", + "40.12 963.0 80000355.82318587601\r\n", + "16.4 370.0 80000356.5162641108\r\n", + "10.360001 219.0 80000357.642409190536\r\n", + "4.12 63.0 80000359.16175606847\r\n", + "7.68 152.0 80000359.8546615839\r\n", + "4.12 63.0 80000362.5537327677\r\n", + "20.8 480.0 80000362.92154058814\r\n", + "17.199999 390.0 80000363.773983463645\r\n", + "39.999996 960.0 80000365.48620200157\r\n", + "36.319996 868.0 80000368.489620789886\r\n", + "19.6 450.0 80000369.631684705615\r\n", + "41.679996 1002.0 80000370.6534255296\r\n", + "39.159996 939.0 80000371.82940942049\r\n", + "34.399998 820.0 80000373.43823419511\r\n", + "29.28 692.0 80000373.8585408777\r\n", + "39.039997 936.0 80000374.209455892444\r\n", + "34.44 821.0 80000374.64683301747\r\n", + "2.96 34.0 80000375.620239943266\r\n", + "32.36 769.0 80000378.87894229591\r\n", + "35.999996 860.0 80000378.97707155347\r\n", + "14.28 317.0 80000379.42757484317\r\n", + "37.839996 906.0 80000379.917373120785\r\n", + "8.92 183.0 80000381.10625052452\r\n", + "37.239998 891.0 80000382.077453806996\r\n", + "31.039999 736.0 80000382.17598539591\r\n", + "34.079998 812.0 80000382.22633959353\r\n", + "25.84 606.0 80000382.22792515159\r\n", + "27.6 650.0 80000382.55412106216\r\n", + "2.8 30.0 80000383.94620233774\r\n", + "37.12 888.0 80000384.37110866606\r\n", + "28.16 664.0 80000387.30780394375\r\n", + "20.44 471.0 80000387.87746040523\r\n", + "25.119999 588.0 80000388.37795352936\r\n", + "2.6799998 27.0 80000389.268874913454\r\n", + "37.199997 890.0 80000392.62231977284\r\n", + "28.16 664.0 80000393.17818275094\r\n", + "11.52 248.0 80000393.43643279374\r\n", + "2.6 25.0 80000395.12563699484\r\n", + "15.6 350.0 80000395.77989049256\r\n", + "6.48 122.0 80000396.31284117699\r\n", + "32.039997 761.0 80000399.1847140342\r\n", + "37.92 908.0 80000399.54459910095\r\n", + "16.84 381.0 80000400.72491231561\r\n", + "20.64 476.0 80000403.17735889554\r\n", + "8.88 182.0 80000403.54358610511\r\n", + "20.72 478.0 80000404.22769507766\r\n", + "5.4 95.0 80000404.47602318227\r\n", + "42.479996 1022.0 80000404.67004515231\r\n", + "16.64 376.0 80000408.95574080944\r\n", + "7.16 139.0 80000410.03962627053\r\n", + "16.72 378.0 80000410.75551979244\r\n", + "8.52 173.0 80000412.09823872149\r\n", + "31.8 755.0 80000412.219870209694\r\n", + "1.9200001 8.0 80000412.81054663658\r\n", + "21.96 509.0 80000414.8682410419\r\n", + "24.44 571.0 80000415.37962676585\r\n", + "27.92 658.0 80000416.70795631409\r\n", + "24.56 574.0 80000417.1444568038\r\n", + "37.039997 886.0 80000418.38563929498\r\n", + "1.96 9.0 80000420.47344271839\r\n", + "8.88 182.0 80000420.53409618139\r\n", + "26.48 622.0 80000420.80564555526\r\n", + "41.719997 1003.0 80000420.863403081894\r\n", + "5.96 109.0 80000420.942480519414\r\n", + "35.8 855.0 80000422.02582614124\r\n", + "8.44 171.0 80000422.79813404381\r\n", + "12.76 279.0 80000424.42955330014\r\n", + "7.8399997 156.0 80000424.81564453244\r\n", + "7.4799995 147.0 80000425.28199738264\r\n", + "40.319996 968.0 80000425.867245197296\r\n", + "33.719997 803.0 80000426.62731541693\r\n", + "40.12 963.0 80000427.133511930704\r\n", + "14.52 323.0 80000427.36044855416\r\n", + "7.0 135.0 80000428.54412809014\r\n", + "15.56 349.0 80000428.88726851344\r\n", + "30.6 725.0 80000429.38063727319\r\n", + "19.6 450.0 80000432.95051422715\r\n", + "3.08 37.0 80000434.64868846536\r\n", + "2.4 20.0 80000435.51728320122\r\n", + "39.76 954.0 80000436.24377171695\r\n", + "23.64 551.0 80000437.577606111765\r\n", + "9.48 197.0 80000438.05216662586\r\n", + "34.039997 811.0 80000438.70308248699\r\n", + "2.3600001 19.0 80000442.052734196186\r\n", + "27.36 644.0 80000442.764658123255\r\n", + "14.4800005 322.0 80000443.238895997405\r\n", + "12.76 279.0 80000445.098355308175\r\n", + "14.6 325.0 80000446.023702159524\r\n", + "32.879997 782.0 80000446.16962249577\r\n", + "10.92 233.0 80000448.83636845648\r\n", + "7.7999997 155.0 80000450.061449572444\r\n", + "9.12 188.0 80000450.52947856486\r\n", + "32.079998 762.0 80000450.55909974873\r\n", + "28.32 668.0 80000451.879113674164\r\n", + "22.28 517.0 80000452.064453706145\r\n", + "10.08 212.0 80000452.13652163744\r\n", + "26.32 618.0 80000452.9472001791\r\n", + "35.399998 845.0 80000453.03071194887\r\n", + "9.48 197.0 80000454.07206726074\r\n", + "3.32 43.0 80000456.48143340647\r\n", + "34.399998 820.0 80000458.18602730334\r\n", + "11.56 249.0 80000459.0324331224\r\n", + "4.2799997 67.0 80000459.4572635144\r\n", + "32.36 769.0 80000459.920432657\r\n", + "41.239998 991.0 80000464.06256014109\r\n", + "10.76 229.0 80000464.33307418227\r\n", + "34.079998 812.0 80000466.34134361148\r\n", + "26.84 631.0 80000467.24169912934\r\n", + "16.119999 363.0 80000467.884447038174\r\n", + "40.319996 968.0 80000468.7550342083\r\n", + "10.72 228.0 80000469.84887549281\r\n", + "22.52 523.0 80000469.8745007813\r\n", + "39.92 958.0 80000472.20344258845\r\n", + "27.4 645.0 80000472.30986727774\r\n", + "31.84 756.0 80000473.21885484457\r\n", + "15.440001 346.0 80000473.694500654936\r\n", + "17.24 391.0 80000476.0327218622\r\n", + "32.84 781.0 80000476.96122226119\r\n", + "39.28 942.0 80000480.92292739451\r\n", + "35.319996 843.0 80000481.06054444611\r\n", + "4.4 70.0 80000481.37218731642\r\n", + "24.36 569.0 80000481.933602169156\r\n", + "26.16 614.0 80000481.98567260802\r\n", + "40.879997 982.0 80000482.9210729748\r\n", + "40.479996 972.0 80000483.857440814376\r\n", + "4.64 76.0 80000484.32165810466\r\n", + "39.8 955.0 80000484.80663745105\r\n", + "29.16 689.0 80000486.771085351706\r\n", + "11.84 256.0 80000487.217004179955\r\n", + "14.16 314.0 80000487.990593642\r\n", + "28.92 683.0 80000491.276099190116\r\n", + "37.999996 910.0 80000491.747016862035\r\n", + "6.4399996 121.0 80000493.35879443586\r\n", + "25.2 590.0 80000494.31928488612\r\n", + "12.16 264.0 80000495.14925374091\r\n", + "14.6 325.0 80000495.4605127275\r\n", + "20.64 476.0 80000496.37845928967\r\n", + "5.16 89.0 80000496.85824956\r\n", + "19.88 457.0 80000497.20662690699\r\n", + "35.92 858.0 80000502.43506611884\r\n", + "25.8 605.0 80000502.71769653261\r\n", + "17.119999 388.0 80000502.80815401673\r\n", + "36.159996 864.0 80000504.42526854575\r\n", + "21.4 495.0 80000505.48890078068\r\n", + "12.4800005 272.0 80000506.024649724364\r\n", + "21.92 508.0 80000506.17142087221\r\n", + "4.56 74.0 80000508.07841642201\r\n", + "4.72 78.0 80000508.71263246238\r\n", + "31.56 749.0 80000509.140583753586\r\n", + "28.119999 663.0 80000509.95569059253\r\n", + "27.28 642.0 80000510.86728909612\r\n", + "12.04 261.0 80000512.479585409164\r\n", + "30.199999 715.0 80000516.56570722163\r\n", + "33.36 794.0 80000516.99862577021\r\n", + "5.16 89.0 80000517.344923987985\r\n", + "11.12 238.0 80000519.38823206723\r\n", + "11.32 243.0 80000519.57560668886\r\n", + "5.0 85.0 80000519.58020955324\r\n", + "33.239998 791.0 80000520.51779472828\r\n", + "6.3999996 120.0 80000520.546872377396\r\n", + "9.72 203.0 80000521.153368234634\r\n", + "30.64 726.0 80000521.42145887017\r\n", + "21.96 509.0 80000521.63308496773\r\n", + "12.6 275.0 80000523.057834371924\r\n", + "8.36 169.0 80000525.05073848367\r\n", + "10.56 224.0 80000527.819232299924\r\n", + "29.24 691.0 80000531.12523216009\r\n", + "24.6 575.0 80000532.10568276048\r\n", + "40.8 980.0 80000533.20108996332\r\n", + "17.0 385.0 80000534.29738210142\r\n", + "23.48 547.0 80000534.340845018625\r\n", + "18.28 417.0 80000534.83431440592\r\n", + "2.08 12.0 80000534.87653042376\r\n", + "41.92 1008.0 80000534.895185917616\r\n", + "8.52 173.0 80000535.94042633474\r\n", + "19.84 456.0 80000537.48509004712\r\n", + "10.400001 220.0 80000538.26394830644\r\n", + "23.92 558.0 80000540.002261936665\r\n", + "37.719997 903.0 80000540.1134250015\r\n", + "13.84 306.0 80000546.718622386456\r\n", + "4.32 68.0 80000546.84028501809\r\n", + "18.56 424.0 80000547.30754908919\r\n", + "3.08 37.0 80000549.5327937603\r\n", + "27.88 657.0 80000550.56298401952\r\n", + "29.0 685.0 80000550.60222132504\r\n", + "35.159996 839.0 80000552.734096348286\r\n", + "38.519997 923.0 80000553.922179594636\r\n", + "5.52 98.0 80000555.44246518612\r\n", + "18.56 424.0 80000558.82404534519\r\n", + "39.319996 943.0 80000558.947059229016\r\n", + "32.399998 770.0 80000559.282619684935\r\n", + "33.0 785.0 80000560.58969677985\r\n", + "29.72 703.0 80000560.70387540758\r\n", + "10.24 216.0 80000561.323437169194\r\n", + "17.88 407.0 80000562.679025664926\r\n", + "27.44 646.0 80000563.71705073118\r\n", + "14.4800005 322.0 80000563.95132599771\r\n", + "25.24 591.0 80000564.861919119954\r\n", + "23.24 541.0 80000565.76752875745\r\n", + "37.92 908.0 80000565.78528097272\r\n", + "24.92 583.0 80000566.29958720505\r\n", + "31.88 757.0 80000567.06900238991\r\n", + "42.359997 1019.0 80000569.15245625377\r\n", + "11.68 252.0 80000570.583770141006\r\n", + "11.56 249.0 80000571.260604158044\r\n", + "22.48 522.0 80000572.77767854929\r\n", + "24.64 576.0 80000574.140301436186\r\n", + "28.119999 663.0 80000574.51526069641\r\n", + "3.28 42.0 80000577.082364201546\r\n", + "35.559998 849.0 80000578.60487310588\r\n", + "5.72 103.0 80000579.25371134281\r\n", + "3.4 45.0 80000579.63681046665\r\n", + "6.3199997 118.0 80000581.21821717918\r\n", + "6.3199997 118.0 80000582.04014620185\r\n", + "22.12 513.0 80000583.46193483472\r\n", + "9.5199995 198.0 80000586.03360375762\r\n", + "3.48 47.0 80000589.798507750034\r\n", + "31.72 753.0 80000591.46542161703\r\n", + "2.88 32.0 80000591.97941620648\r\n", + "10.8 230.0 80000593.13316428661\r\n", + "15.84 356.0 80000594.042805209756\r\n", + "15.56 349.0 80000594.91821274161\r\n", + "37.159996 889.0 80000595.397889867425\r\n", + "28.16 664.0 80000595.763835296035\r\n", + "6.8399997 131.0 80000596.830532982945\r\n", + "37.559998 899.0 80000598.901824980974\r\n", + "31.16 739.0 80000599.64194495976\r\n", + "28.88 682.0 80000600.793473765254\r\n", + "31.56 749.0 80000602.10744164884\r\n", + "7.8399997 156.0 80000602.55246156454\r\n", + "17.24 391.0 80000603.4955958724\r\n", + "7.12 138.0 80000606.650620505214\r\n", + "2.16 14.0 80000608.090855017304\r\n", + "37.879997 907.0 80000609.993093535304\r\n", + "4.7999997 80.0 80000610.186307400465\r\n", + "15.56 349.0 80000611.37006236613\r\n", + "30.48 722.0 80000611.83906060457\r\n", + "19.96 459.0 80000611.8572294265\r\n", + "34.64 826.0 80000611.95349282026\r\n", + "41.839996 1006.0 80000613.84575891495\r\n", + "23.2 540.0 80000617.17802332342\r\n", + "17.56 399.0 80000617.24794691801\r\n", + "34.559998 824.0 80000617.35718101263\r\n", + "28.16 664.0 80000617.732587218285\r\n", + "20.64 476.0 80000618.9578525275\r\n", + "28.84 681.0 80000619.30346444249\r\n", + "39.239998 941.0 80000621.2265856415\r\n", + "18.16 414.0 80000621.38765838742\r\n", + "7.9999995 160.0 80000621.735619053245\r\n", + "33.079998 787.0 80000623.792137786746\r\n", + "37.64 901.0 80000623.85770910978\r\n", + "2.6 25.0 80000626.21549396217\r\n", + "31.039999 736.0 80000627.16449086368\r\n", + "33.12 788.0 80000628.88948699832\r\n", + "39.319996 943.0 80000630.68285809457\r\n", + "11.32 243.0 80000630.789920687675\r\n", + "30.48 722.0 80000632.821838498116\r\n", + "27.199999 640.0 80000632.881889894605\r\n", + "24.84 581.0 80000634.78217072785\r\n", + "20.28 467.0 80000635.002951964736\r\n", + "33.679996 802.0 80000635.41563603282\r\n", + "36.199997 865.0 80000635.88681785762\r\n", + "8.56 174.0 80000637.371477141976\r\n", + "35.519997 848.0 80000642.38429802656\r\n", + "30.4 720.0 80000643.78843893111\r\n", + "25.44 596.0 80000644.600917607546\r\n", + "11.68 252.0 80000644.882760211825\r\n", + "10.28 217.0 80000645.594902947545\r\n", + "9.2 190.0 80000645.93502403796\r\n", + "16.439999 371.0 80000646.383003011346\r\n", + "2.6399999 26.0 80000646.53795617819\r\n", + "34.64 826.0 80000647.63100332022\r\n", + "22.84 531.0 80000648.47574129701\r\n", + "5.12 88.0 80000649.00771085918\r\n", + "42.079998 1012.0 80000649.114930674434\r\n", + "24.92 583.0 80000650.1061706841\r\n", + "22.88 532.0 80000655.68533721566\r\n", + "24.68 577.0 80000657.16480255127\r\n", + "26.68 627.0 80000657.258827999234\r\n", + "19.8 455.0 80000657.33367057145\r\n", + "35.64 851.0 80000658.74945259094\r\n", + "2.08 12.0 80000660.18671748042\r\n", + "17.439999 396.0 80000660.63745248318\r\n", + "33.999996 810.0 80000661.82945792377\r\n", + "6.48 122.0 80000661.90170559287\r\n", + "17.16 389.0 80000662.26141363382\r\n", + "33.32 793.0 80000662.64840815961\r\n", + "41.64 1001.0 80000663.12676268816\r\n", + "14.56 324.0 80000663.227578774095\r\n", + "24.44 571.0 80000664.475006356835\r\n", + "3.3600001 44.0 80000664.552283763885\r\n", + "17.24 391.0 80000665.17621576786\r\n", + "27.4 645.0 80000666.08528217673\r\n", + "39.079998 937.0 80000670.71755500138\r\n", + "7.72 153.0 80000671.198174357414\r\n", + "6.8799996 132.0 80000673.345912232995\r\n", + "34.199997 815.0 80000674.87888632715\r\n", + "35.28 842.0 80000676.18293096125\r\n", + "11.64 251.0 80000676.64919489622\r\n", + "40.359997 969.0 80000676.80372226238\r\n", + "31.44 746.0 80000678.275382354856\r\n", + "11.8 255.0 80000680.48982979357\r\n", + "19.28 442.0 80000682.686058193445\r", + "\r\n", + "26.24 616.0 80000684.38221885264\r\n", + "2.8 30.0 80000685.43452076614\r\n", + "22.0 510.0 80000686.74407067895\r\n", + "31.199999 740.0 80000686.81872756779\r\n", + "30.84 731.0 80000688.30932036042\r\n", + "42.319996 1018.0 80000688.81981065869\r\n", + "20.16 464.0 80000691.197261437774\r\n", + "16.4 370.0 80000692.15807239711\r\n", + "27.92 658.0 80000693.03427194059\r\n", + "10.360001 219.0 80000694.3066085726\r\n", + "36.8 880.0 80000694.962600558996\r\n", + "40.44 971.0 80000697.02309130132\r\n", + "38.48 922.0 80000698.11148573458\r\n", + "21.56 499.0 80000698.516439035535\r\n", + "40.28 967.0 80000699.06620439887\r\n", + "42.44 1021.0 80000701.39014860988\r\n", + "27.76 654.0 80000701.87561401725\r\n", + "11.8 255.0 80000702.62369687855\r\n", + "27.88 657.0 80000702.988359063864\r\n", + "39.159996 939.0 80000705.296378955245\r\n", + "23.96 559.0 80000705.433091163635\r\n", + "11.440001 246.0 80000705.599841311574\r\n", + "2.8400002 31.0 80000709.3684746474\r\n", + "12.2 265.0 80000709.77955941856\r\n", + "3.7199998 53.0 80000709.794584959745\r\n", + "11.2 240.0 80000709.846471622586\r\n", + "27.0 635.0 80000711.9785169363\r\n", + "19.4 445.0 80000712.899810910225\r\n", + "1.9200001 8.0 80000713.0795609951\r\n", + "21.96 509.0 80000713.76596863568\r\n", + "36.48 872.0 80000716.780457377434\r\n", + "22.039999 511.0 80000717.29924210906\r\n", + "17.32 393.0 80000720.5562723279\r\n", + "12.68 277.0 80000720.58715964854\r\n", + "41.239998 991.0 80000722.03180555999\r\n", + "29.32 693.0 80000722.03699606657\r\n", + "7.9599996 159.0 80000722.478862181306\r\n", + "29.96 709.0 80000723.87889204919\r\n", + "5.52 98.0 80000724.7961999625\r\n", + "37.44 896.0 80000726.34677195549\r\n", + "40.28 967.0 80000727.47035036981\r\n", + "26.84 631.0 80000728.90236452222\r\n", + "41.92 1008.0 80000729.3514444083\r\n", + "26.16 614.0 80000730.33039654791\r\n", + "4.2 65.0 80000730.81428743899\r\n", + "4.4 70.0 80000731.42920610309\r\n", + "16.359999 369.0 80000732.61377693713\r\n", + "14.04 311.0 80000733.754086226225\r\n", + "17.08 387.0 80000733.79874679446\r\n", + "3.52 48.0 80000733.991308033466\r\n", + "38.28 917.0 80000734.417156770825\r\n", + "1.96 9.0 80000738.45621095598\r\n", + "11.08 237.0 80000739.78259626031\r\n", + "39.319996 943.0 80000739.904296547174\r\n", + "29.36 694.0 80000742.26487219334\r\n", + "20.8 480.0 80000742.58448088169\r\n", + "18.0 410.0 80000743.84713715315\r\n", + "7.0 135.0 80000745.445721656084\r\n", + "33.32 793.0 80000745.704266637564\r\n", + "4.96 84.0 80000746.49740232527\r\n", + "2.88 32.0 80000748.3739194572\r\n", + "40.76 979.0 80000749.18420062959\r\n", + "39.559998 949.0 80000749.238480210304\r\n", + "40.8 980.0 80000749.36030867696\r\n", + "15.36 344.0 80000751.06558699906\r\n", + "35.64 851.0 80000751.55830208957\r\n", + "39.479996 947.0 80000752.70824530721\r\n", + "9.12 188.0 80000752.72337460518\r\n", + "20.64 476.0 80000752.881983697414\r\n", + "29.52 698.0 80000753.15865902603\r\n", + "35.28 842.0 80000753.76198838651\r\n", + "27.92 658.0 80000754.23456764221\r\n", + "18.08 412.0 80000754.3275937736\r\n", + "35.76 854.0 80000755.37613813579\r\n", + "26.56 624.0 80000756.66476659477\r\n", + "6.7599998 129.0 80000758.372802481055\r\n", + "23.48 547.0 80000759.07206888497\r\n", + "29.16 689.0 80000759.892510056496\r\n", + "36.48 872.0 80000761.603752076626\r\n", + "17.16 389.0 80000762.42036630213\r\n", + "11.0 235.0 80000765.06811144948\r\n", + "31.76 754.0 80000765.382397055626\r\n", + "35.44 846.0 80000765.4667224288\r\n", + "41.28 992.0 80000765.93857854605\r\n", + "37.039997 886.0 80000767.26963350177\r\n", + "25.72 603.0 80000767.7786257714\r\n", + "20.28 467.0 80000770.32975102961\r\n", + "7.3999996 145.0 80000771.69804634154\r\n", + "3.32 43.0 80000773.945546999574\r\n", + "37.399998 895.0 80000774.221253693104\r\n", + "10.92 233.0 80000775.89942243695\r\n", + "24.6 575.0 80000777.312041819096\r\n", + "12.4800005 272.0 80000777.77507701516\r\n", + "31.72 753.0 80000777.79259891808\r\n", + "12.360001 269.0 80000779.33480271697\r\n", + "22.64 526.0 80000779.554390221834\r\n", + "36.999996 885.0 80000780.81437155604\r\n", + "29.28 692.0 80000780.933462917805\r\n", + "35.159996 839.0 80000781.15924490988\r\n", + "24.64 576.0 80000781.26206161082\r\n", + "25.119999 588.0 80000781.72611118853\r\n", + "4.7599998 79.0 80000782.172751545906\r\n", + "20.28 467.0 80000783.125701248646\r\n", + "38.64 926.0 80000785.342386975884\r\n", + "4.92 83.0 80000785.36341136694\r\n", + "34.6 825.0 80000785.92007930577\r\n", + "20.56 474.0 80000786.1086602211\r\n", + "17.279999 392.0 80000786.253573834896\r\n", + "33.6 800.0 80000787.553292140365\r\n", + "32.32 768.0 80000787.658161982894\r\n", + "4.68 77.0 80000790.072870031\r\n", + "24.64 576.0 80000792.274298503995\r\n", + "9.44 196.0 80000792.443054273725\r\n", + "17.52 398.0 80000792.46565423906\r\n", + "14.4800005 322.0 80000792.808876529336\r\n", + "33.879997 807.0 80000795.87703709304\r\n", + "32.719997 778.0 80000795.91278010607\r\n", + "5.44 96.0 80000797.14426906407\r\n", + "11.04 236.0 80000797.26987493038\r\n", + "34.719997 828.0 80000798.51847578585\r\n", + "2.2 15.0 80000799.48481544852\r\n", + "31.72 753.0 80000799.881970733404\r\n", + "31.039999 736.0 80000803.51909430325\r\n", + "18.52 423.0 80000803.731096595526\r\n", + "32.16 764.0 80000803.883781552315\r\n", + "40.92 983.0 80000805.29773187637\r\n", + "18.0 410.0 80000805.306009307504\r\n", + "17.32 393.0 80000807.21232941747\r\n", + "11.88 257.0 80000808.28512185812\r\n", + "21.36 494.0 80000808.454649567604\r\n", + "2.48 22.0 80000808.523783952\r\n", + "41.76 1004.0 80000809.73774009943\r\n", + "39.92 958.0 80000810.001270249486\r\n", + "13.12 288.0 80000810.86777666211\r\n", + "41.319996 993.0 80000811.438306853175\r\n", + "6.16 114.0 80000812.21489995718\r\n", + "28.199999 665.0 80000815.07969661057\r\n", + "29.56 699.0 80000815.974775359035\r\n", + "19.44 446.0 80000816.16485761106\r\n", + "3.32 43.0 80000816.704811513424\r\n", + "33.679996 802.0 80000816.80518731475\r\n", + "6.68 127.0 80000816.81600318849\r\n", + "3.1599998 39.0 80000819.00975045562\r\n", + "19.32 443.0 80000819.48453132808\r\n", + "34.079998 812.0 80000821.329228281975\r\n", + "8.8 180.0 80000821.52698163688\r\n", + "36.319996 868.0 80000822.00912617147\r\n", + "34.199997 815.0 80000824.46000294387\r\n", + "10.52 223.0 80000824.66023361683\r\n", + "11.28 242.0 80000825.05113039911\r\n", + "25.0 585.0 80000827.12451052666\r\n", + "3.96 59.0 80000827.4073446542\r\n", + "24.68 577.0 80000828.5048404783\r\n", + "38.159996 914.0 80000828.622610628605\r\n", + "31.88 757.0 80000828.63124883175\r\n", + "24.0 560.0 80000829.2215629518\r\n", + "20.6 475.0 80000829.66059269011\r\n", + "5.32 93.0 80000830.33870181441\r\n", + "13.76 304.0 80000831.20006233454\r\n", + "11.88 257.0 80000831.21613633633\r\n", + "15.16 339.0 80000832.059845909476\r\n", + "21.84 506.0 80000832.423598602414\r\n", + "13.6 300.0 80000833.69929590821\r\n", + "34.999996 835.0 80000834.46965831518\r\n", + "41.159996 989.0 80000836.12533031404\r\n", + "8.12 163.0 80000836.71061439812\r\n", + "28.4 670.0 80000836.78514607251\r\n", + "19.56 449.0 80000837.03853216767\r\n", + "12.88 282.0 80000839.699784219265\r\n", + "5.2799997 92.0 80000841.037233412266\r\n", + "31.76 754.0 80000843.41804847121\r\n", + "35.48 847.0 80000844.98050430417\r\n", + "31.199999 740.0 80000845.57550364733\r\n", + "28.76 679.0 80000850.37028862536\r\n", + "24.039999 561.0 80000850.423752725124\r\n", + "41.839996 1006.0 80000851.28334981203\r\n", + "36.76 879.0 80000851.615449771285\r\n", + "17.4 395.0 80000851.654990166426\r\n", + "38.999996 935.0 80000851.67317868769\r\n", + "12.32 268.0 80000852.59776712954\r\n", + "11.2 240.0 80000854.87065626681\r\n", + "7.4399996 146.0 80000855.74864292145\r\n", + "14.76 329.0 80000855.829678565264\r\n", + "7.2799997 142.0 80000856.83493223786\r\n", + "21.36 494.0 80000858.589912459254\r\n", + "26.28 617.0 80000859.1553748399\r\n", + "37.44 896.0 80000859.18091611564\r\n", + "5.56 99.0 80000859.44560496509\r\n", + "21.44 496.0 80000859.509354412556\r\n", + "25.28 592.0 80000860.59416265786\r\n", + "24.96 584.0 80000861.303189352155\r\n", + "19.4 445.0 80000861.96652762592\r\n", + "10.92 233.0 80000863.23499922454\r\n", + "20.24 466.0 80000864.197188302875\r\n", + "7.04 136.0 80000865.590956673026\r\n", + "42.319996 1018.0 80000865.72700405121\r\n", + "33.6 800.0 80000866.084478631616\r\n", + "31.8 755.0 80000866.50517678261\r\n", + "32.8 780.0 80000866.850857138634\r\n", + "41.239998 991.0 80000867.7263391763\r\n", + "22.0 510.0 80000868.06848114729\r\n", + "14.4800005 322.0 80000869.2763479501\r\n", + "34.44 821.0 80000870.65760450065\r\n", + "19.72 453.0 80000871.05340576172\r\n", + "23.28 542.0 80000873.14886234701\r\n", + "38.239998 916.0 80000874.297571882606\r\n", + "36.039997 861.0 80000874.73376466334\r\n", + "22.28 517.0 80000879.41517931223\r\n", + "33.999996 810.0 80000881.185400635004\r\n", + "15.6 350.0 80000882.22257082164\r\n", + "21.56 499.0 80000884.97935457528\r\n", + "27.84 656.0 80000885.29664757848\r\n", + "11.72 253.0 80000886.4507638216\r\n", + "37.8 905.0 80000888.94126729667\r\n", + "23.28 542.0 80000889.59991361201\r\n", + "33.079998 787.0 80000890.74508482218\r\n", + "32.719997 778.0 80000893.32567283511\r\n", + "13.32 293.0 80000893.43082770705\r\n", + "35.48 847.0 80000893.56059738994\r\n", + "4.68 77.0 80000894.35489681363\r\n", + "39.64 951.0 80000897.77023650706\r\n", + "23.039999 536.0 80000899.03790041804\r\n", + "14.4 320.0 80000899.37754881382\r\n", + "18.4 420.0 80000900.8128515929\r\n", + "10.84 231.0 80000901.414481043816\r\n", + "20.32 468.0 80000901.48123975098\r\n", + "42.359997 1019.0 80000901.93236474693\r\n", + "25.2 590.0 80000901.972453475\r\n", + "23.64 551.0 80000902.81782488525\r\n", + "38.399998 920.0 80000903.59163464606\r\n", + "30.199999 715.0 80000903.92151616514\r\n", + "13.4800005 297.0 80000904.27971172333\r\n", + "11.76 254.0 80000904.998699590564\r\n", + "16.76 379.0 80000905.63441582024\r\n", + "13.2 290.0 80000905.648124307394\r\n", + "2.04 11.0 80000906.234885290265\r\n", + "12.64 276.0 80000907.07798694074\r\n", + "9.16 189.0 80000908.87027671933\r\n", + "25.52 598.0 80000909.368400886655\r\n", + "4.56 74.0 80000909.811767444015\r\n", + "27.24 641.0 80000910.33445057273\r\n", + "17.199999 390.0 80000910.60975474119\r\n", + "2.16 14.0 80000911.29370170832\r\n", + "34.519997 823.0 80000913.69095006585\r\n", + "12.2 265.0 80000914.1802495867\r\n", + "26.88 632.0 80000914.66017211974\r\n", + "28.199999 665.0 80000916.50571863353\r\n", + "42.399998 1020.0 80000916.718121901155\r\n", + "37.44 896.0 80000919.645673155785\r\n", + "27.6 650.0 80000920.63476088643\r\n", + "18.88 432.0 80000922.45012420416\r\n", + "8.48 172.0 80000925.23763982952\r\n", + "12.28 267.0 80000926.283655911684\r\n", + "28.32 668.0 80000926.6409278512\r\n", + "30.96 734.0 80000928.05741724372\r\n", + "32.079998 762.0 80000933.627166330814\r\n", + "39.44 946.0 80000933.76277536154\r\n", + "30.24 716.0 80000934.16055440903\r\n", + "6.7599998 129.0 80000935.81169986725\r\n", + "24.48 572.0 80000936.16736589372\r\n", + "14.6 325.0 80000936.44196587801\r\n", + "25.68 602.0 80000936.549025550485\r\n", + "11.4800005 247.0 80000938.685712620616\r\n", + "6.2 115.0 80000939.08911083639\r\n", + "36.239998 866.0 80000940.29467050731\r\n", + "27.28 642.0 80000941.77238176763\r\n", + "4.2799997 67.0 80000942.128024578094\r\n", + "12.92 283.0 80000942.38229085505\r\n", + "20.96 484.0 80000944.63000917435\r\n", + "9.64 201.0 80000945.404179006815\r\n", + "14.32 318.0 80000945.718157589436\r\n", + "8.32 168.0 80000945.91892364621\r\n", + "42.28 1017.0 80000948.791864678264\r\n", + "29.32 693.0 80000948.85667587817\r\n", + "2.32 18.0 80000949.93122699857\r\n", + "2.6399999 26.0 80000950.1588781476\r\n", + "8.44 171.0 80000950.502268999815\r\n", + "39.8 955.0 80000951.22832208872\r\n", + "21.08 487.0 80000951.838016077876\r\n", + "20.32 468.0 80000952.52954874933\r\n", + "33.96 809.0 80000952.626723498106\r\n", + "21.68 502.0 80000956.18126910925\r\n", + "33.079998 787.0 80000956.38345962763\r\n", + "23.76 554.0 80000957.466738790274\r\n", + "8.32 168.0 80000959.38979135454\r\n", + "14.28 317.0 80000960.34404800832\r\n", + "29.92 708.0 80000962.452562466264\r\n", + "11.64 251.0 80000964.24332383275\r\n", + "25.6 600.0 80000966.99032564461\r\n", + "28.36 669.0 80000967.36089865863\r\n", + "15.4 345.0 80000968.338882282376\r\n", + "25.48 597.0 80000968.875151097775\r\n", + "16.72 378.0 80000969.143758147955\r\n", + "14.76 329.0 80000971.409240707755\r\n", + "19.6 450.0 80000974.77004908025\r\n", + "28.76 679.0 80000974.80595380068\r\n", + "38.359997 919.0 80000975.64050154388\r\n", + "40.6 975.0 80000975.95903091133\r\n", + "4.2 65.0 80000980.43536031246\r\n", + "3.1599998 39.0 80000980.572394132614\r\n", + "41.679996 1002.0 80000981.61112074554\r\n", + "17.439999 396.0 80000981.74807231128\r\n", + "40.239998 966.0 80000983.25735516846\r\n", + "36.359997 869.0 80000985.01507012546\r\n", + "18.12 413.0 80000985.20637777448\r\n", + "38.28 917.0 80000986.77888666093\r\n", + "40.479996 972.0 80000988.17710210383\r\n", + "29.72 703.0 80000988.92275629938\r\n", + "16.96 384.0 80000990.097374781966\r\n", + "30.8 730.0 80000990.79127365351\r\n", + "21.72 503.0 80000991.06344228983\r\n", + "42.28 1017.0 80000991.80377283692\r\n", + "28.24 666.0 80000993.049590453506\r\n", + "7.04 136.0 80000994.441833391786\r\n", + "36.28 867.0 80000994.527631640434\r\n", + "24.4 570.0 80000995.25695282221\r\n", + "21.76 504.0 80000995.29652753472\r\n", + "11.52 248.0 80000995.99297225475\r\n", + "41.319996 993.0 80000996.40901064873\r\n", + "35.239998 841.0 80000996.557712092996\r\n", + "10.52 223.0 80000997.22821688652\r\n", + "33.96 809.0 80000997.405183792114\r\n", + "11.96 259.0 80000997.93263950944\r\n", + "15.440001 346.0 80000998.813208565116\r\n", + "30.92 733.0 80000999.3882278502\r\n", + "3.96 59.0 80000999.59336720407\r\n", + "18.36 419.0 80001000.09518702328\r\n", + "32.039997 761.0 80001001.49414373934\r\n", + "28.48 672.0 80001002.54425382614\r\n", + "39.8 955.0 80001003.1178855896\r\n", + "18.72 428.0 80001003.56476637721\r\n", + "7.52 148.0 80001005.884933292866\r\n", + "9.68 202.0 80001007.618157073855\r\n", + "3.6799998 52.0 80001009.596397176385\r\n", + "13.56 299.0 80001015.068401411176\r\n", + "40.519997 973.0 80001015.44013249874\r\n", + "24.0 560.0 80001017.39824913442\r\n", + "34.12 813.0 80001017.49642172456\r\n", + "25.88 607.0 80001017.91779854894\r\n", + "7.3199997 143.0 80001017.95813263953\r\n", + "12.84 281.0 80001018.01935687661\r\n", + "6.56 124.0 80001023.587887212634\r\n", + "30.64 726.0 80001023.69297429919\r\n" + ] + }, + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Try the round trip again to verify that everything works\n", + "\n", + "ev.write(\"events.ecsv\", \"ascii.ecsv\")\n", + "ev4 = EventList.read(\"events.ecsv\", \"ascii.ecsv\")\n", + "!cat events.ecsv\n", + "ev4.time[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Transforming a Lightcurve into an EventList." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Event lists can be obtained from light curves, where the standard followed is as follows: as many events are created as the counts in the lightcurve at the time specified by time bins.\n", + "\n", + "To demonstrate this, let us define a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(3)\n", + "counts = np.floor(np.random.rand(3)*5)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0, 1, 2]), array([1., 4., 3.]))" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.time, lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, eventlist can be loaded by calling static `from_lc()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 1, 1, 1, 2, 2, 2])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList.from_lc(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating EventList from Lightcurve" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An arguably better way is having proper random events, reproducing the initial light curve within the errors. Stingray does this by using the inverse CDF method, using the light curve as a binned probability distribution.\n", + "Please note that in this case we will have to create the EventList object before (in technical terms, `simulate_times` is not a static method.). See simulation tutorial for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.60459939, 0.8644437 , 1.47100837, 1.54281243, 1.80725171,\n", + " 2.47032653])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList()\n", + "ev.simulate_times(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve from an EventList object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After simulating event list, the original light curve can be recovered. Let's demonstrate by creating a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1.\n", + "times = np.arange(50)\n", + "counts = np.floor(np.random.rand(50)*50000)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulate an event list." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList()\n", + "ev = ev.from_lc(lc)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.5, 49.5]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recover original light curve curve using `to_lc()` method. Here, `dt` defines time resolution, `tstart` the starting time, and `tseg` the total time duration." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = ev.to_lc(dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us verify that this has worked properly, by comparing the input and output light curves" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYs0lEQVR4nO3dfbBlVXnn8e9PfOuKypsdiqFhGiMzGXwZlA5CtKYIlojaESaliGhgLGLXlDixy0wiJFOFb0zMVEpRY8j0CGUTRGSMBEKBpINgYtWANNIRAR062hTdxUtHoIkjwYDP/HHWlUP3vbdv777nnHvO+X6qbt191t77nLWqT99nP2utvXaqCkmSunjWqCsgSRpfBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwMNIkm2JLkjyaYkG1vZAUk2JLmn/d6/lSfJZ5JsTvKdJK/ue58z2/H3JDmzr/zo9v6b27kZZHskSc80jEzk16rqqKpa1V6fA9xQVUcAN7TXAG8Cjmg/a4ALoRd0gPOA1wDHAOfNBJ52zHv7zjtp8M2RJM0YRXfWycD6tr0eOKWv/JLquRnYL8nBwBuBDVX1cFU9AmwATmr7XlRVN1fvjslL+t5LkjQEzx7w+xfw10kK+J9VtQ44qKrub/sfAA5q24cA9/Wdu7WVzVe+dZbyeb34xS+ulStX7nlLJGlK3Xbbbf9YVctn2zfoIPK6qtqW5BeBDUm+17+zqqoFmIFKsoZeFxmHHXYYGzduHPRHStLESHLvXPsG2p1VVdva74eAK+mNaTzYuqJovx9qh28DDu07fUUrm698xSzls9VjXVWtqqpVy5fPGkwlSR0MLIgk+YUkL5zZBk4EvgtcDczMsDoTuKptXw2c0WZpHQvsaN1e1wMnJtm/DaifCFzf9j2W5Ng2K+uMvveSJA3BILuzDgKubLNunw1cVlVfS3IrcEWSs4B7gVPb8dcCbwY2Az8B3gNQVQ8n+Rhwazvuo1X1cNt+H/AFYBlwXfuRJA1Jpm0p+FWrVpVjIpK0cElu67tN4xm8Y12S1JlBRJLUmUFEktTZoO8TUUfrLng3l225ZtZ9p69czZq1lw65RpK0KzORJeqyLdewadmOXco3LdsxZ3CRpGEzE1nCjnp8X2664NFnlB2/dr+R1EWSZmMmIknqzEykA8crJKnHINLBzHjFUY/v+4zyTct2wJZreis9Supsvgs18GJtKTGIdOR4hTQ4c12ogRdrS41BRHvN7j0NwmwXauDF2kLt/P/yqGWHc8Ef3r7on2MQ0V6ze09dzXUBMlcWooWbL5tbTAYRLQq799TFXH/ojnp8X05fuXpEtZocc2Vzi8kgImmkhvGHToPjfSKSpM4MIpKkzuzOmhDOkJI0CgaRCeEMKc3wgkLDZBCZIM6QGq6lele1FxQaJoOI1NFSvqvaCwoNi0FE2gveVa1p5+wsSVJnBhFJUmd2Zw3BUh2A1fia7zvlulMaJjORIZjreengM9PVzXzfKded0jCZiQyJA7BabK45paXAICJp7GxatmPWCzC7hofP7ixJY+X0lavnvDfHruHhMxORNFbWrL101ps47RoeDTMRSVJnBhFJUmcGEUlSZwYRSVJnAx9YT7IPsBHYVlWrkxwOXA4cCNwG/GZV/TTJ84BLgKOBHwHvqKot7T3OBc4CngJ+u6qub+UnAZ8G9gE+X1WfGHR7JGkpmWv1gmGtXDCMTOQDwN19r/8I+FRVvRR4hF5woP1+pJV/qh1HkiOB04CXAScBf5pknxacPge8CTgSeGc7VpKmxlyrFwxr5YKBZiJJVgBvAc4HPpgkwAnA6e2Q9cCHgQuBk9s2wFeAP2nHnwxcXlVPAD9Mshk4ph23uap+0D7r8nbsXYNskyQtNaNcvWDQmcgFwO8BP2uvDwQeraon2+utwCFt+xDgPoC2f0c7/uflO50zV7kkaUgGFkSSrAYeqqrbBvUZe1CXNUk2Jtm4ffv2UVdHkibGIDOR1wJvTbKF3kD6CfQGwfdLMtONtgLY1ra3AYcCtP370htg/3n5TufMVb6LqlpXVauqatXy5cv3vmWSJGCAQaSqzq2qFVW1kt7A+Ner6l3AjcDb2mFnAle17avba9r+r1dVtfLTkjyvzew6AvgWcCtwRJLDkzy3fcbVg2qPJGlXo1g760PA5Uk+DtwOXNTKLwL+vA2cP0wvKFBVdya5gt6A+ZPA2VX1FECS9wPX05vie3FV3TnUlkjSlBtKEKmqm4Cb2vYPeHp2Vf8x/wy8fY7zz6c3w2vn8muBaxexqpKkPeAd65KkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzkaxdpb20qZlOzh+7X67lA3jUZgab7N9dwBOX7maNWsvHX6FNPbMRMbM6StXzxoshvUoTI2vub47m5btmPUZ3dJCmImMmTVrL2XNqCuhsTTXd2e2zERaKDMRSVJnBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwYRSVJn3iciSX3WXfDueW++9O7+ZzITkaQ+l225hk3Ldsy6z7v7d2UmImng5rq6X6prvh31+L7cdMGju5R7d/+uzEQkDdxcV/eu+Tb+zEQkDcVcV/cab2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTOvE9EkvbSfOttTfpaWwPLRJI8P8m3kvx9kjuTfKSVH57kliSbk3w5yXNb+fPa681t/8q+9zq3lX8/yRv7yk9qZZuTnDOotkjSfOa6I38a1toaZCbyBHBCVf04yXOAbya5Dvgg8KmqujzJnwFnARe2349U1UuTnAb8EfCOJEcCpwEvA/4V8DdJ/k37jM8BbwC2Arcmubqq7hpgmyRpVrPdkT8Na20NLBOpnh+3l89pPwWcAHylla8HTmnbJ7fXtP2vT5JWfnlVPVFVPwQ2A8e0n81V9YOq+ilweTtWkjQkAx1YT7JPkk3AQ8AG4B+AR6vqyXbIVuCQtn0IcB9A278DOLC/fKdz5iqfrR5rkmxMsnH79u2L0DJJEgw4iFTVU1V1FLCCXubwy4P8vHnqsa6qVlXVquXLl4+iCpI0kYYyxbeqHgVuBI4D9ksyMxazAtjWtrcBhwK0/fsCP+ov3+mcucolSUMyyNlZy5Ps17aX0RsAv5teMHlbO+xM4Kq2fXV7Tdv/9aqqVn5am711OHAE8C3gVuCINtvrufQG368eVHskSbsa5Oysg4H1SfahF6yuqKprktwFXJ7k48DtwEXt+IuAP0+yGXiYXlCgqu5McgVwF/AkcHZVPQWQ5P3A9cA+wMVVdecA2yNJ2snAgkhVfQd41SzlP6A3PrJz+T8Db5/jvc4Hzp+l/Frg2r2urCSpE5c9kSR1ZhCRJHXm2llSM83rH0ldmYlIzTSvfyR1tceZSJL9gUPbwLk0dubKODYt2zG16x9JXS0oE0lyU5IXJTkA+Dbwv5J8crBVkwZjrozjqMf35fSVq0dQI2l8LTQT2beqHkvyW8AlVXVeEjMRja3ZMg5Je26hYyLPTnIwcCpg57AkCVh4JvIReneGf7Oqbk3yEuCewVVLeiZnTo2H3Y03afIsNBO5v6peWVXvg5/fde6YiIbGmVPjwfGm6bPQTOSzwKsXUCYNjDOnxoPjTdNl3iCS5DjgV4HlST7Yt+tF9BY9lCRNsd1lIs8FXtCOe2Ff+WM8vZy7JGlKzRtEquobwDeSfKGq7h1SnSRJY2KhYyLPS7IOWNl/TlWdMIhKSZLGw0KDyP8G/gz4PPDU4KojaalwWrUWYqFB5MmqunCgNZG0pMxM1935/o5Ny3bAlmtYM6J67SmD4WAtNIj8VZL3AVcCT8wUVtXDA6mVpCVhEqZVT0owXKoWGkTObL9/t6+sgJcsbnU07bzjWYMwCcFwqVpQEKmqwwddEQnmvmr0jmdpaVpQEElyxmzlVXXJ4lZHWpw7nufrBzerkRbPQruzfqVv+/nA6+k9V8QgoiVprowGzGqkxbTQ7qz/0v86yX7A5YOokLRYXMNJGryuz1j/f4DjJJI05RY6JvJX9GZjQW/hxX8HXDGoSkmSxsNCx0T+uG/7SeDeqto6gPpIksbIgrqz2kKM36O3ku/+wE8HWSlJ0nhYUBBJcirwLeDt9J6zfksSl4KXpCm30O6sPwB+paoeAkiyHPgb4CuDqti42rRsxy53wu7uvoQu52jpm+3fFVyvSZNlobOznjUTQJof7cG5U+P0lav3+L6ELudo6Zvr39VnwmvSLDQT+VqS64EvtdfvAK4dTJXG15q1l+7xYm5dztlTc10Rg1fFgzLXv6vrNWnS7O4Z6y8FDqqq303yG8Dr2q7/A3xx0JXT3jt95WqYZ/kPVzGVtDd2l4lcAJwLUFVfBb4KkOQVbd+vz3VikkPpLYtyEL17TNZV1aeTHAB8md5TErcAp1bVI0kCfBp4M/AT4D9V1bfbe50J/Lf21h+vqvWt/GjgC8AyepnRB6pq5n4WMX+mMylXxZMwpuQzLzSudjeucVBV3bFzYStbuZtznwR+p6qOBI4Fzk5yJHAOcENVHQHc0F4DvAk4ov2sAS4EaEHnPOA1wDHAeUn2b+dcCLy377yTdlMnTZhJGVOaWetrZ46haKnbXSay3zz7ls13YlXdD9zftv8pyd3AIcDJwPHtsPXATcCHWvklLZO4Ocl+SQ5ux26YeQBWkg3ASUluAl5UVTe38kuAU4DrdtMmTZBhjCkNyzg982KucbZxywC193aXiWxM8t6dC5P8FnDbQj8kyUrgVcAt9LKb+9uuB+h1d0EvwNzXd9rWVjZf+dZZyiUN0FzZH4xfBqi9t7tMZC1wZZJ38XTQWAU8F/iPC/mAJC8A/gJYW1WP9YY+eqqqkgx8DCPJGnpdZBx22GGD/jj1cWbY5Jmk7E97b95MpKoerKpfBT5CbxB8C/CRqjquqh7Y3ZsneQ69APLFNjAP8GDrpqL9nrn/ZBtwaN/pK1rZfOUrZimfrR3rqmpVVa1avnz57qqtRTLfFat9/dJkWOjzRG4EbtyTN26zrS4C7q6qT/btupreM9s/0X5f1Vf+/iSX0xtE31FV97f7U/5732D6icC5VfVwkseSHEuvm+wM4LN7UkcN1jTMDJOm3UJvNuzitcBvAnck2dTKfp9e8LgiyVnAvfTW4oLeFN03A5vpTfF9D0ALFh8Dbm3HfXRmkB14H09P8b0OB9UlaagGFkSq6ptA5tj9+lmOL+DsOd7rYuDiWco3Ai/fi2pKkvaC619JkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6G+SyJ9K8JuGJhNK0MxPRSEzKEwmlaWcmopHwmRTSZDATkSR1ZiYy5eZ68qBPHZS0EGYiU2yucQmfOihpocxEpthc4xI+dVDSQpmJSJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI68z4RLdi6C949602IrryrpcKVoYfPTEQLdtmWa9i0bMcu5a68q6XAlaFHw0xEe+Sox/flpgseHXU1hs4r3KXPlaFHw0xE2g2vcKW5mYlIu+EVrjQ3MxFJUmcGEUlSZwYRSVJnBhFJUmcOrC/Q2nNfxabHfwg4tVOSZgwsE0lycZKHkny3r+yAJBuS3NN+79/Kk+QzSTYn+U6SV/edc2Y7/p4kZ/aVH53kjnbOZ5JkUG3ZmVM7JalnkJnIF4A/AS7pKzsHuKGqPpHknPb6Q8CbgCPaz2uAC4HXJDkAOA9YBRRwW5Krq+qRdsx7gVuAa4GTgOsG1ZgL/vD2Qb21JI2tgWUiVfW3wMM7FZ8MrG/b64FT+sovqZ6bgf2SHAy8EdhQVQ+3wLEBOKnte1FV3VxVRS9QnYIkaaiGPSZyUFXd37YfAA5q24cA9/Udt7WVzVe+dZZySVry5lrMFHorJKxZe+mQa9TdyGZntQyihvFZSdYk2Zhk4/bt24fxkZI0p7kWM920bMecwWWpGnYm8mCSg6vq/tYl9VAr3wYc2nfcila2DTh+p/KbWvmKWY6fVVWtA9YBrFq1aiiBS5LmM9tipjsv8jkOhp2JXA3MzLA6E7iqr/yMNkvrWGBH6/a6Hjgxyf5tJteJwPVt32NJjm2zss7oey9J0pAMLBNJ8iV6WcSLk2ylN8vqE8AVSc4C7gVObYdfC7wZ2Az8BHgPQFU9nORjwK3tuI9W1cxg/fvozQBbRm9W1sBmZkmSZjewIFJV75xj1+tnObaAs+d4n4uBi2cp3wi8fG/qKEnaOy57IknqzCAiSerMICJJ6swFGCVpDMx1g+KoF4Q1iEjSHti0bMcu93MM4w/5zA2KO3/OqBeENYhI0gKdvnI1zJINDOsP+Ww3KI6aQUSSFmjN2ktZM+pKLDEOrEuSOjMTkYZsVH3qGg+zfT9mypfid8RMRBqi01eunvUPwagHR7U0zPX9gKX7HTETkYbIPnXNZxy/H2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzrxjXZLreakzg4g05Ub9jIxRMnjuPYOINOXGcb2mxTDNwXMxGUQkTaVpDZ6LzSAiLXF2uWgpc3aWtIT5/BEtdWYi0hJml4uWOjMRSVJnBhFJUmd2Z0nSAE36xAgzEUkakGmYGGEmIkkDMg0TI8xEJEmdjX0QSXJSku8n2ZzknFHXR5KmyVh3ZyXZB/gc8AZgK3Brkqur6q7R1mz8TfpgoKTFMe6ZyDHA5qr6QVX9FLgcOHnEdRp70zAYKGlxjHUmAhwC3Nf3eivwmhHVZWJMw2CgpMUx7pnIgiRZk2Rjko3bt28fdXUkaWKMexDZBhza93pFK3uGqlpXVauqatXy5cuHVjlJmnTjHkRuBY5IcniS5wKnAVePuE6SNDXGekykqp5M8n7gemAf4OKqunPE1ZKkqTHWQQSgqq4Frh11PSRpGo17d5YkaYQMIpKkzgwikqTOUlWjrsNQJdkO3Nvx9BcD/7iI1RkXtnu62O7pspB2/+uqmvX+iKkLInsjycaqWjXqegyb7Z4utnu67G277c6SJHVmEJEkdWYQ2TPrRl2BEbHd08V2T5e9ardjIpKkzsxEJEmdGUQWYJoewZvk4iQPJfluX9kBSTYkuaf93n+UdVxsSQ5NcmOSu5LcmeQDrXyi2w2Q5PlJvpXk71vbP9LKD09yS/vOf7ktcDpRkuyT5PYk17TXE99mgCRbktyRZFOSja2s83fdILIbfY/gfRNwJPDOJEeOtlYD9QXgpJ3KzgFuqKojgBva60nyJPA7VXUkcCxwdvs3nvR2AzwBnFBV/x44CjgpybHAHwGfqqqXAo8AZ42uigPzAeDuvtfT0OYZv1ZVR/VN7e38XTeI7N5UPYK3qv4WeHin4pOB9W17PXDKMOs0aFV1f1V9u23/E70/LIcw4e0GqJ4ft5fPaT8FnAB8pZVPXNuTrADeAny+vQ4T3ubd6PxdN4js3myP4D1kRHUZlYOq6v62/QBw0CgrM0hJVgKvAm5hStrdunU2AQ8BG4B/AB6tqifbIZP4nb8A+D3gZ+31gUx+m2cU8NdJbksy8yTszt/1sV8KXsNVVZVkIqf0JXkB8BfA2qp6rHdx2jPJ7a6qp4CjkuwHXAn88mhrNFhJVgMPVdVtSY4fcXVG4XVVtS3JLwIbknyvf+eeftfNRHZvQY/gnXAPJjkYoP1+aMT1WXRJnkMvgHyxqr7aiie+3f2q6lHgRuA4YL8kMxeZk/adfy3w1iRb6HVPnwB8mslu889V1bb2+yF6Fw3HsBffdYPI7vkI3l57z2zbZwJXjbAui671h18E3F1Vn+zbNdHtBkiyvGUgJFkGvIHemNCNwNvaYRPV9qo6t6pWVNVKev+fv15V72KC2zwjyS8keeHMNnAi8F324rvuzYYLkOTN9PpQZx7Be/5oazQ4Sb4EHE9vZc8HgfOAvwSuAA6jtwLyqVW18+D72EryOuDvgDt4uo/89+mNi0xsuwGSvJLeQOo+9C4qr6iqjyZ5Cb2r9AOA24F3V9UTo6vpYLTurP9aVaunoc2tjVe2l88GLquq85McSMfvukFEktSZ3VmSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwi0iJKcmBbHXVTkgeSbGvbP07yp6Oun7TYnOIrDUiSDwM/rqo/HnVdpEExE5GGIMnxfc+t+HCS9Un+Lsm9SX4jyf9oz3j4WluChSRHJ/lGWyjv+r5lKX67PfvkO0kuH2W7JIOINBq/RG/NprcClwI3VtUrgMeBt7RA8lngbVV1NHAxMLNSwjnAq6rqlcB/HnrNpT6u4iuNxnVV9S9J7qC35MjXWvkdwErg3wIvp7fKKu2YmaW6vwN8Mclf0luSRhoZg4g0Gk8AVNXPkvxLPT04+TN6/y8D3FlVx81y7luA/wD8OvAHSV7R9xwMaajszpKWpu8Dy5McB72l6pO8LMmzgEOr6kbgQ8C+wAtGWE9NOTMRaQmqqp8meRvwmST70vu/egHwf4FLW1mAz7TngEgj4RRfSVJndmdJkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOvv/L9ch5gJVw5IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts,'r-', lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "... and their difference" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR20lEQVR4nO3df7BcZX3H8ffHRNAW5WdEJKRBYWqjWBxXEKUdRMBQxVBKLWjH/IHNdCqt1GqNZaYg6ow6VqiKdlJgjD+BUtGoFRr5YZ0ORW6QiqiYiDIk5ZeAWmoLRr79Y09kvd4kN8/N3s299/2aubPnec6zu99nsjefe86zezZVhSRJO+oJoy5AkjQzGSCSpCYGiCSpiQEiSWpigEiSmswfdQHTab/99qvFixePugxJmlHWrVv3w6paML5/TgXI4sWLGRsbG3UZkjSjJLlzon5PYUmSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmow0QJIsTXJ7kg1JVk6wf/ckl3X7b0yyeNz+RUkeTvLmaStakgSMMECSzAMuBE4ElgCnJ1kybtgZwENVdQhwPvCecfvfD3xp2LVKkn7VKI9AjgA2VNUdVfUocCmwbNyYZcDqbvsK4GVJApDkZOD7wG3TU64kadAoA+RA4K6B9saub8IxVbUZ+DGwb5I9gLcCb9/ekyRZkWQsydj999+/UwqXJM3cRfRzgfOr6uHtDayqVVXVq6reggULhl+ZJM0R80f43JuAgwbaC7u+icZsTDIf2BN4ADgSODXJe4G9gMeS/F9VfWjoVUuSgNEGyE3AoUkOph8UpwGvGTdmDbAcuAE4Fbi2qgr4nS0DkpwLPGx4SNL0GlmAVNXmJGcCVwPzgEuq6rYk5wFjVbUGuBj4eJINwIP0Q0aStAtI/w/6uaHX69XY2Nioy5CkGSXJuqrqje+fqYvokqQRM0AkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNRhogSZYmuT3JhiQrJ9i/e5LLuv03Jlnc9R+fZF2SW7vbY6e9eEma40YWIEnmARcCJwJLgNOTLBk37Azgoao6BDgfeE/X/0PgpKo6DFgOfHx6qpYkbTHKI5AjgA1VdUdVPQpcCiwbN2YZsLrbvgJ4WZJU1der6r+6/tuAJyfZfVqqliQBow2QA4G7Btobu74Jx1TVZuDHwL7jxvwBcHNVPTKkOiVJE5g/6gKmIslz6J/WOmEbY1YAKwAWLVo0TZVJ0uw3yiOQTcBBA+2FXd+EY5LMB/YEHujaC4ErgddV1fe29iRVtaqqelXVW7BgwU4sX5LmtlEGyE3AoUkOTrIbcBqwZtyYNfQXyQFOBa6tqkqyF/BFYGVV/ft0FSxJetzIAqRb0zgTuBr4NnB5Vd2W5Lwkr+qGXQzsm2QD8CZgy1t9zwQOAf42yS3dz9OmeQqSNKelqkZdw7Tp9Xo1NjY26jIkaUZJsq6qeuP7/SS6JKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmuxwgCTZO8nzhlGMJGnmmFSAJLk+yVOT7APcDPxjkvcPtzRJ0q5sskcge1bVT4BTgI9V1ZHAccMrS5K0q5tsgMxPcgDwauALQ6xHkjRDTDZA3g5cDWyoqpuSPBNYP7yyJEm7uvmTHHd3Vf1i4byq7nANRJLmtskegXxwkn2SpDlim0cgSY4CXgwsSPKmgV1PBeYNszBJ0q5te6ewdgP26MY9ZaD/J8CpwypKkrTr22aAVNVXgK8k+WhV3TlNNUmSZoDJLqLvnmQVsHjwPlV17DCKkiTt+iYbIP8E/ANwEfDz4ZUjSZopJvsurM1V9ZGq+lpVrdvyM9UnT7I0ye1JNiRZOcH+3ZNc1u2/McnigX1v6/pvT/LyqdYiSdoxkw2Qzyf5syQHJNlny89UnjjJPOBC4ERgCXB6kiXjhp0BPFRVhwDnA+/p7rsEOA14DrAU+HD3eJKkaTLZU1jLu9u3DPQV8MwpPPcR9D/ZfgdAkkuBZcC3BsYsA87ttq8APpQkXf+lVfUI8P0kG7rHu2EK9WzVWVedxS333DKMh5akoTv86YdzwdILdvrjTipAqurgnf7McCBw10B7I3Dk1sZU1eYkPwb27fr/Y9x9D5zoSZKsAFYALFq0aKcULkmaZIAked1E/VX1sZ1bzs5XVauAVQC9Xq9aHmMYyS1JM91kT2G9cGD7ScDL6H8vyFQCZBNw0EB7Ydc30ZiNSeYDewIPTPK+kqQhmuwprD8fbCfZC7h0is99E3BokoPp/+d/GvCacWPW0F9/uYH+J9+vrapKsgb4VHdBx2cAhwJfm2I9kqQdMNkjkPH+B5jSuki3pnEm/cvEzwMuqarbkpwHjFXVGuBi4OPdIvmD9EOGbtzl9BfcNwNvqCo/nyJJ0yhV218WSPJ5+u+6gv5/9r8FXF5Vv/LZjV1Zr9ersbGxUZchSTNKknVV1RvfP9kjkPcNbG8G7qyqjTulMknSjDSpDxJ2F1X8Dv0r8u4NPDrMoiRJu75JBUiSV9NfpP5D+t+LfmMSL+cuSXPYZE9hnQ28sKruA0iyAPgy/U+HS5LmoMleC+sJW8Kj88AO3FeSNAtN9gjkqiRXA5/u2n8E/MtwSpIkzQTb+070Q4D9q+otSU4Bju523QB8ctjFSZJ2Xds7ArkAeBtAVX0G+AxAksO6fScNsTZJ0i5se+sY+1fVreM7u77FQ6lIkjQjbC9A9trGvifvxDokSTPM9gJkLMmfjO9M8npgyl9pK0mauba3BnIWcGWS1/J4YPSA3YDfH2JdkqRd3DYDpKruBV6c5KXAc7vuL1bVtUOvTJK0S5vs94FcB1w35FokSTOInyaXJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1GQkAZJknyRrk6zvbvfeyrjl3Zj1SZZ3fb+W5ItJvpPktiTvnt7qJUkwuiOQlcA1VXUocE3X/iVJ9gHOAY4EjgDOGQia91XVs4HnAy9JcuL0lC1J2mJUAbIMWN1trwZOnmDMy4G1VfVgVT0ErAWWVtVPu6/YpaoeBW4GFg6/ZEnSoFEFyP5VdXe3fQ+w/wRjDgTuGmhv7Pp+IclewEn0j2IkSdNo/rAeOMmXgadPsOvswUZVVZJqePz5wKeBD1TVHdsYtwJYAbBo0aIdfRpJ0lYMLUCq6rit7Utyb5IDquruJAcA900wbBNwzEB7IXD9QHsVsL6qLthOHau6sfR6vR0OKknSxEZ1CmsNsLzbXg58boIxVwMnJNm7Wzw/oesjyTuBPYGzhl+qJGkiowqQdwPHJ1kPHNe1SdJLchFAVT0IvAO4qfs5r6oeTLKQ/mmwJcDNSW5J8vpRTEKS5rJUzZ2zOr1er8bGxkZdhiTNKEnWVVVvfL+fRJckNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVKTkQRIkn2SrE2yvrvdeyvjlndj1idZPsH+NUm+OfyKJUnjjeoIZCVwTVUdClzTtX9Jkn2Ac4AjgSOAcwaDJskpwMPTU64kabxRBcgyYHW3vRo4eYIxLwfWVtWDVfUQsBZYCpBkD+BNwDuHX6okaSKjCpD9q+rubvseYP8JxhwI3DXQ3tj1AbwD+Dvgp9t7oiQrkowlGbv//vunULIkadD8YT1wki8DT59g19mDjaqqJLUDj3s48Kyq+sski7c3vqpWAasAer3epJ9HkrRtQwuQqjpua/uS3JvkgKq6O8kBwH0TDNsEHDPQXghcDxwF9JL8gH79T0tyfVUdgyRp2ozqFNYaYMu7qpYDn5tgzNXACUn27hbPTwCurqqPVNUzqmoxcDTwXcNDkqbfqALk3cDxSdYDx3VtkvSSXARQVQ/SX+u4qfs5r+uTJO0CUjV3lgV6vV6NjY2NugxJmlGSrKuq3vh+P4kuSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpSapq1DVMmyT3A3c23n0/4Ic7sZyZwnnPLc57bpnsvH+jqhaM75xTATIVScaqqjfqOqab855bnPfcMtV5ewpLktTEAJEkNTFAJm/VqAsYEec9tzjvuWVK83YNRJLUxCMQSVITA0SS1MQA2Y4kS5PcnmRDkpWjrmeYklyS5L4k3xzo2yfJ2iTru9u9R1njMCQ5KMl1Sb6V5LYkb+z6Z/XckzwpydeS/Gc377d3/QcnubF7zV+WZLdR1zoMSeYl+XqSL3TtWT/vJD9IcmuSW5KMdX3Nr3MDZBuSzAMuBE4ElgCnJ1ky2qqG6qPA0nF9K4FrqupQ4JquPdtsBv6qqpYALwLe0P07z/a5PwIcW1W/DRwOLE3yIuA9wPlVdQjwEHDG6EocqjcC3x5oz5V5v7SqDh/4/Efz69wA2bYjgA1VdUdVPQpcCiwbcU1DU1X/Bjw4rnsZsLrbXg2cPJ01TYequruqbu62/5v+fyoHMsvnXn0Pd80ndj8FHAtc0fXPunkDJFkIvAK4qGuHOTDvrWh+nRsg23YgcNdAe2PXN5fsX1V3d9v3APuPsphhS7IYeD5wI3Ng7t1pnFuA+4C1wPeAH1XV5m7IbH3NXwD8NfBY196XuTHvAv41ybokK7q+5tf5/J1dnWavqqoks/Z930n2AP4ZOKuqftL/o7Rvts69qn4OHJ5kL+BK4NmjrWj4krwSuK+q1iU5ZsTlTLejq2pTkqcBa5N8Z3Dnjr7OPQLZtk3AQQPthV3fXHJvkgMAutv7RlzPUCR5Iv3w+GRVfabrnhNzB6iqHwHXAUcBeyXZ8sflbHzNvwR4VZIf0D8tfSzw98z+eVNVm7rb++j/wXAEU3idGyDbdhNwaPfujN2A04A1I65puq0Blnfby4HPjbCWoejOf18MfLuq3j+wa1bPPcmC7siDJE8Gjqe//nMdcGo3bNbNu6reVlULq2ox/d/pa6vqtczyeSf59SRP2bINnAB8kym8zv0k+nYk+T3650vnAZdU1btGW9HwJPk0cAz9SzzfC5wDfBa4HFhE/1L4r66q8QvtM1qSo4GvArfy+Dnxv6G/DjJr557kefQXTefR/2Py8qo6L8kz6f9lvg/wdeCPq+qR0VU6PN0prDdX1Stn+7y7+V3ZNecDn6qqdyXZl8bXuQEiSWriKSxJUhMDRJLUxACRJDUxQCRJTQwQSVITA0TaSZLs213l9JYk9yTZ1G0/nOTDo65P2tl8G680BEnOBR6uqveNuhZpWDwCkYYsyTED3zlxbpLVSb6a5M4kpyR5b/cdDVd1l1QhyQuSfKW76N3VA5ea+Ivue0u+keTSUc5LMkCk6fcs+tdfehXwCeC6qjoM+F/gFV2IfBA4tapeAFwCbLkCwkrg+VX1POBPp71yaYBX45Wm35eq6mdJbqV/GZGruv5bgcXAbwLPpX+1VLoxWy63/Q3gk0k+S/8yM9LIGCDS9HsEoKoeS/Kzenwh8jH6v5MBbquqoya47yuA3wVOAs5OctjAd1hI08pTWNKu53ZgQZKjoH+p+STPSfIE4KCqug54K7AnsMcI69Qc5xGItIupqkeTnAp8IMme9H9PLwC+C3yi6wvwge57PKSR8G28kqQmnsKSJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSk/8HiGXKaLOVk7kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts - lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen from the figure above, the recovered light curve is aligned with the original light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Energies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to simulate photon energies, a spectral distribution needs to be passed.\n", + "The `spectrum` input is a two-dimensional array, with the energies in keV in the first dimension and the number of counts in the second. The count array will be normalized before the simulation: the raw counts do not matter, but only the ratio of the counts in each bin to the total.\n", + "Again, the energies are simulated using an inverse CDF method." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[1000, 2040, 1000, 3000, 4020, 2070]]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList(time=np.sort(np.random.uniform(0, 1000, 12)))\n", + "ev.simulate_energies(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.84164641, 3.62741142, 3.68169619, 4.70867585, 4.92065534,\n", + " 4.93644725, 2.26749277, 5.45959615, 3.01137686, 4.86366818,\n", + " 0.63048041, 6.26300006])" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Joining EventLists" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two event lists can also be joined together. If the GTI do not overlap, the event times and GTIs are appended. Otherwise, the GTIs are crossed (i.e., only the overlapping parts are saved) and the events merged together." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1, 2, 3, 4, 5]), array([[0.5, 5.5]]))" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[4,5], gti=[[3.5, 5.5]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1. , 1.2, 2. , 3. , 3.3, 5.6]), array([[0.6, 3.5]]))" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[1.2, 3.3, 5.6], gti=[[0.6, 7.8]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.html b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.html new file mode 100644 index 000000000..5f4bac98d --- /dev/null +++ b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.html @@ -0,0 +1,438 @@ + + + + + + + + R.m.s. - intensity diagram — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+import matplotlib as mpl
+import seaborn
+mpl.rcParams['figure.figsize']=(15.0,8.0)
+mpl.rcParams['font.size']=12                #10
+mpl.rcParams['savefig.dpi']=100             #72
+from matplotlib import pyplot as plt
+
+import stingray as sr
+
+from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum, Crossspectrum, AveragedCrossspectrum
+from stingray import events
+from stingray.events import EventList
+import glob
+import numpy as np
+from astropy.modeling import models, fitting
+
+
+
+
+

R.m.s. - intensity diagram

+

This diagram is used to characterize the variability of black hole binaries and AGN (see e.g. Plant et al., arXiv:1404.7498; McHardy 2010 2010LNP…794..203M for a review).

+

In Stingray it is very easy to calculate.

+
+

Setup: simulate a light curve with a variable rms and rate

+

We simulate a light curve with powerlaw variability, and then we rescale it so that it has increasing flux and r.m.s. variability.

+
+
[2]:
+
+
+
from stingray.simulator.simulator import Simulator
+from scipy.ndimage.filters import gaussian_filter1d
+from stingray.utils import baseline_als
+from scipy.interpolate import interp1d
+
+
+np.random.seed(1034232)
+# Simulate a light curve with increasing variability and flux
+length = 10000
+dt = 0.1
+times = np.arange(0, length, dt)
+
+# Create a light curve with powerlaw variability (index 1),
+# and smooth it to eliminate some Gaussian noise. We will simulate proper
+# noise with the `np.random.poisson` function.
+# Both should not be used together, because they alter the noise properties.
+sim = Simulator(dt=dt, N=int(length/dt), mean=50, rms=0.4)
+counts_cont = sim.simulate(1).counts
+counts_cont_init = gaussian_filter1d(counts_cont, 200)
+
+
+
+
+
[6]:
+
+
+
# ---------------------
+# Renormalize so that the light curve has increasing flux and r.m.s.
+# variability.
+# ---------------------
+
+
+# The baseline function cannot be used with too large arrays.
+# Since it's just an approximation, we will just use one every
+# ten array elements to calculate the baseline
+mask = np.zeros_like(times, dtype=bool)
+mask[::10] = True
+print (counts_cont_init[mask])
+
+baseline = baseline_als(times[mask], counts_cont_init[mask], 1e10, 0.001)
+base_func = interp1d(times[mask], baseline, bounds_error=False, fill_value='extrapolate')
+
+counts_cont = counts_cont_init - base_func(times)
+
+counts_cont -= np.min(counts_cont)
+counts_cont += 1
+counts_cont *= times * 0.003
+# counts_cont += 500
+counts_cont += 500
+
+
+
+
+
+
+
+
+[52.83292539 52.83104461 52.82542772 ... 64.26625716 64.25516327
+ 64.24864925]
+
+
+
+
[7]:
+
+
+
# Finally, Poissonize it!
+counts = np.random.poisson(counts_cont)
+plt.plot(times, counts_cont, zorder=10, label='Continuous light curve')
+plt.plot(times, counts, label='Final light curve')
+
+plt.legend()
+
+
+
+
+
[7]:
+
+
+
+
+<matplotlib.legend.Legend at 0x106983978>
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png +
+
+
+
+

R.m.s. - intensity diagram

+

We use the analyze_lc_chunks method in Lightcurve to calculate two quantities: the rate and the excess variance, normalized as \(F_{\rm var}\) (Vaughan et al. 2010). analyze_lc_chunks() requires an input function that just accepts a light curve. Therefore, we create the two functions rate and excvar that wrap the existing functionality in Stingray.

+

Then, we plot the results.

+

Done!

+
+
[8]:
+
+
+
# This function can be found in stingray.utils
+def excess_variance(lc, normalization='fvar'):
+    """Calculate the excess variance.
+
+    Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source
+    intrinsic variance: the *excess variance*, defined as
+
+    .. math:: \sigma_{XS} = S^2 - \overline{\sigma_{err}^2}
+
+    the *normalized excess variance*, defined as
+
+    .. math:: \sigma_{NXS} = \sigma_{XS} / \overline{x^2}
+
+    and the *fractional mean square variability amplitude*, or
+    :math:`F_{var}`, defined as
+
+    .. math:: F_{var} = \sqrt{\dfrac{\sigma_{XS}}{\overline{x^2}}}
+
+
+    Parameters
+    ----------
+    lc : a :class:`Lightcurve` object
+    normalization : str
+        if 'fvar', return the fractional mean square variability :math:`F_{var}`.
+        If 'none', return the unnormalized excess variance variance
+        :math:`\sigma_{XS}`. If 'norm_xs', return the normalized excess variance
+        :math:`\sigma_{XS}`
+
+    Returns
+    -------
+    var_xs : float
+    var_xs_err : float
+    """
+    lc_mean_var = np.mean(lc.counts_err ** 2)
+    lc_actual_var = np.var(lc.counts)
+    var_xs = lc_actual_var - lc_mean_var
+    mean_lc = np.mean(lc.counts)
+    mean_ctvar = mean_lc ** 2
+    var_nxs = var_xs / mean_lc ** 2
+
+    fvar = np.sqrt(var_xs / mean_ctvar)
+
+    N = len(lc.counts)
+    var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc ** 2
+    var_nxs_err_B = np.sqrt(mean_lc ** 2 / N) * 2 * fvar / mean_lc
+    var_nxs_err = np.sqrt(var_nxs_err_A ** 2 + var_nxs_err_B ** 2)
+
+    fvar_err = var_nxs_err / (2 * fvar)
+
+    if normalization == 'fvar':
+        return fvar, fvar_err
+    elif normalization == 'norm_xs':
+        return var_nxs, var_nxs_err
+    elif normalization == 'none' or normalization is None:
+        return var_xs, var_nxs_err * mean_lc **2
+
+
+
+
+
[9]:
+
+
+
def fvar_fun(lc):
+    return excess_variance(lc, normalization='fvar')
+
+def norm_exc_var_fun(lc):
+    return excess_variance(lc, normalization='norm_xs')
+
+def exc_var_fun(lc):
+    return excess_variance(lc, normalization='none')
+
+def rate_fun(lc):
+    return lc.meancounts, np.std(lc.counts)
+
+lc = Lightcurve(times, counts, gti=[[-0.5*dt, length - 0.5*dt]], dt=dt)
+
+start, stop, res = lc.analyze_lc_chunks(1000, np.var)
+var = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, rate_fun)
+rate, rate_err = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, fvar_fun)
+fvar, fvar_err = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, exc_var_fun)
+evar, evar_err = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, norm_exc_var_fun)
+nvar, nvar_err = res
+
+plt.errorbar(rate, fvar, xerr=rate_err, yerr=fvar_err, fmt='none')
+plt.loglog()
+plt.xlabel('Count rate')
+plt.ylabel(r'$F_{\rm var}$')
+
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.text.Text at 0x1140ab588>
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png +
+
+
+
[10]:
+
+
+
tmean = (start + stop)/2
+
+
+
+
+
[11]:
+
+
+
from matplotlib.gridspec import GridSpec
+plt.figure(figsize=(15, 20))
+gs = GridSpec(5, 1)
+ax_lc = plt.subplot(gs[0])
+ax_mean = plt.subplot(gs[1], sharex=ax_lc)
+ax_evar = plt.subplot(gs[2], sharex=ax_lc)
+ax_nvar = plt.subplot(gs[3], sharex=ax_lc)
+ax_fvar = plt.subplot(gs[4], sharex=ax_lc)
+
+ax_lc.plot(lc.time, lc.counts)
+ax_lc.set_ylabel('Counts')
+ax_mean.scatter(tmean, rate)
+ax_mean.set_ylabel('Counts')
+
+ax_evar.errorbar(tmean, evar, yerr=evar_err, fmt='o')
+ax_evar.set_ylabel(r'$\sigma_{XS}$')
+
+ax_fvar.errorbar(tmean, fvar, yerr=fvar_err, fmt='o')
+ax_fvar.set_ylabel(r'$F_{var}$')
+
+ax_nvar.errorbar(tmean, nvar, yerr=nvar_err, fmt='o')
+ax_nvar.set_ylabel(r'$\sigma_{NXS}$')
+

+
+
+
+
[11]:
+
+
+
+
+<matplotlib.text.Text at 0x118bf6eb8>
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb new file mode 100644 index 000000000..fb3c8ab12 --- /dev/null +++ b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline \n", + "import matplotlib as mpl\n", + "import seaborn\n", + "mpl.rcParams['figure.figsize']=(15.0,8.0) \n", + "mpl.rcParams['font.size']=12 #10 \n", + "mpl.rcParams['savefig.dpi']=100 #72 \n", + "from matplotlib import pyplot as plt\n", + "\n", + "import stingray as sr\n", + "\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum, Crossspectrum, AveragedCrossspectrum\n", + "from stingray import events\n", + "from stingray.events import EventList\n", + "import glob\n", + "import numpy as np\n", + "from astropy.modeling import models, fitting\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# R.m.s. - intensity diagram\n", + "\n", + "This diagram is used to characterize the variability of black hole binaries and AGN (see e.g. Plant et al., arXiv:1404.7498; McHardy 2010 2010LNP...794..203M for a review).\n", + "\n", + "In Stingray it is very easy to calculate.\n", + "\n", + "## Setup: simulate a light curve with a variable rms and rate\n", + "We simulate a light curve with powerlaw variability, and then we rescale\n", + "it so that it has increasing flux and r.m.s. variability." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.simulator import Simulator\n", + "from scipy.ndimage.filters import gaussian_filter1d\n", + "from stingray.utils import baseline_als\n", + "from scipy.interpolate import interp1d\n", + "\n", + "\n", + "np.random.seed(1034232)\n", + "# Simulate a light curve with increasing variability and flux\n", + "length = 10000\n", + "dt = 0.1\n", + "times = np.arange(0, length, dt)\n", + "\n", + "# Create a light curve with powerlaw variability (index 1), \n", + "# and smooth it to eliminate some Gaussian noise. We will simulate proper\n", + "# noise with the `np.random.poisson` function.\n", + "# Both should not be used together, because they alter the noise properties.\n", + "sim = Simulator(dt=dt, N=int(length/dt), mean=50, rms=0.4)\n", + "counts_cont = sim.simulate(1).counts\n", + "counts_cont_init = gaussian_filter1d(counts_cont, 200)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[52.83292539 52.83104461 52.82542772 ... 64.26625716 64.25516327\n", + " 64.24864925]\n" + ] + } + ], + "source": [ + "# ---------------------\n", + "# Renormalize so that the light curve has increasing flux and r.m.s. \n", + "# variability.\n", + "# ---------------------\n", + "\n", + "\n", + "# The baseline function cannot be used with too large arrays. \n", + "# Since it's just an approximation, we will just use one every\n", + "# ten array elements to calculate the baseline\n", + "mask = np.zeros_like(times, dtype=bool)\n", + "mask[::10] = True\n", + "print (counts_cont_init[mask])\n", + "\n", + "baseline = baseline_als(times[mask], counts_cont_init[mask], 1e10, 0.001)\n", + "base_func = interp1d(times[mask], baseline, bounds_error=False, fill_value='extrapolate')\n", + "\n", + "counts_cont = counts_cont_init - base_func(times)\n", + "\n", + "counts_cont -= np.min(counts_cont)\n", + "counts_cont += 1\n", + "counts_cont *= times * 0.003\n", + "# counts_cont += 500\n", + "counts_cont += 500\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD3CAYAAADi8sSvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8HNW1x7+zTb1XS5Ys2bLHvWAbAzZgCD3UhJZHSEJ/hJaEkNBCNS2hQwKBUMILIS8BXgKEGqqNccO9jWVbzeqSZXVtm3l/jCRLturuzDbd7+fDh907M/eesXbP3rn3nN+RNE1DIBAIBJGBJdgGCAQCgcA4hFMXCASCCEI4dYFAIIgghFMXCASCCEI4dYFAIIggbMEcvL6+1efQm5SUWJqaOow0J+QR9zw2EPc8NvDnnjMyEqTBjoXtTN1mswbbhIAj7nlsIO55bGDWPYetUxcIBALB4QinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBAFkTc161tdtNq3/oGaUhip79+7hueeepquri87OTo4+ejGXX341kjRoEteAfPnl58yYMRNJknjllT/xy1/eapLFw/PSS38kLS2NGTNmsWLFV1x22VUDnvf+++9SVlbKtdfe0K9948b1xMcnUFQ0ORDmCgQRy5+3/w2AU2csNqV/MVM/hNbWVu6553ZuvPFmnnnmj/zxj6+wZ89u/vWvt0bd1z/+8Qbt7e2kpaUH1aH3ZfJkeVCHPhT//vc7NDTUm2CRQDB2aHa2mD5GSM/U//7ZbtburBvwmNUq4fWOXjpm4dRMLjyxaNDjK1Z8yRFHLCQvL797HCt33nkvdrsdgGeeeYLNmzcCcPLJp3HhhT/ggQfuwW63U1NTTWNjA7fffg+NjQ3s3r2LZcvu4je/uZ9ly+7mhRde5cc/vpi5c49gz57dADz88OPs2rWTf/3rLe699yEAzj77VN555yOqq6t46KH78Hq9SJLEvffeTVpabu9xgLvvvo1zzvk+6ekZPPTQvVitNlRV5e67l5GVlX3Y/a1fv653rPfe+ydvvfV3EhOTsNnsfOc7JwOwbdsWfv7z6zhwoIlzzz0fWZ7G6tXfsGvXTgoKJpKdrferaRpPPPFbduzYhtvt4YorriYuLn7Ae3nggXtobm6mpaWZ/PwJzJs3n9NPP5PGxgZuueVnvPzyX3j++WfZtGkDqqpy0UWXcOKJJ4367ysQhDJK027TxxAz9UNoaKgnJye3X1tsbCx2u52vv15OdXUVL7zwKs899xKffPJhr3POzh7H448/y/e/fxHvvPM2xxyzhKKiKdx55329PwgA7e3tnHTSqTz77AtkZGSyatXXg9ry+98/yQUXXMzvf/8iN910M7fffvug565du5pp02bw5JN/4IorrqG9vW3I+zxw4AB/+ctrPPfcyzz++LN0dXX2HrPZbDz++LM8+OCj/OMfbzB16jQWLTqaa6+9sdehA3z11Rc0Nx/gxRdf4+mnn2fnzh1Djjl//gKef/5lfvCDS/ngg/cA+Oij9/nud8/im2++prq6kueee4mnn36e1157mdbW1iH7EwjCjQ5P5/An+UlIz9QvPLFo0Fl1RkYC9fXGf+mzssaxa9fOfm1VVZXU1dVSVlbCnDlzkSQJm83GjBmzKC3dC+jLGgCZmVls2bJpyDGmTDl4rsvlOux4T93Y0tJS5sw5orf/mpqaAc7V/3/mmefw+ut/5uabbyAuLp5rrrluSBv27augsLCQ6OhoAGbOnN3HvqlIkkRqahpdXV2D9lFeXsaMGfp1iYmJXHXVtaxfv27AewHIz58AQGHhRLxeLzU11Xz66Sc8+eQfeOedt1GUnVx//dUAeDweamqqmDgxZ8j7EAjChQ53J//Y9S/TxxEz9UNYvHgJq1evpLJyH6A7l2eeeYK9e/cwYUJh79KLx+Nh69bNjB+vL9MMtIlqsVhQVXWAUfqf63BE0djYCEBNTTUtLc0AFBQUsHnzBgCKixXS09N7x+7o6MDtdlNSsgfQl43mzJnHU089xwknfIfXX//zkPc5fnweZWWlOJ1dqKrKjh3bDlo3wL1IkoSm9b+XgoICdu7cDkBbWxu/+MX1g96L3sfBj9uZZ57DH/7wNAUFhSQkJDBhQgHz5i3g2Wdf4Omnn+fEE08iN3f8kPcgEIQTyyu/Ccg4IT1TDwZxcfHccce9PPLIMlRVpaOjg8WLj+W8885HkiQ2bPiWa665DLfbzYknnoQsTx20r5kzZ7Ns2d386ld3DDnm1KnTiI+P56qrfkxBQSHjxunLP9dd9zMeeWQZb7zxFzweDw888AAAF174A6655ifk5OSSnT2uu4/pLFt2N3/+80uoqsoNN/xiyDGTk5O55JIf89OfXkViYiJOpxObzYbH4xnw/OnTZ/L8888yblwuBQWFACxZcjzr1q3h2muvwOv1ctllVw16L4dywgkn8dRTj/Lww48DsHjxcWzY8C0//emVdHZ2cNxxJxAbGzfkPQgE4YSGz+UjRoXU9/E40PhTJMOs5ZdQxsh79ng8vP76n/nxj69A0zSuu+4qrr76p8yde4Qh/RuF+DuPDSL5njVN48PSzyhtKWNr48Gl3b9f9JzP9zxUkYxhZ+qyLEcBrwATgRbgOkADXu3+/1bgOkVRVFmWrwKuATzAMkVR3vPJYoHp2Gw2urq6uPzyS7DZ7EyfPpM5c+YF2yyBIOKo6ajjvZKPDmt3eg7fTzOCkSy/XAW0KYpylCzLMvAs4ATuVBTlC1mWnwfOkWX5G+BGYAEQDayQZfkTRVGcplgu8Jtrrrlu2A1VgUDgH26ve8D2leXrmJkwy/DxRrJROh34AEBRFAWYBswHvuw+/gFwEnAk8LWiKE5FUZqB3cDsw7sTCAQCgVlr7COZqW8EzpRl+Z/AIiAXqFMUpceiViAJSASa+1zX0z4oKSmxftXpy8hI8PnacEXc89hA3HPk0GodeMNf1TRT7nkkTv1l9Nn5cuBr4Fugb/BwAnAAfb09YYD2QfGnengkb6wMhrjnsYG458iiqaV9wPYX1r3OnMQ5PvU51I/BSJZfFgKfKoqyBPgHsBfYIMvy0u7jp6M7/DXAsbIsR8uynIT+Q7DVJ4sFAoEgQghUKGMPI3HqxcDPujdC7wd+AdwM3Nvd5gDeVBSlBnga3cF/BtyhKMrg6YghSnV1FaeccjzXX39173+vvPIixcUKr7zy4qj7u/76qykrKx2w7f3332XFii8HvhB44IF7WLVq5WHt//rX24PGkwsEguDS7GzlyfXPU9pSDoDLa06Uy2AMu/yiKEoD+kbooRw/wLkvAqP3fCFGQUEhzz77wmHtPVIARnHGGWf5dN3//M8rnHbad7HZRO6YQBBqfFT2GcUH9vKHTS+z7Jg7eHLDHwM6fkh7hbd3v8eGui0DHrNaJLzq6B9r5mXO4ntFZ476ur7qhhdffB6zZs2hvLyM1NRUli37LV1dnTz88DLa2lppaKjne9+7kPPOO3/IPns0zs855/s89tgjKMp2UlPTqK6u4pFHngD0Wflf//oabW1tPPDA/Xz77Sb272/knntu56GHHuvtq6mpiQceuJu2tjY0TePOO+/l448/IC0tjXPPPZ+yslJ+97sHefbZF7j00gvJy5uA3W5j3759LFv2COPG5fD55/9h06aNXHnlf/Pww/fR3Kzve//sZ7cwadLgypYCgaAvWu//Hv322YCPHtJOPViUlpb0CksB3H33sn7Hq6oqeeqp58jKyubaay9nx47t2O12TjrpFI4//kQaGuq5/vqrh3XqPaxY8SUtLc28+OJrNDU18YMfnNd7TJan8pOfXMn777/L22+/zXXX3cyrr77EPfc82K+PP//5JZYsOY5zzz2fLVs29dNyOZTOzk5+8pMrmDJlKv/3f2/y4Yf/5rLLruL999/l2mtv4LXXXmb+/CM577zzqago58EH7+W5514a0b0IBGOZVlcbLa6DCqmVbdUBtyGknfr3is4cdFZt5m75QMsvFRXlva+TkpJ7tcp1pUUnWVlZ/P3vf+XLLz8nNjZuVGvepaWlzJypJyGkpKSQn1/Qe0yWpwGQmprGjh1DKyZ+97tnAzBr1hxmzZrDSy8dfOw7VA6iZ4yTTz6N6667krPOOpf29nYmTixi797drF+/jk8//RiA1lbzhf0Fgkjg1hX39b5u9/ge3ecPIe3UQ5WBVAz/9re/MHPmbM4773zWr1/HN9+sGHF/EydO4qOP3ufCC6GlpaXfD8jAiomWw5x0j2Li5MlT2LhxPStXriAhIbFXMfFQOeGefuPj45HlaTz99OO9a/wTJhRwyinTOeWU02hq2s+77/5zxPciEAiCi3DqBrF48XE88cRv+fTTj4mPj8dqtQ6olT4QxxyzhFWrVvLf/305qalpREdHD7kJOmfOXH75yxt55pk/9jrnSy+9nIceuo+PPnofSZK49dbfIEkSd911Gxs2fNs74x+Is846l5tvvpHbbrsLgB/96HIefvh+3nnnbTo62rn88qsHvVYgEIQWQqUxBCgrK6W4WOGkk06lufkAl156EW+++S4Oh6PfeZF0zyNF3PPYIBzvuaa9lhVVqzln0hnYLfok7LrPfjWqPn5/4m99GtsvlUaB+WRmZvHcc0/z97+/gaqqXHvtDYc5dIFAEFo8/u1ztHs6yIrNoL6jEYsUGjWHhFMPAWJiYnqLRQgEgvCgZyO03d3BpxVfBdmag4TGT4tAIBCEKe/uPVwrPZgIpy4QCAQRhHDqghHzPzv+zselnwfbDIFAMARiTV0wYlZVrwPglIITgmyJQCAYDDFTFwgEgghCOHWBT7i9bmraa4NthkAgOATh1AU+8ftNL3H/6seoaqsZ9tz/lH/Jy1tfP6ztpa1/AUDVVFRNHbUNjZ37eXjNk5S1VIz6WoEgUhFOXeATxQf2AlDTUTfsuf+3+998W7fpsLb1dZsB+OVXd3H/6kdHbcPfd/2TirYqfrvumVFfKxBEKsKpCwKKV/Ue1ub0uqjraACgw93Jyqq1lLfsY2vDjsPOre2oZ2O3xn7PNQKB4CAi+kUQMD4o+ZT3Sj7iqlk/GvB4TXstbxW/x/b9Sm/b0qkL+51z36rfAfDwkrvMM1QgMBlNtYA0+iXHkSBm6gLDcHldrKxaQ5dnYN3390r0zLsXt7zW29Z35n7/6sf6OfRD6bvu7vSh7qNX9R4mWSwQBBq1I56ub7+DtyHXlP6FUxcYxnt7P+b1nW/yVvF7I77mxi9uG9F5+1qruOHzW3vf/8+O/6Wu8+DyS0Vr1YBLOz2omsqNX9zGMxvDvoSuIIjsatrNv/Z84NfkwFNTAJoVyW5OQWrh1AWDsrF+K9XDhC1KHFQArWitBKCy3bgSXt9UfEt1ey2PrHu6X/vuAyX93j+89kn+prw96JfNreqVqJSm3YbZJhh7PLXhBT4u+5zd3YECo0Vz2/E2jkOKaseSVG+wdTpiTV0wIB3uzt5lkpFoPq+oXMWuA3sAqGytQtO0Aas2jZYnvxl5bdSV1Wvp9Dq5cuYP/R5XIAD4vGIF8fY4FmbP69f+WcXIK5v1xVM/HjQrtqxyDPh6DIhw6oIBcavuEZ3X87l8Q3m7t82jedlUvxWbxcZzm18xwbrB2VC3mS6Pk6/2rcRutXNc7tFYLdaA2iCIHN4sfgfgMKc+2L7RUGiahLcuHywerOmVhtg3EMKpC0xhb0sZn5YHR2P6reJ3WFm9FtBrsS4dvzgodggil56n0tGgNmWguWKwZpYj2UZemH60iDV1wbA0O1t5aM2TAx+UJNbVbAisQcPQ49BB37wVES+CUMBTOwEAW2b5MGf6h5ipC4bl9q/vH/RYfUcD/9zz/mHtJc3mfnBHSqenk0/KviA9Ni3YpgjCnDZ3u8/Xqh3xqK1pWBIbscS2GWjV4QinLvCLwR5D9zaXBtaQIfjX3g+GPO5VvUiSFDI1JgWhyb/3fuzztZ7afABsWWVGmTMowqkL/GJ74+DJQqFKTXst2XFZve9vWX43Tq+LK2b+kNLmcs4r+q4hkTuCyKLD0+nTdZrHhrcxB8nRiSV5eK0kfxFTE8GY4/7Vj9Hlcfa+78lOfWnrX/i04iuq2odXnhQIRoqnfjyoNqwmhjH2RTh1wZhkU/1WQJfvPRSvNnhmqmBsomqqTxLPmoYexih5saXvM8GywxFOXTAg/mwKhQNratYD8Or2vwXZEkE4cMPnt1Lf2Tjq69QDGWjOWKzpVUj2keV++ItYUxf0Y3nlKjRN48vKlYOe8/qOfwTQInPokTJod3cE2RJBJNMbxpgVuGiwYZ26LMt24M9AAeAFrgI8wKuABmwFrlMURZVl+Srgmu7jyxRFGbmykyAk+FufzNDB6BsHHq60utpo7GxioCXO/Z1N5CeMD7hNgshC7YxDbUnHkrAfS2xrwMYdyfLLGYBNUZRjgPuAB4DHgTsVRTkWPVP8HFmWs4EbgcXAqcBDsixHmWO2wEgqWqt8SnsOd5qcB/AMsH7e5GwG9Dqsf935JhWtVYE2TRABBDKMsS8jceq7AJssyxYgEXAD84Evu49/AJwEHAl8rSiKU1GUZmA3MNt4kwVGUt/RyMNrn+Tmr+4ac0sRmqYO+WO2quZbvq5aw6OiXJ5glGheq66Xbu8KSBhjX0aypt6GvvSyE0gHzgSOUxSlJ/e6FUhCd/jNfa7raR+UlJRYbDbfxZYyMhJ8vjZcMfqea2oPCgu9uP3PhvYd6jy54Y9YB0g4io+PIiMjAcd+/ZhH8wb8syY+2+GNtz4XVBu2nL1IlsFlKsy455E49Z8DHymKcpssy3nAZ4Cjz/EE4ADQ0v360PZBaWryfWaYkZFAfX3g1qlCASPvubq9ln2tVSQ44nvbihtLhrgiMvFqh5cUa2tzUl/fSnvbwVl8ID9r4rMd3mgaeOomgKRiyxg6jNHXex7qx2Akyy9NHJyB7wfswAZZlpd2t50OLAfWAMfKshwty3ISMA19E1UQgixb/Rivbn+DFldkfJFMQWSVCnxAbU5H64rDmlptWnWjoRjJTP0J4GVZlpejz9BvB9YBL8qy7AB2AG8qiuKVZflpdAdvAe5QFGXs7b6FGf8p/3L4kwQCwYjpDWPMDuwGaQ/DOnVFUdqACwc4dPwA574IiCKQIU7fWp6VbcaVnosUxNOLAKCqbfRyEWpnHGpzhh7GGNdiglXDIzJKxyDCaQ3Nx2WfA/3rrwrGFpqm8cCax0d9naemAABbdqmxBo0C4dTHGCXN5dy58sFgmxHyPLruWb7c93Xv+7d3v0eLq3XYQtyCyOD6z3896ms0tx1vQw5SVEfAwxj7ImQCIhS3102Hp4sNdZtZnLsIu8XG+rrNvLT1L8E2LSwoaemf1v1p+Ve95flGUohbEL70qHaOFk9dXndR6bKg7rELpx6h/OzLO3pfu1U3i8bNFw5dIBiGL/et5O+7/jnq6zRVwlOXD1Y31mHCGM1GLL+MAfZ3NXHbisFL0glGj6+zOUFooWoqv137DP8u+QTAJ4cO4G3MAXc0tox9SNbgSjcLpy4QjJJ39nzIL768k/V1m4NtisBPujxOyloreL/kk35RYaNB03o2SFWso9B5SYoyJ4NWOPUwpm/1nqEo9UHcXzA4H5V9BsCq6nVBtkRgJNsad/p0ndqShtaZgDW1BkvUyFNzbjr6cp/GGw7h1MOUDXVbuPmr37Cyqr8M7seln7Oyak2/tvLW4K7xRSoiNDSyGEixc0TXVRcCYBtXOuJrMmPSmZk11afxhkNslIYpq7o1zZdXruSIzFlEWaOQJIl/7f0gyJaNHSpaD4qhdXmcRFkdomB1GNPhg0qp2hF/UDN9FMlGdqt91GONFOHUw5wDzhZu/uouFmTN5bIZ/xVsc0aM5rajdsWhdcWiOWPRPHZQraB1PzxaPUg2F5KjCym6HUtsK5LNE1yjB6HD3cEty+9hZto0rp1zWbDNEfjIGyMoEHMoB5ONQkcMTzj1MKdnCWBd7caQduqa2463OR21OR21LRnNGTfqPqToNqwpdbpQUmxrSOht3bbifo7LPRqArY07gmyNIJBorii8jTn6pCO5flTXWkzMVhZOPYIItepFmteKd3823sZxqC1p0PNBtrqxJNVjiWlFiu5AiurQ1ewsXiSLiqZJ4LWhuaPQXNFoXXGo7Ymobcl4qifiqZ6oO/jUGqxp1Vhiglcku8XVynslHwdtfIF/+KN95KmdAJoFW3bJqCcY0gA6/kYhnHoE8YdNLwfbBADUzlg8tRP0yi+q/hGzxDdhSa7DmtyAFDP0LPvgobZ+7ZpqQT2Qof9QNGXiqSrCU1WEFNuCLWMf1vR9SNbD9dEDyaflX7Eoez7xjtE/iQgCT6en06frNK9VzyC1ObGmh1a5Q+HUI4g9zaVBHV/tjMNTWYR3fzYggb0L27gSrOlVWKJ8+/L0RbKoWFNrsabW6k8BTZl4949DbU7HXTYdd+Uk7Dl7sGZWDFltxkze3v0eO/cXc93cK4IyvmB4vKqXvc2l5Mbn+Pyd8dTlgdeObfwuJIsvEwnzPp/CqYchFa1VbPUxptYMNLcD977JeOvHAxJSbLPuzFNrkSRzPryS1YstvRpbejWa24GnZgKe2gm4y6fjqZ2APX8nluT6oKy7C9Gv0Objsi94r+Qjn6/XVAlv7QSweLBlhl4OiHDqYUCXx8kbyltcOOcM4kjm4bVPBtskQF8O8VQX4KmeCKoNKboNe54ScGcq2V3Y84qxZZfirirCW5uHq3g+lqR67AXbRpUQYhSVbdXE2WNJjhqyTK8gwLS52v1y6KBLAmiuGKxZpUg2t0GWGYdIPgoDlld+w7rajdz9+ej1nc3C25yGc8sSPJVTwOLFXrCNqFlfY00JzuwYQLK7cUzYQdSsr7EkNqA2Z+g21o1HC/BqzINrnuCOrx8AoLhpLxvrtgTWAMGAvF/6H7+u1zT0SYykYh8XOmGMfREz9TDApeqzgU538KNbNFXCs28KnppCQMWWXYItd3fQRYz6YolpxyGvw9uQi7t8Ku7SmXgPZOIo3IJkN39m1eQ8WG+9rqOeJzc8DwjJ3mBT2lLeTyPfF9SmTL3+aPo+JMfIZDoCjXDqghGjdsXg2jMHrT0ZKbodx6RNQSvZNRySBLaMSiyJjbhLZqIeyKRr62IcRRuxJhwYvgODuHfV7wI2lmBwmp0t/G7ds37349o9DwCbn7N0Mx8cxfJLCLO+bjNvFb/bTz2uw+1/FIkvePdn4dx2DFp7Mta0SqJmrAxZh94XS1QXDnkdtvEKuB24dh6Jp258UGz5ump1UMYVQKurbfiThsHbkgJIWOL3BzU3YjjETD2EGaioxWPf/j6gNmiqBXf5VLx1+WDxYC/cjC0jtOJyh0OSwJ5TgiW+GdfuubhLZ6K5Hdhy9gZ0/f+vO99icc6iwA0oMBRP1SQAbLl7fO5jXsYsNtRvwW4xz/UKpx5m1HQErvah2hmHa/cctM5EpJhWHEUbQ3qGMhzWxP1ETVuNS1mAp3IKmjsK+4QdISE3IDAXf4XW1LbEbuGuRqxJjT71EWOL5vuTz8KrqZxXdIZf9gyFWH4RDIinMRvntqPROhOxZpQTNeObsHboPVhi2omavgopphVv3QTce+agqcKrRyJv7HyLR9Y+ZUhf7uqJANhy9vrVT0p0MtfM/jGZsRlGmDUgwqkLDsNdXYB7z1wA7JM24ijc7mPWXGgiOZxETVuNJWE/3v3jcO2aj+a1BtssgQHUddRT064/za6oWk15H3lkX1E741CbspDimrEkjm6WfvWsH/V5F5jJg3Dqgl40DdwVU/BUTAV7F1HTV2FLqwm2WaYg2Tw45HVYkmtRW9Jx7jgSze0ItlkCP7l31e+4f/Wj/dq8qpf/lH/pc596EQwJ+7jR78HMSp/O4pwjAXBYzNNQ74tYUxcA3Q69dAbe+jykqHYcU9cGJRMzkEgWFcfkjbhLp+Otz8O5fZHu6KODE2EkMIc1tRtYU7Pep2tVZ0y3vG4blpTRyz9YJAtnTzqdNncH3y082ScbRj1mQEYRhDSaKuHaPVd36LHNRE1fHfEOvQdJ0rAXbMOWsxvNGYdzxyLUTvMUFjs9XT4XOBYMza6mgaNSWv0oO+ipLtTldX2IlDpm3EIA4u1xXD3rR+TGj/PZjtEgnPoYR/Nace2aj9qUjSVhP1FT1+ra5mMISQL7+N3Y83eAOxrnzoWoXTGmjPXLr+7ixi9uM6Xvsc7bu98bsP2z8uU+9ae5ovDWj0eK6sCaNnrd9UumXeDTuP4inHqQaHd3oGrB3XzU3HbdgbWkY0muxSGvC9mScYHAll3W69hdykI0V5RpY1W0hlesfzjT6vYt8cjdM0sft3fUaqPj43N8GtMIhFMPAgeczfxq+T28sOW1fu1ur5sdjbvY1bSbzytWmGqD5orCuWNRb4aoY/LGiIpw8RVbdhm23GI0ZyxOZQGax5xtp5VVa+jyhKZ2iECXk/bW5SE5OrGmjz6CJikq0QSrRobYKA0CPXrbWxq292t/s/gdVgQglVztjO2eieryofb8nSIBpw+2nD1oHjve2gJcxUfoTzAG/+B9VbmSxq79/HTO5Yb2KzAGfS3dqs/SfSi4snT8YhOsGhliph5C7GzabfoYamcczp2L0Fwx2MbvEg59ACQJ7Pk7saZWo7am6klYJigwbQuhQieRgFEfY80Vhac2X5+lZ+zzqY/cIC6/DDtTl2X5J8BPut9GA3OBJcCT6GJjW4HrFEVRZVm+CrgG8ADLFEUZeOdCMCBm+1bVGY1LWQDuKOz527Fll5s8YvgiSWCfuBnNFY3aloKnQsaerxg+zoeln3H0uIUkRSUY3vdYw6jfXXfPLD1nj89lEYP59xx2pq4oyquKoixVFGUp8C1wI3AXcKeiKMei+6JzZFnO7j62GDgVeEiWZfN2miIQf/UphkJz23EpC7pn6Ipw6CNAsmg4Jq8HqxtPTaEp6o7v7v2QV7a9bni/YxEjQkU1V5Rfa+nnTz6bO478hd92+MOI19RlWV4AzFAU5TpZlu8GelK0PgBOAbzA14qiOAGnLMu7gdnA2sH6TEmJxWbzPT0QZyjhAAAgAElEQVQ7IyM8ZzfV3tje14kpUUTZ9ExGq9Wc1TDNa9U3/brisWXv9VsLeiwh2d1ETV+Fc8uxuEtnIkV3YE3cb+gYDc7Gwz7L4frZ9gd/77mvL/G1L3fVRL9m6Rcecfqozjfj7zyajdLbgXu7X0uKovTccSuQBCQCzX3O72kflKamjlEM35+MjATq631PKggmB5oP3velb93UWxHH6zU++kRTLbq2SUcS1owKbHm7xBr6KLHEtOOYuhqXshBX8Vxd3MzArFPVq1Ff30qXp4uS5nKOlY+gocF//e9wwojvs8dzcKZeVjX67E89Lj1Pj0v3YZYOjOoe/LnnoX4MRuTUZVlOBmRFUT7vburrfRKAA0BL9+tD2wWHIA2yei4ZvG+taRKu3XNQW1OxpNRgL9gmHLqPWBObsE/Yjrt0Jq7iI3SlR4NK+DW7Wvig5NPegshR8VczMarIkL7HElXtB3WKbll+z6iv12fpFp9n6SlRyaO+xgxG6kWOAz7t836DLMtLu1+fDiwH1gDHyrIcLctyEjANfRNVcAjaIVs6H5V+xidlX9DmY5LEgGNo4N47E/VAFpbEBhyTNgmH7ie2zH1YM8vROhNwl8wwNCKmb4X7iubRZy+OVfa1VlHbUe93P6ozulf3yJruW2LYrUfe5LcdRjDS5RcZ6CskfDPwoizLDmAH8KaiKF5Zlp9Gd/AW4A5FUcaGgMgouOebR6jv7C/f+c7eDw0dQ9PQqxU15iLFHcAxeYPPu/iC/tjzd6B1JODdn4MlvhlbdpnhY7Q4w3NZMRg8tPZJwP+i3p6eWXrunlFnj/YQbzdPM2g0jMipK4ryu0Pe7wKOH+C8F4EXjTEtMjnUoZuBp2oS3toCpJhWoqZ8a9gyga/E2mLo8Pi+Bp0Tl93v0TqYSBYNR9FGurYdjbtcRoprwZrQZOgYqys2cGL2UirbqhgXl02CI97Q/gX9UZ0xeBvG67N0HzReQg2RfGQSmqbR0q0O1+xs4f2ST3B6zRfK8tTm46mcjOToIEpeh2R3mz6mmZw2eSk3z/8pNhNrOo4WyeHEUbQJQC/3Z7AOe1NXM7euuI+nNrzAwwZV7olEXN6Dn+31dZt97ufgLH23z7P0UEI4dZN4r+RjbltxP9sad/LKtr/y75JP+KTs8+Ev9ANPYzbusulgd+KYug7JETraIncfdYtP150/47tE26J5aumDTEudYrBVvmNNaMKWt0sX/9ozx/CM0x6xtwPO5mHOHLvcuuLe3tcDFWkfCWpXDN6GXKTotoiYpYNw6qaxfN83gJ4KXtfRAMC+NvM+NN7WZNx7Z4HFQ5S8Dku07+GiRnPJtAtGXJNxUfb8fu+jrKFbjciWXdpdOSmtt9K8IHAY8eTrqZrUZy3dAKNCAOHUA0CzqwU4XMDLKFRnNK7ieaBZcBRtxBIbWhtt04eYYR9aDaavE//x9It7E7NCEUkCx8StSI5OPJVFeFtSgm3SmKDZ2crzm1/xux+1KxZvg17VyJoaGbN0EE497OkpcoEnCvuEHViTGwI6ft4wwkU5cdnYh6jNeMYQJb7yE/qn5Q8W3x9MJJsb+6RNgKYvw7iNr0O5qX6b4X2GI62uNryql3+XfMSWhh1+9+epnAT0rKX7b1+oIJx6GKNp3Rt1nQlYM8uwZQVezyV+iMiM84q+yx2LftGraXPWxFO5YPI5gTItYFgTDmAbX6yvr5fMMnx9/R+7/mVsh2FIq6ute/P4j3gM0HhRO+L12qMxrVhTQyOyyiiEUzcJb/dGV3HT3mHO9B1PhYzanIklsQH7hODIuA61eXlSfv+o19MKvsPi3EW97xPs+g/CY8fdP+pxM2PTB2y//cifU5iYP+r+/MU2rgRLYgPqgUy8dYEfP9LZ36WHje5pLjWkP3flZEDCPj7yZDOEUzcI7ZDpWZdXz7syK77aUzceT00hUnQbjqKNQQvF8uf7YLXoAkzRtijOLDyFS6YOU9Oxe7AJCXncfdSvDjt81sRTyY0fx09m/OCwpRuz0dfXt4DNhbtcRu0QseVmUdHqmy5LD2pbEmpTFpb4JizJvmejXjDlHK6dfRkAcbbYYc4OHMKpG8C/9nzA9Z//ujfKxWy8Lal66KLVhWPK+qDWFc05pEL65OSJQ55v6fMzEGOL7n19euFJHJOzcERj9sgsTEudwtHjDl5zWsF3AEiPSePXC29kfuac3mOByPaTHE4chVtBs+LaMxtNjbApYIjgz0RJ08BdIQNgy1P8mqUnOhKYkTaVCyafw68W3uh7RwYjnPooOXRGDvBxd/z50xteGPQco1C7YnEVzwXAMXlD0EMXp6ZO5udHXNv7fmH2vCHPt1qs3Dj3auSUIq6aeemQ5yYfUufx0I3S6+deyQ+nXcCyY24fUMO6x/lnxWbwyLF3DzmWUVhT6rBmlKN1JuLZZ0xcfZPzAG3udpxeF5vrtxmiGz5WUZvTdYG7pDqsCf7pDc5Jn4EkSSzNW0x6TKpBFvpP6KTphQG17XXct/pRfjTtIhaNm3/Y8VZ3Gy6vm1u+usuU8TWPTY908TqwF27BmmhserqvFCUXjup8ObUIOXVoFUK7xUZ0n5n8UKREJzNQMOGkpELW121meqo8Kvv8xZ6v6LHrNQVYkusN0V//9fJ7SXDE0+pq44Ip5wS1Bma4omng3jcZ0LDn7fKrrwkJeb3Lh6GGmKmPglU13wLw151v9rYdOiuv72zAoxk/k9JUCdfueWhdcXqhiwz/1hXNIis2E4Apyf4l40RZhyqaNbInoePGH83Pj7iWc4vOAPS490AgWb04Jm0GNNx7Z6F5jJk7tbp0Fc/K1siJqR4JH5Z+xvsln/jdj3f/OL2uQFo1llj/FFGX5B7ltz1mIWbqfrC3uYzHvv19vzYzYqk1Ddxl01Bb0rAk1+rp6UHkkqkX8PrOf/Rru+uoWyhu2kNRciGPHXc/Dqvx8dqj/Ze1SJZ+TxGOAGanWuKbseXsxVNVhLtsereTN4rw1ycZDe8aoGKqqRKeiikgqdhyi/3qyyJZRrz/EwyEU/eRhs79hzl0j+rhT1v/x/CxvLUT8NbnI8W24Ji0OSghWHaLDbeqb8hG2w6fRWfFZpDVLQUw0HEj8dWl9WyW2i123Kr5Qme2nD14m9PxNubgTanFmjr6ajwCY/DW5aO5YrBmVPhdteqswlMNssocxPKLD3g0L+Wt+wY8ZoRgf1+8B9Jxl08FexeOyesDKqN7esFJA7ZnxOgx4vkJuQGzRce/X7NJSQVcLJ/Xb1P10ePu44HFd/hr2IBIFk0Pc5S8uEqnG5ZtOrbm6f6jeey4KyeB1Y19vO9PuTaLjceOu59TCk4w0DrjETN1H/FVFW40qB3xuHbPBUklavIGLFGBrTli6fNIcFrBd3h3r16dJy8hh1sWXE929/p5uCBJEsfmHg3A5TMuoaqtmhhbNFbJvLmNJaYd2/hiPBVT9WWYbsleQeBwV04CrwNb3k6/pajNfgo1AjFTD1E0twPXriNAtWGfuAVLfOAlWPvOCHtiwHsoSMwfcXTKaCjozgadlT79sGNnTzqN5KgkLpxyrt/jzM+aw1mTTgP0tfbLpv+AhVlH+N3vQNiyS7HEN+HdPw5PY7bf/a2r3chnFcsNsCw0cXndvLvnw94sUn9Qu2Lx1uUjOTqwZflXpSpcsg6EUw9BNNWCq3gemisWW24xtrTQ0KYIRNbcwux53Dz/p1wkn3fYsdz4cTyw+A4mJk0wfNwF2fP4yQxzomMkCeyFW8DixV023e+iGm7VzVvF71LWUmGQhaFBTyTZ5xXL+bDsM/64+c+0udv96tNdMUWX1s3b5XNJx0lJBX7ZEGiEUw8xNA3cJTNQ21KwplZhy9lj6njPnvDIiM99aMlveHLpgyZao0cWTEwqwB5ClY6MwBLToa/nehz6+roBC+O/XfcMzc5W3N0VgFRNpanLv4SaYLGpZjvXf/5rNtVv663Z29C5n2c2+F4d09uagtqUjRR3wC/RrsLeSUR4zNWFUw8xPNUTewtG2yduNTXS5fuTz+pVUOwh1hZz8M0hnsdqsUacsx0MM54GrFllWBL2ozZl420cN/wFI+D2r+/nvtWPAvDytr9y58oHqTSxGItZPPDlMwC8uu2vvW1d3i72tVX51F9PGDCAY8IOv75HWphtTQunHkJ4mzLx7JuC5OgkavJ6JItq6ngDZVqeXvAdFuccybzM2aaOHaokRyUBcMXMH/L48csM7fvgMowHd9k0NJcxm277u5po7NzPhu46neUtA0dmhQMug0JNvfV5aB2JWNMr/dqP+s2im3tfh8c8XUS/hAxqRzyuPbPB4tFDFx3mF6keiKy4TE7MPw6AspYK3i/9z5CFLCKNO478BY1dTb3O3Wgs0Z3Y8xTcZTNwlc7Q/9YGeIu7vnm49/Wmhq0cHcLJMWajeey6HIDF41cI41HZC8iOywq7GFIxUx8At9cd0IK/mtveG+nimLgFS1xgytH1+JLbj/x5b1ta9EFhogmJeTxx/LLDSs5FMrH2GPISBq7m9NM5lxsyhjWzAktio6693jh05Shf2NKwY9A8ilBD1VQaO43VMHLvKwKPQ69o5Efx9RPzj+3fECbC62KmPgAPrHmc+s5GChLzmZw8kdMKTiTaFm1KtEGvposrFlvO7qBkHebGj+Ox4+6jrrOB7Lj+seeBTK0PRVKikmly6puPFoPi2fVlmK04tyzGXTYNa2KjX85nIJqdLZBgaJejpiea5dB9mx7+V/k/vqr8xtAx1Y54vHV5SFHtfocwhitipj4A9Z2NAJS2lPNJ+Rf8YdPL/HP3+yhNuw0dR9/Mma5LgabUYMs1tv/hSI9J630dbYsOeGGJcODm+T81pV9LVCf2/J3gteMqmWl4CbxQ4HfrnuX+1Y8Netxoh35wc9SCfcIOn0MYe+hJrhMbpWHI8spVvL7jH4Me39NcyiflXxg+rrcuH299nq7pMnGLaU93PZosfbl8xn+FrHRoKJESndzvvVUy7t/MmrFPL4HXnIG3IdCSC+D0unh245/YZfBkpYey1gpqO+pM6Xsg1KYs1NY0XSvdzwLsJ+cvPez7ER6LL8KpA/A35W1WVq9F1cyNNumLtzkNd9lUsDlN13S566hbOH/y2f3aMsMsxT9UMGpdHQ4uw2B14y6fiuo0LkN3JFW41tSsZ8f+XTzVXdwlnNG8Fl0jSVL1JyAD6YlTn5cRHhFhwqn3QUIytWpRD2pnbLemS3f1IhM1XXpEt7Q+P1gn5C1hfLwxcdJjDaM/H5aort5lGLeByzBv736vV1VzMALxWQ8UnsrJaK4YXZIhxthqYPMyZnHLguu5eOr3DO3XLIRTP4Q7vn7A1P41jw1X8Xzw2rEXbPW7pNZwZHYvvdi79c3tFhvnTz570M0rweH8cNqF5MaPY1JSIaoJ66vW9EosSfWoLel4643b1/j9xj/x913/NKw/I2jqOsA/d79Pl8e4iYzaEY+nRtfNNyoDO6pPgIAkSRQk5odN4l14WBkgNDSaXS3m9a9KuHbP7VO9yLdsuZGQFp1CY1cTi7L1sntHZS+gorWK47pVCgUj5+hxCzh63AIAxscbH4IoSeAo3ErXliW4y6diSWrEEuWf5jdA8YG9FB/Yy4y0acxIOzzRLBi/6y9ve529zcZFpWgaOLcuAcCev8OQZcxjxh3JCXlL/O4nWAin3oc7TZylaxq4y6ehtqRjSa4zvXrRz4+4lnh73MEZutXOf039vqljjgWSosyJE5QcTuwTduDeOxt3yUwc8lrDnO7eAyXMSJPZub+Yqrbq3uQys2hxtfJp+Ve97/+8/W9cNOVc2t0d1HfokWVruktD+ounpgAAKbYZqwEhjNfPuZJpacYUDA8WY9apFzft4cPSz7hy1g9725pd5iX9eGvzdQnQmBYckzaZPkuKd8SHzeNiuJEanWKILOyhWNOq8O7P1pOS6vKwZRmTF/Fh2WfMypjOMxt1caxJyYW4vC76xnOUt+4zLKT1jZ1vs7lhW+/7NTXr8apevq07qCVvxHdNc9vxVEwF8Ct6bF7GLM4oPJmU6CRi+mofhSkj+tbLsnwbcDbgAP4AfAm8ip5AuxW4TlEUVZblq4BrAA+wTFGU98ww2gie3PBHAFZWrTV9LL160TSwO3FMCWz1IoHxHDNuIe+VfMyS3KOYmDiB13b8ryH9ShI4CrbRtSUZd4WMJanB79JrPfxu3bO9r3+7ThfPulg+uPFX0VJpmFMfKBt7T3OpIX33xV2uO3Rb3k6/CklPSZlETrz/OvehwrAbpbIsLwWOARYDxwN5wOPAnYqiHIv+c3+OLMvZwI3d550KPCTLckiUCRkqVNHsxIL+1YvWB6x6kdgGNY9TC07kVwtu4KIp57Jo3HxD++5ZhkG14S6ZZWpS0qGfEVVT2dKwvfcpZKDvjaqpvLjlNdbUrOft4vd4v+STw87pcB8efWK07Ib3QLquZhrbjC3b92WXn827hiW5RxloWfAZyUz9VGAL8H9AInALcBX6bB3gA+AUwAt8rSiKE3DKsrwbmA0MOhVOSYnFZvM9mSMjIwFVValtb2BcwsBx139a9wYf7/mK1773BNH2w+OAuyRjw5/6orkcuHbN16sXTdoY0OpFGRmJ2CIkuSgjI8j57gOQlXlQ8Ov8GWfw5rb3AfjvhZfy/Fr/io9b06rxNmXpEr21E/xyWkMRF38wwuMfu9/hr8pb+viShVe/9wSXvnUT35m4hGsWXtJ7XmVLDRvrt7Kxfmtv24+P7B/q1+I2V7tI81pxl84ASe1edvH9l++YKXMNtGz0mPHZHolTTwcmAGcChcA7gEVRlJ5/yVYgCd3h9/VaPe2D0tTku0PNyEigvr6VN3a+xYqq1fx0zhUD7vB/vEffsNleUUpeQi6vbf9fJiTm9R7/oPhzn20YCs1rwVl8hB47O36XqdWLjh9/DF/uW9mvraG+NSIyRnv+zqFMtu1gRMyshFl+96cvw2ynqzUVd8UULImNfi0vDEbDgYORXj2FNgC8msrOCv2H5NO9K/hewcHEtf3th1ciqq1r7qeLY3b4u7tC1r9XObv9/ncJ5mfLn8/2UD8GI4lTbwQ+UhTFpSiKAnTR31knAAeAFvpLCPW0m8rKav1BYM+BkiHP09BQNZXVNd+aHruraeDaOxutPRlreiW2cXtNHc+Imp2C0EKyu3AUbgXNqn+W1MAuqH1Q+p8Rn3vD57fybe1G1tVuZFX1OhOtAm9LanfAQavpVcHClZHM1FcAN8my/DgwDogDPpVleamiKF8ApwOfA2uAB2RZjgaigGnom6gB4aOyzyhMyu9XsFjf4ddpd3ewrnZjQGzxVMioTdlYEvZjLzC3etFgiOSi8MeaUoc1owJvfR6eysnYDQ6D3VC3ZdBj67sLbvRF1VRaBsnjeLlPxSK7xe6/cQOgea24984CVByFW/0W7IpUhnXqiqK8J8vycehO2wJcB5QAL8qy7AB2AG8qiuKVZflpYHn3eXcoihKYXcFunt/8Kr8/8be97/uu+z2/+VU8w6RNG4GnZgKemkKk6DZd08XkD96Ppl0EwHG5xwAaS3KPorFzv2EysYLgYs/fidqSiqe6EEtSPdZE40Ipy1pHFjJZ3LSX32/6E27Vw5mFpwx7vlczJ7qra+Px4HXoyy4B3J8KN0YU0qgoyq8GaD5+gPNeBHyvFOsD0gBxHqqmIiH1270PhEP37s/Sw6zsXTjkdUg2c8Z85Ni7+fXyewF6oy8ukg8uweQKXZeAMr67qMbinEX92i+Wv8fflLf96luyenFM2oxz+yLce2djmfm1aZ+rwXhyw/O9r3c2FQ97vhnCeJ7aPPA6dJ10sewyJBGZnXLXyod7CxsECm9LCq49c8DiJWrKtwELXRQEnwRHPE8tfRDbIclex+YexdHjFnDTF7f71b8lvhlbzl48VUW4y6bhmDT4sonZ7B5m78oMNJcD9z49y9NeuM3vp99Lpl7A6zsHl9oOdyLyGT3QDl3tiMdVfATQrbpoYjm6Bxf/hhirHpo5UOFoQXA41KH3bTeiHKAtZw9S3AG8jbl4GiMnUWY4eoIO8Nqx5+/Amrjf7z7TY1IMsCx0iciZeiDRXFF6LLrXjn3iZqxJjaaNZbfae7VHnlr6oKEFGwTmEWeP87sPyaLpyzBbj8FdOgNLfLMhol+hjqe6UNdLSqo3RNsFzA+5DDYR59QDWehC89hwKvMPxqKnm6e6CHD5vAt7Xw82MxQEnwcX32lKprIlukMX/SqZhWv3HKKmrY7oCBBvazKefZP1PaqJm8Ol7nPQCVvPsK+lmveKPz9sp/2Gz28NyPia14Jr1xFonYlYM8tNjUW/ad41NHbu54TCY2hsPDz5QxBaJEUl9nufl2CcXK81vRK1JVVfhtk3BXu+YljfoYTmtuvyGoCjaBOS3T3MFaPoO8xqjo6WsF1T/82nj/JZxfKgjK3ros9DbUvFmlqNfcJ2U2cR8fY4js5ZiMUStn+uMc3EpALuOPIXhvQlSWAv2I4U3Y6nphBv0+H1Z8MdTUMPOnBHYxu/G2uC/2Gc3598lgGWhQdh6yXaXeZptgyFpoF772zU5gwsSfXYxWOhYAQYqQIoWb04ijaC5MW1dzZqV6xhfYcCnn1TuusO1Br2BHzC+CXMSJvKBVPOMaS/UCZsnXow0DRwl87Au38clvj9OIo2mLqmuTBrHqDrdwvCnytnXsr3i840pC9LbCv2wm3gtevLgN7I2DT3NGbjqZ6IFNXul0b6oUiSxE/nXM7S8Yt7q1cdG6FVwMJ2TT0YePZNwVufhxTb0q2Lbu6m7E9m/IBLp10YEcJcApiXqYt9vbXbmDIDtvQq1PZEvLUFuPbM0TOYw/ip0duagnvPXLB49O+XSUlW8Y44nl76UMR+r8Jyph6MKujuqon6DCK6nSgTs0V76NHPiNQPnsAY7PkKlsQG1AOZeCqLgm2Oz6jtCbh26Bm5jolbsMSYGxAQyd+rsHTqjV3+JyCMBk/NBDz7piA5OvXakXbX8Bf5wKz0ab2vr519mSljCCILSdL08ohRHXiqivDuzwq2SaNG89hwblsM6FWMrKm1QbYovAlLp97pcQZsLE/NhO5SdF04pq41Nf1/cc4iFmXrWi59Nd8FgqGQ7G4ck9eDxaNvnLYNWcYgpOiJJOvBll0aPGMihLB06lsbdgRkHE9tfq9Dj5q6Fku0+RE3P5p+EU8vfYhoW0hUAhSYwN1HDaSP5x+W2DYcRZtAlXDumo/a6X8Wq9lomoRrzxzUljQsKbVEL/zQ0D2BQwXWxgph6dTfK/nI9DE8Nfm4y6aD3ak7dJPX+PoSyet9AsiMTWdKivHr39bkeuwF28HjwLnt6JAOddQ0cO+Z1Vt3wDFpk+GbvOdOOsPYDsOEsHTqZuOuLsRdPr17hr4moA5dMPa4/cifYzNIx8eWuQ9bbjGoNpybj0NzO4a/KMBomoR772y8+3OwxDfhmPItksX4SLJYe4zhfYYDwqn3QdPAva8IT4WM5Ogkappw6AJzGN9H8z4nLtvQoia2nD1YEhsA6NqyGM0TOpHLmirh3jMbb2O3Q5fXIVmNL6oxL3O24X2GC6Hz1w4ymqaXofPUFOqJDyZvigrGNmdNPI3x8TnMy5yFJEkcOW4+KypXGdK3JIFDXqc7z/05OLcdo4t/OQIXYDAQmteKq3ieni2asF+foZvg0PvGoF8/90qSHInDXBFZiJk6PZmi03WHHtOqz9CFQxeYiMNqZ9G4+Tis+vLIhZPP4TeLbjasf0kC+6TNSFHtaM5YnNsXBXXzVO2Koevbk3vT/82aoUP/PalpqVMMlWgIB8a8U9dUC+49c/DW5yPFNhM1dY3hM5qT85ca2p8g8rBarGTHGRtjLkkQNXs5ttxiNJfu2L0tqYaOMRI8jdk4tx0DgCWlBsfkjYavoZ+Yd6yh/YUzY9qpax4bLmWBruWSsJ+oqWsNlfjs4aT847loynkDHpufOcfw8QThy9yMWYb2J0lgz92DvXALqDZcOxfgqc0PSKEIzWvFtXemnvqvSdgnbiZq8kYkyf/BJyT0z+MYSyqMwzFmnbrqjMa5YxFqa6o+ezAx9T/eEUd23OESqc+c8DCXz7zElDEF4clVsy41pV9bRiWOqWvB5sZdNh3X7rlobrspY4Ge9u/cdjTehvH6E/DMlaYXkRHojEmnrnbE49x+FFpnAtasUhxFxj8OjgQjIx4EkcPzZz1kSr/WhCaiZ67EkrAftSmbri1L8DRmGzpr17xW3JWTcG4/Gq0rHlt2CVHTV5mSuBepKov+MuaiX7wH0vWKKqoNW95ObNmlpirb5SXkmte5ICJJjU02rW/J4cQxdQ2emgI8+ybj3jMXT0UntvHFfs2kNVcUnvrxeGongMehy2oUbsWa3GCg9QeZlzmLCYnjWV75jSn9hzNjxqlrGvoHuUIGScU+aSO2tBrTx7114U3DnnNy/lI+Kf+CgsR80+0RhAfZcVnUtJsjbCVJYB9XijWlFnfZNNTmTD0ZqH481sxyrMn1I4pM0TRQ25Lx1ubjbcoGzQJWN7ac3djGlZgW3QJ6EfYeXfQTxi8BdL36drfIKxkTTl1TLbhLZuBtzNWzRCevxxLfYtp4iY4EWlyt/drslsEz+84tOoOzJ50mlmMEAcUS3UmUvF4vTFE5GbU1FbU1FbekYolrxpLQhBTThuToQrJ40DQLuB2ozlg81YXgOahPJMW0Yssqx5pWZaoz70usPZZnTni493vTo1c/1ol4p665onAWz0NrT0aKO0DU5A2mJ2E8tOQ3XPdZf9GmgsQ8Ti/4DrPSp/Pbdc8cdo1w6IK+FCTkUdNey3cLT6a+s5E1NetNG8uWVoMtrQa1Mw5vYw7eA+mobcmobSOruOWYugZLwv6AFuiQ0AcT35vDiWin7m1J6S1ga02rxF64LWAbojfMvYrkPlXlJUnizJWXdM8AAAwUSURBVImnBmRsQfhzwZRzmJY6mTmZs/hq30rWYJ5T78ES045lfDH28cVoXitqWxKaMxbNFQOqBSQVbG4sUZ1IMa1I0R1BqbQ0JaWIRdlHBH7gMCEinbqmgae6EM++KSBpAdkQvXn+dTz27e97309NnWzeYIKIJ9oWxYJsXWd8dvoM3jaoBN5IkaxerEn7gcAWpBkJN827OtgmhDQR9+yieey4io/As08Gu77Tbx9nrkMHSBPFoQUmkRGbxjMnPBxsMwRhQkTN1L0tqbj2zAZ3NJbEBl2j2YQMUYEg0Ii1Y50Y29iU0x0NEeHUNVXCU1mEp3oioGHL3YUtZ29A1/sSHQnMz5zDtDQ5cIMKBBHKXUfdwtdVq/m0/Kvetstm/BdHjGFJ3ZES9k5dbU/AVTILrSMRKaoDx6RNWOKbA26HJEki5V8gMIis2Aympkzu59QXZM0NokXhw4icuizL64GewO4S4AHgVUADtgLXKYqiyrJ8FXAN4AGWKYpi2u6Opkp4qibps3PNgjWjAnv+zoDFyPbl1oU/G9X53ys6k4bORpOsEUQqtx/5cx5c8wQAC7OOYG2t+RExocKvFtwQbBPChmGduizL0YCkKMrSPm3vAHcqivKFLMvPA+fIsvwNcCOwAIgGVsiy/ImiKIYHhavOGFzF8/TZuaMTe8E209KRh6IouZCLppw3ar3m7+QfZ5JFgkgmIyYN0DXCfzLj4jHl1Cck5g1/kgAY2Ux9DhAry/LH3effDswHvuw+/gFwCuAFvu524k5ZlncDs4G1g3WckhKLzTb62ozexnFoHYn67DxPMU1dcSiunH8xpxQdH/BxMzISAj5msBH3fJD/vfAPSMEIDg8wGRkJJHli+72PRMy4r5E49Q7gUeBPwGR0Jy4pitKj7dYKJAGJQN/F7J72QWlq8k25zTauBGtqNZboTp+u95UfyN/jDeVtANrbXNTXtw5zhbFkZCQEfMxgI+55cB497j5aXa3cu+p3AbAqsNTXt9Lc3NHvfaThz2d7qB+DkcRJ7QL+oiiKpijKLqAR6FuiJQE4gL7mnjBAu+FIkhZwhw6wJPeo3tcLRUabIMjE2KLJjM1ATikKtimmkBWr1yCYnDwxyJaEFyNx6pcDjwHIspyDPiP/WJblpd3HTweWA2uAY2VZjpZlOQmYhr6JGlFcNOU8rptzBVHWwQW6BIJAct2cK4JtgqFcM+vHAKTFpLLsmNu5Ye5VQbYovBjJ8stLwKuyLK9Aj3a5HGgAXpRl2QHsAN5UFMUry/LT6A7eAtyhKErEVG+++6hbADhuvBDmF4QWfQstRwKzM2b0vk6JNk9bPlIZ1qkriuIC/muAQ4ftEiqK8iLwogF2hRRXzPwhmbGHl6MTCEKFo7IXsKpmXbDNEIQAIvd4BMxOnx5sEwSCIbl0+oVcP+fKYJsxYn6z6OYB26elTgmwJZFH2GeUmsElU8/HbrHz6vY3uHXhTdgs4p9JEPpMS5vCfUffxl3fmFPj1Eiy4w7GWvx4+sWcPuNYVu/ZSlFyYRCtigyEt+pDkiORS6ZdwIxu/ZYFWXPHREywIHJIiwl9tdBoa3S/90dmH4HFYhEO3SDG/PJLX/W7pKjEXocOCIcuiAgulr8XbBOIt8f1vrZF2MZuqDHmnbqIgRVEKifkLeH8yWdzbJ/8imBx68Kb+uV5CMxjzDv1H0+/uPd1T91DgSASOH/y2ZyQtyTg454y4YQhj/d8z66e9aN+3z+BMYx5p54Ulcj0VKGBLhAYxTmTTh+wfUb39+zonIUAzMmYyZEiM9twxEYpMCFxPNv3K0xMmhBsUwQCv/ndsfcgBalS0qSkgTc7JUlidsYMlh1zO8lRQ0pCCfxEOHXgtILvkJeQyzQxYxdEALH22EGP/XrBjTS7Wnh+86umjP3fs38y5HGRIWo+Y2755WL5vMPabBYbczJm4rDag2CRQBBYJiYVjOi8x467b9R9x9pFDdFgM6ac+pTkSRybe1C7Jc42+IxGIIhU4uyxPHvCI/3a+i6JPHvCIzx7wiNE2w7Gkw+2rCIIPcaUU79x3tUATOqeqeQm5ATRGoEgCHQHeB2ag3FMzpEHT5Gkw47/7Ihrhu36nIkDb5Dqw4rIskAxptbUez6oC7Lmsqe5VFQmF4wZrp71I9bXbWZ8/MGJzLJjbqeitRJJkkiLTuX9kk986nth1jzW1m5gRvrUQc+JsUUPekxgLGPKqfdw3PhjmJ0xQ+zCC8YMczJmMidjZr+2lOjk3o3LZqdeV94mDZzt2XemneCIp9XV1vv+R9Mv4ryi75IUldjbdnL+Uj6vWM7Dx96FR/XiEPUHAsaYdOqAcOgCQR+SohK5ad7VI5KYfmjxb9jWuJNVNd9y2fQfYJEs/Rw6wLlFZ3DOpNOF1EYQiNg19Qsmn9Pv/fzMOUGyRCAID6akFI1osiNJEjPTp3HlzB8OWaBDOPTgEHEz9QVZczkic44oNycQCMYkEefUL5uhF2nSNI1zJp7OeyUf49W8QhNdIBCMCSLW00mSxCkFJzA7Yzr/3PM+Z086LdgmCQT/3969hVhVxXEc/57Jy5TNGBReIkHI/CGBVlbec4JE68EikkCkUrLMoKiHrgYVZnQlI6IwRLsRlPiQYApRUUJEUWCU/1CiHiIYrJwRarxND2sfO+Go0xz1nL36fZ5mr7Mf1u+cff577bX27GN20mU7p141athIlk1c7IVRswGYNvoyhg9pP/6O1jRKWdQ7zpsBwL2XLG9wT8zytmjCAlbNXHF40XPYMZ4rY82hlNMvN1wwn4WT57O/26vrZqfKM7MeZXCLn4/U7EpZ1CuVCme1ttHZ3c3ySUvY09PNT10/M86/YmR20hzr6Y/WPEpZ1GtdeHb61+TpxYP3zcz+z0o5p25mZn1zUTczy4iLuplZRlzUzcwy4qJuZpYRF3Uzs4y4qJuZZcRF3cwsI5Xe3t5G98HMzE4Qj9TNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjLupmZhlxUTczy0jpfiRDUgvwMjAJ6AFujYidje3VwEkaDKwFxgJDgZXAd8A6oBf4FrgzIg5JWgrcDhwAVkbEJkmnA28CI4Bu4OaI6DzVOQZC0gjgK2AOKdM6Ms4s6UFgPjCEdAx/QsaZi2N7PenYPggsJePPWdIU4KmI6JA0jjpzSpoKrC723RoRj/WnH2UcqV8HtEbENOAB4LkG96dei4DdETELmAe8BDwPrCjaKsC1kkYBdwEzgLnAk5KGAncA24t9XwdWNCDDf1Z84V8F/iyass4sqQOYTsoyGxhD5pmBa4BBETEdeBx4gkwzS7oPeA1oLZpORM5XgIXATGCKpIv705cyFvWZwAcAEfE5cGlju1O3d4FHir8rpLPyZNIoDmAzcBVwObAtInoiYg+wE5hIzftRs28ZPEs6aH8ptnPPPBfYDmwE3gc2kX/mH4BBxdV1O7CffDPvAq6v2a4rp6R2YGhE7IqIXmAL/cxfxqLeDuyp2T4oqXTTSFURsTciuiW1Ae+RztKV4oOEdDk2nCNz99VebWtqkm4BOiNiS01z1pmBc0gDkAXAMuAtoCXzzHtJUy87gDXAi2T6OUfEBtJJq6renO1AVx/7HlcZi3oX0Faz3RIRBxrVmRNB0hjgI+CNiHgbOFTzchvwB0fm7qu92tbslgBzJH0MXES65BxR83qOmXcDWyJiX0QE8Bf//pLmmPkeUubxpDWw9aT1hKocM1fV+x0+2r7HVcaivo00V0exkLC9sd2pj6SRwFbg/ohYWzR/XczBAlwNfAp8AcyS1CppODCBtABz+P2o2bepRcQVETE7IjqAb4CbgM05ZwY+A+ZJqkg6FxgGfJh55t/5ZwT6GzCYzI/tGnXljIguYJ+k8yVVSNN3/cpfuqc01tz9MpE0B704InY0tlcDJ2k1cCPpErXqbtKl6hDge2BpRBwsVs5vI52MV0XEBklnkEZAo4F9wMKI+PVUZqhHMVpfRhrZrCHjzJKeBq4kZXkI+JGMM0s6k3Rn12hSxtXAl2SaWdJY4J2ImCppPHXmLAatLwCnke5+ebg//ShdUTczs6Mr4/SLmZkdhYu6mVlGXNTNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjfwMRw/XZmKvm+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Finally, Poissonize it!\n", + "counts = np.random.poisson(counts_cont)\n", + "plt.plot(times, counts_cont, zorder=10, label='Continuous light curve')\n", + "plt.plot(times, counts, label='Final light curve')\n", + "\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## R.m.s. - intensity diagram\n", + "\n", + "We use the `analyze_lc_chunks` method in `Lightcurve` to calculate two quantities: the rate and the excess variance, normalized as $F_{\\rm var}$ (Vaughan et al. 2010).\n", + "`analyze_lc_chunks()` requires an input function that just accepts a light curve. Therefore, we create the two functions `rate` and `excvar` that wrap the existing functionality in Stingray.\n", + "\n", + "Then, we plot the results.\n", + "\n", + "Done!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# This function can be found in stingray.utils\n", + "def excess_variance(lc, normalization='fvar'):\n", + " \"\"\"Calculate the excess variance.\n", + "\n", + " Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source\n", + " intrinsic variance: the *excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{XS} = S^2 - \\overline{\\sigma_{err}^2}\n", + " \n", + " the *normalized excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{NXS} = \\sigma_{XS} / \\overline{x^2}\n", + " \n", + " and the *fractional mean square variability amplitude*, or \n", + " :math:`F_{var}`, defined as\n", + " \n", + " .. math:: F_{var} = \\sqrt{\\dfrac{\\sigma_{XS}}{\\overline{x^2}}}\n", + " \n", + "\n", + " Parameters\n", + " ----------\n", + " lc : a :class:`Lightcurve` object\n", + " normalization : str\n", + " if 'fvar', return the fractional mean square variability :math:`F_{var}`. \n", + " If 'none', return the unnormalized excess variance variance \n", + " :math:`\\sigma_{XS}`. If 'norm_xs', return the normalized excess variance\n", + " :math:`\\sigma_{XS}`\n", + "\n", + " Returns\n", + " -------\n", + " var_xs : float\n", + " var_xs_err : float\n", + " \"\"\"\n", + " lc_mean_var = np.mean(lc.counts_err ** 2)\n", + " lc_actual_var = np.var(lc.counts)\n", + " var_xs = lc_actual_var - lc_mean_var\n", + " mean_lc = np.mean(lc.counts)\n", + " mean_ctvar = mean_lc ** 2\n", + " var_nxs = var_xs / mean_lc ** 2\n", + "\n", + " fvar = np.sqrt(var_xs / mean_ctvar)\n", + "\n", + " N = len(lc.counts)\n", + " var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc ** 2\n", + " var_nxs_err_B = np.sqrt(mean_lc ** 2 / N) * 2 * fvar / mean_lc\n", + " var_nxs_err = np.sqrt(var_nxs_err_A ** 2 + var_nxs_err_B ** 2)\n", + "\n", + " fvar_err = var_nxs_err / (2 * fvar)\n", + "\n", + " if normalization == 'fvar':\n", + " return fvar, fvar_err\n", + " elif normalization == 'norm_xs':\n", + " return var_nxs, var_nxs_err\n", + " elif normalization == 'none' or normalization is None:\n", + " return var_xs, var_nxs_err * mean_lc **2" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAADdxJREFUeJzt3X+MZfVZx/H37C52WVjStWxSja0YSZ/EmvBDGuiKFAVausaytsGitg20SOqqTbUuTbEpxdiSslaI1K2xglB/xtBCAqGI/YFCV1oICtSmzwLaJiZVSF3YFVja3R3/OHfY6zj77Pw4954zd96vZLNzz73n3u+c78x8zvM953zP1PT0NJIkHc6qrhsgSeo3g0KSVDIoJEklg0KSVDIoJEklg0KSVFrTdQNG4amn9nrOryQt0MaN66fmWm5FIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSNIdtO3aybcfOrpvRCwaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUGjF83x5qWZQSJJKBoUkqWRQSJJKa7pugKTJtZyP/ezeuw9YXt/D9q2bRvK+VhSSpJIVhaSRGdUe7jjMVBLL+XtoixWFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSp4eq1Ytp4uTZiynC6s8VVNdsKKQJJWsKNSq5bjHO6kXVk3q96Xxs6KQJJUMCklSyaCQJJUMCs2btwyVViYPZkvSHDwJ4BArCq1o23bsfPE6CklzMygkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWn8NCKt2H92kVP19Dnua/6euc+p8ZYfqwoJEklKwppCfq8d+wd7tQWKwpJUsmg6DnvASGpaw499czsUOjTAck+tWU2h1ek0bGikCSVrCh6ZvaecZ8OSPapLZLGx6DQWPRxuAr6OZxmEKtvHHqSJJWsKDQWfd1LdjitfW7TyWNFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJKTAkoTykn51BYrCklSyaCQJJUcepqlT3c6g37egU3SymJFIUkqWVHM0rcDgH26W5hVjbQyGRSatz6ElaTxc+hJklQyKCRJJYNCklTyGIVWtEk87tL1SQddn9I9iX3aNSsKSVLJikKaMF3vUffplG61w4pCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNC0oqzbcfOzqdjX04MCklSyaCQJJUWFBQRMRURp4+qMZKk/llQUGTmNPDBEbVFktRDi7nD3f6I+CzwEHAQIDM/2mqrJEm9sZiguK71VkiSemvBB7Mz8x+AncAu4LHBP43Q7r37PJVPUmcWXFFExO8APw38GPA48F3g3JbbJUnqicWcHvuzmXkusCszzwJ2t9wmDdm+dRMb1q/tuhmSVrDFBMULETEF7ImIC4FouU2SpB5ZTFBcSTNk9avAK4GL22yQJKlfFhMUbwRuB34L+EpmPtRukyRJfbKYs54+kJnnA38KvCUi/qP9ZkmS+mIxZz29EthCc6bT08B7226UJKk/jhgUEbE5M+8cWvRB4LPAJzPzeyNrmSSpF+ZTUfwecCdARFyQmZeNtkmSpD6ZzzGKqaGvrxxVQyRJ/TSfoJge+nrqsK+SJE2k+Qw9nRgRNwAPAEdHxJrM3D/idkmSemI+QbEZOBU4g2Zep2ci4gngYeCRzNw+wvZJWma2b93UdRPUsiMGRWbeB9w38zgiXgKcRBMep46uaZKkPljwdRSZ+QLw1cE/SdKEW8wUHpKkFcSgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVFnzjIkkalW07do7lc3bv3TeWz5uU28JaUUiSSlYUknpjXHvgM5XEpOzxj5oVhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSp5JXZCzSuuWiGjWtemtm8alUSWFFIko7AimKButjLdl4aSV2yopAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVJpTdcNmI+IOAe4CFgHXJOZD3fcJElaMZZFUNAExGXAycDrAYNCksakl0EREe8Fzh08/KfM/EhEHAO8B3h/dy2TpJWnl0GRmdcB1808jojjgWuAD2Xmk501TJJWoLEHRUScDnwsM8+OiFXADuAk4AXg0sx8fI7V/gDYCFwdEbdl5i3ja7EkrWxjDYqIuBx4O/DsYNEWYG1mvjYizgA+Dlwwe73MfMf4WilJGjbuiuIJ4M3Anw8enwncBZCZ90fEaW18yIYN61izZnUbb9ULq1dPAbBx4/qOWyJNBn+nFmasQZGZn4mIE4YWHQc8M/T4QESsycz9S/mc3bufW8rqvXPgwDQATz21t+OWSJPB36m5HS44u77gbg8w3LJVSw0JSVK7ug6KLwObAQbHKB7ttjmSpNm6Pj32VuC8iNgJTAGXdNweSdIsYw+KzPwmcMbg64PAu8fdBknS/HU99CRJ6jmDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSaWub1wkSQu2bcfOJa2/e+++Vt5nsbZv3dTJ5y6WFYUkqWRFIWnZWeoe+Uwlsdz27LtiRSFJKhkUkqSSQSFJKhkUkqSSQSFJKhkUkqSSQSFJKnkdhaQVx+snFmZqenq66zZIknrMoSdJUsmgkCSVDApJUsmgkCSVPOtpCSLiHOAiYB1wTWY+3HGTtAT2Z/fsg/a1sU0NiqVZB1wGnAy8HvCHenmzP7tnH7RvydvUoaclyMzbaTrhPcDNHTdHS2R/ds8+aF8b29SgWIKIOB64HvhQZj7ZdXu0NPZn9+yD9rWxTSf2gruIeAjYM3j475l5yQLWPR34WGaePXi8CtgBnAS8AFyamY9HxKeBjcB3gNsy85YWvwUNiYgPAG8Cvg/YkZk3LGBd+3OJIuJi4OLBw7U0wxgvz8yn57m+fTBLRBxFs4d/AnAA+JXM/MYC1h/bNp3IYxQRsRaYmtmAczz/w5n5rdlfDx5fDrwdeHZolS3A2sx8bUScAXwcuCAz3zGq70GHRMTZwCbgJ2lK6N+e9bz9OWKZeRNwE0BE/BFw43BI2AeLshlYk5mbIuI84CPAW2ae7NM2ndShp5OAdRFxd0R8cbDRAIiIo4G/jYgtEfE+4NpZ6z4BvHnWsjOBuwAy837gtNE1XXN4A/AocCtwO3DHzBP253hFxGnAqzPzT4aW2QeLswtYM6gEjgO+N/NE37bppAbFc8Dv0/yBeTfwlxGxBiAznx8svx64EHjr8IqZ+RmGOmzgOOCZoccHZt5PY3E8zQ/9hRzqzymwPztwBXDV8AL7YNH+h2bY6RvAp4A/nHmib9t0UoNiF/AXmTmdmbtoxuZ+AGDwB+Yq4G5gL/CuebzfHmD90ONVmbm/3Sar8B3g7zLzu5mZwD6aMVf7c4wi4qVAZOaXZi23DxbnN2l+rl9FMwpy82DYvHfbdFKD4p0043NExA/SJO23B88dDTyWme8Cfo7m4OiRfJlmPJHBMNajbTdYpfuA8yNiatCfx9CEB9if43QW8IU5ltsHi7ObQxXAfwNHAasHj3u1TSe11LsBuCki7gOmgXfOJGtmPgd8YvD1PobKvcKtwHkRsROYAuZ9BpWWLjPviIizgK/S7Nz8WmYeGDxnf45PAP82e6F9sGjXAjdGxL00QXBFZj4L/dumE3t6rCSpHZM69CRJaolBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNKkXnAnLVhEHAdcDbwO2E9z5ez7MvOhlj/nKuDzmXlvF+tLC2VFIfHiXP530kylcHJmngz8LvC5iHhZyx/3Og5N1dDF+tKCeGW2xIs3oP8UcGJmHhxavhl4MDOfjIgrgLfR3GTmbuBy4BXAPZl5wuD1HwbIzA9HxLeBW2imf94P/ALwUzQ3l/lP4Ocz89Ghz7qHJqheTTNb6Jk09xw4Bjg4WPaa4fWB54FPAi+jmTX5NzLzn1vdOFrxrCikxinAA8MhAZCZdw5CYjPNHfZ+YvDaE2mmPK+8HPhCZp4C/CPw65n5aeBBmruPzTVp2yOZOTOn0hbg7Mz8ceA2YOsc698MXJ6ZpwKXAX+zmG9eqhgUUuMgzURqh/MzwF9n5vODCSZvBM6Zx/veNfj/a8D3z+P1XwHIzD3ALwEXRcTVNDOIHjv8wog4lqbC+LOI+Bfgr4BjRzBUphXOg9lS40Fga0RMZeaL47ER8VHg7/n/O1VTNL8/0/zfgDmKoRvKDGb+ZI7XHc7zg899BXAPzQyin6MZajpl1mtXA/sGx1Nm2vtDNMNXUmusKKTGvcCTwJURsRogIt5AM1Xz14EvAr8YEUcP7hp2CfAl4GlgQ0RsjIiXAOfP47P2c+SdtNcAj2fmtTRVxhs5dAB7P829lp8BHouItw3aex7NEJfUKoNCAgZVxJuAHwW+FhGPAO8HNmfmf2XmHTT36n4Q+FfgW8D1gz/W24EHgM/T3DPjSO4C/jgiNhWvuRtYFRFfB+4Hvgn8yBzr/zJw6aC9VwNvHa6IpDZ41pMkqWRFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNL/Al/GVmTFouw4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def fvar_fun(lc):\n", + " return excess_variance(lc, normalization='fvar')\n", + "\n", + "def norm_exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='norm_xs')\n", + "\n", + "def exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='none')\n", + "\n", + "def rate_fun(lc):\n", + " return lc.meancounts, np.std(lc.counts)\n", + "\n", + "lc = Lightcurve(times, counts, gti=[[-0.5*dt, length - 0.5*dt]], dt=dt)\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, np.var)\n", + "var = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, rate_fun)\n", + "rate, rate_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, fvar_fun)\n", + "fvar, fvar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, exc_var_fun)\n", + "evar, evar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, norm_exc_var_fun)\n", + "nvar, nvar_err = res\n", + "\n", + "plt.errorbar(rate, fvar, xerr=rate_err, yerr=fvar_err, fmt='none')\n", + "plt.loglog()\n", + "plt.xlabel('Count rate')\n", + "plt.ylabel(r'$F_{\\rm var}$')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "tmean = (start + stop)/2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAARdCAYAAADrBJcrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6B/DvTHonDRIILZRL7x2pFhZlEXVXXcvaK6uLnZ+6rnUVuwgiIoi9YEFEQBEJEHoJhJJcUkhCQkjvdSYzvz+mZMqdySSZnu/neXicuffcO8dkMnPfe855X5larQYRERERERF1LXJXd4CIiIiIiIicj8EgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUG+ru6AI5WU1Lhl3YzIyGBUVNS7uhvkpfj+Ikfje4wcie8vciS+v8iR3PX9FRsbJrO0jyODLuDr6+PqLpAX4/uLHI3vMXIkvr/Ikfj+IkfyxPcXg0EiIiIiIqIuiMEgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUB5dSM+/PkUSisbXN2VDvHqOoNERERERESO8tJnR1BV24zaBgWWDeru6u60G0cGiYiIiIiI2qm2QYGq2mYAQFNzi4t70zEMBomIiIiIiNqpvlGhf6x2YT86g8EgERERERGRjdJzK7D9yHmjbWoPjQa5ZpCIiIiIiMhGr3+dAgAY0ifSxT3pPI4MEhERERERtZNKZTgc6JlDgy4fGRQEIQDAJwASAVQDWAzNT3O99r+nACwWRVElCMI9AO4DoATwsiiKm13SaSIiIiIi8noXy+ux7tc0/G32AAxKiIBMJtPvO5hWpH9cU6+QOtztucPI4D0AakVRnALgIQArALwN4FlRFGcAkAG4WhCEOAAPA5gOYB6AV7WBJBERERERkd19+buIzIIqvPblMXyyNR0NTUr9vm0H8/SPS6sakXG+whVd7BR3CAaHAdgKAKIoigCGAhgPYJd2/1YAlwGYBGCvKIpNoihWAcgEMMr53SUiIiIioq7AcPJncmohFr+z22Lbk5llju+Qnbl8miiA4wAWCIKwEcBkAL0AFIuiqPvZ1wCIABAOoMrgON12iyIjg+Hr62P/HttBbGyYq7tAXozvL3I0vsfIkfj+Ikfi+4vaw9/P9nDpQmktYmMHOrA39ucOweA6aEYD9wDYC+AogJ4G+8MAVEKznjBMYrtFFRX1du2ovcTGhqGkpMbV3SAvxfcXORrfY+RIfH+RI/H9Re3VrFC23UjrtwO5uGH2AAf2pmOs3QBxh2miEwHsEEXxEgAbAGQDSBEEYbZ2/3xoAsVDAGYIghAoCEIENAHkKRf0l4iIiIiIPJharYbahuKAFTVNTuiN67jDyGAGgJcEQXgGmpG+uwCEAlgjCII/gDQA34ui2CIIwnJoAkM5gGdEUWx0VaeJiIiIiMgzLfsqBXUNCrx092Sr7QrL3HOmob24PBgURbEUmgQxpmZJtF0DYI3DO0VERERERF7r7Hnp1WYKpQobk7MxdVgcnlt3yMm9cj6XB4NERERERETu4LPf0rH35EVsPZDXdmMv4A5rBomIiIiIiBzm+6QsvPPdCbPttQ3GxeL3nrzorC65BQaDRERERETk1bYcyMXJbPM6gA+/tweAJih8+7vjzu6WyzEYJCIiIiKiLm3dr2k4lV3u6m44HYNBIiIiIiLyKPkltXj72+OSpR+ULSoolCqbz1VUUY/jmaX27J7HYDBIREREREQe5cOfT+PUuXL8sCvLbN+jK/bivjeTLB6rbDEOFNf+mma3ftlSu9CdMJsoERERERF5FF1A16JqDb7OF9diy4Fcs6QwhkqrGvDkqv1G2zLzqxzTSQ/AYJCIiIiIiDyKTCYDYDwS98bXKVYDQcByfUF7Ubao4Ofr49DXsCdOEyUiMpFfXIsvfhfbtd6AiIiInEem/a/hrMyGJqVRm+/+zDSbtinTH+kYDc0tDj2/vTEYJCIy8crnR/HnsQLsPVXo6q4QERGRBO3AIKyt0Nt2KA/ZF6qNtq3ZfMZxnWqrQ26IwSARkYkmheauXrOH3d0jIiLqctpI2MJZPtYxGCQi6oA/jpxHzsXqthvaQUVNExqblW031GpRqVBcUe/AHtlXdV0z6hutr/EgIiIypF8zaLTNvJ2HDdQ5HYNBIqJ2KqlswFd/ZODF9Ucc/lotKhUeW7kXT3ywz+ZjPtmSjqWrD0DMqzDbV9ugwNaDue0KLh1tyfvJ+Ne7e1Df6D59IiIi96aP+9qK9jys1IOzMRgkImqnZoXzpo+m5WgCurp2BEr7Tl0EAGRdMB+5XL81HRt2ZuHn5HMWj1e2qFBnMFKnVqtRXd9s8+ubsvXYDUmZHX4NIiLqYiTXDJoPDTIUtI7BIBGRG0vLNR7da2xWQqVWQ61WY9XGU9ivDfxsdbFcM320rKpRv61Z0WJUgPf5Tw7joXf36Ld9n5SFJcuTJUca23LwTBGWLE/G9sPn22xbUtnQ7vMTEVHX1JpN1Hq49+Y3x/HoimTHd8hDMRgkInKSU+fKUFhW1+HjaxsUePDt3Vj25TGUVDXicHox1mw+g/LqRqvHqdVqq6OZ97+1C/e+kYRf9uUAAC6UavrYrGhBs6IFWw/maftfbnNfda93KK0IALAnte3MrM6aydPWz4OIiDyB8ShgRn6l0Y1NQ5W1HZ/d4u0YDBIROUGLSoW3vz2BZ9Yc7PA5Hn5vDwAgI7/KKHJ6/IN92LgnW/IYZYsK732fivvf2mVWf8nUT7uzsU0b+AGASg1s2pvTrj5u2JmJjXuycf9bu/DVH2eN9hVX1OODn06ioqYJKRklVqePni+uxblCxyToef+Hkzb9PIiIyHVqGxRY+dNJ5BXVSO7XJYtJySjF8u9T8eoXx5zYO8s8bVoqg0Ei6jIOpxfjh11ZTn3N2gYFTmWXmU337KwTmWVGz6WCNpVKjXvfSEJqlqZtUkpBmyNi3+00XreXX1Krf6wbGayobsRHm06jqLweJzJLoVC2nnPrwTx9X/44km90ro9/TcMRsQQvrD+M9384ide/SrHYj/+uO4SXPj0ClVqNwrI65F6UvhjoiOOZpZr/j5omu52TiIhso1vq0JZtB/NwVCzB858cltxvOC6o+1yn9vN1dQeIiJxl1cZTAIBFM/rDR+6ce2G60TxD+04VorZegSsm9THbp1arUV7dhPomJXp3D7V43q93ZEhuNxxNKzOZProhqTUQPiKWtNl3lUoNuUGe7tyLNRDzKrDvTDEOnCnCgTOaKaCXjkvATZcP0qf5liKTtdZtrK7TjAheKK3D+q1p+jZSFwd3L9upf7xu6Vyz/Wq1ujW9uMFjIiJyTw+9uxu9u4dh6c3jrLazVh9QrVZL5YqhDmAwSERdjsxJ3yCWpiF+vFkTAJkGg8UV9Vi6+oD+uVTwY01dowIvfdpa7mLX8QttHmMtKcyS980X3OeX1GHP8QKjbTuO5WPHsXwLwZrxsaZ2n2h7LaElyhYVHnhrF2aO6YmSygYUlddj2f3TOnw+IiJyvIamFpw9X9nh43/cnYXN+3LRPTLIjr3qujhNlIgIQGZBFTZrE6h0Rnl1o3764S/tPN87G1KNnm/YmYlmK3dGTb3xteVpl1L+OHIey6xM1ZTy5fazbTcyoJu6c764Fqo2pgUVVVjPJvrehhNY/M4uNGmnulbUNKFFpcbOYwU4lV2OkspGKFtUyL1YY9MUJA4iEhF5ns37cgEAxW18Z5BtODJIRF1SfaMSz6w5gKtn9MfsMb3wv8+PAgAmDu2ub2Mx+5iVKOLxdhSHBzRrJy6W1SM+OhhF2rIPOlsNkrnYIq+otu1GBr76Q3qqaUfd+dqfnTq+oqYJG/dkY8G0fpL7T2jXPuYV1SA0yA++Pub3Mz/Zko79py/iX9eORFxUMOKigiGXa35fVXXN+PNovtkxRETkXvafvojULK4DdAYGg0TUJZ3OKUdVXTM+2yZi9phe+u1Kg5G4bYfycP3cgTafs73ZKY+kF+MD7TrG2/4itOtYb7Vpbw585NaH7N7/4SRqGxQY2jfSbN/+05q6i19uP4uKmiZcMioePSKDMHdcAtZvSdMHlB2lVqtRWtWImIhArk8kInKQNb+cMXreolI5ba1/pzmrTpKdeMhPlYjIviwFbu39CH9x/WF9iYT2BoO6QBAAPt0mtvOVvddPe85Z3V/boAAAqxladVN1k1ML8cOubGzccw6lEvUYG5qU+P1Qns2/u90nLuCpD/fjt0PnsfvEBX1Nxq0Hc7Hyp5M2nYOIiNrnoXf3IOVs24nPqP0YDBJRl7R+a7pdzpNzsQbbDrRvOic53/Yj5yUz0337Zwa++TMTT65qe3qvSqXG3lOakceNydlYvzUdz36sqRu5YWcWjtqQoZWIiNqvsbkF7/94En8e41R/e2MwSERdgkpl25hfnXbUyZrDaUVGzw9qn3vYzJAuxzTZgEKpwsVyzba6RmWbo4NvfJ2CzPwqAECzwvbEPkREZF3K2RIkpxbine9OWP0s/uL39iUxo7YxGCQir5JfUiuZsnrp6v36x2ork0GX/2A81e/9H1JR12gcIJoWeNdNSeQdS89iWshY2aKCssVykCd2IhU6ERFJq65vxvs/nsS6LWk4mV2GJJPyRZ7G0+4LuzyBjCAIfgA+BdAPQAuAewAoAayH5ud5CsBiURRVgiDcA+A+7f6XRVHc7Io+E5H7em7tIQDmNfpKq8zXi+ms3nRa/9j0jmRKRil+3J0NH5kMC6b1Q3iIv+Q5ftl7DtsOcbqopzG8cfD2tyeQW1SDj56YLZmp1BYKpQp+vrzPSkRkqyXLjWvacpaNc7nDN9aVAHxFUZwG4EUArwB4G8CzoijOACADcLUgCHEAHgYwHcA8AK8KghDgoj4TkYvkFdWguNK+tYUOnimyun/nsQL8cTQfS95PRkGpeeF0QJP0hF9gni23qAaAZm1KR5mOIks5lV2Gb3Zk2FQLkYioq+Fno3O5fGQQwFkAvoIgyAGEA1AAmAJgl3b/VgBXQDNquFcUxSYATYIgZAIYBeCw+Sk1IiOD4evr48i+d1hsbJiru0BezJvfX7padov/Nhq+PjJcNqmvfl+jwahebGwYUjNL8OmvZzBmcHejc4SEBXX49f+jTRhC3quqUYmoqBBEhNp2v9Hw7y06OhRR4YFW27+tfQ9fd9lg9IwJ7XhHvZg3f4aR6/H95R4s/R5CQjx7rMeW7wF34g7BYC00U0TTAcQAWABgpiiKutsCNQAioAkUqwyO0223qKKi3tpul4mNDUNJSY2ru0Feqqu8v1Z+fwIAMLp/lH7blgO5+sfvf3MMvx8+DwA4m2e81mv1Dyec0EPyVP9ZvR++PjLcceVQDOkTiciwADQpLI8WGv69lZXVoqWp7dFBACgtrYUf74Cb6SqfYeQafH+5D0u/h7q6Jif3xL7Ky+ts/h5wFms3QNxhmugjAH4TRXEwgNHQrB80XJQTBqASQLX2sel2IvIyeUU1uP/NJJw613aB8G92ZGD7EU3QZ7jeTxcIStl1/ELnO0leTdmixppfzuCxlXsBAJuSrdc+JCIi+/hhV7aru9ApERZyC7grdwgGK9A64lcOwA9AiiAIs7Xb5gPYA+AQgBmCIAQKghABYCg0yWWIyMtsO5iHZqVKn0K6oqYJjc3SqaZ/P3weX/+RgaZOrPMiasvWg5aTA53ILHViT4iIiOzHHaaJvgNgnSAIe6AZEXwawBEAawRB8AeQBuB7URRbBEFYDk1gKAfwjCiKltMDEpFHqmtU4IA2oUtxRQM2JZ/DxuRzCA7wxYpHZlo8btO+c8g4X2VxP1FHtbVO9L3vU/WPq2qbERbsBx+5O9xrJSJyH43NSuxMaS0bUdugwJ5UztRxNZcHg6Io1gK4XmLXLIm2awCscXiniMjpquubERbkh/2nLhpt36idnlffpMQFC5k8AWDrAZZ1IMewlEFWygvrNTnN3lo8HZFh1pMgcLkgEXUF1fXNOJFRit2pF5BVUK3f/tm2dBwRS1zYMwLcY5ooEXVxR8USLFmejJ/2nINMJrPYjmv9yFO8/e1xAMChtCKs/PEkyqsbkZxaKJky/afd2fhxd5bRtpSzJcgvqXVKX4mIHCU1qwxLlifjk63pRoEgAAaCbsLlI4NE5PlOnytHZFgAesaEoLZBgbWbz+DqGf3RLy5csv3xzFIcOH0R9/51OPaeKsQnW9IBADuOnse1MwdYfB1dohgid1dQWodmRQs+/Pk0AODoWc1FT0Roa2KB1Kwy/LArCykZmjWHuve+QqnC+z+eBACsWzrXmd0mIuqUi+X1KK5owKgB0QCAI2Kxi3tEbWEwSESdolKr8ZZ2FGTd0rn4/XAeTmSVISO/ymyNX2FZHVZvOo28Is2Ix9xxCdhtMNrX0NQCKwODRB7l/rd2mW2rrG1Nmf7dzkzJ41Qqzh8lIvdTWtmA4soGDOsXZbHN0x8dAAB88OhMBPr7Ijm10Fndow7iNFEi6hyT69aWFs0GRYvKrOnqn1sDQZ3aBuNaPFxHRd5s4x7rJSoKSmqxZvMZo20q7R+FWq3G57+JOJ1T7rD+ERFZ8uSH+/HmN8dR32ie3bu+UYE3vk7RP1e28MvcUzAYJOrCpNYvtfscBtHgqewyfQp+w3OXVzcir6gGjRKFu4sqGoyef7n9bKf7ROSuKmosF1M+X1yL/6w9hGNnW9fR3Pnan7h72U4oW1TIuViDnSkFeOub487oKhGRpGal+Xf5OxtOIC23wmibUuKmsLfz9/W80IrTRIm6qN0nLmD91nT8794piIsKtvm47UfOIzI0ABOGdDfb9/Z3J/SPDe8KPv7BPgBA98ggo/bLDVLyE3V1r3x+xOK++iYlWgymjzY0KREUwK9wInI+qfvIpslhPt2arl8r3VX857YJEBJj0NzQ7OqutIvnha9EZBfrt2qSthzU1vTTKa6oN5u6aejrPzLwwcZT+ufWBhdN7wqaLgesb5IuJE/UFTUrLN9FT8+twG+HWsunvPrFUavnUqnUyL1Yw/WHRORwUp8zXS0QnD+5D/rHhyMi1HpJIXfEYJCIjCxdfQAPv7fH5vbZF6ot7vvid5Mpn8wOQ9QhH/58GkcN0rDnl7TWPqxtUBglpgGA3w7l4YX1h7H1YK7T+khEXU91XTOe/+Swq7vheh58ecNgkKiLU6vVSDpegOfWHoJCafv8/oqaJiiULXjty2MW2xxOL7K4j4g6R9miQnl1Ix5+bw8eXbFXv726vhkbkjR1C09mM9kMETnOp9vSWRMVgMyDo0EuOCAifLZNBADkXLQ8ync6pxw/7motjP3Yyr2Ij7a+1tB02ltReX0neklEhpZ9dcxsnQ4ArPs1TbJ9Q5MSMhkQ6M+vfiLqOMMEcWVVjS7sCdkDvxGISM/a+iKpDIaFZdaDuxaVuktmEyNyBtNAsKKmCQfPFOFCaesUUsN71Yvf2Q2AheyJSFpDkxIBfj6Qy1s/OeoaFQgJ9DNqV17dhNWbTuO6WQOMpqx3ZZ68CobBIFEXkllQBZVKjcG9u0nu33/a/tM6730jye7nJCJzj63c23YjIiIJCqUKi9/ZjT49QvH8HZMAAJuSz2Fj8jk8duMYxEW2zgR69YujUANWl4mQ5+CaQSIvse9UIb40Tdhi4n+fH7X64V1e3Trdo4BrAIi6hBOZpZzqRdRFFVfU4/0fUlFQqvnOzytq/e7//fB5AMCJjFJ8uzNTv505ir0Lg0EiL/Hx5jTsOJYPhUQxWFMpBimfN+3N0T82/IBf8eNJ/bTRxmaWgCDyROL5SjyyIhlvfJ0iub+0qgHvfZ+KJ1ftk9yvUquxbksaTucwEQ2Rt1Gp1Fi3JR0pGaX4anuGxXYtajVauOTDzKIZ/T16eqgOp4kSeRlrdf903v/xpOR2w7VGDU1K3P36TgBARKi/XfpGRM5XVduMqtrWIsgVNU34cXcWrpmRiLoGzY0eNYD6RgW+2ZGJK6f2RVyUZkpYZn4VklMLkZxayLWGRF4g6XgBFAoVLp/YG/9evgd1jZrPAGvZxHceK3BW9zxCZFgAoiMCsXB6f2xKzoEaao8OChkMEnmYwrI6+PnKERMRZPdzV9S01iqrrm8tPG94IUlEnu2L30WkZJSirkGJqy/pr9++eX8ukk8WIutCFV65ZwoATRIonfziWoQE+SEyzPOKKhORhi57+OUTe+sDQVMqtRq7UgpQ39Q1ZwVdPqE3th85b3H/W4un6x+rvWDSLINBIg/zzJqDAIwzAtY3Kiw1R7OiBQ+9tweXT+jt8L4Rkfurrtfc3DmTW24U7DU2a6aY1zVIf548t+4QAGYjJfJGhkFNxvlKfN5GDgJvFhrsJ7n9wUUjjGZQGfPcoUEGg0ReICO/Sv/Y8B7VhdI6bNiZCYVShS0Hcp3fMSJyO7qSFM0KFU5ml5nt9/z73ETUGblFXTuBnNxCXDdhSHezbX+fPRDf7czE+MGxDu6V4zCBDJGXKiipxbMfH8SJLPOLPSIiW9RbmEZGRO6lRaXCc2sP4tf9OZ0+1zc7LCeT8WaXTUgAAIweGINLxyfYdMxfJvfBR0/MRt+4MEd2zaEYDBJ5mXJtivgLbRSEJyIylJSiSRJhmIRq5U/SyaaIyPnOnq/EoTTpesDl1U3IL6nDD7uybTpXUbnxNUJeFx8NBICbLhuMVY/NQkJsKG6+fDAmD+th03G+Pp4dTnl274kIgPG0ruQTBTgqFkNtS1pRIiITtRbWDBKRa7325TF8+PPpdh+363gBVvx40ui6QLcGmDRevHMSACDAz0e/7d6/DsOKJTNc1SWnsfuaQUEQ4kVRLBQEYQaAUQDWi6JoabUlEXWSQqnCnhMX9M8/25IGALj/6uGu6hIRERHZ0YHTFzt87KfaDKJFFQ36bdZKSXQ19y0cjoTuoWbbZTIZggP98NRNY/UJtryRXYNBQRBWAVAJgrASwFcAfgcwF8B19nwdImr1++E8pGSUmm0/k1Phgt4QkTdY++sZhARKZ9TTKa5swHNrD+LOK4di4pDukHlyoS0iN5ZfXIuPfjnToWObFa1BzNMfHbBXlzxefHQwquuaMW9SH0yUSAxjSOgT6aReuYa9RwYnAZgA4L8A1oqi+LwgCIft/BpEbk/ZonL4HPLCsjrER4fgTwvFYHcbjBYSEbXH3pNtj0Is/XA/AODDn0/jiFiCBxeNcHS3iLqkmg5O3f50Wzp2Hee1gBRdLVWy/5pBH+05rwawVRCEYAAhdn4NIreWlFKAe99IQqZBuQdbncouQ522ZmD2hWoUV2qmdBSU1mH1ptNG00R09QYNC8UTEbnCkfRiAEBpVQMyC9r/2UdElnV0zJ2BINnC3sHgZwAKAeSIongQwFEAq+38GkRu7cfdmkxe+8+0b35/Wm4F3v7uBN785jgA4OXPjujvvL/73XEcPFNkNk1k/dY0O/SYiMh2d772J4oqpLMVP7lqP/73+VG0qLgeicheTGdgM0Ec2ZO9p4n+BuA9URR1E5RnABho7QBBEG4HcLv2aSCAMQAuAfAuNEkSTwFYLIqiShCEewDcB0AJ4GVRFDfbuf9ELlOsvbjKvVhjtq/WQq2v3ScKHdonIiIpK360XnJCpQI8PNs6kdtSq80DREOlVQ1QqRgwWnLtzERXd8Gt2CUYFARhOjRTRD8GcJcgCLq3qC+ADwEMtnSsKIrrAazXnmclgHUAngPwrCiKSYIgfAjgakEQ9gN4GJo1iYEAkgVB2C6KIufIkXtq5+cwky8Qkaeoqbd9DdPrXx2DXC7D4zeOdWCPiLoOlVoNuZXJo0+u2u/E3ri3l+6ejNSsUmzYmQUAiAwLwIJp/VzbKTdjr5HBywHMAhAP4EWD7UrYOE1UEIQJAIaLorhYEIT/Atil3bUVwBUAWgDs1QZ/TYIgZEJTuoIJasit2COme/4T1v8hIvdVXddstm3LgVz94/veTMLr909FTLcgpOdVOrNrRF7HlpvFvJ0srVdMCHrFhOCKib0hg4w/KAl2CQZFUXweAARBuFUUxc87eJqnAbygfSwTRVE3rlIDIAJAOADDVem67RZFRgbD19fHWhOXiY0Nc3UXyEHkcs0nTWCQH+qUavzvk0N4/JbxGNxGauKI8ED947yiWv3j9dtENHlxfRtyHwtnJmKTds0rUXt9n5Rl9PzJD/fj5zcW6p9b+95Tq9UoKq9Hj6jgNtsSdZanvb+Ka4xvvkRHh8Lfz/j6duXGU87skkcY3KebS37Xnvb+sveawd2CILwBIAoGsbcoindaO0gQhG4ABFEUd2o3Ga48DwNQCaBa+9h0u0UVFha4u1psbBhKSszXhZF30M3T37ovB7uP5aOuUYnl36bgv7dPtHpcjYWsoLuPS5eOIGrLjFHx2JNq+7rSxg6mLyeyxPC7rqi4GjV1zYBMhoNnijBnbC/4+crx+6E8fPNnJgDglisG44Z5Q/kdSQ7jaddg9Y0KLF2ZbLTtXF45Vm08BWWLGk/fOg55RbU4qs3oS8DYQTFIySjFkN7dnP67dtf3l7UA1d7B4HcA9mj/tWfF1EwAOwyepwiCMFsUxSQA8wHsBHAIwCuCIAQCCAAwFJrkMkQuV9eo0Bdolhlt1yZ+MfhrKK1qwIofT+KO+UPRNy5Mf3xBaS2I7GXK8B64Ye7AdgWD8g7Mce4VG4KCkrp2H0ddz93Ldho9V6vVmDepjz4QBIBjZ0tww7yhzu4akUudzC5DkL8vBiaYT3iTqvm59tc0ZF2oBgCczqnAp1vTHd5Hd9IrJgQFpZa/d+68aigOninCjFHxTuyV57J3MOgniuLjHThOAGA4N+kxAGsEQfAHkAbge1EUWwRBWA5NoCkH8Iwoio2d7jFRJ72w/jByL9bgH5cOwuUTe0u2UWujwabmFnyzIxN5RbV4Yf1h3LNgGNZsPiN5DFF8dDCG94vCVVP7QqUGHlu5V7Kd1AjgvX8dDrVajZGJ0ejdPdRoPZcltsaC0RGBePmuyahvUqKxWamveQkA8yf3wdaDebadiLxek8LyFPfyauZ/IwKAd747AQBYt3SuTe3Tciv0j5c1q1oxAAAgAElEQVR/n+qQPrmru64aiukj4/Hr/hz8sKs1dOgfH45zhZoAOSTQD3PHJbioh57H3sFgsiAIfwXwmyiK5qvLLRBF8Q2T52ehSUhj2m4NgDWd7iVRByiUKvj5mudK15WC+HpHBrpHBkleUecV1eJwejFWmczpZyBI1rxyzxTJ7eHBfqjWZnMc0qcbbps/RHIEUCaT4ZHrRwOAjcGgbdHg+ufmoaSkBgH+PgAC8PLdk/Hsx5qAMDTYD+OFWPj7yrH/dJFN59O5ff4QrG/jDnegvw8auYbWYyx+Z7fFfYfSi7BoRn+z7Wq1Gp9sScPIxGhMGNJdv31DUiZiIoIwZ2wvh/SVyN0UlNTi7HkmYJLiI2+9Hps2Ig7zp/TFfz4+aOUIssTeVYD+BuBnAI2CIKi0//itTR4hObVQXzDe1PniWtz3ZhJ+2Zdj9RzvfZ+qKQAkwTQQJGqv6SPjzKYRTRsR36HpnT5y82P6x4dLtk2IDdUfc9dV5lP4esaE4PUHpmLBtH64dFwCFl8zEv+cN6TdfZoxKh73LRxutc2oAdHtPi+5p6raZnwscUOsqLwee1IL8YHJZ+bWA3n4/DfRWd0jciiVWo31W9Nw6lyZftuxsyX6vAN5RTX4z9pDOHq2xFVd9Bh/mdzH1V3waHYNBkVR7CmKotzkn3um8yQysW5LGjZbCPaOZ5YCAH7anQ21hWCPyNHuumoYnr5lvP55TEQgpo+M69C5Hr1hjNF57v3rMIwXYvH32QO0I36twkM062GnjojD9JHSazBiIoJw7cxEfYY7H5/WYLNfnPHC9R5Rwbh9vnmwKJPJ0CsmxGq/b7p8MOZN6o23Fk+32g4Alt48rs025FoZ+VVGz+salJL30/i5S97mXGE1dp8oxNvfntBvW/HjSdz9+k6UVjXg+U9YOc1WCbGhFm/EU9vsOk1UEITnpLaLovii1HYiT7HjaL7+8V3LduLvcwZg/uS+khco1e0oxkze4Z2HLsH2w+dtmopp6qW7J0tObVl2/9Q2jx2RGG3z1M6gAF8M6xspeZf59Qem6R/Pn9IXGflV+hsgAHDnlUOx5UAurr7EfEqfJb4+rfcan7t9Iu5ethMqtRpXTe2L62YNMLob3h7hwf64Ye4gm9oO7t2tQ69BrpNbZJyFT61Wo6ZegSXvJ1s4gshz7DyWD38/H0wfGa8fAZRi6cY0ta7EUbcrTyVZY+9pojKDf/4AFgLoYefXIHI60wLLG3Zq6mmdK3S/9MHkXGufmoOIEH9cOysRM0e3jprNGdsLl45vXcA+f4r0NBbDkbD/u2UcAvx9MKBXOGK7BVl8zSBt5lp/iTWslqxYMgOLrx1pc3tDUeGBuOUKAWHB/h06XhK/x8kGGflVEE3WTL306WG88XWKi3pEZF1pVQPKqqTzG37++1ms/TUNADQF0C3YfcL2LNCkwa+UjrP3NNEXDP49C2A6gBH2fA0iZ1IoVRbTFxeW1eH7pEzJfeR5+vQIldx+7cxEq8fpRubkMhmG9I3Ub791noDEnq1r8BZdkmhxpOqeBcOwYFo/DErohpWPzDSaCirl4etGYsqwHlgwrZ/VdlL91AWsCbHWp2PaW6B26qnhiKGhoQY/O0sG9DJe0zgiMard/Rg3OLbdx5DjKFpUVve/9uUx1NQb34w7V1hjlE2RyJ08uWo/nli1r+2G7V/qTWgNon3lJt8ljAY7zN7ZRE2FAuCqTnJ7lqZrrPzpJFKzpKezvfzZETQ0MT+St+gXF4a8IvNajwum9bOYWMiWqZw6fr5yjB4YLZkZbuqI1nV/tiSDiY8Owb1tJFqx5Pb5Q3HLFYLFoMxRnvjHWGzen4PLJ2jKr/Tu3hp8TxsRJ5mYBtAUIa+qbcZfp/czS3qzcHp/nMouR3iIv370fubonth94oLFfvzr2pG487U/zbbbksmU7K9JIjNsSWW90fMvfj/rrO4QkYeYObonMvIrMY/JYzrN3msGz6E1NpcD6AbgDctHEDlGRU0Tth7Mxd9nD5QsB2HqcHqx/rFarUZFTROiwgMtBoIAGAh6kVEDorFoRmK7p+aYTuW0Nu0HAIb1jQKQhSsm9sbvh8+3t5t2owsEH71hNLqFBjjlNfvGhWHxNa3TVCNCAzC0byTScisQHx3cuvbR4Ec4f3Ifq7WiBvaKwP1XD8eghG5obFaiuKIBowfGGAWDz/5zApQtKrz25TH9tlfvnYL/++iA/vnIxGiMF2IZDLqJZ2wZVSHyIJkFVWaF4Tkw2EHaH1yAvw8eNPhOiQoPBGDbLBMyZu+RwdkGj9UAKkVRrLbzaxC1SVecOzm1EB88alay0kxtQ2vSl98Oncd3OzNxjUT9K/JOS/4+2i7nGTsoBiP6R+Ey7eiXqb5xYVixZAaCAnztHgzet3A4DqUVISWjtO3GWiP6S5dpcFbmxgcWjcARsRjTR7SutewZE4Kxg2IwcWh3TBnWdqbUSUN1y9IDEB9tPvVVN1X3sRvHIMBXM1W1R1QwYiICUapd1yP06YYAbRbUiBB/VNXZXCaXXOjs+Uo0NCkxemCM5P7q+maEBfnZnGSJyFE+/PkUyqub9M837snGsH7tn+ZO5tmpdYIDfbHykZlm2bCpbfYOBvMA3A/gUu25/xQEYYUoitYXBRBZsP3weRSW1+Of84QOHW+tOPUv+3LQ0KjE9XMHGm3fd+oiAOCnPec69JrkvW6dJ+jrnN10mXlGS38/H6OSDVKCtclf7G3ysB6YPKwHGpuVbY5QtsdDHUw6Y4vQID/MHmNcQFwuk+Gh60bZ/bWGm1x4xUeH6INBQDNauvzfMxDo74N730iy++uT/elGe9c+NQcfbz4DoU8kZo7uCUAzEvO/z4/i8gm98Q+Jv1UiZzL9TN60N4f1AyWsenQWmpQt8JXL8a93dxvtu2ZmImaN7onwEMuJzIICHL36zTvZe9HI6wDmAfgMwCcA5gJ4286vQV3I1zsykJRS0GY7tVoNhbJ90zZ/2p2NbYfyoFCq0GxwLG8iez7D9WjtMW2E9ZGoOWN7Wd1vKlj7xSRV4N1RAv197XZntG+PMIz1wIQrDywagSdutB6U37XAfI1iaJCf09dSUuc1NLVg/+kio2m+Z3LKAQDbj7huOjZ5v9oGBd7dcAKZBVVW25nmOgGAghLp5HRdWYC/D8KD/REc2BrU6b6XB/WKsBoIUsfZO4S+AsBY3UigIAi/Ajhp59cg0hPzKhARGoAvfxdxOqcCqx+fBT9f6xfCLSqVUZKO+95McnAvydmeuXU8vtx+FntSjdcAhgT6oq5RqX/eMyYE4w2CnbsXDNOPDBt67+FLOpSobOSAaFw7MxHjBfOAasWSGWhScNKEI0wc0r3NNuFWymT4yGVoUakRGuSHQQkRRlNvw4P9WEuUiAAAvx3KQ2pWGVKzyrD2qTloMUhGdzyzFGO0U5g5VbnVtBFxkt+zltxx5RAsmNYPcVHBDuxV12bvYNBX+6/Z4DmzbJDDLPvKuNbUuxtS8cAi82omp86VISWjFLdcPhj3vJ5klqLeUIuVQrDkGfz9fBBjkNzlzQenobSqEQmxoahvUuDJVfsBAM/fMdGmkaCO1teTy2QWyz8EB/ohOLBDpyU7GTsoBikZpehjYSR51pieuG7WAJzMLsM7350AANw2fwgC/X3x9R9nkc87+26BxafJVVpaWt97dy3babRv+fepAIArp/RFcUWDU/vlzkYNiLYpGJwgxKKipgk+cjkDQQezdzD4JYAkQRC+1j7/B4Cv7Pwa1EVl5FficFoxbrxskMX0+2m5Fdi8L8ds+9vfai7kdOuTsgos5zW6YKGuIHmuqPBAfaYxw+knHblZe/Plg/Hl9rMYO8jzpk+SsfsWDkd+SR36xxsnJBg7KAZHxBL06aHZPjIxGuuWzjVqc9mE3vppiX17hCG3qMY5nSYzD727x9VdILJoy4FcV3fBrST2DMd/bpuAlz49YrWdYaZQciy7LY4QBCESwBoAL0FTW/B2AKtEUfyfvV6DurZXvziGP47mQ8ytwDc7MpB7UfriS6G0PPXu6z9Yr8pTxUc7587g3QuGIjrccrmFS8cnYO1TcxAd4b3DerpF+EEB3p2Vzd/PB4k9w82mcN21YBieumksJkhM79UZ0b81Ic2D14xw6rpQsiznovSNPpVajcz8KijbKHJPZKi8uhFF5fVtNySbRYQEoH986+ysF++c5MLeEGCnkUFBEMYC2ALgDlEUtwLYKgjC/wC8JgjCCVEUU+3xOkQAcPRsCf48VmAxNX+zSSKZNG0iAQBIzzMv+E3u7+On5uB8US1eWH8Yf5nUB9sO5dnlvFJZN6eNiEeQvy/e//EkBiZESB/n5es/bpg7EHK5DIs6WV7lP7dNQFiQY7KnOlKAnw+EPtZrVUWFB+Ljp+boZym88eA0FFc0GNUzlBIS6AuZTGZUzobs58X1R/DW4unIL67Vb1O2qJCcWojPtJmAn7t9AvrFWV4qQKTz+AeampemMwMAoKiiHrWN/DtuL13t59vnD0F9oxIJHUz4RvZjr2mibwL4hyiKSboNoig+LQjCLmiyiV5mp9chQpPC+jLUvSeN56K/8c1xR3aHHOjluyejoVkJuUyGvnFhWPPkbPjI5fpgcNSAaKRmlQEAIkL9seRvoyFvzwiNhaZjBsXgoWtHYnCfbp39X/BIEaEBuHvBsE6fx/DurzcynK7eLTQA3UIDcMmoeCSnFsJHLsOVU/ril305eOIfY/HG15r1ze8vmYmPNp3GgTNFruq219PVmdV54K1dCDTIsPvi+iNmF/eFZXWI7RZkcQ2xskWFksoGyVqW5Ll2n7iAH3dn45V7JiPEoOzPa18cxdl8yxlC1Wo1/m/1AWd00WvpysCQ69lrmmikYSCoI4ribwCkq8EStUMd7755pY+emC25vW9cGJ6/YyJ6xoRgQM/W0Tkfk/zcc8cl6B8/e+sE9I0L05eV6MysPZlMhrGDY40uDohsEWGQ+vyamYlY/fgsDNKOMCf21ATHt3awbip1TItKbZRFWKe8uhFLV+/Hxj3ZeGbNQaz55YzFc6z7NQ3PrDkIMa/CkV0lJ/pxdxbWb01HdV0zTmWXo6m5BVV1mvyHlgLBi+X12HYwjymLyKvYa2TQTxAEuWlxeUEQ5ABYFIQ67XBasf6xPQtqk2v5+sjRvVsQiiuNM6399/aJ7T5XlMk6vzljeyE9rxILp/frTBeJ2mVkYjR+3Z+LKyb2BgB9qZtVj86Cn5/mZkZ7CiP3jAlhUisHSMspx1d/ZKC4ogGb9uYAAA6nF2NBcS16dw9F0vECCL276UcCdSO52YXVbU4hJs+weV9rYhc11Hh05V40NCnx1E1jzdpW1jbh7PlKfPjzaQBoV2kE0njixjHtm7lDTmOvYHAXgP9q/xl6FoD1dEFENsgzyNSXfLLQSktyZ4uvGYE9qYX6qZ0AMGN0PH7Yld3pc5uu4wsO9MNjN0gXHr/pskHILqy2mJWWqKMG9+6G5f+egZBA46/XAH/jZDwJsSFmpSkeum4kBvfuhpYWNT7YeArXzUrE5n25DAYdwNLygfVb0xEW7Kf/jDKdTnpMLEF6biVmjIrHBBvqWZJnqKxpRkOTZvRYKtB7dIXx1OP8klqzNiTt+TsmoqiiAUP7RbXdmFzCXsHg/wHYIgjCzQAOQ7MSZxyAYgAL7fQa5IF+2ZcDhVKFa2cmQtmiwoHTRRg3OAb+fpoLI2s13pqaW9cGJh2/4PC+kv2Fh/ijuq5Z/zwuKhhThvcwCgY7YuUjMwEAvj4yDOgZjkvHJ7RxhLHLJvTu1OsTWRNqQ9KcR64fY7a2LSosUD81eenN47RbmZbeudRWP5+yLmiylZ7MLpNMKkLuo7K2CWk5FZgyvAdkMhk+/11Er5gQ3DBvqFnb73Zm6h/vSeUNZ3vq0yNMX6aH3JNdgkFRFGsEQZgJYA6AsQBUAFaKosjiP13cT7s1Iz7XzkzEH0fy8d3OTKRkxODUuXK0tKjx8VNz9G2PisUY2CsCEaEB2JlSgM+1md/IvY0ZGIPjmaWS+2aO7ilZ97GzDKfZPfPPCXY/P5GjRYYFQOjdDQMTIvDrfk3AJzVQzcFr11IoVfrsh+RY9Y0KrNuSjgXT+tol2+trXxxDcWUDQoP9MDIxGjuPFQAA5k7q1+lzk7TVj8/GfW8mubob1E52KzoviqIawJ/af+Tlvk/KQq+YEEwdEWdTe2WLSn/n7VxhtVktwBU/nsSxsyUAgKdvGW+xbAS5n9EDo3HXgqGShZ8H9orAmw9Ow++Hz+OIWIzukcE4X2x5es2l4xIwzkptNyJv8pR29E8XDEoZ1i+q0yPpZDu1SWaQI+nFmDK8h2s6o3XqXBkOpxXjtvlDvHpq+/Yj+Th2tgRpueVY+cisTp9Ptxa9rLrRaPvaX07hrvlDOn3+rmpYv0icyTFPpLTs/qlGN07eXzIDjU3Ws7+Te7BbMEhdy5YDmosXW4PBU9nlVvfrAkEA+N8XRzveMXK6+OgQs6ybIYG+ePzGsejTIxQymQw3XjoIN146CADMsrAF+vvqj7n5isHO6DKRx7hsQgIGJUTgpU+5/N4Zci7WGD1fs/kM1myWzjK642g+hvePQlxUsEP79Pa3JwBoZloM6CVd+9QbKFs0N4mbFao2WrbPZ9tEjBvcepOxoUmJpz7cZ9fX6OrkMhliuwUZbQsJ9GNGbg/BYJDsrqC0DkH+PogKD9RvO3u+tdi7aTBwJsd6oEju6+lbx2OgycXJ4mtGQOgTadO6KQCYOToeF8vqMXtcL0d0kchj+Ehk2pPLZBbrNa5bOhd3vqaZjCOVlZcc68vtZwFofg9qtRoymUz/X0d4/esUrH58tkPO7ena+rnnFFbrHx9LL7bYjtpmOnoOdH46+5sPTmuzhjQ5DifCk9395+ODePwD47tuuiLhAFBV25pQ5HROOd5kUXi389p9U2xqZxoIAppC49YCwdgIzd3DnjGalO1+vj64+YrB6BXDYs7UNT1+4xhcMbG3/m+iI26bP8Ri3U6dmy8fjBvmDuzwa5C0b//MwF3LduJ8cS2WvJ+MO1/7U5+Z0p5Ml1eQxvqtafj38mSopKIUrcMMAO0mwM+n7UbtFBUeqC/jQs7HYJA6JbOgCtsO5rXd0IK3GAi6pe6Rwfj4yTltNzTw8HWjcNn4BESGBVhtNzAhAo9cP9ogWyJR1zasXxRuvHSQ1ZGN+GjrUxF7xoTA10dutd2l4xNY58sBfjukWeP+33WHUFOvAABs3p9j9Zjy6kZU1zdbbdMVFJbVGWUOB4AWlRq1DQrUNSpQYsNo9+4ThahtUEBhZXrp3pOsC2gvt0gs5xjSt7X25iv3TO5QrWByHbeYJioIwv9BU4LCH8AH0NQtXA/NjMJTABaLoqgSBOEeAPcBUAJ4WRTFza7pcddw8EwRggN9MTIx2mKb/32uWd83cUh3REcEWmxHnsf0onFIn25Iz2ud7juiv3HNoDGDYjBmUIxN57b2niIicy/cOQnPrT2Ei+X1AICocOmbLpeMjMeGpCyjbT5yWevfs+XBE7KjmjpNUJhXVIPQID+jZRMA9LNnDMtTlFU1IjTYz+rIy4akTPx9tneM7pZXN+KZNQfRKzYEL9012Wjfw+/tgVwmg0qtNivh8eoXRzGgZwSuNxnl/u8nhzCsbyRLUTmIbuaBr48c7/xrOr74/SwWzeiPwrJ6DOvXGgxyhM/zuHxkUBCE2QCmAZgOYBaA3gDeBvCsKIozoKlZeLUgCHEAHta2mwfgVUEQrA9BUKes3nQa73x3wqa2yhYV1Go1yg2ydj3/ySFHdY2cbNVjs/DI9aONtvWK5Qc+kbP4+sixxOBv8PX7pwEA7vnrMEwfGYfwYM3UbKnRxVWPzdLX5iTnOJRehPpGBZ7/5DAe/2Af3ttwAkdFy1MVG5qUeGLVPjy39qDV82490PGZOO5Gl+WzoKQOaokpnpamfWbkVxktPdEprmhgIOggIYG+8PWR62tDR4QGYPG1I9ErNhQThnRHMBPFeDR3GBmcB+AkgJ8AhAN4AsA90IwOAsBWAFcAaAGwVxTFJgBNgiBkAhgFTZF7sqC6vhlhQX4OW9Bu6M9jBfoF9QCQV2S5hAB5FkesESCi9uneLQj3LhyG/nHh+pG+qcPjMHV4a1bnbmH+RsdMGd5DfwFHztOsUOFfBuV2TmSV4USWdKH6Mznl+Px3zXdnSWWj2f62KJQqKJQqyGTA3pOFmD4y3qgWa2ufWtCiUkvua8umvedQWduMf84T9NsKSmrx6TYRd101FD06mVFVl6HcEt21THpua0kDtVqNmgZFp16XpE0d3gMTh/RAZFgA8ktqMaRPZNsHkcdyh2AwBkBfAAsA9AewCYBcW7cQAGoAREATKFYZHKfbblFkZDB8fd3zIjY2Nkxy+5lzZVC2qDBqYOdrrZ3OLsPSlclYNGsA7lo4wmK7+kYFggJ8LQaMhn39NTkb2Reqzdo0qmAUCJJnM31/Sr1fg4MDLL6Pyfvxd+8af51l/ed+5YxQyHx8sPqnkwCAmMhgo9/V1XMG4XhWGeoaFcgzKaNAjvdHygVcPTNR/9wnwM8siVpbf1uxsWFY/m0KBvSKwFWXJOK2F7ahvLoJ86b0xW8HclFep8Div402O27RE5vQolLjl7eubne/N+45BwB47JYJSBGLERLkhy+2ZyCzoAobdmfjhXumtvucJQbJ5H7YlW2xXV5ZPZ5fcwBR4YFGs4/+vTwZtQwG7eaxm8fjrS81S39CggNw+bT+AIAJruyUh/K070d3CAbLAKSLotgMQBQEoRGaqaI6YQAqAVRrH5tut6iiot7OXbWP2NgwlJRIfwk/tSIZACTvHrZXcko+AODn3VlYOLWvZJvK2iY8umIvJgixuHfhcBxOK8bw/lEIC24d8v/k55PILKjCTZcNwofaCwxTL3x8oNP9JfuYP7Uftu7PadcxKx+ZiRaVGntPFmLsoBiz96fueVCArz5LXkN9s8X3MXk3a59h5HqThVh8HuCL+iYlGhsUZr+rJ24cg292ZCDvYg0C/X3Q2MyU7s7y1W/p+Oq3dP3zT342/05t62/rQmElth/Kw3YAk4RYlFc3AQDO5mrKNOUUVKKkpAYqtRotLWp9IfAWldqm81tTUlKD5z7aDwDoH6+5JCurbEBJSQ1qGxQ4mV2GyUN7mK05b1a0wN9khkllpW3XaLuOahL0lJsUj2cgaD8+chmG9Gq9xG5sNP/cINu46/ejtQDVHYLBZAD/FgThbQDxAEIA7BAEYbYoikkA5gPYCeAQgFcEQQgEEABgKDTJZbxWXaMC6bkVGDc4tt3TPKvrm3E8o1Ryn0qlBmSa+lUFJXUAgCNiCfoeytPfnRtqkBnqx92abbrEBeTeHrhuFE5nl1qcpjsiMQqnso1rO+qmDc2b1MfquZ+7bQL+7yMG/kRE9mCtHALQWojd0H1v7pJoCZwrNL4AfX7dIeSX1OGluyY5JODXvV7uxRrkF9fii+1ncfZ8JQ6eKcK/rh2pn558rrAaL316BNfMTMRfp/Vr9+vsPFZgz26TiaF9I/Gva0ca1w9k0uEuxeULCbQZQVOgCfZ+AbAYwGMAXhAEYT80GUa/F0XxIoDlAPYA+BPAM6Iotn9yvQd57/tUrPzpFI6KJe0+9tXPjyK/RDoYeOi9PXh6tfkF/YXSOv3jNIN5+TrFFSxo7Amkbhzcs2CY/vGIflFm+23VIyoYDy4aAV8fGWaO6dnh8xCR+3j2nxNw7cxE/OOyQUbbRw9g1l/Hs37Vfe8bSR0+c772Zu9/1h7CK9rM31IKy+qQV6QJ7DYkZeJIB2ryPbfuEM6e10zWSs0qw71vJCE1qxQqtRop2hvTG3dntxn8kvPFdgs0W0fKWLBrcYeRQYii+KTE5lkS7dYAWOP4HrmHzHzNEsliK3V21Gq1/uLf8HGRYeBm8tnb0KREQ5PSLHvX/tNFdug1uQXtr3bMwBg8/LdRADQjgtX1CqTltI4KvnrfFPhbWVf71uLpaFYY31GeMKQ7Jgzpbv8+E5HdjB4Yg/2nL6JvnPTUIMOP/8Se4UjsGQ4AiI0IwvIfUvWfHVsP5JqVqiD72X/avP6d4Xd5W84Vmq/hT8+rlMzOqd+fW4Hq+maMF2LhI5fjmTWaDKarH5+tz1Zqj6Uq725IBQD9aKAawN3LduLqS/pj4fR+nT4/2YcuEPRhDdIuyy2CQeoYMa8Cy75KwZK/j0K/uHAseT8Z181KxFVT+9l0/F3LduLKKdJrCcmzDe7TDXnFtfoLPAAIC/ZHWLC/UTDYI9J6Bri2CsgTkXu6fb6AGaPiMbhPN6vtTGOO0QOj8dRNY9EvTvPZMW1EnFEwOHtsLySlcNqevSiU5tNAH1mxF9V1thWkf+nTI5Lb71q20+Ixr3+dAgC4fs5A/GWy4dKA1gDywbd3Yf6UvqiubcbCS/rpt5/KLrOpX4ZM32M/J59D1oUqo+Uo5BqThnbHAm2wLpPJEBHqj6raZrPfGXk3BoNuqq6x7YXRWw9q7uBt3HMOV0zS5Nz5YVe2zcEg0HY6Z/JMf589ECP6RxsVgtUZOSAa+CMDi2b0d0HPiMgZ/Hx9MKQDF9symQyCQRr5iNAALL15HF778hgAoFcM64s6mq2BYGdlFlQZPTccjWxsbsFP2nwBO47l67e/bWPtYUNinnmuv1PZ5WZr18m5Hr1+NEYkmkwF198PYDTYlbh8zSBJe+T9vR0+1jTDFmfoe7Z1S+fixbsmYaLE1Mx+cWGYNLS7WQF4P185Rg2Ilqwv1iMyGGuenI2F0xkMEnVVE4dqPk9s+RwY3Lt1dLFfvGelTCfLjp0twafb0ttu2EnieauJ38mB7r96uOWdVuI9jgx2LRwZdKGa+mb4+sglC8BKZRBrbFZix9F8zBjdE+HBxoWFZQZ/1Q+/t8f0UJRXN+LxD/bZodfkCgmxoZ8Wo20AACAASURBVHhg0Qgcfu1P/bYVS2YiOFDz3jmUVoQPfz6NO68catP5fOS8D0TUlQ3sFYHVj8+CXwdq8V41tS9+3W95VklkWAAqapo60z1ykl3HL+gfl1V5dU6+Lkkmk8FHLoNabZ65ViYRDXLwoGviFaEL/Xt5Mha/s9vm9r/szcEPu7Kx7tc0o+1qAM1K62mjdxzNt7qfPI8uEASASUN7YOUjM3HJqHgX9oiIPEl7AsEHF43A+MGx6B8XjvFCrNn+vj1aRwz7WUhaQ+6NZYM812wr2b0/eHQWVj02C927BRltDwyQ+PvXBowcGOxaGAx6kDJtwdWL5fXYdbwAqVmahdy5F2vwyRbrUz1OdmDRNzmXv58cM9oI5j56YrbFfVIjzERE9jBhSHcsvnakWTFxAPjPbROw5PrR+uc3XDrIrA0ROY6/n+UbO36+cvj5yvHyPZOxYslM/fbesaGWT8h5ol0Krx7dRHVdMz7efEZy3/dJWZg/uQ+aFZqpo8UVDfh0m9iu8+vqDZF7MkzjHejvi+1Hzku28/WRQyYzTgtPRORMvbuHYnDvbhgzMAZzxvZCgL/xhajpCAQROc/IxGj9AECCQT4BXx85fH3k+OiJ2ahvUkoGkNNHxmPrwTwMl0g+R96LwaCLGKaTziqosloQFrCeJpq8S1s35FYsmYlmiXTkRETO4COXY+nN41zdDSKS8LfZA/TBYHy0efZfXx+5Wd4JnetmD8Cssb14Q6eL4TRRF8jKr8R9bybpn7cVCJJ3iwq3XMtv/GDztTlBAb6ICJH+ICciIiLvddn4BIv7TEfp20sukzEQ7IIYDLrAf9fsd3UXyE307h6KJ24ca7Qt2GDt370LraSFJiIioi5Fat3uLG0CmTvmD4Ga60ionRgMukBVrXMKypL7ePT60fjLpD5m2/8+ZwB6RAUbbbtiUm9cOi4Br947BX6+/BMlIs8wtG8kosMDJfddP2eg2bawYD9Hd4nI6/TpYZ74JT46BOuWzsWkoT1c0CPydLzSdLLdJy603Yi8TmR4oFlheEC6zk+gvy9uvmKwWZBIROTOnvjHWLz+wFTJfZeOT8Dssb2Mtj38t1HO6BaR13jsxjGYMjzOaNt1sxJd1BvyFkwg42Trt1ovAUHeIyo8AOXVmsLLPaODER8djLUmNSKJiLyJzEoGrH/OE3DL5YNR26hA3sUaDOgZ4cSeEXmGyyYk4I8j0rWhh/eLMnr+8ZNzzKaNcpYotRdHBolsMKJ/VNuNTMgNLopkMhnkMhkeum4kLhlpUEuQpXyIyAvFR2tmNowXYnHp+AT9lHe5XIbwYH+MSIw2at+XheqJMHV4HEIC254+rSsZIbV+MCSQ4zzUPnzHELXhziuHYuKQ7njg7V2dPtfYQbEYOygWyScL7dAzIiL39ORN45CWU47Jw3pYHS0MDvBFfZMSz9w6HofSivDdzixU13FdPZE1z985CS0t0iWmYroF4V/XjkTv7laKyhMZ4MggkRXXzxmIS0bFt91QQs8Y8zWCpjgwSETeKCLEH1OGx1kNBAHg3YcvwarHZsHXR45pI+JZNoe6hIEJ0lOkxw2OxTCTgu83zjVPviSXyeDna7mMxLjBsYhliQiyEUcGiSxYt3Su/rG/nxzjhVgIvbuhV0wI3vjmuNVj/3HZIEwdHoeH39vj6G4SEXksXx85DK9pe0QG4Xxxres6ROQgN8wdCJVajWnD4xARGoD84lpsTD6HY2dLAACjBkRjvKCpLfzOQ5cgJNAXjc0tOJNT7spuUxfAYJDIBjKZDIuvGWm2ffm/Z0ChVOGJD/ZBZbBq+/IJvQEAS28eh7LqRsvntX9XiYg81j//MgTDB8YiK6+C0+nJq8wzKS+V0D0UU4fH6YNBw1IruhHy0CBO4CPH47uMujRLC637x4fbdHxokB8iwwLwyr2TMX5wrNn+wb27YapJGmgiIpIWGuSHv80dhH9cNggLp/fDXVcNNWtjWKJiynDWVSPPpUu0BEiXmiJyBgaD1KU9fet4s20+chn+PntAu87TIzIYC6b1a38H2lhPQ0TUFQUF+GLRjERMHRGHhdP76bffs2AYbr1isP75+MHdXdA7Ivswyi1g4XLA38/y2kAie2AwSF3KUzeN1T/uHx+G+OgQPLhohH7ba/dPxZon52BI30ipw+1Gd3HTj+nUiYgskstkWDSjtah27+6hRklpxg2Owf/dMs4VXSOy6v6rh9vUbvE1mmuQueN6Se4flRiNv0zug//ePtFufSMyxDWD1KUM6BWBF++ahI83n8FD140CAESGB+j3d+9E9i01bK/0umhGIq6+pH+bmfaIiMjcdbMSERcVDJlMhkEJ3VzdHSIzk4b2QHREIF757KjVduOF7lj71ByL1wNyuQzXzzHPKEpkLxwZJK/12n1TJLcnxIbi+TsmoVuoJgiMj9JM05jRjhISz98xEa9aOL+tGAgSEdlm2gjN2uuYboEAgKum9sN4wXyK6LxJveHrw89Wcg8DekqXkDDF6wFyJY4Mktd5a/F0hIf4wUcux6XjExAS6ItNe3MASC/RCw70xZonZ8NHbvu9kT49zKd3qm0fGCQiona4e8Ew3HHlkDY/p/8yuS9yCmsgnq90Us+oK3nqprFY9lWK5L41T87GPa8nmW1/+pbxCDXIFErkbhgMkteJDGud9nnz5ZpEA/pg0MIK7fYEgkRE5HzWPqeX3T8VF0rrEBHij0B/JtygzgsL9kNNvcJoWz8rmcYtvT8tFZgnche8Aiav8v6SGVb3t2ddHxEReYbYbkEYPTDG5vZrnpyNv0zu03ZD6rKumNjbbFuAhcyefzPJQB7AGxLkQTgySF4lJFB6KsbNlw9G1oUqjgASERF85HIM7t0N2w7mubor5IaW/3sGQoP8MHdcApoVLTh6tgQzRvUEoAn0mppbJI/7v1vGoaq2uV03JohczS2CQUEQjgGo1j49B+AVAOsBqAGcArBYFEWVIAj3ALgPgBLAy6IobnZBd8lNPHbDGLz17XGb2l46PgGXjk9waH8s3TEkIiLnuX7uQJTXNKGhSYnSqkb9dt16r5GJ0S7sHXmC0CDNjeWgAF8EBfhi7jjr1w+6BHTMbEueyOXBoCAIgQBkoijONti2CcCzoigmCYLwIYCrBUHYD+BhABMABAJIFgRhuyiKTa7oN9nffQuHY/Wm0za37909FADQIyoY04b3wIBerp2X///s3XucXXV97//X3DKTy8wwSSYkGEggYT5yC8RgCJeQAFFucrGUYqMWRAEpFa0tooL1cvBYrXAUW2gboGitv0OL5Rwbi6DiBbBCxXh+UPQbo2jLUWQIk8yEmEmYzPlj7xkmyZ5JJrNvM+v1fDx4OOu71t77M5OPe+/3Wt+11kEzp7J61eF0HOyHgSRVypwZU/no5Uv5hwfX880fPgvAogUziEPa+NQ7T+SAgfPKC5w1cP7J8wfPMZcKGbjywPJFc5h5wGRWHncQzVMmVbQmaSwqHgaBY4EpEfEguXo+CCwBvpNffz/weqAPeDQf/nojYgOwCPj38pesUmiZOolPXLWMA6Y2cvUt3ym4zR3Xn8ba7/2CJR3tu2xfLfPzVx2/5zkGkqTye+OphzG5qZ4zlsyldWruy/rMIfeSbWzY87SBN5xkGMyqE448kMee/s0+b980qZ7zTppfuoKkMqmGMLgV+DRwB3A4ufBXk1Ia2GfXA7QCLcDmIY8bGB9WW9sU6uurIyRo79rapnD0gtw8+0/90XLe95cPs2LxXL6z7tnBbQ6c1cLbL1w0uNzevuctHuTfRaVnj6mUitVfVx3cNuy6GTOm8csXtnLiMXPoeWk7v3yuhzmzvfJjVt349mWc9yf/Gxi5/2prc8cGJ09p8H1QBY23vqiGMLge2JAPf+sjYiO5I4MDmoFN5M4pbC4wPqyurq1FLlWjdcf7TuPBf/8v/vFbG/a6bffm39LZ2QPAzGkN3PX+03m2c8tgGDw+2gfXa3jt7c3+nVRS9phKqZz9ddbxuXPBWhsnM3f6ZDo7ezhg2iQ2bdk+7GPOWDKXbz7x7LDrVR2mtzTyYnfhM4mWHjGLI+a18fmvpcGxoT03Uv8dfeh0Hv/x87Q3N/o+qD1U6+fjiDs4yljHcC4HbgaIiIPIHQF8MCJW5tefDTwMPA4sj4imiGgFjiB3cRlVsdraGs464RCuvvDoguvramsGT9RunbbnnPtXzZzK6197MH/ypuP4wzceU9JaJUn66OVL+cBbXjO4fOD0KbusH7h/rarbcBeNm9pUzzsvOJoVx71qj3UXrTiMq84/asTnfds5R/AnbzqOE4+eXZQ6pUqrhjB4J3BARDwC3EMuHL4b+Gj+ojGTgHtTSs8Bt5ILhg8BN6SUtg3znKoyr331rILjF61YwH97xwn86ZuO48C2KXusr6mp4U1nHM5R86eXukRJkmieMmmXq0LOnTmVO9532i7bHL7bjcSvcWdlVbju9xfvdZs3n3XEHmNHzs9NJz73xPmccOSBIz6+saGOo+ZPp7amZsTtpPGi4tNEU0rbgdUFVq0osO0aYE3Ji1JZfPiy1zJvdu6wdetUw54kqXr8+VXL+Mdv/YzfX3X44HlihTRPaWCE1SqTy85+NUfMa2POjCksO/LAgleL/dvrVjJnduse0/heNXNamaqUqk/Fw6DGh7raGvp2FnhnHcbrX3sw0wcu372bT//hSfz8V92DQVCSpGozq20Kf/Q7rxzxe/PrOvhNgWsRfPiy1/KL514JF2efcAjnn3IoP312E7fc83/KUut49bHLl/Jndz0+7PpXzZzK/33hpRGf46rzj2Lnzv7BI3ofv2IZAPd//5eD2xw4fQq/eXEr9XW7Togb+G7zuysP299fQRr3DIPaJx97+1JuWPPY4PINf7CEj3/hCQCueMORLDvqQO5/7D9Z/1+beOcFR9E0ac/W+vBlr6VrSy/TW5qY3tJUttolSRqrQuegHTGvjektTTzz61fCYGNDHY0NdRx96Aze/LoO/uHr68tZ5rhz+NxWfvrs5oLr6ur2fsh16RGzqCkwZXPo7uub3rGUHS/v3GObNbtN/5WyqBrOGVQVO3ROM5+4chlzZkzlr//klZm7UxpfCXsnHj2bmpoazlk2j/dcfGzBIAgwb3Yzxy2cWfKaJUkqp7mzpr6yMCSXnLFkLh+69PjyFzSOLHzV8LfzmNRQx2Vnv5r3v/k1HDqnBYDjFs7kjNe8EswLBcHd1dXWDvvdRMo6/5+hEX3o0tcO/jyp4ZV7NjbUux9BkiSAA9umcNnZr+b+7/+SFccetMu6Q+e08Ikrl/GBv/1+haqrHqctfhXfWvd/B5cLXUV8qBrg1Pzf8wNveQ09W3fQlj8F5Zs/HPn2HgNXKp/eUviUFUk5hkGNyo1/cDzP/LqbA6b55ipJ0oBTjz1oMLjsbvfbU3zkbbnzDO++/ycAHHXodP7jmRcH15930nx+8VwPT/58Y+kKLrO3nf1qlkQ7LVMnsXzRHHbu7Kd5yithsKG+lj9903HcufbHPL/pt3s8vr6udjAI7ouTjp7Npi29LDvKW0BII/HwjgB4+7l7Xmq5kMMOahn23j2SJGXBRSsWUFdbw4XLD93nx1xwyivbHnJgMycOCSnv+p1db01RUwMLDmoZ9rkuXrlgFNXum7eeGXuMvf61Bxft+ZcfexBTmhq44JRDmd7SxMwDJu+xzeFzD+DjV56wT8+3aMEMjpjXNuz6+rpazj/5UGYVeB1JrzAMitMWv4qTj5nDeSfN3+fHDNws/iRvuipJypiOgw9gzftO2+V+hKPVUF/Lxact4L2/dyyTGuq46/2n77L+9UuHD2J1Be5l0TJ15CmXd73/dG6+5mSuPP/IgutPW7zrTdjPPXEebzrj8D3qGs7ZJxwy7LrVqw7fp+eA3Pl9rz5k73/X91x87D7dV1DSyAyDE8hn3nXKPm133e8v5rb3ngrk9qwN7A3c9xtH5E7Y/uy1p/CONxT+UJEkSSM7+4R5HH3YjMHlRQtyPx80c+ouFzy58/pXrnp57onzmD1j12mnAJ+4clnBWT6rVx3OFfnP6rbmRpYduetO3AuXH8od1+95Vc3Z0/d8jZFcfNpC5rZP3WP8TWcczqrj9+8Io7dvlErPcwbHkcZJdfRu7xt2/b5cghkYnFZxx/WnUTvkKlyvffUs1n7vF4PLF54y8vSXfbmClyRJ2jfvvOAoNjy7maMOnb7L+NDP24tWLGDnzn5WHHcQxxw2g7/85ycBmNxYz4lHz6Zl6iQ65h7Ar198iSlNDXudJnnGkrm7fBfYHwfPyt20/fo3v4Z3febhXdbNanOaplTNPDI4jtz+3hUjrt+Xt/Khl7je/c3/4FnT+PgVr8zVP38vYVCSJO2bgamdu9/4fKimSfUcfdiMve5sra2t4dKzXs1rOtp3Ha+p4ZjDZtA4qY75s1v2GgTPPuEQpjY1DC4P/Q4wGgPTNYc+16olc3nXRcdw7IIZwz1s79zpLJWcRwbHsbbmRrp6evd5+zuvP22vHzDTm3M3gx/ppGxJkjQ6ZyyZyzO/7uYNozg//0OXHs/O/txJHDe8dQm1Bc4VHIvdn2/OjD2neQ7V2FBH46Q6ul/avsv4wG0cIHcl1H/53i9YdtRsDhvhIji71zD0PMhTjz2In/znpj1u0yGp+AyDZTa3fSrPdr406sctO/JAIHf0rx+Igw/g+je/hrvv/wnf/T+/ym+165v6Ocvm8a/f/+Xg8r5M62ycVMdt7z11l3sKSpKksZncWM+7Llo0qscM3GgdYMEwN2evq62hb+dozvofvXdddAyP/P+/5g/feDQbnt3MJ7+0jsmN9Rxz2HSOXThzl23feOphnHXCIUxu3LevmGcuPYRfPtfDhcsPGxxbdtRsjl04c5+fQ9L+8/9lZTZ0CsWAmhro38v7+EUrcpeRXji3lZ8+u3lw5sQFpxzKcxtf4k2rDt9jNsXQPX5vHMXlr4eetC5JkqrXbe89lZ07S/saiw9vZ/HhuSmpHQcfwGVnv5oj57UVvD0EMKoQN21yA++95LgxPYek/ec5g2XWn09982Y3Dxnc++NmtOambx4fswBYkv/ftuZG3v+WJcyfvedUjDj4lUsze9NVSZImnob63NTNcqmpqeHUYw8aNghKGl/c7VJmA7lvf2f9rzp+LscunEF7gTfhpkl1LHxVK0fOb+OkY+Z4o1VJkiRJwzIMltlAGGwashev/YDJPL/pt4PLk+pr2f5y4TkfNTU1zGorfO+fmpoaPvjWJbuMnX/yfL731HO0NTeOrXBJkiRJE4rTRMstnwZramr42NuXcs6yeXzosuM5a+khg5scNHPkq3mNxoXLD+NTV5804qWsJUlSdlx5Xu4m9KccM6fClUiqNBNCmZ1/8nwAzj1xHnPbp/G7KxcwtamB3zt94eA2HQcfwAffuoTfO23hMM8iSZK0f5YdNZu73n86B07fc6bRxStzF6w7cv70PdZJmnicJlpmRx82g698+nxeeGHLsNuceNRs5s1upnd7HwCHzmkedltJkqRiOXvZPM464ZB9uh2VpPHPMFgBw73B3nn9aezs76euNnfA9sj5bbzn4mNZ8Kq937RVkiSpGAyCUnYYBqtITU0NdUPegGtqali0YEYFK5IkSZI0UXnOoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpg2r6+/srXYMkSZIkqcw8MihJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlUH2lC8iSiKgFbgOOBXqBd6SUNlS2Ko0XEdEA3AXMBxqBm4CngbuBfuAp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOcv8eqm4RMQt4Angduf65G/tLRRARHwDOByaR+yz8DvaXiiD/+fh5cp+PfcAV+P6lIoiIE4BPppRWRsRCxthTEbEM+Gx+2wdTSh8t/2+1K48MlteFQFNK6UTg/cDNFa5H48tbgI0ppeXAWcBfArcAN+bHaoALImI2cC1wMnAm8ImIaASuBp7Mb/sF4MYK/A6qYvkvVH8D/DY/ZH+pKCJiJXASub5ZARyM/aXiOQeoTymdBHwM+Dj2l8YoIt4H3AE05YeK0VN/DawGTgFOiIjF5fp9hmMYLK9TgK8BpJS+Dxxf2XI0zvwT8KH8zzXk9iotIbd3HeB+YBWwFHg0pdSbUtoMbAAWMaT/hmwrDfVpch9Uv8ov218qljOBJ4H7gH8B1mJ/qXjWA/X5GVgtwA7sL43dz4DfGbI8pp6KiBagMaX0s5RSP/AAVdBrhsHyagE2D1nuiwin6mqfpJS2pJR6IqIZuJfcXqaa/BsK5KYhtLJnnxUaHxiTAIiIy4DOlNIDQ4btLxXLTHI7QC8G3gn8A1Brf6lItpCbIvoTYA1wK75/aYxSSl8mt2NhwFh7qgXoLrBtRRkGy6sbaB6yXJtSerlSxWj8iYiDgW8Bf59S+hKwc8jqZmATe/ZZofGBMWnA5cDrIuLbwHHkprXMGrLe/tJYbAQeSCltTyklYBu7fgmyvzQWf0yuvzrIXZfh8+TOTR1gf6kYxvqda7htK8owWF6PkpvXTv4E0icrW47Gk4g4EHgQuD6ldFd+eF3+XByAs4GHgceB5RHRFBGtwBHkTnQe7L8h20oApJROTSmtSCmtBH4E/AFwv/2lInkEOCsiaiLiIGAq8E37S0XSxStHYV4EGvDzUcU3pp5KKXUD2yNiQUTUkJs+X/Feq+nv79/7ViqKIVcTXUTunK+3pZR+UtmqNF5ExGeBS8hNgxnwbnLTYSYBPwauSCn15a9sdSW5HT7/PaX05YiYQm5v6RxgO7A6pfRcOX8HjQ/5o4PvJLcXdA32l4ogIj4FnEaubz4IPIP9pSKIiGnkrrY9h1w/fRb4AfaXxigi5gP/M6W0LCI6GGNP5Q8GfQaoI3c10RvK/1vtyjAoSZIkSRnkNFFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgbVV7qAUurs7OmvdA2FtLVNoatra6XL0ARlf6nU7DGVkv2lUrK/VErV2l/t7c01w63zyGAF1NfXVboETWD2l0rNHlMp2V8qJftLpTQe+8swKEmSJEkZZBiUJEmSpAwyDEqSJEkaF3p39PF811Z6d/RVupQJYUJfQEaSxqveHX1s3tJL67RGGhvG3zkIkiQVU9/Ondzz0AbWre/kxe5eprc0srijnUtOX0hdrce39pdhUJKqiB92kiTt6Z6HNvCNHzw7uLyxu3dwefWqjkqVNe75zUKSqsjAh93G7l76eeXD7p6HNlS6NEmSKqJ3Rx/r1ncWXLdu/QtOGR2Dih8ZjIjLgMvyi03AccCJwFrgp/nx21NK90TEFcBVwMvATSmlteWtVpJKZ28fdhetWOCUUUlS5mze0suL3b0F13X1bGPzll5mtU0pc1UTQ8XDYErpbuBugIj4K+AuYAlwS0rp5oHtImI2cC1wPLnQ+EhEfD2lVLgzJGmc8cNOkqQ9tU5rZHpLIxsLfEa2NTfROq2xAlVNDFUzTTQijgeOSin9LbkweG5EfDci7oyIZmAp8GhKqTeltBnYACyqYMmSVFQDH3aF+GEnScqqxoY6Fne0F1y3uGOms2bGoOJHBof4IPDR/M+PA3eklJ6IiBuADwM/AjYP2b4HaB3pCdvaplBfX53N0d7eXOkSNIHZX+PXyce+iq88/PMC4wcx96ADKlBRYfaYSsn+UinZX+PTH/3eYqZMnsT3n/o1L2z6LTMPmMyyo+dw+XlHUVdXNce3xl1/VUUYjIgDgEgpfSs/dF9KadPAz8DngO8CQ/+6zcAmRtDVtbXYpRZFe3sznZ09lS5DE5T9Nb6dd+IhbP3tdtatf4Gunm20NTexuGMm5514SNX8u1Zjj3krjomjGvtLE4f9Nb5dePJ8zl568C7v9y+++FKlyxpUrf01UkCtijAInAp8c8jyAxHxrpTS48AZwBPkjhZ+PCKagEbgCOCpslcqSSVUV1vL6lUdXLRigeFmH3grDknKlsaGOs+fL6JqCYMBDJ0XdTXwuYjYATwHXJlS6o6IW4GHyZ3reENKaVv5S5Wk0vPDbt943ylJkvZfVYTBlNJf7Lb8Q+DkAtutAdaUqy5JUvXyVhySJI2Nc2gkSePSvtyKQ5IkDc8wKEkal7wVhyRJY2MYlCSNS953SpKksamKcwYlSdofl5y+EGCPW3EMjEuSpOEZBiVJ45a34pAkaf8ZBiVJ45634pAkafQ8Z1CSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGVQfaULiIjLgMvyi03AccApwGeAfuAp4JqU0s6IuAK4CngZuCmltLbsBUuSJEnSBFDxI4MppbtTSitTSiuBJ4BrgT8DbkwpLQdqgAsiYnZ+3cnAmcAnIqKxQmVLkiRJ0rhW8TA4ICKOB45KKf0tsAT4Tn7V/cAqYCnwaEqpN6W0GdgALKpIsZJGrXdHH893baV3R1+lS5EkSRJVF/EP/QAAIABJREFUME10iA8CH83/XJNS6s//3AO0Ai3A5iHbD4wPq61tCvX1dcWusyja25srXYImsGrqr76+ndz1L//B95/6NZ2bfkv7AZNZdvQcLj/vKOrqqmZ/lEapmnpME4/9pVKyv1RK462/qiIMRsQBQKSUvpUf2jlkdTOwCejO/7z7+LC6urYWs8yiaW9vprOzp9JlaIKqtv760jfW840fPDu4/HzXb/nKwz9n62+3s3pVRwUr0/6qth7TxGJ/qZTsL5VStfbXSAG1WnbLnwp8c8jyuohYmf/5bOBh4HFgeUQ0RUQrcAS5i8tIqlK9O/pYt76z4Lp1619wyqgkSVIFVUsYDODnQ5b/BPhoRPwbMAm4N6X0HHAruWD4EHBDSmlb2SuVtM82b+nlxe7eguu6eraxeUvhdZIkSSq9qpgmmlL6i92W1wMrCmy3BlhTrrokjU3rtEamtzSysUAgbGtuonWaFwSWJEmqlGo5MihpAmpsqGNxR3vBdYs7ZtLYUJ0XeJIkScqCqjgyKGniuuT0hUDuHMGunm20NTexuGPm4LgkSZIqwzAoqaTqamtZvaqDi1YsYPOWXlqnNXpEUJIkqQoYBiWVRWNDHbPaplS6DEmSJOV5zqAkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkZUzvjj6e79pK746+SpciSaqg+koXIEmSyqNv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtb9w5KUNYZBSZIy4p6HNvCNHzw7uLyxu3dwefWqjkqVJUmqEHcDSpKUAb07+li3vrPgunXrX3DKqCRlkGFQkqQM2Lyllxe7ewuu6+rZxuYthddJkiYuw6AkSRnQOq2R6S2NBde1NTfROq3wOknSxFX0MBgRc/L/uzwiromIqcV+DUmSNDqNDXUs7mgvuG5xx0waG+rKXJEkqdKKegGZiLgd2BkRfwV8CXgQOB24qJivI0mSRu+S0xcCuXMEu3q20dbcxOKOmYPjkqRsKfbVRJcCxwMfBu5MKX0kIv69yK8hSZL2Q11tLatXdXDRigVs3tJL67RGjwhKUoYVe5poXf45LwDuj4gpgNNEJUmqIo0Ndcxqm2IQlKSMK3YY/ALwa+AXKaXHgCeAvynya0iSJEmSxqjY00QfAD6bUhq4WdFywBMRJEmSJKnKFCUMRsTJ5KaI3gG8PSJqhjz/XwMde3n8B4DzgUnAbcAPgbXAT/Ob3J5SuicirgCuAl4GbkoprS1G/ZIkSZKUNcU6Mvg6YAUwB/jYkPGX2cs00YhYCZwEnAxMAf4UqAFuSSndPGS72cC15C5Q0wQ8EhFfTyl5l1xJkiRJGqWihMGU0kcAIuKtKaW/H+XDzwSeBO4DWoDrgLfnni4uIHd08D3krlT6aD789UbEBmAR4NVKJUmSJGmUin3O4Hcj4i+A6eSO7gGQUrp8hMfMBOYBbwAOBb4C/DlwR0rpiYi4gdytKn4EbB7yuB6gdaRi2tqmUF9fnVdKa29vrnQJmsDsL5WaPaZSsr9USvaXSmm89Vexw+A/Ag/n/+vfx8dsBH6SUtoOpIjYBnw1pfR8fv19wOeA7wJD/7rNwKaRnrira+soSi+f9vZmOjt7Kl2GJij7S6Vmj6mU7C+Vkv2lUqrW/hopoBY7DDaklP50lI95BHh3RNxC7pzDqcBXI+KalNLjwBnkblHxOPDxiGgCGoEjgKeKV7okSZIkZUexw+AjEXEe8ED+SN9epZTWRsSp5MJeLXAN0Al8LiJ2AM8BV6aUuiPiVnJHHWuBG1JK24pcvyRJkiRlQrHD4O8CfwQQEQNj/SmlEU/cSym9r8DwyQW2WwOsGWONkiRJkpR5RQ2DKaWDivl8kiRJkqTSKGoYjIg/KzSeUvpYoXFJkiRJUmXUFvn5aob8Nwk4HziwyK8hSZIkSRqjYk8T/ejQ5Yj4b8CDxXwNSZIkSdLYFfvI4O6mAYeU+DUkSZIkSaNU7HMGn+GVm83XAgcAf1HM15AkSZIkjV2xby2xcsjP/cCmlFJ3kV9DkiRJkjRGxZ4m+p/AOcDNwK3AZRFR6qmokiRJkqRRKvaRwU8BhwN3kbui6NuAw4D3FPl1JEmSJEljUOww+HpgcUppJ0BEfBV4ssivIUmSJEkao2JP4axn14BZD/QV+TUkSZIkSWNU7COD/wB8OyL+v/zy7wNfKvJrSJIkSZLGqGhhMCLagDXAOuD0/H+fSSn9fbFeQ5IkSZJUHEWZJhoRi4GngSUppftTStcBDwB/HhGLivEakiRJkqTiKdY5g58Gfj+l9LWBgZTSB4HLgVuK9BqSJEmSpCIpVhhsSyl9e/fBlNIDwMwivYYkSZIkqUiKFQYbCt1cPj82qUivIUmSJEkqkmKFwe8AHy4wfiPwgyK9hiRJkiSpSIp1NdEPAP8aEW8G/h2oAV4DPA+cX6TXkCRJkiQVSVHCYEqpJyJOBU4DFgM7gb9KKT1cjOeXJEmSJBVX0e4zmFLqBx7K/ydJkiRJqmLFOmdQkiRJkjSOGAal/dC7o4/nu7bSu6Ov0qVIkqRxzO8UqqSiTROVsqBv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtZ9K5Ikad/4nULVwDAojcI9D23gGz94dnB5Y3fv4PLqVR2VKkuSJI0zfqdQNXC3g7SPenf0sW59Z8F169a/4PQOSZK0T/xOoWphGJT20eYtvbzY3VtwXVfPNjZvKbxOkiRpKL9TqFoYBqV91DqtkektjQXXtTU30Tqt8DpJkqSh/E6hamEYlPZRY0MdizvaC65b3DGTxoa6MlckSZLGI79TqFp4ARlpFC45fSGQm8/f1bONtuYmFnfMHByXJEnaF36nUDWoijAYER8AzgcmAbcB3wHuBvqBp4BrUko7I+IK4CrgZeCmlNLaylSsrKqrrWX1qg4uWrGAzVt6aZ3W6N47SZI0an6nUDWo+DTRiFgJnAScDKwADgZuAW5MKS0HaoALImI2cG1+uzOBT0SEE6pVEY0Ndcxqm+KbtiRJGhO/U6iSKh4GyQW7J4H7gH8B1gJLyB0dBLgfWAUsBR5NKfWmlDYDG4BF5S9XkiRJksa/apgmOhOYB7wBOBT4ClCbUurPr+8BWoEWYPOQxw2MD6utbQr19dW5l6W9vbnSJWgCs79UavaYSsn+UinZXyql8dZf1RAGNwI/SSltB1JEbCM3VXRAM7AJ6M7/vPv4sLq6tha51OJob2+ms7On0mVogrK/VGr2mErJ/lIp2V8qpWrtr5ECajVME30EOCsiaiLiIGAq8M38uYQAZwMPA48DyyOiKSJagSPIXVxGkiRJkjRKFT8ymFJaGxGnkgt7tcA1wDPAmoiYBPwYuDel1BcRt5ILhrXADSmlbZWqW5IkSZLGs4qHQYCU0vsKDK8osN0aYE3pK5IkSZKkia0apolKkiRJksrMMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJI+jd0cfzXVvp3dFX6VIkqajqK12AJElSNerbuZN7HtrAuvWdvNjdy/SWRhZ3tHPJ6Qupq3V/uqTxzzAoSZJUwD0PbeAbP3h2cHljd+/g8upVHZUqS5KKxt1akiRJu+nd0ce69Z0F161b/4JTRiVNCIZBSZKk3Wze0suL3b0F13X1bGPzlsLrJGk8MQxKkiTtpnVaI9NbGguua2tuonVa4XWSNJ4YBiVJknbT2FDH4o72gusWd8yksaGuzBVJUvF5ARlJkqQCLjl9IZA7R7CrZxttzU0s7pg5OC5J451hUJIkqYC62lpWr+rgohUL2Lyll9ZpjR4RlDShVEUYjIgfAt35xWeAW4G1wE/zY7enlO6JiCuAq4CXgZtSSmvLXqwkScqUxoY6ZrVNqXQZklR0FQ+DEdEE1KSUVg4ZewdwS0rp5iFjs4FrgeOBJuCRiPh6SsnLeUmSJEnSKFU8DALHAlMi4kFy9XwQWAJERFxA7ujge4ClwKP58NcbERuARcC/V6ZsSZIkSRq/qiEMbgU+DdwBHA7cD/w5cEdK6YmIuAH4MPAjYPOQx/UArSM9cVvbFOrrq3Nuf3t7c6VL0ARmf6nU7DGVkv2lUrK/VErjrb+qIQyuBzaklPqB9RGxEfhaSum/8uvvAz4HfBcY+tdtBjaN9MRdXVtLUO7Ytbc309nZU+kyNEHZXyo1e0ylZH+plOwvlVK19tdIAbUa7jN4OXAzQEQcBLQA/ysilubXnwE8ATwOLI+IpohoBY4AnqpAvZIkSZI07lXDkcE7gbsj4hGgn1w43AZ8LiJ2AM8BV6aUuiPiVuBhciH2hpTStkoVLUmSJEnjWcXDYEppO7C6wKqTC2y7BlhT8qIkSZIkaYKrhmmikiRJkqQyMwxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkoqmd0cfz3dtpXdHX6VLkbQXFb+1hKpD744+Nm/ppXVaI40NdZUuR5IkjTN9O3dyz0MbWLe+kxe7e5ne0sjijnYuOX0hdbUef5CqkWEw43zjliRJxXDPQxv4xg+eHVze2N07uLx6VUelypI0Ar/tZ9zAG/fG7l76eeWN+56HNlS6NEmSNE707uhj3frOguvWrX/BKaNSlTIMZphv3JIkqRg2b+nlxe7eguu6eraxeUvhdZIqyzCYYb5xS5KkYmid1sj0lsaC69qam2idVnidpMoyDGaYb9ySJKkYGhvqWNzRXnDd4o6ZXpxOqlKGwQzzjVuSJBXLJacvZNXxc5nR0kRtDcxoaWLV8XO55PSFlS5N0jC8mmjGDbxBr1v/Al0922hrbmJxx0zfuCVJ0qjU1dayelUHF61Y4O2qpHHCMJhxvnFLkqRiamyoY1bblEqXIWkfGAYF+MYtSZIkZY3nDEqSJElSBhkGJUmSJCmDDIOSJEmSlEE1/f39la5BkiRJklRmHhmUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMqi+0gVkSUTUArcBxwK9wDtSShsqW5XGi4hoAO4C5gONwE3A08DdQD/wFHBNSmlnRFwBXAW8DNyUUlobEZOBLwKzgB7g0pRSZ7l/D1W3iJgFPAG8jlz/3I39pSKIiA8A5wOTyH0Wfgf7S0WQ/3z8PLnPxz7gCnz/UhFExAnAJ1NKKyNiIWPsqYhYBnw2v+2DKaWPlv+32pVHBsvrQqAppXQi8H7g5grXo/HlLcDGlNJy4CzgL4FbgBvzYzXABRExG7gWOBk4E/hERDQCVwNP5rf9AnBjBX4HVbH8F6q/AX6bH7K/VBQRsRI4iVzfrAAOxv5S8ZwD1KeUTgI+Bnwc+0tjFBHvA+4AmvJDxeipvwZWA6cAJ0TE4nL9PsMxDJbXKcDXAFJK3weOr2w5Gmf+CfhQ/ucacnuVlpDbuw5wP7AKWAo8mlLqTSltBjYAixjSf0O2lYb6NLkPql/ll+0vFcuZwJPAfcC/AGuxv1Q864H6/AysFmAH9pfG7mfA7wxZHlNPRUQL0JhS+llKqR94gCroNcNgebUAm4cs90WEU3W1T1JKW1JKPRHRDNxLbi9TTf4NBXLTEFrZs88KjQ+MSQBExGVAZ0rpgSHD9peKZSa5HaAXA+8E/gGotb9UJFvITRH9CbAGuBXfvzRGKaUvk9uxMGCsPdUCdBfYtqIMg+XVDTQPWa5NKb1cqWI0/kTEwcC3gL9PKX0J2DlkdTOwiT37rND4wJg04HLgdRHxbeA4ctNaZg1Zb39pLDYCD6SUtqeUErCNXb8E2V8aiz8m118d5K7L8Hly56YOsL9UDGP9zjXcthVlGCyvR8nNayd/AumTlS1H40lEHAg8CFyfUrorP7wufy4OwNnAw8DjwPKIaIqIVuAIcic6D/bfkG0lAFJKp6aUVqSUVgI/Av4AuN/+UpE8ApwVETURcRAwFfim/aUi6eKVozAvAg34+ajiG1NPpZS6ge0RsSAiashNn694r9X09/fvfSsVxZCriS4id87X21JKP6lsVRovIuKzwCXkpsEMeDe56TCTgB8DV6SU+vJXtrqS3A6f/55S+nJETCG3t3QOsB1YnVJ6rpy/g8aH/NHBd5LbC7oG+0tFEBGfAk4j1zcfBJ7B/lIRRMQ0clfbnkOunz4L/AD7S2MUEfOB/5lSWhYRHYyxp/IHgz4D1JG7mugN5f+tdmUYlCRJkqQMcpqoJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBtVXuoBS6uzs6a90DYW0tU2hq2trpcvQBGV/qdTsMZWS/aVSsr9UStXaX+3tzTXDrStbGIyIOmANEEA/8E5gG3B3fvkp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOctVfTPX1dZUuQROY/aVSs8dUSvaXSsn+UimNx/4q5zTR8wBSSicDNwIfB24BbkwpLQdqgAsiYjZwLXAycCbwiYhoBK4Gnsxv+4X8c0iSJEmS9kPZwmBK6X8BV+YX5wGbgCXAd/Jj9wOrgKXAoyml3pTSZmADsAg4BfjabttKkiRJkvZDWc8ZTCm9HBGfB94I/C7wupTSwHl9PUAr0AJsHvKwQuMDYyNqa5tStYdr29ubK12CJjD7S6Vmj6mU7C+Vkv2lUhpv/VX2C8iklC6NiOuBx4DJQ1Y1kzta2J3/eaTxgbERVeMJnJBrks7OnkqXoQnK/lKp2WMqJftLpWR/qZSqtb9GCqhlmyYaEW+NiA/kF7cCO4EfRMTK/NjZwMPA48DyiGiKiFbgCHIXl3kUOGe3bSVJkiRJ+6GcRwb/Gfi7iPgu0AC8B/gxsCYiJuV/vjel1BcRt5ILe7XADSmlbRFxO/D5iHgE2A6sLmPtkiRJkjSh1PT3V+Wt+IqiWu8zWK2HkDUx2F8qNXtMpWR/qZTsL5VStfbXSPcZLOetJSRJkiRpv1132/e47rbvVbqMCcMwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmD6sv1QhHRANwFzAcagZuA/wLWAj/Nb3Z7SumeiLgCuAp4GbgppbQ2IiYDXwRmAT3ApSmlznLVL0mSJEkTSdnCIPAWYGNK6a0RMR34EfAx4JaU0s0DG0XEbOBa4HigCXgkIr4OXA08mVL6SES8CbgReHcZ65ckSZKkCaOcYfCfgHvzP9eQO+q3BIiIuIDc0cH3AEuBR1NKvUBvRGwAFgGnAJ/KP/5+4ENlrF2SJEmSJpSyhcGU0haAiGgmFwpvJDdd9I6U0hMRcQPwYXJHDDcPeWgP0Aq0DBkfGBtRW9sU6uvrivY7FFN7e3OlS9AEZn+p1OwxlZL9pVKyv8a3uroaoHr/Hau1ruGU88ggEXEwcB9wW0rpSxFxQEppU371fcDngO8CQ/+KzcAmoHvI+MDYiLq6thar9KJqb2+ms7On0mVogrK/VGr2mErJ/lIp2V/jX19fP0BV/jtWa3+NFFDLdjXRiDgQeBC4PqV0V374gYhYmv/5DOAJ4HFgeUQ0RUQrcATwFPAocE5+27OBh8tVuyRJkiRNNOU8MvhBoA34UEQMnO/3XuB/RMQO4DngypRSd0TcSi7s1QI3pJS2RcTtwOcj4hFgO7C6jLVLkiRJ0oRSznMG303hq3+eXGDbNcCa3ca2AheXpjpJkiRJyhZvOi9JkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJklT1Hnv6N2za0svG7m382Z2P8djTv6l0SeNefaULkCRJkqSRPPb0b/ibr/zH4PKznS8NLp9w5IGVKmvc88igJEmSpKr21X/7xTDjvyxrHRONYVCSJElSVfvVC1sLjv9640tlrmRiMQxKkiRJqmoHzZxScHzOjKllrmRiMQxKkiRJqmrnnjh/mPF55S1kgvECMpIkSZKq2sBFYu5Y+zR9O/uZ2z6Nc0+c58VjxsgwKEmSJKnqnXDkgdz77Z8B8LG3L61wNROD00QlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZVDZLiATEQ3AXcB8oBG4CXgauBvoB54Crkkp7YyIK4CrgJeBm1JKayNiMvBFYBbQA1yaUuosV/2SJEmSNJGU88jgW4CNKaXlwFnAXwK3ADfmx2qACyJiNnAtcDJwJvCJiGgErgaezG/7BeDGMtYuSZIkSRNKOcPgPwEfyv9cQ+6o3xLgO/mx+4FVwFLg0ZRSb0ppM7ABWAScAnxtt20lSZIkSfuhbNNEU0pbACKiGbiX3JG9T6eU+vOb9ACtQAuwechDC40PjI2orW0K9fV1Ram/2NrbmytdgiYw+0ulZo+plOwvlZL9Nb7V1dUA1fvvWK11DaesN52PiIOB+4DbUkpfiohPDVndDGwCuvM/jzQ+MDairq6txSi76Nrbm+ns7Kl0GZqg7C+Vmj2mUrK/VEr21/jX15c7jlSN/47V2l8jBdSyTRONiAOBB4HrU0p35YfXRcTK/M9nAw8DjwPLI6IpIlqBI8hdXOZR4JzdtpUkSZIk7YdyHhn8INAGfCgiBs4dfDdwa0RMAn4M3JtS6ouIW8mFvVrghpTStoi4Hfh8RDwCbAdWl7F2SZIkSZpQynnO4LvJhb/drSiw7RpgzW5jW4GLS1OdJEmSJGWLN52XJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSpAq57rbvcd1t36t0Gcoow6AkSZIkZVD9aDaOiOuB21NK3RFRD5wMPJNS+s9RPMcJwCdTSisjYjGwFvhpfvXtKaV7IuIK4CrgZeCmlNLaiJgMfBGYBfQAl6aUOkdTvyRJkiQpZ1RhELgwpfTJ/M9/D0wCpkTEP6aU/m5vD46I9wFvBV7KDy0Bbkkp3Txkm9nAtcDxQBPwSER8HbgaeDKl9JGIeBNwI/DuUdYvSZIkSWL000R7ASKiHXhtSuki4Fzgbfv4+J8BvzNkeQlwbkR8NyLujIhmYCnwaEqpN6W0GdgALAJOAb6Wf9z9wKpR1i5JkiRJyhvtkcG7I+KrwGTg7wBSSjvzU0b3KqX05YiYP2ToceCOlNITEXED8GHgR8DmIdv0AK1Ay5DxgbERtbVNob6+bl9KK7v29uZKl6AJzP5SqdljKiX7S6VUbf1VV1cDVF9d1eruD59Z6RJGNN7+HUcVBlNKd0fEg8DclNLjABFxGPDsfr7+fSmlTQM/A58DvgsM/Ss2A5uA7iHjA2Mj6uraup9llVZ7ezOdnT2VLkMTlP2lUrPHVEr2l0qpGvurr68foOrq0uhVY3/ByAF1tBeQWZBS+hnwq4GxlNLPgd/bz9oeiIh35YPlGcAT5I4WfjwimoBG4AjgKeBR4Jz8+rOBh/fzNSVJkiQp80Z7zuBtEXHl0IGIqI+I393P178a+B8R8W1yVya9KaX0HHArubD3EHBDSmkbcDtwVEQ8AlwJfHQ/X1OSJEmSMm+05wyeDbwvIr4MfAa4CDia3BTPfZJS+gWwLP/zD8mFwN23WQOs2W1sK3DxKOuVJEmSJBUw2jA4jdxFXA4ldwGZL6aUvKqnJEmSJI0zo50m+s/kwuBJwDHA9Ij464iYUvTKJEmSJEklM9oweBrwDXJHBrenlK4lN0X0/mIXJkmSJEkqndGGwRrgGeBfgV9FxHUppQeANxa9MkmSJElSyYw2DPYAh6WUDgWOBU6IiD9OKb1Y/NIkSZIkSaUy2jD485TSbwDyt4B4M7C66FVJkqSSue6273Hdbd+rdBmSpAobbRh8JiLeMWR5J9BSxHokSZIkSWUw2ltL/BHwzxFxDbAOOA54tOhVSZIkSZJKalRhMKX0K2BZRJxI7pzBfwX+dykKkyRJkiSVzmiPDAKQUvo34N+KXIskSZIkqUxGe86gJEmSJGkCMAxKkiRJFfDY079h05ZeNnZv48/ufIzHnv5NpUtSxuzXNFFJkiRJ+++xp3/D33zlPwaXn+18aXD5hCMPrFRZyhiPDEqSJEll9tV/+8Uw478sax3KNsOgJEmSVGa/emFrwfFfb3ypzJUoywyDkiRJUpkdNHNKwfE5M6aWuRJlmWFQkiRJKrNzT5w/zPi88haiTPMCMpIkSVKZDVwk5o61T9O3s5+57dM498R5XjxGZWVJHZxhAAAgAElEQVQYlCRJkirghCMP5N5v/wyAj719aYWrURY5TVSSJEmSMsgwKEmSJEkZVPZpohFxAvDJlNLKiFgI3A30A08B16SUdkbEFcBVwMvATSmltRExGfgiMAv+H3v3HmVXed55/luqAhShkhCiLMMiLeWCn0ieMXYbIwpjIB1jx8jYTDLuTDOZ2ASMMZ52YhLFTuJWt1nOpRtj4iRTMTc1uXVuOKwREIMnFxIjiXLiXIZQ8DjChgkXqwu1bggjoqqaP84p+SCqiirq7LP3Ofv7WUtr1X732aqnznlUql+9734PB4H3Z+Z4p+uXJEmSpF7Q0ZnBiPgZ4FZgaXPos8AnM/NtQB/w3oh4LfBR4K3AO4FfiogTgA8DDzUf+1vAJztZuyRJkiT1kk4vE30M+KGW4zcDf9n8+IvA24Gzge2ZeTgz9wO7gDcA5wH3HvNYSZIkSdKr0NFlopn5hYhY1zLUl5lTzY8PAiuBFcD+lsfMND49NqdVq5YxMNC/2LILMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d+jFqbbXsey31pisuXjQWAfcKD58Vzj02Nz2rv3+fZU2WZDQ4OMjx8suwz1KPtLRbPHutvo2G727H+BickpPvzLf8qm4XWVel8z+0tFqmJ/TUw05kWqVpcWror9BXMH1LJ3E/27iLiw+fG7gC8DXwHeFhFLI2IlsJ7G5jLbgYuPeaxUis0jO9g8sqPsMiRpQUbHdnPTtoeZmGz88Pnk+CFu2vYwo2O7S65MklSGssPgTwGfioidwPHAHZn5TeBXaYS9Pwd+PjNfAH4DeH1EPABcBXyqpJolSepK9+x8fJbxJzpahySpGjq+TDQzHwfOaX78NeCCGR5zC3DLMWPPA+/rQImSJPWkp5+d+faJZ/Yc6nAlkqQqKHtmUJIkdchppyybcfzU1Sd2uBJJUhUYBiVJqolNw+tmGV/b2UIkSZVQ9m6ikiSpQ6Z3Db317jEmJqc4fWg5m4bXVmo3UUlS5xgGJUmqkY0b1nDH/Y8BcN0VZ5dcTXeY3j36+mvOLbkSSWovl4lKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJHbF5ZMfR+24kSZJUPsOgJEmSJNWQu4lKkiRJJXGXWpXJmUFJkiRJqiHDoCRJkiTVkGFQWqDRsd3se+4wew68wJbbRhkd2112SZIkSdKCec+gtACjY7u5advDR4+fHD909HjjhjVllSVJkiQtmDOD0gLcs/PxWcaf6GgdkiRJ0mIZBqUFePrZ52ccf2bPoQ5XIknqBG8NkNTLDIPSApx2yrIZx09dfWKHK5EkFW361oCJySng27cGGAgl9QrDoLQAm4bXzTK+trOFSJIK560BknqdG8hICzC9Scytd48xMTnF6UPL2TS81s1jJKkHeWuApF7nzKC0QBs3rOGk5SewesVSrrvibIOgJPUobw2Q1OsMg5IkSTPw1gBJva4Sy0Qj4m+BA83DbwC/ANwOTAH/CHwkMycj4oPAh4AjwKcz8+4SypUkSTXgrQGSel3pM4MRsRToy8wLm38uBz4LfDIz3wb0Ae+NiNcCHwXeCrwT+KWIOKG0wnvM5pEdbB7ZUXYZ6lFuzS6pW3lrgKReVoWZwTOBZRHxJRr1/BzwZuAvm+e/CLwDmAC2Z+Zh4HBE7ALeAPx150uWNF/TW7NPm96aHfCHKqkk119zbtklSJIqoAph8HngM8CtwBk0wl9fZk41zx8EVgIrgP0t102Pz2rVqmUMDPS3veB2GBoaLLuEl+jv7wOqV1dVVf35qlJd9/3138wy/s+8+4Lv7XA1apcq9Zh6T9X6q+rf87Uwvo4qUrf1VxXC4NeAXc3w97WI2ENjZnDaILCPxj2FgzOMz2rv3pm3hC7b0NAg4+MHyy7jJSYmGtm7anVVVZWfr6r11//3zZlr+efdBytVp+avaj2m3lLF/qry93wtTBX7S72jqv01V0At/Z5B4MeBGwAi4jQaM4BfiogLm+ffBXwZ+ArwtohYGhErgfU0NpeRVGFuzS5JklRNVQiDtwEnRcQDwB/QCIc/AXwqInYCxwN3ZOY3gV+lEQz/HPj5zHyhpJolzZNbs0uSJFVT6ctEM/NF4LIZTl0ww2NvAW4pvChJbePW7JIkSdVUehiU1Ps2bljDHfc/BsB1V5xdcjWSJEmCaiwTVcl8DzhJkiSpfpwZrDnfA06SJEmqJ2cGa+6enY/PMv5ER+uQpMXYPLKDzSM7yi5DkqSu4sxgzT397MzvxfjMnkMdrqS7XH/NuWWXIEmSJC2KYbDmTjtlGU+Ovzz4+R5wkiQ1+AtASb3KZaI153vASZIkSfXkzGDN+R5wkiRJUj0ZBuV7wEmSJEk15DJRSZIkSaohw6AkSZIk1ZBhUJLU1UbHdrPvucPsOfACW24bZXRsd9klSZLUFbxnUJLUtUbHdnPTtoePHj85fujosRthSZI0N8OgpI7wfbpUhHt2Pj7L+BOGQUmSXoHLRCVJXevpZ5+fcfyZPYc6XIkkSd3HmUEBztpI6k6nnbKMJ8dfHvxOXX1iCdVIAtg8sgPwZwupGzgzKEkVtHlkx9EfqDS7TcPrZhlf29lCJEnqQoZBSVLX2rhhDR96z+vpX9IHwOlDy/nQe17v/YJSSdzdV+ouhkFJqhh/mFqYjRvWcNLyE1i9YinXXXG2QVAqyfTuvhOTU8C3d/f1e5hUXYZBSaoQf5iS1K3m2t1XUjV11QYyEbEEGAHOBA4DV2bmrnKrkqT28a0SJHUrd/eVuk+3zQxeCizNzGHgE8ANJdcjSW3lD1OSutVppyybcdzdfaXq6rYweB5wL0BmPgicVW45ktRe/jAlqVu5u6/UfbpqmSiwAtjfcjwREQOZeWSmB69atYyBgf7OVLZAQ0ODZZegHmZ/da9/987v4/rf+eoM41Gp17VKtQD09zd2E61aXXp1fB2707svGGTFiqXc+Ht/y5GJKdaduoL3/cAZnP+m08su7SXsLxWp2/qr28LgAaD1GV4yWxAE2Lt35uVWZRsaGmR8/GDZZahH2V/dbf3pK/nQe17PrXePMTE5xelDy9k0vJb1p6+szOtaxR6bmGhsuFO1urRwVewvzd/601ey8sQTANjy/sYCriq9nvaXilTV/poroHZbGNwOXAL8YUScAzxUcj2S1HYbN6zhjvsfA+C6K84uuZrucP0155ZdgqQm/z1K3aPbwuCdwEURsQPoAy4vuR5JKoQ/TEmSpKJ1VRjMzEng6rLrkCRJkqRu1227iUqSJEmS2sAwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqob6pqamya5AkSZIkdZgzg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINDZRdQJ1ExBJgBDgTOAxcmZm7yq1K3SIijgO2AuuAE4BPA2PA7cAU8I/ARzJzMiI+CHwIOAJ8OjPvjojvAH4HeA1wEHh/Zo53+utQtUXEa4CvAhfR6J/bsb/UBhHxs8B7gONp/F/4l9hfaoPm/4+/SeP/xwngg/j9S20QERuB/5yZF0bE97LInoqIc4DPNR/7pcz8VOe/qpdyZrCzLgWWZuYw8AnghpLrUXf5UWBPZr4N+EHg14HPAp9sjvUB742I1wIfBd4KvBP4pYg4Afgw8FDzsb8FfLKEr0EV1vyB6ibgW80h+0ttEREXAufS6JsLgO/E/lL7XAwMZOa5wHXAL2B/aZEi4meAW4GlzaF29NTngcuA84CNEfGmTn09szEMdtZ5wL0AmfkgcFa55ajL/BHwH5of99H4rdKbafx2HeCLwNuBs4HtmXk4M/cDu4A30NJ/LY+VWn2Gxn9UTzeP7S+1yzuBh4A7gbuAu7G/1D5fAwaaK7BWAP+C/aXFewz4oZbjRfVURKwATsjMxzJzCriPCvSaYbCzVgD7W44nIsKlupqXzHwuMw9GxCBwB43fMvU1v6FAYxnCSl7eZzONT49JAETEB4DxzLyvZdj+UrucQuMXoO8DrgZ+F1hif6lNnqOxRPRR4BbgV/H7lxYpM79A4xcL0xbbUyuAAzM8tlSGwc46AAy2HC/JzCNlFaPuExHfCfwF8NuZ+d+AyZbTg8A+Xt5nM41Pj0nTfhy4KCLuB95IY1nLa1rO219ajD3AfZn5YmYm8AIv/SHI/tJifIxGf72Oxr4Mv0nj3tRp9pfaYbE/c8322FIZBjtrO4117TRvIH2o3HLUTSJiDfAl4OOZubU5/HfNe3EA3gV8GfgK8LaIWBoRK4H1NG50Ptp/LY+VAMjM8zPzgsy8EPh74MeAL9pfapMHgB+MiL6IOA04Efgz+0ttspdvz8L8D+A4/P9R7beonsrMA8CLEfE9EdFHY/l86b3WNzU19cqPUlu07Cb6Bhr3fF2emY+WW5W6RUR8DvgRGstgpv0EjeUwxwOPAB/MzInmzlZX0fiFzy9m5hciYhmN35aeCrwIXJaZ3+zk16Du0JwdvJrGb0Fvwf5SG0TEfwG+n0bf/BzwDewvtUFELKex2/apNPrpc8DfYH9pkSJiHfD7mXlORLyORfZUczLoV4B+GruJ/nznv6qXMgxKkiRJUg25TFSSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGBsouoEjj4wenyq5hJqtWLWPv3ufLLkM9yv5S0ewxFcn+UpHsLxWpqv01NDTYN9s5ZwZLMDDQX3YJ6mH2l4pmj6lI9peKZH+pSN3YX4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZK6wuaRHWwe2VF2GT1joMi/PCKWACPAmcBh4MrM3NVy/hJgC3AE2JqZt8x2TUS8Cbgb+Kfm5b+RmX9QZP2SJEmS1KsKDYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNgGvHWWa94MfDYzbyi4ZkmSJEnqeUUvEz0PuBcgMx8Ezmo5tx7YlZl7M/NF4AHg/DmueTOwKSL+KiJui4jBgmuXJEmSpJ5V9MzgCmB/y/FERAxk5pEZzh0EVs52DfAV4NbM/GpE/DzwH4GfnuuTr1q1jIGB/jZ8Ge03NGSWVXHsLxXNHlOR7C8Vyf7qbv39fUB1X8eq1jWbosPgAaD1GVnSDIIznRsE9s12TUTcmZn7mmN3Ar/2Sp98797nX3XhRRoaGmR8/GDZZahH2V8qmj2mItlfKpL91f0mJqYAKvk6VrW/5gqoRS8T3Q5cDNC8/++hlnOPAGdExMkRcTyNJaI757jmvog4u/nxDwBfLbh2SZIkSepZRc8M3glcFBE7gD7g8oi4DFiemTdHxLXAfTRC6dbMfCoiXnZN8+/6MPBrEfEvwDeBqwquXZIkSZJ6VqFhMDMngauPGX605fxdwF3zuIbM/FsaO41KkiRJkhbJN52XJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJElSSTaP7GDzyI6yy1BNGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqaKDIvzwilgAjwJnAYeDKzNzVcv4SYAtwBNiambfM45rLgH+fmcNF1i5JkiRJvazomcFLgaXN4PYJ4IbpExFxHHAj8A7gAuCqiFjzCte8CbgC6Cu4bkmSJEnqaUWHwfOAewEy80HgrJZz64Fdmbk3M18EHgDOn+2aiFgN/CLwkwXXLEmSJEk9r9BlosAKYH/L8UREDGTmkRnOHQRWznLNCcBtwLXAt+b7yVetWsbAQP+rrb1QQ0ODZZegHmZ/qWj2mIpkf6lIVeuv/v7Ggreq1VVVVX++qlrXbIoOgweA1mdkSTMIznRuENg30zU07h88A/gNYCmwISJ+JTPnnCXcu/f5xVVfkKGhQcbHD5ZdhnqU/aWi2WMqkv2lIlWxvyYmpgAqV1cVjY7tZs/+F5iYnOLDv/ynbBpex8YNa8ou66gq9hfMHVCLDoPbgUuAP4yIc4CHWs49ApwREScDz9FYIvoZYOrYazLzK8DrASJiHfD7rxQEJUmSJPWG0bHd3LTt4aPHT44fOnpcpUDYbYq+Z/BO4IWI2EFjs5iPRcRlEXFVZv4LjWWf9wE7aewm+tRM1xRcoyRJkqQKu2fn47OMP9HROnpNoTODmTkJXH3M8KMt5+8C7prHNa3nHwfOaV+VkiRJkqrs6Wdnvv3rmT2HOlxJb/FN5yVJkiRV2mmnLJtx/NTVJ3a4kt5iGJQkSZJUaZuG180yvrazhfSYojeQkSRJkqRFmd4k5ta7x5iYnOL0oeVsGl7r5jGLZBiUJEmSVHkbN6zhjvsfA+C6K84uuZre4DJRSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSVIJRsd2s++5w+w58AJbbhtldGx32SWpZgbKLkCSJEmqm9Gx3dy07eGjx0+OHzp6vHHDmrLKUs04MyhJkiR12D07H59l/ImO1qF6MwxKkiRJHfb0s8/POP7MnkMdrkR1ZhiUJEmSOuy0U5bNOH7q6hM7XInqzDAoSZIkddim4XWzjK/tbCGqtUI3kImIJcAIcCZwGLgyM3e1nL8E2AIcAbZm5i2zXRMRG4CbgT7gn5rjR4qsX5IkSSrC9CYxt949xsTkFKcPLWfT8Fo3j1FHFT0zeCmwNDOHgU8AN0yfiIjjgBuBdwAXAFdFxJo5rvlF4Ocy863N40sKrl2SJEkqzMYNazhp+QmsXrGU66442yCojis6DJ4H3AuQmQ8CZ7WcWw/sysy9mfki8ABw/hzX/HBm/lVEHA+8FthfcO2SJPWkzSM72Dyyo+wyJEklK/p9Blfw0tA2EREDzeWdx547CKyc65qIWAv8afP8P7zSJ1+1ahkDA/2L/RoKMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d9j1VT9+apqXbMpOgweAFqfkSUt9/kde24Q2DfXNZn5BHBGRFwJfBZ4/1yffO/embfsLdvQ0CDj4wfLLkM9yv5S0eyx7jcxMQVQydfR/lKRqthfVf73WEVVfr6q2F8wd0AtepnoduBigIg4B3io5dwjNILdyc2ln+cDO2e7JiK2RcQZzWsPApMF1y5JkiRJPavomcE7gYsiYgeNXUAvj4jLgOWZeXNEXAvcRyOUbs3MpyLiZdc0/65fBm6PiBeB54ErC65dkiRJknpWoWEwMyeBq48ZfrTl/F3AXfO4hszcAbz12HFJkiRJ0sK94jLRiPh4RKxofjwQERdExL8qvjRJkiRJUlHmc8/gpZl5oPnxbwMfBW6KiMvnuEaSJEmSVGHzCYOHASJiCHhLZv4wsIlv38snSZIkSeoy8wmDt0fEPcAfAP8Vjt7XV/TmM5IkSaXbPLKDzSM7yi5DktruFQNdZt4eEV8CTs/MrwBExHcDTxZdnCRJkiSpGK8YBiPiezLzMeDp6bHM/Drwb4ssTJIkSZJUnPks9RyJiC9k5s3TAxExQGNjmTuKK02SJEmSvu36a84tu4SeMp8w+C7gZyLiC8CvAD8M/E803lBeqqXpe0f8hiRJkqRuNZ8wuBzYD3wXjQ1kficz315oVZIkSZKkQs1nN9HfoxEGzwX+Z+DkiPh8RCwrtDJJkiRJUmHms5vopmOGPhoR7wS+CFxQSFWSJEmSpELNZzfRTwGPAI8CmZnfysz7IuKvC69OkiRJklSI+dwz+CXg+4D/HTgjIk4EXgC+BvxUgbVJkiRJkgoyn2Wi24HtEXE8jfsG/w2wEfhXBdcmSZIkSSrIfJaJfhw4C5gAHgTuyMwtRRcmSZIkSSrOfHYT/WlgTfPjk4Dvi4g3RMQJxZUlSZIkSSrSfO4ZXA28D3hd83g98IHm8buLKUuSJEmSVKT5hEGArwP/HVgG3JCZ1xZXkiRJkiSpaPNZJnoQ+O7M/C7gTODsiPhYsWVJkiRJkoo0nzD49czcDZCZ36TxFhOXFVqVJEmSJKlQ8wmD34iIK1uOJ4EVBdUjSZIkSeqA+dwz+H8CfxwRHwH+DngjsL3QqiRJUiFGx3az77nDTExOseW2UTYNr2PjhjWvfKEkqefM503nnwbOiYhhGvcM/gnwfxddmCRJaq/Rsd3ctO3ho8dPjh86emwglKT6me9uomTmTmBngbVIkqQC3bPz8VnGnzAMSlINzTsMvhoRsQQYoTGjeBi4MjN3tZy/BNgCHAG2ZuYts10TEW8Efg2YaI7/2PTGNpIk6ZU9/ezzM44/s+dQhyuRJFXBfDaQWYxLgaWZOQx8Arhh+kREHAfcCLwDuAC4KiLWzHHN54B/n5kXAn8MfLzg2iVJ6imnnbJsxvFTV5/Y4UokSVVQdBg8D7gXIDMfBM5qObce2JWZezPzReAB4Pw5rvnfMvPvmx8PAC8UXLskST1l0/C6WcbXdrYQSUddf825XH/NuWWXoZoqdJkojbeg2N9yPBERA5l5ZIZzB4GVc1zzDEBEnEtjh9PzX+mTr1q1jIGB/kV+CcUYGhosuwQtQn9/H1Dd17Gqdal32GPd6d0XDLJixVJu/L2/5cjEFOtOXcH7fuAMzn/T6WWX9hJV66+qf8/Xwvg6qkjd1l9Fh8EDQOszsqQZBGc6Nwjsm+uaiPgR4OeBTZk5/kqffO/eme+NKNvQ0CDj4wfLLkOLMDExBVDJ19H+UtHsse62/vSVrDzxBAC2vL+x+KZKr2fV+mt0bDd79r/AxOQUH/7lP/WtOLpc1fpLvaWq/TVXQC16meh24GKAiDgHeKjl3CPAGRFxckQcT2Omb+ds10TEj9KYEbwwM79ecN2SJKnmpt+KY2Ky8QvA6bfiGB1z/zpJvaHoMHgn8EJE7KCxWczHIuKyiLgqM/8FuBa4j0YI3JqZT81yTT/wqzRmDP84Iu6PiE8VXLskSaqxud6KQ5J6QaHLRDNzErj6mOFHW87fBdw1j2sATm57gdKrMDq2m33PHWZicoott426ZEiSepRvxSGp1xU9M6gusXlkB5tHdpRdRuW5ZEiS6sO34pDU6wyD0gK4ZEiS6sO34pDU64reTVTqKS4ZkqT6mL4F4Na7x5iYnOL0oeVsGl7rrQGSeoYzg9ICuGRIkupl44Y1nLT8BFavWMp1V5xtEJTUUwyD0gK4ZEiSJEm9wmWi0gK4ZEiSJEm9wjAoLdDGDWu44/7HALjuirNLrkaSJEl6dVwmKqkjfPsSSZKkajEMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBMTq2m33PHWbPgRfYctsoo2O7yy5JkiRJUsEGyi5A5Rod281N2x4+evzk+KGjxxs3rCmrLEmSJEkFc2aw5u7Z+fgs4090tA5JkiRJneXMYM09/ezzM44/s+dQhyuRJHXK9decW3YJkqQKcGaw5k47ZdmM46euPrHDlUiSJEnqJMNgzW0aXjfL+NrOFiJJkiSpowpdJhoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFvmcc2NQGbm54usvS6mN4m59e4xJianOH1oOZuG17p5jNpqesfaickpttw2yqbhdfaYJElSyYqeGbwUWJqZw8AngBumT0TEccCNwDuAC4CrImLNbNdExFBEfBF4T8E1187GDWs4afkJrF6xlOuuONsf0tVW0zvWTkxOAd/esda3MJEkSSpX0WHwPOBegMx8EDir5dx6YFdm7s3MF4EHgPPnuGY58J+A3y64Zklt5I61krrd9dec66Y7knpS0buJrgD2txxPRMRAZh6Z4dxBYOUc13wD+EZEvGu+n3zVqmUMDPS/+uoLNDQ0WHYJL9Hf3wdUr66qqvrzVaW6nt4z+461VapTC+NrpyLZXyqS/aUidVt/FR0GDwCtz8iSZhCc6dwgsO8VrlmQvXtn/iG0bENDg4yPHyy7jJeYmGgs4ataXVVV5eerav112uplPDn+8rcqOXX1iZWqU/NXtR5Tb7G/VCT7S0Wqan/NFVCLXia6HbgYICLOAR5qOfcIcEZEnBwRx9NYIrrzFa6RKsElQ/PnjrWSJEnVVPTM4J3ARRGxA+gDLo+Iy4DlmXlzRFwL3EcjlG7NzKci4mXXFFyjpAK5Y60kSVI1FRoGM3MSuPqY4Udbzt8F3DWPa1rP/6c2liipAzZuWMMd9z8GwHVXnF1yNZIkSQLfdF6SJEmSaskwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJKnrbR7ZweaRHWWXIUlSVzEMSpIkSVINGQYlSZIkqYYMg5IkSWobl21L3WOg7AJUDddfc27ZJUiSJEnqIGcGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIe8ZlNQR3peqoirsALsAACAASURBVIyO7Wbfc4eZmJxiy22jbBpex8YNa8ouS5KkyjMMSpK61ujYbm7a9vDR4yfHDx09NhBKkjQ3l4lKkrrWPTsfn2X8iY7WIalheqZ+z4EX2HLbKKNju8suSdIcnBmUJHWtp599fsbxZ/Yc6nAlkpypl7qPM4OSpK512inLZhw/dfWJHa5EkjP1UvcxDEpSBW0e2cHmkR1ll1F5m4bXzTK+trOFSHKmXupCLhOVJHWt6aVnt949xsTkFKcPLWfT8FqXpEklOO2UZTw5/vLg50y9VF3ODEpSxbgBw8Js3LCGk5afwOoVS7nuirMNglJJnKmXuo8zg5JUIW7AIKlbOVMvdZ9Cw2BELAFGgDOBw8CVmbmr5fwlwBbgCLA1M2+Z7ZqI+F7gdmAK+EfgI5k5WWT9ktRpc23A4A9Ukqpu44Y13HH/YwBcd8XZJVcj6ZUUvUz0UmBpZg4DnwBumD4REccBNwLvAC4AroqINXNc81ngk5n5NqAPeG/BtUtSx7kBgyRJ6pSiw+B5wL0AmfkgcFbLufXArszcm5kvAg8A589xzZuBv2x+/EXg7QXXLkkd51slSJKkTin6nsEVwP6W44mIGMjMIzOcOwisnO0aoC8zp4557JxWrVrGwED/YuovzNDQYNklqIfZX93r373z+7j+d746w3hU6nWtUi0A/f19QPXq0qvj69jdqv7vsap1qTd0W38VHQYPAK3PyJJmEJzp3CCwb7ZrImJyhsfOae/emZdblW1oaJDx8YNll6EeZX91t/Wnr+RD73n9yzZgWH/6ysq8rlXssYmJxu8Kq1aXFq6K/aWFqfK/R/tLRapqf80VUIsOg9uBS4A/jIhzgIdazj0CnBERJwPP0Vgi+hkaG8TMdM3fRcSFmXk/8C7gLwquXZJK4QYMC3f9NeeWXYIkSV2n6DB4J3BRROygsenL5RFxGbA8M2+OiGuB+2jcu7g1M5+KiJdd0/y7fgq4JSKOpxEk7yi4dkkqjeFGUrfy+5fUPfqmpqZe+VFdanz8YCW/uKpOIas32F8qmj2mItlfKpL9pSJVtb+Ghgb7ZjtX9G6ikiRJkqQKMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmqop99nUJIkSZI0M2cGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1NFB2AXUSEUuAEeBM4DBwZWbuKrcqdYuIOA7YCqwDTgA+DYwBtwNTwD8CH8nMyYj4IPAh4Ajw6cy8OyK+A/gd4DXAQeD9mTne6a9D1RYRrwG+ClxEo39ux/5SG0TEzwLvAY6n8X/hX2J/qQ2a/z/+Jo3/HyeAD+L3L7VBRGwE/nNmXhgR38sieyoizgE+13zslzLzU53/ql7KmcHOuhRYmpnDwCeAG0quR93lR4E9mfk24AeBXwc+C3yyOdYHvDciXgt8FHgr8E7glyLiBODDwEPNx/4W8MkSvgZVWPMHqpuAbzWH7C+1RURcCJxLo28uAL4T+0vtczEwkJnnAtcBv4D9pUWKiJ8BbgWWNofa0VOfBy4DzgM2RsSbOvX1zMYw2FnnAfcCZOaDwFnllqMu80fAf2h+3Efjt0pvpvHbdYAvAm8Hzga2Z+bhzNwP7ALeQEv/tTxWavUZGv9RPd08tr/ULu8EHgLuBO4C7sb+Uvt8DRhorsBaAfwL9pcW7zHgh1qOF9VTEbECOCEzH8vMKeA+KtBrhsHOWgHsbzmeiAiX6mpeMvO5zDwYEYPAHTR+y9TX/IYCjWUIK3l5n800Pj0mARARHwDGM/O+lmH7S+1yCo1fgL4PuBr4XWCJ/aU2eY7GEtFHgVuAX8XvX1qkzPwCjV8sTFtsT60ADszw2FIZBjvrADDYcrwkM4+UVYy6T0R8J/AXwG9n5n8DJltODwL7eHmfzTQ+PSZN+3Hgooi4H3gjjWUtr2k5b39pMfYA92Xmi5mZwAu89Icg+0uL8TEa/fU6Gvsy/CaNe1On2V9qh8X+zDXbY0tlGOys7TTWtdO8gfShcstRN4mINcCXgI9n5tbm8N8178UBeBfwZeArwNsiYmlErATW07jR+Wj/tTxWAiAzz8/MCzLzQuDvgR8Dvmh/qU0eAH4wIvoi4jTgRODP7C+1yV6+PQvzP4Dj8P9Htd+ieiozDwAvRsT3REQfjeXzpfda39TU1Cs/Sm3RspvoG2jc83V5Zj5ablXqFhHxOeBHaCyDmfYTNJbDHA88AnwwMyeaO1tdReMXPr+YmV+IiGU0flt6KvAicFlmfrOTX4O6Q3N28GoavwW9BftLbRAR/wX4fhp983PAN7C/1AYRsZzGbtun0uinzwF/g/2lRYqIdcDvZ+Y5EfE6FtlTzcmgXwH6aewm+vOd/6peyjAoSZIkSTXkMlFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0NlF1AkcbHD06VXcNMVq1axt69z5ddhnqU/aWi2WMqkv2lItlfKlJV+2toaLBvtnPODJZgYKC/7BLUw+wvFc0eU5HsLxXJ/lKRurG/DIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJHWFzSM72Dyyo+wyeoZhUJIkSZJqaKCMTxoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFsi4gPAB5oPWQq8EXhtZu7rYOmSJEmS1BNKCYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNiWmbcDtzcf83/RCIkGQUmSJEl6FcpaJnoecC9AZj4InNVybj2wKzP3ZuaLwAPA+dMnI+Is4PWZeXMH65UkSZKknlLWzOAKYH/L8UREDGTmkRnOHQRWthz/HPCp+XySVauWMTDQv9haCzE0NFh2Ceph9peKZo+pSPaXimR/dbf+/j6guq9jVeuaTVlh8ADQ+kwtaQbBmc4NAvsAIuIkIDLzL+bzSfbufb4Npbbf0NAg4+MHyy5DPcr+UtHsMRXJ/lKR7K/uNzExBVDJ17Gq/TVXQC1rmeh24GKA5j2DD7WcewQ4IyJOjojjaSwR3dk8dz7wZ50sVJIkSZJ6UVkzg3cCF0XEDqAPuDwiLgOWZ+bNEXEtcB+NsLo1M59qXhfA10upWJIkSZJ6SClhMDMngauPGX605fxdwF0zXHd9waVJkiRJUi34pvOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJJVk88gONo/sKLsM1ZRhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZIqb3RsN/ueO8yeAy+w5bZRRsd2l11S1xsouwBJkiRJmsvo2G5u2vbw0eMnxw8dPd64YU1ZZXU9ZwYlSZIkVdo9Ox+fZfyJjtbRawyDkiRJkirt6Wefn3H8mT2HOlxJbzEMSpIkSaq0005ZNuP4qatP7HAlvaWUewYjYgkwApwJHAauzMxdLecvAbYAR4CtmXlLc/xngfcAxwMjmXlbp2uXJEmS1Fmbhte95J7Bb4+vLaGa3lHWBjKXAkszczgizgFuAN4LEBHHATcCbwEOAdsjYhuwHjgXeCuwDPjpMgqXJEmS1FnTm8TcevcYE5NTnD60nE3Da908ZpHKWiZ6HnAvQGY+CJzVcm49sCsz92bmi8ADwPnAO4GHgDuBu4C7O1qxJEmSpNJs3LCGk5afwOoVS7nuirMNgm1Q1szgCmB/y/FERAxk5pEZzh0EVgKnAGuBdwPfBWyLiO/LzKnZPsmqVcsYGOhve/HtMDQ0WHYJ6mH2l4pmj6lI9peKVLX+6u/vA6pXV1VV/fmqal2zKSsMHgBan6klzSA407lBYB+wB3i0OVuYEfECMAT899k+yd69M+86VLahoUHGxw+WXYZ6lP2lotljKpL9pSJVsb8mJhrzGlWrq6qq/HxVsb9g7oBa1jLR7cDFAM17Bh9qOfcIcEZEnBwRx9NYIrqTxnLRH4yIvog4DTiRRkCUJEmSJC1QWTODdwIXRcQOoA+4PCIuA5Zn5s0RcS1wH42wujUznwKeiojzga80xz+SmRMl1S9JkiRJXa2UMJiZk8DVxww/2nL+LhqbxBx73c8UXJokSZIk1YJvOi9JkiRJNWQYlCRJkkowOrabfc8dZs+BF9hy2yijY7vLLkk1U9Y9g5IkSVJtjY7t5qZtDx89fnL80NFj3z9PneLMoCRJktRh9+x8fJbxJzpah+rNMChJkiR12NPPzvx+2M/sOdThSlRnhkFJkmpm88gONo/sKLsMqdZOO2XZjOOnrj6xw5WozgyDkiRJUodtGl43y/jazhaiWnMDGUmSJKnDpjeJufXuMSYmpzh9aDmbhte6eYw6yjAoSZIklWDjhjXccf9jAFx3xdklV6M6cpmoJEmSJNWQYVCSJGkObrgjqVcZBiVJkiSphrxnUJIkSVJXuP6ac8suoac4Myi9Ci4ZkiRJUrczDEqSJElSDZWyTDQilgAjwJnAYeDKzNzVcv4SYAtwBNiambc0x/8WONB82Dcy8/KOFi5JkiRJPaKsewYvBZZm5nBEnAPcALwXICKOA24E3gIcArZHxDZgP9CXmReWU7IkSZIk9Y6ylomeB9wLkJkPAme1nFsP7MrMvZn5IvAAcD6NWcRlEfGliPjzZoiUJEmSJL0KZc0MrqAx0zdtIiIGMvPIDOcOAiuB54HPALcCZwBfjIhoXjOjVauWMTDQ3/bi22FoaLDsErQI/f19QHVfx6rWpd5hj3U3v4ctTNWfLy1M1V5H+6u3dNvrWFYYPAC0PlNLWkLdsecGgX3A12jMGE4BX4uIPcCpwD/P9kn27n2+rUW3y9DQIOPjB8suQ4swMTEFUMnX0f5S0eyx7uf3sIWp8vOlhbG/VKQq9hfMHVDLWia6HbgYoLnc86GWc48AZ0TEyRFxPI0lojuBH6dxbyERcRqNGcRnOlm0JEmSJPWKsmYG7wQuiogdQB9weURcBizPzJsj4lrgPhphdWtmPhURtwG3R8QDwBTw43MtEZUkSZIkza6UMJiZk8DVxww/2nL+LuCuY655Ebis+OokSZIkqff5pvOSJEmSVEOGQUmSJEmqIcOgJEk1Mjq2m33PHWbPgRfYctsoo2O7yy5JklSSsjaQkSRJHTY6tpubtj189PjJ8UNHjzduWFNWWZKkkhgGJUmqiXt2Pj7L+BOGQakk119zbtklqMZcJipJUk08/ezzM44/s+dQhyuRJFWBYVCSpJo47ZRlM46fuvrEDlciSaoCw6AkSTWxaXjdLONrO1tIF3HDHUm9zHsGBcDmkR2A69YlqZdN3xd4691jTExOcfrQcjYNr/V+wVm44Y6kXufMoCRJNbJxwxpOWn4Cq1cs5borzjbUzGGuDXckqRcYBqUFcsmQJNWDG+5I6nWGQWkBppcMTUxOAd9eMmQglKTe44Y7knqdYVBaAJcMSVJ9uOGOpF7nBjLSArhkSJLqww13JPU6ZwalBXDJ0Ku3eWTH0V1rJalbuOGOpF5WysxgRCwBRoAzgcPAlZm5q+X8JcAW4AiwNTNvaTn3GuCrwEWZ+WhHC1ftbRpe95Jtxr897pIhSZIkdZeyZgYvBZZm5jDwCeCG6RMRcRxwI/AO4ALgqohY03LuJuBbHa9YovEb4g+95/X0L+kD4PSh5XzoPa/3N8WSJEnqOmWFwfOAewEy80HgrJZz64Fdmbk3M18EHgDOb577DPB54OkO1iq9hEuGJEmS1AvK2kBmBbC/5XgiIgYy88gM5w4CKyPiA8B4Zt4XET87n0+yatUyBgb621VzWw0NDZZdwkv09zdmuqpWV1VV/fmqYl1Vf860ML6O3a3q/x6rVlfVny8tjK+jitRt/VVWGDwAtD5TS5pBcKZzg8A+4KPAVES8HXgj8FsR8Z7M/OZsn2Tv3pl3fizb0NAg4+MHyy7jJSYmGu+bV7W6qqrKz1cV+wuq/ZxpYaraY5q/Kv97rGJ/Vfn50sJUsb/UO6raX3MF1LLC4HbgEuAPI+Ic4KGWc48AZ0TEycBzNJaIfiYz75h+QETcD1w9VxCUJEmSJM1uUWEwIvqAD2Xm5xd46Z3ARRGxA+gDLo+Iy4DlmXlzRFwL3EfjnsatmfnUYuqUJEmSJL3UosJgZk5FxHkRcXNmTi7gukng6mOGH205fxdw1xzXX7jQWiVJkiRJ39aOZaLfDXw5In4L+Hvg4cx8rg1/ryRJkiSpIO14a4m3Aj9G4+0evh/49Tb8nZIkSZKkArVjZvB44CTgb5rLOyVJkiRJFdeOmcH/B3g3sDMitkfEF9vwd0qSJEmSCtSOmcElmfmpiLgQuBi4rg1/pyRJKsj115xbdgmSpApox8zgP0TEMuC/09hM5sI2/J3qoNGx3ex77jB7DrzAlttGGR3bXXZJkiRJkgrWjjC4C5gEfhr4GPAbbfg71SGjY7u5advDTExOAfDk+CFu2vawgVCSJEnqce1YJvpPwO8DDwI/6dtKdJd7dj4+y/gTbNywpqO1SJIkSeqcRc8MZubdmXkpsBO4JSK2LL4sdcrTzz4/4/gzew51uBJJkiRJnbTomcGI+FHgdc0/gzTed1Bd4rRTlvHk+MuD36mrTyyhGkmSJEmdsuAwGBEXZ+aftAxNAduAzMyDbatMHbFpeB03bXt4hvG1JVQjSVL1uPuqpF71amYGPw38CUBEvDczf7e9JamTpu8LvPXuMSYmpzh9aDmbhtd6v6DaanrH2onJKbbcNsqm4XX2mCRJUslezT2DfS0f/8d2FaLybNywhpOWn8DqFUu57oqz/SFdbeWOtZIkSdX0amYGp1o+7pv1UVIPc8nQ/LljrSRJUjW9mjD4vRFxG/DXwHdExEBmHmlzXZJ6hDvWSpIkVdOrCYMXA/8aOAd4EdgfEY8B/wD8v5l5/Sv9BRGxBBgBzgQOA1dm5q6W85cAW4AjwNbMvCUi+oFbgKAxO3l1Zv7jq6hfUge5Y60kSVI1LTgMZuYDwAPTxxFxAo1Q96+bf+bjUmBpZg5HxDnADcB7m3/fccCNwFuAQ8D2iNgGDDc//1sj4kLgF6avkVRd7lgrSZJUTYt+n8HMPAx8pflnvs4D7m1e/2BEnNVybj2wKzP3AkTEA8D5mflHEXF38zFrgX2LrV1S8dyxVpIkqZoWHQZfpRXA/pbjiZZ7D489dxBYCZCZRyLiN4H/BfhfX+mTrFq1jIGB/vZV3UZDQ4Nll/AS/f2NvYCqVpdenaq9ju++YJA7v/x1AH7jEz9QcjVqh6r1mHqL/aUi2V8qUrf1V1lh8ADQ+kwtadmE5thzg7TMAmbm+yPi48BoRGzIzFl3odi7d+aNK8o2NDTI+PjBsst4iYmJxiaxVatLC1fF/gJ7rJdUtcfUG+wvFcn+UpGq2l9zBdRX8z6D7bCdxkY0NO8ZfKjl3CPAGRFxckQcD5wP7IyI/yMifrb5mOeByeYfSZIkSdIClTUzeCdwUUTsoPFehZdHxGXA8sy8OSKuBe6jEVa3ZuZTEfHHwH+NiL8CjgN+MjO/VVL9kiRJktTVSgmDmTkJXH3M8KMt5+8C7jrmmkPAvy2+OkmSJEnqfWUtE9X/397dxshVnncYv/bF2DVeuwaWLSgISy25hT+EVEXY6xpMpZoQLFoUqapkRWkJL3FoFBQkUtqCpSLaKiWUUkVWwbBK0jaqGpAlTBSMFIWq2LBRq1ZysviubJVIgcTauOs3CHa93n44s2Yway/2zs6ZM+f6fdrzPHO098zcuzP/Oec8I0mSJEklMgxKkirv/i27uH/LrrLLkCSpUgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkqSWcUEnqToMg5IkSZJUQ6V86bw6z6P3rCm7BEmSJElt5JFBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGiplNdGI6AW2ANcAx4A7M3Nv0/ytwGbgBDCSmVsjYgEwAqwAFgKPZObz7a5d0vlxxVpJkqTOUtaRwduARZk5DDwAPDY90Qh9jwM3AeuAuyNiCPg0cCAzrwduBr7W9qolSZIkqUuUFQbXAi8CZOZrwLVNc1cDezNzIjOPA68ANwDfBh5q3KaH4qihJEmSJOk8lPWl80uBQ03bkxHRn5knZpg7AizLzKMAETEAPAs8ONsvWb58Mf39fa2ruoUGBwfKLkFdzP7SfOu0Huvr6wE6ry6dH5/Hauv0v8dOrUvdoWr9VVYYPAw0P1K9jSA409wAcBAgIq4AtgFbMvNbs/2SiYl3WlNtiw0ODjA+fqTsMtSl7C/Nt07sscnJKYCOq0vnrhP7S+emk/8e7S/Np07tr7MF1LLC4E7gVuBfImI1sLtp7nXgqoi4CDhKcYroVxvXDb4EfCEzv9fugiVJkiSpm5QVBrcB6yNiF8X1f7dHxEZgSWY+FRH3ATsormkcycw3I+IJYDnwUERMXzv4ycz8RRl3QJIkSZKqrJQwmJkngU2nDe9pmt8ObD9tn3uBe+e/OklSlYyO7efg0WNMnpxi8zOjbBhewaqVQ2WXJUlSxyvryKAk6Szu37IL8PsZZzM6tp8nn//Rqe2fjL99attAKEnS2ZX11RKSJM3Zd1594wzjP25rHZIkVZFhUJJUWW/9fOZVo3964O02VyJJUvUYBiVJlXX5JYtnHL/s4gvbXIkkSdVjGJQkVdaG4RVnGL+yvYVIAt5b0OnA4XfZ/Mwoo2P7yy5J0lm4gIwkqbKmF4l5+oUxJk9O8ZHBJWwYvtLFY6QSuKCTVD0eGZQkVdqqlUP88pKFXLx0EQ/fcZ1vOqWSuKCTVD2GQUmSJM2ZCzpJ1WMYlCRJ0py5oJNUPYZBSZIkzZkLOknV4wIykiRJmjMXdJKqxzAoSZKklli1cohnX94HwMN3XFdyNZJm42mikiRJklRDhkFJkiRJqiHDoCRJkiTVUCnXDEZEL7AFuAY4BtyZmXub5m8FNgMngJHM3No0twr4Smbe2NaiJUmSJKmLlHVk8DZgUWYOAw8Aj01PRMQC4HHgJmAdcHdEDDXmvgw8DSxqe8WSJEmS1EXKCoNrgRcBMvM14NqmuauBvZk5kZnHgVeAGxpz+4BPtbNQSZIkSepGZX21xFLgUNP2ZET0Z+aJGeaOAMsAMvO5iFjxYX/J8uWL6e/va0G5rTc4OFB2Cepi9lf19fX1AJ37XHZaXZ3+eOnc+DxWW6f/PXZqXeoOVeuvssLgYaD5keptBMGZ5gaAg+fzSyYm3jm/6ubZ4OAA4+NHyi5DXcr+6g6Tk1MAHflcdmKPdfLjpXPTif2lc9PJf4/2l+ZTp/bX2QJqWaeJ7gRuAYiI1cDuprnXgasi4qKIuIDiFNFX21+iJJVjdGw/B48e48Dhd9n8zCijY/vLLkmSJHWhso4MbgPWR8QuoAe4PSI2Aksy86mIuA/YQRFWRzLzzZLqlKS2Gh3bz5PP/+jU9k/G3z61vWrlUFllSZKkLlRKGMzMk8Cm04b3NM1vB7afYd83gNXzVpwkleg7r75xhvEfGwYlSVJL+aXzktRB3vr5zNc6//TA222uRJIkdTvDoCR1kMsvWTzj+GUXX9jmSiRJUrcr65pBSdIMNgyveN81g++NX1lCNdXx6D1ryi5BkqTKMQxKUgeZvi7w6RfGmDw5xUcGl7Bh+EqvF5QkSS1nGJSkDrNq5RDPvrwPgIfvuK7kaiRJUrfymkFJkiRJqiHDoCRJkiTVkKeJSpIkqWVc0EmqDo8MSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVUyvcMRkQvsAW4BjgG3JmZe5vmbwU2AyeAkczcOts+kiRJkqQPr6wjg7cBizJzGHgAeGx6IiIWAI8DNwHrgLsjYuhs+0iSJEmSzk1ZYXAt8CJAZr4GXNs0dzWwNzMnMvM48Apwwyz7SJIkSZLOQSmniQJLgUNN25MR0Z+ZJ2aYOwIsm2WfGS1fvpj+/r4Wlt06g4MDZZegLmZ/VV9fXw/Quc9lp9al7mB/aT7ZX5pPVeuvssLgYaD5keptCnWnzw0AB2fZZ0YTE++0oNTWGxwcYHz8SNllqEvZX91hcnIKoCOfS3tM88n+0nyyvzSfOrW/zhZQyzpNdCdwC0BErAZ2N829DlwVERdFxAUUp4i+Oss+kiRJkqRzUNaRwW3A+ojYBfQAt0fERmBJZj4VEfcBOyjC6khmvhkRH9inpNolSZIkqfJKCYOZeRLYdNrwnqb57cD2D7GPJEmSJOk8lHVkUJJ0Fo/es6bsEiRJUpcr65pBSZIkSVKJDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDfVMTU2VXYMkSZIkqc08MihJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqqH+sguok4joBbYA1wDHgDszc2+5VakqImIBMAKsABYCjwBjwNeBKeCHwB9l5smIuAv4HHACeCQzX4iIXwL+EbgUOAL8QWaOt/t+qLNFxKXAfwDrKfrn69hfaoGI+BPgd4ALKF4L/xX7Sy3QeH38BsXr4yRwF/7/UgtExCrgK5l5Y0T8GnPsqYhYDTzRuO1Lmfnn7b9X7+eRwfa6DViUmcPAA8BjJdejHHwWgQAAAxlJREFUavk0cCAzrwduBr4G/A3wYGOsB/jdiPgV4IvAbwKfAP4qIhYCnwd2N277TeDBEu6DOljjDdWTwC8aQ/aXWiIibgTWUPTNOuAK7C+1zi1Af2auAR4G/gL7S3MUEV8GngYWNYZa0VN/D2wE1gKrIuLX23V/zsQw2F5rgRcBMvM14Npyy1HFfBt4qPFzD8WnSr9B8ek6wHeB3wauA3Zm5rHMPATsBT5GU/813VZq9lWKF6q3Gtv2l1rlE8BuYBuwHXgB+0ut899Af+MMrKXA/2F/ae72AZ9q2p5TT0XEUmBhZu7LzClgBx3Qa4bB9loKHGranowIT9XVh5KZRzPzSEQMAM9SfMrU0/iHAsVpCMv4YJ/NND49JgEQEX8IjGfmjqZh+0utcgnFB6C/B2wC/gnotb/UIkcpThHdA2wF/g7/f2mOMvM5ig8Wps21p5YCh2e4bakMg+11GBho2u7NzBNlFaPqiYgrgO8D/5CZ3wJONk0PAAf5YJ/NND49Jk37LLA+Il4GPk5xWsulTfP2l+biALAjM49nZgLv8v43QfaX5uJLFP31UYp1Gb5BcW3qNPtLrTDX91xnum2pDIPttZPivHYaF5DuLrccVUlEDAEvAX+cmSON4f9sXIsD8Eng34AfANdHxKKIWAZcTXGh86n+a7qtBEBm3pCZ6zLzRuC/gM8A37W/1CKvADdHRE9EXA5cCHzP/lKLTPDeUZj/BRbg66Nab049lZmHgeMR8asR0UNx+nzpvdYzNTU1+63UEk2riX6M4pqv2zNzT7lVqSoi4gng9ylOg5l2L8XpMBcArwN3ZeZkY2Wruyk+8PnLzHwuIhZTfFp6GXAc2JiZP2vnfVA1NI4ObqL4FHQr9pdaICL+Gvgtir75U+B/sL/UAhGxhGK17cso+ukJ4N+xvzRHEbEC+OfMXB0RH2WOPdU4GPS3QB/FaqJ/1v579X6GQUmSJEmqIU8TlSRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNfT/RHyrlUNUVfcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib.gridspec import GridSpec\n", + "plt.figure(figsize=(15, 20))\n", + "gs = GridSpec(5, 1)\n", + "ax_lc = plt.subplot(gs[0])\n", + "ax_mean = plt.subplot(gs[1], sharex=ax_lc)\n", + "ax_evar = plt.subplot(gs[2], sharex=ax_lc)\n", + "ax_nvar = plt.subplot(gs[3], sharex=ax_lc)\n", + "ax_fvar = plt.subplot(gs[4], sharex=ax_lc)\n", + "\n", + "ax_lc.plot(lc.time, lc.counts)\n", + "ax_lc.set_ylabel('Counts')\n", + "ax_mean.scatter(tmean, rate)\n", + "ax_mean.set_ylabel('Counts')\n", + "\n", + "ax_evar.errorbar(tmean, evar, yerr=evar_err, fmt='o')\n", + "ax_evar.set_ylabel(r'$\\sigma_{XS}$')\n", + "\n", + "ax_fvar.errorbar(tmean, fvar, yerr=fvar_err, fmt='o')\n", + "ax_fvar.set_ylabel(r'$F_{var}$')\n", + "\n", + "ax_nvar.errorbar(tmean, nvar, yerr=nvar_err, fmt='o')\n", + "ax_nvar.set_ylabel(r'$\\sigma_{NXS}$')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Lightcurve/Lightcurve tutorial.html b/notebooks/Lightcurve/Lightcurve tutorial.html new file mode 100644 index 000000000..0dfc145ab --- /dev/null +++ b/notebooks/Lightcurve/Lightcurve tutorial.html @@ -0,0 +1,1742 @@ + + + + + + + + Creating a light curve — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Start here to begin with Stingray.

+
+
[1]:
+
+
+
import numpy as np
+%matplotlib inline
+import warnings
+warnings.filterwarnings('ignore')
+
+
+
+
+

Creating a light curve

+
+
[2]:
+
+
+
from stingray import Lightcurve
+
+
+
+

A Lightcurve object is usually created in one of the following two ways:

+
    +
  1. From an array of time stamps and an array of counts.

    +
    lc = Lightcurve(times, counts, **opts)
    +
    +
    +

    where **opts are any (optional) keyword arguments (e.g. dt=0.1, mjdref=55000, etc.)

    +
  2. +
  3. From photon arrival times.

    +
    lc = Lightcurve.make_lightcurve(event_arrival_times, dt=1, **opts)
    +
    +
    +
  4. +
+

as will be described in the next sections.

+

An additional possibility is creating an empty Lightcurve object, whose attributes will be filled in later:

+
lc = Lightcurve()
+
+
+

or, if one wants to specify any keyword arguments:

+
lc = Lightcurve(**opts)
+
+
+

This option is usually only relevant to advanced users, but we mention it here for reference

+
+

1. Array of time stamps and counts

+

Create 1000 time stamps

+
+
[3]:
+
+
+
times = np.arange(1000)
+times[:10]
+
+
+
+
+
[3]:
+
+
+
+
+array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+
+
+

Create 1000 random Poisson-distributed counts:

+
+
[4]:
+
+
+
counts = np.random.poisson(100, size=len(times))
+counts[:10]
+
+
+
+
+
[4]:
+
+
+
+
+array([ 91,  98,  98,  98, 108,  86, 101, 114,  93,  95])
+
+
+

Create a Lightcurve object with the times and counts array.

+
+
[5]:
+
+
+
lc = Lightcurve(times, counts)
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+

The number of data points can be counted with the len function.

+
+
[6]:
+
+
+
len(lc)
+
+
+
+
+
[6]:
+
+
+
+
+1000
+
+
+

Note the warnings thrown by the syntax above. By default, stingray does a number of checks on the data that is put into the Lightcurve class. For example, it checks whether it’s evenly sampled. It also computes the time resolution dt. All of these checks take time. If you know the time resolution, it’s a good idea to put it in manually. If you know that your light curve is well-behaved (for example, because you know the data really well, or because you’ve generated it yourself, as +we’ve done above), you can skip those checks and save a bit of time:

+
+
[7]:
+
+
+
dt = 1
+lc = Lightcurve(times, counts, dt=dt, skip_checks=True)
+
+
+
+
+
+

2. Photon Arrival Times

+

Often, you might have unbinned photon arrival times, rather than a light curve with time stamps and associated measurements. If this is the case, you can use the make_lightcurve method to turn these photon arrival times into a regularly binned light curve.

+
+
[8]:
+
+
+
arrivals = np.loadtxt("photon_arrivals.txt")
+arrivals[:10]
+
+
+
+
+
[8]:
+
+
+
+
+array([1., 1., 2., 2., 2., 3., 3., 3., 3., 3.])
+
+
+
+
[9]:
+
+
+
lc_new = Lightcurve.make_lightcurve(arrivals, dt=1)
+
+
+
+

The time bins and respective counts can be seen with lc.counts and lc.time

+
+
[10]:
+
+
+
lc_new.counts
+
+
+
+
+
[10]:
+
+
+
+
+array([2, 3, 5, 1, 4, 1, 3, 1, 1])
+
+
+
+
[11]:
+
+
+
lc_new.time
+
+
+
+
+
[11]:
+
+
+
+
+array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5])
+
+
+

One useful feature is that you can explicitly pass in the start time and the duration of the observation. This can be helpful because the chance that a photon will arrive exactly at the start of the observation and the end of the observation is very small. In practice, when making multiple light curves from the same observation (e.g. individual light curves of multiple detectors, of for different energy ranges) this can lead to the creation of light curves with time bins that are slightly +offset from one another. Here, passing in the total duration of the observation and the start time can be helpful.

+
+
[12]:
+
+
+
lc_new = Lightcurve.make_lightcurve(arrivals, dt=1.0, tstart=1.0, tseg=9.0)
+
+
+
+
+
+
+

Properties

+

A Lightcurve object has the following properties :

+
    +
  1. time : numpy array of time values

  2. +
  3. counts : numpy array of counts per bin values

  4. +
  5. counts_err: numpy array with the uncertainties on the values in counts

  6. +
  7. countrate : numpy array of counts per second

  8. +
  9. countrate_err: numpy array of the uncertainties on the values in countrate

  10. +
  11. n : Number of data points in the lightcurve

  12. +
  13. dt : Time resolution of the light curve

  14. +
  15. tseg : Total duration of the light curve

  16. +
  17. tstart : Start time of the light curve

  18. +
  19. meancounts: The mean counts of the light curve

  20. +
  21. meanrate: The mean count rate of the light curve

  22. +
  23. mjdref: MJD reference date (tstart / 86400 gives the date in MJD at the start of the observation)

  24. +
  25. gti:Good Time Intervals. They indicate the “safe” time intervals to be used during the analysis of the light curve.

  26. +
  27. err_dist: Statistic of the Lightcurve, it is used to calculate the uncertainties and other statistical values appropriately. It propagates to Spectrum classes

  28. +
+
+
[13]:
+
+
+
lc.n == len(lc)
+
+
+
+
+
[13]:
+
+
+
+
+True
+
+
+

Note that by default, stingray assumes that the user is passing a light curve in counts per bin. That is, the counts in bin \(i\) will be the number of photons that arrived in the interval \(t_i - 0.5\Delta t\) and \(t_i + 0.5\Delta t\). Sometimes, data is given in count rate, i.e. the number of events that arrive within an interval of a second. The two will only be the same if the time resolution of the light curve is exactly 1 second.

+

Whether the input data is in counts per bin or in count rate can be toggled via the boolean input_counts keyword argument. By default, this argument is set to True, and the code assumes the light curve passed into the object is in counts/bin. By setting it to False, the user can pass in count rates:

+
+
[14]:
+
+
+
# times with a resolution of 0.1
+dt = 0.1
+times = np.arange(0, 100, dt)
+times[:10]
+
+
+
+
+
[14]:
+
+
+
+
+array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
+
+
+
+
[15]:
+
+
+
mean_countrate = 100.0
+countrate = np.random.poisson(mean_countrate, size=len(times))
+
+
+
+
+
[16]:
+
+
+
lc = Lightcurve(times, counts=countrate, dt=dt, skip_checks=True, input_counts=False)
+
+
+
+

Internally, both counts and countrate attribute will be defined no matter what the user passes in, since they’re trivially converted between each other through a multiplication/division with `dt:

+
+
[17]:
+
+
+
print(mean_countrate)
+print(lc.countrate[:10])
+
+
+
+
+
+
+
+
+100.0
+[113  92 110  97 101 102 103 101 124  89]
+
+
+
+
[18]:
+
+
+
mean_counts = mean_countrate * dt
+print(mean_counts)
+print(lc.counts[:10])
+
+
+
+
+
+
+
+
+10.0
+[11.3  9.2 11.   9.7 10.1 10.2 10.3 10.1 12.4  8.9]
+
+
+
+

Error Distributions in stingray.Lightcurve

+

The instruments that record our data impose measurement noise on our measurements. Depending on the type of instrument, the statistical distribution of that noise can be different. stingray was originally developed with X-ray data in mind, where most data comes in the form of photon arrival times, which generate measurements distributed according to a Poisson distribution. By default, err_dist is assumed to Poisson, and this is the only statistical distribution currently fully +supported. But you can put in your own errors (via counts_err or countrate_err). It’ll produce a warning, and be aware that some of the statistical assumptions made about downstream products (e.g. the normalization of periodograms) may not be correct:

+
+
[19]:
+
+
+
times = np.arange(1000)
+
+mean_flux = 100.0 # mean flux
+std_flux = 2.0 # standard deviation on the flux
+
+# generate fluxes with a Gaussian distribution and
+# an array of associated uncertainties
+flux = np.random.normal(loc=mean_flux, scale=std_flux, size=len(times))
+flux_err = np.ones_like(flux) * std_flux
+
+
+
+
+
[20]:
+
+
+
lc = Lightcurve(times, flux, err=flux_err, err_dist="gauss", dt=1.0, skip_checks=True)
+
+
+
+
+
+

Good Time Intervals

+

Lightcurve (and most other core stingray classes) support the use of Good Time Intervals (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don’t apply to the data within a Lightcurve object, but become relevant in a number of circumstances, such as when generating Powerspectrum objects.

+

If no GTIs are given at instantiation of the Lightcurve class, an artificial GTI will be created spanning the entire length of the data set being passed in:

+
+
[21]:
+
+
+
times = np.arange(1000)
+counts = np.random.poisson(100, size=len(times))
+
+lc = Lightcurve(times, counts, dt=1, skip_checks=True)
+
+
+
+
+
[22]:
+
+
+
lc.gti
+
+
+
+
+
[22]:
+
+
+
+
+array([[-5.000e-01,  9.995e+02]])
+
+
+
+
[23]:
+
+
+
print(times[0]) # first time stamp in the light curve
+print(times[-1]) # last time stamp in the light curve
+print(lc.gti) # the GTIs generated within Lightcurve
+
+
+
+
+
+
+
+
+0
+999
+[[-5.000e-01  9.995e+02]]
+
+
+GTIs are defined as a list of tuples:
+
[24]:
+
+
+
gti = [(0, 500), (600, 1000)]
+
+
+
+
+
[25]:
+
+
+
lc = Lightcurve(times, counts, dt=1, skip_checks=True, gti=gti)
+
+
+
+
+
[26]:
+
+
+
print(lc.gti)
+
+
+
+
+
+
+
+
+[[   0  500]
+ [ 600 1000]]
+
+
+

We’ll get back to these when we talk more about some of the methods that apply GTIs to the data.

+
+
+
+

Operations

+
+

Addition/Subtraction

+

Two light curves can be summed up or subtracted from each other if they have same time arrays.

+
+
[27]:
+
+
+
lc = Lightcurve(times, counts, dt=1, skip_checks=True)
+lc_rand = Lightcurve(np.arange(1000), [500]*1000, dt=1, skip_checks=True)
+
+
+
+
+
[28]:
+
+
+
lc_sum = lc + lc_rand
+
+
+
+
+
[29]:
+
+
+
print("Counts in light curve 1: " + str(lc.counts[:5]))
+print("Counts in light curve 2: " + str(lc_rand.counts[:5]))
+print("Counts in summed light curve: " + str(lc_sum.counts[:5]))
+
+
+
+
+
+
+
+
+Counts in light curve 1: [103  99 102 109 104]
+Counts in light curve 2: [500 500 500 500 500]
+Counts in summed light curve: [603 599 602 609 604]
+
+
+
+
+

Negation

+

A negation operation on the lightcurve object inverts the count array from positive to negative values.

+
+
[30]:
+
+
+
lc_neg = -lc
+
+
+
+
+
[31]:
+
+
+
lc_sum = lc + lc_neg
+
+
+
+
+
[32]:
+
+
+
np.all(lc_sum.counts == 0)  # All the points on lc and lc_neg cancel each other
+
+
+
+
+
[32]:
+
+
+
+
+True
+
+
+
+
+

Indexing

+

Count value at a particular time can be obtained using indexing.

+
+
[33]:
+
+
+
lc[120]
+
+
+
+
+
[33]:
+
+
+
+
+113
+
+
+

A Lightcurve can also be sliced to generate a new object.

+
+
[34]:
+
+
+
lc_sliced = lc[100:200]
+
+
+
+
+
[35]:
+
+
+
len(lc_sliced.counts)
+
+
+
+
+
[35]:
+
+
+
+
+100
+
+
+
+
+
+

Methods

+
+

Concatenation

+

Two light curves can be combined into a single object using the join method. Note that both of them must not have overlapping time arrays.

+
+
[36]:
+
+
+
lc_1 = lc
+
+
+
+
+
[37]:
+
+
+
lc_2 = Lightcurve(np.arange(1000, 2000), np.random.rand(1000)*1000, dt=1, skip_checks=True)
+
+
+
+
+
[38]:
+
+
+
lc_long = lc_1.join(lc_2, skip_checks=True)  # Or vice-versa
+
+
+
+
+
[39]:
+
+
+
print(len(lc_long))
+
+
+
+
+
+
+
+
+2000
+
+
+
+
+

Truncation

+

A light curve can also be truncated.

+
+
[40]:
+
+
+
lc_cut = lc_long.truncate(start=0, stop=1000)
+
+
+
+
+
[41]:
+
+
+
len(lc_cut)
+
+
+
+
+
[41]:
+
+
+
+
+1000
+
+
+

Note : By default, the start and stop parameters are assumed to be given as indices of the time array. However, the start and stop values can also be given as time values in the same value as the time array.

+
+
[42]:
+
+
+
lc_cut = lc_long.truncate(start=500, stop=1500, method='time')
+
+
+
+
+
[43]:
+
+
+
lc_cut.time[0], lc_cut.time[-1]
+
+
+
+
+
[43]:
+
+
+
+
+(500, 1499)
+
+
+
+
+

Re-binning

+

The time resolution (dt) can also be changed to a larger value.

+

Note : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division.

+
+
[44]:
+
+
+
lc_rebinned = lc_long.rebin(2)
+
+
+
+
+
[45]:
+
+
+
print("Old time resolution = " + str(lc_long.dt))
+print("Number of data points = " + str(lc_long.n))
+print("New time resolution = " + str(lc_rebinned.dt))
+print("Number of data points = " + str(lc_rebinned.n))
+
+
+
+
+
+
+
+
+Old time resolution = 1
+Number of data points = 2000
+New time resolution = 2
+Number of data points = 1000
+
+
+
+
+

Sorting

+

A lightcurve can be sorted using the sort method. This function sorts time array and the counts array is changed accordingly.

+
+
[46]:
+
+
+
new_lc_long = lc_long[:]  # Copying into a new object
+
+
+
+
+
[47]:
+
+
+
new_lc_long = new_lc_long.sort(reverse=True)
+
+
+
+
+
[48]:
+
+
+
new_lc_long.time[0] == max(lc_long.time)
+
+
+
+
+
[48]:
+
+
+
+
+True
+
+
+

You can sort by the counts array using sort_counts method which changes time array accordingly:

+
+
[49]:
+
+
+
new_lc = lc_long[:]
+new_lc = new_lc.sort_counts()
+new_lc.counts[-1] == max(lc_long.counts)
+
+
+
+
+
[49]:
+
+
+
+
+True
+
+
+
+
+

Plotting

+

A curve can be plotted with the plot method.

+
+
[50]:
+
+
+
lc.plot()
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png +
+
+

A plot can also be customized using several keyword arguments.

+
+
[51]:
+
+
+
lc.plot(labels=('Time', "Counts"),  # (xlabel, ylabel)
+        axis=(0, 1000, -50, 150),  # (xmin, xmax, ymin, ymax)
+        title="Random generated lightcurve",
+        marker='c:')  # c is for cyan and : is the marker style
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png +
+
+

The figure drawn can also be saved in a file using keywords arguments in the plot method itself.

+
+
[52]:
+
+
+
lc.plot(marker = 'k', save=True, filename="lightcurve.png")
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png +
+
+

Note : See utils.savefig function for more options on saving a file.

+
+
+
+

Sample Data

+

Stingray also has a sample Lightcurve data which can be imported from within the library.

+
+
[53]:
+
+
+
from stingray import sampledata
+
+
+
+
+
[54]:
+
+
+
lc = sampledata.sample_data()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
[55]:
+
+
+
lc.plot()
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png +
+
+
+

Checking the Light Curve for Irregularities

+

You can perform checks on the behaviour of the light curve, similar to what’s done when instantiating a Lightcurve object when skip_checks=False, by calling the relevant method:

+
+
[56]:
+
+
+
time = np.hstack([np.arange(0, 10, 0.1), np.arange(10, 20, 0.3)]) # uneven time resolution
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=1.0, skip_checks=True)
+
+
+
+
+
[57]:
+
+
+
lc.check_lightcurve()
+
+
+
+

Let’s add some badly formatted GTIs:

+
+
[58]:
+
+
+
gti = [(10, 100), (20, 30, 40), ((1, 2), (3, 4, (5, 6)))] # not a well-behaved GTI
+lc = Lightcurve(time, counts, dt=0.1, skip_checks=True, gti=gti)
+
+
+
+
+
[59]:
+
+
+
lc.check_lightcurve()
+
+
+
+
+
+
+
+
+---------------------------------------------------------------------------
+TypeError                                 Traceback (most recent call last)
+<ipython-input-59-7e2c226c1569> in <module>
+----> 1 lc.check_lightcurve()
+
+/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/lightcurve.py in check_lightcurve(self)
+    418         # i.e. the bin sizes aren't equal throughout.
+    419
+--> 420         check_gtis(self.gti)
+    421
+    422         idxs = np.searchsorted(self.time, self.gti)
+
+/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/gti.py in check_gtis(gti)
+    225     if len(gti) != gti.shape[0] or len(gti.shape) != 2 or \
+    226             len(gti) != gti.shape[0]:
+--> 227         raise TypeError("Please check formatting of GTIs. They need to be"
+    228                         " provided as [[gti00, gti01], [gti10, gti11], ...]")
+    229
+
+TypeError: Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]
+
+
+
+
+

MJDREF and Shifting Times

+

The mjdref keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don’t become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time.

+

mjdref is generally passed into the Lightcurve object at instantiation, but it can be changed later:

+
+
[60]:
+
+
+
mjdref = 91254
+time = np.arange(1000)
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=1, skip_checks=True, mjdref=mjdref)
+print(lc.mjdref)
+
+
+
+
+
+
+
+
+91254
+
+
+
+
[61]:
+
+
+
mjdref_new = 91254 + 20
+lc_new = lc.change_mjdref(mjdref_new)
+print(lc_new.mjdref)
+
+
+
+
+
+
+
+
+91274
+
+
+

This change only affects the reference time, not the values given in the time attribute. However, it is also possible to shift the entire light curve, along with its GTIs:

+
+
[62]:
+
+
+
gti = [(0,500), (600, 1000)]
+lc.gti = gti
+
+
+
+
+
[63]:
+
+
+
print("first three time bins: " + str(lc.time[:3]))
+print("GTIs: " + str(lc.gti))
+
+
+
+
+
+
+
+
+first three time bins: [0 1 2]
+GTIs: [[   0  500]
+ [ 600 1000]]
+
+
+
+
[64]:
+
+
+
time_shift = 10.0
+lc_shifted = lc.shift(time_shift)
+
+
+
+
+
[65]:
+
+
+
print("Shifted first three time bins: " + str(lc_shifted.time[:3]))
+print("Shifted GTIs: " + str(lc_shifted.gti))
+
+
+
+
+
+
+
+
+Shifted first three time bins: [10. 11. 12.]
+Shifted GTIs: [[  10.  510.]
+ [ 610. 1010.]]
+
+
+
+
+

Calculating a baseline

+

TODO: Need to document this method

+
+
[ ]:
+
+
+

+
+
+
+
+
+

Working with GTIs and Splitting Light Curves

+

It is possible to split light curves into multiple segments. In particular, it can be useful to split light curves with large gaps into individual contiguous segments without gaps.

+
+
[66]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.array([1, 2, 3, 10, 11, 12, 13, 14, 17, 18, 19, 20])
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, skip_checks=True)
+
+
+
+
+
+
+
+
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
[67]:
+
+
+
lc.gti
+
+
+
+
+
[67]:
+
+
+
+
+array([[ 0.5, 20.5]])
+
+
+

This light curve has uneven bins. It has a large gap between 3 and 10, and a smaller gap between 14 and 17. We can use the split method to split it into three contiguous segments:

+
+
[68]:
+
+
+
lc_split = lc.split(min_gap=2*lc.dt)
+
+
+
+
+
[69]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[1 2 3]
+[10 11 12 13 14]
+[17 18 19 20]
+
+
+

This has split the light curve into three contiguous segments. You can adjust the tolerance for the size of gap that’s acceptable via the min_gap attribute. You can also require a minimum number of data points in the output light curves. This is helpful when you’re only interested in contiguous segments of a certain length:

+
+
[70]:
+
+
+
lc_split = lc.split(min_gap=6.0)
+
+
+
+
+
[71]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[1 2 3]
+[10 11 12 13 14 17 18 19 20]
+
+
+

What if we only want the long segment?

+
+
[72]:
+
+
+
lc_split = lc.split(min_gap=6.0, min_points=4)
+
+
+
+
+
[73]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[10 11 12 13 14 17 18 19 20]
+
+
+

A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:

+
+
[74]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.arange(20)
+counts = np.random.poisson(100, size=len(time))
+gti = [(0,8), (12,20)]
+
+
+lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)
+
+
+
+
+
[75]:
+
+
+
lc_split = lc.split_by_gti()
+
+
+
+
+
[76]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[1 2 3 4 5 6 7]
+[13 14 15 16 17 18 19]
+
+
+

Because I’d passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.

+

You can also apply the GTIs directly to the original light curve, which will filter time, counts, countrate, counts_err and countrate_err to only fall within the bounds of the GTIs:

+
+
[77]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.arange(20)
+counts = np.random.poisson(100, size=len(time))
+gti = [(0,8), (12,20)]
+
+
+lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)
+
+
+
+

Caution: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:

+
+
[78]:
+
+
+
# time array before applying GTIs:
+lc.time
+
+
+
+
+
[78]:
+
+
+
+
+array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
+       17, 18, 19])
+
+
+
+
[79]:
+
+
+
lc.apply_gtis()
+
+
+
+
+
[80]:
+
+
+
# time array after applying GTIs
+lc.time
+
+
+
+
+
[80]:
+
+
+
+
+array([ 1,  2,  3,  4,  5,  6,  7, 13, 14, 15, 16, 17, 18, 19])
+
+
+

As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs.

+
+
+

Analyzing Light Curve Segments

+

There’s some functionality in stingray aimed at making analysis of individual light curve segments (or chunks, as they’re called throughout the code) efficient.

+

One helpful function tells you the length that segments should have to satisfy two conditions: (1) the minimum number of time bins in the segment, and (2) the minimum total number of counts (or flux) in each segment.

+

Let’s give this a try with an example:

+
+
[81]:
+
+
+
dt=1.0
+time = np.arange(0, 100, dt)
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=dt, skip_checks=True)
+
+
+
+
+
[82]:
+
+
+
min_total_counts = 300
+min_total_bins = 2
+estimated_chunk_length = lc.estimate_chunk_length(min_total_counts, min_total_bins)
+
+print("The estimated length of each segment in seconds to satisfy both conditions is: " + str(estimated_chunk_length))
+
+
+
+
+
+
+
+
+The estimated length of each segment in seconds to satisfy both conditions is: 4.0
+
+
+

So we have time bins of 1 second time resolution, each with an average of 100 counts/bin. We require at least 2 time bins in each segment, and also a minimum number of total counts in the segment of 300. In theory, you’d expect to need 3 time bins (so 3-second segments) to satisfy the condition above. However, the Poisson distribution is quite variable, so we cannot guarantee that all bins will have a total number of counts above 300. Hence, our segments need to be 4 seconds long.

+

We can now use these segments to do some analysis, using the analyze_by_chunks method. In the simplest, case we can use a standard numpy operation to learn something about the properties of each segment:

+
+
[83]:
+
+
+
start_times, stop_times, lc_sums = lc.analyze_lc_chunks(chunk_length = 10.0, func=np.median)
+
+
+
+
+
[84]:
+
+
+
lc_sums
+
+
+
+
+
[84]:
+
+
+
+
+array([102. , 110. ,  92. ,  96.5,  99.5, 100. ,  95. ,  96.5, 100. ,
+       108. ])
+
+
+

This splits the light curve into 10-second segments, and then finds the median number of counts/bin in each segment. For a flat light curve like the one we generated above, this isn’t super interesting, but this method can be helpful for more complex analyses. Instead of np.median, you can also pass in your own function:

+
+
[85]:
+
+
+
def myfunc(lc):
+    """
+    Not a very interesting function
+    """
+    return np.sum(lc.counts) * 10.0
+
+
+
+
+
[86]:
+
+
+
start_times, stop_times, lc_result = lc.analyze_lc_chunks(chunk_length=10.0, func=myfunc)
+
+
+
+
+
[87]:
+
+
+
lc_result
+
+
+
+
+
[87]:
+
+
+
+
+array([10090., 10830.,  9370., 10120., 10180., 10190.,  9910.,  9610.,
+        9880., 10600.])
+
+
+
+
+

Compatibility with Lightkurve

+

The `Lightkurve package <https://docs.lightkurve.org>`__ provides a large amount of complementary functionality to stingray, in particular for data observed with Kepler and TESS, stars and exoplanets, and unevenly sampled data. We have implemented a conversion method that converts to/from stingray’s native Lightcurve object and Lightkurve’s native LightCurve object. Equivalent functionality exists in Lightkurve, too.

+
+
[88]:
+
+
+
import lightkurve
+
+
+
+
+
[89]:
+
+
+
lc_new = lc.to_lightkurve()
+
+
+
+
+
[90]:
+
+
+
type(lc_new)
+
+
+
+
+
[90]:
+
+
+
+
+lightkurve.lightcurve.LightCurve
+
+
+
+
[91]:
+
+
+
lc_new.time
+
+
+
+
+
[91]:
+
+
+
+
+array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12.,
+       13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
+       26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,
+       39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,
+       52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,
+       65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,
+       78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,
+       91., 92., 93., 94., 95., 96., 97., 98., 99.])
+
+
+
+
[92]:
+
+
+
lc_new.flux
+
+
+
+
+
[92]:
+
+
+
+
+array([110,  82,  94, 126, 102,  80, 102, 105, 106, 102, 119,  98, 112,
+        98, 119, 112, 119,  99,  99, 108,  91,  85,  93, 109,  97,  82,
+        87,  89,  96, 108, 120,  88,  97,  88, 109, 120,  94, 106,  94,
+        96, 120, 122,  92,  87, 113,  94, 100,  99, 105,  86, 107, 101,
+        94, 102,  96, 112,  93, 117,  99,  98,  91, 101,  94, 120, 105,
+        91,  91,  96,  85, 117, 104, 102,  91,  94, 100, 115,  98,  74,
+        95,  88, 100, 107, 102, 109, 109,  94,  86,  84,  97, 100, 110,
+       109, 117,  96, 108, 108, 110, 108,  97,  97])
+
+
+

Let’s do the rountrip to stingray:

+
+
[93]:
+
+
+
lc_back = lc_new.to_stingray()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
[94]:
+
+
+
lc_back.time
+
+
+
+
+
[94]:
+
+
+
+
+array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12.,
+       13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
+       26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,
+       39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,
+       52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,
+       65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,
+       78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,
+       91., 92., 93., 94., 95., 96., 97., 98., 99.])
+
+
+
+
[95]:
+
+
+
lc_back.counts
+
+
+
+
+
[95]:
+
+
+
+
+array([110.,  82.,  94., 126., 102.,  80., 102., 105., 106., 102., 119.,
+        98., 112.,  98., 119., 112., 119.,  99.,  99., 108.,  91.,  85.,
+        93., 109.,  97.,  82.,  87.,  89.,  96., 108., 120.,  88.,  97.,
+        88., 109., 120.,  94., 106.,  94.,  96., 120., 122.,  92.,  87.,
+       113.,  94., 100.,  99., 105.,  86., 107., 101.,  94., 102.,  96.,
+       112.,  93., 117.,  99.,  98.,  91., 101.,  94., 120., 105.,  91.,
+        91.,  96.,  85., 117., 104., 102.,  91.,  94., 100., 115.,  98.,
+        74.,  95.,  88., 100., 107., 102., 109., 109.,  94.,  86.,  84.,
+        97., 100., 110., 109., 117.,  96., 108., 108., 110., 108.,  97.,
+        97.])
+
+
+

Similarly, we can transform Lightcurve objects to and from astropy.TimeSeries objects:

+
+
[96]:
+
+
+
dt=1.0
+time = np.arange(0, 100, dt)
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=dt, skip_checks=True)
+
+# convet to astropy.TimeSeries object
+ts = lc.to_astropy_timeseries()
+
+
+
+
+
[97]:
+
+
+
type(ts)
+
+
+
+
+
[97]:
+
+
+
+
+astropy.timeseries.sampled.TimeSeries
+
+
+
+
[98]:
+
+
+
ts[:10]
+
+
+
+
+
[98]:
+
+
+
+TimeSeries length=10 + + + + + + + + + + + + + +
timecounts
objectint64
0.0100
1.1574074074074073e-0592
2.3148148148148147e-0598
3.472222222222222e-0585
4.6296296296296294e-05113
5.787037037037037e-0594
6.944444444444444e-0599
8.101851851851852e-05108
9.259259259259259e-05101
0.00010416666666666667117
+
+

lc_back = Lightcurve.from_astropy_timeseries(ts)

+
+
+

Reading/Writing Lightcurves to/from files

+

The Lightcurve class has some rudimentary reading/writing capabilities via the read and write methods. For more information stingray inputs and outputs, please refer to the I/O tutorial.

+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Lightcurve/Lightcurve tutorial.ipynb b/notebooks/Lightcurve/Lightcurve tutorial.ipynb new file mode 100644 index 000000000..ba1c60b99 --- /dev/null +++ b/notebooks/Lightcurve/Lightcurve tutorial.ipynb @@ -0,0 +1,2161 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start here to begin with Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "%matplotlib inline\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Lightcurve` object is usually created in one of the following two ways:\n", + "\n", + "1. From an array of time stamps and an array of counts.\n", + " \n", + " lc = Lightcurve(times, counts, **opts)\n", + "\n", + " where `**opts` are any (optional) keyword arguments (e.g. `dt=0.1`, `mjdref=55000`, etc.)\n", + "\n", + "2. From photon arrival times.\n", + "\n", + " lc = Lightcurve.make_lightcurve(event_arrival_times, dt=1, **opts)\n", + "\n", + "as will be described in the next sections.\n", + "\n", + "An additional possibility is creating an empty `Lightcurve` object, whose attributes will be filled in later:\n", + "\n", + " lc = Lightcurve()\n", + "\n", + "or, if one wants to specify any keyword arguments:\n", + "\n", + " lc = Lightcurve(**opts)\n", + "\n", + " This option is usually only relevant to advanced users, but we mention it here for reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Array of time stamps and counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 time stamps" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1000)\n", + "times[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 random Poisson-distributed counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 91, 98, 98, 98, 108, 86, 101, 114, 93, 95])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "counts = np.random.poisson(100, size=len(times))\n", + "counts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a Lightcurve object with the times and counts array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = Lightcurve(times, counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points can be counted with the `len` function." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note the warnings thrown by the syntax above. By default, `stingray` does a number of checks on the data that is put into the `Lightcurve` class. For example, it checks whether it's evenly sampled. It also computes the time resolution `dt`. All of these checks take time. If you know the time resolution, it's a good idea to put it in manually. If you know that your light curve is well-behaved (for example, because you know the data really well, or because you've generated it yourself, as we've done above), you can skip those checks and save a bit of time:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1 \n", + "lc = Lightcurve(times, counts, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Photon Arrival Times\n", + "\n", + "Often, you might have unbinned photon arrival times, rather than a light curve with time stamps and associated measurements. If this is the case, you can use the `make_lightcurve` method to turn these photon arrival times into a regularly binned light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 2., 2., 2., 3., 3., 3., 3., 3.])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arrivals = np.loadtxt(\"photon_arrivals.txt\")\n", + "arrivals[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time bins and respective counts can be seen with `lc.counts` and `lc.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3, 5, 1, 4, 1, 3, 1, 1])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One useful feature is that you can explicitly pass in the start time and the duration of the observation. This can be helpful because the chance that a photon will arrive exactly at the start of the observation and the end of the observation is very small. In practice, when making multiple light curves from the same observation (e.g. individual light curves of multiple detectors, of for different energy ranges) this can lead to the creation of light curves with time bins that are *slightly* offset from one another. Here, passing in the total duration of the observation and the start time can be helpful." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1.0, tstart=1.0, tseg=9.0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve object has the following properties :\n", + "\n", + "1. `time` : numpy array of time values\n", + "2. `counts` : numpy array of counts per bin values\n", + "3. `counts_err`: numpy array with the uncertainties on the values in `counts`\n", + "4. `countrate` : numpy array of counts per second\n", + "5. `countrate_err`: numpy array of the uncertainties on the values in `countrate`\n", + "4. `n` : Number of data points in the lightcurve\n", + "5. `dt` : Time resolution of the light curve\n", + "6. `tseg` : Total duration of the light curve\n", + "7. `tstart` : Start time of the light curve\n", + "8. `meancounts`: The mean counts of the light curve\n", + "9. `meanrate`: The mean count rate of the light curve\n", + "10. `mjdref`: MJD reference date (``tstart`` / 86400 gives the date in MJD at the start of the observation)\n", + "11. `gti`:Good Time Intervals. They indicate the \"safe\" time intervals to be used during the analysis of the light curve. \n", + "12. `err_dist`: Statistic of the Lightcurve, it is used to calculate the uncertainties and other statistical values appropriately. It propagates to Spectrum classes\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n == len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that by default, `stingray` assumes that the user is passing a light curve in **counts per bin**. That is, the counts in bin $i$ will be the number of photons that arrived in the interval $t_i - 0.5\\Delta t$ and $t_i + 0.5\\Delta t$. Sometimes, data is given in **count rate**, i.e. the number of events that arrive within an interval of a *second*. The two will only be the same if the time resolution of the light curve is exactly 1 second.\n", + "\n", + "Whether the input data is in counts per bin or in count rate can be toggled via the boolean `input_counts` keyword argument. By default, this argument is set to `True`, and the code assumes the light curve passed into the object is in counts/bin. By setting it to `False`, the user can pass in count rates:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# times with a resolution of 0.1\n", + "dt = 0.1\n", + "times = np.arange(0, 100, dt)\n", + "times[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "mean_countrate = 100.0\n", + "countrate = np.random.poisson(mean_countrate, size=len(times))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts=countrate, dt=dt, skip_checks=True, input_counts=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Internally, both `counts` and `countrate` attribute will be defined no matter what the user passes in, since they're trivially converted between each other through a multiplication/division with `dt:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0\n", + "[113 92 110 97 101 102 103 101 124 89]\n" + ] + } + ], + "source": [ + "print(mean_countrate)\n", + "print(lc.countrate[:10])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.0\n", + "[11.3 9.2 11. 9.7 10.1 10.2 10.3 10.1 12.4 8.9]\n" + ] + } + ], + "source": [ + "mean_counts = mean_countrate * dt\n", + "print(mean_counts)\n", + "print(lc.counts[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Error Distributions in `stingray.Lightcurve`\n", + "\n", + "The instruments that record our data impose measurement noise on our measurements. Depending on the type of instrument, the statistical distribution of that noise can be different. `stingray` was originally developed with X-ray data in mind, where most data comes in the form of _photon arrival times_, which generate measurements distributed according to a Poisson distribution. By default, `err_dist` is assumed to Poisson, and this is the only statistical distribution currently fully supported. But you *can* put in your own errors (via `counts_err` or `countrate_err`). It'll produce a warning, and be aware that some of the statistical assumptions made about downstream products (e.g. the normalization of periodograms) may not be correct:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "\n", + "mean_flux = 100.0 # mean flux\n", + "std_flux = 2.0 # standard deviation on the flux\n", + "\n", + "# generate fluxes with a Gaussian distribution and \n", + "# an array of associated uncertainties\n", + "flux = np.random.normal(loc=mean_flux, scale=std_flux, size=len(times)) \n", + "flux_err = np.ones_like(flux) * std_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, flux, err=flux_err, err_dist=\"gauss\", dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Good Time Intervals\n", + "\n", + "`Lightcurve` (and most other core `stingray` classes) support the use of *Good Time Intervals* (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don't apply to the data within a `Lightcurve` object, but become relevant in a number of circumstances, such as when generating `Powerspectrum` objects. \n", + "\n", + "If no GTIs are given at instantiation of the `Lightcurve` class, an artificial GTI will be created spanning the entire length of the data set being passed in:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(times))\n", + "\n", + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-5.000e-01, 9.995e+02]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "999\n", + "[[-5.000e-01 9.995e+02]]\n" + ] + } + ], + "source": [ + "print(times[0]) # first time stamp in the light curve\n", + "print(times[-1]) # last time stamp in the light curve\n", + "print(lc.gti) # the GTIs generated within Lightcurve" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "GTIs are defined as a list of tuples:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0, 500), (600, 1000)]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(lc.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll get back to these when we talk more about some of the methods that apply GTIs to the data.\n", + "\n", + "# Operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Addition/Subtraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be summed up or subtracted from each other if they have same time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)\n", + "lc_rand = Lightcurve(np.arange(1000), [500]*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_rand" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counts in light curve 1: [103 99 102 109 104]\n", + "Counts in light curve 2: [500 500 500 500 500]\n", + "Counts in summed light curve: [603 599 602 609 604]\n" + ] + } + ], + "source": [ + "print(\"Counts in light curve 1: \" + str(lc.counts[:5]))\n", + "print(\"Counts in light curve 2: \" + str(lc_rand.counts[:5]))\n", + "print(\"Counts in summed light curve: \" + str(lc_sum.counts[:5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Negation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A negation operation on the lightcurve object inverts the count array from positive to negative values." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "lc_neg = -lc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_neg" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.all(lc_sum.counts == 0) # All the points on lc and lc_neg cancel each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count value at a particular time can be obtained using indexing." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "113" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc[120]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve can also be sliced to generate a new object." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sliced = lc[100:200]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_sliced.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Concatenation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be combined into a single object using the `join` method. Note that both of them must not have overlapping time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lc_1 = lc" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "lc_2 = Lightcurve(np.arange(1000, 2000), np.random.rand(1000)*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "lc_long = lc_1.join(lc_2, skip_checks=True) # Or vice-versa" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2000\n" + ] + } + ], + "source": [ + "print(len(lc_long))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Truncation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A light curve can also be truncated." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=0, stop=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_cut)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : By default, the `start` and `stop` parameters are assumed to be given as **indices** of the time array. However, the `start` and `stop` values can also be given as time values in the same value as the time array." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=500, stop=1500, method='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1499)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_cut.time[0], lc_cut.time[-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Re-binning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution (`dt`) can also be changed to a larger value.\n", + "\n", + "**Note** : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "lc_rebinned = lc_long.rebin(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Old time resolution = 1\n", + "Number of data points = 2000\n", + "New time resolution = 2\n", + "Number of data points = 1000\n" + ] + } + ], + "source": [ + "print(\"Old time resolution = \" + str(lc_long.dt))\n", + "print(\"Number of data points = \" + str(lc_long.n))\n", + "print(\"New time resolution = \" + str(lc_rebinned.dt))\n", + "print(\"Number of data points = \" + str(lc_rebinned.n))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sorting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A lightcurve can be sorted using the `sort` method. This function sorts `time` array and the `counts` array is changed accordingly." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = lc_long[:] # Copying into a new object" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = new_lc_long.sort(reverse=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc_long.time[0] == max(lc_long.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can sort by the `counts` array using `sort_counts` method which changes `time` array accordingly:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc = lc_long[:]\n", + "new_lc = new_lc.sort_counts()\n", + "new_lc.counts[-1] == max(lc_long.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A curve can be plotted with the `plot` method." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABPqElEQVR4nO2dd7wVxdnHf88tXHqTK0oTFASxYEHsih3BFhMTjcYWNcW8pvlGNFFjjIrG9FheY01iiRqNGOyKgkZBUHoXUDqX3m+d94+ze87s7MzsbDltme/ncz/3nD2zM7Ozs88+88wzzxBjDBaLxWJJFxXFroDFYrFYkscKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqqKXQEA6NatG+vbt2+xq2GxWCxlxdSpU9cxxmplv5WEcO/bty+mTJlS7GpYLBZLWUFEX6h+s2YZi8ViSSFWuFssFksKscLdYrFYUogV7haLxZJCrHC3WCyWFGKFu8VisaQQK9wtFoslhVjhbrFYPCxauw0ffb6+2NWwxCRQuBPRY0S0lohmccfuIKIZRDSNiN4koh7cbzcR0SIimk9EZ+ar4haLJT+c9rv3cfFfPy52NSwxMdHcnwAwQjj2G8bYIYyxQwH8B8CtAEBEgwFcBOBA55wHiKgysdpaLBaLxYhA4c4YmwBgg3BsC/e1HQB3O6fzADzLGKtnjC0BsAjAsITqarFYLBZDIseWIaI7AVwGYDOAk53DPQHw47nlzjHZ+dcCuBYA+vTpE7UaFovFYpEQeUKVMfZzxlhvAE8B+IFzmGRJFec/zBgbyhgbWlsrDWpmsVgslogk4S3zNICvOp+XA+jN/dYLwMoEyrBYLBZLCCIJdyIawH09F8A85/NYABcRUQ0R9QMwAMDkeFW0WCwWS1gCbe5E9AyA4QC6EdFyALcBGElEAwG0APgCwHcBgDE2m4ieAzAHQBOA6xhjzXmqu8VisVgUBAp3xtjFksOPatLfCeDOOJWyWCwWSzzsClWLxWJJIVa4WywWSwqxwt1isVhSiBXuFovFkkKscLdYLJYUYoW7xWKxpBAr3C0WiyWFWOFusVgsKcQK9yKxevMufOvRSdi8s7HYVUklG7Y34NJHJqFua31R6/H4h0vw4HufF7UOlt0TK9yLxJ/fXYiJC9dh7LQVxa5KKnl60hf4YNE6PP7hkqLW4/ZX5uCe1+cFJ7RYEsYK9yLR4gRCJpJFSbbExW1Xabxpi2U3wAr3IsFYRuxUVljhnk+Yle6W3RQr3ItEs6O6W9meH9wBEbO6u2U3xQr3IuGaZSqsWSYvELLS3WLZLbHCvUi4Zhkr3OWc8fv38dJnyyOfTwnJ9ssfm4y/vLswZi6WNLB03XYMuf1NLNuwo9hVMcIK9yLR7Ap3ewd8MMawYM02/Pif0yPn4b4yWUyj+/sL6nDfmwti5WFJB89PXYbNOxvx78/Kw8PNipYiYc0yapKYBM1q7tYsY0mIrKmvTLDCvUi0tFizjIok5LH7IIbN6+sPfYRb/j0rgRqULovWbkPf0eOwaO22vJc1dvpK7P+L11DfVF67bV739Ke45m9Til2NWFjhXiRcbxnrCumnJQF1O+o7c/LSDfj7x1/ELr+UGTt9JQDgPzNW5r2su1+di4amFqzf1pD3spJk3IxVeGvOmmJXIxZWuBeJFmZdIVUkaUqxZhnL7ooV7kVid1qh+sjExeg7elzWFBVEkr7pury27GpE39Hjsppsmrjn9XkYdMtrxa6GpYgECncieoyI1hLRLO7Yb4hoHhHNIKKXiKgz99tNRLSIiOYT0Zl5qnfZk12huhsI9zGvZWKrNBuq0clMqFJgXl+sy7i0PTwhfYG9Hnzvc+xqbCl2NbKkaQBVLtdiork/AWCEcOwtAAcxxg4BsADATQBARIMBXATgQOecB4ioMrHapojdyRUy7MOQiHA3KcepWbl5QZQTaWrZctPDAkULY2wCgA3CsTcZY03O148B9HI+nwfgWcZYPWNsCYBFAIYlWN+8cd3Tn6L/za8CAPrf/Cp+8PSneS0va5ZJVfdPhiTMMjlXyFxelz02GYf96s1cOcybtpR57IMl6Dt6HHY2FN/rZOP2BvQdPQ7PT1lW7KpYNCShN14FwDXu9QTA3/HlzjEfRHQtEU0hoil1dXUJVCMe42asQpMjcZtaGP4zY1Vey3OFzu4U+8RUIzc0zWvJLmLijk1YUIeNO3Lx88up5R+ZuBgAsGFHOK+TuIu4ZCxdvx0A8I9JXyaetyU5Ygl3Ivo5gCYAT7mHJMmkvYsx9jBjbChjbGhtbW2capQlTc2ZZmnJk1mUMZaXBzsOpi8yk3oHXZ9rc28xaIekVrNGxeReVVZmatnU3GJ8DoCswlIsZKWXYt+Mi3tNpXRdkYU7EV0O4GwAl7DcFS0H0JtL1gtA+lwRYjJ31RZ8tHg9gPxpj7/49yz0u+nVPOUeDdN+b5Lsd28tQL+bXlUujnFNLf/4+Evc+8Z8RX1yJe1saC5ae33/qU8Dy652JmdcYX3QbW/gtN+9H5h3c5GFu4x+N72Kbz06udjVSJSfPj8d/W56FT99PnrIjKSJJNyJaASAGwGcyxjjo+iMBXAREdUQUT8AAwCk6y4mwJQvNmY/J7FgR8ZTZTxkZgajmSf/uxQAsKtBnpgfQj7x4VJ9ZkRF3e7wtVmrA9NUOAsiXGG9vaEZn9dtDzyvsTmPHjMGfVc1nfHBonXJ1qWAyC77xU9XeP6XAiaukM8A+AjAQCJaTkTfBvAXAB0AvEVE04joIQBgjM0G8ByAOQBeB3AdY6z4M0ASmlsYdjUWp2p8hy+hUZyHHQ1NwYlC5mOuuRuYZYISGMyS8nlEmVTd1dicNZPkg50NzdnRRVWFa5YJ12FKUXPPB0k8z3x7yyiDeXcPJt4yFzPG9maMVTPGejHGHmWM9WeM9WaMHer8fZdLfydjbD/G2EDGWMmuorjqiU8w6JbXi10NlOK03puzV2PwrW9g+rJNsfIZO30lBt/6RlbAmNvcQxQS44nLestEzGbQLa/jaw99FL0CGtZu3YUDbn0dD0/ITKRWCpq7KXm1ucd0M5rkmCaT4PpnP4v1PK/fVo8Dbn0dD6RoM/PdwMtazvsLiuehwz8TpahYTViYaZvpyzfFymf8vLWe7+beMiEaRZHUTOw4fu5RpTuAaTFfgCpWbdoFABg3M+O1VVXp2tzNRgpuWIuwmn4h+WTphuBEhoyL6d22Zks9AOCVFK1W3m2FezHhfdt5ObazoRnb65MxhwRR39SMLbvya2eOqtiZiKOgrMWy12+r1+YVdr3Bhu35DYTltoFbqyqN5t7cwrBRqI+r6eteBibv0Pqm5kTmI2TmDveQrC/Krmnrrsa8mVI3Oi6maQoHYoV7keG11MPveAsH3vZGovmrbIhff+gjHPLLN6W/JYUoME11yGRWqObK3tnYjCN+/ba2nDDP9IbtDTj8jrfiVC+Q7H1zKpYT1v7GufvVuTjsjrc8QtgNJS3T3MOIr0v+OglDblf0E5MJVU0YCPdSLpT0xXvfmIfD7njLI+AP/uWbGPnHiWYVDwFjDJc8MilTX5P0JWhKlWGFexHgBQnfTXbmQStRPX/Tl28OPDeuDiMKTFMfYCM/95BlBxEmeaFGVzw6zd31ttnKab9VmpdBGHjPLpco2q3slrpCcoakL77hXNMmYdSweF2wh1BYStE0mgRWuAuYRi4UWbFpp7HnhNdbJr89K2zuyzfuQFQHkAVrtqJua878IYoAY809TKEKORNG/BBRKIFVU52fx2blpp1Z10WxDXSau9uH1m1ryIYniDIBuzJEHxbZsL0B2zQvve0NTVgnmMZKRaiaPoPLN+6MlP+yDTvAGMPmnY1Yu3UXVm/eFSmfsFjhLmAauZBn3bZ6HDfmXdz16jyj9B7NPc8dPMzL48v1O3D8PePxzOTwPvJTv9iIM34/AUfemTN/+DV3s7ySaBOTHa74YkK9ZPN0z44d8y5+9coczzHR5q4Tvuff/yG++uB/M+mdCVhTP/cN2xtw7Jh3ccd/5gSmlbXV4Xe8hZPuHa9MO+pPEzFUNI0ZrkQOQxRlycQldubyzXgxwt6pc1dtwQn3jsejHyzBkNvfxLA738HRd78TOp8oWOEuEMUv2B2mvzPPbOcWz4Rqnu13YXJftTmaZgIAi+sMtmxL0M89ME8DRZx3hQzTTvm8Y+PnZzyMRBlVWWEmrOes2gIg93Iz7c+bnAnFUF5kgiRcr5lkllVDV7Wsrd68Npn0EW6OydzL4nXRtiT8Yn1mjeekJV7PoEKEKUidcF+2YYd2eBgEP8FZt7XeY2ZQ0aoq04z1pvGzeVfIPIfcjqWQhjBVyLYL9E+oZkpYvXmXzxOCh3/olwTYWFUvApOaL3XyDmtCFtt01orNie1Hmsubc9NETnNvlEyQylrAUdyNXSddQtnTQ0yoytC5vEad74kiMk1cb6N60ag2ai/E4sXUCfcT7h2Pr8dYWMILliPvfNtjZlDhakkNEeyV+b7HYbRgscOF6c5S4a4wyxx99zsYdpe6XXmt5uT73pO7v8VsuKbmFvzsXzMy9QSFfAl6E5/95w9w2u/e17pbRsVtwmzgMENhXeXGojH0cw+1biwhd8F82NzjhvNQucRGXVXOj9F58hV2hCd1wh3IDU2jEMUsk/XXNfR2KeiEagyhFQYT4c4j00Cz9RB+0nl8RG0+Mcs4L0GXLbvie9Go2ixnZgmXj2l35k1UhSIfJskoQjOfj6DKFbQQc8mpFO5xiOIt43ZSU82d13yS6ljb65swZ2X0l1pcqqTC3czPffOORixauzWXLqbJfUdDE2YHtIVHsIQ0uquSrttWj/Hz1ga+sL9Yvx11W+tR39SMmQqXVJ/N3WnKZonmLitOtllJWILMm4vrtktHK8s27MCaLcEeISZVC1t9Vfp12+qxuG4bZizflI0kOmvF5kw8Ge6OJr2GSbavgK6eSVKV/yLKiyjeMu77QKeN8ng094Te4d/9x1RMXLgOC359VnYOAAjZiWJURead4nOFVFTmnL98gC837MDSMaOcanjT6QSU7Lcf/3Ma3pitn9w2EyzyRKrjN74wA4vXbcdrPzwBB+zdUZnvSb95DxUEXHB4L7wwdbm8DOe/+4IMrbnDjWdvlj5bInfTvv3EJ/KUzvVvrW/CifeOx+xfeXfhPMHxmnHvp7JE3U2IKGRVmvvIP07EWmf+7JtH9cGNZw7C2X/+AGcdtBfuu3BI3GKVqF4WhVgIZTV3gUiae4zXcFJ2xylLNwLwe1OEMjcI38NoMUY2d8W5X27Y4U1nUmVXM5X89OmXmwJP54WASnFX3RtV/dwFNlsMluu3MHlcGtW8hyvkTZUP93aEVVb4WzaZi/2i6uPbY2z7lx+bu/z4Ws4xYvaKzdjlaO9TvthoFu4iptQX289OqCYIYwzvL6gLFMRRNHf+lFWbd2L+6q3qxPD7uX+4aF3suNtVla43hTefoAfI1Byyo6EJkxavx9qtuzB7pd+UYOQtY9i0ovY1c0WmvE07GnICUZOXzETEs72+ydMu05Ztkq+g9D2QDBMW1AXadXc1md1L/YjE+z0rrIX7O2FBnfQF7mr6pjZoWTJ+NMa3V1ITqmKZcsUq3PMoXu+SdduzXlEuFRXenmnkLRNRp3fbsBhmmd1GuL/46Qpc/thk/PMT/aa+cSZUAeCYu9/FmX+YoE3PPxtTv9iISx6ZhPsUuwWZ4go00e4f9DI77Xf6urr84qVZ+MbDH2PYne9g1J8+8P1uprlH89z45l8zcT8ueWQSzr//Q29aSZayuvBc/8xnnge6vqlF+nIVs35j9mpc9thkPK7Y/MMt13Ri3QS3DbNmGaFSlz02ORvR0Hti5l/YUSUvuCs9wj0ZacTXR8xTVkbYx1Hc6OXk+97D8PveQ5vqyuyxSmHOy1NsyMVvgahcIa1ZJjm+cDb1XR0w0RPF7zzOjXIXj8xfo9f2g3AXuTQ0iWYZc3TX8XmAv7lcc/cVYFYPRTp3kpTX8GR1DtLcZ67Y7BMCsu36xHq4y8ZVvvduucaau1GqDM7tNTYbui1g2p9luVZw0iEp4a6rPj9qztY/ZLmq9HyXqKwgrnMyz8Wrek5ss4z43WruydHo9KrqSv0lxzXLuMxbrfbW4Id4KnOKjqXrtvu8LLKauyjcnbpNW7YJywTbtog4auHr2ZbTfGRUJqjxBGmbHht9BM29qYX5hEBDk0xrzB1bu3WXZ9NtGW7fkvnl75TZpiXZqLxcwtvcM+nDxpvnW86jubdk1gY8O/lLrNzkXckcZp7qnbm5iW6f5i55BBqbGF6buco86JxBvSorcusaGPMrCEFhhWeE2Ocg6y1jMEpJmt1GuLsxOYK0uihmGdmNGvEHdWhSXg5mY4BIhIuK4fe9h3P+4jWNVKpWMDpfz7//w6wXgwrdtbdtpRfuMnyukKaau+K4e43D73tPm7aqQt+tm5pbfPcs6OU66k8f5OzeinbKrVT2C4df/HuWNn+XrNBxvrsv2KCyRVzh/pfxi0KVK8sDyPTx6cs3YfSLM3Hry7M96cIoRNf+faqyTNlz9OD7i/C9pz7F6wb7zIp5bOXWHXjMTRWUTcck9Rjzmj5G1Hvz42/0UwDFPV3CXfd2d4VeVYDmHmkRROgzcqhs5WGprlRo7iFqp1ss1CZAuMvOjLxZh6IaHlup5vwgzb25hfnMA/USUwpfj7qt9YGae9YsIwlD8eWGiKFqRZu7qVnGoO2Z5zPznVdR4RXu7nWJ0R2j7tMqtqPsJeFGYlxnuDkKn6cqhHZlBeW2fmTeJ4TIOzJ0ZUpUq4wqgJ01y4Rg3bZ6vDFb/XZ3l227QlBF3AnVsOQ07ujCfcuuRix1AhSJtvswdfOZZbimCtLcpQtpFLFlglDaTbne6j50sqRB97ixhfnqIr4Ut+5qxNjp3iiAWQ8Uxa1yzTKTlmzArBXyxUk8YWKThxXuScC/I1ta1C//qDHjxbNkZhQ31rvqfb29vgkvT8vdpzv+MxeffbkRgNq8UknkGSHJvKKydXI+RlVU1LFlSsAsQ0SPEdFaIprFHbuQiGYTUQsRDRXS30REi4hoPhGdmY9Ky7jqiU/w3X98qvzdjbEhDtnFRo4m3MOdww8RqxIQ7jf9a2b28w3PT/fWLUQ+umvv0Lra8118EGWCO+mQv7zm7vpXS90ADTR3sQxxQvWG56fjRq5dgWDfcbdrvT13Dc7+s9dsFnelpdvHwpplAH/fkgkqtzz+hUyCWUYVbrg54j6tfjs0X0dvJVWuiLe8PAs/fHZa9vsr01fiKw9kwh7zozH+7ApOc/eVC8Fun5SXkG9hXiLZajHR3J8AMEI4NgvABQA8fnRENBjARQAOdM55gIjCG2sjIPqyiuTMMno7sPu2r6kyH9TEuU9u+aarW2Ws3ar2AArz4tEJji5tvcLdJ+CkmntgEikqDV8mtGWXZzKv4p9Q9QquLzf4wx/n4rXI65dkhM+smST7PYOpfZuXjWF2juLP8wpAptTQo5oUxUuJoljpNr7Qae4t3MjPG37A23eSCkRm8LgkTqAEY4xNALBBODaXMSZzzD4PwLOMsXrG2BIAiwAMS6SmIXluitef3TXLtBJs7mIj/+2jLwAArSXeIf/85Ev88e2FPs8H3f1/ZfpKLN/o9VLhu88Hi9YB8AsXU+av3opPnNWpMmRVU3nNhBleuw/ivNVbMH7+Wq/91rVT+jR3s/xlyV76bLlngiybFsC/P1vheciDbO4AMG7GKs93UUDJYrhkbe6KdhKFU5yh9yvTVzplZr67QsbUM4XX3N0YMZt3NCo3YpFVlb+eZsaUESZ1wl1nzjDxcw/KR2XT3lbfhIcnLJb+9vrs1djhPMMtGenuga9G7rP6QnT3WVXvBTFdn01I2ubeEwAvVZc7x3wQ0bVENIWIptTVxZ99FvnZCzOyvu0AZ5bxae7eGzPWeahaCZr753XbcOO/ZuL3by/AmNfmen7Tdcr/eeaz7DAxWyb3eZUjlKKaZcQFUz07twms23nCQiAXUaB5V/GJaTMHRvxhIq58/BPPA5GzU0b0lpGk+/E/p/sPAtjZ0IQf/XMavvnIx6HK+fU47z0UY/HLtMjcQiKFcBeOyyZpTahvasYzk73KiZu16QuYb3pXGbnhhem46cWZmLXCLMAc3waMqcMNN0a8ThNvGZew/uf3vDYP42ZyL3Ah3b3cokG+VJVZRveS0m1wknOF9B6/6OGPfWmTJmnhLmsC6R1jjD3MGBvKGBtaW1ubcDUy8A+CKzxFf2xVdxLNMrxmvWGHN3aIqk+6Lw5xww/Zmz7uRsYuh/TqJFTCn2aDwvNA934RHzyxvvzQNq6HQRgPH7cavOZuuoiIp96nuUvmENwyFdn75iEi3lL+vOywXlMvGeSxuWfOceOryFfj+vP1mWWa5YIuqllGpTAA5iY9VSgEVR93cRcPggntTfIJVR1av/gAU14+SVq4LwfQm/veC8DKhMvwsLOhGfePX6TUtDZub8BfJyxWasaqNpeZZVxMJhN1eb89d63vmGiWeX7KMiyu24aGphbcP36RtAN9LtnazmcakFdBiswU4aJ7EAFhKOt+MJhQlZkZwrzn+JWMbl8IY2N2EX3TZS/b7CpRQ8096splWfbuMVMhwTe9q3G7QktmtcpOqHLCslkQcm4+4um6Xah01V29ZScue2xyrgzNO0KWz5yVWzBBoTWL/VNm0gMcbxnNfTJpb91+vVFj0iRB0iF/xwJ4moh+B6AHgAEAJutPiccf3lmA/3tfblurIOB/X5iBt+euQYeazKWabtIgau78/RNvuOr+qzqGa0/lEYe8//vCDLSursANZwzEb96YDyLg+8P7e9KMkMSw8V1fCPkiTup6A5yJmrs6zEEYLeXNOTn3VcYYiCiUrdpN2cKAB95bhD+/uyiS25p47VqzjMrmLuQRdTAmjy+eORbFLONem1tv2ZxEkM29pYVl86ngJiQBYHqIFZs8Hy5a7/mu6zey30b+Sb1Q0HTimTG/55Tnd6eb67qUyRxP4fV2A+FORM8AGA6gGxEtB3AbMhOsfwZQC2AcEU1jjJ3JGJtNRM8BmAOgCcB1jLHkoihJ0GlpFUTYsD0zFHUb19QlySfc+Q2zDAWo7LA6Rrj/2K7GFmxyTEAydzOZh43vxRNqEZNOcxcEl5CUvy73o6jRyOrCLzRhzBkWm1aYqxdzNHcg9N4bAPyjFpkAd6/L1OYedUJVNBMAufZuaWFG+cpcId1rkmmaWduyIr8WxrLni6e75pr2NX5xEuZFGyX0h4qgiWfeC8kb/tm75WLO5q6+EJ3rLfEFFZhA4c4Yu1jx00uK9HcCuDNOpcKgGxIBOQHoLmwR7/nbc9dIF+jUVHmPuV4tmTzMBKhM21BtxaaafHP9r8UJXhU6c0kQOndMsd10mruLz26qMTfweYQRilmhx3Krj6NozPe9ucDzXSbc3fu5uE7udrtD8KKS1SOywEdO+za5Pl7euMLXLZrvy7n89bSw3EsiI+hyZ8QNV52tAy9kY1ozzDV3mZti7sA9r8/DLWcP1uahi6uUk+3++sxfvRUD9+pgVM8olP0K1WDh7kykOgZT8eH6wdOf4aonpvjOqxaE6R3/mZP9LD5cYTZ1MNnIgccV+qZ+9/4Xjzm6h9S3VNxv3/KlNd2sQzwvjPzjhV7QytQwyMwfof2wpS+uUKfljnGjhrDxxxudN6Ar8MSXECC/Zyfun3N0aG7J+bmLimpSwl2XTdiXoum98gld4dqe/WQZ/vTuQm0eWpu7Yg9VwO/pljRlL9x1ZNy3vJq7KbrUuuXKQZh0Oj4/10WvJiAqo4t/PiCEWUa0uWtMUXpvGf/5JnVxfw7zGPNZBgUMC4N8ojecgJF6oITMQ+YtY5QFb3N3FASdqUK2NqFTm2rP7yqzjquAxF1Sr3s2wuYceK8U+xgT/H29vrFFKw9Mul0RrDLlL9yDFkm4WkXonWk0v5lqx3w698Eyebj5JK6bmau5//3jL7TnxjLL6GzuQr7id/7F4H4K0tx/OXa2x0vIFYZhQsh6hHuCmvtWyVxOWMVdlt6k//FC8pOlG3DXq3Oze63KVtfK8HrLMDzx4RJtLBs3S36BHn8fPGYZ4VzXnBfXm9f02fzUiR2jQ7XgymW6EwqZMbN5OJ2c0ZllChFDRkXZC3fdkIj3zdUFmgqL3yNFnil/+LNlmQ5pIrj4FK7N3Z0DuCUgdKxMPpt2MF3YYb/NnSm/qybnxGo88d+leHnaSt/vYW4RLxCSNMvICGuWkbV7WLNMfVOLZ6VlS4B3h4s4ofrLV+ZoUufu7+fcfALfts0tuWdJVFDckYFsQj6M7Vyc2OThi7xAWBQYlJcO0eaemdAPd591E6o5c1zhhXwKhLv6N17bYNwxE3Q3I4orZJCnheo81yxjPKEqerUYCgMgnLeMKOh4u2s2qe/JNjN1hHkO+POTNMvICPuARtfc9b8Z+V5zTRGkxWby1d8bPraM2E3ce9/YbObJo66DWf2CYgcB4V7EupdKUlizTAR0LkqM65BZrTCBN+jEheuwdVduYlSV428k+6KaPGgfct4Mrj3zmr9NwZP/XRp47tQvNmKKZ9d6czuv3ltGLcwB7yKsxuYW3PTiDKze7A2+JavGpCW5uuY2UAhhluE+r9rsD/aVJKE1d8mqXXerQBUrNu3U9tGMGSEYz4SqwYSn/EXkLdeNCimuSOW/xzEL6l5a/C9d27XCzS/NVKaV1UNXppjy48UbfOlEMfPZlxvxmzcym3rIqj1xYR3uH7+IkztG1UmUFAh39W8tjJtMStAsA8CzSbLK1OIGIfPWKbgCVzz+SfYzr03fNna2LLmPrz30UfYzMywTgC+kK9/t/UGevOfyL4YJC+rwzORleG7KcqNys+VFeBB4QfjXiUtClReWsIE7ZddxibPZtw4xXIUnTxja3PkJVSNToERzN40Kyb3Y44TR0J3KX/LarfV4epI8AJpLmOiZUWTCVx74L+4f/zkA+fP1rUcn4zdvzM+2q9XcI6AbRrUwlp0kzNq+DJs56IZ7JwLN4TWK8w7tEeLMaAStwOMRNTz+PP+DJ9rcudjZilsSVI2cfTIgIUdCIXmMCDvqCzsx5xIk5MTNvWXwI1pVHHYxX389OJs7Y0qznSyGUxQS9XM3rIbos68qN0jOKInSqROi7IW73uaemwRytSFTYcDvcC97qPnNHUzu29V/m4JlG3Z4hLvRptIx+4RMc1cVK2p43mG5ueauehCCrsUtg19TEEQYz5q4iPuRBpl+ZQ+9yVL1IPNEkOb+2AdLPDFXTASuXLjzv2tC/npMcrk0t78yO5SQ/s7fpypDX/PXbLTc31RzR7xnrKVFbydzf3K3CywkZS/cdZ1HZm82vZEruB3eZfY7mQufjk07GnHXq3M9eQXtGJTJOx6ZCTjvMVWpWrOML9yA97uRAAm4GvdXcatAk3MKwSYhGmjQAjom+WzyQtf6exvY3H8lvBxNtFjZC8M7oaqek+EVHb4P8aZLE9Zvb8DcVfI5Cb5NxD0ZgtIHwadU3h7F8RZmtmJ4veEesElS9sJd94AFDTVNkdnv+HABplm2MObJy2TWPz7M09Ebm1uUk9Diw+s1y4iau2CWiagden6PMKIvxkSVS5Bw50cVbj2NXujaazKzuXvqEdJDS1aP5hamjBrKxwcyse/rUHmFhbXlmwr3JtNFYapymP5+FLV/Fq/o/CPtsFHykfTphqYWrN9Wj1F/mqjc2chXNvN2OpPhZVzVNOPHm8tEF2jNZ3PnPgdFm2wwmG2ct3oLzldsFJIpL/zFFnORSJASftYfc1ELpy3bhP99fnqgKQfQTwaaukJ68gu5tsKFj0Fz68uzlIJ7F7fRyR/e8sboWSbZrlDHbS/Plk6WhjW/mW4+3tzCMIqLLilGqgQyz8WVnJMDT9BIKqhPX/jQf5WjlbiUvXDXdVyZj3cUYSCbSKpvasHL01Zi9sot+OtEechhf3289TXR3KPGBM+d7xXM2+qblGYZMWa8N9KjqNV7vzcbTKje/socTHNWBkrrGuFSCzmhKhKkuW8TXqTPT11u9ELXxdVnkCsbOsKuipWxYM025ehsF7eq9fmp4TykRCYv3YCbX5rpi6XEv/DiPhMiQaOCL9arlbeWmJr7J0s34raXzbzgwlL+wl3TevKofOHLkD1M9U3NWS3MXMAwYWIouPljT6gKmt72+mal8N1Wr94bNijkgoldd0e9PvpzpFFVETX3KFY1VVRQHt1aCMZYaI8Uo1XRBs2oUqR2NSUf1buNEKk1yubZSaF7hzcHhGA2qfW67WrX1ziUtXCftWKzcqMOQK6N3DZ2dihvDED+AtnVmLNdLzEcAr49dy2u+dvU7HeDeaHYiJrFtvpGpTfLtnrvhOGmHY0YdufbmLF8k+8Fdskjk/DuvDWecoII2o5t5B8n4o3Zq7VpRIor3MNLd5ON0IMCaIUVdCpt+k/vLMTPncVAJlmqJlR1i9+iIobcTmobyijo7vPOxmZfVNn123LC+vLHgvcqWr8tP5OtZS3cg1D1h0c/WBIqH5lZprmFRfLF9drcDTT3EHnv1bG1/3zmHXnoHsTtgmb938/XYe3Wevzl3UVSIXrLv3PDSU/gsIjP4eotu/CDpz8NdU4RrTKxfbFV6CYlGdOHiZCxittfVuQpx75tYq4MW24cxNrIJqdLgUVr/FsMLgvp9jisX9ekquOhrIV7ULyVpLQ6WZ9uZix2FAojm7vhNXRrX4Oj9vV3EnFFI2NQunWJNmL3NJNVfHwZcbSssFpgoSdUTx6Yi3Fu4vkSBZ3nEYN5+w7aq0OIfQBM6lW4tvbP6RRPouvK3q6JjW/Kt47eJ3SdTChv4R5g10hKuMvMMoyx2Kpbsnsvyl82v31zAY6/593s94v/+rHPNPCT56ahsbnFd9xtvzdmr8G4mat8efNrAZ7g4t4UcmFRAZVJAN77EcUsY4JOeE9YUIfZK8y8Kxgz62N9R4/DrBWbA9PxcYDyzcSF3t2iimmWke1c5SLzPgurcCQZqpqnrIW7uFuSj4T6g0xYNbfE19yNXCENaWHyIGrvzlsbqJW9+OkK6SRd1JdjIR/EYo7Qowj3QQbbqgVpyP/8ZJlxeaZ1/Mck/T4BxWZHQ06IlpBVxjfaBcJ7cOUrmmlZC/dgzT2ZcqRbrsVX3A2XUZvl1RLTTKS6xijoXPmSptATqnxxUd7NQZPKQLBt2yQPIGOSM61jIU0upnTgNtzeauBlVAz4l45L2JGr1dwlFMwsI7lZjLHYsZ/N/NzNiGuTlHXIqPbsQtpHv/P3qcGJEiSuWUa1uTZPUPuZukKammXC5FlIunfKOQh4hHsJvYdE92EgiuZeJOFORI8R0VoimsUd60pEbxHRQud/F+63m4hoERHNJ6Iz81Jrh4JNqCribhRCcw/lGhCjPjKBUg5mmULDv/DyFT0iqP3CCGLTF1AxJyxVtON83b37J5ROXesb/cI9tM29iGaZJwCMEI6NBvAOY2wAgHec7yCiwQAuAnCgc84DRGS2s3MEgoR7FNnEe0O4yIasJv7KQSRpcwfi7SLjThrzWkRU60qpCIrj+u+R1/x1G8XEIchEEsajyNSjpxRfyHz7lqpZpl4iB0Jr7sUyyzDGJgAQp8nPA/Ck8/lJAOdzx59ljNUzxpYAWARgWDJV9RMkHKNonuLiCVU+C9Zsw00vyneDMRXaSZplgHiapGve4F+YUTV3040S8k0+tkzz2NzzZNQM2mUojGJhEoWyVOGrLtuwvBQQQ3YAwKWPBm/IwpO0kucStXt2Z4ytAgDn/57O8Z4A+Kn85c4xH0R0LRFNIaIpdXV1siSxiaKM1FT7mySsJtqm2mywknT4gTjP8WdfbgIAVFcmINxLZHIuH3KNNwnkyxUyCGObO/JnOnI5tHdnAMCZB3ZPPG9xk2+XEtEdAHgjYkaluky8ZWRdSXorGGMPM8aGMsaG1tb6TSFJEE1z9zdJ2CFre26WX4dJ+AHja0iow/PCPepDVCpD/HyZTVyKJdyNvWUYy9tCK5dqx6RwUI9OiefNjzpKRWEQ2bKzMThRAJUl5i2zhoj2BgDn/1rn+HIAvbl0vQCsjF69eETx9pDZ8a/52xRJSjXtasw0dxPhE7Shsie/BMwQ1VxHi2peKRWbez4emf617bOfTWMKJY24aYiOQu0AFLjmJALlYJYZPz++1aG6xMwyYwFc7ny+HMDL3PGLiKiGiPoBGAAgOHJODMZdfzw6t62W/hZFNslmrjeE3EWlfWt5fXj+ee3RiWt+SWTHT+5E1dxLxuaeh2fm5lEHJJ9pnijEXXAViuo8RMFTPR+l0buSo2g2dyJ6BsBHAAYS0XIi+jaAMQBOJ6KFAE53voMxNhvAcwDmAHgdwHWMseTjgXIc2KOTNGAWEM0eloRAaG+guR+xT5fEo0ImItwr4tvcZZNMxSDpl+dx/feQTriXLIWR7gCAVnkwLahuXzEjgeaDfLlCBhqHGWMXK346VZH+TgB3xqlUWFQP8U+em55YXmFo1yrY5l5ZQXmw2cbPj9cioj5EYffOzBfJt275ep7km4Jq7umS7XaFqo4kX3xJjJDEjv7bC4f40hDlQ7jHJwk/91Ih3xOqpU6+ZeArPzg++1m35qSDoYOByO5y+0y968KSDuGeYC9IIi8xizatKrFfbbu8lKUrNwq8FlHuw9/dRTgUiz071mTHMjrNvUfnNpHy311ezvnyaEqFcJ+xPDhcqSlJdChRaLcwJnUPTPKeJuXTzNv/kliFW0wSN8uUmazJd6z7CqJsm1TnybRgiU4qhLtL/z3bo0/XtqHOGeIswnBJQkCKeTAmX1Ke9Bs7aVfI9YKXUIfW0YbXxSJpYRwkKz+48eRkC4xJPkX7becMRm2Hmux33ShUFwsm7D3qv2fOFfXgnsn71qeJVAn3mqoKo3jZPIP39qZXddJ9u/nNKirEPDK75/i14FK0uevcskx39SkVCj0B2qtLOMWiHFBFXh24l9lzE4T2pSB5m/bdI9fG+0pMnZYc5fW0BtA6wsSEaCtUadOLQyxYEU07jDHpwp5Sd4UUKZG1ScYk7WFWgu/ivKPy5HCFsvsCjeqrHfYs/tkqReWolEiVcK/kbICmiMIsCUuJWAfG5JH8otj3dUPRJLq6zi2r0PuVxqWUXRfzHbESiO4y+PWhvbKfVcHtxLyjmhiJgPE3DDdOzxdTCNn+nZP2zWv+d37loLzlnSrhHiXOsyjMktAGxEh8DEy66XHYslpVVqDPHuqhfxKTwbpIleWmuZewbEfvAphwosY9784tClS5OLqeVG6Xi6MU8bZ7HtnLiT+W74iXPTu3yfvooHObVnnLO1XCPQricDKRCVWhVRmTB9MK3TkJqMnDYhEe3fC6lDX31pJonif071bwenRrn7+HtVDwAk3l4iiaGXWjJF23yaz3UJwneTm9PXdN9nO+lu176pDnLp/PS0iVcI9yI0QBy2u/ndqoY8Q8c83Ryt/8Nnd5MK2wN5ag1qSSErxVmpeHSQkPXXp4IvUIy28vPNR37BtH9vYnzDMTf3YKnrr6qMB0hXhPMgY8fY2/LqpYTC680OQ/D+ndGSftn4ngmlT8IEK4laj8Y5QGP/h8XkOqhDsQ3s7q19xz33UmCt1Mvc8VEnLNPYqdUrcSMJkJ1WgamEuXtsXRXGVzBUSUqPumyYPYplWlUcjnQmwVxxjQURLErmvAPeK7AP981LavyfYPNwSv2yRRr4coer/N8yAWQP7vk9XcDYlyG0Rhxn/VrdDUuQX6XCEV+USx5w2XbAMYJz8RnXA2GR1E8VhKglLS4UzuQ6HmL6KYLnilg7+Wyorcb67mPuKgvQEAffeI5pZIUIfhENegAMCwfl1z9SmE5p7n+2Q19wAeuCS6KUAMlE8e4a4+TzdCkPm5y9MF1c7PKYO649whPRR1Mqdb+1Y47YA9PcdqO9Rgr07yCJs/Om2AkUDKVxCkIFQPSSkJfRPOGBx/R6MfnNw/+zlKbP1Kj0AnXHNCv+xn97cWJ99Lj+qD2befid4hFw/yKIV7r06YffuZ2d2eAOBpzuSVpGAcd/3xwYkUXHhEL1x2zD7aNA9/64js50N7d8ZBPTsCyK/mXl5LDhW4Cy2i2J39mnvuuza2iuam+F0hFZp7xDtruhmIjurKCrQRolfu0a6V8rJqqiqNYs3kK3xpVIphl21oDg55rGrKmgRGPm1a5fKobwofftmjrRNl+wkRodLJujnrLUNoFzEwWKYsvYBrV1Pl+Z2fE0rSk6W7Imy4Ce1qqtBRMz/npnGprCB0bpvxEMqnN05pPYkRceVJlBHU0ft6/Y35xtbP8quHvH6zjDyPYgYOY8z/8pq3eqsyD2ZofdyjSN4iBO8+nqcM2lOdWEPXdvHrX28Qk0fVmsmEv8hkwhiLtGrWY5apyHmzVBDhnEMyZpgD9u4Yv6LIvByCXsAXDpVPjJvY3C8e1seoHnGexepKwgkD9J5ZfO6MsewoOJ+6RyqEO2U7c/hzD+nV2fOdf7h87l7EpyMs/PVZUhc82YSqDH74+8eLDjWorZOfzP8X4bRUBiatmMrcxJjZyKh9TRUW3zUSS+4eicV3jTSuj8vxEvfFTm2qMThAmBABD116BBbfNRKzbj8zOwxWCcvhA2ul9buLW1Qiu7cmGAVcUzRlEnHR3dEoQ0YjvemsQZHzqqzI9QlCxsa++K6R2I/bbtBl8V0jcVifzgCAO843W5zj3h75QqbMrxcpvJ5MRr53GS4SUuVkIlIqKypwZN+uOFkzHyZbtQ7kV3NPhVmGb6C4bcV3GFGzJeRuNjlp5S6OZpq7+LIwRZmfcQ5yzV2sk2m5Im4bkjPkDmP2VdnsdV5CblnkrFDmvVV0tniZcCDNyM20fU2Eu6pJkoiuKF5XHAHCr/rOavCqESt3XOd1JUOXXnUPTa7LVOGR5WVq5nXrrpu8Fn8TF4Hlg1Ro7m67JTGxzXeGa07wLj2WvURMwgoM69eFywPo5wQh4/MLJdwVV3rGgeaTcQwq4a6uh4nNXTw9SCiLyDR3omBhEdYFVjXU53PhJyYBf/867QB5ew/uEWyyUAkOE++Wnlx8dJnXVuD7IeB3vm7fOqZv9vkyEZTuqfyoVNdrdFm6k44qkvSWIUU3NRHwrkKiax/xtl50ZMZcNLB7uECHYUiJcHelu/5GnO3YC/V55T5fdXw/z2/8vdN7y+Q+X3bMPui/Z+4GvvI/x2eHoPyDnISt9Yh9uuKO8w40SssYkzaXWI2OnJ+4iQYutovMzFBdSfjoplOk58tsuTVVFcFCT/Gz7LQnrjwSIw+W9wX+Af2fUwd4Hr4WoQHuvuBgLB0zypdHry5tMfUXp2mrq9bcgx/J5797DPbvnjGL8JOnLm5bRV1n1OCEyrj06D742hG9sm1i0kWzI1susSz0BrLpcqM8nsk/PzVwviDJkNlxcnIVD111xLqeM6QHlo4ZhT1jTOQGkQrhnuTIxqOdi+UYmn90WrhXW+fzNq6i9qEN0+Flwlo8PawNWLwOmWbZtlWV8uUoO1pTVRnoYqkZ1GvPE/HPl+QaSQzbHMWUkM03hs2dKDdp21biXeP2AbfuvqoECP3GpkwCdzPw7PkhmpLv57IFfC4qvcxkJJakG2Es05Xj0RHGPboQxBLuRPRDIppFRLOJ6EfOsa5E9BYRLXT+dwnIJjZJurvpBO6NIwYpf1Pl4f+Nf0HIPwehezZNh6qqCVKxHq5QZYxhtMHEnFi6LB74z0YMVLeR5HhNVUXgw5FUH9BlI4bkF9dIePIJKEc5yW4gsQiE+sZMZVrLNPeYbeGa39wXc25C1SBf51zPRuuOcK/tUOObGHdTiSY/E8GdpMCUZcVgNvoxmV8oQBgcf5lRTySigwBcA2AYgCEAziaiAQBGA3iHMTYAwDvO97xianM3EQAegSt05m9zZhptR9eUo1LMVB2VX6DlXl8SmnsLk1vuxWpUZ9cQAN89ab9ADxixjV2bO7/45JKj9gmlBdYYeK0o3xUhHyrdfRXjqVRrfPqDBI/KllttKChc//W2EuFeEWSWCSjCFbTuamNxQlV/LjznADnN/fErjsSrPzzBWxUnod8zLbgw95wk7NamL4pj9/OHajZ5IZeb5n4AgI8ZYzsYY00A3gfwFQDnAXjSSfMkgPNj1dCAwM4cAo/WE01+awm7ktL0je9eu6mXgnJCVfgu5hd03T7N3RHujaZRBCX3sFVlReTNumWlaAWHaJbhihXNC9qHOqCdVFejC9zG5+2aZdpIzDJuH476OLh5u5p7bkLVPA9emLlCWDa5TkIa8biORseWv6OxybxiISD421DWDU08nMpNuM8CcCIR7UFEbQGMBNAbQHfG2CoAcP5LV5MQ0bVENIWIptTV1cWoBq+567vzFcfqlwgDwHGctwYRcMWxfaXpxFt1y9mDpb99XfDKULltqpXAXKLbz81Mluqukxc4Zx20l3LbwYwrpP/4yc7iH9cjIzs5l62zupN2aF3lEwA3nDEQlRWEfYTl6erFUsD3h++HAdxemTVVlZ6Har/adj6hpsov6Jk6YUA3nMOFcxAfwsu5+98cyuauL/dKRb8ymfQnEG47ZzA61FThR6ft7/s9Tijcsw/ZG7saM6OCKGYZt2/ydXBfim57/fT0/bFXx9aoqarAz0cdAADo2aWNpz1NhKHrcprEXqpSV0hJOl7JcKNrnmywYK4YC7cjF8kYmwvgHgBvAXgdwHQAxq9QxtjDjLGhjLGhtbVq538TTO2tR+zTFf/63rHK35eOGeWJrVJBhKtP6CdNK5Z56dHylXAHCR1P9dwpNXrucHa1HdfrxPCt7iQYANxw5kC8/qMTpflmvGX83bdXl7ZYOmYUDuzhxr4wFxQzf3mm7zrOOHAvfH7XSN8SdVWujAE/GzEIb/3kpOyxmmqv5v7OT4fjr5cNFfJTjYgyxx9UxB/6+7ePwu++PkRZr0uP3gdjf3AcAEB0+tCZwIJabWhfeV/ct7Z9YHyZCgK+cWQfzLz9TBzXvxsm3Xyqcb2C+Ms3D8/Z80WzjIG0cG+TbDGga+L7n1MH4OObT8X8X5+FCw7P7PrUtlUVFvEmP4NLcL16undsjVm3nxl8ggalssHU3w/q0QlLx4wyWgVcbpo7GGOPMsYOZ4ydCGADgIUA1hDR3gDg/F8bv5p6csutk10UQNAtoPB+V20k7D+Pt+lD+lmV3oVpfue9U3RNETRZ5P7Et20cxPYKMwFaU1XhK9+3wCxAc9d5oQQtgnPj5YiukDriTPAGmr6EBOK1Vca8Z649353ryJVnoLlnhTuvuWeEcJigcibvJ3eNSauqitgec6bCN2oI4LKaUAUAItrT+d8HwAUAngEwFsDlTpLLAbwcpwwTsmYZZ9Kvg2Ego6AhMJFuok60RZvdPeXqPsOXSNDvHuEeUCdRQP6aWzKeXR4tuNVFRby+MLvvXHdyf99R2ephGe5x3aSs9yXrz8m1qYqukDpMHmaVyUzkrIP28mjzqnkNl5ysN79nVx3XL2ueuvqEfdG1XSucOKDWU55JF7955AHYq2Nr9OfMaqLmboLJ8+Ta3GuqKqV1+9mIgQCAn488IDCvsHNbgP6Z8N/bMtPcAfyLiOYAeAXAdYyxjQDGADidiBYCON35nld4wXFIr86YdtsZyrR8J/j+8P7KdAC0saZlXH9Kf18ZIqpOJJbj7ngjgzenqLxTAH13qq70asPnDumBS4/OzUm4SmpSGyKI16eLYSNySK/OPjnlSxZg7uJHVmLSoFvsvuDChFEwsU+roimK59488gA8zJmhxLYUJ/SimABGnzUIf774MAAZU+Knt5yOPdq7kQvdegVz/IBu+PjmUz3X5trcdd5FIiZlNXATv3ybtamuxNIxo7LP98VHBQcPM1XOTCf2/QEJjU5LlFixZRhjJ0iOrQdwqiR5wTBtx+DhbzQzj+liBt2iKF25XrOM9zePcNfkUVlBno4qeitkY18kpHH4lncrNXfVcb10D6pntXYHK/25rpkjTGz0OObBwIVgASbB3NoE8zK1jj9OhcK8NPiUWU+uUGaZMJp7hba94/Rgsd+ZdgFxPqsYoadTsULVRbb0WYfbgf508WHKELFBed19wcE479AenvJ18PnxMUL447wvbaBWmXV7864q5H+TUVVBnvr+8LQBnt/dTsybvOLg09xD9nW3Pqc690l86FT5ucqi6ZyIbKjten5E2fgiCqq1BqrfRcHhb2tx1ORH11dcQRXmnsmEWTizTHCaq47vh4HdO+C8Q3vqhXsMuSr2+xvOGBgpnyIo7ukQ7pQVQG4nNLR/O8nOHdIDj11xpOR3CtQILx7WB3+86DBpfeRl5n5sVVWRHVK75XRqU42nuc23ZeXzHU6c8DQN1FVZQdn2eu47x2B/YSGI3+YeD9+EKve5Z+c22XjYqsU97vHvDd8PgH+1qAq3/XTbInrL8R+LItxjae7CPRfvaZBWm3vhhyjTYKQY5pJk+SUR8ZKnd5e2eOPHJ6K2Q01iI0weWV8YtHcH7e/Z34TvRVDcUyLcI97YpM0yJtqtaml4hfCCMkU0Y5oKsaoK0m4YIPN6iINOm8y0s76cXF1d+3e4RS9xfL9d/2tdjBSRWO0WpLkHnJ6N5x6iL+nan7HgNCKy6497vj8Nn7c6HS8f4nZn09PFpi87V8hyJ6izEaLdFN0ZqolF0YvGVCsQ8+vesTV6dm6D7h1r0IMz+4hUVVbgrq8cjFMG7YlDevkXgbjCM/syklSoR6fWOK6/fzm2DJ8pQbgG97va5u7Nx68Z6V+aAHBYn84g8m6ybEK39jUYdfDe+D9uH8wgdH3gVm7Bm8m5osZrOgEs49j99sAfvpEbaf7928NwwWE9tfmFNXcC3mt48qph+NoRvcxPlpR144hBnoWCYiF88sev9I7CSZEuKia7fF13cn9P+Op2NVXo4ayhKYxxLyWbdWjkjxaTYFRhOoOJu6AqbrSyHKlWnStHvIbKCsKHo+XhdHmqKggD9+ogNUcBZpsJPH7lMAzcqwP6jh4XWJ7YkqJvOQVKd+Y5zxdFUFFPXui/9P3jAuspK76ignB/yE3Y+XIrhU1dxFDSunNl34P6rWqUcsWxffHLc70hoU8YUIsTBugXEbIIk+t8HU/av1br/RV0PpAzx/F4NfLcZ9FTxXMOUawJJCLCVcf1w7vz9Mt39urUGv+4+ij0v/lVNLUwVBDw528ejq8++N/IZYclFZp7TpsLd9OCumpkzd3Q5s5XwrcNlyZ//reoo70gM4VolpHVJ0zZ/kVM3Ge+XMWVZ80yXEpPfgHlm/aMKJusy+DrE3YiNq52Kd6zuPnlzDLm56iUGOPzTdJwiUytbnFdEglh+z055xXeLJMOzT2g4e756sHZVYY8wZo7Qj0Z1564H1Zu2oXLj+2L+95cIE2j9nPP/PeZGwLKNJk8u+srB6Ntq0osrtuGdjVVuPu1eYEBxu67cAjuH78IN44YhF/9Zw6uFnal4utsgq6tTUZIYmzykwftia8d0QsvTF3uOe7P2zk/wbHwX755GDZub8h+/+2FQ3wLnPj6vPT9Y/H6rNX4vwmLfXn9+7rj8OrMVTisd2es2bILAPCLsw/A2OkrleXLrvW2cwbj9lfmAMi9uKsSmgzfWp+JKtJOEoFSWceYZeoezXu+ejA+XLQeXdq24tLr+lfu87++dyxenbkaz37yJRgDNu9sVJ7HIA/Rkf3dyD3Om2MhSYVwd1E19jeOlC9iCJ5QpVBv6U5tqvH7bxyqTaMScqH8YD3eMsHJv8kt4piydAOAYM29d9e2GPPVQwBAc03mdfa778lzUd3DrPaY9X6pxH0XDskKd1VdVJq+yIn712LCArMAdmcf0sPz/asSezJ/Pw/r0wWH9ekiFe6H9u6MQ3t39hzbs4N+dx5ZH7ryuH454e787ovnE1Hi1m3NvHRqQ+waFHcCUfc8fOPIPspnWpoX1wsO6dUZh/TqjNFnDcJxY97VCnd5vUIlzz2fCdv9jcouUDl5JWo/Mjkv6Vlu/4Sqe9ybTqsxcIIq7E5JroWgtSRUbFji+D2T0NuDriPINBBUlyAtyySOeqlgWtO2rZLR3bbuymjue4UQ7sVw/VMRy89dzCukaM5G1CxCe6RCuLvInt9nOJ9xEaPd02PUR15muLrINBheUI254JBQ5R+xTxdcdVw//JaLhBiVOC8+UXP/9VcOwhXH9lVOvAV5bKhq4rZf0ID47gsOxhXH9sXx/bvhF6MOwPPfPSbgjMIg89AJGuXtdEL2imaUqKapn486AFce1xfDB5pPihbD9U9FUE1+Mcobe+ber+aeKV+bUTiZ4DZDMVojFWYZXcMdI9k5xcVIuCd8VwLLdDqT6YPYvWNNqPIrKwi3nqN3xTMlTtPw5xIR9uzQ2ufJwRPFY4MvJ6g99+yYK182v1AszjxwL9+xoBbY3pDRtNs6Zpm4XXjvTm1w2zlmG6+XI2I89uMGdFOk9GLiwFHMl1y6NPeQqkkxzDIq23OYcjyXWUQFKZ7mnjvXJJes947KlVRRl6yAKx1FMjZB19LoBNTqIsT6LyQlpbknWJewWbnJCxS5wkM6NHeFp4npeWF45QfHY8aKTeFPzJapMr8o0mvy+urhvYriYuUStv1uP/dAHNk3s4CosoJw4RG98PzU5Ub5BAUyU2Xx4CWH4/kpyz07OxWLp64+Chs4L5uoBAmrUwbtie8N3w/fObF4I5ASku1GLs8A8NClh6N1daU2vWfEafLsZYeOwUmTJhXCPduCBg3I3w6zJc7eNAf36oSDJSs64yJWRXT9k/12+uA9czb8InSesFwubC131fH9MsLd4CEJtLkrjvfo3MYXFK1Y8Fs45pOqygrcOGJQQcpSUVqae9DvmQQjDsrs77Bq804AmdGiP0Ad739lsGgxRNqkSYVZxl2e3aFN8DC0WhPXW0a++6i4P6XJ7HzOLEOJDjnDEmc7NyDnh93J4L5lA5kpRzilI0wsxYlfHhWxqkF9yQ3k1r4muN92bdfKKM98kArNfZ892uHWswdjlMHmwu7eoEBxvGWU5WgK+v03huCAvXP1LhGTe+yy++/ZHr8YdQDOHdIjMG3umsOZtSzytnnp+8di9eZdeSyzdG5IYAwpzc++MBfIeJzddNYgXDi0d2DZ/7j6KIyftxadijD/kQrhDgTH63AhIlRVkBPvIbxZJl+IpfCd6iuHqYMuFfMZSmKhirFnSoQl8BY1h/XpUuwqlAyiVq3rY0SZfvudk/yxbmT06tIW3zqmb4zaRScVZpnImMyH5NssQ97/rvnBHc61luz9yS/oKacJ1Tjs0T7THqpNN0pV6CdZrzDL/y3mqO6RNJ5SGZn/UqO5R8HELpjU8HL8DcMxb9UWXUmeb3ddcDCO2ncPHLGPTMNiuTOK2NfyXfSz1x6dnSN58NIj8O7ctejdtW2eS02OBy453GNOi8urPzwBM1dsTiy/UuTdn56E+au3FrsaWcrAT0HJbincc54XhZOM/bq1Q79u7ZS/i1Xp2Loa3+I2rJafEy72TdLku/340K3d2tfg60eqbZylqFGNPDh4DigM++zRDvvsoe5DQSQV8TKf7FvbHvvWFtZtNYwbcqmOEGXs1maZUprRd4M9mWim0m32iqBjlFJHL6W6lBqdncm8ru3CrWZOsuxCERTtNAwMyUYT5fMtBLE0dyL6MYCrkanvTABXAmgL4J8A+gJYCuDrjLGNsWqZMDm3uvxJhOe/eww6tDZv3ratKvHQpUcozDByCMX1lnHbb9z1x6O+yXBT0zxhhbua84b0RGMTw1cO1++4lDSPXTEUA/dKziwVxBNXHon9EtD6dV0pnrAvbCeNLNyJqCeA6wEMZoztJKLnAFwEYDCAdxhjY4hoNIDRAG5MpLZlhLsS0xgCRhzkjyMig1/QU1SzjPP/wB7JL+oKSymaZUqFigrSmrTyxSmDuhe0vOEDg7e/4zEzUzHhW+mbtlzimmWqALQhoipkNPaVAM4D8KTz+5MAzo9ZRuK4t0elucs8VPJFFJGUDaK1G3nLBFFKdbGUF0lv3F0qRNbcGWMriOg+AF8C2AngTcbYm0TUnTG2ykmzioikr1MiuhbAtQDQp4954P0kUZnn3v3pcCzfuLOgdQkjpJPYZi8JSmmhispFcndi4s9Oxtqt+VuYtLvBK/b/e+ZAHNyzk9E+CNef0j+PtTIn8hNBRF2Q0dL7AegBoB0RXWp6PmPsYcbYUMbY0NracJvnJoVKOPXo3AbD+oU0q8SuS4RzimyKKCHZnsjmI+VO765tccQ+he23qUTSr7u0bYUTDTf5TtL9NQ5x1J3TACxhjNUxxhoBvAjgWABriGhvAHD+67cJLwIH98zYiEtBNkXRfrMaBWdzL4aXWym0n0shTWmWlMM9S673msm+Cf1qM26q7gJEkU5tMoaSQkUojeMt8yWAo4moLTJmmVMBTAGwHcDlAMY4/1+OW8mk+dtVw/B53bbYga+SJExN+F3ti6m9l5L9sabKau6W5PnOifth8N4djSZrf3L6/jhm3z1w1L7yDYL679kBT119VCiPuDjEsblPIqIXAHwKoAnAZwAeBtAewHNE9G1kXgAXJlHRJOnctlXJDV/DaPD8LH9xbe7FK1ukpspq7paE4Pp1ZQUZe+FUV1YEmm4KFfYZiOnnzhi7DcBtwuF6ZLR4iwFR5OPgHh0xceE61HaoyWrPhdIGeEpJcy+lUZjFUgrsluEHSpEwoumGMwbijMF7Zf3Lx11/fKxl6RaLJX1Y4V4ihFGCqysrPJp6sRYRlZDibrGEJtgHoXwWLMmwhkpDdEG/YlHGArIUzDKFjl1iSR9hd2IqF6zmbsDEn52c951UyrFDlUKN37thOLY3NBe7GpYUUU4hBnRY4W5AOcUQLySlobm3Qmd7eywWH9YsU2SKLx6jUwKy3WKJzPCBGbfFdjVeHbddqyrn93CByEoNq7lbIlNKsWUslrD86ryDcN3J/dGpjdfk2q6mCh+OPgW17Qsf/z5JrHC3WCy7JdWVFejVRW7T69m5TYFrkzzWLGOxWHYLhoXdY6HMsZq7xWJJPdNvPQOtW+1euqwV7iVCWtyvLJZSJN+uzKVIql9l5WA3s5OSFoslH6RWc593x4iS8MO2WCyWYpBa4V5uO/MUY7MNi8WSXlJtlikHLjtmHwBAm1bl9TKyWCylTWo193LhJ6fvjx+ftr+NR26xWBLFCvciQ0R2Gb/FYkkca5axWCyWFGKFu8VisaQQK9wtFoslhUQW7kQ0kIimcX9biOhHRNSViN4iooXO/8Lv3GyxWCy7OZGFO2NsPmPsUMbYoQCOALADwEsARgN4hzE2AMA7zneLxWKxFJCkzDKnAvicMfYFgPMAPOkcfxLA+QmVYbFYLBZDkhLuFwF4xvncnTG2CgCc/9LtTIjoWiKaQkRT6urqEqqGxWKxWIAEhDsRtQJwLoDnw5zHGHuYMTaUMTa0trY2bjUsFovFwpGE5n4WgE8ZY2uc72uIaG8AcP6vTaAMi8VisYQgCeF+MXImGQAYC+By5/PlAF5OoAyLxWKxhCCWcCeitgBOB/Aid3gMgNOJaKHz25g4ZVgsFoslPLFiyzDGdgDYQzi2HhnvGYvFYrEUCbtC1WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkECvcLRaLJYVY4W6xWCwpxAp3i8ViSSFWuFssFksKscLdYrFYUkisFaqW3ZNHLx+Kuq31xa6GxWLRYIW7JTSnHtC92FWwWCwBWLOMxWKxpBCruVssJcjjVx6JnQ3Nxa6GpYyxwt1iKUFOHijdndJiMcaaZSwWiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkEGKMFbsOIKI6AF/EyKIbgHUJVacc2N2uF7DXvLtgrzkc+zDGamU/lIRwjwsRTWGMDS12PQrF7na9gL3m3QV7zclhzTIWi8WSQqxwt1gslhSSFuH+cLErUGB2t+sF7DXvLthrTohU2NwtFovF4iUtmrvFYrFYOKxwt1gslhRS1sKdiEYQ0XwiWkREo4tdn6Qgot5ENJ6I5hLRbCL6oXO8KxG9RUQLnf9duHNuctphPhGdWbzaR4eIKonoMyL6j/M91dcLAETUmYheIKJ5zv0+Js3XTUQ/dvr0LCJ6hohap/F6iegxIlpLRLO4Y6Gvk4iOIKKZzm9/IiIyrgRjrCz/AFQC+BzAvgBaAZgOYHCx65XQte0N4HDncwcACwAMBnAvgNHO8dEA7nE+D3auvwZAP6ddKot9HRGu+ycAngbwH+d7qq/XuZYnAVztfG4FoHNarxtATwBLALRxvj8H4Io0Xi+AEwEcDmAWdyz0dQKYDOAYAATgNQBnmdahnDX3YQAWMcYWM8YaADwL4Lwi1ykRGGOrGGOfOp+3ApiLzINxHjLCAM7/853P5wF4ljFWzxhbAmARMu1TNhBRLwCjADzCHU7t9QIAEXVERgg8CgCMsQbG2Cak+7qrALQhoioAbQGsRAqvlzE2AcAG4XCo6ySivQF0ZIx9xDKS/m/cOYGUs3DvCWAZ9325cyxVEFFfAIcBmASgO2NsFZB5AQBwN9pMQ1v8AcDPALRwx9J8vUBm1FkH4HHHHPUIEbVDSq+bMbYCwH0AvgSwCsBmxtibSOn1Sgh7nT2dz+JxI8pZuMtsT6ny6ySi9gD+BeBHjLEtuqSSY2XTFkR0NoC1jLGppqdIjpXN9XJUITN0f5AxdhiA7cgM11WU9XU7NubzkDE99ADQjogu1Z0iOVY21xsC1XXGuv5yFu7LAfTmvvdCZoiXCoioGhnB/hRj7EXn8BpnqAbn/1rneLm3xXEAziWipciY104hon8gvdfrshzAcsbYJOf7C8gI+7Re92kAljDG6hhjjQBeBHAs0nu9ImGvc7nzWTxuRDkL908ADCCifkTUCsBFAMYWuU6J4MyIPwpgLmPsd9xPYwFc7ny+HMDL3PGLiKiGiPoBGIDMRExZwBi7iTHWizHWF5n7+C5j7FKk9HpdGGOrASwjooHOoVMBzEF6r/tLAEcTUVunj5+KzHxSWq9XJNR1OqabrUR0tNNel3HnBFPsWeWYM9IjkfEk+RzAz4tdnwSv63hkhl8zAExz/kYC2APAOwAWOv+7cuf83GmH+Qgxo15qfwCGI+ctsztc76EApjj3+t8AuqT5ugHcDmAegFkA/o6Mh0jqrhfAM8jMKzQio4F/O8p1AhjqtNXnAP4CJ6qAyZ8NP2CxWCwppJzNMhaLxWJRYIW7xWKxpBAr3C0WiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFLI/wM30V3xVHIPEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A plot can also be customized using several keyword arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACQS0lEQVR4nOydd3hb1d2A36NlyXvvvUecvaeBsgulbErZlNKWVSilQJktq2WPlr3KaCkUyt5x9k6c5diO996WLVuy5vn+0NX9ZMcJCSQEqN7nyRNLV7r36I7zO78tpJQECBAgQIAA3xTN4R5AgAABAgT4YRAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAQIECBDgoBAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAb41hBC3CyFeOdzj+CEhhLhQCLFyL9syhRBSCKFTXn8khLhgP/dbLoS49GCONcAPn4BA+R9HCNEohLAJIYaFEJ1CiBeFEKGHe1z/K3ybE7eU8ngp5UvfdD/jBVWAAD4CAiUAwElSylBgKjANuPHwDueHQWDCPXAC5+z7TUCgBFCRUnYCn+AVLAAIIf4ghKgTQliEEJVCiJ/6bbtQCLFSCHG/EGJACNEghDjeb3uWEGKZ8t3PgFj/4wkhThZC7BRCmJWVepHftkYhxPVCiG1CiBEhxHNCiATFbGMRQnwuhIja228RQvxeCNEhhGgXQlyqrKhzlW1BypibhRBdQognhRAmZVuZEKJVCHGdEKJb2cdFfvvdn+/eIIToBF4QQkQJId4XQvQo5+h9IUSq8vm7gEXA44qG+LjyfqEQ4jMhRL8QoloIcabf8WOEEO8KIYaEEOuBnP29vv7akBBCK4R4QAjRq1y3KybQOjKEEKuU8/2pEMJ3/ZYr/5uVcc9T9vkLIcQuv3tluvK+eu6V1y8KIf68j3O2SwjxY7/P65Rx+vY3VwixWrlvtgohyvb3HAQ4xEgpA//+h/8BjcCPlL9Tge3AI37bzwCS8S4+zgJGgCRl24WAE/gFoAV+BbQDQtm+BngQCAIWAxbgFWVbvrKvowE98HugFjD4jWstkACkAN3AZrwaVBDwJXDbXn7TcUAnUAIEA/8AJJCrbH8YeBeIBsKA94B7lG1lgAu4UxnXCYAViDqA796njNEExACnKeMIA/4NvOM31nLgUr/XIUALcBGgA6YDvUCJsv2fwBvK5yYBbcDKvZyHTOV368YfC7gcqFSueRTw+QSfrVOuk0l5fe9E+/W7T9qAWYAAcoEMZZt67pXXLwJ/3sc5uxV41e/zJwJVyt8pQJ9yXTR4758+IO5wP0uBfzIgUP7X/+GduIfxTvYS+AKI3MfnK4CfKH9fCNT6bQtW9pEIpCsTRYjf9tf4f4FyC/CG3zaNMiGV+Y3rXL/tbwF/93t9pf/EPG6Mz6NM8srrXN+kpkx2I0CO3/Z5QIPydxlgGzdZdgNz9/O7DsC4j/M3FRjwe13OWIFyFrBi3HeeAm7DK7SdQKHftrv5egLlS+CXfp/90QSf/aPf9l8DH0+0X+W9T4Cr9zKOrxIoY86Zcp0sQLDy+lXgVuXvG4B/jNv/J8AFh/tZCvyTBOyVAQBOkVJ+LoRYgnfSjwXMAEKI84Fr8U4iAKGMNV11+v6QUlqFEP6fGZBSjvh9tglIU/5OVl77vusRQrTgXYH66PL72zbB670FDyQDG/1et/j9HYdX8G1SxgpeQaH1+0yflNLl99qqHGt/vtsjpRxVNwoRDDyEV2vymejChBBaKaV7grFnAHOEEGa/93R4taw45W//39PE1yN53H5aJvhMp9/fvnOwN9LwajRfhzHnTEpZK4TYBZwkhHgPOBmvZgre83OGEOIkv+/rgaVf89gBDiIBgRJARUq5TAjxInA/cIoQIgN4BjgKWCOldAshKvBOol9FBxAlhAjxEyrpeFer4DWNlfo+LLwzdBpeLeWb0oHXlOMjze/vXrzCqERKeaDH2p/vji/ffR1QAMyRUnYKIaYCW/j/czj+8y3AMinl0eN3LITQ4tX60oAq5e30A/wNPvZ1jr6KiUqUt7B3f44VryD2kQi0fsX+XgfOwau5Vkopa/2O8w8p5S8OYLwBviUCTvkA43kYOFqZ+ELwPuw9AIpzetL+7ERK2YRXS7hDCGEQQiwE/FeVbwAnCiGOEkLo8U68dmD1QfgNbwAXCSGKFA3hVr9xefAKyYeEEPHK70oRQhy7H7/p63w3DK8QMgshovGarvzpArL9Xr8P5AshzhNC6JV/s4QQRYpG8x/gdiFEsBCiGNivvJIJeAO4Whl/JF5T0v7SA3jGjftZ4HdCiBnCS66yIAGvmfRnSiDAccCS/TjGP4Fj8PrlXvN7/xW8msuxyv6MimM/dcK9BPhWCQiUAGOQUvYALwO3SCkrgQfwOte78GoUqw5gdz8D5gD9eCfSl/2OUw38HHgM78r/JLzhy46D8Bs+Ah7FawapVcYPXoEF3smzFlgrhBjC65Au2M/dH+h3H8braO7FG2Tw8bjtjwCnKxFgj0opLXgn0rPxanGd/L/DGuAKvKanTry+iBf2c9zjeQb4FNiGV2P6EK/2M5EZbgxSSitwF7BKibSaK6X8t/Lea3j9H+/gDVwAuBrv9TUD5yrbvuoYHXiv23zgX37vtwA/AW7CK9hagOsJzGXfCXzROAEC/GAR3nDkHUDQON9IAAXhDfd+UkqZ8ZUfDhBgLwSkeoAfJEKInyqmtii8K/z3AsLk/xFCmIQQJyg5Hil4Nci3D/e4Any/OeQCRQjxvPAmiO3we+92IUSbEKJC+XeC37YbhRC1wpvQ9ZV27QAB9sIv8ZpE6vCacX51eIfznUMAdwADeE1eu/DzNQUI8HU45CYvIcRivHkOL0spJynv3Q4MSynvH/fZYrzRHbPxhjV+DuTvJbwyQIAAAQJ8hzjkGoqUcjlep+z+8BPgn1JKu5SyAa/zc/YhG1yAAAECBDhoHM48lCuUpLmNwHVSygG8SW1r/T7TythENxUhxGXAZQAhISEzCgsLD/FwAwQIEOCHxaZNm3qllHEHa3+HS6D8HfgT3hyHP+ENTb2YiRPmJrTJSSmfBp4GmDlzpty4ceNEHwsQIECAAHtBCPF1Ky1MyGGJ8pJSdkkp3X6JYj6zVitjM3ZT8cbiBwgQIECA7ziHRaAIIZL8Xv4Ub44AeKu4ni28JcKzgDxg/bc9vgABAgQIcOAccpOXEOJ1vBVFY4UQrXjj3cuU0h4Sb1XZXwJIKXcKId7AW1bbBfwmEOEVIECAAN8PfhCZ8gEfSoAAAQIcOEKITVLKmQdrf4FM+QABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECfCv8s6uLlzs7D/cwAhxCDldP+QABAvyPcc6uXQCcn5h4mEcS4FARECgBAgT4VpBlZYd7CAEOMQGTV4AAAQIEOCgccoEihHheCNEthNjh995fhRBVQohtQoi3hRCRyvuZQgibEKJC+ffkoR5fgAABvh1EeTmivPxwDyPAIeTb0FBeBI4b995nwCQp5WSgBrjRb1udlHKq8u/yb2F8AQIECBDgIHDIfShSyuVCiMxx733q93ItcPqhHsf3BbPTSZBGg0mrPdxD+Z+l2+EgVq9HI8ThHsoPioAP5YfPd8GHcjHwkd/rLCHEFiHEMiHEosM1qMNF1KpVzN68+XAP43+WltFRElav5u6mpsM9FJUeh4NP+/sZdLkO91C+MVLKwz2EAIeQwypQhBA3Ay7gVeWtDiBdSjkNuBZ4TQgRvpfvXiaE2CiE2NjT0/PtDPhb4LaMDK5PSzvcw/ifJVSr5TfJyRwVFXW4h6KywWLh2G3bqLZaD/dQvhGivBzNsmWHexgBDiGHTaAIIS4AfgycK5Vli5TSLqXsU/7eBNQB+RN9X0r5tJRyppRyZlxc3Lc17EPO7VlZgTj9r8GtDQ0HxeEbpdfzeH4+8yIivvG+XB4PorycvzY3f6P9TA4J4cn8fNKDgr7xmAJ8v3i1qwtRXk6f03m4h7JfHBaBIoQ4DrgBOFlKafV7P04IoVX+zgbygPrDMcbDgZSSR1pb+biv73AP5XtHkEZDnF7/jU0qo243dzc1sW5o6IC/+0l/P7rycszKwy+BaJ0O7Tf0xdTabFxeU8Ou77CG4pGSHocDq9u918/IsrKD7ke5raGB47ZuPaj7PByMut10Oxy4x92/UkqidTpGPZ7DNLID49sIG34dWAMUCCFahRCXAI8DYcBn48KDFwPbhBBbgTeBy6WU/Yd6jN8VrB4P19TWcvz27Yd7KIeN1tFRitavp3V09IC+d3NGBt0LFiC+4eRdY7Nxc0MDl1ZX7/NzUkpsbveYCWC31Yob6Fd8HXqNhr6FC7n2G5owY/R6LkxMJN1o/Eb7OZR0OxzEr169z9IqLo8Hx0GeGHfbbNQf4L3yXeSlri4SVq+m2+EY8/7PExPpW7iQlO+JdnrIBYqU8hwpZZKUUi+lTJVSPielzJVSpo0PD5ZSviWlLJFSTpFSTpdSvneoxzfBeLly927WDA5+24fGIAR3Z2Xx3qRJ3/qxvyust1ioslpZb7Ec0PeqRkZYYTZ/4+OnBQVxQ1oaLxUWqu+5peSiqip2joyo7/U5nQSvWMHf29rU965ITUWWlZFtMgFgc7t5sKWFigP8LeOpsdl4sbOTkX2s/g8Eq9vNzyorabfb9/s7do+H7cPDqvY1nnCdjsdyc1m4D1OhfvlygpYv3+dxGm02flZZiX0/Bc9fc3L4oLR0vz77XWZhRARP5OURNi66s3JkhOc7Ohg9SNf+UPNdiPL6TiGBx9vauL2xESklzaOjDH9L0TV6jYYbMzL4cWzst3K87yKnxsUhy8o49QD9YosrKlhcUUHbAUySExGl13NvTg7Tw8LU99rsdl7s7OTf3d3qeyatlnuyssb4WpweDwNOp6q1DLvdXFdXx2927/5GY5oTFsbf8/KI0+v3+Tmr2801u3d/5f26yWLh9e5ulh+AAK6xWpm8cSNX19ZOuL3X6eSxtjbqvqG28H5fH693d9Ngs+3X55eZzTzb0bHHe0+3t3+jcXzbbLRYeKS1lfFi9OaGBi6prqZqL+bOTrud39fV7WEqO1wEBMo4NEIgy8r4ZMoUrB4PGWvXclZl5bdy7DN37iRjzRo++BZ8KLtGRtgxPHzIj7O/2D0e7m5q+tomkb9kZ5NnMqH7hiavUbebOxobCV6+nFN3eIs7JBoMrJ42jcuTk9XP6YSg3GymTpn4Lti1C8Py5USvWsVmRSOJ0evJNhoPWDiOp8Ph4Fe7d7PpKzSdjRYLj7S1seIrtOvJoaF8MnkyRx5AJFuaYnKJ0k2cuqYXggSDAf0+zv/++FBOiY3l3UmT9tu892BLC39paRnz3r3Nzfyypma/vn+guKXk3qYmLN9wkSml5OGWFtXEFabVEm8w4BknGC5MTCQ9KIjwCc67R0pO37mTv7a0sO078iwHBMo++KaT04Hy2cAAzXY7Px7nQ1lmNo8xtxwMjt22jWO3bfva33d6PJy1cyfvHKSQ7Wc7Ori5oYHSDRsQ5eU8PG6S+CouTEqiZs4cEgyGvX5mw9AQorycOxob9/qZrSMj3N7YiM3jYbGifQi8Ji6rn7DzSEmT3c6wYoqYGRZGvKJBpCqTr0YI6ubO5bq9+FA+7utjxsaNNH7Fatyo0XBBQgKFwcH7/FyW0cjtmZnkj/vcoMvFMrOZAcVcFabV0u90qiavz/r7EeXlPNLautd9R+r1yLIyHs7Lm3B7mFbLisHBfd6no263arYbcrn4xwT+Fg/ec72/TuhEg4HpoaFj3rs5PZ1/Fhd/5XfdUvJcRweuA1jErBoc5MaGBl76hmX4q6xWfltXxx/qvTFHWiFYOThIwzgN7yexsTTNm6eaUcePf9XQEFNDQ8mbYPvh4H9eoDzc0oIoL1cl/IjbjSgvZ86mTQRpNFgXLeK/35JP4+SYGGL1elZMnTrm/bKKCiZt2HBQj9Vit2P7mtrAMrOZXqeTbSMjdB+kcMbfpKQgy8q4LzsbYMIHaF9UWCws+woTjm8y29dklW00cndWFlenpJCsCIZep5OTduzgMT9/SavdTpXVSpDG+wiFaLXcnZ2NLCsjSfme2enknqamvWqCQRoNSQaDuo+9sW1khJe6uvgqo4ZLSpINBkY9njFRatuHhymrqGCjouEMulycs2sXTyumIt/Z6N3HtbS63WyyWPbqQzFqNDyVn88x0dF73YdpxQpCV6wA4JaGBs6vqlI1PB8f9vVxUXU1u/3eb7DZ2LqXc/hMQQHvTJpE8+ioqhmatFrOrqzkJ34LM6fHs8fqf83gIJdWV/PFAZj+poaG8kFpKad/A63TIyWJBgPd8+fzN0VATw0N5en8fHUx4mOLxcLf29pwTnDP+hJdU4OCvvIe+rb4boziINNmt9Oyn7bcLcqN6lM9fTpJgsGA3eOhzW7H/jXsk1fU1PDPrq4D/t55CQksjIwc817bvHl0z59/wPvaF0unTOH9fTgzB5xORHk5943LofBIyXHbtvFSZyfHRUfvUyPYGx/39fHsXmzcpyg+lJMP0I90RmUlZRUV+/QLLI6MxLJwIXdmZu71M3EGAzdmZLDUbOa1ri6K169n1qZNACT5/dZWu527s7KYoayOX+nq4rmODrocDvXh73U6uamhYUIfymXV1Ry5dSuTQ0O/ssTLkZGRPJmfT/BXlOPZaLFwWU0NpRs2MNev2oLPnevzL/nu+eOUyf/oqCisixZxu3Je/lhfjygvHzOJ1VitzNy0idN37pzw2LttNu5uaqJzXJRSh93O2sFBdV8hysR3Q3o6H0+evEduzZAi9FP8znXeunVM3bhxwuOuHBzkrqYmpm3cyAzlOl2pnO/3/UzHwStWqO/7SDAYODs+nkS/Y600mxHl5bzf2zvh8cK0Wo6JiiLua9z3PppHR4letYrXursxKtf0w74+7m5uHuOUH3S5OHfXLn69ezc7JtD8grVaUgwG3u/r20Oz8afRZuOFjg5VQz2U/CAFypxNm/a7fMlLRUXIsjJ+pDxcwVotsqyMd0tLqbJayVu/nmtraykfGODtAzDvfGE2U72fjkUfDaOjvN3bu8dxkoOCvtENPBHxX7Ey9tnCP+kfG7WtEYKS4GAidTr+1d1Nxdew3b7S1cUvamq416+8yYd9fYjy8j2EcMvoKPc1N9Pk98DY3G46xjnf/5aXx8ywMJ5sb5/QlOIbe6hOh34fv3vY5eLWhga2j4zQ73Kxy2qlzeFg44wZXKwknPY4HBy5dSs3NTSwRtEEioODWTM0ROLq1epqOsdkYk5YGCfFxOxxnJWKn+Oe5mbuaWrinqYmnB4PFpeLLeN8JWaXi8travaIYuu028fkfeQoWt1vU1N5q6REfT/fZOKm9HRmh3uLTkwLDWXplCmqSU8jBCatVs2XeVUJPjhu2zYuU8Kns5R9G/Zy7oK1WtKNxj0mlDd6epi3ZQsWtxtZVsbw4sW4pcQpJcdGR+9xLc6Jj+eTyZOJ97vf10yfzhdTpgBe34O/w/6R1lae6uigfOpUliuafYTibxhYuFD9nEtK3hz3XMXq9fw2NZVcP214k3Ltlu/FD7XLakW/fDkP7odJts/pnLBcTpRiGr2mtpbbGxoAr3BLDQoaoz2/1tXFLquVOL0e0wTnPVirJVPxNU2kXUasWMHN9fVssFi4uLqa6FWreOAATckHyg9SoPw6JYUrUlIm3CalZGg/HWppfiaPv7W3c7Ny8feH/5SU7DOEciJWDA7SODrKqeNWgZlr1nBERcUB7eur+PH27SzZsmWv20N1Op7Oz+e2zMwxpoJRt5tnCwo4LjqaOeHhzAufsDLOPjknIQFgzPmsVyaJ3+zejSgv5yHlxq+z2fhDfb26HeDE7dtJXrNmzD6Pjo5mw4wZ7LJa+aS/X3Xuu6VUo542WSyI8nL+UFc34bg2Wywcv307f2pqQgI/jY1l1bRpLJ86lcbRUXqUhzZCp+O1oiL0QqgP8uzwcCK0WjSgOpSFEKydMYPfpaerxxh2uXBLyc5Zs7gtI4Nkg4FuRZPJWbeOmxoauLG+fsxE5JSSCxISmDXuXCetWcOv/JzPGUYj92RlcWlS0phAAJ0QlEVGqrkMUXo9Q243axVh+K/ubkR5Oc8oWuPSKVNYOW0aX5rNPKOYxSJ0OmRZGR9OnjzhucswGlkxOLhHQECkTkeoVovd42HE7abf6eTPTU1krl2LKC9n+7gFiVYI6m02Vg8OqivqWeHhagDBk+3tZK9bxwZl7FohWBIRQWloKIsUzf7OzEz+VVw8xpH9dH4+zxYUjDnW8sFB5mzePKakzdWpqXiWLFFNr+NpVhY2+7JZNNhs3FBXR/Lq1Zy2Y8ce2yN0On6tBHjUKvd1SlAQKwcH1QWK/zHWTJ9OYUjIHvtxejysGhqiODiYSeO2Oz0ehhQzZXFIiGqi+91e7v2DxQ9SoNyUkcHNGRkTbltqNpO2Zg39ys16f3MzorxcXRV2ORyI8nJmbtxItF6Pa8kS3iwp4ZKkJK5OTd3vMdzf0sL5u3bR7XDwbm+verx9cVlSEiEaDZtmzBjzfpPdTvk3yLHosNs5bceOMSvchtHRMar+RPw8IYGyigr+7KdJ1I+OMm3TJt7t66POZttv4eyPbxKpmTNHfc+Xw/Gikv9RoDiWZ4SF8VFpKUV+juYb09O5KytrzD7XDA6yzGzmv5Mm8Wp3Nycq9vO/t7WRuXYtUkr1GuytkvNmi4WVg4P8IT2dK1JSSAsKYn5EhPeB3LmT3ynhmQaNhmyTCaeU/L6+nja7HYvbzQO5ubjLytTVdYfdzh2NjeqEJaUkbvVqHmltRQhBSUgIc8LDuSsri/SgIFrsdmaGhXmFk99kuMFi4aWuLgzjTGMnRkczOzyc9UNDxK9axWtdXYRqtbzS1UXW2rXq59YODXGMXy2wboeDn+zYwR3KdY1WjrVmaIjP+/vJMBpZEBHBiqlTqZg5EwCLy8WawcG9+lAAXios5NRxpspwrZbUoCDcUhK6YgUxq1Zxit9nxms8n/b386vduzli61ZVmF21ezczFZPXEZGR3JaRoS72/l1Swr9KSjinspLjlSCTEbebsyor+ZHfIuyc+HjVxOcjWblO4/0zQoi9JsjODQ/ns8mTuSQpaa/nocvh4IGWFjygLgIebGkhefVqXB4PLo+HWzMzGViwgBeU+z3HaOSlwkJK/QRDrhK1+Pe2tgkrQPiE0fSwMILHnUcBXJ6czNWpqfQ7nbzZ08PzBQUMLFiw13EfDH6QLYBvbWhgmdnMsmnT9tjWbrczpKyUovV6apSL4stu9j20mUYjQy4XrXY72UYjb/b08EFfH7/0Cx3dF7usVi5KTGSzxcJPduxgzbRpzP0KjSVCp+OchASmh4Wxc2SEzRYL58TH0z1//j7DMf3xSLmHTX7U4+E/vb002+1sUIRV+dSphPtNrKft2IFbSt5R/CrNo6NkKJNShl8IZ0pQEBFaLTVWK8dERe3hX9pksfDv7m6i9XpWDQ7y3wn8NKlBQTyYk0P2BKGhJ8XGjgktbRwd5fjt2/l3cTGnx8cDXm3k6HGTw1W1tarTGWCK8mB2OZ30uVxsGR7mR1FR2Bcv3msplLPj4zkjPp5wrZb89esZdLk4r6pKnXg+VCr+aoXgGiUfY05YGAYh+Fd3NyaNhqOjoojX6zFqtbTZ7dze2MjtjY3cmpHBHVlZCLwa7x/q6rivpQWDEFQMD9Nst3N6XBwXKGY1KaU6qf04JoYn8/P3WBW/r2gLb/f00ON08n5fH58ODOzxu2IVE0vF8DCzw8NZrWgRf1aE8o+ionAvWcJfmps5ets2rklN5eHWVgYXLlRX+TtGRpivaLRfTJmyR8jxhqEhbqyv5/Vx0VXTQkN5Kj9f1Y6SDQamhIZSPXs2FrdbXTj4aFQ0gNNiY+lS/DH+wRCFISHc7reYWDM0xBvd3fxTMdNN3rCB7Yq/weds90hJ2MqVXJuaygO5uep3s4xGzktIINdkQpSXc2ZcHJcnJ3Pk1q38d9KkCf14ETod8yMiJryHlmzZQqxezytFRfQuWECETqdewz6nkw6Hg36Xi06HgykbN/JSYaFat+/lri4eaGmhZd48dX8zwsJIDQrigdZWHmxtxTMu5DrRYCBer+eVri7vosTvedJpNPw9Px8pJTU2G0/m53NaXNyE4ccHkx+UhvKGorr/qalprzbQ0+Li6J4/X7UJP11QgCwrU6vLRinhkW9OmsRnAwOUbNjAX1pamBkWtt8aikdKuh0O4gwG5kVE8EZxMXYp9xm7LhUb75cDA7zR3U1ZRQXnV1XRarcTZzAQ+RVJbT7y163jF35lQ0bdblrtdk6IjubHMTFqAlSMTqeGvAL0OJ2qQxRQnYOzwsLUSQ68D9Sx0dHE6vV8MjCwR/z7zE2buK+lhVsaGnh3L/k0T7a3c21d3RiH/xcDA4jy8j0S0lxSsiQigjy/ieftnh7+WF8/ZtX2QkEBRyomj8uSkrhfmThuVTTVGZs28cXAAAaNZq83/QOtrUSuXMkdjY3U2mxsHxlh1OOhfnSUp/PzOSU2FqeUtNntqrno5wkJxBkMLIqI4NOBATLWrmWdxYKUkqmhoRyj3Fe+6J3hRYu4OztbPfcOKdELwaywMF4oKMAjJXGrVnF7Y6MaTuzweLi8poZbxplcf1ZZiX7ZMs6srCQ1KIjfKGbeXyQl8aGfIM8PDuaOzEzVPLk4MpJV06YxV3kthEAjBCfExPBmSYk6OZdVVPAzJQerKDhYTaycKJouUqcjz2TaI5Lqhc5Oliiagiwro23+fNYODvJkeztZfhPgFouFq3bv5oSYGJZOmUK44qMDWD51KluUhdBmi4Vra2tVYfNwayuvdXdTNXs2H5SWqsLEd67h/01HD48Li3ZJyS+Tk5kdHs788HCKgoPVgIW95fx0ORyErFjBH8ddi1qrlVqbjelhYdzb3EzUqlVcXlPDucr5mxMeTrbRiMXtVhcoF1RVcXN9PX1OJ9fV1dHucIwxdb7c2akK2NgJnv8ovZ7JSlBI7QT+2tTVq7mspoY1g4NcXlNDxMqV37hQ6VfxgxIoviiWq1JSeHwv8fLX1tVRVlGxXwX7fA/gbpuNN3t6eHcvkR/j0QjBf0tLyTEaaR4d5UwlAunLfZitPHjNUPWjo/x81y5eLSrigoQEInU6MtesoXQ/w4YXRUaqjjrwmssWV1Rgdrm4vbFRtfmfunMni/1MAh9PnjwmPDpKr+ep/Hx6nE6+8Fv19jmdXJeWxtnx8aQFBe3hcL4zM5Mb09M5Iy6O4/20iF0jIySuWkWb3a5OfH/zEx4+2/TVtbVjfCgtdjvLBgdx+U1Up+7cyV3NzWOyiieFhvLF1KmUhoTwdEeHWhLlY7+ggo+UfIvf7iXb26fV+ExBP09IYNOMGayaNo0tw8O809tLWUUFD7e2quU+XujspNfhYHZ4OCaNhmSDgXyTiZ/u2MHMTZv4ZMoUZFkZv0hOpsvhoHD9ev7d3c3j+flcl5rKjNBQToiJYYPFQtjKlfx0xw56nU52jIyQtW4dTaOjqvb8sl/Agt3j4fXublxSMikkhJZ58zgqKooHcnK4IiWF45Xr0jo6SuyqVQRrNOoEHq3XY/N4eEtxUv+9rQ1RXs5RW7dyaXU1a6ZNY9OMGWwZHuZ1ZVKP1OvpXrCAbTNnjmmv8F5vL/nr1pFpNLJpeHiPRUR+cDBhWi0tdjtDLheddjuPtbXxUGsrMatW8alyfaZv2sRjbW3YPB42K9rk2unTAe89PVWpXPBgSwsPtbaq3xt0ufhxTAwFwcEcFx1N/Zw5fDFlCm+WlBCiLIq0QvBWSckeuSnv9/WxcMsW7m1u5u1Jk7g9K4tr09KQZWXcMc6kanW7+ay/nw+V424YGuKDvj4+U15vHh6m3eHgp7GxzFcsEU93dPBadzd3NjZycmwsdXPnkmMyEWswcJXyDIx33L/tN8f4zJ47Zs2iewJT1W9ra/l8YIBck4kZfpUdwGuibHM4aB4d5cioKOYo22/bRw7WweAHZfL6bVoa2SYTw243R0dFkb12LfdmZ3NmfDyPtLZi93hICwqi3eGg024nMSiIe5uauLGhgQ3TpzMzPJxaJbILvAlSPvPL5/39Y6K23u3t5ee7dhGt09Hop6b6eLGzk/v9IipCtVpmhIaybmiIn1VW8mpR0RgT2Ed+D2J6UBBpQUG8WFQEeIUCE5QUubWhgWyjkQv97LnVViutdjs3Z2RQNTJCldXKAzk53NbYyO/S0ghVHrLdNhuz/W7Cp9rbWTE4yH8mTWLU7Wbhli2cER9P4+goD7S0qBrc5wMDnF1ZyTuTJtHjdOIYtyK9ZS8huRstFrqcTuptNn4SG8vdWVn8zm9iuigpiYuSkviwr48Tt2+nRJncj4mK4uPJk9WkwX6nE6NGw6+Tk/FfEnwxMIBOCP47aRLZ69bx6927ebu3V51UfhQVxVFRUTzY2qrml4yn2M9+/evkZLKNRqaHhdHndPJ3Rfi12u2809vLTxVzyObhYZ5Xosoez8vjYuVanBkfz7bhYW6ur2deeDhJQUFkBAWx22bj7d5ezoiPJ1fxw1ySmMj7fX3U2mycGBPDUVFRnKz8b9JoeF/Rtv39SG4pOS46mlNjY4nT64lYsYLLk5NJDgri3d5ejqyooHXePNWke319PSfGxFCk09EyOsqZO3eiEYLzExPVRMi0oCCyjUY0QlAcHMyqadNU/8qA08lzHR38taWFdyZNUkvOLB8cZLfNht3j4YWCAjXSzEe8Xk+W0YjD4yFi5UoAOufP5zVFUPkmzftzcojW6eiw27lOcRy/WFjIvPBwztu1C4vbzepp07g7O5vpYWGqyc0X/TVv82YyjUY67HZa7HbqR0eZExbGu6WlXFxVxQO5uWMWWgBlikZ7e2MjSwcGuD49nRMniMgDKDebOXH7ds6Jj+ezyZM5ets2lm3fToJeT82cOcwOC2Nw4UIE7FFZY+vwMNfs3s2nAwNUzp6N3ePh+rQ07snOxqjRqAJlbni4Oibf9dYCkzZs4Mb0dO4eFyjg07iOi44eY74GbyDGVSkpqla90WLhV8nJROl03kKeBzlqVD3uIdnrt4zd4+GR1lZOjI7mlHFRFb48ietqa3EDH5SWYna5aFYESqsyUQ8qJohQvwtzV3Oz+sB92N/PMx0d6ur6qt27sbjdE2ZBW91uVg0OcnZ8vGo+qJk9m6SgIIbcbuZHRIxxugKq4zter6fP5WLl4CArlX30L1ig+lB6HA5cUpIUFMQb3d3E6vWqQHFLyd1ZWZi0Wv7V3c3Zyo2dbTQy7Hbzs/h4dYJdNnXqmNpQT7W3qwJTKwSNo6NqFu9P/WzJiyMiKAoO5t/d3RwZGUmN1bqHPf262lo6HQ6qrVY+nzKFSL2e8xITOU8xnb3S2UmcXj9h+O4JMTFjfCgDLhfHbdvGk/n5/DI5mTVDQ4x6PMwICxvjK7q1oYHVfhEyRyhj8/l4BpxOFkREeMt/SKna2jvmzWPU4+GD/n62DQ9zaVISt2RksGjLFiRebSjfb5LsXbCAC6uqOL+qilCtlrLISE6IjuaymhqSDQYWR0SQFBTEzQ0NCBiTHyDLyiiLjMTidvPrmhpG3G7yg4MpVRzOFyUmcpniozt+2zZGPR5+nZLC2fHx6ITgaL/zHKzV8tHkybza1cWZlZU4peTzgQE2+5kgPcCRUVFUzJzJ1I0b+dJspigkhC/NZvpdLjX446ioKGRZGf/t7eWUHTt4S1klX52SwkOK6XDL8DDXK/fDR/39qkD5a04Ok0JC+F1dHW/29PDxuCiw1KAgHsnNJVcRWgUmEwkGA9tmziRCp1Pt/r7n6HpFmFydksLqwUFCNBq1UKhTStKNxjHVm9cODfF8Zydrh4ZUM6SPdRYLszZtotlu54P16/eYlDONRqaFhrJleJhlg4Ms276dTyZP5tht23i7pIRTlMioLoeDaJ0OAZyr+Dh93J+Tw+QNG2iy2/lRVBRbLBb6XC7+kp3N9enpbLJYCBKC//b1sctqZbPFgtXtZlFFBf8qLubM+HgidTruysri0dbWMQm9WUYj8QYDHQ4H9zQ37yFQOubNo2TDBh5va+OPGRljcsJMWi0P5ubilpJqq5WHcnMZdru5qaGBY6OjD5lA+UGYvAZcLq6preWYCUqJ+BLdXEodoaOjohhcuFBVER/Pz0eWlREkBBfu2oVWqeW1QDF3Faxfzxvd3WQbjWpC3BcDA16tAW8phvE4pcTscqmru0uTkqgYHqbX4UAvBK90de2R7PbplClEaLUMulyYXS4uq6nhspoa5m/ZQtbatYQq+4pfvVoNmX2qoEB94MEbenvE1q3U22xjIoLsHg8XJiYSrNViUwRntE6nClPw2pN/pji9+xRHNngngF/4BSIkKWaucJ2OdUNDVI4rWnfM1q08qNi1Nw0Pq6Yqu8fDmsFBOu12XlbyUB7y0+DKFR/KeBtvq93OkogIQrVanmlv55ioKB7MyWHt0NCYgnivFhVxrjL+y5OT+WLKFDodDjV0e9PwML+qqcHh8eCWUjXVGTQa7mpu5ordu3m6o4NnOzp4q6eHZrud/ygmoRqbjf+UlPDr5GTuaGzkn93d9DqdDLvdTAoJ4bbGRkK1Wt7q7SVv/Xp+sn07x0ZFcVdWlnqcR5Xr9OesLNrtdnaMjNBmt/PHhgaSlfIhf8zIYMjlImvtWj7u72dBeDijbjca4PKaGm6oH9sa6Fc1Nfx81y6cynnwTUZnxsWxbOpUNREySwkn9p2LH8fEsGH6dFULdEuJW0oKTCb+6Bcd+UhbGycrC7RpoaEsUr7/SlcXUkr+1NjIebt2cWFVFU91dDA5NHSP6gtPtLWpyZCyrIyqOXMoHxjg04GBMU7kaquVy6urOS46mrXTp5MSFMTTHR0crywwZFkZcQYDK81mLquupkfxoTzY2sqbPT1Uzpql7muq4lcYXrQIi9vNz5Uw9XsmuLfuz8lhZNEi5oSF8VxBgeoT9C/GmLh6NfO2bMFTVsaM0FBiVq3iwsREZFkZP09MZLGiVdTbbFyfnk6m0cjv6+u5oa6OmZs28YXZzE9jYykwmTC7XGrey1mVlfy+ro6m0VFubmig3+Xi/d5edQzPd3bSofzO/AkqRzSMjmJUFmUT+XymbdzI2ZWVLB8c5KraWm5S/D7/7uk54PYQ+8sPQqD4Hqhz4uMJEkK9gYA98iSO2baNM3bu3MOH0u5wsNRsVk04j+flqXHrXw4M8FJXF58rvoQUg4GfxcdzZlyc1yQxzrcSodPxZkkJ2SYTlyUl8WxHByds384FVVVqqZKl4/wpEq+W5FtRv11SwhUpKVyenMyg203S6tXqZ1ODghh0uVhhNhOi1fK3tjZqrFaO2roVgxBIvPkbGUFBvFJURJvDwbTQUArXr1dDJE/fuXOMAK6cPZvnlN8botVyX3Y2v0lOZsDlGiM0a6xWTlWiYfQaDReN6y65JDKSx/PyOC46ml8kJRGrrITe6e1l/pYtPNvRwadTpnBidDTb/ByoPufj75UsbV/iWI3NxorBQd7o7uaymhpe6eri2ro6HmtrGxOynGky8UpxMcXBwTzZ3s7znZ08VVDAlSkpaox+gsFA0PLlXFVby11KmZRovV69R5YoE+a1vlVyaio7Z81i7fTpWD0eXujsVCel1xRz5GOtrSwzm8k3mTBpNKQGBfGF2cxTHR38vr6ed0tLkWVlXJmayiaLhYVbtrB5eJgQrZZPp0zBvngxlycns3l4mJx164hYuZLG0VGuTU3lruZmVvjVd3qzp0ct694yOsqTihnu5vR0fpeWxtKBAR7Py+OG9HR1knustZWIlSt5pasLnRA0j45yf0sLO0ZG+JviZ/pLczO6ZcuYtmkTb3R30zR3rnpdfdnmUXo9y6dNo2f+fNZPn06l1cqtjY28ovh11k+fTpXVOsbPA94AAIm3vcCA00mjzcZH/f38rq6OrLVrebGjA4fHQ+H69TzV0YHV7eaT/n5i9Hq658/fIxz2qY4OnunoUH0ZjaOj6IQgSKl3dm92Nv8oLOS/kyahxbvYDNdq+Wdx8ZiWBACvd3dzlBKe/OXUqVyclMTv0tNpmTuXbqdTDW/31Qp7tLWVJGUxV2+z8UZ3NyvNZl4uKuLa1FS6nU7OT0hQs/99RSuvqa3lqt27eb24mCOjokgMCuK3SoCPBD5R5hWnlJy0YwdHKw3DfD6vDdOnU+0XYu9j/pYttDscZAQFMX/cPNflcLB9ZASrIlD9Kw883tamzmUHmx+EySter+e1KVM4KiqKxYqpQ4u3aU20Xo9HSrRKL+tbMjJ4rauLBpuNLJOJu5qa+GNDAx+VlqIXgrN27mSVojpflJiIZ8kShBAsM5vVXJVNw8OsGRoiTq9nvcXCu319e1RRfaunh1v9HGAFJhMf9verGdK+CclHpGJf/ndxMbPCw8kwGjklLk7NpPWVtPAdZ9fICLc0NnKLcowz4uKYEhrK+319/K2tjevS0jBqNARrNPwxI4PH29qYFx7OaTt3cldWFtU2G8f6mVDe6+vjr83NfDJlChE6HW/39pJnMtHtdHJvczPvKU7oR1tbeb27m8+mTMHqdu8RyurL//nNXhJLfb4YX8hrv9NJudnMcdHR3irP/f0ct20bU5SH+Oz4eKJ0OrYpDt+LlQi2ySEh6gq8w27nLy0tnBIbyzuTJpG/fj2XVldTFhnJkZGR7BgZQQNqUEXRuFDVn8XHk2QwEKvXs8xs5vXubmaGhVEUHExRcDBdDgdzN28eM7n5WrKOeDyMeDw80d7O/Tk5XJeWhsvj4e3eXsrNZn5XW8sx0dEYNRoSDAYuSEig2W4nIygIjRAYFFPW693dakfG55XEUd/xfWZT/0njM2VCeL2oiMLgYKYpZUdG3G4+6u9nxqZNNM6dq2ohO61WpmzYwP/H8Xn5bVqa6kSeERpKjslEt8PBVSkpJBoMXOhXHeDmhgbe6umhYuZMck0m1k2fzo319XxpNhOl0/FsQcEeuU2pQUHkmEz8tq5ODZBwLl7M79LSuK6ujuSgIDxSes2MERG02e2q4/ij0lJcUnJ3czMa4OHcXB7KyWFRRAQeKem029k8YwbhK1eSs24d4M3n8Jlq800mzoqL42/t7VQMD/O54m/x8fOEBG5qaOCa2lrWDA7yk9hYzklIYMDl4tmODhZERDDgcvH2pEm02+3MU8KmT4+L482eHpYPDhKh1dI0bx6XJSdzd3Y2Gy2WPSJMj4uO5mPlvu5asACr282VKSnck51NkEZDwqpVgNeHsnZoSF10+q7drM2b+XVyMhckJvJsRwd/zsoi3mAgRqejz+XinIQENQr0pvp6am02ni0o4Pq0NH4aG0uQEAy4XPwkJoY1yv6njiuoebD4QWgoOiHYYrGw3GzmuG3buKq2lpeUlVKETqeu6oqCgzk+Opq60dH/zz9RLp4QgnkREaowAW8Ej8+ks3RggN/W1SGlZLWyalxvsbA4IoLnx2XgdjscfNjfz3l+mlLVnDnclJ5OjsnEzxMSWODnkPcooaOZRiPHRUcz6vHwcV8fj7S28mxHBxckJDC6eDG/rqlBlJdTbbVSGBzMLMVs9/OEBK8tNySEFwoKeDA3F50QVNtsnLpzJ//o7GS3zcZlSUnEGwxcVF1NSXAwf8/PV8fw1+Zm1UTllpIaq5V/KOfQP1rr6tRUFkREcEN9PWWRkROudG6oq+MX1dVM2bBBXeWdFR+PLCtjXkQET7W387yStFZns3Hazp1qyYtjFcHiEzxuKTlx+3Y+GxjgR1FRnKOYtf6Sk6OWjnmyvZ2HW1spq6ggXwmoKA0JoXF0VO2V4cErlH3awqItWxDl5Yjyci6oquKE7duZvXkzZ8THs2nmTN7p7eWPDQ1oli1Te4BYPR7WKZFHV9bWohOCy/wCIt7t7WXnyAjrLBbOrKyk3GzmgdZWjt22jSUVFRQEB/NiUREXJCbyVEcHv6qp4baGBuZt2cIuq5ULExPpW7CACxMTmb9lCysGB0k1GrksOZkn8/N5vrBQ/c0tdjuRSp6DT5iAN+fIF9J69e7dHBkVRdXs2QB7ZFM3KKveJZGRyLIyXigs5OWuLmZt3sy0TZvodTpVh/16i4VnOjroVyZb8K7cP1Um6bz16zm7snKPcj5GjYb7srNV36RRo0Gn0RBnMPBsQQHBGg1GrZY7s7Kotdm4yC/k/d2+Plb4ZY/bpWSn1covkpK4uLqarHXr9qhe4d+PpcZmU0sDrR4aomj9eh5QSr13OxykGY1qIua/enr42a5dvN/by+SNG7G43ZRFRrKkooJHW1vVMO/JISH8xi8g5KWiIjLXrqVw/XpO8qs+cWtGBu4lS1g/fTpPK89Zt9PJp/39LDObyV63jg8V7e+OzEySDAYaR0fZMmMGa6ZNY9TtZpfVqprN/9beTpvdznt9fapmvmXmTCK0Wu5tblYjXMO0WqJ0OsJ1Ou7MzGRyaCjbR0a4MyuLKaGhdDudXJ+WRpbJNCZ682DxgxAoI24319fXq/Hu/vy5qQmTUp9rUkgIV9fWYl20SHVwPpCbi3PxYoaVdq6LIyIoCQ4mRrmQkzZs4JzKSu5oalJrOfmvvn3+CfDWmOpxOOh2ONhttaor4dPj4nizu5tOh4Mtw8O80tVFhlJ6YqXZjEYIGufOJVav50uzmcL16zl++3auqa3FA/yzuxu3lGqoZOH69QgheDwvj3Pj45kZFkbT6Ch3NzdzUXU1gy7XmEKCEvhJTAxBGg2XJiXxUWkp9+fkjMkQ3jYywm9TU4nR66m12dRQ1WSDgV/7/d48RShvsVi4u7l5j/j34vXr+UtLC892dLBN8RP4qvyuMJupsVp5rauLS6qruaOxkVa7HQ3e8FNRXs6N9fW4PB41x2SjxcKSiAgsbjdbLBbuzMzkvuxs3uvtVQsOphuN5JpM3KH4uH6TnMy2WbOI1OmYEhrKp4o2ZPV4aFAikk7zCzR4w6/GU+batTzR1ka308lOZTHxVk8P702axKVJSWNCx12KwzNSuVeWDw4yacMGFiqTir9/6bmCAm6qr8e4bBkXVlUB3vv2zqYmonU65oSF8avkZGweD1M2bqRxdJTSkBB6HQ6CNBour6nhOr9w59SgIMwulxp4AfDLpCTuampSc1+WDw4ipSQ9KIgHcnJ4obCQ9dOnk2M08khurpobY3O71UXXHX5Res90dLBoyxZe6+ri7MpKNTfpzqYmlg4MoF++HJ2i+YM316LH4aDKz5T515YWjty6lff7+micOxfrokW809Pj7WPS3MyiigrqbDaaR0f5teJXPDkmhuvT0vh7ezs/VnwoK6dP5/OBAcoqKshet45ds2ZxQ1qamvS42i+J2T8Tv9pmY05YGFE6HU12O2/29HDCtm280NnJrpERfpmczD8UU9hHpaXqNQdvS2fw5icdvW0bH5WWsm1khCO2buVEZVxzwsLUOlt9Tid/Uqoe3NnUxF+am5m9eTMvdXaqZrAXOjvVIINTd+7kipoaTFotHQ4HHinZMjxMmE7HA62tnF1ZqT6Hc8PDCdJouDAxkRyTiV6Hg3KzWa1svXJwEJfHw6jHwxUpKdRarZRVVDB5wwZmb97M7+rquFMJ/GkeHeX2xkZ+pJjWDiZiopT+7xuioEAmvfACp8XFoQFMGg33KfbL9yZNUjsgivJywJuF+6ZfzsUTbW1csXs3EVot16enY3W7OTUujiqrlYurqlS/SqLBQMf8+XQ7HNza0ECT3a6q8ZaFC/l0YIDTdu7khOhoPuzv54GcHPqdTu7ycwZmGY1jIn9+n5bGfTk5tNnt/KyykpszMuhzOonQ6Vg1OEi60cjlSr2m6tmzKVi/nmyjkaVTp/J8Rwf3t7Qw4vFwVUoKL3Z2MuR280ZxMRssFj7q7+dn8fHc1NCgRvoAuJYsYdrGjWwfGVFNaFJKPHgjvPqdTl7u7KTN4eCp9nbeKinhiMhIdBoN/+3tZXJICD/dsYOtIyPsnj2bHJMJl5T0u1w81tpKSUgIj7a1cVx0tNekmJHBrLAwTti+nYsSE7k3O5vf1dXhUKKYHmhp2SN/4baMDL4wmxn1eNhosXjNWeN8VV9MmcKkkBCG3W6GXC6mhoVRuG4d1TYbrxQVEa3TEazVMikkhFjFrADeIIlnFK1yxO3mPz09jHo8dDocY8yUlyYl8Yf0dAacTnZZrZyvCALw1rv6RU3NHgJ1ckjIGN/QO5Mm8ZPYWD7o6xvT5+bPWVncpNT4+lt7O1eMC9K4JSODPykTgM9k4rsHI3U6IrRa1ikT02O5uQy53dzX3MyDublMDglhl9VKqFbLbqUWWmFwMJ9Nnkynw8Hr3d3MDg+nYniYm9LTubmhQZ2YF0VE8GpREc90dKjHj9LpGHC5eHfSJI6KisLu8RDtdz4BVk6bxkVVVWrZ+b4FC4jW63m3t5efKI79j0pLvdWBxznHXy4sVM/tAsXcOzs8nAsTE3F6PETqdOg0GnocDuZs3kzD6CgP5uRwdny8GqDycmEhm4eHSTQYOD0ujmqrVS2/89fsbNKNRr4cGCDLZOKlzk6uSU2lymrlodZWioOD6XY62TFrFgkGA4MuFzfX1zM1NJRVQ0Pe0kkuF3/Ly1OF3pKICK5MTfX60JRozC0WCx9MnszFVVV7mL3mh4dzRGSk+tt/mZTEUx0dZAQFqQE+PvJNJt4sKeGymhrWDg2xdMoUyqKiuKWhgSfa2uhfuFCdy8A7p2yaMYOdIyMcu20blyUn75HEOZ4LEhI4Mz6eE2NjN0kpZ+7zwwfAIRcoQojngR8D3VLKScp70cC/gEygEThTSjmgbLsRuARv1e2rpJSffOUxCgrkGytWcEZ8PCvMZr5QIkji9HpOio2l025XnWl/SE/nrZ4eInQ6b/mQ6Og9qpD6OCMujtPi4ji7spI5YWGcEhvLdWlp3N/SwjMdHSyJjORFJQfh8ylT0AvBkooK8kymMf0cwNsz2uc/0QnBO5MmUTkyQrOS8OVzZm6eMYNpYWG4PB4qrVbO2LlTNc+B12Z+dkICK8zmMYmJPvv3Gz09TA8N5dq0NO5pauJPWVkkBwVRHBzMVbW16njBayr7h+LLsbrdzN28mSmhoVyalMSfm5owu1xqOZNbMjK4JSODoOXLuTUjgyG3m4daW6mbM4fb/JyzG2fMGJNklbFmDVekpJBkMHBeVRUfT57MI62tPJCTQ1FICC6Phzd7ethosXBybKyqZd6TlcWNDQ1E63TEGwx7tEAtDg5ml9XKxYmJCCF4tqODldOmEaLRqCageeHhnBgTo5qAioODqbRaebaggAsSEtBNELb8YkcHj7e1MSkkhFPj4jg5NpaW0VHSlTI00Tod/S4X5oULub2xccyD+6fMTP6YmYnV7ebzgQH+3dNDhFbLKbGxHK0EQNySkcHVqamEa7XoNRrsHg9rh4a4ub5eNbdenZLCL5OTWTc0NMYE5CMtKIg3iouZt2ULH5SW8uXAAA8o43g0N5dBl4tbGhvZNnMmPU4nR+1jJZpiMPBCYSHHbNvGEZGR5JlMnBIbS3JQEO/39XFWXBwhWi31o6P0O50siYwkXKfjta4u6mw2fhQVxeqhIY6KjGTA5aLWZqPT4eDq1FQMQlCj9IhvHB1lxC8CrHP+fO5sbGRueLgqTHbOmsV6v99cPnUqZcr9sDAignPj4zlf8SNcXVvLLRkZXJeWpvofPywt5e3eXrUGmD8xOh0/T0jgb+3tVM+ezc6RETRCqEJnckgIv0pO5vKUFHocDorWr+evOTlqUzOL2602pDsqMnJMD5X0oCCv7y44mI/6+jhjLx1e/1NSwl9bWigJCeHoqChmhoWpvh/w5sVstlgYcrtpV8LZs5XtP09I4Ob0dO5tbuaG9HTaHQ6Wmc3kmUyEabVqiPMVNTW83NXF5JAQIpUF1WcDA5hdLtVHA15zZ6bJhBDieydQFgPDwMt+AuUvQL+U8l4hxB+AKCnlDUKIYuB1YDaQDHwO5Espx/sSxzBz5kx5+ltvMSs8nHVDQ9zc0ECoVssXU6YwNTSUQZeL+NWrmRUWxj+KiihU7OzjmR8ePiaXIV/xd9za2MjJMTG829fH4MKFnFNZqUaZnBMfz+ywMM5JSMAjJT/evp0z4uL4V08Ps8LCeKajA5NGg3XxYm6sr+deZYVSGhLCAzk5YyKtjo2K4sXCQtYMDY2pOHxbRgYXJiaSpdxca6ZNY3Z4OMdt28ZnAwNckZLCJYmJvNzVxaKICNKCgrC43RypTCTlU6eyJDKSypERflZZydaREUI0GmrmzGGTxcIvqqu9/qPBQXqcThZFRLDLah1TEvu/kyZxYkwMW4eH+XJgQM1JuDk9nS/N5jFVUm9KT6fL4WDV0BBP5efjkpKzKiv5sLSUUY+HxRUV/Co5mb/l5+PweAhavlydjF/r6iJSp6MsMpJqq5Uck0lNiDs2KopovV7N3gbvhDhRgmWywYBJo8EpJc3KCnB6aCibZs7kloaGMQUvwVuuZX5EBLPDwsg1mUhYvZoBlwujRsNlSUk8qqzgfavpxRERPF9YyId9fVylmKKmh4byWF4eH/f3q6t7f1ZPm8a8iAhe7+riZ7t2cW1qKp0OB691d2MQgmtSU/ljRgarBgc5fvt2lk+dykOtrcwJDydKp2NGWBjpQUHeFbsQ7BwZoWF0VA3tBW8r5N8r1+asuDj+WVJC6+goaWvX7rHQ+W1qKqUhIVyk+IGklGj8TFg/i4/nVSW7/M3ubs6orOTtkhJ222xckJhIqFLyPmzFCpxSYhCC6tmzyTSZOGn7dtrtdh7JzcUpJS90dqo+uevT0vhLTg6f9vdzXV0dCXo916WlsW5oSK1SAP/v/Aavlhap01FltXJTejpnTjBp356ZycOtrZj9ov/8J1GAp/LzubupiSa7ndlhYbxfWkq8EkGZbzLxs4QEble0VFlWxpxNm+h0OHgiL4+Tduxgemgoj+flcdTWrdg8njEaabbRSL1iffhtaip3ZWXxpdnM/S0t/DY1lSfb2zk1NpZfKBaHqaGhqo8nTTFhvj1pEj/aupUUgwGNEHQ5HOq9vW76dM7YuZNXi4rUnkkX7NrFy11d1M+ZQ5bJxN/a2thgsfBCYSHDLhdOKdkxMsKKwUEsbjf3NjdzV1YW00NDWWo285fc3O+XQAEQQmQC7/sJlGqgTErZIYRIAsqllAWKdoKU8h7lc58At0sp1+xl1wDkTJ0q6x9+GPCu7h7xKybnb946c+dO1gwN0W6348G7mpN4TRvPdXRQMTxMpdWq3oA3p6ez1GxWhcwpsbG8VVKCxe1WV0UpBgP1c+di0GgwO52MeDws2rKFhtFRXios5IKqKv6UmclP4+L4dU3NHqrwWyUlnLZzJwKvkHk4N1cVBP50z5/PkooKNRLItmgRNTYbj7W1kWIwUBAczM927QKgYuZMHB4PJ+/YQafDwZlxcbxeXMxT7e04pWRySAg2jwezy8XF1dVqD4aHcnI4Njqad/v61EgZgddEVmW1kmgwEK3X835vL7c3NqITgvzgYAZcLoI1GtKNxjHVAeaEhalmGfDW23JJyZ1NTbTY7VyjTGiXjFuFL4mIoFyxiX/e36+u7ouDg3mzpIT/KA7z8TxXUMAl1dWcEx/PiTEx/KmxkaSgIH6dnKxOQB+WltIwOjph0ysfdXPmqCvHICHw4E2I/aCvD4vbrWbGzw8PZ1ZYGMdGR/NiZ+cYX8x4/llcjAZvNv4b3d3c2dTEDWlp3NfSQpxeT3FwMO8qkYb569fTardTPnUqGUFBpAYFoV++nCMjI/li6lSura3lodZWgoQYU5zzV8nJvK7kTPkSHF1LlmD3eHi+o4P5ERHE6PX8ePt2LkxM5NrUVIQQDDidtDscXFNbS4xOx78m+B1JBgOXJCUxKSSEsysrKQwO3kNrBG/ia5fDQbXNxtFRUQhQC1aunjaNOeHhvNDZicXl4oP+fj4fGGDnrFnE6vWkr1mDXamB9mxBAY+2tpJoMHBfTg4AP6qo4AuzmWSDgS+mTPEWRVQWaFtnzmSKYtK9NjWVBxWN7dKkJM6Ii+P6uroxpkgt3pyqdydNQi8EfS4XC5RF2hdmM1rgg8mTOc5vwfdUfr7aq/6IyEi+nDqVboeDzLVrsXk8JClJiD5kWRl/b2ujcXSUWzIyCFPmDN/iFLxBCrdnZqrPG3j9nRLGmIGPj47mhOhoXFJyYWIitzc2Uj86SrfDwTqLhWcLCojV6/l7Wxv/Kinh9J079xoafExUFC4pWTM0hG3Jkh+EQDFLKSP9tg9IKaOEEI8Da6WUryjvPwd8JKV8c4J9XgZcBkB+/oxL/vtfDBoNsXo9TilVTeCtkhK1N4S/3fHSpCQsLhcVw8PMDAvj1e5ujoiMZFFEBHohOCk2loygIH66c6daOr44OJhts2Zhdbu5vbGR9Uq5c/BOPOcmJPB8Z6dqH70qJQWPcqyLqqrYohzrjsxMVdU+LyGBiuFhFkZE0OFwcGN6uqoZXLF79xh/S67J5C1AFxrKC4WFvN7dzatdXbTY7ZQEB6sOxf8ok26dzcYRkZHc19yMdfFigpYvB7z+nrKKCjYpNvR0o5FfJicjpeSOxkbuaGri0dxcup1O7mtuZnJICJuGh7k1I4PSkBDmRUSo1WMBXB4PO0ZG1M5x8QYDy8xmni8ooGiCGmQ3p6czojjIL05K4vq6ujFmPfAWONxts9Fgs9HmcHC+cm79SQsK4vG8PF7t6uJXycksjowkfc0a2pSHOtto5IXCQoqCg5m6cSPtfg/7rlmzKAwJweZ282F/P+FaLZssFlKCgsg0GllcUcGJ0dE8npfHl2Yz3Q4HNypC7LaMDE6JjeWK3bvRazQcHx3Nvc3NPJmfv0fZDZ92uNxsZklFBWfExfGGX/Mrm9vNGz093NXUxOdTpqgVnv01DX9i9fq9tuqN1um4LzubyaGhDLhcdDkcPK6sWIuDg3lfEab/6enh+JgYrty9mySDYYxWDt4Ooa93d+/RO+OfxcWcGhuLQylF/1WURUZyU3q6qoU/k5/PsNvNb8ftN0Gvp8vpJEyrpSg4mGyTid8kJzM3PJwht5twRRMKX7lSjba6NjXVG3ar3NOeJUu4q6kJnRCcl5jICrOZc5QF1nuTJjHgcrF1eJhH2toI02oZULSY36Wl8VdFYD3Q0sJzHR3smDWLX9bUkB4URLXVSrXNxhZl0vaZ446MjOSq1FSeam/no/5+poWGEqPX81BODr/avVudF06NjeU/iu/vpJgY3lOExFUpKTza1jbmPX8+Ki3l8bY2PujvVysfn+5XxcCfFIOBM+PjeaytjRmhoUTr9Xw0rjHeRDTNnUuGyfSDFihPAGvGCZQPpZRv7Wv/GVOmyI0bNhBnMNA8OsoTioZybHQ0R0ZFUTkyQokysd2RmclLnZ3EKjkkeyPTaKRh7lzVfu6zv5+fkKD6O25KT+duPwejT+WdFx4+xgT0TH4+k0JC1Dj2CK2Wlnnz+KCvj3ubmykIDqZhdJQXCwspDglhx/Awf21pIUij2cMefE1qKg/l5qIrLx+TU6DBG7e+fWSEouBgfqdEwNyZmUlaUBBTQkO5u7l5j5W9f1n90g0bqFbCMpvtdj4fGBjTQe6N4mLOrKzkzZISNHidtWVRUWopdvCW/+9dsIAwnY5hl4upGzfyh/R0bB4PV9XW8ru0NMrNZp7Iy2O2UqdpxO0mNSiI0+LiVJu5j2idjtszM1Wzko9wrZYht5vfpaVRZbXyfl8fq6dNw+7xcISfhnd3VpaaITw9NFRduZ8dH88/CgsRQuyR5Gp1u7li925Oi4sjPSiIyX7tZx/NzeXM+HgSDAYuqarik/5+zC4XIx4PN6Wnc1d2Nmank7VDQzzW1kacXs9vUlLUDqJNc+eOyRBfsmULywcHOTIykuKQEDVf6LWiIj7q71edwOPRAo4lS7C43ZSsX68K0WcLCmhVyuY/mpu7x3nz4ZvE/ZkVFsYJ0dFkmUxMDglh+eAgx0ZFea+l282OkRGOjYpSo6XCtVp+EhtLudnMNbW1WNxuPp48ma3DwxwRGUmcXo9LSs6srFSr+PpomjuXFzo7aR4dVRcKvQsW8EFfHxdUVXFLRgbnxMdTvGED/ywu5pWuLt7v6+PqlBRi9Xpua2zk+rQ07srOJnfdOhpHR71dG83mMYEVc8PDmREayhPt7erzumH6dPpcLmqsVs6Mj2f6xo2EabVq6SHPkiWkrlnDtWlpHB0VRcPoKA6PR9VyZ4aFjWmVMC88nL9kZzMlNJQTt28f02TsiylTVB/Wv4qLebmzk2yTiWyjkZ/GxZHp17fGl1cC3grL+cHBJCrmuJNiYnimoEDNJXoiL48Bl4sIrRaTVssTbW18NjAwxsR3R2YmXw4MEKTR8KlSRNI/iOTLKVM4Mjr6oAqUw5XY2CWESPIzefmM4q2Af3GsVGDi5uN+xOn1vNbdTaLBwJSQEDVDdVFEBJdXV1MUEkKEVsu0sDAuT07mNkVd9CffZEIjhKrGN46OYnO7VRNVjslEpdWqZnQD3N3czHkJCUwLDWW3zcYHfX38KCqKEI2GkuBgWu12Bt1u7mlupm7uXO7IzOS2xkYG3W6CNBrOTkjgnF272Kqo4r56XW/29IzJOP67UnQwaPlyHm5tZaPFgk4ItfTInZmZzA0P562eHh7NzaXP5WLt0BAVw8OcvGMHH5aWMlUIrkxJ4Y3u7jGq/0OtrbyxZQvpQUGqdjfq8bBeqZnlQ4s3NHHbzJnUj46qNdN+nZysJtmBtxz7lbt3oxWCcrOZe7OzyTQaOWrrVt4vLaXAZOL+lhYebGnhnyUlfNDXx4DLxamxsSyKiOCdSZN4t7fXa3MvKuL0uDhqbTbmK9V8I3Q6/tPby5LISN7r6+P1ri51Mp3v14HSqNGQERSkFnUEb9OuL6dOJXLlSv7p10MDvFE3k5SGV3kmE+/39fFCZ+eY2m4AV6amckNdHS12Ow/m5HBjejpnV1ayaXiY9RYLJ2zbxkf9/YRptViU1bQvJ6pi5kzSjUbVH3F7ZqZ6fzWOjnJ0VBS2RYu4rbGRrHXrcC1Z4rWHd3ZyelwcrxUVYfV46HI4MLtcCLz5UW1+mpcGVB+Ary7Wx4rpJlMp0tjucNDldPLX7Gxi9HqOiY5WNU5/Lf4nMTHU2mz8JCaGDoeD86uqWDltmhoWPbBgAXqNhmsVYQJeoT0zLIwLq6p4v6+P/5SU8GhuLs91dqoBIQ/k5JBuNFIWGcn5u3ZxWmwsFyYmcmtDg1qB+ryEBPXz00NDWTowwKKICL40mzkiMhIPcF9LCy2KL6RxdJRVg4OqqcvH43l5akLy3c3NvFlSwkXV1eSaTLytmMJ9muu58fFohECzbBkRWi3XpaVx3q5d/Lu7m3eUz84ND+fp/HyWVFQw4HKRbDCwZmiIRRUVfDllilpV4pLERJ4tLKTaauUnMTHcmJHBzfX1XJSUxM8VzclfyBYpQSZ/zsrijw0NLK6oUNMRwJt4/HBrK1oh+Ftenmp1OXPnTv7d06OmOfhaYz+am8slSUlcmJhIldXKoogIep1OHmlr466sLNxSTljy/ptyuDSUvwJ9fk75aCnl74UQJcBr/L9T/gsgb3+c8r2PPUaT3c4NaWlclpzMTfX1vNPbi11KrkxJ4dG8PM7auZNP+vvVQpBPKk7hnyUkEKIkWJVu2MAOZcLtXbCAo7duHXPhz09I4JrUVEwajWrOGVm0iGCtlg67HaeUqtnCh2+1NXPTJqwej2p/bbPb2aQ04PJpRACJq1apq0ffjebTDvz5V3GxegNH6XSqQ/PoqCg+Gxgg0WCg0+HghOhoPpg8mfuamxF47dxml4sup1PNiQCvml0YHMxLXV3qpARgXriQM3fu5Iy4OC5NTmaLxaIKDZ+m56sL9uesLG5taMDDWHU/z2TimtRULG43D7e20ulwEKPTUaKshMezc9YsMo1GPhsY4LP+fsrNZuINBh7JzeXlri7ub2khUqcb44D12biPiIzk/IQEXuvupt/p5PLkZH5RU8MFCQlqjahep5M0pUvieLrnz1cdtT6ts3zqVD7q66PL6VQnupNiYojT6zk2OpqVg4PeAn1+JXL8+aC0lOOio9EIwcMtLfy2ro6HcnJU88+ssDDenTSJxKAgsteupWF0lHXTpxOs0dBst5NsMKi9Lx5ra+Oa2lr1+oI3WKDcbPZmdvf2qk2yzoqL45mCAl5Tsv/zTSaO3baNn8bGcn16OhUWCw+3tnJiTAyfDQxQGBysVvv1J8do5JTYWM6Mj2eOom2NJ99kYlC5r8BrkgzSaOhzOnksL49zExJwKzXAEg0GnunoYPPwMCunTWNySAhzNm9ml9WqFgJ9r7eX9/v6eCIvD51Gw4yNG9k8PEySwcC7kyaxcnCQRIOBs5UEYp8wfDAnh2vr6vh8yhTVt3fCtm3qQipWrydEo6EwOFj1zywzmzleKS475HbzXEEB/U4n5+zaRZbRyNTQUIqCg1WLxNzwcNZMn06vw0Gccs3vzc7m8uRkCtevV5Non2lvZ5PFwhP5+WrOztFRUVycmMg5u3aRbDBwfmKiaqIXwOvFxTzR1qZqOtelpqpRfOA1uVrcbhpHR7G43Xw2MMBVKSlssljodjqpmTOHX1RXqwmovjQGk0aDzeNRQ5UvSEjgpeLi75fJSwjxOlAGxAJdwG3AO8AbQDrQDJwhpexXPn8zcDHgAq6RUn70VceYOXOmTHrhBd7v6+O61FTuz80lePlyPFJil5K/5+VxeUrKmNXXQzk5VFqtPNPRgQb4mRJCe1N9PdE6HT+OiSEvOJhTduxQ6xkdGRnJl2YzOUYjVbNnc2tj45iCc2fFxbFpeJib09MZdLu5praWOL2ejydP5vmODp5Qihu+V1qKQaNh2saNGITA7vFwS2YmpymrjpVmM4NuN212u+oE9KcoOJipoaGEabWsGxpi68gI3fPnc1ZlJUvNZtU5eHRUFMXBwbzQ2cngokXq718/fTq/qK5m68gIP09I4Ky4ODVXZ9jlImzlSvJNJs5LSOCWxka1Iut92dmkBgVxfHQ0UX6Vin2RWgCNc+eyenCQp9rb+VdJiaqy55tMqp/kr9nZROn1PN/RsYf9fjxGjQaTktD10LjVZ4HJxD3Z2XzQ18e5CQnMCQ8nc+1atff79NBQHsrNpTA4mDqbjQVKBWFAvU+sbjcbLRZCtVqWms2kBwUxW9nP7LAw3iop4UuzmV1Wq/rQv1JUxIzQUC6vqcGD10H7enc3O2bNUs+Dj5XTprEgIoKP+/qI0OnUKr0+3u7p4dLqakwaDaunTyfdaOT93l7aHA41/wi85YW6nU5CtVrVj7AoIgKDELxeXMwbPT3c0tDAP4qK8EjJSbGx2JUaWY2joxQGB/N2SQnViib984QETt+5Uz1XPtrnzSMpKIh/d3ePWcDkmkzcnJ7O+YmJtNntahi1j8khITikHOOoPysujitSUlikmDE758/ns/5+zvNbxPjQC8HCiAgWR0SoHRltbjeDLhexej0bLRbVZAzeSfnTcaVUnmhrY8Tt5sLERHbbbKom1Tl/vhqYcEdTk7pIA28awT1KFV/f8zGyaBE31NfjVipYzI+I4K6mJn6flqaO/bjoaK5MSeG5jg7+09uLSaPhrPh4fpmUxNW1tao53T+f6CcxMfxXmUtkWRl/rK/HpNWqZugkg4FrUlP5vZKf5Ivgejwvb488JX/i9HquTk1V9zM+sm1vjCxaRIhO9/0yeUkpz9nLpqP28vm7gLsO9DhNiinqNiXT97G8PHKMRnqdTmwej3qz/EVJclo7NKT6Jzx4b+i/t7Xx15YWjo2KYtngIO+VlvJeaSnHbN3KpJAQdUKrGx2l2W7ngsREVaAcHRXFeouFhtFRqm02ZiiryR6nk4bRUa5NS+OJ9nY+HRggdtUqhhYt4tKkJO5pamJOeDi3NjRwjGKv9gCvdnWN6ZTo47KkJJ4qKCBixYoxHRZHlYz9pWazGmnS53RyfEwMlyvVgn0RZbP9Vphxer0qTJJXr1YFUa7JpNYJ2zI8TKhWi14Izt21ix2zZvFuXx+5JhMLIiLG+Hle6uzk1sxMzklIoN1upyg4mD9lZdE8Osq9zc38Li2Nf/X0cEdmJrkmE6uHhvhpbCyxej0nxcSMCYH1/a7bMjJUh7iPIKW0TKXVypqhIZ7r7GTD9OneVqdKyPVmpebaUVu3EqPUmvJFlP05Kwub202wVqsWUvQvSy7LyrAohTEv8JsAnysoUKstxxsM7BgZ4dmODtodDm6or0eWldFpt1NltXJDfT1PtrejF4Ljt2/nxOhotYaZj+vq6jg+Oppup5PnOzq4PSuLH8fG4pGSGJ1OzWnodjrRgipMtMDyadMYcDp5sLVVDYMecrnYMTLCyTt28JvkZNVEW2W1jgmQ2G2zjRG8m4eHuSEtjZ0jI6wcHOSoqCieLyhgQUSEqgluslgY9XhwSMnvld5DJ8fEsH1khBlhYaqWumFoiESDgdLQUKSUzAsP58qUFF5TCntGaLWsmzGDLwYGeKKtjUqlnfQzBQVjKkh/3N/PqTt3UjFzplpiZffs2Tzf2clfmpv5Q10d9+bkkL5mDS12O5tmzGB6WBhrBgc5oqJC9f9E6nQEaTRqr5a/5uQQJAQtdjsnxMQQu3IlP/brg6LBW6U83mDg9aIiYpVkR58wyTOZ+Li/X002PTMujkuSkpgeGsrPdu0a45v9UVSUKlDOio8nTOlseXdTExclJZHrl4dybkICv09P58uBAVKVgJOXu7pUYfJ2SYm3fH9tLZckJWHUaHBLSahWO6ZZnU+Y/DIpiUqrlZNiYripoYErUlLQCcH9LS28UFCgZvgfTH4QxSHBGzY47HYTptNRbbXym5oansjPp91up9JqVXsfXJOaypmVlXtkXf8oKopMo5HfpaWxY2SEemU1/XpXF3aPRy3LfVFiIiUhIYRptdzX3MzpcXH8KTOTGL2eGZs2EaH0Ev9DeroaR39/Swtrpk9Xk/V89ua54eG0ORyqWcigXOB3e3t5vbubiuFhso1G7s7O5vS4OHTLlvF0RwfLBweZGRamdoB8Ii+PNKOR8xMTidDpVP/G5uFhjtu2jTeKiylUEvVmhYWxwWIhPSiIeeHhjPoJ2xOio+no7+eCxETVFptsMNDucFAaEsJH/f1UzZ6NR8oxpjJ/ioODuaepiVqbjU/6+/lDejolwcGcW1nJ3/PzOT0ujt/X1/NoaysvFxVxfVoatzc28sXAAH/Ly6Nt3jwea2vj3uZm6ubMoXD9em5saCBBr6csMhKnlPynt5dfp6TwUGvrmCCDuZs3q4EK/y4u5vbGRjUcMykoiPMSEjhNuSamFSsI1WqxLFrE6Tt2YFIaoE0NDaUsKopRt5vwlSv3aFx0sRKx5/B4eCIvj1GPh6tra3m7t5cdIyPkr1vHbpuNUiVAYr3FoiZ93qQUznyvt5eTd+zg7qwsr+lPr8eo1LfyoRGC0+PjuWZoiIdbWzkiMpLPpkzB6fHQYrdjUUoF/be3d0xOjU4I1SzzgTLhVc2eTeH69aQFBZEeFMSqoSHKzWaeyc/HqNFwWlwcJuV3+mvxRcHBrBsa4lcpKawbGuKXNTW0zpvHy52d/KWlhe7589EJwWaLhRCtVq1Pl2k08lBLCyft2MEliYk8kpvLrPBw6mw2bm9s5In8fAqCg3FJyT3NzbxSVMQ58fGcvnMnu202tiul6BMMBgTe6gBHRkVRGBzME+3tLDebceP1oTikZGFEhLdg6cAAS81mFkZEUBgcrDbjAlg/NMTtjY2UT53qLYGj0fDF1KmAt3dIlF7PGXFx/Lunh88GBni9uJiSDRv4wmzmrPh44vV6joqM5NmCAhxSsmjLFrWI4xs9PbzR08ObJSU4lHnizLg4/lVSwmaLhTPi4rg7K4tf1NRwTnw8KwYH+XJgYEwE5/kJCfy7u5u/5uSoTvw3S0owCKHmoVQMD3NKXJwaUg9w8vbtY6LEfEmXX0yZovYp+m9vL7dlZPDHzEzsHg8DTueYpnwHkx+MQLF5POSsW8flyclcqXQqu3r3bkY8HgxCMLhwITfU1xO+ciXnJSTwo6goTlW6mV3l1yv+oqoqamw2IpQH7M9NTVRarfyjqIhMpZLp6Yoq77NrPldQQLhOR/O8eey2Wslfv54so5H1ykphcUQEO0dG1FW2r/d5nF7P0ilTOGLrVhYotXoAdYWzy2rl38XFnFFZyUelpWjwalNVioBsmDOHZzo6WD04qNbb+klsLJcnJ/Nke7sayfNEWxtnxMdza0MDJ8bE8GxBARE6Hc+0t3NPc7Nqi/9RVBQxej27Rka4q7mZbTNnUqokhhavX48H72Rhdrk4OiqKIyMjx2gOLxcWcnp8vDopXZyYyJVKlNGC8HB6nU7+pNSumhIaSrzBQLzBwNMFBQi85b7f6O7m0ylTOC8hgWyTiQ9LS9FrNByzdSsFwcGqlviQ0lDtA7/wyMeU0hhXp6Rweny86gswCEHF8DAPt7ayYnBQLTDpa2W7YnCQCJ2OV7q6ODMujrKoKDUoIjkoiCGrlaVTprDUbOb0HTtYZ7GgF4LLamrQCcEJ0dFkGo3e5mZKOO2gy8U/Cgv5RU0NTo+H8qlT1WKevrDfeCX5st3hYNTjGVP9GeD8Xbs4OiqKVdOmEaTR4JISrRBUW62ctGMH58THc0VKCkdGRnJBYiKfDQyo4apVs2dzfV0dIUoo/T8KCykKCaEkOJhzdu1iQXg4lyYnU2+zcd6uXSQHBeGSkleKiri3uZkdIyPsslrZZbXy07g4nu3o4NfJySTo9VyclESIVqv6mcAbBjvgdHJeVRV/SE9X/XnPdXZSbjZzV3Y2Z8XH07dgAWdVVhKi0TBV6bFSoATEZBiNY3rSz4+IwKOUBro5I0P1VxyjNAS7t6mJ6WFhHBMdzWvFxep995+SErYr4+9zOjlayd+oHx2lrKKCeeHhbLBY+FFFBQ/l5tKidFwdcDrZMjzMgMtFhtHISTExnF1ZSaxez7MdHTyal0e/y8WMTZuYHBJC14IFtNntpK5Zw1lxcSyMiOCkmBgy1q5VJ/ltw8PohSA3OJjNFgvlZjO/TEqibf58DMuWkRoURMu8ebzX26veH3/KzGSdxaL2kdkyYwbTNm3iDiUsOlqvJ8lg4KdxcTyam8t7fX2cGhtL/egoDimRZWVcX1fHubt20TJ3rhra3ON08kBODpNDQ7lq924e3Uub9G/CD0agfDEwQI/TSZ/TSaSSnBWr1zOiqOjPdnTwfGcnox4PMXo9TxcUcN6uXbzS1cXOkRGeUmo7nRQTQ47JpFbYnRIayrTQUNKNRnxr1ZbRUfRC8MeMDP7c1MQ5lZV8oJgyYvR6niso8PaesNvJM5k4Iy5Ora57XHQ0HymfvbCqCqdyA/jzWF4ebXY700ND1QiU4/3qQF2UmMiJMTE80NrKjpERys1mni4oIFjJpXhJcRr7Wsj6YtLvaW4mTKtlQXg4W4eH+U1KCj+OiVHDhh9rbWXV4CD/GB0lUqcjTYn8uaiqSh3HI62t/D49XbVf/0FZdYvyci6truY8ZUW6bmiIWzMz1ZBQh5RqXsXT+fljmnZFK/6YEK2WrSMjYxzbvlpnzxQUjDE9ARSFhPCMsmIM02oRwO/q6nikrY1T4+L4d0kJqwYHOSEmhmG3m4uqqtg+MsJ749oNdCn9uq1ut9qwaFFEBE/m53NcdDSbLBZe6+5m7dAQ2xV/VZzBwBEVFd4CkTYba4eGMGq1atLa+6WllIaG8nPFbPlGdzdbhoeZHR6utjsGuCQpidWDg1ypLH78+UdXl5pd/uOYGN7v60MvhNr/B7yT7hdTp/JUezvv9/XxWlERx0RHk2008s6kSWSvXUvsqlXkKfWh3lTKwRwVFcX0jRv5VXLymNyGv+Xnc25CAjVWKwVKRYljo6P5W1sbpSEh6DQaMoxG7h5XCWBBRAR3KOV6csa12q0bHeXsykqWRESwbWSE//T2kh8czClxcfwqOZm1Q0PMDA8f0yxuImINBnKMRrWV7x/8moGBtyVEq91OWWQk66dPV027sqyM+RERaoSaXggsbjdfmM10OhyUKt//QGnDPC88nBCtlhvS0ykMDvZqYcPDDLlcqh8nw2jki4EB9bm+OCmJBIOBz/v7SVIWaKK8nL9mZ/NadzevdXer98azHR08WVDA7UpIP3hba/taNvxRMdvf1tDAnU1NYyoq/729nXaHw1t9Iy6ODKNRDULwZ8TtptPhYPngoGpdebStjftzcni1q4v1FktAoOyLaaGhvFRYyAlKJM3zBQXkBwez22rloupqdaVcN2cOdo+H39fVqaaIpzs6eKqggI1DQzzY2kqcXs8/u7tZNm0arymlJ+D/+1+vs1gYcLm4MiWFPyurBh93NzV5QyyViWS3kph3TWoqD7W2qnZXgBNjYni4tZWm0VEy/B7CepuNV7q6OLKoCI0QhCuT5aDbzeDChYTrdFxSVbVHoh/AtbW16g3U4XBwe2am2oXPsnAhphUr1MzzeeHhROp0fKgIuLd7ezkiMpLHlPyLSL1+jAkE8BaUlJJHlXyJ2UqPDv/YfJ/GV2O1MjU0lPtzcthksXirQqel8UxHBwaNZg8f0Uxlheaf7PWXlhbuy8lRe8rPDw9nvcXC7LAw7m9pIS0oiLPj43m6vZ0TY2K4LzubK2tridbpmBQayif9/czbvJlBl4vH/Yr7WVwuJBDu14rZv0JzUUgIcXo9b/T0qFn1ekXT9X0nSAisbjcf9fWx02rlVzU1/Le0FH+sbjfbhoc5q7KSU2NjecuvKKmP+Uoy7Xu9veqk4rteszZvVvNs4P+byZk0Gl4rLqbBZuPJ9nY1VN4hJSNuN3U2G1+YzWrhwd02G1M2bkSAGpiwZXiYZWYz5oULOXXHDqaEhrJ2cJANFgtXpqYyuHChWmH4nuxsbyi5241Rq+XjyZOpttk4WSnHUxISwrTQUKweD1NCQ7HHxtLpcGD3ePhVTQ2/SE7mzqYm/t7ezpP5+fxCEajvKv17rvCzEuyLWiUS8v3eXt7s6eG5wkJCV6xg1OOhbd48koOC+LS/n2O3bVNbJ6vnU4kIPF9Z9GSbTGOu//SwMO7LziZar1e7WP4mJYUMoxGdEJxVWckFCQl8MjDAe3196j16U3o6s5V797G2tjFRof4tfU+PiyPdaOQvShDAaXFxFK5fz/lVVUwJCVFL4n/e30+8wcAdWVmsHhpSyzy9XlTE4shILq2uVs+fEEKt5u1DlJfzt7w8HszJIc9k8lbq2LmTs+Li0Gs0rJw2Te2kerD5wQiUVMWHAN5uZRdXV3N3VhYGjYYZoaG4pGRWeDhxej0PtbbyV78SIT6HXJrRyB8zMhh2u9U+BE+1t/NSZyerp0/nF8nJzAkPZ7nZTIhGg8Trv1jsF7ljl5IBl4uyyEg1Y/5vbW18MmUKH5aWqslTACXK6sc27ob40mzmP729nF9VxatFRTTMnatm997Z2MhjbW08U1BAjc3GysFBXi0qUifDP6Sns1zRZpaazSytqOC5ggIuNpkwarUcHx3NR/395BiNXJCYiEmjUYXG7ZmZJCgdDDsdDpwejxqd1TBnDlnr1nFkZCQuKbmmtlYtrTIpJIRPJk9Wm06Bty7U4i1buDQpicLgYI7eupW7s7K4MCmJi6qrKQ4J2UOgzAkLo2f+fMJ0OtxS0qWUbgdYFBnJv4qLmRkWhktK3u7tZfXQEMXBwdTabNzY0MAXZrNabmJSaCjv9vaqSW63ZGRweXIyP09I4NOBAcJXrlR9KBMx6nYTt3o1c/wc9b4+Ez5eLS7GLSV3Njay02qleYK2qqfu2KF25POVVX+xo4OLqqvV8FjwJqX6Vx8ACNXpOCsujjuampgaGsqWmTNxS0nj6CjDbjcjbjeVVqsqTHzn/dxdu7gtI0MNj+9fsIDoVatIMhgoUyLSPurvp3zqVLKMRiJ0OtWfcNL27byv1CeL0Go5NS6OG9PT+WxggGtqazk5NhajVsvciAgyjUaG3G6WDQ5i0mqZoywuRtxuVg8Okh8czOcDAzyUm0tpaChxSvXh2WFhaISgZXSUf3R28vBXaCY+PFJyxe7dnBgTw3qLhZe6uigJCeH46Gje7u0lRHkGso1Gbs3I4NKkJNL8FmrHREfjWrKEk7dv58n2djbMmDFm/+FaLeVmM3PCw5kbHs6SigruysripowMXiwsZMDl4rS4OLU7qi8I4e7mZuaEh3NybKy3f0xfH8dHR/Ph5MmsMJs5Nz6eB3NzOaeykhNjYlR/lX9ofpHio3wY1AXfWyUlnBIby/HR0VxXV8dum42zExLUBaAP/7yyy5KSeLqjgymhoWrjtFWDg1ydkqJqPnqNBj2Hhh+MQLG53QSvWMEdmZlcl5bGLRkZ/L29Xc0zmKX0LVg5OMhN6eneRls2Gx0OB79VbOkJBgOPtbXxu7Q0tfPg/S0tYxKA7mxsJD84GKNyU5wSGzumk1+sXs/jbW1ogCcLCni6o4PC4GC2Dw/zUlfXmH4ThcHBfFhaSuG4xkc+AfPvnh4uTkzk+O3beaukxGsDVXwI/+np4Z/FxQy5XBT5ff/4mBi1lpEvCODp9nYuVlY0H06ezG6rlSAlPh+8/cptHg/ROp3X9tzYyKNtbTTPnUv1nDl0ORxUjoywS8kN0Ws0bJs5k1Ctlux16wjTaul1OseYYoQQnBYXx13NzdzV3Kz6qy7ctYulStHO8eg0GrVlMECW3+rOpNEwPTSUnHXriNbpuDIlhVeLipgVHk6ETsfa6dPxSMnnAwNcq6x2r/Ur2ninEorqL/RuSPPPoR3LMsUXcXpcHKunT1f7fPsTo2hNOSaTWvDwpvp67mluZvvMmUxSalJtHRmhJDhY7V3hSxiNVb7f5XDQareTNK7bIcDtWVmcGheHw+PB4nKhE4IIrZbcdevIN5momj2bNYqP5d7mZnVyOTIqiskhIZwdH8+I282bJSVkKvkUd2RmEqnTjQkC8PF6UREVw8Msqqhg0O3mhc5Ofp2czFs9PVykBH0AamdNHza3mxqlxL8vZ8oXlHJ1SgoP5+VxZFQUrfPnj7mmx8fE7NFBc28IvCYfgTc5MkSrZUlkJNcrYbY+coODuUO53v5oFG1lUUQEbyjtlP0bgo16POy22Rh2uzEIQVlkJDc3NPCT2FjubW7mT8o+fVYJWVZGu93OdXV16gL0L9nZvNrVxTrFf9pstzPgchGvhPJfV1fHJouFV4uLebunh2SDgbb583m/t5cfKT60P2dlsX14WI1WfF2pCK4ujvzmEPBGw80KC+O2zEyOiIzkqYIC7mpqYsGWLYwuXuxtcayY9x73a6p3KPjBCJTtyoPUMDpKiNIBLkKnU+sRTQsN5bmODuL1eo6PiWFWeDj3t7TwRk8P6UYjp8XFIaXkosREtYc0eOsRzfJbpeo1GobdbrUBVMqaNZyu2OvBW4wy12RCr9yozxUUUBISwqtdXfyzu5spISGq7fd3dXVUWa3sUDrq+fBFiM0OD1dXvb6b66XCQhINBuYoE+n4Ve0mi0XNFh50uzk7Pp7N40rMVAwPI0EVKNbFiwG4sb6e3TabWjYmTpnwHmlt5Z7mZipmzlQFaalyjny+iNDlyxnxeMb4Jn6VnKyGM64eGlKj2X4cE6O2LN0bR1RUUG42qy2Y3+ntVc9Bv8vFqqEhlkRGqo2h5oSH02m3s0DpOwHwvtJ/4yS/hktZ69ah8Rv33igNCeH5ggJOiImhaXSUO5qaODkmhql+94KP+tFRNTx3fKJkqtFIqtHIs+3tzAgL81ZrSEnhcr+mZVq8TvzxFZPBW1/qd3V1atkQ/1pepSEhCCGYGxHBCrOZbSMjXJSYyCeTJzM9NJRQnY6zN22icXSUMK2W8qlTEXibpG0bHmbBli08U1DAEuV8gVcrWujr4NjRwTKzmZnh4eSYTEwJDVXL1JwzLsm2IDhYLXnkaziWbzLx6eTJzB3X79xHrMHAKbGx7LJa1eq5+0IIwYqpUylUFnQ3jBMk+0uIEok5nma7nVqbjVCtFiEEt2ZkMD88HKfHw3KzmUHFZLY4IoJuhwOb201yUBCv+5nFhRC8V1rKzE2bEOXlPJWfz4f9/Yjyck6KiWGXn/nyXsW8Bt6Wzr7umL7F7OyWFiJ0ujHdXd/s6dlDoLxUWMipO3diEEK1VPg60a4fGlIXAU+0twcEyv6SazLxelERi/xuzEuTkrB7PLzW1cXCiAie7uhQJ8Jeh0OtDpuvrISFEDw4Tv32NWLyURIczC2NjTygZNgCaktO8JpaJvkJpAGXi16nk2tSU5kSGqqG8oHX4b98cJBBl0u96OBdYeUqN9eI202sXs/v09K8vSqU5EeAD/v6OFEpc+773Vf6JUCdEB1NcUiIGsoI/2/S0AnBmUq0E3hNJTtHRjBqNHxUWkqIVotRq1XNYS8WFjJ5nCblT5bJpFYY8OGQkllhYfwtL4/7W1pICgpibng4R4yLZpoIX0FOoUxgPlv4CdHRXJKUhFUpz/9cQYGqfUXqdLxeXKwKwsKQkD20P/AmS/oeuOi9CLZEg4FjoqMJ1Wq5raGBd3p7WWE2q850fzYMDbHOYuH8Xbv4R1GR2mPGh8vj4Rc1NWMae/kTazBgdrmoslo5edw2X7azLxTYJ0AjtNoxTeKCNBo6lHBiq1JJOlSnU30gFrebGZs24VmyBICdIyPsttl4sbNzjEDxIaXk3IQE9fdenZLCeosFp8eDXqNh6dSp3iZWig8l12Ti6Kgo+l0uJoeG4lmyBMn/awV749WuLnaMjIwJ0tgXPsHzaX8/f29v58XCQrXy91ctEnwcFRXFrLCwPdoV55tMPJSTQ7ay0NIJwTnx8ZSEhPB4Xp56nkY8Hj4ZGCB4xQp1weNPlxLAIpR/Pk6NjWVqaKiaK1cWGcm0TZu4oKqKuUoIv++3Rep0XOunQVfMnEmnw8HCcYmxABuUBWO7w8F1tbU82NrK8wUFPJGXR57JxB8zMtg+MqIutA4lPxiBEq3XqyUYfLilJEavpygkhCMiI7kzM3OM8ABvrH3pBOYXH39pbubDvj419vvEmBjiDQa0QiDwFn6cMcGq1cfNDQ2cGRfHCTExnDNufNkmE1E6HeOrFbg8HvTLl/OTmBjeKClh+8yZROn1BGk0tNvtzN+8mb/m5Kh9Qfxrbt2Qnq7moSQYDFxTW8vMsDCuVsxAvvIk1/g5QX1Cw2fLjjcYVMftsqlTGXG7Od4v8cuH0+PBsHw5iyIi+HTy5D2cg6fs2MHP4uOZGR7OP/0q7O4Po4sXY/XbX1lkJO9MmsTMsDBSgoL4QFnlhfg50lcNDfGjrVtVAftCRwd3Nzezdvp01Tw1smgRqwcHiVm1imCNhhFFOxvPgMtF6po13JqRwa2ZmbQ7HFzlp1X4c1x0tBqoMRE6jYYn8/PVttO3NzRwR1MTn06ezNFKNOECxScxnl8kJfHFwAAXJiZyRnw8bilptdsJGjeJxer1XJiYSL/LxeU1NfyruJgzjUa2KK0MglesIE6vV+/70+LiWOMXMTUeX1+Uc+Pj+UtODh/393NjQwPnJSSgx7sY8gUQzPeb5Hx3lVCej31hdjpZajarQSMHwucDA7zT2+uNWJo+Xe15sz/8uamJjRYLNXPmjHk/1WjkGr9J/KzKSi5LSmJSaCiX+gm8E6KjCc7P9wqMCQTmidu3szAighXTpvFpfz8XJybyRF4eJ+/YwcKICFXLu8GvmnSSUhMMUBt5vVxYiN3j4dLkZO/53svv8S3k1g4NcW92NvEGAxckJqrCPDEoiN3jfushQ0r5vf83Y8YMOeBwSJYulXc1NkofP6+slCxdKpNWrZJ9DocczxtdXfKh5mbpcLv32OYjbfVqydKl6utzd+6Ul1dXq6/rrdYJ9+3j0ZYWucpsllstFnni1q1yu8Uy5rubhob2+I7b45EsXSpZulQuHxiQLF0qP+vrk1JK+X5vr2TpUnnGjh2y226XNSMje3z/xro6ydKl8oX2dsnSpXLK+vV7HZ+UUr7V3S3/1dWlvi5at27Mb94Xf25slNv8ftP4cfynu1t9vXxgQJ64datsHR3dr3374/J45NL+fsnSpfK1zk7ZbbfLN7q6ZJfdrn5m7eCgZOlS+Y+ODimllImrVkmWLpXt445XYbFI7bh7ZTxbLRbJ0qXyhtraAxrn9bW1kqVLZcVezomUUnbb7fK3u3fv877z4fJ4pMfj2e/jj7hc8qqaGjnkdEoppfR4PNLqcsn/9vRMeK/tDd+9w9KlssFqlSdv2yZP2rZNHcs7PT3ypG3bpEU5jpRSPtzSIlm6dL+vr9XlkpdVVcnP+/v3e1w+eux2+VBzs6ya4P7/Ku5saPjKZ0JKKR9obpZNNtse7/+mulrGrFix1+8lrVolU1ev3uP9BZs2SZYulb9T7qmQZctk3MqVUkrvc/1KZ6eUUsp7Ghvlr6qr1fMvpZTDLpdk6VJ5e0PDHvvNXbtWTlq/Xnb4nfcnWlvVayellK90dsoramr2+C6wUR7EufgHo6H4iuRt9XOeTlLMHa8VFU1o2ni1q4v/9vWRaTSOMSX5c2psrJoRC96sWn8TUva6dWNa6Y7nSkUTuK2hgQ/6+5kVHq6axO5ubuaDvj7a/RyV4DUTDC9ahJT/XxHUV2ZlcUQEq6ZNoyg4mCi9fg/H6iaLRS0HszAigh/HxND+Fau3U8f99t+npe2RE7E3bt7H6vLHMTHc0tBASUgI+YqN/YP+fpabzXtoa+M5qqKCL81m1YzxaX8/JyjRa7U2G+ckJHCGn8kOvKu8IyIjSVb8SmumTaPL6VSd4T6mhIbi+grzSJbRyD8KCyc0MeyLXyYn0263U7wPR3OcwbCHaXVv/L6ujqc7OsZEo4ny8jH5TP4Ea7U84pdfYFe0kxyjUQ25BW/C3bHbtvFSYSHHKFqSPxcqpT0+7u8n02Qiy2gkOShIXZFfWl1Nr9PJsNtNqGKu9XVXdO7nvWPSatX8rwMl1mAYo00cCHoh1BI2++Lavex/amgoVVYrLo9nwjbSH5SWThiWm6rch5cqZsSHcnNVs9un/f2qP9TnY50eGqpWz/D5b97q6VFNZj7+VVzMjE2b+GxggPOUyElfBFrj6CiZJpNa4fixQ5B74s8PRqCkG428VVIyxvz0y6Qk5oSFjYnt92F1u9VCbZP24Rt4eNwFiNLpeKytjecKCwFvJ7XjJnggx3NlSgqzwsLGOCijdTrVJj4enyknVKsl2WDAd9uG6XSqieHm+nrubm7GsnCh+lBfptSqapw7lwyjkVeKig445vxglWXwSDnG0fxQbi4/T0jYr0n65wkJY/xK00JDSTQYuDsrSw2/HU+CwcAzBQUkKkI202Qi0y9SzJ9Oux2NEMRPEOkE3vP88wlqqX0VOSYTr/g5ab8p7/f17TH5nRwTs8ciYG/4fE9140Katw0P0+lw8FZPz4QCBeDshATVjDz+OVg1bRrVVuuY8/efkhJ6nc4x/V4OFUsHBrinuZnnCwpIPcDjnRQbq+ZPfR26nE6+MJvZm9hstdvVe9CfY6KjmR4WRoGy2PD3G20dHlYrZ3/c14dJqx1jZkswGGiZO3dMUVYfvurX/lGWlyUlkW00qub8K1NSxvh6DxkHU905XP9mzJixhyonpVct3jU8POE2p9stw5Yvly+0t0+43cfNdXXyqC1b1Ncbh4ZUk8o35ZGWFjljw4YJt7F0qTxyyxZpd7tlo80mR1wuKaWUNSMjMnrFCvmf7m75UkeHjFmxQrr8TCJvdHXJvLVrZZui/l64a5f80wRq8rdB7tq18pdVVd/a8TYODUmWLpXv9vRIKaW8r6lpj/MjpdfkxdKl0rhs2bc2tq/LM21t8g91dd9oH063W46OM69ZXS65aWhon+baD3p75Rk7dqjms+8SV9bUSJYulS99jWfxl1VVMkExNX0daq1W+Vlf315NkSxdKqdO8FwfW1GhmrvGc8LWrXLmxo3q91m6VD7Z1iYfbWn5yvEcW1EhWbr0a90nHGST18EvN/kd4uaGBoo2bFDVRX90Gg0blcQm6z7U3xc6O/lCiTgCeLK9fUyv5/1l6/AwZVu2jAnhvSo1lY0z9145+kuzmZ0jI2SuXcunSrZskEZDv8uFQaPh/MREehcuHNNx8Iz4eGrmzFHNPq93dfGqXyOpb5OLEhM5yi+ia+3gIGVbtlA1LhrsYJFsMBAkhPrb7R4PfS7XHjd5iEZDsEbDbV/DGfxtc2lyslpe/esgpRwT5u7DpNUyPSxsr1Fu4H1+/j1Bf3nwlpIp27Jln8/OoeT6tDSeyMtTAx0OhN+np6ulkr4Oz3V0cML27RM65MFrep3ovOQHB6ulVsbzm5QU/qCEQd+Xnc1N6elcXlOz146b/ox4PMTodHsNGgF4ur2da/ZRAv9g8YMxeU2ET/WutdkmjMS6praWj5QyBydMEMUEcEFi4piqoMEaDXtvHLx3hpWM4v1VO0cXL0ZK6RUefpNkutG4z/DITRYL64eG+GVyMhohmBcRMaYk+LfJ9NBQ7mpuZr7Sg77P5WLZ4CDW/bSxHyhJQUGMKmGx4E0AGx+zD96w7L1Fd/0QiVq1Si1CeCDclpHBu319e3StBG/e17IJGqN9W6QZjWpB1AMley9m0P3lkqQkjtmHIPt4L8Kq3mZj+8jImGK0PnyhwqfFxan9UCbvI/rUn7dLSohbvZpXurr2SPL04eurNN50ebD5QQuUXyUnUxYZScFebqBbMzKI1+uZto8Ld/e41aHd42Gpn8ayvyyIiMC+eLHqZPsqfM66ZKU8yP5+78KqKnaMjHBmfDwxej3vTZrE4REn3uACgxBqUc0TY2IO6BwcSqqtVuL1+glt0j8kfKvo1gMIq/VxSlzcXoNV7szM5NaMDDWB93+JHJNJ7a0yEfU2mxqm7s8psbHY97K422W1qtrie0oC8Fnjgk72hi95+9h9+HL/mJFBwyFo+TueH7RA8TWfCZ5ghQUwNyJCrbS7v1ySlLTPC7cvDmQiFeXlzAwLY8OMGQf0vT+kp/NgS4uap3BtXR0ROh1/9UvE/La4traWkpAQEv3U/O+CMNlttar9QZoPcNX+fUSWle1h8vqmCCHQf0XS4v8qP925k1yTaY/cj3d6e9VIr/G4paRFsYT4msztb6KmU3oTiPel0fxpglI0h4IftED5c1MTj7a10Tl/Pgl7ieY5UP6hZPb+dD+jbL4JGy0Hblw7NyGBc/1CctcMDak1o75tfpmcvNcoqsNJsFZLiEaj9kP5odOjlDsP1f2gH/fvDAl6/R6N2cBrworby7N4fXq6Go3ZOS6N4Kt4JDd3wrI9h4PDdocJIQqAf/m9lQ3cCkQCvwB83sCbpJQffp1j+GoK9TqdB02gFAUHH5LWmeNxK6Urvilvl5SMKeH9bRKn1/NASwvHRUePCQE+3KQEBTH8P+RDiV+9mji9nm6l70uAQ8sXU6cykU1kudlMiFarFqP15+P+fnRCcGJMzAHPVbHfoUXbYXvKpZTVwFQAIYQWaAPeBi4CHpJS3v9Nj3F1aqq3YdZBjIv/1dd0BB4oX1UDaX/J3c9KrocCg0ZDpE532ARagP9n9BAFQgTYkxqrlVCtdo86cucnJmLYy7Ng93hw/wCek+/KsvEooE5K2bS3ULyvg1tKJIwJq/2+IMrLKQwOZte4SsTfJ+5tbiZGrx9TbyvAt8/+2uIDHBzO2LmTopAQto/ztV62jwKYfzvEVYC/LQ6/h9TL2cDrfq+vEEJsE0I8L4SYMD5PCHGZEGKjEGJjz15i5R9qbWX25s17lBT/vlBltR7uIXwjLk9O5vyvKLES4NDTbrdj9isfFODQ8s/i4v1uGvZDQxzs6I8DHoAQBqAdKJFSdgkhEoBevJ1K/wQkSSkv3tc+Zs6cKTdu3LjH+/U2Gw+1tvJwbu73Ukv5vvNkWxtPtrezeebMg2bCC3DgiPJywrVaBvfSnTLA/y5CiE1Syr1nVx8g3wUN5Xhgs5SyC0BK2SWldEspPcAzwNe2+WSbTDyWlxcQJocJk1ZLgsEQECbfAcK/Q0ERAX64fBfusnPwM3cJIZKklB3Ky58COw7LqAJ8Y17u7Nxr8csA3x4BH0qAb4vDKlCEEMHA0cAv/d7+ixBiKl6TV+O4bQG+R1yWnHzYyr4E+H8abTZCtNoJe8gHCHAwOawCRUppBWLGvXfeYRpOgINMnc3GO729/CzgmD+sZK1bh1GjwfY/lHsT4PDwXfChBPiBEqnT7bW6aoBvl+xvoUdJgADfBR9KgB8on/b3j6nUHODwEPChBPi2CAiUAIeMS5KS1NbFAQ4ftVYrIVrtHq2QAwQ42ARMXgEOGcvMZp5qbz/cw/ifJ2/9etLWrDncwwjwP0BAQwlwyMgPDt5r3+0A3y6zvkEP9QAB9peAQAlwyNhX7aIA3x4BH0qAb4sDNnkJIaKEEF+/IXOAAAECBPhBsl8CRQhRLoQIF0JEA1uBF4QQDx7aoQUIECBAgO8T+6uhREgph4BTgReklDOAHx26YQUIECBAgO8b+ytQdEKIJOBM4P1DOJ4AAQIECPA9ZX8Fyh3AJ0CtlHKDECIb2H3ohhUgQIAAAb5v7G+UV4eUUnXESynrAz6UAAECBAjgz/5qKI/t53sBAgQIEOB/lH1qKEKIecB8IE4Ica3fpnAg0Cg8QIAAAQKofJXJywCEKp8L83t/CDj9UA0qQIAAAQJ8/9inQJFSLgOWCSFelFI2fUtjChAgQIAA30P21ykfJIR4Gsj0/46U8shDMagAAQIECPD9Y38Fyr+BJ4FngUA98gABAgQIsAf7K1BcUsq/H+yDCyEaAQteIeWSUs5Uyrv8C6821AicKaUcONjHDhAgQIAAB5f9DRt+TwjxayFEkhAi2vfvII3hCCnlVCnlTOX1H4AvpJR5wBfK6wABAgQI8B1nfzWUC5T/r/d7TwLZB3c4APwEKFP+fgkoB244BMcJECBAgAAHkf0SKFLKrEN0fAl8KoSQwFNSyqeBBCllh3LcDiFE/ERfFEJcBlwGkJ6efoiGFyBAgAAB9pf9EihCiPMnel9K+fI3PP4CKWW7IjQ+E0JU7e8XFeHzNMDMmTPlNxxHgAABAgT4huyvyWuW399G4ChgM/CNBIqUsl35v1sI8TYwG+gSQiQp2kkS0P1NjhEgQIAAAb4d9tfkdaX/ayFEBPCPb3JgIUQIoJFSWpS/jwHuBN7F67O5V/n/v9/kOAECBAgQ4Nvh6/aUtwJ53/DYCcDbQgjfOF6TUn4shNgAvCGEuARoBs74hscJECBAgADfAvvrQ3kPrwMdvEUhi4A3vsmB/6+9+4+9q67vOP58rRXEXwFdN5FCWhRNCtv40RFBZ9wgGaKxwxiHmZPFbdVkJKJmG6z/sC37Q4ZKNjeWKixuMogBpoTxexKXJYIUrYWuoOXHRrFKh9vAzQCF9/44p36v9dtvv1/43J7v/d7nI7n5nvO599y+z5t+++Kce+7nVNWDwC/MMv443Sk1SdIEme8RysUjy7uBf6+qHWOoR5I0oeb1xcZ+ksj76GYcPgx4epxFSZImz7wCJcl7gK/RfZ7xHuDOJE5fL0n6kfme8toA/GJVPQaQZAVwG3D1uAqTJE2W+c7l9VN7wqT3+AK2lSRNgfkeodyU5Gbgyn7914EbxlOSJGkS7e+e8q+jm1vr95O8C3gzEOCrwBUHoD5J0oTY32mrS+juV0JVXVtVH62qj9AdnVwy3tIkSZNkf4Gyqqq27D1YVZvoboAlSRKw/0B58RzPHdKyEEnSZNtfoNyV5Hf3Huzn2bp7PCVJkibR/q7yOo9uAsffYCZA1gIHAWeNsS5J0oSZM1Cq6nvAqUl+GTiuH/6nqvry2CuTJE2U+d4P5Xbg9jHXIkmaYH7bXZLUhIEiSWrCQJEkNWGgSJKaGCxQkhyZ5PYk25JsTfLhfvzCJI8m2dw/zhyqRknS/M13tuFx2A18rKq+nuTlwN1Jbu2f+1RVXTzHtpKkRWawQKmqncDOfvnJJNuAI4aqR5L0wiyKz1CSrAJOAO7sh85NsiXJ5UkO28c265NsSrJp165dB6pUSdI+DB4oSV4GXAOcV1VPAJcCrwWOpzuC+cRs21XVxqpaW1VrV6xYcaDKlSTtw6CBkuRFdGFyRVVdC910L1X1bFU9B3wGOHnIGiVJ8zPkVV4BLgO2VdUnR8YPH3nZWcC9B7o2SdLCDXmV15uA3wTuSbK5H/sj4L1JjgcKeBj44BDFSZIWZsirvP6V7v70e7vhQNciSXrhBv9QXpK0NBgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmFm2gJDkjyf1Jtic5f+h6JElzW5SBkmQZ8FfA24A1wHuTrBm2KknSXBZloAAnA9ur6sGqehq4Clg3cE2SpDks1kA5AnhkZH1HP/YjSdYn2ZRk065duw5ocZKkn7RYAyWzjNWPrVRtrKq1VbV2xYoVB6gsSdK+LNZA2QEcObK+EvjOQLVIkuZhsQbKXcAxSVYnOQg4G7hu4JokSXNYPnQBs6mq3UnOBW4GlgGXV9XWgcuSJM1hUQYKQFXdANwwdB2SpPlZrKe8JEkTxkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDUxSKAk+fMk9yXZkuQfkxzaj69K8sMkm/vH3wxRnyRp4YY6QrkVOK6qfh74FnDByHMPVNXx/eNDw5QnSVqoQQKlqm6pqt396h3AyiHqkCS1sxg+Q/kAcOPI+uok30jylSS/NFRRkqSFWT6uN05yG/DqWZ7aUFVf6l+zAdgNXNE/txM4qqoeT3IS8MUkx1bVE7O8/3pgPcBRRx01jl2QJC3A2AKlqk6f6/kk5wDvAE6rquq3eQp4ql++O8kDwOuBTbO8/0ZgI8DatWurbfWSpIUa6iqvM4A/BN5ZVf83Mr4iybJ++WjgGODBIWqUJC3M2I5Q9uPTwMHArUkA7uiv6HoL8CdJdgPPAh+qqu8PVKMkaQEGCZSqet0+xq8BrjnA5UiSGlgMV3lJkpYAA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqYpBASXJhkkeTbO4fZ448d0GS7UnuT/KrQ9QnSVq45QP+2Z+qqotHB5KsAc4GjgVeA9yW5PVV9ewQBUqS5m+xnfJaB1xVVU9V1UPAduDkgWuSJM3DkEco5yZ5P7AJ+FhV/RdwBHDHyGt29GM/Icl6YH2/+lSSe8dZ7AT5aeA/hy5ikbAXM+zFDHsx4w0t32xsgZLkNuDVszy1AbgU+FOg+p+fAD4AZJbX12zvX1UbgY39n7WpqtY2KHvi2YsZ9mKGvZhhL2Yk2dTy/cYWKFV1+nxel+QzwPX96g7gyJGnVwLfaVyaJGkMhrrK6/CR1bOAPaerrgPOTnJwktXAMcDXDnR9kqSFG+ozlIuSHE93Outh4IMAVbU1yReAfwN2A783zyu8No6pzklkL2bYixn2Yoa9mNG0F6ma9SMKSZIWZLFdNixJmlAGiiSpiYkPlCRn9NO0bE9y/tD1jFOSI5PcnmRbkq1JPtyPvzLJrUm+3f88bGSbJT2VTZJlSb6R5Pp+fSp7keTQJFcnua//+3HKFPfiI/3vx71Jrkzy4mnqRZLLkzw2+t2857P/SU5Kck//3F8kme1rHT+uqib2ASwDHgCOBg4CvgmsGbquMe7v4cCJ/fLLgW8Ba4CLgPP78fOBj/fLa/qeHAys7nu1bOj9aNyTjwL/AFzfr09lL4DPAb/TLx8EHDqNvaD7IvRDwCH9+heA35qmXgBvAU4E7h0ZW/D+011hewrd9wNvBN62vz970o9QTga2V9WDVfU0cBXd9C1LUlXtrKqv98tPAtvofoHW0f2DQv/z1/rlJT2VTZKVwNuBz44MT10vkryC7h+RywCq6umq+m+msBe95cAhSZYDL6H7LtvU9KKq/gX4/l7DC9r//qsdr6iqr1aXLn83ss0+TXqgHAE8MrK+z6lalpokq4ATgDuBn62qndCFDvAz/cuWen8uAf4AeG5kbBp7cTSwC/jb/vTfZ5O8lCnsRVU9ClwM/AewE/ifqrqFKezFXha6/0f0y3uPz2nSA2XeU7UsJUleBlwDnFdVT8z10lnGlkR/krwDeKyq7p7vJrOMLYle0P0f+YnApVV1AvC/dKc19mXJ9qL/bGAd3emb1wAvTfK+uTaZZWxJ9GKe9rX/z6svkx4oUzdVS5IX0YXJFVV1bT/8vT2zD/Q/H+vHl3J/3gS8M8nDdKc6fyXJ55nOXuwAdlTVnf361XQBM429OB14qKp2VdUzwLXAqUxnL0YtdP939Mt7j89p0gPlLuCYJKuTHER3L5XrBq5pbPqrLC4DtlXVJ0eeug44p18+B/jSyPiSnMqmqi6oqpVVtYruv/uXq+p9TGcvvgs8kmTPzLGn0c02MXW9oDvV9cYkL+l/X06j+6xxGnsxakH7358WezLJG/s+vn9km30b+oqEBlc0nEl3tdMDwIah6xnzvr6Z7rBzC7C5f5wJvAr4Z+Db/c9Xjmyzoe/N/czjKo1JfABvZeYqr6nsBXA83a0gtgBfBA6b4l78MXAf3RyBf093BdPU9AK4ku7zo2fojjR++/nsP7C27+EDwKfpZ1aZ6+HUK5KkJib9lJckaZEwUCRJTRgokqQmDBRJUhMGiiSpCQNFWoAkr0qyuX98N8mj/fIPkvz10PVJQ/KyYel5SnIh8IOqunjoWqTFwCMUqYEkbx25J8uFST6X5JYkDyd5V5KL+ntL3NRPn7PnfhNfSXJ3kpv3TI0hTSoDRRqP19JNrb8O+Dxwe1X9HPBD4O19qPwl8O6qOgm4HPizoYqVWlg+dAHSEnVjVT2T5B66G8Hd1I/fA6wC3gAcB9za3whvGd10GdLEMlCk8XgKoKqeS/JMzXxY+Rzd712ArVV1ylAFSq15yksaxv3AiiSnQHdbgiTHDlyT9IIYKNIAqrtl9buBjyf5Jt3M0acOWpT0AnnZsCSpCY9QJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDXx/7jtGO2v5bZtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=('Time', \"Counts\"), # (xlabel, ylabel)\n", + " axis=(0, 1000, -50, 150), # (xmin, xmax, ymin, ymax)\n", + " title=\"Random generated lightcurve\",\n", + " marker='c:') # c is for cyan and : is the marker style" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The figure drawn can also be saved in a file using keywords arguments in the plot method itself." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABF1UlEQVR4nO2deZwUxdnHf88uK7cIch8CGiAajAtZwaDihSBiBKMG9I0CEhVFAV8/EFBMjK8oKmrQKAExiBcIogER5VLjrQFRBJVDUVnkFBS5YbfeP3ZqrOmp7q6+pmdmn+/ns5+d6aO6qrr6N08/9VQVCSHAMAzD5BcFcWeAYRiGCR8Wd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8pAqcWcAAOrXry9atWoVdzYYhmFyimXLlm0XQjTQ7csKcW/VqhWWLl0adzYYhmFyCiL6xm4fu2UYhmHyEBZ3hmGYPITFnWEYJg9hcWcYhslDWNwZhmHyEBZ3hmGYPITFnWEYJg9hcWcYJoUvvvgCb7zxRtzZYALiKu5E9C8i2kpEK5Vt/0dEK4joYyJaSERNlX2jiWgdEa0moh5RZZxhmGg4/vjjcdZZZ8WdDSYgJpb7EwDOs2y7TwjxayFEMYB5AP4CAER0AoB+AH6VOOdRIioMLbcMwzCMEa7iLoR4E8AOy7ZdyteaAORyTr0BzBBCHBBCrAewDkCnkPLKMAzDGOJ7bhkiGgvgSgA/ApDvcM0AvK8cVprYpjv/GgDXAMAxxxzjNxsMwzCMBt8dqkKIW4UQLQA8A+CGxGbSHWpz/mQhRIkQoqRBA+2kZgzDMIxPwoiWeRbAxYnPpQBaKPuaA/guhGswDMMwHvAl7kTURvl6IYAvEp/nAuhHRFWJqDWANgA+DJZFhmEYxiuuPncimg7gTAD1iagUwF8BnE9E7QCUA/gGwGAAEEKsIqKZAD4DcBjAECFEWUR5ZxiGYWwgIbQu8YxSUlIieLEOhskOiCq6zrJBGxhniGiZEKJEt49HqDIMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuDMMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuMfExo0b0b17d/zwww9xZyUv2b59O84991xs2bIl1nw89NBDuOeee2LNA1M5YXGPiTvvvBOLFi3Cs88+G3dW8pJJkyZh8eLFmDBhQqz5GDZsGEaNGhVrHpjKCYt7TJSXlwMACgr4FkQBD6FnKjusLDEhxb2wkFchjAIWd6ayw+IeE2VlFZNlsuUeDSzuTGWHlSUm2HKPFhZ3prLD4h4T7HN3pn379nj66ad9nx+WuPfs2RNjx44NlAaTH6xbtw716tXD+vXr486KEawsMcFuGXuEEFi1ahWuuOIK32mEJe6vvvoqxowZEygNJj+YOnUqdu7ciWeeeSburBjByhIT7JaxJwxXCrtlmLCRbSpXYHGPCbbc7YlT3Lt27YohQ4YEvn4288UXX4CI8MUXX7gfHJAZM2agWrVqOHDgQOTXCpO+ffuiT58+cWcjEKwsMSHFnS33dORbTRD8WllvvfUWHn300cDXz2amT58OAHjuueciv9aIESNw4MABbN26NfJrhcnMmTMxZ86cuLMRCBb3mOAOVXvCdKWwW4aprLCyxERlEvcHH3wQRGRskWfKLfPjjz+CiDBjxozA18s2Ro8ejRo1asSdDSZGXJWFiP5FRFuJaKWy7T4i+oKIVhDRi0R0lLJvNBGtI6LVRNQjonznPJWpQ3XkyJEAfnZFuRGmW8ZJ3NetWwcAuO+++wJfL9sYN24c9u3bF3c2kuTTG1SulMXEbHwCwHmWbYsAtBdC/BrAGgCjAYCITgDQD8CvEuc8SkT5r14+qEwdql4fhkxZ7nJfrkVB5BL5VLe5VhZXZRFCvAlgh2XbQiHE4cTX9wE0T3zuDWCGEOKAEGI9gHUAOoWY38jo27cvioqKAABFRUXo169fpNeT1mmuNZhMEJW4n3feeahfv37adXLhHkyYMAFEhL1798adFXz//fcgIjzxxBNxZ4VxIAyz8SoAryQ+NwOwQdlXmtiWBhFdQ0RLiWjptm3bQshGMGbOnInDhyt+rw4fPhx5JIEU91x5xQsD07JG5ZZZsGABvv/+e8/5yQbuv/9+ABXz1HshijJKd9bEiRNDT5sJj0DiTkS3AjgMQA7Z0plA2tYlhJgshCgRQpQ0aNAgSDZyEvlDEoaQ6RBCZJ14mebH5Di38klxLy8vd00v7gFPJveqSpUqAIBDhw4ZnwP83M7iQpfHbGybQZFlyqZy+RZ3IuoP4AIA/yN+LlEpgBbKYc0BfOc/e/nJihUr8PrrrwOITlCuv/76rPPnhynuf/nLX1BQUGA7OEYK9sSJE3HLLbe4Xmfv3r2x1dell17qem3pMpRifeSRR+KEE05wTTtucddRUFCA7t27x52NUBkwYAAKCgowYMCAuLOSxFdrJqLzAPwZwIVCCNUJOBdAPyKqSkStAbQB8GHwbOYX77zzTvJzVJb7P//5z0jSDUKYbpl//OMfAGDrg1b96A899JBjWkSEnTt3GuUtCmbPnu16jIyqkmK9e/duoxGm0tKPApP7adefsXjx4rCzkzF05X7yySdT/mcDJqGQ0wG8B6AdEZUS0SAA/wBQG8AiIvqYiP4JAEKIVQBmAvgMwKsAhgghzOLfMkxZWRn2798fy7XVBp9Nr3Eqe/bsCT2dsN0yTph0kqpp+OlU3b9/f6SW8d69e5N5lG4Zr9fLRss9CsrKygKHfqr1rSMXOt5VTKJlLhNCNBFCFAkhmgshHhdC/EII0UIIUZz4G6wcP1YIcZwQop0Q4hWntOPkggsuQPXq1ePORlaK+5w5c1CrVi3897//DZTOjBkzUKtWrWTYZ5jiLgnywKnRMn7SqV69Ok477TTf13di8+bNqFmzJsaPHw8gO8U9qNi9+eabIeUEuPzyywMN2tq2bRtq1qyJcePGhZanuMkup2wGefXVV2O7tvpQROWWCcKCBQsAAB9+GMyj9vLLL6d8jyJaxi5NL5a7X3EHgA8++MDXeW5s2FARdDZz5kwA6T53N6QPP0q3TFDeeuut0NKS9eSX776r6BrMp9HKlVbc48TOLbN3717s3r07I3k4cOAAfvzxx0iv4beDMogv126/U7itH3H3GpLoFWsMvpPlXlZWlhLiCaT76J2u4cSBAwfwww8/GOXZCbuoGXkNa1vUlWnXrl2RuVLl/cw114sTLO4xo1qpDRo0QO3atUNN3+4BPv3003HUUUeFei0r1gclCreMybX37t2Lhg0bOl7Hy0O9fft2RB2+60XcR44cifr166eIsBR3neXupaznnHMO6tat65hHJ9SQVCty22mnnZbWFm+55RbUr18/ReDr1KmDk046yTTrxggh0K1bt5T8uh2fC7C4x4CT5R42dg3RxJ8e1IrxK+4mbpkwOlT9Hp+ptysVJ3F//vnnASDF+vXro7eiRnZJ/LQLJ8t96dKlafteeOEFAMCOHSmD47FmzRrP13YjG12jYcDibsHvjf7222+NH6RMRst4Tf+bb74xnuDLyqpVq7Bly5bk90xY7nZC40WAvLplqlWrZnysFzZs2JAySEnFSazlsVu2bEkaCH7EfcOGDb5/DLZv346ffvrJdv/u3bvT5nTPFlE1bW9ff/21r/TXr18PIQR++OEHbN68GRs3bvSVjldY3C34EbatW7eiZcuWGDFihNHxmexQ9SKUX331FVq1aoXJkyd7vs57772H9u3bo3HjxsltcbplTPz96nW8XDOqH+RjjjkGw4cPT9lmdcs4dZB27twZp556qvHxKtu3b8cxxxyDm266yfVYXfkbNGiA4447zvbYDh06oFGjRq7pmFwrzOOt59j9yC9btgxPPfWU57RXrFiBY489Fg8++CDq1q2LJk2aoHnz5u4nhgCLuwU/4i4tlpdeesno+Gy13EtLS31fZ/Xq1aHlJQyh9Rotkw3iDgDz58/XXkOK9cGDBx3P//jjjwGYdaiqSPeHlygyL53WTj53p7SzRdz9uoO+/PJLAOlhn5nw2+eduK9fv97x9dANVdy3bNmS4mawo2rVqgBg3JOfrZa79VgvrgrdvPR2lvvGjRvTIiFU1DpZu3at43WDiLtM26sP2XrN5cuXh7YeqUzbrkNVZ4nr6sCpQ9UJL3URNKrJRNy94kc0TZ5Bv/mx+5HKhLhXifwKGebYY49FcXExli9f7ut89UZLF4PbjZAuAD+LAGeT5R5E3KX4OJ0v02/evDmKiopsrVA1H23btsW+ffvS/NxB6+3w4cMYNGhQMp9B6qljx44AKtxzYUfReHHLqHj1uWdq4JhKFIZNeXm55wVwTCx3v2/bduJeXl4e+VxGeWe5Az+/mvrBj1tG3jg/lns2i7sXTCx3FSeRsubDy7GmWIUljHoKIx7crs6kEJi2T3m816UNMxnnHUXb9/ODEeUzGKflnpfiHoQg4m5quUfhltm9ezc++eQT27xFjc5yt1omdnnZuXMnPv/88+T3oCNU9+zZ4/rmZrXWwhD3LVu2YP78+a5pffnll9iyZQsOHDiAZcuWGV3DyYeuu55TfLkpbu7N1atXa/3sX3/9dXLEpxNhhLyaprl161asWbMGS5cuTT6ny5cvT5tPJuwfNxb3LMKPuMsGZfrKHIXlfvHFF6O4uDjN1ZFNlrtd+iUlJSnT13p5EHT7rrjiCteZIIMIi932QYMGoVevXvj0008d0/3FL36Bpk2bYvDgwSgpKXG8hqxDr5a7V3HXWe6/+93vHI/dtWsXjj322LT9rVu3RrNm2jV6tOno8CuyduUtLi5Gu3btcPLJJ2PYsGHYuXMnOnbsiCuvvDIj4m6FxT0GgljufgjLcn/77bcBpEdTZGOHqpWvvvrK6Dhd2rpj33vvPdfz1Xq3s9zt7o1d/mREhYl7pry8XDsvjd098OuW8dqe1XumRnjYldltQJffDlW/2KW5adOm5OePPvooOYPkO++8E7hj2ASdzz1qKo24CyGwYMEC1xsZVNxLS0uxcuVKx+OtlvuSJUsCT/AkJ5ayirtbI1LdIU51s2fPHrz55pvYvHmztk/DS4eqG9Y8S9fFjh07kpOZOaWly4vK7t27U67xwQcfOI6gVL8vXLjQtY2YTj3r5Y1EirXVLbNw4UJtOn597ro0rOmEZd2aCF5Qt8zatWuTywJKCgsLPbtG/ZZZ1iG7ZSLkqaeewnnnnYfHH3/c8bggbhkAaNGiBU488UTH49WG8u6776Jbt2649dZbPV9XxS4O2q0RmazmAwDXXXcdzjjjDDRp0gQdOnRI2x/EcrdiPe7ss88GAHTr1g2dO3d2TdNN3C+77LKUe7Z//35t5I417RdffBE9evTAhAkTtOnKOghzcis3y71Hjx5a/7Zfn7t6z9R7GpalqdapNU2vsfA6rMe3bdsWbdq0SZkOWC2XEKlL44U9twz73DOA/PV2G/qbabeMjPd2s/bdkIJm7dQNy+fuNkgpTMvd7jjZSao+wH7EfdmyZWkioBNka9qy7djF3su3pzAsdyuZ8rmrhCHuTta5dZ9aNr8/TnbHq28hVapUSRFdr6GQfmBxjxDp9pAPoB1hibtTp5raUOzcKU6sW7cuLcrCTdw//PBDrF+/3jFda9nVfNasWdPxXJPYYr9uGSuqj96PuB86dCjtGrr6V4/ZvHlzsj7s2oiTuOsmhXOKcrFzy3j1uXudb97Oci8rK8Phw4cxZcoUfPvttynneBHgefPm2Z6nK9vBgwcxe/ZsX4aBXb4KCwuT+6ziDri/eXlZxMYpzj1qWNwtBHXLSH7961/bHh9U3Nu0aZMWZeHmluncubM2skHFacCLm7jrCNtyl2LTpk0bx2PdxP3w4cNG4q6m3aFDB1eBlSOVdeJ+/fXXO+bJek27aBmvi3WMHTvW03V1aQAVbfzDDz/E1VdfjRtuuCHlOKdnxtoG+vTpY3tN3XM0btw4XHLJJclZIt1Q01BnybT+aDmJ+8iRIx2v8corwReYY8vdI04VlmnL3RTTOUPckOUK4pYJIu5u4uAFN3F3OgbwJ+5ubpnNmze7dlI6We5yjhGvBA2FdEItny4U0uqWkeWyTsnhdyZJE8tdzsRonVHSJE27KbSrVKmSsvSj1S2jezPkDtUY2bp1K1588UXb/dkk7mpDCUPcf/zxx2SfgtV3H0TcvbhlnFwMXvPi9DptTUuXpts9PnToUNp51h/FXbt2Yfr06Snb3AT2iCOOAFARQmgy/YWXyaiiEHfTa8rr2om4X3F38rlL5FzvdobC7t27U+7TTTfdlHRF2fV9uFnuOtdO2HPLZIVbhoj+RURbiWilsu1SIlpFROVEVGI5fjQRrSOi1UTUI4pM6+jVqxcuvvhi2/124m6tdD8NNUhEQhjifvXVVyc/DxgwIGWfF3F3Eo46deqkfDcZvh+VWwb4Ob7arSNQh4nlPmDAAPzpT39K2eYmsHL/3Llzk/PNSLwaAHaC49UtA6QPrtMJlc5CtYYL2oXrhmW5O4Vb2onrkCFDcPnllye/z5gxA6eccgqA1HtqfSNR76HTmIcoooR036PAxHJ/AsB5lm0rAfweQMo8lkR0AoB+AH6VOOdRIvI2i49PrLGsVkzFXf7ae1mQIciNkucGEXd1gIZd+iY4PaRHH310ynerwGVa3J2OdXPLlJWVpT20VsvdOrAKcI/g8LvIiQ6r2Mrvfix3L7OkqudZBdCuffhtuyaWuxtO01T7sdytbTaouGd1KKQQ4k0AOyzbPhdC6GLjegOYIYQ4IIRYD2AdgE6h5NQjU6dOTfkuxV2+OkuslfzII48AAKpXr56W5uOPP4477rgjzZfndKOee+45fPPNNynb1Aa0aNEiAP4fkJUrVyZHp+rQ5c1uRRkvFph8ED/99FO88sorrv5bu7zo0D1QTz/9tHZBbyEEnnnmmZQQVzdxB4CZM2emfLeKu64u3Cx3kx88U6SrwfqD4jVaBvhZ3Hfu3InHHntMe7wur2odlJWV2VruTnMqeRmh6qVjVmLnrvnpp59w3333afe98MIL2LNnTzIPQd0yTvfZ7rxVq1bZnhMWYU/52wzA+8r30sS2NIjoGgDXABUr0ITNVVddha5duyZXhzG13OVDJSMfJKtXr06+pm/btg0PP/xwcp/Tr3u/fv3QuHHjFOtavaa0PPyKu3XAlLUudXk7+eSTtWk5+dyt6chjZVSQ/JGSx1pHAQLBLPcrrrhCe+yePXvwxz/+Ee3atUvOqW5ynZtvvjnlu9UtoxMar+LuZwpoeZ5VhL26ZdS6l0I2cOBAzJkzBxdeeKHReVbL3U7cw7Lc/czvbifuo0aNwqxZs2zPHz16tDYfdm4ZJ3FfsGCBa76tZT3zzDMjt97D7lDV1YC2BEKIyUKIEiFESVQryasPgmyY1ld7uwq2umXUB3X79u1GacjtmzdvTtmua8RBpx+QWIVblzdr/iVOlpOduOuuE9Ry99LoZb7U13PTQUQqJpa7V7eM31d6ne/Zq1tG53OXBobJaFwgtQ5Ut4z1vvr9EXOy3E3bjp3oOq0KBfw8eFDnlvHqc3da2D6M2Tn9Era4lwJooXxvDsB97s8A7N27F3fffbfta/T333+P+++/32hhCBWdW0Zi+vptt123HJ/1AXniiSewZs0aHDx4EHfddZc2VE83ajSIa8DJKoxK3IMOOVcfHtkW/KzEZa3fON0yuvOC+NyluMt61Vm7OgvVznK33ld1fiK7fOsoLS3Feef93J3nVDZdOp988omt1WxNS+fSk+k65dGkLTp14GdyfnwrYbtl5gJ4logeANAUQBsAH4Z8jRT+9re/4d5779XuKygowFVXXYW5c+fiyCOPBGC+SIPVcndyUdg1ALvtM2bMSNtmFZOBAweievXquPPOO3HrrbeioKAAo0aNSjlGN4dNkEUonKIqvIi7F3H+97//nZKG37nVy8vLcffdd+POO+/09UBZf/z9iLv1nDCG7Fstdz9uGXlfZb5NO6bVcqo+94KCgpSyeRmxqbJkyZKU7071pdtXXFxse7zpj2AYoZBhjs4OE1dxJ6LpAM4EUJ+ISgH8FRUdrA8DaADgZSL6WAjRQwixiohmAvgMwGEAQ4QQ4YUQaHCy0goKCpKvZ3Zx0X7E3TQNJwvMZPu+ffuSCxfrHmqdKyeI9ejkGnLr/NJZ7iaLdaivtH7EXeZLWu6A98U3gPT61YmDm/UchuVuF72hdqiapKvWvfzhchJ3NxFzcsvIdlO7du2087z80IYZbeSWlvqjaRIK6VfcnaamjhpXcRdCXGazSztiSAgxFoDZmOcQcBoFSUTJhi2jZKwiNXfuXO0AHau4L168OPnZ1DrWWRt2r4d281nI7dYOXjsyJe5huWV053mxeFVxl53lfizmMWPGpHzX/ZjKdO0mUZMdl9bjVYK6anRhnDp0Pnd5ntr5bZov1S1jfeaCjq5WryEJ6s4Iy3IfNWoUHnzwQcc0/Ir7ypUr0b59e6N8+iHnF8h2G+IuG6QMj7NWct++fbXnWUMmb7rppuRnU7eM7oZ6XWdTirtp3H0QcXd6SP24Zbx2qMooGz9umbKyMteRqV7QibtXy1L3w+VWNru3Dq/i7uSWsf4IAfp71qNHj6RP2+qWUQlL3L106LvhZWFw3ZuSZMqUKahXrx5OPfVU2zTcDEx5HSsnnnhipBZ9zk8/4BZHaw2BNK1ML/G5XlwtJo1OPc+ruGeDz91vtIypANqlGaa464QmiLj7TUPnczepH7XurW4ZHTpxr1u3bsp+ec+tYiaDAYIKldcOVSfcfgzs3Ky6H9f9+/fnpM8978VdNuwwVqZR0zU5Vj3OyyAUNT354EhxnzhxouO5cfncVbE3Ffdhw4alRAkFccsA4Yr7rl27HK9lgt9IILWe3n77bYwYMQJPPPEEAP+W+8MPP+w4l428ptoHYhotI5+xoOF+pue///77rse4GVHqil4mfWh+xT0OUZfkvLg7vRKpDdKPVeiUrtN3iXot2SC9irvVcnebOlYn7qZlDuKWUX8YTN0yDz30EJ599tm0/X46VIFwxV1HGJa7m4BZ79f+/fsxfvz4lDz48bkPHTrU8XiZphwIZs2r6pax1oNsNzrjwG+HqlPb+e1vf+spLSesI1T9dMY7aVCYuuOVSifucVnuXuKU1fOCdqjqhlfbEaRDVf1h8OKW0dVRtop7HJa7bp/fDlWv17S+ecp77iTuQUTMrdwSk+klvPwQh9mRaweLuw9Mfe5ehcPpuIULF6a8ttsde8stt6RtM/G5q/G/Utx79+6Nf/zjH67nvvvuu3jnnXdS8mba0J1EwJqG9VhV3A8ePIhrrrkmbVInXT395z//SX5WJ3MyRT12w4YNxuf5IYwOVbepgL/99ltH8TZ9E9P53J1w+yFSnyVreqprLYhb0K3ckgYNGmDw4MGOaZl2qOqMnzfeeCPtOKvOfPDBB8l1j3VlXLRoEe6+++5YLfe8jpZRfe5qyFwYTJgwAbfddptjmnISMhUTgejZs2fys9pIb7zxRqO8nXbaacnPppYekC7YuggYu+/qA79gwQLbCaqcCOpzv//++z1f0wtexV1XjnPOOcf1POt0FSqm91MXLeOEW+evKu5W1HsfZBoNU3HftGkTJk2a5JiWl5G8foRXTis8duxYbb67d+8OAHjttdcAsOXuizgsdwDajkAT1EanzkMdFV7E3W6JPsDdFaU+1Hb3JIpomUzO2eH1WrpymKxO5SZyUbhl3Cx3p8U61PTDEvdMxbkXFBQ4hkICPw+us8PkR4nF3QemPndpDZk+oOoK97obow46MrlxF154IdavX5/ygGQihEonBnYN1fpg6qJ97L6HKe7qmAI3Minu1vVI3YRalzeTex5U3CdMmJAy54qJW8bE524y5a96reHDh3sS6Ysuuih5vtO86kHrUMWv5a5ex6SvwG6a7SjJeXF3m2fZrw9QnYNdZwV4tdx37NiBESNGpKSV7eLuxXL3KyC6/dalAoOkGSZyKgiJm7jrfO4m99wt3tutzMOHDzdOT+LF525FNXTUYyZMmOB6XZVt27bhk08+0e5TjSKT4AIvLjQ3y52IHKdlMPkhcZulMgpyXtzdLHeTbW7oGoraoE3TLC8vT0nLpNc/KNYfuEOHDtk2VC9uGSfL3SkvTvi5N7HGEXuw3L2IexhuGZUwxN3JLaPGxgedutpOuL0u5Wd6fNAIH7fQVI5zjwhdpfupbDvLfdu2bejYsSPWr19vlI4QIqXRmYh72Ja700RrUVvuK1asSHZE2eXVK5l0y1hxE3e5kAlQEV1x1VVXGfnc3Sz3KMRdV/fqfEpDhgyxFW51/vzbb789ZZ/psyG54YYbMHny5LTtXjuzTRcfLysrQ4cOHZLfrTNVAhVt+/zzz9eeb+qWseP000/HihUrjPLqlZwXd7ch1dbK9SMGOitg//79ePbZZ7F8+XLjKA0/lnsU4m5nuVsXHfDic1fryC79YcOGJVemt8urV7JZ3K0/pFOnTjWy3J2sTi+hrRKTOnI7ZtWqVbbirrYb6/KWXnnrrbdw7bXXplnwapnDtobdrHyn9Znd3DJueX377bdxww03OGfQJ3kv7lbCstz379/vOr+37trZLO5WMfJiuZvUwe7du13z6pVsFncddrOCqriJu1fXh1/L3TRffla+csM6U6tXt0yYON3nMNwyW7du9ZUvN3I6zv2jjz6yXagD0D/4N954o3Zleyd0D8e+ffuSIqlG1jjx0ksvYf78+cnvJlZcUKyWxa5du2zF3Tqfyo4dO9C0aVPMnTs3rS67deuGefPmJb+bCIib66a4uNhooJZKrom7yZJ0buLuVejsrOk77rgDW7duxcSJE43q0e5HJawlIlWsE+Vlq7jv3bsXF1xwQco2tfNUXWnKjqjEPectdyfsGqzb/MxW7KZ/9ROLG6Xl3qxZ+lrkug5VO6yW+2uvvYZNmzbZDtQYMmRI8rNu4jCvbNy4EX/4wx88nZPNHap+cbpHfix360hhlX/+85/JdIPkK2yc3gzjvOdWPvvss7RtXvsZunbtGlZ2UshpcXcLiQrLqrOb/jXoQIswxb1Ro0Y444wztOdbozZM3TLqBGBudanWURAry6uAZNpyVzvW4hJ30/o98cQTfU8VrSOT1rMft19UOJVb52r02ibdJgP0C4u7AbqGVV5enlXibifaY8aMQatWrZLfzzrrrDTXQP/+/XHo0KG07bL+XnzxRcyaNSstbXUswMMPP5z8nMkHMdPirt6PqMTdSUwWLFjgOj+NRAhh5PojIixbtsz1OHUeoKhZuHBhyvc43TJq1JAVXfSZ1zYZ1YR3OS3u1tWSrIT1+haV5R6mz93ux+bll192bWxPPvmk1h/uVzjjtPAyiZ/7p1vU3Irb28uUKVOMr2f6A+S2TkDcqBZyNrllwhD3qMa75LS4Z8pyD9PnrhKm5R70TSKMZeWc0oqKXLPcTcYDuNWf6bJ2ppY7kFl/uilHHnlk8rNJlFEchOGWYctdg5vlXpncMkFdIXZlDCutqLjooosydi0guLjbLa6twuJegRogoIo7W+5muLZOIvoXEW0lopXKtnpEtIiI1ib+11X2jSaidUS0moh6RJLrBLnucw97bpkg+QlT3OP0j0ZN3D53wNuC1KZ5zMZ7VqtWreTnbBV3XYx/LlnuTwCwBmuOArBECNEGwJLEdxDRCQD6AfhV4pxHiSiyYO4oxF03zFjX8E3ild0I+xc7DHFX85Tr4m4yd7pXMiHubla0F3E3tdyz5Z6pqPWbrW4ZdY4pSc5Y7kKINwHssGzuDWBa4vM0AH2U7TOEEAeEEOsBrAPQKZyspuPWcP2Iky50TGfVrlq1Ctdcc42vfEnCjnMPIjbSvaH+YPp1r8QZtqYSxZJpmRD3a6+91nF/FOKejaj3T7dgeTags9zPPfdcT2lkW4dqIyHEJgBI/G+Y2N4MgLrWWWliWxpEdA0RLSWipVFNhxmluDtRo0YNo+PCFvcgYiYX8Fb7MXLdcs9VcXfDi8896jx27twZQDR9H2redWv0ZgPW+Zj8kCsdqrqnSXsnhBCThRAlQoiSBg0ahJyNCsISd69ipfbyOxHmogNhNXhV3P2mmS3iHrWwxSXupi5BLx2qfpHC1LFjx9DTVvOeLW3Kyg8//BA4jWyz3LcQURMASPyXkyOUAmihHNccwHf+sxcMP+Ku8+NfeOGFntKoXbu20XEm4mA6YAUIx1JVrYhcCIV0IgrL/fjjj09+Np1TKGysi4Y4kakVgNwi1/ygPh/Z6pZR54ryS7ZZ7nMB9E987g9gjrK9HxFVJaLWANoA+DBYFp1Zvnw56tWrp93nx/LU/Ypu377dUxomlvt//vOf0C2/sMU9F0IhnYhC3MePHx96mlGRCfeFrOOoxV0lm9wyYRBnKOR0AO8BaEdEpUQ0CMA4AOcS0VoA5ya+QwixCsBMAJ8BeBXAECFEpE96cXGxdsIswJ8/LAzBNbHcu3TpEvorcxhiFka0TBRTwPoh7B/Pc845x2iJt2wh18XdaWm7fCIqcXdNVQhxmc0ubZyZEGIsgLG6fVFhJ5JXXnml57QyJe6FhYVZabmHIe5e186MirAt9yjeBPIFttz9k21umawiTJEMIy3rzZo2bVraMUSUlWFqYfjcs4W4OjyzhahFcOnSpcnPTm80pgEGVirL/TONrvNKXtRetom7NY0aNWrgl7/8ZSTXUskWyz1bYEs7Wpo0aWLkljnmmGN8pV9Z7l9UP2J5Ie6qBRGUKMS9vLxcO+owzJsaVkyzarmHMQo3Tiq7WyZqy72wsDBZJ1G5Fhj/5IW4S44//ngce+yxns7p1Cl1AG0U4m63wEI2dqiqD6l1cFmdOnUCp59JwhZjN7HMVNihKVGK+4QJE9CoUaPkd6e27JQPr/dIDUX9zW9+4+ncykZeiXu1atXw61//2tM5J510Usp3O3Fv27atcZo6cY/acg8Lp577XIoUATJvabds2TKj18sEdu4W67z0ftuy03m6H4Vf/OIXyc/t2rXzdc3KQvapSwCqV6/u+Rxr47WzQNasWWOcps4tkyuWu5O455oPPhv7NHINO3eLrFtZJ37bslOd6sRdvafZaBxlE3lVO6oP0BRr4w2jwVjzEKbl7vQqGrZbxkquhaBlsxhHMWOlFb/366qrrkp+tmsP1rSDiLtfwykT4j5y5MhI05cLlEdBXol7GCNSw2gw1oYelrgfccQROO6442z3s+WeSjZ3qLZu3Tq0tOzwK+5NmzZNfrZzy8gwWVknQZ6bxo0ba7fr8q9uizqUuGXLlpH/gNiNrg+DvBJ3P0Qh7lF1qBKRo987anHPZstd55LzOvVqGDRs2ND9oCxHbZdu4i7x6l6RFBQUeBqsNHfuXG0+oyLqNh/lj0deibufG2FtIGpl161b13p4ktdff912n6m4e72xTuIeViMM6paZPXt2KPnwim6g2KBBgzKej/Xr12Px4sWux2Xih1IIgddeey1tu5u1qD4T6o99p06dcN55Fev2hDXAjYg8ibv69pgPPncWdw94tV6dLHcnK9YpeibKUMg4LXcTt0z9+vUD58EPuh8lIgo1fNOkfmvUqGE0IjNT4q4rv9s9Utuv2kYbN26cbB+yPcs68VseJ3F3gy13l7QjSzkGwva5O4mZbt53XRpO+fJzY3v27Gl8XT84Pfgm9esnYikMsqnz1OQ+ZKr/ws+kVKpoWoVe7pOW+8UXXwwgNUTRC07ibh2DAgBdu3bV5jMKhBCRi3uU7TYvxH3WrFm+z7U2frWynR5Ap5sSpbj36tULl12mn8vNS0Np2LAhfve736Vsa9y4se0Mm7fffruRIMU1UtGu7Nkk+ib06dMncBq33norAPs3Rjesbpmbb745ud0q7oMHD8ZPP/0UqIPY7jk4+eST8dNPPyVXewKAJUuWuJ7nBy/rJlgZOHAghgwZ4njMv//97+Tnzp07Jxc3idJyj2auyQwjXRWZtNy9iLtdOn4tD3VVeL8cccQRqFmzZsq2hg0b2parWrVqRuIe1fSlfolD3E2mbbBrq05vhKaoE1HpFnB2w2qty3aidn6q0TJB2qNThypQ0dbtXKVhCqMaIeSV2rVr46ijjnI8Rq2jwsLCZL8Hu2VckBXkR9zPPPPMlO+q4LqJu504R2m5O+FFyIQQaeVbsWKFbRqmr6hxRYsQUco6nr169fKVThh9BkHEPcxQXCEEWrVq5ft8+VnmqaCgAH379gWQPrLbL0Tk2m4HDhzomk877BaxtxKk3ouKilwjs9Qyqs8ei7sLQcS9pKREmxbgHO5VUFCAgwcPan3MpuKuNs5nnnnGOM928b9exV2XjpO4m1jutWvXRllZGcrLy31FVHTr1i1tW926dVFcXOx4HhFh9uzZKCsrw65du5KvwXYPT8+ePbX5mzRpUvKz3/6DIOIexrzo0roVQqBp06a49957faelDgwkIvz+979HWVmZduh/WVkZTjnlFADAo48+apS+TFs3kEnu+9Of/mSbNzdMBwk5tXs3qlSpgtNOOw3nn3++7TF2b/PslnFBraCgr+FObhkiSt5s2RFkEuJoYqV5cdHYpRfUcrfmyfS61jyoQ9MLCgo8dR7a+ezd5rWRFiARpSyW4uSL15VV3WYtr2n9BhH3MPosnMJ7/aRlHahkl55ppJkOp+Pt6t2kXKb3TJeWqbEo8+70DFv3yWeCO1RdCGK526UFINmRpNsnb4rJyNPTTz89ZV+bNm3SjvPyANqV00tnnJ24B7Xcred7nWxM93pLRK5i4fUhsXvVV9ORHZMSa73bLZzu9pahS0tiIorq/Og6H72boeBWV+p9HjJkSNo8Mk7Icql5cBvEZJe27HS0I8xomSCrPskfZKdn2Lrv6quvBgC0b9/eNIueqVTiLv2FJmkBwPDhw1P2qQ3QtEN1yJAhKdOULlu2LPkKahdy5pcuXbrgkUceMTq2vLzcyC2jdhT5EXedm6GoqAgbNmzQnq+b1bNatWq+xV1Xr6+88gouueQS13TGjBmT8vBZ3TiTJ0/W1mHLli2xdetWx/wGccu8/fbb+NWvfgVAv4qP6nP3w8GDBwEA1113Hfr375/ilnFDXlOtd50BJLFLe9OmTa6zbIYp7kEsaNk2nZ5ha1779u0LIQSaNGni+7pu5IW4h/lq4+TiMXX/mP6C+3UnOT20Xhq8iVvGq5vAxHKvVauWp9DFIOLutW04udSsLjg/rgRduiom9U1EySgYa8QTkC7uuonsnJDiLt8KvFjuErUencIx7QZBmVwrW1Zgk+3AryZERaArEtEwIlpJRKuIaHhiWz0iWkREaxP/7cfwh0RUN9l6s8aNG2d0TT/iHoZbBjAXd1O3jBQbIQTuuece13RNxP3uu++2La+duAd1NZjilI7Vco9C3E3cMqq4O1nufpHtQoq7H8tdzYOst8aNG6e5rGSa1ro1eR7CfO51ZTONEDO5Zzkl7kTUHsDVADoBOAnABUTUBsAoAEuEEG0ALEl8jxRTt4xXa8B6vOqmcUrLaZ9p+KREHaAlyxeGuJu6ZaSbQAiBkSNHukbA2Im7Ovjk2muv9STG1apV831vvYq+F3F3srLdHuYglntBQYEny92KW53IcspoIS8zP+qiQKTlPn/+/LTBQnbibnLf5Dlh+K1Nxffss89O25Z34g7geADvCyH2CiEOA/gPgIsA9AYgZ3GaBqBPoBwaEGaHqiqOfgXcCS8Wq9PxVmTZTaMUTC13pxG8OuzE3ep39RJ6VrVqVd/D9XXX8XJfs90tE4XPXaYdtltG158g07TWrcm1pPtoz549xvmyw66dWOtQV6cm9ywT8+BYCSLuKwF0JaKjiagGgPMBtADQSAixCQAS/7WjWojoGiJaSkRLrWt1esVU3G+88UbXtNRFFIgIQ4cO1R5nbQwPPvigdp+68IGaV+txJqL/8MMPA3Aupyo4F198cdpyaBI7cZeDf2Rnlhozbc2PlTp16qTtHzt2LAoLC9PmoXcS99GjR+OEE05IbrNa7r/85S/TRM2v5d69e3f069cv+d16H9Q2E6a427Urk05/IsKECRNw5JFH4vbbb0/bH0RI+vbti3379gEIzy0j602K4P/93/+hWbNmqFatGu6//34AFe3N6+hTGXIaxlqqpqGQ6jMjR5maDJjLKctdCPE5gHsALALwKoBPABhPZCGEmCyEKBFClDRo0MBvNgCYV1yXLl3w7rvvOuUpZW6VgoIC/O///q/2WGtDv+6667THWcO5TGKE7a4jw6fURmedvlUNjRs7dixWrFihTdfOn9iyZUsIIdChQwfHfOn44Ycf0uqld+/eOHz4cErsOeAs7nfddRdWrVqV3Gad+uDzzz/HnDlzjNKT259//nnt/gULFuDJJ5+0TWfw4MH473//C8CbX9hNCE899VRtW2zbtq1rSGtBQQEGDRqEH3/8Eeeccw42btyYst8q7l4s7hkzZiQtdz9uGV20jFXcx4wZg9LSUuzbtw9XXHEFgAr3kvp2Z5JnKe7NmjXDrl27XI93wvRNUm2HHTt2hBDCaO3cnBJ3ABBCPC6E6CiE6ApgB4C1ALYQURMASPx3jgkLAdVyDzNyhsh+aLT1ZpmOLLSz3L24ZdQGZ92vdmA61YVb3Lr1IQ3q8rLmM6jPXTfATIfc7nR/3KKWpCh5GXEbpB16dX3ZrQMch1vGxHI3wUQM5Y9B1apVAz/3Xt2fUaUfJkGjZRom/h8D4PcApgOYC6B/4pD+AObozw4PVYD+/Oc/G82nDbi/AjuJu3W7aePy2qHq1iis+1XL3S1PVoGcOHFi2r6gQmGXTy+DRm655ZbA4u40IZfbj6wUJS8zLJo8zHYuMysXX3xxijXvFpHk554NHz486Z66+eabUb9+ffTo0SPleiZt/L777kOzZs1SxnY4+dzt8OJzr1atmvb4u+++GwAwfvx417T8iLtT/VrHa4RpdJoS9OdkNhF9BuAlAEOEEDsBjANwLhGtBXBu4nukqDempKQEO3bssD1WreTRo0c7pkvkbSGB2267Le0aVkxFXK54oyMMy72oqCglncsuuwyDBw9OfreKe1BMLXfdA1NSUuLaseUm7k714vbgWae5NcHkYbabTdF67vjx4/Hiiy8mv7u9Nfq5Z/fccw+mT58OAOjQoQO2bdsG6S71Yrl369YNpaWlKWXzY7l7cctYxb1GjRoQQmDUqIpAPZPJw0zF17Rj/4wzzkj5HoflHmhuGSHE6Zpt3wOIfml3Bb9WtMnrr59fXFNxd7IY3VwquvQAc3GvUqVKSkO1WqVhz30RRNx1272Ku5PVGJe4m55rtczd3DLWTnATTPoPvAiUmkeZj7DdMtJyr1q1aqD+Dyfc3hhNz8tFyz2rMInoUJENYvr06doebxPLffLkybj88stTrm9yTQApHTHqdjWW1q0sVp+46n5wynuVKlVS8vvXv/41Zb81XjlOn7uanwsuuECbH7c+C9M5bnTllGIZl7hbxdvNEHDrUNXlzamteH2u7NIL2y0zfPhwtG/fHv/zP/8TSdgykN4e7rzzTl/psLj7RFacX3Hv168f5s2bp93vltbVV1+dNl2vqeV+xBFHJK0ZeU7dunVTBvzo0lIbnNW/6sdyf/PNN5NzlUii9rmreWvZsiW6d+/ueB25Xb5qm1pQOreME7rryzrw4nOP0nI37Yfxcs9M3hS9lMmp7yJofiStW7fGp59+ikaNGkUinrr6U33pTvXLlntI+K24sN0yJg+TW4eqVxF16lB1QhV3px+QsHyFTuJuUs/WNwnTDlVJkBWirItCmxCk3rxa7lb8uGVMxN1LmXTHBrX8nY4xtdy9aoVfkbael3PRMtlGUGG04rVDVT3P9Jp2/kxTq8B6XtOmTdGyZUs0bdoULVq0sE2jqKgIkyZNQq9evXDyySen7Tex3Fu0aJEy6MsJJ3FX35DcLHe740xCSU855RQQUcoUzCY0atQIl156aUqnphtObeDvf/+7p3OtFq9pH4GOs88+G08//XTy+8KFC5Ox5nYEtdxfffVVDBgwwPhc3bXGjRuXMlDQeoz6ef78+UbH+cVk0NItt9ySsvBM7dq1k89jGCPpTciLxTrchMEOE3EP23L3Ov2Am1vGml5hYSG+/vpr13xUqVIF7du317qjALOVYubPn4/27dsb1ZH1GKvVZSrudm84JvX33nvvueZTd/2CggLMnDnT9Vy76xYWFqb464cNG2Z8ru67W7u1E/ehQ4diwoQJKdvOPfdc1yXigvrce/TokQyr9HM+APz5z39OO8ZOtK2RKmGKOxFh+PDhePnllx2Pa9asGRYtWoSioiIcPnwYBQUFeO6559ClS5dA1/dCXljufsXdxC2Ta5a7KW5uCpNBTEFes+0eOLtyW11IXl+XTdtGWFaVmh+vyw2atEsn3Kb89YqfyKmgbgivBoPp9cLIl596iMPnnleWux1TpkzRduaEbbmPGDEC3377LW688UaMGTNGe4xbnLtX0TLx1U+aNAk1a9bE6tWrUbt2bYwcOdJV3KdOnYq77roL48aNw/Dhw9NWpXIqi1M+JV597lah6tWrFwYMGIAnnngiLT3ddcN8FX7uueewffv25Pdp06Y5Toz2/vvvY/bs2bjvvvvS0vrggw8wa9YsnHLKKfjuu+8AAA888EAy5lyHrqwTJkxIvhFIcffje9chh/bbxeWb5tELTudPmTIFS5YswdFHH210vLrv3XffxfPPP4/HHnsMQgjs3LnT9jy7KTrU/W6YGC5RkRfiLrGrvEGDBmm3hy3uRx11FJ566inHY+xemf26f0wEVh3E8c477wBwt9xbt26Nxx57DABsyxQkesKr5W4V96pVq2Lq1Kmu4m76VtejRw8sWLDA8RjJH/7wh5TvV155pe11AaBz587o3LmzVtw7deqETp06pWxr3Lix4/V193zo0KFp4m46n48bmzZtAgBPqwZFabkPGjTI9pl2S6ukpAQlJSUYN24cWrZs6SjuXvOlQ2e5Z8qKzyu3TBTnhd3LHbZbxkvsMPDzK7acFCoIYYq7WzncXAxB3TJhLEydKUzr3Yul7YS03NVJ9dyIww1hR5C8BA1plMdzKGRAdA/w66+/bnu8iXCHfVNMpx9wEjO1nNK6NqVLly4YPnw4pk2b5uk8HWGF+xERJk6ciKFDh9pOu+AWjhfUcp88eTKGDh2Kbt264YEHHsBbb73lWoZMoIvQcWuTe/fuBZAu7n7dAuPHj8ewYcPQs2dP43PiCP2zw62+5LTDkscffzz5WSfufowa9rn7xKnizjzzTNt92STuVhEyfRCbNm3q6fqFhYVpIWV+CVI3VnFv3LhxWiSHit/pEEzFvUmTJsnr33TTTZ6uESW66X/d6mD37t0Afhb3oG24efPmruGbVrLJcnfDGtqohjA6ESQ6LhNkz89rCIQdLQOEf3Ps3BNerqOWM86HKEzL3Q2/lntYApdNuJVFzrmidjhmmlyy3KNMSx7vdyWxIOSV5R52nLuatmTp0qVYunSpp+s4ped3OwD0798/VtHyeu2HH344OYCosLAQAwcOxNSpU43ScbPc7bY///zzmDp1asrKTnGxePHilCgbv7jVV69evTBq1CiMGDEi8LX8kk0/pm5tRv6fPXs2atSoYRx54yVcM9ORMkAlFHevsbHWY37zm9+EsqyXU74AM5/7hRdeGEmonyleH+Abbrgh5fvw4cONxd1vh2qLFi3wl7/8xVM+o8J0NG9QqlSpkpzLPC5yyXKX+3//+98DAEpLSwHoQyG9hjbGKe7ZcwcCICMdjjrqKONjAe8DJaLAaj2Y9M6rQperbhng53DMunXruh7r1y3D/EwmBSabxN0OO4PBrS3JidxMFgWqX7++UZpRkBeW+3HHHYe///3vuPTSS12PlWuDAvF0qPq5zlNPPYWTTjop+T1bfO5Br3388cfjgQceSFmg2o6goZCVGV3dvP/++0kLNVPXjAtTy12Hztjq0qUL7r33XgwcOND12osXL8bLL79sZMCETV6IO+A+X4eEiFClSpXkfA9uZMoCsXPLAMAf//hH4/MySRgDVUwjU1jcw0UOrGK8We7ybdm0P6Nly5a4/vrrA+XPL9n/7hQh2eyWkUuc6QYbZYtbJpPXbtiwIQD7edmzVdzDzFdYg5KYVOzuUdD5lOImbyx3P2TSLbNmzRqsWLHC+DqTJk3CGWecoZ1FrrKI+xtvvJEcuTp79mzMmzcPrVq1ivSaYTJr1qwUd1pQPv74Yyxbtiy09LKR1atX49NPP83oNb24ZXKJSinuYc2W54U2bdqgTZs2tvutealTpw6uu+46xzTjFveoXVbq1K0NGzbEVVddZXtsNlpUl1xySajpHXfccTjuuON8n58LQtW2bVu0bds2o9f04urLxnZmR6V2y2RTj76c7Kl169aux+omDsuFUMgoyaa8ZBv16tUD8LOrL45rZ4ogK25ZcZsVMki6mSBQTRDRTQD+BEAA+BTAQAA1ADwHoBWArwH8QQjhbeq1iAl7CTkdb731FurUqWN8fM2aNfHCCy94msw/Wyz35cuXY//+/bHlA2Bxd+Lyyy/HwYMHXVdcCpt58+bhxBNPzNj1XnnlFbRr1y5wOlG5aTLdRn2LOxE1AzAUwAlCiH1ENBNAPwAnAFgihBhHRKMAjAKQvoxKFhBlZZ922mmejiciXHTRRUbHZpvPvbi4OLY8SFjc7SkoKHB0aUWFyXJ0YWI36ZwdJkJtPSYXXFuSoKZrFQDViagKKiz27wD0BjAtsX8agD4BrxE6bpZ7GNPhmuJHlLJN3LOBbMoLk1t4aTvZ5Mp1w7flLoTYSETjAXwLYB+AhUKIhUTUSAixKXHMJiJqqDufiK4BcA0AHHPMMX6zEQi7G7V69WqjdUjDxEsDy5ZBTNnU0O1CJCsT69evT67mxARHfc7Gjh2LkpISI8PvtttuizJbxgRxy9RFhZXeGsAPAGYRkf1oGwtCiMkAJgNASUlJLO86TvORyJXK486L2zlsuVeQybetbKVVq1Y5FSqarejadf369dG9e3ej88MMfw1CENOrG4D1QohtQohDAF4A0AXAFiJqAgCJ/1uDZzNc5MRf2SBOYbllKnu0DIs7Exbqs3TssccCMFs3QYZw2kUlybmvMjVDaZBomW8BnEJENVDhljkHwFIAewD0BzAu8X9O0EyGzYIFC/DFF19klVvBj1smbss9m+qvWrVqcWeByUNGjBiB4uJio87aO+64A2eddRa6du2q3X/88cdj8eLFniLighDE5/4BET0P4CMAhwEsR4WbpRaAmUQ0CBU/AO6zeWWYevXqZayCTclFn3s2We4s7kxYqO26sLDQOAqnqKjI1XWTqWmfgYBx7kKIvwL4q2XzAVRY8YwBfgSyuLgYCxcuROPGjZPW86mnnhp21lzJJss9m/LCMNlApZx+IBvxIvJ33nkn+vTpk4wvX758eaBh6X7JJsudYZhUWNyzBC9CWVRUhN/+9rfJ73ENImJxZ3IZtyCEXBqwpIPfZQ1xmvQrCLkskNngCsn03CVM/uF1JaZcgS13A7766qvIRSQXG1Q25Hnt2rXYvXt33Nlg8ohct9glLO4GmMzUWBnJFsudrXeGSSf+p7OSkw3Wr19yOe8M07NnTwBA7dq1U7bLFa/OP//8jOcpTFjcGd+wuDO5zCOPPIKvv/46OXJUUqtWLXzzzTeYNGlSPBkLCXbLMAxTKSkqKkLLli21++KazDBM2HJnGKZScPrpp8edhYzCljvDMHnPjh07UKNGjbizkVFY3LOEfAm/YphspG7dunFnIePktVsmF/xm3CnJMEwU5K3lvm/fvqyIw2YYhomDvBX3XJsClt0yDMOECZu2MTNkyBAAQM2aNWPOCcMw+QSLe8zccccdKCsry7k3DYZhspu8dcvkCnEvlccwTH7CljvDMEwewuLOMAyTh7C4MwzD5CG+xZ2I2hHRx8rfLiIaTkT1iGgREa1N/K98Q8MYhmFixre4CyFWCyGKhRDFAH4DYC+AFwGMArBECNEGwJLEd4ZhGCaDhOWWOQfAl0KIbwD0BjAtsX0agD4hXYNhGIYxJCxx7wdgeuJzIyHEJgBI/G+oO4GIriGipUS0dNu2bSFlg2EYhgFCEHciOgLAhQBmeTlPCDFZCFEihChp0KBB0GwwDMMwCmFY7j0BfCSE2JL4voWImgBA4v/WEK7BMAzDeCAMcb8MP7tkAGAugP6Jz/0BzAnhGgzDMIwHAok7EdUAcC6AF5TN4wCcS0RrE/vGBbkGwzAM451Ac8sIIfYCONqy7XtURM8wDMMwMcEjVBmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfKQQCNUmcrJSy+9hM2bN8edDYZhHGBxZzxzwQUXxJ0FhmFcYLcMwzBMHsKWO8NkIfPnz8eePXvizgaTw7C4M0wW0rNnz7izwOQ47JZhGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPISFE3HkAEW0D8E2AJOoD2B5SdnKBylZegMtcWeAye6OlEKKBbkdWiHtQiGipEKIk7nxkispWXoDLXFngMocHu2UYhmHyEBZ3hmGYPCRfxH1y3BnIMJWtvACXubLAZQ6JvPC5MwzDMKnki+XOMAzDKLC4MwzD5CE5Le5EdB4RrSaidUQ0Ku78hAURtSCi14nocyJaRUTDEtvrEdEiIlqb+F9XOWd0oh5WE1GP+HLvHyIqJKLlRDQv8T2vywsARHQUET1PRF8k7vdv87ncRHRTok2vJKLpRFQtH8tLRP8ioq1EtFLZ5rmcRPQbIvo0se8hIiLjTAghcvIPQCGALwEcC+AIAJ8AOCHufIVUtiYAOiY+1wawBsAJAO4FMCqxfRSAexKfT0iUvyqA1ol6KYy7HD7K/b8AngUwL/E9r8ubKMs0AH9KfD4CwFH5Wm4AzQCsB1A98X0mgAH5WF4AXQF0BLBS2ea5nAA+BPBbAATgFQA9TfOQy5Z7JwDrhBBfCSEOApgBoHfMeQoFIcQmIcRHic8/AfgcFQ9Gb1SIARL/+yQ+9wYwQwhxQAixHsA6VNRPzkBEzQH0AjBF2Zy35QUAIjoSFSLwOAAIIQ4KIX5Afpe7CoDqRFQFQA0A3yEPyyuEeBPADstmT+UkoiYAjhRCvCcqlP5J5RxXclncmwHYoHwvTWzLK4ioFYAOAD4A0EgIsQmo+AEA0DBxWD7Uxd8BjARQrmzL5/ICFW+d2wBMTbijphBRTeRpuYUQGwGMB/AtgE0AfhRCLESelleD13I2S3y2bjcil8Vd53vKq7hOIqoFYDaA4UKIXU6HarblTF0Q0QUAtgohlpmeotmWM+VVqIKKV/eJQogOAPag4nXdjpwud8LH3BsVroemAGoS0R+dTtFsy5nyesCunIHKn8viXgqghfK9OSpe8fICIipChbA/I4R4IbF5S+JVDYn/WxPbc70uTgVwIRF9jQr32tlE9DTyt7ySUgClQogPEt+fR4XY52u5uwFYL4TYJoQ4BOAFAF2Qv+W14rWcpYnP1u1G5LK4/xdAGyJqTURHAOgHYG7MeQqFRI/44wA+F0I8oOyaC6B/4nN/AHOU7f2IqCoRtQbQBhUdMTmBEGK0EKK5EKIVKu7ja0KIPyJPyysRQmwGsIGI2iU2nQPgM+Rvub8FcAoR1Ui08XNQ0Z+Ur+W14qmcCdfNT0R0SqK+rlTOcSfuXuWAPdLnoyKS5EsAt8adnxDLdRoqXr9WAPg48Xc+gKMBLAGwNvG/nnLOrYl6WA0PPerZ9gfgTPwcLVMZylsMYGniXv8bQN18LjeAvwH4AsBKAE+hIkIk78oLYDoq+hUOocICH+SnnABKEnX1JYB/IDGrgMkfTz/AMAyTh+SyW4ZhGIaxgcWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUP+H2kbkaeDVWTyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(marker = 'k', save=True, filename=\"lightcurve.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : See `utils.savefig` function for more options on saving a file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sample Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray also has a sample `Lightcurve` data which can be imported from within the library." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import sampledata" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = sampledata.sample_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABiL0lEQVR4nO19d7xVxbX/d9174VIuvQlc4FJVFAFBgt2IBTUJauILMVE0yTPPmPLSMdHEFKMvVf0ZTXjGp0ajIbGRKBaIBQVBROlK7733cmF+f5y9z5k9e9ou595T5usH7z6zp+29Z9asWbMKMcbg4ODg4FAeqGjsDjg4ODg4NBwc0XdwcHAoIzii7+Dg4FBGcETfwcHBoYzgiL6Dg4NDGaGqsTtgQseOHVldXV1jd8PBwcGhaNCxY0e8/PLLLzPGRov3Cp7o19XVYfbs2Y3dDQcHB4eiAhF1lKU78Y6Dg4NDGcERfQcHB4cygiP6Dg4ODmUER/QdHBwcygiO6Ds4ODiUERzRd3BwcCgjOKLv4ODgUEZwRL+IcaT+OCbOXgvnHtvBwcEWBW+c5aDGH15bhnunLkV1VQXGDOne2N1xcHAoAjhOv4ixbd9hAMCeQ/WN3BMHB4digSP6pQAn3nFwcLCEI/pFDKLG7oGDg0OxwRF9BwcHhzKCI/oODg4OZQRH9EsATqLv4OBgC0f0ixgEJ9QvN3ywdhfqjx1v7G44FDEc0XdwKBIs2rAHV/7hbfz6lY8auysORQxH9B0cigRbPbuMRRv2NHJPHIoZVkSfiNoS0T+I6EMiWkxEZxJReyJ6lYiWen/bcflvJaJlRPQREV3KpQ8jovnevfuInNJhGnBq+uUB527DIQ3Ycvr3AniJMXYSgMEAFgMYD2AqY6w/gKnebxDRQABjAZwCYDSAB4io0qvnQQA3Aejv/QsF7XWwh1syHRwcosJI9ImoNYDzAPwZABhjRxhjuwCMAfCol+1RAFd612MAPMUYO8wYWwlgGYARRNQVQGvG2AyWYVke48o4JIDjAMsDbmPskAZsOP0+ALYC+D8iep+IHiKilgC6MMY2AoD3t7OXvzuAtVz5dV5ad+9aTA+BiG4iotlENHvr1q2RHsjBoVixaMMeHDxyTHnfZnFfvHEPfvniYscIOChhQ/SrAJwO4EHG2FAA++GJchSQsSNMkx5OZGwCY2w4Y2x4p06dLLro4FDc2HvoKC6/bxq++dT7ier57J9mYMKbK7DnoHPC5yCHDdFfB2AdY2ym9/sfyCwCmz2RDby/W7j8PbjytQA2eOm1knQHS/z7w82oG/8C1u44AEC+ipYSjh1nOFJfHjrph45mnnPOmp2J6sky+KU+OBxiw0j0GWObAKwlohO9pFEAFgGYBGCclzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XBkHCzz93noAGQOdcsCNj7yLAbdNbuxuFBx0sn2f5lc4ou+ggG0Qla8DeIKImgJYAeBGZBaMiUT0JQBrAFwDAIyxhUQ0EZmFoR7ALYwxX1B5M4BHADQHMNn752CJCm8mHy8xee26nQfw1Sfm4JEbR6B9y6bZ9DeXlM95DovgTEMnr/fvuUNfBxWsiD5j7AMAwyW3Riny3wngTkn6bACnRuifAwefeysxmo8Jb67AvHW78c+5GzDurLrG7k5Rw0l3HExwFrlFhAqPezt2PEj1i30NKLVFLA6i+FHScfHHs5x+4i45lCgc0S9C+BPabeFLB1HEO9p6vGqcMz4HFRzRLyKUuu61W8OApIKZrHjHvUsHBRzRL0KU2oT2udwSe6zGQWnzBQ4pwBH9IoJqPhf7BoA59jQ1+AtoRQrv8o0lW3HgiDPyKjU4ou/Q6CjyNaugkJXpJ6T5K7ftx7iHZ2H80/OTd8qhoOCIvkODY9PuQ9J0x+cHUX/sOCbP35g9y7FZHNNS2dx3KMPhL9+6L2FNDoUGR/SLEMWsmTF9+TaMvGsq/jUv54EjLe60qCGh6BOmrcDNT8zBi/M3WVdzPCXjrLL+FiUOR/SLCCrZfSGJR77x5PsY9JOXlff9qE9zVu/iUv2DXEdpeGzcldkRbd+fiZhl83aK/XzHIf9wRL8IkdPTb7g231u9E3XjX8CyLXu1+SbN3YC9h6Md/jlCBSlFF3X3o7ymtIaG+zalB0f0SwANob//z7kZccybS7blrY00F7EvPzobD01bkV6F+YYjrg4NBEf0yxgvzt+IjzbpOXcR+aBN+VizpizejF+8sDj9ivMMfuFz4i6HfMDWy6ZDASBt2vjVJ+YAAFbdfYUxbz5FSc44Sw6Vawab95TW93IbkNKD4/SLGI3BCeZDlFQs2jvPf7Ae45+e1+Dtiq+lIQhxoX8Lh/hwRL+IIBJcf2IW42GbjIstdHHGN5/6AE+9mwv/vG7nAUxZtLkRe6RGWs74St3fUznCEX2HRkexkpXL7p2GLz82u8HbtSHnovvt6G0U9gLsEB+O6DtYIW0iIK2vyOjM3kNh1dSjx46j/lj0uL5pL3zb9x1OuUaHUkHZE/0DR+ox8d21RbWN9bfuPo1Myxd7YyHnA96M+mPHsXmP3I1DIaD/jybjot+90djdcHBQouyJ/s//tRjff3oepi/f3thdMUIk7cUo05cd2ma1dyzk0D/71yJ87JdTsfvA0Xx0D3+ZsQprdxxIVMeq7dHLW21yInznpEOi0A9y648dx+3PLVD6cXJQo+yJ/ta9mW3wvohWpI0Jfz6WTOSsCBRq6uItAIC9h9Mn+vsO1+P25xdi7IR3Uq/bBNkrKKbFvKHx1rJt+Ms7qzH+mYbXpip2lD3RLyq62Yi+d9LaVfiO1nbuP5JNq/cOHY83MpXz299zMD+7CBtIh2PW70ZD9iSDQl14/G4Vav8KGWVP9IsZWZl+EQ38uet2AwBWbt+fTZvkuXj468w1xvINcfZScK/Tf+Yo4p2ED1EszFDBfasigCP6xQyf+05h6O87XI9fvfQhjsbQPIkDWWSnxuSwixkHjxxzEa4crOGIvodi4pZzu/302LHfvbIED7y+HE+/t07eZmotaeqzaCStc4xHp68qWMOqEAzPPOiOlzHwx2p31kkQhaH47J9moO8PX8xLPxzSg/O946EYtrOqCZjGgnW4/hgANCqnb+cvPp3V+SeTFgII+h0qgiEAIDxW6yWGWEl3fz5DEeV1z1y5I1GbUVAs36oQ4Tj9IoQ/IdNcqBp60SvERbYxN3tRiGsx7UrzjWKyrykUOKLvoRjGzhpBfzwfdNP0GtIyBJNy+hYrQcmoqTo4NBKsiD4RrSKi+UT0ARHN9tLaE9GrRLTU+9uOy38rES0joo+I6FIufZhXzzIiuo8KYAY3egciYMH6TKjBfYKOehrcjslXS9qGYBWSkdeQ4h0ZGnMsyGaC6kkbYtZkv7f3e9/hepx111TMXtVwIpykmLVyB/4+e605Y5khCqf/ccbYEMbYcO/3eABTGWP9AUz1foOIBgIYC+AUAKMBPEBElV6ZBwHcBKC/92908kdIC43L6q/fdRAvLdgYqUyak//JWZnJ8cHaXelVqoHsEDrK8+STX2gMkUGh7TTFtztv3S5s2H0Iv3nlo0bpjwib7/8ff5qB7/3DbLx1/DjDPVOWYFuZ+CtKIt4ZA+BR7/pRAFdy6U8xxg4zxlYCWAZgBBF1BdCaMTaDZWbVY1yZsseY+9/Cfz0+xyqvSDB5grFt32H84bVlsQnXtn1HzJlSgGzORtFGKlVZbmrBT7jX89C0Ffj0g9PTqTgmNu0+hD2HClMld9aqHbhnylL8wGKBMGHn/iOY20CMU1zYau8wAK8QEQPwJ8bYBABdGGMbAYAxtpGIOnt5uwPg7djXeWlHvWsxPQQiugmZHQF69uxp2cXiRhRiu+fQUbw4f2NOw4K7N/wXUwAAZ/friCE92kbuh4qYNoQkrrGFff6TF4DUMYCkvUkSNtIfD/6wOFIfT7tr5F1T0bVNM8y4dVTsvuQLvsbaIU+DLQk+/cfpWLF1v1U0usaCLad/NmPsdACXAbiFiM7T5JWNUaZJDycyNoExNpwxNrxTp06WXYyHApvfVvjFC4vx1SfmYMW2fQDkogFfRr95zyHUjX8B05elE9A8Lf76rYT9KTTCnA/MXJFxAng4JqFNAvH1Pvf+egDAnDW7Yte5sUCdo+W8vCYfUyu27jdnamRYEX3G2Abv7xYAzwIYAWCzJ7KB93eLl30dgB5c8VoAG7z0Wkl6QSCf0oK68S/gnilLUq93l8bTZJPKzACevWonAODxmasTtSWbDrsOHMGKrfti1VcZU3unnLDcIyCrt0cnJFGH89Fjx3Hz4+9ht8Iqen+BWfymOVJyO7wUKy1gGIk+EbUkolb+NYBLACwAMAnAOC/bOADPe9eTAIwlomoi6o3Mge0sTxS0l4hGelo713NlSh73TFmaep05DYvwFK+sUMv9k4Cv55Lfv4kLfxvPd3xFhYTox+1USijUY4KGiJvwu1eXYPKCTRj801cC6VmC2OhfJ38o1fMhFWxk+l0APOtxYVUA/soYe4mI3gUwkYi+BGANgGsAgDG2kIgmAlgEoB7ALYwxX1h2M4BHADQHMNn75xATvq67bMxWeTqRqXEvkgVmy9742g4Sml/WaOxAOFtD31LQ2Szh71WoZzn5gpHoM8ZWABgsSd8OQHoqwxi7E8CdkvTZAE6N3s38oRQ4GBm5qKq0f6668S/k6lLQnrTfU5VEUd9mztmQxqTxYQsNhcBtby4AefxHm/Ziz6GjOKOufTYtFSZdErmt/thx/OG15fjyub3Rsrq0vNU4i1wPxUgmdJxJdZX+09psaf1D4PfX7OTK2fdPB1nXZVa6yvKae7H98jfiINAR9JxnZfsORhVZmN787NU7DTnyj0vveRPX/HEGgHTl77nIbbm0SXM34PdTluDXLxeGXUKaKHui31g7uhfmbcxqZ8RFml0f2SfDPV1ySpds2tuehs1jM1an/p5kBH5/hOhlOpIm0ru9h45i1G9fx4L1u63rb2joCHqcdx913RPbEC1ySxmyGM2+amopuqwuO6LPGMPT763DwSPJdXKT4Ja/zsFnE4bly8rFLWa4KcsJrZsBAJo3qQzdy8dBV5VEqL9iWzrqbiIBfXfVDizfuh+/NViTNqRcvW78C/jaX8PGeKUgbixW8Dtn3XlZsaPsiP6MFdvxnb/Pxc/+taixu5IYOz2VTd24VJEQcTCbDrPSJkUy7Z0o0JVWTVTT/G3oeMn/mhd2uyFbeDbvOYRDR3NMip2Pomh9KdbFJo2FWsbpi+fYpYSSJvoy68H9hzOTZ+vexj+YSgrfT44fgjANmLj6tLj+pNo7UXphS9DeKwC5tQwvL9yMcQ/Pyv62efbk/vQLG7JvunbHAfzvmysi1+WfAfH8jmwTvW3fYYmWU/GhZIn+2h0HMOC2ybhvqlw/PsTpFvGSXh8j8In4uLJJ7ivBMKR/9iEzzkoLcQ9yC3kIRA1QkkSmX3/sOA4ebVzxZxxc9+eZuPPFxQkcp+VeAmXFO7kXOfwXU3DGnVOSdLEgULJEf8nmvQAyRic8Cp2DiQPZBA+LbwwcvCTt4bdWAsgFLle1FQdEhMUb98Qvr7kXt4+xtX5SQJRIVXmJo8C1O3bCO7jivre89EJeCoPYeygjlovaZZlFbinSCR8lS/ST4NHpq7A8pnsBEQ0xaeJofoj9knWT9+0jc+6WBOt3HcRl907Li0aNqo+mT9GY9C3tQ+Sotc3h1HIbSz2TMYbfv7ok0tyTfbOom0h/LvDFSll7qWSJvnGCe3/FAcIYw08mLcSV97+dTTt+nDUYxxOnHb6IST8/Cg4dzYmN8iWNWb39gDmTBLq3FOLYLfteCBPcRhX1tY+2muuJOI5UHiYb8p3sPHAU905dimv/N55WW9y+Zg9yeU7fu27M3V++ULJEX4VcBCiB0xWGzF5Pg2PT7kPo88MX8bd340XgaYgxwxTXeWkr5Qb2xvSxng/xTiEc7KTmIyli/iiGcfmCT2CPHjP3XkeMoz6JzOI5TmD4NHHJ79/IWwyEkiX69QpTfHFsb/f82Pscp/iRfRHHcx+sj9T+nkNHC8odgEpFU/VbRL5IwrF8zKqYKpuN+bVsXkM+g6c3PsnPwaYvD3nnTdOX5wwc4+7GdZx+Y42JJZv35U2brGSJ/lGDRov/MX2tiIemKVS9Ynz1fYfrcdodr+CuF6MHr4g1bjWs/ksLNgHIyNDTQOqy57zQ/GCltgTteEEs0uo+ROtdOs/SkJxulLbW7VSLBaM6TvPHC9++f+3EO0UE1XdX6WwrD/8M5WTY52kR/HPehgbhFHSE+LkPMpo3oqZMWGXV0NM8bf+jTiqbQBwq2m20QYjUk/xA18UonGx0lc3C4fXjdiXKI7+9bBumL8+4GdnkjamXFm7K3v/rzDUAMu5SSg0lS/R5yKJGiaKXnFMrOQpoToQQ4FAUT2Ca1LJSvmsGVVtpIK4ITH/gmbu7bEtYE2TnfnloSttnm7NmZ+q7grQXnEJYwKIi0i4y4QN+/qGZuPZ/ZwLIWDyL2CRJKxWULNHnNU+ufWhm9nrXwcyEn7Y0uBBE5TgPHjmG91abDWYKRc9ZtICNKqbJBfJIF/k49+BrfPD15VlOzsfR43LRn21Prn5gOq7O0yGbdjGLUk9KMv3G8fNPYCy6xpzUnUKEcoEeJGTypi3dirrxLzS6jy8ZSpbof/fvc6XpyhCDSpGAPP0HT8/Dpx+cgY271bJypQ8YzWBOLNJXVCCKpw4diWbFm6+dTlytKFvXyk/PWYfxz8wXyiZ/GN8FRhzs0WgsacdGHulvIexk/e+ybd9h9L71RfS+9cVIYUaz+vYpPEtSbabr/pxxmzFpbjQFkIZAyRJ9FdQcjfdXMbPEMbBgQ8aoKIo74GxbKU9evs+qqo8IB9tvLxdEXpKCUi4v5c7LttY20PbC0EUV99pQu7KjEp9QabcdeSdXAFRf5o/pnilLpdyy7umiLuqyutJ6G9sVosTGRNkRfRVUk848edTDg0g+oNImLXwUKlviYeOmgZe85MsLYz7IrKlOFRfXUJI4vpmVgjvptI6aUxPvNKT2TiOVlz5jSsNd5QDutQ+3YPL8xjkkLmuiX3/sONo0bwIAqG3XQponJydMj+jpt/DRh+7wunaSegx9sJgiUp8+tp2yxPBe4b4nhel8ppkkZgDQcPJrvn+X3vMmnn1/Xa4PWu0d+zaSBlGJW08SRGlL2t0U+5rWbFcdWd34yLu4+Yk52LT7EA4rrKHzhbIm+qf99BVcOaQbAOCzZ/QAEGHcWGSM69c9KuIYONm5P8jV+9S7ayK3YYN8WIKqz1L8vyrxTupdUXQkd3mk/ji+9be52bOm3Qc18v5ITRSGAkEUqDXPZInR64mCtMaliQEZeddUnHjbS6m0ZYuyJvoHjhzLuVCNWNaP8qQbG1v2HrbygJkUvPqgbdWrt0eLUuXrx6fd962x3eCqEXubn2ov1JBxf1MWbzaWy69FbnqL79odB4zGkVJEUKaQEeX43z1cMi1epDAM/oIoO6IvHliJvnjqOb8fuw8cVTpm8xHLQRo3yES5XpwhonI5oYNYRPYYsmrT5iDnpRgAxkdSc/x8oxC5cNX43hHjIPLcX72GHz+/MGGP9JB1N27EM6nKZkqLYAHS/PIj+isEt63ix32V47iu/79ZMMH0UWUTnB9kNz8RjpMaFTLzcRNU286g+mcBjlgP2zQRjGw9rIrg30lcR3A2iPtaoywWaX26uMFU3lxi9gQqIq3Rlsazp8Xp58W3VEKUHdF/UtALz3H6mb+7D+Q4m4XrdxsJXyE5VYsCKwdfMcs1BMb84W3lPfVZin3nr3/YvODn2ov2UmJH9jIUm7liu/b+tKXRCXFDolDGFpCeCqssZGtjo+yIvghfN9gnCHPW7Mres1mlZRPYNF7EInwgkViyUAk2aIzGgHC/bc8eGmNeimqNJpiIu1o9MVfufW4cpI244oRn39cb+nx2Qs4Pvewd+AZDDQ1bxijKopwWJ143/oWsU8JA/elUX5Aoe6Lvr+i+D++AoZPFGJQeKBnELeLgfo6bzBNiBHaWcZpjJ7yDXQfU8libZ5MtaI3BjV1275uR8ptFbor0hpLpxzwr+feHWxK10ZDgfdfEtR3JpssOWjVkOeqjy/zsfLgpfijPQoc10SeiSiJ6n4j+5f1uT0SvEtFS7287Lu+tRLSMiD4ioku59GFENN+7dx8VgBmg34Ffv/yR9H7uIFfe1Q41TSO3KQ5ufkehcgamg4rI+TFD5WXi6ZM2xiEk70fJBrEPcmOVysHWz0pDuOuNc7ifJo4dZ5GNj/LV4zh68A39+h6bsarB2orC6X8TAO8gfjyAqYyx/gCmer9BRAMBjAVwCoDRAB4gIt8a5kEANwHo7/0bnaj3MSCSbvHbqr61cnWKMTjESV/JLShpjrXEhj5SoX7c3jQconDyAXXXuAesXrmdmp1VIL8kLW2L57juLdLE+55/oqRDJqlDtMZ2enbrM/OMefKt7cTDiugTUS2AKwA8xCWPAfCod/0ogCu59KcYY4cZYysBLAMwgoi6AmjNGJvBMqzYY1yZvEPF/f1z7gZDweht8QPyC5yHT1WVlZzTkTiER8U5zlu/K3IZHkVA36UwPdoCTk30lUU5eW7cXYz/Lm1Ly8aijZ5+FNRUV6VaXxz4MRwaWtRUaFpnT86K51QwX7Dl9O8B8H0A/D67C2NsIwB4fzt76d0B8E+5zkvr7l2L6SEQ0U1ENJuIZm/dmq7Ggeh4TAzKoRovMwyaEao6ZktCnoltHOZO+OMQHlWJlVvVB6BqlU2e85XI9GVlCmySmfpzgOP8eNFR3Md4+O2VVu1m25GkzV+frr1CIUR8Wro5HMtAB7X/q2RYvjVaP0odRqJPRJ8AsIUx9p5lnbKNF9OkhxMZm8AYG84YG96pUyfLZvXImeAb8inSVapXcglItEYemb4qdyvGCFeVWb1D7WpBHV2Ku5beb3xiYoKqh75mlFL8E7M936WFtZZKA7zDQvhK/gGpLSOjdp+RTKHgD68tt8rXoWX087lihA2nfzaATxHRKgBPAbiQiB4HsNkT2cD766sWrAPQgytfC2CDl14rSc8LZtx6Ibq0rs5X9YmgmwRxJquKiMxZE95l+Ojetnngt0xGmsSFxMIN6Vva2kLVx3dX7fTu5zIEnjshMbY9/ItzSNipVcSxXAhU30ODi3eE37ZWxQO7tU6/MwUII9FnjN3KGKtljNUhc0D7b8bYFwBMAjDOyzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XJnU0bVNc4zo3SH3HDHriSNuMaoMag9Yo7dX2665NP3igV2UZYb2bCtvP3BtJ945865/h3ZCT7/XeMEjYhs/xWzP30HYni3G6Z7qGyvbiPg0hbCBs1UoW7F1XzTr5ITtlxqS6OnfDeBiIloK4GLvNxhjCwFMBLAIwEsAbmGM+ULUm5E5DF4GYDmAyQnaNyKOPkTcEG08XpYYewTKRKyvsWDL6W/acwizhdCRccz3ddzsbknEM1XUMtU7HNClRtt+3MVi4uzMUZWtRkkcRqJSqFwXfQsAFBEhCxrq4DbB3xf+9o1o88T6rKWAJl8eEYnoM8ZeZ4x9wrvezhgbxRjr7/3dweW7kzHWlzF2ImNsMpc+mzF2qnfvayzPwk1+njSkLPrAEb3jp7RD4inLxFDZNMr0FZUePRZMf3KWnSvmS7jdyFaNP505a8OiqkUb5AY0qj5WV8n96GfLJRwifHmd75k47YgLikkNUdXEdoVX03wSvHxMPZ21/K3PzA/o5tuK0wqJ4conStoiNw6n37Qq2iuRTZYKWdy3QJlo9Zn7kJ92oiyU63ba+OcP43TLICoyIqcKRRflsN60yEUBv7vR+e5JQ7PG5K5D9e0OFaAvGB9RmJcVGs20VxdtxgvzcoZhKlGmbftzE8RDLkSUNtGPYfB7Xv+gttCGXXojF5nGRpWJ6AtFBte2yV7HOeSLQ0TEIr6vGdNisGl3ukY/tl1fJfH/38MQ7SyULj2jyKUlpcXW4p0UdnMmR15K+pnCghPXhTEATJyt1llPk9Hm52XP9vJxIkI1j3TO/YoRpU30uWvbAfWiYDp+39Slkds1Rd0RiU87TlVMbN8GUVTdfEwSjNKy6nVckbFn9AyV275Pzl3HjTRku7ORuWJQqUiaZMP8M85ckTuLSCriaFJpN51s6W63Ns2U90RxWrgN+f00ZP0/enZ+7LLf/4faOjV+nOow/vDasuz1/729yqrMzJU7zJkAHIrpbrpQUNJEP458R8ZR6nDz42F/+MZJLdxv1axJ9vpADJPxOKRqyx5zxKq2LZqE0pQh7WL0AUhGACcvkC+Q5vOKXIanOFfbacr0dbDdmTHFNWDB6SuaeO4DuVZVlGeP6uIh6WIa57ts4c6H0o7Odm8MRrCQUNJEn/dnEndCm8QtMktK0yAX60zqdSVOzFcrNwySLI3lx6uLhOh3VXDCjWWNaq+9Y5lPk1G0LLdtQyWaMfWJf9f5iHam60Ocr8lrO6Xt036XRJOsmFDaRD8GNRUnWhwZaIumer8n4qLQPaIOdqg+S/1mq7qMbSk4/QQr1zXDao15ZO0O6NJKnldVR7Yuy45FhO0rsOf0+fOGYBnzQa6ibcWqbep7n04ts9dxdqM2iCOmVGFvgnMHEwox7m0UlDbR565N3PdnPMITCi4So10z4Qz+7ttJrz9uQhzOVu1amSM0kiepqkh3yDDGUNPM7BxMJotW+g+K+Dr8SdxQkzmNRcdI9FXnGor8aw3aV0nGaNLnTfuzyGw+ouBvmsPoYkBJE/04SIPTN41y8W5SjQq1poa6jM1EktGVob3aSvPqVOh0sH10WTa1/yDVYsCkdR0x+OSxhb22mCWnr1Enjc3pq1Q5I8YsyA/SO8jVYe/h4hbPJEVJE/2gcZY+b1azQ0jfGYMriCoiiTqkRZVQ1bPpaJDNQvPHN8KOqlR+33cdOBpr8WKwI/wyYhU3PrFYlRgnOS7sxTt2+QIHuUKZI/XRGIukSPJurMVZaQr1HZQobaIf4SDX5ybiEC5xu2iqInSwFLHJ5k2DlqWqPusMzXi/RFG6ol9IDIUBnNOvYyjNGNMA8mdUPZ+pG+t3yUUZSTnKtPX0Ex3kpiT68pHkcHyOZbxhVQtFLkKPjCWb9+a1/tIm+twkNA5aBadvg/0GtwsidO4GbGCK/qUC71f8/AFml9WfsThgzfXBjmSKuRhTW9aK+USotHdMxxUPvL5cmp6c07ej+vYElEmuMqg3EP1sOaEtVds92uuVCeK8mqtPz4TLsD0riWJUlwSF7m5h/U65T6m04Ii+h3xrdvDoUBN0LBZ1UIuyY1uubk3Av765TCuLA1YecdRArX2tW9RlrsMwBhKfrSQUY0TI58fANX178Xbcw+84r8b3T2//jeX50ub0KxUW882b6H0zlQpKmujzPLFp3Pjy4TPq2kduZeqHWwK/0/DUqYMoRlBNitbNg0Sbt5pNUz0OADq3amb1HOGDcrv6rSPwQP0MSgveBLs8Hn+ZsdoqXyzOVXgm/1mUh9mKNlQbhG5tcpy+3FeNvs86K9Wki1zazhKbKYj7IM4dSimjpIl+4CDXUjlhUHd1IAWVkccOwTWBBb8bMX8QIfGOooL+nYN67KJ7XhniTq+z+nWwc+IWs4V2kqhGNsTgrL65s4vlnoZRWDzmc825tDh2BxstLVWTaCz5MHH6j05fLa3jmMIPw1n9cu/pU4O72XWQg0xkmZbYrBDEMXEWHp0bDW1beT65Lm2iz12bRA9VlZnculwqNTmRQETdKkcdT6KfG/WWPZjO72ptmvz77HWhNCUtZHbPERbvxIeNske3tmFZdVg8lvk7bWnOHXKNwcAuCew5X7VM/5hBzfQDzzNkWKYvz3/PlJxrAemuiivX2TKKFxP+xkXaRH/LXsXirGknzT6Y1G3zZfzmo6SJPh/M3CjTt+BKoh+/2eZPJtO37QdZiHd4RPGmGPvdJFDns7Avg8HhaaBPq7YfCKXlA3F874jIcfrR6qipjreY8e3IxD9puL6IalsQF9OXbZemH9YQ4zT7cNjgFsK0KCRFSRN93mDIdBj07PsZR1S6bKotnupgSFlPqN5IxUM7i7eXbZO3I9TLR1uyiVLUsqn9wVYMhRQQJSWu5tI2GjXywNvRe7brgF0s1jh662KRLNE3vIOdgmbUJaeoQ2j6kDEVfDujTg7XoVuUbd9lVCviuFC9f53f/DQPk02u1/Md9aykiT4P64Gnyae606Qy+BGjWksmlekv3bJPmk8EH8bR5nV8akj3cNuK8crA7MQ73NOSZT/Ectk0i0NMWX/FOZfWfH5bwUGKsF4fA+KdYClfZbOh5N18OzIVTFk3smclMdrg0VgO9HikGdzIxOnLnDimibIh+kctl2rdAFPdEv3R/Pmtldb9igP7Q0ZRnquWEcvTw7n8w+CQVTEDdh80Wy8HD0vVDxJafGWcpLKwXRuyPhnrTgFpaKPYineqRB//ivyf/1gudoLslfGuimWhCmXzRqk2ajEXu3NnMXFel87GxBQYSYY4fdioCDi0YZdeDz+J80IblA3Rf/q98KGkDB1rNIdUig/fXtAsMRG/ENcQcUSpApmE2mHARdxWnNeAMfmnUdbp/RXnLYM+LqxYPvc7PgG0eW2yuCahg7II5wVpgK/7vs8NVefT9McnnMpDSQ+i1bLqsbq01muavMF9Wymnr31hwXuq+La8+DFoIxL9Y+hCJC7barcz5tGQmw1bI7+4KBuib3sibnKLLINozdiltV67Ial4p97WwhHBgBdxo1sF6lTIaY8zO5tcvpwo3gloF1m8I3WkJb7O8DOL+vqmMIppg2+/WuJKwlcN1hGaZt55Cx+ARwbZjkyeL3dtGiWy8ReFKKrsJW5/bkGuD9x3O86i7454NeoThAUtzk6rEERMaaFsiL79JFbn26k4qBPHw2dO72HZlrx8WmAsKB/UEVVV+VCa935C89ZaNp+DeJAb9bDMJruM6A+ubRusx4LTTxIXVgRfl6x/h+rDDIrYn5F9Mnr1y2NwrTJEWeRkRFv27bJeTcVdimLw7eAOnU/tlrOXYSz6HPmI81/Tr3PQLXTUunp1aJFnzfkgnJ5+WrAlSpp8qlCK4oD/5zy9A7Gwnn5+PrI4eHjRVdyB5Xc1HHfAcvcR4ChJ+S5Ca0oEEczfOX/nMqIq+u+X7iKE30dTjL7Ei+dkXLWfplUq8G7tO6RfjGzFaYGmuHdWKwnwIyPa2rMw4beK0+eT+R1MHC570YY9yvJR6+vWpnmDcvpOvJMS0tCNVt0TJ+cygzZNyOmYRb/iQHzkASfkLHQ37ZY7fYuq982X23fYLEILlJeMbX/ih91P24tgePmzTDvu3zZuMxKK4HRYtDFHkHwdAJkMmimuAykR6YNavCO/ITNukymn6V5h+DxC3gd+joq70qjvf8U2Xl1bOFOIuKW01UxLCxE1wKPXn9/qiw+6j9u2uVx+GnU8vDAvGNA7b+Id4Xdrjnv6n5c+VJTRd8bva0guzoAtNm4IDMQ80oRUZOWrqLCYQTYtprkb821CgJzsWla97hyKGWj+uDN7SetVLtrctemN2XL6qlemOsjlk/lzg+OMJXr/YtGZK3dkr21sbOKcKSSBzZhNVH9eay8g2H6zCdNWKO+pNBw+0Bh1yLB6e9Cfe/44/ZiC92x5SVpWph9vtxIiLgp5r5V4R9EG3zeb6aN7zlydFhXFQIVEBVZqHKV43yqV1Cae2lL4INdMcANVSrLLFmaZGM1/h6Ldilq8w6R5pi3dlmiO6Hb5Nv6owErLp7+R6BNRMyKaRURziWghEf3US29PRK8S0VLvbzuuzK1EtIyIPiKiS7n0YUQ037t3H9nHl0sM1TcTF1WdVZ6qjrsnf4iXF+YMnzrWhJ2D8Ygb8Skp4h7eyu6HVDaZpT99gbiIZfwJum1fUPwU5Y1FZcpsDL90nF5dhxbRGuTgD7/Ih9iW0p1XF222qy/CG5a9irYt1FpEd08O7irVHkBz6TwHPm3p1rzthvlgNCp17Yx4p3Sovg2nfxjAhYyxwQCGABhNRCMBjAcwlTHWH8BU7zeIaCCAsQBOATAawANE5NvzPwjgJgD9vX+j03sUPVQuBXq0jz9heXzlL+9lr7cZ9OjF7W1DDSgromy67/VV1NVmsHPEFbTIlXG0mb/vrAhbt9qrH+Zu6KKHcZ0yJumIsqgdEgU+h8wTvI82ySMn8YFv/GdUW0hnIGodqXdHuetAxDnbA3pZmpe4ydb7KHctugFXvROrei2nVwsFjTgucPoj+5jdr3/l/D52jcrayzNTaJwRLAP/ZLKJ948BGAPgUS/9UQBXetdjADzFGDvMGFsJYBmAEUTUFUBrxtgMlhmxj3Fl8o7zT5RHivI5y76dWobundw16GY5LeKs+6hNZdZEljARxTS6n5XpSyoz+RQBwod4KrHFwvV7tPkyeRWiCu7aZjOpUzf0oZJDZ/Iam1DCf2W8COKwxDc9YzmRDcCJdwy8fkjsolwojV3lqpDtjGTfJ4MQw6Vqi0sPeoRlOGpwSKP1568taUZmFxutlmZVar9VpiG516CRlRRWFIaIKonoAwBbALzKGJsJoAtjbCMAeH87e9m7A1jLFV/npXX3rsX0BoL8Ta/dkTGJln1ScbCmxZCHOf3cdXeJipwMsoETtpKN3mG+Lyu2hbWQ/NshTp9Fn1xEajHK32avDeW3XcRMMn3x8E6uGRSEzIhKlTcK/EUp0OcIriOUnL533/ZQUOWvyFZVNopKrXq3kbvD99tm3tkaLOqgepeZg9zc76R0wFReNvbThBXRZ4wdY4wNAVCLDNd+qia7KsiRdfAjIrqJiGYT0eytW82m/XaIQQAV6Ull8mLxvSkZ/pg5fXO/+cn/7qqdkjYyf+NaZQa4cITfsf9bpnWiyisiIKqQjDqbIDSRON8EVICynH4uTUanw2q+nnjHVL+hnmx6ihKFT59eG5CPq+IXiFAt1jZd061tuu9j42qaQSD6Fv0pZESSJTDGdgF4HRlZ/GZPZAPvr6/8vA4Ab5JaC2CDl14rSZe1M4ExNpwxNrxTJ3MA71RgscX3scMikLcOIpd8mLPATKSaJv6WEE5jHYZMPtFoEhJD2R7kBjlaFfce0rhgskVNRcB44hGmBpYSjwCiGB/FAV+/TDceCPabNz7SwTQmcun2BFeaxiX+90X9vb6yUN06BKZFYLfBEpkr6VrnPeQqNXkYC35/i8dpOBWV6LDR3ulERG296+YALgLwIYBJAMZ52cYBeN67ngRgLBFVE1FvZA5sZ3kioL1ENNLT2rmeK1NUSCrbF3cKvPzatma+C+f06wjArEaZpkxfdCfNBKLcXUG4Ato70gyZP7LdlC2nr1Q/zLYr9j3iFiUPMB3eMRbUxOnbyTs81ri6zha0gM1iYMzsoVWzKq3bbBv2wBTPWdSYijK2eSeEOw/knLypRGGZg9xcA/l2k6A6UE4LNt7FugJ41NPAqQAwkTH2LyKaAWAiEX0JwBoA1wAAY2whEU0EsAhAPYBbGGM+K3szgEcANAcw2fvXIDBzsOY0v45DR5OZ5Isy/enL5UFQbCGL8Zr5XfgbUZXYQvQ5Lp1oEWXGyj5oCF5O5h69vA18MhOI2mVRn38uYTrIteb0+T7F4FKDZwIUPBew7AMP025D1AjSVSm2d8GJnTBlcViVVfXYaVvkNva0NBJ9xtg8ACH/r4yx7QBGKcrcCeBOSfpsALrzgEZDFHn3YYlDrCgQuTr+Z6qDK/Q7eeUqJ1pRa66prgKkB7m6tsU25ZmNxlmWRI2xHAHUvTvZHStVUWV95l2Oj06t9DYhtt9JtIvQ5TeJd7LvLMFwW7cz53P+OLf4+vAZr64WwcfFbpjsaELlmSDTTziNbEO35gtlY5EbB6qXn1RTQKv+l4Awy+TgPGwNdXTwqxTrCk8M+XPwc9e/7MD7+Ve1yyS7AiWHLm9PbNdYD3et5/TtdyFxoXqfby3Vh8q09Tn1/Ae54zXj7kFS5VPv5jROyKsjrfCHKlEh35e4u1p+AVDVcFwYezYt6d6hrKu8SMd52UwJptdo85r9j2XS3rlIEkOUR+8OYZsAsY0oyA18IV14KlVA6GBddlwIH/BC1Z6uPMD5nbFon7GwR0krMYGN+qNSo4VJr22Q7+AwfpblW+WeX33ILKfT7gsAPD0np43ti3cinRMI4NVqPzOsFnsUgYmsQjIK7b2yMMewnGCzU2AMKzkHbjb91w072djg43jk22C/bIi+jwsURloqZm30KSeE0k3ck4nOnNO/oz5DTJgXtmhEWVeHSGwYWFBMZWiHdx+c2b6by4lh7uLOjVaia2UbImuR55uj+sfskdCWZRqgd38AhAmU1TuTjN/BtW24OgzjX6giigjPB8/5EpFUBm9bl5jlGc7hHW/zpSPmD01bqawvar9kRN3k7yhNlB3RbxklMhZjATe9/rcwcfqmgfje6p2xy+rK2Lop0NZl2daTs9Yo7wHqhZEPbuH73tl14Gi8g/aYHNctH+9nrFtMtzlrqIxoUJTpn9m5mrzNTJ6z+qbPQBzg7Eb8nsxdt5trW9af3LW4gMfxRS9qsIhO28T+xZWD28SNPs5YYM7b7GBmrFArZzR2FK6yIfpZwqiUM8rTDx4N69CbD2L095+YGSaYJtgQAlncWh5jhpgNoOMQX79c8ADVsN2hDDcY8g2jaT+Ofv3qbQdCadVVoqW1WqSUa0vdmkx7Ksm0lpZVERpDSyE1XouO3fHPRdr7qhnkg0ABG4ykJI4xFjhziNApr7xtQ+ryNoR68cYcQ7Nsi1rsJhtvQUY/v4tC2RB9HwYXHgGoXr2C6chCG1w9JqzkfIZt9ElcEBV1FblCsvy6Q8/6Y9zEt9CQISIcPmqhmomcGMimLzxsTNrVnH7ujs37b0gOzm/pNSEgTPa+QssqMgm2fCbt4XkM8Y4IVWwBEzNnumfD6TPLfHu5cy6VNhSgFiX70PntSQNlR/RVHv+iHZ7pI2OpLCptoOI6N+w6KE0H+MMsUX4bfXbxzcv9zajrvO/fS6X1qEDZ/5mrZwDeWiZumeWZfWM1EUN6tPVKiYuHBaev07iSiNdsD0zbSWTyUZSB/peTNcuQ1HpcBtv++e+5f5caaboOUxbLFzO7loUcmiy2i3kgn6JCnVZelDZbWriGSIKyIfr+JFQFPDHJKfnffOQjaV1JNDcU6dstJq/pwCzqoRcvxzXVwUS5p8VhH//XBrbPE14cMujkuX6O815sjLMCdMFcJQCgjTQaW7h0aBGxbOBPbwaDAkXlsnXEXAUij9v3sp03ILorFV5bRgeV5potjtss1CzI6OlEnFHbNN0/kmJsZh9lQ/TThI3JvA5fvaBv5LJa3y9MnkcsYTUmIwzIJPDV+ngjHEA/oWJpogh1SNMt8tdr5II+ETx4hD//seyUzLlaCq9YJ6owgbebiIOMTD/X1oOvLw/2waITVwzqmsuvyeffm75crY4stheom9/NadrYxblrUPXf1hEjP4dO6ZZx386/850HjkjzpgVH9DUIczSZ3+LhY6ic4UPZxOUUYRNYISy+TX/A2FZpl4+w60BwB2OjJRO1L6F6DPXK8PfZ65T3/PIPvaUXtcggDSQD8wJnu5s8o66dOZOAz4/slWtHzuqHk7iMFWQwTlKk88xQr4jRyPYfUc9JsT0+CIqNVo4t4bUm0Fy2Oz51CgbXtkFrbsd39Bj/LtP33FY2RN/0OaIYrZgMfmQ1BSzudIRN0dONu83Rh8R61+wQYvHaqAIa8tpubW3eJlEUQxTZEhyP6j82fZVVPXy6LkhHEqiGEh9+MwlE99g2w9zEk5jWgVywd8V7VaQ/wO0IbMeFKpKbDnxWn9MGct9b/NbhsS1vi/cXpQsoFHDyRoTmTSuVEyYf3jrLhujHgYqzbNNcf9BiOh94STOhVZNyocaVropQr99lJzqRta/aqibh9HcK5xLyAAvqdpNz+pkCS7cED+LFem44qy5S/eqFMN6ixFh4kRe/h6lqtSgrWp+swyVy2Qjy+Md5adf7q49sFrzH25jIPGuaNMpUTf365Y+y1+MvO0nZn+//Y26ufdK7rMiHh2ZH9D1IuRcF91pTbbCClB3EcWnLtui1f2QQrUjl7Qq/Y8w6v5+qSRTVzoHHIc5RXS54iD0xC2snpQOxzW5tm4Xqf1txOJy0I7YLn3j2kU+YFxTJ+ObSiPTEyup1RWQuogQ2+pCLtyt14Sx0PhziU17vWm5nrZuv+7mzn8oK0nLzNm5EoqKkiX5/LmB1muJtlUm4D3nMVbu6Vdlstq8mAmqlvcMMeVUcZChd35jPDdpuyxmCdgCZNtP5qCKR9eXRfP3Nmqh1p5NEo5Jb5OblOCZbtzGPIb+pjpx4J50+2CwAcaPZ6dxFqGAj4jQaJ3ro3bGltu0Yx39GlDTR/84lA6zz2ugeJxFt2A5JpWaAngUGAPxZ0NmOc/Lvl1CVtalR52yLR/0xhiPHxK20ol8MmDBtheKuHWyJkMwPEM8dWrdnkUfK6TPg3VU79HWbuHHljswCKaw4RKRpy1y/7YLu59MRfV1VUi+souV3iJmSV8jP0fMVPr5ENK2q0IrCHKcfEVUV4cfjuX8eskmyP2bs2ihy0/CBj7ysyOXKwPu1AWS6zjaTLfNXNYdsDJlULYncz/b9R7Btn6i9o+6jr7N81dDu0jZFLPzppfoMBiTVVErijXHygmQHuXHp9n8Mr9Vy+i2bVhoPcgEv/nGCxSMq1z1PYlNigyCnL2/UdhPBM0pdWpu9d2baz/zXkAGPSpvocyH9fEIsHuLpENJ+sSTm05ZI5L8WHLxuK6fz4e/3a5rgW910YKmr6xP3TVPcV5XLQTXheQI3yuB+WtUvIBfM2sZISNXHQHqI04/GXSWZrnKVTYvFOeZ9E3H51WcGa3eIsrjG0ga5x7p6aNDnU2TxjgU2abTbdO9zl8Rlc5gNs911BH9//mM9jWWyhmwNiJIm+uf064iBXVubMyKavNuERRvDmjY2ct/LB3VVttFcI1NOFV77fPi+wO0EFI4/6PrlVYNi1+8vjmkxR8pJbc3pJxCl5Ms4S6jjpvP6GMs0axImB1IOXqqoIOmD9/d9wQre9HjL7rzM/h14+WZpxGG6uvZLPIqaytv2rXMrM7efdTFuV2UqKGmiX1VZgR9/cqBVXoZour5RYXuop8rWpCo5O+DXvUZB0Pk8Ue9v5nwaNW8iFwG8xIksooYTzOfuN8Tp++kR1QZN9coQ9wDSLA4I3h99ajguBI9+nWtw4UmdY/UFCBssEtcFUcxo6npVZYV1IHLTW2hSaT9v/CbF8xT+E3Vv2zzCuDDnqzAceucDJU30A7B4qaJMPFRFgg9jU1Sn/1/bTm2hGLVfR46pDY3MkbPk93kd5fMGdJL2ycZiVSw3Zki3TDqXtsMzbon63GqZbTA9jRivtpBZZ+eD029aWaGtmzGWFTX1bN8ikL7C8zvTr3ONNK4xjy+f0xtAfg4gZTCN14wOvK48d+3lXB9Sj81l6ta2WarjIiPeaVj5TskTfdvXmU81uUz9Fod6mgOdHu1ynjtHxeTI0hBh2byiLq2bpXYwJRNLZN0GG8qKfvNVYADmrNmZ/R11y60kpBY1yD2ZWrQZMb8uwPvug0exfOt+7DqYOVQXTf/vnZrxnrpsy75oDvIS2HSogqZEBunn3mwuoFFOTz/4lHFUMW0hCxmab5Q80Y8C02CMY/Z/19WDcFbfDvaqjsq2c+hQ01R5Twe//29bxMrVVJJXiO84t/2VyJENC4vIRevEMEs28RG91G3edsXJkj6r69VBea4h1Cj3xKlHWGSlJlaPv7MaQG5cDOuV8dfji+ACQdMtuVLy+iDzU5Wm2CvN4ejXJW6++J1g6+ZV1m0O6t7GKl8Dn+OWD9E3fyhmYYkYvd3PjeiJ4b3a2cn0NW2kyW08MXO18p5ZUhzMwXssjFKPCF91VXx+mfhDxx1F2WGM6O073mJYsCGn8qejayP7dJA1Gvj5/dEnWrV/7cd6StsSH2G3RMMkqp6+TmQlcvZ9OtVg1d1X4OMnysV0unfsV+Xbajw7J+yozsqGw8IRmk1dFTHcQYjziy9fXVVpPcZGndwFw3u1yxpgaeFUNtMDz5nc9eJiZT7G7LiLWI63bLkjTb5n389NnhMtImDJ4I8rGRER89jer5IclPG+1G2hUknVWiRKCZImu3Dva16sXMaAx9+RxPyV1CF7XiCoBBBlUVZ52YyKiwcGVWDFZ9UdGFYqqICsbyafOv4Y9ss+9a45cpkM5/ZPJ/ZvZQQnQP67Eccc71YZEReRbm2bKxeJ+z43NFOlU9nMH8SAEiJE61AZXpi3MXK7WRmxxWquyuMTpRvPrsONZ9dl0zvWVIfKjKhrDxn8XHxghinfPl/IYzrIDf6WuX41HZ5p6xd++/W/v2ZXNq1rG983TjLuSGZ5C/DfK1ymUuY2AXLXvnYaW+G0OOchYrCN0DNpCMuGXfY67ib6FDB2ApMaONp8tzFDuuOv//kxYz5TXdWRVJ0zdemi1PFaSTbQvfc+3A7AyfTzAJsDyt9wGihxIdsJqLbWP5Gok5o+fr/ONYEdgczv+CcHy0UuAHD/v5cGXLvWtguGdtS9p4wr5GCGCyTm5kk4l0wQ7FxkMv9ZJy/ILba+jFsqehB+84feYeKu4H6z4qNwA+JurKoiY6zEB8XWHZqKiO8vnQUWB5nfpXoJEyPr0d5DcstzVde0c0kQ7/BeLO8dO8RcnkONRdhAU13DerVTfoVnv3qWtK77/r0sm/aFkUEDK717CT+P0EdFPv9sTjUCVGE/k6Lkib5q4PJ+tIEMsTF5v2TMTJQf5Xy1f8yTGWeJi5D3xrN7W/VVhxYSs/gBXeTiH8YYfvPKktht1lSHD7E6SYLAHzhyzBhoBgBO7Z77Bt3a5AxZ/vDaslBeXvqT4/TDELlkncjMv7Vxd5Czy5aQyr+Dv8/t3xEMDF9/ck64vAVkeQ8dtdNc4R91YLewEeJBjgHxtYRku4hqiVGWrA3AJ3oamT73RAzBnVGDGRhyqKSgRtxC7uxmaM92gbyypxI1wGy+Le9aRZe/a5scwyVbvB7/snmnEwdGok9EPYjoNSJaTEQLieibXnp7InqViJZ6f9txZW4lomVE9BERXcqlDyOi+d69+6gBFVQPCNtvseXdB48a49DacG68Y66/feXMQFuMMfPW3XBbJmfdf7geC9bvDqTZeucTOU1d/2rbtQiffUja4f2V68A/S1cvmDwT+uTrTG/dezibdlptW6+v4TrFpGOCX9yAC2Dvr8jpqsQ+QFiTpsJzS7B5z+FQ3rjinakGL65+3c9xO6KQ1ShY4D3qdhRNFUJ9qTMyY8/8spmcvHgn7nTnn23FLy8P3otY1+GIMWdlPTbN4fCcMrRhWEjThg2nXw/gO4yxkwGMBHALEQ0EMB7AVMZYfwBTvd/w7o0FcAqA0QAeICJ/uXwQwE0A+nv/Rqf4LFr8v3+HuUcecQwj/ypZiXni5IPX+9YNOhtZuGzeLNm8D5/4f29lfw/t2S7wPCcqOH9AMkAleebcfjHe+N4F2f3KOytyKp9JNIn4pn0XAIwFiUPbFmp1Rak7ACGJfw+ZRZfvgF+P0C+V2AdAB8nORoRu0QjnDb+/tzXxXnl8e+Lc7DW/ENe2aw6woO2BD1mfdFar8t2Uuk/84zAGbJD4xLEV7/jf4bF3ctpmoaAnRoIazKL3xhm+J7Zncy7Mz3Hx+4qBjYDgwpKafYIGRqLPGNvIGJvjXe8FsBhAdwBjADzqZXsUwJXe9RgATzHGDjPGVgJYBmAEEXUF0JoxNoNl3u5jXJm8wX+hBzVaN7bxOBkLci5nSWRuJpn+Sbe/pO4rxTvEEyG6OLjw5M7Z9kWE5pAkT/uWTdGrQ8usnJaXHyfx980XbZbdRrNAhK1OraoDfwG9+uGMFUGCKepK84f5Mr/5fP0+9hxSazvJ3Eir6k0D1wyrzdQtpg+vDfYJwHV/nhVIkxaE2iVGLO2dwF/5IXBUrvbNJVu19/nvk1PDzaCyIugg7un3NLGOJWniGyDYL1q5enMFRt/zpjyPl0XcsecDkWT6RFQHYCiAmQC6MMY2ApmFAYB/YtYdAK+ntc5L6+5di+mydm4iotlENHvrVv0Ht8XBI0FifID7bfsRGYCfTFqozcNb+PmIYtBiQthlgLlUH42esFhepXGRySvTColP9edy7nB5ufImzo9PVu+bbzPb1zDESSN2739e+jB0z2RR+5cZq+UZvN4ozoHzgjN6yzWzeHm5zLJb952Oatx2HwiNBf3DjfNCTdr4qeex64BetKoCA8Npd7yS/X37FUHliCaC6Cqyzr/QZxtRzCcHdwsU5+uVHZrz7+WqB6Zr604D1kSfiGoAPA3gvxlj6oCtCjGYJj2cyNgExthwxtjwTp3sghGo4G+nxG3Viq05J1Cmj9jKQovABnFd5vK7h5cXBuW9izSxc2O1L2Thn90nJjwHWGe5SzLhlG5tpO37bfETo0XTKnlnEXaad0xj5JNdPEQCKeTXiuRI7ahPlqpzAZzrZ67kVwQ3FP7ziM/C2znoLbvDdyaoVJnJLgrcDm5n1q5Fzlp86z45IZcR1ydm2p0DmeoSrdWB4DMfFWMfBuqSiHeElcpmPe/ZntOIs2QAGtA2y47oE1ETZAj+E4yxZ7zkzZ7IBt7fLV76OgA9uOK1ADZ46bWS9Lxi/2GzMZU4DkQ9935dMoFXkm7XT7xNLdoB5KKCfYfrAyKhg96B9PkDMovhtn3hM4QkOHjkWIDA/vzKU4P9AwIqlTYybhv4GjkX/z64/fXFRzzx8Q2kZF9jn3Bgz5d7S4hz68trf/qvRdm0IT3ahmTyr2gC2RPUjvpkw+WXGgNBH7wywPcuDVr3qmTSxwLGYfJ+qvqkg8idZ34HK/lgbW536xNYImCu4FJZd9Yh213G2TF1bRN0Zyxy2s/MWQ8deO0ev7wI2TvkJQlRD3Kj6Xslh432DgH4M4DFjLHfcbcmARjnXY8D8DyXPpaIqomoNzIHtrM8EdBeIhrp1Xk9VyZvsONug3lOFeTAMoMcGUQNIR+2g1e2Bf/j68sDv/2uPnzDGVj0s2iRofYp9LF5PPP++oAsmHfJ60+gv2vkogAw7sxekfoFZNzpyuC/E/6AXEfA/vRGkGvVBQSRWak+fMMZIZm8aPhkgk6UMmluND5HfC9+wG1xXJvsLeIQ0BfmbcRGYWcik2lPWbwFIqTnARHPOmzCfRrFjRGemwG44r63Ammh9yZhzABg0cbcYsETfVtFhwZk9GEjtzgbwHUA5hPRB17aDwHcDWAiEX0JwBoA1wAAY2whEU0EsAgZzZ9bGGP+MngzgEcANAcw2fvX6BBf+CPTVwZ+Z4mDoZ7XPpSfP0TRcBEnsxgb1+dOKysoJ+awxO3P688jfLzHnUsEBr3EMEX2ZG1bhLfYPGQRhVQLq+ygWOcQTYQuRoLMr0+LppU5rR6vqM5SW0tM8zCTTzpBHhSIHwtEJAmVmbxLnVpVS593Bqdt5H9H6XvRvCvZZ9JFi/NhZ+VuzIIRde2xWBL8KCzeCT/E7oNHA7YV3drahUrM1pmSAoctjFSDMfYW1J9rlKLMnQDulKTPBnBquET+YBMYZVD3NgGOZnhde8xamQukcE7/jpi1agdeNLhguOWvc6Tp1pw+1HJnH7+8KvrrSzKcglyLWdPlBu8gD15en0Cv25kL3HJW37DWk+odyTlGr351t7MYoPFTJFtoKijc4rqQf/Uc5nDuIcL9S38i+11+dZFal58AzBcPtDVqqLY4sUsrvLVsW0ibhlcz9HcmOi0UWRe27AmfdaQh9LBluLq3ax6KeDeirn1Ye0dCoAf/9JXAb57psZn7/rcUg7fkCyVvkbv/iFmm307gTEXXAoN7tAVgFwREBpthd27/jrBx5tS7ozywuw68umNU8ITxg7W7QnF4RQzs1jqgFfPi/I2oG/8C7ufsJC4fFI7ipHpHJBmhJq0bHpcIjsh4VEjqrqCgiMCkNy21y4jQv6jwe8a7O1Zm4pMUL3ivRh1VxINfOB1AWPdetijKeC2dWO6Z98OydpNmWM/2LSLZtazdEY4Y99nhmePH9i2bhoj5PWOHSHe2pjZVBo8mBvSaP84w1JwOSp7oy4ZNx5qmmW28BzEUYXx/KIo+WFTXpLJCypWIJvkykYQJ/TpFXyh8mPouTsyTTmgVeI7HZqwCEPS2GEXNUy4lsBO3AXrCWy9RVeS/PWPAFx9516KVHE7t3jqvx3KyV9dOMGDTS5yCzzzojlcUOcMQ1R910LnEFr/clr1yjSbTGdTQnm2tFlaf6Mq0lP7nM6dh1d1XSN9Zk8qKkFGnzdDt0pqzKeHSP3n/W+HMjYCSJ/oyAj68V3sM8bh3wOxfI+kkttliZg/ihEH8z3l5V3DSIqoe/mm1bTFxdobAH64/br29VjUjfr9vXNiPk7nHU4H1IfOMSRQUz5h2NiJO7JKTuUdl9K84Te0oT4ebL+gb+C37ZnG1d4L12ueVaRmpin/9r+9L03cadPcnL1BrVfFt+j0xHciHD4UV+QzvkDcI3HuoHht2H8Ka7QewMIJ6dT5R8kRfhp9deQrO4NQyJ88PyuqjzAuVG2MemyXyShEfP6mzpxIZbF0mPkgLviXm7NsuwpzbL06tXt8m4uQfvxSykFVBNZHEiVdVWRGJ+OgWBhnnSkTZ+kUVTxt0b9tMedCs0u7yITvgDiP88Cd3DR7uSg9xLd7ZFwUHgCKS7ID5oOviJ5m5Mp4s20aryu/y8eMMf5ut9u1PFDTYVOaD2TiLX3Rf8tR9L7nnDWPdDYWyJPotmlbhG6P6Z3/L/IPw0I31if91pjT9yiE5q7xXNIduvsz54yd2BkFvHRkXyv57TXWsqUb7lnqNm3xDJe6U++vPwCcec9bsxB9eWyZ1gdG8qdqzY5VCVOY3+aNnFyjLqnD5aV2V79toMxLz04u7KZ1/mdueUz+TiabLFkmZxosMXVo3i+STyKY/tmDMrCr7nOSMRCb+k9nS2MDWc2pDoOSJvmxVrqmu0srGVVahUfDti3NGNWskB0g+7r/2dLzvcdn/8rSDXvtwi9eP6KMrEhfcoNrBetjoZAMIOGTz+3/1A9Px65c/wsd/83o230PXDweQWeDf+sHHpXVVyU5yYf7eOl9NvHM7/onqjx3HGXdO0dZro3Qg+77+UJ5920WYPv5CYx0qqBZBFaYv24bL7p1mlfe6kb2kGkS63Y84JE5orVeFlDkW9DnzHQYPurIdtTg/Lj2li5XDtUJH6RN9wxcSjVqAzMdN3K7l0GhaVYF2HpftLw43PvIu/vLOarwZUZ4MBIOG+FDJ5VUudW3Rulk67ikA+UTq07FlWE+a1PJpXu2WX9Rr24WJ9A1n1SlDHz7OeXWU4SSNGihxKp98/34/ZYk0Pw9Z0BMreA12rKlGt7bh8QyErc4BYNrS+H6t/t/UpXhWonGjApF8wRr445eVZcSdhWidLOKM3u1CafXHGTbvOYyfcVbXgJ1rFd7fPeCLv4IPUTf+BWM9hYb0Zm2BQvR/zmP2bReheZNKnPKT4MDrI2i7xOGITYvN41/SB0i4XbMN1+Gik8MLlop/+9EV4chdUXDuALlfpGs/1hN/jehLRbar6dSqOmScVcERD90rNu0cats1V3K2Mqd5PFqaCIawEwGAx6brFxLALlynrMcje0uCtQuQvY+3l2035lHht6+aFzEefNW2O1iRqfBFkFO/cz72HDxq5ZzsaUlgdgBZRisK6jzHhYxl/GHpPOYmRVKGTIfS5/Q19zrWVJsnMOTyZt4ISYYaAxcs40rSQJTBfK3VwaEav71msDR9cG0baboOKoIj7lIynHROTCDTvc7UZ25T5frBBN853GBOAyzQR0naXsG3TLc2YVGF6mDSJwAj+8iVBkI+5iUQX8e6nQfwxzeCLj7ivg8bVDepiGRUJ83nVdC3U00o6pUMoptlHj8YfZJlL4QuUKZnw37+aqzytrjxnLq81V3yRN/Wb46Ir328X/ZaxplcfbrUK3QWHQ2OyEQ1URuYdgcAUNch6EZ59m0X5c3VbzNF+Ls47pZl4odWzZqEOH1RTKCSKbcyLLqn92oXORbA+MuChGKoguhnwTJeNb//j7mhW5/kDvp9qDj9Z7xYrjdf0C/Wu51920Uhw6Bz/ue1UD6dIVtS9O1Uk41Mp1qoRSQ1bvvM6bXKe3yoTlswlrOatzl/SYK0bYUCdeet5gLBlUP1xFmFEzhOTDb4WjdTi43yBV0sUx8nevLmeXdcgg9+fDE61lTHOohOgqgL7WNfHCHl9M/t3zFE5ALGU2DKWLxDDAT59J7tIhOVT3l+0k1P52vI3DX5Q4y8ayomzg6LGMZLOE0Vp39q9zZYdfcVWc+qUdGxpjrwrCo5dL4IzZ+uGwYgp0Hz8NurcPDIMXwgeOE0IWrvemoO3Ht1UMeY4MGr0basrmywg9wkwYlMKHmZvioqkAk+d9+rQwspQWqhUQXMF0zj4FaOE22MRen+a4cC0FsNyw7OmzWpxKrtYd3y6yXeOvmadUS7OuZ3BzILhowgqQ5+VdAddMo49nyGyrPpe76ImT8W/R4s3rgHJ//4JfTpFCa8d109iOtPsh5F1UaSgfe426pZE2mAmnygpjp/87fkOf2o8CMQ+bvh8/p3ksqHOxvUx3gM6BLfDUIUqHTt8xnJiccnTstwwjoZM38OMLxXTi47S2KgIyOMw+vaZ5/n1y9/pGwnjhjk3P4dvbLy+y09T5ane/0+b0DYcVwSiDYacRkWGVRaPbZ4+Ibhscv671PcSfCBjHzw4smwe2i7b+ofAJvO1WwgMjCmLkzwdjVJ8aVz9IZySVDynL4InbodADz+5REAcpx+BQGrJVxoFKRl+GSyGDyzr1mLoyGgE+/w89gnAscZCy2sqoDo7Vo0yZu46nMj9Afb/qH/kB5t8eHPRyvPNOJCFO/0loggdIZXSaHjYC88ySzvFwOY+PC/lsIsIpiX+7RRn3SYtxhPv3UUpi3ZqnRDnRQ7D6id1F1seS7yuRE9tPfTXPBFlB2n/9wtZ2vvD+uVOfH35xYRoYuBq+e3pDKIRkBxD8xk3gyvG5kTgcj00QG5WKhDHi1wdUogvKjM167o1Ko6RMyuUpzF8G4S8gWb6tMk+K2bVUlFWZ1bh5UB8kn0TcoHAHB2PzVj8Zlh8oNTX7QUdffVXvB+axKrjBmcGTM11VW4bFA8P0Yq+LtS0xOIz9hREr4RAAZ2U2u4nVGXH80+H2VH9GWTVXRYBeSIU4UFkTFNFrH8hOvjbZVlGgdfGBkmFuEOhJMmff2cWH2wgY0PEwD41sUDMOXb56Nvp5pIXF1Smv9Vyffm640b7F2nIqjDvDsuxc/GnIqTuwZ3ob+8KsxM1GtivMrww8vtVBO/c/EA9GhvjnescyVx2alyQuvv6C46OWw4KIKfn4Miqv7aqK5GxeWDuuK8AZ1w7+cy51Umly0iWinO1r6gUZf+j+H6XUBSlB3Rl+HTEvVLn6mQjSNxC5fPk3YeMrFG3La7J5Tx6rBF5ySOo+6VFYR+neXnHSoRDiEeUe7LHRr6ctooC42N7cHEr8j9MNkj+FwyIhyR5ltHVztFwlD86tOnhdJ0Gjd1HeWLhv++RcdwMujes2ho+eR/jsxev3fbRca6o2Da9zOuO2qqq/DYF0dk54sueI0MKoWPuIxFGnBEH/IP0MWTT/Zo3yJEgOoEVTCxeL4WAdk4sRk8MsdR+cRRjfdDVU+OCdTsE4PlXGP3ds1jcfpP3pQjECbLU5mvJFsVv3wjKqefhLa01lizS9tSfBmf019k4VpYN55Fgyz+DKuDhWjKFs/dcrbVrscGKjGlDvnU0QfKkOjL5IKyl/zJ07rikRvPwHUje4VU6cQDInGwiz5D8qnhZTM+xOZbWqqb/vNrQREQr2LHi5q+cl4f9Gif2zkc1cidVQS3GWesdsNZdThdYnE56WtnZ4LNxJgTTbhzFZNYXKY62UxhI/F3iZfVuKqCNs8VVaZvHZhbUm3U92yKidCAYWATwWTjEQU2O+oLBX9ZNvY4SVB2RF82aWQfhohwwYmdUVFBIX/fZ2kOs/IJqf93i3LiQmcj+/zh5SeFZKp9OZ9EfLCQWy8/GdO+n/PuuF4TU1YVuvGsfjn1x8sVh3D+t4uzNeaf+XNnyOWpvm8VWe0/ulzup4hXO/VhCugtE5sAdpaqUV1vN6IUIQt/vc03MUsCG2v3ODhPYlC39M7LAr9rBFcw+V4cy0pl82sf7yf1L2JSjxKJpsni9NJTwjFgfdzz2SHasip866IBUn1/GwJoE8RFhGz3E3CapZGIi6IaHjZqdKoD0SgOwUTw3LfKUtOXOcveaRuFCmmcBUg13pZs3mssyzd34UmdcXrPtqE8Z9S1w7urMk7jbHsn80EV1emX6lX48yVKuEURNl4xbfH0zeHdmUpFOClk71V8D+K4zrd4p6yI/rcuHhCr3Ok92wVivIYWDu4bXT20O+4WODmeQOrcQrRqVoW9irig37yovzTdxvJUdBF762UnS/M1qaQsJymjr025WMJxvAC+8b0LlPdsVEiTGKy2rK7Cty8egNGn5hbkJgor1S6tmxn9r/N443sXBIK1VJBehKRaMK8bWZd12aDSdOEJwsM3nCHNw6sIn2RxeAoA3dqEd7vnD+iEL57dWxrIXgalTN9bcG1UQlX4xVWnxi4rwlfLbgzIoqOJi0C+FUMKd79VQOADp//iylO1xlbnn9gpvmFFDEbWxtKSz/Nf5/dVetf8ynk5VUaZCIuftEMlHKYPmXijY01T7WGojeppEk4fAL4xqj8GcIE2eLuGb3MMwe1XyBdFFXp1aInOrXK2HCa7DhmBBTIqiu/cOgqPfXEEHhonJ+jDJOIkEf66cO/YIVby6Ve+dZ5091NRQfjxJwdiuEVIUL5dEb7rDdUi6+OBz5+uvDe4tq1VH0z4ynl9pOlpMNfLBLGNDJ+W2DKINhptW+Q3il1ZEf24PjN89wJ9OrY0EieTWESHuDuRKNAx6OefmJM/DpBEIfIxsk/7yLrE944dauiXetZlXWPk0TCJV60TLZujcl6mMfKxPuozoRPaNJPKgX3o3pOIDi3tOOv+CrXZJJj0tbPxjVH9seruK7IeZVWRynyoznKA3HlLEiz/5eUhT6k+0rDytnFNLVNQ4NVqJ1w3LO+W9WVF9OPSjCaVFVh19xX493cvkN7nh4tsUv7qM/KDOxFfVPjb+MRp6VkX6ga33/WhPdtK5a/+4nXZqV21suyPSWTySewCfO72mOXqKbNujQLx2aIOm7jeMNNCLsiMXc/zoTN+Wm3bwO4JiO6wDsh4i537k0uU96d9/+OYcas6ROTv/iPn66mygpTP2pgH3vxZ3SWa88C0UBYy/aaVFThy7Hhi8YAK/ECS+d6obdcCS++8LNap/IAuNbj/WvW2F8iInFQBNkTYxAY2m5rr7199ei1uf35hIK29whzdBr5M2FZd0UYEEgVRv5vJv1O+cULrzAJra5iVBu66epDxoFZ3DrT4Z6Ol6SZvsSZ9et5Lpg6dPa0ycaGyxSvfOi9WOaDhDbWMnD4RPUxEW4hoAZfWnoheJaKl3t923L1biWgZEX1ERJdy6cOIaL537z5qwCfNcj55kg7wYiPVwG9SWWEl6xctVF/51vnGMl8Y2Qv9OtsRGl34SD/qlu1EUUHUWHjjexckcvXcw5MJi6ptMvzmmsFZv/dp4W+cYZcNoohg8oGfjTkFv//sYKvFT+UkTQXZju2Gs+qMzuoAfUD55nlyVW77KTrUVGPBTy8NBE+S4S9fGiFN14lDffzacsefb9iwAo8AuB/AY1zaeABTGWN3E9F47/cPiGgggLEATgHQDcAUIhrAGDsG4EEANwF4B8CLAEYDmJzWg2gf4MYReHzmaqWBTVKkuX75C8jDNwzHwK7JiG9U9O1Ug+duORsDFRof3754AA4cOaZ0rCXD/dcOTWzNevsnBuLsfh2tDhTP7tch1vdQucquqiCtDF4GWftn9umAb108wDpqVBK0rK7CVUPtvlFU9cBPDemGB18Phlm8/RN2sZYbw/VApY1rTw82TMW5/cOiu39Z+rG6Js8+dWxhfErG2JtEVCckjwFwgXf9KIDXAfzAS3+KMXYYwEoiWgZgBBGtAtCaMTYDAIjoMQBXooGI/pl9O+T1cOScfun5Vff3DD3btwhE72oo6LQ92rVsit9yMlIb+IfgSdCsSaX2kA/IGNdUVlBIPdUWZynGB2+QlgS+G4i4TtnSxkkntMKHm/ZGlmXLOOfG3tno4NtniK5T0oSKSfLRs32LgvnuQHyZfhfG2EYAYIxtJCJfqbg7Mpy8j3Ve2lHvWkyXgohuQmZXgJ49kwXvbgjkZ9DnZyLJIlcVCqZ8+/zIu7E+nVpiw66DGF7XLpa74w9/Phqbdh9S6pCnYbSz4KeXmjNFQPuWTSPZEchw/7VDcdHv3oxM9McM6Y4/vLbcnLFAUNuuOf77ov642nLnEwcmC/c3PedthYK0T3pkT8806VIwxiYAmAAAw4cPbxCPHc2bVOLro/TyPB0uH3QCRljqMzcGvjCyJx5/Z02DaAfEhcrjpgwjerfHrJU78MurBmFkRPELj2ZNKqXqgL6hmknV1AY2YoMoeO27F2C/IjawLZpWZhbIlhEPe7t49gj/eW5vDOvVXhnMPQpGnWR2uRwXRIT/vij/qtBJ8ZtrBudN0URE3NG4mYi6elx+VwBbvPR1AHjBVS2ADV56rSS9YLD453LtAVs88Pl0wqTlK1DpL64chF9cqQ/24hBGu5bJOH1T0J44aNO8ifZAXoXLB52AF+dvAgD0aN8c37l4AK6SuBXXtt2iCd677SK0bdE01g53UPc2mL9+d/b3Ny7sh29fcmLkegoFaUW4inJOlhRxezwJwDjvehyA57n0sURUTUS9AfQHMMsTBe0lopGe1s71XBkHDj7NLwRHWeUM3zrZZFBkQpoeG5Pi2hE5+wUiwtdH9VdGW9OhQ011bJHmQ+OCAYQawiAxX5j8zXPxVoGJbmxg5PSJ6ElkDm07EtE6AD8BcDeAiUT0JQBrAFwDAIyxhUQ0EcAiAPUAbvE0dwDgZmQ0gZojc4DbIIe4xQZfe6fYaf7Er5ypDCBRDPjupSfiu5cWLwcqg89IqA6tGwLiGUljBhNJCpugMIUIG+2dzylujVLkvxPAnZL02QDS85pU4ijmyQAUjpZKY+G5W862cobXGGhMv/bVVZVY8cvL0eeHL2r19gsZnz69VukivBhQFha5xYT/Or8vxj8zP2sh6CCHP+nSDFCeJgpJrOOjUNiIigrCn64bVpDvyAZR1ZYLDY7oFxjGjuiJsRbWjeWOu64ehPP7dypawtEY8OXwaR0+JoEu5oRDfuGIvkNRonWzJviPMwrDwrFYcEZde3z9wn64LqFDOofihiP6Dg5lgooKwneKWD3SIR00/j7PwcHBwaHB4Ii+g4ODQxnBEX0HBweHMoIj+g4ODg5lBEf0HRwcHMoIjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGINaY3pcsQERbAay2zN4RwLY8dqexUKrPBbhnK1a4ZytsbAMAxlgoUEjBE/0oIKLZjLHh5pzFhVJ9LsA9W7HCPVvxwol3HBwcHMoIjug7ODg4lBFKjehPaOwO5Aml+lyAe7ZihXu2IkVJyfQdHBwcHPQoNU7fwcHBwUEDR/QdHBwcyggFTfSJ6GEi2kJEC7i09kT0KhEt9f624+7dSkTLiOgjIrqUSx9GRPO9e/dRAUQdVzzbHUS0nog+8P5dzt0rimcjoh5E9BoRLSaihUT0TS+96L+b5tlK4bs1I6JZRDTXe7afeuml8N1Uz1b03y0WGGMF+w/AeQBOB7CAS/sVgPHe9XgA/+NdDwQwF0A1gN4AlgOo9O7NAnAmMrGhJwO4rECf7Q4A35XkLZpnA9AVwOnedSsAS7z+F/130zxbKXw3AlDjXTcBMBPAyBL5bqpnK/rvFudfQXP6jLE3AewQkscAeNS7fhTAlVz6U4yxw4yxlQCWARhBRF0BtGaMzWCZr/YYV6bRoHg2FYrm2RhjGxljc7zrvQAWA+iOEvhummdToZiejTHG9nk/m3j/GErju6meTYWiebY4KGiir0AXxthGIDMJAXT20rsDWMvlW+eldfeuxfRCxdeIaJ4n/vG30kX5bERUB2AoMpxVSX034dmAEvhuRFRJRB8A2ALgVcZYyXw3xbMBJfDdoqIYib4KMtka06QXIh4E0BfAEAAbAfzWSy+6ZyOiGgBPA/hvxtgeXVZJWrE9W0l8N8bYMcbYEAC1yHC2p2qyl8KzlcR3i4piJPqbvW0WvL9bvPR1AHpw+WoBbPDSayXpBQfG2GZvcB4H8L8ARni3iurZiKgJMkTxCcbYM15ySXw32bOVynfzwRjbBeB1AKNRIt/NB/9spfbdbFGMRH8SgHHe9TgAz3PpY4momoh6A+gPYJa3Jd1LRCO9k/bruTIFBX9yebgKgK/ZUzTP5vXjzwAWM8Z+x90q+u+merYS+W6diKitd90cwEUAPkRpfDfps5XCd4uFxj5J1v0D8CQy266jyKyyXwLQAcBUAEu9v+25/D9C5qT9I3Cn6gCGI/NBlwO4H54lcgE+218AzAcwD5mB17XYng3AOchseecB+MD7d3kpfDfNs5XCdzsNwPveMywA8GMvvRS+m+rZiv67xfnn3DA4ODg4lBGKUbzj4ODg4BATjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGcETfwcHBQQIiusZz0HaciJQxc0niPNFLlzqrI6KmRPR/nuO2uUR0AVfmTiJaS0T7YAEiakNE/+Scyd1oKuOIvoODQ9mDiC4gokeE5AUArgbwpqH4I8gYsokYD2AqY6w/Muqu4730/wQAxtggABcD+C0R+bT4n8gZidngFgCLGGODAVzg1dVUV8ARfQcHBwcJGGOLGWMfWeRTOU9UOasbiMwiAMbYFgC7kNH/B2PsHeb5OuLhGZg9TUTvev/O9psH0MozFqvx+lGv668j+g4ODg75gcpZ3VwAY4ioyrP4HYag2wcZ7gXwe8bYGQA+DeAhL/1+ACcj4w5iPoBvsoxbCSWq4jyJg4ODQymAiGYi4ze/BkB7zxMnAPyAMfZynpp9GBlCPRvAagDTYeDOkXEdMZCL2dKaiFoBuBQZy/ALkXEe9yoRTWMaJ4eO6Ds4OJQtGGMfAzIyfQA3MMZuSLH6zUTUlTG2kXdWxxirB/AtPxMRTUfGzYUOFQDOZIwd5BO9g9u7Wca1wjIiWgngJGSCvSgrcnBwcHBIH1JndUTUgohaetcXA6hnjC0y1PUKgK/5P4hoiHe5BsAoL60LgBMBrNBV5Ii+g4ODgwREdBURrUMmPOILRPSyl96NiF7k8j0JYAaAE4loHRF9ybt1N4CLiWgpMlo6d3vpnQHMIaLFAH4A4Dqurl95bbbw6rrDu/UNAMMpE/BlEYD/8tJ/DuAsIpqPzOHwDxhj27TP5RyuOTg4OJQPHKfv4ODgUEZwRN/BwcGhjOCIvoODg0MZwRF9BwcHhzKCI/oODg4OZQRH9B0cHBzKCI7oOzg4OJQR/j+RSFFPhdmq7wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Checking the Light Curve for Irregularities\n", + "\n", + "You can perform checks on the behaviour of the light curve, similar to what's done when instantiating a `Lightcurve` object when `skip_checks=False`, by calling the relevant method:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "time = np.hstack([np.arange(0, 10, 0.1), np.arange(10, 20, 0.3)]) # uneven time resolution\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's add some badly formatted GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(10, 100), (20, 30, 40), ((1, 2), (3, 4, (5, 6)))] # not a well-behaved GTI\n", + "lc = Lightcurve(time, counts, dt=0.1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_lightcurve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/lightcurve.py\u001b[0m in \u001b[0;36mcheck_lightcurve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[0;31m# i.e. the bin sizes aren't equal throughout.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 419\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 420\u001b[0;31m \u001b[0mcheck_gtis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 421\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[0midxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearchsorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/gti.py\u001b[0m in \u001b[0;36mcheck_gtis\u001b[0;34m(gti)\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;32mor\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 227\u001b[0;31m raise TypeError(\"Please check formatting of GTIs. They need to be\"\n\u001b[0m\u001b[1;32m 228\u001b[0m \" provided as [[gti00, gti01], [gti10, gti11], ...]\")\n\u001b[1;32m 229\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]" + ] + } + ], + "source": [ + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## MJDREF and Shifting Times\n", + "\n", + "The `mjdref` keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don't become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time. \n", + "\n", + "`mjdref` is generally passed into the `Lightcurve` object at instantiation, but it can be changed later:" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91254\n" + ] + } + ], + "source": [ + "mjdref = 91254\n", + "time = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, mjdref=mjdref)\n", + "print(lc.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91274\n" + ] + } + ], + "source": [ + "mjdref_new = 91254 + 20\n", + "lc_new = lc.change_mjdref(mjdref_new)\n", + "print(lc_new.mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This change only affects the *reference time*, not the values given in the `time` attribute. However, it is also possible to shift the *entire light curve*, along with its GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0,500), (600, 1000)]\n", + "lc.gti = gti" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first three time bins: [0 1 2]\n", + "GTIs: [[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(\"first three time bins: \" + str(lc.time[:3]))\n", + "print(\"GTIs: \" + str(lc.gti))" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "time_shift = 10.0\n", + "lc_shifted = lc.shift(time_shift)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shifted first three time bins: [10. 11. 12.]\n", + "Shifted GTIs: [[ 10. 510.]\n", + " [ 610. 1010.]]\n" + ] + } + ], + "source": [ + "print(\"Shifted first three time bins: \" + str(lc_shifted.time[:3]))\n", + "print(\"Shifted GTIs: \" + str(lc_shifted.gti))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating a baseline\n", + "\n", + "**TODO**: Need to document this method" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Working with GTIs and Splitting Light Curves\n", + "\n", + "It is possible to split light curves into multiple segments. In particular, it can be useful to split light curves with large gaps into individual contiguous segments without gaps. " + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.array([1, 2, 3, 10, 11, 12, 13, 14, 17, 18, 19, 20])\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.5, 20.5]])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This light curve has uneven bins. It has a large gap between 3 and 10, and a smaller gap between 14 and 17. We can use the `split` method to split it into three contiguous segments:" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=2*lc.dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14]\n", + "[17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This has split the light curve into three contiguous segments. You can adjust the tolerance for the size of gap that's acceptable via the `min_gap` attribute. You can also require a minimum number of data points in the output light curves. This is helpful when you're only interested in contiguous segments of a certain length:" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What if we only want the long segment?" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0, min_points=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split_by_gti()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6 7]\n", + "[13 14 15 16 17 18 19]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because I'd passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.\n", + "\n", + "You can also apply the GTIs *directly* to the original light curve, which will filter `time`, `counts`, `countrate`, `counts_err` and `countrate_err` to only fall within the bounds of the GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Caution**: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array before applying GTIs:\n", + "lc.time" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "lc.apply_gtis()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array after applying GTIs\n", + "lc.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs. \n", + "\n", + "## Analyzing Light Curve Segments\n", + "\n", + "There's some functionality in `stingray` aimed at making analysis of individual light curve segments (or chunks, as they're called throughout the code) efficient. \n", + "\n", + "One helpful function tells you the length that segments should have to satisfy two conditions: (1) the minimum number of time bins in the segment, and (2) the minimum total number of counts (or flux) in each segment.\n", + "\n", + "Let's give this a try with an example:" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The estimated length of each segment in seconds to satisfy both conditions is: 4.0\n" + ] + } + ], + "source": [ + "min_total_counts = 300\n", + "min_total_bins = 2\n", + "estimated_chunk_length = lc.estimate_chunk_length(min_total_counts, min_total_bins)\n", + "\n", + "print(\"The estimated length of each segment in seconds to satisfy both conditions is: \" + str(estimated_chunk_length))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we have time bins of 1 second time resolution, each with an average of 100 counts/bin. We require at least 2 time bins in each segment, and also a minimum number of total counts in the segment of 300. In theory, you'd expect to need 3 time bins (so 3-second segments) to satisfy the condition above. However, the Poisson distribution is quite variable, so we cannot guarantee that all bins will have a total number of counts above 300. Hence, our segments need to be 4 seconds long. \n", + "\n", + "We can now use these segments to do some analysis, using the `analyze_by_chunks` method. In the simplest, case we can use a standard `numpy` operation to learn something about the properties of each segment:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "start_times, stop_times, lc_sums = lc.analyze_lc_chunks(chunk_length = 10.0, func=np.median)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([102. , 110. , 92. , 96.5, 99.5, 100. , 95. , 96.5, 100. ,\n", + " 108. ])" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_sums" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This splits the light curve into 10-second segments, and then finds the median number of counts/bin in each segment. For a flat light curve like the one we generated above, this isn't super interesting, but this method can be helpful for more complex analyses. Instead of `np.median`, you can also pass in your own function:" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "def myfunc(lc):\n", + " \"\"\"\n", + " Not a very interesting function\n", + " \"\"\"\n", + " return np.sum(lc.counts) * 10.0" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "start_times, stop_times, lc_result = lc.analyze_lc_chunks(chunk_length=10.0, func=myfunc)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([10090., 10830., 9370., 10120., 10180., 10190., 9910., 9610.,\n", + " 9880., 10600.])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compatibility with `Lightkurve`\n", + "\n", + "The [`Lightkurve` package](https://docs.lightkurve.org) provides a large amount of complementary functionality to stingray, in particular for data observed with Kepler and TESS, stars and exoplanets, and unevenly sampled data. We have implemented a conversion method that converts to/from `stingray`'s native `Lightcurve` object and `Lightkurve`'s native `LightCurve` object. Equivalent functionality exists in `Lightkurve`, too. " + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "import lightkurve" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = lc.to_lightkurve()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "lightkurve.lightcurve.LightCurve" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(lc_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110, 82, 94, 126, 102, 80, 102, 105, 106, 102, 119, 98, 112,\n", + " 98, 119, 112, 119, 99, 99, 108, 91, 85, 93, 109, 97, 82,\n", + " 87, 89, 96, 108, 120, 88, 97, 88, 109, 120, 94, 106, 94,\n", + " 96, 120, 122, 92, 87, 113, 94, 100, 99, 105, 86, 107, 101,\n", + " 94, 102, 96, 112, 93, 117, 99, 98, 91, 101, 94, 120, 105,\n", + " 91, 91, 96, 85, 117, 104, 102, 91, 94, 100, 115, 98, 74,\n", + " 95, 88, 100, 107, 102, 109, 109, 94, 86, 84, 97, 100, 110,\n", + " 109, 117, 96, 108, 108, 110, 108, 97, 97])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.flux" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's do the rountrip to stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc_back = lc_new.to_stingray()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.time" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110., 82., 94., 126., 102., 80., 102., 105., 106., 102., 119.,\n", + " 98., 112., 98., 119., 112., 119., 99., 99., 108., 91., 85.,\n", + " 93., 109., 97., 82., 87., 89., 96., 108., 120., 88., 97.,\n", + " 88., 109., 120., 94., 106., 94., 96., 120., 122., 92., 87.,\n", + " 113., 94., 100., 99., 105., 86., 107., 101., 94., 102., 96.,\n", + " 112., 93., 117., 99., 98., 91., 101., 94., 120., 105., 91.,\n", + " 91., 96., 85., 117., 104., 102., 91., 94., 100., 115., 98.,\n", + " 74., 95., 88., 100., 107., 102., 109., 109., 94., 86., 84.,\n", + " 97., 100., 110., 109., 117., 96., 108., 108., 110., 108., 97.,\n", + " 97.])" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, we can transform `Lightcurve` objects to and from `astropy.TimeSeries` objects:" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n", + "\n", + "# convet to astropy.TimeSeries object\n", + "ts = lc.to_astropy_timeseries()" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.timeseries.sampled.TimeSeries" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts)" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "TimeSeries length=10\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timecounts
objectint64
0.0100
1.1574074074074073e-0592
2.3148148148148147e-0598
3.472222222222222e-0585
4.6296296296296294e-05113
5.787037037037037e-0594
6.944444444444444e-0599
8.101851851851852e-05108
9.259259259259259e-05101
0.00010416666666666667117
" + ], + "text/plain": [ + "\n", + " time counts\n", + " object int64 \n", + "---------------------- ------\n", + " 0.0 100\n", + "1.1574074074074073e-05 92\n", + "2.3148148148148147e-05 98\n", + " 3.472222222222222e-05 85\n", + "4.6296296296296294e-05 113\n", + " 5.787037037037037e-05 94\n", + " 6.944444444444444e-05 99\n", + " 8.101851851851852e-05 108\n", + " 9.259259259259259e-05 101\n", + "0.00010416666666666667 117" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "lc_back = Lightcurve.from_astropy_timeseries(ts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading/Writing Lightcurves to/from files\n", + "\n", + "The `Lightcurve` class has some rudimentary reading/writing capabilities via the `read` and `write` methods. For more information `stingray` inputs and outputs, please refer to the I/O tutorial." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.html b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.html new file mode 100644 index 000000000..c10c4bdb1 --- /dev/null +++ b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.html @@ -0,0 +1,333 @@ + + + + + + + + Lomb Scargle Cross Spectra — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Lomb Scargle Cross Spectra

+

This tutorial shows how to make and manipulate a Lomb Scargle cross spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.lombscargle import LombScargleCrossspectrum, LombScarglePowerspectrum
+from scipy.interpolate import make_interp_spline
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+plt.style.use('seaborn-talk')
+%matplotlib inline
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+
+

1. Create two light curves

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out Lightcurve for more examples.

+

Make two signals in units of counts. The first is a sine wave with random normal noise, frequency of 3 and at random times, and the second is another sine wave with frequency of 3, phase shift of 0.01/2pi and make their counts non-negative by subtracting its least value.

+
+
[2]:
+
+
+
rand = np.random.default_rng(42)
+n = 100
+t = np.sort(rand.random(n)) * 10
+y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)
+y2 = np.sin(2 * np.pi * 3.0 * (t+0.3)) + 0.1 * rand.standard_normal(n)
+sub = min(np.min(y), np.min(y2))
+y -= sub
+y2 -= sub
+
+
+
+

Lets convert them into Lightcurve objects

+
+
[3]:
+
+
+
lc1 = Lightcurve(t, y)
+lc2 = Lightcurve(t, y2)
+
+
+
+

Let us plot them to see how they look

+
+
[4]:
+
+
+
t0 = np.linspace(0,10,1000)
+y01 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)
+y01 -= sub
+y02 = np.sin(2 * np.pi * 3.0 * (t0+0.3)) + 0.1 * rand.standard_normal(t0.size)
+y02 -= sub
+
+spline1 = make_interp_spline(t0, y01)
+spline2 = make_interp_spline(t0, y02)
+t01 = np.linspace(0,10,1000)
+
+fig, ax = plt.subplots(2,1,figsize=(10,12))
+ax[0].scatter(lc1.time, lc1.counts, lw=2, color='blue',label='lc1')
+ax[0].set_xlabel("Time (s)", fontproperties=font_prop)
+ax[0].set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax[0].tick_params(axis='x', labelsize=16)
+ax[0].tick_params(axis='y', labelsize=16)
+ax[0].tick_params(which='major', width=1.5, length=7)
+ax[0].tick_params(which='minor', width=1.5, length=4)
+ax[0].plot(t01,spline1(t01),lw=2,color='lightblue',label='source of lc1')
+
+ax[1].scatter(lc1.time, lc2.counts, lw=2, color='red',label='lc2')
+ax[1].set_xlabel("Time (s)", fontproperties=font_prop)
+ax[1].set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax[1].tick_params(axis='x', labelsize=16)
+ax[1].tick_params(axis='y', labelsize=16)
+ax[1].tick_params(which='major', width=1.5, length=7)
+ax[1].tick_params(which='minor', width=1.5, length=4)
+ax[1].plot(t01,spline2(t01),lw=2,color='orange',label='source of lc2')
+
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png +
+
+
+

2. Pass both of the light curves to the LombScargleCrossspectrum class to create a LombScargleCrossspectrum object.

+

The first Lightcurve passed is the channel of interest or interest band, and the second Lightcurve passed is the reference band. You can also specify the optional attribute norm if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘none’.

+
+
[5]:
+
+
+
lcs = LombScargleCrossspectrum(
+    lc1,
+    lc2,
+    min_freq=0,
+    max_freq=None,
+    method="fast",
+    power_type="all",
+    norm="none",
+)
+
+
+
+

We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has a real and an imaginary component.

+
+
[6]:
+
+
+
print(lcs.freq[0:5])
+print(lcs.power[0:5])
+
+
+
+
+
+
+
+
+[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]
+[  6.31032111 +4.52192914j  63.18701964+17.6050907j
+ 118.96655765-28.2054288j   84.8747486 -42.95292067j
+  -5.16601064+18.1110093j ]
+
+
+
+
+

Properties

+
+

Parameters

+
    +
  • data1: This parameter allows you to provide the dataset for the first channel or band of interest. It can be either a `stingray.lightcurve.Lightcurve <https://docs.stingray.science/core.html#working-with-lightcurves>`__ or `stingray.events.EventList <https://docs.stingray.science/core.html#working-with-event-data>`__ object. It is optional, and the default value is None.

  • +
  • data2: Similar to data1, this parameter represents the dataset for the second channel or “reference” band. It follows the same format as data1 and is also optional with a default value of None.

  • +
  • norm: This parameter defines the normalization of the cross spectrum. It takes string values from the set {frac, abs, leahy, none}. The default normalization is set to none.

  • +
  • power_type: This parameter allows you to specify the type of cross spectral power you want to compute. The options are: real for the real part, absolute for the magnitude, and all to compute both real part and magnitude. The default is all.

  • +
  • fullspec: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the cross spectrum. When set to False (default), only positive frequencies are kept; when set to True, both positive and negative frequencies are included.

  • +
+
+
+

Other Parameters

+
    +
  • dt: When constructing light curves using `stingray.events.EventList <https://docs.stingray.science/core.html#working-with-event-data>`__ objects, the dt parameter represents the time resolution of the light curve. It is a float value that needs to be provided.

  • +
  • skip_checks: This is a boolean parameter that, when set to True, skips initial checks for speed or other reasons. It’s useful when you have confidence in the inputs and want to improve processing speed.

  • +
  • min_freq: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.

  • +
  • max_freq: Similarly, the max_freq parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.

  • +
  • df: The df parameter, a float, represents the frequency resolution. It’s relevant when constructing light curves using `stingray.events.EventList <https://docs.stingray.science/core.html#working-with-event-data>`__ objects.

  • +
  • method: The method parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are fast and slow, with the default being fast. The fast method uses the optimized Press and Rybicki O(n*log(n)) algorithm.

  • +
  • oversampling: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.

  • +
+
+
+

Attributes

+
    +
  • freq: The freq attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the cross spectrum.

  • +
  • power: The power attribute is a numpy array that contains the complex numbers representing the cross spectra.

  • +
  • power_err: The power_err attribute is a numpy array that provides the uncertainties associated with the power. The uncertainties are approximated using the formula power_err = power / sqrt(m), where m is the number of power values averaged in each bin. For a single realization (m=1), the error is equal to the power.

  • +
  • df: The df attribute is a float that indicates the frequency resolution.

  • +
  • m: The m attribute is an integer representing the number of averaged cross-spectra amplitudes in each bin.

  • +
  • n: The n attribute is an integer indicating the number of data points or time bins in one segment of the light curves.

  • +
  • k: The k attribute is an array of integers indicating the rebinning scheme. If the object has been rebinned, the attribute holds the rebinning scheme; otherwise, it is set to 1.

  • +
  • nphots1: The nphots1 attribute is a float representing the total number of photons in light curve 1.

  • +
  • nphots2: The nphots2 attribute is a float representing the total number of photons in light curve 2.

  • +
+

We can plot the cross spectrum by using the plot function or manually taking the freq and power attributes

+
+
[7]:
+
+
+
fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)
+lcs.plot(ax=ax[0])
+ax[0].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[0].set_ylabel("Power", fontproperties=font_prop)
+ax[1].plot(lcs.freq, lcs.power.real, lw=2, color='red')
+ax[1].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[1].set_ylabel("Power(Real Component)", fontproperties=font_prop)
+ax[2].plot(lcs.freq, lcs.power.imag, lw=2, color='blue')
+ax[2].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[2].set_ylabel("Power(Imaginary Component)", fontproperties=font_prop)
+
+
+
+
+
[7]:
+
+
+
+
+Text(0, 0.5, 'Power(Imaginary Component)')
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png +
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb new file mode 100644 index 000000000..afd694ec5 --- /dev/null +++ b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb @@ -0,0 +1,307 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScargleCrossspectrum, LombScarglePowerspectrum\n", + "from scipy.interpolate import make_interp_spline\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "plt.style.use('seaborn-talk')\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create two light curves\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make two signals in units of counts. The first is a sine wave with random normal noise, frequency of 3 and at random times, and the second is another sine wave with frequency of 3, phase shift of 0.01/2pi and make their counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "y2 = np.sin(2 * np.pi * 3.0 * (t+0.3)) + 0.1 * rand.standard_normal(n)\n", + "sub = min(np.min(y), np.min(y2))\n", + "y -= sub\n", + "y2 -= sub" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(t, y)\n", + "lc2 = Lightcurve(t, y2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAPzCAYAAADPqV/6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7xdVXkujj9zrbX3zn3nvgMhIGi4qFhA8GhRqh57t4rSc/y2QbxgiD3fc/SnqIVfo1IpWJVab60CjaIST21FLdRL8Y7UegW8IRAlwA6EhGQne+/s+1prfv+Ya645xpjj9o4xZrJXMh4+fDKz1pjvHJlrzjHe6/MmaZqmiIiIiIiIiIiIiIiIiJi3qB3pCUREREREREREREREREToEQ23iIiIiIiIiIiIiIiIeY5ouEVERERERERERERERMxzRMMtIiIiIiIiIiIiIiJiniMabhEREREREREREREREfMc0XCLiIiIiIiIiIiIiIiY54iGW0RERERERERERERExDxH40hP4FhDu93GY489hqVLlyJJkiM9nYiIiIiIiIiIiIiII4Q0TTE+Po7jjz8etZo+phYNt8OMxx57DBs2bDjS04iIiIiIiIiIiIiImCcYHh7GCSecoB0TDbfDjKVLlwLIfpxly5Yd4dlERERERERERERERBwpjI2NYcOGDV0bQYdouB1m5OmRy5Yti4ZbRERERERERERERIRVCVUkJ4mIiIiIiIiIiIiIiJjniIZbRERERERERERERETEPMe8NNzm5ubwjW98A29961tx3nnnYfny5ejr68O6devwkpe8BF/60pfIMq+66iokSaL9/7777qvgXxMREREREREREREREeGHeVnj9p3vfAe/+7u/CwBYt24dnvvc52Lx4sW49957cdttt+G2227DZZddho997GNkSv3f+q3fwllnnSX9bnBw0HfqERERERERERERERERwTEvDbdarYaLLroIb3zjG/G85z2P++6zn/0sNm3ahBtuuAHnn38+LrnkEpLsCy+8EFdddVXA2UZERERERERERERERFSLeZkq+cIXvhCf+9znSkYbALziFa/Aq1/9agDApz71qcM8s4iIiIiIiIiIiIiIiMOPeWm4mXD22WcDyHqhRUREREREREREREREHO2Yl6mSJuzYsQMAcNxxx5HPveuuu3DFFVdgZGQEg4ODOPvss/Enf/InVk3vTJiYmAgyJiIiIiIiIiIiIiIigkXPGW6PP/44brrpJgDARRddRD4/JzdhMTg4iA996EPkejkRS5Ys8To/IiIiIiIiIiIiIiJChp5KlWw2m7j44osxOjqKM888E1u2bLE+98lPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27RXOPiIiIiIiIiIiIiIiwg1JmqbpkZ6ELV73utdh27ZtWLVqFb73ve/h1FNPDSL3DW94Az784Q9jzZo12LVrF/r7+53k2KRBjo2N4fjjj8fo6CiWLVvmdJ2IiIiIiIiIiIiIiN7H2NgYBgcHrWyDnjHc3vjGN+JDH/oQVqxYgW984xtdgpIQGBkZwdq1a9FqtXDHHXdI2SxDgfLjREREREREREREREQcvaDYBj2RKnn55ZfjQx/6EJYvX47bb789qNEGACtXrsTatWsBALt27QoqOyIiIiIiIiIiIiIiwhfz3nB729vehve///0YHBzE7bffjnPPPTf4NVqtFkZHRwEgCLtkRERERERERERERERESMxrw+2KK67A+973PgwODuJrX/sazjvvvEquc+utt2JychJJklRiGEZEHO1I0xRTc60jPY2IiIiIiIiIiKMW89Zw27p1K97znvdg+fLl1kbbRz7yEZx++uklWv9HHnkEN998M6anp0vnfPGLX8TrXvc6AMCmTZuwbt26MP+AiIhjCHfuGsFXHtyL3xyIfQojzGg2gR07gJ/8JPuz2TzSM4qIiIiIiJj/mJd93G699VZcc801AICnPOUp+Id/+AfpuNWrV+O6667r/n3fvn24//77S8bXyMgIXvnKV+Iv/uIvcPbZZ2P9+vWYmprCvffe223m/YIXvAAf/ehHK/oXRUQcvZhutvDE5CwA4Kd7x/DkFYuP8Iwi5iuGh4HrrwduvBHYu7f4fO1aYPNmYMsWYMOGIze/iIiIiIiI+Yx5abiNjIx0j3/84x/jxz/+sXTcSSedxBluKmzYsAF/+Zd/iR/96Ef49a9/jbvuuguzs7NYvXo1XvziF+PP//zP8YpXvAK12rwNQEZEzFv0BC1txBHH9u3ApZcCMzPl7/buBa65BrjuOmDbNmDTpsM/v4iIiIiIiPmOnmkHcLQgtgOIONow3Wzhy78pwicvP+24IzibiPmI7duBiy+2H3/zzdF4i4iIiIg4NnDUtQOIiIiYv4ienwgdhoezSBsFl16anRcRERERERFRIBpuERERXogx+wgdrr9enh6pw8wMcMMN1cwnIiIiIiKiVxENt4iICC/EbOsIFZrNjIjEBTfeGNkmI3hMzDbRasf1JiIi4thFNNwiIiK80D7SE4iYt9i5k2ePpGDPnuz8iAgAeGh0Ev+x8wl88+F90VkUERFxzCIabhEREV6ISlSECmNjfuePj4eZR0Tv467HRwEA47NNjEzPHeHZRERERBwZRMMtIiLCC9Fsi1DBlzh36dIw84jgMdtq93TKYTs6iyIiIo5RRMMtIiLCC1GHilDh5JOz5touGBrKzo8Ii5GpWXz5N3vw1Qf3Yq4dE50jIiIiegnRcIuIiPBC9H5HqNBoAJs3u527eXN2fkRY/OCxA2inwEyrjV+PTBzp6TghLjkRERHHKqLhFnFUotVOo0FxmBDvcoQOW7YAAwO0cwYGgMsuq2Y+xzL2TMxgqllE2eZ6OF0yIiIi4lhENNwijjocmm3iK51UoNlWTAWqGtE+jtBhwwZg2zbaOdu2ZedFhMV/7ho50lMIgrjkRETMb+yZmMEvnxjDdLN1pKdy1CEabhFHHX7y+EHMtlNMN9u4b/+hIz2dox6poEZFlskIEZs2ATffbI68DQxk4zZtOjzzOtaRHOkJOEJccyIijhQOTs/h53vHMDYTmU5zzLXa+M9dI7h/ZAJ37xk90tM56hANt4ijDuOzhYdnJnp7Kodop8XsqwgZNm0CduwAtm7NiEdYDA1ln+/YEY22qnBUOVSOon9KRG/jmw/vw44DE7hj+OiIZofAxFyhd+0+NHMEZ3J0IpZ+Rxx1YGvbkqRXfcq9g7agRbXTFPWe9eVHVIkNG4Crrwbe+c6sufb4eEb5f/LJvUdE0mqnqNd65zlvHUWG29HzL4k4WhDLMiIOF3psq4yIMIM13GrRcKscMeIWQUWjAWzceKRn4Y6HRydx955RnLB0Ic49bvmRno4VmkfRi3kU2aAREUcdquwRmaYpRqbmsKBRw+L+Y9OEiamSESW00xT37hvHr/aN92R6Dbtm9JBDvGdRMtyiPzziKMdPHh9FOwUeGZvqGYOoV+Zpg8gYHDEfEJ9DOZppdXXvj45P4zvD+/G1h57ATPPYjHJGwy2ihIcOTuK+/Yfwq/2H8NDo1JGejhdixK16RHKSiGMZvaK8yQy3Xl0ej011LWK+oVfefR3SNMXEbDOozGabf0NDth354e6DADIH/a7x3tZPXRENt4gSWGPt4dHJIzgTf8SIW/WIqZIRxzJ6RXk7miJu0TkUMR/QOgoewx88dhD/sfMJ/PKJ8WAyxbWmqshYL9UYh0Q03CJKYL2wvb4uxYhb9RCX5F5RZCMiQqBX7KFmevTEqXrlnkcc3Tga9rrHDk0DAO4fCdc6Saxxm6mIuKXvGDXcjs3KvggtjqZX4Rh9rw8rRO93VKoijmaMTM1yfw+pvKVpih/uPoiD03N41vErsGJBXzDZVRIGHG4cDQpzRO+jfRS9UyEh1rjNtKppy3SsLgMx4hZRAhdxq+jNaDaznk0/+Un2ZzNsinUXyVFlhs5PiE9IVKoi5gMen5jG3Y+P4lDA+o2ZZgt3DO/nPgv5vO8+NINHx6cxMdcK3rj26EqVrEJmivHZ5lFl4EZUi15vsVGZfie8Q6Fq3MS1ttfvvyui4RZRAmvshH4thoezRrvr1wOnngqce2725/r12efDw37yd3fC/jlE4oyI8BDXznjHDz/mWm0cnJ6LtT8dpGmK7+06gJ2jk/iuYGj54LFDM6WIcsg6l5HpIpp3cHounGAcXYZbFcy1vzkwia/tfALfenhffI8irNDrNW5VLQmi8yPU6yTWyh1FSxoJ0XCLKIGPuIWTu3171rvpmmuAvXv57/buzT7fuDEb54I0TfFfjx4QPnOcrOE6EQVEL1iMuBVottu4d984HqqQ5Kedpvj6Q/vwzYf39TwLbCiwCtVUwMJ4WZPdkM/75FyRUtQIXJ8rM9x6VfEJvca02il+9sQYAGBstompZjWpXRFHF3p9r6uqdY+41oS6T+J72ev33xXRcIsogVUXQr0W27cDr3p1imf/wSSe9qwZ5biZGeDii92Mt0fGykpr6JLY3xyYwL//eg92BCzk7XWUUyWPyDTmJR4YmcB9+w/hrsdHg0dQcuyZmOluaKHT63oVYqR9OpAiLiuyr8pwW9RXDyYXKNedAOEVn0OzTTyw/xD376gCodeYvZP8nhSSvvxowNRcCwcqWr96Gb2eVluV3VPq4xZKbkUGYa8hGm4RHJpNYHKyMN1CvBjDw8CllwIveNkU3vCeUbzzEyM48VT9JnDppbS0ySlFTUjo6NhP945hrp3i5wGpc3sdZXKSY3MxleG+/YWBL6bxhoIsCnSsQ3wEx2bC1LnJDJKQuhvrUe6rh424yZTM0K/qd4dH8It94/jerpGwggWEXtdFT36zx3Lgmu02fvjYAfxk98Hg6++DByfw1Qf34lsP78POg73VHmh0Zg7ffOiJyhxavb7XVTX/ltDHLdT7GmvcMkTDLQIAX3v27W8Xn+/c6V97dv31WSTtxZdMAADqdeCSt+oNn5kZ4IYb7K8xNtuUKlDH6Ht9WCHe4njP5aiqM0WvRQcOBzGRqCiMByIomZgrywmpPLA/ZeiaNLEpLhA+VSo3gMYCN/QVEfqRF+XNSe5VCMy12pWk2v/yiXHsGp/Gw2NTeCRwuvTP9o51n5J9AqPqfMf3do3g4EwTOw9OlthgQ6DXDYfKIm4V1biJ72mPbX3BEA23iFLtGdvuZ+0JLfzte1Ln2rNmE7jxxux498NF6s/Zz1OnS+a48UZ7pU7lOQr5XsfaNjnKDbjjfZKhisDYgwcn8LO9Y+EFd9Bst3H//kPdXj8+qJqYiIV4q0MZQVWnSrKyQiuFR5NjK7TBKUYjqyByeWR0Ev/+6z34nlCHHQJsbWto44q9Fb22trP1rVWk7/a64XDYatwCyRXn22vPYyhEw+0Yx/btWU3ZDGNH1YXufq+5csy59mznzoKIZHSE9rjt2ZOdbwPVAhrS2Op171pVKJGTHKF5zDeIz9504F42eydmcM+e6ow2APjVvkP45b5xfP/RA3jw4ITz+1Q1MZGIMtNpmHdXlm4YspcTu8aErp+RKTmhe9CxqLL+J/RSLN6HKqLYP358FCmymtRQNZc52OdmQaM6te5YVZRVEHWCXnPuHr6IW6BUSUHusaqTRcPtGEZeeyaif4B/Gf5wU5HXTq09G2P0ykY/dYbAuGUpmWphCPlaV5mSlqYp7tt/CD/bO1YZbfdsq41fPDGGR8fDptKUyUmOzcVUhPi8iFTGvnhQUm9SD5yPuePARPf4nj1j0muaIDqHli5v4723PIFr/3kfjj+5ifWnZPWuPsREIkRDLdQjWSUzY5qmnKzQho9MWshLiKJCphtWXUcrKoBVpUrmqHKJ7KtVabhVJron0evkJFXt1aKTMtRVxLey4td03iIabscw8tozEY1+9WtGrT1btqw47uujv75Ll9qNU6ZKBlyXquyDtGdiBvfuG8evD0zgvv3VEJ/85PGDeGBkAj947GBQI0JUqqLdlkFMzZkObLiNzZYJfkITWoj4KTEtU+YcuuRtY3jy05o47aw5fPgrT+BDX97HMc1SnUMylNJ3/cRlMlJ53C6U11eUImOB9IFsjXzs0HSw+j9RfEjSnMkSDXgw0VJ5odd6UcGv0rlVZe/S6JTjId6PXrs7Vfyc7TTFbKua512MuB2rz2M03I5RsLVnIvo0hhtAqz07+WRg7drsuFEy3PTXGRrKzreBSkUImcM9VyF73+MTheK6Y2RCM9Iduw8V15CRLLgiRtzkEL32oVMlD82W5VXpbXeBzDn05KeXDc43v/9g95jqHJKhtNIEeCZVynwwpaQUVQqbeqUS9f1ANVdVpRumaYpvP7y/9FlIlOcedq0X19uQ0kXSmSpJZifmWj2XDphj96Hp4AQlIvlor90a8VEJ8dvKHJTByEnEv/faDQ+E+bXLRxw2sLVnIvoNKY2U2rNGA9i8uXMsyK0Z2hRt3pydbwP2BV6zqLhQlRG3kBsYm+JWxVI0U2FD2V4mJ0nTFI+Nh9/QAQlT3WGg7W/Uqo24UaB0DkkejwWL+A8pziEZqogCqwy3vfvCMGPKGOhDRt1UkkJF3MT3PlTEbXKuVSKFCf0miVHT3xyYxERAZsyJueoaB4sN5kPW/Yjv0eRcC/9ZcauHqjA8Po1vP7I/6O/a+xG38DOW1W8GS5UU1uDh8Wk8MWkmujvaEA23YxRjmownXapkDtvaMwDYsgUYGCinStY1htvAAHDZZfbXYNefVQsZw81ehBGiBzmk7KoVbrF5ashMIDGqGbIF0kOjk/jpntHKDM/h8Wl8/7ED+PYj+zEZMAoJyCMoxxJUziGbYAbFOSSDeK9D3HqVQvzBD6VBmDFlynzIGpqqHSrizxrKUZFI6jZD/1tkBDNsfacvxLTpkGuBeJ/DspyWP9s7ORvMKD8crUFE/Drg7yq+n1WmqVaBKuj1Zcy7wchJJPe3Vx0JPoiG2zEKtvZMhEhOIoNt7RkAbNgAbNtWjrjVG+rrbNuWnWcLdrNqsNGrgJuYmJISUneoV2y4VeuV5f8eSnEYm5nDXY+P4jcHJ3FPRZT3P959sHvsQryhQ5XeWCUZzzyKdqqcQ6mlzkdxDpWuIfw9xDN527/LZfT1p0GYMWXGQ0jDrepH43AwMxbXql5eyCi8aOiEfE/F+3w4jH3f9+lwtgapEqX7MH+WXyuU96hqUiVDRchlTuFjzSEKRMPtmAVbeybCxP5IqT3LsWkTcMYZ/Bsmq3UZGABuvjkbTwH78rJGUKWpkoFW6WYT2LcviCglRMUhLA04//dQisPIVPF8PDru30fMhARhjWfZJhPM86gQM5/2MJVzqJ2W77PstlCcQ2V5YVMlt28Hrr6mEPLAPX3d4z5mvfRhxpQpNyFTJSuPuAniQ0VlZOtsaAeFzJG1fEGfZKQbyutvMNGliFtIp5xKls81DndrkCpRagdwhObhCnG+IR4daapkKAKneeSYPJKIhtsxCrb2TIQ84lZ8Rqk9Y7FiFS/3XZ8awQlPzpTzoaHM07ZjB91oA3ilpMbVi1Xn2fTdfFmv4wc+yAv7wKcmgnodKzXcKmqKebiX6APTs0E3BnnfrDCyVc/1fPI+qpxDNhE3F+dQjp/vHcO3HxHILDyeppwZk63DOzRabJ1l0iU3ZszKI27BJMlRHTmJ7FpBRDPyqntXgWrX31LEreJUScD9uZT1jZUhZGuQEgL65+YE71xouyJN00qNlSp6sMpqgUP9E1TP9uFIsZ1PiIbbMYy89kyETBHJvcrU2jMWsnfu+lvH8MADwK5dwNVX09IjOdnMMRtxC7n5llIlPWSJXsc+wVg+8b+NBfU6innnIevQxHvcq00x907OBmX0lCnioRwJh6PhvC9UziEbw83VOTQ6PSetTfJZB3JmzIGFxcTHR4s1RsbC68KMKXtvwirh1T4bVaVMV904HFClYIW7xkxF9OiAJOIWkLlFtZ64PJeqvrE6hGgNUiUOzPBZQ0Edxa02vvXwPnzjoX3BG7bnKGV6BnguZc/GyPRcENljivT5Xkux9UU03I5h5LVnLJIk5VJ/cuTKCbX2jIXshV68JMXGjW5KGgt2I2RbWYXc3sXeJK4Lkczr2C8xoEN6HUse3wo9+fMp6kPFL/aF66En059C3Rtl38Iw4nFgeg7fecQ/f1fmHJLdA/af4+McEtn7uvLdxHHMmAsWKiJuitRyKjOm7L6E7Cd2uGvcQl1Pn/8RBrL3KeS9F9sLBE2VFGSPBMwcCBlxU/WNBYBlK+XvbYjWIFVhutkqkc6EfC7vHzmEgzNNjM028bOKarxFso8Q85fpeeOzTfziCb+9dft24F/+VT7DXkux9UU03I5xbNqU1ZTlypXMaAOAxUtTp9ozFrK1PlTkh6txq4icZKrpv0irvI4yr32eshrC6ygablVSRvdqxC00pBG3UMqsQk4ohfDO4f3YP1WuQaX295Y5h2QRN/bf4+McUvVtdF0HWGbMAYXhJrLl5qAyY0pZJQ9DO4BQKDHUBbqiPFUy7L+m6qheiZykwhT+ZjvFvfsPBZGtTE0j3htd39hL3jaGT3xvL159hdw48W0NIiJULbPI1AyEdY6wbTpGJNcKgXLEzV+myqj3YWnNnd2mNqWVptjOI0TDLQKbNmW1ZVu3AsefIH/pvvdffkYboNgcAzZpzcGRkwSRDkzMNrFngncXuixyKq+jmCoJAIsHs80+hNex1AepQoUwZF1OL0Om9IRSZpUGSgD5aZoq65NqEmp2E0TnUNqWy3AlJmKheqxd7wrLjDmgqHGTOV1yUJgxq1wfVfJDoqqIW9X1Z0DxrrJOv5ARt8NJTgIA9wcy3FTPDHWN1/WNfelrM4X+T14tV+x9W4NUhUMB+8HJwBqYVb275XfW/zqh58o6u6Vp6VPlc+Z7iq0vouEWASDzcF99NfDzX8hfunXHVfNCh/IoqyNuQcTjPx8t9wqhLnI6r6OMEGbJYLEh+3odyxE3d1kixPvQSw24q4QpJdAHSgMlgHwxsszCxXADeOdQn4Ssb8GAOzERC9V64qqQsMyYXKrkQbbGTX0+hRlT9k4GfU/DiZJCdCZUSVIUOqqfZxs2aoW6HG5vKjtCgkbzKnSUqaZJNdx0fWNt4NMaRESoaKcsLTtkhg/bIaiqLbVUlxpAZsg1C+Cd3TL+henJshkzn1NsQyAabhEckprCwxbEE1ONXIBXGuqBWSXTNMWhWckiTZSj8zrKPElLGcPNx+tYteJQJicJJrpSVB0ZlN3jcLUnYQ0UFrIUoBx1R8MNKJxDz352+bsFC9zTI1mo+065yWOZMdlUybED9e7xgsVydYfKjCn77XqJnKSKZr6A4r4Efnfz+1xLkm7GRqj7JWuLUHXELRRUKZHUVEld31gb+LQGERHqNZAabmFEA+CdZJVF3MQatxDkJAEfbtHZLasnrtXl1wudYjufEA23CA6qBTnEu1hlHQE7v1pgVkk1gx9Njs7rKCMnWTLIX8DV6yhXHKpLleyViJtY1J/jF0+EKQSXPu9BJKufyRDyRRIeFqYaAxuEkKFC6P52LDNm/wI2VTLBxHi2zgyukt91KjOmlFWyAnKShQ3+B/Axxnn5ghJYIYNqVTVu9aS4H5I+wk6QpR2HZNwUCTJCodlu4z93lTNNAPpzqWoNUm+IcspyfVqDyBDKGTIhSZUMa7gVx1X5GCupcQv4borObh3juYj5mmIbAtFwi+Cgyuv33WjSVL6Nh3IWskpDLSlatYRYQ5RefOIyrfM6ymrc2FRJwN3rKDPcKiUnCVW3WHFyl+pZf2BkIogyJE+VrPbehBCvm2MtcJPy7jUDyVH9pj73PWfGrBdBNrRaCUb3Z9vn8tXl98uFGbPKjASgeGbEdFe2JtgHlUXcJJ8FT5WsMOImtpEJKXv3oRlMVxRxe+igpHioA+r9V7UGEUsEGpI0atfWIGJNeo4QdaNpmsoZbAM+locl4iaWOQSQGdLZJDq72cykB+/NHgqZ7pQjZIrtfEI03CI4qF4634VDSStcQepYDQnyNS+E8q9OS6PJUXkdAd6bn2PJ8mIZ9fE6isQkALDn0ExAI4JHr0fcAPk9o0JKThLo1qgjSwGUEsfvbCE1UALdGJmSDPjNO2fGrDGGW7sFHHwi+2Dx0rSkgLowY1bNbJjfYtFOC2WKV0F0oJLTTsPKz4PM9VrCRNzCyBebNAPh1oGRqdkwgiTQrY8u76usNQibfgyUDTnX1iDtNFVHCwPc+9m2fKUN6WyscSUf1aAccQuQKtmR0QgQyRed3blh324DM1OZ/HpdnS4ZMsV2PiEabhEc2M2K3eB9FavDWV+RRdyyyYeJuMk/p4pWeR0BeY3b8U8qUjFcvY6APOJ2aK6FR8bUHlUKxHvcK+0AdLZZVexaoe6Man5BIm4O16VAdV98ZDebGbnJ7sdVjidn0QAy0pQXvrAQkqbAwX3F9jm4OvO++zBjSsmbKkiVTJDgOetXBJObQyS1CeakUHweap1hpdSSIgLZStMgz3uVqZJVrrW6SKyL8SNrDSIabmL0xLU1iM7oDnHPmorNI+SvId79R0YnA0rPSgLEvqUh5t813AJE8kVnd54q2ZwDZqcL+TJyt9AptvMJ0XCL4MDWuPXXi8fDdxOumiGelZ8khyviFsbrCMgXnudfOIVFS9teDYkBdc3STx4fdRfKoJRuESpFqgJvICev4lTMKlMldc4E32vozg8TcZNLcVGohoczpsr164FTTwX+7d/Dvasinvzk4njFcuDg/mJ9POXUNrZu9WPGlLNKhoy4ZbKSBDhuyQIs6atzn/tgcq6Fe/fxFPTBWCVVz0ugDEH2HteTRCC38ocsChzOgaP7zu8quoiJazRSbA2iirj5tgbRzS/Ec6lqlxJyixLn+eNA+zWQOVkeGCm3Xwji6O7cmxAp2KKzO3dwz80mmJvTM/v6OLvnO6LhFsGB3WT6a6zhNr8jbqwSXkuS7oM9nyJugNzrCAB9nY3swBM1PHRfJ3e7HzjjmbNeDYmBMGl/Ooj3oQpPOAB8/7EDQeTm0OkeVdVGhotCVGdc6c4PMX/VvaU+ptu3Axs3AtdcUxSwL1ikUKhooo0yvv2tBK95ZbE+/usX2rj6ar/3tOp+ZbmoPAUr6fwZ4hL37S8Xk1RtnPzgsQNhIsDMc1dLEq7JfIh0SZmMkOQkOc5ZN8h957sOayNumjRKE9jWIMcdz89x3fHwdoBk89NE3AL8pqo00pBaTpXO7vEZOd1iCGemrCeiD1hnd54q2ZxLMDfDGm78vH2d3fMd0XCL4MAuamzEzXcT0G1UodOvakmhlIQwWUJTr2/aBPzFX/Cf9TOepDu/vLD7+R//sX9vK1mqJAD0BSIlqKqPmyh396EZ/OeuEfz6gLxRKxW6eYZpf1GWESrKp/e0+wrXfVVdBJtyz7dvBy6+uNzMfuFiuYz9+/3nzT6PjQZw/Nqi6G0uDUFmU55jMKIfRnb+1uevf5i6lvJnwYwTxef7pmbxuIKAgiRf2DtYgyXEOiBT8qtII129sB/rFhfpHL7+Ot0cfe9L3hrkC//Gy/nWt1NvBwigr88LEnFTZLGEzAqhkp9RoGoe7vtcivWiIcA6u3MDrTkLzDKvfqgU215BNNwiOIwynpigqZKa71RpByT5jIgELKtkANkqBj9Hedu3Ax/9KP9ZvvDMzWT52zlu/3qK7dsdL9SBKuLG/r4+EO9DOwV2H5r2lit7LPZMzOBne8cwrWkS7SM/R1V9C1VMZ3TZuoib39x1ZweJRCo+H51R949jMTwMXHqp/LsFi+TSdz2anecD9p+eAOhjQjMhDKxK+1wyYroRN811qZB510PpsLo1XMrsRwRvuPGpkkGiM1JykvARt9LcK3S2hiJugdg3tpbivv2H8Msnxr3uve7fHoKchDUMq+HZra7pNgCMzykibgFJ6EJF3IAixTbv4yZG3EKl2PYKouEW0cWeiRmOsKKfUUy8UyU1i3CIBqLd+g2INW7+UDnvXPYVldKZG26zMwnazeK+NxrZeFelc67dxmPjciNqIJThJrkP//Wof1qjzgBRRRFJ8nWbewDFRKY8PDAyEYQJTvc6entNtWmY1UXcfrbXrn/e9deXI205VKmSSQLccIOVeCU4wy3hWyNU1ecyXNoxE3FL8j/DpUrKiAjCRd411w2gHLIrCdsOAAhEZCFNlfQWC0CIpCZ8D1PfuVe5xuQYmeadNffvP4R7943j/pFDXs4/nTM4xHPZVGQmhU2VrM5yG5+ROzx8r9gSHAkhsWkTsHJlJj9tZ9lJOYaOC5Ni2yuIhltEF3fv4Ytfg6ZK6pTwIH1Vsj9L9RtBIgTh0iLkSmeKgQXZ0dxMghazptbrKWZm3JXOR8enu7/dsn6+UjdUxK2qlA5tDVoQ+Yc/VRJAicQhpGzA/5mvNA0T6t/VxovfbAI33qj+fsFCuYxaI8WNN2bnu4L/txfOISCMkiV75kI4tQAxI4GPuAH+nnZZVlSwZvOatz1EOlYpVTJ0xK3CPm5iJJWtz/PtV6abY4j5T8w1cf9+fi1kU1/3TrpnJ2hr3AKnv7KR9yrJSUJhttXGvilFjzvPS3JEPxVYF/lacNrGBK/cVNz3L305TIptryAabhFdiIoTnyrpG3FTfxcielI0UM3+HjRVUkjDzEGVrFI6+xmWydmZBC0m4lbr2FquSudss7i3pyxfxH0Xgq4XqC6lQyc3SGqa5ruqUiUBuZJLlq35br6nSqreSZs1ZufOgohEBlkDXyDr9bNnT3a+K8SoVeg+S7Jn+uBME8MB2naknIKf/1ltn6hwfdbU3wV5l1j5aYJDo8W+NzHrvzfJoj+HZptB0g35/qUImyqpeSpCrI8Pj+qf66X97pSA2hq3APd9jC0pqbERt3BvUlXkJI+NT2tkh8usCpkqCWTPei69UU+waiXzZVJhXuk8RDTcIrpYILhIwta4VZv2lkvIlZFu4b23ZNGL5O5dUymd/UyUYHoqQYsx0Ood/gNXpZO97wv76tx34WpQwsgpydX8elWlpuUIU7OkTtvzRaWpkjrZgVMll/TXsbQ/p6U3nztmyKbM+/yIyN+j8TL5oRMS8EZD6PQrFj/afdBbdluaKsl87+tprzQdUP1d6HXgn25M8M4ri3XyzW9rYetWv/pIWTuAkek5fG3n3gD9UYvj0GmeVbPumhR7D+JKQ8TNXS6QNT3fxZQf9LGpkj0QcRtTEJNk1/STrdKVQqAlGIWs46lq1vL5hmi4RXQx0OAfh76g7QDU34WMuHWVkk5sLAx9udyLRPWuqZRONr1rdqqcKpnDRenk+9sBp61c3P17MIZDiZwQ9XNVk4dUrRCq5pgEKGevlpxEIztwquTvnLga9aTW+dwsfNky/fcNSSN7IEuVBIClS+3mKAM7vaTzX44qn5cQ4CJuFaRKyuYerGeh1oHjf43bb2fW2FFgZG9huPUtbOOaa7K2E64kUSoGwqlm25vESUzzrIWMuAnnr1hQhLNDPKsmvf7qq+FsNOtq3Hwbqz8iRMBDlRyIqCripiP2CrkOyAmL3OU3BaOQjy47i+1JRMMtogsxdY4nJ/GTrVvowxBNZH8WNW6dz4NECIpjn4ibSukcWFAImplO0GqVUyUBN6WTXShrSPDkFazhFgb5/VnUqAcjPAEM5CEV1qCFkq8SEcIRWXUdmlK27/lMusvKBX0YqNe46LhpYz/5ZGDtWvX3ulTJoaHsfFewM8tSJZnvQtS4aRbZkE3VRXISIAQpQfmzUDVu7D99iKG7F79zwfbtwN++t/h7cy7ByN5iDVs5lCm5MzNZ+wkX4222EzqqS9577/eJOU5KjJh+stnHceOKxXjBSau763sIo8KUKjoxCWejea6pl+2TpioaJP21cO8RC2k7mQDrzHRT/WD4Shd7IoaUz66PjSThiHhkUe2jGdFwi+hCXOjrAUPRugVnNsBL161x6/w994aHUGJZJb7hoeyolE4uVXIyQZvJZGh0IgWuSiefSsMra8FSmTp/JknRGy7EBqOTEKJOQRvR85SfpqlyM0kC5EpqG3B73hrT+T6/rYyWvkZ4JhsNYPNm9fdiI9Yc9UaKzZuz810h9kIL/S7l64zMsJ/SKFs2EJkTxev4ru/yVMnqIvohrpEz/LLptXNzwMieIuKWG245XBh+c4KZgUa99J2vE0es7WYdi/5ZMsX565dm7Fm5ThDit/3ZL/UyOoF4ktE8PJxF6W76tF62j7NYdHDzqZLhTDfZDEOsM3nErZEk+K21vDc5pINe9mz73B7W2K7XaljMlH6MKhqKH62IhltEF+xifMaqJXzxuvcLrf5OlUpCQf5OlyNuIXqT8CF62ec2UCmdXKrkNJ8qWeusTa5Kp+iRZV/4cDVumaBMmc0+q7LxOTC/I26zrTb+48EnlM98iMx/3QbrW4fGnv2kwYU4Y9USLB/ok35PBTu3giSD+d7ivm/ZkvXrEZEkqTbidtlllJmWoYu4haj9y40fWYrRpGe/MmnEjXkS/SNusuiAp9AO2GddlOmzzuQMv+wz05xLcGg0wUwng3HlGv4KVIbfVrtoSCzWkAP+lOnivheSnIQntOGNfV/DbXgYuPN7+l+vJvR4MxnN27dn0blrrgHSRC/bx1nMzurcdYN85N1ZquQ6knscYp2Z7hitCxo1PHnFYpwasHyCX99lETd3+ZwDvZZg1cL+7t/3B2ix00uIhltEF2wO8emrlgT1yOrO91VKss2xo/TUyvUbvmCnXvdML5IpnQMlcpLiGvVGNt5V6WTvO2tYAQFr3DpikiQJGunUskpWHNHzkX///kOY1NQRhEmVrDLiVgh40uAinLF6aTDKa77mUhZxMwvfsAHYtq38eV3j2Fi4yJ8qWqxxY/u4hXje8/VXxvaqe55sIG0HwKV6eonnfrfBgeyHCOE0A8S58fJc9yWW4ZeNuDXnEgAJDu7LPGaDq8sKPoXhl43siDXkQAjDjY+4sY+OP/GJzMkSpnb8459q4QUv17NK1oTbpTOat2/PonJ5q52Fi8sT/Nq/LOwef/VrPlkDxbkLGnUgoANEdZ2ufM8LNNvtbuRqQScCzLYJ8l8HimOp4eYhXyQn6a/XusyjB6fnghCK9Qqi4RbRRf7gN5Iki86wCpWnbN0Gu29qFqNCI04KJuaKXXRJJ3wekuo6FKskIFc6BxYWd3emxCqZYts2d6VT9JomgZVNoDAAs1RM/jM/uWqEZpMTtxifTWDKoGQHSZXUTC9kO4AiOsNc20O+ThnMvreTs2kTcPPNvBNElSYJZKmSvhDvS/A+bkzE7fwTVnLf+fZzY2cntkwBApASKGjAQywx7PO8QEg3dH1NWYbfPs5wy/6c6xgAMpZSCsMvG9npr9dK0VTvdzV3mnV+zbCskuXoSWG4uctuNoHp5QZ6WBSpkixkRnOe8spiQOjnePmFq7HrN4WBcsO2tjNTaHlPlX/nC9mz7bvOsPVtCzqOhJC1rqlkfWfhs4rxqZKZ8DxdMoVf3WKvIRpuEV2IUauwETf992zjTSrGGXrbJR0PTEiqa46chEsfdRMsKp0cOckUT05y0Z9m410hpqZVEXFrd5WHsLWF1dP1F8fiJuOj9IgRk4agrIVYdKtkfuQMlG50JozBn0qVweJ7yjqzaROwY0dW0zI0pCYmyeSSp1qCWOMWMpUc4NffocUD+G/HLy995wpZqmRIxxxbnxeyziqTURyfNLiQ+851DWYZfsVUSQDdrIeGwuC3ZfjlIm71Ghe5BsJFOmX1ot6ymWNZmx3Xe79zJ3Dei8xsmmLEDZAbzXnKK4t+Zk997flr8dB9fVx/vgWL26SUVxY6B07ImJvs3fFdx9jnMWfDDEmypNKVQsgXUyUBerbG0YJ5abjNzc3hG9/4Bt761rfivPPOw/Lly9HX14d169bhJS95Cb70pS85y/7617+OP/qjP8Lq1auxcOFCnH766firv/orHDp0KOC/oDch1lgkAV8K0/k+RsSh2SLCkYfOQ3qT25IFA/Bbolmlc80QY7hNJxhk6oWf9vQwHlkgT2WUf+d1DVZ+wNrCqlMluYibsMn4bJANQePoE2pbQkfczjtuOU4eXCT9zgV8SiD/p/g9FZyxnP/pQfKxYUNGG75rF/D9HxjWmMAbO+cc8q0NSdPuv70uUcJDOs4qaQfA7B1cdDawwVxPEjyXiUa63heW4bchibjlUR1V+q0twy+rKPfValyLHcDv/jSbRX14q5n9nZUecs/2iY6LMPVi7F6zJr8AazSzKa8s+geyc+dmgdH9WVRm/GBxd5YMtkkpryxKJEXcd3R5Ksjur/eeyhx3+QACtjXh91T99aloSqL6oXtp9grmpeH2ne98By960Ytw3XXXYdeuXXjuc5+Ll7/85VizZg1uu+02vPjFL8aWLVvID/Hf//3f43d/93fx1a9+FU972tPwJ3/yJxgdHcW1116Lc889F/v27avoX9QbKDy+2d9D1nAYDTcP+fKIW7jwfzstLxiA/z3Jlc5r3l0Ies+7E/zrv1Rz32sIe18AWRQigNAOqu7fJDNQcvhE9HRtNUKB/fcv7qvzNWgh+7jlaXWBIrW69CvxewoaDeCkJ5mcQ37gPe18jVvIBtZyb7KffPY3kzXg9n2diohbIkR9ArynzHEphd9RPMvwK424df7MvuMvQmH4nWUYivrrtdLa4PIu5cyJ69cDYx0j5je/TrB+PfDJT4bc94rjRKIouzrPZG1xHn6ggVYT+LdtBVGGLFUS4I1mNuWVRZ7FMjtdTJiNuC0ZTEkpryzESGRIkh/uOlJyknAya4HXdkBklQxc42aMuLnL7jXMS8OtVqvhoosuwh133IHdu3fj3//93/HZz34WP//5z/HP//zPqNfruOGGG/DpT3/aWubdd9+Nyy+/HPV6HV/60pfwne98B//yL/+C3/zmN/jv//2/4/7778frX//6Cv9V8x9ixO1wpkr6SJ9rS/K2Wdkhw/+1cApyV05SyDnh+IRjj6xi883/BVUoVSG9d4cz4iZuMiFTJcUGraGNzuC1i9KIWxj58nYAzPc+RqHh+1CkLfl0Q6YYyepoq1p/u+tA0FTJ7M96LREikf4Qo7QhnheW4VcXcQPKUTcKw+8cl5qWdNul5KD+rCxz4t69xdybc9nfb2ZUopC9/+QRNzf5J58MTI7z9+EtL1uNVz9nCD/+VlG0KkuVFI1mVfSuvyOGM9yYiNvS5dnvYpvyykJMO+YNn3CoJOKm0QfE733lB2eVlEbcYqrkvMELX/hCfO5zn8Pznve80neveMUr8OpXvxoA8KlPfcpa5rvf/W6kaYrXvOY1+MM//MPu54sWLcK2bdtQq9Vwyy234L777vOefy+inRavVL0Cb0aVL5VMGQypPKgibqE8PE3B2x5SYWMXStHDFibiVhyHrqET7+8ipm9LgJ7t3HMh7jE+970mxO/6BQ0kSP2fpnYxZDuARPI+hYu45X8y75TH72rq7ReKtEVaIxYw4iZXSvzkc0q48Kf4vQvajNMvfMRNVJTD3Jec4bfMKln8CfCGG5Xhd1qoKaqXDDf7f4DInAgUBmRek9dmeJF+8Uv7ecogS68Nsf81GkDSLNbyQ6MJ2q0Ek+M1rr5bFnETjWZZ9A4oeqPOzjCG21hxvHhZ9rvYpryy4BlaBQTSc56YnJE6D0PqYd2etxXpedX2cQsXAe5FzEvDzYSzzz4bADBsSQs0OzvbrYv78z//89L3J510Es4//3wAwBe+8IVAs+wtyBWH4vvKI24e8qWewYrSPPmIWxi0BMMwZPREHnFLgsgGeCMhdL6/qGg3AnvXeFZJP084J1eYdyniFoJxU/hd+eiPr2z+NwXE2hkf2cVxyIjb8DDwD/+oPzcUSVHazupT2X6LvkZhU7LGsAaQN0MgcyyLuPk+kd00+yQJ9qzk0D3rPutAzvDbKNpBYW62kyrJtGRhCUqoDL9sq5tFjXppnbH1U8iYE5Mk7RqVeaSQNXxu/xq9WTg3N6mTRf49FSsZ0tS//V/FX7j1QdBOZUYzm/LKIq9xYyNuXJudOi3llQX7r64lSfCIW5qm+K9dB6TfBa117UyczRBppn4eUVH+GauWcN/7zF6WKlmFI70X0JOG244dOwAAxx13nNX4Bx54AJOTkwCAc889Vzom//zuu+92ntfExITV//MRslSdkKk0ZnISH9nFsSziFjLyU+cU5DArRUvwJIWcu9TT3o24hTcgwlIL838PSXWdyVd7B32ki1MLzSSXpimemCwajtYQLpURECJu+Z+Bfte2ED0B/CNLefrYp27Wj/vXz9FlA0VN0f33Z3+fnExw6qnAhhOKMUFr3JJcKWHlh18HQjlZ+GyNsKRWoowsVTLcs75pE/Cyl7MRt+zPlpAqOTCQMQFTGX7zVjUJgIV99fI6Yzl/GXMiGwlsNnODk5PuzJwIFM90AveeiyrkdYVTEwl+9ZPCcmbtBpGcRGY0symvBdIuq+QME3Fj702tnpJSXjnpYqpk4Bq3vZOznCOHu7anbFmtK5sRMtfyu4Jo7J+2akm3fAXw05nYuT06nKDZDN+SpVfQc4bb448/jptuugkAcNFFF1mds7NTgbp8+XIsVcTGN3RWhJ0u1aodLFmyxPj/8ccf7yy/Sqj68HSVfG9PT3UvlawfV8jIT+URN0FpC0l6IDVqO38P8ZPoyElCM5HWAyuEM63yJpbDKwIsRtxKqZJ+c39icpbrFddXr4U19pljeR2Eu3x5jZu7Qc6mj+n6uAHA//7fKbZvJ4nnaoryf3eejrZ3b4K5jv28f7/fPZfXuFW0DnQdc8VnIWtPQkZ/ARkpTIEQa8ySE4pG0MuW5qmSxZjL35pixw63tix5xC0z2sR4m938VcyJDeZ5l0XcanVas3ARYnPv7DjMM5m/SwsG+F6MbKp0nippMprzlNccjb4sogYAs0zXAVZ2o4+W8srPnZkjwjM1H5ieVX5XRcSNdSzO+eSqQ3SyZGnT6xYXP47L9HPH2b98rpjbH/xeRsbz7W+F1Ql6BT1luDWbTVx88cUYHR3FmWeeiS1btlidN96pQF28eLFyzJIlWUh3zJar9iiDmK6Xo2i46SffnCrpIzs7mfUMhooQzDTb2DVerP4NztsbZqEQ06R4tjdfJbxsnOT3JghxAHOceR/Za/tBPJ+LuHk+kLsPTWP/FBu1ckthkkH8yUr1cx6yAWCCSb9au6gf/fVaUGNf9siFSgeSpV+5RrHF9DFdHzcgU2QvvdQ+fUysKcrtb1a3ydOvhh8F2ShkIae6DqeUyGpbQinhojLIyv3urhGMzcxJzrJHmQwi3LM+PDaFGaYO7bZbEzzwAPDCFxbXeOtbU1J6ZI7ZVhtznQnmjYLFViA201cxJ7LRopwFs80YaY0+d+ZEoIiO1zh9gPnex4HT+XPBQML1Ymy3iwssWZJ9bjKa85TXHHmaJMDXuLGpkmc8lZbyys+dX8NCOs0A/d4W0gmdrwN9QSNuxXEtgC7GOc6Yz2emEuzdC3zz6zFVct7j9a9/Pb7xjW9g1apV+NznPof+/n7zSYcRhw4dMv7/2GOPHelpSjEyXWyurIKcH1bfx81HdvYnu8GEMn52T/CNQtl6pVDrBLtYiuQkvteQFVKHjbgVxzUIqZIBNxmAdyh47i/4r0cPcH8PG3HjUSYkcBYNgL8vJ3b6t4VNGVEb+0AYJwugirjZyxLTx1iSCRnqjRQzM7BKH5PWFHUNt3L6VaORkoxCEcbav5Ce9jzixl3fJ4rK/6bsszjbauN7wrtGl18cl1glPe/LXY+Pcn/va2SK4qoV8utTwNW3dQ03fozNfVf5kmVsmGzdZa0TdXJhTgTk+2ooZ0KXoTXhezF+8QvFmFdekn1uY2Bt2pRF5QYG+Obbs1PMfBmHy9q1PnMvjkPWRudocfLBRayqYJetMzpH0IhbvncovjdBdJyxGRWzs+XI+B3fPXYst54x3N74xjdi27ZtWLFiBb72ta/h1FNPtT43T4/U1ZflDbiXqWiKLLB48WKr/+cjHjxQ3JvBgcJ1nS9MVbNKejHVdT2DxWehan5Y79e6xQOcdypUZH6ms9s2kgSNWq2Shph8NDL7LkiNm8j4xn7nXZfD/z1kzY+IoOQkQvro8oE+5fcu4KPj+Z8BI27MsSz12MvTLhj6gJsyKEsfaxhSJfP0qY99zJw+JqspyhVhlrkvry2qN2BtFMogY3+titU3hCdcLbscvWYNGBdwz2MSpo9bDpGeX3ZvXJ93Noqap0uLadM281epJNL+c0yqZP68uzAnArxxlSN0lJZ9VhoN4KSTijFJQrvApk1ZdO7Nl5cjbkNDwP//yvL1XcA/j+Uoqi9YneMFJ63GyoVFgMI3W0NV153rNbOedM0mvgFbyBxnfUwkda6zNudkQgBw47bUi4ynl9AThtvll1+OD33oQ1i+fDluv/32LqukLZ70pCcBAA4ePNhNmxSRM1TmY4815OlXtQQ4aXBh9/MiVTKcpycHq2z6aA5yzyDzvbtoIbqxMCjteo7pZjbDgbwHXcDUi1Ryb/KNJnTELTg5iSAhSZLuM+ObKimi5AkPJPe5G1aW7rOv7KoZYGUeZVlPHhdwRm3XQJF/r4MsfYxVZG//7CJ87ysLujVoQBZxA4B9+4APflAtW1VTlJMl8KmS+bWz71xriqSe8KpSJfP7rrg+WTZzXBNq3EJATJWsBVwfGwLjq0jglF3fTbYsTf3UlYuVY1RQMSfWGbbL/JlrN/nvXZkTAfO+6kMQJTMKAf9U+w0bgDe+qTjzD34vS33dtQu4+upqHBW+cxYh1ruG7Bcpvqs5+jsewDnPfVW+ztCd6DLHGRtJnesY5KzhliTujrNew7w33N72trfh/e9/PwYHB3H77bcrWSF1OO2007BoUZZS9OMf/1g6Jv/8nHPOcZ9sDyN/oRb3NaQLdUhykrOHBnHK8kU47/jlxfUDyGY3gXBpQMVxlgrIynUW20WrnXYXywWNch2E7zVyxUB2b4KzSiJcZCY7v/xZHmEK3bPlrKFB4drhnpllAzx1WchmzbJ0Q//efwW6qZLMZyHrodg/KbJl6WNsKs2D9zbwd29agW9/sXBCsSx8b3mLuiZNVVMki7jltUW5bNeaImkLBlZJ9lSoWpL7HspBxPbPqyVAQ9Y52QPi+xTyWW8IloP0mXSULTq1AGCgUcd5xy0vZFtMX86cqOg/J1DeuzInZnPL5LO/ZihnQn5PRYdQiEwZ9llfuybBxo3FPQihz+jJSfz3pRLZT9D65bIzASgibs126rn3ySL7zPcW64zKcdbfWd/nZot0dTZV8uK3jOGmT6XOZDy9hHltuF1xxRV43/veh8HBQXzta1/Deeed5ySnv78ff/zHfwwA+MxnPlP6/uGHH8b3vvc9AMDLXvYy9wn3MLoKvvB5N+LmKZ9dcE5cthBnDQ1iUaNowumz3umiSkBo71o4owoAppmihJw2NyxrWvYnl0ba3by8RGcyBK9yyPq8EskHivqc0KmSKxb04QUnrSqu7SFLvCd99RqeewLTq8hDNsC/S1UwEMqMiGBKvswj6xBxk6WPmRopi+Qlqpo0VU1R8d4UMptCxA1wqymSNYNPGBbCkKmS9a5CFWYt48kaklL6oS906di+96VRSpUsrtO9vuPNEXtc5hio09PtReZEQCAnydsBME6FRn/qzJwIlCNuzSawf3/52XdBN+ImfhHg0VExZGfi/bNNxLTmUMRNAPDI2BQePVTU1deTsGRlslR1INujcvhE3WQRPd6wNctQOc76Os8/G2Vjj5etSPGsP5xwJuPpJcxbw23r1q14z3veg+XLl1sbbR/5yEdw+umn45JLLil9d8UVVyBJEnziE5/AV7/61e7nk5OTuPTSS9FqtXDRRRfh9NNPD/rv6BXk75OYulAFOYmsaDWEccXXuMmvTZbNHIuF976FvEDGWpljQV2WKumHohcPY9Tmm5enbFY+0IlIBjJs0zQtR9WSYiP2JSeRYcWCfizrb3Sv7wre0579uXoRU6dQScSt+L6aiFug35U59om4ydLHuJqfbvE6a7jxwlU1aaqaImnEraO8stE8l5oikeSnexwsVd2w/vqskWzvrSThlMAQEAmWeIPW776Ic+0+kwGiHDzhTHHs4gQRmRMBeTsANlXymc90Z04EinvbnMvYHdevB/76ncX3b/j/pdi61Y2QR+ZQBMI8k9z6KFygqO92R/l5CLdh/3j3Qe7vWaqkf/S3e76yxo0xhjzq3KTrDNGJrnKc5WyhcwxTKLu+A8CLL5lwJuPpJTgG0avFrbfeimuuuQYA8JSnPAX/8A//IB23evVqXHfddd2/79u3D/fffz/WrVtXGnvOOefg7/7u7/DmN78Zf/RHf4Tf+Z3fwdq1a/Hd734Xu3fvxmmnnYaPfexj1fyDegD5+yY6vLrU8Z4LUovxsCWJRHPw8uJnf7KbLbs5fnd4BH9wyhos6qM/7mJqweK+OupJglaa4tHxaUzOtbqMYS6YYgy3gU4EMmSD2VRi1IZKfwXkSn7xnbv8PRMzHE03kD0uVdW4da/RdVS4y5DViFG9jjq0OY9y9mfIiBuL7vwD6SbyiBs9/SpPH+tsEwD4VMm5jiLbZGrcZKyTN94IvPOdfPQiNwpFr6+8xi2be15v5FpTpEphqiWZk6KK/k2hFEKRHl2MYvkif9frSbF31DprsO+7JE41pCNEtg4A7kZhTol/6aWZ04FrwC0hJzl+PW2+LNK0WL1/ek/Sfc9YRXlyKnv/rrsuMypt+9yxskVijxDOXH3ErZiDK1hdiXUiAOFqo3PUhYie9zrAHLP3no+4+RhuxbE84maev8pxlhtus9OM4Sa0vJuZTrB0jdVUexrz0nAbGRnpHv/4xz9W1qWddNJJnOFmwpve9CaceeaZ+Lu/+zv88Ic/xMTEBE488URceeWVuPLKK5XNuY8FqBZS1h+Zpqkzg1L+vrILaaURN2Gedz0+iuduWAUqxIWoUavh5OWL8OsDE0iRNctc1LdQeb4JM2yqZB5x467vs8GkmO4YPzJyiRCbjErhzL5zl/v4xEzps4Spb6mq2WYu30e6qnde0pHr6zWV9VwMWuMmOT1YBDtgtHDLFuC97y2MNHPErSwjr0nbuLH4TGYUAvKI21xHfm74udYUySKRxXFaEauk/HsqxAhwX+Aat1w+3180vEGbywXCpNrL1gHxmGpAbNoEXHBBFin+9g+Lc1tzmdNgy1+4y2bBnsmnphWf546SmZmMtj2fH0V2KeIWwOZnn0exhjHpvE8h1vdibS9/FwK5YcjrYH4yVayS7H3ySSSSR9yY61vIUDnOclbJWeYZZJ9NIKs5diXj6SXMy1TJV7/61ZlXxvD/Qw89xJ131VVXIU1TfPvb31bKftGLXoSvfOUr2L9/P6anp/HAAw/g2muvPbaNNklNS45Qnvx8MQ1N2c967ziFRxg3NuuWkC9TeBYzETZv0gDm/EY9V6j8lQYA+PkTRc4ArziEiaICZa+yC4OUDNL7mgC5YzCFjydcfV6IVB1Z7zyArZHyfGYkqUBhUyXLCmct0DMZipwEAO64ozDaAHlfK9X3LGSpNbKaotweSSV93OoNYGDAvaZIbCHRvWY3NdjXQCkrVKFaSIi/aegat67hxvUX7axhnrLFd6WI6KnH2CJVrgN+kc6879ln/7X4bMtlCXbtAt7x9jDv6SPD5XcpO2YcIUL7Dds+hqpIZP6JbBwF/Poolx6ylUGobArxOZPpNUEj74oMJR+2bKmDiPibqsh4+ixSJZctTZzJeHoJ89Jwizi8YN8lVY0bEIZpj920QnjXVJ5qUbbrpbiFqPNnyEbQsugJECal49dMbz6uboYZ491rTVOo7bMByM7cuGJxkE2sKezaJy9f1D0O2c4AEJ7JAIXxgEBO4mn8yCBTOEMYtEA4chJpnx+u5scu4gYA3/pW+TNZTZE0VZKRv+3j7jVFsrpIoEiFrSJVkjWEfBxQKbeGAX31AAs7gyJVko+4AWFr/9YvXVDIh/86o6JeD7X+JrXi3NWrM4WVj6I6i8YnbiqO2XeIZa0UFWTbPoaqOisgTEq2NlUyd5757E152UfA6CxQ3pdy8BFajwtAnSETqoZZ5rR0iUiWHWcpBjqv5yxjuM0JqZLr1oRde+YrouEWofWAhWu4Wd58+Tm4Rjfkm4D47yh79mzlF8dShcc3esLs7nLFxEu8FFWQnwAotQPwIrFgTv6ttcvw/BNXYUl/gzeaHW9Ok5G9pL+Os9YWSfUh+jepoyed7z3vurGPm2/vP+a4G4GohVkHZGuNy28q6/PDGmZzFuQkOf7qr+SRgk2bgJtvLhSIPFWyxTXgLo5f8f94GLTMccKtA2Gi423BuAL49CiV0mgDsdVA6HYAsohbqF6U7D/7WQxNfwhlWZXJEkoRl/2mIRwszSaw/TPyiFtL6BMnwqaPoepZB8TyCbf5c6mSImtoEFbJDLKykSoMN74WNbwDBwhfw5w5cd0jkqLjrK/g9uIMNzHitmhhNNwijhGocvGBcAqhifnRVbKscW12LAx0fJ9lHqpaAOOhe74q4uZZayVu2k1OiQjjXQPKSn4o7yN77rolA1i5MFu5Q0Q72Q1y5YJ+/rlhxrk+7zLDhz32VzZlUStmc/d8Jtnie/E64vWpkM2dWhiv7PMzUMguDLfi+z6F4aaLFGzaBOzYkbHq5fZI3kNoaAh40knFjblv/yHj3FXgak+Yz0NFllrcOhbWASWmR8lSJV2NiDQt6vtkjq1QKaSsopn93T/iploHQqUds3tPUbfoL3vnTuDgaPF3NsrGOUIkKWk2fQxVdVblccapSsGu73XhAkXEzR1FqmRHJvOdTwS1qVj7QkVRgTKRkOw4RGZViNZMrOOsj13bNRE3VWDgaEM03CKUufiA8NIFf6GZOTjLVUXceLi+zjIPVSNkxE1SrwQUL6az11RY4dlNPmTETfQqh9rEVFFgPvLjf2/KG7u/Uausben8GYqhlVU2Q1JGy5q28waz/zoAFHNmySxsegip+/wU5852WiHZpEoC+khBXlOUs/g99QzggQeAXbuAJz+luOYDIxNyARYwKfkpwqy/QPFbhoheZ7L5NThkJEIVPWHZZX3ui4z4BBBTvt3QZCKze/cWzxfnHAr8LmXHfrLHxuT1ooAQcSPUjLJoK9Z2QP7sUMHVjSe8iptL9yNu4dfHULaCMuLGOVrDOOUAwakYLFXS4KAnCs8dZ2/7S9Zwy/4cGspqO1mEZrSdr4iGW4SwqQqpBYFTJfn3yt+CUG9e6hQMknyJh4ot4fCNuMmo3QGGQMRRrhi5YL15oYwroJz24lt4n0MVBQ5x71vMvSixjrFzcPa0y+febcPgmyopUTZDkpPIEHodyGRmf9aT4r7PWvQQUvX5GVjAGm7liJsqVRIwRwrYZ2HJ4oyFstEARmc8uhAzUDmgKr3vwSJuxbGMvdZHflMSVQIKYz+F730pyxb/Tp368HAWob3yyuLEv3xb1gdt61bg8d1hlOSW4pnxraVdtkzezF48ritIIEw8b7qIG7f+GmcqB/vMiIq8byYLwGQkOJJvqKB6R9j31Kc5NiCv2Qfc6tB08lUOelcynre8rZjTC56fdB1nl79Z7XA5mhENtwhlYTzAPyA+LH75mZVG3JjPS++v4wttYsELGXGrS+6Nq/EwJ+QRtrjf2D+dJsdehra/BrHw3l0uF4FgjkNEfnQbe81zkwHU0cJgqZKdiakcFaHISbhIZ6joDHPMpnf1d9IlbRQTU58fAJi1bAfAQhcp4CNixbGNoWkDZYQ5QMqeeG63VjdQjZuObKI7xtXJooi4sceqFDMb5PMq9XNjxxDu+/btmVF/zTXAxGTxeauVYO/e7PPf/m1GdiAGP+ne4Sj75JOBtUPF39l3iI24NSQ1bjZ9DFWkLUAYxxm3p4qGm6ds9lxpqqSzVPU7yLJYH3Jkx86hKi0JxQYtc4SEkM3uOatWJl3HmciDVIHPcl4iGm4RfIRA+C6EQqgsiFXMgSabjW6UleTiWm6WW5WeavF8Ng3Q12uqqxUKFXGbarbw4MFCO0mScJ67KhVZ7cYeIFWS3xyZ486fc80UO3aYi/hVqDLi1mwCM526gTQt5lgPJF+l5Od1UXMWhlDe50dEH8NCRo24AfpIgep5XLd4QDKaDpVhyJT/BYuK5eJDpXzLjMKzhwa5Ma71qCqGQN5wCxshEP9ue2u2b8/6meWkOfV6cSLb+29qMqySDMhZK8dnW07re6MB/OmfFuexxhpb7yaLuNn0MdS1HwoRMWEN+VLErfNnqw3nNTiXLiNu8nFqqZ7jgXoN/Z1ruLY1yiGyQOcIkRrcTtOu3iFzJIjXp8kujvl9j/99fTOIegXRcIvQtgPoZzSHSTZpnwAbj2yIeqIq2gHIFLZQtSHZ+cWxlFXSUa4uchGqxm2v0CS7RE4SKuLGKbKssukmW5faFcao5Z/3PHXq1zsy6YcmgFNPLVKnbHofsegqm8zq7WvQ5nNcvx54cGd2/thoMcf9+8Ir+eyz0sdE3Ez3XdXnp1+aKslG3NRybSIFMpy5pgj/+RTGK5lIOVp6Z/FSEo5wNW7Fcf4cnrx8EU5g6PVDO1kagdLH8jWktA5wiqxZvqw9Rb0IlHCGG2sITU7ZzrQMbl9l1gL2vbp7z6iT7AtfXhyrIm4iq+TAAKz6GKqiPp1PukeuvyqXUdGRn69vP/1p9vdW230N7rYD6Py9n/FqzXpEf9XtABIsHcis4elm28q5pYIVq6Tjuzo+0+zKHxworHd+T3USrVwHxPc2TP7D/Ec03CK07QCWMS/g2MwcXKBeLPzdayqWpFCevKojbsp0l86f7qmSuohbGGVQ/LcnCElOwir4xechlE29x9dfcWCn9dl/TrqpUzMdwozcE5+nTm3cmHnrbSGLuLH/DuptYdO79u5l2ROLOf4/rwhlQBTHfM0STRGXNcjOUyXb7SLSxjcMVsvTRQqaTWDHr+VzWjrQ6CopPpFIlQMqNJunSna4iFvxeYh1Uh1xK1SXMBE3/nNqpomsPUWNMdxaTKSKbSfx6KM+Rqdi72D+LQ+NulmGa9YWspsMc19Lk3q8bZtdH0NV1AcIo+SL5FPs+lZEQ7OZuKzBRTpg9ucA49z2SZ0WU37ZaP7S/mJxGveIutm0T3K97wcY/XD5guLhCLGn8gyqkB4DMVUy4hiCrh0A6zlxLcSXpdIAYXLDqzQKWfkJVJ5qP/mqAvMum5zjjdEpv+x1HhmbclJ8xmeauGcPzxJRTpV0Bxdxg1zZDN0YN7tWAPnMaa96VaEs5Aobq9AB2fcXX2ynOKjo0ZMkcWKTE9O7AMZwaxXyJw6FcVaoiAmoLQFkDbJzwy1jHcsjbsX3qoibKlLARiGf+czi8zu+w3vpQzA/KgltArCoZudmf4rPTB6RCB1xE6/lKp6Nqqsibq41bmzttZZV0nDfVe0pamyqJNu0nTHiHt/jnjKtTpUM4BBlZKcpc68lEbeBgYy2fdMmumxdpNNZyWeM8f/7mYRb39iIIbsOk9bg7lwLfSB/HH0MN3Zd7a/XcPa6we7fF/UVethU0/0a6hKE4nPXusvRacZwG2AMN+76rnuqykmR4NnHryjke1ft9wai4RahbQewpL/RfandI27mqFjoBtzig+1b48Z5kgMRBojyZX3oXBdR2xq3e/eN4779Bv5mCX4lOaeGJFhql+qZDEFOoiXj8VAcckX/Rz9mFDYuRSoTnjUTLUu/9FJzyo5O6SmaNdvNXJbeBRSGW8o8QqzXfXw8kJLP/LL9bEsAyxxYsUF2bripGrSqyElkkYJSFJJR8qanEs5Lzz6TQRxQyppOR+Eo3hXxec+NoaaXUSh3zIXoLdhURNz6OMPN38FSepcIFOyq9hRsDRhrMHBrQjs19j1TQekQDeCzZGX/n/+drWtDQ7zRuXhJ9vmOHfZGG2BoP8SN83tmamlSWt/yHowAn8qaw7QGy7I1WHKl0ZkmHhhx6+fIPsf/7fjlWNgoJrigUayP044lK4CtLuYme4YxWllCFfZ5fHR82km2KroMAKsXFakUvsRcvYJouEUoewgB2YawoLOAzDoWFSkjHEE2GLnsUo2b47Vyw6mKFCOg8HSXPL6+5CTCb3UO470Tf2OX/lPSBbgUcfOIzKjaAQRIv1LVE2V/d0sZYRX93GZut3lvNauw1SQrr64RdA4dsUphuNnNWZbeBRSRAtb2Z42hBxRpgzZQkpMwdSI2EbccbIPsBYvKhlveiBsoR9xUkQJZFJKPwGR/5l76PXuK79ydCYqIW4AIcyY/+1NcZ/JnKGQfN9mxc6okcx7PKsmkSgZ2+ol/N90aVXsKvsaNNWKTghm2bu57poIqWyOE8srKWD6Y4OqrM/r173y7+PyPX5zi6qvt0iN52eoMHxaHJtwIRHIDaOJQrbS+tbmIW/lGmdZg9gxWJ2DTJX/xhNsPqnJSALzhNuNT48Ycq8jcgjifuMyq4nhkeg5TDoYnJ1tBOANEcpKIYwi6mh8A3s2gWW+rMq/aSbJdzrYPcvHiIsc2gPWBqQGsa/oVe1/OWTeIJw0uKmTTp1nCqoXlgqFWOw3iuRPPZWXyXnxH2Qp5AC1FKoeo6HcNH2F/YhnZxHTJHLpG0IBaWWP/bjNvVXoXACSSVEnWAHroYf/0rgT8O+VDNpE3yB5al503tCbr8/Pgg8BrX1OMyyNuQ0PqSIEyCqlgCASAn93jHxXjnWfFcajG50X6mGC45etYIMZKdr4hMhOqZJXk3yVxHbDfm1TtKdhnpiU8M3kErtFIjX3PVFDd9xB9HGUpzY0G8ORT/Pds1fo7PAy8/e2FUfuLX7gRiOTPzP4nyjsdu2fIIm6Afg1WMQaL+7fLb6CqcwWABcxkfSJu3VYGukyTwI4Q0YE7NediuDGyhe9CtjfqFUTDLULLKpl91vHkO8rnCURYTwwzB8c3jqe51kTc3MQri9dzB5t/O4Bcnhg9KY5drsCeMzjA54iFSKURaZaBLL8/1CKqigKHSZVUe3xrxPnr2OREZa0tqQ8RYWoE3dZ4ZSkRN1V6F8DUuDFy5pgoVhv+6V3l99Mt0skif5cWLcgIYU4+GXjD/ynk/t4rJvGL+1vYtQvKSIE6Csn8G4TfdYYJPoeoi6wiVVK9jhUOqODp6gHeVRtWSdcaN5XhA9Ainar2FKqIW/b37M+BBW5spuK8+PYF/uqrOv21GBPyeWEzFlImGgnQSJzSNO1GYCfGy3sUm+pZU5AR6dZglZN7WoiCuTgTdFwDfKqkP6tkubbbf51RPTNsyifgqM9wBrNGVzpGLLdouEVoc87Zz5yNK2adCd2AW0V2IP47nFMlFQtdsIhbtwGseiF1ue/6OgJ/y02miM210yAbO3uuOFM2xTBIjRvE+y4fp4KUTU4SsQKyJrw5+jTtv3SpU7pcf0rETZXeBcgjhnNMjVt/f+qc3pUrNH1CrqjOQ2uDNE2LqBJLFy2MO7hoVMseqYpCstNl62QAvo7O1XBTkpM4RIBLshlCG3GdyclJUviTQYjyWUPLmZykwoibLlWSosiq2lNwrJKK6PvKVea+Zyqo5h86VVJF+uUcXRbWXzFjoZtGmvAXsCEQYSsEpifL+xyni9TU/wDV+qZKNRSjYC7OBM5ZKXzHpmL6GW6dNVL4PESJg+qZWbGAdxy76AW64AL71xDR5l5ANNwilAx+3c+SfJzjC21F2R9i85VvMNm13IwV1UIXIsWIla/z+Dopspqm6iEibjKDNStIDhMhyE8tkSkESAlSPY/i9Uz3XaXo59E0MTKzd1ehyT3tPElYpwNd6hSrmIi5/vm9sbkvqvQugCHGYfQDrlas3z29K2ddY3sfAQEcFcyxrkHrngn1fddHIYsrpILexBtu5rnKoPIoh2g4z56lirgB4Uk+Qte48RE3loU0wN6hy3iwmLusPQWXKimk3uVrw/IV7oskT5HOR8R9oVojffclUfbYaDljIV93EoV2qiMQYQ2mmSlZxK04ljUQz6Fa31SO4lNXLhHm4eJ8Ko5LDsUkwYKO8TYtegEcrlHSjwJErZRlK0mC01YuZsZ5yha+i6mSEcckdKlj2Wf2KVgy6Ni7ijk4ymaOVUoDUEHELU8x8mRjy8+uC2+ir2eTVwRF2XR5Ith/9/KBPqxd1I8nDS7yTvHsnptvMMIGFqaPW3FcNmrtDQiVol9TpEr+8BtFQ+Jn/56cXcvUCFpFiwwUc7fhEFKldwHF/FkDpdUs/j2Ll7ild7XaRRpTv/DA84oD/XflIzPF55KMXiW0UUgu4sZ/x0Yj3VMl5YpJiFRJVdRK/HuIvoih2XdVc+dYJR3JGlTpqYBoCJkha0/BpUoKUdo8ZU9nPJigrnFzlymToSpvCOGk+N73klLGQtq5V6o6YB2BCPcMt8svP5sFISOIAvRrsMq4esqKxdw4n96CHeEl5GumVwPuLtka/znHBu0qm8mSKRuGfsYVH3GTBBfycTHiFnEsQqbnsA+Jk1JlERVzfd1UDFUBbBMAhVdRVQvVTt0XC13aG/s33whEOR3Q/+7kG1N/LcELn7Qaz92wCvVaIszbfRE13XfAzkCRQdfHrcaN019ApejnCoeYKvnz7xeELutOlHtNdY2gAXUjUoD2nqrSuwBVqmfSbQmwdih1Su+aZSyekuHGHLv8rKrIjMpRJIMuClnT1CsFibgxx6pUydBRK4A3ckPIV7cDcBLNMUayc2drfiYdyRrY9LY+IQLskvIttqdg61jZ+taBAWBwGU22DLpUT1/ooieJZIyr7DvvkHzfTZVUy1ARiLDP4sknSQw3jpxEPn/dGqxqHt5fr+E0JurmFnFTZ8kArLPY/bmxi7j5Rd5la65vyreRQK/z4bFhtkXDLQL6ws/sM2ask3y5N5wb4yA3k10csw9zOVXSRba6NiSEh3OcaWiub0TqsNApZGXXIosrocuGKVLzhiIn6UbcePB1M/4RAl000iRepejnCkGZSS5RNuEG1I2gWegibtSaIll6F1CkBYrKdk6zv3yl231nm9P218SIm32kUwaVE4RiuGmjkJqIW5AaN4UnP0jUSlcXGeB9ajHvqspwczYKmQe5wchr1Grd1LFDs26G2/hssf4u7ec1ddeMB7Y9xWIme67V4tlMFy8qHH+u6Pbmg3zfzuHGSlwcy1oEZXLJYkvnHTxYnndBTqK+gIpAhJ336acnpfWtZWD2Na3BPBkaDx9mXEBf4waE0TmUNW4ByKFUBEgh5Ov0mewz//eplxANtwhtPVT2ma9SVRyXSTg8BEMdQg/hgGRla/v8OJooP91bhGxKrJKetWImD5Uv1P3nCnj1ncrl6VK7KiEnsX/WVYp+EXErf5d/JiuMlzWCFmHTx00cp4IsvWvN8U0MLOzMtZQSmMnXKVQ6cIabLlXSQbaq3ofipNBFIRPm9yoZbqFTJbmIm7+ypro3AP8+TTjQdAPoMp2W0zCZMRVECxf3Zy/aTKvtRAYxzhh8ouHGRd6Jc8/bU/zP/1l89pUvJxybqW/deDav7E/xvovwdbYq244EqHETa/8Ac41bDhmBCPtbLVtSXt9M7QBMazDbv1Tcm1jDreVLTiL5SUMQFakc0SFKHHQRN29HtCm40B13bFhu0XCLIC0YLi+dikCEvZ77YqFO6fCFrjbPN0IA8I2Gj1uygPvON3VBH3HzvzeqiFsoal5VxI1LHXMlJdCQk1CedZWiX1ekSgLy2hZVI2gZWCeIjtDG1qjdtAn4i78o/n75Bw52j8W6nIUDfl5NreHGHLsoJar7Ql0HlFFITTsArsm6axSCOU4UhqdvRAyQpUoWf/+vRw9g/+QsqJCxeYrXChFxE7M1FvcVL5FL1K2KiBsvozjxSU/i0++6qV0ea2Q3wmHQ4lyuwddcyve+EBE3ueGWdK6jlyMjEBENfTF9lb1ejUlltV2Dh8emusfHC3u2b8SN327K//gQ75OyHUsQozCPuJXn7uuA4kpiJN93S1foonsS0XCLMLYD8GUK1NMul+dAgSp6Iv47XMTzi4VaSXaOLDGnnbhsoSA/kQ2zF63ZBMS+KtTUyTaTQioaDwOM7H1TdCUwh6rGLUTqmJ64hfas69jkZORf3fqNmr4RtApty+hJ2/JF3b4d+OhHi79vfMZcIV+ICu7fl/3pqjTMMhZEOeLm50xoCwqbDjpHiCwKCYipkrz8P3mxfB4UsIX93HUDPO+63n/ivfrB7gNk+UX0nf88SLRQ87su6S/Wmok5ekf4/JyBeg19wvMYhj1RLg8o9pMQqZImR5ybs7U4VtUBh2A5XbK4PHexj5sMKgIR2bzZ9NWBAcYp4rAG57VrtQQ4fqnacHNxKpoc6L7ZJmlaPAmh2w8BplRJfh5UsGdII3oesnsRHpxGEUcLVN7eHL5RFD2rZAI30ySXzRhXXIoRP84pr1qXLhKA9j4/TVRiAf8IhK6ZJ6vwAOZUGxHspiE24l7a38DgQAOjM00cmJ7DodkmlvTTlxmbGrfq+7iZ5eeK/sUXF5/pUiVzj++Tn5Ji1y56Dye+Xon/jrqxy5qHs1i0hJeR17i5Rjp1ETef1DRxTiZHRLOdlsgoWOQK3KWXFr2lZBG3gYHstz/7rAS/eKLzneczWY4As7+pk2hD7z/+7zMOPaK60XeN7DARN14++wy5kEHksvskD0wIo1O7znQzTXz2vuxPo+EW2tnqWU/ErqsveAHw5X8Wrm1BTqIiEGkp5p2nr961G3ioU6Fw663AU0+hrcH57yXbs7kWFb57tuR77n3yNAx92uCooEvd9edJYGRJvveNAvcaYsQtwlgP5ftS6zeBXK4bVJ4YcaMM7XUMwcKkMk5K8j1ky+SLhpQpQiGCU6Yk5w4tLkJQrnUz+RV0JDPurJLm55GdgwklNrluOwAhGjlQeJgbfW6Nd3W9p3ij1ixLbB7ev4A/aeFi/u/NTo1bCrdnfoph8VsQuMaN/031z/OcRf0J66UfGuLT3hYu5L30QZT8zp/lmk5mTJA6Mf67kvHvwFykSpsOWeNWS8LXuxbGstqDn41zjSypnWc1T+MnO1ce6SzPw0V2cayqhwrRqPn3frdMIJJ2a9zk8nUEIjryJoB//k/YQGfH1e3Z3hE3wym+5CQ6R0IIR3SXLEdyc7xr9jXvEhBZJSOOQZhC9L5hdG2NW3cOrsaP3OgU/x1O89bWQoVQ1joLneQ77z5uCllAWWkmR9w0XnAA6GM8j769oUrx2SQpGk2H6OOmSRlxZZPLWSXzyAybjrNgQXkOFNhGT0z3XdY8fHAlb2QvXMIbOHMMe+LsHMgYnSlOWjog1BT5so5xiib/3cmDi7i/z1la/LmXftcu4JZbis9f+5qCZALwjxYCxfMubshVR61MfzdBx7zLtwPwm3tDMi/vuhlFOnb2GUt7T5cNhI3sl2Wn3SijkZzEQX5ba3R2xng6KQBgzRo1gYgqVVJHIKJLJQf8WY9VDhaAN9xcyHJYyOT7ZpvYONABdzKb/DxjxM3DyQKU36Xssww+hGi9hGi4RRhfCn9yElaWwnBzjZ4oFLaS4eYtW+51BNzZtYpNoPydb+88XcRN18PFBrq6E/Ez53TGzp/yXH9P2ZoIs8+zniv6/R0P8mmnJnjgAQRlk2N7r+qUbtMGJmsevmwlr2z0C55wlj1x50O0+adpitFO+4uFjbqBVdJXKeHvy1lDy3ACU49iE3Fj0WgAJ5xQ/F2MdIZw4uQzUlGvA2U2S1to+7hp/i02UDWBFmW5RsfzPm7iPRfluxiG+Smq+sqQkSVdLa2LdPZ+NgzsJG6KeHGsqocK0o4F5YwFFTmJDYGIjsE6v14xD+LEoXe28oabw57NHMvk+xJzVZlBpC+H8a/Z1znRASZV0kF2LyIabhEW7QAKhCYnIVsNAlSRpVKqpKNXs5DNfxeCdaxIuwjvGWTPkt3i3zlxVWketmgaIm4hKfuljoRuI1JHhYqVJf6ukjlQwHoeFy8GNm4U2OQ6V/AtAAck5CTMam66N7Lm4YMr9ZYB2wNp/JB2aAmTzVb3uRkcKOcn+d53EwPsMuaabj2W7Ix9X2VWFd3wkU2pcTOl3Wllaxgrneeuibj5NA/n6pcVY/x7Q6n3Pf53pUtmIzpivebxS3iPS+gaN19GTNmezWYs5PJze5RCIMKnSpa/93UQaVMlE7+aS2MDbs/3SRdF9c6qMhlW7FhfR7TM0d19Jo8N0y2SkxzjaLZT/OCxg92/q9JGcoSOXHUjbg5yM9nyxS54xK2UE87I9l0sNAuRq3zee1e+wKqF/eiv1zjCCFuw91wkJwEEhco1nVHj2eymSoYgJ5Eo+bJxLpA6QXwjbtp6JXuDWdY8XIy4iWgyxH2Ll9DmP8XUOsrIavzXGL3Sw0YlvL3hJUXW30DpRn9K7LXhjB/AIlXSp97Vw5GglK+onxM/o8o3RQiyz/OxASJuxlRJ2n1nn2HRqD1raBCPHSrC6S5rDUfyoWoHgGzuVEZYlYGSZyz8x4PAxBywYmWKBx7I2CNta9F0ji127tlY0rQBMIabMVUy/Obhm8mii6L6ZhCx2QDGPm4e9x0wpUrSZfciYsTtGMeOEd51Lm1u6B1GVy+mXcPNM2olyhYf7PBexxARN7Vx4hvl1KVKip+TI26GzZHbYJwNtwzyVMlOxM0xdcw6ehI4LZi9XogaN11Nkem+y5qHUyJuG040zZSHKqU5R1mRpUGnlABijyWH5ria9ykkOUkV64y2j5tnqqSO5dTX6GTr52SRfZ97YyI7AAoF0T2ypIlwsHN3kM1GjRuCB2dBo86lBrvMn60DFSN6vs2a2XPkaW/Zn/V6OWPBBC5VUpZey83DPfIue2RqSfG5S42bydnKO+bI4oXefDyqjrjVPJ930/saUyUjjimwTUgBlRHhpzzoUyWzP9x75chfaNEAddpgtJEZZg6+dVyS7/yLqC0UE8d7ryOCAMJS9ptSJUPn43uTZLCydBuM4w5j25PL9J7KmocvWqo/qckQkog93kzglTWDc4gkOYN2jQFP+e4fcdN4q31TJYXPXZqqi9BH3CD83d1wExXlhBtHEluSLYu4+RiGpIibM3FWcaz7XV3WMC5VUnJvfPePPBOjlujTa51S9ozRE3cl3MQq6R35kcgpZCddB5FbqiQjS/K9dzsAS33G6b6bSGG4efg+M2X4yu81RMPtGIfCjuLg62GzSZV0dZVwRoQm3cSXWUvnCXddJopNQL/QeeeEK8a4Rn9onkE3T7s+4iafC0V+jtLzz8l2m7tKNvuZe6pkcaxLe7O572Lz8LxxuApNJuJG9Zqa74uvx7eAPOLmlyqpS8UMkc6Yn6Ztqn4YatwoEbdmE3joYWaNTEVlMOm+qy7kISb22lA1bqp/sS9lv87Y933euYibzHBj5+Egf6ZjuA3Ua8GYd7vzMUVP8nGhncQI4JjTOBQB+BluzLFp3/OtcdPVXLrpSqwsvSPBj2+zGvKTXkM03I5x6Gp8up8xx27eQfUG7Bvi1hGIcOMcZFuzSnpHlcrgFiLvyI/8xrjee9N82N/YN9dfNnNvw5CVr42kkkULCpWksXquyDreFl2Eg+qRzZuHF/IM12YibtRn3qSU+Keo6hU23/oT9pw+sXl4gHRGFTV9mFRJ9TNTTp00yxsezsgi1q8H/nxTIfv6jyXYujX7vns9j3pUUsSNeHN0BEU5uhkJzjVu8iiqeE2X573ZYiNu6nUGcMmoSLsRN1mjae/6a03kJ/usO5IsW+ek4GW7pkqW5bDI13y3fU/vTPBvB1Ac6zJNnLKq2vr119swNDn+AuhjvYRouB3jKOXeS8f4eTMOddIxEwALGgINuIM8FqoNuK+WYPlAX/fvvt67kpedW+gcDTeFsiZ+Fpr9qnuNrnyy9EKGQUkObVgBfgoboK+38o1wzLQKEo6Bhkyh8nNU6FjTXMggWCpusW/SP11dMJgMDADP/x13Z4IpPYqFd/F6BTVucy11alqQ1iAKT34QVsm25pnRRPhk2L49qzu65pqsnUR/UUqF0QMJrrkm+377dl6eyzpAY6+lyeYdfvJ/c77G+7IGm2s66bKbxoibuyLebBc7jslwc6pX4tYCzTgH2UaSDMU8bGATpe1G3BzS+E3D/VMl1fu2r77BR/P0z2MVjmjf96nXEA23YxziK2DyhtMXoxSH5jLDbXF/XZmK4+rVVClsSZLgghNXFuM8jB9ARjEuH+cqX0TNe6FTG4U5ipQU9w3GGBGrINef9zySxWs3YN9o4Uyz0BwGZEqPYh62aLXVG6Sr0ZlTcT/72cU5/7h1EF/Zvpij4j7t1OIcuhFh8sj6Pe+6wnvAv8ZNl5rmXTejSQ3mG0H7RX4AMxmJTpHevh24+GJgZqb4rK+/kD0zk3T+zMZt315E+Nxqo4tjKTlJze15F2Wr2wG4yc5R/KayyI/f825MleQUcRpYpmHZGsbP3U/JP+ypkh5OaFPWAODntDQZJ76ZJjqWbF/Dx9zHjRnrW4Jg+F19UzF7AdFwO8ZRzl+XjGGOqRvwVLPVPWeplAY8+zNEBEKce6NWw8JO1CP0JhCiriWHvI8bMw8HmVYRN8d7b9xgvCNu+kW6ylRJ35S6GaPSI5+HLXS1BD4G84YNwLOfU/z96r9qlJqH+6TtmQkJCrg14C6Oq6hxm2urU9O86/MMcy+iVnTZ2XnqyJX4d9UlhoeBSy8tf96/oDhjdpqXdemlQLtZnoMtzOtAcUyvcSuO1Q24i+i4Tx9QmXTvVElTSrZkHrZg1zBpxI059mU8ltWl+2QlGFMlmWNyurdF1oDP/mEaTSGfkqGtMX44BxFdtIXBXBx7R9wk3/umYvYaYh+3YxwlWliTd5Aof3yW6d/UJ2u8675Ii+fpimJDK8m+9LaAPl8+8VyIurI1ppsr3bVpEa064sYpPR5EE6ZaKBdlk424iWnBgETJ11nWEqSaudcCGrSnn55gxQL+e9+6GZkcqewKPO1cqqRDHwldapp3mpEm/RUAGvUEzWbqRDEO2PdaA9T3/vrr+UhbDs5wE76fmQFG9idYtLIagiUvVklDBFj83OFVNZBP+Rn7ZlZJuswcsybDzdNpaRO56o5NaX3izJEfn4ibfg0D+J56ZAeRxtAHAqRKKmTlSJJsCqGZmoGwzq0q3qdeQ4y4HeOgRtzI3rtmYbgt6quXvvdJixDno0278FSodDnhrj2KurIk34di7tKmSna/c1fCZfCPuBWoImVEVU+UyS6WxJEDKXbs4BtPm2DyVldZu+jrkaUpykTZzLEp1cVlKTApJbUk6SrivqmSJXISz3fVRMKRK+ZzLsIN8ssRt/I1mk3gxhvlsvsHivFzM+W579mdfdZ2UAhNUbEaEyWgRiNNimAuXzYXW+jeVd/aRVOqpM8zaTTcKkxVV31mC2MDbm4eNNk2tXk+kX2dIxfwizAD9oybLs+6rr+oeD3fVEmZ0cI7WY5+yy0absc4xFcstFJlookt4Pay6fK2AT/DUFfjVlOMs5bNHBvrCisiJ5HNhQr53BmFyreIWvJ9qFRMcfMaHgb+5uriwx/dleLUUzP2PJEtTwVjqiQ7D4/nxmjQOnlk7ZwggF9NkTFV0lMpUSnieYpj00G+LsLhm/5qSu9imerc6iKzPxPIanVFw62MnTszIhIZWMNNTJUEgMlJH2Nfvw4ADGslVUk2KILiNX3o10PXWgEWqZIe+wdrjMmMQl8CJ5Njzud94p0U5e99MllM8wY8UyUNe7bvfefrgNXGlW8bHOPzXoG+xL+rdPm9hmi4HeMovwQy710Bx+i/4lr+NW5GZTNPlXQKz6s3d+90EZMiG2ih06WZOKdKGuYOFMaVk2eQOVYZht2xHmkXrOycLe9v3lUwky1YmA3cuxcltjwVOMOtIYkwe6bY6upmfD2y1UbcTBs7O5YOkzcZYHssubBKMhG3Uo1bgdCEM9n1GGXQRX7nHFk0DwDOXLO0eywTPzamlt0oiHsxN1uWP8ekT4ZuIQEUyjn1ebdrwO37rmZ/VuGoMKVKyuZhCxPRj2+00Jwl4773mSJuXqmSVhE31nBzS21W7ak+ZDyAvS7mSyQkve/cPCrWl8jSew/RcDvGoetjJfuM6o0x9t/I5Tq+bW3DYtqV75kqqfNU+3p4pMYJc+wbLTRdl7yBsTIUY3LvYNNh7zIt0v6RJV42z5aXYGYq+3xgIS+bZctTwVh7ws7Dp3ZRtjl6RiJZyFPTmHl4FfZLrueZbmiKvAOFUjXnkN+Vk5NkUSv+O1+lgWuqLnlm2IiKy9y7hpvCQDlpcFH3WCZ92TLJhx3UG8UZTCeMLmZn3J9JGweRa584m3ol/zrjVCmfN37Ioi1YJT0MFIWcHL61tMY9W2+H+snmxoZ/ZoKQkyhk8/edJBqATRppws+DAGP6q68TxOigl8/laEU03CI4mF46HyILqWczcV8s2Pkk0KdduC1GZTk5vFMZDedwNXQe8rU1bux4wg9rs4H5RNxgkO9Pi1zcGxlb3nQnvWvBQrnsSy9Vp02ao1bMWNsJS+TLZDc8DVqTk8UnAmFSBn1r/2wibj4sgbkS1ldPtM4u3zRPmXHV5+nFz58FleFmWgdOPhlYu1Yuu87wTbWaEieLR92lVcSta7jRZJMjbh7OsypqOvPnsZGUn0dAcPwFJhLiUvZcHHPMsb58wiHNs/usq9aZMLqM0mHpER3XZVMAfEaFW+puAW32U4WyM/lk8UaD3LfOuNcQDbdjHOJLasofdunjJpOj+4wk32Cg+BTc6ppKhtrUAXME4pdPjDtTF2tZJR2NCJup5EZEJaySzKrlkzJSQyJly+tG3BbJtZKZGeCGGxSymeMq+jfpm7b7EXCYFGWv+hCDMhgywqxKD/ZZa/IIh6yeyJceXdcgG8hYJXO4/K75OyKr+QHM60CjAWzeLD+Xi7hJSHxOPsndyWJyJADFOkyP5lnIVszFFrpIp0/kBygMeFm0DfBTlE31qEFTJSXf8/oGTXbBGKwyxpmxZIO2OFaWCHiUUOSjVbpMyPIMeTqjmxOkJNuQGuwzd5OD3lV+ryEabsc4xGdcvlB7eNoNCpWPUQgUi4wqPcon4qbzynpvXsyxTYH2zoOT5GuIckrfBaDQVTOyZX9WcW/8+7gVxo+MLU+VKsnixhvlbJMmr2mo513dR8idgMOkmPh4NauuUbCjd3eff64oy6nX/eZuZpVkUiUdtKrc2FMpszrnTo4tW4CBgfLndaaMU4y4DQwAp24s/u5X46ZSlN1k20TcvKIzadq9hrR5uKcDp+tIkFn68FvbTfWoIduOhI5G5vqJ+jdl5uHwm8rk8PID7KkqXYY59u3jJlP8C13J0xg3PDMut8XkoPeV32uIhtsxDvEhl3rAfLx3BFICF3QVZWXErTzWFjqPr6/RY06p4z99ZGyKKF9vQAAeETdWhmKMT1qa6d54p+p05Dfn5Gx5U51UyYEFQK0mn/uePRnbXkl250+rjd12whL5JgKOKlglfZwVPLts+ftQBm0m30JpI9z9NqOES+uJmGPfVEl58/DiszniA5+mxb9UlSrJj5d/vmEDsG1b+XMuVVKocdu2DVi2lFHyHVn2APM6Q203YJPu7ROdMRnjPqnBaZoWqbuSCDAgPJPkunRGjuTe8FElkuhsPhaRK1eY9AEv5xNzrH4ei2OfBt8ysBkV3qySGmeCW/uhAkZHtFfEzSKSGiNuEUc7yKmSXukFMvh62jPYKWs06FIL/CNuesVB/MhG6eLly+WorkH5Xa3SjDwMFLMB4efxzTemdks++xmGwrxfE3UbHy9/pqtBEz93M/j1BnmeoupSC2VM3/WMQOhlM2NpogHY1bi53vsml8ooo173jLhpGmQDvHLeJLISmAwIwN6I2LQJuPlmPvImS5UcGMjGbdrkq+SbjSvXGjpqxI0eodX/pj4GBPubWqVK0sQb094O5963Y2SCJNs2A0echw1sIsB+hqHZ2eqaGgyI2U8y2dmfvuUNUiZSzxo025IYcS5HK6LhdoyjHHGTeUvcXwq+aNXkrabJzs6p7oXWKYPeNW6G78XrqZQuk3xdOwA43ht+A5OP8YrOGDyyofq41cts/QCKVElATVACAEuXlj8rDGaz4uBGOpPLkcvvRtyIEQhWNmBR2xJY6QkbwbZQxAmyWUWmIdkxebZNguBcPnOOnFXSPeJmMgoB2hq8aROwY0fW13BoiI+4LR9MsHVr9v2mTdlnPnU5lIgbQFsL7JxP8vE2MBlXPhEIE6NkJt/DyWIih/Jcf01EE6zE+0cOEWVnZyvTpb3SvWnPTOgaN8CdjAfQ1+yzslM4ZCdRWB+dyKeyP1UGy7EWcWuYh0QczSjVuMk8MZrxZvl6T7i/p70jx9rDZm8A6YxObwXcoGiK12toDTC1fK3ZRhNZkq27go+32mQY+i7S+XwWDCRYu7acLjnNGG6qOrehoYxtT0TVnkHT7yrSUfcpamB0sgFz7QndGKdE3Fx+U3PEzVURZ+sF67Jmx4p52MLUgLtP+E1psotjdcSNFjHcsAG4+mrgne8EvvubFAc6n9/+H8DKxfxYlhCFTE7CHKvr8wpQpNvI9oqKGXrz+ex77DNglSrpYTDLI27u6wDAZ4PInDgTc5LiYVvZ+fpoVePm43ySj/Fy6HbHq9dsv1TJ4thskAMNgn5g1GcUY63l53Isfle37nm9BSfDrd1u40c/+hG+8Y1v4K677sKePXtw4MABrFixAkNDQ3jmM5+JF77whTjvvPNQUywsEfMDotFhUqpCMzHxn9AMq/wMIHx6VDbeLuLm6+CxSpUkR9z0BoR4DdfeJ5V4Hg1Kvk8fN/E33bw5a67Ngou4LZLL37w5Y9sry8/+tPLi20xYlG/4XUU66j75MKX0HGaDmSRYKad7PXYWLt5k5r6rWSXd3lku4iZVwmmGj06+1BPuZbiZI25Adt8yT7u97EYDWLoMONBp0N3XF1bJt1mTXBVxzpGg2js8nAmswSyLivkYhXOtQjVVRtyYY+ozabo3/ozK+jXs0KykIaAlcv1EqQ84Rt0Bu6i+1/Oey9bs2a59CwFh7zMY5K00RYOgi5n7rCXdNcatmX3nmVF8X+PW9hhx47B3717ccMMNuP766/HYY48BkN+kL3zhCwCA448/Hq9//euxefNmrFU1gok4orB5xr3SDS3Y3lxlZ+cYIhweSpWWVZIb57eIyo1l/lOy4UaMuFH+BXaF/X6bu06+D6sk7zVNsGULcN11fEsAtmlwX39Z/sAAcNllevk2lPRVFGmzdPXODWAV8n02R97bqzd+XDZ2U4pUdo3imKKIc/VKGkU5M3z8ooUyyn6felGbVEkguzdp6lD3Q3GyUB1nwvxkcN2bTDU5gN8aZrrvPpGfJjVVkiTdnNbMBvF96qFCE5MAjANHFUWtPOLGzMUxnVx3V7qGm8Miyesz5e950q8UUJQSmGTrHCFp6rnvWThZjoU+blaG28zMDN773vfiPe95DyYnJ9FoNPDMZz4Tv/3bv42nPe1pWLVqFZYtW4bR0VHs378fv/jFL/C9730PP/vZz/D2t78d7373u3HFFVfgrW99KwZknMIRRwziMy576L0Keg0vtDcNeOckZTEyNxeqssl6qAS5zLx3j85hx0SWOieLwsjAK8lliNcjp0rmsrVedn+lRx1Zcvc8HpyeY+RLDAiPpr5iSl3OlnfxxcwYhrREwkWBbduy82Qw/VO9FKo0NXplxVRJmvziWPpMemyONvUhPsZPEYlUP++uKd+2ZBCZ4UOHKSrGfkJ9l2zISdhr+NQw65jqgI4ySIBdhIMZT2QKLWSYZYe+7z7GuFWqJGeg0OQbmx2HSpVUPI5L+uo4NEePuqWa/ToH/y65y1euYV6pkvqoEsAQiLg4iIw1bsUxvS9icazSxWpI0EZaSaoknwF19FtuVmrmaaedhkceeQRnnnkmXvva12LTpk1YvXq18bx9+/bh05/+ND7xiU/gHe94Bz7+8Y/jwQcf9J50RDiID7ls8/NJCyTlPtNEd84xRdzc5fNGZyFoeBjY9kngGf8j+3ur1sKfvGIWBx7tx+bNWc8jlWIvm4uJPlf2d/28zRuMKJMWcWNlhFV60jTFPXvHCvmSMT4RNybLqCsnJ1K49NIs8sZtQowGMDCQGW35eBnMNW7MWI8NRvW7sgZ+i0odb5HukiM0OQmQPTMZqQpJdDaf3IGjjSq5RfVYhk5V1MpHKTFFZ3zWX1Nz7xx5IpOLM6ErQyKfXQfo0XG9bMBdETc5FDPZoe57WGOcfR6tUiU97rupj5tXqqTi+2cetxzfeWQ/AGBA1TVeAhumUD+24wKh9z1OvuY9Fdvs6MnHBPkKfaYrm3OIVvCudjxzbpwA2TlKg5yLdB79sHorFi5ciH/913/FT3/6U7zxjW+0MtoAYPXq1XjTm96En/3sZ/jsZz8bo23zEOL7KY24sd8T5dNSJR28SIbUCHbzJUdnJHPfvh3YuBG47n389X77D6awd29WL7VxYzZOB9O/VaeAmmCT0gGIRjPBuLIY41rDIY6Vp0oWx9RUHVV0g2XLW7iAuVY9xdAQSmx5KpjSgHwcCTaKSbURN3dF1uTFzz4vlBIq2oaNHXBPT+NZJfW/q4tS0jL8rj41xtYRt+5XNPncMyn5nm8HEPZ5BNwj2DbkJF4OIsN994qIMcehSVvE+chTJd3vC1DMXzX3VQv7sbiv3pkLIYpqoWv4pKhSM03ITu6ubPV76tNew9SA26sEwSI6nj9LTo65rgz5975R4F6DVcTtl7/8pTfJyP/4H/8DF110kZeMiPAQFXbZexFssbOILNFkW6RGcPI9lJIkwfbtRUrdXJOf+Mq1xXY6M1OMMyn65Tl2PhP+7p7KqFHWnOWbI3rOETfhN5Kd6uMZ1ClUOVvez/YAvz6YfXbzduDMU+xTYHPY1FyGZtsEPA03Tr7EI8sc+3hktUpV6ufA0UbcHCMoTQvjJ7+sW7RQL9/PYNZHfkS4KpuA4pkJ9Lxb9ekkRva7MhRjfGjvjX3cPGo67YhV3CNLJgXfu49b17mlRn4NinSTrgF4tgOwqu0ujl0dFTb3JZdfJ9QJmhx/POmXtVgA4rsqH5N/7NO0XZkyLRl7NMPKGgvFDBkZJucf2Jeor5ZgzaL+0hiflBEjCQc7libaKnXB1TjJxhcnPPZolkqXo91KcMX/XNX9+7oTyxTGl16apVXKZcvn2P1M+PdQPO3WETfP+kKdfFeFTRw71SzXOvilSpoVWTY7Z/16mtFmSgNyjXKysnXyOXISsuJgmDunNJBEWylViYOyVshPORky8MQB9jCxSgJMtNBh8pS0OnI/MQNjZfcaTAoWBaZ2Lz7Gj5WDKEBkXxlxY+fuEdmX9nFjjv3o+uXwcrZyciRGp4fjLJNvflfz94n2mxIjbh71+ir4OSps1rBQTsuwsm2cCYUxHv6Z8elb2IuIltQxDvYZf9HJaxReU/l4G5jSOvwaZLOy5WNCsUpu+6eEYx4EgB0/68fuh7OUjuOe1CpdYWYGuOEGuWxuc7TwmpEiYqxn0PYckre6OLYhDaDWuLGYkBSp15LiqlSmOqvUsQB1EDaRyNDRDSBMxE21ObbbxRdjYymahHZLduQkHqk0VhE3+XxMsGKV9FBK+PTd8vc+0RmbPm5AcW/8UmD1e4dzzQ8MdTOS8WbZZkWTNdLJbRiMrJLuv6mVE0Qx3k6+/t74MIWy89ESZzm8T3zarmpfChMBVkf02PmEtyBqHvfeRMjj03Ox6lRJ0zPjw+bZi3Ay3B555BHceuut2LVrF/f5L3/5S7zgBS/AihUrcPbZZ+NrX/takElGVAd2kVZ6k328d9wmIxPOjSbKtlEGC/h4kW5UGGCPP5KFYxYuTjG4qrwF33gjpAquSSkRP3NNldSZbu5Kj1wGC17ZJGy+wt9VNUUFLbKPQiUf4xUVy2VY1FyGjl4DwsbuWOMmbrzDw1mN33P+W/HZl7+SRSO3blVHlTnZzLFJCfcxfvTtANwMchtWyZpDhCAHT+8uafDtsf5a93FzvPcmAyhU3YzqiXe9N9SIGzV6bWaVLI7JbMc2acdwe9YBc92id6pkHj3RjHFR8k0Gp3hNui5DW3/dUyXVd6buce9NzgS/NjsWEbfOny79HE0OUS82zx6Ek+F23XXX4WUvexkmJia6n01MTOBFL3oRvvOd72B0dBQ//elP8ZKXvAQ7duwINtmI8LBSqNh0FKL8tmGx8/EMsnNRKcp8qo67/D175PLHRopXaNGS8gX27AF27iyfZ9oEFjbqWNZf5Oi5kofo01EUJxnlUzcwgmxh7NPXLJOOy72DoUkDAC9fgrFOwStVRyFHLZ8GWcQtJ+O55hrg8ceLL+qNlEjGw8xRpYQ7Gj9tZmNXGVaAu7JsqlcC/NI8c5bABAoWP+bYt/2FCt2IG008jTreo25GrQy6GSimfQngnyVyqqQx/bX4bNf4NEm2XXSDGe+1zsiMTnfjBGCjJ+ox+TOfwv5dtSFtCRZxU4wJIb+qVEmTs8KndYcV+ZRrOjZzrFrD+Bq3o99yczLc7rjjDmzcuBGnnXZa97PPfOYz2LNnDy688ELcc889eNe73oWZmRl85CMfCTbZiPAgbwIe6S7yVEn5WBvYKCU8Pbqbhy3RnMZG02p1+cDxccOFFHN/1vHLmbkYZDCwbgfg6pW1GOyqJLO/6dpF/VixoE8hP7tAFTVufsZPWpLByWbHkpVwVo6F0ekYwc5l5GQ8eYpwa44x3JifJSfj0RlvVMY3CmwMK0CMvtvLt2KV7PzpojTk82/UEgWBk4cyyD4z2ntDj3Bk44tnxpRm71PjFrqWi6sTUzn9PPYOSsRtcq7F9a40waqWizkOnSrJpap7NIJWpTOK17Wd/uGscQvd+8/22fVqCk+qR6XJNul57DX92DzDG+S9CCfDbffu3TjllFO4z7761a8iSRJ8+MMfxjOe8Qxs3boVp512Gr75zW8GmWhENbBhe/PyIhk2AUofEhFWTVQ9iuNNrQYAoM2UYNUVJBZLl5Y/o+SEA26e/EyG3XfuEb2wCyk7dEGjrhyXK1XkVEmL1DG/dMZchhxeDbitUqTKc7GX35GRZOmPLBkPALQYJ0WjryzcnoxH8cx0/vRJAdJF3FzvvR2rpJvhAwBzXcNNvh27NpkGzAyBOVwjhkVtofx7r3YAzLFNLReJyMKmxs0jVZJ3JpS/F685Mj1rLdsm08Snho5SK1Y1OQlg/05xjq3Azwtgl2kSZM/WfOeTppqPryfy++OX1mxxb7rzIIm2SsP0Mch7EU6G24EDB7By5Urus+9///t46lOfivXr13c/O/PMM0t1cBHzCzYvkV/ucwGdhw3wi0ColHCfiFu+0DVqwNq18jEtpi1AXWJnDA0BJ59c/twq3VAyFxvYKMnidV1r6NQbWHFMmbsNOxXAKA7WkjNwETeb5rXBa9wKzKe+Vuz4BAmuvx4lMp7ZmUJ2/0BZujUZj2Hzpc6bN6zUWxr/vLs9k8oG3J2PXQrjcyW/T/k8ejgSWDkW0UjXjAqlA8enqW+Fz7tVxI1LlaStNGanIv9ZH4Fx28TkKUr3acCtrmHO/qyqHYCLIm4XoU2YZ91KLDMPVo56nMu9sZft/j7le59VtDBwKxn28xTu0XGlrhQjbmYsXrwYTzzxRPfvDz30EHbv3o3zzz+fG9doNNCkUI9FHHYUypouelIch6aJ9VGS2cXFxuPrE3HbvFk+psVE3GSpkps3y+nk7RRZR6XEQraffAujM0CNmzaVRjLeBlYRN05psIeV19FRtjjejk3O3Wt6443l75tzCWY7xpysnjM/T0rGY0Uc4Ba1sqHrB9zZGSmefLrzKe0+k2oiHn48Vb5MjghXozn/XVWKhA8DoZWnXTIXG9hEIn1YJTmHpWTygwP8phDaMeeRyGJVr5T/ri4NuE3GfnZdv4ibvvVFPg8fR4J5nXHd97SyPdIZ899K2QYnVMTNYOxTwad4hneI9iKcDLenPvWpuPPOO7vG22c+8xkkSYLnPe953Ljh4WEMDQ05Tez+++/Hhz/8Ybz61a/GmWeeiUajgSRJ8Dd/8zdO8q666qrM26L5/7777nOS3cuw6X/kk+tv8pb4KLI2L3SIPkK1JMGWLcDAQHlMu8VE3AQDbWAAuOwylezi2JRaII43wb7GzVE+K0N1AYY6/vG99tTxthE3183Xqh0AC8f7okLNQSEpxldsGHZOaLeAvXvlY6YOZVvGQoXhpiTjYY5VBrnrb2pD18/KB8J7fF0L702MkqxsF/m2CmH3X0Y1PPOzK3D6kT3trrIr3Dsy+eXva0mC31pbEC8F71cWKN3bFEn1Kp3QjHPpuWidreFIglRlxM0WrqyS080WpprZnawpHhqf593ERArwz2ToGmN2HTgG7DYQWssWeNWrXoX/+q//wrnnnotzzjkHX/7yl7F06VK85CUv6Y6Znp7GXXfdhRe+8IVOE/voRz+KD37wg07n6vBbv/VbOOuss6TfDQ4OBr/efEexSKtXonrN7YUDzPn4rOyZZhuQGEdK2RYeNnahI6dKdmUDGzYA27ZlJAws2LofMVVy27bsPBm4mVhFfhzTLjTjnOVrhg4PA9dfD/xkB7D5Xdln7353ih98OYs+btmivifZPArovKYuXk3AlpzEMRJpE5lxvOdl+fIxrsZ4Np8MbL82EZOHEgyuAhYtUatTMjKettXcHSNuqXljz+QXoF2DHvmxrd1lDTdVqiSQrUHt1CHiZlEXCTARQ1dCG6WX3cPpxxxbvU+UiJtlbXfSmQc14mYTtepjGme5p9VZGMzkdG+zM9fVOLGZu3ht29/Vdu9IOj+qT0aCDrXOU0P7TS2NTodUyTRN8d3hke7f1ene7noe+V1FCr12UqBpsb4fa33cnAy3zZs34/vf/z5uuukmDA8PY+nSpfj4xz+OpQwLw6233oqpqSlccMEFThN7+tOfjre85S04++yzcc455+Daa6/Fpz/9aSdZLC688EJcddVV3nKOFhRpC+ox7FfuUSv598sHCnq6A9NzWLvY3nKz8TzydQrUzZef+6ZN2Z+XXsow7XHkJNn4gYHMaMvHy2BV6OzoNbXdHLlzHNc6Vv727cW9Oe+FxeeNPnSp46+7Tn9v3KKF9oqyTUNiUbYLQkdRAdEgV83dIzrTOaOuycOYPJTJX7g47VyhPA85GY99tNAnaqVjlay5GuTMsS2RkN3TWLQCAICGqrFg97qpc/REnGNJvuO9NzEEssaPS/+m7vwUY1zfJ9v70qglmGunXkZnaAZCW8KZ7lwcnxldqrprqiTvbFWPc0uVtHNS1DqWG7nxOXNsY1y5knLpI5F046qdAuOzhYfZqqzEkYEbsNNnXCNuJnKobC72snsVToZbkiT4+Mc/jr/+67/Gnj17cPrpp2PJkiXcmFNPPRVf+MIX8OxnP9tpYq973eu4v9cIxbsR9hApwGVIkgT1JFN6QzeVXLmgv3tMYdYC7EgDQuRts4vlpk3ABRdkJAw33gi0GXKSVauzhsSXXaaPKmWyi2OTIgtQ8+UtjR/nyFJZfk4dn6PJsFuzDIQ5dTwgN96sN3bOe2evKFtF3JhjmoJvEZnxqJuxSQUKEdHr68vIeGTpknmqZKMP6B9At+Yth5qMh52jnSKr85qzYIkjbCNuNEVZLoNFTXhXbes55izSgHL5rZTuTbZJYQLco5120ZkErTStJDXN1Ri3NX7qHcONyipJbdZMqVeyibz7pI7l98bWOKE4zmwcluK1bdcxm3YprOwqaOkBN9p7fmjYNUwcVYmuxBzbrO8U8Vw6uUo2cxxr3AzYsGEDzj333JLRBgBnnXUWXvrSlzrXuEUcHuSPuElJ6vbNIqcb6iNuS/rrXYVldJpGZGOVKhmiHYCwkG7YAFx9NbBrF/D//u/i8+3bU1x9tdloE2FXzEtJuzDLBkQDxVE+5NTxTabnV0PSik1GHd9sArseZa6TmiIQ+TiLSXdg1YA7RKqkYgz7e/xy37jzJmOjJ7lG9GoJlGQ8ecQNABZK0iVVZDxdZVBzfbbGa46gydrQ9QNhHBVWLH4E6XyqpIYRs6sMWovujDcb+5x8mnhjOwCgiODSHWfFsU3fwtDphkChKFaR5ukcceNkqNYwdi5uc9fdF+fotWWk06XpvM17ChTPUhW09Nm13eTbyHapYRZ/f/W+Vxz7NfeWj3F9Jm1Yg316XfYinAy3er2OS0VNTYLNmzejIdvFjyDuuusuXHHFFbjsssvw1re+FZ/5zGcwbuyQbIeJiQmr/+cTCuNEjyI1gia/G3HTRCAWdvp1zRC7eVqlSjpGONI05RRZGRoNYPWq4suauu2YRH5xbJP2VgVDlaNdWDIMZdTxvOFWFs5Sxw8PZ5HK9euBy7YUY697X/a5rDeYa28rm4gbi6pTVMdm7J0VNv2VfPoistFxFRlPHnEDysySOjKeHDqFiq3xmiPQr9uySvJ1M9birZ4u11SdpnW00FXZLKCt+2HPcYgU2LDs0b345uiMqzFum1aXK7k+NW6he9zZMbSy461Fd+ZSliHCtXa8ymwQm76u2Xe5XB9Hghr5pSnRcVvZTuRWwjh16q57lNYqwlwpOQkzl1jjJkeapvYFo/MsbHnbbbfhtttu4z4bHBzEhz70IVxyySVesmWRx/kOm1QXoMNE1AqfKgkA/fViY2+1Uzu2P1TLKmmr8Dj3WrNKq5OPN8uWy9DLJ4AZ3GolCur44lhmuAFZqunGjZmynxt+Tzqz+H70YIJP/pO8Ls7Vw0ZtB0ABNc8fqOCZ4eZjLZqTnyRqMh4+4sZfQEfGY9PMno04zRF+VGtWSW4+YaMzroYPJVUymwvVgKBF3LJr2Kce26TV5e8ZnYFQPj8Wrsa4TforUPwmKWjpu1UqsjYpgX79HLMzzHVi+XzcooXWz6OlfKpsH9XUJhpJSSO1jea56ATiKNW/m4u4OUZpMzkWUWDCzbepYY4Rt4CYnJxEX58kT+oI4MlPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27Ud6mocdRURMv7g4FyNbbAL9DBvCLMHTbtOA27Xg1knhcY3OqGSz40kRN0uvpjP5STF4+BF5LZQpVRLIqONf9So+WpcTvAAF8UteF8e+nq73hk+VlI9xjj6wMhQ3fu2ifvkXNvItlM0QNW65iE2bgJtv5iNvUxPFBXJmyYGBbJyWjMciVbKPcePPEaLvtqyS7uld5rnzSo897FMlOwaEY/QEMEXfXdeCDFYMsFWkGzLHLlGrRCMbcGfa645NgV//OpG2Q3FNTWPfayUjJjcXx3XA8r441+cFfh7ZcXpnawBHgmYcH/2xlM0c6/ds+Xy0soWBquchRKsa/X1xW3+tIm6SuRzNqMxwO3jwIO68804cd9xxVV2ChFe+8pW48sorcdZZZ2HFihVYsWIFzj//fNx22234P//n/wAA3vSmN2F2lkaQweLQoUPG/x977LFQ/6Qg6HrZDeOc6X8tNoF+RmGZJShsZFZJR0ICPbWwqzLIyAjsNbVReLLv2HPcDJRDh+RjbCJuMtQZI6/V5OfO1sU558tXSU5i8Zv21Wt48vJF3b87M49ZRX7sZbPyWdmbNgE7dmQpq0NDwCSTKnnc+hRbt2bf64w2lWwRQSJuVaYD6iIQjkqPbapkfmfo9OvmNRJwrJ2xdBDl1/XqhaYY47tGmoIh/NfmK+Rp3z/7eTZ2bg449dQsDVxM+3ZNlbTZm3wibl02Zc0Y135itn00ffu4aYl4HKPXbpT91sIZhNU3xHGq99Cr56JEhgj2K4r8Zlo8AapnxqeVQS/C2nA75ZRTuv8DwOc+9znuM/b/E088EWvXrsWuXbvwh3/4h5VNPhSuuuoq1Ot1PPHEE/jBD37gLGfx4sVW/88n2CglAJ/uQlN6zIYhG3GjeNq5hVrxQrM1L64RtyoWI6UQxVfuDFV2l6VF9IrjpYrsYJuImwz1OhNxE7zUbF2ca/1fruQ3aokmpSOAwawZx24+tP55FSqyGtksGc/bLi++vf6f2tZkPGI0T4YgNW7WDbitxRdKvgVTXTbezejUz90/4mZb42b75NjKzveOFB4RbMUYV2O8IFUxuSxZ+frvt2/PUr+vuaYY2+5kDeTtUDZuLDIHXJVNSmsNm3mX5HdlaAwrrrer/QXY/V3Xt9Dld7WvcXOLuNmm1zr1WmOOtRk+7DkOsnVz8jP2yzLK8pk5OezZgLqG2TV63auwrnF76KGHusdJknQjSCr09/fjwgsvxLXXXus1wcOBlStXYu3atdi9ezd27dp1pKdzWJE/47qeLYAYuQIalvtd0cRaE3FjDLcZQt5Fy0JxCBFxsym8B8IpyiySJPuN3PxfhFRJJ+nASSclUup4NuLWP2AvneUyEiNuQFYX9853uhcj5xEOLYkFc0xTNO08si5pQE9MzuAHjx1k5AeOFrIyFHNvNIDjhxI89nj2d0odhE3KNNuQuOnIKmlj/GTzsYdNzY8rOQnLnqlLlexmPJDTX+3WAv4cu3G26eSigaJpV8fPgzm2a+prD5uoknhdnXyxHUpOVNVq8fNm26Fc+D/K87GBVcSNOXZtqm5b40ZJlbRtOO8UWWL3bILxY9/KgJVht3/YG272+oBsPlrZwkCVA9sr4kZMlaSsvzaOOdd9r1dhbbjt3LkTQPYDnXLKKfjTP/1TvO9975OO7e/vx5o1a+Ydo6QKrVYLo6OjAMA1ET8WkCsCprWr7EWyXOwsPO0hIm66tLcE2cvsyn5lnWLk4MUXZYioIUEbtB5I1t47R6WH/Xc2GhkF/DXX8GOmJ4vftH+hvfQaW+MmqQvZswfYuRNImMC1i/dOp+Bba7gCbGsgXO77d4dHeBkq2dx83KK0OqXEmezHwiPrGnGz9rRz83GYu2aMa/TamlXSMeLGDg+d8v2j3QeL8wnPTN167zAbhq4Gs21tt41CKGuHktfqytYwIBv/7Oc6RtwsHEQ+qWN2rJKOEbc2G3HT1HQyx/bkJLSIG0B0JDg4KqzvjO3e4VL7J8xC9TwkFmPU1+jIqMAhatPuJUmSrp4XI24MTjrppO7xq171Kjzvec/jPutl3HrrrZicnESSJDj33HOP9HQOK2yUEkCg/yV5B82GYT8jPHSNW9Y8PEEzTUmeQZteOYAPq2QBYwpWSvOa2kYLufmQFjt+A9uyJWN+ZElGpieL6y5Y5Bpxk48ZHweSJS4e2dTKcHNVwm0iBICfZ1Mmg4WzMa6QUZLvSWijexpda9x4T3tY44Qda5sGRImKWbNKMnOhRAmsSZaYY9u14PGJ4oXXK7LFsSuzr0q86/prEwEuzUchX9YOpd6JuLVb8gvMzAA3fxo4sxN1C90Q3t2Bk1o9765rGPe8aywml3WMuy/WDkuCE1ohQyvfJZ0xcF16KeKmSZXMjR8qwYeNse+6/tq2e6klCVpp6sUW2itwIif5xCc+gde+9rWh5+KNj3zkIzj99NNLtP6PPPIIbr75ZkxPT5fO+eIXv4jXve51AIBNmzZh3bp1h2Wu8wU2izQgeKkoSpXkfBEhWCW1NRbdXjxuRqF+kXZUBonRGZo32SFaaC++pFDl1PEs5mYLw4tiuLGskk1JqiQALF3qtjm202LuDa231/U3tRvtavyoZIjfuMi2TdVxVdisatwcWSWtSQm4+bgZhiq4k5MUg21YJYFq1xmq/Bw6h5t7v7LiODiBk23EzaDTN5uQtkOpdWp1c2ZcGT6+rRB+aCKVMk/KYMOI6VOv1JWh+Y5PlSQYbi27iJtLxJBfB3SOOddIp1yGCKfm4ZxsNVydiizOXKPOKitI6Ggy7VpIFMckchLLdi+uBHq9CCfDbXh4GJ/61Kdw//33K8fcd999+NSnPuVcM3bXXXfh2c9+dvf/L33pSwCA66+/nvt89+7d3XP27duH+++/H4888ggna2RkBK985SuxZs0aXHDBBfizP/szXHjhhTj11FPxspe9DCMjI3jBC16Aj370o05z7VVQ6h/qDgu1rXxWiZ4j1bjZpUbkhuEsQTb7T9RuAg4GBCB4yywiHJS1yNagde3FI1OoytTxSTfqtnBRsVkPDACf/CSwdq1cdp1pYt6WKD1DQ8DJJ7v1QLIngiiOq++f57bJqFPH3GTzP3/4Z8aGDKLhGnFTzE+EC013NrajKFfgBMmdSQkoSo+9fNYTbp3GZC++i6k5tYXCO/3sZdq8T67GuHWNm8GJs3OnvB1KvZM5oMoaAIDdjxWyv/9DOfOkDIWzVT2Ge9Yr2Dvqjr/pHOeosHwerfWN4th6HXB0iIaOLFUrm//7CcsWGuU7t5LRrjFuzi3bdi/5tSn1c70KJ8Ptwx/+MF7zmtdoX6g0TfHqV78a//iP/+g0sbGxMfzgBz/o/r9v3z4AwK5du7jPZ8QcBQk2bNiAv/zLv8SznvUsPPzww7jtttvw5S9/GYcOHcKLX/xifOYzn8HXv/71nmyg7QN+YzRE3ARyEqp869oTywVjqtnCzoOTjHz1WLbBt62yac8q6RjhoEbcSKmSdnPvczSYVQqVSB2fG24LFqUYGkKXOv6SS7K6OBnYdgAsM2WOzZuzdEoXRZmlFa4kVdIiQuAjXyXD5nMTbI1OVwPCxvhhf5Oqo+M0Fr/O+RU4cGxYTrNru8m3ue+ZfL8o8LQm4uYanbFqYu1qjNtG3CTnsBgbk59nSpUEyi1TZMyTMtg4QdhvXHvE2a8DbtGT0BFmvsZNPc41rVklQ/edU08xrb5Bl83+picNLrQyal0jbja6TDbeHmyqpK7dS7ftyDHQD8CJPeT222/HGWecgdNPP1055owzzsBTn/pUfPWrX3Vilnz+859PfuivuuoqXHXVVaXPV61ahb/9278lz+Foh63xALiluzg1sbaSDPzyiXHu77oXuk/oE7egUVeOzWEftWLOMUqVw8ZLRfOy20Yii+8otYVcjZvwTU4d/853Av/xmwQzANasS7FrF1+/JquLA/TtAAYGgMsuK1/Xdp2wjbjBcYOxN37oSokINaukqyPBzuPLM4PRI262TX0p98WWptvd+OmcX4EDJ49A6JRYwJ2RzZb2PkQUWAXXnl82jkVXY9y6xo37vnyBZcvkp9mkSqZpguZc1i6lr7+QzTJPyvoj2kQLXVMlXdiUSamSLBmPrsZNMScd+Bo322ihW1aCPlWS/kxWmdLMvUeGsXmVm2tz8ipSJbs8CdD/rgvqNUw325hptUl1wL0I51TJpzzlKcZxT3nKUzBsivtHHDHYeqgAgZzE8q22XowclJ69k7zGb11DZ2mg2FO7M+cELrwHaMXzOWyJVVxrC23+mY0GsHAgk58i5QwyQF4XBxQpRkCZSnvbtqJnmItiwhtu1da42f5srvn4dqmS9rA1Ol0UZa7mUjPOvX7ObmP37XFnPXeCdCuWU3ikZDP3RiufO8dafBfLB9Q+YPeIW3FsE2F26ePmG3E7+WR52neRKqmXn2cVyHpdXnqpPG2ycCTYzd21nlP3SLK1RhQln9r+ArB3JNjWdrPvmmtKduhUeF4fMDtyAfv31NbgBIr75k5OEnburGyT84l1yOsyAI4GOBluk5OTWLhQnSebY+HChRgfHzeOizgyoLw8LrUttpEfF2VzoRA106dK0mtnrBvXeiqDgF2UwMVDBRjuC5cqSTDcmGOd8pBvkCnkm3u5Lg5oSNoBDAxk41jvM1+nQI+46YqceSe7/X1nveujB6EkG6BGlmT/vtCKrLU32eG+s6Ps07usRHNjTU4OF9IAwLamiG6ctNO0O9ZkuLl48QG7PpqA2QiQgY1cPHPdcvU4RyXfxnnmW080NZGlb6veVe59knyft0MRkTuqZHW6LOZmsz/ZiFuOmRnghhvK59gwNbPfkyJu1qmSdH0A4FOgrfu4OUTcdHXprNOuSXgg25Z7ds1h7m5GYVjZ2ffZAKrZY5OS7dp7Nb/vprYNrE443YyGWwnHHXcc7rnnHuO4n/70p1irYiGIOOKwVcABN3IStmxKl8roomwuKhluavnsBmEbcbM1fpyjBMyxTYSDZhQWx/aRSLqSb1L1+JoluXyxLq7GOO4HlyXdujgxZchFyeeUhoCOhOHhbP4veWnx2U03JUqyAT56YpYvGxK6ITGcFDY7yZQaNBdmsEJpIEStHIhbdAaty7tkGwEG3CJu7TTFZIc0hGKX2Sub2cDBgQYGF0hCRh0croibzfM4PAy8453F3++6K8Gpp6qJQWwMwy1beOcTgKIBt4EpUhdxAzLGStGoLNLS7Ix9irFsS73u2h7Itv2Fi05g22ctRC2trePP/t7bDfS+L4ax3bYjxIibXR2wmwMnX05N6/uCRrGGTjcNHpMeh5Ph9rznPQ8PPPAAbrnlFuWYz3/+87jvvvtwwQUXOE8uomIQXmgXhZAzfqxZ/OzAvqSA3jB0afBt670LQU6iu/tFuou9bFtFuV4rFGVKjZst4QG3QaZq+Xld3K5dwGtfW8z9i1/IPs/TI1n4pkrqN17733T79oxM4JprgNHR4vN2C0qyAermKzNiVAt31WQ5Ln2zSKk6TjWdnXMtvcninEywed4HWMPN0tvLEzWYUpgYpcdKOnD3nuKB1K1hgGN6l4WyBlRb40bx4ufv6vuuK0f1rYhBFOJlad/dVEkNOQkANGdzw00ufM+ejLmSm4Zt+msecaNkDVgaJ64Rt9wwrCcGMh4nfUM+PxF9Fg5Fk3ytI9rjXQJMNW70fY8XoP86v2808ia295/dpV0YYHX3HOBTJaei4VbGG9/4RiRJgksuuQQf/OAHuXTI8fFxfPCDH8Qll1yCWq2GN7zhDcEmGxEWLiF0wF7p4en6tdLJssUFyDZVcta6Ps82SsCcYyW5PNZGvmsDbpPClqdLzlE4nS1RJ26QjQYwuJz9e1iPrK2izMnWyNu+PSMRyAlWakwdH5silZMN5AohdfOV/fOqrXEL6zXlFSr9WBdl06a+AhDYax0jPyqwa8yMQ1RfpyQDbs/7w6NTxfmm+87JN8u2VdYAsR0AXWGzVmQ1otl3laujFWrQSu8q851uDWbTvpMkRR5A1ZGTAAWzpCxVModYbUJNf6WsA/YMfmwU1V5+l1jF9Mw4pAbb1uxT96Uc7L2xb7NjJ9t6/WWO3YhP7Bw4rrXX+uwkuvOJnYvpmVnIRdxiqmQJ55xzDt797ndjamoKb37zm7Fy5UqceOKJOPHEE7Fy5Uq8+c1vxuTkJP7mb/4Gz3rWs0LPOSIQSC80d559qk6OKj1UmQyNh82BPdG6Po+bk5uqbKOYuLNK6sf69LgzPTNsxM2W0Ma6mbLDJmDrTbZJKxsezsgDWLDZbjI7OCcb4A0I87Vk/z5lQ2JONl1JFmWIcEkNtq2byeS7eXzFucng8swAdmQQA56GG8VxVgXbtSshT3auHq5Kfle+pxdffFdldbQi8neV4gjppn2/vfis7UFOkmOp0C/Z+nnvjtePY2G7RnJRVAeCjyrSmm1ZJVlSlKZrNDJ0ZMk64saeYqkrWeoaQPGuUl5TWyZSaomAKN/kqBhgIm62a3CvwslwA4C3vvWt+OIXv4hnPOMZaLVa2LVrF3bt2oVWq4VnPOMZ+PznP48rrrgi5FwjAoMScXPxlrDKq32Nm51sdti56wa1YzkSDsvIki0zo6sXyTo1gjuHvoGZFru+jsLZSlN7ttB8boZnppHQi8D5zVc9jmr8ZLLtjHEWqnt+/fXlVgY1puxS1r8pJxtgL23DQCglJ7GYfhURYCdvMiEC7FLjZh+BkM9JB1tGTBfmWsp76lrYX1xLfw41UmsbIQA8UiUtHEQ27VjEd5XvFSk/pyAGoWWDbNjA19Cdcw5w771y5kmgICdRpUoODWXMlSzYpuo6dN8lB5ZTQF+Dxhp1lBo3+8bnBUK/qyFq3PSlH3SdwPad9tWVaJF3B8MwtEELSpSWlW8tvifhbLgBwEte8hLcfffd2L17d7ch9u7du3H33XfjwgsvDDTFiKpAKVp1WTBsUyVNkRsZ2LkPDmjclXBL8+QMK93cOWWQ7nnMZNgpJrbSKQYKmzJoa9TaNNsE7MhJyrIL2DORhjVoTamMzWZGGiCiVmM8+YpbeeONQLtNex5lY/oVZBauvWtso+++NN3WETcrybx8klLiQtOtkT/gZLjZR8ZdvdU5TMo1VamipL+6KvmTTTOxiqmmU/au8hE3tfAbb3S71+z9W7YUOOMMOfMkUETc+voB2WqzeTPf/5JPUTU5KjrRE0rEzTJVssE5QylKOD83FbxZJbVzp+9LgBhxs1wjrY2fAnp9w0VXYs43jHUjn5Kfr5VtJ5p73o3OVu7ro9tyc2rALWJoaAhDQ0MhREUcRnCLhWGsi4HSsjQgXOpynL1IlvJtU/ZqRI+sbKw+4ibIt1i3Kf35fCIoNMPN0ii0ri102dhdUl3K3+/cmZEZiOAjbnLZe/YAe/cw8m0ibpIxSzV9sxJkz7m7I0E9zqktiOJ8uXya7Gxs51xjNM8vWqgzaOu1BPUkQStNCamSzNwsSVvE82xhiqaT6y4d0q8A+9/1sfHprlKtO8fkwJG9q+x7qqtB27MHGB9j5dtB5pTbsgW47rpylJ5ljKw3+NTNgQHgssvUsq1TJQlKrG2qJOfwcyC2Mu9LxbFtxNDWEeJqdHbZDUEpn7CTbasPOJFDMccmw0+873ULhcPaQe+gQ1KyElzue6/CK+IW0dugvNAubEYu9Ln2FLfyuZlPtBtWZQ+6bKytgSI/RwfbXP/ytWmrnXkToHvYrPPlmePgjgRWtuSejI2VPsrO4zYmtfypKXacclgXMt2CTc1TzYP0PFpG39nvXBpw29e4UQw3h4hb4DQgABho5PWiDhE3I6uk/DxbmGrLqEoPZf3lWslYPjS/eKJ4yXSnmBw4sne1oSEnETHHpFK61Hbnv5uMeRLgo+9iEH3btjKjLqUuvWimbJxyF03LiFufYy+0rtPP+K7SHXO2+oxrxC2v5TM7n+i6EjcutJObklnl7RDV7at+ss2OCvp971VYGW5///d/j9nZWa8Lzc7O4v3vf7+XjIiwcOnvARA87ZbekuoXI1Z+WMMwcVSobBUYN+8dIeLGHLtEIXRwuTfs7xOaoYoN+mk3X8PzuGyZYk4WETcAWLyQNneqnp5vYK5eR1OkM//aaR0wkiDR554PpTSZtl9n2LnpkUchrOtoLaP6gPi8h1dLqGsk5b7wqZJ287GNhJjWL9m7WmfqyVQ1bjn69Vn4UnAGBHN3WObJHOw6kbPSDgxk48TelYCbIkvrmVUMNtW45V9TGIlto+NuDku7aJ5rjVt+bzQ+MwCic4v+rtrGlVwMWhOcyKcs9Tz/KCrFCX10w8pwu/zyy3Haaafh+uuv56j/bTA6Oop/+Id/wMaNG/HWt77VaZIR1YD3UOnHuhhXtjnh3t41w1g+gmIH23RDp7mnKR6fKHJmlvZr0t6cIp3FcSXKbF7jRjAKQ9cpuNT82P+metknnywnG+DaASj0gaEh4LjjWPnmyYub3AlLF2jHu0TcbL2mAMM8Zv2uUiJu+Tl294bkpHB4ZvhhdvelnbrUiRGi1xW4k6nrGOU3ZZ8n2wjHqoX9VuNMCr7sXdW1A2AxNAQMDnoa+4L4LvPk1kw+u06sW5d9vmOH3GgDgDkmlXJyMik152ZRrANuDkXTOtDXbSVTQXTcZX3Po3kEtmOXGjfSnurgbNVmPLg4oRVzk8p3acPglCppK7s4tiUUy+Qf3TE3K8PtC1/4Amq1Gv7iL/4C69atw8UXX4xPfOITuO+++0o3KE1T/OpXv8LHP/5x/Nmf/RmOP/54vOENb0BfXx++8IUvVPKPiHADJe3CKczddnihA0fExO9DLxguXqSxmSYm5jJX69pF/VzjSBEu3juaV7YAtZDaGKV1qG1xSdmzTmGy7MNjep4aDTnZANcOQBFx27wZaNRpz6M45qyhQe34XLpr7z/bOgiXBtyhDRTb1Nrse/Y8l7nrx1KJhNg5PPZoprCrFHGX+hAKqI45yt7BtQWxnDtbgzq0eEA5zrQvyd5Vm3YAQHYeG11xyniQfL9hA3D11cCuXcBzzy/mf++vss/F9Egga02wdSvwW2cVsr/5dWD9+uzz4eHyOU7kJJblDUDxuzYtU4MpRBNcTaeV9OK+GyNuDo4EoHhfzY4t5pzAJEguzlBKdNyFWMVaV3L4TZ11GUv5vQorw+2lL30pfvWrX+G9730vVq9ejc985jN43eteh6c97Wno7+/H6tWrccopp2D16tXo6+vD05/+dGzevBmf/exnsWbNGrz3ve/Fvffei5e85CVV/3siCHCPuNm9FvYRN0Z2BV58lwi6ba6/i0E7zWx0KxboPcturJLM+ZSUFOJGYNvMkyI7FPOjl2zmWLV5bdnCpzwBQqpkuyw/JxsgK8nMqFOWL9LWtwGM4UbYvVzS9tzqFk2ymfMs7g6FiMcnupydrx9LcVQMDwP/8q/FmPe+J8Gpp6oV8eojbgWsIp3suYSIG7XlCACcNaTITUb2m+fSVaQw4rvKRtyaioib/F21VGSZY22tVQNYspiZl8J/t307sHEjcM01wMHR4vO52QR792afb9xYNA3Pkb/HttFrgBpxy76fa6dkZ4JpHXAisuj8aRMRy/9tts9jNjb703RfXPQZ+15o9DUMrmuYpXQnPoAqyEkcdKVehTU5SX9/P97ylrdg586duOWWW3DxxRfjhBNOQKvVwsjICB566CGMjIyg3W7jhBNOwCtf+Up8/vOfx4MPPojLL78c/f12qQ8Rhw+kGjcHxaFKJZxTHAxjXaIzLMFAv4aC0CmFlN0cjaQEzH23uPHNJjB+qBhnSuF32wjyk/Vfu9Tl2CrKLp5H+/YU7HzkkJEN1Jl2ALKIW042QFaSiekiXU+7cWQBl55iLhFgs4OIts5QIu8Aa9Q6eMINY23XyFwR//JXis/mZrNzVYo4tfaErEgTFTbK3uHSDsDW+ZQkSTfV/NBsU3pvxHe1zkTc2oqIm4wYxBYUMh6TYbh9O3DxxQUbZYOrzytOnpnJxrHPjMvexDak1tW4AUUP0BR2vyuNIZDuELVNwwSKiK5TDzoKOYlLlNZ2b3LIGqjEYLacuwsDty2hWIZjx3IjtwOo1Wp42ctehpe97GUAgP3792PPnj0YHR3F8uXLsXbtWqxatSr4RCPCg/eahvciUdIuqLIpqV0u7zNvuKn9Gy6pBXwkUj+W7Q813WxjscL/MTycNZq98UZgy7Upznpu9vlTz0jwyj/PvM4yRYS9PJVAhLIJuBj7OvmcbIdCZ20U1fJ5yetQLr00U5xU5CQDA5kimI+nKsmUiBUL54ibpUHuUidGaTRt8zxS5g1kv22aOtYrWbL4ifNikSvigKiE8+NyRRzInhuq44yqt1DXd8re4RZxszd+BgcaGJttIgUwPtuU9vVk31VdxK30rrJzImYkZOcT9lXhu+HhbL4sdM8MkI2/4ILcQSQoyhbvByXixhp2c+0UDUMYgNamRn6eDvl9t3FuZWNSkvMpH2kkJ/Hcm6ptnWRYw5xq3JjzLedue1/mmsW48VGguZpnhVXJP8rtNv92AKtWrcJTn/pUPOc5z8EZZ5wRjbYegrMnxmkxMsgnyibN3YEmlmXK0lKvOyx0FIN2IVP/NtWUF06xqTR79/KKyeOPJcpUGoBW8JujSJXUg/ew0X7XBPpNxs0jy8xN+++2l82SDSxfzlyrnWBoSE42wEcLLaInBCWWH0P3JgP2KSlOETfDWKq3mlLjBhTPZJWtDFTyRUW8wdgXbPSExaWXZudRWX2pZXDUxuq037Q4bhLXgUy+/grLGENtbEZdtJa/qxdfXAjPa9xU76pTSjZzTKIwFy5w/fXlvm99jONO9szMzAA33NCR7bBnU/YmtiWATS8317p0KkmGjVKbt99w2rOriBaycwu877kycNuu7/b9eu3nntd0vvTC4rOPfzzR13Qyx5T67l5E7ON2DINWJ+YX5jYudmT7gW4UAvZzn+3wVjeShOABs1zoCF7NBX16w01MpQHkXllZKg0gRtzMcweKO09q5mkt2y7dpUpHAn9ts+ycbOB91xWf/c3fZOQDMrIBqmeQyqzVdYKQIm721yiMH7oSbpbNzsnGQKFH3MTztPLZcw1jTXMXFXFT9AQoFHEq0Y/o0X7O+hXa8XRWSeZc47uadAkhXGrcTPKX9Bdr5OScpg8Hsndx08XF31//+gQPPKB+V/k52T7vbooyK7/ZzLInRNg8MzfemJ3v5FQkpPGzTbhtSD5oUf3imFoPZbNGdmvcbGVbElsBbsaPEzOjA/GJCU496BzSPG1Sya+5hi/7aM6qU8nLc7KYeA8jGm7HMCgPt1MPDtu+WSg2mdDFvJ0BDOwukKdK9lkSQQD0XHzAJuLGp0qykKXSAIUnv90uk2TkHvwcThuBZcTNh0CkCnr0bg0E9EYn77mzR8LUuK0b0qV0EJVkgiLIyqfM3SVVkmqMZ3Ozky3OSQVbT3Vxfdq94Q0IyjPJX0GmiDf6WSVcLfvGG4G0TXve2cuvWtiH45bYtZAA7O4NZ4xbPJX5OmdtuBEindQaOvZ5PGF9pgQq31X+RCtQnhnV/rFzZ6akirCJ0u7Zk53v0v7ClpQLABrEJtyktGMHo9PW6QfQ63TZ/oO27VKyOdnBjTjLTjbJycLNKey9sYnqi47oPmaNnDPVdDrR0PUmouF2DIO0wThsAi4RN7feJPqxVEU8TdOu4aYjJsmuzTQktpAN0O6LLlVSlkoDFF5ZmUeWTaUB3CKpsNwgXZp5poxxpYOLcWVrFLpsjuJY3RV4+TaKJnMuJeJGSZVkjm3r0FLYzb/KfmUUBR8o7o1TqqRhrG7uMkW8j1HCc3ISGfbs4c+lRiLZlDYV/J5J4/DCcHOIdJoMwzrV2Cc8j041RZQSAYWSPzYmH89G3HTPzPi4X6pkLSFGlmzSaylZMsSIW5qmThE3+56LzNwNk6e+SyX52oibS0SMnZvd2i6ep4Mt+ZTJYSmv6SyOm5LnnXVExxq3iGMCnCfcMNaH5Qkg1LhVoFBR595sF3fGRL0O0NOvKF7NBZzhVqjXqlQaoFjsVB7ZPJUG8C921sGpmWfnT5JCRczFNxHCuDJt/vKJcakMEXz02gyeYc8M6ruUXYMecRPnpkKVNRaU1hcAa3SGdxDpHBUyRdwm7S3H9CRzz/VDS2Ps6iJpzzw1CpynStr2zeLJp/Rj6b3/KPuSy77Hnq8HK/Ohh9LuurxM0QHB9plZutRt7vnv0yAb+2bZlBo3Ki09955ajKc8M80msPMh5nk3jPdt4WMbpXVJB7RJa+7OKTDpl6m2W17TqX/euZpOTr5uxr2PaLgdwzis5CQmL1WFKUxU42TWkpgkR64wumzsNk1O88WQLQBXpdIARYNZ1caep9IAbt7BIlWS4r0jRtwqVKiqiLhNzDY54gV9xI02d3JUiYmI2YJCTkImsuDOtVfY7MhJqPeG9q7SvNVqZVCmiDcMRBMsFi1i52QTgWDmZaHKUjMqqFFgNuJmG0HpyjeMJafXEu9Nd04O41T3Jidf+Of/W3z2xy8u+vg1GsDateXzbFIlh4aAk0+mv6cAa7jZOEHc31XTrkp14FDqaMUxqihw/hutXw+87KJizCc/kSgJMgDB+KnCyU11PpHeJfY8K/FObZ9EY9ymplMVYe46ormvj27LLRpuxzAom69LzjklL5wecePPs5FtK3+WmXi/jeexcwHrnHBCxA2Q5+OrUmkAc8QNyFJpMtk0zyZQPDckT7il7K5xRTEKrWWnpXlJ4bABTAusarqzqE4QqpJMrRcFqOlj1Igbe65+LLWWlh1BIm6xjrjZG4a6iNvJJ5cVcVVPLhFDQ8D644n3nMpEyp5LVJRt1uA69Zlhjs3tBopju35idCW5PCs1TIoyS74wMVGMqNUK8oUzzgCe85zyuaYIBABs3pwZfuy1bffsnE25z8Jw454Zm3eVsg4QnVvUtiCsP1a2b4tMzf1MA/fRg3qmZjdnKGvUmnQlovNJMTcZeD3PwUGvuYAuS0bliDaxqAKFI5p/Ho9uRMPtGIZ7xM0OLhTjVIXKRimhKuKsYUXxPFZBLQzIo5GqVBqArXFTy166tCOb+Sy0J9wlndE64kb0yLLjSOlRVpLL/75ZDT02NeJG8VQD9HepdA0PA8Uo2zC2yrQ3doxbxM0km3VU8BdoNDKFmvuM8yar5W7eDPQ1aAoVJS1NHGNza6iGIZlAxLLWFRDuO5EkgxR9t5gLoI8wi+QLbL9Htg/kzAzwb//G10ECZmN/YAC47LLO3Im/aZupE7PZ96hRWpc62nxeFNk2z7suSitjau4bKEd+VEzNPg5L8XwZqBkVFCeIC5eBrZ7Hs+7y39nVdKrnMD7uloXTq4iG2zEN+83XRQnna7kM8ruyrURbp+uJY2w3sO65BKXEtvCe2pg8f0nZeck8+DlytrqWwiObp9IAdIPchTZePE8rvytbP86n5rKKVMmWME7H4scbnWbZ1Ihb97yKIm4+zaBpLSSokR/7tYDa+gIg1uVI5G/ZkinWOWxSJXNF3KePG9W3Ra5XsmGVZO6NFQNhLtvKGHc39qtIyValNsvIFzjm5Vr5AuI1TamS27YVLQ2oe3aTc1jaZJoQjX3Cfa/agcM1hWfkq5ma1ZFOLVNz4KgVwOpKYSLAnGyH+m6XVElRtrKm0zKdfOlSSyf+UYKghluapvjkJz+JN73pTfjABz6AiYmJkOIjAoMUcXPYwLqU+rXEouC2HFXSgbKxk5US5riKnjAtgkELsKmYxWcyD373O0OqZJ5Kk8kmRn8cmcHorJIEz6A1Y1r2p7ne0kE28+OcsnwRFjH990Twl6dGT8xzoRh3OUgRN8V5YWRXq7DR60OYcw1jTTWdGzZkinWOPguiiVwRJyuyxIgYvW6RJr9Bjrh15kUgnLGVza9hlloyAapnRka+oIq45Wg2gZe+tDD4VQbEwABw881883Dqu8QZboS0Y8DOiKDUFpLTyQmOp2wMMy9mYiqm5jrz27RavHyRqdnJYUmKuLnpStm5+rHU3xSwX4N166PKEW1T48Y6orvyj/JkSSfD7e/+7u+wcuVKfOtb3+I+f9nLXobXvva1+NCHPoTLL78c559/PqampoJMNCI8XEPotmxDMx3DbaBBYGa0kkxLpaFHlWjKIL0nDDHi1l2oefmiB78rMycnaZa/Y1NpAM/aFgrRhFFyhnwDo20wZrl8DUFY2QD/my7pVzSF6sr3ME4s5tL1yFqMlc3DWF/oqIRncyMobBWkSJHJSUg1bubfddOmTMEeGNBHT0RF3CcSaUfAQXPg+NS42fRyy/cYq4wHH3ISUvTd7qFpStZ3FfkC22dTFeT6/veBX/0qI8pYsar4fG42wdBQ9vmOHbzRBtD3vSYT/iOnSlrIp7xL7NdVrJF8xK3YL1VMzXXGgGhJ9lVfpmaSQzSXbR0Blp2tkO0yd9uIm2bfUzmiG4b7DshrOmOqpARf+cpXUK/XccEFF3Q/+9a3voVbb70Va9aswRvf+EY84xnPwM9//nPcdNNNoeYaERgktiHuPLPsVjvtevAGbCj1JXPSoYi40TyDNssRvwnYR9xse8JQyUm6Rq0gWvTgd2V27IZWsyybTaVhZQPhjVq6slls7ZR0PRvjgSPKsbHG8zlZjnPpWZjJt7gv3LnhPeEArR6VrIQ7p0jZPTPFucbh3XUshfneNJvArl3MtQwFK7YR5k2bMkX7jKcy0ZOON1mliJMJYRTzUoF3zFnIJ0Y4qNH3biq8leOsuigt9y6ZRQMAZpi2LfnepyJfYCNu9br8Cnv2ZM/i1VcDV/11Mebv3589n1dfza/p0rmTUyVt1hnqfS+ObaJK+Ygqajplz4yOqZmLuEkyWTimZqLziZ2DODcZXGqYxXOV3ztkVrUs9w7TvidzRLM1njJ9RnREF/KPbjgZbg888ACe9rSnoc48zZ/73OeQJAn+7//9v3j/+9+PO+64A8uWLcN2Ge1OxLwAt7kbxlJzn2da5c1LL99eNsDWuNFA9ibbeHy5CIR5fL7QJbDcZDR1OawHHwCSJO1uMmzETZZKk83BffM1Rk+oXnzm2KQ3LGzUu2P2T80ZN0gaUQ71qeINGJIySIwWUpVwagQbMM+fGuHgf1d7g5za4y5U9J2lAX8tU+/ygQ/oacApzoQNG4CNpxZjvvkN4IEH1Io4NZWR+syYeiyV5LPRE7N4+jrdPc9GCS+O7VglmXNN8h3eJX7vyxZjFfkCV+Omzq7usgCzTcTWH590U95loKbBz5Fr3Ipjq/RagqMYYDJNAhvjgDxrQMvU3GAiPy35mC5Ts1OqZIURN8K76hZxs5u7KYoqc0TXDenkfE0nfd/uVTgZbvv378fxxx/PfXbnnXdi9erVeMELXgAAWLp0Kc4//3zszN0QEfMOFE8+1Ysk27y08okUt5RUGhd2rRzUnjA2imy3EbRl5KeocZPLzj34W7cCxzGvZbupT6XJ5l4cUxXC8BG34tiksNVrCVYvzCqXp5otHJpT7KaS61vVQnXnRI9YmX5X+vNYHFv15HIibmHON0XcmH9f00pRtlccVLUnKqTEd9V0b0QacJYwYnwcWhpwel+r4vjssxJs3AilIk5ves6ca/PMUIkmuHPN46lGhC27bC6bkq7uSk5iq8nOSpyWKvKFNlMvpbOVchZgGokQcx2LyVNTJalZOK51aDZzpzBWAnxtef486Jia68x7KYv8AAxTM3FPBURHi93+QXVyAxaGm2JOOnB9aQ3kJCajU3REs/edTSdXO6L18o8WOBlu7XYb09PT3b9PTEzg3nvvxfnnn8+NW7FiBUZGRvxmGFEZSIX3RGZGdvPqJ9W42S50nfMsfbndF9piLH0TYLx3FlpVfmts0iTZOaRQL6YbNmSe+t88WHx23nn6VBqAHv2h3Btdw025bJpxtWZRkVdxcFrB7pDLpir4xAgwtcUDRdEk9+Ry8Jq2CIYt/7ybZVMUNrJRyxxTSQnEtUZGA85GQfK0NjUNODOWaEAEb8FAfWaYY3pWgo3BzJxrFk9e34uWLDQHkW1aGmD/Lk2zqZKdvU9FvmATcWPJF5zTPC0mT06VJBv7ROcZIeJGjjBLnK06pmbecCt/zzM1+znObOsuqWUl4tx0ssXzdAjd9ol1RC9bxkQ6m+pUcor8owFOhtuJJ56Iu+++u/v322+/Ha1Wq2S4HThwACtXrvSbYURlIBULc4qDWfZMs4iA2KRKdudEfN9sy5WKOrGwHlnAvQGsdcTNalRnLkydxOJFag9+VzZ18yVvkOXz1LLl81Khr17efFWgbIwA3XNHrlskyKem7vKbL91raqxxq9nf92wOzNxMBgo3JxsniJsymMkvPlfRgLNREJZIAijTgNNrrTpzgvl5p9f+Fcc26we57pKY9uZa12mb/VQw+5rHute42b1Ls51cugRFI2sV+QLHKilpBwDwLMA0Zkba2s4abuQG3MQUVbs6tPw8mmxKXTpQrCE6puY6myopMdzY34i6honjbNmaK4m4EZ8ZgOiAssysyh3Rr3lt8dnn/jUxOqKPFTgZbn/wB3+ARx55BP/rf/0v/Nu//RuuvPJKJEmCP/7jP+bG3XPPPTjxxBODTDQiPKoModNr3Gjh/3yxoBg1tuDTjMyoERXZbqokMeKWydePpbPsFcc2ZA0PPcx8kFpsvpr6PBGuNRA28unMjLTnkUp+QnneuahSBQyB2TzsDU9qTy4XpSSbkxlciio18sNcQEUDXmMcIW1BYSvRgDtG3CiOhOw843AHQhvaM0MxxjP5zLmEtcBWQXFNlbS59zls36V87+uv17h7LyNfMLUDEMkXuLkbbg619s+vxs0M8vpO2Du4jAECU7MoX83UXBw3hVTJElOzk/HDzM2ydtypxo0UpQ3v9DOVfZRPKMaddJKFI5p4b3oVTobblVdeiXXr1uFjH/sYXv7yl+OBBx7Apk2bcPrpp3fH3HXXXXjsscfw27/928EmGxEWpBA6cTFiN4E+i2Zl1AWD6pGlvNDUjV1GLaxD2lXYzHMBhGin4e5TWfZsFDaWrOHlFxWDbvoEtGQNAC3SyY4IXVtIVTSL22K3A7hH3IjRDauoEnOueTgAmnFFjrhxDiLCOmOlsBXHNgqbLPKjowH/40uKXqRtSVooSwPOkxJQDDfjUHIdl19EzAzKb5rJJ0b2JefpQEmVJKV7W129QJqmRRscwWEpI18wtQMQWYApCj5HImSTwk+o0wX8jH1SurqV0Vn8qjbRQlWWjJqpmYm4CeXU4m/E9yszTgWAW9q0bVsmWsSNOc9KOnXuVAc9c67VOgOS/F6FwX6VY926dbjrrrtwww03YM+ePXjWs56FV77yldyYX/7yl3jpS1+Kl7/85UEmGhEe1M29lmQvEjWFqZHYtwOwBbnGLQGQ2noG2fOoaRc0+TagkB5QWB8B80K9fXuWEpZHI1asL747NJ7gI38LXHddtnnJyU+yG29HMU4zUGQF5mrZxbHVfZGcpwO9xi27L5UoyaqTNSCRk7BKD6EnF2CTSsPOiRY9sbrvEsY3FQ34ksE2nnpuUTvZbpXl5zTgGzc6pErmc7I1TpCgjZQk21Y+1XHmV0Nnb+zb7gtdw81q/aVEgGkGZystfh9Z/9J8jczXVD7iVlxhYEC+ppLadpD7LRKdfhIniA70/qid39Q8FHOMB6fPIlqoc/qJvxEg1Lh1SDJUvxEfHaetvwnsnRUuUaXQTNAAzWmZf2urA5GdlsWZdhfoUTgZbgAwNDSEt7/97crvX/nKV5aMuYj5BWoUInup04oKnfl5mc7INwr7iBt/ng4+1MKUmh/bBZqyEVALwHWKck7WwIL1POb0vDlZA6BuAkuvUzCD0tuK/KwTPXe8t9ryJNgq+D4Kle087KM/XKpk4NpFsqLMKQ3m8TJlU0UDvngprzKqjIIuDTjBkcCOsY2813LnUyVRWmJEjODFF+dgF3Gjre/5b09tB0Aia7BKg2fnJJe9aRNwwQVZmu1vRovPa7WMfGHz5iz1TlbHQ4qMS+q4dHCtAwYcanXNw0kR5iYx4sa3Ayh/z/5GN97ItwNYuiTLNFH9Rjl7Ymo5d6B43kmkLcgYlRc29Kzd3AyMjorynEygtDeikodQHVA5YqqkBK997Wvx8Y9/3Djupptuwmtf+1rjuIgjg5TyRoOmzFKphclpF0SPbHecjWzmmEotbFIcOK+meSqlOZjuDUVJFsewolVkDQ0NLbJI1gAwqRHUjZ1QvA7YRNxo0WVyjRtHkmE/dzsiCGZeFdQrAYXSZvW8Ex0VlPpCcuSHmNYsS8VU0YA3+vi/L1win09OA+7aCNpWIcnnTm0HYPe8y89VymeOQ7RhKMnP13diqmQK83NDiizZ64oA7A2rnHzhqncUgz7wQTMLMC0yTou4+bxLdj0XifIJ5Q1cfZ6FB8emF2X+G+3aBbzhDcXnn/50YiTI6O9472ZsUnBAXwty/HyvpvlcB5S9j7oOADSyNYo+wMrOzjWPP1ZSJZ0Mt5tuugl33nmncdx//ud/4pOf/KTLJSIOA+gRt855Nh4wZgw94lZB1IpCBkFcLCgbJPWei+NMee3UAnDVQq0ia+AibgayBqBYYKgU5tXed3tvsssGY1Xj5mrQWszFL+JGU3qonnwze2JxbBVxs4hwsJA97yoa8EY/P4MNTym3nGBpwOkRt/w8W+PEXjb5eSesMYCLI4Sdm9mw6q7vFrIBKlERc54xdYyZl8U8qH0F2RanQ0OpkXzBtRaVbrgZhzvXpQN2e1/h3DLLn2uxETebVMni2PQ+NRrA8pXFmD6LPLUFnTTZ6WabxLhp88xMMT1Ld41Pa0ZmoKwFLsQqlPZG+QhqCqk4N7V8msO1V+FkuNmi1WqhZvESRRwZ0GvcOh5fi7FsqqRdoTM7L/1Y6ry5cy3GUAtiawRFllqvlM1Bfr5UPjcvs2wqWYOpESlL1pDJrzDiRvDiU40fdJUGuy2AWthPMWjJfdzYc603yNxwM4/1acBNqSmiMpFSyUlyA0VFA94nGG4/+uaC0hiOBpwR/vDYFKdMykBPlczX3/CGFeVdAtxTj8VzTaDeG8BspNDaAdDui1e6oVk8rW1HxamStr+Nu3x7I4IjQ/NglVSBum8v6KQvpgBmCcy7Nu+SbRQvB2Xvc9k7uizZgdmUxTmQLImj3HKr1KrasWMHBgcHq7xEhAfcI27msTw5CS3twiTeKWqVn2u1SNMUZT51zCCbqIRn48xpHV35AYwfFVkDADT6igu0JD2vc7KGrvw8SkCtLTSO5lnYzBE3qvFDy7nIn/cENKWETO1uMReqMsjOgxpxs2Grc2kuC9jWFLGRTuNwpYEiowHv6+f//sOv84abSAMuKi6PT0hC1t1rpw4Rt2ycFQGS5DwdyDVoREWWYgBRCZYAvq7UtqdjAos1knhfqD1AfZpYG9t2GOq4RLi2TMnONY+n7qssduxISxkeLPgaNz9yEhmo2SAso+h0s6UZmc+hPK9Q4PY+w1gXBwulvRElayAbx55rv44d7Q24rclJ3vWud3F/v+eee0qf5Wg2m/jlL3+J733ve3jRi17kN8OIysArhGFfijziVk8SUmoaADw6Po2Tly9SjnWJWlHmTl0sSCl71MgPhPQxo9JD3HwlC7WKrAEA12tIpEXOkZM1ZPIJBoqH0Wk0mKmKJs1u6ypGtr35KM8jfe7FmP1Ts1jSr1/mm+2CwrzfQukhs9URlE2qIkuvy5HPK6cBZ8l42IjbLR9bjOYcL1+kARdJAnQ97qiRcaBIOW+lKdI01b4j/Ltklk01mMmOEIJC6OLcoijipDYMwsxMqJrgg3WImsRXTk6ieJdU4Hqtadax4eEsVX9gY4KnPTv77JxzgSULswj3li3l+jJq+yFqWjN1b1rQYA23NgYlveFYUPsWUkBxdPuwSlLaD9nKds02ObrNNoLhdtVVVyFJku6ifs899+Cee+7RnrN48WK84x3v8JpgRHWg9/qxf+nyFCqb+rZMdnF8955RPGlwoXKBdNnYmdw3I6jeNVKqJDsjoqc9m5seVPmJZANTkTUAPLuWLFUSKMgaADHNU69sku87gSSDGqXNo8RzNvzioKWLALSIGweisvnzvWM4aVDtBAGA8dkidLpswLwl8A24zfMh9fnhzjPLJvfP0zhBRBpwtsZtbrY4UUUDDgDPXDeInzw+2pGv/ge4NIFuCAazLpPBdW0HXCJuNJjJQ+iyeeeZ4fpdBr/whpUrmQI7Lxv5CYipklXUuBEcimma4jGmHmthn5wJkW0/c8U/Fp83Gin27gWuuUbefiZvB5CA0o4lAzkl2zy8myoJADOBI25DiwewpxPNXyBpOSGC4vijRtzaTD0qZf1NYdYHMvnMuRbzAdEw7FVYG27veMc7uobbu971Lpx11ll46UtfKh3b39+PE044Ab//+7+PtbKq74h5B6ti4c6fVuQkbaLhZjUqvz57HjXCQZRvFXErjm29vYD9v5niDfdqwN35MydrkKVL1hmmPVnqCkvWkM2B3yB1zlDq70rp+UVVZHNWsHaaPcum5ziXT03dzc/VRk8U56mwZlE/Hh6bAmBnSI7OFD/kINFwo7Z5sKWLBqqJjpuitCwN+I/u4w03E1W7OAfd7KnzBvi1dK6dQqezkR047Lk20XGqfFLEjSYboEVQKEoyPQLMzMkqhbSAVcSN4CCqE1LJAZdooX10ZnSmiUMdUo3VC/uxVJIFILafYR2DLMOrrP1M7mBr1OwyfKj9IqkR7AV1PuJmAiUKfNbaZfiPnU8AsNevujBG3AqQU9WtaguNQziwjgrqOmNCq51iYq6JJEnQX0swYGirMJ9AirjlyA23d77znVXMKeIwwTUFy46cpFhIbSBeX6fks9cn17hZjCWzShJSx6iRn2wO9t5BqoeK95p2jO0OWcM115THNySNSFmwZA0l+Ui1s6I29eUjbvqx/DNjFt7PbLyzrTYaNf2iXtTNOERRDQYtiEbniYOL8ONO1MfGmzzGGW59mpEZ2HeC4smn9CgCaIqsvfziWGUY5jTgDx0A7uo4L9721gTnfRRG1j92CjqFkLrGAHytMIUEiZ4yTYvOWK0zpBo3unPLJVWSWk5E3zvCG4YUBj9qqiSfyUI1xvXy2Rq0FQvKa4ys/UyTqaGu95XlX3pp5mTZsKFwFPdZNtGk7B0AvWaUncechVMxH2Fz3xf3N9BfSzDbtuupS2oHQIy4kTMeQNj3UKwV1i1T8vMsxo7PNvHNh/cBAE4eXISz1w1aXWM+wCmltt1uW/Vxi5jfoBoR3ZfCIi0if59ta37EFUW3EbiwShZzJ3oeLa5A2SBTomyAtkGG8rTLyBoAvh1AS4i4iWQNAM3o5O6NVQTYXlmjpl/1MzvKrAUbRC6e1Ey5AxNxC/etpfzFnVQkm+edZSlTpTBxU0iS7jNPqZ2xi4gVoPRxqyW2z7u9AZHUigFDa8xGG2CfPuYWcSvujq5+DqA7QVxqW0jyHdcw2/eJX4P1Y0kRN25iNIO2Ckp9WsTN3qEI+M5dP9aka8jaz3ARN8m7x7af6TqKbSO0hL0DoBOr8HXp4Z93CjsjRc+js6i6R9woDiLr+5LLJj7vVCfOkUbk6j+GQa+D6Jxn9K4V37umSureO7eFzm4cQH+h2X+jSaHyL7zXj6XXKcg9vjlZgwi2HUBTqHETyRrEOVDSSO3aMNjLZv91NvdFjLiZ0E2VNIvOxhEiS9zGax3Ry/60iY5T02vZcbSIGy0CYTN3CqNZJr84Ns2ci+YRaxcBvUFOrZkBxHVGf3fo2RTMuRZzqTIl0CUV3mWdoUYiR6YlNLol2eycwt93lvTLBK9+ixZzoUQLdenSqvYzXMStIb9C3n7GtSdiNjfqvbHZm+yNZhcnDsVAoewf3HtqRThTHFP6lwK0SKc12yZBz+P1yN6y3KxTJWV47LHH8K1vfQuPPvoopqfljQCTJMHb3/52n8tEVARydMaSUIHafFt2fZ1a4rKxU4pWqQspp1BVUHjPjqNFlvwiHCJZAyCSk2R/6sganBk3rbyaFIOWkW1xX8iGWy67CsWBGAEBin9jFRFmIL/3dqTLtFTJ4tjqXW2z8zHDpRaKIt/WQPElJwntIJKlTIeVb68YVc8qWT5HBXbEE5Oz2Dc5g9WL1BSBVIIl9go2mSzUnlnZW0pPaaZnaxCeR+E7VfsZ1jFYV2iqe/YADz5YSHfp+2fXkoX2u9IyTWgOdIB1optB0TmqT5WUz0sFeu04IRLpoIvNFzgbbm9+85vxkY98BK0OJ7j44uZEJtFwm7+gPri2DIF8xM3On1yOuKlfPadeaN1zzaAu0pQUJqqxnM2BEp0JE3HLwZI13HgjT06yZHGCrVvtyRoodWjUBrChWSU5w82CWZIccTOQZHCy2fOIETEyYxpxB6M4QugNiW08vsSIm2OtlU2POMD+efclJzGmShKdIDKSIh3I6ZSEc10UKj7CoR9Lq3HjB/3k8VH8/ilqwrUqI26sbNuUwEYtwVw7JZGTuDhBTNJ1afCq9jNsKn5DUuOWY/wQgMW57OojbqH3JicHUZ4qSTQ6Q6dK+pCT2PV27ZxH4pQMf1/mG5wMt/e///34wAc+gCRJ8Pu///s444wzsEzHIR4xL0FpzAiUNxnVOawXxlYRFDcWbaqkS9Sq66Gy9zwCDhE3Y42bu3cNMM+fwuAnzkE19Zys4Z3vBL7/YIq9nXE3fQJYP6iXT2qVQE7dLTzKFFZJG7D9zGgRNzv5tBoIl2em8Dwa2zAQn5lsXHluavkdT76FXFeabkv/EPFdokfFbOU7kZNQHESsMkhMO6YqbDZZFaQaN4fn0ZbplCWCoBpWNiA34BbmpkPL4XnMI+NWTduJ9USgOJ+4PZu/gEp1bFlE3ABg8ZK0uwBTasSKvcM8nro31QnrGLUelZ0DvQ+oQS5hXwLouh6VfIocceuOC2+Mzyc4GW7btm1Do9HA7bffjuc///mBpxRxuED15IvpKKqH3SWqJG62WnISB/kUTww117/GbAKk2pPAXvxMvo8xrhfeaAArVgB7R7K/9zXMV6C1SmDnZa+YtNLUfF+Ec0zgUyWr8FYzv6nVGTSI3nDdrKhRWoBNxTSPdY642SgOxIhbjeBRbjls7Lbyq464uTauzeZGU9is0vbYuRnfVboiyxruWsONPYf4PALm58yvIbwevLFsFA2g89u0aO0AqiHNUv+mqvYzzdniWBVxGxoCTjwJuPehXLa9Al7sHUc24pY6rAW0yBJ7ol4+955azIOLuFWwvpNr3HLZNmMcnOjzBU7kJL/5zW/w3Oc+NxptPQ5yPZRlOorLCyHqITq9xOmFo9RYMGlvthtBrlSRGnATw/+AhfHDHJPpqK02AZpSRWqV4BCFyA3DI8kq6cNyKp4vl8+e52AYmjy+LgZKN+JmhnM7AMNYlr3Wdt7svXzscXkvwhxth8wBdhrB2wFwtbRhyUm4cy3GsIYjlQbcJJ9ajwrYk0H4pAUD5jWPqoRTUtOo9UTsODtykvw9tXVSFPBJf83bz4iYZZre9w/IL7B5M1Cru/2mNcu9A3BwhJBqLh32DyajwoQqa9zorJI0h6U7q6SFbPa8Hou4ORluS5cuxXHHHRd6LhGHGdSIGxf+t8kvsJQLyCJuarhErbovtNVcsj8pXp5cqTLXnjh4kyk1bsR7Q/Ww0T2PBAOCnRcx198ccaPddzYtjWSMWyv4hCiqi3z2fILBTDU8bWTnI6ieanMNWnFsUmSHh4GtW4Erryg++8u/TLF+ffb58LBMPl1RtjU8qycnYedklp2njonnqlBpqiRz7NIOIGRtobgO0SJuRvEkenRqPRE7zibillKVZIqTRXFeDln7mdlpxnBbUJaZt59xIVcCit/fzoAojm2uQEmV9Iu4WZluxXkG8eQaN6oDh1vfbZ7J/Dza+kuNuLk4cY4knAy35z3vefjpT38aei4Rhxn0vO3iWLcRuHh7S4abZbqLS9TKtGDkOeeUl7meZK/STDPFjh16T353Ti5efEpdjoVsSq2VKN9m+hRaZH4TsBAOxqMcOOLmzhRKi1gBdh5fKii0+kXzcJcaNzvZAD01jdQ+QiN7+3Zg48asofzBg8W4eiNLz7rmmuz77dv95g7w75w+4kaXTatxc/Hil89VgR5xY+emH+syd9v3yadXWXaOyXBjxlrMnnJf3CJurHzT+5T96cag6vc8ytrPzHCGW1l+3n7GVQEnRdyIWTgkchKXGjfL9Te7PjMvwzNJcbAAQjsAq5RpihOacfoZJdNB1QnmE5zuxzve8Q78+te/xj/90z+Fnk/EYQTVK8v2MtLXEdA3XjEbTZsq6bHQZefrQfHy5J78n/+0MCBOPVXtyXeiXpfMTQWTZ1OED5uczQbP1bgZlE1qvnw2h3xelAiEWfbh7M1nfh79FFmzwkZ3VNjWuFHp0Sle/JaFwrZ9O3DxxUU7i3ar+K7OpFjNzGTjWOPNRr4I3qOsHkenja824gbQ6hZzI6KeWK4zAaMzMtiSIPkYVtl19OPphqHb824bcSOxbXZmUMmeqjiPxaZNwM03F5E3NuI2wBhuAwPZuLz9jGvKWzfiZvG8F0YtTXZ2rr3jz76+0P5dpTyTFEcCQN+zeVZJPfzbsdivkccEOcnY2Bje/OY3Y8uWLbj99tvx4he/GCeeeCJqCmqvCy64wGuSEdWAf65tlHC7TYBKRZ2dI0TcNGPdUgvsX0xbRXb79qLH2Ts/kQ2u1YCBhSn27k1wzTXAddfxPc7cjE7KJkCTz9fkmMdTFU5afyV3xcSklFCNH2fCmQrqFrnzbBUHCuNbV2Gzf0cKj6+dF58iP7/vlBYPssdleDh7P1k055iIWx9KuPTSrP3Fhg1u6Yy2NRx8/Rw9emKMMHN/I0RRU1qqZN2h3QutptMOtqlp1PVRnIDpGfYjJzE4thwibnzbkRSqO+pSL0prrSE/TwTbfuaenXzEbWgoq2kT28+41i0WhptFxC2fu4MBYa4xdnAQMfMysgYz55jmT3GwAA6Rd4JDMYSDXneaS23hfIGT4fb85z8feZ+2W265BbfccotybJIkaNrkjUUcdlBfDFslnPOuVZAqSc03F6HZvzj5Ou9X7snPMT1ZjF2wKMXMVHace/KBbFNyUUpc637oqToWGxhREbc19gE3xcQ23cUlAtHtgWSqW5TMxwTKb+qshHfl2xlXFK9jV3GoQCmpJdmzQqrnlNyX668vIm05uN5QjfIFZmYypfHqqx09vpb3nUoiBBDrTxzWmeI3Na8DzW7EzeG+GMZW2YDbJ3UXMKdw+1CMG1MlnWrcimN7tk0r0cFYJUXk7WceOQj8eE/22da3p3jWJzIiExGu95ySKklpaQJke2MtyeZGIs5yMAxNoFDqU/WBOSZVqs+ivoHC6usWcbO/My73fb7AyXC74IILeu4fGlEG1YhgF3SdMuuy8YridC+1vydGb7mZGrTKPPmi4Ta6n/8+9+T3r2TnZKv02HnxAfq9oXrYyDV0lum1gGuqZDbO5Hl0iYrVO4abucbNM4pqUnqcjH37Z6ZwVNjDtgg8dfhNkyQBUnOFhe5ZbzazhvEimha9oW68MetZ6NKA27axupOXnRlndlS4PpM2lS3F+m9DTAJ4RGeIDpzsfJ3BTLvv4vXNNW7u8k333cmx5fQ8ho8q8emAduhn2s2sWJlKjbZMNv1ZB/hUSVPUilI+wcpvp+ZWNS5p02KqvT6yVD5HBYqDBQDmmGyUPovoO7eGEer1K3HQO9z3+QInw+3b3/524GlEHAnwUQha9ETf5JSRazkXMfVH91J75z5bzkW1Oco8+dOTxaK1YJHak////iV9MeJr3OyiJwDFW23nGSzLt3lmimMSOYlDDUc7VSvYLopslS0eqA2Pu/JdHBWWKaqkVEnmWKf0+LyrPil1O3eW+0IBfMStLom4AcCePdn57QXsxu7wuwZew0h1kcwxPeJmkJ0Wzgzb95Sy/nJ9Ba2k25Mg+UbcSOQkRPmm+846kOzXR3ZugfdU1+fRNjXYspWMO6tkcWw0foj1f6z8KvqXiiUOuseB1I6FyCo5x0y+38K7RSMnKY6dMh4MY1301PmCKshaInoE1AfXNu3NZZEup0pq5Dt4Ymz7lbG5/rLNUeXJZyNuCxfLL3DjjUCTIUdwSwPSj3UpdM5/V2o/m9A1bk4Njy09eC6LdKMzh2Y71bOcuhjLpdoTNexiIDr5+rG5fBI5ieUG6dP+whxdZufDCx8bk5/TYiJuDUmNW47xcbfn0bbNg2/ErYref7l8St1iw0WhIqWOWYnn1urQkSUWplPoEb3imFLjZnvf7VNI3aIP1uRQDns2p29oCWdc507fV2mpmHb7KseKaSmbd4TYva826wA54taiRdxs92vxe2rtH2CTvsuc12MZhNFwO6ZBU6qsWSVdlGThzdQq4cxx6BfO1BtK5cmfmSrGqpqF7tkDPL6n+DtVoQLC1hLk6BJ8WDS0OTSbWZ4JgP66efngN1/9WF/WNB2HiAvzWE6/nsKe8MC+BoI9Xz/W5X2ipNW51bjZOUKqjbipn/Vly+TnNOeKY1XEDQCWLnWsz1PMT4QT8QnBGOdgrfTkiqZ+nMt7ysI0dT5FKnRkyd2wys45chE3zpHgmJGggmvUyjpKy57jYIxrI26gv0uAmNZst9ZQFGZb1kq3iBslcpU75qjPo3mRYSNu5H6OFUTceAH6r10N/vkAp1TJO+64gzTehVXy/vvvx+23346f/OQn+MlPfoJf/epXaLVauPrqq7F161ayvBxf//rX8f73vx8//OEPMTExgZNOOgkXXXQRrrzySixZssRZbi+CW0wtFmuuxk371tGNh/OOW4E7hovCMGtl0E689YJkUkpUnvw5JnWyT2G4AcDUVAp0mom6RWf0Y1024HotAVrmVMa5dhvjs1mu2eCCPqvFlBRxcyInYeRrI24OHl+hl1tdxcjGHLvQl1fRx82l3YB7xC2F6q66RZaSzrz043QG7cknA2vXlp0sXMRNsfsNDWXnP7KruC9OCpVmnDfxibEukv68d6MnBtlNh8gPRdGkNFbPYZsqSSUkEPfF4O0ACAqpK9GP7HwRrr3Qcu5d8xojnmOGfcSNkU24n7bELUDh+KPVuNnJpmaxADSD36UvbTYvM/KIW18tsbo37Htqamnikq1BSt91eCbnC7xYJW3gyir50Y9+FB/84AfJ5+nw93//93jzm9+MJEnwvOc9D0NDQ/jud7+La6+9FrfccgvuvPNOrF69Oug15zN8UiV1PblcIgSrF/XjSYML8dDoVElGWb7LC82crxlnagKt8uTPzhaDdYbbgoXFBOx7thTHPlEIFWybWI9OF+GKFQOaPDMG9sa+SE5iJZ5XTCzDENQaN6DzXNTl41yKqPkibT3cDENGvmXEjbJ52SoOTn0LuwaEHrr70mhk1OHXXMOf02L7uCkibps3Z+cXtSF0ZQ2oIFWSO18/lnfK2WFho46JuRZmWykm51pY1Cd/4F1qUbnnhUBKYHtvbNsBUMmVRJjeEV7ZDBvh4OdeXcSN3BYktdiXHJy51qUZrqmSJIco3fjJ5VNq3Jx0AstUydBkOUARcbNJkwSApf2FyTE6M4cNWKgc60JWxq8zerg8k/MFQVkl2+02Hn74YQx3ug4/5znPQV+fnYIn4ulPfzre8pa34Oyzz8Y555yDa6+9Fp/+9KedZAHA3Xffjcsvvxz1eh233XYb/vAP/xAAMDk5iZe85CX4xje+gde//vX43Oc+53yNXsMJSxdgxYI+pLB7qfmFVGO4MceUTWAJ81LrFiMX+bYvtGmxUHnym4zh1t8vv8LQELBmDTDcObeKGjeXlMD8tzeRcIzPFlrv4IDd0sHXntgpJpQIh3XfLJdIJOcdbENlufHPo5VoPiJmqYRT9hZbwypNizeNFnGzjSyxShXtXaX0/ZNJ3rIl66PIEgnx5CTlcwYGsj5RQKEsurRJAPTKrFsNWtFbsIr2F2sW9WPf1CwAYO/kDJ40uEg6zoUkg1I7wzU+d0oJtIvOUFn2AFr9X2gWP5fUMbcUUqLhhmqIIJzISZydLCaHaPYnZQ3On11Sj1FrJ47d+vvDxw50I1uU9TeF2RgHClZJm1YAADDIOHwPTusDOrPMjbMpyyiBYjD3mOVWCavkz372M7z61a/G4sWL8eUvf9nlEnjd617H/V3V3NsW7373u5GmKV7zmtd0jTYAWLRoEbZt24ZTTjkFt9xyC+677z6cfvrpXtfqFZyyYjFpvK0B4ZKmA9h7wFy8prY1OSalQeXJn51hIm79ctmbNwNJzS4qxIKPzthH3Kje6nyxVjMEFrJtacBtPeFAYTjaetcA+4ibD6skoE/rcFHC2efWmCrpkEpp226A/aYKA8UrVdJ6NvK5b9gAbNvG91tkG3A3+spX2LataO7r4mW3bd3B33d7+bY97vibZ3eBNYsG8Kv9hwAAI1OzSsPNhSTD1pEAuClUHHttQCKL0hCCEh6axc8tVdLSoHWkRu+mSlbgUHQhJyE5tyzvDevcIqVKCjKU+yp7jkvatGLqB6bnsGt8ujiHEM1LLdaYVrsgcrONuC1s1NBfr2G21cbozJx27AxTFG9ruNEcIW7PzXxAJeQkz3jGM/D5z38ed955J973vvdVcQkSZmdn8aUvfQkA8Od//uel70866SScf/75AIAvfOELh3VuvQT23bSPuNnLt00JdIroccPUsm3qrLZsyTzzLEw1brkn30VRdm1aGdqz6XLfbWtP2O8phAf2NW7WIrtoWN8XB4+pS8SNqODbyHepIxDHWkc6iVECUusLxZhNm4Cbby7eV1XEbWAgG7dpEyuf7kgA7Obvft9zo9YUcaPLX9AoFnhdlMCFnMS1lsu6f15SqKVapx9z7NIOwLSMUCP7pJQ37jyXSKRGtmP0oYi42TsUbaXbptm7R9zsnYo5KCsBv6+qxznVcjHHqnVmTmADs0/JtnOccT3cLF/UJEmwtD/LXJlptbUG86yL4WYZiRS/77GAW3Wskk960pNw3nnn4VOf+lRVl7DGAw88gMnJSQDAueeeKx2Tf3733Xc7X2diYsLq/16FWx83+iYA6F86vsDcUrbifBE2edW5J5/FnKHGLffku6SMkGrcmGN7bzXr2dTIdthgbJu2A+b+eXL5zDOpnbv8HB1cIm6h2xiwcI9eh1d6rFklPQrvbdsYAPrncdMmYMcOYOtWYPlgMbBez9KXt27NvmeNNqB4nqhpNF3FR5uVUB5vg3zDrqLGzXadmWsW3x0YSWBTwm4boQXc0/Zs6NfJSrIwSDfzZhOYnCpGtFuawbl4S9lAAHISS8cWKWplyUSqmpNWdpJ0DXfd3uFa48baGlWvkbb6kj0rsb2B0pVNjOaZjHGWUdI24ibOQ7cUsIbbgLXhVqCKyP58QaXtANasWYOHHnqoyktYYefOnQCA5cuXY+nSpdIxGzr5MflYFyxZssT4//HHH+8s/0jDrcbNXj6/0KnHuaVKFtC9z7beZNGTzxluTKqk6Ml3M37YqJIePuQkAOF3tRNtbewDhdHonCqpTQmke3xt74tLlNO23xfAbkCOThBbb6+1dPHZCqv02KZKUpTNDRuAq68G/vPO4rOXvDTFrl3Z53l6JIv8N6eysXXZ5GyfR5eIm/UzQ3gmDcb48HBm5L5uc/Hle98DrF+ffd4pbZfLtnTKAW7987Kx+fl2hptLxE02+fy+rF8P/PRnneu0gRNOSMz3hZBN4eYgYh1bVTyPduP4NdL+AjbEWS6phoBrpom1eKf6QqeafYVoUZS1vmGQm4M1pl3T7HVrpEuqJGUTi6mSEszOzuJHP/oRFi2S58kfToyPjwMAFi9W13TlrQDGVHzvEdbRDVdlkEvvCk1OYumhYiNOJgOC9eQvXlSM7e9PlZ58X084haHKmnbZdgPjIp0OioM2ApF6p0qG3nytm7Y7KD22/b4y+TTZgH1ti4syCNh7Nl02R9vojMs60Ncoxi1eom4JwJO2ECNuFsaVi7GfzaVzvjFVkpsQSbZM/vbtwMaNWW3vxFTxeXMuwd692ecbN2bjZCDVcnEKodXUO2PNETfq8y6OEPcl9r7s3QvU69n3rSbs7gtzgTndpgo3h6UTeZNDHVcVrJIAS/Bha4zby2ajRHOaXEZXBd+2vpt/Ju1kU1JsC9lhHWeu9912X+VTJV0MWvs1stcacDuRk+gwMTGBX/3qV/jrv/5rDA8P4+Uvf3noS8xbHDp0yDhmbGysZ6NuthEIFjQvvqWi7LhgFALUX3H1FRbC/z/2zjw8burc/1+Nx/uW3SGJAwFC0iWXEgjQsm+9bG2hQFsIFGggUC4UugFtQwlbL1sXKFAgpYWW8IMLl7VwKfsSKGugbC0JJCFOIHtiO7Zje2b0+0PW6OjoSDo658gex+/nefJkPCO9OqORjs67u5b81e3AS586733/v2z89TfiRaGS8hOyvwiVnjA+5UfWKisnWjpPgU2iTuJxU3k4qlg1TYcGJ8n9cy9YVY9YlHTVogSyC0JdZd9G+PdWUgqlreDe68Q5bgIZkdsnyimS87j59lHYjpU/f76/wEs5U9Ql1+O9393tbceHnSbK5ZIIVxfh5RbKyZZRfnhR7N/8eQG8vEm2X2DUeSnPWKjOZtCVK2B9Vy/ae3K+kun+sXuvTbcFUVVO3GHER4IE95Gh6HGTLQ6VQHg5c3KilGbVBb60x82n1Mo+m+LXSvwpS9zHLc7AojhHyhr9tEMlY7bVbQ0ykCgpbmVlIQ2NGGzbxrBhw3D55ZerHMIobnhkVH6Zq3Q1hDXqkiDKo+eSz0sEvpco8g8B77V6Fabw7VS8SrILB5Um0IDfkt84zA635GsWspAPq5M/97KNSFXD3iygr2Jl+HYLV7UWX8saBZxxsOMzuzCRbWKt5s3zXi/a0IGpI+uQDckTSLJId5Gv0Mrso2h1lPeKycnzK1fhCw4V2bK/qao1mR2LdHGSBLI9pTDGmqyk1AbPTUsLMGuWf7ss0+GHrdLpMmsWsO++/vDTZAsq77VKjlv075pMdjn/4/ftLzovgNcbUPSYF54Xy8L2w2rx/jonKmhNR3eE4qZnlJMt2pKoj5tEPif/uUqopHQrA2nJQHmZnMdNPYJIIepBUrZvjgzZhn+OJl0rpdFvkZUfdwxXcctYCfq4Jbh2VY0JpYCSomnbdui/bDaLbbfdFqeddhoWLlyIKVOmmB5zYrbbbjsAwKZNm4phkzxu7zl3WyJIRjomXC0swj8ZmZUvu3BQaQLtbMuem/DtVJRO2RBSR37yh1iaOW6A3IOAPe7GLdFlglmkQzHZ8UjKlvXO6CqFAPDp5u6QLdVCJdltl27qDJetkBPJbyurAKl5fkx7OsVj4/G1BUnqcZNQIFSt+NL5f759ZGUz+/d9/1tu8ffBA/xtFHKCW7W7G7j1Vk52ymXvnWME99eVbVkWvjJ+ePFvd2/ReQGcgjeAuDCJ6LwAQF2FZwiPLILEvDbdx81WeG4AjMetb/0XKl81VLIoP3wbVUWfVcp7JD1uylEJhscvM0fyv3fiqpKJ7tMkBnq58+IqbuWZjFIoY5I5ckgUJykUCqH/uru7sWTJEtx6660lowRNmTKlmGv3xhtvCLdx358+fXq/jWuwoRSWlkC+dKU6BUuJSh+3RLlWko2mlRZUkhNdUL6kx002VFJ1kS/5IHDZtrFaWra0VZMdj+EQVaU+PNzfMs1OE1UfZMaxqbsXG7f0CLdTaUzObxud/yceUxSy+ahqBpzkc0zyqpKuDPP3kreQlXfDyvcW9J/3XA6YNy+4nV9xE8ueNw++apOyij6gX1XS9L1ax3nAws4LAGT6NpU9L0CSRtO6HjdJI0iC69ENYbMB9EQ8O9jc8eWfBM9BGKyhQkZBSZTjxnjcpPt0phAqqRaFE78NX4xGpUdcpHzFOdK/adT17vyvHoYpb+QeXGrb4AvtVKKiogJHHHEEAOCuu+4KfP7JJ5/g5ZdfBgAcffTR/Tq2wYT8ROSh3g5ANrQg+WQU6XFTDJX0NYA1bNn09+SKm4zE+0Uh7XFT8HAAch63aqaH1OQEjeGVQiWlH46SyomSbP/fUQ8++SU6K8//92chHj0z4S7h6PZvkg8xMuuBUOkl5pJmcRKV0DRp2b5zAyxd6hTY4IkLlQSA1aud/YuyfWOLHpxqVUkv38q8wszuH3ZeAK84SVgrAP68APKVd9V6IkoaW0P2iaM663kLt+SCX9qtuHnvvd57//mfllQlUn4sYcNXHbvP4xbRB0c9/0/OAKX0u0oYc1Vz3NzNkrXtkJPNyndkhG/nHj/RfZrAQKRizC0VtirF7YYbbsDUqVPx3e9+N/DZhRdeCMuy8Oc//xmPP/548f3Ozk7MmjUL+XwexxxzDKZOndqfQx5UyFqr1cMiZB8y+g/fMJQ9bil6fnw5bjHbqjxkZBuFqngLAbliDe5H1dkMGirLwzfkZacYKinfaiC57GHcd5QJCVT1XgPhyd2q1mTZhbiuhzlywaMiW/JeUvX6ONu78uXOi1rD47jzruKNZPa3bYQVWI4LlXRhsxJUPW5JlOakCrNSWBoQel4ApjhJPlw2n62hFPEQPgQfSiXpJWUDQBWjuHVxihtbcbOn15NfyMtV3JQdv0o5fYDLcZMOlTTvcVMKJ5cwcgdy3BJ63NLyjEsrtCqyE2huKo3PSwWtqpLr16/HvHnz8Oyzz2LlypUAgPHjx+PAAw/EaaedhpEjRyrLXrhwIc4666zi3x9//DEA4JZbbsHf/va34vsPPPAAttlmGwDAunXr8OGHH2Ls2LEBedOnT8evf/1r/OhHP8Lhhx+O/fbbD2PGjMGLL76Izz77DFOmTMHNN9+sPN6hgFJxkgTy/QuH8O2UPG6SY5BpwC3CX5kxfDvVc5OxnEVHGiVupXv9aFkeo7PzisqJ4iIZMF/5UdpQoaD8WJaFLzU14O3VziowWiFPrrnxwwhT3FSrSkqHM6qcd0kPs0x4qQiZe0nV6wPIecVU76UMty4J21dlnuF/07A6XTIeNwBgW6aq57glmINd+XDOr+heVJHNbxZVv6xYnCRCoeVbybKGs5zEAt+C4twubZRL4nHz5pUtvd4sxlfcZOsusd7IqIqbgNz4lYuTSLYDUO51ybyWXs+o5HJJnBd+PFHIevV1PePOMeSud2nZzOtYj5tvHTm4UFbcnnjiCRx//PHYtGmT7+R/8MEHeOqpp3DNNdfgrrvuwle/+lUl+W1tbXj11VcD769YsQIrVqwo/t0tyhAO4Yc//CGmTZuGX//613jttdfQ0dGBiRMn4mc/+xl+9rOfhTbnJhxkrdWqDwHZUMmCijVZcqHJKl2JmnlKe9zUrDxubca4HDf32EkW4dJhnux4VLwEEovwpBOorKdTKS9SWilUXYQn89KqygbCv7NyngLz2rT3nb0G0gjvkrmXfIvBhBdlsSw9whUI5XuJV4BCdlWX74170iRgzJhgWKCMx62pCZg0iR0DO7boScxE7kzYqVEL7/I/O8LOC+AVJwkrHs2fF4B7dkRclO5H6gUyJJWTBPKryoMeN1HFzTJmpSnyRooqbgJ8WF2Yx817neyZ7V3v8u0ApMVz6yWz6xmZEFLZdiQ8ruTUqkomNIimEcLPfz7YQiWVFLfFixfjm9/8Jjo7O/Ef//EfOPXUU7HDDjsAAJYsWYLbb78db7/9Nr75zW/irbfewuTJkxMfY//9909sUZ07dy7mzp0buc3BBx+Mgw8+OPF4CAcZa7XyQjZND0fI/jxJ+7i5pOn5ceXnZTxuRedMggeYSgNuaelyFjz3sZnc4yZnUUZKD0f+M5UQUkDuek96vYhkBGWrelEZGRIJ5vw+0bIlFVrF61HmXlLtJQbIKRA6Y3cp2DbKDKfVF88NnD6Up5/uhLSxsIpbb4jH7fTT/X0sZedfgK/oKTlwBOcC0b4qxXj4sYedFyA+VJI/L0CC4iRwjXLpPpeS2Cl8HrecM4uLKm5mMt4BoipuXnYZt5/E/K5eGddCRVkG3fkCemWLkyjOwaY9bv5rMkyh9b8vu5xWCZVU6bcIhDsAbNt7qqgqVZERFQUbqzu8i1SpH/AAouQhvPLKK9HZ2Ym5c+fi7bffxrnnnosjjzwSRx55JH7wgx9g4cKFuOSSS9DZ2YmrrrrK9JiJAUQqDIjdXtFaEmmhUlj0+Mcht2BLVhbZKt788l4refnuhB6b41Z8uCeXDUTnWKiH1bljC0clj4sfh+mCOTLWXuczZjyKlR+lqgQmODl8lTQZq2w6HjdGvnQBETllXDeXNjrHTTyeJPJ5OX75qveSpDFBIcyIle+O+4wzgMpK/zZxoZKVlcDs2WK5gPyCMGMl9xYWjyGxmJU+74Jnh+i8ANGhkqLzAsi3klEJJ087VLKS6enbnS+EVtxkPW5hhVtEFTdlCnOpVAp1yfYdIBdVnEQrSsZB2rsvK1vCsxRQ3CTLXLnjjo/u8V6rPzvEB/E9NxKdczk+2ujv6ZxEIS8FlBS3p59+GlOmTMEvf/nL0G0uuugiTJkyBU899ZTy4IjSQyrxXtFCJV3FT1GB8PYPx+8hUFuwpRFWJxNu6Bzbv70Mam0eEiweivtHKVZ9C82Ev6dar5zksk2HA/LbyiyqkpwaXnELDTNKPcdNxdPJ7C89z8jjjkO+j1sC4Ui+MElCUkNF0vvJ3dw9783NwG23+beJC5W87bZgyJtPtuSCMHFuoUQov3a0Rt//ovMCAJliqGRQdth5kS1OohIGr9THTVG+jfCKm74ct4L4AKKKmxmp31Rt/mXlRxlxehllsnWTJd3KQLYatNo1Gf9s4i+lpB43Zx9JI7fhZ4d6uLTcc8lteO/tJ32IkkBJcVu1apVUv7Pp06dj1apVKocgShSZyl3KHjdWhqwCYXCiA/SUQvcBHNmAmx1TosR7OSuYSlidbNibuidV3sOh590wqzDLxsurXI8AH4oZf8EnOTNj6/zugDDpqonxMsoJL1++SXa6XgL3XpINmdZRIOLOu4VkY5e14qt6sEXz+8yZwJ13eh6mMI9bZaWznajIhCO7b2ySuTOq1TyBKO9M8vk97LnEnxfLsoU5bnHnhR1HdB+3vu1T8OoXFO5TflvbDq+4mcl6B8hHKD58xU2ZPGPfPBAuWkiUMcFtZXDUUd57f7oN0q0M5KsnKlyTEs9s/lqSNRbJnkPlqpLMa+Mh/D4hivsNApQUt9raWqwJa2TCsGbNGtTWyvdkIkofr7S7ea+SdPn1lEILAN0QqT4Z0vHy8kh73DRDJWX6qgBqk6npSRqQX/SoeDjUwjCTyE+ooCQQXp7J4HMj6zwZoVZZfW9hpFIbsk8UafbmY7eNXMgq9nME5Mav7mEOyogiaQhQ2L06cyaweLGzYK2r93vcmpqc9xcvDldOomTz5O3kc5gjP/5+UprfI7Zjz8s247z38zlL/rxYlmf0M+xxY6/dXFS1Y0NRA2EVN/0et3B5fH04uRw3ZjxJr/cQYwLbyqCt3fssUSsD5rXp/nwyyk8wx03uKZj2WklG6dSJfPJkyzMkipN86UtfwgsvvIB3330X06ZNE27zzjvv4Pnnn8c+++yjNUCitPAUiPBtdD0zcfJVvFZpV9cCWI9b1CJfzaPnhahGo5IHwW5pugeds627v4TFVMPjJnNNJvFwyFe/UgwZYV7LVZVMdm6qmYpvMg/IJJZ8lXMj7elUKVIkKRvwrpm0DDgy43ffT3LOgSTh5MXBJCIqFL652Ske8fIKG6v6UkSee8bCTtsHC26IcKt5xi2o3HOvozCHX++aHjfB5+55+cVFwGNLnfd2nwH8bIXceQGAsozjpZMpDpWoVxnbaiBCY1IpIhTcNrwSacabipDPiQ8gqrjpL+Aks8iPHbIPkYeZb2VQxo6dCYGNa2VgSSidgL/5d7nkRZk03DBqu4Bsfv4KGZKRUMmw+VEzn56XsbWh5HE7/fTT0dvbi4MPPhg33XQTNm/eXPxs8+bNuOGGG3DIIYcgn89jtigblxi0yMSEK+e4+WSYtbRLl7xXXMgCsjlu3muVkJT4qpJ9VllpyQmUH2UPh3tewuSyY5GXC/h/VxnvTJJxy3uAvdfJqo7JnXf30EltgkmtsuoetwhDiG8fWSMLs3+UkUVBNis/rRw3mevGfV81Bw2QvN6TiZcKhWfZYQdLWjlJO1RSZkGYlncDAMrKvA9ra+SVNgByHjeFaArLsooFOCJL3is+99htC7ZXcZOHPTdhwxBV3JSLSlA3tvK9/0StDHxKp6CwyqxZ4rBJWe94d5/iVlFmKVbJjjdSONtJifYXK4ucI8X7xMpnXofOj8oGRY+o7zu4/GtBlBS373znOzjppJOwdu1anHPOOWhsbMSYMWMwZswYNDY24txzz8XatWtx0kkn4dvf/rbpMRMDiEzInnq1N1ZGOP6bWlY28wCQCEfhxyODtzAJR1X58Rab0duplNWXVlCY14k8HKwMwXXj62OTQC7g/55S1mpF2fIeYHn5Kuc9CTLtDNj3U6kqqXuvGvbmOdvGKyfGctxijBVaoZIyHmZFxTC6xYOehzluAekW1tEpChPe80vhmuG8SmHoVDeUidZQzQN2G033RCRfmwiVdCWIKm6yyo+oqmRYxc3kOW5J71X/38JWBozSKcrPc1sZBGXLPT96ioqb/HJcJpwxmOMm9ySpZKyhPRHVNtU9bsyYQudHRWVccuPysoSTS4mh3DD8jjvuwE033YRJkybBtm2sW7cO69atg23b2H777fGHP/wBt99+u8GhEqWATJEM5Twu2cR7dh/JG1W25LKqFR9gPW6S8hPILlrCIeeNTEVB8YWkJFjkxzxkbEW5QIKKmK58hWqYjmxJD7C09CRhb/reGaPl0SEXquN8lvwBLOvNU1U6+QbZIthrKXEfN5+c6MVm0oWmTJU9HfkyofDK1nCJENWV7V2ebJ1QyRgPswX5ucZ3H0Vsp1Pd0O3lFqa46eQBV5Sl53ETzTGiipv+oi1B+WEVN6WMTz7PT+yQfbD3R09YKwOf0ik+gLCVAfM6bB7IF+yioaIyieKWMJ8TAMol5bMKpKzilmSOlKqIybxWNihGbJfNKKs+JYFSjpvLmWeeiTPPPBMrV67EypUrAQDjx4/H+PHjjQyOKD1kwl1UFCtWdqx8hQdkJsNOdPGyVdoM8A8x0XffkvPMjZVZ+cmD90aGDc+zykqLTqCgiPeJIy5m3lRxEtOhkvLKiXifOGTPuyoyVllVpVlGKVSVL+9xE48nDv53Fe2r43mXiRxQuR4B+fOu6qZNXnEz+TGiZH/S6iluo6orEslN0g4g2WJQblvVyoyAt/At2OJnh07OpetxK9iOolAm+NEKCgYWZ1vxHOnmfM2a5Xik3AbcvLetstJR2mQqbhr1orrbMzssW2pjzZqghDK2ImZIDzq3lcHkyWLZYdc8qxipe9zkzssXRtULt+Nhx9Edqbh5r80XJ1G8HpnXUfOjbC5hqaKluLmQsjZ0iMtXAsx4IKR7ckkeQTbHTaXksgu/UBZJ6Oh1Zv7Kskwiq49MwrBte9NgMoVZ1mtlIpwmOHi/50RerrO95DUj2D4OmTAdQOd6Z+WHb+eFeSZelgRk8Kg3nGdkRGyncm6kDQkGQrILti28Jvw5bkm9VvLWcNU82ijZgIaXtm/7qNDdYq9IqBnmZMMwpzJVUWWQK2Shbphz5EZ8plhQAYBPmcrbNrIBxU1dNhsW1lsooIyNW+xDJ+rBguu99r8/cyaw775OGGFllfOeq7g1NTk5bbNniz1tLjJFxXRMXuyc2tYu3iYuzNOFb2Xg946LR8kqRsk8bh4yc/sROzZJK4YqHjfVolxxoeRAUq8+IyNiu6Rzeqkhrbi9/vrr+Oyzz/C5z30Ok1mzgoBFixbh3//+N8aNG4fddttNe5BE6cA/HEWTvM8DkUB2mcQk7chX8LixoZKR5frVFjxAvHKVL9jY0leTuaY8+PCMgl9slsWc2STDV2t4bC40Qqf0L7t11DXjVlTLJnjC+K/18O1UFU9/cZJ4D7bqIpyVwaNsNZWt/BgynkjZSh43tbHLhBklrm7IvI5rwK33m0pcM8nEJ8r/SxzKKCWb2T6F3EJdA06k511jHvM/nwA+GMOExw0AevM2qgSrPr+3MBmW5Xx30fXoVtx8cgnQ3gtUVVlYtMipHilTvIUvfiKCvdYTPz+YzetCHFKZkKqSPHwrAxkFRdXjJhNCyqaEJPEwVSopbgmeqxJjV/W4+a8XOQPRYERKcVu3bh0OOugg1NfX4+23347dfvjw4TjrrLPQ2dmJJUuWYNiwYZrDJEoF3uIryvH0L9bk7zqfV8xwLzRZpVDlwe4SVID8MjqZMMnahIqbTBiQ6sM9qRXfGY+0eK4IR4xcebF947CQsZxxRytuzmdJFDclBUIh1wqI9lqpIqdAKFpNJRUIlfAxpf55itejVO5fwnQIueIkfQaiZKITX5Pqfa3CUaluyG6fhheVH094tbrkY/dvKrcYTPq7sh42UUSIaigj4F+0h+W56XgLi20eJJ4d2TJ/OGGsbIl7VcfYyn7XiRNtp7X2+AABAABJREFUYSsDX0XMkObhwlYGEvdqjxGPW8i1zhT5SfJcSjtU0i8j3ouaaC2TSTY/AsD+E0dKyy8VpK6UO++8E5s3b8Yll1yC0aNHx24/evRoXHrppdi0aRPuvPNO7UESpYPMgk0n98S972TCGZNY2GSLWBQ0HgJxi6rOXk9x0/G4ySzClUMZZfOV5MXHytexVAPxRWEKtl38LJHHTVY5UVQ8/Qv86EVJUtkB+SHbqHo75b2Ret7xaA+H2rnxK4bibXSqSsooEJ7Hzbw3z0fiRXi8fNXqhjLFm1TnGGd7CY+b4tjj5AKaId8xOdi2xvXIFqXoCVPcNOZgmRBYVQ9zkgbcKr8oe81kQlsZeK/DPG6iVgYyayUzOW5i3LknacRA2qGSST1uKv1ueRlh8sszFkYkzKUtBaSulMceewy1tbU4+eSTpQWfdNJJqKurw9/+9jflwRGlh0yYkY7V1LU85kKEr+/qwabu3sSy2QejTNl4lQd7XGhEN+Nxq84m9LglDO9K1ldF1uPGjMdgWJ3OYg2It+Sz11KZpZFXGIKyx415HdfmwZEtLdrZnnktleOWSNmXVa681/LtALzXaTSEZ3NLczHKiTOehAtZietGtQiSjOcdYHLckolPtKhSzUdNozcfP55QS76CYU7lWtdRyEVjV2mB4+LzuIWUVPYphgnlu9Kj5hg3tzt5FVVGjmEjiLMPI8cWtzIoYxQyUXGSsFYGMs9V1ZBsuTmmb9uE50U2VNJdRyUxoDvjCY6RRzUMXrYHnU5kVSkgdY++99572GOPPVBeXi4tuLy8HLvvvjveffdd5cERpYdMyWWdhXhcWeQ3PttUfC2z2C3KZQYS7c3rW5TIiy4SZ2GzQ7aVQcrjZsQDEaXUqi0G484L+0BWKRoQtyBkFTdVj5tsvLyq8hOXv9G3h7xwyFl8VSvhyXhmnOOy45GTr1KkKMmZyfoWsuKFCTtHJG35w37NuAazyRUr73XUPOD27NK5V+M8HKqeSBvxc5hSVV8ZL0Rxfje/YFMt9APEe5Z0PMC+HLcQj5uJNjhh53zxho7i61xES4Io2UDU9ah2rfP72LYtbGXA9nETFScJa2UgE8nCzjOq4YxdOXHFFNU5xu9xM2/klvPqqz1TpdsDaURWlQJS88uGDRswduzYxMKbmpqwfv36xPsRpYvMokTVEg4wjUhD7rqO3oiyThHINuBWtVIB8RY21f5H/HhCc9x826vJjrQoK8gG4sPqVK1rRfkxIVjsYkE1xy3qvKjnFnqvTYcd89vHeX748cTKllgk8/JlxcuGA6p69tlrIMyzbypUMvS89/2vU4wnTParn270ttfy0kafG73KieJtVHPzALnCBO7PvaXLwuLFwd5bYcR5lQC9516ckUingBMbbSIzD6guZsPm3/fXeeUWo3qoipBLEXBQy3ELzvEzZwJ33ul53vweN2/7ykpnu7BWBuzvtHothNebvxea/LjrKryInc094jWROz/qtDOJMli6Smdyw1b8c1X1XpI3trrbD07NTUpxq6ysREdHR/yGHJ2dnajk/c7EoMZfCU+8jU5eTpzHTfU2k2/AbcriK/K4qT8cpQpNKCoQzvbO/zJ93EwrnTrnBUgWKplEcQO8603mAQYke4jJFoUpjiWFB6R6o9P4eYA/rloft/jrEUh2TbIeiHDFTTweGeLCmvX6FrLzmHjsn27uFo5FBrm8SHeOVPPMsDJ4dBbhUSFYLS3AnDneTPPOO8BOOwHjxwNz5jify8iW7S9quq2Jqb6CcQotoO4Fjjo3qsilZgS3VYE9NTNnOorWnDlAYyPjccs5hUjmzHE+D1PaWlqAG2/w/n7gAVt4vanOv047IWf7jl6x9UHVCC0djq0oXyY/WtV7Lfvs0ImsKgWkxj127Fi88847iYW/8847Sp46onSRscj6F2vJ5PONSHn4oh6yFlP5G9r5Xy1ePnoxq+U9SRAyoiRfplS3mzeTWIHwXscVJ1Gq5gn3mjGvuBXDgKLOi6J3Ru5eUl8MpRmSIhOG6cj3XsvKlyke4hxXPJ44fKGSYaFjpjxusSHTyWTLeAt1kLtm3G3NepXYY6osqDIhC875851Khldd7b2XzznbrlkDXHGF8/n8+QoHZdAtqe/Jib5mVNswOLLF2+jIj3t2NFaqtwtOK29RKJ+7V91WBr/8pffeddcBK1Y474f1n3Ovt5v/4L3neu34642N/kkaZl/Xtxbq6M2HeGl17iXn/6iIB1Ujt1TUls/DLC+bvXY/WLcZW0LCSHUiq0oBqd/0K1/5CpYtW4aXX35ZWvBLL72EpUuX4itf+Yry4IjSI+zhyKIT+sY3InVxLKbAm6/4FTdZiylbsCnMUq2ToA3EhzGZCqUJzVfybZ+ex810kQydBQ/ghQKFh0qyiluyX1bG0q7cC83y7g6Zssg6i8HQkBTFHIu431QoX1a2dDEINUNFuYTyw4Zqa4UCxRhwki56siHzoyfb/55OLq3QO257d4KeVyl6DlMynDGv3fMwfz5w4olAdzeQrfCOmevx79vd7WwXprzJGLb05nf2uRq+CHe2TSQ6kfIDqBvmwk4NW4graRuc/qwqGfbbsvWsxo2zIvvPsdebaxwAgLKsX7h7vf3r3+oGoroKbyCiFBKttI+Y9AMd+XLVX9XOCz9Xv7W6VSxfI7KqFJBaxcycORO2bWP27NlobRWfCJZNmzZh9uzZsCwLxx9/vPYgidIhzjII6IW+sSGN7qLKtWBdcQXQ1el93t0lbzGVWjRoen7iLEl6pd0Z2TIeN8VFVZgyvrJ9i3JlsLiFuHaoJCNbZCFkKwcm97g5/8u0kAAUmjXHyfe9n8YDkhlLkuIkCfMikyAdKhkynjiyCUIlrYSyAcRXCFRsHwH4DVuisfPv6Hj2441PyWQnKjShMA/wUQktLcCsWd7nWaa2Wq5XfIBZs8RGQJnh6ClX0edGK8dN5ryz2yeeZ/pkSBifdh3bmEi2VB6wOw7NZ3Z4ASe5+5W/3vJMNFCYsvfc895rnTYPorlARzmRM+T23asJZUud85Dt4+DP4WdM2LhP/lDwuB188ME46KCD8MEHH2DXXXfFww8/HBLyZOOhhx7Cbrvthn//+9/Yf//98dWvftX4oImBIyOxGNQJCWQX1gXb9lmwACBb7gm/7DSvcWKcxTTDeDfCKtzqNDkF4s+NzqJHpoG4aoVAdjxhD1+dggdxC1lbY1EC+BezooWJanESQM7SnlcMdwG87xu3KHG2TSjbJ0fGWKEoW8ZLiwQ5bsxr2Ry3tEIl1Qw48h63xKGSjPlfVMApcLzE1nBWVsy9qhEqGR71oCabl2/Dxi23eM8NAMgyXo9cr1hGdzdw662CD2K8SoC5cxO2tipum0iybI6bjsfNncPEsGNvrJSvTA7IKp1qCgQQnRfpyRePh4e/3vwet5DjZzSUfXaMEfeqyr0klzrRNw6d55LEGjJZwa/4bXUjq0oB6eDju+++G3vttRcWLVqEo48+GsOGDcP06dMxZswYAMCaNWuwcOFCbNq0CbZtY8cdd8Q999yT2sCJgUHO48Zur24dXPGp7bNgAf6Qg0X/DD4EZs0C9t1XHH+esSzkbTsiXEQ8DlniLElaIaRsUYKQJ5j/AZNIPJMnlmw/GeK8M752ACrymXOZt22UcedWL8ctOEaeYtN2qIfAyljCtSybMYseZ/skHjdWRjjFRZWi1XRDV8gKG9zY5cWjnImniasqqWOtBsx73uM8bvzxtDxugs9NRVPEXe9qxaGYc5MH5s3zf8563NhFNc+8ecDFF/u9JEWvUlRxEnYeS9HjplUUJsXqtTKKj6pSCESFearJBswZonO54PXG5t/zoZIubPiuXrEf/2dsSLNO7p9U6kSKBZCApMVJ4rfRjawqBaTPyciRI/Haa6/hxBNPRCaTwcaNG/H000/j7rvvxt13342nn34aGzduhGVZmDlzJl577TWMGjUqzbETA4BMg1admHN2YX3v//otWID/YZoXFCYJtZjCy3MLs/bKhkSEEbdQ1lr0SDQQN5KnEGVi6yNqMhfKZl7HeyASiQYQb1H2KW5JPRCuNTnK8mi741C3bIaHSqpr0okfkIk8bvELHvazRD3imE3benL4tH1LpOyk8mVCJfNav6mHMKeT3Tah+Pgct/CxyBA7di2vUvwinDWCJIVdzKxfb2PNGv/nbLRGb7g9AKtXA0uX+t8rjkdiHgDUDTiOnGiFXKtpe8j4dfq4xeUBm/JExvYVVPEsxRhZALnn9tKlCFxvBaZ1QFlIah/bGjlxUZiIa0bHiMuOJaqqZPFeTWyk8F7/e/3m2GI8Sa5HmVQF3b6xpUCicj8NDQ34y1/+gksuuQR/+9vf8MYbb2Dt2rUAgNGjR2PXXXfFkUceie233z6VwRIDj//BHj3RqSzC2Rvvsf8Lyncfvr09/Gg8RBZTwJ2M7AjFjd82GbGhkhoKiij3j0enT5zMRO0SFmoaRpqeSCDekp/3edyS+fSK+XMR2kmxn42CuzCuepeWtZqVIxVem0C2xIIH8H7vJA9I/t57/bON+Eb9NoHtCor3U5JQyaQ5i85Y5OeBpPdp3DxgtjhJ9IIqlSIZff/r5it1CXR9VnELy3FzaW/n3uh7dkR6lzUMf+l63Fg50UY/HU+nnFc/mWyZ3nw66404QwX/ftj92tYWfE/K48ZckzpeWl667jNVyuMmGIcM/NYfb+zA5BF1vvdUDYpyoZLMWAapx02pTuukSZNwzjnnmB4LMQhIYgFTuSVYz1LnluAByvosVFGhLq7FdPJkbl9XOQkdt54lJm4x61uEJzw7cZZ2R77GA1JionZJ7HGLLXigd95jPW7Me2UJD2BJKLQ6+VBxCrP/mkmGb1ESJl8xzNOnLEecnILCXMD/RPFLh2TXu0xVyVRDJTXu07h2APxPkTiMKdb4pDPHSMxhBhQIAKisCn7ua6Qc8fwAgPp6TrY7voh9tKr6snJictx0znuccqKWD9UnA844+XnERI84QM74lBS5Xpfx576hQbAfm+MWktqXrfBem1TIdb1KXhuc6PsU0AvHBoAlmzoDipuq4ilzDnWKCJUKgzU3jxgg4ia6XA7o7iu1bNuWdJ81F3ZBWFEp8Lj1Wa5EYZIsAYspI7sQtlhjXquVo45+QOpMGDI5bjqhOjLJyC5Jn5O+RUmcx01D+QHEix6d0u5S/WzcUB0NL0GofN/bakpnQAyD6thlrPjscZPlz/m3rQjxkvq8PwnODXsv9cYqbubnAZ3r3W/ACWrMGpG1feNhZBn2jvvu07ACURrjZ6+SYcNs9KXfF/F73MLlNDUBkyaFfBgxPp2Iirg5LHWPm4EKhGEU5wCohGFGeyJ98rXDmsOUFHY8YjmTJiFwvfk8bmUyHjd1I0swx43ZLoUQfr/nXc/jJtpb3eMWv41OuHepQIobkYiwh4DbZ238eGDJEuf99jb5PmsurEekolqguPVZruJCXXiLKTv21Pq4+RY9MdsmlJ00x0218phrNTVJXO6fT2FWkB8fZsQqbmoPmbwNbNoiXu0VQyVVFj0JHpCqeYtAhLVaccHmMyREJrB7Hj1Z+Gu3PCQGVTVU0rKsWCNOMcdNYSUbt1DWKQTBVseVCZVM2sA9SZ5u8mvGex0XKqlbzRMZ4PTT/Z/LtAMAnP34MPu4PC7AnBcibg5LPrfHKz9eefSEwhGtQADMHKAgO26e0X9mM2MP2UbGWJHNBq+3AtNaLayqZHmF+v0U5Y3UzdePWw+YqELqvRHcxv/cM+tx042sKgVIcSMSIZqk2T5ra9YAroG8UJDvs+bCTtSjxwQnDDdWPMqTF2YxLbr/ETYZBbdNQmyCuYalJ2lVSR3Lplm1Ld3wKyD+vLMP/KShkmxj0/fWChIZmGPqeNzCvVYai0GhFE66ssctfjHIyk8inh9LRYhGrJdT5Pwf1+xYRRlPUkVV5Xp3vW7CdgD8sRLezJmYRbhe2Fu0V0nn93Tk+2WdcQZQWem9J+Nxq6wEZs8Ovu+KjjqdWqGSsc8Odc+MTHsNrVDJGIOljmzW2R5fxCKxeK6kvngb2dBm/noDrOJ1FpbjVsFsrzcH8wYbdbn8PlG/KaD3XArbP1WPm2/7wam5keJGJILvlcP3WQOATF8FJbaqUlyfNRd2obTvfiLFzfk/KkdBZDF1xh6zoNJUIGIVFEO5LfmQB4yeVVYsxwRJwq9UKoPFKRH+UMlk8tlQujWdPUGPhm1rhUrGGRN0fgq5Btxq1vCMhAcYUAtj4h++5RKhkqptR2K9GykYcHSvd9f4kItZ4KsQe6/6tjWr7OvIBoLXe3MzcNtt3ue+dgAhHrfbbhO3kikuLyNOb56ZmFevijYu8vhL9gdJMwzTOaaa5x2IDzc0VaxM9NzTLcIRd70D8kW/+OsN8FI6whpwT9pe47yz8wz3ma4x1IqZw0xUIWXeCWyj+rvKjEV3nVcKkOJGJIK9MdatQ6DPGgBk+uK52VABl1mzosMmWfl77c1bsDyraVKLqSPbex1nvUu9j1tC8TJVJXXkx4W76BBXbVO78XlcjhvzVlKP28SGat/f7T3+1Zi+ZVMsS/ReYstmjGyAyXFL7AFmZUQobgqhkvzDN6z3nk4BkShPp67nPd6AExxHEtyWFjIet6Rhz+kWJ/Fex7UyMFWkaOZM4M47nedCVDuAykpnu5kzxbK9UMkgbprAr/7be++s71uJ0gTiinD4i02Y947redzkvDNqPTo92jfbWLzYrxDr3ktxhbMAYH1Xj/Qx2OsNAPJ9xmve4+Zeb43D3DlM0yvGjd2vbCYn1siiEW7IP2tMetxk0DWclQKkuBGJYC+YZ561A33WAMYrJlDcovqsAf6JcdgwO2DBcq2myS2myXKh9C2Pwc91rINSOW7Ma51QnTRz3GKtyQryk4RKJpU/bUwDKpkcq41cnptO4RNnPPELh+K2GkngcdXB0rDiA97vrfPwDVc69Rc9QkOC5jwQq4xrWnyLHjdhjhv3d0LZsmFvgF64d1yvMrV5QDy/z5wJLF4MfOd47003x62pyVGuFi8OV9qixsOmCWQqvNmtbWMmUZrAQLcD0DKCMK+jcpiTzl8tLcBFF1no6WvtsGixjZ128ufN64bXxs2RG7p6fOHyMsdwr7c5czzjtdvHjb/eXKOiStuRqBBYvxHXfNSATtqHzHB0C8VFyqYcN2Kowd5E7y8WaGbwFLewBPB588LDSHjPD2/BCstxi7OYAkmLBuhZwIQKioZnyae4xVTCA9RzfoDwJG1V4kNpmG01LY/CRU/fm2WWlVh+ZVkGO4/xaj33cE3sUg+rSyzRQ67UtTsOdSt+WOguoGfJ92REhzDpnPe4fCK1Pm5iWS66Fl/XA2kL5Ect4GRgRxMXIqXTd0psxWfGoXDe2TYPfH++5mbgO9/x/j73BxYWLQJWrAAuuyzc2BcYI3Mn8WkCDSO852HbRm9pJZMmEF9VUn2xKVOAo9i3UGElGx9pktw4xCrEPd3Ojm4hD1Yh/p972XHojj3I6g6/ZVr2GM3NznU1coSz/YSJEF5vqqHqQPQ1ox3FEldwRqNIkczmrFGq3LB2pTvPlAKkuBGJYO+hI07Z7KuK5BJXst/tsxYn350cWAsWX1VS1mIKyCTem/S4xSmGyZCp4qdjlbUiHgK6Hrj4hsTmPBxRHjeVBtlA9MM9r3HO+X3E3kh1ZTzOEg7oWdrjKjMC6vktXxk/vPg6THxeY+xR1Tx1f9PYtiCai6oyy7uQea8bf7ikVSXjen6ZKAgDpFOchK0+yhtY+GNObHYW/mG5RzzueFwRLS3BNIHGEYzHbUNwsolKE0jfqOjKEZ/3YhXVNEKDi8YbOXiFuNdV3Li0ie5u4PvfZ8eRnLg1AR+mnbwPqPN/eYUtvN7cc6NrIAp42jWNQ37ZZtcyvLIkWs+w929YVWFVdHvclQKkuBFajNom6HUretwiCoiI+qwB4ZNRczNw6aV2scrUF78gtmBFEev+941DZbKL9nDoeJayEh43neqJUdW1dHPe4qyaun1V4nPcPI+bClELE/0KhN7rWAU5saWdkR2ygC8uqgx7rQLyEw5+RLXXmTbUW6gTZiTpcUulAbfGogfwGyDijCyJPW5x3hPftjpeWrPePMBvme8RNSfXMmz5/77lFgTSBBr6FLdcL9DRFpQflSYQ541kFfSVK5IVPmHlxxWFSSW3u7hdvOyWFuDUU/3v9fYZacvLg7IzTH803SIcorGz56s6m/GFzctQNG6F3Ihaxief0S/c867tzRN8ruO14jcXhXz3MopbhaZ2FWyV4L2mqpLEkKCh0m8yEhV8c8MZ8xFNTkV91gDOAsZ9xt5w9XVWIospkL7nJ8oCxstX8Z64+6zr6kFO0MGWVeiMetw0GwTElaPWCSEF4sP28kyopBIRiqd+qGRcSIpwGFLEedxs2zvzKg8C93xG9RX0Fm3JZCfLy1E/7zZED3a93zR2ngnZVpYo73ugEW9C2bEhUloetzjZ3mtVw5m7yOuN8bgln9+96yWXc8L9eVyPmxMmKT5AWJpA2BzpFj654w7v86OPSlb4BGAVt3DDFqDai9Ij6rknM8ecc06wcExvn4JcXhkU7uaOAYqFVZjXorGz52b62GGJ5WeL16Md2Q9NV2GOuu9TaW1kMFRSpLi5HrfyTPL0Bp6oZ/bgVNtIcSMSMryqAjXl3mzJWrwcbJT3GcvDPG5hfdaAaA+EUUt4TMKt0mTnk+WXn8sBbYyXUVRxMwrLsnwT0IcbOgLb+D1uyeRnoh4C2h63GE+kb8GWXL58qKSqx82Dvya1QyUjZDvvseNQV8bjPJ1KY8+EW/EDY0koO0krA21rNSefXUiEVbSMlM28TqdfWfjYA7OxhsfNdN+stEMlAS+sShgq6RtLwnup73/bdsL816zht7CLHjdRmKRLWJqA6Df15Xn1eucml0veH9UdkfC5p2HwA+Jz6GSLkyxdCjz0UPD93p4+j5tAccswipuKfTF+jtRbc1T0XY82gkYW7VYyPiNLULaLyr0U1xDe1HMJcM4L/+xzPeYVBsIkI8NIyeNGDBXG1HjB5rzHjZ1Iw3LcwvqsATFhaex22vlEAvc848VSWbCJHgKuxXT8eOD/Hve2nTHDSmQx5flw/ebAe6zHLZvw/Ph73EVb8ZMSpfg4x2PGodLXKiY/T+fhCEQ/+HyhkprXTOx5VvECF2UHhec0x+5a59PIuZRZ5JsoTgIE54Jen+KW/BEZ34CbHYfePMaHTQdCJROuZstirked3zSuqqSulwDwFnq9heBiUC8iwX1lo60t+Pn4SfmiwbJ1ffQ1I0oT4K93Ps+L7UHHFv2S7Y8aFSrpa5eilOPmEWV8ipN8zTXi973iJAB/R2Uy3t8dQVtmLHGh6n5vZPJz4yuYk+fvTQ9d41NUeoN2ZdyYcPKkp0W0OXuebdv2PG4Kitu+zSN9f0dFEA1SvY0UNyI57MVe5W9z5W9yKvC4RfVZA/jiJH70i1hEL0p0FB8g+BBgLaZr1gBljHdyzepkFlM+vEZkicrb6guTaCu+/43dtxmWSDY7lO6YECa1PIXwsRc0FyW8/Kiwi1TyodhxJBcfeT5zbAK4imcpJn9D5wGZJF/UdDij7nmJ9VppWsOjeugFGvEmlJ2mV4xt2h5XHEoVtll7L3cQ1jCnWqnOBtDQEHz/3Gs3Fl+zFSVFiNIE2Gu4sytY+ITtQSdKQYjrj5pmTmdcDrNMgaJcDrj77pDP+jxumYx/fQF4+fSODBWlM+aaZG4olXnGfz2mWJGYO/N+z7iuNy/4uc78W1GWwbaN/oUje6+yr1Xy20bVVKCp1nMuREUQDVK9jRQ3Ijnsxf7Li/13RZZpNCmK5Y/qswZEL3q0Q7tiFiW6IVLsQ2DhW36LKeD3RrqhknEWU9Zj9+4rXsGG9xdmAx47reIkkud9dE0FJnBNqeNgHxyLNnQE8vN0wi6A6IWszjnxxuRhOtE5PiRFM+TFzc0RyGYLOKhYNlkrvtgqy44jOVHeQu28nIhrpldzHojP+fFeq9gSono66hYn8StXMYaEhGNP0vpCtR5BBXMx8OGSeY3f1d3atp0w/zFj/J83DPeO9drTVaFywtIE2Hlg5afB/qhhHjeXuP6o0R43RoHQfO5FXe9RCsTSpcDGjeLPerz+18hyVaxZh3hFgnz34v4xSqfu84OdV3lDQprPDt08rrTDmncdOwwT6r37hL03fYVJFEMl01RqSwFS3IjEsNf6oYfyfda8z9gHjEyfNUC+gp/KhRu3SPYrbioLWe/1/ff7P9tlny2YcaD3NC4U/BOGyGLKe+yuO39Y8TOrzA547PzNoNU9boHFIDPVJa2qBQA12TLf363dfo3e7ylMLD6yqqTuAh+Itihre9yY16arSgLe2EUhc72anqW4sLrWbs81UFOefFUV2SRb0xIum+NWrhkqGVtwxvDYA/kcGrJFhX50KsDGVZXUNeAA/oUer7hpKeTM2LNZ4Mtf9n/Mhv6//H/hhq2wNAF2OKvXBM9NWYxBFIjpjyrpcdMuS899JlsASRR+6uJ63ACgglfcmCiWsIJnUUQZ5QD954c/VDLK45ZcdlQ4o24elz9vMcYop/hc9adnePQUTChu4etIE7m0Aw0pbkRiMpxyxfZZG7uNP6QjSZ81ILo8r99SrWsJT8Pjxsjnxj5nnt+cyOf/8RZTPscBADauKUPnZucoVdWF4n6ux07HOuhbhHPxVrrnfVhVORqZaqRRTaxVrJpRC1kdZdbF/3D3f+Y3Jpgde3cuj38zuYw6VdNEyo8/dEzPUCFaEK7v8kzlI6vLA5/HEaV0aocZhcgC9HNdRb0oWfRDJaOMLOHHkiHeK6a+2IwLVdcNmQaiPRw6hrnifQRnruWLaJT1hTKuWu43UrFEpQn4nx1B4jxuQFx/VKsoOxA1oGkEiVJ+ZD20ovBTFzfHDQCyFf7P2CgWJW9houIkKXrcVJ4dEeGMJis1C72oIdsmIey66WEsRirPJSB6fteJGigVSHEjEuMLZ+y7DZqbnX5qb7zpffbVQ6xEfdaA6MlI30IV53EzV5ykLPz57RxfUH7LtZiKmru6dHc6x6is9n+BWbOAjk7v7+QeN2ZsgXBAfQvVdo01xddBxY0dh95CmV/I6oYBAZwXmPtMN+wtylCxcHUrVnV4mrtayEtfiJTgM3YhUa5gTo4K2QOADV2ex21kdUXg8zi8vJzgZ2bngvAFvsp5iW/ALR6HLL57NbAYjFbk4ogtIKJhxIkKaQbMLAajjsF6PJYvtRL1QmNHM2uWwCPWN9+HFeQCotMELMsq/q5ZQb8y1uMWdYyw/qhh3g1A36sUpfzIelFF4acuvUyoZAVXWdKnuKmMnXktDMnWNPyl6XGLKqySdlqJCa9VmKeWvR5V1mGO7CiPG7PdIPW5keJGaMHfFGzoQkN9sj5rQExYGnscw8m8gL/Knq7HLZONXjKJCre4FlNRc1eXLV19Hrcav/zubmDlZ+oPmaiFrH9BlUhskagQJt2FQ9RiUzcMCEDkkynNPm6fbQ65CBQQNW33NzlVz3EDxMoVW4imtjzGkiEgKj9PpxAPvw8/dt2qkvGLHu+1rjU8mOMWfqykstPt4xZzXhLK9vYLLtjcPOFXXvcO8IXPJ++F5sLmXLm4KQJhBTK+8Y34iBP3/JRXBM9NNiQFgSe0P2rENal7L0V73OQ8P9msE0YqopfxuPHnhq0qqWbYiv5cVwGKKpajHUHkC2f0k2bLEf49dY+bWLnyjV1xIpDPcVOTP9CQ4kYkRtrCphsvH5F4r7vgic9x01MMVTxugJOgLWru6tLdp7hVVAW/wPoN6ha8qNwW3d8U4BS3CC+BTj8xR5b/M1ZHNBMqafYhEGfx9W2rYZXtzhewsr3L95lPQVHxuMXkLLF91tQWJn1yYnIsTFuUc5rVB+P6WmmHSkZc78FFSjLNLVa5Yl4nPe3+az34ueky3Tb8ecJuYYvuLqCQtxL1QmPHYwlWTa5HTFTxEQBeeSU8/6woo+8g1TXBz3xVJUPkRPVHjXr2pZvjxmwXc7WfcYaXK8/Sy+S4lXOfVzCOfKX1Rkz1RN38a9ZjH6gqqRF2zO8TVV02jeeSiXs1LNrEiAEnMg9Y31s40JDiRiQmKldMdzKSL06i94CJqyqp9gDz9snEKW4hDbhbW0XNXT26tzjHqKzyWxudYzp/l1mW0TAm3aIwQHS1tzQbnxupKhnlBWbHrpnjltQ7IsOWnHeuX/10k+8zfY+b9zqq6IGyRTaqOInJ8C7e48ZYLlQ8bs6YHPl8KCOgX5wkMsdN2+PmvRYr495rlca7UWXpTRiI2N1eeNH25QlX1zoH6Orw/6YyvdDY7xq8JOxiD7cwj1tU/pmLOz81DA+eGzeHzgkbFB8jqj+qbNVg7TyxgCGB3S5aTnOzE07K41PcOI/bRb9k5McNVECUoXjjlh5s3OJo4mWKxiefxy0fft7VjNxRyon3WjciQZjjZsQ7LpanG1kFRK9RffOvkvSBhxQ3IjGyC1kdKzsQtB7rN5WMnoxcxS2bSa74AP5JgO3ZFr+1Q1NTdJI24OW4AUAFl+fmeuH0C3xEeZUUPW6ZiFBJTYU5qoS5bh4BIG9MUPMCM7JivCOm4/F9OW6aoZKiUEx3naLq6XRHJFYKxeOQlh1x3l2PmwX1SqTuPRhXPVHlARy1CA94PBLKjqsUqlOchJUvVApZ2clFA/DPqjff7P+sutb5Xbs6xAOP64VWPAa3O3vrhBnkgPD8Mxe3d2hllR3wPLnFSUQh9oBEf9QIz5Juk2mf4SxQUCzZ9TJzpr9KNeDPcXMVN7dK9cGH6M2/UdFDC1o2FF8r51xKtu5QmgdCZAH6eemxRjnftnqGOcB/7k14xKL70orHMJggxY1ITNRCVncyilwk+9zzZj0zgLdgU2m+zY8pzuMm4vTTgREjordxc9wAoCpMcdNUaoOhkvoTKRsqab4scvjYdcMwgehqoexfaVg2feMw/IzxVZXUDJWMKiCirDBLetzSynErVzTgAN49KFJoC5phRlEKc9IqkkHZ3us08tCi+onp5v45+zG/Kxen6uYFhyluUb3Q2PHUNvoFyzaBjitX7y7yC7Bx223+E+T2Rw0Lk4zrjxpp3Crozb9+r5X/M793Q044W6W6qcmf4zamyfZVqda9HsO8PoDfsKXaHF7a02l4DjP5XIoN91Y2iIrlmfa8B4xbFCpJDEXCYpMB/clIOixNe6ITKW6ex00F9maqEMTqR+FaTKOqawFejhsQrCzpKnIqVtOySK+V91p1ks5mvMd2d0hxEguqoWPea9MPx+LA+ghek+YWPaqLA1X0czqj7yd3Qagc7tK3m8gTuaazO7CdimwgvKqkapgkEO1Z0q1qFl2MJ7E4H8ly3NQ9ncIQUs3z4uzHvGb+yJZ74YxbOsJ/17BeaKzc215cgy/s7l1/ZWz+WUiOW1T+WVEOM+DvHO95nmrqCxi/vePK4wuTyPZHla28q5QiEGnIZbZLINqtUr1iBXDeud6Ot9/hr1Ktez365t8I/7Sop6EM0cqVwWgN4/UAxLK843mvle/VkOeqbrqNs1+4J9V/zajJH2hIcSMSE2WlMho6FhVaoBkWEVWcRL0Erfd6v/2SzfSuxTSquhYAbGFCJXmPm2tRVguV9F5HV5VU90a6XrewWH/lkLrIhazZ8KvIhYnhXjxR4zBBmm0YnPec/9WLwog9bt25AhZt6GDGYVbpdP9W7P3at2+E4qa5YPPnuIXLViFJVUkd77jpHnHCYzHh6lW13uswjxsgl4sGAOf/fmPxNZtXFhbKGJV/5sLO2znbLnqerprnXeuuFzFpf1RZZV/f2GrWu5HNAmNGM3tmzMrne9Kaxj+/mz7v4cqJbu51XNEWE/dqeFVJdhtV2R7BdaR4DIMJUtyIxERWlWReq5UWDp9I06wkly94U1GZoqWdPS/jts0HYvVFiCymYdW1AM7jxrQEqKq2i+GZSnkKEQs2E33c2GPwi9liSJ1ynzVWlv8zI2WLI/bTNVREJcdHbatCJaeJmK1uKLLKuh43BeHwvq8N/1jXdvrbJKR1vSt7aJkxFWxR/on3Wsm4FXHe+Z+hKptsLov1ouoaKopzQPAz3fxoZz/mWEy4upvfBkQrboA4F40fT10j46Vie6wJctzi8s9c2BD9fMFGS4vTGmblOs8FuHJJFiNGAN/7niNTtj+qT9nnYt/8vS7l5LFEGnKZ17qedyAu/1pBNvN9RUYWXdLujxpW7CdNbx6QQjhjWFVJI8Zc/2emq9cOBKS4EYnxT9QRHg7dhWwgDNOMtRcIxm2baPrI3kxrOntw1HG5Yqw+T5TFNKy6FsApbkxLgD8yORG6xUmiKtXpLGbZhThLXnuBH16tzkxxEo+oClVp5BKEjyQ5/CLev+gxq/zYtnf3mliwseIrOAXUdONd97voWGMjixIwr1Ws4WxocMAIwm2757jh6rKFFTHNLAhTa+rLVn9khLBl493KvGHE5aLxsK1fRB63uPyzohxmwA8+ZBfbGJRXeb/qtecOx4YNwH//t1wbAxdZBUK3mnLAkGtCOYnw/uh6T6KqPpogeo4Ub5eEsKgEbeOQZP4yYD6SxUyoJCs7yuM2OCHFjUiMbB6aykSapvck6mY2scDnx7SuqwfNzcCllwZnvhUr/LH6PKLqWgCwpcu7ZSur7aLH7tjjvG2UctwirZpmLFTurmEeCOUG2QjPKTJfnMSPvjGBkR1j8VUpmjOp0WsKxZ9f93iqZz2qLH2aDVp5VDy1YQsTv8KZWGwRv4cjIrxLd1EVIXvP8cMxoroCSYgLJ9dd9Ljnhfeiuu9541AQzu3HetyyTBn5qAbWYblooj3cuZnNccv1+j+XyT9zYa+ZOb+0i20Mahsc+YUC0NHmbSPTxsAlyjDH/s5qOW4eafym0R43vXuJ7dPI91kzQXSvNXMKSmRaiWbrJFH4tZl7VazwmwhljGxOHjKGwQQpbkRipKtKKnncLGaB7/9M18qTZhNSAKgu95eSdI8hWgDF5TsAwepagN/jdvxMu+ixY5sGaxeaCCwGme00bFTusMKUHx1vXli1OtOhkkGLMrOdZi7Bu2vb0Z0LXzzUViQvVbpzk9dfIjD2vv9NWDX5ayZvQGEOW/SYKOISLpvdxpTHzf+Zdl5kVI4b87dKbz7AM+KkU5wkag5mZBspTsJEUYQoVzxhuWj8Vy2zrMDcDDget6T5Z0WZzDVTwURT1DU4c0Jnu4VCIXheZNoYROW4sYYF3Ry3wCLZ9CLcsPfEsqzi8zINxY1dz0SeG82QwGjlRF0uIGPAMWAQZY1nppt7k8eNIGI8bsxr9YWyK9us9yQyx83Qgm3XsY2BY+gsNNnqWosWAT/5sffZscfaRY8dW7pYpRpeZEl95rWex00c1uEuHHQ8HO6+nb15tPd4OSEmPKkskcYETY8bAHywLrzZU32FhLYfkM8aQsSWdtUHL7sY/KTFMSK4Ffl8hhDFp0yYwsxfn3xfQBnC2jCYul4im2T7xqEnOx0rvmsECc5bJq/3KO+JibBmtrKv2wcNCPe4yeaiAY5xzJ2bX3jRG/dR34iPpgiDVdzYisFu+4GONvGNFNXGwMWfF+n/TPc39Ycbhrd6MeKZ4Q0VIdslwR1/VKjkmJpknmuW4v1U4OdfPUM04J3TyMInSsYhVpb5eQAI9+qZMJ5FhtdSjhsxFIkKjTAxUWdCFvjaVZiimpBqNoEWjcuVqFuiG3CswJMnAxMneu+xj0i2tHu5kseNkRsRdqGluAkUcjY0zdR5/8cKr3GqGY+b9zpgTPBtp2Kt9u+zqTvcHVBTrtAcEOG5hcVQSYXT0tIC/L//5+34+xuAnXYCxo93vA0rVvafxy2ncIOFNeA25nGLCJXU9RiWRRRU8Fvx1eRL91rT9haGLzbVCx54+8080Xu/3BcqKd43KheN/67s78vayRob5aIpRGRsRnEretxs1NY7rze3hZ+TsDYGRdnMrlGGBJXzzubOLm/rwietncVr3G+kMDAPGK5aCQAVZWKPG/scnT52mKJ0JpwxonWSssctdK2k98yOqoYJmFGYwyp6mmnA7b027aUtBUhxIxIjGzqmGlZnhU506Vl7TVnaRceI6g+TWH7IZNerGSoZZsXP5YBVq73tbEGoTlL8Hg7vtamF8uZer7Sb6Rw3Hv3y6P6/2d+O/0x3/GHW6qQP3vnzHSPCXXd675VXOtLWrHEKKhz8Ve8z3XYAQLhXDAC2Y/L4ZAkLvzLhsQJiipNoXvPyoWOqC2VnP3ErA0a+trfQ/xmr4Krkc/LstquXJxzlcZPJReNHwyrPJqJMAGDTxqDHrbrWLjb47mgNX67FtTHwnfeIvEiVBSFbrba1O4c3V7Xik9auPtneduqL8PBrplfTYOnslynKZq9B91V9RVbZaAaEG0J0nx1AeHSS7hzjC38VLF9MVMQMi9zSnWMAbv7lr3dW/iBV3UhxIxLj97j5PzMZGhEdlqa34InyFKpUZXQRLTbjik4kks9OdqyCxT7AFGLT+IdjS4vjORk/HvjlLz3ZP/qh835cToWI4u/KvGciF4qXw2JiIS7bokJFPG/c8Ctu3usdh9cqSHcohqhy77vfJcm45893CiJ0d/sXwKxHA9zRjOTQhXjFJg+vVVpUsef2g3Wbsa6zBwC/mNIxJHivgwsHvTmS3SUQ9mbgvEfmuGku2GQanwPqczDvHXfzhE+YyXrcnI0S5aJxwwn1EGisA30Vg/sUt7pGTy3cHBIq6SJqY+ASpTDrhsJXZYP339urWwGYCUuLumbYMGm+2qws7JzLGkBV5kcRoRWPmdfqOW7O/4HnkuY8ELVW4o9nJgUhJOpBNYyf64noOxaFShJDkajQMV1LDxDuIdCvKsk8vLjPTOW4WYKHjIlQSU++2Nup63Fjd1mz1itFvWYNihZfANi4wcIVVyQrRe3iV/jdc8Mu1hIPu0hYuJz5UEk/ugt9fpes74Hpvf/F0QlrlAuOETBW9H0b2culpcUphODS080qbv5t2Sp+nTF9s8IIy21hr5nGSrW4NP47v9Cyvk+2+PhJkfW4qRwhqoCT0YIHIks7Nw5V2Y58/wFMtGTxzTF9/zc3+xW3s89y8oWT5KLxo8kbXmgCQG11UHFzK0oC/oqSIqLaGMi2e1G5IsszQb9FsXqoQQ8wELwmuw0obux+vT6Pm/Nad3GfEZwL5289TyfgnVPzFbjD10qAmVDJUI+bAUMI3xORxaAdfcAgxY1ITKQHwmSJ2xRDJfmb2ZTnR5zjZm6mYG9YX0ijZsgI2wtt2XKvFDUgbjCbpBS1i6gvl6lQyVxIRbC0+7j5w6SSy+a/M9v83V04NFZm9YwJRXl+PIuynOxbboHvuuhlFLeKSr90VpF79x39RXhYjpuJ5HWW/i9OorfoCRrO9Dxizpic//O2Hcj78YfCq8hmz4v/M19lXOPhtd7ric0WJk9OlovGhl8D/t/UlAV/bBOjuFUJPG4RoZJhbQxcohpNa3uALQuVXI/IjOWE2bO5rqqPQVmPW6Wi4uZrCcDIKxZv0tTcwnuMeq91lZ/IeUDpN/Vei3Le13X1FP9WDVENzXHzjUPf42Y6p7MUIMWNSIzvpuY+M5lgbtrjxla/4j00/nYAiUUz4wrKNOtx8177PW6stVrxtu5Ljue9J2yD2YJ//SJVitpFtKjK+867+okPKwjWnx43NQ+E/2/W0+COXUdpA8Qhqs7f8hblXM4pgMDS6z27fR42wB86+dab0YUTwvD3uPNem/5NvWPYxrwnPgUlYq5RVq5CLO1+pVBNNivjvbXt3Gd6C0J2auKNIOZDJT10Q/g3bfFXNGGLJ5oyPlVkg4pbTR3jcWsPn9fD2hi4RFUi1VXGAaCqzB8u2bHZwvjxwOlMlc5rr1ELs4+qEGgiVLJc4HEz4Q0r7h+SM2qyd2ykx02ziBAve1N3b/F+aKzMKlU7BqKqSuqf++g+mswYFOUPNCWvuN17773Yf//9MXz4cNTW1mLnnXfG1Vdfjd7eiGYsAm6//XYnxCTi3+OPP57St9i6iPJAmHH/98ky7HEry3heJd6SzCZs63k3gsqJKY9bLges+oyZkBglKsc8wFQtYN1bnP1470mGmZfzOb9smVLULqJF1T/7ciEAM7HyPGaKk0R4mDUXPbyy5+Us6C/uecLC6mROy9KlTtgsS7THzft700YrsnBCGL5m0Mz7Pu+44iQjuhbytjmPWzZli29o+KvvulGTzXoueIVFNxQzyhNpIlSSJTRvRmHcdVweZd62heHeOqNmz43bx62CaQvA5sCxyLQxiFqIm7geeY/bxo2WE2bPnLa2NrUw+6jwWjdU0oL6NSNqwu0/J0pii4QWJxFsk5SwtZh+VUmxXADYwvQaHVdXpT6H+Y4hfq0cKhk5/5rxkA8kioVr+4fzzjsP1113HbLZLA488EDU1dXhmWeewQUXXIBHHnkETzzxBKqrqxPJ3GGHHbD33nsLPxs/fryJYW/1RHkgjPTgKC5KeNn6i/DyTAbd+QJ68vyiwXutV5bee10siaypt7W0OGFq8+YBEz4H/OIW5/2rrrYxoRI44wygN6u36MnlgM1twPCqoPekrMz7O5/n93TGdfHF8aFHvokaNgALazo9t41KWfc4TPdxC8r3Xit53Li/iwVtmPd0Hy7h4TTuGOIP0NYWfK+3x9uP99KWM4pcb48VWTghjLDFg98iqzfHsOQLhX5pB2BiYeKMjf9FzXitpo6sw5pOp6VGVF6OivQoBaK/PG4qv+vOTY14ZeVGLkTSOQcm8roB/9gzfQpPJdOIO0xxi2pjIBpXMMdNX/HkjYVuywU2zL7Q53V3w+wBuQblvt80JFSyoiyjndPpyPf/D+hXHsxw47eKipz+eedz3t2/jOa4cfepr/qrTiE3QVoJ/1o5VJLZj19XbA0et5JV3B588EFcd911qKurw/PPP4/p06cDANatW4cDDzwQCxYswEUXXYRrr702kdy9994bt99+ewojHjqExSYDhqpKhiXcsmNQVdzKLHTnBR43nxXfzGRUKP6vrpDMn++EI7q5ReN28uRv6QauuBa49lrgr8/ZKBvuvK8SKrl0qedx4ysElkV43ACvFPXkyXFHCb9ugLQUN+91Gn3cdJsG8w8mV5rJhYOo8Xku5y3genqcv6MU74aG4Hs9PsWN97h5r3u7rcjCCaHjDlk8sK9VjSxij5ttri2Iz+Lr/8xn8VWU7y3QzHutRtVUOgoJAPBRD8xr3ZzOle1daKr1umSbaAcgulfyBRtLN3UyY0gut6m2El+b3ISXV2woGpvyBRuZMstYCwl218MOs/H/futvxO3Ozy6VlY7SJqP8sOH/gXYA7BgUx7+l07+ja9TJMB433ug3axaw777JlM6wUEnV/DZAnM9l0ivDj9/9LUwo/H5DMWP01q4qycoNn2NM5F4DUYY5NaJy3HxjGKQut5INlfzVr34FALjwwguLShsAjBo1CjfddBMA4IYbbkBra+uAjG8oE72Q9TCdeG9iUeXmueUKtm+y8Odaqcnmx+WF0qjJYkuvu+SZXCHXE9bdDbz3gV6oZFub97At4xbwrNWXzWtikfGo+C2nwc+3VejH5TKiqtz3tyiMyUxxEk/+stZOrGU8hiaqStqChYOup5A9BtvmwY02f/99r3F2WP7JpEnAmDH+93LMtRBU3Ly/q6uiCyeEkQmZZ/xGluRyHdnBk5or2NwiXP3ER1U1M2lM4O8j1/hhachmxxXsPcWMQUHtbKr1NPrlbV0+Y437uszSCCFlXrv30pJNHWjr8SZOdS+tJVwQ6oaPivadPMVpU3DY4Z7wnj6PW6I2BszYXdLo/ffBe2KPG6t4sqHVgHyYfVhbkFzBLhpFVPPbAP93LhTnd/Hn+vJD5jEjzyZWtve+2nMpaIB28a2VtIzc3us0PW7BiAd9w9lAU5KK28qVK/H6668DAE444YTA53vvvTeam5vR3d2Nxx57rL+HN+QRLWRdTLr/TRcnAfwFStiCHibCMAFxIrVKjhtfet2FtVqy1sz6YXrtABoavIctvwhvGOHJbtsgnjJkPCr8Qtz2KcsWxtdXyQ+YY9dthvn+diWbWSQHQzpWtm/BwlV+o5GKdP5sFr20hhaDgDeuLd3+Ng9uU+J8zio2zg7LP8lmnQIILL52AFyOGxtu+5UvW4kq+LmEWdpTC5XkipNotQNIOTStWGKce99dpOjmiIVVwtP1RAyvqije5wUbaGVy6Nx+S2Wq2jjEi8F3uQIrxqqFFoLGIZ2z7g8NdjxRBxzsyf7Nr63EbQxc/Nej/zPd3zSXA9583f+bub3y6hq8Z0e7oCrmvHnxhYvC5gEThUkc+d5r91zo9rYLk+9T3HzH0H82sfJMVpfdtKUX/1rXXqy4yQYr6aSVhPW83cBUrFSO2rKsogE+OsdYTf5AU5KK21tvvQUAGDFiBCaFmGp3220337ayfPTRR5gzZw5mz56NH/3oR/jTn/6EdevW6Q24j46ODql/g52w2GTAX05XdfHgXpQ2IlzoijdcBeNOY8eaNzUZGfK48aXXXdhQRdczli23MWFH5+m3pbVM6SEwaZI3kToLem/QjYzi1ro+2Gw1rhS1i0/hh//aGcZ5zJJSX5HFqGrPmi8qDKMzR7v7uuI+3LA5uI3Cea/Mlvl6kRU9bj6Lrx7usDo7vWvKspj7ijEGRLV5OOMMJzzL288qGhICOW7M3wfsbyIMKMSarDrHhHjcbANzDMCHSvrnMDavUz2c3JPH4ik/uopbn8eNe99EHtqYGu8i2rDFOxdFpdNY+JV4G1PtXkQeN1M5bq4CwXoLpkxO3sagOC5ftdooj1tyli4F1q/17+lGb9Q1esI7BA3E3TD7KMLmAROtABz5YgVCdHxd+ezcZaKQmyjCxzmO53k3kfv3r/Wb8cE6xwBiqhK06HpftKEDXUzxEx0FxZ2fonPcBqfmVpI5bkv77uSJEyeGbtPcZ25amrBc2UsvvYSXXnrJ915VVRXmzp2LCy64IOFI/dTV1WntP1gIc88D/n43teUmysSKFykl63ETWMD4c7T9sOiQQFHp9aJMZpHthko275hDRd9a6J1Xy/Gt6ckf7tksMGqk8zqTcbx57rEaRjrfJJ8HNrcGz01cKWoX3sLmX/AkG6+IoOXUKv6uGctMPHuwHETw2EmZsc0wPLXMMR55xUn0rOAsrvWb9dD68hbzwQOI8k+am52cGrewAOCEP5XV2AGPG+u1HT1Kbdxh4V1mymgH38sXbCMeWsAfbs0uvhdv8BvuVBcOYVEJJpQfINzjZiIPbThjpGGrVhZDJXXCr9g5JmQbrd9VkLtoLMdNoEDkDSjKAHc9Rnogkh+jrS2Y4+ZGb9QyHjfRswOID7MPU3xMNN8G/OsZL8eN/dzMvcTKd14zx1A24ASvGVa2lvGJ+/vjTZ3YuanRXKgk89oV+f46/8WgH/Vgb5VVJUvS49bedyfX1taGbuMqSW2icmcCxo4di1/84hd49dVXsXbtWrS1teH111/Hd7/7XXR3d+PCCy8s5tUR0YTGJts2NvflEtRky9Qrg0k0UVW938pZjxvj8/dPRorCIU50ZifrEVXl+OLo6LhCUen14jiZRba7EN/hi97i5703KpRKrwPANmM92VnGAdY4wtHg2jZkYNv+My9TitqFt7CxCx4T86eomIW5XmjRn5vq+eWeEf+1rjf2jRv6jpNhFpgRvfmA8PyTmTOBO+/0PG9uziMfXsvmRaon3osXbKZbPLiYLE4SVo6aX5joKp584SP3WMY8bpz24+WhWcqLqlqmtL67+LZtb4GlFeYpsavpUElT3nGRQdRXbMaUQTEkdFdVekMDsIWreJkretziG4jHhdmLFCvAnMdNpDD78xaVRQOQ9LiZKE7CzAVej04dj5h4X9aYYMpQwXv2vW3U5btzYCDHjZWvLn5AKUnFLQ0OPfRQXH755dh9990xatQo1NfXY7fddsMdd9xRrEx56aWXYvXq1crH2Lx5c+y/Tz/91NRXGjDCFKuevF30YtVVBEPqZIkrSqDjPWE9buzEby7HzaMYrse8t21jTWzVxyhbhK84SZ/XZNRYb+W9ckmZUul1AKipZhU393zYxRw3UX6bTClqF97CZiqpP0w+4L9m9GQ7Ajo7naIAvKdDZ/hii6+Zh2MuB6xb2yeH9bjFtHgAwvNPZs50zsGcOV7orqu4uYUTfvgjb3vV4Yct2NgcHRMLHpecQY9bVANuE4gqhRaYHD2dECYg3OOWM6BciRaypnq4iZQfXpqpNg8iw5y5UEkHUx43//Xo/8w9gurQJ00CKrP+nYs5bjGhkjJh9pblrTjCFLcKjYpiIuXHZAGL0MiBkDEkQfTMc46jJzdqX2OhksxrPiqpOAaNs+8aOrbGUMmSVNzq+0wwUflgmzc7OSYNojrVCTn33HMxatQodHd344knnlCWU1tbK/VvsCOKTQaAzb3eKq+2Qj0Kl13Es2WcTXhPWI/bhi7PU2Wqj5sV+2CPlxF1SbPeEdeDwoapdXdllEqv82OrrXNkVtXaqOyrGdLKKG6VlY7nRbaqGRDMjTRd3Ul0XRavGcUjuFUY+6YbLFkK7LQT8MEH/u30FmxBj5spK/7SpUC3W5qbme19HjdBiwcgOv+kudkpkDCuz0s7elwB73+YLxZOqGeuYRM5FmEeN9X1mmhMTqgkc6+qiQbgX2RHFSfSbsANxjtjqL8SwHrcOI+eiXBGwX3qy50zfC/xYzW1mPUW+ezx1WWLqhvmDC2SAS+ccAtnqXEPobqIzWaBA/bz7+t64t1QyUIB6GwPypcNsy8W42HOtbFQSfZ6FBhbdaM1Qr1i7PPPROEsgeKmo5iEfe80qkrqbBOGOzYb/nnM53EbnHpbaSpu2223HQCgJaw2NfOZu60OZWVlmNzXhGrFihXa8rZ2wqw87ERanVW/tNiiIWxFMBPekzF9PYoAp0x0sTKYz/1vxnonCnuTkS0qve7Chkq6HjdWcauvUyu9DviVm5f/4SgsO+zkryipUopahG3bRiyOLFEVPVV+0/nzUazC6Ho6M32eKt4TpbVg8y0cXI8b+7m68LY2T9ln89pkPG5AfP4J+xDvamgvLsJMJPdLFScx+OTNBUIlzXhmovoIqSKaZ3KGFlRAeA5dri+83FQBEZHHzXTeDP87GvOK2Y4iu7ZLryWIty8jW1CcRFcZr+8zpm7JFXzeKi+sTl32kYf7d3bPvRsq2dluoVDwb5MkzF7kATZWVVLYDiAtjxuEr00UJykIo5PMXI8sBVNGlpi+rs426oS1BKB2ACmxyy67AADWr18fWnzkjTfeAABfjzcd1q9fD8Dz9hHhhHa891mr1W+JDUzCOktxMtKQXVeRxZi+pq9527M+muvjFv0QkHn2ikqvu7Chkq4SUcEobl//mlrpdX5sY7excdllwLMveA/HbxyRUSpFLZLveAq8v42ESgo9bmrKPt9Dz02HDIty7ezQeEAyr4ULB41T09DgL9/sVpPM+Jqqh+8fNx3WM551tqediXCUsGpv69ly0UqSxZgsTpJhwrvSaCwvWvSYKBwCOEaJni19sgH09nrhY25kglY4I3Nuih4OYyXGPdw5gB+qXtNg//z+0ooNWN3RzXyujkjpzBswgLg0MPdqO9PXzvO4qbPNWP/E6M6TruImCpNMEmYvqnJqLsfNe+1eMya9MnLFSRQ9biHKT9i1ryqbxUSoOsDVAwgpJaRVnIT58qxRizxuKTFhwgTMmDEDAHDXXXcFPl+wYAFaWlpQWVmJww8/XPt4CxcuxKJFiwAAu+++u7a8rR3/A4a1ZDDbaNwQNeXi/Lhi2JvmE6yK8Qa6iypjeQrMa1E7ANlFLF963cVfVdL5ny29/q1jzYRGFM8HU9Bi5Ah1pRAQVZU0E5bmyffwctz65Cf4TUU99Ow+a3GY4rZ6FfDqq9KH8CEyhPitseq/6aRJQFYQIlnGhkoWxPJl8k92HuPFRHb25r1ePwZy9EQLnmWtXb5tTCj8LnxxEl3R7sJBpY9jHCJLu79Uf/I7im3O/tqr3gG22955/+UlnvtV1/vjhXr2eZYMzb/srVIMlQx43NTF816xdYwRwflcT6H1ZDsUQ1M1isG4NDBtR9q6GcVNcPyk8NeDc/nZqK13pLM93FTC7FP1uAmNrd7n+lUlxR43E3nMcUqh3rUe3DmXA9o2s25Ds95xk7D3feg6dZD63EpScQOAn//85wCAK6+8EgsXLiy+v379epx11lkAgLPPPhuNjY3Fzx544AFMnToVBx10kE9WZ2cnbrzxxmK1SpYXXngBxxxzDACnsTcpbvGIkqgBc3Hh07iqi3yjU92L1lfxrSjb+1z34evuLWrALTuRuqXXeUR93FiP2/hxphQ3///85yrw142JBqR++UHro4rHTdRDz1WYw9bDuV4Le+0l7n8WR3yoZHKZLtks0NTkCXDHz4ZKiqpKAnL5J41V5ZjU6LW3aO1bEJow4vhbazgC310rV0VYhVyBD9/VuybdhQNfDMIEwtLxGgU+2LDgNWu8cu4AsHGjjRtvyWN1zss5N1210kTeItAfoZLMNSnwpJoOmTZVJRRwok1cOph8dC8fSh3+evvc54GJ29nFZ1Rnm6UVZi+qcsq28zFd0MakASfNkO+46Ce9HLfge+PHA/94xTvSTpMtzJnjGH2SEtUP2ASiKtPOscz9tgNFySpuRx11FH7wgx9g8+bN2HPPPXHYYYfh2GOPxY477oh3330Xe+21Fy677DLfPq2trfjwww/x8ccf+97v6enB2WefjdGjR+PLX/4yvv3tb+OYY47BtGnTsN9++2HZsmWYNm0a/ud//qc/v+KghZ0MVrRvKVrZTcUOj6+vxpgaz43U0xdHY6q0e1bQy81UGXAgaE1WnaD50uuAPx/JXXxX1bCLHjMTtWphlSj4B6SpcECRjAIc+e4RZM97WA+94uImI37E5HPObxPWvDoK1qPmSjcZhz9uHHOsvmuGLU6SFxQnSZJ/wlry3QWh6VBJExbkOPIGG3ADTDlqVxk3aFZmh+beo6oFPviwYMCrCgg4rUEquD59un3i3L1FC2VTipULrwia6jaQF/ycpsIwXdFs+wVdykNaVJjIceOvh89/wcb7//KOsddXLCNh9qJ+jro9OkW9V8M+15bv8/zoz/EipdM5TvDYiWUL9l2zBqhgWr18usIx9kyenPy5l7bHLUy+qcJfA0nJKm4AcN111+Gee+7Bl7/8Zbz88st47LHHMGHCBFx55ZV45plnUF1dLSWnpqYGF110EQ488ECsXr0a//d//4eHH34Yq1evxsEHH4xbbrkFb7zxBrbZZpuUv9HWAX8/f7De8WSazFmqynory2L4lYHiJID/IcOHSlrQH3uUNTnp2NnS601N/uIk1TXO+/sfwIZI6Y/bGbP7v6EQJoiqSjKfGZhCfQqQraYwh/XQK3rc+i5LXlyOUX5mzUpmgfQpnKJQHc3zXl3lvfY8bt57ouIkSfJP/BUUgY6eHJa2etVgTYYBDa+qCNlaH6c4CXt8Ux63YDigLqLiJCqFLERhwQCnuFUEx/3qPzJKVnYXPmfJlzdj2Hti0uMW1Q+NP35y2d5rvmiLRq0vRj6juPmKNTj/68zBvEfQtj0jEQA01OuF2YuqnBa9kSYjQYTpDXrEFSfRWXOIrhm/wVJJbOS+rhGntwfFvq7d3cmNlqLcQpOE97hjxzA4VTeNW6l/+Na3voVvfetbUtuecsopOOWUUwLvV1RU4NJLLzU8sqELf6l/vLETO49pNJLX4sLGrPfk1bwnInI5YON6b/+enFlvHuBZQ7yeXMxnCvLd0usXXwx8tAT4oE/ggQcB+5wKPL/cBrrU5bv4FQg9b6FQPvPatv3h8SY8KcFQzOTXY1gPvUJMjhtb4MNtXs0FBIQiDNUxeC+xD6fqaqCrA8hkxaGSlZWO0paozQPzumDbeHHFhtDjJ0FU7Y31GjRWmn18BdoBmFLcBB4xXfyhkkHFUDa0ThQWDPhDJbPlts9DCwBvLQR+MjP5teJSjEoQeNyMhUpyxxJtk1g+s7NIETfd1ypv0OPmbwovOL7WIt9CbXkZOnq9ySRvqOAMIK5yauqZLawqaTCcLixU0oSnU9hKJuTzpPRs8e/rGvhcjxv/OeAYgfbdV87ol7rHTRBOzr4enCqbQ0l73IjSJGwyMOmCZhdovYWCtgLBJt7/7AJv//MvsDFnDtDda8abBwQfMv54efUDZLPAjjuyB3IXbH1/wqA1WVg0QFk0gKCFLdU+borek7AeenbfIsQKmTF7e/zyw5pXi0izjxu//+tvOvcB224inzeTfwI44+/s9bvwVMcfZ0jYY9xwRcli+OIk+qGSzv82nPGbVNxElUiThkqGhQUDQC8XKskrblW1tpKV3cVdLJv27Ivyr/lFoVZYHfNa1Fhdr6+V/z4qMMZKEzluYR43NtpEh32aRxRf2zDXqBnwzrsTqdE3FxTMPLOFOcYGo0HCPG4mPIa80Yz93zm2smh88on/b9fAV9EX9CBS3FyjpQz8c8M0vnuVSc0woTAPNKS4EYkJu95NWqv9HrcCVzEtmWw+8X5LJ6MU5m1ccQXgtu8z4nHrE+EqP2bzxIJWJO8BZsZDAIQVDTDrcTMZDgiIQiWTn/ewHnpeOwDxIybnLy4X2bxaBJ/DYTKcg9193DinzcPjj3tHOP470Mo/ES18WFSvS2G1N+bM6FY25MkZbAcABPsIpeZxY47hInNuwsKCAf/1nC23fcVsABSrBQLJQ4MBQVVJQ72hIJofNaQFpMeESpqKSrBt2+A5cfB73IKhY7q3UzkTjuC0jlB/ZvNEhfGbbZDt4J9/tcRzRhZWYXaPb8bY6hmKxZ8nIZcDlnzs37fAe9y6xbJljZYiD7NJ2Hv1+eXr8dzy9Y4xhDxuxFBENBe8vGKDr1m27mRXXuYvIJK3vcdvkgWbKPG+q8OTXVXbZ/Uqd/7v6oQ2QY+b95nJhwxfSlsnvy0gO41QSd6ibDAc0JHvvS5ALewtrIcen+PGw3vcgPjm1SyuQu4O2aQ30veA7Puf/R7Dh8dXj4xCFGrkO77iFxCFGJnOi2TJF2z0FtTmGRFl3EJZ5KFRReSNzDFzpMxCOSwsGAgWJ+FDhGvqvGMlsbK7uMMzPUf6d3WvGYOeTka+KNzQVL6VDbMN1YGohsR9x9a8n3hvp1/x1BItnAvc828qDBMIiZLRkh6eF5k3YHAV5YmZGPvSpUDHZv97bn59nOIma7QUecdNwt8yG7f0oqWtywuhHsSqGyluRGJEfaVWdfgTJXRvigrmrgt43CQnurDEe9bjVt2nuGX7FLc1qy2tpHsgmOPmUyD0RPswb3lkF5p+2c7nWuIFVSXZz/QnUd4bqboYFPXQi+vjJlLc4ppXs7ALNsBcaw0geF7Wd/Xg1U83evKNLtiCj2BV6X5rssgTqSg4hLxtozvnHWH5kox0uKuIgMeNUyD2ax6pLJv3LrvHcJGp+lhTE/6ZX3EL5rjde1Od7+8kocGAd03yRTgAvXlGZKRgT/teE0ZAB38D7uC1rm08Yww4phqqF2X7lE7W42YmdIyfw/vP46YlWhhuaCs+O0SEFyfpM7hqiBfm5xkYe1ubfw4APONleV+xol5BbqyLjNEyrHm4KURrii25AoVKEkMTmQteu/Ijs0Lmw4xkLeFhifdbOrz9q2qcJXK23Pm7t9tKbD3mcS14aVQIZPvEFRdsxiyP3mtxvLxZi6zpRXigOIniYlDUQy8QKsnJ6+VCJWWaV7MUcziKCweDHjdOsXp++Xp05QrCz1UIW5iIPteVa7JcP8+mNhvvfuCcl+4twNQpFsaPh3KfIp/iZtvIMd68L46ux8ga9QqZYo9b8jkyDLY4SXm57asQuGFNBh+84R970tBgPlTSVEi2MJS87xjlGQtNtZWi3eTlhyg/LqbmyALMhho6sq1ApVMgnWINtm04x42LpjBVrIzfv6jsp1ic5KMNHfi/j1cXWxEZ87j1ne+PN3n9FlUvm4YGYNM6v3rgTF92ca3EK3YsMkbLOIOfLqLTaoOKkxBDFJkLXr+kvvc6z8XLyyxKohLvWY+b2wPN9bj19ia3HvNk+EVJSiGBfH6I/sMxaE02W1WS94gZPi/M64JicRIXt4eeWzbfrajlFifhpeU4j5tM82qWorLf97df2ZeXI5TNvBZZNrUVQ+a1yRLponLO/jLdZh+9vXkbldXOL9DR5vzQa9ao9ymKCpU0ea8+t3w9PtrYkVh+Z0RYONvbjy9O8vL/VUH0qyYJDQ62TAl+pkJUcRIjebTsHCmwUphS3HiPm4kcN8DzCIpy3Ezm0trwX+9GlSvNuZ0nvjiJHrwB6p21bT7DmV5BG++1DaC1uxeLNrCKm5rsSZOALe1+N7tdsIpKGxC+RpI1WvLPJdN5bqLTyir8g7UVAECKG5ESpprXAs5iMOlDLCrxviuguPmtSEmtxzy8x83kQwbwh9M48s2ESpb5Ho5+2Y58LfGCqpLMZyb6uHHj1/UWzpwJvPSSo7y5omRCJZM0r3bxFmyikEB9L62L6NFo1MhicDEbV5zE9HO3stpGbYMj31XcXFQqKPpDJf3hryaVcQB4Z01b4gJOYRVUAb/HrSxr+677QkEsO1FoMPPaZCELXq7zf/AzE/JN9uXz5PfN7YBWQa4weI9barm0vMdNc/wWNxeYrHYsbgcgPraS/JAcN9HniWVzY1+y0W+NUZWczQIzvuRX3DJlNsqYNjJhHjdZo2Wgr6vSSCPkh3z7NMIy+xtS3IjEyExkugtxf5hR8jCgqMT7LZ1McZIaJ3/DXZi4C5Yk1mMe9qZyrIPpeNzcAhyudJPFSUQeN9NVJT/c4GU/mw+VNHPe99gDuOMOoNCXmJ0pc8Jr2QcY4FfckjSvdmEXbIDZBRWLyKqpvWBjTjyfx+V8riY3vjiJWcrKvJzXjjax9CQVFHmPm8m8GdHuSaMSwiqoAsHiJGxVybzA0p44NJhbiBubIwX7ut5aE3NvXHESXVgDjslQQ15OXmgg0pMdbGcQPK4q/FxgMoRfVPDLbHES73VBoJ5o9S3kvIXdeX8rlp6Cek3VbxzuV9yy5UAZo5CxXnmXJEZL3sjCK7Ujqsqhg9DjBmoHQBChGM2bKXAeN01rcs8WL/Stutb2u//7FixJrMc8wUWJ+DNV2KqVZnPQ/Mqy878t/FxXfkt7FzZu8cz6ugUygKBiaOq8z5wJ7LB9n5wMcNuCNRi/vf8Bmet1Hlp33qnWkDhQZc/3mblFvmitabKxusjjpiqdt1SzYS5AuqEum9vEj8YkFRT54iRpVapjj1E8tsQcGVZBFYhuwC1aCyYPDfZeO0YW72+tUEk2HNv932CoZFw7AG35YcVJTHncMpziZjjqwZVgw2yoJ+9ZMqkUsog8bkaLfhkOr+Xz83jxfE/NJGzf7FfcyrI2sozBUmTASWK0DOak+z/fXbNPp+h+t2GuiupAQoobkQraoZI+yyZXnERioouyJgNWMc+tqqZQzG8DHMUtqfU4IJ1blBhvNO3Ktp0QLBfTVk32f0e+lnjfd/9sM1eF1Ig1nH+ImfN0jhrlvXbzIln23MNSal7t4v2mggWV9nlnzotgrWlSiRCFj6kumNm91nf14omla9Hdd8Hr/p5xOawdreGPRtkc2IDHjfnMpLLsknSOBMQVVAFBOwBWccv7ZSuFBnMLcVPeJd544/xvBz4zId9kewcXLz/abKhhUQ4Txu8YQtIJPd60pRftPd5Nol9V0nsd9LhpieYKfpn37LPjE/Vy1DNUePDnBQC6cuqKWzmXF5AtB8p8Rm7vtYrRkn8usUMfW1uJmvKQ3jvS8gXYdvEZQh43guDQtWZkonLcNK3JABjFzeYUt+TWY56wMCALphLk+2TzlccMWjX/vX4zevMFw8VJwlm7Vq8gDC8/UJxEu+R99P4HHajWvJqX7xUnMaPs53JAW6v3d09OpFhpHIDb33STaXZoHb35ogVZd35ZuhRo3xQuo6M9/DPZHFi+qqTvNzUYkcAew/lMfp4RVVAFOMWtwvY1nueisZRCg/09I/2FPrTaAXBGM8C7p4zkFzMyNvdoTlgCXOkFzlhprjgJf00Gj60DO8zlbV3ecQ1e74HQWgNKrSuioxNYvBjI5dO5V0Xzo7lQyaDXqkZnIQNg17GNxdeZDHDK+V4OST7nGLnnzIGS0TLgdWeMCK2tfb+DVpG44In9mMkBHMR6GyluRDroTnaBUtoK1scwazLAK27e+3beSmw95glaB933zUwVoaGSug2DufEtb+tKLRSTZ87P9Uqv8/KDHrf0lE4T8k2HSra0OOdy/HjHEupy7HHmPGIucaFApmSz6N5KbW3AFbNHhCpvUR43QC4H1hc1UDBtSAi+5y4Kk/b8ciuosnMlHyrJ5ra4/Zx0QoPZIbq5ui7mPW7Bz5TlM0J6UvC4Fed2JM9ZlKGMUyJMhx6HGVRM5qEVbNuXX6gj250nN/cZapYus7HTTsAv5njbmCzeJPS4aVWVZBRa+J95WcvCl5oickYk2LaxBqOqvdYfex/pKeNHHG5hxQrgssvUjJbst97SDVx9tff3009a2GknaK0JhHMkc3625NTz/wYaUtwIJQ7YdlTk50bzZvh4f0vusg2zJgN+xc1tKAkAu+6q5zkBBNZBg8nxAJtHYKOn1xv75jY9CxX/kxkPSYn4LJ/XK70OiKyP5qymcfubKtzCt3hQkT1/vnMOr7jCOacFxkPS1W0uB020v+lKe2HXnO6YGxqAxe9U4LR9mvDwn2sDn7dvip5jZHJgg6GSBq9HwXvFtiAKN+rMmY6Fe84cp9BIL+NxK6/wV1OtrbGUrewufAVYUwtxFldkMeLBgNi0rfTFecA2myNWlMNFshgP4w8RYrSqpCFFn50ne/sMFW77F7ZVxssLlMQXsThlmUfnt40qhHb4jmMwolq9V2TxGCHDa2zQi0xiz8s77wB/+EPQq6+zJohbJaZRFba/IMWNUGJ4VTlqI2KQtReDltcstFBQ87gBYmsy4FWWzJZ7leQAYPtJBsIumNdpeNzcr9/ZBRx+pDf2O/+q57XiLYsb12V8YVG643/llfDP2ApVKqXXgfDzDpitiCk8tiFvpDtm1et9/nzn3LGN59ny7V/coyewj8nke5OhkrxsmfdlcXNgc70WujuDstZ+Gj63yebABouTeJ+ZPOcu7jWjukhubnas5ytWAL/9tff+1dfYuIlZVP3sQnUru0t05V0zHgib+990qGQauOLtFBpwA3EeN335YSLM9hjVz1/m50n3+bPNdnmMGZ/zVQ2+7no1Q6KL/5wHvTwmr3d3jimzLGTDetdoHEPm/STYfadjhy/2YtQ4b7GR4ypWqqwJBnOftjhIcSOUiZpwTDzg3FAjvnlt0rAR3poMAF0dnowzz2aaYZp4uIdYNU3NI6194V29vYCd9ca+aV2ZsoWqpQW44Tr/AOdcBLz4kpkFVUtLeEN0IJg3AyQrvQ7EhUrKywmRHvmpSW+krXi9t7Q454yH9bh97ZSOwOcbN8qOUgx7WZgPlQw5pqZcNgd2S1dQ2uoV4YqbbA5sMJ/InHfDZKgkTzYLbDfB+/55q4CxY73Py/RqBgCIDvHSbWtSlNyPHiVTsAactD1ueS4nymRVyajjquDPidQzgojmSVbEudds8l3jhZyV+FnE4guVFHh5dHLcwoq2mIruiZKle4yWFoANnvrP73huznyvYAckWxOYPAelBiluhDJRN4aJ54yrAJlI1GatyYsWAfvu7cmY+V1P+THT60f8cDShzM6fDyxb5rwuy9oY2eStyjeu8W7nJBYqN2Tklxdm0brBkzF55x5Mme55aO75f+rjvuUWoKc7/PsXBIpbktLrQFD5MZufF/25yfw/G1C63m+5xe9pc4lr5fP8c1LiQ2EfIuZDJcOsvfqy3RxYtgefy5oQxS1JBUU+T9e/2Ew01ABRi+wyA5b2yqwnoydfMJ8LxS3E8yncqzbMlnUH0i8hzv5yql73KFil3vH+mAvfdWSIhZj2uOlcL6J5srbBmySnTu8NFONJ+ixiiYtIMNb+wjZbiMclzBane4xbbvH/vdfhW4qv83mx7CS/w2Au9x8HKW6EMlE3rolbxmsWai5RO5t1lJTRIz0ZPXlWcTMRTuO9tg1awVxLoVuOu6ISOP48r0rC+tXBxWachYoPGfnjpV4y80HHeInI+Txw4omWUshILud420TKWVG+oJknIF96HYiusKXdgy7mc93flq+yl2e0LZnr3T3HIvjy7TzPv6CbGxm9MNEhbMFnQnlwc2BznHW3fZOFrg7xozFJBUV/qCTf7NicB4LHRCGLSsbttSVXMO65iurLpe2NZHqhmcxzBdK34rNjVGnvEEdFGauQm68qGUaaDbiTeKzC5slyLhUsIyjGk+RZxMIOz3iOG/vcAFLxuIVFUegcQ/Q7LF/knXRRjzgX2d9hK46UJMWNSAeT+QSBBtwGZLOLm16DpX+BcEu7biU511LIhhXW1ntjZz1uLlEWKlHICFsG3Pd+n+NNJWRk6dK+IhkRnh9RqCQgX3odiAm/0vVwpO1xY14XkDyn0z3HIuI8bnUjctLnWAS/eDDJyJDkelMPrpkzgVNO9p/fNSuDBhCVCop8qKTJBtxRip+JRVt5xrNXd+fz5nOhfNeMd27KLHNGFhtm+3EB6efNsF6C9V1etIMpjxuruPXmC77qtWaqSgbJZix9wxav6PvaR8gLj5onWSoqPfmuRz7Js4gl7rzqVZX0XrcwVaBNetzCoih0PFru7/C3O2qK72WZInFhhlxA/ndIOx91ICHFjVCGb/bIYkYBcv7nFz0mnmFsZUrzHjfemqxvBWMtVGHWqA1rxOFdYRYqUcgI731wcR9eKiEjbW3O/1Gen6jPZEqvA4KCB+xn2ovB6P21i5/wVfYSWtvdcywiytMJAK8+WSV9jkWkGZIydWSd+JgGD/nlPf1/sxUldfoU8W0S2OlSuzhJxGdGcpUsq+h1684XOAXI/BzpeiJMKChsgQ/TiknaCyZ2iGy5clM5bhWMBaunYN6TKqImW2bUwxzo0ZlAdtQ8ycIaRDvavV9dZ54MQ+eSr2SS8brzBfTkU1DcUvC4ub/Do3/xKvpWVrOKW/T+Mr/D1qu2keJGaBCVz6LrXQK8yYfN+UnSXDYK1uOWZqhkwfYqd+mMm7UUipSc7i6go00sX2ShCgsZCfW4Me8nDRlp6Iu+DPOqOfLDP5MpvQ4IipMYauoL9ENVSeY1n/Mjs5htiGjXE6a4bVyTwfUXNOKjd8ulz7GINMPHqsvLMGVEsFy/SWWR/+322cvCm286ubA6fYoCHjeT7QAi9jf1e7h5bt25gtGxA/z1zhZWMbgksf2N7E2cl6g5vNyE0hnyvqmFeHnGb7Bc0LLBO7aBQ4hWBDUR1adl8Sv6fE6kvJyoeZKFzXnrZJ6rOvNkGDpKeU15Gb44Ojgoo6GSYR43jXG7vwPbdqQqgeIm8zvEnQPdHncDCSluhDJR6SxGPG5sOGNfvJcpy6NPcSukV5wkpxjSwcNaCkVKU+uGMkSpF7yFKixkJNzj5r1OGjLS3OxcD1Gen7DPMhn5RTOv/LCLzfSLk2iJ9yv78BsqZMbulrcXwbYDYHnkjlo8/1ANmposqfL2YaQdPjZcEC5p8pC8rLo6YPp0JxdWp09RlltsmvS4lUcUIDG1yHc9bja4cHIDstkhFpgqqiby89gm1uY9heGf7Tl+uLb8sHvJ1EKcDZXs6s1jC2O0TMtzbkJxY89LnstdTHK9R82TLPXDvPOyuc05Z7JtQJKie79OHl6Lhgr/RGXS4xaWt6xzTbq/A1sYqrbBOw7fDoBF9neIei6Nq6vC9sOCBsHBAiluhDKFCM3NxLTBTj69xYVsCopb3twCn5eRM+T1YS2FmwXNgXu2BN7ywVuowkJGekM8bjxJQkZaWvoKBYQoEEB4FalCQa38r5Oo7f2dfnESc6GSLa1daO12tHNZQwVb3j7wWYX4Ps31PTRly9tHkabqJpJtUlnkowNM91sE+npmGQxLi1oMmzoz/gIlnmXFSMihLx/V1u5Bx+JKsPtke8fUFh16bncaUYvRNZUhn8ojGqOpKBPAr7h15/3Jr2Y8bsG5pjprwuPmvf5gXTveXdvOfCY/8Kh5kmVEk3duujabmydFmAizH1vnv/ZMetzCUmJ0oqrc3yEXbCsKINrjJvs7RI2uKju4VZ/BPXpiQIkKlTTxoOGbhfLv6eAvTmLa4+a9zhvyuLGWwk3rgretqKS5i8hCFRYyEhYq+coT1b6/k4SMeDlu4dtETdSySqKvOAlnldUvTpKuV4n1oLy3zvvCSRaybnl7HjYEhaW3J1l5+yjSTAQXiTb54OJPsanvYlleUYaC4ZzLSMXNVFgds8j/eJPXY8mIx415nWMMZ0Y8bn3/d/bm+604SX2FmRW96JFq6pkH+HPc1nT6V80mjiIav+lQSZ6kc3vYPMkyoq/NTke7hULBMjZPijDRJ3tElT8qoV+Kk2ge4owzwscZVpwkye8QdQ5MzDMDCSluhDJRxUlMIJqQTUxyAGDZnvDOnvSKk+RsM0ohaynctC74IIxS3EQWqrCQEVGo5CO31+Kv13qaWtKQEVdJjK4qGT5+6Rw35rVuk1ae8pjVge5lw4e6uCRpaO2Wt+epDFXcrETl7aNIU68VWXbNhkryHjdzsostTXiPm+Yxoq5nU+MPyzczHU7eWzCruLGXyxJW4UzBkyo4pBaiRbLJRXiZFV7h0cRxRDONCe+GyfYXonnyzl/7HzJucZLOvjBJU/OkCBP1AIZXl/v+Nhn2Ora2Svi+7vXS3Azceot4XRBmyE3yO0QNz6QxZCAgxY1QJp+u3iYsk6t7w7W0OFXivv0tT07bZu+LLPrQ0uppBYg9hYD+BO1aCkUet1yI4hZmoQoLGeE9bm88V4nbr2zwWcCShoy4SmJ0VUnx+0mURH/jc7OVSCtiLAa6j4H6SvEJ7U2guAFO5cM77/RblKtqxDJmn24lrpQYRpoGTNEtb7Y4Cfe3QdmuxzTHGxKMHSGI7prEnSN/dZlY0Pp1BrxijAi2OJSJfmVsNcaPNnYUX5u6RkXXnimlUGSoMam4WZYVmh9pmzDEijyGtgnFLcLjpvDD8vPkA/Pq8P7rwVzajnYrcRuQpJhQItiwZsDsfLxzSBEPE8eYOVNuJldpx0IeN4KIIcxjoINoQtN5iM2f7xQcuOIKYO0aT05Nnfe0ueRiYORIZ+GStF+ZN0bvNau46c7PrqVQHCop3ifKQiUKGeE9bj1d/kGrhIy4SmKUx60s5PJJoiSyYUC9ea5vlubJryiLnip18zhMhVoBzsNt8WLnGm5qCve47bO3wQVhilluIskmDab8nJKGx61gm23ADQAjqsqF7+sonuwcufpT8TV/5pnOdjr4PW5M2XtTIRUCTF2jQo+boWtG5HHTDfPmCZurcpqKW0sL0C2I2NhjRkbreQpE35Oqig8/T370bvB+mvb5TKpKG2CqMTw/h5m7aKqzZdh/4sjA+8byLrNBOfXDnTlBpx1L1OiyKc4z/cHgHj0xoLDljws9+nHsPKIJWXWSnj8fOPFEr29ZmCt+VUsWbW3OwmXyZLUFShpVJV1mzgR+cp4gVLI3qGDFWahEISO8x617i/9v1ZCRM84AonSfsmxw0ZBUSWQtyb2FQuJeaFFEKW5fGT/clw+kQnU2Y6ScuEtzs1PGfsUK4KuHihdkJheEqXrcRB4Og4oiL8l0aBrgFHIy3Yty93HDhe+rDp+fIzvaxYK6tzjb6ShvrORewzluocc05XFL0QOctscNAEbWiBX+sOqBMrgKfy4XlLHso4zW8xSINkboFLRh58nTvxeUU1eTvmcmjfxg07eR6L40pTyIvv/J3ytot2MxGV5bapDiRiTGDaW5+pzhyOeB1g0Z/PRU86VV6wReCJX7raUFmDXL/56oCMe6zzJY8r53zO5utQWKX3HzrMkb1juWI91QzKO/LvC4dTvHTGqh4kNG+JDL7j6Pm0qoAktzM/CLX4T/eCIDWFIl0d/iIXkvtCjCFLcdhtVgbJ04ByAJlmVhpKDsvS7ZLNBYL/7upkOw0kJYnCRFj1sa3rw81w7AxEK/prwMOwyrCbyv8luI5siONvE171aHnTVLJypB7HFLc0FlrOiM4LczNWyhx83gOcnlgO5NZhU3VuEXzePus1b1eQrEFSfRPz/ZLDBmdFBO28aMkWf2HuOGhX6WxiW/cYNlZNwuoisjjeq7LiNH6rdjCZsHq7MZjK4x/6ztT0hxIxLBhtIs+HslzjxgDL5/0Gi0bsgEttOlQZD3o/IQu+UWz4rsIirC8d6rlRA52JMuUNghfviRN+Xdc7eFnXYCxo/XC8Xk49kB4OCD1BsGsyEjIzgjfjZjKYcq8Bx+mPj9NSvLsPgdbzGhqiRaloWKvpPfm/c8bhb0HzIVIe4pk8qP6GEydWSdttwvjqoXPhxNJmj394PErHLF/23Q49Z3YmxAuWlwFKLFicpvIZojQxW3vnzU7m7g1lsVDoaIHLc0PW6G5PR/cRJ9ua6xdfx4YP/pYkNTLiqWPUIuq/DL3DoqCn9/eE9E8+Hd8zNGntnj66ux0wixcdvEfNPSAjB10PDgAzAybpe68uBazNQ0Kfr+Uww893ip2zVWY9exjTh4u9GoMtCiYiAhxY2Qhg+lAYANa8rQ3ZUJVDXUDaUBxHk/SSe5XA6YNy/4vqjcbE93SGhQwgUKO8a1G7zZ1PVerVmjH4q594QRvvdGjbC0LFRuyMiH//afg7O+bymHKvCEPWB//I1RKOQtrXh2FzdksbdQKC6CTFisw4qTmFQghlcFFbewh30SaiuyOGyHpkBopKj4jyrpetzSDZVMMz8kLGza1PkSSUkqO2yO7GgTy8kzhYTmzVOz6rN3U6/BkOYozIVKCq5HY8VJgu/pGlhYY+uaNUBXRwa3XREsOLF2fXKPG6/wZyTWwyoKf9T5NWWAev3VoJzW9c6VqvvMBsKff7rzjfv7bmHy0V2RJsYNOM/Q/bg8N1PzJP/7TRlRJ4y2Sgo/vjE1ldi2sUY7raEUGPzfgOgXRKE0LL3dwfd0QmkAcXha0kl66VJn8uIRedyieoklWaD8/XFvjPWN3sOwmyv0oRM6wntnTE2iFVwUTVwZ/CSETZgvPp/RjmcvHqPocbON9v4LC5U0ucjnc9zG1VUaS6KuLMsErIyDJ8dN8F6qHjdzskUVZk2eKhNhpGFz5OZQj5t3gNWrnf2Twi7E2T6aJsMCeUx5ZkRnJc1QSd2CXLyxFQDWrAhqWKvX2omeRSKFX3a6Sqrwh7cwMKM0z58P/O43QTmb1vu/kOozu6UF+Pv/iU/O1Verr5PY35ctUFbO2QB11houfDEkU9c8L6e2wow3jL8s4gqMDSa2nm9CpIoolIZF5K3SCaVxmTba318l6WThNn/m4Yt5ANGKm+wCpaUF+OVF3t+1jUGPG4+KghvoPWWqvx0n1+RCKqz4xvTp+vHsxWP0Tc42gO6+BaGJBVuYDJPhhvwxOjbrt6Zg4cdqMiwtRb0t9QbcwT5uaXncCsbli72RyQibI7s2iyXxEXXt7cLNImEvPeN93EIwZQRJ2wPMo3q9RBlbRc+6xe+UJ3oWhSn8MiRV+MPOgYn51z1P3V3B66N1vfiaSXKeXI/Yww+Ix/rray0ljxj/+/Yya7DySrH3VMeYzl/35qq0cmsOU7lz3PgqDfQTLBW2nm9CpEZYKA1Lb0iYoWoojcukBn+sc9LJokHcggR5keIW0WcMkFug3HIL0MkseNhWA1tCFDcTCm5aDSWN5kH1Q9NLtrKkux408R0sy0JtedASaGqd2dICXHOVX9j991nGchSAoBLeH8VJTBzBRDhgFPxDcN1ac0n9rFez6HEz6S0UvZfwAGFzpG2HhEpy56a+XrhZJOw87s9xS29JYqpqa5oe4KbaysB7qp7xKGOrKFXgjqsbEj2LwhR+ll9+d0ToZ0kU/rCfzoRh0T1PXR3hoZI8sueJ9YitXx3ShqFXzSPG/76s8bwiRHEzsdZwMedxS+e5xIsR1QYYrGw934RIDRnLWlh+mGooDZtMzXLLH6xEC1m3+TNP0lBJIH6B4iq4fL6fC98TjUVXwU1LKRpsZXNFRURMeQ2/PH44tmus9r1n4ry7Ftn/vsI/Hfd0W8ZyFIB0PW68qIqMUyhmn+Zg/5+kiHOKtMUCcOaRK67wC5vzc3MKM5tH6C6lTN5SwtL0CeWHzZEAcOdvgpOeW1UScKrYTpqU7HiAf4zsEtPENRnWE9GUUigao6mfdJemxmB7CoVzEmds5Z81995Yh01rHcVC9lkUpvC7PPznWrz/WlARdUmi8IfNs7o5kex5EkXEbFoXHrYXd554j9i7r4grGbJGZFmPmOj3ZStCl1eE5yvqrjVczFWV5D1uRsQG7iMKlSSGFDKWNVYRWr/af1klDaXhk6l5WUkWsm7z5+B4RaGS4TOGzALFVXBFSiEQ7nED1BVcl7T0q7Q8eWlRLlicmfoODZXl+NxI/2pDVzRrke3hrOOsMcREjgJ/jZj8bXlP+P7bjsLhOzZhlIGyy0IPh4GlsjvPXHWlX1au12BSf8phdcLS9Anlh82RAPDArXWYM9OvfBeY4iSnn64W4hy26DPhFdtz/PDUZAMQet5NeYBryssCRSBU7tM4Yyv//GMX8rLPoiiFH/DnXPEkVfgtiOcBXaMce562dAZltW0IXyLHnSfeI1bIW7j6nGGB7ViDsaxHTPT79kTkuLHorjVcTD0+eH3KlKE1zRD4gYYUNyKWOMuag4VLTh2Bv/+/Glxyiv/Bk8SyFpZM7eJOSEkWsmec4fUpcxF519hqaTwyCxRXwQ3zuIXluLmo5Iq4pDUppVksIA1ExVRMfgf+NOsoP8EcFL+sni1B2To5Cvx5MBpuyInKZqzUQl5Ex0sKO8/wcwGb/6qrMIuuD7M96ILvqZx20Rzpwi/A3XmyshKYPTv5sYBwD5XI8JKU+oosJtQHS96bKrRUIyiNbnIhxXv0VO6jOGMrf83zRkuZZ1GUwg8AdiF83EkVfsuyhJ5OXeMTe554w2pHmxX6LHcJO09hHs9Xn6zGQ7f5KwUXuPMk4xET/b4yOW4uOmsNl/Q8boNrzTEQkOJGxBJnWXN55x+VuPWSRqxc6s3ISSxrYcnU7MKBj92WWcg2NzvNnFkKBSugqIV53GQXKK6CG664Rd9uKrkiLoMhx60/SNPjBpi14sUV/BFVatXJUUjzt+TPi4kFeFG2YJmv8034eYZfxIq88aoKs+j6MKkwC/u4KcgXzZEu/Hzmetxuu029AmyY8mpKuRIZa0xdkzVCj5sR0QBEuajJZcQZW/lrnH8Wyj6LohR+O6QtnKrCL/pNdY1y7HniPW5R3jaXsPMU5fHsEnj2WGQ8YqLf94M3PDfborfFTdZddNYaRdT6tQdIsx3L9sNqYCFY5G6wQ4obEUucZS2KJJa1sIUsu3DgLUmyC9mZM52mzuxDhg9pDMtxk12guAquSqikaq6Iy2D1uIXlo6giimM3msvF/60oWqbgT1jeqHLvrBQVNz4MLf08LpMKczBUkkdVYRalVRitiCn5ngyiORIIno9s1sKdd6r3WgTCq2GaMi6IpJiaB+oE5cpNKuNVZXzbjuSy44ytAY8bo8gleRZFKfyFkIW9qsIvymfTvV7Y88TnoLdtir5To85TlMezEBHZ4xLnERP9vvfeVI+3F1TgvVcrcPfvwxUV3bWGS8GQ5pZmCP+XmhrxtclNmDxCv6F3KUGKGyFFlGUtjCSWtaiFLBsyVlkVnCxkF7IzZzrNnefMcSxWvIeNn1ArK5FogeIquIW8hU3rgrdWVHES1VwRl7T0qzQb4gJOwQ+TiPJY0qyeqLpgG4iCP2kq4Y2VfguvUa+S5HsyyCjMIo8boKYwp+9xE72nLp+dI5uanPdynMftySf0lDYgXLEydW5ESoMpj9vI6go0cAYnk3cWf5+qLGTjjK38s4+9rpM+i8IUft7jlvR5yiO+l9RkubDniQ9Z3ByjuEWdpyiPZyGmejUQ7xET/b49WyxcdtpIXHzySHS2h49dZ63BXvd8X1BVAh43w1pJmpVqB4qt7xsRqRBlWQsjiWUtaiG7fJE3WWxcK2gcmmAh29zsNHlevx6orfF/lut7mDU1OQuXxYuTP2RcBXfpv4KhCmEeN51cEZfB4nEbVe2Fc0wbXY86wx43UZPvNKsnqloHZQr+RKGSo5BmqOSwqujQHB1MVpWUUZjDPO8qCnPqOW6i4iSa8t05csUKYNEi4OGH/QLHj9OTD4jnK9G9q4qokbWpuSxjWThg21G+9wxFjQlR9WxEGVt5A4SrTKg+i1yF3yezT3HTeZ6yiO759m798ohh56k9QnGLO09RHs+oXHpA3iOWtjFdxJfHD8fEhmrM2GaYsfL6/Bw52NIzBgJS3AhpwixrPCqWtaiF7E0XNaJto4X1qzK472axyzvpQjabBSrL/RPE+T91FiorVjgLF5VwDlfBXfavoELSLSg2AejliqSNqdK8Lrtu04ja8jIMryrH9sNq43dIiMjjZvI78KJU14IyBX/KInRalRyFNKNeGyvNKuAsomGrGirkKuSGy046zwi9BCarSgo9bmZkZ7NOVc2dpwWOoC1bNEZTVR8BoCBQ3EwSUAJTPNyWXEiyWAxRxla+j6mryOk8i/j9zjrL0n6esojupQkN1YItkxF2nja3hl+PcecpyuMZFyop6xFL25guorYii922GYZmA+fdhX8+b03VH9MivactsVUycyaw775Ovse8eY4V2qWpyZl0Zs9OPjlELWTXrszi9H2bYNvhBUSUmsByE8S2Ey1MGpZcDs/MmUDZ8KAHoptLSq6sdCZS3bCjNFHpIRRFbXkWX5002mi4GIsox81sVUkurENxEetaZKO8P2Vl4tWgcu8sowFdfqqyZRhdU4G1nT2YYjifQKicKMqSUZjDclSB5POMyGhg8tIXFicx/DsHiweYlwmYLWiTV9N1lDEdjVVbXoaOXmeFL/IeyuI+W2bN8ud18h43C3phjCLGjwMm67dxLMJfd1NG1GLH4WaMf6LvLfK4JXlmn3EGcO21wbz9fESoZFKPWNjvK5JbqmsNPs+dPG7xkMeNSAwfSvPmm/qeqrhk6lyvFaq0qS5k+QeBSR3lwP38t1Y+71XHNBU6kha7jm1ExgImNlQbXUy5pKW0AelXleRRPT0yBX8yISkE6jkK6Xoh9powAodsNxqfH2VYcRNVlVT8SWUq5PI5XS4q84zIaGA2VDKI6cudV7JMiBfJMFVREgBqyv1nRtR7TZc9xw1HmWVhQn0VagUtAnSYsc2w4uudhuvdT6K8Rf5Z+utrLePPojSvw4aKLL4wusFoU2X++3e0ebJVntlhHrEoj5uKR0z0+7qU+loDAEZU+5vODbIORAMCedwIZdxQGlOyTj/daXqbFFNNYE3OF3xeVXmZhTfftFBf7yz+dAqRiDA59m0bazChvnrQ9XADnIVyxvIXJ0jze+h4N0QW2c7NFmrqnMF3bQ7K1slRSFdtc+6n+hRCJk2GSsrMM2GhkirzjGicJqP4hD3ujHvc+GPqy0/b4/b5UfVYtbkbW/IFjK+vwudHmS8HPq6+Cl+ra0oltGtEdQUO2m4UMjBzT7nG1osvdvI0W9uB5czno0eF7qqM6bPCyrNTn82Ai39p4fIfQeuZLfKIiYqT6HrE+N+3vV1v3P0Jb1RJ07C7tUAeN6Jk6O9k26DHzdyEIVLcpk93FN1Sn0iBwdd4m4VfAIr6LplC55oRWWSvmD0CPd3A6hVlePaBmsA+pZwPmRaiU6xTcCZunhGFSqrOM6Lrw2SVM5PeyNBjpOFxM/yb8lRly3DoDmNw1E5jsce44cbbjrikmY/TWFlu3BDiGlt3+RL3mw6CxTJ7rsNaDZhkmyYYeWbzHjHe42bSI+b+voNprWFZFib3hbyOr68a4NEMDkhxI0qG/k62DXjcDD67eMXH5KJEhMmKbIOdCi7kKq1FG6Af1sEX/Pn3wgqctk8Tzjl0tK9/oW4p7cGM6BTrKD9x80yvwOOmOs/YnHvNAtDcYG5xYrodgOoxkyL69UzPkRnLokIHIQSMlikcw/R1yI457eIzgFnjJZtecsWv/J+ZKNwy2Pni6Hr856TR2J0JESbCodUeUVKkWbmSh5+WTRZvyFr+W8tkxTSXfZpHIJuxMKq6AmNqKuJ3GCJUc2bGGkP9ZkSYWBjyFtmOtkwxB2Uw5CikjWgBqLvIj5pn2HYAuvNMnltfHrljE7ZtDHpSVRFdf2k7y03Mk+LflJYj/YWpfpSRxzAtrx88bjuPcaoXVWQsNNUmDP+RIJuNz7EdiliWhdqK7KDw/JYCg8CRSgw10qpcyZNGtTSXYKik+UXJ6JpKHLljEywMjlCX/mJcfSXWdHqJY2meG1PXTH/kKLDX+2CLhLXgz9EzYQhh5xkWu2BunqljwnQbK7PG5wHRWUj7pzXicUs5VJJIxmA49ez8xXuyTbH9sBrUVWRRX1GWmiGhP/LziK0bUtyIkqR/FrL+v00u8HnZaS1KKBQoyIT6ary/th29BRs7DDPn3RBh+vybLPjDs8OwWize0IG8bePL40ekc5CUsCx/UQ9T95M7z9z/offeq69Y2HF7M/NMY1U5po6sw8YtvfjSGIleBAkRFidJO1TSiAyBx43msgEjjVYhpn/O6qynSFWnlLdsWel42lj6IcqT2MohxY0oadJcyKZZVZJXAtMoq0+IqSjLYN/mkdiwpRcTDOYTiRhMinNlNoP/3H40evIFNFQG+wyWMhbnczNtDZ+xzTAsXNWK5oYqTB1rVnYaFQ1dRBUk074kzVSVDL5HHreBw9Spnz62EQtXtSJrWWiuN9ekGQB2GlGHT1q7kCvY2HXsMKOyCWIwQYobMWRJs6okDy1K+pfGqnI0VqWvnAy2n7UqW4aqFHP+0sLiYiVN30/NDdUYX181qBRxoH/aAfQXg7mS7WDHVLTJtg3VqMmWoaa8zHhYcEVZBoduPwYF2x7UxbjI4UboMnivfoLQJM2qkjxpFCchBh7KLewf+LOchiFksCltgPj6S+NrbNvoeE9GGDKGWFYwOI+MWwOHqYWgZVkYU1uJupQq+ZZlrEGttAEgzY3QhjxuxJAljf5EYVCo5NZDmWUhT4kK/YrFudwoH8qhTORxS+Hc7DymEePqqjCy2lz12ozlr7pZRr/pgEGnvv+g4iSELqS4EUOW/gyVpDCgrYf9J47Ex5s6MMFwDgcRDnv3ZC2LPJ19iHL90jg12YyFberM5otaXMUZ8rgNHIPR2zxYIbWN0IUUN2LIwueCpPnsosfi1kNjVTmmU3J8v8Lem7TA9xCdi8GS48arnNTHbeAgva0fIc2N0IRmSmLIEvC4pbjgIQ8BQajj87iR4lZEdC4Gy1TDz4kUlTBwDBZlf2tgXL3nuf7cyLoBHAkxWCGPGzFk4Rc9g2XBQxBDDXaRT54Zj4xlIWMBBcaKP1imMX6+pbzFgYNOff9RV5HFXhNGoKMnh20b0+0zSmyd0BOQGLLwC0DTBt/xjGVtRPXg6ptFEKVEoUC5UGGwCk/ZIMr/Y/OqLAy+1hpbE3Tq+5em2kpsP7yWvMyEEuRxI4YsAY+b4cfXzmMaUJHJoLEqi8ZB1vCYIEqJHFPEolxUSnEIk81k0FPIA3B6XQ0W+PDXwaJwEgRBDCSDZ5YnCMOkHSpZlS3DLmMbsf2wWrOCCWKIkWM8btRaww9rta8YREot63Ejz0P/M2WEk1/VUJEdVAo/QQx1Sv5uvffee7H//vtj+PDhqK2txc4774yrr74avb29SvLefPNNHHfccWhqakJVVRUmTZqEc845B2vWrDE8cqLU4RU3KolMEKUPedzCGUwLcL7FA9G/fH5UHfZtHoH9Jo4kbydBDCJKepY/77zz8K1vfQsvvfQSdt99dxx66KFYvnw5LrjgAhx44IHo6upKJO++++7Dnnvuifvuuw/bbrstvvGNbyCTyeCGG27Af/zHf+Cjjz5K6ZsQpQif40bPLoIofcjj5qfAhJEOJuMTO9TyQaRwbi1YloVRNZV07glikFGyd+yDDz6I6667DnV1dXj11Vfx97//Hf/7v/+LxYsXY9q0aViwYAEuuugiaXmffvopTj75ZORyOdxyyy147bXXcM8992DRokU48cQTsXr1apxwwgmwbWqyMVQIeNwoRZsgSp5yCqvz4VfcBnAgCWHDXweTp5AgCGIgKdnZ8le/+hUA4MILL8T06dOL748aNQo33XQTAOCGG25Aa2urlLzf/e536OzsxMEHH4zZs2cX3y8rK8Mf/vAHNDY24vXXX8cTTzxh8FsQpQy1AyCIwQd5CPywrQDKBtEk1ssqboNJ4yQIghhASvIJuHLlSrz++usAgBNOOCHw+d57743m5mZ0d3fjsccek5L5wAMPhMqrq6vD17/+dQDA/fffrzpsYpARrCpJEESpQx43P4M1VLI3Xyi+zpIyThAEIUVJzpZvvfUWAGDEiBGYNGmScJvddtvNt20U7e3txfw1dz8deWF0dHRI/SNKg2CO2+BZ9BDEUIUacPvJD9JQSTYpgZRxgiAIOUqyj9vSpUsBABMnTgzdprm52bdtFMuWLSu+DpOZRF4YdXV1yvsS/Q8tFghi8EEVCP00N1Tjk1anUNeomsoBHo0aVHCGIAhCjpJU3Nrb2wEAtbXh/a9cJamtrU1aXpTMJPKIrYPBFFZEEIQDH+I81PniqAb05guozJahub5qoIejBBnRCIIg5ChJxW2wsnnz5tht2traMG7cuH4YDUEQxNZHlvq4+ajMZrDn+BEDPQwtqOAMQRCEHCWpuNXX1wNAZD6YqyQ1NDRIy3NlNjY2askLI8pD6JLP55XlEwRBDEV2HtOAf65pw8jqCtRkywZ6OIRhyONGEAQhR0maubbbbjsAQEtLS+g27mfutlFsu+22xdfLly/XlkdsPXxxVD0yFjB1JOUnEkSpssPwWhy6/Rjs2zyCightJUwb7RhUq8oyGD1Ic/MIgiD6m5JU3HbZZRcAwPr160OLhbzxxhsA4OvxFkZDQwN23HFH33468oith51G1uHrk8fi86Pq4zcmCGLAqCkvI6VtK2LH4bXYe8IIHLDdKJSRx40gCEKKklTcJkyYgBkzZgAA7rrrrsDnCxYsQEtLCyorK3H44YdLyTz66KND5W3evBmPPPIIAOCb3/ym6rCJQQoVKSEIguhfLMvCmNpKVFPoK0EQhDQlqbgBwM9//nMAwJVXXomFCxcW31+/fj3OOussAMDZZ5/ty1d74IEHMHXqVBx00EEBeeeddx5qamrw1FNPYd68ecX38/k8zjrrLGzatAkzZszAV7/61bS+EkEQBEEQBEEQhBKWbdt2/GYDw7nnnovrr78e5eXlOOigg1BbW4unn34amzZtwl577YUnn3wS1dXVxe1vv/12nHrqqdh22219vdtc7r33Xhx//PHI5/PYY489sN122+H111/HkiVL0NTUhAULFhRDKtOira0NjY2NaG1t1SqEQhAEQRAEQRDE4CaJblCyHjcAuO6663DPPffgy1/+Ml5++WU89thjmDBhAq688ko888wzPqVNhuOOOw6vvvoqvvnNb2LJkiV44IEHkM/n8V//9V/45z//mbrSRhAEQRAEQRAEoUJJe9y2RsjjRhAEQRAEQRAEsBV53AiCIAiCIAiCIAhS3AiCIAiCIAiCIEoeUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEqc7EAPYKhh2zYAoK2tbYBHQhAEQRAEQRDEQOLqBK6OEAUpbv1Me3s7AKC5uXmAR0IQBEEQBEEQRCnQ3t6OxsbGyG0sW0a9I4xRKBTw6aefor6+HpZlDehYOjo6MG7cOADAp59+itra2gEdD1H60DVDJIGuFyIpdM0QSaFrhkhKqV0ztm2jvb0d48aNQyYTncVGHrd+JpPJYMKECQM9DABAWVlZ8XVDQ8OAX7hE6UPXDJEEul6IpNA1QySFrhkiKaV4zcR52lyoOAlBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQw24CYIgCIIgCIIgShzyuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuA1R7r33Xuy///4YPnw4amtrsfPOO+Pqq69Gb2/vQA+NKCF6e3vx9NNP46c//SlmzJiBYcOGoby8HGPHjsXXv/51PProowM9RGIQcP7558OyLFiWhcsvv3ygh0OUMD09Pbj++uux9957Y8SIEaiqqsKECRNw2GGH4Z577hno4RElxvLly3H22WdjypQpqK6uRlVVFSZNmoSTTz4Z//znPwd6eEQ/8+GHH+L3v/89TjnlFEybNg3ZbFb6ufPUU0/h8MMPx6hRo1BdXY2pU6fiF7/4BTZv3twPI5fHsm3bHuhBEP3Leeedh+uuuw7ZbBYHHngg6urq8Mwzz2DTpk3Ye++98cQTT6C6unqgh0mUAE899RQOOeQQAMDYsWOx6667ora2Fh988AHee+89AMDs2bNx8803w7KsgRwqUaK8/PLL2GeffWDbNmzbxmWXXYY5c+YM9LCIEmTFihX4z//8T3zwwQcYNWoU9txzT9TW1qKlpQVvv/02DjvsMNx3330DPUyiRHj11VdxyCGHoL29HePHj8euu+6KsrIyvP3221i6dCmy2SzuuusuHHfccQM9VKKfcNe3PHHPnd/+9rf40Y9+BMuysM8++6CpqQkvvvgiVq1ahSlTpmDBggUYNWpUmkOXxyaGFA888IANwK6rq7PffPPN4vtr1661p02bZgOwf/zjHw/gCIlS4umnn7aPOeYY+4UXXgh8dvfdd9tlZWU2APuOO+4YgNERpU5HR4c9efJke/z48fZRRx1lA7Avu+yygR4WUYJ0dnbaU6dOtQHYc+fOtXt6enyfd3R02G+99dbADI4oSf7jP/7DBmDPnj3bd73k83l7zpw5NgB72LBhdldX1wCOkuhP5s2bZ//kJz+x58+fb//rX/+yTzrppNjnzsKFC23LsuyysjL7scceK77f0dFhH3TQQTYA+5hjjumP4UtBitsQY8aMGTYA+/LLLw989uKLL9oA7MrKSnvTpk0DMDpisDFr1iwbgH3QQQcN9FCIEuQHP/iBDcB+9NFH7ZNPPpkUNyKUiy66qLgIJ4g41q1bZwOwAdhr1qwJfJ7L5ezq6mobgL1w4cIBGCFRCsg8d4477jgbgH3aaacFPlu2bJmdyWRsAPa//vWvNIcqDeW4DSFWrlyJ119/HQBwwgknBD7fe++90dzcjO7ubjz22GP9PTxiELLLLrsAAFpaWgZ4JESp8dxzz+H3v/89vvvd7+Lwww8f6OEQJUxvby/+8Ic/AAB++tOfDvBoiMFAZWWl9LYlE+JGlBw9PT3FXH3RunjbbbfFXnvtBQB44IEH+nVsYZDiNoR46623AAAjRozApEmThNvstttuvm0JIorFixcDALbZZpsBHglRSmzevBnf+9730NTUhN/97ncDPRyixFm4cCHWrVuHcePGYccdd8S7776LSy65BGeccQYuvPBCPProoygUCgM9TKKEqKurwz777AMAmDNnjq+wWqFQwNy5c9HV1YXDDjsMzc3NAzVMosRZtGgROjs7AXjrX55SWxdnB3oARP+xdOlSAMDEiRNDt3EnOHdbgghj1apVuP322wEAxxxzzMAOhigpfvKTn2Dp0qV44IEHMHz48IEeDlHivPPOOwCACRMm4MILL8TVV18Nm6mbdtVVV2GXXXbBgw8+GPn8IoYW8+bNw+GHH45bb70Vjz76KHbbbTeUlZXhrbfewsqVK3HSSSfhhhtuGOhhEiWMu9YdNmwY6uvrhduU2rqYPG5DiPb2dgBAbW1t6DZ1dXUAgLa2tn4ZEzE4yeVyOPHEE9Ha2opp06bhjDPOGOghESXCE088gVtuuQXf+c53cNRRRw30cIhBwPr16wE4Fu2rrroKZ511Fj788EO0trbiySefxE477YS33noLRxxxBLWsIYpMmTIF//jHP/DVr34VK1euxEMPPYT7778fS5cuxY477oj9998fDQ0NAz1MooQZjOtiUtwIgkjMmWeeiaeffhojR47Efffdh4qKioEeElECtLa2YtasWRg9ejR+//vfD/RwiEGC613r7e3F8ccfjxtuuAE77bQTGhoacPDBB+PJJ59EVVUV3nvvPdx9990DPFqiVHjppZcwbdo0vPfee7jrrruwatUqbNiwAY888gh6e3sxa9YszJo1a6CHSRBGIcVtCOG6gTs6OkK3cRsNkpWKCOPcc8/FbbfdhuHDhxet4QQBOD10VqxYgRtuuIEKAhDSsCFKIu/9xIkTccQRRwBweksSxKZNm3D00Udj7dq1uP/++3H88cejqakJw4cPx5FHHonHH38cNTU1+NOf/oRnn312oIdLlCiDcV1MOW5DiO222w5AdAVA9zN3W4Jg+fGPf4zrr78ew4YNwxNPPFGsKkkQgFN1K5vN4qabbsJNN93k++zf//43AOC2227DU089hbFjx5L3hAAAbL/99sLXom0+++yzfhkTUdo8+uijWLt2LXbYYQfssccegc+333577LHHHnj22Wfx1FNP4YADDhiAURKljrvW3bRpE9rb24V5bqW2LibFbQjhLrLXr1+PpUuXCitLvvHGGwCA6dOn9+vYiNLn/PPPx29+8xs0NjbiiSeeCK3ARAxtcrkcnn/++dDPly1bhmXLlmHbbbftx1ERpcz06dNhWRZs28a6deuEVQDXrVsHwMs3IYY2y5cvBxDtBWlsbAQAbNiwoV/GRAw+pkyZgpqaGnR2duKNN94QKvilti6mUMkhxIQJEzBjxgwAwF133RX4fMGCBWhpaUFlZSX1XSJ8XHjhhbjmmmvQ2NiIJ598sngdEQTLpk2bYNu28N/JJ58MALjssstg2zaWLVs2sIMlSoaxY8di7733BiAOhezt7S0aA3bfffd+HRtRmowfPx6A48lvbW0NfN7b24uFCxcCQGj7I4KoqKgohmGL1sWffPIJXn75ZQDA0Ucf3a9jC4MUtyHGz3/+cwDAlVdeWZzUAMcLd9ZZZwEAzj777KKliiDmzJmDq666CsOGDSOljSCIVLj44osBAP/93/+NV155pfh+LpfDj3/8YyxZsgT19fU49dRTB2qIRAlx2GGHoba2Fl1dXTj99NOLeUiA01T5hz/8IZYvX47y8nIce+yxAzhSotS58MILYVkW/vznP+Pxxx8vvt/Z2YlZs2Yhn8/jmGOOwdSpUwdwlB6WzTZLIYYE5557Lq6//nqUl5fjoIMOQm1tLZ5++mls2rQJe+21F5588klUV1cP9DCJEuDhhx/GN77xDQBOE8ovfOELwu1GjRqFa6+9tj+HRgwyTjnlFNxxxx247LLLMGfOnIEeDlGCXH755bjooouQzWax++67Y+zYsVi4cCGWLVuG6upq3HvvvUXrOEHceeedOPXUU5HL5TB69GjMmDED5eXleOONN7By5UpkMhnceOONOPPMMwd6qEQ/sXDhwqITAgA+/vhjrFu3DhMmTCh6aQEnH3ubbbYp/v3b3/4WP/rRj2BZFvbbbz+MGTMGL774Ij777DNMmTIFCxYsKJmCW6S4DVH+53/+BzfeeCPefvtt9Pb2YocddsCJJ56IH/7wh1TanShy++23S1m4t912Wwp9IyIhxY2Q4YknnsDvfvc7vPrqq2hvb8fYsWNx0EEH4YILLigZizdROvzzn//E7373O7zwwgtYuXIlbNvGNttsg7333hs/+MEPKLR2iPHcc89JFaJZunRpoNjIU089hV//+td47bXX0NHRgYkTJ+LYY4/Fz372s9Dm3AMBKW4EQRAEQRAEQRAlDuW4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEFsFlmUl/rf//vsDAPbff39YloXnnntuQL+DCa677jpYloX//d//VZbR2tqKkSNHYo899oBt2wZHRxAEQaiSHegBEARBEIQJTj755MB7q1atwt///vfQz6dOnZr6uPqTtWvXYu7cuZgxYwaOOeYYZTmNjY342c9+hp/+9Kf4y1/+Ijx3BEEQRP9i2WRKIwiCILZSnnvuORxwwAEAEOk5Wr58OTo7OzFx4kTU1NT01/CMc/bZZ+PGG2/Eo48+isMPP1xL1pYtWzBx4kRks1ksXboUlZWVhkZJEARBqEChkgRBEMSQZ+LEiZg6deqgVto2bdqE22+/HePHj8ehhx6qLa+qqgonnHACPvvsM9xzzz0GRkgQBEHoQIobQRAEMeQJy3E75ZRTYFkWbr/9dnz44Yf49re/jTFjxqC2thYzZszAQw89VNz21Vdfxde//nWMHj0a1dXV+PKXv4ynn3469JhdXV349a9/jT333BPDhg1DVVUVpkyZgvPPPx/r169P/B3+/Oc/o6OjAyeddBIymeDjvbu7G9dccw123XVX1NfXo6KiAmPHjsWMGTNw/vnnY8OGDYF9TjnlFADAjTfemHg8BEEQhFlIcSMIgiCIGBYuXIhdd90V//znP3HQQQdh5513xhtvvIGjjz4a9913Hx588EHss88+WLFiBQ466CBMmTIFr7zyCg499FAsWLAgIO/TTz/FHnvsgZ/85CdYvHgxZsyYgcMPP7yoXO2222745JNPEo3xwQcfBAAcfPDBgc8KhQKOOOIInH/++fjoo4+wzz774Nhjj8W0adOwdu1aXHPNNVi+fHlgvy996UsYPXo0XnvtNXz22WeJxkMQBEEYxiYIgiCIrZRnn33WBmDHPe72228/G4D97LPP+t4/+eSTi/tffvnldqFQKH52/fXX2wDsCRMm2MOHD7f/8pe/+PY977zzbAD2wQcf7Hu/UCjYe+21lw3AnjVrlt3W1lb8rLe31/7xj39sA7APOOAA6e/Z2dlpV1RU2JlMxifP5fnnn7cB2Lvssovw89dff91et26dUPbXv/51G4D917/+VXo8BEEQhHnI40YQBEEQMey+++74+c9/Dsuyiu99//vfx4gRI7BixQocfPDBOOmkk3z7zJkzBwDwwgsvoLe3t/j+3//+d7z00kv40pe+hJtvvhn19fXFz7LZLK6++mp88YtfxLPPPov33ntPanzvv/8+enp6MGHCBJ88l9WrVwMA9tlnH+Hnu+22G0aOHCmU/YUvfAGA43UkCIIgBg5S3AiCIAgihsMOO8yntAGOkjVp0iQAEFZwHDlyJEaMGIGenh5fztqjjz4KADjmmGOQzQa78mQyGey7774AgJdffllqfK5iFqZ8TZ8+HWVlZfjTn/6EG2+8MVHYoyvTPQZBEAQxMJDiRhAEQRAxTJw4Ufh+XV1d5Oeud2vLli3F95YsWQIAuOiii0Ibg990000AnL5sMrS2tgIAGhoahJ/vsMMO+O1vf4ve3l6cffbZGDduHLbbbjscf/zxmD9/Pnp6ekJluzI3btwoNRaCIAgiHagBN0EQBEHEIKrSmORzlkKhAADYe++9scMOO0Ru64YpxjFs2DAAQFtbW+g255xzDr71rW/h4YcfxoIFC7BgwQLcfffduPvuu3HxxRfjxRdfxDbbbBPYz1UKhw8fLjUWgiAIIh1IcSMIgiCIfqS5uRkA8I1vfAM/+clPjMgcM2YMAMS2EWhqasLpp5+O008/HQDw73//G9/73vfwj3/8AxdeeCHuuOOOwD6uzKamJiNjJQiCINSgUEmCIAiC6EcOO+wwAMC9994L27aNyPzCF76AiooKrFixAu3t7dL7TZ06FRdccAEA4O233xZu4xZI2XXXXbXHSRAEQahDihtBEARB9CPf+MY3MGPGDLz22ms49dRThXlsGzduxM0334xcLicls7q6GnvuuScKhQJeffXVwOfPPPMMHnvsMV91SwCwbRt/+9vfAADbbrutUPY//vEPAMCBBx4oNRaCIAgiHShUkiAIgiD6kUwmgwcffBBHHHEE7rjjDtx3333YeeedMXHiRPT09GDJkiV49913kc/nccoppwgrT4o46qij8MILL+DJJ58MNOF+55138MMf/hANDQ2YPn06xo0bh66uLixcuBCffPIJGhsbcemllwZkvvXWW1i/fj123313Yf4bQRAE0X+Qx40gCIIg+plx48bhlVdewc0334zdd98dH374Ie677z4sWLAAAHDmmWfi73//O6qqqqRlnnrqqaitrcWdd96JfD7v++xrX/sa5s6dixkzZmDJkiW4//778dxzz6GxsREXXngh3nvvPXzpS18KyLz99tsBAP/1X/+l/F0JgiAIM1i2qQB7giAIgiAGlLPPPhs33ngjHn74YXzta1/TkrVlyxY0NzejvLwcS5cuRWVlpaFREgRBECqQx40gCIIgthIuvvhiDBs2TBj2mJTf//73WLduHf77v/+blDaCIIgSgDxuBEEQBLEVcd111+G8887Dvffei2OPPVZJRmtrK7bffnvsuOOOeOWVV2BZluFREgRBEEkhxY0gCIIgCIIgCKLEoVBJgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBInO9ADGGoUCgV8+umnqK+vh2VZAz0cgiAIgiAIgiAGCNu20d7ejnHjxiGTifapkeLWz3z66adobm4e6GEQBEEQBEEQBFEitLS0YMKECZHbkOLWz9TX1wNwfpyGhoYBHg1BEARBEARBEANFW1sbmpubizpCFKS49TNueGRDQwMpbgRBEARBEARBSKVQUXESgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgSh9oBEARBEEJ6enqwadMm2LYtVaaYIEoF27YBAJWVlWhoaEAmQ3ZqgiAGPyWpuPX29uKFF17A448/jueeew6LFy9GR0cHRo4cid133x1nnHEGjjjiiEQy586di0suuSRym3/961+YOnWqztAJgiC2CgqFAtatW4exY8fSopcYlNi2jS1btmD16tVoamqi65ggiEFPSSpuzz//PA455BAAwNixY7H33nujtrYWH3zwAR555BE88sgjmD17Nm6++ebEVuCdd94ZX/rSl4SfNTY26g6dIAhiq2Djxo0YOXIkLXaJQYtlWaiurgYAtLW1YdiwYQM7IIIgCE1KUnHLZDI45phjcO6552KfffbxfXbPPfdg5syZuPXWW7HXXnvhu9/9biLZRx11FObOnWtwtARBEFsfuVwOlZWVAz0MgtCmqqoKbW1tAz0MgiAIbUrSlHrggQfivvvuCyhtAPDtb38bp5xyCgDgL3/5Sz+PjCAIgiCIwQTlZxIEsbVQkopbHLvssgsAoKWlZYBHQhAEsXVCi11ia4KuZ4IgtgZKMlQyjsWLFwMAttlmm8T7Lly4EBdeeCE2bNiAxsZG7LLLLvja176G+vp67XF1dHQY2YYgCIIgCIIgCIJl0Cluq1atwu233w4AOOaYYxLv7xY3YWlsbMT111+fOF+Op66uTmt/giAIgiAIgiAIEYMqVDKXy+HEE09Ea2srpk2bhjPOOEN63x122AG/+tWv8NZbb2HDhg3YsGEDFixYgCOPPBKtra04+eSTMX/+/BRHTxAEQZQizz33HCzLKhoFCYIgErFlLZDrGuhREEOAQeVxO/PMM/H0009j5MiRuO+++1BRUSG970knnRR4b6+99sIjjzyCH/zgB/j973+PH/7whzjuuOMSyWXZvHlz7DZtbW0YN26cknyCIIitglwOWLoUaGsDGhqASZOA7KB6HAEAFi1ahDvvvBNPPPEEPv74Y2zZsgU77LADjjvuOJx33nmora0d6CESBJE2a18Gnt4fqBgBfO0joJyir4j0GDQet3PPPRe33XYbhg8fjieffBI77bSTMdlz585FWVkZ1q5di1dffVVZTm1trdQ/giCIIUlLCzBnDjB+PLDTTsBuuzn/jx/vvD/ICk796U9/wm9/+1vssMMO+OUvf4lrrrkGU6ZMwZw5c/CVr3wFXV1kgSeIrZ4Xvg4UeoEtq4FF1w/0aIitnEGhuP34xz/G9ddfj2HDhuGJJ54oVpU0xYgRIzBmzBgAwIoVK4zKJgiCIADMnw9MngxccQWwZo3/szVrnPcnT3a2GyQce+yxWLFiBebPn49zzjkHZ555Ju655x784he/wDvvvIPbbrttoIdIEETadK/3Xve0Dtw4iCFByStu559/Pn7zm9+gsbERTzzxBHbbbTfjx8jn82htdW42E9UlCYIgCIb584ETTwS6u6O36+52tisB5c22bcybNw977LEH6urqUFdXh2nTpuGXv/xlcZvddtsNjY2NgX2//e1vAwDee++9fhsvQRClgD3QAyC2ckpacbvwwgtxzTXXoLGxEU8++SRmzJiRynEefvhhdHZ2wrKsVBRDgiCIIUtLCzBrVrJ9Zs0a8LDJk046CbNnz4ZlWfjFL36Ba665BgceeCDuu+++2H3dyI2mpqa0h0kQRElBihuRLiWbDT5nzhxcddVVxfBIGaXthhtuwA033IDdd98df/nLX4rvL1++HC+88AKOPfZYVFVV+fZ58MEHcdpppwEAZs6cibFjx5r9IgRBEEOZW26J97TxdHcDt94KXHZZOmOK4X/+538wf/58nHjiibjjjjuQyXg2zkKhELlvPp/HZZddhmw2ixNOOCHtoRIEUUrY0fMDQehSkorbww8/jCuuuAIAsOOOO+LGG28Ubjdq1Chce+21xb/XrVuHDz/8MKB8bdiwASeddBK+//3vY5dddsH48ePR1dWFDz74oNjM+4ADDsAf/vCHlL4RQRDEECSXA+bNU9t33jzg4osHpNqk2xrm2muv9SltAAJ/85x33nn4xz/+gV/96leYMmVKamMkCKIEscnjRqRLSSpuGzZsKL5+44038MYbbwi323bbbX2KWxjNzc244IIL8Prrr+Ojjz7CwoUL0dPTg1GjRuHII4/ECSecgG9/+9uxD2SCIAgiAUuXBguRyLJ6tbP/5MlmxyTB4sWLsc022yQOdbzoootwww03YPbs2fjZz36W0ugIgihdSHEj0qUkFbdTTjkFp5xySuL95s6di7lz5wbeHzlyJK688kr9gREEQRDytLXp7d/ebmYc/cDcuXNx+eWX49RTT8XNN9880MMhCKLfsFBU2ChUkkgZcjERxFDCtoGXvwv833Sg7cOBHg2xtdPQoLf/AFX53WmnnfDZZ59h9erVUtvPnTsXl1xyCU4++WT88Y9/hGVZKY+QIIjShDxuRLqQ4kYQQ4lPHwOW/RXY+Bbw4jEDPRpia2fSJKCvR2Zimpqc/QeAmTNnAnDa0fDFSGwuh+XSSy/FJZdcgpNOOgl/+tOfKOSe2DrJ5YDFi4E333T+z+UGekSlg8Xe86S4EelSkqGSBEGkRPtH3uvW9wduHMTQIJsFTj/daa6dlNNPH5DCJABw3HHH4dvf/jb+8pe/YPHixfj617+O4cOHY9GiRfj73/9e7M9244034uKLL8bEiRNx8MEH46677vLJaWpqwiGHHDIQX4EgzNDS4lSGnTfPyVfNAsjBMcicfjpwxhlAc/NAj3KAYTzsVJyESBlS3AhCla7PgPWvAdscCpRVDvRoJKH4e6KfOeMM4Nprk7UEqKwEZs9Ob0wS3HXXXdhnn31w22234dJLL0VZWRkmTZqE4447rrjN66+/DsBpOXPyyScHZOy3336kuBGDl/nznZ6K7r17BoA9AcwD8PIaxyBz7bXAbbcBfV7qIYllMY42UtyIdLFsPu6DSJW2tjY0NjaitbUVDbr5H8TAYReAh3cEOpYCnzsf2OWqgR6RHP/6DfDWj72/T6DbnxCzZs0ajFENc+SZPx848UT57e+8c2gvBAnjGL2ehwL8PVsDR2Fz4W/PoXzP3l0FFPqU2x3PBHan1lJEMpLoBhSMTxAqdK50lDYA+NfVAzuWRJCiRgwAM2c6C7vKGM90ZeXQXgASRCnQ0uJ42lgqYvaZNcvZbyjiK0ZEz1giXUhxIwglBmnIIZUqJgaKmTOdogZz5jiFR1iampz3Fy8mpY0gBppbbgmGNpfF7NPdDdx6a2pDGjyQ4kakCyluxMBTyA/0CJJjD8IxA0hV4Wz/yKlU+e/r0jsGMbhpbgYuuwxYsQJYtMipULdokfP3ZZdRkQOCGGhyOacQCY9MRYR584ZotUlmKU3ZR0TKUHESYmDI5YClS4HVLwKf/gQYuRtw4N+5kIMSZrB6rtJ8qLx4LLDpn0DL/cD4I4D6HdM7FjG4yWaByZMHehREmtg2kGsHYAHlA9OPj1Bg6VKneiRPucS+q1c7+w+1e5tCJYl+hDxuRP/S0uKERI0fD+y0E/DRLCC3EVj9JHDlCYMnRn6wKm5pPlQ2/dN73b44veMQBFH65DYDbYuAtg+BXMdAj4aQpa1N/L6smb+93dhQBg/Ux43oP0hxI/qP+fMdS9wVV3gWPTbh+dG7nc/nzx+Q4SXCTjEcpPNT4Mm9nbDDguHj9JfCaXrcBEEMLjqXM69XDNw4iGSEVbSLK07iUj8Evausx23QGnUHMZ/+H7B0/uBMu1GAQiWJ/kG2HHh3t7ddKRcpKPSkJ/v1M4G1LzmvP54HTP6+Odn99VAZtDmABEEYwReWPUhC4Alg0iSnuTYfLikTKtnU5Ow/5GCubzJa9i8bFgLPHe68tnuB7U8Z0OH0B+RxI9JHVFpYBPucL/XSwoXe9GSvetJ7vfGf4dsp0U9hHGl6JAmCIIh0yGaB008Pvi+juJ1+urP/kIP1uKW4NiCCLLrRe/3muQM3jn6EFDcifUSlheMo9dLCaSpuvgpVpj1k/aS4kdWRIIY45HEbtJxxRrDnYpw+VlkJzJ6d2pBKGjZUMtW1ARFk6OUUkuJGpEtYaWEZSrm0cJqTs8U0zDEdckihkgRB9Dektw0umpuB227zvxeX43bbbUO4nQfrcSvRNctWy9AzEJHiRqRLWGlhGdzSwqVImuEQFntbGla0tgbF7eM/Ae/8EujdnN4xiK0D26a+SgPG0FtQbVXMnAnceafneQsLlaysdLYr5Zz0tGGf2eRxG0CGxjwzFIORif4krLSwLKVaWri/PG7GqyQN8hy3tf8AXu3Ll8x3A7tclc5xCD+2DcDmjAolTiEPtP3bMSI0TAHKKuP3IcxB+nL/s/IxYMX9QMVIYOVDwBfmAJMkioKFMXMmsO++TtrC+9cBYJ7HTU1OTtvs2UPY0+ZCoZIDxhA0zA2ipzAxKAkrLSxLqZYW7i/FzbTHrd9y3FKqurnyYe/1v65O5xiEH9sG2j8ENr4N9GgaYvqT7jVAvsu5FjtK1HMfhW0DW9YAXatKdnFy3333Yeedd0Z1dTUsy8Jzzz3HfMqM2S7glFNOgWUNDYv4gGAXgOePAD6+zZkb2z4E/nGSvtzmZuCyy4DLLvK/v2KF8/6QV9pAOW4DSmnOjWlCihuRLm5pYRVKubRwqoobW5zEdI5bP+We5bekIzfth2Kuy/HqUS8ej9xmJyzVLgDtiwZ6NPKw18pgDKvt2Qh0LHd6oHWvH+jRBFi0aBGOP/54NDY24oYbbsBf//pXfO5znxNvrHk/Pfzwwzj11FMxdepU1NbWYty4cTj44IPx+OOPa8ndqkizRQ0AgIuiGJLVI8Ngn9mkuA0YQ8QwRHcekS5uaeErrki+bymXFk7zIZlmcZL+sgYWElYRlZab8vifOxxY8xww5Txg19+me6zBwmBVYn2e60FI91rm9RqgapRZ+V2fAj2tQO1EIFubePfnnnsOuVwOv/vd7zB9+vTgBr65S28emz17NhoaGvCNb3wDU6ZMwYYNG/DnP/8Zhx12GC6//HL84he/0JK/VZB2Jd+0jHFbBYzXhzxuYmy7HxSroaG4kceNSB9RaWER7D1X6qWF+83jZnjR3F9l+tN6yLPWzIxMY6EEFPKO0gYAH/7OrOzBTJp5bbYN9GxK53oZ5IpbV2cncsWquoYXJPkeoPNTINfhhNQpsGrVKgDAiBEjgh/atn/u0pzH7rrrLixatAjXXHMNTjvtNJx//vl48803sdNOO+GSSy7Bxo0bteRvFaTt6eHv0cFq0EkD1khBipuffA/w1P7A36YCm5eYl1+iYeRpQoobkT6i0sIi2HVWqZcWTrWqZJrtAPrpodIfoZKWYcUtV6KFcAacFK2Y3WuB9o+A1g/MGxUSKJxbtmzB3LlzMWXKFNTU1GDYsGGYNm0afvrTnwa2/eMf/4jp06ejuroajY2N+OpXv4oFCxb4tlm2bBksy8LcuXMD+8+dOxeWZWHZsmXF99z8r7Vr1+J73/sempqaUDtuV6z41KnI29begV/84hf43Oc+h6qqKowcORJ777037r77bp/szz77DN///vcxceJEVFRUYNy4cZg9ezbW8JV92XmAW4C/8MILOOSQQ9DY2Ijq6mpMnz4dt3Hzt2VZuPjiiwEAkyZNgmVZ2G677RiZ3LwVMY+tWrUKP/jBD7D99tujsrISY8aMwSGHHIInn3yyuM2BBx4Y2K+mpgZHHnkkent78eGHasrngLDkDuCDq8zPkf3tcTOtoORywOLFwJtvOv+XaisgEez1Te0A/Hz8R2DN806Y/csGci4DMIobhUoShEHcUsGzZoU3487A8bTddlvplxburwbca54HVj0DNB1gZlLqL2tgPqVQSfahaNrj1juICm/wFHLAohuBbA2ww2mGH2ApWjQ7lvcdouB43kyHA0ryX//1X/jTn/6E7373u/jRj36EXC6HxYsX45lnnvFtd8EFF+Dqq6/G7rvvjl/96ldob2/HrbfeigMOOAAPPfQQDj/8cK1xHHLIIRg7diwuuugidKxbgrraGmxqbcfeR56B9/+1GMceeyy+//3vI5/P46233sLf/vY3fOc73wEALF++HF/+8pfR09ODWbNmYYcddsBHH32EP/zhD3j22WfxxhtvoLGx0TlQiJX6kUcewdFHH42xY8fixz/+Merr63H33XfjtNNOw5IlS3BFX8j7X//6V9x///144IEH8Nvf/hajRo1CXV2dJ4j3xoR4Z5YtW4a99toLq1evxne/+13stttu6OjowCuvvIKnnnoKhxxySOT5WrFiBQCgqakp7tSWBmteBF45xXm9eSkw8VtA0/5mvNphCoOpEDU+/N3OATBQqbWlBbjlFqdvK2tgGDPGSZc444zSNuICfqWZPG5+OpZ5r9e9nPLBSHEjCLOwpYXnzXP6tLEceRjwl1vMTNKFHLD2RWD4l4CK4fryAvL7yePWsxF45iDg4BeBMXvry+63HLd+8LiR4ubx8R+Bhec5r6u3AcYfmd6xHt/NqXRoAp8HtUxvAVs9Fjj0De/vBCE0DzzwAA477DDccccdodt8+OGHuOaaa7DXXnvhmWeeQUWF05H4tNNOw+c//3mcddZZ+Pjjj1FWph6i+cUvfhF33nmn88em94D8Fpz10yvx/r8W45ZbbsFsLny8UPAUonPOOQe9vb146623MGHChOL7xx13HPbcc0/89re/ZTyAwXOTz+dx9tlno66uDq+99hrGjRsHwFFqDzjgAFx55ZU45ZRTMHnyZJx44on46KOP8MADD+Coo47ye9tE8kMUt7POOguffvopHn/8cfznf/5n6HcT8c9//hP3338/9tlnH0wq1SJWPJ/8P+/1R7c4/2bcDEw+Q192mMfNzpmJTgh43Ax4lubPDzfmrlnj5MZfe23pG3NtUtxCyaTdhoVCJQnCTyEHrHgEaP2XGXluaeEVK4BFXIW6Iw83Z1l75yLg6QOBJ/dOJxY/1eIkgtvyzXPMyPZZZVO0TvVLqKRhu9NgVtw+YPrZfTTPsHDuwdi1CuhaaeZf9xrv35bPNOXxyqSc8gAAjY2NeP/99/Hee++FbvPQQw/Btm2cf/75jtLWtQpo/RfGjW7Aqaeeik8++QRvvfVWwnPr5yc/+QnzVwGFQgF3P/AkPjdlh4DSBgCZjDNXtLa24m9/+xu+/vWvo6qqCuvWrSv+22677bDjjjviiSeeiDz2m2++ieXLl+N73/teUWkDgIqKCpx//vkoFAp46KGHJL+JYDHFKdIbNmzA448/jkMPPTSgtLHfTcTatWvxzW9+E9XV1fjjH/8oOaYSYMva4Huvn2lGdlgYvKlnVSDHTVNxmz8fOPHE8Agcl+5uZ7v58/WOlyaDOcdt2d3AwzsAd1nAK7PM5YzZNvDp407UEGEU8rgR0Xz8R+D17wOZCuCbq8x5r7JZYPJk4HXmPZP5Vx9c6fzf+oGzwKoZF719EjYvA976SexmyoiKKphSUnyKzyBX3DKkuHmk+FvyD/LqseZkm/a4+eAVt3yo/N/97nc46aSTMG3aNGy//fY44IAD8LWvfQ1f+9rXigrE0qVOL7gvfOELzrg7nTA9dCxx3gOwZMkS7LbbbspfYaeddmLGa2Pd+k3YuKkNhx68X+R+H374IQqFAm677bZAPprL9ttvz8gOKrG+78fBfj8phIs//3sfffQRbNvGLrvsIiezjw0bNuCQgw/Cp5+u/P/svXm4XEW1Pvx2nz7nZJ7JCYQTBgkBBGTWC4KioBcHRr1eDZPGEPVe9ecM1ygoRmVwBMUQI4PE6YoIovIhKCBymecxAQKcMARC5ulM3d8fu6v32tVVtVdNnT5Jr+fJk+7du6vr7F27qtZ63/Uu/Pnaq7PXrJntmcuAnt/Ha1+HgA32OqmG1rcfMMetpydB2mxs1qyEsdOMtEnqxMbIIx/YBDz9M2DkLkD38eHarVSAOz6cvn/2F8COxwI7Huff9qu3ALcc499OnmXmmhZVsmUtS5w2IInavfB7YLfZ8X4rVnL15sCO290BaC0ma5TjFhNwb0Q5gNDiJEPZccs44aGpI1J77/q/cDTV1wm1ccSOYZ1C2XkoD2j7fdxxx+G5557DX/7yF9x666246aabsHDhQhx++OG46aabarTImg1sTF8P1iMapkLTAwbRhREjRtA/gDSo/UpyZvVvPfnkk3Haaacpzxk+fDh5F1sRMA59aeXKlTjqqKPw5FNP4dpfXoh3HDhEctsA4K6PxW1fh4A1I+I2f34+0iZbb2+SZnHuue6/G8NkBdUYiNvTlwL3fz55/d4ngLF7hGl3YEP9sdfvCeO4PVAv7BTdWuIkLWuZZCFlwSsVYM1j0rFAjltZUjDb9HKYdoW9fnfY9mRTXedQG2W6qFQGgIfPBnb/L2CYY5F0nYVG3CrlRI3tpevTY60cN2JkwQouj6xArhD42qt+J3R7m5YlEWsNUjthwgScfPLJOPnkk1GpVHDmmWfi/PPPx7XXXosPfvCDNcTqsccewxu2z6Jqjz+WzGXiHCGRv3Llyrrf4aNWZUyaOA7jx43BQ488aTx1t912Q6FQQF9fH4466ihW27LRv0+2xx9/PHMO4wdyzxB9fvDBB1ktCqft8ccfxzVXnI93v+PfmH3ZRkwX+AzluA1IRexdA60DA0mOu4stWACcfXZz1XeVFVNjOG4ifxkAnvsl8CaHurgq63tdcWx1mLYbVo6llePWspYZLGA044kLgL/skz0WCnHrlfIINr0Upt1GmWrCC+WkyM7xo98E7oqAooZ23F69rT5iPdQct0oZWHE30B+h7EDG2Q+MpsiOYOgSFbV2Q6NAUr/71qT0RmKDg4NYvXp15lihUKhR+ITzdeyxx6JQKOCCCy5A/+Y1tXNffmUFLrv8cuy0006174wePRpTpkzB3//+9xoaBiRO2x//+Ed2/4vFIj584rvw+JNLlBRI0fbEiRPxnve8B3/4wx9w5513Ks977bXX6IG6cw444ABMmzYNl112Wa1GGwD09/fjggsuQKFQwHHHMSPxDKrkhAkTcMwxx+Cvf/0rbrrpJu3fBgCrVq3C0UcfjcceewxXX301jjnqsJzf2gYtNuK24XmpXUcHZenSrHqkjS1fnnzf1Ta8EH6eka977HIAIfPrexWOW/+a+mMuNsTraDazNVHYomVNbyERtwe/Un8s1IQnO2qPnAOM2weY9JYw7ceO8DQKcRP24nVh2kYBtWsT2nFbphBFCO64BVqwdPb4d4GHvgqM2RN476OBC1s3GnGLYMHbVVyH3hXAqJ0zh9atW4ftt98exx57LPbff39MnjwZS5cuxSWXXILx48fj/e9/PwBgxowZ+NKXvoTzzz8fR/z7h/Gh496Bdes34tIrr8H69euxaNGijKLkf//3f2Pu3Lk45phjcPzxx+Oll17Cz372M+y999645557kGvV+/it//kk/n77A/j4xz+OG2+8EW9961tRqVTwwAMPYGBgAL/85S8BAJdccgne+ta34ogjjsCpp56K/fffH+VyGc8++yyuvfZanHrqqURVsn7z2tbWhosvvhgnnHACDj74YJxxxhkYPXo0fvvb3+LOO+/E//zP/2D69On5/U46zzrr4osvxqGHHopjjjkGp512Gg488EBs2rQJd911F3beeWecd14iunP00Ufj/vvvx4c//GGsWrUKV/3uvrSRUY/j0MPeaoEGNpnFnNuBMBv9wc3Axhezx1zX67WeAbJ1joGvR+cBD88FJh4CHHlDuHx9OeAcU7gMSOawmG0NacStRZVsWcski/xQxHLcNr0E3HwkcMIrQMfYML8R1RQb+lA5bo0qwL3iDuDv7wLe/pcwIiKjFJuy0AtDbMTtoa8m/699Ion8Sg6ElzUyxy2GSmuMdpmXYcSIEfh//+//4eabb8ZNN92E9evX1xy5s846K6OweN5552G33XbDTy/6Ps489yfoaG/Hmw98I351xQIcflS2httXvvIVrFmzBr/85S9xyy23YK+99sLChQtx33338Ry3qo0fNwb/9/c/4Ns/uqpWO2306NHYa6+98OlPp2qz3d3duO+++3Deeefh2muvxVVXXYVhw4ahu7sb73//+/Ef//Ef5Nqor/X73/9+3HzzzfjWt76FCy64AH19fdhzzz3x85//HLOsxCR4F3+XXXbBvffei3PPPRd/+ctfcOWVV2L8+PF405velFHRvO++xFH79a9/jV//+td17Vx22WVD13FrCyAcAujXzxA1NTc8j/p5wHG9HjPGry+jR7t9r+fq5P/X7wYeORc48Pt+/RCmokpWyuECc3Igbj2Tas0xFeLW64iGyrZFELeW49aybdmU0bvID0UoqqQqp21wczJhb28u6OpsoYqcAmrkIXZU1tcqZdQt7K/8DVj+d2D7dwVoX3FNQv8tjcxxW7oE2HPHMLkag33A2qfIgcCOWx1VMpbj1gDETWEdHR34zne+w2519uzZmP0fb80m9o/Yse68UqmE888/H+eff37m+Pvf/36CfCV2+eWX4/LLL9f+5rixY5RtyTZp0iRccMEFuOCCC8x/hOEevu1tb8Pb3mZWsQSAc845p+7vSNuvv/aX/2IBLr/il3XHp06dip/97GfG36K0SVQGgZWk7MK4fYG2jvovDRULofgIxM1xUzkLrvPvLrskxbVd6JJdXcn3XWz1Q+nrlffqz7M1lQM72AuUhtcfd7G+Vdn3654J0y6gdtwUdHIn0zluIfdKor1tzFo5bi2rt40vAX+cBly7c/Z4qAiSLgIYaiPeVy8IAABod4zUcSzkZla1EARTlYzEv9fdu3VLArWv2HwMFcetpweYOzd77P3vAqZOTY739Pi1f7dU3yv6QrZ1OW5B2t64TK3QFuv3vC22qqTCgtWHkvu+Bf6WkFYakX8Ox2LmuK1X5JW5riWlEjDbMa969mz7YNeL1wN/f3d23IQULFMGFQOqKr96W/b95lfCPUsqcZLe18K0r3PcQl2bSqWq6EvVd7cNxK3luLWs3u77TDI5yJTDUM7JZk2kLRRVsn+9+nis2mIAgm4eVNchmDhJLMRNc+9CRe9Uzn5ox21wY/45trZoUVKvcJ6kAjYcScR53rzkc5/iskuvkA7EpkrGcogii6rEtjVPRGw8NIq6JcoBRHLcQt7ngQFgyRLgvvuS/w2lG4JZsTNMOzFz3FT5vz7r9Zw5QKfi7z4ZwEUA9lV8p7MTUBShz7Vb3w+8IhWf3xzQcVM5sCH3Go99O/u+MhguH1uV41bur1cQdTFdoD+EOFelAvzjXcD/jgaWXePf3hCzluPWsnpTRdeAcJt+HYc6lOOmm3QGN4VpX7UBCYkWKCOZgTYnsaiSuuirbixZt6/YfIR2QkM79osWASefnNQfkvco9H1vb3Kej/OWschUyVAOVnS1ygYibsGbj91+ZMctZv/lvm96yf/3BCo+dSqw++7AQQcl/4dCxU0Wat2LibipAmc+/e7uBmSV1OEAjgEwAYBCuwznnx+u+PbAhnDqvqrrEBJxW/No/TEVxdHFdO2EaF/HEgrhFG5YCrxyUzK2M3uaFuLWspZlLdSmf9NyTftDxHFTbXpCbYTKA8C6xYrjgZSqouW4kXs35SjUJtANER234IhbQMetpwegYg6jpM9V6Q+zZoXZIEZXlYyFnEQuB9CIpoNRkSOiSqr2g1sDEbe+VfV5QDZGUfFXXwXeBODtANoQDhU3Wah5TDf2QoiTlBVzo2+/Z84ErroqRd6GSZ/Le/AvfznsPdj0Sv45HFMFnEKuJarrHEpZUkfvDtG+jioZwmGOSktvfms5bi3jWyjnYbPGcYuNuA0EcNwqFTWlLhRa8H+nqI8PBrr2sWrM0E1DaSQwvKrEFxNxi+24+WyW589PkDRhcnqlih3V2wtceqn7b9YssuMWbNMvtRM6/zIqaqVpe/UjYf6OOic2MlUytrOvOeRmivGnytXhGEXFAWAqgC8DmA2A1jEPjooTC7WuNhpxCzHOZ85MkDQAkPVltpPeh74HoeiSSqpkwDwu1X0NhbjpkMEgiJvGcQvh1Gr3ci3ErWUty1qojbJOBCIY4qaJxoRA3AY3ahC3QI7b879RHx9KiFuhBHROSF4PBKKjqBaY0H+LHFV2RYAGBoAFC7LHOIgbkHzPO69mqCJug4FRty3guFUGk+R+X6ubC4dYjhujALd724HmWhkVB4C3ktenKr4TChWnFmxuj+m4KTbbIYKAPT0JkgYAe0uf7aT5Tqh7EEqgJCZVUrfGuQYqZNM5USHa14qThBiPEfLRh5C1HLeW8S1YZFAzGcVA3Hb6SPo6RKRHB/NH3wiFotM0yHETk3aoTdaWyHFz7fvSpfVS17LjJtOChC1fnnzfxwKNxZoEe6wcN9VGPuj43EIy0SGuvzwXRkfEGoC4xaJKcr8mX0MZFQeAvCUoGCpOLPa6GqL9GFRJIL0H+wD4mPTZBM13Qt2DmI5bKKqk7p6GokrqkMGYiFsQx00ThG+pSrasZZIFiwxq2gmG6AnHrQB0n5AeD4G4vfZP9fHgwgqShbr2sZQ1abS3GMFxo1RRUfcoOlXSse9rFYjy9tJ7neMGAOt8UcohIpyh2oCHvKdbgioZrPnIaoZbgioZrGl7x63OaVOh4kC+4wYEQsWJDQnELbA4CZC9B/+l+Ny0B+feA9O43hwgx+3V24G/KCQwoyBu5IIMBaqkLsAXYo4faCFuLWsZz0JtqnT5WqERt9IooI3UyAnhuD35Q/Xx2I5biBy38kA4GWHZ6hC3qqJUpRxmU0gXmIY5bo7jccyY+mOHSO9NjtvoiPUGLaxUKqG3txfR0Bkl5Tikw7IFxElCWcOpkkMIcXNAfDdv3oxOKj+vQsUBgDONh0DFqYWax6LmuKkQN89nld4DlQChBrABwL8HJic/BOL2zxPUx0MFSOm9G06if7EdtxBUyZjlKXR7uW2kGHfLcWsZ36IjboEdt/ZRQIkkE4Vw3HQqiSHoUWXDriHEte9bhWg7Th3iBgS6NhRxE7zDivma2VooxG2XXYDJk9P3kwBMk87ROW5dXcn3fSzQ4jV+/Hi8/vrrGByMpf4YGXEb0uUA5LEXW1UydgmJQD9RKQMbXrDoRgWbNm3C6tWrMYYGVFSoOMBD3IAAqDixcl+YZ1bnuAVRlYyAuNF7oPrzTY4bwLsHpj6GcNx0lMVQ4iR0PhzWlb72UVGlRvu5zzfT170r/duO6rhpELfYTIUmMcsS9C3bpi1YZDB2jltVnKRtJNAW2HETm/vR04FxbwJ6fp+8D4G4mSa0EJNdqCidyug9LciO2yDyV+EcKyuokuJ4Uaf0YWGVikKcxPGelkrA7Nlp0W2VH6Zz3GbPTr7PNaUTFcaxKhaLmDRpEl5/6o+obHoZBUHVGTENmDzS/GWObXwJePUO6eAdwKQ3A6M8nVcAePl+9cZqUPaiHaznLn1UfdzewLh2v/ZXPgysfTJ93zkR2F6X9ONgy+7MKrPtODH7XPnamqeAVQ9lj00uASN28Gt386vAK/KYATBsMjBlbOaQoEd2dnaiq6sLxSKJU6tQcYCHuAHhUfHKAFDwHDNRN8oRctzoPXBx3Dj3wDSHh8pxU1kwxI1c43by9wYLolcdt+HbA7t/Cnjk68n7/tUB2o44HnVUydjMpyaxluPWMr4Fy7NqEFWyfVQEx63aRttwyTkJ4NTK13fY5KpK3euBHLdACc0qK8tUSdlx8zQaGWwjG8xKP/QSjRZWGVCrHLranDnAhRcmifRcx62zEzjjDLvfUaHUAekiHR0dmLz5FuDpS9KDOx4P7H28f+M9/wKe/mz98acBfHgQKHgSQu7/AbDy3vrjh3zGr10A+OdX9c/T3mcDk9/h1/7S3wHPkALFEw4C3jTTr01qt345uznb633AqMna063t1UuBp7+WPTb1emDyfn7tLrtTPWbG7w/s+5/8dgQqLtMlOdoGLqh4Hkpd7gOKvo5bRKpkDMRNdw+EmR5/7j0w9TFEjpvOguW4kXtH171gaSvVfhY7gXYS+Ohb7d92TLEc3V4udEmZJrUWVbJlfBsKVMnBvrT9kuS4+dZxq1TSSFrbsOzG8q8H+lPI5Mm+3A8Uq8VtglAlYyJuJqpkYDSynUg0BlvAVHLXHv3u7gYWVjfeqv3FCMWxhQuT79mYcnEMTHuTn8tQ0WQTnSjEeI9JmzGNjRDKZjI6HjqSLG98gpfWUAUUAvwNulIvtrm7AhWvO874ri0qDuSvbTHHe7OWA9DdA2EmxI17D0zXvXeFf+54+zj18RiIm8w0CdJ+dQ5u60zWbZGGMGQRt5bj1rKWZW0oUCUHycIuO26+iBt1rNqGZZ2T/tXAqxrFSXb7ffXvQzpuJsTNN1csk+PWHtZx61uTVfOkgjPN6rgBSXHZq64CJlc38hsBiLQMyvLp7EzOm+mAqKg2JroC9y5WqQArJGpasGhyZMctVukLIGdsxHDcQqoYDqqDRCFNNccHcdzWq4+7iC7NmZM8e9RkX+B7AHYl711QcSD//oW4/g0vwB2gz+Ie2FAlbe5B3nX3ZaEMk6uEVy3UHEmfo0zAMhT7SSBuVQpIx7jk/xCI2xYRJ2k5bi1rWdZiUyVDIG79ZGEvBc5xo5t7mSoJ6DcV7PYjI26mHDdfqqeujhvgv2G7j1Dbiu1ZSlFMxy3EeJw5E9ixSkHZ2AaI/eUYJHSfuXOBJUvcnDZA/fevfxZ46sdu7cm29JfAmseyx0Il3pui0kEEFbaU4xYA8dz0UvZ9SApQrJpcmfZiIW46x22tPUWYouLCZGdhCoAzyXsXVBzIv75BAhURxUmU82OAPot7oLp1ut2pzT1QXZPM+uF5bTo0eafB5kgdVTIEQlvJIm5AiiBGddwCzDVacZJtI8et5bi1jG+hFnfdpBMiT4w+0G0jEmSs9llIx21YfQ6O76RRh7hRxy3AtTEibk3suC29MtsWXXiDFSZX5XAEWAQqZWCg6q1N3w/Y883J62EAnnsKOPdct41grX3NZu0+RR6Qi915Wv2xoYK4bSmqpG/fKxVg4zLpWMC/RUUZD+64RULc+jWOW7nfjZ4mUHGBvKnYdyPhh4oDDMQtIsIcqwB3qFpaM2cCo0bVH5edaJd7oLruRSKK0qeh3vJ/QH04RgHuts50zxF6vBSr418gboMb/WmkrRy3aNZy3FrGt6GQ40Yno7aOwIgb+X5xWD3i5ru5qrsulcYhbr4bN7kcQDFwjlutrXJWfS0m4vboQwka5lNst38Naot750Rg/E7pZwMBcg5jOif9Gsn0huS4RUTcQpQzMLXh+6z2vq6gMga8z6podagASK29BiButK4V4D5mZs5MnvO5c4ExquRT+KHiQP48FaJOZ6Opkrp8Qxcb1ll/TOxOfZgJqmuylMy773hb0nZPj127wui1PeRScjxCOYBiR9j9QCb1Q0LcAP+ar1sixw2VgOVqmtdajlvL+BbMcYuY4yYjP8W2FKEJibiVFFRJ342JanGkE7WvWqCx3EATI26yNYoq+V8nAbvvDkyd6r6403o4nROytXg2a9TUbCwmHfB1hSIjEIYG1LcGWGygc0bdyIbIJzKMad/rs+nF+mMblgJ3nAJsfs2vbUA9DwbPcWuA4/a264HtjyHte2zYursT9HvOLP3nPpa3toVwnBstThLScVM97x84AVi8GFi2zJ2ZoAp4UH9k7cqkbMv06cCiRQ7tV+9baRQwdu/0eAxxkmJ7WMeNzlMy4gb40yVjqpya9nLbAF2y5bi1jG/RqZKBETexwReom+9kSr9fVFAlvVErxXUREzXgf31M3/fdOBgLcId23Mg1CTUmb7iu/tgXAYxCIlfturj3EcetY2JS4kFYEMctIuI2oClwGyKa/MAX6umAoX8jRo5FT0/ixMekSuquy3NXZfM9Xa0RjlssqiR13EqjkrkmZPvsCtyWtiVz3EKiM5nUg0COW6Wizl2cOC6Zc20VPKn96Y/1xyiRQDTd2wucfLL9/C6ubbE9e21ilAMoBHbcVIgbddx8lSVjUiX7DWNvG6BLthy3ltWbTs56qFElBaVORJN8I+F0wyOrSsqfu5hqss84KZ7X33R9QyNuFTK1LH3aj24oW2jEbdEi4Dvnqj87irx2WdzrEDfquAVQf4xJldQFOkJEk2mNMpXFzPnpc8zNWbQo2Uh+e575vCVPuLUvzOTQPv8bv7YBNc1oKCJupZHZ4FkIilSoNa6u3ZznNATCrLuHvutepZxeFyrGocs3tLXBzVDmivmOyZ4e4Oy59ccp4ib7hLNm2TErRB+LHanzAwwNxK2sQNwoVdIbcdONR4++i8DZXQYF721AWbLluLWMb96I0iDQ80dgxf/FaV9uQ0Rja4u758KeqyrpmaytRNzazZ/bmGlCC5nj9tf/D7jmj+n7o97pRzeULaQ4SU9Pslh3aD7vUhyzWdwziNsEoJM4br0BaG8xqZK6zUeoaLLJgtBpNNdm3zfaj8VFixKnvbc3f9W84zY32pUwX4nyPFMFmELnuDVCnKQ0KjyyH8KBUlne9W3mOm70+50T09ehqJI6pVDfDfj8+cCA4rrT4S87br29wKWXgm06xC2UqiQdNzTHbeMy4MW/+LU9qELcSBHuWDlurnONCJzNmwcUDG387tdu7Q8hazluLeOb7wKw9ArgnyekG79CETjmwfTz0Dx/scEXjptvRFZWlZQfH51ELdee/239MYq4+W4qTFFfbxomuXc3/A3YSKN58KMbyhYScZs/P1ms2zWfq8r02CzusuOWWRg14h82ZnTGfXMudYhbAxw3399YtAjo1TyPq1fYjUXh3AvLWzVLsI/cU4sdMW4E4taIcgClkVLwLIToTKRAyFAuwE3nAYq4haJK6hxAHwbOwACwYIG6FhxtVsXCXLCAzxChiFuROm6BFDfpmk8RNwC49b1+wWIV4hZS+CukOAkNnAH69RoAPjHHf4/R5NZy3FpWbzoRDN8F4C4p8bvQDox/EzCqWuE0NOImJiGxuHs7bhJVshgQcVt5f+LYyhaSKhkTcbuDUBcGkd1D0VnGNZeAWqjFRSzugJ3jBvAXd5kqWSKy1yGoRqbNje/mwYS4LV4clv5a9xseY10s8roCvuI4dywK514Yx3GzjdxTi51c3xBxEkV7voEEIHXc2oZVGRWUKhmg/VhUyVzELcTaF8txI2O/fWy6njYz4rZ0aRIsVD2r9FKrHLfly5Pvc6yGuHUA7aTMQIigHCAhbpLjBgB9q9zbrgtEQ6Ieez5PoXLc5MAZoJ/bxWc+gbMhYC3HrWV8W/MosHZxuPbEJCQQlOBUSbEbj0SVDIm4PfML9fGQyfexHLeeHuCKy9L3g8imLKhmGZ+JNRTiJhZ3QE+V1NRXZS/um19JX3dOAkqj0/c68Q8bM20IfTdWqtpNwvaZEZb+WvfbjoibWOQLSMfd0wCWkHNs8lqocy+MjudHANwifUe0bxO5pxY7ub4h4iSRETcRABkqVMlcxM0TYX7+d+rAHxCAKilt8EvVQtChHDc69rreSY57PAdrq46TaoNPh4lO92Qdc26mVEmKAPvSDGvta6iStWMm6CnHVKqSIZ+nUDlucuAMMHsubfALnA0BazluLas3nTgJACy+ONzvtAnHLWDCbYYqKeW4+SJu8gIWMseNRuuEjdtHmkh968RFctzmz8+2bULchPlMrKFy3NaSqKiL2jdncd/wQvp6xDSgnThu/QEcty2BuAHAWISlv8rmOheIRZ5uyAYAUL/MJq+FOvfC6PRYBvBC9uNa+zaRe2rRETcVVTKgwzLYB7yoUGmN4rgNFXGSvDpuHo5b3yrgjo9kj9H1JCTiVuwM67gNDADPP5O+HzYlfe2z3o2p/v0uVEkAGD1a84FklCpZKCSIJJCUOwlhOnESYT7PlEpVMrPf8N0vVfs+4WDgODJJ2oxHVeAMMCNuYkpwDZwNAWs5bi2zs6d/Fq4tMQkVIiFuNaqkcNw8Nw4DeaqSgR23t/5votAozDcSH6McgCqXoIys46aLA7hMrMOmhEPcxOJ+EoB3a84xrV2cxX1j1WMolJIabpQqGR1x83TcHtbUcQMAolEQhP4qm8tGli7y9NasQ3azplr0dWNxrYLyRFdN1figQXBu5J5abMdtQIG4rX4oXPtLr1QfD+K4VZ0F4TyERtyiUSXzEDcPFcLNK+r/9vc+kToRvmgevSZtHUCbcNw8qN5CHXDqVOBDH0yP/+bq9LWP47bLLsDkyeodbp7j1tWVfD/PKpW0j2KvIa55MMRNKgfQFtBxi4m4lQntRnY4bZ4xVeAMMHsu4jPXwNkQsJbj1jI763pHuLZqcv3V/ysDAYpMG6iSQRG34fV13EIibof+GhgzIyxVkjp+2/+79JmjA6TKJeAgbgB/YqUJ8Uf+Vcpx89hoicX9RMM5uuHIXdyF4zZixyQnspE5bj4R8Z4e4Ka/6j9XUUhD5hW43Fe6yNPHaS3yN2u6sThGEVCRHTc5MEEdQ27knhp9zgs6SMDDVFTJ5f8I1/49n1AfD+lY1YJ+LcRNeV2LpfQa+dI/5VIvwmnuWwU89m175gBVB3z11ezzsoassS8rCtFzrVQCZs+uD9K8hPy5YPZsXu04ek+FQyXEp/pX++9lVL8hI24+wdxcxM3jeZVz86jDabPXUAXOgHyqpDCXwNkQsKZ03Pr7+3HzzTfjS1/6Eg4++GCMGzcO7e3tmDJlCo499lj8+c9/dm77pptuwnve8x5MmjQJw4cPxx577IGvfvWrWL8+UE2SrdGmvCt97YNwyHzsokSV9G0fqJ8wgHiqkiEdt9KI7Hsx0YWkStaig8XEAdr77PQz1+uuyiXgOm4Ab2IVC8jo3YHx+4VD3MTibjIdWshZ3Ac2pKqSI6pczGIb0Fa910EQt0hUyfnzgaJh4VY5bl70V3lD4rDZpIs8Ee/EGrjntQjnnhoXceM697LRe0olxkOZalysecy/bpMwKhlPzTtHt0KoaZLwVIj2gS2HuPnU/VL93QXiuHnnuElrajsJPj30VeDx8/htyeqAQHbtoNP5U0/4ofhz5gCd0sP+fZjFSTo7gTPO4LUvo2EAQTn7w9Ryq0gMopBUyaiIm4HiaTMeVYEzgEeVBNwCZ0PAmtJxu/XWW3HUUUfhwgsvxLJly/DWt74VJ554Irbbbjv86U9/wvve9z7MmTMHFcuIxg9+8AMcffTRuOGGG/DGN74R73//+7FmzRp8+9vfxkEHHYQVKyLXzxmqNoUkDPtE8QuS41bLcQtYl6ssRQcBMhkFVpWUo10+G2XZqaxNpBRxC+W4VdsM4QCpcglkqqRpluFMrGIBEfcxZDmAOXPMn6s2+dzFfQNBn0ZOS1+LPLcgOW4RqJKCcmjKex+vOe6aV1BHO3ZAIOgib0LcdIu+aiyqnHs6niuod+7FmOFG7mWjGyZa1DeELbsuQUmEiYACEI7eRfOUqHk7buT7clAOGNqImw+dUXVd24alYyek41ZoT6mSwh7LKUgvTKUOCGSfJ9mp8kHxu7uBz/xX+v7XAF6GOYizcGHyPY7JNdaA1HEDwjxPpnIAgKdzpVKVjOC40SACYDceVYEzwOy4iXvqGjgbAtaUjluxWMRJJ52E2267DS+//DKuv/56/Pa3v8UjjzyC3/zmN2hra8Oll16KX/7yl+w2H3jgAXzhC19AW1sb/vznP+PWW2/F7373OzzzzDN45zvfiaeeegqf+ISG4rGtmewQFzurKorwc9yK0iwpUyWBIYS4Da93pHwQN3mSrFGBaI5bIKqkynFzdZhVuQRcxI2dS1D9u4sB+y1sxx3zz5H7z13caYFtupkVdEmfHBFhJmfe9VkVlEPquC0DQIRDoQFV3PMKJO/HZbO5yy6p80YdtzUAaHMqX8g0FufMSZx1YXlUyRLsIveyZRwUndypo912XPZ9B/HAVblvLtY5SX08pEqdXOolRPvyb4S0RiJu+3wzYXDEQtxKI/XnmkylDgjUszXEpSrCXx3w8MOybQNqqmRnJ3DVVcDMmfy2ZacKCO+41TmH0mTjM+blYvZAPMQts4+xGI86Vgwnx801cDYErCkdt3e84x34/e9/j8MPP7zusw996EM4/fTTAQBXXqlJglbYd77zHVQqFXz0ox/FMcccUzs+YsQILFy4EMViEVdffTWefPJJ7/4PeatzIkphlKTkfA0lVTLwIgOEc9yoY9Y2rP46+RQklRf2oowWKs5x/Q2VA+S6YVHlEnARN+7EKiNuIYuEcpwn8bfZLu4ZhVMyxgXiFoIqacpxWGkQFzGZoBxSx20egNvIe4nZm7EQeQUuCMRvf5v2nVIl1wKgPomq76ax2N2dOOvCZFVJeQiVYBe5l43e02IEqiQ1mj/qI5BBTXfvQtaFGmpUydwct0CO2/T/Avb5WvK65rh5ipPISs1UGReoR8tVplMHBPQ0e3HcRx2QBjuPelcSoKFNjR2ZiKQsWWLntAFqxK1jXHoshLKkvJ+R9wA+ewK6/oh7Wgz0PMnPaqFAyj5ZPmNy4AzIr+PmEzgbAtaUjlue7b///gCAHiaE3tfXV8uL+8hHPlL3+U477YTDDksiM9dcc02gXg5hkx9YmpDs45zIOW4qqqTvRlxFlayJk/iqSpKJrjRGQZX0WCBlNE04iTHESWoU0kDXfc4coIPMpBzEzWZirVE8I1AlOYVSp2zntriXpQ2PMFHLrdzvN2ZEGzp74gI3OqZArejj2o8sxci0cIbIK/At0iojbtRxGy59lzMWZ85MnPbOznrE7V/IlhsYP9p+E0gtjyoZQvRAWCdx3ELk5ADZMTd6evo6JOJWV6MTTU6VJHPB7v8NTDoUGL8/+TwQVZI6UTEQt0I7MHyH7OclxvOuUwcE6h038eeEUAekjs37jgOWLQOuJHlz/z0HOPdctyBLOQ9xW23fZt1vSGNenu+9EDe6nxH3MFAB7sy1qc5hruNRDpwB+eIkPoGzIWBD0nFbsiSpprr99tuzzl+8eDE2bkw2wgcddJDyHHH8gQcecO7Xhg0bWP+a3lToTw1x86AD6sRJQiIoJqqkb45bvxShqot++USoZPSuep0bhrh5LO7d3cB7iUolB3HjTqyVSrohi+K4MaKiTz7utrjLamzCMiUBPOmSeWNiw/P2bQr6q8lx0wGlofIKbB1amYYl57jRaUtG3LhjcebMxHn/L0KpLyO5Lj+cDPQrHF4Xy1AlFY5bSOeCUiXv/TQvkJFnYp4sdgKHEJQlhuPWKMTNl6ZO16WxbwTe9S/gzeTahELcVI5bpezXf/m603xdICtWojOdOiCgp9mHUAeU0cJSCZi2m/pzW5OLYwOpqiQQhiqZcYA6wu45MohbYKrkoEKx0ieQQANnBZg9l6+d5Rc4GwI25By3V155BZdffjkA4KSTTmJ9Z2k1WjNu3DiM1kSDu6sL91KPug+jRo3K/bfDDjvkN7SlTUaSCiVSu2WDe8RXFiep5bgNEaok3dS0jwnsuEltbV8tLBa0jpugHFbbpIp1vnSaPXZPX5sQN2u6IWloSyFuRcfxrkPcQhbhzvv7XTYmgv5K06tEM2KI6xC3UHkFvkVa6VTTB73jNno08KEP8X+ruxv49H+n799/HLB4MdDzIrBd1WENSU2j1CthKjl/V6NUyZX3Ao98079NsSEcvkNYx8pUozM5wa99QD/uYohmVchzsupVdzpgxtEn15uitT7rqhwMHbFT9nMO4qZTBwTqafYy4ga4o/iq694WaL8hO1VAtqxPiCBIHeImjRGfPYEKcQtVgFt1bWqOm+OzJAJnXz3LfN6Rb3NrfwjZkHLcBgYGcPLJJ2PNmjXYZ599MCdPEa5q66rRmpEj9Um1o0YlEYe1psjQtmJKqqTY7VTco4OyOEkxBlXSkMDuneO2Lm2vbXh9fZxQiNub5qULQEiqpKwq2UY4Y77Fmulm87SPASNIFLaIBIlxoRuqosk0AOC7oeLkIbhGZXWIG3XcfPPcVH3bnTgWrgv7nDlAZzWZiw5zk+PmlVcgOce+RVrpVDMAPVVy3TrgM5+xVK4j88ikyUlNqlLJf2MijI754VPrP/d9Vql1SPKgT37Pv02xIWwfHW4jCGzZHLeQTJDVa5O58AhSE/WPv0+KUc+da6+imIe4AZ4OijSPyYgbZRDoTKcOCOipkuK4D4qfmYNF4I9eF5/0BsV4pGtqjHIA0RA3leMWuNRACOpudzdw9lzzOb57giFgQ8px+8QnPoGbb74ZEydOxO9//3t0dARW3PK09evX5/576aWXtnQ3862OKikpSbkKlMjiJDHKAcjUiOSF+NAvP0RE0NpGAV/7GvBrqcbMSy+6LbxAdpIcu3f6OiRVUizA4rrQ2nG+UXzat0/+N3Dm/6TvL7k4yS1wohsqNiUhHf0BKVAz8ZD6c1ydH53jRgUnvHPcFH3LoLSO16e7G9ixK3lNmzA5bjZ5BXINRNlsNlSqYButAFJBFnGTc9wuuSRxvrg1o7QbZTEuK37UNNr+CIXj5vqsquY+WSHQV8Wy3J/eO9lxe+qHfiiEiU0BBHAMDUFJXyYIDfJ94StJ8elXVqbH2pEEH+bNsxuLANNxC+igyI6bHHRRmalmZp44iQ+Kr0Lcgjm0ClQp47gFQMY3LiO/0V7vTIXOcQumKhmYKkktbx/ky0waAjZkHLfPfvazWLhwIcaPH4+//e1v2H333fO/VDVBjzTll4kC3GNMkH6OjRw5kvWv6c2kKgm4C5Q0ogB33uLOWWR0JjYdr6xJFtg+eZEvuy28gLTAkMkzKFXSgLj5LjIyLbBE7vWULveFN7bjRhG3fb4J7Hyyog+Ov6GjSoakBqv6lkFpPcbMyGo/6U+I5uhmy4b+2tOTBDf6ySb7TgCbpPEno9kmU83Z4hKI/uapSvb2JoWBOc9tZkySuYXeV58AVB7i5uy4KRwbucC3r+MmbwaLkof/UE603GSxc9z6Vunb8F6XyEZ2Y3VQ0ibp0mgzFoH4iJuMdLZLzxsXWVKpAwL1OW40OOSrDqgK5AZz3HIQN9/yGmueBF65OXndPhYYsWP9HsALcaPlAKqTYihVSSNV0jcdJmdN++cJwKqH/H6jyW1IOG5f+MIX8OMf/xjjxo3DjTfeWFOV5NrOO+8MAFi9enWNNimbUKgU527TJm/2CqUwiJvsuIn8ilAiGUB+HoTPZLRpdfX/6nsZdRDvbRdeuV+ZxTeCqmQxMlWyUAq3ocpcF9XCGzDHbcwMtaMTHHEL6HiqELsMldQn+b66IZvSnThbXV3ppqoEe/rrokVJUGPevKyk/kLUx1NsEAIVDUsMP9HfPMdNGKfgb1n3rAaax+h4G6GoM+jsuCnGglxuwNdxk+lXslT84ovd245dx23zK+nrXU4DdiQ173zXpVWEyitug85xE8YtPt1oqiQAHErWNq7jplIHBLK0ZipsVYS/OqBqDi4Gyv2LjbitvAe1iXH6JxLkKmQ5ABFkKY1K90hRqZKO5QBk4/zNt7zX7zea3Jrecfvyl7+M73//+xg7dixuvPFGrSqkyWbMmIERI5LV+t571bWNxPEDDjjAvbNbi5nESYBwVMnO7ZL/gxbgVkTYQtBpXlgKFKqTkZiP5adHfs9deAEpwZxcpxiqkuI+hKRKyot7FMdNgbj5UmvrBGcUfXW97rERt8HNwMMKBKMYCKUVG7KOUQnNddkyYLtqIfHtJ9vRXxctSoIZQvlRDI8lyNIYhT3/DL+fKhqWaJ+Kqoj9pUyVpMYp+JtLlYTfPBaNKqkY2zLipio/YGMy4lZX48uD8RCbKrmJOG7DurJrnu+6dO+d6et+6X9A7bhxi0/rxiO9lzYIdl37iuu+80dSNNim/h9VB6y1ST4fQBpsGTXcXx1QNQdTcRKf66JE3CgN3jPHja4No6pKmPJa5EPJFkEWmnM9FKiSnDVt04t+v9Hk1tSO25lnnokLLrgAY8eOxd/+9jccfPDBTu10dHTgve9NPPBf/epXdZ8///zzuOOOOwAAJ5xwgnuHtxbLo0o6O27SIj5MOG6RqZIhav38nESKuY4bd+EF1EnUQNbZjSlOEjLHrdhAxy0khaltmHpRcP0NLeIWyHFbdl39sSnvksZMAMdNLLylEtBRHTPFMp/+KtdY4wgBPvKAXa6oTMOSETcgfW5NiBuQX/A3OjUtT5wkIOLWJnmxqvIDNpYJhKgcNw+LLU5CEbfhU8KpDw4MJONZ2CD5X4x/3aPEKT7NGY8+ZUeUayrSecHWQRHqgALFp0NkzFhgYhU9LxWUX7cyJeIWKvcvMuKmVK0cmz0nRI5bKYbjZqBK+pan8A1gbwXWtI7b3Llzcd5552HcuHFsp+3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYI+jfMSRNSZUkux1Xx02OtgrErRCIYtS3Gnh6fvpeRadxkYweGAB+e0X6XkeVVK0znIUX4FElfXPc6qiS9J4OAaqk4N+HrPuXVycHCK8qGQyZkfo1dm/g364IN2ZE3+hGp0Z3sei3XGNNzmlRWaHMD3oA9TQscQlo+2KI5zlueQV/oyNu5J7RAtnCYiJuvlTJ3tfS153bIegWo6GI25Rw88zSpUAfmV9pU+K1rvYfp/g0x3G7mShY2prWcauOHRdkqbs7RfG/+Ln0+MLLge2rwYoQG/So4iR5qpKejhtFA0X7B/8se47r2lqppHXmKOIWqgC3SVUS8MwBbjluAQruhLfrrrsO8+bNAwDstttu+MlPfqI8b9KkSbjwwgtr71esWIGnnnoKU6ZMqTv3gAMOwPe+9z18/vOfx3ve8x687W1vw+TJk/HPf/4TL7/8MmbMmIGf/exndd/b5mxgABhUqEoOIzkk6x1r3ckTQQ1xC7RAyonvoRb3pUuBja+n78V8/P8BOJD+nuK7YuGdPt38G6oFBghHlawIeT3EQdwyi1hIx00l5xzRcVMibk1KlZRtv+8mSEEGcXNFCxXjBbB33FQ11jhxlDYk3zv7bD6yJ2hVs2YBbdWNAx16It40HMlG2fQnmAr+NhJxK5SAA34I3P//0mOuz6pqHId23GS6YUjELXqO2/L09fAp4e7n2rVZx2xAet0Jc9H2vOLTuvFIXw+sSzbrBQcUK08d1we1KpWACWMBwWwrdZI6dwE26KoUhIzglw9VnTjjYi2NRZUUY3HcG4EZnwWe+lHy3vUaPfz19DUt5xCsjpuBKgkkf5s897DbbjluTem4rVyZyuTee++92ry0nXbaKeO45dnnPvc57LPPPvje976Hu+++Gxs2bMC0adNw1lln4ayzztIW594mrKcniYwvWABc0JsdGQsWAieQYucr73H7DXlhreW4BYrELJEcfGWOm8PivnYtQOcYsW96DMBFAD4tfk/z/byFV+5XDKqkyokoUcfNE3EbqjluWwRxC0XBku5Z58T63wrudFavPfeaqGqsqRA3OfWpBH7Qg9rMmcARRwD/mA6gN7tJXgFAiBFPBPBK3bdTM64FiqLwQJwct0IbsMdnk2f17mrdUtdnVUmVDJzjRp2fYV31qpI+lkeD9y3AvVlC3ELdzzFjsuspbaoPwEiYHbe8fYlOLGfNY9nzKmU3RzoPcSv3J31wvdeZuaY9nW8q5WqfPVBb1RxcKFSDdH1+5VhUcvqxqZJAVrDIdW1d9sf0deck8jsNoEoCCZpoGvMmayFuzUmVPP3001GpVHL/Pffcc5nvnXPOOahUKrjlllu0bR911FH461//itdffx2bN2/G4sWL8e1vf3vbdtqo2turr9a787+4AjjkA0Cl+lC/frfb79QhblUUjy4GPsnCshUUi7tLFGnMmKygAQ2k3Qng6eprXRiEM7Zii5OoFrBQ0sXLbwFeuj5939AcN99EZ9lxU/TVddOW5/z4tA1kKculUcDEN9e3H8TppIEES8TNVGMNMCNuAC/oIVt3N9BZbYDeTgKaYxL0llfwV6sqGUPFr9p+iGeVRZUM6LgNn9LYHLfnfuWXO9NL6qp1Tgx3P3fZBRhFrquqvIZu7eAUn9YF/WTZfmeRJQXSCWTHjg/qVkezj5DXDWTnYJEm4ONcqQpYl2KxWMhYDLG2UuR1j8+HbRtQUyVD5Yy2ELfmdNxa1kCT1d5UTIpBABv6gOeqD/Lap9weHvk7HVWEICSCQi0UVXKXXYCJJClY7iJtUr5+nIUX4ImT+ExYNPekQJBIMan6LDI3H5l9X2jP/g0+mynVJjlkjhsNFLRpHLdmRdxoPcVDr0oX4xA5brn5ecwi06oaayqQ5PfSOeInXQNqYh6RETdhEw3fzSv4q6vjFmpcivYLxfSehojkK6mSsjiJJ1Vyc4Ookqq5vedq4Pl68TG2USSzNDLculQqAdPJGkAfG9Gs7rJzik/rHLe9zpLOCzAXZAJQVLXSgxaYcQxL2d+457+S3HXntjXzmMjZ92Ga9CscN1peIyTiRp2eIIyK6jVvHwtsdyhpO4KqpJhTQmkZtBC3luO2TZus9gaoR4SgMW0iB1w2JnQiGL17CsuHVJWkRh2U9Afs2ymVgH8/St8EfS9fP87CC/DESZwTkcvAjYep2xQbN1+qJLVoiJtILo+Y49Z9ouKcAHTD2FRJqvoaQlVSdd0B+82sqsaaiip5I4BfkuNt4Ac9ZKuQ+alMIinUcdMhbpyCv43KcctIuwdw3DhUSV9HK0OVnKxuz5VVkZfjBgD3fdatbSCLYLcND7su7UzUQVXiJKolglt8WjceJx6UovCA/yYfUFMlAT/HLeMYtmfnm2cWAM/8PFDb1HGrzpfOQmuQqJLVPLFie7rfeO12YNmf3Nuncwh1ekKsraJtubZuDMRNl+Pmai3EreW4bdMmq70BZseNOiguDzX9zjtuJL8ZkPpGTSkZ7ZgHcfQ709fyn65z3LgLL6DfKIegSm54PlvXRBl59IwOUmtkjltox23SW4C3XJF1hEKUA4hNlaQKoZmI7BameZpqrAHpszMI4AYA68k53KCHbPS670ry4ziOG6fgb6PquBUUARYgnKrkTh9BXQFuX8bDpqrj1j4u2dirHDehZmdrSsRNat8nH0oEr9qGV9kI5H4+co57uwDQQfpFp3GTqiS3+LRuPAJp3isQmSrpg7jJc42U8Lrh+TBtZ56n6nzpo6ZMqZIix03kzwm77Vj39nU5bkEcN4VicKi2AanvKqpkS1XSx1qO27ZqKrU3oF7inhp1UPodOO1iIuicCIzcKT0ekvpGLaRk9IRx6Wsu4sZdeAF1XgsQhu+//pnsexXi5lsOgFqhbeiKkwDArqcCe3+N/EazUiU1iFsxBOKWk+MG8J9VucaaqRyA+Nl28IMestF+TZmaFvyl6XajpO90dibncQr+RkfcRL1F0jYtxxKKKnngj+oRN9/5V1CyhWKwynFzpb4pc9ykLYwPYigCIeJaC/EsIMnr9hGyUFHHgHS8F5GuvTZjETA7biHWDxbi5pPjJlEl1y3R/75125p5TNzjcq87lV9FlQT81SSF0b+bOj0hWDixETfVeA89P27D1nLctlVTqb0BfMTt+WcUJ+aYXABaWKhIjGzKAtyudEPNJhyod9xsF165X6HruK1dnH0fHXErxHXcQiBKte/ropoBBD5ilwPQIm7UuQpN83Rw3OQaayZxEnG7J47nBz1kkxECUfD3/32xvg9dXUkh4CVL/DfKwRG3iFTJ3c4Ahk1SOG6emyIRTBCBBJUjRZEKG+Mgbj5bGhG8aqv2faf/yH7uQyen9NDHSfFperm3n2w/FgGz4xY63zUT9AtElZRVJWWEzadt+qzQZ6gtQCCEFjXP1EILZCzEzRNFjYW4taiSUa3luG2rplJ7A8wjgm6y1mm+bzLVhgQIl7QqW6gcNyA7WXzjW+nCKzf5pS/YL7xAXFXJdQbHrZbjtinJDQplUR23Qvo3xHLcigGcw9gFuHU5bkEQN814dEU7Z85MkS/6+Otox8M8KtWo7ml3N/C1c9Lj/3YwsHhxUgD43HPtnEQO4uaDBJdzHLcQqpK1fFHpOvv2W4xn0V+V4xYi16rQAMStfQyw4/Hp517OSXUjW+wApk1Li0//21vTc/76p6RuoW3Ago24BaZKhhInMQVFAT/FyswcOUL92tUhz1AlZQg/gG2RHLdABbhVVMkYiFv3B4Bp/wHs/hn39oagtRy3bdVUam+AmSpJn+ORw7WnaU3nuNHJ4+G57otA3SJeqD/uSpWkG5qJk9OFd/Fi4K1HpJ+d9RU3pICjKuk6kcrUExVVEghH8QACOm6a62JbCFpntQWkoL/uTStOQssBhBYnieB0CuTrE4QCKR5HgXxNe4Nb29R01C66+Rk5LCmB4pRDx0HcAmxMtM+p40ZTR8emtGCf665CN1SOVEjKXqgct0qlHi0EAqJKxHEDEmGwc84B/o+U1jn0zcDUqclz0NPDb7uRjpuWKunB2Mi0XwLeODf7uc91182R9LWrQImgShY76x2gEKZVlWxUjlugAtyhqZJ0Hhu3D/DW3wK7nu7e3hC0luO2rZpK7Q2oHxHrAbxcfU0Bme6psDaO4wYAL1zt0HZFjxiFmIyUBaxLyeZv3ATSvisVU7P4ZmT1HRdeSumQ2wxBGVFZTMQNSMdMqBy3YgcytW1C54nFoErScgA0ghyCHqWjefrmo3Z3A5/6RPr+xA9kka+O6obfy/HRbDSDOVZkDqEFa0OpEEajSmoEkPb9ZiILDjS346a8r3KwznFLU+5L+0XnxFCOm6COtXVm66ZupJtzJOkL8+Ylny9axGs7g47HoErqnieCuAXLQ2sH9voKsO+30mNe150EOXRUSdf8buG4xaBJAgaqZIj5vdp2QUbcYlIlI5QDEOM7huPcxNZy3LZVU6m9AfX5J3ORIm3U52lTFXzLMa3jJkV9BhxomIObUKdGlf4A6YMr4magcwSJgOkQjhARU+l7tI+hoqay0Q2EV+FwzaYkNOJWF3kMQGdsFFWy2C4hS6FpnrqcywBtT94+i3yFcMi1hWsJqhrCsUp+gLwMtTFRzJMhCvtmNjya4FlDHLeAyE8dwuRIldQK/QRG3DaXs3VT6VCiy0pvb3Iex3mLjrjplBkjICjFEtA+KlsUOgRVUp4jQ1IlS7Ect0gFuMuDqO2VoomT5FElQzn6LcetZduayWpvQNZxuwMAqdvsXQ5ATNByXkWdhLFOq9tgJrpDCN62DoEAwkx2WsQtsCoYkN2ARKuhF7GOG5A6VqEKcLdJjltohzmmOAmNHsu/FZMq6epc6Sh7tP1yv3vOZWbTIC3oIRzD6OIkChGnIDluhuBT7bp4BFmo4yY2xrGokro6bq5bmgylLgLiJsbkilXS75LXKp9z1qx82qTRcQvA2Fj/bPo6g7hFyFkS47ItUP6cYCW0jcweH3KIW8AcNx2SF6Lt2m80iCrZctxats2ZrPYGwCjVTR03l0VAh7jJmxyXTY/suO17bvo6hDhJRbFpqL0PgC7FpErKfdJJUwcVhmkQVTIU4lZ3TwOrscWQjVfl5AAIooiZ5zADHoibRvgEkAQ+AsuXA2Ec/i1RgLtQTCPXoamSQJjrokTcCsCOJ+j7YWObXk5fa8sBuDpulFKnyXHzQX4EdUweFjrETVhvL3Dppea2uaqSLnPBi38GVt1P2ovguCmRVFJHzyvHTcyRUnDLF3Er96fjQXbc9vwy+R0P0ZJYddx01NcQbQuLqSqpokqqRG22Yms5btu6UbU3QC/V3dkJHHZ4+t6nALe8uGx3aPa9y0aZOm67ng7sTRKcQ4iTcBE315ow2nyowMnlgDSpNgBxc70m8ndj57hRKwZwfkJK6quspoInOW4xc9xC9J2D/ADui7tOBY+2H8NxC1WPUqUqCWQVYJ3aZSCdPs/TgMJxA4DDrwbeQGj5LmNyw/PAM6TuaGiqZHTErTrnyn96nuMGJPVWBwzXLGYdt9s/oG8vJuIGpDTVEDluMivBV5xEV2YAAPb5evrax6HQqUr67gkGG4G4RVSVbCFuLcetZUjV3ubOBbYjQhuDyNY52m339LOQjluxHTjoJ+Q8F8SNCHDUcc4j57iFKIgZkyopT+5aqqTDZKpzymIjbu3jkv/7VrlTxwBDjlvgXK7QVMlKJaXq1CFuTaoqmdc2EMb5MVGBxPsYjluonB/RvhwgKnk6brrxCMTLcQMS1G3kTqQfDvPB4+dn34dG3LQ5bgEoe5VKGiyTH8c8qiQALF+e1F3Vts903FwcZvlvjoK46erEVa+9V46bVOKh1rYnVdIUHCqNBMa+MXntQz0Wv1Foy+akDgXELcPqqf5GVMSt5bi1bFu07u5E1e2G69NjHzk5W+fIe8IQjpsiCkUXel/ErW4jq4MRLayhOW6B67iZctx8a+jpnOzYjtv4faufl4E1j7q3L/7mGDluWucnwALWvzZtX84JDSEgokNnGpXjBnj03bAxiZnjFgpxq+W46RA3x5wcI1UyQF1EEwoRau0QFhNxC60qWRlATQxCvrz0zzJ1fd06/WcxqZJygfYoOW4aJ6jNE3GrlNPvynuCEFRJYSq0RzxPXo6bLqgYM8ctUB03cd2pWjP9rcEAgS2ghbi1rGUAACoWOX5Sts6Rz4RRqegRN8CfmpaJwpiKSg4FVcnIiFtZR5V0Qdy2kOM2br/09aoH3dvX1rOhm/AmpEr2rkhfy45baMQtZDkAU9uAlOPm2j7DcfNxUJb/nbTXoBw3gGxkHREIriiMq2VQK8lx83UgRki1MbUFuAPkuOnquJUdHQg6FkyIm4lVN9oggBFTVbJjor69KNQ3qtLq6bhlAgkRETeV0yDGu+vaARDHzZB/7eS4NQBx61uZ/N9BGFwhgn6Aei8mryNbubUct5ZlzegAeQhlUIdJ5bj5UtOMi1cIVUnuZOcrBlFApp5YCHES+XtacRKH665bsKMjbvulr18nRWyt2q4Yctzo4tiEVEmT41YM4HTq0JkgVEkD8hMix82Uw+HroPStAl78E2mPUOmCqUpqHDdfARGjKAxRlXRV89TluAH+84Es8qBD3JpRVZI62i6IW1dXUndVZ1zEzWUu6JQdN1rrMjD1rVDKtu9LldTdU/m9C+KWCQ511H9OETdfdVwT4uZyT9mqkh4FuHtfT/6n4ycmtbZFlWzZNm2xkCXT4gIEQNxM7Tc54jYwAGzemLY9oNnwOzuFBnES7xy32IibBiWYcGC6OXzhf92iphVaz8aU4xYacSO/tfxmYNl19m3HRtxiooUm2nEQxzCiquTGZdn3k48gvxUod1FHKa/l57m2zRSFcX1eo1Il5fslNvgy4uZax03T9xB13Kjj4ZLjNnt2lvlS135MxG2C/rNQ1Lca60F6Vn2pkjoUFfAvaM9F3AD3PYeWDeJLlTTNjwGC3AMb02uqc9y8qJItcZKW49ayrBlzuTwg+lzHrVGIWxPluPX0JMIvU6cCTzyWHOvtT97PnZt8HqSOm7RgZ5CgZnfcdOIko4Cd/jN53b8GeOVm+7aNIhYhJPUZyowAcNtxwKqH7No2Im6BSxmoCp/L57i2bUTcIua4OStWku/tNgfoGKf+LWen08BMqLVf0YsCmcxElQxBgTU6bp5jUu6TQEzkQuKuVEmVCh4QHnErS/3LU5Xs7ATOOMPcfsw6bh3j9Z8FE+MhiFum/eq1rww6CqvQEg9yrUvP8c7NcQM8gmdbIMeNtu+6bgu0DchSbWMVbAeySG1ywL39IWAtx61lWcuoJYVE3AyOD+CfU8R13JzruJkQNwfnatEiYPp0YN484NVX0yexjOT9vHnJ53+8Nv2OM/IjLUxv/kX62pea1kiqpDxuJhyUvu5fbd+2kTISWFUyIzhTqB9Dz15m13Yjc9xC13Ez5loFKE+hk9EG/CmBNFIsOydB8vNMtDfPHBEOVdK1bSAu4kbHwrh9gZHT6ttVvWe3r5kLgjhu5HuHHCZ9Rl6rur5wYSIMZrKY4iQmC019qxuTnjX0TFRJ33nMpCoJBHbc5DnMs+3cvns6bn3EcaNrU+zyEdmT/KieTW4tx61lWTM5WFGpkp45Rdyooy9tAfB3aBctAk4+OSmuKkw8ifTrvb3Apz5N2g6wCT/6dqDrSPK7QxRxAyTqhcPCbkTcItINVb8nyhtwjeu4hc5DC53jVjfHBK7jVqcW6kvJNuS2hMjP4wq3OCnAmhC3AGOmUY7b/heSDwKJk9Dr2aZx3FxzraioyfQ3Zuum6sRJOjuT82bOzG8/pjgJbXvs3tnPQhfgrqNKepZiMFElYyNuQZR9G4C4yfMjbT8E4hY7x81UJ89HGKbJreW4tSxrmcU9oOJQnuPmTaWJLE7CFW3Ja7+nB5g1q/64aEL2K2lzvsIq4w8AtjvMkGDu4jBrvhMq0msaN3Rh90ULY+S4ZZ4laaqVx5CJkqQyLlUyhNOpo3mGEG2JTZWsm8N8N2x0zMiR8ABoIRdxc3pWudfdccxQx01GOHzHpC5v0ciusLBGIW5tw7J1U0cQtcgSsnVTOU4bwHfcXOi19F4dcU32s2Ab8ep3dVRJwO3ac6mSLvOYaR4AAuVIx3LcIiNusR23PPaW6rytzLYtDc2W5Rs7l8tWVdJGnCQw4hZCnIR7XV66IYtoyTZ/fhZpk7sod4++d6KQVtJ7pZrkQiNu/3ZV8n9GbtmjQDYXcXOJhnMKNbu2DaT3S1ZLU/0ezZXiWN9q/XeDqEpGFCcZINfz1deBnQdS8YUgjiEjxw0IEGmPgLj1/CF9HdpxK2tQVLlt1+seU1VSh3DUlQMITJUMUYBbdtyAtG7q4m7g3jnJse+cCxxyplmIRGUxqZJ0/ujcTmo70Ea8f23yf/tYqX1PtLNvTfq6XSqn4B0EsREncVy3o4mTRM5xY1ElXdfUfuDRb6bvTYjbVuy4tRC3lmXNRAnMTEY+iJsqx80zQrVFc9zI7z1xPrB2ibqNgQFgwQL1Z9EcN9KAcoHxddwksYZdqlFiKt89sN6+XWHGTYkn4jZooIy0k/73G4rfmszkMFO0EKjf6Oa2Ta+Lqc5PCJpnoFplQoznrC+nx75yVlaMJwRqNRgRFTMibgGc2jtPT1+b6LXeiFuEwudRqZK6nMtA5QA4iJtrHTeV4yasnVynSRPsnTYgMlWSm4/qSmseAAaq86scgPKlSva+lr6Wnc7oOW4x69IGFPpRooXVZ8gFoQX04iTUMe9b5db26/dm32cUYKU11ackS5Nby3FrWdZi5biZBAmAALknkVUluY4bADz/a3UbS5cmwiMq0zlu9DJvcnCAKgZHHAggTkLabx+Tvm4bll53H8fNRIGNmeNWIhHaAU/HTXXdh+8on2zZdsTNmvw9Og/QXJF+i/tKxXg2kO/JYjyPPkE+c63jRkUJDLktLsjSZvL8ho6Ey2ZUfvTMcTPmFjpueFY/kr6uq//lG5jjIm6OWxpd7b8YVElqIXI6Y9ZxMwraBHDc+gkqJtPFfa89fVaHTc5+1tAcNxfnysQGaRDi5hrkpus9RTop+raZONU2Rud2AJhIBMr+XXLqWjluLdtmbEvluMUsBxCEKkknankBM0Svqa1dq2+fg7gNuDgnOYm83giEbkNVSFE3V8cHaFyOmzzWSwEQt7LBcRu1a/a97bjMyMbL+XMRxUkyDi3TcZPFeHQAeG8v8DtCFXTtO71fpYAUqVduBu4m0ux1m54A8wy1AWmT4k3vMlElPcfMhheAlfckr8fvBwyfkv08GlVyiKlKFiXHLbjYT0zELYLjRinfskCTbw29Xqbj5pTjxizADThSVLlFsgPXcaPtO9dz1AQqSsPTQFqvo+NG+77POdn+j9sb6D4xfd+iSrZsm7EY9crk85XiJDERtxCqkkzqguq9sDFj1FaqaKgAAQAASURBVMeBVJxEvqy0u0WH2iS5XPyAVEmd82ODzMjGpuo4OLWmSHixLV1kfBE3FVVypCTxbe24RazdJH+PjmdKIeVcF5UYj4m5TMe/s+NGAiRybosPsvSPd2Xf+4gUcaxvpfR7nuUGjGUYPOff1+9KX089tv7zWIIKQ0GcpGyaZyKXkPCdC7ilO1wLKtMyLnVUSc+1iSJunYERN5scN5frnskXlVFaz9quJmVcIIDjRtZiue+CsursuOUEon33kUPEWo5by7LGpQTa8p+bpgB3AFXJPKqkDnHbZRdg8mT1ZzrEjR7rcIgmWyFunlRJOU+shrgFynGrQzppDoRLjpthcQRStMY5x63ad9V1r1ORDEmVLKZjPjhVkjhCHIdcJcZD4w/yeKfdjY64WY4Z2bkOTWGSTc4D8aU1s8swOFx36tTI6Ib8e761pxoqThKaKinl4dC/xdX5aUSOW6GtXmApREFlk8iSr7Ofcdxk5d0mL8CdcfZN+aK+aF4ExI32Xc47qzluK91y6Kwc5laOW8u2FWPXK7NVlcyRcPVVwmsWcRJA77iVSsDs2erPTI7bYN0LvuVy8X1rQxmStKnj5lLsGMihSoZE3BTiIO2ejpuusCwAjJiWfW+NBBuokkB6L4IU4CbX3UZ0RifGQ7srDws6xF3VSCkS2C6h3CGoaaq2AP+NpvyMGB23wOIkJTL+qYw617j0KyAAShAZccvUcQusKmmiSkYp2h5IVVIZbI1MlfTNixSoTvu4+qBiSHGSGI6bEXHzCKADDJpnRMRtmBCJqWTVJ7lmYj4B/mNmiFjLcWtZ1owFYEOpSubUcQtegLuB5QAAveMGAHPmpMVXM98Rv6P6bUUfuJbrMHvSXUwKfoJWVxl03/REVZVkIm4D69wcT5M4SfcJ0oGAVEkgvdfBqZIWoi06MR4uVfLVl3M6qTHqaJtkwF03yrW2AueeyBs8Ktwg/57TZtMQfCoRB7ffkIurbZtZGwoInJcTaAujQ9wKxfS9q4S5kZIdom6hwSH3ptUZWAMhhFVocKIOcfPsu0DclAhwwBw31Xj3RX7YiJuvOEnkHDcd4ga4CZSYgAXAP1AxRKzluLUsa8Zcrpg5biHLAcjDOrA4SR7ipprIhXV3AwsX1h83OW4d1ZpovkpyygXGt36eIXpH0ZmbjrBvGzBvNn1VJbmIm6vjaXLc2oYBB15Ezg3suInfdEbcNLQ6G1VJnRiPyXGj3d3kiHRSh1JWlQyhnigspmiA8vciUiU7qFS35DByzAaB8JUwN+W4uSL7JjEI4WzFUJUMgVpFVZU01QBtS3/PWVVydfq6rh6lB8OnPJAGPmSFU0Aaj01YgNtUEzEo7diAuLmWAyhzEDe45bnlUSVbOW4t2yaNSwkMrioZUjEtIlVSxfW3pevMnAlcdVUWeRNfoZe1szM5b3jVAfLNQYtdgFueSKnjtvJetwibaaL2VZU01Z0C/EsCmKiSQHZRC6kqSX/TWalOVzeryBdt0YnxmB5HytIrOVIlBeJWGlV/bWJSJX0DRHlj2NfpNFElaY0lGeljtR2ZKsnNcXMOzJnk16vzzNongBf/7NB2ZMQtZo6bSRkXIGhkZKqkteNGc68VbIpiG2rJtrHLAbhcdxMbZCghbnJOJ801pPXeuJabs9/KcWvZtmjsHDfbOm45Bbh9J7rYqpIm9ETemHOuzcyZwJIlSeHhrsmpqmQFQFdXcnzJkuQ8n8WxkeIkJscNCEyRAqKqSgJZmp1LnptpzADSpjOgOAn9zRj0K67ojE6MxyROQoUUOx1yrYDUoZRpkkBgxy0y4rb/Bdn3bRGpkjQX0MVxa5YcN9fAHAdxA4Bb3wdsesWubXYdt8g5bqERNyCA4xaJKmkKQAsT4yiGqqSvw2xig8RSaK0dE8JWARA3mSrpGwy1ue6tHLeWbTMWqwC3KdoLBIgmR1aVNKEndXQd5oTR3Q2cey7wwgvpsf0OAJYtS453VyXjxeTnKx6imujaPHPcjJFq6fd8FbDkRSajKuniuOUgbjb5XCrLQ9x8ci+N1GCk98JZ8MAwD3DVNnViPCZ/lTpumz1z3GRFScAvTywvl9V3npGf793/W2o/IlXSF3GzyfkJqiopz72RHTcAWPWQXdtbkirprSopctw0ap2+jttm4gTLuWg+pQxMNQuFiXEUJcfNU2ytUYibLNqSad/xWRLjvdCmmGcsVYlli410DhFrOW4tyxo3x81nIpWLhAJxEbcQOW5iclcmaUu/Z3tt2ggEMWJUsuGl1ijEzbsQqTRe5DpUoSkpvpuePMStFBlxM3IG89qunq+j5fpEkwHzxqedibgBajEe05+9Fmme26YX89uXrVLhI262470uMCEjbgW/aDW9Vzv9Z3hanSl4RnPcfMVJYlMlZeouNdf5vRa0KtRfG/k+yPSv3LYbWIDbyDbxKQcQCXHbRIIzw6Si7T57ApOYmLCCxxwZuwA3F3ELmS8qt++rKpm3pvoEQ4F8wZyW49aybcaMOW4e1IXcySJmAe6AqpIhETfV+SbZ5dBURsA/im+KVMs5bb6LjGnj7ESVtEDcbB23SsWsyAaEQdxyI+EhqJIy4kZyLvNQWpUYj8lxqwBoq4oJbFzG7CyxwU3ptVQibh4b5TzHDfDb9JjQZfn3vJV3DYibizhJBtnPmSN9HLdCKZtjHJoqWeyoz2Guc7YU991kXFXJKAW4fUVhGuS4dUyod4ibmSppg/x4I26y41ZEjW/uneMWoxxAdbzLNEkgQPpBq44b0HLcWiabacPmleOWN1mQoehLlZQRvaDiJDnRZMCT1hHYccsrB+BLlaQ1n9pGZD8bvZvUl8C5BL6qZrmIG1EktK1tZaKlCYvquIlNiSv9ikGVBHiomyzGo3schRjPpOnJ+97X7CmwplIAgB8lO48KDHg6boZi9vLvhVbC86ZK5qjXeqsGV/9eEz0V8KdKqtYmE72R1XaTqEr6IG5agaVq/13WjkolddyGb1//uRfDJycYCjR5jltOqZpQ84xxDivDSaW13CDELTfHreW4tWxbMVPkNJTjpuRVF8hEOtQRt8DRQXG9KmVYS/TmlgPw3DgMEIemJDlu+5yTfe+NuKn6X3UGYuS4+Ww2ORFfqtLhrCqpmcJ9aECAeeMjqJIAf/GlYjwjybUuo16MZ8QO6eeiFhPXqCMpi+MAkvNjOd5NVN30YPJfFMTNEx0fMARZml2cpKxz3ALnuKnWJnkDavsbseu41a5noR4t9K2FxkbcHObf/tXp91SOW2yqZC3HLcK6FJMqCaR/k2/euAlxA9yep5iIW14dN995bIiYbkfRsm3VGoK4aXIECiUA/QFoQCaevyP8b+T6S1Ep60WGibgByXUsKiZybduRywEMbEhfy5vBEVOB3c4Anr40eR86hw5I+j+40RFxy4tqxs6xCKAqmUeVrAwkUVN5Q5dnHKokkL3/eSbEeO5+HXj6kuTY1VcDex+bzeukGxXbDWEGtVIVuvdB3GSnISdabWu5eTOem/xBQ5ClrTOZl8u9zV0OIA9xC0GVlK3OcbPsv9Fx61SfZ2OmucBbVTJnnil4OD80v234DvWfx6ZKhspxyy3APUQRt1r7mnuvbV8gbjmOWwxVSVqzz6XcwBCxFuLWstQqFWDFv9L3xgLcthvZnCgPkE6wTgsMrWsVQZyE5ljoPqu9t+z/ANmcbtwMDEjf93GurChMgTeDQDY/JEYitVgcvMsBGKKagGfe4hakSgIBqMdS/6mDPmBJIU0aT19O20UhxuPR90pORJZugjg0z0y/ZLXBiDlueQqwLvfUhLgBqUBJDHGSUKqS8hwQGnGL7bjVyaPTZ8kiCFLrSwVY9UDy2lQWBIhDlSx6rNkZxy0wVdIGcYtegNtlXc1Zm4LNM3mIm0P7ou9KqiQJ+jkhbjnrakfLcWvZtmYvXgeseTx9Lz8YRY8IGMdx8+KcN6gAt2qSlvvLXSB7ehKK2AFvSo/deDMwdWpyvKen+pseIhy5ogEFQndxiPhmqJIj6z/3zsthIG5AAMQthyppPd45VMkGqEoCjgi2CXHzyP0D8nM6fZClvOs+cpf09fpn7NrmiJMUY26oPKmSeVF8kedGiyJzjatUB7hdG12Om7yFieG4yc6Wq+OmEj4pFNO5x8Vx6/l9+lq1NnjnFubVohTHK/bXPpOPOq7+89iBs1DlAKIX4A7suOUKfHjMM5UKeZYUiJu345aHuE1IX8uq1luRtRy3lqX2zw9k38fKcdM6bh687S2Z4yZPbpz+L1oETJ8OzJsHrCSRoTKAV19Njk+fnpxHJ0AvxE2XYF7dxDnlieVE8b2T42PmuOWIk/jQXfJEYYDIiJtvYXWTOIkvSpBHDfZQmM277mN2T1+vXWzXdp38f0RxktwNlQc63jZcTZ3tqG56+tfY59JuLTluSsTN03ET1FOaf0NNBEJcnqXX/mX+3Mv5Ic6Y1vnxmCOpo5lLVR9iqpLRxUk8kM7BnL2YT55Y3j0tlkigwqGOW95+oIW4tWybM3mCCZnjljdZAH6cc3Ydtwg5bvLGOG8yXbQIOPlkoLe3rnsZ4KW3NznvhZf0v5VneQsMQBw3F8SNbDZUVEnfvJy8/reFQtwC57hFFyeJTZU0iJNQxM2JKklpzari4R597ydjeM36etrxsClp1Hedp+MWlSqpQn48ywGIe6V6ToHUcQMS4Qgbs1HZ86FM1zlukgPqOr+bHDdf8am+Vcn/HePVn4vnyQW9pnPY1GPrP/dJb2Ap43rMkZnAmQKdid739vRcW/XE2OM9JlUy1/kZl762ddxoAFWnZSDy3GLUcaM5bn0tx61l26I1UlWS/l5MxO2+z9qjM5WKXY6bqf89PcCsWdljeYy5f92ZvraVXWZFHqtOixdVsqCeqEPltgCaJPAAOW6FkoZG6hNNjixOgjyqpGc+lGnctHkibnliPC75IYJ2fALZvC68vJ52XCgAo6uo24alds9TbMQtJoUJSDf5qo0gkKUZ9VrSjBqFuMnXvNghzTsOiBud31WOm9xfm3msPJhufvMcN6dniYyD/b5T/3kwZVydOEkgx02ulSe37TP/5iFugAMlO0dIyIc1AEQWJ8lD3DxqOuaxWIC0JECMOm7tY1ELiNrOYUPInFQly+Uy7rnnHtx88824//77sXz5cqxatQrjx49HV1cXDjzwQLzjHe/AwQcfjGKx5RsOWTMlgltTaSwQt+COm/T+6UuBGZ+2aHsAtY21KjJo6ots8+enSJuwPMetlxy05pzn1D0B/BC3QRLFV9GvYtaeAkiOWz+s1RPzNrJbjTiJwyZ/Qw9pS3peKWITI8fNNj9v0aIkGNLbC+xFjg8ipR1feGFSCHzmTGDkNGDV/ck1730tUT/lmFU5ABcZ7TzEzfNZEkEWFaUZyDoWtvkhWyrHrVAE3vMQcP0e1fMiqHnKbdr0nyIWOsetjThu1nMYg5omzEcZNzpVMi/o50GVzBMnAarjy6I+X3RVyZjiJBznp2peVMnIiJtyP9CWPGd9K7dqxM3KcXv11Vdx6aWXYv78+XjppYS+VVFAzNdccw0AYIcddsAnPvEJzJ49G5MnTw7Q3ZY11IyIm8cknZfjFlWcBMCml2BleVGkXT8K3P+59L1uoh4YABYsqD9Ou6eah2lzXlTJvBw3D8RNJUwC+HP9a5H2NvWGpk3K/+M41sJM6leAX985iJuP2mkt9yRHphuwf55WPgCsvCd5PfaNQOek7Oe+VEkbxy2v74J2XPsu+Yw+S4J2DAA70Q2bzcZHGn9FFVoYE3HzRFEHLaiSPo5baLGGDCKmaHvMjOQZHtzs6LjlOMw+jpugSQL5iBsqyd9Qsij3YlKsBPzGDCtPNxRV0oAqubRdZqCFwRC3yDluqvEQqo6bshaah+OWh6ICaQ5duR8Y2GQ33vPquAEJXbJv5Vad48Zy3Hp7e3H++efjvPPOw8aNG1EqlXDggQfi0EMPxRvf+EZMnDgRY8aMwZo1a/D666/j0UcfxR133IGHH34YX/va1/Cd73wHZ555Jr70pS+hs9NiY9WyLWtbTFXSZTKycNx0yJPO8njbHWOBt/8VuOWY5L1uMl26NEEAZKPdVe076KX2QdxUkUEg67hZR3yr9B5dFN8718pAYZKPWztuOYibjxy1LeJmrSopEDcNo6FNui42tvLe9PUbPl4/HnypkqFUJVW047xnadYs4E//Tvpic18Z9yhqjpsHiloeTL+jRdyo47ZKfY7O8pB9H8Qtk6+km7vFcxDDcZOpkrEcNyTPk9VGNg9xC1VKJgLilreuBqN55uS4AQ5ObQMdNyWNNADiVmzXiBRFRtxoILD3NaA0jd9+3nUH0uesf439fmaIGMtxmzFjBl544QXss88++NjHPoaZM2di0qRJud9bsWIFfvnLX+Kyyy7D17/+dfziF7/As88+693pljXIGq0qKSa70AW45VROnQOjszKDtz2im/RFM1Gv1dRHytu/NwpxQzWyrctBVFme4EEsUYJa+wHGZB4CDAw9qqSXpD4ZYzLaBviXAwglTpJHO1YNh95e4OlnALE3saF8c+6RVzmAvM2gxz3NkxcHwuW4qca713OaQ0sD0nHkRFGl10ax2YyOuFHq8QYA+Xur9HwbxM026JcTYAE8WQkWqr4xyrHERNxo323z0gFSQqI9PLKft+7FznHrJOy73tcS6jrXWPeVijgN2O/3hoCxEtCGDx+O//3f/8VDDz2Ez372syynDQAmTZqEz33uc3j44Yfx29/+toW2NbOpFjxTjlsUVclQVEnZUYuMuAG8yOMYjRx0nuNGL0eUqCktkm1Bl6xUiMQ4A3HzqZcTw3HLKy4bW5zES1UyhyoZc1MSG3HjJPbraMd5iBsAPPW0ui95xrlHjVKVtHbcaL3FCDluVgiET75SBMetd0X6WhWokAeSjbOfcdwmqM/xoR7nSuq3oTbPeOVHx6BK5iFuPqqSLjluFpahG6rmSBIccRH9EsEEHd3QpxyATuhHmFeOW851AYBhxHHbrGAgGdtnIG6+weIhYCzE7bHHHvMWGfngBz+Ik046yauNlkW0fgUaVOcARUbcMvSuAcOGV2E2OW427QK8KBJnkdllF2Dy5Hq6pA3iZq2IyZBFpn/T4GZ9vSHZyr3pRik24qaNtPvQaQRqxaABxUbcbFUl86iSXhSpnMXRV5wkhKqkjnach7gBwAbyPLtSJYfvoD4lpmhApn6eZQ0k6hCwqJI+iJsBIQAcgiCMtcOHKkk3j53b1X8emyrZRh03y0CIWA8KRfX8Xigk16zc60mzj0GVzMtxi0yVDBLcKqgRMeq4DWyq/zzPxLXR0WZDzDM6Zo0XVZIRZKHPmK3jxgni1DnkFtTjIWIsbyyUMmRLYbKJrW91/TGZGxy9AHckWkddHR7LTTKHt81ZZEolYPbs+uMxqZIcSWfZceMaZzPoi7jp1OSEeY1JUZsvBg1oSxfg9rjulRxqWjOIk+hoxxzEjR53RdyOulVzkgfykzdH+tQoYiFu49LX1hu2nLyZzFi3fE7zakXS9p0Qt9fS18MUjtsbPp59HzvHzcZqlDpNQBFIx1IMtsZQoEpyEDdXx02r1EychUEXx42Zf+2D7HMQN1uqJMexGiZRJW2MI06yDSBuLU+qZYlxktG9qGNb0HGTh7ltzS+OUhIXnZkzB5Apw7S7qnk4E62OkKfg6rhlNoMMVclmy3HLzROjffegd2kLcPuIk+RRJT1odbGpkpkcN8dyADracd6zJP28s+M2ejf1OaEQNyX9alh67W0V0zg5biHGjBYZL7hfG4ouiuLpde17OG6byeaR5t8Im3I0MPHN6XurcgAkwEA3xNR8HDexlplEmQSyYl0DlMHWiCpOEogqGVOcRLcu+bISao5bDsPHq7SGLsdtXPraB3HTXXcfqiRHnMS3ht4QMCfH7YUXXsB1112HZcuWZY4/9thjOPLIIzF+/Hjsv//++Nvf/hakky1rgMkLxtH/qj8negFuSdrdxmyokrZ0Q1vEzXRturuTelLU8vbvHz6VfB7DcaPRwYiIm1Mdty2Y4zYUxEl0U7iXAmEeZc9TnMSUjyr/pm7MCNqxbBzHbRjNP7G4rzVn2bBshspx082RAnWzddwGGIibFzUt5zkFyLWxbDuDuOkCRD6IG9k8qhC3QgHYjTAlbPrPQSAyz5Mj4qbb4APuiFsjC3DnUSWt5186x3Dmd1fETZf24Yu4ifuaV2O0Yj/mhQOvG4+izhpgX2st41jp5Po9qJIcKmYmmOCw5xgC5uS4XXjhhTjhhBOwYUM6yWzYsAFHHXUUbr31VqxZswYPPfQQjj32WCxZsiRYZ1sW0eikvtdZwHaH1p8zZKmSMuJmmSzMESex2fTMnAlcdVWKvOkct87O5Ly3vJV83kSIG53UdRsqH+dnQ08a8dNG8h3HZCUH9QHiUyW9xElsCnCHRtxo/kYEqiQnEu5KOwaAvfZR9yXXRIMMxw0VB0o2Qz1ROG59r9u1zwqy+FDTbBw3H6qkZp7xynGjVElNvVnXeYaDQLgibgMDQF/1vg62Je9V1iiqZOgC3PRWrlml//uUbXOokgEQZg7iZi04Q0p3aMVJfAKWFiV2bFFaW8TNmSpZ0AfQfEsxDAFzctxuu+02TJ8+HTNmzKgd+9WvfoXly5fj+OOPx4MPPohvfvOb6O3txcUXXxyssy2LaJnNmk71sYGOm48IR91mUMq5sG2bI05i66DMnAksWQLMnQtMHJceLwPo6kqOL1mSnBe7Fk/GcbOIDlIaUIeGBuRDR/nnCenr0Ihb7BpFMcVJKpX0fBZV0gNxUzkQxbY0gLHiDmCjZUH73By3iLTjzk5g3/157cuW5ywDWaGCGHOkEBAp99sJlFBklFO30DpQwXHcRLmXJqNK0s2jSpwE8AgQMRwI25zRnp5kfZg6FVhbRV6XLkvez52bfE4tBOIWg5WgW1fF33fY4emxP12r//tUxkELaRDWmoWTQw32QdyoQ5snTgK4zzPaNbWQfuY1ZjjXxnafx5hnfFk+Q8CcHLeXX34Zu+66a+bYDTfcgEKhgIsuugj77rsv5s6dixkzZuDvf/97kI62LLJxaDoNVZUMiCzJOW02qJL8fRZVkrmAdXcD554LXHFZeuyznwOWLUuOd1drw8WuxVN0RNwy+Ru6UgceC/vK+0g7DFqE1YYqdo2iiOIkGbRQF3WMWFwWyC6+zyhk+Y3tBxAnAdS04zxxkoULgbHj1H3JMxuqpG3bQD7SCWQFSmzokpn5PUdiHHBAT3I2skB6bWzbjk2V3PRK+jqm48apO5U3vy9aBEyfDsybl6iqiiYHkLyfNy/5fNGi+vabTpxEwWTJ/H1kfBeh//tUxrnurkwTIN+BKHaiFjC2ddw4+aiu5TUqFV6QJeqYCSEoZlAGb4mTqG3VqlWYMCFbk+TOO+/EXnvthalTp9aO7bPPPnV5cC1rUmMVyB6iVEl54vQRJ+EgbraTBQUEt+tKaGDU2iLl/tXad6zjRhWndIn3oaJfrEXANfckAg2IE/GFq+PGccYjUiUBYPon0te2xZrzaKo2TqeJdkxvmaAdz5zpT681OW6ZexoDcXNUlmTNvz45RZzNYBNSJQc2AaseSF6PmBY+aGmtbmiY3xctAk4+OVt0XnSXPia9vcl5wrlxRtws88R8ygEUO+r/PnqZ6SMn/30q41x313UPYOReF1Kny5YqmXHcGFRJqzxdel10pTXgMWYYOW5BaJ5MxM1FyXoImJPjNnLkSLz2WkoveO655/Dyyy/jsMMOy5xXKpUwYMNLbtmWs9gLO6cAdyzHTZ44fRA3bY5bKAUsFQLhwTmPmePGQdxC8c11UUvnTTjH+fGhjtlSJW02nAzELWYdNwDoJjU5XdU8ASil422dTko7HkuodCraMeDhkNvkuMEe/eEg+yEQN21gLoD8emyqZFtgxG3FHel1n3KU/rwg84xHrlVPDzBrVvYYbU71tVmzku/RTbhNXmRmkx9DnKR63YudCctE/vvorVT9vPj7VBYbccujGwIpzdEacaOB4sBUSc7cDqT7HNsgd6MQN848I/dnKzInx22vvfbC7bffXnPefvWrX6FQKODwww/PnNfT04Ouri7/XrYsvrEcN58ovpikNXV+AERTlZSV72Igbj4FZnOpY3Rht+WEW0YercRJOFTJQIibLp8nZo6bl6pZRFXJRiJuoUVh6Pkha9AJ2vFZX0mP/fRn9bRj+XebiSrJEUHKOG4WSKe14+ZKlTRRmAKoSrYHznF7/a70ddc79OfFpEpyEOb587NIGwDQR1P1td5e4NJLs/fblZUQRZyEKGKq/j56K1WPnPj7lG1HXPcAHjVYiAB5USUDi5OwitkDYfIidWuHDyuBMc+0ygGo7bTTTsOmTZtw0EEH4YQTTsA3vvENjB49Gscee2ztnM2bN+P+++/HnnvuGayzLYtoLMfNUcSCts+ZLOT+cMwkMb79v2ff207SLFXJItk8+CAQigkp49CGFG2pmusCxqFKhop+6dTWMg5zxBw3H6pkaFVJluNGN2sRctwa5bjZOp0Fch2nTqunHQPuzIHoOW4MxI0qQtrMwRzGg1fwyUKcxPaexqZKCtMpSgKBqJKc8a5Y9wYGgAWKPNI8xw1IvlfIaV9nmQCOru8BxEmKneq/T0eVpLZggVptkpVbGMBxM413Z6okA3Fzve6coBzgkePGKZBd8NgrWcwzcn+2InNy3GbPno3TTz8dPT09uPbaazFs2DD84he/wOjRaf2H6667Dps2bcIRRxzh1LGnnnoKF110EU4//XTss88+KJVKKBQK+Na3vuXU3jnnnINCoWD89+STTzq1vVUYy3EjanLWEreWjpurqmShWI/ojZwGHHGde9scxG1gADU+x+YN7tLFqgXSK4l6S4uTBOKbh0bcYiumWVMlbShMHKpkqDpunGsTs/B5DKRzCCNumbwci3mMVUfT1aFlCh7UqGOWc1hMqmReMfjaZ45j0lacRDVHLl2aCHPIxnHcli8HekkfbOaCfsvAnCtVslJS/315VEkg+fuWLq0/HpMqWR5Ebb7mOG5RxEkCIG66eYB+Zp2awQlYAjXXI4Y4ic+6PUTMdGW1VigU8Itf/ALf+MY3sHz5cuyxxx4YNSpLYdh9991xzTXX4C1veYtTxy655BL86Ec/cvquyd70pjdhv/32U342dqxmctoWjAuhtw1PNgwxELcQqpK6xXfqe9PXIVUle3oSmseCBcB3+oFhAJ58HJgzNakzNWdOlqZl6jugcdw8ZItjipNkHLfYiFtox60JELethippe22EAxSQKimMpebp6lwxcty8ygEwELeMhLnNZpM6hTrErYgEBa5YOifk7zRuZAV1zDLoF1NVMq8YfO2zmKqSOc/q2rX1x4Ds7s10uwZJINNmI05zKDsnqc8JIU5S0VyXPKqksHXr6o9R9oWWKkmcIpt1L8NIMOxnRC23cm8yLo2iRsQGYlIluYhbgBy3vJqOlQF3quQ2Xg7AyXET1t3djW7NpnS//fbTOkgc23vvvfHFL34R+++/Pw444AB8+9vfxi9/+Uvn9oQdf/zxOOecc7zb2eqM67iVRgD9q+0X30ZRJbWb8GLyQJf7/XLcKDq1aFGSIC24+WKhaUMqXXzhhYkEuRBGMPUdUC8yPpQOTnK8szgJjcgGRtzkJHrdhsy5HIBlHTdbyeXFP8lvn1UtWtW+JVUyhjhJEKokBy20pXlGzMvh1HELRZWMibgZ5+BScs1jbAbFRrncn1x3Y0SeWMwcNw56Dbg75NaqkorxPkYzt9LbaHpM2gm91mYu6F2Rvqa5ldRClAPQ1SrjUCUBgDC9lH0JjrgxBT7kWm5amq/cfkxxEocct0pFr0sgG+e6AyTf1XbtEOIk23Y5ACfHra2tDaeffjoWyjV0JJs9ezYuu+wyJ2XJj3/845n3xaITq7NlXOPkQABp1DQKVTKAOImxOG6nm+OmioQL6WJqYg5SSRcDeuctT1XSS7aYIUvfKFVJq00ycwPmivyULRE3m7Zf+guw5lF1O5n2I9Zx83J+tnCOm08NupiqZtblACydCIGmF4oGlMAVcWPO74USgH5LqiRzI1siDsTgJqCo2HCrjEOVdM1x4wRB5M+iIm6KdW+XXYDJk+vphHmqkkCiqjp6HLDK0L7OYiJulUo6foeNUv99HKpkV1dyferaj7jusQMVZLwPWDhuLMTN8bqzVSUlQRvT36lrn+W42T6vHKpkqxyA0iqVCipMWVnueS3bwsblPvtK3MZA3NY+Bax5PHltWnzFJGgtTiLluKmkmYEs4iabUbo4jyoZCHHTJcf7Om7FTgO1y3ETzt0chaBKcuq42Wxkn/l59v2WECfxcn6GsDgJp45Qs4uT6NA2+TMb2jQ3MOei/OiKQHAtKlWSyceLOc/klQMolRLavWycHLfZs4ESDfy5Im4ax811jiz3opYn1j5S/fcB+ezk2bPVAkQxVSW5473kON45iJszAmyJuMnfyTNujpsr4tYqwA3A0XHj2saNG9HezvTUG2T3338/zjzzTJxxxhn40pe+hF/96ldYp+JIO9iGDRtY/5rS2DluROKWu0gObEwXX90CIP+uzabk9g+mr/s1+QBAuumxFieRKEwq6WLAvMhwpYtVE5JrlB2wz3FzcdzaDZFz502yNKF3Hak+L0gknKGYZrMAyFHS4OIkDaRKanPcIoqThMpxC15HyLaOm6M4iclxc95s2iBuiBPFzyAQFoyNjOM2Qn1OkBy3CIgbZzxyAhVz5qRF5oXl5bh1dgJnnOE+F8SkStJ72jZS/fcBahZLrU/Vv09lMamSXIQ5E6iwGO9RxUm4fXcMEHFz3IqOjps43+QUbgPlALxy3Ey2evVq3H777dh+++1j/YST/elPf8Kf/vSnzLGxY8fixz/+MU499VSvtmWBliFldEI3weIZustm/UJKbdPL6evhhvHgusCsfoR3npioremG5PxKSS1dDKSLjG79X7AAOPvs+ghhbh03x7yWurYZssg214ZDf3VFfuQJ982/0LQfsTAuFWuwWQDkjXdwcRIGSpAR+rGlBov7VNCjtF6IWw5yFV0UpklVJcV90qHX8mfOqpImRK96zWJIjLsiEFQ2XnvtXamSzBy3mAGiAiNQ0d2d5EpTej5tTtWlhQuT7y13ddyqVMlCEWgfpz7HNbhFHffSSPXfB5hZLOLvUxnLYfZc9wB+oMIKYbakSjYr4hY6x61SRi3AyUbctk6qJNtx23XXXTPvf//73+OWW25RnjswMIBXXnkFg4ODmDNnjlcHQ9kb3vAGfPvb38YxxxyDnXbaCQDw+OOP47vf/S6uv/56nHbaaWhra8NMk4jE1mxsmVg54dbWcdvB0LYHSsCxtgCI24vL1dLFQH5AXkgXT5+ePZ7ruLWj5kBYI24Ruf415IQpzfvidcCGHmBkjsombRsAtn83MGpn9XkxN1RAKtYQG3ELripJ76mts8+plROg4HwMxM1WnCQ0VdJHVZKDuLkKFdkibs6lNbgbWQcEQoc+AM2LuIXIcRMm9iZCEIsOQ9qlzs6sIJYv4tYxwRDACYC4iT2E/PcBasdN/vtUxgngRM9xc0WtGOWHXHO7uWih65ixznFzRa9z1mxh2zri9txzz9VeFwoFrF+/HuvXayS6AXR0dOD444/Ht7/9ba8OhrJTTjml7thhhx2GP/3pT/jMZz6Diy66CJ/73OfwwQ9+EB0dhoXNYKbrIWzt2rXYYQeD87KlzJYqCSRRMx2FgtrmyIgb12pUSY8ct/WGfploHcJUtNy8RaZQSCbwwU0OpQwiUiVZgjDS4vDEhcBBjDIfHERM/sxqEbBp31KsQV5stbSOiKqSrsgMkC6+HKqL3B+Oxcxx41B1XIu2x6ZKNgpxy1OVBCJRJYnjZUOVFHOSbhMLuDtu4CJurmIQdLOpExLKyXGjNnMmcMQRCe3+josAVJV9y0iEOmbPTuiDFIlyXVf7qoibaY13RdwGNXmL9O9bsAAYXF79Hej/PpU1g6qk63XP5KNq5gLXOYyb69qMOW6cfFHAb/0YIsZ23JZWixxWKhXsuuuu+MAHPoALLrhAeW5HRwe22247lFRJo01o55xzDn7605/itddew1133YXDDz/cqZ2RI/NVgwYHLRfzRplNHTdhXPh/40vpaxPi5qMqyTGXaDKQ3SCNNSxiJlqHMKV0MQdB6XRz3Kxz3CwoHSx5dGkOWHUfr21udC024uYi1iAvtltEVdIjL1IsdqZoctOKk9gibg5USR36kHzo1jbQJDluEcVJZFVJrnEQt9p1r8BOvrxBiFuhpO+T7Xjv7gbOPRd4bl/gjv9Ijn3hy8Ch89RCHZnccYt1Vah5lgw5zEEQN2nfJP6+s88G/jAZGFgF7NwNLHtW/feprBnESWwc8kz7jGfVeTw2SY6bk+PGpWG2ELeaCXohAJx22mk4/PDDM8eGsk2YMAGTJ0/Gyy+/jGXLlm3p7mwZs6njJoxLd2kaxE0M9wqsCmLSSX3XGWrpYiA/x00rXcxAf9qGJcphzSROUksUtkDcJhxk1zbA31DZRB650TsXsQb5+dEuMhFVJds8qJIcxG0olAPQqvi50owYkHrmuliiPxzEzVVV0poq6Ui/Mm2oXMVJbBC3pEPIPFsmi53jJsZjDISgQASNJk/ROzUuKQiVMglUmOYBV8eN3H9diYdSCSh1JsIrbQW+0yb3JSriZkKtmBTYuvYZz6orHXBI57hxqZJbP+LmpCp52WWX4WMf+1jovmwxGxwcxJo1CeVgtAoR2RbMlSrJsU2vpK+5jpvtZpNjzouviIR3AO3teuliMa/o5iuOdHHeRtxanISzkXVEZ1wQNzp+OG0DPMoFYLnZtOTLu7ZN25AtpqqkK6VuYADoqyIc5ULyXmVeqpI5uWKZTUkMxM1yHhgYAJYsIdcixgZ/kARCmIibs6BCE1AlQyNuQdDryIibtm3HDT57DnPYhLPVAV3FSRhKoUB63fo2Sc9gjnFZLMJiqEo654kxhIRiq0rGznETc2i09Abxna0TcXNy3Hp6enDllVfiqaee0p7z5JNP4sorrxwSCNZ1112HjRs3olAo4KCDmIjA1mZc7rOLMhg9r2RQ3oyNuLk+0FTVDNBLF4sm21Af8DVKF1sgKDEQt0LBLf+P5bgVgF1PJ9/hLrzcTUlEVUn6mdVGVhq7oamSnLwc201JTw8wdy4wdSrwWjXQ8tKryfu5c+trEEZF3DwWXlY5AGa0ml6T3XcHNlUDVU8+qb4mgH9wCGgSxM1xM8hWJGYG/coD6T3iIm6u6HXMOm5GAae2tP9WlDomuuGyrlaY9zQGVRJIn70Xq2kWK15LnkHdfCQbB3mn655VEKSBjltoqmSz1HFzKQfAbnvrLwfg5LhddNFF+OhHP2osrl2pVHD66afjpz/9qXPnbO3iiy/GHnvsUSfr/8ILL+Cqq67C5s31D+cf//hHfPzjHwcAzJw5E1OmTGlIX5vOYiJuXPg8tqqk62QnNkhi4yCki2Wjc4T8Z5qki1lFWh2FVbiUQ5dSCRzHDQB2naXuD6ftvPaD1FfiIG6OiyNto75x+iV++0KmGzBEk0vpZ3mI26JFidLpvHkJBVg0OYjk/bx5yeeLFql/N7SqZKFAHGaLjWz/euCl69P3nHIAOnqtfE2A9Hb1D6qvidy2q+NWNDgoNYVZRFaVjC1Owgz6ZRxaTo4bYCf0Q841Ur59qZI5c6RwjmwQZvZG1gVx4zongcVJgOyz11e9P+Ly6eYj2dh7juqYiqEq2ZSOG/e+uoog2ea42TyrDjluWylV0kk95MYbb8See+6JPfbYQ3vOnnvuib322gs33HCDk7Lk/fffj0996lO198888wwAYP78+bj++nRxvuaaa2q14lasWIGnnnqqzvlauXIlTjnlFHzyk5/E/vvvj6lTp2LTpk14/PHHsWTJEgDAkUceiUsuucS6n1uNxcxx40S/5N+1megKRd4EkKFgOWyqaCRcJV0sO279yJcuLg8AT5yfvudQJWMk37cNB/rXhEfcALfrzkbEAiBunBw31zyC5Ac0bTugBJUy8PejSBumzWZn8oyakJlFi+prJ4nLQS9nb2963syZ1fEnatwFRtyAZNEfHLDbyD75g+x7V6qk6poAKYoubpV8TQD3Df4gE3ErFJLPBzfbbagEo6JQNDsRNWc/gsS4y9rBqWkFNDHixqBKAsl1K/fGySfKrKvMMcOWdQ+Q40YdN/nZ0wm5qp49amzHzSF3nO38OOZasRw3V5VTbn6eo6BNzBy3VjmAmjk5bj09PSzlxd122w3/+te/XH4Ca9euxV133VV3fNmyZRn6ZW9v/kTU3d2Nr3zlK7jnnnvw9NNP4/7770dfXx8mTZqE973vffjIRz6CD33oQygWnQDIrcNiqkpynQdXVcniMN5GwDUfqkaVlDYOsnTxwPL0s+23Az4yJ1+6eOmV+j5Sy+S29Jo3MdRqk13BnHzvQsXkOm4u6AxbVdJVIdCyfR/HTbtZchAnWb9UasJ0T4XjprmnPT1J4KHue9X/VX/yrFnJmO/uTq5bZcAjxy0nL2dwk9088MjXpTZ06LVhYdddEyC9XTLRhF4TV1XJDOJmcNyA6nxn6biJ62ia2wG3nM6YOW6ZmlYRctzY5QAa4LgBkaiSDg4E9566OhCUKilYPKpnTzSp60Lm2SPGDRa7rHvcAtxNibiRto016Jqwjhs72Lr1i5M4OW4bN27E8OEm2kJiw4cPxzpV3SqGvf3tbzdSMVV2zjnn4Jxzzqk7PnHiRHz3u9916sc2Y2VmRDZDldygP4+aU2TQJspDHs43flV/nnPNL4PaG5Uu/tt7gVU3JscfuAcYw1Bd5aIEskog13HjOle2Cxg3qR9wu+7RZbqZiJ6LWIMcodRRil3ESeSNAov+qtngz5+fosWZ71X/V13O3t4kUHHuuW6OW3mQzAc5Tmc/7PK42oZnHQIXxE13TQBQxfmMydek1raFA8FF3MTn1igB03HLPKtM5V224+ZAs+cibjFrIgLuyBJHVRJI74vNRpNdM8vBuWILcATMcVM9e2L72AFgOADZ36fPHjU24iZSEGzK4AzlHDfS9zYm4tY0ddy4+8itH3Fzgpi23357PPjgg7nnPfTQQ5g8ebLLT7Ss0caOyLokOnMRNwdVyUo5nYyGTQbe9C39ua55ORw56lIJGDMhfV9kbh7kNoMrYEVy3LiImPw5W5zERVUyAu0iBOI28WBN2y4ogeQ1cBBsleM2MJCgxCozOW5AFV0ecMv/u/e/0tecucBm0zCsK/ueI35C76vpmgDpaqm6VeKaBMlxy3PcxLMaEXEDLDb59FniIm5cmn1kxM2lHIBV2ZEmQ9y41GMXxM3HcdM9e2vI6zGatsSzR42dniHmSFdUKXIBbp1zFaIcALvvTVLHjU2V3PoRNyfH7fDDD8fixYtx9dVXa8/5wx/+gCeffBJHHHGEc+da1kBzWdi5Dx2btuDgnNCJaIw+5xKA26aqTBCFXAqTA9WT67i5yoCz89CkHDpuu5y2Xa67bYFswDIvhxtM8FSVfMfNerlrl82m3I88qiSgfpaWLlXXIqSXQnerli9Pvu+y+D49P31t6rvJ6dTZMClIqMsD1W3CddcEyLBaleCofE2AODlugJtQUW1+z2nbJcjCLsBNHTdm3xuZ4xZTBCkPcROb6CgKfi5UycjlAKjjXhqpf/ao4zZW05Z49qjZsnxcHbcoiBsN4jSDOIkj+4mdm858XgfIdVm3gVeqplUOILXPfvazKBQKOPXUU/GjH/0oQ4dct24dfvSjH+HUU09FsVjEZz7zmWCdbVlEY1NpXDbhzMWRJikPMmmYgxaRapcoVUbVLIee6DJRy33WLcDORbKZGwc5hy63XSbVUP7tpqFKWtKMXKOaE/Y3nOhA75I3Xkan04DMrF2r/g69FKY/ed064rg5Lo4m1EU8SzaJ8Z1MdoduzOiuCZB13HS3il4Tue08s0LcHJxaJ6pkYMfNKXDGRNzos7T5Ff1psmU2jTFz3PICZw6IG1sIgjpuDlTJRpQD0D17HMcNSJ49avQ6PrNUv8kXz1JlkI+kOhXgDi1O0qTlALgosE3/RWmIdxNRrl/9Vl8aolUOQG0HHHAAvvOd72DTpk34/Oc/jwkTJmDatGmYNm0aJkyYgM9//vPYuHEjvvWtb+GQQw4J3eeWxTAxsURx3CwgbvH73Pw5mw2PS9+tHEMHqqcL4haTKslt3xVxcxIniawqyXEMK4M8JBLgL45OqpIy4mbKcSMbfLnvYzS8Iw7iBgCjR7shbtT61ug/c3FOOsbxztMFcHTXBMhH3IDkmsRWlQSIQ77Zfkya8loAt2h1TMfNBXH714d5bcv94Khtyt/htp8b3KreFxsVVTZVko73ZhEnIUGbtuH6Z49OEeMM7Y0enfwvNvn33p1+NmNPwybfgRLYyBw3V2Vcnbn03VVVMsRcQEtDrF6VHi/DUKpm6y8H4Cyj+KUvfQl//OMfse+++2JwcLCm9jg4OIh9990Xf/jDH3DmmWeG7GvLYpoL4saOUDGVDYEUdetfz2vbZsPjsshQJyYG4sZ13Kis1nNL9BFE2ZrNcQuNuDmXeHDZ9HDHO9Nxc1GVrIsgGspCmOguu+wCqPKPOY5bV1fyfV/Hrd/guNHcE65zwu2HbjzqrgmQXSlV3RHXpBGqkrV5rmKBikWkwjvRowIjbnRdWf2whXBWoxC3CDluUamSzHtKf/e5XwL9TDG6zBzZqX/2ODlu4tmjm/zB6rURt0q3yXehBDaqAHexw0D3dqWoctXDA+S4+TJlRGkIIVhDH09VqRpxX1viJGY79thj8cADD+Dll1/GXXfdhbvuugsvv/wyHnjgARx//PGButiyhlhtsjBMRIDfJjyPrgekjhuXKhkbcStbOIZtDouA3Gd5kRQRxPmXpcdO/qA+gihbUzhuzUiV5LZPNz0OC7txI+ugKilvvEyLamY8SueVSsDs2fXf4VAlZ89Ovl+jkcZw3OjGgbnZpP3Y9aP683TjUXdNgHyqZO2auKpKctUT4Ya+D1WqJBdxk9tbeR+v/WbJcas5bhaBCjYroUHlAADgxevV58kmIz+6Z49DlZw9G/jtb7ObfJ3AkrzJz+TVO9S4i4FacZ7V6IibZ45boU3vdAIS20TRf1VpCPp4qqbWWbOS720D5QCCFC7r6urCwQcfjIMPPhhdXV35X2hZ8xmntpL8uS1VMq9tACiNSv7nRkytKEYODkRsxE3uB71GNIK4klBLOqGPIOraz4v4+jhuJooR4CZ4YCsrLPcpVPtOtacYEVMgjDjJgKFPtO6galMyZ05SIJ4aHeKqYdDZmdQmBPwRN9P3TE6ntj1ybfY9V3+eaTyqrglgpkqqrglgd11U8ug6sw0mUOVdK0aFg+NmzIeKiLjJQYAV9TVgNT+Qvgxdx61SRm2wcBE3q/YdEDf2/Mvc4A/bLvt+gMmUUTk/qmePAnijFe10dgLve59+k6+bVsUm32XN5o5311pogxEdt0bluOWN97z+q0pD5LFBRGmIFuLWsm3Gahv8nCHh8lBwnQcg3bQMbOBFHp0RNwdxkhg5brJCpLi+Mk2ANke7IUcQ69rnJsfTTT7DQbFB3JpSnIQrmEMUIV0cN6M5iJPIOSqmPuU5P93dwMKF2WN0b6xqeuHCtNitr+NmMpeIL1cwx0T3Vl0TwEyVVF0TuT95RnN+8hy3DPWNMY9xEQIg+6w+/ACwhEHLjom4cQNnfauz7zcsVZ5WZ9x6lJkgi0OeLreOG+Cm/MilM4ZG3NqGATP+X/qe7ZArWAmqZ4/OQarld+FC4E9/qt/ki9ul605tk+8QIOIW4HZha9BzTYHo6KqSnnXcrJhb0tqnKw3BWS4XLADKJMq2LSNuP/jBD9DXZ3HzFNbX14fvf//7Xm20LKI1BHGzcNwqg7yJ1DXHrVkQNxndKrSpaQL0NNWfKSKIsrHLAVhy2mOLkzg5bg6FcQHzuKRRfhO6lWmbS0sLgLiZHDdO7b+ZM4Grrkoj3dRxy4y5zuS8mTPTY+Lax5BcdgqCcEWQcoJP8jUB1FRJ0zUB3BE3WqhaZbZ1uQaZqFVPD/DQo+n7E44Ddt89n5bNRWecHDdKlbRA3JwCRCbErWAfqOCqPgJum3wnVUmXHLecTfiEA0ifLB03mVInP3u6gKV49j70IfUmPw9xA5LvZXLFIua4WYnOMNaPEHXcuIibTb1I7l7PNBfoSkNwHLfly4FlL9X3ZyszluP2hS98ATNmzMD8+fMz0v8cW7NmDX7yk59g+vTp+NKXvuTUyZY1wGoPT86QcKK7iBw3BlWyjUSbOXRJV8SNLU7iIhoAC8dNMSmqaAL0rcp/FBFE2diOm6VTG1ucpFlUJZ2KBnMdNwdxEnnjZUTccqiSwmbOTJCVuXOB7UkiySYkif9z5yafUwcFSJ/nGIibL1XSl15Lr0lXV3ZabO/IvyamtlUm17Uyma3YBMf5EbRs6riJvzmPlu2CuHGFrTJOp2H+lRE3doCIibjRz0OrKQNuAiJOVEmXtmPkvRuQGfrsTepKc22HoX4+ytvkm7qzfDmwnqzTXAeFG6hoa8IcNzaS6pjjVqNkezhuutIQXMXjDeQ+bst13K655hoUi0V88pOfxJQpU3DyySfjsssuw5NPPomKRGerVCp44okn8Itf/AIf/vCHscMOO+Azn/kM2tvbcc0110T5I1oWwLgb/NiIW/uo9DXHcbNC3CJSdYAwiBs61RFEXeSR2oIF9bSmCtNptr02zShOwt0Myu2bFpmoVEkghXK4yokWiJuN89PdDZx7LnDJD9JjX/46sGxZclxQAalZb2SZfyPgny9qdPaZ41Fck2XLgLvuTI8f/S79NWkfl77evDy3yzXL5LjlIG62CEreHEZp2TR+ID92Olp21DpuzJpZdYibA7JvUmgF7Mc7N/gEuDlXbKqkQx03G3qtz33VoXn02eusBpNm7Fw/H+Vt8vPiYfRysKmSTDQyhKqkzrbmHDddaQhuZsHoceQ8P6ZgsxpjJw0cd9xxOOaYY/DjH/8YF110EX71q1/h17/+NQCgWCxi7NixGDNmDNauXYvVq1fXnLlKpYJp06bh05/+ND796U+jo4OzkWnZljFBlYyAuHGdQiAbbeYkOlvloPkW4LbIcWMvAmRT9db/BXpeVUcQ86iSQBJBXLo0iYwLC0FdUJkz4haaKulYDoAbDfcSJ8nZ8ADJ81YZ5CNuNo4bhyopG1VznbpbovamM1tVSbnvb/i4/txM3wNTJW3HY6kE7LIz8KDom6HtUW9IX69/Jr9tYRmqZB7iZpmzZELcZFq2yXETNmsWcMQR6eY58ywFdtxs5hlq1ohbwSwkRH/fpe8xctzYCLNnjlvotYO2nzdHlkpA52hg4xqg2Fs/H+Vt8vO600meNSeqpMm58sxxM7btWA4gttPplOMm3SRRGkLeB+nKAVDr6gJ22R14oPreppTBEDK2OElHRwe++MUvYunSpbj66qtx8sknY8cdd8Tg4CBWrlyJ5557DitXrkS5XMaOO+6IU045BX/4wx/w7LPP4gtf+ELLaWtmq1SaJ8fNhyoZG3ErWiBuXGqEaL99DDDtA/oIIgdxAwCZysxGUi0XAu4mGXAUJ+HSgEJQJbk5bkyqJEcVrPbb1SnYlSppyruj6Ap3ARsg46ekknEjZo1ASH3f/3z9uS5UHe5G2QmlJfdn9Vq9aMdo4rits3DcMlRJmxw3xrNqKjUg07Lp5dDtDmRadkzEjfuc1n0vcJ1Lek6MHLeiwybfBXELXYAbcMxhZjpugFlpOq8epWla7eoCJpDvhi4H4KIqWanwHDeXkiByP9qYiFujc9x0pSHoI6q7r7NnAx1kD2nT9yFk1qqSxWIRJ5xwAq644go8//zzeO211/Doo4/iX//6Fx577DG89tpreP7553H55Zfj+OOPR7HYEq5sfiMUptAbfHqeNeJmSZXMzXFzKabsirhZ5riJiVgXQczLcRM2Wtpsx6LANqU4iYXj9vKNvPajUyXF/OgoTrL9u/TntpOxsPIB/XnUaAHd9oiO25R3AR3j9ee6oNdcFNUWee/pAc77Tvr+7//Qi3Z0TADaq9QuV8TNqhyAhziJSr2N3krTY01p2VEdN4sAke57RmMyTYB03Niue/S72rYblOPGbtvGcXNZV10ct/X1dGvdJp+DuM2eDZRocIvrXLkoM7rcU8P6Ia4JwC/BIPfDWMqggTluquCZqjREHuImyrIU24hwVstxU9rEiROx11574d/+7d+w5557YuLEiSH61bJGGldZC/CLmrIKcFvmuLkibmxxEoq4RRAnEVRJgebpIogcqmRXV/J9ak7iJIxrYxMJzyu2KVt5EPi/U8n3Aztuqx8FVtyRvg9Zx40bMRVmi7jJEfO9vqw/d+px6evFF/PapyIPL682S8FTx42Tv8bdaAJuVMna/S+Y5zGbMSNEOy66KD0mbpVKtKNQAEbvlrze+AIfeadoro2qpDVVkmxUVcIOdBialgJBy5b7EBVxM8wDB/xQ/z1O+xynUDzPToEEG1VJh03+kM1xs1GaLqvRJdUmPw9xq23yXcoBRJTU5+agtbs6bpFz3MRcbVWaSTFmVKUh8nLcaFkW8fstxK1lW63FVgi0KsBtmeNmg7i5UPYy1IIIOW5iIRIbKl0EkYO4zZ6dzQHIUGC3YI4b/X1O20uvVH9X2a5D/txTP9K3IZstVbIyiBqCbaKipD9e/Z4D4nbwz8zozLg3AuP3T15veM7cbk9Pgh79+rL02Hs/YJaCN9XiUZnNZtApCMKcZ7hjnYp2mOq4yaIdY/aonlcGVj/M6bkd4haqHICKls2hSgoTtOwKM4rvqy5rcvZ3/xRwyHz190xWsUHcLDeDVuIkDtLxbOVduiZEKAcQWlVStrxgrmmTr+uO2OQ7lR3hBiocSg1k9jNMxI2yJPKs1veCOVc3prAKwBszcmkIHVVSVZZFrB8txK1lW61lJJFjipNYRNeAuOUA2OIkzAiV/LmtqiTdqKoiiHmIm4ggUsvk/ARWfrR23AQ6w7juK+9Rf9fUrtwnk3VMkNowIW6WVElu4nrtt8Xz5qAqydr0iP5X9PlcAlWaNw+ZgbYJZil420CIzWbQhyqZS9NhoMuyaIeqjptsopbipEPTY6/dbu6LMJrjZqpXBtiLTegQNxUtmyNOIkzQsjNj3uRAWCLv8nlG+ms7MO1D5HsRctxsN4OZZzWP8UCeBy5KG5UqaTHPuOQZu1AlAX0wV7fJl59VeZPvFCAi5xkDFYX073Np2xT4o/nHLoib1V6GO97L6bjJZT8x5wJaGmIc+ZsHkVOqpoW4tWxrN5tNuNMkzdxQARI1jZF0G7scQEzHrVJJJ0UqfKKKIPYhXYRUiBulCdTaj5iHZuu4FS0QN3njGlpVcth2/PZLllRJ7qJeO8dDnIQTCMlzUiiqBOgLcKuk4K1RWuYGH5AoTJbiJCEQN1m0gzpuOh9biHZs99b0GNdxE0GqtmF2m3zOs6pD3FS0bC5VktKy2QgEobDGUJXMqG3aqkpGQNxcxUmCI26WYjYA3xkHPKmSHMeNycKhm3wZcdNt8mNSJQFCr20SqiRXFMZJaM01iJ4zZkRpiO9+Oz323fPMpWpaiFvLtnpzKUIKxMkjsG3fCnFzEVaxQFAyeTkcx20gvfay2pscQQRSuiT9M1U0gVr7ESmwNmgebZ+zcZAdN99iyrLJaolBc9wsETFbcRLb9k3RdhlVArKOm2rNE6gS4PCsMmXjATcKk4uimQqFVIl2cGsILVgAjJyROijrl5r7UvtN4bjl5LcBDlRJDeKmomVzqZKUlu1Cq4uhzMhBUuvar95MzhxWJJtBVk6nRR5wzHIAxTbUIg9O5QBiUCVdEbccFk53N/DNb6Rjd583AYsX6zf5Lg6Kk+PGve5Mx61tOGr31IYqyVU8dkILHYPo3LWvQJ657Xc0l6ppIW4t2+qtwl2t4UY3tCkHYLsINBPiZiv/m1cYl0YQu7rSjfQwmGkCwqwivj7iJBaOG0d+Xb4WoamS8t8XMsfNRkkO8EPcWO0b7quMKgGA2If0QY0sUSl4a8fNNceNGwlniiBlkB/FWFeJdnAQNyAR7Xj+hXTclBmsASClSubltwEO4iQaxA2op2VzqJIyLdtKgdDWcYudfy3OY2yFMmOScd2dVSUdqJLc+d3FcQstTlIpE4eZ4bjZokv0uo8em9C8dZt8l3nGZrzHQtwKxXSuiIG40d8PnZ8H5AfPVGYz3luIW8u2erNC3GxzoSzaBuwdiOgFuF2pkowJg6NYKWgCy5YBXdOSY13jzDQBYY1C3EKLk9RRJQMjbvLmxYS+2pYDsFlcANSK/roU4GZRMTUoswpVAtLNuunxEFLwtkEcqw2PC1XSQgSpNh4V/VaJdpjESWRbty4dw6Y6e9QEkpBXww2AfTkAQx03mZbNieHJtGyXTX5sx41dlJhZvxSwp9U513ELTJUE0jETpRyARwDHOu+d4aRYXXcX5UcbFo647hFomKJcS4wcN3oOu+90rxQjiO6gStxy3Fq21ZprOQBOpMQagWgyxG0wYo5bhlqQU9y7VAKGVSOPhX4zTaDWvs2mp4nESaxy3EI4bobJ3YcqaSrUXDNLcRJbxE1Hq1OhSgAgmjRdSiEF70WVtNhQ2ZYD4GwGTdFklWgHF3EDEtEOMW64tf8EmtvGQdxsxUkMiBuQpWXT2yjvG3W07MwcH9hxs1k/CgW7eYb2g6MqSdcXzpjMbGRjlAOgdHWmY+iU4xYacbOke9NngiNYZlP7z6XsiJXIUnVd5xbJ3riM3zatb8c1G1GYmvMTmSoZI4gjfr9StgjiDB1rOW4ti4zMWBZQbVSOm1M5gMCOWx5VUjbrqOlQFSdxpEqyKRfS9Zv4FkNfLKiSPT3Aheen7//6N32hZmHWVElLRE8n2KBClQAe4gYkqJLt8xS7HIAN4tZmyIFQiXZwVCWBVLSj5rgxNmzlgbTvnHkg44xzxEkMiJswQcs+6r3pMXEL8mjZ3HIAQFzEDTAjqcr2IyJumaBijlKoV45bTt1CgCA/TZDjZjMPANkxy3GubHILnSjZTEl9gNAZGQ7ni38Gbn1f+j7PGReOW/86Xs4lQBw3G8RtC4uT1M6zCfw53NchZEEdt0qlgiuuuAKf+9zn8MMf/hAbNjAGa8uawCKKk9hMonL7nI24M+IWgyrpo/ZmsWGLEZGNTpW03LBRy028F33i3lNy3hHXmhdfbjkAIak//6fkd6r/myT1rQtwW0arCxrETYUqAanjlnebRo92GDOOVMkoiJuBSqMS7eBSJYVoh3ieo5SQ8KFKGhyI7m7gpJPT91/9glnYQRilg3JlwGNs1gCSyxUZcQtFha997pDjZqPWLK5djHIAXlRJS4EljhiPFaXOgSppJawyMm07b0xSpw3IH+/CcasM2OfQ2eS4sZFIxxw3F/Q9BmNjCJmT4/a9730PEyZMwD/+8Y/M8RNOOAEf+9jH8OMf/xhf+MIXcNhhh2HTJiZVpGVbzlypkkMZceOiMzaOm62qmc3Cnvl9Q00ualaUEdvcQsf7ysqFkpyY0OUA6MYhLxLOKQegK9Qsd0clqW+rKmmbH6JD3FSoEpBSJU23SaBKMXNb2izzRYH072OhJznRZFm0g4O4UdGOmjhJb75TbuPQyudYF+DOo2QTWtqUcWZhB2H9a6rfHc1fP6IhbrbtOyJuLKqkxXV3KQdgI/pVo0q6iJMEDvrZIm62yo8uIhaAPVXSxnEDeKgbtbzrLnLcAD5d0gZxa7NE3DLspMhUyTyk0wVJHULm5Lj99a9/RVtbG4444ojasX/84x+47rrrsN122+Gzn/0s9t13XzzyyCO4/PLLQ/W1ZbEsZjmATJ5VhBw3Z151DMTNMvfEJscNsF/cm1GchOUw2zhuHlLUACOanINuyJL6HJXjjKR+ZMRNJ3qgQpUAXo6bQJV8ctxyqZKWap5Aem36BvJzC01USaBetIOT40ZFOzK5kTkbB+uNbCTEDZAU/Jgbzf4q7bZdg+JSazqqpKuqpCXiZuO42aJiNo6bSxmc0FRJm3qOgEPueGTETZxnW4NukDmPCePmuAFM0ZYKGTOxVSWbiCrZQtwSW7x4Md74xjeirS29+L///e9RKBTw61//Gt///vdx2223YcyYMVgkU4Na1nxmg7hZy8bTSTSCqqTNZOFUPJw6bnkLmAfiZuu4cRZ3K8fNssadKwXWttRAXvtOznjAxHtZUt+EuAmjkvqwVJUMWYBbRpWA/Bw3iipZ50XaKKaNS18LREdnPT1JDtb6dcn7Z57Lzy3kqI5R0Q5THTeVaIeNqI3NHCOfYy1Okoe4WW4GgbiOm624lTVVUiBuFgW4Ad5mcNAiMOeS42ZDlfTJcbOZI1mCZZZUyQq5N6+9nCP2hPi5UM2CuNFnlVPLzTpARMRJODl00cVJWjluwpwct9dffx077LBD5tjtt9+OSZMm4cgjjwQAjB49GocddhiWLmUWIG3ZlrOGITNbGnGLXQ4gco6bbW6LlVx0ZMTNRpzEhipZ7EDN+eEqd1mpghnGjEpSn3bV9KfWJPUtVSW5RXeFmca8jCoB+VRJiirZBkJsNg4d49LX/av154ncwnnzUCvQyskt5EaThWjHx05Pj4lbZRLtyAgq5DlulhtZ6wCRBeJmLb1eBgaqm0Yrx42LMDcIcbMRtAGaI8fNqj6quC7NUA6AibyLgMxHP54e+8GF5oCM3H6MXKhGOW5Wwiqc/YDFXkY+hxUgskHciOvBDuI4qErK/dpKzMlxK5fL2Lw5nZQ2bNiAxx9/HIcddljmvPHjx2PlypV+PWxZfLOiSlo+cNZ1rTzKAUSpHdJMOW62jlvECFjM3BN5U2f6TqFgp9wFWOZvGMa7SlKfQ5UEiKS+TwHuAOgMRZUKSFcE+ZKrUCXrEhIWcwF13PpWq8+huYWAvu+q3EIbuejubmA22TyefHK+aIcV4mYpTtIwxI3xPFHnLgpV0jaX1tJxQ0TEzSbHzaUcQDMibqFEimhA5nWCuLfBHJAB7IJbTuq1Fo6bbSkDarlrk2VqhnUurUd5oxjiJDb3tYW41du0adPwwAMP1N7feOONGBwcrHPcVq1ahQkTJvj1sGXxzYYqCdgtvq4iFuz2qw9loWg50TkIWdhMRhzEzSfHjVVuIGJxcptEYcCPKpmHpNUcNya1y1qZUUO/yivUnDfE1q0jX3ApwO0hTkJNoEpzz0yPiVNNqFJMUYK2EWn7KsdNzi0EUrSQk1toXUyZNNq1fb5oR0bUJmf82jrj1si7RWHcDP2K8Tz1kU11+9j8871y3Gwo2ZbtxygH0E9ympavNFP8Yue4iTHjQidvdDkAOSBDu0z/VKXYExpIlWQEWWIibtYiRT6IW85+ozwI3POJ9L1VoDjC2tdC3Ort3//93/HCCy/gU5/6FK699lqcddZZKBQKeO9735s578EHH8S0adOCdLRlEc0GcaPn2CIzMQtwcxCr2OIkmQKwgSPhgP1E3VSIm4iEl/P58vJEnreg2hYitZaj1tA8VZL6XMQNqErqe9Rx8ykHIFt3N/C1s9L3B705H1WK6bgVCinqpqJKyrmFHNVHmltoG03OzJEcdMaCKumjKmntuAUWPOgnwYtmECeJmePG3QwKit/3z0uPfWxOTs6liyy9i6pkmTfX2KAbIcsBqAIyOsdNGA3IAHbBYidxEhuqJCknE9pxs85Lt62fZ4FGPncV0Ps6aT8G+6mFuAlzctzOOussTJkyBT/72c9w4oknYvHixZg5cyb22GOP2jn3338/XnrpJRx66KHBOtuySJZ5cAIjbq5UF277ZQvHrWjZNkAmrIJd/6PUcbPknDuXSrAVJwmNpEobCzbi5kKV5Dg/GrRQJanPRdxqkvqRxUk4iJuq7XET81GlmOUAgFSgRBYnUeUWmsRDqIncQuuILG2UMUdyykjUmo5cDqCmgteW76C0daT3phkcN2vGhm2OW+AC3JTi10cQt37k5Fw6lAOwokraKh7HzHEzUNXlgAyQnUdVtykj9gR3qqRtjputqqQ1VTIv/9pxHgAcELeca7M8WxosejmAVo6bvU2ZMgX3338/vvGNb+CTn/wkLr/8clxxxRWZcx577DEcd9xxOPHEE4N0tGURzVnaPaL6ILd98VDmTRRy27aIW7Ej3WSbrBbZbIIct5j5f66RcE778uc7HGM+X6AEg5t5FFjbyGNBg7ipJPW5iJuQ1IePOElgWp3twm6tKmnZd4G49a3OorR5uYWmISByC32okiwhC0eqpK04CYuSTeYwjtUQbMZGs6GIGwfptEXcbMoBUBRVMWZkih+9lfTRU1H8GkWVpN8zWcPKAZC2VQEZIB9xA9KAjNwHK9QqQo5bgYyZl5fmK2JSs0r9sLyn1vXzcubIjvH676qspSrpZYwnXm1dXV342te+pv38lFNOwSmnnOLafMsaabY0oGbMcWNRJT0QN+6mxybia5O8DjjktjQTVdKifToe9zs/W2hUZZlaORuAYs4G0hVxUy2Oc+YAF16YbtY4DkRGUt9DnMQWccsbk9YLuy06bumgiJypymDiRIgaY3m5hXmXct06aVMSgSrZTOUAbOew9lEJPZWFuNEct4iOW6GNFzizmX8rFdQCJr6qkiqKn85xEzZrFnDEEQkN2UmcRNxXC6okt32b4Ja1uizdE5C2VQEZIOu46W6TCMhMn25HqSsUkr1DuZe3wS8PpnNBniLm/PnAvRcBp1aPnfs14P6LkqDdnDlq+nmmbxY5blFUJS2cfSomBTBy6iNTJVuIW7197GMfwy9+8Yvc8y6//HJ87GMfc/mJljXSrNGTJsxxs0XcuBFZsalrY256bCK+NnV+gLiIm484ibXjlleHh7Q9ds/8tm0FFWzkogF9jhtQL6nPcdyopL5XAW7LDVuu4+aBuIXOcQP0JQFUuYU2jtvo0fbS7qsfSl9zHBT6PA9EVJW0ESVgI24WYj/RETcLVCnTPmcOs81bNGwGVRS/PMeNUvzabHMuK3b53dabfBpksSkR5IH8qAIyQHYeNQ2Ddevq+8AZN2Iu4GzwbRUxXyV/UyfyFTGp5Tpulmt2aEViajLiFoMquXl5+rqUE8zdyhE3J8ft8ssvx+2335573r/+9a86CmXLmtFiipM0E+LmUQ7AFnELLdMNbB3iJJz2K7b5RJZ5BNZUyZzNoE+hZltVSWu00CK3xUvdkLPZtCjDAGSLcFNlyV12qXfebHMLbRf2pb9MX089Nv9853IAERC3GrXLgSqZJyREHbe8zRRAniWGSBGQRdw4ZiOCZLvu6Zx9HcUvz3EDSD1H23s6gBpayApaWlICqQBHHtJpXRZEM95VARmAR5UEkoAMYO+4cWs6AvmsAZkuS6cWept0ipiZfuWhhZERN5v220Zk3wdPzagAq6pK9sOmAMO2y+lPy3FztsHBQRSLUX+iZSEsZjkA2xw3a9qFBeJmG6EC7B23GjoTO8ctcDkAa768h0Oel4dmm09kq4Tn6vyYxqOQ1D/xuPSYON0oqV993gY3MzeytnURbcRJLBd2GmXtY9Tr1FGkdEbl5Skl7+WXgQ2Sg26bW2hLlVzzWPL/2DcCY6bnn08dt3JOjpt1ICEyVVIEQiqD+Zse+jkVZNGZrQy4GDNcx801l9YHcdNR/DiOWy3n0odNwQj6UTS0X4NsUbMR4AiFvKvEnoB8cRIgDcgAdpQ6IL2vLKqk4VlV0WV1jpswWRGT2hZH3Gzal57l0DluG5ela8z4/fPPt625OMQsqle1ZMkSjB3LqO3Ssi1rMYspu6qCcdovDxC+eZMhbs2W4xZ6Im0UVZKzobJF3KzFIJj0q+5u4KTj0/dfOStfUp/+rY9+K78vtuUAbFBa2+vSOTF9TaWgOe2z5Kg1Kqrz5wOD0hjlUCXb2tLcQpuIbKWS3icaJDCZM1Uy9IYKhCrJaBuAXf0m20CC4zzD2YDLfcidZwIhbjqKH8dxA6o5lxHZFADQQerpcoIs4trFSG/Q5emqxJ4AHuJWE3tC4xA3+XlS0WXzHDdZETPTLwtVydg5bnnty0GY0AwfSlUfv1/++Vs54sYWJ/nmN7+Zef/ggw/WHRM2MDCAxx57DHfccQeOOuoovx62LL5Zi5PYJIBbRr9sNvi2i1cjxEnEZBclx82yHMCgxfXxctxsRTIsygGwEDfquG0hxK3WNrnvO+0K7JaDzqx+OH39yNeBffSCT0n7FrknAOzKAVgu7J2T0te9K/LPt6VKqsakjpbGQdxGjgS23776+xaKabYbfMCdKsmqKxgZcbMJELnSjgG7ecYFcSsP6BEa+fdtETe69ugoflzHbfRoO2cZsGNTAO5BFtt7ylH1Nc2/stgTkO+4UbEnwB5xc85xI/dMNy9xKi0tWACcfXb9cRtFzNBKofI5ufOAdN/z2CO2egM0v23Uzvnnb+WIG9txO+ecc1AoFFCp3pAHH3wQDz74oPE7I0eOxNe//nWvDrasARYTcfMpB5DXvu3i5SJOEhNxi10OwKaOW1OJk1gGEjJUSYscN65SnaDvWkveO4v2GtqnfecEWRwRN86GzdZxs6VKquYCHS2N3kbdtLF2bao8l9mE52yUbcc6kA3E5KJWlqqSsamSNvNMdMTNkirpOs9wyEc6eq2g+Mnjkt5KXVcExW+AoGChFYMBoNMScbOiShaQPIAVu3sK1I93IfZ08snpsTyqJBV7kttnBbcE4uZBldTNS3SI5Sli1vUroqokR2zNZk8gI26DOeswzYkb3Kg/Txhd1zmsB5v5fQgae2fx9a9/vea4ffOb38R+++2H4447TnluR0cHdtxxR7z73e/GZBVnuWXNZbYR5Zo8euRyAHntW6ux2SZRV9xz3Fh5YpHFSRqGuIUWJ/GhSlqoSrKV6hwRN277wjhjzCYSDkRG3GgUn+O4BUBndLQ0bo6bUJ6zoko6OG5WdMOI4iSVCqG9RXDcvBgVNoibC1XSZp7xEM4SFL9587Lni8touv2C4leOqBgMAB2WiJtNrTIguTaVAQeqpKJ9kQc8a1aCvOkQt87OxGmT84atVYNFjpuHOIluXuLGBsS8RM2qBl2TIW4T32w+n5b46Vf87bLRdZ2u9zprUSUTO+ecc2qvheN2tgrebdnQs8xDF1GcJPTCHhP1kdtnL2Bikx9ZVTI04ma7CGSuTTOJk1ggbjabEsCeGszZNIzfD1j1YPJ67N755/ugJ6HruGUQN4vNILd91Vygo6VxyjAAqfKcFVUysuOmo19p23ZEUdklTSLmRVrnQ3mIk+TNY671S4H6vqsofuJy6C5hpp6jx9xui7iFpkoCdo5bBj0ZoT5n5sykxt2llyZUwvLyZGvShgSlnD07uXZ5ecM25QAq5WTMmPYpFB2iYjy6eYm7tRo9uv6YDeLGyotsUI7bG/+HUXuVfM4JtvogblshVdJJnKRcLrPquLVsiBh96Gw24Vu8HIAtUkgmwsEcpTfAfqKjv9Fsddy2OOIWkcLkmuNm7Yzb0oAYm4Y3k3mU0x/XvtPvatu2HO/tY9P7aou4udLqdMpzHHESqjwXmypp4xh6lXgIjKICkhOR96w2CnGzLAcg901lz/9a3S9t24a+y/UcgXzHjVL8rHPcLGn2tuIkLo4bwHTcCMJiqv3X3Z2IOi1blq5fe88wiz0B9mPS5trTsiS0XIluXuIsZXReohYTcQstgkTv+/gD8ttup8FWDuJGHbcW4tbS6m+ZO+I2uBFY/xy/7dAiFtbJ5aTtZX8ENi3XngrAbdNTmxAr9bxv2TKLb+C6KoAl4uaBRtqKZIS+r9Tp5UTXXDcltmUSOO1P2N8O0XPNueS0b42IFVK6JEucxPLaqDbKOuU5juNGleealSppK06Si4j5zGFgOPu2tLQmUpW87zPke56IG5Ct5wjoHTdVPUcfNgULcXMUJ7EufM64p7a1/0oloCSuaTF9hnXW+xrplwVVEsifC2hZkg6imK6blziOG52XMv2yUJWMgbhZ7TdsWTK2VElLx20rR9y8sudfeukl/OMf/8CLL76IzZvVCEahUMDXvpajlNayLWs+6MltxwLveVh/rk+Om5VsPKPtzsnAsMnA5moS8UvXA2+YpT/fadMjq5oZvidy3IodTMfTso6bzeJunf8Xk6YaSKZb27xF4j1Ark3VGTfdK1uqpDivMmgXNWX33WLxHXQY7x0Tk+epL0I5AJ2YkIqWlleAW1aeayaqpNd1sXHcHMZM3oYwuqpkRKqkrl+cc3R9pxS/jnkAKqnjZqL4FQpVuuEgbxNOna8YiFstLzIC4kY36ibEjVpNrTnnWRrsAx74EvkehyppUdNRh7gB6nkpT5xEnpeohUbcbJ9VK6qkZbC1lePmZc6O2+c//3lcfPHFGKzW06lI8p9CyKTluA0FcxQnAYDVj5jPjUmVLNuiPm3APt8A7vlk8j4PJaCRQSrvbbK6iK9hAyw2jDEi4bR9wBJx29LiJJa5JzYRU4BsSiyjyUDSd1OfXMRJiqWk3zEQN6ucH8uFHUjRTuvEfg6tTjNmVMpzeeIksvKcK1WSO2babBw3W1XJQnJeuT88/VXuwxZXlbQVJ7FsP/1iuLYFxe+3Fyasil2mA4v/nNDhTGhRsT2pT5g3Xja+CPzzxPQ9h2ZfGlUNEA0Afavyz7cOEDkibnm5ULX2mbXW1j2Vfc+Zl1wRt3apRrFqXspD3OR5KdOvwKqStoE5V1VJ67x0S8StrYW4OTlu3//+9/HDH/4QhUIB7373u7HnnntijC45s2XNb2XLaAknIlhrmybHBy6S7RIJH717+ppGz1S24bn09chpvPZtcopsNyV0sg1dpNVHnCS0WqhPfSUbqiR3U1LnQBi+51IOwKpouy3NMzKtzianMwRVUpisPKejSuqU56JTJS0cQ1vEDaje10iOm5Wa3BDOcaPGyXm2oXlWKmmbo8YnJShy2+9IvpM3Xh6WAuGsUjiFxMEbWJ8/3suDAKqB+CiIG3XcmPtGMSbzxuPm17Lvh++Q37bN+kH3DB3j6j+X5yVdFopuXqKWty+wLuFji45HRNyKpWQ8Dm62Fyeh+XE6ayFu9bZw4UKUSiXceOONePvb3x64Sy1rvFlGS/oZD1qtaVteNXnorcRJmOmadLLNizyuJ7VVRimSh1VmFaWyRH6aCXHzknYPHL2jkzRLdMYxxw1AflFfR8RNtJ1nMRE3FwfChkZqnRzPyCkStLS//wRA9XkuI195zkr1sclUJYHkug+C4Yy7tO2IuMWgSsZUlaTGifpbsUFozSwGIgYkrI7+tflzGEV9AF5AFEjvfx4d0AV5dxUn4eS4AXzErVdy3KYcld+2DTqeoUqOVZ9D56XLLwVQTc0oIn9eopZLlbTNi/RQr7VRleQ+q6XRyVi3pUpy2E9bOeLmJE7yzDPP4K1vfWvLadtazDZawomQCPOJ4sdA3DrGp69tHLeRXMfNRpHNNpocMYHdVpwkc185xcMdxUlYhXFtqZIetdBMfR8YAF4nG4eK/tSMiftqEzV1QdyioDOOjmEo6XhBS/vdb9JjZ8zJV56zWdht6d5A3Bw3el4MVUnXHLeYVMkY4iTUOJtHK8eNBs0sHDcAGNxkPk+WQ+fMvwDf+XFCgB0Qt2Inv0SFOM8GcXvLFUy1ZldxknH688S89Mxz6bE3H5Q/L2X6FRhxs6Vk25SSsd1DAilN1oYq2TaC1/5Wjrg5OW6jR4/G9ttvH7ovLdtSZusARXfcmItAbMdtgwPiZqXiZ+m4xUTcbMVJMm1zkNSIZR7aHKmSLoib6p729ABz5wJTpwKXE3n/95+QHO/pMbfPRdzKg2lk0wVxC13Hzav9wJv8AvGSJ3blK8/ZLOy2ubQArMRPbB1aet7WnONWKaMW/XChSm5JxC1To5PpWAknYyDPcZNyfGwRt9Aqp4Cb48alSdJ+2CBuw7bjtW0TZOlfnb42OW7C2sm9GdaRPy9l+mWhKmmNuNmWHYmBuFUDEDaqkhxhEsBu/h2C5uS4HX744XjooYdC96VlW8psHzpOkWNhPo4bF7Gi38mz9jGoJaLnIm7Ppa9H7sRrv1GOm22OW961t6YwWcpRW12XiOIklQq57q45bsQWLUryV+bNA159NUujXLEqOT59enJeXvuh5frl83IdK0/EjUsNlvulbdtmk2/ZdjNRJX0QN6u8xQhKpFHvqcN1dxUnCY24ZRy3ZkHcuGPGMsACuFElbRw3F6pkJ9Nxswn89RnESVRWKKK237BBgAEGVdIHcbOkSuYi75YsGSBF3Mp9+fTdmuPGyG8DkuteYyW0HDcAwNe//nU8/fTT+PnPfx66Py3bEmYNc3M5YIiMuDlEeQrFNFKW57gNCnh+OH/xLdpEqTwct7yJDsiqVhZyVNPoAmOTayXaz7OY4iQ2C6+TeIhGln7RokRBjMo/q9QNe3uT83TOG9dxc8lXsirA7RJp38JUydrntvXEbMaMi+PWlo5dqxw3W6rkFhYniYmi2tYAlftgep7kGpvBETcPqmRlwPwsyZvX4Dluls44YLFmVwjixsxvAwilsmJeP0SpH8ARccujSq5O/i8ULZwIC6c2873AqpI+9SJz9wSOOW7C8lhc4nMu4gakc/xW6Lg5iZOsXbsWn//85zFnzhzceOONeN/73odp06ahWFRvso444givTrYssrk4QFxrGFXSIgbRMT5x2vIcN3FdbNq22siKxHuuA+GIuHEjsoW2ZNG2pkraqoUGFiexQdxsJekBNY20pydRDqs7l7yWL+OsWUnSupzfwKZKOqAnVuPREkUF7Ci2MTf5tm3HVpUEknE5uImBuHnc1xi1+VwRNxZV0kJ8yrYGqNwHo+Mm/TaHRWI1Hl2okkR0YXAzUNQ4BvLmNWaOW2iqZLk3bd+FKgkk/S9qBCpcEDcbBViBuJXG5AdDa+2XgMEcZ1z3PZPZ0oIzgjmcYKtN0M8jxw1IAiedE9TnVcopCm3juLV1Jg7fVkiVdHLc3v72t9fqtF199dW4+uqrtecWCgUMDFgO2JY11lxgbq455VhEzHED0jy3/tUwKuHZImKAW0Jvkdl+Rv2K47hVrz1341Bz3GLQLiLWcaNoqM0m3CfHbf78LNJW6wt5LdcT6+1NlMbOPVdq3wVxi1BM2dYZB9yokoUi777qkE6V2eZaxaZKit9gOW4eyo9W9NoI4iQ+qpI2yDtbeZe5mbVFP4DGUSWBZNzoZM/lZydmjltoxI1SUksOVEmg2n+d4/Z68n/bcKA0gte2DWOjtqYy7ynAuzYyAgzYIW6sQK4H4pbbvgviRpwwU+BkYKP6O3nWQtyydsQRR6DAjTa0rPnNdWPCMZeIb0xVSSB13CrlJCKji/y5OG4xc9xsVSUHLRG3WiFoyxy30OIk1qqSpWQzUylbKgS6KNUNJuqRCxZo+kJeq/7MBQuAs8/OJqk7IW4xygF4Im5cqqRtFB+IkOMWmSoJxN0oR6VKutJrLes55tETXdQ8XRE3VtuxHTdyninPTf5t2xw3QTfUBQxjlgMYpJtwpmMl98N0X10cq8xckFOKwVbVFyDXxnI8xkTcrMsBRFCVbGM6bvRZ4JQCECbuawtxS+yWW24J3I2WbVGzRThszBaeB+LmuAFZbvrAhrCOm81GNraqpNiI2yButF/GtvvS73AQQ6tEaof7WqOl5UVMXTaDEvKzdGkiRKIyE+IGAMuXJ9+nBXldEDdb9UGAgbg5bDatAhW2ap42KK2lQ94QqqTIKdqCqpKNokq6oKh/Pwr4iCFf2lecxAZx2+MLdm3HLAcA2Dlu7PxrCbXS0Q19ELfBzcCyPwE7vl/TtkP+HMDPHXdJb6AOZJ4wTC34ZLF15gSiVWM1by7wQdyaQlWS6bhlAooWDnnb1ou4Bd6lt2xIWkzEzSvHLUKUh7Yvt1HXvm+OW0RxEs5EbYu4FZjIj1PbNhQph0ACN7rmIk4i0zzXrtWfS2+l7s9cJyENdGGvGDayLkEQm0CCL1WSjbg5iMKEznFrFFWS074XBTZHrKFRqpIuKCpgFsrwFicxze3SZ/t8Pb9tG+puH9mIrl6foPR5VpJy3HQm0+rYDjlzzLsEEkAYWLcdC6xdoj7NhfEg94MjOmPznGYc5o3684D0vjshbqbxqPibmglxs1GV5K7ZXMeNPgvcdYmeuxUibi3HrWWwRjj2/172PXez2Qx13ORzOYu7K+K2peu4NQJxs72nQByHnBtdc9kMyn0fY8jNyKNKAsBoSU2Nu9l02VBZlQPwFSdh5qE55RY2iaokNx8VIEWDI6pKyt+XzVdVkisd76LQCvBRiNBUSers7vBenlAGZzyKmo4fPzU9dv4PkxqPeTUdXRE3rsx8kZkj7VIOgBamBoAeje5B2SFwJp9rRNzEtbHY2nKvO+BGleRQ4VXjKW/ts90P2M4zVlTJiIjboMO6RM8t95r3qEPQnKiSt912m9X5LVXJJjfbjfKMzwIPEGpJpax/WLc1x40dGaT1xJiPYZlENdetTqK4uoKelQpxrmwdN070ztIpdBYnsaBKAvk5Ci4bB5myt8suwOTJarpkHlWyqyv5vrb9AWin5dj5Si6RzahUSRvEzTbHrS1pvzIYnyoZU1USSP52XbdiF+CuIW7MZ0mW/ebm/YQuwO3UdgEJslRRj8dFixLl2N5e4DByvB/JXDFvHnDhhcDChcDMmfXfd81xY6ORkjKjtn2HQIIQBRGmQ66cETcuuuTAkmkjVMm84udOVEnGfsZWcRKwC5oB9rTpzNweoY5bbKpkRi20n89SGQLmpSrJMVdVyaeeego33ngj7rvvPtx333144oknMDg4iHPPPRdz5861bk/YTTfdhO9///u4++67sWHDBuy000446aSTcNZZZ2HUKGZdjq3NbBexYhuw3eHAa/8k3w/ouNUiVA1w3Ey/UXMgLBYBtqqZhXPS05OoGC6aD8yrHrv1ZuCjU4HZs4E5c+ol5jO0Okvnygpxc6BKxijz0OZAlXRB3MpVZ3n27GQjJlse4jZ7dr2zLY8Z7SbcJffEBhFzWCCdxEm4G82IiBsAtuqjTzkAwI4q6YSkctGTCFRJWxR144vZ91zHzYnWHNhxE+eqSqaImo7CaHfpJRQ1HYF6540iPyYHQqZKjts3r9eJ0fX34fuAiRuSIJI8H2WQTuZ9FfXNan3UPK+ujhuXOeBClSxZUCUrluMd4OUwO4nlNBJx24Kqki4UfqA+j3lbd9x0qpLlchnPP/88eqp0gH/7t39De7vFACd2ySWX4Ec/+pHTd3X2gx/8AJ///OdRKBRw+OGHo6urC//85z/x7W9/G1dffTVuv/12TJo0KehvDglzySnibsSdigZHFieJirgF3jjQKC6ds9pgjuKWXfKVqv2wUqx0QH5s6rhxnWau9K83/ap63+bMSa67XBLAhLh1dgJnnJHTPkMxDbAPggAMxK1B5QCiIG4O9C4haBNbVbIyCKOKX0znypeGyVWV5G7CN70kfZ+Z9+MiThLDcRM1uej3VTUd6eOp6oaqpiN13MqmHDfy20feCFY9sZ4e4OHHgXHV9yccC7yChDkgB/9cxqOpj9RcqZJc5kBtzY5AlayU07WpETlueWaLuMVUlXSp40Ydt0ET4uZQExHI/o2DvXYF35vcnHLcbrnlFvzjH/+o+3frrbfiueeewwMPPIA3velNGDlyJG666Sanju2999744he/iEWLFuGJJ57AKaec4tSOsAceeABf+MIX0NbWhj//+c+49dZb8bvf/Q7PPPMM3vnOd+Kpp57CJz7xCa/fGLLmq95ldNyasAA3twist6okh4tvaF9EcYVzQLtKvyKiuIsWpcdcNuHDplTbew3Y9LL5XNf8OYARXXRwyF1y3NgbfMVmsLs7cZbrziWv5T9z4cJ6ZBSwoHe5IG5E7S9XnIRSJWMU+I5IlXSJ5DvlRTo4bgAPFSuUeJtwwMJxc+i7lSiBcMaZ15wWSKbfV7btSZXkipO4BP3o91U1HekQVwGuoqYjNRfEjXPdFy1KVGwfeIT8VvV/EfybPj1dP1zmmbo+bmHEzSrHjakq6erQuua45Vlmbo+sKhmjjhu7HICDQisgUSW3LoGSKOIk++67L/7whz/g9ttvxwUXXODUxsc//nFccMEF+MhHPoI99tgDxaJfV7/zne+gUqngox/9KI455pja8REjRmDhwoUoFou4+uqr8eSTT3r9zpA0p5wiF5TAtiaMjYiFI+KmTESS2rcRJAiFuKmiuDrHTdisWWnyu4vQxJSj09cv3WA+10ecxIoCa4m4Vco5C2SAOm7CZs4ErroqQdKEqVQlOzuT81R5LQD/WXKRdgdSSk2u0IRwxodZOBAWojMxHTcXmXFuDloIx82E6jnVhmI6braFyW3aBkiOG7PvdcJWprXDhf4aMceNniu+r6vpqKNKUluwIKs26SROkjM/0uAf/Zp8OWnwLwTippvjYyNu8KRKDhioks75eZEQN9oPG8St0MZbV61yXX1VJQ3X3WUvI5/bctx4tvPOO+Pggw/GlVdeGesn2NbX14c///nPAICPfOQjdZ/vtNNOOOywJJv4mmuuaWjfmsJcHjonxC1wMc/o4iQuOW5MekFe31VR3ApSP1P159Iorgvitv2709cr/k9/XqVMNuExKHUu0TsSiTNN0r45bnLfZ84ElixJFOO6urL3ZfLk5PiSJXqnTe6H0dmPGPEF0utmk0dglUPnUQ6Ai+bZtM8uIRHAcePIr7vWtQqeJ2ZDkbJUldzxWAuEOaKqZCjHTVfTkd5KXTdETUdhLuIkpr7LwT/aD93tmjULeI2wLWwcFGpbCnETDmMMqqSrQ8sJROcFM3Um+mGDuDlRpptEVdKlHIDcxlZgUcsBbLfddnjuuedi/gTLFi9ejI0bE4/+oIMOUp4jjj/wwAPOv7NhwwbWv6Yzl4fO1nErlOydwq06x80QedRFcYF08dWteSKK6xKlGrZd+tqkzkgXCXY9MRvam0cdN8A8SfvmuKkW2O5u4NxzgWXLgH33Tr+z7MXkuIoeSY2LErjkiwIEccujSlrSXwELalrFIcfNRonUIZIfmyrZxnXcBHpt47hxqZIO492GKinGK9sZLwI7fYi0Hzo/2gFxs2JUSGuTrqYj7a7pEtKajja5VnJ/VCYH/ziOW28vcPON6XvumKwrp6BhsrgEWACLXF0XVUkHx41d3w4EFbNA3A6Zb9m2BeLmlJfeJHXcWogbAEdxEo719fXhnnvuwYgRI/JPjmxLq1GtcePGYbRcQ6lq3dXN1VIaAbO0IatK6SLlauu4WW006YRR1k8ELv0G+LS9LZXjpoviAindRdclEcWd6CFOIvdPNifhExvEzeG+cidplw0+V/CgVAI62oCN1bZ1pRrq2o9IOwYI4sYsB2AV1XTZKDdJjlt0qiQdkwzEzWoz6JLj5oK4cXPcHDay9PsqcxJtiSxOIjtuupqOeTluwuh+JONAMMVJdGujKvhHL4fpT77tH8CHq6+51/3tNwB/O1TdR2ou8y9gERB1KcBNywGYKHsOAki0L9zx+IaPA7spRKxU1jDELW8e8ETcjOIkAcoBtBA3s23YsAH33nsvTjrpJPT09ODII48M/RPWtq4a1Ro5cqT2HOF0rdVF0LZma4Q4iZXjZomIAW5R07z2XaJ33CKnpmtuGoPia6Z1Y906yblyKZJtuC4uuVZWm/CIiJvTRtYB+XGOJgfeyNJzueUAbBZHl024E0U1Ro6bQNz6USexnmm7UVRJizmSXQ7ABWGOqCop9yO4GE+DxUlETUfZODluck3HEhdxY/RdFfwz5bhR20DWH+6Y3O7fgGMeVPeRmkveImCfgmC1Zren5xuvu8McAxBUrAxtIWgXZBxI57DeFfnOiTXixqSnAm7B1kaXA9iKzAlxa2vLH1iVSgXjxo3Dt771LZefGJK2fv363HPWrl2LHXbYoQG9sbCYVEmxybepoVHXtmaSjJ7j5oK4MTdrpr7rorhAPuIGJFHcQSK7HVr50YWGaSNOUqPZFMAWyeBO0k4FuC0EOFwct5jlAGj73HIAURA3l024jePm4Bi2SYiYzmGNnePmIk7ioirplONmaLu/Px2vfQMJysNBmdnCVhHrFoZy3HQ1HTk5bnJNxyIzx42j4KcK/nGokgBASVLtYw0nSsZ5XkMgbsbx7pCXXigkaOfAhjhUSTlNQDU/uQQUAWDy4cDzvwH61wIv/C+wy8n6c22Rfer8xkbcjAW4XcsBtBC3jFUqFe2/UqmEnXbaCR//+Mdx//33Y8aMGaH7bG2CHmnKLxNO1xjTpjnHRo4cyfrXdNYIcRJXxC1UEWtd+9oFpuJGuwjhuOmiuEC6+Oq6JKK4PnXc5P7J5lTiwYEqaRU1pZO0iWbkK3jARH5i0IC8cyzyELfqdXPOceMqBEamSrIdlADPqrF96gAFFieJKfCRh+b19CSiO91T02P3PwxMnZocF8q2OuM+T06FyRusKgkkNdA6pWcmL8dNVdPRCXHTzJGqfUwzOG4hEDfjPOawZgMpXZJNlXSlBnOui0Xf3/Dx9PVr/zKfa424FfhUTCcl6Pa0/djiJFsZ4ubkuJXLZe2/3t5ePPvss7j00kux8847B+6um4l+rF69ukablE0UDW+WPjfMKhXghd+m750EGxgoQWyqZHDHzdEp5G7WTH0XUVyV5SFuIoo76ImKGVFUh4nURZzEKk/BRZzEAXF7ZnGiEjmgGfPeVEkT7c3BYR4YSMdMf6++3+WB9Lq7UiVD0zyj57i50Gtd5xkTFdMTcWNTJQMgbqIm2Lx5wEpSk20Q6ppgKos6ZhqMuAHqmo55OW6qmo5OOW6avquCf/QRMv3Jk0g/OsYZTpSMw6pwltS3RNxsgn5Aeu3ZVElHarB2v+GAjAPAcMLeynNOnAJETJq9Sx03IHWYjUinY44bd08wBC2qqmSz2IwZM2oiKffee6/yHHH8gAMOaFi/msJW3gdsXp6+Z0dLmizHzVWcRNu+Q54VYJHXkrOAqaK4gFlVkkZxoyJuvk5hZMTNKE5iuUD29AB//mv6/mtzgd1316MLvohbqI2sQEWmTgWergourV9j6LdrVNOllAHXgYic48YWtHHd5JPxy0GWrOhXEQtw63LcaE0wIDvlUr+U1gRTts8VEPF09mMibrJjItd01OW4mWo6hlSVVAX/uIjbPm9IXzcLVdK2/IWt4ybQzkEm4ubCeAD0fXfOcWPuN+jnVrm0TJq9C+IGqAMhsrUQtzrbJhy3jo4OvPe97wUA/OpXv6r7/Pnnn8cdd9wBADjhhBMa2rctbs9enn3fDOIkXDGIIBsqTSQ8el5LjrCKKooLmBE3GsWNibh5UyW54iQ2ks4OqpJ5EV+BLvz1/yO/U/1fhy74Im4hVCUpKvLqq9kxo+u36+LYLFRJpzpukamSbEq2izKjQzkAnxw3uSYYoC42T23WLDVtMmaOW/S1w7DRpDUdR5L+DiChsOfVdKSO24AnVRKoD/5xHLfOTmCXrvS9K+IWVZxEM94zwh+2iBsH+fGs4wZEuC4WjptPLm2MOm5AOn5NjIQQ5QBaiFtqr7/+Or773e/i3e9+N/bee2/svffeePe7343zzjsPr7/+eqg+su3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYo5Fd3vI2atfs+2Zw3JqCKhnCcfOMhMtRXEDtuKmiuN6Im2ki9WybK07iKr1upL0xI5sUXTABuzK64KSy5+K4aa67jIoAaf9p3+V+ZxZHG8nlRlElmaIwcp9Mxl3YY1IlXWvzxUTcVDRMuSYYkO+49fYCl15af9wlx62ZqZLURE3HQ/ZPjz36VFLj8dxzzTUdQxfgloN/HFXJhQuBNjLPNAvixkKtyDNmozINpE5zuV8/jznTPBkocOxAcXkwvT5OVMktiLiFKAfQQtwSu/HGG7H77rvjq1/9Kv72t7/h8ccfx+OPP46//e1v+J//+R/MmDEDN954Y35DGrv//vvxlre8pfbvz3/+MwBg/vz5meMvv/xy7TsrVqzAU089hRdeeKGuvQMOOADf+973MDg4iPe85z048sgj8aEPfQi77bYbbr75ZsyYMQM/+9nPnPs7ZE2OqIUUJykPpp85O25McZLQ5QBcJOmB8FF8GsXt6so6bl2T9VFcbzrjEBMnoRM6V1VSt/jK6ALdc+u6JNCFGnoSgSqZ51ypUBHAXEJC9NtlvAAWG2UHqqRrAW6XHDc2ShuYKulCBwQsUCuH6yI7EKqaYEC+4wYk35PzKl2cfTZKuwXESZTti4BlZ0Kt5qhtUsStbMpxs0A3aPCPXg75azT417+6es4wy7mgUYgbw/mxRtwY+YXO5VgY85irQ0vVugdN+w3XAJELVTIw4uZK49+KETencgBLlizBiSeeiI0bN2LffffFRz/6UbzhDQkv+tlnn8Xll1+OBx98ECeeeCIeeOABTJ8+3fo31q5di7vuuqvu+LJly7Bs2bLa+145Cmiwz33uc9hnn33wve99D3fffTc2bNiAadOm4ayzzsJZZ52lLc69VZu86JtUlaixnB/HyaJzYvp67WJgxI6a9psRcQsgTiKbiOKefTbwlzcD6+9P1qUXngc6NBEoX1SMGwHj3tfY4iQuQhO6BVJGF+iaouuSQBf2jkmVzHGuVKgIUI8YyvlIl14KfJE4/q5UyeCbcAuU1qmOG3fTE3GecaZfRS4H0DYs2cD2r1XXBAOye2Pd7Vm+PPk+3QPEzHFjP0uRHbdBB4XWYil5nioDYaiSwmbOBI44Avj15wH8PjkmLlNXV5ILd8YZKRrYtzr53wZtq+uLLgXB4TkFwBMncQy2AryA6zMkeOFMlTSIQ6nOzzPbWpFAHHGSCie6qWrfMsfNtRzAVoa4OTlu3/3ud7Fx40acc845+PrXv173+Wc+8xmce+65OPvss3Heeefh5z//ufVvvP3tb0dFV6xQY+eccw7OOecc4zlHHXUUjjrqKOv+bLUmb7bG7sX7HmtTwszJkW27I4CnqxSbV24CprxDfV5McZLo1AWHibpUAkaMAUS5wKLh+YiKuJFFgFufz4r25qAMFirHTYUucNekBQuAHzYIcZOdKx0qAtQ7nvKeasEC4DPHkXNiiJM4bNgaWseN6+xHpEpGESdx3BC2j03GW98adU0wIBvEMATMISs5N0yJdAsibjXHzYLaBVTria0LQ5Wk1t0NzDwNuLXquH36k8D3P5eoT8poYP+a5H+b/Da5L6FVJTnlAFzzrIDsOqZat1fcBTxHcoKdqfCBg9zs/YZjDdCY5QCSH6j+z8xxayFuABypkoJaqHLahH3ta1/DjBkzcNNNNzl3rmUNMPpA7nMOUBqhPTVjnMWXRg257QLAlHemr5ffrD+vKRE3F6qk6wJmmEyjIm6eFKZcxM1TVZJdDkBxX1XoAjc+sHx52n50xE3aEOpQESBfBnz5cmDZc6Q/rlTJ0PlKNiitiwhHZFVJMKiSzvQr5jzgMs8MDACVKnWsdzUwQjN3c6iSACAzWbgCIt45bjHzoyuAKbAsNptFW8etej5XVdJmC0fXpimTEhRUdtrKgwnKCjggbpZUydAFuJ2dB+Sv28uulc53RNx0e6UQNeJiIG5sqqQYkwWgUOC3XwuEMKmSrRw3AI6O2yuvvMKSzT/ggAPwyiuvuPxEyxpldMPDRdsA3iQ9SIoqtlk4bsOnAGP3Tl6vvDelbsgWtQB3iBy3wKIBAD/S7oS4WcqXy/0xth2ZKumCuKk2Dip0Ic/xEVYAUmGVCOIkJsqIDhUBeI7nBvL9GLlWmUBCs9Rxc6FKBq7f5MpKiIG40RISjz+XHOtfC7ztCGDkyPrzOY5bV1eC6lCLWXA+dgFudhmc6nh3QdyA8IgbwBszAwQdbR/Hb1vuCyeXK3Rwy9WhBfIdN/k+hs5xcy41UEj7HgNxY1MlRbDVEums5bgxqZKuiFvLcQNGjhyJV3XRXWKvvvoqRqom/JY1j2Um0sAStzRfrmQ5DgTqVikDy29Rn7PVIG4RHDcnxK3Am0id6isxN1TJCaJxXtuAW46bauMwZkz9Ma7jRrsbnSopbSRU/a59j7zWdWs4GbfOEV9D33tJsebOScy2baiSEeu4ueZDZTb5gVUl2XRDptMpl5AQfkMRwNoVwIYN9d+hl1k3Fc2eXY/qcGutNbOqpNyGbC45bgCpJ+ZZgFtlnLUps2ZbBFvlvoQWJ2HldHpQJXMdt+HZ98Fz3BwRMYDpuHlSsvMQNzikNwAOiJtjjpspMDcEzclx22+//XDbbbfhkUce0Z7z8MMP49Zbb8V+++3n2reWNcKcqQscx80RcQOAyW9PX6+8V32OKzWCEzVtVseNK0rgqsTEkud1qZllg564qErSSdqw6cnbOOyyCzB5cvYY13Hbnnyv0eIkqn4Ly0PcurqAKdul751RJUPfN6Xqvxi2vUPbNjluzOfJydkPTJV0VpXkUiXp/K7pu6qEBAV8dFN3nuPW2ZmIXsjmpETaJIgbtzafM1WSg7hFVDx2FQ8B7BG30AW4y477AcDecYua4xbDcSOfcfPSgbTvlUEzNTgm4lbre8HuurcQt6zNnj0b/f39OOqoo/DTn/4U69evr322fv16XHzxxTj66KMxODiIM1QTd8uax1w24QCTKumBuFFlSd1DF2RDpVO/cs0jIJNuDKU6lxw3F0nnoUaVdJF2V21kS6UEJaDGddw+dhppOwJqZUJRVf2ufY+8VvV/9mygQEtrONKATH3fTCjzw6fw2nahShaK/E1bMxTgDpHjxqZKKuZ3XQkJKi48vP5jAADd/6ku38KF6rplMQtwN0qcxNR+uR9AdZPrSpUs9xkEPiIGFV2pjHJfglMlGeUAQqlKqtbtUiDELXSOG9AYxA3IeZ5iIm6itEa7Xf5cK8cta//5n/+JU045Ba+99ho+/elPY+zYsZg8eTImT56MsWPH4rOf/Sxee+01nHLKKfjQhz4Uus8tC2nOBTEtETdr2gVjQzikqZKukUemYxgTcXNSCLSp47YFVSUBYM4cddFzQO+4dXYCp52S37bKuIsjre2k2hDK/RZm6r9ARZwpTMz7uok6blzEjZlzSX87RkQ2xDyjU01zzm0JRAnUlZDwQdxoTTCVsQVtyPzmJIK0hRA3VzEF+XxtLTdHSiDH2XehHKv6ElOcRBew9FGVpOu2qn0ZOXWmSgbOcQPSvhtFuTxVJQFezn5MxM2m30BLVVJlV1xxBX76059il112QaVSwYoVK7BixQpUKhXsuuuuuOSSS3D55ZcH7GrLophrjhuH+uaT48aKysYUJ2lSqmSjELdNG5LC3nLxXMBRVdKBKrklctyABCVYuJC0Rz7T3aqFC4EdCJIUWjENSP+uQlHdvtzv2vfIa7n/AhVxpepQf2Tla+rxAkhUSS7iViCBhBxnX2wIrVArGmWP4biR8atDT5zV5BjS64DZITeVkMhD3EaOBLYjqoP9SCi3c+cm84bOaQMal+Nmui4hSjzo2neVLwd4haCdUwRiI24canCDCnDHqONGzZkKH1ikCLBH3ILXzwNxmh0RN1M5APG7to5bC3FT2yc+8Qk8/fTT6OnpwZ133ok777wTPT09WLJkCebMmROqjy2LaUEiYLpyAB45bpyorG8RVVPbrgu7bYRK7k9u+0zVSlvETSjKra6qij3/HLD77onC3Ny5yeeq340hTiIWAZvrnolUM8sBmMb7zJkJatDZmY9YCXTBdVPSToRF+lbqz6vlzRjuJ+23MFUBcRkVsUXcxHg57sT02GUL1eMFSKmShVKWBp1n4tlYeV9OjkU/v+/CMgv7FqJKujrMIWTvTSUkKOKmctw2bADO/p/0/ZlfA5YtA849V02PpBaTKsmuKxjxng7mIOMmyzhumjy3mEHFzDW3ddwKAKpUti1SDiCQqqSKySL/PVHFSWyRpYiqkmyqZPX62KzZyRey31cZpUpaNd1C3Iw2depUHHLIITjkkEMwderUEE22rFHWrDlunNwZ1wibbTkAq+LeBaLEtAXFSWwQN6ooV65ujsWf/OqryfHp05PzAEfRABuhCdH3GIibhTz6zJkJevDRj6fHxFdU6ILrpmQEmTM3vqg/jysxLvo9d27ST3q5t5ugRkVsNsl0vKxYRb4H9XgBUsdtWJfds0rHyuKf6M+rIW5NSpXUjfl+sjlfvU6PWMpWZGwG5c/k624qIZHnuAFAL5GOnzKtXj1SZ9wgjq96rem6DJC5+dUV/OsenSpJLvaAznFzpUoygn4+iBvtjzZ3PGI5AB9VybwC3PJvhg6yeOW4Vecx434jdi6tK+ImHDdOjpsHVXJbRdzuueceXHfddViyZEnuuYsXL8Z1112He+/VqAG2rHksRI6bjjISKsdNW7fFYUM1MAAsJ1FmXZ6Ys/AJUudqS5YD4CJusqKcbv7t7U3OW7QorjjJC/+bRppj5LjZIkvd3cB/fyZ9f9LxwOLFanTBdVMynDhumwyOm3BIOQhqd3fSv2XLgI+Q3LsbrlejItx5QDdegCwaSccLAPRXN/kdlkV96Vi579OG81wKnzeQKilTgQRi+RGSA37xz/SIZV3bzOeplntSqk/sN5WQ4DhuHaQ9q8K4DgW4XSjZKqdQXPczv5weO+urYa97BnGzpUqS68hC3ByFs7SIWyjHLTBVkhOwjEmVlP8e1yC3NggdSJxEx0oYdETc2FRJ1xw3jhiao+O2rSNuK1aswDvf+U588pOfxLhx43LPHz9+PD71qU/hXe96F1avXu3ZxZZFtah13ChV0hJxY0VlLSJstLjsZz+fHv/GOeoF28dxY3HOI+e4cWqfqBTl8gJns2YBq19X98dk3Ej47f+Rvt7wAq9twC3HjRuooM/FhLEJmqRCF1w3PcO60jFgRNxEbSiLTXKpBIwnddN0olyceUA1XvLy/2bNSr5HHYgY5pTjlkOVHBhIkMlXibCKaz4UHXcUsVy/hvwe9Iglt23ZxHVRzTGmEhJ0alFd0q4uYNyo9L3NmHQpwB2CKkmv+waCFpZhcd0ZTqep3mKeWVMlm6gcAJC/EXdlJdgW4G4mx822ALer4wYYrk2IsiMmVNpBCRqQ8iI1TqdzjhvpO92LbgXGGt1XXXUV1q9fj2984xvYbrvtcs/fbrvt8M1vfhOrV6/GVVdd5d3JlkW0mHXcMlRJS8SNQwXiOldycVka/N64XrNgeywCHM55iCTtV27Wn1dzXgy1T1SKcnmOW28v8ABB0mOIkwgbWJd/jrCQqpKysXn+rpuStlSwg4O42UbxOf3n5Laoxgu9laox09sLXHqpe0SWay45broxQ4M8u+8OXP2/6Wc/uSQflRGmGvMyYkkvB72WMmJZ17ZlvTLVPTWVkKBNqh7x2bORqQEg17kyGVeyPySyL193HRiae90bmeOmEydx3CSzctwc5zBhsRA3ljhJxALc8t9jCprKZpvj5qoqCejvK6Xd2jyr1qqSruIkMDi1jjluhUL6t666H1j/nN33m9hYV/kvf/kLRo4cidNOOy3/5KqdcsopGDVqFK6//nrnzrWsAeZMXbBE3Gxz3KypkpqhrCouSwM7AoGQF2xXRAwgiBtTnMQqik8mr8fm6X+jTDb5qtonOkU5DlX90YfS1zHESVyMi7hlUDHmdc/kW3rUzDKZyHPb/Gr+PbVVquP0P3NdFPc0b7wA+jGzYAGhMkZy3GrIkidVUg7yANm/a8HCfFRGWCaaXFYjljrHTZhALOva5lIlc667roQEHSYqQZ4zzsgiQq6IW/AcN1LHT7Stuu50SlSl1/hcd58cN06QxXWTzNmEB8tx29LlACIjbjbUu+g5bgzHzTWIbqsq6YW46UqmOFIlAaDrnenrpVfaf79JjTW6H330Ubz5zW9Gezt/QLW3t+OQQw7BI4884ty5ljXAXFWkWI4bmSx8VCVd67jpisuaNpsytUvXtsk4VEnX9uVFi15jann5UDpFOY7j1kt+k7u429TkcrEMeqKrfwQ3VIwrCOMTra7luVWAzcvrP69U0gi87WawwNkM5swDuvHCKZWwfDlZ2CNRJcXfZYV0SlRJVZAHqN/k56Eyte9Jc6QKsaTdVT0WArHMa1tneQ6troSECXETJSRckSWXHDeXvBwxJlTX3ZB+CEB/3TkiSz7lAFjqia75RMX0OxxVSZdntZjjuDWqHICPqiTLcTOsMbKxCnB7lAOgwiq6nH3XvZitqmRoxK08mK4dLo7b7v+VvrZh8DS5sa7yypUrMWUKs/YOsa6uLrz++uv5J7Zsy1lMlScfcRJrTrtiEdMVlzU5brUF24d2EVGcZO1iqR3dQpBDq9MpynEcNzpM2JHwAljFNl2tUEJth+1bx002OhaXXQOseVJ9XqZgsOWmhyLSqk1BZhMbGXFT3dO88QJkxwU16vhYy0UTM204xN/lSpVct1Id5AH0m3wdKiOMPtcDfWrEkl4O3b5owYJ61UOu88PZ5KtKSNCfEz8ll5Bwddxi5rgBBPUZ0CPFeY4boL7usamSLMTNEd0A8oOKrnRvYbmIm6uKNQf5iYi4yQ4Xp9ZbrW1GXnrFMUghn69F3Bz3YraqktZjMudB9LkuANAxjjRvQW9tcmON7s7OTmzYYJ/ct3HjRnSqaBgtax7L27DpLHY5AF/EzVRcNo/etWBBVi7adRGI4bjtLBW2zYvg6Tb5OkU5juNGP3ORRTZt1trH8dvLtF1IN+Ixc9wA4KYj6s8pDwI3vsW+bdVvKDcOHkp1LNpxzoZKN16oj6nrFh0vPlRJughTG+xNaXs2qpV0I7DkCXWQBzDnQ6lQGdUXX1+hRizzEDcgQSyXLs0e4+aJcZFIuYQEbXL0cHUJiYyD4pjjxi3AbSWcVUrb1iHFHMct97ozqJLWm3ALxM2lmlPe2tRIVcmo4iSRc9x2eI9b2zpELDZVMoO4WezFrFUlQyNuHkgkED9FYwsZ6ypPmTIFDz/8sHXjDz/8sBNS17IGWqNy3GypkqyJ2rG4bJ7jtnw58NIyfdt5FtNxkxcM3bXJo0rqFOXEtdGpDwLAKBJFdoqEGxCCTqKA2H0Sv20g/VtD57jJm8be1+rPWS4JxdhGq/NqLNG/yVapjhM1zQvg6MYLvdQ6x2178r0Yjhu9H5354lk1o8/G888YziOv5U2+CpWpfY/8rZs1lGYO4gYA6ySaj3U5AMZ1pyUk/vTX9PhHPqguIeGa48Yuku2qhCcCRIN6pJjjuAFu1901GAowac0eQj95+deNVJV0LQfgk/OuM5sC3DM+B4zsrj+H0zar8HkT5bixqZKRctz6SL839fPrLQpjq2IOLWON7kMPPRTPPfcc7rjjDnbD//rXv7B06VIceuihzp1rWQMsZo6bTRHouvY9xUlMxWWpOInuCdi4nrTt6LhVBtWTEeC+gBXbgGlEMt+VKqlTlOMgbru/gfTHBXFjbDQB4KCL+G0D9ogbd7xzzpPpjcERt0DPkhahzUHcdONlEKm4oA50+RgRtfLJcWvXoGmbHR03eh1Nzr5pk69CZYTReaNT85zQy2HaV4werW+bJU5icd1LJWDX3evbkM1V9p4j1gBIY9JGwIkg+zqkmOu4uVx3H7ohC3ETm2QXxC2Hxu+LuIkLGxNxy7sutB9cyy3ATf6eKUfZtW3ruEVRlQzguLHE1gIhbkLZd7+902M33cKvt1hrn4kYDjFjXeWZM2eiUqngjDPOwJo1a3LPX716Nc444wwUCgV8+MMf9u5kyyJaTMStdrxgv8j4UiVNxWU58/twshHx4stzioXaRqkY14ZTrFmlKJfnuHV2Am/YifTFAXHjKMkN3wEYvj2/bdoXI/3KYbxz/kYZcQiOuIXKm/GItOsUCEXXVN3q7AROPzV974O46e4XRdyGaeqSqYxec9Mtztvky6iMMPq3jh+nRiw5jltXV4J4Ztq2LAfgRR3TOLUhxEk4VMliO5TKuHntlwf0SDHHcVNed0vHzXYTbrPuRclxcwzkCqshbpqLGrUAd4OoklHKMDQQcbNhP7Edn4CIG1X2pTVjB8CvtyiMi+4PMWPtSI866ii8853vxOOPP44DDzwQ1113HSqKYnmVSgXXXnstDjroIDz55JN4+9vfjne9613BO92ygBYzx81rgfHktJuKy+Y5bl1dQBeJ3MeYqL0WgpyIdaWcXjMTOqNSlMtz3BYuBIaRcWJFYWJQJelmzdaKJNKuM6cC3IxpUnaQQyNuGaqkjziJI+IG6BUITY7bwoXADsQBtx3rh/6adlJ9jiviRq+j6XbRLqu6IKMy6Q+kLwsVNWJJh7luXzR7dn3Bd1tVSetAQk5xckDKu4xYx83a+SHiJDqkmOO4uV53H3VZVpAlgOOmzbVqYDkAW6aJ4O+zgqERVSVtBZby0DzAnRYMMBG3AOIkjVCVDFXnUhhHjXQIGvsq/+Y3v8Huu++OZ599FieccAImTZqEo48+GjNnzsTMmTNx9NFHY9KkSTjxxBPx7LPP4g1veAN++9vfxux7y0JYVMTNcdMAVCcAMVE7IG6m4rJ0oVYFcmfP9hNUoJOFjoIVCnFTTaaDFsnxsqKciMfIMwNVlHNWe2M4Vq6bNfodbpFsNuLGiPbL54RG3LyokjlOIcCnMKkUCFWOW2a8OOQVCtvpQ+nrsmaeySBuNo4buS7DDX8z9Uk2SZ+pUBlh8hypQizzxElEzbS8tnVW21B5jEfdHJYp6msxJrmqkhXHII48z6iue57j5nPdfWqhsZBUH6qkoPFzkPfY5QBCi37FrOPmMYexEDcPEY6Y4iSxVSXpfXpRUb4pj5GQq+xL55ptjCoJABMnTsTdd9+Nk08+GcViEatWrcLNN9+M3/zmN/jNb36Dm2++GatWrUKhUMDMmTNx9913Y9KkSfkNt2zLmuumKjalA8hHUPIibDpqlwlxEwu2F+2CEa0Ohbiprn3ZEp2hinJtZKIuINmYyopy3jLdkRE3bq21kMWg5ftgvWHLy3HzyIGgNDYd7c3mnsoKhMJx60QiRCKPFxeUU1ihgFp0RTduNhMRIhvErVBINz2TJ+rPE/ucfqT5fMJUqEytfbrJL6sRS/pV1bAVNdNkY5cDEDlutiiBBeJW7LDbKNvmuDk7btW2Vdc9z3HTXXcW4uZBN2QVyfZB3HJy3HxonrRPeYibLf0VYNA8G0WV9AnKRc5x0yGpIQpwmxwfV8SNPohX/dJc51K1DcxT9t1KVSWtRuCYMWNw5ZVX4hvf+Aauv/563HvvvXjttSTaud122+HAAw/E+973Puy6665ROtuyCCYexkKb3URqRZV0FCQolAD0Mx03xUQtFuyTT84eNzluYsHuuZe0bZvozCgG7RPBy6MauYjCCEW5G28BVtyeHHviUeANM+o3pq6LTI2mY1J97Muea2O1TQkTcXOJKHPaBTypkooF0qffHBEOW5RAjJezzwZuOBJYWx0zTz8GjJACdj5BCvGdyoB+nnHNcQOSwEa5D5gwGuhcrS4JIBy39dJxHSojTFV0Xjizs2Ylv6XbmHR2JnMRld/PtM2lGzqIkwB2OW42NEnALcfNpX3atnzddY5b3nXPsCk4zo8H4hZbVbJSqV/zfWietE95iJtL39s6kmckBlWyQs5fvSJRL6TrXtljDoud48ahYmYQN5t8VE7hc5I25bOX+c2v6j/n1rk8+2x1AG0rVZV02rnssssu+PSnPx26Ly3bEua8sFtw/V2RjYJiAabGibDJCzagdtzkBdsLEeNslH1QiMCIGzXalzfsqp4MXRPYRS0/Gv3Tte1Ts4UTGaTnhzD5PnhRJXMQN+uNLFmoVcW9fdovlYCxXUBNxFVqv9wP3PWx9H0Mx61vVfq6Y4Jd222dwMA6oK2sDvIAqeMmD1sdKiNMF9yaORM44ogkUrzme6jxLweQIJizZycOoUvbsrlu8gvF5PmoDBgED4TjZimWw3U6Rfu2c5iOkk2v+wpy3cvgX3eqbNqvEWrzyRNjIW4BqJKi/TYpQObjdAIMxM0nMGeBuHHJZD09wPz5wO9/Bny9euxPfwROnZqMhzlzkvHQKHGSQskdiTS1L9bctuF248YGAQYcctzI+Stfr/88j0oOpMq+06fXf8ZRIx2C5vDkt2yrsloemmMCOBBHnASwpEoafkOmdlFdnZGa4rI+EzWHmhYsx0269gMDwLNPkXMj3FeOkIXKhJrVwMZslK72e+V08fVx3NhFfUMibvKiYJtjYYG42fY7Mx51jptH+6VR6et+SWFx8U+AV24ibTs6boB+PFJn1IYGBKSbnvXPAie+oz5/rw1pjptA3Gj+HqffAOr4eAKx/NBJ6bHrb0hqqKlqppna1s6/ZdQmO6d8pRyEXNRxs3bcmIibEFQQAR92+wb1WnHdTyclKq7+A/+6d4xPX9OAATWfWmg29Ut9EDdAHeDyoXnSPuWVCLJ1xgHLHDfGtaHqhcuJ01BCvXphKMdNi9L6pAgw0HHnZ4lBlfShqNLzVUsmR3UXMCj7bsOqki3bis2lzg9gl6TtSknLq/tlM5nS4rLX/yU9/p//oV6wfWrC2CJuXqqS1Wss6p5MnQq8hyi5/u4ay7onNkiqZXSwtmhU1MiPD6qU+U4FWjnqQUfKSJ7Jm0RTLTmVxUTc2hiIm4+qWTtRVZQdN+q0AXGi+K6FoGV7/Pz6IA/d5wx0qIM8OlNRJeuMjJtdFbRkbdsWOcaAJ60uMOLGyc+rlNNn1XazWQv4GSLsBRI42mkX/nWnReB1jpsP3ZAlex8gxw1giHDEQNxy6osa286rQWeB/MjqhfQRon+2UC9c/CRpOyLi5u245VAlbUoByP3hzDPWddyo8q7icw5VEtAr+27rqpIt20qtNmEEFlMAwiFurI0JcyiXSsDOJAezoEB+6tr2SezXRastlB9lk6NINHL46qvZhWfdZru6JyyH3HGRoRswKk8sjI4jl8R4Di2CLmC2lBSTydE8nYOkszwZcNeyHQAvx80LcSOL5oCcCCZd49iIm20kf8KB6WshckKDPP/8a/r5ezRBHp3Rv1WniOk6D9jK0rtswmsF7fMcN8scN04UPIOi2jpuQjmxrL/urvO7LeJmTZXkIG6BqJIq9CdUOQBAHTzzoUq22SBuhmvTo1AvpMNE9Wff9g/S9hB03GpBEEvHjRVI8AlUkGs5SUFz51Aljcq+27iqZMu2UnPNcSuRxfqVZUkUekBaaHwdtzz5eFeI3qp4OGBdt4WDuNENbrsmWqRtn9yrm/6/bOQQyNaGEpeOW/fEhipp7biRRUOV55ZBlRwWdrrIaDeEm+r74mLypkQOLlg7bjkbKrroWG8GGVRJH3pXO6FKDkiIm7yBckIJmI5boWS/cTjo4vS1vOkplYDtSU7TMEuVZBNVUvWbVpL6lnOYF+KmmMMqlfR40SPHTRtgIYEdW5SAOpLa8d6sjltsxM1C9t6Jrq4oqEwtJlWSux+YP79ehEiHuKnaDp2/DJAcN0/HTUfFdEbcGI5PJvhkOxeQ8fIfH6j/nEOV/P/bO/M4KYq7/39md3aXZbmv5VoOAcEYonKpERXF5BGNV1ATRaOGR0l8UDFexAd/+kRNjJooXvGIBhMxXvFKNIpnFE8UTWJUvEAWVE6XY4E9+/dHb01XV1f1UVW9M8N+368XL2a6Z2p6+6iqT32vuJl9yeJG7DToxLjV1gI33uq9f/wvwK67um56vFuerhsmI1K4aQbFxo4PkXw+Dj4Lh2LiwAs3PkYoDvzxXP+b4P6wor5RdU9iJZ1Jy+Jm6ioZw+LWojmAiYjnRrxHVRNGFala3BImJzGxuImukuKzk4bFrVXTZU/8jmxS1bjRe81P2uMQx1WyVdPiFsvd0LQmV4jFjb+Pkp53vr9rrJN/xlcwOKHFjT8evtYcj69uVgIREUe4mcSJRVkjm5s9K2Jjc3CxNIrIGDdLWSUB+X1p4irJCzdpjHSM+UBzs5uFMLCdey37s03qusbJ+pizRKZgcWvlMnNnE1rH47ga8mNd4hqj3Lk8bnqwfFOUq2RkZt+Meh65cSnw9hzg638lOODCgIRbRyepuGJueTfe5m1jz7YY0NtqaHELc5V0HGDbKve1ifCJs1ptEuOmcpVsMhFu3LVqkZwb3oAn6qPIuicJhFviemKcWJIJN5M4KyBe3A9beUw6gImI50YUiqoJo4okMW4myUmUMW4mwpA7l2L7poXJgfiukjrCLarmoknGyljPkqaA8InClGLc2IRT5jXQaiDcSsu9sg3bV8k/YyTcYljcfOnRE/QFvHBrqpN/xlpWSa4dPoa5qe2e+c8HwcXSJO1LLfs2XSXFxS3HTlZJWdtAvLj05cvdeUrgu/CM4rJHxUS4xbG45cIPDM9L5CKLgauk0uJm0BfwJ7a6X3idS1k3F5XZF+DmkcLxPzUeWDbf/b/IIOHW0UkS48YH9PLPgDjPY255jSydcwoWt62fAdtXu6/77Juw3Qg/fMBejFscV8mkwo0/n7InmK9BvF6y/4471Cu1UZPNxq+BbSvbftvA4hbpKmmSnAQhrpKWLG6iMAxY3JImJ4nKKmlSDiCGBdioaHDYxMGCq2Sqwi1i0sMLiDKTBSJVshze4qaZATatGLfYFjeNRZDKQe7/27+Ux6HZEm6qBRTdgsTZrp5ojpVV0qTUS9szKcYws0eqFcHF0ijSXCACwscPXx9jYHEDFAIohpfM5s3y7YAnDGxb3NKOcSuNWHwyEVaxvFgM2hfvlxkz/Jl9VTFucTP7Ap74VC5wFZ8LJQm3jk7cGDcxoJd/hlWLREy4pWFxW/ui97p6SrJ2044PiVMOgAm3TIlZOm3ZofGhODLhxuqeSNuOODf/usx7HVaPTUaUxc00OYls0uNrv8nbbhzjJk5KhHv0G3OTtRc5obJVDiBOAe6kwjDk2EWLW5rCLWl8BSAcu8yypFlsHojpKslZIJImy4ksdmwxq6Tomma0yg6g82D3f6cF2LEmuN8nrAyEW4tCuPksbgn6gkwGKOvhvo4V45b0WRIWn8Tsh4BfuDHixjBHuUqauteGCjfubzBxlQQU8XkxkpN066Zuv12Em0L8pJmcxEi4xXCV9CWHMohxY9ePz+zbk098BTcRSZLMvkB0krsihIRbRydujJsY0BtmcWOwuyuN5CT1K73XPfZM2G7SGLcUXCWZcMt20ZiwRVjcooQbEFL3JOLcfHSD97pBUjAzDF+MW4TFTSwMG4coi5svbXyKMW67nQ90HZGsvTQtbklj3JJO2EJjOGxa3FRWKxOLW6n3fEclhUmj1mUuwYdOMp6orLumMW4hE07TEgxMuAGeyzuPLzmJQYybSrix7ZmS5NeVuUumUg6A+/yWumD2Q36okCVEjoxh5l0lZQsVpslJQu55k0zK4vFIhVuMGLfhw4F+/eT7CsHiZpqcJEq4JRZWKbtKqu4Xltn3isu8bdf8Nn69Rd9vKFwlixgSbh2dODFusoDeOMKtNPAiGWHCzTfJt9RZ8BjVWUvgKpnUTRLwTwbCLG5NADYp2lDVPYlzbnTJRlncDKwbQLTFrVnTPUqGeE/y73vvk7y9NC1uJVnvuiqFG+sHSgwXKqIsbpZj3BzHLDkJEJ6tzijRRBxXybbf1KprFWVxs1QOAAguQNmyuAGeyzuPz1XSIKuk6n7nXaaTLpzlhFud/Lrayiq57P1g9kP+0ZTdUlExzJELRCnGuOnGc+a+k8DippraZrNuFkIZYcKNH2cTzweiBKejlyQu137U2JGyq6TPkmrB4uaDu4cGDY1fb5GHndMidIlUQcKto8MmbGGTElVAL+sjoixujZoPDL/SHki/zg8CSeugxXBh8g1gKWSVbDIQbvzxhAm3DZCvyobWPYk4N2Xdg9viknqMW0RGthZN9ygZofEbOhOeiAmV8blpuydl96PjABuXtB2HqWWmnWPcnGavb0hDuJm4vSGOq6SJxS3KhdQgfk48JvHcGMe4DfReb/8yuN9WjFuUq6TOAk4uQYkDNElipoziRbnPf/qRZD//O4o2wmKYo7LXpirc2tNVMqSfmTUrmL0QCBduWb5QdNIFnBLO6pNCvCh/XjYutevWzD97myX3o2n7kVlIDcMngHADQJFCwq0j09qC3Mw+rDNSBfSyfl825+AXMVUDTBRhKa9NJrKRnUUz8M758s/HIcpV0nG8eldawo07L+JicRkA1vfXKb4ft+6J7Nx02817XZGwrlWSGDfT5CQy9zGbFjexfeNix0nqK+m03zagyu7HT7lMXjruJKExbjaEW1sbsvvR1PIDJLC4JY1XSpBVUssCwSYkirb52LFOCvew0PZDLKmm591XWzAiKYxJOQClq6RBkqKokgAm4oefnDZJntU4wi00hjlqgSjFGDdjV8mIWLG45YFqaoLZC4Fw4fatb3LHYRgvKmJiEePbBoB1LwMf/ta/3+RZ7f5NL5HQl08C2yTWcZ8rZtJyABEWN9PargCkWSUDhgDL3kUpQ8KtIxN3MqgK6GXPgWw+w/dtWc0HLiy9e5qxJ188KXw+4WMSlVWytcH73aSZ6gD/taoQrhvvASnT25F1TyLODf/bkx8MO8ogUTFujmEn7auBFOEqmWaMm1ZsSAKLm87KIxuwZRa3N3nXIZmJNgJfAVjhfrci3EIsS6ar1UA7uUpGWMWMLG6KlWTektVpQPL2w64rL4i0ksJEWcfTtrhtD342Lj7hVhfcb+rWzIhKSx/2qKpimKNcJVPNKpmyqyQSxKWL2QsBzyuPP+8se+GAaq5ty8LNeBFE6Dv4RWfT9kuywNAfuq+dVqDuveBnbJUDkNYV5M6XTtw74N3z/HMZdm8WASTcOjJxO2lVQG+YcOPvrMqEA2+ujZDBPU2Lm/hbti1uvhpuilizMPhr9SMhsxKvsWVjd1TdkzjWSEa/A8OOMojPVTKFAtxRddx0U4DLCBNu1t0NYS4Mw4SbKWHWQnECZbuOm1WLm+WskoiK34B3vtKIcdvxlfe6sn/y9sMybpqed98ii6wcAL/IknD84Gs0vjoD2LHOv99xvL5Ay1Wyh/c6yuKWeGyKEG5xPVlUMcyRVitTi1vIPV8orpIMPnthdbXf4iZmL7RWE1Em3AwT/UQJGtNnlb/fbVsM+XP5/HeC45NJSEzuNySukuK9T8KNKBriroCpAnrjCjediSYgDO6icDOJcYsQJ6KYMikHILO4mdRwA/znZfxe/pVD/tB54Ra37klUQgV2vjIlyYP6fa6SETFuWtm1IlaTrVrcQlwltTL4JYlxM6jJlYZwC51QpVwOwCRjGoNNIqMKEhdcVsm29retkvczvMWtUsfiFuJ6bGrp5M+N1K3ZwOIm3gf//j//+9Ym73qk4Spp0hfw57xSck/EcZUMi2FOlJykgLNKSp/VmK6SPCx74apVwDf3dLdlAdSu9GcvtFlaQ8RmjJuMVsM+Miou0ijGTbhOvNs+YD4nAORZJcPmk0UACbeOTJIVMFlAb1zhZloOAJDEFNmyuEX4Vas+E0ZYNjbAL9y0XCX542/2rxwO5kxum5G87klca6TONc1GuDClnpyE+82kK+099/K/D4u5TNviZuIq2SoTbgkFuEjqMW4hws00PgRIL8Yt0nrd4m3XcR3j77PXfhTc73OV1LG4hUzYjONyIp5Vk6ySWWHyu+Vj/3tTy3uqMW7c52sGBvfzt4kiYXFoDHPYNW1pBFY9xn22yFwl42SVVJHNAlXc2Fki+KGaJCsD2tdVUqTZ0KIX5cZvKzkJECwxZNNV0mdxE+eTqoepMCHh1pFJYrWSBfSGJSexIdziukomLoybQW6yGpXJCJCnqw7DVw5AMlG2aXFj54WtHF57qbfvst8kr3sSW7hZHtQB8+QkvpozUVklE65sivF8gZhLU1fJlC1uOeHWFFyI4F1hdGgvixsQPPb2TE6ik02OIV0gMnQD4s/LygeC+32ukhoWt7CFM+PJYERfwAsiXijFQXy2K3r53/tc00xj3GQWN4N7hu8HBlYHF0v520RmJIiKYQ7rZz7/s/99sWWVREJXySTtt7aTxU3LIpbA4qYlDKPGJt6SamhxE8+tVVfJFi/jJlnciKLF57oQoyMVA3r5e52fZ1dUALfexLWtMQAA6SUnAbxOYMsa1xrFp08WVyKTrlZHWtwMBATgPy9f/8u/r2mj93roN5PXPYkUbsxVUmdQj4hBa+YGmA116pTWKqJqzpi4SnYdAYz8iffednKSyFo8lpKTAP7n3nH81o0hxyVvO7SOmzgw285UZ1G48aUFcr+XpsWNX03WmchGTCC3twm30k56ZTzCJmymk8GovqCR68fKewX3hyH2qeL3TV2mk1jcTApwl5cGF0ujLG6RMcwh11RMalHQWSVlfaSGq2Tc9nN/S8asbalw4z1BUnCVNLbotaPFLUy46bpKygwAAddvEm5EsaBjhubd8vgOowx+t7xjjvb2pWFxa9FciamtdY9xeVtH3Pg5MH5XYNAgd3ttbbBzGnREwuOOyCpp3JFy5+Xze4G1i733DVwgfkXf5G3HTU6iteqouJ7smpwz29t22RX+axKHJMlJTONyAqvJFmPcouormcS4Af5Jd8sOfz+wz90abfPZByMsbjqptNtLuAESgZJijJtNixuAQEprJn7KeyePRwUi+l/TuJyI5CTMZSpTCpQpshqrEO+Dit7+9zZdJZvqgvtz94zGJL+kFLlnprUpuFiqEm5xY5jDJuFVQlxcmhY3HVfJ0pDn1N3IHUdKwk17LpOmxS2iX7Ip3CJj3AzKAQDBsY2/zqaukoD3bAZcv0m4EcWCbkfK3PIOPtTbtuQVv1ueL5jXgsUtYOHQWAlfuBAYNQq48krg39xEZDe4BcavvNLd/8o/vH0Tf5d8shllcTMdwMTz+fop3usGbqVanLDEajumxU1rNVZyPflrso3LptIM/zVZuDC6/cgBhnfVsRyX4xi4RwHJLG4mWSUB/0DLTzwHH6W34pskq6Sxq2Tawk10kTKxuEVkkjDtBwJuo0Km1qZN7v/lGtY2INw6Y5xVUojTFcmJzl4aSZCEe1h0R29O2VWS/T26nia5+nxt7fCLpf17eJ9rQPIY5rA+sutI//s0ywEUQlbJJO3bEm5OS3CBxfhZipjGmwrDJDFuiV0lE1jcTF0lAbXFjWLciKJB12rF4Cd5Qwb63fJMg3kBwfXNMDnJwoXASScBDW0P6EfcvsHc64YG4M7bk7UtwndeUoubqa9/yKqUbxDQWE32ZXuznJxE7EDFa8L/WfxPNzS4n4sSb1EWN5sWjjCLm+mEJzLbm2kMHdcWX4eqrEfydoGICZVt4SamGLeQVTKsXpmJII9aBDGNExPPdRO38NHa5LnAal/XkJhR0xTmUc8qs7iJ8WlxEMVYQOAaWtz4flWWZCnXR+pmwWN1p7h7jy2WLuDGpnMuSB7DHGZxE4u0axWaDvE2SRqaIeITEJaySvKEeQ6YCreKPt7r7av8+0yfpSgK2VUyanywLdzY8VOMG1G0mAYLq1bxAfNgXkC+UpJrP0HMT20tMHOmfxs/3orzMf69TmfhK8AtSU7Samj5Ec+nqm6cjmsB3/baF4L7jWLcuLbrtwSvCX8ZZZ4wM2eGu02GTTQB8/s91AJsWv8oEz9JhmmNO16M8MJNN0mJb0IlCh/hPBVyjBtg2eIWIdxMikwD4cKtabP3Wie+DZBPeBh8XKRtV8nWJqC57W8p1/AaEJ9tsX3TGLfIBSLLFjceh7vf+w/ViGEOmYSrSlYkgRfCvEAGBAuzzriaYlZJIMLiZrBgCQDdd/Neb3rfv8/U7TiKQhZuiSxuujFuknlBwBBAwo0oFkxXwPiHVEwzzg8CNpKTqFZIMiXRK4O33eZZdRj8GCV+nX+vVcumxOuA+QySDNuukj7XTMOUy3zH+f6vg1Y3WzFun38WvCb8WC7zXGhoAG6/XbJD0r40+5VFi1ug4zdMTsIfk1Tsm1r0FJNN3lVS2zJT6p0bZVA/O44idpVMnL02ouwILyBsCLdmXrht8l7rukqGLYSYZH0Ewl0lGwwSk4htAxKLm6GFI24tNN0QAda+NIGToegMTTjD/d7Yy5K3DfiFm1irM21XyTSzSppa3Lrxwu0D/z4bfVgYNrNKykIQjApwR1nc+IUz3Rg3ydgnK4VRRJBw68iYTmTDLG7t5SoZNZlqbgbuuCO4Pa5wC+yMCQuo51e+c79tWbipXL10BESg5pEQN2Mrxm21xHLGnwpVP3rHHepsk2FCH7Bw3kMEhKkrI+BZRvhJd6590yyqikk4b6UpEwrPJ2pfYS0sBuGmWvgAzLKF+soByFwleauVxiRcnGzw19KKC2zIQoixcAt5VvmMkjqukp2H+N+HWsd1shtG9DPsXJkuWMomySaFyYHwSTj/t9R8P3nbgP8+FoWbaf+bKMYtpeQkuteUF26bRYtbgbtKRsW4bXhTv/32yCop8zahGDeiaLHqKin4+jspu0qyBzBqMrV8uZvkQoQfy8WngO+b122EFqHCzSALExAcPGTp2EvK9AavXuP97wMxP5Ysbs2SgZc/FbI60QCwZo17TaXtR9WbMSzmGbuuoObgzibA/KQ7175puQHFIohpGYPcd9suXpRws55ivD1dJU3quEUIt0K0uPkmbCqLWyZ51kcg/JryRXh1XCUzGWDKU+r2TZ/VqIlsmhY30/i8sD7SRkKxNF0lw7K/AuYxbmFZK40tbrt6r7eu8O8rZlfJNS8C9Z/rtx+wuAnvc55VpXoxl4AiqyS5ShLFiqnFjc/W1SS4BNqwQISt+LbGFG6bJcIJ8Cd5Ew+P7x+2y4KtYsAmM82bkSv6mPvtNF0l29rWdSsYcrz/fSB20aQAN/cdWc8TVaOIsWWLfHs+k5OYxrgBXoxZy/agYDaebCpEp6kLJoNNelRB/bnf0LG4hQgg04xpQHqukoD398pcJU0n4WExbj6Lm66rpCIuEvCEW3kPvUly2LPKu+/qWPMAwbJk+VmNtLgZCrc0LW5hotNGXxDX4mbsKikZIAo5qyS/uCGGT5i6MkZhs9yAeM9seMP/PqnnQMCtWbHIYrKoGCurJAk3olgwdV3ghVugM7JgcQutr9QY/IyMborVYP65DbO4VWmsJgNAts3tzGkNWiNN09KHJSdhbetcTwCorAaGncS1p4hdNLWcyG6JuMKtq8KlLyo5SZqukjYmPb4043X+faaWMVWiCRuCE8ifq6SNSU9YVknjpDBtnUsaFjfxHlda3HokbxuQr1QzcsJNV1hFJCdh6NZuSjUDbIl3XcMsbqbJFNo7xs1GXxBmcePvz6yiDw8jqj5qqslJDIVbpsR7xsW5kml22SjStLjxbY843cwrAVALKt2FaEBuACCLG1G0mFog+JiYZsEKYqWOW0j637grMcOHA/36BbfzfXxYjNtAIV4iLvwKm+guaeqiKnaOshgdk44uNOmMSTkA7jsVknsiToxbdbV7TaXtp52cJMRKYMPlkI9FEgv7mlrcVFYCG5ZxIES4CZamQoxxi5tNTqeIdc7iFhXjpiHcRHwWN0646VrcWrm/96tVXmyp0+rdn7rCLSw5iY17MqyGno1nNWcVSyGrJGtbmsGvnWLc0rC4mWawjaqParMcgG3hBngL3e1tcTNtPxNyz/D977ATk7ctShBV7T+T+UxGsqCrMgQUCSTcOjKmAiKuq6Sub3KYz3nc5CTZLHD66cHt/HgbJtzKNH3Ow4Sb9eQkkgFN53oyVElnmps9S2pDszpJiIpMxhv4qvsE98exuJ1+ujoFdqQLk2k5gJSTk/CTGbGwr83kJLzotOUqGdviZlrjLk8xbtoCou3Y6/7lF1aAYHHTsJ6I8BNCX7bQhMKtttYt6nzued62//t/wKBB7vYVH3iCXFu4hSWesrHoF3LP2IhHDbOKmca4sb5JJk5MM5HGzSqZhsXNVLhFWdyQYnISk2zKDJVwsxHjNvoc7o2wwORzldTJZRAyDzNOfBLlKmnb4qaIcZPeT4ULCbeOjHGMW1yLm657gQWLGwDMmgVUCB1WmMXNV8dN13pSxBY3cYBkE7lBA5HL6vKv97yJXFhtNRE2menTO3hNoixuFRXAGWeEtJ0gOYlxNrmwyaBmtxrmKukTWBaKn8teF6OrZOoWN8MYC16cffAb/74Ww0m4iLKOWwJ374ULgVGjgCuvBDZy7ZXATfJ05ZXA5HHe9jRcJW1kJE47HjUsDs1U7LM4pNbGoMXaNBNpaB03C4s4/H0sWtyaDK3AUfVR2yPGzaSPZMJNXOS2kVVyr2u5N45/sYKdq5IyvUX0sHvGWLhFWdwsx7ix9ijGjShaTC0/ZSExbjZcJW3EuAFATQ1w553+bWHlAHzCTVMAhbmRmgYLi+eTH6RMY9wAfwf8zBPeRG7dOu534E3kRo1yJ3xxYANfNhO8JuyQdwAQ8rkAcD9fUxPdNqCwuFmscRfwkedW2XVc6oBwixs/GdRy2VO4kVq3uEUV4C5A4eZbUVbEuJlMHBjv/Z//vWmMmwgvBH0ZVGOel4ULgZNO8uorqha3yri203aV1BZWKcejsuMKs7jpHrvPVV2YUJqK/bQtbqUhFjdmBS7tZJ7FuihdJduuV2uD/1xbSbCUBfod4L13JO1rtx12z1iMGwfUsWe2LG6OwuJGwo0oGmxa3EQ3IFMLASB0GIYr4TNmAPfc41l5VMKtogKYMll+DElI0+ImTjb4Act2jNtvrvImcvx54id1DQ3uhC+OeMvF/DQHrwk7FWIfWlHhfm7GjPC2w5IpAMJCRUpZJU0m+PwkWIxxM50MxolxM1lNZvex0+pf7W3P5CS6E5NO1d7r9a8L7Vu4ripMrSci/P2dtG+vrQVmzhTa417zl43XCztslHoRnyUb3hppx7gxV0nRauVwk3xDV0kgaFny3TMabnVpx7iFFeBmXgTadQUjXCV9Nb904oAVwq252esHGluShwgwfMncuOvIz51MFnBksVyAdw9peyTEjHFLxeJmI8ZNMn5QjBtRtNiMcQu1uFnIKsl3GI6jtxI+Ywbw8ceue1+vvt72UrhJL+bNc/cP46w6ugN7Ns0YN4VfuNPqddi2Ytz4P5/vLSS5FjBzZrTbZEZYqeavSWXbD7DTw1+TKNHGtw0oXJhYTZgSTZeRGMlJTKxW/IQm4CoZM6ZTherYbScnAfyDoO06buIk3IbFbeD3vL/98z/DV77D4SydtjGNVxLh+/Ok2TBvu81boGHEEW5LlyU4QA5fDJrCeg3YiXFL0+IWsBa2BD+TFFWMMeCNs6WVen1Y7DpuunHpvHCr9+9jfZpultOo5CR8/b8Kjfp/vuyyjVyIwCCgoe06fLBML0QAUHsoNbR5spSU6dVEZKjKJ7VaFG5px7ip4lFtCzeKcSOKlhZD17GyEIubjZV8lcXNNzgmnMjW1ACXXw588JG3bf99gVWr3O01NcKkR9dVsh1j3NhExNSCmvsu1wHzP8X3sTJXxoYG4PbbI9qWTHjYNenZNugP2gX46CP/NYlDZB03QzfSOJNBE6tVaHISU4ubYjXWtqskEC7cxMD5OPDn/R9HARuXeu9tCLdOfYB+B7qvt60Cdqzx9tl0lRQxzRAYaE9hcYsS+83NwB13SNrjXquE24tL9CwQYW7NVixuYdZxg6LqufZVFrfm4GeSUhIi3Ng4y4+9idpOO8ZN4SrZ2uKFDFixuEli3JgAAoCKvsH9UfAu02+95oUIbF7rLWDugF6IAKBe6N6xtu2Y++m72QNCLJpFi5sqxq15O7D6Me+9VvvCRMLnDeJwFjeTGDeZxY1cJYlixScgDAtwp21x860gWRAo5ZybSadyf6bCJJMeFbxwa9jo32c7qyTr7EzbzcG1n8TiBrgTwLCJXC6oX5xMOd4KbZfe7qCoyh6pIsy1lt+me8+ECjcLlpnQ5CSGAiKOxc3IVZKbsPFunoHrLClEHQV/3retBBbt6703zZjG6Dbae711uffa1NIpwlvzbGeVVFncovr25cvdyahIHOH25Rb3+0kJdZUsohi3QKyMBVEYx+LGj71JCI0btxHjxo2rvEW5mVu81La4hcS4Lb8H+PJp93WmVO83+Gf8/ns9C3R/7jNfca+ThAgA8vmS0+oJzk6SskVJ8C2GcNfWpqskf8+8fpq/P9fpf0ULG/+sOi3ICTsji1uMrJIk3Ozy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTk8QVKoQFCxYgk8mE/nvqqadS+isKFNPA0mxn5FbQAxY3G8lJFBNxXwY/GxNZRakBQL8AbLddvddfL/XvM66rovALt2Vx47PJ8c3EEW5r1oRP5FT1j1q4jCS6k9gwKyfgCVtdN1J+YFz7JfD2264bZ3OznZXBOBY304km4B/UbVncuuzivd7yMfdbolCTmWojCLjTcPe5acY0RheuNmD9Cu+1jdhFHj6znnEdNzHtt0K4RfWRmyXPChBPuNUD2CL0/XEIc5W0UgOUF24pxLjlygEIYwe/gKlrRQ0TKGyc1SlgDSC0JlfuvGT0M+NmSrzj5y1upqUAgPAYt9dO9l5X9DZPTsLfdrxw44zxOeKECADy8kmNdd79bircpALFsZuchL9nVt4vfE5jXA2zttuaz8RxlSwy4ZaC47495syZg/nz5yObzeLggw9Gly5d8Pzzz+Oiiy7CX//6VyxatAiVlckCdEeMGIHJkydL9w0aNMjGYRcPLYYPRqbEHZyat0qKStpITqKyuBnWtALaJnkZAI6k87AgDLuNcV1CmuqAda+4HShzg2CDTqZEb2VTFHs5V0lDF0xGAzfR4f/8kFAjH2ETOXYviJM1Gxn2+BTT/ASZYWpx28iJqSuvAJ66wn3drx9w7Wb3/Ji4vIUlJzEVhmlb3HiL1eZlQP9D2toXFb6GcAsTZK2GkxJG1TDvdb3E4qZ7bg5aBLzwXe/9jnXexJVZJErK9UTn1OeBF6d5E7NWhatk1P3eTRFXE1e4ddUQEZk2ccDH5TJsjB38xD0Ni5tqAcqXaELXnVHhEtja5F3jMl2LW4yskib9AOBa31t2+C1uvHDTdpXkj5271x2hT9EuUcG1z992Kosbg4UIXH55ePsyi9sOztJdYWpxkwis1ibk+tw0YtwYmVK9Piwso6yNeR4QnZxk1JnAbhfot58HCla4Pfroo5g/fz66dOmCf/zjHxg3zq0ds379ehx88MFYvHgxLrnkElx77bURLfmZPHkyFixYkMIRFyE2JvplXduEWwp13JQxbpYe6JJs22AYkmFIe6JcAvT9NvDFk64rRP1yzyphHGtVAnz3Nc9ljHV2tlaoqnp4r1WukmHCLWwip3IxslHTqpwTbqKrIWAm3BYuBG6ZA/xP23v+ll671p3klgLYbBDknO3iTWbF42eLLLr3TNoxbqJwy/2WxCU2KWH9h6kbEIO3uG1d4b02dZUc8B23OO6y+e77hvUARrmvWf0m3YyS1VOAY+uABzq794zK4hbVhw0f7i4+iO6S/KXjn33+8azs7X5fh0wWcBrDs0qm4SppI8ZNaXHjxkHdODSVq6TPmqdrccu458ZpUce4mSbiyXYGGjf6YzhtnJdMxj03LTv85yXgTrodWjjcPcOfAi7prFS4AW6IwKWXhrv3y5KTNHDPXBoWN1PvHkAd48YTWKCLSSDWrJ0sbvzv9p0MdBmm334eKFhXyV/+8pcAgLlz5+ZEGwD06dMHt9xyCwDgpptuwqZNkpV1Ih42HoxcUckQ4aY9OKYY4wZ4HVJonIKBMKziJjS865uNWms9vuW9Zue6xZLFbcBQ77Wvph33WiXcqqvDJ3JiVkmGjdTopZ28wUm0WAH65z1X34q3TnH7M/BcSj9emSxgnSdT4lkNA3XcDN084xTgNpmwdY0p3EIVv4L2EG6duXu+/nP3f4ezxhu5wHIZ7hq5zHc2jr20wruf+Ulakj4ymwVOPz24nb90/K3BC7dDjop5oBL40iA8aRfgtmpxa/EvRtiwuKmEG1+4WTfGDVCLTlvCLXc/8in1uYU5k9IXuba5sU6sF9coxJTH5SsuuQl/2/Gnuk7x3agQASDa4mYc4yYRWDaSN+W8k6AWbroUgqukqYU5DxSkcFu9ejWWLFkCADjxxBMD+ydPnoyamho0NDTgySefbO/D23mwkcyCBSMHCu+mWMfNlrDKFVFVWNwypfq+/oD/2Hi3VNNJOCCfiNvq6Mq5gTVpjNvpp4evOpZwEx4eW8WIc8LHkqskX9+K1xz8ueAvYwPixzzIYG4+AVdJQ7FfIlmNBewNYJ36ec85P3EqFosbvxrOBJCNxSdAXVDZNE03g90TfH+e1Cth1iyvniIjyuLWCuCmu/TTo6sSFVkvB5BijJvYXpNlixsvxm1YrQBuwTIlV0nWftMOLwa4hbOCZTXqzzFKJfe6WC9ODNuIy3bu2eRPAX+LhOmWqFhPWYybr4RBn4gDjECWqdWGcAO8+11WZscEVVkdwN58JqoAt63EU+1IQQq3d955BwDQq1cvDFes3k+YMMH32bh88sknmDdvHs444wz87Gc/w1133YX169ebHXCxYuPByK3epZDSOc0YN/67AXO9hdoh4vd9CRWYcDPoSGXB/baySvLxQkli3CoqgDPOCG9bmZzEUk0rFj8UKGDt6Almvr4V/zfz54K/TRoRryyCChb/0VjniZzWFm/yqZ0RU1Xjx5LFLZORr+SLk/KuozQaDxmmbAm3qDgIk8FdZf2xdeylMisE628y8frfmhrgzjv926Ji3LbBDZ/RTY+uine1XYA7LGulqcUN8B9/s22LG3dNC93ixuqeffiJ+35HPbDrrq6w//Pd3ud0CoczcosUvKukINz2+JVe2116eK/5244/HWG6JSrWk/+7mSD3JUIz7cMiLG4mccCqe8aUUItbO8W4FaHFrSCPeHmbyXnIkCHKz9S01XZanjAV8SuvvIJXXnnFt61Tp0647LLLcNFFFyU8Uj/19fVWPtNu2Ihx4yfifAIOG4OjyuLGZ60zmlCxY1dklTTNJKcqIJ7L8mRicZNMTGytUMUpwC0TbnfeGV1zTSXcrFncerj/N21xxQ47T75V9pjnRqxvxf/NfEI/0eIGxIt5kMEsbk6Lu3Jc1tXOc6qqm2XTZSRTBmCH/17nB+J9FgBVMWvy+dpVTN4dx15yEt9CCHOnSWHi0JqCcAuzuJWUIXZtKFbkfuZMd/EhSriJQxlLj863FXrcir4g9XIAFmPcgLZz3TYpt2FxUyUnsWVxy03ChUx67DzpiOWFC737huXoYM2sXQs8+RjA1vRMhBt7VlpDLG67ztZru2YY8J+21yqLm6rSTVSIAOB/zlkcng3PJEaaFjexbqGO54SM2K6SKdZxM3UNzgMFaXHb0mZyrqpST+C6dHFXnDarUhkL9O/fH//7v/+LN954A+vWrcPmzZuxZMkS/OhHP0JDQwPmzp2bi6vTpUuXLpH/Bg4caPQbVhk9Bxh3HbDnVZbSjPMPXYoWt6Xnea+trDwqUsMaCzeJq6TjeEHbJrWbMpmgCLKVVZLv4A+a7LlQqYRbRQVwzz3xJmu5uJZWvwuTjRg3gMss6fhLAvgGgZjnRqxvpXKV5HUguwRxYh5k+EoC1LX9rgVB7ksDnkJyEkDuesz6hNLOwC6naLYr6T9Y/Bm7h4xXq2ULIWms+DJXnVaun0nB4qbbh82Y4bq3zZsH9OJct/hLwObdwnw5R1xXYWVNx5QLcNuMcRPbs52cxOcqmbLFTddVMhcD3Hb/sdPBhUb5FrfeEMrjJEG2SMFb3Mb8TD/jZhk37vC3HXuEwjLGR4UIAH7B2iITbqb9b0oxbnzbOeGmmYxEpOde/vf8+TAul9IGxbgVL4ceeiiuuOIKTJo0CX369EHXrl0xYcIE3H333bnMlL/4xS+wZo2sUMdOypDpwJg5wDcuir8qK6JMemCjFo/C4sanetedDAIxLG4WXSXZb7Rs99rXTVvMEF2NrFncuFF26EBvIte3l7e9Be4q47x57v44og1QC31bFjeZ8AEEN9KY50ZcFFJZIPhJCT+469S3ktVys+ECm3aMG6BwlWwTViarybLvtjbam5SIvyN1lTQ4N7J7nr+mJjE/gHwya9KH1dS4qc2XcBNsmeuYyvoQ11VY5SppPcYtrMB3ijFu1pOTWGgbCFpPGDquknwMMEPWT/K34S2/148Bli1SWEt8wl1T/hRE3e9xQgQAQbgxV0mbHg+yuPeUYtxsuUz2nwrUHOu95xf8rcV0Rgg3srjZoWubr3CYW+HWre7qUzdVDZoEnHPOOejTpw8aGhqwaNEi7Xa2bt0a+e+LL74wPt6CwrfKo5oQak7aShUWN/bwVQ0Deu6h1zYgt7ht/xLYttJ9bRq0KnP15LMF6tazybUvWNzSiHFr2eFN5P7+N2/7jJOBVavc7VHukTwZhXCzHeMG+AU+L2rjFlUX+xZVjJvMVRLQq2/F3xPs+LdzfYaNrJK+Z8niACabEJq4X+XalXy3ZYc/4YEV4SZYgHz3jIlbs8xVx1LsCaCwuFlw95bVtYpbEuSOO1xX49D241jcdIUbb0ENSU5iw9OEnevmZmAdJ0hKNAV5nHIAulYlwPP0aN7id3nTEW58DDAjSrjVN+vHALNxzWnhYrv5scNEuCkKcLPHQKVV4oQIAMJ1ZRY3C/c6QzYXS83iZjHWbc+rvNf8+eA9ZoyEm6xMgoXFmzxSkMJt2LBhAIDakFUZto991oTS0lKMGuUGza9atUq7naqqqlj/dip8E3FFbIu2u4uqjlvbQ2fsHiW4dtXXAo9xfuo2Y9zYb/DCzdjiFjLRtBXjxk+OeaNsz97J47cA/4TnLS4WwXZWScBvcWvVELWsvhWDH6v4W0NMTgLEi3mQ4XOTanDTRT/llUPRTyKksIxbdZWUZB5j96bu4g2gsLg12LtnxN/JWcV4YWhgFZMJN5vWQt9kVugLTPqBlau91zLhFuYtFcdVOE45AN37RmVx2/AWsOoxrn0L3iCrV7qeB4MGAX/+g7f90O/rZdv0LZzxyUksWdw6D25re4c/q2FSV0kxBji3nXvNmuL7y0bEE/YyxP4RSMfitguXXyHM4vbTn8b3Nol0lTSMcZMtzqUV42YzSYlqbLJmYY5KPEUWNyvstZfr97phwwZl8pG33noLAHw13kzYsMHtwLrqrJJ3ZFS+/razSsomg8bBvEIdt2XX+yf4VuuqSCxu1l0lbcW4cd/1CWYbhXG57316J7dabSvGjbOS8a4WLRqiVqxvxcf08PN4mcUtTsyDDP7YWhqB/wgZ0rSLtitcu1JxlZT0A2lY3GzF/Ii/Y1tcpS3cfM8ry4BqWDgcALbywlX4Hwi3uAHRrsKsL2hYD6x5wdtuxeKmEG7PTJYfQ1L4Z2XqFDer5tq1AH8pv9iol23Tdz1VMW4GCxWdOVHCvEuA5BY3MQaYIbO49eC2NUI/BtiXuKXtXk/D4raaOy9hFrff/S7+tc2m7CrJf/+TD90QhiZuXLWZVdKmcFM9qzYS/ajapxg3+wwePBgTJ04EANx7772B/YsXL0ZtbS0qKipw2GGHGf/e0qVL8dFHHwEAJk2aZNxeh0K5km+x1AAAfL3OqwljS7iJFjfRwtZZndU0FlKLW523zVS4ia6StguTi23aLowLeKultqwnKjcjn6hNMIDx9a24eSz4+YEo3OLGPMjw3TMNwZpENixurc2uG8riHwKr/+ptt2Vxs+0qKVttbSlSi5ttFybAP5nNCbe25zauW7CMblz/lNRVEoh2FebvyecO9l6nWYBbrDdqI8btO1wfyd8m7PZh2TbjTvCVrpL8/W6wUFHFjWv1nEBJanFTJYYTLW7jABzAbWOnSycGWLZIkYbFTZacRKVV4ibjKZG5SlryeKitBRY9572/4Dy3FMPsWd62QoxxA9TPqo3SGoDfak8xbuly8cUXAwCuuuoqLF3qBUlv2LABZ555JgBg9uzZ6N7dc4165JFHMGbMGEydOtXX1rZt23DzzTfnslXyvPTSS5g+fToAt7A3CbeEqGLcTDOy1dYCV3C+z6+/6tWEaWYFsm25drWVMugs+KlXmQq3KItbD7P2A66SturblXLWPIXFzcZKNeCtlvKDr5Fwk7ijAEI9mwRWK76+FS/c+Ama6CoZN+ZBhmjtFCeuNmLcnGbg3YuBlff7P2MrON62dbyiV3Bb6w77wq0kLeEmS06SksWtxaLFbReu5l5S4RbLVViREMt2cpJ1i4H1rys+p9n+Nu76TQXAdBR/KQWNGHuCn3aMGz/OmVjcVPkFRIvbecJ+NqToeDfJzo0tixv/rCRJThI3GU9W5ippYUxduNC16i563tvGbv/t3Jx3ybt67QOeIG7Z4XqCiDFuQ0/Ub1sV956mxc03HzBMQpcHCla4HX300Tj77LOxdetW7LPPPpg2bRqOPfZYjBw5Ev/+97+x33774fLLL/d9Z9OmTVi2bBk+/fRT3/bGxkbMnj0bffv2xb777osf/OAHmD59OsaOHYsDDzwQK1aswNixY/HAAw+055+4c6CKcTOx/rCO6KprvG3sZ9au9YLNN9Yla1dEzPYmTv6sWtzScJUULW6WCgYDnrjhr2OrjZVwYXBigq2Fn4QbDL5xhFvSifKMGW65g5IKb9VVZXGbdVb8mAcZPlfJhuB5tmJxawJq/xL8TKFa3Molwq2lwZ7rGCMtV0nZiq+twrhAuMXNZFJSVg44beJK5ioZFuMWx1WYPweAJzptuNmLonDRvvKP6S5WvP+R/z3rdtjpbkXQQhN3gi8mh2LYcg2WWdwch3tWY54TMQaYIYtx42mCfgywzFXSlsWt1fEWI9htl4H3N4QZmWIl45FcV9MxlS/FEJnN845kLrs8nQd5r7d/4Q89AIDx8/XaBeQeCYA9i5ss22bDRm+bbHwpcApWuAHA/Pnzcf/992PffffFq6++iieffBKDBw/GVVddheeffx6VlfFWQTt37oxLLrkEBx98MNasWYO///3vePzxx7FmzRoccsghuO222/DWW29hwIABKf9FOyGqGDddERHVEWXg3bWffKbfEQHBB1rMbtbZsOaerK5KqjFulgpWAt6Ez1fU10bsiSjc6v3/Aym5ShpOwll9q0zbxIDvenpxxzvl0ORt85REWNy0Y9z4+IfbgMaN4Z/R+g1mwW7xstXl7hmDoUYq3ASLm0mdH0Z7JiexlaYbCE5mWY07wEI/0PZ9dvniWNziugrzlhLATcQD2Ik/yWT8mSWVn9O4L5ubgfc+8G9j54JNlEVrGyPOBD+Wq6TB/V7JTcJ3fOX+z2fejJsQRowBZvDDqOzyNUA/BpjvCza+1fZ7lixuy5d7ojML13rKh0SGXbY4MXslpd7zJHOVTHqvi6UYZFmP+du7GfGtviI+K22tf5F+xEygU5/kbTJixbgZZI/3CcO29hu5pDwyj44Cp+CdO48//ngcf/zxsT576qmn4tRTTw1sLy8vxy9+8QvLR0YA8E8MVDFuceMsxI7IgTsIlMK7U8WsZjNnAgccoOeaJgorUbiZrsTILG5NdVz7lmLcGta52cFsuUoC7jVrgjrGzUa2N0DuKmkyCU/D4saoqQF6DAC2fgoM6AG8/Zzr7rPlDuDDNuuwycQBCN4z4sRS11VSvB9aGyWfsVwAtrTcTh03qaukEONm4jrGEIVbs6VyA7IC3GkmJ7FRpwxw++MWx+1zZf2vSrjFdRXmrx8A7FgDVNVYsrgBAaubrbic5cv9iVsA77ywS6Eq1swm+KNGKT4AeRwXYM/ixos+1u/qxvzMmgVce62/JAAvcGSXL1OuHwNc831g2XXu68/uAoafJLjZG/S/mzd7ojML4DT4hVvU7RMnZq+00r0P6792FwJ5y1XShTOxFIPsvIvJhJjVV/BWi0QUbvw9ZOzdo3KVtFUOQCIMWTbVsm5UDoDogKgK++pY3MJqwqhiLOK6n8jgO8rVTwTN/32FDGSJ25dY3LZ87G0zrePGH/+rJwvCzbR4uMRV0kZAr+gbb93ixgk3fuLNWw5NJsps5a91C7DXXu4EzGc9MRRu4qTNlqtk5PWKaaEIQ7aIY6McgGyBoz0sbr7rWgTlAFi7NpIUMXf17SxxE/z/A0FXyYoK16U4rqtws2hxa7P+2CpRIS7E8RNBE/gJPoOdlyiLGxA9wZct+AFAEyfcTPoZXtyYJsngY4AZoqukKPBvNYgB7rsf0Knafb3pfff/Fkuukt26ecdeCr9oA6KFW1jMXm2tWxpiY9u1X7XCjdn/093eZ5IsnMlKMcgsnTLXZp1SDFWCcLO5SCxb2ALSLcDdsN79v8LAUphHSLgRZtiKcYuqCRO24qtbE4bvcF49Afj4Ju/9Pn8wt0CUCgPwpg+AL/7uvi/rAXQZZtY+3yF9+Xf/+bflKslfx6VclLnuhEqMawlklcyYTWR9dX6439JNTiLC6sQ5Ld6kx9YAA0Rb3HSPPepetpESWeYabCPGTXY/iBk304hxa7blKilLTmKxeLiYnMR0UsW7q7Om2G0pKwfQvbs7Kf3442TxnWL9th1r2rZbKDsigxW0N6Vbt6AYYeeFXYqwSX5ktk1JHBfgxQGXVpothPi8Etr6X5O09CwGmGXfFUMctoqfPylZ+zyZjLeQk+t/eeFm8JwOHw44bf2t7BSETTHCYvbYIsiVVwI72lzI2fPUyI1LT/w9/rHKSjHw6yBMv8qEm04phsrB3uv6NIWbwlXSxMIstt/a4oWslPfWbzePkHAjzJDFuK17BVjOryTFeLCjasKEZTXTrQkjio/Ny7zXNjINieUA1r8O1/8TwK7/Y6GAuDB42+xMxRi37V8C9SvUvx2XFmEpmgk2NoEorXQHZ11UFjdbMUXlXIFvNhFs5CaEJr74QHDS1irMFnTTu0cJbRspkWUFYG2V7hARLW5pCDdb90x7WtxaG8wsbqK7OjvF7PTK+t/t213XN10rCmM7i7eyWJSYx5bFbfhwoJsgEMRkECqLW5ykHFEWN9OahSUVyLmRNhta3BgsBnjePKCCexazAHZYfvaZVS2X2Ip7lkxcJbNZoFPbuZUdcpgYV8Xs8YsggOdCyy4x/zydf1H8mH1ZKQZeuMmeV15QJy3F0JkTbju+tLtIHFUOIFtl5g0ilqxqqkNuHlZBwo3oiMjco8Qip3EmD1E1YaJiLHRqwoR1ODYmDGI9NH7i0P0b5u2Ly75Ws0oKFjfeQgDor4SLdZRyK77MJctQMKcZ4wYAWU6Ysevp88XvDiNEK61oodS2uEXcDzaEm68vSFu4tUMdN2sWtyjhZtA2YNfiJrqrs1PcGe5kVtb/Njbqu6vzsFVwG0mQpO1bsrhls8AeY/zbSuCeH3apVTFucZJyiLUcGcziZnqvZzKewLFhcWPU1LixU+f8zNu24PfAbhP02lPBjt1pdu91m4sg3driaZNY3FTJeMRFEMATf+yxFC1icZOHyEox8CGj7BaRWciB5KUY+HuuZYfdsIxMCXILCfx9aGuhQux/WXwbQMKN6KCIacaln4nxYEfVhImqI6RTEyZsUmBjolkqWNxspbdlNAtiympyEi7GzXGClh8xsUBcVBY3G7FQgDojm60YN97ixiaCzPKWKTGfVAWsJ2LBYAtZJaW/W8CukjJad9hL1sAo2gLcXD/jNOlb3GTu6vxjzsQbg1/B13VX52H3jI2yIzJsuUoCwJhh/vel8Kdel1nc4mbb5Oto8v2WrYks4N3PtgtBA0AZdz/372uesEmEj2Nr3ua3jJuW1ihvOy+qMgYyVMl4ZDH77NEsgz9DNuAageLG7MtKMYjPKiB/XnVKMYhlamwuEgPBvhfwxj6bnkkB4UYxbkRHREypLxu844iIqJowqqySAFBVpZdaONTiZuHRCLO4mbrUAf4BC0gnxg2Ot7LJs/lDvXZVFjdbE3x+gr32RS8tva3BnRfcTIiz65rtZubmCQgDZGMwgYOuq2SUMLPiKpmicJv4O//79rC42RJXUeUAjOu4ced98zJgMZeFOcmkSuauzscnzYV/QssvnOm6q/PkEtpYsP7IsCncKoTnvAT+eo4yi1vcbJtAMDmU0+r1lTbuddHd0KaVU+wH+LZHzzFrGxCSq2zjntOMvXGvk6QdUbiFJeNRxezzbZRDP3mIrBSDzOImmy/plGLwJc1qtLtIDHjPuU+4WahFCQT7X74UThHWcANIuBGm8J38H+4EBg0KfuaKq6LN/6qaMGGuBW1zctTXA7vtlrymW9ikwMZKr7hKtX4Vt8/QPQqQFLDlLATWhBvarG7CqNV7ol67geQkzOLWNlCZThp44batFnj/18Hf1U2pL343V+KhbUJYbugmCfjP+8r7gJX3C/uLyOLG14YyfZ5G/cQv3tojxs2WxU2W7tqmxY2fKL97kVffCkjWD8jc1XnhNgwA7/UmJujQcVfnEcU+YNfixjLJ2UD0OBAtbrxwS5ptE+A8HiRFpm1Y3LLM4iYpB2BcFkQYO3gL6l7XmrUN+C1uLdu9Z6m0k4WFM1a3UFJdng2B1dXRyXhUMfv8fVEGubCKuwgya5aXEAZwrbzsVMtcJVsQ3+or4otfbrS7SAxwfa+kpJRt4dZi+VnKAyTcCDP4h/bB++Sd1VXXuFmVooSV2BEBnsuJLJiXnzg0NLhBwEnEW9hqtBXhxrX/yEPAI3/23k+Z5nb+OsUwGSoRBNiLcQPaYq2EJeThp+i1K1rcxBVfY4ubMAn+58/d/21NlKW1+domvDasqLww3CF5lnTPT3skJxHjXW0KNwCoGuq9TlO45dwZ04xxs5hVMmzilGTSExU3AwDV3GtRuOm4q/M4KbtK2opxA4LC7ZSTgIHc6n0j4k3wVYgxxrxbsI2ahUz8sPvQVgkGQLKAwwtxC1POrOAqyQs3U9h5d8SbG8B/zwI++ghYtcqN5Quznqpi9sMsbklj9mWlGPiYVEjaT2L15clkuHvSQubaQPsyV0lLce9iAj1+LlOENdwAEm6EKf/8t/daDF5ntCCesJJ1ROwZK4HnF863KxI3uBdI3+L22N+81y0NAD/3W7XRTQ8cR9CqEIUbX+fHVowb4HZ0/Arb6HP14xbEGLc0XSVVv2vimhZYTW7yJj+miUnE9mWIKdRjt5uHrJK2J2y+Ug98OYCMeYIPgLv3HNfFNk1XSf5ZNc4SGCbcEvQDMnd1MZU7r1f4/lcnbqbfgf73AffaEjv3DYNfaTel5lj/+1N/BDz1uPf+Bz+KN8FXwSzrrN/ihZuNmoXseWltciezNjN5Brw1+OtpaBEDgjFuVoVbyPMyeLg7XsdxM1TF7IdZ3HRi9sVSDOwWl1ncfnlV8gUEHt5917pwazunmz90Fywdh7O4Wc5a6bMWWsgengdIuBH61NYCDzzkvWfiSsThXkcJK7Ej4uf5FVCvUDGSFOQOnTAZPhoLFwI/Pct7Xwq/cGNzQh1LIUOcxPODu3EBbiGzma2OOmBxa5sJtlpylVQlN7GV2l2MQbMdtxjlCikmiYlL1AQ4FVdJyy5vYqFp3tJpY0IYcKlJw+LWdv181sI0hVuCfiAqbgbwuwPy/a9O3My+dwPVB3PtMeHG+gLLCW10EyrJGPVT/3unGb5ZeZ+BenHXjIDFjTt2GxY3sQi3jaySue8L2WVtJyjKcs9iC5ecxDRWFAh/XpK4qUfF7ANuvKjMVTLpIghfiqGx7dpVwV3kruLOyRFHx29TBouvTiM5CcsoCwDvXCC47lp2lWwlixvRkbntNqCBm5zx6ZBVxBFWM2YAH3zgJh3hV6jKoV6h4omb4SysWLJJdkOWBljspNl404Jg8HoSS6GKZosWN5llyUbbXXbxvxddJU2zSqpIy1WST3jQLhY3mZnZAmmUA/AN7jaytIoWtzZ3IhuCGZAIN74+lGVXSZuub2ETp6TPquiuLn6df3RY/6sbN1M1FNj3T977XHISNtG3mJgEsCvcSsuBPa703rc2C+UjDDMpBmLcUrK4AW4fbDOrpGoBx5Zwy5fFLUn7qph9cU4gW4jWWQRhpRj25hZC/rMEmH60997WnCCNGDd+dX/5H81qUYoEhBtZ3IiOCsuaxM8jSyG3uInEEVbNzW7SEdHiFke4xQ3uDUvJbzLIsDTA4rlh/f4OyXeSWApVbONWrQpVuO3zB/97sRyA7VV2wLWM2UpOEhBuli1uUcfW2aDI8e4Xq/elYXFb/VfvfacB5u2LpR5sxhYCwSQivmQ/Jq6SkuQkvlIGhhPxsEyjSZPZiO7qnwv7ef3K+jfduBkA0nIyxWBxA4IZlX1JDwyFW8BV0rLFTUzw0VjH7TN0Ow64SlrypmCoskrajHGT7kv4LMli9vlpjxhaYpI8hMEnyBrSF75JkrEgT9FVUsSmcCsJs7iRcCM6Eixrko5wiyOsWHCvaHGLcpVkxAnuDZvw6U4a+DTAKoubUH4tR5JaSDLr3JcrvNdfrInXjgpfPTGLK2zdvwEcy6XjFbOa2V5lB4DGDX7hZjPGrbEdLW4jZwF999Vve8zP1PvSKAew4l7v/UjJ6nNS+HuyeZs3mU3N4tb2oGZKzO55Xx03iXAztaCEWdx0JrO8u/oKAMu4ffycvqQ0ebZEkdDafwVscQMkpXA44WZL/DjN7nHbrlkouhtu4S5y11FmbberxW2rNxFP3eJmuAgChLtKmiQPYfjGJ9HrwVK2UNFVMhXhZrPAN/d3b/kE2MrNPclVkuhQMGHFi6epAIbKPiwhSlix4F5fWmWEZzXjiRPcG+Yqqfto8GmA+ePjLW4q4RbXUrhwoRskLcKPW9/aSz/pCSDEcokdtWFHWtbDi7la+482n/YULW4NG/yxdSYDvFhU3ecqmXKM26RbzdoOO7dWXCWFiSxfL6fvZPP2+evWsM57nZZwY5PlbBezGDrfii+LcWtru7TS3D3Y5mSTwcfNPNvT287rkXPPMxNtgLz2H4u3su023SIItxGGiwk+a6Flixt/3Z4aDzRx46XNOm6Au0CxiavL2X03s7YD3hq2Y9y4Y+djowrN4gYEY/Z54VYGbyG6FeaLIIAgmhuRSpmH1ka/1cpGjJuIzTg0/r7buAT46EaubbK4ER0JJqx4i9sIACGL+j6ihBUL7uVdJQcAOId7rwr3iRvcm4bFTUwDzPROOcJdJRlRgnbhQjeZSUNDcB8/bm1r1E96AggCRXCNMO2oMxn/xOGDa7320xJuacW48ROH8p7BzyduP6UYPyBcnKXhKpm7plk7yUP4iVN7CDdbrpjSGLc2EWFjEm4rLkeExc088oS3bSiXcKFHb/22GWJcJJCixY0TVqPnAON+a9ZeqMXN1FWS62c2LwPq/uW9t2FxE2PcNnPCrdsYs7ZVFrdWAG+/7S4IxPUskVGqEG42kpOEPY82FkE6ce1nAVS03UOl5eaiDZBY3HjhZinTdLG5SobNKcjiRnQomLDSyZUQR1ix4F7e4naC8BmVxS1ucG8aMW5iGmDWb/JzepXFDQgXtCzpiQpZ/J9u0pO0YtwYqgHShnDbdbb/fcBV0mAgyAgrmraFW5qElr9IwVWSTcRtDY68COFr3KUm3NqsqaYusGHJSWxMwkOzShrEczLKufPrcJ2X7YQ2bJLZHjFuu5xqHiuWpsVNvG7buD7chtgXs0oyV8myHkBFX7O2+f5103rg6w3u63UbgQkTgF13BQYN0q9jyh97A2fVt2Fxq56q3mdjEeSCn3vbbr8F2L1NJNtYOAMkfbDNpDOc+y7vwZKG+Hmdm+ekKtzI4kZ0JJiw0hFucYXVrFlAC/fQieOVTLglCe5NI6ukmAaYnR/+p1YqvhslaFnSE8Zjis/xi5m6SU/SinFjqFakbQxg464Dhp7ovW/Y6Am3kgoz649oiSwm4ZYvi5s14aawuIUtwCTBF4vWaC+GTpacpMmicLMd4ybiK3jMeQTYuGcyJcgV5xRdJdOMcbNZewpwJ7NNXPtfbTS0KgkTyg1vea+tWNyEzIxsIaGij7l1nL8f7/o9sFUSVrF2rX4dU5/FzbJwG3S4Oj7RxiJIljvG/n2QOym2FilEV8k0YtwA+8+SyNoX5b+rAwk3guCYNQsoTdgZJBFWNTXACad678W7VSbckgT3hk7INB8NMQ2wbOz+SPHdMEHLJz1hPAZgo+yzwvskSU8YoTFuBW5xK8m6AzCjZZu3Qmg6uKftKpkmaQ9ggXIAlgqoMjJZLzbS4R7+NCxufJY9266STqtnnSkGi5tqImt7sim6StqyQjD4GDfbBecfexi4db73/oenmFmVxOtWz8U+WxFufIZWro6bjXPOi85MizeUququJnXpz6Yo3LJVQOVA+T4bz5JYB9TmeRfbFy1uxjFufHIo/lmy0L8f8Lh6n3FWybAFS3KVJDoaNTXA/5wT/TmepFmT9jtYvY8fCCoqkgf3plUOgE8DLLNILpNsixK0fNITRgOAv0s+K/5m3KQnPGGukqYddW2tuyItY/nn5vXsAP9ks2W7F69k6maUL+H2rSvM28hk1Pe1lUmJKsbNlnDLyI8zFeHG3Z82XSVbhVioQo5xY6jc/mxZxNjxp14OgDvvzzzv1go1sYrxE8JFT/nruDXC0KoU8jxaSU7Ce1RYzvy4dgP3OwgXbowkLv3lXGzl2pe537JwrwPq592kjIysjTRKJQQWz1JwlQT8yXJsLPoNPsLvJeP7XYvJSQJtk8WN6IgcdEi8z+kIKyA8yLsVrnvhvHlu8G/StsNWLk0GMD4NcJOwbxWAreIXEC1oxaQnDNm8Q7YtTnkEHnGAsWVxYxkxP/tCvv+zz/UmOiKiKxCzoJiKq3wJt2/+r512VPe1jUkJPzFIw1USkE/OUhFu3HW1bXGzWXwbCJ98WJlspmxxy4jCLaXkJHxdvjN+CnzjG0CPHsDZZ+stFr3ymve6BG7WYwafO0rHquQ46n1WrLRirTWLwu2Bh73XcYVbEpf+riOBykHuaz6u0EZyEsBfC43HtsWtNQ2LG9fXtjT6F0FMXWB5S2ojJ85Ds3MnQXGDUHKSACTcCDPidDi6wgoID/KefTawapUb9KtT+yQsjs10AGNpgFuEzlK0tsUVtGLSE4ZMpMmsfHHKI/AEBnYLwo3PiNmo+Ewr9CY6InydoqZN3gCfqnDrYda2ik79oj8TF9Vk2LbFzWm2n5wEaD+LW0NKFjdRuKXuKmmptpXsN6xNNtvaYZPM1pQsbjys36yvB268ERgxIll/U1sL3MyV5yiFmzmYIevfkliVeJEpYsPiJiZZsmX5aW4G7nvQe8/XKgsTbkB8l/5MBhg4Lbg9dYub5XID21baL4PDt9+4EdjYFhtpJZEQ1/fu4LP6WqhfCvhrovp+l2LcREi4EWbEcYPSFVZAuMWtb3W8JCc6ZCw8GjNmALvu7t/G4tuSWgrFpCeMOMItbnkEHp9AsRDjJmbEDBNuDN2MmIDfSrCds+7ZFG4tnHDLVtkTKPv+yf/e5gRWNdlOI6tke1nc0khOYtPi5qtv187CzYbFDZBb3WzHuIkWN9sxbjyiiGhqSrZYdNttQAPX+ZZCbXHLbUtgVWoJqRlj20pr0+K2fDmwlo87Q3zhlsSlv/vuwW22+hnV827jWeLP+39+CWxf7b5Ow1Xy9VO57TaEG3fsaZRjaSLhFhcSboQZaQ6uQLjFzcbEofs302sbADoJg+yVNwIffZTcUigmPWGIrphAULjFzeLJI2aQMo1xEzNiquCPXTcjJuAX/GkJt9ZGoKnOTrs8Q47zv7cp3BxFl/+n+/UTKTCUWSUtDo6yyZMNCwQQItxsWtya/YH9pvW+gPSzSgLy47Q12Qy4SlqwuEXdx6psyHEWi1iiKL6NErgFlRmyfhmIb1VqDekrP15pFpsHCNlxG7xkP6bj+ebN/sXEJBY3IL5Lv8y7ge/nTVA977ZdJXlsP0uAJ8bF7brIhFumxF7/2/0bit81jXELkTnkKkl0SGzHIYiETWxsTGinPCHfbmuyLE40R491Y7h0LIV80hNGlMUtSRZPni4jvNdfv2tmcZNlxFS524uDu05GTMDvKlnPTcTKeiRvi4cfvJwmb4JvU7gF7j1L3fTChcCGOvm+Ldv1EykwAoHxlpOTAHLXP9OaWQxlchLLMW4t3KTcivtVylklAfk5TiOrZEuDnRi3224L36/qUuIsFrFEUXxfxVvcWqEWbnGtSmGukruPNYvNAwSXujrvtek17dbNP/4ksbgB8V36ZeJqm8GiU1TbgH2Lm2+7rflGiu2LCW0AINvNPHaO8a3L5dvTtIqRxY3okKRtcQubNNkQjVVDgH5TJG3bmpQInb1pEU+W9IQRlZwkaRZPRq+9PPeoda+YxbjJMmKqeh5xcNfJiAn4Xbu2cYXzbFrcmrd7Lk223PWA4L1n415k8YWqnAfs8prEF6oC4626SubD4mYq3Lib3WmxX1oj7aySgHwBzXZChdYm4MPfeNurhui119wcLb7CRETUYhFLFCVa3FjXoHIDZ8SxKq1ZHb5fNzaPwfdj71/lvTbta4YPB3r28d4nsbglcemXWdzG/CzedyPb3kksbjythhZaQH7sqnOlQ2V/4GjJfZ+qcCOLG9ERsbmaLqOit3pfGkUrc21bejTEiabpRIolPWGWN9lg2AL9LJ6MkjKg9yT3df0KYNsq/74kyDJixrW4AckzYgJqS62xcOP+dt4nX5V5T4dMxn//md7nfHyh6rYWx3Wd+EJ+YuPL9pZyjJsNd0NAbXGzMTlhEzOnxX4x+3YRbpJJq7XJZls7rc3AF09523e/WK+95cuBdevCP6NylQSiF4tYoiiVxS3KIzzKqrRwIbDyU/k+8bCSxuYx0hIQ2SxwChfLnES4JXHpFz0nqg8C+sfMcB1GbS3wxAvyff/vMvNSNSqrXRoxbjytKhNwkrZTTAzF6NQ3uE1lRbQBWdyIDknaFrfSinSLNQMK4VaAFjfGjBluUpN584B+kkll/0H6WTx5uo70XvPxA0knm51lq/WKz8oG90oNUaQSUqaZH321bDhBamuCzODvP1M3Fz6+MK5w04kv9FkjuQQcaWeVtOEq2dwMbOIWCPisklkLkxN2PRs3eYXJATsTh7DFM1uukrLjTMNVkrm7lfcEeu6p156qdAojjvEhbLHotbYyAKJLYByLW5RVqbYW+PGPgecV+29QbE+60KIUbhau6ek/8V7zPxMm3JK69Iv9+Kifmi+2slI1Dz0p32/qSg6EuEqmUICbx7Eh3CRt28oomfuNsuB1TFNcpW14SAkSboQZYfVmAKDmWPPfKO8l355G7RNGWjFutib4NTVucpObfxPcN3QX/SyePHzGO18chIXOLonFTQfZAACYZ/HzCbeULG6A//4zuRfF+ELVeZeN60njC/l7vYkTbjYHR9sWt9padwFk0CBgwR+97cuWeq+tWNzaruHWT4APr/e2F4vFTSrcUnCVZFn2Ohv0X6rSKYwwaxtDZRWrrfUEBt9OGYAeba/DhFuUVem224DGRuAFAA8J+74GsFbyHSD5QkuaAmLIMMBp62j4WzPsvCd16ReFm6mA4EvVbAv5nGmpmjQFM5CuxU1m+bJtcQOC/Uqa4spWbGE7Q8KNMCMsiLrnOGDiLea/oXKXtFYAVjJYpWVxs1UklFFzlOQ3La1Q8ZbOrdyMIelkc5tkJJQVIQfkwm17yD2mIpORiynTiUlJqScI28viZnIvivGFqh5fNqlKGl/I3+tpWdyk5QA0hRtbYb/yymCyiU7cCfnrM3rt8/Cuo+te9l5bWQRph3TXsnZsTXrEbKSAmXAbPhzo2xe4UbHfJNaKt17z7XyHe60SblFWJT42rwXAIwBe5fZHne4kCy1pCwg2ya/gVopk513XpV+0gpsIN7FUTb36ozl0S9WkHeOWZsyW1FXSssUNCP4NabpKFikk3AgzOg9S75t4i9xnOSnlKQu3YopxE+nUB/j2n/3bbHTetbXAC9ysYctX3uvrb0w2aMlWwO+HPBbERvFwhswSM+BQvbZ42OCbqsWNG8hN7nPRbSyJxQ1IFl+YD1fJ0k56zyq/ws7gJ5b8Lffjs8zco8KwMSkJy+pmK+NbmhY3WTsmwi2bdQXS6wB+JdkfpW1UVjHReq2yIKm23357uFVJFpsnumOGkWShJXXLT1v7Nf29bbxzTtI6poH2heM0ERBiqZo4Q5tuqZp8uUqm1XaZxaRcDLE/KNI4tDQh4UaYUTkAmHQ7MPSHwX22ir8qLW4pZmIq5Bg3keoDhd80nCgzS8RTL3rbeF1y0++S+frLiodvBHAWgAeFz4qrsjrFwxmimDro6fRSOheqxU0UzXFj3BhJRDN/bvlaZWla3HTcJMUVdoYq0U8jzIrBh1EsMRbtEePGU2Xo6j1rFlBe7roXioS57IVZxUTrtcpy10Oxfd99Q34Y8ti897nXb4R/HUD8hRbVgoFty0+GMz9O3h94+229OqZR6Lozy0rVNMEdn6LQKVVT1BY3ybHbzKYMuOdTrDVKwi0ACTfCnJGnA/v9ORg/ZCswXhXjZm3ikKKrpCgUPv3cvHhq4DcEgWKSOZG3RKiyozUjma+/qnh4PYD1wjZxMqRTPDz3u+J5UdxHSZEKtxRj3Ey6aVE0q5qSWdySimaVq6TVGDdBqOm4SaqKwUvddNv+NykGH0axpKNO1eImOQeVA83arKkB7rpLfl+HuUqGxVqJwkolAPsotkeJKplnwstw493ehuulEEXchZb2srixcikAUNUNGDdOv45pGLqxVrJSNQBwRYzv6pSqSfu8p7kQJOtr+x0Y3KYDH2u8TlhtufuedBbNihgSboQ9xE7J1kpJ2jFushonNtqurQX+8Yp/2+jRbuc0b569zkgUDRWa7qmiJWKH4nP8hCWuJUJWPBwIxoPwkyrd4uEMcZJvy60jTYtbc7PrPtTMnQiTe1EUzUksbklFs8pV0maMgjh5SGpxk62wM2QTej48U7cYfBjFsprc3hY3GwshM2YAv5WkYZRdwrKy6FgrUVjFSXLCEyWqWGwejwPg9wB+C3VcMCPJQkvqLntt15SPgbedgXrIce7/lQP0ExSpMpCuAXBRjO8nLVWTejmAFPsTcWG+oi8w6Hvm7YqxxuJz9cd7zbN57mSQcCPsEYjnsuUqqVjCtDUQyBKs2Eot/Pzi4L61a+2kFmaInbVuXKFoiVBZ3PiONa4lQlY8HAgXbrrFwxni5M+WW0caFjd+xXHXXYH1G7h9q8xEPi+a4wo3HdGscpVM1eKWsPi2aoUdCLe4AfrF4MMoFoubTHynmdXX1nmZfkJwG99/VVUBZ58NfPppdKyVaL1WWe5elGyLI6pYbJ4uSRZa2svi5lhagJIx8XduHP3UF/VjOcMykEYkzAaQPP66vQRzGojCrf8h5jG0UbHGQHIPnw4ACTfCHgGLmyXh1v0b8u22BgKpcDNom++MwhbobXVGYuepY3GTWSLiCDcgviVCLB4OyIWbafFwhiimCtXiJq44iny+ykzkq0Qzj+hSpiOa2yOrpOj+mtRVMqzGV5RwA/SKwYdRLMKtvZOT2BL7sudyYA3wyCPA++8DdXXA/Pnx7nXReq2yuIlxu0B8UcVi85KSdKElH7FWtoVbRW+3flu3XfXbkMVfM6Jmxzrx18Uc4yaOn0kXzURUscbiVIJ/n1ascZFBwo2wRyARhyXh1nOcfHuqwk3z0RA7ozjlU2x3RjrCTWaJCItx40liieCLh1dXB4XbvvvZKR4OBCf1pgMNw6Zrl2zFUaQV5iKfiWYV7JqaiGb+vKSWnMTQVTJshT2OcNPNcKoiDdemgd9zz/n4+fbabG9XSVvnRSbcuvcEjj4a2G235LFWvPVadr88C6BO2JZEVLHYvKQkXWhpL4tbGm3bRBV/Dagz8DJ04q9V56AYskqKFjfTmqhxY435+YZurPGBfwN67wPs+evk3y1ASLgR9kgrxq1TH6DzkOB2W6tUYbXokiJ2RnFCYmwnPlC5loYhs0TEiXFjJLFEsOLhq1YBDz3q3zflYHuZxjr197+3VuJBIhZ0LG6qFUcRfiAzEfmh8Ts9zdJzA67lV1rvy6bFzTA5SdgKe1SMm0mGUxVprJDvfTtw3GZg9Nn22pRe1yJwlSzJBp97k7Z567WsH5T1mUlFFVtkiSMK4sTmyciUQqpMUi2xU4DCDVDHX/PrmEuEfbrx1yrXwq6jk7cloz1dJU2EW1issfhciXMonVjjQYcD//UaMCLGeFsEkHAj7CFa2Gyu/vSeFNxmayBolhSI1mpHkVo4DjYTH+jEuMksESFGoAA6lohsFhgmDFg2B3fZPWMDWeppHYubasVRhBcUaWU3/NvTdtJzy9yj04xxS2pxC1thj7K4mWQ4VZHGCnm2yn55ina3uNms/SecC9P7MSesJOeEv19MrNczZgCffQacdZYbhyeSJDZPhnKRJUXLj2OppqBtVK7kOwBcDtf19ffCPtP4a5EB37XTTrsKNwMPlrBYY1G4ie9NYo2LJRlUBCTcCHvwD0Wm1J6FA5B3bKaBsSwhxEfvBffpZH2UdUZxtZjNxAc6rpIyS4RMU8j+HqNaa+KkyqJw67OPvbZ4ynoEtyWdKIetOAL+wHhRUKSR3bDckhupNIlFmhY3jeNWrbCHCTfTDKcq0kjfrZthL4w0LSiyc2DVvVZcULQgTmbMAN79d3D7DpgXl2bU1AA33ODG4b3/vhuXpxObpyItMV5bC3y+Orj9/ofsZlO2iSz+GgA+BPAovIyeNuKvh50c3GZrrEpTmARi3AwsbmGxxlEWN0A/1jjbBeg82H29y4/12igASLgR9vCttlteXRtwaHCbo0rrFQM+IUSJxOdFJ+tjWGcUB5PEB92/6b3WqWkjs0TIhJvMRdzEEhEQbhYtGt128173/469dm1Y3MJWHEXE7GapZDe0NODLLG5pxrjpZApVrbCHuUraXmFn2Do332jLXV59kP2064DCgpI0H76qbcnxplm03VbbNcOC2y65wn5x6WzWjcc7+mj92DwZskUW0/6XjavLVwb3bdthN5uybcT4ax5bYhwA9r0b6L67976it717Ms06bmIfYGJxC4s1jiPcdGONMxngO4uBff8EjL9er40CgIQbYY80V3uqaoDdL/Zv0504iAkhnlF8LmlCiLDOKA4miQ/2fxgYPQc45GV9S6RoiWhEcDL7sfDeuNZaiha3klK3kx59DjDhRnvtlsmEW0KLWxKRLxMU1rMbWkoklLZwEy1uqhqPUchW2GVz1qasnQynKmz1mXv8Cpj2DjDlKTvticiOs1XMLKTbdorJSQD7rpK5diU3zKCR9t1p08K2xS0qmzLrxwo5tTsff/3RR8Dbb7v/2xTjmQxQOch7X9bTvE2Gqq/tu5952+K8oszA4hYWaxwl3ExjjauGAsNPspdlOg+QcCPsYSuLpIo9rvS/1xFusoQQT0OdiAOInxBC1hnF1VCmnVG3UcD464B+k/XbkFkieKtbK+ykjedJU7gB7oA1/nqgm6Xgb0Ah3BJa3JKIfJlws57d0NJkU9YH2JyEixY3XeEGBFfYZd3XL65JT7QBFlfaM0DPPe0WO+eRXcMqS4laZC5XVuMiU3CVBBShAAUaxyVDdo51+19xXJUNzWI/Vsip3bNZ1zI4bpz7v20x3vi197qil712Zc/psJOBb6cgkk1cJZPEGovCLY1Y4yKDhBthD1+MWzsMYDqukrKEEE0A/hzynbgJIWSdUdzTUCidkWiJ4IPteXFrq9aaaKFJw83LNjYsbmErjoDfPVJ0lUwju2GqacAL0OLG4FfY5/w0uL+/5fMsUqx13A5dGqypp0u5ZOJaDK6SADDkOP97vgxGoWMzOUmcbMricJ1WoqVigBdu5Sla3HqOA779R9fKZBvT8jqqWGPx3uEXAdKKNS4ySLgR9uAn4Y4420yBpBa3JCloReImhFB1RmEUWmfEWyK2cQN5A+z6+gNBgV+oKaN5bMS4ha04RpGGyJeJUR3aO8at3FC4MbJZoJvs2A1rFTH2ula+vViynInH2Wsve22nLdzEe3LzR/ba3u9+YJfTvPcDLMbSpo00xk2j/5WNq3EsbkA6iZaKgSZeuFm0uInXL2m5lCSYCre4scb8+7RijYsMEm6EPdJy01GR1OIWlhAiauyImxBC7IyWcfueVXynEDsjZokYf5C3rW8f+4H3IsUg3KQiR2OhIt8if+QsYNfZwEFP23NzlrpKFrDFjVFbC7z+YnD7EcfZyYS323nA0auAibf4txerxc0mMouDVeEmHPvmD+y1nckAE24Cxl3nxheyjHXFgNQ6rrEgFDebsmy4TiPRUjHQsNF7bVW4CQuhaWSYzf2WhbFaFmssE/22PHx2Eki4EfbgVzbTcpXsd6D3ms/MFIewhBBxFv3iJoTgO6MNAK4F8ACA+4TPFUNnVMm582Ua03fntJlVMi1E4VZaCXTWELKqFUcR/lGyKfK7jnKTttiqIQSkm30QsBvjxmCZ8N57N7hv9df2MuF1HgSUCqvUxSLc0lyUk8X42BSKLUKdTpaB0xbZzsCYOcDA/7LbbtrYSk4iG1dlM0vVOqvtREvFwJBjvdf9Dkjvd9K0uIl9mS5irLE4XNj08NlJIOFG2KM9rCXfvgcY/iN3lbP7mGTfTZKCVkaShBB8Z/RFNfAYvHgx2+6GacKnW2/Zrv6cLYrB4ibGzHz3NX2Llap+kGjAS0PkpzGoy1wld6yx2L4gdExdJflMeI9J9rM5v61MeOI5L1ZXSZukbXFr3OR/v9uF9touZmzFuMnGVVl3qBJuthMtFQPjfuuWqBl5RjBO0hQ+Y6WtzK+MAx535wRDjnMTotmCjzX+3pH+fWl6+BQpRbC8TRAcnQe7dVB0YAkhZO6SURY3nYQQrDO69FLXHWTLFneQGj68MBKRxIEXKa1iSskUKAbhJloFe+5h1t6MGcABB7iB+nfc4boP8YwZA3y8yM7gdcDjwEtHukXah59i3p6ITMA21tlrX7TkmyTIEDPhfQngcgCXcJ8R1ypmznSvle61EC2GadZdskmqwk1icbN5Xpo5i9DQH9rN4lfMyBZZdPpf2bgqy9UkE25pJFoqBjoPBg5elE7bVUOB7W0F0Os/t9v24COAYzeml0QsmwW693I9lQglZHEjLNIOCUlMCEsIEWVxM0kIkXZq4TRJ09VCRjFklew1Dugywn097jo7bYr1g/r39/bt/g17K46DjwCO+AQ48pOULG6SCf6on9j/HRvIMswuEz4jLuiYZsIThWaxuEqmKtx6SH4vJYubrSQ8OwMyAasj3GTjalyLW6FkU96ZqBrmva5fYb/9tMfoYlnMyiMk3IiUKNB6NnFT0PIUWtbH9iRptkRjiqBLKskC05YCh77lFve2CRP55dxE2XaG1q4jgDLDYvEqxFX8ff4AdB1p9zf2/j3QZSSwzwL9NlQZZuOcapNMeAGLW4H2kyJpCreSMr9LNmDX8t5FFopnAAAf7klEQVTKifO07vtipEJSjkQ3xlgcV2XCTVwc7cjjapoM5lwNh56Yv+PQpRgWb/NMEcySCMIiqoQQYfOwQsz62F70muC9HtAOwfdOkaSGLusG9Bqf3sS7WCb0IqKrZPVB8s+ZMGImcOTHwC4Grp5hGWajMMmE194WbFukbRnkrT8l5end/yTcPDrJhJumYBbH1TgWt448rqbJkOOB0XOAQUcAYy/L99EkhyxukZBwIzoelII2PgP+C9j1LKB6KjDx1vR/rz3i6Ij0ECfGheqaFpZh9gYAHwK4JuT7upnw0kzPnSopTxXKenA/ZXniNolZVjP+mmsdnU7VwW0m1g5+XJUJN3ZZaVxNl0wGGH8dcODjQOeB+T6a5JDFLRI6Q4Q92qPoti3EhBDNQkKIefNcN46OviKYyQATbmi/3ysWixshp/ck/3vRBa5QCMsw+0bbvzB0M+EVq8Utbcr4QueWrW27nOrG0VUNc0syEC42LW4MNq7eex7Q80H/viGdgHnn07hKhFMMJYHyDFnciJQoAlcvPiHEo3/176MUtPmBLG4SimhBpO9+/vclBZollGXC08EkE16xWtzSdt3NcsKttUH9OR1Ksm7drN4Toj/bkUhDuAHuuHnhfcC37wcGnoXcXOD8v9C4SkSTIVkSBZ0hgshmgeEWa5IQ+pBwa4OfKBeRcOs82HvNZzcrNMIyzEZhlGG2SIVb2gtxPuFGfUC7UNE3uM2WtSNTAgw7HphyAzD1BWDK34FB0+y0TezkFNF4lydIuBEEUDxpuXd2yFWyjSKwWKv47mtujbhv35PvIwlHlWE2DNNMeMXaz/DWGVn9L1N44Ua0D51kwi0FC3n1gcDAQ4s34RLRvjiqSu0Eg4QbYZEiXikhv+rCgFbbi58++wD7Lgi6TRYaqgyzYXTUTHhVQ4BvXgr0mgh852X77ZNwa3/Ke7oZWnkoMQSRd4p4HtlOkHAj7DGScz0ab6kwcXuRxkojEY89fuW9HnJc/o6jUCmmpD/FhizDrAybmfC+/Weg34HAlKfM22pPvnUZcOibQO+J9tsuI+GWF/b+vf89jYNEviGLWyS0vELYo9d44IDHgIZ1wPAf5ftokkEDVv4Ycy5Q0QfoMswtDk0Q7YmYYXYNl2G2utqNabOZCW/YD91/hAdZ3AoDGgeJfEMLlZGQcCPsMvjIfB+BHtmqfB9Bx6W0Ahj53/k+isKC4kHaF5Zh9tJL3eLaW7a4Kf+HD9dPRELEh4RbgUD9DhFCc7PbP27e7JZUSaV/JOEWRcG7Sj744IOYMmUKevbsiaqqKuyxxx64+uqr0dSkFwvz9ttv47jjjkN1dTU6deqE4cOH46yzzsLatWstHzlRVJR1Bfb4JdDjW8DU5/N9NARB5INsFhg1Chg3zv2fRFv7UFqZ7yMgANCkmZBSW+vWth00CNh1V2DCBPf/QYPc7bW1Fn+MvwdpIUFGQQu3OXPm4Pjjj8crr7yCSZMm4dBDD8XKlStx0UUX4eCDD8b27dsTtffQQw9hn332wUMPPYShQ4fiqKOOQklJCW666SZ861vfwieffJLSX0IUBbv/HDjsn0D1Qfk+EoLgoMkUsZNTmkKmSoIgzFm40F3EuvJKQDRwrF3rbh81yv2cDfgYN/I8kVKwwu3RRx/F/Pnz0aVLF7zxxht4+umn8Ze//AUff/wxxo4di8WLF+OSSy6J3d4XX3yBU045Bc3Nzbjtttvw5ptv4v7778dHH32Ek046CWvWrMGJJ54Ih/xrCYLIO9yARX0SsbOTRokBIjnU1xA8CxcCJ50ENDSEf66hwf2cFfFGFrcoCla4/fKXvwQAzJ07F+PGjctt79OnD2655RYAwE033YRNmzbFau/666/Htm3bcMghh+AMrg5PaWkpfve736F79+5YsmQJFi1aZPGvIAiC0IEGLKIDQRY3gigsamuBmTOjP8czc6a526RDwi2KghRuq1evxpIlSwAAJ554YmD/5MmTUVNTg4aGBjz55JOx2nzkkUeU7XXp0gVHHukm1Xj44Yd1D5sgCIIgiKSQxa1AIIsb0cZtt0Vb2kQaGtzsvEZw92CmICVK3inIs/LOO+8AAHr16oXhw4dLPzNhwgTfZ8PYsmVLLn6Nfc+kPRX19fWx/hEEQcSHJlPETk5Jeb6PgABAfQ0BwM0eeccdet+94w73+7rwJSlKO+m3sxNTkCmzli9fDgAYMmSI8jM1bTV12GfDWLFiRe61qs0k7ano0oVSGhMEQRBEIvii3qPOzN9xdHQoxo0A3JT/upnW16xxvz9qlN73vzEX+ORWoLUJ2P8vem3s5BSkcNuyZQsAoKpKXVuLiaTNmzfHbi+szSTtEQRBpApl0yI6EuU9gO++Bmx4E9jl1HwfTQeGhBsBt06bCdycOzGdBwLf+whoqgN67ml2HDspBSncipWtW7dGfmbz5s0YOHBgOxwNQRAEQRQJffZx/xH5o6J3vo+AKAS6dTP7fteuZt/vMszs+zs5BSncurZd9LB4MCaSusW4wbpyN1F9fT26d+9u1J6KMAsho6WlRbt9giA6CLyfP2XWIggiLQ55CXj5+0CffYG+++f7aIhCYPhwoF8/PXfJ6mr3+0RqFGRykmHDhgEAakPSirJ97LNhDB06NPd65cqVxu0RBEGkyj4LvNfjrs3bYRAEsZPTb3/gmK+AAx8nF23CJZsFTj9d77unn+5+n0iNghRue+21FwBgw4YNymQhb731FgD4aryp6NatG0aOHOn7nkl7BEEQqdJnb+DQpcDh/wG6jc730RAEsTNTUhr9GaJjMWsWUJGwTEdFBcDVSSbSoSCF2+DBgzFxoptl6t577w3sX7x4MWpra1FRUYHDDjssVpvHHHOMsr2tW7fir3/9KwDg+9//vu5hEwRB2KPXXkD3b+T7KAiCIIiORk0NcOedyb5z553u94hUKUjhBgAXX3wxAOCqq67C0qVLc9s3bNiAM8900wXPnj3bF6/2yCOPYMyYMZg6dWqgvTlz5qBz58549tlncQdXn6KlpQVnnnkm6urqMHHiRHz3u99N608iCIIgCIIgiMJnxgzgnnuiLW8VFe7nZsxon+Pq4GQcp3ALd5xzzjm44YYbUFZWhqlTp6KqqgrPPfcc6urqsN9+++GZZ55BZWVl7vMLFizAaaedhqFDh/pqtzEefPBBnHDCCWhpacHee++NYcOGYcmSJfjss89QXV2NxYsX51wq02Lz5s3o3r07Nm3aZJQIhSAIgiAIgiBSpbYWuP12t7j2mjXe9upqN6btjDPI0mZIEm1Q0MINAB544AHcfPPNePfdd9HU1IQRI0bgpJNOwrnnnovy8nLfZ6OEGwC8/fbb+OUvf4mXX34ZmzZtwoABA/C9730Pl1xyCaqrq1P/e0i4EQRBEARBEEVFc7NbXHvLFjfl//DhlIjEEjuVcNvZIOFGEARBEARBEASQTBsUbIwbQRAEQRAEQRAE4ULCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgCIIgCIIocEi4EQRBEARBEARBFDgk3AiCIAiCIAiCIAocEm4EQRAEQRAEQRAFDgk3giAIgiAIgiCIAoeEG0EQBEEQBEEQRIFDwo0gCIIgCIIgCKLAIeFGEARBEARBEARR4GTzfQAdDcdxAACbN2/O85EQBEEQBEEQBJFPmCZgGiEMEm7tzJYtWwAANTU1eT4SgiAIgiAIgiAKgS1btqB79+6hn8k4ceQdYY3W1lZ88cUX6Nq1KzKZTF6Ppb6+HgMHDgQAfPHFF6iqqsrr8RCFD90zRBLofiGSQvcMkRS6Z4ikFNo94zgOtmzZgoEDB6KkJDyKjSxu7UxJSQkGDx6c78MAAJSWluZed+vWLe83LlH40D1DJIHuFyIpdM8QSaF7hkhKId4zUZY2BiUnIQiCIAiCIAiCKHBIuBEEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwKEC3ARBEARBEARBEAUOWdwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCrYPy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTU1O+D40oIJqamvDcc8/hggsuwMSJE9GjRw+UlZWhf//+OPLII/HEE0/k+xCJIuDCCy9EJpNBJpPBFVdcke/DIQqYxsZG3HDDDZg8eTJ69eqFTp06YfDgwZg2bRruv//+fB8eUWCsXLkSs2fPxujRo1FZWYlOnTph+PDhOOWUU/DPf/4z34dHtDPLli3DjTfeiFNPPRVjx45FNpuNPe48++yzOOyww9CnTx9UVlZizJgx+N///V9s3bq1HY48PhnHcZx8HwTRvsyZMwfz589HNpvFwQcfjC5duuD5559HXV0dJk+ejEWLFqGysjLfh0kUAM8++yy+853vAAD69++P8ePHo6qqCu+//z7ee+89AMAZZ5yBW2+9FZlMJp+HShQor776Kvbff384jgPHcXD55Zdj3rx5+T4sogBZtWoV/uu//gvvv/8++vTpg3322QdVVVWora3Fu+++i2nTpuGhhx7K92ESBcIbb7yB73znO9iyZQsGDRqE8ePHo7S0FO+++y6WL1+ObDaLe++9F8cdd1y+D5VoJ9j8ViRq3Lnuuuvws5/9DJlMBvvvvz+qq6vx8ssv46uvvsLo0aOxePFi9OnTJ81Dj49DdCgeeeQRB4DTpUsX5+23385tX7dunTN27FgHgHPeeefl8QiJQuK5555zpk+f7rz00kuBfffdd59TWlrqAHDuvvvuPBwdUejU19c7o0aNcgYNGuQcffTRDgDn8ssvz/dhEQXItm3bnDFjxjgAnMsuu8xpbGz07a+vr3feeeed/BwcUZB861vfcgA4Z5xxhu9+aWlpcebNm+cAcHr06OFs3749j0dJtCd33HGHc/755zsLFy50PvjgA+fkk0+OHHeWLl3qZDIZp7S01HnyySdz2+vr652pU6c6AJzp06e3x+HHgoRbB2PixIkOAOeKK64I7Hv55ZcdAE5FRYVTV1eXh6Mjio2ZM2c6AJypU6fm+1CIAuTss892ADhPPPGEc8opp5BwI5RccskluUk4QUSxfv16B4ADwFm7dm1gf3Nzs1NZWekAcJYuXZqHIyQKgTjjznHHHecAcP77v/87sG/FihVOSUmJA8D54IMP0jzU2FCMWwdi9erVWLJkCQDgxBNPDOyfPHkyampq0NDQgCeffLK9D48oQvbaay8AQG1tbZ6PhCg0XnzxRdx444340Y9+hMMOOyzfh0MUME1NTfjd734HALjgggvyfDREMVBRURH7swXj4kYUHI2NjblYfdm8eOjQodhvv/0AAI888ki7HpsKEm4diHfeeQcA0KtXLwwfPlz6mQkTJvg+SxBhfPzxxwCAAQMG5PlIiEJi69at+PGPf4zq6mpcf/31+T4cosBZunQp1q9fj4EDB2LkyJH497//jf/7v//DrFmzMHfuXDzxxBNobW3N92ESBUSXLl2w//77AwDmzZvnS6zW2tqKyy67DNu3b8e0adNQU1OTr8MkCpyPPvoI27ZtA+DNf0UKbV6czfcBEO3H8uXLAQBDhgxRfoZ1cOyzBKHiq6++woIFCwAA06dPz+/BEAXF+eefj+XLl+ORRx5Bz5498304RIHzr3/9CwAwePBgzJ07F1dffTUcLm/ar3/9a+y111549NFHQ8cvomNxxx134LDDDsPtt9+OJ554AhMmTEBpaSneeecdrF69GieffDJuuummfB8mUcCwuW6PHj3QtWtX6WcKbV5MFrcOxJYtWwAAVVVVys906dIFALB58+Z2OSaiOGlubsZJJ52ETZs2YezYsZg1a1a+D4koEBYtWoTbbrsNP/zhD3H00Ufn+3CIImDDhg0A3BXtX//61zjzzDOxbNkybNq0Cc888wx23XVXvPPOOzj88MOpZA2RY/To0Xjttdfw3e9+F6tXr8Zjjz2Ghx9+GMuXL8fIkSMxZcoUdOvWLd+HSRQwxTgvJuFGEERifvKTn+C5555D79698dBDD6G8vDzfh0QUAJs2bcLMmTPRt29f3Hjjjfk+HKJIYNa1pqYmnHDCCbjpppuw6667olu3bjjkkEPwzDPPoFOnTnjvvfdw33335floiULhlVdewdixY/Hee+/h3nvvxVdffYWNGzfir3/9K5qamjBz5kzMnDkz34dJEFYh4daBYGbg+vp65WdYoUFapSJUnHPOObjzzjvRs2fP3Go4QQBuDZ1Vq1bhpptuooQARGx4FyWZ9X7IkCE4/PDDAbi1JQmirq4OxxxzDNatW4eHH34YJ5xwAqqrq9GzZ09873vfw1NPPYXOnTvjrrvuwgsvvJDvwyUKlGKcF1OMWwdi2LBhAMIzALJ97LMEwXPeeefhhhtuQI8ePbBo0aJcVkmCANysW9lsFrfccgtuueUW374PP/wQAHDnnXfi2WefRf/+/cl6QgAAdtllF+lr2We+/PLLdjkmorB54oknsG7dOowYMQJ77713YP8uu+yCvffeGy+88AKeffZZHHTQQXk4SqLQYXPduro6bNmyRRrnVmjzYhJuHQg2yd6wYQOWL18uzSz51ltvAQDGjRvXrsdGFD4XXnghfvvb36J79+5YtGiRMgMT0bFpbm7GP/7xD+X+FStWYMWKFRg6dGg7HhVRyIwbNw6ZTAaO42D9+vXSLIDr168H4MWbEB2blStXAgi3gnTv3h0AsHHjxnY5JqL4GD16NDp37oxt27bhrbfekgr8QpsXk6tkB2Lw4MGYOHEiAODee+8N7F+8eDFqa2tRUVFBdZcIH3PnzsU111yD7t2745lnnsndRwTBU1dXB8dxpP9OOeUUAMDll18Ox3GwYsWK/B4sUTD0798fkydPBiB3hWxqasotBkyaNKldj40oTAYNGgTAteRv2rQpsL+pqQlLly4FAGX5I4IoLy/PuWHL5sWff/45Xn31VQDAMccc067HpoKEWwfj4osvBgBcddVVuU4NcK1wZ555JgBg9uzZuZUqgpg3bx5+/etfo0ePHiTaCIJIhUsvvRQA8Ktf/Qqvv/56bntzczPOO+88fPbZZ+jatStOO+20fB0iUUBMmzYNVVVV2L59O04//fRcHBLgFlU+99xzsXLlSpSVleHYY4/N45EShc7cuXORyWTwhz/8AU899VRu+7Zt2zBz5ky0tLRg+vTpGDNmTB6P0iPj8MVSiA7BOeecgxtuuAFlZWWYOnUqqqqq8Nxzz6Gurg777bcfnnnmGVRWVub7MIkC4PHHH8dRRx0FwC1Cufvuu0s/16dPH1x77bXteWhEkXHqqafi7rvvxuWXX4558+bl+3CIAuSKK67AJZdcgmw2i0mTJqF///5YunQpVqxYgcrKSjz44IO51XGCuOeee3DaaaehubkZffv2xcSJE1FWVoa33noLq1evRklJCW6++Wb85Cc/yfehEu3E0qVLc0YIAPj000+xfv16DB48OGelBdx47AEDBuTeX3fddfjZz36GTCaDAw88EP369cPLL7+ML7/8EqNHj8bixYsLJuEWCbcOygMPPICbb74Z7777LpqamjBixAicdNJJOPfccym1O5FjwYIFsVa4hw4dSq5vRCgk3Ig4LFq0CNdffz3eeOMNbNmyBf3798fUqVNx0UUXFcyKN1E4/POf/8T111+Pl156CatXr4bjOBgwYAAmT56Ms88+m1xrOxgvvvhirEQ0y5cvDyQbefbZZ/Gb3/wGb775Jurr6zFkyBAce+yx+PnPf64szp0PSLgRBEEQBEEQBEEUOBTjRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgdgoymUzif1OmTAEATJkyBZlMBi+++GJe/wYbzJ8/H5lMBn/5y1+029i0aRN69+6NvffeG47jWDw6giAIQpdsvg+AIAiCIGxwyimnBLZ99dVXePrpp5X7x4wZk/pxtSfr1q3DZZddhokTJ2L69Ona7XTv3h0///nPccEFF+CPf/yj9NwRBEEQ7UvGoaU0giAIYiflxRdfxEEHHQQAoZajlStXYtu2bRgyZAg6d+7cXodnndmzZ+Pmm2/GE088gcMOO8yorR07dmDIkCHIZrNYvnw5KioqLB0lQRAEoQO5ShIEQRAdniFDhmDMmDFFLdrq6uqwYMECDBo0CIceeqhxe506dcKJJ56IL7/8Evfff7+FIyQIgiBMIOFGEARBdHhUMW6nnnoqMpkMFixYgGXLluEHP/gB+vXrh6qqKkycOBGPPfZY7rNvvPEGjjzySPTt2xeVlZXYd9998dxzzyl/c/v27fjNb36DffbZBz169ECnTp0wevRoXHjhhdiwYUPiv+EPf/gD6uvrcfLJJ6OkJDi8NzQ04JprrsH48ePRtWtXlJeXo3///pg4cSIuvPBCbNy4MfCdU089FQBw8803Jz4egiAIwi4k3AiCIAgigqVLl2L8+PH45z//ialTp2KPPfbAW2+9hWOOOQYPPfQQHn30Uey///5YtWoVpk6ditGjR+P111/HoYceisWLFwfa++KLL7D33nvj/PPPx8cff4yJEyfisMMOy4mrCRMm4PPPP090jI8++igA4JBDDgnsa21txeGHH44LL7wQn3zyCfbff38ce+yxGDt2LNatW4drrrkGK1euDHxvzz33RN++ffHmm2/iyy+/THQ8BEEQhGUcgiAIgthJeeGFFxwATtRwd+CBBzoAnBdeeMG3/ZRTTsl9/4orrnBaW1tz+2644QYHgDN48GCnZ8+ezh//+Effd+fMmeMAcA455BDf9tbWVme//fZzADgzZ850Nm/enNvX1NTknHfeeQ4A56CDDor9d27bts0pLy93SkpKfO0x/vGPfzgAnL322ku6f8mSJc769eulbR955JEOAOdPf/pT7OMhCIIg7EMWN4IgCIKIYNKkSbj44ouRyWRy237605+iV69eWLVqFQ455BCcfPLJvu/MmzcPAPDSSy+hqakpt/3pp5/GK6+8gj333BO33norunbtmtuXzWZx9dVX45vf/CZeeOEFvPfee7GO7z//+Q8aGxsxePBgX3uMNWvWAAD2339/6f4JEyagd+/e0rZ33313AK7VkSAIgsgfJNwIgiAIIoJp06b5RBvgiqzhw4cDgDSDY+/evdGrVy80Njb6YtaeeOIJAMD06dORzQar8pSUlOCAAw4AALz66quxjo8JM5X4GjduHEpLS3HXXXfh5ptvTuT2yNpkv0EQBEHkBxJuBEEQBBHBkCFDpNu7dOkSup9Zt3bs2JHb9tlnnwEALrnkEmVh8FtuuQWAW5ctDps2bQIAdOvWTbp/xIgRuO6669DU1ITZs2dj4MCBGDZsGE444QQsXLgQjY2NyrZZm19//XWsYyEIgiDSgQpwEwRBEEQEsiyNSfbztLa2AgAmT56MESNGhH6WuSlG0aNHDwDA5s2blZ8566yzcPzxx+Pxxx/H4sWLsXjxYtx333247777cOmll+Lll1/GgAEDAt9jorBnz56xjoUgCIJIBxJuBEEQBNGO1NTUAACOOuoonH/++Vba7NevHwBElhGorq7G6aefjtNPPx0A8OGHH+LHP/4xXnvtNcydOxd333134DuszerqaivHShAEQehBrpIEQRAE0Y5MmzYNAPDggw/CcRwrbe6+++4oLy/HqlWrsGXLltjfGzNmDC666CIAwLvvviv9DEuQMn78eOPjJAiCIPQh4UYQBEEQ7chRRx2FiRMn4s0338Rpp50mjWP7+uuvceutt6K5uTlWm5WVldhnn33Q2tqKN954I7D/+eefx5NPPunLbgkAjuPgb3/7GwBg6NCh0rZfe+01AMDBBx8c61gIgiCIdCBXSYIgCIJoR0pKSvDoo4/i8MMPx913342HHnoIe+yxB4YMGYLGxkZ89tln+Pe//42Wlhaceuqp0syTMo4++mi89NJLeOaZZwJFuP/1r3/h3HPPRbdu3TBu3DgMHDgQ27dvx9KlS/H555+je/fu+MUvfhFo85133sGGDRswadIkafwbQRAE0X6QxY0gCIIg2pmBAwfi9ddfx6233opJkyZh2bJleOihh7B48WIAwE9+8hM8/fTT6NSpU+w2TzvtNFRVVeGee+5BS0uLb98RRxyByy67DBMnTsRnn32Ghx9+GC+++CK6d++OuXPn4r333sOee+4ZaHPBggUAgP/5n//R/lsJgiAIO2QcWw72BEEQBEHkldmzZ+Pmm2/G448/jiOOOMKorR07dqCmpgZlZWVYvnw5KioqLB0lQRAEoQNZ3AiCIAhiJ+HSSy9Fjx49pG6PSbnxxhuxfv16/OpXvyLRRhAEUQCQxY0gCIIgdiLmz5+POXPm4MEHH8Sxxx6r1camTZuwyy67YOTIkXj99deRyWQsHyVBEASRFBJuBEEQBEEQBEEQBQ65ShIEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOP8f3beiewtLONcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t0 = np.linspace(0,10,1000)\n", + "y01 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "y01 -= sub\n", + "y02 = np.sin(2 * np.pi * 3.0 * (t0+0.3)) + 0.1 * rand.standard_normal(t0.size)\n", + "y02 -= sub\n", + "\n", + "spline1 = make_interp_spline(t0, y01)\n", + "spline2 = make_interp_spline(t0, y02)\n", + "t01 = np.linspace(0,10,1000)\n", + "\n", + "fig, ax = plt.subplots(2,1,figsize=(10,12))\n", + "ax[0].scatter(lc1.time, lc1.counts, lw=2, color='blue',label='lc1')\n", + "ax[0].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[0].tick_params(axis='x', labelsize=16)\n", + "ax[0].tick_params(axis='y', labelsize=16)\n", + "ax[0].tick_params(which='major', width=1.5, length=7)\n", + "ax[0].tick_params(which='minor', width=1.5, length=4)\n", + "ax[0].plot(t01,spline1(t01),lw=2,color='lightblue',label='source of lc1')\n", + "\n", + "ax[1].scatter(lc1.time, lc2.counts, lw=2, color='red',label='lc2')\n", + "ax[1].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[1].tick_params(axis='x', labelsize=16)\n", + "ax[1].tick_params(axis='y', labelsize=16)\n", + "ax[1].tick_params(which='major', width=1.5, length=7)\n", + "ax[1].tick_params(which='minor', width=1.5, length=4)\n", + "ax[1].plot(t01,spline2(t01),lw=2,color='orange',label='source of lc2')\n", + "\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `LombScargleCrossspectrum` class to create a `LombScargleCrossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lcs = LombScargleCrossspectrum(\n", + " lc1,\n", + " lc2,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 6.31032111 +4.52192914j 63.18701964+17.6050907j\n", + " 118.96655765-28.2054288j 84.8747486 -42.95292067j\n", + " -5.16601064+18.1110093j ]\n" + ] + } + ], + "source": [ + "print(lcs.freq[0:5])\n", + "print(lcs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Properties\n", + "\n", + "### Parameters\n", + "\n", + "- `data1`: This parameter allows you to provide the dataset for the first channel or band of interest. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `data2`: Similar to `data1`, this parameter represents the dataset for the second channel or \"reference\" band. It follows the same format as `data1` and is also optional with a default value of `None`.\n", + "\n", + "- `norm`: This parameter defines the normalization of the cross spectrum. It takes string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: This parameter allows you to specify the type of cross spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the cross spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "### Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the cross spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the complex numbers representing the cross spectra.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged cross-spectra amplitudes in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points or time bins in one segment of the light curves.\n", + "\n", + "- `k`: The `k` attribute is an array of integers indicating the rebinning scheme. If the object has been rebinned, the attribute holds the rebinning scheme; otherwise, it is set to 1.\n", + "\n", + "- `nphots1`: The `nphots1` attribute is a float representing the total number of photons in light curve 1.\n", + "\n", + "- `nphots2`: The `nphots2` attribute is a float representing the total number of photons in light curve 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the cross spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQUAAAIfCAYAAADJ6rpzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iTVRsG8Pvt3oMORgcte4uMMmRPWZ/IEAUBGUVENoooUxRFlD2U0YKAiIACyh6yZ1myoaWU0bK698z7/fGS1aRt2qRNx/27rmry5iR5WtqMO885RxBFUQQRERERERERERGVGSbGLoCIiIiIiIiIiIiKFkNBIiIiIiIiIiKiMoahIBERERERERERURnDUJCIiIiIiIiIiKiMYShIRERERERERERUxjAUJCIiIiIiIiIiKmMYChIREREREREREZUxDAWJiIiIiIiIiIjKGDNjF0CaZDIZIiIiYG9vD0EQjF0OEVGJJ4oiEhISUKlSJZiY8PMwgM81RESGxucadXyeISIyrMJ4nmEoWAxFRETAy8vL2GUQEZU6T548gaenp7HLKBb4XENEVDj4XCPh8wwRUeEw5PMMQ8FiyN7eHoD0D+3g4GDkaoiISr74+Hh4eXkpHl+JzzVERIbG5xp1fJ4hIjKswnieYShYDMnb6x0cHPgESkRkQJy+pMTnGiKiwsHnGgmfZ4iICochn2e42AUREREREREREVEZw1CQiIiIiIiIiIiojGEoSEREREREREREVMYwFCQiIiIiIiIiIipjGAoSERERERERERGVMQwFiYiIiIiIiIiIyhgzYxdARAWTnp6O2NhYiKJo0C3JiUoK+e++k5MTLCwsjF0OERERERFRicJQkKgEkslkiIyMRIUKFWBiwoZfKrtkMhmeP3/OvwUiIiIiIqJ84jsoohIoJiYGLi4uDEGozDMxMYGLiwtiY2ONXQoREREREVGJwkSBqATKzMyEpaWlscsgKhYsLS2RkZFh7DKIiIiIiIhKFIaCREREREREREREZQxDQaISiBuLEKnj3wQREREREVH+MBQkIiIiIiIiIiIqYxgKEhHpycfHB+3atVM71q5dO/j4+BSLWoiIiIiIiIiyYyhIRCVGTEwMrK2tIQgCNm3aZOxy8m3Dhg1YsmSJscsgIiIiIiIiYihIRCXHb7/9hrS0NPj6+iIwMNDY5eTq0KFDuHfvntoxhoJERERERERUXDAUJCoESUnAjz8CK1cCGRnGrqb0CAgIQPv27TFx4kScOHECoaGhxi4pRxYWFrC0tDR2GURERERERERaMRQkKgSrVgFTpwJjxwLbthm7mtLhypUruHbtGoYOHYqBAwfCzMxMa7egIAj46KOP8O+//6JFixawsbGBp6cnfvjhBwDSFOQRI0bA3d0dNjY26NmzJyIiItRuY86cORAEAbdu3cL48eNRoUIFWFtbo1mzZjh69KhO9WZfU9DHxwcnTpzAo0ePIAiC4uv48eOKy7WtBXj8+HEIgoANGzaoHX/y5Anee+89ODo6wsHBAb169cKDBw9yrOfIkSPo0qULnJycYGVlhQYNGuCXX37R6XshIiIiIiKi0oehIFEhuHhRefq//4xXR2kSEBAAOzs79O3bF66urujZsyd+/fVXyGQyjbFXr15F//790a5dOyxcuBDVq1fHtGnTsHTpUnTs2BExMTGYM2cORo8ejQMHDmDIkCFa73PIkCE4f/48vvjiC3z55Zd4+vQp3n77bRw5ciTf9S9ZsgS1atWCq6srNm3apPiqXbt2vm8rNjYWbdq0wV9//YXBgwdj/vz5sLGxQfv27ZGUlKQxfs2aNejSpQsSExMxffp0LFq0CFWrVsUnn3yCzz//PN/3T0RERERERCWfmbELICqNYmOVp4tq+rBMBkRHF819FUS5coBJAT+GSE1NxZYtW9C3b1/Y2toCAIYOHYqdO3fi4MGD6Natm9r4Gzdu4Ny5c2jWrBkAYMSIEahcuTImTZqEsWPHYtmyZWrjFy9ejHv37qFmzZpqx83MzHDq1ClYWFgAAIYPH45atWph3LhxuHPnTr6+h969e2PJkiVISUnBhx9+mK/rZrdgwQKEhYUhMDAQw4YNAwCMGTMGEydOxNKlS9XGPnv2DOPHj8f777+PLVu2KI6PGTMGEyZMwKJFi/DJJ5+gSpUqetVEREREREREJQs7BYkKQVyc8nRmZtHcZ3Q04OZWfL/0CSz/+usvxMbGYujQoYpj3bt3h5ubm9YpxC1atFAEgoC0vp+fnx9EUcT48ePVxrZu3RoAEBwcrHE7kyZNUgSCAODp6YlBgwbh7t27+Q4FDWnXrl0oX768RofjF198oTF2x44dSEtLw4gRIxAZGan21atXL8hksgJ1PhIREREREVHJxk5BokKg2ilYVKFgaRYQEAA3Nzd4enoiJCREcbxLly7Yvn07IiMj4erqqjiurevN2dkZAODr66v1eFRUlMZ1tE3trVOnDgAgNDS0QFN/DSE0NBRNmzaFqamp2vGKFSvCyclJ7Zg8vOzUqVOOt/fixQuD10hERERERETFG0NBokJgjOnDpdXDhw9x7NgxiKKIGjVqaB2zefNmTJw4UXE+e1imKqfLRFHUq059CYKg9Ximnqmy/PvauHEjKlasqHUMpw4TERERERGVPQwFiQxMFI3TKViuHPDqVdHcV0GUK1ew661fvx6iKGLt2rUaXXAAMGPGDAQGBqqFgoZy584dvPHGG2rHbt++DaBgQVpOwR8AlCtXDtFa5liHhoZqHKtSpQqCg4ORlZWlFnI+e/YMsaq/fACqV68OAHB1dc21W5CIiIiIiIjKFoaCRAaWmqreHVhUnYImJoDKDNpSQSaTYcOGDahfvz5GjhypdcytW7cwZ84cBAUFoWnTpga9/8WLF6NPnz6KdQWfPn2KLVu2oGbNmgWaOmxnZ4eYmBiIoqgRENaoUQN//vknwsPD4eHhAQBIS0vDypUrNW7nnXfewfz587Fx40bFRiMA8MMPP2iMfe+99/DVV19h9uzZaNeuHaytrdUuj4uLg5WVFSwtLfP9/RAREREREVHJxVCQyMCyNWpxTUE9HDp0CE+ePMGIESNyHNO3b1/MmTMHAQEBBg8FMzMz0bp1a3zwwQdISEjAL7/8gpSUFI3di3XVvHlz7NmzB2PHjkXLli1hamqKDh06wN3dHWPHjsXWrVvRqVMnjB49Gunp6di0aRNsbGw0bmfq1KnYsmUL/P39cfnyZdStWxfHjx/HuXPn1NZWBKTNUX7++WeMHDkStWvXxuDBg1G5cmW8evUKN27cwK5du3D79m34+PgU6HsiIiIiIiKikqnE7D78/fffo3///qhSpQoEQcjzDeyFCxfQqVMn2Nvbw8HBAW+//TauXbumdWxERASGDBkCNzc3WFtbo0mTJti+fbvWsWlpaZg1axZ8fX1haWmJqlWr4ttvv0UGF46j1xgKGk5AQAAAoE+fPjmOqVevHmrUqIGtW7ciJSXFoPe/ceNG+Pn5Yf78+Zg3bx48PDywf/9+dOnSpUC3N2nSJAwfPhw7duzAkCFD8MEHHyimI7/11lvYsGEDZDIZPv/8c6xatQoffvghvvvuO43bcXZ2xqlTp9C7d29s3LgRX3zxBZKTk3Hs2DHY2tpqjB82bBhOnjyJN998E6tXr8aYMWOwfPlyPHv2DN988w0qVKhQoO+HiIiIiIiISi5BNPbq+joSBAHlypVDo0aNcPnyZTg4OCAsLEzr2PPnz6Ndu3bw8PDA2LFjAQArVqzAy5cvcfbsWdSvX18xNjo6Gk2aNMHLly8xefJkeHp6YsuWLThx4gQCAwPVpuYBQO/evbF7924MHz4cLVq0wLlz5xAYGIihQ4diw4YNBvle4+Pj4ejoiLi4ODg4OBjkNqnonD8PtGihPN+rF/D334a9j5cvX8Ld3d2wN0oKc+bMwddff42HDx+yg66EyOtvgo+rmvgzISIyLD6uquPPg4jIsArjcbXETB9+8OCBYmH/evXqITExMcex48ePh4WFBU6ePKlYm+u9995D7dq1MWXKFBw6dEgxdv78+Xj48CH+/vtv9OrVCwAwYsQItGjRAp999hn69+8POzs7AMC+ffuwe/duTJ48GQsXLgQAjBw5Ek5OTli0aBFGjRqFli1bFsr3TyUHOwWJiIiIiIiIqLgrMdOHdd3pMyQkBEFBQejfv78iEAQADw8P9O/fH0eOHMHz588Vx7ds2YKqVasqAkEAMDU1xbhx4xAdHY19+/apjQWgscup/PzmzZvz+21RKcRQkIiIiIiIiIiKuxITCuoqKCgIANBCdf7ma82bN4coirh8+TIA4NmzZwgPD0fz5s21jlW9PflpDw8PeHl5qY318vJCpUqV1MZS2ZU9FORyk0RERERERERU3JSY6cO6ioiIAAC1LkE5+bHw8PB8j5WPr1Onjtb79fDwwNOnTwtUc8WKFdXOy2SyAt0OFQ9xcern2SlY8syZMwdz5swxdhlEBsXnGiIiKkx8niEiKnlKXadgcnIyAMDS0lLjMisrK7Ux+RkrP61trHy86lgqu9gpSERERERERETFXanrFLSxsQEApKWlaVyWmpqqNiY/Y+WntY2Vj1cdmx/Pnj1TOy/fUYZKJq4pSETFEZ9riIioMPF5hoio5Cl1nYKVKlUCoD7tV05+TD41OD9j5eO1jZWP1zYNmcoehoJEREREREREVNyVulCwadOmAIBz585pXHb+/HkIgoDGjRsDkNa98PDwwPnz57WOBYAmTZqo3XZ4eDiePHmiNvbJkyeIiIhQG0tlV/Y1BTl9mIiIiIiIiIiKm1IXClarVg1NmjTB9u3bFRuJANImIdu3b0eHDh1QoUIFxfEPPvgADx48wD///KM4lpWVheXLl8PJyQndu3dXGwsAS5YsUbtP+flBgwYVwndEJQ07BYmIiIiIiIiouCsxawpu2rQJjx49AgC8evUK6enp+PbbbwEAlStXxuDBgxVjly5divbt26N169YYN24cAGD58uWQyWRYuHCh2u1OmzYN27dvx8CBAzF58mR4eHjg999/R1BQENatWwd7e3vF2B49eqBnz55YtGgR4uLi0KJFC5w7dw4BAQH48MMP0apVq8L+MVAJwFCQiIiIiIiIiIo7QRRF0dhF6KJdu3Y4ceKE1svatm2L48ePqx07d+4cZsyYgQsXLkAQBLRs2RLff/89GjVqpHH98PBwTJs2Dfv370diYiLq1KmDL774AgMGDNAYm5qaim+//RabN2/Gs2fP4OHhgWHDhmHatGkwNzc3yPcqX5Q3Li4ODg4OBrlNKjoeHoBKkyq8vIDHjw17Hy9fvoS7u7thb5SoBMvrb4KPq5r4MyEiMiw+rqrjz4OIyLAK43G1xISCZQmfQEs2W1sgOVl5vmJF9ZDQEBgKEqljKJh//JkQERkWH1fV8edBRGRYhfG4WurWFCQypvR09UAQ4EYjpcXx48chCAI2bNhg7FKIiIiIiIiI9MZQkMiAsu88DHBNQX3JwzjVLzs7OzRq1AiLFy9GZjH8AW/YsEGtXhMTEzg6OqJVq1bYuHFjod1n9k2QiIiIiIiIiHJSYjYaISoJGAoWng8++ADdu3eHKIp4/vw5Nm7ciMmTJ+POnTtYs2aNscvTavz48WjatClkMhnCwsKwdu1aDB06FE+fPsVXX31l0PvasGEDwsLCMHHiRIPeLhEREREREZVODAWJDCj7zsMApw8bSqNGjfDhhx8qzo8ZMwa1atXCunXrMG/ePLi5uRmxOu1at26Nfv36Kc4PGzYMNWvWxA8//ICpU6fCzEy/h2BRFJGUlAQ7Ozt9SyUiIiIiIqIyhtOHiQxIWyjITsHCYWtri+bNm0MURTx48EDtsmfPnuGTTz6Bt7c3LCwsUKlSJYwaNQovX75UGxcREYEpU6agYcOGcHZ2hpWVFerUqYMffvgBWVlZBq/Zy8sLderUQXx8PF69eoWEhATMmDEDzZo1g6urKywtLVGtWjVMmzYNydkWp1Rd03DlypWoU6cOrKys8NNPP8HHxwcnTpzAo0eP1KYtZ9+VnYiIiIiIiEiOnYJEBqQtFMzKAkQREIQiL6fUk4eB5cqVUxx7/PgxWrRogfT0dIwYMQJVq1ZFSEgIfv75Zxw7dgyXLl2Co6MjAOD69ev466+/8O6776Jq1arIyMjAgQMHMG3aNISGhmL16tUGrTctLQ2PHz+GmZkZnJyc8OjRI6xbtw59+/bFwIEDYWZmhhMnTmDBggW4evUqDh48qHEbS5YsQVRUFPz9/VGhQgV4eXmhYcOG+PLLLxEZGYnFixcrxtauXdug9RMREREREVHpwVCQyIC0rSkISN2C5uaFfOeiCKSkFPKd6MHaWq9kNDk5GZGRkYo1BX/55RdcvXoVfn5+qFGjhmLcuHHjkJGRgatXr8LT01NxvH///mjevDkWL16MOXPmAADatm2L0NBQCCp1TZw4EYMHD8a6deswZ84cVKxYscA1JyQkIDIyEjKZDI8ePcK8efPw6tUrvP/++7C2tkaVKlXw5MkTmKv8cnz66aeYOXMmvv32W1y8eBF+fn5qt/n48WPcvXsX7u7uaseXLFmClJQUtSnWRERERERERDlhKEhkQNo6BYEiCgVTUoAFCwr5TvQwdSpgY1Pgq8+ePRuzZ89WO9anTx+sXLlScT4uLg579uzBsGHDYGVlhcjISMVlPj4+qFatGg4dOqQIBa2trRWXp6enIzExETKZDF27dsXmzZtx6dIl9OrVq8A1Dx8+XO28ubk5hg4dihUrVgAALCwsFJdlZmYiISEBWVlZ6NSpE7799ltcuHBBIxQcMmSIRiBIRERERERElF8MBYkMKKdQMCNDapSjghs1ahT69++PjIwM3LhxAz/88AOePn0KKysrxZh79+5BJpMhICAAAQEBWm+nSpUqitOZmZmYP38+Nm7ciJCQEIiiqDY2JiZGr5pnzZqF1q1bw8TEBPb29qhVqxbs7e3VxqxatQq//PILbt26BZlMluf9q3ZFEhERERERERUUQ0EiA8pt+jDpp3r16ujUqRMAoFu3bmjVqhVatWqF0aNHY+vWrQCgCPU+/PBDDB06VOvtqHYHTp48GcuXL8eAAQMwffp0uLu7w9zcHFeuXMEXX3yhEdLlV/369RU1a7No0SJMmTIFXbp0wfjx41GpUiVYWFggPDwcH330kdb7t9Gj25KIiIiIiIhIjqEgkQHlNn240FlbS1N0iysDt0q2bNkSgwcPxsaNGzF+/Hi0bNkS1apVgyAISE9PzzWMk9u0aRPatGmjCBXlQkJCDFprbvfv4+OD/fv3w8REuRn8gQMH8n1bAneyISIiIiIionxgKEhkQLlNHy50gqDXmn0l0cyZM/Hbb79h1qxZOHLkCFxcXNC9e3f89ddfOH/+PJo3b642XhRFREZGws3NDQBgamqqMWU4KSlJbQffwmRqagpBENRqkE9pzi87OzvExMRAFEUGhERERERERJQnhoJEBmTUTsEyqFq1anj//ffx22+/4dSpU2jdujV+/vlntGrVCm3atMGQIUPw5ptvQiaTITQ0FLt378aQIUMUG43069cPq1evxoABA9CpUye8ePECgYGBcHFxKZL6+/Xrhy+//BLdunVDnz59EB8fjy1btqjtRqyr5s2bY8+ePRg7dixatmwJU1NTdOjQgZuSEBERERERkVYMBYkMiGsKFr3p06fj999/x6xZs3Ds2DF4eXnh8uXL+OGHH7B7925s3rwZVlZW8PLyQq9evfDee+8prrto0SLY29tj27Zt2L17N7y8vDBq1Cg0bdpUp+nH+vr8888hiiICAgIwYcIEVKhQAQMGDMCwYcNQp06dfN3WpEmTEBoaih07duCXX36BTCbDsWPHGAoSERERERGRVoKYfe4cGV18fDwcHR0RFxcHBwcHY5dD+VC5MvD4sebxO3eAWrUMdz8vX75k2EOkIq+/CT6uauLPhIjIsPi4qo4/DyIiwyqMx1WTvIcQka44fZiIiIiIiIiISgKGgkQGkpUFxMdrv6xINhohIiIiIiIiItIRQ0EiA0lIyPkydgoSERERERERUXHCUJDIQLJPHTZT2caHoSARERERERERFScMBYkMRDUUNDMDVNf95PRhIiIiIiIiIipOzPIeQkS6iItTnnZyAkxNlefZKUhERERERERExQk7BYkMRLVT0MkJMDdXnmcoSERERERERETFCUNBIgNRDQUdHdXXFOT0YSIiIiIiIiIqThgKEhlI9k5BbjRCRERERERERMUV1xQkMpDsawpGRCjPs1OQiIiIiIqbxMREvHjxAjExMXB2dkb58uVhZ2dn7LKIiKiIMBQkMpDcpg+zU5CIiIiIioODBw9i165dOHr0KB48eKBxebVq1dChQwf07t0bXbt2NUKFRERUVBgKEhkINxohIiIiouIoKysLP//8M5YtW4YHDx5AFEXFZXZ2dnBwcEBcXBySkpIQHByM4OBgrFmzBtWqVcP48eMxevRomJqaGvE7ICKiwsA1BYkMJLc1BTl9uOwRBAEfffSRscsgIiKiMu7AgQOoV68exo8fj0ePHuF///sfVqxYgStXriAtLQ3x8fF4+vQpEhISkJqaikuXLmHZsmXo2bMnwsLCMH78eNSvXx8HDx409rdCREQGxlCQyEBU1xTk9GHDOX78OARBwE8//WTsUsqsOXPmQBAExZeJiQnKlSuHzp07Y8+ePYVyn0uWLMGGDRsK5baJiIjKku7duyM2NhY//fQTwsPDsXPnTowZMwYNGzaEuerUFgAWFhZo1KgRxo4di927dyM8PBwLFixAVFQUunfvbqTvgIiICgunDxMZSG7Th9kpWPakpKSUumk2c+fOha+vLzIzM3H//n2sXr0avXr1wm+//YaBAwca9L6WLFkCHx8fdlsSERHp6ZtvvsGkSZNgY2OT7+u6urpiypQp+OSTT7B48eJCqI6IiIyJoSCRgeQ2fZidgmWPlZWVUe8/IyMDWVlZBq2jW7duaNKkieJ837590aRJE8ybN88goWBWVhbS0tIK9KaFiIiItJs+fbret2FjY2OQ2yEiouKF04eJDITTh4tOWFgYBEHAnDlzsG3bNjRs2BDW1taoVq0a1q9fDwB4/Pgx+vXrh3LlysHe3h4ffvghEhIS1G7n7t27GDNmDOrWrQt7e3vY2NigcePGWLdundb7vX79Orp06QJbW1u4uLhg6NChiIyM1Lp+YG7Hzp07h7Zt2ypuZ+TIkUhMTCxwbfLpvbdu3cLkyZPh6ekJKysrnDx5Em5ubnjrrbe0fj8//vgjBEHAyZMnc/tx56hx48ZwcXFBSEgIACAiIgJTpkxBw4YN4ezsDCsrK9SpUwc//PADsrKy1K67YcMGCIKAI0eO4JtvvkHVqlVhZWWFbdu2QRAEPHr0CCdOnFCbthwWFlagOomIiIiIiEgTOwWJDEAUOX3YGPbs2YNffvkFY8aMQbly5RAQEIDhw4fDwsICX331FTp06IDvvvsOQUFBCAwMhJWVlVqodvz4cZw8eRI9e/aEr68vkpKSsH37dvj7++PVq1f48ssvFWODg4PRunVryGQyjB8/Hh4eHti3bx/efvvtfNV87do19OzZE8OGDcPAgQNx/PhxBAQEwMTEBGvWrClQbXKDBg2CtbU1pkyZAkEQULlyZQwdOhQLFy7EvXv3ULNmTbXxgYGBqFGjBtq0aZOv70EuMjISMTExqFChAgApNP3rr7/w7rvvomrVqsjIyMCBAwcwbdo0hIaGYvXq1Rq38dlnnyEjIwP+/v5wcHBAzZo1sWnTJkyaNAmurq5qXQlubm4FqpOIiIiUTE1N8dFHHyEgICDXcf7+/li/fj0y+ek2EVGpxVCQyAAyMgDVRigbm6LvFBRFESmZKYV/RwVkbWYNQRAMept37tzB7du3UblyZQDAgAED4OXlhcGDB+Onn37C5MmTAQCjR49GTEwMNm7ciCVLlsDOzg4AMHjwYIwePVrtNidNmoQOHTpg/vz5+OyzzxQLcE+fPh3x8fE4ffq0ovNu7NixGDBgAC5fvqxzzdevX8e5c+fQrFkzAMDHH3+M+Ph4rF+/HosWLSpQbXJOTk44cuQIzFR++UaNGoWFCxciICAACxYsUBw/c+YM7t69ix9++EHn2uPi4hAZGalYU/Crr76CTCbDkCFDAABt27ZFaGio2r/zxIkTMXjwYKxbtw5z5sxBxYoV1W4zJSUFV69eVZsy3KJFC8yYMQPly5fHhx9+qHN9RERElDdRFCGKos5jiYio9GIoSGQA2TsBzc3VOwWLIhRMyUzBgjML8h5oJFPfmgobc8OuFde7d29FIAhInWQ1a9bErVu38Omnn6qNbd26NXbu3ImwsDDUq1cPAGBra6u4PDU1FUlJSRBFEV26dMGJEydw9+5d1K9fH1lZWdi3bx/8/Pw0puJOmTIF27Zt07nmFi1aKAJBuQ4dOmDfvn0Fqk3VxIkT1QJBAKhRowbatm2LjRs34rvvvlNcHhAQADMzMwwdOlTn2jt16qR23sbGBpMnT8Y333wDALC2tlZclp6ejsTERMhkMnTt2hWbN2/GpUuX0KtXL7Xb+OSTT7iGIBERUTGUnJys8QEkERGVLgwFiQxAWyioms1w+nDhqFKlisYxZ2dnVKxYEZaWlhrHASAqKkpxLDExUbEu4ZMnTzRuKyYmBgDw6tUrJCUlaUy/BaD1WH5rdnFxKXBtqmrUqKH1PkeNGoVBgwZhz5496N27NxISErBt2zb07NkT5cuX17n2lStXokaNGjAxMYGTkxNq166tFgRmZmZi/vz52LhxI0JCQjS6C/JTMxERERlPbGwsTp8+rdHhT0REpQtDQSIDyCsU5FIshcPU1DRfxwH1aTADBw7Enj17MGrUKLRp0wYuLi4wNTXFvn37sHjxYshksiKr2RC15dRx17dvX4wfPx4BAQHo3bs3/vjjDyQlJWHkyJH5qt3Pz09t9+HsJk+ejOXLl2PAgAGYPn063N3dYW5ujitXruCLL77IV81ERERkONk/lNyxYweOHz+udWxmZiaeP3+OrKwsfPzxx0VQHRERGQtDQSIDyGv6cFF0ClqbWWPqW1ML/44KyNrMOu9BRSg2NhZ79uzB4MGD8csvv6hdduTIEbXzbm5usLW1xb179zRuR9uxoqxNF5aWlhgyZAiWLVuGiIgIBAQEwMPDI9+bpORl06ZNaNOmDbZu3ap2XL47cX4Yev1JIiKisiwsLExxWhAEJCYmIjExMcfxFhYW6N27N7777rsiqI6IiIyFoSCRARSHTkFBEAy+Zl9pJu/Yyz7F9dmzZ2o7FMvHduvWDTt27MCZM2fU1hVcuHChUWvTlb+/PxYvXowvvvgC58+fx/Tp03PtWiwIU1NTjZqTkpKwePHifN+WnZ0doqOjDVUaERFRmfbw4UMA0muLKlWqoF+/fvjxxx+1jrWwsICbm5vGOsVERFT68JGeyACyh37G2GiE8sfe3h5dunTB5s2bYW1tjaZNm+LRo0dYvXo1fH191db3A4Bvv/0WBw8exNtvv42xY8fC09MTe/fuxatXrwAYtrMtv7Xponbt2mjVqhU2b94MQRAwfPhwg9Ur169fP6xevRoDBgxAp06d8OLFCwQGBirWTMyP5s2bIyAgADNnzkTt2rVhYmKCXr16qW3AQkRERLpR3Zht6NChaN26tdoxIiIqmxgKEhmARqdgehIahR1ET5jjELogI8NS+xXJqDZv3oxp06bhn3/+wa+//orq1atj3rx5MDc3x7Bhw9TG1qxZEydPnsRnn32GpUuXwsrKCj179sTKlStRpUoVtQ03iro2XY0aNQqnT59G+/bttW54oq9FixbB3t4e27Ztw+7du+Hl5YVRo0ahadOmGjsX52XevHmIjo7GypUrERsbC1EU8fDhQ4aCRKr27wcuXgTGjQPKlTN2NURUQqxfv97YJRARUTEhiNnnepHRxcfHw9HREXFxcXBwcDB2OaSDGzeABg2k0yYmQNb+Qzg05yzOngP2oTvqDfNDYKDh7u/ly5dwd3c33A1SgV2+fBlNmjTB999/j2nTphm7nFxt27YNAwYMwJYtW/DBBx8YuxyDyutvgo+rmvgzKeFevQK8vIC0NOCrr4B584xdEVGZx8dVdfx5EBEZVmE8rrJTkMgAVDsFzc0BPHsGExPpvDNiOH24lEhJSVHrCBRFEQsWLAAAdO7c2Vhl6WzlypVwdXVFnz59jF0KEenr5k0pEASA0FDj1kJEJU5CQgJWrVqFI0eOIDw8HKmpqVrHCYKABw8eFHF1RERUVBgKEhmARigYE6MIBU2RVSS7D1Pha9iwITp06ID69esjKSkJ//zzD06dOoUBAwagcePGxi5Pq5cvX+Lo0aM4deoUTp48ie+//x6WlpzOTlTivd40AACQnm68OoioxImIiECrVq3w6NEjjQ3CsjPkmslERFT8MBQkMgDV0M/CTAbEx6uFguwULB3eeecd/PPPP9i0aRMyMzPh6+uLb775Bl988YWxS8vR7du3MXDgQDg5OWH06NGYMmWKsUsiIkNQDQXlHYNERDr46quvEBYWhoYNG2LatGmoXbs2p/cSEZVRDAWJDEA1FHQxiwNkMpiaSufZKVh6LFiwQDFduKRo165dnl0ARFQCsVOQiAro4MGDKF++PI4dOwZHR0djl0NEREZkYuwCDG3OnDkQBCHHL3Nzc53G/vTTTxq3LZPJsHjxYtSqVQtWVlbw8vLClClTkJSUVJTfIhVDqqFfOZNYAGCnIBERFR6GgkRUQDExMWjRogUDQSIiKn2dgn369EG1atU0jl+/fh0//vgjevXqpXHZ4sWL4erqqnZM2/pgkyZNwrJly/Duu+9iypQpuHPnDpYtW4arV6/iyJEjMDEpdRkr6UitU9AkBoAyFDRDJpIYChIRkSFx+jARFZCXlxdkMpmxyyAiomKg1IWCDRo0QIMGDTSOf/zxxwCAESNGaFzWu3dv+Pj45Hq7t27dwvLly9GnTx/8+eefiuO+vr4YP348tm7dioEDB+pXPJVYeXUKcvowEREZTEoK8OyZ8jw7BYkoH/r164c1a9YgKSkJtra2xi6HiIiMqEy0tiUlJWHr1q3w9PTE22+/rXVMfHw8MnOZ4/n7779DFEVMnDhR7bi/vz9sbGywefNmQ5ZMJYxq6OcsxAIo3OnDXCOOSB3/JqhMefRI/Tw7BYkoH2bOnAkvLy+89957ePnypbHLISIiIyp1nYLabN++HfHx8Rg/fjxM5bs/qGjQoAESEhJgamoKPz8/zJw5E926dVMbExQUBBMTE/j5+akdt7KyQsOGDREUFFSo3wMVb2qdgoI0fVh1o5HCWFNQJpNxyjoRwClQVPaoTh0G2ClIRPkyduxYVK1aFTt37kS1atXQpEkTeHt7a31dKQgCAgICjFAlEREVhTIRCgYEBEAQBAwfPlztuJOTE0aNGoWWLVvC2dkZ9+7dw5IlS9CjRw8EBgbio48+UoyNiIiAq6srLC0tNW7fw8MDZ8+eRXp6OiwsLPJdX8WKFdXO8w1uyaMaCjoiFoD6moKGnj7s7OyMFy9eoHz58gwGqUyTyWR48eIFXFxcjF1KscfnmlIkeyjITkEiyocNGzZAEAQAQGJiIo4fP57j2PyEgnyeISIqeUp9KHjv3j2cPn0aHTt2hK+vr9pl2acCA8Dw4cNRr149TJo0Cf369YOdnR0AIDk5WWsgCEjdgvIxBQkFqeSTh35myIC9mACgcKcPW1hYwMXFBa9evQIAxQs7orJEPmXYxcWFj71UtrBTkIj0sH79emOXQERExUSpDwXln2yNHDlSp/EuLi4YPXo05syZg7Nnz6JLly4AABsbmxzX3EhNTVWMKYhnqouFQ1rf0NHRsUC3RcYhDwUdEaeYNlzYG41YWFigfPnyhr9hIiqV+FxTijAUJCI9DB06tFBul88zREQlT6med5iZmYmNGzfCxcUF7777rs7Xk+9EHBkZqThWqVIlREZGIk3LFJ3w8HC4urqyU6UMk3cCOiNGEQYWZqcgERGVYWFh6uc5fZiIiIiICqBUh4L//PMPXrx4gQ8//DDHqb/aBAcHA4BaF1bTpk0hk8lw8eJFtbGpqam4du0amjRpYpiiqUSSdwI6IVa5wUghbzRCRERlFDsFichAbt++jXXr1uH777/H33//rTguk8mQzscWIqJSr1SHgvKpwyNGjNC4LDMzE3FxcRrHnzx5gp9//hkuLi5o2bKl4viAAQMgCAKWLFmiNn7t2rVITk7GoEGDDFs8lSjyUFBbp2BhbDRCRKWTTCbDhQsX8N1336Ffv35o3bo16tWrh9atW6Nfv374/vvvceHCBS7eXpbFxwPR0erHMjIA/k4QUT48efIEnTp1Qv369fHxxx9jxowZ2LVrl+LytWvXwtraGkePHjVekUREVOhK7ZqCEREROHDgAPz8/FC/fn2NyxMTE+Hr64vevXujdu3ait2H161bh8TERPz++++wtrZWjK9fvz4+/fRTrFixAn369EH37t1x584dLFu2DG3btsXAgQOL8tujYkZbpyCnDxORrl6+fIk1a9Zg9erViIiIAKDcSEXVzp07AUhLWowePRr+/v5wd3cv0lrJyLJ3CcplZAD5mBVBRGVXdHQ02rZti7CwMNSrVw9t2rTBqlWr1Ma89957GDt2LP7++2907NjRSJUSEVFhK7Wh4IYNG5CVlZXjBiPW1tbo27cvLly4gF27diExMRGurq7o1KkTpk6dCj8/P43rLFmyBD4+PlizZg327t0LV1dXjBs3DnPnzoWJSaluuqQ85NYpyFCQiHKSlpaGBQsW4IcffkBycjLMzMzQuHFjtGzZEnXr1oWLiwscHBwQFxeHqKgo3Lx5E2fPnsX169cxc+ZMfP/995g2bRo+//zzfC2TQSVYTqFgWhpDQSLSyQ8//ICwsDB89tln+OGHHyAIgkYo6OzsjPr16+P06dNGqpKIiIpCqQ0Fv/rqK3z11Vc5Xm5paYl169bl6zZNTU0xZcoUTJkyRd/yqJTJq1OQ04eJSJuaNWvi8ePHqF+/PoYPH45BgwbB1dU1z+tFRkZi06ZNWL9+PWbNmoXAwECEhoYWQcVkdDmFglz7i4h0tHv3bvj4+GD+/PkQBCHHcVWqVMGZM2eKsDIiIipqbG8jMoCMDMASqbBGijIMVN1oJENzGiARkbW1NbZv347//vsPEyZM0CkQBABXV1dMmjQJ169fxx9//MEuwbJENRRU2RCNoSAR6erRo0do1KhRnjOdLCwsEJ19DVMiIipVSm2nIFFRysiQugQBaHQKAoAsIwv8cyOi7G7duqX38hP9+/dH3759DVQRFXuqoWDNmsCLF9LptDTj1ENEJY6VlRUSEhLyHPf48WM4OjoWQUVERGQs7BQkMoCMDGk9QeB1GGhqqhYKiplZximMiIo1Q61Hy3VtyxB5KGhpCVSurDzOTkEi0lGtWrVw5coVJCUl5TgmMjIS//33Hxo0aFCElRERUVHjuwgiA1DtFDQxAVCuHENBIsq34cOHIzAwMM9xGzZswPDhw4ugIipWRFEZClauDFhZKS9jpyAR6ahfv36IiorC5MmTIZPJtI75/PPPkZycjAEDBhRxdUREVJQYChIZgGqnoKkpAFdXtVDQBFnIYi5IRHnYsGGDTjs9njlzBr/++msRVETFyqtXQHKydNrXV323YXYKEpGOPv30U9SrVw/r1q2Dn58fvvvuOwDAgwcPsGjRIrRo0QIbN25Ew4YN8dFHHxm3WCIiKlRc5IzIADQ6BbOFgmbIRGamcr1BIiJ9ZGVlccpwWaS6nqCvL2BhoTzPTkEi0pGVlRUOHjyI/v374+zZs7h69SoA4PTp0zh9+jREUUTTpk2xa9cumJubG7laIiIqTAwFiQwgIwNwVe0UdHFRCwBNkSXtUMwNQonIAIKDg7n4e1mUPRSMjVWeZ6cgEeVDxYoVcfr0aRw8eBB79+5FaGgoZDIZvLy80K1bN7zzzjsQBMHYZRIRUSFjKEhkABnposaagoKpAEAEIIWCmZlGK4+IirG5c+eqnb927ZrGMbnMzEzcunULZ8+eRadOnYqiPCpOwsKUp319gVu3lOcZChJRAXTt2hVdu3Y1dhlERGQkDAWJDCArQwZzZAB43SloZwdTCzNAfoyhIBHlYM6cORAEAaIofYhw7do1XLt2Ldfr2NraYtasWUVQHRUr0dHK0+7uQEiI8jynDxMRERFRPjEUJDKArHTlLiImJgBMTSGYm0I1FMzIME5tRFS8zZo1SxEKzp07Fw0bNsQ777yjdayFhQU8PT3RtWtXuLu7F3GlZHSq3YCWluprCrJTkIgKICsrC1FRUUhNTc1xjLe3dxFWRERERYmhIJEByDKUoaCpqfQfE3PlooLyjUaIiLKbM2eO4rQ8FJw9e7bxCqLiS/XTJQsLbjRCRAUWFBSEWbNm4cSJE0jL5fFDEARk8kUsEVGpxVCQyABUQ0F5p6CpSijI6cNEpAuZTGbsEqg4U+0GtLBQ372KnYJEpKPz58+jQ4cOiu5AZ2dnODg4GLkqIiIyBoaCRAagOn1YW6cgpw8TEZHesoeC7BQkogKYPXs2UlNTMXz4cMybNw/ly5c3dklERGQkDAWJDEBbp6CJhfLPi52CRJQfEREROHbsGMLDw3Nc50kQBMycObOIKyOjUg0Fzc3ZKUhEBXLhwgXUrFkTa9euhSAIxi6HiIiMiKEgkQForCloYgLBzBQmAiATpTUF2SlIRLqYPHkyVqxYgaws6XFFviuxnHxTEoaCZVBunYIMBYlIR5mZmWjYsCEDQSIiYihIZAiqoaBgZgoIgtQtaALIstgpSES6WbRoEZYsWQJBENC1a1fUrl2b6zyRUm5rCnL6MBHpqFatWoiMjDR2GUREVAwwFCQyALXpw/K1BE1NYWoKZDIUJCIdBQQEwMzMDIcOHUK7du2MXQ4VN+wUJCIDGDVqFMaPH48HDx6gatWqxi6HiIiMyMTYBRCVBmqdgvJQ0MxMWl8Q3GiEiHTz4MEDtGrVioEgaceNRojIAEaNGoUPPvgAnTt3xr59+xTLVRARUdnDTkEiA1DrFDRTdgqqhoLsFCSivNjb26NixYrGLoOKq9ymD7NTkIh0VKVKFQBAWFgYevXqBTMzM1SsWBEmJpr9IoIg4MGDB0VdIhERFRGGgkQGkNP0YflrKzNkMhQkojy1bt0a//33n7HLoOJKHvyZmEi7WrFTkIgKICwsTHFaFEVkZGTg8ePHWsdyMxIiotKNoSCRAYiZuYeCnD5MRLqYNWsWmjdvjnXr1mHkyJHGLoeKG3koKA8D2SlIRAXw8OFDY5dARETFBENBIgOQ5RAKmspPcvowEekgPj4ekydPxscff4xDhw6hZ8+e8Pb21jqlCwDatGlTxBWSUWUPBbnRCBEVQOXKlY1dAhERFRMMBYkMQNQ2fZgbjRBRPrVr1w6CIEAURfz555/4888/cxwrCAIy+WlD2ZJbpyCnDxMRERFRPjEUJDIA1enDphbcaISICqZNmzZcv4lyxk5BIjKw8+fP49ixYwgPDwcAeHh4oH379mjevLmRKyMioqLAUJBITzIZIIjcaISI9Hf8+HFjl0DFWW6hIDsFiSgfHj9+jEGDBuHs2bMApA1HAOXGIm+99RY2b94Mb29vo9VIRESFj6EgkZ4yM6VOQLmcOgU5fZiIiPTCjUaIyABiY2PRvn17PHz4EFZWVujatSuqVq0KAAgNDcWBAwdw+vRpdOzYEZcuXYKjo6ORKyYiosLCUJBITxkZOYSCZmbcaISI9JKeno6oqChYWlqiXLlyxi6HjE3+6RI7BYlIDwsXLsTDhw/RvXt3rFmzBpUqVVK7/Pnz5/D398e+ffuwcOFCzJ0710iVEhFRYdO+nSER6SwjAzCBTHHe1FzeHsg1BYmoYDZv3gw/Pz/Y2trC09MTn332meKynTt3YuDAgXj48KERKySjyN4paG6ueRkRUR527twJNzc3bNu2TSMQBIAKFSrgjz/+gKurK/766y8jVEhEREWFoSCRnnLsFMy2piCnDxORLkaOHImhQ4fi0qVLsLa2VqzzJFejRg1s3bo1152JqRQSRc1OQUFQnmanIBHp6OHDh2jbti1sbGxyHGNjY4O2bdvyAygiolKOoSCRnnQJBdkpSES6+O233xAYGIh69eohKCgIcXFxGmPq1q0LT09P7N+/3wgVktGofrKkOm1Yvq4gOwWJSEempqbI0OHT6szMTJiY8O0iEVFpxkd5Ij3pGgqyU5CI8rJmzRrY2dlhz549aNy4sWIXyOzq16/P7o2yRjX0Uw0F5acZChKRjqpXr47jx48jNjY2xzHR0dE4duwYatSoUXSFERFRkWMoSKSn3DYaYacgEeXHf//9h2bNmsHLyyvXceXKlcOLFy+KqCoqFlRDP9W1BDl9mIjyqX///oiLi0OPHj1w69Ytjctv3LiBnj17Ij4+HgMGDDBChUREVFS4+zCRnrKHgmaWyk5B7j5MRPmRlpYGR0fHPMe9evUKpvIHGCobcuoU5PRhIsqnCRMm4I8//sC5c+fwxhtv4M0334Svry8AIDQ0FNeuXYNMJkPDhg0xfvx4I1dLRESFiaEgkZ5UQ0ETARDMuNEIERWMh4cH7ty5k+sYURRx+/ZtxRs4KiPymj7MTkEi0pG1tTX+/fdffPLJJ9ixYwcuX76My5cvKy43MTHBgAEDsHLlSlhZWRmxUiIiKmwMBYn0pBYKmgDK9kBuNEJE+dOxY0esW7cOu3fvxjvvvKN1zKZNm/D06VO89957RVwdGRU7BYnIgJydnbF161Y8efIEJ0+eRHh4OADpw6k2bdrkuYwFERGVDgwFifTEUJCIDOWzzz7Dpk2bMHDgQMybN08t+IuOjsa2bdvw2WefwdbWllO6yhp2ChJRIfDy8sKgQYOMXQYRERkJNxoh0pNqKGhqCmUomG2jEU4fJqK8VK9eHb/++itkMhmmTJkCLy8vCIKAX3/9FW5ubvj000+RmZmJDRs2wNvb29jlUlHKq1MwK0v6IiIiIiLSEUNBIj3l1inIjUaIKL/69++PoKAg9O/fH/b29hBFEaIowsrKCr169cK5c+fQt29fY5dJRS2vTkEA/PSJiPLj9u3bGD16NGrVqgU7OzvY2tqiZs2aGD16NG7evGns8oiIqAhw+jCRnnLsFORGI0RUQPXq1cPWrVshiiKioqIgk8ng6uoKExN+lldm6RIKpqUB3BSAiHSwcuVKTJ48GZmZmRBFUXE8ODgYwcHBWL9+PX788UcuVUFEVMrx3QWRnrimIBEVFkEQ4OrqCnd3dwaCZV1e04ezjyEiysH+/fsxbtw4ZGZmok+fPvj7779x48YN3LhxA//88w/69euHrKwsTJo0Cfv37zd2uUREVIjYKUikp8zMvNcUNIEMmRkiAMEoNRIRUQmna6cgEVEeFixYAEEQsHXrVvTv31/tsrp166JHjx7YsWMH3nvvPSxYsADdunUzUqVERFTYGAoS6UmXTkEAyErPAv/kiCgvWVlZ2LFjB44cOYLw8HCkpqZqHScIAo4ePVrE1ZHRsFOQiAzk8uXL8PPz0wgEVfXr1w/NmjXD5cuXi7AyIiIqakwoiPSU25qC8pMAIGZkgn9yRJSbuLg4dO3aFUFBQWprPGkjCOw8LlNUF6ZlpyAR6UEQBFStWjXPcVWrVsXt27eLoCIiIjIWJhREespfpyARUc5mzpyJixcvwsPDA+PGjUPt2rXh4OBg7LKoOGCnIBEZSIMGDRAcHJznuODgYNSvX78IKiIiImNhKEikJ112HwYAWQZDQSLK3a5du+Dk5ITz58/Dw8PD2OVQcaLLmoIMBYlIB5MnT0bfvn2xdetWvP/++1rH/PHHHwgKCsL27duLuDoiIipKpXIrQ0EQtH7Z2dlpjL137x569+4NZ2dn2NraonXr1vj333+13m5cXBzGjRsHDw8PWFlZoW7duvj555/znOJFpVuOnYIqG40AgJjJUJCIcvfixQu89dZbDARJEzcaISIDady4MSZNmoQPP/wQ/fr1U9t9+O+//0b//v0xaNAgTJo0CU2bNsXjx4/VvoiIqPQotZ2CrVu3xqhRo9SOmZubq51/8OABWrZsCTMzM0ydOhWOjo5Yu3Ytunbtiv3796NTp06Ksenp6ejcuTOuXr2qmNK1f/9+jBkzBi9evMCcOXOK4tuiYkjXTkFOHyaivJQvXx5WVlbGLoOKI04fJiID8fX1BQCIooidO3di586dGmNEUcSSJUuwZMkSteOCICAzM7MoyiQioiJQakPBKlWq4MMPP8x1zJdffonY2FhcvnwZDRs2BAAMGTIEdevWxaeffoq7d+8qFnJft24dgoKCsGzZMowbNw4A4O/vj759++K7777DsGHDULly5UL9nqh4yrFTUBBgYmYCQAZAvtEIEVHOevXqhZ07dyIjI0Pjgywq49gpSEQG4uXlxc2qiIgIQCmdPiyXnp6OxMRErZclJSXh77//Rrt27RSBIADY2dlh5MiRuH//PoKCghTHt2zZAhsbG/j7+6vdzsSJE5GRkYE//vijUL4HKv5y7BQEIJgpT3P6MBHl5euvv4aZmRk++eQTpKamGrscKk7YKUhEBhIWFoaHDx8W+IuIiEqPUtspuGPHDmzevBlZWVlwc3PDgAED8O2338LR0REAcP36daSlpaFFixYa123evDkAICgoCH5+fpDJZLhy5QoaNWqkMa3Lz88PgiCoBYhUtuTYKQgAZmYAMgBwoxEiytuqVavQpUsXrF+/HocPH0bHjh3h7e0NExPNz/AEQcDMmTONUCUZhWrgp9pFyk5BIiIiIiqgUhkK+vn5oX///qhWrRri4+Oxb98+rFixAidOnMDZs2dhZ2eHiIgIANC6mLv8WHh4OAAgJiYGKSkpWsdaWlrC1dVVMbYgKlasqHZeJpMV+Lao6GWkizl2CpqYs1OQiHQ3Z84cCIIAURTx5MkTbNiwQWOM/PL8hoJ8rinh2ClIRMUcn2eIiEqeUhkKXrhwQe38kCFD0KBBA0yfPh1Lly7F9OnTkZycDEAK9bKTdwPKx+Q2Vj5ePobKnsx0GeRvz7J3CqpNH+aagkSUh9mzZxu7BCqudFlTkKEgEeXT06dPERERkeuSFW3atCnCioiIqCiVylBQm88//xxff/019u7di+nTp8PGxgYAkKZlqo38SVE+Jrex8vHyMQXx7NkztfPx8fGKac5U/KnuKpxrKMhOQSLKQ2GGgnyuKeF06RTk9GEi0tH27dsxY8YMhISE5DouP7sN83mGiKjkKTOhoLm5OSpVqoTIyEgAQKVKlQBA67Rf+TH5dGFnZ2dYW1trHZuWlobIyEi0bdu2sEqnYk41FOT0YSIiKhTsFCQiA9m2bRs++OADiKKIcuXKwcfHB/b29sYui4iIjKDMhIKpqal4+vSpYhOR+vXrw9LSEufOndMYe/78eQBAkyZNAAAmJiZo1KgRrl69irS0NLVpxBcvXoQoioqxVPbk2ilorvwTYyhIRPn1/PlzPH36FID0QVX29ZqoDNElFGSnIBHp4LvvvgMALF26FGPGjIGp6iZ5RERUpmhuZ1jCRUVFaT0+c+ZMZGZmolevXgAAOzs79OrVC8ePH8d///2nGJeYmIh169ahevXq8PPzUxz/4IMPkJycjDVr1qjd7pIlS2BmZoYBAwYUwndDJYHqrsLsFCQiQwgICECtWrXg4eGBZs2aoVmzZvD09ETt2rURGBho7PLIGLjRCBEZyL1799CiRQuMGzeOgSARURlX6joFv/32W5w/fx7t27eHt7c3EhMTsW/fPhw7dgzNmjXDuHHjFGO///57HD16FF26dMGkSZPg4OCAtWvXIjw8HHv37oUgCIqx/v7+WL9+PSZPnoywsDDUrl0b+/btw86dOzFjxgz4+PgY4bul4iC3TkHVUBA6rsdCRGWbv78/AgMDIYoiAKBcuXIAgOjoaNy7dw/+/v44d+4c1q5da8wyqaixU5CIDMTJyQmVK1c2dhlERFQMlLpOwXbt2sHBwQG//vorJk6ciNmzZyM6Ohrz5s3D8ePHYW1trRhbrVo1nDlzBs2bN8f8+fPx2WefwdbWFgcOHEDXrl3VbtfCwgJHjhzBxx9/jN9//x2ffvop7t69i+XLl2Pu3LlF/W1SMaKxpqCJ8s+KnYJElB/bt29HQEAAnJyc8NNPPyEmJgaRkZGIjIxEbGwsFi5cCGdnZwQGBmLHjh3GLpeKEjsFichA2rdvj6tXrxq7DCIiKgZKXafgO++8g3feeUfn8bVr18bu3bt1Guvk5IQVK1ZgxYoVBS2PSqGsDJnitGBmCqh0mJpYqPyJZTEUJKLcrV69GmZmZjh8+DAaNWqkdpmDgwMmTZqEdu3aoVmzZli9ejX69etnpEqpyGVkKE9zoxEi0sOsWbPQrFkzzJ8/H9OmTTN2OUREZESlLhQkKmqqnYKCqXrzLTsFiSg/rl69irZt22oEgqrefPNNtG3bFleuXCnCysjodOkU5PRhItJBrVq1cOjQIbz//vvYvXs3unXrBm9vb5iYaJ9ENmTIkCKukIiIigpDQSI9qW40IpirL9ZsaqFynp2CRJSHpKQkuLu75znO3d0dSUlJRVARFRu6rCnITkEi0tHZs2cRHR2Nx48f4+LFi7mOZShIRFR6MRQk0pNqKGhiph4KqnYKClncaISIclehQgWd1nm6evUqypcvXwQVUbHBjUaIyEACAwMxZcoUAECDBg1QvXp12NnZGbkqIiIyBoaCRHpSmz6cSygIWRZEUW3JQSIiNe3bt8fGjRtzXefp+++/x7179zB06NAiro6MSh4Kmpio7XLPjUaIKL8WL14MMzMz/PXXX+jZs6exyyEiIiNiKEikJ7VOwezThy2Vf2KmyEJmJmBuXmSlEVEJM23aNPzxxx+YPn06du7ciSFDhsDX1xcAEBoail9//RVXrlyBlZUVvvjiCyNXS0VKHvipdgZmP89OQSLSwYMHD9CmTRsGgkRExFCQSF+yzJzXFFQNCRkKElFeatasie3bt2PQoEEICgrCpUuX1C4XRREODg747bffULNmTSNVSUaRUyjITkEiyidnZ2e4ubkZuwwiIioGGAoS6UnMZU1B1Y1GzJCJjAzA2rrISiOiEqhHjx64f/8+1qxZgxMnTiA8PBwA4OHhgXbt2sHf31+nzUiolNGlU5ChIBHpoFu3bjh69ChkMlmOOw4TEVHZwFCQSE+5Th+20OwUJCLKi7u7O2bMmIEZM2YYuxQqLnTpFOT0YSLSwTfffIN9+/Zh/PjxWLRoESyyP64QEVGZwVCQSE+qoWD26cPZQ8GMjCIri4iIShN5KJh9DQpTU2kHK1FkpyAR6WTt2rXo1q0bfv75Z+zduxft27eHt7e31q5BQRAwc+ZMI1RJRERFgaEgkZ5ElTUFTbOFgmZWmhuNEBHp4vz58zh+/DiePn0KURTh6emJdu3aoUWLFsYujYwhp05BQZCOpaWxU5CIdDJnzhwIggBRFPHo0SNs2LBBY4z8coaCRESlG0NBIj2phoKcPkxE+nrw4AGGDBmC8+fPA5A2FwGkN2gA0KxZM2zcuBHVqlUzWo1kBDmFgoA0hTgtjZ2CRKSTWbNmKZ5TiIiobGMoSKQnXUNB+UYjREQ5iYiIQOvWrfH8+XPY2Njg7bffhq+vLwAgLCwMBw4cwPnz59GmTRsEBQXBw8PDyBVTkcktFJQfY6cgEelgzpw5xi6BiIiKCYaCRHpSmz5swU5BIiq4WbNm4fnz5+jbty9WrVoFNzc3tcsjIyMxZswY7NixA7Nnz8a6deuMVCkVKVGE4lOlnDoFAXYKEhEREVG+MBQk0lNunYImFmYQAIhgKEhEedu/fz8qVaqE3377TetukK6urti8eTPOnj2Lffv2GaFCMgrVNnN2ChKRgT1//hxPnz4FAHh4eKBixYpGroiIiIqK5hZTRJQvuXUKwtQUpq8PcfdhIspLdHQ0WrVqpTUQlLOwsECrVq0QExNThJWRUal2ALJTkIgMJCAgALVq1YKHhweaNWuGZs2awdPTE7Vr10ZgYKCxyyMioiLAUJBIT2JW7qGgyeu/MnYKElFePD09kZSUlOe45ORkridYlujaKchQkIh05O/vj1GjRuH+/fsQRRHOzs5wdnaGKIq4d+8e/P394e/vb+wyiYiokDEUJNJXHp2C8lCQG40QUV769++P48ePIzw8PMcx4eHh+Pfff9GvX78irIyMKq9OQU4fJqJ82L59OwICAuDk5ISffvoJMTExiIyMRGRkJGJjY7Fw4UI4OzsjMDAQO3bsMHa5RERUiBgKEulBJgMEkZ2CRGQYM2fORP369dGhQwfs2bNH4/K9e/eiY8eOaNCgAWbPnm2ECskodJ0+LJMBKt3rRETarF69GmZmZjh8+DAmT54MR0dHxWUODg6YNGkSDh8+DFNTU6xevdqIlRIRUWHjRiNEesjIkMI+OY1Q0MyMoSAR6axHjx4wMTFBcHAw3nnnHTg5OcHHxwcAEBYWhtjYWABAixYt0KNHD7XrCoKAo0ePFnHFVCR07RQEpG5BG5vCr4mISqyrV6+ibdu2aNSoUY5j3nzzTbRt2xZXrlwpwsqIiKioMRQk0kOeoWC2TkFOHyai3Bw/flxxWhRFxMTEaN1Q5OzZsxrHBEEozNLImHTtFJSPZShIRLlISkqCu7t7nuPc3d11WueWiIhKLoaCRHrIHgqaWea8+7AZMtkpSES5OnbsmLFLoOIov52CRES5qFChAq5evZrnuKtXr6J8+fJFUBERERkLQ0EiPeSnU1CAiMx0GbiUJxHlpG3btsYugYqj/HYKEhHlon379ti4cSPmz5+PadOmaR3z/fff4969exg6dGgRV0dEREWJoSCRHvLsFFRZUxAAMtOywFCQiIjyJT+dggwFiSgP06ZNwx9//IHp06dj586dGDJkCHx9fQEAoaGh+PXXX3HlyhVYWVnhiy++MHK1RERUmBgKEulBl+nDqqFgVnoWAPOiKY6IiEoHTh8mIgOqWbMmtm/fjkGDBiEoKAiXLl1Su1wURTg4OOC3335DzZo1jVQlEREVBYaCRHrIz/RhQB4KEhHlLC4uDqtWrcLRo0cRERGB1NRUreMEQcCDBw+KuDoyCk4fJiID69GjB+7fv481a9bgxIkTCA8PBwB4eHigXbt28Pf312kzEiIiKtkYChLpIT8bjQBAVhp3GiGinIWGhqJt27aIiIiAKIq5juVuw2UIOwWJqBC4u7tjxowZmDFjhrFLISIiI2EoSKSHzExlKGgiAIJZ7p2Csgx2ChJRzj7//HOEh4ejZcuWmDJlCqpXrw57e3tjl0XGphoKmmtZgoKdgkRERERUAAwFifSg2iloYgKotQUCGqGgtNEIEZF2//77L7y9vXHkyBFYWVkZuxwqLtgpSER6mjZtGu7fv48pU6bgrbfeynXsmTNnsHDhQtSuXRvz5s0rogqJiMgYuA0qkR5UQ0FTU2iGgoKgdoydgkSUm6ysLDRr1oyBIKnjmoJEpIdLly5hwYIFSEhIyDMQBIC33noLiYmJmD9/Pv77778iqJCIiIyFoSCRHvLsFIT6Ma4pSES5qVevHqKjo41dBhU3+ekUZChIRNls3rwZgiDkq+vv+++/hyiK2LhxYyFWRkRExsZQkEgPeXYKAoAZOwWJSDdjx47FyZMncfPmTWOXQsUJpw8TkR5OnTqFypUrw8/PT+frNG7cGD4+Pjhx4kQhVkZERMbGUJBIDxkZgAlkAHLrFFQu3clQkIhyM3DgQEyYMAEdOnTA6tWr8fjxY2OXRMVBRobyNKcPE1E+hYaGon79+vm+XoMGDRAaGloIFRERUXHBjUaI9KBTp6Dq9OF0hoJElLvRo0fjwIEDGDNmTK7jBEFAZiaXJCgT2ClIRHpISkoq0E72dnZ2SEpKKoSKiIiouGAoSKQHjTUFTTSbbwVOHyYiHd28eRNt27ZFbGwsRFHMdWxel1Mpwo1GiEgPTk5OePnyZb6v9/LlSzg6OhZCRUREVFxw+jCRHjLSxXx1CooZ7Oohopx9+eWXiImJQb9+/XDlyhUkJCRAJpPl+EVlBDsFiUgPVatWxYULF5ChuhRBHtLT03HhwgVUqVKlECsjIiJjYyhIpIeMdBECpG6dnNYUFMxVpg+zU5CIcnHmzBnUrFkTW7duRcOGDWFra2vskqg4YKcgEemhY8eOSExMxMqVK3W+zsqVK5GQkIBOnToVYmVERGRsDAWJ9JCZpgz5ct59WDlLX2QoSES5kMlkaNiwIQRBMHYpVJzkp1OQoSARZTN69GiYm5tj2rRp+Pvvv/Mcv3v3bnz55ZewsLDAxx9/XAQVEhGRsTAUJNKD6sYhOXYKmnJNQSLSzZtvvonw8HBjl0HFDacPE5EePD09MXfuXKSnp+Pdd99Fnz59sGvXLoSHhyMjIwMZGRkIDw/Hrl27FJdnZGRgzpw58PLyMnb5RERUiLjRCJEedOkUNDFnKEhEupk6dSp69uyJ48ePo127dsYuh4oLTh8mIj1NnToV0dHRWLBgAXbv3o3du3drHSffxOqzzz7DtGnTirJEIiIyAr1CwZMnT8LU1BRvvfWWoeohKlF06RSEyu7DyORGI0SUs7p16+KLL75A9+7dMWHCBHTr1g3e3t4w0bKzOQB4e3sXcYVkFOwUJCIDmD9/Pjp37oxvv/0Wp06d0tiwysTEBG3atMH06dO5liARURmhVyjYrl07tGvXDv/++6+h6iEqUVQ7BXOcPqyypiA7BYkoNz4+PhAEAaIoYsGCBViwYEGOYwVBQCY/aCgb2ClIRAbSsWNHdOzYEXFxcbhy5QpevXoFAHBzc8Obb74JJycn4xZIRERFSq9Q0NnZGZUqVTJULUQljmrIp8v0YTGToSAR5czb25ubjJAmdgoSkYE5Ojqiffv2xi6DiIiMTK9QsGHDhggODjZULUQljur0YcHUBNDyZl4wYyhIRLoJCwszdglUHLFTkIiIiIgKgV67D48fPx5BQUHYu3evoeohKlFUQ0G1tQNVqHUKZnCqHxER5VN+OgUZChIRERGRjvTqFHzzzTcxduxYvPvuu/joo4/Qt29f+Pj4wNraWut4LohOpY16p6D2UJCdgkREpBfVoM/cXPNyTh8mIiIiogLQKxT09fUFIG1dHxAQgICAgBzHckF0Ko3UQsEcOgUFC+WfGUNBItJFVFQU1q5di2PHjiE8PBwA4OHhgQ4dOmDkyJFwcXExcoVUpDh9mIiIiIgKgV7Th728vODt7Y3KlSvD29s71y8vLy9D1Zyr+/fvY9asWWjevDnc3Nxgb2+Phg0bYt68eUhKSlIbO2fOHAiCoPXrp59+0rhtmUyGxYsXo1atWrCysoKXlxemTJmicbtUdugSCppyoxEiyodDhw6hRo0amD59Og4fPozbt2/j9u3bOHz4ML766ivUrFkThw4dMnaZVJTkQZ8gaN3Qip2CRERERFQQenUKFscF0QMDA7Fy5Ur873//w6BBg2Bubo5jx45hxowZ2LZtG86fP68xvXnx4sVwdXVVO9a4cWON2540aRKWLVuGd999F1OmTMGdO3ewbNkyXL16FUeOHIGJiV4ZK5VAqrsP5xQKqq4piCyGgkSUs+DgYPTp0wfJyclo0KABhg0bhqpVqwIAQkNDsWHDBly7dg19+vTB1atXUb16dSNXTEUiI0P6v4WF1g2t2ClIRERERAWhVyhYHPXr1w9ffvklHB0dFcdGjx6N6tWrY968eQgICMDYsWPVrtO7d2/4+Pjkeru3bt3C8uXL0adPH/z555+K476+vhg/fjy2bt2KgQMHGvR7oeIvKz0L8shPp1CQU+iJKBfz589HcnIy5syZg1mzZmlcPn78eHzzzTeYPXs2fvjhB6xbt84IVVKRkwd92qYOA1L3oIkJIJOxU5CIiIiIdFbqWtuaNGmiFgjKDRgwAABw8+ZNrdeLj4/Pdc3D33//HaIoYuLEiWrH/f39YWNjg82bNxe8aCqx8tspyOnDRJSbo0ePombNmloDQbmZM2eiZs2aOHLkSBFWRkaVVygIKLsF2SlIRHn45ZdfkJycbOwyiIioGDBIKHjq1Cm899578PT0hKWlJUaMGKG4TL4G0vPnzw1xVwX29OlTAED58uU1LmvQoAEcHR1hZWWFli1bYv/+/RpjgoKCYGJiAj8/P7XjVlZWaNiwIYKCggqncCrWVENBtY5AFSYqG41w+jAR5eb58+do1KhRnuMaNWpk9OdVKkK6hILyyxgKElEexowZA09PT0yaNAnBwcHGLoeIiIxI7+nD3377LWbPng1RFBXHVE87Ojrihx9+gKenJ8aMGaPv3RVIVlYWvvnmG5iZmalN8XVycsKoUaPQsmVLODs74969e1iyZAl69OiBwMBAfPTRR4qxERERcHV1haXquj2veXh44OzZs0hPT4dFbi/Yc1CxYkW18zKZLN+3QcahS6egqYVKpyBDQSLKha2tLV6+fJnnuJcvX8LW1jZft83nmhIsP6Egpw8TUR7efvttHDx4EEuXLsXy5cvRuXNnjB07Fj169NDrdvk8Q0RU8ujVKbh//37MmjULHh4e2LZtG168eKExxs/PD25ubtizZ48+d6WXiRMn4ty5c5g7dy5q1qypdnz16tUYOnQo/ve//+Hzzz/H9evXUb58eUyaNAmJiYmKscnJyVoDQUDqFpSPobJFp05BleMCQ0EiykXDhg1x8uRJ3LhxI8cx169fx4kTJ9CwYcOiK4yMi9OHiciA9u3bh+DgYEyePBmOjo44ePAg/ve//6Fq1apYuHAhYmJijF0iEREVEb1CwaVLl8LS0hL79+9Hv3794ObmpnXcG2+8YbTW9JkzZ2LFihUYNWoUvvzyyzzHu7i4YPTo0YiNjcXZs2cVx21sbJCWw6fvqampijEF8ezZM7UvtvGXHGqdgjqEgtxohIhy4+/vj4yMDHTq1AmrVq1S+3AqMTERK1asQOfOnZGVlYVRo0bl67b5XFOCsVOQiAysSpUq+OmnnxAeHo61a9fijTfewMOHDzF16lR4enrC398f165dy9dt8nmGiKjk0SsUDAoKgp+fH+rWrZvrODc3N6OsfTRnzhx8++23GDZsGH755RedryffiTgyMlJxrFKlSoiMjNQaDIaHh8PV1bVAU4epZFPrFMxp+rAl1xQkIt28//77GDx4MF69eoVx48bB0dER7u7ucHd3h6OjIyZMmIBXr15h8ODBig20qAxgpyARFRIrKyuMGDECV65cwZkzZ/D+++8jKysLgYGBaNy4MVq3bo1t27Yhi69hiYhKJb1CwaSkJFSoUCHPcXFxcUW+psScOXPw9ddfY+jQoVi3bh0EQdD5uvJPtVQ3JWnatClkMhkuXryoNjY1NRXXrl1DkyZNDFM4lSiquwnnNH1YdU1BQcYXVESUu19//RWrVq2Cr68vRFFEZGQkIiMjIYoiqlSpgp9//hkbNmwwdplUVESRnYJEVCRatGiB5cuXY+zYsRBFEaIo4syZM/jggw9QvXp17Nixw9glEhGRgekVCpYvXx4hISF5jrt37x68vLz0uat8mTt3Lr7++msMHjwYgYGBMDHR/DYzMzMRFxencfzJkyf4+eef4eLigpYtWyqODxgwAIIgYMmSJWrj165di+TkZAwaNMjg3wcVf7qsKWhpozyenpIFlX14iIi0Gj16NEJCQvDkyROcP38e58+fx5MnTxAcHIyPP/7Y2OVRUVJddkLXTkE+0RBRPl29ehUjRoyAl5cXFi9eDBMTE/Tu3Rs///wzWrRogbCwMAwYMAABAQHGLpWIiAxIr92HW7Vqha1bt+LMmTN46623tI7Zs2cPQkJCiuxNzMqVKzF79mx4e3ujU6dO2LJli9rl5cuXR+fOnZGYmAhfX1/07t0btWvXVuw+vG7dOiQmJuL333+HtbW14nr169fHp59+ihUrVqBPnz7o3r077ty5g2XLlqFt27ZquxpTGZKVdyjoVU25QY1pejKehctQyVOvPJ6IyggPDw94eHgYuwwyJtXpwLmFgo6O0v9FEYiMBHJY55mISC4jIwPbt2/HihUrcOHCBYiiCCcnJ4wZMwZjx45F5cqVAQAff/wx9u/fj759++Knn37CiBEjjFw5EREZil6h4JQpU/DHH3+gT58+WL16NXr27Kl2+YEDBzBy5EiYm5tj3LhxehWqq6CgIADA48ePMXToUI3L27Zti86dO8Pa2hp9+/bFhQsXsGvXLiQmJsLV1RWdOnXC1KlT4efnp3HdJUuWwMfHB2vWrMHevXvh6uqKcePGYe7cuVq7Ean006VT0L2OKywtgLR0wAyZCA6KRSXPckVVIhEVc0FBQXj27Blq166N6tWr5zr2/v37uHv3LipVqsRlK8oKXUPBWrWAw4el03fuMBQkohyFh4fjl19+wbp16/Dy5UuIoojatWtj3LhxGDJkiNbNE7t164bu3bvjn3/+MULFRERUWPQKBRs1aoSFCxdi8uTJ6Nu3L6ytrSEIAv7880/89ddfSEhIgCiKWLZsGerUqWOomnO1YcMGndZasrS0xLp16/J126amppgyZQqmTJlSwOqotFFdU1B17UBVgrUVbCvYI+1xAgDg6dVXwLsMBYlI2tCqY8eOsLe312mXR2dnZ4wZMwbJyckIDQ2Fk5NToddIRqZrKKj6OuvOHaBNm8KriYhKNF9fX8XGId26dcOECRPQuXPnPK/n5OSEjIyMwi6PiIiKkN7tbRMmTMC+ffvQtGlTpKSkQBRFJCQkID4+HvXr18fff/+NsWPHGqJWomJHl41GAMDKW9mx8eLmq0KtiYhKjs2bNyMxMRFff/013HTo7HJzc8PcuXMRGxuLzZs3F0GFZHS6hoK1aytP375dePUQUYlnZWWFsWPH4t69e9izZ49OgSAALFiwAA8fPizk6oiIqCjp1Sko17VrV3Tt2hVRUVF4+PAhZDIZvLy8ULFiRUPcPFGxpUunIAA4V3dDxOlQAEBcCENBIpLs27cPtra2Wpe7yMngwYMxceJE7Nmzhx+6lQUF6RRkKEhEuYiIiICdnV2+r1euXDmUK8fZLkREpYlBQkE5FxcXuLi4GPImiYo1WZZMcTq3UNC9rhtuvT6d8pihIBFJbt68iWbNmsHc3Fzn65ibm8PPzw83btwoxMqo2FANBXP7PXFzA1xdpU1GGAoSUS4cHR3xxhtv4MqVK8YuhYiIjEyv6cMbNmzA06dPDVULUcmjY6egVyPltEDzuFeIjxMLtSwiKhmio6NRoUKFfF+vfPnyiIqKKoSKqNhRXb8rt05BQNktGBEBxMYWWklEVLLZ2NgU2XrvRERUvOkVCg4fPhyVK1dGrVq1MHbsWOzatQvx8fGGqo2o2NN1+rB3YzeYvv5rM0cGgi/FFXZpRFQCWFpaIikpKd/XS05OhqWlZSFURMWOrtOHAc3NRoiItKhevTpevnxp7DKIiKgY0CsU/Oijj+Dl5YX79+9j1apV6Nu3L1xcXNC8eXPMmDEDx48f5w5VVLplqYSC5jn/OZk52MDG1UZx/vFlTiEmIqBChQq4fv16vq93/fr1AnUYUglU0FCQU4iJKAcffvghTp06hQcPHhi7FCIiMjK9QsHAwECEhYXh3r17WLlyJd555x3Y29vj4sWL+O6779CxY0c4Ozvj7bffxsKFCw1VM1GxoWunIABYeiqnED+/wVCQiICWLVsiLCwMZ8+e1fk6Z86cwcOHD9GyZctCrIyKjfyEgtyBmIh0MHHiRHTt2hUdOnTAli1bkJqaauySiIjISPQKBeWqV6+OTz75BH/99ReioqJw4cIFzJs3D+3atUNmZiYOHTqEL774whB3RVS8qHYKWuYeCjpWU4aCscEMBYkIGDRoEERRxKhRoxAXl/eyArGxsRg1ahQEQcAHH3xQBBWS0bFTkIgMrFq1avjvv//w5MkTDB48GLa2tqhYsSKqVKmi8VW1alVjl0tERIXIIKGgqoyMDCQkJCAhIQHx8fHIzMwEAIgiN1agUkglFDTLo1PQrY4yFEwKYyhIxUtSEnD3rrGrKHs6deqEjh074vbt22jcuDH+/vtvrc+Xoihi9+7daNKkCe7evYt27dqhS5cuRqiYilx+QsGKFQFHR+k01xQkohyEhYXh0aNHAKTnF1EU8eLFC4SFhWn9IiKi0svMEDdy7do1HD58GEeOHMHp06eRmpoKURTh4OCAHj16oFOnTujUqZMh7oqo2MjKAkygEgrm0Sno0VAZCoovXyE9TYSFpVBo9RHpKi4OqF4dePVKxNy5AmbONHZFZcvWrVvx1ltv4f79+3j33Xfh5OSERo0awd3dHQDw8uVLXLlyBbGxsRBFEdWqVcMff/xh5KqpyOQnFBQEqVvw3Dng0SMgMRGwsyvc+oioxHn48KGxSyAiomJCr1Dw/fffx7///ouoqCiIoghzc3M0b95cEQL6+fnB1DT3oISopMrIAEyh+5qCvn7KUNBcTMPD6wmo2dSh0Ooj0tWBvVno+moLKuIZjq/qiZkz6+R9JTIYFxcXXLx4EWPHjsXvv/+OmJgYHD16FIIgfWgg7xw0MTHBwIEDsXz5cjg5ORmxYipS+QkFAWUoCEjtv02aFE5dRPl18CAwbx7wyScAlz8wqsqVKxu7BCIiKib0CgW3bdsGQRDQoEEDzJ49G126dIGNjU3eVyQqBbKHgnl1CtpVsIOVoxVS46TFnMOCXjEUpGIh9dYDVIW0A2Ht58eQmloHVlZGLqqMcXBwwMaNG/H1119jz549uHTpEl69kpYZcHNzQ+PGjdGzZ09UqVLFyJVSkStIKCh3+zZDQSo+pk0Drl0Dbt0C3n9f6mwlIiIio9IrFLS3t0dCQgL+++8/DBo0CK1bt0bnzp3RqVMnvPHGG4aqkahYyszMX6cgBAEWHm5IjXsCAHh2/RUALt5MxpccEas4XQ5RCA2RoU49gy85Szrw9fXFuHHjjF0GFSf6hoJExYV8bbroaOD5c2kNTCIiIjIqvULB6OhoXLx4EUeOHMGRI0dw7NgxHDp0CIIgwNXVFR07dkTnzp3RuXNneHp6GqpmomIhv52CAGBfxQ3xt6VQMOpeZKHVRpQfSS+TFKdNIMOj/2JRp145I1ZERAr5DQVr11aeZihIxUV6OhAbqzwfHMxQsBj4888/sX37dty7dw/x8fFaN7oSBAEPHjwwQnVERFQU9AoFTU1N0aJFC7Ro0QIzZ85EcnIyjh8/jiNHjuDo0aP4448/FIuh16hRA3e4Ex6VIgUJBV1ruyF8j3SaOxBTcZHyKlHt/LObUQAYChIVC/kNBb28AFtbaUtxhoJUXLx8qX7+/n2gTRvj1EIQRRHvvfce/vrrL61BICCFgaIoKta3JSKi0smg88NsbGzQvXt3LFq0CBs3bsSUKVNgaWkJURRx//59Q94VkdFlDwXNrfIOBSu9odxsJDPiJUSZ9hdiREUpLSZJ7XzkvSgjVUJEGvIbCpqYKLsFQ0OBlJTCqYsoP168UD/P9wVGtXbtWvz5559o0KABDh48iD59+kAQBNy7dw979uzBgAEDAAAzZsxAaGiokaslIqLCpFenoKqnT5/i8OHDii5B+QLp8l2JW7RoYai7IioWCtIpqLoDsUl6CiJCkuFRw7ZQ6iPSVWZsktqTQfxDhoJExUZ+Q0FAWlfw0iVAFIF794CGDQulNCKdZQ8Fg4ONUwcBADZt2gRLS0vs378fFSpUwJYtWwAA1atXR/Xq1dG9e3e0b98eY8aMQbt27bhbMRFRKaZXp+CuXbswduxY1KpVC5UrV8bIkSPx+++/49WrV6hXrx4mTpyIvXv3IiYmBsePHzdQyUTFQ0FCQbeqDjC1Ur6pC73AKcS6Or7pCZb0Oor/jnItRkOTxatPH055ylCQqNgoaCgoxynEuktLA3btUm6IQYbDTsFi5ebNm2jRogUqVKgAAIopwqpTiUeNGoUaNWrgxx9/NEqNRERUNPTqFOzTp4/itJeXFzp16oROnTqhY8eOcHd317s4ouIsI00GAdKLJxMBEMzyDgUFEwEWlVyQEvoMAPD0ehQAn0KssnSICk/FsRGbIWSkYef5u2jwYgwEE65xYwhJSYBZuvr0YTEqCunpuucPRFSIChIK1qypPM3wRXfz5gHffANUqiRNvba0NHZFpUf2NQVDQoCsLMA079dOZHgpKSmoqLLRi+Xr3/X4+Hg4Ojoqjjds2BCHDx8u8vqIiKjo6BUK9u7dG507d0anTp1QvXp1Q9VEVCJkpim7BE1NofMLW/vKylDw1R12ZOki5OxLCBlp0pnIV3gRloIKVWyMW1Qp8fJpOiyQrnbMQYxDWHAGatQ1N1JVRKSQkaE8rWsoqPqajNM0dXfqlPT/iAjp51avnnHrKU2ydwqmpwOPHwO+vsapp4wrX768YqknAIpmjpCQEDRu3FhxPDo6GqmpqUVeHxERFR29pg//9ddf+OSTTxgIlhDx8cC6dUBQkLErKR0yUpWhoIkJdA4FXWood3WNDY02dFmlUmRYgtr5xzfijFRJ6RP1OEnr8cfX+LtJVCyodgqa6xjUV60KyHcMZSiou/Bw5WlOITas7KEgwN9NI6pWrZraBiJNmzaFKIr45ZdfFMfu3LmD48ePo2rVqsYokYiIiohBdx+m4m3i4Cjs9v8HY1tewZUrxq6m5Ctop2DFui6K08lP2Cmoi9hH8WrnI27HGqeQUijmqfZQ8NkthoJUQH/+CWzbJm1yQforyPRhKyvAy0s6HRzMfwtdiKJ6KPjokfFqKY20hYKc2m40Xbp0wcOHD3H79ZqjXbp0gZeXFwIDA9G0aVP07dsXLVq0QEZGBoYMGWLkaomIqDAZZPfhO3fuYOnSpTh27BjCX7+g8vDwQIcOHTB+/HjUrl3bEHdDekhJAcz27kZjPAYyL2PZRCdsOFnF2GWVaKqhYH46BSu/qewUNEuMQXSUiHIuXB8vN/Hh6p2Cr4JjjVNIKRQXnqj1eNR9BtZFoUOHDgW+riAIOHr0qAGrMYCjR4F+/aTTMhnw/vvGrac0KEgoCEhTiB8/BmJjgagowNXV4KWVKvHxQHKy8jw7BQ2LoWCx8sEHHyAzMxMpKSkAAAsLC/zxxx/o3bs3Ll++jMuXLwMA3nnnHUyYMMGYpRIRUSHTOxTcsGEDRo8ejYyMDLUdq4KDgxEcHIz169dj9erVGDp0qL53RXq4eCIFFbOeKM6nnbqAEyeqoG1bIxZVwhW0U9DzDReYmQKZWYAZMnE/KA7N33YqnCKLkaQkwNa2YNdNfq7eKRgdGqt/QQQASHiuvVMw/iFDwaJw/PjxAl9XvltksbJ7t/L0kiUMBQ1Bn1BQHhoHBzMUzItqlyDATkFDk280YmsrvSAAGAoakbe3N6ZPn652rHnz5nj48CFOnjyJ6Oho1K5dGw0bNjROgUREVGT0CgUvX74Mf39/ZGVloWfPnhgxYoRi3YnQ0FAEBATgn3/+gb+/P+rWrYsmTZoYpGjKv+t/hyl2ygWAGriP77+IRZtzTiiO7ytLgqz0bJ2CJrrNxje1s4a9mxVinksLNz+6Gl3qQ8FPPwV+/hkYOhRYvz7/1099pd4pmPCUawoaSuJzZaegpQWQ9jp/SHnKULAoHDt2zNglGNa//ypPX7gAXL4MqCxaTwWgTygoFxwMtGhhuJpKo+yhIDsFDScrC4iMlE7XqQPcvQskJHBNwWLI2toaXbt2NXYZRERUhPQKBX/88UfIZDIEBARg2LBhapfVq1cP//vf/7BhwwYMHz4cCxcuxO+//65XsVRwT06FQXWvVgEiMi9cwv79ndC9u9HKKtFUOwUFUxOdQ0EIAmy8XBDzXHoD8uxmFIDSO5U7KgpYtUo6vWEDMHMmUCWf3256VAJUs+uUZ7EGqo5SIpWdgs4+jnh+XwpcZZFRyMwEzAyyyATlpG1patd++RK4dUv92KpVQECAceopLQwVClLuGAoWnshIaTkBAChfXjp9+bL0M05LAywtjVoeERFRWabX271Tp06hYcOGGoGgqo8++ggrVqzAyZMn9bkr0kNKCpB656EiFLS1AZKSgUa4gtnT2+Htt810zrNISTUU1HXqsJxjlXIID5LegLy6V7o3dHjwAPDAU7yB/3AT9XDtWuV8hYKyLBFifLxaKGieHIuYGMDZ2eDlljlpUcpOQec3vPH8/g0AgLUsCY/vp6JKHStjlUYljbap0Fu2AD/+CJQrp3kZ6YahoG7S04EdO6Tvu2nT/F8/IkL9/KtX0hqDNjbax5PuVNcTdHcH7O2lUFAmA0JDAa49bjRpaWm4dOkSwsPDkZqamuM4bjZCRFR66RUKRkZGon379nmOq1WrFm7cuKHPXZEeLh5LQrksaS0XUxOgTx9g02bABslIu3Ybf/7ZAP37G7nIEkiWUfBQ0L2WC26/Pp3wyLDTNEVRWle+uARmD0Oy8D62wg6JqIebuHl5Ivr00b0r4OXjVJjIMtWOWSEVobdT0fgtBlb6So9Jgvy316muByz33kZasvS7/fhqFKrU8TBecVSyqE6Frl8fuHEDSE2VWoQnTzZaWSVeQUPBKlWkDnaZrGyEgr/8AkyYIO28HBICeOTzsSt7pyAgrSvIwEp/qqFg+fKAubnyfHAwf8ZGsmzZMsyZMwdxcXkvycJQkIio9NIrFHRycsLjx4/zHPf48WM4Ojrqc1ekhxv/hClOu1W2RtV3qqL6+ZsIDgH8cBGbNjEULIiYyIKHgh71lV0zsshovTbhUJWRAXToAJw5A8yeLX2pio8HTp4Ezp/JQtL+k7B7ehc1BjXF4KWFt97ns1vRsIPUjWaNFDy9GAHAV+frPw9O0Hr86c1YNH6rgiFKLNOy4pWhoIOHPSzcnZEWJq399OxWNACGgsbw7Nkz7N69G/fu3UN8fLzaRl5ygiAgoDhNzZWHgqam0uKh8nWEV60CJk7UfYkFUlfQUNDCAqhcGXj4UApeRBFFvohwSIjUKdqkCeDvX7j3deKE9P/UVOl38cMP83d9hoKFR77JCCCFgqqb3nCzEaPYtGkTJk6cCEBq3qhduzYcHByMWxQRERmFXqFg06ZNceDAAfz777/o0KGD1jH//vsvzpw5g+5cuM5onpwKg/Xr0+Ua+QB+fnjzTSkU9MRTXL30DEBFxfiMDGDvHhEVKwlo1swYFRd/d+8CyxZnoffr844u+QsFvd90gQBABOCMGNy7I0OjJvq/YT58GLhwOh0V8QoL5lfEjBkmirzywQOgeXMgOTIJ/bEdPggDAIQs34/IKXXg6l04U6Si7kdB9acTe/Mp8hMKRobGaz0ecScOAENBfWRlAWKicvqwk6cdrDxckPA6FIy6z81GjGH58uX4/PPPkZGRoTgmDwXlOw6Loli8QsGICODePem0n5+0uUinTsCRI9KDz+HDABevLxh5KCgI+f4ACtWrS6FgQoIUzJQvb7i68ppau3cvMGgQEBcHrFkDtGunPqXZ0FS7IS9cMEwoyHUFDSN7p+DrTQkBMBQ0kiVLlkAQBKxfv55dgEREZZxeKcS4ceMgk8nQq1cvTJ06Fbdu3UJycjKSk5Nx8+ZNfPbZZ+jVq5diLBW9lBQg7e5DxfkqHXwBLy+41lOGKRWeXUGUynv/ldOe4HifpVjTPBBn/815fZGyKjYWeOcdIDlR6hQ0MwU6dMrfGzXLiuUUS2yZIgsPrhhmN90Th9MxBqvgj7XokrobISHKy379FbCIDMfHWK0IBAFAELNw49Azg9y/NnGh6sGSyfNwxMbqfv3oR9o7BaMe5ONGSKvol5mwFJV/4y7etnDwdVGcTwhjKFjUjh49igkTJsDKygrTpk1Di9c7xq5evRpTpkyBj48PAGDixIkIDAw0YqXZqK4nKF9WZMwY5bE1a9THiyLwxRdA797qgQFpkoeCFhb57/SrUUN52pBTiNetAxwcgL59pX9LVTIZ8M03QK9eUiAod/as4e4/u+xTpC9ezP9t5NQpSPrLHgqqhsMMBY3izp07aN68OQNBIiLSLxTs2rUrpk+fjpSUFCxcuBANGjSAvb097O3t8cYbb2Dx4sVISUnBjBkz0KVLF0PVTPkQ9G8CnLKkrh9TE6BuDx9AEODa8Q1YvF7SpRIi8N9/yutEbD0JJ8TCC49xenFQ0RddjGVlAQMHSq9hTSGFgv/7H+Dlk8/uDWtr2JdXdlg8uWaY8OXBoQdwQiwAoD5u4MZV5Vp8989H4yNsgAPiUd4dKKey5mDo6WwLrBtQcrj6RioeCMf1/zSnQuYk7on2TsGYsFh9yiIAkY+UOw8LAMp52cK1pjIUTAnP+/dSy6xW0sPSpUshCAIOHjyIefPmofrrN8/+/v748ccfcfv2bQwdOhSBgYFo3bq1katVobqeoDwU7NULkC8dEpTtuSQoCFiwANi9G/juu6KpsaRSDQXzq7A2G1m8WHpC/Osv4OlT9csmTABmzdJ8cLh0yXD3n114uDRtWO7aNWlXW11lZiqDKycn5XF2ChpG9o1GnJwANzfpfFlY77IYsrKyUnzIREREZZve8xW/+eYb7N+/H+3bt4elpSVEUYQoirCwsECHDh2wb98+fP3114aolQpAdT1B18q2sPaWXoSZVKqgmEXkikhcuyq9eI+LA7IilC/eXpwPLdCb/pePU7H+k4s4Gli8P2UXRWn9venv3MRsp6VY1HY3ZFk5f8Pz5wP790unTZGFt1oCDRog/1O6ANhVVoYvL+7ovwNxbCyQfEf58zaBDKHnVF6IX7kCc0jTEdu2E+DbVLmmz4urhRMKZmQAspfqwZI9EnD7gvbuP20SninHuqhsYJocHqtveWVe9BNlKGhhYwozOytUqKv8vZS9ikJWZs5/D4f+iMEwl78xvtkFtWXPqOAuXryIRo0aoVkOazdYWlri559/hpWVFebOnVvE1eVCHgqamwMtW0qnzcyAOnWk00+eACpT1XHtmvL0oUMFv9/gYGlDk5IgKUnacOXLL6XONl0Vt1AwKgq4fVt5/vJl5en4eGDlSum0IADTpysvK8xQMPv3lp4OtU878/LihfLfRPVvj6GgYWTvFASUXawREeqPDdr8/bc03SE/fzeUqyZNmiCYgSwREaGAoWBISAgWLFiAMWPGYNKkSXj+/Dn++ecfJCQk4Pnz53j+/DkSExNx+PBhvP3224aumfLh6ekwxWmXxj7KqUeurqjwegaxJdJw95L0guzSmTTYQ9mZZRP5GA/uKte10tWvA/bh0S/7cHLEr7h6oHhODfvtN6BePeCdVpEQ/t4FIS4G8Sev4sI27UFmUhLw00+ACyLRBEEYVv8yOnZ8fWEBQkGX6sqEK/aB/p2CJ08CnqL6xj/ysO/VK8AySjk1yqlnK9j3aqc4nxwcXigdX0+eAE6iZuAZfuGpltHapbxQhoJuNZTtjVkxcUhO1q++si42XBkKmtrbAoIA7zeVoaBZVhqe3kvSdlUAwLHP98En5grKXdyPvSvDCrPUMiMmJgZVVdbbMn+9S2dKSorimKWlJVq3bo2jR48WeX1aPXkirRsISAuXqq4zp7pJg3zNQUA9VLp7V7PbTBd37kihY4MGyk0mirPJk6UOu/nzgT//zH2sKEot6Rs2SA/gQPEJBc+cUT9/5Yry9OXLyg5Bf3/g22+VNVy7Jn1SVBi0fW/5mUKsOnW4ShWg4ut1ljl92DDkG42YmkKxdoquU9svXJDWbPnoI2D79kIrsaz58ssvcfnyZeyXf9JNRERlVr5DwSVLlqBOnTr48ssvsXr1aixbtgzDhw9HzZo1cefOHbi7u8Pd3R2mBQhJyLCyrydYtZPK5g52dnDztFScfXpNmmJ883ik2m2YIivHkCwnGWkyJF66CwAQIMO5dbd0vu6NG1JYl9eHxvq6elVag/z2bRH/w98wg3KabcgJLesKQaqrZux5jMUKvGO6F6O7PlRupvn6jXt+qHZkpYRH6/1e6eSRdFTAc7Vj8fektQKvXZGhEqSA0NICqNDcB3U7V1KMM0uJR8g1w//Qw+6nwwGa03+jb2j/GWuTHqm8foWmXpCvqOWEWISG6luhJCsLmDcPmDZN+f67LIiPUP6bmzraAQDKedvBzFoZPtw9+VLjegCQECeD6ZMwxfnHJ8O0jqP8KVeuHJKSlEGss7MUhD9+rB74Z2VlISqqmKz5qG3qsFytWsrTd+5oPw0ABQk4d+6Upn0CwObN+b9+UTp2TH1dxdzW14uLA958E6hZExg2TLkuX0G2qPfxkTo2AcOFgqdPq59X7RRUDeJer4ep2IU6NRW4pfvrgXzRti5dQUNBDw9p12YAePZMfVoyFYy8U9DdXbkLuWooePNmztdV7ST+91/D11ZGVa1aFTNmzMC7776LqVOn4uTJkwgLC8Pjx4+1fhERUemVr1Dw9OnTmDJlCjIzM2FjY4M333wTVatWhSAIePr0Kfr27QsZW/uLjaCj8XDIkrq0TE2AOt19lBcKAtxqK6ePxgRHIi0NeHBeMxEJOZS/5OX28ZcQMpVzCcNP63b90FCgXdMkTPvwCT75WPffo/iXqfh9wnkcXxeS9+DXduyQ/t8UQfDGY1gp81G8/E9zKq0oAquWpKMtpG6U+vVV3p+ZmEhv4PLJu6GyU9BJFqVotCmoO4efwgTqPzeTl88QFwfcOxMJS0jrK1WoAJh4VoJbDWdYO1kpxt46bPgpxBE3lV2CpiqPNukPwxXv5fOSGaPsFHSq7wUHB+m0DZIRetcwc1YXLQJmzAB++EGaOabaxFTSpacDOWVHiS9Upg87S7/QgokA+xrK3cjvH9Me4N44+hJmUCbZL28Uz47gksbb2xtPnjxRnK9Xrx5EUcSePXsUxxITE3Hq1Cl4enoao0RNuoaCd+8qT2cPBQ8fzv/9njunfv38tDsn6L6EgUJoaMGmKiclASNHqh9TDdKy++UXzamvFhZSp2F+mZkBvq8/EAwJMcwioKdOqZ9X7Q68cEF5XD4NVx4KAoU3hVjfTsEIlee/SpWkMFVO5e+RCkAUlZ2CqrtfN26sPJ19zVFVqpepLjtAevHx8cG3336L9PR0LFy4EO3bt0fVqlXh6+ur8VWlShVjl0tERIUoX6HgihUrIIoihg4diufPn+PSpUu4f/8+rly5gqpVqyIkJAQHDhworFopn27tDVOcLudjD2tPF7XLKzVwVXZdZUXi9m3g2XXNUDD2SqjOAQ4A3Dui/gLa7EU4Qm7m/Un7rs2JGJm2AiMQgJg/Dun8nm3tu/twb9kBHPffjPUzdQsg9+wBHBGLTjiCtm2A7t2VlyXe19yJ9/hxwOzOdVhDmsLn19JMekHbuzcwfjzQsKFuxaqw9XaBg7102gmxuHMzK9+3IRcVBSTf1ezodMdL3LyWifCLymDH3tcFsLYGBAF2NZTdgo/OGT4UfHVPGQr6qjSqumVG4P7dvIPf+JgsmKUrg6tyDTwVM48A4OnNWL1rzMoC1q5IQx/8iSH4Fe4Pz6Nji2QcOaL3TRtd6AMR77qewrAK+/HLAs2OzeSXyk5BK1c7xelKTT0UpyOCtIeC2TtqU8Oec11BA2jbti1u3bqFF687a3r06AFbW1t89dVX+Pzzz7F8+XK0a9cO0dHR6Nq1q5GrfU2+87ClpTR9WJXq9GF5KJiQoBm0HDmSv8BKFIHz55XnHz2Czp+sfPONtHPuiBG6319wsDRNuWFDYNcu3a8HSJtuZG9rvnpV+/poGRnAihXSaUEA5s6Vfr7R0cAnn+TvfuXk03eTkqTON30kJ2sGmi9eKEM1eRBnby91OgJFGwpaWQFNm0qn790DYmJ0u372TkHVUNCQ6woeOgR8+imwdWvp6kAMDgaWL9e+k3hMjHLauLu78rj83wlQD5NViaJ6uHvjhvSkTXrz9vaGt7c3KleurDid05eXl5exyyUiokKUr1Dw3Llz8PT0xOrVq2GrMo2lQYMGWLp0KURRxHnVF+lkVGrrCTbyUa4n+JqlpxtcXueEbniFnTsB8zjNUNAx9TmunFIGM3m98Q8/r/5mT4CIM7+FaR+s4tGeG4rQrUHWFfx7OO8XfuGPMhFzTtlxcubbY/jrz9zfWD56BFy/LqIn9sAC6ahdG6joqZzuLkZHIzpC/cX6sqUimkF60VrZG6jYtYG0s2bDhuo7FeZHuXKKzfdMIEPYtdiC3Q6k5bS8IU3vsLIEKrz+MN4UWQg5+xKxt5RveMrVUwY+FRopQ8FXWjok9RUXqmxRs6nuAafXG5FaIB13T0fmcC2lZ8GJEKD89yxfyxk25e0V51/ej9W7xkOHgOqPj6A+bsAXD/E2DmBk/EKs67INmxbnXaOhBQUBDx/mPU4Xv0+/iaYJR9Eo8wLufhGIjcti1S5PjVL+Xdu4KR/Ta3VU/o5kPnqKuFjNv6lnl9V/X+yzYnDzUil6k2sk/fv3R7t27XDtdUdMuXLlsGjRImRmZmLRokWYOHEirly5gsqVKxePTbzCwpShScuWUiijysdHuRaevDtQtWNQ7sWL/E0tDQkBIrP9feqS5GdmSq3BALB+ve7rBfz+uxSqyWTSRiG6BhMXLgBLlkinLS2BRo2k04mJ2qe87typXF+xZ09g5kygbduCTR2WM+S6ghcval8X8MoVKViTh2tNmyqnib75pvL1R2GEgllZykC4WjX1YFrX+8tp+jBguFDw6VPpdcOqVcAHH0jrFo4dK/0ul2SiCPToIX1A2rSpZjivbZMRQHrtJA+Oc9ot+ulT9eunpHC3YgMJCwvDw4cPdf4iIqLSK1+h4IsXL9CkSRNYaFnsulWrVgCAly+1rz9FRSstDUi9G6Y4X6WDj+Yglc1GXBGJgADp/wDgYA94KPMiXPnzIUQRWOAfjE+s1uPzVudyfE8Uf1tzwfj7B3Lv4EtLAxKvKV8YWyAdF//Me8rO3ysfw0xUvkHxxBN8NTAs1+Wa9u4FvPAE1RACRwfpNWq5gW9DUFkX8PZRZTdFWBhw8+9QuEF689isGdR3JywoS0vYV1J2Z4Vc1H0H4uPHpSbFVauk1+PHj2bBE9LP3ccHKF9R+acdejoC4lPlGx7PZsrAp0pr5emMRxFITdEMf+bPl96PmppK7+0t3R+h7lthCA3Nu6sn8bH0PWWZZiG2hgksfBwUlz09n/fGAi8fKNtFLWzMYelgCTtPJ8WxyAdxed5GXJz0PiInv65IwJu4CgAo5yxNczZFFmqJt3FzcgBWfReb530YyrRpgJ8fULeu/rOkMjPV/+6cEIurEzZg5/pYxbG0GGUoaOuuEgp28oTF6z8HWzERF49odhnG39HsILx9jFOI9dW0aVMcPnxYrQvQ398fQUFBmDp1KkaOHIlFixbh6tWrKKfaNmssqht8tG2rebmZmTKUCg6WfjFV5+erdmTJQ73kZODrr6UHuJxoe5DXJRQ8f17aqh2QHjx1nbZ88KDy9N27eW8UIjd9urIj8OuvgXffVV6mukGH3NKlytMTJ+p2H3kxZCioup5gjx7K05cvq3d0+fkpT9vbKztGr1/XHv7o49EjZVBZvbr6fes6hTi3TkFDbTby00/qn6rGxko7NTdqpDmdviR59Ej5e/XkCdCunXowqPq+QDUUBJSvpXLaLVrbtGJOISYiAwkPR75mwwHSw1VBViAhKs7yFQqmp6fDKYeuKIfXC32lc/5YsXDlWBzsM6VAxkQA6vbw0RykEgo6IB6xEUlwhjTVxtMTqFBPuebgo2OhCJgbjoR1W+ElPoLtmYM4ue25xk2+CE2CGK0ZbiVeD831AfT8yXRUyghTO/bwSEius8lEEbi4RXO6WPP0E/jf/4B9+7TPzvrnH6AKQhBcLRghnS4h1N0Mps2awLJyBcWYsHPKUHDVKsBPlDpgHeyBmm/7ar6wLaBKdZVv6q8fi9JofNEmPR3o3x/YvVuahTR0KHD90HOYv17fzcdXgEX9morxwf8+gTuksMbUBPB5SxkE1upQCSavGzisZYm4fkb9H2nlSmDJl8/RIfkf1JTdRobrZaTXXY/bFhvgP/O62tjEmAxs++oaLvylfHOV/iwKIkT898Z/OFfpHC43vwtRkP5RddlsJDJUGUaZOdsDggAnXyfFsfjHsTleNzUV+OrzDHRxvYx2brdw5bLmL9OTJ0Ds/nOKjWY69rDEh6OsYWP9+meCFFybvg3fzc3nK4YC2LtXWtMQ1lFIyUjBTz/pd3snTwLWcepTBR0RizMj1+PwNunvPCtWOX3YQSWgNndxgJuv8vzNg+r/Vq8iMmAarfkBUNh5zccEQJpZOGiQ1BTDF1IF06hRI3z//fdYvXo1Jk6cCEdHR2OXJJFPHQakMEAbeSCUkSG1waoGIJ9+qjwtn0I8YgQwZ450WU6hnep6gnL//pt3B1/2nTZVNzHISUyM+lRlQNpVN681lJOTpT9EQAqZpkxRX0ct+zTcoCBl2Fmvnub6jAVlyFBQdT3BCROUp3MLBQHlFOKMjJzXZdy1S/33KSfPnqlPP1f9nmrUUL/vnKalZief/mxjAzg65r9T8MULaUp4Tl6+VG40Y20tPSBav36iSUgA+vYt/B3WCkv23+OnT6UPCOQdkDl1CgJ5/1sxFCTKU2IiMG6c9BrSEMvGlhVTp0rvd/v10/06kZHSBvVubro/vZRl+Q1cyXjyvfswlQw39yo/2Xb2toetl5aOEmdntY6yGrivmKrp4SnAo7dyvZeMOyG49fUOmEL5huvGds0pYNf3Kbu/LKxNFd1GzrJIHNuVc1fX1Z1harcNAPYvH+T64fm5c4BVuLK78O2uUgDqgzDYRD1Gjx7SGvdLlypfaycmSu8bXZ0uIdwzHCYeifjbIQIiAOc6ys0VXlyTwpSUFOCvNZGoDulNR9OmgOlb2dbM0kPDji6wfj3bziEzSqcNNP/9V33W3KZNQHqI8t/bs0kFuPv5KM77pt5WbEDi4m4KC29l+Gld3gGOlZQdYneOKqeE7twJjBsr4j1sQ2NcxjsWm2FfVdkdc+zOFbVpris778Tt73dhX78A3DjyAvHxgGVSFBIcEhDvEA87N2tkeYmIc5B+D1JC8g4FY5+odAq6Sh88uFd3UhxLexmrdSbb2bNAzzqhSPppFbpl/oNuSduxdNAFjbxg4y/JaCRK08vs7YCaw9+C7/IpGLC2E+xfZ2KVEIFzs/fjq68K78XW8+fSJqOodAlothxosQh/7otSbDpaENt/z4Q7pODOzVXadRoA7GRxOPzRb4iPyUJWvLJT0MlDZXqiIMD1DWV4/Ois+r/VjcPPNTa1AYCXNzRDwYwM4J3/iTi75SH+XPkM77/PJaFKFXmnoKVlzh3U2XcgVu0U7NcPik+njh8Hfv5ZWm9N7q+/tN+mPBQ0MQHefls6HROjvftOlbZQMK8/7KNHNQPAGzeAv//O/Xpnzyo72Dp3lrom5dOHAc0wRbVLcMIEjSU/Ckw1FNQ2ZVlXmZnK0LJiRaBTJ+XyGVeuqIeC2X8X8lpXcNs2qYuyQ4fcOz7/+08KmatWVf4OqIaC1atLX/K6Ll7U7YFb3ino4SH93FVDwdw6BdPTpTUqvb2lf9vvv9c+bulSZcv6qFHSbtnh4dKuZYD0dzFyZMl8R6/6eyzfCSw8HOjYUQo8cwsFVX9PdA0FtXUUyhli3UyiEmbFCulr2rSC7dlVFp07B/z4o3R6927dV3H4/Xfp4S0tTWqcoJxNmCB9zrZwobErIV3kOxQMCQnBxo0btX7pcjkVjSenwhSnnd/00f7mwtQU7rWUYWFtKBO4CrWdUa9PDUWoZyfGw1FUX7D7+cn7Gq9fH55UfnpvUbMKKtZQrv92eUfOa5I8PabZvVARz3BkV86fnG9ZnYDyrzvgPD2A5p3t0bOndJl8l+DgYGkGVtOmUpB25AggS8+AtdNdmJgAzk5AnL0Fnic+h0cTZSiYeF8Kx3bvBmrESW90zEyBNzs4q7/B0pOFhxsaNJBO18JdBK7NyvM9wc6dmsfk6wnaWAOVWlRGlVbKud/mKjvE2viWl96YygkCHGsrxz65IH3fp09LSx654hXKIRp2tkCVEaEY3uUeHF43KIkOT7BomfQm5/TmMKRclt7oC6IMp5dfRdi9NNgiCZEuUoJp524DJ297RLtInaSW8S/xMlxLoqciPkIZClq7S79LFWoqO6QcZLHYskV6z751K/DZFBG9WkZhwVu70erhRkXnKwB43juKTctjFeczM4Frqy/AAlJ38xt+ljBr4QeYmaHywLcw6MeGijUQG+My9n9/FRs25FpugchkUrfnq1ci4P26C8c0A6nlLmHbtpyvl5Qk7T2gTWYmcGrHC0Vw59fCBD1+bAez10tn2qRE4q/v7sI0PVlxnXLedmq3oTq1PPHeUyQrhyL0lDIktLVRHs94/BxJypwRAPD9dyLKX96LofgVH2M1Xuy7hKlTc/6+SPLgwQNMnToVrVq1Qs2aNTFV5Yd24cIFrFmzBnH6pMaG8OiRcgHMFi001xOUy74DsfzTHhsbKUzp1Ek6n5QktZOq2rNHMyiJjwdu3pRON2ggraUgl1ug9Py5ZjfXs2d57yisOnV43Djl6blzcw9xtO3KXL68FDwB6puNRERA8Qfv4iJ1khmKtzdg9/rv+8iRgrfrXr+u/IStVSvpdYU85IyIAM6ckU57eEg7+KpSDQW1BT3yIFgUpXUUtf1cRVHqtoyLk8LWZcuk49lDQUFQdqC9eJH37sGJidLvFKCs28YGikV/c+oUPHdO+v5nzVJOC549W3NtzNhY5eYx5ubAZ59Jp52dpWno8iDtjz+kzTpKGtUg/tgxZdD5+LEUfqqGgqobjQDS36+lpXQ6+1RvmUz5u1KxIhS7jOXUKRgSIgXGnp4l8+dYyExNTWFmZob7rz8YMDU11fnLTPV1IxU7qqt47N5tvDpKiqws7S81dKH6892/P+8JA2VVRIT0MJyRAcybx47BkiDfoeCZM2cwbNgwrV+CIOR4+fDhwwujftIiIwNIuROmOK91PcHXHKq4Kt7UV4U0FddEADzfdINFeWe4VHNWG2+iki1aREXg/mX1NxdR15Qvvt0be8GrbRXF+ScnQrU+eCbEi5DdV35Eo7qW4Y3d2tciTEoCru5QTh2u19wO6NEDjRoBQwYDnX0foA1OoDruwwkxuHtXRO/ewI4d0nqCSQ6xcHYGTMxMAAcHBEcHo3pb5R2LUVGIeZ6GrRtS0RDXAEjrYdt1bKZcPN0Q6tbFm42lH6o9EpBx+36uSyBlZUkzrFrgLKbiB4xz3QJXvFKEgpUrAyY+3nCpUx62dppBsHN9T41jFZsov++oGxFYvlzajTktTfqdsDAH2g2OQ7j7czhlRaHVG6//zQUZAneHIDZGxLGv1D+afHHsNp5ckzYZiXKNgqWVAFNbKzhWskOsuxTUmUCGe8dz/0Q/+Zly+rBdRSkUtPVwgt3rpjZHxOGjj0RM7HQDf36wHVi0EI3PLUdDKN/4O75+v2WODJybuQ/RUdKbzX0701A1St6ZIAIfOuN85DVkyjIBQUCFET0wZGoFuLx+H9IDezF33CuDLS8lFzjnMUwP7UNzh21wswpGebtEqR6X+1i/Xvt1jh6WoZvLRbzncgTdyl+Bf5dH+OnrJEUH6b//Alax0s/WRABqtXJDg/HtUKGtclr5ndUn1TZxcfFW38igVidPRYhYPisC588q/3hfXFV2lFZpUR6mr/8kXMRXuHpJ2QZ4+TJweu6/aAJlZ1AP7MU/i+4jIEDnH1GZ8+uvv6JevXr46aefcPbsWYSEhCBSpT04OTkZn3zyCXZq+4SgKKm+E8lp6jCgvgPxtWvKnXhr15YeT+WhIKAMg+RrvD59KoVRqi5eVL4Sb9FC/fq5hYIHDihPV1B2TKuFftmJovJyS0tpkVV5EHb1qvSqNyRE+yte1VBQ9ecjn0IcH69ce+3nn5VdhR9/rJxaagimpsDAgdLpxETo1JIOSJuw9O4ttTGHhamvJ9i6tfR/1enQ8rUCs08dBoA33pDqADQ7BTMzpQctufPntbe7HDokfQIk988/0hRt1e5H+Yd2eXWgqcq+nqCcfF3B8HAp9IuJkaYAf/ihFLS2bKkZAGZkSJ2Aqi92Vq5Uho5Dh0qhlWq9qp82TZmi+zqI+ZGZKbW4/PabFOJl//QmJ2FhUmB76pQU7mUPa0VR2Sno6iptKrNpk/Lyn3/OvVPQwkK6DiCFu6qfdAUHK39ufn7Sxm6AFO5n3+U4IkLqxn3yRPrZT5ggveAjBVEUIVP5vRRFUecvGZOPYksmU3+I27u3ZDYcF6W1azUnFfzzT97Xi41Vf9kTGVk4e2fpKzVVCjmN2TS9fbvy9zAmRvuKL1S85CvdyGvLem5nXzz8dyoetunSCysB+D979x3fVPm2Afw66d6LFjqAFmgpZZTVsveUJYIsAUGWioAKuEFQ0deFIIL+XICCCwRxoQIiIEuGDNkt0EIps6UDupvz/vFwcpIm6YC2aZPr64ePbXKSPjkZT8597vu50XRgqNltJX91XUGlfLdmTcApWKwnWKt9PYPtu4ypDVd/NaPon6/UYF5ediFyzqvBggZdQxD9gHp73/RzOHjAeKba80sKPLUiUORgD7R9UP3CnHbwrMmkhvXrgcCseN1tmg6uL6J2NWuiXj3g4YeB76f+hTebfo0n8T5G4Dvs2iXjq6+AUJxDhmcGavhBnKHXaHAm5QwatPOHxkE9G7pjzRWkbj6oyyRr0lLvy2t58fJCrc4NdYHQWOzDZ5+Jn7VakXihv173nj1A3rWb6IktcEU2Fow9gy/bfAhXiDSu1q0hDlYcHeESUgNF6TcZUYR31ssqvJGMGTNk3T4P15zDsBEyDtZUMzGivRJ0x+tZzmfwVO8TKLxYpBQ4MwP/Lj+MbJds3Ha7DY2rMyBJkOw0yA4CcpxEl9ptz/2Gq+fMH5zkXFeffK/ad6J73t6616w7bmEsVmEo1qExjsMdamaptxcwcnoARr7fThfcCrx1Bh9OO4Hvvy3A91O3whliHHZtb2Bn8AX8Hv87diTeWQPMwQG+jw3HQxOd4egA2KMAnW9vxMQJcpnODMqyOA6/csX4jOKFk7dx4Y3ViMU+1Av4CR18TmBUgwOIwX64uF7EnsMpRo1a09KAZaN2onvuRnTETrS59hOCN69A5vx38XjUdpw9KxJOgiDei2FhgEeEyIJt/6S6JIBLpnpQZWcvwd3fMAjhFBakOz52QD4O/n5dfTxn1Ofbr1dL1KwlAtD2KMCx7SIYnJMDLHxwD9prRfajuxtQw090Ix+GtXj10UsGX65MWbtWJEzpxyKs3d69ezFp0iQ4Ojri7bffxj///AO5yDf8Ll26wMvLCz+X5ltsRSrNeoKA2mEUMDy1rgQLe/Qw3L55c8MyzF9/Nbxe/9tlu3ailDQsTPy+cycM0lr16ZcOv/66+nNx6wqeOqVmmnXuLDLI5sxRr3/ySRHYcXUVpdBKxtitW2qWU2SkyHRSFF1XMCtLBE8Akck9dar58dytxx9Xf1Y6VJXkxRdFWsTKleK5UrooAyJTEDAsh1aYCgq6uooOSoAIpOk/RwcOwGithPnzDcdYWAijFOPbt8VzqmQKururwV79MbzxhmGzi6LMBQWVEmJZBj7+WOyDRx8VgTX97MOWLcVrUglI7t4tjjoBEaxS9ptGAzz3nPHff+AB9bEVFIjnqrzXWHj5ZREYHjNGvP7c3UUJhZJxa0p6ugiujholXvu1aomy7Pnz1W0uXlTXM2nVSmRpRkeL9yUgsnA3blS3N7Ues34AVz+LVP/nmBhxvwr9EuLUVKBPH8OMTlkWj9WWJo8SaLVaaLVaREREGPxe2n9UNcXFiaCLIjHR+FwFqVJSRP8vhbI8844dxtNQUb/9Znz+T//jraqYNUs0uu/QwbC3VWX67jvD30ubiUmWU6agYFnb17OdvWX893OC7mevEA941C2mQ6W/v0HCBHDnJPadspnOk8LheacCOLazC7p88CD826vls+f/UM/Qn/jrKqSCO5kOkoRm9wXDv009BN05FnLHLXz7wXWjY5GTP6uBRd9wPzQcE6MrW65beBZb/zS8gSwDKz7Xoh5EtkmjRoBbdAPxZVRvYXZ/f/Fdu0ljUZrbAOLvBLoeQ4F9AXz9oFt36FLGJeTI2XCqo35hXf1mElprxek3VxcgfERLtcylPMXE6I6rwnAem7++jiNHxNJKPTtmo1lUgW5t9x9+ADpgFzTQIiRExDTv6ytj6uPAtCeA+jG+ujIxj4ZBRn8qvKtxUDC0fRCc7zwsV2TBC2JW9HAtxOxhCUivfxmX9YJtsRkOaNNYBOskv9PwOGj6gDp377+60mF7DzXg5NMwAKm+d7oSX7qMj9uuwIX/TM/EBalqpqBPnTsvRC8v9OoF1K8nugW38DwHdzcRBGwUCfToDox8zAdT1/VA5KJHETiuNxr3q6O7n4xvf8XeUYtR74Z6ajXnPgeRsQDg38v/Qivf+QLs6wu/sf3Ru7f4NQzncXnrCXz0kUjmeGXYMbwUtALLxuxBQb76Os2+rcXSIVvxtNdydHPYCV+PPAQGimOalBT18a1++iA0hXmQJRnpQdcRGQl4egF+Llloiv/g6HfUqGR59kwtwlKMy+8kyIi8vgO9OuWIoDnEKcLGjaEriYsaWB+eJj4PNO5ukOyKTAfOzvCPUgPL8dvFeqEXzuTA6Zb6IBr2DYNPPTWj+Pwesa7g0ilHEJEgMqy0Gi1CxmcgenwKXJxFkHF44dcYPyjV7JfX774Dhg8Hvv4a6N27+GWkrMnbb78NWZbx66+/Yvbs2YiJiTHaRqPRoHnz5jihvzafJShBweLWEwRE+/I6d96DSudfQA0KhoSoJ1zc3UUZ7dCh6nZFv03qBwXbtxf/V7IF8/LUMlZ9BQVq8M/bW5w5UoI+f/9tPpCon0WodIS+/34RpNCXny9KQb/5Rvy+c6d69FC0YUjRdQVXrVI/GEaMMAxMlZfmzdV9dexYycGSpCTgiy/U33Ny1FJxDw/o1r3QD3AqTAUFAbWEuLDQ8A2tnxWoZBPu2WOY9bl6tZox6udneLkSDFJKhwGxz5VS4MOHRWajuTTvZPVkpslMQQCYMcMwO83FRQSzly0TaTpt2wL/+596/XPPieBuvXpq0GzkSKBBA9NjeP11Nej1779qUBEQ2XJvvy0+DIt+gTpzRtTBff65+aO/W7dML3514IAoC7hiukEUvv7aOJiakSG6aCv7XD/dRv+1oB+E1t+/Skm2PnPNRooGBZVMQUAtIb59GxgwQA1uhoaK9xAgMlfvvx84fdr4bxJZiaI9sADj82ikeuklNSF59GiRvA2I6bq4ogHA9DLCVS0omJWlTt3nz5f8mCpCYqJxZqA1BQWzssR7zNIr+JQ3NhopI61Wi0WLFiEyMhLOzs6oXbs2Zs2ahdulLcWoBPrrCSLWHbsu7kZmrpk1hO50IE7zSsOphqdwMvIkzjY6gz9yj+Ng8kE4tayNad92xLRF9dHvm7GAlxeiBkfobp5/6izSbogDn9Nb1DPnDkEBcPdzAjw8ENxCXUPmxOqDGD6kwCD779ouNQstoH0DOEbW0yV9uOMWdq1Xv4inporve6e3X9ZlxzVvIYkv3oDIyBg+XBx01a0LycUZgwcDtUOAttgLB+TBzfM0PNzvNF7wEcEMGTLiUuPgHaUG0kIv74YnRFCqSVMJ9h3Lr8GIgXr1ENXZD0qSYqOsA2jeXIa8fTuewTt4LO99zH74GrKygE3rMnXlzI0aQbc+YECAqNzRHXgDCIgONPgzrr7O8AzzQ1EaLw/UCFPXfgxBktjHWy6iaWQetiNBHGi5uKARaqAP6qNNzUTYIx8h9nGw81IOtCQE9FEPdu1RgJQa4kDXydsVGkl83DTqGQJtD0/ddtrrN7Ci03K89OgNzJkr47WFKTh7vgB5uTJkvRdKjXpKHbADatZ3x9ix4jjt6afFEk1PvR+GEWsfRKcfZiLyoyfh2KOTOMCUJPRZMgDunuJg0xVZuoxCCUBUbw3s26hBy1t5t5CQlqDuoCZN0GpoKOrfeYn1wR94eloeprXZB/n77+FwORHXv/oDL3Xfg+xsID1Nxry2f+DGDzvglXEBXQu34CksRnvswuljeZgyRRzXHTtSiNQ/xEFPulc6ajSxh5OXCySIhAwXZCPG7yus/qJQF1vYtAnYsSIeHhD7pU0bCQMn1UKLVmLf2qEQbpfjkJkmmoxopDvLuSlZSpKERmP11vZSnisvN6PLAKB2WzVrN+XIJeTlAcc3qwd4Th6OCGxaA/5N1TML145ewQ9fpCNtlchikyUZN+8/i1MDHPFnWxnNxl6FnQZww20MyPgKD/S+bbTk1/79wPjx6u/Z2cCQIYZnw63Vrl27EBsbi45KJpYZtWrVwmVL1oZcuKAGidq2Nb+eoEJ/XUFFVJT68+rV4s28bZsI7oSGig68gDjquS4yVaHVqkdB/v7qZ79+CfHatcaZVnv3qgHJ3r3FZ6cS7c/Nhdm0Vf1v1EpDE41GBLK+/FJk091/v7rNokXiDW5qPUGFfvDkwAFxG8XMmabHUR70Oz1/+KH4/6VLIqWgVSvDtdree08tZ27Z0nAt2vbt1eBd/frqmniAmCtaG3/GADAMpOqXyOoH//QzRJVswexssc6g4ttv70x4EJmMynOtv96vm5soNVZKdc+cEdmNprqXlVQ+rK9/f5EJmJYmxj11qrpvundXP7jS00X2p1JSXaOGYYZdUfb26rqDgDhyTUkRH3q9eokg4+jRoqmJIjFRdPldtkw0KYmIEMHEosHBVavUMtxOncQYlcd28aIoEc/JMR6TUrYAABMmGFZKKA2A9JuM6Ae7hw0zDN4C4ndTa9OZK/XWf420bm06KPjSS+rRZ0CAeF+uWiX2GSC+NPbty+YjVuLAAcM+VeZs3Sri6B98ACxfLs7X6DfosyamgoLWFIApTxcuqE3g3d3Fa2TgQPX64vZbXp4aAPT2Vr++7N9vvJqBvsou5d640XB1iK+/rty/D8DkeugnTqgrx1RnaWniPNaAAWKasyYMCpbR008/jZkzZyIqKgoffPABhg0bhiVLlmDgwIFVIr2+sBC4dSwBAHAp6BKOtv4Xm89txprjZjoW+PnBu2YBjjU5hiuBV3C11lUk1UrGnsyT+PnMz3h3z0J8X/sakkdF44a3I7SyFi0frAd7J3FAYC/nYedXIiiUvE/tPOzTTC0XbzEmCGfaHMG+mH2I9NqEuhsWY2rTv7FrYzqSE/MhXVTP3kcODBeBxJYiY08raXHylzNYuFB8v27aVBzvKesfBvgDoe0CxQGAIioKGDRIrIM0dCjs7cUJ+tbeZ9EaB3DLMx01/CEO7DzUYFhcSpxBsxE3qJ+q4YOj1G6G5aBQq3fAKklw6dgaTZoAGZ4Z8Kq3Fn3dV6Ab/oIGWnggE20SvsWYB3NQK3Ev7CEiRA1buIouKh06iAO0Itk6ddsZZgq61Asy282y65hgyPVT4NEwE2ue/xfffgsEZp/DNdxGJvLEQV9YGHqjPlzggMY5+Rjktwv1cB4pfiLw59etGYZ80A0i1AbkO+Qj3UucRnH2dUFssMgGkDQSwib7IGSUGmSV09OR/8ln+HjdJ3j5lw/QcOxSLPskWVe6DQC1wtXnSndACAAODjjUoT62dgpBTmQDwwPUO1xDA9D6qQ4Gl4XV02Dc+y0R9F4MpCIZoEev6q1hJkmQ+t2HQYM1cHYCPJGBh/El+sHw9KDLzk14rOMxTI/ZC9djhmtYuSILvbAZj+MjbFqfiRUrgI+eOgX3O8G926E3ULtfM6BNG7iEhaPWnYRVB++zaHZjA5Z+IOPwYWDyZKAlRGaGfw2g5+PhaPXpY7j/hcbocye+0QgnEYBrsEMh/COz8L3bEfwv+SdczhQHRd2ebg5HF8MDM3tvwyYjiohuwdBIQJ5jHrykszhwAEjYpR5AO4T7YWfSbhS2VJ+nwuQr+G7KVt3r9GLzRHiMDRJBoxo1cKmvry6G4ocUdEn+GgP75OkCfklJIsZS9Bj13DlRDVYFPmYrVFpaGuroBffNyc7ORp6l6kKA0q8nqDAVFNRfazAqSgSi9ANmSucoWVZLf0+fVqPD7dqpn2ndu6s/f/qpuO+PP1YzAPVLh++7T/xfyfwDTJcQZ2erjzM42DCI6eUFjB0rMrx++EENeB05IgKb5tYTBESQXgnUb9umZjJ17Wq6HLe8DB2qZmqtWycCKG3biiOhf/8V8+a1a+Lo+eOPxXYuLmItxiNHREAsLEwEQhUajeGYGzUy+RkMQPwtxYoV6toKSlCnQQNR96Ts5927RdDRz08t1+3fXwSAlUxS/SOuok3AIiNF1uidckkkJYn5smgA2FxQUP/5dncXr6uffxavuzuZ5UbefddwfnJ1BZ55RmSyldSkrGNH8SEHiGDWjBkiG1E/ODZvnth3N2+K17F+ll9ioljPsEkTNZNPlg2DjUuWiNvv2aMGTP/5x7jz8aFDahZgTIzIRNQ/uly3TvzfXKags7MIJOozVToMiMC+EkBUukXn56uBvwYNRJORyEh1rdEjR8RankoGpIuLCOA3aCC2+f57NYiYkCD2lbWlddgQWRZxcSVhtLiq90OHxEfEc8+Jt9DEiWJlh8BAMaV8/bVhwnpZxcWJ+9NvFm9JSlBQo1GT33fvNt+IrjIdPGg6cb+iabXiPFDRc4ObNqkfc089JZLJO3dWDwU3bjS/csOOHeq5lf79xXSpMJWNd+uWOJldp07ZAnNarZiSS9sNuSilZ5fixx/vvrfY3dIvHdafBu41g/Xff8VqFkpg926ZC9RevSr2vXI+tKiCApF3pFQ4bd5sXaX6DAqWwfHjx/HBBx9gyJAhWL9+PSZPnoz33nsP7733Hv766y98W/SdaAH/7cqAS24KEuomIC4iDgF3OrVezLiIlKwU4xs4OyMntBAuvuIA3ssTcPF20p3N1cpanEk5g/Un12PpvqV4fcfr+PTk57jWLQdajTg6P/WTKCHOPKGm+9RpL75syrKMHSGXEdozDQ5BWTjW5BjsnW6gfuKf2Nx/EZbUW6wLHji62KNRXzGjRfRrgMQ6idjRZQdu1lmF2c/lYepUtQqlAeIREiw+HDTh9c3vkAYNgBo14OYmqsVmRP0Jr8YZqB0CwMsLdX3CdJvGp8ajXqcAo7vw8wUajGlX0q4vtQPJB/B/O/8PKw6tEE0tAKB5c0TGAkebHcWVOudQEP0N7FwLEBYqrvZFKtx+W4sYiMyymgGAX7824kClVy/g+efFwZTeulX1O9SCpNcZxqeJ6ZI0WZZxtO0NSGP+w62RB+HudEjs6LNncR5pd27sA/+6UfCpIYK9EfDTHU+k+KUA9vZ44IPuqBXuAeeGIqCR4psCWRKfvH4BPuhStwvsJBFMztfmo/uyCEQ8rmb3XK5/HI1qfosAXEGhQxrmfPsJbrmJjD5HB8AzWC8o2K2byAqIiMDpET3wo8NZ7LjwN9afXG92v3eZ0xkxjzRFWLQX+s1tjYcPzEDojEE4lm1cUnby+knkF+rNCjVrwqtXrC6WEAIRAA8KBOroLZda89i3CElQZ72waE88OtUeTz0pslV9cBNDsQ5PPK5F9jYROJQlGQ69ADs3kWnVpfsEeNYOhK+vuC7U5098M3MfWrRPxTXNr6jptQ8SRODMIfZO5kajRmjXDuh3HxCOONTBBaT4puBkp39xzjUPV7Kv4/sT36NQWwhnX1cE9Wps8HidfE1nCro0CIZdZAr2tN2Dc21/xpgn9+PUn+IAutCuECfaH8eWc1uw3esf3AgRQcfauIiGeSKoerXuJbiPt4ejj3r/Sb4OCJzSFL3vJHIE4xIan1yL8HqFaBYto/V9x3FZPgxAhkajxoUA8YVtwQKTQ7Uafn5+SCxFN5v4+HjUKrr2Q2Uq7XqCCv0AICAO3OsX89kNiG/eCuUUvqnSYUAEYpRmGoA4cnvsMRFs6N5dZPUplIy/Hj3UjDdT3+r//lsEBgERQDRzUgWSJLIcFa++qmZQNWliumTSVPCvIrMEAXHiaNIk8XN+vsiUTFJP5uHiRXEG7b331GDqpEli/FFR4jk4d04cRenTfyzmSocBUR6rXH/kiNjn27er38B79RJHti+/rN7m/Hn1OZAk0egFEN/MizIVdKtTRzyPSpabknmn3wxDPyio3zW5a1fghRdEVOHIEbEvzL0GFH5+osasXz+RxZaQINJRzAXEinr7bbVT9Ndfq92y9U98Tp4sxqZkPUZEqIFuQLz2hw8XWYp//aWmVnXsqAbKatUS43S902nuq68MszT1O0FNnCj+HxlpGLBNTlZf576+akRC8eijhr+b2wf63aJv3BDP+bFj6pkhJeDu6KiuS3nqlHjPKWn0s2cbZhJ6eoojUGVMR46II3Qlc5NQr169Uv2LjIxEx44d8fTTT+NQ0e7tlaCgQLzk335b/J6fb/hxXpSphvXK/fz6q0i49fER8f/evcVb3FwFfVE5OSIYtG6dCCoVXd7FHK1WVNQ3b266+frdun1bXVWhSRMRrFT+nn5frYo0Z444H1C0n9PBg+I8UMeOIpmjsmRniym/YUPjDsP6far69RP/d3RUzw+mpJjOvAQMS4fvv1+9PWBcQlxYKL6O/PCDmGJHjzZcXaI4b7whshdbtza/4oU5GRnGgbfs7MrtSB0fr04LrVqJ94lCPxPz9GnxGi1tJuWXX4qvfN9+K6aWHTvubnzLlolzVg8/bLg+5MWL4v05cKBIni8aHJZlcZKhaA80cw0hAXEf27YZLhtVlTEoWAbffPMNZFnGU/qvcACTJ0+Gq6srVpe2o18FOvJzAuIbxCMhLAFO7o5w9lHLIk/dOGXyNkmeMlo0F9+Zu0a7oI1fUzQNaAoXe+Puh4VyIa7dvoYbsVexv/V+pHmn4ebe03ir62/Q3kzTbRfVR0RK/rv2H04VXoVju9aI7lUTAaEFOBF1AlpJBBSdtWo2nlvTMGicxFlg99hauBmdAADQ+MTDq476aRylOYWxXZMwYcKd6l9za/QA4svmnewEHx9gyLA81Gp2SzQQ9vZGl9AuurLW3MJcODbOgcbBzuAuwjrXhlTbuGvv3dDKWvx57k8UaAuQmJ6IY9funO50cUF2V2/UCCmAJAFegflo/UQSRk5w1XXPrY+zusy5iCaOhgdfDg5GmQtOHo5w1lsjsUF309lH2xO346jmOuDmBhnAASSLsqjkZJzDnYwcHx/U860vDqY1GkTADz7eImmkMFCLFu90RnCUJ1KzUxEySJTzKaXDANAioilcHFxQ11s9aIhLicNDH3bE4BWD4dv3MgpiL6KWv4zG0inURzw8HK/icPPDyPDIgL2XGyR7veelbl1RtvXQQ/g3W12v9EzKGcPSXz2Sgz36Lx+KcYefRuyrAyD5eONG1g1cuaV+G5TuZDnmFuYiLjXO8A66dkV0ezeMHCHWLXzsUWDiLHdEr26OzN5nsbftXuxrvxN72+9GUkgSmrRzx5itExH4fzPg3a0FhgwRJeuhSMCAvHW6jtH2DW7Cv10N3d9vUrMpGnQYBP8wcWCY4peCjq7r4dPyLfiHrsPR5ocQ0SUTIQ3d1AyYO9kRsbHA8Afy0KTJalzt/h+8axXoDjBTslOwN0l82+ky23A9NFd/00HBHD8vXGgVB1kjQ9ZoIbstQ1bhv5Ah41TkKUihYkbVeLojuWUcMt0z4YB8SJBFsHhIEnybGK9tebiBB9o93hxt7yS2hiMOA9JWQXtrMXJrfIwakZ+iXZ238eeg9/Fj7Ot4o/FXCIE46TB/vmHSl7Vp27YtDhw4gOPFnH7ctWsXjh8/XmKJcYXSX09QPwPMnKKZghERpksJ9bVtK4INgAgg7dtnmJ7RrsjJmlWrxLdz/XLdnBwRGFGCXy1aqM0ovL3V7OqTJw3LZ3NyRO2ZQj+r0JQHH1Qzr7ZtU1Nai5YOK4quxRcRYRgErSiPPmoc2GrdWt0nf/2lBofs7UWwpST6r8OiAUN9kiROYCnefNPwG7ZS8vngg2pNl6enCCj36iVKzJWS8s6dxYkhfeYy8QICxHOiBIPz88URwYsviqMo/TXv9BvCSJI4QvvsM7VMvTTatRNHZgsWmA4IFycw0LjMODBQ1E3OmCF+LyxUIwH+/uIDceNGcTSrjHP/fpGhqP8aLnqE3KKFYSfql14SR77Z2erlrq7i7KtCf63PDz9U6+ZatjR+XdWvb/i+KS4wql9CvH69OJpW6H/XUQJ/SjoNIJ7fZ54xvs+gIPG5oWQhbt0qxv/996KD282b4u88/rj4rHnkkdLVplqJhIQEJCQkIDExUfdz0X+JiYk4c+YMdu/ejffffx8xMTFYUIln5nJyRHxbP0YNFB/k0F8udelSkfQ8e7Zh029AvO03bxYfQ40aibd5SQGKefNg0Pxt6lTRS6ckW7aIoNCRI+LtZKpa/24cOKBONW3bGk4hlbGu4OnTIln+33+Np4qVK9Wgy0svGTfoqAharXgbK8ngy5erCcKyrDa59/AwXM1C/+Szqf5tsqy+5hwcxMdau3ZqAdkffxg+vpkzje/n8ceBhQuLH39hobqyR3q6WL61LH76SX1t6X/FKG2mYk6OeE+8+KJ4fB4e4lzYrVsl31ahnyU4YoSYspXil23bRNbili1iWeL77jPs22ZKfr7o5zZunOE5nenTy/6aOn5cnEvKyxNfF6dOFc9tVpYIBConBzZuFOd29X3wgdoPzsFBTVpftcp0ZqFWK77KdOsmVvmojNf/vWJQsAz2798PjUaD2CJnwp2dndG8eXPsL8/TP3ehUFuIP858g0sh4qy3cy1vSJL6FJsLCl5wyYNGI7IEm2sC0K9ODwyNGorZ7WdjVJNRaBLQBF5OXga3CW7qh2zXbBxufhin6v2NQ1e+wOmI0zhb/yxuBRcirJUvMnMz8VvcnaN3NzdoGjdC+Ni28B3ohWttr6Do+fbw+9XspcOOKWjUTEJYKBBUU0b36I8wOHIznmuzDX888i26ddGKwJ6rq/FMX1SzZqK0BEAyMqHM+fa+NVDXqy7qeKnBsviMeGRGSTjV8BRONzyNAvsCtHiivYk7vTvJmcnILsjW/X78mnrgfyrECZENgc6dRHOUo3XzgJmPoftk44ORsOExusdUnPuW3AefJiFo8FAbtBltHDz97+p/2JawTXyZv/OpfQYpKDwXj0K5EAlIEweGnp4I8wkTwaennkKNSU/Ct1s/1B3bBe2eaovULmexaO8iLPlnCQ63/QP7Yw4gxVcEBSWNhNZRzQEA4b7qQVtcahwKtYVw7O+Im4+6oGGUPaKigDaNHVFHSkIkTqHAoQBHoo8gva7pb1DZ+dmITzXMsd9ybotRt1ZzdEFZAH4ufoisoQYu/rta5JueszPQuzciI8WyTDUaemBlG0f8rD0Mt0d94VtfzFZajRZ5vc4j/y135Hk4ioPaQYPg07ah7sxiY4jnXZZkeA7IgeQt3l9hPmFwd3RHRM0o1OrZBHUaOKKgXgrOxBxGI4eDCMIleHjJSOl0CoXRTdUsJ0dHoEEDFEKLs81OIWToMUQ1BjQSDErktyduR0ZuBsI6BsO3kZpl5h/ubXL/bE7YCr8mjrpquLpSAs41PoDTkadx3f86atTz0P19Zx87HG9yHLmOuTgXdg63BvyHmu3qARoN3B3dEROkfgM7cu0o5IH90fuJcLS6k2TkVmM/atT5EdE4isY4jog2W9CxWQo0hfl4sl8cZnp+jofxBerK5/H2W3Klr9NSWZ544gkUFhZi6NChOKwfpLrj5MmTmDBhAiRJwtSK6FJbGhcuqIvDlGY9QcA4KKhfmmmOvb2aAZWRIQIHSjDE3d147TpJEttv3SqOliZNUrsSK/QDHIBh0KJ9e1EievGieJMrQQc3N8M1C01xcDAOugClDwo+/bTIkqtodesaHgENGiS+qX//vXGQdswYg3Vqzbr/fnH08sILoqS6pG2VbtTbt6sroms06r6ysxNHN7m54sjoxAlR96WfCWpvbxigAtSTJKZ4eoqjNP0GGP/3fyJwpLzPAgLMlwVXphkz1OBnSIjYT5GRIoNzyBB1OxcX8ZiUQGCbNuJ5VJbD+OAD9Ug2KMjwtooHHjDsxK2sW6gcSQ8fblgOrn8f+t2oTTWcAQz3d9FMQn36QcFnnjFcO1H/6F2/A7Hi1VcN5jkDDRuK97HyfenXX8VCUEpJ8pAhIlrzzz8iiqGkW1kgI66ynT9/Hs8++ywkScKDDz6IH374AYcOHcLhw4exYcMGDBs2DBqNBrNnz8aOHTswf/58ODo6Yt68edhcNF2mAmRmiiCXEh92cABq36nMOHPGMDinKCxUk8kDA8VB/5QpwDvviKyr7dtFMKFTJ/V8EyDKiSdPFh9BS5aIbKKPPxYfjcp3jb17xeoA+rKzxctFKSs1R7/c8exZMZ7yoJ/VpmTlKW9XpVPu33+L8xMHDpTP39Snn424c6eadK3VGsb14+KMy1orwvz5hkEp/XUAjx1T+yZ16WI43fXrp57TWL9efKQ0bSq+2rRrJ5bjvSDO46N7d7GP7e3Vrw9paepzsWSJ+AeIbZS+R4AInM6da34ZnO3bDZc//eKLsp2n0N/H772nTt+bNqnLMptz+bL4eO3dW0yNe/eKYODnn4uvWspXr5Lo7//hw8V+Vb5y5OWJIPzgwerSt2++aT57NjNTfKVT9iegBmKPHlVXOSkNrVa8x/UDeJ9+Kp7rCRMMV8IAxOW//CIChtOni8Ck4rPP1POW166Zzsp9801gwwbx8/Hj1WOdTwYFyyA5ORk1atSAk4kOtMHBwbhx48ZdrfEUGBho8C+8pHVnzCjQFsDNLVE00AAQFlYPD0Y9qLs+KSMJt/IMw/2F2kIkOahBqjrw0p3ZttPYoWGNhngw6kE83e5pvNDxBUxqOQmtg1rDrYYLHL1E2UlKjRRcCbyCy0GXcanhNaS/kImvjn2F9SfX6wJg9hp71PepDzg5IbRbfdR6PRBhf4VC+5YjEiemIvsZV3SbJcrLZFnGv9eOwimyHurWFd+Fm0UXYsiID/F/ff9SY4AODsDgwciHFgeTDyIxzUyetaOj7gtr0p3GIbCzQ1BQQ9hp7BDhpx5I7E3ai1NtTojHE3gZSZ0vIrh7w7I/GWYUDWCdvXkW2fnZyCvMQ7ycIpqjODsBdesiOyoc/9w4jOhXH0RYjAfO1TuHY02OQROYizC99fiKE9TDDXXW+CH8LV+DUmIAuJh+ERtObVAvCAgQ5eQowHmkIRmZyEMh4C2Cy6HeoWI7T09IISGICG6mm0UT0xORkSv2rbuvI3Lr2kNrJ2Y9Oxc3hNcQ+zjcT31t38i6gTf+fgNrjq+B7O0NtGwJNxcvPOvXAk/VjdR9OBXaF+Jo48PYc3GPUbDvxPUTKJQNc7yTMpJwOqXkboOyLBsEBZsENEGzms10v59JOYOcgiLByOhoMZt16oTNPUJxsUAs2qLx9UHEoEZoHatBbDs71BvQGKcLr+Djgx8jOTNZ7KfBg9GsszcaNdYiKSQJh5ofwvEBO5HaGrr92CRAHAg28G0AjbML6g1ojKaxhWjVNRc9OhWgW7tctGgB3LC7jZ01DcugChqGYy1O4CjUFY+94ISHosfAyU58ZuUV5mHz2c2AJKHXJ52R3zENzr2AHk82Mdo/iWmJOHj5IBz9vdGkMRDTWiR6yHZaXKl1BW41XODi7YwarjUASYJ/qBtynHPwT9t/kN3qAuo09QRq1IC9xh4jm4xE57qddZmYt/JuIT79PDQjhmHg4yEY+2QWXEadQqNI0VW6USRQt1E+TkliZXBXV/HFqoHmPBY2/QK/P/pDiVV81VWPHj0wc+ZMnDlzBq1atUJERAQkScIff/yBZs2aoWnTpoiLi8MzzzyDtqXJ0NNTXnMNzpxRSxxLUzoMiBeP/rqsRcuJzdEPYCkiIsQ3LKX00ZRWrcQ3vnPnRAnnF1+I7KeiJbozZqgByuxscQQZEaEeQbm6itvpH0GaM2WK4ZgkSRx9mBufws9PZK5VlqVLxZHs66+LIyA3N7HWnn6QR5LEolyloZT8vvFGydmfGo3h/SqLe8XGGq/bW1KATv9oy9vbuLFFUfb24mj/vffUI8Dbt9XUioro+nw3HBxEndsXX4jglPI+tbMTr8UhQ0R05Pvvjbt+t2hh+Dwqc+Zjj6mpDUW98IK6L2/dMiwjVkqHFdHRahBSfzV7c0HBgQPFkXD//iJCY05srOmTC/7+huXp+iXCgPgcKTrGotq2FfWL+iXY5siyqA1t2VKkHFmx48eP45133sF3332HNWvW4P7770d0dDSaNWuGQYMG4bvvvsN3332HhQsXIi0tDS+//DK+/fZbyLKMD5V0JhPKa55JS1OXW3VzE/Fc/UItU9mC//2nrp/WoYNh8qpGIxKMlywRpYc3bohAj/55jO3bxcH/tGniLdOtm3hp/vCD6M+jBHPmzVNXJDhzRpxrevdd4NlnxZSiv+bhlSvGY33jDbVPV1G3bokAm7m17fQVDQoqWWyASIQNCxOPee5cMVWXd7+dosEQZanR/fsNV2UARGBSeUw3b4rpp6xlrUePio9wU709V682PJegUIKT+qXDPXoYbuPvrxY8xMWJ5/fYMXFeau9eNUMMMFxLUL+EeNIk0b9JP3j0ySfAN98YLnuzYIEIlpnKviua0afVlpxJp0hNVVdBCQkRAWLlPFphoenmH4rCQnEO8MwZw8uV6fz0afE+MLWWX06OCM6NHi2mKiVztm1b9TyQ/te4N94wfP60WhGUK7qyQ2qqOBerPG8ODuLv62fAzpmjBjtv3BDPlbkVIj76yLAnlUI/kOzubngea8wY8T7XX5b3xRfF1zX96aFoCfGWLYa90YDSl49bEoOCZZCVlWUyIAiIbEFlG0txsnfC4s//h/5Pd8PAkW3w0kNPopF/I7g5iC9CMmScSTF8x1+9fRX5LuKLtwQgBJ5my12c7J0Q4hmCARED8EjzRxAaoWae2TtqENi2Ljo8FYvgxt6IT43H+TR1xusR1gPDGw+Hn8udL+2ShHNIgCY2D3XH+MKlXxa2JIiF3s+nnUdqdqr4VGvcWPepdBY3cRJ32od5ewMTJ6KgQT18eeRL/HzmZ6w8vBLnb5qZZWNjAY1GDQp6eSHEW5xC0Q8KAkC99rVg7yBBowEcB7nhQmZS0Xu7a0WDglpZi1M3TuFs6lmxvmBYmDgtFRYGSBL2XNyDNE0eMuZJSGuejIygG8ialgt4mG4MoU+WZaw9vhZHrh7Bb/G/IS5FLYfNL8zHmuNrdAE1Jzsn1PII1J2GPYnrBqXDQR5BcLY3/MJedL/pq9FYLRMK8YyAk7143/i5+MHH2Ud3nX5Az97dE6MeeRc+XfpiUOMGmFWnMRztJNhpgLpRrvjj7B/YcGqDug4jijQE0fPnuT+hlQ1PxeUW5GLr+a1YfXQ1/k78Gyeun8CNLLUdXZOAJgj3C9c9zkK5ECeumzhF17w5TkeH4J9UNZMw1DsUgzpNwlOzPkGjB0boAghpOWn48siXokTZxQUY9iC0D5zB7U7xcGyQjvBoCdKdkip7jb0uU9HN0Q0hniGimcGd7BeNBghyFN2J4eWFHWlHce22OO2ZV5iHrwsO4ZSklmzXhiemSK0R0bA9uoWp2Ur/XfsPKw6twJqCtXB4zRs5L8i4IBm2/y3QFuDnM3dqH2rXhl/NMIwP7oCoWE/E9vFBw8410WJ0FLxdfPBI80fQpW4X+IS4o2ULoFFTLaIaA1KD+vBy9saYZmMQ4hkCDycPNPBVPzMOXzkMODoi/+Ex2NTNEe7NAlEzwgu1w+xRM9gekn8NHIj2160QHhCkRa0nj6H1A+lwahhq8nm3Fu+++y4+/vhj1KpVC/Hx8ZBlGZcvX8axY8fg6+uLDz74AG8qa6tZQs+e4lv9P/8YtokujiQZZguWJlMQEEc4ShaQ0i7wv//MB9tMqVtXfIsbPVrNrlV4e4sjmMceUy9TgkRhYeJb5ODBpfs7Pj6G+yM62nwwMfjOorj29uKUcnEBzvJWp44Ikrz4ouH+mDpVZCxKkgjkmGoOUx5GjzYOwJWUiWlKx45qgEq/6UxxlPUfjx4Vz7l+oKi0gerKEBAgXrP6TUsAMY+sWyeiGfpHpPoefVSsDalwcBApEuZIkkgHKRpwa9hQRFaKbmsq49BcgxyNRqRF/fJL8Vmnvr7iqHX0aBHke/ppkX3611+GVRFFMwXfeqvkQDQggpLnz4sIwcsvi2BlmzbiCP6XX0TkZuFCtYweKD7z1Aq8/fbbiImJwdCiGbd6hgwZgpiYGLxzJ7Vt0KBBaNiwIfbpN7+pILVriwyniAgRGOjVy7DRu5KFo0+/qUVJq2tIkvgbX34pgilFk8oVBw6Il7wSoIyNFcGItWvFVzRAZKM984x4qX/wgci2Us536JfRKsGInBzDAKfi2jXxNuzUybBZvCmyrAYFvbzUBGz9EmL9JWNv3y57OWpx9PtwKZTAk36WoDK1nT4tgi+JieJjZc4ckahc2qTc1FQx7U+bpi6Nqzh92vDcwDvvqOeINm4UY9Vvcl80KAgYBvsUSmaqwtHRcDtlRQplDPprAL70kggcSZL4efFidYpat07sA6UfFCCCWd9/L352d1dXsvjhB+P1GgHx+nrzTfGxdfq0OL+nvM5GjBAfvfrJ9cWVEL/1llpaHRQkApmXL4ssRWVayM0VU8uiRertbt8WU/djj4n712+OMnq0+nO3bsZfcTp3VgPrx46JYKHiyhURxFY+Znx8xFQwebIo6FDOoaaliYDigw+KcbdrZ9zfChDvgxdeUH9fs8Y461eSxNK6y5apRQjp6Wqg1NlZrF6jBHj79lWni59/VoOTSUniq51yAkGZnv74w7D78vXrIshZlaqeJLm0dXaEpk2b4tq1a7hqovf48OHDsXbtWuTm5sLxHstPMjIy4OXlhfT0dHia6+JX3O1zM+Bs7wxHOzGOH0/9iENXxKduhF8EHmqqfkrsTdqL34//COzZg1pwx2NSjJjZSnGAkns7CyteW440bToaDW0IJz93nL95HldvG+6fOl51ML75eGgkDa7euopP//3UILCjb1z0OBxIPoDj10V5Zah3KOSs20jctxlIS4MnnDAtdDgch4+C7OKCDac24MjVI7rbB3sEY1LLSZBMHBzI69dj4dH/4RbygPBwDO/9NKL8oyDLMj468JEuwCJBgiZHi9yCHNi7u6COVx080vwRk/dZFln5WXhn1zuQYfiWa+DbAK4OrroAVx2vOkjOTNbtIweNA/K1+SLnOS8PcHXFIy0mGKzPZ0piWiJWHFZPX4T7hmN0M/EpfejyIfx4Wpyi00gajG46GjdzbuKXkz8Ce/fCPV+CH1yQiHQgNhadIvugRz3DWVSWZXx77FucTjmNEM8QNPZvjEb+jZBTkIOzKWexeuHvyE3NxXPPz0DDJmqJ947EHdh6fqvBfdV0q4k+Dfqgns+dA7zCQuDUKcTv3orvc/5BTkRtXUlUPZ96GN10NG7l3cKivers1KteL2w+p5a0DIgYgFaBInvh5I2T+D3+d102Y1E13Wri8Rhxekj//RLsEYxxzcfp3ksAkJ6Tjv8d+J8uC7aGaw1MaTVFt41W1mJ7wnbsSNyhe67dHd0xocUE7L64Gwf2/yhORQLitGJoKPxd/dEltIsuUxAA/k78G3+ev3OKLC4OHS5p0AF1sAz7cDuyPlCrFvxc/ODp5Imrt68iKz9LHOimpqI+fDACTeBYoyYwbRoKtYX4+ODHutd4UfV96mNstHq6/K/zf2F7ovptb3zz8Qj1DsWB5AP45YzIgXfQOGBiy4mo5V4LWlmLr7csQvyuO4FEf3807zEafRv0NQgmH792HGtPiBWn7SQ79I/oj32X9hms69gysCX+vazm8U+LnQY/Z1/8tP1jHDr0G+xy8zHw4QVoHmwmM8WMe/1ctQRZlnHo0CGcO3cOWq0WtWvXRkxMDOxLcxBcCpW+Tx59VD3VfOJE6YMw+/aJo72RIw3XfCtvGzaIIwvlFPW335acfVbUmTOi7igvTwQfSjoKy8urGiWr+goKShdouReLFhlmbW7fXvx6hOacOSOCOiNHGjYJKa30dJFiEhcnxlOacunqIDNTHHX+958IfOlnD5pz4YKoE1OObt55x/Saknv3Gq7n6e0t3jOVlb7dvbs4QuzXTzz35fl3s7PFQmSffCLqLu/mO3g1mWu8vb0xYMCAEtdDHzNmDH755Rek3YlyDR48GL///jtySrkw3r3uj6IfR02biiCCJIl1AfXjuKNGqSWU+/cbrzBRnKws8bJKTxdfQW/dEi8D/VU8HB1FEEs5p/XDD6Zj5ICYSj75RAQ1z54Vlx06JF62SsbeL7+oQbycHBGs2r1b/C5J4u2r9NYpKjFRfIUERBBSyRK7fl1cruSodO0qGj9kZopzQMePqwHEe7Fpk+mldi9eFEGg+HgRmPrmGzUROSxMPE79jMXx44tv1qBYuFD9ONJoxONXKscef1zNxJoyRfw8aZJ4KwMiCDdunHhOAwJE0Knox8bt22IsqaninMHQoSIoeOmSCJgpXa2LnosZOlQE5AARzIuOFisUTJ9uvCLIr7+KQJ1Sbl6jhpj6oqIMX0tjx4qPb+VcZdeuYgySJIJI33wjpiv9cISjo1qSq//aV94vgDhEaNrUcEy7dolga2GhuP+tWw0LQHJyxH5XGr0D4vkaNUoESDdtUi93dhbnh3r1EoFQ/eT0++9Xm7VER4vHnZAgxqm8x19+WZy72bxZDWjXrCl+1x/3lSvifWWqq7IkifvVn8r1//akSaKIRJbFPlSmxgULxJgBcb+xseoSBbGx4uRB0ffNs8+qSwEsXCjed3PnqiXf990nAvwvvqhu/9Zb4nnq2VNMMRMmiHUkzeScmVUR8wyDgmXQp08fbNmyxWTGYIcOHXDmzBlcL6lovxTK+4k+feM0vjn2DQCRjfRsh2d1AYw1x9eIbKhz5xB7WYN+7ceZXwOpFGRZxqkbp7A9cTuu3LoCTydPjIseBz9X9cDqQvoFHLlyBA52DnBzcMPhK4eRki0ynLydvZGZm6nLIBvaaCgC3ALw8YH/QXvjOiDL8K0dgfvC++Hq7avYcm6L0RhGNRmFhjWMZ7y0tCtYvHaWmBVDQzGzw2x4Oon9e/XWVexJ2gMfZx9E14rG9dvX8dV/X5V4n2Vx7NoxfH/ie6PLNZIGDhoH5BaKnOchjYYgOTNZ1xTClCj/KAxvbKL7op61x9fqgquACHZObzMdPs4++Pjgx7pATPNazTE4cjBu5d3Cwt0LIScmqHUNzs5AmzYY13y8WFPQBK2s1TVrKQ2trMWJ6yeQnZ+NWu61EOAWoMskNCUjNwPfHfsOlzLVWoQ2wW3g6eSpCwJ6Onni6bZPY83xNTh546RuOweNAzycPETmaTF6hPVAp7qdAADnbp7Dl0fU1nZ+Ln54MOpB1HKvhYsZF7Hp7CYkZYjZyl5jj0ktJ6GWey2j+/zv6n9Yf3K9LjDoaOeIvMI7M/bNm6jtWAPd2j2EIM9goyxMAMjMzcT/DvwPt/Nvo3WtFuh/KAvS6dM44S9jTaTWOOMJAC5fRuTpFDyIKNhDI9bTvPMt4/zN8/jiyBcmH78ECU+3exqeTp7Iys/Coj2LRCAaIkg3qKF6avTo1aOIS4lDbHAsanupp1Gz87Lw29aPkZF5A207jkRkYFOjv1OgLcDC3QsN1tXU1zqoNfqH98fSfUt1nwltQ9rCy8kLf5z9Q8zieXloUrsVhjYaWqZAfXU5UCuttLQ0vPPOO3hdfz2wMqr0fRIfL9IfYmNN1/lUBenpIkDUsuXdr/G3c6c4mhs3rnIzAKuTW7fEt/abN0Um6I0bVS84Wt3l5IgGOs2amZ4vTNm9WxzR1qwpjg6LlnQDIgWiTh21PrB7d8PavIqWmirSt7p2rbjXjCzfdbCxusw1np6eaNKkCXYrUSgz2rdvj2PHjiHjTiRj2LBh2Lx5sy5IWJLy3h9z5qjLYH7yiWESbJ06Iijl5iayiO713IYsi2DCggUimLZ0qXEm0o4dIuji76/25VGCFS+8oFbj9+wpghvffKNmcHl5icfy6KPifvWbogPi65tSklvUd9+pCcFFzz/t3Sv+DRggls98/XW1DLW4+yyLmTPVrLHoaNFEBRDBUKUxjBLM6tzZsAGMPicn8ZwV15NJqzUMrgIi+PLqq2IKCQkRQVA3N/Gx5OUlAq7Kum9RUWqgZuRI8RyUl+xsETAMCBCJ6yV9bTh1SgSplAy08HBx3nPyZDVT8Pffxcdq48ZqDkFYmPg9PV0Ek8ypX1/cRvn4evNNNUvOw0OU0SpZfEePin2krJdY3HnMV18VZdWAeIxt2qjluJ6e4jXVpYv5VSr27hVB5IYNxXtKCebPm2fc1ENRp47I8DS1AsF77wGzZqm/6wdF9QN8O3eKwBwg/uaJE3ealEK8rr7+Wl37Uf8j/8IF8d5t3FgEZ019lpw8ab7opW5dsU5hQYF4febniyBwUpL4Gqy8RwIDRdC+rOe7GRS0sDlz5uD111/Hjh070El5hQHIycmBn58fOnfujN/KoS1meT/R+YX5eHvX27qD/BGNR6CRfyPIsoyFexbq1hkcGjkETWs1K+6uSk2WZdzMuQlXB1eTAQ99F9IvYMWhFUYZdK4OrpjZbibsNfb4I/4P7EnaU6q/XdOtJh5r/ZhRwEA/O87TyRMz2800dXPd+L848oWuk62/qz8ej3m8TMGvojac2iBKJgE0qtEICWkJRsERjaTBsx2eRX5hPt7/532DjMpQ71DdeDSSBk+2eRJezoYNYBSZuZlYtHeRUQlth9odEOEXYZBBOKXVFAR5iAyL5YeW40LqeXFAe+sWEBEB+1pBeL7j87DXVHDmSDEKtAVYe3ytwVqBzvbOujX/OtTugF71e+H67ev4cP+HRq8lhUbSIMo/CtduX9Nlzbk6uOKx1o/pAsRaWYvVR1fj3E01z9tOsoObo5tRpmH/8P6ICTbs5Ktv36V92Bi30ejyWu61ML75+BLfG7kFubiVd0sE1WVZ9LX39sba0z8YBHwVrXwbo/8Px6CR77z2lRZpd+y+uBv/Xv4XAW4BaFGrBX46/RMy88S31571eqJjnY4GmZzO9s54ss2TcHEoualNaW2M24h9l4xLjxr6NcSwxsNgr7HHnot7RBAQIpiaX5ive06DPILwSPNH4GBn5puHGdXlQK0kGRkZWLhwId5//31kZmaisDQLDxVzX9awT6ia2rJF1AxNnSrqf6hqKE1AbPp0daGl2bPLr3OCFagun6udOnXC7t278cMPP2CQqdpJAD/99BMGDx6Mjh07YseOHQCAtm3bIiUlBXFKtKIE5b0/9u9XG1L3768u4H/hgrqGWUXEqUsbJ/7f/wzXJVOsWSPi7bIsMqn0xxcSomZGubiIjDMlx+TAAdNLdj79tJrltHGj2pPLlNu3RXBQ6a66Z4+6ht7diooSQRGNRgRe2pvoybhkifio2LJFbS4PiK+ljRqpmXyvv65mU5nyxx+GpbqACPAkJoqPISU49MQT6sdSTo4INBZdu+/TT43LjytbWpoImCqBVCVrLDdXBBcvXRJBqDVrDJfOLWrwYJFR+PPP4jnQao0fX1qaeK5Pq4dPGDBA5H4c1zuM6NRJBHDNBdJlWZS86zf9AMTrddOmksv1AZGNqNEYvo/y8kS2oH4Xb0kS41m1ynzyfkGBOLecmCgC3VFRavAwPFw8XkkSJerKUgMrVpR+xZvSatvWuLy7aVMRbFT6helnMPfpo2b1OjuLjMki/WtLpSLmGa4pWAYjRoyAJElYXKQM49NPP0VWVhZG6xfQVyEOdg6o71tf97sSWEnLSTNoPFKnhHLUspAkCb4uviUGPQBRLhsbbPyOiK4ZrQtE9azXEzFBMbpGBfq8nLwworH6qXn19lXdWnCXMi7h1zO/Ysk/S3QBQQBivbYSxt+rnjqDXc+6rgvo3Q1Zlg3WE4zwi0Ajf+PSuTDvMDjbO8PDyQMdaou1fCRIuK/BfRjbbCw8HMXaWlpZiwPJaisxWZYNmnD8e/lfo4Cgcvmui+qiK3W86ugCgoAIVsLOTiwi0aEDEBCAOl51LBoQBERG3pBGQxDgpq4Oq98EpGlNkZXm7+aP/hH94e5ovOZibc/aeLTVo3gw6kFMjZmKGW1mYETjEZjUcpIuIAiIwOFDTR9Cm2B1AfdCudAoIBjlH4XWQcXXpsQGx6JbqGHmbQ3XGhjbbGyp3htO9k5qlq0kidNM9va4P/J+tAtph2Y1m6FHWA881PQhPN32aQxsNgyayDunrTQa8S1QT/va7TEtdhqGNx6OcL9wg8YqR64cQYG2wCBg1yqwVbkGBAGRDagE1yVIiPKPwsQWEzGq6Sjd6yy6lvrezyvMMyjDHtlkZJkDgtXBwYMHMX/+fDz++OOYP38+/i3SCi0nJwdvvPEGQkNDsWDBAmRkZKBRVVoDjaisevYURyEMCFYtpYl8TJyoHj3qL/RG1cbs2bMhyzIefPBBjB07Fr/99htOnjyJU6dO4ffff8fDDz+MBx98EJIkYdadqEtaWhoOHTpU5iZX5alVK3VJ0i1b1KCP/nqCRZfCLA+lTRydMsV4yVt/f/VtIkkiI0w/OKG/9t+qVWpGFiCytxRHjohMrg4dxNqFipKCCm5uoqGC4tln720ts8REERAERFCkXTvjslRAXY63Rw/15wcfFAHRl15S9+lHH6nr4Zmi39dGee6vXBHZafpNIKZNU392djZcX1Fhaj3ByubtLQJVyuokW7aoDTJGjFA/WocNEwHT2Fi1txsgylR//lmUHM+eLQJL16+LwHjRgKeybPK4ceplv/xiGBAMChLr6RWXWStJIjNUvzGPg4MonS5NQBAQh5dF30eOjiKD9q23RJB43z6Rabt9e/Gredjbi/fCypWijLlBA7XsOS5OZCbGx6vNbIKCDNdYLC/PPac+pl69RJbnkSNqQBAwXLJaCQgC4vHeTUCwolj2SL+aadq0KZ544gksXboUQ4YMQb9+/XDy5EksWbIEXbp0wUMV8WorJ5E1InHqhiiOP33jNLSyFhfSL+iu93LyMpt1Vhl61OuB0ymnkZaTprusZaC6cLWdRqw/1rxWc/wa96vo6AqRRTSq6SjUcq+FcN9wxKWKM5dbzm3B/uT9usy6osK8zaworCfYMxhR/lG6AONvcb9BK2vRKrBVmdcXvHr7qkEAtoFvA3g6eRqsnQbAIFDYNbQrwnzC4O7oLjq8QgRU/kr4CwBw8PJBdK7bGUevHsW2hG3QSBr0bdAXDWs0xMHLB3X30yqwFQ5fOYxCuRDZBdkGzWaKBmMja0TqMrSUT7nS7KvK4GTvhJFNRuKTg58YBAT9Xf1R001tbNI6qDVaB7VGVn4Wrt2+hpSsFHg7e6OeTz2D583XxRe+LqabANhr7HFf+H2o71sfG05tEOv13VHHqw6a1WyGloEtS/U66Fy3Mwq0Bdh5YSf83fwxuulouDmWogtiMRztHNGngYnFXAAxO9atK06jFlePAVE6rgSJr2ddx6azm3SvU42kQZuQNsXd/K4EuAVgXPQ4JGcmo2GNhiafA1cHVzT2b2ywXqjSxVg/gGstZs+ejUX6qzcDeO211zB37lzMnz8f+/fvx4gRI5CYmAhZllGnTh3Mnz8fD1dmx1oiIkXz5qL2LC/PuPkHVQv3338/3nzzTbz00kv4+uuv8XWRTgSyLEOj0eD111/H/XciWjdu3MCLL76IvkXTtiqRRiO+5nz0kQik/PGHWNdNvzy1tEGKihrfZ5+JIJmy7OL48YaV7t7eImtp0iSRKH30Ts+8BQvEY8nNFT21LlwQWYCLF4tAjqnsx1atSrf07YQJouTyzBmRlfb44+L3u1nhQj+wobwUhg83zPaKiVEbdUiSCOBdu6aWjdarJzLWfv5ZBEU3bBBZXcuWiSyrgQNFwOXSJTUbNCREBFJ69xa/T58uCmgAkYFVtDfWAw+onWWVv2muoUxlCw0VmYC9ext2mtYPJUiSyKB88UURxL14Uay00bix8Rp0vr7m+5p5eIjgWe/eIkCl36F71CjxN5WS2uJoNKLs1ckJ2LZNNOsoj4+CmjVFoPpejRsnxgUAX3whAodK8Hv69IpZbeKBB8Tr3snJKA9Dp3Nn8dpU1igExHM6alT5j+desHy4jAoLC7F48WJ88sknSEhIQI0aNTBixAi8+uqrcHc3zk66GxWRElq0yUXX0K7IzM3UBY+aBjTF0CjzHcgqw9nUs1h9dDVkyAZNMYrSylocvXoUSRlJaBXYCoEeohD/cuZlfHzw42L/hrezN5oENEHX0K6lyn5LyUrBh/s/NOiSG1kjEoMaDoKrQ+ln0p0XdurWP1SaWhRqC/Hu7nd1JcQSJMxqP8tklpviVt4tLNqzSDceb2dvg0AqYFhmLEHCU22fwp/n/zTq1Ovh6IGn2j4FO43hWkP/O/A/g8YPk1tORrBnkU6RFhSfGo+vjn6ley13D+uOznXvYoH6UsrMzcSB5ANwtndGlH/UXQfPcwty4WDncE8l6BXhk4Of6ILs+prVbIYhjcysoF0JLqZfxOeHPtf9PqTREIPMxrKqqiVdv/76KwbeWfjG09MT4eHhyMjI0DUXWb16NR5//HFkZGTA19cXc+bMwdSpU++5oRVQdfcJEVF1Vd0+Vw8fPowPPvgAO3bsQNKdlLXg4GB07twZ06ZNQ0tznaVLqSL2h345aUyMSDju2FFk6Gg0Yp05S+/6Dz4AZswQ4zh0SG2UXlRBgchmcnAQgTDlXPPy5YYddYtq1EgEeZ56Sm04UhIl8KaIjBQBOKULbGkNGaJ2GN63TzwHp08bBuX+7/+A558v/n70y4pbtBBBG/1SzA4dxFqCSiOS114TGYZRUYYBFsCwaYsiM1MU2ChrzU2erPY6qyref1/tRB0WJtZNrMieTUlJIguvUyfr6aulyMwUQeesLLGuZH6+utbkxYulC3xWlCVLRM8vQGQNr19/98tWA1xT0GZU1BeKr45+pcukA/S62gLoF97PZAlvZUtMS8SVW1cQXSu6VOWVRekap+gJdA9Ei8AWqO9TH74uvmXO8jt14xQ2nNpgkJ3m6eRpVHZanJWHV+oCdcr6dwDw0+mfdNmCdbzqYEILE73Ui/jh5A8GGVTFiawRiZFNRhoFWADzwbTtCdt12YjO9s54tsOzVS6QdSD5AH6P/x2+Lr54pPkj5V7iakv+SfoHv8Ubr4X6aKtHdQF3S/nr/F84fv042gS3KXbtxtKoqgdqgwcPxk8//YTp06fj7bff1jWxOnnyJIYOHYr4+HgUFBSgW7du+O6771CjRo1y+9tVdZ8QEVVX/Fw1VBH7Iy9PZOVcvCh+79hRlA/LskhiPXSoXP7MPdu/X2TxmQsIFqegQAT+4tWVh9CggQgs3H+/moVXVp99JoKV2XeWNHdwECXLxa1dp09pmJCRIf5/9aoa3GjeXF0n79Spkrscy7LIelNKkYtjby+e71q11ICron59kQFpKsgyYIDo+guIdd1K+zgriyyLRhtr1ojMu+LWhqSSPfywccOe6dON10KsbPn5IjtQWQvxXvPIuKYg3ZOBDQfCx1kNkysBQUAEpKqCut510SakzV0FBAGgV71e8HISmVz1ferj4eiHMaXVFMQGx8LP1a/MAUFABNYea/0Y6nqpay5m5Gbgz3OlW8U4tyDXoFS7ga+aX9yhdge4OrjCXmOPLnW7mLq5EVPB2wa+DeDvalwqGhMkAikhniEGHXLtNfZoFWhi5WKIklJl/7cMbFnlAoKAKBF+vuPzmBozlQHBe9S0ZlPYSYbZoqHeoRYPCAJAt7BumBY77Z4DglXZwYMHERoaikWLFhl0tW/UqBEWL16MgoICeHp6YsOGDeUaECQiIqqOHB1F2anSHHvnTrVMsCLWE7xbMTF3FxAERBBsxQqRPda+PbB2rQi0TZt29wFBQJQs//svoCSA5ueLktLU1NLdfu9eERAERKaifiDurbfEeGfOLDkgCIiMOP11AAFxu88+M85+HDpULT1++GHDsufp081nXc2eLQKf4eGm1xi0NEkSa0geP86AYHnQXzsREPtXydCzJAcH0Y9r0aJ7DwhWlKp3tE8VxtPJE+OajzPKbnOyczJo4FCd+bj4YFrsNLzQ8QWMjR5rtI7c3fJ29sa45uPQvrbaXuvo1aMGZbbmXLl1Rdf0w0HjgNpe6mzu5+qHWe1m4dkOzxo0gylOsGcwImuIHH1XB1cMaTQEo5uOxpRWUwwCfTXdaqKej/g2IkkS2oWoXWija0abXdfOy9kLT8Q8gYktJho0W6lqLN38xFq4Orgi3C/c4DL91zlVrOvXr6NFixbQmPhGqyzm3qlTJ3h4eFT20IiIiKqk6GhRRlx0arTkeoLlrWNH4Nw5kQX54IOiUUN5iIwUHYiH3FkhJi1NlPuWxt696s+9ihwi9OkjxrtwYenHMm6cKB12dgbmzAEOHxZl04cOiXUKAfG4Z85Ub+PlJToNA6KBRHEdZbt2FesOnjhRdYMxVH66dhVrTyoeeEBkklLJeFRtY7ydvTEuehxWHF6hayhQ26t2lcwGu1sV1ZlUI2nQI6wHTl4/iZs5NyFDxpZzWzCm2Zhib1egVVtquTi4GAWz7DR2sEPZZvphUcNw5dYV+Lv5w9FOrC3mYOeAgQ0HonFAY1xMv4joWtEGAdFmNZtBK2txK+9WiQ0kPJw84OHEIIStaBnYUteIyN/VH+G+4SXcgspLXl4evLxMr1OplAT4l9AwhoiI6G4cOHAA33//PU6fPo2MjAyYWlVKkiT8aarLhYXFxopGHH36iLXDAOsKClYkR0fRwGTjRtEQ5YMPRMZdSevMKfsZEA0i7pWbG3DwoCgJ12+e4e0tyn2nTRPbFF3a8s03ge7dRfmxma9QOjynajvs7MTakfPmiSzBZ56x9IiqDwYFbZCfqx8ejn4YP5z8Abfzb6NbaDdLD6nasNPYoUe9Hvj+xPcARNOLczfP6TLyTNFvUlK0TPNexmGu+Uc9n3omxyNJEloElnE1YbIJ4b7h6FmvJ5Izk9E1tGu5ZNcSERFR1aV0vlcCgZIkGQQFld+r8neCjh2B338H5s8H+vUzzBKi4tWuLdbme/tt0fF47lzRtbU4StMOoPy6uUqScTdd5fJOnUzfRqMpn863ZH1eekl0Yq5fH7hTcEOlwKCgjQpwC8CUVlMAoEpP9lVRY//G2O2xW9exdfPZzZjSaorZ/VioVYOC1pSRSdZDkiR0rMPT65YSHx+PL7/88q6uf/jhhytqWEREZKXWrl2L9957DyEhIZg7dy7WrVuHzZs3448//kBcXBy++uor7NmzB88//zz69Olj6eEWq1MnoAomMlYLL7wg1vBLTRUNGmbOFKXZ5uSry9HDoWIKs4juiZ2d8VqVVDIGBW0Yg4F3R5Ik9KrXC18cEafTLt+6jGPXjqFpzaYmtzfIFNSU04IgRGQ1du3ahV27dpm8TpIks9dLksSgIBERldknn3wCOzs7/PnnnwgPD8fu3bsBAL169UKvXr0wdepUzJ07F++88w6GK4u7kdXx9haZVbNmiWYtzz0nMi/NqYhMQSKyPAYFie5CmE8Ywn3DEZcaBwA4fOWw2aCg0mQEKL/yYSKyDnXq1OEJGiIiqlSHDh1CmzZtEB5ufg3hV155BatXr8aCBQvw/fffV+LoqDI98QSwZAmQmCiat1y4YH5tQWYKElknBgWJ7lKTgCa6oGBWfpbZ7fTLh5kpSET6EhISLD0EIiKyMZmZmaijF/lxvJP2devWLbjfadOq0WjQpk0bbN++3SJjpMrh5AT07w98+KH4/fp180FBZgoSWScucEZ0l/S7HOt3GC5Kv3yYawoSERERkSX5+/sjLS1N93uNGjUAGJ+oun37NjIyMipxZGQJLi7qzzk55rdjpiCRdWKEgugu2WvURNt8bb7Z7QwyBVk+TEREREQWFBoaisTERN3vLVq0gCzL+Prrr3WXXblyBdu3b0fdunUtMUSqRPpBwexs89vpBwWZKUhkPRgUJLpLDprSZQoarCnI8mEi0pNd3LdvC9wPERFZvx49euDUqVO6zMD77rsPvr6+eOuttzBs2DDMmjULbdq0we3btzF06FDLDpYqXGmDgvrlw8wUJLIeDAoS3SWDTMHCYjIFWT5MRGbUr18f//vf/1BYWFjyxiYUFBRg2bJlqF+/fjmPjIiIrNXIkSMxYcIEXLx4EQDg5uaGFStWwNnZGevWrcOiRYtw8eJFtGzZEi+88IKFR0sVzdlZ/ZmZgkS2h41GiO5SqdcUZPkwEZkRFBSEqVOn4vXXX8e4ceMwbty4YrtBKk6fPo2VK1di1apVSE5ORqtWrSphtEREZA0aNWqETz/91OCygQMHIi4uDj///DNSU1PRqFEjDBw4EHZ2/O5q7ZgpSGTbGBQkukv6mYKFciG0stZkJiDLh4nInP379+Ozzz7DnDlz8MYbb+D//u//EBISgnbt2qFRo0bw8/ODp6cnMjIykJKSghMnTmDPnj24dOkSZFmGv78/PvnkE0ycONHSD4WIiKq5oKAgPProo5YeBlUyrilIZNsYFCS6S/pBQUBkCzraGc+Q+uXDzBQkIn2SJGHy5MkYO3YsVq1ahaVLl+K///7DxYsXIUmS0fayLAMAmjVrhmnTpmH06NFw0f82T0RERFQGzBQksm0MChLdJf1GI0AxQUEt1xQkouI5Oztj8uTJmDx5MhISErB161YcOnQIV69eRXp6Ory9vREQEICWLVuiW7duCA0NtfSQiYjICiQlJSE5ORk5OTlmt+ncuXMljogqm35QsJiXgUGmIIOCRNaDQUGiu1Q0UzC/MB8wMUEaZAqyfJiIShAaGooJEyZYehhERGTF1q5dizlz5iA+Pr7Y7SRJQkGB+bWzqfora6agnR2gYZ4DkdVgUJDoLuk3GgHMNxsxWFOQ5cNEVIwdO3bAzs4OHTp0sPRQiIjISq1ZswajRo2CLMvw9fVFaGgoPDw8LD0sspCydh9mliCRdWFQkOguaSQNNJJGF/TL1+ab3M6g+zAzBYmoGF27dkXXrl2xdetWSw+FiIis1BtvvAEAeP/99zF16lR2GLZxZc0UZJMRIuvCxF+ie6C/rqC5TEH98mGuKUhExfHx8UFQUJClh0FERFbs9OnTaNeuHaZPn86AIJW5+zAzBYmsCyMURPdAf13B/MJSZAqyfJiIitG8eXPExcVZehhERGTFvL29UbduXUsPg6oIZgoS2TYGBYnugX5QsFRrCrJ8mIiKMWPGDOzfvx+//vqrpYdCRERWqlu3bjh06JClh0FVRFm7DzNTkMi6MChIdA/0m42UpnyYmYJEVJwWLVpg2rRpeOCBBzBlyhT88ccfOH36NC5cuGDyHxERUVm9/PLLuHTpEt58801LD4WqgLKWDzNTkMi6sNEI0T0wKB8uRaMRrilIRMUJCwsDAMiyjM8//xyff/652W0lSUJBgemTEUREROZERkZi06ZNGDlyJH788Ufcd999qFOnDjQa099TH3744UoeIVWm0nYfVsqHmSlIZF0YFCS6B6VpNMLyYSIqrdq1a0OSJEsPg4iIrNzu3buRmpqKCxcuYN++fcVuy6CgdXNyAiQJkGVmChLZIgYFie5BqRqNsHyYiEopISHB0kMgIiIrt3z5csyaNQsA0KxZM4SHh8Pd3d3CoyJLkSSRLZidzUxBIlvEoCDRPShNoxGWDxMRERFRVbFo0SLY29tj/fr1GDBggKWHQ1WAi0vxQcHCQkB7p/iJQUEi68IIBdE9KHOjEZYPExEREZEFnT17Fp07d2ZAkHSUZiPmgoL5egVRLB8msi4MChLdg9I0GjFYU5Dlw0RUCn///TeGDx+OkJAQODk5YeLEibrrNm/ejBdffBFXrlyx4AiJiKi68vHxgb+/v6WHQVWIEhTMyTF9vX5QkJmCRNaFQUGie1CaRiP65cPMFCSikixYsABdu3bF999/j+TkZOTn50OWZd31Xl5eeOutt7B+/XoLjpKIiKqr++67D3v37oVWqy15Y7IJJWUKKusJAswUJLI2DAoS3YOyNhrhmoJEVJzffvsNL7/8MoKDg7FmzRpcvXrVaJvY2Fj4+/vjl19+scAIiYiounvttdeQm5uLGTNmIE8/2kM2y9lZ/D87W3QhLoqZgkTWi41GiO5BqdYU1LL7MBGVzvvvvw8nJyf89ttvaNy4sdntoqOjERcXV4kjIyIia/Hpp5/ivvvuw0cffYRff/0V3bp1Q506daDRGJ+8liQJc+fOtcAoqTIpmYKyLLICnZwMr2emIJH1YlCQ6B6UeU1Blg8TUTH279+P2NjYYgOCAODv74/du3dX0qiIiMiazJ8/H5IkQZZlJCYmYuXKlUbbKNczKGgblKAgILIFiwYFmSlIZL0YFCS6B/pBwVJ1H2amIBEV4/bt26hVq1aJ26Wnp3MtKCIiuisvv/wyJEmy9DCoCikaFPT2Nrye3YeJrBeDgkT3oKyNRrimIBEVp2bNmoiPjy9xu9OnT6N27dqVMCIiIrI28+fPt/QQqIrRDwqa6kCsXz7MTEEi68IIBdE9KE2jEZYPE1FpdezYEYcPH8auXbvMbvPLL78gPj4e3bp1q8SRERERkbUqmilYFDMFiawXg4JE96CkRiOyLLN8mIhKbdasWZAkCUOGDMGGDRtQUGD4ufL7779j0qRJcHBwwPTp0y00SiIiIrImSvdhwHRQkJmCRNaL5cNE96CkRiP6WYIAy4eJqHgtW7bEwoULMXPmTAwdOhQuLi6QJAnr1q3D+vXrkZmZCVmWsWTJEkRFRVl6uEREVA18+eWX93T7hx9+uJxGQlUVMwWJbBeDgkT3oKRGI/pZggDLh4moZE8++SQiIyMxb9487N+/H7IsIzMzEwDQrFkzLFiwAAMGDLDwKImIqLoYP378XTcWkSSJQUEbUFJQkJmCRNaLQUGie1BSo5GimYIsHyai0ujTpw/69OmDlJQUnD9/HlqtFrVr10ZgYKClh0ZERNVMnTp12G2YilWWTEEGBYmsC4OCRPegpEYj+p2HAWYKElHZ+Pn5wc/Pz9LDICKiaiwhIcHSQ6AqriyZgiwfJrIuXOCM6B6U1GikaPkw1xQkouKsXLkSSUlJlh4GERER2RD9oGBOjvH1zBQksl7MFCS6B/qZgoVyIbSy1iDwZ5QpyPJhIirGhAkTIEkSwsPD0bNnT/Ts2RPdu3eHp6enpYdGREREVoqZgkS2i0FBonugv6YgILIFHe3UmdJoTUGWDxNRMcaPH4+tW7fizJkzOHPmDD766CNoNBq0atVKFyTs0KEDHHianoiISik7Oxsu+lEfC98PVT3OzurPXFOQyLawlpHoHuhnCgLG6wrqlw9Ld/4jIjJn+fLlSEhIwOnTp7Fs2TLcf//98PDwwL59+/DGG2+gR48e8PHxQd++fbFw4UJLD5eIiKqB+vXr43//+x8KCwtL3tiEgoICLFu2DPXr1y/nkVFVUZZGI8wUJLIuDAoS3YOiQcGi6wrqlw9rJA07vxFRqYSHh+Pxxx/H+vXrkZKSgn/++Qevv/46unbtioKCAmzatAnPPfecpYdJRETVQFBQEKZOnYrQ0FDMmTMHcXFxpbrd6dOn8cILLyA0NBTTp09HcHBwBY+ULKUs5cPMFCSyLlYVFLx06RL+7//+D126dEFgYCDc3NzQuHFjPPPMM0hJSTHafuXKlZAkyeS/adOmmfwbX375JVq0aAEXFxfUrFkTkyZNwvXr1yv6oVEVpd9oBDARFNTLFGTpMBHdjfz8fGRmZiIzMxMZGRkoKBCfM7IsW3hkRERUHezfvx8ff/wx8vLy8MYbbyAyMhJ169bFyJEj8corr2Dp0qX48ssvsXTpUrzyyisYMWIE6tSpg6ioKLz11lvIz8/HJ598gn379ln6oVAFYaYgke2yqjUFf/75Z8yfPx/9+/fHM888oyu5Wrx4Mb799lvs378ftWrVMrrdiy++iEaNGhlc1rBhQ6PtFi1ahJkzZ6JLly54//33kZSUhPfeew979uzBvn374ObmVmGPjaomjaSBRtLo1g7M1xqWD+uvKcgmI0RUWocPH8bmzZuxZcsW7Ny5Ezk5OZBlGZ6enujfv79ufUEiIqKSSJKEyZMnY+zYsVi1ahWWLl2K//77DxcvXjRZxaKcdGrWrBmmTZuG0aNHcy1BK8dMQSLbZVVBwU6dOiExMdEg8Dd58mS0adMGkydPxrvvvot3333X6Ha9evVC165di73vGzduYM6cOYiJicGff/4JOzsR4ImJicGgQYPw/vvv48UXXyzXx0PVg4PGAbmFuQBKLh8mIirOyJEjsXXrVqSkpECWZTg4OKBt27a6IGBsbKxu/iEiIioLZ2dnTJ48GZMnT0ZCQgK2bt2KQ4cO4erVq0hPT4e3tzcCAgLQsmVLdOvWDaGhoZYeMlUS/aBgTo7x9cwUJLJeVhUUbNy4scnLR4wYgcmTJ+PYsWNmb5uZmQknJyc4mvmU27BhA7KysjB9+nSDA7KBAweiXr16WL16NYOCNspeY68LChbXaITlw0RUkjVr1kCSJDRr1gzz5s1D79694erqaulhERGRlQkNDcWECRMsPQyqIkrqPsxMQSLrZROpS0lJSQCAmjVrmrx+0KBB8PT0hLOzM6Kjo7F69Wqjbfbv3w8AaNeundF1bdu2xalTp3Dr1q1yHDVVF/rrChbNFGT5MBGVhYeHB2RZxpEjRzB69GgMGTIECxcuxJEjRyw9NCIishI7duzArl27LD0MqkK4piCR7bKqTEFz5s2bBwAYN26cweWurq546KGH0L17dwQEBOD8+fNYtmwZxo4di7Nnz+puBwDJyckAYLLrVnBwMGRZRnJyMiIiIso8vsDAQIPftVqtmS2pKtLvQFx0TUH98mFmChJRSVJTU7Fv3z5s2bIFW7ZswV9//YVNmzZBkiTUqFEDPXr0QK9evdCrVy+EhISU6b451xAREQB07doVXbt2xdatW8v1fjnPVF9cU5DIdlXJoGBaWhoWL15c6u1nzJgBX19fk9ctXLgQa9euxZQpU9C9e3eD64YPH47hw4cbXPboo4+idevWWLBgAcaNG6dbSyMrKwsA4OTkZPQ3nO/kWyvbkG3RDwoW132YawoSUUns7OzQrl07tGvXDnPnzkVWVha2bduGLVu24M8//8R3332H7777DgAQERGBkydPWnjERERU3fj4+CAoKMjSw6AqpCyZggwKElmXKhsUfOWVV0q9/ZgxY0wGBT/77DM888wz6N+/P5YuXVqq+3JycsLs2bMxfvx4bNq0CVOmTAEA3ZpOubm5Rt23cu6sxnq36z5dvnzZ4PeMjAx4eXnd1X1R5XPQmC8fNsgUZPkwEZWRq6sr+vXrh379+uHIkSP46quvsHTpUuTk5ODMmTNlui/ONUREBADNmzdHXFxcud8v55nqy9ERkCRAlkvOFGT5MJF1qZJBwdDQUMiyfE/3sXz5ckyZMgW9e/fGunXr4FCGUxpKduCNGzd0lyln0y5duoQGDRoYbH/p0iVIksQzbjbKoHy4SKMRgzUFWT5MRGWQlJSEzZs367IEr1+/DgC6rsSm1rglIiIqyYwZM/DAAw/g119/Rf/+/S09HKoCJElkC2Zlldx9mJmCRNalSgYF79Xy5csxadIk9OzZExs2bDBZ8lsc5cyZfmOSmJgYfPLJJ9izZ49RUHDv3r1o2LAh3N3d733wVO0U12jEoPswMwWJqAQbNmzQrSeozEWyLEOSJDRp0gQ9e/ZEz5490aVLF3YlJiKiu9KiRQtMmzYNDzzwAMaPH4+hQ4ciNDTUqBpKUadOnUoeIVmCEhRkoxEi22J1QcGVK1di8uTJ6N69O3788Ufden+mpKSkwM/Pz+Cy9PR0vPXWW3B0dESfPn10l99///2YMWMGli5dioceegh2diLA8/PPP+PcuXN47bXXKuYBUZVX2kYjXFOQiEoyZMgQ3c+1a9fWBQF79OiBgIAAC46MiIisRVhYGABx0unzzz/H559/bnZbSZJQUFBg9nqyHsphMxuNENkWqwoK/vTTT5g4cSI8PT0xYsQIrFu3zuB6d3d3DB48WPd706ZN0aVLFzRt2hQBAQFISEjA8uXLcfnyZSxcuNCgs6O/vz9ee+01zJ49Gz179sSoUaNw6dIlLFy4EJGRkXjqqacq6VFSVVPaRiMsHyaikgwePBi9evVCz549ER4ebunhEBGRFapduzYkSbL0MKiKURJFmSlIZFusKij477//QqvVIi0tTdcgRF/dunUNgoKjRo3Ctm3bsGnTJt1CuLGxsVixYoVBlqBi1qxZ8PPzw6JFizBjxgx4enpi+PDhePPNN1k6bMOKazRisKYgy4eJqATr16+39BCIiMjKJSQkWHoIVAUVFxRkpiCR9bKqoOD8+fMxf/78Um+/cOHCMv+N8ePHY/z48WW+HVmv4hqNGHQfZqYgERERERFVQfpBQVkWzUcUzBQksl5c5IzoHpW20QjXFCSi0jp58iQee+wxXRMrd3d3NGzYEI8//jhOnjxp6eERERGRldHvM5Oba3gdMwWJrBejFET3qLhGIywfJqKyWrlyJVq0aIFPP/0UcXFxyMrKQlZWFuLi4vDxxx+jRYsW+OKLLyw9TCIiqub+/vtvDB8+HCEhIXBycsLEiRN1123evBkvvvgirly5YsERUmXSDwrm5Bhex0xBIuvFoCDRPSpuTUGWDxNRWRw8eBCTJ09GXl4e+vfvjx9++AFHjx7F0aNHsWHDBgwcOBB5eXmYPHkyDhw4YOnhEhFRNbVgwQJ07doV33//PZKTk5Gfnw9ZlnXXe3l54a233uJatzZE6T4MGK8ryExBIuvFoCDRPSp2TUGWDxNRGbzzzjvQarX4/PPP8dNPP+H+++9HkyZN0KRJEwwaNAg//vgjli9fjoKCgrtaF5eIiOi3337Dyy+/jODgYKxZswZXr1412iY2Nhb+/v745ZdfLDBCsgT9TMGiQUElU9De3nCtQSKq/qyq0QiRJegHBYvNFGT5MBGV4O+//0bz5s3xyCOPmN1m/PjxWLp0KXbs2FGJIyMiImvx/vvvw8nJCb/99hsaN25sdrvo6GjExcVV4sjIkooLCiqZgswSJLI+TF0iukfFNRoxWFOQ5cNEVIIbN26gUaNGJW4XGRmJGzduVMKIiIjI2uzfvx+xsbHFBgQBwN/fn2sK2pDSZAoyKEhkfRgUJLpHxTUa0S8fZqYgEZXE29sbFy5cKHG7CxcuwMvLqxJGRERE1ub27duoVatWidulp6dDq9WWuB1Zh9IEBdlkhMj6MChIdI9K22iEawoSUUliYmKwe/dubN261ew2W7duxa5du9CmTZtKHBkREVmLmjVrIj4+vsTtTp8+jdq1a1fCiKgqYPkwkW1ilILoHpW20QjLh4moJNOnT4dWq8XAgQPx7LPP4vjx48jKykJWVhaOHTuG2bNnY+DAgbptiYiIyqpjx444fPgwdu3aZXabX375BfHx8ejWrVsljowsST8omJNjeB0zBYmsF4OCRPeouEYjBmsKsnyYiErQp08fvPTSS8jOzsbChQvRrFkzeHh4wMPDA9HR0Vi0aBGys7MxZ84c9O7d29LDJSKiamjWrFmQJAlDhgzBhg0bUFBg+P31999/x6RJk+Dg4MATUDbE2Vn9mZmCRLaDQUGie1RcoxGD7sPMFCSiUnjttdewceNGdOvWDU5OTpBlGbIsw9HREd27d8fGjRvxyiuvWHqYRERUTbVs2RILFy7EjRs3MHToUHh7e0OSJKxbtw7e3t7o378/rl27hoULFyIqKsrSw6VKwjUFiWyTfcmbEFFx9DMFC+VCaGWtbv1A/fJhrilIRKXVt29f9O3bF4WFhUhJSQEA+Pn5wc6OJxeIiOjePfnkk4iMjMS8efOwf/9+yLKMzMxMAECzZs2wYMECDBgwwMKjpMrENQWJbBODgkT3SL/RCCCyBR3txGk0lg8TUWnEx8dj/fr1SEhIgJOTE5o3b47hw4fDxcUFAQEBlh4eERFZoT59+qBPnz5ISUnB+fPnodVqUbt2bQQGBlp6aGQBzBQksk0MChLdI/1MQUA0G1GCgiwfJqKSLF68GM8++ywKCwsNLp87dy42btyIJk2aWGhkRERkC/z8/ODn52fpYZCFmQsKFhYC2jt5DswUJLI+rGckukf6awoChusKsnyYiIqzc+dOzJo1CwUFBXB1dUWLFi1Qv359SJKEpKQkDB06FFqttuQ7IiIiKqWVK1ciKSnJ0sOgKsZc92ElSxBgpiCRNWKUgugeGWUKatWZ0yBTkOXDRFTE0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MIiKyIhMmTEDdunURGRmJadOmYcOGDcjIyLD0sMjCzHUfVtYTBJgpSGSNGBQkukcaSWOQBaifKWiwpiDLh4moiD179iAkJAQff/wx3NzcdJc3a9YM77//PmRZxt69ey04QiIisjbjx49H7dq1cebMGXz44YcYOnQo/Pz80LZtW8yZMwfbtm1Dvn56GNkEc+XD+i8FBgWJrA+DgkTlQL/ZiLnyYWYKElFRV69eRevWreFooh6nY8eOAIBr165V9rCIiMiKLV++HAkJCTh9+jSWLVuG+++/Hx4eHti3bx/eeOMN9OjRAz4+Pujbty8WLlxo6eFSJSlNUJDlw0TWh0FBonKgX0KcX2i6fJhrChJRUXl5efD29jZ5naenp24bIiKi8hYeHo7HH38c69evR0pKCv755x+8/vrr6Nq1KwoKCrBp0yY899xzlh4mVRJzQUGWDxNZN0YpiMqBfrMRs5mCLB8mIiIioiooPz8fmZmZyMzMREZGBgoKxPdZWZYtPDKqLMwUJLJN9iVvQkQlMcgU1Gs0YrCmIMuHiciE+Ph4fPnll3d1/cMPP1xRwyIiIit3+PBhbN68GVu2bMHOnTuRk5MDWZbh6emJ/v37o2fPnujZs6elh0mVhJmCRLaJQUGicmB2TUEtMwWJqHi7du3Crl27TF4nSZLZ6yVJYlCQiIjKbOTIkdi6dStSUlIgyzIcHBzQtm1bXRAwNjYWdnb83mpr9LsP5+SoPzNTkMi6MShIVA7Mrikoc01BIjKvTp06kCTJ0sMgIiIbsmbNGkiShGbNmmHevHno3bs3XF1dLT0ssjBHR0CSAFlmpiCRLWFQkKgc6AcFlUxBWZZZPkxExUpISLD0EIiIyMZ4eHggMzMTR44cwejRo9GpUyf06tULPXv2RHR0tKWHRxYiSaKEOCuLawoS2RIGBYnKgalGI/oBQYDlw0RERERkeampqdi3bx+2bNmCLVu24K+//sKmTZsgSRJq1KiBHj16oFevXujVqxdCQkIsPVyqRKaCgswUJLJuDAoSlQNTjUb0S4cBZgoSERERkeXZ2dmhXbt2aNeuHebOnYusrCxs27YNW7ZswZ9//onvvvsO3333HQAgIiICJ0+etPCIqbIozUaYKUhkOxgUJCoHphqN6DcZAbimIBERERFVPa6urujXrx/69euHI0eO4KuvvsLSpUuRk5ODM2fOWHp4VIlMBQWZKUhk3RgUJCoHphqNsHyYiIiIiKqypKQkbN68WZcleP36dQDQdSVu166dhUdIlUkJCrL7MJHtYFCQqByYajTC8mEiIiIiqmo2bNigW08wLi4OgAgCSpKEJk2aoGfPnujZsye6dOnCrsQ2xtlZ/D87W3QhliRmChJZOwYFicqBqUYjLB8mIiIioqpmyJAhup9r166tCwL26NEDAQEBFhwZWZqSKQgAubkiSKifKcigIJH1YVCQqByUqtEIy4eJiIiIyMIGDx6MXr16oWfPnggPD7f0cKgK0Q8KZmcbBwVZPkxkfRgUJCoHphqN6K8pKEFipiARERERWdz69estPQSqoooGBX18WD5MZO0YpSAqB6YajeiXDzNLkIiIiIiIqrKiQUGAmYJE1o5BQaJyYHJNQb3yYWYJEhEREVFVcvLkSTz22GNo2LAh3N3d4e7ujoYNG+Lxxx/HyZMnLT08sgBTQUFmChJZN5YPE5UDk2sK6mcKsvMwEREREVURK1euxGOPPYb8/HzIsqy7PC4uDnFxcVixYgU+/vhjjBs3zoKjpMqmdB8GgJwc8X9mChJZN6YvEZUD/aCgqTUFWT5MRERERFXBwYMHMXnyZOTl5aF///744YcfcPToURw9ehQbNmzAwIEDkZeXh8mTJ+PAgQOWHi5VImYKEtkeZgoSlQNTjUb0y4eZKUhEREREVcE777wDrVaLzz//HI888ojBdU2aNMGgQYOwcuVKTJgwAQsXLsQ333xjoZFSZeOagkS2h5mCROWgpEYjXFOQiIiIiKqCv//+G82bNzcKCOobP348WrZsiR07dlTiyMjSmClIZHsYqSAqB6YajbB8mIiIiIiqmhs3bqBRo0YlbhcZGYkbN25UwoioqmCmIJHtYVCQqByYbDTC8mEiIiIiqmK8vb1x4cKFEre7cOECvLy8KmFEVFUwU5DI9jAoSFQO9IOCWlkLraxl+TARERERVTkxMTHYvXs3tm7danabrVu3YteuXWjTpk0ljowsjZmCRLaHkQqicqDfaAQQJcQGmYIsHyYiIiKiKmD69OnQarUYOHAgnn32WRw/fhxZWVnIysrCsWPHMHv2bAwcOFC3LdkOZ2f155wc8X/9oCAzBYmsD7sPE5UD/UxBQDQbMVhTkOXDRERERFQF9OnTBy+99BJef/11LFy4EAsXLjTaRpZlzJ07F71797bACMlSWD5MZHuYKUhUDvQbjQB3MgW1zBQkIiIioqrntddew8aNG9GtWzc4OTlBlmXIsgxHR0d0794dGzduxCuvvGLpYVIlY/kwke1hpiBROSiaKZhXmGdQPsw1BYmIiIioKunbty/69u2LwsJCpKSkAAD8/PxgZ8eT2bbK1VX9OStL/J+ZgkTWzSojFaGhoZAkyeS/GzduGG2fnJyMhx9+GP7+/nBxcUHr1q2xdu1ak/edm5uLl19+GWFhYXByckL9+vWxYMEC5OufQiGbo5E0cLRTT53lFuYaZgqyfJiIiIiILCg+Ph5vv/02pk6diqeffhpffPEFsrOzYWdnh4CAAAQEBDAgaOP0m02np4v/M1OQyLpZbaZgZGQkXnrpJaPLPTw8DH5PTU1Fx44dce3aNcycORMhISH4+uuvMXz4cCxfvhyPPPKIwfYjRozAjz/+iAkTJqBdu3bYs2cP5s6di/j4eKxcubIiHxJVcc72zsgrFKfScgpyDNcUZPkwEREREVnI4sWL8eyzz6KwsNDg8rlz52Ljxo1o0qSJhUZGVYl+UDAtTfyfmYJE1s1qg4I1a9bEmDFjStzuzTffxPnz5/HTTz/pumxNnDgR7dq1w+zZszFs2DC4u7sDADZu3Igff/wRM2fO1C3IO2nSJHh7e+O9997DlClT0L59+4p7UFSlOds7IyM3AwCQW5Br2H2YmYJEREREZAE7d+7ErFmzIMsy3Nzc0LBhOeSaAwAAKN1JREFUQ2RkZODcuXNISkrC0KFDcfLkSWg0VllERmXg7a3+zExBIttg1Z/8BQUFyMjIKHabr7/+GvXr19cFBAHAzs4O06dPR2pqKjZu3GiwLQA89dRTBveh/L569eryGThVS052TrqfcwpyDMqHuaYgEREREVnC0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MqgLc3AClgpyZgkS2wWojFf/88w9cXV3h5eUFb29vjBs3DsnJyQbbXL58GZcuXULbtm2Nbq9ctn//ft1l+/fvR3BwMGrXrm2wbe3atREUFGSwLdkeZ3tn3c8sHyYiIiKiqmDPnj0ICQnBxx9/DDc3N93lzZo1w/vvvw9ZlrF3714LjpCqCklSS4hNZQoyKEhkfayyfLhx48aYNGkSGjVqhPz8fGzbtg2fffYZ/vzzT+zbtw9BQUEAoAsSBgcHG92HctmlS5d0lyUnJyMqKsrk3wwODkZSUtJdjTcwMNDgd61Wa2ZLqsqKBgVZPkxEVQnnGiIi23T16lX069cPjiZqPzt27AgAuHbt2j3/Hc4z1sHLC0hNNc4UtLcXQUMisi5VNiiYlpaGxYsXl3r7GTNmwNfXFwDw66+/Glw3cuRIdO7cGaNHj8a8efPw6aefAgCy7vRZd3JyQlHOzs4G2yg/m9pW2V5/W7I9zBQkIiIioqomLy8P3vqLxenx9PTUbUMEqOsKpqUBsqxmCnI9QSLrVKWDgq+88kqptx8zZowuKGjKQw89hJdeeskgYOjq6goAyM3NNdo+JyfHYBvlZ1PbKtvrb1sWly9fNvg9IyMDXvqtn6haKBoU1A8Eck1BIrI0zjVERFSROM9YByUoWFAAZGerQUGWDhNZpyobFAwNDYUsy+V+n7t27dL9rpQR65cIK5TL9EuLg4KCTG6rbG+qDJlsh5O9mkWaW5gLZ0kNErJ8mIiIiIgsJT4+Hl9++eVdXf/www9X1LCoCtKP46alqeXDDAoSWacqGxSsCPHx8ahZs6bu98DAQAQHB5tcWFe5rHXr1rrLYmJi8NVXX+HixYsGzUYuXryI5ORkDBo0qAJHT1Vd0UxBB406c7J8mIiIiIgsZdeuXQbJEfokSTJ7vSRJDAraGP1K8/R0lg8TWTurCwqmpqaaLCNetmwZkpKS8PjjjxtcPmrUKLz77rv4+eefMXDgQABAYWEhPvjgA3h7e6Nfv34G23711VdYvHgxFi5cqLtcWftw9OjRFfCIqLooGhR0dVDLyVk+TERERESWUKdOHUjsEEGlxExBIttidUHBL7/8Ep9//jn69u2L0NBQFBQUYNu2bdiwYQPq169vtE7h888/j7Vr1+Khhx7CzJkzERwcjG+++Qb79+/HZ599Bg8PD922/fv3x4ABA/Dee+8hPT0d7dq1w549e/D5559jzJgxuu5dZJuMug9r2X2YiIiIiCwrISHB0kOgakQ/UzAtjZmCRNbO6oKCMTEx2Lp1K7777jtcv34dsiwjLCwMzz33HJ5//nmjzlt+fn7YtWsXnn/+eSxbtgy3bt1CVFQUvv32W4wYMcLo/teuXYsFCxZg9erVWLVqFYKDg/Hqq6/i+eefr6RHSFUVuw8TEREREVF1VrR8mJmCRNbN6oKCHTp0wE8//VSm2wQHB2PVqlWl2tbZ2RkLFizAggUL7mZ4ZMWc7NRGI3mFecjX5ut+Z6YgERERERFVdUXLh5kpSGTduNAZUTnRzxQEgKz8LN3PXFOQiIiIiIiqOmYKEtkWRiqIyklxQUGWDxMRERERUVWnnymYkgLIsviZmYJE1olBQaJyYq+xNygTzs7P1v3M8mEiIiIiIqrq9DMFr19Xf2amIJF1YlCQqJxIkmSQLShD1v3MTEEiIiIiIqrq9DMF9YOCzBQksk4MChKVIyd7J5OXc01BIiIiIiKq6pgpSGRbGKkgKkdF1xVUsHyYiIiIiIiqOmYKEtkWBgWJypHZoCDLh4mIiIiIqIqztwfc3MTPzBQksn4MChKVI3NBQZYPExERERFRdaCUEN+6pV7GoCCRdWKkgqgcsXyYiIiIiIiqM/0SYgXLh4msE4OCROXIyc50oxGWDxMRERERUXWg32xEwUxBIuvEoCBROWKmIBERERERVWemgoLMFCSyTgwKEpUjrilIRERERETVmanyYWYKElknRiqIyhG7DxMRERERUXXGTEEi28GgIFE5YvkwERERERFVZ8wUJLIdDAoSlSMnezYaISIiIiKi6ouZgkS2g0FBonLENQWJiIiIiKg6Y6Ygke1gpIKoHLF8mIiIiIiIqjNmChLZDgYFicoRG40QEREREVF1ZiooyExBIuvEoCBROXKyc4IEyehylg8TEREREVF1YKp8mJmCRNaJkQqiciRJEhztDGdMCRKDgkREREREVC0wU5DIdjBSQVTOipYQs3SYiIiIiIiqCzYaIbIdDAoSlTOjoCCbjBARERERUTXBRiNEtoNBQaJyVjQoyNJhIiIiIiKqLlxcjDMDmSlIZJ0YrSAqZywfJiIiIiKi6kqSjEuImSlIZJ0YFCQqZ072Tga/s3yYiIiIiIiqk6IlxMwUJLJODAoSlTNmChIRERERUXXGTEEi28CgIFE545qCRERERERUnTFTkMg2MFpBVM7YfZiIiIiIiKozZgoS2QYGBYnKGcuHiYiIiIioOmOmIJFtYFCQqJw52bHRCBERERERVV9Fg4LMFCSyTgwKEpUzrilIRERERETVWdHyYWYKElknRiuIyhnLh4mIiIiIqDpjpiCRbWBQkKicsdEIERERERFVZ8wUJLINDAoSlTOWDxMRERERUXXGRiNEtoHRCqJy5mRfpNEIy4eJiIiIiKgaYfkwkW1gUJConNlr7GGvsdf9zvJhIiIiIiKqTlg+TGQbGBQkqgD6JcTMFCQiIiIiouqEmYJEtoFBQaIKoB8U5JqCRERERERUnRTNFLS3N70dEVVvjFYQVQCDTEGWDxMRERERUTXi6an+7OAASJLlxkJEFYdBQaIK4GSnNhth+TAREREREVUndnaAh4f4mesJElkvBgWJKgDLh4mIiIiIqDpT1hVkUJDIejFaQVQBQr1DdT/X9apruYEQERERERHdhe7dxf87dbLsOIio4nC5UKIK0DKwJVwcXOCgcUCEX4Slh0NERERERFQmn34KTJoExMRYeiREVFEYFCSqAHYaOzQJaGLpYRAREREREd0VBwegY0dLj4KIKhLLh4mIiIiIiIiIiGwMg4JEREREREREREQ2xqqCgitXroQkScX+u3TpUqm2nzZtmsm/8eWXX6JFixZwcXFBzZo1MWnSJFy/fr2yHiIREREREREREdE9s6o1BTt37oxVq1YZXX758mU8++yzaNGiBYKDg42uf/HFF9GoUSODyxo2bGi03aJFizBz5kx06dIF77//PpKSkvDee+9hz5492LdvH9zc3MrvwRAREREREREREVUQqwoK1qtXD/Xq1TO6/P/+7/8AABMnTjR5u169eqFr167F3veNGzcwZ84cxMTE4M8//4SdnR0AICYmBoMGDcL777+PF1988d4eABERERERERERUSWwqvJhU2RZxvLly+Hi4oLRo0eb3S4zMxN5eXlmr9+wYQOysrIwffp0XUAQAAYOHIh69eph9erV5TpuIiIiIiIiIiKiimL1QcHt27cjPj4eQ4cOhbe3t8ltBg0aBE9PTzg7OyM6OtpkgG///v0AgHbt2hld17ZtW5w6dQq3bt0q17ETERERERERERFVBKsqHzbl888/BwBMmjTJ6DpXV1c89NBD6N69OwICAnD+/HksW7YMY8eOxdmzZzFv3jzdtsnJyQBgck3C4OBgyLKM5ORkRERElHmMgYGBBr9rtdoy3wcREVFxONcQEVFF4jxDRFT9VMmgYFpaGhYvXlzq7WfMmAFfX1+T97Nu3To0aNAAXbp0Mbp++PDhGD58uMFljz76KFq3bo0FCxZg3LhxCA0NBQBkZWUBAJycnIzux9nZ2WAbIiIiIiIiIiKiqqzKBgVfeeWVUm8/ZswYk0HBr7/+GtnZ2WYbjJji5OSE2bNnY/z48di0aROmTJkCQGQVAkBubi5cXFwMbpOTk2OwTVldvnzZ4PeMjAx4eXnd1X0RERGZwrmGiIgqEucZIqLqp0oGBUNDQyHL8j3fz+effw57e3uMHz++zH8fEB2HFUFBQQCAS5cuoUGDBgbbX7p0CZIk6bYhIiIiIiIiIiKqyqy20cjhw4fx77//on///qhVq1aZbhsXFwcAqFmzpu6ymJgYAMCePXuMtt+7dy8aNmwId3f3exgxERERERERERFR5bDaoOBnn30GAMWWDqekpBhdlp6ejrfeeguOjo7o06eP7vL7778fLi4uWLp0KQoLC3WX//zzzzh37hxGjx5djqMnIiIiIiIiIiKqOFWyfPhe5eTk4KuvvkJQUBD69etndrumTZuiS5cuaNq0KQICApCQkIDly5fj8uXLWLhwIUJCQnTb+vv747XXXsPs2bPRs2dPjBo1CpcuXcLChQsRGRmJp556qhIeGRERERERERER0b2zyqDg+vXrkZaWhqlTp8LOzs7sdqNGjcK2bduwadMm3UK4sbGxWLFihUGWoGLWrFnw8/PDokWLMGPGDHh6emL48OF48803WTpMRERERERERETVhiSXR0cPKldKgDI9PR2enp6WHg4RUbXHz1Vj3CdEROWLn6uGuD+IiMpXRXyuWu2agkRERERERERERGSaVZYPV3dK8mZGRoaFR0JEZB2Uz1Mmx6s41xARlS/ONYY4zxARla+KmGcYFKyCMjMzAQC1a9e28EiIiKxLZmYmvLy8LD2MKoFzDRFRxeBcI3CeISKqGOU5z3BNwSpIq9UiOTkZHh4ekCSp1LcLDw8HAMTFxVXU0KoF7gfuAwX3A/cBIPaBLMv4999/ERQUBI2GK2cAnGvuBfcB94GC+4H7QMG5xhjnmbvHfSBwP3AfKLgfKm6eYaZgFaTRaBASEnJXtwNg8wv5cj9wHyi4H7gPAHUf3M3nqjXjXHP3uA+4DxTcD9wHCs41xjjP3D3uA4H7gftAwf1QcfMMT2ERERERERERERHZGAYFiYiIiIiIiIiIbAzXFCQiIiIiIiIiIrIxzBQkIiIiIiIiIiKyMQwKEhERERERERER2RgGBYmIiIiIiIiIiGwMg4JEREREREREREQ2hkFBIiIiIiIiIiIiG8OgIBERERERERERkY1hUJCIiIiIiIiIiMjGMChIRERERERERERkYxgUJCIiIiIiIiIisjEMChIREREREREREdkYBgWJiIiIiIiIiIhsDIOCRERERERERERENoZBQSIiIiIiIiIiIhvDoKAV0Gq1WLRoESIjI+Hs7IzatWtj1qxZuH37tqWHVinOnDmDl19+GW3btoW/vz88PDzQvHlzvP766zazD0zJyspCvXr1IEkSpk2bZunhVKrU1FTMnj0bDRo0gLOzM/z9/dGtWzf8/ffflh5apbl16xbeeOMNNG3aFB4eHqhRowbat2+PlStXQpZlSw+vXP3f//0fhg0bpnu9h4aGFrv9P//8g549e8LDwwOenp7o27cvDh8+XCljra5sfZ4BONeYY6tzDecZzjPF4TxTdpxnOM+YY6vzDMC5xpbmGcByc4393Q2XqpKnn34aS5YswQMPPIBZs2bh5MmTWLJkCQ4dOoQtW7ZAo7Hu2O/y5cuxbNkyDBo0CKNHj4aDgwP++usvzJkzB2vWrMHevXvh4uJi6WFWupdffhnXr1+39DAqXWJiIrp27Ypbt25h4sSJiIiIQHp6Oo4ePYpLly5ZeniVQqvV4r777sPu3bsxbtw4TJ8+HVlZWfjmm2/wyCOP4OTJk3jrrbcsPcxy8+KLL8LX1xctW7ZEWlpasdvu3bsXXbt2RXBwMF599VUAwNKlS9GpUyfs3r0bTZs2rYQRVz+2Ps8AnGvMscW5hvMM55nicJ65O5xnOM+YY4vzDMC5xtbmGcCCc41M1dqxY8dkSZLkIUOGGFy+ZMkSGYD81VdfWWhklWf//v1yWlqa0eUvvfSSDED+4IMPLDAqyzp48KBsZ2cnL1y4UAYgP/HEE5YeUqXp2LGjHBISIicnJ1t6KBaze/duGYD81FNPGVyem5srh4WFyV5eXpYZWAU5e/as7ufGjRvLdevWNbttTEyM7OHhISclJekuS0pKkj08PORevXpV5DCrLc4zAucaY7Y613Ce4TzDeaZ8cZ4ROM8Ys9V5RpY519jaPCPLlptrrP+Ui5X75ptvIMsynnrqKYPLJ0+eDFdXV6xevdoyA6tErVu3hpeXl9HlI0aMAAAcO3assodkUYWFhZg8eTL69u2LIUOGWHo4lWrHjh3YuXMnnn32WQQGBiI/Px9ZWVmWHlaly8jIAAAEBQUZXO7o6IgaNWrAzc3NEsOqMPXq1SvVdvHx8di/fz+GDRuG4OBg3eXBwcEYNmwYtmzZgitXrlTUMKstzjMC5xpDtjrXcJ4ROM+Yxnnm7nCeETjPGLLVeQbgXAPY3jwDWG6uYVCwmtu/fz80Gg1iY2MNLnd2dkbz5s2xf/9+C43M8pKSkgAANWvWtPBIKteiRYtw6tQpLF261NJDqXQbN24EANSpUwcDBw6Ei4sL3NzcEBERYTNfKAEgNjYW3t7eePvtt7F27VpcuHABp06dwgsvvICDBw9i/vz5lh6iRSifh+3atTO6rm3btpBlGQcPHqzsYVV5nGeKx7nGtuYazjMC5xnTOM/cHc4zxeM8Y1vzDMC5BuA8U5zynmsYFKzmkpOTUaNGDTg5ORldFxwcjBs3biAvL88CI7OswsJCvPbaa7C3t8dDDz1k6eFUmvPnz2PevHl4+eWXS1yY1BqdPn0agDiznJqaii+++ALLly+Ho6Mjxo4dixUrVlh4hJXDx8cHP/30E3x9fTF8+HDUrVsXjRo1wrJly7Bu3TpMnjzZ0kO0iOTkZAAwOKOmUC6zhTVayorzjHmca2xvruE8I3CeMY3zzN3hPGMe5xnbm2cAzjUA55nilPdcw0Yj1VxWVpbJCRQQZ9eUbRwdHStzWBb31FNPYc+ePXjjjTfQsGFDSw+n0jz22GOoV68eZs6caemhWERmZiYAwMPDA3/99ZfudT948GDUq1cPL774IsaNG2cTi1W7u7ujSZMmGDRoENq3b4/U1FQsW7YMDz30EH788Uf06tXL0kOsdErZhanPTP3PSzLEecY8zjW2N9dwnlFxnjHGeebucJ4xj/OM7c0zAOcaBecZ08p7rrHuV5ENcHV1RW5ursnrcnJydNvYkrlz52Lp0qWYMmUKXnjhBUsPp9KsXr0amzdvxkcffQQHBwdLD8cilI5so0aNMvji6OPjg0GDBuHKlSu6M2/W7L///kP79u3Rq1cvvPPOO3jggQcwceJE7Ny5E7Vq1cLkyZNRWFho6WFWOuWz0NRnpq1+XpYG5xnTONfY5lzDeUbgPGMa55m7w3nGNM4ztjnPAJxrAM4zxSnvuYZBwWouKCgIN27cMPmCuHTpEmrUqGFTZ9Xmz5+PBQsW4JFHHsH//vc/Sw+n0uTm5mLmzJno168fatWqhfj4eMTHxyMxMREAkJ6ejvj4+BJbm1d3ISEhAIBatWoZXRcYGAgAuHnzZqWOyRIWLVqEnJwcDBs2zOByV1dX9O/fH4mJiUhISLDM4CxIWajYVDq9cpmpNHxbx3nGGOca251rOM8InGdM4zxzdzjPGOM8Y7vzDMC5BuA8U5zynmsYFKzmYmJioNVqsW/fPoPLc3JycPjwYbRu3dpCI6t88+fPxyuvvIJx48bhs88+gyRJlh5SpcnOzsb169fx66+/Ijw8XPeva9euAMQZt/DwcHz22WeWHWgFUxaoVhZk1qdcFhAQUKljsgRlMjB19qygoMDg/7YkJiYGALBnzx6j6/bu3QtJktCqVavKHlaVx3nGEOca255rOM8InGdM4zxzdzjPGOI8Y9vzDMC5BuA8U5xyn2tkqtaOHj0qS5IkDxkyxODyJUuWyADkVatWWWhkleuVV16RAchjx46VCwsLLT2cSpeXlyevXbvW6N+HH34oA5D79u0rr127Vj59+rSlh1qhUlNTZQ8PDzk4OFjOzMzUXZ6cnCy7ubnJERERFhxd5XnqqadkAPJbb71lcPnNmzflwMBA2cfHRy4oKLDQ6CpW48aN5bp165q9vnXr1rKHh4d86dIl3WWXLl2SPTw85B49elTCCKsfzjMqzjWcazjPCJxn6pq9nvNM2XGeUXGe4Twjy5xrZNm25xlZrty5RpJlWb6XKCVZ3vTp07F06VI88MAD6NevH06ePIklS5agQ4cO2Lp1q9UvQLps2TJMmzYNderUwWuvvWb0eGvWrGmzi5AmJCQgLCwMTzzxBJYuXWrp4VSKTz75BI8++igaN26MCRMmIC8vDx999BEuX76MX375Bb1797b0ECtcYmIiWrZsiZs3b2L06NHo0KEDUlNT8emnnyIhIQHLli3D1KlTLT3McrNq1SpdWckHH3yAvLw8zJo1CwBQt25djB07Vrft7t270a1bN4SEhGD69Om621y9ehW7du1CdHR05T+AasDW5xmAc01xbG2u4TzDeYbzTPnjPMN5pji2Ns8AnGtsbZ4BLDjX3F3ckqqSgoIC+d1335UjIiJkR0dHOSgoSH766acNzipYs3HjxskAzP7r0qWLpYdoMefPn5cByE888YSlh1Kp1q1bJ7dp00Z2dXWV3d3d5V69esk7d+609LAqVXx8vPzwww/LwcHBsr29vezh4SF36tRJXrdunaWHVu66dOlSpvf/7t275e7du8tubm6yu7u73Lt3b/ngwYOVP/BqxNbnGVnmXFMcW5xrOM9wnuE8U744z3CeKY4tzjOyzLnGluYZWbbcXMNMQSIiIiIiIiIiIhtj/XnYREREREREREREZIBBQSIiIiIiIiIiIhvDoCAREREREREREZGNYVCQiIiIiIiIiIjIxjAoSEREREREREREZGMYFCQiIiIiIiIiIrIxDAoSERERERERERHZGAYFiYiIiIiIiIiIbAyDgmTTQkNDIUlSsf8WL15s6WFSOTl06BDs7Owwffp0g8u3bdume76Lk5CQoNsuISHhrseRnp4OPz8/tGnTBrIs3/X9EFHVx3nGtnCeIaLKxnnGtnCeofJmb+kBEFUFHTp0QIMGDUxeFxUVVcmjoYoyffp0uLi4YO7cuRYdh5eXF1544QU888wz+PLLLzFu3DiLjoeIKh7nGdvAeYaILIXzjG3gPEPljUFBIgCTJk3C+PHjLT0MqkDff/89du3ahWeeeQYBAQGWHg6mTZuGt99+Gy+88AJGjhwJJycnSw+JiCoQ5xnrx3mGiCyJ84z14zxDFYHlw0RkExYtWgQAmDhxooVHIjg7O+Ohhx7C5cuX8d1331l6OEREdI84zxARUUXiPEMVgUFBolJS1utISEjAjz/+iO7du8PX1xeSJGHbtm267W7evIl58+ahefPm8PDwgKurK5o2bYoFCxYgKyvL5H0XFBRg8eLFaNq0KZydneHv74+hQ4fiv//+w8qVKyFJktGZv/nz50OSJMyfP9/kfSrrSnTt2tXk9cnJyZg5cyYaNWoEV1dXeHh4ICYmBkuXLkVBQYHR9uPHj4ckSVi5ciXOnz+PsWPHolatWnByckL9+vUxZ84c5Obmmt1/Bw8exLhx4xAWFgZnZ2f4+voiOjoazzzzDBITEwEAK1asgCRJ6NOnj9n7SU5OhoODA1xcXJCSkmJ2O32HDh3C7t270bZtWzRs2LBUtykL5bko6V9RynO6bNmych8TEVU/nGc4z5jDeYaIygPnGc4z5nCesV0sHyYqo4ULF2Lp0qVo3bo1+vbti+TkZNjZ2QEATpw4gb59++LixYsIDAxEx44d4eDggH379mHu3LlYt24dtm3bBi8vL939abVaDBs2DBs2bICjoyO6du0KHx8f/PPPP4iNjcWECRPK/THs2LEDgwcPxs2bNxEaGopevXohNzcX+/btw/Tp0/Hzzz/jl19+gYODg9FtDx8+jCeffBI+Pj7o0qULUlNTsWvXLrz++us4fvw4fvjhB6PbvPPOO3j++eeh1WoRERGB+++/H9nZ2YiPj8e7776Lxo0bY/z48XjooYfw3HPPYfPmzThz5gwiIiKM7uvjjz9GQUEBxo4dCz8/v1I93g0bNgAAevbsWbYdVUrNmzc3u47G6dOnsXfvXmg0xudgmjdvDn9/f+zbtw+XL19GYGBghYyPiKoXzjOcZ4riPENE5YnzDOeZojjP2DCZyIbVrVtXBiCvWLGi1Nva2dnJP/74o9H1WVlZcv369WUA8pw5c+Tc3Fzddbdv35ZHjRolA5AfeeQRg9stXbpUBiDXrFlTPnHihO7y/Px8+fHHH5cByADkcePGGdxu3rx5MgB53rx5Jsf7119/yQDkLl26GFx++fJl2c/PT5YkSf7www/lwsJC3XU3btyQu3fvLgOQX3nlFYPbjRs3TjeWl156SS4oKNBd999//8lubm4yAHn37t0Gt/vxxx9lALKzs7P83XffGY3z+PHjBo/7pZdekgHIM2bMMNo2Ly9PrlWrlgxAPnjwoMnHbUrHjh1lAPKvv/5q8nplX5X0kXj+/HnddufPny/x7yYmJsqBgYEyAHnp0qUmtxk0aJAMQF61alWJ90dE1Q/nGc4zssx5hogqDucZzjOyzHmG7h6DgmTTlInR3D/9CUjZdsKECSbv66OPPpIByAMGDDB5fWZmphwQECDb29vLqampussbNGggA5A/+ugjo9tkZ2frJo3ymkSfe+45GYA8bdo0k7dLSkqSHRwcZH9/f1mr1eouVybRVq1aGVyueOyxx2QA8quvvmpwefPmzWUA8sKFC03+vaIuXbokOzg4yF5eXvKtW7cMrvvmm29kAHK7du1KdV8KZYI/d+6cyev1J9HS/itpEr1586YcFRUlA5CfeeYZs9u98MILMgD56aefLtNjIqLqgfOMMc4znGeIqPxwnjHGeYbzDJUey4eJAHTo0AENGjQwujwyMtLosgcffNDkffz6668AgBEjRpi83t3dHa1bt8bGjRuxf/9+9O7dG5cuXUJ8fDwAYMyYMUa3cXZ2xvDhw7FkyZJSP5aSlDTO4OBghIeH48SJE4iLizNKeR8wYIDJ9SQaNWoEALh06ZLusitXruDw4cPQaDSlXhA3KCgIDz74IL755husWrUKjz32mO46Za2KadOmleq+AOD27du4ffs2AJQqPd9c2jwA3Lp1C+vWrSvxPvLy8jB48GCcOHECI0eOxFtvvWV2W2VMV69eLfF+iaj64jyj4jzDeYaIyh/nGRXnGc4zVHoMChIBmDRpktHCt+aEhoaavPzcuXMAgLFjx2Ls2LHF3sf169cBAElJSQCAGjVqwN3d3eS2YWFhpRpXaSnj7NSpU4nbXr9+3WgSrVOnjsltPT09AQA5OTm6yy5cuAAACAwMNFh3pCQzZszAN998g2XLlukm0aNHj2Lnzp2oWbOm2S8ypqSnp+t+9vDwKHH7lStXmr0uISGhxElUlmWMHz8e27dvR5cuXXQLK5uj7LebN2+WODYiqr44z5jGecYQ5xkiulucZ0zjPGOI8wwVxaAgURm5uLiYvFyr1QIA+vbti5o1axZ7H3Xr1i33cZkbj7nLH3zwQbi5uRV7H6bORJlaYLa8tW3bFrGxsdi3b59uMlLOqk2ZMgWOjo6lvi9vb2/dz5mZmbpJq6I8//zz+OabbxAVFYUNGzbAycmp2O2VSd7Hx6dCx0VE1QfnGc4zxeE8Q0T3ivMM55nicJ6xLQwKEpWT2rVr49SpU5g4cWKpz/wEBwcDAG7cuIFbt26ZPLuWkJBg8rbKRJKZmWny+sTERLPjjIuLw3PPPYfWrVuXapx3SzkLd/nyZaSnp5f57NqYMWOwdOlSREdH46uvvoK9vb1B+n1puLq6ws3NDbdv30ZKSkqFTqIffvgh3n77bQQFBeG3334zmMDNSUlJAYASv3gREXGeMcZ5xrvE23CeIaLS4jxjjPOMd4m34TxTvVV8iJzIRtx3330AgDVr1pT6NiEhIahXrx4A4Ouvvza6Pjc3F2vXrjV5W2UCPnnypMnrlbU2ymOcd6tWrVqIjo6GVqvF8uXLy3Tb4cOHIzAwEBs2bMDrr7+O27dv44EHHkBQUFCZx9GyZUsAwIkTJ8p829L66aefMGPGDHh4eODXX381W5ZQ1LFjxwAArVq1qrCxEZF14DxjjPNMyTjPEFFpcZ4xxnmmZJxnqjcGBYnKyZQpU1C3bl2sXbsWzz33nMkzXleuXMGnn35qcNlTTz0FAJg/fz5OnTqlu7ywsBCzZ89GcnKyyb/XvXt3aDQa/PHHH9i+fbvuclmWsWTJErNrRTzzzDPw9vbGe++9h/9v735Cmv7jOI6/ZqxCJnqQ2UFN8aIFohcLFdMRdNEoS8qUhnQaHQIREYM8iLhDKjjBgkoPXgxRCDz356BUoCD+AS87dRDyoBdNlPfvEEn9nH9aG1O/zwfsMPb5fL7vjbHXeI99Pj09Pdra2tozJhwOa2Rk5NDnfBQdHR2SpKdPn0asaXFxMeIXAbfbrUAgoO3tbT1//lzS323I+7uqqipJ0vT0dFTzD/PlyxfV19crKSlJY2NjKioqOvLcXzX5fL641Abg9CBnIiNnDkbOADgqciYycuZg5MwJl8ijj4FEu3jxokmyoaGhI4896Oj2+fl5y8nJMUmWlpZmFRUV9uDBA7t165ZdunTJXC6XZWRk/DFnZ2fHampqTJKdPXvWbty4Yffv37fc3Fw7f/68BQIBk2R+v3/P9Z48eWKS7MyZM1ZZWWm1tbWWl5dnbrfb2traTJJdu3Ztz7yPHz9aenq6STKv12s+n88aGhqsurra8vLyTJJduXLljzl+v//A12poaGjfOru6uszlcpkky8/Pt3v37tnNmzd3j7jfb82VlRU7d+6cSbLCwsKIY45iZmbGJFlJSUnEx9+/f2+S7LCPxHA4vDvu9/eBz+czSZabm2t+v3/f29/WBeDkI2fIGTNyBkD8kDPkjBk5g+ixpyAQQ5cvX9bc3JxevHihiYkJzc3NaXp6Wunp6crMzFRLS4tu3779x5ykpCSNj4+rv79fr1+/1ocPH+TxeFReXq6JiQnNzs5qcHAw4vX6+vqUnZ2tV69eaWpqSh6PR2VlZXr79q3W19cVDAYjzquoqNDCwoIGBgY0OTmpr1+/6sePH/J6vcrOzlZjY6Pu3LkTs9elvb1dPp9P/f39+vTpk8bHx5WSkqKsrCy1trbu+6uS1+tVUVGRPn/+rMePH0d9/eLiYpWWlmpqakpLS0sqKCiIeq1IdnZ2JP38RTIcDu877v8ngf26/y/PDYCzkDORkTM/kTMA/hU5Exk58xM5c/q4zMwSXQSA/Q0PD6upqUl+v//A4+VPo+XlZeXn5ys1NVXfvn1TcnJy1GuNjY2prq5Ozc3N6unpiWGV0dnc3FRWVpbcbrfC4fChp3oBQLyQM+QMAMQTOUPO4PhiT0EAx9azZ89kZgoEAv8UoJJ09+5dlZWV6eXLl1pZWYlRhdELhUL6/v27uru7CVAASBByBgAQT+QMjjuaggCOlXfv3unRo0e6evWqRkdHdeHCBbW2tsZk7VAopI2NDXV2dsZkvWitra0pGAyqpKREDx8+TGgtAOA05AwAIJ7IGZwk7CkI4FiZmZnRmzdvlJKSouvXr6u3t1dpaWkxWbu4uHh3v4xESk1N1erqaqLLAABHImcAAPFEzuAkYU9BAAAAAAAAwGH4+zAAAAAAAADgMDQFAQAAAAAAAIehKQgAAAAAAAA4DE1BAAAAAAAAwGFoCgIAAAAAAAAOQ1MQAAAAAAAAcBiaggAAAAAAAIDD0BQEAAAAAAAAHIamIAAAAAAAAOAw/wGlvKgWpm0YBQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lcs.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lcs.freq, lcs.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lcs.freq, lcs.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.html b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.html new file mode 100644 index 000000000..60655b3b8 --- /dev/null +++ b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.html @@ -0,0 +1,306 @@ + + + + + + + + Lomb Scargle Power Spectra — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Lomb Scargle Power Spectra

+

This tutorial shows how to make and manipulate a Lomb Scargle power spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.lombscargle import LombScarglePowerspectrum
+import numpy as np
+import matplotlib.pyplot as plt
+from scipy.interpolate import make_interp_spline
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+plt.style.use('seaborn-talk')
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+
+

1. Create a light curve

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out Lightcurve for more examples.

+

Make one with signals in units of counts. It is a sine wave with random normal noise, frequency of 3 and at random times and make its counts non-negative by subtracting its least value.

+
+
[2]:
+
+
+
rand = np.random.default_rng(42)
+n = 100
+t = np.sort(rand.random(n)) * 10
+y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)
+sub = np.min(y)
+y -= sub
+t0 = np.linspace(0, 10, 1000)
+y0 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)
+sub = np.min(y0)
+y0 -= sub
+spline = make_interp_spline(t, y)
+
+
+
+

Lets convert them into Lightcurve objects

+
+
[3]:
+
+
+
lc = Lightcurve(t, y)
+
+
+
+

Let us plot them to see how they look

+
+
[4]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.scatter(lc.time, lc.counts, lw=2, color='blue',label='lc')
+ax.plot(t0, y0, lw=2, color='red',label='source of lc')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png +
+
+
+

2. Pass the light curve to the LombScarglePowerspectrum class to create a LombScarglePowerspectrum object.

+

You can also specify the optional attribute norm if you wish to normalize the real part of the power spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘none’.

+
+
[5]:
+
+
+
lps = LombScarglePowerspectrum(
+    lc,
+    min_freq=0,
+    max_freq=None,
+    method="fast",
+    power_type="all",
+    norm="none",
+)
+
+
+
+

We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has only real component, and imaginary component is zero.

+
+
[6]:
+
+
+
print(lps.freq[0:5])
+print(lps.power[0:5])
+
+
+
+
+
+
+
+
+[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]
+[ 15.49526224+0.j 120.05686691+0.j  96.589673  +0.j 127.2231466 +0.j
+  30.42053746+0.j]
+
+
+
+

Parameters

+
    +
  • data: This parameter allows you to provide the light curve data to be Fourier-transformed. It can be either a `stingray.lightcurve.Lightcurve <https://docs.stingray.science/core.html#working-with-lightcurves>`__ or `stingray.events.EventList <https://docs.stingray.science/core.html#working-with-event-data>`__ object. It is optional, and the default value is None.

  • +
  • norm: The norm parameter defines the normalization of the power spectrum. It accepts string values from the set {frac, abs, leahy, none}. The default normalization is set to none.

  • +
  • power_type: The power_type parameter allows you to specify the type of power spectral power you want to compute. The options are: real for the real part, absolute for the magnitude, and all to compute both real part and magnitude. The default is all.

  • +
  • fullspec: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the power spectrum. When set to False (default), only positive frequencies are kept; when set to True, both positive and negative frequencies are included.

  • +
+
+
+

Other Parameters

+
    +
  • dt: When constructing light curves using `stingray.events.EventList <https://docs.stingray.science/core.html#working-with-event-data>`__ objects, the dt parameter represents the time resolution of the light curve. It is a float value that needs to be provided.

  • +
  • skip_checks: This is a boolean parameter that, when set to True, skips initial checks for speed or other reasons. It’s useful when you have confidence in the inputs and want to improve processing speed.

  • +
  • min_freq: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.

  • +
  • max_freq: Similarly, the max_freq parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.

  • +
  • df: The df parameter, a float, represents the frequency resolution. It’s relevant when constructing light curves using `stingray.events.EventList <https://docs.stingray.science/core.html#working-with-event-data>`__ objects.

  • +
  • method: The method parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are fast and slow, with the default being fast. The fast method uses the optimized Press and Rybicki O(n*log(n)) algorithm.

  • +
  • oversampling: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.

  • +
+
+
+
+

Attributes

+
    +
  • freq: The freq attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the power spectrum.

  • +
  • power: The power attribute is a numpy array that contains the normalized squared absolute values of Fourier amplitudes.

  • +
  • power_err: The power_err attribute is a numpy array that provides the uncertainties associated with the power. The uncertainties are approximated using the formula power_err = power / sqrt(m), where m is the number of power values averaged in each bin. For a single realization (m=1), the error is equal to the power.

  • +
  • df: The df attribute is a float that indicates the frequency resolution.

  • +
  • m: The m attribute is an integer representing the number of averaged powers in each bin.

  • +
  • n: The n attribute is an integer indicating the number of data points in the light curve.

  • +
  • nphots: The nphots attribute is a float representing the total number of photons in the light curve.

  • +
+

We can plot the power spectrum by using the plot function or manually taking the freq and power attributes

+
+
[7]:
+
+
+
fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)
+lps.plot(ax=ax[0])
+ax[0].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[0].set_ylabel("Power", fontproperties=font_prop)
+ax[1].plot(lps.freq, lps.power.real, lw=2, color='red')
+ax[1].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[1].set_ylabel("Power(Real Component)", fontproperties=font_prop)
+ax[2].plot(lps.freq, lps.power.imag, lw=2, color='blue')
+ax[2].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[2].set_ylabel("Power(Imaginary Component)", fontproperties=font_prop)
+
+
+
+
+
[7]:
+
+
+
+
+Text(0, 0.5, 'Power(Imaginary Component)')
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png +
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb new file mode 100644 index 000000000..8f731c73d --- /dev/null +++ b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb @@ -0,0 +1,278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Power Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScarglePowerspectrum\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.interpolate import make_interp_spline\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "plt.style.use('seaborn-talk')\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create a light curve\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make one with signals in units of counts. It is a sine wave with random normal noise, frequency of 3 and at random times and make its counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "sub = np.min(y)\n", + "y -= sub\n", + "t0 = np.linspace(0, 10, 1000)\n", + "y0 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "sub = np.min(y0)\n", + "y0 -= sub\n", + "spline = make_interp_spline(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAIlCAYAAACtuat8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3wcxfn+c9JJcu+2XJDBgG2aKaaExOAAgYTeCQmywcHYBhIgQEggGHAAU00JkBCbmC5KvpRQkhA6hF9CQjEdbAM2lsG49yLpyu+P1Whn97bMzM67tyvN8/n447vT3tzc3u7MPPM87/tmisViEQYGBgYGBgYGBgYGBgaJRUW5O2BgYGBgYGBgYGBgYGAQDEPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSDkPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSjmy5O9DRUCgU8M0336B79+7IZDLl7o6BgYGBgYGBgYGBQZlQLBaxfv16DB48GBUVwZqaIW4x45tvvkFdXV25u2FgYGBgYGBgYGBgkBA0NjZiq622CjzGELeY0b17dwDWj9OjR48y98bAwMDAwMDAwMDAoFxYt24d6urq2jhCEAxxixnMHtmjRw9D3AwMDAwMDAwMDAwMhEKoTHISAwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEwxA3AwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEw5QDMDAwMDAwMDAwSDWam5uxZs0aFItFobTqBgaUYNdhr169UF1dra3dRBK3lpYWvP7663juuefw6quvYv78+di4cSP69u2LffbZB1OmTMERRxwh1ea0adPwu9/9LvCYTz/9FDvssEOUrhsYGBgYGBgYGMSIQqGAFStWYODAgaioMGYyg2SgUCjg22+/1XpdJpK4vfbaazjkkEMAAAMHDsR+++2Hrl274pNPPsEzzzyDZ555BpMnT8af/vQn6V2V3XbbDbvvvrvn33r27Bm16wYGBgYGBgYGBjFi9erV6Nu3ryFtBolCRUUF+vbtizVr1qBPnz5a2kwkcauoqMAJJ5yA8847D/vvv7/jb48++ijq6+sxa9YsjBkzBqeeeqpU28ceeyymTZumsbcGBgYGBgYGBgblQi6XQ01NTbm7YWBQgpqaGqxZs0Zbe4ncmjjooIPw2GOPlZA2ADj55JMxYcIEAMD9998fc88MDAwMDAwMDAwMDAziRyKJWxj22GMPAEBjY2OZe2JgYGBgYGBgYFBOmGQkBkmGzuszkVbJMMyfPx8AMGjQIOn3vvvuu7j44ouxatUq9OzZE3vssQeOOuoodO/ePXK/Nm7cqOUYAwMDAwMDAwMDAwMDHqkjbt9++y3uvfdeAMAJJ5wg/X6W3IRHz549cdttt0nHy7nRrVu3SO83MDAwMDAwMDAwMDDwQqqskrlcDuPGjcPatWsxatQoTJkyRfi92223Ha655hrMmTMHq1atwqpVq/DGG2/gyCOPxNq1a3HaaaehoaGBsPcGBgYGBgYGBgYG6nj11VeRyWTaRAyDjoVUKW5nnnkmXnrpJfTt2xePPfaYVEG78ePHl7w2ZswYPPPMMzj33HNx++234/zzz8dJJ52kXChvw4YNocesW7cOgwcPVmrfwMDAwMDAwMAgPuRywIIFwLp1QI8ewLBhQDZVq2eD9oTUKG7nnXceZs+ejd69e+OFF17AiBEjtLU9bdo0VFZWYvny5fjvf/+r3E7Xrl2F/hkYGHQgfPYZsGJFuXthYGBgYCCBxkZg6lRgyBBgxAhgr72s/4cMsV43+fEMyoFUELcLL7wQt912G3r16oXnn3++LaukLvTp0wcDBgwAACxevFhr2wYGBh0Y//gHsOOOwLbbAmvXlrs3BgYGBgYCaGgAhg8Hpk8Hli1z/m3ZMuv14cOt4wwM4kTiiduvf/1r3HzzzejZsyeef/557LXXXto/I5/PY23rokpHdkkDAwMDAMDhh1v/r18P/OEP5e2LgYGBgUEoGhqAceOApqbg45qarOOSQN6KxSLuuusufOc730G3bt3QrVs3jBo1Cpdffnm5u2agGYkmbhdffDFuvPFG9OzZEy+88AL23ntvks95+umnsWnTJmQyGRJiaGBgYBC6CjAwMDAwKCsaG4GJE+XeM3Fi+W2T48ePx+TJk5HJZHDppZfixhtvxEEHHYTHHnusvB0z0I7EhldOnToV119/fZs9UoS03XHHHbjjjjuwzz774P777297fdGiRXj99ddx4oknolOnTo73/PWvf8UZZ5wBAKivr8fAgQP1fhEDAwMDACgUyt0DAwMDA4MAzJwpv8fW1ATMmgVcdRVNn8Lwl7/8BQ0NDRg3bhzuu+8+VFTYmkzBzDvtDokkbk8//TSmT58OANh+++3xBx+LUb9+/TBjxoy25ytWrMDcuXNLyNeqVaswfvx4nHXWWdhjjz0wZMgQbN68GZ988klbMe8DDzwQd955J9E3MjAw6PAoFsvdAwMDAwMDH+RywF13qb33rruAK64oT7ZJVspqxowZDtIGoOS5QfqRSOK2atWqtsdvv/023n77bc/jtt56awdx80NdXR1+85vf4K233sLnn3+Od999F83NzejXrx+OPPJInHLKKTj55JPNBd4e8N//ArffbnkXDjyw3L0xMLBhdj4NDAwMEosFC0oTkYhi6VLr/cOH6+2TCObPn49BgwahtrY2/g83iB2JJG4TJkzAhAkTpN83bdo0TJs2reT1vn374rrrroveMYPkY999rf8bGozCYZAsmOvRwMCACsUikMmUuxepxrp10d6/fr2efhgYBMFITAbtF2ahbJAkGMXNwMCAAuPHA1ttBbzxRrl7kmr06BHt/eVKSj5ixAgsWbIES5cuLU8HDGKFIW4G7RdbtpS7BwYGNsxGgoGBgW7MmQM8+CDwzTfA/vuXuzepxrBhQGtJX2nU1lrvLwfq6+sBWOWz3MlIimbeaXdIpFXSwEAL1q4FOncudy8MDCwYxc3AwEA3Vq4sdw/aDbJZYNIkq7i2LCZNKk9iEgA46aSTcPLJJ+P+++/H/PnzcfTRR6N3796YN28e/vnPf+Kjjz4qT8cMSGCIm0H7xdq1gCnvYJAUmJ1PAwMD3TBxbVoxZQowY4ZcSYCaGmDyZLo+ieChhx7C/vvvj9mzZ+PKK69EZWUlhg0bhpNOOqm8HTPQDkPcDNovokYaGxjohCFuBgbJxiuvAI88ApxzDrDLLuXujRhMNmytqKsDZs8Gxo0Tf8/s2db74sIBBxxQYoGsqKjAz3/+c/z85z+PryMGZYEhbgbtF2vXlrsHBgY2jFXSwCC5WLECOOgg6/Ejj6Rn/jCKm3a0hoxh4sRg5a2mxiJt7HgDgzhgtmoM2i/SMvEatF/wiyqjuBkYJBNffgkMGWI/T5NbwxA3EtTXA/PnA1OnWolHeNTWWq/Pn29Im0H8MIqbQfuBe2GcpsnXoH2iogLI563HRnEzMEgmfv5zoLm53L1Qg7FKkqGuDrjqKuCKK6zi2uvXWyn/hw0rXyISAwNz6Rm0H7gXxkZxK8WcOcBDDwE/+xmw007l7k37h1HcDAySjzTXvzKKGzmyWWD48HL3wsDAgiFuBu0HLS3O54a4lWL0aOv/P/8ZWL26vH3pCOB3w43iZmCQTKRVbQNsRd/AIEkoFoE1a6yNhZ49zQaDRhiN3aD9IJdzPjfEzR9r1pS7Bx0DRnEzMEg+DHEzMNCLtWuBL74APv/c8pgaaIMhbgbtB0ZxM0gajOJm0NGQz6dvoZZm4ubesDQwSAK+/tp+vGRJ+frRDmGIm0H7gXsC27KlPP1IKswEHz8McTPoSGhqsmJna2uBN94od2/EkWbiZhQ3gySCd5gYm6RWGOJm0H7gVtwoJuNly6zCLWncQdq8udw96HjgJyz39Wlg0N5w333AvHnWWHPkkeXujTjSTNzMhpxBEmGIGxlMchKD9gP3BBZUOVMVJ50EvP46sOeewNtv62+fEoa4xQ9ecTPEzaC9Y/ly+3GarOppJm5GcTNIIgxxI4NR3AzaD+JQ3F5/3fr/nXf0t00NQ9zih1HcDDoS0qr+pJm4pfWcG7RvGOJGBkPcDNoP3BNYmidjChjiFj+M4mbQkcAnJNCNQgF46y0aJS/N96ZR3AySCEPcyGCIm0H7QRyKG4+0pXc3xC1+8BOW2Rk3aM945BHgrrvo2r/9dmCffYDdd9d/L3klDkpLMiFD3AySiAQSt8ceewy77bYbOnfujEwmg1dffdX32AkTJiCTkH67YWLcDNoP4lbcmpqATp1oP0MnDHGLH0ZxM+go+OlPadv/5S+t/xcuBObOBXbemfbzWlqAmhraz9ABsyFkkEQkjLjNmzcPP/3pT/Hd734Xd9xxB2pqarDjjjuWu1tKMMTNoP2AWnFzK2ybN6eLuL3ySrl70PFgYtwMkobGRuDkk4EhQ4CHHwayKVgGuMfeONwOuVw6iBu14lYoAGefDfzvf8Ddd1uKp4FBGBJG3F599VXkcjnceuutGD16dLm7EwnGKmnQfkBN3Nztbdqkt31K/Oc/wNSpztfSZvVMI4zi5o9iEVi5sty96Hi49FJrPHjsMeDOO/W06WUr1LlYW7rU+TwO90Ba7le34qZ7XP/DH4CZM4E5c/RdLwbtDps3b0aOvxYTRty+/fZbAECfPn3K3JPoMMTNoP2A2irpLi+gc/Fw553AmDF21kqd+M9/gO99r/R1ip1aQwb9kZaFYFw4+WSgXz/gllvoPqNYtBJarFhB9xlpAx/X8fzzetr0SkpSWamnbQD46CPnc51jr988oduCuGYNsH693jaB0nFcd7+vu85+/Le/6W3bQAlbtmzBtGnTMHLkSHTp0gW9evXCqFGjcNFFF5Uc++c//xmjR49G586d0bNnT/zwhz/EG2+84Thm4cKFyGQymDZtWsn7p02bhkwmg4ULF7a9xuK/li9fjtNPPx21tbXo2rUrFi9eDABYt24dLv3jH7HjSSeh05gx6Lvbbthvv/3wyCOPONpesmQJzjrrLAwdOhTV1dUYPHgwJk+ejGXLlgmfi9dffx2HHHIIevbsic6dO2P06NGYPXu245hMJoMrrrgCADBs2DBkMhlss802wp/B49tvv8W5556LbbfdFjU1NRgwYAAOOeQQvPDCC0rtqSAFHgkDA0FQK25UxC2ft6woAPD97+snP9de6/+5umxSGzYAP/iBpUK+8AIwcKCedtMOflFliJuNjRuB//s/6/EFFwDnn0/zObNnA5MmAQMGAIsWpcP6Ro1ttrHskoAVL6YDX3xR+ppOC2brgrANOonbxo3er+u8Xz//HNhtN0uB/+QToK5OX9tuotbSAlRV6Wt/wwb7MXVcYZqQzwNffWWtMwYMAGJUcn7+85/j7rvvxqmnnooLLrgAuVwO8+fPx8svv+w47je/+Q1uuOEG7LPPPrjmmmuwfv16zJo1CwceeCCeeuQRHP6971mbZ4o45JBDMHDgQFx22WXYuHEjunXrhjVr1mC//fbDxx9/jBN/8AOcdcIJyHftijkLFuDZZ5/FT37yEwDAokWL8N3vfhfNzc2YOHEitttuO3z++ee488478corr+Dtt99Gz549Az//mWeewXHHHYeBAwfiwgsvRPfu3fHII4/gjDPOwJdffonp06cDAB544AE88cQTePLJJ3HLLbegX79+6Natm/T3XbhwIcaMGYOlS5fi1FNPxV577YWNGzfizTffxIsvvohDDjlE/iQqwBA3g/aDtCpu7n5u3Ah07aqnbcDa6fWCTsVt2jQrBgIALroIeOABfW2nGYa4eYMRB2pMmmT9v2yZFeN56KHxfG6Ssc02wL/+ZT1esEBPm9SKG6VNfcsW79d1Klfnn2/3+bzzgCee0Nc2teLGk0CexKUFu+8OLFliXY8VGk1mxaLzXMuS5YEDgbffVvroJ598Eocddhjuu+8+32Pmzp2LG2+8EWPGjMHLL7+M6upqAMAZZ5yBnXbaCWefcw6+ePJJVG7cqLzJsssuu+DBBx90vHb22Wfj448/xsxLLsHk44+3Xhw0CBgyBAXOUn3OOeegpaUFc+bMwVZbbdX2+kknnYR9990Xt9xyi6cCyJDP5/GLX/wC3bp1w//+9z8MHjwYgEVqDzzwQFx33XWYMGEChg8fjnHjxuHzzz/Hk08+iWOPPVZZbTv77LPxzTff4LnnnsOPfvQjx98KMWahNcTNoP0grYqbu99vv20pb7rgRxh0TvB8QfIPPtDXbtrBn2ND3GzERdx4dO4c/2cmEX372o/91CZZeBEpnYqbeyzXqbj5jYM6x8dVq+zHuq99L8WNqn0Kqyc1liyxNm7aEXr27ImPP/4YH330EXbZZRfPY5566ikUi0X8+te/biNtADB48GD8bPx43HrHHZgzdy722mknZdXtV7/6leN5oVDAI488gh133NEmbUBbjFtFK3Feu3Ytnn32WfzsZz9Dp06dsIKzsm+zzTbYfvvt8fzzzwcSt3feeQeLFi3C+eef30baAKC6uhq//vWvceyxx+Kpp54q6aMqVq1aheeeew6HHnpoCWnjv1scMMTNoP3APYG5iVZUxKW4vfNOPMRNp+LGL9y6dNHXbtphFDdvuK1vulXmv/8dmDLF+ZrO9imh2+rmBkVsKzVxo4wv9iNoOu9XfkzUnVjF/XvqHmf4c0+luF1wgeXYuOsuQGeK9nzeuVGh874qFJznPpuVS8IRIZzg1ltvxfjx4zFq1Chsu+22OPDAA3HUUUfhqKOOaiMQC1rV9J097K07t57jL7/+2iJuihgxYoTj+YoVK7B69Woc6nY2uMI/5s6di0KhgNmzZ5fEozFsu+22gZ8d+P1aX/vyyy8D25DB559/jmKxiD322ENbm6owxM2g/SCtiht1tkpD3MoHo7h5w606rFihl1gdcUTpa7qtLDfdZMXp3XSTlVhIB669FrjySuDyy4FLLtHTphvu+75YjJ71zUu5M4qbDV7t1T2+UxK3YpGeuL38sp2g6Oyz9ZataW4G7r/ffr7XXvraXrbMiptl2HHH2DaHjjnmGCxcuBB///vf8dprr+HFF1/E7Nmzsf/+++PFF190KGwiCCo0nQu4D7oozvXFViI3btw4nHbaaZ7HdDYOCV8Y4mbQfuAeYHI5a7GmS8J2E7fjj7cmhqi7eO5Fie4YhTiskpTE7ZlngAsvBCZOBH7zG71tU8Mobp4ofNXoSGmcW7Ic2a231tN4HFkC168HmAVnv/30JRT67W/t/6mIm/s8FArR49G8yIjOFOCUm1txKG5UxG3pUvuaYdB5nedyzmubwirJZzjkM57qgO7NWx7lqC3IoU+fPhg3bhzGjRuHYrGIiy++GDfccAOeeuopnHTSSW2K1ccff4ztttvO8d5PPvsMALDtkCFtbQGWHdANGdWqX79+6N27N95//33nH1znZvvtt0cmk0FzczMOPvhg4fZ58N/PjU8++cRxjA6wPr/33nva2lSFKQdg0H7gNdHqnHy9rJc6knC4JxfdVqa4FTfdO2VHHw3Mnw9cfDFdsdnrrgMOOMCqVaQLxaIhbi40NlrlBF96cInj9XGHrsDUqZrCf9yp4xl0XjtuxcfvM6Pghhto4kXd50HHefEiI5Rjb9oUNyqr5Flnlb5Ged63bNG/sfjVV/ZjSaUoFO7+6yRX7rZiSk6Rz+exxpVwLJPJtFn4GPk6+uijkclkcOONN6KFuyaWLFmCex54AFsPGoQ9Ro4EAHTv3h0DBw7Eyy+/3KaGARZp++tf/yrct4qKCvz0pz/FJ598gtlPPVXyd9Z23759cfjhh+OJJ57Am2++6Xnc8uXLAz9r9OjRGDp0KO655562Gm0A0NLSghtvvBGZTAbHHHOMcN/D0KdPHxx22GH4xz/+gRdffNGzz3HBKG4G7QdeE0pzs74U4F7EzWO3RxrlUtyoFrKUVsm1a/WnXf7oI1vd+PWvrXIGOuCeyDs4cWtosETTpibgADgz+VWtXY7p04EZM6wM/vX1ET7Ij3zrvK/c987uu1vZWxVSTPviN7+x/hUKetUrL2dC1AWzF3HTqXaUwyqZhhi3J58sfY16s3LDBqBXL32fwRO3oUP1tQuUXjc6bMF8W0HPibB+/XoMGjQIRx99NPbYYw8MGDAACxYswJ133onevXvjqKOOAgCMHDkSF110EW644QaMHTsWJ598cls5gA0bNqBh2jRUckr7L37xC0ydOhWHHXYYjj32WHzzzTf405/+hF122QVvvfWWcP+uvvpqvPzyyzjj6qvx/JtvYr/dd0exWzfMWbgQuVwOD7Rudt95553Yb7/9MHbsWJx66qnYY489UCgU8OWXX+Kpp57CqaeeGpicpLKyEnfccQeOO+447L333pg8eTK6d++ORx99FG+++SZ++9vfYvjw4Won2Qd33HEHvve97+Gwww7Daaedhj333BObN2/Gf//7X2yzzTa4/vrrtX6eHwxxM2g/8JqwdC4evCax2tro7bYH4hZXjNuaNfqJ27PP2o89dtKUQZntbelS4NZbgf33Bw4/XF+7PL74wiKxJ54YqdYPYJG2cePs5zVw3kv9Ye2uNjXZxymTtzjKX7h/y3weePNNQNH2E/pZOpUICsXNK8Yt7cTtxz+2SIWOhT5vp6fewEkbcePjxHTZpRnc54JScYuJuHXp0gW//OUv8dJLL+HFF1/Ehg0b2ojcJZdc4siweP3112P77bfHH//4R1x88cWorq7Gd77zHTz05z9jfz5pC6yab2vXrsUDDzyAV199FTvttBNmz56Nd955R4q49e7dG//5z39wzbnn4olXXsGTr76K7t26YadddsE555zTdlxdXR3eeecdXH/99Xjqqafw4IMPolOnTqirq8NRRx2FH//4x6GfddRRR+Gll17C1VdfjRtvvBHNzc3Ycccd8ec//xkTJ04U7rMohg0bhrfffhtXXXUV/v73v+P+++9H7969sdtuu2Hy5MnaP88PhrgZtB/4KW664NWWjgksLqvkttsCvXvbqft1EkR+gqQMKl69Wn+bfIxF9+762nX/jjqvxQkTgOeesyyeK1Y4M6fpwtixwDffAM8/H6nuVGOjpbTxqIbzXHSFc+E/caL18Up1iuOI6fT6LamKe2/ZQkvcdJwXP8VNl8LhJhBxxLg1NgL//Kee2n9xqu06r3Mv4vbppwBXdysy+BqAnTrpaxcovdZ1xHMyuIlaY6OluOtMyuOB6upqXHvttcLHT5o0CZNYPUuG9euBuXPt5wsWIFtbixtuuAE33HCD49CjjjqqRPm69957ce+99/p+Zq+ePXHDuefihnPPtV4YMMBTTe3Xrx9uvPFG3HjjjcLfx43vf//7+L5AFu5p06YFKnhu+H3HIUOG4E9/+pNED/XDxLgZtB+UQ3HTMSHHpbhVVQF8zReqeDHKeiZ+akoUfP65/XjUKH3teiluuuIgnnvOfsxPwLrQ3GyRNsDbjiWBmTNLbx03ccvCea6amoBZsxQ/MI6YJQri5rdj71cgWhXu80AV4+YuUBwFlIpb0BjuLltB8Rm6Qa24/fCHeuO5+GtH93nyyqCqC+5z0NTkXYg+iXCfh5UrgdaEJSTtG2iFIW4G7QflIG462o+TuPG7jVTETXf/eVAobjwZpIyDAmiynOmMf2JYu1ZLM7mcVZrJDbdV0k3cAOt9Sj9HHNZgr98xanZZvy+ri7g1NQEPPwy4s6LpuOZ5qyRfGkHX9V4OqySgzz3QnogboK8sgPvapiZuOgmnFzkJSaiRGHj1nfrcGGiDIW4G7QfUVkmvSUxHke+4rJJVVU4bBxXBoiKEgH7FrVi0dhsZdBZt9zq/uovCAzTEbd06Lc0sWGCVO3IjTHEDrDC+1hqrciiXVTLqwsev37qumRtvBE45xcrQykOn4lZZ6UzQomv8LUdWSUCfdc/921KMA36fFQV+/dS1meDeiEs7cUsLqPvuPs9pPlcJhCFuBu0HXoO+zgkyLsVt1qxIMUUOFIvxK24623UP+DqThwCW159fuOm8XrzOg27bG5Boxc2P/7mJWyW8rxmlslF+C3FqxS1q+35jia5r5rLLvF/XGePWpYvTMkqluMUR4wboI27u/lPUQ2Og3qAA9F2T7rphuh0JlFbJNJMR6r5TK8zFonUNpvk3iABD3AzaD9qL4gYAJ5wQvV3AmrjY4EZF3CgVQ/dv+uijwH/+o699Xm0D9F4vcSluFHATt+uuU2qmRw/v10WskoBirhhqxe2ii6xsnrrb9+s3BdnnoVNx69LFmUgl7VZJXfG67t9W18LWq39xKG66zr+buOnsu1eMpVHcLFD33b0xofvzFi+2yvhIFAdvTzDEzaD9oL3EuOkEf06orJIrVjif6yRuXovWe+7R176buFErbmkhbm6p7JJLgLfflm5m2DAroZgbIlbJ2lrr/dKgJG6vv24Vm/NC1Ou+XMRNZ4xb165OxU3X9V4uq6Suscz92+oae70yJKbJKklJ3LxIGmVyEgo0N9PMGdTETVcMpB+WLrX+p4h5TwEMcTNoPyiH4pY24qZbcWtqAljKXwbqdNQ6U/a7SWcaY9wo4GWV/OAD6WayWcCdiRoQI26TJilm1qa0SgYVZ0+6VdIPaVTcdJ6ToPFK11hGpbh53SAdlLgV3WTE67pOk+LW1AR8+KH1T6c1GKDvu7u/lJ+XEuWz5PqMAEPcDEpB6b+nQrEI/Pvfpa+nwSrpN1np6Ds1cfu//wMef9z5GrXiprP99qC4Uez8ehE3xQx7U6aUZsoPs0rW1ADK9UwpFbeg0gtUihs12Y96XorF+Ikb9QYLA5WdXBchjJO48TexLsXTPf7q7LvXb/fFF/oW+tSEobHR/oyvvtLbtl/fdXynYpF2M9qNOJTPhMEQNwMnbr7ZKio9ZUq5eyKHjz4qD3GjVNw2bvR+XQZBVkkdixKvQqA6iZXXOdeUOANA+4hxo8gO6pVVRJG41dUBs2fbzyuQR9aVjMRN3GbPViy+DdCWA/j4Y/+/ddQYN75/VMTNfd8Yxc2Cl1WSKiFXz5724wQqbtlsFk18f72u62Kx9DNVUCjonYf8PsPrsQ5QErfm5tJ2KEluCohbU1MTqqKWi+FgiJuBExdeaN0Is2bRZR1ctQr47neBAw7QQ04AZ+HLrl3txzonMa9dRqrkJAANceMneh2Lkp12Kn2NWnHTWRLAS3HTNcnEpbhR3Kdei5IIBabr64EHH7SaqELp4owRt5oa67j6euWPoi3AHRS7kVarZNTzwve7utpJ3HRd7+WySqYxxk3nueF/v1699H+GO0YpAtHv3bs3Vq5ciTz7zSjvJ12F2YNQDnuhjs+MOxwg4cQtn89j1apV6MXfPxGhEkFg0FGwcqV3ZoGoOO884M03rce33gpcemn0NvmJsUcPm/TotF54ESlKxU1HgC+1VXKbbUpf06kAeU2yOnc63TFugHXO+MWnKtqb4hbxeqmvB8aOBe67rQlw5ffoVpPD1Isse6Sy0sZAaZUMWiSkNTlJ1H7z56SiwqnM6orNiYu49erl3BhKo+JGRdx4xU2XVdI9zkQ4LxUVFejXrx9WrlyJYrGIzMsvexfE3n13ay6Mgr/+1f9vQ4dGa5vh3Xft/vfqBfTvr6fdfB549lnv33DAgOglMD7/vDSRVV2ds75jVPDuqp49nddmglAsFpHJZNC3b19U6MpQC0PcDIKwbBkNcXvmGfvxJ5/oaZOf2HnFjZq4pU1x022V9GqD2ipJqbixz9RB3OJS3CiImxc51vA5dXXA1F83lxC3o4/I4dirIjdvgTI5SRBxS7JVMui7R+0333ZlJdC3r/1chy0NKL1vmB1LRw1D/vtvtRUNcYszxi0O4qbrMzQSNwCorq7GgAEDrPN9yineB82aZe0gRcF55/n/zZ2sSxV//CPwxhvW49GjgVNP1dPujBlWSRMvHHdc9DXf738PXHON87UTT7Ta1gX+/I8ZAwwfrq/tFMBYJQ38wVKu6sTttzsXhX366Gm3XMQtzYqbjsUDRSFiHnFbJQF9cTlxKW4UVkmva/2ii7wVSll4nIOKvEbySam4BZ3rJFslg5Qv3Ypbv372cx3XC+B9bnTdS/x14b5Gkm6VjJO4UVgl3YnQdM3XQWM4VQiIbvD91KjW+JI2QM895bXpR2ln1J1xMwUwxM3AHxTEzb0bpYu48QN+ly7er0dFe1DcdFslvc5vmpKTeC0sdS0I06y4eV2Tn38O/OIXNG3r/A6UyUnKYZXUcc0EjSW6FTeeuHlZ1VTgdc3oIg9BxE3Hdfnss8C8ec7X0p6cJIFWSd923KQn6dZjBn6s8fqdKaDj2iGw2Qe2ZYibgQGHZcvoP0OXN5mf2Hkvtc4sgWzxw/vj06y46RhMy6G4rV2rL3DbzyqpA2kmbn4LqEcfjd42NXGjTE5CqbhRWiUpk6rEobhRlWIBnNfFuHHOv+kYy446Kvgzo6BcMW5UVsl8Xo86w48x7vaok2foOjdpJW7Uipt7nNRlx04RDHEz8AeF4uaGrgV4HFZJtrPTo4c9kKa5HACVVZK6AHc+ry8bqRdxu/hiPW3HZZX8/e/17yLrvG/c8DoHcShu1MlJdGZn5KHjty2X4qaDuPnVhaJQ3EaPBk4+2ftvOpGW5CT8eacgbl41Y3Wcm6A2qBU3XWqke0MkDlApbjqJm3ssOOWUeNaqCYIhbgb+iONmoLBGUFslu3a1k1dQWiWN4uY/yb71VvS2N2/2tln85S96rv24FLd//cuqv6gTlMQtzVZJo7iVwr3A5LPf6SBu+bz3Bh8FcctmrUQK/GdTgIoQAnTEjY9xo7JKAvqJ26GHOv+WFuLm3hCJA2kgbl7Xx/XX62s/BTDEzcAfuq2SlAs2asVt8WLg22/t9hlxM1bJ0teoiBufCezGG6O3HRR/o2MCi0txA/SU1OCRZuJGaZVMazmAoLFEt+LWpYudUpwomU3g67JwEzfdCZy8oOv+8urf/fcDX3yhp33+Xu3e3X6s45psbvZuRzdx698fuOce+7khbv7QaZXUncGawev68CKL7RiGuBk4wRfZ1a24edl1KLJI8cRNV4zbYYc522fnKW3JSXQPptTEjT+/kybZC8JFi6K3fdpp0dsIQlyKG4Ou0hpA+7RKJr0cgN84oOOaiSurZGWllaKf2SV1EDfqwuRu4ka14PT7TIp2dKVe5899jx72Yx3n3ssmCegnblVVwK672s+pY9x0ELeNG4EPP4zejix0Km69e9uvUVolAZqyVQmGIW4GTvCWFN2KmxcRoShwqltxy+WAjz5ytt8eFLc0xLjxCwSeMOv4DH5iHDTI+TcdCzavPur4Tf2w887A3XfraSvNiltaywFQKm5BCzKdihuLxWGLttWro7UN+C+EqYhbmhQ3v2tO16Kf7ydP3HSQkziJG19UOg2K24UXOp9Tk00GHeeGKW68tZbaKqmrOHlKYIibgRP8RLV0qb7kIYD3ovWaa7D2J1OQWxVR6qa0SroHsy5d4lHcdMj/aS8HwJ/7mhp7N1y3WviTnzj/RhUPddNNtNlaJ07U007cxO2dd4DPPtPTfrkKcFPVcXvxxei/R9AGU1Ry4pX9jm1s6SA+fmqhrsUsf251K26Utl2d7fiBUnHzm98McQNmznQ+Z9e6zvWYF6LeU3fdZV8zvOJGbZWMy0qaEBjiZmCjUHBOwk1Ner3DPta/no/Owt1bXY6pU4HGRsW2KYmbeyBuatKruPn1UUe9sjitkuyc6Byk+XPfpYvdfx0LFtbGqFGl51pn+27Mnh2tXcpipgxxWyUBYP/99bTf3hS31auBZ56J1jZlQWIvxY2VTMnloi8206y4+fWRMsZNJ/h+6s4q6be20O1icRM3avWKov2mJuC226xSR5ddpr99/nOiYPJk+zGV4uZ1fVDOVwmEIW4GNrwmcI3qwAtP+tvETtp8H6ZPB4YPBxoaFBr3s0rqmATcC4c1a+JR3HTYjOKySlZX223rJG78bnuXLvZn6Og7OzdVVdZvyoMyA2HUa4Z6sQbEr7gB+mp+URG3YjGYhERt391vnsguXhyt7bgVN51lR/wUt//9L1q7DEExblTELe2Km4746zgVNz52PyrpDJsbdNaOZfjwQ+C886x74eqr1dsJ20TRSTr5OHRqq2Qcc2KCYIibgY1f/rL0NU0JShoagFum+w/2hdZLsanJqoEqTd7iVNxWr3YqblF3lP0GejeZUEFcWSV5NY+SuOlS3IpFu41stpQkU8W4AcCQITTtAs7i81FQDuKmC1RWybDFh06rZEMDcO653n+L2rYblIoboJe48ZkNr74aWLIkWttAsOIW9dz4qYW6FbeddtLTnhvuOm5MuQrKyCsKv41J3cStulqvVTKsf0lWf8KImU7ixpN7auKW5HNOAEPcDCy89BLwxz+Wvv7NN5Gbbmy0Qm96wN92WXBdihMnStom4yRua9bYxE3HZ1ASN7dlhIq48Yqbzt0vKuLGTyRVVaUZJikVt6h9D3r/4MHR2magmgg3bAAefpimbQYqxY2auPH97tPHOcZEJW5Bvye14hb1WuLHXz5uBgAeeSRa20D7UNz4PuuEmwDV1lqPdThxeOLG2zDHjwfmz4/WNqXixt+LBx8MPPig/99VQElCwpJj6SRul19uZZgF9G7mUie3SgEMcTOw8MEH3q+ffDJwyy2RBruZM4FCUzMewU99j8nDGVza1ATMmiXxIZQFuN3E7bDDnDvKSSZuQTFuabNKdu6sT9VzJySor3f+nVJxo4qFApyKBNVnRMGZZwIvvEDTNgNVOYAw4qbTKlldrZe4tRfFzU3cdIBScaOOcWP9oyJu/HWTzdpp11esiP67rlplP2aEELAyOB91VLS2veY9do6ikhP3fVpfD9x5p/1a1HvVL9sm/5mqCLO4RiW1FRylOP10+7lR3LTCEDcDAMDqNQF/vOACrPqD2i55LmclGvoBXgo8zq24Adb7hOcGfrDk7WIUMW433BAPcVu7NvqAxw/UNTXxKG6UyUl0qXr8+9nEzlvTdCtuhx6qr+2g706RaU/m88OgFMAqCapMfmG/m06rZFVVPKo+QKO46Rwf+TGgTx/n33RsbnmNBV5/U0HaFTd+fM9kbIJVLEaPSeUVN3cdrrlzo7XtJm6ArbrptEqytnVuskyYEPz3KGuCMMUtSuxisWj3bd99LdJGQdyM4maIm4G1lrpmevAxyy+6XmnNtWCBmKvCrbgBVnjdggWCHxSXVfJ3v7NilOJYVBUK0et+8ZaTYcPoygFUV6crxs2tuAH6zw3fR96qQ2mV1E3c+H5H/AzljLGyiMMqueuu1gbOTTfZr+lUUquqnOQnbYobVXISt9qgwcpPWoCbnztGjbIf65iXCgU7vpraKsmuRV4Zixr/7qe46YAXuWJxbjqtkqxtXffqnDnhGWSjXJNhxCzKRgjfL/ecahQ3rTDErYOjocFKBtKSzzheb0aV4/n7xV2VkoawxFFexIyHl+IGhLsG2kBpleQH+s6drf/jUNyA6DvK/M7liBF05QCoY9yyWeduuG7FDdBP3Pg2+AVn0hW3fN5eEPL3EoPCwqehwcoYK3JcZFBZVPn3DxwIXHQRsOee+tovl1Uy6YobT9zcZTsoiBtVOQDexqy73Egcihugl7gFKW5RQUnc3Pcp/z8Q7V4VySQdlt02CF7f/frr7cdR1hte1yPbyKGu42YUN4OOApY0xAv/xXccz7/EtgDkk4awDMKVCL5x/YibcMiOn+Km2yqZVuI2eLB1MtNaDoARCKoYNyA+xY2SuOmor+S3CaL4GWxzSIRTjh9XiEbeeNLphk6CwhYkOu+nclklqRU3nVZJdyxq0hU3P+KmY0OR7zdVAWK34sYTrKgJSnjFbeDAaG254aWKMeKmM8ZNt1WSX7sEQZW48ffST35iXUNnnWW/RkXcTB03rTDErQNj5kz/MWwhtnE8r4B148kmDRk2zBrrs7Bv6jcwpuQ4L+JWW2u9Xwh+MW66rZJxE7cotdxWrrT+AcDIkdb/lOUA4iBuvPUiymTgNclQKm5pskry1zO73nlIELegzSEvVCIvn1GWR9C9qJOgsGtF5zVTLqskteKm0yq5ww7A88/bz43iZsFNOHXBrbjxxC1qSQA2t3Xtqj/pjJcqpivGzYsU6iJuoteF6tzHf/fddrOu9W7dbIKli7i5x0dTx00rDHHroGBJQ/zQgiocCdtrzStmMklDsllg0iTn+1/BgSXHeVkpJ02SmIv4wbJTJzsNbdqJ21//qt4uvyNaV2f9r3M3OZ+3B2SqGDd27tl519V/r11To7hZ0Ki4BW0OeSGLnHxGWR7uc/PTn/r/TRZhiluSrZJxEVpqxa1LF+CQQ4BddrGe6ygEHVeMm27FzR1T9Prr/n9XBb8xBzjHsajXJFPcevfWlw2XIa1WSWrixl+P7HxkMkCvXtbjtFoljeJm0BEQljQkhyxWoF/bc554SSUNATBlCtA5a9/UW9Cp5Bi34lZTA0yeLP4ZbTduRYW1mGKDddqJ2913q7fL94tNuFTWrritkkC0/ocpbjp28PwUN+oYt6gF4fnrxsu6I8jEwjaHvMCUeamMsjz4vh96KDB7trNDURBWr4zSKmkUNwts/GXnRocVPi7FjXeCUChu3/0u8P3v26/pLGTNzreu37VYtBW3Pn3iIW7s/1wu2hgZZpWMct5FS73oUNx4N4UO4uaVnMRklSSBIW4dFCxpCEMGzoEsh6xDBXPHqAknDYEl9vz8TPv9m1Fqv3IrbrNn2yKRENyWDjagJj3GLZ8PXsivW6c+yXhZOnQqBH7ETdcgWiwGE7co/fdKTqI7cUs5skoCetWZCFZJ0YyyPBhxk90cakNQ3UKNylIhU4H584FP5hJaJU2MmwV3ZlnAPjctLdE3KsoR40aVnETnhiLgP69GbX/VKnsDaMAAJ6nVAS9ypet3jdMq+eijwNixwBVXAHvvbb+uU3EDnMRN9X6KK8aNt0ozGMXNoCOAJQ1hcBOzMOImu0G23772Td2CKhTgzGLJFLeaGuDBB0tj0EPhtnTwE3tUUBI3kfeqDnrUdkC3ZUS34sarR7oVtziSk5QjqySgN/g+glXSvTkkAj4WVmZzqA1uQq5TPeHuw2f+XokRI4Afn2K3//Z/89FKHrjvJxPjZsFr/NVJat2xOXHEuOlOTkJN3LzIT5Rzs3Bh28O1fYbhs69jUNwobPa6rZJ82wccAPz4x8BrrwHTpjmLW+tQ3HjixmIM83l1+3GQi0UXcfvPf7zDR4ziZtARwJKGMFTDOdgEETeppCEM3EB5yGFZtLjKDVRkKzB1qlV2TJq0Af6WjqQTN5FBXgdxY+eFytpFQdy8dtp1LariKAcQp+K2++7244QQN/fmkAh44qbknvriC66xrLXYYfGuEX/Tvz7OuQaarKkzB/t++vD9PIYPj1DSoFxWSQrFjaocgFtxA/QpzOxa0TlG+sW46VbcKMowFIv2Z2hW3Fa8vbDt8fV/2QYnTYyBuOmaOyizSvL9OvRQ59944qZ6z3qtZQBbcQPU7ZJe16PuGLef/cz7daO4lR8tLS146aWXcNFFF2HvvfdGr169UFVVhYEDB+Loo4/G3/72N+W2X3zxRRx++OHo168fOnfujB122AGXXnopNkQtdJwysKQhDDLETSppSFuD9k199LGVqO7ibGCnXSpx1VWS9kgefpaOpBO3NCtu7sK4fHKSqPYlwPu8p1Vxo45x41lS1OB7fiyMYJV0bw6JgBE3pc0hADj3XPsxGws0WHgbGoALzrfvQ+YQ4MdIllhFpd4lgPJZJalj/3QmJ/FS3HRtVHjFAUe9V/m+8fGiaVDcHn7YfuylWim239AAzPi57YNegGFYj1LiFqksiJedUdfcQVmA22tDkYFScdNB3OKIcfvqK+/XDXErP1577TUcfPDBmDFjBhYvXoz99tsPxx9/PPr3749nnnkGRx55JKZMmYKi5OLwlltuwSGHHILnnnsOO++8M4466iisXbsW11xzDfbaay+sWLGC6BslE1Om2HOVKHGTThrC4LqpM65BKVMZ8VJ0WzpSEOPW2AhcdyWh4kYd4/aTn9iPecUN0DNQe+20UyQniUNxo7ZK8rv5URayhYKzqHSn0kRCoufdvTkkAjbOKG0OAc4CzSecYHcEUD7vrKQBv3nFxka/zS2lkgblKgdArbjpVK3Y9ahTcWP3C7UrgSduaYhx460vmpKTsJqOW+UXtr22ENt4EjflDRCgfVgl3QOgjvnVT3Hj5w8VjztAb5UsFn03DQstxipZdlRUVOCEE07A66+/jiVLluDZZ5/Fo48+ig8//BCPPPIIKisrMWvWLDzwwAPCbc6ZMwcXXnghKisr8be//Q2vvfYa/vKXv+CLL77AD37wA8ydOxdnnnkm4bdKHurq7KRrosRNOmlIW4MuGd29mxS1gKjbKqkrxm3jRufsoYm4NTQAw4cDd94Wk1WSIgHHZ5/Zj3v10k98eK89ZTmA9lDHjQ/uj6K4ffqp87n7PvX7fB/wm0MiyCKnvjkE2N+9uho49ljrcUTFjZU0YLUsAW/FjSduSiUN2IKPZcatrLRtnpTlAJKuuLH+sfMC0NhIvYibzgROuhU3L4VDF3FzzzkarJJ8Tcc62LsaizDUk7gBihsg7r65lXcgHVbJOBU3Hdc8dTmAgPP6n9dbMHVqhPqfKUMiidtBBx2Exx57DPvvv3/J304++WRMmDABAHD//fcLt3nttdeiWCziZz/7GQ477LC217t06YLZs2ejoqICjz/+OD7jF6MdAPX1VjKQTpXOQdhN3Kor8mpJQxjck4x7N6lCk+Km2yrpDoTt29f5OfxnC4LtOjY1lRJmLzz6sMYYN52B9/yK/Mwz9RMfXgHv11qagiLGjYq4xVnHjbdKRlHc3C4GL+Im0X9+cwiuzLUX4YaS47PIqW8OAfZ3HzqUa7T191W4XviSBjxxY2MjH+PGx+cBCiUN2P3Kznkmoy/tfZoVN/Z+fs7QWU/MPXdQlUzh40WTrri536vBbsjXdKyBPUZtRFe0oNrzPco1HcM2LXVbJSmIW9AaSbfipmPuC4px06C4/eW+zY7nc7B72+NiSw7TpyNajHGKkEjiFoY99tgDANAoSK+bm5vb4uJOOeWUkr9vvfXWGDNmDADgySef1NTL9KC+Hpjw02DF7egj8uqkDQhX3KIQN15C103ceNvAz35m71IpTpD8riMgRtzO+Xkh+q4jhR2QLfK33x7YcUf96fS//dZ+XFtr/U8R40ZllYwzxk2X4uZ+b0TFDbA3hzpXOyfvm3FBybEzrs1FG2dY/712kxXOO1/SgFfUwhQ3QKGkgds1wD/uyDFuXsSNQnFj96iOJBDutoF0xbi5z2nE5Cfumo5etmM/KNV0bI9WSUrFTTdx0xzj1tAAnDfFJm5P4yiMxrttz6tgnbdIMcYpQiqJ2/z58wEAgwYNEjp+3rx52NQaL7PXXnt5HsNenzNnjnK/Nm7cKPQviehW7Rxsfn5uFq+8Zt/MXWo07srqVtzWrLEHPJYNgd+pjpIog+/3QQfZjxUnMH7XERAjbrnmvNquY1iAtq5yAFTEhyduAwda/8dVgDttWSX53dMoipt7fIqouDHU1wNzP7b7/RrGouCxYDvy0Ijnpm1Lnzvf7HdVWMjy+zZeilsQcQMkSxq443T5x0ZxoydurM1MRl9NSj/F7YUXgEsvjdY2ZVZJ9xjC4o0VCbm7piOvTvOqtReUajqWM6tklPNObZUUUdxUz42XdVdDjBvb7O4Ke27aiK4AMmhpvXbcbgdli21KkDri9u233+Lee+8FAJzAgs9DsKD1ru/Vqxe6++SYrmv15ixQqvpqoVu3bqH/Bg8erNw+KVyT35Ctsxi2vcaFLGWM2zff2I/Z+eXbj9J3/r18HxUmSPeuI+BP3Pg6dxUoRN91pLABuRUCnW0D1ozN4EXcdBfgTrPixrevk7h5ZQhR/G3rBtvfe+99K/HOOx4HRSXj7Nzyu8kRVCvegeqluPGLTi/iJlXSwL0RAui3Sg4YAPzpT8ARR9h/o67jpktx4+9PSuIGRE5oU9I2UFpa45prgP/+V73tOBU3lmlWkZC7813IKG6AQk3HtFoly6W4JTjGbeZMoEvTKnyO4W2vbYZFOllZKaa4MShbbFOCVBG3XC6HcePGYe3atRg1ahSmTJki9L71rXd9V96q4EK3VqvROtWMOmmHe7Dhdx0BvbuyuhU3nrgxFVZXRjaNxM296wg4idub+A7WoCdew1j8HYe3vV6BAs2uY5oUN2aVpNg19VLcdMeg6Mwq6XW98ZNwFKukm7jxmT0ZVPvPva9Lt0qMHu1xTJTz7rcoiUDc+JIGYYqbe9dXuqRBkFVSJzmZMsUibww6x/Y0WiXdWSUBesWNYe5c9bYpFTcR4ibRvrumo4ziBijUdIzbKqkrkZBojJuOOm4psEqyze5pmOZ4nRG3nI/iBihabFOCVBG3M888Ey+99BL69u2Lxx57DNX8QJsAbNiwIfTfNzzJSBLcg02hoNfrH7fipmti99pNBpQmMK89AZ64vYiDMQDLcABedUxmbMGoZddRF7kqFOxzQ0XcwhS3pJcDoMoq+cYbpa9RKW5eF51OK81WW+lpG3B+b/58RLAb8iUNZGPcpEsaBFkldcW4Uajj/BhJYZVk1w0Fccvn7f5TK241NaV1Eb2syKLgr/eIsdeBbQM2cVMcf901Hfl7pdh6Lx2Kfzjek2md95RqOoaVwtFtldSVSKhcWSWpkpNEtEqyze7t8bnj9TDFDVC02KYEqSFu5513HmbPno3evXvjhRdewIgRI4Tfy+yRQfFlrAB3D/fWkAS6du0q9C+RcA82+Tyt4qYzOYkXcdO1kPWK3wCUJkivS4snbs2obs2ulWlbGAI2cZPedaQsQkpdagCwFbeaGqBnz9LP0K246e4/hVVyyxag1SruAN++TsVt/Xrgnnucr+mc2J99Vk/bQLjiprigYiUNZMoBKJU0oFTc3G3rtDKmWXHj30utuFVXlw7iUTafeTVcY31RANoVN3dNR3av5Lj75584FK9j/5JjlGo6eqlilFZJ/nPSUMetqsrZHrXiptgm2+wuuKiKiOIGKGx2pwSpIG4XXnghbrvtNvTq1QvPP/98W1ZJUWyzzTYAgDVr1rTZJt1gGSrZsR0OXoqbTuLmXrQFDUqyiIu4RVTc3LuOgJO4sd0jACXETWnXMSzGTZddRPeOJgMrB9C/v21D0UGumpqA00+3n8dRgFsXcVu3zvt65omKbsVtwgTg8cft13Qobuxc77abM0kDheIWMTMjK2kgUw5AqaRBHDFuFMSNWnGLi7jx10yEEhK+7XsRtyiKm1eiCWriFoGQ8zUd2b3itkm67yflmo5xWyX5z0mD4uZWfnWQWi9HRUSrJNvsdsdBboE13wUpboDCZndKkHji9utf/xo333wzevbsieeff943K2QQRo4ciS6t/vK3337b8xj2+mjPwIsOAGriRqm4eWUf1FXnRyNxc+86AqWKG4ObuEXeddRNTrza5icDHSmd2MKEjw3RMcH84Q/O52kqwO3XL0rFDdCz6PG7l3TthPspbuz6zOWUFxD19cC0qeFWyZoaqNe79LJK6i4H4JW+3ChupW2y76HLKslixt0rySjnhpK4uTd/evcubV/yXuVrOjI1zb0gd8eMKtd09NrEobRKAvSKm86skvz4CCQ2xo1tdqsobkqb3SlBoonbxRdfjBtvvBE9e/bECy+8gL333lupnerqahzRmkXroYceKvn7V199hX//+98AgOOOO069w2lGuRW3KOAtI2xi1KW4aYxxA5y7joAYcetcXVDbdQzz+Uf5Tb3aPuAA+7W//EW9bQavmlw6Jl93Jrc0FeD2ey+V4nblldb/Os67X+C9BuKWywGL5tnErVDtYZUEIi1mf3iwPRZ06sLOR6YtA2zd4Dzmz1ckbcWi/d29dvELhWiEmb2XtacreRPrGwOl4uaXVTLK9e5H3HQrbtXVFnlzE7cofY9TcWOFsSK2z2o6ZjPexI1X3O6eGaGmI2WYAKVVkroAt9ecCtARt4gxbmyz232diMS4KW12pwSJJW5Tp07F9ddfj169egmTtjvuuAM77LADTj311JK/XXzxxchkMrjnnnvw3HPPtb2+adMmTJw4Efl8HieccAJ22GEHrd8jNSi34hal1prXTnsCY9wA564jIEbcbriuoLbr6GXpqKiwbYf/+Y/TAhe17eOOs8/LK6+otcvAF1X3S1usK2VUHMlJdGWV9HrvySfru96ZJQqwSNuYMdZj3VYaTYpbYyMwdSowZAhw8nH2977r/hpMndoq/OpSl7j+//ycCsybB7zzDpCpsvq/1cC82n0K+FukdChLXuSEz4LXkRU3R1FNQsWNtZ0W4sb3a8IEYOxY6zE/ByqOA/X1wPbbWO/NZ5wr68pq+/lJx0c493ymUJ02e8DfKpmG5CRsY86da4EqOYmGPk+ZghJHVpjipmyxTQkSyUeffvppTJ8+HQCw/fbb4w9ua1Mr+vXrhxkzZrQ9X7FiBebOnYuBzC7HYfTo0bjppptwwQUX4PDDD8f3v/99DBgwAP/617+wZMkSjBw5En/iUyR3NIQRtwgFFAGU3tTuCSxK+zxxYwvYBMa4MbBdxNNPB6qbw4nbMUcpnhs/S0dlpf17nHiiGmn2artHD8tSs2xZqXIjC/561F1vJpNxPk9TAW6+XwcfbM1Ohx4KvPWW/bouq+TJJ9vnSse50UzcGhqsQqvs9t4J9vdetbkTpk8HZswAvtihCkPYHzRlmK2oqsRwVlaostK6Hyh38dkx7tgUEfDjH3t/JmN9TnMzveKmixjGaZXUXficmrgxOzmF4rb99vZjdt20tERqv6pVcevVtxLz/m05srt3B7a7KAs81XqQjnhXLzIete0wq2SU805plSwW4yNubqskUJqpXBB1dUBxzwLATXFhipuyxTYlSCRxW7VqVdvjt99+2zcubeutt3YQtzCcf/75GDVqFG666Sb873//w8aNGzF06FBccskluOSSS3yLc3cIUJcDcCtuLEsg/3mqYAtVvj4cNXHTsIufyTgHHD/ipnxu/CaYbFZf8W1322xhGIU8AN6proH0Km4UVsmBA4GTTiptX5dVkp/cE6a4NTQA48Y5X6uB/b2bYJ2Ppibgrfer9RA3P/VdhzoTlvDAfYwMgmL/mptpFLc0Jifh29Q1jrmJm7uWW5S+x2WVdGe+zGYjEzf2m2ayWXsDBACqNNsZvRLOAPrju/nHUcZfUcVNpf9NTfYmrZu4USUn0bT5P7SvcyOYJSdxK241NRZpU7bYpgSJJG4TJkzAhAkTpN83bdo0TJs2LfCYgw8+GAcffLBax9ozvMoBZDLWYBElvoLBrbj16lX6earwstQlWHHjF50iVslnnirgqIukPqK1QZ9d/CgZPBn8Ji/2G0Rd8IjUm9FF3NKkuHmpG+72dSlu/OROtSPrfixwbhobLaXNjU6c4sYmdsB5X0VabPqdex2p48N28QH1RX5QmYSNG2kUN11WyWLRW3HTlXwqjLht3mz1wa3Sy7bPW9V5pMEq6SZuVVXWZ+twDrjnIl0bc6z/fsRNlzrutcmiq76obsWNH9vdGwhxKW6q4PMYAOjUqzOwxlbcqtGCqZcWMXlKpl0rbQyJjXEziBl+g7wur38cipsfcXv+efUYOr/FmuIE6V50ihC3yy4tqCVp9NvFd0+WKuc+jLjxiwoV+C02dUy+7vfFobhls/biT5fixveXIjlJXIqb5HmfOdP7K3opboCzzIYuq6TnJo4uhYO/n3QQcv5e9Mq2mWTFzWsXH6AvB8BbUqNshLiJm5sAJpW4+Z0X/jN0xItSETf3eXd/FsUmC59ISIdLRncdN7+x3d02FXGLMu+5Qi8anuyMefOAnXezz9FVv1PMBZBCGOJmYIGfQKqqgHPPtR7rIm5hihslcbv5ZuCll9TaFlHcJBYO7kWnCHHLtRQwa5bwR9gIinHjofLbhhE33pahAkrixqp6utvUqeZ9+qmV/AWwlWsd95Lf9ahLcWM7m+4EQgkpB5DLAXfd5f03EcUtt4nAKsnOva404PxikxUyAkqvW1EQFSZvQ5ji9qc/qY/vfgpEXFZJINomFCVx8yrATX1eAD0ZN73sr+7nlIobhVVS96ai7uQkcRI3jclJAJQQt2znagwfDnTrpTGWNkUwxM3ASibBih0DwMcfW0UwABrils3GS9wAZ8FlGWi0SnotOkXruN11l8JcIDLBADTEDYi2KBEhbqrXpHsBTKG4HXus/ZgRWB2WOmrFjfXNvWjQQWo1ELcFC6zhygsixO3rhZqskl6kOcp597ufKIlbXIpbSwvw2mv62gbIskrmcsD8+cDqphQQNy/FjSecLnuZFMKskkCyFbdyWiUB9XNDmZyEvx6CiFsCY9xKkp15EX9doRMpgCFuBsAbb9iPL7oIjmhhCqtkZWW8VkmgdPIRhUbi5rXo9CNufN2SChSwdKn1fimEFZdt+zCF39bP2sX/BlGUH0rFbe1a53PWpq4dWQCYN6/0NdZ+khU3kZ3wMsa4BXEXEavk5rWEipuuemL8/cSPk1SKW1TiFqa4AcAjj6i1HaPi9sJr1RgyBBgxAvj7KzYBunn6ZjWrerEYP3Hr1s1+LUpm3yCrJPsdNCQnCbQDptUqGaX9csW4UY3vRFbJtmuS/x6q42MKYYibgZO4sXotDElX3PzqfbknG5U02u5+RYxx8xpXRBU3wEqZLIW4rJJ+FiNdxI3/LXVMvu4fwmv3N8r1/te/er8el1VSh+JGsaDSoLjxApQbIopb1yqCGDfdipufVdK94SCKMMUtqlUyTHEDgJEj1dqOkbg9/1p128YaSzcOAPfcuRnDh9s1qIXB9531d/Ro38+Xhhdx45UUviajLIKskjqScHiMubkcsGaD/RvntkQgP+xeLZdVUpXUtherJCVx239/YM89rcdbb22/Lr2znV4Y4mbglIHcBcjjUtyiDBZsEAsibvzfZKBRcfNadPLEjVcGvIibdLWKclsl06K4sUlBx+TV1GQVIvdCGqySXhn83M/LGOM2bBgwYID33/wUN564DeqvpwC3r+KmGtfpdz+lVXFzZ090X0+iICZub7zsvXHGE7fO2IymJisTsBR58yI/p58O7LST/XpSFbcYrZKNjcDUqcCQIcC9DfZvfPThOUydCnm1kzvv65qqMX9+62XU0a2S5Yhx4xUx1esxn7evx1GjLNs1U6633dY+7ssv1dpPIQxxMwje5Um64ha2KPH6mww0EjevRaeo4lZba71fCuVMTgJEiw2hinHL50snEDa56Ji81qzx/xulVZK/3imskjoUN6+J3f1ZIW1ns8CkSd5/81Pc+A2RbF6T4uZXikF1weZnlYwrxi1KIiGva5LfCQfUyRUhcWtsBO6dZb+XJ/tu4sYwcaIEkfBa4GezwNNP26/rIG41Nfb1yC/Iqa2SGpKTrFxn1XGbPt3aP85xFarWrs5j+nRIqZ2NjcDVl9nn9P+9XYMRIyxS+NdnCKySEcqaeIJScRONcdOpuPXubb+2erVau/x1XFvrtBvzxO2LL9TaTyEMcTMI9lUnvRyA36KEWnHr3t0+V99+K9SU16JTlLhNmqSwaS0a40ZRDgBIpuLmXigdeijw3e9aj3VMXkFkldIqmcnosexRxrj5pXaX/E2nTCm9vQHBOm4U5QD4e0v13PtZJflxksoqCeivLVhRATz6qP06JXFTPOczZwKZnJjixn+UcIZfv/FXl62ZjTW8PT1Oq6QGxe3zBZWOU8ATN1ZUWVTtbGiwSN4dN5cq78uWAU/9nbt+zjhD/X5i35sv8QLEq7ipjMGiMW46k5PoIG5elmMGo7gZdFj4LagAunIAbt9gUomb32Itm7UHjXnzhPvvXnSKELdOVQVMnizXbQD+5MqNNFkloyo//Hc94ADgH/+wJ9+4iBtFAW7AvrCSqrhpquNWVwfMnl36uohVUou9C/BX3HQQt7gUN11xYn6/K9931fNOlFWSZfjlrxkR4gZAPMOvSG0+SuJGZZXknQMqSi03hvFEzf2cETeGILWzocEid01N/nOq+7Nw+eWyPW9t1CPxCUCfnCSNddx0ELegOY8nbibGzaBDwc/CxD/XrbhVVgIvvGC/llTi5rdYA6z0Y4BlQfj6a6Hm3ItOEeL224sVC0uyxVJlpXNn0D3Zpom4Rd0Z5L+r+xqhJm6UVknAWUNPFeycUqTp1hDjxlBfDzz4oPMn9FLcamqAH59CXICb74Rq++W0SgLRCK1IAqeEWSVZhl+/8TeIuAln+PVTrXQotIA3cctm7etRl+LmV4AbUBsLuPfw2ZOBYOLmp3Y2Nlqkrq27Phs47s9qeuN/Ut1uA7tX3JuhupOTpDnGLS7i1rWrHfzvVyemHcIQN4N4rJJe5PDgg+0BRLX9clklAWemNK/07z7gF50ixO2HByuSWr8Jxj3op7UcgEq/gyYB/vd9+GGn1UsU5bJKAvEpbmUsB8Cjvt6quTV1qhX6wC/YuvetwdSp1t/3/C6BsqRbceNTxvKLKt1WSX6RT6246WifiLgxDqxC3ADBDL8iVkkdWSXdGZNZghJdMW5BypICQck12deLDHEDvNXOmTOdt52fiupW3L5ZoVgiyG9e1WmVdG+2AumKcWPt8cRt0qTgGHA/BM3ZANC/v/X/8uXybacUhrgZlCfGjYHdiNSKm+46boCtuAHA559LNcsWnTsMK1041NYC3/2ehjS6fpYOHcQtznIAVIqbn7rM8JOfSBFyAMFFbymzSgLxxbglQHFjqKsDrroKWLwYOPZQ+5r511udcNVV1t8d16cuZUl3KYZVq+zHffvaj9OsuOk470TEjZ1WVeImlOGXUnErFu2xxk3c2KI8iuImYpUElMaChZ/b75GxSgKlaiezvPLgf1NecXN/1lff1qgNZX7zqs7kJF6hDZR13Kg25vr0cR5zxx3y7YYRN5bxbfXq6BlyUwJD3AziV9z4m4+1T03cVNv3W6wBzsyYQQt2H9TVAdsPtSeZ1/5djXnzrEXo2AMiDtKA/yJcN3GLM6ukzhi3MOIGAP/6l1z77cUqSaG4ERA3vonuVfb3znbzIShJVdz8iFunTnb/dScn0UVoRTLv6lbcIqpWLMOvX0KbIOImnOHXj7hVVNjnRvV6aW62Le/UiluQVVLhutmwVl1xA5xqJ7O88hC1Sm5orlYLi6JU3PzGX0Cv4laO5CSAJY9GaTdIcQOAFSvk208hDHEziFdxc1sA4lLcdAxGQdY61fPDDfB77FOF4cNbf4KogzTftnuCSUOMG7+g0am4iVolGWQLt/PErUsX6/233eZsP8lWSZE6bglS3BzwK9quyxIoUg5AB3Hjd6kzmeiEXERxozgvOs67n1ODn0cU2mYZflWIm3CG3yC7YVR1nBtn1rZ0tmuVAbbitnGjepmHb76xH7tL90QkKN272L+pWwXjyZUfcePVTi8RWjQ5STOqxSyvbogQN9VxjM9Y6UbUNYHDT0oQ3x0W4wYA220n366o4gZ0mDg3Q9wM4klO4pf0IC7ipjurGaBnwckm98pKZ/s6iJvf7l3SiVux6NyZK5dVEohG3GbMsFYW55xjPddR/0hEccvn1T6jWKQtwK05xq0E5VKWdBC3lSvtx257UdQxWIS4nXiiWtuAWIybbqtkJmO3r0gKp0wBulbIEbeaGohn+PU776whQOl6aWwErrvC7tMrb3Zuq1U2dSqwpapVcSsW1V0Pc+da/w8Z4izqDUS+X7ceopacBChVO93JqQF/xc2LuAlZXt0QsUpGvd4prJJBKqoO4sZf737Ebaut5NsVjXEDOkycmyFuBk5S5Q6I1a24+WVKSoPiFrTQ1x2HRknc3O0lrY7bnDnOhazuAtwMQUScIari5lYJ3H2QhYjiBqgRCJGyIID+e4k/x1F2TLnv/M4HVbYKoUtZ4n9bP2VJt+IG0BE3vt8ffmgF3arAz06u2yrpvt4jEre6OuDgMfZvypM1P+I2ezbEM/wGETfWd8nrhdUqm3Vbab+XLbMKWb/0ZsSSACtW2NfjDjuU/j2i4pbNqFsl3Wons7zy8EtO4v6syk7VYpZXN+JKTuJG1DpulIrbmjXAffeVtudmxir3alC4CmCIm0EHhR+pAuJT3CgXJfznyyJo0NCpuMVJ3JKuuC1a5HzO79LptEqKKG6ySW34xb2b9PH3kqqFSURxA9QIhGgNId0xbsOH21vnr7+udG4aG4ElC63rbTM6Ya+9M20qxP2PaLDsrV0LXHyx/ZwyOYl7lzrqGMxfk36KG6AeE+VnJ6fMKsm3H4GMbzdETHGrqbEyAdfXSzTul80TsK8Zib7ztcp4MrkJznil9YWIRbg/+8x+zGdOZog6BnPvCUpOUgnn9e6ldjLLKw/R5CTDdqgRs7y6IVIOIOrmlpfiFrWOWxBxi9r3V15xPmdzdkWFtZvAoDLGGKtkCQxxM/AnVfxrxaL6YhOIX3Hr1g34wQ/s50mNcWMTt3ug1kncKMoB+BE3HVkl+f58//vOgVlnchKRGDfZcx9E3PhrX0eyHL8C3IDauQ9SNzIZ+/MoYtzGjrUeL1sGfPKJVLNMhVi7zFqY8AvwZcuA+x/VQCB+/3vH0yVLK+zToCO9OyNu3buX3q9Rs5GKbm6p3q9+myGUVkm+fU0q6pm/7Iza2taXOeL2nVGbMX++JGkDtFol3bXKeOLG9xUA1sNWOb6dq5DQ5ssv7cd85mSGqMpSXk1x81M7p0xx3oKiVsmRu7nIiwjyeft6p0xOEqa4RSVu7ns/6lqGn/cmTnTaay+4wH5MQdz4GEzVzLspgyFuBsGZjHSQE/4z/FQO3cQNAB5/vPTzZRFXjFs5rZJUddxU4yv4/h19tPNvcce4yZ57PnOXn+Lm7ocMKK2SQYtk/jXdMW4AsM8+9uMvvhBuklchWKIJfrEGAC2wr8+P35dfUDU2Av/76zeO1846p7Itpmj1Jo2Km9smCei1SvLXiHvhqbro8dsMocwqCSjbDR3gzs1vruiExYutCiCPP2uPY7vv2CRuj+Thp3QC0sTNXassiLh9jSFtj1+4d7FYX3nwYxhfR5BBI3Hb93uVjkvSi7iFqZ11dRapYxC1Snbvo1AiyK8MDqAnOQmfxM2NJMe48e/ZYw/n32pq7L5HJG5rN1TgnXfgTMYT1WmSQhjiZhAPcYtbcXN/lolxs6HbKsn3XceuY5AqRhnj5jVZyn6GiFUSoLkeKa2S/OdR9J1fSAiec7cKwYgbr7gBzsXbS/9oRmOjWHcBW837aI6TeBRQ0RZTdPk1EYlboRBM3KISZr8Fmy7iJqK46c4qybcfRXFzzR/ZrPV777KXhsWgqOIW4mTxqlUWRNwWYWjb40/+/pX87Sq6geM+VqH9YcOzmD/f2gCprXUSt97dc5g6FUJqZ329Re5qasStkp52xDD4OU0APclJgsJWdClu2ax+91BQCEIm48x0KoklX9tt/9/jFdhrLziS8SxdE9FpkkIY4mYgXjtEdeGwYQPw1VfW47iySgJ6iJtoTFRHU9z8JjAdxI0yrjDIduFlw6CySlIrblGtkhSKm+ZNELcKwXba3YobT9yy+SbMmiXWXV7N4xeDgHP3fmMuInFbsMA+917STlTFze9edSviSrnRIRbjlgKrpNNvp2ExKELcisXQccyrVlkX2KqYm7h9ha3bHvdav0i+VlnYOKBRcUNlJerqgKuusuqX3vx7+/OuvCyHq64STwZTX2+RvKN/WKq41dYCPzsjZANTBH5OE/fzJFslveK2dSpuXvOoInFraACOPNz+rgWOsrCNs+NP0VSCKEUwxM2AXnG77jr7MR+EDySfuFGqPwAdcQtK7U5J3HST5aCdQd1WSXdGVffxInBnleSRdMUtSN3gP0+17yJlRwTb91Ih/BQ3/nkNmnDXXeEf4Vbz3MSNX0DwRHH1twrn/YMP7Me77Vb6d13ELZNxnmc3UdOtuPGPE5hVEoA9f3Tq5Lz/+Xvpww/VFuIiWSWB0P57/SyiitvW+EqejwepSoBWxY1vK5sFBtVxyUmK8m3X1QFHfN9OyHLlTd0wb55FCs8+x3X96HSaAHrXG5RWSbdNEqANQQBs4iaRLIdtnOVavIkbw7oWY5U06IigJm58ViH3Li9VVkm+bSC6dSGT8S+VACRPcQtahOsmbnz7cVolKSYYt0qmU3Hr29d+/Omncu0yJEFx00E6I2atLFUhir6KG0/cOmELli5FqArhVvO6wrlTzC8geEXvv69HJG677lr6d13Ezb0I10Xc/O5XDbXWhBS3lhb1xFnsfvXL+ghYxaj5RFeiEFHcgNDFpletsiDi1ghbohqKRfK1ymJW3BzQQX44crDdbt0wfHhrs+7vonPD0v08yVZJL+KmU3ELIm6Cihu/cVaBYOLGj/cbVxrFzaCjgJq4eUnn7r9RKG6ZTLTFZksL8NZb1mOvwSiq4lYo2P3STdyCJl/3IkdnHbc4rZJRvfhe12W/fs7nOmPc+MXfP/4h165Xf+JOThKVQIgu2ATad3OMKrSgAtZ17Vbc+ImdkbtHH/Vv20vN64uVjue8VZJvf86bTfJDzccf249HjSr9e9KJW9D9ypMrFYgQtyjt84obD550AsC//iVvJRUpBwCE3qtetcqCiFsTOmEZrNpWdRXfyNcqC1PcKImbjs1Q/nfiWav7s3Qm5XI/j+pKoKzjRm2VDCJuTU1C7fMbZ2HEjR/vF3xmFDeDjgKRcgCA+sJh7739/0aZVRKwB1OVgfScc+zHYedGlRgyBKXn1U3cdChufPu6iVs5FTe+mCegN6vkoYfaj//1L7l2GUStkklX3CLGuLlVCGaTBIKtkuy4yy6zrDhe8Iop6ocVjud+VsmWjU3yMUU8YRo4sPTvUS2qfsTNvfutW3HjP5NScYvSvh9x83rNy0ot0rZXWxLEzatWWRBxA+zabr06b5GvVRZjcpKS9jUrbo609DoUN/46C7JKqsx9xaI934StN3RbJSmTkwA2cQNCVTf3xpkMcfv6iy3Kl02aYIibgVgBbv44WfAL2Msvd/6NUnEDoi02Z860H3upM1HVn6BJgFJxS1OMm+4dWVniJntu+EWY+3ocPNg+V2sV6iu5+0OpuAUtHHSUA4j4u7pVCL/aTYA3cQMsK45Xhkkv/uImbn6KWzWa5WOKqJVOP+J2zTXO55SKG0VWSR318/yskkDp/RtFfY9A3IDSWmVBBbgB+5rsWqkwDviM7bmclfzj62UxWSVVr3dKxW3NGvuxu1RC1E1L/j5Ks1XSa63EE+gQ4ubeOOMLsYdZJTPNW+Q3zlIIQ9wM6K2S/KR6xRXOvyWZuPHw2m2NSiIoiZtfDBqgvxwApVVSt+IWZpWMStzCdh7ZAlFHjbu4ywEkKMbNrUKIKm4OgtcEzwyTXjFF3eFkY/xiwm3FlI4pCttMoCJu++wDPPKI/ZxCcYvLKhmH4iY7DmtS3IDSWmVhihu7Jitaoo8DjY1W2vUhQ6w07Lf+wf4dHnogJ1VeA0DwOKBj48+PuLnvH5X7iU+u5i7doVOJpMwqWc7kJEAocXMPQzKKWw2alJPjpgmGuBnQE7eg+iFpIW5e390obhbKZZWk8OKfcILzuey559v3IvvsGlVNWxx0bqiTkyQoxg1wqhBBilseWeRbpzqe4AHwzDBZGlNURCWc1wGfrISvD9Wjc04+pihswcbOTbGoloTDj7hlMsCxx9rPdRA33YqbSFZJ1fZzObt9L8XNvcCVve41ZZVk4GuVBRG3mhpgyDC5At8OcOf8ny9lMXy4lV+MqSB8QfunH2/B8OH+tuOw9qmTkziUHvd5VplXeeLGJ5sCaGP/gGhrgnzebr+cMW5AKHFzb5zxxM1dRB1wJofqhC3yG2cphCFuBvERN68BgzKrJKCPuHm9X6fi5l5UxZmcJGnEjbKOW9gEc8wxzjgjVcWtosKbuEVV3MpZgDvqvcQvqIKKkwue87o64PTTrcdBihv/mpu4eWWYdKt5FSi9/3gFjl/IjtqxRT6mSFRxcx8rCj/iBrRWLG4dl1WJG/tds1n/hA1JjHELmzsSpLgxsFplY0aXErfaWrQVrO47uMbus+z9yo3bl/6uqqR7/PVehRY0NVlp24XJG3VWSSa5dOrkbG/77f37IYqVXJIit+IWNTlJ2PgbZU3A3x/lzCoJhJYEcG+chSluQAZbmDU42yS/cZZCGOLW0VEo2IMAtVXSa8DQqbgFWQBUSQQDheL2zTf2Y/fuXVqJG3UdN2qrZCYD/O533sfLtO+XSZWSuEVV3MLquEUtwL2CixNzW1IVNkEaGoA777Qe84pbEHHjj2Pwstbwah5vi2TgFxD8Qnan4QrjDPu+mYz3dUNJ3ABblZAsjtsGdgJ79CjdrEiyVTKMuLk3GnUqbhHiUevqgH12scePhsc7t9UqaytYzfdddhOHO+e8muz1Whb2sX4xo0HtkyYncUsvVVXAP/9pP6e0SiZNceOvAa91El/uiCJbs4TiFrRx5k3c7PG9tqdCMp4UwhC3jg7RorvuY2UgkoY2KnHLZmlUgiBEVdzmzbMfjxzp/JtO4uZesLnb0xlDR22V5J9TKG7u12WveXa8H3HTaZUsVzkA1Xtp+XL7cRBxEzjn7gLZvJLmtkryr7kVN6B0fQc4Y4rcittCbI0ncVzbc564dauOsGDzW3HERdwkiuM6wJQ6rxNJmZwkCjkBgkt3ANE3uIiIm7vtnffsZNcq82pf9txz4zZ/bXu9VgX7WL+Y0RLEpbjxNkmG4cO9+yGKtFol+WvMax0GRFsrabRKAs6NMxHixsb33p1NHTeDjgDRxRpAq7gBavEbQcHlAC1xi6q48cSNn1CA9MS4ZbPOXXb+eqGwSrLPBOIhblSKW0uLfktKXOUAVMcBRtyqqkoDGSTvJXeBbF5J42MeGIIUt//8x/szWExRl2q7Px9hZ+yAz9DMkcPKak32XZHrMUrZEWri5pXVhX0mH2MjA34M0R3jFqa4Rd3gYu1XVcW/yRKh/UKzmuIGeMeMliCu5CReGwlR1zNBVknKMglAtDpuYVZJIFoMs2bi5rdxFqa4ZXOmjptBR4BoCnBAXRUTiXFTbT+MuEWp4xaGqAuq+fPtxyNGOP9GSdzc0LmLn8nYr1EobkA0AhFGCt2fqRrj5tc2v7OvYpdMguKWz6ttsjCrZL9+pZY6iQWVV4FsfgHppRL4xbgBwOTJ/hav+nrggzl2f77GEDQxW05rTNFLr0fcaQ+KMQaiLTaLRfs9IlZJ2bEml7Ov4yDFDVA7N0HlNaIStzDFLeoGF2vfa26Keq+GLZQjtL9hbTBx81PcAO+Y0RJoLAtS2rkW+/t6KW5RiVs5Fbcoa7EwqyTffgKIG2BvnHWqCiZuNTVA74ERnSwpgyFuHR1xWCVFFTcK4pZkxe3zz63/KyuBbbZx/i0txI3CnhqX4uanisWhuAHR49DKlZwEkD8vxaKtuLltkoDUgs2rQDYfh+aVeSzIKhlm8dpqkN32fmMr8c47cMQUDd5a04KNwrrrF4vKg1/gym4m8AGCXopbVOKmOTOjcNtA6blWVdzCiJtK3wmJW26zmlWSITQdO6VVkleNKRW3iorS6z1qcpJyxrjxn0mxISpRx41HfT1wz2xv4sYn4+nRP0IW1RTCELeODhnLhWrWMVHFTWXAKCdxi7o7yAaw7t2Ds0qqnJeg35UvLK7afpD9KqriFhboHCXWSsQqGeXci8a4AbSKW1SrZBBhBuR/2/Xr7QVqv36lf5dYUHkNQ2HEzbZKNgMoVQsDLV5cf7p2r8Do0XDGFOmySFEobrLETdYu6Vczy+szdZOruImbaoxbWOKThClu1Rl1qyTgfRk4GyBMTkJN3FgB7p49gxNnRVHe3W0x6Moq6Rfjpktxi5icxI3+fe3veu55FSUbZ3V1cMaOq7hBUgZD3Do6wgaLnXayH8+ZI99+oWAPYmFpaDua4haUlIBScTv9dOCQQ0r7odI+BXETtUomOcaNyipZzgLcUfoelFESkFpQeQk7osQN8I5zC7R4he0m67JI+V0zUcYZauLGs2ivhXLUhTglcZO1SkqOBcXWvm9BDebPd339BFslu1SrK261tQhPx665nqMD/EYChVUyaC2TluQkfopbXMlJZMcY7rv27e+xcQbY36lYjJ5BPAUwxK2jI2yxttde9uO335Zvn7+JdFsli0Vx4sbHeuhCVMUtaKedkrhls1bhHYYkK25Byg9F2mL361HquHlBp1Uy7gLcXbrYjzdtkmubJ25eipvEgq20QLZz599LJeAzTXrZJYEAi1fYoiTqgi3NihtP3LwYddSFeDkVN8UYt8ZGy8K1cY117r9orMaIEcCQIdbrjY1INHGryKsrbpMmhTvzSa2SYQpwVOIWdK9S1xhNslWSIMatDSJzdtRNy5TBELeOjrDF2qhR9gSpQtzC0tBGGYxyOfs9YcSNHa8TuuyMugdpvm2AJnYxiLhFVTmTpLil1SoZdTGom7jx35WfxBkkzrm7zg8QXXEDAixeYdeMrvpN1DFufhYpSqtk1M2tIHIV9V4KU9wUYtwaGiw1YPp0oLJofV+mUC1bZr0+fDjw2psa71WvsSbKWMD9TjKKW02NlehHpn1SqySF4hZE3HRt4Pi1T10OIKnETSQuPWpG5ZTBELeOjrDBoroa2Gor6zG/ay6KsDS0UQajsB1TgJa4ZTLR4q0oFTe/Omu62y+H4hZnjJtGq2QuB6zaYi8Q8xs0EzeN5QAWfZMttXdFIW6icYuufviBr/MDyBE3L8Ut0OIVtnCImpRARnGTbb/cilvUhXLQGB+l32FtA9KKW0ODZWRga2SmRrlVq6Ym4NpbIhK3sDEyCnHjrhmZrJKzZ7fGG4WhjIpbrmDfv5s2FuQ/Iii8IWoiHkrFjbocQNj1SK24Rd20TBkMcevoEMk+GCWlPqXixk+8foOR6qJKNMA1im2vXFZJgFZxo05OEkVxE5kEopwbD6sks04NGQLcdpdN3OpP2GJbp0RBpLg1NgJP/MU+n1dfny21d0UhbjKprgXOOV/nB4hO3IIsXrkmu+31mypLLzt+AyfJils5kpNQxrjxn0dB3CSSk7gLwgNFVPkQN8BVJD5hWSX53+nu+7IlU6vbKllTY6Vtr68XbD/ovBMRNzYGD9vePldvvZl3jm8iCJqzo1p3ZYhblDpuKUtOIlTCxyhuBh0KYZnkAHuQUlmUyChuFEUlVScCUbKUVMUtzcSNso4bdXISl1WSt04tWwZshk3cmtZubrNONTRItu/uJ6C8WGN9/MezpbEtvL3roy8JiZtCLBSr81NTIxfj5rZK+lm82GJvzHfta+Cvz1Z6L/aiXPPtOcYtLsUtNAe9B8KskoMGOZ8HjAXugvB80WCv69FRJD5hMW78NXPK+ErMn29d77W1rX/mFLfv7tWC+fMlSBsQfN4JrJL8GLxkuX2uKpF3jG9CYzAlcZOZs2XnJZFxIK7kJNQxboa4GbR7yChuUQuoeu30xDUYAXIDkuixRnEr/Vta6rgRFuBuKVTg6qud1inAqfx0hrWAaWqyjhNaOITZjNhrgpMXb+8KIj9NTcDDT8dklZQ45/X1Vh2fY45QV9y8LF78Ym/NKmfbnos9HddkGhU3fhHmFbuoKzlJRUXpOMYrbirELUxx4yVdwLf/YQXhwzYSCpsjELdMprSYPaBHcctmgUwGdXVW2vXFi6007A88ZH+ffffMidkjeVASN5fi5rav8mMDr9ILj8FJUdzSRtw6dbL7T0Hcop77lMEQt46OsIQEQDSrJGWMm4j8rzoRiC4ydMRbURM3r4E6agIOZiVNWzkAWaukxLlvbAQ2rLeOX/R1JS67rPQYXnFzE4iJEwUsO6I77QKLNbe9i19sepGfTYjJKin5u9bVAccdbbc/9fJKzJjhSrLpQdz8LF7uxZ6fDdOx2NOhuCWhHIDsoiqMuOlKTtKpUylBiWqVDFPcRo0CTjvNfu4zFngVhJchbutXRCBufteMDsXNdb1ks9ZmxY67RkzCEXTe+TE5ouK2bEt3l30VADIowLqO+PuaIXQMDrpXKyvta5RCRU0zcctk7PEhQjkAoRg3Q9wM2j1kFLdCQX82o7gGI/fxYRBdIHVExS0s8UmU64W9j6HcyUkEzw1TaJo2WccXfIZWnrgxxY2hqQmYNSvkg0R2NgEhxc1t7wpbbEYibkSKm9d7tt62EhdeCIfFi18oD+plxRZ6WbxKY5WcCzyv33XiRCBfGYG4BW3gAPSKW5QaS/x1wMdAMuhS3LwUMWrFDXDWHPTpv1dBeBniltuUMOIWZt2Nmj2Rv2bcxC2TQbH1O21clytNkBQG7jp48oVunl+dbb54EbfAMZgvKeR1bjIZe41DYZXUtVai2KAXIVdsnDGKW2QY4tbRIULcoqS7fucd+3GaFDfRY1VJRLGY3nIAYYvBqBM7ZXISghg3XqFhsS1+xM3LKsnjrrtCvpYmxU3F3sUTt/z68se4OeBxvfMWr7MvtPv+0J834aqrvDPgucksEJ74pKkJ2NgU4ZoMU9yi3Kv8GOlH3KJkxQwjbjoVNzeixriJEDeBcdizfJ0EcasupIy4RbUz+ihuLKa0KW+1P+/TfGmCpDBw18HDz3gky0EwcQMCxmARd1IU4kapuIU5cAD6eZX91rIxaLLEzWSVNGj3kFHcALmFeC4HnHWW/dwobjb476o7EBkoL3HTWYg0iLgVi8D/+39ybYtkqJJQ3NwKDSNuXgt8INgqCQBLl1rWK1+ETWKCipuXvYtfyIQRt1VflzerpEz72SzQb2tbVarc4r3j60VmAWeiCb/fde1GRcWtULBtx+UqBxDl3PPEjTLGLUxxo7BKAkLnJmpB+K7VERb5MVol2xB1Y87jvPMxpex8sXMolUCEuw6+WtXN85Aw4uY7BouslZJK3GTWSsWielIuwP+aVLWTG8WtBIa4dXTIEjeZhcOaNc7nurNKigxGqt5nasWN0hZB3X7Y7p1OxS1MndlvP7m2RYp5Sixk/bLJ+SlufjWQeASKB5oUNxV7F0/cWtaWt45bCTRkNfMis0C44gYAWwqKixLqgvCUCZyA8ipu1dX2gq2MiptXQfiwe4nPKlnR3LEVN3dMqZu4MQglEOGug/VQU9xczdigJm5xWSUpxgEZ4iZ7bgxxK4Ehbh0dlIqbe5HhtWCKoiyJWCVVJzBqxa3cxC3NVkm/iUEEGgtweyk0bDHgR9z4BVs1vCcYr3JYbRCNcQu51lXsXTxx61RIj+IGQKgGnReZBcSIW9v5ikLcyhXjFkUVK2eMG2DbJSnKAQDC595dEF5GcYuUyIKiIHGMitvilZ1LYkr9iBtDYAIRTnGLQtw8x+AkWSWTtoEjMq+yc2MUt8gwxK2jQ6aOGyBvleTx8celx1DvIql6n6mzSoZNAh2ZuMnEQ8lCxCopeG68FJowq2SY4lZba1mvPLFmDfDMM979ZOAVt4Ai8l72Lp5I8v1k4Ilbr6oIihsFcQsbxwQUNy8yC4QnJwG48xVFeS+X4hZFFaNU3PJ5u/9+xI2tsCkKcAPC47C7IDw5cWN9SWNyEo643fVg55LuhRG3wAQirQS+mM2iV3/vzdww4uY7BsdplQybs2fNUl+LUSipIuSKt0oGzE1KbZuskgYdCtQxbjwOPrj0GOrkJKoTGHUdt/asuEW10sSluEUsB+Cl0IRZJcMUt0mTAnjpjBn+/WQQnMC87F18shQ+Fo+BJ24VWyIobkFxi+5jVdr3OoECxM2LzAJiilsxq8EqmQTFTZW4VVaGjwWyfefHay+bPWATNyqrpMS55wvC85sybuJWUwPc92DWvg+iKG6UxI3iegHaiFsxk8Gf7i6dt8OIGxCQQKT13s507YpJkz3q28Eem/2Im+8YLLJWYuc9qlUyTHEDgMcfF287CYob/7kyY4HInG0UN4MOBZk6bkC0zIxnnFF6DLXiproTQ624tWfiplNx8xqoVevDuduOmJzES6EJs0oGKW41NcDkyb4fB9xzj+vDAqySQGiCEre9i0+Wwme/ZEhqHTeh9gWImxeZBcSSk/Sp5RQ3md1kWccDteKmapXs0sW7EHSUtkWIFbNKbtok3z5vldRA3AC7IPzPJ5cqbrW1cJahkKi5WII4irYTK27FTp2xbHnpNSNC3EITiFRVlYxvDOwe5u9rhsAxOEnJSQDgpZfE26ZM5AbIEzeZ82OySpbAELeODv4GFbnhVGPcTj3V2zgexbedhBg3ds6iKG4U5QDC6rYkmbiF2er4BZcsNJYD8FJoKiMobrNne6eob8OQIf79ZJC43t32LhnFLcl13EJj3ALqCHkt9sIUt5oaYMAgRXIlq7hRZJXUobh52SSBaH2XIW58X2Tbz2b9z73COFxXB5xzlv1djzkhi3nzrLIUjjIUUdSZMOIWhezHlJwkX+N9zbB7LIi4ASEJRLLZkvHN3b6X4hY4BssQN1k7ICAXPgFYaTZFkQTFjV+jyawLRMIbjOJm0KEgU98DoPVVyy7yZRW3KFbJ007zPk619olR3PwRtsh3L9Bkzo/I7p3gZkKpQmNP1DIxbjU1lsXKXQy6BCLETUJxA2x7V3V1MHGrrgZum8W9Rqm4Uce4BfTda7EXFuM2ezZQ002DnTwJWSVl22ck2KsUQNS2RYib6mIQsDeA/BKTAOrnnvtd+w/MYvhwj2GY9Z1acVMl+37XS0WFPUZGiXHzOe8iihvgk0DEZfPk7asMXsRNaAwWuVejXI+yVslevcTbpiZuIuRKdV1gkpOUwBC3jg6RG1qHVTLMEw7IT2BxKm633up9HBuk+HpMImjPxE1nHTevScBNSFQVDg0FuHmFRiqJBYDuNS1O61QYBg/27yeD4vWeyQRbJTMZoFgZYRFOXYBbQ4wbg3ux56e4ORZ7OlwJ5Ypx05GcpFyKW5SxJixjJaA+DsvMfRTETfW8iNQVBNRrcgFtxC3bvbNnTKkIcQtNIML1ndlXp0613scTtxL7ahBkFDdAnkBQznuUZZ/cfQlLTgIY4hYRhrh1dIgobjqSk/gNFvykqZq2GKDNKnnWWf67W6oLznITN12xhV5t87/Fc8/Jte3uj9dA7bZKykwyGmPcAKdCw8dMiFgljzm82WmdCoP7XAcV4AaErne+hlKQ4tbUBJw2MULpjhTUcePBL/b69XISN8/FnupCOWmKm0zfi8Vw4qar1IAfuYqy2BQhbhoUt1A3SJJi3ESuF0DdaQK0jd+Zzp09Y0oZcQtK1++bQMQnPq+uzrKpLl4MbLW1dW769sqX2leDQE3cwtrfbjv/48OQBKskZYxbB8sqqZRXu1Ao4K233sJLL72Ed999F0uXLsXq1avRu3dv1NbWYs8998RBBx2EvffeGxV+J9ogGQhbhAO0xE1HvRmAtgB30M6je4IUTVUfZzkAr3NDuRjkidVvfwtcfLF34gI/hO3euYmbTP9FJgGFhAQAcPbpBbCwNb9YqN/fXAX8vPXjcxGsNIB3//nrPcQq2dgIRw2lsOQkDjIqe02Wu44bb8sSIG6AvdjLjy4Ax1uv/fKCSky73uOWTarixt8rIqqYTPv89UWhuPEp/v2KG0ZZbLL5wC9jJdDxFDfReU9VcSsU7O/buTOmTLGS5fKnIExxE0og4tP3bBZAp1bFrZiXWwGXW3Hr3Bm49FJg+vTS48OQBOKmI8bNKG4AJInbsmXLMGvWLMycORPffPMNAKDoYQ978sknAQCDBw/GmWeeiUmTJmGAlyZuUH5QZhsS2U1Og1UyKP28e7ALWgTwiFNx071QDrtmBg50Pl+9GujTR7x92eQkuq2SCue+vh74/t4FYGTr2ziSU1tr7RBPngzUda9uI26RdmQvu8z7GInrfeZM5yFMccujwrOOm4O4yV4zYZNvlCRF7vf4Xe+dOllkQzI+j9/571db6T1r6iBuFIpbWJ01QH3BJtu2bN/57BMUxC0sCQegR3ErB3GjVAoB9b67ip4zx8K4cVwXQoibUAIRkd9UdwkfgJa4AcDuu3v3JwxJIG5xWSU7QFZJIeLW1NSEG264Addffz02bdqEbDaLPffcE9/73vew8847o2/fvujRowfWrl2LlStX4qOPPsK///1vfPDBB7jssstw7bXX4uKLL8ZFF12EGtGFrUE8oPQ+yypuxxwDvPcesNtuYu1TJicRJW5UE3tU4hZGaimJ209+Alx9tf18wQJ14iaSnES3VVLx3Gw1yD72u9+rwDu3W+vNYcO4n3hjhMQt/PE/+Yn3MYLJSXI5qxYSD0bcLJtkqULKE7divuBxRABEz3s+Hz05id9Y07WrdU4EFbc2iMRvUCZwinKv8t9VdwIREeKmS3Hjs0fy0JHcKmiRH4filstZbcu4k6gUNxEHDmD/3rJJilzEDbAdCxMnWlM0I24VKCKDAoqt405NjUXahBKIBJFOVeImoo5TWiXdrydJcePvDT93jYlx0wYh4jZy5EgsWrQIo0aNwumnn476+nr069cv9H0rVqzAAw88gHvuuQeXX3457r77bnz55ZeRO22gEbLJSXTbgNxE/ogjLCO6COIqwB00gVHFtkRVIPhz47VZEmUxGLYru/POlp3j0kut5wsXAnvuKd5+2CLfvYDSbZVUXaxxx3bpXonRoz2OoZ7YBa/3BQuAZcucrzGrpJdN0kIGBWRQgSKaNhd8j/KECHHLZtWJm0j7XbsCK1dGI24iu8m6NxJ0pOsH9JMrvm2/zIxGcRNf5AfF2rnB+iKykaC734A6ceM3k7hrpr4eGDsWmDULqLg+C1biMosc+tRW246FsFi0JClussqP7Kai7k10HYpb0CZ3XHXcOgBxE9ri6dy5M/7v//4P77//Ps477zwh0gYA/fr1w/nnn48PPvgAjz76qFHbkgjKlP2yC00A+Ppr8fbjSk6SRsWN/65xK26AM+XXwoVy7YsM1Dwos0rqJoVRFAIRG5Og4rZuXelrTsXNG0x1y7dotkoC9nmnSE4C2ItNauKWpHIAlFbJsM0hIFrfZRU3VeIWpM7EobgB8ot81hfdC3zR5CSMdG3eLJdNOaB9FlP6nf3s8/XJ+znxBCL5vFhGzDRbJeNS3FQLcAetlShj3ExyklJ8/PHHkZOMnHTSSTjhhBMitWFAgCSVA5CFrOImc0OrxriJIklWSYqivttsYz9esECu/TBr2sCBwLff2s8prZIy517EUpfJWOespaWsiluPHqWviRO3PCozmpOT8K9TKW6qKgFljSLq5CSyipvuTZAoxIoyOUmhYP+u5Y5xA+SIW7FoExTdC3xZxa1QsMYx0Xlc4HqvqLJf336bnHgmBtmEYkkjbrK26STGuIkqbsYqGQlCbExXZkiTYTKBKHc5gCjELa4C3OWY2HUSN69zTJ3Nk6855vbkhSFsodya/KgNqqqYhnIA0m0D6hnZNC4Ghw1DSQ2lcKuknS2zJhuhHAAFcZNxDujOiOn+zCSVA6BU3KgTq/BWST/FjXJTEVAfCyiJW1yWuiDFjb+WZDZCZK936t9UZ+1VoP0obkkibiIbooa4GXQolLscgIyv340kJCdRHUipywGEWSX5mJSQtPElkLWo6s5AuO++wHHHqbUvMgmoKm6iFk92bmQnGJF7VdAqmc3CVUOpiC4SVslMIUJgf5iNlEpxY5/LKxaybesuLps0xU1WtWIQsQYnSXFT2ZhLilUyrgW+iOIGqBM3kdCMmTPV2hZJTgKok3GRlPcUxI1ScYtSE5HdG0HzXlwxbh0gq6QScVu0aBGefvppLHYlkfj4449x4IEHonfv3thjjz3wwgsvaOmkASGSVA5AFkkrB6CT1FJbJfkFvju9fhhErpkoVkyRc88v5CjLAegmhUAiFDcAmDLFPrwG9rEixI1EtaKOcaO0BCY9xq2iwn+MzGTs6zUp8aKAmOJGGX8NxKe46bbxU6tW/MafzPwhslGxYoX9+Le/FW+73C4ZILlZJZOQnERHjBsFYU4hlIjbjBkzcNxxx2EjF+S9ceNGHHzwwXjttdewdu1avP/++zj66KMxf/58bZ01IECSygHIIglWSar2qa2SmYz9OgVx05VaWEQVU1UJypGcBNBD3ESu9xAlldVQAsKLb7c136X13MhekzK/KbXi5u6PjrZVd5OpFTc2R3fp4p+mm/9siXsp12T3ZfW6Su+3xlkOgMISmFbFjSfjFMlJKK2S//mPeHs8RNXCpBK3OBS3TIYmHtXEuMUKJeL2+uuvY/jw4Rg5cmTbaw899BCWLl2KY489Fu+99x6uvPJKNDU14Y477tDWWQMCUJYDSEJyEuqskjqIW1g5gKhWSb/fle2aRrFK6t4ZBOSJm25VTEM5AKGdxwTsyNbXAw8+CPSqtsm7l+JWU2MdV12joMy4jy9XjJsOQh5UaoBBJmulyEJWRzkAP5uk+7MFzktjIzB1KnDCsfaxd91TiSFDrNcbG7mDk1oOIGnqDGXGY8rkJIB+q+QvfiHenmzbQPshbioW2CAybohbaqBE3JYsWYJtt93W8dpzzz2HTCaD22+/HbvuuiumTp2KkSNH4uWXX9bSUQMiUCYnUanj5n5fEGQVN4qsklSKm+pOLwP7rlVV/jvtfEpnGcRplaQkbmlW3DSSk/p64N8v2+SdJ261tdZifP781sK3FYRWybhi3AD9ihuvCPFKkUzblDFuYcRNUHFraACGD7fKNK5bY/clj0osW2a9Pny4dVxJ36MobroTq4iqM6rXjEj7cdn4KZRISqvkRRfZjwcOFG+bOsZNdj1DvTGncr0nhbjpjnGrqLD7b4ibN1avXo0+ffo4XnvzzTex0047YciQIW2vjRo1qiQOThRz587F7bffjgkTJmDUqFHIZrPIZDK4+uqrldqbNm0aMplM4L/PPvtMqe1UQ1Y9iUNx43dag5CEAtxxWCVVYn5YX4IUTRbnllSrZBD5iZIGnIFygU+dnESzOjO4t30NHHFCJ7zzDjBvHkprKLHPpbRKJjnGza/vvCIkOn4B8cW4aSBuDQ3AuHH20FIJJ3FjaGqyjmtogPN6VK3j1q2b/uQnSVBnqImbiuIWZ3ISv74PHQpsv731WGaMTMJvGmcBbpW+UxE3kTmbso4b334HIG6iFTIc6Nq1K5YvX972fOHChViyZAmOOuooZ+PZLHIqkzCAO++8E7///e+V3huE3XbbDbvvvrvn33r27Kn98xKPJNZxW78e6NUrvP0kZJUUzOIX2L7XuenZ06739dVX4u0ysMHLj9ACeqySIsRN1VYnsiiRbZ9SzYurHEBlpb+Kqtp3jrz3rO2M0aN9jqNU3Khj3FRVbNlkOTLEjVJxKxa1WSUbG4GJE11v8SFuDBMnAoc8UIm2qhOyawF2Hv3i2wA9c1PaCnAnQXGjtEoCaovwJBC3KGV2KMuOsLkm6LyobtAD5bdKAtY1s2lTh8gqqUTcdtppJ7zxxhtYvnw5+vfvj4ceegiZTAb777+/47jGxkbU1tYqdWyXXXbBr371K+yxxx4YPXo0rrnmGjzwwANKbfE49thjMW3atMjttBvIJidJm+JWWWn9y+eTG+PmdW6qqoCddgLefx/47DOLXMmUTpAhbrKKm8jkHkUxFNm9o7RK6ohxE90ZLBaDk0bwoNw1FUkbD6hlHwSSUcdNR7ZQ3VZJSsWtudk+73wMnhdCFvkzZ5YOb2HErakJeOpvWbRVnVBV3Pzi2wD6rJJxLfJ1W8f4z02S4iayUQGoEbckJCfRVR9V9yZO0qySlIqbIW7eOO200/Cf//wHe+21F0aPHo2///3v6N69O44++ui2Y7Zs2YJ3330XBx10kFLHzjjjDMdzU7ybCOVOTuJFRkSJm2gGrOpqi5ykySoJALvuahG3fB749FNgjz3E25exSubz1rkMOoc8RM47y16VzyfLKimwCM/lgMqKCmQKBWzZmEc2F3wJeLYtWs8mnxdsHPb3pFiU8Ak1ghb5qlZJGaUzaYqbCOmkVNxUY0NEyTgQeO5zOeCuu0rfUgH7vBR8oi6efLpSjbgVi2KKW1Jj3GQzwFJaJZNUDkBkowKwF+EtLeKbW0kj47IEgjKLahKIm2oCEdmNCkWXX5qgxIYmTZqECRMmoLGxEU899RQ6deqEu+++G925yevpp5/G5s2bMXbsWG2dNSCAyASjI47A74aOoriJEjf2GdTJSWQshyKTwG672Y8//FC8bUBOcQPk+i563lUHUkqrZMAkwLLlDRkCtBSs9j/+qOCdLS+sbYoJTIS4qd6rosQtjuQkmzfLXe/ForySmqYYN75tGTWP/00jxLgtWAAsW1b6ljDFDQCWrVa8Hpub7eNFFbe0xbhRZ5WMqrglwSrpvrdF2xYlKJTETTYEYd06+3GPHt7HJFVxY/NBORW3KBt/KYOS4pbJZHD33Xfjd7/7HZYuXYoddtgB3Vw7BCNGjMCTTz6JfffdV0tHdeHdd9/FxRdfjFWrVqFnz57YY489cNRRRzlIZ4eCyM5j3FZJ0R08ftEbNAmoxBSpxLjpLAcAAFtvbT9eulS8bUCeuG3eHLxA4iE6uasOpGWwSjY0WDE57CdkCkIl8m3Z8mbMsOqe1deH9Dus76r3k0icgup5EdntBfRYJf3Ozfvv24+vuQZ4+OHwdtesAQ44wPne9hbjxrfNL+7CwI+jYTbrAOLm95EixM3xusw1I1J8G6Cv46ZK9v/xD/txuZOTUBDauKySgDWXibgSVMg45Ua0rOLGX/N+xC3q9R50ravGiwL270ox7xniVgIl4sZQV1eHurZ0Y07svvvuvklAyolnnnkGzzzzjOO1nj174rbbbsOpp54aqe2NAvV7RI6JFZRWSZFB2otYFIti7bOFSadOwVYKyno2lFZJPkHLmjXibfN9CbJKJl1xi4m4sWx5jsNaF5z84pRlywN8yJtsVkkgfYqbDquk36KHb/ORR8SI27RpTtJWUeE/FqQ1xo1fxMkQN/4+DdrA4T/b47z4bv4LELccFK9H0Y2EOBU30Wv+vfeAt94Kb7+9JCehsEq67cFhijEgbn+lVNxUN3IB+97OZv03WqIqbhRzB98XCsVNdF5VnZtSCCWrZGVlJSa6U0x5YNKkSciKxm8QY7vttsM111yDOXPmYNWqVVi1ahXeeOMNHHnkkVi7di1OO+00NLQVn1FDt27dQv8NHjxY0zfShHInJ/G6EUVvPLbTFxZ4r3JDlzs5CQD07m0/Xr1avO1CwW4/aMHGTw4yky81cROxXWiKcfPKlgfYihsfx8MwcaKPbZJacaOMceMXyhRWSREb6Ykn2o9FnRqffup8Tp2JlFJxEyFuqjbMsHk44F4dNgwYMKDkZSHi1ruvBsWtnFZJFbLvzoZdbsWNIjkJP3dQWiUB8c2tOBU3ihg3Rty6d/fffFIlnR0hxq0DKW5KxK1YLKIoqIqIHkeN8ePH45JLLsHuu++O3r17o3fv3hgzZgyeeeYZnHPOOQCA888/H80doAaEA5Q1uWQWDjxEF4VMJQjbjVOxd5W7HACgrrjxv6mo4kZB3JJolXT13StbHuCtuDE0NQGzZnm0LVsOwN2fMFBmleQVNwqrpMiu6R//aD8Oum55uDcmgs67jmyhfu136mT/TXeMW02N/ZurKm5hiYcC4qGyWWDSpJKXhYjb8T8mVtyi2o4B/Yqbm+XqzioZl+Imqs6oboiWi7glPcbNT+IG1EhnsZgM4masktpAmqpx06ZNqBLNVFdGTJs2DZWVlVi+fDn++9//KrezYcOG0H/ffPONxp5rALtBWRZAL0S1dgFyxE2U7LPFpqjiljarpKrixveDOjmJyASZpOQkXN9zxUrPbHlAsOIGWFn2Sr6WbNpiQL9VkjqrJGVyEn6jQrTvMsSNsvZfJmMTDBmrJN92UIZWtpiTIW6itjcgNB5qypRSLh1G3GpqgB//VIMCnDbFze2qSaviRl3fTlSdEV3ki17vqoqbCOnUEeMWRNxUSKfIGONumyITtA7ipvt6TynIiNuaNWvwxhtvYNCgQVQfoQ19+vTBgNZdssWLFyu307VrV6F/iYKI9zlu4iYyEfDFZcPOqcpiMwlWSb4gvIzi9uKL9uM0WyUpygFwSVsWLMx4ZssDghU3wMoVs2CB+00K5QB0WyVVz4uoVVI1jkCE1KosqNxsgiK1u+hYwAiGjOImugmiQtxE2+b/7nPe6+qsxDw8wojb7NnA4DrFRXJSkpOoKG7u+6fcWSWpCa3uwuRAfIqb7nOjGuPW0mLPwUEbFSpjpEq2TZl5qVi0N9uN4hYLhFfT2267reP5Y489hldffdXz2Fwuh2+//Rb5fB5TpkyJ1ME4kM/nsXbtWgDoeNklRSR0HcQt6Ib+5z+BH/3Ifi4yETQ32zdohBpFvkhCOYDKSmvBtm6dnOJ2wgne/XMjqVZJyuQk3PUetAZmC1E/xQ3wWJ+rlAOQndwBesWN2ioZlK4/k5FLAe6+/soV4waoETfRxSYjbqptiypuhYJv3SyWkIdlX+WJG1/HraaGy766WNGWlmbFzX2c7gyElIqbSrZNik0QlTVHEpKTqP6mIhkl3Z8r2neV8xIhbtwXqvUoDXErgTBxW7hwYdvjTCbTZv3zQ3V1NY499lhcc801kToYB55++mls2rQJmUwGe+21V7m7Ey9EdvEpVSUA+OEPgVtvBX75S+u5yETAB0SXMzkJZTkAwLKPyRI3Hmms4yaSnEQDcQuaH/lyAH4oWU+KTjBRayCVU3GjtEoCVv9bWuitkpRjAcUYyS62LVusRU9YlkhATXEDrO/rc3x9PTB2rBXjufn3BaB1vZlHJWprrVi4yZMthQ6A+n1KrbhRxri5v6ffDlFcWSXzefEi1nEWJhcp4QOkNzmJzJwqUsMNUOu77Hwt0zagRtw01V51wBC3Uixo9QUVi0Vsu+22OPHEE3HjjTd6HltdXY3+/fvHnlHyjjvuwB133IF99tkH999/f9vrixYtwuuvv44TTzwRnVxpVv/617/ijDPOAADU19dj4MCBsfa57IhLcQu7FmQnAtGYHL5tasWNYsHWuzewaJFllRSdfEWhapWUtV4kySrJXe8sW56XXTJMcauttbLtOd8kaJXkr1eZ8iAiyUmoY9worZKs/ZYW8d9UNTmJ6sJBZGHS0iJ+r4reS+7Mkn376msbKL2fAsakujrgqquAfG0esPJ64ZrrKjHrQo+36dhISEo5AJVC0ACw227ex6nOHaL3kjuBSNC1yxCn4pYEq6Sq4qZbRRVV3FSux6QQN9X2ZYkbs27qXCslDMLMamuuGPBpp52G/fff3/Gabrz77rs4++yz255/8cUXAICZM2fi2WefbXv9ySefbIujW7FiBebOnVtCvlatWoXx48fjrLPOwh577IEhQ4Zg8+bN+OSTTzB//nwAwIEHHog777yT7PskFiK7+KrETXSQBpw3pEhyEn6hmRSrpMxAzR8bZGdkCRuamy1yFfZd3ZPoihX+x6oqP3FZJSkUNy7GjWXLmz699LAwxW3SJI9LWnSBzxMj0fPOLGwAzaJENjkJhVUSCMxu6AmZGDcdipto7GIuF06W2HEMIlZJwNqdFyFuMoqbwv3E3xsDh1R6ryZ0KG6iVknVUjW6C3Dzx11xhf+YTZ1V0q3OiBC3OBU33VZJ6uQkInO26nqAV9yCrvdMxjr3fMmfMIieF9UC3CrqNSVxAwJdA+0BSt/snnvu0d2PEqxbt84zw+PixYsdCUSaBG6Ouro6/OY3v8Fbb72Fzz//HO+++y6am5vRr18/HHnkkTjllFNw8sknoyLoomivkFXcKFQlQH4ikLFKqti7RBfhqtYIUeLGZ5ZcsyacuLkXF37ZNwBn8pPWGE8hJCE5iQarJGBly5sxo/SyZopbFqV9r6mx7GAlULFKiipu1DYgpnDU1Igv2GR2NWUzgyVJcVOxArW00BI3EaiUA3D3KQgi54VacVNZbBaLljWfgdIqucsu/sfFZZUErHMjUmIjiclJVLJKUtjJ+TUHH2bAo6LCuiZbWmiIG2D1n4/xDwO14sZ/T7/C4VHaN8StBErfrLGxEa+88gq+853vYOTIkZ7HfPbZZ/jf//6Hgw46CFtttZX0ZxxwwAHSNeCmTZuGadOmlbzet29fXHfdddJ96BAQIW6Vlda/fD6ZVklqxS1osFCNcRMlbrITmAxxi1onrrIyeOEetRyA6CCtaJUE7Gx548Y5D1sPa/LsjvVwY/ZsLoaHB6VVkjrwXra0BiBuv3L3RWecgvv6K2eMG+Vik1/MiZYbkBl/VTZCRM6L6gYLv0gOGt9VFoP//Cfw1lvebbgRVXGjSFKkorjpXuQn0SpJPUby4QRB12RNjdUXmY1c/jsGkR9AfnOLOjkJ/z2TRNzaMZQkpttvvx0/+9nPAolVsVjEhAkT8Ee+qKpB8iBilQTsgZSKuPELsCQobkmxSsoORu5jgohBVOIWsTaUL0SSk6hOvpxVkqG+HnjwQefPsAa9AACd0IQaWBNTTY11HMuu59tvQD9xo1bcRIkbdTY5WbIvmsEPiF9xE4HooirqQjZtihv/HYPGR5X2H33Uvw03oipuFHMHZUxRnIobpVWSYozkiZuf4gbYv6uqO0n0XtVNxvm/UaxlVOdsQ9xKoETcnn/+eey4447YYYcdfI/ZcccdsdNOO+G5555T7pxBDBBdhEcdjMJ25imTk7hTXYtAYHLM5YD5i+yBqriFYLCTPS/uAWvWLP9jqYmbOzheFDFaJRnq64H584GpU63EI4y4AcDwfmswdar1d1/Sxvfb3T83ohI3UbuLzHlhu6Zh6rWOBB86FTf3wouiVIJschJAv+JG2bb77zqJW9RYVCA4g6ZKv92L7nIpbnGVA3C/JwiUsX/u9imzSlKMkaLETSW7rEo8qu6skiqx14BR3MoAJeLW2NiI7bffPvS47bffHo2NjSofYRAXkqK4xZGcBBAnEAGDRWOjtcAfMgQYsXMW+dbb6L3/bsHUqdbfQxGX4vbjH/sfq1rgW6SemPvvKlmqiMsBuMGy5S1eDBx4bK+21+e8sgZXXeVjj+ShoriJTpDUu8nsegxLM09tN5TdTVZV3KiTk6iQK9HdcArFLQ6rpGrCA91xOe75QncB7qRYJVXODXVykiRklVS9JkVi3IDom9yi86puMs7PS6J2bEBNcVPNWmmIGwBF4rZp0yZ0DrpwW9G5c2eslykYahA/RNWTOIkblVVStG3Ad3JsaACGD7cyEVrhYxk0wRqsKnNNmD7d+ntDQ0j7cRC3I44IHuiiEjeZxaDKDpvucgCsnhEQ2PdsFugxtJf9fMMa8fYZkpCcJKKF1BOqCzaq5CTu40RKGQDJsUqmWXET2ajIZOzrXWYtoKK4iZ6XpChumYzavBqX4tZerZJRFbfqajElVSbGTcYqGYfiJlOmxihusUOJuA0aNAjvvfde6HHvv/8+BgwYoPIRBnGgWLQvcFHiprozqDvGTVVxizD5NjRYSSzcp6AZ1rmphjXBNDVZxwWStziskmH21Opq+9xRWyVVrGm6B2nRxSCgZiOltErK7ISze0mG0LJzKEPcKJL9RNlNBoARI/yPpY7PSxpxS4LiBgB9+lj/r1ol1i5Aa5V0zxe6Y9xkCLOKOnP66fZjSsVNtxLp7ofurJLUaekZcQsTLVR+UxmrZJQYt7DzwohXkhQ32U0/wBA3L+y///6YN28eHn/8cd9jnnjiCXz22WcYO3ascucMiKEywXQUxc21y9PYCEyc6H1orjU5q7vm18SJAbZJfrDTWVBZhrgBNkGhJm5JsErKLGSjErdyJScB5OPE+PNSbqtkVMVtu+3C23b3JwwqxE23SkCZsdL9d50xboBdc27VKvEYY5WECmmLcQPkF/lr1gCrV4u1r7JxRq24JcEqGbUcQBhxY+SnpYWG7FMpboBdeoNCcYu7jls7hhJxO++885DJZHDqqafi97//vcMOuX79evz+97/HqaeeioqKCpx77rnaOmugGTK7PEmLcRPNOgZo2U2eOdN/bvWr+dXUFJAbhDVWUxOcUl92oZx24sb/9rqtktTEjbIcgErWMdHzIqNERrVKZjJi17uq4jZ0aHjbfH9EILpwoMwqSa24URI3prg1NYnHdFIqbu5zUa4YN0DeyeI+Luh9KgtlleQkSbRKUiYnCXP4qBRWT0JWScAmbhSKWyajlmnaELcSKBG30aNH49prr8XmzZtxwQUXoE+fPhg6dCiGDh2KPn364IILLsCmTZtw9dVXY5999tHdZwNd4G/oMPLDTzCiu6aUiluMNYpyxUrcdVdAV1oVN69izXfd5TNG8cQtCLI7vqrEbeNG+Z18CvvV/Pn2Y93xSkm0SupOTsJ/tsp5Cbgeczlgw2b7esw1KahWQRMvEL0cgE9d0ZLPVkloAwRfN5SqGHWMWxxWSUDcLkmZnMT9/dKkuLn78O67/seqEBTq5CRxZZVMglUSEI9zo8wqKUMK2dwkQ9xEFTfAEDdNUCJuAHDRRRfhr3/9K3bddVfk83ksXrwYixcvRj6fx6677oonnngCF198sc6+GuiGzEKWDUZ8XFwYkkLcIlolG7+uCKxjzRQ3t1USAJYuBRYs8HiTKHGLyyoJAGvXhh8P0CpuDz9sPz70UP/j0myV5Cd+CqukZsWNz6L64sv299p914J4FlWR2nz831XGmOHDge9+N7xtvj8i4M+PqG0vbVkl41DcAGDlSrG22XfMZoMV2qi1ytxtuEFJaIHoxO3ww/2PTaLiRmmVpCzAXSyKEzeevPAlBIJAmVVSRXHbtEn8dxVV3AD5uQkwxM0DIVdIMI4++mgcffTRWLp0KRYtWgQAGDp0KGpra7V0zoAY/A0XRtzcA2nY4AI4b86wnXbZ5CQx7iav3xQ8+QYpboBPMjW2SyWjuFFYJfnPF1lsFou0xO3NN+3HJ57of5zKokSVuPExJUGQSVvcqZN1DehOTsLad/cnCAHjQEODFavJDmGbFACwamUB06cDM2YAs2eH1LiTVdxUiNvLLwcv8qkVt6QlJ0mK4sZi3ABxxU00y6lKVklVxY3CKikbO+4e604+2f/YJJYDoLRKim5Eq8wdzc329wyzSnbvbj8WVa7iyioZNg643SCMyAVBRnFTIW6mHEAJIhE3htraWkPW0ggZxc1dcyZs8ALEa8QByVPcuBu/W08x4ualuAHOcbwNSVHcZM/Nhg32cT16BB+rMkHyRGbQIP/jotqAwiZHfldVdDdcdGcQsCZIGeJWBsWNZVHlUeBMGux6Z1lUgQDyJpJwhv97oWBtEgQRMUCdnCRRcWvvMW6AvFWSgri5v5/uJEiqipvI9c63XV8fPA8nvRwA5fWuOy5StPg24JzwRUtgUG7MqShugDU3iRA3asWNjb+VlYa4tULZKmnQDqBK3GR3B2WJm0gMHfVuMjcZDR1WiaCqFn7JSQCgthYYNszjTUkkbiLt87bB3r2Dj1UhV2z3LpPRm20TkLveI14zoeeeTf4UVpooMW6t58UviypP3CrgXLAFZlGVtUoC8te7zAaOiuIWtnBIGnFLQh03IJpVMmyhqZJV0v3biyb4oCRuvJNBV9tRbaTUVkndhFl0g0VlXpIhbvyG5rp1Yu1TbszJEDeVItwqipvK+EsRU59SCBG3W265Bc0y2QQ90NzcjJtvvjlSGwaaIZOZkf+7rB+/3IpbxMk3W12BSZMCuhKguE2a5NM9leQkFFZJ2fZ52yBvJ/SCysKBTQKdOoln26SYwCgXsvznUwSYa1Dc/LKo8lZJN3ELzKIqa5UExPpPPQ4AaiRCd1bJqHWtklDHDdBvlayosK8pVcUtaPOEUrUCnCRAZBNHZqMiahxwORU3yo05lbmDWnFTsUrm8/Kb3LKKmwioFTdR9d0QNycuvPBCjBw5EjNnznSk/hfB2rVr8Yc//AHDhw/HRRddpNRJAyIkVXFLmFUSlZWYMsV/TPJT3GpqgMmTPd5QKNj9L7fiJmsf44lbmOIWZYIMmxyprZJRF7KUxI04q2QuB98sql5WSR6+WVRlrZL8e4JAPQ4A4iSCMhMeZeIT92frtkrydj7ZLHth/eaPUY1xCxqDqRU3WeImGiMGJFNxUyFuou2rWCVFf1M++29YmIiK4qZSgBsQOzdJVNxUrJJGcWuDEHF78sknUVFRgbPOOgsDBw7EuHHjcM899+Czzz5D0cX4i8UiPv30U9x999346U9/isGDB+Pcc89FVVUVnnzySZIvYaCIKMlJRCBD3JKWnMRle6ursxIweHbFR3GbPRuoq/N4A3/eRdPnAsmIcRMkbrkcsGaD/bsIp47nFbcgpN0qya5ZStubouK2YAF8s6gGWSWBgCyq7NzIKG66iZvqxC5KIqKQK77Gka62VeJm+D6FQXSsiZJoIuw+5Y8Rbdv923//+/7H8nUHk0DcZNqOqrgF3auqtmPR/qu0L2qVTLripnsckxkHkqy4hY2/qtdkCiGUnOSYY47BYYcdhttuuw233347HnroITzcmra7oqICPXv2RI8ePbBu3TqsWbOmjcwVi0UMHToU55xzDs455xxUiwzCBvFBpRwAIG6VTEqMW9RaPK3vZ4kX+Cx7gK24VbUqbjU1IVn2ZAa6OK2SIucmhLg1Nlo2u7vuAn67LIvzWl8/8tAc9jobmDLFh8wyUBK3JFolKRfhilklgzaJg6ySDJ5rFRXFTdYqGdZ2nIqbLHEL+02jqnky17tugqJyXmSIm+y9xJ+XV18Nv1crK633UBA3Xr3RTdyiZJUMK8OQZqtk0mPcZOemsHukvShuxirZBuHkJNXV1fjVr36FBQsW4PHHH8e4ceOw1VZbIZ/PY9WqVVi4cCFWrVqFQqGArbbaCuPHj8cTTzyBL7/8EhdeeKEhbUlEXFZJCuWHOpuczwRZX2/ViJ461Uo8AtiKGwBcdmkB8+eHpEaXIW4pUtwaGqxSWtOnW4oNv8hftzqH6dOtvzc0BLSvYpWkiHGjtkrKTmAxKm5ByULDFDfAJ4uqaHIS2UUVtQIBiMdYRCnALUPcKMg+pVUySk0uaqukSPtRisLLKG68Hc8PMuNAz57246BCpDxU4oko6rhF3ZjTHePG/zZJySoJyLsSZLIpiybOSori1oGIm3Q5gIqKChx33HE47rjjAAArV67E0qVLsXbtWvTq1QsDBgxAX75ui0FyIZOcJM0xbpptb3V1wFVXAVdcYdnCBp5cCcyx/nbl5QI7YKrEjUJx0xTj5pU6nie0wqnjRRU3fhAXVYCpiZuMVZJ9Pgswl0l7LxO8LgIXcRs2DBgwwHutFxbj5plFtbkZWLzYeiyibjDIKG58kgqRtlUUN0qrJAVxU7lmAFrFTWTu4DMsUlglZVRa/pi0WSVHjLAfz50b3jYgvkiWDW1gED33KveqSlZJlTI1njtTHPidLwqrpGz/ZeY9FWeVjOImW4MOUCNuMtdkChG5jlvfvn0NUUsrkmSVlJ0IZHaooiYn8VkQZrOWgoRektYFVatkEhQ3j3IAfqnjeeLmTtwycSIwdqzLNsnbkcJ2Nfv1sx8vXx7ebyDeGDfZ7Ilhk1KMils2a2VDnT699NAwq6RnFtXrr7cfh1mHVHeTZTeHKBS3KKpYR1HcRPouqpwwRFHcRK6btBK3HXawH3/2WXjbgBxxy2Qskk1hlaSMcVOxSvK2wbDaZjyxo7BKyo4F1MQtrjpuxirZBlPHrSODOjlJOykHoN2C1V6skq3lAERSx7uJm1fq+Nx6e+GyqdApeGzv3t2OD1myJLzfQLwFiUVj3Nz98kOMWSUB+GZRDbJK+mZRvfxy+/HatcF9US0HQKEuM3Q0xU13TKfs3CFzn/Ltq5yXNCtuYdfMNtvY50a34gbYv3nSrJLZrHihZtFrnSdufByYF6itklEUt7C2qRU3Y5XUAkPcOjJUFTfRlM7tLDmJL2QH0jQnJ+EX3j17BqaO97JK8mCp4xsbrZjBXUfY19VL/+6EIUOs1z2LOmcywMCB1uNvvw3vN5Cculbuz5fdNRWd2EV3wz3GAb8sqkFWSd8sqiLXodexHUFxE+1/1DpuMovBcicnkZmX+PZVskqmTXGTLQew/fbW4/nzw9sG6ImbilVSdgOKIhGPjOJGXYC7PShuonNToWD/RkZxa4Mhbh0ZMhMkX2yZV12CkMQYN9FJRjR9ufvz27vixk8CNTWBqeODrJKAlTr+97+3E5psWGEvXDajM5YtQ3BCk0GDrP9XrxabZKiJG6WiR6kw+4wD9fXAgw86L1Evq2RNjXWcb0KevfcO7wODanISmQU4IGeZZsfKKG6y8VYUbcepMOtMTkJtlaRW3FQLcIskJ5Ed31kcclOT3Fggct6jEjfRcgOyMW4yC3wVxU3GKklRgDuKW4OCuMmsIynj8wxxM+gQkElOwscxrlwp1n4SiZvsrqmsBUtkMOIngbBinlEySFHYx1wDqWjqeC/iBgC/+pU9P3SCrbhtgW25YAlNSsgbU9wAMdVNNcaNIvMj5eQbRQF2nRd3FlVecevXu4CpUxGeRZXvzx13BPdFNTkJleImQyKSbJUsp508iuImY5XM5cTcGjEqbu++X4n58wMuZcpyAIDzmpXZ3KK2SoaVG4iycUaxSSFD3Cor7f6rbLKkLTkJ5QaRIW6eMMStI0NmIStL3IpFufgTygLcUZKTiPRdViXgzx+fZMMLcVolFYhbUOr4MMXNDT/ixjBxoss2yRQ3QIy4yUwCmYx9bjqo4sbAsqguXgxM+Jl9vTz9ZB5XXRVSlw+wrdWZDHD22cHHqhbgplLcZMbIpBG3tCpuqlZJQH/tP/4YgeuxsRFY+IV93L77VWLECPjbvqNYJUWuedmFeFxWSYrSHaKKm4pVks8qGUbcAFqVNi6rpKxrgJ8z/SB77qkTiqUUhrh1ZMgkJ+EJxooV4W3zgzml4iYyWETJEChilZRVCfjzF5aRNYpVkuK8u3YGWep4L4TFuLnRGU6rpBslCU14xU0kQYls0oMkTb6qxE3kehScHLNZoHdf+3rJVggu2Bhx69w5vOyBquJGEc8JyKk/SavjJkNQVBTmpFklRdsnUtxYHcuvG+3jmOvA1/ZNmVUSkF+IUxM3plzpdpoAajXoKJKT8J+h4tagzCpJkZxE1O7t/nyjuCnDELeODErFTXZnUDU5CZVFKimKG3UdN9lzwwbS1rpZLHW8Z1cErJI8whQ3wE5oAsBZYJbfEfWDzOQIyGfAissyojvRhIxlWkW14olbGFQ3KmQVt6RYJeMoBxBmS3N/flqtkqLtEyhurI5lU5Nzk6rgWmKV2L6piZuMVZJPBEFF3NimpW6nCZCc5CT8Z6iMM2mzSsqsxQxx0wJD3DoyKIkbtfJDbZGijHHjFTeZCSxJyUm4QdQvdXwL7GOqEL6g4ombl+IGWAlNFixofUJpNwSM4uYFlU0Q0aLqgPpvSjHGAHIkImlWScoFFSA+1lRW2sSR2iopcm5k56aQRbi7jiUjbnlUAPAmzG227zitkmHnXlbplCVuLS12VmKZDUvdVknq5CT8ZyRt7kgbcTNWSU9oJW7FYhH33Xcfzj//fNx6663YKLILblA+yOy019TYAxa14kZJ3CiskrI7eHFZJSmTk3ATgF/q+CbY11QNwicB3irpp7gBXKKupBE3md1BSuJGGUegQn7YglSEuFGWA0ia4sbHAYvEXLLvKKu4ydiCAfkxEggeJzMZucyPspZmWaukquLmM8a461jaxM2/7TbbN3VWSRnFTfa8y8YAr1plP6YgbqJWySiKWyYj5xxQIW6UpWQok5PIjsFGcVOGEnG76aab0KdPH7zyyiuO14877jicfvrpuO2223DhhRdizJgx2Cyyi2RQHsjubDKSQUHcVJOTUO20UypuSbVKypx31yDqlTqeJ19MTaupAWbM8G5axCoJcNmWKckPfwxFVskopFN3MWWZWNcoVklZxS1pyUl0k3HZOGDZemUyCypKxQ2wrysKxU3WKqkxxs2rjqUIcQMs4vbFNzYJKGwkjnGjIm6i9xLlhmWxKG6VjKK4desWbjvmP0OleLiMrbkjWSWN4tYGJeL2j3/8A5WVlRg7dmzba6+88gqefvpp9O/fH+eddx523XVXfPjhh7j33nt19dVAN2QWbICTuIXFoSUpxo26HIDsYMQmsGzWWfPFC3FaJWVi3DwmAHfqeJ589evW1JY6/rzzvBOahCUnAax2hw1rfRKF/FDUb+poihuFVTJpyUlUFTdZ5UeGuIkqbmx8D3NTANGTk4Q5E2T6Tm2V1DgOeNWxZPG8fHImLyxbBhxwhJ2k49nHNntnnuQhSzplEsOoJm9SIW66Y9z431R3LTHAJm4iiUkAdcVNZhwA9CcnkS0fAdAmJ5HZODPELRjz5s3DzjvvjEruRD322GPIZDJ4+OGHcfPNN+P1119Hjx490OBZOdcgEZCdIBnJyOfDJ4EkWSVVFmyqWSVlkpP06yeXZS+hMW48+NTxd8yyF4y/vXBLW+p4v4QmIorbpEncT540qySl4iYz+VLaUVTuU3b+KKyS1AW4ZRYOshn84iJuFEonf1xFRfg4JqO4UVslNSpuXnUsRRU3wLlBVdG02TvzJA9Z0pkkxY13muhW3GQ2WKKUAxCJbwPUs0rKXu9JsEqa5CSxQ4m4rVy5EoMHD3a89sYbb6Bfv3448MADAQDdu3fHmDFjsKAtk4BB4kC5syk7waQ5OYnsYMS8/n36hB9LXcdNQ4ybF7JZYMh29oKxsnmL4+9eCU2qYV+PfGIThpoaYPJk7oWkWSXTqrjJXDOy18sW7nfXnZyEjxGj2sCRWRDKJpqQIeMAreKmokKsWWP9LxNrlQSrpKriViiUuEG86ljKELdm2H1nCZxKMk/yoCwHQJ2cREZxi1KLktIqSaW4ydiaZesWypQyoI5xM8lJtECJuBUKBWzhJuSNGzfik08+wZgxYxzH9e7dG6v4gFSDZEF2guRvOhniVu4YtzitkmHtF4tyu3cpU9wcCJgEvBKa8Gm0vWxGs2e7ij2nWXGLUjQ4rO3eve3HX34Z3rbMNSN7vcgSN5nrXTZGjLoAN//9tmzxP44hzVbJV18FPv9c/HjV5CRJyCoZcN141bGUIW58uQB3rcu2zJM8KJOTyJZhSCpx06248fFzIvcS/xkUVkmZdRhgy8Jdu4rHogJGcUswlIjb0KFDMWfOnLbnzz//PPL5fAlxW716NfqIqAoG5YFMVklAbrGZVKuk6CRDVYCb34mXKeQJJIu4iZz3kIWsO6EJv3DhFz01NdZx9fWuBpJG3FTruOlO6cyPw6+9Ft62KnETOS/87y6SjU1mURVF1acowM2PobKp3WUsUqIZK1UVN5Fzw3udRWKSVRU36qySEa3wXrZvGeLGH+Mmbm2ZJ3lEKQdQbqsk7yvla3B6QXYjV3WBLztviGwk8J8hS9worJIsDXNYPD1gnXf2HQ1xSyyUiNuhhx6KRYsW4eyzz8ZTTz2FSy65BJlMBkcccYTjuPfeew9Dhw7V0lEDAlAqblHquKU5OUlY+3yJjC5d/I9joLZKakxOUgKeuPlMAnxCk57dnMStthZtCU1KSJu7D5RWScFrptBit//FV9ngeYmy71zSKLz+enjbSbJKyiyqVIk4IFd7iiFsjMxk7O9IUZNLJqtkLmePoxSK2xdfhB/DgzI5iWJWyWI2i3fescaXwK8cMn+4bd+6iBtgZax09C2K4qY7OYkscZPdKJYhP6qWOt3kwf0ZSbBKMsLs5ev1AvttqJOTUP6uhriV4pJLLsHAgQPxpz/9CccffzzmzZuH+vp67LDDDm3HvPvuu/jmm2/wve99T1tnDTRDNqtke1DcKIibzETAE7c0Km4yg7SjNoC/dYwlNLnk13bf//inSixejLaEJp6IS3ELabux0SKY/37VnuBH7VmFIUPgnyWOsu8DBgADB1qPv/46vO0kWSVlJvYom0MUihtgq4oiVknVGDeRvvNjO4XiNnx4+DE8VJOTaLZKNjYCSxqte6kpV4m99gJGjEDwvRoyBrtt36pWyQqU3k9Ll1qZKz0/P23JSVSzVupe4GcycjXoZMcAgDarpMwGerEop7gB6sTNKG6xQYm4DRw4EO+++y5+97vf4ayzzsK9996L++67z3HMxx9/jGOOOQbHH3+8lo4aECCu5CTlJm4qO+3sON2KG19kVZa4lTs5SbFot69JcXN0pWj3fXBdZfhPmwCrZEODtYadPt2puOWQxbJl8M8SR5nSGbDvZ9mYH91WSV55SpLiRpGcBLCJm2xyEpmFrMi1zhNHiuQk228ffgwPdu7y+fBxhsgqye7VFcus356Pow28VwXGd972rVNxA+x1d8nny1olk6S4idxLMuRHtu8yiadkxwAgOVbJzZvtPsgqbiKbLPyawBC32CBwpr1RW1uLyy67zPfv48ePx/jx41WbN4gDM2ZYAcNNTfpvuriSk8hMMIBaquswqCpuslbJcituspOjoOLWBtm+U1slQybfhgYr+1tbd2D3gV8UsixxAGf5pCadVMQtTqukjOImcp+qxLrKkgj2HUWud1WrOoXiJmsfE13AMrjv1aA+EVgl+XuV1VnzIlae96rgNVlfb7mUu43IAVvEiBuQQQEZVKDoS9wcQolsXKdqchKKrJKUxFC27zU11ntEVKUoVknZjMS667jxrJ9CcVMNP3C/1w/GKukJJcXt9NNPx9133x163L333ovTTz9d5SMM4sB3vgMccQRw/PHhdXiA+MoBhMW48WmZk1YOQCbGLW1WSdkJjDrLnuwkILtbHbAr29hoZX1zHN62IKxA0WNodWSJi0I6ZXZlZetaJckqGfab8p8vqy6nUXHjr8ewMZLaKslfV/ffH368aqyVBieI+15lBCmoQLbjXpUgtXV1QJdqq/2tt7Vi6D75pDTzJA9G8LyIW22tlbnSPjiCVbKjKG4ibctssKgQt7iySoaNkXxCGIoYN9l5iTK+0BC3YNx777144403Qo/7f//v/5VYKA1SDMpyADILwjgsUjJWSZnBSNYqmaTkJFGIm8gkINv3uKySHvWbZs4s/UpMcfOqQQe4ssRRlgPg2y+3VTKucgCyyrhKCnOR8h2UiptM//mLU7dFFXD2/bjjwo+X2aiIYpX0aNt9rwYpbgyOe1Vx86y6cyVGjwZ23LE08yQPFufmFeM2aZLrdqcsB9BeYtx0x6LK3qeA/FhDZZVMu+ImQ8gNcdODfD6PCpEJ1SAdSEpykihtU1glZQaj9qK4iQ7STMlNs1UScJybXM7K9uYGWxAG7eS3ZYmLUg4gKTFu5U5Own++iGNAZRz49FP78ciR4cezBWE+H37uVRU3IHycoVbcZBNbyShuUaySrra97lURxQ3g7lXVMZh7nzvzpONwH8WtpgaYPNl1cBLLAVAl+pFpX/Z6lMn+GsUqCYT3/+OP7WNEyJXMvMcrbrLErbk5XNmPQtx0lwbhz/nixeFtpxikrGr+/PnoGVavwyA9oCwHIBPjRp0GvFi0ByzdFizZGDdq4iZzbmQnMD49ehoVN5/2Fyywkhm4Eaa4AVyWOOrkJHwGwrDflTLGLUqslUjGNAYqxY0nblzWZF/w5DRsURilHEvYWBCFuMkqbiJjgUzKfo1WSa97VURxA7h7VQNxc2eedBzuQ9xmz/bIqJvmcgCyvyvveAgDf6+J1IuktkrKXDP33GM/FlGv47JKAnLXjMi81Lu3/Xj16vDjVa2Sd99t3cDtFMLJSa688krH8/fee6/kNYZcLoePP/4Y//73v3HwwQdH66FBctAeFLf588OPpyQQSbZKypx30QmsUydrUqVQ3OKySrr6xs+Fju4IKG5Aq3uFuu8yySAorZJRVFTdVknZvheLVoASAGy9tdj9yi8at2wJXiypWscA/YqbqlWyulo+PlpGcYtoHfO6V0UVN6D1XtVA3AA72cnEic6fhxE3ZpWsqbFIm2ftSspyAKrW3SRYJfn5RYS48VbJYjH4Go5qlQzrPxtjAOCEE8LbprZKuu21QeOH7LzEB3uKECtVxQ0A7r0X+M1vwj8jhRAmbtOmTUMmk0GxdZfzvffew3vvvRf4nq5du+Lyyy+P1EGDBCGucgC65Xn+hr75ZuDXv7aivv0guyBsL8lJdMe4AXJ++SRbJbm++a3FRRQ3oHX+pE5O4t5pFyVuYde7atkOQH+NIuoYtxUr7JW/iNoGOBeNlIpbUqySogtZ/rilS4HttvM/VqNV0uteFVXcgNZ7VWYMLhYD46NZ5slZsywr5tKldoxbdWUeUy+x7JG+tStNOQBvqCpugHUtB9m4oypuYfcq//1E1gSqVklRxU1GHZedl/h1l5dtJaj9sGvGPQeIEtUUQpi4XX755W3E7corr8Tuu++OY445xvPY6upqbLXVVvjRj36EAUHplAzShfaQnAQA/vAHwEctBhDNbqi7HAB1HTfKrJKAnCUlaYqbT/vDhlkbh34WrKCd/LYscfMiJCfRTWr5eM4w9YT6epRR9akVN34xKGr5l8mkGiXGTbdVMoriJgL++x1zDLB8uf+xsucl4Fr3uldFFbe2e1U1YY7P9V5XB1x1FXDFFZYVs/s+lcAaYNut87jqquDmScsBJC05iUyMm2y9SPd9qpu4ydyrqtmOgfB7VZbQAurETVZxEyFuMlZM9/0QtDmfckgpbgyMuF1xxRUUfTJIKlStkpSWPVlSKNKfKARCt+LG951CtaKMcQPsRaNsOQDdi3z3MREUt2zWyvY2fbqrOwKKW1uWONXkJJWVYtY0mclXpvQFtVUySYqbyvWeFMUtSgFumSx+Im0DltWUIcxRIXteAs65170qqri13asyxE1iDMtmrYLfqLGOywic90JLvi0xwaKvKzF495ChLI7kJEC43RCwf9dMRm5ukk2CJGOVBKxrplcv/2OprZKUm3IqY5iMrVk2xo0nUyJWSZXwDAbRDYUUQik5SaFQEKrjZtDOQKm4xZWcBAgf2KMsCHXHuPFtz54NfPBB8PFJVdxkSaduWx1g/zaZjPzv6pp8vbLEhSlujixxqslJRM6Lu/2wyZcnhWGgzoapqrjJZpV87LHwHV/ZRQmgrLgtWlKF+fNDvjJljJusei1rlTz/fLHjAPkkFvw4umFDyZ/d96qI4ua4VynVE0BIuWpsBKZOBRrut9s/8thKDBlivd5Wc86NOJKTAHIbIVVVYvdrXFZJ3co4IEfcKEMEVPouc83Iju/dutnnXrfitnKlf9/aGUyufgNxtIfkJED4wB6X4iZrlQSAH/84+PgklQMAnFbJsJ32uKySon0PaN8rS1yY4ubIEkfddxWrpMg55y2Da9aEH0+puMlmlXTbof7xj+DjVXZ7BRW3xkbgiUft73fVDdUYMQLBC/E0WyW7dLHjBMPal01OwhM3fnxthfteFVHcHPcq5SKcP86n7YYGS5mbPh1o2WKfuxyyWLbMen34cOu4EqgqbiK/qyxxY7+rLPmJwyoZhKQRN5m5Iypx0x3jlsnYqpus4hY2940d63zejmu5CVslvfDNN9/glVdewddff40tPhd/JpPBZZddFuVjDJKCuGLcKJOTAOEDO2WMm6ylw70gnTs38PBCc65tN+arxZUYsnPIKYorOQl7f9CCIK7kJKLkJ2TydWeJ81PcPLPEUfedyiopm845STFuffo4n3ss8h0gsko2NFjXzISmZhzPPqqV7LOF+IwZHteManIS3fXzAHmrJP8ZMsRNhEDwhdF9flP+Xq1s8lfcPO9VmUW4SkxRAEFpaADGjeMO5UoG8MSzqck+ztF3meQkqnXWADnFTZTsy8S4RbVKBoHaKimTHApIllVSdi0GWHFuX31lJX/K54PnBRli2KOHpezfcov13BC3UlxwwQW44447kG89OUXXYpslMjHErR1BZlElaxmJMzlJ2ABAmVUyCikMQGMjMHMmsMsjefyk9bVDj6zEqgFWrMaUKT6ZyuIoB8CwebNe4katWglMvnyWuKqrnYpbba117j2zxKn2nWLypSRuScoqCVgrYbayldmt1mSV5BfiTKEFgGY47wvPhXiSygHIWiUBceKm2SrJUF8PjN2/iMqtreuGJz6B96qqFV7EUcG37xp/Gxstouk41Ie4MUycaI1Hbd8hjuQkgLxVUgRx1HED6BU30bWSqEKrmt07CVZJwN5oKRat9oN+L9kxmM/+a4ibEzfffDNuvfVWZDIZ/OhHP8KOO+6IHqKpRg3Si7RmlXQv6mRIp27FLYqV0ec9bAe/qQm4n5vYeSuN5w6+uz2KGDf3zmZQdj7K884fo2KVDJgE6uqAq35XAK62zt+Oo7KY97iVkc73o6gVNyqrZJoVN9n2NStu7oV4NexFkZ+91rEQpywHwOI+CwWx886OoSBumq2SPOoG29fj7ntm8c4sK2t44L1Krbj5KEszZ5ZyrUrX+O5GU5O1idSWnTKu5CQyVklZ1aqjxLiJErckWSVVNrfcxDDg93I4iL6pwpBRIR8jc94//RQ48kjrvJxyCpCi0mVKxG327NnIZrN4/vnnccABB2jukkFiQVnHLc7kJKILWa/3ekFmII2quLkG38hWGurkJBKLKulzk8lY5z6Xo7dKSsR0dutVZWWLC4LMTjhgfz/RyV1m11Rm4cBnX6MgbqqKm0iyA9n2NQf2uxfiQYobg2MhThnjhtb2m5vlLNMqVsl8PjgLoaw1TVBxA+C4Tzt3q8To0eHNSy0GoyhuXNu5nFXnzQ1mxwb8Y/TuussqNVCSvTZJyUlEQBnjRm2VVHHhUChuSbRKCsxNbQ6ih1raHEQ/OjKL1WEOIpl7deNG4MsvrcciiVISBKXkJF988QX2228/Q9o6GuJKTqI7xk1WcYuSVZLaKskNeqpWGkfigyQRN9m0yID4Lj5/jEarZBtkdx5ldsL5Y0QWJQCd4pbN2oVNKaySMmOMbHIS2fZVbEY+14zXQlxEcQOs9+VykNtIUCFurH2ZtlUUNyD4fpIdZ6qr7ePCxhiBOmslKANxW7DAey0ZNr4DVs6HBQtan2Qy9u9PmZxkypTw42UVN8oYtzQrbnFmlSyDFZNPxpPjkvG0oCo8GQ/lnJ0gKBG37t27Y9CgQbr7YpB0qFoly13Hzb2zmybFzb0g5QbHMCuN18TOdvA926dITqKquMnaGctolSz5fJFzI0vc2OJClLipJCcRPS/MLpkkxU2UuKkqbhHJvtdCXERxA7iFOKVVEnAqYkFQUSD49oHgc8/ar6gQX8yycUaGuIleM3FZJbm+rVvn0xUB4gYA69dzT9hvRJmc5OGHw49XVdyKxfDN3DRbJWXKsQDxWiVjVtyYg4gNX7zCzFuDmYOohLyp1s+TrRFXZigRt/333x/vv/++7r4YJB1pLQfA74K63+8FynIAUdQ8oO038LPShMVAANwOvrsP5VbcVFJps36U2ypJrbjJEjeq5CSAk7jpLvGQ9hg3n4WD10JcVHEDWhfiqhsJste7TAyailUy7DNklRnATngQZpWkJm6aFDe/lAF+C1k3mCgOQE1xE7neRccLBtUYNyB8biK0Sua32Nf7kpXVYuXBVBQ3ivjlpBXgBnyJm5eDiN/c8rreSxxEqopbRyBul19+OT7//HP8+c9/1t0fgyQjrQW43YRB906+zHnRZJX0s9KIxEA4rDSqyUlEB2lq4pYUqySl4pbL2Z8vuotPZZUEbOLW0lK6KeJG0rJKUse4+VwzXgtxUcUNaF2Iy+y0qxA30XtJh1Uy6DNk08YDyVHcJIlbLgdsyVntF/P5ttMybJiVNb2kKwKKW22t9f42sLGGMsYtDMWifGZcGTcIgVWSFT2//ir7vEw5pyq86DnQMa2SEYmbl4OIX894bW6VOIgMcfPHunXrcMEFF2DKlCn48Y9/jPvvvx+vvvoqXn/9dc9/Bu0EKotBoPyKmyxxkyUQMotwTVZJPyuN6I5sm5WGuhyATOKANBM3SsVNdjcZoEtOAshlloxLcVNJThJjjJvXQlxUcWtbiFNmrwXitUqKKG4yiymeuAWpwLI1swA5pVOQuDFSMGQI8MHHrcQtl28jBUuWWEkY3BAhbpMmuYYg9htRZpUMg8Z7yRNsjKyuFusXT+58ynawOKumjfZ5EYqzcvdddzmAbNYe73STcfdxMlbJCO37OYjCFDfA5SDqIMRNKSLvgAMOaKvT9vjjj+Pxxx/3PTaTySAnpC0bJB6UO778wkt3cpKdd/Z/vxeSRNx8rJJ+VhoRqyTAWWlkiJtsDASQbqsk5SJfJqskv7Aod3ISwFnSwRFME9C2aPvUipuqVTIi2c9mrQX19OlcVwQVt7aFOGW9SP44Kquk6LmPorjlclb//PqVgBg3vnwLABRa988rUMSyZUVMn57BjBnADTdYX4MfHsI25mpqrFp0JS8CtMlJAL2ZQgE1q6To+OiuL8rBnamZ32Dh71PfTM0AbVbJTMbq/+bN4Rkxk664tbYv4iDy29xiDqLhw2GIWxDGjh2LjOgOp0H7AXU5gEzGGvx1K2777gsccADw6qvWc90LQhnipinGje3guwc7EcXNYaWhtKMAHccqKbvIz2SsCay5mYa4qSQnkU0EAchlCk1CVskyWSUBK/HejBlc7WoBxc2xEKdMgsS3L1NqICmKG4txA6xrUoS4lSGrpJsUAE7lrAIFFFCJpibgvPOAs84C7ryT60qI4jZ7tkea9DiSkwDBxI06wQcbI0XnJR+rZFicldd9WlL0HKC1SgI2caNIrFKG5CR+DiIRxQ3g9g8NcfPHq2wBbNCxQJmcBLAmgnxeP3EDrK3uMWOsx5RWybCBVJNV0msHHxAjbg4rjcyupgqB6IjETXQSqKmhI26UyUn4BWlYjFt7Udw0LDbr6qyFNVu4iyhujoV4XFbJsPMel1VSRXEDLEt2nz7ex5Uxxs2LFABOAlaJPArc87vvBn7/e+DXv7aGCT/iVlNjXSslyg/7I2A1oJNcudspFPzPqco1I7OpyJQnUeLms7HlFWcVRtxKip4D9MStc2fLpk6huJUhOYlIMp4gO3mbg6iDEDelGDeDDgrKcgCAPRFQEDfK3WoVqyRTGMMQUIB7ypTSjeWw5CQlVhoZq6QKgXDvhAeB/11kF+Iii3z2/SiumUWL7Mf9+om1L2phUkkxTmmVpCzxQJ1VUnUM06QS1NcDDz5o/fRBiltNjXWcYyGeFMWNOqtkFKskEHxNRiVuYec94F71IgVAqeLGo6kJWL4cmD/fin3rkrWv2QIqUFtrvT5/vg9pA+zfqFjUWz/PPV8EzR/UipusVdKDPPjFWflZJXk44qyAeBQ3gF5xiyk5iV8yHpFkaw4HkSFuBgYuUFolAXsi1R3jBqgnVhGZ3PnJQpS4iQ7S7s/nBj22g8+DDXQFZFD0uL1LrDTUxE1lkS9TDFNUcVOpESczCfDlUXbdVax9UeKWNKukjOImu4GTVMVN4zVTX28ttHcZWaq4BS7EqWPcRBW3JFoleQIZpBKUSXHzIwWAHeMGOBU1hrvuAgYNshSd3Xeyvluhugbz5mWweLH1eok9kodoPK3sQtZ9nQTNH9Qxbqx90Y0ED1XJL84qTHEDXJmagfZD3CiSk3i0zxxEbrBzn0MlAO+Nbl8HUTsmbkpWSdlMkWPHjlX5GIOkgTodtUchUm1tyyzYZL3+KoqbSnyFx3O2uGPB7mzid9skfa00SYxxk5nARIlblLpWfN/8wBO33XYTa5+SuInaXVRifijtr5WVdqwrdVbJEIKSb2pp2+NdsqIK/XMCl47gNVNXB2C7ZmCu9fyfL1WhS521c+z7GTLKT5QxUmZ8TIpVUrRtlaySGoibHykASq2SbvDJFzIt1rmp6FRjJWMQgXt+4u9fHrLJSdzjStCGK7XiJlvcWzHOKsiu58jTpHKvylolAXGrZEWF2uZWjAW43THAgL0RLRQDDNDGpScIkbJKisBklWxHiEtxo7ZKhvV9xQr7sYjtTSZDIPtuooOo+zgf+9XYsZbPvtN1OSBnE7faWmtHavJkn11ZGcVNJS29SjkAmQmMX2wGxW9Q22s//NDuzw47iLUfF3ELut5VlBlecdNtlWTHtbSE36dRk5P4/KaNjZatrfOtLbi09bUzz63Cm1db99KUKQEKh+LCYbe9q4HuAccK9t3zsylj3HRbJfN5+3eVWUyJbsyVSXHzIwVAOHEDOFLQltlGgtSKKiiUipssKQTENxV5G3wE4uYXZyWa/dVR9DwuxS2ft653v3tFltAC6lZJ0f77XI/uGGCAV9y8v1+Jg0iGML/7LvdBHUBx88sqWSgU8NVXX6GxtTLhd7/7XVSl7IQYBEB14SA6AVPGuMmQTn5rtH//8LYrKqz2W1r0K27u+8znvNfVWZaZ4hM54BOgpmsW8+aE7OC7+5EUq6SK4sbe7/dlqYnb2rXW//37yyUnAWhi3EQXayoLfP431W2VBOx7iSLGLWSBz6dqn+oKjGf1m2bMCEgEIbNgk1X2qa2SrA9sIex3Timtkny/ZdYOovcqdVZJn3vVjxQATqukO8aNoY0UqKiRoo4Q1jZTvcPgHldErZK6FTdNcVx+mZpFsr+WFD1XuVdlNir4eWDzZhdr5BCVuMVklWRwO4j8FDdfB5HoNXP//c44k5TxFJKskh988AEmTJiArl274u9//7vKRxgkEe1FcQtbEC5fbj/2ipj1Qk2NdU5Es0rKkBOv9/sg0/rdKquzYlaaJMa4qShuQPDOo8o1Q2mB5dtvaQleKLcXxU238qM5OYk7VbtfKurA+k2UMRZxKW6sfT9yoMMq6ffbqhB90baBsilufqQACFfcHKSAjUMySqes4ia6iFVV3FSIm+62PeyAfpmaRaySJUXP41LcAGt+CCNuqup1jIobA+8gqrk2B+QlHESi5/2005zPU0bcSJKT7LrrrnjiiSfwxhtv4MYbb6T4CINyII5yAED5k5Pws6sMcQNoFvg8RM+77DkH5IibqPLDHyeaOp5iwaYywfjU+vFEFOIGBC+oKJOTUCtuKsq7aKyVRsVNtX5Tq7nEhoriVlEhHv/HQEHcRMd3aqskg+o4oNsqKaOe+NyrfskXgHDi5iAFlIpbkombqOKmIc4qKFOzcNFz0b4Xi/Z6Jwpx8wO14hZlfA9onzmIth5s9b9X/yrMm4fwZDwy96pfn1IAsqyS22yzDfbee2/cf//9VB9hEDeoywHElZwkrO+84iZilQTsgVR3jJsbugOdVWrlAOIEghWaBsLPjUqQtuiCTeWakSFuKn0XXVBRJiehVtxUxgEVxS1icpIo9ZscoEyoEFdWSb5vXqC0Sqrcp0ByYtz4e83Vfy9SAASXAyghBbLZE93HihA30d/UfY0EbbiqWOpE5yaNmRO9MjXzZNqLuHkWPRe9ZlQ3KtxWST/EaZXUpLjxYA6i6s6Wg0hXcqgSGOJmo3///li4cKHSe+fOnYvbb78dEyZMwKhRo5DNZpHJZHD11VdH6tOLL76Iww8/HP369UPnzp2xww474NJLL8WGsMQJBh3HKpk0xa2hofT9Ye0TKG7FzTaBmN/YSajmNQBxUqvi9RddsFETt6iKmyhx013HLU7FTVb5iUlx80vVLlL8NVL9pijELSmKmwxxE2k/iYob/x2DsowAzt/UtZngRQqA4HIAJaQgjuQkotejTIwbZVZfzbXK+FqLgL/i5llrkUFUHVe93ikVN9XSSSpqZ1j7slZPQ9yiobm5GW+99Ra68LuzErjzzjtx7rnn4r777sNHH32EvMyP4INbbrkFhxxyCJ577jnsvPPOOOqoo7B27Vpcc8012GuvvbCCzyZoUArqNLFJSU7CFLeaGmcB6SBQErdTTgF69rQe67ZKCsQRNDZataXee9OaIArIYMQuVRgyxHq9xC7mBuW5UbFKUhI3GdIpStxUlE7K5CRxZJUEaLJK8t+xtX2R+k1+Wc201G9SuVcprOqi9xKlVVJVcRPtu0o5gFGj7MdvvBF8bIiV0U0KAG+rpCcpyOftMZoyOQmFVTIqcdNtwxSIs2orel7lJG5CRc+N4qa3fYoSEjw6OnHbuHEj3n77bZxwwglobGzEgQceqNTOLrvsgl/96ldoaGjAp59+ivHjx0fq15w5c3DhhReisrISf/vb3/Daa6/hL3/5C7744gv84Ac/wNy5c3HmmWdG+ox2D9XCu0lQ3GTi8xhx699f3IJFHeMmW69Mk+LW0GDVD5o+HajMWeRlCzoByLRl2Rs+3CkKliAu4tYeFbdi0enHS0JykjiySrrf6wUV9YSvZ9TaPln9prCFg6y9Nk6rZNC5jyurJLXiJtr+8OHA4MHW4zfeiKxa8aSgttZJ3Gr75v1JgSphNoqbd9tsbg+JsxrzHbvvH3xUKVb0XPReVU3Gk+YYN5n2jeLmCaWskpUCF1ixWESvXr2UrY1nnHGG43mFakxQK6699loUi0X87Gc/w2GHHdb2epcuXTB79mxsu+22ePzxx/HZZ59hB9E6TB0NlZXWhNHURLPTTpmcRCY+j63EmMolAjaRNjcH1xOLStxEF4MaiJs7y14nWBPEZjjteoFZ9gBa4tberZJz5jglnSQQtzRnlQSsc9PU1HZNiNRvCiJusdVvitMqKaq4URI3VcVNt1UykwHGjAH+7/+sjYqFC4ERI7yPFUwewkjBFVcAm06sAJ6yXn/j9QKyO/m8SZUwJyE5SZSNXECc/MgSlKam8DirvN3+8B2zYnIHteImOjfJKlbuY8uQVdKzfaO4OaDEhorFou+/bDaLrbfeGmeccQbeffddjBw5UnefpdHc3Iy//e1vAIBTTjml5O9bb701xowZAwB48sknY+1b6sB222WSEiRBceN32IIGo2LRth6IxhMB4pOjanISNiDFlJzEK8teZ1jnxVLcSuGZZQ/oGFZJquQkb7/t36cgxGWVTFtWSb4frvpNJYcJxLiV1G9KilVSxRIoSn7iskpSbOCoXjM8Ow8aZyTJTzYL9Ohtf89sJuCaUSXMotlr40pOort+noriBtjfU1RVymT0J7RJu1WSWnGLEvrRjombkuJWCFtYJwzz5s3DptYFxl577eV5zF577YV//etfmDNnjvLnbAwjM4LHJBpduwKrVqWPuAHWzdncHL4oYZ8fhbj5LbCTZpX0iSPwyrLHFDc/4say7F11lesP7NxQqFZJsEoWi/a5003cevVyPhddVFEqbhUV1rnZsiV9WSWBEmIoUr/JL8YtUv2mKFZJUeKmSn7KlVUyiYobIP67qqTrl20bULdK6lTc4rRK6o5xA+zzIqoqyVyPKsRNpn2RualYtNtPo+Km0n9V4iZz7hMA0qySScGCVqtRr1690N2nUGFdq2F5gSPSXA7dunUL/TeYeeXTCkrFTTQ5iUrdFv7YoMGI372SIW78QBo0OVJbJTVklfTLshdG3ACPLHuAvcjI5YJ/W8rFJiVx47+TanISvwnM/XvvuqtY25R13AD73gja7eXbz2TEyRVPrIJ28VWSkwCe44BXqvYwq6Rn/SaZ8hpRrJIURX1VFDfKcgBJKcDtbj/o3KgoHKKLTUqrZLGYXqukKnFjx+pWfQD6rJIiipvqeeHnPYqswaLEjTIu0o2UKW4dgritb41Z6soH1bvQrTV74LqwdL8dHTxxE7VGyCQOAGhi3AD75hQlbjIZUUWtkqrETcQqWSxqiXHzy7LnF+PGoyTLHiB+btJax0118hU5L3y/b75Za5FTAOp9Z+3r3khwHxvUfpQYN8Bxbr1StYcRt0j1m/i/U1olKTZB0hzjpmIhBeRtezILQdGSLKrnXWShrBInFqfiJkKWARqrZFyKm+4YN9Xzks3aa5+1a4OPjZooTsS6K9N2ByFukfTBlStX4q677sIrr7yCr7/+GgAwZMgQHHTQQTjjjDPQt29fLZ1MC0Rqwa1bty7dqhsjboVCsCWQX4SL7rRTWyVF7Iaqiht1jJtI31WUH49dTa+9i0rkUNUa8xOkuAGuLHtA6bnxO69RF/miC7a0EjeZjQRKqyQgb92NEq/k93tpinFjYIl1Jk60fg6/GLeaGou0hdZvKqdVknIThL9WVWPc/K7JOGPcZNoXJRGUVknV8y5yblQW+e55WjNxy/cb0JZvc9Ujz6PH98Z6vzUu4qZ6L6WNuAFWYrZNm8LrFsaluJnkJA4oK27PP/88RowYgUsvvRQvvPACPvnkE3zyySd44YUX8Nvf/hYjR47E888/r7OvymD2yKD4Mka6evilGBNA165dhf6lGnz/g+ySKrtUccS4AcELWd4aQEHcKK2SUe0orefd6xZgahsQTtxK3MiU5yYJVkkd9i6/31V1YqdMTgKIE7eolr333/c/Lipx8+g7n6q9a7Uzxk1r/Sb+75RWSZXxEUiG4paUAtzu9v3OvYrdEFCLcdN93vnfW7TtH/zA+TzIKSOxccbqho6eUY+WVm1h4533+dcN7eiKm26rJGBn1KZQ3IxVMjKUiNv8+fNx/PHHY/Xq1Rg1ahRuueUWPP3003j66adx6623YrfddsOqVatw/PHHY/78+br7LI1tttkGALBmzZo226Qbja2jATvWwAeixE1l4UBZgBsQy1anQ3ETUWcorJJRM3e1nnevLHuixK0kyx4gRtxUd8LTbJUU2cVXvdY9Ck17Ii7iptr3s87yPy5qcpLlyz0XmyxV+9h97fM258MqsfpNSSsHkOYYN1XlnSLGTfZeVVXcKKySssRNdBF7993O5xoUN75u6Acrh+Bj7AwAGIBl/nVDqZOTRB3DKOq4iWyyRCFubPd2/XqxuHRAv+KmWp/Pq29h6AjE7brrrsOmTZswbdo0vPfeezjvvPNw5JFH4sgjj8S5556Ld999F7/73e+wadMmXH/99br7LI2RI0eiS6vN6G13eu1WsNdHjx4dW79SiTQrbrLJSZIU4xaj4say7PHgiVsT/G06JVn2ALHELdQ77SrnJpu1z48ocdMdy6XadiYjpjBHPe+iWcdk2v7kE/txUJZfHerJZZf5HpbJ2d9t+x2rxE6/ilUybTFuOqyS7VFxU10oiybhoDzv/AJatO9DhwKnnWY/j0jcWN1Q/muyeOoaNKMC1rlhdUPbyJuO5CQi8foy4y+/dvARCwBEjzEGaIgbU9yKRSAoBIgyxs0obr5QIm4vvfQSRo4cicsvv9z3mMsuuwwjR47Eiy++qNw5XaiursYRRxwBAHjooYdK/v7VV1/h3//+NwDguOOOi7VvqUMcxC0pyUl0WyVVVSXASdz8zk+Uoueu/rmz7PGJGprhvdvrmWWP/YFBN3GjtEpmMjbpTILiJnvNiFiBkmiV9CwG6AHVrJK8OueuAcCDfbdMJpKC7YuOllVSJNZKh+JGXQ5AhPxQlwNIguIGiCdWCfldveqGAs5EWDVwzh1tdUOjKm582nkvqKxlBg60H3/7rf9xcRE32XT3fLxEkF1Spf9833VnCzXEzR/ffvutkDI1evRofBt00WrGHXfcgR122AGnnnpqyd8uvvhiZDIZ3HPPPXjuuefaXt+0aRMmTpyIfD6PE044ATvssENs/U0l0qy4iVglVWPcRBYlqosGQGxA0phy2Z1lj0/U4FfTyjPLHkBL3CgVN4CWuFEqbkA8ihuFVfKAA8SOU72f1qwRO46dNwqLlErtP2qrpGiCjyTGuIn2XTWrJKXiRl3HTcRGWmbi5lU3FHDa8jvDGcvF6oZGJm6AmPIjcz0OGmQ/XrLE/zhK4hZl7mCKGxBM3FSdLAy6N1tlN0MZOgJx69q1K5Z55Qt3YdmyZcrJON59913su+++bf/+9re/AQBmzpzpeH0Jd1OsWLECc+fOxaJFi0raGz16NG666Sbk83kcfvjhOPDAA3HyySdj++23b1MQ//SnPyn1tUNBlrjJDEZJs0rqJm6qgzQgtnDQZJVkqK8HHnzQWiMEpUavqbGO803YIJs9MW3ETbXvaVbcRDZB+L/LtD1jhv04KAOvKnFbtUrsOMpEEyoZYKmtkqILKnYPV1bqv1epywHoyCopQtxkCK0o+aEsfE7d94DxN5fzrhsKOBU33q7PcNddQH6LorIkWutSZRO6Z0977qAgbiJ9j7Le4BW3oMySKp+hMmfrVNy85kOZGOkEQJKGW9h9993x+uuv48MPP8SoUaM8j/nggw/w2muvYf/991fq2Lp16/Df//635PXFixdj8eLFbc+bguKJXDj//PMxatQo3HTTTfjf//6HjRs3YujQobjkkktwySWX+BbnNuBAqbhRJyeRLQcgE+NGuZvs1b7XjmvUHSqP815fD4wdCzx1VQ5onVwZcauttWLaJk8OSdggq7hRZMJLouImMsmkQXErFv0nPhUCseeeVoabBQtoEk2EFQ1noCRuKoScuhyArOIms8AH5JOTUJBOygLcKnFiAL1VkqocAOC870XrurrGMb+6oUCw4gZYdUNXLGlBLXtBJcYNENvckl3LDBwILFwobpXUPe9FWW9QKm7Mep7PB48zKlZPkXjRsCyiKYCS4jZp0iS0tLTg4IMPxh//+EdH/bINGzbgjjvuwCGHHIJ8Po/JnkEv4TjggANQLBZD//FZIKdNm4ZisYhXX33Vt92DDz4Y//jHP7By5Ups2bIF8+bNwzXXXGNImyjSHOPGBq+gODFVxY2auFGpMwI7pnV1wC+m2IPo8SdlMW8exLLsAR3LKqlbJYiiuMVB3ACxrGMUpFM1q6Qo2LmnWIRHjQ2hyIQnSn4oiVucipvuAtxpsEomMMYtSNAJU9wAoGlDTFZJ2TGM2SVXrvRvPy6rJBVxo7Ta85Z2mTJd/DrPCx2VuP3kJz/B+PHjsXz5cpxzzjno2bMnBgwYgAEDBqBnz54477zzsHz5cowfPx4nn3yy7j4blBNpjnETWWyqxriJLHqixLiVwSrp13b/wVUYPlzi1MeVnCQJxE234qbabyCe5CSA2HlXVZiD2lZNTiIKyhg3FYIiSqz49inuJXYPy5AHgHajQqUAN6XiRlEOgNIqqaoWaiBuQWvyMMUNADpnE07cAH/VLanETdQqSel+4i3tffrIt+03/kq49JIK5dnuvvvuwx//+EcMGzYMxWIRK1aswIoVK1AsFrHtttvizjvvxL333quxqwaJAD9Z67YXUBM3kUVVUhU3qt1q0VTUUTJUidS400EgKK2SuVx5UphHuWbiUtxE2qfoe5SNEBGoWCVF7ycVgiJKTvjPpvhNjeLmfQx1OYB2mlXSq24oQ5jiVlsL9OlBSNyKRfXNJ/5LLV/ufYyOjQpq4kZRzkAk34AqcesAiptSjBvDmWeeiTPPPBNff/01vv76awDAkCFDMGTIEC2dM0ggZGM4qGPcdCscqjFu1MlJZK2SmmLc2hClJkyarZLuIHCv91JejzoUN2riJnLeqa2SgovwXE5i0lMhboAdv5EEq2RSY9z8+k8d46Yjq2S5ygHwljVKqyR1chLX75rNWrHSXpU5eOLmpbhNmgRUFhSSWLiPFXHJqI6/AG0WVQrippKlVbdVkiduffuKt90BiJuWbcohQ4Zgn332wT777GNIW3sH5YJNVnGrqNC/a5oGxU3nIp+PDYpYQNUXIsSNV+J0B967/5aUIPC4ygEEFZilzuapqrix9gsF/+tSgrg1NgJTpwJDhgB/w+Ftr+dQialTfUrHqcS4AeELB/ffRH9XauImm1WSwipJvZEQV1ZJ3TFuhQJw3332cz4GKQxxKW6KyUmA0rqhDLxV0q24tdUNpSwHEGX8lU0+lSTiJprBlv0tk5Fbi4lkJV650n5sFDcHhM/0W2+9haeffhrz588PPXbevHl4+umn8fbbb0fqnEECIau46R6M+LZlB1KRCUwxxi2fsdte+nXOu/kkKm6AGGGmVty4TLGBKeDdoLZKUiqp1OUARAqdUi+Uo1olg9oXTE7S0AAMH27t6C9bBkzBzLa/rUIfTJ9u/b2hwfVGlRg3QIy4RbVKpl1x0z2GUVsly61affop8OWX1uNBgwCZbN0iY6SOrJIRNv7cdUMZgqySbXVDdRA3kTI1HZW4iWxAqa7FKGLcwsZf92/95JPibScEQiPXihUr8IMf/ABnnXUWevXqFXp87969cfbZZ+OHP/wh1ogWOzVIB0QmsELB3n2TuaH5xCc8gXJDlbiJDEa88tOpk/cxHNhO/rkX2H258vIWDBmC0p18XclJqFJpixIfCuLGn6jQNJUcqK2SIoseHXE5FIqbyI4y/3vIKCgii/xiMXpWSSBSsp+GBmDcOOfX/Bpb4XNsBwCohNW/pibrOAd5i2KVBPRbJWVS3rPxV7fiVizGF+OWpOQksvWhdCtuvBPkmGP0uxLKmJyEga8byuCVnKSkbqgqcevWzX7sF8cVhbjJju9JIm5JSD4VR4zbhRcCxx4r3nZCIDRyPfjgg9iwYQN+97vfoX///qHH9+/fH1deeSXWrFmDBx98MHInDRIEyrgcyoyVgPzkG7KQ5XfyV623+5JFDsuWoXQnP4lWScD+nkHZlqIkJ+EJsN9nLFpkP5Yhbmm2SsapuPn1nb/P+PsvDKIbOAwUC4eQrJKNjcDEid5vzcPqTwWci82JE7k9hLiIm4ytWWSThbo8BTvvslZJkXu1vShuuokb/zqFRbWMyUl41NcD8+dbm561tU7FbUD3LZg61fp7G2mL0neRlPdRxl+juPlDZByLwyopu/mUEAiNXH//+9/RtWtXnHbaacINjx8/Ht26dcOzzz6r3DmDBIKSQCSBuAlOAu6dfFaUGrCIG4NjJ5/aKqm6YBMhblEUN5EFmw7FjcIqGYfSCdDGuAHlIW66guMVFbeZMwNy4bQSN6a4MTQ1AbNmQd01ANBZJQHaTKEi5zzKoieuGDeKTKSym366k5NEIRApIm6ANfxfdZXlnr/2ZnvT77orNnvXDdVB3PxS3ndUq6TI3ASoK24iMW5McctmnepoGGSIm+wmSEIgNHJ99NFH+M53voMqiZuiqqoK++yzDz788EPlzhkkEJQEgs/i+P/bO/MwK4pz/3/PzDALw74N27AIKMYQlU2NoETUxCUu1+3qoGK4QGKIexQVfhoR45Yookb0kqgRrop7glEUNYq4sRhjjIJxkAER2YZlgFn790dPTdep03tV9ek+836ex8czZ6nT9Omuqm9933pfHcLNT2fkY/C1W8lv4HLV8cKNMWkSsGmD5tAF2ZT3brXKZBw3P9dMXEMlk+y4+QmV1CncZCY9Qfe4CZPwhgbgkUecm3cSboD5uYZ9Ens6dYVK8seSrUyhUQo3HY6bzqySOsWPqpA9nfvz3JKThPhdCwqAXgdYjlt+vcP4pNNxizI5SZD28/Ot/YXZTE6ic4/bjh3m/7t0cd3DnEGQPW657Lht374dPXv2DNx4WVkZtvF2J5F84hQqGXZCxbch4mNiYreS7yXcamuBp59UFDrmdN4rK+3f74Vux83PsX/zjfn/wkLARzi27bHo3uOmMzlJkh033Su+fhw3YWCvrDQTkTjhJtw2bwbWrY1QuIW5HrPluIXdEwlE517HYY+basdNph/QKTp1ZyXmw+z32RfgjixUUseCpYpQ+GyGSurc48YWkoNk9+aPxU9UVdDfNCb46rmKiopQ4zaRdmDv3r0oSqgVSTigc6Xdr3BjN56Ozshj5dFpJZ8Xbm1g35E+tyjkai/gPQg0NDTnRm4mTnvc/AxgfCcdZHUtyqySOpOTxMFxCxKOEqXjFiJU0inyieEm3ACgplqzcJMNlfTrKrUWxy1McpIklQPQHSoZg+QktvCTdqeIkCSHSvLZkOIk3II62Doct7BJkLz6X5lF6Jjga/bYs2dPfPLJJ4Eb/+STT0I5dUSM0TnI+BVubOUtSIFs8VhCZgZzWsn3ctwAYMc2jQ4Ec6zCtB9UuOlw3GQHACDZoZKq3Wsg+3vcZNwZv1krGYJw69DBvXkv4da+RMGELWmhknHY46bTcTMM4O23rb/jWIDbSfzE1XHTLdx0Om58J5GN5CTV1cDixeHbzwXHza1OZxTCLZcdtx/+8IdYt24dli9f7rvhd999F5WVlfjhD38Y+uCIGBJVchKncgCGAezZk/l+PwQRbnl5tp2R08KcU3KStK+HREfKD2Bue9FaDiKE41Zf72+PhY4QVZ31vsTX4uKK6XQgAL3CLWiKcZmwuhCO28CBQI8ezs1bWSUNAOl7c8rKgH69Yhoq6Ue46bwedYdKyuz5YTidm7ffBhYutP5WHSqpwnHT4bwnWbhF5bjpCJX0mitt2ZL+d5yEm9/kJCrKvXhdk6qFm8yYGhN89VwVFRUwDANTpkzBTqcLnKO6uhpTpkxBKpXC+eefL32QRIwIOsioDpWsrbUGiKDCLcgA5tBZOK3k+3HcpIQb7y7arTyKnbfT6qQdftL1y4RKBpmw6dgLJX5vUh23pCUnkdkELhkqWVAATJ7s3DwTbkCm6zZ5MlBg5EhyEtXXelwdt7w86xpwavuiizI/4xedCT50hmOL7/dTgFtHcpKoHLcgbWc7OYm4JcDH3DoNdt049e1RJCeRddyc2ufrRaruf1uL43b88cdj/Pjx+OyzzzBixAi89NJLMGxuUsMw8OKLL2LkyJH4/PPPMW7cOJx44onKD5rIIjrDu/xklQw70QSCOW4OnYXTSr4f4da9i0QBbn7l0Y9w4+uieeGnQLbu5CQqhFvSkpMEOS/i+/2Q7VBJVY5biKySADB1qvPXOgm3oqLmraIyocFJLQfgZ4KvSrjpEChe+//EibJOxy3IsftZYJFZwPEjauPquAVdVAxagJsdfzb2uInPffVVsPbjECqpa4sD/1xYx03H3uuY4Puon3zySRx99NFYs2YNzjzzTHTq1AnDhw9Hj+ZZ7HfffYdVq1ahuroahmFg8ODBeOqpp7QdOJElsp2cJGwyBSCYcHPoLNhK/uzZ6c/7SU5y5mmNwKM2x+IHL+EmDvhff+2/bT/CTXdyEhWhknFw3MKGd+nMOgZ4C7dUKlj2rrg5bjYJbcrLgfnzzTqKIk7Cbf785moUn0e4x011qGTYCZtXHwPIhUryk3xdIYG1tXqEm85xL6hwCzPZLCgw205aVkk//YDMsXfoYO41y0ZWSfG5Sy4J1n4cQiV1OW4yC0TkuFl07doVH374ISZMmIC8vDzs2LEDS5cuxZNPPoknn3wSS5cuxY4dO5BKpVBRUYEPP/wQ3bp103nsRDbIdnIS3Y6bj7hqu5V8L8etqAg4/VSJjjSo43bttf7b5v8xTvsIWqvj5mficM891uM4OW5BQiXbtg2fzVOH46agADcAVFQATzyR+fWicCsqMt9XUWHznUkOlQzSdvv21uPdu+3fIzOhSqW8s8mpmGw6nRvxGolL6Q7+POpwIvnPJC2rJH8sTn2YzL3K9j5kIzkJ/1y/fsDo0cHaj8px05lV0ql9mX6GubSGYZ8rIQeEW6Cj7tChAx5//HH85je/wV//+lesWLECW5o3WHbv3h0jRozAqaeeigMOOEDLwRIxwM9kkx/0+cmAF36EG0tMIr7fD0Emmy4DgN1KvldykvnzgbJuEQm3Ll2A447z37buPW65nJxk6VLg/fetv8NOBrNdDkDmXvJT80vHfiiXrJI8FRXAMccADz9slvLYvDlduE2/phEXXSbUfY97qKRhmO3bfVaFcOP7WR6ZCRVgHn9Dg54wJi9xEqXjFuS86w6VBLzPTZShkkHOux9RK7OoyLZn+FmwVB0qybd9yinBFs6AZDtuXgtzYfdcAsCAAcCyZebjykrgkEPSX29two0xcOBA/OpXv1J9LEQS8DPZ3L7dety5s/+24+C4+UxBy1bmJ01qjs5xcNyKikzRVlEB4E2JAty8cLNbReI7up/9LNjgmCt73HRk2vMaYP761/S/4+S4+fldw2ZoTYjjxigvB2bNAm66yRzLe1ySD7xrvnbj9Eagq/CBKB23sAsJ9fVqhVthodl+Q4Oz4yYTKglk13HTvcdNRVIYP4kmdDhuKpKT+BFuOvbpytyrXgk+otrjFkaMtxbHLehvOmiQ9fjLL3NSuAXMkEC0evwMYLxw69LFf9t+ygHERLgBphhbuxaYMQPo1DV9j1tZmfn82rVc+BX/nTqTkwTt6ILucdNRDkBXrLzdayodN/E6iavj5vS7qnDc4rDHzef9VFAADBkCdOzi0ReocJh1hkoC6sVPKmW5bj5CJas2F2LtWvfbLoMgwi3oeWd9pJN7Il4jih23pjrr+Q2b8v2fl1xx3PxklZQRbl6hkvn5wV0rdu51Z/P0Em5hBAQ7N0610HQnJ2lqsn7zOO1xGzzYevzll5mvk3AjWh1+Jmw7dliPwwq3bCUnYR24z8GLreQv/9A6Lz89qQEbNpjPp4VfyXSkUQk3HSEjOssB6A6V9BIQousQNjmJjnIA/LHZTXqamqxrKei9FGUdNz9ZJYNO2IKEMcksVPipi6jSARbbDnqvugi3qirgmYXWb3r7PYU48ECgTx9zkaqqykf7XgJC5npn44fT2KHJcauqMv/9f3jAev6/Lyzwf178CDdVk/xsJycJswjCficvxy3ofcp/pqHBXnhGFSoZRox7hZHqDpXUWRRelXD7z38yXyfhRrQ6dDpufsoB6NzjxtcOCdhZFBRbbbcvbrDvD3QKNxWbeQH9jlscQiXDCje7a0YUJKoLHvPnJag48XJSeZHO33t+SKjj1oLXNRnV9Q7ozXIa9H5iAl7Y47ZggelUvvKS9ZvWwry+vvvOzLI7ZIj5Pld0Om7sGt67134SrmGPGzsvs2cDdXut5xuR7/+8BN3HJeO4+SnzoHOPm4zo9HLcwgg3r3OfhFBJQL1w0x0NolO4DRxoPbZbNSHhRrQ6/KzE6BRuOkMlGxutAV9moqlj/0acQiV1Om4ybesQbl7tqwqV9HLcwgzsQYRbkFIAQLR73CSTk9gSJ+Gm2nGT6WeY41ZT0zIRX7DATMRUWwsUwvpN65B+7dfWmu9zFSk6HTc2fhiG/fWuOKskf16A9LIS/J5nz/MSVTkAsR2eqJKThDl2r3BGFY6bU/uqskranXdVLiqQPMfN69hlhBs/ltndTyTciFaHzuQkeXnWTZcN4SaTyShoaFfS9rjpTE5iGOFj5f1MegB9oZIywk2noAWCCTcdoYyqskpm23FTvdIO6A2VVCHcAGDPHlRVmQmYGG7CjTFpkkt4YBSOG2C/R1qh4yaeFyA9KRWftZTheF4oOYk7Oh03r3Mf51DJXHbcZOZiQcQ4CTeiVeBnJSbsHjfAe5+Czj1uMpmM/Ew0k+C4Oe1x05mcROa85OVZx++U0Eb83jgmJ8m248aHy/ohYVklM/CacKra46YzVNIpgYiKUEkA2LMH8+YJiSSRGSopUltrll6wJQrHDVAv3ITfVDwvgLPjxnA8L60hOYnMApROxy3IPjGdoZJxc9x09mHi+1VnlfSai5FwI1odQR23Tp2Cte8l3FTtcfMSbjoct7gKNz973FQlJ9ER68/Ojd15YehyOGTCr4KEo8hMeAC9wi1bddxyZY9b2Otx9Gj7ybIix61hx2488kj6y34cN8Csl2f7s3nttZKZDHolt1LkuDU1NGacF8DbcQMczkscCnDHOVTSK+19VKGSrclx8zM2xXWPGwk3ghAIkpykUyf1mcFUhUrqtOd1CDd+NTnbe9zi5LgBwYRb0CQfXr+r+FzYrJKqyyQA3lklc8lxU51VUrdwU7GQsH8/sHWre9ths0oC+OaL3fjuu/SX/Qq3zZvNenkZZNNxkykHwB3L3l0NGecF8HbcAIfzEgfHLazD4TOrpNH8vfsbC4KXkGDnJ9dCJeOcnIS/N3TMZ7zGVRnhlkq5LxCRcCNaHXl5VmftdEMzcRU0lBHwzgwmUwBWZ6ikn0l4k0QB7jZtrM+ozioZdI9b3Bw3ds34EW6qk5+Iv3WQ4+fvJR2Om85QST8LFbmSVTLoudeZ3l18r51glekLOOG2b8uejJf9hEoybCM5g+xxi1OoJHfeG2vt71U/jhtgc16iLgdgN65qctxYqYS9282+5quqNsFLSOh03IJklVTtWsU5VJI/Jj+LT6rHVZk+DHAvf0HCjWiVeBWYlelImYtmGPb7rXSuhMuu8rD2dawmA+7OUpz3uHmt3qk6L2573MIKoCChNED4vQS6Hbek7XHz077OrJIye9z8LISoCJUE1E96uMW29shUXn4dNyA9z0kLQRw31clJRELuRy1I2R8777i5CbeM88JHAeh23AB7Z4xdR3l5wRefHNplpRLuml2LUsNczN0Oc897oBIS2UxOonMxV2UdN7tjlxVuXmPTFVeEb19nchLAXeyTcCNaJV4rMSqEG2AfLilzQ+vMKgl479+QET+APuGme48b/xndoZJOG+RVOG5+QiXDDmBeq5pxc9z441m71v49ueK46c7SGnZfpNgOQ0Ywc/1vWfu96NEj/WW/wq2sLL2cUgvsXBqGvYDQ6bjJhEpy572ksDHjvADpjptTqKTjefEKB1TV/4ptMcKO2Q7JSfhSCV2xreX5beia9nFfJSSyWQ5A5l7SnZzEaw+zbsft+eetx//4R7i2AfWhknz7JNwIohmvlZiohJtMtiHVmYz49nWsJgP6hJufUB1Z0ek2CKgSbnwBdRH2vGrHTfz3hBUQOsoBRJWc5LHHgA0bMt8T56yS2RZuYSdt4r2vetLD/Vvzm+oxeXL6y35DJSdPdvhnBVkIiVNyEu56yWtsyDgvgD/HzfG8eIkTVZNwp+9QIdya70exVIKbcGO4lpBwC/Pka6/K9pF250Xn1gxZx81rD7Mqx81JuPEMHhysbd1zMXLcCELAb6hkmJtCp3DTGSrJH4/qzF0MNrlWLdz8TJJlj91NoKgSboDzPjcmUlQXmhafc6slZ4fXvZSEUEkAePbZzPdEmVVSZ3KSoP2YzlDJnTvT/1Yt3IRFnKlT0/85fhy3oiJgyhSH9r1+17jucROuF/G8AN6Om+t5ybbjxr43aN9uk5xELJXgR7i5lpBwE1ey45JXqKRO4SY77nn1M7pDJfmxdNq0YG3rTE7Ct0/CjSCa8ZtaOG6Om27hpivlsvgZnRkxvSYOqVRwdwOIxnEDnPe2MJEik4TDzx43p4m6E36TNciGSqrOKike77/+lfkemUlPth23uO5x27Ur/W+Njhvq61FeDsyfzzXnQ7jNnw+Ulzu0H0S4qd7jpiirJBoaMs4L4O24uZ4Xr31cqsoBAPpCJZua0NCAjFIJfoQb4FJCwm18kh1Ts+m4yf6muoWbV6gkE+0HHQSceGK4tgG9yUlIuBFEM24uQVOTFboQpiPlB9+ohZuqPW66QiXdOlKZ0AI/dYRkxDjg33ELc168SiXwzwd13HQLt7g4bkEnJYcdlv73Bx9kvkeVgMhGcpIo97gFueb9OG6K9xZWVABPPGH+s/hQSVG4FRWZ76uocGk/iIMdJ8fNJgMsf14AZ8fN13kJ4rjJhkq6Cbeg14sg3CorkVEqwa9wcywh4dYHyyywiJ+J2nFTGSqp03FzGpvYd9pmIfIgquQklFWSIJpxExCyK2C842Y3+CZhj1s2wg11h0qySX7QwYsRleNmJ9z4DKWqsyeK/564Om6qQyW7dUt32ewSlMhMevwU+NbpuKlaCNEdKql6tdphv2tFhfkTf3+gtZhWA7OvLiszU7uvXeshToDsOm6icAubSIg7bnZeZswwk5YwGpEf7Lx4CTfZxS3+/nYbVyWTk4iGMOBfuAEOJSSiCpX0cNz+XVkUrAad7nIAUTluTuKHtR9mTqA7OUmOO27JPGoiu+gSEIB3qCR/Q4dNvQ7oDZX85htzBBJXolQl+MiGcGO/RdCi54xs7nGrr7fcGd2hksOGBWtfp+OmMzkJAHzve8DhhwOrV2sP2bNFp3Dbw9UwC7qirDNU8txz0zO4RXjey8sB9NgNNLsib31YivadzCyJvuc/QRy3oL+pzuQkgPk71ddnXC/l5cCsWYDxdgPwtvncx/8swIChAc6LV3ISWXemUyfrcXV15utMzPHi1w+C49ahQ+ZbDsBXLY+9hJvtrZalUMmqKmDTO7UY3fz3BRML8TGAHj3MJDNTp7qEvgLe5QCSssfNrn/kvy/M2EFZJaUgx40IjtsNrVu48SuDOhMShOks1q+3Hs+alfm6yg3mYirtuAu3KMoBAPbCjX9OZ3KS//ovYPjwcO3bXY98yvQw10t+vnU+7QZ22cEXsCZudqndVe1x85OcRLVw460Du9moGzpDJfnaSWI7DJ3ZPJmgbdsWw0flY8iQgJeml5PKfgu+tplfvPa6ihkJg14zHu54qsm6jgYflB/svOhOTtK5s/VYFG6GEb5/F4TbwIFIK5XQC99gMv635W834eZZKgGILDkJq0H3r9WZWVR916DLlVBJr3DsMI5bkOQklFUyAxJuRHD8Oj9hbopu3azH77zj3H4YYaUzPApIn0j+8Y+Zr6sKlQQyz72q5CS6hVs2kpPIOEtBHLcbbwzWNqDXiQSsQVWH4wZYx2Un3GRWTYOGSqpexNEt3PjrNEhf0LYtcO211t+as0pmwGLZwuxrAfwvhOiYyIrfF1bse7nj/Hv9wicnsatFKdsX8I7bjh3pr/H1L7kC7L4QskoWFCCtVMIxzIJsZi2GODblWCpBp+Nm07/zNejcyl941qDL5eQkMvujgfR+hm+LoSpUsqkpc2wi4Ua0SnQ6bj/+MdCxo/n4z39OD1ni25cJNQT02PMHHWQ9PuSQzNdVhUoC7sJNdR23xkarc9URKsk7q7LCbc6czNdVCTcdG53dBkfZVU3+c6qzSjLY5NcwMiecul3gJDtun3xiPR7iPJm1RWc/5tdxCzrBZ/jd4xamH+CvYR3CzWsPMzv2MJl32e9kGN7ujGrHjR9jJR03AGmlEvgspLdgJuocav+5lkpwuyYVh0qKNej443eqW+hYgy5XHDcdYxO/8GO3MVKVcAPcE9qEXRDNMiTciOC4TTZlszx16GCllq2vB7ZuTX9dRrjpDpXkRQMTnzwqQyXF45dxC70ma7w7oNpx27sXOPJI6+8wHSm/L+OVV8w9hjyqQiW9CnDHLRyF/5wux81m4tYCO195eeEnyUB2skrySUCCihSvCZVhAKtWmY979QJ69gzWflTCLZuOm24HAgh+zbD2vfahyRaC9iqmHKZ9N8eNF25Br3Wb+58vlcBn2qyC84Yw11IJbudGcaikWIPOT8F5xxp0ueK4eY1NYcYOfn4kJlwC1P6u4vGzv/lMsQmDhBsRHLfJ5hdfWI/Dpo7nP+c0GdQh3GRDJUeOdG8/ro6bl3DjHTHVjtv//q/9+4IgijExp3RUoZI6SzyEWUgAoguVBDL/DTITWa/zfvvtwF//av2ty3Fr3z78BB+wn4SvW2e5HkH3RALe4kemHIDbfqK6Ouu5sI6bl4Mt47jx590u/Er8vqDfwc6NV8IZ2URCXv1MmPbdHDeZ/l3IKslgpRLaFlj/Fqei5J6lEnQ6btxnGvfXZ9Sg8yPcAIcadLlSgFtHqCQv3OwcN1XlAMS2ALlxKSaQcCOC4zTZ3LDBDHVkhBVu/GAgfkdUwk3HHjpZN9LvHrc4Cjena0bstMMMMOIKsij24yzcctlxY/8m1Wm6V68Grr/e+Tj84Fe4BQ2TBLwnVHwSo6FDg7evs3it23nnc7Un0XGTDZX0m7K/lTtujIoKYNZN9rXtQpVKALRmldz+bV1GDTq/ws22Bp3OmoVAspOTBHHcZKOTclC4JffIiezhdEOLmRRlizUD0Qo32VWeIO3LdkZJE25O14w4eQozwPTpk/63mKBEJlTSa0IlK9xYqEZ9PfDaa8AJJ9h/X1jHzc0lkF01BdJ/Lyd3XPW1ztePYwQNeXFbHAL0Cjf+dw2afh3QGyrpdr3LlEhgZHOPm6pQSa/Mj2GO3StEVaXjJgo3mf5dSE6S8bXtreO+8/dtcOWx5qUTqIRERI5b7Z7Msc+t4LxIRg26XAmV1LHHje9X7YSb7LhKjhtBCPCZ5Ph9Jtu3p78v7I3hNhlkg5ru5CS6haHs8TsJWkB9QgKdjptsUVwAOOus9L9F4SbjLBUUWMfotYovI9wA4N57019LmuMWVaik3bHKOG5iH9PYaIkUHcJNJpQRCJZKW5fjpjs5iew1o9Nx8wqVlHXcdPQzbnXcNDluANKOu1d5AYYPR/ASEhElJykucBZutSgE4L44lLGWEWWopJdLK+O4AZm/rewet3btrLFP9x43Em4EAWcBIWaApFDJdFSF1YltAXIdXV6e1bbdAKDSceNrk7HvtntfEIqLgblzrb9VCrdUyj1ESnbV9NRTrcdinI5K4dbUlHlNqmjfbXDXFSqpWriJ54Xvx3QLtzDnPcgClMo6blE4bjKuVSpl/Xv97HELK9waG9379zhOwvnQNJWOm5dwk40yASJLTtKltC6tBh1gCTcvt822Bp3u+UBUjhuQee/885/2x+GXvDyrbyXHLTAk3IjgOHVIqoSbn1BJ3XXcdIdKqnYM+WOXCdXR7bgB6ccuOm5hO1M+5ExlqCTg7lrJhjDdfLP1WJxQqUxOAmQev6zDDPhbZFEdKqlbuMmUAgCChUqG+V2zFSoZd8cNcL9XVYVKAu4ZZnXvzwt7P7H7RuwfVTludvXnZPd1i5/TGCqZ11ifVoMO4B03d3FiW4MuV5KTiG1t2gRcfbX9cQSBLSZkK6skCTeiVaHbcXNaxeeLKSZ9j5uuUMk2bcKluI1SuPHHrsJxA9yFm2xIoNveFhXFPAcNMv8vCjeVjpvYHpCerj/sedeVnIQ/HvGatLu+kyTconTcVIZKxt1xA6z720+oZNiskl7tx3ESzn9OvE91Om4q+ke/jpuCpDB8DTrAquPmJtwca9DFqY5b0P5RPCb+WMVM0GHHJta32mWVVFk6SezHZBeHYgAJNyI4Tje07lBJnY4VIO9ApFLWpDJboZKyq5q6k5MA7o6bCuHGHy8gL9zc9raomJiwxAE7dqRPfqJy3MK2DehLTpJKWdek04qp+P4g8Mf9yivpr8k4EED2HTf++m9Ne9wA/+44EPya8Zv5UecetzDFvRnsc26hwXEXbqqjBoTrna9BB/hz3Bxr0OlOTuJ1zagMleTbEu99Wcdt3z6tTiqFShIEkL1QSdmbWXeoJP8d2arjJpt9MBcdNz5UUsZx0yXcunQx/28Y6WEjKhw3t8Fd9poB9CUn4T/ntGLqdBx+4K+z554zS5kwZJ33KB038dwsXgx8+KH5OJWSc5VEccLfV2GyYQL+E4iE7QeC7HGzu47c8JthVqd7IjPZZPeIm+MWVJB7ZJVUsseND2/n+3IAuPRS67GiCT6rQVdU5C7cPGvQuS20AskNlezaNf19YRNbuZUEoD1urpBwI4LjJCDEfLiqQyV1CzfZCRv/HdkMlQwD+5xXcpKwE7YoHTe3UMkwe9x0JicBLOEGpIdL6g6VlMnQytCVnIT/nNPAyyMj3ACzFAND94RKp+PGJ7ux23Pkhd/9RGH7R36SZyeuZMoBAIH2uP3n6wLbS8mzba/2de5xC3te+M+K92lUjlvYfoDv23nhtm1ben95yCHB23YQ4xUVZo25tvmZws13DbpUCkbz+anZ3Yi1a4XbNanJScRrRDZUEsgMl5S9bki4EYSAkwASQ9TC3hi6QiWDOG6yolNHqKSf5CQ6QiVVrLQ7iU7xPMV5j5uO5CRAeo0lvqSG6lBJUXiqCJXUlZyE/5wfp0QmVBIAunWzbz/Mb+oVwiQryL3KAcjgVk9Mtv8F0hdO3FyxsNeMwx63qiqgsc46Vw9hKgaP7IQ+fcxJeFWVj7az6bipmGw6hUry/aWMcPNKTqLCceOPle8r+/cHjjsueNsu13t5XwNtGs3fYugPirByJbBmjWnOz5rlEB7ZTFWVeV3VN5nXwhefNeLAA5F+venuZ1TucXMbs1UsKrr1NbJ1EUm4EQTsJ+F2q22qQyW5m3vHnjaZK1he6NzUz/DruMmGLkS5x01FvS+nYxe/L6z44SccukIl6+oyJyfs35KXFy4pDJA9x032mgGcHTfDkB8ggzhussKNX/3VvRKue4+bDKmUc4iqioUtt7A3w1DnuDU2tpybBQvM2mH5TebfKzACv8BDAMwKHLNnm68vWODRts49bn7dExnHzSlUUuZ6jKIcgJPjxofXnXJKuLZ9iofijkW+a9Cx6232bKAR5u+VD/P346+3yi8lF/34UjVu10zYscmvcAvbF7jdT/zYIZNsDSDhRhAA7CfhdkJFoXCrqgJ+d7t1A776ZpvMFawQ7aYRVahk2MyPUYRK2gk3FQLCabKpSri5OW6yjiG7FngxwlAxCPDCjV9Fli3UDOhPTuI0ceMfq74mxWs/TOZH8TrjjzfujptO4QY4n3fVoZKicON/A9nkJABQW4sFC4AJE4C6Wqttu/1KtbXm+1zFm1ettbg7bk6hkqqE2733Atdfn/66ilBJJ7HPCzd+v1QQ3M57iP6XXW/so6Jw45v+YLmCMHs/ocFhx1Snfkbsc8RIK7/4yRYqG60BUDkAggBgf1PYTSAU7XFjK1jzHrAmDqwgZqAVU6/NwlGFSurojGSFm1tyEtXCzSn8FdAj3Pi9l2HSmLtN2FQMAnyoJO+4yRRStvtclMlJVKy0O4VKin937x68bXHhhD92WcctL8+6D6N23GQcGYbTnk7doZIqUt5zwnDjV7WYNMl8XADrPLHJtB2TJrksAvoNTZN13FS7eQynUEmZ31W8j26/3azzxVARKunUt0cp3Hz0v1VVaLneGE7CLeM5nXs6ZctH8G2Jj4Hwws2PK6a69l9TkxU1Q8KNaFXY7bFQ6bhxk8E3XmtsWcFqA+sGrEd6275WTL32V0QVKqlC0KrOKsmvsovhgCoEhO5QSbdyALLp3d0mbComVE4rj7qzSupMTqJiwubXcQsj3Kqr0/9W6bgB7hMqnVkle/QI3p6IH8dNR6ikikQ/3Pn88//WtpxqXrg1wLnt2lrg4YcdXnRzCPgJoU7HTUdyElWOG4Pvf1XvcYvScQvoMM+bZzM8NAs3/vpjpD0ne727iX0Vjht/LsT+94wzwrWv03FzEm4qFhRjAAk3Ijh2G3o1OW733WN1Em7CjeG6YsrvgxJLFwDRhUrG0XFzS3ig2nG79lrrsSrhVlhoTSJ0Om7iyKxyQgUkr46bk+OmIkTK7x63MMJty5b0v51WlHUIN52OGx92Gxan864iIsEtq6SKRD/c9f7MAuvc8+6Gm3ADgEcecYhAdXPFZEWn332RKu5VlY6bnXBTmVAMyJ7jFuB6bGgwrxsRv45bgxHyenfb4iAbDcKPlfwYyp+X6dPTI0aC4GePm2rHTcW4FANIuBHBsbsp7IRK2A6D6yQbG6yJrB/h5rliyjoLO+EWVahk2Ladwg2bmqy/VXd0gBrhtnGj9fjFF52/K+w1k0pZA7wo3GTSXQP6QyWdQlJUJyfhj72x0XIIdDhuOkMlxXtr2LDgbffu7dymCpcgKsfN7dzcf3/wtgF/oZJhBUSEjtuebZYw9BsqCQCbNwOVca79aAAAZypJREFUlTYvuLnXsqLTS7ixPi1sVl9Af3ISBi/I4+645edbv5dTNAV7nwuVlea2DRG2SOAl3L7eILFgCdg7buz8hNkDLH6OP9f8eTn44HBtA/5Kj5DjZgsJNyI4dislmkIl+c7Nj3ADXFZMAWvi7ibc8vLk48KjDJVUsaqpW7iNGGH/vCrHDbAGeCfHrbQ0XFpkPxO2JAg3vj0Vbh4QjeO2fz/w/vv2bQPAddcFb/u889L/1uW42U2oZEOP3dxx1nbHjsAvfxm8bb59HaGSbslJVDhuXPuseDLgP1SSIZYkBeDuEOis/WcYaoSbU6ikaseN/13jvscNcF5kCfCbimXIWppwcdz4a3L3PsXh5IZh7ZcO64g5FchW0T8C/rNKhsGPcCPHjWhV2N0UdkpJwabYMMLNccUUsPY42W2oVRGOko1QSRWdEf9v1iHcLrvMetypk/N3hRFWDPZvF69FJtLD7G8Dsue4qQ6V/NvfLJdNhXsCOGeVVLGyyV/LRx1lPebP0WOPhVtRLigA7rjD+lv1/jy/jpvqUEl23sM4y4yo9ri5JSdR4Ljxwi1IqCTgEFHtpx8A1IdK1tVZ16cKx80pVDI/P3j/6+W4qegHnBw3Xi3pEG58n+Axl3Hqgtz2uPHXZLuOih23ffus58KGTzsJNxX9I+Bvj5uK6CQSbgQB/46b3XN+4DrJPFidZyGsm9tNuAEOK6aANXl32+OmS7jpCpVUMQnX7bj17Akccoj52C05iV0tIL+w8yOee/Zbh9nfBrhPqlQkJ4nKcVu40HKuVIQFA3qTkzh9jm877HkBnN3CKPe4qQ6VVLH4lK1QScV73Hp2snfcvEIly8qAgQNtXvCTpAhQ77jJljNheCUnCdMP2JW1cQqVlInAYedHp+MmkeV04ED7vEA7YR5XT2zGFbgHh+DTltf4a3LAYMWOG5+dWIXjxotkVY6bzlprfNuqw+BjAAk3Ijg+HbdNGxrDlRnyESrJygE44ThH54WbU/ZEFRPZXAyVzMuT6+zsCvt6ZQwMAjs/4kXHVHxYx01nSAeg13ETP8fCCpMUKimiauLgJ921CuEm9jM6HTcVwi2q5CSa97ideZL9Hjcvx23yZIev99MPAOodN1XCzctxC3PNRBEqCViCX/UeN0BJqGRBgXndiHwHS83dg6vwKYYh1bwYzc9tCookk5PwxeuB9HqgYYWbnz1uSXDcVM+VYgAJNyI4Njfcpg2ZE+4rL28MViCbIRkq6bhiCliTd8PInDjoDpXUVcdNtXATO1E2oMm4G/x38MfuNgEKil0yi7o66/zocNxUZ5XU6bgB1jlQNYBFkZxERNVk0Om8qwyVBNwFkOpyACqFW1MT8MEH9uG1OkIlFTtup55Y1/InP464OW5FRcCUKd5tK9/j5ubmqRZuKh23KJKTAPb7l3kXKOyiHKBEuAHA1KmZtzMv3Fq+rjmEV0kdNyfxo9pxcwqVjOseNxJuBCEguDMLFgAnjrfffBuoQDbDR6hkLZwnPI4rpoB7SQDdoZIqV5GcnBmdjpvMeQHSQxntJoPsNRXtM/iYWRWOW1TJSbZtA554wnpelXBjq6hROm5hz41dmKH4PTrKMKh03AD3wr5h7teoQiUB4MgjgXfeMR+r2kvLwuvcHDcFtae6d27A/Pnm42JYYmI/isVPtTB/PlBe7vCi36yScXXcvJKTqHLcnPa4yUyU2b+bv2bY4+Jiub3RioRbeTlarjfGZpRlvC8Fc+xrcYHz8uxDTv3gNG7zwk31HrcoQiXJcXOFhBsRHK6DX/ZGHSZMAJrq3QtM+iqQzeA64eICq5PwM/i6rpgC6ZN3MUGJzlBJPpQhjp2RW3ISdl5UOW6AdfxeNbqCYBcqyYtzFY5bVKGSfMkEQE1yEsASbqqSk/jZ4xb2mhQn9qx9Vav4OkWn3/p5YSZsTlklDUPN4pP4e1VUmP9Xcc2kUla4pJvjpmilvaLCXP/o1MYSP/tQkvGxoiLzfeyfaovPrJLbd+Zj7dqAXVk2QyVVO252oZKplJy4snPc2PeUZP6egXAKaw4hUNj1xpq0c9zy0ISiImDQAMkC2YCz+FERKulHuOkIleSL2at23GiPG9Fq4TqLPz1sdhZ26W7fwdiM51wLZDO4jmzSRKvdElgDgpNwc10xBdKFm+i46QyVVNFhRLXHTVeopF2Ilw7HjT83Khw33clJ7ASEmBZVlePGBmNVyUl0ZpUUyzqw3zVJe9wAZ8ctbD/jZwFHleMGWAJL1TVjt18JUO64sXNTUQE8v9D6rr2wxE9ZmRnKv3ath2gD0n/TV19teVhVBdxzl/U7LF5SgAMPRLBtAm7XC3+edIRKyoh9v8lJJPrHhgZgf57luDXUGy2PAagTboaRfj+FvB4rKszracYMYH+HTOE2/ddNWLsW6NpBQZh9LoZKqlj0I8eNIAS4Gy7VYN5wonA7G4vwFQZlfNS1QDaD6wyOHNXYsoLl5rj5WjEF3IWbylBJftWIbxuIZ1ZJfkIgOpGq97gBehw3u1BJFY6b0wBTV2cdb7Fz+JUndgJC3GzPl1AIgng9sHOQhOQkTlkHde9xi0q4hb2fnCYlqn5T8feyW2SRmfSwe0VHchKHPrJHO2sRYNK0tli5ElizBtiwAZg1y2Oxj8Gf07ffBv7zHyxYYG4DmPeHzD10gbYJRBkqaRjW2LRokRmWDejd4xai7aoqU/z06QO8/4klzg7oU4sZM4DGGsXCDUg/9xL9QHm5eV3d/VimcJtxfaN5vamozecnVDKscCsttYR5lFklVe+PJuFGEEi74FnCED4s8j78Cs/ibMePuxbIBjJW8dkK1inHZQq3QCumgLNwMwy1oZLNx96CauGmujNyWl0DkuO48W4nm5iwSQkQrt4X4Dyw82137RqubcD+muF/36eeCr8Hwuk305mc5L33gAsusJ5X5bixa0P3HjcVwtBtP5Sssx+1cLNbZFHhuOlITuJ0bjiR2LVvCYYPNwVVoJ9XOKdvzFuLCRPMn9ctcZavbQJRhkoC5vVeVwece671nM49bgHvIyaIZ882BTAf3rp7yz7Mng3s3xFf4dbysV42NQJYX1Ndbf5fJiOmH8ct7B63vDxrzIwyVFLFop/O6KQYQMKNCA53w7EBy2/WLsCjQDZguxJeXg78+FhrQLhzTnHwFVPAOTkJP9nX4UCoEBA6O6MohJsfx00Gu9X2f//bem7w4HDtOk3CdQg3dtz87yszWRN/M9auTsfthz9Mjw9THSqpe49ba3fcxM+KiyxhCjXz+AmVVL3SrkL8fO97aX/ef4/Vd5XCilLgQzF5XLcJRJFVUlyoEEPiVYVK2u1xC/B7LliAFkHc0gxXwsFcJDZatk5s3Rtf4WbrdrFoHDbOygg3nXvcAMsdT/sxNIdK6nTcaI9bNCxatAjjxo1D586dUVpaikMPPRR33nkn6gNO+B599FGkUinX/1555RVN/4ocg+ssWKbHIAVOAZcC2YBzCBO3kjf4+8XBV0wB5+QkOhwI/tjXrbMeDxgQrm0/EzbVwq2pyfou3Y5b27b2xXDCtM/O/WefWc+xAuBBidJxs3OVVK1q8u3qLgfAozpUUvcetyiTk4TBqRyAbsdNRUQCkB4qyYeTT51qPdbouIV2aDp3Tj/GBuvct4UlrmpQCjtctwnk5Vnn9dNP01/jhFvl5rbBE5/w38FobMyMbgjzu/bpAxx/fPpzEnvcqqpMgSvCzyny0YhC1CGvOTvjvytLgpUbEtEp3EptroXGRvMcsXtXh3BTESoJ2O8b1x0qSXvcPIm15LziiiswZ84cFBQU4LjjjkO7du3wxhtv4LrrrsNf/vIXLFmyBCUBO+FBgwZhzJgxtq/16dNHxWHnPjahkrzj5lXgFPDYbuSU8IAfEMLuKeLdLhaqAOjfN/P119bj/v3Dte1nj5tq4aailhjDy3Fbu1bNIMPaLyoC/vUv8+9UCjj44HDtOmXcjMpxk7kenZLk6HDcnIRb2ON3CqNN+h43lamuoxBu7HeVPW4GG7NZFszCQtMZ//hj6z1xdNwAYOjQlod8eRpeuDk5boC5TeCmmxz+eaWl5phUUwO89BJw2mmoqgI+fW4vTmp+yzU3tcVzNwE9ephrXFOnBog2Ee9VUf2FddyWLDHr/R11lPmcXaikz2tm3jz7KiCicOMTldUYJXj4YTPyJhRRC7empvQxNuz+ZcBfqKRM+3a1V3WHSqp23FTPlWJAbIXbCy+8gDlz5qBdu3b4+9//juHDhwMAtm7diuOOOw7Lli3DzJkzcffddwdqd8yYMXj00Uc1HHErgrvh2OAVJFTStUA24MtxCy3c+Ak2H06gexVfhXDzEyoZdsIWhXBzc9w6dgR695Zr3+78fP65+f8BA8JP2JwGmK1brcc6hZvM9ThISBBkJ5hVlQNw2p+oKiRFtePmJDp1CzddxWVVZX10uh5UCzfAdMIKC9PvJUC948YLN5k9UTaLlkB6qKST4wZY2wSGDLF58dxzLUvuiSewYPdpmDQJuLbWEm5MFLLEJ3ffbWZS9rW/W3THVThugCneunWz/g4ZKtnQAMyd6/CaECrJC7d9KHEXxF5kQ7jxyT50Om4dO8r1keyEOjlilFUyK8Q2VPK2224DAEyfPr1FtAFAt27d8OCDDwIA7r//fuwU9+MQ+vFITuIl3FwLZAN6hRu/UZd3TDQLt6av1rU8/jo1IFyoSzaSk/Adqk7HTUUnKq6yGYY1QHbvHr5dP45b2A3ggF7HLS8vLXV5S/u6ywHwhG3/Rz9K/zsqx013qKRsCYlUyjqnYpZThkrHjaEi6y6Q3nezPl3sc1WLWlUp9W0WLQH/jhvgsk3gwQdbjr/mjQ9a9nm5tR22PioaG9U4bgy73xQIJNyWL0/XMzxujtt+FHvvm3dDp3Czu5caG9PHWJ173GQiWIDshErSHjdPYincNm7ciI8++ggAcAGfnayZMWPGoLy8HLW1tXj55ZejPjyC6+BL8jMdN7dQSc8C2YDzvhl+QAi7ahqx48ZSGr/7pBWEP+yn/YPV+GEkPVTSzXFTLdwaGtLPi8yxO9W4S8IeNyB98I4iOYlI2OOfPz/971yo48bXilIRZhRFqKTYvmrHDcgUtwlz3IIIN8dtAvn5wNFHAwBKt61HT2zy3XbQ+qi2oZIy95KXcPNxzTz2mPNr/JxCFG4s46Trvnk3dAo3O8RQSdVZJQ3Dctx0CzfdWSWpHIAtsRRuq1evBgB06dIFAx1i6kaOHJn2Xr98+eWXmDFjBqZMmYKrrroKf/zjH7FVDNMISU1Nja//Eg93wZ98QjDHzbNANuA8GUyY4/bsoqaWlMYF9dbguxvtg9X4gdn3VH1jtd1UF5HjpmuPmw7hJoZKqjp2pwEmCXvcxM9nIzlJ2OMfOBC46CLr76jquOl03PhzJHPsOh033aGSfN/NhJuYQVRnchINjpvfUEnPbQKHH97y8ECsAYAMd8kOX/VRvfa4yZRisRPjgO9yAA0NwAsvOL/OzynsQiWB8GU6067HqIQbv79eteO2Z4917LLCzW6PW5RZJSlU0pZYeoWVzZ53v379HN9T3jz7rwzoj7/77rt49913054rLi7GzTffjOuuuy7gkabTjs9YmMtwN9zBB9ThiSeAFyY2gmk3O+FWVBQyFl+1cOM7Ms2O269+2Qg2DDBhW48CAFYKZRbqAtifm6oqc8P2I48AB3xXgPean3/kDw2oKmnenK4i7I1P2hKF4xZFqKQO4eaUuUtnqKTspMFu758ux43PEsiQ+W3tRGfS9rg5rSarCDOK0nFTFSrJT/JZny4Kt7gmJ5F03Ly2CTSVlLasprP2i2D1Y7Vw7sc893l5hUrKlGbhr3f2mzY1+RZulZXpw7GIW6jkPpSgWzcPQexG1I6bylBJO/GjalwCsp9Vkhw3W2LpuO1u9rxL7TZ2NsNE0i6noGiBnj174sYbb8QHH3yALVu2YNeuXfjoo49w0UUXoba2FtOnT2/ZV0d4INxwFRXAH+63D5UMXCAb8BcqGVa45edbWZY0O258+CgTbk5hpHahLmIRUv6z7fdtbnHs3n9H0QoVm9Ak1XETO2sV1wvgHCrJt6+qMG42HDdVyUnsVvHF75dpPyrHTUUokNNkUNWxs9+Mvx7feivzdZm2RXQlJwHSS7MA8SwHANg6boWoxaV4sOV5J+HmZ5vAjt1ivbJ0Z89NuAWqj2qXnESs6xaEggKr/dpaMxnXkCG+w2u9pnFiqGQxrL53H0pw+ukSt1O2QyVVZH0ErPtTVQ03wDqpTU3WXCzKrJKqHTfa45YsfvKTn+DWW2/F6NGj0a1bN7Rv3x4jR47EY4891pKZ8pZbbsHmzZtDf8eePXs8//vmm29U/ZOyh80N162TdUNcd30+Vq5EuALZgHOoJD/4yogIFtbGd3Br1liPsyDcxFAXryKkF+D/0BdVqK0FHpuvaBLOVv4++8xatVO1ig/od9yiDpVUdW5073HzctxUJiexE26qHLds1HFT4bhdc43996gIlWT3T21tej70OO9x8xMqGdb9yYLjNgUPowe2tDzvFCrpZ5vA/oZM4ebXcQM89nnpdNyAdHdm8mTgq68yX3OAD/iwwytUko+oDgz/5d99x31pAhw3O+HGh2HKiELA/n6KMqskOW62xFK4tW8OVnbbD7Znzx4AQAevO94Hl19+Obp164ba2losWbIkdDulpaW+/ks8dp0F18l171WA4cMRrkA24B0qWViYPggFhQm3HTvM9j/4ADjxRPvvD0hTKpxwA8xQl4YGf0VIAXPCAKSH7Eh1Rs37RgEAc+aY/1cp3KJ03HSFSkYl3HQ5bqpDJcVjt5v8yRy/nVuow3FTHSrJn9M9e4AVK8zHuhw3PjxKtm2nTHgBEk24YhcqKY71opDziw/HbfXnJaGLWH9Xnem4zcVlae+xc9zmzPEXcVJU6u641cH9Xg1UH1U8ATKOG5Au3PiafPxrDgwcaNamc8ItVNIoKsEPfxj0YDm42nz47DPuSzU6bvz1LTMntBub+HFPxl0G7DNBR5lVkva42RJL4TZgwAAAQJVLmiT2GnuvDPn5+RjSXFhlw4YN0u3lPHadhcpOzku4yYS9AVbct2GYq1Pnn+/8/QHZsy+8cGOhLk5FSMXPGs175ZQJt1//2nrMHEidjhufYU9HqKQq4eY0wLBzk0qpc36YgNC1x011chI/jpvqUEkde9xUJycR9zu//766toFMx00Me+MjCIJid5/zsWwq97g5OW4KhVtVFfD1v632Ro8rwYEHIlRm35f+Zr/HjcfOcduyxeaNNnTuEd5xC1Qf1e5eVem4ifelRx9TUGCadE641XE76rgSubWtQw6xHv/rX9ZjHf0MYJ57HWH87PfTHSWjOmoAiM5xo1BJfRzenFlp27ZtjslHVjSvYPI13mTY1rzfqX3o1EStCLvOQuVE0ylpgCrhxv/GNTWZ8SUSx1/XFF64AebC+SOP2L+Wh/SsfWwVkp9ANOZJTMIPPNB6zFbAVa5QideNikKbPNkKlSwsNMVbWHSHSup03ETxYzf5Ux0qGeUet7B9wdix6X+vWGEuVPzpT/JtA5mOmyjcvve98G3b/V58aJfKUEnNjhvbJ7xtg9lePQrQAPP4w2T2fX5xpuO2FekZZe0cNxZN4UV+obtwc3PcPOujiveqyj1uQLpwEw/Ex306dapzN+3muB19vKSr1L27VefTSbjJRPiI97nKaJAohZvquV5entU+FeAORCyFW9++fTFq1CgAwMKFCzNeX7ZsGaqqqlBUVISTTz5Z+vtWrVqFNc0rlKNHj5ZuL+fxctxU7snR4bjxK75792amMZfojNoUyQm3nTvTw+x5qpC+QaITqgGkh9J8u02iM+JdguZQZK2rd6o7UTGsTtWqph/hJkO2ywHoTk4iMzHRmVVSZ3KS0lLTTWKfX7HCLIQ+fbp820C648Y714xLLpFvm0elcIvIcVvzWUPLPmE20bcTVX6LWFdWApt3ZDpum1GWfug23+G7QDR3bsVQySakHMePUPVRo3TcfPS/5eWZpRsZbsKta19J4QZY4ZKbN1uLCDr6GUCt4+YVKqkjE7TK6Cqv7Lhh+xq7SA3xe0i4qeeGG24AANx+++1YtWpVy/Pbtm3DpZdeCgCYNm0aOnIbO59//nkMHToU48ePT2tr7969eOCBB1qyVfK8/fbbOOusswCYhb1JuPlAt+OmW7jxm9P37VMq3Np3sj57GD5uecwGYbcad2Vl7pu0d6EjfoX7Wv7uDHNfC59hq6ZJYhDjJ1RROG46hVuUoZJxF25RJiexm/ypEoY6HTe+D1DVlxUXm/F4ALB1K3Dffemvq8rIJronEybIZZOz+710OW5OWSUVCLd33rR+R5au3y1Vv1cR61270h0vJqhE4cbqion4KhDNHb9YDsD8bntnP1R9VJ3CTby2ffa/FRXAE09kvl0MlWyfryhLKIMfeNm1x/cJcRVuuh03uz1uKscmu+y4KsZtctyywxlnnIHLLrsMe/bswZFHHomTTjoJZ599NgYPHox//vOfOProozGLz6IFYOfOnfjiiy/wn//8J+35uro6TJs2Dd27d8dRRx2F8847D2eddRaGDRuGY489FuvWrcOwYcPw9NNPR/lPTC6697jpDpUUV3wVCre8NtZnn8CFKGwedP04bpMne5ddeQZntzxmjhtfQ6iki8QglpdnbZROuuMWdaikDLrruNm5VlEmJ5FpX+eKr9MeNx0ryqr3/on7Q1RGPNjdi3ymuijquPXvH65t7t+earLOOXNonEQV4F3EukMHoB6ZjtsWdBfeaS+ufO3C4I5/6qQGFBVZws1uf1tRkSl0fJXa8dqPmmXHjVFRYZYPmjHDXMwE0hc8Lzy/EVddqli42bnAuhw33dEgUe5xk+0foxZutMdNP3PmzMFTTz2Fo446CsuXL8fLL7+Mvn374vbbb8cbb7yBEp83bNu2bTFz5kwcd9xx2Lx5M/72t7/hpZdewubNm3H88cdj3rx5WLFiBXr16qX5X5QjeGSV1BIqaRj6hJtYNFhhJ90bZvkHL+HGQl28smtVo1PLYybc+LCRXoMkUl0DlnBLouMmXjdJFm66ywFEmZxElXDTmVVSdXIS8fOqhZtYFF6l0Le7Hr791nosm8nZK1SySxdg5sxwbRekOzMMP44b4L4XbeBAoH2XTMfNcBBqPJ6JQxjc8R85ogFr1wJlnczv4YWbkvqo4j/0t7/12ZADbsItYP9bXm5Wt9iwwcyzM/nn1nm5eEIjOrbhhJvsfADQK9zOOy/97yQ5bnZ73HSHSqoYt/PyrH3n/PHmiOMWe8l57rnn4txzz/X13okTJ2LixIkZzxcWFuKWW25RfGStmLw887+mJquT0B0qyXdGsnHbGve4iZ8diEpchMfRuVlkOQk3PtRl8mRz07wd+1GC/ShCMWptHbeCDpLCrV07c5Mdc9xUdnRJddzy881BwDCSv8ctG+UAVIdK6kgaoMtxcxNuqlJpq3bc7H4vlcLNK1Ty668zs3L6xVa4Gb4cN8Dai9acZDqj6XMuaAPcb/7NHDd+L/PjuNC2Xc/EITbHj4YGc0worQWqgc5lhVj5suncDRwY4md2S05ywAHABRcEbFCAHVBjo5TjJjY5ZAiAcqEfUFVQ3a4N1cLtjjvSM45FKdx07HFTOdfT5bgB5rGLi1o5Itxi7bgRMYbdcDpWYexCJVUlUwC0hkqKn12CE/Eb3Nzytyjc7EJd3LJrAZbrxva48cJNehATHTedddx0CzdVgyOQeb0D6oSbXcheLpUDUJWcRJw4MEEdFtGBqK0FTj8d+Nvf7L8/DHYryiradsvQqsNx27TJeixTMBjwDpWUKZBtI9wKUYf85oy8Xo4b4L4X7YKJmY4bL9ym4/aMz/hKHMJwWWRpU1qkrj6qeK9Onqx2kUI8QNn+V+zDkiTcOncGrrvO+psPlczPV+e82yUn0RkqybtaYfESbiqiNUi4EUQz7IZiN5nuUEmVDoTG5CTiZwu4QR2whJtbqItbdi3AEm52oZJSkx7AWunety/TQYm746YrVBKwH2BUCbdUyhJASXPcdCcnccsqqXKBqLEReOgh4KWX0t+jcjIrhmSrnLDp2HfCwws3naGSxcVyLqqNcOMXtrwcN8B9L1qfAZl73HjhZpd8ylfikJZGM5NBGM392L6mwtCFwwG4L7Ko2O+jMFTSsW1Av3BjokpXbVrecZMVtNlITqKq/+Xbr683f9MpU4Crr7ZeV7Hox467sjLd+aQ9bkSrg03wWUhdUhwCIFLHTeTg7xdgzRozdn/WLOcB3Sm7FgDsgJkxriN2oaSwESOGKlqtBizHDTAnUzodN1WZDRm6QiUB6/jYMRuGdU3KnhcgU7jpcrB1lgOwy1Snsn3RcVO9QMRlL7Z9TxjYMTY1ZfYzuhw3HclJ+FBJWcfNLlSSXY8KJ/hMuPELW16Om+deNO5aLk5lOm68cAuUOKTloK3jr95ajxkzgNpdZj/2xbqi0IXDAbhnlVQxCVeUnMQWsR9IkuMGZIrmpAg3tzpuKoQPvyB6++2ZRWxVCrcLhTBmctyIVgcbvFm2MZWOm1eoZIKFW2nHAt+hLnbZtQBgF6wV7zWr9qCsfbNwS6XkO2qxlluSHDedwk0MlVQZugtY143ouLH9pDKkUlb7SSsH4Baqo3qByG7RQ0cNPbvvD4pOx80rVFKl48YmsKomgx6Om5dw89yLxp2bo48whVXbwnThFipxiM3x3/e7BsyebbSEZLLkJEELh7fgFioZd8ctyaGSQKZoViXcsplVUoXY58fVRYsyX1cl3OrqgHffTX+dhBvR6ujUyfx/TY15YyTVcbNLTiIzUeY7TTsCDpBidq2VK4Gjx1udfd/utVaYUdu28jHnvOO2Z0+y9rhFGSqpS7ixa5Hfx6UCPnEAoC85SZRZJVU6bk1N9sJNZSkG8dyodNyiTE6i03FTKNxOxt+wDEe3ZPYF3EMlfe1F4857caoOs2YB446xzv2KVfme0RSupF3vDShAA/JghtjyNeQA/4XDW3BLTqJSuAGZ45CsQHHbv5wE4RZlqGRUBbhVhkoC6cfNUCXcvv7a/bsTBgk3IhxMuAFmcVZdnVwUoZIqywHwK4F2hBwgWXat4cOBdl24zmz/fus7ZcMkgXTHraYm2Y6bjuQkOlY1gXTH7YkngNWrzb9VxeGLjpuu5CR2jptsRk+G6omDOJEV7x8Vm++dircDySoHwF/vCXHcAOBoLMfvYO2ZcXPcfO1Fy8+3rpvm3zOvyRr7Bh2YL/VP+G57umPIargB9nXcAO/C4S1EtccNyBxTdSUnyctTM3ZEHSrJRIpK4aZjbHIrwK0yVBJIH68ZKh03p9cTCAk3Ihz8qmt1dbKTk7h9f1DEQrIiKjoLvrOv5Rw3FSuPbo5b3Ou4RbnHTadw42PxVQ0uYry/ot+V39Oz89MqND32eOabVIdK6trjJk6iVO77AdQKt6gLcPOozCrJ+l9Nwg0ARmGF9XU2jlvgvWjiIo7CCf5LL6cLNxYmCWQ6bgyvwuG2xyYKN9XXuijcdIVKlpTIL66wdhhJDZXUvcdNZ6gkoFe42S0okuNGtDpEx03lIBD1HjeRuAu3IsFx40MlZXFz3FQPAjpDJXXvcdMp3HhUO26ig11QECo0uKrK3Mfz3xdYn+246H+R99STzt8dBrfi5KqdfZV7XRm6QiV1Om5e17Os41ZQYB2jauHm8W/nHbfQe9HEEg+KJvgNDcDzf7X6Qb+OG+BeOLwFt+Qkqh03EdWhkrxwU0GUoZJ1dda5T2JyEl2hknbCTVU5ADvHTXZOkEWS6xUS2YUXbqLjlqRQSTuhFcNQyTREx03lICY4bk3761pWd9ZvaoPeNiV6fBOl46Z7j1tUwk1cuQ6Lk+MW4rwvWGCGZ9XWAj/SvfbnVspA9pqxq+Pm9N1hcXPcVBXgvvVW4LTT1LQrtm2HrOMGmH3Vnj2ZoZKyvykLb3W4b351bQnOOE+iiDXg7rhJ7I+urAS+22EdUBvU+xZuboXDW4gqOQkQreOmgigdt3nzrMeqxiXAfmzSWYA7SaGSYt97yy3pc52EQcKNCIco3FQOAlHvcXP7/qBE7bjxmR8VO27PPFaD/a/VY0Lz3yefWYgtPczMa1Onhth8n+Q9buz4mprMazIq4WYX4hEGp+QkAY99wQIzIQLDrm6VUuwmDqr2dIoOhLgqmxTHbelS8z8V7QLu92Iqle7Kh4UJN9WOG2vD4b7p3q8tug+XbN/NcZMQbrt2WXU+Af+hkgy3wuEZx6Y7OcmOHemvqXTcdAg3u4Q5uoTb66/bf28YvJKTxL2OG398YsQDoGZ/tDjXuO46YObM8O3GAAqVJMLBr7qqTk7iFSopO8gkXbjxnT0/QKoQbtwq1Bt/2YPG/dbEoR5twqeiBtwdNxXix024qVzZfPxxfcJNzDKgSrg5JScJIJirqkynjafJxxASuN4Uj7iIYxjqJm1uWUgB7wyxfuDPr8owWLffTbb/ddsz1LWrfHkKwOrDdAk3J1T0kU6Om2Qymw4dMoWbX8cNcC8c3nJ8DN2O25o16a+pdNz4UElZ4cOIMlSSJ0mhkrqzStqhIzmJivE6y5BwI8IRdagkP8jIujM6k5NEESrJd2a8cFOw+vj2Kms1vRQ1aANLOPArvoFTUQPRlwPYts36u3Nnubb53+1nP9Mn3ERi5LjNm5epbfw4br4SJzhh59Kyf4PsJNxLuHndy36IIjmJ23eGwe289u0r1zaD9VWqs0p6taHCoXFy3CTHvYEDgY5dwjlunoXDxePTnZxEoGpLsfcePDec9i8nMVSSJ+5ZJaMqwO2EjlDJBCclYZBwI8JBoZL2zJ7t/nqMHbeqKuCuP1iOWzvsSZs41CPzvPtORQ1kxuPrDpX87jvzcWmpfDz7xo3pf0cl3FTtcXNy3Hwee0ODmQBBxI/j5itxghPib8o72rKTNtGBUOGwiegSbm6/m+wks21b4MEHgWOOyXytTx+5thm842YYVj+fZMdN8rwXFABnnRfOcfMsHA5kNTnJT88tRp8+ZjKYUA483/aePdbjpAg3XY6bTXkK7XvcdIVK2qFCuIl9Owk3otXSpYv1eMuWaEMlVdQTYze16uQkP/4xcO65zq9LZh1buxZY/52D4yY5KZk3D9hR789xY/hORQ1EL9w2bzYf9+gh3/bnn6f/rVq4qQg/c0MyOUllpaWDefwIN5Y4IRROSQkAtY7bW2/Zb46XJYrkJG7fGZZf/AL4+98zz7Fqx622Vm0YvFcbKh03xcINAM6bEDyrpK/C4UCm46Zzj5tALYrkwuz5Y9ct3Fg/kATHDci8HpkbmUqpTVTEwl+jCpXMy5O7LvnP8uMGhUoSrRZ+5XXjRv113FRP8llHrdpxS6WA885zfj3EuWGp1/v0AQ48ELj1bquzf/8VTrhJDALMUalBuuPGCzc7xw0I4Kjwq2c6hBv/u+3fD2zfbj4uK5NvW3S+HnzQeqzTcVOFmPwkYKjkrl32z/tNTuKZOMEJnY6b2M/83//JtWcHf/yiMIyr48YjnmNVjhvfLj8RT4JwY/u7WUZfhRPZ3v3Ss0r6CZX0VTgc0L7H7ct1zm3shzU2hQqzj1K4JSlUEnAuVVNYKF/jjr8ubrsN2LTJum50O24q3UJ+nkeOG9Fq6dnTunE3blQbL+8l3FQM7rqEG+DeGQU89gULzBXK2bMtx4Nfef1y5U7rzRKDAHNU9iDdcfMKlQQCOCpROm7/+pf1WIXjNn58+t/PPGM9ToJwExw3o/nc761vg7VrvYW3U+kuP44b4CNxghNO2eQAtY6bHa651X3CH7/o7sd1j5vb96hy3Pi+ilf1uoWbinu1e3frMR9tonifWGGeu+MWuHC4xlDJqirgzXfcHTeRQGH2/PHx14sq4cb3Jew+jSJUUsWiorjnMmTGYFvE62LuXLVZrN2OUeX+PL7vJceNaLXk5wO9epmPN2zQtzr17rvAWWepj1FmnU6MhRtLvS7mTOBXLzvCEm6frg2/QsUcFTfHzW1zvC9HhT8vYoiUauH29NPWYxXCbe5c59cSJNyMxkbMuNFAqvl++ueaQhx4IDz3nwwcaH8a/ThuvhInOCEmJeAHYJXlAEROPhl49FG59gH7dNqMJDhu4n3J+nxZsuW4qWg/IuF2wrgGTDjTut5Z8fDQhcM1JieZNw+obfLnuDEChdnrdtyKi61rvbra/D/fGepy3FTcT041RnUIN36gV1HP0W3cJ8fNERJuRHhY2MzmzekTKtnBUezknnvO/I8R51BJQIlws0u9zuBXLzvAimF7/uWi0KnXmaMSxnEDfDoquh03nauaBx8MDHcoAJUE4dbcvlHfgNtvsxZZmBj32n9SUGAmQBDx47j5SpzghBgqyd+vspM2tzCiZ58FfvhDufYBfSLCzV3XKdx0hKbxk0HVCzhBXvNLRMKtpE0Dzj2lpuXvK29sizVrzHXSWbNC1NHU5LixMPsGl7LATot+vsPs+XNbY50TZeUAUikr8/D27cCyZea+V4bsHmSnz/fuLdcu4Oy4yQofvm0Gv4rsFIYRhKhCJclxI4hm+LAZlatTdm2sXWs9VincVCcnAZQIN7vU6wxeuPGOW01jUejU68xRcXLc6lEAwH6i69tRiTJUkoefaMng9LsmQLhtqTbPTR4MFMPaayWKcbf9J1OnZo6lfhw3X4kTnBBDJVU6bm6oGtzd7neZ39xNVOoMlVS1Wp2tUMkECTfRYe5/cCmGDJH4J4h73BTtS2dh9k7CrQp9W9xCEd9h9vzx8YJK5SScJVzbsQO44IL013SFSuoQbmzioMNxS6pwW77cekyOG9Gq4YXbV19Zj1XcGOIKFd/xqRRuYlFc8bvCICncnFKvM/iwE95xq0VR6NTrzFFpQj72NbfPO25ubptvR4XPEhWlcAu9wUrA6Rh1uoUKqKoC1nxptV8Cy7VyWgm3239SXm4mQuDx47gFdgZ43EIlVbk/IgUF6rJ86hIR3bqZyQLs0Om4qZr0UKikPWJoLe8uqdzTqTA5CQuzdxJuY7AMhks/4SvM3uncqnCVGMxx273bykjs9f1+0em4RRkqyddGVSHcdIZK8otDr73m7zsTAgk3Ijz8phd+gFExURY7Sj6tncrkJH6+OyiSiQOcUq8znBy3WhRJpV5njgpz3XjHzWmC7zsVNYMNJjr2uOke3J0GwqFD5dvWKNzmzQPqDC4EixNuToLcaf9JRYWZEIGdUr/JSULD3y81NcDZZ1t/63LcVK7i6xQR06fraZdHvC9VnZskO278uKfTcauvT1+okK1F6RYqKXHsbP7uJNzWo7/r531NF6IQbnyJI7Gmow7h1ratWvETRXKSTZusxyr2uOl03CZODP6dCYGEGxEevqNjtG+vZnAU007zSkZlchI7suy4OaVeZ7g5bkD41OvMUWH73Pw4br5TUTP41UHVwk1nKCNgf4yDB6vZC6VJuDH3lg9p9OO4Ac77TyoqzMjlGTOAzl0jyoYJmIqRR5fjpnIyqDP7YyoFHHVU5vOt3XFTmNXXFt5xW7vWFG+AmvPOT/BFx01WuGly3FiYvd/SIDy+w+ydjk+H42aHjlDJXr3k0/UD1j25d6+ZyI2JfRX7/8Tj5oWb7lBJ2XH7xz8GPvgg83ly3IhWTdeumc916qSm7QMOSP9b9QZ2nY6b5MTBqz/kHbc2aMh4XsbwrKgAOvXxdtwCp6LmPwjoEW7durl/pwQNDcCeepvf9ZVX1Ay+moSb3f4TP44b4L7/pLzcTJCw/H3NQ4jbedHluKmcDOp2f+zOTxL2uDklJ9Gx6Mejon2+n3n2Weuxins4lUov3aEri6pC4cbC7N2SkzjhO8ze6dzq2OMW5Pv9Yue42c2fwsCfAz6Jm4qFLX5RBVAv3Nz6ExW/7ahRmZk7yXEjWjV2HZ0q4eYW+51k4eZjku+Uep1hl1oZMIWbVOr1Zjr1MR23ttiLkjxzMzKb4IdORc3Q6bg5nTSJjpovfv7K0vRjfPzcv6KqcFDottPQJNzs9p/4FW6At3tbUORx3Kef7v66F26TVV2OW1ShkjqSOKlqlxFFchLVYfDioh+PivadxjhV550XbiodNzFUUlFyEsAMs0d+sDYChdkn3XGzE25u3xcEp3tSRf+4c6fza7odNxV9TSoFjBunvt0sQ8KNCI9O4TZ1qvNrSRZudslQBJxSrzPsipmy56VSrzOaJ8t5MNANWwEAPfsXyaWiZugUbk6hISEn4mLxc9F1fPjpjo7p8wOjSbixsZUPY2oHaxV1H9wHd0/31i0c58c/DlCoyYFevZwnrEl33JIo3FSJWp2hkgMGOL+man+0XX+lQ7ipdNz44/v5z9P7X8nzUl4OnHlOsDYChdlHvcfN7/f7xe7zqoSb0z2pQri5rQLrruOmSmCJCzkk3IhWjV1Hp+JmBsy9G06TvrgnJ5EUboB96nWGk+PW1KZILvU6g+vYUk1NAIDiEd+XS0XN0JmcxIkQg7td8XPRndqPYtf0+YFQlcVQgLm3vOjkE9q4CTdf7q3bQs1DD8kXP8/LA773PfvXVE7adLXrdsOoCLG1u25UhkqKbSUhVFJ3tEYqZX/dqxJu7Bh1Om6AGebNUHDsw0f7++1ChdlHmVUyyPf7JamO29ixmaURGCocN34OIKKqrxGPk0IliVaNzj1ugGk72QnBJCcn8Zmr3y71OsPJcbv810VyqdcZdud3zBgFDUOv4+b1nT5xKn4uOm686Ln4Yvt90L7R5Lgx93Y3LOusDFaqa6dFAMDn/pM2bZxtOVW/6SGH2D8fNguPF1GFShqGfPsaHLeGBjMUeuVKYE9dBKGSvOOmon2+TI2IKlFrNy4lyXEDoi3DAMkwe6e2Vd6rg1zC3pMo3FQkJ0mlgD/9yf41FcJN3EPHo6qvEccnctyIVk1paeZNoFK4AfadW46HSjLE1OuMfShBk00x7BNO1Zj2XkXmRCA9Ock+a6+VkkHGiYCDu1Pxc9Fx44VbYyNw9NESzpvTNXf//SEbtJg6FdiTb000eeHm5LgF2n/iFGKkalL1/e/bP69qMUEkqqySuoRbyEk4v5/zwAOBkSMz93Uqm/Tw55h3lVQIiOHDnROUqBJuOh03doz19da5yc+Xv5/cXH2Nwm3lSsiH2UfhuI0eHfz7/ZLUUEnWvs1v+9XWDqFqxqaRDeFGjhvRqkmlMidtqoWbXXtxF258J3fooemvBezp+NTrZWXmc40owJcYnPlmVYOY3fnlU2DLwDpNw0h3THQlmgACnRe34udujhtgirfQYZN219y55wKXXhqisXTKy4Fxp1mro36EW6D9J04TEFUDr7i5HADuvlt9X8NohY6buJ+TIS5W/N8zmh03VZk2V6xwfk0FUQg33nFr21Y+tDZLwm34cMiH2Uch3AoKgMMPt39NNpTd7vPt2sm1ydAZKtlMU9vMMN3vje2CPn3MuUlVVciGjzvO+TVy3Bwh4UbIoVu42dnxcRduqRTw4Ydmj/bii+mvhViiYqnXN2wwVy5XrgR6nzgs842qXCu786tqpZqfFPMZq1Qlmrj+evfv9MCt+Lmb48YzaVKIgczumjvySDX7oAD8YIw/xy3U/hMn4aZKAB1+ONCzZ/pzRxyhpm07VC4iuN03zftHpVDguNnt52SI1/wFE9vg8ccDNW+PTscNsA9lzMtTt5c0qlBJdm5k97cB7scXQaiklrZV73N9+mn752X7Ybtzr6qf0SzcFiwANu1Kv/72oBS1KMZ335mLPaGTdA0b5hyKScLNERJuhBzihFtVchK39nQnJ1ExuI8aZaqt/v3Tn5eILSgoMDvI4cOBdn07Zb5Bp+OmQ7hVV5v/T6XUTfJvvNH9Oz1wK34uOm6OZRlqQyRT1LTHrQVuAWREn29bHrN/g9T+E6f7RdUAmZcHjBiR/pyqRYpf/jLzOZVhu7qFm925D3AtOe3nZGSWi0jh4ouByy6TWGUH9DpuTu2oFBbZcNxkcbpP8/LUTPJ1Crco6rgBwODBehaF7M69ylBGOxS0zxZ1apAu3LYhPb+BVJKuiRPtrx0KlXSEhBshhzjJUbEyyKPYcWMb7//zrcbkJCJ8pyQdFN7MKadkPqdKuNl1bKoGZf4YmXBTEQbEKC0F7rzT+Ts9cNtvLU5inZLEAGa4ZaCf2i5sRsXEnsEtgJQXWpbiDbeUyO8/qauzf17lRE4cfFVd63PnArfckv5cVI6bW70xv0g6bk77ORlOdf7mzpVYZQfSfz8dwi3qwuRO3ynTtmrHzUm4tWunpv/NhnDTkVlW/G3ffVe+TZ3CTVNyEn5RRxRuW9HN5hMho00A+zkHOW6OkHAj5BA7TtVJJhRllRQ33l8+XWOopFt7AZKTuHL66ZnHmTTHjYVKqt7fJg4CAVbY3Iqfi44bbBLEMDZvNsMufWO3gq9iDxSDV6SbrVDJAQeXyO8/cUrprEqMA5kTV1X9TCoFHHaYnraBzHupY0fgnHNM5eNZa8EHEnvc3PZzMtwKtEutsut23PLyMq8/lcKCu4daULXQwo6TT+CkwnFzuk89izX6JBdCJYHMe1bsH8Jgd0+OHSvfLqDNceMXdbwcN0aoaBPA/t+gyhkjx40gBHQLNwWOm93G+2/gUutHtXA79VTrsYpBADCP8amn0p9LmnBjE4kYCTe34uduk1g7AmWrj1K48SnGVZx7J8dNJaIjqXLCJvZZOkMlDz3U3EczbZqa9iWEm9t+Toafaz7UKrvuPW52bals2+4aUbUox46Tt0JVJLJwigNPgnDLpuOm4t8lOm5vv60uH4CGPW7ios5epC8cOAk3IES0CQD06pX5HDlujpBwI+TQOekBpB03p433/8Qw1MBhFVO1cHvwQTN70jnnAP/zP+raFTv+pAk3hqrEJE7fEXCFzan4eabj5k6g+ZDdda5SuDntPVVxv06dKt+GF+LEVWU/I7alM1RSVSY5hkRIoNt+ToYf4RZqlZ0/5/wsLynCbebMzPZUCzceFeKKTwbFo+qazIU9boCe60YUbir30WkQbuKijt9QSSBEtAkA/P73mc+pElji9U3CjWj1ZMNx89mRum28b0AbfAj7ui2bvlMs3Hr0AJYuNVfadW6QVzWIRS3cdDtuAYW4U/HzII5bWVnASLgoHTceFef+kkvsk8KoRAyV1Oi4bd9bjJUrzb2w0ltSxftGlbvBkHDc/KyX+L3mA6+yO/1+KidV4nlQ2fcefDCwbl36Ta5TuKkodsw7mzyqrkmdE+KCArOwoEgUjpuKZGU6r0WncV9iLiYu6vgNlWQEijYBgJ/8JDPmWmVyKx6VIfxZgoQbIYfYOajuSJ3SOvvAa+P9ctgXlV74lOYMf6oQz42qDimq5CQM3Y5bCFjxc368DSLcJk8OeMp0Czcnx02FcGvTBrj1VuDyy+XbciJCx+33D5Vg5EhzL6x0nSLdjptdX6hwUuj3mg+8yu40TiTFcQPMi4Mv9K0q8ZTdhFWFuHJaxVQl3MQMyipJpYA33gC6CU5PFMJNBeJ9qqosBaBlj5u4ThBUuIW6pC64IP3vHHDGdEHCjZAjasdt1KjM2nE2+Nl47ybcVI3BWtFVgNiuw1Q10GTDcQtJRYWZUIyJN7+T2KIiYMqUgF+mW7iVltoL+6gyKMoiCh6FIVIvLkk/B3yZB+k6RTF23Pitjk4EWawItMruNE4kSbgBehJP6QqV7NkTeOklPW0DwKBBatpxon174KST0p/TESoZhXBTidPCp0TfLibpEoXbDjjU7kSIaBMnSLg5QsKNkEP3HjexvXfe8eUs+dl4/z6OtH3+2635wWO0s4HqmnkMHZuzGdnY4ybBEUcAjz1mPk7Bn5CaPz9EWn074WYXGhSWvDz76yWqmmWyiKGSitzlBQuAX16Tfg7sCquHzqAo3ksx2uPmJ/quAf5/00Dzf6dJmcprSGd4mt13xF24AfZ9iqoSPlFk69NVFoRH93WiGqc+RUK4iUm6ggi3wNEmTqgUbgsXmgsLc+eqazOLkHAj5NDtuImug8+O2s/G++3oiir0zXi+EfnBY7Szga4VqaiFW0wdNwYLmywucJ+YFRWZ7wtcwBrIFG7XXw8cf3yIhlzobDPYJtVxUwDbAysWUncqrA6EyKAo/q4xctzcSl8w/DpugVfZnYQ3OW56hZvd/a7S2dfNgAHpf+sYA5PmuDkJb8m+nU/SJQq3anSy/UyoaBMnVP4O558PfPmlumy+WYaEGyGHbuH2/e9bj3/6U98f87uX+wS8ht9ietpzjchXPr/SBpt5HXywujZ1Cje7Hybmwg0wxdjsW+wnZmVl5j6otWtDijYgc4J/223qN1HbhRi3YuHG9sAGEW6BMyj265f+dxSOm0/h5lb6guHXcVO2yk7CTa9ws4tucKrvFob/9//UtWWHWLReR6KJXBFuknMxPkmXX+EWKtrECQqVdISEGyGH7uQkvXub9couvzzQjMnPajIAfIGhuAG/TXuua/d8NTHaUbBsmbkJ569/VdemKHxUTngOPTTzuRiHSvJ06ZC+8XHlSmDNGmDDBmDWLMkBS4MwyUC345aNyUlI+D2wolCzC5XkCZRBUZxYVlf7/KBPJEIlAefSF0FQusqetFBJvs0kCDe7ybBK4Xb99cCxx6prT0QUbjrIhVDJdu3MuZMkLNqkrsBduElFmzhBws0REm6EHOKoryPm/NxzgXvvNTdX+8TParITEy7O12oeKGXIEOCGG9QOaDodt+HDM57avKtETep1hq69FsLEbPhw8/QrOT15eUDX5kxdxxyjoEEbROGWl6f2t9UZcqVY2PJ7YBsFV8nNcQNCZFAcO9Z6XFYW4IM+sBPLASaJTqUvgqB0lV2n46ZjIqjDcdOVVRKwd6hUCrfiYuAXv1DXnkgUwi3pjtvEiWaBb0ULohUVwOx709tiwk1JtIkTUeyZTCgk3Ag5RMctRoon7GryxInKDyVZ6BRunTqhfsDgtKceXtBWTep1hq6VOt2pRt97D/jd74D/+z9lTTY0mIPqypXAznwhVLKkRG2oUVOTurZEFAs3tz2wXo4bEDCD4sKFwNChwFFHZaa8lkUiVJLBVtWD9pWxX2WPOlRSVf+g03Gzg9+OoIJx46zHV1yhtm1NCbn4fnL7noQJN7FvvPRS4PDDlX5Ft37p4vCdFW3VRZs4sGlrm2Rk984CJNwIOXQ4bIoIu5rctzz5BRql0CjcFiwA3v06vZdnE2Xp1OsMXYPkCSdYjy+9VH37Q4YAV12lJMSlqsoUwX36mPXIRo4EHnxScNxUh2fqdNwUh0q67YH1ctyAgPPovn2Bf/8bWL5c/X5OUaTl54e6/isqzInrjBnepqDWVfakhUombY+byJFHmn2OSsrKTMdn7lxzVq+a3/3O3BN8zz3STdn1k3/4X83OrGrEvlGHUyV8x/ARKXXRJrB+B55Lr2ijbjE3xyDhRsihOhmJYvyuJv86//fmgxNO8J/ZJAbwK4XKwg017XFbsMBMqb7bSB8ERIcjdOp1hi4BMWwY8Oc/myPJb3/r/f4ssWCBqQFnz04viSGmcN5aKiTOkEWn46ZYuLntgfUSbsrqFKlAnBBKiPHycnOevWGDuXdz5Upg5oz0e0n3KrvShcBcSk6ickzi+/f33lN+bwEww4OnTdOzd/eqq4Dt26XdPKd+UkzII7WIyIgyVDIC4aYS/nfgqUcbdYu5OQYJN0KOGDtuDLfVZLZ6fFnllcDXXwOvvJKdgwyI3UqhinDDhgbgmy3qHTeWeh3IzFAl/s0InHo9CiZMMGetMRX3TBzX1ma+th3poZJLvxqodjDU6bi1aWMmJzr2WLOWoyRue2C9QiWVZVBUgSjcFEywCgrMidLw4UCP7umvqVxlz2DUKGDECHXtRSHcokpOolIALV8O/OxnpiuWVCRDvN36SbEEhtQiIiPK5CQ6hJvqBGLN+P0dpBdzcwwSboQcCRBugP1qcsbqcb9+elfGFOG0UgiEDzfkheAlU9MHri078qUFFEu9DmQKtd2wDwMKnHqdwadg15nhLGbw4tgO0XGrxEC14lin4waYiumtt4AxY5Q057QH1s1xU5pBUQUahFtWWLgQ+PBDtaGkuRQqqfJ3HTHC3EPAJ81pRXj1k3a1C6X7SZ3zCvGe0SHcNPTtWfkdcoT4z1KJeBPzUEkRfjVZ6+qxJtxWqHiCrFCJQlDsMDdvK5AKVeBTrwPAXqSv3u2B82pyoNTrjI4dgZdfBq65plUt0fHi2I6N6JP2dyUGhhfHdugWbopx2gPr5rgpzaCoAnFCGEVZCR2o3vsHJDdUUtxjnJdHGfYU4tVP2tUulO4ndQo30X3Uca0MGmQ9PuccJU16/Q52wk3peJVgSLgRciTEccsFvFao7PBaobITgmKH2YACqVAFPvU64N9xA0KkXmecdBJw112mhdgKEMWxHR9idNrf62E6k6HEsR0JE26AtQeWx27ipiWDogp0O246w195dIwjSRVu4nG2baun0HQrxE8/acD+XEv1k1H+fjqEW7t2Zmjt7NnAgw9KN+fnd7ATboDC8SrBkHAj5EiaZZVgvFao7HBboXISgnVI7/j5iWyYUAUx9boo3NwcNyBg6vVWiiiO7TCQh7OxCADwLcqwDGbIYWhxLJJA4QaYYmz/WCtj6E5YKce1ZlBUgcLkJL7aV8mRR1qPhw5V337UoZK6ygFo2l/UGvHXT9qLLKl+Msq+UZc7O3asWTO2Wzfppvz8Dk7CTdl4lWBIuBFEAvCzQuWE0wqVkxC0c9wYYUIVxDweQRw3QG8Jo1zBrS4Zz7M4GwNQiYPwBfZw512JOI7KndFA8dOPA7Nno2H5h/j3mgL7PbBxRLfjdtFF1g24cKHathcsAM4/H/jDH/Sk6cwVxy2p+xZjiN9+0onQ/WSUwi0BUVB+fge7yAdGa1/MJbuEIBKAnxUqJ9gK1ZAh1nNuQtBNuAHm5266yf88aOBAc+5RU2P+HWSPW2lpjFKvx5ggSS6/xoCM55SI44Q6bgCAnj2BG25AAYAhnm+OEbqFW4cOZg26DRuA0aO93x+EAw5QLwZ5ohBuZ54JPPCA+fiaa9S0SY6bNmSTAYfuJzt1sh73U1yGBTAH97Vrzcc6XXJF+Pkdmlx8pda+mEuOGyEHhUpGguqVQjch6CXcwoQq8GZMUMeN8MatLpkXyuqS8T9yArKz5gRRJCfp0wc44ojk7bOKIlRy/Hiz0PT112dWEA4LCTdt+OknnUIlpfrJtm2B554DLrkEeO21kI248Le/AVdfbZZKScB96ud3cBJusaqjmSVodCXkYAXEADPkhdCC6pVCNyHoJdyAYKEKlZXA3r3W337ruAGmS9fa49n94FaXzAtldcn697cejxqloEHCk1wpB6CDKBw3wCw0fdtt6kSzmFWShJsy/PSTTsJNup8880zgj3+05ksqGTQIuPtuZaVSdOPnd3ASbrGqo5klSLgRcuTnA6tXA//6F/Dzn2f7aHIW1Y6KmxB0S07CCBKq4JWcpAnuoR2tPZ7dL051ydxQWpfsl780nZkBAzJTNRJ60J2cJMmIJQaSMtsjx00rXv2knXCLXf3GHMDrd7ATbvQ7mJBwI+Rp2xb43veyfRQ5jWpHxU0IejluQUMVvJKTeNHa49n94lSXzA2ldcmKioD33wf+8x9g8GBFjRKukOPmjChiSbgRiEE/SQDw/h3EvfAA/Q4MEm5Eq6ShwdzLu3Kl+f8k1AVR6ai4CUFRuDUKjljQUAVRJNp1yE5QPHswWF0yr+tEa10y2t8WHRqFWxL7yDRIuBEO+O0ngZjWb8wRxN/hTDyH3WiHJ1CBDbAUWmzraGYJGmGJVkVVlbmHvE8fM9ScbdHr08d8PmiNsihRvVLoJATdHLcwoQqiSAziuFE8e3AqKsyJ9owZpvDliX1dMiIYGkIlk9xHpiGKWHHvWFxJuHBLiuB36ifFUEnqJ/XC/w7vlZ2JLtiOC2GG2tN4ZQ8JN6LVsGCBmTV39uzMjIrffWc+P2gQ8Pjj2Tk+P6h0VJyE4D6k7w3hhVvYUAVeJIp76JygePbwlJeb9cc2bDDrkSWmLhkRDNHdlHTc/PSRQ4aY74s9oohNQH0rAIkVbkkU/Hb95ExFyUEJ//C/w2dr2tB45QEJN6JVsGABMGGCfcFpnvp64OKLgTPOiOdAA6h1VOyEYION4yYbqsCLxGp0anm+xiVskuLZ5SkoMCfaw4eb/yf3MsdQ6Lj57SNra833xV68ieeCr6UVZxKYVTLpgp/vJ3uUxT+dfq5C45U/SLgRoUlKSERVFTBpUrDPvPhivAcalY6KmxAEgO8NK1ASqsBE4r6izrgMc/AGfoRj8HbG+yienSB8Igq3kHVDwvSRkybFd3ELQKb7mBThptFx0zFm55zgP+aYlofbTpoQ67mNSFLmZIQcJNyIwCQtJGLePO9BxQ5VA43OzlTVCpUoBHkOH1WgzPliIrHjjMtwQdkbWIURLa9RPDtBBEQUbiFTsIbpI2trgYcfDvV10SA6bp07Z+c4gqJBuOkas3NN8FdVATOe/gGuaD8fv8NVGPK3ObGe2zCSNicjJDGISNm5c6cBwNi5c2e2DyUUTzxhGEVFhgE4/1dUZL4vDtTXG0aPHu7H6/VfUZFhrF8f/LvXrzeMG2/M/P4ePcznw7QZGfwBT5mi5Svq6w1jzRrDWLnS/H99vZavIYjc5YUX0u/VqqrATcj0kWVlMb5vX301/WDfeivbR+SP559PP+6HH5ZqTueYfeON4a6bGTOk/klaSNrchpHU4ybSCaINyHEjfJPEkIjKysyY+6CEWVlOesx/2j4LTendKZ6dICRR4LjJ9JGbN5ufjyVJ3eOm0HHTOWY3NACPPBLuuB55JF5hfFHNbVRH3yRxTkbIQ8KN8EVSQyJ27VLTTpCBJic60+Ji63FdXfaOgyAIZ8RFlRDJSWT7yN275T6vDXGPW1JDJUMKTt1jdq4I/ijmNjpCGZM6JyPkIeFG+CKpeyBC7tXPwO9AkzOdKS/c9u/P3nG0MmhzOREI0XET//aBbB8ZcludfpLquIlZJUMKTt1jdq4Ift3nSVf0TVLnZIQ8JNwIT7IZEiE7kR04EOjRI/z38/gZaHKmMyXhFim0uTy7JFYwhxBqIjJ9ZFmZ+flYIgo3BcXJI0F03EIItyjG7FwQ/LrPk67om1wKUyWCE3vhtmjRIowbNw6dO3dGaWkpDj30UNx5552or68P1d7KlStxzjnnoKysDMXFxRg4cCB+9atf4TvZjVA5TDZCIlRNZAsKgMmTg3+/HV4DTU51prxw27cve8fRCkj8fsgEk3jBrEC4yfSRkyfHeG+qGCqpaa+uchQItyjG7FwQ/DrPk87om1wJUyXCEeue7IorrsC5556Ld999F6NHj8ZPfvITrF+/Htdddx2OO+447As4oXzmmWdw5JFH4plnnkH//v1x+umnIy8vD/fffz9+8IMf4Msvv9T0L0k2UYdEqJ7ITp2aXmA6DH4GmpzqTMlxi4Sc2A+ZUHJCMCsQbkC4PrKoCJgyRcnX6yEBhattUSDcohizc0Hw6zxPOqNvciVMlQhHbIXbCy+8gDlz5qBdu3b44IMP8Oqrr+LZZ5/F2rVrMWzYMCxbtgwzZ8703d4333yDiy++GA0NDZg3bx4+/PBDPPXUU1izZg0mTJiAzZs344ILLoBhGBr/VckkypAIHRPZ8nJg/nz/x2CHn4EmpzpTEm7ayZn9kAkkZwRzmAKVNoTpI+fPh7L6jlrgHbaDDsrecQRFHGhCrDpGNWYnXfDrOk+6o29yIUyVCE9shdttt90GAJg+fTqGDx/e8ny3bt3w4IMPAgDuv/9+7Ny501d79957L/bu3Yvjjz8eU7heIz8/H3/4wx/QsWNHfPTRR1iyZInCf0VuEFVIhM6JbEUF8MQTQGFhsPYB/wNNTnWmJSXWYxJuWsiZ/ZAJI6cEc02NsqZYH+k1ES8qMt9XUaHsq/WxYgVw/fXA4sXZPhL/KLCiohqzky74dZ0n3dE3uRCmSoQnlsJt48aN+OijjwAAF1xwQcbrY8aMQXl5OWpra/Hyyy/7avP55593bK9du3Y47bTTAADPPfdc2MPOWaIKidA9ka2oAL78Ejj99GDf4XegyanOlBw3reTUfsiEkVOCWaFwA8w+cu1ac39fWVn6a2Vl5vNr1yZEtAHAiBHAbbcBgwZl+0j8I2aVDEGUYYxJFvy6zpPu6JtcCFMlwhNL4bZ69WoAQJcuXTDQYTY7cuTItPe6sXv37pb9a+xzMu05UVNT4+u/JKI7JCKqiWx5OfDCC8Bjj3m7b0EHmpzqTHkFqqqmAtFCTu2HTBA5J5j797ceDx2qpMnycmDWLGDDBmDNGjPT5po15t+zZsXHLclZmpqUNBNlGGOSBb+O8xRF9E3Sw1SJ8MRSuFU2z0r69evn+J7y5tGj0scMZt26dS2PndoM0p4T7dq18/yvd+/eodvPJrpDIqKeyF50kem+qR5ocqYzveMOc3N/mzamRUEoJaf2QyaInBPMY8YAv/wl8MMfAi++qLTpggIzOcvw4eb/Y7WwlMvs2aOkmajDGJMq+HWcpyiib5IepkqEJ5Zd8e7mWUmpmM6Xo11zTZZdPmZAu7lZjlObQdprrTARM2mSe6hRUZHZQQQRPdmYyLKB5qabzAnZ7t3mStfAgeEnKawznTDB/2di2Zn27m2OuLW1QM+e2T6anCOn9kMmiJwUzPffn+0jIFRy2GFmsfDqanN/ngQ6x2wnmOBPEqrPE4u+mT07+LEEib7Jxu9LZJ9YOm5JZc+ePZ7/ffPNN9k+TCl0hURkcyKremU5yTH/aXTuTKJNEzm1HzJBkGAmYk9xMbB8uZnKNEDmbCeSHMYYJarPU1TRN/T7tj5i6bi1bx4d3faD7WkOJ+jgYyRuz422NTU16Nixo1R7Trg5hIzGxsbQ7ccFHU4Vm8iGCWOK40S2ogI45hgzocEjj5hhVoyyMnNVbcqUGDptRCREtSJLpJNr/QyRoxx8sPmfInSM2bmIyvMUZfQN/b6ti1j+pAMGDAAAVLnkX2avsfe60Z/bwL1+/XoMGzZMqj3CRGVIRC5OZKkzJdyYOhW4++5gGQ5juR8yQeRiP0MQfkliGGM2UHWeog5lpN+3dRDLUMnDDz8cALBt2zbHZCErVqwAgLQab0506NABgwcPTvucTHuEHnImsYcAbfIn7KDN5dkhV/sZgiDiB4UyEqqJpXDr27cvRo0aBQBYuHBhxuvLli1DVVUVioqKcPLJJ/tq88wzz3Rsb8+ePfjLX/4CAPiv//qvsIdNSEITWaK1kTP7IRME9TMEQURJUjNuEvEklsINAG644QYAwO23345Vq1a1PL9t2zZceumlAIBp06al7Vd7/vnnMXToUIwfPz6jvSuuuAJt27bF66+/jke4Qj6NjY249NJLUV1djVGjRuHEE0/U9U8ifEATWaK1QSuy0UP9DEEQUUPRN4QKUoZhGNk+CCcuv/xy3HfffWjTpg3Gjx+P0tJSLF26FNXV1Tj66KPx2muvoaSkpOX9jz76KC655BL0798/rXYbY9GiRTj//PPR2NiII444AgMGDMBHH32Er776CmVlZVi2bFlLSKUudu3ahY4dO2Lnzp1SiVBynaoqSuxBtD4aGmg/ZJRQP0MQBEFkmyDaINbCDQCefvppPPDAA/j4449RX1+PQYMGYcKECbjyyitRWFiY9l4v4QYAK1euxG233YZ33nkHO3fuRK9evXDqqadi5syZKBOXuzVAwi0YNJElCEI31M8QBEEQ2SKnhFuuQcKNIAiCIAiCIAggmDaI7R43giAIgiAIgiAIwoSEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwpyPYBtDYMwwAA7Nq1K8tHQhAEQRAEQRBENmGagGkEN0i4Rczu3bsBAOXl5Vk+EoIgCIIgCIIg4sDu3bvRsWNH1/ekDD/yjlBGU1MTvvnmG7Rv3x6pVCqrx1JTU4PevXsDAL755huUlpZm9XiI+EPXDBEEul6IoNA1QwSFrhkiKHG7ZgzDwO7du9G7d2/k5bnvYiPHLWLy8vLQt2/fbB8GACA/P7/lcYcOHbJ+4RLxh64ZIgh0vRBBoWuGCApdM0RQ4njNeDltDEpOQhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxh4QbQRAEQRAEQRBEzCHhRhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxhwpwEwRBEARBEARBxBxy3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3FopixYtwrhx49C5c2eUlpbi0EMPxZ133on6+vpsHxoRI+rr67F06VL8+te/xqhRo9CpUye0adMGPXv2xGmnnYbFixdn+xCJBHDttdcilUohlUrh1ltvzfbhEDGmrq4O9913H8aMGYMuXbqguLgYffv2xUknnYSnnnoq24dHxIz169dj2rRpOOigg1BSUoLi4mIMHDgQF198Mf7xj39k+/CIiPniiy8wd+5cTJw4EcOGDUNBQYHvcef111/HySefjG7duqGkpARDhw7FjTfeiD179kRw5P5JGYZhZPsgiGi54oorMGfOHBQUFOC4445Du3bt8MYbb6C6uhpjxozBkiVLUFJSku3DJGLA66+/jhNOOAEA0LNnT4wYMQKlpaX47LPP8OmnnwIApkyZgoceegipVCqbh0rElOXLl2Ps2LEwDAOGYWDWrFmYMWNGtg+LiCEbNmzAj3/8Y3z22Wfo1q0bjjzySJSWlqKqqgoff/wxTjrpJDzzzDPZPkwiJnzwwQc44YQTsHv3bvTp0wcjRoxAfn4+Pv74Y1RWVqKgoAALFy7EOeeck+1DJSKCzW9FvMade+65B1dddRVSqRTGjh2LsrIyvPPOO/j2229x0EEHYdmyZejWrZvOQ/ePQbQqnn/+eQOA0a5dO2PlypUtz2/ZssUYNmyYAcC4+uqrs3iERJxYunSpcdZZZxlvv/12xmtPPvmkkZ+fbwAwHnvssSwcHRF3ampqjCFDhhh9+vQxzjjjDAOAMWvWrGwfFhFD9u7dawwdOtQAYNx8881GXV1d2us1NTXG6tWrs3NwRCz5wQ9+YAAwpkyZkna9NDY2GjNmzDAAGJ06dTL27duXxaMkouSRRx4xrrnmGmPBggXGv//9b+PCCy/0HHdWrVplpFIpIz8/33j55Zdbnq+pqTHGjx9vADDOOuusKA7fFyTcWhmjRo0yABi33nprxmvvvPOOAcAoKioyqqurs3B0RNKYNGmSAcAYP358tg+FiCGXXXaZAcBYvHixcfHFF5NwIxyZOXNmyyScILzYunWrAcAAYHz33XcZrzc0NBglJSUGAGPVqlVZOEIiDvgZd8455xwDgPE///M/Ga+tW7fOyMvLMwAY//73v3Ueqm9oj1srYuPGjfjoo48AABdccEHG62PGjEF5eTlqa2vx8ssvR314RAI5/PDDAQBVVVVZPhIibrz11luYO3cuLrroIpx88snZPhwixtTX1+MPf/gDAODXv/51lo+GSAJFRUW+3xubEDcidtTV1bXs1bebF/fv3x9HH300AOD555+P9NicIOHWili9ejUAoEuXLhg4cKDte0aOHJn2XoJwY+3atQCAXr16ZflIiDixZ88e/OxnP0NZWRnuvffebB8OEXNWrVqFrVu3onfv3hg8eDD++c9/4je/+Q2mTp2K6dOnY/HixWhqasr2YRIxol27dhg7diwAYMaMGWmJ1ZqamnDzzTdj3759OOmkk1BeXp6twyRizpo1a7B3714A1vxXJG7z4oJsHwARHZWVlQCAfv36Ob6HdXDsvQThxLfffotHH30UAHDWWWdl92CIWHHNNdegsrISzz//PDp37pztwyFizieffAIA6Nu3L6ZPn44777wTBpc37Y477sDhhx+OF154wXX8IloXjzzyCE4++WQ8/PDDWLx4MUaOHIn8/HysXr0aGzduxIUXXoj7778/24dJxBg21+3UqRPat29v+564zYvJcWtF7N69GwBQWlrq+J527doBAHbt2hXJMRHJpKGhARMmTMDOnTsxbNgwTJ06NduHRMSEJUuWYN68efjv//5vnHHGGdk+HCIBbNu2DYC5on3HHXfg0ksvxRdffIGdO3fitddew4EHHojVq1fjlFNOoZI1RAsHHXQQ3nvvPZx44onYuHEjXnzxRTz33HOorKzE4MGDMW7cOHTo0CHbh0nEmCTOi0m4EQQRmJ///OdYunQpunbtimeeeQaFhYXZPiQiBuzcuROTJk1C9+7dMXfu3GwfDpEQmLtWX1+P888/H/fffz8OPPBAdOjQAccffzxee+01FBcX49NPP8WTTz6Z5aMl4sK7776LYcOG4dNPP8XChQvx7bffYvv27fjLX/6C+vp6TJo0CZMmTcr2YRKEUki4tSKYDVxTU+P4HlZokFapCCcuv/xyzJ8/H507d25ZDScIwKyhs2HDBtx///2UEIDwDR+iZOfe9+vXD6eccgoAs7YkQVRXV+PMM8/Eli1b8Nxzz+H8889HWVkZOnfujFNPPRWvvPIK2rZtiz/+8Y948803s324RExJ4ryY9ri1IgYMGADAPQMge429lyB4rr76atx3333o1KkTlixZ0pJVkiAAM+tWQUEBHnzwQTz44INpr33++ecAgPnz5+P1119Hz549yT0hAAAHHHCA7WO792zatCmSYyLizeLFi7FlyxYMGjQIRxxxRMbrBxxwAI444gi8+eabeP311/GjH/0oC0dJxB02162ursbu3btt97nFbV5Mwq0VwSbZ27ZtQ2VlpW1myRUrVgAAhg8fHumxEfHn2muvxe9//3t07NgRS5YscczARLRuGhoa8Pe//93x9XXr1mHdunXo379/hEdFxJnhw4cjlUrBMAxs3brVNgvg1q1bAVj7TYjWzfr16wG4uyAdO3YEAGzfvj2SYyKSx0EHHYS2bdti7969WLFiha3Aj9u8mEIlWxF9+/bFqFGjAAALFy7MeH3ZsmWoqqpCUVER1V0i0pg+fTruuusudOzYEa+99lrLdUQQPNXV1TAMw/a/iy++GAAwa9YsGIaBdevWZfdgidjQs2dPjBkzBoB9KGR9fX3LYsDo0aMjPTYinvTp0weA6eTv3Lkz4/X6+nqsWrUKABzLHxFEYWFhSxi23bz466+/xvLlywEAZ555ZqTH5gQJt1bGDTfcAAC4/fbbWzo1wHThLr30UgDAtGnTWlaqCGLGjBm444470KlTJxJtBEFo4aabbgIA/Pa3v8X777/f8nxDQwOuvvpqfPXVV2jfvj0uueSSbB0iESNOOukklJaWYt++fZg8eXLLPiTALKp85ZVXYv369WjTpg3OPvvsLB4pEXemT5+OVCqFP/3pT3jllVdant+7dy8mTZqExsZGnHXWWRg6dGgWj9IiZfDFUohWweWXX4777rsPbdq0wfjx41FaWoqlS5eiuroaRx99NF577TWUlJRk+zCJGPDSSy/h9NNPB2AWoTzkkENs39etWzfcfffdUR4akTAmTpyIxx57DLNmzcKMGTOyfThEDLn11lsxc+ZMFBQUYPTo0ejZsydWrVqFdevWoaSkBIsWLWpZHSeIJ554ApdccgkaGhrQvXt3jBo1Cm3atMGKFSuwceNG5OXl4YEHHsDPf/7zbB8qERGrVq1qMSEA4D//+Q+2bt2Kvn37tri0gLkfu1evXi1/33PPPbjqqquQSqVw7LHHokePHnjnnXewadMmHHTQQVi2bFlsEm6RcGulPP3003jggQfw8ccfo76+HoMGDcKECRNw5ZVXUmp3ooVHH33U1wp3//79KfSNcIWEG+GHJUuW4N5778UHH3yA3bt3o2fPnhg/fjyuu+662Kx4E/HhH//4B+699168/fbb2LhxIwzDQK9evTBmzBhcdtllFFrbynjrrbd8JaKprKzMSDby+uuv43e/+x0+/PBD1NTUoF+/fjj77LNx/fXXOxbnzgYk3AiCIAiCIAiCIGIO7XEjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgiJwglUoF/m/cuHEAgHHjxiGVSuGtt97K6r9BBXPmzEEqlcKzzz4buo2dO3eia9euOOKII2AYhsKjIwiCIMJSkO0DIAiCIAgVXHzxxRnPffvtt3j11VcdXx86dKj244qSLVu24Oabb8aoUaNw1llnhW6nY8eOuP766/HrX/8ajz/+uO25IwiCIKIlZdBSGkEQBJGjvPXWW/jRj34EAK7O0fr167F3717069cPbdu2jerwlDNt2jQ88MADWLx4MU4++WSptvbv349+/fqhoKAAlZWVKCoqUnSUBEEQRBgoVJIgCIJo9fTr1w9Dhw5NtGirrq7Go48+ij59+uAnP/mJdHvFxcW44IILsGnTJjz11FMKjpAgCIKQgYQbQRAE0epx2uM2ceJEpFIpPProo/jiiy9w3nnnoUePHigtLcWoUaPw4osvtrz3gw8+wGmnnYbu3bujpKQERx11FJYuXer4nfv27cPvfvc7HHnkkejUqROKi4tx0EEH4dprr8W2bdsC/xv+9Kc/oaamBhdeeCHy8jKH99raWtx1110YMWIE2rdvj8LCQvTs2ROjRo3Ctddei+3bt2d8ZuLEiQCABx54IPDxEARBEGoh4UYQBEEQHqxatQojRozAP/7xD4wfPx6HHnooVqxYgTPPPBPPPPMMXnjhBYwdOxYbNmzA+PHjcdBBB+H999/HT37yEyxbtiyjvW+++QZHHHEErrnmGqxduxajRo3CySef3CKuRo4cia+//jrQMb7wwgsAgOOPPz7jtaamJpxyyim49tpr8eWXX2Ls2LE4++yzMWzYMGzZsgV33XUX1q9fn/G5ww47DN27d8eHH36ITZs2BToegiAIQjEGQRAEQeQob775pgHA8Brujj32WAOA8eabb6Y9f/HFF7d8/tZbbzWamppaXrvvvvsMAEbfvn2Nzp07G48//njaZ6+44goDgHH88cenPd/U1GQcffTRBgBj0qRJxq5du1peq6+vN66++moDgPGjH/3I979z7969RmFhoZGXl5fWHuPvf/+7AcA4/PDDbV//6KOPjK1bt9q2fdpppxkAjD//+c++j4cgCIJQDzluBEEQBOHB6NGjccMNNyCVSrU894tf/AJdunTBhg0bcPzxx+PCCy9M+8yMGTMAAG+//Tbq6+tbnn/11Vfx7rvv4rDDDsNDDz2E9u3bt7xWUFCAO++8E9///vfx5ptv4tNPP/V1fP/6179QV1eHvn37prXH2Lx5MwBg7Nixtq+PHDkSXbt2tW37kEMOAWC6jgRBEET2IOFGEARBEB6cdNJJaaINMEXWwIEDAcA2g2PXrl3RpUsX1NXVpe1ZW7x4MQDgrLPOQkFBZlWevLw8HHPMMQCA5cuX+zo+JsycxNfw4cORn5+PP/7xj3jggQcChT2yNtl3EARBENmBhBtBEARBeNCvXz/b59u1a+f6OnO39u/f3/LcV199BQCYOXOmY2HwBx98EIBZl80PO3fuBAB06NDB9vVBgwbhnnvuQX19PaZNm4bevXtjwIABOP/887FgwQLU1dU5ts3a3LFjh69jIQiCIPRABbgJgiAIwgO7LI1BXudpamoCAIwZMwaDBg1yfS8LU/SiU6dOAIBdu3Y5vudXv/oVzj33XLz00ktYtmwZli1bhieffBJPPvkkbrrpJrzzzjvo1atXxueYKOzcubOvYyEIgiD0QMKNIAiCICKkvLwcAHD66afjmmuuUdJmjx49AMCzjEBZWRkmT56MyZMnAwA+//xz/OxnP8N7772H6dOn47HHHsv4DGuzrKxMybESBEEQ4aBQSYIgCIKIkJNOOgkAsGjRIhiGoaTNQw45BIWFhdiwYQN2797t+3NDhw7FddddBwD4+OOPbd/DEqSMGDFC+jgJgiCI8JBwIwiCIIgIOf300zFq1Ch8+OGHuOSSS2z3se3YsQMPPfQQGhoafLVZUlKCI488Ek1NTfjggw8yXn/jjTfw8ssvp2W3BADDMPDXv/4VANC/f3/btt977z0AwHHHHefrWAiCIAg9UKgkQRAEQURIXl4eXnjhBZxyyil47LHH8Mwzz+DQQw9Fv379UFdXh6+++gr//Oc/0djYiIkTJ9pmnrTjjDPOwNtvv43XXnstowj3J598giuvvBIdOnTA8OHD0bt3b+zbtw+rVq3C119/jY4dO+KWW27JaHP16tXYtm0bRo8ebbv/jSAIgogOctwIgiAIImJ69+6N999/Hw899BBGjx6NL774As888wyWLVsGAPj5z3+OV199FcXFxb7bvOSSS1BaWoonnngCjY2Naa/99Kc/xc0334xRo0bhq6++wnPPPYe33noLHTt2xPTp0/Hpp5/isMMOy2jz0UcfBQD88pe/DP1vJQiCINSQMlQF2BMEQRAEkVWmTZuGBx54AC+99BJ++tOfSrW1f/9+lJeXo02bNqisrERRUZGioyQIgiDCQI4bQRAEQeQIN910Ezp16mQb9hiUuXPnYuvWrfjtb39Loo0gCCIGkONGEARBEDnEnDlzcMUVV2DRokU4++yzQ7Wxc+dOHHDAARg8eDDef/99pFIpxUdJEARBBIWEG0EQBEEQBEEQRMyhUEmCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiY8/8BrlIMUgEQKCQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.scatter(lc.time, lc.counts, lw=2, color='blue',label='lc')\n", + "ax.plot(t0, y0, lw=2, color='red',label='source of lc')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `LombScarglePowerspectrum` class to create a `LombScarglePowerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the power spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lps = LombScarglePowerspectrum(\n", + " lc,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has only real component, and imaginary component is zero." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 15.49526224+0.j 120.05686691+0.j 96.589673 +0.j 127.2231466 +0.j\n", + " 30.42053746+0.j]\n" + ] + } + ], + "source": [ + "print(lps.freq[0:5])\n", + "print(lps.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters\n", + "\n", + "- `data`: This parameter allows you to provide the light curve data to be Fourier-transformed. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `norm`: The `norm` parameter defines the normalization of the power spectrum. It accepts string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: The `power_type` parameter allows you to specify the type of power spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the power spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "## Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the power spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the normalized squared absolute values of Fourier amplitudes.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged powers in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points in the light curve.\n", + "\n", + "- `nphots`: The `nphots` attribute is a float representing the total number of photons in the light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQEAAAIfCAYAAADAARoJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yT5frH8e/TQlt2y8YOygYZIrvIKFsQFJkuQMAicgAVOIgyj4oCylBBZRQREBUQQRGQLchQpgtkVwRk792R3x/8GpM2bZM2zRPK5/168TrNk7vpFY+S5pvrvi/DYrFYBAAAAAAAACDL8jG7AAAAAAAAAACZixAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOKymV0ApISEBJ04cUJ58uSRYRhmlwMAdz2LxaIrV67ovvvuk48Pn3fxOgMA7sXrTHK81gCAe2XGaw0hoBc4ceKEQkNDzS4DALKcv//+WyEhIWaXYTpeZwAgc/A68y9eawAgc7jztYYQ0AvkyZNH0p3/Y/PmzWtyNQBw97t8+bJCQ0Otf7/e63idAQD34nUmOV5rAMC9MuO1hhDQCyS2y+fNm5cXTABwI7Yj3cHrDABkDl5n/sVrDQBkDne+1nCABQAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWVw2swsA4Jzbt2/r4sWLslgsbh0RDtwNLBaLJMnf31958+aVjw+fYQEAAACAKwgBgbtAQkKCzp49q6JFixJ+4J5lsVh08+ZNnTp1SkWKFOG/BQAAAABwAe+ggLvAhQsXVKBAAUIP3NMMw1COHDkUGBioy5cvm10OAAAAANxVSBSAu0BcXJz8/f3NLgPwCgEBAbp165bZZQAAAADAXYUQEABwV+FMTAAAAABwHSEgcBcg9ADs8d8EAAAAALiGEBAAAAAAAADI4ggBAcAF4eHhioyMtLsWGRmp8PBwr6gFAAAAAABHCAEBeKULFy4oR44cMgxDc+bMMbscl82aNUuTJk0yuwwAAAAAACQRAgLwUp999plu3bqlEiVKaObMmWaXk6qVK1dq3759dtcIAQEAAAAA3oQQEHCDv3+/pGkdVmrV+3vNLiXLiI6OVqNGjfTSSy/phx9+0OHDh80uKUV+fn7y9/c3uwwAWd2GDdLGjWZXAQAAgLsUISDgBvM6LdaJrzZr04tf6vD282aXc9fbuXOndu/erW7duumpp55StmzZHHYDGoahZ599VmvXrlVERIRy5sypkJAQjR07VtKdLcU9e/ZU4cKFlTNnTrVu3VonTpywe4xRo0bJMAz98ccf6t+/v4oWLaocOXKodu3aWrNmjVP1Jj0TMDw8XD/88IP++usvGYZh/bN+/Xrr/Y7O8lu/fr0Mw9CsWbPsrv/999/q1KmT8uXLp7x586pNmzY6dOhQivWsXr1azZs3V2BgoAICAlSlShV9/PHHTj0XAF7qp5+khg2lBg2k7dvNrgYAAAB3IUJAwA1uHjtj/frv3edMrCRriI6OVu7cudW+fXsVLFhQrVu31qeffqqEhIRka3ft2qWOHTsqMjJS48ePV5kyZTRkyBC99957atKkiS5cuKBRo0apd+/eWrFihbp27erwZ3bt2lVbt27VK6+8oldffVXHjh3Tww8/rNWrV7tc/6RJk1S+fHkVLFhQc+bMsf6pUKGCy4918eJFNWjQQIsWLVKXLl00ZswY5cyZU40aNdK1a9eSrZ82bZqaN2+uq1evaujQoZowYYJKlSqlF154Qf/9739d/vkAvIRt8PfLL+bVAQAAgLtWNrMLALKE2DjrlwnxFo/8yIQE6bwXNx3mzy/5pONjhps3b2revHlq3769cuXKJUnq1q2bvv76a33//fdq2bKl3frffvtNW7ZsUe3atSVJPXv2VPHixfXyyy+rb9++ev/99+3WT5w4Ufv27VO5cuXsrmfLlk0bN26Un5+fJKlHjx4qX768+vXrp717Xdvm3bZtW02aNEk3btzQM88849L3JjVu3DjFxMRo5syZ6t69uySpT58+eumll/Tee+/Zrf3nn3/Uv39/PfHEE5o3b571ep8+ffTiiy9qwoQJeuGFF1SyZMkM1QTABDdv/vt1fLx5dQAAAOCuRScg4AaWOM+HgOfPS4UKee+f9AaUixYt0sWLF9WtWzfrtVatWqlQoUIOtwRHRERYA0Dpzvl8tWrVksViUf/+/e3W1q9fX5J04MCBZI/z8ssvWwNASQoJCdHTTz+tP//80+UQ0J0WL16sIkWKJOtgfOWVV5KtXbhwoW7duqWePXvq7Nmzdn/atGmjhISEdHU2AvACtiGgg65oAAAAIC10AgIZZEmwSDYhoCXBMyFgVhUdHa1ChQopJCREBw8etF5v3ry5FixYoLNnz6pgwYLW64662oKCgiRJJUqUcHj93LnkW7YdbdW9//77JUmHDx9O11Zedzh8+LBq1qwpX19fu+vFihVTYGCg3bXEsLJp06YpPt6pU6fcXiMADyAEBAAAQAYRAgIZdPuG/bashDjenKXXkSNHtG7dOlksFpUtW9bhmrlz5+qll16y3k4ajtlK6T6Lxdyg1jAMh9fjbMLk9Eh8XrNnz1axYsUcrmErMHCXYjswAAAAMogQEMigG1fsgxtPdQLmzy+dOZP2OrPkz+/693zyySeyWCyaPn16si43SRo2bJhmzpxpFwK6y969e/XAAw/YXduzZ4+k9AVnKQV9kpQ/f36dd7Bf+vDhw8mulSxZUgcOHFB8fLxdqPnPP//o4sWLdmvLlCkjSSpYsGCq3YAA7kI3bvz7NZ2AAAAASAdCQCCDbl2zDwE9dSagj49ksyv2rpeQkKBZs2apcuXKeu655xyu+eOPPzRq1Cht27ZNNWvWdOvPnzhxotq1a2c9F/DYsWOaN2+eypUrl66twLlz59aFCxdksViSBYJly5bVV199pePHjys4OFiSdOvWLU2ZMiXZ4zz22GMaM2aMZs+ebR0MIkljx45NtrZTp0567bXXNHLkSEVGRipHjhx291+6dEkBAQHy9/d3+fkAMBmdgAAAAMggQkAgg8wKAbOalStX6u+//1bPnj1TXNO+fXuNGjVK0dHRbg8B4+LiVL9+fT355JO6cuWKPv74Y924cSPZdGFn1alTR0uXLlXfvn1Vt25d+fr6qnHjxipcuLD69u2rL774Qk2bNlXv3r11+/ZtzZkzRzlz5kz2OIMHD9a8efMUFRWlHTt2qGLFilq/fr22bNlidzaidGeYyUcffaTnnntOFSpUUJcuXVS8eHGdOXNGv/32mxYvXqw9e/YoPDw8Xc8JgIk4ExAAAAAZRAgIZFDSENASz5uz9IiOjpYktWvXLsU1lSpVUtmyZfXFF19o4sSJbv35s2fP1scff6wxY8bo4sWLqlKlimbNmqVmzZql6/FefvllHT58WAsXLtTHH3+shIQErVu3ToULF9ZDDz2kWbNm6a233tJ///tfBQcH64UXXlCNGjXUpEkTu8cJCgrSxo0bNWDAAM2ePVuS1LBhQ61bty7ZWknq3r27ypYtq3fffVdTp07VxYsXVbBgQZUrV05vvPGGihYtmq7nA8BkdAICAAAggwgBgQyiE9A9FixY4NS6ffv2Wb9OacDHrFmzNGvWrGTXIyMjU/yeXLly6YMPPtAHH3yQ6s+PiYlJdm39+vXJruXMmdMabDrSrVs3devWLdl1R/WFhYVp4cKFTtUiSQ899JAeeuihFH82gLsQnYAAAADIIB+zCwDudreuxtrdJgQEALid7WAQOgEBAACQDoSAQAbdvm7OdGAAwD2ETkAAAABkECEgkEGEgACATEcICAAAgAwiBAQyKPZGkjMB43hzdjcZNWqULBYLE3MBeDcGgwAAACCDCAGBDEo2HZhOQACAu9meCUgnIAAAANKBEBDIoGSdgAwGAQC4G52AAAAAyCBCQCCD4m7SCQgAyGScCQgAAIAMIgQEMihpJ6AlnjdnAAA3oxMQAAAAGUQICGQQnYAAgExlsdAJCAAAgAwjBAQyKPZ6rN3tBEJAAIA73b59JwhMRAgIAACAdCAEBDIo/lbS7cCEgAAAN7LtApTYDgwAAIB0IQQEMojtwACATJU0BKQTEAAAAOlACAhkUNJOwIQ43pzd7davXy/DMDRr1iyzSwEAOgEBAADgFoSAQAYl2w5MJ2C6JYZvtn9y586tatWqaeLEiYqLi0v7QTxs1qxZdvX6+PgoX758qlevnmbPnp1pP3PSpEmZ8tgAvBCdgAAAAHCDbGYXANzt4ggB3e7JJ59Uq1atZLFYdPLkSc2ePVsDBgzQ3r17NW3aNLPLc6h///6qWbOmEhISFBMTo+nTp6tbt246duyYXnvtNbf+rFmzZikmJkYvvfSSWx8XgJe6ccP+Np2AAAAASAdCQCCDEggB3a5atWp65plnrLf79Omj8uXLa8aMGRo9erQKFSpkYnWO1a9fXx06dLDe7t69u8qVK6exY8dq8ODBypYtY3/dWiwWXbt2Tblz585oqQDuNnQCAgAAwA3YDgxkUMLtpNOBeXPmbrly5VKdOnVksVh06NAhu/v++ecfvfDCCwoLC5Ofn5/uu+8+9erVS6dPn7Zbd+LECQ0cOFBVq1ZVUFCQAgICdP/992vs2LGKz4SumtDQUN1///26fPmyzpw5oytXrmjYsGGqXbu2ChYsKH9/f5UuXVpDhgzR9evX7b7X9kzCKVOm6P7771dAQIDeffddhYeH64cfftBff/1ltw15/fr1bn8OALwEZwICAADADegEBDIoWQhIJ2CmSAz/8ufPb7129OhRRURE6Pbt2+rZs6dKlSqlgwcP6qOPPtK6deu0fft25cuXT5L066+/atGiRXr88cdVqlQpxcbGasWKFRoyZIgOHz6sqVOnurXeW7du6ejRo8qWLZsCAwP1119/acaMGWrfvr2eeuopZcuWTT/88IPGjRunXbt26fvvv0/2GJMmTdK5c+cUFRWlokWLKjQ0VFWrVtWrr76qs2fPauLEida1FSpUcGv9ALwInYAAAABwA0JAIIMSbsXa3fZYCGixJD8nypvkyCEZRrq+9fr16zp79qz1TMCPP/5Yu3btUq1atVS2bFnrun79+ik2Nla7du1SSEiI9XrHjh1Vp04dTZw4UaNGjZIkNWzYUIcPH5ZhU9NLL72kLl26aMaMGRo1apSKFSuWvucq6cqVKzp79qwSEhL0119/afTo0Tpz5oyeeOIJ5ciRQyVLltTff/+t7NmzW7/nP//5j4YPH64333xTP//8s2rVqmX3mEePHtWff/6pwoUL212fNGmSbty4YbdlGkAWRggIAAAAN/DaEPDtt9/Wzp07tWPHDh05ckTFixdXTExMiut/+uknDR06VD/99JMMw1DdunU1ZswYVa1aNdnaEydOaMiQIVq+fLmuXr2qihUr6pVXXlHHjh2Trb1165ZGjx6tOXPm6MSJEwoJCVH37t31yiuv2L2Zx73LEmvfCZgQ76EQ8MYNadw4z/ys9Bg8WMqZM13fOnLkSI0cOdLuWrt27TRlyhTr7UuXLmnp0qXq3r27AgICdPbsWet94eHhKl26tFauXGkNAXPkyGG9//bt27p69aoSEhLUokULzZ07V9u3b1ebNm3SVa8k9ejRw+529uzZ1a1bN02ePFmS5OfnZ70vLi5OV65cUXx8vJo2bao333xTP/30U7IQsGvXrskCQAD3IAaDAAAAwA28NgR87bXXlD9/flWrVk0XL15Mde3WrVsVGRmp4OBgvf7665KkyZMnq379+tq8ebMqV65sXXv+/HnVq1dPp0+f1oABAxQSEqJ58+apU6dOmjlzprp372732J07d9aSJUvUo0cPRUREaMuWLRo+fLgOHjyoWbNmuftp4y6UNARkO3DG9erVSx07dlRsbKx+++03jR07VseOHVNAQIB1zb59+5SQkKDo6GhFR0c7fJySJUtav46Li9OYMWM0e/ZsHTx4UBaL/f9PFy5cyFDNI0aMUP369eXj46M8efKofPnyypMnj92aDz/8UB9//LH++OMPJSTp5HH08227HgHcw+gEBAAAgBt4bQh46NAh6xv4SpUq6erVqymu7d+/v/z8/LRhwwYFBwdLkjp16qQKFSpo4MCBWrlypXXtmDFjdOTIEX3zzTfWrp+ePXsqIiJCgwYNUseOHa3TN5ctW6YlS5ZowIABGj9+vCTpueeeU2BgoCZMmKBevXqpbt26mfL8cfdIFgIyGCTDypQpo6ZNm0qSWrZsqXr16qlevXrq3bu3vvjiC0myhnjPPPOMunXr5vBxbLv/BgwYoA8++ECdO3fW0KFDVbhwYWXPnl07d+7UK6+8kiyUc1XlypWtNTsyYcIEDRw4UM2bN1f//v113333yc/PT8ePH9ezzz7r8OfnTGcnJYAshsEgAAAAcAOvDQFtO3hSc/DgQW3btk09evSwBoCSFBwcrI4dO+qTTz7RyZMnVbRoUUnSvHnzVKpUKbttf76+vurXr5+6du2qZcuWqVOnTta10p1zw2y99NJLmjBhgubOnUsIiOQhoMVDnYA5ctzZcuutbAK4jKpbt666dOmi2bNnq3///qpbt65Kly4twzB0+/btVMO3RHPmzFGDBg2sIWKigwcPuq3OtH5+eHi4li9fLh+ffwezr1ixwuXHMtJ51iKAuxSdgAAAAHADn7SXeLdt27ZJkiIiIpLdV6dOHVksFu3YsUOS9M8//+j48eOqU6eOw7W2j5f4dXBwsEJDQ+3WhoaG6r777rNbi3tX8k5AD4WAhnHnzD1v/ePmoGr48OHy9fXViBEjJEkFChRQq1attGjRIm3dujXZeovFojNnzlhv+/r6Jgtor127ZjdhNzP5+vrKMAy7GhK3KLsqd+7cunDhgucCZwDm4kxAAAAAuIHXdgI668SJE5Jk1wWYKPHa8ePHXV6buP7+++93+HODg4N17NixdNWcdAJpRrchwjyWBIsUx5mAnlC6dGk98cQT+uyzz7Rx40bVr19fH330kerVq6cGDRqoa9euevDBB5WQkKDDhw9ryZIl6tq1q3UwSIcOHTR16lR17txZTZs21alTpzRz5kwVKFDAI/V36NBBr776qlq2bKl27drp8uXLmjdvXroGDNWpU0dLly5V3759VbduXfn6+qpx48YMEYEVrzNZDJ2AALwQrzUAcPe560PA69evS5L8/f2T3Zc4RCBxjStrE792tDZxve1a3JtibyVIsg/9CAEzz9ChQ/X5559rxIgRWrdunUJDQ7Vjxw6NHTtWS5Ys0dy5cxUQEKDQ0FC1adPGurVfunMmX548eTR//nwtWbJEoaGh6tWrl2rWrOnUduKM+u9//yuLxaLo6Gi9+OKLKlq0qDp37qzu3bun+GFDSl5++WUdPnxYCxcu1Mcff6yEhAStW7eOEBDIqjgTEAAAAG5w14eAiQfn37p1K9l9N///l+bENa6sTfza0drE9ek9tP+ff/6xu3358mXly5cvXY8Fc928Gpf8Ip+CpltkZGSqW1wrVKig+CRvfgsWLKh33nlH77zzTqqPnTNnzhTXJf2ZadVh69lnn9Wzzz6b5jpfX1+9+uqrevXVVzP883PmzJniRGRA4nUmy6ETEIAX4rUGAO4+d/2ZgPfdd58k+228iRKvJW71dWVt4npHaxPXO9pWjHuLoxCQTkAAgFsRAgIAAMAN7voQsGbNmpKkLVu2JLtv69atMgxD1atXl3Tn3Irg4GCHQwQSr9WoUcPusY8fP66///7bbu3ff/+tEydO2K3Fvenmldhk1xIIAQEA7sRgEAAAALjBXR8Cli5dWjVq1NCCBQusgz+kO0M9FixYoMaNG6to0aLW608++aQOHTqkb7/91notPj5eH3zwgQIDA9WqVSu7tZI0adIku5+ZePvpp5/OhGeEu8nt6462AxMCAgDciE5AAAAAuIHXngk4Z84c/fXXX5KkM2fO6Pbt23rzzTclScWLF1eXLl2sa9977z01atRI9evXV79+/SRJH3zwgRISEjR+/Hi7xx0yZIgWLFigp556SgMGDFBwcLA+//xzbdu2TTNmzFCePHmsax955BG1bt1aEyZM0KVLlxQREaEtW7YoOjpazzzzjOrVq5fZ/xjg5W5dc7AdOJ43ZwAAN2IwCAAAANzAa0PA6Oho/fDDD3bXhg8fLklq2LChXQhYt25drV+/XsOGDdOwYcNkGIbq1q2rBQsW6IEHHrB7jAIFCmjTpk0aMmSIpkyZoqtXr+r+++/XF198oc6dOyerY8GCBXrzzTc1d+5czZkzR8HBwXr99dc1ZMiQTHjWuNs46gR0dqAEAABOoRMQAAAAbuC1IeD69etdWh8REaE1a9Y4tTY4OFhz5sxxam1AQIDefPNNaxciYMtxJyAhIADAjegEBAAAgBvc9WcCAmZyeCYgnYAAAHdKOhiETkAAAACkAyEgkAEOtwMzGAQA4E5sBwYAAIAbEAICGRB7w1EIyJszAIAbsR0YAAAAbuC1ZwICdwNHIaDoBAQAuBOdgADc4OrVqzp16pQuXLigoKAgFSlSRLlz5za7LACABxECAhlw+1pssmtsBwYAuFXSMwHpBATgpO+//16LFy/WmjVrdOjQoWT3ly5dWo0bN1bbtm3VokULEyoEAHgSISCQAXE3ORMQAJDJ6AQE4IL4+Hh99NFHev/993Xo0CFZbIbW5c6dW3nz5tWlS5d07do1HThwQAcOHNC0adNUunRp9e/fX71795avr6+JzwAAkFk4ExDIAMfbgXlzdq8xDEPPPvus2WUAyIosFs4EBOC0FStWqFKlSurfv7/++usvPfroo5o8ebJ27typW7du6fLlyzp27JiuXLmimzdvavv27Xr//ffVunVrxcTEqH///qpcubK+//57s58KACATEAICGUAnoHutX79ehmHo3XffNbuUe9aoUaNkGIb1j4+Pj/Lnz69mzZpp6dKlmfIzJ02apFmzZmXKYwN3vbi45B8u8WETgBS0atVKFy9e1Lvvvqvjx4/r66+/Vp8+fVS1alVlz57dbq2fn5+qVaumvn37asmSJTp+/LjGjRunc+fOqVWrViY9AwBAZmI7MJAB8bcIASHduHEjy22bef3111WiRAnFxcVp//79mjp1qtq0aaPPPvtMTz31lFt/1qRJkxQeHk43JeBI0i5AiU5AACl644039PLLLytnzpwuf2/BggU1cOBAvfDCC5o4cWImVAcAMBshIJABDrcDWwgB7zUBAQGm/vzY2FjFx8e7tY6WLVuqRo0a1tvt27dXjRo1NHr0aLeEgPHx8bp161a63qQA95SkQ0EkOgEBpGjo0KEZfoycOXO65XEAAN6H7cBABjjsBCQEdKuYmBgZhqFRo0Zp/vz5qlq1qnLkyKHSpUvrk08+kSQdPXpUHTp0UP78+ZUnTx4988wzunLlit3j/Pnnn+rTp48qVqyoPHnyKGfOnKpevbpmzJjh8Of++uuvat68uXLlyqUCBQqoW7duOnv2rMPz/1K7tmXLFjVs2ND6OM8995yuXr2a7toSt+v+8ccfGjBggEJCQhQQEKANGzaoUKFCeuihhxw+n3feeUeGYWjDhg2p/eNOUfXq1VWgQAEdPHhQknTixAkNHDhQVatWVVBQkAICAnT//fdr7Nixik/SpTRr1iwZhqHVq1frjTfeUKlSpRQQEKD58+fLMAz99ddf+uGHH+y2IcfExKSrTiDLcdQJSAgIAACAdKATEMgARyGg4nlzlhmWLl2qjz/+WH369FH+/PkVHR2tHj16yM/PT6+99poaN26st956S9u2bdPMmTMVEBBgF6KtX79eGzZsUOvWrVWiRAldu3ZNCxYsUFRUlM6cOaNXX33VuvbAgQOqX7++EhIS1L9/fwUHB2vZsmV6+OGHXap59+7dat26tbp3766nnnpK69evV3R0tHx8fDRt2rR01Zbo6aefVo4cOTRw4EAZhqHixYurW7duGj9+vPbt26dy5crZrZ85c6bKli2rBg0auPQcEp09e1YXLlxQ0aJFJd0JSRctWqTHH39cpUqVUmxsrFasWKEhQ4bo8OHDmjp1arLHGDRokGJjYxUVFaW8efOqXLlymjNnjl5++WUVLFjQruugUKFC6aoTyHLYDgwgA3x9ffXss88qOjo61XVRUVH65JNPFBfn4HdbAECWQQgIZIDDENBDnYAWi0U34hxsE/MSObLlkGEYbnu8vXv3as+ePSpevLgkqXPnzgoNDVWXLl307rvvasCAAZKk3r1768KFC5o9e7YmTZqk3LlzS5K6dOmi3r172z3myy+/rMaNG2vMmDEaNGiQ9cDsoUOH6vLly/rxxx+tnXV9+/ZV586dtWPHDqdr/vXXX7VlyxbVrl1bkvT888/r8uXL+uSTTzRhwoR01ZYoMDBQq1evVrZs//413qtXL40fP17R0dEaN26c9fqmTZv0559/auzYsU7XfunSJZ09e9Z6JuBrr72mhIQEde3aVZLUsGFDHT582O7/45deekldunTRjBkzNGrUKBUrVszuMW/cuKFdu3bZbQGOiIjQsGHDVKRIET3zzDNO1wfcM+gEBJABFovF6V0q7GYBgKyPEBDIgITb5g0GuRF3Q+M2jUt7oUkGPzRYObO777y3tm3bWgNA6U6nWLly5fTHH3/oP//5j93a+vXr6+uvv1ZMTIwqVaokScqVK5f1/ps3b+ratWuyWCxq3ry5fvjhB/3555+qXLmy4uPjtWzZMtWqVSvZ1tqBAwdq/vz5TtccERFhDQATNW7cWMuWLUtXbbZeeukluwBQksqWLauGDRtq9uzZeuutt6z3R0dHK1u2bOrWrZvTtTdt2tTuds6cOTVgwAC98cYbkqQcOXJY77t9+7auXr2qhIQEtWjRQnPnztX27dvVpk0bu8d44YUXOAMQcBWdgAA84Pr168k+cAQAZD2EgEAGxN+MTXaNT1EzR8mSJZNdCwoKUrFixeTv75/suiSdO3fOeu3q1avWcwX//vvvZI914cIFSdKZM2d07dq1ZNtpJTm85mrNBQoUSHdttsqWLevwZ/bq1UtPP/20li5dqrZt2+rKlSuaP3++WrdurSJFijhd+5QpU1S2bFn5+PgoMDBQFSpUsAv+4uLiNGbMGM2ePVsHDx5M9u+9KzUDSAWDQQBksosXL+rHH39M1sEPAMh6CAGBDHDUCcibs8zh6+vr0nXJPpB96qmntHTpUvXq1UsNGjRQgQIF5Ovrq2XLlmnixIlKyIT/3zKztpQ66tq3b6/+/fsrOjpabdu21Zdffqlr167pueeec6n2WrVq2U0HTmrAgAH64IMP1LlzZw0dOlSFCxdW9uzZtXPnTr3yyisu1QwgFXQCAnBR0g8hFy5cqPXr1ztcGxcXp5MnTyo+Pl7PP/+8B6oDAJiJEBDIAEusoxDQM52AObLl0OCHBnvkZ6VHjmw50l7kIRcvXtTSpUvVpUsXffzxx3b3rV692u52oUKFlCtXLu3bty/Z4zi65snanOHv76+uXbvq/fff14kTJxQdHa3g4GCXh5qkZc6cOWrQoIG++OILu+uJ04Nd4c6zI4EshzMBAbgoJibG+rVhGLp69aquXr2a4no/Pz+1bdtWb731lgeqAwCYiRAQyACHnYAe2g5sGIZbz9zLyhI78pJuWf3nn3/sJggnrm3ZsqUWLlyoTZs22Z0LOH78eFNrc1ZUVJQmTpyoV155RVu3btXQoUNT7UpMD19f32Q1X7t2TRMnTnT5sXLnzq3z58+7qzQga6ETEICLjhw5IunO7xYlS5ZUhw4d9M477zhc6+fnp0KFCiU7ZxgAkDXxtz2QAWYOBoHz8uTJo+bNm2vu3LnKkSOHatasqb/++ktTp05ViRIl7M7nk6Q333xT33//vR5++GH17dtXISEh+u6773TmzBlJ7u1cc7U2Z1SoUEH16tXT3LlzZRiGevTo4bZ6E3Xo0EFTp05V586d1bRpU506dUozZ860nnnoijp16ig6OlrDhw9XhQoV5OPjozZt2tgNTAHuWXQCAnCR7SC1bt26qX79+nbXAAD3LkJAIAMcbgdmMIhXmjt3roYMGaJvv/1Wn376qcqUKaPRo0cre/bs6t69u93acuXKacOGDRo0aJDee+89BQQEqHXr1poyZYpKlixpNyDD07U5q1evXvrxxx/VqFEjhwNKMmrChAnKkyeP5s+fryVLlig0NFS9evVSzZo1k00WTsvo0aN1/vx5TZkyRRcvXpTFYtGRI0cIAQGJwSAAMuSTTz4xuwQAgBcxLIwyNd3ly5eVL18+Xbp0SXnz5jW7HLjgf7nGyXL9ut01n3x5NeLiALf+nNOnT6tw4cJufUy4bseOHapRo4befvttDRkyxOxyUjV//nx17txZ8+bN05NPPml2OW6X1n8T/L1qj38ed7FJk6SXX7a/5uPDlmDAZPy9mhz/TADAvTLj71U6AYEMoBMw67px44Zdx5/FYtG4ceMkSc2aNTOrLKdNmTJFBQsWVLt27cwuBUBGsB0YQAZduXJFH374oVavXq3jx4/rpqO/V3TnuJNDhw55uDoAgCcRAgIZEceZgFlV1apV1bhxY1WuXFnXrl3Tt99+q40bN6pz586qXr262eU5dPr0aa1Zs0YbN27Uhg0b9Pbbb8vf39/ssgBkRApv1pWQcKcjEABSceLECdWrV09//fVXsoFeSbnzzGMAgHciBATSKfZmvGRx0I1BJ2CW8Nhjj+nbb7/VnDlzFBcXpxIlSuiNN97QK6+8YnZpKdqzZ4+eeuopBQYGqnfv3ho4cKDZJQHIKEdnAkqEgACc8tprrykmJkZVq1bVkCFDVKFCBbbqAsA9jBAQSKebVx1sBZbYppVFjBs3zrr9924RGRmZ5qf8AO4ytp2A/v7SrVt3vo6Pl7LxaxyA1H3//fcqUqSI1q1bp3z58pldDgDAZHyEDKRTiiEgIQwAwF1sQ0Dbidl84ATACRcuXFBERAQBIABAEiEgkG63rhECAgAymW0ImDPnv18TAgJwQmhoqBL4+wIA8P8IAYF0SikEZDAIAMBtUuoEjI/3fC0A7jodOnTQxo0bde3aNbNLAQB4AUJAIJ082QnIOW+APf6bwD3DdjAI24EBuGj48OEKDQ1Vp06ddPr0abPLAQCYjBOlgXRKOQTMnDdmCQkJ8mESJKD4+HgZhmF2GYBnpLQdmE5AAE7o27evSpUqpa+//lqlS5dWjRo1FBYW5vB3SsMwFB0dbUKVAABPIQQE0un2dc91AgYFBenUqVMqUqQIQSDuabdu3dK5c+dUsGBBs0sBPIPBIAAyYNasWdYPzq5evar169enuJYQEACyPkJAIJ1SDAEz4UxAPz8/FShQQGfOnJEkuqBwz0nc/ps9e3YVLVqUMBz3jsQQ0DCkgIB/r9MJCMAJn3zyidklAAC8CCEgkE4phoCyyJJgkeHj3qDOz89PRYoUcetjAgC8XGIImCOH5Ov773U6AQE4oVu3bmaXAADwIrRSAOkUez323xs+vnb3JcQztAAA4AaJg0ECAiTbDlg6AQEAAOAiOgGBdLLtBDT8ssty8983ZAnxFvlmN6MqAECWktgJGBBAJyCADNmzZ482b96sM2fOqGLFinr00Ucl3Rk+FxcXJz8/P5MrBABkNkJAIJ1ib9psB/bzszu8nU5AAM5ISEjQtm3btGbNGu3cuVOnTp3ShQsXFBQUpCJFiqh69epq3LixatasyTmI9yrbEND23wFCQABO+vvvv9W9e3etW7fOeq1bt27WEHD69Onq06ePVq5cqSZNmphVJgDAAwgBgXSKu/FvCOjjn122G7Pi4wgBAaTs9OnTmjZtmqZOnaoTJ05I+nf4ia2vv/5aknTfffepd+/eioqKUuHChT1aK0yWUgjIdmAATjh//rwaNmyomJgYVapUSQ0aNNCHH35ot6ZTp07q27evvvnmG0JAAMjiCAGBdIpNJQSkExCAI7du3dK4ceM0duxYXb9+XdmyZVP16tVVt25dVaxYUQUKFFDevHl16dIlnTt3Tr///rs2b96sX3/9VcOHD9fbb7+tIUOG6L///a/8/f3NfjrwhMQzARkMAiAdxo4dq5iYGA0aNEhjx46VYRjJQsCgoCBVrlxZP/74o0lVAgA8hRAQSKe4m/YhoK34WN6cAUiuXLlyOnr0qCpXrqwePXro6aefVsGCBdP8vrNnz2rOnDn65JNPNGLECM2cOVOHDx/2QMUwVVzcvx1/dAICSIclS5YoPDxcY8aMkWEYKa4rWbKkNm3a5MHKAABm4IAhIJ3sQsAA+4OU6QQE4EiOHDm0YMEC/fLLL3rxxRedCgAlqWDBgnr55Zf166+/6ssvv6QL8F5hc9Ysg0EApMdff/2latWqpXmurJ+fn86fP++hqgAAZqETEEgn2xAwW44knYCcCQjAgT/++CPDAz46duyo9u3bu6kieLWkISCdgABcFBAQoCtXrqS57ujRo8qXL58HKgIAmIlOQCCd4m/9GwL6BtiHgHQCAnDEXRN+mRR8j7ANATkTEEA6lC9fXjt37tS1a9dSXHP27Fn98ssvqlKligcrAwCYgXcRQDrF34y1fp0tp/12YEsCISCAtPXo0UMzZ85Mc92sWbPUo0cPD1QEr5I4FESiExBAunTo0EHnzp3TgAEDlJDChwf//e9/df36dXXu3NnD1QEAPI0QEEgn207A7DkZDALAdbNmzXJqGuOmTZv06aefeqAieBXOBASQQf/5z39UqVIlzZgxQ7Vq1dJbb70lSTp06JAmTJigiIgIzZ49W1WrVtWzzz5rbrEAgEzHmYBAOtmFgLkYDAIg88THx7MF+F6U2pmAhIAAnBAQEKDvv/9eHTt21ObNm7Vr1y5J0o8//qgff/xRFotFNWvW1OLFi5U9e/Y0Hg0AcLcjBATSKeF2yp2AhIAA3OnAgQMc2H4vShoC2m4BZjswACcVK1ZMP/74o77//nt99913Onz4sBISEhQaGqqWLVvqsccek2EYZpcJAPAAQkAgnWxDQL9chIAAnPP666/b3d69e3eya4ni4uL0xx9/aPPmzWratKknyoM3SToYxPaMQDoBAbioRYsWatGihdllAABMRAgIpFN8KiEgZwICSMmoUaNkGIYsljsfFuzevVu7d+9O9Xty5cqlESNGeKA6eJWkg0Fu3fr3Np2AAAAAcBEhIJBOFtsQMDfTgQE4Z8SIEdYQ8PXXX1fVqlX12GOPOVzr5+enkJAQtWjRQoULF/ZwpTBd0u3AV6/+e5tOQAAuio+P17lz53TT9u+WJMLCwjxYEQDA0wgBgXSyxP4bAvrnTtIJGEcICMCxUaNGWb9ODAFHjhxpXkHwXqkNBqETEICTtm3bphEjRuiHH37QLduO4iQMw1BcXFyK9wMA7n6EgEA6JdiGgLmySTIk3Qn/OBMQgDMS6OZCapKeCejr++9t/t0B4IStW7eqcePG1u6/oKAg5c2b1+SqAABmIQQE0ut2rPXL7DmyST6G9P/bgNkODADIsNQ6AQkBAThh5MiRunnzpnr06KHRo0erSJEiZpcEADARISCQXnFJOgENw3qbwSAAXHHixAmtW7dOx48fT/GsJsMwNHz4cA9XBlMlHQxi2wnIdmAATvjpp59Urlw5TZ8+XYbN76oAgHsTISCQThabENAvZzbJ8JF0500ZnYAAnDVgwABNnjxZ8f8f6iRODU6UOESEEPAeRCcggAyKi4tT1apVCQABAJIIAYF0ibudYPcGzD93dvtOQAaDAHDChAkTNGnSJBmGoRYtWqhChQqc1YR/MRgEQAaVL19eZ8+eNbsMAICXIAQE0uHWNfvJaUm3A9MJCMAZ0dHRypYtm1auXKnIyEizy4G3YTAIgAzq1auX+vfvr0OHDqlUqVJmlwMAMJlP2ksAJHXjSvIQ0PDhTEAArjl06JDq1atHAAjHkp4JSCcgABf16tVLTz75pJo1a6Zly5ZZj54AANyb6AQE0iFpJ2BAbjoBAbguT548KlasmNllwFsl3Q5MJyAAF5UsWVKSFBMTozZt2ihbtmwqVqyYfHyS94IYhqFDhw55ukQAgAcRAgLp4DAEtPllKiGeEBBA2urXr69ffvnF7DLgrTgTEEAGxcTEWL+2WCyKjY3V0aNHHa5leAgAZH2EgEA62IWAhqHs/j52nYCEgACcMWLECNWpU0czZszQc889Z3Y58DZ0AgLIoCNHjphdAgDAixACAulw+7pNCJjtznmAho+hxOiP7cAAnHH58mUNGDBAzz//vFauXKnWrVsrLCzM4TYtSWrQoIGHK4Spkg4Gsf33ghAQgBOKFy9udgkAAC9CCAikw62rsdavjWz//5+RbSdgHG/OAKQtMjJShmHIYrHoq6++0ldffZXiWsMwFBcXl+L9yIIYDAIAAAA3IgQE0iH2ps2br2z/vz2LMwEBuKhBgwacwYSU3br179d+fmwHBpAhW7du1bp163T8+HFJUnBwsBo1aqQ6deqYXBkAwFOyRAh49epVvf/++/r8888VExMjf39/lS1bVr169VK3bt3s3mD99NNPGjp0qH766ScZhqG6detqzJgxqlq1arLHPXHihIYMGaLly5fr6tWrqlixol555RV17NjRg88O3si2089IDP84ExCAi9avX292CfBmid1+Pv9/7iydgADS4ejRo3r66ae1efNmSXcGhEj/DgJ56KGHNHfuXIWFhZlWIwDAM+76EDAhIUEtW7bU5s2b1a1bN/Xr10/Xr1/X559/ru7du2vv3r0aO3aspDuffkVGRio4OFivv/66JGny5MmqX7++Nm/erMqVK1sf9/z586pXr55Onz6tAQMGKCQkRPPmzVOnTp00c+ZMde/e3ZTnC+8QH2cT8hECAgAyQ2LQl9gBSCcgABddvHhRjRo10pEjRxQQEKAWLVqoVKlSkqTDhw9rxYoV+vHHH9WkSRNt375d+fLlM7liAEBmuutDwJ9++kk//vijXnrpJU2cONF6vU+fPipfvrymTp1qDQH79+8vPz8/bdiwQcHBwZKkTp06qUKFCho4cKBWrlxp/f4xY8boyJEj+uabb9SmTRtJUs+ePRUREaFBgwapY8eOyp07twefKbyJfSegYfe/kmSJ580ZANfdvn1b586dk7+/v/Lnz292OTBb0hCQTkAALho/fryOHDmiVq1aadq0abrvvvvs7j958qSioqK0bNkyjR8/3tooAQDImhyPH7yLXL58WZKSvaD5+fmpYMGCypUrlyTp4MGD2rZtmzp27GgNAKU7Z2F07NhRq1ev1smTJ63X582bp1KlSlkDQEny9fVVv379dP78eS1btiwznxa8nF2nX2IHoA+dgADSZ+7cuapVq5Zy5cqlkJAQDRo0yHrf119/raeeekpHjhwxsUKYgk5AABn09ddfq1ChQpo/f36y90uSVLRoUX355ZcqWLCgFi1aZEKFAABPuutDwFq1aikwMFDjxo3TggULdPToUf3555969dVXtWPHDo0aNUqStG3bNklSREREsseoU6eOLBaLduzYIUn6559/dPz4cYeH5CZeS3w83Jvspv8mdmbYdGhYEggBATjnueeeU7du3bR9+3blyJHDelZTorJly+qLL75IdXIwsijbMwFt/9f2PgBIxZEjR9SwYUPlzJkzxTU5c+ZUw4YN+bAJAO4Bd/124KCgIH3zzTd67rnn1KlTJ+v1PHny6KuvvlLbtm0l3RnyIcmuCzBR4rXESVmurE2PYsWK2d1O4NP8u45tp591OzBnAgJw0WeffaaZM2eqcuXKmjlzpqpVqyZf224vSRUrVlRISIiWL19u1yGYGl5nsgg6AQFkkK+vr2JjY9NcFxcXJx8f1/pDeK0BgLvPXd8JKEm5c+dWpUqVNGjQIC1atEgzZsxQ6dKl9dRTT2nVqlWSpOvXr0uS/P39k31/QECA3RpX1uLe5KgT0GA7MAAXTZs2Tblz59bSpUtVvXp1uw8TbFWuXJkOjXtRamcC8mYbgBPKlCmj9evX6+LFiymuOX/+vNatW6eyZct6rjAAgCnu+k7A3377TXXr1tXEiRPVu3dv6/Unn3xSlSpVUlRUlA4dOmRtgb9161ayx7h586YkWde4sjY9/vnnH7vbly9fZhLXXcZRJ6DtdGAGgwBwxi+//KLatWsrNDQ01XX58+fXqVOnnH5cXmeyiMSgj8EgANKpY8eOeu211/TII49o2rRpqlixot39v/32m55//nldvnxZnTt3dumxea0BgLvPXR8CTpw4UTdv3lTHjh3trufMmVOPPPKIJk+erJiYGOtBuI628SZeS9zq68pa3JvszvxLfFPm+++bMzoBATjj1q1bTr1hOnPmTLJtwrgHsB0YQAa9+OKL+vLLL7VlyxY98MADevDBB1WiRAlJ0uHDh7V7924lJCSoatWq6t+/v8nVAgAy212/HTgxlIt38Il4XFyc9X9r1qwpSdqyZUuydVu3bpVhGKpevbqkO+dbBAcHa+vWrQ7XSlKNGjXc8wRwV7LdDsyZgADSKzg4WHv37k11jcVi0Z49e6xv2nAPSW07MJ2AAJyQI0cOrV271np2+o4dO7Rw4UItXLhQO3fulCR17txZq1evth57BADIuu76EPD++++XJM2aNcvu+sWLF7VkyRIFBQWpdOnSKl26tGrUqKEFCxZYB39Id4aALFiwQI0bN1bRokWt15988kkdOnRI3377rfVafHy8PvjgAwUGBqpVq1aZ+8Tg1exCvsQ3ZbbbgZkODMAJTZo00Z9//qklS5akuGbOnDk6duyYmjVr5sHK4BXoBATgBkFBQfriiy905MgRzZkzR2PGjNGYMWM0Z84cHTlyRJ9//rny589vdpkAAA+467cDv/TSS5o9e7aGDBmi3377TQ899JDOnz+v6dOn659//tGUKVOsW6jee+89NWrUSPXr11e/fv0kSR988IESEhI0fvx4u8cdMmSIFixYoKeeekoDBgxQcHCwPv/8c23btk0zZsxQnjx5PP5c4T0S4h10AtoNBuHNGYC0DRo0SHPmzNFTTz2l0aNH2025P3/+vObPn69BgwYpV65cbNO6F9EJCMCNQkND9fTTT5tdBgDARHd9J2Dx4sX1888/q0uXLlq3bp369eunMWPGKDQ0VF999ZX69OljXVu3bl2tX79e4eHhGjZsmIYPH67SpUtrw4YNeuCBB+wet0CBAtq0aZPatm2rKVOmqH///rp06ZK++OIL9ezZ09NPE17GYjsYxDf5dGAL24EBOKFMmTL69NNPlZCQoIEDByo0NFSGYejTTz9VoUKF9J///EdxcXGaNWuWwsLCzC4XnkYnIAAAANzoru8ElKRSpUrp008/dWptRESE1qxZ49Ta4OBgzZkzJyOlIYtydCagbYcG24EBOKtjx46qUKGC3nzzTa1YsUKXL1+WdOccp2bNmmnkyJF68MEHTa4SpkitE5AQEIAL9uzZo/fff1/r16/XsWPHZLFYFBISokaNGqlv376qVKmS2SUCADwgS4SAgKc5OhPQfjswISAA51WqVElffPGFLBaLzp07p4SEBBUsWFA+Pnd9wz4yIrVOQLYDA3DSlClTNGDAAMXFxcli+fd31AMHDujAgQP65JNP9M4773DsBADcA3h3AaSDxfZMQN/kZwLSCQggPQzDUMGCBVW4cGECQNAJCCDDli9frn79+ikuLk7t2rXTN998o99++02//fabvv32W3Xo0EHx8fF6+eWXtXz5crPLBQBkMjoBgXSw7fQzEt+U2Z0JyJszAEAGMRgEQAaNGzdOhmHoiy++UMeOHe3uq1ixoh555BEtXLhQnTp10rhx49SyZUuTKgUAeAIhIJAOjs4ENDgTEEA6xMfHa+HChVq9erWOHz+umzdvOlxnGIbTZ9oii2AwCIAM2rFjh2rVqpUsALTVoUMH1a5dWzt27PBgZQAAMxACAulgG/I5mg7MmYAAnHHp0iW1aNFC27ZtszunyRHDMFK9H1mMxfJv0EcnIIB0MgxDpUqVSnNdqVKltGfPHg9UBAAwEyEgkA4OpwMbnAkIwDXDhw/Xzz//rODgYPXr108VKlRQ3rx5zS4L3sC2049OQADpVKVKFR04cCDNdQcOHFDlypU9UBEAwEyEgEA6OOwE9LXpBIzjzRmAtC1evFiBgYHaunWrgoODzS4H3sS2049OQADpNGDAALVv315ffPGFnnjiCYdrvvzyS23btk0LFizwcHUAAE8jBATSweGZgHQCAnDRqVOn1Lx5cwJAJOcoBKQTEICLqlevrpdfflnPPPOMFi5cqK5du6pEiRKSpCNHjmjOnDn6+uuv9fLLL6tmzZo6evSo3feHhYWZUTYAIJMQAgLp4LgTkMEgAFxTpEgRBQQEmF0GvFFanYCEgACckBj4WSwWff311/r666+TrbFYLJo0aZImTZpkd90wDMXFxXmiTACAhxACAulgiXdwJqAPnYAAXNOmTRt9/fXXio2NVfbs2c0uB94krU5AtgMDcEJoaCiDpQAAVoSAQDrYTv9N7AD0IQQE4KL//e9/+vbbb/XCCy9o8uTJdAXiX3QCAnCDmJgYs0sAAHgRQkAgHWw7AX3+fyCIYRsCxvPmDEDaPvzwQzVv3lyffPKJVq1apSZNmigsLEw+tmHP/zMMQ8OHDzehSpiCwSAAAABwM0JAIB0cdQLavjmjExCAM0aNGiXDMGSxWPT3339r1qxZydYk3k8IeI9hMAgAAADcjBAQSAdLgoPpwDadgLYhIQCkZOTIkWaXAG9FJyAANzt27JhOnDihmzdvprimQYMGHqwIAOBphIBAOlgcdAIanAkIwEWEgEgRnYAA3GTBggUaNmyYDh48mOo6pgEDQNZHCAikg8MzAX0JAQEAbsJgEABuMH/+fD355JOyWCzKnz+/wsPDlSdPHrPLAgCYhBAQSAfbkM/aCWgwGARAxpw8eVLHjh2TJAUHB6tYsWImVwTTpNUJyHZgAE546623JEnvvfee+vTpI1/bv0cAAPec5OMHAaTJNuSzngnoazMYxEInIADnRUdHq3z58goODlbt2rVVu3ZthYSEqEKFCpo5c6bZ5cEMdAICcIN9+/YpIiJC/fr1IwAEABACAumRYNsJ6GAwiIXBIACcFBUVpV69emn//v2yWCwKCgpSUFCQLBaL9u3bp6ioKEVFRZldJjzNNgT0ST6Fnk5AAM4IDAxU8eLFzS4DAOAlCAGB9LA9EzDbnf+MfDgTEICLFixYoOjoaAUGBurdd9/VhQsXdPbsWZ09e1YXL17U+PHjFRQUpJkzZ2rhwoVmlwtPYjAIADdo1KiRdu3aZXYZAAAvQQgIpEPanYC8OQOQtqlTpypbtmxatWqVBgwYoHz58lnvy5s3r15++WWtWrVKvr6+mjp1qomVwuPS2g5MJyAAJ4wYMULHjx/XmDFjzC4FAOAFGAwCpIeDTkDbEFCcCQjACbt27VLDhg1VrVq1FNc8+OCDatiwoXbu3OnBymA6204/OgEBpFP58uW1cuVKPfHEE1qyZIlatmypsLAw+fg47gXp2rWrhysEAHgSISCQDhZHnYA2g0ESOBMQgBOuXbumwoULp7mucOHCunbtmgcqgtegExCAm2zevFnnz5/X0aNH9fPPP6e6lhAQALI2QkAgHWxDQEedgEwHBuCMokWLOnVW065du1SkSBEPVASvwZmAANxg5syZGjhwoCSpSpUqKlOmjHLnzm1yVQAAsxACAulgsXnzlTgQxG47MINBADihUaNGmj17tsaMGaMhQ4Y4XPP2229r37596tatm4erg6nS6gQkBATghIkTJypbtmxatGiRWrdubXY5AACTEQIC6WCx2e6buA2YwSAAXDVkyBB9+eWXGjp0qL7++mt17dpVJUqUkCQdPnxYn376qXbu3KmAgAC98sorJlcLj0qrE5DtwACccOjQITVo0IAAEAAgiRAQSB8HnYCJ24IltgMDcE65cuW0YMECPf3009q2bZu2b99ud7/FYlHevHn12WefqVy5ciZVCVM4CgEN245zPmwCkLagoCAVKlTI7DIAAF6CEBBIhzTPBGQwCAAnPfLII9q/f7+mTZumH374QcePH5ckBQcHKzIyUlFRUU4ND0EWk1IIaBh3JtDTCQjACS1bttSaNWuUkJCQ4kRgAMC9gxAQSAfb7b5G4pmAvjYdGnQCAnBB4cKFNWzYMA0bNszsUuAtHIWAiV/HxdEJCMApb7zxhpYtW6b+/ftrwoQJ8vPzM7skAICJCAGBdLDrBPz/MwF9OBMQAOAuKYWAiZ08dAICcML06dPVsmVLffTRR/ruu+/UqFEjhYWFOewKNAxDw4cPN6FKAICnEAIC6ZHGdGDOBATgqq1bt2r9+vU6duyYLBaLQkJCFBkZqYiICLNLgxlS6wSU6AQE4JRRo0bJMAxZLBb99ddfmjVrVrI1ifcTAgJA1kcICKSDwzMBfW0+UU0gBATgnEOHDqlr167aunWrpH8/RDD+fwhE7dq1NXv2bJUuXdq0GmECOgEBuMGIESOsrycAABACAumRVicgISAAJ5w4cUL169fXyZMnlTNnTj388MMqUaKEJCkmJkYrVqzQ1q1b1aBBA23btk3BwcEmVwyPoRMQgBuMGjXK7BIAAF6EEBBIB0edgD6+hIAAXDNixAidPHlS7du314cffqhChQrZ3X/27Fn16dNHCxcu1MiRIzVjxgyTKoXHpdUJSAgIAAAAFxECAumRRicgb84AOGP58uW677779Nlnnzmc2FiwYEHNnTtXmzdv1rJly0yoEKZJqxOQ7cAA0uHkyZM6duyYJCk4OFjFihUzuSIAgCclHwsFIE0OOwGz+Ti8HwBScv78edWrV89hAJjIz89P9erV04ULFzxYGUxHJyAAN4qOjlb58uUVHBys2rVrq3bt2goJCVGFChU0c+ZMs8sDAHgIISCQHpwJCMANQkJCdO3atTTXXb9+nfMA7zUMBgHgJlFRUerVq5f2798vi8WioKAgBQUFyWKxaN++fYqKilJUVJTZZQIAPIAQEEiHtM4ElIUQEEDaOnbsqPXr1+v48eMprjl+/LjWrl2rDh06eLAymI7BIADcYMGCBYqOjlZgYKDeffddXbhwQWfPntXZs2d18eJFjR8/XkFBQZo5c6YWLlxodrkAgExGCAikB2cCAnCD4cOHq3LlymrcuLGWLl2a7P7vvvtOTZo0UZUqVTRy5EgTKoRp6AQE4AZTp05VtmzZtGrVKg0YMED58uWz3pc3b169/PLLWrVqlXx9fTV16lQTKwUAeAKDQYB0YDowAHd45JFH5OPjowMHDuixxx5TYGCgwsPDJUkxMTG6ePGiJCkiIkKPPPKI3fcahqE1a9Z4uGJ4DJ2AANxg165datiwoapVq5bimgcffFANGzbUzp07PVgZAMAMhIBAelgcdAL62jTWsh0YgBPWr19v/dpisejChQsOB4Bs3rw52TXDMJJdQxbCYBAAbnDt2jUVLlw4zXWFCxd26oxaAMDdjRAQSA+bTj/f7HQCAkifdevWmV0CvFVanYBsBwbghKJFi2rXrl1prtu1a5eKFCnigYoAAGYiBATSw8GZgHYhIJ2AAJzQsGFDs0uAt6ITEIAbNGrUSLNnz9aYMWM0ZMgQh2vefvtt7du3T926dfNwdQAATyMEBNLB0ZmADAYBALgNg0EAuMGQIUP05ZdfaujQofr666/VtWtXlShRQpJ0+PBhffrpp9q5c6cCAgL0yiuvmFwtACCzEQIC6WBYEpQYA/pm+/9OwGw2ZwKyHRgAkBEMBgHgBuXKldOCBQv09NNPa9u2bdq+fbvd/RaLRXnz5tVnn32mcuXKmVQlAMBTCAGBdLDtBEzsALTtBORMQADOunTpkj788EOtWbNGJ06c0M2bNx2uMwxDhw4d8nB1MA2dgADc5JFHHtH+/fs1bdo0/fDDDzp+/LgkKTg4WJGRkYqKinJqeAgA4O5HCAikh+104P/vAEzsCLxzPyEggLQdPnxYDRs21IkTJ9I8S5RpwPcY25DPx6bTnE5AAOlQuHBhDRs2TMOGDTO7FACAiQgBgfSwnQ6cLXknIG/OADjjv//9r44fP666detq4MCBKlOmjPLkyWN2WfAGdAICAADAzQgBgfRw0AloOx2YTkAAzli7dq3CwsK0evVqBQQEmF0OvAlnAgJIpyFDhmj//v0aOHCgHnrooVTXbtq0SePHj1eFChU0evRoD1UIADCLT9pLANhKiLcP+BwOBiEEBOCE+Ph41a5dmwAQydmGfI46AQkBATiwfft2jRs3TleuXEkzAJSkhx56SFevXtWYMWP0yy+/eKBCAICZCAEBFyUNARPDPwaDAHBVpUqVdP78ebPLgDdKqxNQIggEkMzcuXNlGIZLXX1vv/22LBaLZs+enYmVAQC8ASEg4KL4WPs3XdZOQLYDA3BR3759tWHDBv3+++9mlwJvk9aZgBIhIIBkNm7cqOLFi6tWrVpOf0/16tUVHh6uH374IRMrAwB4A0JAwEXxcUm2A2d3cCYgb8wAOOGpp57Siy++qMaNG2vq1Kk6evSo2SXBWzgTAjIcBEAShw8fVuXKlV3+vipVqujw4cOZUBEAwJswGARwUdJOwMTwjzMBAaRH7969tWLFCvXp0yfVdYZhKC4uzkNVwXRsBwaQDteuXUvXlPncuXPr2rVrmVARAMCbEAICLnKmE5AzAQE44/fff1fDhg118eJFWdL48CCt+5HF0AkIIB0CAwN1+vRpl7/v9OnTypcvXyZUBADwJmwHBlzEmYAA3OXVV1/VhQsX1KFDB+3cuVNXrlxRQkJCin9wD6ETEEA6lCpVSj/99JNiY2Od/p7bt2/rp59+UsmSJTOxMgCANyAEBFyUtBMwcRswISAAV23atEnlypXTF198oapVqypXrlxmlwRvQScggHRo0qSJrl69qilTpjj9PVOmTNGVK1fUtGnTTKwMAOANCAEBFyXEOe4ENHxsQ0C6MwCkLSEhQVWrVpVhGGkvxr2FTkAA6dC7d29lz55dQ4YM0TfffJPm+iVLlujVV1+Vn5+fnn/+eQ9UCAAwEyEg4KKUzgRM/F9JdAICcMqDDz6o48ePm10GvJEznYCEgACSCAkJ0euvv67bt2/r8ccfV7t27bR48WIdP35csbGxio2N1fHjx7V48WLr/bGxsRo1apRCQ0PNLh8AkMkYDAK4KKUzAe06ARkMAsAJgwcPVuvWrbV+/XpFRkaaXQ68iTOdgGwHBuDA4MGDdf78eY0bN05LlizRkiVLHK5LHDg1aNAgDRkyxJMlAgBMkqEQcMOGDfL19dVDDz3krnoAr5cQn0InYDbb7XwWWRIs9sEgACRRsWJFvfLKK2rVqpVefPFFtWzZUmFhYfLxcdyoHxYW5uEKYRo6AQFkwJgxY9SsWTO9+eab2rhxY7LhUj4+PmrQoIGGDh3KWYAAcA/JUAgYGRmpyMhIrV271l31AF7PqenAuhMW+hICAkhFeHi4DMOQxWLRuHHjNG7cuBTXGoahuLg4D1YHUzEYBEAGNWnSRE2aNNGlS5e0c+dOnTlzRpJUqFAhPfjggwoMDDS3QACAx2UoBAwKCtJ9993nrlqAu0JKnYCJU4Jt1/lm91hZAO5CYWFhDAWBYwwGAeAm+fLlU6NGjcwuAwDgBTI0GKRq1ao6cOCAu2rJkPPnz2vQoEEqXbq0AgICVKhQITVq1EgbN260W/fTTz+padOmypMnj/LmzauHH35Yu3fvdviYJ06cUNeuXVWoUCHlyJFDNWrU0IIFCzzwbODNknYCJnYAJu0ETDpABACSiomJ0ZEjR5z+g3sInYAAAABwswx1Avbv31+PP/64vvvuOz3yyCPuqsllf/31lyIjI3X16lX17NlTZcuW1aVLl/Trr7/aTV3cunWrIiMjFRwcrNdff12SNHnyZNWvX1+bN29W5cqVrWvPnz+vevXq6fTp0xowYIBCQkI0b948derUSTNnzlT37t09/jzhHew6AY1/34w52g4MAEC60AkIAAAAN8tQCPjggw+qb9++evzxx/Xss8+qffv2Cg8PV44cORyuz6wDzZ955hnFxcXp119/VbFixVJc179/f/n5+WnDhg0KDg6WJHXq1EkVKlTQwIEDtXLlSuvaMWPG6MiRI/rmm2/Upk0bSVLPnj0VERGhQYMGqWPHjsqdO3emPB94N7tOQJsz/wgBAQBuw2AQAAAAuFmGQsASJUpIujNePjo6WtHR0SmuzawDzTds2KAff/xR77//vooVK6bY2FjFxsYqZ86cdusOHjyobdu2qUePHtYAUJKCg4PVsWNHffLJJzp58qSKFi0qSZo3b55KlSplDQAlydfXV/369VPXrl21bNkyderUye3PB97P2U7ApNuGASAl586d0/Tp07Vu3TprB3twcLAaN26s5557TgUKFDC5QnicM52AbAcGAACACzJ0JmBoaKjCwsJUvHhxhYWFpfonNDTUXTXbWbZsmaQ7XYZt2rRRjhw5lCtXLpUtW1Zz5861rtu2bZskKSIiItlj1KlTRxaLRTt27JAk/fPPPzp+/Ljq1KnjcK3t4+HekxD3b7hn2HQCJg4Isa6jExCAE1auXKmyZctq6NChWrVqlfbs2aM9e/Zo1apVeu2111SuXDm7TnXcI+gEBAAAgJtlqBMwJibGTWWk3759+yRJUVFRKlOmjD799FPdvn1b48ePV5cuXRQbG6vu3bvrxIkTkmTXBZgo8Vpi94Ura9Mj6ZblBH6Jv6vYDvyw2HQC2gaCSdcBgCMHDhxQu3btdP36dVWpUkXdu3dXqVKlJEmHDx/WrFmztHv3brVr1067du1SmTJlnHpcXmeyAAaDAPByvNYAwN0nQyGgN7hy5YokKU+ePFq3bp38/PwkSW3btlXJkiX12muvqVu3brp+/bokyd/fP9ljBAQESJJ1jStrce9JsRMwG2cCAnDNmDFjdP36dY0aNUojRoxIdn///v31xhtvaOTIkRo7dqxmzJhhQpUwBYNBAAAA4GZ3fQiYOITkySeftAaAkhQUFKRHH31Us2fP1r59+6xnBN66dSvZY9y8eVOSrGtcWZse//zzj93ty5cvK1++fOl+PHiWXbjnk8p04DjenAFI3Zo1a1SuXDmHAWCi4cOHa968eVq9erXTj8vrTBZAJyAAN/j444/VtWvXDL13SQmvNQBw98nQmYCJNm7cqE6dOikkJET+/v7q2bOn9b7EM41Onjzpjh+VTEhIiCRZB3rYSmxRv3Dhgu677z5Jjrfx2h7CLsmltbj3pDQdmDMBAbjq5MmTqlatWprrqlWrlmmvo/BSdAICcIM+ffooJCREL7/8sg4cOGB2OQAAk2U4BHzzzTcVGRmphQsX6sSJE4qNjZXF8m/4kS9fPo0dO1aLFi3K6I9yqFatWpKkY8eOJbsv8VrhwoVVs2ZNSdKWLVuSrdu6dasMw1D16tUl3QkPg4ODtXXrVodrJalGjRrueQK46zg9HZgzAQGkIVeuXDp9+nSa606fPq1cuXJ5oCJ4jcQQ0DDu/ElEJyAAFzz88MO6dOmS3nvvPVWoUEEtW7bUd999Z3ZZAACTZCgEXL58uUaMGKHg4GDNnz9fp06dSramVq1aKlSokJYuXZqRH5Witm3bKk+ePJo7d66uXr1qvf7PP/9o8eLFKlu2rEqXLq3SpUurRo0aWrBggXXwh3RnCMiCBQvUuHFju27CJ598UocOHdK3335rvRYfH68PPvhAgYGBatWqVaY8H3i/lM4ETBoCWhIIAQGkrmrVqtqwYYN+++23FNf8+uuv+uGHH1S1alXPFQbzJQZ8tp1/SW/TCQggDcuWLdOBAwc0YMAA5cuXT99//70effRRlSpVSuPHj9eFCxfMLhEA4EEZCgHfe+89+fv7a/ny5erQoYMKFSrkcN0DDzyQae3nQUFBevfdd3X8+HHVqVNHEyZM0JgxY1SnTh3dvn1bH3zwgV29t27dUv369TVp0iRNmjRJ9evXV0JCgsaPH2/3uEOGDFHx4sX11FNPaeTIkZo2bZqaNm2qbdu26d1331WePHky5fnA+9l3AjIYBED6RUVFKTY2Vk2bNtWHH35o92HW1atXNXnyZDVr1kzx8fHq1auXiZXC4xJDQJ8kv6rZ3iYEBOCEkiVLWt8vTZ8+XQ888ICOHDmiwYMHKyQkRFFRUdq9e7fZZQIAPCBDIeC2bdtUq1YtVaxYMdV1hQoVytSzjHr16qWvvvpKuXPn1vDhwzV69GiVK1dO69atU/Pmza3r6tatq/Xr1ys8PFzDhg3T8OHDVbp0aW3YsEEPPPCA3WMWKFBAmzZtUtu2bTVlyhT1799fly5d0hdffGF35iHuPXYDP1IZDGJ3diAAOPDEE0+oS5cuOnPmjPr166d8+fKpcOHCKly4sPLly6cXX3xRZ86cUZcuXdS5c2ezy4UnOdMJyHZgAC4ICAhQz549tXPnTm3atElPPPGE4uPjNXPmTFWvXl3169fX/PnzFc/fLQCQZWVoOvC1a9ccDuRI6tKlS0rI5E+r27Vrp3bt2qW5LiIiQmvWrHHqMYODgzVnzpyMloYsxrbDz0hlMAjbgQE449NPP1VERITeffddHT58WGfPnrXeV6pUKQ0aNEjPP/+8iRXCFCmFgHQCAnCDiIgIlStXTsWKFdOECRMkSZs2bdLmzZtVvHhxjRs3Th06dDC5SgCAu2UoBCxSpIgOHjyY5rp9+/YpNDQ0Iz8K8BopdQIa9o2ADAYB4LTevXurd+/eOn78uN0UeibR38MSA77UQkC6dQCkw65duzR58mR98cUXunnzpnx8fPToo4+qRYsWmjNnjjZv3qzOnTtr2rRp7IACgCwmQ9uB69Wrp927d2vTpk0prlm6dKkOHjyoRo0aZeRHAV7DtsPPthPQ8LGf4MiZgABcFRwcrFq1aqlWrVoEgPc6BoMAcKPY2FjNmzdPdevWVY0aNfTJJ5/I399fAwYM0KFDh7Ro0SI9//zz+vHHH/Xdd9/J399f7777rtllAwDcLEMh4MCBA2UYhtq1a6fFixcrLi7O7v4VK1boueeeU/bs2dWvX78MFQp4C7sOv6QHttuGgHG8OQOQ3LZt2/TNN984NTBr//79+uabb7R9+3YPVAav4sx2YDoBAaTh+PHjGj58uMLCwtSlSxdt3bpV5cuX14cffqhjx47pnXfeUfHixe2+p2XLlmrVqpUOHz5sUtUAgMySoe3A1apV0/jx4zVgwAC1b99eOXLkkGEY+uqrr7Ro0SJduXJFFotF77//vu6//3531QyYyhL/b7hn2wn4/xck3bmfTkAASZ09e1ZNmjRRnjx5nJrEGBQUpD59+uj69es6fPiwAgMDM71GeAk6AQG4QYkSJayDPlq2bKkXX3xRzZo1S/P7AgMDFRsbm9nlAQA8LEOdgJL04osvatmyZapZs6Zu3Lghi8WiK1eu6PLly6pcubK++eYb9e3b1x21Al7BLtzzTbkTkMEgAJKaO3eurl69qv/9738qVKhQmusLFSqk119/XRcvXtTcuXM9UCG8Bp2AANwgICBAffv21b59+7R06VKnAkBJGjdunI4cOZLJ1QEAPC1DnYCJWrRooRYtWujcuXM6cuSIEhISFBoaqmLFirnj4QGvYrvNN3kn4L+3GQwCIKlly5YpV65c6tatm9Pf06VLF7300ktaunQpH6rdS+gEBOAGJ06cUO7cuV3+vvz58yt//vyZUBEAwExuCQETFShQQAUKFHDnQwJex7YT0EhyJqDhYyjxXjoBAST1+++/q3bt2sqePbvT35M9e3bVqlVLv/32WyZWBq/jTCcgISCANOTLl08PPPCAdu7caXYpAAAvkKHtwLNmzdKxY8fcVQtwV3C6EzCWN2cA7J0/f15FixZ1+fuKFCmic+fOZUJF8FrOdAKyHRhAGnLmzMnZ7AAAqwx1Avbo0UOGYahMmTJq2rSpmjZtqsaNGytv3rzuqg/wOnZnAiadDmxzm05AAEn5+/vr2rVrLn/f9evX5e/vnwkVwWvRCQjADcqUKaPTp0+bXQYAwEtkqBPw2WefVWhoqPbv368PP/xQ7du3V4ECBVSnTh0NGzZM69evZ6oUspzUpwP/e5vpwACSKlq0qH799VeXv+/XX39NVwch7mIMBgHgBs8884w2btyoQ4cOmV0KAMALZCgEnDlzpmJiYrRv3z5NmTJFjz32mPLkyaOff/5Zb731lpo0aaKgoCA9/PDDGj9+vLtqBkxldyZg0unAPoSAAFJWt25dxcTEaPPmzU5/z6ZNm3TkyBHVrVs3EyuD12EwCAA3eOmll9SiRQs1btxY8+bN082bN80uCQBgogyFgInKlCmjF154QYsWLdK5c+f0008/afTo0YqMjFRcXJxWrlypV155xR0/CjBdap2Ahm0nYBxvzgDYe/rpp2WxWNSrVy9dunQpzfUXL15Ur169ZBiGnnzySQ9UCK9BJyAANyhdurR++eUX/f333+rSpYty5cqlYsWKqWTJksn+lCpVyuxyAQCZzK3TgSUpNjZWV65c0ZUrV3T58mXFxcVJkiwWuqKQNaTWCWjhTEAAqWjatKmaNGmiNWvWqHr16powYYLatGlj9wGCdOc185tvvtHAgQN15MgRRUZGqnnz5iZVDVPQCQjADWJiYqxfJ74fO3XqlMO1SV+LAABZj1tCwN27d2vVqlVavXq1fvzxR928eVMWi0V58+bVI488Yh0aAmQFqU0HNgxDidEf24EBOPLFF1/ooYce0v79+/X4448rMDBQ1apVU+HChSVJp0+f1s6dO3Xx4kVZLBaVLl1aX375pclVw+MYDALADY4cOWJ2CQAAL5KhEPCJJ57Q2rVrde7cOVksFmXPnl116tSxhn61atWSb9JfXoG7nF2HX9IzARkMAiANBQoU0M8//6y+ffvq888/14ULF7RmzRprB0Zip4aPj4+eeuopffDBBwoMDDSxYnicbbiXWicg24EBpKF48eJmlwAA8CIZCgHnz58vwzBUpUoVjRw5Us2bN1fOnDndVRvglWw7AX2SdgIyGASAE/LmzavZs2frf//7n5YuXart27frzJkzkqRChQqpevXqat26tUqWLGlypTCFbbhHJyAAAADcJEMhYJ48eXTlyhX98ssvevrpp1W/fn01a9ZMTZs21QMPPOCuGgGv4mwnoO0AEQBwpESJEurXr5/ZZcDbpBYC0gkIAACAdMpQCHj+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEh7qoZMFVCfMqdgLYdGnQCAgDShU5AAG721VdfacGCBdq3b58uX77scGijYRg6dOiQCdUBADwlQyGgr6+vIiIiFBERoeHDh+v69etav369Vq9erTVr1ujLL7+0HmZetmxZ7d271y1FA2aypDIdWGwHBgBklLMhIJ2AANJgsVjUqVMnLVq0yGHwJ/3/YDuLhenAAHAP8El7ifNy5sypVq1aacKECZo9e7YGDhwof39/WSwW7d+/350/CjCN7TbfZNOBbW7bbRsGAMBZzm4HphMQQBqmT5+ur776SlWqVNH333+vdu3ayTAM7du3T0uXLlXnzp0lScOGDdPhw4dNrhYAkNky1Alo69ixY1q1apW1CzDxgPPEqcERERHu+lGAqRJS6QS0/QTVdoAIAABOoxMQgJvMmTNH/v7+Wr58uYoWLap58+ZJksqUKaMyZcqoVatWatSokfr06aPIyEimCQNAFpehEHDx4sXW8wAPHDggSdZW8kqVKqlp06Zq2rSpGjZsyNRgZBl2nYC+KZ8JSCcgACBd6AQE4Ca///67IiIiVLRoUUn/fmBtu/23V69emjRpkt555x01btzYtFoBAJkvQyFgu3btrF+HhoZaQ78mTZqocOHCGS4O8Ea24Z7hw5mAAAA3YzAIADe5ceOGihUrZr3t7+8vSbp8+bLy5ctnvV61alWtWrXK4/UBADwrQyFg27Zt1axZMzVt2lRlypRxV02AV7PtBPRJ0glotx2YEBAAkB7OdgKyHRhAGooUKWI9pkmStVHj4MGDql69uvX6+fPndfPmTY/XBwDwrAyFgIsWLXJXHcBdI9UzARkMAgDIKDoBAbhJ6dKl7QZ+1KxZUxaLRR9//LGmT58uSdq7d6/Wr1+v8uXLm1UmAMBD3DodGLgXpDYdWHadgLw5AwCkg20ImOzYCQaDAHBe8+bNdeTIEe3Zs8d6OzQ0VDNnzlTNmjXVvn17RUREKDY2Vl27djW5WgBAZnPLdOC9e/fqvffe07p163T8+HFJUnBwsBo3bqz+/furQoUK7vgxgFew7fBLth3YpjPQwnZgAElk5MB1wzC0Zs0aN1YDr8VgEABu8uSTTyouLk43btyQJPn5+enLL79U27ZttWPHDu3YsUOS9Nhjj+nFF180s1QAgAdkOAScNWuWevfurdjYWFks/4YeBw4c0IEDB/TJJ59o6tSp6tatW0Z/FOAV7KcDJ+nQ4ExAAKlYv359ur/X9sxRZHHObgemExBAGsLCwjR06FC7a3Xq1NGRI0e0YcMGnT9/XhUqVFDVqlXNKRAA4FEZCgF37NihqKgoxcfHq3Xr1urZs6dKlSolSTp8+LCio6P17bffKioqShUrVlSNGjXcUjRgJvvpwEk6ATkTEEAq1q1bZ3YJuBvYdvjRCQggE+TIkUMtWrQwuwwAgIdlKAR85513lJCQoOjoaHXv3t3uvkqVKunRRx/VrFmz1KNHD40fP16ff/55hooFvIHddOBsDAYB4LyGDRuaXQLuBnQCAgAAIBNkKATcuHGjqlatmiwAtPXss89q8uTJ2rBhQ0Z+FOA1bLe9JxsMYhsCMhgEAJAenAkIwM1u3bql7du36/jx47p582aK6xgOAgBZW4ZCwLNnz6pRo0Zpritfvrx+++23jPwowGvYDvxI3gloMxiETkAAQHo42wlICAjACe+//75GjRqlS5cupbmWEBAAsrYMhYCBgYE6evRomuuOHj2qfPnyZeRHAd4jwXYwSMpnAjIYBICz/vnnHy1ZskT79u3T5cuX7TqOExmGoejoaBOqg8c52wnIdmAAaZgzZ45eeuklSXcaMypUqKC8efOaWxQAwDQZCgFr1qypFStWaO3atWrcuLHDNWvXrtWmTZvUqlWrjPwowGvYhns+vpwJCCBjPvjgA/33v/9VbGys9VpiCJg4EdhisRAC3kvoBATgJpMmTZJhGPrkk0/o8gMAyCftJSnr16+fEhIS1KZNGw0ePFh//PGHrl+/ruvXr+v333/XoEGD1KZNG+taIEuwedPl45vymYAJcbw5A5C6NWvW6MUXX1RAQICGDBmiiIgISdLUqVM1cOBAhYeHS5JeeuklzZw508RK4VEMBgHgJnv37lWdOnUIAAEAkjIYArZo0UJDhw7VjRs3NH78eFWpUkV58uRRnjx59MADD2jixIm6ceOGhg0bpubNm7urZsBUth1+RrJOQM4EBOC89957T4Zh6Pvvv9fo0aNVpkwZSVJUVJTeeecd7dmzR926ddPMmTNVv359k6uFxzAYBICbBAQEWD9QAgAgQyGgJL3xxhtavny5GjVqJH9/f1ksFlksFvn5+alx48ZatmyZ/ve//7mjVsAr2E79TdoJyHZgAK74+eefVa1aNdWuXdvh/f7+/vroo48UEBCg119/3cPVwTR0AgJwkxo1aujAgQNmlwEA8BLpOhPw4MGDWrRokWJiYuTv76+qVavq22+/lZ+fn86dOydJKlCggHyT/uIKZAG24V7y6cCEgACcd+HCBUVGRlpvZ8+eXZJ048YN5ciRQ9KdILB+/fpas2aNGSXCDHQCAnCTV199VU2bNtXy5cvVsmVLs8sBAJjM5RBw0qRJGjx4sOKTfPo8fPhwLVu2TJUqVXJbcYBXSuVMQEJAAK7Inz+/rl27Zr0dFBQkSTp69KjKlStnvR4fH2/9kA33AAaDAHCTUqVKadiwYXr88cfVv39/tW7dWmFhYfLxcbwhLCwszMMVAgA8yaUQ8Mcff9TAgQNlsViUK1culStXTpcvX9bhw4d17NgxtW/fXnv37k3xRQXIClI/E9AmBIznzRmA1IWFhenvv/+23q5UqZIsFouWLl1qDQGvXr2qjRs3KiQkxKwy4WnOdgKyHRhAGsLDw2UYhiwWi8aPH6/x48enuNYwDMXFxXmwOgCAp7kUAk6ePFkWi0XdunXT5MmTlStXLknSr7/+qvbt2+vgwYNasWKFWrVqlSnFAl4h1enADAYB4LyGDRtq4sSJOnXqlIoUKaJHHnlEuXLl0muvvaaTJ08qLCxMn376qc6fP68nnnjC7HLhKXQCAnCTsLAwGYaR9kIAwD3BpRBwy5YtCgkJ0dSpU+Xn52e9XqVKFb333ntq3bq1tm7dSgiILM3ZMwET4gkBAaSuY8eO2rVrl3bv3q0WLVoof/78mjBhgnr37q0JEyZIkiwWi8LDwxmydS+hExCAm8TExJhdAgDAi7gUAp46dUqtWrWyCwAT1atXT5J0+vRp91QGeClLKp2AtrfpBASQlpo1a2rVqlV216KiolS9enUtWLBA58+fV4UKFdS9e3fly5fPpCrhcXQCAgAAIBO4FALevn1bgYGBDu/LmzevdQ2QlaXWCSjOBATgBtWqVVO1atXMLgNmcTYEpBMQAAAALmCCB+CqVKcDcyYgACCDnN0OTCcgAAAAXOBSJ6AkHTx4ULNnz07X/V27dnX1xwHex8kzAS0WQkAAzjl06JCmTp2qzZs368yZM3rsscc0btw4SdJPP/2kX375RZ07d2ZL8L2CTkAA6eTr6yvDMLRnzx6VLVtWvkn/DkkF04EBIOtzOQTctGmTNm3a5PA+wzBSvN8wDEJAZA3OngnIYBAATvj000/Vu3dv3bp1S9Kd18uzZ89a779+/bpeeOEF+fn56dlnnzWpSngUnYAA0slisdh9EO3Kh9J8gA0AWZ9LISAj5gHnpwOzHRhAWrZu3arnnntOOXPm1BtvvKGGDRuqdu3admsaNmyofPny6dtvvyUEvFcwGARAOiUk+Xsh6W0AwL3NpRCQEfOA7N50+WZLeiYgg0EAOG/cuHGyWCz67rvvVK9ePYdrfHx8VLVqVe3Zs8fD1cE0znYCsh0YAAAALmAwCOCiVDsBfW1us6UCQBo2bdqkWrVqpRgAJipatKj++ecfD1UF09EJCAAAgExACAi4KtXpwP/eTuBMQABpuHjxosLCwtJcd+PGDd2+fdsDFcErMBgEAAAAmcDlwSDAPc/CdGAA7lGgQAH99ddfaa47ePCgihYt6oGK4BUYDALATUqWLOnUOj8/PxUsWFA1a9ZU165d9eCDD2ZyZQAAMxACAq5yshNQnAkIIA116tTRt99+qz/++EMVK1Z0uGbTpk36448/9Mwzz3i4OpiGTkAAbpJ4prthGCl+QJ143/79+7V582Z98MEHGjVqlIYNG+bBSgEAnsB2YMBFdmcCJgkBbTsDmQ4MIC3/+c9/FB8fr/bt22v37t3J7t+7d6969OghwzDUp08fzxcIc9iGez5JflWjExCAC44cOaLBgwfLMAx16NBBX3/9tXbt2qXdu3dr8eLF6tixo3x8fDRo0CBt2LBBo0aNkp+fn0aOHKlVq1aZXT4AwM3oBARcZbHpBGQ7MIAMaNKkiQYMGKAJEyaoevXqKlWqlAzD0Pfff68qVapoz549SkhI0ODBg1WnTh2zy4WnpNYJaBiO1wGAA3/88YfeeecdzZ8/X+3bt7e7r0qVKnr00Ue1aNEidezYUQ0aNNCIESNUtWpVtW3bVh9++KGaNWtmUuUAgMxAJyDgKpsOP99sKW8HtjAYBIAT3n33XU2dOlVFixbVwYMHZbFY9M8//+j3339X/vz59cEHH2jMmDFmlwlPSisETOwOpBMQQBrGjRunmjVrJgsAbbVr1041a9bUO++8I0l69NFHVa5cOf3888+eKhMA4CF0AgKuSq0T0HZ7MJ2AAJwUFRWl5557Trt27dLhw4eVkJCg0NBQ1axZU9my8VJ9z7EN95KGgNKdEDAhgRAQQJp2796t1q1bp7mudOnSWrp0qfV2uXLltGLFiswsDQBgAt5ZAK5KpRPQx64TkDdnAJxnGIaqVaumatWqJbvv4sWLeueddzR69GgTKoPHpdYJmHgtLo7twADSlJCQoMOHD6e5LvEDqETZs2dXQEBAZpYGADAB24EBF9wZ9mEzGCRZJ6DNYBA6AQFk0OXLlzVy5EiFh4ezJfheklYIyHZgAE564IEH9NNPP+mbb75Jcc0333yjrVu3qmrVqtZrf//9twoVKuSBCgEAnkQnIOCChCTn/HEmIID02LFjh7799ludOnVKRYoU0aOPPmrXAXjz5k1NmDBB7777ri5duiSLxaL777/fxIrhUc6GgHQCAkjDoEGD9Pjjj6tDhw7q3LmznnrqKYWHh8swDMXExGjevHn64osvZBiGBg4cKOlO9/muXbvUqVMnk6sHALgbISDggvg4+2AvaSegD2cCAkjDoEGDNHHiRLtrb7zxhoYPH65Ro0Zp27Zt6ty5s/766y9ZLBaFhYVp1KhR6tq1q0kVw+Oc2Q4s0QkIIE2PPfaYxowZo6FDh2revHmaN2+e3f0Wi0U+Pj4aPXq0HnvsMUnS2bNn9dprr+nhhx82o2QAQCYiBARcEB9r/4Yr9U5A3pwBsPfdd99pwoQJkqS8efOqTJkyunz5sg4fPqw33nhD5cqV0wsvvKDLly8rf/78GjZsmPr06SM/Pz+TK4dH0QkIwI0GDx6s5s2b64MPPtCGDRt07NgxSVJwcLAaNGigvn372nWjly5dWiNHjjSrXABAJiIEBFyQZieg7W06AQEkMX36dElSv379NG7cOPn7+0uS9u7dq/bt26tbt26Ki4tTo0aN9OWXX6pgwYJmlguz0AkIwM2qVq2q6Ohos8sAAJgsSw4GuX79ukqWLCnDMNS3b99k9+/bt09t27ZVUFCQcuXKpfr162vt2rUOH+vSpUvq16+fgoODFRAQoIoVK+qjjz5i6MM9yqVOwAT+HQFgb8eOHQoPD9fEiROtAaAkVahQQZMmTVJcXJzy5s2rxYsXEwDeyxgMAgAAgEyQJTsBR4wYoTNnzji879ChQ6pbt66yZcumwYMHK1++fJo+fbpatGih5cuXq2nTpta1t2/fVrNmzbRr1y7169dPFSpU0PLly9WnTx+dOnVKo0aN8tAzgrdI2gnomz3lMwEJAQEkdebMGT3yyCPy8Un+GVydOnUkSfXr11eePHk8XRq8ibOdgGwHBgAAgAuyXAi4c+dOTZo0SePGjbNOuLL16quv6uLFi9qxY4eqVq0qSeratasqVqyo//znP/rzzz9lGHeCnBkzZmjbtm16//331a9fP0lSVFSU2rdvr7feekvdu3dX8eLFPfbcYL6knYB2g0Bk3wnIdmAASd2+fVv58uVzeF/evHklSYUKFfJkSfBGdAICcLPt27dr4cKF2rdvny5fvuxwV5NhGFqzZo0J1QEAPCVLhYDx8fGKiorSww8/rHbt2iULAa9du6ZvvvlGkZGR1gBQknLnzq3nnntOI0aM0LZt21SrVi1J0rx585QzZ05FRUXZPc5LL72kRYsW6csvv9TgwYMz/XnBeyTEp94JaBcC8uYMAJAedAICcKPEqfSJwZ9hGHYhYOLtxEYIAEDWlaVCwIkTJ+rPP//UV1995fD+X3/9Vbdu3VJERESy+xK3YSWGgAkJCdq5c6eqVaumgIAAu7W1atWSYRjatm2b+58EvFpaZwLaDgZhOzAARw4ePKjZs2en6/6uXbtmVlnwJnQCAnCTBQsWaMKECQoJCdHw4cP11VdfadWqVfr+++914MABffbZZ9qyZYuGDBmiFi1amF0uACCTZZkQ8MiRIxo5cqRGjBih8PBwxcTEJFtz4sQJSVJwcHCy+xKvHT9+XJJ04cIF3bhxw+Faf39/FSxY0LrWVcWKFbO7ncAv8XeNtM4EZDAIgLRs2rRJmzZtcnifYRgp3m8YhtMhIK8zdzlnQ0A6AQGkYdq0afL19dWaNWtUpkwZbd68WZLUrFkzNWvWTH369NHw4cP1zjvvqFOnTi49Nq81AHD3yTIhYO/evVWyZEkNGDAgxTXXr1+XJLuJjIkSu/0S16S2NnF94hrcOxLiUu8EtLvNmYAAkggLC2O7FdLm7HZg3nADSMOuXbtUu3ZtlSlTJsU1//vf/zR37ly9+eabWrhwoQerAwB4WpYIAefOnatVq1Zpw4YNyp49e4rrcubMKUm6detWsvtu3rxptya1tYnrE9e46p9//rG7ffny5RQPiod3cakTkBAQQBKOutQzA68zdzk6AQG4yZUrVxQWFma97efnJ0m6evWqcufOLUny8fFR7dq19cMPP7j02LzWAMDdxyftJd7t1q1bGjBggFq1aqWiRYvq4MGDOnjwoP766y9J0qVLl3Tw4EFdvHhR9913nyQ53MabeC1x+29QUJBy5MjhcO2tW7d09uxZh1uFkbWl1QloeyYgHRoAgHShExCAmxQqVEgXL1603i5YsKCk5B9KXbt2TZcvX/ZgZQAAM9z1IeCNGzd05swZfffddypTpoz1T2RkpKQ7XYJlypTRjBkzVLlyZfn7+2vLli3JHmfr1q2SpBo1aki684lYtWrVtGvXrmTdgD///LMsFot1Le4dSTsBfXztQ0D76cB0AgIA0oHBIADcJDw83NocIUkPPvigLBaL5s2bZ7128uRJ/fDDDypevLgZJQIAPOiu3w6cK1cuLViwINn1M2fOqE+fPnr44YfVs2dPValSRblz51abNm20aNEi/fLLL3rggQck3WmHnzFjhsqUKaNatWpZH+PJJ5/Upk2bNG3aNPXr1896fdKkScqWLZs6d+6c+U8QXsWuE9Aw7EM/MRgEQOpu3LihHDlyeM3jwEs52wnIdmAAaWjSpInefPNNxcTEKDw8XC1btlT+/Pk1duxYHThwQGFhYVq4cKGuXbum9u3bm10uACCT3fUhYPbs2dWhQ4dk1xNb3EuVKmV3/9tvv601a9aoefPmevnll5U3b15Nnz5dx48f13fffWd3YHtUVJQ++eQTDRgwQDExMapQoYKWLVumr7/+WsOGDVN4eHhmPz14GbtOQCN5Iy2DQQCkplSpUhoxYoSioqLk6yjcSUNcXJymTp2q0aNHWyfeIwuiExCAmzzxxBM6ceKE/v77b4WHhytXrlz65JNP9MQTT+irr76yrqtevbpeffVVEysFAHjCXR8Cuqp06dLatGmThgwZojFjxuj27duqVq2aVqxYoaZNm9qt9fPz0+rVqzVs2DB9/vnnOnfunEqVKqUPPvhA//nPf0x6BjCTXSegT/IJn/bbgXlzBsDefffdpz59+mj06NHq1q2bunXrlurExkT79u3TrFmzNGfOHJ04cULVq1f3QLUwDYNBALhJhQoVNH36dLtrbdq00YEDB/Ttt9/q/PnzqlChgtq0aZOuD6cAAHeXLBsChoeHpzidtUKFClqyZIlTjxMYGKjJkydr8uTJ7iwPd6m0OgHtBoPQCQggiW3btmnGjBkaNmyY3nrrLb399tsKCQlRRESEKlSooAIFCihv3ry6fPmyzp07pz179mjLli06fvy4LBaLChUqpGnTpqlnz55mPxVkJgaDAMhk9913n55//nmzywAAeFiWDQGBzGDbCZj0PEDJflAIZwICSMowDEVFRalLly6aM2eOJk+erN9++01///233XEUiRI/zKpSpYr69u2rp59+mrMA7wWubAe2WCQH/+4AAAAASRECAi5IiP832LP4OOgE9OVMQABpCwgIUFRUlKKiohQTE6O1a9dq165dOnXqlC5duqTAwEAVLlxY1apVU6NGjTiD9l7jbCegRAgIwGnHjh3TiRMndPPmzRTXNGjQwIMVAQA8jRAQcEF8rE0noIM3XXbdgYSAAJwQHh6uHj16mF0GvImznYCJax18KAUAiRYsWKBhw4bp4MGDqa4zDENxcXEeqgoAYAZCQMAFtp2Ajt50+Wa3ucZZTQDSsGHDBvn6+uqhhx4yuxR4E1c6AXmtAZCK+fPn68knn5TFYlH+/PkVHh6uPHnymF0WAMAkhICAC+ymA9MJCCCDIiMjFRkZqbVr15pdCryJbQjoaKuvDx84AXDOW2+9JUl677331KdPHyYAA8A9jhAQcIFtJyCDQQBkVFBQkO677z6zy4C3SQwBfXwch4C2b+JtA0MASGLfvn2KiIhQv379zC4FAOAFOEQGcIFdJyCDQQBkUNWqVXXgwAGzy4C3SQz2UurYoRMQgJMCAwNVvHhxs8sAAHgJQkDABfFxzncCysIbMwCp69+/v7Zt26bvvvvO7FLgTRKDPWdCQDoBAaSiUaNG2rVrl9llAAC8BCEg4AJLfBqdgNlsrtEJCCANDz74oPr27avHH39cvXr10vfff699+/bp6NGjDv/gHpFWJyCDQQA4acSIETp+/LjGjBljdikAAC/AmYCAC+ynA6fRCciZgADSUKJECUmSxWJRdHS0oqOjU1xrGIbi4uI8VRrM5Mp2YDoBAaSifPnyWrlypZ544gktWbJELVu2VFhYmHwcfJgtSV27dvVwhQAATyIEBFxgHwJyJiCAjAkNDZXhaPAD7m10AgJwo82bN+v8+fM6evSofv7551TXEgICQNZGCAi4wHYwSJpnAsoiS4LF4ToAkKSYmBizS4A3YjAIADeZOXOmBg4cKEmqUqWKypQpo9y5c5tcFQDALISAgAtsOwGNtM4E/P/1voSAAABXuNIJyHZgAKmYOHGismXLpkWLFql169ZmlwMAMBmDQQAXuNYJmGT7MAAAzqATEICbHDp0SA0aNCAABABIIgQEXOLSmYCS4uMIAQGkbePGjerUqZNCQkLk7++vnj17Wu9btWqVXnvtNZ08edLECuFRdAICcJOgoCAVKlTI7DIAAF6CEBBwgSWeTkAA7vXmm28qMjJSCxcu1IkTJxQbGyuLzWChfPnyaezYsVq0aJGJVcKj6AQE4CYtW7bU1q1blcDfFQAAEQICLnG5EzCWX7gApGz58uUaMWKEgoODNX/+fJ06dSrZmlq1aqlQoUJaunSpCRXCFK6EgHQCAkjFG2+8oVu3bql///66ffu22eUAAEzGYBDABWmdCeibPflgEABIyXvvvSd/f38tX75cFStWTHHdAw88oAMHDniwMpjKle3AdPcASMX06dPVsmVLffTRR/ruu+/UqFEjhYWFycfBh9mGYWj48OEmVAkA8BRCQMAFdtOBfdPuBCQEBJCabdu2qVatWqkGgJJUqFAhbd682UNVwXR0AgJwk1GjRskwDFksFv3111+aNWtWsjWJ9xMCAkDWRwgIuMDVMwEZDAIgNdeuXVPRokXTXHfp0iXOc7qX0AkIwE1GjBghw0j+OysA4N5ECAi4wNUzAekEBJCaIkWK6ODBg2mu27dvn0JDQz1QEbwCg0EAuMmoUaPMLgEA4EUYDAK4IMGmEzBp4Cc5OBMwjjdnAFJWr1497d69W5s2bUpxzdKlS3Xw4EE1atTIg5XBVK50ArIdGAAAAE4iBARcYKETEIAbDRw4UIZhqF27dlq8eLHi4uLs7l+xYoWee+45Zc+eXf369TOpSngcnYAAAADIBGwHBlxgNx3YQScgZwICcEW1atU0fvx4DRgwQO3bt1eOHDlkGIa++uorLVq0SFeuXJHFYtH777+v+++/3+xy4QkWy50/EoNBALhs9uzZGfr+rl27uqkSAIA3IgQEXGBJsJkO7KAT0DebfQhoux4AHHnxxRdVvnx5jRw5Utu2bZPFYtGVK1ckSVWqVNGbb76p1q1bm1wlPMY21GMwCAAXPfvss+keBGIYBiEgAGRxhICAC1zuBIzlzRmAtLVo0UItWrTQuXPndOTIESUkJCg0NFTFihUzuzR4mjMhIJ2AAFIQFhbGNGAAQIoIAQEXpNkJmHQwCGcCAnBBgQIFVKBAAbPLgJnoBASQATExMWaXAADwYgwGAVxgSWM6cNJrbAcGkJpZs2bp2LFjZpcBb0InIAAAADIJnYCACxJcnA7MYBAAqenRo4cMw1CZMmXUtGlTNW3aVI0bN1bevHnNLg1moRMQAAAAmYQQEHBBWp2AkiTDsE52ZDswgNQ8++yzWrt2rfbv36/9+/fro48+ko+Pj6pXr24NBR966CFlz57d7FLhKa52AhICArBx48YN5ciRw2seBwDgXdgODLjANtQzfFP4z8f497rtIBEASGrmzJmKiYnRvn37NGXKFD322GPKkyePfv75Z7311ltq0qSJgoKC9PDDD2v8+PFmlwtPcLUTkO3AAGyUKlVKH3/8seLT+XdDXFycpkyZolKlSrm5MgCANyAEBFxg2wlo+KTSCfj/6AQE4IwyZcrohRde0KJFi3Tu3Dn99NNPGj16tCIjIxUXF6eVK1fqlVdeMbtMeAKdgAAy4L777lOfPn0UHh6uYcOG6cCBA0593759+/Tqq68qPDxc/fr1U3BwcCZXCgAwA9uBARfYTwcmBATgfrGxsbpy5YquXLmiy5cvKy4uTpJksfD3yT3BNgR0cPZssut0AgKwsW3bNs2YMUPDhg3TW2+9pbffflshISGKiIhQhQoVVKBAAeXNm1eXL1/WuXPntGfPHm3ZskXHjx+XxWJRoUKFNG3aNPXs2dPspwIAyASEgIAL7DoBU9gObPgYSnyrTggIwBm7d+/WqlWrtHr1av3444+6efOmLBaL8ubNq0ceecR6PiDuAQwGAZABhmEoKipKXbp00Zw5czR58mT99ttv+vvvv2UYyT/ATvyAqUqVKurbt6+efvppzgIEgCyMEBBwgW2ol+pgkMT1nAkIIBVPPPGE1q5dq3PnzslisSh79uyqU6eONfSrVauWfFMKgpA1ubodmE5AAA4EBAQoKipKUVFRiomJ0dq1a7Vr1y6dOnVKly5dUmBgoAoXLqxq1aqpUaNGCg8PN7tkAIAHEAICrkhIuxPQYvPmjE5AAKmZP3++DMNQlSpVNHLkSDVv3lw5c+Y0uyyYybazj05AAG4QHh6uHj16mF0GAMALMBgEcIH9dGDHnYC2Wy1szxAEgKTy5Mkji8WiX375RU8//bTatWun8ePH65dffjG7NJiFwSAA3GjDhg3atGmT2WUAALwEnYCAC2wP5vdJoROQwSAAnHX+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEhZpcLT3D1TEC2AwNIRWRkpCIjI7V27VqzSwEAeAFCQMAVtoNBUpoO7EMICMA5vr6+ioiIUEREhIYPH67r169r/fr1Wr16tdasWaMvv/xSX375pSSpbNmy2rt3r8kVI9PRCQjAjYKCgnTfffeZXQYAwEsQAgIuSLDZ3uuTLYXpwIbNdGAGgwBwQc6cOdWqVSu1atVKv/zyiz777DNNnjxZN2/e1P79+80uD55AJyAAN6pataoOHDhgdhkAAC9BCAi4wolOQNvBIJwJCMBZx44d06pVq6xdgGfOnJEk69TgiIgIkyuER9AJCMCN+vfvr8cff1zfffedHnnkEbPLAQCYjBAQcIHFxU7A+DhCQAApW7x4sfU8wMRODYvFIsMwVKlSJTVt2lRNmzZVw4YNmRp8r3A1BKQTEEAqHnzwQfXt21ePP/64nn32WbVv317h4eHKkSOHw/VhYWEerhAA4EmEgIALLDadgD4pTQf2YTowAOe0a9fO+nVoaKg19GvSpIkKFy5sYmUwjavbgekEBJCKEiVKSLrzAVN0dLSio6NTXGsYhuLi4jxVGgDABISAgAtsQz2D6cAAMqht27Zq1qyZmjZtqjJlyphdDrwBnYAA3Cg0NFSGkcIwOwDAPYcQEHCBM52Atm/ObNcDQFKLFi0yuwR4GzoBAbhRTEyM2SUAALxICq1MAByhExAAkKkYDAIAAIBMQggIuCLBtTMBCQEBOGPv3r3q3bu3ypUrp9y5cyt37twqV66cXnjhBe3du9fs8uBJrnYCsh0YAAAATiIEBFzgzHRgMRgEgAtmzZqlBx98UNOnT9eBAwd0/fp1Xb9+XQcOHNDUqVP14IMP6tNPPzW7THgKnYAAMsHGjRvVqVMnhYSEyN/fXz179rTet2rVKr322ms6efKkiRUCADyBEBBwgcWZTkDb7cBxvDkDkLIdO3YoKipKt2/f1iOPPKKvv/5av/76q3799VctXrxYbdq00e3btxUVFaXt27ebXS48gU5AAG725ptvKjIyUgsXLtSJEycUGxsri+XfD6rz5cunsWPHck4tANwDCAEBFzjXCWgzGIROQACpeOedd5SQkKDo6Gh98803euyxx1SpUiVVqlRJjz76qJYsWaKZM2cqLi5O48ePN7tceAKdgADcaPny5RoxYoSCg4M1f/58nTp1KtmaWrVqqVChQlq6dKkJFQIAPInpwIArnJoOzJmAAJyzceNGVa1aVd27d09xzbPPPqvJkydrw4YNHqwMpnE1BKQTEEAq3nvvPfn7+2v58uWqWLFiiuseeOABHThwwIOVAQDMQCcg4AJnpgMzGASAs86ePasKFSqkua58+fI6e/asByqC6VzdDkwnIIBUbNu2TbVq1Uo1AJSkQoUKcSYgANwDCAEBV9i82fLNlvaZgGwHBpCawMBAHT16NM11R48eVb58+TxQEUxHJyAAN7p27ZqKFi2a5rpLly4pgQ8VACDLIwQEXOBMJ6Dtm7OEeH6ZApCymjVravPmzVq7dm2Ka9auXatNmzapdu3aHqwMpqETEIAbFSlSRAcPHkxz3b59+xQaGuqBigAAZiIEBFzhTCegzXZgC9uBAaSiX79+SkhIUJs2bTR48GD98ccfun79uq5fv67ff/9dgwYNUps2baxrcQ9gMAgAN6pXr552796tTZs2pbhm6dKlOnjwoBo1auTBygAAZiAEBFzAmYAA3KlFixYaOnSobty4ofHjx6tKlSrKkyeP8uTJowceeEATJ07UjRs3NGzYMDVv3tzscuEJrnYCsh0YQCoGDhwowzDUrl07LV68WHFxcXb3r1ixQs8995yyZ8/Oh00AcA8gBARc4UQnoDgTEIAL3njjDS1btkyNGjWSv7+/LBaLLBaL/Pz81LhxYy1btkz/+9//zC4TnkInIAA3qlatmsaPH6+zZ8+qffv2CgwMlGEY+uqrrxQYGKhHHnlEp0+f1vjx43X//febXS4AIJNlM7sA4G5isfwb6vlkS7sT0MKZgACc8PDDD+vhhx9WfHy8zp07J0kqUKCAfFMKgZB1MRgEgJu9+OKLKl++vEaOHKlt27bJYrHoypUrkqQqVarozTffVOvWrU2uEgDgCYSAgAuMhAQlxoA+vil0Atq8OaMTEIAjBw8e1KJFixQTEyN/f39VrVpVnTp1Uo4cOVS4cGGzy4OZGAwCIBO0aNFCLVq00Llz53TkyBElJCQoNDRUxYoVM7s0AIAHEQICLrAN9ZzqBCQEBJDEpEmTNHjwYMUn6eAaPny4li1bpkqVKplUGbwCnYAAMlGBAgVUoEABs8sAAJiEMwEBV9h0XKTUCchgEAAp+fHHHzVw4EDFxcUpZ86cevDBB1WqVCkZhqFjx46pffv2SqCz695mG+r5pPBrGp2AAJw0a9YsHTt2zOwyAABeghAQcIHdmYBOhIB0AgKwNXnyZFksFnXr1k0nT57U9u3btX//fu3cuVOlSpXSwYMHtWLFCrPLhJkYDALAjXr06KHixYurfPny6tu3rxYvXqzLly+bXRYAwCSEgIALDNtOwBS2A8v33+sJcbw5A/CvLVu2KCQkRFOnTlWuXLms16tUqaL33ntPFotFW7duNbFCmM7VMwHZDgwgFc8++6xCQ0O1f/9+ffjhh2rfvr0KFCigOnXqaNiwYVq/fr1iY2PNLhMA4CF3fQi4f/9+jRgxQnXq1FGhQoWUJ08eVa1aVaNHj9a1a9eSrd+3b5/atm2roKAg5cqVS/Xr19fatWsdPvalS5fUr18/BQcHKyAgQBUrVtRHH31k1w2Ge4ttZ59vthQ6AQ06AQE4durUKdWoUUN+fn7J7qtXr54k6fTp054uC97EtrOPTkAAGTRz5kzFxMRo3759mjJlih577DHlyZNHP//8s9566y01adJEQUFBevjhhzV+/HizywUAZLK7fjDIzJkzNWXKFD366KN6+umnlT17dq1bt07Dhg3T/PnztXXrVuXIkUOSdOjQIdWtW1fZsmXT4MGDlS9fPk2fPl0tWrTQ8uXL1bRpU+vj3r59W82aNdOuXbvUr18/VahQQcuXL1efPn106tQpjRo1yqRnDFNZ0u4ENHwJAQE4dvv2bQUGBjq8L2/evNY1uIfRCQggE5QpU0ZlypTRCy+8IIvFou3bt2v16tVavXq1Nm3apJUrV2r16tUaOHCg2aUC/9feXYfHUe1vAH9347Jx17q7QwuF0kKR8sOlUIoVuVDctVzswsVuBS5WilwKFHctBSrU3dMmTSNN47bR3fn9MZ09M7uzm02yyTab9/M8fbo6ezKzydl593vOIaIO1OVDwIsuuggPPvggIiMjbbfddNNN6Nu3L55++mm8/fbbuPXWWwEADz74ICoqKrBx40aMGDECAHDVVVdh8ODBuOWWW7Bnzx5bFddbb72F9evXY/78+Zg7dy4AYM6cObjwwgvxzDPP4JprrkFmZmbn/rDkfe7MCchKQCIiaivOCUhEHaypqQnV1dWorq5GVVUVmpubAYCjnYiIuoEuHwKOGTNG9/ZLL70UTz/9NHbs2AEAqK2txddff41TTjnFFgACQHh4OK6//no89thjWL9+PcaNGwcA+PDDDxEaGoo5c+ZotnvHHXfg888/x8cff4z77ruvY34oOn6phwMHOKkE1KwOzJMzItLKysrCe++916b7r7rqqo5qFh0vWhsCshKQiNywZcsW/PLLL/j111+xcuVK1NfXQ5IkRERE4Oyzz8bUqVM1o6KIiMg3dfkQ0Jm8vDwAQGJiIgBg27ZtaGhowAknnODw2AkTJgCALQS0Wq3YtGkTRo0aheDgYM1jx40bB4PBgPXr13fwT0DHJfVwYGeVgH7qCg1+o0pEWqtWrcKqVat07zMYDE7vNxgMDAG7g9YOB2YlIBG5cNlll2H58uUoLS2FJEkICAjAhAkTbKHfuHHj4Ofsbw0REfkcnwwBLRYLnnzySfj7+2PmzJkAgIKCAgBAamqqw+OV2/Lz8wEA5eXlqKur031sUFAQ4uLibI9ti+TkZM11Kz/AdwlWizbQc1YJCA4HJiInMjIyNFMGdBT2M10YKwGJyIM++eQTGAwGDBs2DI8//jhOP/10hIaGemTb7GuIiLoenwwB77jjDqxZswbPPPMM+vfvDwAwm80A5BDPnlLtpzzG1WOVxyuPoe7D0qT9YOOsElB9u31wSETdW05OjrebQMc7VgISkQeZTCZUV1dj69atuOKKK3DSSSdh2rRpmDp1KoYPH+7t5hERUSfzuRDw0UcfxcKFC3HDDTfgwQcftN2ufOPV0NDg8Jz6+nrNY1w9Vnl8e75BKyws1FyvqqrSLGxCxydLs3uVgOo5AVkJSETewH6mC+PCIETkQWVlZVi3bp1tJeDff/8dP//8MwwGA+Li4nDaaadh2rRpmDZtGtLS0lq1bfY1RERdj5PxjF3TvHnz8NRTT+Gaa67Bf//7X819KSkpAKA7jFe5TRn+Gx0djZCQEN3HNjQ0oKSkRHeoMPk2dysB1XMCSlwYhIiIWqO1lYAcDkxELvj5+eGEE07Ao48+ij/++APl5eX49ttvcfvttyMpKQkff/wxrr/+emRmZmLgwIHebi4REXUwnwkB582bhyeeeAKzZ8/GW2+95TDn0tChQxEUFIQ1a9Y4PPfvv/8GIFYaNhqNGDVqFDZv3uxQDbhu3TpIkuR0VWLyXe5WAtrPCfjNU1vx/ND38duiPR3ZPJ9zNLsWu34v8nYziIg6V1sqASsrgUceAb75pmPb5otqarzdAqJOFRoairPOOgsvvfQS3nvvPdx9990ICgqCJEnYt2+ft5tHREQdzCdCwH/+85944oknMGvWLCxevBhGo+OPFR4ejhkzZmDFihXYunWr7faamhq89dZb6Nu3L8aNG2e7/fLLL4fZbMYbb7yh2c4rr7wCf39/XHrppR33A9Fxyb4S0M+/5TkBK/YUYuOjX8C84wD+uvcrNNWzYsMdudsq8Grfl/DJlNfwyT3rvN0cIqLO05ZKwOuvB55+GrjwQqCsrGPb50vuuguIjJT3HVE3kJeXh3feeQdXXHEFkpKSMGrUKLz44ouor69HQEAATjrpJG83kYiIOliXnxNw0aJFePzxx5GRkYGpU6fiww8/1NyfmJiIadOmAQCeffZZ/Pbbbzj99NNx5513IiIiAm+++Sby8/Px3XffaaoH58yZg3feeQd33XUXcnJyMHDgQHz//ff44osv8Mgjj6BHjx6d+WPSccC+EtDo3/KcgI0H88QddXUoy69DYu/wDmmfL/n73b22E+EDX+8EXhjXwjOIiHxEaysBt20DDh2SLzc1ATk5QExMhzXPpyxeLFdSvvMO8PDD3m4NUYf48ssvbfMB7t+/HwAgSRIMBgOGDBmCqVOnYurUqZg8ebLHVg0mIqLjV5cPAdevXw8AyM3NxezZsx3unzx5si0E7NOnD1atWoUHHngA//rXv9DY2IhRo0bhxx9/xNSpUzXPCwwMxK+//opHHnkES5cuRWlpKXr37o0FCxbglltu6fgfjI471mb3KgHVIaC98nwzQ0A31FeKYfgWc70XW0JE1MlaGwIqAaCitNTzbfJFkgRUVcmXKyq82hSijnTBBRfYLqenp9tCv9NOOw0JCQlebBkREXlDlw8BlyxZgiVLlrj9+IEDB+Krr75y67FRUVFYuHAhFi5c2MbWkS9xe3VgP+ej7KuK6jzaJl/VWNtou2w166/STUTkk1o7HNgehwO7p65ODgIBOQyUJM2cvkS+4rzzzsO0adMwdepU9O3b19vNISIiL+vyISBRZ3F3TkBXlYAMAd3TVKMKAesZAhJRN9LaSkB7rAR0T3W1uNzUBNTXAyEh3msPUQf5/PPPvd0EIiI6jvjEwiBEncFqcbMS0EUIWFPMENAdTapKQNQ3QLJKzh9MRORL2lIJqK5gYyWge+xXBVaGBhMRERH5MIaARG5qcyWgqrLAXGL2eLt8UbNZFQJKVpgrm7zXGCKiztSWSsDrrxeXWQnoHvsQsLLSO+0g6iS7d+/GTTfdhP79+yM8PBzh4eHo378/br75ZuzevdvbzSMiok7CEJDITe7OCRgWL1ZWC+yVhqjRfWzXzWWsBHRHc12j5np1CYcEE1E34U4IGBAARETIl/v1A267TdzHSkD3sBKQupElS5Zg5MiRePPNN7F//36YzWaYzWbs378fr7/+OkaOHIl3333X280kIqJOwBCQyE3urg485fahCBncG4E9UnHJ/85DULQIBesZArrFYmYISETdlLuVgIsXA5dcAnz2GaBe4ZOVgO5hJSB1Exs3bsScOXPQ2NiIs88+G1988QW2bduGbdu24csvv8SMGTPQ2NiIOXPmYMOGDd5uLhERdTAuDELkJm0loMHp3H/xPcJw/45ZtusrY8Rw4IZKhoDusNZrQ8CaUoaARNRNuBMCAsCFF8r/AKC5WdzOSkD3sBKQuol///vfsFqtePvtt3HNNddo7hsyZAjOPfdcLFmyBNdeey1efPFFLF261EstJSKizsBKQCI3aSoBXSz+YS80VoSATRWcE9Ad9iFgbWm9l1pCRNTJ3A0B1fz9xfBgVgK6h5WA1E389ddfGDFihEMAqHb11Vdj1KhR+PPPPzuxZURE5A0MAYncpKkENLj/q6OeI7C5hpWA7rA2aENAczkrAYmom2hLCAgAsbHy/6wEdA8rAambKCkpwcCBA1t83IABA1BSUtIJLSIiIm9iCEjkprZWApoSRCWgpZohoFsYAnYoc2UTlly9AkuuXsGVl4mON20NAWNi5P/LygCr1fVjiZWAnWHnTuDtt4Hqam+3pFuLiopCbm5ui4/Lzc1FZGRkJ7SIiIi8iSEgkZuslrZVAkYkihBQMnM4cEusFglSozYErK9kCOhJ3zyxCTnvrkDOuyvw5cPrvd0cIlJrbyWg1cpAyx2sBOxYDQ3AqacC118PzJvn7dZ0a2PHjsXq1auxfPlyp49Zvnw5Vq1ahfHjx3diy4iIyBsYAhK5ydIkKiucLQqiJzJJhIBobkZdFSuvXNGrTKuv4JyAnlS09YjtcuHalqsDiKgTtbcSEOCQYHewErBjFRQAxcXy5ZUrvduWbm7u3LmwWq2YMWMG7rvvPuzcuRNmsxlmsxk7duzAPffcgxkzZtgeS0REvo0hIJGbtJWA7oeA0amhmutl+RwS7EpteaPDbY3VrAT0pKYaEarWFZZ7sSVE5KC9lYAAFwdxh/0QVVYCelZFhbh88KDXmkHAGWecgYcffhh1dXV48cUXMWzYMJhMJphMJgwfPhwvv/wy6urq8Mgjj+D000/3dnOJiKiDMQQkcpN2TsBWDAeOD9KEhpVHGAK6ohcCNlQxBPSk5moRAlqKyyFZJRePJqJOpQ4BW9HXsBKwlTgcuGOpQ8CSEu5fL3vyySfx/fff49RTT0VQUBAkSYIkSQgMDMSUKVPw/fff44knnvB2M4mIqBP4e7sBRF2FphKwFcOBjX4GGEJCbPMBVhZyXkBXzBWOIWBTDUNAT2quFftTamxE8SEzEnqGebFFRGTDSsDOweHAHct+fx48CIwY4ZWmkGz69OmYPn06LBYLSo/9jYiNjYVfa/7OEBFRl8cQkMgFq0XCjl8KMWByorYSsBULgwCAMTwUlmMhYPVRVgK6UlfpGAI213BOQE+y1Gr3Z972coaARN7U0AAEBspV48rKvgZDq6ae0ISArARsGSsBO5a6EhBgCOgFWVlZ+Pzzz5GTk4OgoCCMGDECl1xyCUJCQpCQkODt5hERkZcwBCRy4eUTPkH1+t0ISE/GxEdOtd3emoVBAMAvPASWo/LlmmKGgK7ohoBmVgJ6klSnDQELd5UD56Z5qTVE3dzGjcDUqUB6OrBunagEbG11jno4MCsBW8ZKwI6lVwlIneaVV17BfffdB4u6shjAo48+iu+//x5DhgzxUsuIiMjbOCcgkRO15Y2oXr8bANB0uBCHNxSJO1szTxOAwEixQrC5lCGgK3ohoJUhoMdIVglSvTYELNnHqiEir/nwQ7lqavt24I8/2h4CshKwdVgJ2LHsKwEPHPBKM7qjlStX4u6770ZzczNCQ0MxcuRI9O7dGwaDAXl5ebjwwgthtVpb3hAREfkkhoBETpQe1s7dV5VbYbvc2kpAdQhYV+q5OQGtFgmfPbQB713/JyqLfGPIbEO1YwhoYQjoMebKJjHc8JjKHK4QTOQ1xcXicm7u8VkJWFAALF3quKJuV6YXAjIY8Ry94cDUKRYuXAhJkjB79mwcOXIEGzZswL59+7Bp0yb07t0bWVlZ+PHHH73dTCIi8hKGgN1ETVkjPrxlFb7713auBOqmigJtWFebXyGutLISMCg61Ha5vtxzlYDLX9uL7c9+i4NvL8end67y2Ha9qb7KMQSU6hkCeopeWGzOZwhIHrJrF/Drr4DEfsZt6hDw8OHjsxJw+nRg5kzgtts8u11vsg8BJQmorfVOW3wRhwN7zZo1a5CWlobXX38dYWFivt9hw4bhP//5DyRJwt9//+3FFhIRkTdxTsBu4r1Zv+Do9+sBAFGpYZg4q5eXW3T8s1/Ft6Gowna5tZWAITGiErChwnMhYM7KPNvlkm0FHtuuNzXWOIaAaGyApckKvwB+b9Fe1SWOgWpjEUNA8oBDh4CxYwGzGXjvPWDWLG+3qGsoKRGX2xMCRkbKC4lIkmcrAWtq5KHKgDxnoS+QJMcQEJCDK5Op89vji+wrAXNygOZmwJ+nHh2tqKgIZ511FgIDAx3umzRpEgDg6NGjnd0sIiI6TvCMuhuwNFlR/PsO2/Ws3w97sTVdh30IaClTfavdykrA0FgRAjZVeS4ENB8VJzHN1b4x12BDlX7VX02ZTjhIrVZd7FgJaK2sRn1NsxdaQz7l88/lABAAVvlGZXKn8FQI6OcHREfLlz0ZAhap5sP1lbkGGxrEflbjvICeY18J2NwM5OXpP5Y8qrGxEVFRUbr3RURE2B5DRETdE0NAH1Jb3oj5p32FF0YvRcEe8UF2y3f5kOpEQFR7lMNd3FFz1G7uPosISVpbCRgeL0JAS7Xn5gSsLxXH0lLjGyFgU63+B9OqYg4J9oTaUr25IyUc3l7R2U2hruqvv4A773Qc3vf99+KyOjgi1zw1HBgQ8wJ6MqyzDwF9Yai3XhUgwBWCPcm+EhDgkGAiIqLjAGvyfchPL2xH2fLNAIAPrzTgng2XAQC2fZ6leVxdiZMPv6RhLnER1rWyEtCUKOYEtNR6LqxrKhfH0urB7XqTsxCwppQhoCfoh4BA/o5y9D0hrpNbQ12OJAEXXywHQ+vWiYq/mhrgzz/F4xgCuqeuTjsP3eHDQNyx38O2hICxsUBWlhzAeGropfpYNjbKbQ4Ndf74rsDZAiesBPQcvRDwwAFgypROb0p3lJWVhffee69N91911VUd1SwiIjoOMAT0ISV7xJCimk37cPRgDRJ6haPwz/2axzWWMgR0R12J84rJ1lYCmhJEJaBUWwfJKrV6G3oslapj2VDvE/PmNZudhIAlvrH6sbeZy/T349E9PjLMjzpWZaUIhVavBnbvBgYOBJYvlwMiBUNA99gP262rE5WB7akEBOQQJs4Dwb79sSwr6/ohICsBO57evmQlYKdZtWoVVjmZlsFgMDi932AwMAQkIvJxDAF9SF2pqnJNsmL5f7Zjyu1D0XhIu2BEc6U23LI0WbHtxwIMmJyIkIiAzmhql1Bf7rlKwKhkEQLCakFtRRPCYxwnbG4Nq0WCtUZ7LCuO1CM2vWufnDkLAc3lrAT0hPpK/f1YfpCLg5Ab7CeTf/dd4F//An74QXu7XghYXw8EBLQt3PJV6vkAFfXHgvq2VgIqSks9EwIeOaK9XlYGpKW1f7vepA4BQ0PFXJasBPQMSRKVgBERYr8yBOwUGRkZMBja/0UzERH5JoaAPqShTBsIZX26BWHxjoGQtUr7DfiCKV+gYuV2fBsXgwcO34KAYJ6gAUBThfMQsLVVfDFp2uNQlmdudwhYXlAHWK2a2yoK67p8CGipYwjYkeor9CsBq3MZApIb1PPXAcD77wNPP+0YAtbWykFLeLh8fedOYOJEOaTavFkOBshxf6q1NwT01LyAepWAXZ06BExNBfYfGzHBSkDPMJvF3JbDhslVw1YrQ8BOkpOT4+0mEBHRcaxrjxskjaYKbQjYXFCEra+tdnic1NCAuqom+TGNVlSsklcOtpSUYduPBQ6P766aq1yEgH6t+9UJiwoAjOKErvJI++fvKznkOFy5qqjrzwvoLASsq+iYENBqkfDxnX/j1XO+R/5u368CaahShYBBwbaLdYUMAckN9pWABQXA/PnAoUOOj1WHR0uXygHLwYPAzz93bBu7Er1KQEV7hwN7aoVg+xCw3Af+VtiHgIqOrAQsKQHeegsoLOy41zheqOcDjI8H0tPlywcOeKU5REREJDAE9CGWKsdQqLlAf16m4hz5sUf2V2tW+ivNcTJZdjfkahXf1lYCGowGGMLEkGBPhHVluY5zGlUXd/1586z1+iGgswq29vrottXY/cqPOPrdOnx87U8d8hrHk0ZVCBjcM9l22VJcDsnqA6t+UsfSq1x7+GFxWT1XnDo8yssTlwv4ZZONp0NAVgK6Rx0CpqSIyx0VAlZVAWPHAnPmALNnd8xrHE/UIWBUFNCrl3y5vNw3QmQiIqIujCGgj5CsEqw1LuawMxg0lWilh+QPwEX7tR94Kw4zBATk6jDJ7Lk5AQHATxUCVh9tfwhYflgnBPTAdr1NahAhoEEVKDiby649dq8owr7Xl9uuV+/UqWbyMU3VIgSMGZQk7mhuwtFs54vhEAFwrAQE5MUsFBddJC47CwG7QyWUuzw9HLgzKgF9OQTsqOHAd94JKEM0f/9du4iOL1Lvx8hIEQICQHZ257eHiIiIbBgC+ojq0kbA0uz0/sCeaTBGmmzXyw7LJ/sl2drQr7qQKwcD8gIb6gpJewa/1k+47GcSgVbNURcBo5uqCh0Dm9qSzgsBq4ob8Nure1FZ5NkKPXUI6Bct3rMNVZ4NARvrLPjsyi/EvEUApOoalOS2/9gcz5prxH6MGxAnL9RwTO4WHzi5p46lDq3GjdPe16MHMHmyuM5KwJZ1xUrAzq7kKiryfGjWmcOBv/4aWLxYXG9uBvbu9fzrHE/sKwF79xbXOSSYiIjIqxgC+ojSXG0gFDqkt+Z62ql94R8VbrtemS9/AC4/pP3AW3uElYCACEmdMbShEjAgQlQCmkvbH9bVFDkGtnVlnRMCSlYJC8e+i79uWYoFo96B1eKZYaSSVYKkOtkLjBUhYNOx8Ko4pxaLzvoWb132KxrrLA7bcNf7161Ac/4Rh9uzVutUOvkQS60IbcNig+EfF227XrSHw7SoBepKwHvv1d535plAYqK4rqwqK0msBHTmeJ8TUFngRa0zKwG//16u1Bs4EGjw4BdB7lQCLl8O/Oc/jj9/axQXy0OA7e3Y0fZtdgWuKgG5OAgREZFXMQT0EerQyhAYiFE3jtXcP+KiPgiMESGgUvFXlacNAeuL2xYC5m6rwCd3r0XOZt8IEcrzXVeDtXZOQAAIihIhoCfCOvNRx6CyvrxzQsCCvdVoPCRX8zQXFCF3W4VHtltX3aypwAxJECuIKsNYP79rJYp/2IC8j1fi26e2tOl1Nn2dh8MfrdS9L3eDb4eAUp0IAUNjghGcLELAkv2uf3+3/lCA1y/4CRu/PNxh7aPjnLoS8PTT5ZU/FWedBSSphpgrFWSVlXKYpGhrJaAkARs36g9J7qrUIWBv7Zd3x0UloH0VoKe2665ly8Sqshs2eG676mAvWcyNaqsELCqS38933AG89FLbXkOSgBtvFO9XdcWhr4eAzuYEBFoOAZuagE8/BbZs6YCGEREREUNAH1FRIEIrQ3gYTr6uL/yTEwAAAT1SMWRaMkLiwmyPqT0WINUWakPAxtLWh4CWJivenfo+dr30A96f9h6aG61t+RGOK1VHWggBW7k6MAAER4sQsKG8/UNOG0odqxMaKjonBCw+qH2ftFQ56a6aMu2Qr/BkUQnYXCtXgZRtz7fdlrembWHU8if+soWNxsgImMYPst1XvEN/MR1fYVWFgOFxwTBlisqhqkPOQ8Cmegu+uvwjFH6xBt9e+ZFthXHqZpRAIygIMJmARx+V55wdNAiYOlVbCagESOoqQKDtlYDvvw+MGSO/VrWPVK0roWpwMDBggPa+46ES0NshoPq9oteWtlK/fyIi5PcyICrYtmwRlYerVrXtNTZuBL74Qr4cFwd89pm4b/v2tm2zq2jPcOC33gIuvhg48UTfCvyJiIiOEwwBfYR6fjj/yDAEhvjh1k3X4rTFV+L2jbNh9DMgNEFUAtaXyAFS/VFtCGipbP2wl7ydlbAUyycbltJyj1WFeZM6BPSLi3G4vy2VgCGxYk7Axsr2h3WN5Y7Bmye26w5lYRmF3iIlbWGu0IaAEakiBLSY5ROyxiIRVNUcattJrvmgGAY86r6pSJ2QYbteleW7Jx1N9Ra5yuIYU1wQonuJSsDaPOchYOG+algr5b8XUm2tT/yeUxsooVV8vBz+XXSRfNvWrXKQlZAgHussBCwrA+rbMJfozz/L/5eWAps2tf75xyOlEjAuDkhP197XlhAwIgLw95cvd1QI2JlzAqqrRj0ZAqorAcPD5SGrgKgEVFertXX+PnUl20MPyXNohh/7HObrlYD2w4Gjo8U+bqkScPVq+f+6OmDbto5pHxERUTfGENBH1BSJQCgwSg6bopKCcdI1fRAeEwgACE8UlYBKFVlTqTYElMxmNNQ6X2BET3G2NgA6mtUBE2t3stpiEQIGp8YC/gGa+9tSCRgaKyoBPRHWNVc4Bm9NVZ0TAlbkaatwKgs8UwmoCQENRkQki/esxdwAc2UTJFUFR1Ohi/m0nKivaYa1QrxHe09MQvpoEVw05h2FZPXMHIfHm8qj2jm1IhKCkdBfhICNRc4rfOyrP+0XFaJuwGoVIaA67IuNFcFTYKB8wg+IOQHtQ0D1fa2hDoTy850/rquQJG0ImJGhvb8tIaDBIKoBfWE4cEdVAqpDQJNJDk8BEV6pg6rcXO0K2O7KyhKXhwyRj82QIfL17GzfqWbVY18JaDCIIcG5uZovoxyojznnDyUiIvI4hoA+wlwsQpigmDDdx0SmikrA5spaWC2SrbJHrehA66q6yg5pP8iWZnf9ENBcIkLAoJgw+EVHaO5vSyVgeLwIAS017QvrJKsEqcYxeGuu8exKvc5UF2jfI/arSjfWWbBu2SF8NW8z3p75G+af9hV+fHFni9vVhICBgQiNDrJdtdY1IHertgJFqqtr9Wq+8jZEyJc5Ihp9ThSBhtTQgLxdXf89rKfqqPb9EZEQjLRhotJVqq5BdYn+5PtluR1T/UldSEWFWE07Pt7545Qhwc4qAYG2zQuoDgR8IQSsrJRXigXk/emJSkBAhIBdfThwY6N2zkS9tjQ1Afv3Az/8ALz6KvDnn+5t21kloNksHxP1kFVJkl+jtdQhYJ8+8v9Dh4rbdu1q/Ta7CnUlYFSU/L+yDywWOQR1hiEgERFRh/L3dgPIM+pKRRCinvtPLTpdhIDWqhoU59TKlR12SnJqkDEsyu3XrsjThgEVh7v+t9v1ZapKwJhQ1MVHoq5YnFC1pRLQlCBCQGtN++YELC+sB6yOK+NaazunEtB+Fela1SIlteWNeLHvf2Et1Z4o/r18CwaeloLMEdFwpq5ShICGoECExwXbrkv19SjY6TgMLXt9CeLsK2hcyNsm2mWIiEBoZABCTP4whIZCMsvH5cCao0gfEun2NruKmhJVCOjnj+Bwf2QOjwKMRtvfguwNpRg2PcXhufa/11UFDAG7HfX8XOpKQHtJScCePfJiILW1+iFgW07ufS0EVAdcnhoODIjFQWpq5CAtMLBt2wG0FZuBgfL2qqrkoMy/gz9C2od+9teXLAH+8Q9tlZ7BIA8VHzHC9baVENBgAEJCRCUgIP989kNW9+7VLoLjDiUEDAgQx1apBATkeQHHj2/dNrsKdSWgErD27y9u27sX6NdP/7kMAYmIiDoUKwF9REOZCGHCEvRDwJh0cbvU0IDcLfrf5pfmtC7Eqy7QPr46v+tXUan3Z2h8KEIS218JGJks5gSU6upgtbR9yGlJjn4AI5nrnA5llaySx4a51hVrX1+ZYxIAVr9/wCEAPNYC7P7NdfVPfZUIAY3BgQiLEZWAaG7GkR2Ow3/zt7Wu2uXoHtG2oGS5YsZgNCAoXYQaeZt8c3GQ6mIRAhpC5IA1INgPfvGiGvDwZv0h1vbVnjWFXT/sp1ZSrwzsTiUgIAc3eoFdaysB6+q01UUMAZ1TLw7S3qo9dfCmDm3UIU9HsQ+A7EPA5593HKYrScCKFS1vWwkBw8PlIDBS9aVPZaVjCLhvn1tN1rRDCQF79hSBqToE9OV5AdXvDyVgVS98s2eP/vPq67VzTjIEJCIi8jhWAvqI5koRWpkSQ3UfE98zXHP94Er9k7DWVvI5VIUVdf1woKlSVOqFx4eiqTYS6lOptlQCRiWLSkBIEqqKGxCVFOz8CS44XY3XakFtRRPCYwJRll+HL+5djdLtBWgoroK1vBIIDsbkf5+DU25w8g28m+xXkVaHpqUHVSfqISEw+PlBOnbCdXS368DOPgSMiA/S3H90m+M8YiV7WjcvYFmWOJJh6eJkObJfIur35gAASnf55uIgtaUiBDSGiH0bkhaHmiJ5Pzo7RrVF2hCw9igrAbsddysB7UNAT1QC2j/eF0PA1FTt/e2tBATkEDApqW3bAbTB24ABIrgqK5PbDMir4H77LXD4sPzPbAbuugs4//y2vy7gOgSUJHluOUAOPWfMAN59V77uTmCnDgEBbSXgwYOO8/W1dnGQoiK5ChYQw2AB7XBgX14hWAnsw8NFAGpfCajHfq5QhoBEREQex0pAH2GpEiFMZIp+JaApNlCzwMWRzfofrqryWxfiqavAAKChuOtXAlqqRQhoSgxFVEb7KwGjU0I01ysKWzd0t65KTKStHoJtjNS2TdnuxzevwOGlf8G84wAsRcWQGhshVVVh5bxfW9t0B03l2mOuXqREXQkaPa4fEk8TlQ/lWa5DwIZqEQL6hQTCFKcNAav3O4aAlQdbVwlYkytCwOjeIgRMHCpCjeoDXTME3PpDAZ5MWohner+NFW/sc6j8NJeL+f78wkQAHdUnzna5fL9+qFpfbBf8Fnf9sJ9aqS2VgEeOiBDQqPrI0dpKQF8MAe33Z1CQdt95ohKwvfMCKsFbZCSQopomQKkwzM8HTjgBmDcPePtteQXnlSuBG26Qg7r2cBUCVlaKkG3ECOCFF8R9bQkB1ZWAmzc7Pr61IaDefICAfJyVAL2rVgJKkny8L71UPtZ6lEpAZT5AQBsCOqsEtD/mDAGJiIg8jiGgD5CskmaOOWchoMFogNEk7qveq38SZl/x05LGMm0Y0FTW9cMBdQgYkRSK2F7a+eEMfq0PAUMiAjQhbEWBe/MCWi0SnhvyPp6LfhYf3rIKAFCZL45RYFIMYBC/ypVH5BCwbOth3e01FxajtrxR9z53WJqskKq17xF1CF1TKELAsGQT4vqLqpTaXPdDQP/QQASH+wNGcSJsOeoYUJkPt+4kt6FQhIDx/cXJcuZYEQI2HylGc6PjfJkA0FTvOBfj8eLnB3+HpagEjQcPY8WNH+K5we9h20/iJKquXFQC+oeLEDB+gDhG5sP6IWBjmfaY2wfB1A20Zk5AxcGDIhAYNEjc3tqTe/vQsKBAd07bLsW+EhDQDgk2tvEjmn0loLt++02e9+6ZZ8RtSvCWlCRWfQbEkM316/VXei0pAQ4dcv+19di/R2pq5CpDQBsCp6XJP7PSPncCO1eVgM5CwNaEms5CQEBUAx49qv2d6irWrweeeAL45BPgpJPkik/74FWpBFSHgCaTCJKdHSP7Y96WVcSJiIjIJYaAPqDyaINmkYjYDP0QEAD8o1QrBB9RnYCoghb7ip+WWCq0YYBUVd2u+e68raG2GWgUFVPRaWFI6GNfCdi2Xx1DqKgGrD7qXiXgxi8Po27nAcBqxb43V6Cp3oKaItVq0HHhmu1WFcnbbS6psN3WY/YpqmMsYd/Ktp94lB42A5LdyXdDPepr5FUu64+K909kWgSSh4gT0qbCEpfzEjbWqCoBQwNhMBpgCFZVA+qchFmKy5wGdg7br7PAUlZhu546VISAfSeqQg2LBQfXa8NFq0XC88M/wNOmf+HT+9e79XqdSbJKqN2nHXZZvycbn09/HZ89tEG+XqEfAqaNEJWAzUWlsDQ57s/mCu3fBWtl1w/7qZXaUgm4caO4PHSoXO0GtL8SsLlZ256uqKUQsLMrAZ96Sh6i+sgj8r41m8Ww2MRE/bkG1UHfv/4F3HGHuK4XprWG3ntECc3UIWBqqjyvn1JplpcnqgT1NDaK4LKlSkDlGFRWti6wcxUCtjQv4PLlwNixwH/+4/7rdabVq7XXv/xSDvhfeUW+3tgowtpIuwW2lHkBS0r035v2v+fV1a6PJREREbUaQ0AfUJqr/YAUl6E/JyAABEarA0IRqARkiMoN+8o+V5rqLZDsP6BZrfLKw24wVzahpqztVWkdoSxfG87FpIUiZaD2g6yxDZWAAOBncgzrWlK4U1XJ0dSEXb8Xwayajy0kLhzGUBHo1JTUo7a80bbSLQCc9I+h8E8WJ+0HV7f92/WjB/UrwEoOyce8qVQ1HDgzApmjRAgo1dejJNd5BWRjtQhfA0LlFS3Vc9fpslqQu60CAPDjCzvwz+iXMX/Kl7ph4+HtFZogUb1ScUR8EIzRUbbr2Wu1J3xrPsyGeVsW0NyEnYtWuG6TF2RvKnecJP+YXW//DQBoqBQhYGCEeM/0HCtCQDQ3I2+nal5HHKv+rNH+TksNDTBX6lQAke9qy5yA6hAwPR1ITpYvt3dOQEB/rsGuRB0CKqGqJ0LAtlYCKsGVJAFr1miH37oTAk6YAEyaJK5v2eL+a+vRO+ZKm9THPi1N/l+9cIk6hLNXo+rD9CoB1VVqEyc63l5fD8yZA9x8s34VpP3rO6sEBPRDwEcfBTZsAO691+nfdK9at05cVir9LBbg8cfl9456AR91JSDQ8ryAepV/HBJMRETkUQwBfYB6kQhDUBCCwpyv9xISH657e/QgMdePpdz9ELDogH4gVLS/5XkBd/52BM8nvIAXkv6Nzd8cPydzmkU3DEZEJQUjIj4IhiARRrVlYRAACIgQAW1lnnv7uexgheb6np9zUV8q2hieFK4JF2uK6xxCnNRBkYjoJ4LeI1vaHgI6Wz26NLdWHppeKY59XE8TUgZEaIZB52x0XpnSVCsC4YAw5yGgITAQhnDxXs7dVILGOgv+fuw7WCsqUfb7Fmz4wnE4dN42cUJsCA93mHMwJFMEGwVbtCHg4Y3iulRbi4oj9Tie7PlNVMYYoiIx/JFzbdctJWVoqregsUq0OShC/OwxqSEwhIkvCA5t0h6j4pxa3SrMoiz998LuP45i4Rnf4McXuuicV6RPHQK6WwmoHiaYliZCwNJSoKEBbtMLAtydF/D224GMDOCXX9x/vc6grmT0ZCVgnCrUd7fisrFRuz9Xr259CJiZKc/Pp+jIENC+EhDQhoCu5gVUL/qhFwKqh5lPny4uK6HVokXAW28B//0v8NVX+q+hhIB+fvJ+UVNXAtovDiJJ4ramJiA72/nP4S3rj1XCBwfL7ZswQb5eVSWHeOoQ0FklIKA/L6DeMXcWAkoS8PHH8qI0RERE5DaGgD6gslBUVhnCnQ8FBoDQBP0QMG28WJVQMpvRWOfevGfF2fohYPHBlgOuP17aKA+7bWrCny8eP8Mr1XP1GUJDbFV/xhjxYbatlYDhmaJCo2S3e0PZqnIrNNcL1h7WzMdmSgpDgCoENJfW4cge8RyDyYTgcH8kDhchYOXetoeA5Yf1j3n54Rq5ys8i3jtJ/SJg9DPAP1GcPBZsdxECmh1DQPUCFgq/+GgEpYh9WbijFGs/ztFUTeRudBy6VbRbhICBSTEO90f3FyFg2R7t80v3aI9X7pZWVNg4kfV3Cd6e+RvWLWvn3FkADv8tTorD+6fitNsGizutVuRuq9BUWgZFavdrYLLYnwXbtPMCOq3+zNG//bOZn6Hk5434+77PcHBD+/cTHSeU0CokBAhz0dc4qxJMS9MuLtGa+b7aGgIWFADz58ur1j7/vPuv1xnUlYBK9Z4nQkB1tdWuXe495/BhbdC/apVjCKg3J6ASAhqNchjXs6c89xvQ/uHA7lYC6oWAruYF1KsEtA+rADlMHTPGcZuffipu01vhV5JECJiZCQQGau8frPrbbF8JmJ+vDSkPHND/GVrrr788sxpxWZn42UaOlCv9xo8X9+/bJ+YABRwrAdUhoN4xak0I+PnnwGWXyStDr13rRuOJiIgIYAjoE6oKRVWYf6TrEDA8Uf/+fqekaK47q/CzV3ZIP+wrP9RyJWDVQXECVJN9/MztVF0kQkA/k6jcC4oXlQJtrQSMHySqZ9z9mc0FFZrrVTsPa1bjjUwNR2CkCAHryupQckB8Ex8QL5/cZI5XDfk+XKQ775s7nK0eXZFfq60MMxgR30N+v4WmiYCpeK/zENCiCgEDTfKJk3+YYyVgSEoMwnuIapeyfSXY9pH2ZLdsv2P4VJYlbgtLdwwBk4eL8MKcXaS5T/1+BYCCneW6P4O7muotWHrO/3B46V/4/ooPULCnfatql+0QFT+JI1Pk6lWTCP0PbylFc42oBAyJ1oaApp5if5bu0/6szn7Py3Id/07k7axEc8GxfSdJ2Pmj/gI11AUplYDx8fIcbM4EBWkDI4W6EhBo3TC/toaA6mqjnTvdf73OoISAUVFAwLFqaU+EgMnJInxx92fOydFeX79eDgYVLVUCpqbKP4PRKKoBDx9u++rEFos2hFToVQIqw4HV4aerSsCWhgMrevd2HL6alwf8/be4TW/YcWmpqIazHwqsvGbPnvLlHTu0lYe7d2sf64kQcOlS4OST5bDOfvuttWGDuDxunPy/fQWmu8OB21sJqK4A/P13/ccQERGRA4aAPkC9SERglPP5AAEgIkWnEtBgRJ8JcZohmyXZ7g1VrcjTDwudBUVqDQXi5KCpsOS4WUxEHQL6q4bvJo3NsF1Wh0WtkTZKPK8xv9jlIhm2xx2t0FyXqqo0Q25j0sM0IWBDRR3Kc8RzQpKiAAADT1Wt2NnchAPr2nZyVnNE/5hXF9ag5KBolyHSBL8A+U9MZC8RAlYecP66zaoQMChcDgEDwh1DQFNGNGL7iW1WHShGyUrtCUVltmMIWH1I3BbVyzEE7DFOHB9LSblmzrvGfG1oW7zXeYVbY50FW38ocLlgyR9v7oOl9FiQ2NSEP//rZsWOjuZGKxpyxIlS75PkypggVXXfkV1lLkPAmH4iBKy2CzydVX/qDWnf/r029DuyVedEnroei0UEOq7mA1SohwQr7CsBW7M4iN5j3QkB1WFQYaE2oPA2pbJSPXx3yBARnAwb1rbtGgxiJea8PHmYZkvsh502NAA//iiuJyU5hoC1tSLIVA95VQ8J3rq1VU23KS4W4Zh6/9iHgP7+4v2oDtzcDQGVqkW9SsBeveT3bMix/nXvXuCLL7SP2b/f8Xnq2/RCQEDMC1hTA+TmitvtQzpXcxsC8nFytWqxJAHPPSdfrqsD3n3X9fZasl41amPsWPl/+xBQXQlov1/T07X7055e4OesYnjlSnFZb25FIiIi0sUQ0AeYi0UIGBzruhIwOs3xfmNEOPwDjTBGmmy3OZv3zZ6zsK+mwPVJR01ZIyT1iUlTI/J3t68SylNqi0UIGKAKVS/89wT0uWkqBt55JqbdMVjvqS3qc4JqHq3GBuTtcv0zNzdaYa1w/ZjYzHCExGhDwOo8caJrSpM/hEcmBsMYI6pzsla2bUhwnZPVo2uP1qI0R7Q1IEa8nxIGiZM4c57zENBarwoBTc5DwJje0UgaIrbZkHXYYYGa+nzH16kvEMFdfH/HELDPhDi5kgUAIGHPH/IJZ3FOrWahFQCoyNavBLQ0WfHCoMX44qw38NKYD50GvZve2KC5nv1d20PAvX8dBZqVwNKAwdPkoEU9/LxsfymsZhEChsVqQ8Dkoar9WaDdd9WFzoNfezl/5mqul+9r+0rUdBwpKxOhjKv5ABX2IaAS1rSlErCxUQSQ6koid0JA+6ChvZVQntLUJMISdcgVESEPxV22DLjttrZvXz3k1J0hwfaVgIB2DsXERG1VV1mZ43yACk/MC6h+b6i3Zz8cOCVF/M0ODRWVlHv3Og/H3K0E7NVL3rYSch08CHz0kfYx+/c7vo46uOvdW78N6sVB1MOmW1MJ+MMPcsXtlCmaaTg01q7VBrGffuo6NGyJelEQvRBw/37XlYDq/XnggHZhFYtFVBurpxtwNixcvZ89MdSZiIiom2AI6APqykQ4ERLnOgSMzXSsBPSPlT/8BkSL+5xV+NmrLVI9TjU8rK7IdXB1cL1jQJOz3vnw2D8XZ+GTe9Zh20+FbaoYLMk14+WJn+LfIz/EynddD68xl4j9GRwj9mdYdCCufG0SLn1pPAJD2jZMK75HGAyhIlg8+LfrgKRgTxUguR62G98jTBMCNlXVoU41hDiqR5TtclhvUQ1YsKnlEFCySji4oQzVJWIuuYYSccwNIaphyCU1qFJVhqmHT6cOE2GU5WiZ06HIFlUIGBwhh4D2c9cBQEL/aGSMVK2ACcf3RHNxuea90txohaW0wnY9ZYhjCBgU5o+AVBFeZP0hhwwH15U4PLb2sH4l4M7lRWjMkZ9n3p6FI1k6Qdnmcph3aN+HDVm5bR4SvG+FqJLyS4xFRLwcnEb3EfuoOqcUUp0qBIzRhqvq/SlVV6OqWBzzmkInwe8Rx9vLtmhDwLochoA+Qb2IRVsqAVNS5OGtbakEVFcCDRokL0gAtL4SEHAdAprN8rDCo+14z/74IzB3rrywhivqVXvtQ9VBg4CLLnKcS6411CGgO0OC9ULARvH3GImJ8nBfpXKuvFwbAvboIS6PHCkut3VeQHXwM3y4uFxUJFe/KRWIynyACiVgqqjQzrmo5u6cgEqApwTPFovjca2ocFyB2dXKwAr1XIPq6rrWhIALF8rVfStWOA9b//tfx+21NZiVJBECRkWJny0tTfxOtlQJCIh5AZub5WBVcfSo+KJBHfzqhYCrVmmv79njfKVmIiIi0mAI6AMay0QFVFiC6xAwvqdjCBh8LKwJjheVW+4M5wWAuqPicf7JqqGupa6fn7/NMQTM36r/gf3vj3Kw/LoPsOvF7/H59NfxZMS/8fJJn7m9orBklbB4xueoXL0DtVv24der38eLEz5B7rYK3cc3lKtC1VjXw6tby2A0IChNnPDlb3E9L2DBrgrX2wsJQWCIH8LiRBjXXF2H5hLxvLje4kN43BARApbtch4C7v7jKN6e+RuejPsP3hs7Hy/1WiAv+gGgWbV6dHAPsb2G0lpU54sQKyxJhIA9RqsCO0uz06pPSRUChkQeCwEjHCsBU4dEI3NENGB0EcbavU7+rkrAKqolMobrzFkGIGqwOKks3CCHDHk6x6nxiH4IuH+FNpg4uNbxub8+t1H3uSvfbFuVUv468ZqRA0X7EweJ/V6fVwJJtRqrKV4brtrvT3XwWVesCn5VwUR9iTbgrCpuQFO+dvivVFWF8oI6UBfn7srAiqQk7XVl3ra2VAKqH5eSIoIfT1cCzpghV1UlJgKjRgEPPABs2+ZeGwE5zDnnHDmcmTgRuPpq50MZ1QGVuhLQU9oTAuot+qKEusqQYFeVgIMGyZWfgOvASZLk+fVuu00+rhkZYliyOiDu00eEdUVF2vuU95XCnXkB9ULAkBDHORh79XLcpsKo+vhsPyTYnRBQqaIDtNV19lWbOTn6VX7qQA7QP8bl5fLqufbUC5u0Rn6+eD+PGSP2gdEI9O0rX87K0s4DaV8JCDifF1D9ez5okDy3qP3tCvVQYEAOrPWGZhMREZEDhoA+oKlShICmRNehlSk2UHw4PyYsWQ5rQhJECKhX4aNHHfZFDBAVHi0NYS3a6Rj42a++qtj+ufaDnWQ2o3Lldnx10fsoy285XPjy8c0wb9POq1O9dhcWj16Er+Y5Vik0lov9GRrn2RAQACL6iLC0ZJfripOj+yrEFT9/h/uNEfIJTHicCHSaK2thrRInOYn9o2yX08eKE/O67CMOQ1WLc2rx/ND38fEpr+Lw0r9gLZdfX6quwYpFOyFZJc22oweK7TVX1KD+qDjuEani/RSTGqKpgDy0UT/wlRpUIWCUfAIQHGkfAhqQPjQK/oFG+MXrBHmq93fuZnEycnirCO0MoaGITgmBntSx4n1ctUc+2Sze5dhea2U16muaHW4vWK8NJvI2a9/XjXUW5H+ret+pqikPfNO2IcGVu8RrJo0WIWD6CFV1X1WVZhiYfQgo709RHZm3RfzMDarf88BMEeI0lmn/Tmz9Lk93qNn+VawG7PLaWwmohDVtqQRUhwDJySIErKyU56VzprHRca47ZyFgVRWwfLm4vnmzPJfauHGO29BTXw/Mnq0NbN59Vw483n7b8fHq/Xk8hYAJCXKAqRYRISq93AkBg4LEnIS7d8v7xt5338nB0QknAAsWyMf48GFgyRL5fvtjrryfior0VwZW2M9Pp0cvBDQYHKvWXIWAl10mLtvP26dcNxjENuylporfhQ0b5Aq40lLt+wKQq9vUC7QoDh3SBsl6Q77fe0/s+8suE6M1li1r25BgdcWisiiIQtnvTU3a4FwvBHS2QrD9MVe+SHCnEhDgvIBERERuYgjoAyxV4iQoMsV1JaDBaIDRpK0GjEiTQ0BTightlHnfqoobXA7BVa9SmzJGnNxJDQ2oKWvUewoAoEJncQj71VcVZTudVIs0NuCXF1xPOp67rQJbn/9J3KAO0pqbsPmZ79FQqw1ymqpEJWBLoWpbqFcIrm5hheCygxW2y2FDejoEuAFR8vE2JYggSaquhnp4bNpgcWLT72QR2km1tZqhqjt/O4LXRr3pMExVUbAuDxVH6gGL2F8po8T2LFW1aCwRIWBUhnaOpUDVIhWFOxyPv2SVIKmGn4VGyRVnShioMEZF2IZjh6TGau4L7JGKgDQRPhzZLYK/I7vE5YBEx6HAiv5TxEml5WgJKo7Uo+qA3nGSkLvVcV7Ayt3aYMM+6F2+aLeYv9BoxIQnz7Hd17A/F0f2uw7gq0sa8PzwD/B0xuvY/E0ezJVNaMoXr9H3FNH+HiOjAeiv4hqR4DjMOjRDhBHqoL65XD/4tVRoKwGzlmuHAityNzAE7PJaWwnoLASMiRHDXNUn943O+wunISDguhrwwAHtyquA8xBQXbGmnh+uoQF4803nr6F47DGx7T59RPhRVQXccINjRaA6wHFnf7ZWUpJYobmlELChQQSyPXoAJ56ovV99LJVtNjdrt6sOAQExJNhi0YYzkgQ8+6xcdak31FVZeddZCFhRoR1C6qkQENAe98BAEdLZh4AZGcCll4rrzioB1cNk9ShBWmWlvA1n7029xUHUgRzgeIwlCXj9dXH9scfkFYKV9rozh95XXwGXXCLPKwjozweoUCoB7R+nNxzYWSWg+nckOVlUDZeUaP8+1NYCmzY5bpfzAhIREbmFIWAXZ7VIkGpFaBWV6joEBAD/KG0IqIQ1kani9sbSGlQW1eM/g17H59Nfx4IpdiviQV4AQVJ9mO59Uorm/iP7nFcD1uY6hkD2q68CcjBUny1OBkY+/n+ImiQm1N7/0UanCy9YLRKWXv410CgPgTQEBmL22n9gyH1nA4Zjb/2mJuxarj05s1aL/RmR5PkQMH20qKJpyi92OcdhVW6FaEvPWAT30p7wBMXKxywySb+qzRASAlOcCNFSB0Zo5vHb+4f8s//8yi4sO/NtW+UfAPgnxSN8lPiwXrkzD0VZ6oDKgJ4TxMmhZDbDUiYmBI/tqQ0BwzJEYFe6T+f411k0J+zOQsDAJBHgRfbWVtBkTB+I0DRxf+k+EfyVZYnL6sfY6zcxHggQQ153/lKA+sP6YW3eNu2Q4NryRjQXagMv+wBxy1tiQZCIcQMx7baBMNhORCX89YbrIcHL7lgF87YsNB0uxNeXfYjfX9sj5o00+mHQqeKYBIX5wxgT5bgRgwHhMY7zjUX2Fseo4qB8jOTqT3HcU0aLSkCp1qxZAblovX4IeHQHQ8Auz1OVgAaDOLlXgqfFi+VFHS66SL9CSV0x2JoQUC8Eys7Wr0xThwovvCAHTcqXLosXu55vbPVq+TmAHB59+aX82tOny7dZrcCaNdrndPRwYINBVAPm52vnabN3+LDY7z16OFYCqod2q1cIVu+zjAztc/QWBzGbgZkzgYceEq930kny/lVeY+1aeX85CwEB7TyD9sOB1SGg3uqzgPMQUB1Y9ewphgertwkAF1ygDb3UIWBZmZgj0NlQYIX9kGB1CDhkiLisF5aqgzbAsRLwr7/E9k4+GRg4ELj4YnH/smWu21ZZCVx+ufy400+X96XeysAK9T5Sf2GgVwmofqyz4cDqSkBALAgDyD9787EvI6dMEbezEpCIiMgtDAG7uIoj9ZrgJDaj5RAwMFr7mLheclgTnSEqAS0V1fjywbWwlMgfZsv/2o7acm2lRkmuWXPCljo4SjPk8+gB/YomySqh6YhOJZjZbJt3TnF4RyWkOjHkd/wVfXDGUyfZrjcfKcaGL3SGygD4/KENqNslKgaG3H06eo6OwUXPjdVUi+1bLoYWSVYJVlWoGpns+RCw9wRV1UdTI/J2Vjp9rDlfVJpF9YhC3Kh0zf3KQjARifohoH9clOa6wWhAcE8R4hxefwRL567G6js/0Zzk9rpuCh7O/wfOefk0222W4lLkrBMf7g1hoUjsqw361JV89vfZL1Jhr7pU+/5SQkD7VWzD0sQQ4PgB2krAE68bhKie4iS1Klu8TlWOCOyiejkPAf0CjAjqIfbRnh+yYa0UgbZBddJ4dK+2EnDnr4UOIUZDfrEtqM76uwT1e3Ns9024dQz8AoyIP3mg7TZXQ4Ilq4S878VQK8lsxvqHv7RdD0xPRFCYtlo02K5aEgAMQUEw+jlWCCYMVK3inCuHFOWF9Zohjn1OUs3pBglHD8on1E31FtQfEL9LoUPFCXDlfoaAXZ6nKgEBbYVPaSlwzz3ye+yzz/SH3tqHA+ptuQoB1SGQ0jdZrfrhoDpYGjlSDoHOO0++XlQEfPON/muYzfLcf8rv/ZNPyuFbfDxw003icUqFm6KjhwMD7q8QrJ4PsEcPYPx47Zx36mOpDgGVfZ+QoJnWAIBjCFhSApxyinZ13aeeAv74A7jmGnlYMCCHT7t3a495YqK2Derw0b4SsEcPeQEToH2VgOphvBER2rksL7xQvl8ZXquu1FMHdi2FgOohtevXa4/RjBn621Q/Xi07W34vKtQLgijvwwsucH9I8Oefy4uOAHI167nnitdUz8upsA9KFXqVgOHh4nd4zx7RDvvfc/U+V1cJqocCz5olfrdZCUhEROQWhoBdXNlh7XxIsekth1bBcdpKQCWsiespQkCpthbZH6lOWiQJ23/SDnPUhHxGI+IyQuEXLbZRlqNfCVh0oMZWnQdAs6qw/SIK+/4QHwoN4eFI6mvCwMkJCOotwrDVCxwXWTBXNmHnAjG/U+iQ3rjgqdG269FDxUlkwXoRXFSXNmoCj6iUDhgO3IoVghuPVtgux/WJQq+TtSFgWKJ8LKOT9YccBSc6fgBXD+c8+L812LvwZ3FnQCAmzb8UV711MgxGA/pNjIchSFTi7f5CfGvvF2VCTGqIqKq0k9TXpLmuWaQi3zEENFdoQ0ClUs1+FduoniIEHHJ2pu39E9grHb3GxCC+vzhJrS8o070c1895CAgAscPECU7+D6r5jYxGRI0SJ4flB7SVgAf+1Akk6upwNFv+PV3/oagY8YuLwQmX9wAAjLxikGjn3kO2YM3ehi8Oa6o1AWgWO1EvaqIw9dAJAUP03y9pI0QYYTlaCkuT1S7MN6DPhDjNBPrF2XJbd/52RATJBgOGXzPK9pjGw0VOK3api2htJaCzhUEA7byAjz4qL2CgUIYeqjlbGATQzg9nTx0CKVV5gP6wSyVY8vcXVVg33CDuf+MN/ddYtEhUgk2YANx9t7hv/Hhx2f7n6ujhwID78wLah4AmEzBsmLjNWQiosB8KDGhDwN9/l6vRlBApPFyulnz4YdH/KyEgIAemyjGPi5OrK92tBPTzE+FbVpb+ohrVqr9pzioB7efyUyrO+vWTh0sHBYnqx/37RZDlzqIgCvUKwfaVgOeIaSIcQkCLRZ5HUE2SRFWdxSLPuQjIx+uCC+TLycnApEny5b17Xb8n/vc/7fV9++QwEHCsAgT0Q8DAQOfDoZV5AcvLxe+CqxBQfZ96UZCTThLv84MHXc8RSkRERAAYAnZ56hDQEBxsmyvNldB4bSWgEtYk9tGGNlBV4AFA1h/ak63SHPFB2hAeDqOfAUFx4pv0isPy/X8uzsJ71/9pCzZyNooAyBAYiIA0cbKoXowAAHLXig9+Ib3EB8LBV4lAr3zlTocFQr5/ZouoIPTzx8yPzoXBKMLGjBPFiUP1LvFzleVpKxHjMluurGyLoHRxEu1sheCmeoumAi1pQBSGna0NAU3J8glMQLAfEOi4im5YapTDbep5/CRV5YAhIgKX/HQdps4VVWlGPwOC+4h9VblBhFiBsfIxN4Q77iNDaCiCw7UVaepFKqzllair0g6v01aaGhBikp+vHs4MAPH9RAjYZ3wsTlp4GdIunYQrv7hQ/vmGitdpLi6H1SLBapHQXCyChpQhrkPAjAnqRW5EpaZffCyi+4qgrDpXWwl4ZJP+QgdZq+Wgt+BvMVw2/sS+tvfkuIszYbCtyCnhz9f1hwSvX6yqdDA6/vlOG+8YAsb2cwwB/cL0T8x6jlGv4mxB7rYKlB5SrQwcForAED/NvKLK34E9P4ufLSAtSfNelerrUbiv5bkOXxi9FE8lL8LWH9xcMII6T2srAe2DQr1KQEA7bxngOgT095dDIb3hwPX1wM8/awNFdSXg//2fuKweggjIFVRKFdbgwSK4OO00uSIQkLdtX6XY1ATMny9fNhjkBUDUK8wmJYmAbP16MYQR6PjhwID7IaD65+rRQ/5fPS+g3pyAaspz1KKixO27domAKyVFHj6tPh6ANgRcvVpUfinvFfX7SV3Jpw6UFUog1dCgv6iGO5WAvXtrn/Pqq8CHHwK//ir+9ipDgisqxIq4rQkBo6JEW7dsEQtqREbKVYLKcHT7OQH37NEPu5RjvH27COxOO02ssgu4NyQ4P18skpOW5hj82i8KAsjvYfuhv1FRmi95NfQWB7Gv/tQLAS0W+f0ByL9fvXoBQ49NESNJriteFT/9JAej9isMExERdRMMAbu4ykIR4hhN7gVWSnAEyOGdEhxGJgQ5LDyhVrRBGwKWHxYfpP1j5AAxJFF8iK7Or8Kmr/Ow/Lr/4eDby7Hk/C8BAAXbRQjonxiLsExxAlS8SxuIle4UQ0DihooPhFNvHwwEHTtRszTjlxdFtZbVImH3O6KKMW7KMM3iGAAwcJo4IbWWV8jViQDK81UhoH8AQiMD0BEieouT6NLd+pWABXuqHIZbx2WEwj9VnJClDhOhjTHMcUhwVKZjJWDviUkOt/nFxeCav67VzCenSBilOnlXVXAGx8nH3D/S8X3nFx3hcFuPUTEQi1RIyNmsDdDqKlUhYGCgLSALj9WGgEkDtSehp/2jP67/aCoyhkUBADJHqk5YLM3I21kpv5ZqQZOMEa5DwIFTHcM0AAjNjNNUGjYUaisBq/foD03M3yIPCa7ZJYKynpPFHFp+AUbEnSTC14Pf24UUkOdMLP5dzHk0YO7pCOqjnYer3ymOJ8TJgx1/VmchYHRKiCqMlCtz1b/nfsfmE/VXVfxW5Mn3568VJ9sxIzKQ1Cdcu/LxGtdDgj+e+xdqNu1F85FifH3NF6wcPN4olYBhYWL4nStBQSIUMBq1lYHq4MZ+4Q77YbOACAASE+Vt6YWAs2YBZ5whD6NU/m4qlYBJSdrgwr4ScPt20Y5RooIVRiMwZ458WZIcV/ldtkxUIp57rlgRV23CBPl/s1k7Z9nxFALaVwICwNSp4raB4m+T25WAgLYaEJADm5UrRWijNnq0+Pzxww9iIQglCLIfXg7I+y3I8csvzcITekOC3ZkT0L4SMCJCniMvXfVFnHpeQCWoU7+3WgoBAfG+bGgQ7/OBA+V9oRyLAwe0Q3fV8wEqi30AIgD76y9xm1L5p7jwQnH5yy/12/TRR+L1rr0W+OQTbbitVwloMDhWA+oNBVaoj5Hy3rSv/tQLAXfsEJWckybJr6ueP7GleQFLS+V98MUXciDqakEiIiIiH8UQsIurKhTfBuuFMXrUC1MEZ4oP1gajAX6RJr2nAABq9uZpTsyr8kVlT1CM/EE6PFk831xUjRXProGyUq15Wxbyd1ehZK8IAUMz4xDTXwRilXYrBJsPiG+G08eJD4ShkQFInCaGK+1TLRDy++v7YCkWrzHtMVWFwTG9xsRoFsjY8aN8IldZoKqsDPf8UGBFwhBxDKoPyifXX83bjCcTF+Kdq34HABTsqhBtCQ5GVJIc3Jy58BwE9++BtEsnYcz54oREL9iJ7R3lcFvfE+LEnEkA/FOTcOPaa20hmr3ep6Tr3q4MRQ6IDne4LyjO8X0UEhEAY7Q4Kcjbqh0SrA4BDUFi0YrolBD4xcknnoawMPQ90XUVUkxqCAyqIUiHt5Zh7XuiIsgYFYnYNP05FBUZw7TzW9ra0jdeU0VoKa2ApUkOD0pyzbCWiWBTHdAV7yrGgXWlYlVgAMNnaAO8oReLygjzrhxUFTdo7l+5JEtUtxqNmHrXMFz30yUwxsihaGDPNHlRE/ufZaRjJaB/uPMVK9UVt3u+3a/5PQ88FvYrC9IA8t8BySqhZqc24DQYDQhWVbwe3ug8BCwvqEPe52KOK0tRMdZ+csjp48kLlErA1gxdVU7OBw3S/M3RnNwD8ol87LH36ebNciCiaG4Wr608LzlZVBjl58vhx6efytdXrZKrqioqxPP695cru5SQyT4EVM8xpw4BAXm+Or0FQiQJePFF8bi77tLbAyIEBLQBpxKq+vu7DkvaIyFB7FclaCkrA268UZ67UAl69ELA884DnnsO+Oc/xdyIQOtCQHVYNHSoHAAqlZX2QkJEaGg//BvQDwHthwIrWlocRB0Cqv/OK4FcaKh2KLcz6pBv/345UPrhB/l6eLjjqsJ69AI1JXRVqhFra7WVuOr5AK++WlxWQkB1hZt9CJiSIn7Obdv05+BUDwW+4gq5mnDRIvm9OnCgPARXj30IqLcoiEL9e/bTT/J7UTnu6t9zhXKf+mdTFrBRh4AtzQu4YIGoojxyxHkQSkRE5MMYAnZxNUUiVAiMci+0Gn9JJjKuOBnho/pjxoLTNfepK3wAIHyk+FAnVdcgb5cYnlpbJD5IhyTIz4tMFxVgtVmFqFqrPdn687WdqFIFfdG9Y5E0RFRB1B8W9x3ZXw1JNXdP/1O0J46n3C2GBFsKj+KX+fJrrZ8vVmEMHdYX/Sc5nrQajAaE9BUnENkr5RCwNFv8fP6mjgsB00aKNjUVFuPvj3Kw+YmvYTlagkPv/4HN3+Th6L4K0ZZ4Uf02+rx0PLDnalz/0VTNEGd/k2Owldg/yuE2/0AjBt46FQgMgmnsQNy64Wok9HIM8hRDp+tXxZlS5GMeHOsYPocmOVYCAkBQigikNr+9Cbv/ECc26hDQGCxCQKOfAZd8cTkyrjgZ//fxTIRFO65qq2YwGuCfJF7nyK4y5HwvhgglnjpIs9+cbSOkj+PPnTg4DhnDVZWIVgvyd8vvmV2/iiGshqAgZJ4hQr2qA8XY8b0IyYyxMQ5zJo6/tIcY0m21YPV72iFgW98X1a7hw/sgLiMUCb3Ccc/Bf2DK21filjVX6i72kTY4UlvFASDQpFM9c0yvM8WJa8nKvZoQUJlPVPl9B4DaozXI3lSuWSlcGQoc0UeEgCW7nIeA3zy2XjtPKIA189c7eTR1uuZmseKpO/MBKt54A7j/fuCDD7S32w/hvOgi4Oyz5cuNjWI1WUAOP5QqPSUUCAgQ7cjPlwMKtY8+0laA9esnP0ep3Nq7VztXnKsQMClJrvID5CDiww/ly3/+KZ43erTzYEQvBLRaxYrHcXHOh0y2l3qF4MJCeaj0VVfJx+Wxx4Bvv5XvU0LAxERRvWswAPfdJ8/ZqB4hoDcc2FkIeNNN8nGdNQtYscIx/LV3guMXdi4rAe0Xp1Cow6jvvtOuLg2IEDA0VPu38aqrgB9/lOfbs5/TUo99JeDvv4tVmGfM0K9StKc3tFapKFUPSVbPC6hUAhoM8rBWJcjcuVMO05SgzH5uR4V6KLb9gje7dok5F8eOFfvyxhvl99D27c7n+VPvD8B1CDh+vPgd/vFH+fdYqcpT9r36GCghoHpRECXgVFeWuqoErK4Ww/cVr77q/PFEREQ+iiFgF2cuFiGgXhijx2A04NoPpuCejZc7DP/UVHAZ/XDpe2fDYBK37fxJDAmuOyrCAaUqLCZTPNZaXgFI2qFeB7/Zgbo8UQGWMDAWGaPiNM9R5obbs0K1GlxICNKH2A3pPSURgb1EkLf6rmV47dwfNKuvTrxH56TimMTR4rklW+QhZfs+FUGLqXcrTnZbqc+Jqm03NeGn65dBqZgEgLVv70DZwQrb9eCkqBa3GRDhGAKmDtKvMLn0pfF4zPwA7l53qa3C0JnolBD4JToOV4tKOxYIxTm+78JT9EPAiF6q1We37cfHp7yKZ/suxqav81BfpR8CAkD/SfG49oMpGHG2k5M+O6Fpolol968cNBwQQ1VHXTFQ7ykOEkY6vlb6qHhEp4Rohrke3iqHI9krxVDg4F4pSBsljnFj3lHkrhQhYNQwbRUgAASF+SNilKgs2fOlGBJcVdyAyvWiomXITHFiFxoZgJOv7YPIRP3j6BdghH+8tnonMML5MT/xGhECStXVOPqXeN2wJPn3W/l9B4C6ozVY9YYYamiMjkLKAPn4Jw4Tf1+qs4p0X6+mrBHZSx2HgFau3Y0j+13PI0idpLRUVI21phJw4EDgX/8Chg/X3m4fBj3yiPOKOfvFAhRKAFRYCLz7rnZ7H32knfdPqchSKqwaGrTVb0qYZzDohybqBUKuvVYOEuyrAJ0FeSNHykMb1T/X8uXyisOA/ut5knqI8j33iAUjADnQbGgQIZne3H72WlMJGBMjB43vvaf/PHvq94DCVQjorBJQXYH300/yAh4XXigCIiUENNlVrBuN8pDyge71EQ6VgJ99Jq6rh926MmKE4zQs9pWAgAgBGxrE3IEDBshVpMoxPnhQDvGU43nCCfpTvCihNgB89ZX2PvsqQLW4OIcvlDRaMxzYz0+0o65O+zusngdS+b0qLJSH1H//vXw9LEz8XUlMFBWvrioB//tf7ZyhgLw6tTvzCBIREfkQhoBdXH2ZmMNOL4xprdiBIriInzYC6UMiEd5fhCG5q0UI2FAqKn8iUuUP0/G99cMfRVNOPiwlYh61tOGx6DU2VrPC7IF1ckioWRSkR5Ju9dZpz04D/I59yJUkFH0jJpX3T03EiVc4GXoEoNfJ4gSi/kA+dvx6BA1ZIqgZf/Movad5RFxGqGbuNcluku+i5TtQmSM+rIanRbW4zaAouxAwIFBevdcJvaoxZyIHOw4Jju3hGAjZHp+mP6z85NtHagI0AGjIysU3M5dqqlrtQ8DWiuopTjgrV4sP+AaTCaPP0x/ebK/HRPsQ8NjKuAACE0Q1TNEe+TgVbxEhYOzwVPQcJ8ISqa4O5WtFZVL6RMcQEAD6zRAnr5Ub9qOpXq5WWvHabtuiAobAQJw8x41hZiohadohwUGRzkPAlAERCOypmjNTNcRZmU80IkUc88aSKmR/KlboTjldDM3KGCP+njQVFtuGTqt9+8RGsUCNn78Yhm214ufnNjs8nrygtSsDt6RXL1G9dMEFchCmHn7pLARUVxAqIaDV6rhIQm6uHDwplHBCHe4oQ4IbG0U41L+/do44xemnA5dcIl7v9ttFBVVamnaxBXtBQXIQCMgViOXlchihUOYc7CjqeQEXL9be9/XX2qHRng4BW8tVJaDJ5FiB5qwSMCFBDmaVBTwsFuDzz4HJk+VAWwkB9Y51a/TqJV5jzx4xtDQkRLsatSvBwY5BsPI+VYeMypyDW7eKIenKUGIlBJQk4K23xHPshwIrBg8Wcx7+8YcIxqxWEQIajcCll7r3MyhaMxwYAM4/X1xWLxCkHHN/f/H35sgR4OOPgcpjC3VdcomYYsBgENWAR45o59tU1NeL4N5gAG6+Wdz32muu20lERORjGAJ2cQ1l4uQnLKH9IeCMJ8ch7vTRiJ8+BrM/PAMAkDhGBAKlW0UI2FQuqnSUqjCHFYYBwGjUVBOqJ7juOSYWgSF+8IsTocrhTfIJZ/F2cfIXM1h/GNH4SzJx7udXw6DzYX7YDSe4HPapGeba1Ihv/vGD7ap/UjzGXaQf1HiKeoVge1J1DSrWigqsqB5RLW/PLgT0j41scdiru9ImOFZcxPeSj2lEsuP7Lranfhg8+LQk3J51GwbeeSb8ElUhWW0t9i8TgY9/aPtCwPgBqtBLVY0af/JAt8PPwdO0QxaN0ZG2hWJCVJWGZVllkKwSaveJEDDzhFSkDYqAIVD8HOqVmIeerf/eOnF2X1sgLtXXY/1nubBaJOxYssH2mOiJg1q9YE1kL20IGBzluvozQzWUWbOdY+FuVLr4fW48VCBX/R5z2r0iPO87UfUeb25G9iZtFUZDbTP2LVltu55wxkik/Z8Y5p/z6QY0NzoGh9TJWrsycEvCw+UKsSeeEMHU0KHiCwL1CsHOKgH1qsDuvVdc/u03cdm+EhAQ4deuXWIYov1QYIXBACxdCjzwgON9t92mne9Qj7rC7csvRViUlOS4Sq6nqUNAhRLAms3yHGmKtoSAUVGem9OwRw/Hij/lmBsMjvc5CwEBOfDJzpaHMyvbKCuTQzJPhYBBQXKVISAPoVXC8rPOkivV3KWeFzA4WISqepWA6kVBlKHE6mOsrqhzNkTdYBBVeBaLmMfwl1+AQ8fmYp02zb0h0Wr2w4Fbel+cdpqoxlSv4qz+PVcuHzmiDetuukm7rZYWB1m8WFTfXngh8Mwz4vfg3Xe180QSERH5OIaAXVxzpQgBTYntn8MuJjUEt/40A7f8cA7CY+QAo89kcbLVkFOIxjoLJKsEqUp8aIrrabI931aZd0zkCYOQds4Ih9cymEwwxclz5oRkiBPLop3yt7i1+8XJX+oY53MJjTo3Ddf9PQcBaeIDq8FkwvR7dVYgVIlKCtYEUQ37xUIE/WaO8ViA5kxkH+3JtF9iHIJ6q6rUVHOkxfWJanF7ITHaEDAwoeXnuEu9mrJCmUcwMtXxRCqul/OK0OiUEFz60ng8UvAPRE0Sx8hSKIKG9oaA6sU71EbOdHOYF4D4HmEwRkfZrgeni+MV2UNVaZhThrxdVZpqzoGnpcBgNCAgRWc+ytBQ9B7nuFgHIP/+BPcTAeG2ZXvx6X3r0JgtwvfR17R++GBcf+3rhUS7DgEnXK2/n2Iy5GMdm6l/8hw6pDd6jhb7JiopGMZI8V7IXqudF/C7Z7bCWnXsywSDEec8OxHTHhgNZRVpa2UVVryhs7ondS5PVwICwKmnyvPSKUFBQAAwZox8OTtbnLC3NBxYMWUK8PDDYuitwt9fLEahFwK6mg9QzWgEnn0WeP99MdebyeReJZ86BLzvPjEf4fXXtxwgtpd9CJiRIQeaivffF5fdCQFDQ7Vt9lQVICCHU/ZDgtXH3D4EdDYcWJGRIS9s8tdfYljpggVi4Zn2hoCA/grA7g4FVqjnBezfXwy5Va9QrISA6kVB7CsBAVHV5++vP9+gQh0+f/WVXE37j3+I22bPdr/9CpNJe7xaqgQMCpIDU3t6IWBzs/jZR4xwXFBFPS+g/ZDgpibg+efF9Ycekts2c6Z8vbpazPVJRETUDTAEbIHVasXLL7+MAQMGIDg4GOnp6bj77rtRaz/8yEssVaIdkSntrwTUM+T0FPEB2tKM3SuKUJpXB1jFxOpKVZjBaIBflLYacNKd43DCnCGwp14kIqqvmCuufH8xyvLrNNVF/Sa7nlA8bXAk7th2LRJnjEdgr3Sc8caFCAxxMXfNMZGDdU4iAgJwxn3DHW/3sIShqpNpgxEz3j4f/S8dofvY5IFRLW4vNFYbAoalem7FyX4T48WiFQAQEoLgcDnsjUl3fN8l93c9LByQ3ytTHtafs7G9IWDmSMcQ0BAWhrEXte6E1TRQvD+i+4vjFdtHVK7W5ZdjzTti/jGDKRypA+WfP7yXY2ASPijDZcDcY7qowitavgO7Fvxqux42vK/LIe7OpAzVhoCh0a4nrO8zPhb+SY4BpvJ7rvxvb+ScMQ63qVcgz/5DDLfP3VaB7S/9YrseM3koMoZFIWNYFMJHiWFlm17nAiFe5+lKQGfUQ4KVakB3Q8Bbb5UDRftQoVcvEVqp54prbQiouPJKeXGCm26Sw5OWgg5AG2wpQxWNxo4fCgzIoa06uH3nHXmxDmVfKkNLAfdCQINBWw3oyRAQcBwS7CoEdFUJqNa7N3DOOfLlfFGx7ZEQ0L76LTBQLHLjLvX7Qx1mhYSIIfAHDshDWpVFPwICxJx4etWeo0drVz62N2mSWOTlhx/kKtqDB8V9rR0KrFAPCXbnd0M9JFihPuZ61Yg33ug4B6e6EnC9XZ8xb56ocDzzTDE8Xz0keNEizSgVIiIiX8YQsAV33nkn7rrrLgwaNAgLFizAxRdfjPnz52PGjBmwWr0/TK3v1RORcuGJiJ48HKlDdFbt84DwmED4p4gP33t/y0PxQfWE/QbE9xBBkH+MCIAC0pIw5vx0DJyc4LC4hKmHCCYSB4sTy5o9+fjjNdU8boGB8ryBLQiLDsTNX5+Jhw5chwmX9XDnR9Md5ho7eajTRRY8afJNg2xVUgPmTsOIs1Mx+aaBYo4hdTuHRLW4vfB4bQgYmdHyc9zlF2DUrJbrHylOnuJ62J1IBQQgMsGNVREBDJueoq1+VDYR1r4QMDY91GHuwdiJA+Af2Lo/edOemASDyQS/2Gic8YioPEgaJE6CmwuKsOslMZQ8rF+aLeSLG+gYmKRMcD3MfMJs9cIcNeIkPSgYV3w0o00VqpmjtL8/YbEtv79TTnOsBlSqP+Xfd207DCYTTrmhn8Nz4oaKE7qCL/7Gb4v2oLHOgg/+bxmk+nr5Dj9/nPWvk22PG3uzCBPNOw7Y5gklLznnHOCTT+QTZb152zxFHYYoIaB6ZVdnIWB6urwaKwBcdpl2m+pQIixMDN9UFlBQh4BKONCS0aPloYmnnure4zMzHSsozz5btKWjPf20/FqvvCJXTPr56Yc87oSAQOeFgJGR2r/jra0EVJs71/G2jggBzzgDiGj5SzCNQYOABx+Uwzf7IefKkODiYjkkV4K6UaNERWpmpmPg52wosMLfX4SV1dViqG1wsDx0VudziFvUv2/uDBM/80zH6l29SkBFeLjjgiWAHJ4q23n/fXlxIEBeGOaZZ+TLfn5yZahi1CjxxcO2bcCaNS23l4iIyAcwBHRh586dWLBgAS644AJ8/vnnmDNnDl566SW89NJL+P333/GR8iHDi2YuPBE3fHo6bl9xPnqM7JgQEACih4gTroJ1eSjJEUOBDeFhmnAlYYw4sRl560QYjAYYjAakT9dWA8b0E6Fg5hjV/HBVVdj69De264EZSa1axKI1Bkx1PIk4+S7HaqaOEJcRintz5+LWQ/fhsv/IJz6x6aEIG9pb8zhDSAgi4lsO1cLjtMFOTE/PVQICQPxIsa8CYsVJTmx6KNSBkF9URKuCqhE3jne4rb0hIAAEJGqrAYdf5v5QYMWQqUl4tPwuPFx0GzKGRdluTx+m+l1TVw/4+WPakyLMSh3hGAIOOMP1SXOPkdHwT3asIBxx/xm2VXdbK6FnGAwmccLrTmXpmCu18wIagoJscxH6BxphCNdWgKafOxIBwY7Vt2c+NlbM2SlJ+OuOz7Bg8qdozBEVOcPuPxN9xoug8qRr+sAYo+xjA7Z9cwjkRT17yotf/OMfjqGHJ+mtEKxUAtrPCaeudLrvPrEK6jnnaAMRdfUfICqGqqrkwGLDsfk2e/Z0r3KpLfSGudrPadaRrr9eroS6/XZxm31YCrgf6HVkCDh6tDiW9iGf+viHhbUubJs61XHV344YDtzaocCKZ56Rhy3bV/Wpt6+sChwSIoItQA7s7H82Z4uCqOnNR/nUU+37HVcH6T3dqFqPiJCPjZqrEHDmTMdVnQH5tnnzxPXZs+Vh71deKW579lkx5YBCqQYMDuYqwURE1G0wBHRh6dKlkCQJd9xxh+b2OXPmIDQ0FB988IF3GuYF6oq5qm05WLtATE7tH6X9IH35aydj4J1nYvzzF+Gs+8XQlok3akPApMHipH/ItGSEDNT/wBg9yPVQ4PboPykeCBCBU2BmCoafmeLiGZ4VEhGAuAztN/gDL9buJ/+4KLe2FZGorXxL7O/e89w17YHR8smH0YgR14nFG/wDjTCEiZ9BHRC6Y+rcgTBGaD/UB4a3PwQMUy3egZAQTLi89cNoAXkVZfsQOqmvCfDXzuVljI3BRT9er3n/qFcIBgD4B2DI1JYnW0+Zog3gQof2wf89PqJ1DVcxGA2Y+Mw5CEhPRo/Zp6DXGP05E9WGnp4MQ5QIko2R2mPkp6oGhcFwbC4/R8n9TDjvk5liSGZzE6rXixVJIycNxflPaodhGv0MGHLTJKRffhKu3Xq7w/3ko1JTRYXfunXyMMX9++XrCQkiHALkIGrbNnkBkFtuEbeHhYmqQMBxxdL77hNhX22tqLR1Zyhwe6hDwMxMuWLMm8aN04Y0iYkO1dNORau+BPF0CBgWBjzyCBAXB9xzj/Y+dQiYluY4JNQVg8GxGtDTlYD+/mLBDU/prf1SEP36yVWyU6Zob1fPCwgAEye2vO0zztBW4U2YANh93m21a66RV2Z++mn32gBohwSbTNpFVexDwBtvdL6dBx6QA29AXuxn5kwx/P6cc4C773Z8ziWXAP/5j1wVrDyXiIjIx/m3/JDua/369TAajRhnN7lycHAwRowYgfX28454gSRJqGuu6/DXyTw1BuueOXayZC5Fw/ZS4Ng5fVBKCMxNYuVThAIznpPDP/XtqWNC4T88DXW7soGgIPQ/K05z/z82XIjvnt2K7QtWyKsWHhM3Nlq7fQ8LGJYM87YsAMCgq4d06Gu5Y8w1GVjzlNU2eXxQaohbbQpKAJoCxPxOUf0CPfqzxPYPwG35N6OqpAEJPcI027bEBMDSKL92WFIrX9cPSL5kKHLe/UPcZrK2u+1RI2NQvFZuU8xJg9Hk16CZ/qq9/AYlon53NgAgfFR/XP3pOYhMDNa0O7Z/AJpCYQsagvqluNWOIVdk4sAnxx4UEIjz3jsNdZY6wOL6ea6ceGMGTrxxFgC4vW+jTu6Boz/IlVJ+CXbHNSEQTUflNoYO64PY/gFOt9t3ahQmLDgHf839RHO7MS4GMz+ZovuzTZ8nKlvMTWaE+IfA0JqTfuqaJkwAPvtMXq1TPb+f3lDV3r0dQxJAXrH300/l4ZJnnqm9b/JkICtLrhp67TWxSIf9QgOeNnWqvCABIIeWfi3PWduhDAa5GvDZZ+Xr7lRtKeJUU3u4O4S4NR5/XF40xv73XT2k2t35ANVmzZKH3VZWytc9EQL26iUH0mVl8nst2sMjMiZPFpcvuURe3VivEk5dQThwoPYYOWMyyUOCv/hC/l1ZvLj978vgYHll5tY491w53LNaHY9riupL2TFjXIf1BgPw6qtAXh7w44/i9vR0YMkS/SHOISHy3wsiIqJuhCGgCwUFBYiLi0NQkONQzNTUVKxevRqNjY0ItJ/PpAXJdt9stmduwbrmOjy/6vmWH9hOklXCqpP/FidMioAA9DvfjOdXZbu1nfqnmnF4azkS+kTgjQPzgQN2DzgNsE5oxs4fDqNqXyH8I8JgGOeHHat+1N2eJ5Tdacben3IQHB0C/5N/wq5VP3fYa7lr/YW70Zgvr8gZMeQwGlYdbPE5kiRh7bk70VxagYCEaAQcfQ042uLT2iZfe3X1hK1oLpZXJYwYchi1q/a2anO1ZzVi/YE1tqG1B0wlOLDq93Y1sfFMC7aYD8LaZMGwC4DnV+1s1/bsVT5UjwN/5cOUbEKfEw/g9az5QJbj49acvhHWCnkOzchheXh+VYHjg+yFAFkPFKP8QBl6npyBDyteB1Z5tPluKb+0DltrNwAWC1JOLdW0fc+5hTgSuRcwGNDvEjOeX9XCkN3+wP77i3F05bHVfg1GDLpyFF7b+x/AjbfLfRPvQ2hA+1dA7y482c90qvHj5RBQLSNDhFXuOPFEefhrYKD+QiaxsfIqsTffLFcs1dV1/CIdY8cC//ufvOqx3vx03nD55WK/2g+bduWqq+RjNGpUx1VQ6gX+6krAtoSA4eHAtdcCL78srrdXYKC8QMyPP2pX1/WUSZOAX36R+8apU51XP6pDQHcr8AA5CB8+HJg+3XFIcWdJSJCrPhct0g5ZB+Tgb9gweajuU0+1vK2AAHn+0pNPBrZskaszP/5Y/p2nDuHJvmbMGODIkfa2iIjo+JSUJGah8TaDJHE5LGd69+6NpqYm5ObmOtx31VVX4f3330d5eTmiWjmPkF6HefToUVRWViKilRNKm5vMnRICAsDa9/agLlvunY2mMMSPSEWfExN15wHzBEmSum3lT3lBHbYt3QGD0YDhVwxBZIJ7C5VYLRJKDtUiLjOsw+ZR1LPt21yUbZSDyt7nD9fOmeemjcsOoHrXYcBgxMibxrn9Mx/v9qwoxJE/9gJ+fhg5Z2ynLDrjSQ3mZtTXNOsej+LsGgSE+CEqyc1hhAD2/nEEpftKkDYuFRnD3X+ftDYErKqqQmRkZJv+rvoCT/YznerAAXmS/7o6ecjj3Lny8F5vV875qpdeAlasAP7979YFgY2Njgs6dLTqarnysKxMDlRnzmz9NvLy5KShpkaeg8/dxWCOd/X18mIgOTnyEPlhw7zdotazWvWr9Zqb5Wp6d4erA/J75I035IVm1NWUHtbd+xnAs31NWpp2AW8iIl+Smip/DGmtjuhrGAK6MHToUBw9ehRFRUUO911yySVYtmwZGhoaWl0JaK89B7YzQ8DmRityNpYgJDIIKQMjum1AR46aG604uLYYQeEByBzZ8nxzeiSrhPxdlTDFB3e5oKwllUX1CA73R1AYi6/biiFg+3Sp/VFUBDQ0dN7qudR1FBfLKcHw4a2bE1Ctvl7+11ELwXiLJMlBGgPzTtOl/q52kvbsE1YCEpEva2slYEf0NTwjdSElJQW7du1CQ0ODw5Dg/Px8xMXFtTsAbK8Q/xDcN/G+znvBUzvvpaiL8cR74yQPbIN8Uoh/K6pAqGtTD/skUouP1x/i3RrBwfI/X2MwMACkLu14GSZHROTrGAK6MHbsWPz8889Yt24dTjpJpBP19fXYsmULTj75ZC+2TmYwGDhPFhERERERERERuaQz+QYpLr30UhgMBrzyyiua2998802YzWZcccUV3mkYERERERERERFRK7AS0IWhQ4filltuwcKFC3HBBRfgrLPOwu7duzF//nxMnjwZM9syKTUREREREREREVEnYwjYgldeeQU9evTAG2+8ge+++w5xcXGYO3cu/vnPf8Kot4oZERERERERERHRcYYhYAv8/Pxw99134+677/Z2U4iIiIiIiIiIiNqEpWxEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4f283gABJkgAAVVVVXm4JEZFvUP6eKn9fuzv2M0REnsV+xhH7GiIiz+qIvoYh4HGguroaAJCenu7llhAR+Zbq6mpERkZ6uxlex36GiKhjsJ8R2NcQEXUMT/Y1BolfX3md1WpFQUEBTCYTDAaD28/r27cvAGD//v0d1bTjHveBjPuB+0DB/SDvA0mSsGnTJqSkpMBo5MwX7Gfah/uB+0DB/cB9ALCfcYZ9TdtxH3AfKLgfuA8UHdXXsBLwOGA0GpGWltam5wFARESEp5vUZXAfyLgfuA8U3A9iH7Tl76qvYj/TPtwP3AcK7gfuA4D9jDPsa9qO+4D7QMH9wH2g6Ki+hl9bERERERERERER+TiGgERERERERERERD6OcwISERERERERERH5OFYCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgF2Q1WrFyy+/jAEDBiA4OBjp6em4++67UVtb6+2mdYp9+/bhsccew4QJExAfHw+TyYQRI0bg6aef7jb7QI/ZbEavXr1gMBhw6623ers5naqsrAz33HMP+vTpg+DgYMTHx+PUU0/FX3/95e2mdYqamho888wzGDp0KEwmE+Li4nDiiSdiyZIlkCTJ283zuGeffRYXX3yx7f3eo0cPl49fu3Ytpk6dCpPJhIiICEyfPh1btmzplLZ2Vexn2M/oYT/TffsZoHv1NexnOl5372cA9jXOdNe+hv0M+xlXPNnP+LfpWeRVd955J+bPn4/zzz8fd999N3bv3o358+dj8+bN+PXXX2E0+na2u3jxYixatAjnnnsurrjiCgQEBOD333/HI488gk8++QR///03QkJCvN3MTvfYY4+huLjY283odIcOHcIpp5yCmpoaXHfddejXrx8qKyuxbds25Ofne7t5Hc5qteLMM8/E6tWrMXv2bMydOxdmsxlLly7FNddcg927d+O5557zdjM96qGHHkJMTAxGjRqFiooKl4/9+++/ccoppyA1NRX//Oc/AQALFy7ESSedhNWrV2Po0KGd0OKuh/0M+xk97Ge6Zz8DdL++hv1Mx+vu/QzAvsaZ7tjXsJ9hP+OKx/sZibqUHTt2SAaDQbrgggs0t8+fP18CIP3vf//zUss6z/r166WKigqH2x9++GEJgLRgwQIvtMq7Nm7cKPn5+UkvvviiBEC65ZZbvN2kTjNp0iQpLS1NKigo8HZTvGL16tUSAOmOO+7Q3N7Q0CD17NlTioyM9E7DOtCBAwdslwcPHixlZmY6fezYsWMlk8kk5eXl2W7Ly8uTTCaTNG3atI5sZpfFfob9jB72M923n5Gk7tfXsJ/pWOxnZOxrHHXXvob9DPuZzuxnfP8rFh+zdOlSSJKEO+64Q3P7nDlzEBoaig8++MA7DetEY8aMQWRkpMPtl156KQBgx44dnd0kr7JYLJgzZw6mT5+OCy64wNvN6VR//vknVq5cifvuuw/JycloamqC2Wz2drM6VVVVFQAgJSVFc3tgYCDi4uIQFhbmjWZ1qF69ern1uKysLKxfvx4XX3wxUlNTbbenpqbi4osvxq+//oojR450VDO7LPYz7GfssZ/p3v0M0P36GvYzHYv9jIx9jVZ37WvYz8jYz+jriH6GIWAXs379ehiNRowbN05ze3BwMEaMGIH169d7qWXel5eXBwBITEz0cks618svv4w9e/Zg4cKF3m5Kp/v+++8BABkZGZgxYwZCQkIQFhaGfv36dZsPkOPGjUNUVBSef/55LFu2DLm5udizZw8efPBBbNy4EfPmzfN2E71G+Xt4wgknONw3YcIESJKEjRs3dnazjnvsZ5xjP8N+pjv2MwD7GmfYz7QN+xnX2Nd0r76G/YyM/Yy+juhnGAJ2MQUFBYiLi0NQUJDDfampqSgpKUFjY6MXWuZdFosFTz75JPz9/TFz5kxvN6fTZGdn4/HHH8djjz3W4mSivmjv3r0A5G+Oy8rK8O6772Lx4sUIDAzErFmz8M4773i5hR0vOjoaX3/9NWJiYnDJJZcgMzMTAwcOxKJFi/DZZ59hzpw53m6i1xQUFACA5lszhXJbd5lnpTXYz+hjP8N+prv2MwD7GmfYz7QN+xnn2Nd0v76G/YyM/Yy+juhnuDBIF2M2m3U7TED+9kx5TGBgYGc2y+vuuOMOrFmzBs888wz69+/v7eZ0mptuugm9evXCXXfd5e2meEV1dTUAwGQy4ffff7e978877zz06tULDz30EGbPnu3zk0uHh4djyJAhOPfcc3HiiSeirKwMixYtwsyZM/HVV19h2rRp3m6iVyhDKfT+Zqr/XpIW+xl97GfYz3TnfgZgX6OH/UzbsJ9xjn1N9+tr2M8I7GccdUQ/4/vvJB8TGhqKhoYG3fvq6+ttj+lOHn30USxcuBA33HADHnzwQW83p9N88MEH+OWXX/Daa68hICDA283xCmXFtMsvv1zzQTE6Ohrnnnsujhw5Yvt2zVdt374dJ554IqZNm4Z///vfOP/883Hddddh5cqVSEpKwpw5c2CxWLzdTK9Q/hbq/c3srn8v3cF+xhH7GfYz3bmfAdjXOMN+pm3Yz+hjX9M9+xr2MzL2M/o6op9hCNjFpKSkoKSkRPdNkJ+fj7i4uG71rdm8efPw1FNP4ZprrsF///tfbzen0zQ0NOCuu+7CWWedhaSkJGRlZSErKwuHDh0CAFRWViIrK6vF5ca7urS0NABAUlKSw33JyckAgPLy8k5tU2d7+eWXUV9fj4svvlhze2hoKM4++2wcOnQIOTk53mmclykTC+uVyCu36ZXWd3fsZ7TYz7CfAbp3PwOwr3GG/UzbsJ9xxL6m+/Y17Gdk7Gf0dUQ/wxCwixk7diysVivWrVunub2+vh5btmzBmDFjvNSyzjdv3jw88cQTmD17Nt566y0YDAZvN6nT1NXVobi4GN999x369u1r+3fKKacAkL9R69u3L9566y3vNrSDKRNKKxMoqym3JSQkdGqbOpvyx1/vm7Hm5mbN/93N2LFjAQBr1qxxuO/vv/+GwWDA6NGjO7tZxz32MwL7GfYz7Gdk7Gv0sZ9pG/YzWuxrundfw35Gxn5GX4f0MxJ1Kdu2bZMMBoN0wQUXaG6fP3++BEB6//33vdSyzvXEE09IAKRZs2ZJFovF283pdI2NjdKyZcsc/r366qsSAGn69OnSsmXLpL1793q7qR2qrKxMMplMUmpqqlRdXW27vaCgQAoLC5P69evnxdZ1jjvuuEMCID333HOa28vLy6Xk5GQpOjpaam5u9lLrOt7gwYOlzMxMp/ePGTNGMplMUn5+vu22/Px8yWQySaeddlontLDrYT8jYz/DfkaS2M8ounNfw37G89jPCOxr2Newn5Gxn8l0er+n+xmDJElSW1NJ8o65c+di4cKFOP/883HWWWdh9+7dmD9/PiZOnIjly5f7/KShixYtwq233oqMjAw8+eSTDj9vYmJit5w0FABycnLQs2dP3HLLLVi4cKG3m9Mp3njjDdx4440YPHgwrr32WjQ2NuK1115DYWEhvv32W5x++unebmKHOnToEEaNGoXy8nJcccUVmDhxIsrKyvDmm28iJycHixYtwj/+8Q9vN9Oj3n//fdswkQULFqCxsRF33303ACAzMxOzZs2yPXb16tU49dRTkZaWhrlz59qeU1RUhFWrVmH48OGd/wN0Aexn2M84w36m+/UzQPfra9jPdLzu3s8A7Gtc6W59DfsZ9jOd2s+0Pqckb2tubpZeeOEFqV+/flJgYKCUkpIi3XnnnZpvDnzZ7NmzJQBO/02ePNnbTfSa7OxsCYB0yy23eLspneqzzz6Txo8fL4WGhkrh4eHStGnTpJUrV3q7WZ0mKytLuuqqq6TU1FTJ399fMplM0kknnSR99tln3m5ah5g8eXKrfv9Xr14tTZkyRQoLC5PCw8Ol008/Xdq4cWPnN7wLYT/DfsYZ9jPds5+RpO7V17Cf6XjdvZ+RJPY1rnTHvob9DPuZzupnWAlIRERERERERETk43y/zpqIiIiIiIiIiKibYwhIREREW85TYgAADrpJREFURERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISB1Gz169IDBYHD575VXXvF2M8lDNm/eDD8/P8ydO1dz+4oVK2zH25WcnBzb43JyctrcjsrKSsTGxmL8+PGQJKnN2yGiroF9TffCvoaIOhv7me6F/Qx5mr+3G0DU2SZOnIg+ffro3jdo0KBObg11lLlz5yIkJASPPvqoV9sRGRmJBx98EPfeey/ee+89zJ4926vtIaLOwb6me2BfQ0Tewn6me2A/Q57GEJC6neuvvx5XX321t5tBHejTTz/FqlWrcO+99yIhIcHbzcGtt96K559/Hg8++CAuu+wyBAUFebtJRNTB2Nf4PvY1RORN7Gd8H/sZ6ggcDkxEPufll18GAFx33XVeboksODgYM2fORGFhIT7++GNvN4eIiDyAfQ0REXUk9jPUERgCEulQ5trIycnBV199hSlTpiAmJgYGgwErVqywPa68vByPP/44RowYAZPJhNDQUAwdOhRPPfUUzGaz7rabm5vxyiuvYOjQoQgODkZ8fDwuvPBCbN++HUuWLIHBYHD4Vm/evHkwGAyYN2+e7jaVOSFOOeUU3fsLCgpw1113YeDAgQgNDYXJZMLYsWOxcOFCNDc3Ozz+6quvhsFgwJIlS5CdnY1Zs2YhKSkJQUFB6N27Nx555BE0NDQ43X8bN27E7Nmz0bNnTwQHByMmJgbDhw/Hvffei0OHDgEA3nnnHRgMBpxxxhlOt1NQUICAgACEhISgtLTU6ePUNm/ejNWrV2PChAno37+/W89pDeVYtPTPnnJMFy1a5PE2EVHXxL6GfY0z7GuIyBPYz7CfcYb9TPfF4cBELrz44otYuHAhxowZg+nTp6OgoAB+fn4AgF27dmH69Ok4fPgwkpOTMWnSJAQEBGDdunV49NFH8dlnn2HFihWIjIy0bc9qteLiiy/Gl19+icDAQJxyyimIjo7G2rVrMW7cOFx77bUe/xn+/PNPnHfeeSgvL0ePHj0wbdo0NDQ0YN26dZg7dy6++eYbfPvttwgICHB47pYtW3D77bcjOjoakydPRllZGVatWoWnn34aO3fuxBdffOHwnH//+9944IEHYLVa0a9fP/zf//0f6urqkJWVhRdeeAGDBw/G1VdfjZkzZ+L+++/HL7/8gn379qFfv34O23r99dfR3NyMWbNmITY21q2f98svvwQATJ06tXU7yk0jRoxwOgfG3r178ffff8NodPx+ZcSIEYiPj8e6detQWFiI5OTkDmkfEXU97GvY19hjX0NEnsR+hv2MPfYz3ZhE1E1kZmZKAKR33nnH7cf6+flJX331lcP9ZrNZ6t27twRAeuSRR6SGhgbbfbW1tdLll18uAZCuueYazfMWLlwoAZASExOlXbt22W5vamqSbr75ZgmABECaPXu25nmPP/64BEB6/PHHddv7+++/SwCkyZMna24vLCyUYmNjJYPBIL366quSxWKx3VdSUiJNmTJFAiA98cQTmufNnj3b1paHH35Yam5utt23fft2KSwsTAIgrV69WvO8r776SgIgBQcHSx9//LFDO3fu3Kn5uR9++GEJgHTbbbc5PLaxsVFKSkqSAEgbN27U/bn1TJo0SQIgfffdd7r3K/uqpT9/2dnZtsdlZ2e3+LqHDh2SkpOTJQDSwoULdR9z7rnnSgCk999/v8XtEVHXxL6GfY0ksa8hoo7Dfob9jCSxn6G2YwhI3YbSCTr7p+5slMdee+21utt67bXXJADSOeeco3t/dXW1lJCQIPn7+0tlZWW22/v06SMBkF577TWH59TV1dk6CE91mPfff78EQLr11lt1n5eXlycFBARI8fHxktVqtd2udJijR4/W3K646aabJADSP//5T83tI0aMkABIL774ou7r2cvPz5cCAgKkyMhIqaamRnPf0qVLJQDSCSec4Na2FEpnfvDgQd371R2mu/9a6jDLy8ulQYMGSQCke++91+njHnzwQQmAdOedd7bqZyKiroN9jSP2NexriMhz2M84Yj/Dfobcx+HA1O1MnDgRffr0cbh9wIABDrdddNFFutv47rvvAACXXnqp7v3h4eEYM2YMvv/+e6xfvx6nn3468vPzkZWVBQC48sorHZ4THByMSy65BPPnz3f7Z2lJS+1MTU1F3759sWvXLuzfv9+hfP2cc87RnQti4MCBAID8/HzbbUeOHMGWLVtgNBrdnrw2JSUFF110EZYuXYr3338fN910k+0+ZZ6JW2+91a1tAUBtbS1qa2sBwK1Se1dL29fU1OCzzz5rcRuNjY0477zzsGvXLlx22WV47rnnnD5WaVNRUVGL2yWiro19jcC+hn0NEXke+xmB/Qz7GXIfQ0Dqdq6//nqHSWqd6dGjh+7tBw8eBADMmjULs2bNcrmN4uJiAEBeXh4AIC4uDuHh4bqP7dmzp1vtcpfSzpNOOqnFxxYXFzt0mBkZGbqPjYiIAADU19fbbsvNzQUAJCcna+YMacltt92GpUuXYtGiRbYOc9u2bVi5ciUSExOdfmjRU1lZabtsMplafPySJUuc3peTk9NihylJEq6++mr88ccfmDx5sm0SZGeU/VZeXt5i24ioa2Nfo499jRb7GiJqK/Yz+tjPaLGfIXsMAYlcCAkJ0b3darUCAKZPn47ExESX28jMzPR4u5y1x9ntF110EcLCwlxuQ+9bJr3JYD1twoQJGDduHNatW2freJRvzG644QYEBga6va2oqCjb5erqalsH1VEeeOABLF26FIMGDcKXX36JoKAgl49XOvTo6OgObRcRdS3sa9jXuMK+hojai/0M+xlX2M90LwwBidogPT0de/bswXXXXef2tzqpqakAgJKSEtTU1Oh+c5aTk6P7XKXTqK6u1r1fWaJer5379+/H/fffjzFjxrjVzrZSvmErLCxEZWVlq785u/LKK7Fw4UIMHz4c//vf/+Dv768ppXdHaGgowsLCUFtbi9LS0g7tMF999VU8//zzSElJwQ8//KDprJ0pLS0FgBY/ZBERAexr9LCviWrxOexriMhd7GccsZ+JavE57Ge6to6PxIl80JlnngkA+OSTT9x+TlpaGnr16gUA+PDDDx3ub2howLJly3Sfq3S2u3fv1r1fmSfDE+1sq6SkJAwfPhxWqxWLFy9u1XMvueQSJCcn48svv8TTTz+N2tpanH/++UhJSWl1O0aNGgUA2LVrV6uf666vv/4at912G0wmE7777junQwzs7dixAwAwevToDmsbEfkO9jWO2Ne0jH0NEbmL/Ywj9jMtYz/TtTEEJGqDG264AZmZmVi2bBnuv/9+3W+zjhw5gjfffFNz2x133AEAmDdvHvbs2WO73WKx4J577kFBQYHu602ZMgVGoxE//fQT/vjjD9vtkiRh/vz5Tud5uPfeexEVFYWXXnoJL774IhobGx0ek52djQ8++KDFn9kdjz/+OADg4Ycf1m3Trl27dDv9gIAA3HzzzWhubsYLL7wAoHWT56qdeuqpAIA1a9a06fktWbduHS6//HIYjUZ8+umnGDFihNvPVdo0ZcqUDmkbEfkW9jX62Ne4xr6GiNzFfkYf+xnX2M90cd5cmpioM2VmZkoApHfeecftx7paRn3Hjh1Sjx49JABSVFSUdPLJJ0szZ86UzjvvPGnQoEGSwWCQEhMTNc+xWCzSjBkzJABSYGCgdMYZZ0iXXXaZ1LNnTyk4OFi6+eabJQDS7NmzHV7v9ttvlwBIfn5+0imnnCJdcMEFUu/evaWAgADpgQcekABIkydPdnjeH3/8IcXFxUkApISEBGnKlCnSFVdcIZ1zzjlS7969JQDS+PHjNc+ZPXu2y331zjvvOG3n008/LRkMBgmANGDAAOnSSy+Vzj33XNty8862WVRUJAUFBUkApGHDhuk+xh2bNm2SAEjjxo3Tvf/333+XAEgt/fnLzs62PU79PpgyZYoEQOrZs6c0e/Zsp/9a2y4i8g3sa9jXSBL7GiLqOOxn2M9IEvsZajvOCUjURoMHD8a2bdvw3//+F1988QW2bduGNWvWIC4uDmlpabjnnntw/vnna55jNBrx+eefY/78+Xj77bexYsUKhIeHY9KkSfjiiy+wefNmvPbaa7qv9/LLLyMjIwNvvfUWVq9ejfDwcEycOBGffPIJqqqq8K9//Uv3eSeffDJ27tyJhQsX4rvvvsP69evR0NCAhIQEZGRk4Morr8SFF17osf3y0EMPYcqUKZg/fz7+/PNPfP755zCZTEhPT8d9993n9BujhIQEjBgxAmvXrsUtt9zS5tcfOXIkTjzxRKxevRq7d+/GwIED27wtPRaLBYD8bWN2drbTx9mv0qVcb8/PRkTdD/safexrZOxriKi92M/oYz8jYz/jewySJEnebgQRyZYsWYJrrrkGs2fPdrnUuy/at28fBgwYgMjISOTn5yM0NLTN2/r0009x8cUX46677sKLL77owVa2TX19PdLT0xEQEIDs7OwWV9wiIupI7GvY1xARdST2M+xn6PjFOQGJ6Ljw2GOPQZIk3Hzzze3qLAHgoosuwsSJE/H666+jqKjIQy1suwULFqCkpATPPvssO0siIi9iX0NERB2J/Qwd7xgCEpHXfP3117juuuswYcIEfPzxx0hKSsJ9993nkW0vWLAAdXV1ePLJJz2yvbaqrKzEv/71L4wbNw5XXXWVV9tCRNQdsa8hIqKOxH6GuhLOCUhEXrNp0yYsXrwYJpMJU6dOxUsvvYSoqCiPbHvkyJG2uS68KTIyEqWlpd5uBhFRt8W+hoiIOhL7GepKOCcgERERERERERGRj+NwYCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/3/7cKdH8m+83AAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lps.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lps.freq, lps.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lps.freq, lps.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.html b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.html new file mode 100644 index 000000000..e38fbbc6d --- /dev/null +++ b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.html @@ -0,0 +1,464 @@ + + + + + + + + Observations with frequent data gaps — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import copy
+from stingray import EventList, AveragedPowerspectrum, AveragedCrossspectrum, Powerspectrum, LombScarglePowerspectrum
+
+import matplotlib.pyplot as plt
+import numpy as np
+
+ev1 = EventList.read("nustar_A_src.evt", fmt="ogip")
+ev2 = EventList.read("nustar_B_src.evt", fmt="ogip")
+
+ev_tot = ev1.join(ev2)
+
+
+
+
+

Observations with frequent data gaps

+

Many X-ray missions are in low-Earth orbits, which means that their target is often occulted by the Earth. Additionally, these satellites can pass through the South-Atlantic Anomaly, where the flux of particles increases the background (and, in some cases, might even damage the detector, so the Science Operations centers often just switch the instruments off for protection).

+

This observation of an accreting black hole is an example. Here, transparent red stripes indicate occultation and other bad-data time intervals, while data in good time intervals are plotted in blue:

+
+
[2]:
+
+
+
lc_10 = ev_tot.to_lc(dt=10)
+plt.plot(lc_10.time - lc_10.time[0], lc_10.counts, color="grey")
+lc_10.apply_gtis(inplace=True)
+plt.plot(lc_10.time - lc_10.time[0], lc_10.counts)
+
+plt.xlabel("Time (s)")
+plt.ylabel("Counts")
+
+for g0, g1 in zip(lc_10.gti[:-1], lc_10.gti[1:]):
+    plt.axvspan(g0[1] - lc_10.time[0], g1[0] - lc_10.time[0], color="r", alpha=0.5, zorder=10)
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png +
+
+

When we study the variability of this light curve, we usually use periodograms. It is well known that these gaps are like square windows, whose Fourier transform has infinite harmonics, and that gets convolved with the actual variability of the data. If we were to ignore the good time intervals and just get a Periodogram of the dataset, we would get something like this (the black vertical line indicates the orbital period of the satellite and some of its harmonics):

+
+
[3]:
+
+
+
ev_tot_dirty = copy.deepcopy(ev_tot)
+ev_tot_dirty.gti = np.asarray([[ev_tot.gti[0, 0], ev_tot.gti[-1, 1]]])
+pds_dirty = Powerspectrum.from_events(ev_tot_dirty, dt=0.01, norm="leahy")
+pds_dirty_reb = pds_dirty.rebin_log(0.01)
+
+
+
+
+
[4]:
+
+
+
plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 9):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png +
+
+
+
[5]:
+
+
+
plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 30):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+plt.xlim([5e-5, 5e-3])
+
+
+
+
+
[5]:
+
+
+
+
+(5e-05, 0.005)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png +
+
+

Yes, we do see a nice QPO there, but how can we be sure about the low-frequency continuum when it’s so polluted from the harmonics of the observing window?

+

A proper treatment of gaps is not possible at these long timescales, but gaps can certainly be ignored at shorter time scales. As we’ve seen in the AveragedPowerspectrum tutorial, we can study the short-term variability with

+
+
[6]:
+
+
+
pds = AveragedPowerspectrum(ev_tot, dt=0.01, segment_size=256, norm="leahy")
+pds_reb = pds.rebin_log(0.01)
+
+
+
+
+
+
+
+
+258it [00:00, 1671.53it/s]
+
+
+
+
[7]:
+
+
+
plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid", color="grey", alpha=0.5)
+plt.loglog(pds_reb.freq, pds_reb.power, drawstyle="steps-mid")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 6):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png +
+
+

Note that, while the “clean” and “dirty” periodograms at high frequencies mostly match, at low frequencies the two diverge. The low-frequency periodogram cannot be trusted if one does not use some trick to avoid the gaps.

+
+
+

The Lomb-Scargle periodogram

+

Fortunately, a method exists and is called the Lomb Scargle periodogram (See this review from Jake Van Der Plas)

+

The method is slower than the standard periodogram, so we will limit its usage to the interesting frequency range.

+
+
[8]:
+
+
+
maxfreq = 1.
+dt = 0.5 / maxfreq  # Using the Nyquist limit
+ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm="leahy")
+ls_reb = ls.rebin_log(0.02)
+
+
+
+
+
[9]:
+
+
+
plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+
+plt.loglog()
+plt.ylim([1, 1e6])
+plt.legend(loc="upper right")
+for i in range(1, 6):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png +
+
+

Now we’re talking! The Lomb-Scargle periodogram nicely connects to the low-frequency part of the periodogram. Now, we can try to model the low-frequency continuum more confidently.

+
+
[10]:
+
+
+
plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 30):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+plt.xlim([5e-5, 3e-3])
+
+
+
+
+
[10]:
+
+
+
+
+(5e-05, 0.003)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png +
+
+

We might still expect to detect the satellite orbital time scale in the periodogram, due to the imperfect frequency response during the orbit, but it’s a lower-order problem now.

+

Looking into more detail, the two curves do not exactly match, in particular close to the maximum frequency:

+
+
[11]:
+
+
+
plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.xlim([0.1, 2])
+plt.ylim([1, 10])
+
+
+
+
+
[11]:
+
+
+
+
+(1.0, 10.0)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png +
+
+

That little “wiggle” happens somewhere between 0.5 and 1 times the “Nyquist” frequency when data are mostly evenly sampled as in our case. The solution is simply to use a smaller sampling time while maintaining the same maximum frequency.

+
+
[12]:
+
+
+
maxfreq = 1.
+dt = 0.2 / maxfreq  # smaller than the Nyquist limit
+ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm="leahy")
+ls_reb = ls.rebin_log(0.02)
+
+plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.xlim([0.1, 2])
+plt.ylim([1, 10])
+
+
+
+
+
[12]:
+
+
+
+
+(1.0, 10.0)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png +
+
+
+
+

The Cross spectrum

+

A great new addition to Stingray is the Lomb-Scargle cross spectrum. The cross spectrum is the basis for many of the spectral-timing techniques that Stingray was born for (e.g. the covariance spectrum, time lags).

+

Here we show a simple usage of the cross spectrum as a proxy for the (Poisson noise-subtracted) power density spectrum, using two datasets from two identical instruments onboard the same satellite.

+

Time lags measured with this cross spectrum make sense in our tests, only when the light curves are sampled at the same times. Also, we do not provide error bars on the time lags at the moment. Use with care!

+
+
[13]:
+
+
+
from stingray import LombScargleCrossspectrum
+from stingray.gti import cross_two_gtis
+gti = cross_two_gtis(ev1.gti, ev2.gti)
+ev1.gti = gti
+ev2.gti = gti
+lscs = LombScargleCrossspectrum(ev1, ev2, dt=dt, norm="leahy")
+lscs_reb = lscs.rebin_log(0.01)
+
+cs = AveragedCrossspectrum(ev1, ev2, dt=0.001, segment_size=256, norm="leahy")
+cs_reb = cs.rebin_log(0.02)
+
+# plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+# plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+# plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.plot(cs_reb.freq, cs_reb.power, ds="steps-mid", label="AveragedCrossspectrum", zorder=10)
+plt.loglog()
+good = lscs_reb.freq < maxfreq / 2
+lscs_reb.freq = lscs_reb.freq[good]
+lscs_reb.power = lscs_reb.power[good]
+lscs_reb.unnorm_power = lscs_reb.unnorm_power[good]
+plt.plot(lscs_reb.freq, lscs_reb.power, ds="steps-mid", label="Lomb-Scargle cross spectrum")
+
+
+
+
+
+
+
+
+258it [00:02, 107.72it/s]
+
+
+
+
[13]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x177fb2290>]
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb new file mode 100644 index 000000000..41881ffa0 --- /dev/null +++ b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb @@ -0,0 +1,500 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1f2bd82", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import copy\n", + "from stingray import EventList, AveragedPowerspectrum, AveragedCrossspectrum, Powerspectrum, LombScarglePowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "ev1 = EventList.read(\"nustar_A_src.evt\", fmt=\"ogip\")\n", + "ev2 = EventList.read(\"nustar_B_src.evt\", fmt=\"ogip\")\n", + "\n", + "ev_tot = ev1.join(ev2)\n" + ] + }, + { + "cell_type": "markdown", + "id": "c5a1d8f4", + "metadata": {}, + "source": [ + "# Observations with frequent data gaps\n", + "\n", + "Many X-ray missions are in low-Earth orbits, which means that their target is often occulted by the Earth. Additionally, these satellites can pass through the South-Atlantic Anomaly, where the flux of particles increases the background (and, in some cases, might even damage the detector, so the Science Operations centers often just switch the instruments off for protection).\n", + "\n", + "This observation of an accreting black hole is an example. Here, transparent red stripes indicate occultation and other bad-data time intervals, while data in good time intervals are plotted in blue:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "487d4764", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAGwCAYAAAC99fF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLj0lEQVR4nO2deXwU5f3HP7NnNscmISeBhPsWBEEhaj0wBRGtB7XVH0W0HtWCVmnR0iIqtmKtRatFba2CrSKW1hMRBERRCSDhDCA3hCMHSUg2557z+2Ozm91k9pp9Zmdm9/t+vVbJ7Owzz/PMc3ye7/M834fjeZ4HQRAEQRAE4YdG7ggQBEEQBEEoERJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBdHJHQAm4XC6cPXsWaWlp4DhO7ugQBEEQBBEGPM+jqakJBQUF0GjY231IJAE4e/YsCgsLJQvfDGA+gJyOv88B+AMAi889FwJ4E8BxAE0CYeQBGAvgHgCfdAmza3i3Avg7gDIApwPEqetvAsURXa4LkQQgF8D9AA77XBeKY6jwLgAwBsCfAcwL8sxUAD8B8CCAoxDOs8EAxgH4PYDng4TVNa5CZAAYDuAuAJtDhPU2gNsBHAPwjcD32XC/758DWB9lvAoAXAx3vt8LYE8UYQHCZVNsWOkAJgB4CMB/g9x3KYBlAPYDOB/gnlQA/QHcDWBXkLDuAPA3ANUAtgKwB7k3VFqnAngFgBbA9gBx0wMYBHf+nw0RXqg80wEwAajp+H+wOD4I4Dm46/hhdMdTxmYDuBzB257fAXgS7nzdFyBuvr8L1p558n87gJMC4Qi9x0DhXQngnwB2AqgMEC9bx/+fg7sd8NC17WmEux04DWAHgDaBsDx16X4A/wnwPKHwhRjQEdajAF6OMqxwy344YXXtR6IJ61K40/k/AD8NEVYsOHXqFHr37s08XI48bgONjY3IyMjAqVOnYDabmYfPVVXB+OSTgKmj6Wtrg/XJJ8Hn53vv0f33vzA9+CAcP/gBXIMGdQ+jtBT6sjK0zZkDxxNPdIbJ8wDH+YWnmzsXpn/8A46RI+G68sruYbW2dotDoDgC8F7nk5OF03fqFHSbN6PtH/+Ac+LE7un2iWOo8Lh334W+rg5to0bB8fXXgbIUXFUVDHPnwrBuHRxXXCGcZx9+CP3p02i7+mo4PvwwYFhd0y8Yr/Jy6L/5Bm1/+hMc99wTNCzdoEEw1dTAYTLBdffd3cMqK4N+yxa0LVgAx5w50cVr0ybo9+wB9Hq0vfYaHD/+sfiwBMpFVGFt2gT9kSNou+8+OP7854Bh6f75T5geewyOyy6Da+RI4ecdPgz911+j7eWXg6ZRN2sWTG+/DT4tDY6pU8FnZwuHF0ZadU89BdPixQDHucuYQNy42lpot2yBc/RowGQKGl7IPKuthXbnTrj69QNfUOC+GCCOuttug+mzz+Do2xeu66/vHpanjD3yCHSVlcHbnilTYNq8GY6CArhuuSVkXgVrzzz57xg6FK6Sku5hCbzHQOFp//53mBYvhmPsWLiKi4XjdewYdIcOoW3JkqBtj+PkSZg2bwav18N53XVwCQyKPXUpVHntGmfBd7lqFfQnTqBtyhQ4VqyILqwwy35YYXXpR6IK6/XXobda0ZaVBcexY0HDkhKLxYLCwkI0NDQgPT2defhkSQK8U2xms1kSkYSWFsBgADIy3H87nTCkpQG+z0pOBjgO+pQUICurexhGo/s2o9H9O0+YRiNgtfqH13Gv3mQSDstg6B6HQHH03J+RAXj+7kpDA6DRICUlxT9NQnEMFZ5W606nXu8fVldaWgCdu/gGzLOO75MNhuBh+cY1ULxMJoDjkGwyhQ6rIw16jUY4XklJ7rCSkqKPl8Hg/WdycnLoPAsVllDZFBuW5116ymwgOvI24HsEgLNn3XkWKo0d+cFxHAxmc+DwwklrRz0CgpQxmw3QaqFNSQF0uuDhhcozT1h6ffC2wiedeoMheBkzGkO3PZ6w9Prw2otg7ZknrKQk4bCE3mOg8MJpx3Q6gONCtz2ecgFAk5YWODyEUV67xlnoXbJse8It++GE1bUfiSasjn4zWasNHVYMkGqpDC3cJgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIGKG0+lCS5tV7mgQBEGEBYkkgiBixtV/+AgjnlqPynqL3FEhCIIICYkkgiBiRkWbAQDw3qZymWNCEAQRGhJJBEEQRFxgaWnHx6X7YXc45Y4KESfo5I4AQRAEQbDg5sVrcLRFjztzm/Ck3JEh4gKyJBEEQRBxwdEWPQBg44lWmWNCxAskkgiCIAiCIAQgkUQQRMzh5Y4AQRBEGJBIIghGHDtbi3MNzXJHgyAIgmAELdwmCAZU1lsw8aWtAIAT8kaFIAiCYISslqS+ffuC47hun1mzZgEA2tvbMWvWLGRlZSE1NRXTpk1DdXW1XxgVFRWYOnUqkpOTkZubi7lz58LhcMiRHCKB2fr9KbmjQBAEQTBGVpH03XffobKy0vtZt24dAODWW28FADzyyCP45JNPsHLlSnz11Vc4e/YsbrnlFu/vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAlnSEwn/+WoPvtx9VO5oEARBxIwjVefRanVg36lzckeFIMJCVpGUk5OD/Px872fVqlUYMGAArrzySjQ2NuKNN97A4sWLMXHiRIwdOxZLly7F5s2bsWXLFgDA559/jv379+Ptt9/G6NGjMWXKFDz99NNYsmQJbDabnEkLSk1DM/78TQ3ufPd7uaNCEN1ot9klfwYn+RMIJXKytgk8gC/KDkj6HJ5KGMEIxSzcttlsePvtt/Hzn/8cHMehrKwMdrsdJSUl3nuGDh2KoqIilJaWAgBKS0sxcuRI5OXlee+ZPHkyLBYL9u3bF/BZVqsVFovF7xNLzje3x/R5BBEudZYWXPHnLzHzpU8lfQ7tbktMrLx7GSzvcskcE4IID8WIpA8//BANDQ248847AQBVVVUwGAzIyMjwuy8vLw9VVVXee3wFkud7z3eBWLRoEdLT072fwsJCdgkhCBWzt6IePDh8dVbumBDxRovVARdZeAiVoRiR9MYbb2DKlCkoKCiQ/Fnz5s1DY2Oj93PqlHoW3W4sr8Adf/0ULhqJKQqeTCOi+Kb8OF5euxsul7wZuK7sEG549iPsPV4pazzimbrmziUQVF8ItaAIkXTy5EmsX78e99xzj/dafn4+bDYbGhoa/O6trq5Gfn6+956uu908f3vuEcJoNMJsNvt91MKeGhs2VQIbdtGib0IdnK1vCrhJ4a639+JMqxYOmUXSvSsPY2+DDvcs3cIkvHabHcs37kadpYVJePHAuWar3FEgiIhRhEhaunQpcnNzMXXqVO+1sWPHQq/XY8OGDd5rBw8eREVFBYqLiwEAxcXF2Lt3L2pqarz3rFu3DmazGcOHD49dAmTA0koNjhycrrdg/IIP8OKHm+WOimr4dH8t7nz3e5ytbez2nR3aqMNfV3YI739THnU4AHDeFn18AODhNzbgd2tP48cvfs4kvHigVgUiiQfwTukRLHz3K7mjQigE2UWSy+XC0qVLMXPmTOh0nb4t09PTcffdd2POnDnYuHEjysrKcNddd6G4uBgTJkwAAEyaNAnDhw/HjBkzsHv3bqxduxbz58/HrFmzYDQa5UpSSDiFTcsveHsjrl70Gc430aGQofjv1mOothnw4pbzfteV9k6VyPHqeu+/eYbzLfeuPIw5q06iouZ86JtjxMYKtyA43moQHQbP81i7uwI/ffGzuJher22KTCTZXS4mC/xdLldE+dfq1OLN3eQ5Pxo27TmGEb/7EIs/+FbuqESN7CJp/fr1qKiowM9//vNu373wwgu4/vrrMW3aNFxxxRXIz8/H+++/7/1eq9Vi1apV0Gq1KC4uxs9+9jPccccdWLhwYSyTIBPsOpl/lbei2aVH2fFaZmHGK3ZH9PnOA3C5eOw8RutfWHLqXIPcUWCKpdWKJgeHYy16VNU3yR2dqHC6eNS3hO+Wpd1mxxubDkfdytkdTny88zS2Hye/TFKy88hpPPT6WlTVu3eKP/Kf3Whx6fHS1gZ5I8YA2Y8lmTRpUsBRZVJSEpYsWYIlS5YE/H2fPn2wevVqqaInCUpdtKi0aJ2tbYTJqEdmWrLcUWFKVUMzcgGsPtiIMXJHJoYotdwrFZbWNrk532qDM4L0bD90GlZXFFOfHY86XdsIBzi0RxNWHOF5A9uPVOJihuH++J874YQGJ1/fiI8euxFOPn5M67JbkghCiFa7A5c+/w3G/HGj3FEJi0j6sza7U7qIREmoZDz3328w46+fwumMbvqHo/nJhCLS9UhK0YdV9RZM+/PHeO+rPXJHhQnnmlrBA9hcwXZDgbNDShxtVMiLYwiJJBnw7R8WvLMRP3r2I9ii7HTijTar9B7T7Q4n/vv1XtQ10g6kcHlleyO+rgTe/zbyhdKqsIyQdpOE2qYu9VkNZQHAb/61CWV1Wjz2mXLdxGzacwzXPP0hNuw8EvJem6N7P9PSbsPURR/hj+9tijou6nirkUEiSWb+tbcVexp0+GL3MbmjwoQNO49g1VZpjxxgxYJ3vsRvPq3A1L9EsAMpzjvRcJN3vkX5O5UI5aCGnW1d+d835TjXovzD0u9ZXo6jLXrc815kx1wdPeteg/riR1uwr1GH13eqe92bVJBIUgjtNuVXxlA4XS7c/d5BzP7gmOB2b6Xx+RH3IsMqm/gdSIQ4orUqvfjhZoz83Yf4pvx41HHZ+n2F99+chGPhaKYo1+44EvUUp5x4fCTp0ZmGt7/YiZWb9soVpZD8etVJ1LYr3zZi63CjEel5dZNfcrsxsbSxP6uxwalnHqZckEgimOHrD/BkTYNs8SCUg1RdzItbzqPJpccj7+3yXtOIXOf002XsO+quHdZv39qAHzy7DtXnxY3Wn/qiCsPmr8K+E4GPW1IqbTYnWqzuQaCec/+/zcVj/udnMXd1hbQHKkdZABvs0u1tOna2FnPeWIcTVXVh/8bucKKlzYrXVm/DSx+VRvV8BwMfZUJYWuLrbFLZd7cR4lDilL7Gp19w8SoY9TLMQ1qHHBnHatj4oXEqsB4IseJAO3Kgxc6T9bh2YF9RYdh4LRb+7zu89+sb2EZOYjxTbekmvXdUbuc7x+cOh3I3MkjJ9L9/jUqrAd+Xb0W4+7PHP/kx6h2dlu+bi6P3DcYzbAhbXHqMenpD6BtVBFmSCElgfRbXiap6/Pj5j/HZd5HNu8eKk+csckdB8fgK+3Un2I82XUocORBekZSdGr6D33CnY8+3tEv63qWcfq20usXOOXv40/2+AgkA6hTgALjVrv6lIsEgkURIgpOxSHrgzU3YXqvFA/9T3pl1lfUWvFBaH/rGOEIpW/i7dhqRcPRsHf7vr58xjE1ooq0VCsn2iDjXFLlI8qWlVVgIHDp9DnvONqHGIt30TqTrfGKNQ2C3WqxpkGBNk5IgkaQQPj/WBoeKF2Z2haVI+uea7TgrwS59VjHcdfQso5DkRw22GBYLmJ0uF3ZWtuJws7oWmCq7yxamttm9/T8nrVPQRlLOmpqFp2YPVrmtt65gueLzlZLLdrB1WXYXjzabA//+svvaOXuUdeGyJz7AlpPR7WoLmv9xAIkkBWFVwKiAFSzPmvrDl9VojHK3xJrtB/Hm2jJGMXJz7Gwtnl35NZrjfCQllnan/1qT/5Qe9v7byuvwyD/XiQr3pU+2CF6PZOH21oNnBK9beR0Wrfwa5xoiXzN1svo8Pti8z/2HRD2yUix44eJy8ahric6SFBVRvodop9vCPTeupT2wX7hjVefh4oHSs92ntZxRtrNnrAZUtNHu3mCQSCKY4Ws8Utr6kPv/ewQLN1Zh+yF2TuF+9Ldv8FqZBc+vD+3ELRgtbVbJDjBtaYvMPw3LLrje0ub396rj/o38B0fEOQz9+nD0ZwyebgicL38vs+COV9ZHFJ7DxeO70814ZmMljp31j188HE4bipc+2YL/fdPdwWhDmx1OFw+9VoN0k8iBjoxtSTQ7wHgAXx2oxFVPf9StDLRZwx9YOYKUn0hnH5TVKqsDEkkqQk0FXGkiycPhs9GuHeqUEc0ud6NfHYWfpR2HT2PEU+vx08WfRhmvTuosLbC0tGP5xt0Y8dR6zF0aWYefGAQvnwcskXXoviP6iS9t9fquAdxr1jzYo9RLpdXAopVfh3Uvz/NYs+s4jlZ2bjG3O52oFWElC8aZ2kb8e08zfr3qZLfvPOuRslINklrB6ppapHUlIJJWXouKNoNfGQCAp1ZE792aiA0kklSEb7MerTM+nuex+8gZ2H223zYzbGN+99EBnKqJfntqvLP4010AgO9qo6uKLh5YvKoM3+47jrHPfIkLn16PP65zO1pcedDK1IImFzzP48iZ8H3KBIPxvoKgFjiOoX2OB4e/l1nQYgttheMBHKx3YufZzoXPn+46gylLtjB19trUFjgu4exs+82/N0U9bfTge+UoXrgqqjBiyYGqCIQqS1clIb6vqrfg8Jlz7B7Yway/r8GzYYp7pUEiSSWcZTz623msCve8dwD/92Knhw4nw8b8vMOAR98VXjsSDL7j09iivFGhknG4XDhi0WD6v/cDcHemvm/zx2/uwSufbosozGl//hjP/Ed4xCvHyph2uxOLv6rAjrroneBZnLE7FZ7zdSDGKOfC2nUt0Lk6Op4/5YWNoteERYJHJOUEEUlltRocOBV9x3w+ip2OscDlcmHt9oOi1ruxIpTemvDc1/jhy9uwfONuZs9cv+MwPj3uxGtl6nSTQiJJJVQ2toW+CW7T/t6K6pCV4USDW4REa8EIxrnwouxHQ7s7Xuet0k/Xidk+znHSx2vu0vUYOu8jbNoT/nl+QrHq2h1/VB7ZWp6yOi3+sUN458vfyxqwsfxUTA+tZW39CcWOY5VhD+KDSR+tzzSTUiahG5160WvCumIN4gzSs7OtuyXJP8fa7f5h+Do4VEqeRYPLxePNz3fgF/89gonPrVd8mn639jQ27o5uraWHOf/bxyQcuSCRpBLsfPCRr2dh4NTFG7ClQn4HY2Lp2liyRuzRFbFi7/FKrDxoRTuvwy/eje64DFZJdTpduObpD3Hb4k/8rtdZgfKTNWwewoAV3x5iGt7XJ1rC78yCZPbVf44vD8RdOV4vLLba7U40dQx6stPCH5BsO3QWv/nE50w+EYqijdfB0qqs4zFW7XbvqGxyRbiAPUg9rrVI19Zv2i+8AzRSLCo/x41EkgqwOVxBnZo5XS5c//waXP/sR1E51+vK5n0n8Pz7m5l7z44VLnRvX1//+hh2HjktR3TCYtexzrO52vjoTg0So5GE3vTHWw7gaIseW2q6Nxen6gM7sIq01Jytj24a4qOjdmzYc9w7ZasUWiLtFBXI4TO1eCfAFEygYY1nqi0tSQ+jzn+QF6w9q2jqGqK4t/nFAeUI+K7sOR9B3Q6S/N+vDt/aHCmbKyRwTqdCSCSpgAaBhZG+uqWqvgnn7AaUN7A7iq/VasOvPjyC9w604sDp8NYLxHLqJRQulwv1DQ0AgPrmzhHlkWY9bv7nLkmf3RqFqGSZh5ouU4NiBfTyUnENcbMtsrRYInRXIERlu7szdjiUeVSCgqoIgPDcE1jtDuyuasOLm8+hzhJ+x+l1IpnaWe480qjameZ3rxT54lCYk0MpXr01yoFUMOodBjS2BF8zobDiLAkkkmTg++rIFHpja/dFzH/5ptr7b9YF9ev9FVhd3hl+YyubtQuHTtegNYjTNJY0Nzd73RDsON11wSCH+17xP47i/W/DmzcPZ6dSraVd1DspP14JB8MTW5XVRcSWRPBNxIL5b3+Jg5XB3WL47oBtag1fyIo5s02IeOiIFZOGCCPSGsSfk3oXdUSGdDKUCIiNj0ybCp2NI+WZQgfqHOjh+ywGNfxMbSOmv7UHWTob1kQfXNR8XuHfib741SncIlNcPFz/9x0yxyByr++JLMTigeX723BtswuDEfhdBqv+e09UB2yLvGe2pcngaVtCvt13HK++/SUWNzQjNysrrN888tbX4uuKjJUsaNsfR8doBYMsSSqgQcCSpDaO1bitOXUK3aYb7fqfeMDhdKLZ2b1J0JASUhxiFuW3MzitXdOlMJSeEraKu3gedQF3tqmbu/69FwebdPj2aPiOacvqtKhsEScqPIvfw2HdjsOhb4oAJS2hkAsSSSqgIcR0ly3IFtxY4lKOUTlu2LzvRMyeZQ2ws9DGcAowGEotPSzjxSosMX2XS+TI3/dA4dXbD2PDztAdsdXJw+FyQavhkJEc/sL15hhNx0eDx5t6pH7lxHpbr43AlcrvPjuJqnp2/oiUWidjCYkkFdAY4gDVXWfkc07mged5zFsenvPIxhbpt+ZKcQQCq1GVb8yqmoOP7n/1YXBfJU5I35DtrI+N40WWuyipce+O2Dz53sfL+bObzuG3q0+GPDPM48ojO9UYkdsNJa8ls0VpiQu2cYJla1XTyG61EFmSSCQpHrvThWZr8MrpUsDKEKeLR7XNf8QY6ATtbYfPxiJKTDnf1g67k8c5G9tpuSPN0W0Pb+jYwccCuZtDsdMRQjhc8tcJKREzBhD7fnkB8RpKzFh9RFK0KEU2DX58LRZ/8K3c0YgppJFIJCmeUFYkscgprFpieCQEKw5XKtOlvrVdWQ7ziNig9M6r05IU3hpEZxArosUem/aiviX0zr2XtjZI8uxYvc7In6PwghYDSCQpHCkWbVefFz5qQiyW1na/dQtC+LaBDmhCWscIaQj2nsi0Lkyi54qY9Lc73L/qakkKVPqarIHXVTY7OMnLZvX5JhyrF3GOUgDqYrCkIBBnG6P3N+aBmgQSSYqnMcgJ22I5eDb8XRmh4Hken39fC0sI0XOuS5tR1UgWEDnYH+Qg0f2nIjvbLVFQongMZ7qtW6xjlA4enee55XTZ/t/CR7671QUNTp9nJ2CEOHC6LvRNEVDbJt9mGqEdqmJRXsmPPSSSFE48bP8XoqZJWpEkxcJttSG0UDTY2XhWBlvEpaCq3oL1+9icI5XIsO3wQtevVKMOSfrwpspaQxS9/WeVOd0d7yhxgBBrSCQpHCFHkkpCbB0KZElSapVsj9DJolJRY5v32Z4zaHfFR1MV6bbxQHxztC5oXYnFaw61GzGSRdt2Pni+HK5phi1O6qAQTRLMGAjRZousP1Fhc8Gc+Gh54hgpLEksrSy8yGpU12pXVaPHsrFwOOWz2NQHKU8nG5Tpo8YhKvNj3LzHXH0Gr8OW9u7rUsRaBZrahcorj5qG7q5Hth+t9P5bjKftQFF0uFw4XMN2LaUvctud98XIUlYfoQG/TmKLvxogkaRgHC4XmiPwtqo0GpwGOANsFeZ5HlUW9VRAG0NLRmurMk89anOpb9dhIBJ9BMwy/SebhUMTuvp9XWd7Fe7ONl/aBM4K03Qs9+465SZmXZZSh2VKLa8nLcpwVCwnJJIkpKXNitL9J0Q7SLO0OcAD0GsV/JpC1O79FYEXCp9tELcYs/x4Zeib4og9x6vkjkJAAh34a3Moc32Tmmi3qTsPc0T4SPr6UHW3ayk6dyNzpqFN8LDveEBuSxYRGAX3vurn2j+txu3/2oe3NuwS9XvPzrYMU3QOB6OlslX8OKc1SEMvViTtPFaFLQdO4ssDZ4P6V4kXDtWz6xjanLFpjo+ePB2T58Qza/Z3FwzhUtso7W6wUN06x3HITI7ckiTkgF7PuVDUIxkAsD9Cf2Xhlna52xE1rhVUY5zFQCJJQk61uxuJV7aJ23LvWY8UydlHsSbkmqQgX1c1tsMloqZtP3YOv37/ezQ7uIhPrU90nODQ3MbOj0ogzp1LLHcCYspxV45W1uFodSNqG92Hxtp48c3zmSbpp0mCCZAknabbYbjRMLzADAA4UGnxrq1i2UnL3d+3R/Gu5cLpSoypOPW9GZUTybllHpGULmJExppA8RbbUOk1GticLu9J4ZHAcZ2HTAa+J74M2CzPNWtojsVasPjK/1CcOhf9wtvNFS1w8hz2nFH/dvdwt/6Hy4CcVBi0Glja7ZL4TIqz5oJgCImkGBNoIbMQnu3/rKfbapoiFyYWkR5kA3XteWb3egUxU26xNvMqwVfImdpGdoHFoENItE7HybOzaDolaJZj7QMrSS8uDfYAFhW9VoPBeWkA3NYkQKRDTSJiIumz4hHZRdKZM2fws5/9DFlZWTCZTBg5ciS2b9/u/Z7neSxYsAA9e/aEyWRCSUkJDh8+7BdGfX09pk+fDrPZjIyMDNx9991obu6+PVUNnG/tFCONrR1rkhhPt9XZ2L32/RU1on6Xm5YEADgr+dqJ6LG0ietgWDYtgRr7VnH749mRYGJIrdgdsZ0a4VzsRZlnyk0Sn0mkpgJyvLZF7ijIiqwi6fz587jsssug1+vx2WefYf/+/fjLX/6CzMxM7z3PPfccXnrpJbz22mvYunUrUlJSMHnyZLT7HOw5ffp07Nu3D+vWrcOqVauwadMm3HfffXIkKSShpoE8W2CdLh6WDv8kGabA022e9QtSEyje3x4PbuEItCAyP71DJDX4W6jCOXg31lYKsd7BHTFYDCrGOSHTqUjqXABQNnRF7I7eYPRMT0KGSQ+704UjNeocBKuRRPd2rpPz4X/6059QWFiIpUuXeq/169fP+2+e5/Hiiy9i/vz5uPHGGwEA//rXv5CXl4cPP/wQt912Gw4cOIA1a9bgu+++w7hx4wAAL7/8Mq677jo8//zzKCgo6PZcq9UKq7Vz8arFErtCUN8UwkdOR2vb1G6Hi+eh03BIMQrP77fb7LAGOWaCJY2tVvQW8btWu3BjmZtmBAd3OpvbHUhN0jGb1rI7XThW1wYzz6Z41zSJW+hsd/EQlrfyml9isV6L7RPIXBUtPNism5KDlo7NnRzHYXiBGZuP1mF/ZSOSRIbXbHWg4Xwrmq0ONLc70Gx1YM85Oy5nFuP4oqrJihpLO3LNYnNc3chqSfr4448xbtw43HrrrcjNzcWYMWPw+uuve78/fvw4qqqqUFJS4r2Wnp6O8ePHo7S0FABQWlqKjIwMr0ACgJKSEmg0GmzdulXwuYsWLUJ6err3U1hYKFEKu/P10fNBv29pdVuGPOuR0k2GgJ0az/Mx6z6qG4XFXagdOByETf0Gncbrkdcz5XbuXGCfSqGwOVw4WNWEVbvP4u9fHcWGQ/Wwh1jcHS7VIp1eOpwu70GfftdFVDuWloqYVPpEW5SkAr6tiJ31heXbd/mU2KE93VNup8+3od0R+VPsThfW7qvCf8tOY015Fb45UotdpxpYRTVuSeQ8klUkHTt2DK+++ioGDRqEtWvX4oEHHsBDDz2Et956CwBQVeV2opeXl+f3u7y8PO93VVVVyM3N9ftep9OhR48e3nu6Mm/ePDQ2Nno/p06dYp20bpyocoujUKKC7zBTN4a5/T+YVeBQtQVbj9Whor416jl8sZ00H+TXBekmAJ2Ltx1hOiDsanDaXnEef990FJ+VV+LIuWY4XDzSjGysSDzP45xISxLPA4erlTct4FTAQvS4Q6YsletdchxkMfCZk/Qo7PCZVC/yFB2NhkOGSY/emSYMzU/DuD49GMYwPjlY3RTU5108I+t0m8vlwrhx4/DMM88AAMaMGYPy8nK89tprmDlzpmTPNRqNMBoj9wYbDdvPNKPviPDvZ+EjqcnqROmxOgDu9iw7zegVJpFytNGFa0T8jkPg/qMgw4Tdpxu6rUsKxbE6/8Xe1Y1WOI08Mkx6DMpLw6DcVKRonajcHiCAADidrm62p2arA21RTGnuP2vBBb3SRf/eA8v+6EjVefTq24thiMrDFeLAVKVR1SDuqJpwJZIkOzRlEobDe5pxql5cfnEAbhrdC9yAfn7XD1Yklhf/SMhOMaDCzqP8TCMu6Zcld3RijqyWpJ49e2L48OF+14YNG4aKigoAQH5+PgCgutrf82x1dbX3u/z8fNTU+O+wcjgcqK+v996jRho6vG2nh9r+H6QvSNbyGJKXhrQkPXgA55qs2H26gVkcwyZAY1qQ4Z7jPtdsjcjS1TW4gbkpmD6+D2Ze2heXDcxGrjlJ1LqbM3XdF6FXW6JwvMi5pxLPtyrr4Fi9hl21D+RMVF0SRX6+PVondxRUw8Dc1KiOahIqm5zYg7pbbKhttnb7xBMjCtyDvN2nG2X3TC4HslqSLrvsMhw8eNDv2qFDh9CnTx8A7kXc+fn52LBhA0aPHg3Avch669ateOCBBwAAxcXFaGhoQFlZGcaOHQsA+OKLL+ByuTB+/PjYJYYxnZak4I4kg4kBk5bHlJE9AbgXSFc2tqOyoR0Hj8Z2232gapWWpEeaUYcmqwPVlvawVxCVN+iQ4/P3kLw0QMSJ410RWgR/LopTsHUdYuTAWQsuHZjtvW5zyVrtVIdTBe1yNFE8WdeCU+fbIOUYXexi/fqWIAI/ZkrYP3fdPpNScfyE/FvT/7fjNFoN3a3zU2SIi1T0y05GcmU7WqwOHKlpxpD8NLmjFFNktSQ98sgj2LJlC5555hkcOXIEy5cvxz/+8Q/MmjULgLtiP/zww/jDH/6Ajz/+GHv37sUdd9yBgoIC3HTTTQDclqdrr70W9957L7Zt24Zvv/0Ws2fPxm233Sa4s00NuHgeFsaOJNOS9Bicl4Yrh+SEvpkxwSz9PTM61yXJ7SVbaJAUjSVJp3WnZ3+lxe/YilDewoVQgU7w45RN3LSuEGIHr2rIMxfP4+vD4o9wCbfGiJ1u23Uq+EYTuRjeM/opbBaY9FokG3R+H53s3gfZotNwGNmxZCDaBdxSuIaQGlmHtBdffDE++OADzJs3DwsXLkS/fv3w4osvYvr06d57Hn30UbS0tOC+++5DQ0MDLr/8cqxZswZJSZ3bEd955x3Mnj0b11xzDTQaDaZNm4aXXnpJjiQxobndASfPQ8txSE0K9oq4oJuInE7ln61TkGHCoeomnG1sR5GJXesiTnB170jEbv8H3I2LUadBs9WB0/VtKMpKFh2Wmjhzvg0WPrZr/oRoszsRqxxvarNBjGnl+8om1DZboWN4zhkr2mxO7D9rCeDGQl48U/WhkVYqz5jQB0jzt6xs3nM4wN3qZVTvdHx3oh6VjW2otrQjT6Q7gHU7DmPyuCGMYyctstv9r7/+elx//fUBv+c4DgsXLsTChQsD3tOjRw8sX75ciujJgmf7v9mkhyYK64pLAq+3Ygh2CG5Bh1PJyoY28HkpsYqSIMdrW+FbfVusDrTaHKJnFXQAhuSnYc/pRuyvbIxKJCmvCxXG4XRh3QHxp9ezpMXqiJlIOtXMAxEKHYfThdKjbivS6N7pOL4/8oOwnTzPyNFFd/aeaYQjoK8veZHb6pxopBh1GJyXiu+rmrDrVAMmj8iHmFapTYU75OLMMBgfNERwHInam4rsVCP0Wvdht41WeU2xzU7/6uDxj9QjRXw34ZkWOFLTLOgzKd7YcqzeW35ZIbaMN1uVnd87TzWgyepAmlGHUb3ErfNoEHlkTiicLh6748A3jpX18SUxJtbHyQRjdKH7JIxDVU1osYord8OLckPfpDBIJCmQRq8jyTgQScF8AMDts6RnhzWptlU5DQLQOdXmOWdODHlmI3qkGOBw8VH5TFLD+ppqSzvKKtxrWMTuFhJC7MJtsQ15LGizOfHdcbfl6NKB2aKn2xrb7JL4rzlU3YQWmwMpjPyNycWxc8rzUxYJdgUtmchPT0J+ehKcvNsdgBjUaAAkkaQweIS/s00VhNHB9ezw3aQ4kdSxaDvXLH59DcdxGN7hJTiez0Byunis218NnucxOC8NJs7OLGwxHsoBt48rpbL1eB1sThdyUo0Ymp8mevqI54Gyk2wXV/M8jx0dYY4uzGAadqyRY3Bhd7Ar+5zChsGe8rDntDiRFM3yEbkgkaRAvCIpyp1tSimORyuDr7XwLMJkKZJYrFnwHGwbjSUJcB+lwEE5PpOCrRETy/YT9ahttiJJr8VVQ3LQyssv8JVqSWpss3s7mR8Myom6rO4+1cjUmnT6fBvONVuh02i8u5qEUEr7ojR4Fe7gCpdBuWlIMejQYnOEdRh5V9RYZkgkKQ0eaGwLf01ShdIPreSAfdXBveP2TDeBA9AS4DBcOWi1ObyWiJwofTClGnXok+VelH4gzqxJPIC6Ziu2dUwdXTU4B8kGZUzRKFUkfXfiPFw8jz5ZKVHveDTqODhcLmw/wc6atKNjynR4gRlJeuFl4aE8CvAuZViF5VmWxlAKKEBV+LqP0Go4jOrtFs5ihloaho5sY4X6Yhzn2FyAw8WD4zikJYUWSbYgc9aKWccSoqIbdBpkp8q/ZdwXz1RbZrIBBgaOT4YXdEy5VYoTSYGy0CpigyprE/66A9Vw8jz6ZacoytFcs9UpzXEcUXKs1r1O5nIfB6NirUmeTQV7TjcwEYXnW2w4Xut20jgmiqk2p5PdgCea0tru6lp3pS8P8b7z7oJe6dDGeRp9IZGkMGwdbYs5SQdtlL5TpNscHBmOEIf6Am5/SUqic9E2G/HWPzvF6zNJDIGadjsfuUjKy2C3Mf50C1DV2A6DVoOJQ3MV1UE4eR4tNmVYNLoyvKc5agsl4HZmmJ+eBIeLD2pNClcr7uxwHtk/OwWZQXd1Kk98RgPLUsu0Cigwm1OMOgwWORjSKNAfWChIJCkMl8bdMIW7aDv42asKrGEB6Bm2c7jY4F2PJNJpWld0Wo1irCxGPfvpsMsHZYdl+Yw1Hs/1SkKn4VA8gM0hJByA4v7usPacaYhqsXq7w+HdXDCmKDPovUdCrDNUU9vDGoZGNMUidkG/+iQSiSTF0d6x3zncRdunmuOjRirOkmRha0kClHOUAuv+q3emKegCXzlRoki6oFd6N0EZjfWhqEcyCtJNcLp4r1sBMbS0O+Bw8chJM6J3ZvD6WN8SX4e4sqSySf7NGVIj1uO2XqeM2Y1IIJGkMNo7Fi+nh+NIMkTDytJXjdSYk/QwapUxzmi3O2Fpd3euLKZEPHh8JsUbJcPyFDXN5ovnPSqJC3uzFZQc12mZKj/TiCaRaW7tmOu/qCgz5PtstamnbYk1LDtVKXaiygmJJCJqbI7wLUkNzeJPqFciWQzPbosGjxUp3aQPuLtHDL4+k+IJJfvzskjkkToajAIdRdfF9JEuOO+daUKvDBOcPI/vToizJrkApBh0GJwXelrYxfPqnDuJARzHUNjEl0aCgUQSwYpwOh6xjWFMiaCSK0YkMfKPJMTQOBNJSrdWNirQkiREV8NNbWNknqL9rUni3UxcWJgR1oaRrkf4EJ1oFF4n5IQsSQQzzKbQi2utYewaUxM9kpQxNPXubIvC03YgUlV+zENXlPHGAqPENUnhUN3QEvFvemcmo3dmstvKI5JRjKcCExGlDxzkRK9Vn0iKrxY7TkhL0kOnQqdb0ZKpFJFk8ViSlOW7iRUsfQex7g4+3HkGVocLNocLNocTVpFbhbQdUx5N7Q64eF6VxyGIobh/FlaWBXfeGgiTnmM6vUxEhqXNAXOXmc54k1tarfr6NRJJCiQcT9tqIZJKnpmRgSbJYhIeVocTDR3WBymm24jgnKiL3IISCA3HwcXzaLE6/HaTtduUZ11itfC9V6YJRT2SgYrIf5tqSGSBJL8cWbG9AsaMRvTJSkafrJSQOwyJ2EAiSYFEe2ZbJ/JX/EhQwg6p2mb39t20JD1MUXYaPJQ/HRUtrNP3w+F5MOo0MGi1MOg0MOg0WFF6RFS8UoxanIN7hO4rko5XsT0QVgqi8Yo+oX8WDu/yvxaO9VCFfv6YwdT/o8hmV8NxON9qw/lWG3adaoBWwyE7xQBleFdLXEgkKZB4siQ12jkoxPF3WNR1iKR4nWpTMhx4jCjoviZGz0U+5cYDSDXoAJfbDUAvqGtUHs3wpiDDhMPMYkLEihkTinDKrsOJuhacrG1Bk9WB6iYriSSZIZGkQNJNyt1SHe/UNbN3Iqk01GVfFE+KUQu0dV+8nSjp90UKK60Cj8VTNUadFgMzUzEwNxU8z6O+xYYthyvB17AJX4nnGKoB9a2iSgDiyZKkNs55RBKj40iUSKI0lSkdOwkbVbrDjSVSdJAnqhuYhlffJG7BOQvYSsjoQ+M4DlmpRvTPoL5AbkgkKZB0ZmuSiEjpXLStNEsSy05OXTKphRdnWfW4W7C0K8+hZKyx2tnngYOx8GpoiQ/nuOqqXaFJdAsUiSSFYdBx0DPaJpnA6zCjItWo81oh4hGhNk/sURZKJjXJI5K6pC0BG/19p+rkjkIUSP++9FzQk8LlQwGbWQKh3JixhUSSwjDp1fVK0vXx1+Eoz4oEBGqSWOX+1igORmUF65KUanCLpKZ2B1yuztBd8VdkQ6LgvjYk2hiIJAPYWdoMRlpTGk+oq0dOAJJ00rdmffVsvBGdPt/q3r0WZ+Qo0j8SSweQ/mE1tNqw/6z4oyxYwbozNOm10HAceJ5Hs1VdU25KcIcRDUqNfaB4sYxvklGJ7UdCGlCZQCJJYcTCkmROin4qqcXqwGd7qxjERnnkSXAciS8aRL6lPZqjJkKx9Xi9pOGHS7qmjWl4HNdZ1rtNuRGKI9HXvgihVLGZSJBIUhgmhpYkqSqYi+exprwKLTZ1jc7DRYmeto/WtqOZ0QJk376ovsWK7yvltyIB0kyrmDs2QST8DjfqbWOGUrdYdLUgR0uinFFHIklhmFWwYHjLsTqcOt8KvVaDCzIUuuBRJCa91u1fR0LE9FfH6tvxxjfH8NGuMzhS0wwno4U1pUfrwQMYkJMq6veuGPS+SRAvcDwiydKmLkGvitk2FfaRashWtaBRYwEQgfJ75ATDGIM1SdFwvLYF2zoW+ZYMy8P56tNokDdKTMlONXZbD6KEaYA0owatvDv/j9e2INmgxbCeZlF+pD3pqWlqx+Ea9/q04gFZeP/MOYYxZkcKZxP9W3PHcSS+022sR9RqIJpjTmKFFNUsSeMCr+JxnPLfWvxDlqQ4Rg+2rYOl3Y61+9zrkC7snYEh+fHnMD87VZk7UyYOyMAdxX0xtk8mkg06tNqcKDsZ3RlkW466t4UPyUtDdqoSd/S5iaajMJs61iRFOd3G2idQPBBPOWIwKLPes4SKsDjIkqQ0GNrZWY9CVu+pRLvdiTxzEn4wOFt0OEOSles0TslioUeKAT8YlINLB2TjRG0L9p1tBCI/+xU8gMrGNhyrbQEH94GoAJDOKfe9iKXTkhTddFur1QkziwiFSWpS/Hfa4ZLEST9VqtWq6IBJEVgdTmw9Vg9yUxw5ZElKRIKMKIJNLVVZ2mHUaXHdyJ7QacQXHXNy4A5AJ2LnF0uUKpJ8X4tWw2FAbip+NLqXyMCA0g4r0rCeZmSmuN9HEhd/i5s93uub2+2d67hEjKibrbHNG6OBbaetijVOAYjGh1FmUmJ3cS4Xjz2nG7Ds2xPYURGd5TlSrhbZPCkNsiQRfpypDb7T6doL8iQ9NoWVSBK7jihV4kXbYmFpKT/XbEfFeRs0HIfxHVYkJSBFP55s0EKr4eB08WhudyA9WS8qL5ttsV3Y4gxRDbQK8xBt1toRzoq2YOvLAq0VC1QuUjhryOelJulQ3ySNwE0L8HylTGtV1LVi0+FzqO04jzIzyOBUCtKSdABDJ51ykdgyOw5I0kQuKoLVYScfOLyL+/ZAv2xxu6DUgtqd+IXD9+fc/ogu6JUeteDN0rA8lDRAJynilXi2J3McJ7B4O/JejJX7hXA5URfcZ1QBGmMUk8DkmDu3Ddw6yl9sB9oenm8KZsaObMdUahQL+rsiptYreXfX2n1VeH/nadQ2W2HUaXHV4Bz8bEIR03WqodI/aVQRs2fJCVmSVI5JB7QyHCgFGwUVK8jqoGbEyTB2DbLdxUOr4XBJvx5Rh9W/h5j9ddLj24CbTXqcb7VFtXg71iIplIuHSDtoKaS/3mcdT/GQXsDh6pC/MeoCj8vPWdqg5xgLDwl1DMujTFhzsr4VGmMyRvVOx4T+WUjSa0VZ1/O4ZlHP72OyIT8zPgbUJJJiSH0Ty1G3eMRUlpIiPTSa7k2tJgEsL0og0CsTezDnhb0zkMrAJ1cSw7UzUpUkj9ftxii8btucLrTZnDAxXivki68/KOXaKDrxjSPHceifHNqyo9cFzr99tTYYIioEoW9ut4dZP0QUvpyUQPVH/rdX1CMZl4zsgx4p0U2xpWlCT2kKEYvjtWIFTbfFkDYVe6gOdFpKz8wUJDM0exPCBBK2Ykz+Og2HcX0zo40SALbTk1Kdq9XVoaTYNSOetR1SEetuJVnDtj167a5LmYYXinBe47nW8ESSVsNS/DKsEyKDunZEftQCiXAjq0h68sknwXGc32fo0KHe79vb2zFr1ixkZWUhNTUV06ZNQ3W1v0m3oqICU6dORXJyMnJzczF37lw4HMoUI0pwSggEb1wijSHHcSjQsDkwlwgMy5IzKCsJyQY2RuQUA7tF/Kz9enkQcigpBqlFklIJ5Bqia3vWIy05ZFgs28BwNnm0u8Lr4opErLVUgq3EFKV7hPvHxtKxhTqR3ZI0YsQIVFZWej/ffPON97tHHnkEn3zyCVauXImvvvoKZ8+exS233OL93ul0YurUqbDZbNi8eTPeeustLFu2DAsWLJAjKaFRhkaKmEwu8CJSpQi/eEcfZC1HOGRoOwXC0Fx2Z9Pp9eGPwC/JEbdzUa+NrjtK91qS3Hkg1gdRbXN8WUzDPXtrUErodHezeIh4ZXyEPwrWLkVKTnpKxL8JlHsMzg+XjK5x/u2tP4jZs3sa1Vl/ZBdJOp0O+fn53k92tttJYWNjI9544w0sXrwYEydOxNixY7F06VJs3rwZW7ZsAQB8/vnn2L9/P95++22MHj0aU6ZMwdNPP40lS5bAZlPeCwlHUASavjAzbBCCWpIE4miMgTM3IjjmZGFhE+6hsI9PGYgfJR/CQG0d9Frhat8rTVpXc//59Q2ifpeR1F2IpWrCtwp5vG43Wx1wuFzQdaSfA7Dql+PDDieWlqRoxx7GLj6vopkW1Wo4aIWsNhKMj6x8+F0SywNWWQ72itI4yayi4SDns4MxIFOdrixlF0mHDx9GQUEB+vfvj+nTp6OiogIAUFZWBrvdjpKSEu+9Q4cORVFREUpLSwEApaWlGDlyJPLy8rz3TJ48GRaLBfv27Qv4TKvVCovF4veJBfK6SQyPWNiFyPrEjnA7Cg5AUY/go+X0ZAOzjqevRthxXVoE4iYYpfOvDftek14LXcemg+Z2h7f8acEjLzP8o3Xqmq1wiSi7ozLjb5CRYeD9/BpxHJeQZ+IJoeE4Zo5ZU0RYPZXgmmDe9SORm+E/halW9yqyiqTx48dj2bJlWLNmDV599VUcP34cP/jBD9DU1ISqqioYDAZkZGT4/SYvLw9VVe7zw6qqqvwEkud7z3eBWLRoEdLT072fwsJCtgkLgFLEgVLiQURPepgehcN943pGUj6Vs8LEqKMQalyTIlgLxXGc3+Jta8eOJ0cE0ztaDQeHi0djhP42kjgHPn7sxoh+E4gJuS7cNiwJswdE7iMp2v6pZ5d1hwYtpwinieYwHEqGi+f4E6Om0xJj4JwRW2bCaV//+ZPBOPbMlJD3ZaaakMZwY4yei81Q/aoLB6Ao139zyLi+0bsckQNZRdKUKVNw6623YtSoUZg8eTJWr16NhoYG/Oc//5H0ufPmzUNjY6P3c+rUKUmf5yHUSEsDXvbzA6Ru+AZr5TlpXmi6oIfOhom91Tm68dD1eBglWS0MCvIK7Vm83dhuR+mx2oh/n9yx9T/SKbdL8v0XqGRzLWH9TqgaZqca8OzMa3BBYeSdTZ459KLqYAidn+br/qNnptk/0jESUKmclZmw93jQNvo0CZ/OLsbLPx7CJHxfjHotNBqNn9uHQKh59/Dm31yO6/pqce+YNMy+PvypbSUh+3SbLxkZGRg8eDCOHDmC/Px82Gw2NDQ0+N1TXV2N/Px8AEB+fn633W6evz33CGE0GmE2m/0+aqWFscd9sSbzcI8T6aNtEBV+tPzjp8P8/tbBiR1/uBmD88KfbgnGMLMyzj37ycXx4eWWNWafxdstDn9h/P7dF4b8vcenVKSLt7uOecIfyXevh0KNddi1tUs8bhnEYHu4T5hZ6Slhx4XlWiIAMDBeM3n1iJ4oMtnw1DU9MahXDq4dx14kqXXqKVIKstPxyv3X4vc/vQLaAGshlY6iYt3c3IyjR4+iZ8+eGDt2LPR6PTZs2OD9/uDBg6ioqEBxcTEAoLi4GHv37kVNTY33nnXr1sFsNmP48OExj3+kDErt3rFGWnVsAgsdjSFG8EGtRSLbL1MgR0oMYLFw/JoxA6OMQ3ARFO0OLFZwitiY7E8PoxMLS3oCEHvESPR4HEoKuQG4aFBvXFkQ/PedIilGi7eD1EMWHeziu38YdRgejBFO4WjBI1sTnkVNDnLNKdj0xM2Y+cOLvNeenxr+4IPjYlcLI3bZIkks4htZRdJvfvMbfPXVVzhx4gQ2b96Mm2++GVqtFrfffjvS09Nx9913Y86cOdi4cSPKyspw1113obi4GBMmTAAATJo0CcOHD8eMGTOwe/durF27FvPnz8esWbNgNCrzNHdfPnl0qt/fGsYu+TmN8OtVwFKCgHACFqmtv5+E3knympxzNK1BF0ROHhHYcqkE5FyHNu3igbij5KLQNwaCQcve1Q1AV96cNQX/uXMkrgkw/ZqaFFuRxPptSfH6u5apcJ/BccCMi3uyj5CE/PgHIyO6P1SR9ejcWIsWjU/76hm4EMGRVSSdPn0at99+O4YMGYKf/OQnyMrKwpYtW5CTkwMAeOGFF3D99ddj2rRpuOKKK5Cfn4/333/f+3utVotVq1ZBq9WiuLgYP/vZz3DHHXdg4cKFciUpKF0bka6LT2M3+gjcmgl1prGsyELPykg1ITclco+4nu3xQmtjPM+54+pRYceL4wJblPrkmLHl0R8gJ4yzjkJZ+rqSgsgEolBHr4RFtmIJt/zdOSrw7r2uXre7otVqcMnQIjwydYzg9ynGjjVNbXbYHGrYp+rP95XdF3sPzfS4QhCxdkxh5SlFG/u1eIGywLcNTdMJ523XnV/h8vWc6Lyap3Ssb7ok1xVy4NJfWxfVs+IFWUXSihUrcPbsWVitVpw+fRorVqzAgAEDvN8nJSVhyZIlqK+vR0tLC95///1ua4369OmD1atXo7W1FefOncPzzz8PnU7B3rwUgG+H+dG9Y3DHBcmC30XK1UXSucG/qDA94t+YOhqE/h3+Of778+6CqCA78nADkd/D7GcNDJSVGbrwRc9Pk/ehpzYyj+ZvzL4O+54o8bt2/fihAe6OLYEanEjXqWgFzhF88v+uwkCN8MYAz8LtFpsDLj6w7LqgX89ueccBSNJyXi/ldS3BrUlXCAzQhyS3wMy1I1UbWJBE6z05GA3W7sLutXsn4nJzHXJE+mDzvDFPbqYatTB1HHUi8HrijzAay7H9c/CToUZ8cM+F+O0P3IP/8TkuDOqVE/Zjkjj3PsyiFCd6ZaejyOTfftwyyOBXdkJasQBcOKRf0Hv2zL8al+hPA1CcHo45ilqTRMS+QF44oMCvVkXz/HsnjcHXcy7FLyRwdf/Yjy+P+Deewm3q6NzGDe509ZCkEen9OUCNcYU4td0XoQ4+EJ5T0yOdLksx+U83m4yxdeSWk5sreL1femcGTuzFoafRhvG6ExF3qhqNBseemYIBKf6WvUDONZP0Gq8TTWeIbqRr3nnITnUPAmqbgovc+dMu6Xbt3/dfhSmGg0HffQZDh7HhkJORil9PGQmtyNPsuxZJjuNQiHoGMYsfUgwGPHdnCcYM7I37p16CY89MwXt+TlXDcDAMHjrOhd/eOA4ajQZfPn4jCjq8V1/aS4/Fd/8Q+/54A2YMdu/2y9WEtmaHWtcWqA4kIiSSCL+tvNGuXSnMzcQ8ka7ugz072OnhkfDn64pQYLTh1f8LvaNJiJ+M7SXsfVgkeQZlb+8dktZ9evGpa3riEt0p9AngMBJwT4UL4ds2v/ngdSh96mboQnQUgZpzjUYTtrjiOM5rTQqHq3oB6Zo2v2fnpLk7jlDrkgKV43DXWwe0qkVhnWFt2An0xhLBgORBzAJ6TZd1oikifIlpNBp8+HAJ5l+Vh5fvKfFee+DaMbje+D1SDOK79QKjDX+c1Cui37Derag0SCQlIF3bcF3InoZlJQgvrNSOuXwWfow0Ph32rVeMxOanbsblFwQ3NweiMDcTy6aP6Hbd44l5YmF4U70ceJT0NWDzEzciX8FCKTe1u7CY+cOLMGloj5g5pmPlO8xzPEk4LHtwKvpy/laR7NTwRJIv3gW6Hf8IdxDCfOE2gzBMXdbGedLCaje7rxUwUY5CenJyEXpqLOilicxBaG5mGu65dpyfR+5odz1q4MLmp27G9ImjI/qdUaQlUi2QSIohTqcyFnx2baiT9J2dh1LGBL0yk/HOjOF4/YHwj58IRHpK5IdXRoonS//v8iFIDsNBHAAM7tmjm++QTK30gilYR91D0+r391/uuELwvkg7/WhIMfhbpa6KbKDrxbPDTSxZnum2ZmvY6Y6k2wo1Ii/sIW6xLyuW3DwAF2d3tmFdY8vS9881fU2yOZ6NJcMKc3Cl4Th6JKvzXDMg/q2HJJISkK6N25SxnYvlu60zAM90QWk61x7WfZxGg8tG9GPigKyriVsKfDtNITcG4fL2vcWRPtjvz2AdVchOjOeR6uPd16y1IzeCs83CQUyD2isrDZmaNmjhwuPXDsSbszqPcxiSawo7nEim24TokWIAx3GwOlxotko7enb6rHH73dU9cW0fLR6+cULYv5fCypeWbESfHp0HLbPWx77BcXBbruK9A44HOPDY9pjwYCoeIJEkMx7/Pz0YOFfzHB2QEkqIdGnceph9d7d1fvnq7aOwYIyT6YGJOta+oJiGFh7jhxYhW29Dv+ROQeHd6RPlaHpE33zMvyoPOjjx5DXR+TG5bZi7Q5txQXRHUiiBdK4dOq0GPXuk+YneRT+7ErcOMeKdGaGdx0Yy3SaETqPxjviDed7ukdaZ33qRIt/uY3W++dIReO2Ba73r8sIpY+k6B8JaFBxVeeW7/J8dkUbr5gvC3y1GsIf1YEpJ0F55mfA49Xpv9tVYun43hp2K/NDKrnz0y2Ks/PYAcjcEF1zhOtzW67RIMii3iOjhglYT+wlCg16HrU/eCI4D+v/uM/EBeaasuly+59pxuOuHLmi1Gry88b+ig3925jX4o9PF9DiAH/WPrjywPo0hLTkJf76rJPSNiN6SBABZqUbUtdhQ22xFv2zhadwcHx84Bp24vLdG6YtJK5HXZyFRJcVzXK7I0j957EBgY2zXxsSLlavIZENFmwGXCG9ITXjIkhRDeJ6HocMM/uvL3f6eemVnYP5tV3p9sETDkMJczL/typC7r3qkBPZn5GtC913PLafH5kCkadpj0lAJpV2r1fhZNFjnDythE0046fruaXrpvsnRREdWzFGuSQJ8Fm83hbd4W6wwszuVV9+6IuV0W6RoNRpM7cdmB2y4GPWxfZ5U/PehEjx6eTb+8YvOo2oS5Wy5cCCRFEN4ANqO6ab0lCS/72JZKNOTDeitacRvRgb3tKt0h3AuBRXfcYNEriZWID8tbMbAVDtemRn+Ghg1YNRpYIhSfOakeRZvB19g/8tx6RhmtuO30yL3kMyDg431Jo8gDjRFB8k8xE4U3vTEFbmZafjl9eNh7tInEW6UO5cShyjJGJPEOVCU093po28UNRzHVLxdkGZFmBu/wqLBFftK3TU/vp5zKRpb2tE3v4fg9+Fw14ReeHbTOYzO7D5dIMeI7sphvfCbH/1IkrDlPICX4ziYTfqozl/L6rAknW+1weFyBWxAH/3x5XhU9FOAVjtbkdTucxA2izfA81DOVliCkBASSQlMqA5Yw6iDNmlccDmBIantQGD/g6qkMDcThaFvC8r9112Cq0fWYGBBNpM4EYGJViSlGXUw6DSwOVw432JHIi8XJo1EJALKma9IAPQiF3FKja8U8rV20bR07BhSmMtkHRK9s+CYk6JdeM4hR4RTSSURTRnx/S0vcI2IDJaW4lj6LhPCs1O7XzLD6QIFoMxeO04x6kIdwCAPvnFqtXYW8GgqsKBvpSjbAwMn4rTyCNCJOQ2dUBXROpQExHneVhJq0DRi1kNe0p+2Z8nJu7+8CneMTMY7v7xa7qgwhUSSTGgibAVi1bCdPt/pcTma6bZZl+YBgHc3HxB9GqQ+I0jMOUqJBIsjYsTAcmTMxg1AeIu3lQrrDRmsgov2Lc+4ZjR+d2UuPrhH3LmMkRDv55WJoTA3EwunX42C7HS5o8IUWpOkNAJ0CB5HkT01Tcwf6dvI+Z5mH41ISuk4dV6nQZyf7OOP3K4SLhks3S67kb0zog5D7qkZ5m4A8sP3+M2KaKdoUvTix8btNre1tdYKpDncNVuK45bEJFGj0eC+KRczj4sQRdqGmDyHkB+yJMWaKPpQDkAuZ2EWlZDPi6It9goshppBDdMEcqHjOPz66iIMkHDxdyQCMNC9vdLl3WYcrddtoFMktdgcaIvS6aMcpOrF16Svjjd7/11bW8ciOj5wAf5NsEDuAZxaIZEUQ/zP95IenT66UXM0liQhjUQOyqSD44ABPbPkjkZIFv7fD3BlAfDn64pkeb5RF70DQINO47VINbSym3ILt3pE29klG8TXQ73Pur1mp7v7kMaztwSBMiQV6lyP5oHa4vCh6bYY085rIfVJWpoOcZSSHPmTuvpJEh0HgYUPkZ2Irk7M5u6+p4hO0pKT8NZDU2WNg1EbfenKTjXC0mZHQ6sd0Z2wF3sMPjox0s7Sdy1Okyuw5/5oCSdW+T17wlldDZ0u9t1YHy1bXyZk5VEuZEmKIe0+c/fHq1ibqjtRQkcthdNANQinvLw8uaMQkHA7xHDuU/NINCfF3amadeKnynI6Fm+Ha0lSc375wvvUQhvkPZZDp3U/3/d4oFgRH2+TCAcSSTHk5PlOE21za7uMMQmMnyUpim0wXp8dEOdPxWSQbpRKJDYpUUw3eej0vB37HZHRCi72Rgv2VpBo05ilU+fOw2iIFyGuNEgkxZBjdW3efyvJuBpoWi2a6TZtlPuM5ajwoQ4GZg01avKQqo9+LY1n8XZjm119UyVRlLtgKVVSee4eE/KBRoiDRJLqib6Bdvk08v5rksSH6eiYWmx3Kb+I3XeBDoXaBmTpE2/0mYgUputh5qzINooXxRnJemg1HBwuHg6XNCLJACcGGmK3mzUceIYTTSPSpXMOIoVeG5jq42hXUcNc9ihJ8MqN8nuwOCXS0ae2Y/69X//+ftc1ApU10gLuCtDIR1NPPi8/I/7HAZCq2v685EJcpj8JXRhrGxK58SjMkn+tGwuSdByKNOdh1osXSRqOQ1aK25pkk8gNQDJnh46ToDOOIkiWsfngN1MDOn5krTtZ1NoReVJvuSGUCIkkhRCq89V37FgzJvn7mWFyorf/Rn3vvzQcJ1oUCI2uo45r4uoTWVlY0hO3DjFi2uUj5I6KosjuWLxtk8CZIhD76d9w8K3Vnk2CYqulQa/DmIG9o42SIFI0FYN7xpcnaSI8SCTJhJKWMTh9BI2fOzcWziSJqFCC5eqOkovw57tKZNlFpGSy0zosSfZOMcPy/D8NJ5FI8ilSkZevzvtzk927BKXYgh9t+9g1WSymCf/vypFRh0GoD2r1YkhOsjKzOzO182iFnmmdDiij8pMk8NNoO/x4XwdAqIt0o7s+t9k7hZGeoUjSSlXeGU235ad1iCQN+3heUNTpGFXLRISxbXvlH7oQsUKZvXac8PCETBSZOhcD6x1tQe4OH9Zm+LTkzik8rdZ/uk0sWoHfKr1hUd0uJUJW7G3NoW+KAiVOt/nSJ12PQk0DCpLY7xy7sXh4VL9XelvjQQmWYiI4JJIk5OGbLsWmJ26WOxphYdK4d5r47nSjKTOCkA+hTRlMiKJa+05bcRyQzrVDy3BxOQceA7TSOdoNRDgDJBcNohISEkkyoQarRVQaSQJ9lZOk/DwjCFboAogkX+tDrNsRoaextIYY4GTSdCTi8I6sUtJAIkmFSNEseqqXb5sbTaUT+mW0lfhnlxRG9ftYw/Q9BeoMVSC24xXB8hxVEfd/l1JNt/1oUIok4UZCoLbAwHWfuhO1MFwKvcAH/COuUcOAXkrogNtY4lfWlKn6WR1LIjxVF11lM+rlPSsqHNQ8mkv0xlBuupYcDWORxAHor62Htoc+5L2BYOlMUgiDz8L3JJN7Q4lJxEHdUuA73RasmpvNZvLvHUeQJSmW+FSsXr0K5ItHEHz7SVZrkjzOKltaWpiEFw7U4RNywFJCsFzrAwB6DR/VOqdYDAAMXKcXbnO6eL9EUsQ01WT0/lsfRMCqeaBEdIdEkkzodErLet7nv26iEUlpSZ1GSk+YTRZpdwMRIfAcOhxCQFIjrwxYT7fpGbzW8dluG0kSpDlSxGNJUmIZNBn1+OdPBuPXo3jopfJhRSgOpfXUCQOnuOk2d3xcPNflijimXzEsyvgkAArsCIjwieTtie30oxULKZrO88b0DPwZ/fbGi3C1/ij6JLFxZ9IVA6OJKqlqVslFg/CD4dJ4CSeUCYkkwg8n11kktFrxxcOod1uS/B1ARtdIS6UpQnVENHXXHS5MqxQhDiE/Y2LQcQL/9gk7UhGm02qQp22GPoq2IRhCC7cJQk5ElfQdO3Zg79693r8/+ugj3HTTTfjd734Hm03cSerPPvssOI7Dww8/7L3W3t6OWbNmISsrC6mpqZg2bRqqq6v9fldRUYGpU6ciOTkZubm5mDt3LhwO6U6XZoVSbQiNbe5GKkvjP1KMtDMU3N0mNlLeOEQZAEGwREJLoEECDcLCkhQ2IisrK6/6ZKQlWCGqKv7iF7/AoUOHAADHjh3DbbfdhuTkZKxcuRKPPvpoxOF99913+Pvf/45Ro0b5XX/kkUfwySefYOXKlfjqq69w9uxZ3HLLLd7vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAjHJiim9MpJC3xQAaVwAuENtsrnn2pMUOKLTKuDsMCYHCpPaI0Kg07Lp5X1DkXoZpBLXESUSLPOf3mUnoqrNoUOHMHr0aADAypUrccUVV2D58uVYtmwZ/ve//0UUVnNzM6ZPn47XX38dmZmZ3uuNjY144403sHjxYkycOBFjx47F0qVLsXnzZmzZsgUA8Pnnn2P//v14++23MXr0aEyZMgVPP/00lixZItqiJTWDdA3I45oxNM/fV0kkhdIo4QZTT/dt7NhlwrSyRBnUDeOHsIkHQTBAym7EIIG3Cz2D3XLUeSofGoSxRZRI4nkeLpfb4rB+/Xpcd911AIDCwkLU1tZGFNasWbMwdepUlJSU+F0vKyuD3W73uz506FAUFRWhtLQUAFBaWoqRI0ciLy/Pe8/kyZNhsViwb9++gM+0Wq2wWCx+n1hh0tiRprFGFcavRuuRybWhl7aJUaz80cEJHdPtx2waVr1O+X6SCIIFuiA+ysQKFcVtqO2Gf5ujdDmmZjFCYjd8RFWbcePG4Q9/+AP+/e9/46uvvsLUqVMBAMePH/cTLKFYsWIFduzYgUWLFnX7rqqqCgaDARkZGX7X8/LyUFVV5b2n6/M8f3vuEWLRokVIT0/3fgoL1eXJecKQAkw2HkKeWfyUXTBMHIM1XRIccJuIZ8lRY6YuUrnoBkAe9BIIGgNjv0usyeTaJQubFoQTYhFVFV944QXs2LEDs2fPxu9//3sMHDgQAPDf//4Xl156aVhhnDp1Cr/61a/wzjvvIClJms4+EPPmzUNjY6P3c+rUqZg+X+kkcfbQN4WAunYikUjXWJHK2fBgcb6o33e1SuijXJMkZOVgaUmSworCss3oOrYwIvo2TQpoEKR8RB1LcuGFF/rtbvPw5z//OexzdsrKylBTU4OLLrrIe83pdGLTpk3429/+hrVr18Jms6GhocHPmlRdXY38fHdDlJ+fj23btvmF69n95rlHCKPRCKPRGPB7qVBLdTBJ5CiOIOKVLJMGnK0J+hwzk/CCTbdFgm8oMd3dFgCW4ipYWKfaDMyeQyQ2osYW/fv3R11dXbfr7e3tGDx4cFhhXHPNNdi7dy927drl/YwbNw7Tp0/3/luv12PDhg3e3xw8eBAVFRUoLi4GABQXF2Pv3r2oqanx3rNu3TqYzWYMHz5cTNIIAEk06iKIkPiWRgPjoinFdJtnnSHVIoIIH1GWpBMnTsDp7D7Ha7Vacfr06bDCSEtLwwUXXOB3LSUlBVlZWd7rd999N+bMmYMePXrAbDbjwQcfRHFxMSZMmAAAmDRpEoYPH44ZM2bgueeeQ1VVFebPn49Zs2bJYimKhEAdvtyLAQ0ajvH8va/nE/lHsgTBCpdPcdZreaZDC72GY7qHlQOg5ZCwB68qfs06oVgiEkkff/yx999r165Fus8BhE6nExs2bEC/fv2YRe6FF16ARqPBtGnTYLVaMXnyZLzyyive77VaLVatWoUHHngAxcXFSElJwcyZM7Fw4UJmcVAiUlhUPCFmmDQAg/WTUhh9EnHhNqFcHD4DGlGjzSDoNWwFjV6jvIOQYos6B2hyD5qJCOv2TTfdBMDdSc+cOdPvO71ej759++Ivf/mL6Mh8+eWXfn8nJSVhyZIlWLJkScDf9OnTB6tXrxb9zFhi0HFgvdwnU9OOJqcevTSNTMJLN2oZiaTAu9sCVfx4aBCUPCUYbsyUnAYlkWXSwsy1w8g50MZ6uk3LsaiGXgysnFP6lA3W9VX9tV9eqN5KQ0QiyeMbqV+/fvjuu++QnZ0tSaTijQm6k0jlrBhZWIATx9mIGQ/D8lNx9kwNHrg4g0l4GUlatLGNIhzQQAsn+AQfy3aFGjV1w3EcCjQWGDkn2nyusSBJy4GlF7RonFPGavAS6EiSeBg8hSIR0qhWRE3VHj9+nARSBFzeNxX5mmboJDhWgwOQxDlgjNLRYqbODg48slPYOmz0rfrNruh2nJCmIBKFYNv1xQgxKTx4s0aJRyERhOip9A0bNmDDhg2oqanxWpg8vPnmm1FHjAgNy9HH5PRq9NOeR5K2N5PwhJpx1mMlDbPDMEl9EdISaRkLVrLF1Pto/S5JyY8yK9GDa0Pfgp6oqmwBoOw6qeS4EewRJZKeeuopLFy4EOPGjUPPnj2p0MQBWg3HTHQEonfvXkBVg+jfa7pY4gwsPINHCJV0N1LU+ZTUVOZhKo1wBQ6r3PWEY/QRSUprr8f2zUIPTSsYuYYiCKaIEkmvvfYali1bhhkzZrCOT1wSi0ZJaQ1fi80lcFVZcSSUQf9Bg4C1a6HX6+WOingYWHW1cEHPuWDibEgzGVDJIFoelGxJItRNrE/MiDWiFsnYbLawjx8hEhO7U0gkEYR6SJbBspXC2ZCjaWU26NFp3PUwTa9ckaS0AR4RHt73JsFaWyUhKnX33HMPli9fzjouCY1Smgkpd1mwDlkpeUbEJ/0Z+nxjSSSioq+xDb00jchlvCFDfdDuMUIcoqbb2tvb8Y9//APr16/HqFGjupnJFy9ezCRyhPIJ6PMoxvFIVCifpSMeLBycxr37NVBa/PwehRNekDyJNCyCLfFQXpWIKJG0Z88ejB49GgBQXl7u9x29KOkJlceJ8g7YHp+iTBLlXaqRRFxrSBCJhiiRtHHjRtbxIGSGfWPcGV6m1gabk8eITOBQFbsnpHMsfRITRPxBEkvZkAhWPqyPHCKIbvQ2tMHlbEM142URUrssIAi5kGJtoCdE6pgJInxEiaSrr746aEX74osvREcoHknERoknAcOUWBxbQEcjRI9S63qiv1sNaLctIQ5RIsmzHsmD3W7Hrl27UF5e3u3gWyJBSew2WdUotaMnIkdN71KqJsMIB7LSTADUlR+siVQoJ3Je+SJKJL3wwguC15988kk0NzdHFSFCGURbQUgjhZEHMW6EqNGLEMqvuKBAa4GGj29fPlJCVkiG/OxnP6Nz24KghsLGKoaJ2iGrId1qKIexQA3viogeWrvYHSr54cNUJJWWlsa9i/J4hXWHMSw/FWauHSbYJXtGrCBRQSgJtdYjuaDcIqJB1HTbLbfc4vc3z/OorKzE9u3b8fjjjzOJGKEsIhUKeq0GUwwH0UtrAWCSJlIEoRASRUZLIdBI9LHBk480qGOLKJGUnp7u97dGo8GQIUOwcOFCTJo0iUnEiMCopVFRSTQjyk+15D2hLJRabhKm7IeIOwkLIhCiRNLSpUtZx4MgCBWh6g4zkRB4T/TuooPyL7GIyplkWVkZDhw4AAAYMWIExowZwyRS8UYiVqpETDNBJAq+lheq60Q8I0ok1dTU4LbbbsOXX36JjIwMAEBDQwOuvvpqrFixAjk5OSzjmBjI3NCEcwCmWMiUHb/QuyUIIp4RtbvtwQcfRFNTE/bt24f6+nrU19ejvLwcFosFDz30EOs4xiU0+iIIN2qtC1LGm8QnQSgDUZakNWvWYP369Rg2bJj32vDhw7FkyRJauK1yErlxTuS0E/FJKCFHZZ4ggiPKkuRyuaDX67td1+v1cLnojBxCGLVaDOSE8kxd0PsiiPhClEiaOHEifvWrX+Hs2bPea2fOnMEjjzyCa665hlnkCHFQM00QhC+BLEaRijrf+7uGqESBaIBT7igERYl5RvgjSiT97W9/g8ViQd++fTFgwAAMGDAA/fr1g8Viwcsvv8w6joQKocpPEMrCI5QSqW4aOWWLJJYk0nuNJaLWJBUWFmLHjh1Yv349vv/+ewDAsGHDUFJSwjRyCYlMawSoghEe4r0sJNI6HDW9SZbv5f961sHMtSNdY4PCjUmKJd7bgXCJyJL0xRdfYPjw4bBYLOA4Dj/84Q/x4IMP4sEHH8TFF1+MESNG4Ouvv5YqrqqFdWFTW+FNpE4pEmL9FtVWbghCLCOLspCraYEWtEaWiI6IRNKLL76Ie++9F2azudt36enp+MUvfoHFixczixxBdCWJc8gdBSJRUKio7NWrl9xRUAQ0+CJiQUQiaffu3bj22msDfj9p0iSUlZVFHSmCCES/NGU3jGStIaRm0KBBckdBUVCNI6QkIpFUXV0tuPXfg06nw7lz56KOVLzCeuSj5JGUVGLhhlE9AQBmrl2S8ENBDXLsUXI5lwMS4pFDOUaIJSKR1KtXL5SXlwf8fs+ePejZs2fUkSIiR6jhjKRr8fxeyg6JReN+/3UX46aUQ/ih4TCDGLlRc6dD8oEISoiyLVXZF9P2EIQSiUgkXXfddXj88cfR3t59FN/W1oYnnngC119/PbPIxSU0Ko4KjUaDMUU9oOdoQSYRvyh1sEKCJjRk+YwvInIBMH/+fLz//vsYPHgwZs+ejSFDhgAAvv/+eyxZsgROpxO///3vJYkoQUQCNVTyQvnvD4kLQmqojElDRCIpLy8PmzdvxgMPPIB58+b5OSebPHkylixZgry8PEkiGu9Q8SYSnXiQVdRRKQMp34PS3zENUNgSscftPn36YPXq1aitrcXWrVuxZcsW1NbWYvXq1ejXr19EYb366qsYNWoUzGYzzGYziouL8dlnn3m/b29vx6xZs5CVlYXU1FRMmzYN1dXVfmFUVFRg6tSpSE5ORm5uLubOnQuHg7aJs0Jsg+B3fAFVWoIAEPu6oNTuXKnxIoiuiPK4DQCZmZm4+OKLo3p479698eyzz2LQoEHgeR5vvfUWbrzxRuzcuRMjRozAI488gk8//RQrV65Eeno6Zs+ejVtuuQXffvstAMDpdGLq1KnIz8/H5s2bUVlZiTvuuAN6vR7PPPNMVHFTMkofyRBEJFBplh4aqBC+UJ0LH9EiiQU33HCD399//OMf8eqrr2LLli3o3bs33njjDSxfvhwTJ04EACxduhTDhg3Dli1bMGHCBHz++efYv38/1q9fj7y8PIwePRpPP/00HnvsMTz55JMwGAxyJEuVxEJ4kbiLnFjmGXWkhJKg9oJQAqIOuJUCp9OJFStWoKWlBcXFxSgrK4Pdbvc7D27o0KEoKipCaWkpAKC0tBQjR470Wwc1efJkWCwW7Nu3L+CzrFYrLBaL34cgCIKQD0l39EkWMhHvyC6S9u7di9TUVBiNRtx///344IMPMHz4cFRVVcFgMCAjI8Pv/ry8PFRVVQEAqqqqui0U9/ztuUeIRYsWIT093fspLCxkmygVQ9YEgkbwkSNVraF3Ed/Q+1U+soukIUOGYNeuXdi6dSseeOABzJw5E/v375f0mfPmzUNjY6P3c+rUKUmfFwnxIlGo8rOFxCvhi5j65bsbWQoSrc5TnUwMZF2TBAAGgwEDBw4EAIwdOxbfffcd/vrXv+KnP/0pbDYbGhoa/KxJ1dXVyM/PBwDk5+dj27ZtfuF5dr957hHCaDTCaDQyTglBKJtE68QI9lAZShzoXbuR3ZLUFZfLBavVirFjx0Kv12PDhg3e7w4ePIiKigoUFxcDAIqLi7F3717U1NR471m3bh3MZjOGDx8e87gHQg2FTco4qn28JXbEGOhXso9A5X4+QfggRdujhjaXNZIdMZPg7YWslqR58+ZhypQpKCoqQlNTE5YvX44vv/wSa9euRXp6Ou6++27MmTMHPXr0gNlsxoMPPoji4mJMmDABADBp0iQMHz4cM2bMwHPPPYeqqirMnz8fs2bNIkuRAknEhotQL3KWV6V3S74dJ9VrIp6RVSTV1NTgjjvuQGVlJdLT0zFq1CisXbsWP/zhDwEAL7zwAjQaDaZNmwar1YrJkyfjlVde8f5eq9Vi1apVeOCBB1BcXIyUlBTMnDkTCxculCtJcUssGm01jFhCdQfUYRAEorJWJmIdUkPbl6jIKpLeeOONoN8nJSVhyZIlWLJkScB7PB7A1YBvNUjEhkCp0LsgCIIghFDcmiQiNGro1BP57CQicaGyGQIpLCaU54SEkEiKZ+LUhEumaUIJqFUQqTXeBCEHJJIINx0NJwkQgmCPUoVJNPGitoJIBEgkKYU4bES9SOzEjog9krxL6nSlg0HechynmjqslngSyodEUgygCksQcQ4JvKiR1DLFsA1Wanuu1HipHRJJhCRQhU0MWHRsVFYSG3r/hJIhkUTEnGg71kRqVGVJawLlL0EQRDBIJBEAQjtJJNiTSGKPiAxaFB1b5MpvagOUD4kkpUGNIyER1CAnHkJvXC3lQC3xJOIbEkkqJNEbDxplE0RwhOpIQtebBG8zxZDo/YwHEkmEH6waUt8KltCNM0FIAXVgRIRQOywOEkmE6pBzhBPRs6lRSjiUNvpmHZtg6VNa2gmCBSSSYkAsGg/Wz6AGjyAIQl6ksv5Q6x4+JJJUDMsKlMiiiGXaEzkfCUIMVGfYQPkoDSSSYgjNCRNEfKLWmi22Y6W2TLnQu2ELiaQEJBaViEY1BEEEgkX7QFJAIcR5W08iiSAIIs7xHRgpdeepkuJCEB5IJCkEpWpxJiM+avyIBCfSesSszsT5KJ8gpIZEEuFPAguaRBdzkaSfplMTB1H1Qua6ROWTYAWJJBUiRQOgRjcFhDTQWxJBggtsgohXSCTFgEQUB4mY5kihPHIjVz4kQv6rwX+a2t6D2uJLRAeJJIKIMYk+rUcoB+rw4wd6l9JAIokgEgRqRAlCWVCdVD4kkhSG2mwMiWAVUUIalRAHQt1QGSKIyCGRJBNKG0EoLT6EdFBnqR6oXqpv4EjEFySSiJgRDw1+PKSBIOIdqqcEK0gkEX4EsjJEan2gRoog5EfV9VDNcY8jEt3yTCKJSHhU3ZEQcUnIjkkBZTbRO08iMSCRFAPU4KuEYAO9m8TB710niGAIVr7Fln3v7xIkDwl1QSKJIAgizglk9UkUUZ8YqSSkgERSDFGyeTpRGkuCSCgE6jXV9fiE3qs0kEhSMTzPK1p4dYUqMUEQBKEmSCQpBYUKCBI2BEEQRKJCIimOEWNlYmmZIoGlTuR6b7GyisphfaW6EFu65jflPiEWEkkxRk3TY2pGDflMDXf84CltiSiGEjHNaofeWPiQSIoBamhE1BBHgiAIIjRqGCSqBVlF0qJFi3DxxRcjLS0Nubm5uOmmm3Dw4EG/e9rb2zFr1ixkZWUhNTUV06ZNQ3V1td89FRUVmDp1KpKTk5Gbm4u5c+fC4XDEMimqhISR8mH5jiR539QYR4SaOy+O4yQpQ2prh9QWXyI6ZBVJX331FWbNmoUtW7Zg3bp1sNvtmDRpElpaWrz3PPLII/jkk0+wcuVKfPXVVzh79ixuueUW7/dOpxNTp06FzWbD5s2b8dZbb2HZsmVYsGCBHEkigkCNC0HID9VD5UDvQvno5Hz4mjVr/P5etmwZcnNzUVZWhiuuuAKNjY144403sHz5ckycOBEAsHTpUgwbNgxbtmzBhAkT8Pnnn2P//v1Yv3498vLyMHr0aDz99NN47LHH8OSTT8JgMHR7rtVqhdVq9f5tsVikTShjqGIRRHwjhcVJKEw1W7YIf+hkB2lQ1JqkxsZGAECPHj0AAGVlZbDb7SgpKfHeM3ToUBQVFaG0tBQAUFpaipEjRyIvL897z+TJk2GxWLBv3z7B5yxatAjp6eneT2FhoVRJihlKLNBKjBNBJAJSi59YiTiCkBvFiCSXy4WHH34Yl112GS644AIAQFVVFQwGAzIyMvzuzcvLQ1VVlfceX4Hk+d7znRDz5s1DY2Oj93Pq1CnGqSEIgiDkggZoBCtknW7zZdasWSgvL8c333wj+bOMRiOMRqPkz1ETidyoJHLaxUJ5pi4UZ6Wh8kOoBEVYkmbPno1Vq1Zh48aN6N27t/d6fn4+bDYbGhoa/O6vrq5Gfn6+956uu908f3vuIcInFo1poGcoriEnEppE6MalErtMa7JC2wWW7RW1fcpFVpHE8zxmz56NDz74AF988QX69evn9/3YsWOh1+uxYcMG77WDBw+ioqICxcXFAIDi4mLs3bsXNTU13nvWrVsHs9mM4cOHxyYhIYj1qDsRGneCIMKALDZhQSKFCISs022zZs3C8uXL8dFHHyEtLc27hig9PR0mkwnp6em4++67MWfOHPTo0QNmsxkPPvggiouLMWHCBADApEmTMHz4cMyYMQPPPfccqqqqMH/+fMyaNYum1GRGKnFIUz3SQN1EFFAny75eUj0nFICsIunVV18FAFx11VV+15cuXYo777wTAPDCCy9Ao9Fg2rRpsFqtmDx5Ml555RXvvVqtFqtWrcIDDzyA4uJipKSkYObMmVi4cGGskhE2NFohCCISlOa8kQYoRKIhq0gKRzQkJSVhyZIlWLJkScB7+vTpg9WrV7OMWsyRu/EJ9HzFe3xmCIlYN0p/T0qG8o4g4gtFLNwmIiPRG2LVi5mO+Cf2Wwwf1b9vgogBid4vSAWJJJmgAk0QiUOk9Z2VMIzndiZYHsVzuonYQiKJ8IPlqJ0aKoIgIoXaDUJJkEgiVEesG9GIhaNCG3nqfKRDrROCVCbYQ9PD8QWJpBhADREhFrWWHeoo4h/WU4KJWGbUWr8TCRJJBACqrEon8boPggVC9VrOuh4P5ZjaysSCRBIRM6hxUQaJOGInIOjwMtKyQHVYHbCo4/Su3ZBIIsKCOlaCUC9UfwkqA+IgkUQkPDRiIsRA5Ua5JOK7ScQ0xwISSYQgVOGIYFD5iI+ROb3HxCSStx4P5TwaSCSpEKWd50QQhDopKiqSOwoEoWhIJBF+JPaYQX0k+ihPaTAbbMTovWo01AUQRDCohsSAWFtplGIT6ppuslapA3pP8Y3S3q/S4kMQvpBIUghimolYWBGoASMIYahuEET8QyIphtDUCEHEJ4lSs4MJw2hFI7WPhBIhkUQQBBGnqNnaFU3M1ZxuQlmQSFIbVPkJQnVQp00Q6oREEkEkCNRRE6wINTVGE2exh+q3NJBIihOUWEFodxsRDnFRLhS6niYOcpYgZIVEksIIp6mVslOhxZPKIi4EBEHIjFJrEdVv5UMiiSAIIs7xHfoooWP2jYMS4kN0h96LGxJJBEGIRmmWx+TUVLmjoFiU9q7UComHxIJEEgEgsSt+Iqc93sjLywMg33EbrMqS2gWNXquVOwoEwQQSSYRkkPggEoVoJQ1zUSSRyAq3TptMJkmeHy6J3vaoXWQrCRJJBEEAiKxhTfROSDXE4D35lgVzZqbocKhj7w7lifyQSJKJROxkEjHNhHqh0krEChJDyoVEEkHIhUJFI4lZglAfVG+lgURSDFBD4fXEkUY0hKpRQV2TG6W1R0qLT7hQW5kYkEhSCgptKKJpwNTa+BFExETQYTLpXBVQt0gkEIkAiaQYwqpRIfFBEIkB1XWCkBcSSYTqiHXHES8jZupwiaAotJyLiRWVdYIVJJII1REvooUg1Ea8io9Ea1Pi9T1KAYkkgiAIiYm0U2LdaatRBFA3TigBEklKQ6bGTIqRBY1WoicRdh3GQzmJ37dDEIkNiSSCSDDiWXDJjRoEH4s4KqEMKSEO0cKyvKih7KkRWUXSpk2bcMMNN6CgoAAcx+HDDz/0+57neSxYsAA9e/aEyWRCSUkJDh8+7HdPfX09pk+fDrPZjIyMDNx9991obm6OYSpC41t4Y1mxWT5JbQ2S2uIrlsRIJcECoToRTj2Rui517dyps1cG9B7cyCqSWlpacOGFF2LJkiWC3z/33HN46aWX8Nprr2Hr1q1ISUnB5MmT0d7e7r1n+vTp2LdvH9atW4dVq1Zh06ZNuO+++2KVhLhDDeKCdeWlxoAg5EfSlofqOCESnZwPnzJlCqZMmSL4Hc/zePHFFzF//nzceOONAIB//etfyMvLw4cffojbbrsNBw4cwJo1a/Ddd99h3LhxAICXX34Z1113HZ5//nkUFBTELC0EQRBKg6QBe2hQlVgodk3S8ePHUVVVhZKSEu+19PR0jB8/HqWlpQCA0tJSZGRkeAUSAJSUlECj0WDr1q0Bw7ZarbBYLH4fNaGkRdZyWJ7UYO0iIidW71WS56i0TFKHTxDBUaxIqqqqAgDk5eX5Xc/Ly/N+V1VVhdzcXL/vdTodevTo4b1HiEWLFiE9Pd37KSwsZBx79cOi8ZR72zMhDuo4CYLwkuDtsmJFkpTMmzcPjY2N3s+pU6fkjlJCQJ1vF1ScHwnxLkOkMSHyoAuh0pyIeaJEaMDJDsWKpPz8fABAdXW13/Xq6mrvd/n5+aipqfH73uFwoL6+3nuPEEajEWaz2e+jRnieT8jKIFVDnIh5ScQ3JFkIIjoUK5L69euH/Px8bNiwwXvNYrFg69atKC4uBgAUFxejoaEBZWVl3nu++OILuFwujB8/PuZxjgaljsCUGi+CiGekFOxUpwkifGTd3dbc3IwjR454/z5+/Dh27dqFHj16oKioCA8//DD+8Ic/YNCgQejXrx8ef/xxFBQU4KabbgIADBs2DNdeey3uvfdevPbaa7Db7Zg9ezZuu+022tlGEAShAki0sYHyURpkFUnbt2/H1Vdf7f17zpw5AICZM2di2bJlePTRR9HS0oL77rsPDQ0NuPzyy7FmzRokJSV5f/POO+9g9uzZuOaaa6DRaDBt2jS89NJLMU+L2pHi+AuqtESsoRJHCEJtESESWUXSVVddFbRT5jgOCxcuxMKFCwPe06NHDyxfvlyK6LGHTOgEEdfErB7SztGgUHtIsEKxa5KI+IMaLoIgAGoLCPVAIikGUINAEIkNtQEEoU5IJKkQVg2uXA13opn+o4E6V0JJSFkeaUcfoURIJMmE0iqtko46IQgiNrAQJlTPxaPkvFNy3GIJiSQi4Yl1Y6BUOxpZ+OIber8EETkkkgiCIAjZIIsFG0LlI4lkcZBIImIGNYbqIJL3pOaGl8pj/ELvNjiUP+FDIikeoQpAEKqGlfhk2Rl2DUvNAjkaSGAkFiSSYgDThopZSAEgj9sEQRAEAYBEEtEBCRoiEhKhvESUxgS1qnRF8aWC3hMRISSSEpGOhiIROjqCIPyJpt5Tm0EkGiSSFEIkjQ81VLElUddeEJGjtLqptPgEq0ty1rN4q+OxSE185VhgSCQRRIKgtA6TiB2BRIDYMsFSVFC5JJQMiSSCUDNxNgImCIJQEiSSYghrk67aRnM0YuwC5UfcEElNjKTexrLOxJPcTsS2JhHTHAtIJBEEQRAEQQhAIikGsPRgLPVYId4WMMYLLN8LveHYI9son6wLBBEVJJKIsCDxJA+JYEKnM6e6I2WKffM7EfNWSSRC/VY7JJKIhIcaKoJQgSNIIqZQu+iGRFICI3UloEqmTui9xZ5YWHRYPIHKBpFokEhSIVI0VNT4EUQcooJ6HbLtoSlBQkZIJBF+SDmiJSFGa0AIghXB6pKcbQ3V8fiCRBJBEAQj1DwQkLtr7yYuVJyXciBV2Ut00UciKQ5Rc0NNEGoksbsReYl1aydF+5roQkTJkEiKASwqVawrEYs4k1iLXxLi3cZBGtWfAoKQFxJJCkGpnY5S40UQRPj4DrKoThNE+JBIiiG0KJqQEyojhFKgskioBRJJCYxQQxWpkKO5dEJqqIwpBxI3RKJBIikBkaLTCafxZNXAUkNNKA7GdYqEYXRQG0GwgkQSIRnUUBEEEa8oWcgqOW5qg0SSCiHxIR3UuBDxBLUUBBEdJJIIAOoSXiRkpIHyVT0oorZSeVEUamrD1QSJpBhAhVfZMH8/DMNLiLIT4zTKIQaV9B5946LT6QSvJxpyDRCUnOd0pp4bEkmEH2RNIJTccCsVtdYarVbr/bfcbz0WbY9a3xMhHySSiKiI5JBJ2t3mT7ykg+hE7DsNVI9YlpFAzzAmJTF7BkHEG3EjkpYsWYK+ffsiKSkJ48ePx7Zt2+SOkuKhTpogiEhQa5uhzlgTSiAuRNJ7772HOXPm4IknnsCOHTtw4YUXYvLkyaipqZE7agRBKAyPRUWtHX68IcV76BYmvWtCJLrQtyifxYsX495778Vdd90FAHjttdfw6aef4s0338Rvf/tbmWPXicPpDHmP0+lEe3t7t+tCpnKe5+FyuQKG5QoQllMgHp5GxRkgvEBhORyOgM8PGC+XC+1WK6DX+1232WwwRhwaYLXbwXeJm9VqFRES0G61gmMUFni+W56JXXdht9kE8x9B3n/AsOx2wbCClaVAOAKUC1cYZV3o+azKGAC022wAo/BsdjtcXcKy2Wydf0TwXtutVmhClDGhOiqE0+mEU6i96PK3y+kMWfZ4QLjtCXB/sHx0CZR9IHj55wOUPz5AuXA5neFbiHxEktVm69ZeiCkTPM8LtmN2u11UxyoUlti2x2a1diuvdrtdXFh2O7RCbU+CoHqRZLPZUFZWhnnz5nmvaTQalJSUoLS0VPA3VqvVr/BZLBbJ4wkAVZWVIe+prqpC+ZYt3a4X+TbIHdhsNrTW1QV8iS3NzdgjEJbBakVygN9YGhsFr9fV1aFSICwAyAgQViBaW1uxo6wMNmN3STQqjN8nJ3fGnud5HDl8GOcE3uHwCOMFADt37BCMV76IsOx2O7YJ5FkvEWEdPnwYtoqKbtf7iRAjFSdP4khVVbfrwcpFIKoqK1FRXy8YVnqEYbU0N+NIgDKWHWFYLpcL5Xv3ouX4ccHvDRGGd/z4cVQK1MEUn+dBE55hftfOnYJlLMXn3+fCtIJbGhuxP1gZ6xAHdXV1AAB9tzs7aW1uxt4I2ouzZ88GDKvJYsFhgbCyW1sD/qalpUXwenNTk2CbaLBakRMwNH98xdT333+P89XV3e7pF2ZYHtrb2wO2Y0MjDMvpdAYMK9KyDwB79uwRDKtIRFgH9u8XDOtiEWGpEdWLpNraWjidTuTl5fldz8vLw/fffy/4m0WLFuGpp56KRfQAAP3790ezVgtNRyOalpYGk8nkd09BQQEAgNNovPf54qnkqWYzMvLzkZ2dDY7joNFooOM4FBV1Fv/MzMygYWk0Guj1euQWFnqvDRgwAO2eOHIcMtPdXVyfPn1Qp9dDEyAsANDqdH67ZDwMGTLE+7u05GTkDBiAsrIyb7wFwwvDLH7FFVegeteuzp9EERYAmEwm9O3bN2i8OIQ/LaD3GQ0Ge5dJutDVb/Dgwd44BQsrnLgNHDgQ6HjHgcqFwWBAz549Q4bVr18/tOh0QcPShJlf2dnubsCT/0JoO54VClOHgOY8cQgSXnp6cBmX4lNHg8UNcJdBY1IScnKEu22DwYD+/fsHLWOea95ncVzAOJrN5m6/84tPx/9zcnJgO3rUe4/JZEJWVpZ/Oj2DjiDxSupIm75LXeE0Gr84ZmRkePNDMF4dZSKrRw/vtT59+qDW5/162q8eHfEM1o5ptVpoBepRYWEhavR6uACkp6bC4GspCvAuwylfANCrVy9kZmZG3Y4B7rTm5+cHb3tClD1fhg0bBm7DhpDtRTgMGTIkeBo7SAozbmpF9SJJDPPmzcOcOXO8f1ssFhT6CAbW9OvXDxg5EvA0TnV13SrRwP79AYMBw4cOdd/bFasVOH0ayQYDYDBg5syZwPffA0aj+7tenfaJrI5GpnevXuh9xRXdw2pqcsfBp0EfNGhQ9zgCyM/PR/6IEe7raWnCCTx6FBAYVV522WXAqFGdcTSbcc8997jvDxTevn1AkNEmAGRlZeH+++8HysuBkycD59nx40BDQ9CwAHcjNG3aNGD79sDx2rYNOHkyZFgAYDaZgIYGJBuNuEIo/wGgoiKshrS4uNidh4Hi1dQEhGGhBICRI0d2vuNAYdXVBX7PPvTr1w+44ILQYXWUo2BkpKUBWi0GDxqEwRcHGJ/u3et+nyFINrhtRElJSRg7ZgwQSPB54hcEnY9oCRi3ykqgsRE9LrgA0OncZV0AjuNw8803u8tRoDyrrARaW5E7YAAwaJD7WoA49s532zZzs7ORG6SMZaSlIcNTfz3hdZnS8QiWrIwM4fLqySuDAehaV7rEMacjrIL8fBQIhbV3L1BRAUNKp90sPz8f+Z6y5BNelmegVlSEPoHitWcPcOBAt69ycnKQM2JEZ9vTUXd1Wi0uHDkSGDBAOLwzZ7pf70JycjJ+/vOfA4cPB36Xp04BAhbWrmi1WkyfPt3dlgUKqyPPwuG6664Dvv46cFgd/Ug4XH311cDnnwcOq7QUaG+P+7V9qhdJ2dnZ0Gq1qO5iPq2urkZ+vvAkidFohDFAY0YQBEEQBAHEwe42g8GAsWPHYsOGDd5rLpcLGzZscI/CCYIgCIIgRKB6SxIAzJkzBzNnzsS4ceNwySWX4MUXX0RLS4t3txtBEARBEESkxIVI+ulPf4pz585hwYIFqKqqwujRo7FmzZpui7kJgiAIgiDCJS5EEgDMnj0bs2fPljsaBEEQBEHECapfk0QQBEEQBCEFJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAIgiAIAUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAceNxOxp4ngcAWCwWScLnmppgtNmAhgb3BZsN1qYm8Ckp3nt0ra0w8TwcLS1w1dV1D8NqhR5Am9UKh8XSGabVCnCcX3g6qxUmAI62NuGwWlu7xSFQHAF4r/M2W8D06VwutLW0wOmTh0JxDBUe53S602m3wxHkfXBNTTA4HDAAgfPM4XCHZbMFDatr+gXj1dYGPc+jra0tZFg6p9Od/y6XcLza291htbdHHy+bDfqOf7e1tobMs6BhCZSLqMLyvMuOMhsIXVtb0LIPAFxLizvPQqRRZ7PBBHeddlgs4A0G4fDCSKunHgFBypjFAq3TCWdLC2AyBQ0vZJ51hOWy28EHaSt80+mw2YKXMasVulBtjycsuz2s9iJYe+YNq71dOCyB9xgoPG047ZjDAR3Ph2x7HJ5yAcDZ1CQcXkddClVeu8ZZ8F2ybHvCLPthhdWlH4kqLJ53h+V0hgxLSjz9tqcfZw3HSxWyijh9+jQKCwvljgZBEARBECI4deoUevfuzTxcEkkAXC4Xzp49i7S0NHAcxyxci8WCwsJCnDp1CmazmVm4aoPywQ3lgxvKBzeUD5QHHigf3IjJB57n0dTUhIKCAmg07FcQ0XQbAI1GI4kC9WA2mxO64HugfHBD+eCG8sEN5QPlgQfKBzeR5kN6erpkcaGF2wRBEARBEAKQSCIIgiAIghCARJKEGI1GPPHEEzAajXJHRVYoH9xQPrihfHBD+UB54IHywY0S84EWbhMEQRAEQQhAliSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIkpAlS5agb9++SEpKwvjx47Ft2za5oxQWixYtwsUXX4y0tDTk5ubipptuwsGDB/3uaW9vx6xZs5CVlYXU1FRMmzYN1dXVfvdUVFRg6tSpSE5ORm5uLubOnQuHw+F3z5dffomLLroIRqMRAwcOxLJly7rFRyn5+Oyzz4LjODz88MPea4mSD2fOnMHPfvYzZGVlwWQyYeTIkdi+fbv3e57nsWDBAvTs2RMmkwklJSU4fPiwXxj19fWYPn06zGYzMjIycPfdd6O5udnvnj179uAHP/gBkpKSUFhYiOeee65bXFauXImhQ4ciKSkJI0eOxOrVq6VJdBecTicef/xx9OvXDyaTCQMGDMDTTz/td2ZUPObDpk2bcMMNN6CgoAAcx+HDDz/0+15JaQ4nLlLkg91ux2OPPYaRI0ciJSUFBQUFuOOOO3D27Nm4yodQZcGX+++/HxzH4cUXX/S7rro84AlJWLFiBW8wGPg333yT37dvH3/vvffyGRkZfHV1tdxRC8nkyZP5pUuX8uXl5fyuXbv46667ji8qKuKbm5u999x///18YWEhv2HDBn779u38hAkT+EsvvdT7vcPh4C+44AK+pKSE37lzJ7969Wo+OzubnzdvnveeY8eO8cnJyfycOXP4/fv38y+//DKv1Wr5NWvWeO9RSj5u27aN79u3Lz9q1Cj+V7/6lfd6IuRDfX0936dPH/7OO+/kt27dyh87doxfu3Ytf+TIEe89zz77LJ+ens5/+OGH/O7du/kf/ehHfL9+/fi2tjbvPddeey1/4YUX8lu2bOG//vprfuDAgfztt9/u/b6xsZHPy8vjp0+fzpeXl/PvvvsubzKZ+L///e/ee7799lteq9Xyzz33HL9//35+/vz5vF6v5/fu3St5Pvzxj3/ks7Ky+FWrVvHHjx/nV65cyaempvJ//etf4zofVq9ezf/+97/n33//fR4A/8EHH/h9r6Q0hxMXKfKhoaGBLykp4d977z3++++/50tLS/lLLrmEHzt2rF8Yas+HUGXBw/vvv89feOGFfEFBAf/CCy+oOg9IJEnEJZdcws+aNcv7t9Pp5AsKCvhFixbJGCtx1NTU8AD4r776iud5d4Og1+v5lStXeu85cOAAD4AvLS3led5dmTQaDV9VVeW959VXX+XNZjNvtVp5nuf5Rx99lB8xYoTfs37605/ykydP9v6thHxsamriBw0axK9bt46/8sorvSIpUfLhscce4y+//PKA37tcLj4/P5//85//7L3W0NDAG41G/t133+V5nuf379/PA+C/++477z2fffYZz3Ecf+bMGZ7nef6VV17hMzMzvfniefaQIUO8f//kJz/hp06d6vf88ePH87/4xS+iS2QYTJ06lf/5z3/ud+2WW27hp0+fzvN8YuRD145RSWkOJy6sCCYQPGzbto0HwJ88eZLn+fjLh0B5cPr0ab5Xr158eXk536dPHz+RpMY8oOk2CbDZbCgrK0NJSYn3mkajQUlJCUpLS2WMmTgaGxsBAD169AAAlJWVwW63+6Vv6NChKCoq8qavtLQUI0eORF5enveeyZMnw2KxYN++fd57fMPw3OMJQyn5OGvWLEydOrVbXBMlHz7++GOMGzcOt956K3JzczFmzBi8/vrr3u+PHz+Oqqoqv/ilp6dj/PjxfvmQkZGBcePGee8pKSmBRqPB1q1bvfdcccUVMBgM3nsmT56MgwcP4vz58957guWVlFx66aXYsGEDDh06BADYvXs3vvnmG0yZMgVA4uSDL0pKczhxiSWNjY3gOA4ZGRkAEiMfXC4XZsyYgblz52LEiBHdvldjHpBIkoDa2lo4nU6/jhEA8vLyUFVVJVOsxOFyufDwww/jsssuwwUXXAAAqKqqgsFg8FZ+D77pq6qqEky/57tg91gsFrS1tSkiH1esWIEdO3Zg0aJF3b5LlHw4duwYXn31VQwaNAhr167FAw88gIceeghvvfWWXzqCxa+qqgq5ubl+3+t0OvTo0YNJXsUiH37729/itttuw9ChQ6HX6zFmzBg8/PDDmD59ul8c4z0ffFFSmsOJS6xob2/HY489httvv917UGsi5MOf/vQn6HQ6PPTQQ4LfqzEPdBHdTSQcs2bNQnl5Ob755hu5oxJzTp06hV/96ldYt24dkpKS5I6ObLhcLowbNw7PPPMMAGDMmDEoLy/Ha6+9hpkzZ8ocu9jxn//8B++88w6WL1+OESNGYNeuXXj44YdRUFCQUPlABMdut+MnP/kJeJ7Hq6++Knd0YkZZWRn++te/YseOHeA4Tu7oMIMsSRKQnZ0NrVbbbZdTdXU18vPzZYpV5MyePRurVq3Cxo0b0bt3b+/1/Px82Gw2NDQ0+N3vm778/HzB9Hu+C3aP2WyGyWSSPR/LyspQU1ODiy66CDqdDjqdDl999RVeeukl6HQ65OXlJUQ+9OzZE8OHD/e7NmzYMFRUVADoTEew+OXn56Ompsbve4fDgfr6eiZ5FYt8mDt3rteaNHLkSMyYMQOPPPKI18qYKPngi5LSHE5cpMYjkE6ePIl169Z5rUie+MVzPnz99deoqalBUVGRt708efIkfv3rX6Nv377euKktD0gkSYDBYMDYsWOxYcMG7zWXy4UNGzaguLhYxpiFB8/zmD17Nj744AN88cUX6Nevn9/3Y8eOhV6v90vfwYMHUVFR4U1fcXEx9u7d61chPI2Gp8MtLi72C8NzjycMufPxmmuuwd69e7Fr1y7vZ9y4cZg+fbr334mQD5dddlk3FxCHDh1Cnz59AAD9+vVDfn6+X/wsFgu2bt3qlw8NDQ0oKyvz3vPFF1/A5XJh/Pjx3ns2bdoEu93uvWfdunUYMmQIMjMzvfcEyyspaW1thUbj32RqtVq4XC4AiZMPvigpzeHERUo8Aunw4cNYv349srKy/L6P93yYMWMG9uzZ49deFhQUYO7cuVi7dq037qrLg4iWeRNhs2LFCt5oNPLLli3j9+/fz9933318RkaG3y4npfLAAw/w6enp/JdffslXVlZ6P62trd577r//fr6oqIj/4osv+O3bt/PFxcV8cXGx93vP1vdJkybxu3bt4tesWcPn5OQIbn2fO3cuf+DAAX7JkiWCW9+VlI++u9t4PjHyYdu2bbxOp+P/+Mc/8ocPH+bfeecdPjk5mX/77be99zz77LN8RkYG/9FHH/F79uzhb7zxRsFt4GPGjOG3bt3Kf/PNN/ygQYP8tv42NDTweXl5/IwZM/jy8nJ+xYoVfHJycretvzqdjn/++ef5AwcO8E888UTMXADMnDmT79Wrl9cFwPvvv89nZ2fzjz76aFznQ1NTE79z505+586dPAB+8eLF/M6dO727tpSU5nDiIkU+2Gw2/kc/+hHfu3dvfteuXX7tpu8uLbXnQ6iy0JWuu9vUmAckkiTk5Zdf5ouKiniDwcBfcskl/JYtW+SOUlgAEPwsXbrUe09bWxv/y1/+ks/MzOSTk5P5m2++ma+srPQL58SJE/yUKVN4k8nEZ2dn87/+9a95u93ud8/GjRv50aNH8waDge/fv7/fMzwoKR+7iqREyYdPPvmEv+CCC3ij0cgPHTqU/8c//uH3vcvl4h9//HE+Ly+PNxqN/DXXXMMfPHjQ7566ujr+9ttv51NTU3mz2czfddddfFNTk989u3fv5i+//HLeaDTyvXr14p999tlucfnPf/7DDx48mDcYDPyIESP4Tz/9lH2CBbBYLPyvfvUrvqioiE9KSuL79+/P//73v/frBOMxHzZu3CjYHsycOVNxaQ4nLlLkw/HjxwO2mxs3boybfAhVFroiJJLUlgccz/u4iyUIgiAIgiAA0JokgiAIgiAIQUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAUx5133ombbrpJtufPmDEDzzzzTFj33nbbbfjLX/4icYwIgpAD8rhNEERM4Tgu6PdPPPEEHnnkEfA8j4yMjNhEyofdu3dj4sSJOHnyJFJTU0PeX15ejiuuuALHjx9Henp6DGJIEESsIJFEEERMqaqq8v77vffew4IFC3Dw4EHvtdTU1LDEiVTcc8890Ol0eO2118L+zcUXX4w777wTs2bNkjBmBEHEGppuIwgipuTn53s/6enp4DjO71pqamq36barrroKDz74IB5++GFkZmYiLy8Pr7/+OlpaWnDXXXchLS0NAwcOxGeffeb3rPLyckyZMgWpqanIy8vDjBkzUFtbGzBuTqcT//3vf3HDDTf4XX/llVcwaNAgJCUlIS8vDz/+8Y/9vr/hhhuwYsWK6DOHIAhFQSKJIAhV8NZbbyE7Oxvbtm3Dgw8+iAceeAC33norLr30UuzYsQOTJk3CjBkz0NraCgBoaGjAxIkTMWbMGGzfvh1r1qxBdXU1fvKTnwR8xp49e9DY2Ihx48Z5r23fvh0PPfQQFi5ciIMHD2LNmjW44oor/H53ySWXYNu2bbBardIkniAIWSCRRBCEKrjwwgsxf/58DBo0CPPmzUNSUhKys7Nx7733YtCgQViwYAHq6uqwZ88eAMDf/vY3jBkzBs888wyGDh2KMWPG4M0338TGjRtx6NAhwWecPHkSWq0Wubm53msVFRVISUnB9ddfjz59+mDMmDF46KGH/H5XUFAAm83mN5VIEIT6IZFEEIQqGDVqlPffWq0WWVlZGDlypPdaXl4eAKCmpgaAewH2xo0bvWucUlNTMXToUADA0aNHBZ/R1tYGo9Hot7j8hz/8Ifr06YP+/ftjxowZeOedd7zWKg8mkwkAul0nCELdkEgiCEIV6PV6v785jvO75hE2LpcLANDc3IwbbrgBu3bt8vscPny423SZh+zsbLS2tsJms3mvpaWlYceOHXj33XfRs2dPLFiwABdeeCEaGhq899TX1wMAcnJymKSVIAhlQCKJIIi45KKLLsK+ffvQt29fDBw40O+TkpIi+JvRo0cDAPbv3+93XafToaSkBM899xz27NmDEydO4IsvvvB+X15ejt69eyM7O1uy9BAEEXtIJBEEEZfMmjUL9fX1uP322/Hdd9/h6NGjWLt2Le666y44nU7B3+Tk5OCiiy7CN9984722atUqvPTSS9i1axdOnjyJf/3rX3C5XBgyZIj3nq+//hqTJk2SPE0EQcQWEkkEQcQlBQUF+Pbbb+F0OjFp0iSMHDkSDz/8MDIyMqDRBG767rnnHrzzzjvevzMyMvD+++9j4sSJGDZsGF577TW8++67GDFiBACgvb0dH374Ie69917J00QQRGwhZ5IEQRA+tLW1YciQIXjvvfdQXFwc8v5XX30VH3zwAT7//PMYxI4giFhCliSCIAgfTCYT/vWvfwV1OumLXq/Hyy+/LHGsCIKQA7IkEQRBEARBCECWJIIgCIIgCAFIJBEEQRAEQQhAIokgCIIgCEIAEkkEQRAEQRACkEgiCIIgCIIQgEQSQRAEQRCEACSSCIIgCIIgBCCRRBAEQRAEIQCJJIIgCIIgCAH+Hxv0Fo15d/gbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_10 = ev_tot.to_lc(dt=10)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts, color=\"grey\")\n", + "lc_10.apply_gtis(inplace=True)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts)\n", + "\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Counts\")\n", + "\n", + "for g0, g1 in zip(lc_10.gti[:-1], lc_10.gti[1:]):\n", + " plt.axvspan(g0[1] - lc_10.time[0], g1[0] - lc_10.time[0], color=\"r\", alpha=0.5, zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "id": "f28ccbbf", + "metadata": {}, + "source": [ + "When we study the variability of this light curve, we usually use periodograms. It is well known that these gaps are like square windows, whose Fourier transform has infinite harmonics, and that gets convolved with the actual variability of the data. If we were to ignore the good time intervals and just get a `Periodogram` of the dataset, we would get something like this (the black vertical line indicates the orbital period of the satellite and some of its harmonics):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8cd9cfbc", + "metadata": {}, + "outputs": [], + "source": [ + "ev_tot_dirty = copy.deepcopy(ev_tot)\n", + "ev_tot_dirty.gti = np.asarray([[ev_tot.gti[0, 0], ev_tot.gti[-1, 1]]])\n", + "pds_dirty = Powerspectrum.from_events(ev_tot_dirty, dt=0.01, norm=\"leahy\")\n", + "pds_dirty_reb = pds_dirty.rebin_log(0.01)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "904a460c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACChklEQVR4nO3dd3hUVfoH8O/09IQQCBASegsloYuABA0iIFJEsaxSFNc1qGys4K6oi+CKBUsUywK6P3VRV8C1A9Kkt9B7DYEUStokmXp/fwxzk8nczEwyN5lM5vt5Hp5nznnPnHvuFZPDveeeVyEIggAiIiKiAKb09QCIiIiIfI0TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOCpfT0AX7Narbh48SLCw8OhUCh8PRwiIiLygCAIKC4uRqtWraBUen9/J+AnRBcvXkR8fLyvh0FERES1kJWVhdatW3vdT8BPiMLDwwHYLmhERISPR0NERESeKCoqQnx8vPh73FsBOyHKyMhARkYGLBYLACAiIoITIj9kNBrxzjvvAACefPJJaLXaeuvPXVtXcalY1ToALsvenisRUWMg13IXRaAndy0qKkJkZCQKCws5IfJDer0eYWFhAICSkhKEhobWW3/u2rqKS8Wq1gFwWfb2XImI/Jncv78D9g4RNQ5qtRpTpkwRP9dnf+7auopLxaTq3JWJiEgevEPEO0RERER+R+7f39yHiIiIiAIeJ0REREQU8DghIr+m1+sRFRWFqKgo6PX6eu3PXVtXcalY1Tp3ZSIikg9XZpLfKyws9Fl/7tq6ikvFqta5KxMRkTw4ISK/FhwcjOPHj4uf67M/d21dxaViUnXuykREJA++Zca3zIiIiPwO3zIjIiIiklmjeGR25swZTJ8+Hbm5uVCpVNi2bRt38Q0QJpMJH3/8MQDgkUcegUajqbf+3LV1FZeKVa0D4LLs7bkSEVGFRvHIbNiwYZg3bx6GDh2Kq1evIiIiwuOdfPnIzL8xdQcRUWBi6o4qDh06BI1Gg6FDhwIAoqOjfTwiqk/XyszoODAVRrMVb605ib/d0curRH8qlQqTJk0SP3vT1lVcKiZV565MRETy8Pkdoo0bN2LhwoXYvXs3Ll26hBUrVmD8+PEObTIyMrBw4ULk5OQgKSkJ7733HgYMGAAAWLlyJZYtWwaLxYLs7GxMmjQJc+bM8fj4vEPk377cfh5zVhwQy5ueHY746BAfjoiIiOpDo1tUrdfrkZSUhIyMDMn48uXLkZ6ejrlz52LPnj1ISkrCyJEjkZeXBwAwm83YtGkTPvjgA2zduhWrV6/G6tWr6/MUyIfMVqtD2WSxVtOSiIioej6fEI0aNQrz5s3DhAkTJONvvfUWZsyYgWnTpiExMRGLFy9GSEgIlixZAgCIi4tDv379EB8fD51Oh9GjRyMzM7Pa4xkMBhQVFTn8ISIiosDm8wmRK0ajEbt370ZqaqpYp1QqkZqaiq1btwIA+vfvj7y8PFy7dg1WqxUbN25Et27dqu1zwYIFiIyMFP/Ex8fX+XlQ3TGUl+FCxoO4kPEgrKZyr/srLS1FXFwc4uLiUFpa6lVbV3GpWNU6d2UiIpJPg15UffnyZVgsFsTGxjrUx8bG4ujRowAAtVqN+fPn46abboIgCLj11ltx++23V9vn7NmzkZ6eLpaLioo4KfJnggBLydXrn+XoTsDFixfFz960dRWXiknVuSsTEZE8GvSEyFOjRo3CqFGjPGqr0+mg0+nqeERUXzRaHVpOfRcAoFB7vy9PUFAQ9u7dK372pq2ruFRMqs5dmYiI5NGgJ0QxMTFQqVTIzc11qM/NzUWLFi286jsjIwMZGRmwWCxe9UO+pVSpoI1tL1t/KpUKycnJsrR1FZeKSdW5KxMRkTwa9BoirVaLvn37Yu3atWKd1WrF2rVrMWjQIK/6TktLw+HDh7Fz505vh0lERER+zud3iEpKSnDy5EmxfObMGWRmZiI6OhoJCQlIT0/HlClT0K9fPwwYMACLFi2CXq/HtGnTfDhqaijMZhNKDqwBAIQmpnjdn8lkwhdffAEAuP/++92m7nDV1lVcKla1DoDLMlN3EBHJSPCxdevWCbAth3X4M2XKFLHNe++9JyQkJAharVYYMGCAsG3bNq+P+/777wvdunUTOnfuLAAQCgsLve6T6t/Haw+Jf2fi//qtcCqv2Kv+SkpKxP5KSkq8ausqLhWrWueuTEQUyAoLC2X9/e3zO0QpKSlu35iZOXMmZs6cKetx09LSkJaWJu50Sf5HEAScvVKG4Pb9AAAKpfdPgFUqFUaPHi1+9qatq7hUTKrOXZmIiOTh89QdvsbUHf7r7dXH8c7aEw51vz81DO2bhfloREREVF8aXeoOX8nIyEBiYiL69+/v66FQLZ3MK/H1EIiIqJEI2AkR3zJrPF4Z1x0RQT5/+ktERH4sYCdE1DhYTeV49u7hOPbedNlSd3Tq1AmdOnXyKHWHq7au4lKxqnXuykREJB/+s5r8mwDkXjgrfva6O0EQt4Fwt7zOXVtXcamYVJ27MhERySNgJ0TcqbpxUKg1eGHxN/hq+3mYZUrd8ccff4ifvWnrKi4Vk6pzVyYiInnwLTO+Zea30r7Ygx8PXMIr47rjjV+PoajczLfMiIgCBN8yIyIiIpJZwD4yo8ZBsFqw4/cfUXjoItBuoNf9mc1mrFixAgAwYcIEqNXV/y/irq2ruFSsah0Al2VXYyMiopoJ2EdmldcQHT9+nI/M/FDaF3vwv91nkPX2JABA/F+/xfrZI716ZKbX6xEWZvt+SUkJQkNDa93WVVwqVrUOgMuyq7ERETV2cj8yC9h/YjJ1RyOhUKBr74HIuloKKBRed6dUKjFs2DDxszdtXcWlYlJ17spERCSPgL1DZMdF1f6Li6qJiAIXF1UTERERyYwTIiIiIgp4nBCRX7OaDPj7lNE4sfgxWE0Gr/srKytDcnIykpOTUVZW5lVbV3GpWNU6d2UiIpJPwC6q5k7VjYQg4PyJI+Jnb1mtVuzbt0/87E1bV3GpmFSduzIREckjYCdEfMuscVCoNXhm0ef4ZtcFWGVK3fHbb7+Jn71p6youFZOqc1cmIiJ58C0zvmXmt/iWGRFR4OJbZkREREQyC9hHZtQ4CFYLMjf/jqLjFyC0Tva6P7PZjF9//RUAMHLkSLepO1y1dRWXilWtA+CyzNQdRETy4SMzPjLzW0zdwdQdRBS4mLqDqDKFAu269kJOUZlsqTv69esnfvamrau4VEyqzl2ZiIjkEbB3iJjc1f9xUTURUeDiomqZpKWl4fDhw9i5c6evh0JEREQ+FrATIiIiIiI7TojIr1lNBvzjz5Nwakm6bKk7Bg8ejMGDB3uUusNVW1dxqVjVOndlIiKSDxdVk38TBJw8sBsA0FSm1B1btmwRP3vT1lVcKiZV565MRETy4ISI/JpCrcETCz7CysxsQIbUHTqdDitWrBA/e9PWVVwqJlXnrkxERPII2LfM7LgPkf/iW2ZERIGLb5kRERERyYyPzMivCVYLjuzZhpKz5yE07+p1f/lFZVj635/RsVkYxo26BSqVqtq2FosFmzZtAgAMHTrUqa2ruFSsah0Al2VXYyMioprhhIj8mmA24bWZ9wKwpe7w1tRPN+Onp+4E4D49Rnl5OYYPH15tW1dxqVjVOgAuy0zdQUQkn4CdEFXeqZr8mAJo1a4TrpQYAO8zd+BoThE0TRNsXbtJBaJQKJCYmFhtW1dxqZhUnbsyERHJg4uquajab9XFoupOL/wEk8X2v8TZ18bINVQiIpIZF1UTERERyYwTIiIiIgp4nBCRX7OaDHj9yT/hzL9ny5K6w2oyIPc/f0Puf/7mUeqOESNGYMSIEdWm7qguLhWrWueuTERE8gnYRdXUSAgCDu3cDABoIsdyOEFA+blMAJ6l7lizZk21bV3FpWJSde7KREQkD06IyK8p1Br8ee7b+HH/JShkSN2hUGvQ9PanAHiWuuP//u//qm3rKi4Vk6pzVyYiInnwLTO+Zea3+JYZEVHg4ltmRERERDLjIzPySwcuFOLHA5cgWC04fXgfSrPPQWjS1ut+BasFhksnAQAWy21uU3fs2bMHANCnTx/J1B3VxaViVesAuCwzdQcRkXz4yIyPzPzSwPlrkFtkgNVYjqy3JwGwpe5YP3ukV4/MOjzzHU6/4VnqDr1ej7CwsGrbuopLxarWAXBZZuoOIgpkcv/+bhR3iNq2bYuIiAgolUo0adIE69at8/WQqI4VlJoAACN7tMCvCW2QU1gmS+oOKABVRHPbRw9Sd7Rp06batq7iUjGpOndlIiKSR6OYEAHAli1bxH89U+B4aWIffDL9LHq99CuKys1e96fUBKH1X5YAAEJCQly2DQkJwdmzZ2sVl4pJ1bkrExGRPLiomoiIiAKezydEGzduxNixY9GqVSsoFAqsXLnSqU1GRgbatm2LoKAgDBw4EDt27HCIKxQKDBs2DP3798cXX3xRTyMnIiKixsLnEyK9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxzR9//IHdu3fj+++/x/z587F///76Gj75WHl5OcaPH49z/3kZgtnodX9WsxF5381D3nfzUF5e7tGxx48fL9nWVVwqVrXOXZmIiOTj8zVEo0aNwqhRo6qNv/XWW5gxYwamTZsGAFi8eDF+/PFHLFmyBM8//zwAIC4uDgDQsmVLjB49Gnv27EGvXr0k+zMYDDAYKnJeFRUVyXUq5ANWiwWrVq0CAESOliGdhdWKshPbANhejXfFUunYUm1dxaViUnXuykREJA+fT4hcMRqN2L17N2bPni3WKZVKpKamYuvWrQBsd5isVivCw8NRUlKC33//HXfffXe1fS5YsAAvv/xynY+d6odGq8XHH3+Ml78/BIXK+7/OCpUa0SNnAgC0Wq3Lttrrx66urau4VEyqzl2ZiIjk0aAnRJcvX4bFYkFsbKxDfWxsLI4ePQoAyM3NxYQJEwDY/tU8Y8YM9O/fv9o+Z8+ejfT0dLFcVFSE+Pj4Ohg91QeNRoMZM2bgvWx53jJTqNQIT75N7NuTY9cmLhWTqnNXJiIieTToCZEn2rdvj3379nncXqfTMTEmEREROWjQE6KYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYGMjAyuxfBzVqsVhw4dQnneWQjhrbzuTxCsMOafF/tWKqt/78BqteLIkSMAgG7dujm1dRWXilWtA+Cy7GpsRERUMw16QqTVatG3b1+sXbsW48ePB2D7RbJ27VrMnDnTq77T0tKQlpYmbv1N/uGrHefx4qqDYkb68rIy9OjRA4AtdYe3BJMRl5akAQDK3p3iMj1GWaVjS6XScBWXilWtA+CyzNQdRETy8fmEqKSkBCdPnhTLZ86cQWZmJqKjo5GQkID09HRMmTIF/fr1w4ABA7Bo0SLo9XrxrTMKLOuO5omTobZNQxATpkNMTAyuXU/lIQdlsGc5caxWAWGR0RAEAXnF5WgnMUGJiYmp9vtSsap17spERCQPn0+Idu3aheHDh4tl+4LnKVOmYNmyZZg8eTLy8/Px4osvIicnB8nJyfjll1+cFlrXFB+Z+bc5o7ti+uB2UKuUyM/Ply91hzYI8U98CQBu78CcLjCj6aOfAwBWHriCv7Zo6hAPDQ1Ffn6+5HelYlJ17spERCQPn0+IUlJSIAiCyzYzZ870+hFZVXxk5t9CdWqoVb5dQ1NqrJhMl5k4sSYi8mdclUlEREQBL2AnRBkZGUhMTHS5ZxE1fOXl5bj//vtx/rt/ypa6I/9/C5H/v4Vu02MYDOViW5PR4BS3j+3++++XTN1RNVa1zl2ZiIjkoxDcPa9q5OyPzAoLCxER4dliWvKdRz7fhd8O5+LVCT1w/8A20Ov1CAsLA2B7y6xF00g8clN7PDy0fa367/DMdzj9xp0A3L/J9fuB87ilVxsAwNz/7sJLE/s6xCuPrWpfUrGqdQBclvmWGREFMrl/f/t8DRGRN7RaLd5++238648zKFKpkVdswPKdWbWeEClUajS5eYbYtysajVZsq1I772ptH5tUX1IxqTp3ZSIikgcnROTXNBoNZs2ahb/MtOC7PdmY/d0BeHPLU6FSI6L/OLFvV9QajdhWakJkH5urcburc1cmIiJ5cA0R1xA1Cjq1Cm2b8hESERHVTsDeIeJr942D1WrF+fP2VBveT4gEwQpzYZ7Yt7vUHebC3Ouf27ocW0JCglPqjqqxqnUAXJaZuoOISD4BOyGixqGsrAzt2rUDAKzdf67W/ew9fw2v/3IMxnIDshc/ZOv7jckuFy4bysvEtuYRu1yOTSp1R9VY1ToALstcVE1EJB9OiMjvhYSEeN3H17uysPX0FQCAQqPz+Hvu2roam1Ssap27MhERySNgJ0RM3dE42F9XB4Ctp67Uuh+L1bYUW6kNQkL6f8W+XQkOCRXbaoOcJyqhoaHYfzYX647mIa8MaBfqGLOP21WduzIREckjYBchpKWl4fDhw9i5c6evh0KN2PRlOzHvxyP487+dH6kREVHDEbATIiIpHZrZbuNoVApZ+jt3pRQAcDy3RJb+iIiobnBCRH7NYDBgxowZmDFjBowG5/QZNTWwTQSu/Pwu8n56FwY3/RkNBlz5+V1c+fldmE3OaUMMleKC2VTtuO3HqVrnrkxERPIJ2DVEDUlxuQn3fLwN56+W1ur7kcEaLP5TX/SIC7ztA8xmMz799FMAwL1P/N3r/qwWM0r2/yb2rdNVv2jaUqmt1TJfcmz2eJNbHql23IsWLYJOp3OqA+Cy7GpsRERUM5wQNQCHLhbh0MWiWn+/uNyMDcfzA3JCpNFoMG/ePACAWmK36JpSqTSIGvoAlMrqd6rOKy7H09/sx6ajFxE19AEAgFLl/L+SRqMR4wqVqtpx248jVeeuTERE8gjYCVFDfMssIToEn00fUKPvLPz1KH46kFNHI2r4tFotXnjhBQDevWVmp9JoEHnjZGhUimrzhW04lo+Nx/MBpa0tAKg1zm21Wq0YdzVuV3XuykREJI+AnRA1xJ2qNSoF2sXUbLO9cB3vFNQ3wZtkaURE1CAF7ISIGgdBEHD58uXrn71/M0wQBFhKC6FUKiAIAhSK6vsUBAHWsiLxc3V9AYAyOKLaccfExEChUDjVAXBZdjU2IiKqGU6IyK+VlpaiefPmALxL3WFnMpThwnv32/p+9Q6XmzMKJoPY1pTivM9QaWmpGI//67fVjtuehqNqHQCXZabuICKSD1+7JyIiooDHO0Tk10JDQ8XHVXIsqtYGhaDNcz9Ao1K4vQOj1AahzXM/iN+TGps9LhWr+phNqs5dmYiI5ME7RERERBTwAnZClJGRgcTERPTv39/XQyEiIiIfC9gJEZO7Ng4GgwGzZs3CrFmzZEndYTYZcXXNx8hf/bHb9BiC2YSraz7G1TUfV5u6wx6XSt1hH7f9OGVl5eh/+5+QdNt9yLtW4tRG6jtERCQPriEiv2Y2m/HOO+8AAO54KN3r/qwWM4p3fy/27So9hmC1iG2tlhcdYkazFTtP54nxqJserHbcr776KnQ6HY5cuoZdP34BANh07B+4rWcLhzYAnL5DRETy4ISI/JpGo8GcOXMAyJe6I2LQ3VAp3KfHUKhUiBh0NwDn1B3PfrsPK3afE+NSqTvs47YfR6FQi+0FlVKyTdUyERHJgxMi8mtarVa8eyJX6o4mNz3oMnWHnUJlaws4p+7Yff6aQ9zVuO00Wq3YXqPRSrapWiYiInkE7BoiIiIiIjveISK/JggCSktLxc9y9Gc1lsOq8ix1h2AyVHvsynGFRucUs487JCRETN1hNZZXfLdKGwBO3yEiInlwQkR+rbS0FGFhYQDkS92R9fYkW98vuU6PIZgMYlvTEOfUHZXjUqk77OO2p+EoKysV2xvuOu7UBoDTd4iISB58ZEZEREQBj3eIyK+FhISId0/2XSoDAJzMK0HW1VLERzun03BHowtG/F+/hUalEB9TVUeh0Yl3fjS6YJfxqo/MKo/bfpzg4BCxvS4oWLJN1TIREckjYO8QcafqxkGhsOUcCw0NhUpZsabmljc34JreebNET/pTaoOg1AZVu0Znf3aBR21dxSuP2x6r2r5qG6nvEBGRPAJ2QsSdqhufpPgojOweCwAwWqzIL5F/N2eD2YL/23Ze9n6JiMi3AnZCRI2D0WjECy+8gBdeeAFKwYKPHuiHpqGu9w9yxWIy4drGz3Fl/WcwGp3vMBnNVvGzYLG1vbbxc8nUHZXjgsUxdUflcduPYzIaxfYmk9GpjdR3iIhIHlxDRH7NZDJh/vz5AGy7OLvbTNEdi8WEoq1fX+97icv+BItFbGu1POsyHnnD3W7HbTJXHNtinufUBoCs50pERBU4ISK/plar8eSTT4qfa+pKiQE/HriEr3ddAGBLwRHe9w4olQq3/SmUKoT3vUP8nqu4QumYukNq3OrrxwYAlUol2cabcyUiourxpyr5NZ1Oh0WLFtX6+++sPYHPt1bsX6TWaBGd+gg0KoXb5KkKtQbRqY+I33MV92TcWp1ObK/R6iTbeHOuRERUPa4hooBWUGpy34iIiBo9ToiIamlccitfD4GIiGTCR2bk1/R6vazpLIzlpTj3z9ttfc9x3d/cUR3w7r19bN8b4Jy6w2osrzZ1h9S4S0v14rHLxx13agMwdQcRUV3hHSIiIiIKeLxDRA3S+mN5mPnlXuiNZrRrGorvHx+CMJ3zX9eQkBDk5eWJn72l0QWj9eNfQKN0n7ojJCQEc778A59vPVdt6o7Wj38hfnY37uDgELG9PXVH1TZynisREVXghIgapD9OXEaJwQwAOH1Zj+O5xeiT0MSpnUKhQLNmzWQ7rkKhgCokEiqVwm16DIVCgdDIaKhCCqpN3aEKiaz2u1XHXbm9PVVH1TZynisREVVoNI/MSktL0aZNGzz99NO+HgpRtfKKyzHm3U0Yl7EZxeV8w42IqKFoNHeIXn31Vdxwww2+HgbVM6PRiIULFwIAnnnmGe93qjaZULhlOZRKwGhMddmf0WjEuv8sRuHZazAPesopLlhMKNr+HQAgYuBEAMDOM9dw6GIRBIsJ6XPmom3TUHHcJqMRhVuWAwBMdyY6nRsAWc+ViIgqNIoJ0YkTJ3D06FGMHTsWBw8e9PVwqB6ZTCb87W9/AwDMmjVLltQdBZv+fb3vD132ZzKZsObf7wIArLOedIoLFovYV3i/cU6xT99e4DBuk7ni2Bbz353ODYCs50pERBV8PiHauHEjFi5ciN27d+PSpUtYsWIFxo8f79AmIyMDCxcuRE5ODpKSkvDee+9hwIABYvzpp5/GwoULsWXLlnoePfmaWq3Gww8/LH72llKlRlivWz1K3aFWq9Fv5CQcvVRUbeqOsF63ip+rxm6/609oERnkkLrD3t6euqPquf1pyjQUlJogKBrN024iogbB5xMivV6PpKQkTJ8+HRMnTnSKL1++HOnp6Vi8eDEGDhyIRYsWYeTIkTh27BiaN2+OVatWoXPnzujcubNHEyKDwQCDwSCWi4qKZD0fql86nQ6ffPKJbP2pNVo0HfWER6k7dDodJjzxCj7eeLra1B1NRz0h+V2FWoNnX30LQztVLJLW6nRie3vqjqrnlt3zQZzO1+O9DWcxe1S3mp4eERFVw+cTolGjRmHUqFHVxt966y3MmDED06ZNAwAsXrwYP/74I5YsWYLnn38e27Ztw3/+8x988803KCkpgclkQkREBF588UXJ/hYsWICXX365Ts6FqCae/+8BDO7YFC/d0R0hWs/+VzydrwcA7DhztS6HRkQUcBr0fXej0Yjdu3cjNTVVrFMqlUhNTcXWrVsB2CY4WVlZOHv2LN544w3MmDGj2skQAMyePRuFhYXin6ysrDo/DyIp2QVl+HrXBWw9dcXXQyEiCng+v0PkyuXLl2GxWBAbG+tQHxsbi6NHj9aqT51O5/ZRCPkPvV6P5s2bA7BtWihH6o7zb91p63vOFZf96fV6vDSxL8xWK4wDNjvFrcZyXHj/fgBA65lfVBsrnngYAFBaqhePXT7ugNO5ARDjPf/5Q63PkYiInDXoCVFNTZ061eO2GRkZyMjIgMViqbsBUb0oLS2VtT/BZHDf6DqToazWfUnFqtZVPbeajI2IiDxXowmR1WrFhg0bsGnTJpw7dw6lpaVo1qwZevfujdTUVMTHx8s6uJiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyUno3YWr4goODcebMGfGztzTaIMQ9+i+olQq3/QUHB+PpJavx1Y7zUGuDnOIKjRZxj/5L/FxdTBtk+25QUHBFnS5I8tzscZWGdzmJiOTk0RqisrIyzJs3D/Hx8Rg9ejR+/vlnFBQUQKVS4eTJk5g7dy7atWuH0aNHY9u2bbINTqvVom/fvli7dq1YZ7VasXbtWgwaNEi245D/UiqVaNu2Ldq2bQul0vslcQqlEurIWGiiYt32p1Qq0SQ2DupI6bYKha0vdWQsFFVek68cs39XqXSsq3puleMKGc6ViIgqeHSHqHPnzhg0aBA++eQTjBgxAhqNxqnNuXPn8OWXX+Kee+7BCy+8gBkzZng0gJKSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+vFt85qq64fmWVdLYXZKnjUNqewvE7G4I8sVgE/H7yEgxcLfT0UIiIKIB5NiH777Td06+Z6z5M2bdpg9uzZePrpp3H+/HmPB7Br1y4MHz5cLKenpwMApkyZgmXLlmHy5MnIz8/Hiy++iJycHCQnJ+OXX35xWmhdU3X9yOxP/9qOc1fkXdsSCLaeuoKZX+51qi8uN8NksTrVm0wmZGRkALD9N5WarNeExWxC0c5VUCkBk0l68l/52JtXfo6iU1dguXGmU1ywmFG850cAQHifMdXGzJN7if0V7Vxlq7uzu9O5ARDj1rj7vTlNIiKqwqMJkbvJUGUajQYdOnTwuH1KSgoEwfWdlJkzZ2LmTOdfOA1ZiFaNcJ3nS7QUCmB8clwdjsg/XCs1AgCahmpxa/dYfLPrAsxWAVOW7EDzcB06Ng9zaG80GvHXv/4VADBjxgxZJkTXfv/ket9vu+zPaDTip09es30v7c9OccFiFvsKSxpZbcxseh4AYDIZK+rMzzidGwAxbr397tqdIBERSarxW2Zt27bF9OnTMXXqVCQkJNTFmOpFXT8y+/nJoXXSb6DoHBuOBRN7IUijwtLNZwEAecUGaFSOa2dUKhXuu+8+8bO3lEoVQhKHQalQuO1PpVIhKWUMTuSVOKXmAGzrkUISh4mfq4spr5+T6vqxbeNQSp5bdf0REZF3ajwhmjVrFpYtW4ZXXnkFw4cPx0MPPYQJEyb43d4+fMvMP8wd2x1/H5OIG1/7HTlFzmutgoKC8MUXX0h8s3bUWh2ajX0GGpUCQUHOb45VPfbdzyzExxtPQ6N1/vuvUGvRbOwzkt+tHNPqbMfRBQU51Emdmz3Ot8yIiORV439mzpo1C5mZmdixYwe6deuGxx9/HC1btsTMmTOxZ8+euhgjBTilUgGFwtejICKixqzWGzP26dMHffr0wZtvvokPPvgAzz33HD788EP07NkTTzzxBKZNmwYFf4s1GE/+Zy9+2H+p2niLiCB899iNiI1wfVeE3LNaBWRddb1hIxERNSy1nhCZTCasWLECS5cuxerVq3HDDTfgoYcewoULFzBnzhysWbMGX375pZxjlVWg7VT984EcWFxsA5BdUIbMrAKM7O7dhpf1Ta/Xo23btgCAs2fPOqTaeHHVQXxwf19Ehzpnoq+OsbwUWe/a1u3o51x0m7rj1XsHo9xkgXHA72L9b4dzANjSc2Qvng4AiHt0icN3K8fKJ9reqist1YvHLh+3y+ncAIjxnq/+1+NzIiIi92o8IdqzZw+WLl2Kr776CkqlEg8++CDefvttdO3aVWwzYcIE9O/fX9aByi1Q1xB9P3MwWlS5C/TQZ7twINt/9/25fPmyQzkqRIMreiO2nb6KHw9cwgM3tKlRf9ayIo/blhZdc6rLK65Ir+GqL6lY1bqq51aTsRERkedqPCHq378/RowYgQ8//BDjx4+XfC25Xbt2uOeee2QZIMkrJkyH5lUmRBqV/z7aDA4OxsGDB8XPAPDRA32R+tZGAIDBVLM7gBptEFpOz4Ba5Vnqjic+WIVvdl2oNnVHy+kZ4ufqYpVTd4h111N3VD03e5yLqomI5FXjCdHp06fRpo3rf3GHhoZi6dKltR4UkaeUSiW6d+/uUNexeTjGJ7fCysyLNe5PoVRC26wNNCqFR6k7Ytt0gvacqtrUHdpm0v+vVI5VTt1RuU7q3OxxvnZPRCSvGk+I7JMho9GIvLw8WK2Ouwf7895E/qywzITzLnbGFuBZGhEiIqJAVOMJ0fHjx/HQQw9hy5YtDvWCIEChUPjNIuXGtqj6442n8fHG074eRr0zmUxYtmwZAGDq1Kmy7FRdnPkLVEqFR6k7dv7yDYqP58Nyo3PuPsFiRsmBNQCAsJ6p1cYqp+4ozvzFVnc9dUflcwMgxq1xk2p/kkRE5KTGE6Jp06ZBrVbjhx9+QMuWLf321frGsqg6NTEWa47kotyDtTLJCVFOC6r9ndFoxCOPPAIAuO+++2SZEF399f3rfS9wm7pj5Xtzbd97ZKpTXLCYxb5CE1OqjZlfsaXnMJmMFXVzn3A6NwBi3DpyXG1Oj4iIqlHjCVFmZiZ2797t8FYZ+c6IxFiMSBzh62HI4sCFQuw9X+CyzaVCx/19VCoVxo0bJ372llKpQnCnG6BUuO9PpVKh2w034+yVUizdch6PpXZ3WLCuUCoR3OkG8XNllWOVU3eIdddTd1Q9t+r6IyIi79R4QpSYmOj0KjCRt07nl2Ds+3+IZXWVN986NAvDpcJy2LdSah9jS/IaFBSElStXVtvv//ZfwtikVh5vOKnW6tB84t88Tt0xL+MzpH+9DwCw8+w1jOnVUowr1Fo0n/g3ye9WjlVO3VG5Turc7HG+ZUZEJC+PJkRFRRV7n/zzn//Es88+i/nz56Nnz55OjxQiIiLkHSEFhNwi2949QRol+iQ0wcND2zvEl0ztj+O5xQCAJqFaxEW5fiVedf0Oyr6sAjz02U788HjdJNud2Kc13ll7AudcLGgHAKV/PlkmIgoYHk2IoqKiHNYKCYKAW265xaENF1U3PoIgoNzk+BahQgEEabx/NFWd+CYh+HLGDU71WrUSPeI8X+v14KA22HzyMnKKypFXZHD/BS+0iAiSnBDd3LU5IoLUWJl5ER2ahdXpGCrLKy7H1lNXkNKlOSKDvVtTRUQUKDyaEK1bt66ux1HvGsui6roiCALu/WQbtp2+6hSbMqgNXh7Xo0b9bTt9Bf/dfQGVs4fc1DkG45LjvBpnaWkpEhMTAQCHDx9GSEgIACApPgpLpvbH6Hc31ag/k6EMFz6cDoUCKH3hjNhfdcfu0qsn8osNaDr1fae42mrE8qfvRH6xAe1nf+4Qs5rKcfHTxwAA5XduBQCUlZXiwoe2dB6GcZudzg2AGO/5cvVpcf78793Ye74AY3q1RMZ9fWznZbHCbBEQrK27ySwRkT/zaEI0bNiwuh4HNTAmiyA5GQKATSdqvoZswU9HsO+CY3qQH/Zf9HpCJAgCzp07J372liAIsBTledRf5WM3lWoqADnZWfbGTjH7ccwWK8a+9wf2ncmtODYEyXOzx536q8S+MH314VwAgMFswS1vbsBVvRE/PD4E7evxbhURkb+odXLX0tJSnD9/Hkaj0aG+V69eXg+KGpZts29BRLAau85ew4NLdtSqD/ujt3sHJKBZuA7vrj0Bg9mKce//AaVSgZ41eBxWWVBQEHbs2CF+9pZao0OLB9+CWunZouodO3Zgznf7cdzi/GhKpdXi0+9+w99WHoSyauoOtQYtHnwLAJBfasWB7EKHOo1WJ3lu9rhK43nC2rwiAy5cs72dd+RSMSdEREQSajwhys/Px7Rp0/Dzzz9Lxrkmp/EJ1qoQolVLrh36emcWDl2suPMTqlNj+pB2iAmTfgtqbK+W6NOmCZb+cQbFBrN418jd6/bVUalUsiYSVqpU0LXsDI1K4dFr9/3790f0HjMUZ5zvpimVKiT26gPddiMUSse+FErbcezHrFqnUqkkz80er9pfmdGCDcfzkBQf5fnJEhGRqMYTolmzZqGgoADbt29HSkoKVqxYgdzcXMybNw9vvvlmXYyRGqi8onI8+9/9TvVBGhXuHZCAvy7PxOUS24LmM1f0DvGfZw3FsZxi7MsqwLu/n6y3MbvTsbn/3D3JKSzH678cRXJCFM5fKcWnf5xB26bVr3kiIqLq1XhC9Pvvv2PVqlXo168flEol2rRpgxEjRiAiIgILFizAmDFj6mKcVA/OXdFj/4UCALY1RO6UXd8dW6NS4NFhHbDpxGVkZhWg1GjBHyfz8cdJ57VGra6/Lt+6SQhaN/H+l7fZbMby5csBAJMnT4ZaXbunwH+6IQF/vqkDIFhQcmgd1EoFzOZbnforq7QjuNlsxrfL/4Nz209AiOnj1KfVYsavq75ByaGTsDYd5RATrBboj2wEAFhGdHSuM/dwOjcAKDlke8HBGjcW/9l5Ht/tzcZ3e7PFR45n3bz+T0RE0mr820Ov16N58+YAgCZNmiA/Px+dO3dGz549sWfPHtkHWFf42n0F+5YK8386Wk3c9fd1ahWeurULyowWZGYVAADsOX97xkXiudtsu5rHNQlG25hQWcZsZzAY8Kc//QkAMH78+FpPiNrHhCE+OgSnLl7GlR/evN73S079vfT9IfGz0WAUjx3/12+d+rSYTHj5qb8AAE50GuSQXkUwm8TjmNOmONWZ5vzZ6dwAiHHrzbeh1FipPybvJSLySo1/e3Tp0gXHjh1D27ZtkZSUhI8++ght27bF4sWL0bJlS/cdNBB87b7C5H7xyCsuFycxlQ3q0BQRQbXfy6ZJqBZDOsV4MTrXlEolUlNTxc/eUiiVCGqTDIVCur9rehMAoH2zUARp1UhNTcWBC4WSs0aFUoGBQ4ZhX5Yt/vPBS9Da1yUpFAhqkywe06lOoZA8t4o4U3cQEcmpxhOiJ598EpcuXQIAzJ07F7fddhu++OILaLVaMTM3+Ze7+8fj7v7xvh5GrQQHB2P16tWy9hd7zzxoVAoEB1e/G/ZfUzuLx5780VZsl1hUrdYGYcuGdWg/5ycAQGGpCc3CbRMipUaH2HvmAahI3VG5ThcULHlu9rhKy9QdRERyqvGEyH4LHwD69u2Lc+fO4ejRo0hISEBMTN3dCSCqrbxiA+asOID5E3rW+7GVSgVu79USP+y/VO/HJiIiz9X6vrvRaMSxY8eg1WrRp08fToaoVqourI6Plu8tqRaRQWIOsS+3n0dxuUm2vomIqHGp8R2i0tJSPP744/jss88AAMePH0f79u3x+OOPIy4uDs8//7zsg6SGJbugDJM+3IJys/cL0ru0CMfvTw1DTmE5FAoFeidE1ej7paWl4l49O3fudEi1ER2qxYZnhmPo67Y3szxZdlxaWoqLnz52PXXHEbepO/r3748L18oQee9Cp7jJUIbu3bvjUmE5wia/7hCzmsqR81k6AMA4/EenOsO4tU7nBkBM99Hzb0s8OBsiIvJUjSdEs2fPxr59+7B+/XrcdtttYn1qaipeeuklTogasdgI27oVg9mKXeeuOdXXVvtmYbXePVkQBDHPl1SqjdiIGu5eLQgwXTlfbX/VHTuymtQd9nhY1bgA5+NUrrueuqPqudnjrlJ3EBFRzdV4QrRy5UosX74cN9xwg/i6NgB0794dp06dknVw1LC0aRqKn54YivNXHfe66dMmyqFsMFtQaqqf7QyCgoLE5MNypO7QBQUh9t75UHmYumPdunV4+ftDOK2WTt2xbt06vLPmOPYYHeMKtQax984HYEvTIVUndW72eE1SdxARkXu1St1h34eoMr1e7zBBosYpsVUEEltFuGyzdPPZ+hkMbCkuUlJSZO0vKKGXx6k7UlJS8OExHc5Uk7ojJSUF316MwN4qi6oVSttxAMfUHfY6e+qOqudmj1dN3UFERN6p8aLqfv364ccffxTL9knQp59+ikGDBsk3MvI7gzo0RZCm4q+USqnAsM7NfDgiZ0XlJvx2KMe2d1Ad2V+HfcvlcokBx3OLfT0MIqIGo8Z3iObPn49Ro0bh8OHDMJvNeOedd3D48GFs2bIFGzZsqIsx1gnuVC2/W7rF4tDLt8F6fX2LAoBaVbcbCJrNZvzwww8AgNtvv93tTtXpyzOx5kgeAODXWTdJ9ld6fCtU1aTukDp2duZRCOGJAACrVcC3uy8AAASrGStXrsTpXacgqDs5fFewWlB20pbJvnLqDrHueuqOyucGAKXHt9qOEzfC5Xm6YrJYMfyN9SguN+OLhwdicEe+IUpEVOMJ0ZAhQ5CZmYnXXnsNPXv2xG+//YY+ffpg69at6Nmz/vd5qS3uVF03VEoFVKi/R6cGgwETJkwAAJSUlLidEOUUlUt+tjMaDMhf8er1vp932V/lY9tTd1Re6nx37xYY3nNglbithWA2iccxPzLZqc70zBSncwMgxq1DU1yepyulRguKy80AgDOX9ZwQERGhFhMiAOjQoQM++eQTh7q8vDzMnz8fc+bMkWVgRJ5QKpW48cYbxc/eUiiV0MV1AwCUmaxwlXnNfuxjOcWSqTu6tIzEjTfeiNP5ejH+yv8OXz+QQjxO5dQdYt311B1Vz60iztQdRERyql0mTAmXLl3C3//+d06IqF4FBwdj8+bNsvUXGhKCFn+y7Sn0+NeH8NUjN7g9dnWpO+zxmV/uEXeqDtZWpO6wH6dy6g57nT11R9Vzs8eZuoOISF78ZyZRJc3DdejaIhyAbQNKX/low2mfHZuIKBBxQkRUiUKhwKs+yHlWVVk97eNEREQ2nBCRXysrK0P//v3Rv39/lJV5f0enrKwMD95xCy599ldYTAaPjr16wXRYJdra49/8/QGnuNVkwKXP/opLn/0VRkO5U53VZHA6t7KyMjFuMboeGxER1YzHa4jS09NdxvPz870eDFFNWa1W7Nq1S/wsR3+H9++1FQTX/VU+dphEKo3K8fiqcUGAMefE9cNYneogWCXPTfyOm7HVRlG5CRuP52NQ+6ZoGsY1SkQUWDyeEO3du9dtm5tuct7Xhagu6XQ6ca8enc77X+I6nQ6LlvwHr/50BEqV6/QY9mO/9vMRnJdI3WGPf7j+JA4onFN3NJs0FwCgvp6Go3KdQqWVPDd7XFnleAezi2p6qk5eWnUI3+3Nxo0dmuLLGdUvJiciaow8nhDZcyoRNSRqtRpjxoyp1XevlBjw/b6LTv0NuflWhBwLg8JN6g77sT+/EI0sibfM7PGfC/fgoETqjpAOtkz2qut7HVWuU6pUkudWEZftBVHR//bbrsWWU1dk75uIqKGT/6cqUQOV/PJvsFZ6cvWPHw6Ln7VqLqcjIgpkHv0WeO2111BaWuq+IYDt27c75DojqksWiwWrV6/G6tWrJdOwVN4v0VplGc+1UhMAIFijwuieLcX+tm1ah7IzeyFYXb/pZT92zuEdkm3t8awD25zigtWCsjN7UXZmL6zXx125TrBanM7NYnGMExGRfDy6Q3T48GG0adMGd911F8aOHYt+/fqhWTNb0k6z2YzDhw/jjz/+wP/93//h4sWL+Pzzz+t00JUVFBQgNTUVZrMZZrMZTz75JGbMmFFvxyffKi8vx6233grAlt4iNNRxb2mNSonHb+6IH/dfwunLesk+5k/sgehQrdjfzAfuBAB07Ol6Yl/52PbUHJ7GBbMJeV//HQBgmjbOqa5r0k9O5wZAjFtuWO1ybEREVDMeTYg+//xz7Nu3D++//z7uu+8+FBUVQaVSQafTiXeOevfujYcffhhTp05FUFBQnQ66svDwcGzcuBEhISHQ6/Xo0aMHJk6ciKZNm9bbGMh3lEolkpKSxM9Snrq1Cx4d1gHd5/7qUX+du/XAmSt6wE16DPuxz10plUzdYY9fuFbmHFcooGnezvaxUuoOex0USslzE7/D1B1ERLLyeA1RUlISPvnkE3z00UfYv38/zp07h7KyMsTExCA5ORkxMb5JEKlSqRASEgLAlmxTEAQIEq9AU+MUHByMzMxMWfv78ueNuPPDLVBpXL+1Zj+2q9QdmZmZDqk77JQaHVpNew+AY+oOe51Ko5M8NzHO1B1ERLKq8T8zlUolkpOTMW7cONxzzz1ITU31ajK0ceNGjB07Fq1atYJCocDKlSud2mRkZKBt27YICgrCwIEDsWPHDod4QUEBkpKS0Lp1azzzzDM+m5wRERGRf/L5fXe9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxTVRUFPbt24czZ87gyy+/RG5ubrXHMxgMKCoqcvhDREREgc3nE6JRo0Zh3rx5mDBhgmT8rbfewowZMzBt2jQkJiZi8eLFCAkJwZIlS5zaxsbGIikpCZs2bar2eAsWLEBkZKT4Jz4+XrZzofpXVlaGlJQUpKSkyJa645HJY5Hz5fMepe5ISUnBujfTqk3dkZKSghXzHoHVZMDxvBLbeiPY0nTkfPk8cr58Hvrr6/BUViMif39VPHbVcysrKxO/w9QdRETyatD7EBmNRuzevRuzZ88W65RKJVJTU7F161YAQG5uLkJCQhAeHo7CwkJs3LgRf/nLX6rtc/bs2Q5pSIqKijgp8mNWqxUbNmwQP8vR357tm20FD1J32I/tlJqjavw2AbvPXqsICgIMWQcBAO+tPQGodVArFNi/c6t4bKlzs3+nLlJ3EBEFsgY9Ibp8+TIsFgtiY2Md6mNjY3H06FEAwLlz5/DII4+Ii6kff/xx9OxZfbZynU4nS4oHahh0Oh2+/vpr8bMc/b2WsQRv/Hbco9QdX3/9Nd5efRzZ1aTu+Prrr/GvP07jSKX4TZ2bYcPRHMSMex4AYFWqoQDQqmk4pr6/BG+tPi6m7qh6bvbvVE3dQURE3qnRhMhkMolvvvTo0aOuxlQjAwYMqNVbRhkZGcjIyJDczI/8h1qtxl133SVrf6ljxuPD81s8St1x11134durW3GxmtQdd911FzaY9uBopbfMdGolFEoVQrsOcWj/55ROaN+sNz7K2iqm7qh8bsdyisXv1EXqjsq2n76CZ/+7HxN6x2FWauc6PRYRUUNQozVEGo0GCQkJ9TaJiImJgUqlcloknZubixYtWnjVd1paGg4fPoydO3d61Q9RfcnMqnjk1rpJSJ0ea/GGUzh3pRSL1pyo0+MQETUUNV5U/cILL2DOnDm4etX5X8Ry02q16Nu3L9auXSvWWa1WrF27FoMGDarz41PDZ7FYsHnzZmzevNnlRF2lVEDpvHeiZH+Zu7ah/MJhj1J3bN68GZdP7q82dcfmzZtx6VimZOqO8guHHY5jtViwb9d2sa7quVktFd/RKut2ry29kXdOiSiw1Pi++/vvv4+TJ0+iVatWaNOmjVOqhD179tSov5KSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+sxbdq0mg7dAR+ZNQ7l5eUYMsT2GEkqdYddkEaFl8f1wLZTV/DjgUuSbez9PTxpNACgwz/cp+6wH7u61B3VxQWzCblfPCvGFFoVjEYDHrnbdmxt82+RV1DscG5Go0H8zjfNv4VSW387whMRNXY1nhCNHz9e1gHs2rULw4cPF8v2N8CmTJmCZcuWYfLkycjPz8eLL76InJwcJCcn45dffnFaaF1TaWlpSEtLQ1FRESIjI73qi3xHoVCgY8eO4mdXHrihDR64oQ3mFJRh8Gu/V9tffNv2uFRYBsB1f/Zj5xSWSza1x/OLDc5xBaBu0lL8bG/ftl0HXCgoBRS2dTyVz02hUDh9xxWjmW+iERF5qsYTorlz58o6gJSUFLepNmbOnImZM2fKelxqHEJCQnDiRM3WucRFBaNDs1CcyndO9hoSEoIV63fZUne4uQNjP3Z1qTvscXvqDmulv+dKTRDiHvnEob0uKBhnTp9Ez5d+RXG5GcVmlcO56YKCnb7jzjW90aF85FIRhnTiTu5ERFXVamPGgoICfPrpp5g9e7a4lmjPnj3Izs6WdXB1KSMjA4mJiejfv7+vh0KNnH0adCKvxKP27WJsj/3+vuoQFvx0xKtjmyyOd4l2nq37tX9ERP6oxhOi/fv3o3PnzvjnP/+JN954AwUFBQCA7777zmEDxYaOb5lRfekdH1Wj9vsvFIqfV2VelHUsoboGvfUYEZHP1HhClJ6ejqlTp+LEiRMICqp4pDB69Ghs3LhR1sERuVNeXo4xY8ZgzJgxKC8vl6W/J6dNRt43L8FqMrptO2bMGGx6/ykIZue29vjXr6Y5xQWzEXnfvIS8b14SY0aDrb29TjAbce6rv4vnZjSUO32HiIjkUeN/Lu7cuRMfffSRU31cXBxycnJkGRSRpywWC3766Sfxsxz9bV63GgAgCO5fu7cfO36E8wJmh3jiww7roAWrFWWnd4mfFbBtKWFvL1xP1ZFzcCt+OmjryyrxHSIikkeNJ0Q6nU4yQ/zx48fRrFkzWQZVH/jafeOg1WqxdOlS8bMc/c1d+D7eX3cSCpXr9Bj2Y3+w7iRyVWq8ufoYbuvRwimuN5jx+knH/9UUKjWajp4lfgYAtUaDpUuX4ulv9ol1/R98AY8N7witVgu1RuP0HSIikkeNf6recccdeOWVV8QcSwqFAufPn8dzzz2HO++8U/YB1hW+dt84aDQaTJ06Vdb+xt51H5Zd3uI2PYb92FuUu/Db4Vycztc7vElmj1/TG7HwH6sdvqtQqRHWM9WhTq3W4E9Tp+KloxX7H7W9cQymTh0kxqt+xx2LIMBg5qSfiMidGq8hevPNN1FSUoLmzZujrKwMw4YNQ8eOHREeHo5XX321LsZI5FNWq4Cnv9mHce//ga2nrzjFXxlXd3n9dpy5ii2nLtf6+2Pe/QOpb3FtHxGROzW+QxQZGYnVq1fjjz/+wP79+1FSUoI+ffogNbVm/3IlkoPFYsGBAwcAAD179oTKTUJWT/o7dugAjLmnIUR1AwCcuaLHt7svVHvswjITBKsFCqXKKZ6ZmYkiibhgtcCUfw4AoGnWBgqlCtbr7Y25p6Fp1gYAYMo/h6cX52DTa1NhtVhgzD3t8B13rurdL76+VFiGf/58FCZL3aYDISJqyGo8ISovL0dQUBCGDBkiphUg8pXy8nL07t0bgOvUHTXp7/4xwwAA7a6n7qhu49DKx7an3/A0LphNuLTsCYeY0WhA7xsr2gPApWVP4BKA8pfugdFocPqOHL7Ydh4rZX69n4jI39R4QhQVFYUBAwZg2LBhGD58OAYNGoTg4OC6GFud4qLqxkGhUKBVq1biZzn6axbbElf1BniSuqNVq1awCtJN7XFBKq4AVGHR4ufK7XOLKlKBqMKiobyetkOhUIjlri0jcPyKPK/eF5WbZOmHiMif1XhCtGbNGmzcuBHr16/H22+/DbPZjH79+mHYsGFISUnBiBEj6mKcsuOi6sYhJCRE1h3SQ0JC8PP2Qx6n7sjOzsZVvRF9qiyarhy/pjeid5W4UhOE1mmfO9TpgoKRnZ2Nts9XLKpunfY5okO1CAkJgS4oGK3TPsctXZvDZBVw/Eq+F2dKRESV1XhR9ZAhQzBnzhz89ttvKCgowLp169CxY0e8/vrruO222+pijESNipvUfX7DaLai1Gj29TCIiGRRq81Mjh8/jvXr14t/DAYDbr/9dqSkpMg8PKLG56Eh7bDmSK6vh+EVk8WKW95aj8vFRvwyayjaNPVu7RYRka/VeEIUFxeHsrIypKSkICUlBc899xx69eoly/oNopoqLy/HAw88AAD497//7ZBOprb9PffYVOSfuoLWD/zdo2MbzVYIHf4EhVrrFL9ryv1O8VZRQRDMRlz+4U0AQMztT0Gh1sJoKMddd92F/AOXEHP7UwCAyz+8iUK1EuXPDIXRUI78lQvwe7gONz78klfn6a2reiOyrpYBAI7lFHNCRER+r8aPzJo1a4bS0lLk5OQgJycHubm5KCsrq4ux1Slmu28cLBYLvv32W3z77beype5Y+9P3KD222aPUHd9++y2+X/mdmGrD07hgtaL02Gbbca7HrFYrvv32W7HO3qbg0CYxdUfpsc04u+t3WCWOVxtf7TiPr3dluWwjCAJyi8phtTaSZ31ERBJqfIcoMzMTBQUF2LhxIzZs2IA5c+bg8OHDSE5OxvDhw/1mc0Yuqm4ctFot3n//ffGzHP09+8rr+HTTaY9Sd7z//vvQG8zIuOT8v5I9Xmow4/1Lzqk7okc8Kn4GbKk73n//fby46qBYFz3iUYRo1WLqjugRj6JzbDhUbsbmqUMXndPwVDVnxQF8tcM2aXrr7iRM7NNalmMTETUktVpDFBUVhTvuuAODBw/GjTfeiFWrVuGrr77C9u3b/WZCRI2DRqNBWlqarP3d/eDDWK73LHVHWloaruqN+EDiLTN7/JreiIwq8RE94rBGdbtDnVpta78wq+Its/A+tyM6VAuNRoNjeWUI73M7Eq+/ZVZf7JMhAEj/eh+WbTmL9jF8REZEjUuNH5l99913eOKJJ9CrVy/ExsbiL3/5C0pKSvDmm29iz549dTFGIp84f7UUhaU126OnqMyz9hn394ZK6fm6u+yCMny+1baz9fG84hqNSW77LxRyI0cianRqfIfo0UcfxU033YRHHnkEw4YNQ8+ePetiXEQesVqtOHXqFACgQ4cOUCprPMd36u/i+dMwXc2GuklLJL3yG7577EaXxy4xmCAIVigUSjz02S6H+IkTJyAIghi30ygV6KgrxsHsQqibtIRCoRTb248NAOZrl1BersXJ3CIIghXma5eQVaRE2+i6y59GRBSIajwhysvLq4txENVKWVkZOnfuDECe1B1lZWW446Z+AOzpMYKwbPNZt8fu/eL3uGoAMrMKxLhaMIvx+av24qMt2Q7f/e2lexyOYzSUo3PnbmIdAFz85M+4COABZUUZAAZ9sN6r8yQiIke1WkNksViwcuVKHDlyBACQmJiIcePGeZ1Yk6g25F4UX7W/QhePwextJ/VtjY+3VDxGmnpjW6iUCpdj0wSHwVxlLVBkZCSKyis2O1ToHCd4Cl2om4QivqE3mGG2CogMlmexNxFRfavxhOjkyZMYPXo0srOz0aVLFwDAggULEB8fjx9//BEdOnSQfZB1gbnMGofQ0FAUFBTUSX///OUoPlx/yqO2b/52zCGmUioc4m+tPu703bFv/ord566JdUHBISgoKHBI3ZEwa7nD9xJmLYdWrYRGFwygpIZnVzdKDGYMWrAWBrMVG58djtgI7/aCIiLyhRovuHjiiSfQoUMHZGVlYc+ePdizZw/Onz+Pdu3a4YknnqiLMdaJtLQ0HD58GDt37vT1UMgHElvZ7tyolAp0ah7u49H4t0uF5SgqN8NgtuLMZb2vh0NEVCs1vkO0YcMGbNu2DdHR0WJd06ZN8dprr2Hw4MGyDo6orrwzORlPjeiMyGANmoS63r/IYOZdRCKixq7GEyKdTofiYufXfktKSmTZGI+oJgwGA/78Z9tC448++gg6nc6j7ymVCrSV2Euncn+dJqYDALadvur22N0mPeUynnjX006xXZ/Pw5USI5qOnAmFWgOT0YCpU6fi8u4LaDpyJgDgyq+2TScrl5VKBSyPzfXoPOvDwl8rHhcWlplQWGbiWiIi8js1fmR2++2345FHHsH27duvv04sYNu2bXj00Udxxx131MUYiaplNpvx2Wef4bPPPoPZ7H3m9cr99U2I8Litxep87MrxcG3FUujwIA3MZjPOb/sZ+oNrIVhtd6AsFgs+++wzsU6wWqA/uNapXLx/DazWhnnX6s//3o0b5q9FQanR10MhIqqRGt8hevfddzFlyhQMGjQIGo3tX4Fmsxl33HEH3nnnHdkHSOSKRqPB66+/Ln6Ws7+bE1thaKdcbDpx2W1bq8Su1pXj9w5qh6ZREYhrEozoUC2MRqDHhMdw4VoZFNffzlSr1Xj99dcx/6cjYl1UyjQAcCirlQq3u2j7UpnJguyCMkSF8I4xEfmPGv9UjYqKwqpVq3Dy5Enxtftu3bqhY8eOsg+OyB2tVotnnnmmzvpTKqp/yb1y26pvmUn1dXf/EIdYp9T7UHy+QKxTa2ztM65UvGUWOfBOhz4jB94JrVoJlZqPpIiI5OTxhMhqtWLhwoX4/vvvYTQaccstt2Du3LkIDg6uy/ERNVqn8mv/RpYgMPM8EZGcPF5D9Oqrr2LOnDkICwtDXFwc3nnnHVmTahLVhtVqRXZ2NrKzs2G1Wuu8v3CdGtGhWvRqHem2rau41WpFeUE+zMWXIQhWh/b2OkGwwlx82blcdBnaGuRBIyIi9zy+Q/T555/jgw8+EN+aWbNmDcaMGYNPP/3U6/xRRLVVVlaG1q1bA5AvdUfl/iprEqLBzhdSoVAooFIqoNfrxbavrnJObOxqbGVlZTi+6E8AKlJ3hKmsYnt76o7sD6ZKlt/ddQprj+V7da5ERFTB45nM+fPnMXr0aLGcmmr7xXDxon9mvc7IyEBiYiL69+/v66GQl9RqNdRq+RYZu+pPrVI6ZKl3d2yXcaXK9ue6YV2a2dpWqlOqHMtVv0NERPLw+LeI2WxGUJDjlvwajQYmU/V5nhqytLQ0pKWloaioSPZcWFR/QkNDZf07WJP+KreVWlTtqq/Q0FB0/9uPKDFUvK4fGREOk8nkkLrjw9+PYv5PR8Vym2dWIal1JDq3bgbgiEfjrKmuLbhzNxEFHo8nRIIgYOrUqQ4b35WXl+PRRx91eBTw3XffyTtCogBmlVg7vWBiL3SODcf3Mwfjjvc318lxd5yR3oySiKix8nhCNGXKFKe6P/3pT7IOhqixiHaTDsRTZovzYu3EVrYNIxOiQ5xiDcXKvdloEqJFqyi+hUpE/sHjCdHSpUvrchxEtWIwGJCebkux8dZbb3mcusPT/jxtmzDqUbF+yqA2mD64ncuxGQwGXPzpfZgsAqJvfhgKtUZsf2XrOUTf/DAA4Ot3XsKVrEKxHJ75JdLSfro+tpq/afb70Tws+eNMjb9XU59sOoOtp6/gnXt6I7eoHIPaN4XCxZ5ORES+phACfEMT+xqiwsJCRES4TtVADY9er0dYWBgAed4yq9rfY8sPYcNx29tcTUI02PvirZJtX121Bx9vsb1g8N1jN6JPQhOXY6sci//rt1Bqg3Do7ykOdQCQ9fYksfzjE0PQq10LsT+TQoPkV1Z7db5SurYIx9Ec53yFtaFWKmC2Cvji4YEY3DFGlj6JiAD5f3833P3/iTyg0Wgwd+5c8XN99le5raqa1B3V9aXRaNDspvthtFihUKkwfXA7sf2iNcfFVB2jHpyJLaeuQKFSoWV0mEN/Ju9Tt0kqKJVvkbr5+iKo7GtlsvVJRFQXOCEiv6bVavHSSy/5pL/KbatL3VFdX1qtFs1THhDfMntxbCIA4KWXXsKy8oq3zEZPeQKHfzsu2V+ZpW7e8MwpKq+TfomIGjLuqEjkpyKDNXhwUBtfD4OIqFHghIj8miAIKCgoQEFBgSz5vWrSn7u2ruKCIMBSXgJreYkYs7e31wmCgNKSIody1f5eGdcDr03s6fV5ExEFOk6IyK+VlpaiSZMmaNKkCUpLS+u1v8ptjQbnNTKu+iotLcXR1ych6517IJgMDu3tdYLJgOfG9RPLcp9rfXr2v/vx4qqDYvnL7ecx9PXfseZwrg9HRURUgRMiIqoXn289J36es+IAsq6W4eUfDvlwREREFfx+QpSVlYWUlBQkJiaiV69e+Oabb3w9JKpHISEhMBqNMBqNCAnxfqPCmvRXua1W57wBoau+QkJCkPjCD0h4eiUUGp1De3udQqPDzlN56PXijxjctRVim0TIeq4NQX6xwddDICIC0AjeMlOr1Vi0aBGSk5ORk5ODvn37YvTo0V7vR0P+QaFQyPK6fW36q9xWatNBV30pFAooVGooVM7tFZVe4e/Xvhn2vVyRVFmp9Pt/wxARNUh+/9O1ZcuWSE5OBgC0aNECMTExuHqVeZjIf80Y2g4AcFff1j4eifzKTRZfD4GISJLPJ0QbN27E2LFj0apVKygUCqxcudKpTUZGBtq2bYugoCAMHDgQO3bskOxr9+7dsFgsiI+Pr+NRU0NhNBrxzDPP4JlnnoHRaKzX/iq3NZuc27rqy2g0Imf1J7i2bgmE6/sJ2dtfW7cEfzw9FPPu6OrwfbnP1RduWLAWhWV1s38SEZE3fJ664+eff8bmzZvRt29fTJw4EStWrMD48ePF+PLly/Hggw9i8eLFGDhwIBYtWoRvvvkGx44dQ/PmzcV2V69exdChQ/HJJ5/gxhtv9Pj4TN3h3xpL6o7zb93p1B6Ay7K9v00n8vHAv3ZAp1bCYHZOBtvQ/PD4ENz+3h8AgCCNEkf/McrHIyIif9ToUneMGjUKo0ZV/wPxrbfewowZMzBt2jQAwOLFi/Hjjz9iyZIleP755wHYEmWOHz8ezz//vNvJkMFggMFQsZCzqKhIhrMgX9FoNHj66afFz/XZX+W21aXuqK4vjUaDpoPuhMkiiGk6pNq7KwPAkI4x+H7mYDQN02Hwa7/X4Gx945X/Hfb1EIiInPh8QuSK0WjE7t27MXv2bLFOqVQiNTUVW7duBWDbzG7q1Km4+eab8cADD7jtc8GCBXj55ZfrbMxUv7RaLRYuXFgv/VmF6ttWl7qjur60Wi1ajJghpu6orr27MmBbjN2rdZTkcRqiHWe5xo+IGh6fryFy5fLly7BYLIiNjXWoj42NRU5ODgBg8+bNWL58OVauXInk5GQkJyfjwIED1fY5e/ZsFBYWin+ysrLq9BzIv7VpWvF6O9e+EBE1Xg36DpEnhgwZAqvV83UTOp0OOp0OGRkZyMjIgMXCt178mSAIMJttd1nUarXk6+/e9Pfi7YkOGwpW17a61B3VjU0QBAgWMwSLGVCqJNsDcFn29lyJiKhCg75DFBMTA5VKhdxcx+39c3Nz0aJFC6/6TktLw+HDh7Fz506v+iHfKi0thVarhVarlS11R+X+1Krq/xep3La61B3Vja20tBSHX70d598Y75C6o3J7d2UiIpJPg54QabVa9O3bF2vXrhXrrFYr1q5di0GDBvlwZERERNSY+PyRWUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/XiW2e1xUdmjUNISAiuXbsmfq7P/iq3/XR7To36CgkJwXs/ZeLDDSdxz+Cu1bZ3VyYiInn4fEK0a9cuDB8+XCynp6cDAKZMmYJly5Zh8uTJyM/Px4svvoicnBwkJyfjl19+cVpoXVNpaWlIS0sT9zEg/6RQKBAVFeWT/iq31ajyxXrt9cdsrvpSKBSYOSoJM0cluTy2u3Jj8Mw3+7Dl1BUsndYfnWPDfT0cIgpQPp8QpaSkSC5IrWzmzJmYOXNmPY2IqOYm9onDqfwSxITpkNjSdxt8dm0RjqM5xYgK0aCg1D/eivtm9wUAwKrMbDwzsquPR0NEgcrnEyJf4SOzxsFoNGL+/PkAgDlz5kCr1dZbf1Xbvntvb4/7kopVrQPgsiw1tu9nDkFBqRFv/nYcy3f515YS5qobPRER1SOfp+7wNabu8G91nbojNDQUbZ//UYyffW2Mx8f2NHWHPVbb1B1Snvt2v99NiP48rD1mj+qGM5f1CNWq0DwiyNdDIqIGrNGl7iDyhlqtxmOPPSZ+rs/+3LV1FZeKSdW5Kzc2J/NKkPrWBmjVSux78VYEa1W+HhIRBQjeIeIdInKjujtEDZknd4juSGqFdjGheGftiXoalWt/vqk9TuSV4PejeQCArbNvxo4zV7H55GU8PbILmofzjhERVeAdIplwDRFRw3IqXy9Ohuye/E8mACAmTIdnb+OCayKqOw16Y8a6xJ2qiRqWMpO52lh+saEeR0JEgShgJ0TUOOj1emg0Gmg0Guj1+nrtz11bV3GpWNU6d+XGZvPJK74eAhEFsIB9ZEaNhz3hqS/6c9fWVVwqVrXOXbkx25dV4OshEFEA4YSI/FpwcDAuXLggfq7P/ty1dRWXiknVuSt7w9rA36d49P/2+HoIRBRAAnZCxEXVjYNSqURcXJxP+nPX1lVcKiZV565cHZPF6rZNTJjOo76IiAJBwK4h4qJqasz6tm3its3NXZvXw0jk897aExjz7iYcyyn29VCIqBEK2DtE1DgYjUa88847AIAnn3xSltQdnvbnrq2ruFSsah0Al2VXY+veyjlh8euTeuHC1VK8+/tJsa6hPzazEwC8ufo4AGDp5jN47c5evh0QETU63JiRGzP6NabukHboYiHGvPuHQ90Pjw+BVq3ErW9vBAB8Pn0AQnVq3PnhFvcXpgG5vVdLvH9fH18Pg4h8jBszElWiVqsxZcoU8XN99ueurau4VEyqzl25Ot1aROCRm9pjzeFcnL5c/Sv60aHe3VEjImosAvYOUeVF1cePH+cdIqqWP6busFt/LA9Tl9rWyUndIYqPDsHwN9a77ad/2ybYefZaXQ7VY7xDRESA/HeIuKiai6qJXOrUPAz920b7ehhERHUqYCdEROS5O/u29vUQiIjqFCdE5Nf0ej2ioqIQFRUlW+oOT/tz19ZVXCpWtc5duT51aBZWr8cjIqpvXFRNfq+wsNBn/blr6youFata565MRETy4ISI/FpwcDCOHz8ufq7P/ty1dRWXiknVuSu706FZGNRKBbRqJVo3CUYes8YTEUnihIj8mlKpRKdOnXzSn7u2ruJSMak6d2V34qNDsOtvqVAqFYgI0jhNiDQqRY36IyJqrLiGiKiRiwrRIiJIIxlr3SQEs1Llm1CSfxEEAZ9tOYtVmdm+HgqRzwXsHSImd20cTCYTPv74YwDAI488Ao1G+hd/XfTnrq2ruFSsah0Al2Vvz9VuVmpnhGrVePWnI1731Tk2DMdzS2QYVfUEAB+st6Uf+cuwDlAoeJertvZdKMTc7w8BAAZ1aIrm4UE+HhGR7wTsxox2TN3h35i6o2aO5xY7bMx4U+dmAIBPNp6udkLUqXkYVqcPc7gO1dn07HAMfX1djcdVE+2bheJ0vu0tuzXpN6Fj8/A6PV5jJQgCPlh/Cgt/PQbAlux3ydT+Ph4VkeeYuoOoEpVKhUmTJomf67M/d21dxaViUnXuynLp1lKefwzER4fI0o8r9skQAPxyMAdHLp3AE7d0QpcWnBjVxNojeeJkCAB+P5rnw9EQ+R4nROTXgoKC8M033/ikP3dtXcWlYlJ17spyGdIpBhufGY6bFtbt3R25vfGb7a27onIT/v3QQB+Pxr/8eijHoTygHXcjp8DGRdVEBABIaFr3d3fqyqm8ul231BhtOXXFoRwVLM+aNCJ/xQkREYm0Kv5ICBTtYrxbb0fU2PCnH/m10tJSxMXFIS4uDqWlpfXan7u2ruJSsap17sp14fvHBzvVNY/Q1cmxyLeCtbZ1aNyLisiGa4jIrwmCgIsXL4qf67M/d21dxaViUnXuynLr2iICm54djsUbTqHEYEZekQHPjuzq9nt/SemAGzs0rZMxeWpfVgF+PZSDBwe1RYtIvj7uqa4tInAgmylhiDghIr8WFBSEvXv3ip/rsz93bV3FpWJSde7KdSE+OgSvTujpVB+iVaHUKL1v13O3VT9p+u9fBuHOD7fKNr7qTF+2E1f0RlwsKMOie3rX+fEam98O5/p6CEQ+xQkR+TWVSoXk5GSf9Oeurau4VEyqzl25Pn1wfx98teM8CstM2Hb6arXtpt7YFsu2nBXLbZrWz1qVK3ojAGD/Bd7t8MTq6xOg2AgdDmTz0RlRwK4hysjIQGJiIvr350ZkRJ5I6dIcHz3QD0mto1y2e+mO7g5lpUKBoZ1i6nBkznacuYp1x7ivTnUqP3K1v25vsggwWay+GhKRzwXshCgtLQ2HDx/Gzp07fT0U8oLJZMKyZcuwbNkymEymOu1PqfC8rbu4VKxqnbsyVbhYWC5+vlZqxN0fbcW0pTtxPLfYh6NquA5fKhI/39ihYrL60YZTvhgOUYPA1B1M3eHX6iN1x3d7LuCnA5dwe69WGN87zuNj+1PqjppY8NMRfLTxtENd5ZQmABzSfOz5+wg8+Z+92HTico2PVRsqpQIWq+3H2n8euQE3tPftYu+GaMvJy7jv0+22z8/fjBtf+x0AoFAAZxaMcfVVogaDqTuIKlGpVBg9erT4uS76m9inNSb2aV3jY7uKS8Wk6tyVfUHNtSaNRpdYx3Qngf3PYwp0nBCRXwsKCsKPP7pPOloX/blr6youFZOqc1f2hfHJcfjlYA5OVcop1pDY7w4BtvQUvEPkbOvpil2qVVWfBRMFqIBdQ0REtdMpNhxrn0rBlEFtfD0Ut5ZuPit+/npnFiZ8sBmZWQU+G09DUW6ybZ9w9ooezcN1YnLftn6cvoXIW5wQEVFAePa/+7H3fAEW/nrU10PxOYXCdldoyo1toVAo8PfbuwEAtGr+SqDAxb/95NdKS0vRqVMndOrUSbbUHZ72566tq7hUrGqduzJ5xmi2Yt4Ph8VyXpHBh6NpWPiwjKgC1xCRXxMEASdPnhQ/12d/7tq6ikvFpOrclRuqm7s2x+9HG8Y+QL8eysGnf5zx9TCIqIHjhIj8WlBQEP744w/xc332566tq7hUTKrOXbmhuqtv6xpPiF4Y3Q2v/nRE9rF8vStL9j793bXru3oTUQVOiMivqVQqDB7snKG9Pvpz19ZVXComVeeu7EutooK97qNDs1DxbbUZN7WvkwkROfvffluSYIOZO1MT2TWKNUQTJkxAkyZNMGnSJF8PhShg3H9DGzx7Wxd8OWNgrfuYeXNHqJQKTBvcVr6BuXEirwQPf7YTmVkFOHKpCFZrw378WBdaRtomsx2ah/l4JEQNR6O4Q/Tkk09i+vTp+Oyzz3w9FKpnZrMZK1asAGCbGKvV3v2Vrkl/7tq6ikvFqtYBcFn29ly9FaZT47GUjpKxynvbqBTSS3efvKUTJvRujdu6t0Swtn43mlxzJA9rjtge6T00pB3+fntivR7flwxmC85ctt2V69DMcbfz47klEARBfAuNKJA0iglRSkoK1q9f7+thkA8YDAbcfffdAGzpLLydJNSkP3dtXcWlYlXrALgs+3pC5MqgDk0xpmdLxEeHIDJEI9lm+uB2AFDnkyF3KUP+9ccZPH5zR+w6ew1DOsUgSOO7XcDrw+WSivVD3VtFAgDim1TsP5RTVC7eQSIKJD7/ibpx40YsXLgQu3fvxqVLl7BixQqMHz/eoU1GRgYWLlyInJwcJCUl4b333sOAAQN8M2BqUJRKJYYNGyZ+rs/+3LV1FZeKSdW5KzdU4UEaZNzfx9fD8NjjX9lyrU0f3A73DUxAy8gghOp8/uOxTmnVSkQG2yar8dEVE6IG/gIjUZ3x+f/xer0eSUlJmD59OiZOnOgUX758OdLT07F48WIMHDgQixYtwsiRI3Hs2DE0b97cByOmhiQ4OFjWu4M16c9dW1dxqZhUnbtyIBjZPRb3D2yD9K/34XKJbQ+hZ0Z2wcJfj8l2DPtdpCWbz2DJ5jPo2iIcv8y6Sbb+G5KVe7MB2PZnqkyrVjrVEQUSn/8zc9SoUZg3b564RqKqt956CzNmzMC0adOQmJiIxYsXIyQkBEuWLKnV8QwGA4qKihz+EFHdGt2zZa2/+9ED/XBT52ZO9Z8+2M+bIbl0NKe4zvr2NXcTybLraT2IAo3PJ0SuGI1G7N69G6mpqWKdUqlEamoqtm7dWqs+FyxYgMjISPFPfHy8XMMlomrc0z8eq/96ExZO6uVR++bhOkQGa3Bnn9ZiXXSo41qk1MRY7Pn7CGx6drisY7ULtLfP7HeHtp++6uOREPlGg54QXb58GRaLBbGxsQ71sbGxyMnJEcupqam466678NNPP6F169YuJ0uzZ89GYWGh+Ccri5u2+bOysjIkJycjOTkZZWVl9dqfu7au4lKxqnXuyv5EoVCgU2w4dG4WLEcE2Z7i3zMgAZkvjsCbdyeJsdmjuomfO8eGAwCiQ7UO61/kdPBiofj5aE4Rvth+DqVGMwDbm1qPf7UXc1cdbPC7hldmtlQ8EntmZBeHWFQ1i9+JAoXP1xDJYc2aNR631el00Ol0yMjIQEZGBiwW3h72Z1arFfv27RM/12d/7tq6ikvFpOrclRubL2fcgF1nr2JSv3inV7+Hd22OrbNvxoVrZejXpolDbELvOKy4vjZGLpU3Lbz34224VmpCQakJE3rH4fzVUvxvn21zw8n9E5DYKkLWY9eVvVkF4ucHBrVxiPVvG43Vh3Pxf9vO4b6BCfU8MiLfa9ATopiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyMtKrvsh3goKC8Ntvv4mf67M/d21dxaViUnXuyo1Nj7hI9Iir/v/HlpHBkq+Evz05GU/d2hlD/rlOtrH8uP8StColurWMwLVSEwDb+puFvx5Dy8iK6z/63U14555kjEuOc+rjmW/2Yc/5a1g2bUCt72QZzBYcvliEXq2jHPZ3qo0f918SP0cEOd4Rsj8yO3yJ6yopMDXoCZFWq0Xfvn2xdu1a8VV8q9WKtWvXYubMmb4dHDUIKpUKI0aM8El/7tq6ikvFpOrclf2NVlXxC13unQNaN3E94birb2t8s/uCx/0t23IWy7acRZjE6/eXCssdyh+sOyU5IbIf79dDOXh4aHun+JnLehy9VASNSon/7DyPKTe2xdBOjgvIn//vAazYm40/D2vv8NiwNjTXr3+zcJ1T7LGUDthwPB8AUGIwS543UWPm87/xJSUlYgZvADhz5gwyMzMRHR2NhIQEpKenY8qUKejXrx8GDBiARYsWQa/XY9q0aV4dl4/MiOrfkE7NcGef1mjbNAThQfW7ZuX5UV1rNCGyKzGY3bYxSzzCNJgrfrZYqizQLiwzwWCyYPgb6x3qt5+5igMvjXSosz8KXPrHWa8nRAezbXd/JvZ2nrwlxUeJn/dnFeDGjjFeHYvI3/h8QrRr1y4MH17xlkh6ejoAYMqUKVi2bBkmT56M/Px8vPjii8jJyUFycjJ++eUXp4XWNcVHZo2D2WzGr7/+CgAYOXKkLKk7PO3PXVtXcalY1ToALssNeafq6oTp1A4LpeU2fXA7/HooBx890Bf3fLxNnMw8P6ormobpoFQAdfHy2Kl8PTLWncQt3ZpDqVDgg3UnHZLfHrxYhM+3nsXk/vH4/Uge/vLFHsl+isvNOJhdiL98sRuje7Z0mAAJEHA6vwR7zhdgTM+KdCcXrpXil4M5uL1XK7SIdP0o9USebcfzUqPzPwSDNCq0bhKMC9fKsPPsNU6IKOAoBH96RaIO2CdEhYWFiIjwj4WRVEGv1yMszJagsqSkBKGhoW6+IV9/7tq6ikvFqtYBcFmuzbkezy3GrW9vBAB8Pn2A5P4+jcVXO87jxVUH8dStXfDosA4AgJFvb8SxXN/tMfTyHd0x9/tDLttM6tsa316/kzV7VFcs+PmoZLt543vg/oEJmPzRNuw4a3tV/ug/boNOrYTBbEWQRgW9wYxlW87iPzvPI+tqxZuJH9zfR3JvqM4v/Azj9TfRzr42plbnSFRf5P797X//xCSqRKlUol+/fuLn+uzPXVtXcamYVJ27MlXv3gEJmNS3NTSqimv16oQemLS4dnuYycHdZAiAOBkCUO1kCAD+tvIgNhzPFydDAND3H6uhN1qgUAA/Pj4UqzKz8dHG007fjQ7VSvY5fUg7LN5wCoBtR+vxEo/WiBqrgL1DVHkN0fHjx3mHiAJCIN0hqk7615n4bo9tXc5LYxNx5rIen2095+NRye/pWzvjh/2XJHfdPvTySMlcbdtOX8E9H28Ty8fm3QadunEnuyX/JfcdooD9Z2ZaWhoOHz6MnTt3+nooRPUmJqzi7aKWbtabNFZNK90dmTq4HdJHdHHRuvF58pZO1SauTa60sBoA9p4vqPsBETUQATshIgpE0aFarH1qGH56Yig6Xd/tOdBMG9wOo3u2wOsu0oi4SzHStUXDv3arj+TVOCdbkEblkCPuPzvOyz0sogYrYCdEGRkZSExMRP/+/X09FPJCWVkZBg8ejMGDB8uWusPT/ty1dRWXilWtc1eurQ7NwvxmZ+W60CoqGB/c3xd395POY5gUH4XberTAB/f3qbaP+RN7Yt/cWxEX5bxJZG1p1fL+ON5XaVfqmkhNrHiDd2XmRVzVGz3+rtUq4JONp7FS5l3DiepDwC6q5mv3jYPVasWWLVvEz/XZn7u2ruJSMak6d2Xynk7jOBF5dXwPhAdpJN/CqiwyWINJfVvjnbUnanS8xJYReGBQG8z+7oBD/bv39Maj/7e7Rn3VRnhQzX7s3/3RVnw14wbJzRyr+tO/tmPLqSsAgMslBsnNKIkaqoCdEFHjoNPpsGLFCvFzffbnrq2ruFRMqs5dmbwXpFHhnXuS8eR/MgEA6kq7aSsUgKvXTm7qHFOjCVH/tk3wzaM3otRodpoQDevcDL0TorD3fAGevKUTPtp4CuWm6ie+c0Z3xfyfqn8Lza5lZBC6tYzA70fzMKpHC0zs09rj8QLAybwSPPz5LqxKG+yy3durj4uTIQCY9+MRTojIrwTsW2Z23IeIiKxWAS/97xAEwbZXkPJ6zrDd565i7/kCpHRphoW/HsOvh2x5Fb977Eb0SWiC/RcKcMf7m132ndqtOdYcyQMArH86BW1jbPtH7ThzFe+vO4mN19NlnJo/2iFXmd5gxuB//o6C63nUKjuzYDQUCgVWZWbjwrUyZBeUYWC7aNzeqxU2HM/D9GW7AAC/PzUM7ZuF1fh6PPX1Pvx3j+Ou3hN7x2HBnT0l3zrLulqKoa8755E7+o/bEKThW2pUN+T+/c0JESdEROSBk3klSH1rA4CKCZHFKuC1n4/gk01nHNpOGdRGfJX/20cHwWIV0D0u0ik/2DW9Ec9/tx89WkXi8Vs6OR3ztZ+PYvGGU7i5a3PERgThq+uLnN1tmnj4YhHKTBb0bdOkVucqCAKulZrQ5x+rHep7xEXgkZs64I6kVg71W05exn2fbnfq58P7+2CUm0ePRLXF1+5lwkXVjYPFYsH69euxfv16WfLS1aQ/d21dxaViVevclal+tYwMQnSoFmE6Ndo2td3lUSkVeGFMIib1dXwMFaStuCsSolVjYPumkslSm4Rq8dED/SQnQwCQPqIz/u+hgXjnnmSH7QLcSWwVUevJEAAoFArJzRsPZhfhia/2OtX/d0/FIuoPKy1Gry5FCVFDxDtEvEPk15i6g+pTmdECqyA47eNzIrcYI65veJkQHYI5o7uJC6Ttj7e8lVdUjvk/HcGQTs2cJmB1pe3zP0rWn54/GvklBsRGBDm1O/vaGDy0bCfWHs1D1xbh+GXWTfUyVgo8TN1BVIlCoUBiYqL4uT77c9fWVVwqJlXnrkz1K1grvR6mU2w4NjyTgn9vPYfxvePQIy4Svz81DC0jg2X7b9U8IgiL7uktS1+e6t+2CXaeveZU337OTwCAMb1aoqvEflbTh7TD2qO2fZAEQeDfV/ILvEPEO0RERJIKSo04kF2Iz7acw5ojuW7b39A+Gv95ZBDOXtYj5Y31AGyLsd+anFy3A6WAxDVERERUL6JCtBjaqRkW/6kPvnvsRrftP76+y7X9TToA+G5vNi4Ver9pKlFd44SIiIhcUquU6JPQBM+P6lptm/kTeiIiSCOW/5raWfw8PmMzzBZuJkoNW8BOiPiWWeNQVlaGESNGYMSIEbKl7vC0P3dtXcWlYlXr3JWJ6tujwzrg7Gtj8PCQdm7bTuwTJ37OLTLgxwOX6nJoRF7jGiKuIfJrfMuMqP4Vl5uwKvMiCkqNeOO34wBsd4juG5jg0G7uqoPifkyhWhUW3NkLwzo1Q2SIxqlPopriW2ZEleh0Ovzf//2f+Lk++3PX1lVcKiZV565M5AvhQRr86YY2OJ5bLE6I8osNTu0eGNRWnBDpjRY88dVe3N6rJaYPaYf1R/Pw4I1tERPGv8vUMPAOEe8QERHVmn0Por+mdsaTqc4bTD7+1V78b99Fye8+cEMb/GN8jzodHzVefMuMiIgajHsHxKNt0xCMTZJO0fFXiUmS3b+3nUO5yYJjOcWwWAP63+bUAPAOEe8Q+TWLxYI9e2zpAfr06QOVyrtEkjXpz11bV3GpWNU6AC7L3p4rUX2a8MFm7D1fUG28W8sIpHRphiEdYzC4Y0z9DYz8FpO7yowTIv/GRdVE/kEQBOQVGzBw/lq3bU/NHw2Vkrtbk2tcVC2TjIwMZGRkMEmmn1MoFGjTpo34uT77c9fWVVwqJlXnrkzkLxQKBWIjgjB/Qk/MWXHAZdsOc35CarfmyLi/D3Rq3gml+sE7RLxDRERUrwRBwIHsQlwpMeJUfgnm/XhEst0nD/aDTq3EjR2aQq3ikldyxEdmMuOEiIjItwRBQLvZP1UbH9WjBd67tzcnReSAb5kREVGjolAocPDlkVg6VTpzwM8Hc9DxhZ/x2Zaz9TswCiicEJFfKy8vx/jx4zF+/HiUl5fXa3/u2rqKS8Wq1rkrEzUmYTo1hndtjs+mD6i2zdzvD+GBf23H1lNXsC+rAE99vQ+7z12rx1FSY8ZHZnxk5tf4lhlR43NVb8RtizYiLEiN0/l6j75T3caQ1HjxLTOiSrRaLT7++GPxc332566tq7hUTKrOXZmoMYoO1WLHC6kAbOuL0r/ehxV7s11+5+01x5F1rRRv3JUEADBbrCg3WxGm46858gzvEPEOERGRX3C3+Lo6KV2a4elbu6BHXCTKTRZoVEruc9QI8A4REREFJIVCgSdv6YR31p6o0ffWH8vH+mP5DnU3dmiKBRN7IqewHJM/3gYAWDCxJ+4dkCDbeMm/8A4R7xD5NavViiNHbHuYdOvWDUqld+8J1KQ/d21dxaViVesAuCx7e65E/k5vMAMAyk0W3P/pdhzNKfa6z/sGJuDIpSKHNCNhOjVKDGaM6tEC6SM6I65JMM5fLUXn5uE4kF2IwjITklpHITJE4/XxyXPch0gmlXeqPn78OCdEfoqLqokIAPKKyjHgelqQnnGROJBd6NPx3DsgAcEaFTYcz8Op6wvDHx3WAQ8PbYcwnRqCABSUGbFs81n0adMEI7u3EL9bXG5CmE7NHend4CMzmaSlpSEtLU28oOS/YmLkTQRZk/7ctXUVl4pVrXNXJiKb5hFBOPjySJzOL0HPuEgIAlBsMGP9sTxoVUp8v+8ifj6YU2/j+WrHeae6xRtOYfGGU9V+J1Srgt5YkU5qQLtoBGtUOHSxCG2ahmD3uWtI7dYcJ/JKUFhmwqPDOqBfmyZQq5S4cK0UN7Rvis0nL6NnXCQOXSyCxSrgSE4RHhrcDnnFBgBAm6YhCNWqca3UiIsF5dh86jJaRgahe6tIhAepsfvcNUQFaxARrIHBbIFOrcKWU5dxucSIpqFanM7X41R+CfKKDRjVowUSmoZgf1YhBAgY3qU5tp6+gosF5VhzJBfx0cGwWoF/jO+Om7vGyn+RZRawd4js+MiMiCgwlBktyLpWinYxofhh/0Vc1ZtwZ584RIVoYbUKWHs0D7lF5dhx5iruH5iA5hFB+HZ3FtYdzUdhmQktI4OgUAA7z3Lvo5o6+o/bEKSRNy8dH5nJjBMiIiKqiVKjGSFaNYrLTfj5YA5aRwVj34VCJESHQKNSICZch18P5iCnqBwmixWD2jdFSpfmmPzRVlwsLEdcVDCyC8p8fRr1at/cWxEZLO8aK06IZMYJERER+Uq5yYIjl4qQEB0CpUKBqBANDGYrlAoFzFYrdGoVTBYr3lp9HGVGC6YNbouYcB1CNCqczC/Bij3Z2HXuGm7u2hx9EpqgeYQO64/l43/7LmJgu2hEBGuw5I8zuLNva2QXlMFgsqB1kxAM79ocRy4VoVmYDtdKjYgO1SJIo8LgjjE4dLEQOYXlCNGqsP9CIYZ3bY7+baNRVG5CbmE52sWEepRXzmC2oMvffgHACZFf4ITIv5WXl+Ohhx4CAPzrX/9CUFBQvfXnrq2ruFSsah0Al2Vvz5WIqC4ZzVZ0/tvPADgh8gucEPk3vmVGRNQwVZ4QrUm/CR2bh8vaP98yI6pEq9Xi7bffFj/XZ3/u2rqKS8Wk6tyViYgaKpVSgSYhGlwrNfnFFgK8Q8Q7RERERHXidH4JMrMKcGv3FrLnleMdIiIiIvIL7ZuFoX2zMF8PwyOcEJFfs1qtOH/etgFaQkKCLKk7PO3PXVtXcalY1ToALstM3UFEJJ9G8cjshx9+wFNPPQWr1YrnnnsODz/8sMff5SMz/8ZF1UREgYmPzKowm81IT0/HunXrEBkZib59+2LChAlo2rSpr4dG9SQkJMRn/blr6youFata565MRETy8PsJ0Y4dO9C9e3fExcUBAEaNGoXffvsN9957r49HRvXBfmfFF/25a+sqLhWTqnNXJiIiefh8EcLGjRsxduxYtGrVCgqFAitXrnRqk5GRgbZt2yIoKAgDBw7Ejh07xNjFixfFyRAAxMXFITs7uz6GTkRERI2EzydEer0eSUlJyMjIkIwvX74c6enpmDt3Lvbs2YOkpCSMHDkSeXl59TxSIiIiaqx8PiEaNWoU5s2bhwkTJkjG33rrLcyYMQPTpk1DYmIiFi9ejJCQECxZsgQA0KpVK4c7QtnZ2WjVqlW1xzMYDCgqKnL4Q/7LYDBgxowZmDFjBgwGQ732566tq7hUrGqduzIREcmnQb1lplAosGLFCowfPx4AYDQaERISgm+//VasA4ApU6agoKAAq1atgtlsRrdu3bB+/XpxUfWWLVuqXVT90ksv4eWXX3aq51tm/olvmRERBaaAesvs8uXLsFgsiI2NdaiPjY3F0aNHAQBqtRpvvvkmhg8fDqvVimeffdblG2azZ89Genq6WC4qKkJ8fHzdnADVOY1Gg3nz5omf67M/d21dxaViUnXuykREJI8GfYfIvmB6y5YtGDRokNju2WefxYYNG7B9+3avj8l9iIiIiPyP3L+/fb6GyJWYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYHExET079/fq36IiIjI/zXoCZFWq0Xfvn2xdu1asc5qtWLt2rUOd4xqIy0tDYcPH8bOnTu9HSb5kCAIyM/PR35+PuS42VmT/ty1dRWXilWtc1cmIiL5+HwNUUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/WYNm2aV8fNyMhARkYGLBaLt6dAPlRaWormzZsDkGehcU36c9fWVVwqVrUOgMsyF1UTEcnH5xOiXbt2Yfjw4WLZvuB5ypQpWLZsGSZPnoz8/Hy8+OKLyMnJQXJyMn755RenhdY1lZaWhrS0NBQWFiIqKoqv3/upyjs3FxUVeT3BrUl/7tq6ikvFqtZVJlXmZJ6IApn956Jcd8wb1KJqX7hw4QLfMiMiIvJTWVlZaN26tdf9BPyEyGq14uLFiwgPD4dCoRDr+/fvL7m+yNN6V2X7Z/sr/1lZWbK94Vbd+GrbntfBdVyq3pM6XgfnMq8Dr0NDvA6etOV1cN2mrq5DeHg4iouL0apVKyiV3i+J9vkjM19TKpWSM0uVSiX5l87TelflqrGIiAjZ/oJXN77atud1cB2XqvekjtfBuczrwOvQEK+DJ215HVy3qcvrEBkZ6dH4PdGg3zLzpbS0NK/qXZWr60MONe3bXXteB9dxqXpP6ngdnMu8Dp4d2xu8DjXv25O2vA6u2zT062AX8I/MfImbQtrwOtjwOtjwOtjwOtjwOtjwOtjU5XXgHSIf0ul0mDt3LnQ6na+H4lO8Dja8Dja8Dja8Dja8Dja8DjZ1eR14h4iIiIgCHu8QERERUcDjhIiIiIgCHidEREREFPA4ISIiIqKAxwkRERERBTxOiPxI27Zt0atXLyQnJzskxA00paWlaNOmDZ5++mlfD8UnCgoK0K9fPyQnJ6NHjx745JNPfD0kn8nKykJKSgoSExPRq1cvfPPNN74ekk9MmDABTZo0waRJk3w9lHr1ww8/oEuXLujUqRM+/fRTXw/HZwL1v39lcvws4Gv3fqRt27Y4ePAgwsLCfD0Un3rhhRdw8uRJxMfH44033vD1cOqdxWKBwWBASEgI9Ho9evTogV27dqFp06a+Hlq9u3TpEnJzc5GcnIycnBz07dsXx48fR2hoqK+HVq/Wr1+P4uJifPbZZ/j22299PZx6YTabkZiYiHXr1iEyMhJ9+/bFli1bAvL/g0D871+VHD8LeIeI/MqJEydw9OhRjBo1ytdD8RmVSoWQkBAAgMFggCAICNR/17Rs2RLJyckAgBYtWiAmJgZXr1717aB8ICUlBeHh4b4eRr3asWMHunfvjri4OISFhWHUqFH47bfffD0snwjE//5VyfGzgBMimWzcuBFjx45Fq1atoFAosHLlSqc2GRkZaNu2LYKCgjBw4EDs2LGjRsdQKBQYNmwY+vfvjy+++EKmkcunPq7B008/jQULFsg04rpRH9ehoKAASUlJaN26NZ555hnExMTINHp51ce1sNu9ezcsFgvi4+O9HLW86vMa+BNvr8vFixcRFxcnluPi4pCdnV0fQ5cV/37YyHkdavuzgBMimej1eiQlJSEjI0Myvnz5cqSnp2Pu3LnYs2cPkpKSMHLkSOTl5Ylt7GtCqv65ePEiAOCPP/7A7t278f3332P+/PnYv39/vZybp+r6GqxatQqdO3dG586d6+uUaqU+/i5ERUVh3759OHPmDL788kvk5ubWy7nVVH1cCwC4evUqHnzwQXz88cd1fk41VV/XwN/IcV0aA14HG7mug1c/CwSSHQBhxYoVDnUDBgwQ0tLSxLLFYhFatWolLFiwoFbHePrpp4WlS5d6Mcq6VRfX4Pnnnxdat24ttGnTRmjatKkQEREhvPzyy3IOW3b18XfhL3/5i/DNN994M8x6UVfXory8XBg6dKjw+eefyzXUOlOXfx/WrVsn3HnnnXIMs97V5rps3rxZGD9+vBh/8sknhS+++KJexltXvPn74c///auq7XXw9mcB7xDVA6PRiN27dyM1NVWsUyqVSE1NxdatWz3qQ6/Xo7i4GABQUlKC33//Hd27d6+T8dYFOa7BggULkJWVhbNnz+KNN97AjBkz8OKLL9bVkOuEHNchNzdX/LtQWFiIjRs3okuXLnUy3rokx7UQBAFTp07FzTffjAceeKCuhlpn5LgGjZEn12XAgAE4ePAgsrOzUVJSgp9//hkjR4701ZDrBP9+2HhyHeT4WcAJUT24fPkyLBYLYmNjHepjY2ORk5PjUR+5ubkYMmQIkpKScMMNN+DBBx9E//7962K4dUKOa9AYyHEdzp07h6FDhyIpKQlDhw7F448/jp49e9bFcOuUHNdi8+bNWL58OVauXInk5GQkJyfjwIEDdTHcOiHX/xepqam466678NNPP6F169Z+/8vSk+uiVqvx5ptvYvjw4UhOTsZTTz3V6N4w8/TvR2P771+VJ9dBjp8FatlGTHWqffv22Ldvn6+H0WBMnTrV10PwmQEDBiAzM9PXw2gQhgwZAqvV6uth+NyaNWt8PQSfuOOOO3DHHXf4ehg+F6j//SuT42cB7xDVg5iYGKhUKqeFr7m5uWjRooWPRlW/eA1seB0q8FrwGlSH18WG18Gmvq4DJ0T1QKvVom/fvli7dq1YZ7VasXbtWgwaNMiHI6s/vAY2vA4VeC14DarD62LD62BTX9eBj8xkUlJSgpMnT4rlM2fOIDMzE9HR0UhISEB6ejqmTJmCfv36YcCAAVi0aBH0ej2mTZvmw1HLi9fAhtehAq8Fr0F1eF1seB1sGsR1qNW7aeRk3bp1AgCnP1OmTBHbvPfee0JCQoKg1WqFAQMGCNu2bfPdgOsAr4ENr0MFXgteg+rwutjwOtg0hOvAXGZEREQU8LiGiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOBxQkREREQBjxMiIiIiCnicEBEREVHA44SIiMhLRqMRHTt2xJYtW2Tt95dffkFycrLXWbyJyD1OiIjIwdSpU6FQKJz+VM4zRI4WL16Mdu3a4cYbbxTrFAoFVq5c6dR26tSpGD9+vEf93nbbbdBoNPjiiy9kGikRVYcTIiJyctttt+HSpUsOf9q1a+fUzmg0+mB0DYsgCHj//ffx0EMP1Un/U6dOxbvvvlsnfRNRBU6IiMiJTqdDixYtHP6oVCqkpKRg5syZmDVrFmJiYjBy5EgAwMGDBzFq1CiEhYUhNjYWDzzwAC5fviz2p9fr8eCDDyIsLAwtW7bEm2++iZSUFMyaNUtsI3VHJSoqCsuWLRPLWVlZuPvuuxEVFYXo6GiMGzcOZ8+eFeP2uy9vvPEGWrZsiaZNmyItLQ0mk0lsYzAY8NxzzyE+Ph46nQ4dO3bEv/71LwiCgI4dO+KNN95wGENmZqbLO2S7d+/GqVOnMGbMmBpeZeDs2bOSd+NSUlLENmPHjsWuXbtw6tSpGvdPRJ7jhIiIauSzzz6DVqvF5s2bsXjxYhQUFODmm29G7969sWvXLvzyyy/Izc3F3XffLX7nmWeewYYNG7Bq1Sr89ttvWL9+Pfbs2VOj45pMJowcORLh4eHYtGkTNm/ejLCwMNx2220Od6rWrVuHU6dOYd26dfjss8+wbNkyh0nVgw8+iK+++grvvvsujhw5go8++ghhYWFQKBSYPn06li5d6nDcpUuX4qabbkLHjh0lx7Vp0yZ07twZ4eHhNTofAIiPj3e4C7d37140bdoUN910k9gmISEBsbGx2LRpU437J6IaEIiIKpkyZYqgUqmE0NBQ8c+kSZMEQRCEYcOGCb1793Zo/49//EO49dZbHeqysrIEAMKxY8eE4uJiQavVCl9//bUYv3LlihAcHCw8+eSTYh0AYcWKFQ79REZGCkuXLhUEQRD+/e9/C126dBGsVqsYNxgMQnBwsPDrr7+KY2/Tpo1gNpvFNnfddZcwefJkQRAE4dixYwIAYfXq1ZLnnp2dLahUKmH79u2CIAiC0WgUYmJihGXLllV7vZ588knh5ptvdqoHIAQFBTlcx9DQUEGtVgvjxo1zal9WViYMHDhQuP322wWLxeIQ6927t/DSSy9VOwYi8p7at9MxImqIhg8fjg8//FAsh4aGip/79u3r0Hbfvn1Yt24dwsLCnPo5deoUysrKYDQaMXDgQLE+OjoaXbp0qdGY9u3bh5MnTzrdiSkvL3d4nNS9e3eoVCqx3LJlSxw4cACA7fGXSqXCsGHDJI/RqlUrjBkzBkuWLMGAAQPwv//9DwaDAXfddVe14yorK0NQUJBk7O2330ZqaqpD3XPPPQeLxeLUdvr06SguLsbq1auhVDrevA8ODkZpaWm1YyAi73FCREROQkNDq31EVHlyBAAlJSUYO3Ys/vnPfzq1bdmypcdvpykUCgiC4FBXee1PSUkJ+vbtK/nGVbNmzcTPGo3GqV/7a+vBwcFux/Hwww/jgQcewNtvv42lS5di8uTJCAkJqbZ9TEyMOOGqqkWLFk7XMTw8HAUFBQ518+bNw6+//oodO3ZIPnq7evWqwzkSkfw4ISIir/Tp0wf//e9/0bZtW6jVzj9SOnToAI1Gg+3btyMhIQEAcO3aNRw/ftzhTk2zZs1w6dIlsXzixAmHuyJ9+vTB8uXL0bx5c0RERNRqrD179oTVasWGDRuc7tzYjR49GqGhofjwww/xyy+/YOPGjS777N27Nz788EMIggCFQlHjMf33v//FK6+8gp9//hkdOnRwitvvgPXu3bvGfROR57iomoi8kpaWhqtXr+Lee+/Fzp07cerUKfz666+YNm0aLBYLwsLC8NBDD+GZZ57B77//joMHD2Lq1KlOj4VuvvlmvP/++9i7dy927dqFRx991OFuz/3334+YmBiMGzcOmzZtwpkzZ7B+/Xo88cQTuHDhgkdjbdu2LaZMmYLp06dj5cqVYh9ff/212EalUmHq1KmYPXs2OnXqhEGDBrnsc/jw4SgpKcGhQ4dqcNVsDh48iAcffBDPPfccunfvjpycHOTk5ODq1atim23btkGn07kdBxF5hxMiIvJKq1atsHnzZlgsFtx6663o2bMnZs2ahaioKHHSs3DhQgwdOhRjx45FamoqhgwZ4rQW6c0330R8fDyGDh2K++67D08//bTDo6qQkBBs3LgRCQkJmDhxIrp164aHHnoI5eXlNbpj9OGHH2LSpEl47LHH0LVrV8yYMQN6vd6hzUMPPQSj0Yhp06a57a9p06aYMGFCrTZP3LVrF0pLSzFv3jy0bNlS/DNx4kSxzVdffYX777/f5WM7IvKeQqj60J6IqB6kpKQgOTkZixYt8vVQnGzatAm33HILsrKyEBsb67b9/v37MWLECJw6dUpycXltXb58GV26dMGuXbskN8YkIvnwDhER0XUGgwEXLlzASy+9hLvuusujyRAA9OrVC//85z9x5swZWcdz9uxZfPDBB5wMEdUDLqomIrruq6++wkMPPYTk5GR8/vnnNfru1KlTZR9Pv3790K9fP9n7JSJnfGRGREREAY+PzIiIiCjgcUJEREREAY8TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOD9P/y4sOr8Fg3lAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 9):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "07f28d13", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.005)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGwCAYAAABfKeoBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM8klEQVR4nO2deXwTZf7HP5M0SVuucpbDUlwRBVdBKSCKAlpEVBRUPFalgKKsRcGuF+iC6w9PFFCs4rGA1yrqCux6K6Iggty4WkVBRKCUQ6SlV87n90eZIUmTdOaZJ82Tyff9evFimibvfJ5nJpOnM8+hMMYYCIIgCIIgiAaxJToAQRAEQRBEskANJ4IgCIIgCJ1Qw4kgCIIgCEIn1HAiCIIgCILQCTWcCIIgCIIgdEINJ4IgCIIgCJ1Qw4kgCIIgCEInaYkOkGgCgQBKS0vRrFkzKIqS6DgEQRAEQeiAMYYjR46gY8eOsNka7zpQyjecSktLkZOTk+gYBEEQBEFwsGvXLhx33HGN9n4p33Bq1qwZgLqKb968eYLTEARBEAShh4qKCuTk5Gjf441FyjaciouLUVxcDL/fDwBo3rw5NZwIgiAIIslo7G42SqqvVVdRUYEWLVqgvLy8wYaTx+PBU089BQCYNGkSnE6n4fezkkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8sY8eORdu2bXV9fwuFpTjl5eUMACsvL2/wuZWVlQwAA8AqKyu53s9KDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKUlpbq/v4WScrequMhLS0NBQUF2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA92qM3CrjiAIgiAIOUjU9zdNgEkQBEEQBKETajgRBEEQBEHohBpOBqiqqkJWVhaysrJQVVWV8g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdww1SXl5Ojjh4rOQQ5SFHfDxWcojykCM+HnLExyMqCy/UcDJARkYGfvrpJ2071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhORY4lbdjh07MG7cOOzbtw92ux1r1qxBkyZNhL+P1+vFCy+8AAC4+eab4XA4UtohUxZZHDJlsZJDpiyyOGTKYiWHTFms5IhHlmuuuYYrh2kadZ7yOHHuueeyFStWMMYY+/3335nX69X9Wt4lV44cOcKVVZbp72WdQj/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyhZPvv/8eDocD55xzDgCgVatWcXsvm82GTqcPxh/VHtwwfx3evW2Q4VWZ7XY7rrzySm2bB1kcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7Zspgh4Z3DV6xYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvgCAJUuWYOHChfD7/dizZw+uvPJKTJ06Vff7G+lcVu3xoce0j7WfSx4cikxn0rc9CYIgCCLpSNnO4VVVVejZsyeKi4sj/n7RokUoKirC9OnTsXHjRvTs2RNDhw7F/v37AQA+nw8rV67Es88+i9WrV+PTTz/Fp59+2phFIAiCIAgiRUh4w2nYsGGYMWMGRo4cGfH3s2bNwvjx4zF27Fj06NED8+bNQ2ZmJubPnw8A6NSpE/Ly8pCTkwOXy4WLLroImzdvjvp+brcbFRUVIf8IgiAIgiD0kPCGUyw8Hg82bNiA/Px87TGbzYb8/HysXr0aANCnTx/s378ff/zxBwKBAFasWIHu3btHdT7yyCNo0aKF9i8nJ0d3nurqauwuHo3dxaMR8NZylam6uhqdOnVCp06dUF1dndQOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcwgdQedgwcPwu/3Izs7O+Tx7Oxs/PjjjwCAtLQ0PPzwwzj33HPBGMMFF1yASy65JKpzypQpKCoq0n6uqKjQ3XhijMFfeejoDwYLE+QoLS3VtpPZIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYsZpG446WXYsGEYNmyYrue6XC64XC4UFxejuLgYfr9f9/ukp6ejw5inAQBKGt88Funp6di0aZO2ncwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcyQ8FF1wSiKEjKqzuPxIDMzE++8807ISLuCggIcPnwYS5cuNf2eNKqOIAiCIJKPlB1VFwun04nevXtj2bJl2mOBQADLli1D//79E5iMIAiCIIhUJOGXSyorK7Ft2zbt5x07dmDz5s1o1aoVOnfujKKiIhQUFCAvLw99+/bFnDlzUFVVhbFjx5p6X55bdV6vF5X/+wwA0KTHIK739Xq9eP311wEA1113HfeU8zI4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyDJ8+HCuHKYRMf24GZYvX65Nnx78r6CgQHvO3LlzWefOnZnT6WR9+/Zla9asEfb+RpZc2ff7YS1fzh3vsCq3/qVdVGSZ/l7WKfST3SFTFis5ZMoii0OmLFZyyJTFSo54ZEnZJVcGDRrUYM/4iRMnYuLEiY2UKDKMMdwwfx0y/pQHAFBsfHc57XY7LrroIm07mR0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymEGqzuGNSfCtup9++qnBzmXhHcMB6hxOEARBEImCOoc3MoWFhSgpKcG6desSHYUgCIIgiCQhZRtOBEEQBEEQRqGGkwEC3lrseWE89rww3tSSKyeeeCJOPPFEU1POy+CQKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQwp20GHZzoCMMD3x15tmwfGmDb9Am/3MlkcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspghZRtOhYWFKCws1DqX6UFJcyD7use1bR7S09Px1VdfadvJ7JApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDCk7qk5Fb698GlVHEARBEPJAo+oIgiAIgiAkhy6XGIAF/Kj+aTUAILMb31p5Pp8PixcvBgCMHDkSaWnGd4EsDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKcf/75XDlMI2L68WTkmWeeYd27d2fdunXTNWV7ldvLcu54h5ZckTSLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKLrmSKHg6h0NR4Mr5s7bNg81mw8CBA7XtZHbIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgbqHE6dwwmCIAgi6aDO4QRBEARBEJJDDSeCIAiCIAidpGzDqbi4GD169ECfPn10vybgdaN0wW0oXXAbAl431/vW1NSgV69e6NWrF2pqapLaIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYspGrUruoSUl5fTqDqJRkkku0OmLFZyyJRFFodMWazkkCmLlRzxyEKj6pIAJc2Bdlf9n7bNQ3p6Oj755BNtO5kdMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspiBRtXRqDqCIAiCSDpoVB1BEARBEITk0OUSA7CAHzU7NgIAMo4/g8vh8/nw8cd1V66GDh3KPeW8DA6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyy9O/Pt/SZaRq1R5WEUOdwuTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncMbmeLiYhQXF8Pv9+t/kaLA2f5EbZsHm82GvLw8bTuZHTJlkcUhUxYrOWTKIotDpixWcsiUxUoO2bKYgTqHU+dwgiAIgkg6qHM4QRAEQRCE5FDDiSAIgiAIQifUcDJAwOtG2Wt3oey1u0wtuXL22Wfj7LPPNjXlvAwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwQoaQ60HXmfts2Dy+XC4sWLte1kdsiURRaHTFms5JApiywOmbJYySFTFis5ZMtiBhpVR6PqCIIgCCLpoFF1KQRjDNUeH1K8zUoQBEEQSQddLjEAC/jh3v09AMB13ClcDp/Ph/Pumoef9h3B2WcPwDu3DoBicDJNv9+PlStXAgDOOecc2O12wzlEOGTKIotDpixWcsiURRaHTFms5JApi5Uc8cjSs2dPrhymadQeVRLS2J3D9x86bJkO5jJlkcUhUxYrOWTKIotDpixWcsiUxUqOeGShzuGNDN+SK4CjdWdtmwdFUYQ4evTooW0nyiFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGahzeCN3Dg/3UAdzgiAIgjAOdQ4nCIIgCIKQHGo4EQRBEARB6IQaTgYIeN3Y9+b92Pfm/aaWXBHhGDJkCIYMGWJq2nqzDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiWHbFlM0ahd0SWERtXJNUoi2R0yZbGSQ6YssjhkymIlh0xZrOSIRxYaVZcEKGkOtL7kb9o2Dy6XS4jjtdde07YT5ZApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDDSqjkbVEQRBEETSQaPqJCe1m5cEQRAEQQC05IouGGMYNW81WMAPz77tAABn9glcLr/fD/fen0w7Nm7cCAA444wzuKetN+uQKYssDpmyWMkhUxZZHDJlsZJDpixWcsQjS9euXblymKZRe1RJiJ7O4VVuL8u95z3qHC5xFlkcMmWxkkOmLLI4ZMpiJYdMWazkiEcW6hxugi5duqB58+aw2Wxo2bIlli9fHp83UoCczp1RerjW1HIp9ubtNB+vIzc3V9tOlEOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJIVsWM1iic3iXLl3w3XffoWnTpoZfq6dzWXCH7vX35yNvxmcAqHM4QRAEQSQK6hxOEARBEAQhOQlvOK1YsQLDhw9Hx44doSgKlixZUu85xcXF6NKlC9LT09GvXz+sXbs25PeKomDgwIHo06cPXn/99UZKThAEQRBEqpHwhlNVVRV69uyJ4uLiiL9ftGgRioqKMH36dGzcuBE9e/bE0KFDsX//fu05X331FTZs2ID//Oc/ePjhh/Htt9/GJSvzeTD6mlHY/+4MMJ+Hy1FbW4v9784w7RgxYgRGjBiB2trahDlkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUWjdkVvAABs8eLFIY/17duXFRYWaj/7/X7WsWNH9sgjj0R03HnnnWzBggVR36O2tpaVl5dr/3bt2kWj6iQaJZHsDpmyWMkhUxZZHDJlsZJDpixWcsQjC42qi4DH48GGDRswZcoU7TGbzYb8/HysXr0aQN0Vq0AggGbNmqGyshKff/45rrrqqqjORx55BP/4xz+48ij2NMx6uhgz3v8Bip2v6pxOJ1oNnaj5eB0vvPCCtp0oh0xZZHHIlMVKDpmyyOKQKYuVHDJlsZJDtixmkGpUnaIoWLx4MUaMGAEAKC0tRadOnfD111+jf//+2vPuvvtufPnll/jmm2/wyy+/YOTIkQDqJsYaP348Jk2aFPU93G433G639nNFRQVycnJoVB1BEARBJBGJGlWX9N/Yf/rTn7Blyxbdz3e5XHC5XCguLkZxcTH8fn8c0xEEQRAEYSWkbji1adMGdrsd+/btC3l83759aN++vSl3YWEhCgsLtRZrLNRrcowF8OMPJfAc2AlHmxyu9w0EAvAc2AkAphw//PADAKB79+6w2Yz38RfhkCmLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0unTp24cpimUXtUNQCidA6fOHGi9rPf72edOnWK2jncKA0tuRIIBNiwOSuk7Rx+5MgRw68Pd8jU2S/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHlpTtHF5ZWYlt27ZpP+/YsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKowdO9bU++q9VVfj9aNkbwUA4OT2zVDdpg3+qOKbRkDFlmHuXixjDM6mWfD5A7j+pW+weNJ5XFPPt2nTxlQOkR4rOUR5yBEfj5UcojzkiI+HHPHxiMrCS8I7h3/xxRcYPHhwvccLCgqwcOFCAMAzzzyDmTNnoqysDL169cLTTz+Nfv36CXn/hjqXBXfm/v4fQ6Eo0H5OVOdw6mBOEARBpDop2zl80KBBaKjtNnHiREycOLGREkUnQesJEgRBEAQhCQmfOZwgCIIgCCJZSNmGU3FxMXr06IE+ffrofk1tbS3GFtyAA/+dCebzgOcmZ21tLQ78d6bm4EGU47rrrsN1111negp9sx4rOWTKYiWHTFlkcciUxUoOmbJYySFbFlM0ald0CWloVJ263EruPe/VGxE3bM4KFggEDL2fiFF1sizbIspjJYdMWazkkCmLLA6ZsljJIVMWKznikSVlR9UlE06nE7NmzcILK35BtT0NJXsrUOP1G+qY7XQ60fK88QDMLbkiwjF79mxtmxcRHis5ZMpiJYdMWWRxyJTFSg6ZsljJIVsWMyR8VF2iCJ6O4KefftI1qk4dvVbl9uGU6Xwj62hUHUEQBEGYJ1Gj6lK2j1NhYSFKSkqwbt06w6+l0XUEQRAEkZrQZQoDBAIB/Prrr6jx+MBYAIpirN3JGENlrRe+8rolZOzN23LnEOH47bffAACdO3c2NYW+WY+VHDJlsZJDpiyyOGTKYiWHTFms5IhHlqysLK4cpmnUHlUSYqZzeO497+numB0IBNjlz66SctkWmTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncOThMzMTK7X1Xj92LDzDwCA4nCZziHCoZaFmezmxlsnVnWI8pAjPh4rOUR5yBEfDzni4xGVhRfqHM7ROTzSYw0R3qFbJVGdwxljuHLeamzY+Qfyclvi7Qn9uda7IwiCIIhEQJ3DGxkzncOtQPAVsPU7/0CNN/ZixwRBEARBpHDDKZGsvLv+osYEQRAEQcgPNZwM4Ha7MX78eBT+9RYwn5fLwXxeTC2aiN8/fJrb4Xa78fuHTyfcoXrGjx+P8ePHw+12p7xDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZeQxhpVp3p4R9UFAgFW5fayQCAgzbItjMkzYkMWh0xZrOSQKYssDpmyWMkhUxYrOeKRhUbVNTLBncP14nA4MGPGDHj9ASw4Yud6X8Vux5RpD+C55duh2PU5WFhH7hev74Wsc27QfDw4HA7TDtUzY8YMbTvVHTJlsZJDpiyyOGTKYiWHTFms5JAtixlSdlSdSkO98uMxqm79/fnIm/GZ7teHj6ILfr2RDLGctGwLQRAEkUzQqDqCIAiCIAjJoUsMBmCM4cCBA6j2+MAY45r3iDGGgwcOwF9dDlsGXwuZMQZ/dTkAJNSheg4ePAgAaNOmDX+dWMQhUxYrOWTKIotDpixWcsiUxUqOeGRxOp1cOcxCDScDVFdXo127dgCAnDvegeJMN+xgXje6/ylHc/Dm2D33uoQ7VI9aJ5WVlWjSpElKO2TKYiWHTFlkcciUxUoOmbJYyRGPLKWlpVw5zEK36giCIAiCIHRCV5wM0KRJEzDGoi6fogebMx0HjtSGdO7myZF7z3vcrxflUD1mxxdYySFTFis5ZMoii0OmLFZyyJTFSo54ZKmoqDCdiQe64kQQBEEQBKGTlG04FRcXo0ePHujTp0+io6Q86lU8tdM9QRAEQchKyjaceBb5dbvdmDx5Mu76W5GpJVfuu+dOHPrsBVPLpRz67AXDDrWBwhjjdkTKMnnyZEyePJlr+nvGGEbO/RLtz7oC7c+6ApfP/ZKr8WQ2hyiHTFms5JApiywOmbJYySFTFis5ZMtiCtNzjyc5ybDkSnCG3HveY7+W/W7YEQgE2OXPrmK597zHrnh2Fdv3uxxLrlS5vdzL0IjMIcohUxYrOWTKIotDpixWcsiUxUqOeGShJVeSAIfDgalTp8LrD2CRn3/Jlcl33o35q341tVxK8/5XaT491Hj92LDzDwDA+p1/wAebYUe0LFOnTtW2eVDsdtNZROQQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxAS66kyJIr8Vi2RQSRRijS8i8EQRBEQ9CSKwRBEARBEJJDf9YbgDGGqqoq00uuVFVVIeCpheJwcecIeGoBIKEO1VNdXQ0AyMzM5K4T5nWbyiIqh1mHTFms5JApiywOmbJYySFTFis54pElUTfM6IqTAaqrq9G0aVO0a5WlfdEbhXnd6NK+NXbNvpLbUV1djV2zr0y4Q/U0bdoUTZs21Q5mozCvW0h5zOYQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxADSeTpHYPMYIgCIJILehWnQEyMzNRWVmJao8PeY+uBACMmrca798+QPclR8Xhwq9lv+Ocx5brvi0V3jjLzMzUFublvbUlwqF6KisrtW0eFIdLSHnM5hDhkCmLlRwyZZHFIVMWKzlkymIlRzyy+Hw+7ixmSNmGU3FxMYqLi+H3+3W/RlEUZDZpgsxMhlM6tkDJ3gqU7K1AjdevexSYoiho0qQJbM50Xc9njGHUvNX1HHpfHyuHWYfq4V0pO9ihCCiPiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlqrrpHhmTlcRVEUvD2hfxxS1afG60fJ3tCDo8ajv7FHEARBEIQ4UrbhxIPH48F9992H++67D16vh8vB/F489I9p+GPFK2B+vqVOBjzyCf5Y8Yoph8fjMe1QPWqdeDz8dSKiPGZziHDIlMVKDpmyyOKQKYuVHDJlsZJDtiymiPfU5LLDu+TK/kOHtcdjLRESCARYldvLDhyp5VpyJfj9h81ZkdBlWyJBS67Im8VKDpmyyOKQKYuVHDJlsZIjHlloyZUkIC0tDZMmTdK2G4IxhivnrdaWOgEAxWbHzbdOxBvf/AbFZmx5kbcn9EeN14/eD3yIZr0v1Xw8pKWlmXaoHiN1EgnFZhdSHrM5RDhkymIlh0xZZHHIlMVKDpmyWMkhWxYz0JIrHEuuxHo82muDMbLkSvj7AOBaooSWXCEIgiCsBC25QhAEQRAEITnUcEoyMhx25OW2THQMgiAIgkhJqOFkgKqqqro5hxQFVVVVXI6ApxZtm6Vj52OXaGvFGUFRFCy84TTsfOwSbgdQVxazDtUjok5ElMdsDhEOmbJYySFTFlkcMmWxkkOmLFZyyJbFDNRwikEgwBCQsAcY7wKLBEEQBEGYg3rgRiEQYPjT1A9CHsvMzMT+/fu1bR4Uhws//LILQ2avMLW8yK+7SzHAwLItkRzH3fa6lokXUXViNouIHCIcMmWxkkOmLLI4ZMpiJYdMWazkiEcWp9PJncUM1HCKwqHq+hNrKYqCtm3bAqgbDcaDoiho07Yt7JktuLOpOcw6jL6eMYYarx8ZDrt21Su4ThozSySHiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyxSTV1dXIzc3FnXfemegolkSdk6rHtI8xat5qpPgsFgRBEESKYpkrTg899BDOPPPMuL6Hx+PB7JmPAQAKJ93B5WB+L2bNfBTlX29H836Xc+d4/NHHUP71z6Yc5V8vAgBdjhqvX5vIc/3OP7SFjT0eD2bOnAkAuOuuu7gunTK/FxXfvKs7SyRE5BDhkCmLlRwyZZHFIVMWKzlkymIlRzyy3HLLLVw5zGKJCTB//vln3HvvvRg+fDi+++47PPHEE7pfG20CrYOV7pAJIgFg3T0D0K5VFgBg/6HD6PPYVwCMTYAZ8NRi1+wrAQA5d7yDHx+9zNAEmJnONFRVVaFp06a6HZGyfHlHf3Rp35orR7QslZWVhle+rvb4cPK9Sw3VSSTM5gh37D90GG2ymnN1xBedhRxyZZHFIVMWKzlkymIlRzyylJaWomPHjo0+AWbCrzitWLECM2fOxIYNG7B3714sXrwYI0aMCHlOcXExZs6cibKyMvTs2RNz585F3759td/feeedmDlzJr7++uu4Zk1LS8NNN92kbfOg2Oy4vmAslmzaY2p5kTHjxuGd9btNOZqedoGWiRdRdWI2i4gcdrsdXc4ejoNH3Mh7aDn6nNAOb0/ob7jxJCILOeTNIotDpixWcsiUxUoO2bKYIeFXnD788EOsWrUKvXv3xuWXX16v4bRo0SKMHj0a8+bNQ79+/TBnzhy8/fbb2Lp1K9q1a4elS5fiq6++wsyZM7Fw4cIGrzi53W643W7t54qKCuTk5Oi64iTDkitG3j9WFqNLrkS74gRE7jSuF5mWXJEpC0EQBBGbRC25kvBvhGHDhmHYsGFRfz9r1iyMHz8eY8eOBQDMmzcP77//PubPn497770Xa9aswZtvvom3334blZWV8Hq9aN68OaZNmxbR98gjj+Af//hHXMqSigQvZJyX25LrCg1BEARBJAtSj6rzeDzYsGED8vPztcdsNhvy8/OxevVqAHUNoV27duHXX3/FE088gfHjx0dtNAHAlClTUF5erv3btWtX3MthZSJ1GicIgiAIqyJ1w+ngwYPw+/3Izs4OeTw7OxtlZWVcTpfLhebNm4f800tVVRWaNGmCJk2amFpeJDe7FX6bdYWp5UXatmxh2vHbrCtMOUR5Ap5a0w4R+0ZknYjIQg45s8jikCmLlRwyZbGSQ7YsZkj4rTqRjBkzRvdzi4uLUVxcDL/f2BWS6upqg6nkdTCvu+EnNZJHhEOmOpFlH1vJIcpjJYcoDzni4yFHfDyisvBiqOEUCATw5ZdfYuXKldi5cyeqq6vRtm1bnH766cjPz0dOTo7QcG3atIHdbse+fftCHt+3bx/at29vyl1YWIjCwkKtc5keMjIysGPHDm2bB8XhxIbvfsSlz6yC4uCbCyMjIwMlW38+umwLv6PThH9qmXgR4VEcTtMOEftGZJ2IyEIOObPI4pApi5UcMmWxkkO2LGbQ1XCqqanBk08+ieeeew6HDh1Cr1690LFjR2RkZGDbtm1YsmQJxo8fjwsuuADTpk0TNhGl0+lE7969sWzZMm2kXSAQwLJlyzBx4kRT7oauOEUaa2iz2dClSxcAZpZcsaFzbhektdjG9Xo1R26XLkhrsdWUI61FdsNPbASPoph3BO8bMw5RdSIiCznkzCKLQ6YsVnLIlMVKjnhkSdSSK7oaTt26dUP//v3x4osvYsiQIXA4HPWes3PnTvzrX//CNddcg/vuuw/jx4/XFaCyshLbth1rROzYsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKm2UHS+xrjgxxnDV86tN+QmCIAiCsB66Gk6ffPIJunfvHvM5ubm5mDJlCu6880789ttvugOsX78egwcP1n4uKioCABQUFGDhwoW4+uqrceDAAUybNg1lZWXo1asXPvroo3odxkVS4/Vjx8H6nc68Xi/mPPsMAGDseL6p3pnfh3nFc1Gx7ic0O+NiLofX68UzTz+NinVbTTkq1i0FAG6HKA/z+3Bk4/umHF6vF8XFxQDqGsWRGvd6HMFlUex8XQBFZSGHnFlkcciUxUoOmbJYyRGPLDfccANXDrMkfALMRBNpAq1oE1fSkiv1J8A88Ee5Vic8y6XItORKeFlsznSuCTBlWeLASg6ZssjikCmLlRwyZbGSIx5ZkmbJlS5dumDcuHEYM2YMOnfuHI9MjQLPqDq73Y6//OUv2jYPis2GK666Gh9+VwbFxjcbhN1ux1XXXIP3vt1rypHZY6CWiRcRHsVmM+0QsW9E1omILOSQM4ssDpmyWMkhUxYrOWTLYgbDV5zmzJmjLW0yePBg3HjjjRg5ciRcLle8MsYVI1ecrLTkysq7B+Ocx5dHLJue16vPj7UUix5kWuZEpiwEQRBEbBK15IrhP6snT56MzZs3Y+3atejevTtuu+02dOjQARMnTsTGjRvjkZEwCWMM1Z7QK2vBjSaCIAiCIPTBfT/ijDPOwNNPP43S0lJMnz4dL730Evr06YNevXph/vz5SKWuUzIXVV1LLnzBYoIgCIIgjMPdcPJ6vXjrrbdw6aWX4m9/+xvy8vLw0ksv4YorrsDUqVNx3XXXicwpnOLiYvTo0QN9+vTR/Zqqqiq0bdsWbdu2DZnqfdS81bobigFPLU7uchx2Pf0XU8uL5HbqoMsRvJYcAPTObYl19+XXdVJ/+i+mcqhZzHpEZIm2b4w6RNWJiCzkkDOLLA6ZsljJIVMWKzlky2IGw503Nm7ciAULFuCNN96AzWbD6NGjMXv2bJx88snac0aOHGmoQZIIeGYOB+rWzwOADIcdPTo0R8neCpTsrUCN16+7L8zvvx/kyhwphxHW35+P1k2c2kK8gRoxk4eJ8Ihw8NRJPHIAYrKQIz4eKzlEecgRHw854uMRlYUXww2nPn36YMiQIXjuuecwYsSIiPMwHH/88bjmmmuEBJSJjIwMfPfddwCAzMxMvD2hP06ZXr/zdywUhxMr127EVfNWm1peZN2mzbh0rrFlWzKddiiKouXoMK5Y2+YlIyPDtEdEluB9Y2Yqf1F1IiILOeTMIotDpixWcsiUxUoO2bKYwXDD6ZdffkFubm7M5zRp0gQLFizgDiUrNpsNp5xyivazogQMOxTFhpO794CzbampHD16nAJn293cDkWxwdk29n7Um8WsR0SW8H3D6xBVJyKykEPOLLI4ZMpiJYdMWazkiEcWqZdcCUZtNHk8Huzfvx+BQGjjIVnmduKZx4kgCIIgiNTGcMPpp59+wo033oivv/465HHGGBRFSZqGCE8fJ6/XixdfrruSNmbMGACK4fdlfh9eXfBPHNn8A5qemm/49WqOBf/8J45s/p7bwfw+VP6vbqQdr0PNcmTzR6Y8IrJ4vV4sXLgQQN2+4Z3KP7gsZpZcEZGFHHJmkcUhUxYrOWTKYiVHPLJcfvnlXDnMYngCzLPPPhtpaWm499570aFDB63PjErPnj2FBow3kSbQqnL7IvZdCl5ypbKyEorDFXMSysZacuWHRy5DE1dkR6TX8yxzEl4WtaP5wcMVtORKHLKQQ94ssjhkymIlh0xZrOSIR5akWXJl8+bN2LBhQ8goOivBGMOoeasj/s5ut+Oyyy7TtgMhr9PnV2w2DLt4OL746YCp5UUuGX4plv24H4rNhlHzVuP92wfUa8Q2lCPjxDO1baPkzfgMebkt8fxfTjPlEZEFqL9veB1mc4jMQg45s8jikCmLlRwyZbGSQ7YsZjB8xalPnz6YPXs2BgwYEK9MjUr4FafgKyvdOzRHptOODTv/QF5uS7w9oX9I4yT4uT06NK/XeInnkiuMMVz89Fco2VsR0xPtipPRpUX0lEWPR4+XllwhCIIgGkLqJVcqKiq0f4899hjuvvtufPHFF/j9999DfpeoHu7x4p0J/fHOhP4oeXBovUYTcGwuJwDaXE6NhaIoeHtCf67XZjjsyMttyf3eK+8ezP1aovGoW2rHp/1Lpdn8CYIg4oWuP6WzsrJCGg2MMZx//vkhz0m2zuHho+qOfckcy68odQ2UaFcc1MaL0bmcRGHgzlzY6+py/17l4VqKJcOZmMujhH7UpXaCZ42PdNWUIAiCMIauhtPy5dZbEDZ8VN0N/1yLb/d7Yr6muroaPXr0AACUlJQgMzPTcOMl4K3FGad0Q+nhWnS86Vmu7GoOBoBd8SRsjnTDjpqaGvT+cw/s+aOGO4eaZfdz4wCgQQ9jDDVePzIc9pAv74C3FqUv3arLEStH+L7hcQSXhadeRWYx46jx+rFu296Qel2/8w9DM9yLyAHUdebscXTelQ2bv0XrFs24Gm8y1KtMDpmyWMkhUxYrOeKRZc2aNVw5zKLrDDpw4MB450g4m3cdhs0VeycyxrBz505tmwsG7PrtN22bSxGUI8eE47ejDt4cqsdfsb9BT/AVkHpXPhh0ORrKYXbf6C1LY2URcawlul4ZY/jLi2u0Y+2MBz9F3xM7cF35kqVeZXHIlMVKDpmyWMkhWxYzcPd6ra6uxm+//QaPJ/QqzWmnnWY6lCyE75P09HSsXbtW2+ZBSXPgky++wuj5a6Gk8c2Foeao9fpw/ZID3I4Vq77GVc+v4c6hetqPngUAMT3Biw2HX/lQ0hy6HA3lMLtv9JalMbK4XC6sWPW1ts2DWq+vjOuLm97/ncthtiw1Xj82l1aF1CvPlS8RWazmkCmLlRwyZbGSQ7YsZjDccDpw4ADGjh2LDz/8MOLvk6WPUzSym7uwr8INoO6kHzw/kt1uN714sWKz4/TeeXB9eJjboeao9vig/Ievf5XdbkfvvD5w/ecQdw7V4+rQzZRDsZl3iNg3IsoCHF0SoOfpAAC3nyHDxgxdXWGM4eoX12oNzbwta7mu0Kj1enrvPCgfGu/LBog75l0dumHl3YNxzuP8t/1F7WOrOGTKYiWHTFms5IhHlkQNSDM8Wc3kyZNx+PBhfPPNN8jIyMBHH32El19+GSeeeCL+85//xCNjo/L2LWfFxauOvsvLbYkMh/7O1TQQKrlQb0n2mPax9m/UvNWGLikHX50Djl2hS3ZoUAFBEFbA8BWnzz//HEuXLkVeXh5sNhtyc3MxZMgQNG/eHI888gguvvjieORsNGL9Ue/z+bBo0SIAwNVXX420NP3VV3fFAHAoDK/+61+o/P5bNOl+bszXRJuMU83h9vnBAllQbMa/kHw+H95841iOak/9Ttt6PZXf111FaKg80WABP6p+WGHKYWbfBDuCy8JTrzVeP9bvOBhSHp5bUyLqRHW8s+gAWKAV93Fitl5F5BCVxUoOmbJYySFTFis54pFl2LBhXDlMwwzSrFkztmPHDsYYY507d2ZfffUVY4yxX375hWVkZBjVJYxnnnmGde/enXXr1o0BYDmT32K597zHfvu9iuXe8x7Lvec9duBIbchrKisrGeq62bLKykrGGGNVbq/2/Cq3N+T5kX4X7Mi54516r4n2+mFzVrBAIBDREem9Y2WI5rji2VXae8TyHDhSq23/Wva7rvIEvz6kPmq9LOeOd3TXSTQi7Ruj7D90WHe9RqPKXb88Rj2RHInIwZj5ehWVQ0QWqzlkymIlh0xZrOSIR5bS0lIGgJWXl3Nn4sFwc++kk07C1q1b0aVLF/Ts2RPPP/88unTpgnnz5qFDhw5GdQmDZ5Ffm82G/Px8bZsHm82Gweedj9Xbfzc0EVNwHxc1hz/AsI1zTh7V8e3uw1oOnisjNpsN6bm96n7gGCU1at5qQFG4HcE5ROwbsznU16bn9kK/P7XCL/yTbZnPIiCHiHoVUh+CsljJIVMWKzlkymIlh2xZzGC44TRp0iTs3bsXADB9+nRceOGFeP311+F0OrUVi61KRkYGPv3006i/19ONJSMjA+99+FHE5UtiEfx9o+aItgyKHlQHY4x7IkzVk33NDK7X1nj9KNlbAZvDhTMnzsaOg1VcHjVHrH2j18FblmBsDheyr5mBd8KWo+FxJDqHiHoVkUNUFis5ZMpiJYdMWazkiEeWRHUON9xwuv7667Xt3r17Y+fOnfjxxx/RuXNntGnTRmi4ZINnsd1EUzczeuI77b51S3/0eYj/S5UgCIIgGgPu61wejwdbt26F0+nEGWecYZlGU8smTm27VaYzxjPrSOR6dVYiidqaBEEQRApjuOFUXV2NG2+8EZmZmTjllFPw29FZsG+77TY8+uijwgM2NjYF+OXhi/DLwxfBZgv9Nq+ursYpp5yCU045BdXV1QCML7ZbXV2NvF49UfrSrQh4a7kyqjnyevU07QguC6+n9KVbTZUn4K3FgD6nC6kTM+URURbg2BIyA/qcbqpORNSr2Rwi6lVEDlFZrOSQKYuVHDJlsZJDtixmMHyrbsqUKdiyZQu++OILXHjhhdrj+fn5eOCBB3DvvfcKDZgIwhtMKowxlJSUaNsqRq6WMMbwww8lR3/gyxecI+fCBp6sw8FMTqHv/d3cEjJgwNYffzDlEFEeIWU5+lrv779h6+9ADu9o2aMOU1kE5BBynIioD0FZrOSQKYuVHDJlsZJDtixmMNxwWrJkCRYtWoQzzzwzpC/PKaecgu3btwsNJxvp6enagsdmpov/8JPPMGaBuSVXli9fjlqvH7d8ytehWkRZ1NdmX/swAP5lSpQ0B5Z88DFueXWD6TpRt3kdZsuivjb72ofx/A29cftyvissqsNMFhE5RNSriByisljJIVMWKzlkymIlh2xZzMC15Eq7du3qPV5VVZVUnaJ5sNvtGDRoUMznMAZUe3xRZwe32+04d+BApC/j/wJRc1R7fFCWxR5VF61BHlyWao/PVJb0zubWJ1Rsdpx9zkCkf+k1laOhfaPHYbYsQF150jufhrPPGQjlS74O76oj0TlE1KuIHGazMMa0/od9zxoAgH8os6hjzaxDpixWcsiUxUqOeGRJmlF1eXl5eP/993HbbbcBgNZYeumll9C/v/6+PjJidDmUSFw5bzV+2FuBvNyWeHlcX0HJ+NDmSSKIFIYdXQYneBkboO7zzrMGIEEQqY3hhtPDDz+MYcOGoaSkBD6fD0899RRKSkrw9ddf48svv4xHxrhQXFyM4uJibVHitfedj+zWLWOeRH0+H9577z0AwCWXXBJxuvgf9ta1gKOtL+bz+fDfpUtR/dMmZHTla1ipOdxeP1jAEXUJC3WeJKBurbzgRmFwWc67gLOj1FFP9U91jTPe8rCAHx/89z+o/mmL6ToBou8bPY7gsvAuDcICftRsW4sP/lsNFnBxeVSHmiVROUTUq4gcZrIEr/0XXK/rAn0NT/hqJodoh0xZrOSQKYuVHPHIcu65fMtRmcVw6gEDBmDz5s149NFHceqpp+KTTz7BGWecgdWrV+PUU0+NR8a4ED5zeKYzrcG/PN1uN0aOHAkAqKys5Nrpbrcb11x1JQAg5453uBbxDc6Rc8c7UHTMwxT+l3WwY/+hwzFfyxhDtSfyNAtutxsHFj+kZeGB+bwo+MtVphyi9k1wWfTUaySYz4sDix9CwWJ+j+pQsyQqh4h6FZFDVJYVfxuALu0vA5D4Y82sQ6YsVnLIlMVKjnhkKS0t5cphFq7Sn3DCCXjxxRdDHtu/fz8efvhhTJ06VUgwGbHZbDjrrLO0bV7Hmf37Y9NvhwFF4Zo0U80RYAx7dL4u/Gl6yxLtNkewx9Wpe+Q30YuioE+/M/Ht7nJTS66I2Demy3L0ta5O3XHacS1QZqJORNSr2Rwi6lVIfQjK0jTdEfL5S1QOIfUqURYrOWTKYiWHbFnMwNdsjMDevXvx97//3dINp4yMDKxatcq04+tVq3Dx01+hZG+FNmmmkdsFag6zS66oZYnVOTz4NgdQvx9YRkYG2l8/0/D7V3v8msfmcOGDz77QluNQf2ekMSlq3/CUJRybw4X218/EByaXXDGbRUQOEfUqIoeoLBkZGVj2xQruz43IHGYdMmWxkkOmLFZyxCNL0nQOJ8yjTpp5ynT+k3ciWH9/Plo3cQqZHT1vxmfajOuRfkcddwmCIAgZScx1LiIplxjJdBq7CtQQasd1oG7pmrzcltrP0TrXEwRBEEQioYaTAWpqatCnTx/06dMHNTU1phznnHUmAl53wh1myqJ69r58B/a+fIfuLCvvHhzyc8Drxrlnn4md8ydh5d/O5s4hYt8YLUskAl439r58B4YMPJvbozrMZBGRQ0S9isghKktNTQ3OOetMU/Uq8jxg9vNXXV2N3nl56J2Xh9/Lj3DNpCxLeWRxyJTFSg7ZsphB9626oqKimL8/cOCA6TCyEwgEsH79em3brCPnXL7p4kU7eMuivtZT9nPdDzpP2hnho6oYw8YNGwAA6Wl8V7RE7RujZYkIY/CU/YzNZUDOQKbp1L5kuvpvHXWYyhIhh1GEHCcCcojKEggEtGONt15Fnwd4HYwxXPvCaq08p//jE/Q9sYPhW9yylEcWh0xZrOSQLYsZdDecNm3a1OBzEjWnQmPhcrm0+SNcLleDz490XlYdbq8fd3xtLocIh7rNi8vlQtsrpwMwtzTIvxcvhcth584iojwiyqK+tu2V0zHn6l6Ysrbuoq46MSqgb+JF1WEmS6QcRhFRryJyiMricrnw78VLMeH1jdz1KiqHWUeN14/NpVUhx4l6i9vIYBNZyiOLQ6YsVnLIlsUMuj9d6towqUxaWhouvvhi3c+/6vn6s3arjmqPD0Vr+DqHi3QA5pZcSUtLQ+YJfbhfD9QtyXHhRUOR6UzjzmJ030RzmC0LUFeezBP64IIL8zF1fd0osh+C+nPp+XJTHaJzGEVEvYrIISpLWloaLrzoImSu4V8hQFQOsw7gWN2uvHswznmc7xwtS3lkcciUxUqOeGRJ1Kg66uMUR3YcrFuAN3zWboIgCJHUu/1NEETc0HXF6dFHH8Xtt9+OzMzMBp/7zTff4ODBg0Jap7Lh9/vx+eefAwDOO+882O11J6sMhx09OjQPGSUWTPBtGdVR6/WDBfxcy0+IdADAmQP4b7H6/X7U7Ki7jZuey7coLQv4seyzz5DusHNnibZvjDqCy2JmyZXand/ii8/BvX9Uh5olUTlE1KuIHKKy+P1+fLF8OWp2bOKuV1E5zDoAefaxlRwyZbGSIx5Z8vLyuHKYRVfDqaSkBLm5uRg1ahSGDx+OvLw8tG3bFkDdujElJSX46quv8Nprr6G0tBSvvPJKXEMHc/jwYeTn58Pn88Hn82HSpEkYP358XN6rtrYWF1xwAYC66eKbNGkCoOF5mYK7sgQ7eJefEO1oaMmVhjz73/q7loUH5vPi0osvM5Ul2r4x6ggui5klV/a/9XeMesvckivh9coY06Zo0NPBXEQOEfUqIoeoLLW1tbj04mEA+I9XUTnMOgB59rGVHDJlsZIjHlmkXnLllVdewZYtW/DMM8/gL3/5CyoqKmC313Xkra6uBgCcfvrpuOmmmzBmzBikp6fHNXQwzZo1w4oVK5CZmYmqqir8+c9/xuWXX47WrVsLfy+bzYaePXtq28HoHcSiOgKM4bCJJR9EOdRtXmw2Gxztjq/7wcTSIKeedhpsimJqGn6z5RFSlqOvdbQ7Ht2ym6HCRJ0EZ2EMIUvf6JogVEAOIceJiPoQlMVms+HU007Dj2VHTC25IiKHiM+fLPvYSg6ZsljJIVsWM+juHN6zZ0+8+OKLeP755/Htt99i586dqKmpQZs2bdCrVy+0adMmnjmjYrfbtVuIbrcbjDGuuUz0kJGRgc2bNwtxmF0uRZQDMNc5PCMjAx3HzuV+PVC3JMeadRtMdQ4XtW/MlgWoK0/HsXPxhcklV4KzhC99o6eDuYgcIupVRA5RWTIyMrBm3QbTS66IOg+YRZZ9bCWHTFms5IhHlqTpHG6z2dCrVy9cdtlluOaaa5Cfn2+q0bRixQoMHz4cHTt2hKIoWLJkSb3nFBcXo0uXLkhPT0e/fv2wdu3akN8fPnwYPXv2xHHHHYe77rorYY24VCRObVSCIAiCkJKEj6qrqqpCz549UVxcHPH3ixYtQlFREaZPn46NGzeiZ8+eGDp0KPbv3689JysrC1u2bMGOHTvwr3/9C/v27Yv6fm63GxUVFSH/iOg01DCKNOVCfQdDtefY8inhy6uELxxMEARBELKS8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz+/3nOzs7PRs2dPrFy5Mur7PfLII2jRooX2LycnR3fWmpoaDBo0CIMGDTI1XfygQYNw4ZDzTS35IMoRqyyMMYyaV79hpI4iBIDtew+h7F/3ouxf90bMwhjDlfNWh9xGUJS6kYYlDw5FyYND8UpBLwwePFhIvZp1xCqLXgJeN8r+dS8uGzbE1HIpZrOIyCGiXkXkEJWlpqYGFw4531S9ijwPmHEA8uxjKzlkymIlh2xZzKB/etkE4PF4sGHDBkyZMkV7zGazIT8/H6tX132h79u3D5mZmWjWrBnKy8uxYsUK/PWvf43qnDJlSsjyMRUVFbobT4FAAF9++aW2zUOwI6f37VI4opWlxuvXplgInosqZBQhY3Dv+q7uBREuT4X3zVGvLimKovXPqfK6hdarGUessujmaJ18vQvI6TPJlMNUFgE5RNSrkPoQlCUQCGDlihVarkTmMF2vgDT72EoOmbJYySFbFjNI3XA6ePAg/H4/srOzQx7Pzs7Gjz/+CADYuXMnbr75Zq1T+G233YZTTz01qtPlcpma6v2tt97Sts043D4/7tvEv+SDKIe63RDhI7jUTSXNgTaX3attx2L9/flo3cRZbySYyHrldTDG4FfSdJclFmqdPHrFqXjwf/zLpZjNIiKHiH0jIoeoLC6XC6/+6w3csWiLqSVXEn28qsiyj10uFxYtWgSPPwC/Yje2LqPgHCLqVZYsVnLIlsUMhhpOXq9X69H+5z//OV6ZDNG3b1+uXvrFxcUoLi6G3+9v+MlHSUtLw6hRowy/VyRHtceH+7fwL5ciygHoG1UX7dyn2OxocvIAXe+Z6Yx8EjWaJRJm9o16O3HDzj90lyUWap1cNjIf//c930gnI/UazxwijnkROURlSUtLw+VXXIn7tzRLeA6zDkCefWy327Ho9+OwYecfuH/LMu1xXdNmCMwhql5lyWIlRzyyJMWoOofDgc6dOxtqbJihTZs2sNvt9Tp779u3D+3btzflLiwsRElJCdatW2fKQyQ/4bcT1f5bBEHoI/wzpKJOm0EQVsLwrbr77rsPU6dOxauvvopWrVrFI5OG0+lE7969sWzZMowYMQJA3T3NZcuWYeLEiXF970j4/X6sWbMGAHDmmWeGTBevjhRbH+HkEclR6/WZWiJBlAMATjuDf9p6FvDDXboVAODqeBKXI1qWao9f96X+WPtGLyzgx7NDmsGVFsCNe0LrNXjWbiD2LQi1Tr5ZnWlqyRWz9Soih6h6NZtDVBa/34+136xB7e4SIcermRxmHYA8+9jv96N2dwkAYEtxIex2u+F5pWSqV1myWMkRjyw9evTgymEWww2nZ555Btu2bUPHjh2Rm5tbb8r0jRs3GvJVVlZi27Zt2s87duzA5s2b0apVK3Tu3BlFRUUoKChAXl4e+vbtizlz5qCqqgpjx441Gj0Enlt1tbW1GDBggJY7uOxqh+lqjx9XzluNH6KsWxfsMLNEgkiHmSVXmM+Lfa/frWXhIVqWvBmf6b7UH2vf6IX5vLjkgvMAhNZr8K08LVuMXGqdXPJ69P2jTs8QrQEmol4j5WjofcMRVa8N1YceRGSpra1F/uBBAMQcr2ZymHUAYupWVHnU49U292ZkZjgTlkNEvcqSxUqOeGSResmVYNQrP6JYv349Bg8erP2sjngrKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhaioqECLFi10vUZRFHTt2lXbjvT7Jq40vBNz3bo6B2OAh3s1DnEOdZsbBUhr2UHbNpsl05kWcuVOzwzZ4Q7u8ijACSfUOYLrNdJtiJi5jtZJTqtM+KJEUf8aj9oAE1CvkXI0+L7hCkH1Gp7DyNVEkVkURcEJJ3TFzkNVQo5XMzlEfv5iHWuNkUVRFO14TWSdiKpXWbJYySFbFjMYbjhNnz5daIBBgwY1uETKxIkTE3JrLpzMzEz8/PPPDT4v1r5UHWaWSxHpAEI7ZBsdoW1zpKPTzS9yZYiUBagbwfd7lUf7kmcsNGOkL1y9+yYWNkc6vi35AQCi1uvKuwfjnMeXA4j+5a/WydoIy2D06NBcm+IBiN4AE1GvquN//xiKgvlrQ24j622QiqrX8PowcjVRZJbMzEx8W/KDqSVXROUw6wBiH2uNmSUzM1M7XtUlsBKVQ0S9ypLFSo54ZElU53Cu6QgOHz6Md955B9u3b8ddd92FVq1aYePGjcjOzkanTp1EZ4wLPLfqUoFR81bj/dsHJKwlD+DoHE/HbjmE3/o0+oVrBsYQ2rcpKBfPl3/dc+saXWbWbTOCcnTC0Rqvv1HfN5zwfoB6G28EQRAyYXjm8G+//RbdunXDY489hieeeAKHDx8GALz77rshE1XKDo2qO0bwTOAleyukGwUT3l+sMUfqhM96Hr5cjNEsilJ3OzKTs58PL+qEo439vqEZ6hpw6+/PT1gGgiAIsxhuOBUVFWHMmDH4+eefkZ6erj1+0UUXYYU6I69Fqa2txcUXX4yLL74YtbW1phyXX3YpmM+TcMfFF18Mt9uNtyf05/Iwnwf7334A+99+QEiWWPW68u7BUX8nYt8wnweXX3ZpSL2GX+nKdNob/PJX6+TaK0Zw14meeq32+GPe5lYdl192qenj1Wy9qjncbjd3403U5+/yyy5tlOM13g5AzLEmqjzq8ZrIOhFVr7JksZJDtixmMHyNfN26dXj++efrPd6pUyeUlZUJCSUrfr8fH3zwgbZt1pHT/Uau/qmRHEY724aXRXHw3S5hgQBqflmvbfOgt14zYnzhitg3LBDAxx99CKD+vgmf9TzWl79aJ5/9AuScchPXPtZTrw3dKlQdH/8i5ng1U6/BORQb37Em6vOn7uN4H6/xdgBijjVR5VGP10TWiah6lSWLlRyyZTGD4TOYy+WK2CHrp59+Qtu2bYWEagx4+jg5nU4sWLBA2+ZBdbh9fjy8le8LJJLDaH+b8LJ4OZdDU+xpaH3RZG2bB5H1asah2NMw78WXAKDevok263k0T+uLJmP68B54YjtfncSq1+AO5rH6CamOh0b+OeH1GpyD91gTdZzMe/El3Lf4u6Q/XgExx5qo8qjHayLrRFS9ypLFSg7ZspjB8Cft0ksvxYMPPqitFaMoCn777Tfcc889uOKKK4QHjBc80xE4HA6MGTPG1PuqjmqPD49EGNmjTrSoLqgby8EYw6fzVnN1tg0vi5dzqRPFnoamp5rrs8JTr8Ej7TIcdiH7RrGn4YbRBQAQcd8Y8TQ9NR/XXp+PJzk7YseqV7Wjd0OdvFXHDaOHwsF5RTH4WKvx+rXjxMjVzfAcvMeaqM/fDaML8Mg2/v0r8jxgFhHHmqjyqMerw8G3Zp5M9SpLFis54pElaUbVPfnkk7jyyivRrl071NTUYODAgSgrK0P//v3x0EMPxSNjyhA80WJebku8PK5vzOerk24GD91PFYJH2jXmKDsZqOtg3nidvI1OAErExsgs9ARByIfhhlOLFi3w6aef4quvvsK3336LyspKnHHGGcjPt/5IGb/fj//9738AgFNPPZV7uvj//e9/qImwXErwRIvrd/6BQ1WRO3uG5+D5Eg138MICfngP7AQAONrmcjl46vWHsLmQKms92L71B0OOcFjAjy1bNmvbvEuDqHXyv2+3mFpyxWy9qo4tWzaj7xmn8y9RsnETVq/dAEfbXK0sRq5uhufgRdTn77vv/gfPvl8a9XhVURuh63cc1PZv/7xeeOdWvilARBxrourVs+8XbdvMudFsDrMOmbJYyRGPLLm5fJ9hsxhuONXW1iI9PR0DBgzQpj1PRniXXDn99LoTv5np4lVHQ0skqBMtNpRDcbhM5eB1AHVLPuxdeDsAc0tYiKxXM0uDnNW3DwDgstmfYXNZ3YiNvNyWMW+dRvLsXXg7zlvIvwyGiHpVHWctjFwnegYU1NbWanWSc8c7+Or+/KjHpd4cvMeaqOMkuDyNnUP94yh4/65r+Q73fFYijjVR9aqWp3bW6IR9hkU4ZMpiJUc8siTNkitZWVno27cvBg4ciMGDB6N///7IyMiIR7a4wrvkSseOHbVtHlQHA0wt+SAqRzQHY0xb1yy2CLA3baVtxyNLYzmgAB06doQC4PXxZ2pf8IZvpRytk7bN0k0tl2K2XlVHu+bpEfPrGVCgKAo6dOyI/RW1gBJ7ZCNvDt0aQcdJcHkSlQMKkN2+Aw5Wuvn371GP2WNNVL2qx2siP8NC9o1EWazkkC2LGQw3nD777DOsWLECX3zxBWbPng2fz4e8vDwMHDgQgwYNwpAhQ+KRUwoyMzOxZ88eIY6GlksJXtqjoRzVHJ1tYzkYQ70+LdGwOdJxXOErht8/VpZEOWyOdGzbsdP0TNZqnaw3sQyGiHpVHSUPDtXKZHT27szMTGzbsdPUEiXhOXiOVzWLiOPEbHlEHWvf/bzDdN9EEceaqHpVj1czS67IcB6QKYuVHPHIkqjO4YYnwBwwYACmTp2KTz75BIcPH8by5cvRtWtXPP7447jwwgvjkTEl4frLXhDhi9oavVVFyIs6oIBm7yYIQg91dx989f41tMasleH60/qnn37CF198of1zu9245JJLMGjQIMHxiEQTPvEjkfyErwVIEAQRiUgjalVSeWSt4StOnTp1wplnnomPPvoIZ555Jj788EMcPHgQixcvxqRJk+KRURpqa2sxatQojBo1ytR08aNGjcL1115jaokEUTkacjQ08SPzeXBgySM4sOSRpChPLJjPg+uvvcaUQ/UcWPIIxt3wF1NLrpitV9Vx/bXXmKrX66+9JuE51CwijhPe8qh/eR+qqMTlV1yJy6+4EjU1NVw5mM+DcTf8xVS9qh6zx5qoelWP10R+hoMdhyoqua+QyHJOSrTj2GCG+ucjnjVDE10eURi+4tS2bVv8+OOPKCsrQ1lZGfbt24eamhru+9qJgmdUnd/vxzvv1I3EWbhwIdf7Bjty7riWe4mE4Bw8S1iIcAB1Sz5Ub11Vt33RHVwO0fXK62CBABa/+29TDtVTvXUV/rsVyLnjL9xLrpitV9WxeCvg97/M5fD7/VqdiMphZskVEccJT3mC//IOeGqx66jj2uf/isWTzjP8VzcLBPDfJe8azhHJY/ZYE1Wv6vFqZikNkeeBb3Kugc15bD3Vhq6QBM+vVVXj1jzqLNVmsiTyvCbq3Kju3xVf/gcDZ69OWJZgx9NPP83lMIvhM9jmzZtx+PBhrFixAl9++SWmTp2KkpIS9OrVC4MHD06aSTB5RtU5nU4888wz2jYPqsPj82PObv4lEoJz8CxhEctRo2c03VEUexpaDZmgbfMgsl71OoJPkuofooo9DbPmPAVnmt30MhithkzA3ReejGf38i+5YrZeVcf9F3c3Va+z5jyFGe//ICyHmSVXRBwnPOUJ7vcXvG827ankmkpAsafh0Sfn4PGPfuSu1+AsZo41UfWq1kljfYajOaLt31gDIcJvSTG/TyvP6IUb8e/Ccww3jnnLE3xu8sGGWXOeAsA/I7uIeg0+N2Y15R9Fn4hzfTzg+qRlZWXh0ksvxdlnn42zzjoLS5cuxRtvvIFvvvkmaRpOPDgcDhQWFgpxVHt8eOroyB6jfezCc3jDRsSZdeiZpyd4dFazMy7R96Y6s8TbEX6S7NGhOYC6k8Mtf73V9Kg6xZ6GZmdcghtvzsdzJpZcMVuvquOWv5pbcuWWv96Kp/aaW4ImOIeZJVdEHCfB5VGn3DAy5cSG6RcCuNDUiDjFnoYbb56A5/abG1Un4lgTVa/q8WpmyRXR+1cdBNHQvgofEBP8+du4+whX45inPJH7FJ0AAFj1z/VcfYpE1GvwuZF3VKyoLMGOpFly5d1339U6hZeUlKBVq1YYMGAAnnzySQwcODAeGS3PJXO/wrIiMXU3at5qvH973SzERhpk4cPUG0IdnVXj9aPa0/C6aYkm/ApT8ImpZG9iPnxE4lGPWyMdXaljffLAs6/W35+PTKc9Iee18AZcSC4Ds/UT8cXwHpgwYQLOPfdc3HzzzRg4cKCp5TqSjUAggO3btwMATjjhBNhshvvWaw7GGLpnN8UP+yqx42AVLpn7Fd6e0J8rR4bDjh4dmqNkbwVK9lZoiwSPmhf9PnSkshhd905RFKSn2bDt55/hPbQHaS076Hqdniw8jp9//jmiI9oVpnAYC2Dbzz8jw5nGnUP1+P7Yi+3btoGxABTFuEd1AEBayw6Gbp+GO7b9/DP+3P0kw+VhjKHK7cX3P5rbv+E5eBF1nJT+9itOyqjEj9WZ2r4x8qUUCATwy/btputk+7Ztphyqx+yxJqpevYf2aNtmzo1mc5g9H2U67VKc19bfn4/0NAXf//gzLn92VULPr8Hnxg45/MuciPwOBer6XCcCww2n/fv3xyNHUlBTU4Nu3boB4J8uPthRUXEElz6/HjsOVmkNHt4cb0/oj1OmH7udUuP1a1dSenRoXm8epkgOnmHqNTU16PnnHgD4l7AQXa/hjvC/4qJdYWJej1YWM8sKMK8HpS/egjNfVJfBSG/4RVEcQJ3D6DInwY6eLxovj9rYXPfzXuyafaWWg4fwHLxLrog6Tk46qa7xtv/QYSiOdMNXFUQc88zrwZmn/9mUQ/WYPdZE1at6vNY8drXwz7ARh9l9I8pjtjyZTjuY1x1ynISv5qDnFrOIeg0+N+4/dNjw60VmCXYkzZIrQF2v9iVLluCHH+oWVe3Rowcuu+wy7oX/kgm9Hcn1OGw2Be/dNiCkwcObI9ZnJ9otCBFlUT0Vtfz3vUVlkcUBAIqrCZqlm+wr5WoCe9h+Uycj1dvIVlxN0JwjR0hnaFfdye2MzlncE6Hy5ghH5D7OdKZB4SyPiGO+eYsWOGLSAYg51kTUq3qcJDqHiH0jyiO6POGNfL23mGU6N8qUhRfDn7Zt27bhoosuwp49e7S/3B555BHk5OTg/fffxwknnCA8ZDzgmY6gSZMmOHz4sKn3DXfwdLQzmiPSZ0pEWVRP6f6DppawiEe98mBzpqN0/0HzS64409F58iJzS64cdXz/j6Eh+0/PX5jqOoOqI3jJFZ4c+w/+jkyn3VCDLdwRnIO3c6lMnz+zx7zNmY7tu/eZX3JFwLEmql47T16kbScyh9l9I8ojqjx//PEHRs1bHbH/qZ5bzKLPjWY6h4v+DCdN5/Dbb78dJ5xwAtasWYNWreoWdfz9999x/fXX4/bbb8f7778vPGQ84JmOQC/BHa1puRJxhHdgV/t1AXUdvtUPtOFFeSVGUWCo0RNrpl9eMp126pBKEAkieCCOSjIMyLEyhs+GX375ZUijCQBat26NRx99FGeffbbQcMlK8IFu5Es8hZf+0YWiIOQEwhi025xXzluNH442olJ5KQBaZ5AgrEdd/9PU/eMleFR0MGaufpnBcJd2l8uFI0eO1Hu8srIyYZNRNRZutxtjxozBmDFj4Ha7Yz5XPdDDv7xjOa56Xt9srEZyxNOhem6+aRwOvj8bzOeNexa1Xuvq9tjjJbt+x8H3Z+Pg+7Oxbvt+rltKzOfFzTeNM10nzOfFwfdnY+ItN3HXieq4+aZx3FlW3XUOmn7zAsaOHcvtEFEnIsoCyHPcizjmmc+LibfcZMqheswea6LqRP38Jfu+EeWR6Xg16xB1buTJol5F7zHtY/SY9jG6T30P7XpfiHa9L0Sff3zEncUMhhtOl1xyCW6++WZ88803YIyBMYY1a9ZgwoQJuPTSS+ORURp8Ph9efvllvPzyy/D5+Fq64Q51KgEA2HGwSkiOao+/3ugLvQ71dhig72qFz+fD66++iqrvloEF+JZaEFGvLOBH1XfLTOVgAT9ef/VV7hxq3yI1y6J/vWYqS9V3y/D6q69y14nTxoTUq5k6UR1mywLE5/PH6zB7zLOAH4v+9Zoph+oxe6yJqhP185fs+0aUR6bjVYbzAG+W8KvoIs71ZjF87e/pp59GQUEB+vfvr80Q6/P5cOmll+Kpp54SHlAmHA4HHn/8cW1bhEO9rWdkZF1DOfTc+47mMHqb0eFwYMbDj+KJT7ZCsdvr9TUSUR49KHY7sgaN1bZ5HTMefhTONJvhHMF9i9Qsk84/EQvK+bNkDRqLOy84SdixxpsjuE54TpnhZeE97cbj88eTJfyY50Gx2zH9/x7GU8t+5naoHrPHmqh6VT9/iTxeRewbUZ54HK+Jcpg5N4rMsv7+fKTBj+K2j8LrD+Cf+xPTDcFwwykrKwtLly7Ftm3btOkIunfvjq5duwoPJxtOpxN33XWXcIfRrjjxynEsj/776U6nE3f87W94sTxyX6OXx/U1lUUvit2BFv2uMO24429/M9yXoNrjD5mNXLE7cP5VN+GucX2xUEeDuNpTv5GqlueOvw2Fk7Nvg6h6Da4TH0efgvCy8DiA+Bz3PFnCj3keFLsDEycXYWGl2SVX6up24uR8LOTsLCyqXtXPn5k1yETkMLtvRHnifZ5uTEfwecBMvyKzWeoGqrhw35R7UO3xYf49i7ldZtB9Rg4EApg5cyb+85//wOPx4Pzzz8f06dORkcG/4B9hPX4Imlxy/c4/cKjKk8A0jUPejM9CZiNff38+Wjdx6u5nlTfjs6Ts0M6zzhtBEESyo7uP00MPPYSpU6eiadOm6NSpE5566inTi/UlG4FAAHv27MGePXsQCATi6ojV16gxc+jxlO7ZA9+Rg2CsvkfPjNe8WYLriLEA/pThjppDD4zVlUVPjuD3BkJnI09PU1BaWorSPXuiZgl/vTofS3AW35GDKE3wPo5VJ3kzPkOPaR9j1LzVYDGGhIooCyDPcd/QMa8HxgLYW2rMUdeHzhf0z6/V7d7S6MdaQ4iqE9+Rg/AdOZj0+0aUR6bjNZ7ngcbOojpinV/jje4rTq+88gqeffZZ3HJL3bT6n332GS6++GK89NJL3Gt6JRs1NTU47rjjAJibLl6PI3joffhf9I2ZQ4/nxD91ARB7yYdYHc15swT3x6qqqkK7VllaDh6Y16OVpaEc6ntHWtsvuDzR6iTW69Use54dgxOfTew+Dq+TzMzMeotBNzQJX3hZzCy5Ivq458kSfszzXHljXg9OO+kEzdHg86PMz6XW7WnPmltyRUS97nl2TN32jBEJO17D9w0vIjyynKdFnwfMLrkisjydbn2FO4sZdDecfvvtN1x00UXaz/n5+VCUur+s1UIkEzwzhwNAWpr5uTT0OmL1NWrMHHo8vkD0Kw7qratYXyq8WdQ6Yt60kBzBndSNzI9lJEestf30eBpcG9BmR5rN3C0w0cdJcGPV0CR8AsoSniXRDvVYU+vA6O3Whj43wYSPLApGsdlhl+A4gc18R13R+ybRHpmOVxkcojyisnC/v94n+nw+pKeH/jXjcDjg9fLPlZFIeGYOb9KkienyWsmhesqramIuTZDpjP2XuKjyBOcI7qR+fJvof9UEzz7e98QOeNvjMdRfJ3w287zclmiT1RxerxfVHh/3kg02Zzpy71pqarkUEfVqc6ajvKomJIPRyfjCy2JmyRXRxz3vkisej6feMhh6lr9QsTnTsfePSq7Zn9ffnx/S4M540osar5/7WOOt1+BJCRVH3T5WfY2ZI9zR0PmosTyynKdFnwfMLrkiqjzVHh9Olr1zOGMMY8aMgct17NJ2bW0tJkyYEPJBeffdd8UmJAgOgjupx5ofq+4KQd02Tyfn8OUQqKN0asB95U0AMiyBE4+lfQgiWdD96SsoKKj32PXXXy80DCEO9UpKqi+5cXybJlrDKfjqkorRteAiIWo5BPX2YkOTl6YK4cssyNYoTeVlMKLdOlTPNzwz9xNEsqD7U79gwYJ45kgK3G43ioqKAACzZs0Kufomm0O9khLty0ZEDtVzx6TJ+H3tLrQ67yYoacYnNRNVJ5FyvHfbAO2KUnqaHVc9vzrktlpwo1JknRQVFcHnD4A1Haq7ToJvLzKfF4c+fwl3HH4PTz81h7tO7rpjEgD+8jCfF3fcfhvS7DZTjuCyQGm4IR/pisZJbdOR+/M7UAA8OvMJZDXNNNyQCq8TPVni4WA+L+4umoTf1+9Gq/NuMvz64Cw8x1okB8B3nKy/Px925sO9d90Je4UCj6c3d72KPg/wIsKTTN8XDRF8Hpjx6OOGXy8yS8gx7ziHO4sZUvPPJU58Ph+effZZAMDjjz/OtdMby9HQlRQROVTPC8/PAwC0HDQWCoyfuEXVSaQc4fUQ67aayDpRPTl35Ouuk+DbiyzgR+Wm9/HCJmDWk08k7FhjAb9Wr2YcwWVRdFwBjXRF44c9h/HJ0SwfZubX9UkzOPdVeJ3oyRIPBwv4seDF5wHUHa+88B5r0Rw8+zjTaQfzHvv8zZw5U0i9GsmhXp2sqq4NOQ/wEn4+4XUky/dFQwSfBx6Y8bDh14vMEuzodOtZ3FnMQA0nAzgcDkyfPl3bTnWH+tqp9/8dxcu3hSxNYORWoajyRMoRTqzbKyLrZPr06fD6A3it1vgXiLqswOxm06Aoiq4s6hdH8G0+EeVR7HZMvf/vcNiNLbUQnEex29Hi7GtROLgr1zIn6+7LR8H8tfh+txctzr5Wy9XgNAg66oR3yRWzDsVux11T7sMLK34xvTSI3mMt0grzGQ57XM4nIupVL8FXJ5k/9BjhRe/5JFYmL1Mw9f6/AwC8TEG1x2f4drMs53re80A8sgQf869wLjNkFmo4GcDpdOKBBx4gR5jnvr9Pw+ve0NEnDd0qFJ0lWg6jDlF18sADD4Axhq3zot8ajIa6rMA//vEPXe/HGCJ21BVRHsXuwH1/n2aoL0/4bTbF7kDWgOtw39/5llxp4rLj/dsHHP3Sv0RXZ+xonZfD64R3yRWzDsXuwN1T/463AuY6latZqj0+vB5jBFi0+lCnUBB9PhFRr3oJvjqpHmuAuf5WZs4noXXdDwDw+ozlWiYjV0llOdcHnwfMLrkiqjzVHh9elX1UHUEYQUSn62SnsUbcRbqtlchBAfHIY7Qjtmx1kmiideY2MoVCMhA8VUOiBhPEmnPLavWdqtDeMwBjDOXl5QCAFi1acH0oreRQPYcPH0agthKKq0lCyyNDjkgenpMkbxb1i0NtIBw+fNiwIzzH4cOH4XGmcTnW35+PDIcNnupKlJeX654zLVqW8vJyVHt8YIwJqRPeHCIc5UHHKy88dbL+/nwAxybuDC+PiM8ODyI+f+qxBgAZJo+1wyb3D2MMn9/WBxlOOxwZTdHnoWVcDhnO9cHnAUeG+ePVbJbgYz4RpMZaKYKorq5Gy5Yt0bJlS1RXV6e8Q/V0ym6LXU9dA+Z1JyyLLDlEeXgd6hw/iqIIycG8bnTKbsvtyHTaAZ8HrVq1ElavnbLbGtrHZurk2Ppwx273iKrXrjntTR2vwVmM1EldfRy78ibL+UQWh+oxez5R93Gn7LaAL7HnxkSfB0Rm4T0PiISuOBEEQUSAJnkkCCISSX/FadeuXRg0aBB69OiB0047DW+//Xbc3iszMxMejwcejweZmZkp71A9hyur0fnOJdyLt4oqj9vtxsi5X2o5jPZpEVknMuwfEQ7F4cLhyuqE5wj2HK6sbpRjLVo/qdYtmgmp19JDR0x9boDGr5NUcKges+c1WT47spwHRGURccybJemvOKWlpWHOnDno1asXysrK0Lt3b1x00UXc6yXFQu/Q8FRxBHsUO/+hJKo8TqcT/y48h7sztug6sZLD4Ujs/g3JwhTu/me8WYL7SSmKApvN3N+cIj43wR7zdSImh1lHWloaarx+eCNMm6CnfCLKcswj5rzmcKTByzkSTcbzAG9ZhGcxccybJekbTh06dECHDh0AAO3bt0ebNm1w6NChuDSciMYj0uK5eq4epfIyGET8kGF9OKsT69ao0WH8BBFPEn6rbsWKFRg+fDg6duwIRVGwZMmSes8pLi5Gly5dkJ6ejn79+mHt2rURXRs2bIDf70dOTk5csno8Htx1112466674PF4Ut6heqbeew/+WD4fzM+36nWkLOpQ/pIHh6LkwaENnjRlqxMZsohwML8XU++9J+E5gj1T771HO9aqPX5Do2sSUa/HOpgf62TO/F48cN8UU5+b4CzBdcLrSPQ+Lq+qwWcLn4xYJ+ow/sbIoXrMntdk+ewk+jwQfPwfrqzG5KK/YXLR33C4spprVJyIY94sCf8TqqqqCj179sS4ceNw+eWX1/v9okWLUFRUhHnz5qFfv36YM2cOhg4diq1bt6Jdu3ba8w4dOoTRo0fjxRdfjPl+brcbbvexnvgVFRUxnh2K1+vFE088AQB44IEH4HQ6db/Wig7V89TsWQCAFmf/BYrd+GXYaFmMXD2SrU70eqJdWauudktRHub3a/tXVA7efgnBnpw7zoJid2hD6vVekRCRxYgj2lUU5vej+OnZAOo+N7xEqhMzjkTuY6/Xi4q17wIAvv3Pi2jbsrmuyU5j5RB1Xgsm0gzsQP3bicGfnbun3s+dQ7bzgJGyhB//AU8tdh31vIuzuJZNCi5Pp1tf0f06kSS84TRs2DAMGzYs6u9nzZqF8ePHY+zYuvWC5s2bh/fffx/z58/HvffeC6CuMTRixAjce++9OOus2GvXPPLII7pnZA7H4XDgzjvv1LZT3aG+dtIdRViw6lfuJQ5kKY/IOtHriTZJpizlUex2TLqjyNRSC+E5eHtIqB7GGH7JbYONeyq13+mdWFBEFiOOaJMh5h3fBpeb/NwEZ/H6A1gc589fcIMheHqGSA7eem3et+6P5xZN0rlujcb7vKbndqJKPD47iXLwliX8+Ffsdm0f61k2KRLBx/y/fbTkSj08Hg82bNiAKVOmaI/ZbDbk5+dj9erVAOoO5DFjxuC8887DDTfc0KBzypQp2urMQN0VJ7239pxOJ2bOnGmwFNZ1qJ6HH30MS2Is99AYWWRx8HgiXVmTpTyK3YGHH3rMVP+e8Bw8y3GEe4LXoTNyRUJEFl5H+KzWNd6ztc9NcEPEyKAGNUu1x8f9GdRznDQ0NYOoem05eJy2zUO8z2t6ZgVXCf7s8C5TIuN5gLcsx45/fcsmRSP4mH+Xllypz8GDB+H3+5GdnR3yeHZ2Nn788UcAwKpVq7Bo0SKcdtppWv+oV199FaeeempEp8vl4l71Pl5kOOzaorgEkWjq+iQYX9+rMUnGQQCxOpgHf4nI2BE66pWzFF7GRm0ImGkEpBJWGmCR9KUYMGAAAoGA4dcVFxejuLgYfr/+LwjGGHy+utZ2Wloa93Tx4Q71ds0p0/X9xRivHDwwxuD1esH8PsDGtzaULOURWScyZOFxhF9ZUPevV2HCcvASjzoRkYPXkYYAzjiuGTbsqggpi5HbF2oWr9fYMjThDq+3rpOtnnqNtB6cqDphfp+2zeswUpaGPOp5LRINNQSCPzu8K4PIdC4xW5bgLGaP12BHIkj4qLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3Trdr6murobT6YTT6TQ1XXwkh5HjJ545eDxZTTPx2xMjTC11IkN5RNaJDFl4HOFXFk7vkIGsppkJL4soj0wOl8uFxbcNxPp7z0HJg0O1NeR4smQ1zWy0z5/aYFCXseFxRMvx2xMj8NsTI6Q41sye15jXLcVnR4RDRFmCs4g4Xs04zCJ1w8npdKJ3795YtuzY4oiBQADLli1D//79Y7ySIAizrL8/H6/d1C/RMSyP2ggJXj+OIAh5SfitusrKSmzbtk37eceOHdi8eTNatWqFzp07o6ioCAUFBcjLy0Pfvn0xZ84cVFVVaaPseOG5VZeZmYk//vhD2+bBSg71tYcOHULB/LXYsr/uEjnPUicylEdknTRmlpoo/ZHM5qibKdspvCx65uPR40lUlng4eFE91R4f+j+5hk+S5sKefQcAABkZGaZyqNu8dZIz6U1tW0QOXjIzM7Fn3wGc+fAyU0uu7Nl3AJnONDgykvu8JqIswVnMHK/Bjn4Pf86dxQwJbzitX78egwcP1n5WR7wVFBRg4cKFuPrqq3HgwAFMmzYNZWVl6NWrFz766KN6HcaNUlhYiMLCQlRUVKBFixa6XqMoCrKysky9b7wcwfMB6Wm4iMihelq2bImlRReYWupE1npNhiznPL5cihzxdDRGlvCRbYnKweNxenzc/Xn6PHTsij5vx3RRdWJLb6pt8zpE1quax4zDzEg0WY41EWUJ9pg5XkU4zJLwhtOgQYMa7OA1ceJETJw4sZESJSfB8wEZbbiIen+rjJhIBsInzgQSP8IpeIoAvajPTcQxG07wyKgeHZrj5XF9E5gmvkQ6fgBjHdMJOQj/vMnwWbI6Kfvp4LlV5/F48PDDDwMApk6dyjXXSDwdRhovInKI8ljJ0VhZwifOBOqfMBuzThhD1Hl+wh3BXSuNzPwdj/JkOBwRGxAleyvQ56HIQ8xjlYc3h9ljzesPgPnP0D1zePDxozpeWPELWvS/ylQOwFydHP7q9aPbg7kabx6PB48/PEPLYaZeH/q/GTj81TbuOmF+Lx76vwfhsNsw+c67uXM0dJyET4UQ/lkScayJKEtwFqPHa3THydxZzKCwRI3nkwT1Vl15eTmaN28e87lVVVVo2rTu0m1lZSXXQsLRHNUeH3oETbZW8uDQqCeOeOZIhMdKDpmyxHIEH2/Bx1r448zr1uVYf39+1BN4dXV1iCMzMxOj5q2u31iJkSPTmRaxPHrLoT4eyRE8IzZjwKh5q0PmVAv/Igp3KA5XxPcymiPac/V6cu54BzZnesRzRyx3uOPHRy8z9HqjdRKNA3+Uo12rLADA/kOH0bZliwbfNzzbunsGaI6G6jV8JnT1+A0/7oPrJJIr/DEA6DHt46PLi1yplafPY18BCJ3OAQj9g0fv548xFvEzpNLQsaYXNU+0sjS0b2OVJ9bxqtfR6dZXsOfZ0bq+v0WSsleceEhLS8Ott96qbae6Q6YssjhkypIoh/rFoH4hhDuCr3YYmTwwXuUJv1L7/u0DYl7JC3fwdHUXfaz5/AF8FGW+IT2Om2+ZgH+t3QXFhENEnTQ9/WJtW0SOaDQ0E7qIOlFsdtx8ywSk2W0hWRq6QhSeI1J5Il1xjvZZEnGsRSuLUUQdr6rjA06HWajhZACXy4Xi4mJySJhFFodMWRLlCJ8YMJKDp09cY5WnoWzhDp7OsqKPtWqPDx9zLrnicrkw++m53K8PzqHCWyetL/irti0iRzQamgldUdJM14mS5sDsp+ci05kGxljEW8JA7H5lscqj9zMk4lgLLouZzuGijlfV8SEtudK48PRxIgiCIKxFpJnQRWPkChEhP1JPgBlPeGYOJwiCIJKXao8f1R5fyEi0SDOhxwP1ChFNeJr8pGzDiYeqqio4HA44HA5UVVWlvEOmLLI4ZMqSjI66BYZDv9iMeGK93miWaMjiCPa0aJKBgKeW29GiSQZ2zrzMlENEneyceRl2zrwsbvWaN+Mz9Jj2cYNXekTUScBTixZNMhJ+nIhwRCvLsYbosX+xxpuJOl7NOsySsrfqeFEXSySHWI+VHKI8jeUInkspkTliTWmgx6Pn9XqzNIQsDlGeeDoMzTMUMN91IjxHtDmrgNhzn8lerzI4IjVAG5paRJbymCFlG048fZwyMjKwe/dubZsHKzlkyiKLQ6Yseh3BcymFT/rYmDkOVXnqNXqCv9ga8kTq8Bv+xRiP8tT6AqYdvKieGo8P58/7ltvx8y+/YtATX0Bx8M17FKtO9I4iy8jIQKdbF2rb4YTP7B7pizlSvUbqX6THY7ZOFIcTP//yKzKcaUlxHohFcFlaNW8atSEKxO7sLup4VR2Dn+JcZsgkKdtw4llyxWazoVOnTqbe10oOmbLI4pApSyxHpL/C1RNeY+YIJnjpmPApDYxmifR6o45o1HccayToXbZF9LFW7fFBUb7jdnTs1AlpzdqYzqGS4VAMjyKz2WxaBputfi+S4AZYtMZXtHo1OopTRJ0oSp3DzCzsspxLwssSqSGqp7O7qOP1mCMxvY1StuFEEKlMtLmUoi0YHC+iLR3TuonTVEfd8CkRGovwL3crL9sSC1GjyFJlaRi1wW1kuaJEkupLbKVuyTnweDx46qmnAACTJk3iXvLBKg6ZssjikClLQ45IJ7/wBYPjnUPP0jGNlYXXEW3ZlkhX8ETmCPZ4fAEw/0ncS1jMfnI2yr/ZiuZ5l5rKARwrj54v1+DZuw9X1qD8m38f9Q3WRrkFHx/Bja9IjQ2Px4Pip2aH5OAtj9k6YX4vZj/5JJxptgazRGtQynLMGymLnixmj9ennnoKjDH07PBn7OJKYg5acoWWXLH88iKN6ZApi15HpOUboi2XomfJlVhLeoiuV70ZRGZpaNmW4C/3aJn0lCV4bqEarz+pllyJVK/hjgyHPaQzf/iyHm1b1u9CEX6eDCfSkis8RKsT3iVXImWJtWyKns9fOEaW99FLpCVX9O7fSHUjesmVPXv2oFOnTrTkisykpaWhoKBA2051h0xZZHHIlEWvI9ZVH1nKIsoTL4fRWxcN5dB7y0/1+AIBrDSxhMV1N9yAJZtKTS25YrRewzvzKzY7mvz5fLRp6kSzjMgzhzc0Qq5ZhkvYsRZcJzy30hSbHdfdcAPSbJGXKdHTaV2WY76hshjNYvZ4VcvjcBi/YiWClG048Yyqc7lcWLhwoan3tZJDpiyyOGTKYsQR7YtflrLIlCVejob688TyNHQlpqEsL7w0H1+ZXHLFTJ1oV9geviTmdAV6GhuijrXgOuGZ4VtJc+CFl+bHbFDrWd5HhuNVT1mMZDF7vKrlqaioiP3kOJGyDSeeUXUEQRDxIlZ/HqtjpDN/Y3VM5p3/KZkJvuUMJE9n9cYmZRtOBEEQsiGiUaBnvqN4vt4q8Mz/JCPhjSGV8DIwxnRNIEvQkiuGqKqqQlZWFrKyskxNf28Vh0xZZHHIlKUxHbGmMaB6jY8j2NOxXRtt+Ql1WZEe0z7GqHmrYy6BoTo6tmuD3+ZcjYCn1vDrRZVHFkewp2XLlmBed9gac/rWtAt4atGxXZuElocxhhFPfY6mzbPQtHkWTr53adR9G2kCWZVe7dNNlyW4PMHHK6/DbBYz0BUng5SXl5MjDh4rOUR5kskRPo1BPHKI8jSmI1aDUnSdDOqchc1loV9GsfpH6cmi9/WxHEaQxSHKk2hHjdePTb8dBnPXb2DEmgsreFQnUNcIbHaH2Ho1MwZO1D7mhRpOBsjIyMBPP/2kbae6Q6YssjhkyhJvR7TJK8P7fqRyvUZrUMajTv70pz/B7a+7gmCkf5TqYIyhY+cusNlshvtXJeO+ibdHcTix5bsS00uuiMjRcfzzePfWs3HKySei1sca3Lfhfc4CaZlC67XG48PwV7aZcpjNYgZqOBnAZrPhxBNPJIeEWWRxyJQl3g69k1emWr3qaVDGq04yOforJ0u9NpZDlEdRbOh64omml1wRkcPRqhNO7XESMp1psHmML5Arul7rlkv5BYDBRaDDstCoukaGZzoCgiBCSfWlFyJhZDZ0gkh19C4CLRMpe8bjmY7A6/XihRdeAADcfPPNXJNvWckhUxZZHDJlsZJDpix6HA01KI3miNZXKpnqJFkcojzM78Pzzz0LZ5o9oeVhfh8qt3yE55/bjom3/hWA8QaJ6HpljOGM407Dxt1H6j2noXUIg7Ncc801XDnMQkuu0JIrKbW8SLwdMmWxkiOaR5YlV+LhiDZJoJ7lNKItAxL++mgOI6/nKU8kZ/BSGjIea9HgXXIl3jnUJU9OvndpSA7F4Yq4L/UuyyNqyZUjR47A5kwPer0/4uc3lqO0tBQdO3akJVdkxm6348orr9S2U90hUxZZHDJlsZJDpiyN5dDTVyqZypMsDlEexWbDyMuvgN2mJLQ8is2GzJPOxtBT2sNutyOQoBzhnrS0NKRHuTgQ3O8pvA+UqCxmoIaTAdLT0/H222+TQ8IssjhkymIlh0xZGsuhp6+UHk9Dsz8nU500hkOUR0lz4rU33jTVB1BUjrYjpuC1B4ci/ehVoETkMOKJNeov2EGdwwmCIIgQRHS+N7tsSzyW3aClPOQg1pWdxibWEjeAXMvcUMOJIAjCYkT7EuL58onHenmpsgaf7Mi0H2ItcQPINTKVllwxQHV1NTp16oROnTqhuro65R0yZZHFIVMWKzlkyiKLI5ZH/RIqeXBoyL9Iw7wjOdSGVzjRGl56ytOQMxnqtcHXefzalZuAtxZdj89NeHkC3lrsLh6Nrsfnorq6Oup+UIm0jxurXtUrrJH+qcetqCxmoCtOBmCMobS0VNtOdYdMWWRxyJTFSg6ZssjiaMij9zZfJEe0v/6j/dWvpzwNOZOlXmMRcgWHAXtlKA8D/JWHsLeyzsFzZSfR9RqPLGaghpMB0tPTsWnTJm071R0yZZHFIVMWKzlkyiKLI95ZjPSv0psjljNZ6zXabdE+J7TD0o0boShKQsujpDnQYczT+Pet/TWH0b5zyXC8NiYpO49T8MzhP/30U6PPAxGOkXmcCIKow+g8TgQRDxhjuq/OxQs98yjF8zORiPc3Mg+jSFK2j1NhYSFKSkqwbt26REchCIIgkphIfXNk6chMiIf+JDOA1+vF66+/DgC47rrruKfQj+QIvtzb0MiXeOZIhMdKDpmyWMkhUxZZHDJlsZJDpiy8DrWDerXHD+b3oarkC7z6ShnGFYy2VL0OHz6cK4dZUvZWnYosS64Axy73NnSJV5ZlI2TKIotDpixWckTzWHnJlWTKYiWHTFl4l1wJprGWfjG65IqILLTkShJgt9tx0UUXaduiHXo77MU7R2N7rOSQKYuVHDJlkcUhUxYrOWTKYsQRrZO6YrOh/Sn9cUZuS6pXQdAVpwR1LiMIwjzUOZwgjhGpkzrQOB3VU6lzOJ1ZCIIgCMICiFiih2iYlB1VRxAEQRAEYRRqOBmguroaJ554Ik488URTU+hbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGeiangEYY9i2bZu2neoOmbLI4pApi5UcMmWRxSFTFis5ZMqSrI7g6RASnSUeUMPJAOnp6fjqq6+07VR3yJRFFodMWazkkCmLLA6ZsljJIVOWZHWErNmX4CzxgEbV0ag6gkhaaFQdQcgBYwyj5q2uNx0CAOTltsTbE/oLH9lHo+pMMHLkSHzxxRc4//zz8c477yQ6DkEQBEGkFIqi4O0J/RM2HUJjYomG06RJkzBu3Di8/PLLcX0fn8+HxYsXA6hrrKWlGa8+KzlkyiKLQ6YsVnLIlEUWh0xZrOSQKUuyORqaDkF0lvPPP9/w64XALMLy5cvZFVdcYfh15eXlDAArLy9v8LmVlZUMAAPAKisreWJayiFTFlkcMmWxkiOap8rtZbn3vMdy73mPHThSq21Xub1Sl4eONXkdMmWxkiMeWUpLS3V/f4sk4VecVqxYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvo2e1WazYeDAgdp2qjtkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUPCO4d/+OGHWLVqFXr37o3LL7+8XsNp0aJFGD16NObNm4d+/fphzpw5ePvtt7F161a0a9dOe94XX3yBZ555psE+Tm63G263W/u5oqICOTk51DmcIJIQ6hxOEKlLojqHJ3wCzGHDhmHGjBkYOXJkxN/PmjUL48ePx9ixY9GjRw/MmzcPmZmZmD9/Ptf7PfLII2jRooX2Lycnx0x8giAIgiBSiIQ3nGLh8XiwYcMG5Ofna4/ZbDbk5+dj9erVXM4pU6agvLxc+7dr1y5RcQmCIAiCsDhSN5wOHjwIv9+P7OzskMezs7NRVlam/Zyfn49Ro0bhgw8+wHHHHRezUeVyudC8efOQf3qpqalBr1690KtXL9TU1BgvkMUcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspjBEp0APvss8iylsSguLkZxcTH8/vpzTkQjEAhgy5Yt2jYPVnLIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgapG05t2rSB3W7Hvn37Qh7ft28f2rdvb8pdWFiIwsJCrXOZHtLT0/HJJ59o2zxYySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGRI+qi4YRVHqjarr168f+vbti7lz5wKoa2F27twZEydOxL333mv6PWnJFYJIXmhUHUGkLim75EplZaW20jEA7NixA5s3b0arVq3QuXNnFBUVoaCgAHl5eejbty/mzJmDqqoqjB071tT78tyqIwiCIAgitUl4w2n9+vUYPHiw9nNRUREAoKCgAAsXLsTVV1+NAwcOYNq0aSgrK0OvXr3w0Ucf1eswbhSeW3U+nw8ff1z31+3QoUO5p4u3ikOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8s/fv358phmkadp1xCaMkVuabQT3aHTFms5IjmoSVX5MhiJYdMWazkiEeWlF1yJVHw3Kqz2WzIy8vTtnmwkkOmLLI4ZMpiJYceT42n4c+yLOWhY01eh0xZrOSQLYsZpOocngioczhBJC/BncODoc7hBGF9UnbJFYIgCF4yHHbk5bYMeSwvtyUyHPYEJSIIwurQn2QEQSQtiqLg7Qn9UeM9dpsuw2GHoigJTEUQhJVJ2StOxcXF6NGjB/r06aP7NTU1NTj77LNx9tlnm5ou3ioOmbLI4pApi5UcsTyKoiDTmab9i9VokqU8dKzJ65Api5UcsmUxRaN2RZcQGlUn1yiJZHfIlMVKDpmyyOKQKYuVHDJlsZIjHlloVF0S4HK5sHjxYm071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhOSk7K06ngkw/X4/Vq5cCQA455xzYLcbH/JsJYdMWWRxyJTFSg6ZssjikCmLlRwyZbGSIx5ZevbsyZXDNI3ao0pCqHO4XJ39kt0hUxYrOWTKIotDpixWcsiUxUqOeGShzuFJgKIo6NGjh7ad6g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdw6lzOEEQBEEkHdQ5nCAIgiAIQnJStuHEM3M4QRAEQRCpTco2nAoLC1FSUoJ169bpfk1NTQ2GDBmCIUOGmJou3ioOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwS4XC689tpr2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA42qo1F1BEEQBJF00Kg6giAIgiAIyaFbdQbw+/3YuHEjAOCMM87gni7eKg6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyydO3alSuHaRq1R5VEPPPMM6x79+6sW7du1Dlcos5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/BGprCwEIWFhdo9Uj0oioLc3FxtmwcrOWTKIotDpixWcsiURRaHTFms5JApi5UcsmUxA3UOp87hBEEQBJF0UOdwgiAIgiAIyaGGE0EQBEEQhE6o4WSA2tpajBgxAiNGjEBtbW3KO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZcQWnJFrlESye6QKYuVHDJlkcUhUxYrOWTKYiVHPLLQqLokwOl04oUXXtC2U90hUxZZHDJlsZJDpiyyOGTKYiWHTFms5JAtixloVB2NqiMIgiCIpING1REEQRAEQUhOyt6qKy4uRnFxMfx+v+7XBAIB/PDDDwCA7t27w2Yz3u60kkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8snTp14sphmkbtUSUh1Dlcrs5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/AkoU2bNuSIg8dKDlEecsTHYyWHKA854uMhR3w8orLwQp3DqXM4QRAEQSQd1DmcIAiCIAhCcqjhRBAEQRAEoRNqOBmgtrYW1113Ha677jpT08VbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKRq1K7qE0Kg6uUZJJLtDpixWcsiURRaHTFms5JApi5Uc8chCo+qSAKfTidmzZ2vbqe6QKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQw0qo5G1REEQRBE0kGj6giCIAiCICSHbtUZIBAI4LfffgMAdO7cmXu6eKs4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyJKVlcWVwzSN2qMqTvz3v/9l3bp1Y127dmUvvviioddS53C5Ovslu0OmLFZyyJRFFodMWazkkCmLlRzxyEKdwznx+XwoKirC8uXL0aJFC/Tu3RsjR45E69at4/J+mZmZ5IiDx0oOUR5yxMdjJYcoDzni4yFHfDyisvCS9J3Dv/76a8ycOROLFy8GAEyePBn9+vXDtddeq+v11DmcIAiCIJKPlO0cvmLFCgwfPhwdO3aEoihYsmRJvecUFxejS5cuSE9PR79+/bB27Vrtd6WlpejUqZP2c6dOnbBnz57GiE4QBEEQRIqR8IZTVVUVevbsieLi4oi/X7RoEYqKijB9+nRs3LgRPXv2xNChQ7F///5GTkoQBEEQRKqT8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz8fANCxY8eQK0x79uxBx44do76f2+1GRUVFyD+9uN1ujB8/HuPHj4fb7db9Oqs6ZMoii0OmLFZyyJRFFodMWazkkCmLlRyyZTFFo3ZFbwAAbPHixdrPbreb2e32kMcYY2z06NHs0ksvZYwx5vV6WdeuXdnu3bvZkSNHWLdu3djBgwejvsf06dO1HvnB/2hUHR+yZJHFIVMWKzlkyiKLQ6YsVnLIlMVKjnhkoVF1ETh48CD8fj+ys7NDHs/OzsaPP/4IAEhLS8OTTz6JwYMHIxAI4O677445om7KlCkoKirSfq6oqEBOTo6uPA6HAzNmzNC2ebCSQ6YssjhkymIlh0xZZHHIlMVKDpmyWMkhWxYzSDWqTlEULF68GCNGjABwrOP3119/jf79+2vPu/vuu/Hll1/im2++4X6v4uJiFBcXw+/346effqJRdQRBEASRRKTsqLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3TpTHoIgCIIgUgepG05OpxO9e/fGsmXLtMcCgQCWLVsWcgWqsWCM4cCBAzhw4AB4L9RZySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKcR0leLnyJEjbNOmTWzTpk0MAJs1axbbtGkT27lzJ2OMsTfffJO5XC62cOFCVlJSwm6++WaWlZXFysrKTL3vM888w7p37866detGncMl6uyX7A6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKdg5fv349Bg8erP2sdtwuKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhSgvL0dWVpauaQmqqqq07YqKCvj9fsPvayWHTFlkcciUxUoOmbLI4pApi5UcMmWxkiMeWY4cOQIAjX7lSarO4Ylg9+7dukfVEQRBEAQhF9u3b8ef/vSnRnu/lG84BQIBlJaWolmzZlAUJdFxUgp1Kohdu3bRiEYJoP0hF7Q/5IL2h3yUl5ejc+fO+OOPP5CVldVo75vwW3WJxmaz4bjjjkt0jJSmefPmdCKSCNofckH7Qy5of8iHzda449ykHlVHEARBEAQhE9RwIgiCIAiC0Ak1nIiE4XK5MH36dLhcrkRHIUD7QzZof8gF7Q/5SNQ+SfnO4QRBEARBEHqhK04EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EN8XFxejSpQvS09PRr18/rF27Nubz3377bZx88slIT0/Hqaeeig8++CDk94wxTJs2DR06dEBGRgby8/Px888/hzznoYcewllnnYXMzMxGnSk2GWjs/fHrr7/ixhtvxPHHH4+MjAyccMIJmD59OjweT1zKl2wk4vNx6aWXonPnzkhPT0eHDh1www03oLS0VHjZkpVE7BMVt9uNXr16QVEUbN68WVSRkppE7I8uXbpAUZSQf48++qix4I26pDBhGd58803mdDrZ/Pnz2ffff8/Gjx/PsrKy2L59+yI+f9WqVcxut7PHH3+clZSUsPvvv585HA72v//9T3vOo48+ylq0aMGWLFnCtmzZwi699FJ2/PHHs5qaGu0506ZNY7NmzWJFRUWsRYsW8S5m0pCI/fHhhx+yMWPGsI8//pht376dLV26lLVr14797W9/a5Qyy0yiPh+zZs1iq1evZr/++itbtWoV69+/P+vfv3/cy5sMJGqfqNx+++1s2LBhDADbtGlTvIqZNCRqf+Tm5rIHH3yQ7d27V/tXWVlpKDs1nAgu+vbtywoLC7Wf/X4/69ixI3vkkUciPv+qq65iF198cchj/fr1Y7fccgtjjLFAIMDat2/PZs6cqf3+8OHDzOVysTfeeKOeb8GCBdRwCiLR+0Pl8ccfZ8cff7yZolgCWfbH0qVLmaIozOPxmCmOJUjkPvnggw/YySefzL7//ntqOB0lUfsjNzeXzZ4921R2ulVHGMbj8WDDhg3Iz8/XHrPZbMjPz8fq1asjvmb16tUhzweAoUOHas/fsWMHysrKQp7TokUL9OvXL6qTqEOm/VFeXo5WrVqZKU7SI8v+OHToEF5//XWcddZZcDgcZouV1CRyn+zbtw/jx4/Hq6++iszMTJHFSloS/Rl59NFH0bp1a5x++umYOXMmfD6fofzUcCIMc/DgQfj9fmRnZ4c8np2djbKysoivKSsri/l89X8jTqIOWfbHtm3bMHfuXNxyyy1c5bAKid4f99xzD5o0aYLWrVvjt99+w9KlS02Vxwokap8wxjBmzBhMmDABeXl5QspiBRL5Gbn99tvx5ptvYvny5bjlllvw8MMP4+677zaUnxpOBEGYZs+ePbjwwgsxatQojB8/PtFxUpq77roLmzZtwieffAK73Y7Ro0eD0QIRCWHu3Lk4cuQIpkyZkugoxFGKioowaNAgnHbaaZgwYQKefPJJzJ07F263W7eDGk6EYdq0aQO73Y59+/aFPL5v3z60b98+4mvat28f8/nq/0acRB2J3h+lpaUYPHgwzjrrLLzwwgumymIFEr0/2rRpg27dumHIkCF488038cEHH2DNmjWmypTsJGqffP7551i9ejVcLhfS0tLQtWtXAEBeXh4KCgrMFyxJSfRnJJh+/frB5/Ph119/1Z2fGk6EYZxOJ3r37o1ly5ZpjwUCASxbtgz9+/eP+Jr+/fuHPB8APv30U+35xx9/PNq3bx/ynIqKCnzzzTdRnUQdidwfe/bswaBBg9C7d28sWLAANhudUmT6fAQCAQAw9Ne0FUnUPnn66aexZcsWbN68GZs3b9aGzy9atAgPPfSQ0DImEzJ9RjZv3gybzYZ27drpL4CpruVEyvLmm28yl8vFFi5cyEpKStjNN9/MsrKyWFlZGWOMsRtuuIHde++92vNXrVrF0tLS2BNPPMF++OEHNn369IhDSbOystjSpUvZt99+yy677LJ6Q0l37tzJNm3axP7xj3+wpk2bsk2bNrFNmzaxI0eONF7hJSQR+2P37t2sa9eu7Pzzz2e7d+8OGd6b6iRif6xZs4bNnTuXbdq0if36669s2bJl7KyzzmInnHACq62tbdwKkJBEnbOC2bFjB42qO0oi9sfXX3/NZs+ezTZv3sy2b9/OXnvtNda2bVs2evRoQ9mp4URwM3fuXNa5c2fmdDpZ37592Zo1a7TfDRw4kBUUFIQ8/6233mLdunVjTqeTnXLKKez9998P+X0gEGB///vfWXZ2NnO5XOz8889nW7duDXlOQUEBA1Dv3/Lly+NVzKShsffHggULIu4L+nusjsbeH99++y0bPHgwa9WqFXO5XKxLly5swoQJbPfu3XEtZzKRiHNWMNRwCqWx98eGDRtYv379WIsWLVh6ejrr3r07e/jhhw3/YaEwRr0GCYIgCIIg9EAdEgiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIEzi8XjQtWtXfP3110K9H330EXr16qWtOUcQROKhhhNBECGMGTMGiqLU+7dt27ZER5OWefPm4fjjj8dZZ52lPaYoCpYsWVLvuWPGjMGIESN0eS+88EI4HA68/vrrgpISBGEWajgRBFGPCy+8EHv37g35d/zxx9d7nsfjSUA6uWCM4ZlnnsGNN94YF/+YMWPw9NNPx8VNEIRxqOFEEEQ9XC4X2rdvH/LPbrdj0KBBmDhxIiZPnow2bdpg6NChAIDvvvsOw4YNQ9OmTZGdnY0bbrgBBw8e1HxVVVUYPXo0mjZtig4dOuDJJ5/EoEGDMHnyZO05ka7QZGVlYeHChdrPu3btwlVXXYWsrCy0atUKl112GX799Vft9+rVnCeeeAIdOnRA69atUVhYCK/Xqz3H7XbjnnvuQU5ODlwuF7p27Yp//vOfYIyha9eueOKJJ0IybN68OeYVtw0bNmD79u24+OKLDdYy8Ouvv0a8ujdo0CDtOcOHD8f69euxfft2w36CIMRDDSeCIAzx8ssvw+l0YtWqVZg3bx4OHz6M8847D6effjrWr1+Pjz76CPv27cNVV12lveauu+7Cl19+iaVLl+KTTz7BF198gY0bNxp6X6/Xi6FDh6JZs2ZYuXIlVq1ahaZNm+LCCy8MufK1fPlybN++HcuXL8fLL7+MhQsXhjS+Ro8ejTfeeANPP/00fvjhBzz//PNo2rQpFEXBuHHjsGDBgpD3XbBgAc4991x07do1Yq6VK1eiW7duaNasmaHyAEBOTk7IVb1NmzahdevWOPfcc7XndO7cGdnZ2Vi5cqVhP0EQcYARBEEEUVBQwOx2O2vSpIn278orr2SMMTZw4EB2+umnhzz///7v/9gFF1wQ8tiuXbsYALZ161Z25MgR5nQ62VtvvaX9/vfff2cZGRls0qRJ2mMA2OLFi0M8LVq0YAsWLGCMMfbqq6+yk046iQUCAe33brebZWRksI8//ljLnpuby3w+n/acUaNGsauvvpoxxtjWrVsZAPbpp59GLPuePXuY3W5n33zzDWOMMY/Hw9q0acMWLlwYtb4mTZrEzjvvvHqPA2Dp6ekh9dikSROWlpbGLrvssnrPr6mpYf369WOXXHIJ8/v9Ib87/fTT2QMPPBA1A0EQjUdaYpttBEHIyODBg/Hcc89pPzdp0kTb7t27d8hzt2zZguXLl6Np06b1PNu3b0dNTQ08Hg/69eunPd6qVSucdNJJhjJt2bIF27Ztq3dlp7a2NuQ21imnnAK73a793KFDB/zvf/8DUHfbzW63Y+DAgRHfo2PHjrj44osxf/589O3bF//973/hdrsxatSoqLlqamqQnp4e8XezZ89Gfn5+yGP33HMP/H5/veeOGzcOR44cwaeffgqbLfRmQEZGBqqrq6NmIAii8aCGE0EQ9WjSpEnUW1PBjSgAqKysxPDhw/HYY4/Ve26HDh10j8ZTFAWMsZDHgvsmVVZWonfv3hFHmLVt21bbdjgc9bzqcP6MjIwGc9x000244YYbMHv2bCxYsABXX301MjMzoz6/TZs2WsMsnPbt29erx2bNmuHw4cMhj82YMQMff/wx1q5dG/GW36FDh0LKSBBE4qCGE0EQpjjjjDPw73//G126dEFaWv1TygknnACHw4FvvvkGnTt3BgD88ccf+Omnn0Ku/LRt2xZ79+7Vfv75559DrrKcccYZWLRoEdq1a4fmzZtzZT311FMRCATw5Zdf1rsSpHLRRRehSZMmeO655/DRRx9hxYoVMZ2nn346nnvuOTDGoCiK4Uz//ve/8eCDD+LDDz/ECSecUO/36hW1008/3bCbIAjxUOdwgiBMUVhYiEOHDuHaa6/FunXrsH37dnz88ccYO3Ys/H4/mjZtihtvvBF33XUXPv/8c3z33XcYM2ZMvdtR5513Hp555hls2rQJ69evx4QJE0KuHl133XVo06YNLrvsMqxcuRI7duzAF198gdtvvx27d+/WlbVLly4oKCjAuHHjsGTJEs3x1ltvac+x2+0YM2YMpkyZghNPPBH9+/eP6Rw8eDAqKyvx/fffG6i1Or777juMHj0a99xzD0455RSUlZWhrKwMhw4d0p6zZs0auFyuBnMQBNE4UMOJIAhTdOzYEatWrYLf78cFF1yAU089FZMnT0ZWVpbWOJo5cybOOeccDB8+HPn5+RgwYEC9vlJPPvkkcnJycM455+Avf/kL7rzzzpBbZJmZmVixYgU6d+6Myy+/HN27d8eNN96I2tpaQ1egnnvuOVx55ZW49dZbcfLJJ2P8+PGoqqoKec6NN94Ij8eDsWPHNuhr3bo1Ro4cyTVJ5fr161FdXY0ZM2agQ4cO2r/LL79ce84bb7yB6667LubtQoIgGg+FhXcqIAiCaAQGDRqEXr16Yc6cOYmOUo+VK1fi/PPPx65du5Cdnd3g87/99lsMGTIE27dvj9hJnpeDBw/ipJNOwvr16yNOQEoQRONDV5wIgiCO4na7sXv3bjzwwAMYNWqUrkYTAJx22ml47LHHsGPHDqF5fv31Vzz77LPUaCIIiaDO4QRBEEd54403cOONN6JXr1545ZVXDL12zJgxwvPk5eUhLy9PuJcgCH7oVh1BEARBEIRO6FYdQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6+X/DiLPOFtt7bAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 5e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "42b87c7c", + "metadata": {}, + "source": [ + "Yes, we do see a nice QPO there, but how can we be sure about the low-frequency continuum when it's so polluted from the harmonics of the observing window?\n", + "\n", + "A proper treatment of gaps is not possible at these long timescales, but gaps can certainly be ignored at shorter time scales. As we've seen in the `AveragedPowerspectrum` tutorial, we can study the short-term variability with" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a71841b4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:00, 1671.53it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum(ev_tot, dt=0.01, segment_size=256, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "11aff354", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2e0lEQVR4nO3deXxU1fk/8M/sk8lCEgLZSAi7rImGgChKsFFERKEVrbUaELG2waVUq6hfqf1RbOuGfo1SV2xrFbUF+1WLC7Ioe8CAENkDJEA2ss++3N8f6VwzZDJL5s5MJvN5v168nLnnzLlPLpg8Offc88gEQRBAREREFMXk4Q6AiIiIKNyYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT1luAMIN4fDgbNnzyI+Ph4ymSzc4RAREZEPBEFAW1sbMjIyIJcHPr8T9QnR2bNnkZWVFe4wiIiIqAeqqqowaNCggMeJ+oQoPj4eQMcFTUhICHM0RERE5IvW1lZkZWWJP8cDFbUJUWlpKUpLS2G32wEACQkJTIgikMViwQsvvAAAuP/++6FWq0M2nre+ntqljpuIKFpJtdxFFu3FXVtbW9GvXz+0tLQwIYpAer0ecXFxAID29nbExsaGbDxvfT21Sx03EVG0kfrnd9TOEFHfoFQqUVxcLL4O5Xje+npqlzpuIiIKDGeIOENEREQUcaT++c19iIiIiCjqMSEiIiKiqMeEiCKaXq9HYmIiEhMTodfrQzqet76e2qWOm4iIAsPVnBTxWlpawjaet76e2qWOm4iIeo4JEUW0mJgYHDlyRHwdyvG89fXULnXcREQUGD5lxqfMiIiIIg6fMiMiIiKSWJ+4ZVZZWYk777wTtbW1UCgU2LFjB3f+jRJWqxWvvvoqAODuu++GSqUK2Xje+npqlzpuIiIKTJ+4ZTZt2jQsX74cV1xxBRobG5GQkODz7r+8ZRbZWLqDiCg6sXTHBQ4ePAiVSoUrrrgCAJCcnBzmiCiU7HY7rrnmGgiCgNOnT+Oiiy4KqNCfQqHATTfdJL4OpK+ndn/OQ0REwRf2GaItW7bg6aefxp49e3Du3DmsXbsWc+bMcelTWlqKp59+GjU1NcjNzcX//u//YtKkSQCAdevWYfXq1bDb7Thz5gxuuukmPProoz6fnzNEke3s2bPi01oAMHnyZD61RUQUBfrcomq9Xo/c3FyUlpa6bV+zZg2WLFmCZcuWYe/evcjNzcWMGTNQV1cHALDZbPj666/x8ssvY/v27fjiiy/wxRdfhPJLoDC6MJ/vA3eAiYgoDMKeEM2cORPLly/H3Llz3bY/99xzWLRoERYsWIAxY8Zg1apV0Ol0ePPNNwEAmZmZmDhxIrKysqDRaHDdddehvLy82/OZzWa0tra6/CEiIqLoFvaEyBOLxYI9e/agqKhIPCaXy1FUVITt27cDAAoKClBXV4empiY4HA5s2bIFo0eP7nbMp556Cv369RP/ZGVlBf3roOAxGo2YN28e5s2bB5PJFPB4BoMBmZmZyMzMhMFgCKivp3Z/zkNERMHXqxdVNzQ0wG63IzU11eV4amoqDh06BABQKpVYsWIFrrzySgiCgGuuuQbXX399t2MuXboUS5YsEd+3trYyKYpggiCgoaFBfC3FeGfPnvVpPG99PbX7cx4iIgq+Xp0Q+WrmzJmYOXOmT301Gg00Gk2QI6JQ0Wg0eO211wAAarU64PG0Wi2+/fZb8XUgfT21+3MeIiIKvl6dEKWkpEChUKC2ttbleG1tLdLS0gIau7S0FKWlpbDb7QGNQ+GlUCgwfPhwScfLy8uTpK+ndn/OQ0REwder1xCp1Wrk5+djw4YN4jGHw4ENGzZgypQpAY1dUlKCiooK7N69O9AwiYiIKMKFfYaovb0dx44dE99XVlaivLwcycnJyM7OxpIlS1BcXIyJEydi0qRJWLlyJfR6PRYsWBDGqKm3sFqtWL9+PQC4LL4PZLx33nkHAHDbbbd5Ld3hqa+ndn/OQ0REwRf2jRk3bdqE6dOndzleXFyM1atXAwBeeuklcWPGvLw8vPjii5g8eXJA5+18y+zIkSPcmDFCHT16FCNHjgQAfPrpp5g2bRp0Ol2Px2PpDiKiyNDnSncUFhZ6fcpm8eLFWLx4saTnLSkpQUlJiXhBKfIIggCz2Swmx1KUwFAoFLjuuut8Gs9bX0/t/pyHiIiCL+wzROHG0h2R6+TJkzh58qTLsUmTJgU0Q0RERJGhz5XuCJfS0lKMGTMGBQUF4Q6Fekiv14c7BCIi6iOiNiHiU2Z9x4gRI6BUhv3uLxERRbCoTYiobzCZTJg6dSpuvfVWyUp3jBgxAiNGjPCpdIenvp7a/TkPEREFH3+tpogmCIK4jkiq0h3ObSB8Kd3hqa+ndn/OQ0REwRe1CRF3qu4b1Go11q5di7Nnz0pWuuObb74RXwfS11O7P+chIqLg41NmfMosYh08eBD19fUYMWIEKisrYbPZ+JQZEVGU4FNmRERERBKL2ltm1DfY7XZ8/PHHqKurw2WXXRbweDabDWvXrgUAzJ071+PTa976emr35zxERBR8UXvLjKU7It/Bgwdx+vRpccdnlu4gIooefa50R7iwdEffIJfLcemll8JkMkEuD/wOsFwux7Rp08TXgfT11O7PeYiIKPiidobIiYuqIxcXVRMRRS8uqiYiIiKSGBMiIiIiinpMiCiimc1mXHPNNViwYAHMZnPA4xmNRuTl5SEvLw9GozGgvp7a/TkPEREFX9QuquZO1X2Dw+FARUWF+FqK8fbt2+fTeN76emr35zxERBR8UZsQ8SmzvkGtVuMf//gHampqJCvd8fnnn4uvA+nrqd2f8xARUfDxKTM+ZRax+JQZEVH04lNmRERERBKL2ltm1DfY7XZs2LABNTU1yM/PD3g8m82Gzz77DAAwY8YMr6U7PPX11O7PeYiIKPj4XZgimsViQXFxMYCO0h2BMpvNuP766wF0lNTwlKh46+up3Z/zEBFR8PG7MEU0uVyO3NxcmM1myUp3TJw4UXwdSF9P7f6ch4iIgi9qF1WzuGvk46JqIqLoxUXVEikpKUFFRQV2794d7lCIiIgozKI2ISIiIiJyYkJEEc1sNmPOnDn45S9/KVnpjssvvxyXX365T6U7PPX11O7PeYiIKPi4qJoimsPhQFlZmfhaivG2bdvm03je+npq9+c8REQUfEyIKKKp1Wq8/vrrqK2tlaR0h0ajwdq1a8XXgfT11O7PeYiIKPii9ikzJ5buiFx8yoyIKHrxKTMiIiIiifGWGUU0u92Obdu2oaamBmPGjAl4PJPJhPXr10On0+FHP/oRFAqFx3N//fXXAIArrriiS19P7d4+S0REocWEiCKaxWLBzTffDECa0h1lZWWYO3cugI6SGrGxsd32NZlMmD59erd9PbV7+ywREYVW1CZEnXeqpsglk8kwcuRIWCwWyGSygMfT6/UYPHiwOLa3cztnpdz19dTu7bNERBRaXFTNRdURKxiLqjdv3gzn/xKFhYUSRUpERFLjomoiIiIiiTEhIiIioqjHhIgimtlsxq233opf//rXkpTuMJvNePDBB/Hggw/6VLrj6quvxtVXX91t6Y7u2r19loiIQitqF1VT3+BwOMTH16Uq3bFnzx6fxnM4HPjyyy+77eup3dtniYgotJgQUURTq9V48cUXUV9fL0npDpVKhUcffRSAb6U7/v73v3fb11O7t88SEVFo8SkzPmUWsfiUGRFR9OJTZkREREQSY0JEEamtrQ319fWw2+0oLy/H999/L8kmm3a7HYcOHcKhQ4e8jme327F7927s3r3bbV9P7d4+S0REocU1RBSRvvvuOwAdpTuuv/56ANKU7rBYLPjlL38JALj99tu9lu6YNGkSgO5Ld3TX7u2zREQUWn0iIcrJyUFCQgLkcjmSkpKwcePGcIdEQWaz2QAAAwYMwODBg2E2myUpgSGTyZCamiq+9tbXU5kPT+3ePktERKHVJxIiANi2bRvi4uLCHQaF2Lhx43Dy5El88803YpIUCK1Wi/feew8AvC7O1ul0OHnyZI/avX2WiIhCi2uIiIiIKOqFPSHasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS7tMJsO0adNQUFCAd955J0SRExERUV8R9oRIr9cjNzcXpaWlbtvXrFmDJUuWYNmyZdi7dy9yc3MxY8YM1NXViX2++eYb7NmzB//+97+xYsUK7N+/P1ThU5iZTCbMmTMHS5cuhcViCXg8s9mMxx9/HI8//jhMJpNP554zZ47bvp7avX2WiIhCK+xriGbOnImZM2d22/7cc89h0aJFWLBgAQBg1apV+OSTT/Dmm2/ikUceAQBkZmYCANLT03Hddddh7969mDBhgtvxzGazS82r1tZWqb4UCgO73Y6PPvpIfB0oh8OBrVu3+jSet3N7apc6biIiCkzYEyJPLBYL9uzZg6VLl4rH5HI5ioqKsH37dgAdM0wOhwPx8fFob2/HV199hZtvvrnbMZ966ik8+eSTQY+dQkOtVuPVV1/F0aNHoVKpAh5PpVLhN7/5jTi2L+furq+ndm+fJSKi0OrVCVFDQwPsdrv4GLRTamoqDh06BACora3F3LlzAXT8pr1o0SIUFBR0O+bSpUuxZMkS8X1rayuysrKCED2FgkqlwqJFiyR7ykypVIr7GnlLsJzn7km7t88SEVFo9eqEyBdDhw7Fvn37fO6v0WhYTJOIiIhchH1RtScpKSlQKBSora11OV5bW4u0tLSAxi4tLcWYMWM8ziZR7+dwOHDw4EFUVlbC4XBIMl5lZaVP4znPffDgQbd9PbV7+ywREYVWr06I1Go18vPzsWHDBvGYw+HAhg0bMGXKlIDGLikpQUVFBXbv3h1omBRCZ8+exebNm8Ukwmg0Yty4cbjjjjtcFsv3lNlsxp133ok777wTRqPRY1/nuceNG+e2r6d2b58lIqLQCvsts/b2dhw7dkx8X1lZifLyciQnJyM7OxtLlixBcXExJk6ciEmTJmHlypXQ6/XiU2cUXRobGyEIAgAgJiYGarUaKSkpsFqtkp2jX79+PvUTBAHJyckAOh4AcFePLCUlpdvPe2ojIqLQCntCVFZWhunTp4vvnQuei4uLsXr1atxyyy2or6/HE088gZqaGuTl5WH9+vVdFlr7q7S0FKWlpXzkOUINGzYMgwYNgkwmQ319vWSLqmNiYsTNQb0VXHU4HPjnP/8JAGhpaUFSUpJLe2xsLOrr691+1lMbERGFXtgTosLCQvE3/u4sXrwYixcvlvS8JSUlKCkpQWtrq88zAtR7KBSKsBdF7bz2h4k1EVFk69VriIiIiIhCIewzROHCW2Z9g8lkwsKFC1FfX48HH3ww4PHMZjP+/Oc/AwAuvfRSaLVaj+devnw5AODFF1/sNjYAeOONN1zG8tRGREShJxO83a/q45y3zFpaWpCQkBDucMiLAwcOoKGhASNHjkRGRgb0ej3i4uIAAJ9++in69euHrKysHm+2uX79erGUTHt7u8d1RGfOnMGgQYMAAPv378f48eNd2jvHduFYntqIiMg7qX9+R+0MEfUNarUazz//PKqrq6FSqWCxWHDu3LkeJ0QqlQolJSXi2N7O7ezrbldrZ2zuxvLURkREoceEiCKaSqXCAw88AIfDgZqaGhw5ciSg8ZRKJW666SZxbG/n9tTXGZunuImIqHeI2kXV3Km6b5HL5dDpdOEOg4iIIlTUzhDxsfu+weFw4PTp0wAgyT1kh8MhlopxOByQy7v/ncE5KwUAmZmZHmPLzs52GctTGxERhV7UJkTUNxiNRgwZMgQAUF1d3eNxWltbceLECZhMJtx6660AgNmzZ3tc7Gw0GsW++/fv9xjbhQunPbUREVHoMSGiiCfFrbJz586hubkZAPx6BN5bX0+x8RYfEVHvEbUJEfch6htiY2Oh1+sBQExoeqJzfbT//Oc/4tjezu3s6y65cZbnOH/+fJddtTvHTURE4Re1CxdY7Z5C4bvvvsPx48dx8ODBcIdCREQeRG1CROSOc6ZHqjppRqMRADgbRETUy0XtLTPqG8xms1j411lGIxCxsbH4/e9/D6CjdIdGo/F47meeeQYAxHIf3bXfd9993cb90ksveTwPEREFH0t39ILSHTabDeXl5TCZTD36vFKpxNixYxEfHy9xZL2Pp9Id1dXVOHr0KHQ6HSZNmuTXuIcOHUJNTQ2SkpKQl5cHQNrSHZ9++qlYEuTCNj5lRkTkP5bu6IPa29vR3t7e48/bbDY0NjZGRUJ0IZVKJc4MedtZ2hdKpVIsutrdeBaLBYcOHUJtba3YV6ns+r+SSqXqtl3quImIKDBRmxD1xqfMtFotJkyY4NdnKisrUV9fH6SIej+1Wo3HHnsMQGBPmXUe7+c//zlkMlm3NcYaGxvR2NgIlUqFn//85+LnuhvLW9xERBR+UZsQ9cadqntSfsLdzAQFV5TfZSYi6pP405QimiAIaGhoACBNcigIApqbmyGTySAIgsenzQRBQEtLCwCIa4ncjQWgS9LdOe6UlBTJnmojIqKeYUJEEc1gMGDgwIEAAivd4WQ0GjF37lwA3hc7m0wmsa+70h0Gg0Fs//TTT7uNm4uqiYjCj/sQERERUdTjDBFFtNjYWHFNjxSLqnU6HTZu3AiZTOZ11iYmJgYbN24UP+cuNme7uzauRSIi6j04Q0RERERRL2oTotLSUowZMwYFBQXhDoWIiIjCLGoTIhZ37RvMZjMeeOABPPDAAzCbzQGPZ7FY8NJLL+F///d/vY7n7PvSSy+57Ws2m8V2i8XiNW5BEHD48GEcPHgQVqs14K+FiIh8F7UJEfUNNpsNL7zwAl544QXYbDZJxvvnP/+Jf/7zn17Hs9vtYt8LN/h0OBw4f/58t+3u4tbr9Th37hzq6+vR1NQU8NdCRES+46JqimgqlQqPPvqo+DpQSqUSt912G2QymdfxnH2drzs7fPgwqquru213F3fnRdZccE1EFFpMiCiiqdVq/OEPfwAgXemOu+66y2PpDieVSoW77rpL/FxnLS0tLu2e4iYiovDjLTMiIiKKepwhoogmCAIMBoP4WorxjEajz6U7TCZTt+fu3K7VaruNW6fTsXQHEVGYMSGiiGYwGBAXFwdAutId1113HQDfSnc4+7or3dG53V3pDmfcLN1BRBR+vGVGREREUY8zRBTRdDod2tvbAUDc68dgMMBkMnW5TeWLmJgYfPrpp5DJZG7LcXSm1WrFmZ+YmBiP7RfG0jlub+chIqLgi9oZIu5U3Tc4a47Fxsa6rMPZuXNnjzY3lMlkiImJQUxMTLfretra2nzq66m9u7iJiCg8ojYh4k7VfU9CQgJSUlIAdCxavnB3aCk4HA6cPXtW8nGJiCi8ojYhor7BYrHgsccew2OPPQabzYZx48YFtEGjxWLB66+/jtdff91tQuVwOMTXVqvVY9/O7RfOVnWOOxiJGxER+YcJEUU0q9WKFStWYMWKFZLU/7LZbHjnnXfw97//3et4zr7vvPOO2zIfntqljpuIiALDRdUU0ZRKJe6//37xtb8sFgvq6+tRU1MjjvGTn/zEp/EUCoXYV6FQ+NUeaNxERCQtfiemiKbRaLBy5coef/7UqVM4c+aM+F6tVmPx4sWQyWTQaDQeP+vs64zDU7vUcRMRkbR4y4yiGm9XERERwISIqMcGDhwY7hCIiEgivGVGEU2v10taAsNgMGD69Ok+jZeVlYWxY8cCcF+6o3MZkAtLd0gdNxERBYYzRERERBT1OENEvVJjYyMOHjwIu92OmJgY5Ofnu30aS6fToa6uTnwdqJiYGKxdu9an0h06nQ47d+7E2bNnuy3dsXbtWvF1MOMmIqLAMCGiXqmxsRF2ux1Ax60ng8GAhISELv1kMhkGDBgg2XllMhkSExMhk8m8ltSQyWTo378/DAZDt6U7EhMTu/2slHETEVFg+swtM4PBgMGDB+PBBx8MdyhE3bJYLCgrK8OePXvcbuZIRETh0WdmiP7whz/g0ksvDXcYFGIWiwVPP/00AOChhx6CWq0OeLy///3vAIApU6Z4HM9iseDll19GS0sLfvOb33Rpt1qtWLNmDQDglltuAQA0Nzejvb0dVqsVy5Ytg06nkyRuIiIKTJ+YITp69CgOHTqEmTNnhjsUCjGr1YrHH38cjz/+uGSlO9544w288cYbXsezWq147rnn8MYbb3RbusM51oXtNpsNK1askCxuIiIKTNgToi1btmD27NnIyMiATCbDunXruvQpLS1FTk4OtFotJk+ejF27drm0P/jgg3jqqadCFDH1JkqlEnfddRfuuusuSUpgKJVKzJo1C7NmzfI6nlKpxM0334xZs2Z1W7rDOdaF7QqFArfffrvfcVssFjQ1NbkUmSUiosCF/ZaZXq9Hbm4u7rzzTvz4xz/u0r5mzRosWbIEq1atwuTJk7Fy5UrMmDEDhw8fxsCBA/HRRx9h5MiRGDlyJLZt2+b1fGazGWazWXzf2toq6ddDoaXRaPDaa69JNp5arcaDDz7oU+kOjUaDFStWoKqqqtvSHd2taVOr1Vi5ciWSk5P9iq+8vBwGgwFZWVkYNmyYX58lIqLuhT0hmjlzpsdbXc899xwWLVqEBQsWAABWrVqFTz75BG+++SYeeeQR7NixA++99x4++OADcW1GQkICnnjiCbfjPfXUU3jyySeD8rUQ+ePw4cNISkrCiBEj3M4wuWMwGAAALS0twQyNiCjqhP2WmScWiwV79uxBUVGReEwul6OoqAjbt28H0JHgVFVV4eTJk3jmmWewaNGibpMhAFi6dClaWlrEP1VVVUH/OojcMZvNqKmpQXNzc7hDISKKemGfIfKkoaEBdrsdqampLsdTU1Nx6NChHo2p0Wi83gqhyKHX68WaYnV1dZKU7nDOWDY0NHgcT6/XY/z48RAEocu6NqBj/yTnbeB//etf3bZ9//336N+/f0BxExFRYHp1QuSv+fPn+9y3tLQUpaWl4uZ/FLmct5GkYjKZfO5rNBp7PJY/5yEiouDyKyFyOBzYvHkzvv76a5w6dQoGgwEDBgzAxRdfjKKiImRlZUkaXEpKChQKBWpra12O19bWIi0tLaCxS0pKUFJSgtbWVvTr1y+gsSh8YmJiUFlZKb4OlFarxbvvvuvTeDExMdi0aRPOnTvXpTQH0DEb6RzrwlnJzm1SxE1ERIHxaQ2R0WjE8uXLkZWVheuuuw7/+c9/0NzcDIVCgWPHjmHZsmUYMmQIrrvuOuzYsUOy4NRqNfLz87FhwwbxmMPhwIYNGzBlyhTJzkORSy6XIycnBzk5OZDLA18SJ5fLkZaWhvT0dK/jyeVyDBo0CGlpaW77Osdy1+6pjYiIQs+nGaKRI0diypQpeO2113D11VdDpVJ16XPq1Cn84x//wE9/+lM89thjWLRokU8BtLe349ixY+L7yspKlJeXIzk5GdnZ2ViyZAmKi4sxceJETJo0CStXroRerxefOuupYN8yM5lMPu8V03kbgGgnCALq6+vR3t4e7lCIiCiK+JQQff755xg9erTHPoMHD8bSpUvx4IMP4vTp0z4HUFZWhunTp4vvlyxZAgAoLi7G6tWrccstt6C+vh5PPPEEampqkJeXh/Xr13dZaO2vYN8y27dvn9f1JdRVc3MzKioquhy32WxuE0yr1YrS0lIAHX+n7pJ1f1itVnz44YcAgMsuu8zjeFarFW+99Raam5uxePFitzE7NxqdM2dOt20jR44MKGYiIgqcTwmRt2SoM5VK5deGcYWFhRAEwWOfxYsXu/2B05spFAqf95YBOqqfB5rk9QXOMhYqlQopKSmoqamBIAjYv38/1Go1dDqdS3+LxYJf//rXAIBFixZJkhA5E6w//elPHsezWCz4wx/+AAD4xS9+4XGsWbNmddvGgsREROHn91NmOTk5uPPOOzF//nxkZ2cHI6aQCPYts4kTJwZl3GgRGxuLUaNGQaFQoLq6GkBHAiKTyVz6KRQK/OxnPxNfB0qhUOBHP/oRZDKZ1/EUCgVuuOEG6PX6bkt3/OhHP3Ibm6c2IiIKPb8TogceeACrV6/G73//e0yfPh0LFy7E3LlzI25vHz5lFhmGDx+OYcOGYceOHW7XWmm1WrzzzjuSnU+j0eDxxx+HTCZz++TYhed+7rnnPJbuePzxx91+tnObt/MQEVHw+f14ywMPPIDy8nLs2rULo0ePxr333ov09HQsXrwYe/fuDUaMFOUunBUiIiKSWo83ZrzkkktwySWX4Nlnn8XLL7+Mhx9+GK+88grGjx+P++67DwsWLOAPsl6koqIC9fX13bZrNBpcfPHFETfT1xsJgsBNF4mIIkyPEyKr1Yq1a9firbfewhdffIFLL70UCxcuRHV1NR599FF8+eWX+Mc//iFlrJKKtp2q6+vrPS5eN5lMaGtri7iESK/XIycnBwBw8uRJl1IbR48exdixY/1aaG0wGMQnws6cOeO1dEdBQQEcDge+/vpr8XhDQwOAjv27br31VgAQN2F06txWXl6OAQMG+BwjERFJz++EaO/evXjrrbfw7rvvQi6X44477sDzzz+Piy66SOwzd+5cFBQUSBqo1KJ1DVF+fj7UarXLsQMHDqCtrS1MEQXOmYA4qVQqWK1WNDc3o66uDpmZmX6N508l+aampi7HLBaLT2OxYj0RUe/hd0JUUFCAq6++Gq+88grmzJnj9rfvIUOG4Kc//akkAZK0VCpVl1mgSL61GRMTgwMHDoivAWDs2LHYvXs3APi8OaaTVqvFm2++CZlM5lPpjk8//RQ1NTXdlu548803xdfdtbF0BxFR+PmdEJ04cQKDBw/22Cc2NhZvvfVWj4Mi8pVcLsfYsWNdjsXGxiI1NbVLDTxfxxsyZAhkMplPpTtGjhyJmJiYbkt3DBkyxON5nK+JiCi8/E6InMmQxWJBXV1dl9/AI3lvokhms9m4MzYREVEP+Z0QHTlyBAsXLsS2bdtcjguCAJlMFjGLlPvaouqqqipUVVWFO4yQs1qtWL16NQBg/vz5kuxU/fHHH0Mmk/lUuuO9995DU1MT7rrrri7tNpsN69evBwBce+213baxdAcRUfj5nRAtWLAASqUSH3/8MdLT0yN2/UlfWVTdv39/NDQ0+LRWJiEhIeKeIvPGYrHg7rvvBgD87Gc/kyQhevbZZwEAv/vd77yW7nBurlhcXOxxLOeu1O7aIq0sDRFRX+R3QlReXo49e/a4PFVG4ZOSkoKUlJRwhyGJtrY2tLa2euxz4W7VCoUCN954o/g6UAqFApdffrlP4ykUChQVFcFoNOLcuXMYOXKkS8LpaSx/zkNERMHnd0I0ZsyYLo85EwXKYDBgz5494vsLZx51Op1LMuQs8qrVasWq8e7U1dVh4MCBPs+MaTQaLF++3OfSHX/7299w6NAhAB2P0Q8cOFBsV6vVWL58udvPdm5j6Q4iovDzKSHq/Fv7n/70J/z2t7/FihUrMH78+C63FBISEqSNkKKCc+8euVyOhIQEZGVlubSPHz8eer0eQMfWAd6SCGdC1dbWhu+++y5oxXbT0tJw6tQpLmgnIopwPiVEiYmJLr+xC4LQZU0EF1X3PYIguF2bFMxbPFqtFnl5eV2Oy+VyxMfH+zxORkYGmpqaYDabXTZKDAaNRuM2Ierfvz+USiVqa2vFGa1QsFgsaGpqEs9PRETe+fTdcuPGjcGOI+T6yqLqYBEEAfv27UNzc3OXtszMTIwYMcKv8Zqbm1FTU+NyLCkpCampqYGECYPBgDFjxgDoqNfmTDwSEhIwfvx4lJWV+TWe0WgUNxU9ceKEx0TGYDBg3LhxsFgs4iaLnZnNZsyaNQsWiwXvv/++S5vJZML8+fMBADt37vQrRm8OHDiA1tZWDBgwQNyjyeFwQBAErlciIuqGTwnRtGnTgh0H9TKCILhNhgCgsbHR7/GOHz/epTxIXV1dwAmRIAg4deqU+DpQgiCIGzp6G8/buQVBELdCuLC983kcDgf27NkjWfkU5y3u8+fPi+Pv2rULVqsV+fn5IZ2tIiKKFD2eTzcYDDh9+nSX2xETJkwIOCjqXaZMmQKlUomWlhbs37+/R2M4b72lp6dDrVbj1KlTYiIgk8n8uh3WmVarxa5du8TXgdJoNHjllVd8XlS9a9cuHDlypEt9OOdYGzZscNuuVqvxyiuviO+DWUvOYrHAZDIBANrb25kQERG54XdCVF9fjwULFuA///mP23auyel7FAoFFAqF2xIT586dQ3t7u0vfQYMGuU0QAGDgwIHo168fqqurYbfbxUTA2+P2nmKTspCwQqHARRddBJlM5tNj9wUFBVCpVG5n0xQKBS655BLI5XK3j907t66Q4jaW3W5HY2MjH2ogIuohvxOiBx54AM3Nzdi5cycKCwuxdu1a1NbWYvny5eJGcxQdzGYzDh8+3OW4XC5HRkYGvv/+e3EGsfOiY7lcjoKCAuj1erS2toq3nXqDSJo9MZvNOHHiBBISEmA0GlFdXc1CsUREPeR3QvTVV1/ho48+wsSJEyGXyzF48GBcffXVSEhIwFNPPYVZs2YFI04KAaPRKM7Y+LLztbOPTCZDdnY2mpqa0NraCofDgaamJjQ1NXX5jPM2lFarleQWl81mw5o1awAAt9xyS4+fqsrIyEB2djbsdju++OILyGQyXH755V3G63xdbDYbPvjgA5w6dQqTJ092G9v777+PU6dOdfn/wm6346uvvgIALFy4sEcxnzt3DrW1taitrRVvOfLxfyKinvH7p4derxc3n0tKSkJ9fT1GjhyJ8ePHY+/evZIHGCx87L6r48eP9+hzzsrtdrtdvPXlXEQcHx+PoUOHAuhYUyP1DIbZbMbPf/5zAMCcOXN6nBDpdDpotVo0NjZixYoVAIClS5d2Ge/o0aNuz/3pp592GdNiseAXv/gFAGDq1KkuyZTFYhHPc/vtt/co5s7/dqVYUE5EFM38/ukxatQoHD58GDk5OcjNzcVf/vIX5OTkYNWqVUhPTw9GjEHBx+5/kJ6eDovF4vaHalJSUkB72ahUKiQlJQUSnkdyuRxFRUXiaynGy8/P73Y8q9UKoCOBUiqVKCoqQltbm9u+crkchYWFYnt9fb24n5e38xARUWj5/ZPu/vvvx7lz5wAAy5Ytw7XXXot33nkHarVarDpOkSU9PT2iktnOYmJi8MUXX0g63jPPPAOZTOZxNisnJ0c8d3l5udtF1VqtFl999RU2b94MoCOZci4212g0eOaZZ8R+REQUXn4nRM5bBACQn5+PU6dO4dChQ8jOzu4zRUapb7FYLDhy5AhGjhwZ8nPLZDIMHDgQdXV1IT83ERH5rsdz9RaLBYcPH4ZarcYll1zCZIh65MLZESnXGHUu6Hr27FnYbDbJxiYior7F74TIYDBg4cKF0Ol0GDt2LE6fPg0AuPfee/HHP/5R8gCp9zGbzfj2229x8ODBgMeKjY3FpEmTkJubi7y8PLEMh68MBgPGjh2LsWPHwmAwuLSpVCpceumlfo83f/58zJ8/v8t43Z37Jz/5ibjxYWdGoxFjx47FDTfc0KXdWbpj/vz5fDKMiKgX8DshWrp0Kfbt24dNmza5/HZfVFQkPv5MfZNzxsXhcKClpUXckLHzTExP6HQ6JCUlITEx0e9NCgVBQEVFBSoqKtwuCu9ug0hP4506dQonT570qXRHRUUFTpw40W3pjoqKChw/ftxt6Y5Tp07h1KlTfEKMiKgX8HsN0bp167BmzRpceuml4hMzADB27NgeP7ZNkSEmJgYTJ07sMqNx4VN6DocjZNsZaLVasfiwFIuTtVotnn/+eZ/Gc5772LFj3Zbu2LhxI06ePOm2dIfzPIEmlEREFLgele5w7kPUmV6vd0mQqG+Ki4tDXFycxz7V1dUhiqaj7EVhYaGk4+Xl5flcuqOwsBCJiYndlu4oLCxERUVFl0XVzvM4XxMRUXj5fcts4sSJ+OSTT8T3ziTo9ddfx5QpU6SLjCJOUlKSy546MpkMycnJYYyoK5vNhoaGhqAWUw3m2FKxWCzQ6/XhDoOIqNfwe4ZoxYoVmDlzJioqKmCz2fDCCy+goqIC27ZtE/dbiQTcqVp6/fv3xxVXXCGuiZHJZEGfNbTZbPj4448BANdff73XTSS///57nD9/HgDcFoW12Wz45ptvAMBt6Q53566srMSECRMAdKwNqqmpAdCxk/S6detQVVXVZbG43W7H9u3bAQDZ2dm+fKmScTgc2LVrF2w2G3Jzc4O6cSYRUaTwOyGaOnUqysvL8cc//hHjx4/H559/jksuuQTbt2/H+PHjgxFjUHCn6uAIRRLUmdlsxty5cwEA7e3tXhMis9ns9nXnY//zP/8DAPj1r3/tcbzO53ZXuqN///7Izc11226xWMTz3HTTTR5jlprD4RC3IDAajUyIiIjQg4QIAIYNG4bXXnvN5VhdXR1WrFiBRx99VJLAiHwhl8tx2WWXia+lGG/s2LEAvNcHc55br9e7PXd8fDwuu+wyGAwGsf3YsWNdzsPSHURE4dfzIlUXOHfuHP7nf/6HCRGFVExMDLZu3SrpeC+99BKAjuTFufDZ07m7K93hbO+8qNq5gFqj0YjnYekOIqLw46+mRJ2o1WrExsYCgNvNFkOlqqoqbOcmIopGTIiIOpHJZGGpeXYhLvYnIgotJkQU0YxGIwoKClBQUCBJCQyj0Yjp06fjnnvu8TpD5Dz3bbfd5naBtrP95ptv7tJuNptxzz33+HQeIiIKPp/XEC1ZssRje319fcDBEPnL4XCgrKxMfC3FeN9++y0A74uqvZ3bU7vD4cDhw4cli1sKNpsNjY2NSExM9LvkCRFRpPM5IXL+kPDkyiuvDCgYIn9pNBpxHyIpSmBoNBqsWbMGx48fh0ql8uncJ06c6LZ0x8cff4zTp0+7Ld2xYsUK8XWgnHXlAnH06FHU1tYiMTHR42JyIqK+yOeEyFkviqg3USqVmDVrVo8+a7FYupTUUCqVmDFjBr799luvexo5z93dU2bO9u5Kdzh3dvd2nlBxxujuayEi6ut6x3diohBw7kDt1LkYMfcCIiKKbj79FPjjH/8Ig8Hg04A7d+50qXVGFEx2ux1ffPEFvvjiC7+fzLJarQA6kqEBAwaI423cuBFlZWVex3Oee8eOHW77Otu3bdvWpd1ut6OsrMyn8xARUfD5NENUUVGBwYMHY968eZg9ezYmTpwo/gCx2WyoqKjAN998g7///e84e/Ys/vrXvwY16M6am5tRVFQEm80Gm82G+++/H4sWLQrZ+Sm8TCYTrrnmGgAd62icewg5yeVyDB48GHV1dd0+hTZq1ChxvZDJZBLLcXz11Vc+n9td6Q5P7RaLBQ899BCAjhpsREQUXj4lRH/961+xb98+vPTSS/jZz36G1tZWKBQKaDQacebo4osvxl133YX58+eHdOfd+Ph4bNmyBTqdDnq9HuPGjcOPf/xj9O/fP2QxUPjI5XKxXlh3t72GDBmC7OxsfP311z6NN27cOBiNRq812ZznNhqNbs/tbDeZTF3a5XI5hg0b5jFuIiIKHZ/XEOXm5uK1117DX/7yF+zfvx+nTp2C0WhESkoK8vLykJKSEsw4u6VQKKDT6QB07O0iCILXx6Wp74iJiUF5ebmk433zzTf49ttvvSb2znN7Kt1RXl7udlG1RqPB66+/DoClO4iIegO/fzWVy+XIy8vDjTfeiJ/+9KcoKioKKBnasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS3tzczNyc3MxaNAgPPTQQ2FLzoiIiCgyhX2uXq/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDJffuBMTE7Fv3z5UVlbiH//4B2pra7s9n9lsRmtrq8sfIiIiim5hT4hmzpyJ5cuXiwtZL/Tcc89h0aJFWLBgAcaMGYNVq1ZBp9PhzTff7NI3NTUVubm5HteKPPXUU+jXr5/4JysrS7KvhULPaDSisLAQhYWFkpXumDVrFh544AGfSncUFhbirrvu6rZ0R2FhIebPnw+z2QyDwSDGaDab8cADD+CBBx4Qj8lkMowbNy7gr4GIiPzXq/chslgs2LNnD5YuXSoek8vlKCoqwvbt2wEAtbW10Ol0iI+PR0tLC7Zs2YJf/vKX3Y65dOlSlzIkra2tTIoimMPhwObNm8XXUoy3detWAL6V7vB07gvbW1paXNr27dsHAKisrIRWq4VMJus1mzQSEUWbXv3dt6GhAXa7HampqS7HU1NTcejQIQDAqVOncPfdd4uLqe+9916MHz++2zE1Go0kJR6od9BoNHj//ffF11KMt3r1alRWVvpUuuP999/HyZMnuy3d8f7776O6utqlPTk5GfX19Vi2bBkAiOfh4moiovDxKyGyWq3ikzO9ZWp/0qRJPXrKqLS0FKWlpdwUL8IplUrMmzdP0vHmzJnjc+mOefPmeSzdMW/evC5PmcnlcigUChQWFrr09zZTqdfrff46AtXc3IzDhw8jNTUVOTk5ITsvEVG4+LWGSKVSITs7O2RJREpKChQKRZdF0rW1tUhLSwto7JKSElRUVGD37t0BjUMUKp0fAAj2bNLp06dhNBpx8uTJoJ6HiKi38HtR9WOPPYZHH30UjY2NwYjHhVqtRn5+PjZs2CAeczgc2LBhg1gYk6Kb3W7H1q1bsXXrVkkSdbvdjh07duC7777zqXTH1q1bUV5e3m3pjq1bt2Lv3r1uS3d89913Pp3HnWBv5siZUyKKNn6vIXrppZdw7NgxZGRkYPDgwV1KJezdu9ev8drb23Hs2DHxfWVlJcrLy5GcnIzs7GwsWbIExcXFmDhxIiZNmoSVK1dCr9djwYIF/obugrfM+gaTyYSpU6cCcF+6w0mhUGDEiBFobm5GfX29x/GuvfZaAL6V7nCeu7vSHd21WywW3HfffWJbTEyMS7vRaITNZuv2tl1NTY3H2IiIyD9+J0Rz5syRNICysjJMnz5dfO98Aqy4uBirV6/GLbfcgvr6ejzxxBOoqalBXl4e1q9f32Whtb9KSkpQUlKC1tZW9OvXL6CxKHxkMhmGDx8uvvYkMzMTmZmZMJlM2LFjR7fjDR06FGaz2et4znN319fZbrFYurTLZDJkZmZ2ibvzwvCmpiaxZmBPSPHUHRFRtPA7IXI+GSOVwsJCr483L168GIsXL5b0vNQ36HQ6HD161K/PaLVa6HQ6sQ7fhePt3bvXp9IdznN3t6ja2e5cVN3537lWq8Xf//73Lp+JiYmBUqmEzWaDxWLx6+tyx2q1urzX6/VITk4OeFwior6mRwsRmpub8frrr2Pp0qXiWqK9e/fizJkzkgYXTKWlpRgzZgwKCgrCHQr1cc5EyF0C5o7z9tnRo0dx/PjxgM594SxR572QiIjoB34nRPv378fIkSPxpz/9Cc8884z4m/G//vUvlw0Uezs+ZUahkpCQ4Ff/trY28fWFRWEDpVAoJB2PiKiv8DshWrJkCebPn4+jR4+63FK47rrrsGXLFkmDI/LGZDJh1qxZmDVrltdSG76Od/PNN+ORRx5xW47D3bnvvfdet7e3nO2/+MUvurRbLBY88sgjeOSRRzzeGuNmjUREoeH3GqLdu3fjL3/5S5fjmZmZfPKFQs5ut4tPcEn12P3nn38OwPuiZG/n7tx+7733dmnbuXOnZHETEVFg/E6INBqN2wrxR44cCeiJmFDjY/d9g1qtxltvvSW+lmK80tJSnD592mvpDue5nX1Pnjzp8v+As91ut3cZS6VS4eGHHxZfExFRePmdEN1www34/e9/L9aPkslkOH36NB5++GH85Cc/kTzAYOFj932DSqXC/PnzJR3vtttu86l0h/PcBw4cQENDAwwGg8uTZM52q9UqFox1UiqV4n5Hwcakn4jIO7/XED377LNob2/HwIEDYTQaMW3aNAwfPhzx8fH4wx/+EIwYicJKEAQcOnQIe/bscft4/YgRI4J27paWFjQ1NfX482VlZXxwgIjIB37PEPXr1w9ffPEFvvnmG+zfvx/t7e245JJLUFRUFIz4iDxylsAAgPHjxwf8FJXdbsf+/ftx7NgxjB49GkDHrtHu1sc5z221WmG327uc22634+DBg27b7XY7KisrAQBDhgzxGPexY8d6vD3EhfsQuWM2m3HixAmv+4EREfVlfidEJpMJWq0WU6dOFcsSEIWLyWTCxRdfDMBz6Q5/xrvyyisB/FC6o7tEofO53ZXf8NRusViwaNGibj/bmRQbNHpy9uzZLgWUiYiijd8JUWJiIiZNmoRp06Zh+vTpmDJlisdv5r0VF1X3DTKZDBkZGeJrKcZLT0+H1Wr1qXSHp3N7apfJZEhJSelR3Gq1Gmq1Gu3t7X59rjs2m02ScYiIIpnfCdGXX36JLVu2YNOmTXj++edhs9kwceJETJs2DYWFhbj66quDEafkuKi6b9DpdJLukK7T6fD999/7XLrjzJkzbhdNe2vXarX44IMPehRjfHw8b28REUnM70XVU6dOxaOPPorPP/8czc3N2LhxI4YPH44///nPIXtqhiiS9ZVkxuFwcIaViPoMv2eIgI49hzZt2iT+MZvNuP7661FYWChxeER9T1ZWFs6fPx/uMALicDiwa9cuWCwWFBQURORtcyKizvxOiDIzM2E0GlFYWIjCwkI8/PDDmDBhgiTrN4j8ZTKZcPvttwMA/va3vwVc6sJkMqG4uBjNzc148sknfTq3w+HAL37xiy4bQ5pMJvzsZz/r0q7RaGCxWLBixQoAwKOPPirJppKhZLVaxVIper2eCRERRTy/b5kNGDAABoMBNTU1qKmpQW1tLYxGYzBiCypWu+8b7HY7PvzwQ3z44YeSle746KOPsHnzZp9Kd3z44Yf417/+1W3pju7a7XY7Nm/ejM2bN4f1ttPZs2dx7tw5j30EQYDZbO4zt/qIiNzxe4aovLwczc3N2LJlCzZv3oxHH30UFRUVyMvLw/Tp0yNmc0Yuqu4b1Go1XnrpJfG1FOM9/fTTqKqq8ql0x0svveS2NIe3dpVKhfvuu098HS6+PKl25MgRMWm66KKLkJaWFuywiIhCrkdriBITE3HDDTfg8ssvx2WXXYaPPvoI7777Lnbu3BkxCRH1DSqVCiUlJZKOt2jRIp9Ld5SUlHT7lJmn9tTUVMydO9ev2KR6zN5fnWeQDh06hDNnzkCn04UlFiKiYPH7ltm//vUv3HfffZgwYQJSU1Pxy1/+Eu3t7Xj22Wexd+/eYMRIFBYmk8mnnZ4783VPn7Fjx/q17s5kMonbC+j1er9iklpbWxs3ciSiPsfvGaJ77rkHV155Je6++25MmzYN48ePD0ZcRD5xOBw4fvw4AGDYsGGQy/3O8buMd+LECVRXVyMjIwNbt27FJZdc4vHcNpsNDocDcrkcBw4ccGk/evQoBEEQ2ztrampCe3s7MjIyvMZtMBjE1xaLhTM0REQS8zshqqurC0YcRD1iNBoxcuRIANKU7jAajWIC5CypUV1d7fXcX375JQCgtbVVbLdarWL7gQMHUF9f7/JZ5y0zb6U7nPXViIgoeHq0hshut2PdunX4/vvvAQBjxozBjTfeGHBhTaKekHpR/IXjeboN5uyblpbmkvBkZmZCJpN5jC0uLs6nJ7e8Pe3WG9jtdgiC4HXdFRFRb+X3d69jx47huuuuw5kzZzBq1CgAwFNPPYWsrCx88sknGDZsmORBBgNrmfUNsbGxaG5uDsp4J06cwOnTp33q66xc7ySTyTy2x8bGYvPmzS4zSpHKZrNh+/btcDgcmDx5MjQaTbhDIiLym98LLu677z4MGzYMVVVV2Lt3L/bu3YvTp09jyJAh4mPEkaCkpAQVFRXYvXt3uEOhMIiLiwPQkbhwPU5gzGazuI4qEvckIyICejBDtHnzZuzYsQPJycnisf79++OPf/wjLr/8ckmDIwqW0aNHY8iQIVAqlV73AYqEW1ZERBQYv2eINBoN2trauhxvb2+PuPIDFPnMZjPmz5+P+fPnw2w2+/w5mUyGmJiYLsmQu/G6uyXn7dye2s1mM5YtW4Y//vGPsFgsPsfdG3W+HWiz2XzeeoCIqDfxOyG6/vrrcffdd2Pnzp0QBAGCIGDHjh245557cMMNNwQjRqJu2Ww2vP3223j77bcl+UHceTznbTVf+rpbi9a5vfNj9UqlEjabDR9//DE+++yzPrWO7cCBA9i2bZvf+zcREYWb37fMXnzxRRQXF2PKlCnib9c2mw033HADXnjhBckDJPJEpVLhz3/+s/hayvFSU1PR2NiIpqYmr33dPV3VuT0rKwvx8fHQarVQqVQQBAH3338/TCZTn3syy+FwwGw2h7UkCRGRv/z+TpyYmIiPPvoIx44dEx+7Hz16NIYPHy55cETeqNVqPPTQQ0Ebz9Nu0p37XvgUmbuxOu81pFarcccdd/SJp8yIiPoCnxMih8OBp59+Gv/+979hsVjwox/9CMuWLfO4oRwRda/z7tP+YuV5IiJp+byG6A9/+AMeffRRxMXFITMzEy+88IKkRTWJesLhcODMmTM4c+aMJE+DeRtPoVBApVIhPj7ea19P7Q6HA3V1daivr+9R3IGWKCEiIlc+zxD99a9/xcsvv4xf/OIXADpKFcyaNQuvv/46vzlT2BiNRgwaNAiAdKU7Oo/XmUqlwmWXXQag41aaXq8X+3auYeZLbEajET/5yU8A/FC6w581NxkZGTh//rwfXxkREXnicyZz+vRpXHfddeL7oqIiyGQynD17NiiBBVtpaSnGjBmDgoKCcIdCAVIqlZIuTPY0nkwmc1lX5O3cntoVCoVLuZv+/ft36RMpO78TEUU6n3+K2Gw2aLVal2MqlSpiH68tKSlBSUkJWltbJa+FRaETGxsr6b9Bf8br3NfdompPY8XGxmLjxo0uj9x7WsB94Wcv/H9RSoHOshERRSKfEyJBEDB//nyXOkUmkwn33HOPyzfQf/3rX9JGSBTF3C2eHjVqFGJjY5Gfn489e/YE5bwtLS1BGZeIqLfyOSEqLi7ucuznP/+5pMEQ9RVS7cHjLiFybhgZzFmiQNXW1kKpVPbqGImIOvM5IXrrrbeCGQdRj5jNZixZsgQA8NxzzwVcaf3C8Xzte++994rHMzMzMWjQII+xmc1mPPfccxAEAb/61a98LnszYMAAv76eC50/fx7V1dUBjeGLqqoqNDU1YcyYMTCbzUhMTPT5liARUTjIhCjf0MS5hqilpQUJCQnhDof8pNfrxRkTKZ4yu3C848ePo7GxEUDHrE/nAsad+x44cAD19fUAgEsuuQQJCQkeY+vc5nzKrLCwEACwadMmsd+QIUPE9UmTJk1CTEyMmFhYrVZs3bo1oK/XndjYWOj1eknGkslkEAQBubm5SEpKkmRMIiJA+p/ffatmAEUdlUqFZcuWia9DOV7nvt2V7uhuLJVKhfnz50MQBCiVSvHxfE/UanVIZlmkLM7q/H3LZDJJNiYRUTAwIaKIplar8bvf/S4s43Xu213pju7GUqvVuPPOO8WnzHpS+iZYyZHZbA7KuEREvRl3VCSKUEqlEpmZmeEOg4ioT+AMEUU0QRDER8T79esX8KzJheP52tfdUjxPsQmCgLa2NjgcjoDWPY0YMQJxcXE4fPhwj8cgIiLOEFGEMxgMSEpKQlJSUkDFUnsyXue+RqPRr7EMBgNmzZqF2bNnR8X6msOHD+Po0aPi+7Nnz2LHjh1oaGgIY1RERD9gQkREIXHmzBnx9ZEjR2AymXDs2LEwRkRE9IOIT4iqqqpQWFiIMWPGYMKECfjggw/CHRKFkE6ng8VigcVigU6nC+l4nfvGxMT4NZZOp8NXX32FL774wuPmhUlJSVAqlUhMTHSpe9ZXWCyWcIdARASgD6whUiqVWLlyJfLy8lBTU4P8/Hxcd911rMcUJWQymWS7Qvs7Xue+7tYueRpLJpNBqVR6XfOUkJCAqVOn+hQPERH1XMTPEKWnpyMvLw8AkJaWhpSUFHEjPaJIlJWVBaDj33Nf07mYLRFRbxL2hGjLli2YPXs2MjIyIJPJsG7dui59SktLkZOTA61Wi8mTJ2PXrl1ux9qzZw/sdrv4A4X6PovFgoceeggPPfSQJLdf/BnPW19P7RaLBS+//DJWrVoFq9Xq0jZ06FBMmTIFo0aNCvjr6W22b98u6caPRERSCXtCpNfrkZubi9LSUrfta9aswZIlS7Bs2TLs3bsXubm5mDFjBurq6lz6NTY24o477sCrr74airCpl7BarXjmmWfwzDPPdEksgj1e577ufsh7GstqteK9997DmjVrunxWJpNBo9H4vIWAs0aaXB72/529stlsbp/IIyIKt7CvIZo5cyZmzpzZbftzzz2HRYsWYcGCBQCAVatW4ZNPPsGbb76JRx55BEDHzrpz5szBI488gssuu8zj+cxms8tOvK2trRJ8FRQuKpUKDz74oPg6lON17ttd6Y7uxlKpVPjpT38qlu4IRFJSEvLz86FSqbBjx46AxgoFPllGRL1R2BMiTywWC/bs2YOlS5eKx+RyOYqKirB9+3YAHRvczZ8/H1dddRVuv/12r2M+9dRTePLJJ4MWM4WWWq3G008/HZLxLtx8sXPf7kp3dDeWWq3Gr371K0nW1MhkMsTHxwc8Tqg4N6skIupNevUce0NDA+x2O1JTU12Op6amoqamBgCwdetWrFmzBuvWrUNeXh7y8vLw3XffdTvm0qVL0dLSIv6pqqoK6tdAka3z4/Rc+0JE1Hf16hkiX0ydOhUOh8Pn/hqNBhqNBqWlpSgtLeVTLxFOEAQxUfHlMXZ/xxs+fLjLhoLd9e2udEd3sTnb7HZ7n9xfiIgo0vTqGaKUlBQoFArU1ta6HK+trQ34keSSkhJUVFRg9+7dAY1D4WUwGKBWq6FWqyUr3dF5PE8JVue+3ZXu6C42g8GAq666CldffXVUlO4gIurtenVCpFarkZ+fjw0bNojHHA4HNmzYgClTpoQxMiIiIupLwn7LrL293eWpk8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq8XnzrrKd4y6xt0Oh2amprE16Ecr3Nfd5uBehpLp9PhwIEDOH36NIYPHx5w3EREFBiZ4G7xQwht2rQJ06dP73K8uLgYq1evBgC89NJLePrpp1FTU4O8vDy8+OKLmDx5siTnb21tRb9+/dDS0oKEhARJxqS+ZdOmTeLrwsJCt31OnjyJkydPAgDy8/PD9tRX51gjgVwux8CBA9HU1IQJEyaw5A4R+Uzqn99hnyEqLCx0uyC1s8WLF2Px4sUhiojIf6mpqeKaobi4uLDFERsbC71eD6VSGTFPxTmfGK2trcXQoUPDHA0RRauwJ0ThwltmfYPFYsGKFSsAAI8++ijUanXIxruw75gxY3weS+q4nfLz82G1WnHy5EmcO3dOkjFDJcyT1UQU5cJ+yyzceMsssun1enFGpr29PeBbLu7G6+6Wmbdze2qXOu4LHT58OOISoqysLAwbNgwGgwEKhUIsSUJE5E6fu2VGFAilUolf/epX4utQjuetr6d2qePuKwwGA3bt2gW5XI7LL7+cezQRUchwhogzROSFL4uqextfZogGDhwInU4nLgYPt6ysLBgMBpw/fx4AMGXKFDQ3N6OpqQlDhw6V7LYiEfUNUv/87tX7EAVTaWkpxowZg4KCgnCHQkSASzLk9P3336OmpgbV1dVhioqIokXUJkTcqZqod/FUgsdisYQwEiKKRlGbEFHfoNfroVKpoFKpoNfrQzqet76e2qWOuy9wbmJJRBQOXM1JEU/q/Xb8Gc9bX0/tkbJPULi0traGOwQiiiJMiCiixcTEiOtLYmJiQjqet76e2qWOuy86ePBguEMgoigStQkRN2bsG+RyOTIzM8Mynre+ntqljvtCntbjOKlUqqCdn4go0kTtGiIuqqa+rF+/fl779O/fPwSRSOfUqVMoKyvjmisiCoqonSGivsFiseCFF14AANx///2SlO7wdTxvfT21Sx33hdzVUxs1ahRMJhNOnTolHoukbcgqKysBANXV1Rg1alSYoyGivoYbM3JjxojG0h3utbe3o6yszOVYfn4+5HK5OCs6YcIEKBQKfPvtt5KeO9gGDhzYpW4cEUUflu4g6kSpVKK4uFh8HcrxvPX11C513BeKjY1FVlYWGhoaYDQau+3HdURERB2idoao86LqI0eOcIaIuhWJpTucGhsbsX//fgDuZ4i0Wi127drldRznb2G9AWeIiAhg6Q7JcFE1kW90Op1Pi7SJiCJZ1CZEROS7tLS0cIdARBRUTIgooun1eiQmJiIxMVGy0h2+juetr6d2qeMONp1OF+4QiIiCiouqKeJJvbbFn/G89fXU3lvW5BARERMiinAxMTE4cuSI+DqU43nr66ld6rg9xSiTySCXy6HValk1noioG0yIKKLJ5XKMGDEiLON56+upXeq4uxMTE4PLLrsMMpkMSqWyS0Ikl/OuORERwDVERH2eSqXqdq8jrVaLnJyc0AZEvYYgCDhz5gxqa2vDHQpR2EXtDBGLu/YNVqsVr776KgDg7rvvDnijQX/G89bXU7vUcQciJycHCoUCx48fD3is2NjYoC8SFwQBp0+fBgBkZWVBJpMF9Xx9WVtbG44ePQoASEpKkryEDFEkidqNGZ1YuiOysXSHf/R6vcvGjMnJyQCAqqqqbhMinU6HSZMmuVyH7kyePBk7d+6ULN7u4jEYDACAgoKCkF27vkYQBJw6dQqHj3XUiEsf2B8TJkwIc1REvmPpDqJOFAoFbrrpJvF1KMfz1tdTu9RxB8pdMdieCOYCcSdnMgQADQ0NOHnyJHJycpgY+amhoQF3vfc9jjU7AAAjEk34fPx4zrhR1GJCRBFNq9Xigw8+CMt43vp6apc67kAlJSWFZHZHapWVHbMbNpsNubm5YY4mspypqReTIQA42uyA0WqHTs0fCxSduKiaiACEZnYnWDrPGpFvmpqbwx0CUa/ChIiIRLxdEj10ushNgImCgQkRRTSDwYDMzExkZmZKMkvgz3je+npqlzpuqeTn53c5ptFowhAJBVtvWLtG1JvwZjFFNEEQcPbsWfF1KMfz1tdTu9RxSyUuLg6TJ09GVVUVbDYbLBYLhgwZ4vVz2dnZSExMDH6AHrS2tqKhoQGZmZlM4nzQi/7ZEfUKTIgoomm1Wnz77bfi61CO562vp3ap45ZSTEwMRo4c2eW4QqHodt+uoUOHdjvexRdfLH6twfTdd9/BarXCbDZj9OjRQT9fJBMEAQ9/XhPuMIh6FSZEFNEUCgXy8vLCMp63vp7apY47FMaOHYuzZ8/CZrOh2cOC3MzMTJw5c0Z8H6rF2larFUDHTBF5ZrTacaKp43plxCtxts0W5oiIwi9q1xCVlpZizJgxKCgoCHcoRBEhOTkZ48aNQ3x8vMd+F9Zok8lkSEpKCmZoXTQ3N+P8+fMhPWck6Xyb9pWbfvj7cjgc7roTRYWoTYhKSkpQUVEh7tpLkclqtWL16tVYvXq1OEMQqvG89fXULnXc0c5sNouvbTYbysvL8d133wW9jEik0ut/WMjfr18/8XV19Rl33YmiAm+ZUUSzWCxYsGABAGDevHkB1wRzN95FF12E+vp6DBw40K9ze2qXOm76gc32w+0fJpvu2TpdF5Xyh397p06exEXDvS+iJ+qLmBBRRFMoFLjuuuvE18EYLy0tDWlpaX6f21O71HGHEvcqIqK+iAkRRTStVotPPvkkLON56+upXeq4Qyk1NRUNDQ29av+kzjqvj2loaAj7dgC9UXNLi/iaCS5Rh6hdQ0REPRMbG4tJkyYhMzMz3KF4VV1dLb4+d+4c9u7dy6fQ4Lp4WqX+4ZaZNoLLtxAFigkREUWFw4cPo7W1VSwISx06zxDJ5fyRQNGL//opohkMBowYMQIjRoyQrHSHr+N56+upXeq4qXsOhwPHjh0T33d+Io2IyIlriCiiCYIg/rCTqnSHr+N56+upXeq4e5v+/fv3mn2AGhoaXG6dRTtBEPDA/51y34a+92+RyFdMiCiiabVafPPNN+LrUI7nra+ndqnj7m3S0tL8ToiGDRuG48ePSx7LuXPnJB8zkhmtdhw73zFLNry/BjGqH55yfGJTMzZeKnChNUUlJkQU0RQKBS6//PKwjOetr6d2qeMOBykKqOp0OvGWYVZWVlASIurec7OyoFMrMGpgLA7X6XGyxQaj1Q6dmj8aKPr0iTVEc+fORVJSEm666aZwh0IUNTIyMjB06FDk5ub2eIzBgwdDJpNh0KBBEkbmmcFgwHfffYfW1la0t7f3yVuWvtLpYiCTyfDmbePCHQpR2PWJXwPuv/9+3HnnnXj77bfDHQqFmM1mw9q1awF0JMZKZWD/pP0Zz1tfT+1Sxx0OSqUS2dnZbtt8ueWSk5OD1NRUpKSkhHxzyvPnz4u39AYNGoThw4eH9Pzh1PmRe12MDgDQ+W8rmhNEim6R913YjcLCQmzatCncYVAYmM1m3HzzzQCA9vb2gBMLf8bz1tdTu9Rx9zaJiYkYMGAAYmJiui1L4tzHKNjJUFNTk8f26upqDB48GC0tLUhKSoq4ncP9ZbH8ULYjLj4OgOv+QxaLFbEalpKh6BP2W2ZbtmzB7NmzkZGRAZlMhnXr1nXpU1paipycHGi1WkyePBm7du0KfaDUK8nlckybNg3Tpk2TZA8Vf8bz1tdTu9Rx9zZKpRJjx47F0KFDwx2KTyoqKnDgwAFUVlbCYDDAbreHO6SQcCbiWu0P68E4Q0TRKuy/lur1euTm5uLOO+/Ej3/84y7ta9aswZIlS7Bq1SpMnjwZK1euxIwZM3D48OEuxTYp+sTExEg6O+jPeN76emqXOu6+LCUlBRkZGTh06BAsFgsAYMiQIZJusOicRaqurkZ1dTViY2NRUFAg2fi9SV1dXbhDIOqVwv6r6cyZM7F8+XLMnTvXbftzzz2HRYsWYcGCBRgzZgxWrVoFnU6HN998s0fnM5vNaG1tdflDRME1YMCAHn923LhxSE5Odns8WPR6fdDGDrdTJ096bLc7omN2jOhCYU+IPLFYLNizZw+KiorEY3K5HEVFRdi+fXuPxnzqqafQr18/8U9WVpZU4RJRN9LT01FQUICLLrrIp/5qtRpKpRJpaWnisQvXIqWkpODyyy/H5MmTJY3Vqa/eOvL2Vf3s9bI++7UTedKrE6KGhgbY7Xakpqa6HE9NTUVNTY34vqioCPPmzcOnn36KQYMGeUyWli5dipaWFvFPVVVV0OKn4DMajcjLy0NeXh6MRmNIx/PW11O71HH3djKZDLGxsV7XSznXtKSnp+Pyyy93SaA6r0eKjY0F0JEkxQSpIGl7e7vL67Nnz4prixwOByoqKnD06NGISh4cDgdW7DR1OR6jUmBwQsffzdEGI4xWzhJR9An7GiIpfPnllz731Wg00Gg0KC0tRWlpadQsnuyrHA4H9u3bJ74O5Xje+npqlzruYBIEoUc/IGNUCr93PM7NzUVLSwvS0tK6fLZ///6YMmUKTCYTEhISXNpSU1NRW1vrd4yedP572bdvH6xWK6xWK1JTU2EymcS1OOnp6YiLi5P03MFSe74Zp9s6vq7R6fHiLtUymQzPzMzEvDX8BZGiV69OiJz7k1z4ja62ttZlKr0nSkpKUFJSgtbWVvTr1y+gsSh8tFotPv/8c/F1KMfz1tdTu9RxB5PRaseYJz7z+3MTByfhg3um+JUUxcfHIz4+vtt25y80Fxo9ejSGDBmCHTt2+B1nd+rq6iCTyRAXFwerteNR9crKSlRWVrrEUFZWhtGjR3eZyQaAQ4cOobW1FRMmTOjx37PD4UB7ezvi4+MDKqkhCAJ+/tZe8f2H91zmMp4g9O7EnCjYenVCpFarkZ+fjw0bNmDOnDkAOr45bNiwAYsXLw5vcNQrKBQKXH311WEZz1tfT+1Sx90blZ1q6lIGovMPYKnrZXlLONLS0lxutXtz5swZnDlzxu2+RGaz2eX96dOn3SZEzvPV19e7Xa9oMBig1+shk8lw7tw5ZGZmdllAfvjwYdTW1iIrKwvDhg3zOf4LGa12HG/siHtwggI6tevXlTUoC8AZAB0bh4LlOyjKhP1ffHt7u1j1G+j4Day8vBzJycnIzs7GkiVLUFxcjIkTJ2LSpElYuXIl9Ho9FixYENB5ecuMyDcxKgUqfj/D5/4Gix0Tl7u/jZ2UlIS0tDTExMSEfDPKoUOH+pUQOfnyPcLdOqLOt9wubLfZbLDb7V32VGtpacHUqVNdjjlnyKurqwNKiDor/fGwLglpfMIPM3Ptbe1I0PXumUsiqYU9ISorK8P06dPF90uWLAEAFBcXY/Xq1bjllltQX1+PJ554AjU1NcjLy8P69evd/jbmD94y6xtsNhs++6zjds6MGTMkKd3h63je+npqlzruYJLJZJIV+1QqlT4/adYTgwYNQn19PcaNG4fy8nIxmRk6dCjUanXQzmswGHDq1Cn0798fMpkMp0+fdrmt1t7ejjNnziA9PR3nz5/HwYMH3Y5js9nQ1taGgwcPYsCAAV0SIIPBgNbWVgwYMECcuTKZTKivr8fAgQN9LrjrLsnrvOC9pbUVGakpPo1F1FfIhEh6RCIInAlRS0tLl4Wa1Pvp9XpxQWt7e7v49FEoxvPW11O71HH7Sq/XY/fu3QCACRMmuN3fJ1AGi01cc1Tx+xlhq5x+9uxZHD16FEOGDBFrru3evTusewyNGDECR48e9din8629oUOH4sSJE277jRw5Eunp6SgvL0dLSwsA4Morr4RMJoMgCJDL5bDb7aiursa5c+fQ3G7EPV8aAABb7stHdobrOszOf29/KdJhRtF0EPVmUv/87r2/lhL5QC6XY+LEieLrUI7nra+ndqnjpq4yMjKQlpbmcn1HjhyJb7/9NmwxeUuGALjc1jtx4gQEQYDFDqgVruuujhw5gsbGRjQ3N4vtW7duFWd/Jk6ciNraWlRVVUEQBJfH7VVKz7XKzPaOOAJ9eIUokkRtQsQ1RH1DTEyMOOMR6vG89fXULnXc5N6FyWa/fv1cHtEfPnw4jEYjzpw5E47wxGQH+CHh6ZwAAcAfdppwrNmBEYlyLJ2shbVTclRfX+/S/uhkrZg0nT9/HufPn4fZJsBsh/i4fXa8HAOSPS8TuG+jAdll3+Krh6+BUtm3i90SOUVtQsQ1RBSNOq+j8XW9SV/T+RoMGjQIVqs15AmRIHQkKSt2mlwSld9dpsWK/yY42fFy/GaiFseaO9qPNjuwbJsJVW0/JD9mO1zazXZABgFqRcc5/mdzMw6ft7qce9XNI92uWYtRKZA/OBF7TjUD6EigZr34Ndb/eprkTwQS9UZRmxARRSOVSoVJkybB4XCEbN1Sb5OZmQmTyeRx/dRFF12EQ4cOddseGxvb7VqkzrM+Tp1nfy5MhJxOtzmw9Gsjag2C+P7+jQaXPlVtPyQ/rRZgxU7XXc6Xbev4/PBEOZaq67okQwAgg/vkRiaT4cN7LkPVuTrMe30Pag0CDtfpu2yd4IlzE8+ebMpJFG5RmxDxllnfYDQaxVp3X375ZcBlHPwZz1tfT+1Sx+0PnU4XsnP1RlqtFmPHju22PT4+HikpKRg7dmy3T4ONGjUKOp0OZWVlMJl+WJsjCIJ4C6uz4Ykdsz1PuUmEsuLlsNgF1BoEMRnyxYXJEgDx88eaHVj4f/U+j+Ukk8mQnZGKJy+LERdgt+hNiFHFek1wBEHATau2Y8+pJkzIiMNH917JpIgiStQmRLxl1jc4HA5s27ZNfB3K8bz19dQuddzUc503XhQEAYNyhsHiAGL7JUEQhG5/qDuLz57sVD3e0ukWVmfHmh345ZeuCUx2fMdtL42iYxHzPRe0vzBdh2fLuiZQF8qKl0OjcH/ezuc6/d9bbbEa/77tT/nTZlyS1Q///NXlHhMco9WOPaeaAAD7z7bjyIlTGDUsx69zEYVT1CZE1DdoNBqsXbtWfB3K8bz19dQuddzUc3K5HKNHj0ZFRUXH7M5nW8U2Z9JyYRpgsNihtNigiU2A2dYxK3PBxs94cXrHTNx9F8zkjElPwHuLJmHPzm1igqFRCC7rd8al6ZColePJyzrWCT1T1nXWaUSKFr/J60iGgI5kTID7vs/MzEBTYyMy0wYgPT3d6zW58Jbf3qoWr7fOTp465fJ+0XvfY/OjgzlLRBGDCRFFNKVSKZZ1CfV43vp6apc67t7KcOFPVglJuU5l4MCBqD3fjGPNx1yOn25zdJm5AQB8ua3LIeciaCeNm4ezvnlwKjL7J0Amk+Hiiy/G6dOn0djYCJlMhg9+MQUmW0ciE6NSwOFwYPv27ZDJbHhsslZMUlQKYPJlU6FTK1FXVweTyQSz2Yx+/fph4MCBmJh3Htv2fOeSiI0bN9av/aCGZ6cBcN3/6PChw8gdN9rtNhFGoxH3vH/E5djpNgfaTRbExzDhp8jAhIiIgqa7Eh5SGJOe8N/isb5/prskSiaTYfjwYQA6EqLdjxWh+M1dqDjX6vPY7hZBqxVA3qAElFe3Ij87UUyGACAxMRGxsbE4fPgw4uPjIZfLoVP/kGwoFApkZGTg9OnTSElJgVqtxrlz5wAAsZqOfYTc7difkpKC6ZdNRN7RcpRXt2Li4CSxqr2vRl90Ebb9NguX/XmzeKymrg76XQaMGJLd5bxNrXrx1l6qTiauZWpqakJ8DPcyosgQtQkRF1X3DXa7HV9//TUA4IorrnBbiDNY43nr66ld6rh7kxiVAhMHJ6Hsv+tJgqXiXCvGLvvMr894SqI6z2bFahT45L6pMFp/ONZRe2w3HA4HJk0qgErVkZQIAnDDCxtxvNEi9h2XGiM+Wfa34jwoNDFukzGVSoVx48Z1G29OTg6SkpIQHx+Pqqoqn7/O+Ph4rC2Z2uMnvmQyGdISXZ9C7FgDZcCIxAZ8/vC1LmPW1dWJr9++Iw/XrurY/LKi4vsuO2IT9VYs3cHSHRGNpTt6J+fj18EZG5i3artfszf+6q7kiPMXqAsT2Pb2dmzd0bHRpkarxZiRw1BRUQEAmDZNmn18zGYzTpw4IRbIDYX/fLmxy2JwADj45DVQwiGuf1v/5Ubx1mLZ40XizGBOPyU2PnIN1xFRULB0B1EnMpkMY8aMEV+HcjxvfT21Sx13byNlQVh3Lpy98cafJMrTLabuZvLi4uJw5eWX4syZM0hNTUV8fDzi4uKg0Wgk+/vVaDQYPXq0JGP5KjW5H4Yndl2kvWHTN9AogMy0AYiLi3MpCxKjUmDUwFgcrtPjZIsNBotNvMVH1JtxhogzRERRwddZK24q+AOr1YrW1lYcP1WNc/WNXdZIZcXL8ZuJGjywsWODyCGJKnz18NU439qOiU9tAQD862c5uGRC9/s+EfUUZ4iIiHog2LNWfZFKpUL//v2RnJyM1tZWjPh2G452mi2qanOIyRAArPvvZoy6ThuN/nLdKWwaMQwxMVoQ9WYss01ERB7JZDL069cPr986Bn8p0uHpK93vrK5SdSScMSoFhvfvSIBqDQKufX4TNyClXi9qE6LS0lKMGTMGBQUF4Q6FAmA0GnH11Vfj6quvhtFo9P4BCcfz1tdTu9RxE4XC4MGDMaNoOnJHZHVpm5AeK669kslk+HfJZUjVddx6PNVqx6kzNSGNlchfXEPENUQRjU+ZEYWezWZDTW0tLBYrTp6shNUOjBs9EpmZmS799lccxg1/7djbaXCCHO8vvATJycnilgVEgeAaIqJONBoN/v73v4uvQzmet76e2qWOmyiUlEolBmVmQq/X4/Spk9AoOxZgX2jY4EHIjj+B020OnGp1YGd5BYYNGoisrCycP38emZmZUKvVYfgKiLriDBFniIiIemzTpk0AOjaRzMnJ6dK+Z98B/OTdH+qcZXUqapuRkYGLRo0KUaTU13CGiIiIeo309HQ0Nzdj4MCBbtsvGj4EIxKrxKfTqtocnTZ7PIaj/28YLBYzdDodtzugsOIMEWeIIprdbsfevXsBAJdccokkpTt8Hc9bX0/tUsdN1JsJgoBtu/ag5NM6NJtdf+Q8fWUM+sfIoI6JQ/qAZCQnJyMpKSlMkVIkkfrnNxMiJkQRjYuqiSKDIAg429iGy5/+uts+wxPleHCiFtdcNQ1yedQ+BE0+4i0zibC4a98gk8kwePBg8XUox/PW11O71HET9XYymQzpSfHi+6x4OaraXPcmOtbswD1fGjC87DM8e10mxo8bx8SIQoYzRJwhIiIKGYdDgCAI0Ovb0aI34c53vsPRBpPbvpvvm4g4jRLJycn8xYG64C0ziTEhIiIKH0EQoDfbMGfll12KyAJAdrwcz80ahEsmjOVsEblgQiQxJkREROFntVpx8tx5XP3yHrft2fFyvFM8Hv0HpiFGpYDzJ5dczpmjaMU1RESdmEwm/PSnPwUAvPfee9BqAysg6c943vp6apc6bqJIp1KpMDwrFaMG6nC4ztCl/XSbA1e8tA/APkzIjMf+M20AgG8fuRwaXRxiVAreVqOAcIaIM0QRjU+ZEfUtDoeAWS9+je9r2jAqWYmF41T47Zbu6/2l6mSoNQgYl6bD/91fyKQoinCGiKgTtVqNV199VXwdyvG89fXULnXcRH2FXC7Dp/dfAaPVjhiVAg6HgN9u+U+3/WsNHb/TH6gxYEf5QUzOHQuTzQ6tUg6bzQ6lUsnbauQTzhBxhoiIqFdzODp+TBksNsx89ssuj+u7MzxRLi7Sfm9eJsaMGIqEhAQ4HA4IQsc2AEyUIhsXVUuMCRERUeQ4UVmJ+f84hNM+JEWdZf+3hppaAdz5WccapQP/Mx2teiP2798PGYDhI4ZjaPYgyGQyMQnrmG3q2EleLv/hOJOp8GNCJDEmRJHN4XDg+++/BwCMHj064Mdy/RnPW19P7VLHTRRNBEGA0WqHSgYYrHbk/v5LycYelqzB76cl4ra1tV3a/n3bYNzwTkeh2p0PXY6UxATUN7XAarUhLj4OapUKMaofkifgv/suAZCBSZTUmBBJpPNO1UeOHGFCFKG4qJqIHA4BJrMZN7yw0e1eRuHwafEw2AQ5bvjrUfHYF3ddhJTUdLF2oc1mw/m6c9Dq4pGZ1lEcVyYD2oxmxGnV4i9KnWel/JmhCsZsli9jOvvIZIDR2lENIhhPATIhkhhniCKbXq9HTk4OAODkyZOSJES+juetr6d2qeMmoo69jBpb9UhJTIDJ1jGDdLauHjFqJarO1uLXn1R3u/7oz1fGeHyaLVScJU2y4+X449UDIVco8NMPzgAAXinS4Zdfdtzue+3aBGRnZSEhIQExagVa2g3o1y8Rzc1NiIuLR1t7O6a/1FFAumLZj9Bm6NgNPCk+FlYBsFptMJvNaG5uhkajRlxcPBQKBdraWqFUKKFQKuFwOCCXy9HS0gKLxQKlUolrX68AALw1KxkDBqQgJkaL9rZ2CIKA5P7JaGpqwY1/OwYAWHVtEu5Z39QRw+9nQKeW9jkuJkQSY0JERBQdbDYbGtv00Gpj8PNXt2H/OT0uyU7Eh/dcBkEQMOyxjqfZPrx1MDLS06FSqTB/dRkO1oY/UYp03y0rQnyMRtIxmRBJjAkREVH0ca5D6nwrx93tIGc/rVIhLrDWmy2I1ajRbjKjrbkRGo0WbW1tiInRwmwH7n7vexyu02NokhonmiwAgFGpcThc2x76L7QXGJEox6e/KYJKpZJ0XO5DREREFCCZTNblFo67dTGd+zn/65zpSNBpkaDLAACk9E8WP7P+1wPFZMs55eBcT+N8Ys1Jb7bAbjFBkKsgk8mgUimhUchhstkhCALkcjnsdgdOnz4Nu92OjMwMqFVqKJUK6PUG/OyN3Th23ozhKVr89Y48qNVqNDU1or6+HvHxCfj1x1U4dt6EYckaOAQHKpusGJaswdt35EKv10OtVsFqtUGlUkKhUCAxMRHtbe0wW8z/vYXWjuTkZPTrlwCbzQaT2QxdjM7jGiLn1ywIDmz9ZivUCkTEhpmcIeIMUUQzmUxYuHAhAOCNN96QpHSHr+N56+upXeq4iSg6uZvp6q4dgMe+UnM4HNiyZQsAYOrUqVAquYaoV2NCFNn4lBkRUe/UOSEqKCiQ/Pscb5kRdaJWq/H888+Lr0M5nre+ntqljpuIqLfpuAWogtVq5S2zSMAZIiIiouAwGAxobW1FSkpKr79lxhkiIiIiCgqdTgedThfuMHzChIgimsPR8fQFAGRnZ0tSusPX8bz19dQuddxERBSYPvFd+OOPP8aoUaMwYsQIvP766+EOh0LIaDRiyJAhGDJkCIzGwDdP82c8b309tUsdNxERBSbiZ4hsNhuWLFmCjRs3ol+/fsjPz8fcuXPRv3//cIdGISL1dKw/43nr66k9UqaRiYiiQcQnRLt27cLYsWORmZkJAJg5cyY+//xz3HrrrWGOjEIhNjYWer0+LON56+upXeq4iYgoMGG/ZbZlyxbMnj0bGRkZkMlkWLduXZc+paWlyMnJgVarxeTJk7Fr1y6x7ezZs2IyBACZmZk4c+ZMKEInIiKiPiLsCZFer0dubi5KS0vdtq9ZswZLlizBsmXLsHfvXuTm5mLGjBmoq6sLcaRERETUV4U9IZo5cyaWL1+OuXPnum1/7rnnsGjRIixYsABjxozBqlWroNPp8OabbwIAMjIyXGaEzpw5g4yMjG7PZzab0dra6vKHIpfZbMaiRYuwaNEimM3mkI7nra+ndqnjJiKiwPSqjRllMhnWrl2LOXPmAAAsFgt0Oh0+/PBD8RgAFBcXo7m5GR999BFsNhtGjx6NTZs2iYuqt23b1u2i6t/97nd48sknuxznxoyRiaU7iIiiU1RtzNjQ0AC73Y7U1FSX46mpqTh06BAAQKlU4tlnn8X06dPhcDjw29/+1uMTZkuXLsWSJUvE962trcjKygrOF0BBp1KpsHz5cvF1KMfz1tdTu9RxExFRYHr1DJFzwfS2bdswZcoUsd9vf/tbbN68GTt37gz4nCzdQUREFHmk/vkd9jVEnqSkpEChUKC2ttbleG1tLdLS0gIau7S0FGPGjEFBQUFA4xAREVHk69UJkVqtRn5+PjZs2CAeczgc2LBhg8uMUU+UlJSgoqICu3fvDjRMCiNBEFBfX4/6+npIMdnpz3je+npqlzpuIiIKTNjXELW3t+PYsWPi+8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq/HggULAjpvaWkpSktLYbfbA/0SKIwMBgMGDhwIQJrFyf6M562vp3ap4yYiosCEPSEqKyvD9OnTxffOBc/FxcVYvXo1brnlFtTX1+OJJ55ATU0N8vLysH79+i4Lrf1VUlKCkpIStLS0IDExkY/fR6jOuz23trYGnOD6M563vp7apY6biCjaOH9uSzXL3qsWVYdDdXU1nzIjIiKKUFVVVRg0aFDA40R9QuRwOHD27FnEx8dDJpOJxwsKCtyuL/L1uKf3ztfOR/6rqqoke8Ktu/h62p/XwXO7u+O+HON16Pqe14HXoTdeB1/68jp47hOs6xAfH4+2tjZkZGRALg98SXTYb5mFm1wud5tZKhQKt//ofD3u6f2FbQkJCZL9A+8uvp7253Xw3O7uuC/HeB26vud14HXojdfBl768Dp77BPM69OvXz6f4fdGrnzILp5KSkoCOe3rf3RhS8Hdsb/15HTy3uzvuyzFeh67veR18O3cgeB38H9uXvrwOnvv09uvgFPW3zMKJm0J24HXowOvQgdehA69DB16HDrwOHYJ5HThDFEYajQbLli2DRqMJdyhhxevQgdehA69DB16HDrwOHXgdOgTzOnCGiIiIiKIeZ4iIiIgo6jEhIiIioqjHhIiIiIiiHhMiIiIiinpMiIiIiCjqMSGKIDk5OZgwYQLy8vJcCuJGG4PBgMGDB+PBBx8Mdyhh0dzcjIkTJyIvLw/jxo3Da6+9Fu6QwqaqqgqFhYUYM2YMJkyYgA8++CDcIYXF3LlzkZSUhJtuuincoYTUxx9/jFGjRmHEiBF4/fXXwx1O2ETr339nUnwv4GP3ESQnJwcHDhxAXFxcuEMJq8ceewzHjh1DVlYWnnnmmXCHE3J2ux1msxk6nQ56vR7jxo1DWVkZ+vfvH+7QQu7cuXOora1FXl4eampqkJ+fjyNHjiA2NjbcoYXUpk2b0NbWhrfffhsffvhhuMMJCZvNhjFjxmDjxo3o168f8vPzsW3btqj8/yAa//4vJMX3As4QUUQ5evQoDh06hJkzZ4Y7lLBRKBTQ6XQAALPZDEEQEK2/16SnpyMvLw8AkJaWhpSUFDQ2NoY3qDAoLCxEfHx8uMMIqV27dmHs2LHIzMxEXFwcZs6cic8//zzcYYVFNP79X0iK7wVMiCSyZcsWzJ49GxkZGZDJZFi3bl2XPqWlpcjJyYFWq8XkyZOxa9cuv84hk8kwbdo0FBQU4J133pEocumE4ho8+OCDeOqppySKODhCcR2am5uRm5uLQYMG4aGHHkJKSopE0UsrFNfCac+ePbDb7cjKygowammF8hpEkkCvy9mzZ5GZmSm+z8zMxJkzZ0IRuqT476ODlNehp98LmBBJRK/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDNTV1Yl9nGtCLvxz9uxZAMA333yDPXv24N///jdWrFiB/fv3h+Rr81Wwr8FHH32EkSNHYuTIkaH6knokFP8WEhMTsW/fPlRWVuIf//gHamtrQ/K1+SsU1wIAGhsbcccdd+DVV18N+tfkr1Bdg0gjxXXpC3gdOkh1HQL6XiCQ5AAIa9eudTk2adIkoaSkRHxvt9uFjIwM4amnnurROR588EHhrbfeCiDK4ArGNXjkkUeEQYMGCYMHDxb69+8vJCQkCE8++aSUYUsuFP8WfvnLXwoffPBBIGGGRLCuhclkEq644grhr3/9q1ShBk0w/z1s3LhR+MlPfiJFmCHXk+uydetWYc6cOWL7/fffL7zzzjshiTdYAvn3Ecl//xfq6XUI9HsBZ4hCwGKxYM+ePSgqKhKPyeVyFBUVYfv27T6Nodfr0dbWBgBob2/HV199hbFjxwYl3mCQ4ho89dRTqKqqwsmTJ/HMM89g0aJFeOKJJ4IVclBIcR1qa2vFfwstLS3YsmULRo0aFZR4g0mKayEIAubPn4+rrroKt99+e7BCDRoprkFf5Mt1mTRpEg4cOIAzZ86gvb0d//nPfzBjxoxwhRwU/PfRwZfrIMX3AiZEIdDQ0AC73Y7U1FSX46mpqaipqfFpjNraWkydOhW5ubm49NJLcccdd6CgoCAY4QaFFNegL5DiOpw6dQpXXHEFcnNzccUVV+Dee+/F+PHjgxFuUElxLbZu3Yo1a9Zg3bp1yMvLQ15eHr777rtghBsUUv1/UVRUhHnz5uHTTz/FoEGDIv6HpS/XRalU4tlnn8X06dORl5eH3/zmN33uCTNf/330tb//C/lyHaT4XqCULGIKqqFDh2Lfvn3hDqPXmD9/frhDCJtJkyahvLw83GH0ClOnToXD4Qh3GGH35ZdfhjuEsLjhhhtwww03hDuMsIvWv//OpPhewBmiEEhJSYFCoeiy8LW2thZpaWlhiiq0eA068Dr8gNeC16A7vC4deB06hOo6MCEKAbVajfz8fGzYsEE85nA4sGHDBkyZMiWMkYUOr0EHXocf8FrwGnSH16UDr0OHUF0H3jKTSHt7O44dOya+r6ysRHl5OZKTk5GdnY0lS5aguLgYEydOxKRJk7By5Uro9XosWLAgjFFLi9egA6/DD3gteA26w+vSgdehQ6+4Dj16No262LhxowCgy5/i4mKxz//+7/8K2dnZglqtFiZNmiTs2LEjfAEHAa9BB16HH/Ba8Bp0h9elA69Dh95wHVjLjIiIiKIe1xARERFR1GNCRERERFGPCRERERFFPSZEREREFPWYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQEREFyGKxYPjw4di2bZuk465fvx55eXkBV/EmIu+YEBGRi/nz50Mmk3X507nOELlatWoVhgwZgssuu0w8JpPJsG7dui5958+fjzlz5vg07rXXXguVSoV33nlHokiJqDtMiIioi2uvvRbnzp1z+TNkyJAu/SwWSxii610EQcBLL72EhQsXBmX8+fPn48UXXwzK2ET0AyZERNSFRqNBWlqayx+FQoHCwkIsXrwYDzzwAFJSUjBjxgwAwIEDBzBz5kzExcUhNTUVt99+OxoaGsTx9Ho97rjjDsTFxSE9PR3PPvssCgsL8cADD4h93M2oJCYmYvXq1eL7qqoq3HzzzUhMTERycjJuvPFGnDx5Umx3zr4888wzSE9PR//+/VFSUgKr1Sr2MZvNePjhh5GVlQWNRoPhw4fjjTfegCAIGD58OJ555hmXGMrLyz3OkO3ZswfHjx/HrFmz/LzKwMmTJ93OxhUWFop9Zs+ejbKyMhw/ftzv8YnId0yIiMgvb7/9NtRqNbZu3YpVq1ahubkZV111FS6++GKUlZVh/fr1qK2txc033yx+5qGHHsLmzZvx0Ucf4fPPP8emTZuwd+9ev85rtVoxY8YMxMfH4+uvv8bWrVsRFxeHa6+91mWmauPGjTh+/Dg2btyIt99+G6tXr3ZJqu644w68++67ePHFF/H999/jL3/5C+Li4iCTyXDnnXfirbfecjnvW2+9hSuvvBLDhw93G9fXX3+NkSNHIj4+3q+vBwCysrJcZuG+/fZb9O/fH1deeaXYJzs7G6mpqfj666/9Hp+I/CAQEXVSXFwsKBQKITY2Vvxz0003CYIgCNOmTRMuvvhil/7/7//9P+Gaa65xOVZVVSUAEA4fPiy0tbUJarVaeP/998X28+fPCzExMcL9998vHgMgrF271mWcfv36CW+99ZYgCILwt7/9TRg1apTgcDjEdrPZLMTExAifffaZGPvgwYMFm80m9pk3b55wyy23CIIgCIcPHxYACF988YXbr/3MmTOCQqEQdu7cKQiCIFgsFiElJUVYvXp1t9fr/vvvF6666qouxwEIWq3W5TrGxsYKSqVSuPHGG7v0NxqNwuTJk4Xrr79esNvtLm0XX3yx8Lvf/a7bGIgocMrwpmNE1BtNnz4dr7zyivg+NjZWfJ2fn+/Sd9++fdi4cSPi4uK6jHP8+HEYjUZYLBZMnjxZPJ6cnIxRo0b5FdO+fftw7NixLjMxJpPJ5XbS2LFjoVAoxPfp6en47rvvAHTc/lIoFJg2bZrbc2RkZGDWrFl48803MWnSJPzf//0fzGYz5s2b121cRqMRWq3Wbdvzzz+PoqIil2MPP/ww7HZ7l7533nkn2tra8MUXX0Aud528j4mJgcFg6DYGIgocEyIi6iI2NrbbW0SdkyMAaG9vx+zZs/GnP/2pS9/09HSfn06TyWQQBMHlWOe1P+3t7cjPz3f7xNWAAQPE1yqVqsu4zsfWY2JivMZx11134fbbb8fzzz+Pt956C7fccgt0Ol23/VNSUsSE60JpaWldrmN8fDyam5tdji1fvhyfffYZdu3a5fbWW2Njo8vXSETSY0JERAG55JJL8M9//hM5OTlQKrt+Sxk2bBhUKhV27tyJ7OxsAEBTUxOOHDniMlMzYMAAnDt3Tnx/9OhRl1mRSy65BGvWrMHAgQORkJDQo1jHjx8Ph8OBzZs3d5m5cbruuusQGxuLV155BevXr8eWLVs8jnnxxRfjlVdegSAIkMlkfsf0z3/+E7///e/xn//8B8OGDevS7pwBu/jii/0em4h8x0XVRBSQkpISNDY24tZbb8Xu3btx/PhxfPbZZ1iwYAHsdjvi4uKwcOFCPPTQQ/jqq69w4MABzJ8/v8ttoauuugovvfQSvv32W5SVleGee+5xme257bbbkJKSghtvvBFff/01KisrsWnTJtx3332orq72KdacnBwUFxfjzjvvxLp168Qx3n//fbGPQqHA/PnzsXTpUowYMQJTpkzxOOb06dPR3t6OgwcP+nHVOhw4cAB33HEHHn74YYwdOxY1NTWoqalBY2Oj2GfHjh3QaDRe4yCiwDAhIqKAZGRkYOvWrbDb7bjmmmswfvx4PPDAA0hMTBSTnqeffhpXXHEFZs+ejaKiIkydOrXLWqRnn30WWVlZuOKKK/Czn/0MDz74oMutKp1Ohy1btiA7Oxs//vGPMXr0aCxcuBAmk8mvGaNXXnkFN910E371q1/hoosuwqJFi6DX6136LFy4EBaLBQsWLPA6Xv/+/TF37twebZ5YVlYGg8GA5cuXIz09Xfzz4x//WOzz7rvv4rbbbvN4246IAicTLrxpT0QUAoWFhcjLy8PKlSvDHUoXX3/9NX70ox+hqqoKqampXvvv378fV199NY4fP+52cXlPNTQ0YNSoUSgrK3O7MSYRSYczRERE/2U2m1FdXY3f/e53mDdvnk/JEABMmDABf/rTn1BZWSlpPCdPnsTLL7/MZIgoBLiomojov959910sXLgQeXl5+Otf/+rXZ+fPny95PBMnTsTEiRMlH5eIuuItMyIiIop6vGVGREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT0mRERERBT1mBARERFR1GNCRERERFHv/wMSzZujiI3MSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.loglog(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "b7af40af", + "metadata": {}, + "source": [ + "Note that, while the \"clean\" and \"dirty\" periodograms at high frequencies mostly match, at low frequencies the two diverge. The low-frequency periodogram cannot be trusted if one does not use some trick to avoid the gaps. \n", + "\n", + "# The Lomb-Scargle periodogram\n", + "\n", + "Fortunately, a method exists and is called the *Lomb Scargle periodogram* ([See this review from Jake Van Der Plas](https://iopscience.iop.org/article/10.3847/1538-4365/aab766/pdf))\n", + "\n", + "The method is slower than the standard periodogram, so we will limit its usage to the interesting frequency range." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5d995bbd", + "metadata": {}, + "outputs": [], + "source": [ + "maxfreq = 1.\n", + "dt = 0.5 / maxfreq # Using the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "69759093", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGpCAYAAACTcAx5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfV0lEQVR4nOzdeXhTxfoH8O/JnnTf6AJdWAtFbNmFIqCCLIqCgrgDItcFVC6ignpZVEABlatUwQVwwSuKgv4EUUE22bciFigUCpRCWwpdsy/z+yPkkDRJkzRp07Tv53n6eHJmzpxpic3bOTPzcowxBkIIIYSQACLwdwcIIYQQQjxFAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOH4JYPLz83HbbbchLS0NXbp0gVKp9Ec3CCGEEBKgOH8kcxwwYADeeust3Hrrrbh27RpCQ0MhEokauhuEEEIICVANHjXk5ORALBbj1ltvBQBERkY2dBcIIYQQEuA8foS0Y8cOjBgxAgkJCeA4DuvXr7erk5WVhZSUFMhkMvTu3Rv79+/ny06fPo3g4GCMGDEC3bp1w/z58736BgghhBDS/Hg8AqNUKpGeno4nnngC9913n135mjVrMG3aNCxbtgy9e/fGkiVLMGTIEOTm5qJFixYwGAzYuXMnsrOz0aJFCwwdOhQ9e/bE4MGDHd5Pq9VCq9Xyr00mE65du4aoqChwHOdp9wkhhBDiB4wxVFVVISEhAQKBD6bgMi8AYOvWrbM516tXLzZ58mT+tdFoZAkJCWzBggWMMcZ2797N7rzzTr584cKFbOHChU7vMXv2bAaAvuiLvuiLvuiLvprAV0FBgTehB8+nc2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv2AAB69uyJkpISlJWVISwsDDt27MBTTz3ltM2ZM2di2rRp/OuKigokJSWhoKAAoaGhvuw+CQDZ2dmoqqoCAISHh6NLly5+7hEhhBB3VFZWIjExESEhIT5pz6cBTGlpKYxGI2JjY23Ox8bG4uTJk+YbikSYP38++vfvD8YY7rzzTtx9991O25RKpZBKpXbnQ0NDKYBphoKDg2Eymfhjeg8QQkhg8dX0D7+sXR42bBiGDRvm0TVZWVnIysqC0Wisp16Rxk6n0+HLL7+ERqPB/fff73Vb//3vfwEAL7zwAiQSSZ3rOiv35B6EEEI849U+MBzHYd26dRg5ciQA8y9shUKBtWvX8ucAYNy4cSgvL8dPP/3kbX9RWVmJsLAwVFRU0F/fzYxSqURwcDAAYOPGjUhISEB6errXbVVXVyMoKKjOdZ2Ve3IPQghp6nz9+e3TERiJRILu3btjy5YtfABjMpmwZcsWTJkyxZe3Is2QSCTC3XffDb1eD6FQ6HVb48aN44+9qeus3JN7EEII8YzHIzDV1dXIy8sDAHTt2hXvvfcebrvtNkRGRiIpKQlr1qzBuHHjsHz5cvTq1QtLlizBd999h5MnT9rNjfGE9SOkU6dO0QhMM3X48GFUVlYCACIiIuo8AkMCg9FohF6v93c3CCFuEIvFtf5x6esRGI8DmG3btuG2226zOz9u3DisWrUKALB06VIsWrQIRUVFyMjIwAcffIDevXt73VmAHiE1dxTANA+MMRQVFaG8vNzfXSGEeCA8PBxxcXEOJ+r6PYDxNwpgmi+VSmWzqzMFME3X5cuXUV5ejhYtWkChUNCmlYQ0cowxqFQqlJSUIDw8HPHx8XZ1GvUcGELq0759+zBixAgAwPfff4+IiIg6t6VUKtGyZUsAQGFhoctJvLXVdVbuyT3IDUajkQ9eoqKi/N0dQoib5HI5AKCkpAQtWrTweq6iKwETwNAyaqLT6aBUKn3WXkVFhc/qOiv35B7EzDLnRaFQ+LknhBBPWf6/9cViC1cCJoCZPHkyJk+ezA9BkeZHKpXiq6++QmJioteBrFwux6lTp/hjb+o6K/fkHsQePTYiJPA05P+3ARPAECIQCNCqVSu0bt0aZ8+e9bqt9u3b+6Sus3JP7kEIIcQzPkgHSQghhDQtq1atQnh4uL+74Rfjx4+32Yy2sQqYACYrKwtpaWno2bOnv7tC/MRgMGDdunX44osvYDAYvGpLr9fz86pc7TPiqq6zck/uQQLf+PHjwXEcOI6DRCJBu3bt8MYbb3j9Xm1qAuXDcezYsfwj4Kbq3Llz4DgO2dnZNuf/+9//8tuiNGa0jJoEjN9++w1Dhw4FQKkEmjKNRoP8/Hy0bt0aMpnM391x2/jx41FcXIyVK1dCq9Vi48aNmDx5MubNm4eZM2f6u3vQ6XSNIh/X+PHjUV5ejvXr19daT6/XQywWN0ynGjGj0QiO4yAQ+H684dy5c2jdujWOHDmCjIwMn7RZ2/+/vv78DpgRGEIEAgEGDBiA4cOHez27XSgUYvTo0Rg9erTLtlzVdVbuyT1I0yCVShEXF4fk5GQ888wzGDRoEH7++WcAQFlZGR5//HFERERAoVBg2LBhOH36NADzHhoxMTFYu3Yt31ZGRobNXhp//fUXpFIpVCoVAKC8vBxPPvkkYmJiEBoaittvvx1Hjx7l68+ZMwcZGRn47LPPbD5M1q5diy5dukAulyMqKgqDBg3iV/dZRkfmzp3Lt/v0009Dp9Px7ZpMJixYsACtW7eGXC5Henq6Tb8BICcnB3fffTdCQ0MREhKCW2+9FWfOnMGcOXPwxRdf4KeffuJHq7Zt28aPBKxZswYDBgyATCbD6tWr+e/B2pIlS5CSksK/tvR5/vz5iI2NRXh4OD/y9dJLLyEyMhKtWrXCypUrPfq3dPQI6a233kKLFi0QEhKCJ598EjNmzLDpn6UvixcvRnx8PKKiojB58mSbEdja3gfW9/3555+RlpYGqVSKCxcuQKvVYvr06WjZsiWCgoLQu3dvbNu2rdbv4eTJk+jXrx9kMhnS0tKwefNmcBzHB4+tW7cGYN5Vn+M4DBw40Ob7sKjtPeNPNImXBAypVIo5c+agTZs2Xk/ilclk+P77731S11m5J/cgtWOMwWQyNfh9BQKBV6sq5HI5rl69CsD8oXD69Gn8/PPPCA0NxSuvvILhw4fj+PHjEIvF6N+/P7Zt24bRo0ejrKwMJ06cgFwux8mTJ9GxY0ds374dPXv25JepjhkzBnK5HL/++ivCwsKwfPly3HHHHTh16hQiIyMBAHl5efjhhx/w448/QigU4vLly3jooYewcOFCjBo1ClVVVdi5cyesB+K3bNkCmUzGBxYTJkxAVFQU5s2bBwBYsGABvv76ayxbtgzt27fHjh078OijjyImJgYDBgxAYWEh+vfvj4EDB+LPP/9EaGgodu3aBYPBgOnTp+PEiROorKzkA4rIyEhcunQJADBjxgy8++676Nq1K2QyGZYvX+7Wz/nPP/9Eq1atsGPHDuzatQsTJ07E7t270b9/f+zbtw9r1qzBU089hcGDB6NVq1Z1+rdcvXo15s2bh48++giZmZn49ttv8e677/JBgMXWrVsRHx+PrVu3Ii8vD2PHjkVGRgYmTZrk1vsAMG/a+c477+Czzz5DVFQUWrRogSlTpuD48eP49ttvkZCQgHXr1mHo0KE4duyYw8UCRqMRI0eORFJSEvbt24eqqiq8+OKLNnX279+PXr16YfPmzejcubPDETp33jP+QgEMIaTRM5lM2LlzZ4Pf99Zbb63T6BljDFu2bMFvv/2G5557jv/A2rVrF/r27QvA/IGYmJiI9evXY8yYMRg4cCD/gb1jxw507doVcXFx2LZtGzp27Iht27ZhwIABAMyjMfv370dJSQmkUikAYPHixVi/fj3Wrl2Lf/3rXwDMj42+/PJLxMTEADCn4jAYDLjvvvuQnJwMAOjSpYtN3yUSCVasWAGFQoHOnTvjjTfewEsvvYQ333wTer0e8+fPx+bNm9GnTx8AQJs2bfDXX39h+fLlGDBgALKyshAWFoZvv/2W/0Du0KED375cLodWq0VcXJzdz23q1Km47777PP55R0ZG4oMPPoBAIEBqaioWLlwIlUqFV199FQAwc+ZMvP322/jrr7/w4IMPetw+AHz44YeYOHEiJkyYAACYNWsWfv/9d1RXV9vUi4iIwNKlSyEUCtGxY0fcdddd2LJlCyZNmuTW+wAwPz776KOP+EfkFy5cwMqVK3HhwgUkJCQAAKZPn45NmzZh5cqVmD9/vl1///jjD5w5cwbbtm3jf9bz5s3D4MGD+TqW90VUVJTDfw/AHMC4es/4S8A8QqJJvISQxu6XX35BcHAwZDIZhg0bhrFjx2LOnDk4ceIERCKRTU64qKgopKam4sSJEwCAAQMG4Pjx47hy5Qq2b9+OgQMHYuDAgdi2bRv0ej12797ND/EfPXoU1dXViIqKQnBwMP+Vn5+PM2fO8PdITk7mP6QAID09HXfccQe6dOmCMWPG4NNPP0VZWZnN95Cenm6ziWCfPn1QXV2NgoIC5OXlQaVSYfDgwTb3/fLLL/n7Zmdn49Zbb63T/JUePXp4fA0AdO7c2WaOSGxsrM2HrFAoRFRUFEpKSurUPgDk5uaiV69eNudqvrb0xTrojY+P5+/rzvsAMAeRN998M//62LFjMBqN6NChg83Pffv27Tb/3jX7m5iYaBOYOOqvK+68Z/wlYEZgaCM7otFo8Mgjj0AoFHo9Q16lUvHDrqdPn65111dXdZ2Ve3IPUjuBQIBbb73VL/f1xG233YaPP/4YEokECQkJEInc/xXbpUsXREZGYvv27di+fTvmzZuHuLg4vPPOOzhw4AD0ej3/V3t1dTXi4+MdzoGwnrdRc+K4UCjEH3/8gd27d+P333/Hhx9+iNdeew379u2zexTiiGW0YcOGDXyaDAvLSJA3mzbW7K9AILB7VOFoRV/NYInjOIfnGuIxpC/uK5fLbR5dVldXQygU4tChQ3YjgpaFAvXF2/dMfQqYAIYQxhhKS0v5Y2/bsjx3d9WWq7rOyj25B6kdx3EBMRE6KCgI7dq1szvfqVMnGAwG7Nu3jw9Crl69itzcXKSlpQEwf4+33norfvrpJ+Tk5KBfv35QKBTQarVYvnw5evTowX/Ad+vWDUVFRRCJRDYTWt3BcRwyMzORmZmJWbNmITk5GevWrcO0adMAmEd31Go1H4js3bsXwcHBSExMRGRkJD+p1PI4q6abb74ZX3zxhdNVRBKJxO2dtGNiYlBUVATGGP+BXnPJb0NJTU3FgQMH8Pjjj/PnDhw44FEb7rwPHOnatSuMRiNKSkrcDuRTU1NRUFCA4uJixMbGOuyvZc6Lq38PV+8Zf6EAhgQMiUSCTz/9FC1btvR6OahMJsORI0f4Y2/qOiv35B6kaWvfvj3uvfdeTJo0CcuXL0dISAhmzJiBli1b4t577+XrDRw4EC+++CJ69OjB/2Xdv39/rF69Gi+99BJfb9CgQejTpw9GjhyJhQsXokOHDrh06RI2bNiAUaNGOX0Us2/fPmzZsgV33nknWrRogX379uHKlSvo1KkTX0en02HixIl4/fXXce7cOcyePRtTpkyBQCBASEgIpk+fjn//+98wmUzo168fKioqsGvXLoSGhmLcuHGYMmUKPvzwQzz44IOYOXMmwsLCsHfvXvTq1QupqalISUnBb7/9htzcXERFRdU6oj5w4EBcuXIFCxcuxOjRo7Fp0yb8+uuvftlC47nnnsOkSZPQo0cP9O3bF2vWrMHff/+NNm3auN2Gu++Dmjp06IBHHnkEjz/+OD/J+cqVK9iyZQtuvvlm3HXXXXbXDB48GG3btsW4ceOwcOFCVFVV4fXXXwdwY7v/Fi1aQC6XY9OmTWjVqhVkMpndv4c77xl/CZg5MIQIhUK0a9fO7hlzXdvKyMhARkaGW8uoa6vrrNyTe5Cmb+XKlejevTvuvvtu9OnTB4wxbNy40WaUYsCAATAajfxcF8D8IV7zHMdx2LhxI/r3748JEyagQ4cOePDBB3H+/Hn+r21HQkNDsWPHDgwfPhwdOnTA66+/jnfffRfDhg3j69xxxx1o3749+vfvj7Fjx+Kee+7BnDlz+PI333wT//nPf7BgwQJ06tQJQ4cOxYYNG/jHCVFRUfjzzz9RXV2NAQMGoHv37vj000/573PSpElITU1Fjx49EBMTg127djntb6dOnfDRRx8hKysL6enp2L9/P6ZPn+7uj7xWAwcOxPjx492u/8gjj2DmzJmYPn06unXrhvz8fIwfP97jP07ceR84u+7xxx/Hiy++iNTUVIwcORIHDhxAUlKSw/pCoRDr169HdXU1evbsiSeffBKvvfYagBt/UIlEInzwwQdYvnw5EhISHAZR7rxn/IU2siMBY8eOHTCZTPwy6oiIiDpvZEcar0DdyK4pcHeTuaYgOTkZc+fO9SiIqWnw4MGIi4vDV1995buO1aNdu3ahX79+yMvLQ9u2bevlHg25kV3APEKybMnubRZiErgMBgN+//13xMTEeB246PV6rF69GoD5L6va/vpxVddZuSf3IIQ0nJycHISFhdnMZ3FFpVJh2bJlGDJkCIRCIf73v/9h8+bN+OOPP+qxp95Zt24dgoOD0b59e+Tl5eGFF15AZmZmvQUvDY1GYEjAoFQCzQONwPhPcxqB8ZRarcaIESNw5MgRaDQapKam4vXXX6/TvjUN5csvv8Rbb72FCxcuIDo6GoMGDcK7776LqKioersnjcAQ4oBAIEDv3r2hUCh8Mgdm+PDh/LE3dZ2Ve3IPQhqDQEjg5y9yuRybN2/2dzc88vjjj3s0yhRoaASGBAyaA9M80AgMIYGLkjkSQgghhNSCAhhCCCGEBBwKYEjA0Gg0ePTRRzFgwABoNBqv2rJs89++fXuoVCqv6jor9+QehBBCPBMwk3hpGTVhjKGwsJA/9ratvLw8t9pyVddZuSf3IIQQ4pmACWAomSORSCT44IMPkJCQ4JNUAn/99Rd/7E1dZ+We3IMQQohnAiaAIUQoFKJLly78KiRv28rMzPRJXWflntyDkEA1Z84crF+/3m9JFknzRXNgCCHEx/bs2QOhUOgwyV5TN2fOHHAcB47j+GzZ//73v1FdXe3vrjUqc+bMQUZGhr+7EdBoBIYEDIPBgB07duDEiRPo0KGD122tW7cOADBq1CiIRM7/V3BV11m5J/cgTcvnn3+O5557Dp9//jkuXbqEhISEerkPYwxGo7HRvbc6d+6MzZs3w2AwYNeuXXjiiSegUqmwfPlyf3cNRqMRHMdBIAiMv9/1ej2lIXGGBZiKigoGgFVUVPi7K6SBbdq0iQFgANjGjRtZdnZ2nduqrq7m26qurvaqrrNyT+5BblCr1ez48eNMrVb7uyt1UlVVxYKDg9nJkyfZ2LFj2bx58xhjjD300EPsgQcesKmr0+lYVFQU++KLLxhjjBmNRjZ//nyWkpLCZDIZu/nmm9n333/P19+6dSv//u/WrRsTi8Vs69atLC8vj91zzz2sRYsWLCgoiPXo0YP98ccfNve6dOkSGz58OJPJZCwlJYWtXr2aJScns/fff5+vU1ZWxiZOnMiio6NZSEgIu+222+z+P1uwYAFr0aIFCw4OZk888QR75ZVXWHp6Ol8+e/Zsm9eMMTZp0iQWFxfHGGNMo9Gw5557jsXExDCpVMoyMzPZ/v37+brdu3dnixYt4l/fe++9TCQSsaqqKsYYYwUFBQwAO336NN/eiy++yBISEphCoWC9evViW7du5a9fuXIlCwsLYz/99BPr1KkTEwqFLD8/n23dupX17NmTKRQKFhYWxvr27cvOnTtn8z0sW7aMtWrVisnlcjZmzBhWXl5u8319+umnrGPHjkwqlbLU1FSWlZVlU15QUMAefPBBFhERwRQKBevevTvbu3cvW7lyJf+7wfK1cuVKxhhjANhHH33ERowYwRQKBZs9ezb/PVhbt24ds/4It/T5888/Z4mJiSwoKIg988wzzGAwsHfeeYfFxsaymJgY9tZbb7H6VNv/v77+/G5cYTshtRAIBEhPT4dcLvf6ryeBQIABAwbwx97UdVbuyT1I7RhjUOsbfgWiXCwEx3EeXfPdd9+hY8eOSE1NxaOPPoqpU6di5syZeOSRRzBmzBhUV1fzObJ+++03qFQqjBo1CgCwYMECfP3111i2bBnat2+PHTt24NFHH0VMTAz/XgKAGTNmYPHixWjTpg0iIiJQUFCA4cOHY968eZBKpfjyyy8xYsQI5ObmIikpCYB5W/nS0lJs27YNYrEY06ZNQ0lJiU3fx4wZA7lcjl9//RVhYWFYvnw57rjjDpw6dQqRkZH47rvvMGfOHGRlZaFfv3746quv8MEHH6BNmza1/xzlcuh0OgDAyy+/jB9++AFffPEFkpOTsXDhQgwZMgR5eXmIjIzEgAEDsG3bNkyfPh2MMezcuRPh4eH466+/MHToUGzfvh0tW7ZEu3btAABTpkzB8ePH8e233yIhIQHr1q3D0KFDcezYMbRv3x6AeUuDd955B5999hmioqIQGRmJjIwMTJo0Cf/73/+g0+mwf/9+m3/rvLw8fPfdd/i///s/VFZWYuLEiXj22Wf5BK2rV6/GrFmzsHTpUnTt2hVHjhzBpEmTEBQUhHHjxqG6uhoDBgxAy5Yt8fPPPyMuLg6HDx+GyWTC2LFj8c8//2DTpk18egLrxSlz5szB22+/jSVLlkAkEuHPP/9067135swZ/Prrr9i0aRPOnDmD0aNH4+zZs+jQoQO2b9+O3bt344knnsCgQYPQu3dvt9ps1HwSBjUgGoFpvrZv3862bt3Kzp8/z7Zu3erVCAxpvBz9BafU6lnyK780+JdSq/e4/3379mVLlixhjDGm1+tZdHQ027p1K3/85Zdf8nUfeughNnbsWMaYeSRBoVCw3bt327Q3ceJE9tBDDzHGbozArF+/3mU/OnfuzD788EPGGGMnTpxgANiBAwf48tOnTzMA/AjMzp07WWhoKNNoNDbttG3bli1fvpwxxlifPn3Ys88+a1Peu3fvWkdgDh48yKKjo9no0aNZdXU1E4vFbPXq1Xy5TqdjCQkJbOHChYwxxn7++WcWFhbGDAYDy87OZnFxceyFF15gr7zyCmOMsSeffJI9/PDDjDHGzp8/z4RCISssLLTp0x133MFmzpzJGGP8aIf174urV68yAGzbtm0Of3azZ89mQqGQXbx4kT/366+/MoFAwC5fvsz/XL755hub6958803Wp08fxhhjy5cvZyEhIezq1atO71FzpIox8wjM1KlTbc65OwKjUChYZWUlf27IkCEsJSWFGY1G/lxqaipbsGCBwz75Ao3AEEJIAMrNzcX+/fv5uU8ikQhjx47F559/joEDB+KBBx7A6tWr8dhjj0GpVOKnn37Ct99+C8D8F79KpcLgwYNt2tTpdOjatavNuR49eti8rq6uxpw5c7BhwwZcvnwZBoMBarUaFy5c4PslEonQrVs3/pp27dohIiKCf3306FFUV1fbZSpWq9U4c+YMAODEiRN4+umnbcr79OmDrVu32pw7duwYgoODYTQaodPpcNddd2Hp0qU4c+YM9Hq9zeo8sViMXr164cSJEwCAW2+9FVVVVThy5Ah2796NAQMGYODAgXj77bcBANu3b8dLL73E38doNNrNidNqtTbfh0Qiwc0338y/joyMxPjx4zFkyBAMHjwYgwYNwgMPPID4+Hi+TlJSElq2bGnzfZpMJuTm5iIkJARnzpzBxIkTMWnSJL6OwWDgR1Kys7PRtWtXREZGwlM1/33dlZKSgpCQEP51bGwshEKhzQhwbGys3chboKIAhjRbJpMJOp0OUqnU48cEpGHJxUIcf2OIX+7ric8//xwGg8Fm0i5jDFKpFEuXLsUjjzyCAQMGoKSkBH/88QfkcjmGDh0KAPwqnQ0bNth8cAKAVCq1eR0UFGTzevr06fjjjz+wePFitGvXDnK5HKNHj+Yf27ijuroa8fHx2LZtm11ZeHi42+0AQGpqKn7++WeIRCKbfZuKi4tdXhseHo709HRs27YNe/bsweDBg9G/f3+MHTsWp06dwunTp/nHadXV1RAKhTh06JBdxnfLYzrA/Air5v/jK1euxPPPP49NmzZhzZo1eP311/HHH3/glltucdlHy7/Vp59+avcoxtIPuVzush1nav77CgQCu80w9Xq93XU1J/tyHOfwnMlkqnPfGhMKYEjA0Gq1eOaZZyCVSvHee+951ZZKpUJGRgZMJhPWrVuHLl26OK2rVqvRp08fAOblsTV/MTkrd3UdcR/HcVBIGvevK4PBgC+//BLvvvsu7rzzTpuykSNH4n//+x+efvppJCYmYs2aNfj1118xZswY/gMmLS0NUqkUFy5csJnv4o5du3Zh/Pjx/Fya6upqnDt3ji9PTU2FwWDAkSNH0L17dwDmEZ+ysjK+Trdu3VBUVMQvfXakU6dO2LdvHx5//HH+3N69e+3qSSQSfo6KtbZt20IikWDXrl1ITk4GYP4gPnDgAKZOncrXGzBgALZu3Yr9+/dj3rx5iIyMRKdOnTBv3jzEx8fzIy5du3aF0WhESUkJbr31Vvd+WFa6du2Krl27YubMmejTpw+++eYbPoC5cOGCzQqyvXv3QiAQIDU1FbGxsUhISMDZs2fxyCOPOGz75ptvxmeffYZr1645HIWRSCRu7ywfExODqqoqKJVKPrihfXcCKIChVALEZDLxQ9ne/gVhMBhw+vRpAEB5ebnL+x49etTpfZ2Vu7qONC2//PILysrKMHHiRLvdwu+//358/vnnePrpp/Hwww9j2bJlOHXqlM2jl5CQEEyfPh3//ve/YTKZ0K9fP1RUVGDXrl0IDQ3FuHHjnN67ffv2+PHHHzFixAhwHIf//Oc/Nu+5jh07YtCgQfjXv/6Fjz/+GGKxGC+++KLNyMSgQYPQp08fjBw5EgsXLkSHDh1w6dIlbNiwAaNGjUKPHj3wwgsvYPz48ejRowcyMzOxevVq5OTkuJzEaxEUFIRnnnkGL730EiIjI5GUlISFCxdCpVJh4sSJfL2BAwfiww8/RExMDDp27MifW7p0KcaMGcPX69ChAx555BE8/vjjePfdd9G1a1dcuXIFW7Zswc033+x0H578/Hx88sknuOeee5CQkIDc3FycPn3aJjCTyWQYN24cFi9ejMrKSjz//PN44IEHEBcXBwCYO3cunn/+eYSFhWHo0KHQarU4ePAgysrKMG3aNDz00EOYP38+Ro4ciQULFiA+Ph5HjhxBQkIC+vTpg5SUFOTn5yM7OxutWrVCSEiI3UibRe/evaFQKPDqq6/i+eefx759+7Bq1Sq3fuZNmk9m0jQgmsTbfP35559s0aJF7Ouvv2abN2/2ahKvVqtlixYtYosWLWJ79+6tta7BYGC///47+/3335nBYHC73NV1xLFAXUZ99913s+HDhzss27dvHwPAjh49yo4fP84AsOTkZGYymWzqmUwmtmTJEpaamsrEYjGLiYlhQ4YMYdu3b2eM3ZjEW1ZWZnNdfn4+u+2225hcLmeJiYls6dKlbMCAAeyFF17g61y6dIkNGzaMSaVSlpyczL755hvWokULtmzZMr5OZWUle+6551hCQgITi8UsMTGRPfLII+zChQt8nXnz5rHo6GgWHBzMxo0bx15++WWXy6itqdVq9txzz7Ho6GiHy6gZM0+y5TiOn+DM2I1Jq9b9Zcw8CXjWrFksJSWFicViFh8fz0aNGsX+/vtvxpjjCbBFRUVs5MiRLD4+nkkkEpacnMxmzZrFT3a1fA8fffQRS0hIYDKZjI0ePZpdu3bNpp3Vq1ezjIwMJpFIWEREBOvfvz/78ccf+fJz586x+++/n4WGhjKFQsF69OjB9u3bxxgzT9q+//77WXh4uN0y6nXr1tn93NatW8fatWvH5HI5u/vuu9knn3zicBm1tXHjxrF7773X5lzN94WvNeQkXo6xwMoyZ8mFVFFRgdDQUH93hzSgHTt2wGQy8akEIiIikJ6eXqe2jEYjdu7cCcD8rLyuk+aI72k0GuTn56N169aUQ6oeXbx4EYmJidi8eTPuuOMOf3enUaH0CHVX2/+/vv78DphHSIQQQuruzz//RHV1Nbp06YLLly/j5ZdfRkpKCvr37+/vrhFSJxTAkIBhMBiwb98+5Ofn85tzedPWnj17AAC33Xaby7q//fYbAGDIkCEOUwk4Knd1HSENSa/X49VXX8XZs2cREhKCvn37YvXq1bRNPQlY9AiJBIzffvuNX3K6ceNGJCQk1PkRkuV9BJgfTdW2gkGpVPJLMqurq+2WODord3UdcYweIRESuOgREiEOWJYwSqVSn6QSSE1NBQCXe8AIBAJ+joyzVAKOyl1dRwghpO4ogCEBQyqVYtmyZfwkXm/I5XIsW7YMAFz+lS+Xy3HgwAGPy11dRwghpO7oz0JCCCGEBBwKYAghhBAScCiAIQHh2rVrUKvVmDJlCu677z5otVqv2rO0NWXKFGg0Gpd1MzMzkZmZCbVa7Xa5q+sIIYTUHc2BIY2eWq3G33//DZPJhJycHADeb81v3ZarhXgmkwm7d+92el9n5a6uI4QQUncUwJBGz5J1VSKR4JNPPoFYLOaz29aVVCrFm2++CcA+g6ujuuvWreOP3S13dR0h3tq2bRtuu+02lJWVeZwxurE6d+4cWrdujSNHjiAjI8Pf3bHjq595SkoKpk6dapPEknjGLwFMSkoKQkNDIRAIEBERYZPQjBBngoKCMGnSJBQXF+PEiRNetSUSidCvXz/+2FXdkSNHelzu6jrStIwfPx7l5eVYv369v7viktFoxKJFi7Bq1SqcP38ecrkc7du3x6RJk/Dkk0/6u3uNWt++fXH58mW7hJ2k4fltBGb37t38Jl+EEEIazty5c7F8+XIsXboUPXr0QGVlJZ9Jub7odDqvR079Ta/XQyKR8BmpG7um8DOvDU3iJQHDaDRi27Zt2LVrF4xGo9dtZWdnIzs722Vblvtu27bNYV1n5a6uI83L9u3b0atXL0ilUsTHx2PGjBkwGAx8+cCBA/Hcc89h6tSpiIiIQGxsLD799FMolUpMmDABISEhaNeuHX799Ve7tnft2oWbb74ZMpkMt9xyC/75559a+/Lzzz/j2WefxZgxY9C6dWukp6dj4sSJmD59Ol/HZDJh4cKFaNeuHaRSKZKSkjBv3jy+/JVXXkGHDh2gUCjQpk0b/Oc//+Ef9wLmhIgZGRn47LPPbHZlPXnyJPr16weZTIa0tDRs3rwZHMfVOnL1zz//YNiwYQgODkZsbCwee+wxlJaWOq2/atUqhIeHY/369Wjfvj1kMhmGDBmCgoICm3o//fQTunXrBplMhjZt2mDu3Lk2/yYcx+Hjjz/GPffcg6CgIMybNw/btm0Dx3EoLy/n6/3www/o3LkzpFIpUlJS8O6779rcp6SkBCNGjIBcLkfr1q2xevVquz5fuHAB9957L4KDgxEaGooHHngAxcXFNnXeeusttGjRAiEhIXjyyScxY8YMm8ds48ePx8iRIzFv3jwkJCTwm3V+9dVX6NGjB0JCQhAXF4eHH34YJSUl/HWW7+m3335D165dIZfLcfvtt6OkpAS//vorOnXqhNDQUDz88MNQqVROf+4NztP01du3b2d33303i4+Pd5r2e+nSpSw5OZlJpVLWq1cvPn24RUpKCuvWrRvr0aMH+/rrrz26v6/TcZPGr6Kigm3dupX9+eefDAADwDZu3Miys7O9atPS1o4dO2qtW11dzdetrq52u9zVdcQxtVrNjh8/ztRq9Y2TJhNj2uqG/zKZ3O73uHHj2L333uuw7OLFi0yhULBnn32WnThxgq1bt45FR0ez2bNn83UGDBjAQkJC2JtvvslOnTrF3nzzTSYUCtmwYcPYJ598wk6dOsWeeeYZFhUVxZRKJWOMsa1btzIArFOnTuz3339nf//9N7v77rtZSkoK0+l0Tvs6ZMgQ1r9/f1ZSUuK0zssvv8wiIiLYqlWrWF5eHtu5cyf79NNP+fI333yT7dq1i+Xn57Off/6ZxcbGsnfeeYcvnz17NgsKCmJDhw5lhw8fZkePHmUGg4GlpqaywYMHs+zsbLZz507Wq1cvm8+S/Px8BoAdOXKEMcZYWVkZi4mJYTNnzmQnTpxghw8fZoMHD2a33Xab076vXLmSicVi1qNHD7Z792528OBB1qtXL9a3b1++zo4dO1hoaChbtWoVO3PmDPv9999ZSkoKmzNnDl8HAGvRogVbsWIFO3PmDDt//jz/My8rK2OMMXbw4EEmEAjYG2+8wXJzc9nKlSuZXC5nK1eu5NsZNmwYS09PZ3v27GEHDx5kffv2ZXK5nL3//vuMMcaMRiPLyMhg/fr1YwcPHmR79+5l3bt3ZwMGDODb+Prrr5lMJmMrVqxgubm5bO7cuSw0NJSlp6fzdcaNG8eCg4PZY489xv755x/2zz//MMYY+/zzz9nGjRvZmTNn2J49e1ifPn3YsGHD+Oss39Mtt9zC/vrrL3b48GHWrl07NmDAAHbnnXeyw4cPsx07drCoqCj29ttvO/25M+bk/9/rfP357XEAs3HjRvbaa6+xH3/80WEA8+233zKJRMJWrFjBcnJy2KRJk1h4eDgrLi7m61y8eJExxtilS5dYWloaO3r0qNv3pwCm+bEEMFu3bmVpaWmsQ4cO7Ndff/UqgKmsrGTJycksOTmZ7dy5s9a6SqWSpaWlsbS0NP6Dw51yV9cRxxz+AtRWMzY7tOG/tO4HnrUFMK+++ipLTU1lJquAKCsriwUHBzOj0cgYMwcw/fr148sNBgMLCgpijz32GH/u8uXLDADbs2cPY+zGB8+3337L17l69SqTy+VszZo1Tvuak5PDOnXqxAQCAevSpQt76qmn2MaNG/nyyspKJpVKbQIWVxYtWsS6d+/Ov549ezYTi8U2QdKvv/7KRCIRu3z5Mn/ujz/+qDWAefPNN9mdd95pc6+CggIGgOXm5jrsy8qVKxkAtnfvXv7ciRMnGAD+D+o77riDzZ8/3+a6r776isXHx/OvAbCpU6fa1KkZwDz88MNs8ODBNnVeeukllpaWxhhjLDc3lwFg+/fvt+uLJYD5/fffmVAoZBcuXODr5OTk2FzXu3dvNnnyZJv7ZGZm2gUwsbGxTKvVOvy5WBw4cIABYFVVVTbf0+bNm/k6CxYsYADYmTNn+HNPPfUUGzJkSK1tN2QA4/EjpGHDhuGtt97CqFGjHJa/9957mDRpEiZMmIC0tDQsW7YMCoUCK1as4Ou0bNkSABAfH4/hw4fj8OHDTu+n1WpRWVlp80WaJ5lMhpycHOzYscPrJH8KhQKrVq3CqlWrXLalUCiQk5ODnJwcKBQKt8tdXUeajxMnTqBPnz42ebcyMzNRXV2Nixcv8uduvvlm/lgoFCIqKgpdunThz8XGxgKAzfA/APTp04c/joyMRGpqKj/RPTg4mP96+umnAQBpaWn4559/sHfvXjzxxBP8Iw7LBN4TJ05Aq9XijjvucPo9rVmzBpmZmYiLi0NwcDBef/11XLhwwaZOcnIyYmJi+Ne5ublITEy0mUPSq1cvp/cAgKNHj2Lr1q0230fHjh0BAGfOnHF6nUgkQs+ePfnXHTt2RHh4OP9zOXr0KN544w2bdidNmoTLly/bPCax5DNz5sSJE8jMzLQ5l5mZidOnT8NoNOLEiRMQiUTo3r27XV+s20hMTERiYiJ/Li0tzaa/ubm5dj8rRz+7Ll262M17OXToEEaMGIGkpCSEhIRgwIABAGD372X9/ouNjeUfD1qfq/ne8yefTuLV6XQ4dOgQZs6cyZ8TCAQYNGgQ9uzZA8CcoddkMiEkJATV1dX4888/8cADDzhtc8GCBZg7d64vu0kICTRiBfDqJf/ctyFvV2NJP8dxNucsAZAn+wplZ2fzx9YZgAUCAXr27ImePXti6tSp+Prrr/HYY4/htddeg1wur7XNPXv24JFHHsHcuXMxZMgQhIWF4dtvv7Wb++GLDOzV1dUYMWIE3nnnHbuy+Ph4r9qdO3cu7rvvPrsy6z9qAi2LfM3+KpVKDBkyBEOGDMHq1asRExODCxcuYMiQIdDpdDZ1a77XHL0fG9OeVj4NYEpLS2E0Gvm/EixiY2Nx8uRJAEBxcTE/emM0GjFp0iSbKLmmmTNnYtq0afzryspKmyiVENIMcBwgCawPEmudOnXCDz/8AMYYH4Ts2rULISEhaNWqldft7927F0lJSQCAsrIynDp1Cp06dQIAtGvXzq020tLSAJg/8Nq3bw+5XI4tW7Y4XFa9e/duJCcn47XXXuPPnT9/3uU9UlNTUVBQgOLiYv5zwlXC027duuGHH35ASkqKyy0PrBkMBhw8eJAfpcjNzUV5eTn/c+nWrRtyc3Pd/vk406lTJ+zatcvm3K5du9ChQwcIhUJ07NgRBoMBhw4d4j/rLH2xbqOgoAAFBQX859vx48dRXl7O/7ukpqbiwIEDePzxx/nr3EkWe/LkSVy9ehVvv/023/bBgwe9+p4biwZfRt2mTRscPXrU7fpSqRRSqRRZWVnIysqi1RzNmEajweDBg6HT6fDqq6961ZZareZXXCxZssRl3XvuuQeAefVGzb9OnZW7uo40PRUVFTYjHgAQFRWFZ599FkuWLMFzzz2HKVOmIDc3F7Nnz8a0adMgEHi/GPSNN95AVFQUYmNj8dprryE6OrrWPYhGjx6NzMxM9O3bF3FxccjPz8fMmTPRoUMHdOzYESKRCK+88gpefvllSCQSZGZm4sqVK8jJycHEiRPRvn17XLhwAd9++y169uyJDRs28Js21mbw4MFo27Ytxo0bh4ULF6Kqqgqvv/46ANg8XrM2efJkfPrpp3jooYfw8ssvIzIyEnl5efj222/x2WefQSgUOrxOLBbjueeewwcffACRSIQpU6bglltu4QOaWbNm4e6770ZSUhJGjx4NgUCAo0eP4p9//sFbb73l8nuxePHFF9GzZ0+8+eabGDt2LPbs2YOlS5fio48+AmAOPIYOHYqnnnoKH3/8MUQiEaZOnWrz+2DQoEHo0qULHnnkESxZsgQGgwHPPvssBgwYwD/Ceu655zBp0iT06NEDffv2xZo1a/D333/bPOJxJCkpCRKJBB9++CGefvpp/PPPP/wmngHPmwk0qDGJV6vVMqFQaDex9/HHH2f33HOPN7fi0STe5ufatWu0CqkZqW0SYGM2btw4/t/b+mvixImMMca2bdvGevbsySQSCYuLi2OvvPIK0+v1/PUDBgxgL7zwgk2bycnJ/ERPC+vfu5bJl//3f//HOnfuzCQSCevVq5fLhRGffPIJu+2221hMTAyTSCQsKSmJjR8/np07d46vYzQa2VtvvcWSk5OZWCxmSUlJNpNeX3rpJRYVFcWCg4PZ2LFj2fvvv8/CwsL48tmzZ9tMMLU4ceIEy8zMZBKJhHXs2JH93//9HwPANm3axBizn8TLGGOnTp1io0aNYuHh4Uwul7OOHTuyqVOn2kyKtrZy5UoWFhbGfvjhB9amTRsmlUrZoEGD2Pnz523qbdq0iV8RFBoaynr16sU++eQThz9ri5qTeBljbO3atSwtLY3/OS1atMjmmsuXL7O77rqLSaVSlpSUxL788ku7f9vz58+ze+65hwUFBbGQkBA2ZswYVlRUZNPOG2+8waKjo1lwcDB74okn2PPPP89uueUWvtzZRPJvvvmGpaSkMKlUyvr06cN+/vlnm5+xo+/J8jO05uzf1FpDTuLlGHORCKYWHMdh3bp1NpF+79690atXL3z44YcAzM9qk5KSMGXKFMyYMaOut+JVVlYiLCwMFRUVNs9zSdOUm5uLy5cvAzBPyjt//jwqKiqQmpqK6OhopKen16ldrVaLN954AwAwYsQI3HLLLU7rGgwGrFmzBgAwduxYu2FsZ+WuriOOaTQa5Ofn2+wdQpquXbt2oV+/fsjLy0Pbtm190uaqVaswdepUm8c0TdHgwYMRFxeHr776yt9d4dX2/6+vP789/o1aXV2NvLw8/nV+fj6ys7MRGRmJpKQkTJs2DePGjUOPHj3Qq1cvLFmyhN+IiRBPWf8Cio2NRb9+/XyWSmDw4MH8sau6d999N0pLS6FWqxESEmJX/sgjjzi8ztF5QpqzdevWITg4GO3bt0deXh5eeOEFZGZm+ix4aapUKhWWLVuGIUOGQCgU4n//+x82b96MP/74w99d8xuPA5iDBw/itttu419bJtiOGzcOq1atwtixY3HlyhXMmjULRUVFyMjIwKZNm+wm9nqK5sA0bxkZGX5NVnf06FGYTCZcuXKl1tEaQkjtqqqq8Morr+DChQuIjo7GoEGD7FYvEXscx2Hjxo2YN28eNBoNUlNT8cMPP2DQoEH+7prfePUIyR/oEVLzsm/fPqjVanTt2hXBwcE4fPgwrl69CrFY7NUjJJ1Ox+9N1LVrV/Tu3dtpXaPRiE8//RQA0L59e7u9MYxGI7+XUbdu3fhJhc7Ok9rRIyRCAlejfoREiL9oNBp+BcHGjRu9buuZZ54BAOzYscPtuo7ua92v6upqfh8GZ+cJIYR4L2ACGHqERDiOQ3JyMoxGo9Mll560ZXms6aotV3Ut/apZ7uw8cU+ADQ4TQtCw/98GTAAzefJkTJ48mR+CIs2PQqHAuXPn+Em8arUaly9fRlxcnMcBgkKhwLfffgsAbqUSsNStrV/unie1s+z+qVKpaO8cQgKMJQ1DzV1860PABDCEWFjmkmg0GuTm5kIikSAqKsrPvSK+IhQKER4ezudcUSgUNIJFSCPHGINKpUJJSQnCw8MbZM4fBTAk4ERGRiIlJQWXLl2CTqeDwWDwd5eIj1mS/TWmxHGEENfCw8NtknXWp4AJYGgODNFoNHjwwQcBAN9++y0qKirskpF50pZlC3NHSeKc1Z01a5bLflkeSTk7T1zjOA7x8fFo0aIF9Hq9v7tDCHGDWCxu0NWWARPA0BwYYjQa8dNPP/HH3rZlScDmKruqdV1H93XWL1/2t7kSCoW0/JwQ4lDABDCESCQSfPLJJ/yxt229+OKLAFxPNnNV11m/fNlfQgghtiiAIQFDLBZj0qRJXrdTWFiI06dP4+677wbgOpWAWCzm63rSL1/1lxBCiD3v87gTEmCuXr3q7y4QQgjxUsAEMFlZWUhLS0PPnj393RXiJyaTCTk5OcjJyXE5b8WdtvLz85Gfn++yLVd1TSYTDhw4gM2bN0OpVNZLfwkhhNgKmEdINImXqNVq3HTTTQDMW/N7Q6vV4oknngAA/PXXXy7va6nrKJWAWq3mUwbs3LkT/fr1c9hfSiVACCG+EzABDCEAEB0d7bO2wsPD3d722lXQbCmvqqqyOe/L/hJCCLmBAhgSMIKCgnDlyhWftCWXy7Fz506Ulpa63K4+KCgI69ev97jcl/0lhBBiiwIYPzOZTDhz5gy0Wm2dro+Pj6dt9AkhhDQ7FMD4WWVlJQoLC+t8vUajoQCmHlVVVaGsrMzf3SCEEFJDwAQwTTWVgGV1ilQqRXJystvXqVQqXLx4sUFTl/ubRqPBxIkTAQCff/65V23pdDq88sor0Gq1ePPNN53WO3LkCDQaDRYuXAgAePnllx3266233rIrr9lfSiVACCG+EzABTFNfhSQWi5GQkOB2/bKyMly8eLEee9T4GI1GfPPNNwDA73DrTVuWFUVz5851Ws9kMsFoNGLLli0AwO/IW7MtR+W+7C8hhBBbARPAECKRSPD+++/zx94Qi8V4+eWXoVQq3dqJd/Lkyfyxo345KvdlfwkhhNiiAIYEDLFYjKlTp/qkLZFIhMceewylpaUucyGJRCKMHj261n45KvdlfwkhhNgKmJ14CSGEEEIsaASGBAyTyYQLFy4AAJKSkrxuq7CwEGVlZQgODnZZt6SkBADQokULh+VFRUV25TX7KxDQ3wuEEOIrFMCQgKFWq9G6dWsAvkklMHz4cACuUwlotVo89NBDAJynEnBUXrO/lEqAEEJ8hwIYElAUCoXP2pLL5W4vQ3e1BNpZuS/7Swgh5IaACWCa6j4wxH1BQUE22Z69IZfLsX//frdSCcjlcvz666+19stRuS/7SwghxFbAPJSfPHkyjh8/jgMHDvi7K4R4paKiAseOHUNpaam/u0IIIQErYAIYQhorg8HgUf1Tp07h6tWryMnJqaceEUJI0xcwj5AI0Wq1mDJlCgBg6dKlXrWl0+kwZ84caDQavP766y7rfvDBBwCA559/3qbswoULOHnypMPymv2VSqUAzJN7ATSrNBCEEOJrNAJDAobBYMBnn32Gzz77zONRj5qMRiN++OEHbNiwweW8KqPRiA0bNjisW1pa6rTcl/0lhBBii0ZgSMAQi8V80kRXu+e6IhKJ8Nxzz0GlUrlMJSASifikjI7qOiv3ZX8JIYTYogCGBAyJRILXXnvNJ22JxWL861//ciuVgFgsxqOPPupxuS/7SwghxBY9QiKEEEJIwKEAhgQMxhiuXLmCK1eueD0BljGGa9euoby83GVbjDGUl5c7reus3Jf9JYQQYoseIZGAoVKp+FxD3qYS0Gg0bqcS0Gg0GDVqFADHqQScldfsL6USIIQQ36ERGBLwzp49C41G4+9uEEIIaUABMwJDqQRIUFCQzaMYoVAIwLzfyoULF9ChQwe325LL5fxuuM5SCahUKr7u1q1ba23LUXnN/hJCCPGdgBmBoVQCpKa2bdvyQUx9BLaFhYU+b5MQQohvBEwAQ0hNcrkcycnJ9da+yWSqt7YJIYR4hwIYEjC0Wi2mTp2KqVOnQqvVetWWTqfDO++8g6VLl0Kn07msu3TpUqd1nZX7sr+EEEJsUQBDAobBYMB///tf/Pe//63T1vwGgwHFxcW4du0ajEYjvv76a/zwww9upRL44YcfnNZ1Vu5tfwkhhDgXMJN4CRGLxXj11Vf5Y0/l5+fz81pEIhEmTZrkdiqBRx55hD92t9zb/hJCCHGOAhgSMCQSCebNm1fn660f74jFYjz//PNupxJ48sknPS73tr+EEEKco0dIhLhgvcyaRlIIIaRxoACGBAzGGJRKJZRKpU9SCahUKqjVapdtxcbGIiEhAWq1ml+2XbMttVpt15Yv+0sIIcQWPUIiAUOlUiE4OBiA91vzazQa3H777QBcpxJQq9VIS0sDAIcb1lmnJaiZSsBX/SWEEGKLAhjSKBiNRly+fBkGgwFyuRyxsbH+7hIhhJBGjAIY0igUFRUhLy+Pfx0cHGw3YqFQKPgkjgqFwqv7yWQy7Nu3D1evXoVMJqu1rlwux8WLF/H33387rCuTyfiRF+tyX/aXEEKILQpgSKNQc58UR/umcBzns8cwHMdBoVBApVKB4ziXdYOCgiCXyx3W5TjOLp8SYwzV1dWQyWQ08ZcQQuqB3ybxqlQqJCcnY/r06f7qAiH15tKlSzh06BD2799PE3gJIaQe+C2AmTdvHm655RZ/3Z4EIJ1Oh9deew2vvfaay+3/XdHr9fjggw/w2WefQa/Xu7zvm2++6bSuXq/HZ599ZlOuVCqh1+vx8ccf49VXX/W6v4QQQmz5JYA5ffo0Tp48iWHDhvnj9iRA6fV6zJ8/H/Pnz3cZdLhiMBjw6aefYvXq1S63+TcYDHjvvfec1jUYDFi9erVdueX822+/7XV/CSGE2PI4gNmxYwdGjBiBhIQEcByH9evX29XJyspCSkoKZDIZevfujf3799uUT58+HQsWLKhzp0nzJBKJ8MILL+CFF15wuf2/K0KhEI8++ijuv/9+h3u71Kz79NNPO60rFApx//3325Vbzj///PMe9Vev16OkpISCHkIIqYXHnwJKpRLp6el44okncN9999mVr1mzBtOmTcOyZcvQu3dvLFmyBEOGDEFubi5atGiBn376CR06dECHDh2we/dul/fTarU2mXwrKys97TJpIqRSKZYsWeKTtiQSCV555RWUlpZCIpG4vO+CBQuQnZ3tsK5EIsGUKVOcnr/11ltdBknWcnJyUF5ejqioKHTp0sXt6wghpDnxOIAZNmxYrY9+3nvvPUyaNAkTJkwAACxbtgwbNmzAihUrMGPGDOzduxfffvstvv/+e1RXV0Ov1yM0NBSzZs1y2N6CBQswd+5cT7tJSKORm5uLyMhIxMXFuVW/vLwcAHD16tV67BUhhAQ2n86B0el0OHToEAYNGnTjBgIBBg0ahD179gAwByQFBQU4d+4cFi9ejEmTJjkNXgBg5syZqKio4L8KCgp82WVC6l1JSQlOnjzp724QQkiT4tN9YEpLS2E0Gu12UY2Nja3zL3CpVAqpVOqL7pEAp1QqfbY1v1qt5h/PuEoloFKpkJKSAsBxKgG1Wu0wlYCz84QQQrzn143sxo8f73bdrKwsZGVlwWg01l+HCCGEEBIQfBrAREdHQygUori42OZ8cXGx28//nZk8eTImT56MyspKhIWFedUWCUwKhQIlJSX8sTdkMhm2b9+Oa9euuZVK4PTp0/jnn3+cphJYt24df+zqPCGEEO/5dA6MRCJB9+7dsWXLFv6cyWTCli1b0KdPH1/eijRDHMchJiYGMTExLrf/d6etyMhIhIeHu5VKIDo62mldjuMQHh5uV+7sPCGEEO95PAJTXV1tk3QvPz8f2dnZiIyMRFJSEqZNm4Zx48ahR48e6NWrF5YsWQKlUsmvSqoreoRECCGEEAuPA5iDBw/itttu419PmzYNADBu3DisWrUKY8eOxZUrVzBr1iwUFRUhIyMDmzZtspvY66lAeoRUUVHBP+pwxXqPm+bIZDLh2LFjbu3vo9PpsGjRIgDASy+95HL/ltro9Xp88sknUKlUmDRpksv7Ll68GEVFRQ7nben1eqxZswYAMHbsWJfnCSGEeM/jAGbgwIEuk9NNmTLF4cZezYVSqURhYaFH13iy0VlTolKpUFZWZnf+ypUrduf0ej1ef/11AMDUqVO9CmAMBgM+/PBDAHA5OmgwGDBv3jwAwKOPPuqw/PPPPwcA3H///S7PE0II8Z5fVyE1VcHBwUhOTvbomhYtWtRTbwKDWCxGRkYGcnJyoFKpcPHiRRQWFtpswS8SifDkk0/yx96wbPOv0WjcSiXw+OOP4+rVq05TCdx11138savzhBBCvBcwAUwgzYEJDQ1FaGiov7sRUDiOQ1BQENq2bYuioiJcuXIFjDGb5IhSqRSffvqpT+4nkUgwZ84ct1MJ/Pe//601lcD06dPdPk8IIcR7fslGXReTJ0/G8ePHceDAAX93hdSjqKgodO7cGQJBwLw1CSGE+EHAjMCQuqttzhIt7yWEEBKIKIBpwhhjOHbsGK5du+a0TosWLZCWltaAvao7pVLJzxUqKSnxOpVAr169wBjD5s2ba62rUqmQlpYGk8mEX3/9lT/PGEN1dTXUajWfmf3HH3+0uYej84QQQrwXMAFMIM2BaSwYY7UGL4A5f1UgUalUDs8XFxcjISHBoyX2arXaq/tWVlbCZDIBADQajcPrnJ0nhBDinYAJYAJpH5jGqHfv3jYrdzQaDQ4dOuTHHnlOLpcjPz+fPwZsVyOdPn0aPXr0cKstqVSKTZs2oayszGWyUJlMhqNHj+L48eM2dS17+EilUvzvf//jj63v4eg8IYQQ7wVMAEO8IxaLbT7sA3EkSyAQ8FmhLWJjY3Ht2jU+E7onbbVs2RJSqdTlhGGBQICkpCRcu3bNYV2BQOAw15ez84QQQrxHSz1IQBMKhWjVqpW/u0EIIaSBUQBDAoZer8eSJUuwZMkS6PV6r9oyGAz46quvsHbtWpdt6fV6fPzxx1i7dq3NvjTWba1du9au3Nl5Qggh3guYR0g0idcxjUaDv//+29/daBA6nQ7//ve/AQCTJk2CWCyuc1t6vR4LFy4EADz00EMu67766qsAgNGjRzssz8rKAgB+593azhNCCPFewAQwNInXlmVHWKPR6HKlkVAobBIbwwmFQjz88MP8sbdtDR8+HFqt1q05MKNHj0ZZWZnDukKhEHfccYddv5ydJ4QQ4r2ACWCIraCgIGRkZLi1FDgkJKRJBDAymQyrV6/2SVsSiQTvvPMOSktL3VqF9OmnnyI7Oxsmkwkmk8nm5ymRSPgkkzXv4eg8IYQQ71EAE8DCw8MRHh7u727UWWFhocOs08CNHYItuwj7e8dg6/tfuHDBbjUUIYSQhkUBDPELxhjy8vL4AKVmksTk5GQ+uJHL5QgODnbZplqtxrlz55CcnOzzgCckJIQ/tuz/UpumMOJFCCGNGQUwxC8YY3zw0q5dO0RFRdmUJyUlISkpyeacUqnkRz7OnTvHpxKwnsx77tw5REZGuswGrlar0b9/f5hMJmzYsKHWuiqVCrGxsTCZTPj6668dtmWZCLxu3ToA5hEb6/OWDe0IIYT4RsAEMLQKqeFotVp+i3wLdzZ8q6vY2Fi3VxQ5Sn0QFBSEzp07IycnBwDs+u5MWVmZ232sLeVCWFgYKioqAMDu+7Cc97Vr165BpVIhPj6eJggTQpqlgAlgaBVSw7h48SLy8vLszsvlcvTq1cvtRzOMMZw5c8ZmkrFYLEabNm3sHhe5Sy6X459//uGPrcXExEChUDjNlVSTVCrFunXr3E4l8M8//+DSpUsOgwWpVIq//voLp06dskslsGLFCv4YqD0zuLtMJhO/dF4oFCI+Ph6Aedm2SCTy+3whQghpCAETwJCGUV1dDcD8CMQy4mI0GqFWq2Eymdz+a7+qqgoXL160Ox8SEoKWLVvWqW8CgQCdO3eu07WO2mrXrh1KS0vdWkbduXNnBAcH87mYapZ37NgRer3epi2BQIDWrVvzr0tLS3H8+HG3R4icsb7esglfUVERTp48iZiYGJ/9jAghpDGjAIY41Lp1ayQlJcFoNGLnzp0eX28ZabCMuly6dAlVVVUoLCzE1atXbSbFNhfFxcVeBy/OXL58GQCcruoihJCmhgIY4rHKykp+pAYwBynR0dEOH12IRCLEx8dDqVSiqqoKKpUKKpXK5eZ7juj1eqxatQoAMH78eK924rVs819dXY0xY8a4vO+nn36Kq1evOsx2rdfr8eWXX6KwsNCmLYPBgE2bNgEAhg4d6vXjI8YYNBqNw+/bF4+mCCEkkFAAQzxiMBhw5MgRuw9MyyOWwsJCmEwm6HQ6m/KUlBSEhobCZDLh5MmTdbq3TqfDv/71LwDAww8/7HUqgblz5wIARo0a5bKu5b4bN260KzcYDJg2bRoAYOTIkTbXvfvuuwDA78jrKaPRiOLiYgQHB6O4uBiFhYVo0aJFndoihJCmhAIY4hGj0cgHL9HR0aisrIROp4NOp0NBQQEuXbpkU18kEvH/tXzw5ubm1mnEQCgU4t577+WP6yoiIgIdO3bE0KFDUVVV5dYcmHvvvRcqlcrhfQUCAYYNG4bKykqbtoRCITIzM73q76VLl3DmzBmbcyUlJXVqixBCmpKACWBoGXX9MJlM2LdvH/+65siJMxzH4aabbkJOTg4/78IyvyMiIoJfKRYTE+OzvspkMqxfv97rdqKjoxEXF4cvv/wSOTk5DlchGQwGfl6J5b7nz593OIlXKpXiq6++wrFjx2xWWEkkErz11lte9VWj0Xh1PSGENFUBE8DQMmrfEovFEAqF/AqjmmouU/ZERESE3SZ0gaaqqoo/dmcXYIvq6mq3l3ITQgipu4AJYIhvCYVC9O7d22HwIhKJ+F1umzuJRGK3S7Aj1kGOdfBDCCGkflDClmZMIpEgLCzM7quxBi8qlQopKSlISUmpdZTDnQzdKpUK3bt3x4MPPlhrfbFYzN83MzPT4SMdtVqN1NRUPPzwwzblGo0GDz74IB588EGH19EOuoQQUnc0AkP8zpPdfc+fP88fO5Obm4ugoKBa8yExxlBQUOCz+zoqZ4yhuLjY6XUymcyt+xNCCLFHAQxpcC1btuRzC4WHh/MrlVyRyWTYv38/f+yo3dOnTwMwj4rUFsDIZDL89ttvOHv2rMvUBpb7Xr582WFdiUSC/fv349SpU3aTeD/++GP+mBBCiO9QAEPcVpcdeR1p164d2rVr5/F1QqEQPXv2dFpuCYzcSdIoFArRtWtXSCQSl49yLPd1tgrJui3rewuFQnTs2NFlXwghhHiO5sCQWgkEAoercGglGCGEEH+iERhSK47j0L17dz5poEXNXXCNRmO95fmxMBgMWLNmDQBg7Nixbj96ctbW2rVrcfHiRX5zPFf3LS0txU033eSwfPXq1Th//jx69+7Nnzcajfjzzz8BALfffnud+0oIIcQeBTDEJY7jXM7hOHv2bL33Q6vV4tFHHwVg3rLfmwBGq9Xi2WefBQAMHz7c7fs6SiWg1+sdlut0OsyfPx8A0K9fvzr3lRBCiD0KYIhXIiMjUVpayq+yEYlECA8Pr5d7CQQCDBo0iD92hTHGb/9fc9KvQCBA//79oVQqXa6CstxXo9HY3NcyKsVxHAYNGmSXlkAgEKB79+5u99fXdDodxGKx26u8CCEkkARMAEOpBBqn+Ph4xMXF2Zyrrw9MuVyOP/74w+3658+fx7lz5wAAGRkZdm2tXbsWOTk5LpczW+5bcxJvXl4eAHMqgT/++ANHjx61mcQrlUqxePFit/vrS5a+tmrVqk4TpgkhpLELmEm8kydPxvHjx3HgwAF/d4XUwHGczVdjYb3ZXX1s72+ZBxQdHe3ztr1lCdwuXrzo344QQkg9CZgAhpDGKjIy0u6cu5vk1Ze6ZPsmhJBAQgEMCRgqlQqdO3dG586dvR5RUalUuPXWWzF+/HiUlJTg6tWrLu87ePBghykBLOX33XcfNBoN/5hTo9Fg/PjxGD9+PGWVJoQQHwuYOTCEMMZw/Phx/tjbtnJzc/njK1euOE3a6Oq+zspdpSBQKpVgjDWqx26EEBIoKIAhAUMmk2Hr1q38sS/aKiwsdCuVwNatW1FUVOSwrqU8Ly/PLpXA+++/zx87UllZSZsCEkJIHVAAQwKGUCjEwIEDfdrWhQsXXO5hY6lbWyqBgQMHIiIiwi6VgPXqp5qb/wHmTfAIIYR4jubAENJA/LEXDCGENFU0AkMChsFgwC+//AIAuPvuu71OJfDLL7/gypUraNOmjVt1S0pK0LZtW4fl69evR35+Pm6++Wb+vNFoxJ49ewAAffr0qXNffUWr1eL8+fOIjIxslEu/CSHEExTAkICh1WoxatQoAEB1dbXXqQQsbTlKD+BJXWflOp0O//nPf9y6R0MoKCjApUuXcOnSJZ89iiOEEH+hAIYEDIFAgL59+/LHntBoNLhy5YpdW1qt1mVbrupaypVKpV0qgc6dO9epv/WBlnITQpoSCmBIwJDL5di1a5dbdU+cOGHz+sKFC/yxUCjk23JnEq+lrrNJvJZyR6kEli5d6lZ/CSGEeMb/fxYS4kOu9lSRyWSIiYlpoN4QQgipLw0ewJSXl6NHjx7IyMjATTfdhE8//bShu0CasJYtW9a6r0pycjKEQmED9ogQQkh9aPAAJiQkBDt27EB2djb27duH+fPn17qNOyEWarUaPXv2RM+ePaFWqx3WiYqKQteuXaFQKNxqa8SIEdBqtW7VveeeexzWtZQ//PDDNuVarRZPP/00nn76aZf3IIQQ4pkGnwMjFAr5DxetVgvGGCWeI24xmUw4ePAgf9xQbbmq66zcZDLx6Qq87S8hhBBbHgcwO3bswKJFi3Do0CFcvnwZ69atw8iRI23qZGVlYdGiRSgqKkJ6ejo+/PBD9OrViy8vLy/HgAEDcPr0aSxatIj2pCBukUql/D4wUqnUJ22VlJS4TCXgqq6l/OzZs3apBObPn88fE0II8R2PHyEplUqkp6cjKyvLYfmaNWswbdo0zJ49G4cPH0Z6ejqGDBmCkpISvk54eDiOHj2K/Px8fPPNNyguLq77d0CaDZFIhLvuugt33XWXV3vAWLd1xx13uJwTY6l7++23O6xrKe/fv79NuVAoRJ8+fdCnTx+ad0MIIT7mcQAzbNgwvPXWW/zGXTW99957mDRpEiZMmIC0tDQsW7YMCoUCK1assKsbGxuL9PR07Ny50+n9tFotKisrbb4Iacz0en2t5WKxuFHsC0MIIYHMp79FdTodDh06hEGDBt24gUCAQYMG8VuqFxcXo6qqCgBQUVGBHTt2IDU11WmbCxYsQFhYGP+VmJjoyy6TAGI0GvHHH3/gjz/+gNFo9ElbO3fudNmWq7qW8j179sBoNOLSpUv8+YMHD+LgwYMwGo0oLCwEACQkJCAoKMir/hNCSHPn00m8paWlMBqNiI2NtTkfGxuLkydPAgDOnz+Pf/3rX/zk3eeeew5dunRx2ubMmTMxbdo0/nVlZSUFMc2URqPBnXfeCcCcSsCbIMC6LVfb/LuqW7NcJpPxZS+99BJ/Xi6XA6D5MIQQ4gsNvgqpV69eyM7Odru+VCr1esImaRoEAgHS09P5Y1+0pdfr3UolkJ6eDp1O5zSVQHp6OtRqtU15dHQ0n/zR+nxCQgKKioq86r8vqFQqyGQyepxFCAlIPg1goqOjIRQK7SblFhcXIy4uzqu2s7KykJWV5fWjAxK45HK5R8GvO225m0ogOzu71lQC2dnZdqkEZDIZPvvsM5u6HMfVuluws/1tfO3y5cvIzc1FWFgYunbt2iD3JIQQX/Lpn14SiQTdu3fHli1b+HMmkwlbtmxBnz59vGp78uTJOH78OA4cOOBtNwlptHQ6HX8cGhpab/exJLasqKiot3sQQkh98ngEprq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiUmTJjg044TUhtvl1k3BrT0mhBCnPN4BObgwYPo2rUrP+w8bdo0dO3aFbNmzQIAjB07FosXL8asWbOQkZGB7OxsbNq0yW5ir6eysrKQlpaGnj17etUOCVxqtRoDBw7EwIEDXT5qSU1NRevWrZ0+rrG0NXbsWLdSCdRW11I+ceJEm3KNRoOpU6di6tSpTu9hGQlxpKysjF+5RAghxJbHf6YOHDjQ5db/U6ZMwZQpU+rcKUcmT56MyZMno7KystZkfaTpMplM2L59O39cm6CgIAQFBSExMRE7duzwqi1XdZ2Vm0wmHD161OF1lr1iVCpVrfd2pby8HElJSV61QQghgSjwx9lJsyGVSvHdd9/xx+4QCAQICwuzm+thaau0tNStVALfffcdrly54jSVwHfffYdz587ZpRKYPXs2f2ytdevWOHHiRK0Tet1RXV1td45yixFCmoOACWBoFRIRiUQYM2aMT9tyZxWSpa6zVUiWcssqJMvoikgkwsCBAx22aVm6XFFRgezsbKSnp9cpmLHMk7GeL+PtqA4hhASCgNkAglYhkcaurpNuy8vLXc7DccWS4R0ADAaDV20RQkggCJgRGEKMRiP27t0LALjlllu8WqVjaauoqAjh4eFe1TUajdi1axfUajU4juP7ZTQacezYMQBAWloarSoihBAfogCGBAyNRoN+/foB8E0qAUtb7qQSqK1uzXJLygCtVovnn3/e7jwhhBDvUQBDAgbHcWjXrh1/7Iu2DAaDy7Zq1rUkI61ZzhizaYvjOLRs2dIn/SWEEGIrYAIYmsTbTDEG6M2TUhVyBU6fPu2TZhUKc1vuTOKtWbe6utpmoqylXKlU2szRksvl+Prrr33SX0IIIbZoEi9pvBgDVgwB5ieYv1YMNZ+rZxqNhl9JZC0mJoY/tt7y3xfquvTZZDKhqKjIblSIEEKauoAZgSHNkF4FFOy78bpgr/mcpO5zX1y5dOkSTp065bBMLpdDoVDUyzLlQ4cOITMz0+PrtFotTp486fP+EEJIYxcwIzCEaAwMd917P+666y5oNBrv2tJocNddd2H8+PE2oylKpdJp3bvuusvhcmdL+f3332/TllarxYwZMzBjxgyXIzYGg8HljsB1ZTAYsH//fpSWltZL+4QQ4g8BE8BQLiRiNAEbN/2GjRs3ej0Xymg0YuPGjdi6dWutbTHG+LobN250GGRYyn/77TebtoxGI/bt24d9+/b5de6WUqmkze0IIU1OwDxColxIRCIEVn66DBBJXW7/77ItiQQrV67E1atXIRaLndZTq9V8XQAQi8V2oymWcq1Wa9OWWCzGK6+8wh97Qi6XIzg4uNZkj4QQ0pwFTABDiFjIYfzjj/pkDoxYLMb48ePdWoVkqQsA+/fvtwtgLOU1VyGJxWIMHTrU674SQgixRwFMfbFa/usTYgVAe4kEFE9HXRqbmvvaEEJIY0IBTH2wLP+1XkHjrcRbgCc2NesgxmhiOHb0b0AsR5cuXbxOJXDs2DFcvnzZ5eMo65QAjuayGI1GZGdnQ61Ww2g08v1q0aIF/vzzTwDm7NOBlEqgqqoKR48eRUREBDp37uzv7hBCiB0KYOpDzeW/vtAAS4gbO40B6NqrLwDfpBLo2rUrAPdSCVjqbtu2zWVblpQBBoMBkyZNsjsfCEpKSmAwGGgODiGk0QqYACZgd+KdngdIFK7rOaNTAYvb+a4/AYzjgISEeACcT1IJJCQkwGg0upVKICEhgT+uuemcpdxRKoHo6Gj+2F+qq6v9dm9CCKkvARPABOwqJImiWY+a+JJCzKEw/7RPfp4KhQKFhYVupxIoLCwEYJ7EW3NJsqW85iRehUKB77//3uu+estV+oWLFy8iLy8PwcHB6NKlC6RSaQP1jBBC6i5gAhhCAk2gTIDNy8sDYB6pOXv2LMLCwhxu2EcIIY1JwGxkR0igEYlEaNu2rUfXWEZL1Gp1fXTJpeLiYpw6dQolJSV+uT8hhLiLAhgSMDQGhjEPPYoxY8b4JJXAmDFj8Mwzz0Cn06GoqMhp0GCpO2bMGH5koqCggN8PxlL++OOP2+wRo9FoMHXqVMyZM8et5I+MMZqvQgghbqIAhgQMowlY++N6rF271iepBNauXWuTlsDZlv+WumvXroXBYAAAXL16lS9njGHt2rX48ccf7a778ccfsX37drf6W1FR4c23ZCOQVjwRQkhd0BwYEjAkQmDpknd9lkpg6dKlYIwhLi6ODx4cjYBY6gJAx44dkZuba1MeFhbGl0dFRaGqqoq/bsmSJTh79qxbm9pZ9prxhaCgIL89hiKEkIZAAQwJGGIhh8nPPOWzVAKTJ08GYB5B2b59O39cW13rkRcAiI6OhkQi4cv//vtvm+ueeeYZ7N692+v++pPRaMS1a9cQFhbmdeBICCG+EjCPkCgbNakvHMdBofBir54m7syZM8jJycHx48f93RVCCOEFTAAzefJkHD9+3GafDdK8mBjD6dN5OH36NEwmk9vXxcTEQCQSQS6X83sImUwmnD592q22XNV1Vm45f/HiRY/629hYduMtLy/3b0cIIcQKPUIiAUOtBzrclAHAs1QCrVq1QqtWrWzbUqvRoUMHvq1a72tV9/z587WW79mzx+b8TTfdBCDwUgkQQkhjRwEMCSi+3IXZui3L3BelUlmn+zorDwsL41cuBSq9Xs8fWyerJIQQfwqYR0iEBEk4lF88jfKyMq8SOQJAkEKB8pJCvq3Q0FDndYOCUF5ejvLycof3tS6PiIiwOV9SUoJffvmlyYy+7Ny5k0+rQAgh/kQBDAksi9sBK4YCDlYLuY0xYMUQYH4C31a7dr5JmNm6dWu0adMGGRkZPmmvMcrPz/d3FwghhAIYEiDiutw4LtgL6FXO67qiVwEF+3zSVs3JuRKJBElJSQgPD697/xq5gMsITwhpkiiAIYFhwiZon8vB+PVqjF+v9jrZoNbA3G5Lq9Vi/PjxGD9+vF1dvV7vtFyr1eLJJ5/E22+/zacScLTPDCGEEM9RAEMCA8fBIJDgi6N6fHFU7/XEWIMJbrUVGhoKg8GAL774Al988YXDus7KDQYDvvrqK/z22291GrUI9Mm/hBBSn2gVEgkYYrEYCwdJ+eM6YQzQqSAWota24uLiEBERwU/KXbhwodO6YrHYYblYLMb8+fNx/vx5iESe/6/WsmVLlJWVeXwdIYQ0BxTAWDDm3bwKazoftUNsSCQSvJQptbzwvAHL5N2CfZAIOZu29DWqSqVSxMbG8q9feuklAPapBPh+XS+vef7FF190mUqgXbt2yMvLszsvENAAKSGEOBMwAUxWVhaysrLqbwKhXmVelUKaLuvJu35Sc0M9AE73VeE4rr67QwghAStg/sQLyFQCibcAYsqx4ysmkwmFleYvb7fmNz13xO22TCYTCgsLUVhY6DSVgKNyy/krV6543N/g4GCEhoYiJCTEo+sIIaS5CJgRmHonVgCvXvJ9m/RXtM+o1Wq0et+87X/1f9QIktX9w11tENi0JQmW1X7f6yMnzlIJWMqtUxyo1Wq0adMGgOepBLp06QKhUIguXbrUSzbra9eu+bxNQghpSBTAWHAcIPFud1dS/0Q+HDP0pC1nk3AjIyNrLReJRHVaOt2Y578wxnDp0iUkJNAjV0KI/1AAQwJGUFAQ9P8JtbzwaVs1J/Ha1b2eD8h6Em9iYiJSUlLAcZxNviDr65RKpccjKNHR0XVatWSRk5NT7/mKTp06BYVCAY1G43V/CSGkLui3DiF1JJPJfD7RtnPnzoiJifGqDcumefXt2LFjMBqNiIuLQ8eOHRvknoQQYtF4x6kJaYJatGjh7y74jGVF4JUrV/zcE0JIc0QBDAkYWq0WkzeoMXmDD1IJeNCWVqvF5MmTMXnyZId1nZVrtVo8//zzWLJkCXQ6HVq1alVr1mtCCCHuowCGBAyDwYCPDurx0UEfpBLwoC2DwYCPPvoIH330kdNUAo7KDQYDli9fjp9++qnO+xeJxWJERUXV6VpCCGnKaA4MCRhisRizB0j444ZqSywWY/bs2U7rOisXi8V4/fXXUVBQUOdJrhzHoUuXLjh16hQuXfLxMn9CCAlgFMCQgCGRSDBnoMzywqdt1bYKSSKRYM6cOQCcpxKwlNc8/5///Kde9nFpTIxGIwoLC9GyZUsAgFKpRElJCeLi4jza+4YQQjxBj5AIIV47ffo0P//n+PHjOH/+PE6fPu3nXhFCmjIagSH+ZZ1E08XOxYwxVGjMm8KFMQZvFjDXbKu2xhhjqKio4I9rKw8LC+OXVjPGUF5ebrM7ryPWj5e8fTTmT5Z0CUqlEgDt9ksIqV8NHsAUFBTgscceQ0lJCUQiEf7zn/9gzJgxDd0N0hhYZYcGYM4d9cQmp0GMSqVCxDtVAIDqV1QIkgbX+dY125IES532UVV+BRGR5szUjlIJqFQqREREmNuyClZUKhWf0Xrjxo1O+yKRSJCRkQGDwYCwsLA6f0+EENKcNHgAIxKJsGTJEmRkZKCoqAjdu3fH8OHDa/0LlTRRNbNDF+w1n2ssKR0sAdaZvT5v2noDPIFAQEkbCSHEQw0ewMTHxyM+Ph4AEBcXh+joaFy7do0CGOKSQqGA7nXzB71I4V2W75ptOVxIfT3AUohhrjvjAirU9jUVCgW/+6314yCFQoHq6mrs2bPHbmv/iIgIxMfHQygUIji47iNJjcnVq1f5ibyEEFLfPJ7Eu2PHDowYMQIJCQngOA7r16+3q5OVlYWUlBTIZDL07t0b+/fvd9jWoUOHYDQakZiY6HHHSRPGGKBTmv9rheM4iIXmL2+38PekLb6uWOywLseZy2qWW86LRCK764RCIVJTU9GuXTufpyPwl7y8PJSVlfm7G4SQZsLjAEapVCI9PR1ZWVkOy9esWYNp06Zh9uzZOHz4MNLT0zFkyBCUlJTY1Lt27Roef/xxfPLJJ7XeT6vVorKy0uaLeMESHDj7qkPmZJ/3b8UQYH4CsHKof/vSiLRo0QICgQBSqZO5Oo2ERqPxdxcIIc2Ex4+Qhg0bhmHDhjktf++99zBp0iRMmDABALBs2TJs2LABK1aswIwZMwCYg5KRI0dixowZ6Nu3b633W7BgAebOnetpN4kjNSfNOuJiIm2906tv9K/omE2RTqfDa7+bPyDnTddB4sVcmZptcVIH+8pcD+Z0RobXtmiBytcw7aVXHLf12mvmtubNg+T6HjU6nQ4zZszApUuXMHHixDr3FQDCw8PRr18/KJVKHDp0yKu26tOpU6f83QVCSDPh031gdDodDh06hEGDBt24gUCAQYMGYc+ePQDMS0vHjx+P22+/HY899pjLNmfOnImKigr+q6CgwJddbl5qTpp1xDKR1lM1R3bqYSRHr9dj8R4dFu/RQa+vbes5H7TFGD8CpDfCXPf9/zqsq9frsXjxYixevNimXK/X4/3338eaNWu8Tn0AmP9fIoQQYubTSbylpaUwGo380lGL2NhYnDx5EgCwa9curFmzBjfffDM/f+arr75Cly5dHLYplUob/bB5QJqeB0isJsLqVMDidnVry9HITj2M5IjFYkzvU8dUAoyZv0cnbdWcZMsZNPwIkFgIc91bnnGaSmD69Ol2/RKLxfj3v/+NS5cu1TmVACGEEMca/Ldqv379+A2vPJGVlYWsrKw6J8UjNUgUvluu7Ghkpx6WREskEiy68/r2/2KxeaTHxeZ3ABwGWDZtSSSAQICOHTvygTZwYwRJIuTMdWe+havV9tmoJRIJFi1a5PD822+/3eRTCRBCiD/4dEw6OjoaQqEQxcXFNueLi4sRFxfnVduTJ0/G8ePHceDAAa/aIfXshaMNc58VQ80TfVcMdf24Sqe0Hx0S2+fo4UdJGEP8pgn27ax0416EEEIahE8DGIlEgu7du2PLli38OZPJhC1btqBPnz6+vBVprMRWIy46lU8/8Blj0BvNX6zob/NJV3N2rOayADA/OntiExhwo60afRSYtJBeyzW/iO0C1uImc93Cv8Ec3IsxBr1eD71eb9OW5bzBYHCYgoAQQkjdefwIqbq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiW/Kqmu6BFSAFrczqdzYVQqFYLfur79/8wQBLmTkFqvurGaKa4LEBQNcJxtW9NqSUvwxCaolEoER5lHEM9PUDvu1/XN6GqmErCc37hxI2VmJoQQH/I4gDl48CBuu+02/vW0adMAAOPGjcOqVaswduxYXLlyBbNmzUJRUREyMjKwadMmu4m9npo8eTImT56MyspKyhfTmInl5qCl4Pr2+40pPcCEOgRSHOeT4Ktbt25oERMNmExAM1pNdPXqVWg0Gn7jS0II8RWPA5iBAwe6HA6fMmUKpkyZUudOkQDGceYRF2Vp7auaaqwKcodCoUDZK+bt/xV1Sdps9QFq05aLtATWdaVRUTh3sRiMMX50RaFQ8DvQWrdlfT4sJATcG5HmglllN4IYSzZudyYjA3arpRq7Y8fMo19yuRyRkZF+7g0hpCmhtZ1NjeUD0REPA4Y64zjbJdo1ubOhnrXEWwCxApxehXCZb/6K5zjuRltupBLg68rlyMzMBGOMn/TLcRzCw8MdX2c5X33lRoHqKhAcY/tzcPNRm1wuR7t27WAymXD27Fl3vtVGwRf74BBCiLWACWBoDowbPA0M/KXmsuu4Lna77gK4sVeNq9EJyyZ6YsWN9t0c0agLm1EQy5YABrXn97T+Obj5qI3jOLRq1QoAAiqAIYQQXwuYAIbmwLjBnZ12AX5EwylnIzX1ERRMzzPPm1ngIItxjb1qdDod5m8zb///6q1SSITX+7JiKFB8DEjsbX5tPaLhhE1bLtISOK1rMgFvREBnZJi/UwuEtsKr3x+H5PrGizqdDvPnzzdf9/wkuDPnuCnT6/W4dOkSIiMjERIS4u/uEEICXMAEMMRDNXfateYqEHE2d6U+8iTV9qipBr1ej7nbdQCAl/pKIbEMhBRfH72xDt5cLK+2aUuvtwkuuBpzvJzWVV01lxtxvfwsXlJVQCKJAfQq6HWMz+P10jPj/RLAJCYmNpr0G+fOnUNhYSEuXryIzMxMf3eHEBLgKIBpqjzdaVessF095IifVxSJRCI828M8e1fk5UIem7ast/lnDBnZM92raykX4Ea5UMg/xhPF9cKzzzwDcJx7qQSsH4X5KEiMiIhoFAGMXq9HYWEhf6zX63H8+HEoFAq0b9/ez70jhASigAlgaA5MPbOsHnI0auFNniQfkkqlyLrLN3up2LRllWtLYNIipDrf/CKuCyBWQAo4rMu3JeJulAtM/EiQtGg/shZ+Y957RlnqulP8ozA/ZwSvB5cvX7Z5XVZWxn+1bt2ackURQjwWMBtSUCqBBsBx5tEVuy/3H/M0KS73jXFjd93F7a6nO3Aj/xf/KKyOGcEbMVqFRAjxtYAJYAjhH3M1FFcrn1YMdV5urWAv8MkA3/QpQGk0Gn93gRDSxNC4LWlc9EqnRUqVCuFP/wkAKL94GkEfp9f5NkqlEuFvVprbekGJoFrm9Tisq1cB186Yy3UM4e+Y0xKUP6OEpSWb868wBEmuB0QOEkk2N3XJSE8IIdYogCGNy39rD0r4RxE+eKxl8OAz1K5ujZVKztpyeL4JzW2pq5MnT/q7C4SQABcwAQxN4m3CHK2AcrBXjVwux8WLF/ljb8jlclz8d7BbbdnVrZHhWi6Gw7Zsztcl9YEPBFrqAUIIcVfABDC0kV0T5mgFlIOlxAKBAC1bXt/wTuf8UZM7BAIBWoYKLC88q2ud4RqAgOPQMpSza8vmvJ8EQgJFk8mEwsJChISEIDQ01N/dIYQECJrESxqHmiugAuCDFwAw86J500BPuEiG6q6YmBi3zjV2RUVFOH36NA4fPuzvrhBCAggFMCRg6HQ6LFq0CIsWLYJOp/O+rV1aLNqlddlWrXU5AXQQOSzXGdmN80aroGXlUJ8FMTV17tzZ5nVQkH82HfQE5XQihNRFwDxCIkSv1+Pll18GADz75DivtubX6/V4ebPW3JayApKgcPfq6vWQSCS1lOv4fumNuHG+p+RG6oOiYz7Z5yUqKgpXrlyptQ7NgSGENFUUwJCAIRKJMG7cOP7Y67bSr2///+HNQOs+wD1fu67rKJWAdfnqUTfOC3DjfD2MdcbFxSE8PBx799aS/oEQQpqogAlgaBUSkUqlWLVqlfmFl5N4pVIpVo20Wn1UsBcwqF3XdZRKIDgCq57uZR5Zqcy/cV7E2d7DGmOA3vH9bOuoas2NJJPJwHEcmBePpBQKBRhjUKtd9IcQQhqRgJkDQ6kEGiFL8kFdI932Xqeqn77VDBY4zpx2wBMrhtaeX4oxc1LI+QnXUxHUz5wZwLzKKjg4uN7aJ4SQ+hAwIzCkkbF8wF5PXNgo1UcCyhp7wPA8XTVVfKz2cr36xs/W3SzgzATUcYfbtm3bupxPQwghjUnAjMCQRkavsg9eHGw+50tKpRLh4eEIDw+HUundIySlUonwtysR/nYllLraRzds6paX3tgD5nq2aqVSifAWLe3aUuqY63u8cNSr74PHTBi4fRTwRoR7iSNrkMlkvukHIYQ0EBqBId6bnmfe2r+WuRq+UlFR4bu2tPbnOCePahzVtc5W7axfdtdFtuVzKAEAxN4vc+Y4DiJ95Y0m9ZXQS8K9bpcQQhozCmCI9yQK1483fEAul+PUqVP8sddtTTH3md/mnzFkZM+sva71fa8HL3K5HKf+yQaWZdqkDJCLYX+PJzYBi9u70UP357wkJSWh8NQ1t+sTQkhTQAEMCRgCgQDt21//8Hd3FVJcF/MjnxqPtwQCAdpH2e6RItBcQ0i1eRWRNjIV0uv1beo6SDtg7lc7oGZ7U/9Ge7vklG6OUK1wMM/GiZSUFMSFCIHdbl9CCCEBjwIY0rRZHvO48Xgr8suB/PHloSuR4u3jMG8eD1k/ZnKDTOp8DkuHDh1w5swZ2oKgiWOMoaqqCjKZzG6zRUKaooCZxJuVlYW0tDT07NnT310hfqLX6/n9gPR6vXsXWXIs1QhG9Ho9svbrkLVfB73R0eMaznFdB/fV6/XI+ni5bVtxXaAXhyLrZHQt9wA8eVRkrn596boHy6oTEhKQnl5zJKhxMhgMKC8v92pfm+bq2rVrOHz4MA4dOuTvrhDSIAJmBIayUROdTocpU6YAAMY/PAZiF/VdtvWrxtxWhhjiWnbct6mr09ndV6fTYcrUF23bmrAJOoMBU9acvXE+5RZAXGPujicpBayXrifeYp5P42CUiGPMvBKJ8+3fJ3FxcSgqKvJpmzX9888/KC8vR+vWrZGcnFyv92pqKisrodUbwUwqVFZWUmZv0uQFTABDiFAoxOjRo83HshDzh3hB3bbRFwqFGJ1mfvsLXXzO29R1kFtIKBRi9H0jgZO/3GiL42z7O2MZEBLpXQ4k66Xr1nvDmEw2S6f77hkPANg2YB1/TuBg7k5dREVF4erVqz5py5Hy8nIAwJUrVxAVFQWFQuGzvjdl1dXVmLTmJPLKTejB5WJWVBRuTs/wd7cIqVcUwJCAIZPJ8P3339848cQm84e4TuXxpnUymQzfj3Fvzxqbug72S5HJZPj+f1+bd82trb/1wWQy7/3igNhqaXVQUBDatm2LM2c8m1vjL9XV1Th48CAiIiIC5vGXP50+ex555eYg9iBLBWdopLtjE+JD9KcNCVyW+S2S+ts8r94pom4cv3jKeT1mcrxBncq90RCO45CYmOhh5/yvrKzM310ICMXFxTavxSJvHrASEhhoBIYQf+IEwKzrH9JOkkkCABa0apj+kIDDGMOC/bbvHSainZVJ00cjMCRgqFQqtGzZEi1btoRK5d0QuUoPtPyvFi3fq4JKX/uKF5VKhZbvVZnrOrivSqVCy9bt7dpyu78CgcP9ZepDQkKC60okoKh1Bpyvqnm2fnfEJqQxoBEYEjAYY7h06RJ/7FVbAC6Vm/f5ZzMKAU7jdB4NYwyXqpjT+5r7dfn6sRf9FStubLznDp0Kni7D7tChA6RSKfLz8/lzISEhbl0bFhaG0tJSj+5HGoDe0cgdLUMnTR8FMCRgyGQyHDlyhD/2WVsKBWB0PgIik8lw5Kkgp/eVyWQ4sn838PlgyEQ1znvSX44zb7y3oKV738TidubcSu5iDNCrkNiqFYKCzN+PUqlEfHx8rZcJBALcfPPNfgtgKisrcfHiRbRs2ZK2UHBT3O9PA2l/1XtuMkL8iQIYEjCEQiEyMjLqp61aNqkVCoXIiLu+fNrBmmuhUIiMHrcAf2ealzdfT1sg5DjP++vpB467O/Za7SEjSLwF0df3kImOjnZ5qUQiQXh4OAD7ZeTJyck4f/68Z332UG5uLpRKJSorK3HLLbfU672aCmn56RvL7AlpoiiAIcQTznIUcdyNZd2+zMpdM3t1XTnbQ8bKTTfdhIqKChQUFDhtJjExESUlJTbnQkNDUVlZ6eQK7ymV5rxXGo2m3u7R1NADJNIcBMwkXkolQPR6PVatWoVVq1a5l0qgRgLHuralhxir8ltgVbYO+it5ztv64gvoOQkfvHjcX0ee2FS36+ogOjoabdvW/kgqJCTELhN4Q04MVqvVqK6ubrD7BQKTyX55/RjdbErHQJq8gBmBoVQCRKfTYcKECQCAMWPGQCyuZa+L6XlAULTTkRD7tmzLrS/T6fWY8KU5cBmTZp92wFm/HJ4XK27sIFxLgGXVExflzcu+feZRpF69ekGhCOD9f3yoyiqgSwoT40KFHsdZCkrKKhEbF+zHnhFSvwImgCG4vurEi/IAJxQKMXz4cP64VpLaH+PYt2U7CSY6Osa27tAhwJktDtMOOOuXw/P19ajJU442xQsgWq2WApjrDAYDf/zZqATcuco8J6m6qgqxcf7qFSH1jwKYQOLhdvlNjUwmw4YNG+qnLZ3SpjwoSGFb96cf7FIFuOqX0/5adhB2xG6ERu64nrcWtDJvoEd5hpoU63C4tLQUbdun+q0vhNQ3CmAaO+sPNHe59WiCNEo1R2i8Sf7oiuoqEBxjd7ply5YoLCysv/v6gPWoQ3On02odnhfV9oiVkCaAApjGzvoDzV3+fDThDzWDvEAP4GobofHU9b1f4MGEznbt2iEhIQEHDhzwTR/qQU5ODgYOHAjAvOOxVqtFeHg4uOb0vr+uqvrGNrxy+Y33vUjk4jErIQGOAphA4MsPtACmUqn4zMRHjx69MQeiZpDnRgBn11Yt/yeY62YAFTocnSSGQsw5KLfvl9P+NqTre78grot9mZN5MBzH8RvdNXaMMRw8eBAmkwk333wzIiMj/d2lBicU3njzervBIyGBhAIYEjAYY8jLy+OPbXgY5NXaVq117YflnbXlyT3qg9CovbH3i6P0BO92CPh5MIwxfhmxSqVqlgEMIc0VBTAkYMhkMvz111/8sU/bMjrfJI2vq1dD9ud9bvfLl/2tN07mwdQmNjYW586dq5/+eKCqqgrZ2dn+7kajRdvAkKaOAhgSMIRCITIzM+unLRepBDIzM80rlbbZP5py1i9f9rdBWc+bcfAoLjk5uVEEMPn5+TAaa/mHawYYY5i6qcRh2Yu/l2JzBmuW84JI8xC4Y8ckcOhU5g9/+pOw8bPkTJqfgK5HZjr8N6vLB6KvclhZKysr83mbgUatN+LMNfMuz2ncOUQqREjjzgEAzpQZoNY37wCPNG00AkPqn2X/msRbvNoa32AwYN26dQCAUaNGQSSq+9vXri136ho0GGViEAk4x+U1+uXL/jYYq5xJYZUnIDBpEROTZC6zjMy4ucJLIpFAp9MBqJ9HaBzH0Xb5Vt//95K5EHAP4HvJXHTWrrQrJ6SpCYDfqCQgOdq/pmAvoCytc5NarRYPPPAAAKC6utqrgMCurVq2zLCpOzMEIol7/fJlf+sPs31UVGNlUufOnRHRoqVNNmsk3gK0meFypVf79u1x5swZpKSk1FPfbZ09exZlZWVo27YtOI6zy9nUJOnV/KExqiOgiII+ogNQZFUupf1gSNPkl9+oo0aNwrZt23DHHXdg7dq1/ugCqW/WS5t1qhujMF7sJiwQCDBgwAD+2Bv2bTnfWp+vy4wQcEfd7pcv++vUC0eB/6bX/frF7c0ByYRfAb3SvEOvlajISPMqJZ3SJpu1IEULk1DmNKVDy5YtERMTg5gY8wTh+sgkLZPJoFLd2B/JZDLh6tWruHr1KgCgZ8+eAbMcvK6sEzkqR69GqECA4iHLgS/O+a9ThDQQvwQwL7zwAp544gl88cUX/rg9aSiWpc3OdhP2cMM5uVyObdu2+aRrdm3VSCXgsK5O6TCdgLN++bK/Tol98AFdsBdY3h8odrDU2om2bdqgXKVHXFwcrl27ZlfesmVL7/vlgnXw4oharYZQKIRQKKw98WcAszyiA4Aghfm9QJN2SXPhlwBm4MCB9f+LnTQeznYTbm47BteFdfAX2Ra4dqZ+7uNB8AKYA5SWPtpcMSgoCEql8wCyrtRqNf755x9+NRjHcU36w93yiDIsPNy/HSGkgXg8rr1jxw6MGDECCQkJ4DgO69evt6uTlZWFlJQUyGQy9O7dG/v37/dFX0kgs4zGWH81pg8TS6AANK5UBJbg79VLXk2AbqzCwsLQoUMHm3O+mrty5ow52DMajTh06BB2795dL4+y/Emn1/u7C4T4jccBjFKpRHp6OrKyshyWr1mzBtOmTcPs2bNx+PBhpKenY8iQISgpcbxXgStarRaVlZU2X6R5UqvVyMjIQEZGBtRqtesLPGmrZqBgFVzxdXv2gVpvv6rDWb981l9+l2HPAj5hzc35nj9S9z7Uoq6PZyQSCbp27QqJxHZWdMeOHX3RLRtKpRJ6vd7h465AduzY3/7uAiF+4/EjpGHDhmHYsGFOy9977z1MmjQJEyZMAAAsW7YMGzZswIoVKzBjxgyPO7hgwQLMnTvX4+tI02MymXD06FH+2OdtOUlHYFP3rhC3++XL/tZFz4PP257g6mcicWRkJDp27AitVov8/HyX9QUCAUwmE+Li4hyWh4WFoVevXrh27RqfioE4Yap9mbSesnaTJsync2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv21KnNmTNnYtq0afzryspKJCYmet1XEnhkMhl+//13/rih2uLr6jWQ7X3E7bZ82V+/0bne94XjOMTFxaG8vNytJtPS0iAUChEWFgbA8QiOQqGAQqHweQBTUlKChAT7idgWluXugfDvxUwmvLuzEIDt9xNklTR07Iqj+PXfA5v03B/SfPk0gCktLYXRaERsbKzN+djYWJw8eZJ/PWjQIBw9ehRKpRKtWrXC999/jz59+jhsUyqVQiqV+rKbJEAJhUIMHjy4wdvi6+qUwH7HqQQcteXL/vqE9YTgxN7Aoz8AK4aBFR2DGk7+H1vUGWjVE3jwG4DdqCNnzKMHWlKpFFFRUdDpdAgPD7fZE0ckEuGmm27CmTNn0LZtW5vrQkNDffrY2Pq+ly5dwrlz59CuXTu0aNECSqUSBw8eBMdxuPXWW+tv6buPlJdfw0mjOXhJExdBrggGAARJzbvxHmcpOFmiglpvhELSGPcgIsQ7fnlXb9682eNrsrKykJWV1exznxA/sgkAGtFEX7dZrQazrAB7YhPU89sgzbJzqyNnAMz7C8CNOj0+P4Lvn+ln+5c9YxAYNTAJ7IMhjuPQpUsXp7eIjo5GdHS03fmbbroJx48fd3t0xxOnTp0CAJw4ccJmSTZjDKdPn0a7du3s9rlhjKGqqgoymcxu7k5DYozhwZU39iT67qX7wV0PuDiOs92Nl5AmyqcBTHR0NIRCIYqLi23OFxcXO33e7a7Jkydj8uTJqKys5IeeSfNiMBjw22+/AQCGDBnidSoBd9uyqfv4LxAxnc0ScGdt+bK/DiXeAog9XLFTc55PHR8tHLxQCbXOAIVll1fGEPzd/eh/+RAqQjsBvbbUqd2aJBIJMjIyfLbtQmlpKfbu3YvWrVvz5xhjdskpL1++DJlMhuTkZLvrc3JyIJPJcMstt9R6L8YcJ1IsLy9HWVkZWrVqVecJ0GqdAblXzJO007hzCJIOsCmnB0akOfDpb1SJRILu3btjy5YtGDlyJADz5MUtW7ZgypQpvrwVaYa0Wi3uvvtuAL5JJeBuW3Z1a+zu6qwtX/bXzgtHgfBk+7116kAOLY5LJ9Re6Zk9wMd9oIIUPbTLzOest6nXqyC6fAiAOYeSHm4u77XOr1THYCo+Ph6XL192u75Go8GJEydc1quurrY7V1FRwbfh7JrCwkIYDAZcuXIFCQkJdsvEjx49CsYYGGNo06aN2/22YZVC4Iuor8FJnnVel/IhkSbK49+o1dXVNhPr8vPzkZ2djcjISCQlJWHatGkYN24cevTogV69emHJkiVQKpX8qqS6okdIRCAQoEePHvxxQ7Xlqq6zcl/21464DvvoKKIcnuY4QAFt7dcu62b+s97Nz0K3RhZq5leqsXzdkZqb3olEInTo0MGjAMZdjv7NnC3D1mg00Ov1OHTokM35S5cuoUOHDjAajRAIBDYJKF3tJOyuy4OyEGP9cxMrYIzuBBRef035kEgT5XEAc/DgQdx22238a8sKoXHjxmHVqlUYO3Ysrly5glmzZqGoqAgZGRnYtGmT3cReT9EjJCKXy3HgwIEGb8tVXWflvuwvANsAxEkwYq0quDVCqvPNE3YnbDLnNKrJ07/OQ+LgMNZhdVgmbpX5GgV7za+d7O570003obi4GK1bt8ahQ4f4P2S6dOlSbytsLI/CW7ZsibKyMpSVldmMvJw5cwaRkZEIDg7G3r17nTWD8vJy/P3334iMjMRNN91k87MqKSmBwWBAfHw8H9xcvHgRHMehVatWTtu0ZjTV+KOO42B4+Htgkfm9p9PpEGiztQhxh8cBzMCBA12msJ8yZQo9MiLE1wQCYFbZjWMXsjMW4Nb+/Wt/PKN3sMFebBfnqQUeXQcsOWl7zmSySwLpa9aTfFNTU5Gfn482bdrU+x8zxcXFdnP6LAoKClBQUICkpKQbJxmDwKQ1T2S+/jMvKiqCyWRCaWkpzp/Lx8DtowAA2wasQ2mpOTv72bNncdNNN0EikfA7CMvlckRFRcFkMkEgEIAxhuLiYpw6dQpazY1RqIiISLu+SSQ3JlIXXLyI8Ej7CdKEBDpaW0dIIPHgURRzsjGfDeuRnFnXAIPGPCqzwEkyRptVRyZz8KK66uDm9TfvokWLFmjRooXNuc6dOyMnJ8f7xi2jI842/XMQoFy4cIEv63pkBsIqT6IiNBVHur4NcAIUFRXx7V48dRRJDFBDCpGuEgZpOADzhO/s7Gy0bt0ajDHojMDff/+N4OBgKJVKtG7dGiEhITbbUVg4yghuPSp1/uIlpHXu4jRzOCGBqnFvdGAlKysLaWlp6Nmzp7+7QvxErVYjMzMTmZmZPkkl4G5bruo6K/dlf+uNZVRnVhkgEN7IU5VY+wobAMDiDsAbEY4fH60cah/EmK4HPIC5TOebOSAAEBMTw7crMGqQWPPxCzO5fszFTBi4fZR5hKRm3evXdz0yA/13jkXXIzNtvz/GINZXIKzyJBgDxBXnMGDbKP46vl0Tw2jdbKRpV+K9HRdhMpmg1ZvAGdQAYzh79izm7dPgqc0qzN+n4ScS5+fnQ6vV3vg+rHbgDQkOrvXbmrKDYfi7m12OnBMSaAJmBIbmwBCTyYTdu3fzxw3Vlqu6zsp92d+6iIpyPU8GgP2ojiUvlLIUWNzO9fXvp9mfKzpmO6fFZDIHO4A5WFo59Mb8FwvGzJsFiuSAQe340Vdtq5asRkBw7haU3fwWqpVKPoAAzI9tnI2uiPWVNsd6Sfj1dm9cbxFWecI8EiOUAYwh4/AMSCrzoYQUY3SzcZylII07h+/2TcHRjHlQXd8EsPXB/+AQewcAcNjYGnN2q3GhGujB5eKz6O+w9+b5yCs3v1dOl5ugNZjAcQJIhAAzGdFr24NgAO4zvAXAPErmaD8auSIY3SUFOKQz71qee81AG9qRJofezSRgSKVSrFu3jj9uqLZc1XVW7sv+1kWH9u3rfjHHARI3p36a3Mi3Y/2YqeKCffACACuG2s69qbkyqeaqpQm/2gQ6ndolI2z79UcsBXsh6GyecGsdmLRvGYnTl8rt780YhEbHK7FEuko+ALGQW81kFhhUmFg6FodYqk2d4ywFYyomQ7azEEeM1zeVq3GLC9dXah9kqdBXFmLOHtuRujm71ShSc2gXLoDs8HH8U2Nzuk6iy/wOvNY4gQBrX30EVxek8cvejQYDQAEMaULo3UwChkgk4vcXasi2XNV1Vu7L/tZFXTdJ8xlmAkxGuL2tWs2JwwV7zaNAQdHmIKbmqqXl/c3XXA903FnpGBlsHjGxnctjNXJT81tgDHMPC3G6RuDQg8vFcyYT9AYluu5+GofYMof3O8FSADd3fuiptW+jSG3up3lUxn4U763hbfkdeGvipMGQxrQBLppf5508hq7d3HsEzxhDhVIDhUTo1x2HCakNzYEhhNSPBa2ANyKdz5Nxx+J25pEZR/M3LAGPZQl2DdLrCRkZA1RMChWTgi3vj9TDs8D4uTgmCI1qh8ELGINBr8HpCvtfkwdZKuZvu4RJW3FjYz8AB6VP47h0Av6RPmF3zQHp00jjzrn8ljtx59CNO+W0vDVn3vOmB5cLcVCE84Y4DurR/+NfllwphVKrdzkXhjGGUVl/IeOtP3HXe1scbuhHSGMQMCMwNAeGGI1G7Ny5EwBw6623erWqwpO2XNV1Vu7L/jYaCvslu25RXqn7PS0BiqtJqDXKW6e0RsmRY/YjKFeADvuUmNlbjoHb74caUqiuJ7OUQwuOA7jrozLiinxYckAdlD4N4EbAkmuMt7lfDy4XUagEx5m70l10FocMbfgyhTwYG/AqriLUJuixSOPO4XvJXCigxc5+3yA1ew6Cq8/jcd0Mm8dT30nmIghaHOy3Ei1bJbr44d0YaXpqqwnY+ju6JYbhh2czne6fo9IZkH3R/NjtdLkJf+09gKGDbnNYlxB/CpgAhhCNRsNvolhdXY2gIBdLhH3Ulqu6zsp92V+/qJm9esImQHXjr3EVpPY78z6fDXyQYd/Wx7cDlozXWqNNZuuaLEGEDWYClg9wWN9czswjNVYUCjmi41ridMVpu+qnKgS4afsE3KWbj+MshT9vCSIydj8FAHxgAzjfrfig9GkooLXpN8cBK54ZAsEvz0N46TBkiRm4PPR3mL4dgaiqfGSILyBbb94/JkNcgHcnDkfS/70F8VUtKkI7gYmDIJn4G4oLT2Pt2jtxkcXgVt1/zW0DkMd1QN+Bd0Lk4jGhdWZqi8MFFVDpDAhysjvvzp1/2byev0+DIXc4zutEiD9RAEMCBsdxSEtL448bqi1XdZ2V+7K/fmFZjeRk1Y+jUQQsOgLrrNUOLTlZa50eXC6+l8y1vd3yAcC1M87b1Kvt59AwhjZtWgMwBzA1R1AczTk5zlI8zuKsgBYKzj64kUa2guxfv/I/v5Ych+09loAzavCiWAGV1gAB00Ik6oC2KUnAlN2AXoVQkRyZJhNEIhEiInpBt6sb5JfzbNrmntjkMngBAEVYFFbH/g9di2banM/JzUPPLh3t3pdqtRrz99nmebpQZUJ5tRoRIbSfL2lcAmYODCEKhQI5OTnIycmBQuHdL1NP2nJV11m5L/vrN5bN8K5/0MnFAvTgcuv1lgdZKq4ilJ+3omJSqK5eNP83PNX2vGVui9XjI37Oy+cjoNbeWCGlgBZRqLTrfxp3Dv9In6h1fkoPLhfy66Ms1tf3SA6HPO56ssbE3sDMQqheKoRy+kXI5Aq7n1+ntDTIQiLRKS0NUrEAYon8xiTc63U5geBG4k+Og+SpPxE54zh/z8jENNcbFF7HCQSQTtxgd/6Bb85iyKLf7PIxKbUGXKgyzw9K4Yr480XFRSCksQmYERhK5kiIG+K6mPdgSbzFPGriYxzH4XvJXKjh5BHQS9dHCha5sX9MDdaZrh2O7gCAk8/RtM9y8P31x1KWfVhwAcD8P29UikgBFxyG7wts+2959LNB8qrT78v68dD3krlQTz8PiBWQS8XgsNNmlEpRy4p5612EY2JicOXKFbtdhe1wHATyEJydNwzQqyCQDvcokac8KMRmTxiLU9eMKLhcgtS2Kfy5iwUF/PH3kjn8KNXT353CtpmtA3MkkTRZARPA0CReQhywmadivzdKfdyPi+sChbNcSRKh+d7xHcyBlAfkzDy6cbDGfiruOF6sQmcXj6XkT28BpMHglKVQ1Nyg75k94D7uY57nEtkWuHYGphadUaUxIKwyF5oWGeAASEuyYUjoDkVwmO3P180REWsdOnRATEwMIiJqWUlkRSAUAMLad911hBMI8Mkzw6H6+HZ+Ho2FiZlQXl6O4OBgCIVCPP9zPl+mgJafP3O+0kgb4ZFGh96NJGCo1Wrcc889AICff/4Zcrm8QdpyVddZuS/765SjeSp1+DD16H6P/Qgsvr5JXkg8UHXZvs6ETc7zKdXSdK2jOwDwwt/mDfauj/AwWI24WLFMxrWEGHJowQmecr5BX7jV6MSUg4BBDYFYAblOh6tlJYiISYBAIAD0Koh9FByKxWLXoy8+EhQeA6lCAuhsz4//5iTm9pVDKgSi41riQpX5fBp3Dgpo8b1krsdzgghpKBTAkIBhMpmwefNm/rih2nJV11m5L/tbq/oOWuxveONwwq+OVx05+4C3POJy1jIHKF48BrzbwXGF8BbmESarSbM2j34iWgMTf4N88cO2XYjrcuORmlhhnq9i2RQvsTcgCbbN9H395ymRShEVZxXcNOjP2XdkcjkML2bj7FstwADcrZuHEywFxSqGpzerkBgiwIs9LvL1v5fMBTf9FLjFXfhz586fR1r7tn7oPSGOUQBDAoZUKsXXX3/NHzdUW67qOiv3ZX8bLUviR8sjLGfzbmZeNOcgEsmBlcNuLM12lFLAWSboF085zMbNcVZLnJ/fcz3AqVFpglVKAo4DnvjNnHfJ8j1wXP08cmtERGIJMPsaTNoqbHg7GXfr5vEjVwVVJkzdeiONAQfY/TtM+F8udr2aApGoCexnRJoECmBIwBCJRHjkkUcavC1XdZ2V+7K/jYrCKkmkItrxUuuac3MkwTfKrOvrqs079rrDWWBjMfOiwwDHfC1n/1rq+XySgCcQQCALhbFFGjaUvGqzv4yN2M6AIgryuA5Iu2CeB1OsYhj6/jb8Mf12msxLGoWAWUZNqQQIaSQEAvPjllll5uMaS4UB3Jib8+ol24SMljJ+1MPBryCx3Bz0AOYJtXblihvl1ixtiRXmR0bEMY6D8Jm/wIXGoyVXalfcg8uF/ImfAYEA3BOb8IvkNT59Qd5VDcqr1XbXEOIPARPATJ48GcePH8eBAwf83RXiJ0ajEQcOHMCBAwe8Xk7vSVuu6jor92V/Gx2BwPloh4WjwMYdNYMfZ+XT8+zLLOUTHFxHbhAIgH8fh4BjOCO9MUr4j/QJrI5aCc4yOsVxEHAMv0he5euUlJQ0vfczCUj0CIkEDI1Gg169egHwTSoBd9tyVddZuS/722RZRktqTuy1BD86+ySNN8pr2eeGHnG4JhAAs65B+EYkzl4PYgQcw9G+7yG9xs/P+tWT357AG5nn0L1bN8hkMnAc5//M56RZogCGBAyO45CcnMwfN1Rbruo6K/dlf5ssjgP+tQP4pL/jDfhs5ttE2V/vTM05OPWwqV+TIBACs65B8MaNJJ0Gg9XoyvUAU375GL8nTEGVCRM2KbGCHYLeCMjEAmRmZt7YPZiQBsIxV7nVGxnLRnYVFRUIDQ31d3eaB50SmJ9gPn710vW/jB2cI6SuGHOacwmWJeg1H1lZEjhagpSac21qa5PYMhmB60FM/uOH0bqN1dwjkwlY2gPKqxcd7gmTFCLAhhduRUhwM5wUTTzi689vCpkJIf5X2142ta0sqiXZZMPvjxPABELoXy1BVVUVkiMia5QJgKe2QzG/FbpzuThUY6fkC1Um3LnkL6wc0wZSqQStU1Iart+kWaMAhhASuChI8RmxRIrIKCf7Fek14DhgrWQulJDhdu27KMGNFAiXq40YutKc9fvjQfkID5KhW7duTXf/I9IoBMwqJFpGTTQaDUaOHImRI0dCo9E0WFuu6jor92V/CfGr6/OPOA4I5jTYK53itOozm1V45c9ynMzNhcFgcFqPEG/RHBjiWiOZA6NUKhF8/Tm7t6t6PGnLVV1n5b7sLyF+Z5mLpLoKLG4HE+PAALTVrnZYPVbBYU5fObrf3LnBcj6Rxo3mwJBmSyKR4JNPPuGPG6otV3Wdlfuyv4T4nWUuUlA0kNgbgutpIM5KH3EYyBSrGJ7ZrELygcP46tHOaBETA5lM1sCdJk0ZjcAQ1xrJCAwhpJFgzJwGYnl/4NpZAKh1RCZWwWFuXzlu759JwXwz5uvP74CZA0MaCZ3KHLw422CMENL0cRwgDQGe2smfEnAMQo7hrPQR7Jc+Y1PdkvV6+HtbcOp0HlQ6AxhjMJnMX4TUBT1CIp5Z3M5vtzaZTDhx4gQAoFOnThC42sreR225quus3Jf9JaRRss5GHmvOPyUoPoZoVumwel65CXd+ngsgF+ktQ3C0sAoAcGLOIEglEggEtF8PcR89QiKuWW8YVpOjDcTqCU3iJaQRst4wEDAf61QwLmrPP046IH0aPbXLXDaVPbMfwsPC6rO3xI9oEi9peNYbhtXUwLucRkdH+6UtV3Wdlfuyv4Q0SjX34pEEAWIFhEm9cfaCOccSB+ZwE7yaBr63Czum90ewVbBPozLEGRqBIYQQ4nuWkRn+JYOKSVGtNaD3gj/dbubjQQqkpCQjPjoS4eHhAMDPm6HgJrDQCAwhhJDGr8bIDAcgCIBCKkJqlAi5V93b5O6ZzSoAJ9AuXIC5t8VAqVLhX7+Z584cn30HTJwQ+fn5MBgMSOvQlt/9l4Kcpo9GYAghhDQoxhiuVSohFAqhVVWhUqXF4GV/e91uYogAv04dAIFAgLS5WwAAh14diGCpGGqNBlKJBEwogkwkhPUHHwcKdBqCrz+/AyaAycrKQlZWFoxGI06dOkUBTDOk0WgwceJEAMDnn3/u1aZYnrTlqq6zcl/2l5CmzmhiaPvqRr/df9OTaTAajeA4DgkJCQhVyKBSqyGRSKBSKSGSyqGQiAEAGoMRMpEQKp0eQVIxOMp27pZmG8BY0AhM80WrkAhp2oxGE87m5wNgCI2IxvkLF/DAmgJ/d6tWHSJFWPNsf4jFYly+dAkmkwmtE1tCJBJBYzACACQCDhqDCeA4cADkYvMIEIcbwRCuH8vF5mO13nzeUm4pcxQsMcag1tuWm0yMv4dab+RHnKyv5jjwbVvaMZ/nnN7LGzQHhjRbEokE77//Pn/cUG25quus3Jf9JaQ5EAoFaN+uLf86NiocZ9PN+8toDEaY9Frk5eVBJFXg3z/l4XSZCe0jhFg3pT80Gg1GLduHgipTg/b51DUDur5Vc1JyTp3bSwwx7xfl6PtoHS7CrMwQ6LRa/hwDsGC/BucrTUgKEeDV3jIwWOYO1d3e6X0RFx3huqIf0QgMIYSQgONo1IExBpXOCL3BAKFQCAHHQcwxlFerIFeY96npMud3h+0lhggaPPhpzH56tA3Sb+rk0zZpBIYQQkizx3EcFBKR3bkgqQiQ2p5vEXljc7yz84fzxybGwEwmaI0miGCCRCI1P2q5HhwZTSZwHAehQACjTo1KpQZSqRQ939kJZ6wDodpGUxqDlDARzlUY0CFGjg9HtkF1VRVKS0sBACEKqZ975xoFMCRgmEwmXLhwAQCQlJTkdSoBd9tyVddZuS/7SwjxDevVRgJwgFAAsbhmLQ7Bwhr/v0pDEPr/7d1/TBvlHwfwdykDxq/O0u/AFlg1yhKYaxOgaDLiMCSkf6yZUf8UtkT+MNOYdKgYE4mJkT/czOIkMWr8lcyEzAQ0U5NFZCFuGpSF6f5YHAkaLFJGcFsps2Pt8/0DaaC0tF2fu+Po+5Vcwj3Ps+PzvmvDs+tdr6QEwPIkKPYalpV1gwFYvL18TUlhnhFCCPwTWISpaDsMOTnRa1JuLy1haek2LKZS3FpaHm8IL2F2/h+YzWYU5m2Df24eZlMJbi2FkZ9rAIzbEIlEEIlEkJubi0gkAqNx+ZqZlYuKc3Jy/ruWxRCtaeWaG2D9NTCxZ7GuXr0Kn8+niwuTOYEh3bh16xbuu+8+AJlfFJvOtpKNTdQvs14i2jxWT4JizwIBWD4L9B+DwYAyU/G6/uUx22PG58JeuD06zlbxPwDA9u1ISXFB+tfaxatfL/RbOWWlwv8+x1Z7W8nGJuqXWS8RkVqmp6ej/wHbrDiBId0oKipCMBhUfVvJxibql1kvEZEaVu6YNJvNGleSHCcwREREBACoqqpCUVFR9JEMmxknMERERAQAyMnJgcVi0bqMlPC2CNKNUCiEzs5OdHZ2IrTqi5yU3laysYn6ZdZLRERr8YvsSDf4KAEiIv3aEl9kd+bMGRw9ehSRSAQvv/wynnnmGS3KIJ3Ztm0b3njjjejPam0r2dhE/TLrJSKitVQ/A3Pnzh3U1tZieHgYJpMJ9fX1uHDhAsrKylL69zwDQ0REpD+y/36rfg3M6Ogo6urqYLPZUFxcDLfbjbNn4z+bgoiIiCietCcwIyMjOHDgAKxWKwwGAwYHB9eN6evrg91uR0FBAZqamjA6Ohrtm56ehs1mi67bbDb4fL67q56yihAC165dw7Vr15DpicN0tpVsbKJ+mfUSEdFaaU9ggsEgHA4H+vr64vb39/fD6/Wip6cHFy9ehMPhQFtbG2ZnZzMulrLb4uIidu7ciZ07d2JxMbNHxaezrWRjE/XLrJeIiNZK+yJet9sNt9udsP/tt99GZ2cnDh8+DAB477338PXXX+Ojjz5Cd3c3rFbrmjMuPp8PLpcr4fZCodCaW1Bv3LgBYPmzNMouq7/V9ubNmwiHw6psK9nYRP0y6yUi0ruVv9vSzkiLDAAQAwMD0fVQKCSMRuOaNiGEaG9vFx6PRwghxNLSknjggQfEX3/9JQKBgKipqRFzc3MJf0dPT48AwIULFy5cuHDZAsvU1FQmU48oqbdRz83NIRwOo7y8fE17eXk5rly5AgDIzc3F8ePH0dLSgkgkgpdeemnDO5BeeeUVeL3e6HokEsH8/DzKysrWPe67sbERP//8c0q1JhubqD9ee2zbRusrP9+8eRNVVVWYmpqScjX2Zske2xZvXwwNDWmWPZXxPPbMnqyd2Zk9Xttmy55sfLp9qRzr2L7V+UtKShAIBGC1WlOufyOafA+Mx+OBx+NJaWx+fv66ZzLs2LEj7lij0ZjyCyTZ2ET98dpj2zZaj+0rLS2V8qLeLNlj2zbaF1pkT2U8jz2zJ2tndmaP17bZsicbn25fOsc6UX6TyZRy7clIvY3aYrHAaDTC7/evaff7/aioqJD5q+I6cuSItLGJ+uO1x7ZttJ5OjenYLNlj25LtGxnS3SaPffr9zL5xG7PHX9/q2WPbNlv2ZOPT7UvnWCuVf7WMvsjOYDBgYGAABw8ejLY1NTXB5XLh5MmTAJY/8qmursZzzz2H7u7ujAveKrL5C/myOTuQ3fmZndmZPbsomT/tj5AWFhYwMTERXZ+cnMT4+DjMZjOqq6vh9XrR0dGBhoYGuFwunDhxAsFgMHpXEi3Lz89HT0+PLh5ZLls2ZweyOz+zM3u2yebsgLL50z4Dc+7cObS0tKxr7+jowCeffAIAePfdd/HWW29hZmYGTqcT77zzDpqamqQUTERERKS7p1ETERERqf4sJCIiIqJMcQJDREREusMJDBEREekOJzBERESkO5zA6ITdbsfevXvhdDrj3gW21S0uLmLXrl3o6urSuhTVXL9+HQ0NDXA6ndizZw8++OADrUtSzdTUFPbv34/a2lrs3bsXp0+f1rokVT3++OO455578OSTT2pdiirOnDmD3bt348EHH8SHH36odTmqyrZjvULGe5x3IemE3W7H5cuXUVxcrHUpmnj11VcxMTGBqqoqHDt2TOtyVBEOhxEKhVBYWIhgMIg9e/bgl19+2fDZYVvF33//Db/fD6fTiZmZGdTX1+P3339HUVGR1qWp4ty5cwgEAvj000/xxRdfaF2Oou7cuYPa2loMDw/DZDKhvr4eFy5cyIrXOZBdx3o1Ge9xnoGhTe/q1au4cuUK3G631qWoymg0orCwEAAQCoUghJD3GPpN7t5774XT6QQAVFRUwGKxYH5+XtuiVLR//36UlJRoXYYqRkdHUVdXB5vNhuLiYrjdbpw9e1brslSTTcd6NRnvcU5gJBgZGcGBAwdgtVphMBgwODi4bkxfXx/sdjsKCgrQ1NSE0dHRtH6HwWDAo48+isbGRpw6dUpS5ZlTI3tXVxd6e3slVSyPGtmvX78Oh8OByspKvPjii7BYLJKqz4wa2VeMjY0hHA6jqqoqw6rlUDO7HmS6P6anp2Gz2aLrNpsNPp9PjdIzls2vBZnZ7/Y9zgmMBMFgEA6HA319fXH7+/v74fV60dPTg4sXL8LhcKCtrQ2zs7PRMSvXOcQu09PTAIAffvgBY2Nj+Oqrr/Dmm2/i119/VSVbMkpn//LLL1FTU4Oamhq1IqVMjeO+Y8cOXLp0CZOTk/j888/XPShVK2pkB4D5+Xm0t7fj/fffVzxTqtTKrhcy9odeMXvm2TN6jwuSCoAYGBhY0+ZyucSRI0ei6+FwWFitVtHb23tXv6Orq0t8/PHHGVSpDCWyd3d3i8rKSrFr1y5RVlYmSktLxeuvvy6zbCnUOO7PPvusOH36dCZlKkKp7P/++69obm4Wn332maxSpVPyuA8PD4snnnhCRpmquZv9cf78eXHw4MFo/wsvvCBOnTqlSr0yZfJa0OOxXu1us2f6HucZGIXdvn0bY2NjaG1tjbbl5OSgtbUVP/74Y0rbCAaDCAQCAJYfpvn999+jrq5OkXplkpG9t7cXU1NT+OOPP3Ds2DF0dnbitddeU6pkaWRk9/v90eN+48YNjIyMYPfu3YrUK5OM7EIIHDp0CI899hiefvpppUqVTkb2rSSV/eFyuXD58mX4fD4sLCzg22+/RVtbm1YlS5PNr4VUsst4j3MCo7C5uTmEw2GUl5evaS8vL8fMzExK2/D7/di3bx8cDgcefvhhtLe3o7GxUYlypZKRXa9kZP/zzz/R3NwMh8OB5uZmPP/883jooYeUKFcqGdnPnz+P/v5+DA4Owul0wul04rffflOiXKlkveZbW1vx1FNP4ZtvvkFlZaVu/+Clsj9yc3Nx/PhxtLS0wOl04ujRo1viDqRUXwtb5Vivlkp2Ge/xXGkVk2Luv/9+XLp0SesyNHfo0CGtS1CVy+XC+Pi41mVoYt++fYhEIlqXoZnvvvtO6xJU5fF44PF4tC5DE9l2rFfIeI/zDIzCLBYLjEbjuosv/X4/KioqNKpKHczO7Ksx+9bOHk827w9mVz47JzAKy8vLQ319PYaGhqJtkUgEQ0NDeOSRRzSsTHnMzuwrmH3rZ48nm/cHsyufnR8hSbCwsICJiYno+uTkJMbHx2E2m1FdXQ2v14uOjg40NDTA5XLhxIkTCAaDOHz4sIZVy8HszA4we7Zkjyeb9weza5z9ru5dojWGh4cFgHVLR0dHdMzJkydFdXW1yMvLEy6XS/z000/aFSwRszM7s2dP9niyeX8wu7bZ+SwkIiIi0h1eA0NERES6wwkMERER6Q4nMERERKQ7nMAQERGR7nACQ0RERLrDCQwRERHpDicwREREpDucwBAREZHucAJDREREusMJDBEREekOJzBERESkO5zAEBERke78H1FGNSxfcukbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "\n", + "plt.loglog()\n", + "plt.ylim([1, 1e6])\n", + "plt.legend(loc=\"upper right\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "06d734f5", + "metadata": {}, + "source": [ + "Now we're talking! The Lomb-Scargle periodogram nicely connects to the low-frequency part of the periodogram. Now, we can try to model the low-frequency continuum more confidently. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "59da1227", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.003)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAGwCAYAAABiu4tnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACO7klEQVR4nO2dd3gU1frHv7MtDUKIgVAMoNgIYighGEQJGqQpRcWGEooo16BorqioF9QfilcUsUSxXIpeVMAr4BVBBUWQJh019Iv0UKTE7CZbz++PZYbdzW6yZebM7O77eR4eJ5t1PvOemZ19c+ac8wqMMQaCIAiCIAgiZHRqHwBBEARBEES0QokUQRAEQRBEmFAiRRAEQRAEESaUSBEEQRAEQYQJJVIEQRAEQRBhQokUQRAEQRBEmFAiRRAEQRAEESYGtQ9AbVwuF44ePYr69etDEAS1D4cgCIIgiCBgjOGvv/5Cs2bNoNOp1y8U94nU0aNHkZWVpfZhEARBEAQRBocOHcLFF1+smj/uE6n69esDcJ+I1NRUlY+GIAiCIIhgqKioQFZWlvQ9rhZxm0iVlpaitLQUTqcTAJCamkqJFEEQBEFEGWoPyxHivdZeRUUFGjRogHPnzkWcSNlsNrz55psAgLFjx8JkMslxiOQkZ8z4yElOcmrXGW0xyvn9HQmUSMl4IsxmM+rVqwcAqKysREpKihyHSE5yxoyPnOQkp3ad0RajVhKpuH20pwQGgwFFRUXSNjnJqXVnPMRITnKSU5s+tZxyQz1SGsloCYIgCIIIHq18f9OCnARBEARBEGFCiRRBEARBEESYUCIlI2azGWlpaUhLS4PZbCYnOTXvjIcYyUlOcmrTp5ZTbqJzZJeGOXfuHDnJGVXOeIiRnOQkpzZ9ajnlhBIpGUlKSsLu3bulbXKSU+vOeIiRnOQkpzZ9ajnlhmbtaWTUP0EQBEEQwaOV728aI0UQBEEQBBEmMfFob//+/RgxYgSOHz8OvV6PdevWcVmR1Re73Y4PPvgAAPDggw/CaDSSk5yadsZDjOQkJzm16VPLKTcx8Wive/fumDRpEq6//nqcPn0aqampQa+QqlSJmBOnzyIjLVXxYorRtqQ/ObXljIcYyUlOcmrTF6lTK4/2or5H6vfff4fRaMT1118PAEhPT1ftWHQ6HZp36IEzFhtyX/oBnVtnYv7ofEWTKb1ejzvuuEPa5gE5Y8cZDzGSk5zk1KZPLafcqN4jtXLlSkyZMgWbNm3CsWPHsGDBAgwcONDrPaWlpZgyZQrKy8uRk5ODt99+G3l5eQCAhQsXYtasWXA6nThy5AjuuOMOPPPMM0H75cxoLTYHsid86/Va2Yu9kGyK+nyVIAiCIDSFVnqkVB9sbjabkZOTg9LSUr+/nzt3LkpKSjBx4kRs3rwZOTk56NWrF06cOAEAcDgcWLVqFd59912sXbsW33//Pb7//nueIRAEQRAEEaeonkj16dMHkyZNwqBBg/z+furUqRg1ahSGDx+O7OxsTJ8+HcnJyZgxYwYAoHnz5sjNzUVWVhYSEhLQt29fbN26NaDParWioqLC6x9BEARBEEQ4qJ5I1YbNZsOmTZtQWFgovabT6VBYWIi1a9cCADp37owTJ07gzJkzcLlcWLlyJdq0aRNwn5MnT0aDBg2kf1lZWbIdr8ViweHSoThcOhQue7Vs+63L2bx5czRv3hwWi4Wc5NS0j5zkJKd2nfEQoxJoevDOqVOn4HQ6kZmZ6fV6ZmYmdu7cCQAwGAx4+eWXccMNN4Axhptvvhm33HJLwH2OHz8eJSUl0s8VFRWyJVOMMTgrT5//QZZdBuU8evSotE1OcmrZR05yklO7zniIUQk0nUgFS58+fdCnT5+g3puQkICEhASUlpaitLQUTqdTtuNITExE02FvAQAEA5+1MBITE7FlyxZpm5zk1LKPnOQkp3ad8RCjEqg+a88TQRC8Zu3ZbDYkJyfjiy++8JrJV1RUhLNnz2LRokURO2nWHkEQBEFEHzRrLwhMJhM6deqE5cuXS6+5XC4sX74c+fn5Kh4ZQRAEQRCEBh7tVVZWYu/evdLP+/fvx9atW5Geno4WLVqgpKQERUVFyM3NRV5eHqZNmwaz2Yzhw4dH5FXi0Z7dbkflr8sAACnZBRD0yjev3W7HnDlzAABDhgzhtqQ/OWPDGQ8xkpOc5NSmTy2n7DCV+fHHHxncQ7O9/hUVFUnvefvtt1mLFi2YyWRieXl5bN26dbL5z507xwCwc+fORbyv43+elY4/6/EvWMunvmZmq12GowxMZWWl5KysrFTURc7Yc8ZDjOQkJzm16YvUKef3dySo3iNVUFBQ50j9MWPGYMyYMZyOKDwYY7h/xgYkXZoLABB0fJ6a6vV69O3bV9omJzm17CMnOcmpXWc8xKgEmhpszhPPR3u7d++OeLCa50DzSzJSsP+UGQANNicIgiAIJaDB5ipTXFyMsrIybNiwQfZ9z3uIBsITBEEQRDwQt4mUkgiC2kdAEARBEAQPKJGSEZe9Gkc+GIW89m25loi5/PLLcfnll3Nd0p+cseGMhxjJSU5yatOnllNu4nbwjhLLH4ABjjPHsP8MkMWxRIy4fASv4W7kjB1nPMRITnKSU5s+tZxyE7eJVHFxMYqLi6XBanIgGIzIHPIq/lWUi4e//0uWfdZFYmIifv75Z2mbnOTUso+c5CSndp3xEKMSxO2sPRG5Rv17ztrb+Fwhcie5F+akWXsEQRAEIT80a48gCIIgCCLKoa4SGWEuJyy712LRgnNgrnoQdMovLuZwOLBgwQIAwKBBg2AwKH9KyRk7zniIkZzkJKc2fWo55SZuH+0psSDnVU8vwqE37gAAZD3+BXSmRMUf7ZnNZtSrVw+Au25hSkqKYi5yxp4zHmIkJznJqU1fpE6tPNqLvtRPJpQYbA5BQELW1ejUsiEOcVpMSqfToXv37tI2OcmpZR85yUlO7TrjIUYliNseKREabE4QBEEQ0YdWeqSiM/0jCIIgCILQAJRIEQRBEARBhEncJlKlpaXIzs5G586dZduny27F0ZmPoKBrHlx2q2z7rY2qqiq0b98e7du3R1VVFTnJqWkfOclJTu064yFGJYjbwTuKDDZnDPYT+/H7CSCrkM/QM5fLhW3btknb5CSnln3kJCc5teuMhxiVIG4TKSUQDEY0vvP/UDqkA/7+s4w1/GohMTER3333nbRNTnJq2UdOcpJTu854iFEJaNYezdojCIIgiKiDZu0RBEEQBEFEOdRVIiPM5UTV/s34bqkdzKXjViLm22/dPWG9evXitqQ/OWPDGQ8xkpOc5NSmTy2n3NCjPRkf7VGJGHJGmzMeYiQnOcmpTV+kTq082ou+1E8mPGvtyYYgwNTkcmQ3S8WfHEvE5ObmStvkJKeWfeQkJzm164yHGJWAeqRosDlBEARBRB1a6ZGKzvSPIAiCIAhCA1AiRRAEQRAEESaUSMmIy25F+b/HoW9hAdcSMddddx2uu+46rkv6kzM2nPEQIznJSU5t+tRyyg0N3pETxmA9sgMbjgBZXfmViFmzZo20TU5yatlHTnKSU7vOeIhRCSiRkhHBYESjQc/itcE5+McWIxdnQkICFixYIG2Tk5xa9pGTnOTUrjMeYlQCmrVHs/YIgiAIIurQyqw9+oaPchhjqLK718JKMuohcFq/iiAIgiAISqRkhbmcsB7+HatXGcFcTsVLxDDGcPu7P2PN6p8BANdd1w1fPNxN8WTK6XRi1apVAIDrr78eer3ypXDIGRs+cpKTnNp1xkOMSkCP9qK4RIw/585XBij+KDHaygiQUzs+cpKTnNp1RluM9GhPZZQpEQMYL2qBSxulwMLrCdt5p7jNRSkIyM7OlrbJGb3OeIiRnOQkpzZ9ajnlhnqkoniwuadThAa3EwRBEPGAVnqkaEFOgiAIgiCIMKFEiiAIgiAIIkwokZIRl92K458/hzv69+VWIkZ0Hv/8Oa5laXr27ImePXtyLSNAzuj3kZOc5NSuMx5iVAIaTCMnjKH6wFb8dADIav8wV6e4zQOXy4Vly5ZJ2+SMXmc8xEhOcpJTmz61nHJDiZSMCAYjLrrl75g08GpM3sWnRIzoFLd5kJCQgH//+9/SNjmj1xkPMZKTnOTUpk8tp9zQrD2atUcQBEEQUQfN2osx4jsdJQiCIIj4hLouZIAxhsHT14K5nLAd34ctm9K4lIgBIDkBwJTZWnEf4F7Sf/PmzQCAjh07cisjQM7o95GTnOTUrjMeYlQCerQnQ9eg+IjNZaumEjHkjCpnPMRITnKSU5u+SJ1aebQXEz1SrVq1QmpqKnQ6HRo2bIgff/xRnQMRgBYtWgICwDiWiNGnNpa2uSgFAS1btpS2yRm9zniIkZzkJKc2fWo55SYmeqRatWqF3377TcpqQ0HOHinAPdgbgNfPNNicIAiCIORFKz1SNNicIAiCIAgiTFRPpFauXIlbb70VzZo1gyAIWLhwYY33lJaWolWrVkhMTESXLl3wyy+/eP1eEAR0794dnTt3xpw5czgdOUEQBEEQ8Y7qiZTZbEZOTg5KS0v9/n7u3LkoKSnBxIkTsXnzZuTk5KBXr144ceKE9J6ff/4ZmzZtwldffYWXX34Z27dv53X4XjCHDXfdcTvuuuN2MIeNm/PEl5Nw4stJ3JzV1dUYOHAgBg4ciOrqanJGsTMeYiQnOcmpTZ9aTtlhGgIAW7BggddreXl5rLi4WPrZ6XSyZs2ascmTJ/vdxxNPPMFmzpwZ0FFdXc3OnTsn/Tt06BADwM6dOxf2cZutdtbyqa9Z1uNfMAAMAMt6/AvW8qmvmdlqD3u/wXh9nUr6RCorKyVnZWWl4j5yxo6PnOQkp3ad0RbjuXPnIv7+lgNNj0q22WzYtGkTxo8fL72m0+lQWFiItWvXAnD3aLlcLtSvXx+VlZX44YcfcOeddwbc5+TJk/HCCy8ocryC3oB33n0PAPDq//g0raA3IL3XGGmbByaTCR988IG0Tc7odcZDjOQkJzm16VPLKTeamrUnCAIWLFiAgQMHAgCOHj2K5s2bY82aNcjPz5fe9+STT+Knn37C+vXr8b///Q+DBg0C4F7Ya9SoURg7dmxAh9VqhdVqlX6uqKhAVlYWzdojCIIgiChCK7P2ov4b99JLL8W2bduCfn9CQgISEhJQWlqK0tJSOJ1OBY+OIAiCIIhYRtOJVEZGBvR6PY4fP+71+vHjx9GkSZOI9l1cXIzi4mIpow0XxhgsNuf5bRfKyn6XtgVB+bH8jLlgP3UIAGDMyFLcBwAulws7duwAALRp0wY6nfJxkjM2fOQkJzm164yHGJVA04mUyWRCp06dsHz5culxn8vlwvLlyzFmzBh1Dw7uJOqO6Wux6cAZ9892Gzp3aA/AXa5FMCUqfwx2G47NKJacPLBYLLj66qsBAH/99VdYC6GGSlVVleTkVbogHpzxECM5yUlObfrUcsqN6olUZWUl9u7dK/28f/9+bN26Fenp6WjRogVKSkpQVFSE3Nxc5OXlYdq0aTCbzRg+fHhEXjke7VXZnVISBQAdW6ShKiMjouMKB10Sv2fDjDEM+Wi95Lzvo/VYMPZGLkv7Z6jQtvHgjIcYyUlOcmrTp5ZTTlQfbL5ixQr06NGjxutFRUWYNWsWAOCdd97BlClTUF5ejvbt2+Ott95Cly5dZPFHMljNc7D3xucKcVGKCYIg1Bh8HkuDzWmAO0EQBKEFaLD5eQoKClBXLjdmzBhNPMqrjWSTPmoLLhIEQRAEER7RN6qLIAiCIAhCI8RtIlVaWors7Gx07txZtn1WV1djyJAhGF50v1SuRekHp8xhw8n/TsHJ/07hWpaGt1Ns2yFDhnAtXRDrzniIkZzkJKc2fWo55Ub1MVJqI9cYqbIXe4HZrdIMtqzHv4DOlIjspqlY/Gg3RR77WWwOXPX0Ihx64w7JufOVAYqPkeLtBNwr2Itty2tmRzw44yFGcpKTnNr0ReqkMVIxiMlkwhtvvAHGGL5l6dh5woKyYxWosjsVSzQEvQENbxwlbfNADafYtuI2OaPTR05yklO7zniIUQnitkfKc/mD3bt3y9Ij5Zksma0OtJ2o7Mw9mrVHEARBxCta6ZGK2zFSxcXFKCsrw4YNGxTZP03gIwiCIIjYh7oRZMTlcuHgwYMAgIwmzRTzMMZQZXfCYnOCMRecFScBAPrURoo5vf38nZ5t26JFC26lC2LdGQ8xkpOc5NSmTy2n3FAiJSNVVVW45JJLAAAnTp9VxOGvLM2R6SMB8CsRo4bTs215li6IdWc8xEhOcpJTmz61nHJDiZTMJCcnK7p/37I0ACAYExR1+oO3kzEmtS3PYX1Kn08tOOMhRnKSk5za9KnllJO4TaTkqLXnS0pKCsxmMwD3oGwe6EyJaFHyHy4utZyMMRR9sh2NHpkHABj2yXbMH52v+ErynueTF7yd8RAjOclJTm361HLKTfQ9jJQJpQeb8yC7aarXf2MV3164jQfOoMouXwJMEARBEOEStz1SsYC7V8a9erq41AJBEARBEPyI2x4pJbBarRg1ahRGjRoFq9WquE8QAD1zYszDD+HPJW+BOeyKOwGAOez4c8lbMe/kfT7VcMZDjOQkJzm16VPLKTsszjl37hwDwM6dOxfy/2u22lnLp75mLZ/6mpmtdlZZWckAMADsxOmzXr+Ti9qcWY9/IavL5XIxs9XOzFY7c7lckj/r8S8Uc/pDDSdjzKttKysrFfep4YyHGMlJTnJq0xepM5LvbzmJ20d7Sgw2NxqNmDRpkrTNA6PRiIkvvIg3l+2BoNfLtl/ms8xCbsuGmD86HwAg6PVIu/5+aZsHajjVOp88nfEQIznJSU5t+tRyyk3clogRkbNosWeZlNp+Fwn+9quEK1ApGABUloYgCIJQHSoRQxAEQRAEEeXQn/QywhjDqVOnAADJqWncnCdPnoTTcg66JD4ZOWMMrqoKAIh5p3g+MzIyFF+3Sg1nPMRITnKSU5s+tZxyQ4mUjFgsFjRu3BiAciVi/DlbXeyu68evRIwVh98eEvNOz/PJq3QBb2c8xEhOcpJTmz61nHJDj/YIgiAIgiDChHqkZCQlJUWqA8erRExKSgrMVnuNwdhKojMlouVTX3PzqeX0PJ+x6oyHGMlJTnJq06eWU26oR4ogCIIgCCJM4jaRKi0tRXZ2Njp37qz2oRCEBGMMFpsDFpsj6v9KIwiCiAfiNpFSomix1WrFY489hscee4zr8vrj/l6C08s+4Fqu5fSyD2R31pZEKOWsDd7nkzGGQW//hCZdb0eTrrfjtrd/UjyZUuuaJSc5yak9ZzzEqAS0IKeMC3IyuxX16tUD4J611/mfP0u/U2pBTk9n1uNfYOcrAxRfkPOqpxfh0Bt3yOoMtJK6IAiw2ByKOOvCbDZLbctlxowKcfKOkZzkJKd2ndEWo1YW5KTB5jJiNBrxzDPPSNu8nOOeehrvr/wf13Itqfl3SttyUGV3SkkUAGw8cAZVdqeURCjhrAs1zifvONW6ZslJTnJqzxkPMSoB9UhRiZg6PSJKloiprQxMvJSIiZc4CYIg5EArPVJxO0aKIAiCIAgiUuhPXRlhjMFisbh/MJi4Oc1mM1y2agjGBG5OZncPCox1p3g+k5OTuZVL4BmnWjGSk5zk1J4zHmJUAkqkZMRisXgNNuflbJyeBoBvuRbPAdGx6vQ8n7wGXvKOU40YyUlOcmrTGQ8xKgE92uOAxeakNYEIgiAIIgahHikZSU5ORmVlpfsHj0d7uZOWeU3nl9t54vRZdPq/ZbI9CnKv5+QM+HvBmCD1lvB6zKaG0/N8Jicnc3HyjlONGMlJTnJq0xkPMSpB3CZSpaWlKC0thdMZOGEIFUEQpG5JxhhyWzbExvNT+n2n88vt1JkSZdmf73pOgZyCTL5gUcvJu5uZd5xqxUhOcpJTe854iFEJ4vbRnhIrm3siCALmj87HxucKFdm/Uviu55Td9MKUUvcjSjWOiiAIgiC0SdwmUkpgs9nw7LPP4tlnn4XNZoMgCEg2Kbuoos1mw/MT/oEzKz8Gc8pbOmXjc4WYPzpf+jl30jIMnr4WzGnHmZUfK+IMhBpO3/PJA95xqhEjOclJTm064yFGJaAFORUqESPOPpBjsUzGGKrszvPbQNuJypWI8T3eJKMeg6evlR5RAoDLVi17GZO6FuSkEjHKEG0lIchJTnLGji9Sp1YW5IzbMVJKYDAYMHbsWGlbDnzHLHk+ahM9D495BJ+sPQBBJ3/vl/iI8k+zDbmTlrlf0+lRv1N/aZsHajiVOJ91wTtONWIkJznJqU1nPMSoBNQjpVCJmFDeE6zDFyVKxATaVzDHEQlUIoZKxBAEQYSCVnqkaIwUQRAEQRBEmFAiRQRFklGP3JYNpZ99HzESBEEQRDxCiZSMmM1m9zpAggCz2czNmZJgxIF/3gKXrVoxjzhWquzFXtjwVDcseewGxZ2euGzVOPDPW7g61TifvONU65olJznJqT1nPMSoBDT4IgQ8Z88lGfkMeNYS7uUcDGB2umwIgiAIAqBEKmh8Z8/ltmyI2SPyvN6TnJyMEydOSNs8SE5Oxh+Hj6LbP3/kWjqFt1MwJuDiR+ZI2zxQ43zyjlOta5ac5CSn9pzxEKMSUCIVJL4rfoslXzwRBAGNGjXielyiU5/cIOadcvp8exf91UBU63yqcS55Qk5yklObzniIUQliZoyUxWJBy5Yt8cQTT6h9KITGEXsXsyd8i+wJ37pXa4/vVUAIgiCIMImZHqmXXnoJ1157rarHYLPZMGXKFADAuHHjYDKZuDhffeWfOLdmD1K73Ka4Ty0nc9pRsf5LAIjYGah30Xe9JjXOp5xxBoNa1yw5yUlO7TnjIUYliIkFOffs2YOnn34at956K3777Te89tprQf+/wS7o5W+xxI3PFUqrfStVIqauhTCVLhHjb1+eS/pHY4mYYBe+pBIxylBZWYn69esDAE6cPouUlJSAj1flItpKX5CTnGo4oy1GrSzIqXqP1MqVKzFlyhRs2rQJx44dw4IFCzBw4ECv95SWlmLKlCkoLy9HTk4O3n77beTlXRjo/cQTT2DKlClYs2YN56P3xmAw4IEHHpC2eTmHjRiBLzYe5lo6hbdT0OlR75qbpW0eqHE+ecfJO0bGGO6bsVGKMfelHyEYjMht2RDzR+crlkyp9dkkJzmjyRkPMSqB6kdtNpuRk5ODESNG4Lbbaj7KmDt3LkpKSjB9+nR06dIF06ZNQ69evbBr1y40btwYixYtwhVXXIErrrgiqETKarXCarVKP1dUVMgWS0JCAj788EPZ9hess/S99/FjgF6rWHEKBiMu6vMoNx8AmEwmvFn6HgDACXcSoGSvCcA/Tt7XbJXdia1HzTViDPR4VS7U+mySk5zR5IyHGJVA9USqT58+6NOnT8DfT506FaNGjcLw4cMBANOnT8fixYsxY8YMPP3001i3bh0+//xzzJ8/H5WVlbDb7UhNTcWECRP87m/y5Ml44YUXFImFiB18l7sAoHivSbyx8blCAJAejxMEQUQjmp61Z7PZsGnTJhQWFkqv6XQ6FBYWYu3atQDcidGhQ4fwxx9/4LXXXsOoUaMCJlEAMH78eJw7d076d+jQIcXjIKIP3wHpgP8lL4jwSTbpkWyKv4VtCYKILTSdSJ06dQpOpxOZmZler2dmZqK8vDysfSYkJCA1NdXrn1yYzWakpKQgJSWF6/L6jRo2wMGpt3MtncLb6bJV4+DU21Vxnnj7zpiNU41rVoyxUcMGfEspqfDZJCc5o8kZDzEqgeqP9uRk2LBhQb+3tLQUpaWlcDrl7WGwWCyy7o+cF2B2a91vUsBZZefv5Ila59LCuV3j5XNCTnJGk08tp5yElEi5XC789NNPWLVqFQ4cOACLxYJGjRqhQ4cOKCwsRFZWlqwHl5GRAb1ej+PHj3u9fvz4cTRp0iSifRcXF6O4uFiaPikHSUlJ2L9/v7TNg6SkJJTt2oOeb6yEYOSz/oYaTsFoQvPR/5K2eTq/GnMdBn28m6tT3FYaNa5ZMcbvH7+B6+dEjc8mOckZTc54iFEJgkqkqqqq8Prrr+O9997D6dOn0b59ezRr1gxJSUnYu3cvFi5ciFGjRuHmm2/GhAkTZFsY02QyoVOnTli+fLm0JILL5cLy5csxZsyYiPYdao9UMKtt6XQ6tGrVKqLjChWdToeWrVrB0GBXTDsFQQdDg8y636iAs0XLVhCEvVydvFDjmhVjbMnRq9Znk5zkjCZnPMSoBEElUldccQXy8/Px4YcfomfPnjAajTXec+DAAXz66ae4++678eyzz2LUqFFBHUBlZSX27r3wJbV//35s3boV6enpaNGiBUpKSlBUVITc3Fzk5eVh2rRpMJvN0iy+cAmlR4oxhsHT10bkIwiCIAgi9ggqkfruu+/Qpk2bWt/TsmVLjB8/Hk888QQOHjwY9AFs3LgRPXr0kH4uKSkBABQVFWHWrFm46667cPLkSUyYMAHl5eVo3749li5dWmMAupJU2Z0oO+Zeb+qSjBTsP+UeEOfbS2W321FaWgrAnaj5Szjlxm6345233kLFhl2o37Gf4j61nMzpwF+bFwMAd+f00h1gzssh6DksWMk5TjWuWTHGd97aiYf+9rDiPkC9zyY5yRlNzniIUQliokRMJASzxLxnSZENzxai80vudW88kyoqERNbJWL8OXWmxLDOYSjHFeslYnxjPHH6LDr/82cA4X0+giXaSl+Qk5xqOKMtxqgtEdOqVSuMGDECw4YNQ4sWLZQ4Ji6EO2sv2aRHdtNUlB2rkJIoEb1ej3vvvVfa5oFer8edd9+Nr7cfg6Djs5qFGk5Bp0Nydndpm6ezz9VNsCFG41TjmhVjvOWaplw/J2p8NslJzmhyxkOMShByIvXYY49h1qxZePHFF9GjRw+MHDkSgwYNQkJCghLHpxjhztoTBGD+6Hy0nVizlygxMRFz5syR8zDrJDExETNnfxKw1yqanRabO8llDBAMJjS6dZyiPl9E53SP4tS8nLxQ45oVY5z5Yi9uTrU+m+QkZzQ54yFGJQj5T97HHnsMW7duxS+//II2bdrgkUceQdOmTTFmzBhs3rxZiWPUHFQhRD4YY7DYHFLS5EnupGXInvAtDfQnCIIgNEvYzw46duyIt956C0ePHsXEiRPx0UcfoXPnzmjfvj1mzJiBOB965ReLzUnt4oFYzy57wrdePT7ZTb2fdYsD/QmCIAhCa4SdSNntdsybNw/9+/fH3//+d+Tm5uKjjz7C7bffjmeeeQZDhgyR8zhlp7S0FNnZ2ejcubNs+zSbzWjUqBEaNWrkd6n73EnLMHj6WlmTKbPZjJbNm+LQW/dyLREjh9NfPbvclg3x9SPdUPZiL6moLeAuK3LorXu5xik6r2p1MXcnrzjrumaVQIyxZfOmfEspcY6TnOSMNmc8xKgEIY+R2rx5M2bOnInPPvsMOp0OQ4cOxRtvvIGrrrpKes+gQYNkTVCUQImVzQF3fUBPkox65LZsiI3nEwax8K2cs5N8nTyQ27nxuUIkm/RIMuohCILf9nFV8e+ZclVV4M8qIJmzkydqXD+uqgqcquLrjIXPCTnJGWs+tZxyEvK3eefOndGzZ0+89957GDhwoN81Hy655BLcfffdshxgNJGUlITffvtN2gYAQRAwf3Q+/jTbFBmwnJSUhA1btqL/26u5loiR25ls0teaXApGE5qOKJW2eSA6543Ox5AvDnN1ittK4++aVRoxxq8euY5rGQrecZKTnNHmjIcYlSDkROp///sfWrZsWet7UlJSMHPmzLAPKlrR6XRo27ZtjdfdPSzKTOvU6XTIzm4LUyM+X/RqOQVBB1Oj2q87pZxXtcmGIBzl6uRFoGtWScQYs7P5edWIk5zkjDZnPMSoBCEnUmISZbPZcOLECbhcLq/fR8vaUuGuI0UQBEEQBCESciK1e/dujBw5EmvWrPF6nTEGQRCiJjFRYoyU3W7HrFmzAADDhg3jtrz+zH/9C39t/R312hXW/T9EqZM5Haj81f1olLfzk5kHwJzNuZWI4RmnGtesGOPMfx3CfUOLFPcB6n02yUnOaHLGQ4xKEPI3w/Dhw2EwGPD111+jadOmEOJgUaVgJ9nZbDY8+OCDAIB7772XywVhs9kw5uG/AQBSsgsU9/lzWmxOaZC4UjCnA6e/fUdyyo24jpVnHKKz5Ft3uRZeiZSScfqixjUrxjjmW+DOu+9R3Aeo99kkJzmjyRkPMSpByN8MW7duxaZNm7xm6cUyjLGgF4TU6/UYMGCAtB14n7IcmuS55db+WL7zBNcSMZ7O3EnLkNuyIeaPzlcsmRJ0OiRdfq20LTfiRAAxDk9nwRWN8DvHEjFKxulLsNesnIgx3nRVY65lKHjHSU5yRpszHmJUgpATqezs7KifqhgKVXantCBkdtNUJBndJ9pzSYPclg3P92QYsHDhwjr3OXj6Wix+tJssSUdiYiLmfvEf7iVivlq0EIOnr1V0WQdPBIMJjW97Tvb9inUTRcQ4PJ0fcy4Ro0ScgUhMTAzqmpUTMca5nEvE8I6TnOSMNmc8xKgEQX3rVVRc+KL55z//iSeffBIvv/wy2rVrV6MbTs0KzErj2eMyf3S+9IUbzGOtJOOFYsdlxyoUTTp4oPSyDkDNNbh8kx45cJ9T96M9XskSQSgFY0y6L4ko/didIOKdoL7J09LSvD6IjDHcdNNNXu+JtsHmgWbted6IxN4nEc97UaBFIwMhJh7+ih1HK0ou6yDu3zNhZQyyt58gIKoTWoIQEUsu+asWoORjd4KId4L6Bvnxxx+VPg7u+Ju153sjym3ZELNH5AW9T4vFguzsbABAWVkZkpO918NW4j5msVjQJjsbR85UodkD78ovCOAU49y4dbuiLjFhFZ0843TZq3H0o4fR8bNE4I6p0BkTQ96Hbw9BXb0DohMAlzjrumaVQIyxzedJ2KTw9SOiRpy8nVV2JzbsPeZ1/eiMiYo/ducZp/h5slgs6NT+GgDApq3bcVGD+oonivFwDcVDjEoQ1Cere/fuSh+HJvCt/bbxwBmcNtuC/v8ZYzhw4IC0zQPGGA6ed4JTPeR4iRMMcFacwKEKICsMp78egjp7B847xW2lUeNcijEerOB7/ahxzarVtgCw6ske6P5GcBNlIlJyitPz8+SyVePQeWfHF79H3uVNFe91i4drKB5iVIKw/0SxWCw4ePAgbDbvROOaa66J+KDUwGJzoH5CzdevfzX43rjExET88ssv0jYPEhMTsXL1Gtz5/joIBj7TRuMlTsFgRJOhU/HxiDw8sPjPkP9/f0WZ6+odEJ3ittKocS7FGOc9dC3X64dnnIwxuHQGrFztXm/PpTNIwx+UxLNt01NTFHWJ8Gpbz8+T7+dE6V43QL37Hk9nPMSoBCFfdSdPnsTw4cOxZMkSv7+PljFSvuS9tBxtWzWRfg5nYLNer+derFmv16NTbmckfHWaq1OM02JzcHPyjlPQ6ZHQ9Ap06JQLYUlkA9FXPdkjqKRcdPJCjWtWjLFTLj+vXq9Hbm4uquxOWJ0McLqvWyUGYvsdq/SV8kuEAOq1Le9raNOEXkg26blOElHr/s7TGQ8xKkHIidRjjz2Gs2fPYv369SgoKMCCBQtw/PhxTJo0Ca+//roSx8iNHR6JkzjIWUszuTyTO3HJBTlhjEkLUxLykqTgoHyibngOxPbXEwkov0RIPFFXkXOC4EnIV+IPP/yARYsWITc3FzqdDi1btkTPnj2RmpqKyZMno1+/fkocJ1eym6Yi2aQPeXC4w+HA3LlzAQB33XUXDAZ5P+jiVH3gwl/SDocDn3/2KSp/346UNjeEve9AXzT+8Izz1kG3h+0MBd84/a1ELjfM5YR5x0p8MfckmCsdgk75ZEh0AojofAaL0tesP8QYP//sT9wx+E7FfQDwV5UVP33zJQB3u4rnUsnkhrmcGH+luwd18i6+1w/PtlXjGnI4HJgzfy6sDieYK41L26oVJ09nPMSoBCEfsdlsRuPGjQEADRs2xMmTJ3HFFVegXbt22Lx5s+wHqBS1FS0O9y9Uq9WK++67DwAwcOBA2S8If1P1rVYrRg5z1ytLvjw/7H37/hVdW4+XZ5wnTt8StjMUfOP0XYlciWSKOez48+vX8bevz5eIUahXSZqJZHNKTiCy8xksSl+z/hBjHPk1cGv/AYr7AHecYrtu+ugZpKSkKN7bzBx2/O2B4QCUvX58nWq0Le9ryNPJq23VjpOHMx5iVIKQj/jKK6/Erl270KpVK+Tk5OD9999Hq1atMH36dDRt2lSJY1SE2ooWh/udrNPpUFhYKG3zQKfToceNN2Htvj9lW19h43OFuCjFFDA5USvOwsJCbD981itORR+XCAISW7ZHl0vT8T+ler18ewLPO8VtpVHjXIox5re+iOv1I7ZrvUQjn0etgoAeN7rX29vLaw0nldpWrfuB08W4ta2acfJyxkOMShDyt8/YsWNx7NgxAMDEiRPRu3dvzJkzByaTSargHK8kJSXh+++/D+q9chX6TUpKwtdLlspaIsb9WDPwcXnGyWuwuej07L1RukdBZ0xA5t2T8IWCJWJ8ewJ1xgT0ePwt2VdwD0Qo16xciO36NccSMUlJSci8e5K0zQOdMQFfL1kKANxKOKnVtryvIdFpsTm4ta2accaqTy2n3IScSIldcADQqVMnHDhwADt37kSLFi2QkZEh68HFMjwK/cYioa4oH01sfK4QySa9Iiu4EwRBEMoQdj+azWbDrl27YDKZ0LFjx5hMosRab4A8s+Q89wd4F8glCHEmEuXVBEEQ0UPIiZTFYsHIkSORnJyMtm3b4uDBgwCARx55BK+88orsB6gmYq23shd7BdVzZLFY0LZtW7Rt2xYWiyXg/jY+VyjbMVosFuS2z8HRjx6Gy14t237rctYWZ6w4xVIm3Tp34Nq2PM+nmu2a2z6H6/Vz9KOHcfSjh7nGmds+B7ntc7hdP2q1rVr3A55tGw/3vXiIUQlCfkYyfvx4bNu2DStWrEDv3r2l1wsLC/H888/j6aeflvUA1SaUR0mMMZSVlUnbgfcn30BXxhh27Cg7/4Nsu63TWVecSju5dNowwP7nQez6E8jqw0PI/3yqcS7Fdt3xJ9/rx/7nQWmbjxTSuczqXcd7ZXSq0bZq3g94ta3acfIqERPrMSpByInUwoULMXfuXFx77bVePTRt27bFvn37ZD24aCMxMVEq8Mxzef0l3y3DsJm/cC0Ro0acnk6rU/kPnGAwIvOel/H+/Z3w6I98/urlfT7VOJdiu84ansf1+sm852VpmweCwYgl37knKTz0vZmbU422Vet+UG13cmtbLdz3Ys2nllNuwioRI64j5YnZbI77QdN6vR4FBQVh/b/ibDQgtEUm9Xo9bujeHYnL+XzRi04xznBn7YW6inqNtnUqP1tQ0OmR2OIaXHd9dwg/8StDwfN8RnLNhovYrjdwLIau17ud4jYPBJ1eilFYzmfygFpty/saEp0Wm4Nb2/KK0/O7AADyunYDwGdpADXPZTQTciKVm5uLxYsX45FHHgEA6Qv/o48+Qn6+8gsIKkWHrDRsO2FTpPRKXfiuJRTrs/lCWUWdIAgiXqjt3hjr3wvRTMiJ1Msvv4w+ffqgrKwMDocDb775JsrKyrBmzRr89NNPShyjIviubP7xyDwYk1IiWtvJ4XDg66+/BgDccsstQa/Q6ruWUCiLTDocDvx30SJYdm9B0mV5YR13qHjGeePNoQ9QCGUVdX/OW27hs5o6czlRtfcXfPNfC5grgVsZCp7nM9xrNhLEdv3vomr04VRSyuFwwLJ77fntm7jF+d9Fi85vG7mViFGjbXlfQw6HAwu/+RpWu5Nb2/KI0/feKJ5PANjgylO8VqNa55K3U25CPuJu3bph69ateOWVV9CuXTt899136NixI9auXYt27dopcYyK4LuyuRzrE1mtVgwaNAgAUFlZyW15/bvvvAOAu1SCXAt91uUU4zxx+mxE+6prFXV/zsrKSgjGhJBdnot5BvV+hx0nF7yEogV8y1B4nk8ePt7XrNiudy+I/PoJFqvVipMLXjq/PY5bnJ7nkleJGDXaVo37nujk+dnkGefG5wrB7NVonO4u9ROr9wM1nHIT1hG3bt0aH374oddrJ06cwMsvv4xnnnlGlgOLRnQ6Hbp27Spt83Jem5+PLQfPAoLAZaFPOeOsaxX1QM5Qh5qH9ThREJDQvA2uubgByjmWofA8nzx8vK9ZsV07tEjj+jlJaN5G2uaCIODa88MdjnAsEaNG26px3+vatStcjHFrW95xJpv0EPSmmL8fqHIPkhnZUr9jx47hH//4R1wnUklJSVi9ejV355rVqzF4+lpsPJ8kKFp/Dt5x8iwR49m2oXp9u8yBuh8p6owJaHLfFHwjc4kYsUfMnzspKQnLV6yUyl549p4p0dOoxjUrtutyzmVMmtw3Rdrmgc6YgOUrVgLgWyJGjbZV4763evVq7iVi1IjT837Aw6fWuYxmoq8PjaiBuNDnn2ab4vXnYgGxFIvSj0ADIZ6j3JYNMXtE7eOgPM8nDTYlCILQHtHZj0bUQO6FPmOZC6VY+CUkvuWBgMAlgvy9t7b3EwRBEOpBiZSMVFVVoXPnzujcuTOqqqrIGeVOl92KY7MfR8/u18Flt0a0L0GAVG6othJBVVVVyMvLw4EZY7Fp/A11vj9S1GzX67tey/X6OTb7cRyb/TjXOK/vei2u73ptxNdPKE412lat+wHPtlUrzuu7Xotjsx/nEme83NvlJuhHeyUlJbX+/uTJkxEfTLTjcrmwceNGaZucyjkFHp1vjMFWvgdby4Gs7pGvpB7MzFDPOBMNOkWnOvv6eJ1LsV03l/O9fmzle6TtmofEavT2RfzolzFs3rQJAJB1A7f6Taq0rZr3A15tq1ac4jUEDuVT1D6X3O5BMhP0XXrLli11vueGG26I6GCinYSEBGk9jISE0Kfn+xLM6t9yO4NBC04bh8+bYDCi0R0TMe2u9hj/C5/OW95tq8a5FNt1+pCOXK+fRndMlLY9YQx+Z3RGOiZNMBjxnwXudaQeXxPWLsJyqtG2at0PrHYnt7ZVK87/LFiE0XM2cykZpYV7ezQSdCIl1sIhAmMwGNAvxEXwAiVKgW7utTl5zaBT2wkANg5eQadHcuvOuLl3IZ7ZyGcQfzjXUDT5gAvt2rsvv5llBoMBya07S9ue+JvRCUQ++1XQ6aUYS9bxKxGjRtvyvoZEp8Xm4Na2asXZu29fJK/jM/5VzXMZzdCsPZUJNMsunNW/CYKIDHE8Gs1+JQgiWIJKpF555RU8+uijSE5OrvO969evx6lTp6I+wwwHp9OJH374AQBw4403BiyOKs7K2hjk4pC1rf7t6by2G59Hq2o7b7zxRi5O5nKi+sB2rPjBvc2jDEWw11C0+oAL7bp8mR4FPXoo7gPccVbt33J+uzBgnHLOfGUuJ5YvWyZt8yoRo0bb8r6GnE4nvv/+R1TbnTH72RSdy5ctQ9X+LUhseQ0Xnxox8nbKTVCJVFlZGVq2bInBgwfj1ltvRW5uLho1agTAXSenrKwMP//8M/7973/j6NGj+PjjjxU9aE/Onj2LwsJCOBwOOBwOjB07FqNGjeLm96S6uho333wzAPdS9ykpKX7fJ677JJYrqeuv39pW//Z08ioJobYz3BIxocIcdpyY9w8MnsevDEWw11C0+oAL7dp/Ht/r58S8f7i3pz/CLc7+/S6U9/C8fhQZ3A712pb3NeTpjNXPpujs368PAD4lYtQ+l7ycchNUIvXxxx9j27ZteOedd3DvvfeioqICer0eCQkJsFgsAIAOHTrggQcewLBhw5CYmKjoQXtSv359rFy5EsnJyTCbzbj66qtx22234aKLLuJ2DCI6nQ45OTnSdm3IUdsvVKdcaMHJZZ6OIMDY+BJckVkfFRzLUPBsWzXOpdiuVzWpz/X6MTa+RNrmgiCg3TXuXoSzHtdPoHJFsiy4qlLbqnU/cDHm1bY8nOI2L2e7a67BzvK/uJWIUfveHo0E/U2ek5ODDz/8EO+//z62b9+OAwcOoKqqChkZGWjfvj0yMjKUPM6A6PV66ZGj1WoFYwyMwzRRfyQlJWHr1q2qOXmWa1HTycurMyag2fC3sULmEjGeVPlMNuB9DalxzYrtuo5zGZNmw9+WtnmgMyZg3Qb31HXPEh9KDW4XnWq0rVr3Pd4lYtSIc92GTTEfI2+n3ISc/ul0OrRv3x4DBgzA3XffjcLCwoiSqJUrV+LWW29Fs2bNIAgCFi5cWOM9paWlaNWqFRITE9GlSxf88ssvXr8/e/YscnJycPHFF2PcuHGqJXVEbGCxOXks2QIAuP5Vmg0bz2x8rlDRBVcJglAe1fvRzGYzcnJyUFpa6vf3c+fORUlJCSZOnIjNmzcjJycHvXr1wokTJ6T3pKWlYdu2bdi/fz8+/fRTHD9+PKDParWioqLC6x8R2wSzHpcnuZOWYfD0tRH6HAGd/krA0KzM+MRdrojOO0FEM6onUn369MGkSZMwaNAgv7+fOnUqRo0aheHDhyM7OxvTp09HcnIyZsyYUeO9mZmZyMnJwapVqwL6Jk+ejAYNGkj/srKyZIulqqoKBQUFKCgo4Lq8PjkDI45HqevRnG9yU3asAi67FeWfPo0BfXoGXZ5B9GVP+DagU5xsUPZiL+mfODaGd9uqcS7Fdu3d8yau10/5p0+j/NOnucbZu+dN6N3zJq4lYtRoW7XuBzzbVq04e/e8CeWfPs2tREy03Nu1hKbXkbLZbNi0aRPGjx8vvabT6VBYWIi1a909BsePH0dycjLq16+Pc+fOYeXKlfjb3/4WcJ/jx4/3KndTUVEhWzLlcrnw008/Sds8iFdnsCVigl2PS0xu/jTbLiRAjMF66DesOQRkdR4bli+QM9BkA95tq8a5FNt11SG+14/10G/SNhcYw6qVKwEAWZ0e5eZUo23VvB/walu14hSvIV4lYtS+t0cjmk6kTp06BafTiczMTK/XMzMzsXPnTgDAgQMH8OCDD0qDzB955BG0a9cu4D4TEhIUW4Y+ISEB8+bNk7Z5EK/OcErE1LYeFyAmNxcSHsFgRMaAp/HK7e3w4q+hl2fY+Fwhkk36kKa1825bXj5xur/F5pTa9Y27crhePxkDnpa2eSAYjPjk088AAM9uUb68h+hUo23Vuh9YHU5ubatWnJ98+hken7uNW4kYte/t0UhIiZTdbpdG2F999dVKHVNI5OXlhTXiv7S0FKWlpXA6gx87UxcGgwGDBw+WbX+hOnmWa1HTCYRXIqa29bj8Iej0SLmqGwYMKsT//R76rD33+JfQ/lbhfQ3x8PlO9xfb9bbb+ZYxSbmqm7TNA0Gnx2233wEAeG4bvxIxarStWvc9i83BrW3VivO22+/Ac9vqc/Op+R0WrYQ0RspoNKJFixayJh+1kZGRAb1eX2Pw+PHjx9GkSZOI9l1cXIyysjJs2LAhov0ohe+0eIKIVoJ93EkQBBGNhDzY/Nlnn8UzzzyD06dPK3E8XphMJnTq1AnLly+XXnO5XFi+fDny8/MV94eK0+nE6tWrsXr16qCTTc9BztlNU6XXg50WH44zUuLFyVxOVB8uw/q1a8Bc2ojTYnPCYnPItlYa73bd+Fwhfp1YiMfaubBmzZo6nRdmQF74F07sTqf7XFYfLuN6/axdsxpr16zmdv2I1+zaNbH92RSdPNtWrTjXrlmN6sNlXOKMl3u73ITcx/3OO+9g7969aNasGVq2bFljOffNmzeHtL/Kykrs3btX+nn//v3YunUr0tPT0aJFC5SUlKCoqAi5ubnIy8vDtGnTYDabMXz48FAP3QslHu1VV1ejWzf344Ngl7r3LBeTaNDjzvfXBl2Dz9fJsySEmk6eJWKOz3kSt8zhW4aitmtIHAgvyyrYQfjkJtmkB7Nbcf311wOo/fqRcwXw6upqHJ/zpHv77QeDjtNzCYtQS7gwhx2FPQoA8Lt+xGu2cI532/ouxSFHORoR3teQr1Mrn02lnJ7XEA+fmucypkvEeDJw4EBZD2Djxo3o4VFcU5xRV1RUhFmzZuGuu+7CyZMnMWHCBJSXl6N9+/ZYunRpjQHooVJcXIzi4mJUVFSgQYMGEe1LRBAEXHbZZdJ2KP+fOJamxswxhZyREC9OCIChYVNkpSfDwUvpJ05/Ra7lWAU7kE9pgnXKuQK4IAgwNGxap9MXz89hyAmcALRu7Y7Txun6Ea/ZlukpXsfpez+RKxEH1L2GGLvQtkomi55OcZsHgiCgdevLcOC0GeCg1PL9QMuEfBeeOHGirAdQUFBQZ1f9mDFjMGbMGFm9SpCcnIw9e/ZEtA/fmWOhOHkN/Fbb6eu12Jyy3zQBQGdMRPMHP8QvCpaI8cXfNVRbkWt/xW9FgmkTOa7ZUAnn+hFX/xZjD7WnKDk5Gc0f/FDarg1/iSsQegKnMyZie9kOAOBW4kO8Zre/2CtgHIB8iTig7jXkWSJGyWTR08mT5ORkbC/bwe36Uft+EK2E9Sk6e/YsvvjiC+zbtw/jxo1Deno6Nm/ejMzMTDRv3lzuY1QEJR7tEeqQO2mZ7DdNreFv3SnG4PfRl0i0tonnUgkivn9cRNRTVAeeiSuAGslrtOAbBxC9sQSCV7JIELUR8hW2fft2FBYWokGDBvjjjz8watQopKen48svv8TBgwfx8ccfK3GcsqPEoz2CH7430Hi8aQZ69CUSjW0SaFwUIF9PUTAEWjA12oiVOAIRD8kioX1CnrVXUlKCYcOGYc+ePUhMTJRe79u3L1aKK7DGKdXV1ejXrx/69euH6upqciroFG+gShZ8ZQ4bTsx/HvfcPhDMYVPM40m4bbvxuUKp3EwobaKFc+lJbUsl+JbWCTXOE/Ofx4n5z3OLkzlsuG1Af9w2oH/Q1484KzPcGYriNXvbgP6aOJ88nFarFckmg8c/ZQaeqxXnbQP648T857ncg9Q+l7ycchPynyobNmzA+++/X+P15s2bo7y8XJaDilacTie++eYbaTvenOKjGCXGK/lzhjqeLFSYy4Wq/23Esv8BWW0f4DHWM+zzGc7in5H4IiFYp7+V4cPtYXE6naj638Y6nXLCXC58u3QJACCrzcigrp9Ix/mI1+y3/9Pe+SRneE7xGmIcyqfES7vKTch3pISEBFRUVNR4fffu3WjUqJEsB8UDucZIMcZQ5XAXWjQajZg5cyYA9xpYPDCZTJpxyj01Pxinkgh6Ay7q+xgm3pqN1/bxeTzCO04tXT++hJscBnJe1PexOp1yIugNmP7hRwCAl3cFjkPOcT7iNfvSoKs1dz7JGZ5z+ocf4dkFv0HQK38Pipd2lZuQz0z//v3x4osvSrVxBEHAwYMH8dRTT+H222+X/QCVQo4xUowxDF0yFFtPbgUAdGjcAbOLZnMd3Gs0GjFs2DAAwc+A8pzpFU7vkaeTMabY1PxATl4IegPqtSvEPfcV4nVOYy6UiNN3Zp/nOVejXcO5ZuVw1mtXKG3zQNAbcP/QIgDA5FpmXck5zke8Zu8f2gtGI5/kXzyf4nVm9zmnSvRQq33d8nTeP7QIk/fymbUXL+0qNyF/0l5//XXccccdaNy4MaqqqtC9e3eUl5cjPz8fL730khLHqFmqHFVSEgUAW05sQZWjCsnG2qdXq4nvYF6x9yhcapuaT6iPv5l9Wp3N57sOUDwR7YPCa5skoNXrjVCPSJdt0Rohf3IbNGiA77//Hj///DO2b9+OyspKdOzYEYWFyg36jRaYi2Hb1m1IMiahXbt20OuVX23X6XTi119/BQC0vrJNne/3Hcy78cAZ/Gm2hVT3zNMpxqn0l4A/p9IwlxP2kwfw6/ZtYC4nBB3f8ylHnP4Gb3v2GKrRroGuWSWTcKfTCdvx/0nbvK6fbdu2Sts8rh/xmt22bSvyOnbgdj5/2bwFa3/ZBGOjljXiVKKH2ul0YuvW3wCoc93ydG7bthW24/+DsVFLLj6lY/RNusVrFgCMjVqi8yUZUZd4h3xlV1dXIzExEd26dZOWdY9GlFhHitkZuuZ1BcB3ef0OHToACL9cS+6kZV51/kJxqhEnLydz2HFs1qO4cRbfMhRKxbnqyR41ajiqfS7/+usvv+OD5C5qXF1djWOzHnVvTx3K7frpmtcZAN8SMcdmPYqus+o+n5GUv/GkurraK85NL/ZCskmvaA+12tctT6dn2/LwKR2j7x934jULuGOMxmVbQj7StLQ05OXloXv37ujRowfy8/ORlJSkxLEpilLrSDVt1hQCBK7L6zdr1kzaDoXspqkoO+aeOCD+V2lnuITq9LeoY+hSQF8vHY3qJ3IpzwAo27ZJfr7I1T6XOp2uxvggQJnyHvp66dI2FwSg6fk4eV0/4jXbODWxzjjlWtRUEAQ0bdYMJyqqAUHeSQK1ObV+D5LL6dm2PHw8Y9z4XCHgsOKauc3AGPh9TmQm5Kt92bJlWLlyJVasWIE33ngDDocDubm56N69OwoKCtCzZ08ljjMq0CXosPePvVzHSCUnJ+PIkSMAQh+4K36BhfpXo6eTF6E4axuvEQo6YyIuLv4YGzmXiOHZtlo5l0p/8SYnJ+Pi4o+lbR7ojInYu9/9yIJniZiLiz9G2Yu9/LapEouaJicnY+/+A9xiFJ1auG55OHm2Lff7j0mP5HqpOHrkiFe5n2gj5E+N+EjvmWeegcPhkNaVevXVV/HKK69E7ToQ8Ygg1Cy9EQvUtqgjQcQzsVL+hiC0RFh/Bu7evRsrVqyQ/lmtVtxyyy0oKCiQ+fAIIjL8LepIEPFMtM8QJAitEXKJmObNm+Paa6/F0qVLce2112LJkiU4deoUFixYgLFjxypxjFGDy+bCfXffh8GDB3NdXn/w4MHkDIA4XiOcJIo5bDi5cDJG3H8v1xIxPNs2ms5lpM6TCyfj5MLJXEvE3HfP3bjvnru5XT/iNXvfPXdzbdv77rkbJxdOjtnPiZpOpduWMSaVJDpdUYnbbr8Dt91+B05XVIZcoigcxHbl+TmRm5D/LGnUqBF27tyJ8vJylJeX4/jx46iqquI27kAulJi1BwYs+HIBAGDWrFny7bcWnE4nvvjCPZvj3Q8+4u5UI05eTuZywbJrNf67C8h6/F5uJWJ4xhkv59LpdMKya7W0zQPmcmHBl/8BAGQ9fg+X60e8ZhfsApzO2RyM7vYU42R9H+fmjJfrVsm29R1P6rJV49B538aW9yDv8qaKL0Xg2a68PidyE3IitXXrVpw9exYrV67ETz/9hGeeeQZlZWVo3749evToETWLcioxa0/QC5j65lSY9Cauy+u/88470nY8O8UZenL9ESXoDUjvORpP9r4K7x7jVyKGZ9vK6attBXWlnMFiMpmQ3nM0V6egN2DqtDcBANMO87l+xGv2uX5tuLbt1GlvYtLiHVzKmIhOLd6DlHAq2ba+40nF60fc5rEUgdiuNoeT2+dEbsI66rS0NPTv3x/XXXcdunbtikWLFuGzzz7D+vXroyaRUgLBIOChvz3Eddae0WhEcXExAO9ZexabU7FxQZ7OQMjdIxyMUxw0G8qaWL54zmoS9Ab0GHQ/xozIw3sT+ZVoqCtOLfr8zZQMtGo+7xhFZ/2Ot0jbPBD0Bjz0t4cBAG9ymo0k6A2o3/EWPPQ3viViHvrbw3jzGL8ZV2pdQ2o4PdvW33Iuct3nxfGkQD+ukxDEdrXYHNw+J3IT8iftyy+/lAaZl5WVIT09Hd26dcPrr7+O7t27K3GMRBiIi2x+/Ug36HT8O0sHT1+LxY92q/EBdz+Pl+/Rir/p3KGsieWL76ymJKM+YCmDeMRfaQexjQKtoE4QhDz4S27kKsHDY/2vWCXkVhs9ejRuuOEGPPjgg+jevTvatWunxHFFJczFsHfPXiQZk9C6dWvodCGP5Q8Zl8uFffv2AQAuvfRSr6Si7FgFbnn7Z78JjVxOzziTjHppkc+yYxU1uoQjWd8pkFOJWn/irCaXy4W9e/eiyuYAYy4IAt/zyeMaCsUX6PzltmyI2SPypJ/9raAerlMuXC4X7KePSNs8nIy5sHfPHmlbEHSK1xNkzAXHmWPYu2cPrm5zpaJxikm1y+XC7zv3wH76CAwNmyrm88TlcmHP+bZV417L03n4j//hyqRK7LQk+70Hyfn4TYxRjXseT6fchNzyJ06cUOI4YgJmZ8hpmwOAXwmBqqoqXHHFFZJz/uh8WGxO3PL2z9h/yuw3oZHbKcYpJjVtAzwG8+21CGVtp0BO0avEX1KeTneJj0TZHbU5eVxDofj89ToBNXue/K2gHq5TLqqqqnD0w4fc2/+8i0+JGLsNOVdnA7hw/Sj9uITZbTj64UPI+VDZtvVMql22ahx64w4AfMqYAOpdQ2o4r7zySgDuEmCeTiUev6l9z+PllJuwvn2cTicWLlyIHTt2AACys7MxYMAALkUctY6c5WbCcQqCgJQEA75+pFvAhEZupyfBdnxtfK4QF6WYQuopU7tto9FZFUQPSDi+jc+5i5SHeyNXo12FBOW/+HwR4+zYIg1by72nzCu1SKyQkILURGUf0dQYpHy+bTu2SOO28G20fzZDdSabDFwevcVLu8pJyGdl79696Nu3L44cOSJlypMnT0ZWVhYWL16M1q1by36QSqDE8ge6BB2OnjzKdbB5SkoKzp49W+N1JdeeDOQMhWRTaAMk5XCGiujkWbpA7jhre8QWiS+SFfHVOpctHpsrbfNAZ0rE0ROnkGwyBBxbFskjd999WmxO6EyJaPHY3IAlYpRg84u3IPmVswDkr5EYCDXvB7HsVPOeF1clYh599FG0bt0a69atQ3q6uwjon3/+ifvuuw+PPvooFi9eLPtBKoFSRYvlwHMANZU2IULF3wD8QNdRsEsWEJEh9+NnuepJygENUibinZCv/p9++skriQKAiy66CK+88gquu+46WQ8uXvEcQC3HF5uSSyEQ2sN35iHgf/ZhbUsW0LWibQKNVwOoriRB8CbkRCohIQF//fVXjdcrKyu5LVKmVVx2Fx4c+SAMOgPef/99JCQkhL2vYP+CtVqteOgh9yDaQM7cScsCrukTDsE45UZNp8PlAmt8GwSD8usPyRVnMNdPld2JjftO4M9v3YsMXtRrDJcF+NQ6l6cWv+HefraAi5M57HjwgREw6HSKxnlh/R93nI8/Uozh6z/g2rYPP/gAAL7nUw1nrN/31Lzn8XTKTcjzDG+55RY8+OCDWL9+PRhjYIxh3bp1GD16NPr376/EMUYPLmDOJ3Mwe/ZsOByOut8fAYwxWOwWVFRVYPbs2TWc4uMdETnX9HE4HH6dAY/zfB2nSBbpDMbpG3Okf5mLzjmffALm4rMeUihtKwfM5YT5t+Uw/7Y85mL0vPYqLFYpTh7tCrjbds4nnygep/hoLdlkgEkHrtcPwP+aJafyPjXueTydchPyn51vvfUWioqKkJ+fL60Q7HA40L9/f7z55puyH2BUoQcy78xE83rNYTAo9xc9YwxDlwzF1pNb4XK40HFER9x15V1eKzaLj3f+NNtknyJrNBrx6quvStuBjxNej44iWXE8GKe/xTQjeUQlOm0OFz44fSEhU3JcUbBtKxeCXo+0guEYe9PlmHmOz+MgHjH6PrZkTjvSCoYr6vRF0Osx6eVXYDLouDl5Xz/kjC1noHterDnlJuRv+7S0NCxatAh79+6Vlj9o06YNLrvsMtkPLpq4Kv0q7Dy9E436NoINNjh1ymXWVY4qbD25FQCgM+hgu8GGMfeOgcno/WjV/XhH/gvTZDJh3LhxdR+nzziOSFYcD9Yp56Be0WmxOfDh+dkkvskhIO+4omDjjBRxYUhBb0SDLrdjzGOFmMWpJIQSMYrxiEltzRpi7jhzWzZEg5SksHtnPRfUrCuBFvRGPP73v3MdiM3r+iFnbDr93fNi0Sk3QX/CXS4XpkyZgq+++go2mw033XQTJk6ciKSkJCWPL2qY3Xs2qhxVKJhXoPahEApSWymUJKNe8ZWr5YJXHS1eiPH4GwvoOYYo0t5Dz3ajgfnB4/u5oMkvRCwRdCL10ksv4fnnn0dhYSGSkpLw5ptv4sSJE5gxY4aSxxdVJOgSYD9jB+BOPOWEMYYqRxUASP8F3GVpHOccOHrkKC5tcWnIZQt8p8oHM67I5XLh2LFjAICmTZtyK5WgljNQ6QLPUij+eqoicQLyx+lvWQTGXLg6zYUzJ8q5loSQI0Z/8fgbC5hs0iPRoMOxY8dw5rwzUo+nK1CPE2MuHD1yBEkmQ8x/To4cOVKr0zdxjzQJDcYpN/Fw36vrnhcrTrkJOpH6+OOP8e6770ozCJYtW4Z+/frho48+4nJBRQNVVVXY9fgu9/awKtRLqCfLfj3HRNX4nZ1h1+O7cPnjl4dVtiCccUVVVVW4+OKLAfAtlaCm01/pAs9SKJGUvwnklDtOf8simM1mNE5PwzfPKFOewV8PnVwxBqqzGIxTMAY/+8m33YItzcHsNlx+aSvJGQ+fE09noAQUiLw+nJbijCWnv3uev8+TnD2Kdd1no4Ggr+KDBw+ib9++0s+FhYUQBAFHjx6VGiGaUGJlcwCAAmPlPMdEeXJV+lUoO1YG6AGDEP44jHDGFSk5mD7aneGUv4nUGSy+55rZDX59/gbUh0OghEOuGP1du0o4wx17Fy3XrBJOf4m7nPXhtBJnrDl9ff7Ol9yPtdVoVzkJ+ugdDgcSE70zRaPRCLvdLvtB8UCJlc1TUlJw9b+ulraVYMWdK5BkuDAurcunXXD1v67G+nvXcytNk5KSwv28q+kMtXRBqOVv/Dl54S9Gf48ps5umYvaIvKD2GagnQuylE0zyxxiq02JTfiq5zpSIc+YqroPNtfbZVKqguNbijBWn6GOMYfD0tX57E4HIexT9OeOiRAxjDMOGDfNaEKy6uhqjR4/2Shq+/PJLeY+Q8CLJkCQlTBa7ReWjIWIRfwPqy45VoPNLgXsSPIsjCwJq9EQAyg4w9tf7obSTIGKVQJ8nOXsUY4mgE6mioqIar913332yHgwRu2Q3TZWWP6ASFtHDhmcLUTTjF6+lK8Tz53mT9S2OrFRPRG2o4RTxfBQaLTM3iZr4Ky4tEm9JuZqfp2gj6FaaOXOmkscRE1itVhz9+Kh7+3Yrl0dtLrsL5Z+V4/F1j+OtaW9xK1tQUlICAJg6dWpQTvfzdPd2ODekcJyRIjodThdYvV61li6okunLk3ecdcWYkqDH4ke7+V2ANJTiyP6cAP9zKTohyJfIByogzBx2PP7oIzDodarFycs57vGxUe+sqxD0lY0S0XLPFxAAvDLlNSQkJCieXKl1P+Dl83QGc5/VKpRuyojD4cDpH05L21xwAad/OI0PfvgAU1/jc+E7HA68++67AIBXX301KKcgIKK/bsJxRoqnM+vxQggI/AH37ZGRw8kjzmBiDPSXaaDiyHV9sah9Ll999VUIHslepElwoALCHS6ujw8eny45tfrZJKeb2gpBA8COI2fx3fvu87kkuRA6U6Lia4mpeT/Q4n1Wq1AiJSNGoxGNBjSStrmgBxoNaIRR7UZxLVswceJEaTvWnXanC/+urtmDEW6PTDBOcVtp6oqxLsLp/tfC9eP5Z45cSTDgvfinnjkx+ax8cQbz+FALbSsXvo/ZPGNWOk7P88gYMHj6Wvx+2I4G190DwF3+B4hs0LW/x4i+51Wt+wEvn6cz3HuQFqBESkZMJhMyB2VK2zzQGXTIHJSJZ+99tkaJGKUwmUx4/vnnubi04LTYHJjjZzaJv0HVkXb1846zrhiVdPLE12lkTPYkGLhQQNiNQbY463rsJKKFtpWDuuJVOk7v8wiPx9u3AIh80LVWz6cW77PRACVSBBEBNCAzOgn3saRaBHrsFKsTN2p7zKZGzHJ/zut6jBir5zVWoW8AGWGMwWl2Stu8nC6LC2fPnkVSRhKXLwLGGM6dOwcAaNCgQcw7LTYHGGMxGWc8xBjIqXQSrFSctdUOVKttz549q5jTM17gwuKwSjr94dm2xiT51gn0jQ+4cF7Vuh/w8nk6ed6D5IZqu8iIxWLBjuId2FG8AxYLnzWemI1hR/EONG/cnJvTYrGgYcOGaNiwYVw4m2c2ArNbuTp5xekvRrlmINbljJfrR26n+Ngp2WSo8aUTS3GKeMYrxhxLcfrG53le5XQyxmCxOXz++YzRipP7rNxQj1SQiEWDkwx8en0IQi3kHHxNEIT6BDsmiwiPqO+ROnToEAoKCpCdnY1rrrkG8+fPl90hFg3u8mkXFC0tCvjYLjk5GW0/aou2H7VFcjKfci2CSUDbj9rirPms7E7GGCx2i/RPjDs5ORk2mw02m41bnGo6z1ZaQipyK4czmDjl6DkSfVarFZ0va+L1O6XGacTb9UNOcqrtDHZMVrzcZ+Um6nukDAYDpk2bhvbt26O8vBydOnVC3759Za1151k0eMuJLahyVPldbFMQBAgGQdrmgSAIgME9hVROp5g8ehZL7tC4A2b3ng1BEPgt73AeNZ1GJnA9n8HGKUfPkafvi7915TL4Ot6un/hw8l/FXs22tXOo1ejrlIvaxmQBHJfuOY8a91m5ifpEqmnTpmjatCkAoEmTJsjIyMDp06cVKxocL3gmjyK1JZEEH5RYu0qEZiCGDpWDIaIN36UdiMhR/dHeypUrceutt6JZs2YQBAELFy6s8Z7S0lK0atUKiYmJ6NKlC3755Re/+9q0aROcTieysrIUPmp3weAqR5XXazabDeWfl6P883LYbDbFjwEAXA4Xyj8vxzNPP6OYc8ltS7x+ttlsGDduHMaNG8ctTjWdzzz9FJiTTwX2uuIUp+2XvdhL+hfJysrxdi7lduZOWhZwPaFYipOcgZ0Wm9NrALecM7Z5xym3L5gB7mrcZ+VG9bTUbDYjJycHI0aMwG233Vbj93PnzkVJSQmmT5+OLl26YNq0aejVqxd27dqFxo0bS+87ffo0hg4dig8//LBWn9VqhdV6YWZARUVFLe/2z9AlQ7HrzK4ar9vtdpxaekra5oITOLX0FN5c+iZeevElRRYCTTIkef1st9vx2muvAQCef/55LouPqu3MerwrBL3yXd7BxClnz5Ha7RqNTn+9gkDNnsFoj5OcgZ1PPvOc9LpvIi1n2RjeccrpC3aAuxr3WblRPZHq06cP+vTpE/D3U6dOxahRozB8+HAAwPTp07F48WLMmDEDTz/9NAB3cjRw4EA8/fTT6Nq1a62+yZMn44UXXqjxujiwGkCdM/P8JVGA+9lyRu8MaZsLeiCjdwaGZA+p02mxOYN6BCTOUAyE0WjEE088IW3zQE2n3enCAj2fxfF4xxlv51IOp7/FPIGaY8qiPU5yBnamJif6TaaByMrG1OaMtvtBsAPc7eB/n5Ub1ROp2rDZbNi0aRPGjx8vvabT6VBYWIi1a9cCcH/pDxs2DDfeeCPuv//+Ovc5fvx4qbo14O6RysrKwoPfP4gycxkA70HVoWAymdDk7ibSdqSICU1tSY3OoEOTu5vg5XtfrrNETO6kZchumlqn03eQuS8mkwlTpkypdT9yo6bTYnNgIcfyKTzjjLdzKRfB9ArGQpzkDOz0TaYjLRsTjFNplPLVNsDd333W39hDLVce0HQiderUKTidTmRmZnq9npmZiZ07dwIAVq9ejblz5+Kaa66Rxld98sknaNeund99JiQk+K1o/eupX6FPcp9ouQZVW+yWsNedCiahCQbfxxBlx2p/lOk7yLxD4w5ej/bEpI7W0yKI+KG2AsLxCk3OCJ5QB7j7S0jlfGQqN1F/FXTr1g0ulyvk/6+0tBSlpaVwOuW7ITDGwBzugYb3f3M/dp/dHVbvFmMMp6tP10iifJMa8b1wup8zM0PN5fXFxxB/mm21/rXkr/drxZ0rkJ6Y7vVawbwCMMbQ/qL2mNFrhuzLLtR2fA6He8qxwVBzRWclnXY73/IpPONUs13JGR3Ousa6MMakMaHRHCc51Y3RAIZOLdKw6eBZv++T85Gp3GjviDzIyMiAXq/H8ePHvV4/fvw4mjRpEuD/Co7i4mIUFxejoqICDRo0iGhfIhaLBb8/8DsAgL3PoEvQhdy75a8nasWdK5BkSPLbC8RsDGUPlSHtgTRUVlb6XfbB/ZdT4GfPgXq/RF+SIQkdGnfAlhNbJOec/nMwB3MCOuXGYrGgXr16AKCKM+vxLyCYErmUT+EZp9rtSk7tO+sqIMzsVpjq15fVWRex0rZac6od419//QWdKdH79wo8MpUbTSdSJpMJnTp1wvLlyzFw4EAAgMvlwvLlyzFmzBhF3UVLizDvlnncuxH9PVpLT0xX9Dj8rRnl2fslCAJm954t9Vjd8MkNwe03Brv/qXwKEc/4KyDMqyYbEftE6+NS1Y+4srISe/fulX7ev38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7gEerTXMrUlDlQcwM7TO0MeJ5WcnIw2pW0AuEu3RIr4aK22JEowCWhT2gbLBi+TZUn/QL1fgiBIbRGsU86kIzk5GWfOnJG2eSA6GWN44LMyry7nQItg+pvxGMp4Mt5xqtmu5AyOUMYjKR2nv7Eu0dy25FTXp5ZTblRPpDZu3IgePXpIP4sz6oqKijBr1izcddddOHnyJCZMmIDy8nK0b98eS5curTEAPVQCPdqb1XsWesy7cDx1LQXgiSAI0KfIN30zmC9g0ZmWliZLr1WSIanO5LE2p1IrbwuCgLS0tIj2EYkzmPIpgR6RhjJOLtI4A12vga4ltduVnHUTymONaI6TnOE7fZPtcGe4aTlGLaN6IlVQUFDnSrBjxoxR/FGeiADvi6+2mXNXpV+Fnad3So/Bgk24Yhl/a+xoedpqsATT5ezvESnAr7RObTM9w13Sg1CHYBf9jBWUmhXouZ9YuA8FwjfZzm6aen6Gm/tnmmWpLKonUmoRzKy9QF+MIrN7zwZw4a99m82G4wvcA+Mb3doIOsOFCjyei32K+/b8f8PF5XDh5H9P4qW9L2HiPyZyWeG3Lmcoz7l9e1DE9vB9Xe/SY/LkyQCAZ555hkucNpsNL7/8cljOFXeuAOCe5cjLWdv1GiiZi8QXLuSsm2AX/ZTTGS6ROoNdATscp2eCEen0ea21baBkG3Avc9N2Yuhr32ktxmhBYHIWBopCxEd7bd5rA32SHivuXCF9+XluL7ltCfp86b0C+/p713t9MZ08exKNG7rL1mS/nw1dgjuRurLhldJq6O0btQcA6QvPt6fAYregy6dd/O7fF4vdgs4zO6PsIfdCorXNsrDYHMj2WVSy7MVeSDYZFHPWhb8elA6NO2BW71koWlLk9frVqVfj89s+j9gZCmazOaQZLL7tCCDodg3XGcgvjnWrclRJ17C/Y4jEFy7k1I7T874g3g9CfU8oTn/78ndvEgmU/NTmZIxh8PS1/hOMADHKEWcwbRnqe+ty+vbkMQYMnr424HqBdSWTWoyxtv2I39/nzp1Damrti00rSdz2SIWK7/pN/jAYDEi/Md39g0c5aM+SMr49BhE/9tEB6Tem444r7oDBENrpFMvihPxIMgKnJ/56ULac2IIz1WdqvL79z+14cPSDMOgMITkjGfxtMBjw8MMPS9s8kMsZzFg3OX2hQE5yBsLfrEB/n9XanL69eXJNn9di2/rr/V/8aLcaPZkidfVoajHGaCA6j1qjJCQkoNnQZlydOqMOzYY2wxv3voEEY80V2wPD8OCy4dh+ahtHZ2D89fh5vq4z6vDGW2+ElHBGOvg7ISEBpaWlQfvkgLczGF8oEy6AuhPVeGhXcoZHsCtg1+VUYhp9tLRtJLFHS4xaI24TKSVWNo8qBHuNJMrfyuly4/ml7Ds2yh+RHE9dg7/9TRCg0jfehFOqiAa2EwQRT8RtIqXEyubRSm0rp8uJXPUDw8Hf4O9IlyoAAieGsUJdEy78wWuWIkEQhBaI20RKCVxWF34f+TsYGLLfvTDYXGln2cNlaPBAA5w9ezasAa3BjqeJ1BnoSzmYnjCX1YUGye6EN5w4ffcfzFIFZrNZWt/En1OJxLAup9yE4hMT7kB4DmyXyykX5CSnL6EuuRCu09cTjCtSZ7hE67lUG0qkZEQQBDCnexLkktuWoN/ifnzETsABBx+XTE7PL2XfR2yBenbEYppyU9tSBbU560oMw+2hUirOSH2hJtxyOOWEnLUTyaKO0RQnEN6SC+E4w/VE4oyUaDuXWiBuE6lQx0j5Fu7114uSlJSEw4cPAwAa1OfzuFAwCrjyjSvx9cCvkZSk7PimcJ3i4y/fMVGBvpT9DToXjAL27N+DJGOS7HEGHJ/lcT7rcvomhuE+Ig3FKQe8feTUrtN3Zps4VV5JZ7iE6xSTRYut9kLM/hY9DcdZW8Hn2lyROCMhms6llojbRCqcMVJi4V7A/5elTqdD8+bNAVxYgFNpBJ0AY0MjmjVvBp1O+UeJoTqDffzlm6gCPoWTdQKaNW/GddyN5/msC7l6a0JxygFvHzm15axtUceNB84EnEYfiVMOwnX6WwYh2CUXIo3T11ObSy5nqITi8/d4MpzV49W4fuQmbhOpcPAs3EsEh7/HX/568wRB8EpUgZqP/KIZmh1IaBF/K6h7rrsUC6VFaksWc1s2xEUpJi6fxWCXdogW/CWlka4eH63EzlnVADabDW+++SYAYNTDo7g4XQ4X/vzuT7xx7A2MKxnHrURMOM66ZgfWlqi6HC688fobMOlNGDt2LLfSBeL5jNTpO/4q0OxAOZ3BwNtHTu05a1t3KJiFLLUeZ6ByO0BoPShaj5OHr7akFLjQixlKwqhGu8oNJVIyYrfb8eSTTwIAho0axkfqBI7PO47n5j2HB0c/iBTBPeNB0R4PD+djjzwW9IUf0eMvJ/Dc+OcAuNs2w5jhNz45lyPwPJ8PP/xwyB9wf48rRQItERCpM1R4+8ipfWeoBZOjIU45FuiMhjiV9gVKSiNZPT6UGH17SC02bQxSp0RKRgwGA4qKiqRtLuiAtOvS0CChAQq+KIDO6B6zpOiiiOed/S7txz1OACj4ogCdmneqEZ/cyxFEej79Pa6sa4kA3teQGtcsObXtDLVgcrTGSc7wfHKvGh9KjL7JmsvKZyxyXcRtIqXEyuYJCQmYNWsWAH6DzXVGHS4edXGN15VcFFF0fnDvB7KViAmEZ6+OZ5z+4pN7OQLP8xkuoY6rC+QMpkxLOD1wcsTIy1lXG9TWCxtNcWrBGcqXZTTHSU51fcE463qcqAXiNpHS2srmciVegWrW8cbfkgfh4NurE+yij3ItR6AF1FwRXisE0wZUmiZ+CLb+Y7R/9onaHyd2/MdXKh2VN3GbSGmJoUuGYteZXQCAq9KvimhfStfKCwa5v/jDmS1Z13gsLcwGDHYmX6hlWnjUTORNMG1ApWnig1DuL5RcxwZKFKGWE+0emQpclX5VRF9AZrNZWg9jzx97gv7/xCQKAHae3hmS02V1Yedj7v/nqmmRJWGhOpuNbYYjR47UWNI/2CUPQsGzbZu/2jzi8jvB9Np5Ov3FGSn+ZvK9e/27uPjiiwM66yrTAoT2V7jSMSrh9G2DYHopozHOWHd6Lo4ZClWOKmw+vNnrvhfofiBnch1NbRstPrWcckOJlAeze8+OeB/nzp2T4UhCw1XlCuHdDBDsEHS2iJ3nquqOVc6CyGLbNkd4i7fVtuhnoB4quc9nMDP5anPKWaZFRI1rNhJnuG0QbXHGujPcWV4i4n1vxZ0r/P4xF8wQgFCJlrZV0xdOgqxGu8oJJVIykpSUhN27d0vboXJV+lVSj1SwPTiCUcDlr1wubdcOQ3LL6dAnHwj52Pw5v7j1izrjlOuLX2zbKnsV7l1/b1j7CLToZ6AEL9LzGewxeN70lXDWBm9fME5/418ifRSrxTjj0VnX4pi1lUvxxPMedFHqRVyqOmi9bbXiCzVBVqNd5YYSKRnR6XS4/HJ3UhPO4HHPHrFge3AEnYCEJoFnzonHUeVwAoKtRhIVziM30XnZ5ZdxK0sjtq3FboGwwbtdQhnYHsx4K8/9NG/l7v2qdlYD5//AirR3rbZjEOOUkgmnMuO5PJMV3xiVHqDr+Tnxd1xKDKyvzakU5KyJXItjqnkP4glvZ7i+SBJkNdpVbuI2kVJi+QM5kPOxjecgdgBIbtVU2q7c/Rw2PtsX6Un1onogphJfvHU9Ergq/aoavUpyovQsvbr2r+YA3boGlcfaQPpIlnSIVrQ+cJgIHbkS5Gglbq9mJZY/sNvt+OCDDwAA9w2/T5Z91gVzMJxecRoAkF6Q7vU7zyQKAPSJxy78fy5T2Ddp0fn+ufcx5m9jYDQawzjy0BDb1ua0gaUwCAb3ccs1sN3f2CXfthWdO0/vRJdPu0QQTWDsdjvef+99LN+w3MsJyJdEeLaZvxi3nNiC09WnFat16Pk5GTVqFBzChdWJPX3+BtbXdc36O94kQxIcDofkfPDBB7les4GcSizpUJdTCdRw8rwHicmu3W7HjI9mAABGPDDCz/mU/xh4t20kvnATZDWuH7mJ20RKCWw2G8aMGQMAKCoq8vpi9hz/JCfMyXDs3+4EqeH1Df2+R+61pURnyb9L8OBIPhe+Z9tmv5/tlWCIRDKw3d/YJbPZjMYPNAYAbHt7G1JSUlC0tKjGeZSzl8Rms6FkbAkA9/n86d6fZFsPy1/pnG8GfIOWD7QEAKx7Yx36Le4HoO5euUjwPJc/N/0Zv/31m9/3hTO+zt9xi7MhReewYcO4X7P+nEos6VCXUwl8nQaDoc4EPNJrmdc9yDPZdVldKBtbBgD4KPGjGjMFr8loD+AuAPL1vvA+n1q4fiiRinP0ej3uuOMOAO6l7n2/mBXpxRCA1NxUadsfsj8KOe+8qcVN0OuDGxwaKWLbOl1O7BJ2+X1PpAPbfccu6RJ10vmsn1gficZEzLtlXtDrP4WDXq/HoNsGYfnB5YAg7yw9f0lGvYR6UoyNUhoFnFEoZ7LoeS63/7kdOlPNMS6h+GqbCQm4kxEbs0lx8r5mg3GGs6RDpE658HTqdLqgHktH/PiY0z3IK9mt4167/dRWQLgNYPLVw+N9PtW+fkJxJhn16JCVhkNKHVgIUCIlI4mJiZg/f77Xa+KXoFIlY3QmHVqMaaHIvuty/vvefyPRmMjFKbatxW5R7LFaIKcn4SwOGqrz35//W7YYa0syOjTugIb1GnrFGGjsl5zJor9z6ZtIhOLz15sIeCcj/s6lP8Ids+T3/9MDsz91TyBJMNReSkmuhDnYOOXE02mxW4Ia2xfp+k5q3INW3rcSScNqJvdKLbUA8D+fal8/oSAIAj4emYe0vytwUCFCiRRBxDCBkgzAf1IgV6IYajImd29iOIQ7ZonK1/jH3xg3JZMOpVFiDTciMrTyeaJEKorx7W3o0LgDGiY2rPFaLM1y8kQLZV6iAaV70fwRaKySlpOJcMcsUfka/1DiQcQLlEjJiMVikdbD2LNnD5KTlb2JCIKA9254D5df4Xa+t/s96ASdVw+EEjOvXFYXdj+1G5c9cxn27tmreJzAhbZlYGg4sSF0CTrF/7LlfT5F5zXZ1+Ck5SSu+OcVXHxyxRjMWKUqRxVgR41zqTQWiwWXZwcfZ7hjljz/P4vFgnZt2uFU1Sku51J0im27vWx7wDjlfFTreQ1tK9smyz7rQrV7UAjXkGxOjvcgte55vJ1yQ4mUjDDGcPToUWmbF8eOHvP6mUcPhOOsA8fOHoPZZkZSkvJr3Xi2bfdG3fFbhfdMLyV63tQ4n4yxGudTaZ9cMQYzVsnX2RD+Z5rKjcVukZxmmxkwKvOo0fP/YwaG8mPl4R90GLhcrgufk7ndAyapcvYOqnXfE+9BPD+batwPeDrjIUYloERKRhITE7FlyxZpO1adglFA6xdaAwB6LOiBjk06Kv7IxjPOq6++GjbmXStQiYUL1Tqfa35Zg/uX3B9EyR95fHLGGEwSLzqr7FUY9duoiJ3B0Pe/fb2uWUEnKP6okfe5BNzJmxhnbU45HzWqeQ/6pM8nMX2v5e2MhxiVIG4TKSVWNtfr9Wjfvn3Q7w+ntl6kzkhJMiShY5OO2KK78PiGx/gP3zgNHC5d3m0LADZmwxVXX4GkMj7j2tSIUXRa7BYIZcolGJ6PGgWdgKSW3m0a7nUbbB1AvV6PnPY53M6l6BTj5DXY2/MaUmp2si/i+cxpn8N1mr5an5VY9anllJu4TaSUWNk8VMKprac2no9vonkGjlah9pSPYB81hkq0nCMa7E0QfIjbREoJ7HY75syZAwAYMmRIUCu0RnqjC8cJAB1bpAVdad0Xh8OBeXPmweq0goH5XWVcbsKNMxqcnj0nzMFwdu1ZAEDBgALFZ1zyblex1Mbnn30Ou9MOplf2+hEfNXrGOejOQSHvp66B9EDNXmW73Y5PPv4EZ9aeQVp+WshOkUA9Xv7++LLb7Tizyl041j7YDnBYJDrStg0H8XPyieMTjBhas1yLEtjtdsyaMwtA7N2D1PKp5ZQbSqRkxGazYfjw4QCAwYMHc1tePxznJyPzwu4B83QGKtciN9HUtqHi2XPiWZZm+rTpivdS8m7XgnkF7lIbD7lLbahx/fQb2C/k/7+29bhEfBMbm82G0Q+MBgA0yAu/1ztQD5i/MV42mw1H/nXEvf2aDeDQIRVp24YDczIc+dcRjP7XaNx3930xdT9Q0xkPMSoBJVIyotfr0bdvX2lby85IvqBFp5M5cUhwL9DvudyCEkRT24aD2HOiS9RJToOBzzgwpWOs0ZsjAPWuqSdt81jrTI44Q50Nq9fr0atPL6w+sjrk8mvB9ID5G+Ol1+ulto3Fz4nE+WvouubXxXScvJ3xEKMSUCIlI4mJiVi8eLHf3/lbPFOOL4/anEohOj1LfIh/NXdo3AHTC6cr5uRJPDh5+Pz25gy7sMljfKBnnLwGRCcmJuLLRV+GVe6nth6w2sZ4JSYmolVJK2m7NsIphRPIybttdSYdWpW0wpf3fsm1TFUs3w8YY3DpXZi/0F2uxQVXredTrs+tGu0qN5RIccL3xhgtg8trw99fzdKiiwThgRqrq0c7SrdZbYPmtb4KPSEvwZQ58oWukQtQIsWRWPsyoRl8BBFdBPPIEIjPkjbxTDBljnyha+QClEjJiMViQU5ODgBg27Zt3JbXJyc5o8WnBefajWsV94nOa3KuwaG/DuGyFy/j5tz91G739kALkht4t21dg+bD+YNIjbZ1WV3YO2Evrpl0DbZvC1wKR04sFgtycmP7s+KyulD1ahV0gg7rNq7z65P7j2Y17gdyQ4mUjDDGsHfvXmmbnOTUujMeYlTTuW/vPi4uT6ftuE3a9kewPePBPqI328xS2/IaIwUAtuM27Du+L+avId7O/fv2A+C3DpkaMcoNJVK1wBDaSU1MTMTPP/8sbfOAnOSMJl+8OZetWIZR34/iViImMTERlzx7ibQdCcH2OjAXk5x9/9sXgk75WAWjgEuevQQf9vww5q+hSJ2MsTqTYvH3glHAshXLkGhIjKoY1YYSqVq46+u7Qnq/Xq/Hddddp9DRkJOc0e/TgpNXr4ler0d+13yk/JHCxSc6Uy5PkbZDJdgxVJ4IOkFyiii9pIXozO+az3WafrR9VkIdRC7oBOR3zZetJyqYJA4AOuR1AABYXVbAFdy+lV4yJRRiIpEaNGgQVqxYgZtuuglffPFFRPtKMiRJNfBOWE7IdIQEQRDaJ5iFR4MhFmYlxwKhDiKXMwEOZyZgKHRo3AFvd31bkX2HSkwkUmPHjsWIESMwe/bsut9cB4IgYO4tc3HX13eFXFDY4XBgwYIFANzJHY8FFclJzmjyacHZ65Ze0uueCYPcy3Y4HA58+cWXOPfLOaR2SpV137U5z/1yzr19pyOsEjGhzi5W43wyJ0PFpgp8afoSdw++m9s1JK6xFI2fFX9FrH0xwih1RkTqCzaJE88lAKR2SoWgDy4B33JiC85Unwn7+OQkJhKpgoICrFixQrb96QQd5t0yL+Q1n6xWK+68804AQGVlJZcPGjnJGU0+LThPnLnQ06zkkh1WqxX333s/AHcpHB5YrVYcetddbcD6khXg8PRDjfPJHAyH3j2E+9+9H4P680lq1L5uI3UGM3jcbDYrEmNtSZzZbEbjke6yWCfOnEBKSu2Pwj1nDfZd0FeW44sU1ROplStXYsqUKdi0aROOHTuGBQsWYODAgV7vKS0txZQpU1BeXo6cnBy8/fbbyMvLU/S4wlnzSafToXv37tI2D4Jxyr2qulbjJKf2fVpwpphSah0HJNfjDZ1Oh+tvuB6bjm8KuURMJM7kK5OlbV5O3ucTApB8ZTI6ZXaK6Thj5X5QWxInJAiSs15CPSQZa//shTOOT2lUT6TMZjNycnIwYsQI3HbbbTV+P3fuXJSUlGD69Ono0qULpk2bhl69emHXrl1o3LhxyD6r1Qqr1Sr9XFFREdHxe5KUlCRrz5hcTrlXVddqnOTUvk8rztrGAck1vicpKQlLly0Nq0RMJM5Lx18qbfNy8j6fOpMOl46/FEvvXVrnF69caOG6jTVfOE7P77OKigo0/VtT5Q4uSFRPpPr06YM+ffoE/P3UqVMxatQoqTr09OnTsXjxYsyYMQNPP/10yL7JkyfjhRdeCPt4o5VYW1WdICKBPg+EVgl2phsQv4P6xc+vw+hQ+1AAaCCRqg2bzYZNmzZh/Pjx0ms6nQ6FhYVYuza8FXTHjx+PkpIS6eeKigpkZWVFfKzEBajWHkEQhDeMsaCW3ihaWiRNdKoLqnenDTSdSJ06dQpOpxOZmZler2dmZmLnzgsXWmFhIbZt2waz2YyLL74Y8+fPR35+vt99JiQkICEhQZHjraqqkrxr167l0rWuRWefLwP3MCrlVIJ4cMZDjGo6r732Wuw9sxeX/uNSZRw+f7Sc/us09v7DvUp01SA+ddDUaFuXzYX//d//cO3Ua7F+3Xpu57Nr564AAscp6GxgrvPnRdCjyuEEBBsAhqFL78Hus7tCcopxAsCl/7gUOpP3uCW5693Fy2dTbjSdSAXLsmXLQv5/SktLUVpaCqfTKdtxuFwubNu2TdrmgVac/gYAyrkmiVbijDVnPMSopvPX7b+6f1Co8oXvrEOX1YXqQ9WSnwdqtC0YUH2oGr8e+lVTcda7YhIAoGD+BOm1+le5/7v7bPCuq9Kvwuzes90z2h50jwVeMXiFNKNNqSLx8fLZlBtNJ1IZGRnQ6/U4fvy41+vHjx9HkyZNItp3cXExiouLUVFRgQYNGkS0L5HExER899130jYPtOL0t5CfnM/vtRJnrDnjIUY1nV998xUe/eFRWUvE1DZrSTAKaPVEK7ROa42G9RrK5qwNudu2rjFCVY4qKc63bnxL9WsolFlkYoJUF+K9M6F+guRMr5/udxX3utoqFEI9l3K41fhsyo2mEymTyYROnTph+fLl0pIILpcLy5cvx5gxY9Q9OD/o9Xr07Nkzbp1KDuDVUpyx5IyHGNV03lR4E+qdqAeg5hdLuGMJg1l9nOcgZDnbNtjVsAWdgHpX18NNhTdxLRET6L43u/dsnK6qRKf/cz8d2fSPQiQZ9aiyO71eS0+qF9J5CaZt5eyZCvVcyuFW47MpN6onUpWVlVLlZwDYv38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7go8WiPIAgiEHJ+4cXqrMNQSpooXc8vFARBcB8LMwEQ100yAMzh9ZpcyW2oaynJ2VZqurWK6onUxo0b0aNHD+lncUZdUVERZs2ahbvuugsnT57EhAkTUF5ejvbt22Pp0qU1BqCHihKP9hwOB7799lsAQK9evbiVECAnOaPFF2/OH779AY3+aIQTWScClr6Q84smltq2ttWwHQ4HVi5fiW+++YZrnIu/WwxA/bYNtSZisElcMOdSbrca16zcCIwxhYZBRgdiItXmvTbYOHJjRH/lmc1m1Kvn7savrKysc6l7OSAnOaPJF6/O2kpfyNlToXacdTktdou0QOn6e9fXuN/W9ftgncHupy489/PDgB/QuGHjwE6bA9kT3AlB2Yu9kGwy+H0tFOh+UDvi9/e5c+eQmsqnnqU/oi/1kwklHu3pdDrk5uZK2zwgJzmjyRevzmBKX8jtjJe21aLTYnN6/ZeHUw603q5ahXqkZOyRIgiCIAIjV49UpB4l9uPZ++SPcHqkiNrRSo9UdKZ/BEEQBKEhkox65Lb0v+REbsuGSDLymV1I8IfSY4IgCIKIEEEQMH90PqrsNR/nJRn1VMYlhonbHqnS0lJkZ2ejc+fOsu2zqqoK1113Ha677jpUVfGpN0dOckaTj5zk5O2sclTBYrcE/Bfs6JZgnIIgINlkqPEv3CSK7gfRQdz2SCmx/IHL5cKaNWukbR6Qk5zR5CMnOXk761q/K9jCv1qPMxp9ajnlJm4TKSVISEjAggULpG1yklPrzniIkZzx5wxl0chgC/9qMc5o96nllBuatUez9giCILjgOQvO34KbnsV4I5ltBwRXs090BVr8U87jIeRHK7P2qEeKIAiC4I6cJXP8EUoZHaWPhYht4jaRUmJBTqfTiVWrVgEArr/+ei7FNMlJzmjykTO+ncE+cqurbI4ccYby+K9D4w4wCSasWLEiImeo0P0gOqBHe1Qihpxx7IyHGMmpLWddj9yAusvmyBVnMMciHo/FYtF820abL1InPdqLQQRBQHZ2trRNTnJq3RkPMZJTW85QHrnJ5ZTjWKKhbaPNp5ZTbqhHigabEwRBEETUoZUeqbhdkJMgCIIgCCJS4jaRUmJlc4IgCIIg4ou4TaSKi4tRVlaGDRs2yLbPqqoq9OzZEz179uS6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZSUhIwL///W9pm5zk1LozHmIkJznJqU2fWk65oR4pmrVHEARBEFGHVnqk4naMFEEQBEEQRKTQoz0ZcTqd2Lx5MwCgY8eO3JbXJyc5o8VHTnKSU7vOeIhRCeL20Z5nrb3du3fTYHNyxqUzHmIkJznJqU1fpE6tPNqL2x6p4uJiFBcXSydCDgRBQMuWLaVtHpCTnNHkIyc5yaldZzzEqARx2yMlQoPNCYIgCCL60EqPFA02JwiCIAiCCBNKpAiCIAiCIMKEEqnzXNPoGiQZkiLaR3V1NQYOHIiBAweiurpapiMjJzljx0dOcpJTu854iFEJaIzU+WesZ8+ejXjQebTNeCAnOeMhRnKSk5za9EXq1MoYqbidteeLHLMFTCYTPvjgA2mbB+QkZzT5yElOcmrXGQ8xKgH1SGkkoyUIgiAIIni08v1NY6QIgiAIgiDCJG4f7XmubC4XLpcLO3bsAAC0adMGOp3yeSo5yRlNPnKSk5zadcZDjEpAj/Zk7BqMtoF65CRnPMRITnKSU5u+SJ1aebQXtz1SSpGRkUFOckaVMx5iJCc5yalNn1pOOaEeKY1ktARBEARBBI9Wvr+j72EkQRAEQRCERqBEiiAIgiAIIkwokZKR6upqDBkyBEOGDOG6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZMZlMeOONN6RtcpJT6854iJGc5CSnNn1qOeWGeqQ0ktESBEEQBBE8Wvn+pjFSBEEQBEEQYUKP9mTE5XLh4MGDAIAWLVpwW16fnOSMFh85yUlO7TrjIUYliIlHe19//TX+/ve/w+Vy4amnnsIDDzwQ9P9Lg83JGc/OeIiRnOQkpzZ9kTq18mgv6nukHA4HSkpK8OOPP6JBgwbo1KkTBg0ahIsuukiV40lOTiYnOaPKGQ8xkpOc5NSmTy2nnER9j9SaNWswZcoULFiwAADw2GOPoUuXLrjnnnuC+v+1ktESBEEQBBE8Wvn+Vv1h5MqVK3HrrbeiWbNmEAQBCxcurPGe0tJStGrVComJiejSpQt++eUX6XdHjx5F8+bNpZ+bN2+OI0eO8Dh0giAIgiDiHNUTKbPZjJycHJSWlvr9/dy5c1FSUoKJEydi8+bNyMnJQa9evXDixAnOR0oQBEEQBOGN6olUnz59MGnSJAwaNMjv76dOnYpRo0Zh+PDhyM7OxvTp05GcnIwZM2YAAJo1a+bVA3XkyBE0a9YsoM9qtaKiosLrn1xYrVaMGjUKo0aNgtVqlW2/5CRnrPjISU5yatcZDzEqAtMQANiCBQukn61WK9Pr9V6vMcbY0KFDWf/+/RljjNntdnbZZZexw4cPs7/++otdccUV7NSpUwEdEydOZABq/Dt37lzEx19ZWSntr7KyMuL9kZOcseYjJznJqV1ntMV47tw52b6/I0HTs/ZOnToFp9OJzMxMr9czMzOxc+dOAIDBYMDrr7+OHj16wOVy4cknn6x1xt748eNRUlIi/VxRUYGsrCxZjtdoNGLSpEnSNg/ISc5o8pGTnOTUrjMeYlQCTc3aEwQBCxYswMCBAwFcGEi+Zs0a5OfnS+978skn8dNPP2H9+vVhu0pLS1FaWgqn04ndu3erPuqfIAiCIIjgoVl7QZCRkQG9Xo/jx497vX78+HE0adIkon0XFxejrKwMGzZsiGg/BEEQBEHEL5pOpEwmEzp16oTly5dLr7lcLixfvtyrh0orMMZw8uRJnDx5Erw6+shJzmjykZOc5NSuMx5iVALVx0hVVlZi79690s/79+/H1q1bkZ6ejhYtWqCkpARFRUXIzc1FXl4epk2bBrPZjOHDh0fk9Xy0JxcWiwWNGzcGwG95fXKSM5p85CQnObXrjIcYlUD1RGrjxo3o0aOH9LM4ELyoqAizZs3CXXfdhZMnT2LChAkoLy9H+/btsXTp0hoD0EOluLgYxcXFOHfuHNLS0mRZBsFsNkvbFRUVsiZp5CRnLPjISU5yatcZbTGK39tq92RparC5Ghw+fFi2WXsEQRAEQfBl3759uPTSS1Xzx30i5XK5cPToUdSvXx+CIKh9OJpGXCri0KFDNMNRBqg95YXaU36oTeWF2lNezp07hxYtWuDMmTNIS0tT7ThUf7SnNjqdDhdffLHahxFVpKam0k1ARqg95YXaU36oTeWF2lNedDp1581petYeQRAEQRCElqFEiiAIgiAIIkwokSKCJiEhARMnTkRCQoLahxITUHvKC7Wn/FCbygu1p7xopT3jfrA5QRAEQRBEuFCPFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJVAxTWlqKVq1aITExEV26dMEvv/xS6/vnz5+Pq666ComJiWjXrh2++eYbr98zxjBhwgQ0bdoUSUlJKCwsxJ49e7zec/r0aQwZMgSpqalIS0vDyJEjUVlZKf3+jz/+gCAINf6tW7dOvsAVQo32fOmll9C1a1ckJycHXLn34MGD6NevH5KTk9G4cWOMGzcODocjolh5oNX29Hd9fv755xHFygPe7fnHH39g5MiRuOSSS5CUlITWrVtj4sSJsNlsXvvZvn07rr/+eiQmJiIrKwuvvvqqfEEriBbbk+6fFwjm896/f3+0aNECiYmJaNq0Ke6//34cPXrU6z2yXJ+MiEk+//xzZjKZ2IwZM9jvv//ORo0axdLS0tjx48f9vn/16tVMr9ezV199lZWVlbHnnnuOGY1G9uuvv0rveeWVV1iDBg3YwoUL2bZt21j//v3ZJZdcwqqqqqT39O7dm+Xk5LB169axVatWscsuu4zdc8890u/379/PALBly5axY8eOSf9sNptyjSEDarXnhAkT2NSpU1lJSQlr0KBBDY/D4WBXX301KywsZFu2bGHffPMNy8jIYOPHj5e9DeREq+3JGGMA2MyZM72uT899aBE12nPJkiVs2LBh7Ntvv2X79u1jixYtYo0bN2Z///vfpX2cO3eOZWZmsiFDhrDffvuNffbZZywpKYm9//77yjZIhGi1Pen+GdrnferUqWzt2rXsjz/+YKtXr2b5+fksPz9f+r1c1yclUjFKXl4eKy4uln52Op2sWbNmbPLkyX7ff+edd7J+/fp5vdalSxf20EMPMcYYc7lcrEmTJmzKlCnS78+ePcsSEhLYZ599xhhjrKysjAFgGzZskN6zZMkSJggCO3LkCGPswo1gy5YtssTJCzXa05OZM2f6/eL/5ptvmE6nY+Xl5dJr7733HktNTWVWqzWkGHmi1fZkzJ1ILViwIMSI1EXt9hR59dVX2SWXXCL9/O6777KGDRt6XYtPPfUUu/LKK0MLkDNabU+6f0bWnosWLWKCIEiJp1zXJz3ai0FsNhs2bdqEwsJC6TWdTofCwkKsXbvW7/+zdu1ar/cDQK9evaT379+/H+Xl5V7vadCgAbp06SK9Z+3atUhLS0Nubq70nsLCQuh0Oqxfv95r3/3790fjxo3RrVs3fPXVV5EFrDBqtWcwrF27Fu3atUNmZqaXp6KiAr///nvQ++GJlttTpLi4GBkZGcjLy8OMGTPANLzcnpba89y5c0hPT/fy3HDDDTCZTF6eXbt24cyZM6EFygktt6cI3T9Db8/Tp09jzpw56Nq1K4xGo+SR4/qkRCoGOXXqFJxOp9eXKwBkZmaivLzc7/9TXl5e6/vF/9b1nsaNG3v93mAwID09XXpPvXr18Prrr2P+/PlYvHgxunXrhoEDB2r6ZqBWewZDII+nQ2touT0B4MUXX8S8efPw/fff4/bbb8fDDz+Mt99+O6R98EQr7bl37168/fbbeOihh+r0eDq0hpbbk+6fobfnU089hZSUFFx00UU4ePAgFi1aVKfH0xEMhqDfSRAykJGRgZKSEunnzp074+jRo5gyZQr69++v4pERhJt//OMf0naHDh1gNpsxZcoUPProoyoelbY5cuQIevfujcGDB2PUqFFqH07UE6g96f4ZOuPGjcPIkSNx4MABvPDCCxg6dCi+/vprCIIgm4N6pGKQjIwM6PV6HD9+3Ov148ePo0mTJn7/nyZNmtT6fvG/db3nxIkTXr93OBw4ffp0QC8AdOnSBXv37g0iMnVQqz2DIZDH06E1tNye/ujSpQsOHz4Mq9Ua0X6UQu32PHr0KHr06IGuXbvigw8+CMrj6dAaWm5Pf9D9s/Z9ZmRk4IorrkDPnj3x+eef45tvvpFmOcp1fVIiFYOYTCZ06tQJy5cvl15zuVxYvnw58vPz/f4/+fn5Xu8HgO+//156/yWXXIImTZp4vaeiogLr16+X3pOfn4+zZ89i06ZN0nt++OEHuFwudOnSJeDxbt26FU2bNg09UE6o1Z7BkJ+fj19//dUrgf3++++RmpqK7OzsoPfDEy23pz+2bt2Khg0bql4YNRBqtueRI0dQUFCATp06YebMmdDpvL9S8vPzsXLlStjtdi/PlVdeiYYNG4YftIJouT39QfdPN8F83l0uFwBIfxTJdn2GNDSdiBo+//xzlpCQwGbNmsXKysrYgw8+yNLS0qTZXffffz97+umnpfevXr2aGQwG9tprr7EdO3awiRMn+p1umpaWxhYtWsS2b9/OBgwY4Hf5gw4dOrD169ezn3/+mV1++eVeyx/MmjWLffrpp2zHjh1sx44d7KWXXmI6nY7NmDGDQ6uEj1rteeDAAbZlyxb2wgsvsHr16rEtW7awLVu2sL/++osxdmH5g5tvvplt3bqVLV26lDVq1Cgqlj/QYnt+9dVX7MMPP2S//vor27NnD3v33XdZcnIymzBhAqeWCQ812vPw4cPssssuYzfddBM7fPiw13R8kbNnz7LMzEx2//33s99++419/vnnLDk5OSqWP9Bie9L9M/j2XLduHXv77bfZli1b2B9//MGWL1/Ounbtylq3bs2qq6sZY/Jdn5RIxTBvv/02a9GiBTOZTCwvL4+tW7dO+l337t1ZUVGR1/vnzZvHrrjiCmYymVjbtm3Z4sWLvX7vcrnYP/7xD5aZmckSEhLYTTfdxHbt2uX1nj///JPdc889rF69eiw1NZUNHz5c+pJizH0jaNOmDUtOTmapqaksLy+PzZ8/X/7gFUCN9iwqKmIAavz78ccfpff88ccfrE+fPiwpKYllZGSwv//978xut8sev9xosT2XLFnC2rdvz+rVq8dSUlJYTk4Omz59OnM6nYq0gZzwbs+ZM2f6bUvfv8+3bdvGunXrxhISEljz5s3ZK6+8In/wCqDF9qT75wXqas/t27ezHj16sPT0dJaQkMBatWrFRo8ezQ4fPuy1HzmuT4ExDc/rJQiCIAiC0DA0RoogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCCJCbDYbLrvsMqxZs0bW/S5duhTt27eXaoQRBKE9KJEiCMKLYcOGQRCEGv+0XGFebaZPn45LLrkEXbt2lV4TBAELFy6s8d5hw4Zh4MCBQe23d+/eMBqNmDNnjkxHShCE3FAiRRBEDXr37o1jx455/bvkkktqvM9ms6lwdNqCMYZ33nkHI0eOVGT/w4YNw1tvvaXIvgmCiBxKpAiCqEFCQgKaNGni9U+v16OgoABjxozBY489hoyMDPTq1QsA8Ntvv6FPnz6oV68eMjMzcf/99+PUqVPS/sxmM4YOHYp69eqhadOmeP3111FQUIDHHntMeo+/Hpy0tDTMmjVL+vnQoUO48847kZaWhvT0dAwYMAB//PGH9Huxt+e1115D06ZNcdFFF6G4uBh2u116j9VqxVNPPYWsrCwkJCTgsssuw7/+9S8wxnDZZZfhtdde8zqGrVu31tojt2nTJuzbtw/9+vULsZWBP/74w2/vX0FBgfSeW2+9FRs3bsS+fftC3j9BEMpDiRRBECExe/ZsmEwmrF69GtOnT8fZs2dx4403okOHDti4cSOWLl2K48eP484775T+n3HjxuGnn37CokWL8N1332HFihXYvHlzSF673Y5evXqhfv36WLVqFVavXo169eqhd+/eXj1jP/74I/bt24cff/wRs2fPxqxZs7ySsaFDh+Kzzz7DW2+9hR07duD9999HvXr1IAgCRowYgZkzZ3p5Z86ciRtuuAGXXXaZ3+NatWoVrrjiCtSvXz+keAAgKyvLq9dvy5YtuOiii3DDDTdI72nRogUyMzOxatWqkPdPEAQHGEEQhAdFRUVMr9ezlJQU6d8dd9zBGGOse/furEOHDl7v/7//+z928803e7126NAhBoDt2rWL/fXXX8xkMrF58+ZJv//zzz9ZUlISGzt2rPQaALZgwQKv/TRo0IDNnDmTMcbYJ598wq688krmcrmk31utVpaUlMS+/fZb6dhbtmzJHA6H9J7Bgwezu+66izHG2K5duxgA9v333/uN/ciRI0yv17P169czxhiz2WwsIyODzZo1K2B7jR07lt144401XgfAEhMTvdoxJSWFGQwGNmDAgBrvr6qqYl26dGG33HILczqdXr/r0KEDe/755wMeA0EQ6mFQN40jCEKL9OjRA++99570c0pKirTdqVMnr/du27YNP/74I+rVq1djP/v27UNVVRVsNhu6dOkivZ6eno4rr7wypGPatm0b9u7dW6Pnp7q62uuxV9u2baHX66WfmzZtil9//RWA+zGdXq9H9+7d/TqaNWuGfv36YcaMGcjLy8N///tfWK1WDB48OOBxVVVVITEx0e/v3njjDRQWFnq99tRTT8HpdNZ474gRI/DXX3/h+++/h07n/bAgKSkJFosl4DEQBKEelEgRBFGDlJSUgI+yPJMqAKisrMStt96Kf/7znzXe27Rp06Bn+wmCAMaY12ueY5sqKyvRqVMnvzPYGjVqJG0bjcYa+xWXD0hKSqrzOB544AHcf//9eOONNzBz5kzcddddSE5ODvj+jIwMKVHzpUmTJjXasX79+jh79qzXa5MmTcK3336LX375xe8jwtOnT3vFSBCEdqBEiiCIiOjYsSP+85//oFWrVjAYat5SWrduDaPRiPXr16NFixYAgDNnzmD37t1ePUONGjXCsWPHpJ/37Nnj1QvTsWNHzJ07F40bN0ZqampYx9quXTu4XC789NNPNXqKRPr27YuUlBS89957WLp0KVauXFnrPjt06ID33nsPjDEIghDyMf3nP//Biy++iCVLlqB169Y1fi/2uHXo0CHkfRMEoTw02JwgiIgoLi7G6dOncc8992DDhg3Yt28fvv32WwwfPhxOpxP16tXDyJEjMW7cOPzwww/47bffMGzYsBqPr2688Ua888472LJlCzZu3IjRo0d79S4NGTIEGRkZGDBgAFatWoX9+/djxYoVePTRR3H48OGgjrVVq1YoKirCiBEjsHDhQmkf8+bNk96j1+sxbNgwjB8/Hpdffjny8/Nr3WePHj1QWVmJ33//PYRWc/Pbb79h6NCheOqpp9C2bVuUl5ejvLwcp0+flt6zbt06JCQk1HkcBEGoAyVSBEFERLNmzbB69Wo4nU7cfPPNaNeuHR577DGkpaVJydKUKVNw/fXX49Zbb0VhYSG6detWY6zV66+/jqysLFx//fW499578cQTT3g9UktOTsbKlSvRokUL3HbbbWjTpg1GjhyJ6urqkHqo3nvvPdxxxx14+OGHcdVVV2HUqFEwm81e7xk5ciRsNhuGDx9e5/4uuugiDBo0KKxFMzdu3AiLxYJJkyahadOm0r/bbrtNes9nn32GIUOG1Pp4kSAI9RCY76AEgiAIDhQUFKB9+/aYNm2a2odSg1WrVuGmm27CoUOHkJmZWef7t2/fjp49e2Lfvn1+B92Hy6lTp3DllVdi48aNfhdEJQhCfahHiiAI4jxWqxWHDx/G888/j8GDBweVRAHANddcg3/+85/Yv3+/rMfzxx9/4N1336UkiiA0DA02JwiCOM9nn32GkSNHon379vj4449D+n+HDRsm+/Hk5uYiNzdX9v0SBCEf9GiPIAiCIAgiTOjRHkEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYfL/ol9URXwtYe8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 3e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "81a65e58", + "metadata": {}, + "source": [ + "We might still expect to detect the satellite orbital time scale in the periodogram, due to the imperfect frequency response during the orbit, but it's a lower-order problem now.\n", + "\n", + "Looking into more detail, the two curves do not exactly match, in particular close to the maximum frequency:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "afa946e8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNsUlEQVR4nO3de3hU5b03/O89k5nJ5DThfNAQUREECQkEAxFEHvDAtm69nmd7etVSradu3Oi22or7UUqtRi27B1svaX0V2K1KRUX7tgoV5RwSCYSTBwqWQmxBFMlMjjOTNff7x2StzJpTMsmazKzM93Ndc5lZs2ate1YWmZ/3/bt/t5BSShARERGZgCXVDSAiIiLqKQYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBCxEREZkGAxciIiIyDQYuREREZBoJBy5bt27FNddcg9GjR0MIgbffflv3upQSjz/+OEaNGgWn04n58+fj8OHDRrWXiIiIMljCgUtLSwumTJmC559/Purrzz77LJ577jmsWLECtbW1yM3NxZVXXon29vY+N5aIiIgym+jLIotCCKxbtw7XXXcdgGBvy+jRo/H9738fDz30EADA7XZjxIgRWLVqFW666SZDGk1ERESZKcvIgx09ehQnT57E/PnztW0ulwsVFRXYuXNn1MDF6/XC6/VqzwOBAL755hsMGTIEQggjm0dERERJIqVEU1MTRo8eDYsleSm0hgYuJ0+eBACMGDFCt33EiBHaa+GqqqqwbNkyI5vRa8LmwJgH3wQAHP/Z/4H0ew3dn4iIaKBraGjA2WefnbTjGxq49MaSJUvw4IMPas/dbjfGjBmDhoYGFBQU9Fs7FEXBls0f4oHa4PNjhz+Fa9CQuO9p9pxB5a8PAgC++Nsh5BUMSnYziYiI0pLH40FRURHy8/OTeh5DA5eRI0cCAL788kuMGjVK2/7ll1+itLQ06nscDgccDkfE9oKCgn4PXHJzcwAEAAD5+fndnl9IRfs5P78A+f3YXiIionSU7DQPQwehxo4di5EjR+KDDz7Qtnk8HtTW1mLmzJlGnoqIiIgyUMI9Ls3NzThy5Ij2/OjRo9i7dy8GDx6MMWPG4IEHHsBPfvITjBs3DmPHjsVjjz2G0aNHazOPiIiIiHor4cClrq4Oc+fO1Z6r+SkLFy7EqlWr8IMf/AAtLS24++670djYiFmzZmH9+vXIzs42rtVERESUkRIOXC677DLEK/0ihMCPf/xj/PjHP+5Tw4iIiIjCca0iIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgUsMNpst1U0gIiKiMAxcYkj2IlFERESUOAYuREREZBoMXIiIiMg0GLgQERGRaTBwCRVn8UgiIiJKPQYuKilRsn9pqltBREREcTBwUflbkd98rOu5zZm6thAREVFUDFxiSXA6NAeZiIiIko+Bi0FuWrkPkjkyREREScXApQ+cNgsmir8DAD452YI2v5LaBhEREQ1wDFz6QAiBtfZlqW4GERFRxmDg0kdcGICIiKj/MHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi4hWD6OiIgovTFw6SSlxPU+LrJIRESUzhi4dGrzK/hEngMAmDgyF06bNbUNIiIioggMXABASlh+/3+0p2tunwKR4CKLRERElHwMXADA3wpx6mPtqbA5e3ccLrJIRESUVEkJXJqamvDAAw+guLgYTqcTlZWV2LVrVzJOlRw97W2x5aApr7jrub8tOe0hIiIiAEkKXO688068//77+N3vfocDBw7giiuuwPz58/GPf/wjGadLHSGwv4SLLBIREfUXwwOXtrY2vPnmm3j22Wdx6aWX4vzzz8ePfvQjnH/++XjhhReMPp0hZF+GeJgLQ0RE1G+yjD5gR0cHFEVBdna2brvT6cT27dsj9vd6vfB6vdpzj8djdJO6FQgEdM8tFqb+EBERpSPDv6Hz8/Mxc+ZMPPHEE/jnP/8JRVHw+9//Hjt37sSJEyci9q+qqoLL5dIeRUVFRjcpYZxRRERElJ6S0rXwu9/9DlJKnHXWWXA4HHjuuedw8803R+3JWLJkCdxut/ZoaGhIRpOIiIhoADB8qAgAzjvvPGzZsgUtLS3weDwYNWoUbrzxRpx77rkR+zocDjgcjmQ0g4iIiAaYpCZz5ObmYtSoUThz5gw2bNiAa6+9NpmnIyIiogEuKT0uGzZsgJQS48ePx5EjR/Dwww9jwoQJuP3225NxOiIiIsoQSelxcbvdWLRoESZMmIBvf/vbmDVrFjZs2ACbzZaM0xEREVGGSEqPyw033IAbbrghGYdOa32qB0NERETdYsGSPrBYLMjNydWeh9eDISIiImMxcOkDIQQmT56c6mYQERFlDAYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBC4KF41rBhR6JiIjSXVIq55qJlBI3rNyPPd4VqW4KERERdSPje1za/Ar2NHi059OKCuC0WVPYIiIiIool43tcQtU57kXh7QchhEh1U4iIiCiKjO9xCZUDL4MWIiKiNJbxgYuRKzofOHCAK0QTERElUcYHLuErOlssiV2S0P1bWlu4QjQREVESZXzggrAekkSHiji0RERE1H8YuPjbtB/l8EmALSeFjSEiIqJ4GLiECNz6JsAeFCIiorTFwEWHQQsREVE6Y+BCREREpsHAhYiIiEyDgQsRERGZBgMXA3kVYwvaERERkR4DFwPdtyWAG1+sZfBCRESUJAxc+shps6BcHNKe7z7WiDa/ksIWERERDVxpG7hIKaEoStr3XgghsNa+DHWOe1PdFCIiogEvK9UNiGXfvn0IBAJwuVwoLS1N69L6QgA50pvqZhAREQ14advj0tTUBABwu91cuJCIiIgApHHgQkRERBSOgQsRERGZhuGBi6IoeOyxxzB27Fg4nU6cd955eOKJJ9I+yZaIiIjSn+HJuc888wxeeOEFrF69GpMmTUJdXR1uv/12uFwuLF682OjTERERUQYxPHCprq7Gtddei6uvvhoAcM455+C1117DRx99ZPSpiIiIKMMYPlRUWVmJDz74AH/9618BBKc1b9++HQsWLIi6v9frhcfj0T2IiIiIojG8x+WRRx6Bx+PBhAkTYLVaoSgKnnzySdxyyy1R96+qqsKyZcuMbgYRERENQIb3uLz++ut45ZVX8Oqrr2LPnj1YvXo1li9fjtWrV0fdf8mSJXC73dqjoaHB6CYRERHRAGF4j8vDDz+MRx55BDfddBMAYPLkyTh27BiqqqqwcOHCiP0dDgccDofRzSAiIqIByPAel9bWVlgs+sNarVZWvyUiIqI+M7zH5ZprrsGTTz6JMWPGYNKkSaivr8fPfvYz3HHHHUafKn2xZg0REVFSGB64/OpXv8Jjjz2Gf//3f8epU6cwevRo3HPPPXj88ceNPlV6sOVAFlUAx/d2bfO3AQ5byppEREQ0UBkeuOTn5+MXv/gFfvGLXxh96PQkBAIL38XO9/8EbEl1Y4iIiAY2rlVkBCEQsDLBmIiIKNkYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5ERERkGgxciIiIyDQYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5JIKVMdROIiIgGJAYuBrBYLMjNydWeBwKBFLaGiIho4GLgYgAhBCZPnpzqZhAREQ14DFyIiIjINEwfuEgpmVNCRESUIUwTuCiKEhGgSCmxZcsWbNmyhcELERFRBshKdQN6or6+Hs3NzXC5XCgtLYUQAgDg9/u1ffx+P+x2e6qaSERERP3AFD0uzc3NAAC3280ZO0RERBnMFIELEREREcDAhYiIiEwkowMXKSUURUl1M4iIiKiHMjZwkVKivr4eu+p2GX7sAwcOcJYTERFREmRc4KL2sgQCAXg8HsOOa7F0XcqW1hYmERMRESWBKaZDG0XtZfF4PMjLyzP02OoUbSIiIkqejOpxCe1lUadYExERkXkYHricc845EEJEPBYtWpTYgaSERWkHwnJFolXQJSIiosxg+FDRrl27dDN1Dh48iMsvvxzXX399Qscp2f8jFPkOw11wIerLqoDOoZjq6mqtgi4RERFlFsMDl2HDhumeP/300zjvvPMwZ86chI7javor4BBweT6FJeBFwJqtvdabCrqc+kxERGR+SU3O9fl8+P3vf48HH3wwZvKq1+uF1+vVnhs500cVmpRLRERE5pXU5Ny3334bjY2N+M53vhNzn6qqKrhcLu1RVFTUq3PV1dXFzH0xeupzTzAPh4iIyHhJDVxeeuklLFiwAKNHj465z5IlS+B2u7VHQ0NDj48fOvTj8/mwe/futAkYtm/fnjZtISIiGiiSNlR07NgxbNy4EW+99Vbc/RwOBxwOhyHnbG5uRiAQ0IrBJVpbJbSInBH8fj/sdruhxyQiIspkSetxWblyJYYPH46rr746WaeISkqJLVu2YMuWLQn3eLCIHBERUXpLSuASCASwcuVKLFy4EFlZ/Vuc1+/3R/2ZiIiIzC8pgcvGjRtx/Phx3HHHHck4PBEREWWopHSHXHHFFaZJTDVJM4mIiAgmXqvIiMBISomf1HEVZyIiIrMwbeCyffv2Ph/DpwDHm4I/TxR/h9NmzOXwKqzjQkRElAymDVwAY5Nv19qXGTar6L4tATxV287ghYiIyGBpG7hICbRKB1qlI6EAoLa2tlfn62vI4rRZUC4Oac8PNwbQ3O5n8EJERGSg/p2rnICF+BH2escDAMbVBfBohUzrOitCCKy1L8NpFKDcuwIAULdrF4YPKURpaWlat52IiMgs0rLHRdgc2Ivx2vPDjcF8lHDp1pshBJCDrgUjvQrQ2NiY8ErWREREFF3a9rj0RH19faqbENfiTa0YV2jB7NnpFWARERGZVVr2uJiZE16UZf1de364MYA2f5TuIiIiIkoYAxej2HKAkZMhBPCW9VH8eg4vLRERkdH47WoUIYDb12s/Oqwpbg8REdEAZOrARUoJb0fw0atEXaOTe2PMHNq3b3/aJRITERGZkWmTc6WUeLK2HUcagzN2xhVa8GhFdkLTji2yawYQRkwKDvckQUtzMwKBAKxWdsMQERH1hWl7XHwKtKAFCCbBRpsy3WO3vR2zx4SIiIjSg2kDF8MxaCEiIkp75gpcpIRFaY+dmyJ7XuhNSglvEmcpWxRv9zsRERFRQsyT4yIlyuqXwOX5DO6CC1Ez+amIXbI6mgBbYQ8Opc+PSYaZNXcDWJm04xMREWUi0/S4WKQXLs9nAACX51N9Ym2CwvNjysUhOG0GXApbDmRRRcRmr5J+yxMQERGZkWkCl+CXv/HHrXPci7X2ZcYsgthZy+XAVet0mxdvasWNL9YyeCEiIuoj0wQu920J4Hrf0t4HLzHyY3LgNTQvV1gsuKjsYjjhRbk4pG3ffayRpf+JiIj6yDSBCwDUyfFogyPxN0qJsvpHcOm2G1FWvyQieAmMuMjQGi5CCAgBrLUvY+l/IiIiA2XGt6q/NW5+TMdt/19SpkOz9D8REZGxzDOryABSAm1wRBluYg0XIiIiM8iYwCUgBb7lexKfyHMwpi5506CJiIgoedJ0qKj3PSDqwouhM3iklFrQAgDHm/raPiIiIkqFtOxxEbbuE3Cjzi6S0ArLjSu04E+VwZ3a/AEtaCEiIiLzSsseF4stO+7rUgI/iTLc4w10FZY73BhAmz8NhoRYu4WIiMgwaRm4nHXvS3Ffb4NDG+4ptnzVDy3qvZL9S1PdBCIiogEjLQOXRLxhe0z7OWCxp7AlIWw5wMjJAID85mMpbgwREdHAYfrARZfGm4RaLL3SWfqfiIiIjGX6wCVtpUsQRURENIAkJXD5xz/+gVtvvRVDhgyB0+nE5MmTUVdXl4xTERERUQYxfDr0mTNncMkll2Du3Ll47733MGzYMBw+fBiDBg0y+lRERESUYQwPXJ555hkUFRVh5cqV2raxY8cafRpTkpwaTURE1CeGDxX98Y9/RHl5Oa6//noMHz4cZWVlePHFF2Pu7/V64fF4dI94WuFAa4wVov0+b9Tt6WL//v0MXoiIiPrA8MDlb3/7G1544QWMGzcOGzZswPe+9z0sXrwYq1evjrp/VVUVXC6X9igqKop7/HLvCpR7V0R97T932vQbZCCtAgWP24NAIA2K4hEREZmU4YFLIBDA1KlT8dRTT6GsrAx333037rrrLqxYET3YWLJkCdxut/ZoaGgwrC27t7+PLVu26IKXieLv2s/l4hCcSO9eGiIiIupieI7LqFGjMHHiRN22Cy+8EG+++WbU/R0OBxyO7tcmimXvlCeBj7qeb7Pfj9m+X+r28fv92s9r7csgADTlFWN481/hcV0Ipy2n1+cnIiKi/mN44HLJJZfg0KFDum1//etfUVxcbPSpAACKVb+ukVPE70ERAHKEF7vLfoxDQiBgcaCSNVeIiIhMwfChov/8z/9ETU0NnnrqKRw5cgSvvvoqfvvb32LRokVGn6rHAoHIPBcpBALWbBaKIyIiMhHDA5fp06dj3bp1eO2113DRRRfhiSeewC9+8QvccsstPT5G+xcfA9Dno4RSt5eLQ8i3SZSLQ9rzaDkre/fVJ/YhiIiIKC0ZPlQEAN/61rfwrW99q9fv//KVH+LED4ci3y4wybsy4nU1T8UJL6qzVuP/Hfo67J6/wQkv2kKmSgeEHR0dEiJ9JhYRERFRHyQlcDFCjvBCIDvqa2qeimrv1CrY/G5cUr0QCAlSnqiTON7cijH5SW4sERER9Yu0DVwSIkREki4AHG/u/G9TP7dngJFSos2vQEoJh1XAarVCMDeIiIhSYGAELpQ0Ukr824qd2H3sDABgXKEFz1wxAmVlZQxeiIio3yVldehkKrUdZ9G4ftTmV7SgBQAONwbw1TduVgAmIqKUMFWPy68vFcjNHo+28TXIeXFGqptDRERE/cxUPS6OLAFhsUBGqXQ7o6Ki18e12Wzd70REREQpZ6oel7hsOQicfTHQsK9Hu8+eNQuw5wIAczWIiIhMwlQ9LiqbLUq8JQQ6bvsTds74bY+OIYTQHtQ7iqKk1erbREQ08JkucJkzZ07sF4VAls2hVdJNN14FaPV1DIgv+/r6emzbtg179+4dEJ+HiIjMwVRDRdPLp3fbQyKEwFr7MrTBgVY4UO5dEblT0QwgBStCL97UCmzaiPLiQXj9nplo71AAAE6b+eqiNDcHi+S43cEZRlarNcUtIiKiTGCqwKU7apKtEEAOvLoqupr79wODRqR0ccW6Y2dw9a+24dMTwcp45cWDsPbemWkZvLA3hYiI0klaDxU54dUvoGiL31whRDDpNh57Tv8ELWqycAxq0AIEA5k2v5L8NvUC67UQEVE6SeseFyGgDfs44YVf3A4AsLlGavv4bQVh70mTXovOZOE9m99D+eZDqJPjMSbfXMsPSCnR6kvPgIqIiDJTWgcuQMiwT+g2ixXy8W/g9/uBnTUpalkPCIFAVrYWfG0vX427N5mjByO81H+oyksq4bAKVFdXp6BlRESUydJ2qGjbJa9g26zXYr4uLFbY7A7teToXkROic7XrNOkM6onwUv9j8rtuFavVymRcIiJKibQNXCAskKL7nJY5c+Zgzpw5XUNEthzIEZP7oYGZ47m5OXi0Qr/6tpQS3o7gY8+ePUziJSKifpH2Q0XdichpEQKB7/wZ1mfGpKZBA0RoIOKwhr8G3PjiR9h9rBUAMK6wHe+VKcjKMv3tREREaS59e1wABCwOKGdNBwC4Cy5MoPZKeo7JTC8vT3UTeix8NlGBqysJ+psWX8SK0ek6K4qIiAaW9P5fZCHQfvPb2F27HQGLA5VmShJBZN6N7bUbADyUmsYkQEoJRekKXCpmzAgus/DmSQDA7Gc3pappRESU4dK6xwVAcOjHmp3SgnG9JYTA7LlXQI4M5tyIUx+nuEXdk1Kivr4etTVds7WsVgty7FkoLx6k23fiqPz+bh4REWW49O5x6SWLJX3iMWGxALevB6rOSnVTeiQQCMDj8URsF0Jg7b0zdUNCHR0KSn68sT+bR0REGW5ABi5pU4ROlW7tiUHtbYlFCIEce9ct06Qwr4WIiPpX+nRNGMmWE1xIkXpMSgm/368tnkhERJSOBmSPC4QA7lgPtDQBP9mW6takPbWnJdoQERERUToZmD0uQDB4sfd0+nRmC89rycvLS2FriIiIYhu4gQslRK2EW1pegdLS0oTfrygBVs8lIqKkG5hDRelGzbk5HjvxNVg7RYHFYun35GIpJZ6sbceRxgCw8UNMHJWPeyYkdoytO2pw9jAXysrK0i85moiIBozMC1xszv4/p5pzc+ZL4NndUXfZt28ffK3NcLlcKC0t7dcv/za/EgxaOn1yogn3n+j+faHTzhdvag2W/i9h6X8iIkqetB8q6suqz06bVVc0rbx4EJz2FH2pdpNz0+RpAgC43e6Icvv96Zwh+jaOK7TAaYu+EnR4UTqW/iciomRL2/81njVrFgoKCuD3+3t9jPCiaU6blcMY3fjjokoIAVTvqAYA2K2x6+Ko1/eUpw0VVVwGgIiIks/wHpcf/ehHEELoHhMmJJgwAWjv7Su1aFqOPYtBSw8IEexJcWQJOLK6/x0Er2/0HhkiIiKjJaXHZdKkSdi4sasUPHMezMViscDlcsHtdsNVUABLRxugdAYwthzTVAImIqKBJykRRVZWFkaOHJmMQ1M/EEKgtLQUAUWBZfW/QPyxtuvFohnBRGMGL0RElAJJSc49fPgwRo8ejXPPPRe33HILjh8/HnNfr9cLj8eje1DqCSFgDXghGmr1LzTUAP7W1DSKiIgynuGBS0VFBVatWoX169fjhRdewNGjRzF79mw0NTVF3b+qqgoul0t7FBUVGd2k9JGKqdhGuX9f18++VoDF5oiIKAUMD1wWLFiA66+/HiUlJbjyyivx7rvvorGxEa+//nrU/ZcsWQK32609GhoajG5S2nDaszCtqEB7Pia/+/eohelSXpXWltv18/LzgZevYvBCRET9LulZs4WFhbjgggtw5MiRqK87HA44HI5kNyMtCCHwh9tL4HtmHABge/lq3L0pds2W0MUPU1GYTsfmDOa3NNQEn6tDRvbc+O8jIiIyUNIL0DU3N+Pzzz/HqFGjkn0qUxBCIEd4kSO8cfNbpZRobvfhq2/ckFKmvDCdVv33oegBqGrfvv2p7x0iIqIBy/Ael4ceegjXXHMNiouL8c9//hNLly6F1WrFzTffbPSpBiwpJf5txU7sPnYGQLB67aMV2SluFWJW/w0t/d/S3IxAIACrlbVdiIjIeIYHLl988QVuvvlmnD59GsOGDcOsWbNQU1ODYcOGGX2qAavNr2hBCxAspe9L40r6LOxHRET9xfDAZc2aNYYeL3Stor6sW0RERETml/YlbYUQmDNnjvbzQOVVAEDCVNXzfZ31XKRdt7m+vh7Tpk0b0L8vIiJKjbQPXICBHbCoFm8KBgHjCi143Lmvm72NE5xu3cuk3+XnB/971iwA/65tbmaeCxERJYkpApdMcrgxgDPuln45lzrd+qtv3D1/ky1HPy0aAL7YZXzjiIiIomDgkkIWxQsgdXk7gUAgcokFXytg7Qj+HG1aszot2t8a3FftdSEiIuoHDFxSaGbN3QBWproZOtafjQeEN/hk5OToOwnBwnNERJQSSS9AR2FsOXAXXJjqVvTMyQMJv8WrAN4OySJ0RESUFAxc+psQqC+rwo7K1aluSWz39z45ePGmVtyzsRU3vljL4IWIiAzHwCUVhIBiTYNKuLHYEhsGcsKL8jEFum27jzWizZ/GVfOIiMiUGLikkBNelItDAICJo3qwVHR/URdUVBXNCM4mikEIYO13y3Bg6Xw8Nzf2fkRERH3F5NwUEgJYa1+GtvsPocNRiJInPgAAeJUUD7GEzhwCgkFLN7V0hBDIsWfBwdItRESUROxxSTEhgJznxsP66v/Wtj28tS2FLeqkzhyy53YbtBAREfUXBi79zGKxwOVyIWBxoHnwRdr2nC924AKXvoLtxFEF4W83nJSyc7kBIiKi9Mehon4mhEBpaSkCgQAsc7YBraeB5edDCGBD+61oczjgLhiPvO+9D4s1C5OWbkhaW6SUeLK2HUcae1nyn4iIqJ8xcEkBIUTXOj72nJDtQA68yGnaD0X44BXJ/fW0+RVd0FIuDsEJb1LPSURE1BccKhoAggslKn2qm/LrORastS9jOgsREaU19riYnLpQosfjgcvlQmlpaa9W03ZYmYNLRETpjz0u6crfGn2RwzChCyW63W4EAj3LVwn20iQ3t4WVc4mIyGgMXFLNlqMVe2vKG6tttv5sPPA/1yXllGovTW1NjbZtevl0w8+zf/9+Bi9ERGQoBi6p1lnsTS75B478r5f0CzB+sUv70atE9mCoAUiiQntpVFqycG/5WmHpaENBQVcF4K++8UBRONeaiIiMw8AlHQgB4chDadlU5C3eDvnQ4YhdFm8KLlwYCAS0RNxAIIDm5ua4hzYicbdHlp8PUXUWSvYtjWgze12IiMgoTM5NI0IIWLOygtVqEVzLaNrZudj9RQuA4MKFNXV74GttRkFBQcx8FkVRYLEEY1IjEndjUoe5GrqGnHK+2I5pRY9gd4NHa3ObX0GOnbcaERH1HXtc0pgQwBtfXYsPh/63tq3J0wQA8Hg8Wm+L0+nUXq+vr8e2bduwd+/euIm7hlTMVdc0evSfwENHtE1/uL2Eiy0SEVFSMHBJRyEJu0IAI5sOxtxVSonxk0rg7ZCQUmrBjNvtjplfolbMXbyptWujvzXqvt3S1jQKLaQndIst9stQFRERZQT236cjtSej5Wtg+fkxd9NK9m/4EAAwrtCCRyuy4w4HSSlRU1evq5hbZm9A3q/+H8CgUSSLxYLcvDwAwWCoekc1hg8pNH6oioiIMg57XNKVELpeDNWk0qnwdkh4OySafNAFIIcbA/B1M/wTCATQEpLQW/tQBd4SP+wqPlc0I9jj06emC5SVleq2JVJjhoiIKBb2uJjMrOXbDT1efra9K2h56AiQO9SQErrsWSEiomRgj4sJOOHFuMLYr184Mj/2i4mw57DuPxERpTX2uJiAEMD/LbegHdmomDFDV/EWAC6uKEfZk5tS1LoofK2AzZ7qVhAR0QDEHheTyAp4MXywC67cbAwpzIcjS2iPWMMyvamqa4jl5ydtuQIiIspsDFxM4pLqhSitXwIBYNq0acjLywMAuFwuWK1dv0YJaMm7ra29nOLcGyFTuAHolitQcVo0ERH1VdIDl6effhpCCDzwwAPJPtXAExYMiIYawN8KIQSmTZuG2bNno7S0VPeWJ2vbcc/GVtyzsRVP1bYjIKUWyEQNGnwGBTfqFO7OQnShvEowmNqxYwf27t3L4IWIiHotqTkuu3btwm9+8xuUlJQk8zQDV5x6LkKIqAsjNjTpp0cvrW7Xtk07XIs/3FWhf8MvSwyr3xJrCrda6C5YZ6YRgUCg74s6EhFRRkpaj0tzczNuueUWvPjiixg0aFCyTjPwhQcDvlYggR6L0EBm97FGtPqU6KX+DajfEsoJL8rHFOi29aTODBERUTxJC1wWLVqEq6++GvPnz4+7n9frhcfj0T0ojuXnAy9f1RW8SJnQcM8Nv63Rl/oHgsM7d6w3dCq0EMDa75bhwNL5EesWMdeFiIh6KymBy5o1a7Bnzx5UVVV1u29VVRVcLpf2KCoqSkaTzC088bUz1wVSAi9fCevPxvf4UJ+d7KqaWy4OwQlv0uq3CCGQY8/SrVsEANXV1cx1ISKiXjE8cGloaMD999+PV155BdnZ2d3uv2TJErjdbu3R0NBgdJPML1riq68V8LUADbW9OuSv51iw1r6s3+vNqbOeTp1ujLkIJBERUSyGJ+fu3r0bp06dwtSpU7VtiqJg69at+PWvfw2v16tLzHQ4HHA4HEY3Y+AJz3VZfj4wcjKAznwScQh1MtjzMnFUPj450RT3cA5r/xTJtVgsKHAVQF1w8RcHLVqvz7TDtXjj3kouD0BERD1meI/LvHnzcODAAezdu1d7lJeX45ZbbsHevXs5m6QvwoeMTh4A0JlPYl+GTxy348X/ZcGa8JlDKSSE0M0qCx2q2n2sEW1+9roQEVHPGd7jkp+fj4suuki3LTc3F0OGDInYTgmKOz0ayIEXDquI2pMyJt+C450zjMYVWmDvx9KD7FEhIiKjcK0is4lRK0V7OcYso0crsiEAVMyYgfpdNRABbxIbqee0WVFePAh1x84A0AdRUkooigKLxcIAh4iIutUvgcvmzZv74zSZQx0yaggutihHToboHDaatv+/4Nz2OcrFUi3nZVpxIRxWX+csH2u/BwhCCKy9dyba/AoURcGOHdW4d2MwuNq3bx98rc1wuVwoLS1l8EJERHGxx8WM1CEjf/DLX0gJVJ0FAMjxfA505ry0wQE8fAT27Bxs3769/9up9vzYcrSp0YoidIV6mzxNcGQJuN1uVtQlIqJuMXAxKyEAe27wZ19L1Jdz4AVsFij+VliUdgQsDkBKWJR2WJX25LdRzcMpmmF4gTsiIspMDFwGupevgvXLA7gUgLtgArI+z8elUVZuNkzYMBaAroJ5aqBFRETUSwxcBrovD2g/ujyfAeErKhi8RpFuGMvXGjH7yWKxIDcvD2pdFyIiokT046RYSic7KldD+WFDcoZw1GGsKLOfhBCYMoWrhRMRUe8wcMlQijU7GFww74SIiEyEgQulDa4aTURE3WHgQmmDq0YTEVF3GLgMBOFrGHUuvmgGXiW4WrQarKj1XIiIiKLhrKKBIKwgHUIK0qW7xZuCbb5wZB7uvygAB+vPERFRHAxcBopuCtKlk1yHDROG2vHZ1z5t26cnm3HvyeACkLNnxx4qklJqPTJc34iIKPMwcKH+EVL+32Kx4N0H56HF64eUwE0vfoRPTgQLzBxuDKDNryA/K/LWlFKivr4eHk9wX65vRESUeZjjMhClY87L8vOBp0YDL18VXHbAYkG+04GCHAf+vHgWapfM7fYQgUBAC1oA5sMQEWUi9rgMROmS89LD8v/qqtVERETdYeAyUKVDzks35f/jUXNZmMdCREShGLhQcoUGUAlQc1mSkcfCBF8iIvNi4EJpx+fza7ksah6L1WqFlBLejq4ZR70ZXWKCLxGRuTFwof4XMsMo2lpJdbt2wZGl397R0YEbflODPQ1dq0p3N3U6mlgJvlYrc2yIiMyAgQv1PzXXpWhGzNWppZTwKcGft9fsQltbmy5oAYJTp5vb/ch3ClgswQlyzIshIhrYGLhQ/+jhDCMAkACe+8SG+gZ355ZWjMnvmrn/00udeHhrGwCgtqYGjiyBgoICAIibFyOlhKIohn80IiLqPwxcMoEtB7JoBkRn0OAuuBD5g4ZrvRT9opsZRrq2OPJQ33BK9/rxpq56LQ5rZG9Kd8M/4bktRERkTgxcMoEQEHesh/S1IBAIIM+Wg1Krtf+HU+LMMApty71/7gpaNn//Ulz231vjHjZ0WMluRdTPFZ7bkpeXh+bm5kRaT0REaYCBS6YQAsKRh3RNQXXarCgvHoS6Y2e0beXFgzBmSJ5u+7hCi242kQTwZG07jjQGtNcfrcjuel1KtPkVKIoCb4eE3QpccsklsFqt2LZtW798NiIiMg4DF0oLQgisvXcm2vxdOShOm1Xb3tzuQ/WOatit0HpXAKDJJ7WgBQgm7KqvSynxbyt2YndIMDQm34I/VUgIpQNSSibxEhGZDAMXShvB0v+Rt6S6vWuKdNcUaDVJN5o2v6ILWoBgrkzJjzcC6OqdkVKi1deh7aMGTERElH4YuJDp2K3AtOJC7D7WqG0bk2/RJfCG++XcHPx3Xbtun8ONAXgV4Ibf1mLP8a5jlRcPwtp7ZzJ4ISJKQwxcyBQsFgtcLhfcbjcKCwux9p4paO8IQFEUVO+ohgRw78bWmO/PtgLLKrNRPqMSXgUo/0mw18WnQBe0AEDdsTNo8ytRe3+IiCi1+JeZTEEIgdLSUl2BuRy7BVJaMXxIIU6dbtT29SpAU5sPWVlZEcfIsWfBqkSvthtaH4aIiNITAxdKPSmD9V1UMZYCEEJElOZXA5rmdh+wMdiLsnhTK7DpQ4wt7P729oYEMdHqw3Tf9K4FG1Ws3EtElDwMXCi1fC3Ay1cCJw90bYuzFEA0QgjkZdsjplMfbeyI866gvvSwxCpqx4UbiYiSx/DSqS+88AJKSkpQUFCAgoICzJw5E++9957Rp6GBYvk4fdACdC0FkAB12vTHy67Azh/MibqPy+WCxWKB02bFtOJC3Wvh9WF6IryonUqt3EtERMYzvMfl7LPPxtNPP41x48ZBSonVq1fj2muvRX19PSZNmmT06ciMoq1bNHIycOtbwUCml4QQyHXYogYNFTNmwJWbrfWC/OGuCnywuasAXXh9mERVVlYCAKqrq3v1/vAhJw43ERFFZ3jgcs011+ieP/nkk3jhhRdQU1PDwIWCQtctUtlyIntZwnNf4omRF6OyWvWBgBAipC6MdkLtJ0VRIGXsei7qgo3qcgNqrkysonahgUl4UBJtyInDTURE0SU1x0VRFKxduxYtLS2YOXNm1H28Xi+8Xq/2nIvgZYg46xYBiJ77Ek+CeTHd2bGjGi5XAUpKSiCE0BWlCwQCqKnbA4+nCU/VdtaG2agvahcqPDAJD0qiDTlFWyiSiIiSFLgcOHAAM2fORHt7O/Ly8rBu3TpMnDgx6r5VVVVYtmxZMppBZpbokJGaF2PPRa7DhglD7fjsax8AYMJQO3IdtoQO92RtOxqaWoE3TwIIFrz7w10VACIL1oVSlxyQUqKprSsgd7vdWqASLyipqKhAbW1tQm0lIsokSQlcxo8fj71798LtduONN97AwoULsWXLlqjBy5IlS/Dggw9qzz0eD4qKipLRLEp3sXJfbo/Tk+JrBZaf3/UzAIstB+8+OA8tXj8AINdhg8WSWB56Q1gV3t3HGvHuB8GcmD3H9cNXE0cVYPUdF2P6k8FeFwng6p9/iEOn/do+oT0xPgVo9XXAapVw2vTBC3tYiIjiS0rgYrfbcf75wS+TadOmYdeuXfjlL3+J3/zmNxH7OhwOOByOZDSDzCZW7ktPh3/UAKZoBix3rEd+tj14rI6QadFxjpeblwdAH5SEFqVbvEn/2nNzczD30krkZdt1i0P6FOiCFiDYE+PxoWvZgc6hpfLiQVhz18U9+3xERGT8dOhoAoGALo+FKCY190V9dBe0qL00oRpqunJknhqtf7x8FSCltoSAyuVyofLiabpp0uMKLRjiFJgwJHKYaVyhBWcPcyEv2x43gfanlzq1n+/f1BqxnpK6vICUEt4OiVafAm+HhJTRq/sSEWU6w3tclixZggULFmDMmDFoamrCq6++is2bN2PDhg1Gn4pI30sTOmzkbwMaouSKdObCCHuutoQAAFiEgOhowxt3TEGbPwApJRzZORAWCy6bI9DeEdxPnR3ktFlhtUafdRRajXf0kAKMK/TicGNXwDIm34K1981BRdWmzmMGc2qONAaAjR8CCAZGs2dLbeVqtZ29GfYiIhpIDA9cTp06hW9/+9s4ceIEXC4XSkpKsGHDBlx++eVGn4ooqLsZSg8dCf5XDWq0t3UuISBlsHemoRYCQI66Q8hMpRx7z4OF0Gq8paVT8N40oQ0lVe+oht0K5IRUu2vzK8GgJcThxgBOt/hw+6o6fHKiSds+Yagd7z44j8ELEWUswwOXl156yehDEiXO39L1sz0n9n5AsLcmTu9M3KCok9NmjVhyoLx4EHLsWRBCID8rC4qiaLVjFCV6Zd0P/nMW5v18OwBoPTKhPvvahxavH/nO6HlhLGRHRAMd1yqigemXU2K/1jn7KGqibozeme6oSw6EJumG1n4JV1tTE3X74BwbxhVaIoaW/mtWIe5575u4bWAhOyLKBAxcaOCINp26aEZkVd6Q2Ue4Y73+GN31zsQhhECOPfY/KTUh2O1267a3haw1IITAoxXZuuUHLptdCV8AwHsb455fLWSnVvMFgFOnG9Hc7us2iZiIyCwYuNDAEW86dbSgpqeLOUZbeiCRadpa8wRKS0vh9/uxaesObftl/701Yj9HyL/MrKws+HzxV7oOXYJAS/RVbdyI8uJBWHvvTAYvRGR6DFxoYImVqBtr9lF3QhJ3dXq5xIAQAjabDcMGuzCusF03JDSu0AKnrfukW0UJQFEULX8ldIjIpyAi0RfomnYdr0eIiMgM+FeMMkd3s4+i6WZadcLHQzB4KSsrw58m+bB5W9dq0nZrsHcldDjJ5XJFzCDauqMGDitQ4CpAxbQySCmjrvH13NzgsFd44TwiIjNj4EKZzZfAl3qsxN1eDCUJIZCVlRVlhWro68t09qqEBi9dgUgrptXt1NZQAoCKGTO0WjCOKKsHSCl7nECs7h9rVWsiolRg4EKZLZHZQ9ESd/swlBSerKv2rmj1ZULk2LMiplsDwTWU1Mq7PkVf/C5aU/9txU7sDjnGxFEFnbkvweehgUx3q1oTEaUCAxfKPNESdYHoM5Di8XXmy/RyKElN1u1Jj0bodGtFUbBpa7XW87J3376QyruRtV9UbX5FF7QAwCcnPJi0tKuqdWgSrzpLSRVvVWsiov7CwIUyT7TZR0DiM4XCe2t6UQMmWu9KvH1z7FmQ0ophgwugLgh5xt0SkZA7rbgQdqtPN61aUbqefPToPHxn5Ue6qrxAMIlXnT5NRJSOGLhQZuppom5oBV4gfm9N7lB9MOTr5SrX3RBCoKSkBHjzZMRrtUvmIt9ph90CbN++HUDX0FFtTVfP0JHPDuLhEgW+ScHhL6/SlTtTvaMaw4cUBs9BRJRmGLgQxRNegTeR3prQnpeRk4HbQ3Je+hjIxBpSyrFbkWPP0vWuRNPkaYIjK1gvJi8vDxdMvAjY9AGAYBBz6nQjOjq6aseoOTStvg5YrcFgKDwfhksNEFF/YOBCFC5eBV4gfm9NrB6ZkweAqrP0xwtN3jWoyF08U6dNBTZt122rrKyEzWbTzTRSe16m/rUO/3FhMEjpyqHpqt6r5sNIKVFTtwdNnq5hp2GDXSgrK4savDDIIaK+YOBCFC5eBd5E3yslsPKqYOASqqEGaPk6OFMp1j497KUJnUkUb9VoqyUyl8ZqDfaaRFskcs/xRvguCAZrsYrafdXkxcKXP8KnJ/W5MuMK2/FeiYKsLP2fGK6nRER9xcCFKJreFKuL9d57tnUFMqFVe7tL4g3vpQkNZEKybh/e2tZ16t61WJu11Nzu081Y8oaNOIUXtbv4qQ+iHu9wYwBtfgX5YYFL+EwlgLOViCgx3dcXJ6K+UQMZe24wgbdoRvT9Rk4Glvwj+Bg5OfJ1NZB5ajScPy1CuTike7lcHILzd98CpNRqxISyWOP/cxdCIC/b3jljKWjxplZd5d1LL5mBfHtweYJQY/ItePV/j0TtkrnaNkUJQMrYdWUqKipivkZEFAt7XIj6U6zkXkA/FBTaSxNlKEkIYK19Gdrg0LY54YX4AoC/FcKei9LSUjS3+7S8lNBVqGM3T6BiWhmm1e3E7mONutfKiwchL9sWcwVru90ePF+nrTtqMGxwAUpKSpBjz9LWVfJ2BIMZrwJ4OyTsvexoCa8CDHRfCZiIzI+BC1F/68kwVLzhJnUXAFot3ygLR4bXiAlfhTraOkhAME/mjXsrowYF6vvcbre2grXL5YLdbo+xNEEr8OZJlBcPwmt3Xowbf1uDPQ2dn6NzaYJxhRbMnh27ZyYaKWVEFWAgWL9m7T0z4+b69AWDJaLUY+BCZAaJ5NyE1I9xSonyMQWoO96VVzKtqADzKkuCibkxEpDVYnfRhFb7BfSzgmItTVB37Aze+3BbV9AS4nBjAF952pHntAXbbLNqScOxRKsCDASXQKjdXY8Z5VMNDybiBUt/uKtCC9wYxBAlFwMXooEmpOdFAFgrgTZHyJDSKS/Es1He14P1lYD41X5Dk3yrd1TrCtuFWnntCEycOBEVVcElCmY+u0V7bVyhBU/NG4qpU6fq3hPa29EaMk4VnjDscXuSkuwbL1j6YPM2OLKENkMKAKd8EyUJAxeigSBW/RgE45AceLs/RugUbfWYoV+24bVmYkzPVntrgitfRx8CunjqFDhtVkwYasdnX/t0rx1uDOAbdzO2bdumFb6TAJ6qbcfxpshp2dFWwe6NROrL7PzBHOzatSsiKFNnSO3bt083eyovLw9lZWU9OrbaFg5JEUXHwIVoIIiX9NudWFO0Q6dfR6s18+g/Yw5fqbOaTp1u1LbZc/Kgrq+kDqu8++A8tHj9AIK9KGoPjFcBJGTMYEU1rtACuxXIzutauwnoWpeppz0dPakvEzpDav+eXbqAqWLGDOytq9XOHT7lu7k5GIjFOnZoOxRFwQ2/rcWe44261yaOyseauyq0WNFisWhJz0SZhIEL0UDR29ozPa32m1BTRMSspnv/fCpiP4vFgnxncBjLau1aYiDa8BIQ+eWt9kK0dwR0azdVV1cDQI+HbnpSXyb0/eGsnVPNpZRo9SnazKmKGTNw+NODaGnRr3nldrvh9/thtVq1tqjB01ffuLHneOTn/+REE0p+vFG3LXQ1b6JMwcCFKNP1tNovoO+FseVEvq47bLAuTHiybnnxIG2GUqho1XsBYOKogs4v59jDJUKJPiQVa+gmXrXeiooK1NbWRmzX7TNjRjBYCVkCQUoZXBphw4ddO278EBNHFWDNXcH2K0oAtTU1sFu7gquCggKMnzQZgUAAX33j1hX9e25uDuzW2MNkdcfOoM2vxEykJhqIeLcTUY+mXwNIeP0kNVk3NF8jZvARZd94+8dSOr0CDqtAbU2wB6mjoyOhar09Seq1Wi26/Vp9Cpp80ZdG+OSEJ6KnZFyhBY9WZAMAfvCXL3Hk9RNRz+OwAo4sgWWV2bA58zBlSgkUJYCtO2pi9kqF5+oATA6mgYWBCxFF6suSBxGHij21ui/7xqLmyaguPFiL+y+SEADKp0/H/j27dHkrbX4FitI1vBOv2m9Pz6n2lDz3sRWfnGiK2P9wYwBl02egtqYmarADBHum5l12sdZWNfhQFCVmQnK0XB2A60HRwMLAhYhML9YwEwB8erIJ96rpLxu3YEx+sLejxduBm178CJ+c0H/JhwY6TW0+rVqwougDjFjnnDqmEPl2H4QQ+OOiSvhC3tbqU1D+k2Dvi1eRumGh2iVzsXdXcIiq8pJK5GXbEwo0pJRobvfhq2/cuu12a1cPk8ViYW8MmR4DFyIyvfBhJkVRsGNHddTckONNAdy7sVWXnxJKH+h8qAU64SsmhJ5TURRU7wjmrMyuLMNHH32k7ZMTY02D8F4ah1V0TiFHwrOFAoEA/m3FzoiZSAC09je1+XDw4EG0NDfDboV2/HTpjTFiiIvDZJmBgQsRDQihw0xSWjFiSCGWVTZqAUd+QQF+srMlYuhG/WIHoifBaoFOCHVJAfWcitIVdKhBSzSxemnGFVpQv6umV1+wiqKgek991KBF1/6NXUnDao6NECJqvo86hBYeCOQ6bD1eTiGRIEId4nK73boAscClX+uqu/N1N0wWrU3x2tUX/XmuTMPAhYgGHHU6dvgU6D+VS9TurofH3fXlFtr78IsFIzB+UnBlbkUJ4KYXayMCnfLiQRF5OGrdGre7a5gm2lpQob00Ukrs378fHrcnogckkbWWNm2t1j1/bm4Ohg0uwOTJJbjhNzURQ2FAV46NWnsmOI27o/Nn4PoVO6O+b8JQO959cF7c9qnH2rdvH5o8+muXmxdMMNaedwZCgUAAbrc7OCtLl/MTXOtKXVYh3lIQ0aa0A/phMjWwUQsbxmpXeHDRkwTx8EClvr4ezc3NEfulSw+XmTFwIaIBKdrSBEIIzCifGrMmS/gX1p8Xz+7RLKdYgVKs2VNq4BOtLd39H7nFYkGBq6vgXvjsormXduXH/HnxLLT6OrRzhBb5C609E63gXTSffe1Di9ePfKcjao9C98dqBd7uGqJTAyEA8CnRZ2UBXcsqDB9SGPNLP3Tl8YoZMwBAm1mmtlUNWqIGSG9HHzoEul+8M1aPkSo0MI03o416hoELEWWUeGstRds3kRlRiX4Z9fY9FdPKMK1uJ3Yfa9S9Vl48SJfUK4RArsOmvR5a5E/lUxA10LhwZD7uv0iBADCpdCpmLd+uvRbri9qrIGrxvFg++9oHT6s3Ig9o13/Nw5HPPsZX33h0gVmsL/2ugEm/8rhq4sfVWHNXBbwdwYToWAFSLOGLdwYCAa3iMxDsnTv1jTtmvZ1pxYV49Y5y7Ny5M6HzxtPbfJ5kDGGpx1QrVieb4YFLVVUV3nrrLXz22WdwOp2orKzEM888g/Hjxxt9KiKijGSxWPDGvZV9qnmjVvgNndn00reGoaM9WOXXblW0Y+Vl23XvjT2000UdsiopKYnIL2lu82sLa9bW1Gj5QapcRxZmlE8NVl7eFNkTEr6WU6tPidtjFK3qMADU/d/5cNr0M6327duPls4hntBFQtXFO4UQWPDfG3HotD/ieLHsPtaIxvauKfetvg5YrbLHv69owUa0oajuhqFi5QH15L3x2qYeM7xCdLIYHrhs2bIFixYtwvTp09HR0YFHH30UV1xxBT755BPk5hpTF4KIKNP1teZN+KwmAOhob4kIIlwulzasBHStzB2r4B4Q7GH4l3mxc1J6ksMT3hsVDLBkzGnsqufm5mDupZUAEHNmGRDsnRqSGznl/JKK8pChtY6IwKnF648btIRWeg6d/q673p0z2robggKCgcGePXvw9ZnonzfeMFR4wNPR0RExXV516nQj3C3tut+12gsTL8CKlVuUTIYHLuvXr9c9X7VqFYYPH47du3fj0ksvjdjf6/XC6+1auba/LwARUaaIV+9GXbAy2krWze1dK3hHC3jq/u983XBPdz0Joa+VTq9Ajt0aDIg2Rh5bpQ0ZxZjGrn6GfDu0gC67s+pw2XR9zku8OjmhAZPVGr8Y4c4fzEGes2soLnzhy3jXGwj2xFR/tBszp0/VbQ8dtlEUBT98/1TMIHHiqHy8ckc5PupcpkLtzcnOsmDv3r3ad2r03J4wYUNsqp6uiVVRURH3daMkPcdFzbIfPHhw1NerqqqwbNmyZDeDiCjjhde7Cf0/cjXYiJbr4LRZMa7QgsNRvvSmFRdG7bnoqWiBUOh5Y33xq9PYQ89qtwKFhYW6QntCCG32VG/r5ADBHp+mNh/aQpJ68pw2bZHQaGLNIgsdgvrG3YyNm7bq3qdOAxdCoKnNFzfY+OREE8qejOzNCc1RUtufaG6PKtqaWNGqTkdLTE4GIXtT37qHAoEA/vVf/xWNjY3Yvn171H2i9bgUFRXB7XajoKAgWU0jIqIeUhQFW7dujfrFNO+y2cjKSuz/gaWUuH7FzqgBSfj/3avTq9UvfZU6RBKth0jNqdm7d69uijqQWC5Hq68DEx/fEPP1A0vnxw1cwqmBYquvA5OXxe45iqV2yVzkO+2dx4o9bb07u/5rHnId+iAkdEhJXQw0NMAKzQeSElFLBQDAsWe+lfTv76T2uCxatAgHDx6MGbQAgMPhgMPR8188ERH1L4vFgsLCwqhBQG+m9cZaUBOIHGZSZ0bFmsYeb9p5+BT1ePtHE6/HZ8JQu27GVk+ow1B52Za4Q0jRjCu0YEiuXRck/nnxrIjeHInYq4kDwcBwaJ4j7jVQFKWzd6qrX0PN1UkHSetxue+++/DOO+9g69atGDt2bI/f5/F4tEJO7HEhIkoPmVpOX+3xCf/siVQRjnXc8MAtNAAJN2ywC2VlZXFnDKltDD12b4rpKYqCbdu2QUqJX31qjzljK3S4rsBVgHPOGYvRw4eYr8dFSon/+I//wLp167B58+aEghYiIkpPvak5MxCE18Ix8rjRZoUl2rMUerzQ309+gsN3sY75Hxf64LsgR7e9YsYMWK0WXRBksVjQ1BQ5dJQMhgcuixYtwquvvop33nkH+fn5OHkyuFqZy+WC0+k0+nREREQDRjoEiKFLWAghEJIOA5fLBVdudkp72gwfKor1YVauXInvfOc73b6fQ0VERESp1ZsKu/31/Z2UoSIiIiIyr3To+Yml95lFRERERP2MgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkYHrhs3boV11xzDUaPHg0hBN5++22jT0FEREQZyvDApaWlBVOmTMHzzz9v9KGJiIgow2UZfcAFCxZgwYIFPd7f6/XC6/Vqz91uNwDA4/EY3TQiIiJKEvV7W0qZ1PMYHrgkqqqqCsuWLYvYXlRUlILWEBERUV+cPn0aLpcraccXMomhkRAC69atw3XXXRdzn/Ael0AggG+++QZDhgyBECJZTes1j8eDoqIiNDQ0oKCgINXNSQleA14DgNdAxevAawDwGgDBEZMxY8bgzJkzKCwsTNp5Ut7j4nA44HA4dNuS+YGNUlBQkLE3p4rXgNcA4DVQ8TrwGgC8BgBgsSR3wjKnQxMREZFpMHAhIiIi0zB8qKi5uRlHjhzRnh89ehR79+7F4MGDMWbMGKNP1+8cDgeWLl0aMbyVSXgNeA0AXgMVrwOvAcBrAPTfNTA8OXfz5s2YO3duxPaFCxdi1apVRp6KiIiIMkxSZxURERERGYk5LkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTyPjA5fnnn8c555yD7OxsVFRU4KOPPoq574svvojZs2dj0KBBGDRoEObPnx+x/3e+8x0IIXSPq666Ktkfo08SuQarVq2K+HzZ2dm6faSUePzxxzFq1Cg4nU7Mnz8fhw8fTvbH6LNErsNll10WcR2EELj66qu1fcx0L2zduhXXXHMNRo8eDSEE3n777W7fs3nzZkydOhUOhwPnn39+1FmDiVzTdJDodXjrrbdw+eWXY9iwYSgoKMDMmTOxYcMG3T4/+tGPIu6DCRMmJPFT9E2i12Dz5s1R/y2cPHlSt5+Z7oVEr0G0f+tCCEyaNEnbx2z3QVVVFaZPn478/HwMHz4c1113HQ4dOtTt+9auXYsJEyYgOzsbkydPxrvvvqt73Yjvh4wOXP7whz/gwQcfxNKlS7Fnzx5MmTIFV155JU6dOhV1/82bN+Pmm2/Gpk2bsHPnThQVFeGKK67AP/7xD91+V111FU6cOKE9Xnvttf74OL2S6DUAgiWtQz/fsWPHdK8/++yzeO6557BixQrU1tYiNzcXV155Jdrb25P9cXot0evw1ltv6a7BwYMHYbVacf311+v2M8u90NLSgilTpuD555/v0f5Hjx7F1Vdfjblz52Lv3r144IEHcOedd+q+tHtzb6Vaotdh69atuPzyy/Huu+9i9+7dmDt3Lq655hrU19fr9ps0aZLuPti+fXsymm+IRK+B6tChQ7rPOHz4cO01s90LiV6DX/7yl7rP3tDQgMGDB0f8PTDTfbBlyxYsWrQINTU1eP/99+H3+3HFFVegpaUl5nuqq6tx880347vf/S7q6+tx3XXX4brrrsPBgwe1fQz5fpAZ7OKLL5aLFi3SniuKIkePHi2rqqp69P6Ojg6Zn58vV69erW1buHChvPbaa41uatIkeg1WrlwpXS5XzOMFAgE5cuRI+dOf/lTb1tjYKB0Oh3zttdcMa7fR+nov/PznP5f5+fmyublZ22a2e0EFQK5bty7uPj/4wQ/kpEmTdNtuvPFGeeWVV2rP+3pNU60n1yGaiRMnymXLlmnPly5dKqdMmWJcw/pRT67Bpk2bJAB55syZmPuY+V7ozX2wbt06KYSQf//737VtZr4PpJTy1KlTEoDcsmVLzH1uuOEGefXVV+u2VVRUyHvuuUdKadz3Q8b2uPh8PuzevRvz58/XtlksFsyfPx87d+7s0TFaW1vh9/sxePBg3fbNmzdj+PDhGD9+PL73ve/h9OnThrbdKL29Bs3NzSguLkZRURGuvfZafPzxx9prR48excmTJ3XHdLlcqKio6PF17W9G3AsvvfQSbrrpJuTm5uq2m+VeSNTOnTt11wsArrzySu16GXFNzSgQCKCpqSnib8Lhw4cxevRonHvuubjllltw/PjxFLUweUpLSzFq1Chcfvnl2LFjh7Y9E++Fl156CfPnz0dxcbFuu5nvA7fbDQAR93ao7v4uGPX9kLGBy9dffw1FUTBixAjd9hEjRkSMzcbywx/+EKNHj9b9Eq666ir8z//8Dz744AM888wz2LJlCxYsWABFUQxtvxF6cw3Gjx+Pl19+Ge+88w5+//vfIxAIoLKyEl988QUAaO/ry3Xtb329Fz766CMcPHgQd955p267me6FRJ08eTLq9fJ4PGhrazPk35cZLV++HM3Nzbjhhhu0bRUVFVi1ahXWr1+PF154AUePHsXs2bPR1NSUwpYaZ9SoUVixYgXefPNNvPnmmygqKsJll12GPXv2ADDmb62Z/POf/8R7770X8ffAzPdBIBDAAw88gEsuuQQXXXRRzP1i/V1Qf89GfT8YvlZRpnj66aexZs0abN68WZecetNNN2k/T548GSUlJTjvvPOwefNmzJs3LxVNNdTMmTMxc+ZM7XllZSUuvPBC/OY3v8ETTzyRwpalzksvvYTJkyfj4osv1m0f6PcC6b366qtYtmwZ3nnnHV1+x4IFC7SfS0pKUFFRgeLiYrz++uv47ne/m4qmGmr8+PEYP3689ryyshKff/45fv7zn+N3v/tdCluWGqtXr0ZhYSGuu+463XYz3weLFi3CwYMH0yYnJ2N7XIYOHQqr1Yovv/xSt/3LL7/EyJEj4753+fLlePrpp/GXv/wFJSUlcfc999xzMXToUN3Ck+miL9dAZbPZUFZWpn0+9X19OWZ/68t1aGlpwZo1a3r0hyed74VEjRw5Mur1KigogNPpNOTeMpM1a9bgzjvvxOuvvx7RVR6usLAQF1xwwYC4D2K5+OKLtc+XSfeClBIvv/wybrvtNtjt9rj7muU+uO+++/CnP/0JmzZtwtlnnx1331h/F9Tfs1HfDxkbuNjtdkybNg0ffPCBti0QCOCDDz7Q9SiEe/bZZ/HEE09g/fr1KC8v7/Y8X3zxBU6fPo1Ro0YZ0m4j9fYahFIUBQcOHNA+39ixYzFy5EjdMT0eD2pra3t8zP7Wl+uwdu1aeL1e3Hrrrd2eJ53vhUTNnDlTd70A4P3339eulxH3llm89tpruP322/Haa6/ppsPH0tzcjM8//3xA3Aex7N27V/t8mXQvbNmyBUeOHOnR/8ik+30gpcR9992HdevW4cMPP8TYsWO7fU93fxcM+35IKK14gFmzZo10OBxy1apV8pNPPpF33323LCwslCdPnpRSSnnbbbfJRx55RNv/6aeflna7Xb7xxhvyxIkT2qOpqUlKKWVTU5N86KGH5M6dO+XRo0flxo0b5dSpU+W4ceNke3t7Sj5jdxK9BsuWLZMbNmyQn3/+udy9e7e86aabZHZ2tvz444+1fZ5++mlZWFgo33nnHbl//3557bXXyrFjx8q2trZ+/3w9leh1UM2aNUveeOONEdvNdi80NTXJ+vp6WV9fLwHIn/3sZ7K+vl4eO3ZMSinlI488Im+77TZt/7/97W8yJydHPvzww/LTTz+Vzz//vLRarXL9+vXaPt1d03SU6HV45ZVXZFZWlnz++ed1fxMaGxu1fb7//e/LzZs3y6NHj8odO3bI+fPny6FDh8pTp071++friUSvwc9//nP59ttvy8OHD8sDBw7I+++/X1osFrlx40ZtH7PdC4leA9Wtt94qKyoqoh7TbPfB9773PelyueTmzZt193Zra6u2T/jfxR07dsisrCy5fPly+emnn8qlS5dKm80mDxw4oO1jxPdDRgcuUkr5q1/9So4ZM0ba7XZ58cUXy5qaGu21OXPmyIULF2rPi4uLJYCIx9KlS6WUUra2tsorrrhCDhs2TNpsNllcXCzvuuuutP3HqUrkGjzwwAPaviNGjJD/8i//Ivfs2aM7XiAQkI899pgcMWKEdDgcct68efLQoUP99XF6LZHrIKWUn332mQQg//KXv0Qcy2z3gjqlNfyhfuaFCxfKOXPmRLyntLRU2u12ee6558qVK1dGHDfeNU1HiV6HOXPmxN1fyuA08VGjRkm73S7POusseeONN8ojR4707wdLQKLX4JlnnpHnnXeezM7OloMHD5aXXXaZ/PDDDyOOa6Z7oTf/HhobG6XT6ZS//e1vox7TbPdBtM8PQPfvPNrfxddff11ecMEF0m63y0mTJsk///nPuteN+H4QnQ0kIiIiSnsZm+NCRERE5sPAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZxv8PlCOWE1nGswQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "f26a6319", + "metadata": {}, + "source": [ + "That little \"wiggle\" happens somewhere between 0.5 and 1 times the \"Nyquist\" frequency when data are mostly evenly sampled as in our case. The solution is simply to use a smaller sampling time while maintaining the same maximum frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e0fece49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNJklEQVR4nO3deXxU5aEH/N9zJjOTyTIT9qWGiIrsIYFgSASRF1y41qv3vnW7tkWtCy1WvVar9FYxdQkut622vqJeC9xWRalF78cqVFDCHgiETRTBIkQFUSAzWWcmc573j8mczMnMZD2TzMn8vp/PfMw5c+acZw5j5pdnFVJKCSIiIiITUHq7AEREREQdxeBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESm0engsmHDBlx55ZUYPnw4hBB4++23dc9LKfHwww9j2LBhcDgcmDNnDg4dOmRUeYmIiCiJdTq41NXVYdKkSXj++eejPv/UU0/hueeew5IlS1BeXo709HRcdtllaGxs7HZhiYiIKLmJ7iyyKITAqlWrcPXVVwMI1rYMHz4cv/jFL3DfffcBANxuN4YMGYJly5bh+uuvN6TQRERElJxSjDzZkSNHcOLECcyZM0fb53K5UFhYiK1bt0YNLl6vF16vV9tWVRWnT5/GgAEDIIQwsnhEREQUJ1JK1NTUYPjw4VCU+HWhNTS4nDhxAgAwZMgQ3f4hQ4Zoz7VWWlqKkpISI4vRZcJqx4h73wIAHPvt/wvp9xp6PBERUV9XVVWFs846K27nNzS4dMXChQtx7733attutxsjRoxAVVUVnE5nj5UjEAigbP2HuKc8uH300Cdw9RvQ5mtqPWdQ/Mf9AIAv/3kQGc5+8S4mERFRQvJ4PMjOzkZmZmZcr2NocBk6dCgA4JtvvsGwYcO0/d988w3y8vKivsZut8Nut0fsdzqdPR5c0tPTAKgAgMzMzHavL2RA+zkz04nMHiwvERFRIop3Nw9DG6FGjhyJoUOHYt26ddo+j8eD8vJyFBUVGXkpIiIiSkKdrnGpra3F4cOHte0jR45g9+7d6N+/P0aMGIF77rkHjz32GEaNGoWRI0fioYcewvDhw7WRR0RERERd1engUlFRgVmzZmnbof4p8+bNw7Jly/DLX/4SdXV1uP3221FdXY3p06dj9erVSE1NNa7URERElJQ6HVwuvvhitDX1ixACv/nNb/Cb3/ymWwUjIiIiao1rFREREZFpMLgQERGRaTC4EBERkWkwuITr+rJNRERE1AMYXEKkRO7eRb1dCiIiImoDg0uIvx6ZtUdbtq1pvVcWIiIiiorBJRauTE1ERJRwGFxisFp7ff1JIiIiaoXBJYZ4LxJFREREncfgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgYhCuckRERBR/DC6a7kWP65fugeQijURERHHF4AIAUkJZdkWnX+awKhgnvgAAHDhRhwZ/wOCCERERUTgGFwDw10N8s6/TLxNCYKWtJA4FIiIiomgYXLpJtzAAm4qIiIjiisGlO6xpqMnIadn2N/ReWYiIiJIAg0t3CIG9uWwqIiIi6ikMLt3FVaSJiIh6DIMLERERmQaDCxEREZkGg0sYjgkiIiJKbAwuzaQErvEt6u1iEBERURsYXJo1wI4D8mwAwLhhmXBYLb1bICIiIorA4BLFitsKIThaiIiIKOEwuETBzEJERJSY4hJcampqcM899yAnJwcOhwPFxcXYsWNHPC5FRERESSQuweXWW2/FBx98gD//+c/Yt28fLr30UsyZMwdfffVVPC5HREREScLw4NLQ0IC33noLTz31FC666CKcd955eOSRR3DeeefhhRdeMPpyhpBcHJGIiMgUUow+YVNTEwKBAFJTU3X7HQ4HNm3aFHG81+uF1+vVtj0ej9FFapeqqrptRWHXHyIiokRk+Dd0ZmYmioqK8Oijj+Lrr79GIBDAX/7yF2zduhXHjx+POL60tBQul0t7ZGdnG12kTuOIIiIiosQUl6qFP//5z5BS4nvf+x7sdjuee+453HDDDVFrMhYuXAi32609qqqq4lEkIiIi6gMMbyoCgHPPPRdlZWWoq6uDx+PBsGHDcN111+Gcc86JONZut8Nut8ejGERERNTHxLUzR3p6OoYNG4YzZ85gzZo1uOqqq+J5OSIiIurj4lLjsmbNGkgpMXr0aBw+fBj3338/xowZg5tvvjkelyMiIqIkEZcaF7fbjQULFmDMmDH48Y9/jOnTp2PNmjWwWq3xuBwRERElibjUuFx77bW49tpr43HqhMb5YIiIiOKLE5Z0g6IoSE9L17ZbzwdDRERExmJw6QYhBCZOnNjbxSAiIkoaDC5ERERkGgwuREREZBoMLkRERGQaDC5ERERkGgwuREREZBoMLkRERGQaDC4ApFRRDy70SERElOjiMnOumUhVxXVPvoGd3iW9XRQiIiJqR9LXuDTU12Kn9yxte8qILDisll4sEREREcWS9DUu4f54kcDllxZCCNHbRSEiIqIokr7GJZw9RTC0EBERJbCkDy5Grui8b98+rhBNREQUR0kfXMJXdE5PS4eidO6WhB9fV1/HFaKJiIjiKOmDS7iJEyd2uqmITUtEREQ9h8GFiIiITIPBhYiIiEyDwYWIiIhMg8GFiIiITIPBhYiIiEyDwYWIiIhMg8HFQN6AsRPaERERkR6Di4HuLFNx3cvlDC9ERERxwuDSTQ6rggJxUNveebQaDf5AL5aIiIio70rY4CKlRCAQSPjaCyEEVtpKUGGf39tFISIi6vNSersAsezZsweqqsLlciEvLy+hp9YXAkiT3pYdCR62iIiIzCpha1xqamoAAG63O7EXLrSmQWYX6vf5G3qnLERERH1cwgYX0xAC6rz3sHXaS71dEiIioj6PwcUIQkC12Hu7FERERH2e4cElEAjgoYcewsiRI+FwOHDuuefi0UcfTfhOtkRERJT4DO+c++STT+KFF17A8uXLMX78eFRUVODmm2+Gy+XCXXfdZfTliIiIKIkYHly2bNmCq666CldccQUA4Oyzz8brr7+O7du3G30pIiIiSjKGNxUVFxdj3bp1+OyzzwAEhzVv2rQJc+fOjXq81+uFx+PRPYiIiIiiMbzG5cEHH4TH48GYMWNgsVgQCATw+OOP48Ybb4x6fGlpKUpKSowuBhEREfVBhte4vPnmm3j11Vfx2muvYdeuXVi+fDmeeeYZLF++POrxCxcuhNvt1h5VVVVGF4mIiIj6CMNrXO6//348+OCDuP766wEAEydOxNGjR1FaWop58+ZFHG+322G3cygxERERtc/wGpf6+nooiv60FoslsWe/JSIiIlMwvMblyiuvxOOPP44RI0Zg/PjxqKysxG9/+1vccsstRl+KiIiIkozhweUPf/gDHnroIfzsZz/DyZMnMXz4cNxxxx14+OGHjb4UERERJRnDg0tmZiZ+//vf4/e//73RpyYiIqIkx7WKiIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhc4kBK2dtFICIi6pMYXAygKArS09K1bVVVe7E0REREfReDiwGEEJg4cWJvF4OIiKjPY3AhIiIi0zB9cJFSsk8JERFRkjBNcAkEAhEBRUqJsrIylJWVMbwQERElgZTeLkBHVFZWora2Fi6XC3l5eRBCAAD8fr92jN/vh81m660iEhERUQ8wRY1LbW0tAMDtdnPEDhERURIzRXAhIiIiAhhciIiIyESSOrhIKREIBHq7GERERNRBiRtcpIQSaATiNFpISonKykrsqNhh+Ln37dvHUU5ERERxkLCjinL3PoJs3yG4nWNRmV8KNI8k6i4ppdbB1+PxGHJOIDjtf0hdfR1UVYXFYjHs/ERERJTAwcVV8xlgF3B5PoGieqFaUrt9zlAti8fjQUZGhgGlbCEMClZEREQUW+I2FcWBqqpaLUtoiDURERGZh+HB5eyzz4YQIuKxYMECQ84fbQZdIiIiSg6GNxXt2LFDN1Jn//79uOSSS3DNNdcYcv4tW7ZoM+gSERFRcjE8uAwaNEi3vXjxYpx77rmYOXOmYdfoygy6HPpMRERkfnHtnOvz+fCXv/wF9957b8zOq16vF16vV9s2cqRPSHinXCIiIjKvuHbOffvtt1FdXY2bbrop5jGlpaVwuVzaIzs7u0vXqqioiNn3JbxTbk9hPxwiIiLjxTW4vPLKK5g7dy6GDx8e85iFCxfC7XZrj6qqqg6fP7zpx+fzYefOnYkRGKTEpk2bEqMsREREfUjcgsvRo0exdu1a3HrrrW0eZ7fb4XQ6dY+uqq2thaqqkFJ2KTSETyLXHbl7FwFSwu/3G3I+IiIiCopbcFm6dCkGDx6MK664Il6XiEpKibKyMpSVlXU6vHRrEjmrQ/sxs/YoFNXbxsFERETUFXEJLqqqYunSpZg3bx5SUnp2ct7wWo4erfHgzLlERERxF5fgsnbtWhw7dgy33HJLPE5PRERESSou1SGXXnqpaTqmmqSYREREBBOvVWREMJJS4rGKzk1k11GWQCNTERERkcFMG1w2bdrU7XP4AsCxmuDP48QXcFiNuR31sKN48zyk/Pn7DC9EREQGMm1wAYztfLvSVtK9UUVhCrxLcI1vEUTVdsBfb8g5iYiIKIGDi5RAvbSjXto71SxUXl7euYs0625kcVgtmJKTpW1XyNFoQOfKTkRERG1L2OAyD49gnHcpxnmX4rEKNS4BQJFhc60MGQ9Y07p8LiEE3ritEM/N0p9j7969DC9EREQGScjgIqx27MZobftQdbA/SmuGBoIfvd3tuViEELBbWrbrYUd1F1ayJiIiougSMrh0VGVlpXEnM6B/i6IoSM/I0LYLvEviVltERESUjEwdXBKNEALTCvIxKqtl36FqoMEfpbqIiIiIOq1vBBepBh+dfp3xNSFCCPy6QEGFfb7h5yYiIkp25g8uUsXFZf+Gi8v+rXPhRcrgKs5xIIRAGrjIIhERkdFMHVyklAg0epqHTANWv6fDr1VULzJrj7bsCFvd2Wh79nBkERERkRF6dulmA0kp8Xh5Iw5XWwEsRYE4iHu6kw3iuLpzXW0tVFWFxWJp/2AiIiKKybQ1Lr4AcLi6pWmoQo6Gl6OOiYiI+jTTBhciIiJKPuYKLlJCMWjVZSkl6mE3oFBERETUU8zTx0VK5FcuhMvzKdzOsdg28YlOv15RvVAVOySAx3eoOORdEpeiEhERUXyYJrgo0guX51MAgMvziX6dofZIifzKB5tDzxhsH78Ih9wtT08+KxMOa/w6znoDBi9PQERElKRM01QU/PLv4ov99WGh51NcuOUm7akK+3y8Pm8ChEGjihRFgcvp1O2766N6XPdyOcMLERFRN5kmuNxZpuIa3yLDJ7tNg9ew0AIEJ5/Lzc2FA14UiIPa/p1Hqzn1PxERUTeZJrgAwSHPDSboUCuEgBDASlsJ/jjTVLeYiIgoofFbNY6EAOwKm4eIiIiM0qeCi6rY2nxeSgSXB+ih8gCI23pIREREycg0o4o6pI2+KqoU+L7vcRyQZ2Oc+CK+5bCmAUMnAif26ddDIiIiom5J0BqXrneWlVLC2yR1I3iklFpoAaD9N26EAG5eHd9rEBERJaGErHER1vY74EYbXSQlmhdeVDEqS8G7xcGDGvxq/MNKa3FctJGIiChZJWSNi2JNbfN5KYHHKiJXVPSpLQsvHqpW0eDnqotERER9SUIGl+/Nf6XN5xtgx7Ga4M8jxfEeKBERERElgoQMLp3xpq2kt4tAREREPcT0wYU9SYiIiJKH6YNLOCXQiYUXiYiIyHTiEly++uor/PCHP8SAAQPgcDgwceJEVFRUxONSOhfs+Hncr0FERES9x/Dh0GfOnMGFF16IWbNm4f3338egQYNw6NAh9OvXz+hLGcLtHI0B1rTeLgYRERF1gOHB5cknn0R2djaWLl2q7Rs5cqTRlzHM3twSzOqhOVek0UtbExERJRnDm4r+7//+DwUFBbjmmmswePBg5Ofn4+WXX455vNfrhcfj0T3aUg876sNWiN496XHt5wbZauI62YF5XHpwori9e/cyvBAREXWD4cHln//8J1544QWMGjUKa9aswU9/+lPcddddWL58edTjS0tL4XK5tEd2dnab5y/wLkGBd4m2HbC0TFY3w/es/uD6UwkVFDxuD1SVk+IRERF1leHBRVVVTJ48GU888QTy8/Nx++2347bbbsOSJUuiHr9w4UK43W7tUVVVZVhZdu7ahbKyMl14CV9gcVSWApvFsMsRERFRnBnex2XYsGEYN26cbt/YsWPx1ltvRT3ebrfDbm9/baKO2mi7O6Lmxe/3az+vtJVAANh84XKkWFMhuKYQERGRaRhe43LhhRfi4MGDun2fffYZcnJyjL5UVA7RMpeLqtginhcA0oQXdotgaCEiIjIZw4PLf/7nf2Lbtm144okncPjwYbz22mt46aWXsGDBAqMv1b7mYKKqidPPhYiIiLrO8OAydepUrFq1Cq+//jomTJiARx99FL///e9x4403dvgcjV9+DEDfHyVcaH+BOIi0VBvyrMe0bQciZ8/dvaeyc2+CiIiIEpLhfVwA4Pvf/z6+//3vd/n137z6AI4/MBCZNoHx3qURz4f6qTjgxRaxHHfPGo0mfyOm7n8DImw0tZSAt0lCsMKFiIioT4hLcDFCmvBCIDXqc6F+Ktq2osBqT8PuyYsRaHQDZcH9j+1Qcay2HiMye6DAREREFHcJG1y6RAioFjuA4Fwpx2qDu4/V9F6R+gIpJRr8AUgpYbcIWCwWdmwmIqJeYcrgUn/bVqT9z+TeLkbnJdBkeB0lpcQPlmzFzqNnAATnvnny0iHIz89neCEioh4Xl9Wh42lUloJUa/dmjXM7x0JVjJs7JiprGmR2oW6XIiM7Die6Bn9ACy0AcKhaxben3ZwBmIiIeoWpalz+OFNBemr3Jo1ruGM79h08Ev81ioSAOu89bP3gXa3PDREREXWPqWpc7BbEDC3FxcUoLi5u9xypmf0iQovVajWkfBG0PjdERERkBFPVuBhBCIGZM2dG7CMiIqLEZ8rgYrV2r9gMKsYIBAJQFIX3k4iIeoypmooARNSWtGZTgjPoJiJvAKj3NelWqzaryspKbNy4Ebt37+4T74eIiMzBVDUuUwumtvvXvRACK20laIAd9bCjwLukh0rXvjvLVKBsLQpy+uHNO4rQ2BQAADisCTwvSoxQUlsbnCTH7Q6OMLJYujfSi4iIqCNMFVzaE+pkKwSQBi+QoBUBFUfP4Io/bMQnx4Mz4xXk9MPK+UWJF16khPzfqwAsiNgfnL+YiIioZyVsU9HGC19FxfSlWrNPgTgIh7Xt4gohMGP69J4oXocEAoGYz4VCCxAMMg3+2Mf2Gn89xJcVEbvNOB8NERH1DQkbXCAUQLFgpa0EB+w3BxdWbK6RaGv4srClQw6Z2FOlbFdKih35KV8AiL3adaKSUqIeHM5NRESJI3GDSzMhmhdcDGuZEGkDtZ/9VmfEC9Sb/t5DpWufUBT858yRWvgyCyklfvA/lVH7CE2bnIvioqJeKBURESW7hA8uUSkK8PAZyIdPB2tm0LoWJsH6XyhK82rX5tHgD2BnlUfbzslo6TBk+UM+rH+50pRrLxERkbkldHBRFTuahk8FEFxfCNa0licVBUKxYObMmZg5c2bidWztQyrs8/HrglYflWPl8Psb4W2S2LVrF4dEExFRj0jsUUVCwPsfb2NL+Saoih3FUcKJGQKLqthR0288LKcP93ZROiw8iKTBCygCoWFaEsAPfIuw80MVQD1GZTXi/fwAUlIS++NERETml9A1LgCa1/tJ7dyiiNa0YA1NohAC9vkfwfezyBE6iar16s/OzJa+RKelEzvlaG37ULWamKOiiIioz0n84NIVQqAyvxSbL1zeq8UI73djtdlgSc3sxdJ0nJQSgYA+uEyYMEH7eYbv2WgvinexiIiIErypqDuEgKqkAqjvxSK0LOhohiYtIBhaKisr8e1pt25/ms2Cgpx+qDh6Rts3TnyBA/Ls4Ia/AUBqzxWUiIiSUp8MLoqiwOVy4eSp6t4uimkCS4iqqvB4PBH7hRBYOb8o2CQkJeBvQFNjHnKf2d3zhSQioqTVJ4OLEAJ5eXmobfQBa9f2dnFMI1TbEosQAmm25o+M3YqaNmYGJiIiioe+2ccFwS/ZRFv4T7Gn93YRYpJSwu/3a4snEhERJaI+WeOSqISSmDkxVNMSrYmIiIgokSTmNyn1KK1fi5RQAo1wplqgqI29XSwiIqIIyVfjYnX0dgkSklRVjKl8GC7PZ3DAiwbYASzt8OsDgQCklKbrjExEROaSfMElQb9Yg3OnBKAoSo9/+Usp8UR5Aw65FwIIDnNeblvcqXNsKt+B4UOGID8/n+GFiIjiJvmCS4Las2cPfPW1cLlcyMvL69Ev/wZ/AIfCpm05IM/G1CirQremhPXZubNMxaisb/B+Lqf+JyKi+En4Pi76VZ87x2ENTpoWUpDTDw5rYo00Cqnx1AAA3G53xHT7PWmkOK7bLhAH4YA36rFpNgsKxEFtm1P/ExFRvCXsn8bTp0+H0+mE3+/v8jl0k6YhGGTYjNG2d22/gvrzSlj+kA8AcMAbs3VNCIGVthKcghMFHaihISIi6i7Da1weeeQRCCF0jzFjxnT6PKHXdldo0rQ0WwpDSwcIBGtS0oQXaSJ2aNGOF82rRxMREfWAuNS4jB8/HmvDZqxlnwdzUezpqO0/ARmn9wMAZPY0CGtaL5eKiIgoTsElJSUFQ4cOjcepqQcIoSD9zo0IeGuDo5xs6Qk7GouIiJJLXDrnHjp0CMOHD8c555yDG2+8EceOHYt5rNfrhcfj0T2o9wlFgcXhhLBndC60SBm/QhERUdIzPLgUFhZi2bJlWL16NV544QUcOXIEM2bMQE1NTdTjS0tL4XK5tEd2drbRRaIepLz67wwvREQUN4YHl7lz5+Kaa65Bbm4uLrvsMrz33nuorq7Gm2++GfX4hQsXwu12a4+qqiqji5QwHFYLpmQ7te0Rme2/JjQxnUzEMGBNA7Kn6XaJLysAf30vFYiIiPq6uPeazcrKwvnnn4/Dhw9Hfd5ut8Nut8e7GAlBCIE3bs6F78lRAIBNBctx+0ex52wJX/ywNyama5cQwC2rEfBUA6Vbers0RESUBOI+AV1tbS0+//xzDBs2LN6XMgUhRIeGGkspUdvow7en3ZBS9vrEdDEJAdj0I44SsnaIiIj6BMNrXO677z5ceeWVyMnJwddff41FixbBYrHghhtuMPpSpqcEvAAiZwaWUuIHS7Zi59EzAIBRWQp+VZjaw6XruPCp/4HgatOJOT8xERGZneHB5csvv8QNN9yAU6dOYdCgQZg+fTq2bduGQYMGGX0p0yvadjuircDc4A9ooQUITqXvS+CZ9BOq+YqIiPo0w4PLihUrDD1f+FpF3Vm3KGFY0+B2joXL84l+v5QIzltLREREsST8IotCCMycORMzZ87sG3/ZC4HK/FJsLl6u2z1qz2Pw+tU+0T9kz549feJ9EBFR4jHFXPx9IrCEEwJ+qwtu52jg2+Cu/+e7XwDrGjAqS8HDjj09VpTgcGtjO/3W1tUF+7lY2NOFiIiMZYrg0icJgb25JcC6Bt3uQ9UqzrjreqQIoeHW355298j1iIiIuivhm4r6tFg1ST3UzKKqKpdYICIiU2FwSUAT9j/W20UgIiJKSAwuCchZc6i3i9Bl9bDDG5DsnEtERHHB4EKGKvAuwW0fqrju5XKGFyIiMhyDC3W7T43DakHBCKdu386j1WjwJ/CseUREZEoMLr3IZgGmjMgCAIwTX/ROIaRE7t6Hu3UKIQRW/iQfB+w3o8I+36CCERERReJw6F4khMAbtxfCF5BoaqxFbvMKyw0yymrZcWp2UVQvXJ7PWi5zVgFgTWvjFdGFFo8EW4eIiCiOWOPSy4QQSLNbIcJWWJ7hezbiOEV6e6Q86o1/iz1Mu7PYx4WIiAzG4NLDFEWBy+UCALhcLm1lZYfVglFZ+n+OcSnH414eKSXqEVbD09XQYk2DzC7U7/M3RD+WiIioi9hU1MOEEMjLy4OqqlAURVvOQAiBXxWmwtckoUgvphVOgyIUjH9iU9zKIqXEYztUHPIu6f7JhIA67z1s/eBdoKz7pyMiIoqGNS69QAgBi8USsQaTEAJ2qwKrzYG0DCeEEt81mhr8ARwKm+1/VFaw5qfLhIBqidI/h4iIyCAMLn1AcKHEQOfnTQk7vsI+H78uUPregpZERNSnMLiYXGihxI0bN2L37t0dDy9SQvnLv2mbafAytBARUcJjcDG58IUS3W43VFXt0Oukrw7iq53atts5Gpn9BmudhY3AmXOJiMhoDC5JSEqJPXv26PY5bl+DvPx8Q2td9u/fz/BCRESGYnBJELGGSYf4fV7IVrUpoWaizlJVFZ6aGt0+S0pkZ+HOUhQFzsyWqf+/rfYgEOC0/0REZBwGlwQRGiY9Y8YM5OXlRYSIn22y4vrHl0ENBLSOuKqqora2ts3zdrnjbhcIITBhwgRt+84yLrZIRETG4jwuCSQ0TDrEkZaBgtSvUdE4HABQ0Tgc28u3otHXBKfTGbM/SyAQ0GpsKisr4fF44HK5ogYio6XZLCgQB1EhRwNoWWwxzcaPGhERdR9rXBKYUBSs+K+b8P9N92v7amqDTTwej0erbXE4HNrz4SOM2uq4GzFjrlFlFgIrbSVcbJGIiOKCwSXBCUWB1RY7YEhVxehR58Lva4AMazpyu90x+5eEZswtMGLG3GhlFsHh1SE91VRFRER9H+vvTUyqKp796DPs/kdwTaA860HcPWs0RBtDmqWU2FZRqZsxd+wAC9Lt1riVc8vmLRg8IKtHmqqIiKhvY42LyYydkAdvk4S3SaLO68Vuf7b23G7/CDQ1tb2KtKqqqAvr0Fthn4+///xCQ+dviaYzc8wQERHFwhoXk5n+3C5Dz5cGb9xDCxERkVH4jWUCNgUoEAdjPj9OfNFzhSEiIupFrHExAWlJxf8MfBM2zz+jPw9gvHdpzxaKiIioFzC4JDhFUeDKysLuyaXol2FHbm4u9lRsRd4HP9COqZdho46khBJoBABU7toV3Fa92nMAoKiNPVb+luuyUy4REXUfg0uCC82oq6oqFEWBEAKTimajpmICMs/sBwDIweOBquDxk/Y8goy6LwAAPudICAG4PJ8GjztyAQDgwqo9AHquhiZ37yIcnPwbbWI8jiwiIqKuinsfl8WLF0MIgXvuuSfel+qzQjPqhr7whaIg4+cbEXigCnLhV1B/+JZ27Lwz8zDOuxTjvEtx63fXIdN9EPXSHqyVqdoO8eV2/cnPmgpY04wrrDUNyJ6m3+X5An5/IzZv3ozdu3dzThciIuqyuNa47NixAy+++CJyc3PjeZmkJBQFFkfzgoaNZ7T9n8iztZ8r5Ghc4Xtc21cgDmKlrUR/oh+/HZwxzrCCCeCW1UBdDfDYxuB1vUuAD1WMymrErwqroaqqbmkDIiKijopbjUttbS1uvPFGvPzyy+jXr1+8LkPtaB1k6mHXT/Ufj2YbIeBIz0TBCKdu96FqFT4uFk1ERN0Qt+CyYMECXHHFFZgzZ06bx3m9Xng8Ht2D4ucHvkVxm+o/nBACK3+SjwP2myPWLeISAERE1FVxaSpasWIFdu3ahR07drR7bGlpKUpKSto9jowRXgMzJScLDmv8mmyEEEgT3uB47RApsWXLlh5brZqIiPoWw2tcqqqqcPfdd+PVV19Fampqu8cvXLgQbrdbe1RVVRldJIrijzMVvHFbYY8Hh9w9i+D1qzh5qjrmIpBERESxGF7jsnPnTpw8eRKTJ0/W9gUCAWzYsAF//OMf4fV6dR0z7XY77PbYqx9T+xxWBQXiICrkaADBmXQPhNWsRGO3IP6hxZoGmT0NOFap7brl1PX4ZF1wUcgph8rx1/nFrHUhIqIOMzy4zJ49G/v27dPtu/nmmzFmzBg88MADHE0SB0IIrLSVoKG5023CzKQrBMQtqyFrPcDjmwDom6p2Hq1Ggz+ANBunEyIioo4x/BsjMzMTEyZM0O1LT0/HgAEDIvaTcYQILpgItJpJt1l4LUyBOAibMrbHCibs6T1zLSIi6vP4p26SWGkr0Sbdd8CLjeKNHru2w2pBwQgnKo4FR4yNyASO1QSfk1JyRl0iIuqwHgku69ev74nLJC3FnoHa/hOQcTq4BEBqdh4KvvwaFY3DAQAF9iqkwRuXKVs6IjQ0uuGJcwAAmwqW4/aPVADAnj174Kuv5SgjIiLqENa49AFCUZB+50YEvLVQFAWKLR0rpURDfS0AwKaoEE890LtlDA2NBmBRvQCsAIAaTw3sKQJut5sz6hIRUbvivlYR9YzQEgDCnhHsV6IoSMtwIi3DCSES65+5aNvtLRuciI6IiDohsb7RqO+KsvgiACjS2wuFISIis2JTEfWM5sUXpa8Oe7dtAd7393aJiIjIhFjjQj1HCAh7BsbnTe3tkhARkUkxuBAREZFpMLhQwuCq0URE1B4GF0oYW7Zswe7duxleiIgoJgYX6lXeAOBtklpYCc3nQkREFA1HFVGvurNMBVCPsUMzcPcEFXbOP0dERG1gjQv1uHR7CgrEQd2+T07UYv7aejxR3thmU1FobSP2hyEiSk6scUkCipJY+VSxZ+DNc9egsWoxJIBrfIu0lasPVato8AeQmRL50ZRSorKyEh5PcLFGrm9ERJR8GFySQMJ9sQsB5SerkeavB3z1+PvT5+EUnCjwLmnzZaqqaqEFANc3IiJKQgwu1DuEAGzp2o9pnPqfiIg6ILHaECg+rGmQ2YXapts5Fqpi78UCtUNKrS8L+7EQEVE41rgkAyGgznsPm8vWAkAwtCRa81EY5dV/R+XkR+GpqYlLPxYppTbkWlGUxGtKIyKimBhckoUQUC2pvV2KSKFVo49VarvElxWoPedbwJKq68cipYS3qaUGxtaFri3s4EtEZG4MLtS7mleNDniqgdItMQ9ramrCtS9uw66qem3fqCwFM2Z0rimJHXyJiMyNwYV6nxCALU23K7x2ZdO2HWhoaNCFFiA4dLq20Y9Mh9CGfKuqyuYfIqI+jMGFEo4E8PsDqaj8OhRU6jEis6Uf+dMzUnH/xkYAwI4t62G3CGRkDQKEgMfjidn8E+rwS0RE5sXgkiQURYHL5YLb7QYQ7NuRSBPThZfltHSGhZagYzUt6xdN+eQxAPcBAC7cPA9pwgu3cywq80sBIaI2/7Tu20JERObE4JIkhBDIy8tL2NE04WWZ4XtW+3mj7W7dNgA4aw7rtqUErO5/wu9vRIo1Ner7at23JSMjA7W1tUYVn4iIekji/MlNcSeEgMVigcViSajQAgAOqwUFOf10+wrEQXxPfKdb1+h8F+BAy2R1Wwtfwg98izDOuxS3fahGrHUkpUS9rwn1viZtFeri4mLk5+fH/00REZHhWONCCUEIgZXzi9Dgb+6DIiUcf34O4kuJlbYSNCA4Yd6eSX+AKG95XbVqx045Wts+VK3Cp51C4gdLtmLn0TPa8yMyFbxbKCECTZBSJlyAIyKitjG4UMIQQiDNFvaR/MlqwF8P4atH2jPnAQCKtt+OerTM+vuLTWrr0wTbjgA0+AO60AIE+8rk/iY4Ed+oLAW/KkzVamVCHNbEq5EiIqIgNhVR4gqtZ5Q+ULdkgQNeFKR+rTt0nPhC+zl37yItvIQ8OytNNzIJCNbOeAPAtS+VY9zDa7THNUu2cqkBIqIExRoXSnxCADevxp6d2+D2eOByOvHm5EI0BiQCTU2ofeESOD0HMd67FADg8hwE/PWApWVumFQLUFKcioJpxfAGgILHgrUuvgCw61i17nIVR8+gwR/Q1/4QEVFC4G9mMgWhKMgtKNJNMJdmAaTVgsOznsX+774BPgw2G9XDDp+nGimOlloTRW2ERQikwYtYc+Q+fZED929o6IF3Q0REXcXgQqYRGhXVel9efj5qG33Ah8FalALvEuB3+5qbj84G0DLfCzYCkHYAwdoZb1NLHxm7pfP9WsIXbAxJtKHmRER9CYMLmZ4QAhmpNhTk9ENFWGfcA/Lsdl8bmoG3K2JNaseFG4mI4sfwzrkvvPACcnNz4XQ64XQ6UVRUhPfff9/oyxDphIZTf/zIJdj6nwURz2++cDn2XPE+5MKv4Lhvv25uGCA4wqizq023ntQuJDRzLxERGc/wGpezzjoLixcvxqhRoyClxPLly3HVVVehsrIS48ePN/pyRBohBNJTbVBlVsRzU4svhiu9eVZdIbS5YbZOewmqxQ6bAvjUsNoXXz1gzQx2DO6A4uJiAMCWLbFXuG5L6yYnNjcREUVneHC58sordduPP/44XnjhBWzbto3BhXqNxaIPAkIAafBidvk8bV99WN8XPH0e5Ih8iFtWRw0voQUbpZTwBQBvQGr7owWO8GDSOpREa3JicxMRUXRx7eMSCASwcuVK1NXVoaioKOoxXq8XXm/LFO5cBI/izpoGmV0IUVUe8xAJoOFYJWStB8KerpuUTlVVbKvYBY+nBk+UNwYXgFwbmtQO+HWBoptHpnUwaR1KojU5RVsokoiI4hRc9u3bh6KiIjQ2NiIjIwOrVq3CuHHjoh5bWlqKkpKSeBSDklS63YoxA2349DsfAGDMQBvS7daWA4SAOu89bC5bq3udNyC1IdU/8C3CJ/Js4PFNAIApOVl447bgJHjXvlQeMfdLyKFqYOrGeRBf5KHmP/5Pq61xu91aUGkrlBQWFqK8PHagIiJKdnEJLqNHj8bu3bvhdrvx17/+FfPmzUNZWVnU8LJw4ULce++92rbH40F2dnY8ikVJQlEUvHfvbNR5/QCCQUZRWvVDFwKqJVW3S5USQD0ABENLmJ1Hq/Heuo0AgF3H6nXPjRNfYLltMaZ6lwAI1tZc8/nl2PmbddoxoeUFgOCkd/W+JlgsEg6rPrywhoWIqG1xCS42mw3nnRdcW2bKlCnYsWMHnn32Wbz44osRx9rtdtjt9oj9RN2hKAoyHZ37XKVnZCAUXEL+e7qirYd010f6556blYZZ0/KQ8dv/0BaBBIAG6Bd+BILLC3h8wH9X6JuWCnL6YcVtF3SqnEREyaxH1ipSVVXXj4WotymKApfLpW27XC4UXzAFU3KytH0F4iAG2iXyrVURr89P+QIj+lmRYfG3OfDo6Ysc2s93f1QfDC1hQssLSCnhbZKo9wXgbZJcK4mIKAbDa1wWLlyIuXPnYsSIEaipqcFrr72G9evXY82aNUZfiqjLhBDIy8uLGOnz1/nFaKirAZ4+Dw54oRYexEWbbkBDq1pBB7wQ7wF4L/LcDbLl2LOybBiV1YBD1S3Pj8gEVi64GIWL1wMI9uN9vLwRh6tVYO2HAIJNSzNmSG3l6lA5ozZ7ERElEcODy8mTJ/HjH/8Yx48fh8vlQm5uLtasWYNLLrnE6EsRdUusJQTSbBZABGsILYoFaB46jfsOA1YHsPRy4MQ+/cnOmgp8Hvxxhu9ZbfekNf+Of8CrCz4Onxf1Ky8EsAAA0OAPBENLmEPVKk7V+XDzsgocOF6j7R8z0Ib37p3N8EJEScvw4PLKK68YfUqixGBLA2zpwB0bg6tPh3GkOFDw4jbdkgMF4mCwZiYUfMKILyuiXmLdgsmY/fwuAEBh6UcRz3/6nQ91Xn/M/jucyI6I+jquVUTUFn9d5D4hggEmfBeAlfOL0OAPBNt+/A1wWGdCiDu0YwKBALZt/BAXbpmnP19Yf5ah/zMJBeJBVIR17h2RqeC/pmfhjvdPt1lUTmRHRMmAwYWoLc9O6vChwWam5v+lwueNaaZIiYx+gyP2N9S3hCMBaMsRAMDWaS9h+vSL4FMF8H7bywmEJrILzeYLACdPVaO20YeMVBvDCxH1CQwuRK1Z04DsaUDVtpZ92dOC+7tBCIHc3Fzg7/r9Fz+3Q/vZ97MKVO7ZpdXKzC6fB5QDgfDlCKIIX4JA6+gbsnYtCnL6YeX8IoYXIjI9Bhei1oQAblmt78diTevwgottnzp4Dge8ON+l4jN3SyfbAnEQjrQi+K0uuJ1j4fJ8EvUcgYCKQCCg9V8JbyLyBRDR0RdoGXat1QgREZkUf4sRRROlH4vRp1/T+EP9aCN4oabcCldWFirzS6GoXricTuSOPQ94eoJ23IbN22C3AE6XE4VT8iGljLrG13OzgjVErSfOIyIyMwYXop4U1gzVerSR2zkWGda0yPllWo1gagki9ZiyYyveuL1Qe65w2jRtLhh7lNUDpJTBDsTNwhePjKatVa2JiHoDgwtRTwprhpJSYu/evXA315Zk9huMPIsl6vwyDnhRIA7qRhsBwM5j1WjwNWkdcr2B2DPuSgn8YMlW7Awbsj1umLO570vzdcKCTHurWhMR9QYGF6Ke1twMJQDkFhS1X6NhTYMYMQ0rj7WMNqqHHQXNizru3bU9bObdlrlfFLVRd5oGf0AXWgDgwHEPxi9qmdU6vBNvaJRSSFurWhMR9RQGF6JeFK12JcpBwC2rIfz1SEOwJuTjHeXAu8FgcqamLqJDboE4iDmbQ0EnOBopEGhpItr+q9m4ael23ay8QLATb2j4NBFRImJwITKDsM7CAsC4SQXAu5siDquwz0cavNqMvQhrOSrfVq79fPjT/bg/NwDf+GAHXm+gpe/Mls1bMHhAVnDoNhFRguGCJ0QmFN6kpARaOvimwYu0+z+G+mAVNhcvj/n6Gk8NhBCwpwgMyMrExTOKtOe8geDEdU1NTdq+ltWrm7RH+ArWoXlkQg+ubk1E8cIaFyKTu2DHzwEsadlhSwMsqQhYUnXHTZ4yGfgoWEujqI1QAgLTCgthtVrR4Pdpx4VqXiZ/VoGfjw0GkJY+NGu140L9YaSU2FaxCzWelmanQf1dyM/Pj9pnh+spEVF3MLgQmZHVof3YIFvmgpFnTQ0OuVYjJ6GzKC19aS7cPA9pwgtsDG47JFBgfxIV3mztmF3HqtF0XrBSNtakdt/WeDHvT9vxyQl9X5lRWY14PzeAlBT9rxiup0RE3cXgQmRGYV/yM3zPtuz+8dtdmuFXCGClfAANdrtuxFL+5tubjwhufzjwv7F/wq9x1/oGAMAFT6yLer5D1Soa/AFktgourUcqARytRESdwz4uRCbksFpQkNNPt68gpx8czVP6K4oCl9Ope16x6P9331y8HIEHqoCFXwFDJwYnxBNe3aR4Bd4lWogBgKE1++FK8WJUlv5cIzIVvPbvQ1G+cJa2LxBQ2+zrUlhYGPM5IqJYWONCZEJCCKycXxRzFtzQgo4N77a8psEX0J0jYEkNjlSyWIA7NmprM6WqKqa8shs7q/Q1IwXiYPNoJYFfFdoRfrqLZxTDZrOhtrGlr8yGzdswqL8Tubm5SLOlaOsqeZuCYcYbALxNErYuVrS0ngW49T0gor6JwYXIpIQQbS6a2PoL/OL/3qDbdjmdUBQldLA23FoB8NefTdeHAl89HE//B4QA+qXbcKbOC7vFDggBl8sFm80GIUTL+RDq5FsPvHUCBTn98PqtF+C6l7ZhV1XzkgXNSxOMylIwY0bnRiFJKSNmAQaAKTlZWHlHka4cRmJYIup9DC5EfVi0pQJCNSe5ubkxv3AjQ5ElOIEMgImr/w0Ags1MtnTdqKA0WwoKcvqholWgqDh6Bu9/uLEltIQ5VK3iW08jMhzWYJmtFlgsbYeBaLMAA8DOo9Uo31mJaQWTDQ8TbYWlN24r1IIbQwxRfDG4EPVVUZYKAIJhRoyY1rnVr8MWhwyxWCzBZqYwoSas2kYftmzeopvYLtzSq4Zg3LhxKCwNLlFQ9FSZ9tyoLAVPzB6IyZMn614TXttRH9ZO1XoVbI/bE5fOvm2FpXXrN8KeIrQRUgA45JsoThhciPqqVksF6FjTOjf6KGxxSN05oh4arK2xp7SaujfMBZMnwWG1YMxAGz79zqd77lC1itPuWmzcuFFbPFICeKK8EcdqIodlR1sFuys6M7/M1l/OxI4dOyJCWWiE1J49e3SjpzIyMpCfn9+hc4fKwiYpougYXIj6srC+Kz15LkVR4HK5cPJUtbbPlpYBoL75VMFmlffunY06rx9AsBYlVAPjDQASMmZYCRmVpcBmAVIznNq5gZZ1mTpa09GR+WXCR0jt3bVDF5gKp03D7opy7dqth3zX1gaDWKxzh5cjEAjg2pfKsetYte65ccMyseK2Qi1vKoqidXomSiYMLkRkOCEE8vLygqOMmmfbnf/3kxHHKYqCTEewGctiaVliIFrzEhD55R2qhWhsUoG3TmjHbdmyBQA63HTTkfll1CiT+oVYmoeaSylR7wtoI6cKp03DoU/2o66uLuLcfr8fFotFK0soPH172o1dxyLf/4HjNcj9zVrdvvDVvImSBYMLEcWFEAIZqbaIzroFOf3gsEa274TmpmndsXfcMGfzl3Ps5hIRiN4kFavppq3ZegsLC1FeXh6xX3fMtGnBsBK2BIKUMrg0wpoPWw5c+yHGDXNixW3B8gcCKsq3bYPN0hKunE4nRo+fCFVV8e1pN7xhLUTPzUqDzRK7mazi6Bk0+ANtji4j6mv4aSeiuGlvvpn2jm3r+FjyphbCbhEo3xbsSNzU1NSp2Xo70qnXYlF0x9X7AqjxRV8a4cBxT0RNyagsBb8qDK4l9ct/fIPDbx6Peh27BbCnCJQUp8LqyMCkSbkIBFRs2LwtZq1U6746ADsHU9/C4EJEcdXefDNdPTaWUD+ZkLH7y3H3BAkBoGDqVOzdtUPXb6XBH1zROtS805WVrVtfM1RT8tzHFhw4XhNx/KFqFflTp6F827aoYQcI1kzNvvgCrayh8BEIBGJ2SI7WVwfgelDUtzC4EJHpxWpmAoBPTtRgfqj7y9oyjMgM1nbUeZtw/cvbceC4/ks+POjUNPiQkWptDgz6gBHrmpNHZCHT5oMQAv+3oBi+sJfV+wIoeCxY++INSF2zUPnCWdi9I9hEVXxhMTJSbZ0KGlJK1Db68O1pt26/zdJSw6QoCmtjyPQYXIjI9Fo3MwUCAWzevCVq35BjNSrmr63X9U8Jpw86H2pBp9WKCbprBgIBbNkc7LMyozgf27dv145Ji7GmQetaGrtFNA8hR6dHC6mqih8s2RoxEgmAVv6aBh/279+Putpa2CwtMysnSm2MEU1cbCZLDgwuRNQnhDczSWnBkAFZKCmu1gJHptOJx7bWRTTdhL7YgeidYLWgEya0pEDomoFAS+gIhZZoYtXSjMpSULljW5e+YAOBALbsqowaWnTlX9vSaTjUx0YIEbW/T6gJrXUQSLdbO7ycQmdCRKiJy+126wKi06Vf66q967XXTBatTG2Vqzt68lrJhsGFiPqc0HDs1kOg3y2QKN9ZCY+75cstvPbh93OHYPT4iQCCI4Cuf7k8IugU5PSL6IcTmrfG7W5ppnG5XBFf8uG1NFJK7N27Fx63J6IGpDNrLX20YYtu+7lZaRjU34mJE3Nx7YvbIprCgJY+NqG5Z4LDuJuafwauWbI16uvGDLThvXtnt1m+0Ln27NmDGo/+3qVnBDsYa9vNQUhVVbjd7uCoLF2fn+BaV6FlFdpaCiLakHZA30wWCjahiQ1jlat1uOhIB/HWQaWyshK1tbURxyVKDZeZMbgQUZ8khIgYISSEwLSCyTHnZGn9hfX3u2Z0aJRTrKAUa/RUKPhEK0t7f5ErigKnq2XCvdaji2Zd1NI/5u93TUe9r0m7Rvgkf+Fzz0Sb8C6aT7/zoc7rR6bDHrVGof1z1QNvtzTRhYIQAPgC0UdlAS3LKgwekBXzSz985fHCadMAQBtZFiprKLREDUhvR286BNpfvDNWjVFIeDBta0QbdQyDCxEllWiBpq1jOzMiqrNfRl19TeGUfEyp2IqdR6t1zxXk9NN16hVCIN1u1Z4Pn+QvxBdA1KAxdmgm7p4QgAAwPm8ypj+zSXsu1he1N4Cok+fF8ul3PnjqvRH9gHb812wc/vRjfHvaowtmsb70WwKTfuXxkHEfb8GK2wrhbQp2iI4VkGJpvXinqqrajM9AsHbu5Gl3zPl2puRk4bVbCrB169ZOXbctXe3PE48mrNA5QzNWx5vhwaW0tBR/+9vf8Omnn8LhcKC4uBhPPvkkRo8e3f6LiYioXYqi4K/zi7s1501oht/wkU2vfH8QmhqDs/zaLAHtXBmpNt1rYzfttAg1WYVWIQ//wqxt8GsLa5Zv26b1DwpJt6dgWsHk4MzLH0XWhLRey6neF2izxijarMMAUPHrOXBY9SOt9uzZi7rmJp7wRUJDi3cKITD3v9fi4Cl/xPli2Xm0GtWNLUPu631NsFhkh/+9ooWNaE1R7TVDxeoH1JHXtlW20DlbzxAdL4YHl7KyMixYsABTp05FU1MTfvWrX+HSSy/FgQMHkJ5u0JopRERJrrtz3rQe1QQATY11ESHC5XJpzUpAy8rcsSbcA4I1DP8yO3aflI704WldGxUMWDLmMPaQ52alYdZFxQAQc2QZEKydGpAeOeT8wsKCsKa1pojgVOf1txlawmd6Dh/+rrvfzSPa2muCAoLBYNeuXfjuTPT321YzVOvA09TUFDFcPuTkqWq46xp1/9ahWpi2AlasvkXxZHhwWb16tW572bJlGDx4MHbu3ImLLroo4niv1wuv16tt9/QNICJKFm3NdxNasDLaSta1jS0reEcLPBW/nqNr7mmvJiH8ubyphUizWYKBaG3kuUO0JqMYw9hD7yHTBi3QpTbPOpw/Vd/npa15csIDk8XS9mSEW385ExmOlqa41gtftnW/gWBNzJbtO1E0dbJuf3izTSAQwAMfnIwZEscNy8SrtxRge/MyFaHanNQUBbt379a+U6P37WmlVRNbSEfXxCosLGzzeaPEvY9LqJd9//79oz5fWlqKkpKSeBeDiCjptZ7vJvwv8lDYiNbXwWG1YFSWgkNRvvSm5GRFrbnoqGhBKPy6sb74Q8PYw69qswBZWVm6ifaEENroqa7OkwMEa3xqGnxoCOvUk+GwaouERhNrFFl4E9Rpdy3WfrRB97rQMHAhBGoafG2GjQPHa5D/eGRtTngfpVD5O9u3JyTamljRZp2O1jE5HoTsyvzWHaSqKv71X/8V1dXV2LRpU9RjotW4ZGdnw+12w+l0xqtoRETUQYFAABs2bIj6xTT74hlISenc38BSSlyzZGvUQNL6r/vQ8OrQl35IqIkkWg1RqE/N7t27dUPUgc715aj3NWHcw2tiPr9v0Zw2g0troaBY72vCxJLYNUexlC+chUyHrflcsYett2fHf81Gul0fQsKblEKLgYYHrPD+QFIi6lQBAHD0ye/H/fs7rjUuCxYswP79+2OGFgCw2+2w2zv+D09ERD1LURRkZWVFDQFdGdYba0FNILKZKTQyKtYw9raGnbceot7W8dG0VeMzZqBNN2KrI0LNUBmpSptNSNGMylIwIN2mC4l/v2t6RG2OROzVxIFgMByYYW/zHgQCgebaqZZ6jVBfnUQQtxqXO++8E++88w42bNiAkSNHdvh1Ho9Hm8iJNS5ERIkhWafTD9X4tH7vnZlFONZ5Wwe38ADS2qD+LuTn57c5YihUxvBzd2UyvUAggI0bN0JKiT98Yos5Yiu8uc7pcuLss0di+OAB5qtxkVLi5z//OVatWoX169d3KrQQEVFi6sqcM31B67lwjDxvtFFhna1ZCj9f+L9PZieb72Kd8+djffCdn6bbXzhtGiwWRReCFEVBTU1k01E8GB5cFixYgNdeew3vvPMOMjMzceJEcLUyl8sFh8Nh9OWIiIj6jEQIiOFLWAghENYdBi6XC6701F6taTO8qSjWm1m6dCluuummdl/PpiIiIqLe1ZUZdnvq+zsuTUVERERkXolQ8xNL13sWEREREfUwBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg3Dg8uGDRtw5ZVXYvjw4RBC4O233zb6EkRERJSkDA8udXV1mDRpEp5//nmjT01ERERJLsXoE86dOxdz587t8PFerxder1fbdrvdAACPx2N00YiIiChOQt/bUsq4Xsfw4NJZpaWlKCkpidifnZ3dC6UhIiKi7jh16hRcLlfczi9kHKOREAKrVq3C1VdfHfOY1jUuqqri9OnTGDBgAIQQ8Spal3k8HmRnZ6OqqgpOp7O3i9MreA94DwDegxDeB94DgPcACLaYjBgxAmfOnEFWVlbcrtPrNS52ux12u123L55v2ChOpzNpP5whvAe8BwDvQQjvA+8BwHsAAIoS3wHLHA5NREREpsHgQkRERKZheFNRbW0tDh8+rG0fOXIEu3fvRv/+/TFixAijL9fj7HY7Fi1aFNG8lUx4D3gPAN6DEN4H3gOA9wDouXtgeOfc9evXY9asWRH7582bh2XLlhl5KSIiIkoycR1VRERERGQk9nEhIiIi02BwISIiItNgcCEiIiLTYHAhIiIi00j64PL888/j7LPPRmpqKgoLC7F9+/aYx7788suYMWMG+vXrh379+mHOnDkRx990000QQugel19+ebzfRrd05h4sW7Ys4v2lpqbqjpFS4uGHH8awYcPgcDgwZ84cHDp0KN5vo9s6cx8uvvjiiPsghMAVV1yhHWOmz8KGDRtw5ZVXYvjw4RBC4O233273NevXr8fkyZNht9tx3nnnRR012Jl7mgg6ex/+9re/4ZJLLsGgQYPgdDpRVFSENWvW6I555JFHIj4HY8aMieO76J7O3oP169dH/X/hxIkTuuPM9Fno7D2I9v+6EALjx4/XjjHb56C0tBRTp05FZmYmBg8ejKuvvhoHDx5s93UrV67EmDFjkJqaiokTJ+K9997TPW/E90NSB5c33ngD9957LxYtWoRdu3Zh0qRJuOyyy3Dy5Mmox69fvx433HADPvroI2zduhXZ2dm49NJL8dVXX+mOu/zyy3H8+HHt8frrr/fE2+mSzt4DIDildfj7O3r0qO75p556Cs899xyWLFmC8vJypKen47LLLkNjY2O8306XdfY+/O1vf9Pdg/3798NiseCaa67RHWeWz0JdXR0mTZqE559/vkPHHzlyBFdccQVmzZqF3bt345577sGtt96q+9Luymert3X2PmzYsAGXXHIJ3nvvPezcuROzZs3ClVdeicrKSt1x48eP130ONm3aFI/iG6Kz9yDk4MGDuvc4ePBg7TmzfRY6ew+effZZ3XuvqqpC//79I34fmOlzUFZWhgULFmDbtm344IMP4Pf7cemll6Kuri7ma7Zs2YIbbrgBP/nJT1BZWYmrr74aV199Nfbv368dY8j3g0xiF1xwgVywYIG2HQgE5PDhw2VpaWmHXt/U1CQzMzPl8uXLtX3z5s2TV111ldFFjZvO3oOlS5dKl8sV83yqqsqhQ4fKp59+WttXXV0t7Xa7fP311w0rt9G6+1n43e9+JzMzM2Vtba22z2yfhRAActWqVW0e88tf/lKOHz9et++6666Tl112mbbd3Xva2zpyH6IZN26cLCkp0bYXLVokJ02aZFzBelBH7sFHH30kAcgzZ87EPMbMn4WufA5WrVolhRDyiy++0PaZ+XMgpZQnT56UAGRZWVnMY6699lp5xRVX6PYVFhbKO+64Q0pp3PdD0ta4+Hw+7Ny5E3PmzNH2KYqCOXPmYOvWrR06R319Pfx+P/r376/bv379egwePBijR4/GT3/6U5w6dcrQshulq/egtrYWOTk5yM7OxlVXXYWPP/5Ye+7IkSM4ceKE7pwulwuFhYUdvq89zYjPwiuvvILrr78e6enpuv1m+Sx01tatW3X3CwAuu+wy7X4ZcU/NSFVV1NTURPxOOHToEIYPH45zzjkHN954I44dO9ZLJYyfvLw8DBs2DJdccgk2b96s7U/Gz8Irr7yCOXPmICcnR7ffzJ8Dt9sNABGf7XDt/V4w6vshaYPLd999h0AggCFDhuj2DxkyJKJtNpYHHngAw4cP1/0jXH755fjf//1frFu3Dk8++STKysowd+5cBAIBQ8tvhK7cg9GjR+NPf/oT3nnnHfzlL3+BqqooLi7Gl19+CQDa67pzX3tadz8L27dvx/79+3Hrrbfq9pvps9BZJ06ciHq/PB4PGhoaDPn/y4yeeeYZ1NbW4tprr9X2FRYWYtmyZVi9ejVeeOEFHDlyBDNmzEBNTU0vltQ4w4YNw5IlS/DWW2/hrbfeQnZ2Ni6++GLs2rULgDG/a83k66+/xvvvvx/x+8DMnwNVVXHPPffgwgsvxIQJE2IeF+v3Qujf2ajvB8PXKkoWixcvxooVK7B+/Xpd59Trr79e+3nixInIzc3Fueeei/Xr12P27Nm9UVRDFRUVoaioSNsuLi7G2LFj8eKLL+LRRx/txZL1nldeeQUTJ07EBRdcoNvf1z8LpPfaa6+hpKQE77zzjq5/x9y5c7Wfc3NzUVhYiJycHLz55pv4yU9+0htFNdTo0aMxevRobbu4uBiff/45fve73+HPf/5zL5asdyxfvhxZWVm4+uqrdfvN/DlYsGAB9u/fnzB9cpK2xmXgwIGwWCz45ptvdPu/+eYbDB06tM3XPvPMM1i8eDH+8Y9/IDc3t81jzznnHAwcOFC38GSi6M49CLFarcjPz9feX+h13TlnT+vOfairq8OKFSs69IsnkT8LnTV06NCo98vpdMLhcBjy2TKTFStW4NZbb8Wbb74ZUVXeWlZWFs4///w+8TmI5YILLtDeXzJ9FqSU+NOf/oQf/ehHsNlsbR5rls/BnXfeiXfffRcfffQRzjrrrDaPjfV7IfTvbNT3Q9IGF5vNhilTpmDdunXaPlVVsW7dOl2NQmtPPfUUHn30UaxevRoFBQXtXufLL7/EqVOnMGzYMEPKbaSu3oNwgUAA+/bt097fyJEjMXToUN05PR4PysvLO3zOntad+7By5Up4vV788Ic/bPc6ifxZ6KyioiLd/QKADz74QLtfRny2zOL111/HzTffjNdff103HD6W2tpafP75533icxDL7t27tfeXTJ+FsrIyHD58uEN/yCT650BKiTvvvBOrVq3Chx9+iJEjR7b7mvZ+Lxj2/dCpbsV9zIoVK6TdbpfLli2TBw4ckLfffrvMysqSJ06ckFJK+aMf/Ug++OCD2vGLFy+WNptN/vWvf5XHjx/XHjU1NVJKKWtqauR9990nt27dKo8cOSLXrl0rJ0+eLEeNGiUbGxt75T22p7P3oKSkRK5Zs0Z+/vnncufOnfL666+Xqamp8uOPP9aOWbx4sczKypLvvPOO3Lt3r7zqqqvkyJEjZUNDQ4+/v47q7H0ImT59urzuuusi9pvts1BTUyMrKytlZWWlBCB/+9vfysrKSnn06FEppZQPPvig/NGPfqQd/89//lOmpaXJ+++/X37yySfy+eeflxaLRa5evVo7pr17mog6ex9effVVmZKSIp9//nnd74Tq6mrtmF/84hdy/fr18siRI3Lz5s1yzpw5cuDAgfLkyZM9/v46orP34He/+518++235aFDh+S+ffvk3XffLRVFkWvXrtWOMdtnobP3IOSHP/yhLCwsjHpOs30OfvrTn0qXyyXXr1+v+2zX19drx7T+vbh582aZkpIin3nmGfnJJ5/IRYsWSavVKvft26cdY8T3Q1IHFyml/MMf/iBHjBghbTabvOCCC+S2bdu052bOnCnnzZunbefk5EgAEY9FixZJKaWsr6+Xl156qRw0aJC0Wq0yJydH3nbbbQn7P2dIZ+7BPffcox07ZMgQ+S//8i9y165duvOpqiofeughOWTIEGm32+Xs2bPlwYMHe+rtdFln7oOUUn766acSgPzHP/4RcS6zfRZCQ1pbP0Lved68eXLmzJkRr8nLy5M2m02ec845cunSpRHnbeueJqLO3oeZM2e2ebyUwWHiw4YNkzabTX7ve9+T1113nTx8+HDPvrFO6Ow9ePLJJ+W5554rU1NTZf/+/eXFF18sP/zww4jzmumz0JX/H6qrq6XD4ZAvvfRS1HOa7XMQ7f0D0P1/Hu334ptvvinPP/98abPZ5Pjx4+Xf//533fNGfD+I5gISERERJbyk7eNCRERE5sPgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbx/wM3J5Fg0MWcegAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "maxfreq = 1.\n", + "dt = 0.2 / maxfreq # smaller than the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n", + "\n", + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "81bffa81", + "metadata": {}, + "source": [ + "# The Cross spectrum\n", + "\n", + "A great new addition to Stingray is the Lomb-Scargle *cross* spectrum. The cross spectrum is the basis for many of the spectral-timing techniques that Stingray was born for (e.g. the covariance spectrum, time lags). \n", + "\n", + "Here we show a simple usage of the cross spectrum as a proxy for the (Poisson noise-subtracted) power density spectrum, using two datasets from two identical instruments onboard the same satellite.\n", + "\n", + "Time lags measured with this cross spectrum make sense in our tests, only when the light curves are sampled at the same times. Also, we do not provide error bars on the time lags at the moment. Use with care!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b047a2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:02, 107.72it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE6klEQVR4nO3df3xT5dk/8M9J26Qt0ApUWsqvggpbQNvZ0q5Mt6LdWJ04cfCwZ5tWfMbEpVPXR/cA7kvHprIfythctioOQacb1s1uAwVGdUOlrrRYpxYQtEAFWiiFhqYlocn5/nHaNGl+pyc5ycnn/Xrl1eScO+dcJdZeve/rvm9BFEURRERERDFCo3QARERERMFg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFlESlA5Cb3W7HyZMnMWbMGAiCoHQ4REREFABRFHHhwgVkZ2dDo/Hdt6K65OXkyZOYMmWK0mEQERFRCNra2jB58mSfbVSXvIwZMwaA9M2npaUpHA0REREFwmQyYcqUKY7f476oJnkxGo0wGo2w2WwAgLS0NCYvREREMSaQkg9BbXsbmUwmpKeno7u7m8kLERFRjAjm9zdnGxEREVFMUU3yYjQaodfrMXfuXKVDISIiojDisBEREREpjsNGREREpFpMXoiIiCimMHkhIiKimKKa5IUFu0RERPGBBbtERESkOBbsEhERkWoxeSEiIqKYwuSFiIiIYgqTF4ouppNA52FAXaVYREQkI9XuKk0x6OB24E/fkJ5PLQbKtwEJqvlPlIiIZKKanheDwYCWlhbs27dP6VAoVKdbhp4frwde+C/lYiEioqilmuSFVMg5mSEiIhrA5IWiT/a1SkdARERRjMkLERERxRQmL0RERBRTOJUjkjqPAG+uBy71juw6E/TA5x8EBEGeuIiIiGIIk5dI2rcRaH5+5Nf54GVg9m1AxpUjvxYREVGMUU3yEhPrvPRbpK9XfQm48ouhXaNuLWDtAWwW+eJSm3PHgH1PA+NmAAXLlI6GiIhkpprkxWAwwGAwOHaljGqTCoCi74T23j2/kJIX8m7vE1IvFwBccQMwdpqy8RARkaxYsEvq41xTNNL6IiIiijpMXoiIiCimMHkhIiKimMLkhdStaTNgOqV0FEREJCMmL6Ru/64Gtt2vdBRERCQjJi+kfuZOpSMgIiIZMXkhIiKimBJ1yUtbWxtKSkqg1+txzTXXoKamRumQiIiIKIpEXfKSmJiIDRs2oKWlBbt27cL9998Ps9msdFikhAungGe+AlzqUzoSIiKKIlGXvEycOBF5eXkAgKysLGRkZKCrq0vZoCiy0icBSanS82NvAu3vKRsPERFFFdmTlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHB47Wamppgs9kwZcoUucOkaJYyDvj+B0OvRVG5WIiIKOrInryYzWbk5ubCaDR6PL9161ZUVlaiqqoK+/fvR25uLhYsWIDTp0+7tOvq6sIdd9yBp556yuf9LBYLTCaTy4NUIHWctLEiERHRMLInL2VlZXj44YexaNEij+fXr1+P5cuXY9myZdDr9aiurkZqaio2bdrkaGOxWHDrrbdi5cqVmDdvns/7rVu3Dunp6Y4He2mIiIjULaI1L1arFU1NTSgtLR0KQKNBaWkp6uvrAQCiKOLOO+/EDTfcgNtvv93vNVetWoXu7m7Ho62tLTzB223ApYsje9j7wxMbERFRHEmM5M06Ozths9mQmZnpcjwzMxMHDx4EALz11lvYunUrrrnmGke9zHPPPYerr77a4zV1Oh10Ol1Y4wYAfPw68Ievhf8+JJ+pxcDxeqWjICIimUU0eQnEddddB7vdHvT7jEYjjEYjbDZbGKKSUWIyMLVI6SiIiIhiVkSTl4yMDCQkJKCjo8PleEdHB7KyskZ0bYPBAIPBAJPJhPT09BFdy6PpJcBKGYakErRAUvLIr0NERBSnIlrzotVqkZ+fj7q6Oscxu92Ouro6FBcXj+jaRqMRer0ec+fOHWmYniUkAslpI38wcSEiIhoR2Xteenp6cOTIEcfr1tZWNDc3Y9y4cZg6dSoqKytRXl6OgoICFBYWYsOGDTCbzVi2bNmI7hv2nhciIiKKCrInL42NjZg/f77jdWVlJQCgvLwcmzdvxtKlS3HmzBmsWbMG7e3tyMvLw44dO9yKeImIiIg8kT15KSkpgehnRdSKigpUVFTIet+YKdil6NFvkWaQHdsLLP49MNvz2kRERBRdom5vo1AZDAa0tLRg3759SodCvogicGI/cPgfwNE3AZuCa9+cbgGOvgGINqDmTimZGXTqP8Bjs4A/LOb2BEREUSbqpkqTyh3+B/DCkqHX838IfOFBZWIZnpT0XwQSB9YM+qgO6GkHjrQDFhOQzDoqIqJooZqel7DPNiJ5dLf5fk1EROSHapIXDhsRERHFBw4bxaNzx4Dzx9yPXzYVGJsT8XDQ2wX0nQP6zkf+3kREFHOYvMSb7hPAr/MA0cMWDIIGuP89IH1y5OJpfw94bCZgvxS5exIRUUxTzbARa14CZDohJS6aJODyTw09NEnS8e5PIhvPmYPKJS4nmpS5LxERjYhqel64wm6Q0icDhn8Pvf71tUDXR8rFo4Q3Hlc6AiIiCoFqkhdSQM8Z4O/3AebTQ8euWQoULpf3Po2/B47sBmZ+GZic771dvxXYXgk0P+//mqaTwIVTwcXR0QLU/Ri4Yj5QdHdw7yUiItkweaHQHfkHcGi767Fzx+RPXv6zVfr6Xg1wX7P3dicagXee8389ux3YsSr4OOp/A3z4qvTwlbzYbdIaMgn88SIiCgfV/N+V2wPITBSlYtqL512Pj5sxVNBrH/i3npgH5H0DePUH0oJuOx8Cxl8J5N8JCIJ8MVlM3s/t/Q3Q8GRg13nlf4GWWun5mImB98Bc7Pbf5tJF4HfF0uyp4grgk33AjWuAzNmB3YOIiPxSTfLCmheZffAy8JKHnb4TtEDlQWDU+KFjozOBWWVS8tJ/UeqhAIBp84DLZ4U/1q5WYNdDgbf/cOfQc/1XgX9X+27f1gBccYPrsRfvAOZ+Gzh7BDjfBlx3v7QKb3cb0PWx1Oa1nwzcbwfw/Q8iO4uLiEjFVJO8kMwG14HRpQNp2dLzzg8Bm1VaNt85eQGkNWIWPSntF9T4jNRLYumJTKz9F8N7/ecXS9sYOGv5K3DoVenfAwDGTQeuvcP7NY6+BeQuDV+MRERxhMmLWplOAmc9zB46czC463z6ZuDW30rPf3GVa3HucLlfl75+8LLnIZ7Ow8DJ/f7vmTref5tIa/+P+7HBxAUATr4DfOb2yMVDRBTHmLyo0cVuaepzf5/3NkKEl/jptwBPzQesFzyfz5wDzP0fab0Z/Vf9X892SRqeiZahmMZNQFKqVOdDRERhxeRFjXrODCQugpeaE0FKFCLpUu9Q4nLFjVLydOQfQ+dHZQAFdwV+vWe/Chx7Cxg1Afhmje+29ktScbEmIfDrv+2nDsaTps1MXoiIIkA1yQtnG3mQnOa6EF20+MaLwFu/dE1egtXxvvTVfBro6/Ld9tS7wOOfAu7eA6RNDOz6vZ3BxySKwb+HiIiCpprtAbirNPlkPu25bsUbTVL4YiEiohFRTfJCRERE8YHJC8W+916S71rvbgUeznIvdtYkAge3yXcfIiIKGZMXin2B7GUUqHee8zxLKzFZvnsQEdGIMHkhZV3qVToCV8FMIR81IXxxEBGRV6qZbUQxJvNqAAKAgRk6E/P8v0e0A7XfBTo+CGyfoVCMDiIhSWBRLxGREpi8kDJmfRl44LC09osmKbDF5vrOyTtENNyex0Z+jWjrSSIiUiEmL+Rq7xPAf16U1kYJt9GXA7g8/Pfxxbn35NxRIFEX+HtNJ1xfXzIDT37eS2MReONxwNoLlKwCEvz86PWdA1LGBh4LEVEcUU3Ni9FohF6vx9y5c5UOJTYlp0lfD24DGn8PnGiUXuvSlIspUm6SocfFn66PgbofA288Ju395MvuHwE/y5ESSSIicqOanheDwQCDwQCTyYT09HSlw4k9XzUCB7dLdSWDEpOBvG8oF5OaWM1Dzw/+Hbhmife2b/5S+vraw8C874U3LiKiGKSa5IVGKHO29IhWgsY1sYq0d18Y2fvrfzP0XDs6sPf0XxzZPYmIVEo1w0ZEREQUH5i8EPlyzdeVvf+vrwUumpSNgYgoyjB5IVLChXZpF+qzHwGmU97bdX0EnD4QubiIiGIAa16IIq35eekx/QtA67+kdW7+rxXQjVE6MpKTuRMYlaF0FESqxJ4Xih+n/gOcfEfq8QiEdjSQqQ9fPK3/kr7aL0m/6CwXpBlfFPtefxT4xRVAvVHpSIhUickLqUvO9d7Pvf4w8FQJcOGk/+sUfgf4/vtA4d1SD0kkbH8A+BOnpsc8qxniP3+GXlEHccdqwK7gLDkilYrK5GXRokUYO3YsFi9erHQoFFMEIP9OeS41drq0wm1SMvDNl4DxV8pzXV/+86fw34PCTnx1FRZbq6C3PIMl1iqIpgCSZSIKSlQmL/fddx+effZZpcMgkiRqgU8v9HwuQRvZWEQReHkF8MxXOAspSvXt/xOaxFkAgEZxFvouseeFSG5RmbyUlJRgzBgWLxK56e0C3v0jcOxNoK1B6WiIiBQhe/KyZ88eLFy4ENnZ2RAEAbW1tW5tjEYjcnJykJycjKKiIjQ08H/CFGGXTZMKcmeUjPBCgvuhaZ8b4TWHObzT6YXo5TkRUfyQPXkxm83Izc2F0ei5yn7r1q2orKxEVVUV9u/fj9zcXCxYsACnT58O6X4WiwUmk8nlQeTX3XuA1SeAK0tHdp15Fe7Hsj8z9Hx05siuDwD2/pFfgyJnTJbSERCpnuzJS1lZGR5++GEsWrTI4/n169dj+fLlWLZsGfR6Paqrq5GamopNmzaFdL9169YhPT3d8ZgyZcpIwicamc98Cxg3Y+j1/IcCe9/GG8ITD0WcW3/YJe5RRSS3iNa8WK1WNDU1obR06K9djUaD0tJS1NfXh3TNVatWobu72/Foa2uTK1zy5t0/Ant/A3xUp3QkgP6rSkfgauq80N7X1+X7fNNm4LfzgNY9oV2fIkIURSw5e7frwfZmRWIhUrOIrrDb2dkJm82GzEzXrvTMzEwcPHjQ8bq0tBTvvvsuzGYzJk+ejJqaGhQXF3u8pk6ng06ng9FohNFohM1mC+v3ENcSk6Wve58YdlwX+VgGlawGWv7qv13ufwMf7gD6zoV2n/TJ/tt88SdA3jeAo29Kr1PHA9pRQ+cTU4D+vtDu//f7pK//WDN07NS7wFVfDO16FBZ950+jRcxROgwi1YvK7QF2794d9HsMBgMMBgNMJhPS09PDEBXhpp8D7//F9ViCFij6TvjvLWgAcQRTTlPHA5PnAod3hfb+a8ulIt/nfaw9lJ0HCAIw/Xrg3mZpnZjBVXQBQJMQ2r2ddTv1LL72E+DaO4DRE0Z+XZJH54fux7Y/AFz7X5GPhUjFIpq8ZGRkICEhAR0dHS7HOzo6kJXFIregXOoDrGYv53rDc89ZZdIjUM8vBsbmAN/6s/RLfSQm5QPJ6cC5Y0DnoZFdKxQJSVIvx5jswFboHTfd/VjGVdL2BHJqfgGYdy+gicpVD+LPuaMAxrke62fNC5HcIpq8aLVa5Ofno66uDrfeeisAwG63o66uDhUVHmZtBCHuho2evlHpCLy7/FPA+eNSHUdfF3Dg7yO/ZlIK8M0a6fnPpvuvEYlG0z4nf/Kyu0rq8Rk+5bv9PWnDxwmfkvd+5JvgnkSKAGDtBbSpEQ+HSK1k/3Otp6cHzc3NaG5uBgC0traiubkZx48fBwBUVlZi48aN2LJlCw4cOIB77rkHZrMZy5YtG9F9DQYDWlpasG/fvpF+C9HtyiCSlisUSnC+/gKw4k1gwmzp9d/vlR6A9D/3kfbCkKuGjUC/dej1+Tag+jrgt0XSonYUOYdedTu0xFoF8VKItU5E5JHsPS+NjY2YP3++43VlZSUAoLy8HJs3b8bSpUtx5swZrFmzBu3t7cjLy8OOHTvciniDFTc9L4uqga+sD6ytUn/pJSQBWVe73z/7M8CcxfLUfgwSNNJic9YeaVgmHh3cBvz7d8DnBop6e5zWTDJ3AqnjPL+P5Jcy9G89PQ1oNQEtYg76LtnBfhci+cievJSUlEAUfa/8WVFRMeJhouHiqmA3Vrufv/xTYOpn5b2mIAAr3gA+aQKmzQOOhzblHgBw4G/yxeWJLoxbXhx9ayh5oajwomE+5q57XekwiFSJVX4U+8bNAK5ZAqRPUjoS32bM998mnFr3APW/BfotysahYs5/tnF0lCh8onKqdCjiZtiIfJtSCIydDtisUhHrSHpiYsng/ke2fqD+N57bbBnYGTvlMmk9GpKVKIpY8oHMPYtE5JFqel7ipmCXfLtsKnBfM1DZAkzMVToaV2OygIl5wb/PFuDeRp80AdvuBz74i+923SeCj4H86rtkQ0uvNGStT7uIlCQZa7uIyIVqkheKI9rRTs9HeW83nCbJ6bkCv1gEDXBHAKsBD+cvGRn09A3AO8/5b3fmoP82NCI1xcc4bEQURqoZNqI4suh30pTUzDlAWnbg7yu6G7h4HphSJF/xbGrG0PNRl8tzzeEunJL3emePyHs9ciMkBZFUE1HQVJO8sOYljuRcJz2CNeML0kNOl88Ebq8FIAITPj2ya827F9j7azmiGnKiCRh/JXCudehYsspn4ynl4oWh51OLXM+ZTgCXhSm5JYpDqhk2Ys0LKeaK+cAVN3g+lzlHGuYamwOM9rOW0We+JXtoqF0hJUTOvTf+4qDQOC9ElznbdbXd89ztnkhOqul5IYpK468AHjwi1dskJIZv3ylfml9wnbf73ovAwg2u9UKiCLxXIy2ydlVpxENUHbeCFxbAEMlJNT0vRFErKUVKXPzxsC+OLDoPAaeHFek2POX6uv094C/Lgee/BlzsDk8came54PWUePF85OIgigNMXoiiwbV3AOlTwnf94TOWdv8I+Om0oU0zP3h56Bz34QmJ+OT1Xs8t2aHxu/I4EQVONcmL0WiEXq/H3LlzlQ6FKDifNQC3PBHeJVn7L7ofu3ge2PVD6fmbAe6XRR6Joogl1iqXYylJCdAndwIAWnrT0XeJkwmI5KKa5IUFu1EofbLTCyG4ac0UFFEEekVdQA+XDoC+c4rFrCZ91n60iDkAAP2YXqQkJUAQBNQUHVU0LiK1YsEuhc+tvwOuLQdEG3BZjrT6LYVFH3TQW54JqG2BcAg12rVSR0+/Fag3hje4eHCh3fG0ZvlcCAO9aIIY4OrIRBQU1fS8UBRKSpGmEV9ZCmRcqXQ04SHE3hLwjeIs9EEnvejvA3auDu4Ch3YA1dcDH+4aOnbqXeDt3wGWHvkCjSXt7zmeCs49jFxThygs2PNCFKpP3Syt1hsFUmBBi26Zzza90KHAUj3ym9WukIab/vpdaRo4ADx7K9DXBVh7gM8/OPJ7hIN9oObE29YQtktAQpLnc34JcOwprXH6m/CqLwK7PpGed34MZM8M8fpE5Iw9L0Sh+vrzgDZV6SgASLW+qYLF9wOW4C7aeRj487eBj16DS6HMYJ2M+Qzw+y8Brz8qJS6A1APjzG4DTr4jJQaR0HfOcx3P4d3Aj8dJj+Y/um92eaIJ+FkO8PKKkG7rdR7RBP1Qm+7jIV2biNypJnnhbCMime18SFq47rlFwOabXROYQW3/Bv71M8/v/6RJShaeKgG2fd/1XOdhwGqWN96+88B6PfCz6cBFk+u557829Lx2BdBS63p+/7NSr9G7fwz6tqIoYkmtlzVenGaQLfnLOU6XJpKJapIXzjaiuJAxa+i5VqbNJb053TL0/NibgMXkve0g5wXutlcOPXfe7frDncBvCoBHs4FXHpSSDn/e3AA8/UWg62PvbUwnB1YwFqV7+NLxgbRw39ZvAYf/MTSkFAxLD9D8AvoatqClR1qtWC8cRUrS0LBUSlIC9Bppa4CWC6nos7KAl0gOqkleiOLCXTuAm38pDUeUVvlvL7fuE77Pt+4BjuyWnnd84LnN4HlAWul3/7PSc2sv8IfF7r00ALC7CvikAdixCvjnT4HuT1zPiyJcBm+sA4XDtn7gH2s8x7Hj/6RF+p5f7Hr8PzVSUrPr/0lDUCf2A0/kA+/8AehqBf72PeDom8Cr/wfU3gO88gPHW2vGbHDMNAIgTZe+dqiYV2z38m9CREFhwS6R0lLHBtYuMQVIHQcU3CU9Olr8vycUjZuA8Ve5H7fbgF/q3Y8P17RZmmEWqJ4O6esnDcCRf0jPb6wCUi4D7HbXGpYPd0iPTxqBb70kHbP1A78vlWprhju8C3jrVwCk/GZwllXyG7/ERWgB6JACC4QDf3OcT/nzt4dGe2xWiPv/gD7rJaTUGgAMtHn/rxCsUi+T80CQcOWNbiEITvEv2XoC2x/MdUlwiCh4TF6IlDIpH8i6Bsj3PUvI4ZYnAmuXlArMfwjY9VBocXmrYXEe+vEl1LoO0T70/OR+oOVv0vCP847Yg478Q+oJ6TwM5Jd7TlwAx3vtooCbrY84FpJzpheOYhsewhJrFZrEWcgXDuFZ7U+lAue3q7HY6TgANImzUGCV1soRIeBm66NDF/PQG5Zy00+gb9mBFjEHLV1A3yUbUrX8Xy/RSPAniCiStKOB0ZlSb0Ppj4Dpnw/sfd99G5jwaddjY3M8t13wiDQEI7fXH/XfZpDdDthHMMPouUX+2/xV6gnBWxs83L8fsNscKw/fbH0UreJEj5dpEXMwz/JrtGM8ACk5mW15BnrhKLZof4omcZbj+KBGcRbMSMZC6yOO6+qFo0gZe5Pb9YXxV6BGuxazA1xEkIj8Y80LUSQlJALfawLufz/wxMUbbSrw9WGzY6Z/QRpSCgdP+yN5s+fn7sf+/G1pSOr8sCnD9b+RemtGsKu28/YIogjglQcg/vZzWPzPsZhtecaRYGThrMv7Bl8PJi7OWsQczPWxLo5zQjRdOIVt2oe8DgcJhcuHXhzdG8y3RkQeMHkhijTdGOAymXaQ1gzrPE3QynPdkXpzg/ux92qkYtwPd7ifO38cgOBxjyZ/o1CiCCy2VkFveQZ6yzNYYq2CXRRw9swJNHXpHO30wlHs1d2LgoHhnwLhEPbq7oVeOBrSt3hUzAIgJS512gegEXwEWvA/Q/H+7V6/1xZFEb0XutF7+A2IPZ0hxUekZqoZNjIajTAajbDZuHMrqZB2dJDtR4UnjkDZrMG1P7gd4tmPHPUlzvTCUWkvJqdjKbA4imr7oHMb0vmK9REccKpvadStwHiYIAhAjXatVHQ7cI3t2tXog85tBeJ9uhUot65Ei5jjqIMBpETJ+drbtKt9Jy7DLDm7HNtPH4IwYZbH86IoYvETr6HppNTTVXB5PWoqb2aRL5ET1fS8cJ0XUq1bq4PvqZm9CEibJMvtA9mx2q13RAzyj4idq9C37zm3xAWQhm9mD/SqDD6+Yn0UZh+9Ms7JRYFwyJG4AAOrEX/hPtfXHlYgHgULtmtXo0W3DC9p12KUYMEowYLt2occvTUFwqGh9/mYYZWSJDje0yLmoHfXI17b9lr6HYkLADSe0aDvEv8oI3Kmmp4XIlUaNQHI++/g35dyGbCoGtiycES3HxyS8ZRUOHPdqTqI2hgvGnUrkAILllirPM4QciQ0A0W1vq7jnLg43PAQULJS2ufo/HFgyy2ATQOcdm0mjL8CqV0fSYsDlv0UGJMNzW+LHL01jh6gadcB33zJaxxCYrJL0e6SD4qw/aIJQnKaSztRFLHkl9sARMnwH1GUYvJCFId6ofOxIY9rO3+JCyAN1ZxFGlJFC3D4DWBgPRXn4R1PnNde6cVQfUoqpP2YBpMER3vAJaEZXlSrF446zg3vcXEzuEHjZVOB7zUhRRRR8PBmNPZNRIFwCCkPHZM2WTSdAMbNcHmrIEgxwtAApI4HUsbB5zeaNhGpsDjiaxFz0Fl9MzK+UwshdZyjWd8lG1q6pcRlunDKURDMXQWIXDF5IYpmw6dHB0PwsnsyENLu0o26FW5DK851Ip6u6dIjM0wgvTqOJMHJdu1q9ELn1itTIBzCi9ofDyw+5yNx+uKP3Y9pEiAAqJnyMvqO7ZPeqx3Y3mBY4oLCu6WF+P77j8Dl/hM7x/dSdQ41W76G2Ye+DQCY2/5/yP/JZrz0X1kQPvMNt/Yvatc6ErMl1fXYfu91rHshGsDkhSgaXbUASBkLXHd/6NeYlA98+hbg4DZAtCMFFhSM7kRjT0bQl/LWi5EiWlAgHEKjlwTEpUdmGG+9OgXCIaT42AFbEIbqUZx7ZQaTFUeyMykfOHdUKnY+f0w69q0/+6xNEWZ9CanH3wSyr/XaBjf9HPjST4BEnfc2nmg0SB2V7tKj0iTOQl/tMqR6SF5S590N/cE0tJwyoeWUiYvbETnhTwJRNJpRAhR/d2TXSEoGlj4HfPQa8NwiCEkpqNE9gr5L54O+lLdeDOfZO8789cgM59yr42+oyfnew3tlAAB3vyH1iCTqpC0NRLu0s/VFEzC50PdFi+6R6lsm+UhegOATF6eY67QPYIblec8N+odmaQmn3kHNipWYXeVnk0miOMTkhUjtZswHyv8OpE2C8MS1SJV55MFTEuGvR8aZ39qUUAIaTC40CQASgBVvSuNUGj8TLBO1wKwvyxSIBwlaaAQR7+vuwhzLJgDDSo+cp5j3dMr3b0KkMkxeiNROEEa+mm8It/TUI+OJx56W9KnA7X8BGp8B3jYGfuPEZM9TxAXBd0FtpMz9NvCfrdA4pSw3Wx9FXds+aDreA8bNVjA4otgRleu8bNu2DbNmzcJVV12Fp59+WulwiCgEggCkXnePtIaKj4fXnCLjqsB33AaAT90MVB6Qdt6OVlMKgTVdSKlqh35MHwCgVZyIG3/7Lsx/Xwn7lluG2k68RqEgiaJf1CUv/f39qKysxGuvvYZ33nkHv/jFL3D27Fn/bySKR9mf8b5BYyAW/gpIH+FWBV/+KQAvGUgQs3FG7EsPR3fiMkiTAEGjwbab7cgR2gFICcxsyzOOoSQAwOcfcHkbp0sTDYm65KWhoQGzZ8/GpEmTMHr0aJSVlWHXrl1Kh0UUnUZfDtz37siucf3AlODPfEsa1hhutp8dnke4qWLIStcOPdffCoybHvkYRkAz4/Oo0f7I4zm9cBQpGVNdji2profIDIYIQBiSlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHBce7kyZOYNGlozHrSpEk4ceKE3GES0aCCu6Rdrhc+4fn8+Ct9vz/VfUfmkF3+KenrFSWBtV/8jDSt/IYfyhdDpIzJwvgFK90OZ6IL225JgCAISElKgH6itApvyykTeq3cJoAICEPyYjabkZubC6PRc5Hd1q1bUVlZiaqqKuzfvx+5ublYsGABTp8+7bG9PxaLBSaTyeVBREG6bIo0E+eyacG/N1MvXxz/9Zy0iNyNP5JeZ/gZdppzG/DNF6X6mBikmWfAx/dPQ4PuHsexbbrV0Fw2GQAgCAJqVhQ7zrH3hUgie/JSVlaGhx9+GIsWee5qXr9+PZYvX45ly5ZBr9ejuroaqamp2LRJGuvNzs526Wk5ceIEsrOzvd5v3bp1SE9PdzymTBnh+D2RLwlJSkcQXgXL3I+NmRi5+18+E/jcfcCogd6cT30F+NrvPbeVs8dHQRpNAjIw9EfXeFxwOZ+qde194SaNRBGuebFarWhqakJp6dAKlxqNBqWlpaivrwcAFBYW4v3338eJEyfQ09ODV199FQsWLPB6zVWrVqG7u9vxaGtrC/v3QXHsc/dJy+4X/I/SkYSHboz7sfFXAPPulVaq9UbO3hdnmgTg6sXAD88Aq08CMwfWYPnsd6VeFzUYkwVNYhI+1n0TH+u+CY0gApf6HKeH977YRcBuZ+8LxbeIrvPS2dkJm82GzMxMl+OZmZk4ePCgFFBiIh5//HHMnz8fdrsdP/jBDzB+vPe/sHQ6HXS60Fa7JAra3P+RCltDXGE1Zn3pJ9LjR+mez9+8AXj9Uam4928V0rGkUb6vmX+ntEdQIBK1ALTAN7YG1j6WpIwFvt8Cjb0fWD9Q89Pf59LEeTr5nIEVdz9+9CZoNFGwdg2RAqJykbpbbrkFt9xyi/+GToxGI4xGI2w2dqlSmMVb4uJPxkzp3+T2vwCmk0PHb/+LtCS/J3MWAwvWBZ68qN3oywG7Pai3dPVakTGa/y1SfIrosFFGRgYSEhLQ0dHhcryjowNZWVkjurbBYEBLSwv27ds3ousQUZC8JnMCMOFTnk8t/j2gTQ1bSDFP69pr5TzraFCf1cbiXYpbEU1etFot8vPzUVdX5zhmt9tRV1eH4uJiH+/0z2g0Qq/XY+7cuSMNk4i88TcURKHTaKTeqLxvDdX2DBhe9wIA1//8dXzl12+y/oXikuzJS09PD5qbm9Hc3AwAaG1tRXNzM44fPw4AqKysxMaNG7FlyxYcOHAA99xzD8xmM5Yt8zDLIQjseSEKQVKQvR+3PQlkXg1c/unA2icmBx9TPCv+LnCr0a3nBXCddTSo5ZQJNz/xJntgKO7IXvPS2NiI+fPnO15XVkqrd5aXl2Pz5s1YunQpzpw5gzVr1qC9vR15eXnYsWOHWxEvEYXZmGy3v/D9+vRC6XF4N/D814DMOb7bj54AfPlngOUC8PrD7udTxgF9XcHFEKcGe19mDxTsDhqcPp2qjcoSRqKwkP2/9pKSEr9/BVRUVKCiokLW+7JglyhItz0JJKf5b+fJVaVARWNga8B8doX09aPXgON7gQlO06oX/x54zs/2A+TgbRNLs8UGUZR6Z4Ro2D2bKMyibm+jUHHYiCjCMq4CdMPWfknNkFbpTU5331Zg4a+Awu8Atz01dOyKG4BZN4U/VpVISUpAwTRpp23nIaS5j+zG7KqduIk1MBQn2M9IRK4+/yCw5xehvTdRK/XIiDYgKcX13OUzgZtCvC4BGBo66rsk9bQMH0I6MFADs/3e69gDQ6qmmp4XzjYiihKJWvfEhWQjCAJStYlI1Q71wjjjFgIUD1STvHDYiChIY3P8txk3A8i6JuyhUPAGe2HeX+t9+xQitVJN8kJEAdA4jRRfNtV/+3vfAVLHhS8eGhFBEDBal4iPHmXdEMUXJi9ERDEuQSO49MBw2RdSO9UkL6x5IaJ45rxH4+Lqes46IlVTTfLCmhciimfO+x8dOGXCjNWvMIEh1VJN8kJEFM887X904nwftw4gVWLyQkSkEsP3P7r+569jSXU9ExhSHdUkL6x5IaJ456n3pfHYOa77QqqjmuSFNS9ERJ73P+q12tj7QqqimuSFiIg8K3h4N4ePSFWYvBARqYjz5o3OOHxEasKNGYmIVMR588bkxAR09VpR8PBuAABnTpNasOeFKJ4kpSodAUXA4OaNGo2AVG2C4/icqp2w20X0Wvs5hEQxTTXJC2cbEQXghv8nfb3+f7230SRFJpZBoy6P7P3i3A2P/xP6NTuxuLoeZguTGIpNqhk2MhgMMBgMMJlMSE9PVzocouhU9B3g6sW+N1u8ejHQ/DwwoyQyMV13P9D9CTD71sjcL84dPdsLAGg6dg6zq3aiYNpY1KwohuBpmhJRlFJN8kJEAfK3S/T4K4D7/xOZWABg3Azg9r9E7n5xZnDbgJZTJo/nBwt5U7VDvw4GtxXQaJjQUHRSzbARERG587RwnS92u4gZq1/h3kgU1Zi8EBGpXDAjQl29Vo/PiaIJkxciIpVzXvtFPzENHz96Exp/WOo4z5pdijWseSEiUjnntV9SkhIGplIPTaFeUl2P7fdex6JdihnseSEiigODa78MJiiDhbwA0HLKBLNVWn3Xzm4YigFMXoiI4tDwQt45VTths4sofKROwaiIAqOa5IWL1BERjcyHHReUDoEoIKpJXgwGA1paWrBv3z6lQyEiignDN2os+9UbCkVCFBzVJC9EREQUH5i8EBERUUzhVGkiojg1LlUbVHtRFNE7MCspVZvAqdWkGCYvRERxSqMR8P7aBZhTtdPjebsowm4XodEIsNtFfOWJN3FgYI+k/Glj8RI3dCSFcNiIiCiO+dp7sfCROsxY/Qp6LP0uiQsg7Uo9vOCXKFLY80JERD5565khUgp7XoiIiCimRGXysmjRIowdOxaLFy9WOhQiIlVz3rRxesYohaMhCkxUJi/33Xcfnn32WaXDICJSvcFtAlp+vADbvned0uEQBSQqk5eSkhKMGTNG6TCIiOLC4KaNqdqhzRoDMbiHo90uwmaXZiZJ06n7IXKDRwqjoJOXPXv2YOHChcjOzoYgCKitrXVrYzQakZOTg+TkZBQVFaGhoUGOWImIKIyGb9boz5LqetjtImasfgVXrH4FM1a/gtt+txf6NTuxpLqeCQyFTdDJi9lsRm5uLoxGo8fzW7duRWVlJaqqqrB//37k5uZiwYIFOH36tKNNXl4e5syZ4/Y4efJk0N+AxWKByWRyeRARUWj8Ldvy/toF+PRA70zLKRM+Odfncv6d4+cBAI3HzuGs2coEhsIi6KnSZWVlKCsr83p+/fr1WL58OZYtWwYAqK6uxvbt27Fp0yasXLkSANDc3BxatB6sW7cOa9eule16RETxbLCAt/HYOY/nNQJQs6LYMX369k3/9nqtgod3I3/aWDx7VyFX5CVZyVrzYrVa0dTUhNLS0qEbaDQoLS1FfX29nLdyWLVqFbq7ux2Ptra2sNyHiCgeOBfwfvzoTWj8Yalbm4tOi9MdO9vr83pNx85hdhWHkUhesi5S19nZCZvNhszMTJfjmZmZOHjwYMDXKS0txbvvvguz2YzJkyejpqYGxcWex2F1Oh10Oh2MRiOMRiNsNq74SEQ0EoMFvIC0h5GzUPOPxmPnHPsiDV6XPTEUqqhcYXf37t1Bv8dgMMBgMMBkMiE9PT0MURERxZ+UpARMzxiF1k4zAKDvki3oDR0Hfe13e3Gw/QKAob2RBq+ZksRkhgIn67BRRkYGEhIS0NHR4XK8o6MDWVlZct6KiIgiQBAEvHi3a8/34IaOwRpMXABpOMlstWFxdT1nJ1HQZE1etFot8vPzUVdX5zhmt9tRV1fnddhHLkajEXq9HnPnzg3rfYiI4o2nDhFfGzoGak7VTjQNFAYPH1Yi8iXo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF4PBgJaWFuzbty+s9yEiouD868GSgNqx94UCFXTNS2NjI+bPn+94XVlZCQAoLy/H5s2bsXTpUpw5cwZr1qxBe3s78vLysGPHDrciXrmxYJeIKHKcp1TnTxsLURSxf2CNl+HGj9YFdM2WUyb0XbI5ioWJvAn6v5CSkhK/mXFFRQUqKipCDioULNglIoqcwSnVg8W2ABzDPslJCbhi9SsAgI8evQmWfv5RSfJiektERD45zy5yfu48pRoARumGnn/86E0ApOLeYNntYsjvpfigmuSFw0ZEROGh0QhBJyPO7fyt2uusx9IP/Rpp9d6PHr0JCUxgyIOo3FU6FCzYJSIKH41GCLknZHCI6Y0fzPfbtvCRodmqV6x+xdELQ+RMNckLERFFL0EQkDJstd5AdPVawxANxTomL0RERBRTVJO8cJE6IiL1GZzJRORMNckLa16IiGLH9IxRAICCaWN9bjUwuLqv3S6y/oUcVDPbiIiIYseLdxdjlC4BKUkJ6Lvke5ao3S5ixsC6MR8/ehOnUJN6el6IiCh2CAKQqk30u5N0r9WGTrPF8ZoFvASw54WIiKJYwcO7lQ6BopBqel5YsEtERBQfVJO8sGCXiEgd/C1mN7x4VxRF9Fr7uSN1HOGwERERRZVkH9Oj7aJr8a4gAIur69F07ByunXoZXloxjwW9cUA1PS9ERBTdvG3wmJKU4Jg6DQAXfcw+umi1O56fNVtx1mxF08CeSfuPn8cMbikQF9jzQkREEeFtg0dBEFBX+QVHj8rYUVqP75faDj1fXL0Xx872urXp6rUiY7ROpqgpGjF5ISKiiPE2pOOc2Fzs997z4lzW4ilxofigmmEjzjYiIoptgexcvbh6b4SioWimmuSFs42IiNTv9AWL/0akeqpJXoiIiIbjNGp1YvJCRERR718PlgT9HlEUsbi6Hvo1O7Gkup4JjIoweSEioqin8bMHkid9l2yOadSNx8753QCSYgeTFyIiUh1puMg27Bg4hKQSnCpNRESqIopDq+46W1xdjwOnTCiYNhY1K4r97mhN0Ys9L0REpCoXnYaLnB04ZQLAISQ1UE3ywnVeiIjUISUpAQXTxrocm3RZiuNY/rSxyBmfOqJ7cAeB2KaaYSODwQCDwQCTyYT09HSlwyEiohAJgoCaFcXou2RDcqK0SaNGM3QsJSkBnT1WzH1kd8j3mFO1Ex8/ehM3cYxRqul5ISIi9RAEAanaRJdVdwePCYIAOcpVunqtI78IKYLJCxEREcUUJi9EREQUU1RT80JERBROzmvHpGoTONVaQUxeiIiI/BjcamBwCnb+tLF4iWvFKIbDRkREpCrhWEC3b9jaMU1cK0ZRTF6IiEhVljy5V+kQKMyiLnlpa2tDSUkJ9Ho9rrnmGtTU1CgdEhERRZlxqVqv5zpMlghGQkqIuuQlMTERGzZsQEtLC3bt2oX7778fZrNZ6bCIiCiKaDQCGh66cUTXEEXAbOmH2eJ7s0a7XeSKvFEm6gp2J06ciIkTJwIAsrKykJGRga6uLowaNUrhyIiIKJponIplp2eMQmtncH/oLqnei6NnewF4L8C120XMWP3KyIMlWQXd87Jnzx4sXLgQ2dnZEAQBtbW1bm2MRiNycnKQnJyMoqIiNDQ0hBRcU1MTbDYbpkyZEtL7iYgoPrx4dzEaf1ga1HsGExfAewEuV+GNTkH3vJjNZuTm5uKuu+7Cbbfd5nZ+69atqKysRHV1NYqKirBhwwYsWLAAhw4dwoQJEwAAeXl56O/vd3vvrl27kJ2dDQDo6urCHXfcgY0bN/qMx2KxwGIZGt80mUzBfktERBTjBEFae2Wk7APjQ3LteST39UgSdPJSVlaGsrIyr+fXr1+P5cuXY9myZQCA6upqbN++HZs2bcLKlSsBAM3NzT7vYbFYcOutt2LlypWYN2+ez7br1q3D2rVrg/smiIiIhrGLcAwRybFpo/OQEzeBlJesBbtWqxVNTU0oLR3qutNoNCgtLUV9fX1A1xBFEXfeeSduuOEG3H777X7br1q1Ct3d3Y5HW1tbyPETEVH8uvHxfzqeDw4XpSSF3pvjPOTE4Sd5yZq8dHZ2wmazITMz0+V4ZmYm2tvbA7rGW2+9ha1bt6K2thZ5eXnIy8vDe++957W9TqdDWlqay4OIiChQ0zOkCSGeplhzAd3oFHWzja677jrY7fag32c0GmE0GmGzccVDIiJylZmm87r+y4t3F2PuI7tdjtkHpk6HY7VeURTRd8mGlCTujxQqWXteMjIykJCQgI6ODpfjHR0dyMrKkvNWbgwGA1paWrBv376w3oeIiGJPzd3e6yc95Q+Fj9TBbhexpNp7yUMwiY1dFGG3i449kvRrduJrv9vrKOil4MiavGi1WuTn56Ours5xzG63o66uDsXFxXLeyo3RaIRer8fcuXPDeh8iIoo9oXRwnDjfh5ZT3mewLqmu97m4nbPCR+owY/UrMFuH9kjaf/w8Zqx+BbaBBMZuF5nMBCjo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF/a8EBHFt3AM8fjScsoU9OaM58zuhbtXDCQwM1a/ghmrX2ECE4Cga14aGxsxf/58x+vKykoAQHl5OTZv3oylS5fizJkzWLNmDdrb25GXl4cdO3a4FfESERHJKZZ3eT5yusfxvKvXiozROgWjiX5BJy8lJSV+u8kqKipQUVERclChYMEuERFRfIi6jRlDxWEjIiJSM1EU3TaSFEURvVbfG0uqUdRNlSYiIop1oiiizyrfSMDgLKXBYt/8aWNRc3cxljwpHSuYNhY1HjaWVCvVJC8cNiIiii/jUrUuz6NlFdvhiYYc+i7ZXK7XdOwcunqtjmONAxtLpmpV82vdJ9V8lwaDAQaDASaTCenp6UqHQ0REYabRCPj40Zscz6PF8ESD5Kea5IWIiOJPNCUtFDmqKdglIiJSihoLZ6P5e1JNzwtrXoiISAnONS4F08Ziy12FSoc0YsO/p2grBlZNzwunShMRkRKca1wGC2djiadtCaL9e1JN8kJERETBscfotgRMXoiIiEYghn7nu3GeXh4tU80DoZrkhbtKExFRpNlFYE7VTqXDiDuqSV5Y80JERJHmaZdou9PsnDd+MN/tvBKieeZQKFQz24iIiCgaFD5S53ieok1QMBJJtM8cCoVqel6IiIjUxtNMoGBF+8yhUDB5ISIiikIuM4E85C+eNn6UI9mJBUxeiIiIopDz7B9PtTXX//x1l9d2ETE57TkUqkleONuIiIjimXOCE0vTnkOhmuSFs42IiIgkfVabz5lFQ7OPIhiUjDjbiIiIKMoFkmQ4t7n+5687ZhZ5ajc4+2h6xiiP1/I26jQ4HKX0bt6q6XkhIiKKNHuEui4WV+/122bJk65tvM0scp591Nppdjtvt4seF96Lpq0EmLwQERGF6Au/+Kcs1xHhOxk4fcHi9xodJv9tAuGtXiaathJg8kJERBQh3jpqbv71m5ENxAu7XYxYb9JIsOaFiIgoTFKSEpCZpnP0inhbIK7faRgmJUmZVXntojQsFAvY80JERBQmggDU3D0v6Pco4WxP7EyvZvJCREQUJqKoXDISrLJfveHzfDQNJ6kmeeEidUREFG3UsI8QIE2ddt5wUmmqSV64SB0REVF4eNqeQEmqSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGJK1CUv58+fR0FBAfLy8jBnzhxs3LhR6ZCIiIgoikTdxoxjxozBnj17kJqaCrPZjDlz5uC2227D+PHjlQ6NiIgoYpTaoDEWRF3PS0JCAlJTUwEAFosFoihCjKL9FIiIiCIhVvZEUkLQycuePXuwcOFCZGdnQxAE1NbWurUxGo3IyclBcnIyioqK0NDQENQ9zp8/j9zcXEyePBkPPvggMjIygg2TiIiIVCro5MVsNiM3NxdGo9Hj+a1bt6KyshJVVVXYv38/cnNzsWDBApw+fdrRZrCeZfjj5MmTAIDLLrsM7777LlpbW/HCCy+go6PDazwWiwUmk8nlQUREpEYND92oyH2jbQAk6JqXsrIylJWVeT2/fv16LF++HMuWLQMAVFdXY/v27di0aRNWrlwJAGhubg7oXpmZmcjNzcUbb7yBxYsXe2yzbt06rF27NrhvgoiIKAZpFBpLWvLkXkXu642sNS9WqxVNTU0oLS0duoFGg9LSUtTX1wd0jY6ODly4cAEA0N3djT179mDWrFle269atQrd3d2OR1tb28i+CSIiIkRfb4OSOkwWpUNwIetso87OTthsNmRmZrocz8zMxMGDBwO6xrFjx/Cd73zHUaj7ve99D1dffbXX9jqdDjqdDkajEUajETabbUTfAxERERB9vQ2hsKs0AYu6qdKFhYUBDys5MxgMMBgMMJlMSE9Plz8wIiKKK9HW2xCKOVU7lQ4hLGQdNsrIyEBCQoJbgW1HRweysrLkvJUbo9EIvV6PuXPnhvU+REREscyugvEwWZMXrVaL/Px81NXVOY7Z7XbU1dWhuLhYzlu5MRgMaGlpwb59+8J6HyIiolhW+Eid/0ZRLuhho56eHhw5csTxurW1Fc3NzRg3bhymTp2KyspKlJeXo6CgAIWFhdiwYQPMZrNj9hERERHRSASdvDQ2NmL+/PmO15WVlQCA8vJybN68GUuXLsWZM2ewZs0atLe3Iy8vDzt27HAr4pUbC3aJiIjiQ9DJS0lJid/l+isqKlBRURFyUKFgwS4REVF8iLq9jYiIiIh8UU3ywtlGRERE8UE1yQtnGxEREcUH1SQvREREamAXAbtal8aVCZMXIiKiKDKnaidmrH5FtUv7y0E1yQtrXoiIyJPpGaOQnJSgdBhBO2e2Kh1C1FJN8sKaFyIi8uTFu4shCEpHQXJSTfJCRETkCRMX9WHyQkREFCFq2BQxGjB5ISIiipCyX72hdAiqoJrkhQW7RERE8UE1yQsLdomIiOKDapIXIiIitWPJjITJCxERUYy4eMmmdAhRgckLERERxRQmL0RERBRTVJO8cLYRERFRfFBN8sLZRkRERPFBNckLERERxQcmL0RERFGIWwl4x+SFiIgoCn3hF/9UOoSoxeSFiIiIYgqTFyIiIoopTF6IiIgopqgmeeE6L0RERPFBNckL13khIiKKD6pJXoiIiCg+MHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYkrUJi+9vb2YNm0aHnjgAaVDISIioigStcnLI488gs9+9rNKh0FERERRJiqTl8OHD+PgwYMoKytTOhQiIiKKMkEnL3v27MHChQuRnZ0NQRBQW1vr1sZoNCInJwfJyckoKipCQ0NDUPd44IEHsG7dumBDIyIiojiQGOwbzGYzcnNzcdddd+G2225zO79161ZUVlaiuroaRUVF2LBhAxYsWIBDhw5hwoQJAIC8vDz09/e7vXfXrl3Yt28fZs6ciZkzZ2Lv3r1+47FYLLBYLI7XJpMp2G+JiIiIYkjQyUtZWZnP4Zz169dj+fLlWLZsGQCguroa27dvx6ZNm7By5UoAQHNzs9f3v/322/jTn/6Empoa9PT04NKlS0hLS8OaNWs8tl+3bh3Wrl0b7LdBREREMUrWmher1YqmpiaUlpYO3UCjQWlpKerr6wO6xrp169DW1oajR4/isccew/Lly70mLgCwatUqdHd3Ox5tbW0j/j6IiIgoegXd8+JLZ2cnbDYbMjMzXY5nZmbi4MGDct7KQafTQafTheXaREREFH1kTV7kdueddwbc1mg0wmg0wmazhS8gIiIiUpysw0YZGRlISEhAR0eHy/GOjg5kZWXJeSs3BoMBLS0t2LdvX1jvQ0RERMqSNXnRarXIz89HXV2d45jdbkddXR2Ki4vlvJUbo9EIvV6PuXPnhvU+REREpKygh416enpw5MgRx+vW1lY0Nzdj3LhxmDp1KiorK1FeXo6CggIUFhZiw4YNMJvNjtlH4WIwGGAwGGAymZCenh7WexEREZFygk5eGhsbMX/+fMfryspKAEB5eTk2b96MpUuX4syZM1izZg3a29uRl5eHHTt2uBXxEhEREYUi6OSlpKQEoij6bFNRUYGKioqQgwoFC3aJiIjiQ1TubRQKFuwSERHFB9UkL0RERBQfVJO8cLYRERFRfFBN8sJhIyIiovigmuSFiIiI4gOTFyIiIoopqkleWPNCREQUH1STvLDmhYiIKD6oJnkhIiKi+MDkhYiIiGKKapIX1rwQERHFB9UkL6x5ISIiig+qSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiimqSV4424iIiCg+qCZ54WwjIiKi+KCa5IWIiIjiA5MXIiIiiilMXoiIiCimMHkhIiIKk3GpWqVDUCUmL0RERGHw/toF0GgEpcNQJSYvREREYcC8JXyYvBAREVFMUU3ywkXqiIiI4oNqkhcuUkdERBQfVJO8EBERUXxg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCREREMSVR6QDkJooiAMBkMikcCY3YRRtgkT5P9F0Cgv1Me3qH3m+2eH9/T99Qu0HmvuDvN1L9Fqd4g7z/SP6diFTigtnq+fiFC77f5+d8qEymC+jXJuBCz0XZrnmhp0e2a43EhQsXoLVbZL3m4O/twd/jvghiIK1iyCeffIIpU6YoHQYRERGFoK2tDZMnT/bZRnXJi91ux8mTJzFmzBgIgqB0ODTAZDJhypQpaGtrQ1pamtLhUBD42cUufnaxKx4/O1EUceHCBWRnZ0Oj8V3VorphI41G4zdjI+WkpaXFzQ+i2vCzi1387GJXvH126enpAbVjwS4RERHFFCYvREREFFOYvFBE6HQ6VFVVQafTKR0KBYmfXeziZxe7+Nn5prqCXSIiIlI39rwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCUau3txfTpk3DAw88oHQoFKC2tjaUlJRAr9fjmmuuQU1NjdIhkQ/btm3DrFmzcNVVV+Hpp59WOhwKEH/OOFWaothDDz2EI0eOYMqUKXjssceUDocCcOrUKXR0dCAvLw/t7e3Iz8/Hhx9+iFGjRikdGg3T398PvV6P119/Henp6cjPz8fevXsxfvx4pUMjP/hzxp4XilKHDx/GwYMHUVZWpnQoFISJEyciLy8PAJCVlYWMjAx0dXUpGxR51NDQgNmzZ2PSpEkYPXo0ysrKsGvXLqXDogDw54zJC4Vgz549WLhwIbKzsyEIAmpra93aGI1G5OTkIDk5GUVFRWhoaAjqHg888ADWrVsnU8Q0KBKf3aCmpibYbDZMmTJlhFGTJyP9LE+ePIlJkyY5Xk+aNAknTpyIROhxT86fw3j9OWPyQkEzm83Izc2F0Wj0eH7r1q2orKxEVVUV9u/fj9zcXCxYsACnT592tMnLy8OcOXPcHidPnsRf//pXzJw5EzNnzozUtxQ3wv3ZDerq6sIdd9yBp556KuzfU7yS47MkZcj12cX1z5lINAIAxJdfftnlWGFhoWgwGByvbTabmJ2dLa5bty6ga65cuVKcPHmyOG3aNHH8+PFiWlqauHbtWjnDJjE8n50oiuLFixfF66+/Xnz22WflCpX8COWzfOutt8Rbb73Vcf6+++4Tn3/++YjES0NC/TmM958z9ryQrKxWK5qamlBaWuo4ptFoUFpaivr6+oCusW7dOrS1teHo0aN47LHHsHz5cqxZsyZcIdMAOT47URRx55134oYbbsDtt98erlDJj0A+y8LCQrz//vs4ceIEenp68Oqrr2LBggVKhUwDAvns+HPGYSOSWWdnJ2w2GzIzM12OZ2Zmor29XaGoKBByfHZvvfUWtm7ditraWuTl5SEvLw/vvfdeOMIlHwL5LBMTE/H4449j/vz5yMvLw//+7/9yplEUCOSz488ZkKh0AES+3HnnnUqHQEG47rrrYLfblQ6DAnTLLbfglltuUToMChJ/ztjzQjLLyMhAQkICOjo6XI53dHQgKytLoagoEPzs1IOfZeziZxcYJi8kK61Wi/z8fNTV1TmO2e121NXVobi4WMHIyB9+durBzzJ28bMLDIeNKGg9PT04cuSI43Vrayuam5sxbtw4TJ06FZWVlSgvL0dBQQEKCwuxYcMGmM1mLFu2TMGoCeBnpyb8LGMXPzsZKD3diWLP66+/LgJwe5SXlzvaPPHEE+LUqVNFrVYrFhYWim+//bZyAZMDPzv14GcZu/jZjRz3NiIiIqKYwpoXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYgqTFyIiIoopTF6IiIgopjB5ISIiopjC5IWIiIhiyv8HsaIGE8ncHK0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray import LombScargleCrossspectrum\n", + "from stingray.gti import cross_two_gtis\n", + "gti = cross_two_gtis(ev1.gti, ev2.gti)\n", + "ev1.gti = gti\n", + "ev2.gti = gti\n", + "lscs = LombScargleCrossspectrum(ev1, ev2, dt=dt, norm=\"leahy\")\n", + "lscs_reb = lscs.rebin_log(0.01)\n", + "\n", + "cs = AveragedCrossspectrum(ev1, ev2, dt=0.001, segment_size=256, norm=\"leahy\")\n", + "cs_reb = cs.rebin_log(0.02)\n", + "\n", + "# plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "# plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "# plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.plot(cs_reb.freq, cs_reb.power, ds=\"steps-mid\", label=\"AveragedCrossspectrum\", zorder=10)\n", + "plt.loglog()\n", + "good = lscs_reb.freq < maxfreq / 2\n", + "lscs_reb.freq = lscs_reb.freq[good]\n", + "lscs_reb.power = lscs_reb.power[good]\n", + "lscs_reb.unnorm_power = lscs_reb.unnorm_power[good]\n", + "plt.plot(lscs_reb.freq, lscs_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle cross spectrum\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7fe119a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Modeling/ModelingExamples.html b/notebooks/Modeling/ModelingExamples.html new file mode 100644 index 000000000..638a8f5a2 --- /dev/null +++ b/notebooks/Modeling/ModelingExamples.html @@ -0,0 +1,1954 @@ + + + + + + + + The Stingray Modeling API Explained — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

The Stingray Modeling API Explained

+

Some more in-depth explanations of how the Stingray modeling API works.

+

Who should be using this API? Basically, anyone who wants to model power spectral products with parametric functions. The purpose of this API is two-fold: (1) provide convenient methods and classes in order to model a large range of typical data representations implemented in Stingray (2) provide a more general framework for users to build their own models

+

A note on terminology: in this tutorial, we largely use model to denote both the parametric model describing the underlying process that generated the data, and the statistical model used to account for uncertainties in the measurement process.

+

The modeling subpackage defines a wider range of classes for typical statistical models than most standard modelling packages in X-ray astronomy, including likelihoods for Gaussian-distributed uncertainties (what astronomers call the \(\chi^2\) likelihood), Poisson-distributed data (e.g. light curves) and \(\chi^2\)-distributed data (confusingly, not what astronomers call the \(\chi^2\) likelihood, but the likelihood of data with \(\chi^2\)-distributed uncertainties +appropriate for power spectra). It also defines a superclass LogLikelihood that make extending the framework to other types of data uncertainties straightforward. It supports Bayesian modelling via the Posterior class and its subclasses (for different types of data, equivalent to the likelihood classes) and provides support for defining priors.

+

The class ParameterEstimation and its data type-specific subclasses implement a range of operations usually done with power spectra and other products, including optimization (fitting), sampling (via Markov-Chain Monte Carlo), calibrating models comparison metrics (particularly likelihood ratio tests) and outlier statistics (for finding periodic signal candidates).

+

Overall, it is designed to be as modular as possible and extensible to new data types and problems in many places, though we do explicitly not aim to provide a fully general modelling framework (for example, at the moment, we have given no thought to modeling multi-variate data, though this may change in the future).

+
+

Some background

+

Modeling power spectra and light curves with parametric models is a fairly standard task. Stingray aims to make solving these problems as easy as possible.

+

We aim to integrate our existing code with astropy.modeling for for maximum compatibility. Please note, however, that we are only using the models, not the fitting interface, which is too constrained for our purposes.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+# ignore warnings to make notebook easier to see online
+# COMMENT OUT THESE LINES FOR ACTUAL ANALYSIS
+import warnings
+warnings.filterwarnings("ignore")
+
+
+
+
+
[2]:
+
+
+
%matplotlib inline
+import matplotlib.pyplot as plt
+
+try:
+    import seaborn as sns
+    sns.set_palette("colorblind")
+except ImportError:
+    print("Install seaborn. It help you make prettier figures!")
+
+import numpy as np
+
+from astropy.modeling import models
+
+
+
+

The models and API of astropy.modeling.models is explained in the astropy documentation in more detail.

+

Here’s how you instantiate a simple 1-D Gaussian:

+
+
[3]:
+
+
+
g = models.Gaussian1D()
+
+
+
+
+
[4]:
+
+
+
# Generate fake data
+np.random.seed(0)
+x = np.linspace(-5., 5., 200)
+y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)
+y += np.random.normal(0., 0.2, x.shape)
+yerr = 0.2
+
+plt.figure(figsize=(8,5))
+plt.errorbar(x, y, yerr=yerr, fmt='ko')
+
+
+
+
+
[4]:
+
+
+
+
+<ErrorbarContainer object of 3 artists>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_5_1.png +
+
+
+
+

Likelihoods and Posteriors

+

In general, model fitting will happen either in a frequentist (Maximum Likelihood) or Bayesian framework. Stingray’s strategy is to let the user define a posterior in both cases, but ignore the prior in the former case.

+

Let’s first make some fake data:

+
+
[5]:
+
+
+
# define power law component
+pl = models.PowerLaw1D()
+
+# fix x_0 of power law component
+pl.x_0.fixed = True
+
+# define constant
+c = models.Const1D()
+
+# make compound model
+plc = pl + c
+
+
+
+

We’re going to pick some fairly standard parameters for our data:

+
+
[6]:
+
+
+
# parameters for fake data.
+alpha = 2.0
+amplitude = 5.0
+white_noise = 2.0
+
+
+
+

And now a frequency array:

+
+
[7]:
+
+
+
freq = np.linspace(0.01, 10.0, int(10.0/0.01))
+
+
+
+

Now we can set the parameters in the model:

+
+
[8]:
+
+
+
from astropy.modeling.fitting import _fitter_to_model_params
+
+_fitter_to_model_params(plc, [amplitude, alpha, white_noise])
+
+
+
+
+
[9]:
+
+
+
psd_shape = plc(freq)
+
+
+
+

As a last step, we need to add noise by picking from a chi-square distribution with 2 degrees of freedom:

+
+
[10]:
+
+
+
powers = psd_shape*np.random.chisquare(2, size=psd_shape.shape[0])/2.0
+
+
+
+

Let’s plot the result:

+
+
[11]:
+
+
+
plt.figure(figsize=(12,7))
+plt.loglog(freq, powers, ds="steps-mid", label="periodogram realization")
+plt.loglog(freq, psd_shape, label="power spectrum")
+
+
+plt.legend()
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7ff22998cfd0>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_18_1.png +
+
+
+
+

Maximum Likelihood Fitting

+

Let’s assume we’ve observed this periodogram from our source. We would now like to estimate the parameters. This requires the definition of likelihood, which describes the probability of observing the data plotted above given some underlying model with a specific set of parameters. To say it differently, the likelihood encodes what we know about the underlying model (here a power law and a constant) and the statistical properties of the data (power spectra generally follow a chi-square +distribution) and then allows us to compare data and model for various parameters under the assumption of the statistical uncertainties.

+

In order to find the best parameter set, one generally maximizes the likelihood function using an optimization algorithm. Because optimization algorithms generally minimize functions, they effectively minimize the log-likelihood, which comes out to be the same as maximizing the likelihood itself.

+

Below is an implementation of the \(\chi^2\) likelihood as appropriate for power spectral analysis, with comments for easier understanding. The same is also implemented in posterior.py in Stingray:

+
+
[12]:
+
+
+
logmin = -1e16
+class PSDLogLikelihood(object):
+
+    def __init__(self, freq, power, model, m=1):
+        """
+        A Chi-square likelihood as appropriate for power spectral analysis.
+
+        Parameters
+        ----------
+        freq : iterable
+            x-coordinate of the data
+
+        power : iterable
+            y-coordinte of the data
+
+        model: an Astropy Model instance
+            The model to use in the likelihood.
+
+        m : int
+            1/2 of the degrees of freedom, i.e. the number of powers
+            that were averaged to obtain the power spectrum input into
+            this routine.
+
+        """
+
+        self.x = ps.freq # the x-coordinate of the data (frequency array)
+        self.y = ps.power # the y-coordinate of the data (powers)
+        self.model = model # an astropy.models instance
+        self.m = m
+
+        self.params = [k for k,l in self.model.fixed.items() if not l]
+        self.npar = len(self.params) # number of free parameters
+
+    def evaluate(self, pars, neg=False):
+        """
+        Evaluate the log-likelihood.
+
+        Parameters
+        ----------
+        pars : iterable
+            The list of parameters for which to evaluate the model.
+
+        neg : bool, default False
+            If True, compute the *negative* log-likelihood, otherwise
+            compute the *positive* log-likelihood.
+
+        Returns
+        -------
+        loglike : float
+            The log-likelihood of the model
+
+        """
+        # raise an error if the length of the parameter array input into
+        # this method doesn't match the number of free parameters in the model
+        if np.size(pars) != self.npar:
+            raise Exception("Input parameters must" +
+                            " match model parameters!")
+
+        # set parameters in self.model to the parameter set to be used for
+        # evaluation
+        _fitter_to_model_params(self.model, pars)
+
+        # compute the values of the model at the positions self.x
+        mean_model = self.model(self.x)
+
+        # if the power spectrum isn't averaged, compute simple exponential
+        # likelihood (chi-square likelihood for 2 degrees of freedom)
+        if self.m == 1:
+            loglike = -np.sum(np.log(mean_model)) - \
+                      np.sum(self.y/mean_model)
+        # otherwise use chi-square distribution to compute likelihood
+        else:
+            loglike = -2.0*self.m*(np.sum(np.log(mean_model)) +
+                               np.sum(self.y/mean_model) +
+                               np.sum((2.0 / (2. * self.m) - 1.0) *
+                                      np.log(self.y)))
+
+        if not np.isfinite(loglike):
+            loglike = logmin
+
+        if neg:
+            return -loglike
+        else:
+            return loglike
+
+    def __call__(self, parameters, neg=False):
+        return self.evaluate(parameters, neg)
+
+
+
+

Let’s make an object and see what it calculates if we put in different parameter sets. First, we have to make our sample PSD into an actual Powerspectrum object:

+
+
[13]:
+
+
+
from stingray import Powerspectrum
+
+ps = Powerspectrum()
+ps.freq = freq
+ps.power = powers
+ps.df = ps.freq[1] - ps.freq[0]
+ps.m = 1
+
+
+
+
+
[14]:
+
+
+
loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)
+
+
+
+
+
[15]:
+
+
+
test_pars = [1, 5, 100]
+loglike(test_pars)
+
+
+
+
+
[15]:
+
+
+
+
+-4835.88214847462
+
+
+
+
[16]:
+
+
+
test_pars = [4.0, 10, 2.5]
+loglike(test_pars)
+
+
+
+
+
[16]:
+
+
+
+
+-2869.5582486265116
+
+
+
+
[17]:
+
+
+
test_pars = [2.0, 5.0, 2.0]
+loglike(test_pars)
+
+
+
+
+
[17]:
+
+
+
+
+-2375.704120812954
+
+
+

Something close to the parameters we put in should yield the largest log-likelihood. Feel free to play around with the test parameters to verify that this is true.

+

You can similarly import the PSDLogLikelihood class from stingray.modeling and do the same:

+
+
[18]:
+
+
+
from stingray.modeling import PSDLogLikelihood
+
+loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)
+loglike(test_pars)
+
+
+
+
+
[18]:
+
+
+
+
+-2375.704120812954
+
+
+

To estimate the parameters, we can use an optimization routine, such as those implemented in scipy.optimize.minimize. We have wrapped some code around that, to make your lives easier. We will not reproduce the full code here, just demonstrate its functionality.

+

Now we can instantiate the PSDParEst (for PSD Parameter Estimation) object. This can do more than simply optimize a single model, but we’ll get to that later.

+

The PSDParEst object allows one to specify the fit method to use (however, this must be one of the optimizers in scipy.optimize). The parameter max_post allows for doing maximum-a-posteriori fits on the Bayesian posterior rather than maximum likelihood fits (see below for more details). We’ll set it to False for now, since we haven’t defined any priors:

+
+
[19]:
+
+
+
from stingray.modeling import PSDParEst
+
+parest = PSDParEst(ps, fitmethod="L-BFGS-B", max_post=False)
+
+
+
+

In order to fit a model, make an instance of the appropriate LogLikelihood or Posterior subclass, andsimply call the fit method with that instance and starting parameters you would like to fit.

+
+
[20]:
+
+
+
loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)
+
+
+
+
+
[21]:
+
+
+
loglike.model.parameters
+
+
+
+
+
[21]:
+
+
+
+
+array([2., 1., 5., 2.])
+
+
+
+
[22]:
+
+
+
loglike.npar
+
+
+
+
+
[22]:
+
+
+
+
+3
+
+
+
+
[23]:
+
+
+
starting_pars = [3.0, 1.0, 2.4]
+res = parest.fit(loglike, starting_pars)
+
+
+
+

The result is an OptimizationResults object, which computes various summaries and useful quantities.

+

For example, here’s the value of the likelihood function at the maximum the optimizer found:

+
+
[24]:
+
+
+
res.result
+
+
+
+
+
[24]:
+
+
+
+
+2183.789677035487
+
+
+

Note: Optimizers routinely get stuck in local minima (corresponding to local maxima of the likelihood function). It is usually useful to run an optimizer several times with different starting parameters in order to get close to the global maximum.

+

Most useful are the estimates of the parameters at the maximum likelihood and their uncertainties:

+
+
[25]:
+
+
+
print(res.p_opt)
+print(res.err)
+
+
+
+
+
+
+
+
+[4.72916493 2.09193061 2.10372265]
+[3.78311696 0.7300253  0.55312843]
+
+
+

Note: uncertainties are estimated here via the covariance matrix between parameters, i.e. the inverse of the Hessian at the maximum. This only represents the true uncertainties for specific assumptions about the likelihood function (Gaussianity), so use with care!

+

It also computes Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for model comparison purposes:

+
+
[26]:
+
+
+
print("AIC: " + str(res.aic))
+print("BIC: " + str(res.bic))
+
+
+
+
+
+
+
+
+AIC: 2189.789677035487
+BIC: 2204.512942872433
+
+
+

Finally, it also produces the values of the mean function for the parameters at the maximum. Let’s plot that and compare with the power spectrum we put in:

+
+
[27]:
+
+
+
plt.figure(figsize=(12,8))
+plt.loglog(ps.freq, psd_shape, label="true power spectrum",lw=3)
+plt.loglog(ps.freq, ps.power, label="simulated data")
+plt.loglog(ps.freq, res.mfit, label="best fit", lw=3)
+plt.legend()
+
+
+
+
+
[27]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7ff259161910>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_43_1.png +
+
+

That looks pretty good!

+

You can print a summary of the fitting results by calling print_summary:

+
+
[28]:
+
+
+
res.print_summary(loglike)
+
+
+
+
+
+
+
+
+The best-fit model parameters plus errors are:
+  0) Parameter amplitude_0         :
+4.72916              +/- 3.78312
+[      None       None]
+  1) Parameter x_0_0               :
+1.00000              (Fixed)
+  2) Parameter alpha_0             :
+2.09193              +/- 0.73003
+[      None       None]
+  3) Parameter amplitude_1         :
+2.10372              +/- 0.55313
+[      None       None]
+
+
+Fitting statistics:
+ -- number of data points: 1000
+ -- Deviance [-2 log L] D = 4367.579354.3
+ -- The Akaike Information Criterion of the model is: 2189.789677035487.
+ -- The Bayesian Information Criterion of the model is: 2204.512942872433.
+ -- The figure-of-merit function for this model  is: 1079.682849.5f and the fit for 997 dof is 1.082932.3f
+ -- Summed Residuals S = 69267.121618.5f
+ -- Expected S ~ 6000.000000.5 +/- 109.544512.5
+
+
+
+

Likelihood Ratios

+

The parameter estimation code has more functionality than act as a simple wrapper around scipy.optimize. For example, it allows for easy computation of likelihood ratios. Likelihood ratios are a standard way to perform comparisons between two models (though they are not always statistically meaningful, and should be used with caution!).

+

To demonstrate that, let’s make a broken power law model

+
+
[29]:
+
+
+
# broken power law model
+bpl = models.BrokenPowerLaw1D()
+
+# add constant
+bplc = bpl + c
+
+
+
+
+
[30]:
+
+
+
bplc.param_names
+
+
+
+
+
[30]:
+
+
+
+
+('amplitude_0', 'x_break_0', 'alpha_1_0', 'alpha_2_0', 'amplitude_1')
+
+
+
+
[31]:
+
+
+
# define starting parameters
+bplc_start_pars = [2.0, 1.0, 3.0, 1.0, 2.5]
+
+
+
+
+
[32]:
+
+
+
loglike_bplc = PSDLogLikelihood(ps.freq, ps.power, bplc, m=ps.m)
+
+
+
+
+
[33]:
+
+
+
pval, plc_opt, bplc_opt = parest.compute_lrt(loglike, starting_pars, loglike_bplc, bplc_start_pars)
+
+
+
+
+
[34]:
+
+
+
print("Likelihood Ratio: " + str(pval))
+
+
+
+
+
+
+
+
+Likelihood Ratio: 2.2374827070098036
+
+
+
+
+
+

Bayesian Parameter Estimation

+

For Bayesian parameter estimation, we require a prior along with the likelihood defined above. Together, they form the posterior, the probability of the parameters given the data, which is what we generally want to compute in science.

+

Since there are no universally accepted priors for a model (they depend on the problem at hand and your physical knowledge about the system), they cannot be easily hard-coded in stingray. Consequently, setting priors is slightly more complex.

+

Analogously to the LogLikelihood above, we can also define a Posterior object. Each posterior object has three methods: logprior, loglikelihood and logposterior.

+

We have pre-defined some Posterior objects in posterior.py for common problems, including power spectral analysis. We start by making a PSDPosterior object:

+
+
[35]:
+
+
+
from stingray.modeling import PSDPosterior
+
+
+
+
+
[36]:
+
+
+
lpost = PSDPosterior(ps.freq, ps.power, plc, m=ps.m)
+
+
+
+

The priors are set as a dictionary of functions:

+
+
[37]:
+
+
+
import scipy.stats
+
+# flat prior for the power law index
+p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+
+# flat prior for the power law amplitude
+p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))
+
+# normal prior for the white noise parameter
+p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)
+
+priors = {}
+priors["alpha_0"] = p_alpha
+priors["amplitude_0"] = p_amplitude
+priors["amplitude_1"] = p_whitenoise
+
+
+
+

There’s a function set_logprior in stingray.modeling that sets the prior correctly:

+
+
[38]:
+
+
+
from stingray.modeling import set_logprior
+
+
+
+
+
[39]:
+
+
+
lpost.logprior = set_logprior(lpost, priors)
+
+
+
+

You can also set the priors when you instantiate the posterior object:

+
+
[40]:
+
+
+
lpost = PSDPosterior(ps.freq, ps.power, plc, priors=priors, m=ps.m)
+
+
+
+

Much like before with the log-likelihood, we can now also compute the log-posterior for various test parameter sets:

+
+
[41]:
+
+
+
test_pars = [1.0, 2.0, 4.0]
+print("log-prior: " + str(lpost.logprior(test_pars)))
+print("log-likelihood: " + str(lpost.loglikelihood(test_pars)))
+print("log-posterior: " + str(lpost(test_pars)))
+
+
+
+
+
+
+
+
+log-prior: -198.61635344021062
+log-likelihood: -2412.2493594640564
+log-posterior: -2610.865712904267
+
+
+

When the prior is zero (so the log-prior is -infinity), it automatically gets set to a very small value in order to avoid problems when doing the optimization:

+
+
[42]:
+
+
+
test_pars = [6, 6, 3.0]
+print("log-prior: " + str(lpost.logprior(test_pars)))
+print("log-likelihood: " + str(lpost.loglikelihood(test_pars)))
+print("log-posterior: " + str(lpost(test_pars)))
+
+
+
+
+
+
+
+
+log-prior: -1e+16
+log-likelihood: -2534.0567826161864
+log-posterior: -1e+16
+
+
+
+
[43]:
+
+
+
test_pars = [5.0, 2.0, 2.0]
+print("log-prior: " + str(lpost.logprior(test_pars)))
+print("log-likelihood: " + str(lpost.loglikelihood(test_pars)))
+print("log-posterior: " + str(lpost(test_pars)))
+
+
+
+
+
+
+
+
+log-prior: 1.383646559789373
+log-likelihood: -2184.6739536386162
+log-posterior: -2183.290307078827
+
+
+

We can do the same parameter estimation as above, except now it’s called maximum-a-posteriori instead of maximum likelihood and includes the prior (notice we set max_post=True):

+
+
[44]:
+
+
+
parest = PSDParEst(ps, fitmethod='BFGS', max_post=True)
+res = parest.fit(lpost, starting_pars)
+
+
+
+
+
[45]:
+
+
+
print("best-fit parameters:")
+for p,e in zip(res.p_opt, res.err):
+    print("%.4f +/- %.4f"%(p,e))
+
+
+
+
+
+
+
+
+best-fit parameters:
+4.8949 +/- 0.0762
+2.0690 +/- 0.0636
+2.0547 +/- 0.0149
+
+
+

The same outputs exist as for the Maximum Likelihood case:

+
+
[46]:
+
+
+
res.print_summary(lpost)
+
+
+
+
+
+
+
+
+The best-fit model parameters plus errors are:
+  0) Parameter amplitude_0         :
+4.89491              +/- 0.07623
+[      None       None]
+  1) Parameter x_0_0               :
+1.00000              (Fixed)
+  2) Parameter alpha_0             :
+2.06898              +/- 0.06363
+[      None       None]
+  3) Parameter amplitude_1         :
+2.05471              +/- 0.01489
+[      None       None]
+
+
+Fitting statistics:
+ -- number of data points: 1000
+ -- Deviance [-2 log L] D = 4367.845867.3
+ -- The Akaike Information Criterion of the model is: 2188.688941098666.
+ -- The Bayesian Information Criterion of the model is: 2203.412206935612.
+ -- The figure-of-merit function for this model  is: 1104.686605.5f and the fit for 997 dof is 1.108011.3f
+ -- Summed Residuals S = 75870.935552.5f
+ -- Expected S ~ 6000.000000.5 +/- 109.544512.5
+
+
+

Unlike in the maximum likelihood case, we can also sample from the posterior probability distribution. The method sample uses the emcee package to do MCMC.

+

Important: Do not sample from the likelihood function. This is formally incorrect and can lead to incorrect inferences about the problem, because there is no guarantee that a posterior with improper (flat, infinite) priors will be bounded!

+

Important: emcee has had a major upgrade to version 3, which came with a number of API changes. To ensure compatibility with stingray, please update emcee to the latest version, if you haven’t already.

+

Much like the optimizer, the sampling method requires a model and a set of starting parameters t0. Optionally, it can be useful to also input a covariance matrix, for example from the output of the optimizer.

+

Finally, the user should specify the number of walkers as well as the number of steps to use for both burn-in and sampling:

+
+
[47]:
+
+
+
sample = parest.sample(lpost, res.p_opt, cov=res.cov, nwalkers=400,
+             niter=100, burnin=300, namestr="psd_modeling_test")
+
+
+
+
+
+
+
+
+Chains too short to compute autocorrelation lengths.
+-- The acceptance fraction is: 0.640200.5
+R_hat for the parameters is: [0.33858822 0.00779588 0.00477259]
+-- Posterior Summary of Parameters:
+
+parameter        mean            sd              5%              95%
+
+---------------------------------------------
+
+theta[0]         4.92699673203164       0.5826084748010877      4.001167475075788       5.916405947428704
+
+theta[1]         2.0850162824299567     0.08840420643721274     1.945198565812  2.236054242762929
+
+theta[2]         2.059927524015745      0.06916995745141118     1.944976347964247       2.172179088048585
+
+
+
+

The sampling method returns an object with various attributes that are useful for further analysis, for example the acceptance fraction:

+
+
[48]:
+
+
+
sample.acceptance
+
+
+
+
+
[48]:
+
+
+
+
+0.6402000000000001
+
+
+

Or the mean and confidence intervals of the parameters:

+
+
[49]:
+
+
+
sample.mean
+
+
+
+
+
[49]:
+
+
+
+
+array([4.92699673, 2.08501628, 2.05992752])
+
+
+
+
[50]:
+
+
+
sample.ci
+
+
+
+
+
[50]:
+
+
+
+
+array([[4.00116748, 1.94519857, 1.94497635],
+       [5.91640595, 2.23605424, 2.17217909]])
+
+
+

The method print_results prints the results:

+
+
[51]:
+
+
+
sample.print_results()
+
+
+
+
+
+
+
+
+-- The acceptance fraction is: 0.640200.5
+R_hat for the parameters is: [0.33858822 0.00779588 0.00477259]
+-- Posterior Summary of Parameters:
+
+parameter        mean            sd              5%              95%
+
+---------------------------------------------
+
+theta[0]         4.92699673203164       0.5826084748010877      4.001167475075788       5.916405947428704
+
+theta[1]         2.0850162824299567     0.08840420643721274     1.945198565812  2.236054242762929
+
+theta[2]         2.059927524015745      0.06916995745141118     1.944976347964247       2.172179088048585
+
+
+
+

Similarly, the method plot_results produces a bunch of plots:

+
+
[52]:
+
+
+
fig = sample.plot_results(nsamples=1000, fig=None, save_plot=True,
+                    filename="modeling_tutorial_mcmc_corner.pdf")
+
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_83_0.png +
+
+
+
+

Calibrating Likelihood Ratio Tests

+

In order to use likelihood ratio tests for model comparison, one must compute the p-value of obtaining a likelihood ratio at least as high as that observed given that the null hypothesis (the simpler model) is true. The distribution of likelihood ratios under that assumption will only follow an analytical distribution if * the models are nested, i.e. the simpler model is a special case of the more complex model and * the parameter values that transform the complex model into the simple one +do not lie on the boundary of parameter space.

+

Imagine e.g. a simple model without a QPO, and a complex model with a QPO, where in order to make the simpler model out of the more complex one you would set the QPO amplitude to zero. However, the amplitude cannot go below zero, thus the critical parameter value transforming the complex into the simple model lie on the boundary of parameter space.

+

If these two conditions are not given, the observed likelihood ratio must be calibrated via simulations of the simpler model. In general, one should not simulate from the best-fit model alone: this ignores the uncertainty in the model parameters, and thus may artificially inflate the significance of the result.

+

In the purely frequentist (maximum likelihood case), one does not know the shape of the probability distribution for the parameters. A rough approximation can be obtained by assuming the likelihood surface to be a multi-variate Gaussian, with covariances given by the inverse Fisher information. One may sample from that distribution and then simulate fake data sets using the sampled parameters. Each simulated data set will be fit with both models to compute a likelihood ratio, which is then used +to build a distribution of likelihood ratios from the simpler model to compare the observed likelihood ratio to.

+

In the Bayesian case, one may sample from the posterior for the parameters directly and then use these samples as above to create fake data sets in order to derive a posterior probability distribution for the likelihood ratios and thus a posterior predictive p-value.

+

For the statistical background of much of this, see Protassov et al, 2002.

+

Below, we set up code that will do exactly that, for both the frequentist and Bayesian case.

+
+
[53]:
+
+
+
import copy
+
+def _generate_model(lpost, pars):
+    """
+    Helper function that generates a fake PSD similar to the
+    one in the data, but with different parameters.
+
+    Parameters
+    ----------
+    lpost : instance of a Posterior or LogLikelihood subclass
+        The object containing the relevant information about the
+        data and the model
+
+    pars : iterable
+        A list of parameters to be passed to lpost.model in oder
+        to generate a model data set.
+
+    Returns:
+    --------
+    model_data : numpy.ndarray
+        An array of model values for each bin in lpost.x
+
+    """
+    # get the model
+    m = lpost.model
+
+    # reset the parameters
+    _fitter_to_model_params(m, pars)
+
+    # make a model spectrum
+    model_data = lpost.model(lpost.x)
+
+    return model_data
+
+def _generate_psd(ps, lpost, pars):
+    """
+    Generate a fake power spectrum from a model.
+
+    Parameters:
+    ----------
+    lpost : instance of a Posterior or LogLikelihood subclass
+        The object containing the relevant information about the
+        data and the model
+
+    pars : iterable
+        A list of parameters to be passed to lpost.model in oder
+        to generate a model data set.
+
+    Returns:
+    --------
+    sim_ps : stingray.Powerspectrum object
+        The simulated Powerspectrum object
+
+    """
+
+    model_spectrum = _generate_model(lpost, pars)
+
+      # use chi-square distribution to get fake data
+    model_powers = model_spectrum*np.random.chisquare(2*ps.m,
+                                                      size=model_spectrum.shape[0])/(2.*ps.m)
+
+    sim_ps = copy.copy(ps)
+
+    sim_ps.powers = model_powers
+
+
+    return sim_ps
+
+def _compute_pvalue(obs_val, sim):
+    """
+    Compute the p-value given an observed value of a test statistic
+    and some simulations of that same test statistic.
+
+    Parameters
+    ----------
+    obs_value : float
+        The observed value of the test statistic in question
+
+    sim: iterable
+        A list or array of simulated values for the test statistic
+
+    Returns
+    -------
+    pval : float [0, 1]
+        The p-value for the test statistic given the simulations.
+
+    """
+
+    # cast the simulations as a numpy array
+    sim = np.array(sim)
+
+    # find all simulations that are larger than
+    # the observed value
+    ntail = sim[sim > obs_val].shape[0]
+
+    # divide by the total number of simulations
+    pval = ntail/sim.shape[0]
+
+    return pval
+
+def calibrate_lrt(ps, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False,
+                  nsim=1000, niter=200, nwalker=500, burnin=200, namestr="test"):
+
+
+    # set up the ParameterEstimation object
+    parest = PSDParEst(ps, fitmethod="L-BFGS-B", max_post=False)
+
+    # compute the observed likelihood ratio
+    lrt_obs, res1, res2 = parest.compute_lrt(lpost1, t1,
+                                             lpost2, t2,
+                                             neg=neg,
+                                             max_post=max_post)
+
+    # simulate parameter sets from the simpler model
+    if not max_post:
+        # using Maximum Likelihood, so I'm going to simulate parameters
+        # from a multivariate Gaussian
+
+        # set up the distribution
+        mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov)
+
+        # sample parameters
+        s_all = mvn.rvs(size=nsim)
+
+    else:
+        if sample is None:
+            # sample the posterior using MCMC
+            sample = parest.sample(lpost, res1.p_opt, cov=res1.cov,
+                                   nwalkers=nwalker, niter=niter,
+                                   burnin=burnin, namestr=namestr)
+
+
+        # pick nsim samples out of the posterior sample
+        s_all = sample[np.random.choice(sample.shape[0], nsim, replace=False)]
+
+    lrt_sim = np.zeros(nsim)
+
+    # now I can loop over all simulated parameter sets to generate a PSD
+    for i,s in enumerate(s_all):
+
+        # generate fake PSD
+        sim_ps = _generate_psd(ps, lpost1, s)
+
+        # make LogLikelihood objects for both:
+        if not max_post:
+            sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,
+                                         model=lpost1.model, m=sim_ps.m)
+            sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,
+                                         model=lpost2.model, m=sim_ps.m)
+        else:
+            # make a Posterior object
+            sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power,
+                                      lpost1.model, m=sim_ps.m)
+            sim_lpost1.logprior = lpost1.logprior
+
+            sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power,
+                                      lpost2.model, m=sim_ps.m)
+            sim_lpost2.logprior = lpost2.logprior
+
+
+        parest_sim = PSDParEst(sim_ps, max_post=max_post)
+
+        lrt_sim[i], _, _ = parest_sim.compute_lrt(sim_lpost1, t1,
+                                         sim_lpost2, t2,
+                                         neg=neg,
+                                         max_post=max_post)
+
+    # now I can compute the p-value:
+    pval = _compute_pvalue(lrt_obs, lrt_sim)
+    return pval
+
+
+
+
+
[54]:
+
+
+
pval = calibrate_lrt(ps, loglike, starting_pars,
+                     loglike_bplc, bplc_start_pars,
+                     max_post=False, nsim=100)
+
+
+
+
+
[55]:
+
+
+
print("The p-value for rejecting the simpler model is: " + str(pval))
+
+
+
+
+
+
+
+
+The p-value for rejecting the simpler model is: 0.97
+
+
+

As expected, the p-value for rejecting the powerlaw model is fairly large: since we simulated from that model, we would be surprised if it generated a small p-value, causing us to reject this model (note, however, that if the null hypothesis is true, the p-value will be uniformely distributed between 0 and 1. By definition, then, you will get a p-value smaller or equal to 0.01 in approximately one out of a hundred cases)

+

We can do the same with the Bayesian model, in which case the result is called a posterior predictive p-value, which, in turn, is often used in posterior model checking (not yet implemented!).

+

We have not yet defined a PSDPosterior object for the bent power law model, so let’s do that. First, let’s define some priors:

+
+
[56]:
+
+
+
import scipy.stats
+
+# flat prior for the power law indices
+p_alpha1 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+p_alpha2 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+
+# flat prior for the break frequency
+p_x_break = lambda xbreak: ((0.01 <= xbreak) & (10.0 >= xbreak))
+
+# flat prior for the power law amplitude
+p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))
+
+# normal prior for the white noise parameter
+p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)
+
+priors = {}
+priors["alpha_1_0"] = p_alpha
+priors["alpha_2_0"] = p_alpha
+
+priors["amplitude_0"] = p_amplitude
+priors["amplitude_1"] = p_whitenoise
+priors["x_break_0"] = p_x_break
+
+
+
+

Now we can set up the PSDPosterior object:

+
+
[57]:
+
+
+
lpost_bplc = PSDPosterior(ps.freq, ps.power, bplc, priors=priors, m=ps.m)
+
+
+
+
+
[58]:
+
+
+
lpost_bplc(bplc_start_pars)
+
+
+
+
+
[58]:
+
+
+
+
+-2230.14039643262
+
+
+

And do the posterior predictive p-value. Since we’ve already sampled from the simple model, we can pass that sample to the calibrate_lrt function, in order to cut down on computation time (if the keyword sample is not given, it will automatically run MCMC:

+
+
[59]:
+
+
+
pval = calibrate_lrt(ps, lpost, starting_pars,
+                     lpost_bplc, bplc_start_pars,
+                     sample=sample.samples,
+                     max_post=True, nsim=100)
+
+
+
+
+
[60]:
+
+
+
print("The posterior predictive p-value is: p = " + str(pval))
+
+
+
+
+
+
+
+
+The posterior predictive p-value is: p = 1.0
+
+
+

Again, we find that the p-value does not suggest rejecting the powerlaw model.

+

Of course, a slightly modified version is implemented in stingray as a subclass of the PSDParEst class:

+
+
[61]:
+
+
+
from stingray.modeling import PSDParEst
+
+
+
+
+
[62]:
+
+
+
parest = PSDParEst(ps, fitmethod="BFGS")
+
+
+
+
+
[63]:
+
+
+
pval = parest.calibrate_lrt(lpost, starting_pars, lpost_bplc, bplc_start_pars,
+                   sample=sample.samples, nsim=100, max_post=True, seed=200)
+
+
+
+
+
[64]:
+
+
+
print(pval)
+
+
+
+
+
+
+
+
+0.2
+
+
+
+
+

Bayesian-ish QPO Searches

+

When searching for quasi-periodic oscillations (QPOs) in light curves that are not constant (for example because they are bursts or have other types of variability), one must take care that the variable background is accurately modelled (most standard tools assume that the light curve is constant).

+

In Vaughan et al, 2010, a method was introduced to search for QPOs in the presence of red noise (stochastic variability), and in Huppenkothen et al, 2013 it was extended to magnetar bursts, and in Inglis et al, 2015 and Inglis et al, 2016 a similar approach was used to find +QPOs in solar flares.

+

Based on a model for the broadband spectral noise, the algorithm finds the highest outlier in a test statistic based on the data-model residuals (under the assumption that if the broadband model is correct, the test statistic \(T_R = \max_j(2 D_j/m_j)\) for \(j\) power spectral bins with powers \(D_j\) and model powers \(m_j\) will be distributed following a \(\chi^2\) distribution with two degrees of freedom). The observed test statistic \(T_R\) is then compared to a +theoretical distribution based on simulated power spectra without an outlier in order to compute a posterior predictive p-value as above for the likelihood ratio.

+

Since the concept is very similar to that above, we do not show the full code here. Instead, the p-value can be calculated using the method calibrate_highest_outlier, which belongs to the PSDParEst class:

+
+
[65]:
+
+
+
# compute highest outlier in the data, and the frequency and index
+# where that power occurs
+max_power, max_freq, max_ind = parest._compute_highest_outlier(lpost, res)
+
+
+
+
+
[66]:
+
+
+
max_power
+
+
+
+
+
[66]:
+
+
+
+
+array([16.79715722])
+
+
+
+
[67]:
+
+
+
pval = parest.calibrate_highest_outlier(lpost, starting_pars, sample=sample,
+                                  max_post=True,
+                                  nsim=100, niter=200, nwalkers=500,
+                                  burnin=200, namestr="test")
+
+
+
+
+
[68]:
+
+
+
pval
+
+
+
+
+
[68]:
+
+
+
+
+0.15
+
+
+
+
+

Convenience Functions

+

For convenience, we have implemented some simple functions to reduce overhead with having to instantiate objects of the various classes.

+

Note that these convenience function use similar approaches and guesses in all cases; this might work for some simple quicklook analysis, but when preparing publication-ready results, one should approach the analysis with more care and make sure the options chosen are appropriate for the problem at hand.

+
+

Fitting a power spectrum with some model

+

The code above allows for a lot of freedom in building an appropriate model for your application. However, in everyday life, one might occasionally want to do a quick fit for various applications, without having to go too much into details. Below is a convenience function written for exactly that purpose.

+

Please note that while this aims to use reasonable defaults, this is unlikely to produce publication-ready results!

+

So let’s fit a power law and a constant to some data, which we’ll create below:

+
+
[69]:
+
+
+
from stingray import Powerspectrum
+
+m = 1
+nfreq = 100000
+freq = np.linspace(1, 1000, nfreq)
+
+np.random.seed(100)  # set the seed for the random number generator
+noise = np.random.exponential(size=nfreq)
+
+model = models.PowerLaw1D() + models.Const1D()
+model.x_0_0.fixed = True
+
+alpha_0 = 2.0
+amplitude_0 = 100.0
+amplitude_1 = 2.0
+
+model.alpha_0 = alpha_0
+model.amplitude_0 = amplitude_0
+model.amplitude_1 = amplitude_1
+
+p = model(freq)
+power = noise * p
+
+ps = Powerspectrum()
+ps.freq = freq
+ps.power = power
+ps.m = m
+ps.df = freq[1] - freq[0]
+ps.norm = "leahy"
+
+
+
+

What does this data set look like?

+
+
[70]:
+
+
+
plt.figure()
+plt.loglog(ps.freq, ps.power, ds="steps-mid", lw=2, color="black")
+
+
+
+
+
[70]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7ff1f9f77b80>]
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_109_1.png +
+
+

In order to fit this, we’ll write a convenience function that can take the power spectrum, a model, some starting parameters and just run with it:

+
+
[71]:
+
+
+
from stingray.modeling import PSDLogLikelihood, PSDPosterior, PSDParEst
+
+def fit_powerspectrum(ps, model, starting_pars, max_post=False, priors=None,
+                      fitmethod="L-BFGS-B"):
+
+    if priors:
+        lpost = PSDPosterior(ps, model, priors=priors)
+    else:
+        lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m)
+
+    parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)
+    res = parest.fit(lpost, starting_pars, neg=True)
+
+    return parest, res
+
+
+
+

Let’s see if it works. We’ve already defined our model above, but to be explicit, let’s define it again:

+
+
[72]:
+
+
+
model_to_test = models.PowerLaw1D() + models.Const1D()
+model_to_test.x_0_0.fixed = True
+
+
+
+

Now we just need some starting parameters:

+
+
[73]:
+
+
+
t0 = [80, 1.5, 2.5]
+
+
+
+
+
[74]:
+
+
+
parest, res = fit_powerspectrum(ps, model_to_test, t0)
+
+
+
+
+
[75]:
+
+
+
res.p_opt
+
+
+
+
+
[75]:
+
+
+
+
+array([109.14539343,   2.07102572,   2.00200532])
+
+
+

Looks like it worked! Let’s plot the result, too:

+
+
[76]:
+
+
+
plt.figure()
+plt.figure()
+plt.loglog(ps.freq, ps.power, ds="steps-mid", lw=2, color="black")
+plt.plot(ps.freq, res.mfit, lw=3, color="red")
+
+
+
+
+
[76]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7ff22a4fe640>]
+
+
+
+
+
+
+
+<Figure size 432x288 with 0 Axes>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_119_2.png +
+
+

You can find the function in the scripts sub-module:

+
+
[77]:
+
+
+
from stingray.modeling.scripts import fit_powerspectrum
+
+
+
+
+
[78]:
+
+
+
parest, res = fit_powerspectrum(ps, model_to_test, t0)
+res.p_opt
+
+
+
+
+
[78]:
+
+
+
+
+array([108.96093418,   2.0699128 ,   2.00198643])
+
+
+
+
+

Fitting Lorentzians

+

Fitting Lorentzians to power spectra is a routine task for most astronomers working with power spectra, hence there is a function that can produce either Maximum Likelihood or Maximum-A-Posteriori fits of the data.

+
+
[79]:
+
+
+
l = models.Lorentz1D
+
+
+
+
+
[80]:
+
+
+
l.param_names
+
+
+
+
+
[80]:
+
+
+
+
+('amplitude', 'x_0', 'fwhm')
+
+
+
+
[81]:
+
+
+
def fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None,
+                    fitmethod="L-BFGS-B"):
+
+    model = models.Lorentz1D()
+
+    if nlor > 1:
+        for i in range(nlor-1):
+            model += models.Lorentz1D()
+
+    if fit_whitenoise:
+        model += models.Const1D()
+
+    parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)
+    lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m)
+    res = parest.fit(lpost, starting_pars, neg=True)
+
+    return parest, res
+
+
+
+

Let’s make a dataset so we can test it!

+
+
[82]:
+
+
+
np.random.seed(400)
+nlor = 3
+
+x_0_0 = 0.5
+x_0_1 = 2.0
+x_0_2 = 7.5
+
+amplitude_0 = 150.0
+amplitude_1 = 50.0
+amplitude_2 = 15.0
+
+fwhm_0 = 0.1
+fwhm_1 = 1.0
+fwhm_2 = 0.5
+
+whitenoise = 2.0
+
+model = models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + \
+        models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + \
+        models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + \
+        models.Const1D(whitenoise)
+
+p = model(ps.freq)
+noise = np.random.exponential(size=len(ps.freq))
+
+power = p*noise
+
+plt.figure()
+plt.loglog(ps.freq, power, lw=1, ds="steps-mid", c="black")
+plt.loglog(ps.freq, p, lw=3, color="red")
+
+
+
+
+
[82]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7ff2396417f0>]
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_128_1.png +
+
+

Let’s make this into a Powerspectrum object:

+
+
[83]:
+
+
+
import copy
+
+
+
+
+
[84]:
+
+
+
ps_new = copy.copy(ps)
+
+
+
+
+
[85]:
+
+
+
ps_new.power = power
+
+
+
+

So now we can fit this model with our new function, but first, we need to define the starting parameters for our fit. The starting parameters will be [amplitude, x_0, fwhm] for each component plus the white noise component at the end:

+
+
[86]:
+
+
+
t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]
+parest, res = fit_lorentzians(ps_new, nlor, t0)
+
+
+
+

Let’s look at the output:

+
+
[87]:
+
+
+
res.p_opt
+
+
+
+
+
[87]:
+
+
+
+
+array([ 1.49011854e+02,  1.06004236e+00, -4.00733295e-05,  4.54780918e+01,
+        1.89830161e+00,  1.10287737e+00,  1.01732386e+01,  7.49528676e+00,
+        6.72319819e-01,  1.99444430e+00])
+
+
+

Cool, that seems to work! For convenience PSDParEst also has a plotting function:

+
+
[88]:
+
+
+
parest.plotfits(res, save_plot=False, namestr="lorentzian_test")
+
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_138_0.png +
+
+

The function exists in the library as well for ease of use:

+
+
[89]:
+
+
+
from stingray.modeling import fit_lorentzians
+
+
+
+
+
[90]:
+
+
+
parest, res = fit_lorentzians(ps_new, nlor, t0)
+
+
+
+
+
[91]:
+
+
+
res.p_opt
+
+
+
+
+
[91]:
+
+
+
+
+array([1.47811631e+02, 3.65200027e-02, 1.35036166e-03, 4.03665876e+01,
+       1.89162600e+00, 1.20693953e+00, 1.05461311e+01, 7.49865621e+00,
+       6.36152472e-01, 1.99437422e+00])
+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Modeling/ModelingExamples.ipynb b/notebooks/Modeling/ModelingExamples.ipynb new file mode 100644 index 000000000..658865ab4 --- /dev/null +++ b/notebooks/Modeling/ModelingExamples.ipynb @@ -0,0 +1,2393 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# The Stingray Modeling API Explained\n", + "\n", + "Some more in-depth explanations of how the Stingray modeling API works.\n", + "\n", + "Who should be using this API?\n", + "Basically, anyone who wants to model power spectral products with parametric functions. The purpose of this API is two-fold:\n", + "(1) provide convenient methods and classes in order to model a large range of typical data representations implemented in Stingray\n", + "(2) provide a more general framework for users to build their own models\n", + "\n", + "A note on terminology: in this tutorial, we largely use _model_ to denote both the parametric model describing the underlying process that generated the data, and the statistical model used to account for uncertainties in the measurement process. \n", + "\n", + "The `modeling` subpackage defines a wider range of classes for typical statistical models than most standard modelling packages in X-ray astronomy, including likelihoods for Gaussian-distributed uncertainties (what astronomers call the $\\chi^2$ likelihood), Poisson-distributed data (e.g. light curves) and $\\chi^2$-distributed data (confusingly, *not* what astronomers call the $\\chi^2$ likelihood, but the likelihood of data with $\\chi^2$-distributed uncertainties appropriate for power spectra). It also defines a superclass `LogLikelihood` that make extending the framework to other types of data uncertainties straightforward. It supports Bayesian modelling via the `Posterior` class and its subclasses (for different types of data, equivalent to the likelihood classes) and provides support for defining priors. \n", + "\n", + "The class `ParameterEstimation` and its data type-specific subclasses implement a range of operations usually done with power spectra and other products, including optimization (fitting), sampling (via Markov-Chain Monte Carlo), calibrating models comparison metrics (particularly likelihood ratio tests) and outlier statistics (for finding periodic signal candidates).\n", + "\n", + "Overall, it is designed to be as modular as possible and extensible to new data types and problems in many places, though we do explicitly *not* aim to provide a fully general modelling framework (for example, at the moment, we have given no thought to modeling multi-variate data, though this may change in the future).\n", + "\n", + "\n", + "## Some background\n", + "\n", + "Modeling power spectra and light curves with parametric models is a fairly standard task. Stingray aims to make solving these problems as easy as possible. \n", + "\n", + "We aim to integrate our existing code with `astropy.modeling` for for maximum compatibility. Please note, however, that we are only using the models, not the fitting interface, which is too constrained for our purposes. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "# ignore warnings to make notebook easier to see online\n", + "# COMMENT OUT THESE LINES FOR ACTUAL ANALYSIS\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "try:\n", + " import seaborn as sns\n", + " sns.set_palette(\"colorblind\")\n", + "except ImportError:\n", + " print(\"Install seaborn. It help you make prettier figures!\")\n", + "\n", + "import numpy as np\n", + "\n", + "from astropy.modeling import models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The models and API of `astropy.modeling.models` is explained in the [astropy documentation](http://docs.astropy.org/en/stable/modeling/) in more detail.\n", + "\n", + "Here's how you instantiate a simple 1-D Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "g = models.Gaussian1D()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAEvCAYAAADiuwAFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAt9klEQVR4nO3dbWhk2Zkf8P+p0nS1hONZ1N3UBtuqKjIjq42zxNCYgjZIeHeD0zG7X7NbsyOIUIHZhTHsEpJoviRQEAhs0rD2BGl7SLdTZAnshoTFy8aBVS9t0o57HNvEVkUetiTteCe1M2qHdaOe6pF08kF9yrdunXPvuXXfb/1/MDCtl9JRqeo+9zznOc8RUkoQERFRPEppD4CIiKjIGGiJiIhixEBLREQUIwZaIiKiGDHQEhERxYiBloiIKEZzcTzo1atXZb1ej+OhiYiIMuett956X0p5Tfe5WAJtvV7Ho0eP4nhoIiKizBFCHJo+x9QxERFRjBhoiYiIYsRAS0REFCMGWiIiohgx0BIREcWIgZaIiChGDLREREQxYqAlIiKKEQMtERFRjBhoiYiIYsRAS0S5sLa2hrW1tbSHQRQYAy0REVGMGGiJiIhixEBLREQUIwZaIiKiGDHQEhERxYiBloiIKEYMtESUCdy+Q0XFQEtERBQjBloiyrxut4uHDx/i/v37qNfr6Ha7aQ+JyBoDLRFlWrfbRbvdxnA4BAAcHh6i3W4z2FJuMNASUaZtbW3h5ORk7GMnJyfY2tpKaUREwTDQElGmHR0dBfo4UdYw0BJRpi0tLQX6OFHWMNASUaZ1Oh0sLCyMfWxhYQGdTielEREFM5f2AIiIvLRaLQDAxsYGhsMhKpUKlpaWRh8nyjoGWiJKndq+MxwOUa/X0el0xgJpq9XCzs5OiiMkmh5Tx0SUKm7foaJjoCWiVHH7DhUdAy0RpYrbd6joGGiJKFXcvkNFx0BLRKman59HqTR+KbLZvsPTfigvGGiJKFXVahXLy8uoVCoAgFqthu3tbW7focLg9h4iSl21WkW1WgUA7O7uAsBotqr+TZRXDLRElIiwgXN3dxfdbnescUWj0YhugEQxYeqYiHLBvd92OBxif39/tN+Wa7aUVZzRElGigs5s1dcfHBxM7Lc9Pz/H1tYW13Mp0zijJaJc4H5byisGWiLKBe63pbzyDbRCiMtCiP8phPieEOIHQoh/kcTAiIicdMflAcCTJ0/YF5kyzWaNdgjg81LKJ0KIFwA8EEL8iZTyYcxjI6KCc57ao6qITQVNah12fX0dZ2dno48fHx+j3W5jaWlptEWIKEt8A62UUgJ48vyfLzz/T8Y5KCIqDlPg1FURO9db+/3+xDaeVquFjY2NsUALXBxC0O/3GWgpk6yqjoUQZQBvAXgJwFeklN/SfE0bQBvgmgkRjRsMBhOB03Rqz49+9CNIKXF+fg5gfBtPq9UaBWY308eJ0mZVDCWlPJNS/j0AHwfwWSHEpzVfsy2lvCGlvHHt2rWIh0lEeTUYDLC/vz+x//Xw8FD79WdnZ6Mgq6htPABGrRrdTB8nSlugqmMp5f8DsAvgC3EMhoiKp9/vawNnuVwO9DgqrdxoNCYOIXjhhRdwdnaG+/fvo16vsziKMsWm6viaEOLnnv//PIBfAtCLeVxEVBCmlO7Z2RkuXbo09rGFhQXMzelXtEqlErrd7sQhBFeuXIEQAqenpwCAw8NDtNttBlvKDJsZ7d8G8GdCiO8D+DaAb0gp/zjeYRFRUXildKWUo8CqTu156aWXJmaswEVgbrfbGAwGqFaraDabWF1dxUc+8hE8e/Zs7GtPTk5GqWaitPkGWinl96WUn5FS/oKU8tNSyn+ZxMCIqBh0qV7lww8/RLlcxurqKg4ODtBqtUYzVh1VXexkWutlxyjKCvY6JqLI6PoYqy03vZ5+xcmZWnbuqzVxf65SqWi/nrsfKCvYgpGIYletVn2rhd37ak1qtdpYINfNmBcWFjA/P8/TfCgTGGiJKDZqhnr//n2cnp5CCDH2+VKpNGpGodtX67awsIBOpzP2MXdxlFrrZfMKygqmjokoFu4ZqurmNDc3h9PT01HjChUQ/dZUa7UaOp2O9ki8arU6ehw1293Z2YnqVyEKhYGWiGJhmqGWy2XcvHlz4uNLS0vawqZKpYJms2l9fq1J0HNwiaLC1DERxcI0QzWtwepO53Gmlm2tra1xbZYyhTNaIgrMZnboNUN1cj/GxsbGWE9k01qr+j4GVco6BloiCs0d7NbW1jA/P4+FhYWx9LHfDLXVanFtlQqHgZaIIqE7oWd7e9t6hupmM2PVnWfLamPKGq7RElFophN6AIxaJX7wwQfY29uL7GfqzrPd39/HYDCI7GcQRYEzWiIKzXRCz9bWFur1eiw/U1fVfH5+PmrRqGbX9Xp9Yu8tUZI4oyWi0EyVxLrK493dXWxubo4aWfgda7e7u6stuvKqanbOrtVpPmqmy6pkShoDLRGFZmqvqOs37E75TnusnVcvY/fsWncYAVFSGGiJKDRdv+FSqaRN2epSvtMca6fbd+v+t9NwOMT9+/fx8OFDruNSohhoiSg0d7/hSqWC5eVlbbtEU8o36LF2rVYL29vbYz2O19fXfb9PpZZ5MDwlhcVQRBSIc0tNvV7HrVu3xrbYrKyseG6xMTWyUKngIC0SnftuNzc30W63rb5PFWrpbgSIosYZLRFZ062vvvHGG2NbbHq9Hr75zW+OCp3caVpTyjdsZbDN6T9OPBieksJAS0TWbIPZ6ekpgItAfHR0hM3NzdHndCnf7e3t0LPLoIGTB8NTUoSUMvIHvXHjhnz06FHkj0tE6SqVSpjmmlGr1XBwcDD2sahO01GPc3BwoE1Jl8tlSCnHKpFLpRLu3bvH1DFFRgjxlpTyhu5znNESkbVpZ4FJpGlNp/+8/PLL1oVaRHFgoCUia7pgZiOJNK07Ja0CqjoUvtlsYmVlBQDQ6/V8G2UQRYVVx0RkTc0C1UEBtVoNt27dwptvvonhcIhyuYzz8/Ox9HIUhU5Bxmc6/Uf1Y1YpZNUoQ30fUVwYaIkoEGcwU+urP/zhD0efd57iU6vV0Ol0Yg1ktmu8un7MqlEGAy3FiYGWiCLjPtoubKFTWM6gb8JtPhQ3BloiKiR3qtiE23wobgy0RDS1MKfgxD3bffr0qW+QXVhYwPz8PNbW1lKffVNxseqYiIzyfKScX0q4UqlgaWnJs10kURQ4oyWiQjL1VK5UKmg2mymMiGYVZ7REVCjqoHhTT+VGo5HSyGhWMdASUWAqmGWZqacyU8WUNKaOiSg0d9DNShDW7fk1NbQgigtntETkK89FUURpY6AlIiKKEQMtERFRjBhoiWgq3W4XDx8+xP3793N1Eo6zkGswGOTyd6B8YTEUEWmpQDocDlGpVMa2xXS7XbTb7VEP4bydhNPtdvHgwQOcnZ2NPpa334HygzNaIprgDqTD4RD7+/ujGd/W1hZOTk7GvkedhJN16ndzBlklL78D5YtwnhsZlRs3bshHjx5F/rhElIzLly9rT7yp1Wo4ODhAqVSC7tohhPDtL5y2er2u7Ril5OF3oOwRQrwlpbyh+xxntEQ0wXSsnOofbDrxJg8n4fj1QM7D70D5wkBLRCNqv6zqpuRWKpXQ7XaN7Q07nU4SwwzFK5Dm5XegfGGgJaIJjUYDpdLk5eHs7GxUMKRrb5iHIiLdTQIAXLlyJTe/A+ULq46JaILqB9zr9SY+pwqGDg4OJtob5oEKpBsbG2MV1Xt7e9aPobpk5en3pvQw0BKRVrVa1QZawH+dM+ucPZCJ4sbUMREZmdZqWTBEZI+BloiMdGu1s1IwxIMUKCpMHRORkVqr7ff7o/XMpaUlFgwRBcBAS0RjBoPBWGBtNBpoNptpD4sotxhoiQiAvv+var0I/Gx2S0TBMNASkWf/3/Pzc/T7fW2gLcL2liL8DpRtvoFWCPEJAPcA/DyAcwDbUsrbcQ+MiJKjOyTAydSSMc/cAZZ7YykuNlXHpwB+W0p5HUATwG8KIT4V77CIKEl++2JN23xmUV7P4aX0+AZaKeW7UsrvPP//nwLYA/CxuAdGRMnx6//rPIt2lpnO4WWwJS+B9tEKIeoAPgPgW5rPtYUQj4QQj957772IhkdESfDr/8tCqAt5PoeX0mMdaIUQHwHwhwC+LKX8G/fnpZTbUsobUsob165di3KMRBSzVqs1dkhApVLBysoK3n///dGe2cFgMDMpU1N62JRiz3tLSoqXVdWxEOIFXATZrpTyj+IdEhGlwav/7+bmpjZlqr6vSHTp4VdffRXARYpdd2g8W1KSF98ZrRBCALgDYE9K+bvxD4mIsmaWUqa63/X8/BwbGxuYn5/P7Tm8lB6b1PFNAL8B4PNCiO8+/+9WzOMiogyZpZSp6XcaDoeoVqu5PYeX0uObOpZSPgAgEhgLEWVU0VOmak12OByiXC5rG3eo4OpMsXPPLdng6T1EMyjoyTS6quSipEzda7K6IFsqlbjFiabGQEtEvtxVyUVKmfp1xapUKlheXuYWJ5oaex0T0QRdSrSoKVOvdebV1dUER0JFxRktEc000zoz205SVBhoiWhkd3e3ULNVG7r1Z67JUpSYOiaimabWmTc2NsYOu69WqxgMBuj3+2MfJwqKgZaIZp6uK9ZgMMD+/j7Oz88BXOyj7fV6uHr1Kq5du4Zqtcqj9cgKU8dERBr9fn8UZJ2Oj49xdHSEzc3NFEZFecRASzRjeJ6qHa/D7ovafpLiwUBLNEN4nqq9Wq3m+fkitp+keDDQEs2QsIcDzFJVsumMXqUo7Scpfgy0RDNklg4HmIbzzN2trS2sr6+jXC5PfF1R2k9SMhhoiWaIaRbG2dnPqoydafW7d+/i5ZdfxsrKSiHbT1IyuL2HaIZ0Oh202+2x9DFnZxd0VcYnJyfo9/toNpujXsezkjqn6HBGSzRDinw4QFjPnj3Tftyr+pjIBgMt0YxptVpoNptYXV3FwcEBg+xzQXsec5sU2WKgJSKC+cxdXdtFbpOiIBhoiYhgTqvrzqE1bZPa2NgYtWUkUhhoiQhra2sMELBPq5u2Q3E9l3QYaImIPOiadPAMWwqCgZaIyIIz4AZZzyVioCWaYUwZTyfIei4RAy0R0RS4TYpsMdASzQD3zHWWDgcgShsDLRERUYwYaImIHKad7bNTFJkw0BIRhcROUeSFgZZoxjnPYOVMbDqmTlFbW1spjYiyhMfkERWIKniyTX2qM1jV8XBqJgaAVbQBmDpFmT5Os4UzWqIZ1e120ev1tGewciYWjKlTlOnjNFsYaIlmkFpTNOFMzI4qnDJ1iup0OimNjLKEqWOiglPVsMPhEPV6HZ1OR7um6MSZWDAqzb6xsYHhcIharYZOpzORfg+a2qdiYKAlKjBTNaxXkOVMbDqtVgs7OzsAGEhpHFPHRAVmqoYtl8vary+Xy9je3mYhFFGEOKMlKjDTWuvZ2RkWFhbGgnCpVMLdu3cZZKfAgxnIC2e0RAVmWmtVp82o02cqlQqWl5cZZIliwEBLVGBe1bDO02eazSaPeCOKCVPHRAWhqy62rYYlovgw0BIVgKm6GGA1LFHamDomKgD22iXKLgZaogJgr91s8Dpij8fozS6mjokKYGlpCYeHh9qP22BKOV5+qX0qNs5oiXJobW1tbO+mba9d9/dRMpjan20MtEQF0Gq1xvbFqn2ynC3FzyYlzNT+bGPqmKggpqkuZso4HNuUcNjUPuUbZ7RERFOyTQnzGL3Zxhkt0QxQM1euz0bLLyXsPhaPjUNmEwMtEdGUbFPCKuA2m00ATNnPGqaOiYimxJQw2fANtEKIN4UQfy2E+N9JDIiIKC9Y7U02bFLH/x7A7wG4F+9QiGhaNmuvXocO0PTYS5r8+AZaKeWfCyHqCYyFiCzoAqbi1f6PnYmSw6IzcopsjVYI0RZCPBJCPHrvvfeielgicjAFzMFg4Pl97ExElJ7IAq2UcltKeUNKeePatWtRPSwROZgCZr/f9/w+diYiSg+39xDliCkwqhmum0phsjNRNnANdzZxew9RjpgCo6p6NeE2lOQNBoNRD+SHDx/6pvepuGy29/xHAP8DwCeFEO8IITbiHxYR6ZgCZqPR8Pw+bkNJ1mAwwP7+/ijTMBwO0ev1cPXqVZ5DO4Nsqo5/LYmBEJE/FRjdrfzU9hK/7+U2lHi4n89+v4/z8/OJrzs+Pma19wxi6pgoZ1qtFprNJlZXV1Gv162CLCXLtGYO2FV789zgYmGgJco551qg6TxUSo7N889q79nCQEuUY+61QLWv9vr165wRpUDtc/bDau/ZwkBLlGO6tUCbfbUUD90+ZzdWe88eBlqiHDCt2ZnWAr3WCCk+finhqKu9uZabD2xYQZRjlUpFG1QrlQoGgwH6/b62JzLFw9QYpFKpoNlsstp7RnFGS5RjjUYDpdL423hhYQGLi4vatVs2TYiXbp9zqVSa2OfMmehsYaAlyiDbC3G1WsXy8vJEI4rHjx9r126fPn3KWVWM3I1BKpUKlpeXUa1WPb+PgbfYmDomyqHd3V10u91R44pKpYKVlRXs7e0BAF555RXt93FbSfycjUGIAM5oiXJFzXzcx+UNh0Ps7++P9nCaeh9zW0n2qfOGuS+6OBhoiVI2TdpQt43k/Px81HHItHbLgqhsM503zGCbbwy0RDnkdb5st9ud2F/LQwTSsbu7G2hN3HTesF/LRso2rtESRUzNTqMoOjLNdE3bSBYXF8dmRMBF1Wun02GQTZHpteD++3rdQFF+cUZLlHG6c01N20gAeKaUKdtMa+i6j3MtNz8YaBPA0n2alu5c0/39fQDQbiN5/Pix9nE4I8oH03nD7rV1ruXmS24DLYMXzQJdL2M1Q3Uel/fBBx9gb28v0IyI0uGciaoMheLeh2taW+dabr5wjZYoYX5ruOpC7NWv2DRD7XQ6aLfbYxdhtUZLyfH627q3ZfV6Pbz99ts4PT0dtcpsNpuej8O13OlEWT8RRG5ntERF5L4Qm5RKJW2a0NSZiIVQ2WA63ef09BSAfatMZi7yhTPaGZfWHV4RTbOU4Zy91ut1PHnyxPeYNQA4OztDu93G0tLSRHs/dibKLpsZpzrm0KttIzMX+ZL7QMtAQVllkyJ2F7QEYXNB5vsiW0zbstz8MhoqQ+FswdloNJi5yKjMB1oGUsoT59F06uJnYnNIuB+eO5svupmojqmFphMzF/nBNVqiiJi24pi2XERRuGJzQabsUGvo5XLZ+DW6Y/Uo3xhoiSLitRVHx1S4cuXKFauft7CwwAtyDrVaLczNmZOJNsfqhcXtkcnKZaD12ocWtbAvSJvuLXzRF4Mpjeu1FUfX3en27du+P0vtr9zb2+OySg55pfyjDLJFuLYU4XfIXaD1Ox7MVhJ/vKDdW4rwgpplNkfTOW+8tra2sL6+rt2KY3qsSqWC1dVVHBwcsPAlx7z+vkDwwwjIX5otK3MXaP2OB8sSdm+ZLbqj6ZxbLnQ3Xnfv3kWj0cDq6iqazeZoNmN6LKaKi4F/32Tp3nuvvvpqYsE2d4E2Tx1RkhorZ8Lp0x1N524WYbrx6vf7E49XrVaxvLw8Mdu1TStyRpRtur9vtVpFv98PPONyHjrBwwX00p6gZX57j5tpH1oWO6IkPdagW6HczRKKfpRaVFvF3I9j6uZ0dnaGXq83em5NN1im9bpqtRp7UQylx/n3VRXr6kZNLTMBGHtPul97m5ub2uUp9/fZKPJWyrQnaLmb0eoKSADgyZMnmbuTsz2JIw08/SM6tm31FhcXtd9fqVQmZiXuAj/OUItNV7Fus8wU5/JUkTJlabeszHSg1S1e7+zsYGlpaWIf2vHxceYChe1JHGng+nF0bNvqAdDeeC0uLo7tvz08PMT+/n6s1fSULaasxuHhoWewS3umlhemCv+kJj2ZDbSmGddgMEC1WtXuQzs5OcHGxkam7sKcR5llqVKUb9Do2N4VP378WHvj9fjxY+3+W93aLRWDO0PhV4Xspmabac/U8iLtwzYyG2j9CkdMd4BZaEmXh5QL36Dhqb+zaTnDbWlpaezGq16vY2dnx/iaffbsWdRDpoy6c+eONtvhV4U8zUwt7DaXJK9vUW3JWVtbw87Ozui956zwT0Jmi6H8CkcqlYr2AmXTks5ZBHT58mU0Gg3s7e15fl1cxUK6s0eTKEzS9VzVrR/nuUAiqbG7G7yXy2Wcn59DSjn6Gq+1edNrWXfTk8e/A/lzv4ZqtRo6nY5vL2OvwwV01y8AxuKprDFlNQH7Qq+sTHgyO6M1zaxUINXtQ7O5A7RteDFNsVDQOz1TtWoShUlZXj/OI+dM9XOf+xw++clPjqWp1GxWxzSbyULRHCXHa5nJ69ri/D41UzNdv1577TVtpnBjYyO238vE73pZpDqSzAZaU8WuCqTufWgqUPilA2z3UyXxR/Y6vSWJF1RW14+LoFqtWqepeNNDUTNdv46Pj7Vf77zZz8rSV1x1JGnsO85s6tgmleLch6ZSan6pFts/XhLFQn6PZfOz0ko9Z4VteliXRlOvlSDpWOfjmI7BU48X5GLlPPLMOR6miostrr9v0OtUuVyeeF2nvYc7aB8Cm2uB7X7lqGV2RgtAWzgyLdsqvSSr+fwe69KlS54X6zRTz4rf3W8W7o69KtjDPM60fbaJpuGcifkdpuJ1MpSucO/8/HzidZ329rI4+hBMu185rEwH2jjYVunNz89r14A7nU5kwcOrWtVmvTnt1PM00gi8QVofBn2crPbZpmIJetaxKUjdvn17Yplibm5urHAPuHhd93q9VNs6xrGkEvSErahkNnWsMxgM0O/3jalkmyphryo9J5U2cf88Z4rPlimV4R6LYltxGEXqeRYEbX3opm4MuPeYkqRbFnJSN3nqOuK8Ph4cHGB9fR1vvvnmxPULwNgyhRDCcxxJpVd1dEsqYXYTBKnwj1JuAq0pt760tORZZQfoe4U2m82xx9fNsnRrwDbjVC92m7VSU+C2CeaXLl3yDBZF2hMb5s1lep5stoI5RdW7end3F91ud3SD5dx6QQSYl4XcDg8P0e12tddHdTJUtVr1fN+Ygo+TypDlve7jzp07Vtsao5ab1LEpt67Sf9NUCQdZ87DhTu+Y1kqjSp/qtjgpUbx4ojy/McmU8draGq5fvz4a++np6cRdu01q3i2qPttRrRlTcXktC7m12228/fbbntdHL17XEaejoyOra0LY93pU1wrnWNV/7jOgk6rwz82M1q8TVNC0nvsOUK15AJi62s5roT2OP6Q7va2400ReTHe6YTeLp1kA5f7bnp2dAQDm5uZwenpqnZp3U7/3+vr66DGBn/XZtn3Deq0Zp13pSelS70ebwKd4BWSb5RHTdcRtcXExspOCouCV5fIqFLWd6UcpNzNaU5qvVqthd3fXmL4zVe7qgmKY/rLdbjeVhXbnfk31XxR7YvO8WVz3twUutjAEeX50d9atVsvYZ9v93Ozu7mJzc3N0V3358mVcv37d+Hp49uwZt/MQgOiWffyWR9Ssr9frAQBWVlawsrKiLQQFJoP6tNeEKLNlOn6Fokn3Ec98oFXNt02doFR61FRNbEoPTtMr2ZTSUHdPJl77vtLe+mJiCgZ+p4lkQdx9sG1vqEzbgUzH5RVpTZ3Cse2frei27fgtjwwGg4nXZ6/Xm0hDOw+/0Ak6kYjjiE534NbVUjgl3RM/84FWMXWCUjMT0+kMplSc151e0DVbr7unNFvphQnkfi0wbUS9Bu5muiu2OQklzB216fHdz5lpOxCgPy6PBVGkqOuZDdO2Hb9Oef1+3/McZeBnWx9brVbg3gKm60/U2TJd4PYTtBAyrFys0bq78aysrGgPATBV8DorgdV2nkajMbaO5+a8u3vppZc8x+d1RzftQrtX9bJf8Ixqj6+uOs/5pvLaTmW7Bu5eZ/GrLlaf39zcNK4X6f62zuxG2PVn3ePrAqXpdfH48WN87Wtfm+h6lveKTopWq9Wa2Prn5rVtx/lvt93dXat1YOcWIr+DSGyvO1FvkwtSOAZMXseSkPlA69WNx+bCZLrgLy8vY3l52bcA4PT0dGxjuC4AmrZ91Gq1QAVJ6oWaVpsw5xjUmEwtMP2ClWkNvNfrodfrhd7S4nVXXK/XAWDi5koFeK/vbbVaYxcM3d/ba4+1k9d2IFPLRSIn002jytb53ZB63cCaXp9uarnIdE0Iek0Kuk3OOWZdC1SvAO3eujRtIWRYmU8dh+3GY7rgP336FHt7e6NCIi/q55m279y6dSvwmZA6qnim1+v5tgmLOi1rKvwxHTrgl/6x2f9nu6XFmeZVv6vfXbEqEltZWQEA9Ho96+9VTH/vwWAwVoRmKq6a5qxQIif3kpnfklgQtuvAzjRrFAeRTNtaMWjNQ6VSiaVQdBpWM1ohxBcA3AZQBvD7Usp/FeuoHMKmGUwXfLXRG4DVxf7o6AiXLl3SBsCvf/3r2N7e9u025cevqEr9znFsTQrK7+9iuwlebWkxpZ283ly6k0gWFxdHd7zuc2H9vtd9R+21d9vmebbtQkbkxdk4J0o25yh7FZQqpgyQ+9ANv2yZ3/vCr+bB+Tm/cSedRfINtEKIMoCvAPhlAO8A+LYQ4r9KKX8Y9+CA8N14vC747XYbL774olWg9UqzHB0dadeHdekar9Nf/NYa1O/stTUpqUDr93fxWwNX/IJxkDfXCy+8gJ/+9Kd49uwZAIztdfX73lKphPn5+bGLRhTVy9O07CRKivv1qQuUpmuK++bYNAHQLfOZlk6c18fLly+j0WiM6nGC1DzMz89nak+6Ter4swDellL+hZTyGYA/APCr8Q7rZ8Kk3waDwVgFndvJyQneffdd32Cg0hq21aYmfqe/eM3SnakV04U+yX2YXn+Xbrdr3MvqZnpOVSrb683lrrL86Ec/OgqyXtzfa0rH+e3dJkqa2u4Y12M7l9P8zlF2M00AbJf5/K6PpuusKupyprSzFGQBu0D7MQB/6fj3O88/lgjTth2vNMNgMMCDBw/Q6/W0s5ognNuIdHt5g6y5mWZn6+vr6Ha7ngFbFdAA9ttL4rSzs4OlpaWJvwsAqx6tgF1aymtLgXu9yHSotd/36i4oppu0addY0zhsmihKftsFwzbs8avHMa0pn52djdV76Go60mazRqs72kFOfJEQbQBtIPoLvk36zVSxOy21kK7uHnWztKBrbqYXnHqhrK+v4+7duxMpTfdsy3Z7SdR0aW/34QxBSu1tijp0WwpMwc5mXdjmeTK9hubm5vDSSy8FXmP1OxCDyMRdNRz110f5WGFPxvGr+1Dvu1deeWXia5zdnnSzYiC5+hUdm0D7DoBPOP79cQB/5f4iKeU2gG0AuHHjxkQgjopf2uTp06fWQXZhYWG0Rmvacwno+2aqrwnyx/Na5/UqqnL+DF3A1xUTONda3Gsd0zCldYDxF7DN3au6eQAwFrgXFxfx+PFjbeGQTUGRaV3Y3ePYL1B6tXDU/b399v6GLaoicps2fRzmFCw/pvef7aEbplO2nIG61WppAy1wcU3SbddMun5FxybQfhvAy0KIBoAfA/hHAH491lGFYJumcO6nevHFFz0LAEwpDdMfz3QnqJuducfuNXs3BXxn8Oh2u3jw4MFYytx277Fuz2jQ58Dv6D5nAZi7cOLdd981jnlnZ2c0PtM+XPf+Vvff0uYOfTAYWBdB2d7xZ2FNnWaHu5HMrVu3jAWYUVHvTd0Nqjp0wy+DY9oz7H6fm2bOXhmttN9rvoFWSnkqhPgtAH+Ki+09b0opfxD7yKbkNWvUbfS26bYU9uBwxSv1AfinWLzWMFqt1igQm6ptTacI6YLz4eEhXn31Vdy7dw+tVsvYRWY4HI4F6HK5DCHExBYBd5r44cOHvpkH55ht06+6M4RtU1/qZ5hM27YtrcOmafboGsm88cYbo88HbfijWy5SmbEgy3U2GRzTjbJ7nF6d30wNiNJ+r1k1rJBSfl1KuSyl/DtSykzvtjctmM/NzU290du2769NRWCr1TKejuG3dui3huG3Pqr7fpvgDJifg3K5PNbU4ezsDFLK0Qk3pope25sUNWa/84in5SxS0jUKUWwKt0zu3LnD3sYUim21sU2NhLsS2PTYflXAwMX7x+t94zQcDseKAXU/19kIxl2kqIqxvJp4NBqNTL7XMt+CMSjTml6Y/LypIGfaC69tCz83v72rfmlzdWSg88VtG5xNz4EQQhuky+Uybt68qX3MIFWA6neL40SeIIVzYbrxuF+T7G1McbFdOvP6OnV9qNfrnlXA7iyYrShaypqaeFSrVbz++uuZe68VLtAC0TcJmCZ46xruO8ekS3H68avA9Uub624M/N6YKtCZngN1jqWbKQD6pWfdY1a/myn9GmZPq23hXKVSCV1Iwd7GlATb/sU2qVSvozJNWTBbzt7iOl71IibO91XW3mu5CbRhnzDb9TrT1+k6qJhOrjE13A+6ncM9Fr8KXFOxldqWovvZfsHZfTKHezvP06dPtd+v0jru38G2kQUwfvdsWygRhG2FdBzFI0Rx8Cu4BOzfN6ZrQ7lcttrCp6r9TdT7z6/DVBG2w2X+UIG0eK2JbG5u4ujoyHhwsanh/jTrie5zUwEY1zB0zT1WVlZw8+bNiReoWu/wW9PW3XE61zWfPHmCS5cujX3eKzjZdG5ycqaZdOsyzpuboJvUbe7qVcqYDScoD9zXgFqthi996UuBGv4oXg0i/KjrzurqauAGO3HVY6SpEIE2zCHe0/A7uSaqKmXTzNgriLg7HgHwDEBBgjMweaLN8fGxVfGTMk31n7NiUXeTYVO0oWNzekm1WvW9sSLKEnfHtK9+9asTJ1nZXCfVtaFcLlv/7FKphJWVlYkGO0GKP/3qMeJsQxmX3KSOTYKmaU1/oCB/OL/qX1PKxXZ7iFcxgjPo+I3Zq8m3U5A1bd3d5ocffohKpWIsfnKySW3pqH1wutS/37Yn0/Pkt91K/b38bqxMSwhEWTHtGdfq8HmbWaxpicqm+NO5Jmsy7fa6LMh9oPVK08aVz/er/tUFk4WFhdHnbdeLw86MvZp8qzR0UF53m15HZLmDnXOd2dkRysRrJhzkKEVdkdrKyopxX57X46uLlfsmD5i+mpIoDqZ0rFdBkuJ3vbFpDONV/GlT/e+8frq/1100lcX3Xu5Tx1GlaYPwO7hYt06yvb0dOPDb7t81mbbJt9d6pOlnu/fTDodDHB0dadNT7vT28vLy6N+6PcZ+xRteBw84mbIfgH79V/29vPYQe810ibIiTMN/03u+UqlMdcqPm1+BZK1Ww/r6Ovr9/tg1KU9LOrkPtH7BKI58vimQOu+k3Osk09xlmY6is62CneaUH/carHtd2LTeIoQw3jEHYdqM7vX8+d34KH7ZD/f6r3rtmB7flE4zXbzyuLZExRDmxC/Te97mOuS8aTcVKXpNilZXV9HpdHD37t2Ja9Jrr72Wmxvd3Ada00Xwzp07kV/UnBfKoIFUV7Dld+E1HRFoe/eoe4MAF02+TQVVfhV/e3t7uHfv3sRNhqmM33YDvZNXdxgdmxsfr7H4ZT9Mj1+r1bRfn3a7NyK3oAVJTu6bX9sMnfumXdWIXL9+fSyt7DVjBsw3yKZjMY+OjjJ3U5v7Ndo8dN3xSln6jTNM8429vT10u12sr6+Pzb6Oj4/xk5/8RPs9Nh2YdM0X1PPvllTQsWkIEaZIzfT4urX4tNu9EblN243O+f3uNVa/65KuIYzuIBLTsZ+2He/csnijm/sZLRBNmjZOflWrQfndrbln3mrrjZN6wbt5BR2v7VPT3jG7fxeb321zc3Oq7Vym7Me0DSlsZ9JEWeDMFMVxnXS/d20ySKZjP50zZlPgvHLlSib7GusUItBmXZCq2Dh4zVLdgUrXAN/JtJfXlF4K82bWFWWZsgM2wda2SC1I2inrN3k0m4LewAZ5LFt+9TM2x34C5hvk27dv5+ZGN/ep4yzwO0zZbztQ3LzOaVSByv0CVangcrk8UfSj2z7lLukPuz5i2vc3Pz9vzA7YbFnSpYCj7ItNRBf8DmPx2/+u+C0PZq2vsQ5ntAmwrYqNi6koSnGnsZ2zNFPZfdjtU353yaaiLK8CiLjGQkRmpvePLoN079690Q16kExf3jNHnNHGyNSkYZqCrTAbs92FEDqmF33YLle23M9V0ECexQIIoiKzuTn1yiD5ZfqKdPPLGW1CwtyRmfa2BtmYrQohgu6ni7qAyJZp60ycBRCc2RIlx9QnIIvFTGEx0IaQ1IVZVyY/bdVyo9EIFKhMBUR7e3ux/u7TFEDE/fdgIKZZFvXr39QnIG9pYRuFSR0X+QIYZdVytVrF66+/HiiNncah5UUogCCicbpe4+4zrouoMIG2yMJWLbsrgtMInNPIyziJ8iLN91HQk9aKhIE2B0ynARVxLSMJUV9seBNA5M+v13iYfb5Zx0CbA2m0mSzyi56IkpfGSWtZwUAbkm7NIY4AyDQqEeWRul7V6/VQWwXzfN1j1XEIYdoBpoFVs0SUlrS2CmYBA20IQQ8LYKAjolll22u8iJg6DiHtwwKIiPJEtwRWxH2zbgy0IaR9WECSsjYTz9p4iIhMGGhDyPO2m7wEqryMk4jIhGu0IfDgbyIi8sMZbUjcdkNERF4YaHOEgZyIKH+YOiYiIooRZ7RERJSYWczMcUZLREQUIwZaIiKiGDHQEhERxYhrtBGYxTUHIiKywxktERFRjBhoiYiIYsRAS0REFCMGWiIiohgx0BIREcWIgZaIiChGDLREREQxYqAlIiKKEQMtERFRjBhoiYiIYsRAS0REFCMGWiIiohgJKWX0DyrEewAOI3/g7LoK4P20B1EAfB7D43MYHp/D8GbxOaxJKa/pPhFLoJ01QohHUsobaY8j7/g8hsfnMDw+h+HxORzH1DEREVGMGGiJiIhixEAbje20B1AQfB7D43MYHp/D8PgcOnCNloiIKEac0RIREcWIgTZiQojfEUJIIcTVtMeSN0KIfy2E6Akhvi+E+M9CiJ9Le0x5IYT4ghDi/wgh3hZC/NO0x5NHQohPCCH+TAixJ4T4gRDitbTHlEdCiLIQ4n8JIf447bFkBQNthIQQnwDwywCO0h5LTn0DwKellL8AYB/AP0t5PLkghCgD+AqAfwDgUwB+TQjxqXRHlUunAH5bSnkdQBPAb/J5nMprAPbSHkSWMNBG698A+CcAuPA9BSnlf5NSnj7/50MAH09zPDnyWQBvSyn/Qkr5DMAfAPjVlMeUO1LKd6WU33n+/z/FRbD4WLqjyhchxMcB/EMAv5/2WLKEgTYiQohfAfBjKeX30h5LQfxjAH+S9iBy4mMA/tLx73fAABGKEKIO4DMAvpXyUPLm3+JisnGe8jgyZS7tAeSJEOK/A/h5zae2APxzAH8/2RHlj9dzKKX8L8+/ZgsXabxukmPLMaH5GLMqUxJCfATAHwL4spTyb9IeT14IIb4I4K+llG8JIdZSHk6mMNAGIKX8Jd3HhRB/F0ADwPeEEMBFyvM7QojPSin/b4JDzDzTc6gIIdYBfBHAL0ruPbP1DoBPOP79cQB/ldJYck0I8QIugmxXSvlHaY8nZ24C+BUhxC0AlwF8VAjxH6SUr6Q8rtRxH20MhBAHAG5IKWetqXYoQogvAPhdAKtSyvfSHk9eCCHmcFE89osAfgzg2wB+XUr5g1QHljPi4i75LoDHUsovpzycXHs+o/0dKeUXUx5KJnCNlrLk9wD8LQDfEEJ8Vwjx79IeUB48LyD7LQB/iosCnv/EIDuVmwB+A8Dnn7/+vvt8dkYUCme0REREMeKMloiIKEYMtERERDFioCUiIooRAy0REVGMGGiJiIhixEBLREQUIwZaIiKiGDHQEhERxej/A0gFML3tJKZkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Generate fake data\n", + "np.random.seed(0)\n", + "x = np.linspace(-5., 5., 200)\n", + "y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)\n", + "y += np.random.normal(0., 0.2, x.shape)\n", + "yerr = 0.2\n", + "\n", + "plt.figure(figsize=(8,5))\n", + "plt.errorbar(x, y, yerr=yerr, fmt='ko')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Likelihoods and Posteriors\n", + "\n", + "In general, model fitting will happen either in a frequentist (Maximum Likelihood) or Bayesian framework. Stingray's strategy is to let the user define a posterior in both cases, but ignore the prior in the former case. \n", + "\n", + "Let's first make some fake data:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# define power law component\n", + "pl = models.PowerLaw1D()\n", + "\n", + "# fix x_0 of power law component\n", + "pl.x_0.fixed = True\n", + "\n", + "# define constant\n", + "c = models.Const1D()\n", + "\n", + "# make compound model\n", + "plc = pl + c" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're going to pick some fairly standard parameters for our data:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# parameters for fake data.\n", + "alpha = 2.0\n", + "amplitude = 5.0\n", + "white_noise = 2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And now a frequency array:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "freq = np.linspace(0.01, 10.0, int(10.0/0.01))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set the parameters in the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.modeling.fitting import _fitter_to_model_params\n", + "\n", + "_fitter_to_model_params(plc, [amplitude, alpha, white_noise])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "psd_shape = plc(freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a last step, we need to add noise by picking from a chi-square distribution with 2 degrees of freedom:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "powers = psd_shape*np.random.chisquare(2, size=psd_shape.shape[0])/2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the result:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAGfCAYAAACp/5+nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABsHUlEQVR4nO3dd3xUVfrH8c+dmUx6T6gJJKETEjoISBMpNhQUFSsiKrqubYttraur/tZeUWn2XrBgxQIoioD03gk9vff7+yOQpWSSSTKTmSTf9+uVVzK3nPPMkEueOfPccwzTNBERERERkZNZPB2AiIiIiIi3UrIsIiIiIuKAkmUREREREQeULIuIiIiIOKBkWURERETEAZunA6hOVFSUGRcX5+kwRERERKQJW758eappmtFV7fPqZDkuLo5ly5Z5OgwRERERacIMw9jlaJ/KMEREREREHFCyLCIiIiLigJJlEREREREHvLpmWURERJqHkpISUlJSKCws9HQo0oT5+fkRExODj4+P0+coWRYRERGPS0lJITg4mLi4OAzD8HQ40gSZpklaWhopKSnEx8c7fZ7KMERERMTjCgsLiYyMVKIsbmMYBpGRkbX+9ELJsoiIiHgFJcribnX5HVOyLCIiIiLigJJlEREREReYMWMGr7/+utPH79y5kx49ergxIs8ZMWJE5cJyZ555JpmZmbVu4+mnnyY/P7/ycV3bqS/d4CciIiJST6WlpUyfPt1j/ZeVlWG1Wr2y7fnz59fpvKeffprLLruMgICAerVTXxpZFhERkWZv586ddO3alSuvvJLk5GQuuOCCylHN5cuXM3z4cPr27cvYsWPZv38/UDF6etdddzF8+HCeeeYZ7r//fh5//HEAVq5cySmnnEJycjITJkwgIyOjsq2ePXsyaNAgXnjhhcr+CwsLueqqq0hKSqJ37978+OOPAOTn53PhhReSnJzMRRddxMCBAytHbIOCgrj33nsZOHAgS5Ys4cEHH6R///706NGDa6+9FtM0K+O89dZbGTZsGN26deOPP/5g4sSJdOrUiX/9619Vvh4ntv3mm28yYMAAevXqxXXXXUdZWRkA119/Pf369SMxMZH77ruvyrbi4uJITU1lxowZ9OrVi169ehEfH8/IkSMdtvHss8+yb98+Ro4cWXnc0XYAnnzySXr06EGPHj14+umnK/8Nu3XrxjXXXENiYiJjxoyhoKCgVr8HVdHIsoiIiHiVW+atZdXebJe22bNtCE+fW33Jw6ZNm5g1axZDhgxh6tSpvPjii9x888389a9/Zd68eURHR/Pee+9x9913M3v2bAAyMzP5+eefAbj//vsr27riiit47rnnGD58OPfeey8PPPAATz/9NFdddVXl9n/84x+Vxx9NnNesWcPGjRsZM2YMmzdv5sUXXyQ8PJzVq1ezdu1aevXqVXlOXl4ePXr04MEHHwSge/fu3HvvvQBcfvnlfPHFF5xzzjkA2O12Fi5cyDPPPMO5557L8uXLiYiIoEOHDtx6661ERkYe91oc2/aGDRt47LHH+OWXX/Dx8eGGG27grbfe4oorruDhhx8mIiKCsrIyRo0axerVq0lOTq7y9Z0+fTrTp0+npKSE0047jdtuuw2gyjZuuukmnnzySX788UeioqKOa2f58uXMmTOH33//HdM0GThwIMOHDyc8PJwtW7bwzjvv8Oqrr3LhhRfy0Ucfcdlll1X7714TjSyLiIiIALGxsQwZMgSAyy67jMWLF7Np0ybWrl3L6NGj6dWrFw899BApKSmV51x00UUntZOVlUVmZibDhw8H4Morr2ThwoUnbb/88ssrz1m8eHHl465du9K+fXs2b97M4sWLufjiiwHo0aPHcYmo1Wrl/PPPr3z8448/MnDgQJKSkvjhhx9Yt25d5b7x48cDkJSURGJiIq1bt8bX15eEhAT27Nlz0nM4tu0FCxawfPly+vfvT69evViwYAHbt28H4P3336dPnz707t2bdevWsX79+hpf55tvvpnTTjutMpGvbRuLFy9mwoQJBAYGEhQUxMSJE1m0aBEA8fHxlW8o+vbty86dO2uMpyYaWRYRERGvUtMIsLucOK2YYRiYpkliYiJLliyp8pzAwECn2zdN0+HUZUdLJpzdDhWr0R2tJS4sLOSGG25g2bJlxMbGcv/99x83n7Cvry8AFoul8uejj0tLS6tt2zRNrrzySh555JHjjtmxYwePP/44f/zxB+Hh4UyZMqXGOYznzp3Lrl27eP755+vcRnWvybHPzWq1uqQMQyPLIiIiIsDu3bsrk+J33nmHU089lS5dunD48OHK7SUlJceN2FYlNDSU8PDwytHON954g+HDhxMWFkZoaCiLFy8G4K233qo8Z9iwYZWPN2/ezO7du+nSpQunnnoq77//PgDr169nzZo1VfZ5NMGMiooiNzeXDz/8sK4vw0lGjRrFhx9+yKFDhwBIT09n165dZGdnExgYSGhoKAcPHuSrr76qtp3ly5fz+OOP8+abb2KxVKSg1bURHBxMTk7OSe0MGzaMTz/9lPz8fPLy8vjkk08YOnSoy57viTSyfIKzZv7Ogi2png6jktUCcy7qzYW92ng6FBERkSatW7duvPbaa1x33XV06tSJ66+/HrvdzocffshNN91EVlYWpaWl3HLLLSQmJlbb1muvvcb06dPJz88nISGBOXPmADBnzhymTp1KQEAAY8eOrTz+hhtuYPr06SQlJWGz2Zg7dy6+vr7ccMMNlTcd9u7dm+TkZEJDQ0/qLywsjGuuuYakpCTi4uLo37+/y16X7t2789BDDzFmzBjKy8vx8fHhhRde4JRTTqF3794kJiaSkJBQWcLiyPPPP096enrlDXv9+vVj5syZDtu49tprOeOMM2jdunXlDY8Affr0YcqUKQwYMACAadOm0bt3b5eUXFTFqG4o29P69etnHr3js6HM+n03W9PyGrTP6jz2w1buHd2Z+8d28XQoIiIibrNhwwa6devmsf537tzJ2Wefzdq1az0WQ1XKysooKSnBz8+Pbdu2MWrUKDZv3ozdbvd0aI1WVb9rhmEsN02zX1XHa2T5BFcPbOfpEI7z2A9bPR2CiIiIeEh+fj4jR46kpKQE0zR56aWXlCg3MCXLIiIi0uzFxcV53agyVNTtNvSn7HI83eAnIiIiIuKAkmUREREREQeULIuIiIiIOKBkWURERETEASXLIiIiIs3Azp07efvttz0dRqOjZFlERETEQ6paatpdqkuWGzKOxkbJsoiIiDR7O3fupGvXrpWr5V1wwQXk5+cDsGDBAnr37k1SUhJTp06lqKiIpUuXMnHiRADmzZuHv78/xcXFFBYWkpCQAMC2bdsYN24cffv2ZejQoWzcuBGAKVOmcNtttzFy5Ehuv/324+JYt24dAwYMoFevXiQnJ7Nly5ZqY1u+fDnDhw+nb9++jB07lv379wOwdetWTj/9dHr27EmfPn3Ytm0bd9xxB4sWLaJXr1489dRTzJ07l0mTJnHOOecwZswYfvrpJ84+++zKWG688Ubmzp0LVEytd9dddzFo0CD69evHihUrGDt2LB06dGDGjBnu+4fxAppnWURERLxK2k9/o/jwKpe2aY/uSeSIJ6o9ZtOmTcyaNYshQ4YwdepUXnzxRW688UamTJnCggUL6Ny5M1dccQUvvfQSN954I3/++ScAixYtokePHvzxxx+UlpYycOBAoGK55hkzZtCpUyd+//13brjhBn744QcANm/ezPfff4/Vaj0uhhkzZnDzzTdz6aWXUlxcTFlZGQcPHqwytptvvpm//vWvzJs3j+joaN577z3uvvtuZs+ezaWXXsodd9zBhAkTKCwspLy8nEcffZTHH3+cL774AoC5c+eyZMkSVq9eTUREBD/99FO1r09sbCxLlizh1ltvZcqUKfzyyy8UFhaSmJjI9OnT6/LP0igoWRYRERGhIhkcMmQIAJdddhnPPvsso0ePJj4+ns6dOwNw5ZVX8sILL3DLLbfQsWNHNmzYwNKlS7nttttYuHAhZWVlDB06lNzcXH799VcmTZpU2X5RUVHlz5MmTTopUQYYNGgQDz/8MCkpKUycOJFOnTo5jG3cuHGsXbuW0aNHAxVLY7du3ZqcnBz27t3LhAkTAPDz83P4nEePHk1ERIRTr8/48eMBSEpKIjc3l+DgYIKDg/Hz8yMzM5OwsDCn2mlslCyLiIiIV6lpBNhdDMM46bFpmg6PHzp0KF999RU+Pj6cfvrpTJkyhbKyMh5//HHKy8sJCwtj5cqVVZ4bGBhY5fZLLrmEgQMH8uWXXzJ27FhmzpxJQkKCw9gSExNZsmTJcfuys7OdeLYnx2Gz2SgvL698XFhYeNyxvr6+AFgslsqfjz5uyjXPqlkWERERAXbv3l2ZeL7zzjuceuqpdO3alZ07d7J161YA3njjDYYPHw7AsGHDePrppxk0aBDR0dGkpaWxceNGEhMTCQkJIT4+ng8++AAA0zRZtarm0pLt27eTkJDATTfdxPjx41m9erXD2Lp06cLhw4crt5eUlLBu3TpCQkKIiYnh008/BSpGtPPz8wkODiYnJ8dh3+3bt2f9+vUUFRWRlZXFggUL6vAqNj1KlkVERESAbt268dprr5GcnEx6ejrXX389fn5+zJkzh0mTJpGUlITFYqmszx04cCAHDx5k2LBhACQnJ5OcnFw5CvzWW28xa9YsevbsSWJiIvPmzasxhvfee48ePXrQq1cvNm7cyBVXXOEwNrvdzocffsjtt99Oz5496dWrF7/++itQkdQ/++yzJCcnM3jwYA4cOEBycjI2m42ePXvy1FNPndR3bGwsF154IcnJyVx66aX07t3bJa9rY2dU9/GCp/Xr189ctmyZp8PwKMvfP+fe0Z25f2wXT4ciIiLiNhs2bKBbt24e63/nzp2cffbZrF271mMxOOLNsTVGVf2uGYax3DTNflUdr5FlEREREREHlCyLiIhIsxcXF+e1I7feHFtzoGRZREREvII3l4ZK01CX3zElyyIiIuJxfn5+pKWlKWEWtzFNk7S0tGrnna6K5lk+QUnWdqz+LbDYgzwdioiISLMRExNDSkoKhw8f9nQo0oT5+fkRExNTq3OULJ8g9bvpFB1aQXD3KwhOvg57hGahEBERcTcfHx/i4+M9HYbISVSGcYLwwQ8QEH8m2atfZu/rSez/+Azyts7DLG+6K9OIiIiISNU0snwCvzaD8GsziLJh/yVn3WyyV7/KoS8mYQ2OJSTpGoJ7TMUa0MLTYYqIiIhIA9DIsgPWwJaEDbiT2KmbaXH2+/iEdSLj13vZPSuBQ19fSeG+33QTgoiIiEgTp5HlGhgWG4EdzyOw43kUp28kZ/XL5Kx/g7yN72CP7kVIrxsI7HwhFp8AT4cqIiIiIi6mkeVasEd0JXLEU7SbtpPI057HLC8h9btr2TMznrSFt1OSuc3TIYqIiIiICylZrgOLPYiQ5Gtpe9kKWl2wAP92o8he+Rwpc7tz4NPx5O+Yj1le5ukwRURERKSeVIZRD4Zh4B8zFP+YoZTm7iNnzUxy1s7i4LzzsIXEE5x8LcGJU7D6R3o6VBERERGpA40su4gtqA3hg+4ldupWos98C1twDBmL72TPzHgOfzuNooPLPR2iiIiIiNSSRpZdzLD6ENR5EkGdJ1GcuobsVS+Tu/Etcte/jm/L/gT3nE5g50lYbLVbalFEREREGp5Glt3IHpVE1KjnaTdtJxEjnqK8OJvUb69mz6wE0hffRUnWTk+HKCIiIiLVULLcACy+oYT2+gttr1hNq4lf49dmCFnLnyRlblcOfjaR/F3fYZrlng5TRERERE6gMowGZBgG/u1Ow7/daZTm7CF7zavkrJ1N/vYvsIV1JCR5OkHdr8DqF+bpUEVEREQEjSx7jC04lojBD9Ju6jaix72G1T+a9IV/Z8/MOFK/v56iw6s8HaKIiIhIs6eRZQ8zbL4EdZ1MUNfJFB36k+xVM8jd+DY5a2fh22Yw5/gPwGLGezpMERERkWbJME3T0zE41K9fP3PZsmWeDqPBlRVmkLv+NbJXvUxp1jYKrJG07nstwUnXYAuO8XR4IiIiIk2KYRjLTdPsV9U+lWF4IatfOKF9biFmyjquOvwvUv17kLn0UfbM7sTBLy6kYM+PePObHBEREZGmQsmyFzMMCwuLevND7PPEXLWR0D63UJiyiAMfjWXvGz3JXvki5UXZng5TREREpMlSstxI+ITGEzH0EWKnbSdqzEwMnyDSfrqF3TPjSP3hJorT1nk6RBEREZEmRzf4NTIWmz/B3a8guPsVFB1YRvaql8hdN4ec1TPwixlOSM/pBCSMx7D6eDpUERERkUZPI8uNmG+rfkSPnUXstB2En/ofSrN3cejLyeyZ3YmM3x6iNG+/p0MUERERadSULDcBVv8owvr9nZgpG2g5/mPsUT3I/O1B9szqwKH5l1K4d7FuCBQRERGpA5VhNCGGxUpAwtkEJJxNScYWsle/Qu7618jb/AE+UT0ISb6eoK6TsdiDPB2qiIiISKOgkeUmyie8E5HD/0vstJ1EnT4Dw7CS9sNf2D0zjrSfbqM4fZOnQxQRERHxekqWmziLTwDBPabS5pKltL7wZwLizyR79cvsfT2J/R+fQd7WeZjlpZ4OU0RERMQrqQyjmTAMA782g/BrM4iyYf8lZ91ssle/yqEvJmENbkdI0jUE95iKNSDa06GKiIiIeA2NLDdD1sCWhA24k9ipm2lx9nv4hHUg49d72D0rnkNfT6Fw/++6IVBERESEBk6WDcMINAxjuWEYZzdkv1I1w2IjsOMEWp//DW2vWEVIj2nkb/+c/e8NZd87p5Czbi7lpQWeDlNERETEY+qVLBuGMdswjEOGYaw9Yfs4wzA2GYax1TCMO47ZdTvwfn36FPewR3QjcuTTtJu2k8iRz2GWFZH63bXseTWOtIW3U5K5zdMhioiIiDS4+o4szwXGHbvBMAwr8AJwBtAdmGwYRnfDME4H1gMH69mnuJHFHkxIz+toe9mftLrge/zbnUb2yudImdudA5+OJ3/HfMzyMk+HKSIiItIg6nWDn2maCw3DiDth8wBgq2ma2wEMw3gXOBcIAgKpSKALDMOYb5pm+YltGoZxLXAtQLt27eoTntSDYRj4xwzDP2YYpbn7yFkzk5y1szg47zxsIfEEJ19LcOIUrP6Rng5VRERExG3cUbPcFthzzOMUoK1pmnebpnkL8DbwalWJMoBpmq+YptnPNM1+0dGamcEb2ILaED7oXmKnbiX6zLewBceQsfhO9syM5/C30yg6uNzTIYqIiIi4hTumjjOq2FY5tYJpmnPd0Kc0AMPqQ1DnSQR1nkRx6hqyV71M7sa3yF3/Or6tBhDcczqBnS7AYvPzdKgiIiIiLuGOkeUUIPaYxzHAPjf0Ix5kj0oiatTztJu2k4jhT1JelEnqN1PZMyuB9MV3U5K9y9MhioiIiNSbO5LlP4BOhmHEG4ZhBy4GPnNDP+IFLL6hhPa+kbZXrKHVxK/wazOYrOVPkDKnCwc/m0j+ru9wUHEjIiIi4vXqVYZhGMY7wAggyjCMFOA+0zRnGYZxI/ANYAVmm6a5rt6RilczDAP/dqPwbzeK0uzdZK95lZy1s8nf/gW2sI6EJE8nqPsVWP3CPB2qiIiIiNPqOxvGZAfb5wPz69O2NF62kHZEDPk34QP/Rd7Wj8heNYP0hX8n49d7Ceo6meCe0/GN7unpMEVERERq5I4b/EQAMGy+BHW9hKCul1B06E+yV80gd+Pb5KydhW+bwYQkTyew00QMq93ToYqIiIhUqUGXu5bmy7dFb6JHv0zstJ1EDPs/yvIOcvjrK9gzqwMZv95HaU6Kp0MUEREROYmSZWlQVr9wQvvcQsyUdbQ873PsLfuSufRR9szuxMEvLqJgz0+YplljOyIiIiINQWUY4hGGYSEgbiwBcWMpydpBzuqXyVk3l/ytn+AT0Y2QntMJ6nopFt8QT4cqIiIizZhGlsXjfELjiRj6KLHTdhA1eiaGTwBpP97M7plxpP5wE8Vp6z0dooiIiDRTGlkWr2Gx+ROceAXBiVdQdOAPsle9RO66OeSsnoFfzHBCek4nIGE8htXH06GKiIhIM6GRZfFKvq36Ez12NrHTdhA+5GFKs3Zy6MvJ7JndiYzfHqI074CnQxQREZFmQMmyeDWrfxRh/f9BzFUbaTn+Y+xRPcj87UH2zErg0PxLKdy7WDcEioiIiNsY3pxo9OvXz1y2bJmnw/Aoy98/x9dmwc/WeN7XWAyDGRckM6lnG7e0X5KxhezVr5C7/jXKizKxRyURnDydoK6TsdiD3NKniIiINF2GYSw3TbNflfuULHu3Gb/uZOPhXE+HUSvPLtrBXaM68dAZXd3aT3lJHnmb3iN71UsUH16FYQ8huPuVhPS8Dp/wzm7tW0RERJqO6pJl3eDn5aYPjvN0CLX2wi87G6Qfi08gwT2mEpR4FUX7l5C96iWyV88ge+Vz+LU7veKGwPizMCzWBomnJsWl5ZjU7c2p3WrBMAwXRyQiIiI1UbIsjZ5hGPi1GYxfm8GUDXuc7LWzyFkzk0OfX4A1uB0hSdcQ3GMq1oBoj8X4+rI9THl3ZZ3Pv/HUeJ49r4frAhIRERGnKFmWJsUa2JLwgXcR1v+f5G//nOxVM8j49R4yfv83gZ0uIKTn9fi2GtDgo7Tb0vIBeLgOpSkv/bqTrY2sFEdERKSpULIsTZJhsRHYcQKBHSdQnL6BnFUvk7PhDfI2vo29RW9Cel5PYJeLsNj8GzSuO0d1qvU589ZqmjwRERFPaTxTLIjUkT2iG5Ejn6bdtJ1EjnwOs6yI1O+uZc/MeNIX3UFJ1nZPhygiIiJeSsmyNBsWezAhPa+j7WV/0ur87/CLHUHWimdImdONA5+eS/6OrzDNck+HKSIiIl5EZRjS7BiGgX/scPxjh1Oau5ecNTPJWTOLg/POxRaaQEjytQQlTsHqF+HpUEVERMTDNLIszZotqC3hg+4j9uqtRJ/xJtagNqQvuoM9r8Zx+NtrKDq4wtMhioiIiAdpZFkEMKx2grpcSFCXCylOXUP2qhnkbnyb3PWv4dtqAME9pxPY6QIsNj9PhyoiIiINSCPLIiewRyURNeoF2k3bScTwJykvyiT1m6nsmZVA+uK7Kcne5ekQRUREpIEoWRZxwOIbSmjvG2l7xRpaTfwKvzaDyVr+BClzunDws4nk7/pONwSKiIg0cSrDEKmBYRj4txuFf7tRlGbvJnvNq+SsnU3+9i/wCe9EcPJ0grpdjtUvzNOhioiIiItpZFmkFmwh7YgY8m/aXb2d6LFzsPhGkP7z39gzM47U72+g+PBqT4coIiIiLqSRZZE6MGy+BHW7lKBul1J06E+yV71E7oY3yVk7E982QwjpOZ3AjhMwrHZPhyoiIiL1oJFlkXrybdGb6NGvEHvNTiKGPkZZ3n4Of3U5e2Z1IGPJ/ZTm7vV0iCIiIlJHSpZFXMTqF0Fo31uJmbKelud+hr1lXzJ/f4Q9szoyIuU2TvFdg2mang5TREREakHJsoiLGYaFgPhxtDr3U2Ku2kBon5tplb+Ut6LvZ+8bvche9RLlxTmeDlNEREScoJplcYtZS3fz9cZDDdpnRIAPn0zpT6Cv9/xa+4QmEDH0UZ7PncyaJXN5uuVvpP14M+mL7yao22WE9JyOPbK7p8MUERERB7wnq5Am4+8jOrBuf8OOnO7LLuT7Lansyiige6vgBu3bGWUWPz7KP40PJj9F0YE/yF71EjnrZpOzegZ+MSMI6TmdgA7jMSy6JEVERLyJ/jKLyz1yZrcG7/P9lfu4+M3lDd5vXfi26k90q/5EDH2MnHVzyFn9Koe+vBhrUFuCk6YR3ONqbIGtPB2miIiIoJplEY+xBkQT1v+fxFy1kRbnfIQ9ojuZSx5gz6wOHJp/GYV7f9ENgSIiIh6mkWURDzMsVgI7nENgh3MoydhM9upXyF33Gnmb38celcRp5umsN8c53Z5pmnyx/iDp+SVOHe/nY+HcxFb4+Vjr+hRERESaLCXLIl7EJ7wzkcMfJ3zwA+RufJecVS9xDU+Rl/8Kq+ZNJjfuSkqDOlTbxr7sIi59a0Wt+n3/8r5c0LNNfUKvtx1p+WQUFFe5LzLATvuIgAaOSERERMmyiFey+AQSknQ1wT2mcv1Lr9It813GbZ9LyI6ZLCrsyZu54/ihsC/lOB4Nfm1yL06Ni6y2nx3p+Zz+8hKKyspd/RRqZW9WAR0eWeBwv8WAA/ePISrQtwGjEhERUbIs4tUMw+DBy69k3cGJHCw8RNCetxm06w2G+j1GqX9bctpfQU7sJZT7Hp8U+/tYGRAbhsViVNt+ablnk+SjsgtLAfjb8A4MTYg4bt+CLak8t3gHuUVlRAV6IjoREWnOlCyLeLkWwb60CPYFoqDHQ5jl95O//XOyV83AtvERwrc8QVDnSQQnX49vq/4YRvUJsjfrFxvK+MTjZwJxtvZaRETEHZQsizQyhsVGYMcJBHacQHHaerJXv0zuhjfJ3fAW9hZ9COl5PYFdLsRi8/d0qCIiIo2epo4TacTskd2JGvkM7abtJHLks5ilBaR+dw17ZsaTvugOSrK2ezpEERGRRk3JskgTYLEHE9JzOm0vX0mr87/DL3YEWSueIWVONw58ei75O77CNL2jPllERKQxURmGSBNiGAb+scPxjx1Oae5ectbMJGfNLA7OOxdbaAIhydcSlDgFq19EzY2JiIiIRpZFmipbUFvCB91H7NVbiT7jTaxBbUhfdAd7Xo3j8LfXUHSwdnMxi4iINEcaWRZp4gyrnaAuFxLU5UKKD68me9UMcje+Te7617BG9uW8gMEY5d09HaaIiIhX0siySDNij04m6vQXiZ22k4jhT0BxFk9EPEe/308l/Zd/UZq929MhioiIeBWNLIs0Q1a/MEJ7/5VDba9k6jPP8lTXJfgse5ysZY8TEH8WIT2vx6/daRhG43s/nVVQwqTXl5F1ZKGTY53XoxV3jurkgahERKSxanx/CUXEdQwLvxT1ZFPiy8RetZnQfn+ncP9vHPjkTPa+nkTWn89RVpjp6ShrZUtqHt9vSaXcNIkKtFd+7UzP54NV+zwdnoiINDIaWRYRAGwh7YgY8hDhA+8hb8uHZK+aQfrPfyPjl3sI6noJIT2nY49O9nSYTrtvTBfO7t6y8vF5c5ayO6PAgxGJiEhjpGRZRI5j2HwJ6nYpQd0upejQn2SveoncDW+Ss3Ymvm2GENJzOoEdJ2BY7Q0a1zOLthPuf3yfPlaDaQPbER3k26CxiIhI86FkWUQc8m3Rm+jRrxAx9FFy171G9uqXOfzV5aQHtCI4aSrBSddgC2rr1hjiI/zxsRo8s2hHlfvD/H24fnCcW2MQEZHmS8myiNTI6hdBaN9bCelzMwU7vyF71Qwyf3+EzKWPEdBhfMUNgTHDMQzD5X0P7xBFwSNnnbQ9Na+YVg98S1m56fI+RUREjlKyLCJOMwwLAfFnEBB/BiVZ28lZ/Qo56+aSv/UTfCK6EdLzeoK6XYrFHuzSfi2Wk5NwiwtuT/5qw0Fu+2wdZSfk2yM7RvLyBT3r34GIiDR6SpZFpEYr92ZxzuylFJaUnbBnBL4MYrR9EZNK59Ptx5tI/+VugrpdRkjyddgjvXuxkyW7Mth0OI9Lev+vlOS33RnM33DIg1GJiIg3UbIsIjXaeCiXvVmFXNK7LWH+PlUckcC9u87BSF3O/KFryFk7i5xVL+EXM4KQntMJ6DAew+Kd/90YBrx5aZ/Kx9PeX8U3m5Qsi4hIBe/86yUiXulfozvRtUXVJRZ3zd/AEz93JnrsbUQM/T9y1s0he/UrHPryYqxBbQlOmkZwj6uxBbZq4Khrx2LA3qxCAu748phtBi9PSubSPjEejExERDxBybKIuJw1IJqw/v8ktO/fyN8xn5xVM8hc8gCZv/+HwI4TCOl5Pb5tBrvlhsD6unFIPBEBdkzzf4XMT/y8jbUHcjwYlYiIeIqSZRFxG8NiJbDDOQR2OIeSjM1kr36F3HWvkbf5fexRSQT3vJ6grpM9HeZxktuEkNwm5LhtjqatExGRpk/JsjQpz/2yg+hA1y6WEWC3cuOQeIJ8dbnUh094ZyKHP0744AfI3fgOOateIm3BDWQsuhNb3MXE2XoAfWpsR0REpCHpr780CfERAQT4WHnlt10ubffoJ/GJLYM5J9G7a20bC4tPICFH6peL9v1K9qqXKNsyiwWtSsla9T55wbcQEH8mhsXq6VBFRESULEvT0L9dGLmPnOnydlfuzaLPUwspM7XwhasZhoFf2yH4tR1C2s6tvPTag/zF/hOHPj8fW3B7gpOvIThxCtaAFp4OVUREmjEXTOsvIlJP/i15PmcSq05ZSIuz3sUWGk/GL/9i96wEDn19JYX7lhx3w52IiEhD0ciyiHgN0+JDYKeJBHaaSHHaenLWvErO+jfI2/hOxQ2BydMJ6joZiz3I06GKiEgzoZFlEfFK9sjuRI54inbTdhI56kXAIO2Hv7B7ZnvSfryFsoyNng6xwaXlFXM4t4jDuUVVrKYoIiLuoJFlEfFqFnvQ/24I3P872atnkL12Jqx6kbeiEvFJvwaz7BoMa1UrCzYdzy/ewU2frq183CbEjz33nO6Vc1WLiDQlSpZFpEG8vSKFKe+urPJmyaObrNUkfoZh4NfmFPzanELZsP9y4M+ZtF3yArHbb2HPrEcJTppKcI9pQNMs0UjJKsRqMXj63ES+2nCI+RsPYZoVy3WLiIj7KFkWkQax8VAupeUm/zq9U5X7/X2sjOkS7VRb1oBofHvdxmmfdOOtEZkML/uUzN8fIXPpYwS1Hstg335g9ndl+NVatS+LS95cQVFZeeW26EA73183iEAXzs9tsxj8ZUg8aXklzN94yGXtioiIY0qWRYQnf97GB6v2Odyfklnokn4MAx4c19UlbQGUY+Vw2HBanTqFkqwd5Kx5lYzVc3gjej5Fv7xJVtENBHW/HKtfeL37+nrjIdLziysf940J49pT2gOwal82Gw7lcm5iS4J9bWxPz+fXnRnszymioxazERFp1PS/uEgzFhPmz+mdokjNK2Z3RkG1x47qFEW7MP8Giqz2fELjiTj1P2yPuYmHZz/OQ6G/kL7w72T8eg+BXS4mpuxUdtOuTm2f1jGSlfuy+XzdQQCyCkv4cNX+ymT5qCfGJ5IQGciby1P4dWdGvZ+TiIh4npJlkWbM38fKt9cN8nQYrmX1Y17+cK4e+A9GR+0nZ/Ur5G58m7+VzuEcoys56/9BYOdJWGx+Tjc5/5pTjnt886dreWN5iqsjFxERL6Sp40SkyfJt0Yuo01+k3TW7+NjvFgLII/Xbq9kzM470RXcQXLynwWIpLzeP+xIRkcZBI8si0uRZfENZ5HsBb+WfyS8XQPbqGWSteIYLzCeJjuxN/nYD/7gzMCxWt/Q/Z+lupn2wimMnAnlgbBfuGd3ZLf2JiIjrKFkWkWbEwD92OP6xIyjN3cdnnz5Gl4PvcfCziViD2xGSdA3BPa7CGtDCpb1uTs3DAO4b0wWAZxZtZ9OhXJf2ISIi7qEyDBFplmxBbVgZdT0jDrxEi7PfwyesIxm/3sPumfEc+upyCvf+glnFnNB17s9i4d4xnbl3TGciA+0ua1dERNxLI8si0qyVYiOw4zkEdpxAcfpGcla/Su7618nb9B4+UT0ISZ5OUNfJWOzBng5VREQ8QCPLIiJH2CO6EjniCWKv2UnU6TMwDBtpP9zI7plxpP54M8Vp6zwdooiINDCNLIuInMDiE0hwj6kEJV5F0YE/yFk9g9y1s8lZ9RJ+bYfRufgMbOjmPBGR5kDJsoiIA4Zh4Nd6AH6tBxAx7P/IWfcaOatf4czsOxkQHkb6L9cT1ONqyk3D06GKiIibNFgZhmEY5xmG8aphGPMMwxjTUP2KiLiC1T+KsH5/I+aqDXzW6jlWFXUgY+mj7J7dmaLvJzPEdxUWmub8ybN+303QnfMJvPNLOj/6A0WlZZ4OSUSkwdQrWTYMY7ZhGIcMw1h7wvZxhmFsMgxjq2EYdwCYpvmpaZrXAFOAi+rTr4iIpxiGhbNPv4z9/V7j005fsz5qKsOCtvJ69INYPx9A1opnsJZkeTpMl1pzIJvScpMhcRFsTc0jq6DU0yGJiDSY+pZhzAWeB14/usEwDCvwAjAaSAH+MAzjM9M01x855F9H9ouINEodogKPLCjSGRiJWfoUeVs/Jnv1y6Qv/Af9Lb48Gj4E0sIh6lRPh+sS/j4WzuvRmu+3pLIjPR+AFsG+Ho5KRMT96jWybJrmQiD9hM0DgK2maW43TbMYeBc416jwGPCVaZorHLVpGMa1hmEsMwxj2eHDh+sTnog0A6XlJsWl5ZVfJWXlDR6DYfMlqOtk2lz4E20u/YPDLSZypv+vWL86jb3vDKZL1if4UdTgcbman0/Fn4xBzy2mzYPfsiezwMMRiYi4nztu8GsL7DnmcQowEPgrcDoQahhGR9M0Z1R1smmarwCvAPTr169pFgCKSL1ZjYqb6m77bB23fXbylG5WD91z5xvdk22dHuaG5Wfw53kHMLfNYXj6/fzcMoC0nxYRnDTNM4G5wEU92xBkt/HrrnSeXbSD9PxiYsP8PR2WiIhbuSNZrupPlGma5rPAs27oT0SaofAAO3Mv7kVKVuFJ+wJ8rIzoGOWBqP4n1wzE7HINbQffzDMfv42xeQ7j17xK9soXeNzeg42FkzBLEzFsjaeUIdDXxoW92uBjNXh20Q5PhyMi0iDckSynALHHPI4B9rmhHxFp5q7oF1vzQR5mGAYH/fvwVGYYN94ykNz1rxP58zNMyrmPXTOfxafz5QQnXU1IdBdPhyoiIlVwx9RxfwCdDMOINwzDDlwMfOaGfkREGhWrfxShfW/jutLZXH74XuandyJ/1bOkvZXErvfHkbf1E8yyEk+HKSIix6jXyLJhGO8AI4AowzBSgPtM05xlGMaNwDeAFZhtmqbWiBUROeLVC3uzLCWBMi7lud1bMbe8yS0BCzn0xUVYA1sT3OMqghOnYgtp59J+n/hpG88triif8Pex8PGU/nRrGezSPkREmpp6JcumaU52sH0+ML8+bYuINFWD4iIYFBcBwAerfLloxQVMv+YZ4gt/IXvNq2T+/giZSx8lIP4MgpOuxb+9a9ZxWrg9jZyiUoYmRPDZuoOsP5hTr2T5vz9uIz4ygLtHdcLPx+qSGEVEvI2WuxYR8QYWKwEJZxGQcBYlWTvJWTeb3LVzyN/+Jbbg9vS2jyfK0rve3cRF+PPvcV35bN3BGo994ZcdvL9yH9vS8o/b3ikqkFbBvny69gD5JWWM69KCIfER9Y5NRMQbNdhy1yIi4hyf0DgiBj9I7NXbaHHWO9jCOjAg7TkWRF/DoS8n0yrvd2iApbXf/XMvaw7k0CU6kOsGxVVu79E6hH33jeHTq/oDYDbRZb5FREAjyyIiXsuw2gnsdD6Bnc7nkU++omD9bK7e8yOjCz/iu5ZtyF6xleDEK7H6R7othr4xoXx33SC3tS8i4u00siwi0ghk2eP4b84UYqftZHGbR0gvDyFj8R3smRnHoa+nULjvV0xTI7wiIq6mkWURkUbEYvNjR9g53H+4M/n/jCN33UxyN7xJ3sa3Iaw7u6IvJq3leZg+IZzeOZowfx9Phywi0qhpZFlEpJGyR/UgauQztJu2i6jTZ5CSU0b7LffSdWF/tn4+jde++dzTIYqINHoaWRaRZqOgpIw1+7MrHx/MLfJgNK5jsQcR3GMqj/6WiG/mKh7r/Bvjt72P/87v2ft2H4KTphHU5SJPhyki0igpWRaRZsHfx8qmw3n0fOLn47YHNLH5gff6dKPT+Gtpfdc4Huu+htPKviBtwQ2kL/wHF3EanzIWzF6eDlNEpNFQsiwizcKT4xO5ILn1SdvjIwI8EI375ZhBrAmdzOVnP0jRgaXkrJlJn/XvMcj4nLJvZ3BZ4ClYSzoCberd17bUfGJC/Ylroq+liDRvSpZFpFloHeLH+cn1TwwbG8Mw8Gs9EL/WA7lxz2QSsudzNT/yQPhMyn95k8OpkwhOuhrf1oMwDKNWbfsfGZW/6r2VAKz5+wgSW2n5bBFpWnSDn4hII/XB6n18sGofH63ex597s8gqLKn2+EIjiG85h4KxP3Luwf8jrdUE8rZ+wv73R7D3jV5krXiWsoI0p/sf1D6cr64ZyD2jOwOQUVBcr+cjIuKNNLIsItLIRAZWTAc3+c0VJ+0bnuDcAiVrSzqwp+uF9DvvBfI2v0/OmlmkL/w7Gb/cTUDHCQQnTQOz+pFmi8VgbJcWWGs5Ii0i0pgoWRZxQmZBKQdz6j5zQm5RqQujkcbit10Z7MksYHdGgUvbvX5QHKM6RVFWDtmFJezPKapMWHu1CalVW0dn0gjuMZWiw6vIWTubvA1vk7fpXR4jhsUl51CW3xFrQLRLn4OISGOhZFmkGj7WikqlqUdqMuvDblXVU3MR7FvxX+sV7/xZuS0ywHWLg1gsBl1buL422De6J74jnyHi1EfI2/IRm799ikmlL7F75kwCO4wnuMfV+LU7DcPQ77KINB9KlkWq0b1lEG9d2ofMguprQZ3RMSrQBRFJY3BO95Ys+eupFJaWVW5rF+bcTBHrD+SwNS2v8nFSqxDiIxt2lgmLTwDB3S/noR/iibfu4anuyytWCdzyEbaQeIJ7XEVQ4pXYAk+eXcTdyspNXvx1J5kFJYzpHM3A9uENHoOINC9KlkWqYRgGk3u39XQY0shYLEadk7jTX17CgWNKfgbEhvHbzUNdFVqt7bfEETl8MuFDHiJ/6yfkrJ1Nxq/3krHkAQISziI48Soo71Pn9j9YtY/X/tiDzWrwwNgu9GwTWu3xaw9kc/OnawFYuD2N764bVOe+RUScoWRZRFymtNxk+oerq9y3bE9mwwbTSOWXlDG5d1v+NjyBf3y+nsN57p1h4r2Ve3n3z70ARATamXF+cmX50bEsNj+Cuk4mqOtkSjI2k7N2Njnr3yB/22e0923J30MGY8ttCVR/g6Fpmtz/7WYO5hTRKtiXFSlZLNiaSlFpOae0D68xWS4rN6v8WUTEXZQsi4hL9I0JpVWwL/PWHXB4zMgOUQ0YUePVIshOn5gwwgN83J4sz166m8U70okO9GV3ZgH/HNGRLi2Cqj3HJ7wzEUMfJXzwv8nfMZ8dS1/hmsJ52BZ8wr4NQwhOnEJgp/Ox2E9uJyWrkH9/txmbxaC03KRP21ASIgLYcCjXXU/R7UrKytmbVUhMqB823Zsg0uQoWRYRlzg/uU2zXPSjKejVJpQbT43n0rdOnoquOobVh8CO53KgfDCXzZzP16fvJGr/+6R+dw1pP91KYOdJBCdOwbf1KZULnphmxWhw/9gwluzKwKTxjw5f+c6fvLtyH1f2i2HOxb09HY6IuJiSZRERqbdD5RHkdjqbnqPvpWj/EnLWzSVv8/vkrpuDT3hnghKnENTtMqB2U9s1BkenlazP9JIi4r30eZGISBP187ZU/vnFeh7+fjMlZeUN0qdhGPi1GUz06Fdod81uoka/gsU/iozFd7FnZjxlP0zmdL+lWE3NPS4ijYNGlkVEmqC+MaEsS8lk9f4cisvKGdO5RYPHYLEHE5w4heDEKRSnbyJ3/WtkrXuDl6O+Iqv8Fd4PHcpaxrON2AaPraHN+HUnt362jhsGx/HE+ERPhyMitaBkWUSkCfr5L0MA+GrDQc6atZRy07O1wfaILkSc+h9yut3B1U89znVRi5gS9CU+xmdssHXjzcBh+JQdX/O+Mz2f7MJS4iL8CfE7eVGXtPxi/tidSf92YQ30LOpuxd4sikrLWbo7w9OhiEgtKVkWEZEGY1hs/FDYnwLrGDbv2cFfWv/OSONrHg5/mbL1czhUPJ6g7pezy+8UEp9YDMCwhAh+umHISW2t2Z/DwGcXsf2uUcRFNOzCLXV19EZHEWk8VLMsIiIekVYexudM4oaSVzjv4GNsj7iAgj0/cnDeufh82oM7Q+eS7LeLjCpW0Jx7cS8eHNcFgLzispP216SwpIy0vOLK2Tm8lWmaLN6Rxup92Q3S3/ebD3PenKUN1p94pw0Hc5gwZylpbp66srFQsiwiIh5msKakIyva3k27a3bR4uwPKInoxxVBX/FJ1G08ZZlO1opnKMs7WHlGmL8PXaKrnw/akZKycto/9D3R933DnfM3uupJuMXaAzkMe+FXej35c4MswvLasj18tu4g320+zDUfrOLMV3+jtIFuDvVm//xiPS3u+4ai0tq/MWuMHv95G/PWHeTrTYc8HYpXULIsIiJew7DaCex4LhkD5zB4/6s8nHMtJfiQvvAf7J4ZR+DiSznT/xeMssI691FcWl652EtKZgFZBSV8tHofP29LddXTcKikrJzMKkbKHck/ZtS83DTZn13Ia3/sYX923Z+/s2b9vpuvNx0mPd+5eOcs3c2Fry8jp7DmmU5M02Tp7oxavRae9PhP20jNKya3qHkky8WlFW+QvPyDlwajZFlERLxSRnkI7xWcyT/Ln6PtFasI7Xsbtqy1PBf5JN0W9qP9pjvpY99Y77/oz/2yg0mvL2fkS0uIefA7UjILXPQMTvb77kwi7vmat1ak1On8/yzYwlXvreQ/C7Y4PCansJSd6fl1DbHOrv1wNR+u3s+GQzk1Hrt6fzanPLuYi99Y3gCROe+HLak8tXCbp8MQL6NkWUREvJ49ohsRpz5M1pkruPzwvWRHn07EgU/5oMXd+H3Zn4wl91OcfnxJRVZBCVe/v5Lgu+bT5dEfeODbTVW2XVBSMVp4Wsco9mUXsiU1z+3PJyXz+JHhd//cy2t/7KmxhrroyIjf0e9VGfDMQhL+s4DfdtVu5g3TNPlkjePl6h1ZnpLJTZ+urVWZyNER2t+9bHaQ0a8s4W+fra/8nRABJcsiItKYGFZ+LepJSo+nWTXkD/6Z/hfMwHZkLn2Uva8ns/ftgWQtf4rS3L2s2JvFnKV7CPGzsSU1j683Oq6/tFkM7hndqcbu7/tmE5a/f86Ud/6s19NIySrgqnf/5LEftnIgu5BL3lrBVe+tZOOh3Hq1C7DpcEWyn55fu5uzUrIKya9DkvjIgi08v3hHrc/zRkffq3j7jZ/SsJQsi4iIS+3OyGfqeyu5/O0VPPqD43KB2vpw1T5u+GhN5eNyWxAf5Z9G0ciPiZ22g4hhj4NhJX3R7eyZmUDLJZO4MOB73pmUwNgu0VW2uTU1jxUpWU7HsGpfxbEr9jp/TlV+2prGa8tSuHP+BkqOGZEtKXNPkrYrPZ/fdmVUmwSW1rHv6ka5pfnamprHO3/u9XQYLqFkWUREXOrbzYeZ+8ce5q07wD1fV136UBcfrNrH6v3ZjO4cRZ+2ocftswW2JrTPTbSd/CsxV64j7JR/YSvczyMRLxHzXS+uLbybgebPlJceX4+8dE8m32w6TNtQv1rF4unpkvdmFfLIgi2VyXtN+j69kMHPLWalpoSTBtLnqZ+59K0Vng7DJZQsi4iIW5yf1NrlbcZHBPDNtYOICfN3eIxPeCfCT7mHvSMWce7B/yMnbgpx5eu52XyQ3a/EkP3DtZzquxIrFSUHXVsEseGfI10eqzt9tfEQd3+1kYe+q37kvqSsnNNnLKmc0SK3qOaZKkSq88OWVHY5cQNpU5o5RCv4iYiIS3yy5gB7Mgu9Z7opw2BtSQcyEy/jsQOTaV2wnEc7rSVvyye8Fp1FalkoXxecwkbr6fhah3k62jopq+HFzsgv4Yet7p0Sr7o3LtL0nP7yEpJaB7PqbyOcOr683MRiadwrV2pkWUTESxkYrDuYQ+jdX/HUwm1469+blsG+WC0GTy3czqVvrWDdwZqnDmtopmFlvdGb6NGvEHXlDq5P/Se/F3VnYsBPPGT9B3tmxhG+5k4G2NeB6Z0jYk/8vI2Zv+/2dBgnsdShJmX+xoMnbTuQXagb607wxE/biH/4+8p5j73Fmv3OX+M1vaFrDHNtK1kWEfFStw1P4OahCVw9sB1/GRLPcxOSPB1SlZJah5D6wFjmXtwLwOv+sJ/IsPnxbeFAbkr/OwP2z+b/yv6Fb9shBO5+j3da3EvM931J/fFmClIWYZZ7T+J8l5evNnjU4OcW88X6k5PhYx2dOq9nmxAAFm5Lo82D33HXV+57jle9+yc9/vujS9vck1lAeT1XVtx8OJf3V+6rct8/vljProwCchpx+UxpNa/PxkM5RNzzNbO88E3gsZQsi4h4qUFxETw5PrHya+qAdm7v8/Yv1zP1vZVsdGJhiWOF+vsQ5u/jpqjcp8D041eG0fKsd9k7di1/TbuNoogB5K6by4EPR7FnZjxpP95C4d7FmKZ3vwnwFuUmvPbHHqeObRHkC8DhvCIAlu3JdFdYvLYshfUHnZuar9/TiyipYZnvdQdyaP/Q99x/zPzddZmfecKcP7j4zeXkNeKEuCq2Ix+FVfc6Hp0q8Yv1tZ/fuyGpZllEpJnKKy6rnKosqVUw3VoEsXpfNjszCugUFejh6P4nu7CUfk8tZMOhHOLCA9zWj2kLYH7BEP7W9+90jfElf8d8CrZ9TM7a2WSvehFrYGvOLxlImm8y+Qx0WxzHeuEX5+cvLigpY8KcP6o95uM1+xmaEFnfsAA47aVfOZxbzJD4CKeON02TW+atIyLAx+0Lv6TmFRHub8daRe3S1tQ80vKKGdg+3OH5Gw/lkl1YSmSg/bjtE+b+wfuX96VViB8ZBRXzWP94pCb8zeUpXPHOnyy+cQiD45x7TQA2HEkYaypXaCy2HM7lYG5R5YjyvuxCQvyqfiNdXFpxjN3q3WO33h2diIi4nI+1IoGY8u5KftqWho/VoEfrENb9cyQbbve+WSH2ZhWyYm8W/WPDuGNUR7f3V1Zu0uXJpYTNCuCj8Mdod90+os94A9/Wp9C/+Gtej36Q1ywXcujrK8nb8hG+ZsXMACcmOx+v2c/bK1IorWGE8kQ70vJZnpKJaZq86+Dj+aM+XXuAP4/M+bw3q5BvNx+u9vj5GxwvzFJbP21LY93BHIqdfH7p+SU8t3gHD3y7udarC9bGgexCWtz3LVPerXrhmFOeXcSg5xY71dbylEwGPrOo8vHiHen8sjO9ymOP3kjpioVlqlNaVl7v0o+DOUXcNX8D2YWurxc+/eUlDHvhV9qHV9z4eez83XfN38Dol5dUPt6cWvFaldTz+bibRpZFRJqZLtFBzLmoFxlHbqwZluD8KJgnXT84jot6tXXq2EM5RXxVzYp91SktN9lxZGqsLam5WOxxBHW5iKAuF3Hj7EVkbv+OCyP+ZMzOb8nb+A5P48PCyGS+TRnIw1+Y3H32YHal53PBa8sAaF/DaHi3x46vo+3wyAIAFv5lML42C6XFVX+0P7BdGL/vzmTN/mx6nzDvtCM2b71L1EU2Hsrho9X7AXjnz728cUmfk445Oo2eM95fuY8/3FgacqIv1h+ke8sgEiIdf7Iz4JlFtAz25atrTqlzP88u3s6jP2ylY1TgceVdpWXl2Oo5yrvnSD360d+1Y9PgR3/Yetyx2458wmD19MTlNVCyLCLSzBiGwZX9Yz0dhls9tWg7j/9UMYNIdKCvy9otMXxZUNifQ+ZpTLv2VAr3/cobn7xEd5+fGeW/nPKtM9j/wRBKWo4lxhpBSlnLGkdeHS0xnVNYfQ3rxb3b8vvuzLo+lUajpKwcq2E4Nf3YuFd+Z3dmQY3HAfT474/MvLAXp1RTjuHI7KW7+akWU/I5k4QWlpQzfvZSAF6YmMT1g+Mq96XnF1eWhLhiYZnMgorfrWNrrP/cm8XAZxbx0ZX9nG7HNE0Mw+DWeWt5ZtEOyh8/p3Kf4UQC3Ck6CICO0YGk5xfjY7EQ7Od9qanKMEREpMkpLi0nwMfKoQfG0r1VsFv6MCw2zBaDuSd1Cnf5vc9NJS/wo9+VlBVlYF3xL35ufQNft7yZ8PUP0q5oOTZqvoHrnNm/uyVWT8grKqWsnh+vF5eWE3XvN5w9y7nXxdlEGWD9wVy+3FD9rB2OTHt/FW+ucG4p55V7s7Df/iVvr0ip9rhjy3j+8vGa4/Y9smDriYc75cNV+1jioGzkRCtSsigtN/l0nXM32/37u810+M8CDuYU8cyiitr6r2r5eh6dKtAAEv/7E2NeWVL9CR6iZFlEpBmYu2yP22+q8jYWC0QE2Gs+sB6u/WA1h/OKCfS1sd3syHcB1xBz2QpKxy/j35lXcagsnJAds7g0dTp/tLmKZyOeYELAT4SQWWV7Rz/CbuwO5BQSfPdXnDdnqVPHrztQUbu6O6OgsgYboLC0jJyiUr7eVHUt9nOLd2D/5xds8MK5vY86WsP8eQ3T6VWnqjcB7/65l0Xb06o978I3ljP0hV/q3G917vtmEzszCmj/0PeV286a9b9/761H/r+p7r7Fo7s+WbOfgzlFXvtJiZJlEZEmLCbMH1+bhZeX7GLjoVw6VlML6Q7lpsn7K/ex+bB7b3rylKN1369M6nn8juAE5uaezRWp97N77Do+iniMrwtOob/veh6PeI7XbRfxYfQd3Bj8AYk+2wGTx8/pzoDYsAZ/Du6QmlcxU8SXTt5QuPBI0rclNY++Ty10ehq191bupbTcrNWIsqt56ta0S95awfAXf63xOFfcO5dbVMp5c5ayPCXzpH01lRn984v1fLvpENd/tPqkfUcT6U2H847Z5n03+3lfYYiIiLhMUusQch4+o/Ij3oacoik8wI5pwsVvLmdAbBi/3Ty0wfp2tzX7cxjw9EKWpVTM0hFbzZLPpi2Izf6nMTOjIwblJPrs4MKotSQaS7g55D1uDX2Xg2XhlKeM4LClG9stCaSW176OtiH96OIltP1sx/9eFpeV0xBv69YdyGFvVgFtQ/0prMMcyQBdW9S9zKe6WS3qu7hPRn5xnc89sXxmeUomn607yGfraj86/u3mwyfN0lJcWu7wZtNV+7Lp5eQNqw1FybKISBNns1o88p/9LUPjufaUdvz1k7Ucyi3yQATHM82Kj4bLXTRytSwly+G+JQ6mRjOxsLakA2Z5L9YdOpdISxbD/VYw3O9PxmT8xLVln3BtG9hQ3J4/Pu3NKT49WVzchSJcd5Nibb34607uG9P5uBu21h9T9jDXiQVIUvOKuOmTtS6JJyO/mIlzlzHtFOcX6XFUO3106r33Lu/LKc86N53ciSID6r4Yz7nVlKkcO/Xdir1ZFJeWY7dV/Wb3jFd/I7l1CI+d3b1y2/lHZmOpi2OnLPzPgi38y8UrK/7fT1u59+tNtKviTaY3zjetZFlERNzCYhh0bRFMiK/NK5LlpXsy6fzoD3U69875G3jhlx3kFtU8+rjhYA5T3l3pVLtp5aF8nD+Sj/NH8uppSSxc9iMBaQs51Xc1F/p9weX+n1IU5sOyoq4sLuzF4qJkNpTEYTZgFeWD321m2sB2xFQzel6Tn7el1ThndE0OZBfSKsSPbWn5/Lw9jU2Hc0mIdG6RGkdzLgPsyihgZ7pnyjiqK1M59vXKLCjh4QVbeGBslyqP/WbTYb7ZdJirBsTSKSqIzYdz+Wnb/+qZi0rLsFstGIZBWbnp9E1/N326lswC18/FfO/XFaseVlU+44W5spJlERGRmvy6I92pRBmoXPDi6DzIVVlX1Q1phoVdls4szIliTv4FWMoLGGBfzxC/VQz1W8XtYW9wO5BRFsQfxd1pc3AU3X0iwEyq47NyXk2zWkzu3ZZ3/nRudoi6yiwsoVWIX+XjolqUKbzl5MwVzvhha/U31bnL0t01L+TS/f9+4rGzuvHp2uNntAi5+yv+PqIDD5/RjQ9W7XN6+jl3JMo1UbIsIiJSS86WTRSXlvPQ95vJLCxl5V7HJRJ1UZs1E7ILSxkcF859Y7ow9pXf6txnoenLwqLeLCzqzSNZ0MKSzhC/1Qz0XccA33W0T3mEz1tC1qL7WbFxEKHtR9DDx876kjjKsda5X6mety3scuIKkUt2ZbDmwPHJcEmZySMLtvLwGd0qF9wBuOfrTfz1k7X839ndCfevezmJK5keu2XSMSXLIiLitQLtVvKOrGAXaK/6T9Zd8zdw9+mdsFkMHvp+S+X2IN+6JYz3fbOpTucd5WuzcGp8JHZr1UlVzzYhrKrDwhKHyiP4JH8En+SPAOClMyL4+udPGGhfz/C0DVjSvmdeS8gpD+CPom5Ebh9DmXUYfkYRhabnap6buud/2YHdZuHN5RXzKOc7WHHxi3pMHVedAznHlzidOKpcnaMjx//8Yj2vHpnRZc7SmmvQ3ckbV75WsiwiIl7rqXN7EO7vg79PRQJ6rKTWwfRoFcwXGw4SFxHAFf1iXNLnH3syiQq0k5pXzNoDOby9IoXdGc7VtOYUldaqPKA+Cu2tmZc/nHn5wxkSFs6c8S3526uvVo48t9jyCIVbHmFlGysbSuJYUdSFQ5aelGZ3wBoc69QKa1X5euMhXvltV7XHlB6T8Zz20q8emd2g3KwoXRjQzr0zixSUlPPwMW/Sbvp0LTeeGn/ScUff9Jmmyb3fbGJclxYu6b/3kz87feySnemVSb230tRxIiIitRAZ4MMYB0lF1xbBrP77CCLu+drl/f737O7cPG8tC7aksmCL89OkHV0848Sp0FzthsFxDImLOH5jQBs+LxjK5wUVU/R9dXlHkmybePGjd+nju4kLAxcQYJnPntmPYAlsi1+bgfi1PgXflv2wR/fC2aUXzpxZ82p629L+91H/T9vS2HnMR/8NadSMJaQ9OM4jfVfljFd/Y3iHSB7+fkutR3C/2XSYgzkn3yiblu98XfGQ592zQIkreV+qrGRZRESaKJvlf8lfQ1aZRgb4cMuwBFbtc23d9LGen5jE9rTqV2Qss0dgizmDJ7IrylFslDKu5WGSbRuJPryS8cYy8rd8fORoA0K78N/wVqwtSWD7xgP4GeGV5Rvx/1kAwDPn9XDbc6rK7HqWBOQVl/HYj3VbKtoRZwbkMwtKOGvm79w5qtNx24/OWgGwL7v2qzW2fuDbWp/T2HjhwLKSZREROVlBSdlxH6U3JjcPjadlsC+JLf+3WMTtp3Wkc4sg9mYW8tGa/W7tf0JSa8KquVmqS3QQnaIC+XC1e+M4USk2tpmd+GJva2AkQ68YSnJ4AcUHV1B0aAUrVv3EqX4rmRj4ExTO5tY2FraWxrCmuAPrihPYWNKeD/9o0JC57bN1lT9/tu4gt85bx01VlDhUZ4uLV48M8Km5Fn5nej5LdmVwz9cbuX1kR5f27y7ecmOdt8RxLCXLIiJSycDAYlB5o9y4LtEejqj2TusYxTmJrY7bNrxDFMM7RPHT1lS3J8snKiwp44djVrwLsFuZfVEvTNNkf3YRMf/+rkHjOZYtsDW2hLMISDiLGZvO4KMt+2lhSSfJvo0k+1Z6+GxnhN8KLgj8sfKc/a0i2VjSnk0l7dhYEsemkvZYzJZuj/WerzdSUmZ6fHW3XAc38FWlvqvwNaRrPzh5OWpP0MiyiIh4NbvNwsdT+ldOL3VaxyiXtFtQUs6KlEyCfZvfn51Xf9/N9rSTa3YNw6BNqF8VZ3hOuzB/dmdGsKAwggWF/Y9sNWlhyaCLzy5OizpIcNEmuvrsYojfauxGKQClqTYmt2jL5tJ2bCuJYVtpW7aXtGVnaSuKsZ/Uz/xpA7n509qt6FdSVpFFPfZDRVlFRkEJv+6see5hV3vLy2+Qa+yULIuIiNcbf8KobH0F2K1sTc2j39OLmJjkuO2ycpPychOLl81jW195xRUJZceoQLamVl9nXJXElsFkFJTQMtjOn3trP+Vc/RkcKo/gUFEEuYTwZ0ZFDD6UEG/bTxefXUyMSaO8YC397Rs4N2BR5ZllpoWUshbsJ5a1oa3ZVtKWbaVtCSzvhBPVDLWSnl9c53PtNud/56IC7WTUYrEOZ3O/tLy6x9+ULNqRxrAOkTUf2ICULIuIiFs9cU4ik3q2Ydr7q8gsKD1p/9Ebpu75ehPP/7KTbXee1sAR1o+zU121DLJXmSwfXenP0dLNY7tG8/g5ieQWlfLCLzvp1jKoXvG6Sgk+bC5tx+bSdgQFteWdLRWr5PkbhcTb9tHBtpcEn710sO2lq+9+LgtahZ9xJCH89l+8Z/MnM6stBz/vznlFAYQHBrO7tCV7ylpilhXDCSPSnaMD2XzY8ZuNrzdWvXT0m06s3lfdstMnqs2MexsO5XLpWyucOnZPFUs/N0cPfb+Fu0/v7OkwjqNkWURE3KpFsC/jE1sR4FP1x+6+NgtvXtKb91bu4/P1B8kqPDmhbgg924RyUa82FJeWMywhkptOjWd5ShZfOUjCAAbEhnFBzzb16vfXv56KaYLFYvDAt44XRAnytXH7aZ69WcyZke0C04/1JQmsL0mAI/lfXLg/uzNyaWNN5Z99yrm8czHzflhIJ8thSjK2MLRkG6PC/zeymjX7ZvKCYnkrKoh9ZdHsL4skKKA9C/382Fcaxf6yKHLMAFw1z8ms33eftC3VwUhvdQn7UX2eWljvmJqr4QneNaoMSpZFRMQLXNInhpyiUj530ypnzgjz9+Gdy/pWPn5wXFcA+j71c5VJYlLrYH67eWi9+zUMo1ajlVXJKixl7h81T7OWX+L8zWmuVo6VlLKWmG17ENo7npnfJ9I9OJiRHaO48eNVRFsyibUdpL3tAM+eHoQtfxc+qSs4xXctLa3pWMvKufKYEvrccj/2l0WxvyyS6NXd8be1YHJgIYfLwjhcHsbhsjBSy8KqrJl2Rq8nf671zBtSf1YvLMNSsiwiItLIrT2Qw9oDOTUet8vJlQgb0oZDuZhYKuqiiyNYXtyNV/uNJTzAzoXffw6AlTLOiYfde7fQ2ppGa2tqxZet4ufS3V8Ra83koSoW68sqD6xMnCuS6HAOl4eRVhZKZnkwmeXBpB/5nlUeSDkVxdQNtRLjUdd/tKZB+/NWWsFPREREHHJnnlAx04X3JctVOfFlKMNKhhHJimLHdwXaKCXSkkW0NZMoaybRlgyirZkVjy0V35N8thHll0mQpeoFQcpNg2wzkIyyYDLKg4nc15LocCsZR5LpnPIAcsyAiu/lAeSYgZU/55r+lYl2XTSWfxt3875UWcmyiIiIWxhH6mm/2+z8ctm2Ix9BWy2ACyomjp1TukuLwOMSskHPLWZyr7bMndy7ynPD/X1qNeuDK507eymLbjy1VueUYuNgeSQHyyOhhrADjAIiLNmEW3IIs+QQZsklwpp95OccIo58b1NyiFN80wi35BBgOXmp6RPllvtVJtS55YFHvvuTb/pRYPqSV+5HgelHvulLgelLfrkf+ZWPK74f3VZw5BjTyWXImwovHFhWsiwiIq41b90BT4fgUOfoIHq3DaGgpJyNh1y7stuJ+sWGEh8RUDlntTP+c2Y3ftyWyoGcIp5dtKPeMXxZTQ14SZnJ68tTHCbLnvSLm+dPzjf9yS/zJ6Ws+sVUgnNs5BRV3HBqp5jOYWXk5mYQbOQTbMkj2JJ/5Of84382KvaFW7KJtR7E3ygkwFKEv1FUOTe1s4pMnyNf9pN/xk7xSfuPOY6Kn4tNH0pNKyXYKDFtlGKl1Kz4uQQrpaaVUmwUH7ev4vij+0pM65FzK34uxVqvkXRHtIKfiIg0WX1jQjmzawvyS8oY0SGKVsG+Ddb3zvR8NhysOfltE+rH8luHA9D50R+cmve4riNdAXYbD47rwuVv/+n0OQPbhzOwfTiP/7Stbp0e4+dtaR4bGa7OkLgqCour8PKSne4NxAnH3hBZjJ0M04+9pf71atOHEvyNoiPJcyEBRsX3QEthxXaj4nugUYi/pRA7JfgaR7+Kj/tuN0oINvKIshy77/if3ancNCjDQhlWykwL5VgoPfK9DAtlpvXI/v/9XHGM9ZhjKr6XmxZKsbK55BxgkFvjri0lyyIi4hJtQ/35YtrABu83zM/G5+sPum0mjaBGuurgf+uQcPv5uOcj/2OXiO7ZxrnlqpvqDW8l+FBi+pBd5v75sg3K8aEUX6MEH6MUH0qxGWX4GKXYqPr70Z9tRhk+HPu4FPsx+2yU4mNUpL+2I9+tlGM1yo6MOZdjNSq+H3eMUY6VsmP2V/xsMcoJoBRrTTU0HtA4/wcQERE5YslNQ7nts3W882fNi0/UxduX9mHN/mzu+mojq/Z5YgW92hvTOZrFO9JrPVWcj8XC34Z34Imfq060g33/V5ZQG1XNWWya8P2WVC7rG1Pr9sQ5JhaKsVNs2r3zzrkqdDOCuN/TQZygeVWNi4iI1yspK+dwrvNL/7YM9qWlG0s+YsL8OaNbywYtK6mv8AAfLHX8C+9rc3ziTUNdN+9wal4xmQUl5DbwIjR+1Ty/E5WVN5IMswmx1HfScTdQsiwiIl7l/NeWMWHuHwDYrfoz5Sq2umbPbnJ0NcJfd6U7dfzP29Nc0u9L5ye7pB1pPrzryhERkWZva2oePVoF8+YlvRkSH+HpcJqMYF8bp7R37ua6hnB0BNGZ5aNdqXN0YIP2J42fkmUREfEKrYL9gIqlmwe2D+eSPjH4NNOR5Z5tQtzS7tndq58qTdzPx+p9ZQZSPd3gJyIiXuHcHq04cN8YisvKaR3i5+lwPGp052jO6taCLzcc8nQoVRocF8453Vtx5/wNAHSM0mitNF3N8y27iIh4pRbBvsSE+WO1NL3RtwHtwvGzWegXE+bpUFxufKJGrKXpUrIsIiLSAP5zZlfyHz2LG4bEua2Pv4/o4La23W2wk4uViDQ0lWGIiEiDsBjw47bUyp/FO/z983WM6hhVq2WGfbxsZg0Rd2qwZNkwjEDgRaAY+Mk0zbcaqm8REfG8J8Yn8tuuDHxtFgLsVn7ZmeHpkAR48uftPPnzdpJb13xT4fCESHb2yefKfrEsT8mq3N6Y5qAW71abN20NpV5vDQ3DmG0YxiHDMNaesH2cYRibDMPYahjGHUc2TwQ+NE3zGmB8ffoVEZHGZ0JSax47uzsPjutKVKDd0+E0Sz1aBTvcV1ha82p/sWH+vHFJH07vHH3c9rah/nx6Vf96x1eVTsfcPOiF61XUWkmZ9yWD3iQt3/uWu67v5yhzgXHHbjAMwwq8AJwBdAcmG4bRHYgB9hw5rHbrb4qINHF/+Xg158z6nbxi/fco7jM+sVW9ktrqymdstaytKS4rd+q4+8d2qVW77hRot3o6hCavl5umTayPeiXLpmkuBE5cemcAsNU0ze2maRYD7wLnAilUJMzV9msYxrWGYSwzDGPZ4cOH6xOeiIjX69M2lFPjI8grLuNAThF92oYy+oRRO2mejs4x7Q1zTVsMuG9MZzpE1m6KuL+e6nh57BInkuUvrx6AtwwmvzgxifGJrTwdRpPXIsj7SnrcUbPclv+NIENFkjwQeBZ43jCMs4DPHZ1smuYrwCsA/fr102cVItKkdYgKZOFfhng6DHGT4QmRXN43hpgwP3xttRuV/M+ZXTm9UzQTkuqWoOUWOfcpRXLrEFbvz3a4f3xiSz69akCN7SREBpy07cnxiTy3eIfTcfzqxXXs0wfH8eyi7W5pO9Bu1adKR3jLm6NjuSNZrup5mqZp5gFXuaE/ERERrxQT5s9rk3vX6dyuLYLp2sJxjbGz7FaL0yUP9VHfWB8/pzu3Dktg/cFcJsz9w0VRuVZiNTXfxxoaH8GiHSd+8C6NlTs+20kBYo95HAPsc0M/IiIizVbbUD/O6d6SofER1R53fnJrt8Zx2/AEh/tOLGM2DMcjhzaLhU7RQZzboxWntPfMnMvvXtaXCT1UauFJ3ngTpzuS5T+AToZhxBuGYQcuBj5zQz8iIiIA+ByTldltnq/xbQi+Nivzpg7gzUv7eDoUhwzDYHhCJACzLuxJxr/HYXHiRsB7R3fmrG4t6NU21N0hHqdDVADRXlgz25wYXliIUa8yDMMw3gFGAFGGYaQA95mmOcswjBuBbwArMNs0zXX1jlRERMSBW4YlEB8RgJ+PlREdIj0djlQh0G4jxM/HqWPHdW3BuK4t3BxR42AxoLw53cHlfbly/ZJl0zQnO9g+H5hfn7ZFRESc1TrEj+mD4xq0T7M5JTBSK+3C/cG5+xprZLdaKCx1f825t2guZRgiIiJNXpi/c6OkjU34kecVEdA0n19DCPat3Vhkv5iwOvWT2LL+N4B6G28sw1CyLCIizZK/T8WfQP9aTunWKSqQ32461W0r1nnarcMSWP/PEdw81PGNe57S0GlUbZPeunr6vEQij3lzMrpzVIP0K85RsiwiIs3Se5f35b3L+/LGJbWb2i3QbmVAu3AiAprmkt0Wi0HXFsFYXPR5+NFV71zRXO+2odw7ujOvTEquf2NO+HxqzfNLu0JEgJ0zu7Wscl9zKsEA7yzDaJi3TCIiIl7GVfMYNxWbD+e55WP9B8Z1oVN0ICM71v/GS1+bhfvHdmF5Smb9A2sEElsG4+9jYVlKlqdDaTBemCsrWRYREWnO+saGVruCX73bjwmjbx1rcqX6mTAKS5veqn/eOLKsMgwREZFmrH1YAIPjKhYBMdEUH97Gx+o4e9yWlt+AkTQM3eAnIiIiXmd3RgEAJWVKlr1Nt2ZWKqSRZREREWlQvtaKP/UBPo5n/diXXQjAhCT3Lo3dGPSLbdhVA8X7KVkWERFpwqYOjOWNS3rz7zO61HisVj+EaQPbezoElzu/jm+CTmkf7uJIauaFA8tKlkVERGqjsRUqhPr5cGmfGNqG+ns6FIesFgOrpWHTJMOgwaagqy1X1+3OubhXnc6zV1Mv7S6GF9ZhKFkWERFxQv/YMHxtFo+MtjVltw5LIOPf4xo8We4aHeRVo8gLt6dVuf3sxKrnX66NoAZaXMUVvC9VVrIsIiLilAfHdaXg0bN46XzvHI30BrY6JLx+PpZGk8y1CvY77rErlzzfdeQmyxNNTGrNt9ee4rJ+nNUuzDOfRHjhwLKSZREREXGNpTcP5e1L+3g6jCrdMiyBj6f0q1cbHaMCjnv81PjEOrd13aD2TieG1U0f50r/Pbt7g/TT2DSOt3IiIiLi9Xq1DaVDZKCnw6jSk0cS2yU7050+p1149aOrdlvdxxw7RAbiZ7NQUFLzctb1qWH+y5A4p4/tGOX5fzvVLIuIiIhLWY9JLixemGi4krWa59c3JpRQP9eOAfrWIxl2pf7twup03hPju/PchCQAXp/cmyv7xbgwKvfwxt9g7/gtEBERkTppHeLLzAt78uYlvaudS7kpuOO0jg73/ffs7vxtRIcGjAaKSmseFXYFfx9rnd4I3Drsf6/HZX1jmHNxb1eG5Rbe+H5PybKIiIgLeGpKOcMwmDqgHZf0qduoYedoz3/07oxJya05o1v9Z4ZwpUO5RSdt694yyAORNB477x7FoGpmlPHCXFnJsoiIiCtc1KsN/WPDOKNrC0+H4rQ3LunNxb3bejqMRiv4hFk8zk1syZq/j6hTW38b3rCj4p7SLjyg2v2qWRYREWmi7hvThd9vHtqoloyuLi2xHZmBIdDeeOcCePiMrm5r++lzE7m0z/FvNMID7HVO9sZ0ia71ObcMS6hTX94q3N+H607xnrmvj1KyLCIiHrPhYK6nQxAHJiW35ulzE3lwbM3LZHurO0d14rSOUfWa5aFbiyD6xYSetP2moQmE+PmQEFn9SKmrtAjyPWnbk8dMXRcf4Zo4rhvk/mTV0fuJtH+Po0sL7ytjabxvF0VEpNEa2SGKiUmtKC41Oat74ylbaE7CA+zcNLTxj1zWd0GPlX8bXu0I/MdX9ue6D1fx++7MevVTkxkXJDNqxhK39gFwx8iOvLxkl9v7aUyULIuISIPrEBXIh1f293QY4kGnxkfQOTqQ0zpGubUfSz2X0faxVv8hfHKbEK45pb3bk2Vnl1m3GFDuqbtNmyglyyIiItLghneIYuPtp3k6jGatX0woy1KyGrxf77uFr3qqWRYRERGXObqQR0yon4cjcU50oN3TIXhMiJ+Pp0NoFJQsi4iIiMvYbRZSHxzL+n+O9HQoTll+6zBPh3CSC3u18XQIcgwlyyIiIuJSEQF2gnwbR6VnQy8R7swiMP1jwxzuC3Hxkt6e4I1zKVdHybKIiIjU2tF8x9rIEp+G4OzNeLXh72PlntGd+XSKboxtaEqWRUREmoh24f4AtK9hlTRXuLBnG24bnsDVA9u5va+G4mOpSIumHXlOJ67Q56wr+sWS+uBYkluHnLTv6EwV6fnFtW73gbFdGOHm2UOOstZzFpGmRMmyiIhIEzGlfyyZD43jkTPdt3LdUXERATx+TiKdo71vEYm66tEqGICXL0gm75EzTyolsVst3DQ0nncv61tjWxEBVd84eHGvNgyNj+DSPjH1D9iFIgN8SG4dQmSgnZhQPx4cV/ViNF2cKCOpSWNLw5Usi4iINCEhfj7V1oQG2q0NGE39+ftUxBsT5u/2vo7OyWwYRmW/xzIMg6fP7XHSDXgRARWzSnRwYjW//rFh/PyXISQeScxdZXxiy3qdf/jBccRHBhDka2P3PaMdJvPzpg7g3w4S6aZKybKIiEgzMqJDw3yM7ypndmvBl1cP4L4xnT0dikNnd2vJV9cM5LbhHRq876OlIlf2i3Xq+NYhJy+bXRtx4QE1LiQzOM71NduepGRZRESkGbFaDNqHu3+U1lV8rBbO6NbSq+cEtlktjO3SosrRaG/z9qV9Kn92V1lyTTOMVLXbz+a9KWnjn39ERERERJwyvEMU2+4cxcdr9rMlNQ+2pLq8D9Os/XrbLYLqN+LtTt6bxouIiIhIrfhYa07t4iMD+NuIDlWO8MrJlCyLiIiIeFhAPUs4QvxsxEcE8MQ5iS6KyH2MRjYfhpJlERERabaOjq5GBVY91VtDqe9CJr42C9vuGsUNQ+JcE1A91KYI48Ke3r+0t2qWRUREpNlqFezL/WO6MLJjpEfjaK6LgDSGp61kWURERJqNVsF+AFzer2IeYcMwuNeLp6VrihpbrbSSZREREWk24iMDKHrsLKduhPNWd5/eiTYhfi5r74WJSfVu474xnXng280A1GYyjN5tQ3l35T7MWhVvNKzG+5siIiIizVJ954luzIkywL/HdeX6wXH1bueKvjF0iAxwSQlKkN2GvZav65yLenFuj1b17tvdGvdvi4iIiDQ7UYG+jOzg2RrjpmBQXARb7hxF1xauWXq7tuUVsWH+lfNiePMMGUqWRUREmqB+MaGE+tnqvbyxiDOOLaK4sn/1S297b1pcNdUsi4iINEFLbxnm6RCavUFx4azen+3pMBrcxKRWnJ/Umuj7vnH6HNUsi4iIiNeIDKiYU7ix1+4CtAiqeC7Bft43/vfEOd1Z8tdTeW5Cjyr3n9m1JQD+Po3/3wGOHzF2piTDxMRoBFNjeN9vloiIiLjVnIt78cuOdM7s2sLTodTbcxOS6BgVSK82IXy18ZCnwzlOgN3GwPbhDGwfzjcbD/PFhoPH7Z95YU9uP60jUYHNq1SmMSTIx1KyLCIi0swktQ4hqXWIp8NwiQAfK73bhno6jDoJ9fehX2yYp8PwCrrBT0RERESaLNM0az0bxrHzMatmWURERESajery5mOTau8dT/4fJcsiIiLNnPeO6Yk36taydvMyT0pu7aZIGoaSZRERkWZudKdoAFoGN68bzaRuwvx9+MuQuJO2O6o7fu+KflVubyxv0nSDn4iISDP3xdUDyCkqJfzIlHLiejZrYyg4aBi1nWLO05Qsi4iINHM2q6VJJcrJrUP4x8gOng7jOH8f0YGM/JJGPfvFM+f1wG6rKEo4cfq3xjJKXBcqwxAREZEm5ezuLbm0T4ynwzjO4LgIfrxhMK1D/DwdSp20D/fnr6fGV3vMcTfuVTNkPKZLxfzebRrJa6GRZRERERGpldpWT1gMKD8y/HzbsAQmJrUiITKQ7Wl5Lo/N1ZQsi4iIiEi99WoTwi87M7BUMaq86fbTWHcwBwCLxSAhMhDw7sVIjlKyLCIiIiK1UlWVxZyLe/P1xkNEBNjJLCg5bl+HqEA6RAU2UHSupZplEREREakX04SOUYHceKSu2fvHi52nZFlERERExAElyyIiIiJSK64aOW4M8ywrWRYRERGRWvnHiI7YLI0g03UBJcsiIiIicpKWQY6XP28T6seC6YMc7q/tiLHpxauaKFkWERERkZM8clY3JiW3dmsfjWFsWsmyiIiIiJwkITKQx87u7tSxZj0XvPbm2mUlyyIiIiIiDihZFhERkUZncp+2hPjZiI8I8HQoTVqwb8X6dZf0aVur82q7Mp831yxrBT8RERFpdKYNbM+0ge09HUaTFxloZ/99Y4gOtLulfW8uvzhKybKIiIiIONQy2PGsGK7izUmzyjBEREREpF68uYyivpQsi4iIiIhHeXOyrWRZRERERFzK2bIKw5vrL45QsiwiIiIiHmF685DyEUqWRUREREQcULIsIiIiIvVS1/FhlWGIiIiISLPj/Smw85Qsi4iIiIhHqGb5GIZhnGcYxquGYcwzDGNMQ/UrIiIiIlJXTiXLhmHMNgzjkGEYa0/YPs4wjE2GYWw1DOOO6towTfNT0zSvAaYAF9U5YhERERFxKLl1CH3ahrq9n9gw/3q30Rhqlp1d7nou8Dzw+tENhmFYgReA0UAK8IdhGJ8BVuCRE86faprmoSM//+vIeSIiIiLiYr/ddGqD9BMXEcD1g+N46dedJ5VTNIIc2GlOJcumaS40DCPuhM0DgK2maW4HMAzjXeBc0zQfAc4+sQ2j4q3Do8BXpmmucNSXYRjXAtcCtGvXzpnwREREROQIPx9rg/UV5u/suGtN7fi4pB13qE/NcltgzzGPU45sc+SvwOnABYZhTHd0kGmar5im2c80zX7R0dH1CE9EREREvFmrYF8m9GjFCxOTPB2KQ/V5O1DVALvDWxpN03wWeLYe/YmIiIhIE+JjtfDRlP6eDqNa9UmWU4DYYx7HAPvqF46IiIhI8zR9UHv8G7CEQpxTn2T5D6CTYRjxwF7gYuASl0QlIiIi0sy8eH4yAGv2Z3s4kvprDLNcOMvZqePeAZYAXQzDSDEM42rTNEuBG4FvgA3A+6ZprnNfqCIiIiLijbx/aZG6c3Y2jMkOts8H5rs0IhEREZE6iA60A9Ay2NfDkTQfRpNa2LpqrpnvQ0RERMTDrurfjs7RQQyOC/d0KNKEKFkWERGRJsFuszCyY5SnwxCqnjKtsarPPMsiIiIiIk2akmURERERqRezCd/hp2RZREREROqkCc0Q55CSZRERERFxqaaURCtZFhERERFxQMmyiIiIiIgDSpZFREREpF4c3eB3dKGYxkzzLIuIiIhInTgqTbZbLfxteAfO7t6iQeNxByXLIiIiIuJShmHw33O6ezoMl1AZhoiIiIiIA0qWRUREREQcULIsIiIiIuKAkmURERERL2RpRFmaSdNd77oR/TOIiIiINH1tQ/1IiAzgX6d39nQoNTKa0lJ9Dmg2DBEREREvEhFgZ+udozwdhhyhkWUREREREQeULIuIiIiIOKBkWURERETqxdFy102BkmURERERqZOmf3ufkmUREREREYeULIuIiIiIOKBkWURERETEASXLIiIiIlIvTfj+PiXLIiIiIlI3zWABPyXLIiIiIiKOKFkWEREREXFAybKIiIiIiANKlkVERESkTsL9fY773hTZPB2AiIiIiDROV/VvR0FJOVMHxHo6FLdRsiwiIiIidRLsZ+P20zp6Ogy3UhmGiIiISCM1oF0YADaLUjp30ciyiIiISCM1+6JeLN6RTstgX0+H0mTpbYiIiIhIIxUb5s/k3m09HUaTpmRZRERERMQBJcsiIiIiIg4oWRYRERERcUDJsoiIiIiIA0qWRUREREQcULIsIiIiIuKAkmUREREREQeULIuIiIiIOKBkWURERETEASXLIiIiIiIOKFkWEREREXFAybKIiIiIiANKlkVEREREHFCyLCIiIiLigJJlEREREREHDNM0PR2DQ4ZhHAZ2OXFoKJDlZLPOHBsFpDrZXlNRm9ewITREPK7uo77t1eX82p6ja6X+dK14vj1dK42DrhXPt+dN14qzx3nqWmlvmmZ0lXtM02z0X8ArrjwWWObp5+TNr2FTicfVfdS3vbqcX9tzdK14/t+5Mcaja6X+x+pa8fyXrhX3nOPs8bU4zuuulaZShvG5m45tTrztdWmIeFzdR33bq8v5tT1H10r9edvromvFPefoWqk/b3tddK245xxnj/e23weneXUZhqcYhrHMNM1+no5DxNvpWhFxjq4VEed447XSVEaWXe0VTwcg0kjoWhFxjq4VEed43bWikWUREREREQc0siwiIiIi4oCSZRERERERB5Qsi4iIiIg4oGRZRERERMQBJcu1ZBjGeYZhvGoYxjzDMMZ4Oh4Rb2UYRoJhGLMMw/jQ07GIeBPDMAINw3jtyN+SSz0dj4i38pa/I80qWTYMY7ZhGIcMw1h7wvZxhmFsMgxjq2EYd1TXhmman5qmeQ0wBbjIjeGKeIyLrpXtpmle7d5IRbxDLa+ZicCHR/6WjG/wYEU8qDbXirf8HWlWyTIwFxh37AbDMKzAC8AZQHdgsmEY3Q3DSDIM44sTvlocc+q/jpwn0hTNxXXXikhzMBcnrxkgBthz5LCyBoxRxBvMxflrxSvYPB1AQzJNc6FhGHEnbB4AbDVNczuAYRjvAueapvkIcPaJbRiGYQCPAl+ZprnCzSGLeIQrrhWR5qQ21wyQQkXCvJLmN2glzVwtr5X1DRxelXSRQlv+9w4fKv4Ta1vN8X8FTgcuMAxjujsDE/EytbpWDMOINAxjBtDbMIw73R2ciBdydM18DJxvGMZLwOeeCEzEy1R5rXjL35FmNbLsgFHFNofLGpqm+SzwrPvCEfFatb1W0gC9oZTmrMprxjTNPOCqhg5GxIs5ula84u+IRpYr3r3EHvM4BtjnoVhEvJmuFZHa0TUj4hyvvlaULMMfQCfDMOINw7ADFwOfeTgmEW+ka0WkdnTNiDjHq6+VZpUsG4bxDrAE6GIYRophGFebplkK3Ah8A2wA3jdNc50n4xTxNF0rIrWja0bEOY3xWjFM02HJoYiIiIhIs9asRpZFRERERGpDybKIiIiIiANKlkVEREREHFCyLCIiIiLigJJlEREREREHlCyLiIiIiDigZFlERERExAElyyIiIiIiDvw/SnPjsbvulpEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,7))\n", + "plt.loglog(freq, powers, ds=\"steps-mid\", label=\"periodogram realization\")\n", + "plt.loglog(freq, psd_shape, label=\"power spectrum\")\n", + "\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Maximum Likelihood Fitting\n", + "\n", + "Let's assume we've observed this periodogram from our source. We would now like to estimate the parameters. \n", + "This requires the definition of *likelihood*, which describes the probability of observing the data plotted above given some underlying model with a specific set of parameters. To say it differently, the likelihood encodes what we know about the underlying model (here a power law and a constant) and the statistical properties of the data (power spectra generally follow a chi-square distribution) and then allows us to compare data and model for various parameters under the assumption of the statistical uncertainties.\n", + "\n", + "In order to find the best parameter set, one generally maximizes the likelihood function using an optimization algorithm. Because optimization algorithms generally *minimize* functions, they effectively minimize the log-likelihood, which comes out to be the same as maximizing the likelihood itself.\n", + "\n", + "Below is an implementation of the $\\chi^2$ likelihood as appropriate for power spectral analysis, with comments for easier understanding. The same is also implemented in `posterior.py` in Stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "logmin = -1e16\n", + "class PSDLogLikelihood(object):\n", + "\n", + " def __init__(self, freq, power, model, m=1):\n", + " \"\"\"\n", + " A Chi-square likelihood as appropriate for power spectral analysis.\n", + "\n", + " Parameters\n", + " ----------\n", + " freq : iterable\n", + " x-coordinate of the data\n", + "\n", + " power : iterable\n", + " y-coordinte of the data\n", + "\n", + " model: an Astropy Model instance\n", + " The model to use in the likelihood.\n", + "\n", + " m : int\n", + " 1/2 of the degrees of freedom, i.e. the number of powers \n", + " that were averaged to obtain the power spectrum input into \n", + " this routine.\n", + "\n", + " \"\"\"\n", + " \n", + " self.x = ps.freq # the x-coordinate of the data (frequency array)\n", + " self.y = ps.power # the y-coordinate of the data (powers)\n", + " self.model = model # an astropy.models instance\n", + " self.m = m\n", + " \n", + " self.params = [k for k,l in self.model.fixed.items() if not l]\n", + " self.npar = len(self.params) # number of free parameters\n", + "\n", + " def evaluate(self, pars, neg=False):\n", + " \"\"\"\n", + " Evaluate the log-likelihood.\n", + " \n", + " Parameters\n", + " ----------\n", + " pars : iterable\n", + " The list of parameters for which to evaluate the model.\n", + " \n", + " neg : bool, default False\n", + " If True, compute the *negative* log-likelihood, otherwise \n", + " compute the *positive* log-likelihood.\n", + " \n", + " Returns\n", + " -------\n", + " loglike : float\n", + " The log-likelihood of the model\n", + " \n", + " \"\"\"\n", + " # raise an error if the length of the parameter array input into \n", + " # this method doesn't match the number of free parameters in the model\n", + " if np.size(pars) != self.npar:\n", + " raise Exception(\"Input parameters must\" +\n", + " \" match model parameters!\")\n", + "\n", + " # set parameters in self.model to the parameter set to be used for \n", + " # evaluation\n", + " _fitter_to_model_params(self.model, pars)\n", + "\n", + " # compute the values of the model at the positions self.x\n", + " mean_model = self.model(self.x)\n", + "\n", + " # if the power spectrum isn't averaged, compute simple exponential \n", + " # likelihood (chi-square likelihood for 2 degrees of freedom)\n", + " if self.m == 1:\n", + " loglike = -np.sum(np.log(mean_model)) - \\\n", + " np.sum(self.y/mean_model)\n", + " # otherwise use chi-square distribution to compute likelihood\n", + " else:\n", + " loglike = -2.0*self.m*(np.sum(np.log(mean_model)) +\n", + " np.sum(self.y/mean_model) +\n", + " np.sum((2.0 / (2. * self.m) - 1.0) *\n", + " np.log(self.y)))\n", + "\n", + " if not np.isfinite(loglike):\n", + " loglike = logmin\n", + "\n", + " if neg:\n", + " return -loglike\n", + " else:\n", + " return loglike\n", + " \n", + " def __call__(self, parameters, neg=False):\n", + " return self.evaluate(parameters, neg)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make an object and see what it calculates if we put in different parameter sets. First, we have to make our sample PSD into an actual `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = powers\n", + "ps.df = ps.freq[1] - ps.freq[0]\n", + "ps.m = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-4835.88214847462" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [1, 5, 100]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2869.5582486265116" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [4.0, 10, 2.5]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [2.0, 5.0, 2.0]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Something close to the parameters we put in should yield the largest log-likelihood. Feel free to play around with the test parameters to verify that this is true.\n", + "\n", + "You can similarly import the `PSDLogLikelihood` class from `stingray.modeling` and do the same:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from stingray.modeling import PSDLogLikelihood\n", + "\n", + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To estimate the parameters, we can use an optimization routine, such as those implemented in `scipy.optimize.minimize`.\n", + "We have wrapped some code around that, to make your lives easier. We will not reproduce the full code here, just demonstrate its functionality.\n", + "\n", + "Now we can instantiate the `PSDParEst` (for PSD Parameter Estimation) object. This can do more than simply optimize a single model, but we'll get to that later.\n", + "\n", + "The `PSDParEst` object allows one to specify the fit method to use (however, this must be one of the optimizers in `scipy.optimize`). The parameter `max_post` allows for doing maximum-a-posteriori fits on the Bayesian posterior rather than maximum likelihood fits (see below for more details). We'll set it to `False` for now, since we haven't defined any priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst\n", + "\n", + "parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit a model, make an instance of the appropriate `LogLikelihood` or `Posterior` subclass, andsimply call the `fit` method with that instance and starting parameters you would like to fit." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2., 1., 5., 2.])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.model.parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.npar" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "starting_pars = [3.0, 1.0, 2.4]\n", + "res = parest.fit(loglike, starting_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is an `OptimizationResults` object, which computes various summaries and useful quantities.\n", + "\n", + "For example, here's the value of the likelihood function at the maximum the optimizer found:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2183.789677035487" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: Optimizers routinely get stuck in *local* minima (corresponding to local maxima of the likelihood function). It is usually useful to run an optimizer several times with different starting parameters in order to get close to the global maximum.\n", + "\n", + "Most useful are the estimates of the parameters at the maximum likelihood and their uncertainties:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4.72916493 2.09193061 2.10372265]\n", + "[3.78311696 0.7300253 0.55312843]\n" + ] + } + ], + "source": [ + "print(res.p_opt)\n", + "print(res.err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: uncertainties are estimated here via the covariance matrix between parameters, i.e. the inverse of the Hessian at the maximum. This only represents the true uncertainties for specific assumptions about the likelihood function (Gaussianity), so use with care!\n", + "\n", + "It also computes Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for model comparison purposes:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AIC: 2189.789677035487\n", + "BIC: 2204.512942872433\n" + ] + } + ], + "source": [ + "print(\"AIC: \" + str(res.aic))\n", + "print(\"BIC: \" + str(res.bic))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, it also produces the values of the mean function for the parameters at the maximum. Let's plot that and compare with the power spectrum we put in:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAHWCAYAAACBqMQDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAC02UlEQVR4nOzdd3hb5fXA8e+9Wt4ze2/IHiRhZzLLbpmFlg5GoXTAD8rqHkBbWnYnBUqhbMregUBCgEAgCdl72U7ibcvWvu/vD+leSdaw7NiRk5zP8/SJrXt17yvHJUdH5z1HU0ohhBBCCCGESKRnewFCCCGEEEL0VBIsCyGEEEIIkYIEy0IIIYQQQqQgwbIQQgghhBApSLAshBBCCCFEChIsCyGEEEIIkYI92wtIp1evXmrYsGHZXoYQQgghhDiILVu2rEYp1TvZsR4dLA8bNozPPvss28sQQgghhBAHMU3Ttqc6JmUYQgghhBBCpCDBshBCCCGEEClIsCyEEEIIIUQKPbpmWQghhBCiPYFAgF27duH1erO9FNHD5eTkMGjQIBwOR8bPkWBZCCGEEAe0Xbt2UVhYyLBhw9A0LdvLET2UUora2lp27drF8OHDM36elGEIIYQQ4oDm9XopLy+XQFmkpWka5eXlHf4EQoJlIYQQQhzwJFAWmejM74kEy0IIIYQQ+6ChoYG//OUv2V7GAe2FF15gzZo12V5GUhIsCyGEEELsg3TBcigU2s+r6Tr7c+3pguVgMLjf1pGMBMtCCCGEEPvgpptuYvPmzUyZMoUbbriBhQsXMnfuXL7+9a8zceJEtm3bxoQJE6zz77zzTn75y18CsHnzZk455RSOOOIIjj/+eNatW5dw/V/+8pd84xvfYN68eYwePZp//vOfQHjD2g033MCECROYOHEiTz31FABXX301L730EgDnnHMO3/nOdwD417/+xU9/+lMAHnvsMWbOnMmUKVO48sorrcC4oKCAn//85xx55JF89NFHceu49957GTduHJMmTeLCCy9MuzaAP/7xj8yYMYNJkybxi1/8wnr80UcfZdKkSUyePJlvfOMbLFmyhJdeeokbbriBKVOmsHnzZubMmcMtt9zC7Nmzueeee/jWt77Fs88+a12joKAAgIULFzJ79mzOP/98xowZw0033cTjjz/OzJkzmThxIps3b+7oX2cC6YYhhBBCCLEP7rjjDlatWsXy5cuBcAC3dOlSVq1axfDhw9m2bVvK515xxRX87W9/Y/To0XzyySdcffXVvPvuuwnnrVy5ko8//piWlhamTp3KaaedxkcffcTy5ctZsWIFNTU1zJgxg1mzZjFr1iwWLVrEmWeeSUVFBVVVVQAsXryYCy+8kLVr1/LUU0/x4Ycf4nA4uPrqq3n88cf55je/SUtLCxMmTODXv/510te5detWXC4XDQ0Nade2atUqNm7cyNKlS1FKceaZZ/LBBx9QXl7O7373Oz788EN69epFXV0dZWVlnHnmmZx++umce+651nUbGhp4//33AfjWt76V8me4YsUK1q5dS1lZGSNGjOCyyy5j6dKl3HPPPdx3333cfffdqf/yMiDBshBCCCEOGvr1L3fbtY07z8j43JkzZ7bbnsztdrNkyRLOO+886zGfz5f03LPOOovc3Fxyc3OZO3cuS5cuZfHixVx00UXYbDb69u3L7Nmz+fTTTzn++OO5++67WbNmDePGjaO+vp6qqio++ugj7r33Xv7973+zbNkyZsyYAYDH46FPnz4A2Gw2vva1ryVdw6RJk7j44os5++yzOfvss9td21tvvcXUqVOt17px40ZWrFjBueeeS69evQAoKytL+fO54IIL0v78TDNmzKB///4AjBw5kpNOOgmAiRMn8t5772V0jXQkWBZCCCGE6GL5+fnW13a7HcMwrO/N1mWGYVBSUmJlpNNp28VB0zSUUknPHThwIPX19bzxxhvMmjWLuro6nn76aQoKCigsLEQpxaWXXsrtt9+e8NycnBxsNlvS67766qt88MEHvPTSS/zmN79h9erVadd28803c+WVV8Ydu/feezPuSJHqZ6iUwu/3W8dcLpf1ta7r1ve6rndJvbPULAshhBBC7IPCwkKam5tTHu/bty979+6ltrYWn8/HK6+8AkBRURHDhw/nmWeeAcJB4IoVK5Je48UXX8Tr9VJbW8vChQutkounnnqKUChEdXU1H3zwATNnzgTg6KOP5u6772bWrFkcf/zx3HnnnRx//PEAzJ8/n2effZa9e/cCUFdXx/bt29O+RsMw2LlzJ3PnzuUPf/gDDQ0NuN3ulGs7+eSTeeihh6xzKioq2Lt3L/Pnz+fpp5+mtrbWuncmP8Nhw4axbNky636BQCDteruSZJaFEEIIcdDoSKlEVykvL+fYY49lwoQJnHrqqZx22mlxxx0Oh7Vpbvjw4Rx++OHWsccff5yrrrqK3/72twQCAS688EImT56ccI+ZM2dy2mmnsWPHDn72s58xYMAAzjnnHD766CMmT56Mpmn84Q9/oF+/fgAcf/zxvPXWW4waNYqhQ4dSV1dnBcvjxo3jt7/9LSeddBKGYeBwOHjggQcYOnRoytcYCoW45JJLaGxsRCnFtddeS0lJScq1DRgwgLVr13L00UcD4Q15jz32GOPHj+fWW29l9uzZ2Gw2pk6dyiOPPMKFF17I5Zdfzr333hu3kc90+eWXc9ZZZzFz5kzmz58fl3XublqqFH5PMH36dPXZZ59lexlCCCGE6MHWrl3L2LFjs72MbvPLX/6SgoICrr/++mwvJUFPXlsqyX5fNE1bppSanux8KcNoQymFCiYvrhdCCCGEEIcWKcOIoZSi+o1LUYafPl95QkZnCiGEECLrzJ7MPVFPXltXkcxyDE3TcPWZQuvG52n87M5sL0cIIYQQQmSZBMttFE27lvwx51H/4U9p3fZWtpcjhBBCCCGySILlNjRNo9eJ/8DRazzVr3+DQOOWbC9JCCGEEEJkiQTLSeiOfPqeHu55uPfl8zACLVlekRBCCCGEyAYJllNwlIyk96n/wV+zipq3r0w5JUcIIYQQIpnLLruMNWvWdMm1hg0bRk1NTdpzbrvttg5f95FHHuGaa67J2v0PBBIsp5E37CRKj/0NLRuepunzu7K9HCGEEEIcQB588EHGjRu33+6X7WA12/fvLhIst6N4+g3kjf4qdYtvwbNjQbaXI4QQQogepqWlhdNOO43JkyczYcIEnnrqKQDmzJmDOVytoKCAG2+8kSOOOIITTjiBpUuXMmfOHEaMGMFLL70EJGZ5Tz/9dBYuXJhwv7PPPpsjjjiC8ePH849//AOAm266CY/Hw5QpU7j44osBeOyxx5g5cyZTpkzhyiuvJBQKAfDwww8zZswYZs+ezYcffpj0NdXW1nLSSScxdepUrrwy/hP2TO+f7LwDklKqx/7viCOOUD1ByNesdj46WW37a1/lb9iS7eUIIYQQIsaaNWuyev9nn31WXXbZZdb3DQ0NSimlZs+erT799FOllFKAeu2115RSSp199tnqxBNPVH6/Xy1fvlxNnjxZKaXUww8/rL7//e9b1znttNPUe++9p5RSaujQoaq6uloppVRtba1SSqnW1lY1fvx4VVNTo5RSKj8/33rumjVr1Omnn678fr9SSqmrrrpK/fvf/1aVlZVq8ODBau/evcrn86ljjjkm7p6mH/zgB+pXv/qVUkqpV155RQEdun+687It2e8L8JlKEY/KUJIM6M4C+p7+DJVPHMPeV86n//nvozvysr0sIYQQQrRRu/D/8Fev6NJrOntPpnzOn1IenzhxItdffz033ngjp59+Oscff3ziNZxOTjnlFOt8l8uFw+Fg4sSJbNu2rUPruffee/nf//4HwM6dO9m4cSPl5eVx5yxYsIBly5YxY8YMADweD3369OGTTz5hzpw59O7dG4ALLriADRs2JNzjgw8+4PnnnwfgtNNOo7S0tEP378h5PZ2UYWTIUTqa3qc+ir96JTULrpINf0IIIYQAYMyYMSxbtoyJEydy88038+tf/zrhHIfDYU0G1nUdl8tlfR0MBgGw2+0YhmE9x+v1Jlxn4cKFvPPOO3z00UesWLGCqVOnJj1PKcWll17K8uXLWb58OevXr7em7WU6oTjZeZneP9PzDgSSWe6AvOGnUnrML6lf8gtcfY6geNoPs70kIYQQQsRIlwHuLpWVlZSVlXHJJZdQUFDAI4880qnrDBs2jL/85S8YhkFFRQVLly5NOKexsZHS0lLy8vJYt24dH3/8sXXM4XAQCARwOBzMnz+fs846i2uvvZY+ffpQV1dHc3MzRx55JD/60Y+ora2lqKiIZ555hsmTJyfcZ9asWTz++OP89Kc/5fXXX6e+vr5D90933oFGguUOKp5xI749n1O36EacvSeRO3hOtpckhBBCiCz68ssvueGGG9B1HYfDwV//+tdOXefYY49l+PDhTJw4kQkTJjBt2rSEc0455RT+9re/MWnSJA477DCOOuoo69gVV1zBpEmTmDZtGo8//ji//e1vOemkkzAMA4fDwQMPPMBRRx3FL3/5S44++mj69+/PtGnTrI1/sX7xi19w0UUXMW3aNGbPns2QIUM6dP+HHnoo5XkHGq0nlxNMnz5dmbtIexLD30zlk8cS8tQw8KKPsRcNyfaShBBCiEPW2rVrGTt2bLaXIQ4QyX5fNE1bppSanux8qVnuBN1ZSJ/Tn0GF/Ox55XyMoCfbSxJCCCGEEN1AguVOcpYdRp9THsG/93NqF3xfNvwJIYQQQhyEJFiOETIMvrbgEZ7dtgJDGe2enzfidEqO+hnutY/RtOIv+2GFQgghhBBif5JgOcaTW5fzwo5VXPDef5j24l08t21lu0FzyZG3kjfiNOrevx7Prg/200qFEEIIIcT+IMFyjHtWR4PdL+urOP+9R9sNmjVNp/fJj+AoGcHeVy8i2Lxzfy1XCCGEEEJ0MwmWY7x20uXcOHEe+Xan9VgmQbPuKqbPGc+iQl72vHIBRvDAbLothBBCCCHiSbAco1dOPrdN/wpbzru1w0Gzs2wsvU96CP+ez6h99wey4U8IIYQ4RGzbto0JEybs83UWLlzIkiVLkh7z+XyccMIJTJkyhaeeeorLLruMNWvWAHDbbbft871FahIsJ9HZoDl/1FmUHHkL7jX/pnnlP7KxdCGEEEIcoNIFy1988QWBQIDly5dzwQUX8OCDDzJu3DhAguXuJsFyGp0JmkuO+jm5w06l9v1r8VZ8mK2lCyGEEGI/CgaDXHrppUyaNIlzzz2X1tZWAJYtW8bs2bM54ogjOPnkk6mqqgLg3nvvZdy4cUyaNIkLL7yQbdu28be//Y277rqLKVOmsGjRIuvae/fu5ZJLLmH58uVMmTKFzZs3M2fOHD777DNuuukmPB4PU6ZM4eKLL87Kaz/YyQS/NnzBEC67LemxGm8Lf171PvevXUxL0B93bGJpf3425UTOGToB5Wui8sljUP5mBnz9Y+wFA/fH0oUQQohDUrYn+G3bto3hw4ezePFijj32WL7zne8wbtw4fvSjHzF79mxefPFFevfuzVNPPcWbb77JQw89xIABA9i6dSsul4uGhgZKSkr45S9/SUFBAddff33CPRYuXMidd97JK6+8AsCcOXO48847mT59OgUFBbjd7v39sg9YHZ3gZ98vqzpANHoCjP3De5w7eQDXzx7BkNK8uONmpvm6CbMTgmYz02wGzaed/jS7nzqeva9cSP9z30Gzu7LxkoQQQohDiu3hxECzq4S+fWfKY4MHD+bYY48F4JJLLuHee+/llFNOYdWqVZx44onh54dC9O/fH4BJkyZx8cUXc/bZZ3P22Wd325rFvpMyjBh/WbKN3c0+7l+8lVG3v8t3n17OhurEd2qZlGcctfhNlkz7A57dn1C78Mf78VUIIYQQYn/TNC3he6UU48ePZ/ny5Sxfvpwvv/ySt956C4BXX32V73//+yxbtowjjjiCYDCYjWWLDEiwHGPx1jrr66CheHjpTsb+4T0u/M8yVlQ2JpzfXtD8jXXrObv3j3hm3UIaVv5zv7wGIYQQQux/O3bs4KOPPgLgiSee4LjjjuOwww6jurraejwQCLB69WoMw2Dnzp3MnTuXP/zhDzQ0NOB2uyksLKS5ubnD93Y4HAQCgS59PSJKyjBivPLdmby9oZrbFmzkgy3hwFkpeHpFJU+vqOS0sX24Zf5ojh5WFve8dOUZa/yKa/JP476lS/h5sJTzp34VXZP3KEIIIUR3SFcq0Z3Gjh3Lv//9b6688kpGjx7NVVddhdPp5Nlnn+WHP/whjY2NBINBfvzjHzNmzBguueQSGhsbUUpx7bXXUlJSwhlnnMG5557Liy++yH333cfxxx+f0b2vuOIKJk2axLRp03j88ce7+ZUeemSDXwqLt9Zyx4JNvLZub8KxOSPLuXn+aE4Y3SvhYxdIvxFwQnEvfj7tK5wzdIIEzUIIIUQXyPYGP3Fg6egGPwmW2/FFRSN3LNjIs19W0fZHNWNwCTfPH8WZ4/qh6x0LmmO7Z0jQLIQQQnSeBMuiIyRY7ibr97r5/bubeOzzXQSN+J/Z+L6F3DR/FBdMHoDdlhj4WkHz6oW0GPGT/yRoFkIIIfaNBMuiIyRY7mbb61r548LN/GvpDnzB+MB3RHkeP5k7ikunD0raq7nG28LvXv8VD9Z7adWcccckaBZCCCE6R4Jl0RESLO8nu5u83L1oK39dso1mX3y7lwFFOVw3ewRXHjWUfFf8HkplhFjz/Nk8UNvCY7kzaQnFP1eCZiGEEKJj1q5dy+GHH550H5EQsZRSrFu3ToLl/am+1c/9H27jnkVbqGuNb9tSnufgh8eP4Jpjh1GaF80khzy1VD5xNLWGxpPjf8tfNn0hNc1CCCFEJ23dupXCwkLKy8slYBYpKaWora2lubmZ4cOHxx2TYHk/cPuC/OPj7fzp/c1UNfnijhW67Fx1zDCunTWCvoXhSX6+vcupeno2zr5H4PjK89y1dolsBBRCCCE6IRAIsGvXLrxeb7aXInq4nJwcBg0ahMPhiHtcguX9yBcM8cinO/nDe5vZWtcadyzHrvOdmUO4Yc5Ihpbl4V73BNVvXErR5Kspn3u3dM8QQgghhMgCCZazIBgyeGpFJbcv2MiaPfEjs+26xiXTBnHjvFH0Wvdrmj6/m14nPkjh+G8C0nJOCCGEEGJ/kmA5iwxD8dKa3dz2zkY+2xU/MlvT4PwJvfmV41actUvpf/5CXH2PsI5L0CyEEEII0f0kWO4BlFK8s7GG2xdsZOHm2rhjpXoTbw68meIcGyO+8Qm2vD5xxyVoFkIIIYToPhIs9zBLttVx+4KNvLo2Okp7vGMLT/e5lW36WGwnvcCJhw9I2NErQbMQQgghRNeTYLmHWl7RyB3vbuKZlZUoBWfnLeRPZffxUPPpvFn4Y26eP5qzxieO0pagWQghhBCi60iw3MNtqHZzx7ubeGzZLm4q/BffLnyV6+p+yIutsxnbp4Cb5o/ioikDE0ZpS9AshBBCCLHvJFg+QOyob+XPC9dz9MbvMMmxkfP2/o41gREADC/L44Y5I/nWjMHkOOJHaUvQLIQQQgjReRIsH2B2791F9dNH0+RTnLnn99QbRdax/kUurps1kiuPHkpBm1HaEjQLIYQQQnScBMsHIN/uz6h8Zi5VOVP56s4b2dtqxB0vy3Pww+NGcM1xwyiLGaUNEjQLIYQQQnSEBMsHqObVj1Lz9mXkTv4RT9qu4s6Fm6lsih/lWeCy8b2jh3HdrBH0K8qJOyZBsxBCCCFE+yRYPoDVvPcjmlf8ld6nPIpj1Hk8+tkufv/eJrbUxo/SdkVGaf8kMko77hoSNAshhBBCpCTB8gFMhQJUPX8y/j3L6H/BB7h6TyYYMnh6RSW3L9jE6j3NcefbdY2Lpw3kxnmjOLxPYdwxCZqFEEIIIRJJsHyAC7XsoeKJo9B0JwMuWoIttxwIj9J+ec0ebluwkU93NsQ9R9PgaxP7c9O8UUwbVBJ3TIJmIYQQQogoCZYPAt6qpVQ9O4+cgbPod/bLaHq0fZxSinc31XDbOxt5r80obYBTDuvNLSeM5rjh5XGPS9AshBBCCCHB8kGjedXD1LxzJcXTr6fsuNuSnvPRtjpuX7CJV9buSTh2/PAybjlhNCeN6R03SluCZiGEEEIcyiRYPojULLiG5i//Qe+vPE7BmPNSnreispHfv7uJp1dUYrT5K542sJib54/inAn940ZpS9AshBBCiEORBMsHERXyU/XsifirVzDgwkU4e01Me/7Gaje/f28z/1m2k0Ao/u96bJ8Cbpw3ioumDsQRM0pbgmYhhBBCHEokWD7IBFuqqPzvUWj2vPCGv5zSdp+zs8HDnQs38+An2/EE4gecDCvN5Ya5o/h2m1HaEjQLIYQQ4lAgwfJByFv5EVXPnkDu4Hn0PeuFuA1/6ext9nH3oi38Zck2mrzBuGP9Cl1cO2sE3zt6GIU50VHaEjQLIYQQ4mAmwfJBqmnlP6l99/sUz7iRsmN/06HnNngC/GXJNu7+YAs1LfEBcGmugx8cN5wfHj88bpS2BM1CCCGEOBj1mGBZ07R84APgF0qpV9o7X4Ll9JRS1Cy4Cveqh+hz2pPkj/5qh6/R4gvy4NId3LlwMxWN8aO0852RUdqzR9A/ZpS2BM1CCCGEOJh0W7CsadpDwOnAXqXUhJjHTwHuAWzAg0qpOyKP/xpoAVZLsNw1VNBH1bPz8deuZsCFi3GWj+/UdXzBEP9Ztovfv7uJzUlGaX97xmBumDOK4eXRUdoSNAshhBDiYNCdwfIswA08agbLmqbZgA3AicAu4FPgImAA0AvIAWokWO46QXdFeMOfs5ABFy7BllPS+WuFDJ5ZWcXtCzayanf8KG2brvH1qQO5ad4oxvaNjtKWoFkIIYQQB7JuLcPQNG0Y8EpMsHw08Eul1MmR72+OnFoA5APjAA9wjlLKSLxilATLmfNWfEjVcyeSO/Qk+p75PNo+BqaGoXh1bXiU9ic7GuKOaRqcM6EfN88fzRExo7QlaBZCCCHEgWh/B8vnAqcopS6LfP8N4Eil1DWR779FmsyypmlXAFcADBky5Ijt27fv0/oOJU0r/kbtez+k5MhbKT36F11yTaUU722q5bYFG3l3U03C8ZMP683N80Yza2R0lLYEzUIIIYQ4kOzvYPk84OQ2wfJMpdQPOnptySx3jFKKmrevwL3m3/Q541nyR57Zpdf/eHs9d7y7kZdWJ47SPm54GTfPG8Uph/exRmlL0CyEEEKIA0GPKMNQSt3e0WtLsNxxRtBL1TNzCdRvYMCFH+IsO7zL77Gysonfv7eJp5ZXJIzSnjqwiJvnjeacif2x6RI0CyGEEKLn29/Bsp3wBr/5QAXhDX5fV0qt7ui1JVjunGDzTir+exS2nFIGXLgE3VXULffZWO3mDws38+hniaO0D+9TwI1zR/H1adFR2hI0CyGEEKIn6s5uGE8Acwh3udhDuH/yvzRN+wpwN+HWcQ8ppX7XmetLsNx5nl0fsPu5k8kbfip9znh2nzf8pbOrwcOd72/mnx8njtIeWprLDXNG8e2Zg8mNjNKWoFkIIYQQPUmPGUrSURIs75vGL+6n7v3rKDnq55Qe9dNuv1+128c9i7Zy/4dbE0Zp942M0r4qZpS2BM1CCCGE6AkkWD5EKaWoeeu7uNc+Rt8z/0feiNP2y30bY0ZpV7cZpV1ijtI+bjjl+eFR2hI0CyGEECKbJFg+hBlBD1VPzyHQsJmBFy3BUTpmv9271R/kwU/Co7R3JRmlfeXRQ7lu1kgGFIdHaUvQLIQQQohskGD5EBdo2k7lE0djy+3FgAs/RHcWtv+kLuQPGuFR2u9tYlNNS9wxp03n2zMH85OYUdoSNAshhBBif5JgWeDZuZDdz59K3ojT6XP6U9264S+VkKF4ZkUlt7+7kS+rEkdpXzRlADfNG824fuFgXoJmIYQQQuwPEiwLABo/v4e6D26g9JhfUzLzpqytQynFq2v3ctuCjXy8vT7huDlKe/rgEkCCZiGEEEJ0LwmWBRAOUqvfuJSW9U/R96wXyRt+StbXs3BzLbcv2Mg7GxNHaZ80pjc3zx/FrBHlaJomQbMQQgghuoUEy8JiBFqpemoWweYdDLhoCY6SUdleEgCfREZpv5hklPaxw0q5ef5oTo2M0pagWQghhBBdSYJlESfQuDW84S+/HwMuWIzuLMj2kixfVjXx+3c38WSSUdpTBhRx8/zRfDUySluCZiGEEEJ0BQmWRQLPjgXs/t9p5I06mz5feQJN07K9pDiba1r4w8JN/PvTXfhD8VMBx/TO58a5o7jkiEE4bLoEzUIIIYTYJxIsi6Qal/2ZukU3UXrs7yiZcUO2l5NURaOHP72/hX98tJ3WQCju2JCSXK6fM5LvHjmEXIdNgmYhhBBCdIoEyyIppRTVr19Cy4Zn6Xv2y+QNOynbS0qp2u3j3sVbuX/xVhrbjNLuU+Dk2lkjueqYoRTlOCRoFkIIIUSHSLAsUjICLVQ9NQt/3TqKj7iWkpm3oDvysr2slJq84VHad72ffJT2NccO44fHD6dXvkuCZiGEEEJkRIJlkVaotZq6RTfhXvsf7IVDKZ97F3kjTs/2stJq9Qf519Kd3LlwEzsb4kdp5zlsXHH0UP5v9ggGFudK0CyEEEKItCRYFhnx7FpE7bvXEKhbS96IMyib82ccRUOzvay0/EGDxz/fxR3vbmJjklHal84YxI1zRzGiPF+CZiGEEEIkJcGyyJgK+Wn8/B4aPvkdACVH3krxtB+h2ZxZXll6IUPx3Moqbn93Iysqm+KO6RpcNHUgN84dxYT+RT0yaK5++0rsBQMoPfoX++2eQgghhAiTYFl0WKBpO3ULr6N1y8s4ysZSPu8+cgfNyvay2qWU4rXIKO2PkozSPntCP26eN5oZQ0p6TNCslMH2B8pQIR8Dv7EcZ9lh3Xo/IYQQQsSTYFl0WuuWV6h971qCzdspGHsJZcffgS2vT7aX1S6lFO9vruX2dzfy9obEUdonjunFzfNGM3tkObW+1qwGzYGm7ex6aDQAeaPOpu/pT3fLfYQQQgiRnATLYp8YgVYalt5G47K70B0FlB77WwonfhftAKnt/XRHA7e/u5EXVu1OOHb00FJumT+ar4ztk7WguXXbm+x54Qxyh5yIZ8fb9D//fXIGHN2l9xBCCCFEahIsiy7hr1tL7bs/xLvrfVx9Z1A+/35cfaZme1kZW727md+/u5EnllcSajNLe/KAIm6aN4pzJw2g3r9/g+bGz++m7oOfMOg7G6l6ahb2omH0P39hj5uqKIQQQhysJFgWXUYpRcu6/1K76EYMTw1Fk6+m9OhfoLuKs720jG2pbeEP723mkU93JozSHt0rnxvnjeKSaYNoCnr2S9Bc/c73aN38EkOvrKTpy39Ru+Aq+pz+NPmjzt6n6wohhBAiMxIsiy4X8tZTv+QXNK/8O7b8fpTN+gP5Y84/oLKhFY0e/vz+Fv6eZJT24JIcrp8ziu/OHEyr4evWoLnyqdloup3+5y1AGUEqHpsGKsTAS5aj2Rydfn1CCCGEyIwEy6Lb+HZ/Rs271+Df+zk5Q+bTa+49OErHZHtZHVLT4uPeRVu5/8NtNHgCccd65zu5dvYIrjp6GAHN3+VBs1KKHX/rR/6Yc+k1/wEgvKlyz0tfpXze/RRNumLfX6AQQggh0pJgWXQrZYRoXvl36pb8HBXyUjL9eopn3Ihuz8320jqkyRvgr0u2c9cHm9nrjg+Gi3PsXHPccH50/HCwBbssaA617GHHPwdTNvtPFE/9ARAOoKuenU+wfiODvrUW3VnQdS9SCCGEEAkkWBb7RbBlN3Uf/ISW9U9iLx5B+Zy7yRt+SraX1WGeQIiHlu7gj+9tZkeDJ+5YnsPG5UcN4f9mjyQnx9jnoNmzcyG7nzuJfue8Ru7QE6zHvVVLqXrqOEqO+hmlR/2sS1+fEEIIIeJJsCz2K8/O96h99wcE6jeQN+ocymf/CXvhoGwvq8P8QYP/flHBHe9uZEN1/Chth03j0umD+cncUZQU0OmguWnF36h974cM/u6WhJ/R3lcvonXbGwz61lrs+f26/gUKIYQQApBgWWSBCvpo/PzPNHxyO+h2So/+OUWTv39AblgLGYrnv6zi9gUbWZ5klPaFUwZy47xR9C+1dThornnvR7jXPsbQq2oSNkcGGjax69FJFI7/Dr3m3999L1AIIYQ4xEmwLLIm0LiF2veuxbPtdRy9JtBr3v3kDDgm28vqFKUUr68Lj9Jesi1xlPaZ4/tyy/zRjOjjzDhornruZJTfzYCLPkx6z9r3fkzTyr/LGGwhhBCiG0mwLLJKKUXr5hepXXgdIfcuCsZ/m7Ljfoctt1e2l9YpSikWbanjtgUbeWtDdcLx+aPDo7QnDsrhrtUfpA2aj3j7DPKHnEDvk/+V9F6h1r3sfGQsuYPn0feMZ7rl9QghhBCHOgmWRY9g+N00fPJbGr+4F91ZTNlxt1Ew/tIDZmx2Mp/tbOCOdzfy/JeJo7SPGlrKzfNGcdSIgpRB82GhGm4aPopL5t2SciNgw9LbqV/yC/qfv/CAzcoLIYQQPZkEy6JH8desoubdH+Cr/BBX/6PpNe8+nL0nZXtZ+2TN7mZ+/94m/vtFRcIo7Un9w6O05x5WzD1r0meak20ENAIt7HpkHPaiofQ///0DavCLEEIIcSCQYFn0OEoZuNf8h7pFN2H4Giia+gNKj/oZurMw20vbJ1tqW/jjws08vDRxlPaoXvncOHcUp44v5f51i7h/9UJajPhzUgXNzaseouad78kYbCGEEKIbSLAseqyQp5b6D39K86p/YSsYSPnsO8kb9dUDPnta2ejlzx9s5u8fbafFHz9Ke1BxDtfPGckJvr/wwOYv+E/eke1mmsNjsI8AFZQx2EIIIUQXk2BZ9Hjeqk+oXfB9/DUryR16Mr3mP4C9aEi2l7XPalv83Lt4K/ct3powSvvRvrczrrCJkgsX8+CmJe2WZ3i3vs6el86hfO59FE2+cn++DCGEEOKgli5YPnB3VomDSk7/Ixnw9Y8pm3Un3soP2f3C6Rj+5mwva5+V5zv51cmHsf3WE/j9aWPpW+iyjg3RdrC4rjfT7vwIrXo4S79yPTdOnEe+3Wmd82V9Fee/9yjTXryL17VBOAccT/0nvzkofjZCCCHEgUCCZdFjaLqd4mk/pO+ZzxGo30D125fTkz/56IjCHDs3zB3Fllvmc/85ExlTqjHQVs2mwCCavEFuX7CJI+78iNaKISw+6brkQfPC//AVfQ6v+Qup/+zPWXw1QgghxKFDgmXR4+QOnkvpsb+jdePzNH1+V7aX06VyHTauPnYYy747AF1TtOaNso55Agb3LtrKjD9/TPXWgbwz78cJQfOq5kauyT+N49du55n172MoI9lthBBCCNFFJFgWPVLxEdeRN+oc6hbfgmfnwmwvp8uphnUA3Petc3n6G0cwdWCRdSwQUvzrkx0cc/cnbFvXl1dm/TAhaF6vl3HhkpeZ9uJdPLdtpQTNQgghRDeRDX6ixzL8zVQ+cQwhbx0Dv/4J9sJB2V5Sl6lb8nMaP/0jw65pRLM5UUrx5vpqbluwkcVb6xLOP2NcX646fiAfNK7ocJ9mFfQRbKkk5K5Ac+Tj6jO1W1+bEEIIcaCRbhjigOWvW0flE8fgLB9H/3MXoNld7T/pALDn5fMI1K1l0KWrEo4t2lLL7Qs28sb6xFHa80b14upZA1jauJQH1i6mVYtvITfOZeP/Cr2cbOzAcFcQdFdgeGKuo9sZcvlObLnlXf6ahBBCiAOVdMMQByxn2eH0PulBfLuXUvv+/2V7OV0mULcOR9nhSY8dP6Kc1y4/ik9/fDxfm9if2JbT726q4dyHVvL+p/14ulcBV3o/I09Fs8xrfCG+W+PghLq+vOEYTe7Isyk5+pf0OvFByufeC0YQz44F3f3y9lndopvZ+/o3s70MIYQQQoJl0fPlj/4qxUf8H81f/oPm1Y9mezn7TIX8BBo34ygbm/a8IwaV8Myl01l1/Ry+ecQgbHo0av5kRwPnfHAERa3TeLjfCK4dOoJ8m906vo4Crmjpz0nuEbzb93Tyx11C4cTL0F0leLa/3W2vrau0bHiWlvVP4q9dk+2lCCGEOMRJsCwOCKXH/oacQXOoffcafHu/yPZy9kmgYRMYQZwpMsttje1byCMXTWXjTfP43tFDcdnD/7f14+APVXM5/92RvPjJYfx65Le4fvyclH2an9+xBufgeXi2v92jW/KFWvYQbN4OQNPKv2d5NUIIIQ51EiyLA4Km2+nzlcfQc3ux95ULCHlqs72kTgvUhTthtJdZbmtYWR5/+dokttwyn/+bPZJ8p806trm2lev+t5H/vuniJ4Mu5rpxyYPmk9wjedWXi6/my655Md3Atye8T8FROgb32sdkAIsQQoiskmBZHDBseX3oe/pTBFsqqX7jUpQRyvaSOsVftxYAR9lhnXp+/6Ic/njGOLb/9AR+cdIYSnOjm/wqGr38/NUt/Ps1B9f0uZAfjZ0dFzSv8fi4Jv80Zrzz3x7bcs6351PQdMrn3YfyN+Ne+99sL0kIIcQhTIJlcUBx9ZtB+ey78Gx/i4ZPfpPt5XRKoG4d9sKh6I78fbpOWZ6TX5x0GNtuPYE/nD6OfjGjtGta/Nzx9nYeesXOd0rP45rDZsUHzd6gVZ7R04Jm3+7PcJaPJ2fQHJx9ptG08q89umxECCHEwU2CZXHAKZx4GQXjLqXhk9to3fJKtpfTYYG6dTjKO1aCkU5hjp3r54xkyy3zeeCrExlWmmsda/IGuXfhLv75ko0L8r/KVWOOJy+mu0ZsTXNPCJqVUvh2f4qz3ww0TaNo8lUEatfgrViU1XUJIYQ4dEmwLA44mqZRPu9enH2mUv3Gt8Mb5g4QyggRqFufsm3cvshx2LjqmGGsv2kej1w4hcP7FFjHvEGDfy2p4p8v2fiBNowrvZ+Rr0drnntK0Bxs2IThq8fVdwYA+WPOQ3eV0rzir1lZjxBCCCHBsjgg6fZc+pz2FOg29rxyPkagJdtLykiweTsq5M24E0ZnOGw635w+mFXXz+HZS6czbWCxdSwQUtz1ZT9+4P2M33sq+fbwY1J2z8hG0Ozb8ykArn7hvvC6I4+C8d+iZfOLBN2V+3UtQgghBEiwLA5gjuJh9D71PwRqVlPzzlUHRF1roNbc3Nd1ZRip6LrGVyf259MfH8/rlx/J8cPLAPDhYqlvHKOaF/PQKw6O8Z/KJUOO7hFBs2/3Z2j2PJzl463HiiZdAUaI5lX/2i9rEEIIIWJJsCwOaHlDT6T0mF/Ssv5JmpY/kO3ltMtvtY3rvsxyW5qmcfJhfXj/+8fy/tXHcOrhffjAO4VRjgoG2Pby1toG/vO6k8nuE7lg4FFZDZp9uz/F2Xcamh4dsOIoGUnusJNp/vJBVCjQrfcXQggh2pJgWRzwimfcSN6I06lb9BO8FR9mezlpBerWYcvrhy2nNCv3P35EOa9ediQ/OP+7AMzKWW4d+3CzmyffcjG6fh5f7TdzvwfNKuTHX73cqleOVTTpSkItVbRufrHj1z0APnEQQgjRc0mwLA54mqbT66SHsBcNY++rFxFsqcr2klIK1K3dr1nlVCaPnYmtYBC/nlTBpdPjR2l/scPDcwtyGbhnDqf3mb7fgmZ/zSpUyGfVK8fKHXYK9qJhHZ7o17rlFXb8rR+Gr6mrlimEEOIQI8GyOCjYckroe/rTGP4m9r769R75cb1SCn/duh4RLGuaRu7QE3HsWcRD509k403zuOqYYdYobYD1u328/F4+5RXHc3L5Ed0eNPt2Rzb3Jcksa7qNwklX4N31Pv7a1Rlf01u5BMNXT7Bp2z6vTwghxKFJgmVx0HD2mkCvE/+Or/JD6hbdmO3lJAi1VKH8TTi7sMfyvsgbeiKGvxHf7qUMK8vjga9OZOst87lhzkgKXNG2cttrgrzxQQEF249lXsnUbguafXs+Rc/tjb1oaNLjheO/hWZz0bQi8+xyoGEzAMGW3Z1elxBCiEObBMvioFJw2AUUTf0hTcvvx73uiWwvJ07AGnOd/cwyQM6Q+aDpeLa/ZT3WryiH358+jm23nsAvTzqMsrzoKO3dDQYLPizCsfkojiuc0uVBs2/3p7giw0iSseX2In/MebjXPpZxWUWwcQsAoVYJloUQQnSOBMvioFN23O24Bh5HzTvfw1+9MtvLsUQ7YfSMzLItpxRXv5l4tr2dcKwsz8nPTxrDtltP4I+nj6N/UXSUdr1bY9HHxbDhSI7Mm0Sebd+DZsPXRKBuHa5+iSUYsQonXo4KuGnd9nq711RKWZnlkGSWhRBCdJIEy+Kgo9kc9PnKf9FdJex55QJC3oZsLwkI91jWXSXY8vpmeymW3KEn4tvzGSFPbdLjBS47/zdnJJtvns9f2ozSdnt0Pv60lOD6GUx1TdinoNm393NAJa1XjuXqMw00nUDtmnZfm+GpRgXcAIRa9rR7vhBCCJGMBMvioGTP70ef054k2Lyd6je/hcrS+OZYgcjmvlRlBtmQO/QkQOHZsSDteTkOG987ZhgbbprHoxdNZVzf6Chtn8/O55+X4107nQn28eTaoqUbmQbNvt1LAZJ2woil2V04Skbij5S0pGNmlSFcL97u+fUbMfzN7Z4nhBDi0CLBsjho5Qw4mvJZd+LZ+hoNS2/P9nLw16/rMSUYJlff6eiuUjzbE0sxkrHbdC45YhAr/28OL1w0guMGRYeHhAIOvlzRC8+aGRyuje1Q0Ozb/Sn2klHYcsraXYOjbKw1CTGdQMMmAGx5/Qi2U7NsBD1UPD6div9Mw7Prg3avLYQQ4tAhwbI4qBVOvor8wy+i4aNf07rtzaytI+SpxWjdi7OHbO4zabqN3CHz8Gx/u2PDO0KtTFl+Js8e9gRvXH4ks0eUW4dU0MHaVX1oXT2DEcbhGQXNvj2f4eqbPqtscpSNJdCwCRXypz0v2LgFNB1X/yPbrVkOuStQQQ+h1t3sfvZE6hbdhAr6MlqPEEKIg5sEy+Kgpmkaveb/FWevCVS//k0CjVuzso5AD9vcFyt36EmEWioJ1K7K+DmNn/2JUPNO/DUrOemwPrx39TEs+v6xfOXwPtGTQg42r+1L6+oZDA6MIUdPHjQ/s24hAXdFu5v7TM7ysaBCBBo2pj0v0LAZe8Fg7EVD2w2Wg+5wmUbvrzxO4cTLaFz2ZyqePLpHbRAVQgiRHRIsi4Oe7sijz+lPgzLY+8r5GEHPfl+Dv4e1jYuVO/REgIxLMYLNO2lc9ifQbAQbtlj14McOL+OVy45k2bWzOG9Sf6zS7JCDHRv641kzg37eUQlB84UfvcIZBV/nddU/o+4Z5huO9koxgo1bsJeMxJbXFxVwY/jdKc8NtVSGr106ml7zH6DvWS9gtFZT8eQxGdVHCyGEOHhJsCwOCY6SkfQ+5RH81SuoXXBNx0oOukCgbh2aPQ970ZD9et9M2AsH4SgfR2uGwXLdhz8FZVB8xHWokJeQuyLu+NSBxTz1zemsuWEu35o+GLs5SjvkoGrzQDxrZlDeOhJXTNC83taLi1d8nFH3DEfpYYDWbhAbaNiMo3gEtvx+4dunqVsOucPBsj1/AAB5w7/CgK9/DEaQlnVPpr2PEEKIg5sEy+KQkTfiNEqOvBX32v/Q/OU/9+u9w50wDkPTeub/5XKHnoSvYjFGoDXted6qT2hZ9wRFR1xL7pD5QHQjXVuH9SngoQunsPGmeXz/2GHkmKO0Qw5qtg7Cu2YGxe4R5KqQ9ZxMumfojjzsxcPTZpZD3gYMb204s2wGy2lKMYItVWj2PDRnkfWYvWAgOQNn0bLphZTPE0IIcfDrmf9yC9FNSo76GbnDTqF24bV4qz7Zb/f1163tkSUYptyhJ6JCPrxpOkEopah7//+w5fWjZPpPcJSMAuJbtCUztCyP+86ZyNZbT+Anc0dR6Ip00Ag5aNw+kFcb/8vclnqcWrSzhhk0T33hzzy9dXlC0OwoOzxtZtmc3OcoGYk9g2A55K7AVjAgoa1f/qizCdSttQbKCCGEOPRIsCwOKZqm0/uUR7AXDKL6tUtQoUC339PwNxNq3omzB27uM+UMPA7NlpO2brll/ZP4di+l9NjfojsLsBUOQrO5CKbILLfVt9DFHaeNZdut8/nVyYdRnudguL2SIVo9pXuL8K2diat+GI6YoHlVw24uWvgYk1/4E09u+YKQEQ6anWVjCdRvQBnBpPcys93hMoz+AATbySybJRix8kaeCUDrphczeo1CCCEOPhIsi0OOLaeMstl/JNi8ndatr3b7/QJ164GeubnPpNtzyRk0C8/2t5IeNwIt1C2+FWefaRSMuwQIv/GwF48gUJ++K0VbpXlOfnZieJT2748Mb7Zc4R8NIQfeyqH4187EVjcEB9GgeU3DHi5+/3EmvXAnj2/+HL3scDACVga5LfNxe8lI9Jwy0O1pB5OE3JXYChKDZXvhIFx9Z9Cy+YUOvUYhhBAHDwmWxSEpb/hXsBUMpPnLB7v9Xj25E0as3KEnEqhfT6Bpe8KxxmV/JuTeRfnsP8XVXTtKRhFoTF+GkUq+y87sku1ojkJuPPtURvfKDx8IOQhWDce/biZazRAcRDcCrmvcyzc/+C9Hrd7G/xyH01qTfOx1oGEztvz+6I58NE3HltePUGvykddKKULuSuxJgmWAvFFn49+zjGDTjk69TiGEEAc2CZbFIUnT7RRO+A6e7W8RSJGd7CqBunWgO3AUj+zW++yr3GEnAYkt5ILNu2j87E7yR59LzsBj447ZS0bFtY/rKN/upbj6HsF3jxrOmp/M5alvHMGUAZFNdiEHxp7h+NfNgOoh2GOC5o0tzdyQdxLTly7hkY2fEjRCcdcNNG7GXjzC+t6W3zdlzbLhq0eFvNiSlGEA5I86C4CWzS916jUKIYQ4sEmwLA5ZhRO+A5qt27PLgbq1OEpGocVMsuuJHKWHYyscnFCKYbaKKz3utsTnlIwKt49r3tXh+xlBL/7qlbj6hSf32XSN8yYPYNm1s3jtsiOZNSIy+jrkQO0dTmDtDNTeodhV9Oe4xW/w3cVPMfb5P/DQhqUEIkFzsGELjpLomxN7fr+UwbLZNs5W0D/pcUfpGBzl42mVrhhCCHFIkmBZHLLsBQPJG3Eazav/3a2jjf1163CU99zNfSZN08gdeiLeHe9ZG+e8VUtpWfdfiqb9GEfxsITnOEojHTE6UYrhr14JRiBhcp+maZxyeB8WXn0si685ltPH9g0fMBxQPYzAupmovcMoiNnct6W5lss/fJrDn7uDf6x5H0/L7vjMcl5/gin6LAcjtczJNviZ8kedjbdyMaHWvR1+nUIIIQ5sEiyLQ1rhxCswPNXdtoHLCHoJNm7B2cPrlU15Q0/E8Dfi2700vlXcjJ8kPd8sLQnUZ9YRI5Zvz6cAuPrNTHnOMcPKeOm7M1l+3WwumjoQXQMMO1QP5fKqXfzAsxSbEc00b3PXc9UnL3NC4Td51FuILxQOqG35fTFaq5N2z4hmllMHy3mjzgZl0LrllQ6/zq6klKL6zW/j2fFuVtchhBCHEgmWxSEtd+gJ2IuG07yye4aUBBs2gjJwlB4YwXLO4Hmg6Xi2vxVpFfdJpFVcYdLzw+3jcgh2IrPs2/0ptvwB2AsGtnvupAFFPH7xNNbfOI8rjhqK06azyz+QH/k/pu+mYag9w9FjguZKvYjrtmxnzLO389e1HxLI7QuopJlhc9S12WIuGWevSdiLhmd/QEnIj3vt47RuezO76xBCiEOIBMvikKZpOoUTv4u34oNuGTxhXvNAKMMAsOWU4uo3k9bNr0RaxU21WsUlo2k69pKOt48D8Fcvx9lnSoeeM7JXPn87dxJbbpnPjIlHAjDGVgk1QwitPxK1ezi5oehmw12tjVzz8f84YvUOHnVOoqWpIuGaQXclek45uj0n5X01TSNv1Nl4dizA8DWmPE8pA9/eLzr0mjrCCLjDf3pquu0eQggh4kmwLA55heMuBd3RLRv9wiOZNRylY7r82t0ld+iJ+GtWJm0Vl4yjeGTKkdepqJCfQP0GnL0mdGqNA4pz+PEZpwJw9Xgf5XkOMGxQO4Tr9mzkR61L0YJO6/xKv59f585h3Hv/497Vi/AEo8Nowj2WU2eVTfmjzgYjQOvW11Ke417zHyr/e2SHfx6ZMoPlkLe2W64vhBAikQTL4pBny+9L/qizca95FCPo6dJrB+rWYS8egW7P7dLrdqfcoScDkD/6a+QMPK7d8x2lowk2dqx9XKBhIxhBnOXjO71OW04ptvz+zCqrZtutJ/DnM8czsDiH0bYqZrXUYGyYido9EmKC5t1+P9cufZGRz97GXavepyXgI9hSiT2//VIQV/8jseX1S1uK0bLpfwAEG7d1+nWlo8zMsreuW64vhBAikQTLQhDZ6OdroGXDM116XX/dWhxlh3XpNbubq98MyufeR/ncezI6314yChXydah9nL9mNQCO8nGdWqPJUTYWf91a8l12fjxrBJtvns8RxXXU2QaBskHtINSGmehVw+lruK3n7fE0c/2nLzPq2dv5S0sh3rz2M8uappM/+qt4tr6O4WtKOG4EWvFGNt4F00wL3BeGvyX8p2SWhRBiv5FgWQggZ9AsHKVjunSjnzKCBBo2HjCdMEyaplE0+UpseX0yOt/sZ9yR0oNA3RrQbDhK9+2NhLN8LIG6tSilwmvRguT6Kznr6GN46htHMHVgESgbobohPNfwHKc27IFANNO81+vmDtskZu4p4g8r38UdSN9CMP/wi1Ahb9LssmfHAlTIC5Cyp/O+MjPLIY8Ey0IIsb9IsCwE4QCxcOLl+HZ/gq96RZdcM9i4FUJ+HGX7lj3t6RwlkV7LDZl3xPDXrMZRMjLtprqM7l02FhVoIdS8E4Bg0zZQBs6SEZw3eQCf/XgWr18eHnDSZBRyuncbauORqMrRKL/Luk5tCG5e9hojnvkdt69YQJPfm/R+rn4zsRePxL3+iYRjrVtfRXMWojnyCXVXZtkqw6hHtZlaKIQQontIsCxERMG4b6DZXF220c9ftxYAxwGWWe4oW8FANFtOhzLL/trVOPahXtnkKAt3GTG7jgQawqPLzQBe0zROPiw84GTogOGMyW8BpUP9ANg0kwF7ShhoREsqan2t/PTz1xnxzO/47fK3afTH17BrmkbB4Rfg3fleXKmFUgaeLa+SN/Rk7AUDUgbL7vVP07jsz51+vSrQYn6F4Wvo9HWEEEJkToJlISJsOWXkjzkP99rHMfzN+3y9QCSAO9DKMDrKbB8XbMisfZwR9IQHtXRBsOyMtOQLRN6YmJMEzWEpscrKBzO6wB0dcILOWLePt5sfZcDuUpQ/muWu93v4xRdvMuKZ2/j1F2/R4IsGzfmHXQTKoGX909Zj/j3LCLXuIW/EadjyBxBMUYbRvOoh6j/+bdLhKJkwrGBZ6paFEGJ/kWBZiBiFE69ABdy41z+1z9cK1K3DVjAQ3VXUBSvr2RwlozIuwwjUrQuXSuzj5j4AW24v9NzeVhY/2LAZzZGPnqTe2p7fj1BLFRP7F1oDTr46SsOJgb9+MGycgao4DOWLBs0Nfg+/Wv4Ww5/5Hb/4/A3qfK04yw7D2Wca7nXRUoyWLS+DZiN3+KnYIvdJJuTeiQq48des6tTrNWuWQeqWhRBif5FgWYgYrv5H4uw1keaV/7A2jXVWuBPGwZ1VNjlKRmXcPi5Quyb8nF77nlkGcJaNjfSzhkDjFhzFI9E0LeE8W34/VMhnDRUZ2Suf88cAmo1Lj5tKgcsBDf1g00zUrsNQvmi7v6aAl9+ueIcRz/yOny57Hf+o8/Hv/Rx/3XoAPFteJWfAMdhyyrDl9yfUUpXw+6OUItgcHoriq/qkU6/V8EeDZcksCyHE/iHBshAxwhv9rsBfvRz/ns86fR2lFIG6dTjLDozJffvKbB8XjGy0S8dfuxp0B47iUV1yb0dMR4xgwybsJSOSnmfL6wtAqDWa9Q25q7Dl9+MPZ05k260n8KuTD6M8zwmN/WDTDNSuw+OC5uaAj9tXLmDK+mr+mHMsO1b/l0DTdvw1X5I34nQA7Pn9UUEPyh/fXs7wNaCCrQB4qz7q1GuNzyxLr2UhhNgfJFgWoo2Cwy9Cc+TTtPIfnb5GqHknKtBySGWWIVwG0R5/7RocZYeh2Rxdcm9n2VgMXwMhdwWBpm1J65UBbPnhXsqxbd1C7krr8bI8Jz87cUzMgJNcaOwbEzTnWc9zBwP83XUEUzc1csOiR6nVcskbcVrkPv0ACLZUxt0/5A73odZsOfiqPu7UazUCLWi2cBcPySwLIcT+IcGyEG3oriIKDruQlg1PE/I2dOoaZncGxyGSWe5Ir+VA7Zou2dxn3Tuyyc+z4x0I+bGXJM9Ym0FsbLAcbKnEXjAg7rzYAScPnj+ZMb0LIkHzdNTOsShvNGhuxc59exuZU/Rtbtm4nt2tTUmDcsAqwcgdfirBxi0pNwGmowJubHn9QLcT8tR0+PlCCCE6ToJlIZIonHg5KujBve7xTj3/UOmEYYq2j0ufWTb8boJN27pkc5/JfEPSuvnl8PcpyzASg+VwZnlA0vOddp3vzBzC6hvmRgacFENTH9g8HbVzHJo3Wp7hwc6fV7/PyGdv46Yt29ir5SVs8gtGMsv5Y84F6FR22fC70ZwF2HJ6ychrIYTYT/ZbsKxp2tmapv1T07QXNU07aX/dV4jOcPWdhrPv9E5v9AvUrUXPKceW17sbVtfzhNvHjWy3fZzZ4q0reiybbHl90V2leHYsCF87RRmG7ipGs+UQat0DhFvYGb76hMxywvV1rc2Ak3Jo6o2xeQbfrd/E2FC1da43FOT+LauYU/gtrlu/jp3uButYyL0LNJ284V8Bm7NzwXKgBd1RgJ5bRmg/l2H49nxO7fs3dLrtnRBCHKj2KVjWNO0hTdP2apq2qs3jp2iatl7TtE2apt0EoJR6QSl1OfAt4IJ9ua8Q+0PRpCsI1K3FV/lhh5/rr1tnlQccKhwlI9stw/DXrgbo0syypmk4yseigq1oNhe2wkEpz7Pl97eGiZiZ31SZ5WTPNwecLL7mWE4f248l1XO5YHct2o6xKE+Bda5fs/OvulZGP3c7V3z4DFuaawk2V2DL74/uyMfVZxreTgTLKmBmlssx9vMGv+bVj9D0xT00Lrtrv95XCCGybV8zy48Ap8Q+oGmaDXgAOBUYB1ykaVrsv4w/jRwXokfLH3MeurO4wxv9wp0w1uIsPTRKMEyOklEEGrekHcPsr1mNZs/FXjS8S+9tdh2xFw1D01L/Z82W39cqwwi5wxvw2sssJ3PMsDJe+u5M/vuDb7NhxK/RWvrClmmo7eNRrYXWeQEjxL82fMLhz/2ea/YqtueFs96u/kfj37MMFfR16L5GwI3uyEfPKSPk3b81y/7IGPiGj39t1eQLIcShYJ+CZaXUB0Db9MZMYJNSaotSyg88CZylhf0eeF0p9fm+3FeI/UF35FMw7hJaNj3foc1Uhqcaw1t3yGWW7SWjIeS3anOTCdSuwVF2OJpu69J7m3XL9pLkJRim8MCQcLAcjATLtoL+nb7vpAFF/Ofr09h40zy+f+xwcn19YOtUbmz4nDH+Buu8kDJ4NlDCXN9kLlr4GFuKJ6JCPnzVyzt0PxVoRXMUYMvttV8zy0oZ+Gu+JH/019Ac+dS8fUVGPbWFEOJg0B01ywOB2GaruyKP/QA4AThX07TvpXqypmlXaJr2maZpn1VXV6c6TYj9onDiZRDy417zaMbPiXbCONQyy+FANZimFMNfu7pLO2FY9478rFPVK5tsedFgORRp7WbLH7jP9x9Wlsd954R7Nf/0hDEM9cP9TW+jtk5GuUus8xQaT29dzlGfL+fqvK+wdPP7HbpPOLNcEMks1+7z4JxMBRu3oAJucoeeRNlxt+Gr+rjT7e+EEOJA0x3BcuLoLFBKqXuVUkcopb6nlPpbqicrpf6hlJqulJreu/ehsTlK9FzO8vG4BhxL05cPZpxJM6fJHSqdMExmr+VUHTFC3npCLZVdurnP5Ow9ETQbznamAtry+2H46lFBH0F3FZo9F91V3GXr6F3g4tenHM5ZM6YwxNXIIEc/2D6ZnK2HMyuwLe7ctxyjmLtxL6e//SAf792e0fWV343uLMCWWw5GIG5ISXcySzCcvSeTN+oc0HQ829/aL/cWQohs645geRcwOOb7QUBlinOF6PGKJl1OsGET3p3vZXR+oH5d+KPyguQbzQ5WtoIBaPbclJv8zDHXXbm5z2TP78/AS5ZRMPYb7Z4HEGzdTchdgS1/QNLR2Psqp2gAdqOVDf83k4cvmMKsQhsPtb7EMbtsqKbyuHNf37WOY1+9j5Pe/Dsf7E7dek8ZofAmRkc+ek74Gvur17KvegVoNhzl47DllOLqNxPP9nf2y72FECLbuiNY/hQYrWnacE3TnMCFwEvdcB8h9ou8UV9FzynPeKOfv3ZtuC63G4KwnkzTdOzFI1K2j4t2wuj6zHL4uuPanQpoy4+MvG7ZTailqlOb+zJhDkCx+fZw6YzBPPu1cJA+sng47JyA2nQEQ1qCaDFlFAsqNzL39b8y57UHeLtiQ0KJhTkqW3dEMsuw33ot+6tX4ig7HN2eA0DukBPw7fmMkPR6FkIcAva1ddwTwEfAYZqm7dI07btKqSBwDfAmsBZ4Wim1et+XKkR26PYcCsdfSuvml6xNYekE6tZZ3RkONY6SUSnLMAK1a9CchdgKByc9vj/ETtcLxoy67mr2SDu6oDvcns5oDf/e/PPSU3n/6mP4yvAR5FcM53X3Ywxshti4eNGerZzy1j849tX7eGXnGitoNiIlF5qjICazvH96LfurV+LsPdn6PnfoSaAMq7e1EEIczPa1G8ZFSqn+SimHUmqQUupfkcdfU0qNUUqNVEr9rmuWKkT2FE74LqgQzasfSXue4WsM1+UeYvXKpnTt4/y1q3GWjctqxt2WF5tZrsRWsO+b+5LexxqtHQ6Wg827AA17wQCOH1HOK5cdyRPf+xqjjHpOqW+CTTNR9f1QKvqz+aR6B2e98xAzXrqb57d9ScjXDIDuyEPPKQPA6ET7uJC3gZbItMOMzvfUEHLvwtV7kvWYq990dFeJlGIIIQ4JMu5aiAw4SkeTM3gezaseSt9H+BDthGGyl4wKt49r3plwzF+7Bkc7G/C6my2vD6ARqF+PCnqw70PbuLT3MTPYrWabugps+f3iykQmDAoH7jfPHsQ1M8eRWz0WNs5E1Q1AGdGg+Yu6Cs5779/MePcpXnGMxrDnW2UYoU60j3Ove5y9L38t43pnf/VKgLjMsqbbyRk8F8/2t/dbRw4hhMgWCZaFyFDRpMsJNe/As/3NlOcEIsGy8xDrsWwyO2IEG+NLMUKtezE81TjLun5zX0douh1bXh98e8Ot3jOd3tdRuqsEzZZjlWGEmnclZLE1mwM0G8WOAPeePYFtt57Az+ZMorRhHGw8ElU7EGVE/xO9urmRH+edyszPv+CxnVsIYMPoxMhrw1sf/tPXkNH5VieMXpPiHs8dehIh9y4C9es7vAYhhDiQSLAsRIbyRpyJLa9f2o1+gbq1aDZXl0+oO1A4SiPt4+rjO2JYm/uynFmGcCmGf+9yoHPT+zJhjta2yjDcu7AnGcOtOfJQQS8Qbjv3q5MPY/tPT+DPX5nGIM8E2HAkqmYwKhT9T/XG1ha+8+HTnFT0TR6prscfCnZobWa7OcPfnNH5/ppV2PL7Y8uLb+WZM+Do8PE9yzp0fyGEONBIsCxEhjSbg4IJ38Kz9XUCTcn74vrr1uEoHdPlE+oOFLb8/uH2cW0yy/5I2zhHN7SN6yhbfn+rs0R3bfALXzt2WmAF9iStBHV7nrUWU4HLzo9njWDTzfN5+NyZjFWTYONRjKzXKVDR8dg7tUKur7Uz+tnbeWDNYjzBQEbrMoNkw9eU2fm+emy5iT3vHaVj0Gw54bZyQghxEJNgWYgOKJzwXQDcqx5KejxQt+6QrVeGSPu4kpEJ7eMCNavRc8qw5fXL0sqizPZxEO4N3W33KehPqKUSw9eE8jcl3Uyo2XMTgmWT065z6YzBfHn9HF745jF81ebkg6aHKazujQrarfN2tTbyw09eYNSzt/HnVQtxB3xJr2eygmV/hsFy0INmz01cu27H0WuCVaYhhBAHKwmWhegAR9FQcoefSvOqh1Gh+EyeEfQQbNx6SAfLEOmI0bYMo24NjvLsdsIwmZ0qdFcpepIgsKvY8/sTbNlN0L0r/H2KYNkIetJeR9c1zhzfj5tn96cIP6eUToGNR/K1pm0UG9HAeLenmRs+fYXhT/+OX3/xFnW+5EG4CoSDZZVhsKxSBMsArt5T8FevkE1+QoiDmgTLQnRQ0cTLCLXupnXrK3GPB+rWA+qQ7bFschSPJNC01eoaopQiULO624aRdJRZetGdWWUAW14/lL+JQP0GAOxJ+ktr9lxUIH2wbFKBFgD+++3ZrLh2Phe6gjxd/wKqaiQq4LTOq/O38qvlbzH86d/yk09fpqo1Pig2/B2rWVZBD5ojL+kxZ+/JGN46Qkm6nwghxMFCgmUhOih32KnYCgfTtPKfcY8HDvG2cSZH6ei49nGhlkoMf2OPCZbtkV7L9m7qhGGyRdrS+fZ8Fvk+SWbZkViznIoRcINmQ7O5mNi/iNnjxjAyp5kfjT+evO1HoypHo/w51vnuoJ8/rXqfkc/cxtVLnmNrc230OmRehqECrWj2nKTHzHZyUrcshDiYSbAsRAdpuo3CCd/Bu+MdAg3RcoNA3VrQbDhKRmdxddlnN9vHRX42/ppwJ4yesLkP9mNmOd8MlsPdIpJ13ghv8Msws+xvQXcUWKUstpwyCLbyp9NGsfPWk/ndUfPou/s4Lq3fxOhQtKWczwjy9/Ufcdhzd/DND/7Lel9kImDGZRjelOUqzt4TAU3qloUQBzUJloXohMLx3wbNRvOXD1qP+evW4SgZgWZ3ZXFl2ecoGQlgjb0OmG3jekywHM4s27ppIInJHqmN9u/+DFteXzSbM+EczZ6D0YHMsuYssL43R14b3lpK85zcPH80m388gVttb/Gq+3Hm7W1BtRZa54eU4vHNn3OiOo6r8k5jWbM7s/uGPGj25GUYuiMfR+lo/NXLM7qWEEIciCRYFqIT7AUDyBt5Bs2r/40KhjdZBerW4ig9tEswIDzoQ7PnWll3f+0abHl9seX2yvLKwuwFg3H2nkLOgOO69T7mwBPD34gtSY9lAM2e14GaZTe6Iz96/cgUP8MTzSL71z+OroLYbDncMcLLccxHbZuEcpfEXettx0hOqbJz4ht/572qTWk36IXLMFJvhHT2nmxN+RNCiIORBMtCdFLRxCswvLW0bHoeFQoQaNiE4xCd3BdL0zTsJSMJRNrH+WtX4+gh9coAmt3FwIuXkjfspG69j55TBpFscrJOGGDWLGcWLBuBFrSYYNnMLIciU/yUMmhe9RA5g+bg7DOFAdouPvj+cXz0nTM4t/gU2DoV1VQed813qzZywht/4+iX7+PlHasxlJFw33A3jOQ1ywDO3lMINm0j5G3I6HUIIcSBRoJlITopZ8g87MUjaP7ywfAQDiN4yG/uMzlKRhFs2IxSBoG6tT1mc9/+pGma1Vc62UASAD1Nn+W2lN+N7oiWYdhyy4BoZtm7412CTVspnPhdHKVjCNSH36wcObSUp785nQ0/PJsfDpzHa82PcaZ/HVpMNvnT2h2cveBhJj3/J57Y8gVBs5NJKAAqlLIMA8DZayIAgbo1Gb0OIYQ40EiwLEQnaZpO4cTL8FYsomXj8wA4y3pGXW62OUpGEWjaSrBxCyrQ0mM29+1vdmszYYrMsj23A5llN5ojsWY52LwDI+ih6ct/oueUkz/ybBwloyNdSKLt4Ub2yufOU4cwxqjjz563+HvD+6i6/igj2vt6bdMeLnn/cUY9cwf/XP8x3siUv3T9qM0a8JCnJqPXIYQQBxoJloXYB4XjLgXdQeNnfwTAUXZYllfUMzhKRkHIT+u2NwEOycwyRAeg2FPWLOeiQj6rJ3U6CTXLOeWg26lbdBPb7y+mddP/KBj3TTS7C0fZGIC4bi0AygqeNU4sbeX+o77G0Jo5qJpBqFD0n4OdrfV8b8mzDHv+Hh5yTqFFS71pVXeVAmB469t9DUIIcSCyt3+KECIVW15v8kd/lZb1T2ErHBIXzBzKzPZxrZtfAsB5iNZyR9vUpd7gB5G64JhOF8kYgZa4czS7i35ffYNA7VoMfyMq6KVo8vcArPaFgbr1uPpMjV4jMpDEltcHAs1cfewwrjx6KC+squL2hWv53LMGyirQ7EEAagKt3JY7i/tWbuMH6g1+NP54euXE/47bciLlIN66zH4oQghxgJFgWYh9VDjxClrWP3XIT+6L5YgEy95dH2ArHIzuKs7yirLDHmlPZy9MXoahO6LBMu0EyyrQElezDJA7aBa5g2Yl3rdkFKBZmyxN5kASW8EAa4iOTdf42qQBfHVifxZvncIdC9fx+u4VUL4LzeEHoFkZ3LbyHf745UK+OWo6N0+ey/DCcBmI5iwEzUZIgmUhxEFKyjCE2Ec5A48jd/hXyBt5RraX0mPY8vuHs6YqdEjXceeNPIvCyVdhLxya9LjZkq29XstKqUjNcmafXOj2HOxFQ61R29Z1ImUYtvz+qKAHZQSja9E0jh9RzqvfOZbV3/kG3yw+l8HVpQw2Gq1zAirIvzZ+zOhn7+Dst/7NF7UVaJqGnlMmZRhCiIOWBMtC7CNN0+h31gsUTboi20vpMTRNs4aTOHsdmvXKEB7E0mvuPWi6LelxM1hu2xFDBX00rfxntJY55AcjmJBZTie2I4bJ3PBntrKL3QAYa2zfQh65YBofnXM0bzc/ypTaQpQnem+F4uWKL5n+0l0c9cIDfOQaSciz/zLLvr1fUPv+DWn7QwshRFeRYFkI0S3MuuVDtRNGJqI1y964xz073qb23e/jrVgMRMsn2qtrjuUoHU2gfkNcQBlbhgHtj7wudoawo3jv/Hn8Y9q3Gdw4M2HAyaf1W7lYzWR+dTFPbv6CkJHYq7k9dR/+FPfaxzM+v2XT/2j64h5C7ooO30sIITpKgmUhRLewMsuHaCeMTJgt2VQgPrNsBrFmzbEZ5HYos1wyGhVwE2rdbT2m2mSWVeQ+vr1f0PDZnxKuYa7LlVPAZUcNZeuPzuP1k67gyMB8VGNvYhO7a8nn4g8ep9/jv+WulYvwBAMp16ZCfhqX3YUKhWuiW9Y/TeuWVzN+bUZruE1doH59xs8RQojOkmBZCNEtcoeejKv/UT1qel9Po8Vu8Ith+FsACEZavykrWM6824qjNNI+LqYUw4ipWY79vnn1I9Qvvtka3W4y12VO8NM0jZMP68OSK05l5QVX8bW8s9DrB2KPmfxXF2zi+mUv0vuxX3H9R69R50usx/ZWLqFu0Y14Kz8K38cIokKZ9ZsGCHmqI69tQztnCiHEvpNgWQjRLXIHz2bABR+gpxmVfKhLtcHPDI7NQNcMnjPd4AdgL420j4sJKI2AG82eF+2NHBk6EmqpAiAYk4UGUCFvZJ2JE/wm9C/imQuPZ9flV/OQ3sjlni9QwWiDJY/ycte6d+n3319z0dtPscMd3QBoBuHK8JsLw2hTipKOOeK7pwTLQXcllU/NJtSyJ9tLEUJ0AwmWhRAiS7RUZRhmsNwms6x1oAzDXjgYzZYTl1lW/mZ0ZyG6qzB8H78ZLIeD5JC7Ku4a5rrSTfDrW+jiK4cP40b/Iu4d9y36uMeh/NEhJiGCPL3rU0Y8fRuzXvgXn+7dhQpFMtiRbhzKCGY8yRDAaI1klut6RrDsr16Br+oj/LWrs70UIUQ3kGBZCCGyRDc3+IXis6oqEM4kBxo3o4xQtGa5Axv8NE3HXjoqrq7XCLjRnIXozqLw95EyDCtYbonfMGdYZRipg2UAPTKY5Kppvaj4/rd58bjvMy44A+WNZsKVpviwfi1HvXo3Ry75lIX2oYRCAfNGHQqWzdHaPSWzbGXK22kBKIQ4MEmwLIQQWZIysxyZtEfIT7B5Z6dqliFctxxsiK9Z1h0FVrCs/E0opaJlGG0zyxkGy7Ycc+R1Hbquccb4AXx5+QV8ceZ1zHfORWspiTt/bcjHZflnMfqDD7n1o3fxKJVxsKyMUHhaoM1JsHmHFdBnk7l2I/ImJ5VA4zZpdyfEAUiCZSGEyBJzg1/bmmUzkwzhTX7RmuXMM8sA9sKhBJt2WgGa8rvRnAWR2mcNw9+E4WuwyiJCLZVxz1dBD+gOND39sFfdFc4sh9oMJpk8sJi3Lj6Nyktv4Io+Z5PT2i+ug0a1FuKOda9xXM4F3O4bTIU7fSs7MMdqK1x9ZwCKYJte0tlg1lunC/h9e79g18NjaF7x1/21LCFEF5FgWQghsiQ6lCQ+yFIBt1XaEGjYhAqGg+WOtI4DsBcMQIW8GL4GAIxAM7qjEE3T0ZyFGP5mK6sMxH1trqu9rDJEyzCMFCOv+xS6+Otpx9Hwveu4d8J3OcqvyFd+63i9nsvf7GMZ8vRvmfH0P1lcuTN8/1CAYPOuuGuZnTByBhwD9IxSDKsMI5C6DCNQFy6H8VYu2S9rEkJ0HQmWhRAiSzRNR7O5kmzwa8VRMhrNnkegYZNVltGRbhgQbRFnDu8w/M1W3bPuLMLwN1n1ymh60jIMPUknjIT7xJRhpOOw6VwzcyyvTR/E4qaHOEPlQCC6GRDN4POW9cx+8x6G/PvP/Oude9j56ESMmJ+PWa/s6n8kAIGmbe2ur7tZZRhpa5Yj7fU0+WdXiAON/L9WCCGySLPnJc0sa85CHCUjw5nlgBvNnptybHYq5vCRoDtcXhEuwwh3wtCdhZFgORwgO8rGJkzEMzqYWW5bhpGKCvkoxM9/Zo5g27k/4Z7W15kYjG+7VmFUcmXlbk5zncW1775Giz+ciTYiwbK9aChoujVoJZsyySwrdWAEy4bfTePn90TXKw5Jhq+J+k9+hzJC2V5Kj9Cz/18rhBAHOc2Rl7BJzQi40R352EtGEWzYiBFo6XC9MkTHWpsBsVmGAeFgWfmaCUYyy64+0wgmlGG0WgNJ0tFdJeHrt5NZtq4bmdynjCADCx2cFtjI8y1P8dORX6Mk0D+urnm9rRf3V35MyaO/ZN6z/2Xd3nCJhi23N5ojv91Ndan4dn/K3te/0SVBYUbdMCL30TStw9ffek8Ou58/rVNr66ja96+j7oMb8Gx/B9/eL/DsfG+/3Len81Yspv6jX2V7GftN3aIbafjoV7Ru+l+2l9IjSLAshBBZpNlzE4Is5W9BdxbgKBlFoHErhq+hw/XKAPb8cLAcdFeglIEKtFhlGFpMGYZmz8NRdhjK3xTtxAGooNfahJj2Neg2dFcJhi/zzDKAMgJWr2UN+MXRk6i94v945uirGK2PwWFEA1nD5uf95s85av0Orss9iQfXV6E7CuI2Q3aEZ+dCWtY/1SWZabP1X9rOHNY7gE78s6sMPDve7vjzOiFQuwYId16p/O+R7H7u5IyfawRaCTRu6a6lZVXVM/No+OR32V7GfmP+/8oaHHSIk2BZCCGySLfnJo67DrjRHAU4SkeDESRQuwbN2bF6ZQDN7kLPKSfkrkT5zV7NiWUYtvz+CVloyHyDH4RLMTIvwzAn9wVRKhhzv3DQ+bWxI1l36RV8MsDP9d4PcYWi/1QZmsZLzsP5/sonOI153L+rhWp3x9vHxQXsQPWb36XmnasJNu3o8LWMDMowzMxyqHUvzWsf6/A9TIHGrez4x2ACjVs7fY10zE8aNJurnTMT7XnpHHY9fHhG5yqlqH3vx/j2ftHh+wixv0mwLIQQWaTZc1GBJN0wHPk4SkYB4K9b26nMMoQ7YoRaKqxMkWaVYRRFumHsxpbfLyYLHW0fpwKt6LZMg+VSjA7ULEN8ZhkSu4IMdIT4nm8ZO447mmuGfoXCUFnc8TX2cn6r+tLvid8w4/H/8O7W+Jrr6HV9CYG8mQ1WRpBA41bca/9D86oHqf3ghoxeQ/z12y/DMMs9PNvfpObN71gbFdu9dpu+zO41jxJq3YN7zX9SPifYtIPWLa9mdP22zPaBSnW8VtXbgZINw1NN04q/sPuFMzp8n+5Ut/gWdjw4ItvLED2MBMtCCJFFmj0vrouCMkLhjG6kZhkAI9jhThgmW8FAgu4qa1pfQjeM1irs+f2wFUQ6Z8T0WjZCHjRHhsGyqzTzmmUjJrOcJlg2A1qXauGeefNouOwWnnVu4ORgFaiY2l+7n8/9Kzjh3bvp+497+M3iZfiC4WCv8Yv72fZACTv+PiCuJjs2u+3d9T6A1U6vPWZf5bbrTls/3aY2WrW5RuuWV3FveCbxaW0DcGuDYOrhJhVPHMWel85JvZZ0zL+PDgTL/ppVVDw+s2O3MUepZ/hmbH9p/OxOQu5d7Z94yOh4jf3BSIJlIYTIIs0R3w3DHHWtOwqw5fW1NvZ1dHqfyZbfP1yGYWWWI9dzFaL8zQTd4TIMM7McX4bhzbgMw5ZTiuHLLFjGyiwHrTKI8P3aBMvmsI+YOuqZVPFQnxY2nHMLl1NFmRENOjVdUePYyS83PkHRP2/jzOdepmrzgnDgp0LRNnnEZ7c9O99Dz+uDq8+0hNHjbQXdFWz/SzneqqWJ60xbs9wmWDb81C2+xdpAt+elc6h+7eKEpyUG71rS68U9J8OsdTod6YLQ8Mnv8Fcvjz43gymF5puATN+MCZFNEiwLIUQWafacuOyhERPUappmlWJ0phsGRMowWvdYJRLRmuUiQKECbmz5/dCcRWiO/LheyyrQ2uma5UDjNhqX3ZU0cFLBcKBKmzKMhIytuXEuJmAMeWqw5fZmZGkpv+oT4hP7In4+9izKtV5xzw3mNPJq0/sc3TiY3+ccyw6tCL+nKeba0TV4d75P7qDZkc2W6eufQy17wAgQcu+MeT0Z1Cy3yQSroJemL+6jdfMrae+n/G2mGka6aag0mWXruTE/exXyZ1xTHnlCxqfqeX3aPLf9DiOZjlIXWdIFY9mD7grc657sgsVknwTLQgiRRbo9L65m2cwA65ENfWaw3NmaZVvBQEARaNgUuW44WNacRdFz8vuhaVo4Cx1ThtGxDX7hMgyzNrdlwzPULboxYYQ2xGZ12ynDCEZ6KwfCwbLhdxNyV2IvGhK+p6MAe9DNL446nr3fuonX5l3F5LzRcSUaTbqTf7qOYH7hpYx+7XXOefZ11uxptLLbQXcVoZZKXP2PCg+ICabPLJtBZLJ1p69Zjg8+VdCDCvnazWTHdieB8CCbyAXx13yZvvVdzD33vHweO/7WN+29Uj23Pbbc3m2e236wbJasaBkMvREHpt3PnUT1G99M3yXmACHBshBCZJFmz8MIRf8xsYKISHDsKB0NRGuNO8oemeJnjoW2yjAiQTNEJ/3Z8wfEb/ALetAzLsMoA2VYrdiMSEY0WXcJq15YhUC1X7NsXtNfswpQOHtPCb8GR0FcicbJQ0fy+QVXsvOCn3HxoOPIUdFATGka1TlBXmpewIQX/8A1W/3s1fLweZusn4dmz41mnFOwguQkwXLaoCDmfMAaQd5ecJ6qDMO35zMqHjuCxmV3tbtWz8738Gx7PfxYKJDy/PjndiCz3PZ3M5PMsvmmUILlg5b135I2v/sHIgmWhRAii8LdMGI2+MXULAPWJr/Ob/AL1yIH6taHrxtXhhFmz+8XObe/VbOslIEKZV6zrLvMKX51kdcRDoaCTdsTzjU3+KlQIC54a5tlNQNJM2A062JdfaYARIaSJPZZHpBfxKMnnk39hT/k7y0vMx0/WszHyprDx7Ou/swq/DaT3lrER7ZB7GoMREpi2smCWZnlaDCZSes46w2C+ZxISUTCa24TzKpA8mA5WB/+pMC3eykpRYKU2F7JmW7C7EhmOWHNZJBZtka4SxlGz2T+/yVxg9/Wu51Uv/nddq+gafbwlQ6CKYASLAshRBZpjnCdrFlfGg0iIpnlkkhmudM1y+GR1/761MGylVkuGBjeDKiUFah2pAwDokGgGeAGm5NlliNlGCoYF5SlyixHg+UV6Dll2AoGRV5DARiBhEDU4tnL/OBW3p56OO82/5uL83NxEu0fHNRsVOQZfKPgqxz55Xq+vylIhTdEszd1JszKLCfpD522DKPNcIdQisyy0SY4TsgsR2qWjWDkEwgt9Qh0lSSjF/JmuPmvI8Fy28EVGWWWzTIMCZbTCXlq8FZ8mO1lJHCvTd260KJHfjc70Yawp5FgWQghski354X/MYl0hWhbs+wsH4vuKrXKMTp8/dxeoDsIRYJWM0NtlWHoDvScciAcNKuQF8PXELMBK7OPya2R1/7GyJ+RYDlpGYa5ua5tzXLbLGskqI68gfBVL8fZe7I1Mtp8Q5GqZZvZ/cJeMpLBqol7hxXQ8M1fcf+M85mi4jfOtTjhuZwy5uR9jbJ//IkTHnuFtzfsxTDabHRKU7NspBt3bcRnX80Mb0LG2Re/LqtmWXew941vUf/hT8OPmx0vtDT/jKskwbKnNvX5sU/tSDaw7ZuVDJ5rbWS1Rcept2x8zmop1x1C3oa4MqMDQdUz86h6Zm62l9E5WmbBsnvDMz2+rlmCZSGEyCIzs2YGCW1rlnVXMUO+V0XeiNM7d31NtzLH4Q4b4f/smxv8zM194a8jvZbdFR3uVmAG34YvHCybAW7SMowMh5KYXTOMQHN4eEjNKqteGaLt9FSKkdeh1kiwXDQMNB0j2ILLZueqCTN5OX8drzU/xrn5LgpUtE45qNkwCqt5L7CQkxfeQ/l9f+OHr3zKppqWyJpT1ywT8ifN5oZfc9syDDNYbvMGoU33C7MMQ7Pn0LLuvwnXNdp2y4h9bpK1pGsrF7dZsENlGPF13tv/2itpz+j4hYTfPGh6+KN6b+XH7H31Iuo6MRQmU7seGcvOB4d16TW9FYuj3V06ybf7Mxo+/WPSY4G6dft07WwyP/VIN+DGW7GY6tcupu6Dn+yvZXWKBMtCCJFFZuZWhczBFpHMckzZhZYue5gBe6RuOfaauiscLNvz+iWcF3RXWiUFuj2a+UtHdxUD0cyoWU4QbE4MlonLLEczrm2zS9EyjCYCdetQIR+u3pOs42aWPFndMsRklvP7ozkKUP5oBloFvYwx6vj7sEKWNP2LP44YzWFtfsyaw0dT0WYeqH6KMU/cxdi/PckrayMT7sxPApSK6xqSqua5bV1v6jKM+NdiZug13ZH8NbbuSfJopM40WRlGusxybP34PtQsA7RseDaz50QCqpBnb/jPJN1TuorhzSyrDuG63GRi2/H5a1ZR9cw8ahdFA73OBM6VTx5D/Ye3dvh5PZ753600nzSEPNXhP2P6u/dEEiwLIUQWaZFg1Nwcpqya5c5t6EvG3OSnxXQt0CNjr235/WLOC9c3h1oqrcBVc2RYhhHJVJuZztgyjLa9ls1Aqf3Mshksu/FXrwDA2XtyzGsIv57YIDhWsGU3mj0XzVmI7iiIC0TNbKgRbCWPIN8bNoKPJgzk9ebH+PqgaeRorrhraQUNbHB9xjcqVvOrnNn8ftl23l6/l1DAByirlCVVSUjbut5UG/xSlWGkyliHWuKD5fqPfoW5OStZwGukqVmOfeOSSSnF3te/QdXzpybWLIevlvQ5zav/jWfHu9Ha7EhAZdXI2zJ7c7Yv9qUco+adK62A2HyjYmZ/Wzb9j233F+KvXtk1C80m8/+zWscn+IVa9uCvW2/VLKd742X+tyDVm8GeQoJlIYTIIj0SjJqZXCPgBs2GZnOle1qHmNP5YtvFaTYHmiPfCqTB3AyoEWzeGRO8ZFqGYQbL8WUYKtiakNFLWbOc0BnCrFluJtC4FYhueITYmuXUmWVbfn80TUN35lubysLXjnTkiAQ+mu5As+cw2qjjkWNPoGLWcfw9r4KpRcOI7QgQtMF/XJP5vV3n5HfvZ+Bf/kmlVoDPVmy9XpMRaIkGv6G2NcuRYLmdDX7WGwgjecu3kGdvXPlEwye/i7lYkjKMSJlMMnHBcgaZ5Zb1T+HdsSD1Bsskat6+nN3Pn0Ljp3+Iv3eoYxtK01FKsfVuJ/Uf/ybp8V3/Hp9xOYbha6Jmwfet792rH6F1y8vh+0Ret6aHs9DmgBnf3i86u/SUMpmK2KHrGSFaNr/U5dcF2PHgMCoenUh02mT0Hk3L/0L121da3xvWoJyePVZbgmUhhMgiqwzD7KgQaEGPTO/rKjarDKMw7vHeJz9C8bQfRddic2LL60uweVd0HHGGwYtmc4R7RseUYZiZ6rZ1y7FDSZJ1lYBIeYNZhhFoJujehZ7XB80efRNh9vdNWbPcshtbXt/I68hPmlm2arN1R0wphRej4n3mVz3H0jMuZfv5t/KT8SdQZo//+Wk5rdQUb2d24bc5xz+NZx1jueu9lWysDt9n579Gsf2vvSKvte1GvnCQEPLW0fj5PdF1+ZupXXgd2x4ojfwcgpHnp+iPbART9oZOlo1O22fZ6FwZBkkzy5mKZMHNNy1dkVmOvO6GT25Lfjjy0X8mGj79Pc1f/jPuMfPNiRUs25KXbHStaMBZv+QXaftrZ6Lx87vY+/K5tG56fl8Xlsj63UkMxGsX/hj36oet7327PwGS9RPvWSRYFkKILErc4OeOK5foCvYkZRgA+aPOsiYEmmyFgyKZ5XAQqWdYhgHh7LKKKcNwlo8H0gXLgdQT/MxAxFkIRpBg/SbskZZxJqtm2Z96g59ZZqI5C9pkls1gOZIJ1h1WNl+FvIRawzW0RsDNoPwSbp95Cnsu+RkvjhvDWf51uGICAaVprHWWclPeidxS+yGHPf4Ahz3wLP6YnsaJG/wawn96quM2tRn+JpqW348KtISDsiQbChOkKplI0g0jecmEeSw2s9x++zfr1GSZ5UwzlmbgaW0o3bdgufrtK9h2X6SESU/dVg/Ave7J9BMQIXmGXYUwAq3RLL2t60oIwj2Mv51YzhPz82xYejt1i27cp/uYXWrM33MI/z3WLbop7acPqfjr1qYJ4FP/LjhKxwDgjNmL0BNJsCyEEFkUzSxHa5b1LqxXBrAlKcNIxV44iFBMsNyR4EV3FWH4GsNZQiOAwwyW2/RatoIrIxQXoMUGy2ZW2Ryl7K9bi70wPli2umGkaNkWLsPoFzm3IC4AsaYDWpllu/VajaCHUKRrhIrJeOmazuyiPP7keYt1o3L517EXMC2/N3pMwKV0hVZczaa8jzm28Lv8Nud4jvzHK2ypbohfm6+eZEIxAbbRWp2yVhmi7fpSduBImllOEyzHbvDrQOu45JntzIJlM4NtlWEkydJ6dizAn2FXCPfqR6yvtXZCnOo3vknzir9ldN04ymD73/pQ8/Zl4fvobdcc/6mQUorm1Y+02x7NLIlwr32c7ZFPFkzene91fJ0d5F73JI3L/kzdhz/L6PyguwLPzvcBqHpyFnWLbmzzO2f+HDL7XXCv+y+tW17twIr3HwmWhRAii3RHfBcFI9Bi1eJ2FXuKMoyk5xYOIejeZWW6O1JDqjuLMfzNVt2tvXAwmrMwrtdyOFtqdpIIRjOmmt4mWA4HYLbccBmD4anGXjg47n5WzXKSzLIRDPeLNqcTao68uHKNxDIMu1WfrYK+mMxymwyfEQ6MCwjxrTEzWDz7BBY1P8zPioMcHor/eL9Wz+MR11Q+cyzkDP9Q7sg5li9tfVCQ0CLO1Lj0DuvrYEtlylpliAbLKeuLkwW86UomOlCzHFvrmqq0w7f707jMZfILmSUNkTKMJG/Odj9/KhWPJs88qlAg9Ya6DLrIJO8mkp5SRlxv6fb2F3i2vU7N21dQv/in7V055ZGmlX/vyBItu/93BvVLfpHRudZkTcMfs5bU5WC7Hp3E7udOxLPrA2uvwrb7i1Ken/7mIarf+BZ7Xjqnc8/vZhIsCyFEFlllGGZmOVKz3JXM2mEtw8yyCrRYbdcyHUoCoLmKMPyNVvCqOwvDwXfTNuucuMxmKFqGoTsK4zJvZv2yHgmWw68jeWY52QY/c/22vMTMslLKCnYMs07a5oh2Jgl5rcxyQi2lWUMcCSaNQCt9VQs/7FvAK+4n+OjouVx92HGUtAmg6mwuHnQdwTkFFzKv4FL+6DqGNXqv+PCoTVY15K5oJ7Mc3lSYqkSjw5nlDpRhxJW0JAvAlaLyyWOpfHpO2utEyzDCfw/Bph14dryb/jkx6hbfTMXj0wk0bEo8mEnLxXb2BiTdANfmZ9NeJwcj0ibQbI+X+mZpfuZJ3rzUf/wb3OueSHtJz/Y3aVh6e5rrdn6Dn/mpy+5nT4g+GPM7Zw5CSn+P8LHGZX/u9Dr2BwmWhRAii9pu8OuOmmXdkU/RlB9kNNjErAsO1G+IrK8jmeVIGUYks6w7C7AXDY2f4hfzkX3suGvNWRj3cX7bMgwgoQxDsznB5ky6wc8KlmPKMKwALyZgTL7Bz4MRyYiqNsGyVZ4QCQrMDLHuCn9sPjG/gPuOOZvtc07gkZb/ca5/Nbl6fOC801bM33Omc2bh1zmp4Bvc7TqStXov1vX/Udx5QXdV2lplqwwjSW1y5IUkaduXWbDc3gY/MwAEEif4xTw/mCyIjb+puTAA3GsfY/fzp6R/Tgxv5ZLwEjx1CcfSjQLfJ22DZetNToqgULWfpU123fhDiX8fDR//huo3Lk1/zQ5JvT7D18i2v/TCs2NBh69a8d8jaV79b7b/fUD7J5PYb70nkGBZCCGyyArQzD7Lga6vWQYon/Mncgcd3+55tkipQ6eCZVekDMPqFV0YCZajG/zi6luNoPURvu4siC/DCJrBcrn1WNsyDEisRTaZ0/usDX6OaDeMuKDcvKdmtz5ONzw1MZ042gTikcDU8DWy55Xz8deuDt8npyzuuHLv4rjgTu7wLKD24l/w75xNnONfGzctEGCrrZT7c47kjMKvc0Gdl9/lHM9S2wBCaOzduzVt0BrNLCc/RxmhhDKOlF01ID4wb6dm2fzYHZIH4KmGsySc15GuG0kvEA4wkw7uyaCjjOFt6PCI7YRNge2UYVjnt5PpbvuziHuj04mfU0YDUjLsuuOrXoHyN7H7+VM7vg5/EzVvXx43PTJdyzpvpA66J7FnewFCCHEo09ts8OuOmuWOMLO3gYaNgNahfs+60yzDMDPLhTiKhmH4Gwl567HllMYFVsoIWMGl7ihsU7McPs+W1ye6tjZlGEBkMl/7mWXNkR8eRx0KxPVztjLLMWUYwead1vG29dBmhq9l8wsofzOtm14Irz+nJO54yL3Leo6DEPO0Go71LMXnsbHIPoTXHKNZ4BhBixYtvWhxaDzMVB52TaXU8DBi3R7mKT+XYiOHxGApo8xym8x0phv8YoOzQONWHMXDU14nWRmG9XcSEyC2bH45yU0jZRgdKAdQStGw9HbyR38NK5ubNFhuPx/YtOIvtG5/i/7nLWDnP4cmu1uSh+L/LsyR3WkWHD4vyXqq37o85rz4ILw2pr9ze28q6hbdhKP0MAonfNt6bM9LX02/rjRaNj5nfd286iFq3vlep6+VTPOqh6hdcBX2Nt14eioJloUQIptszrjNbd3RDaNDy8nrB7odw1ODZs/rUL/ncOu4ZivrqDsLsEeCrGDTtkiw3CazHAnmNGchRsyoYzOgtWqWNT1ugIp1T0de8prl1t3h5+T2iZwXfgOy97Wv4yiNDjaxhq/ElGHEBstmiYcR9NDw8W+sNzKazYUiplOGy8wsh1BK4dm1KOYeHiuj6yLECcGtnBDcitdjY6F9GG86RvGeYxjumKmB9Xouy/JzWUYpD6hRHB/cwfzAFmYFt9NLRdr6mRv80tUst80kpxsgEtvzOiY42/XwYQz/cZvnxQ2TSbym+Xdi9k3213zJ3pe/lmyR5kVSr6vttb11NHz0S5q/fDD6yUOy39OYMox0tb3Bhk34IuUcGUlZhmE+kPCEVAdwr/l3yus2r3rQ+tq7YwHuDc9QMOa8pEsya37NYFmF/Hh2vJ18/R2haV0eKAM0fR5eb/Iyna4flLKvJFgWQogs0jQNzZ6LEfSglArXLGcxWNZ0G/b8gQSbt3d4mpruCu+ED7mrwtdyFGAvGgZAsHELrj5T40sgYsZd684Cgo2xGd/4mmVbfv+kGTzNEd8/2RRs2Y0ttzdapNeuOcCkdfOLOHpNiLlPJJutO9Bt4X+k4zPL4YC4afkDNH52J1pkUmFcxl2zWW35lBHEve5xvDvewVF2OIG6daigN2lAmUOIU4KbOSW4Gb9HZ8Osh3n6s8d4xzaYvXr004VWzcmbjlG86Qhn4SYG9zA7uA3b6hauRmPD3ibGlSQJMIwkmeVM+yy3U4YRd91kGwnbdFNpO8bbOs8Mkjs0BCVS6hLyRp+fJGsbm8ltt7Y31Sa9JBnvtlne9j99SZP9jjst/aZK9+pHUwbLpp2PjKPPaU/QFDPoBqDh0z+SO+wkXL0n469bT/PKSMu8djL61a9dnH7NnRSo39gt1+0uUrMshBBZptnzUIHWcCCpQl3eDaOjbJFSjA4Hy85wDW0okiHWnYXWx/eBxm1AtF5Ys+WgjKAVoOnOtmUYkcxyTjhzmKwEA9LULMf0WA6/lryYY9F2YWYXktg+y0kzy2arNzOgjAkQdVdxNBBSITxb38BWOJji6eFhIyroaXfKnRODE/oM5LfG5yxufohn3E9zlXMvQ0ms/f3S3pf7c47kntx8jiq8jOPeeIlef3qUbzwVnx2N/flaj2XaZzlVaYd17TabAdsEm0Yw/HfSbp9uswyjI32dzU2hmi2mZjnJZr5MumFYp3ZgsEjbNwfWc1Nt8DNrltvrvNHeIJj2M67Bhk00fPI7Wre+Fvd4/Ye3Uvn4DABa1kez7EagBV/1ikj3l56S0e15o68lsyyEEFmm2/PCH9WbH113cTeMjrIXDsJHtAd0pszMcrA5XK+rOwrR7C70nDKCjVuBaLCmOQsiQ0kiZRhtW8dFgmrdkYfmyE/ohGHd05lv3Q+gec1/qF/yc2y5vay2ceHzoj/TuI1GZv2y7rAykWawrDkKrJpla7OU7gA8cWvVnUXRrLcRxLf3c1x9plnTD1XQk37MdISmO9HsOejA1NBujnLs5Bbdz5rqTbxjH8H7jqEssw0gFBME1uu5UNQKfMkTrV+yOv98jg7u4pjgTlo+38bkCcPpG3OPdJnluJKNdOUakdcZ+7Vmc8UH0P74Mox2A8kOZJatgF/T0weiHeiG0ZFgOe0myWTnd0E3jI7RMLyJ3UGs28SMla//8FbqP7wVPbc3pcf8qovuv696StAeJcGyEEJkmWbPQQVbo/2Js5xZNrO45pCOTJklCsGWynDwaQ9/PG0vHm71WjYDHd2en1CGEb/xLlJLbM8hb8Tp5A45Mfk9YwJagPolPyfkriDkrqBg3JS486Ji/jE2g3fdEclEaih/E5o9D1teH2vAijVhTreHh4rETA3UnYXWaOWQr4FgwyYKxl5iBYoq5IsLsMKlI4l11prdFZfNNz9pGKW1MtK/jCv9y2jCyYf2IbzvGMqCnEnUx2ZkNVhp78dKez/+znT0pu3YFzzNNa7pHBPcyYTQXkJeLyFDYdMTA7e4YLedYDluTLkRCAfLcUNfzL+/dkoUrA1+nZgYqOnRMoJObvCzJCnxCQe5Scow2vxs6hffTOumF/Dt/gSIbi6NeQYA7tUP0/vENMNFOhksBxq3xH3fuul/ac+PDZZNhic6UMe96qFOreNgJmUYQgiRZZojL1yzHDCD5ezVLEO0RVunyzCaK+JGazuKhkf/QTfLMBx54ZpaFQTNFr5XyG99HB8t13DR59T/UDj+m8nv6SrFiBkdnTNolvW1LT+aU03/BkRD021W/TiAvXAguiMfw1tPy+aXogFGTAbZerazyCoD8O9ZBoCrz7S4vs2xAZazbGzyVeiO+PrXkC+ctY0pISnCz6nBTdzhWcC24+fwYvMTXOddwlTVgNYmc2no4M9v5c85x3BuwQVML7qCb4cmUfinvzP74df50/sbWVnZhGGEg7lMg2XfnmW0bHgm5kbBlOUWoZY9bLuvKOW4aqv0IIMyDCtDa2bHNVtMkJ0Y/Iead+CvW9vudSFVZjlFhjNJdt4MlAHqP2wzqS9JEFz34c/wVn3S7nmZ2PXw4Rmf6634EG/lh526z6FMMstCCJFlWqQMw6y9zWbrOIj2WtYcmU/vg5gyjJYK7Hn9rcftxcNo2fISyghFg2BHPspTHQ60dHs0sAx50fT8aGbZlr7m1ZZbjuGtR5nXifno3ZYfXUPa1xKTVTSz/PbCYRjBFjzb3sCz7Q2cfaaFjyf5aF93FlnXMEcvO3tPtPpLq6A3rqzBUXY4vj2fJlxHs7nigk4V8kXfSMS8IQDod+47EPIz3qhmvK+aH+U1kXvW6zz32IkssQ9miX0wm21lcc9xay6WOAdBr00sZhOLNr0HK4vIDZQyqXgwlxfvYK557zTlGpVPHB33vTKCKd/gGd7a8L1XP5L8Yh0qw1CAFi3lic0spwhs97xwNoO/s779Sydr/6ZU8g1+7ZWoJDwhGgTveekc8secT+Onv6fx09/Hn0b6YNlfs6rj926j6pm57Z8kEkiwLIQQWabZc1H+5mhmuQfULENnMsvhYJmQP67u2l48AkJ+Qi2VMbXI+dFx17HBctADjvxoUN3OBrFwazmF4a3Hltc7bpOgPWaDn5lZ1nPKrQDOFJtVNINze9GQuFpos445rvWd9boLrfpYw/o7LIoZZe6JCz6tYSJt2ZzEZkhVyB/u/5wk0M8dNAvPzvei5wZ9FDvsnBjcwonBcBbfP/svLKGc15b+kyX2wezW48eda7oBBQ14aWApW1napBhfcCHTg5Xkr93DV/VihhqNaMDe1y4h2FJJ7xP+lrhuI5jYPi1BinrdFGUYSik0TcNfuyb2QdBS1Cyn6OoQbNqKe+3j7awtRa9kZZC8DKP9mmWlFPWLb6Zw4uVx12jd8iqtW15N8aT0wXKopZJt92X3vw2HKgmWhRAiy3R7LsHWvTGZ5Z5ShtFOJ4M2YoPA+DKMYUC4I4aVFXTkh0swjCCaZkePDZaJqXltN7Mc7sMc8lRjy+uNEfTgKB9HwdhvkDssOjbZVjiI4uk3oNlzaPj4N3HXiP8IPhzY2IuGEorJ5po1ncnqPWM3+FnBtB6dCKhCbVrH6XaKpv4Iw9cQ12dXsznjSinCmWU9dVmOZo8/t00Q19+u8fU+Q5njeQcFbNNL+MQ1is8oZZl9ADv1NkG7prHa1ofVtnBv6r9wKcWGl0mhPUzavoNJoT0Mf+oCRrRZhlLB9tunpegEES3DaNNhQoVAs1PxnynWQ4a3Dm/FInRzWqKmx2xKTL0pzLPjnfRrSylFzXI7nU0AAvXraVz2Z1q3vUHRxCsyvF1XbfATXU2CZSGEyLJwn+XWmJrl7GaP9JxyNFuONV0wU5o9L5xhVSF0RzRYtgaTRDpiQGRyodkHOGZ6nhUsB72Alvzj8RjRYLnWep7uLKZk+v/Fr03TKTvud7RsfinJC47eI9QabitnLxpKoGFzwqmxmxCtp7uKrMyyVT6ixWTLA564MgNNs1E263YAiqf9iIrHIiUeNldMUKmFA+CYYSnojriOFWYP6fC6fInt3mJax2nAcKOBEYHVXBj5GTsvr2bxni28sm0jH+zZQoW3JiE0bNRzWKQPZZEjOt1ugGMGE0N7GRuq5vBQDWNCjfQL2EifW06VWY7UqLctwzBCCX/3Ne9cSeuWVyibHR5ooWkahlm6kDbQzKAVWbLMdKoexBmUQmjW74MPlWF3h/Zbx3Wv1mQTFgUgwbIQQmSd5ojULPt7RmZZ0zSKpl6Dq+/0Dj9PdxZh+OrjyzAKh4CmE2zaii0/PIVPc0S7YcQFlpFgU4V8aPacdicImn2YDW9N5PmetOUjuqs0ZsHhj/HjMsuRgMVeNDR5OUySgEZzFkaDo1B0I6D5BsDq0WwtIvpPrzNmQIqmO60ODrqrOPwzsOVYfXzt+QMINm+PuXGbzHLbASSRzH388qPB9sD8Yi4YMZULRkwFYOey+1nw0T18buvPSltfvrT1oUFP/FlW6kVU6kXWkBSAvFCA8fnDrQB6XKia0UYdLnNMd5u/x75n/o+a934Y/XkabcswQgkhbijSDq3u/evCTwm0RlukpRuu0ZGuGLFrSBHkZlQ3bP5OGcHMM8ZZDpY9217P6v17MgmWhRAiy9r2Wc52Zhmg7LjbOvU83VWM4auPK8PQbA7sBYMJNG61glvdWQDKCH+krdutcgsjNlhupwQDwJYXnvAXzSx70HNKU58fUyqiOfJR/mawJXZCsBcNTVpykUzsBj9rU56mWa33DF9D3PmpevqGSxnCIWJ4/HdVuC1b5NquftPjguXYOlsV8iZM6yPJUJJUo7EBinTF7OB2ZhsV4AuigB16MSttfa3/rbb1waslhg6tuoNP9YF8ah8Y/bkog8FGEyONOsrqbMxwjGWkUcfIUD1lxZNwFI9IvcEvyYY/81MEU8hdET09XfY2o2A52fOTb/AzB66kY5XlqGD6QD7udlKG0VNJsCyEEFmm2XNQgVZrc1i2M8v7wgySY4NlAFvRYELNu1C9JgJY7dBU0BPfDSOmDCOTmmkrs2zVFHus+ufk50cDad1RQMjfnDR4teX3t0oy2l1DTOs4FfJZgZKVWTaDZXNDWqrSEt1uZWB1ZyGh5p0Q8uPsNYGiSVeSO+wUWjY+R97Is6LXMykjcVqfkZhZTsucjKc7w91FgKFGI0ONRs4IbAAgqNnZqJWwxtabtbZerLX1Zp3ei0Y98e/K0HS220rYbisB4FmipRzacw8wniEMVy3UPfEUZ3k1JuplDDYaySGUdKKf3iZYjl+7skaTJxxKMuEx8emZl2EY3oZ2r2f+3SgjgOFLPSAk/n4SLAO41z1B3vBTs72MOBIsCyFElmn2PFTIi+FvRrPnxtWiHmi0SOa2bcBvy+tDoHaN1aPWPK6CXtDt1iY2M7uuQt72N40Buj0HzVEQV7OcvgyjJLrWyD2T/bw1Tc8osw3mUJKY/suO8LrN9Rve+sj9CsIDT9oEy/3P/4DWzS9GSk7MYLk4crkW0OzkjzkXgKFX1VivL6GDQ9sAM1lmOQ0zQNVszrihK7HsKshYVcNYowYil1ZAw/Bz+XznMtbZerHW1ot1ei+26yWoVBv7HEFWUcoqSsH7KR8yHArDte19DTfe/9xHmbOcc1zTGWI0MthoYlCogFJSDYhQeKs+Tnokrid0Cp7tbya9ZrKMddtuKukYrXtp+CSzT2myXbPcUwST7BXINgmWhRAiy8zWYIanJus9lveV2T4udoMfgC23D97W96Ot46y+yuFMrC3S5i3YUhV+PJhZsBy+di9CkRHWRih9zbLmKIhuQozdOBcx4MIlVheM8rn3kDN4Ds1fPoi/ennS6xXPvIncISfE9V/WImUK4VKMHGtoiu4sJORvSshk5ww4ipwBR8U9ZrXhM4JxwbzZyzr8TXyQ37YMQ6lgYmlGOua57baBi6cBg5x2SoNbmR+MbuL0YGerXsJmWxnr8sayw+9ns62UTXovjDSl6Hv0AtAbaTQa+XPOMdEDleAo+j79lJt+hpsBRjP9jWb6KzdF6zYyrsBGueaiWPky2dIXp22HFCBlVt58Y5bOzgeHdXAFQDt9lg8Z7exTyAYJloUQIsvM4C7UWt0j6pX3hRUsty3DyOuN4a3DCHjCQXAkYFRBD+j28AARTSfkDvc2Njf4ZXTP3F4YMTXLaYNlTUN3lYTHWEfWEBu8uvpFNzXa8npTNOkKWjY+l/xa9lzKjvl1+L6xgVXckJNcQpEyDN2RH97ulqbDhxb5+F5zxmTmU5yvtakdDkXeaFiMUFz3jPaomDKMjkr2xiaXIOOMGsYZNZybU4yvMTyIpfyM/1FRNp1Fr/+ADd4Ay3KPJtT8GTtsxVRohRhpaowDmo2dWnFi27vNS8N/Fl2JUwXprVrpZbTSW7XQ22ill4p+Xa5a6R05lkNiuYdp50NjyD/8woTHVYpyj30mmeUICZaFEEK0YbZoC3mq44OkA5DZa1lr00nCltsbUOFNWTaXVUJgBD3hbhiRgNkcBKKCvo5lllv3Rp7naX+QSU4pyvBHg+QUG+6ir6kk6eNxQWVsZrnNRECzZlmLvIFIOgAj+ozI5aKvPeX5bR7f+8p5cd+HM8uZB8tWzXKGP/dY7T0ntpzBbnMwtrQvpfl+Quwmp/8emva8AEAAnQq9kC+OeJQvmkPkbPszO/RiKvQitmlleDIoUfJrdiq0Iir0onbPzVUBSpSXEuWlVHkoMcyvw3/2a4Zc+1DrnELlpygUIP1vTOd4Kz/qhqsegCSzLIQQoi0zuAt5qrEXDGzn7J4tXWYZIOjeFZ9ZDnnRI10j7AWDosFyyJtxzbAtt5xA7VprQ1t7kwfDHTsarGAzffBK6u4aMV00NE2L2cAX87g919oQptvzzQdT3ywSKMQH4qkyy+0Ejm03+LXp05zAyix3vGa+/U8BosGytQFS00CF0GJ+jg4MhhmNHDdhLI7iYWy9+6vWscJJV7Jn5d+p0gup0guo0gqpjPl6t15AlV5Aq5Z5ZtyjOfBoDqooTH5CLZB/VsLDLhWkQPkpVD4KlZ9CfJHvw48VKL/1fT5+clWQPBUglwC5KkiuCpBnfk0AHahdcHXG6z64SbAshBCiDbMzhNG6F630sCyvZt+kqlnWc8NT4ULNFeFJdWZrraAXIufaCwfhr/ky/HjIlzKjm3DP3N6EvDVWJ4103TAg3GtZs+2OBm3tZJZtmWSWIVILbSRklkMtu8NfR7LtWpJWdTEXSVhTyvW1E+QrIxRXHqLnlGJEMvAAweZdaI58bJE3A8oIhV9De0F4slW3V+ccW2JgXj/y80r2OgL1G3AUD2tziQB5BBlp1DPSqE94jqkFBzV6HjVaHtVaHtV6fvhrPY9qLfp1rZZHoBOvFcCn2fFpdmrp2OCeVHJUOHAOB9CBSGAdJEcFcRLCZf0ZwkX4a6cKWY+1PcdJ+Dzza7sycBDCjoFdGdgxcGBgw8AR+d78X88LVbNPgmUhhMgyc4OfCvlSjzY+QETLMFJkllsqwkNKdHPCmccKLm0FgwhufR2lVHiDX16GZRg55ahAizW0or3Msi23FyFHQTQD3OkyDEeb7+3hsoc2NctmZwmrHj1NgFY09Qd4dy3E1W86zasejCwgRWa5nWC5bTcMm6skLlje+a8R6DllDP1eOJhHhcJ/L53JLLdXuqESM8toOqrNmwvTnhdOZ/iP2wz/CGVWUpJPgHyjkaE0pl8S4cC6QcuhQcuhTs+1vq7Xwl+vNwbgtLfSoOXQqOfQjJNmzUWok4NOUvFqDryag3rS/+7uD3YVDqptKByRr83g2h4bWCsDHYUtcq75ta5U3Pc2VOQx8/yYr1XM8yLHnIH+XNtUw8iiNK0C9zMJloUQIstiM6EHco9lAD2nLPxnmwDTlhfOLGMEI5nl+A1+EM4sq2Arhq8+49ZxEO2/G4qUcLQXLJce8ysMbz31H/0yfH67wXL7ZRjhC4WDzNjyiNgNm1ZmOU2Qmz/yDIb/2E/rtmgrs5Tnt5MVVSpodR+B5K/DmoAH4ay4Zmu/vCPpUtqpWY4dxW1llhPLVjK+RhfQgAICFKgAg1Rz6mYUbWJ2BXix06yFA+dmzYlbc9KMy3rMrTmtx1sJl3q0ag482MN/ao7I43a8WndUQHdeULMRxPw7ysICAjCzokqCZSGEEFFmGQb0jOl9+yJ/5Flopz+Fsyy+nER3lYSDYiOIFrPBTwW9VlcHe+EgIBz0qmDm3TBsueHBJMHmnQDt1jo7iodD8fBobW47mVTdVZz08aSZZYjPLMe8+TFLU9oLzqFN8NnJzHLrxucpmnJN9DJpJhvCvpZhtPPGJmZEtFmGoqGHa5ZT1GS3bn2jzTU6sFmxG2mEO33kqiB9VPJ+1B1hEA6+YwPocGDtwKfZ8GHHr9nwYYv8acen2fCTeMyPDZ9mj/wZPSeo6QTQCaJHvraFv458b37d1Rnzzmpo7do3RvtKgmUhhMgyzRHNhOrOAztY1uwu8kedk/i4pmPL7U2opSqxdVwkeLIVhIPloHtXxuOuIToGOejOLLNsSdI6Lhl78YikjyfU6ZqZ5ZggNvbNjx4pt2mv1jh8qZhuGKk2BLYT1IZa9+Ct/DB6f2ch4VAvxfhlFQpnlq0yCVvSsdPtrTf5paOBbrQLiS1chpGihnvPi2fGX6OLM8s9hQ7kESRPBSnHk/KvZ38wIBpEtwmkA1o0wA5EAusQGgYaIfTwn1rM17HHtPD3CceSXGNbqC8Dc0uy90NIQoJlIYTIMs128JRhpGMGy8Rs8ANlfexvZpaDzbvCZRiZ9lmOZExD7nCf4UyDZWt4SDvBck7/mQy+bBu7XzidQM2qmBu3eZ6VqY4JlmNqt82BM+3WGpNZZjld0K07izH8jRi+mLpdzRbuMe1LvjlOmTXLkTcBmu5AheKDZVe/mfh2L018cjvBcrApOqzEKl/R9HAtc4ZlGB0a3S06RQecGDjNmpTYwH0/BfH1hTMZMKj//rlZhnpGvl0IIQ5hVsaRA78MIx09sslPs7ni26GZG/zy+oFmC2eWg972OyyYT4/USQdbKsLXzzizHFlD2u4UYfaCAYllF23Wlyz4jp3IaAXO6VrHJbl2quA6bdAdeU0q0BLzoEpfihEpw7C6fCT5ueSNOrvd9bbH/PlokZrlTMpSIHFCYVZk8EZH7Jv+RTn0K8rsjfL+IsGyEEJkWWzN8oE+7jqd8GCScLAc+9F7tIWbDVvBAIINWzqWWXaZmeXK8PeZZpatoC2zACixRjmTzLL5SYFmvZ70reMiZ8dlllOUW6QpwzDXZgTja2rTtuMzyzBiMsttperW0pFBJtGWe3okm53Zzz/YtC3je6RTNusPnX5upoG9OLhIsCyEEFkWmwnVD/AJfumYHTE0m7NNZjkagNgLBtGy4WkAXAOOzei6uj0HzZ4XU4aRYVaqA5nluPMj2vZZtjLLMa9Ns/pNq+jzM8ost1+zrKWbdGZtoPTEP5wms2yWYWhpark1+74Hy9bPW7eBEaT23R9k9LRA3brM75GGo2xc558smeXu1wMn+EmwLIQQWabF1okeCpll3RlXQhD7tVm3XHLkLeQNPTHja+s5ZQRbwpnljGuWMxxKEj2/zXltg+xkmeXY1nFWmUYHg+VOBGjmveLLMFIPWAGsMoxoMJskWE5RbtGxzHK0ZjnUUpnxJsIusw/BmGSW94eeFyzLWyQhhOgBdFsuRsh/UNcsRzPLrvigIyYYLBj3TeyFQyg56ucduraeU0Kog90w0mVQk98kfRmGFmm7FfdGIPaTAiuYzqAMI7ZdXWcCtMi9jDbBcsqe0YQzy+E+y5GgPklgrNnDQbGjfDzOXhNpWf9k3OOZMDPyWpbyddo+BGMSLO8HPTCzLMGyEEL0AJojD/yNB3dmOXaDX0wdbmyZQd6wk8kbdnLHr+0qw2xO1uENfhlmbtuvWY7WXlsPxWaW9cwzy3pMKUmnMsvmc4z43sR6TknqJ5ndMJIE/dZ1IxlkW34/HDG9tFOVZyQV2w3jQCNlGPtBzwuWD8DfVCH+v727D5Lkru87/vn2zM4+797t7d7e3d7pbnU6nXSS7sTpOCQhEWH0/ICEAKEDgSSDQNgiOlJ2CiV2SJXtICeuSgUDdkkROROnkAlxIYjBpCopF5UECAplB2GVyjIx5kLFkh0jIWFxutvOH/PU09Pd0z3dM909835VYd3O9MNve699n/nut38/YPQ0H/LzzowxapzpRmW5OtlZfY3bMxx1bE8vbvI2jLhh2bdd12wY3ZVj79Rxk9uOaubsWzSx+dxY52sfJH5Aq8xsawwm+OG/qMqyNs7Uq+PNEBvUhtHs025u2zruQuwxeudZ9qrMrcU+Riq0YRRcjhNNhyAsA0ABtGZKGOnKcn3xEO+iJPUX0lfrmtPHSRa/fzZhz3L3A35hy117H/Br/zyrc2taffN/SLzwTJLK8uSOyyL36fmAn2e568Dr0jyuuyFvBdCpxQ/L7evUGUEiZ+rIVIrKJZXlwXMJywCAAE6zslzyFfyiVBqVZTkTvgf8ki+v3HXsRgi06lT0LBEerTH0+YBfV09vQFtH2FRrsc7XXMEwwYeJ1phCvqegB/w2mjNm+Nswgh7ma7znyh+W57u3DRtj6+fj+F5P//cg5gD635XK8uC5G3mPoMvQwrKZzZrZ75jZo2b2rmGdFwDKwBrtF6NcWbaJWc0f+qBm1m/oDHMZVOua7QWx+5Ulz3LXMdswmu0iIfMQW8By15YgRHYNr/GQX5LKcuvhubA2jIDK8vc/sagfnDjQmmc5qg2jtnxQqtS06ehDHT3H3rnCEwzWN7ghheVUD/hRWR40VyMWls3s02b2nJk95Xv9ejN7xsyeNbOPNF6+XdLnXde9T9Kbuw4GAGPMqtP1X4Enma+2ZMxMy2/8V5racbmvspxFz3K9DSNJWG61SyScDaP1M4pVWe7/w08zLCf5MNGqBnuDqOf7q8ysBu53+kfPyt3Y8LVhdJ+3MrVJ6x96qT6tn6dCa05F297y5djjbO7jeyHR/rmgsjyW0v7NPCHpeu8LVr/LPinpBkkHJB0zswOSdkr6QWOzIU+qCADFZtVpORNzsVsIys4ClrtOo92GkaSynHCe5daUao3+cn8Pc0DPcrqwvKn+hyS/lg4Iy95FWmrLF2p2/zuC9/VXlntoTZXXqCrXVg7GH2d9T9/xgivLy9c+lvC4yc6baE/C8uCNWs+y67pfk/T/fC8flfSs67rfc133lKTHJd0q6aTqgTn1eQFg1Di1eVmCGQVKz7vcdYYP+MVevU/t4BN7No5KZ2W5u2e5e1GSrupzAk6tXlne+OkLsfdpL+HtCcuVzmsyHTI1n7txuqNnuXdoqYfOZgtR4spwVxtG99+DTZf901Q9xsHn7f94kzsuz3AgCOJ45xgviEGE1jW1K8hSPSSvSfp9SW81s9+S9KWwnc3s/Wb2pJk9+fzzzw9geABQPItHfkEr1zyS9zCGJuvKcrMX16kkaMNIsPx0fftGEG0G8rDlrh3vB4H+g9nM2TdJkqpzO2Lv410dr/Wa7wOEfxaKJvf0TxptGM3362G5Mr9Lq2/5A531gR/6TyZJcppzLAccd+fd3w0fbIw2jNm9t3SON5OHAPv7mex58BXVVi7K4PyI4vTT/z5gg+hUD/pb6Lqu+7Kke3vt7LruI5IekaQjR44UrxYPAANQWzpPWjov72EMT8hy130frq8H/JptFXFnw+hc2a57UZKAyrKk1bf8gSYWz44/rob5Qx/UzN5bVJ3fFXufoJ7lVo91q1IcHJY3Xn1JlcmlrtA6sXh2yNLjzcpy/ZoH/YZgYvO+8LH6zjN//l366f/5rwHn8MQKpyKdSdfJ2e8HGDNneDN2jLMCtqINorJ8UpL3zt4p6Ych2wIAxlBH9TWDPtBKPw/4tRbHiBnWneg2jOYDa/4H12Z2X6OJTXtjj6t1PLNEQVlScM+yvxUkrLJ86uX6tWhND9ejXtUINaEPPPbkC8sX/qz2PPiK1u76dntM7hl5w3LuYTXm+WsrFw92HKNs1HqWQ3xL0j4zWzezmqQ7JX1xAOcBAJSVk20bhtXm6y0ECXqW5UQsvhF0Dsf/gF/woiTDXLhiZt/tmjn7lvYQmoHe+897Mxw3w21IWN549aXGA36N76MVWkIqfa3jNpfHTvihJ2AcZo5qyxeqtnKoMYaNzkrjgNswtt78OS0e/Ujo+3HnBM/yQcDqwnpmx0J/0k4d91lJX5e038xOmtl7Xdc9LekBSV+V9LSkz7muG9G0BAAYN2bWCj5ZtGGYmZyppYSV5WTLXfecOi5gNoxBW73pcS2/6VOeIQRUlv0B0xdSm3N7u6d+LDkVT5tCdIXPmqGzFZajg+TWmx7Xrvf+uWcY4dsvHH5QklRd2KOOynIWH0Qifs1fXdijStSS4HHDelYfmBLMTjIyCtiGkeqn6brusZDXvywp2YSLAICxYk5V7pkzsR+w62Xh0P2qLV8Yf4dWG0ayFfxaS5P7FyUJmGd5KLzna17LjnmWm0tUN8KvL/A5tQWdefUluWdeqe/nD2dh4aUZknvU3aw6Lff036kyt+ZrKwnfb/78uzR//l3d5x/0A35m9VlBQt+PGVwzWmDFKjWZM2ZhuYBYigYAkA+nKp35qaySzT9Fmy/95UTbW9J5lltTx9U6vvZs0HHcYelY4MXXclH/Y3Rl2anN68zLnm272jBCzxx4vK6tGmG567rEnc/Z/4BfauFh2WT1Zb/D3o8Z1hP/dsEqgeett/wQlvPGTwAAkIv2NGc51W0sYSXYtyiJvyKdNHxnpqOy3Kj2Rky35u9Zdmqe+b2dSkBPc6+e5ehfm7eWwu4zLEe2lPQjarxmjYcKw94fUBtGyLWwymTkB4RK0gdAS6F4bRiEZQBAPpL2DGes1VaRsA2juriu6uJe1ZbO920w/Af8JF8VsxVgPQGrx3zG3sVwzCqaPa/eYTl77tt7nTjweF2bNdtW/KE9bpXYG24HPlOCSRsRYTn2A37J/g7M7b8z+I1KLfL6VpqrPGKgCMsAgFxY0spuxirTy43/bom1fbPtojKzql33Pt3dH+3k04bREeB8M1RI8dow2u9VVFs6T+vHT2liaX/zAIGntYBzBQ6vUVl2N171vxO5n+dMnj9mEVt6VZbbPctzB+72vR03LCergG+67J9oev3G1teTq6+tH6dSizynm2QpdPSNsAwAyEclWWU3a5PbjmjtPd9RbTnmqmytSnhweGmF/2G3lXjClMVow+gOy51tGAlO3Pi/PSrLjcq1e/qVyHH0Oo9U/4Czcv1ntMUzA0hSPRcl8VSWFy/5sG/nuNXwZH8HzBzfh5bmNH+9ZsMo3pzEo4iwDADIRd6VZUmqNaunMfTssc6pstwR/mJUlv09yTYxG7pt49WwE3edK8jW605o4eKf1+S2o5HjCNXx/ZnmzrtTlZmt8fYNPmD0e96e5X5bR/p6EDGkgh51nQq4gMcoYjYMAEAumrNg5NWznFjPynKzZznPVeYCWiN69Cw73rmpveGwZxCL14ZRXThLW676l91vxJ5P17r+HDtoBx6u19RxZzxf+qfRG9BsGLLwdpeouiZtGENBZRkAkI+82hb61LuynNNsGF7NvBVZmYwIgAFB30Iry2HHjylmVbSzpSReNbt//sqy73uPG5b90wrGPXfQnyM+TL76t8/0cZ6CK+CiJIRlAEAucptqrU+tcYYsEtEKdYWolIfPs+yvjHfO0+x9r0eYDeqPTsCN229rQSEyTaCKbsPomDrO37ISewaPpFPH+UO55+fXXDESuSEsAwDy0Zq6rQjhMobmeHtWlvP8fpptChELefjDrffDSlDlNLQ9YNBV3vaZul8aTBuGmUkdK/j5q/DJ54aOP6yQ6+xfVh1DR1gGAOSivTx0nj2+8fUab6sqW7C2ktrKIUnS9J5rG6/4q6WeyrKToGe5FQj7rPLGfjit8wG/znNnzbRw8c97Tue7VrFnw0h6TUxh17G/lo4yow0DAIC6QlRiE+hVCc9pueteassHddb9z2n+wHvqL0Q9tJZkNoxWZbnfsBzz4bSANoxUD/j1mGe5tuVA+2v/B6OBfrALGZeTvrI8e+4dfe03ddbVqc+dXPFm+CAsAwBy0e4BLla4DNN+wC8kMDn5T4XX5HqqtuZUVJna1P66Kyw77e9piD3L8UORp383k57lth3v/Gbouepf9jkbRtLxRbWGZNCzvHLdv0l9jHFGWAYA5KNkD/hV59ekSk3Vhd2B71sRKstBoavHoiRm1p4jOij4hgW5jFoi5g/er90PvBj6fuazYbSOUdHk1tdEb+pvWYnbhtGHjVPB12B611Wpj12uVo7itWHk//EXADCWclvxrk/V+V3a88CL4ZXUgob/7uWuu6unJqde53XiV5bTP+BXP75VanKqUxEnCpgNI0VYtqj2kYBr02FgbRimn/z5E4HjmbvgXll1Ss//4T0DOnew6sK6itgSkQcqywCAXJRuURJFtxy0Ho4rRPj3hJxes2HIW1mO37PcmvrNc7zVW5/Q5tf/aswhNsfYq5IY8IBfn9XHufPf3eMYydowVq4/0dc4JGlyx+t7b+S6MjNV5nb1fZ4kZve9dSjnKRvCMgAgHwVY7jpTBWjDCOyV7bHctWTtUJhkBb/G+95WhZn1G7Tptf8w5mibYbtH8M3oAb/146e0ct1jPY4RvQiJ/8NEZXZ74nE0zR94t6wy1Tir/xr4vx5OhXf+ovf1GMcQsCgJAAB11ppdolhtC/0qwlR4QQt9dLdhRFSag8YeFl6as1mknsYtQWW59VIW8aV3G0bXHMdd16fHTCER3DhT5zXGU5lZ6b1tiLW7vt33vrRh1BGWAQD5KNvUcb0UoLIcqOcDfk67SpxkNgylC8uxwqJvHM7EXOg5l678dc1f6K+MBmg94NcdaLsqvP7w3NWmkqIK6p06r0c1tbZ0fl+n2PHOb6q2fKEkaec9T2v1ti/1GBPhOEjB7mgAwLiwAk21lolmkMrh+9l131/KnKp+8hd/2PVe1/LWXX243tX+4o/dbVWW+w2MzYDeY39PgFu+7rHGn7r3qa0c6lyqOlREz3LXWKLbMobZMjCxeZ9e/ds/S7SPd7aPiU17NbFpb9bDGgtUlgEA+ei1fHTJWI6zYVRnt6kyvRyrZ9lflZ3adZXawbW9bc/KbyMs9z3PcsLK8tSuN6o6uy38nLGXoo5aTMVXSe4Rlt2A6d6cyc3xxtFRuQ9rdWlv427EXMQlhaA2nqztuu/7mtp51cDPkyXCMgAgF63KcqnmgA1XWzmk2uqRVA99DUTQIiQNq7c+0fkr/oDZMEIrv60gl3ZRkpiV5Y75lmM8nBcqYvq5HlPH+av0Z37yXMfX0+s3avcH/yreMLwfFsw0s/fW8HFI8Vc8TMP/AWYAbRlObbGQD/FFISwDAPLhVCVZyqWLi2Ny68VaO/bf5UzM5j2UjpDjD3id//T7QkuCeZYVMHVcIm682TBa7R6BU8gp8rWZfbdHHDlGYOsKz+3rM3fBPV3LSFem4laVJf/1nT3nNs9b3dcmqMWkMn9WgvMlH1MepgtYdR6N/w8FACgdcyZGp1+5KGKs4GcRFVpvG8b0rjeqtnqJNl/+K4GncjfOBB4jvrjzLDdbRCJCftf7das3PR5wvARTx/nbMjzXZ+WaR+TU5oIGHLNy6mvD6LXPxumul9Y8y3VXZnfEOGdCQ64A77rvLzV3wT1DPWcchGUAQC4q01tUmV7Oexgjr2t2Dk9IbAXGViWzHQad2rzWjn29NZtCl7Q9y+1BRL8fUFmOF3Tr1u76n9p+x9c8+yZ4wM9M2972n9v7B0ytt3jJPwgZeA9dLQ7RlfPpPdd1vVaZ3uLZJ4NI57pae893ml8MZnaMiJ93dXZb7wc+c0BYBgDkYuE1D2rHnf8t72GMvqgH/Hr05EZL14Zh1ZmO//Y+jzdMxn/Ar7Z8kaZ2XOrdsPt4/vc8X0/vvLK9f0BP99KVD2v5mn8dsn+4jofpzDr3DQipyz/zm9EHzCRkurIReYYgS/z+CwCQC2diRs5Er6CE/niDWPywHBQGw0+Rbp7lhUP3a+PVH/euzAYtix0r6IaIqCz7Z7/wVzl7Vz1TBNaOn0vA2PwLpHSdmfrnoHBlAQAYGQEhq2ue5Yr3Tf/G8U+VMixbpabNr/vHcqpTvU7U2KFXZdlitg0kmA1jkNzwnuXAKQB76WPs3VO45f+AXxERlgEAGGURleV272/jIboEbRjNWSrCgl1WMzW4rdUFvefpji+Je6cbx7OKN6ynW2Al2XE69+krICc+ZxGUZZxthGUAAEaNd+q4HNowdv/c32jn3d/per0vgQ/4pW/DaIbTXff9Rdd7fUuyf0Rleebsmwd77lhjQhNhGQCAkREQmCKXuw6fOq638LDs1OblVKcTHCtKzEVJYodFf89y9JR0WastX9T4ky+Yer6nqbUrkh84k/nKCctBCMsAAIyyOJXlZkUxyWwYQSvrDULgoiQplrv2zYYxiEVxQudf9p5f3uq/bzaMCAuHfq7vcfVSb3nxjiP78Jy+3WT4mA0DAIBR0Qi73um/otowuoJigspys/o5s/vahIPsU0flOM2sE74H/HrMQhFPZ6jcdOkvy2oLeunp39XpHz0bfP6oeZZDvr/146ckSS/+yae63ivi/MThyjRWKssAAIyM2b23aeHwcS294TfaL/qrxTFX8OtlcttrtedDL2t699X9DDWBoKnj0lSWWzt07dec83nHsW9o8+t/LXzP2rxviJ1jdCZmtfl1/yjwelbnd0qSKrOrnWNJHXazasNoXpckLTn9nKc8CMsAAIwIq0xoyxv+uW9lN1/PsiIqqQkD0jAWsHBbDxJGr+CX+Nf7/gqz1JrGbnL1sDa99hcDd9tx7BvaefdT0ceMMH/wg1q54Xc1s/c2365pV0JMt//8he/TzJ4bVF3YrcUjv6httz0RuF1t5VCq8wx7Ce0sEJYBABhhXdVNJ2ie5T56lodkYnGvJGlq++XtFwOCoRu3WumrAicNqZOrh1Wd3d45xs376u9tvaRz46DFRZyq5vbf0bkgj79nuY9AuXDwA4n38Vq++lOyyoTMTEtX/JomNp8buN22t35V227/SqpzlQ09ywAAjDL/bBhO+59+f1BMNhvGcEyuHtbOe/5U1UZorktTnWzM2xy1OElCU2tXaO09/0sTm/f3f5A+K65Wm5d76seaOutNzVc0yDYHq0zJmdwcuc3s/nfo5Wd+b2BjGDYqywAAjLDIymmaeZaHaGLTOZ0PsKVqw/DP4pFNW0Bt6bwUD9nFnw2jS+CiLeFWb/1Cf+dpsrRhPMX3mhPCMgAA46oRGN0+VvDLU/gHgBghzt8DPdCp74JCYdgY08720TklXpiZ9Ru149g3NLPvdlUX9/R/nlS6r4EztSVgu2IgLAMAMLbKUVnuliKw+VYeLMSUa5ZiNoyu/XofZ3L1sFZvelxmybtx41XwC3BNM0RYBgBgTKWZZ7ms3KIu6ZzJfM9SZW4tg8E0hF2rXtew5/gD3i/Ch5YQhGUAAMaVbwW/srRhpJOsxzeVoHMEBk1TbcsF/Z2jtfpiVSvXn9COt/+XJDsnP1/a6+bbvzq/uzGUgn6IEWEZAIDx5Z86btBLV2clVWBrhrLO77W6sJ7imCmZqTq3I+1BNHfeO1VdOCuTIdUPGXSds/2QMbX7Tb03yhlTxwEAMK78U8c5ZYkFWfQst4+x/Y4/0sSmc1KOKSepPjj02Deo2pt6NoywoRS3DaMsdwUAAMjYOPYsV2brPb3zF72/9drUjsvDNk+pOwDGXjwlZP/8pR1TEb+naIRlAADGVrrlrnOT5gG4qU1aP34qw8EMUnCwnt1/p6oL2fX6bvmZT8bf2CzwIcnFI7+gF578jcTnrs7vah448b7DUpLmJAAAkLmSPuBn1ZneG5VadHDcesNntPT6X/HtkjxsTm6/VJJU23J+4n39nNqCbGI20T4Lhz+s+QvuaXxV3Af8qCwDADCuStqG4VSnVFs9olN/9WTeQ4kWezaM0AP0d46Y5g68W1M7r9TEYtjDjcEzd8QYVMRb7fdmdl9TiodKiz9CAACQKatM1v/rf8CvJGFZkpzJTZ0vFPgBsYFK0YZhZhFBOXyfXlVgq9TiHsz7RaJxDBOVZQAARtCOd35Tp398MvjNyqR05qdqB5TmXL3lCcuBCjxXbyJ9BP94K+slP2qgHtd582UflTMxpxf/+BPRhy/Jz4vKMgAAI2hy62s0u/eWwPealWXXPeN/Y9DDGisLnhk32pIExLzDZH/nd2oLWrry4YzHkh/CMgAAY2Zq++skdc+rXKY2jGaQm9zxeklSZWZbnoMJtHDofq0fP6XtIavqzey7XZJk5vs5JKkSF7b9JGxc/teLOv422jAAABgzKzf8W516/k9UmV7ufKOEbRibjj6kqe2XyplcyHsooabWrtD07mv1d9//Tx2vr1zzqJaufFhWmQjZM0aQzKWVodc5e4y7sAE/GJVlAADGjDMx27kQR3PquFJVluvMnEIH5S6ecGuVCVVnM6qIFyqA9gjToSsDFhNhGQAA1JUwLJfHgForChUye4/FCjXeeAjLAACgrkxtGCWZSWHgCtmGEd9gZvHIFmEZAICxV942jGJVVuMYVLgd3nVwJuZC3vF8b6X7uYQjLAMAgLoyhuWySBQeCxI0Q6rWtZWDSjLGHce+3vmC51q4uU+P1xthGQCAMbf15n+vqbU3lGLpYfjkVMGdOedW3yuuwgL05Oolvk2LH5C9mDoOAIAxN3vOrZrtCj8YjBhBMUkAzi14FqT6PQSEZQAAUEJBIbH+2vT6jdp09KHhDqeHpSsf1l+felFTO//eYE4whArz1pse93yVIqQHjLXID/rx+xYAAFBi3SGrtuWC1iqFRVHbckA77vgjOROzeQ+lL5W5nZptrDgYT3j4ndh0jiTJmdqcclTDQWUZAACgrHKbdaL/8y694V9oZv0mTa5eotMv/98MxzQYVJYBAMBoKfu0ZUn6kEvysNyWN31Klbk1SZJTndLM+vU5jyg+wjIAACixcoTFwRvwB4QYH0AWDz9Y37Qy1fXewkXv01nv+98BexX/50dYBgAAKJKSVsY3X/ZRrR8/JatM9PE9FPd7JiwDAIASK27I6lthWivij8MtzJizR1gGAAAou4FXo0fwQ0lMhGUAAAAk4wvnVtLWkTgIywAAoHxG+Nf+ieQUUhcvfiCbA5Xg50hYBgAA5TWKFc0SLHc9tXaFdt79lGcY/nEk/LkU+OdIWAYAACOi+FXKWPoKwNmHzfmDH/AcfcBhtsAVZsIyAAAAusztv0M7730m72HkjrAMAABQVjm2L2Q6XRxtGAAAAFmKCmrFDV6JxAmQw2pfCBxLFucubvtFE2EZAACUztKVv67a8kFNbjua91AGJ0EQHlRPcWV6WZI0f9F93W+6G+HjKXClOKlq3gMAAABIanL1sNbuejLvYYw8pzav9eOnQt7Noipc/FBNZRkAAIyEkVtyuejV2YjKcoKDZHCMwSIsAwAAlF0ewbrjw0na0FvcDwaEZQAAMBJGqU+2DNwSVIWzQFgGAAAooqK3lWTShlF8hGUAAAAk1xHmR7eqT1gGAAAjYbwf8MsjrGZwvUvwMyMsAwAAILlMH/ArLsIyAABAWeW63DU9ywAAAOUzTrNi5NrGkOG5C/wzIywDAACUXe7zLI+uoYVlM7vNzB41syfM7NphnRcAAACDQBtGi5l92syeM7OnfK9fb2bPmNmzZvaRqGO4rvsF13Xvk3SPpHf0PWIAAIBA41HpLIwx6VmuxtzuhKRPSPpM8wUzq0j6pKRrJJ2U9C0z+6KkiqSP+fb/Wdd1n2v8+Zca+wEAACAT7TaM5WselWzwzQOT2y/N4CjF/4ATKyy7rvs1M9vje/mopGdd1/2eJJnZ45JudV33Y5Ju9h/D6mtQPizpK67rfjvVqAEAALoU9yGxYZq/4O6hnMecqjYdfUg/+h/+GmlfR8vgGIOR5mPHmqQfeL4+2XgtzIckXS3pbWZ2f9hGZvZ+M3vSzJ58/vnnUwwPAAAAQzHCD/vFbcMIEvQRIPRKua77cUkf73VQ13UfkfSIJB05cmR0rzwAAEDZpZyFozK3ptlz367Fw8ezGc8ApAnLJyXt8ny9U9IP0w0HAACgX6NSY+vj+8hrnuKUFWUzR1tv/HcZDWYw0rRhfEvSPjNbN7OapDslfTGbYQEAAIwbk1NbzHsQ/SnwoiJpxaosm9lnJV0ladnMTkr6qOu6j5nZA5K+qvoMGJ92Xfe7AxspAADACNv9wAsymV790Z/lPZTkxr1n2XXdYyGvf1nSlzMdEQAAQApW4JkVojjVqcafShQ8R7ii3MRy1wAAAKU3+qE1L4RlAAAwEqbPurr+393X5DwSjJI0s2EAAAAUxtT212n9+Km8hzGmStQ6khCVZQAAgELpp6WCNoxBISwDAAAUShmrtKMb1gnLAAAAQAjCMgAAAFIqYzU8HsIyAABAIcVvbbDc5jse3faLJsIyAABAIY1utbZMCMsAAADo0+gHesIyAABAIY1+i0MZEJYBAABKj57lQWEFPwAAAGRu5py3aO78d+U9jNQIywAAAIVU7n7g1Zt/L+8hZII2DAAAgLLLbeq40UdYBgAAKKQSBWC33FXwKIRlAACAshvhsJo3wjIAAADSGeE2EMIyAABA2Y1wWM0bYRkAAKBAqotnS+Zo82UfzXso8Y1wGwhTxwEAABSIMzGr9QdfyXsYMY1+RZvKMgAAABCCsAwAAIA+jW77RRNhGQAAAAhBWAYAAECf6FkGAAAAxhZhGQAAAAhBWAYAACi73Oc5zvv8g0NYBgAAQH/GYOVAwjIAAEDZ5RVac69oDx5hGQAAACmNboWZsAwAAICURrfCTFgGAABAf+hZBgAAAMYXYRkAAAAIQVgGAABAX8yp1f/gTOQ7kAGq5j0AAAAAlNPC4b+vjVMvaPGSD+c9lIEhLAMAAKAvTnVaS1f8s7yHMVC0YQAAAAAhCMsAAAAltXTlw5Ikq07nPJLRRVgGAAAoqYWD79f68VMyh87aQSEsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIwjIAAAAQgrAMAAAAhCAsAwAAACEIywAAAEAIc1037zGEMrPnJX0/xqaLkl6Iedg42y5L+uuYxxsVSa7hMAxjPFmfI+3x+tk/6T7cK+lxr+R/PO6VcuBeyf94RbpX4m6X172y23XdlcB3XNct/f8kPZLltpKezPt7KvI1HJXxZH2OtMfrZ/+k+3Cv5P9zLuN4uFfSb8u9kv//uFcGs0/c7RNsV7h7ZVTaML40oG3HSdGuyzDGk/U50h6vn/2T7sO9kl7Rrgv3ymD24V5Jr2jXhXtlMPvE3b5ofx9iK3QbRl7M7EnXdY/kPQ6g6LhXgHi4V4B4inivjEplOWuP5D0AoCS4V4B4uFeAeAp3r1BZBgAAAEJQWQYAAABCEJYBAACAEIRlAAAAIARhOSEzu83MHjWzJ8zs2rzHAxSVmZ1tZo+Z2efzHgtQJGY2a2a/0/i35F15jwcoqqL8OzJWYdnMPm1mz5nZU77XrzezZ8zsWTP7SNQxXNf9guu690m6R9I7BjhcIDcZ3Svfc133vYMdKVAMCe+Z2yV9vvFvyZuHPlggR0nulaL8OzJWYVnSCUnXe18ws4qkT0q6QdIBScfM7ICZXWRm/9H3v62eXX+psR8wik4ou3sFGAcnFPOekbRT0g8am50Z4hiBIjih+PdKIVTzHsAwua77NTPb43v5qKRnXdf9niSZ2eOSbnVd92OSbvYfw8xM0sOSvuK67rcHPGQgF1ncK8A4SXLPSDqpemD+Y41f0QpjLuG98qdDHl4gblJpTe1P+FL9/4mtRWz/IUlXS3qbmd0/yIEBBZPoXjGzLWb225JeY2YPDXpwQAGF3TO/L+mtZvZbKvESwECGAu+Vovw7MlaV5RAW8FroSi2u635c0scHNxygsJLeK38jiQ+UGGeB94zrui9LunfYgwEKLOxeKcS/I1SW659ednm+3inphzmNBSgy7hUgGe4ZIJ5C3yuEZelbkvaZ2bqZ1STdKemLOY8JKCLuFSAZ7hkgnkLfK2MVls3ss5K+Lmm/mZ00s/e6rnta0gOSvirpaUmfc133u3mOE8gb9wqQDPcMEE8Z7xVz3dCWQwAAAGCsjVVlGQAAAEiCsAwAAACEICwDAAAAIQjLAAAAQAjCMgAAABCCsAwAAACEICwDAAAAIQjLAAAAQAjCMgAAABDi/wPUnP16RmY34wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,8))\n", + "plt.loglog(ps.freq, psd_shape, label=\"true power spectrum\",lw=3)\n", + "plt.loglog(ps.freq, ps.power, label=\"simulated data\")\n", + "plt.loglog(ps.freq, res.mfit, label=\"best fit\", lw=3)\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That looks pretty good!\n", + "\n", + "You can print a summary of the fitting results by calling `print_summary`:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.72916 +/- 3.78312 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.09193 +/- 0.73003 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.10372 +/- 0.55313 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.579354.3\n", + " -- The Akaike Information Criterion of the model is: 2189.789677035487.\n", + " -- The Bayesian Information Criterion of the model is: 2204.512942872433.\n", + " -- The figure-of-merit function for this model is: 1079.682849.5f and the fit for 997 dof is 1.082932.3f\n", + " -- Summed Residuals S = 69267.121618.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(loglike)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Likelihood Ratios\n", + "\n", + "The parameter estimation code has more functionality than act as a simple wrapper around `scipy.optimize`. For example, it allows for easy computation of likelihood ratios. Likelihood ratios are a standard way to perform comparisons between two models (though they are not always statistically meaningful, and should be used with caution!).\n", + "\n", + "To demonstrate that, let's make a broken power law model" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# broken power law model\n", + "bpl = models.BrokenPowerLaw1D()\n", + "\n", + "# add constant\n", + "bplc = bpl + c" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude_0', 'x_break_0', 'alpha_1_0', 'alpha_2_0', 'amplitude_1')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bplc.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# define starting parameters\n", + "bplc_start_pars = [2.0, 1.0, 3.0, 1.0, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "loglike_bplc = PSDLogLikelihood(ps.freq, ps.power, bplc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "pval, plc_opt, bplc_opt = parest.compute_lrt(loglike, starting_pars, loglike_bplc, bplc_start_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Likelihood Ratio: 2.2374827070098036\n" + ] + } + ], + "source": [ + "print(\"Likelihood Ratio: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Bayesian Parameter Estimation\n", + "\n", + "For Bayesian parameter estimation, we require a prior along with the likelihood defined above. Together, they form the *posterior*, the probability of the parameters given the data, which is what we generally want to compute in science.\n", + "\n", + "Since there are no universally accepted priors for a model (they depend on the problem at hand and your physical knowledge about the system), they cannot be easily hard-coded in stingray. Consequently, setting priors is slightly more complex. \n", + "\n", + "Analogously to the `LogLikelihood` above, we can also define a `Posterior` object. Each posterior object has three methods: `logprior`, `loglikelihood` and `logposterior`. \n", + "\n", + "We have pre-defined some `Posterior` objects in `posterior.py` for common problems, including power spectral analysis. We start by making a `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDPosterior" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The priors are set as a dictionary of functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law index\n", + "p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_0\"] = p_alpha\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There's a function `set_logprior` in `stingray.modeling` that sets the prior correctly:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import set_logprior" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "lpost.logprior = set_logprior(lpost, priors)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also set the priors when you instantiate the posterior object:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Much like before with the log-likelihood, we can now also compute the log-posterior for various test parameter sets:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -198.61635344021062\n", + "log-likelihood: -2412.2493594640564\n", + "log-posterior: -2610.865712904267\n" + ] + } + ], + "source": [ + "test_pars = [1.0, 2.0, 4.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the prior is zero (so the log-prior is -infinity), it automatically gets set to a very small value in order to avoid problems when doing the optimization:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -1e+16\n", + "log-likelihood: -2534.0567826161864\n", + "log-posterior: -1e+16\n" + ] + } + ], + "source": [ + "test_pars = [6, 6, 3.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: 1.383646559789373\n", + "log-likelihood: -2184.6739536386162\n", + "log-posterior: -2183.290307078827\n" + ] + } + ], + "source": [ + "test_pars = [5.0, 2.0, 2.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can do the same parameter estimation as above, except now it's called maximum-a-posteriori instead of maximum likelihood and includes the prior (notice we set `max_post=True`):" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod='BFGS', max_post=True)\n", + "res = parest.fit(lpost, starting_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "best-fit parameters:\n", + "4.8949 +/- 0.0762\n", + "2.0690 +/- 0.0636\n", + "2.0547 +/- 0.0149\n" + ] + } + ], + "source": [ + "print(\"best-fit parameters:\")\n", + "for p,e in zip(res.p_opt, res.err):\n", + " print(\"%.4f +/- %.4f\"%(p,e))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same outputs exist as for the Maximum Likelihood case:" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.89491 +/- 0.07623 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.06898 +/- 0.06363 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.05471 +/- 0.01489 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.845867.3\n", + " -- The Akaike Information Criterion of the model is: 2188.688941098666.\n", + " -- The Bayesian Information Criterion of the model is: 2203.412206935612.\n", + " -- The figure-of-merit function for this model is: 1104.686605.5f and the fit for 997 dof is 1.108011.3f\n", + " -- Summed Residuals S = 75870.935552.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(lpost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unlike in the maximum likelihood case, we can also *sample* from the posterior probability distribution. The method `sample` uses the [emcee](http://emcee.readthedocs.io/) package to do MCMC. \n", + "\n", + "**Important**: Do *not* sample from the likelihood function. This is formally incorrect and can lead to incorrect inferences about the problem, because there is no guarantee that a posterior with improper (flat, infinite) priors will be bounded!\n", + "\n", + "**Important**: emcee has had a major upgrade to version 3, which came with a number of API changes. To ensure compatibility with stingray, please update emcee to the latest version, if you haven't already.\n", + "\n", + "Much like the optimizer, the sampling method requires a model and a set of starting parameters `t0`. Optionally, it can be useful to also input a covariance matrix, for example from the output of the optimizer.\n", + "\n", + "Finally, the user should specify the number of walkers as well as the number of steps to use for both burn-in and sampling:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Chains too short to compute autocorrelation lengths.\n", + "-- The acceptance fraction is: 0.640200.5\n", + "R_hat for the parameters is: [0.33858822 0.00779588 0.00477259]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.92699673203164\t0.5826084748010877\t4.001167475075788\t5.916405947428704\n", + "\n", + "theta[1] \t 2.0850162824299567\t0.08840420643721274\t1.945198565812\t2.236054242762929\n", + "\n", + "theta[2] \t 2.059927524015745\t0.06916995745141118\t1.944976347964247\t2.172179088048585\n", + "\n" + ] + } + ], + "source": [ + "sample = parest.sample(lpost, res.p_opt, cov=res.cov, nwalkers=400,\n", + " niter=100, burnin=300, namestr=\"psd_modeling_test\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The sampling method returns an object with various attributes that are useful for further analysis, for example the acceptance fraction:" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6402000000000001" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.acceptance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or the mean and confidence intervals of the parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.92699673, 2.08501628, 2.05992752])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.mean" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[4.00116748, 1.94519857, 1.94497635],\n", + " [5.91640595, 2.23605424, 2.17217909]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.ci" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method `print_results` prints the results:" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "-- The acceptance fraction is: 0.640200.5\n", + "R_hat for the parameters is: [0.33858822 0.00779588 0.00477259]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.92699673203164\t0.5826084748010877\t4.001167475075788\t5.916405947428704\n", + "\n", + "theta[1] \t 2.0850162824299567\t0.08840420643721274\t1.945198565812\t2.236054242762929\n", + "\n", + "theta[2] \t 2.059927524015745\t0.06916995745141118\t1.944976347964247\t2.172179088048585\n", + "\n" + ] + } + ], + "source": [ + "sample.print_results()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, the method `plot_results` produces a bunch of plots:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABC4AAAPrCAYAAACXrc0vAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXhU19bA4d8ZzSSZGHEBgrsTihQKtJS21Ch195a21F1u3ehXh7oLLW2hQgWKFIfg7gQSLAkJ8cno+f6YzDATnUCABNb7PPe5Tcb2ORP23medtddWVFVFCCGEEEIIIYQQojHSnOgGCCGEEEIIIYQQQtREAhdCCCGEEEIIIYRotCRwIYQQQgghhBBCiEZLAhdCCCGEEEIIIYRotCRwIYQQQgghhBBCiEZLAhdCCCGEEEIIIYRotHQn6oOjo6PVli1bnqiPF0KIeluxYsVBVVVjTnQ7jpdTrZ8uLLezM68MlwoaBVo1CyY8SH+imyWEqAfpp8XxImOGEEfmSPvpExa4aNmyJcuXLz9RHy+EEPWmKMruE92G4+lU66dziq10Gj8Hu1NFr1VY+PBQYs3GE90sIUQ9SD8tjhcZM4Q4MkfaT5+wwIUQQgjRmMSajWx8eCjpWQWkpUTIBFQIIUSNZMwQ4viSwIUQQghRIdZsZFSnuBPdDCGEEE2AjBlCHD9SnFMIIYQQQgghhBCNlgQuhBBCCCGEEEII0WhJ4EIIIYQQQgghhBCNlgQuhBBCiEYqp9jKtI3Z5BRbT3RThBBCBED6bSGODSnOKYQQQjRClbfa23gCt9rLKbZK5XwhhKhFTrGVGVtzGffrOpwuTni/LcTJRgIXQgghRCOUnlWA3alSbHVgNupIzyo4IdXrG1MARQghGiNPP2mxO7HYXQAntN8W4mQkS0WEEEKIRigtJQK9VsFs1KHXKqSlRJyQdvgGUOxOlfSsghPSDiGEaKw8/aQnaGHSaU5ovy3EyUgyLoQQQohGKNZsZOPDQ0/4Eo3GEkARQojGyref1GoU3r2oCyPaxUh2mhANSAIXQgghRCMVazae8DTjxhJAEUKIxkr6SSGOPQlcCCGEEKJWjSGAIoQQjZn0k0IcW1LjQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhBBCCCGEEI2WBC6EEEIIIYQQQgjRaEngQgghhKhFTrGVaRuzySm2nuimCCHESUn6WSFEXXQnugFCCCFEY5VTbKXT+DnYnSp6rcLGh4cSazae6GZVK6fYSnpWAWkpEY22jUIIUVlT6mcbMxkDxMlOAhdCCCFEDdKzCrA7VYqtDsxGHelZBYzqFHeim1WFTPyFEE1VU+lnGzMZA8SpQJaKCCGEEDVIS4lAr1UwG3XotQppKREnuknV8p34250q6VkFJ7pJQggRkKbSzzZmMgaIU4FkXAghhBA1iDUb2fjw0EaffisTfyFEU9VU+tnGTMYAcSqQwIUQQghRi1izsdGnLcvEXwjRlDWFfrYxkzFAnApkqYgQQpwEFEWJUBTlZ0VRNiuKsklRlP6VHj9DUZRCRVFWV/zvmRPVVnFseCb+MmEVonGSflocSzIGiJOdZFwIIcTJ4R3gH1VVxyiKYgCCq3nOfFVVRx3ndgkhhHCTfloIIY6QBC6EEKKJUxQlDBgM3ACgqqoNsJ3INgkhhDhM+mkhhDg6slRECCGavlZALvCFoiirFEX5VFGUkGqe119RlDWKovytKErn49xGIYQ4lUk/LYQQR0ECF0II0fTpgF7AB6qq9gRKgccqPWcl0EJV1e7Ae8Cv1b2Roii3KYqyXFGU5bm5ucewyeJYyim2Mm1jNjnF1hPdFCGE2wnpp6UvEEKcLCRwIYQQTd8eYI+qqksrfv4Z9wTZS1XVIlVVSyr++y9AryhKdOU3UlX1Y1VV+6iq2icmJuZYt1scAznFVjqNn8PV362k0/g5csEiRONw3Ptp6QuEECcTCVwIIUQTp6rqASBLUZT2Fb8aDmz0fY6iKPGKoigV/52Gu//PO64NFcdFelYBdqdKsdWB3amSnlVwopskxCnvRPTT0hcIIU4mUpxTCCFODvcA31VUqt8J3Kgoyh0Aqqp+CIwB7lQUxQFYgCtUVVVPWGtPgJxi6ymxx31aSgR6rYLZqEOvVUhLiTjRTRJCuB3Xflr6glPbqTLmiVOHcqLmrX369FGXL19+Qj5bCCGOhKIoK1RV7XOi23G8nEz9tCdl2u5U0WsVNj48tEEnco1tglhdexpbG4U4FqSf9ncy/rs/GY+poR2rMU/OvWgIR9pPS8aFEEKIk55vyrTZqCM9q4BRneIa5L2PdVDkSMSajX7H1xjbKIQ49ir3BU2d9GWBORZjnpx7caJJjQshhBAnvWOZMn2s15E3xK4AstZdCHEyaEx9WWPeseVYjHmN6dyLU5NkXAghhDjpxZqNbHx46DFJcT2WQZGGusMla92FECeDxtKXNfbsg2Mx5jWWcy9OXRK4EEIIcUo4VinTxzIo0lDpvseyjUIIcbw0lr7sWC4/bCgNPeY1lnMvTl0SuBBCCCGO0rEKijTkHa6Tba27EOLU1Bj6slM1+6AxnHtx6pLAhRBCCFFJY6mcLne4hBCi8ancNwNM25gt/bQQx5AELoQQQggfDb12+WiDIPW5w9VYAi5CCHGyqdy/evrmIx0zpL8Won4kcCGEEEL4aMi1y8ezgFtjLxYnhBBNVW3965GMGdJfC1F/sh2qEEII4aMh1y4fz+3jZKs6IYQ4NmrrX49kzJD+Woj6k4wLIYQQJ1RjS5dtyLoSRxsEqc+5OVWLxQkhxLGWGmVCRSXUoK3Svx7JmNFY++vGNh4L4SugwIWiKCOBdwAt8Kmqqq9Wejwc+BZoXvGeb6iq+kUDt1Wc4jQP/RHQ81xvnH+MWyKEaCiNNV22oSqneya0M7bm1vu19T03UshTCCEaXk6xlSETF6GqoCgwd+yAKv1rfceMY9FfH23QobGOx0J41LlURFEULTABOAfoBFypKEqnSk+7C9ioqmp34Azg/xRFMTRwW4UQQpxkTpV02ft+W89dU9bRafwccoqtdT4/p9jKhIUZWB2uep0bz+RZJptCCNEwPONUqc2JgkJGvqVB3rch+2tP0OHq71YGPM5U1hTH45xiK9M2Zh/R8YqmJ5CMizRgu6qqOwEURfkBuBDY6PMcFTAriqIAoUA+4GjgtgohhDjJNNZ02YZU38JtngmozeGizOYkSKeg1Zyc50YIIRq7xj5OeQLdNoeLEpvziItKN/bjrEwyRE49gQQukoAsn5/3AP0qPed94HdgH2AGLldV1dUgLRRCCHHSOhWWN9R3MugJdJTYnAC4XOC+PyCEEOJ4a8zjlOfi3VoR6K6uBkegGvNxVqchdwATTUMggQulmt9VnkGdDawGhgGtgX8VRZmvqmqR3xspym3AbQDNmzevd2OFEEKcfBqqnkRjVd/JoCfQYdJrsNhd2FwqRhcyKRNCiBOksY5TvstYQgxa7h/cirsGph5x0KGxHmd1mlqGiDh6gWyHugdI8fk5GXdmha8bgSmq23YgA+hQ+Y1UVf1YVdU+qqr2iYmJOdI2CyGEEEfkRK2Hrc9aZk+g46Mx3Ykw6WRSJoQQNTjVaxz4XrwbdZqjClo0NZ6x8rure8kykVNEIBkXy4C2iqKkAnuBK4CrKj0nExgOzFcUJQ5oD+xsyIYKIYQ4tZ1KFdNjzUau6Z3MiHYxTSZtVwghjqfG3qcfj61Fm9ryjobWlDJExNGrM3ChqqpDUZS7gem4t0P9XFXVDYqi3FHx+IfAC8CXiqKsw7205FFVVQ8ew3YLIYQ4hTTEBLUproeVSZkQQlSvMffpxzOoIuOEOFUEknGBqqp/AX9V+t2HPv+9DxjRsE0TQghxIhWW28kptjaKOzgNMUGV9bBCCHHyaEx9euXsisYcVBGiqQoocCGEEOLUszOvjE7j5zSK9NuGmKCe6im1QghxMmksfXp12RWNKagixMlCAhdCCCGq5VLB7lQbxZ2ihpqgSkqtEEKcPBpDn15TdkVjCKoIcTIJZFcRIYQQpyCNQqO6U1SfnTkawqlerV4IIY6nptrn1pRdcbzHLCFOdpJxIYQQolqtmgWzsBEsEzkRaiqsdjyqxAshxKmmse8QUpvjtWRFxh9xqpPAhRBCiGqFB+lPucmR0+ki/2AxUxftJHRfHkUoaEOCmL8lm9PbxzXZiXVtZDIshDjRAilm2Zj7qmO9ZKUpB3aEaCgSuBBCCHFKU1WVtSt28dsPS0lfsBW73QlAe5/nfLxgDZMTIkjR6Mk1h1CeENUoan8cLZkMCyEag7qKWZ4sfZXNamfXjhz27TlEabGFkuJybFYHer0WvUGHKdhAZLNQoqLNRMeGERUdiqIoskuJEEjgQgghxCls+aLtfPruDDK2ZWMON3Hu6D60aB1DXEIkLqOe5TtySdRrsBwqYc2qTA4uyyB2by7q5l1Mz82h/MxODBzakYTkqGPSvmN9h1Emw0KIxqCu5Rb16asaU2aG0+li09os5s/ayJplGWRm5OJ0ugJ+fXCIkeSW0cQmR5G4p5ii0BBsxpBGU3tKiONJAhdCCCFOOaqqMvX7xXz81gySmjfj/qcvYOjIbhTaXaRnFdC8YsKb1ruF9zVXAtlF5fy9aAfW7ftZs2gbn7w9g0/enkHr9vEMHNqR/md0ILVNHIqiHHUbj8cdRtmyTwjRWNS23CLQvqqxZGbsy8rn10lL+G/GegoPlaI36OjWuyX9BrejTYdEUlo0wxxuIiQ0CINRh8PuxGZzUFZq41BeCfkHi8k5UMie3QfJ2nWQDcszaJ5XAoBWq+HV/QfodVorevZrTceuyWg0Ne+30JgCOUIcDQlcCCGEOKU47E4mjv+LP39ZzsBhHXnk+dEUOVR+2pDNuF/X4XRR44Q3LiyIG0Z2BjrD3WdyYO8hFszeyMI5m/j6wzl8/eEc4hIj6D+4PT37taZrzxaEmIOOqJ3pWQXYHC5KbE5CDdpjkg1xvIrKCSHE0Qi0r6ouMyMtJeK49XEb1mTy01cLWTJvC1qthoHDOjJwaEf6DGhDSGjNY4HBqMFg1BNqNhEbH17lcVVVyc0uYvvm/Wxam8XqZTv59uO5fPPRf8TGhzP0nG6ceV53mqfG+L2uciBn7tgBZORbpL8XTZIELoQQQpwynE4XLz/xEwtnb+LyGwZxw13DOVhqp9P4OVjsTix2dwqvbypybXer4pMiGXPtQMZcO5C83GKWzt/Cknlb+GvqCn79YSkajULr9gm0bh9PSstokltE0yzGTERUCOGRIRRYnTW+d2qUiVKbu95Gqc1JapSpzuM7kjtrx7qonBBC1EdN/VggfVXlzIzUKFODZmBU1zZVVdmwOpMfvpjPsoXbCAsP5sqbTmfUpWk0izEf1Xt7KIpCbHw4sfHhDDijAwBFhWUsX7idWX+v4aevFvDjF/PpfVprxlw3kJ5prarUxgg1aOn/3gIUlCZdJ0ScuiRwIYQQJwFFUSKAT4EugArcpKrqYp/HFeAd4FygDLhBVdWVJ6CpJ9QX789k4exN3P7A2Yy+egBw+A6dJ2hh0mm8qciBpB37TjbPHd2Hc0f3wWa1s2ndHtYsz2D9qkwWz93CP79WPd1OrQanTotTr6NXmxgSEiJoFmumRWos+4xGgvUaSu0ugg1aMvItdI4Pq/HYGkuKtBCietJP1+1o+7HKmRkNWcencttW3j2Q9Qu28OfPy9m+ZT/mcBM33XMmF17ejyCT4ajeO5DjDgsPZti53Rh2bjfyDxYz4/dVTPl+CY+P/ZqU1rHccveZ9O3RwhvIUVFRVSixSU0j0TRJ4EIIIU4O7wD/qKo6RlEUAxBc6fFzgLYV/+sHfFDx/6eMWX+t4aevFzJqTF9v0AL879BpNQrvXtSFEe3c6bYTFmZgdbgotTmrnejVNNk0GPV075NK9z6p3ucWFZSxJzOPQwdLKCwoZemWbKYsz0K12glyuSgos5G/JpP83GLvzib9tBoKm4VTkNiMbs0qf6X+pNCmEI2e9NN1aIh+zDczoyHr+KRnFWC3u9BnHyI5v4C7Rq/AZrGR2iaOex4fxZnnda9XwMI36H20xx0VbWbYpf24Z0cJ4XtyKc/Yx//u/57ep7Vmxu3D2KfTkxplYsjERWgURWoaiSZJAhdCCNHEKYoSBgwGbgBQVdUG2Co97ULga1VVVWCJoigRiqIkqKq6/7g29gTZunEvb73wO916t+TOh87xe6y6tdOegITN4aLM5iTEoK12olefyWZYRDCdIg5fp/QptjLBJ+jxV0XQw+l0sTczjy0b9rJq1W6WzttC1Ort3H3xOwwe0ZkLL+9H246JVd5fCm0K0XhJPx2Yhu7HIoO0LLk1jZV7CumdHIFJdWEtt2Mw6motoqyqKmUlVgoOlbI3M4+M7dls2rSfPnO3oLM7cGo19B7akUuvPI1O3VPqXZC5utoTR3vc6VkF2FDYGRPFwcRoHorRs+r3FTx5y2dcet1ARtx2htQ0Ek2aBC6EEKLpawXkAl8oitIdWAHcq6pqqc9zkoAsn5/3VPyuSU+IA6npUHColOcf+pHIqBCeeu0ydHptledUXjvtCUh4CmPeP7gVdw1MrfIZRzPJrqnYnFaroXlqDM1TYzhrVA9cLhcb12Qx+++1zPxzDf/+sZoOXZK55JoBnH5mJ++EWQptCtGonbL9dH0caT/mcrnYsCaLjWsy2bJ+Lzu2HqAgv5Ryy+HY0GeVXmM06tEbdej1WvQV44LT6cLhcFFWUu7NfPOIjgtj8JD2RHROYfQ5XUmJCT3i46wc9M7ItwR03LWNeb7jkU6rcNutQzDeOJBP3/2XH7+Yz5J5W3jo2YsY1SnpiNstxIkkgQshhGj6dEAv4B5VVZcqivIO8BjwtM9zqrsdpFb+haIotwG3ATRv3vwYNLXhBLIm2Olw8tKjkyksKOXNz24mPDIkoPeuHJCoLmgBtU+yAwmqBFJsTqPR0KVnC7r0bMEFNw7mux/T2fbfRl56bDLtOiVy8z1n0SOtVcDvJ4Q4IU7JfvpIxJqNAe8EYrM5mP3XGn7+ZhFZuw4CkJAcRfvOSTSLMWMOM+HSa8kstNIiPIhgvQabzYG13I613I7d5sRud2C3OUFxB441Wg2hoUGERwYTHhlCYnIULVrHEGquu0ByoKoLetfVf9c15lU/Hhl58H8XcfrwTrz94u/ce8OnXH/HUC67YVCtW6gK0RhJ4EIIIZq+PcAeVVWXVvz8M+4JceXnpPj8nAzsq/xGqqp+DHwM0KdPnyoT5vo41nvHB7JM45N3ZrB2xS4efn50tcsrahJrNjJ37AAmr97HZT0Saw1IVDfZDLTQWn3OUU6xlT4fLHa/Z9d2fHxtDFM/n8ejd35F34Ftue3+s6tshSeEaDQaZT/dUBqyvw+0/1y+aDv/99yv5B8spk37BB594RJ692/tF6D2e6+D9gYvWnykx30kmSWBjHk1BT9adm/BJS9cxpofF/HFhFlsXr+Xh567qEGDMXU51nMCcfKTwIUQQjRxqqoeUBQlS1GU9qqqbgGGAxsrPe134G5FUX7AXeyt8Fiumz4eO1zUtUxj+m8rmfr9Ei66oh9nnte9Xu+dU2xlyMRF2J0qExbt8rY/0OMKZIJZ33NU+T0NHVP4bMo9/D45ne8+mcvtl0/kvEv6cO1tZwScWSKEOD4aYz/dUBq6vw+k//xrynLee/VPWrSK4eHnL/Zu/3kk73WkGmIHlPq05UiXJvq10xTOW/ecxaSJs7jr6o94ZvzltG6fEHAbjpTseiUaguQICSHEyeEe4DtFUdYCPYCXFUW5Q1GUOyoe/wvYCWwHPgHGHsvG+E4W7U6V9KyCBv8Mzx2r767uVWUStHT+Vt5+6Q969mvFrfedXe/3rqn9gR5XIBPM+p6j6t7TYNQz5tqBfPHbvZx3SR/+/GU5N1/yHv/+sRp3fb/jJ6fYyrSN2eQUW4/r5wrRhDSqfrqhNHR/X1v/6XK5+Py9f3nnpT/ofVpr3vzsZnr1a11jccxjWbT4eIxzvmob8wJupwsi09ryf5/dhMPu5IGbP2fJvC1+zz8WffnxPlfi5CQZF0IIcRJQVXU10KfSrz/0eVwF7jpe7TleO1xUd8dq3ardvPToZFq3i+eZ8VdUW4yzLpW3SC2w2MkptgZ8XIGkAdf3HNX2nhGRIdz96Hmcf2lf3nnxD954dir/TlvN2EfOpWXr2Hoff33J3TQh6nYi+unjkZ7f0P19bX3dNx/9x49fLuDcS/pw9yPnotXV3r8fy6LFJ2InpyOpY1RTPY13v76NZx/4nmcfmMTN485izLUDyC2xHZO+XHa9Eg1BOd53ZDz69OmjLl++/IR8tmiaNA/9EdDzXG+cf4xbIk5ViqKsUFW18qTzpHW0/fSJWM+6cW0WT9z1NdGxYbzxyY1ERIXW2Ja62pdTbGXG1lzG/boOpwvvJA44ouOqrQ2pUSYy8i0Ncq5cLhd/TVnBFxNmYSm1cvkNg7jy5sEYjPqA21Vf0zZmc/V3K73p2N9d3UuKhIoTQvrpw45nQPF49Pcb1mTy0C2fM/zc7jz47EX13oI0EPU9jkDGkcZQ16Gm8Wfh9lxWfjuf9P82c9b5PWg7uh/X/bjmmPTlGw4UeetGdY4PO+r2i6brSPtpybgQQghxTDT0Dhd1TVy2btzLk3d/Q2SzUF778Hq/oEXlyTtQ54Q+1mwkwqTH6aLK+uj6HldNFxCe6vkNeXGh0WgYNaYvpw/vxMdvTef7z+Yxb+ZG7nvqfLr2ahlQu+rrWN1Nk8mqEEfuWNZ3qOxY72hkKbMy/ukpxCZEMPaRc49Z0KK+/WFtx32k/Wug/V59+sfK7fRrW3AEL14/iKlfLWD//kKMUdFwDPry6upGBfpayegTIDUuhBBCNAGeicuV366gzauz2HCgyO/xXduzefyubzCHm3jtwxtoFnP4bk56VgFWh4tiqwOrw0V6VkGD1qoIRHVt8H3sWKz9DY8M4eHnR/Py+9ficDh56NYveO+VaZQWlzf4Zx/p2uvaeL7zq79bSafxc6R2hhD1VLn/So0yNdk6NJ+/P5MD+wp46LmLCQ45NhetDd0XH8n71TbW+daeONr+sXLdi+Qzu/Hg/y5i06rdXLB9Fx+c3bZBAwRHc26lPobwkIwLIYQQjZ7nwr/U5gSg/3sL2P7YcGLNRvZl5fP42K8xGnW89sH1xMaH+702NcpEWcXrymxOUqNMxIQYqw1IVLfVaUOsj66uDR41BUcaKtugd/82fPTjWL6cOIvffljK4rmbufvR8xgwtGODZko09B3X43m3WIiTkW//lRpl8t7xbmp3rbN2HWTaz8sZNaYPXXu2qPP5vn0nBL60r6Ezx2p7v6LScrZn5rItM5es7ALyC8vILyxl36EyEg9ZcAIuFEY/u5+xZ7QjITaCcf9mYFF06HUa3r6wy1H1j9XWvegUR3RcGC8+MpnfX5xKn7evIrZT0lGdg0DOxbF8rTi5SOBCCCFEo5eWEoFfZrDqnowOTQnnqXHf4nC4eOPTG0lIjqry2ox8CyEGLSU2JyEGLRn5FjrHh1UJSNS2nKO6CWFZuY39uUWEmAyEh5oIMupqTF+uqQ1QffG4hkgxBv8J+x0PnsPQkd14+8Xfee6hHzjj7C6MffjcY1a47mjJZFWIo+fpv6ZtzG6ygcDvP52LwaDjmtvOqPO5vn2nVqMAql+Notr6uIYu5On7fq3Nelas3cGqzXtYuXkPWQcKvM8LMRmIjgghKiyYlvHhbC+y4XKpaFQXIeWlfP/nMgBaADaNDktQMNu3R2BQ1Gr7x0CC3jUda69+rXn7y1t4aty3PHTrFzz20hgGnNHhqM5DbZ93rF8rTi4SuBAnHSniKcTJJ9ZsZPE9g+j/3gJQwaDTkJYSwfuvTWP/3kO8/uH1tGhV/e4ZaSkRGHQazIriN8GrHJCo6Q6/7yTQZbXy7V/LWbt1H9syc3H5FLgOMuho2zyGzq0T6NImgZ4dkoiOCK21Db7HV1tbZmzNJcKkr3XS5j9hB1BwuvwDH+07J/He17cx+esFfPfxXFalZ3DXI+cyakSX+n8px5hMVoVoOE01EJi9v4D/pq/j4qv6e+sW1ca37wzSaXCpKjanGnCwpqEyx/IKSlm1ZQ8rNmaxYlMWu/cfAtxBip7tkxnarwOvLtlHqc6ARq9n4yPDvH3chgNFfmPdmvsGsyf7EFd+NBejpYzQ8lL+nraIzkF62rRO4pqRvYgJNQCB14OoLbjRPDWGd768lWfu/57nH/qBm8edyZhrBx51XZGjObfHuoaKaBokcCGEEKJJ6BwfxvbHhnsnW7vXZjL777VcfeuQKkUnfQV6AVzdxN53EhhmKSK1KAfV5aJjqwQOhjfDojWgV1QeHtQSS1k5m3dlM3X2Gn6YvhKAFgmR9O6YQs8Oycy/tS87ih31TlnWamDcr+urBCEq852wm3QaUMBid1WZsOv0Wq66eQgDhnTg/577lZcf/4kFszdy96PnER4ZEuC3cXzIZFWIhtFUA4Ezfl+FqsIFl6cF9HxP3xlq0FJqc+IJLWs1xy5Y43S5yNibx/rt+9mw4wCrt+wl84A7UBEcpKdT60RWWPUUG4JxBZn44bZhpGcVULSq0B2c1uLXR1ce62LNRpKiglnywiWkZxXQOzGM3VnZTFuwiXkrtvPo/+2iQ2ocl4/oiSMiss7MmkCCG5HNQhn/0Q3833O/8uk7/7Jrew73Pnl+jbtTCXE8SOBCCCFEk+G5kLWUWXnvlWmktIzmipsGB/w6j+ruNlU3sZ+2MRuHw0nUwQPEWgo5pA8iN64Ft5/Tix+nrPNODpt3bOV9f4fDybbMXFZu3sOKTVn8s2gzU2avBSAxJpzFreJo1yKW9i1iSY6LIDYqFINeV6W9nrYUWOzc5fNZNd01rBzsAAWdRlPj3dWWbeJ4+4tb+OnrhXzz0X+sXbGLe5+8oEHSgoUQjU9TCwQ6nS5m/L6KXv1aEZ8YGdBrPH3nhIUZvDlvJ6U2Jyadhncv6lLl4ry+dYRUVSWvsJRde/PJ2JfHtsyDbM/MZfueg1htDgDCQoPo2iaBC87oQq8OybRvEcs/Ww/yrWe7aNfhJXy1ZcBU9135/k6rTeDDnzbjiGlFlKWQ5DIrz330D0mxEUSoIRBkrrHvD7R+UJDJwBOvXErL1rF8/eEc9mbl88z4y4mKNtd5roQ4FiRwIYQQosn55dvFZO8v4I1Pb8JgqH0oqzw5re1uU+XJYt/kcBLz92O2FLE/OIK9odGEKO7Pq2nSqdNp6dgqno6t4rn63D44nC62Z+WyavNe1mzdy4YdB5i5dKtfG5uFh9AsIpjwUBPhoSYiw0xEhgUTFRZMdIgJk8sOhtpTvCsHXqDmonS+5+SKmwaTdno73vjfVJ57cBJnnd+DOx88hxBzUCBfRcBka1MhRH2sX7WbnAOF3HzviHq9LtZs5K6BqUxYtAtNxfK8Ee1i/J5TV9ZBcWk5W3bnsGVXDjv35rFrXz679uVTUnZ4946wECNtm8dy8dButG8ZS5c2CaTERVRZUlFtIcw6MmByiq3M2JoLwIh2MVUe9wYf7C7UkEhuuKonYeUlfPjTQuL37qV7XCT3XHx6tX2tb1aKiupXLLoyRVG4+tYzaN4qlvHPTOHuaz7iydcuo3P35nV8CyeGjDMnNwlcCCGEaFIcdifTfl5Gv9Pb1VlhvrrJaX12q5gxbx3m0iJ6pXXi4912VKDU5qR5RBBvX+iuC+GZEE/bmF3tZEmn1dChZRwdWsZx5chegHtSvC0zl325RRzIKyI7r5hDRWUUFFs4kFdEQZGFYp8JcgtAq9XQOiWayX8upVfHFHq2T8YU5J+2WznwUt1xVXdOWrWN552vbuW7T+by4xfzWbMsg4eeu5jufVJrPb+Bqu4zIfBq/0KIU8+yhdvQ6bSkDWxb5bG6LlDrCgxUHgfmbs2mmaucZeszWbYx0694ZlR4MC0Tozi7fwdaJkbRMjGK1KRmREeEBFT3oaa21JQBs+FAEae9u8C7i1aEScdmnxoYUDX40KpZMJ3j4xnUsxUzFm/m418W89S7vzOrb1vGXTmYxJjDu23Fmo3MHTuA/u8tQFVhyMRFdRYuPX14JxJTonjh4R95+NYvuPW+EVx05WlHXfeiIR1pUWvRdEjgQgghRJOybNE2DuWVcO7oPnU+t7ogRaBF6havzWDC5Pmc2a89pw3twbffrXSnHes1jPo8HQX3nby5YwdU2WYQqPVumTkkiF4dU+jVsea22+wOtu8v5L9N+zCrDg4dKmL99gNM+mcl3/y5HJNRz7C+bTlnUCd6dUxGq9EEdP5qCtzo9TpuGDucfqe34/Wnp/DoHV8x5toBXD92GHr90U0Xqis2et9v62WCKYSoMQixbOE2uvRsTnBI1WyEQC5Qa1sak5YSgV4DCU4LkQcLeevdLThdLoKDDPTqkMz5g7vQvmUszZpFsKXAWmfmWl39V6DLdHKKrfR/73DQAsBqd1UJsNcWfDhnYCeG9W3Hd38t58s/0lm0eic3X9yfq8/pjU6nBdw7XSkolNgcaBQloMKlrdvF8/63tzH+f1P58P/+YePaLO5/+sIq38+JIlton/wkcCGEEKJJ+W/6esIjQ+g7oE2tz8sptlJgsaPV1C9FF2DLrhyeeO9P2qTE8NQtIyi2uzDqNGgUBRUVVCi2uSdHk1fvq3JRPu7XdRRY3GueI0x6Nj9S/wvzgnIngz9dVmVybim3s2bbXv5cuJmZy7bx54KNJESHcfW5vTl/cBeC6iieVlfgpmPXFD6YdCcfvTWdn75eyJoVu3jylUuJT4o84jTcyp8JyARTiAZQWG4np9jaZAN/NQUhCg6VsmtHDjede2aV1zTEBeqOjH0MKt3H/oOFRIYFc+7InpzRuy2dWsV5L+5rC5DkFFvp8PocrA4nRp32iPr46qRnFeCzWRUARr2m2gB7bcEHo0HHTRedxnmnd+aVL2YxcfIC/lq4iaduOYuubRKPeJeZULOJ/71xBT99tZAvJ85ix5YDPP7yGNp2TDzKIz96TXXnHBE4CVwIIYRoMlRVZe2KXfRMS0VbMbmsTuWtQSeM7uqX+VDb3a+de/MY9/ovmEOM/N+DF2EK0mMKwhvsSI0yMWTiIu/Wppf1SGTCol1+F+VWu8v7flaH84gm1jVNzk1Belq1TOCDisJs5vJizGoZb3w9h0+mLOaqc3pzxcheBBmqBjA8gYe5YweQkW+pMQARZDJw7xPn0/u01rz53G/cdfWH3Pb4+Vy9cE+9sySq+0youUaIECJwO/PK6DR+TpPNWqqpn9u+aT8A7TsnV3nN0Vyg5hWU8ua3/zFz6RZaJkbxyrhRDO7VBp22asZabVtkvzZnOwUWO+DevWnG1lyu6V21rfWVlhKBUXe4La+d15Ex3RJrrVURYtDicLoIM1YdExWDgW+LgjBGJ+E4kM2tz//ApWf1ZOylg454lxmNRsPlN55Ox24pvPbUL9x/46dcfvtQItLa0q955An7O2yqO+eIwEngQgghRJOxLyuf/IPFtW5/ClUnnBEmfUCTmN3787n7lZ/RajRMeHwMcVGHq6f7BjsqT44qF8U06jVYHO7ghUGrocBS/7uitU3OfQuzFWlD2EsI5shQLotX+OCnhUydvZa7rxjMmf3aedcg11RnoqbaHACDhnWidbt4Xnx0Mm8+8RNxrZLY1Dwec5A+oGBMbXcsZYIpxNFzqe7spaaatVRTP7djiztw0bp9fJXX1OcC1TdLLDMzm8ff+wOL1cGto/tz3ai+VXZ0qqttnj6trGIXkYbmObbalhr6PnfK9X0444PFAAz9YDFrHxpC5/gw73M8Y0W+NpiyhFZcHacwecYqFq3eyVO3ns2oTkcebOnWuyUfTLqTl5+ewrfvzyQ/dgWZ3Vuz7skRJzR40RT/HYjASOBCCCFEk7Flw14AOnVPqfV5R3JHbs6ybbz46Qx0Wg0fPHEpxuDgGi/qK0+OKv+8+ZFhzNiaS1G5naf+2cxdU9bVu5ZDbZPz1CgTKip6DXiSO4oNJhJ7teWOi0/jrW//46kJf/LzzNU8efMImidEVltnYtyv67DaXRj1mirF3zwSkqN46/ObeePFP5j71xqCS8vY1bNtQOe0tpRumWAKcfQ0Ck06a6mmfi5jezZxCRGYw6rf8SKQ/sM3cBriKKfNwSySYsJ59d7zaZEQdURt+3bFHix2J+UO93oOg0Yh2KitsmtJXe2qrl/3/D41yhRwDaBZ2w56/1sFJq/ex3MjDwcu/LbJ1io8c/NQ9pzdjRc+mcEdL03mkuHduevy0wkxGQJuv6+wiGAG3nEmU/NtNN+SSei8NfzSO5E7L+19RO8nRG0kcCGEEKLJ2JeVj6IoJDdvVuvz6nNHrri0nDe+mcM/CzfRMTWOl+8ZhS4o6Kiqk8eajVzTO5lpG7Ox2p1YHComXWAF0Cq/T1pKRJXtXIdMXISqgkZRcE9XQQEu65FI5/gwvnrhav6Yu573f5jPNU9+ze1jBjJsYGe/YE5Rud1bh8PiqD3V2WDU8/jzF5PSKoZvJ8wkLXMvRocDqP2cHO2aY9naTojatWoWzMJGtEzkSP7NVheEyN5fQFxixFF9lidwWl5WTutDWRhDDLz32CVER4QGfDy+bcsptjLu13VYKqLF4UE6XjqnA2FBtdcVqtxm37Fl6T39yS0pZfa2bN6dvx1VdaICiqrgdKjoMPLtil0UWFxc3jPJL5sC3H3+izO3uV9T8XPl9lceC2M7pvD9y9fx0S8L+WH6ShatyeDJW0bQt/ORbXHar3kkea0TKYoMo+3a7fz22u8Y9udz/Z3D0OlrXtIpRH1J4EIIIUSTsX9PPs1izRgqFaCsbgIbyB25Jet28dKnM8grKOWWi0/jxgv6odNpmbYxu0GKRzqdLiwVd+YsDhWn01XHK/zVtJ2rzeHyVp03auGGvi24e1BL76RWq9Fw0dBuDOrZite+mMW7k+YxZ9k2/rvpTHaVuUhLifCmInus2ltYa1qyoihce+PptGoRzatP/cz9N33Gy+9fS3xSZI3tP5o1x7K1nRB1Cw8KbBnc8dCQ/2Zz9hfSM62V930r9yGBfFZaSgQGRaVl4X60Lhcv3n1+vYIWlaVnFeDpwk06DS+d04Fnpm/x1lJ696Ku1fahLpfK7vwCtuYc5M8NuwlhD4rGikFxcN6ETd7nRVS+xq8Y5j7+bxdOVcOXC41c07cdZ3VoSb/UFIINejrHh7H2oSFMXr3PG7gOhClIz31Xn8Gwvu144ZPp3P3qz4we1o27rxhc7+wL336+e8xIpnw8m8lfLWD18gwee+kSklJqv9EgRKAkcCHqTfPQHwE9z/XG+ce4JUKIU03OgULi4iP8f3cEk+Xi0nLe+X4uf8zbQMvEKF773wV0anV4LXV9MwV8U3x9i17+sHqv3/N+WL2X/i2jAr6Qr2k7V5TDz7E64btVe7h7UMsqS1uiI0J5/b4LmLF4M699OYv7XpnM07edTaw5jhHtYogw6Sm3O7A6VD5ZspuvlmdVOX+VLxoGDuvIqx9cz9P3fsfdN33G8xOuo1Ob2BqP4UiXhMjWdkI0LQ31b1ZVVfLzSoiKMdfYv1e39C3CpK8SvH79tFg+/HEzT95+Dv06Jh3V8fktu9DAjrwyrD5B5Nt/XoNJr+Hvm3qyrzCfpRn7WJG1n5yiAiz2wzUxDIoeOwbK1WB6J8eycHcxZXYFp6rBoNMRpNPwxeXd2ZlXwqKMbP7ZvBeDxk6QxsrUVWuZsmoNBq2W/q2aM7xDa0Z2astzIztU2+a6xsdu7RL55qVr+OjnRUz6ZwUL12Tw2I1nMqB7qvf1dY1XlZ9z75MX0Ktfa95+8XfGXvkhdzw4kpEX9fLWWxLiSEngQgghRJNRXGipcoe/vpPl5Rsyefajv8krKOO6UX255eL+GA3+w2Gs2cjcsQO8d7HqKv7WafwcrA4XZTYnIQYtBp2GjQ8P5c4BLflxzX7vc0e2j61XkKW6AEqs2cjiewbR9+35lFcUAFVV6P/eAhSUKu+rKApnD+hI59YJPDnhTx55+3euOqc3d11+OpsfGcqEhRm8NW8nJTYn5kpb6tU06Y1pFcey7m1pt2Qjd974GZ98cxvtWjbsXTXZ2k6IpqWh/s2WW2y4nC5CzUE19u+Vgwjjfl2P0+XfTzmcLn6btZqubRI4f2D1F/Z1qXxR7imcOe7X9XyyZDdlNgdheitayjBpywlWyrn2y80AqKqCXQ3CqZh5bmQP+rRIoFV0FBn5Fj5Pz+Kz9ExmZaiU2kIINmgxaZUqWRtD2zXnx3Vl3qUgy+4diM1ewpytO5m1eQdzt2Xw0t9zGNmpHWN6daFPiyS/AEEg42OQQc+9Vw1hWN+2vPjpDO5/YyrnDurEtRf1J23C4lrHq5rGiNPP7EyHrsm88eyvvP3i76Qv2Mp9T11AeGTIEX0PQoAELoQQQjQhRYVltOvsXsPrmVCGGbWoqIQYtNVOln0nnus27ebpiX+REhfB+PsupGOrqhXrPa8ZMnERdqfKhEW7ag0weCaGnrtulQMAU6/vw2XfrECngXt+Wweqi3K7A60epq7NYGBqJC6XiqK4l3hoFQWDTkewQY9Jr2P9Q2ewfE+h3x2vzvFhLLvvdPq/twDPjFZVocRW8+Q0OS6CT56+nHcnzeP7v1ewPTOXl+4ZxV0DU93buVZs71rt7iWVJr3pWQUUhYawsltbeq/ZyrP3fsvH395GqLn6Qno1fR+1BW1kazshmpaG+jdbVmoFICTUSN8agiG+n1VgsXPXlHVV+qlZS7ew/2ARD1w7tMrd/roKZKalRJBbaqX/ewtQVTBWBKNjzUZCDBr0aiEmTSHxIRY0ijuAbFcN2Ajj2bN74sDEg9N2UGx1YjbqiA5PoEtinHdssdid3loZoQYt9w9uxV0DU6ucM9+lIMPbRrOv2E5aShyntWrOY2cPYcP+HH5ZuZ4/1m3mt7WbaBcbQ5/UttzSvyuJEcH1CiZ1bZvINy9ew+e/LeXrP9KZvzoDY1Az8rWmGseV2gIjMXHhvDLhWn6dtITP35vJHZdP5MFnL6bPgDb1/6MQAglcCCGEOE4aotBiaYmVkNAg710eT60Hk16DRqMwd+wAbwHLn9fuY/3+Iiat3odLhVC7hdTcLDq3jufNBy7CHBJU4+fUJ4sjLSUCrQaCtApW5+EASp/kcFZn7WfmpvXEBx1Ao1oxaOwoigoVS4jf+ncXb9VxzDqNhmYhwUSHBtOiWSSd4mPomBBLt6R4tj823Gf3ki2YjVWDD74Meh0PXTeMDi3jeOXzf7nluUm8+eDFNV5s1DTp9fzeHhvBjj7tMSzfwqtP/sJzb12FVqup8Vjqu6xHdh4RomlpiH+z1nL3sgqDUV9rMMRTvHjG1ly0Gv9+asOBIiZMW0mzyFAG9Wjl9/6V+6G5YweQkW8hNcrkDVhrNfgFpAGmbcgku2AvU1dvJFJnxaFqsapmXju/H71SktiaZ/UrovzY3xlV+mTP2OIJWph0Ggw6TbVBC4/O8WHcNdBYbd/ZJTGOLolxPDJiMJOWreflGYvYmrOIb5akc9+wftw8oFe9gkkGvY47xgxkSK/W/O+jf0jet4ew4DDyjPHVjit1BUY0Gg2jrx5Aj7RWvPLEzzx5zzd0Hd6ZcQ+dQ/NYc5X3E6I2ErgQJ1ygNTOEEE1XQxRtc7lcWMvtmIIN3slfScWksszuwmzUkZFvISbESPvXZlNY7rOm2GmnTX4WoWEm3rjvwlqDFnAkKc8KikbBrNfy9LAUDhTsZcxHX3GwtAytoqBX9DgwUOoKcU92HQp6nY77B7ehX/NIFEVBRcXlUnG4XNidTspsdix2B4fKLOQWl5JTXMLqrH38tX4LAHqNhp7Nk5i1006pMxSNRseE0dUXh6ts1ODOJMWG88g7v3Pzc5N466GLGdWpavZJTRcNlX+fPn0t770yjbfenE5x19Qai8RJ3QohRF1U1V3QWKtxB0FrCob4jitaDd7+L7fUSrfx/9EjN5dDxlA25RT79Ue+/VCoQetdZqeioqq4g+E6TcV+TaBVHERoc3lj+la0isKgNqlM2WSnxGHEqNMxrH0bYs1G2vk0sablhv5LXBTevahLjX32hgNF3tdn5Ftq7TtNBj2xkYnkOlJxOYqINhbw3pyF/LBsFbcM7MvlfboRpA/8sq9jq3i+e+laPvhlMZP+Wk5yfiZrNuzizH7t/LJXAs2yadU2nv99cCOj7vgGddYGrl28g9fevILT+qYG3CYhJHAhhBDimPFkWRRY7Ed9wWqzOlBVlSCTwTv5CzVoKbU5CfZZJpKeVYDF7vR7bcuibBRV5aV7zic8gOUM9Ul5dlead6F1FRGpL+KTeZsJ1usZ0i6VYe1bM7htS6wOxVu8c8jERbi0Ki6Nws39u9Y7gHOozMKm/Tks2LGbKas3Y9aUEqIoWFzh2B1tAn6/pKQYrrnqLH7+5T/GvvwTb9x/IX2q2Q6vposG39+PGtOXpct38e8PS1i5MY8XZ4az9qEhVYIXUrdCCFEXz+5Liqb2Yo6VA6ERJneGxoSFGZgcVnSqiyKDicmr9/HcyMN9kW8/5AlWlNjcQQxFwVs3AxTCdIWEaXPRa1Uu6t6FLiltcKo6vt+wDovdgU6jVjue1bTcsLaxpfIylW5vzEUFXpy5jTl39q+z73QflwY74RQTwUeXteO79JW8Mn0uXyxewd1n9Oei7p3Q1ZIV50uv0zLu8kGcN6ADL346nacm/Mm/Szbz8PXDiYk8vDtLoFk2q3NKyGjfgqxwM1037+K5u77m2tvP4PLrB6HVybapom4SuBBCCHFMVL4bVjmVt77KLTYAgkz+6cOVd/JIS4nApNdic7ozLoIcNsJtFgYM7Ervdgl+7+l7R6vyRXYgk7GCsnK2788gVrcDrd6BU9Vx++mncdOAnoSb/LM6PO/lO2kFquwEUpucYisztuYBWs7r1oNX55dgsZYRoS8kTFfI639PY/XutjwyYjBJETVvi+f73QQFxzPEmMf9/zeVV8edz8BKadWVX1djMGdgR0oWbafTll0sTutc5WIBpG6FEKJunuVmqkut9Xk1BUIv65HIxD9WAGDRB3FZj0S/11UeP06fsBCTToNOqzD/roHe8WTSslV8MG8TfVokc/+wwZz92Srs6ZsCGs/q2vWkukCHb1bipd0SvRkfKvDbhuw6+87q+tcRnVqxNCOLN2cu4Knf/+XD+ekM7dCVW/p3JS6s9sxDj9Yp0XzyzJVM+mcFn/yyiCse+4pxVw7mgiFdat0ppPL46l1iGB/FpthwbreX8NXE2Sydt5VHXhhNUnP/As8NsbxUnFwkcCGEEOKYqDxxmzC6S5Xt6urDUuYOXJiCDy9X8Ez+fIMOsWYjWx4dxhfLMnluxlYSyopRgTvO7+P3fhsOFPnd0aouQ6Amm/bn8PmiVfyzcQt2p5M+zZPo3rw116d1IiHcRE6xtcaAhKfd9V0+k1Nspd1rsygqd2eThBjcd6isLiNFznj+d94Qyi3ZfLl4JXO3ZnBNv160iU9lQMtmVd7X97vBqGPMpUOZ9ut8Hnn7d16774Iqa8I9n19be6/o25z3O7Sk74rNtN2xh8t6DK/2OKRuhRCiNjq9u2+z+2whWp2aAqGd48N4dFBzfvorm7n3Vd+v+/bDoFRsMa0QE2Kkc3wYXy5eyQfzFnNu53a8Pvoc/tmSW6/xrPKSkHG/rsPposa+vvJ4Cf5Bm9bNggPqO32PyzMG9UtN4YdbrmDq6i088utsvlm8gM8XreDjK0cyvEPLgAIE+WV2lPgELrtqBKsWreHlz/5lxuLNPHnLCBJjwqs8v6bxtfL39d+M9bz3yjTuvPID7nhwJOdc3BtFURpkeak4+UjgQgghxDFR+W5YILUXamPxZlwY6nxurNnIo8Pacn3vFK5+7As6d2tJ+0rbqE5evc/vjlZ1GQK+isut/Ll+C1NXbWDN3gOoqoJFDcNKFO9cdo732AKdcNW33oO7COfhJTA2hwu97vD5Hd01hVhzGy7t3ZXn/pzDpwvTsaurOeRIYP49Z/pN3it/N2e0j2fk42O457VfeOydP3jzwYtI69KiXu3tHB/GgufPY/yroMzfjGNPHgQYCBJCnPwCvYOurwhc2Gy1By6g5kCo4nAQYjLQp2V0ra93L/VzF8vUaTSkZxXgsOXx6vS5nN2pLa+PPgedVlPv8SyQXU98VX7/uwelMmn1PsrtToL0WsZ0S6zhk6qqaQwyGCPJdbREcR4ixpjPXT9M5Yx2rZmyGSwOHYoCi+8ZVCXQk1NspcPrcyiw2AGICArjrSvb8uXURVz9xNfcdfnpjB7WHY3P0p6axtfK39cZI7rQpUdz3nh2Ku+89AeL527hvqfOJz239poe4tQU2CInIYQQop48E7fvru7VIHdLSovLAQg1B5beCmCzWCgpsTC8b9sqj13WIxHPNEup+Lk6G/Zl88iUvxn0xkc8O20WZXY7F3TvRbajDXvKYih3GknPKvA+3/cC3+5U/R7zdbT1HuwuFb1Gw4TRXf3Ob1JEGBf0PI2D9mQU1Um0LpPhE/4gu6jc+9rK3w3AvN2FPDN2FEmxETzw5m/MX7u73u3tHB/GR6+OIT4pkvdf+xNHpVojQohTk+di+urvVtJp/JyKTIfqGY16wF3X6EhZym2EBBDkrtyvdYo18co//9GnRRKPjhjGP1tyySm2HtF45rlIH9Eups6+s/L7d44PY+ujw/j5+r5sfXRYvcbPmsYgTw0MVRvFIbU1N/bvy8Idu4hUdmIimzKrnf7vLajy3aRnFWB1HO7LrQ6VZi2T+f6V6+nSJpHxX81m7MuT2ZNd4H1OoOMrQHRsGC+/fy3X3H0mK9N3csuYCVg3ZKLXIPWQhB/JuBBCCHHM1LSW90jWrRZXXHjbtdqA60Js2ZUDQIeWVe/UdI4PY+1DQ7xrcGNCjH7vu35fNhP+W8KcrTsJNRoY3aMzo3t2pktiHLklNj5fNQezUUWrUSiw2L2T20ADEvWt9zCiXQwRJj2lVjsVO+nhUvEWpPOVlhKBjRB2W1KIN+YQocvh7h+n8dX1FxJs0Hs/v/KSFffa7SiS1SLu/79f+eipy+ndNr5e7TUG6bnjwZE8+8AkfvtxKZdcM6DW4xJCnPzqk2EWZHL3UZ66RoHyHVucLtW7K0ltKvdrXy1eTmG5lcv79qHbm/OqZC0cyV3/yp8RZtKw9uB+dhbls7Mon72lhRRYLRRYyyl12NDsUNBqNBg0WmJMISwrDiU+JIz2EdF0jIwlPthca22Jmsag6mpDTWjdmmu+/osoQwFhumKKXTEsyTzEBZ3j/d7PqNN6t3A16jXeMeDdR0Yzbf4G3v5uLlc/8TV3XzGYS4Z3rzK+1rUM82CpnfszStH260zr9Tv5+NVp3HRaa3pdNYhh3ZKO+zIRqa/ROEngQgghxHFzNOtWiwvLALho0ipKjcaAXr9lVzZ6nZZWyc2qfTwmxEjf5u4lJJ3Gz8HmcIGicntvA3+sXU94kJFxQ/tzbb+emIMOf45nAjhjay7jfl3HXVPW+bUn0IBEfSbCsWYjmx/xfOZ6nC611rt3i+8ZRP/3FlDoSsblKmD93izGfDyJC3oOIDQoyJvq7HtBYdJpQNGwOTyJToeyePyd3/jhpWuJCg+uV3tPG9yetIFt+fbj/xh+bjciokLrfI0Q4uRVnwwzrU6L3qDzLg8MROWx5eZoB9padiWpfGE6qlMcew6V8cnC5djUUK6etBlUKLE5j3qpgktVybTkssm6gy8WZLLm4H4cqjsIoFEU4kyhRBpNRBpNRAUFU253km+xgV5he2Eeiw7spsh2OAsiymiiR7MkYnQxXNq+PX0S/LeyrhygmLE1F8Db56elRPidqynXX8jFX8wlXJNDpO4AXy2YTWrEMLomHQ5ae8Ye3/cBUBSF8wd3Ia1LC17+dAZvfD2b2cu28tQtI+gcH1Hr8ktfnnEoX6enPK0Tj8ToWfrTUnZs+JHI+89mxAU9aw3WNCSpr9F4SeBCCCFOAoqi7AKKASfgUFW1T6XHzwB+AzIqfjVFVdXnj2MTgfrXdfB1KK8EAItOF/Dr9x8sJj7ajL6ardZ8JycqKi6XisXuID4omz/WlnJR9y48dc5gQoOqTlg8k14Ap4sq7Qn0Ar+6uzqVf1f552t6JzOiXUydgZHO8WFsf2y4N7his+tx5u5j/PS/2WNJJCQomM2PDKtURA5AwRli4oCxOcG5WTz67u9MeGwMBn3gUwZFUbjtgZHcdtkEJn0+nzsfOifg1wpxsmoq/fSxUN8MM5PJQHlZ4IGLymPLIasDe8W2qpXVdGH685rtaBQXeeWhoMW7NeqRLlXYXpjHT9vXMm3XJvaWFqFVFBKCmtG/WUfOa5VKr/g4WpgjKSxz+u005d+2McSajRTZytlyKJdNh3JYemAvf+zYhka/nR8zF5NqjuL81I6c26I9HSJjAbwBig6vz6bA4l5yE2HSs/mRoVXOVZHVyaZHR7Ek8xC7c/fw9ZJlXPbJJC7t3ZX7hw8kMtjkHXtqEhdl5u2HR/P73PW88/1crnr8a+6+4nQuGd7Dr/ZFTSoHtm69ZTA3XNKLt174jTef/43Zf6/lvqcuICE5qt7fQ30dzTxFHFsSuBBCiJPHUFVVD9by+HxVVUcdt9ZU42jqOuQfLMEUYkRr0GHW1pxt4OtgQQkxEdXf7fednIQatKA6SDbtJUhjpcARw6D23WoMWhxeWqGgrWYdbm1ppp4t4nolhXPtD6tQVTDqNN5aE53Gz8HucmIMLuf+4XG8t2QLqsaBVudkWJsYTBoDew85OCs1hV4aE1B7RgeA1e7C4jBRYk8iKWg/zYP3kGtL9k7IKm/R6vnvtRt38eT7f/LqF7N4+tYR9brjldIymhGjevDnz8sYfXV/4hIiAn6tECexRt9PHyv1yTALDjVSVlpzHYzKKo8tyZEh7Nq5r9rn1nRhWlJ2CFUFrc6MTqth7tgBfltte9TUv3v69lYJMDVzFWsO7UajKJyemMqtHfrzwOR9ZJS6WAT8uTiLzY+0pbDM6ReoePvCLlgdLkptTkIMWu/npGcVkpYSS9+4FKJcyXz7rw6LWkZEZBk6s4v31y3i3bUL6RgZy6VtunJRamfSs4qx2g8Hb6yOwwGSyuNwrNnIac0juenH1TicKYTr8vhl5Xqmb9zGg2cOYkzPLrUGIDznpH/vdpzWtSWvfP4vb3w9h9np23j61rNJjK2684ivagNbZiOvf3QDf09dwafv/Mvtl0/k5nFncf6lfdEEsAzoSB1t/Slx7AQUuFAUZSTwDqAFPlVV9dVqnnMG8DagBw6qqjqkwVophBDipFDfu26+8g8W0yzaXK/XHzxUQsdW8dU+VnlyMqy5jTVZNvIdiaja8BonKzO25mKxO7HYXYQYtNx2Wgt6JoV702drSzP13SLOl6q6eHHuGiy6fIyJ2wgJKkPRqHy0ZRv6cAWnQwcuLSv2Z1NoL0erc7B+wzbe2jCbluZIRqS05boOvUkO9Z8c5hRbGffreiwO9+TV6goiy5JMsmkvsYY9qM5Sb10PzwWFb2G2M/u1J2NvHp9OXUL7FjFcfnavWs93ZVffdgaz/l7Ld5/8xwPPXFSv1wohTl2mYAOlNQQuqgscVB5bJv+5FIvVXu1rCyz2agPO6/btp1tSPNcP6ut97+p22Kiuf99woIhu/zeHiMQDmHMO4XJqcBTGMfuai+gQHcm0jdlYbYcDKVa7y5u155f9UG6nzOYuhFlmc7LhQBHXTVrpt5Wqp8gmzhBcxaF8d+ZQNDoHf+3ezM871vH8slm8smIOZya1wxTqxFLgLlJq1Gm9x1XdOHo4oKNid0Vzyxk9WLx9Pc/8MZPPFq3i6XOG0S6uarZfdefkrYcu5vsZq/nopwVc9cTXjLtyMBcN7VZr8KO6wJZGo+G8S/rSd2A73nnpdya+/hdzp6/nvqcvoHlqTI3vdTSOZp4ijq06AxeKomiBCcBZwB5gmaIov6uqutHnORHARGCkqqqZiqLEHqP2CiGEqJ4KzFAURQU+UlX142qe019RlDXAPuAhVVU3HNcWVjjSAmcHc4uJjjXX6/VFZVbCQ6vfhcR3chKsLWfspCncfno/2iW2rnGysuFAEXf8ssZbpKzM5uSTJbsx+GRMVHc3z33HrIA52w96gxYarQNjaCmm0BKCzKX8nr/e/XuNCeuhaFzWEB7s35XXZmbicKqU2pwcnvaq6IOsnN/LhDnMwmeblvHZpmV0i2jBfd0HMKR5c29bnC73J5r0GsaP6kRYkJ6CslJ+WDqXB3+eRp4jBUVr8s/48JmA3nxRf7bszuWdSfPomBpPt3aBb8sXGx/OqDF9+O2HpQy/JI0sRSsTQXEqazL99ImUU2ylXFEo9NkJyfexmgLDvmNDaLARm92Jze7wLnOrnC33yrntCQvSe997V94hzuncrtbxpXL/PmNrLhEmPdO37iMmNZOg0FKKcptRmB1DqN7I9hwbHaJrLnAJ+AXQwZ2BV+5woQL/m74Fm9Pdh/tmh1S9sDZyXYfeXNehN5sP5fDDtjX8vGMdoc1tNE+N5PTojjzWv2+158oTCEqNMnnrgljsLv73byYhhgi0LnAezOPmb37CokZS5IxGp9V5z31NY969C7NRm7UgMX8/r305i1npW3nq1rNJiK7/Ntmx8eG8+O41zJy2hg/f/IexV33ItbedwZhrB6CtZino0TrSeYo4tgLJuEgDtququhNAUZQfgAuBjT7PuQr3OrxMAFVVcxq6oUIIIWo1UFXVfRWB438VRdmsquo8n8dXAi1UVS1RFOVc4Fegyh6hiqLcBtwG0Lzi4vdEqXxXLfdAIT3TWgX8elVVKS2zEhpcfe0IODw5uf7Ln4kMNtEitkWNF9Y5xVb6v7eAMpt74qnXKGg1irt4m6J4J5T+mRwQFuyiy7vTcGmtaA02opuXYTBZ0BnddwNdTg32slAKc6LRWiN5/wJ3VsO4X9fz8oxMtBq49bQWTFyYgdXpCXso2MuDeG7AYHf19uxcRv7wByscmVw3ZxeXte7O02lDq2SVjOmW6D02s1HHi3/+RaQ2i3xni2rv/nmO6X+3nc0Nz3zHE+//wdcvHC7WGYgrbjydv6as4JZHf2Zr97ZS7Eycyk66frqh5RRb6fD6bFrnWTBmF3t3a/IItP6AOdgdsC4utdIsQlfltaEGLY/9tQkFBb1WYdm4gRRaykmJrH1JQ1pKBFqNgknvXqpwxy9r0OpthCXvwhhsIy8zidKCCIL1mio7etRU4NK3kObpExZS7ji8vMMTtDDpqr5fTRfWHSJjeTbtLK5r04+BX/xGbnguv2UvYtXMTdzZpR+jW3fBqK0azNFrFV4c2Z6H/9jozdIrtbmAMEocIcQH5ROiPYReW0SJK46lmYc4v3N8tUsrvOfaqeCISeHBLuHMmbOSqx7/mvuvHsL5Q7rUu9imoiicdX4PevdvzYTX/+Lz92cyb+YGHnr2YlLbSpDhVBDIAqEkIMvn5z0Vv/PVDohUFOU/RVFWKIpyXUM1UAghRN1UVd1X8f85wFTcQWffx4tUVS2p+O+/AL2iKNHVvM/Hqqr2UVW1T0zMsUnDBPdkadrG7Cr7xfs+3mn8HK7+biWdxs9hb14pB3OKiE+KDPgzLFY7TpdKqMlY5f18P3fDvmyW7soiq8TMTT+updP4OWw4UORtn6etP6/dh8NnQqnXKQTptZiNWgxGG7nqPt5YNY8XVv1DWt/9tOyyjbA2a7lu3lcEp2wjNDETU/QB4ps5cZQHU5oTT9Hu1nx1+g3Ys1uhKY1Fpxq82546nC6KrQ4cTpWeSeFVKuS/cm4HOseHkVNs5ZdVeRRnx7N3UzusBdH8vHMNZ/72KasP7Wbjw0P57upeVYIF53RMplBtjqJAM10WbZsZalzbaw4J4pVxF1BUauWZD/5if6Gl1u/PV0RUKN1Gdidqfx7qwSLsTtUbJBHiVNLU+ukTYcbWXAosDmwaDdid3gt9j0DrD5hD3H1dYWl5ta9FAVV1F1a2O1VmbnPnsyWGm4G6xigVV8Vry+wOQpMzUHQOrkw+gwf69OW/O/vzw7V9qvS5ngKX1/ROrvL7UZ3iyMi3YK8IVOg0EKzXYDbqiDDp+ejS7n7LUv73z2Y2HCiq9VxuPGChJK8Zeze3oTArBYdD4fEl/zB4ykc8NnceewvL/II5dqdKWJAek0FLiEGLAt7/NxkMlCkJHHK1BEVHpG4fU1csYm9BkTd70Xec8fuedBruOL8P3718HR1SY3nps3+5b/wUsvOKa21/TaKizTz9+uU89frlHMwp4u5rPuL7z+bidDiP6P1E0xFIxkV14bDKy3N1QG9gOGACFiuKskRV1a1+b3QSR4iFEOJEURQlBNCoqlpc8d8jgOcrPSceyFZVVVUUJQ134Drv+Lc2sK3GKt9Vm7/pAABR0YFvq1lW7q5IH2Iy1HqX7r+tGShAqTOMYquDEIOW/u8tQEHx7rLhcLqLpXkGvxCDhs+va8Oc/ZtZnJ3JIVspz63Y5K4aHxxGqDaEwYmptAwLx6QJ4rm/M7BZDWhdBtIfOtN7jDWtN06NMlFasc65xObEbNCi1WgAd+AkLEjHjX2be8+lraKYm1Gnx3YwiQ9HnsEba2dz239TuLPLaTzUY3DF6w+LNRtZ//BIfl69nQ/nzuKeH//gs2suqXFtb7sWMTx07VBe+uxfBj31CwdCIzHqtGx+pO7siZtvHsziaaton7WfjLia64cIcbJqav30iebUatA6q16IBlp/ICzUk3FRXu1rU6NMDJm4CI3izrhoFel+nzBTUK1jlHv5HVgrgtjm6Hz0RhsFu1ty7Tkd/WpieIIfgS6PS40yeetbOFwQpIcJo7v6ZWf41kl6ceY21j40pMpneo4v81BZxTiiUHgojI1rI3n3igE8uWg2P1gW8f32ZTzQ43T02sP1Pka0i/E7Rxn5Fr//X7W3CJfLRWHJfr5YtIxRE77inqEDuK5fT78MkJqKbU547FJ+mbWa93+Yz5WPf8V9Vx1Z9gVA+7TWjHnhMtb9vISvJs5m0ZzNPPLC6GNS+6K2gtvi+AkkcLEHSPH5ORmoXKZ3D+6CnKVAqaIo84DugF/gomIt38cAffr0qRz8EEIIcWTigKkVA78O+F5V1X8URbkDQFXVD4ExwJ2KojgAC3CFqqonpB+urQaEZ1JQ+a5aapB7DWtEVD0CFxb3UozgIAO9arlLN29bBh0T4sjdq8dsdG+NigrFNgcmnQYUvOuSAcIiSuneoYyH09cRZjByekIqp8U1p198CpYyHadPWIyqwnKdho0P9yPWbGRMq+5VJj2VJ3m+P2fkWzDpNZRVfO4V367wWSYCL5/TgVizkWkbs7E7VUoqJruq6r4TeOM327C5EghPUPhg/RI25ufw7ukXEG70r/cRazYypkcbXvx3A9a8vQx+ZxKLH7ymxhTk84d0YfL8zahbs8hRDBQYTMzYmltlm7zKk7zUxHAuvWYAU7+cz8SLOsnET5yKmlQ/faJ4Ms4UvRadS2VEu6oXoYHUHwgPcfd1RSXlVfojz2t9L6y3HNgPQIih5kC3b2HPEIOWclc54bG5WIpCcZSZGTJxkTfIEUiAvrKMfIu3vgWAzaF6j9dzDL51klTg8/QshraJ9ttK1RPINuj8g9V2h8qOPTqKdrfBbiggKj6XtzfMpmvPKM6M7cEtXbtVGZ88QZGYEGOV47mkZ0de+GsOr8+Yxx9rN/H8+WfSNelwMezqi20qXHpWTwZ0T+XFT2bw0mf/Mit9K0/cMoK4KHOt58eX3/kNjuDLZy/mq7emc/fVH3Hnw+cw8qJeRxQMqfOzZKnjCRVI4GIZ0FZRlFRgL3AF7poWvn4D3lcURQcYgH7AWw3ZUCGEENWrqEHUvZrff+jz3+8D7x/PdtWkSlAiylTtpMB3Upm1YQ8A5nBTwJ9TanGn+AabDFXeD2Daxmy6xIWwdu8B7hzSjw+v6u13J86sHM640CgKpTYnzRJyCYnJoVw187++Z3J5m24E690V23OKrfSZMIsS6+G7hJ4Jb30LfaVGmbxFNQG/oAXgLSjnOZcmnQaLw4XNqaJRXN6Jr2V3PBf2S2TB/g2M/ucbvj/rCuKC/SeH6VkFlDrNlLuiiTUe5KV/5vPeZWf53bnz3RJw6LDerN++n1ZF2WyIqpo9WdMk75obBvLvL8v46bP/yA46W+5ciVNKU+un4cTcZfbUgnjrdQvrsvOP+HPNFYGLPXklXPxr3cU8V2W5A90mg560FHOVQHflwp4fXNKVNWUb+DlDpTw3iTK7C61G4+3zA63FAf5ZEkF67eHAhVNl3K/r6JkUxpCJi7A7VRTFnQrvGRE+XbqbT5dmerdS9Q1kW32WNoK7IOhlPRKZsGgXqjWCosxw3rgske93LOOTHbNZnL+J5/oNJ8VUdeeQmo5n4pUX8O+m7bzw1xwu//QHrknrwVVpvVmfXVbr301SbAQTHvfJvnjsK+69aggXBJh9Ubk9tE7gwx/v5PVnpvL2i7+zYvF27n/6QkLM1Rfnro/6fJfi2KozcKGqqkNRlLuB6bi3Q/1cVdUNvhFiVVU3KYryD7AWdx7rp6qqrj+WDRdCCNE0VQ4i1DQp8J1U7qmYx9Tn/kmpxb1UJNRk8H6u565Zh9dnY7W7CNZZaaaDxPDIGu/E5Za6i3JGxeUREpPDmYkd+GDY+eg17iwQz6SzwGL3W0jpdKmEGbV8u8IddPFN9/VV+eIgp9jKkImLqjwvWK+gqgpGvcZ7F9JzLn9eu49H/9zk/lyn/2R1+gqV0LBW7G+5m8unf8/3I64kMeRwarEn+GGnGeWqnX83rueXlcnc/uturA4XZTYnIQatd+eU87sl8XRsEskHdtPGklfljmhN32eo2cR5V/Xnx4/mMMk5B0tsRKO9cyVpweJUV9td5mP97yPWbKRDQhirj6JmgafGxca9gV102iuWpei1mmqXOXiy2zyFPVftOcTssm20Nycwz2ogWI9fNl+gtTgqn+f5dw3g8/QsPliYQblTxemCyav3+R3Dy+d24LkZW1FVleKKQLnZqKtov0KoQUupzUmwQVtRcLMD4A54x4QYmTt2AP3fW4CqKjzy0wGcrkSM4cGsdRzgkn++xVYcTllOPDrVVH3NCp/jyS2xYSOMr264gm+WLOObpav4Ysk6Cp3xuDTmWvt4T/ZF/26pvPzZv7z82b/8u2QLT9x8FokxdRdJ9bRHq4ECix1nUASvTLiWn79ZxJcTZrFzWzbPvHEFLVvHHtXfbKDfpTj2Asm48BQI+qvS7z6s9PN4YHzDNU0IIcTJyjdIEMikQFNxB8blCjxruqQi4yLE5D9J8RR/A9BjAR2M/XUbg9u2qvZOXHpWAcbwfELiDmArDmdwRC+mbz7oDWqc9u4CnC4Vo06DTqsQXLHEQ6PA0A8We2MZESYdmx8Z5jdpqu7iwHPh78myMGgVgg06fr2hD7O2HeSyHolVJl7PTN+CqqqU2V2YdP7hnXKHir40hDvbjODjHTO5bPp3TBpxJSmhEd5j9Xxu94RQHvjpN57/ayaqM4VSmzs4U3nnlNXPjOKVr+ewaMlGtmzbQ2yv1t7Pq+37jEpri/WrhSRt3s2mqLBGeedK0oKFqDkAebz+fej0WlwuFafDeUTbXZZVxDyCFFdAF51Olzvgq6uoBVQ5S87TrwXrNZTYnLy/fBMJbUvYvjPMmyHx1y39/MaQQGpxVD7PGfkWHh3ahq+WZ6F1uFBRGd42mgmLdnmPISnchF6rodjqHsdMFTuYVFefwncJiec7e/vCLigolNgc3naU5oZTXhhOUFQuwc0OEp5aRPmhZvyXkc1l3ZpXezzV/S00C4vjrVlzidLtweIyM2vbfq7s1bLW7yo5LoL3HxvDN/+s5NNfFnLV418z7qohXDy0a43ZF572zNiay7hf13PXlHXeNlx2/SA6dUvhpUcnc+/1n3DLo+dx47IDR/w3G+h3KY69gAIX4tSgeeiPE90EIcQpKJBJgb7ibpK13B7w+5aUVWRcBBtqfI5BY0NVwerUMWNrLhEmfZU2JEcpBMfuxV4aSvmBFtz32wacLtBqFKwOp7f+RbnDxfsXdyG72Mpb83Z603U9rHZXlQv1mup9+N5Jeveirn6pwhMW7apSLM7uVL31MCwO/+BOkE5BRWVY8xYMbnUF1878gSumf8/Hp19OxkFHlXXf711+Phd/9B2R9r3Y1RaU2lRCKu7c+W7F99BVg7lz535e/HQGP7x6PZFhwd7Havo+B7SO5tF2KbRcu4OY3EP1vnN1PDIhJC1YiJoDkMfr34euIljhcLjqHbjIKbbS9f/m0lLR8HX6buY+PdpvuVt1HBVBcU0tF8pzxw4g7e35AJjMJQBYig4vvfttQzZFVqf3c3yz/Goq0ul7nhVFZc72g6RGmbxZEagw+qvlzB07wC8QUXmM8GS++faPnvoUvtkivpkZniWGHi6XhvK8OAoORhARn0NI1EFe2jgFq2EwV7brUSWYU93fwmU92/LszCyMroOEavL4v+l/YWAwo3t2rnUJyMFSGw8uyUWNbkli/n5e+2Ims9O38uQtI0iIDqv2NbFmIxEmPU5X1b/HLj1b8P53t/PCI5N5/9mpxLZJZnNyHOYg/RH9zdZ3uac4NiRwIYQQ4oSra1IQHeueuORmFwb8nsVl7owLz1pnD0/xt3K7E53iwIkerUZh3K/rcbqq3pH5LWutO922/7kUlyo8PG0jFrsLk17jtz0qwM68Um5Ma86ERbsIBb+dSIx6TZUL9eouDgJJU56wMIO7BqYC+BWLK6tID/b8v1YDTheg4i0c991ZV3L59O8Y+ds3FGW2QYvWO/GNNRuJDzfz1qXncdPXv3BWajnDOvYi3GTwW+qSU2yl+1vz0GgiaFm8i+c//Zc377/AOzH1/T4rBxvmvnUp91/3MXHZuUQFBT4NOV53eiUtWIiaA5DH69+Hpyapoql/gUXPBbVD0aA4nWTkW+oMILgqMi4q777kKyPf4t2W2mCyYC834HK6+zAF+Cw901tvYuPDQwEqMgLW4XRRY7/19oVd2Fto4Ym/NvPWvJ28PW8n717UmZDQEnTB+URHlfDCpjXEmrVM3+rEqbq4/qJgHDYjrcOjiY3MYleZlfM+2IzNrqnyOZ7vLNSgRUWlZ1KYX7aCw+kCBabdlMbor5ajOIKw5Tbn83PP4vuMpTydPoNvtq7k6T7DOT0x1dvumsevYaRnFWDQWHlr5jye/P1f/li3medGnUmLZhHVBqC9QRCngiMmhQc6h/Hff6u46vGveeDaMxh1evWBj9r+HpvFhDH+4xt49X+/smD6OozlVrK6tpI+vQmTwIUQQohGr1m0GUVROJhT+771vkrK3NvghZj8My48xd/Sswr4bP4srI5grjqtK3dNWVflro3FYeeXHes4p0V7zm6dRIfXZ3szLAxaDVqNgt2nGOdHSzL5cvke790xz/ZxgPeOmO/EuaaLg5rSlD1rl9+ct4OJS7ei0ai4VAcu9Lx2XleGtG7mt31dgcV++Li8Sz3iuTF1KO9vnYEpPoOcXc25/ec1mPRa72T3tNQUbhrQl08XprMo04ZdifJOxMFnkqnqCImIZtGqHfyzaBPnDOzkd66rCzbER5i496GR/O/+7/l76grOvywtoO/zeN3pramQq6QIi1NNdQHl45U27/IELo5gYwhPf6lqtWhVV5XimtUFEJxq7RkXnvc16DSEAsbgcrpEJjBpeH9mbTtInNnI439t9vZPM7bmct9v67HYD2flVe63fNtkd7pQAUVx0bzlHv61p9NroDtQ77Br2VNkZvchLYNaxBBuMlBoL6FUk8N/eduYnuvOROxzhkJhQRjFh6KZsiOCm7v1Qa/RebNF3HUtDgexr+mdzIh2/oU4K3+357dtxfSsrby8fA7XzvyRM5Pb8FSf4QQrwaRnFfhlgviOX2kpERXHFoVZq2Xd3mwu/OAbbhqYxvNz8rE7/QM5lQMQd17Ql4sHtOfFT6fz4icz+G/Zdp645SyahYf4fSd1/T3q9TqeeukSPogN47dvFnJmUhhhuobZbUQcfxK4EMeMLD0RQjQUnV5LcotmZGzLDvg1JWU2TEF6/t6cW2VC45mQv/NvOd2S4hnRLqbauzYL9++iyGbl8jbdvRfOAEFahZfO6cBT/2wmSKugKqCt2HlEoyjeO3zg3k4up9jKjK253D11HXanC6NOy+ZHhvqlE9ek2F5GjnMf795gYPqurews2UtIaDFa3eFsD1WFHw+lYz3UlSHx3YjWpZKRb6FnUpjfnbbUKPeuLNd36cwb8zdhis+iWfI+8rKS0PlUxAdol9iactcGzJoccuxGZmzN9U5yU6NM3vNVbIpmSDMdb3w9h14dUohrdjh1uqZgQ7/T29Gtd0u++nA2Q0Z0ISwiuM7v83hmQvimeEu9CyH8HY+0eWdFNpumlgyI2rx9YRd+/jGb2DBTlay16gKfnvpJWo1S45I0z0Xygt0HeWDlWs5p04LBraMZ3DqanGIrz0zf4u2fAOxO1Ru0MOk0VfqtGVtzsdicWBwugvUawsKK6NZrPeawUpKCmjM0dgT/rdcw8b88PKWp1y/XsOPxM701JpZmHqJFrIMsy36emrOQ0Mh8UlJ38kfRDmYtnkKfqE70b9aNvLwYb10Ll0v1689rC5orisLI5u0ZmtSaLzYt5721izjzt08oy4+m9GAsekVXbb/oe2wuQzhXdulIXkEGE+cuIowg9tljgBC/YtyVA8bDvliBXY0iOkph6frdXPX41zxx81kM6d3G77Pq+ntUFIWx940gKjaML9/8h0fGfs1rE67FFCx9eVMjgQshhBBNQkxSFJu2ZpNTbK3z4jGn2MraPYcosqtc/d3Kai86c4qtZBeXEmzwz3xIjTJ5J0+LD2Ri0GjpE5fMDk0ZZZ5t5pwq6/YXY3eqlDtVgvUaXCoE6zWoqASHFDN9/062Fu9ma1EWG3LzUTRO+g5x4lIVXE4t965eSnxoCEEaI0FaA1rl8DruUoeFQnsJh+xFFNlLvb8PMQajFpk4sKc5dmsQdoeGchsEBZcT3ayQ/3LTmZm7kJLCcDK2taEgL5pvrujFtT+sQlXh9AkLvTUz7MXNcGpshMZmg92EWhTvN6k+rXkkRa4EojQZROn2c8/U1SiKzrucZu7YAd5skq6RBu59+Ude+GQ67z5yCZqKdOqagg2KonDXI+dy51Uf8sWEmdz75AV1fv8nokCa1LsQouEFUqumrNSKMUiPVlu/wIVvsLF5QTlmo5acYmvFkrqaA5+OiqUih8oc9H9/fo3Bylizke4pQbASUkLD/Y5l7tgBTF69j+Fto8ksKPd+nlaj8O5FXeiZFOYdY1btLeKeqeu8NSaiYw7Rs+9qVKee86MuJ1ZpTb9mkZQn5DKRfO/n2+wub9ChclB1+uhupGcV0DUxiAPOTJbmrWdp3nrm5a7EoNHToXs0u3fHkZvTjHumrkNR8G6xuvieQd6aGNUxanWMbtETsyOOXzKXs8K1g7DQPMoPJrAk8xAXdI73PnfDgSLu/GWt99jKbE4+WrIPgy6IF886gzdnzqeFaQ9lajS9kg5/pm8AwhtosjkhNIpx5/Vg1ox0Hnn7dy48owv3Xz0UU8W24IH+Xdy9uYCwbq1xrdleEby4juAQCV40JRK4EKIOgWaOuN44/xi3RIhTV06xlWnZpSTsO0TnV2ey4bEza5zwurc7nUPMgVyMKNVedLont7OI1jj4cvl+7hlqrZTe6p4M9uy9lz6xyRSVOZm8eh+mih1DVOCr5VlYK+6UeWpeKMZiunbfzP/t/geAEK2JCE0cJUVhlNsUXC4NiqKi1bpoFRJCmM6AxWnlgKWAUpudYL0WrVYhRBtEoimGlqbmfLOkgOIiM9ayMFbfMxKlYsmH71atqgr5WRp+fvB0Ptn0H3P1c+naZwV5ByO5/qcyyu0mb/G5239eg1ajoKpQeqAZeqOVkNgDvHFBWpVzanNp2G+PIzloHyFKNocc8VjsLsxGHav2FnHfb+u95+rNSwYy4fv/+OnfVVx+di+AGgNCsWYjLdvEcdEV/Zj6/RLOvrAXHbok1/l3cLwLpEm9CyEaVqBZTOUW2xFdVPoGGx1oyC0qp8Prc7A6nOi1GiaM7lrt1tSepSmr9xXVGqzMKbbyy8bdAAQrJu+xuOMrCg6nixdnbvNuRer5PHDv7OHZYtqo03h3I0mIz6drn9XEm2K4L/UWBr6zErtzlTdAHBako6jcvQOIXYW7p67j/Yu7VttOT1tb0JV+zbpyoMjC7xnrKdJvZ6FrNdHx+ykvN5C9J5l9e5IotbhrQPV/bwHbHxte67h6+FjNaIxtCYrZS0jCHj7Y8TdJMWfROzaZnGL3mFRaEeTXadzLb0psTkwuDaHBMUwbex1PT5vFmqxMxv04lZcvHEG7uGi/z6tcpPq5+Vk4DXHEhWv4fe561mzdx0t3n0eblJjqmlvj38WuqAjo3gbNuh2MveVznn/7GprHmet8vWgcJHAhhBCi0UvPKqDYHEIiYDhUWuudb/d2p3ZiXC5cigZjNSm66VkFuJx20IDdpfW+n98d9iAN2wsPcnp8Gp3Gz8HmcGGxuwjSKZQ7VModLow6DV0TzKw/UEJkXCYdu27G5dSSsbkDT/Q/g6u6dOBgiZ0Of82hwOK/I8pDHXpyTdfkWify0zZmk7lzpXdyumxPoXdymlNsJSPfwuJ7BvlVm3/nTy2F5QNJbr6XDp230XfwYtat7kzOgVgALHZ3u1FVQg067Aeb072FgWdX/EP32FjaRkR7z5GCQpkzmHx7JM0Mh3ApoWgUMyoqReV2v4lzZPNEBnRPZcKP80nr0oLUpGZA5fXO/sd47e1DmTtjPe+9Mo13v76t3ndXjzXZBk+IhhVoFlNRoYVQc1A171A73wtetFqsVqu37/Us26ju37HD6b7QTmseWWOw0tNXK6EHCYmHrQcO94EmnQaUw59RanNiNuqIMOn9lqp4Lug9QQu93kbHbuuINUTzWvd7mbetxK8Q8+TV+1h490DeX7CLj5a4AyZF5Q6Kyu1V2lk5kyWn2EqXN+ZW9LuRzL7zMS7+6XdiEjNp3nonLdrs5GBuFLt3plB2KL7WcbXy9/buOf0ID9JxSDnAhA0LuOSfbxndqjO9Q7uAz8ZW7sN0/8LicDHu1/VsfmQoP958Cf9s2Mpzf87mko+/5/7hA7nhtF7ebD3fvtdbq8nmhPBY7jm3B3//tYSbnp3EHZcPJiw5odr+2fd8+P5dFCRFs02jwbV6K5dd9wlTJt1BYlTdyxXFide4ZghCCCFENdJSIrBUbIkWWVAc0J1vBVAVhbsGtKhyV889ifGsodZ53y81yoSKSqhBizHIhoqKyx6E3alSYnMSYtBy54BUwoLcyzqsDhdLMwuJjN9N154bKTwUzqpFA8nZ04oRLVujUTTEmo28e1EXd7CgQohB670L51kLXGx1YHe61x5P25jNhgNFNaY3eybQV3+3kiETF3knbelZBThdKqqqIWt3Ckvm9cNSZqJ32ho6dN6CoWI1itXhwupUcaEy985BfDF8DAaNjiun/8iOvELvOTLqNIQYtFiVGDolxBNryEGn2ECFp/7ZglaDt239mkfy1C0jCDLq+d+Hf2N3HC5a6jvptTtV0rMKAAgOMXL7AyPZvnk/v/+4tF5/Ew3Ns+NATrHV7/eeLA8JWghx9ALNYsrLKaJZbM1LF2riueD97upeXNUnBafDEdDrPBlpCWEm7+srjxuefsxOxY5VOpO3hpCicRdsDjVoUcBvC+nDS1Xcv1fAOx6067gdvcFOD81IwvQh3jEoWK+pKMS8kyETF9E1wT8rICxI79dOwDsmdBo/x3vRbnO4KLY6sDpcfLVsH3k5Maxb3ouV84dyethQzKFl9O63hr6D51FgXEe507//86j8vY1oF8P5neO5rlMPZl90G3d17c+0XZt5aeMUQqIPEmpwb7carPe/1HS6Do9xvZq3YNrY6xjStiWvz5jHDV//zN6CwwW4PX1v5RpUl5/egW9evIb2LeN455vZPPDeX3R6fbZf3+07RnYaPwfAe77evagrB+Oi2NiuBeEHC3n1f1O8u8qIxk0CF0IIIRq9WLORdU+OICopipFhulovIt3bnerQABoFbkxrXuX5sWYjn13aBYCvr+zrvTs1ZOIiVBVQ4NnzmgNwVssU76TJoNPw6NA2vH9xNwwVBdhCQkvp1HULebnN2LKqH2+PSqsy4R3RLoYQg5YQg5ZQo5Yl4wZ5P3Pcr+u9a4EVRWXcr+u58tsVdHtjLnf8vAa708kr53bwe8+aAgG+k8sIk54nBvdmyYI0du1MIbV1Jlecsxuj7vDtMNVVscWfy8ieHYnklhczZPJ3HCgq914ATLqmN9sfO5OJV4xCo9EQpdtHqc2O06Xy7kVd/Sb4zSJCeOLms9iyK4dPpy72fk5tFyuDz+pM34Ft+WLCLA7sPVS/P4wGUnmSWzl4IYRoGL6BhdqK3R7MKSY6xlxjQLGuzxjVKY7oMBN2u4OIIC0mnYYIk84bMK7M4XIHWv/ZkgtQbbDS04+Zgpy4HDrO7RDP3LEDQAEFBUWBiZd0Y+1DQ5h0TW+/gMJdU9YBCh9UPH7XgBYEh5SS0mIvmbuSidTGeccgVHfBZVNF8MLuVAkL0hNh0mPSa4gw6b3LXTztrG5MSI0yeTM8Sm1OJi7MoKjcXTDTYgmii2EA3/R/lhHm0XSNiWfS3t+5cemzfLPrTwpsxQF/byF6Aw/3HMK/F97CgPgWGKP30alHFp9c1wqDzv9SU1Fg3K/rvH2tU9Xy3uXn89KFI9iwL4cLP/iGv9ZvqfOzm0WEcP7Fg8kzRxFZcoiE/bv5b8sB72uqOx+VAyHFqQnsbZfClkXb+Py9mYH+eYkTSAIXQgghmoRYs5HBp7dl69osrOX2Wp83/66BuDNOFYZMXFTtpLfEagMgNMi9XapnolNqc6KgsCk/D4CecbFsfHgor5zbgRv6JJNbamVEuxiCDe7Vlq3a7EJVYfXKzrhUxZsaXLlNh4MAw4kJcacOz9iai8PpDloE6TTcnNYCp8vdBhUos7sotbl47K9Nfu9XUyDAd4K3+ZGhPDqsLbNvH0g37VCGhA0jV7OVXmmr0WrddyGNeg1pKRGkZxVgLQ3h0L54dCFFvJg+z/t+nolxfLiZp889E71iJdGU773rVnmCf0aftpw/uDNf/ZHOik1ZVdpVedKrKArjHh+FVqvhzed/OyF3vmoKBAkhjj+b1U5ebhGh0eajCiiajAZcLpW1Dwzhx+v6sPmRYTUGSorLHagqXPv9qho/y9OP9WoRTIdmkcSajWTkW1Bw7yjldEGESU/n+LBqAwpOl0qESU9MiJEeSRG0ab0fVVU4mNXWu8OHJ7tPq1HQaBRCKnaE6pkU5l5icW0f745UvqobEzLyLQQbDhd9tlbsimXUaby7TCWEBXNvzzN4ot1YLg6/ntYhLfkxcwY3pT/LxzumkGct9Dv+2rLPWpgj+XTYGD4bNgaNRuWJ5b/Rr+chgoPcwROTXsPNac1xuvDraxVF4ZKenfntzmtoE9OMB37+i6d//xeLzV7rZ5/WIoqC6Hj2NUskyGbh++//JSv7UI3no/L3+N3VvZj10TWMGtOXn75eyN9TV1R7XKLxkMCFEEKIJqPvwHZYrXbWLM+o8pjvnbmMfAsujQbV5ar2QjSn2MqDv68D4IIvVpBTbK0y0TEYHEQYggjWG8gttXLP1PW8OS+Dbm/MJbfUyuZHhvLR5W1p3jybg/uTMRISUAHH3NLDd/fvnrrWe0fMU+jTqbqqpNei4ncMtQUCPDUl0rMK2HCgiNFfLefPTTm8+JOBS+MuJio6nyvP38xnV3Ri8yPDALxpzEpJLPbiSP7ct5J5+6qe44t7tOeKPj0I0Rbw3vnJNU5gH7x2GClxkfzvg78pLLZ421XTpDc2IYJb7xvBmuUZ/DXl+E8epQinEMdHINlN+7LycblULCGmIwooesYCl1KRFadT6lzutafQ3U/V9VmxZiOK1k5iqHvpRl19R+XHU6PcBT3vnrqGmIS9NNe3Yd1953j7bd/svmk3pQHgcKqcPmERUH0miKddGx8eyoTRXXn+7PbM2JpLapTJu9xPAUINWsKD3MUuUWHIxEVsOFDEtyv20OH1OTw4OYcPf2nBSx0fYlBMT/7YO4+b0p/lg+0/k28rqvKZNekansLWdS2xHIxjY1EWUa230SymAJNew01phzMYtRr32OP5G0iODOebGy/l1kF9+Wnlei77ZBI7c/Nr/BzPMX9w21D+78HRlFls3PrcD2zKyK4zs8czHsWFBTH24XPofVpr3n/1T9av2h3wcYrjT4pzCiGEaDK69W6BMUjP0vlbSRvUzvv7ygUu544dgKLRoEOtdjKZnlWAS3UHDGxOxVuUzLcQ4xPL/iAhxL3GevLqfd56Y2rFz8+N7EBIbAbqbhdfjLiCzJ56v6JovkXSNhwoov97C3C5VFyqewlLmd2FSafBWFHsUwVemrUdgGCDhi8u687YKevQaBQMOk2VY6hphw3fc6GiuncPqQiOjPvawuQ7rmXirm/Yov+Ts1w30eP/FlRUindXwD+91WBun/8j4+b9xrRRN5IcGu73/k+eM5gt2dmM//c/+qUm0io6qkobTEF6XrjrXG5+dhIvfDqD8fddgFJxEVGTcy7uzfyZG/n0nRn06d+G+KTIWp/fkKQIpxDHRyDFObN2HQRgUI8U9Ls31Sug6Nv/RZUVEguUlduIDKu9+GJCxb/5QD4rx1JKpyh3m+vqOyo/7jl+U8QBDEYbXUN6el9T+bkztub6FfOcsTWXa3rXvvvSuF/Xe4uRRph0zL9rIBn5FlKjTGTkWw4XurQ6CMW9m4jTqXqXK5qNOtZlKrQzncWITsOYnT+Xv/Yt4N8DSzg/aTBjkodj1ofU2ob0rALsDoX8fdHo8sxEJ+8jJGEvnSNcBAc72PjwUGZszWXcr+u5a8o6v4LNeq2WB88cRL+WKTw85W/GfPI9r108ku7JKdWeY99x8JNnruDe16dw50uTuXTMEC4d2D6gXai0Oi2Pv3Ip917/Cc8//CPvf3s7sfHhdb5OHH+ScSGEEKLJMBj19B3YlkVzNuF0Hl5SUDnVPyPfwqW9UojUV7/dXlpKBLqK62idVuO31MIz0dl+qJAwvQmAy3ok4rnsVip+BliSu4FYXSLxQTHe17nvXs323lH0BC1KrE7K7C7KHS7K7C5CDFqMeg1Beh2mKgXM4J7f1qPRuNdNzx07wBsQqWu9t++5cLlU7I7D58nlUnEUJ/NA+2tYX7iDFzd+isPl8EtjbhEZyodnjMapqoydO5Vyp39xO71Wy1tjzsOo03Hvj9Mos1W/bKdDyzhuuHgA81fu4NPfl9XYXg9FUbj/aXeA47Wnf8HpU9zzeJAinEIce4FkN+3akYNGo9CtU0Kd9TA8feKGA0Xe5Xee/s9W0WuXWmpeWugRatSh0yh+n5VTbOXbFXv4dsUeb5+rqir55WU0Cwr2fn5dAU/fvsVz/Ckpudhteka36lXjc4sqLYms/HNl6VkFWH36TavdRUa+hVGd4rzLV3wLXaK4a2l4ghYmvQatRuHuqWu5/OvlDH5nDVckjObDvk/Qv1lXfsmaxc3LnueXrFnYXIfbUnlc8tYC0WlwWI0c2NGS0v0p7CjKY8Tvn/HjjlWEBelwumrOphnUpgVTb7+aNjHNuOfHP+g9fjJXf7ei1iVDLRKieOWB0RS6FL78fha9np8W8PIic5iJZ9+8EpvVzsuPTcZuD6yoqzi+JHAhhBCiSRlyVhfy80rYsDrT+7vqJsPJMWGUWazYHc4qF/uxZiP3D24FwPhRnf3e33PHbsehQhbsKCSn2Ern+DDWPjSEp89sy9qHhtA5PozMgiK2lWSxfKvRG6DoNH4Ot/+8hgKLwzshm7x6n7vgp49gvYYHBrdi8yPD3EtOxnQnLOhwEqQnlddTbyMj3xJwAUnfqvQWuwvfHUYtdhepUSbOiO3DPW0vJ8u+k4491mA2av0uIlqGRfJ/A89jbd4Bnkv/t8pnxIebGT/6HLbn5vHstJmolQ8Q2HCgiAeX5lJsCuWTnxewYF1mledUFpsQwb1PXcDGNVl88/F/dT7f15EU8RNCHF+BFOfcufUAiSnNCDIZag0oevpETzHjq75dwbhf13t3O9Lo3PUdyspttbYpp9jKjrwynKrKeR1jvUGLDq/P4bpJq7hu0iravTaLnGIrxXYrDtVFpNF0REV9Y81G1j40mOSkfM6I70ZiLZkgYUH6Kr+rrY9z7wR1uKaFp4ZR5c/3nP/F9wzCqNNUFHPW8dGY7rw4sr23gGeBxcGMrbkkmWJ5uOP1vN/7UTqaU/k84zduSX+Rt1bNZv3+wirnwPMZH13anQiTHrNRj7MkitztbSgrCub/1v7HJztnYDDaaw1gxYeb+eaGS+nTMpUQzUFC2Ivd6ax1ydCOYju7Y1tg1ehJyM7ky/82BTwuNE+N4cH/XcSmdXv4+K3pdT5fHH+yVEQIIUSTkjaoLcYgPXNnrKdb75ZA9em6MZGhAPR+fSYWjd4vHRVArVj8cd9v63l42ibvY95UXo0Tp0PrTWXuHB/GcyMPb8/3165NaDQqB7LDsTpcvPjvVmwOFxZ7xd0rnQa9VuGyHom8NX+n3zEoCtw1MNXblmt6JzOiXQwztuaiotIjMYQRH88nyGAjSK+hR5LCkqwstJpyiqwqqmpgwsIMv/cA/HZGcakQbNB6U43BvRXfqr1FZORbCDO2I8U2EGIXcueFeTzQ8TL/nVCat+POLqfxwfol9IxJ4rI23fyOYVCbFtwztD/vzllM9+QErk7r4deO/u8toMTmYltoLF1sVp7/6G9+evU6wkNNtX6/Z4zowqolO/jh8/l075NKz7RWtT7f83m+S4Vq261ACHFi1bTMzSNjWzZtOiTU+T6+BZUBSmxOzEb3krcIk54wezkPv5FZa+DC03cY1VzMWthfaCExIpj0rALK7Yf7zqJyJzO25jKknXtciTCaAlr2Up1sZxY2tZyh8T29bagua8O9Q5Yeq8OJXqvhqX+2YHe6UBRYfM8gOsf7bxcbazay+RH3MgzP66tbuuh7/iuPm9+u2FPjeVqfpeWuljeyIWorz63+kTzzr/yyey66oE7k5wdjNuqYsTWXCJN72aRnXEvPKvAuUdm/M4VmMUVs1Rwgts1Brmg+kNu796ixvzbqdTx29lBGTCwmTH8Qk5pFx5hBbDhQxOTV+7isR6LfeUhLiUBj0LMnvgUtsncz+af/yIxrgctkCmhcOP3Mzoy+uj9TvltMlx4tGDKiSx3fpjieJHAhhBCiSQkyGUgb1I6FczYx9pFz0VakFFSeDCfFuteoKlYrxRqlysTyQLF7MltqtRNi1Hgf82RvaDQqGqresfIwmEqhCEpKQii3Oflt/X6sTncBNJ1Ww7sXdfFOHBffM4jT3l3gnWC7VHeRzphQA/nWrWSUzCSnbDuY94KSy8oSK69edfizZuX8H+jh9asP/87m0PFjhpGE0CjMhhjCDC3Ykx9JcjMX6/bEYdK5U3E9mRchBi1ajcIdv6wB1V1jA4Lp2Lk5tF7GkqLmnMZpfpPYB3sMZu3B/Ty1ZDqdImOJNUT6PX7H6f1Ys+cAr/wzl47xsfRq7l5Ck55V4M0ycWq07I1OJDgvi+c++oc37r8Ijab2ehd3PnwOG9dm8frTU/jghzuJiAxgTfURXEAIcSoLZJnD8WYtt3NgXwFnjupe53M9fXWIQUuZzUmIQevd7SjWbGRHlrtWRm2BC0/f4XKpmLWwcFcel/YIJi0lAm01/VSZw71EIkRnoG9c1cKb0zZme+tJ1HReV+RvRKfoOJAdyQZHEUMmLqo26OoJRKRnFZB5qIyH/thAucPdsfZ/bwHbHxtebU0N3zoY1dV/8m1b5XHTN1hi1GkZ0S6mynu8fWEXVizsT2R8Jh06bafXgEXsy2zBnp3tGPfrOpwu/I5lVCf3Vq/uc6VHLY3mhzPP4rmV0/ls5xxs+kKe6jMMo9b/sjSn2FpRC2MdDmczHKqBWMMB7pw0lf+ywnGoOl6cuc2bBek5/rljBzB59T5CldZMmjSTpJxMsuJbBjwu3HzPWWxam8XbL/5O+85Jx7XekqidBC6EEEI0OQOHdmT+zA1sXreHzj2aV/uc1KRmAAQ7bZhNoVXSUTvEhvMHYDZq0FY85pnIT7m+DzcsXMPlvVJqnNDvKjqIqoK13P14udO9BOT+wa2qZEJ0jg/jg0u6cdvk1ZQ7VWxOO4/PeoNLem8G7R4U9OzJb8bB4nAOlSbRITqexbtLKLVqMOq0XNY9kanr9+JSnWgUBwadE0VjIyzIRnRbE059IRlFM7Fri7n/XCgqC2HFrnasyuhGRm4Kc+7sT2ZBOXf8soYym/92o5s2tKNLc4WPd0zhgdW7yM2O9Zt0PtNrJFfM/JabZ/3Cjo0tsNu1fo+/PnokYz7+nnt+/IO7hp3Nme0SKlKW3QElRYE595zFpvU7Gf/VbL6els4NF/Sr9fsNMhl47OUx3Hv9J4x/ZgrPv321N0BVneqWCjXGizIhGovGmqW0JzMPVVVJbhlT53N9M+2qCxYEm9xbXZdZag5cePoOneJeltExNtj73kvGuQPOTpeLIL2OEe1iyLa5t9tcu6+Yvs3w+/whExdRbnd6axjpKwWwwX3e5+xfz8GD4dzwz3q/AsrVBV09dTGum7TSG7QAvDtN1XUhvjRrPy1jdqLXFRERbOfpOQsotwfxxsJQPh49hNTI9ug1h5er+AZLfLMwLDb38hGzUUdRuZ0ym4vSzGRy9sdxzdkHUVqup21qPsuWtyVzb1SVY6kuK/KnkVczfuVcPt6Yztq8/Xww5GISKwpie/4+LXanN4tRMYZx8+kd+Gz+XJJNJeyxJOJQ9RXFsg+/zhMI0moUDHHNSd6/i+TcLOJMA2s9V75jxmMvjWHsVR/yyhM/83+f3oROr631teL4kMCFEEKIJidtYFv0ei0LZm+sMXARFRZMWGgQZ3dqRrs+VdM94yvWFo8f1YELurQAoNP4OVgdLspsTlK6qXyzfC8tNRmEBen9Jp8AwSYrtkNGVPXwBbWiQNuY0GrbM6JdjPvi2+nkxiF/MbDdenZmJ7Ei4zzObX0BL/2e6S2SFqTTuLdHNWgx6jRc0akLsze4K8EH6zW4VNBqFIw6DS8OGVrR9tkY9aW0T9zFhT12M6DtWoZ2WsX6rLbkW6OJMLVAQ3WZDgoDjeezUvMLbbqsJudQX+y2w5kVA99dikufiDllO4bYXeTvbI7ZqPdOSsNNQTx//tnc8NVPPPXbP4yjBRsfHlZlktoprjtLN2Tx4c+LSEpoxll92wA13/Vt3S6eOx8aybsvT2PSZ3O55rahNf05VJkUe77LxnZRJkRj0VizlPbuzgMgpWV0QM/3zRiovHQiuKJGRGkdRS3fvrALG/ZmMXXlAXxKDdE5Powdjw/365/W7nJvm/rarB2M//sgmx8ZxqhOcUzbmO0eOyoust3ZdU5unbwavU7D4nsGERNipNvb0+k9JJfsnDbunT0MWhSl9t1M0rMK8KlFTZBOU+1OUx4u1cmu4lnsKplJgX4p94ys/vgX509mcZ6GMH0bkkJ7kBTcn4Tg3n7nNKfYyrhf13vHJkVx194IMWgpsTmx2fVM+ieJ6OhQTkvbSufeK4iOT2THpk6kRvkvC/TdqttzPm9pPxDVGsr3uxdw/p9f8vHQS+gdk8SMrbl+QQvP0sur+3SgRWQwj079i2TTXvZYkr3Fsj3nyvfv+pkLuvP8FDvNc7K48ZUpzBx/HfHhQVXORXWBvPueuoCXHpvM1x/O5qZ7zqr2HIrjSwIXQgghjouGvAMeYg6id/82zJu5gVvvG4FGU/VuvKIodGgZx7ZdOUzcu77KRWys2b38oFOsO13WM/H0LOdQXQpWp4O7p64HIMKkZ/Mjh6vN7yspISHUTIhBi9OlolEUtBqlyvZu/m1S6dliKwPbref3FQOYunwIoQYtczdleSeG4N76LsSg5YGK7A3ALyU6uGKy69lt5NsVe7DYXeSXGSko7ciYDpfwv2nrGdBuKWd1W0ih/gFSTOcRYuwCaCuqe6juWh56LVd0b8FI+y3cteJ1+qStZcOygX5b9xWXGdAaEwmJ30tMYh7OggS/SXNeuY4CZwKRun0EOfd7t+3zvRDKLbHxZa6WJJ2Bx9//k8TnryYmylxrgOHc0X3YsCaLbz+eS8duzel9Wusa/yZ8J9vTNmY3yosyIRqLQHb3OBHyDxYDEB1jPur3Cg5yZ1xYalgq4nuxGqwtI1wD+WUWv+dUXkqxYk8RAHaXC4vFwetztvHI0LakpURQ3Y7PVqeK1emk/3sLmDi6G0Gh7oyNgvxwTHp3AKLy8o3KfL8rrQbevagrI9q5M1Kmbcz2e12RbQ8Lsl8gt3wdwbpY2kdcTIjSh5VZOkrKjTw3IxO91kpkSAlhwUUkRe2lbfweSuJ/Y1PBZIK0ETQPHUrbsPOIDupEelYBDp+oidPlomdSGAadBpOqYrG7sDhcZB0wkze9N63a7CS51Q7CIg9x3nelpN822i/bpPKyFU92hCGoFR06HeDK6d9zSdJAPphV6A1amI1aJozu5r15MLpHW7SaUTz525+cHnWIBLOu2nOl1yqEBemxBIWy2xxDy+Jc/u+H+Yy/vWoQotpA3lmdWbGkF5O/Wkivfq3pEUC9JXFsya4iQgghjrkjqb5elyFndeFgdhEb12TV+JwubeLJ2JuH3ebe5cPmcHkrkieEuyfG+wvdE+XUKBNlPoUsVZcGRXM4NbfM5q6w7jmWZXsOkplvQ6txb5GK4l4nXWx1YLE7vQXSPNKzCgjSlXH94H/YfTCO31cOcm+DWkO5B98Cnp6MggcGtyKkouCm724j435d553kWRwunvpnCzNvH8KN3e+hf9Q3BDnPI8syjQnXTeaba5LY8fhwdjx+Jp9e1oP3Lu4KQLuoGJ7tcjMhIeXcfMEeokP1fpNAtSSa4QntCY7O5pNrW/pNsNNSIrAr4eTbIgjVFvLIb/OqfMfpWQXYVIWtYfGgqjw98U8WZeT5bWNbuVq8oiiMe3wUzVvF8NqTP5ObXVjjd+2rsV6UCdFYBLK7R0Ora+efnGIry7floGgUzOG1F/ENhF6nRa/TYrFWn3Hge7Fqc7qXAuSVlNb+nor7eYrG3d9OWLiLNq/OIrfUyuJ7BhFq1GLUVu3UXS73WBIeWeiu/2ON4qMx3dn48FDvVqVQ/a4hvt/V5keGeWtY+I6p2UXlbCmYyh+Z11Fo28WguGcY03IKaTH3EWPsy/1TC3hs2gFsDiOvnDOAO9KGsmhba35aOpiXf7sKij7jjIRXiDf1ZmfR3/yZdQvfbbmRcPNSNBrfrand487Gh927YUWYdJgqlgWWWWHLplYsX9QXVVXp1HsJE7f8gVN1VTnfnh23vOe/3Mi1yWdhKTXyfeY8XCHZh8+dSpWMxwu7teaLa0dzsKSE27/7lVKrrcq52vjwUO/2r+URzSgODWf+wnUsXptR5fupacy486FzSGrejNefmULhodr/NsSxJ4ELIYQQx1zlCUtt25kF6rQh7TEYdcz5Z12Nz+nSOsG9VWeZe8JRanN601fjwkIxaLVk5LnvgK3aW4Tvpp7Bej1Gw+E7TTanyrhf1zFjay52p4oTFy6Xgs2hurMlVLyvt9hd3PnLGjYcKPK+Pi0lgmFdVmIOKuOzOecRYjDy0Zju3i3pgvX+Q/K0m9K82R3TNroncXcNTMWg0xBq0OJSVTIPlTFja65fGjGA06V67+AN/2A9t33Tg49mXs4h636K9Q/j1LrP2X2/reeuKeu8waSBCR24vc1o1hRt4oUVUwG8k8C5YwdyXnwabcJjeGb533y5art3gh1rNvLuRV0odsVQ4gjGrGQzaeVWvzZ5Job6kGByYxLZuy+PRfNWo6J6i+pVF2AocqicfvtwrFYHLzz8I9Y60r497TneF2VCNDW1bTXa0HyD1x1en823K/b4XaB7Hv9j5R7sWi0HS+v+dx6I4CA9pTXUuPC9WNVUFIbMrSNwMbyNO8Cg17k7XatTpcTqpO/b8wHY/thwPrmsByEG/5oIGo27aOiZXbWY1Cjm3jHEG4CYtjHbu512TcH9yt9V5TF13r5JLMkdT4ypKxc0/wazMpQ/N+Wy4UARr83ZTpnNSbHVgdXhpKjczo68Mr/3Ly5XMKmnUXzobrqGfM/U9JHsK8llZ/mrTLz+G9JaZRBSsXTRk+FxTe9kNj8yjI8u7U54xRobuwsO5kWwcO5pHMxOYFnZPF7Y8AllDkuV4MBlPRL9fg7WGSnIbIWlyExU0gHCYt3Bf6XieCvr2zKZty49j437c3jwl7+8wSHfc+UdC67pzT8vXk7r5Gie/fAf8gpK/QJpNY0ZQSYDj788hqKCMt59ZVq1W3+L40eWipwCNA/9caKbIIQ4xR2LO+DBIUYGnNGR/2as5/YHzsZgrLrn/f+zd97xUZXZH37uvVMySSa9kQIJgRB6C6H3KqAgIjYsa11Fsaxd1113XfvaELCsHWVFpUmX3gm9h1AChEAK6WUy7d7fH5O5mclMIO7Psqv3+XzcJTO3vLfM+573vOd8T0JCNAoQaq2lyhCISS+SW2qhY1wIekmiVUQYJ4pL/B4/JsBMx8gAUlqmMGvrGeocsuog0EsCoiIhSTbq6lM8LHaZF8em8/zKY9Q5FWpssqr8Di7D68YMJyV1sUzu1JfbM5PUnOwN9/Uj462N6rmDDBKVVqffvNv5t2Yw+sPtWB0K9y84RGiAK3zYHYlhkAREAe9UD6uD7SdTOFl8C9NHf8sPPEKw4ynsTtTQWHcZu+Twrly8sJUdcRv49F917LhzMplJYar+h6iPICy5hGd3LuXRhW058qhL2b57Qgg2h0KBI5aWgef4ZPNGhqTG0TXRFdLcWIfi04Xb+G7VHsLC4yg3h6lpL554Xn9UhxTqdh/jjb8t5Ml/TEbwF5ft+fwuU3Lx10ITDdX4PeLZFwHc8+1+THrJpwy1XZZRaJ7wZHMIDDA0GXHh7pNW5RSjKAr/XJFLfnml323dpEeFIwBXd4ti3iZFFTuuczT091N7JtI9IYS+MzYjywqCIPDy2PYU11jZU3Aei8Ul5OmZKqHUe76rPUQ6G+tBQEP/kRJhUsfUpMgi6qRPSQzsx7D4VymuttPhtXXY6lMfPafaFrvM/QsO+ThWnlmezbMrsnHK9aXClQy+39uN3m2Oc8+Qrdw78t/o5e70iXnIpy2j0qKZcXVn7vh6H/Z654HDoefWhCmktD7P7BPf8ui+t/hzx7t8tI88/y6usVJrVag5k0RkUj5hcUXoBRGlKs7LZvDsQ4e1S+WBoQN4a+0mXlq5kWeuGOz3ObvfpRemjePWP8/hufdW8HVNIHaPCihN0Sa9BbfcO4yP3vmBdSsOMuyKLk1uq/HzojkuNDQ0NDR+dvwpiv8UjLqyG+tXHmT7xhwGjezo8/2h4lpqjSZCbK7VJVH0dpq0bxHNjlxX3XpXGTgdVruMUS+SHhnB0fICZo9sy6e7zqGXRLXU3pHHhvLSkbPk2/JUh0GgQSIh1IRO5xLgBECBVTnFPLToEFaHzFMTj1FWHca/dpzls115qtG+N78Sq8N7Jaex48HtXLhv/gGvbW1Omfcnd6Wyzs79Cw5hcyrYnA6Ka6z1Jf1AJ4BDgeLKcF5cdDNv3vgdgvEV0uOvJ/t8KyRRUMvYKSiIYge6mstJ7biPDWf6YhKDGvQ/bDoceQlEJ+ehjzynTjBySy31gm2Qb2mBTjjHNR9+w+rpt5AcGay+B24DMr17O6o3HiO2rBCrIUB1KHniNdmJDufmKX1YP287ScnRTL17yP/r3fk1+G+t5KCh8XPjdl6bdCIWh4zFLqMTfctQ63QSoqL8ZOldgQH6S5ZDBVfkmd2pEK2TOFlcfsltjZKOKFMQ0aGwY/pAer21SXVee1b66BgXwoknh6vlPJ9alo2CQp9hFoovhvmkSrgdCSa9iCS6Sqs27isAH42IU6UV2ExP4lDM9It9GkEQ1X6z2uZs6jKosTkJ0InIilI/ZriiBi31+kquyxHYfiKN4xfaseTeMk7WfMGWkrsorLuFE+dH8ODCIzjlhrbodQJ2W8PYFGoyMDZ+AAmmGF48+jGP7Psnf+5wF+M7NGhFeI4JWXnlGHUidQ6ZkrwEEBSCYgt4dGT7S+pkPLu6mEBC+WLHHlKjo7g+o6O6bWObIyUhkvuvH8Q/v1hHUHgceQazOra63wN/ffM1U/uxbUM27768lI7dWhLbIuyS74nGz4OWKqKhoaGh8Yvwc4Qld8tsTVRsCD98v9fv95lJYdQFBhPksBImyWx7YIDX+Tu0iKWwqprCyur6MnDD+PqWDLIfH0ZaeCTnayoJCZR8QkhjzEY6RsdgpQZBUNQQ2lFp0Wqec5BBAgEq6+zqpD/UVEVRZfBlU2ZeGecy1FIiTCgoBNenUgDQKFLVqJNcZfoahRbP23e+/l8CnpVE62wBZEa8itkQz/TR3/HZTZG8M7ETTtkVfaEoIMs6cvZ3Q2+wsdO6kl6Joa5VuHoslSHUFEdhDCulRLmg3muDTsSkE7ErBs7XxSFh5bH5K9QQXmjIc0+NCqI4JhGHpCPx4jnahhp87kPj67/33qGMGNeVL95fx+a1R/zeu/9mfo6UKQ2N/wXczuv3r+1KmEnvE33n/n5c5xYYUIgK8o2g+08IDDA0mSoC3r9Jh6LnxMVS4NJ6HIlBoZyuKqNjXAg7HxpIsFEi2CD5VPqIMRsJM+nVvhVk9HoHOAL8pkpIolDfvyvsza/06Ssa9x+5pRbaxG+j2pHLgNhnMekigIZ+M1DvXUdKAPWzYINEgF4i0CBhNuow6iSMerH+3yKvjGuvalfYHBLFpaO4utVcog19yKn+F0ern0CmXG3L3vxKXh3XgUC9q9pVmMlVPraoykrehVCeaXs/wbpAnj04i0PlJ/w+C5ejXVBbW3I2kfbmRF4/sI7lZ7J9nleD8wfO1UZhk028tGItZ0vLL6mrNXlEN7q3TyKmvJBwSVHH1kv1zZIk8vjfJiHLMm88v1BLGfmV0BwXGhoaGhr/s0iSyNDRndm9/SSVFbU+38eYjcy+YxAAf82M9VnRz0x25RjvyM1Tt3c7VzpFxuJUFI6UFvp1ugQowTgUB3q9zavCR8e4ELY9MABBAEWBZ1ccUyf9FZYgzKZaTHrRy2h3RXvoCdCJBBkkEkIC+NPiw/R/d4vLkYDC30a3U9Xcgw0ux8i7V3dSK50Mb9tQPlAApnSLry+jp2B1ugzW67q2YN29fTlXbqR76MvoxQAcppcZ0saoGtBGnciS2zOpqQ7hdE4ah2uO8sHRDfx5RJrXvZvapjedwuP5x97VbMvP95mYSLoQapQYDubnMWvjdsA7z33wrK2se2Ag024dSaAIb36yCoejYYWwqMrK4FlbXUJ29fc3NiSAB5+5kvadE3n12fkcPdi0MOt/I5poqMbvmQZdBP/6MzFmI/06xuN0yJRerP5JzhkcaKS6tmkxaM/fpCwYuVhVxfny2iYnvUVVVgIFM0dKizh0oYJ5+86z5PZMZl3Thbcm+Jbd9jy+TnRFMozrEK2Kcrqd4u9M7IxSH/HgmZLo2Vc07j96JYZyrGIhUQEdSQjqo7Zv8KytoLgiDNfd25fPb+jO5zd0Z929ffnT4FTW3duXr6b2ZOFtGfyhV0teGptO9uNDyX58mPpcJneJx6h3OaIl0eUMWZPj4GLx/czZNJ6UmHz+MukTkiILEQXUqBKDTseH13Yl+/FhQIOA6LAZh3g89V6ijeH85dB7HK446XOvYsxGlt6R6fGJwD8yx9I9Kp6HNi/hYEnBJXQy9FSTgF4SeXz+CradKW3SESGKAn+5ezQmvcQYUy2HHx2iinheqm9ukRjBXQ+NYt/OXJbN39XkO6Xx86GlimhoaGho/E8zeFQnvvl8C1vXHWXMxJ5e3xVVWbnhu6Mk6g38a8U+rh/VHUANH02PjSbMFMDanFxEfYRXSGm3KFdt+P0XL9AjOsHnvOcv1kcIGKoQ7N6pDrmlFgQEqm0OzEaBV8d14PGlR6ioCSUmpIr3J3f1UkmPMRvZNK0ffWdsxumUufozX6Po4UWHMOgklt6RSaXVJTKaW+oq3Xe4oJJxH+1Qtw0ySkQHuY7tlGX0ooBOEnl2ZJqaU62XBLY++Hd2lE7nUMXrvDnhfgRcqTBZeeUICBzLSSIsupBNISs5sG0gIQEB2J0yRp3Enb1bMeT905iSirhu+Tw2TLqTlAgzU3smMiotWs0b3517kHfXb6dtTBR2QrxSX3JLLdw5NJ0ko8Jzs5fz9lcb+NMtw9RnZHcq1NTnfLvvr8Go569v3MBDf/iI5x78ijc/uYPEVlE+9+u/kZ8rZUpD43+JS+nPxCWEA1CQX0ZUTIjP9z9GI6aoykqVA8qrLU1u4/mbLKsq5B/L17A8+5zfcspuxytB1QS3sNL9ndU47Qb+vvo4Jr2IokCAXlKdyZ7Hd6eMyLLAqpwC/tTJ+14UVVm9Js7ulMTG1+r5maLLpsJ2mv6xz6jXsyqnGIvdicUuYzbqqLQ6mdoz0SvFYubW08y/NYOhs7dR7xdmcGqkV3WToiorigJORcEpw8CZW3DKIIlgd3bjeGE0D475lqcnfEFBwT28sSacKqsDk06kss5OVl455RY7NodMtc1JsEHiWIGTl7rcz5MHZvCXQ+/xQudppIckez2PSqtr2+r6VJbtpyu4NmEQb9cs5Z5181k87tZL6mTsPH2aP323jO75Jy/piGgRFcK9k/vz1lcb2H/4NKP6pjerbx47KYPVKw4y+42VpHRpRYe2MZd8BzV+WrSICw0NDQ2N/2napLegRWKE3+oi7snvRUMwAXW1LNh7lvRX13Ld57tIf3UtF2ts9GiZyLJDJ7jpy91eq2txgWbiA0PYUXjW65hFVVbm7D7H66tcop5h4RUI9WKYbhqvCg1OjcQgSRRVRhAXWszwtqE+hpHb2WFppHXhzhCxy6685HEfZZES4RJ3cyv093lnMzW2htIiTllhVU4x/d/dTK1dxi4rVNY52HCyUfnR01FYqqZQaN3ER3v+zUOLDqntd4XsChzc2xFBkGmZdpgXr0jn65szyH58KLmlFmw2HcVnEhH0Vp7cttKr3Q8tOsT9Cw4x5yB0bBHLkwtWEBng8GtMju7XnhvG9GDeD/tYvuWI33voeX/DIoL5x7tTEQR4dvqXlP8Plan7JSs5aGj8r5HQMhKAs7nFPt/9mLLa7m03na3gXEn1Jbd1/yYzWsYBYBJtfvuerLxyrA6Zqqr6ihNBDVF+FrtMnUOm3GL3KYXtmTLisOsQdHY1AsCzapS/lMTGfYXnZ/k12xCQaBU8TD2WZ2lsqV7TqajKyswtudgcslqu+82Np9TkPwXP1EIXq3KKqahzYKsfL9xVSZwyPDuiLWdL4vj7glspKI8kOek9OiS6IigsDpkHFhzihjm7uX/BQZcuEq6xK8QosfVkHX9KvZtQfTB/P/whJVbvEteZSWHo6ge9uvpj3fP1EU4ei6PIUs2DG5cQHWzwui+e92Rc53Zc2TmdL3bs5vvbulyystS1o7rTLjmGd+ZuxFJnb1bfXFxt4+vQCOrsTm5/4EsKK+ua3Fbjp0dzXGhoaGj8BhAE4bQgCAcFQdgnCILPcr3g4h1BEE4IgnBAEIQev0Y7fw4EQWD42C7s33Wa4kJfI0gvCVhDwhCAg4dPU25xYHHIlFscrMopJiEiDlFw4nBU+YSUDk1MZeP5XOqcLiV8tzF8zzf7uViho7IimOjYizjlBqeBe0Vw/q0ZPDQwhQ339SO31IJTVtidm4pRb2db/gaf63DnJRsajcyDW0d6/e2UvUXdrHYZp+zt7DDqXCHJFqu3ONvBC1WqQS6JMG3+Ae6dm0RuURyTMlchU8OqnGK1vGmAJFBbG8jJnNZExxXx+q5N6mqU+94aHKHYy2LZUXKCBadcjg/vPGSBazL6YQ4w8uziFWyd1sevMXn/dQPpkZ7ISx+vJudMsU95OsAr5zwhKZK/vnkjF4sq+ctDX2G5RDi4hsZ/A7/nfrq5tEgMJzQ8iMP7zvp892M0YtSILUVEkmW2nLp4yfMWVVnJKXFi0EmcKb3otzRmZlIYggD2ugCcDgljcPMdpu7+0lIbTFBwtepQ8HTEAD/KqVlUewpRiaOsRlSv2Z1mYtKJvDPRFdaR/upaXlt3QhXrtNhl1pwopkFNAmLrS2+7qWxUdtrmdGlmKCiYjTqCDRLltWZmrZqKpCTxx+Hf0S6uAHA5QmpsTld0Xr0TwqQXGf9xFjd9uYf+b+3h/uTbqHNaefHoR9hlh3oe19jTGVN9eXD3sUrLDZRdiGVLYS6zD+y85H15+oohmAOMzFi3ibHpMU3eT50k8sjUoRSXVfPl8ualfmTllVNjNHI8JYHQ4nK++DqrWftp/DRojgsNDQ2N3w5DFUXppihKhp/vrgDa1v93NzD7F23Zz8ywsV1QFIW1yw94fe6e/H5yW19Sk6I5c/Kcz75Te7VHUQQiDLU+K/sjEttQ67Cz7NRxlhwpZFVOMXangqVeRb6oMJrwiHJ0OgdZeeUcLqikzctruGHObobO3sYbG08xeNZWtXTduZJULDYj1fIWn7xpd16yXicRaBAwiALBRpFJXVoQbGwYrgP0kpeom1EvEqCXVN2Ll8am88KYdlTW2ZEkT2k26NzCrBrkL4xJp8rqRFFEPts0BnNALVf2WMu93x2gqMrKqLRoAus1L3JPtqK6KojkdoeZseW4V937mZM689KA4XSPTODp7Ss5UX7RJ1piRFoL3r3uKoqravjH8tWMaRftZUwWVVlZkXORh24bSUhQAE+8vZiKKotXSLm/ldYOXZJ46h+TyTl6nr8+MhdbE2UPG3Mp4T0NjZ+Z320/3RwEQaBTt5Z+HRc/RiPGva1kdKX0pYa4/t/fb9/tQLhl7j5q7AZ2nTnfZLSDS3xZh6MmGJO5msZqySEBDaKUnudx95d9WyQTG1nHjrNl6njidsR8e+A8f1mRzeEC35KsjY9XVGXlYNFRdp8xk/7qOubsPudVItVkkNSUvXKLgzqnq531/gAERGZc3YmHB7XGHKDjqWXZXn1rSIC3OKpREuqFmxX+9P0RnLKTIIOEUw5kcMzrGMRQ7hs1j8SwKgSoF6yWCKgX/xTrhUfd15p/MYCH2t1EduVpPjg53+sauyeEYKof0wTAWC8SWlYUjr3GzJsHNvDRnpwm++/wQBOPjRzInrzz/GXZNr/buc8VHx/FsF5t+WLJTorLLq+r4n6vylPjqQ43s/XLLZSV/DR6LBqXR9O40NDQ0Ph9MAH4XHFJYW8XBCFMEIQWilJfEuJ/nISkSDp2bcmqxXuZcusABKFhwu42QKsGdeStL9cTEx9OlahXq3HEmI2MSE9lW+5ZFv1xoJeh2rdFK0INATywaiPV51siiQKC4FEhoyCaNmm5xMRfIMQo0XfGZqo9ohxqbE5kxaW47s5z3nKmPT1StpA5YxEvjO6nakq4y9eZjTpmTuoGwPSFh3hy6VEUBF4am05CqElts2c+LsC3B85z8EIlL645TlV9GwINIm7D2p3H7L4fc3Y3OHHOXGzBuqPdGdJ+L0v29uOTnWd5Ylhbj9zsQ+Qe7UDnzJ3MO7qR2VvPqVEQ7hJyBkMYCe1KuW/DIu5NvYL5t2aw5vhFpnSLrw97juP5K4fz1MJVPL90Hb3bdFLb7lnebsGdo3nqzYU8N3sZbzx6NZIoeq20euacA/Qf1p4//WUirz03n5ee/pZnX5mCVB9x4g+tJKnGfzG/6X66uXTu0Yot646Sf7ZETR0BV1++4b5+zNt3Xu1X/OGOettwXz/W7sllztwL2CyWJn/7Xv2LaOJoQRF1dgcBet9pkrvM6SNrNrK5cjeGQAs6ezB/7NuKbglhjEqLBvB7nhizkYzoFI7k7eWuhZuw1ZmRRDAbdQiCwgMLDqEAL6w+zoFHB6uaSf7anZVXTnBADRerkym32Lnnm/0Y9RIvjGlHSICeUWnRFNdY+e6AdwqIXhII0EtqCmNhlRVZbhh73H3rqLRoQgJ0VNa5oiF0koiiKNTaG6ILA/UK82/NYMPJOl5Ydw0PXfERUwcuYXTC21TZZK8UG3d6o1kQVKdTjDmWY5WnWZC/jrqyRP7xfaVXedXcUgspESb25lcyfeEhnLJCXWFLdAFH+fP2H3hiYaq6XWNdiv6pqdgVE//euYvZWeUceWx4kyVV1/6hNxv2nOSTRTt4/LbhXu9Q4+N6jr2JN3blmTs+4qN3fuDR569u1rut8f9Di7jQ0NDQ+G2gAKsEQdgtCMLdfr5PADxLMJyr/+w3wxWTenLuTAn7d532+/3YAe0x6iX+mGpSdRrcBsnNfbpRa7OxJ++M1z4Bko4uocnogsqpcdRhtTu5oVuiGsbqqA2nqsJMi6SzjP94B06n7HNei13m/gUH1LznVQf6I4lOBqRv5p5v99PhtXVeK2VuYbYwkx670yVsVmNz8o81x1WnRWOjqrjGygMLDvH+9rOq0wLA4VAIqF+tCjJIqpgnuCqZhAY0GOYr9vdGEBSGdtjLjjNl6udhJj2bpvXjD516UVYSQVLKKZyKK81m5pZc6uyu3Oc6q8S42ExyKor54w/LGTp7G2/WR5y4V7yu7taRa7p35ps9B7jzq3V0eG2dz6rjGbvEqBE92X7wDB/O3wZcfqV1xLiu3PfYFWxdn82bf1+MLPs+BzdaSVKNX5HffT/dHPoNbQ/gU/LYHZn21qZcr36l8TaelYuGdnCJLOcV+JYTdf/2PfsXpxDkcjbnnfc5rjviIcZs5O+D+qDIAmGRlQToJR4f2papPRN9HCGN+xhndQsATGFFOGWFdyZ25subenBHZisvzYmPsxpeg1U5xVjqNSbcx8tMCsPh1GHU1ad/1OtrPPb9ER5adIjsoiq6vL6BRYcLva5DEiVmTurMhvv6MXDmVl5bf4KaevHMxuVpc54YplYk2T59AI0rgNqcMmM+3MFd3+wnpyCMeduH0i7+NMX2VWq0ijutMLfUwob7+vmk34yJGkldrYnvi7+nos5KldWBzSGTW2phfAdXJTDPSjRvX9kdS0kshuAqZEMFfWds9qt5svNcBRXOGCTBiUEp8XoGjZ/PWYvCVYM7sWj9Qc4XV1xWS8Xt/O/WKYFJN/XlhyX7vCpcaRF9Px9axIXG7xbx0e9/7SZoaPyU9FcU5bwgCDHAD4IgZCuKstHje8HPPj6FyOuN6bsBWrZs+fO09Gdi0IiOvPfPFSz9bifdeqX4fB8abGJE73as25nDozcPIdjUsIrSOzmR5Mhw5u48QJvYRHVFr2NcCPd06smm4myCwsupuhjFF7vz0EsCoiBhd8qcP5NEuy5HMIeVUVYSjp/bSmWdk3u+3V+vPRHBjuNdGN5xNz8cysBSF0VuqcVH0TwlwqQKmwE4nXJ9VEUVn+/OQxQEjDqRI48NZd6+837OCga9gCSICIJrxcydV+0+zz+uSOehRYdwyHCxKoz9Z9oypP1eOgU+4rMqteG+fnz2ZRode20nIfk00xdK2ByyugJXY3MSokRhLY8gIKIYQ3kg1TXBmAXBK0IiM7UjX+0+QYhUQInD9QwadDcEpi88iNOpEB8cxieLdtChdRyDeqReVvF9wvV9qK6q4/P3XLniDz83AUnyXZ/RSpJq/Ir87vvp5hDbIoy0DvGsX3mI624bqH5+qcirprY5Ve1Ar5M4V1jOdb3aef32UyJMLDlSSGZSmNq/dIoNZPzMj9mem0ff1q576y/iIUhvoEtYS07qC1h92yCvPsmzj5FEgXKLXXV4jEhO5l/ngoiPL6aqMFV1RqdEmHjLQzDzo6wzPDG0DeCKvHOnJ4Ki9oFRQUGY9N7pce7tXll7wu+Y4Kh36n6clUe5pWHfu/q0Us/nvifu8rVult/VmyGzt3kcq+F4AFknejKg3VHaxX1GnWMsAbrwy0a47cuv4cTR9nTquYeU1DOcOpFCtc3J2bJa9Z65KbfYqayz46iMxhlWQmDsBSpyg32iRdzPADGQOjmYYLGU9KgAv8/HPQb0iuvN0k2H+Wjhdrr373bZ98zNjXcOYs2y/bz78lLe+fxuSmrtWkTfz4gWcaGhoaHxG0BRlPP1/18ELAAyG21yDkjy+DsRON9oGxRF+UBRlAxFUTKio6N/rub+LBgD9Ay/ogvbNhyjusp/+btrRnSlts7O9+sPeX0uCAI39urKvnMX6PXGCv6++jhdXt/A4YJKBiQl0SowhpDoEhBcE3V3mU6bU+FMXhw2m56UNqeYe1MPTDpRjXLwxGKXcThl3pnYmW6Rd2CxG7llwApqbQ5SIkw+OdW5pRZMuoZ5jMWhcP+CQ7y//QwWu0yNzYnVIZOVV86UbvE+M54AncDLYzugoOB0KsiKTHFNw0pS25fX8shil9PCzeZj3TCbLLRtkeezKpVbaiHr7mtoqU+lXVo+siJ7hQ0D/HXVMWqL4nHaDEQmnSc4AB/nQN9WEVSTiIJEhC6fNpEG3prQiZmTOvPOxE44ZaiyObkQHkuLuAj+Mns5ufklzVJ8v+muIdzyx6H8sGQfb73gP/KiseinZlRq/FJo/XTzGT62K6dyCjhzqkj9rDlOx8bb9GkVQXJ8BMfzvAV/N9zXT63M5CmMGWgwkBQRydpjp9RjNu4LV+UU0+G1dWw9IlLrtLLpwimvNnjq/4DCtPkH1ZX7GLORa1v3ITyyjG0PZaj9T8e4EGZc3QmD6OrJ7Q7XeVznbujHqqxOimusFFVZKa+JJCrEFR0XoBPVSECLQ2bdSf9ipAZJZPrCg8zakuv1eWpkIMU1VlWjyV+kQXqMmZAACb0IBgkC9Q3jXKBB5L3J3bi1w19xKNUcr1zi9941jnBLiTBxLj+SosIoUlLPIEouZ/1jS46obThcUEnqS2u4Ze5e7l9wCIdToW9YJ3TGOgJDq/y+D+5n8MyYQYiCzA9Hs32+8xwDYiPMTBzSmeVbjpJq1jXbuW0KNHL3w6M5kX2B1Uv2aRF9PzOa40JDQ0PjfxxBEIIEQTC7/w2MAg412mwxcEu9an0foOK3mDc9fFxX7DYHm9cc8ft9x9QWdG+XwNyVe3A4vCtuDE5ri1MRiTC4DEHPEnGPdh+ApHcQHF4OgN3ZsJbldEqYq7sSGnmRh1evQRQFpHphTaNOJEDXsIxabXOSX2HBbIhj8e6hdEo6zZiue71SONxkJoV5RQz48YWoZVg7xoVw4NHBPDyoNcFGyeU80bt0HirrnNhkhco6J+9uzsVSn9pRZXXgDugQgWu7xPFg3ysR0HO+NstnApASYSIrr5xrkoZQp9QQ06KQIIO3loTVoVBVp1B5PglJb2dkptXHORBjNnL4sZE8PGIYRsnJjZ8sZNr8Azy06BDdE0LQSwLBBglZEPjTHaMwGnQ89tYiqmqaV3bupruGMPXuIaxavJe3X/jeb/qOVpJU45dG66d/HEPGdEank1ixcI/X524nZ1NOR3+T0k5tWnDoxAW+P+yqejG+Q6yrnHN9eVBbvQPYHR2wvxCOF13k8HlXyevGfSGAzSFTVmrCadfzSfYev+1wl0BtPIkdn9QHBYUDNfu99pncJZ5AY31FKIfMvd8dIMQoITeqGvVJ1lk6vLaOnacDiQsrxmwUCDRIPDcyTd2mzqEQIAmqGKdREggySPzjinScMlid3sc8X1FH73c2UW11ejnFPXGn9dll0EsSoujqq4ONEjumD2Rqz0RSI9KJNXXjeOX3KIpyWWdTbqmFIIPEqePJGIx2WrZ0jbmW+gWCVTnF9J2x2Sv6sNoqs3S3DdluoHu6pUkndIzZyF392jGoTTJfZu3DaveuXtJ4DLh+TA8UWWHdtqM/yrk9eFQn2ndO5NOZa+gSGfiLRvT93tJSNMeFhoaGxv8+scBmQRD2A1nAUkVRVgiC8EdBEP5Yv80y4BRwAvgQuO/XaerPS1qHeBJbRbJ66f4mt7lpbAaFJVWs3Xnca9A/WFBDjTOcYF0tRtFlBEzp5sqPHt+6Le3D4giNvQiCjMPDkBSA5zLHYRZDaZl2hFq7HUVRcMqgKAqCIBLgETnx1LJs7l9wkKwTPTmc14aJGWtIjyvxaWeDgr2k5h97YtSJbHtggNeK3RND2yAJAs768x+8UOW1zxe7z2Gx+07kZeCbAwXc++0xjl1I5Gz1dr+rkzfO2c2k2eeI1Ecwrk8Fc6f2ZP29fX0iTKqrArCWRrO7/ARHK/P9Xtt9AzsysXsGBqEGg1KkRnVsuK8fCKAocPVXB3jiztFcKK7kz7OWeZWddePPcJt69xBuvGMQKxbt4Z9/XeDXeaGh8Quj9dM/grDwIPoOSWf1kv3YrHbVqTBt/kEeWnSI4pqmJ2yNJ6UtE6Kosdi4/dPt6iq+Zypejc2pOmbtToVSqyut4KvdR9XjeU5kuyeE1O8rUF0SRnblec5Ulfm0w13iOqiRfkRSYCwdQ1qzomArstLQN7lLgbr70xqbk/EfZ/HVTQ1VcQWgdWQQdqfCsYI4AvR2pvRwsuG+fiSEmrzOL4hwe2YrAnQiVqeCKAiEBOjRezg03Ow5V06traEtSn1KCrj62Dm7z3H/ggPq+KGXRJbcnsnDg1qz7YEBdIwLUfviWMMVVNnPUWjZpwqqukuDN3YCZCaFIYoCZaVhlJWG0qr1GcxG0ctJ1FhbA8BiV6grjSa7opAW0Y5LOhdu79eTizW1fH8wu8ltABJiwhic0YYFa/cTYhCb7dwWBIG7HxlDaUk1Gxbu+sUi+i6nxfFbRHNcaGhoaPyPoyjKKUVRutb/11FRlH/Uf/6eoijv1f9bURRlmqIoqYqidFYUpXlFy//HEASBkeO7cXDPGc6d8R8q279ba5LjI/ho4Q46vLpWHfRTIkzYxUhkRSTGWMr6e/uqqu6CIPBApwFIejshUS4nQ6Be5LquLTjw6GC6xUcyKmwMQeZqUtNyqbXLWOwyNqeCxS4jN0rksDtk3pnYhQFxTxNsCGVP2TMsPnLMq9TdkiOFRAe5nBcPD2rNVzf2xKQXkAQw6UVW3tWb3FKLl7GyKqeYijoHtvpQ1U93ukoKSgKYdKJabcUo+Uulh1q7TG5RPNX2M8iKU50AuFcnq21Oqq0yu49EcLzmNAPaBDIoNYqdDw0k2CgRqBcRcIUt28pa0DI4nOeyVlHndPg93wODe1KnhBJpKCNQqlFF3FBcRrvNIVNjDORPNw9l24HTfPDdVq/9mzLcBEHg1vuGc+t9w1iz7ACv/nk+zkYRNhoavyRaP/3jGT+5F5UVtaxZdsArBN/mkJsUZfSHHGwGQFddqUY+5JZaCKyPGAusFy52RwcY9YE4FAOnihqydDydIZ77OqujkASRT456PyrPEteCgM+kfUyL/py3FLOnzHsyPSotGp1H/6woIEki6+/ty3VdW7Du3r5M7uIqh51X3BpZgUrnVgbP2kr3hJD6SlIuBATm7DlHXX0+oCS6jn/ksaG8OaGT13kHpUZ5/f3quA4AzNl9jvRX13HPt/uprHP1oQGSwAtj2jHps12qUOrhgkrSX13LdZ/vYux7ru2K6g5cVlA1xmzkjsyWgMDZ04kEBlm4qZ9JnfiPSovGqBMJ8ij3HWbSYzbqkKsjMEo6Fp863OSzB+idkkRKZAQfbtl72Xcls2calTVWvlh9wOe7pqIbiqqsnNIZyBjUjvlfbiMQ+ReJ6Ps9pqVojgsNDQ0Njd8Uo67qjiSJLJu/2+/3oihw21WZnD5fgrG6ykvDYf19A+nWqi0mqYYAyZWa4DZWSssCsFWFEBJzEVFnRxQF3p7YWV1pemhuBfl5LUhtm0tkuHdd97+OSvNKqzDqRUalRXNVh3R6hv+DClsJO0v/TMfXf+BwQaU6GU9/dS0DZ27lzY2nmPTZLgQETAaJr27swfiPs5rMRXbjDgd2Kq7QY1lxrf4FGXWsv7cv9/Rp5bV9oF6kojYUBJm8ioYI9ZQIk1eUSUlRNAoKu0pdKTnuEoHvTe6KOUDnctMoAo93HcqZqnJmHvB2OLiJDQlg44NTaBEaRlJgEXan/5XQq4d14arBnfh0cRartjUY+pcz3G68YzC3PzCC9SsP8tIz3+Gwa84LDY3/FbpmJNMmvQXffrGVjIRQNQTfHZHV3AnbqM6JWPVGouy1auRDZlIYRp1rZd+oE1UxStdqeU/u6teVfXn5FFZW+xzPc18DRkYntuPrEwcoq3Ol/BVVWZm5JVd19goIPumAA6O7E2EIYVH+eq/PPSPtAvUuYeUQo8TET3ey+HAhEz/dCcCRx4byh4xu5FxIJqP1QexOVyWOHdMHqlF6oiioLnOTXuSdiZ3VSh/39U/h4KOD+fOIthx8dDBXdoxVtxWATnFmOry2jnu+2U+5xe4VqeceVzz73k+yzlJucWBxyBRWSiBHUmHLZVVOMdX1qYl1dqffZ3V7ZhICUFQYjSwLpLQs8apKcuSxocyd2pOTTw3niWFt1QojRx4dwdCE1iw/m4PsLyyjnuJqGweLJc6UXKTjqysoqrL6dUIcLqjk2vnHqJP0vPldFocLKtXvmnKSe37+uWyktsbK4nlZTbblp+T3KDStOS40NDQ0NH4y/hvyLSOizPQdks4P3+/DZrX73WZkn3RaRIcQXXkRc30Yr7vO/PITMg5Fx3Pfr6Wgsk41SqYvPIi1JAFBUIhOLPJK01iVU4zd7uTIoXbYbHo6djtIWKCASS8SZtLzh14tOfnUcLW0XPbjw9R9d+RG8K9142kTe45rei/i46wzqkFotctYHU6qbU4UXBERigI3frlHzUWusTp4Zd0Jiqqs6oqbsT7UuHE4sFNW1NW/QalRzJ7cRTVe19/bl/cmd6W8NhSAKz9dxuGCSnXFTPQI0iguCSJEMrOrrEFLxJ3TrdQ7SZwyYA1lUuuOzD60nWNlxX6fRcuIYD65ZSKyovDwN0s5XlztsxIqCAKP3zacbu0SeOHDlRzNdZX4a47hdt1tA7n74dFsWn2Yfzw5T3NeaGj8j1BcbSNuQDrnzlxkz5YcNQR/2wMDVMdBcyZsMWYjt4zoTJDNwrY/9vGaEDcO6XdHVlyX0REFWOInvaDxvg9174fFYWfmgR31EQpreWPjKa8yo+4KJu5J88rsEoZE9mNPWTana7z1VzvGhbDtgQGIooCiwJgPd6hOgXKLqxR1jNnIlG7x7DzZhZjQctLjz6p6RyeeHM5XU3uy7YEBGOrvk0kvMSot2uc8z49Jp2NciE8EyprjF7E7FbVKicEjCiTIIKkpJ+5n0DoyyPsmyYlctORy73cHsNU7OmrtMiFGb10kdzsOPDqYpwZ3oF1wa47XHfO5354RDJ5/X9EqnSJLNWvPnG7S9liVU0yhJciVcuIs49sD5/06IebtO48iCBSbQjDbLXy8MUc9RlNOcs/PK4MDSe7WivlfbsNS+/PbQL9HoWnNcaGhoaGh8ZPw35RveWV9iPG6FQf9fq+TRO6e1A+jrY6ne0ax4b5+zNt3njq7kxqbwkVrBKdLSnhh5XbVKHHK8Pa4noxP7IYxpJzzdtfkuajKyv0LDmKVwWHXc3BvR4LM1YwedIpXx7Un+/GhqqE8tWciU3sm+hgYO0+157usQfRtexh90BcIguxaCdSLGHWu1TMBl8EoCK6oETdWp8KbG0+R9soaBs7cioCAXhJYf29f/jYm3es8NqeCLCvM23defT5u43VQahRhJj1u/TKL3UnfGZtVQTbPCiJBBh1RUgKnqr31K/w5Ep7NGE6gXs8Lu9aieKyKeTq5kiPD+ceEURzIL2DP6WyflVAAvU7i5elXEh4SyBNvL6a0orbZhts1U/tx32NXsHV9Ni89863mvNDQ+C+nqMpK+qtr+evxSmpNRl56dTmyrDC+Qywd40Iu+7tv7ESfOKgDiqKQte+Eus2lRHqTI8PpkRTPVzsPsPhwgd8Uh8ykMLLyygmTQhjcIpUPD+/kj/P3UG5xUGNzEmiQeHhQa68KJumvriX9Vdc4+cy/HRhFA9/lrfE5v2fKXJ3DW6Onss6uOpT35Lan0hLEE1cc8JnYu+/TzEmd+dvodqzKKW5yXE6JMCEIEGyQMOpEpnSLV/vyMJOON67qqKZoGHSimnLifgaTu8QTZtKrzvqoQAOVVtlLVBNg0eFCv+ePDjLSq2U43cLakW8posLuG+nij0EtXKXPb16w8ZK2h1PRYZEDCJJqOFlS69cJ4a7OVRIQggJE1jW0oSkneePPb71rCFUVFlYt3qvu+3Mu6PzehKZ1v3YDNDQ0NDR+G3iuPFyu9vlPRVGVlay8cjXM103XXikkp8aw6OsdjLqqu6rt4Mnoful8uWwX27Yc4LV9JVg9JueVDjOhzko2ZB/CIKWoRsmotGimBI7g5LJzPL19Bb1iEsnKq8TuYVhWlcZw7Ggb2rU/wZuHljCkzW1NGtZZeeV0TwghJEBiyd5+BAdYGN1lM0M7wsiW9zK5i0scNCuvnJQIE7mlFkKMEuM/ziJAJ3oZtHU2GUlyaWoE16+YtY0OJlAvejkdau0yL689wdubc8l5YphX2zKTwggwWOuPZ1TV7N2VPtzGuEEn0iE8gWWFOZyvqGFPfrVXqLXnMymqsjIipivzz2WxPv8UQxNTVSeXZ6370R3aclNmN77M2seHk8aiN4T5PNfwkEBeeegq7v7bv3nyne9598lrVMPtcu/GhOv74JQV3v/nCl6V5vPE3ych6aRL7qOhofHrkJVXjtUuo4gCp5Lj6XQ0l68X7eXBW/oCNPm7B/z2L60To+jSNp5F6w9y4xU9/Y4JjY+RFJXInrws7pi7GUUM9nKSND7H46PasUE6iS60GIpiMOlckW/T+qd4jY0mnQgC9akXetoZurG+aBc3tRpLnClSPX9mUhhNJT88uyKbkAB9/TFFVh/sz6TMVRTU7iEusIfP9tMXHqTc4vJIh5n0qjO9qMrKqpxiKuvsPLviGIqHHofb6bEqxxUpNyotmsld4tX+0f2MPPvK7McbtrfKc0CO8GlLamTgJZ9XZFQp7XvC8aqzZER0uOTzcZ8/NiCUPGM1VdYIgg0Sq3KKCTPpCTG6xsHhbV1OeZsSTJjuIhM6RPDZrjwfJ4Q78mPevvPkbrOw//DpeoFtwe/YBvj9vEPXJBZ8tZ3x12ZSUmv3eRe1seU/R3NcaGj8RIiPft+s7eTXr/yZW6Kh8evwS+db+jNO3QaBIAhcOSWTGS8t4djhfNI7JfrsL4ki904ZwJ/+uZAgh4lSQwgGEVzC6gJF1mhMUh53dDcwoF0XL2Pl9X7jmLDsM57fuZqnuo7CqBfVkFpBgFPHkzGHVJHW/gTvH9zCO3FXXLLtL17RnocWHebrbcMJMtYxMWMzFy8mEmOeDrjK9xVVWdmbX8ktc/e6BNtEgWCjRLW1XjDNICIKIpIgUGNz8sbGU+glAYNOQgGvHGW7rGCvc/DtgfPc1z9F/TzGbOT+ATFYAIvdgMUu0z0hRDXM3M6TzKQwDtXuZ0mhTObs5VRVBanPwP91OglJMfDEllUsvuIP7DpX4ePkykwKo3NSO9JO5/PSijV8dPMUv06E9ORY/nz3GJ6duZQXP/qBv9wzxmcS0tS7MenGvjgdTv719g8EmPQ8/OcJ6r6uFd51WB1OjDpJNe41NDR+eTKTwtR+tSAmgtSzFzi4ZA/y1N6I4qUDxptyok8c2pm/fbCS3UfyyOjY0mc/92TYnTZosdlpYRQxUkqVM8jLGd/4HPGmCBzVIYRElyLWxPLOVV0ZlRatRma4x0ZJbKiSIYkCt6WO4vEju/ni1EraC8O9+rupPRJ5f/sZtX06UcAhuypGAeoxdxzP4IY+e9hdMpuxpvcRhIb743YAubE6nGq/mv7qOsot3umUZqOO3FIL0UFGVuUUM33hIZxyQz/qHouaGnsfWnQIp+zgpRvyaRnUnpAASRX1NBsl1Rnf1POSylxCqieq81THRWOHcuPzX9EvlvPVJwFXyfH75h9AlhsWIl5YfZx19/blWFEJ/1y5jKLKEi+njCeuCMQQvtXV8dpna8nNL6F1oku4tClnWePPJ93Ujxce/5odm3IojQn/xRd0fstojgsNDQ0NjZ+EplYkfi4uF+ExdExn/vX2KpZ8u9Ov4wKgf9cUOrWNx3GykNJYM5JBj0GRsdkVjIZArunemfl7DzKlZwev6+kUGcf9nfvx9oEtDIlvTfbjw1QjqGVYAENnb+Pgvo4EBlo4G7Ga41UdaWt2Gcpu4TarwxVGazbqCAnQE2SQqKhT+GTDWIx6G71a/5vs8kTSwyaphprF5lQdJAE6kdev7EBIgB5AzV+euSVXza82G3U8PTyVHWfKWHPiInV2J57VUE+W1Kptchvsq05m0TPFSFmNGQXYm1/J1J6J6r11V1ox2105zYpoV5/BqpxiHlp0SDUo35rQqf4ZyTgLopEM+XSZtZC/DuwNuPKmRcEVpuw2RI1SCPHGciZ+8C0XHS3RS6LPKtXIPu04c6GUD+dvo23LaG4am9Hsd+PaWwZQW23lq482EhUTwi1/HAa48qDdRrzFLrMqp5ipPf2/NxoaGj8vMWajV79qHpTIrL8vYu3yg4wY1/WS+zblRB/eO40Zczfy5fLdPo4Ld2qK1S4jiCAiYHFAhRhKhL4Mu2LzcsY3PseotGhaxVzJzeu+5KreqE4L97V4On8HztyCK5xCIdwQysDITNYUbee1TQHI9kA1tcTqcNWjMtZHbwgCOGXU83mOt5WKyJbCF8iu+I72Ydd69emejnWDJFJusbMqpxhro0pLJr2o6nGkvbKGWqsTR72TxbMfbdy/uiMcyi127E6FTi0PYjJYqbN0J+eJ4V5RG27Hg6ed4HkvRQTC9CEUWFzVuw4XVNJ3xmYUxXUf3NfseX5LrR5J50SQnCjOBme+GwWYuzef6CADwUYj+/IuMKhtW6+xqvEYM7B7Kq99tpZtB06rjovm0m9wOyKizKxcvIdpz1/zuxPQ/DnRHBcaGhoaGj8Zlwrf/SkpqrJSbrEjiU0bBEHBAQy9ogurl+zj7odHExLqG6IqCAJ3XDOAh16eR3RVKeVRcWy5f6AaVRBkENh26gzPLl7Nwj/ehEHXMGw+0KU/Wy6c4entK/l+fAt1kltUZWXG1Z04VVLD5B69+CD/Q547OJtXuj1IgDOcDq+tU50WgfWG4qi0aI49MYxvD5znVEkNt3Z5nSLlFXYUv44k6DmWn+kllAZQ55B5Znk2m+/vryrWx5iNTOufwsytpxEFAUFQeHpZthpy/MzwNvxjjSvHW8Cl5u65eqWg8MSV5zhVFI+iuFbtKuv8C5waBJfDxKCX1WcAeBmU4DKyTTqR2vJQHHFFSKGFPPr9YerqLWKb08GGkyXqfhj1dG3Znh0nD6CXi7ET43eV6vYJfTiZd5F3/72J1omR9O3SEDlyueifW+4dxsXiKr78cANRMSGMneTt+NDQ0Pj1cesCAcjd4/nh2518NmsNg0Z0wGDUX3I/f070AIOeySO78eH8beTml5CS0JCa4XJcNpRtDjS4dHZkMRK9VMEtHQO8Jrb+zxGDvSqMdfIROr6hcPiRUT66E0uOFOKUXQLGkigwc0su8ZFdge3EtjrO2WNdmLfvPHanQo3NSZBB4pFBrZlWHxnX+Jrc/WK0cgWnq1az++IsApQe9HrzuDop3zStP3vzK+tTQrKZNv8gguAql+omJEDi3au7MCotmm8PnFejJMDlJG+s6yCJLvFpUXClojhlVwSJJCqM67aDC+XRjGk3zOsZQtPRcJ738pUTRyiyllJUZaXvjM1ejgj3NnpJIMggoaDQP7EFu7IPozfYsFlMgKvkt7v6CcD7212lwRMCJLLO5F924SM20kxyfAQ7Dp3xcYxfDkknMXxcF76bs42HbPZfdEHnt44mzqmhoaGh8T+F2/CZNv8goDBzUucm80bHT+6Fzepg5aI9TR6vVNBTGRRKZHUZotVKbqlFFbsKMhp4/srhnLpYyoz1273204kif+kxBkURuGfdAuocdrVtTy3L5tNd52gdGsULXaYhCiJ/PjCLNafPYHM0CJbJiiuf2LNE3etXdaJzi0iGxL1AQmAftha9RIvIrS4HQKMyIVaHTN8Zm71EydxG4Etj02kfY/bKkxYFQa0icuDRwXSMC/Ey4IKN1cRHFHG8oMHQdEd0NEYvuhwTH03pzJc39WDDff0AkES8ViGPPDaU96/tSpjJgKUkGmOQBcXgLbx2qqTGy9Hw2IgM6pQQIg2lmKQ6v6tUoijw3N1jaNMyimfeXcqp/BL1u6ZEO90iacXVNh58+kp69W/LjJeWsC/rFKPSogkz6QjQiQQaRLonhDT5zvjjv6GijobGbxVRFLlz+kiKCipY+O8dl92+KdHCySO6YdRLfLFk5yX3f3VcB768qQdHHx/F5B6dWHHkGAUVVZc8R1ZeObXFcSDISGEFfkt/ZiaFIQquaDN3St9Ti89QlJ9EYsvzBAdZvIQx3ToZ7jGiKSFGQRDoG/sUkmBgS9HzKIrdq9T31J6JtAwPxCm7yshW1jmQZZkgg8S7V3ci54nhqnC0OxLPzeh20X7GWAUUsMsyDlXAWuGtawtJiCiib9zN7DxX4dMf+qvO4dbaOFtWy6qcYsxSCBet5a775zGACQLq5H/+rRnIsoKiwEur8gAICnQQbJAIM+n5cEo31t/blz+PaOtV9rtONnK2tIwucUGXjYTo0zmZvdnnsNkdPt9djlFXdkd2yqxbefB3J6D5c6I5LjQ0NDQ0/qfwNHycsktsrCmDIDUtjq4ZKSz4ajv2JoyPzKQwyiJiUASBuPJCeiWGen0/sE0yk7t34qMtu9ib11C2rqjKytCZuyg8E8/ximKe2rrKr1EWb4rm753vw+K0srr2a3SGBkNOEgU1WqIxkmhgaIuXiA/M5FDl63x3Vw1/7JtMsEc5Oam+XF5jdfTiGiv3LzjEjrPlXscc3jbKqwSe+/rdBtzA9P2IAhw824kAnUsdvnEJPTc1Tle7481mMpPCGDxra70zSVCdSeB6XqPSosl+fCivDRuEIouERlZ6HesPmS29HA2dWoQy7/arMBmMpJhLsDbx7EwBel5/eCJGg47H3lhIRVXDvWxsLDauelNa5+Dpl64lsVUULz71DdTUsWlaf3SSgIDA4Flbm+2E+G+qqKOh8VulW2Zreg9MY+5HGym9WHX5HfwQZjYxaXhXlm85yunzpernLsdlQ1WMyV3i1f7jzv4ZKIrCU4s3XPK3nZkUhiQHYC2PxBhWQkyY7LNNcY2VijoHNqeCgqtqiFOGe9LGoRdF7r+q2qsayFsTOjX72oJ00fSPfRqneILJfVbVa2oIlFtcTnV3X+92gNc5FQSgZXig1xh6e2aSGoshAC9cke71fVZeuRo1IiAgo2DSCYzsvAXF9CFRhl5c+69Av/2hK1oDTDoRSXSlCaa/upZb5u7l/gWHuGXuXpYcKqXG7nJYG3QiwQaJYKOkliAvqrIy/uMsLPWLAHVWV2ufGpHCV1N7kv34UKb2TGRQahTPj0nn/gHJ6vXYZIPr2u11bLivHw8NTFEXDxrTPT0Bm93JsdNFzX4GblqmRJPSNpZNqw//6H01mkZzXGhoaGho/E/xY0VAp9w6gJLiKtYu918aNcZs5OBToxgzrBtBlmqOncj32ebJ0YOIDg7iga+XcabUFS3gdlKUlQZSVxLNgtMHKZLz1QocCgohRoklRwoJVqL4a6d7KLWV06XXTgwGG+CKTnAbleC7ai+JRuLEZ6iqTueU5Z8cuPg9OlHg3as78fkN3dk+fYBaOtTzXnySddar/SIQqBeZ9NkuLyPSnWu84b5+zLmpK5N6HqaFqRfbpk1h3i0ZZD/ucj74iySosrtW5cz6oEbOJIUwkytKw3MyD3B7r2R6RrbCFFpJoN616hgaoCM6yNtoLKqyMuZfuzlRGUlZTRX93/qmyQlDbKSZVx+6iqKyap6c8T0Oh/9Sp/6cSoFBRp57/XqsNgd/emAOu06XIuBaCfV0BF0Of8fW0ND46bn74dFY6+x8Nmvtf3yMW6/MJMCo48P5W9XPXJoaQ/n65gwfYV6DLoAqZwhbTxyn02urKKqy+o2wckd6vTlkJMF6Ax9kb/E597x9573+Nkiu8tUT01tzZcJAtpbu5mxtAeASupw2/yAdXlvH4YJKr/MdLqjkLyuyOVzg7QRuGTyYTuFT6Ze2mxnXnUNWZO75Zj/pr7ru15HHhvLa+IZqHdU2J2fLar2uKTrIyIFHB/PIoBRmXN2J6CCj1/kaj8EGCab0XcmVPdfSImAYcs1jWB3CJfpDAQSXSOknWWe9hKMBbHaJGmedej+/mtqTE08OV53tWXnleFTWpqbO5Zb456Ycv+kYHeNCWHdvX67r2oIZV7uqrhzML2bwrK28tSm3SSd15zYuIdGDJy74fNccBo/qxJH9eRReaHz9TaNF7l0aTeNCQ0NDQ+N/ih8rAtqzbyqt0+L49vMtjLqym98yeDFmI3+dOpCT2Wd444t1ZHZsSYBHDnWtHXIqIggVzzLo7W/Z+egNXsaboyyejPQAXt63hg9umshtnx9HlhWGzt5GoEHCqBPZcF8/ki1XYAlcQq++e9iflYHTKTFt/kH0kqAKsrlzfzfc148NJ0t4YMEh9LpxTB9tYerAxUiiTMvwHmo+rj919NaRQV5/y7jKoAqCoObyNs41XnW/lYMVRbQLe5iYYONl1ePzq8sAsNbpyUwK9HEmeU7mgwwSM7fk0iMhlJV7HUQnO3AaarDVBGHU4VfU0+pwYnEGUm4LJcxQxtd7cnhgcGev62oQeYvk6TtG8tf3VvDWVxt49JZhPs+4KYeXMdLMofYptNl9jDdfXY7UMflHC6n90hV1NDR+ryS2imLC9b1Z8NV2xl6TQbuOCT/6GOEhgVw3ugefLNrBTWML6NA6Dmhao2lVTjFltnDiDBUEUOzTX224r5+qixRjNnJD12TKxL68uncDWy6cpn+LZPVYU7rF88Lq42oGxBtXdWRyl3hizEamGEeysmAbn5xaTE9xglf/2XfGZgRcTo75t2YwdPY2FFwVM9xpf266R95Nhe0MeXxC11Zj2XSsKxaHS3B4VFo0By94R6s8svgwz67IBgS1gsiG+/rx6a5z2J0KzyzPpqLOFfX299XHOfjoYHUMLrMdJtcyk1ZRF1h9sC9T0qfROymiyf7QFa3hKtttscvM2noGq8PbcSEgISuOJp9JZlIYRp1r7d0pK0iiiCILyILTrx5SUZWVSZ/twu5UWH28kEgRdpwpumy1j8iwIOKjQzlw/Dw3XtHT90VqhKfoKIDcugUAG384xLW3DGjW/lrp1EujOS40NDQ0NP7n+DEioIIgMOmmvrz+lwXszTpFj96pXt97GhuP3zacP/5jHh8t3M606waq22TllVPrDER2hBJuKOOzrCM8Nry7lwNFp3dy5dJP+due5YhSMtX14atuPYu+MzaDAgGh3ejZey/dMvdwYGcGlbWuiAm3IFuV1UGgXqTXW5twOmUUwObQ89aKa5k+6jtu6L+EFiHtgGvU9jVWR5/cJZ7HlxxRy8G5qbU5SYkwqdfkPl9qdDkHyz8h2tSZlkHe1+3PuCuqsvL29gNExOnJfHM782/txa0ZSaRGBqpGuKeAWq3NyZsbT2FzyjgE1/n1AXU4LUFNinoadRIWu0yxLRKzvoalB3ZzT/8OGHSS+twaG3k3jOnB3BV7SGsVw1WDvUOsm3J4ZeWVczE6HH1iDK3OFHDTpB6075H8o4TUfumKOhoav2em3jWE9SsOMuOlJbz92V1I0o8PIJ86LoOF6w7yzlcbmP3MFL8ObXD1M9MXHqTaLlEuhBKuL6ewstxLYNnTqeB2YvSNaEekYTfPbl/Fqgl3oBdd/VbHuBAOPDqYefvOM6VbPNFBRo9+w8x1LUfxae73DErtq07+lXo9iSqbq3+cvfW06vhQcEVxPD+mwXEhCjoGx/2NOcce5rbBy1AQ2HysC5V1djq8to7KRiVQbU4FyS6D4Kqo1Hg8aiStxCdZZ3l+bCyhEe9RUrWSMMHMpxuu5uDZzvxzZASAmuLiWV0F8EpXsdhl6hwywQaJu/u0pHVkECEBesqCbKy7mNfks2tcpWXwrK2ASxjUn9PYexyTECWBECPNcjZ3aB3L4ZMFTbbFjed45HodXU6gziFBrF99pFmOi8sJhmpoqSIaGhoaGr8DBo/qRFhEEIsaibq5S+Bd9/ku0l9dS0JCNOMHdeTL5bs5mXdR3c5tbNUJsTgUI/N37+BidY2XjkJEQCAfDL0Gi2zDnHCGYIOIAAQZJAQBUFxhuXUVMaTZriA0tIouGbsJC3QZOrFmI5Lo2r623qCze4TDOpw6Plh7LUfOteFQ5T/JLv8O8J+mEGM2suPBgQQbJQJ0DUN9kEFSNTXc1xQRqHD7kPnoRAP2qukUV9t9rruxcZeVV44xsIaaahNWh8KQ2dt4c+MpHlhwiOIaV4ir27i8u08rjDqRapvTlQ/t0OF0SOgDrPx9TDpHHhvKqLRon9KC2Y8P5fMbuvPZDT15fdJoTpeU8eHmBkE9f9d9//WDyOzUilc+Wc3+HN+UH38iae5rLGifTF1QAHu/2szQlqE/2vmgCbBpaPwyBJkDuOdPYzh+9DxLvr20yGZj3KH4tQ646+q+7D2Wz6a9p5rc3q3nAFArR2Iy6Nl56gi19Q7pWruMLLv6IVu9WPINc3aT8eYWTp+KJLeqlFn7s7yO6dYZig4y0uG1ddwwZzdtXl7D4YJKJiQMIdoQwcenF7L23t58eVMPtj0wAINHSuC9/ZK9NCimdIv3abckGhmV8Ao5F1rzh8FLmZSRhTlAh92pqCVO3RhEMOpFjDpJPYenQKjewzEUZLTQruUiFpy+ltPV6+gcfiuTk7/mT/1uUXWN3OLZDy065NMu97jw/uSuhJl0mI06DDqRP2S2pGV4IKPSotHpFHTipdfW3f2tWw8kUK9jas8Ev/2v9zgmEmYKwOqw+RVwbky75BguXKykotq/FpUbz/HIapexOpxUWR2UxoZz4nA+JcWX12TRIvcuj+a40NDQ0ND4zWMw6Bg7KYMdm3LIO93gkHCXwLM4ZMotDlblFPPA9YMINhl4+ZPVyLLLwmuoUpHBnNsmUmO18cyiH1AUbwuwY0Qsr/Ybi2SqoU+3Ktb+sQ9zp/b0MjwNOpFn+g7lqQ5/ICyskrEjjuDEzpNLjwICd/dpRZChQYDTpBeZ0DGWIINEtVXkvdXXgL0nO4r/yTfZs0iJMKml6SSxwdiJDjIya1IXXr+yg5eB6P4+xmzk8KNDeOO6rcRHFPL2yiu4ec4ZLzE1f9U53KVoA4OqsdUGq/cIGlb/PPlk51nq6kOBrU6ZIIOOYCmQfqlBPDGsrWowvjWhk1eFGHcZvak9E5nQNY2xndrx3qYs9p8rZsmRQlIiTD5Gnk4SeWHaWOKiQnjm3SWUVXqr4/sjxmxkw339eHBIKo//7WpKi6r44v11l3+pNDQ0fjUGj+pEj96pfDpzDReLKi+/A94iuumvrqM6JJzE2HDembuhycoRnpPJAIOB2/v1Yl9ePqEG10Q2yCAh1pfldus21NicKEBZaRD2ajOzD2+lsNZ34pqV1xC5UW110nfGZo4XWdiyqxWlzmJuWPI1mUlhRAcZ+dvodtzZuyUb7uvHoNQoDjSqDtX4OpccKUQSDEzvPosApR9X9lxDVPTbhJjqvMYXAKm+ZGr24w19vdsh8OVNPdjx4ECig2Wu7L6N126cjSFoOcnBw5nY6it6RN1DfGiY6rT1nMBbbE6fNEZwCZQeL65m4W291IpUg2dt5cZ6B05BdRUBoqFZzxRcfXigXodeJ/hoRHjqOLmvLTzQRIWlrlnO5natXBEPx8/4Xocnnu+JpxOosoWr5O72jdnNuo7mOFN+zzTLcSEIwhhBEI4JgnBCEIQnL7FdL0EQnIIgTP7pmqihoaGhofH/Z8J1megNEt9+7iuY5kmY2cT0GwZz4Ph5Fq1vEPR0Gzl9UuJ5fNQgNhzPZU7WPp/9+0alYiuLIafuNNcvWkFmUpiXEeg2SPpFdeWe5JsoVc7Tvttuah02HE6Z7gmhGD2U1LMeHMj7k7uqq15VVpGH545m16nO1EpzeHHLC8iKs75snMuJ4Fky9rmVx9g0rb+PMaQoCvvK3kcxbGT+zoHsym1Ntc2JzSF7ial5Gnfu4z68dCeGACtjUtJZflfvJlf/PFcr3YiCQHAAJIeZfdrqb4XOzeMjByIIMOHDxdz05R4Gz9rqZYyCS0TUqoi89MB4KqrreP79FapjpSnRs6IqqyrSduva0wwZ35XFX2dxNvfShqqGhsavhyAIPPDUeBwOJ7NeXQZcXtjQc1JdbrFz3/yDZGEmr6Ccr5b7L5ndeDJ5TffOOBQDYboiBBT0ksi2BwaokRFGneiKsgOCDTpsJYnIyPxt5xqfY2cmheGVoaK4HL9FF2IpLookMfUYC7NPkf7qOu5fcIg3N55i4MwtFFVZfapDuWlc4UgSjFyf9hqZ0Q9x0ZrFP2/4nM9udvLS2HbqPha7woaTJT4T+RizkdHpZhTDYt6c+h6TMtfT0tydq1p+xoC4P2PW+0Z6uKuGgKvqyPSFh7yex+GCSrq8voG/rz7O0NnbSIkwkVtqweaQqa534Kw+fYZwfdiPEqoUAIvd6XXthwsq1b8Hz9qqpvEF6HVYmxBxbkxKgiv1JdejAo0/PN+T7MeHqU6g3c+PJS4hnO0bc5p1Pi1y79Jc1nEhCIIEzASuADoANwiC0KGJ7V4BVv7UjdTQ0NDQ0Pj/UFRlZXNBDYOu6MrqpfspLqwAfEvguUt/jhvYgR7tE3n3602UlNf4HO+mzK4MbpvCa6s2kV3gPcHNyiunpiiO2gozhqh8Pjnkmoz7M0iU6pYcO9CFiKgyemTuRxBlRqVF+yipx5iNvDOxE6b6tA+rXeCTDePZcLQro7psZlLmcmyyHafsOn/jNIrcUovXuZ2KnR/O/ZkC29dsPNqVJXv6q22SUZqsdOI+rhToMuJamZIuufrnqXPhMuQl9JKARbYRYfTV2rhURY64UDMD2rQjQKjEZq/2ui7wrmASFhHKwzcNYduB03y6eEeT5UqLqqzM3JKLzSGr508d050Ak4HZry33iajR0ND47yE+KYKpdw9hy7qjLFt24LIliRuXA7U4ZCqNQbRLS+KTRdspuFjZZLUQd/+593wVlc4YDKKdaGMF70zsRMe4EK+0hblTe3Lg0cF8NbUn6+8ayqi4Liw9k826cye92hNjNrLtgQEEGVwpfTpJrE/REDmd3QlBgJ22lVgdDdEgVrvcZB8J/vtTQRBoHzaFMUmz0Uk6qnQvERf/PN2TcxAFl2f5iaVH1WtWFIViyyG2Fr7MN7kT2V0yi2hTOmMTP2BsyzcIN6Y2eX7XWNVZvcdO2btPn7fvvI8+R2ZSGHg4cAICLNTWmmjz8hpumLO72SWmz5VbsNic6rV/knXW6293O1yOC/8RNo2JDg8mMMDA6fMll93W8z1x/zs2JIA+A9PYt/MUdRZbs86p0TTNEefMBE4oinIKQBCEfwMTgCONtnsA+A7o9ZO2UENDQ0ND4/+Bp2hWkFWmqywz/8tt3PPIGLUEXmNRRUEQePIPI7jp6S94/fO1vDT9Sq9jCoLASxNHceWsL7jry8XM+cN1tIoIBtzGsYi1sBXGgJN8cXoj13RIpk1opE/bMpPCqChO5PghmbTOhxg66RxOxcnuc1U+Io+j0qIxGSR0kogkgqKIfLrxCmqsAYzttoO40FI+3ziFlAgTe/MrkUT85srKipPNBX/jQt1avt0xmKX7+uK2GgN0gCJw33cHMOhE5t+awfiPs0ABQ31lFL0kEBtdiSwLjE5Oo6jKSm6phWn9U3xWiRqLqOWWWmgVKXHlyn0kBIeqaSdSfai1JAqcLatlzu5zqqibp3jqYyP6sfroMWKMZVQR7KW50VjU7OphXdifk8+H87dhDzL7fJ+ZFEaH19ZhdcjU2pyqU2VwxxZI9wzh/X+uYPe2k2T0a/P/fAM1NDR+Lq65qR/rVx7iw9eXofTsQJUiYNKJrMopZmrPRK9t3f3Rqpxipi88iFN2CTQ+dvMQpv19Li9/tpY5FQGXrOqQmRSGLJqpk4MJ1ZXQJS7A5xxuZ6pbw8IuOwlNNvLEtuWsnnAnIYaGfaKDjOgloT4yTCE6qKHPzBeCWVy8lKRWAeSccFVPMepFUiJMLDlS6FcIOCXChIJCUH1/5tn3Rwd0ZGKruZyqWsnei58yffR3WO16zlyMJb+sBWvzdxJlrqDSfo4q+zl0gomWwYNpF3o1MSbvik6XYlRaNCa9hCQIKCiqIDT4VlWJNRsprrHy8tj2PLH0CJLOhtFkYWuOg2qrKypCUZQmhSrd44NDVth8uhSLw1UhRhAUPsrKw1KfpiiJNFSS0umw2O0+x/KHIAgkx4dz9kJZs6+/cfuUVjHYrA727DhFvyHp/9FxNFw0J1UkAfCUdj1X/5mKIAgJwNXAe5c6kCAIdwuCsEsQhF3FxVoIpoaGhobGz4/npLbGaKRt37Ys/W4XlRUu/YOmQjNbtYjgzqv7sHbncdbtPO5zXIcscaoqiqLKSga9NY85u89RVGVtCBm9sRdLr7qRAEni9jXfUFLXoLdQVGVlzu5zrMopZsN9/Xhz6ARuTJjAoeojTFg+g5u+9F1lahyKOuPqzph0Et/sGMbnG68irUUe/7zx31z9+VKmzT8ICF6aEQAWRwnrLjzF6eo1CHVTWbqvH26nxS09E5BEiVq7k2qbk1qbk9Efbqfa6lRTSHJLLRx5bCg92tbRzpyMUTRcdpXTU0RtfIdYskpyAege3kpNEQGFl8amIysK9y84xC1z95L+6lo11Ned+5xXYaVWCcMk1SAqDefyJ2omCAKP3Tqc6IhgVq7cgUFQ/JZrrbE5CTRIPDyotXqvxk/uRWx8GJ+8uxpZln2uSUND478DnV7i8b9NwlZrI/XwKVAUvykKbtzaOdmPD1PTPzonR3P7hD5s23cKQ3XVJaO/3P3w368cTqBBYtaGzU1GZqljT51M9YWWFFtqeGHXWp9tnLIr+sMdMeeuyvTUV05KiqJIaZfNixNj+fyG7mya1p/Bs7b6jR6bs/scA2duBQUEATbc189rXCuqsrLsaAkhwgiuSZlLasCzbD3eHUmE/ml7sQpbqbKVEG5IpXf0o0xpvZiBcc/9KKeF+x7NvzUDh6wgywqDZ21V2+muqvLIoBRCA3Q8ufQoXV7fwBNLjyKJIuFRpQgCXCgIV49Xa5e9nB+e1+Mef0prbbi7apNe5I7MVrjll0x6kXcmdlbvhSgIWB1ys9NQEmLCOF9c8aPugWf7nt5biFMnsX5N4zV/jR9LcxwX/uoDNf6FvgU8oSjKJROGFEX5QFGUDEVRMqKjo5vZRA0NDQ0Njf+cxpPaW+8YhLXO3iw1+qljM0hrFc1rn631URV3l0gttYdjEit48NtNpL+6VnVejO8QS5fYaF7tfRUXaqq49YdvqHPY1Uomt8zdyy1z9zJw5lZSIkyEWjvRWT+A6Bb5JLY9jN3pGxLs6WRxR2CYjTr2n+lG78jXsTpLefyqWUzstQSTvpowk1411s5Ub2DRmZs4X5tFr6gHGZN8h1eazIi0GK9z1TlkrJ7y84JrNW/TmQKKHQW0N6fy6rrj1PgJxb0Uy85kkx4eTWG5oDqUnDIUVlmxewhiWO0y8/ad98p9Hv3BNgotZmRFQK+UqMJvTYmaBQcaefbOUeQXlvNQqtHrey8xNZ3oFTFiMOi49d5hnDh2gY0/HL7sNWloaPxyNE7nSGkbyx0PjCC8sIzkIlcaW+MUhcY0dljfNLYnibHhxJUVEKIXvaIVGp8vxmzk5l6teWBoP9bn5LLq6Am/53DrPZh0ItgCuTUtg3knDrD23AmvbfxVkvj2wHnKLU727emIza5jv7KMSV0jyS21+KSCuCfI93yzn3KLXa3g5K4g5b4GTyfzxWonA5LGcnunZzl4/FH+NOcJpn/+EHd9cgMdzX8lPWwSejHoP34+4z/Oos4hU2uXsTbSTeoYF8KQNtHI9ZW2FFyCpnaHTHhUMTabjvKyUHX7QL3odS1uPBcl3LNVs1GHSS9xe2aSel9NeklNAwVwyAr7z1dc0uHuSUJMKBdKqnA0EmxqrqZKpV2mLCqMrM05OBuLPmn8KJqTKnIOSPL4OxE432ibDODf9TWQo4CxgiA4FEVZ+FM0UkNDQ0ND4z/FM13BHVqb0a8Ni/69g2tu6kdFfc6wv7BbnU7iz3eN5rbnvmTG3I08e9do9Tu3wVljiyTQaSHCUMjZWgPfHjhPy/BA1QCd8lE2mBI5KJ9h+sYlXBnbF6u9wXips7vU5AUEJNFMq7YpJLfORVICyEwaftnrWpVTTGWdncX7HVyoepJaaT6D2++jT5ujBIWeZHOBjTpnOfm124k0pjMw7s+EGpIBvNJkAPSSiF504tE8AiQBnU5kye2ZDJ61lZCoC7TvpvCP7ys5dyFX3c4zFLcpDpUUsLs4nyd6DPEx2Kd0i2fGltNY6k9u1Lvyvd/c1FCq0BU5rKPKEYxZV4WzfomtqMrqV72+qMpKjlWic5dUlqw7wDVDO3kJzzV+LzwZMrozX3+6mbkfbWTwqE4Igr91HA0NjV8Sz9Q/z3SOiTf0YdP6bJz7z1AbYcYRqP9R5ST1Oomnbh/OtJe+5bZEiadvaaii5O98ALf07s73B47ywrK19E5OIiwwQG2jOz0OhPpJtcCd6X3YXnSax7YuY/mVtxNjcqUXvjWhE4BXetwTS48CYLMZ2L+nM3367eG5Ax/SWb5KTa1rHD3mTosI0Ik4nDIhxobqIZ6T/CCDxMwtuQxvG8XQ2ds8VqNlNZVufIdYrzS9HyMWmZVX7rXEbXN4twUaxs9gg6RGvZkCbMTEFXKxMI6QAH19/y5g9KiG5e8YZqMOQVC4rmsCI2N6qO1tqn+vtDoB79TBS6WhBAcH4nTKXCyrJi4qRP2uqffCX/sqW0Rg2VvCob1n6JqR0ux7qeFNcxwXO4G2giCkAPnA9cCNnhsoiqI+AUEQPgWWaE4LDQ0NDY3/FjzzjgGu/8NAHr3rE76dl8WDJ6ouaXyktYrhprEZfL5kJ6P7tadXx5bqMY88NpRX1p1gxiY7rQLzaBFQyBNLDyMKrvzityZ0chmLJcGgj2WVcIzEoDCMetEj91ZAUaDa5jKiHukwmT3OFZB6kF1VO8mg1yWNx+kLD1Fu8czXHY3TMpr+Hb7nXO1KUMwE68NIC51Ir6jp6MSGY3jeF9eqkYIkCNhRCNCJGHUiM67uTPeEEObtO4/VIWOOKMRu01Fc1CDCaZAEr1Dcpph9aDtmvZEb07oRavDVv9g0rR978yuprLMTEqAnOsglXtd3xmYcDpk6p8sarnYEEaqvIjbQoUawlFtcYmthJj3Zj7uqjLg/l2SFLoLIix+t5tPnb0QUBb/vhSeSJHLtLf15/S8L2LX1BL36t73ktWloaPz8+NOzGd8hFlEUefbFydxz/WyG5p7j1Y/u+NGVGTI6tOSqwZ1YsvEwJVd0I8Yc1+T5AHSSyIsTRnHth3N5acV6Xpk0xmtCq6CAAha7jE4U2Xe+mncGXcVVSz/jkc1LeL33RDq9vt5r/HELBnumn9SWRzEufAJLyhayqfBLoDszJ3VRHR2eE2QFmWqra2wZOnsbM67uxOQu8V5CybU2J29uPMVr6096hdDrRUF1hjRnYt4UrtLUAgYRbDLYZYWhs7ex7t6+VFqdPo4Fd/9/UF7JllKZ29uMISQtku4JIeSWWkiJMHmNgYcLKpm37zxTusWrx/jTnkPEmU1e/XlT/XtkoAEB/xpQbjyvP8RaQzxQWFqlOi5W5RRjsTmxOOQmnR+e19glKpD7r36bDasOaY6L/weXTRVRFMUB3I+rWshRYJ6iKIcFQfijIAh//LkbqKGhoaGh8VPTqXsrOnZtyYI5W3HYL5/qcMfVfUiKC+Olj3/AUtfgJIgxG3liaBuCAwIpdcQRIFkxi0Xq8cDlmAAoLYjEVhHBx8d28NK1UXx+Q3c+v6E726e7Sui5jajR7WJ4rdft9IroyKwT39D/s6+aDGnNyiunzu6bpfnJDrjzkyu59f2HufeTu7nrkxsIke9hRXb5JcNanTKqc0BWFAQBuieEMHjWVt7ceIpam4OY2IuUXYxGr2tYQdNLIi3DAi4ZNnumqoxlZ7K5Jb0HofXidG6j252zPXjWVronhPDcymNMm3+QDq+tIzrIyIknh/PBlG6EmfQEGyREnRmdKHIw/xxZeeVeESxWh1OtrOL+3ClKFIRGc+x0IUs2NT/1Y8joTkTFhPDNZUroamho/DI0lVoBEBkdwlMvXEPZ+TLmzVr9H1UFmn7DICJCA/nHRz/gcDgveT6A9i1iuHtgLxYdOMqa7JNejg5FAQTvCXJaWDR/zRzJ5guneSFrg1fax6qcYjq8to43Np7CYpcJrK/MIQrw2FwLOUfaERVbSEr7Q8iKrKaJeKbK3dU7WW2bAjyy+DAdXlsHwJHHhvLIoNYEGSSqbb7jxu2ZLVUHRXOrPTWdLiEge6gNKMCYD3dw05d7SH91LXN2nwNQ9Y8IO8bm0l2Mjx3Gc99fYNr8gwye5Uqj9NT02HjyolpOtcvrG/j2gKsqiV2RMYgSjfHXPpNeok1UoE9qoSee128RXMc9nl+mHnP6wkN+hT8b43aetIwx02dQOzavOYKzmaVYNXxpjsYFiqIsUxQlTVGUVEVR/lH/2XuKoviIcSqKcpuiKN/+1A3V0NDQ0ND4qRAEgRvuGERVSTWxFy5ecuUFIMCg5+nbR5JfVMGsbzZ7feeuTPLYsB6U2sII0VUQrKtCFFyhvw1lTAVqChLpEJLAK/vXkhBrZWrPRLWEnqcRpRMlnmz/B2J1CbTptA99cJFf4zElwkSd49I5s7V2mTq7k8y3NnHjJUrLqaUC60uu2pwKVofMx1l52J0K1TYnsTGVGIw2Sopi0IkSL41NJ8jgMuqGzt52ydJ1nxzdhSSIBFlbqEKm4DIQ3eVIbQ6XrkVjg7lBUM9VJvb4kyNpGxPJieJSMpNcESxujDqJzKQwUiJMiB5WjiUknHYpsXw4fys2e/NK4en1OiZc35v9u3I5dbygWftoaGj8fDSlZ+OmZ9823HDHIFYt3svieVk/+vjmoAAeu3UYx88W8+n3WZc9H8AfB/amQ1wMTy9aRV5ZQ0Uno05k2wMDfPa9rk0XJqZ0ZOn5vQSYK9XxB/ASDL6yQ6wrQsIuU2uTOXmiJSeOpRCXeI5ZuV9w89ydan/rdgKnRgZ6iRPanIpXPzqtfwqGeke5UScSIIEkgNko8fzodmqqiqvaU/OiEho71rPyynE4ZRyyt+NIFKDK6qDc4uDub/bT4bV1FFRa+Cz3e2af+JYuIemcz21LXf1igr/xYPbW017lVB9ZdJgOr69BVhQCdLpmtU9XPzD4E+V245nKUul03dEnFu5X00ec9dfWWPjTH27nSbeB7agor2VP1qkmt9W4NM1yXGhoaGhoaPzWyOjXhrSOCWQUl/D5dV0vGwrbo30SU0Z2Y96qvew5mufz/d9+yOGiLRKL00issYjrukSoIppGvYhJJyKJArMGT6RDeAzTNi7kYIlrMpxdVMWXu/PILqoCXIbOt/uK6CxfSV1tID0z92MOqfQxHjec9K4tr2tiVK+1y1jqRS7r7E5mbsn1cS64DfT3r+1KaIDLALTYZd7blotYv2oY06IQ2SmSlx+BU1aotTkRBYEaT4G1+pVD9ypXUZWVD3ac5Mtj+6gpD+X+b4/VVw1xGZIpESZq6lf/amxOhreNanKF01NQL8wUQGVdXb3jaJgaweJOExk8aysCrtDod6/uRPYTw5h27QCKSqtZvOFQk8+5MWMm9sBo1LPo3zuavY+GhsaPZ+PJi9zwxS42nrx4ye2aqgTl5uZ7htBnUDve/+cKDu87+6PbMSSjLYN7teWjhdvZduTcZc9n0Ek8NWY45bVWXl3pqhrirujkrqbkuW9xtY1BYT1oFxZDVMt8Xp/kqmg0Ki3aSzD42ZFpGHWi6kwGOHcqjZjafkTEFNIhYztIdV4CnU8ty8YcIHFPn5aEBOh8+lF3P//S2HTsTpk6Jzjrq5BAw2R/2vyDyArc2bsl82/NYFVOsZfDGWgyKiMzKcyrtINehJfGpmPwiNKrc8gYgkt4cPebzMv7gcGRvfnXgmTe3Hia2vpIOX/jwb39kr0dM7KCXXZFQYbovUvTNtU+nSTicF466sF9nx4e1BqjUY8TAWw2VuUUe0XhNBb+bIyn8+TWLecIDA5g3fIDlzy3RtNojgsNDQ0Njd8lgiAw9a4hXCyowHS68LL5u0VVVlK6tKNFdAgv/GsVtXU29busvHLEegG2C3VxgEDO+SN8dyCf7KKqhnxnBAJ1Bj4edi3hRhO3rZnH14dOMmT2Nr7ef4Ehs7fx4g/HaP3Sam6Zu5dHFp5gx7buOJ0S7bvv4qK11KtNBy9Uev19Y/cEPr+he30khEigXiRAJ2LSNZh6tXaZ19afVB0HnrgjG2Zc3RljvbFssSvYZZkXr2hH61auNJFAXQCSKBBrNiKJrlUpATBKAk5Z4f4FB9SQ4HavrOXxDRuwK05KCyLUc7lTOnJLLQTWR20EGiQqrc7LrnAChJgCqLA0qPxP7ZnIqLRosvLKWZVTrEaJiIJAy/BA14pkp5Z0SYvn08VZ2B3Oy6rCA4SEBjJ8XBfWLj9AZXltk9tpaGj852w8edGrH7yc8+JSiKLIY3+7mtj4MF54/GuKLpT/qP2Lqqx8XCBiReTe1xdxrrTmsvsU1gpUOGMxirUEUOJV0cmTwwWVtHl5DbfN3c/ufVEYJR1zzq5D1DmIMRvZcF8/HhqYwob7+qnReM+NSiNA5+rPBQHa6XtybH8PzCHVdO29jciIykYpKgLjOsSR88SwJvvRJ5cdVR0EAHaHoqbYuY9TWedg1pZTDJm9Ta2ClfbKWtWB0TiNJsQo8ZcV2RTXWNn2wACCjRJBBglzgJ4/9GrJOxM7ESBBeEQZPTL30r3PDkodpZw60pkWlkHYHILqxAb/48Gg1CjW3dsXo9QwhbXUOy7MBqNXn95Umo9ekrwqWDWFO0JFrxOxSzoEu53pCw9RXGPlrQmdfMqN+8PzftoQSMlozZZ12dRZbE3uo9E0muNCQ0NDQ+N3S+aAtrRp14KvPtp4ybxT96rJH745wC5dBOeLK3hzzvqG4ySFEaCXCNSL6CQjdw8cSH5ZOQ9/s5whs7dSY3NS51DUEqcxgcF8MfJ6AJ7b8z2SrkE349mVOdTaPKqOWExkbeuBIMm8kP0+J0pLVMOsc4sGgUyAzJbhTO2ZyBPD2nLyqRH8++YMdj40EJNBR5BBwljvwKhzyJRb7H4rcQDqyp+KAi9u3YaVGkqLYnlpbDqg8NSybEDh5XHtMRlErE6FWruTyjpXqK/VLmNx2DFHlWCpDMZubVgRc6d0ZCaFqRofbvX4y61wAuSXVxIRaPJ5Rjd9uYfpCw+qyvuSCOUWVxlaQRC49cpMisuqWbL1mN8wYn+MvzYTm9XBuhXaSpmGxs/B7K2nL/n3jyXYbOIv/7wBq9XB0/d/8aOcjqtyiim1yeSGxGK0W3n+kzWX3SczKQyHGIZFNmMWi9Epvs6OoiorfWdsptrqpNrmxFqn4w8pQymsrebWNfM4VVrJ4FlbeWtTLoNnbaWoykpxjZWnl2WrpUVrbTJPL8+mtCiWK4JuIj7UyIs5M8nX7cCgU7wm6U31o1l55TSW/zDqRTXFTqkXZwZ3JacGKusc3FOf5gGoToX5t2YwdPY2VXsC4MSTw5k7tScb7uvHsmPnOVS7m8xB2+kzYBcRERXk5rRh/er+nM9LRBAENTVDgPrxyv94UGl1eqUBBhhdjdQpBq8+3bN9ng4Gl+OieToTMWYj70zsjFPSoZed2J0yfWdsZtr8gzy06PKRe42dJxOv7kGdxcbWddnNOr+GN5rjQkNDQ0Pjd4sgCEy9ZwgXzpWyelnTk1LPVZMqvYl+fTqyeMMh1u86DjSElf775gxOPzOC9vEJVMlRBEpVhOkrPM7XIOLVOiSCT4dPQZCcRLc+gyj5110QAMUaSs6+DGqUSm7f8hY3zd1Bh9fWMTg1kpAACYMoEBIgMblLvLqf29hzr9rNvqYLt2W09Dp2foWFv6zI5nCBd+RGjNmorpgFGyREUSAypghZFrhYFENhlRWn7MpXdspwsqTWy9kCYNKJGPUioZEVSDonlcVRBOpFXhqbrqZ0xJiNzcohbxwZUV1n5ciFInolJ/p9Rk4Z3pnoWhEDQRX6LKqy0rdLMjERwXyzZn+zxOcAUtPiaNOuBau+33fJdmloaPxn3Nsv+ZJ//yckp8bw/Js3UHC+nL8//jX2ZmrbuKkwBlEQGMaBfSdYuvXYJX/rrn5sGP+8ZgytIsP465JVzNl1yie1wsthIMCwlq24vfVQjpUVc9f677DL3mLR8/adx5/EqM0pkxrcktm9nmRoTAaLC1YzZfwh3rkuUe1Hm+qf3M7iIINEkEF0pdI9PgyAgTO3YHPIyIrsFannicUhe+lmjO8Qy5rjF720J+btO0+M2UiPRDOTF81lTulMDiprUBTINIzhlQ5PUXQ2jUBdAHpJYFRaNEcec2kYHXh0MHOn9mxyPHC1vyHtxGRyOf5zi5xYGolt+3Pe6CURu1Nudv89Ki0aRafDiNOVUqPQrHEDfDVZBvRLJTY+jB+W7Lvkfhr+aU45VA0NDQ0Njd8sfQa1o237eL761waGXdEZvd53aGy8avKnGwZSUnCRFz/6gY6pLYgOD/YqvZaZFIZNiMIi1xFtuIggBGAXgtj2wAAvA6pzZByfDJ/MzT98TXTKWYpOtUKRGwyyQL3Isjt7U2l1khJhYty/rbTvtpf0rns4ujeD3FILOU8M9ymX6hYQ8/zsoUWHsNULeRp1InoJnl6WjQK8sPo4Bx4d7FJ3r6djXAgnnhyulqt7YO8mKkojERUDU7rFM3PrafV+pEYGet2vQL3Ee5O7MKxNBNf88CmCM5KL9mAEQeC19Sd9DFJ/Zevc1xBilBj/cRYoYNCJHHlsKPvP5SErCpkejovGz8idNuKUXc4Jk15kVU4xU3smcuWgTny8aDsBicFwGWFWN6Ou6sas15aTe7yQlLaxHC6opO+MzSiK637+mHKBGhoa3gxKjWL9vX2ZvfU09/ZLZlBq1E9y3M49knnkzxN45c/f8ebfF/PoXyciipdetx2VFk2YSYfVLlMdFUuiXeQv768gNy4FwWho8rceYzYyuWsirUKv4KZPvua5xSt5iFYceWy4Kp7pTsETBFhyeyaDZ23F7lQwhSZxKu4M5oRayE9GLwpqBMQLq4/7OC/cEWvBOiOPpE+ld1Rn3j3+b+bXfYyzeAjDnUPo+cY2tZzphvv6kVtq8SlF6jlGzNl9Ti0rDWDSCwQaBFBcTv5nR7TllXUncMp4RbLFmI1M6RavtlMApnSLZ395Dq8c+pLW7csoLQlj764u1FVG8NgtPekeH+W3De5xwHMs8sQ9LrhLZwMctx9jzvHzPPX9CSz2hmpeTfXpBknC6nQ0u9xrjNnItT1bsX7XcbY9MIDBs7ZiFoRmjRvu/T3HtxHjuvLVvzZSeKGc2BaX3/+/AX82xa+B5rjQ0NDQ0PhN8WMHWEEQuPW+YTz7wByWfruLiTf08dnGn6H3t3uv4JZn5/DX95bzzhPXIHkYw+7Vtw0ni3hv/Q8E1Rbx8c3X+jXG+sa14r0hV3PP+gX06FbIldEDeWVtLha7jCSKVFqdjO8Qy5IjhZQWxXBofwe6dD9Mh+776JE4zMco8qw/7zbI3NEI1TYnwQaJu/u05GRJLYsOFwINK2TPj/Fun/vYFyzFmIJqGBnTnztGDvW5HwDPrsimzuZEkgS2Tx9Ax7gQFp06zIXaSu5uM5zDBy5SZXUZxTO35DKtf0qTz8d9DVaH7JXzHAxsPFXMhxs2kRgWQs+W8V7Pu/EzykwKU8vRWuwy0xceZFRaNCP6tOOjhdt5fVAi4S3j1WtYcqSwyfdm8KhOvPfPFWxcfZiguDA15NtNVl65j/NFQ0Oj+QxKjfrJHBaeDBvbhYILZXw2ay1Go47pT1+JIPiPJgB3pahhal+ydO8ZZv1rKbHF58iPS77sb72wVqDc2YJwKZ9gJZ/tZ0q5qlMLn37TM0qMijDu6JPIV6e3kNGjiA8GT1Ij0g48Oph5+87TIyGUTbkltI4MYnKXeC9HdVlRHH9v9yiLi5fz3bk1LMvfTmSLZE6ciiNQr6fvjM0ICF6T9Mv1V4oC70/uSphJr/aLf+jVklU5xUxfeIhp8w+qx+sYF6K2c0q3ePKUQ8w8MI9oYwTbt2dwOi8MEAgzSV5Coe77kBJh8nKs+MPf2BZjNnL10nVYLUZqbS6nRYBO5J2JnQD/fbpeknA4ZfXem426yz7T+Mhg6uqspMcE+3W4/BhGT+jBV//ayA/f72Xq3UN/9P6/NE3d918DLVVEQ0ND4zeCIAiSIAh7BUFY4ue7IYIgVAiCsK/+v+d+jTb+3DRV/qzxNo3DQzP6tqFbZmu+/HADNVV1fo/dOOS0VYsI/nTLMHYdyWPO0l0+xwe4tlsSH988Cb0k8uzi5VTX+Q9JHZHUlpmDJ1DqLGe3dRcmg28ZusykMAw6kYrCJE4caU9kTBFf5n9DQaXF63r8Kal7RiPoJIGPd55j9fEG8Tv3CllTobO7y1z5uLd0yFSv3/N+uA39ebf24uRTI+gYF4KiKHxwJIvU0Ehu79QZSYQASaDW5uTNjacuqSvhvgZPp4WroQprj+wlr6yCFyeOptzi9HrexTW+YqMN5WjBKbuOnRIfQUxEMEeP56vG6uXem7CIYDp1b8XmtUdc4cEeS6CeKUAaGpdC66d/HW64fRDX/WEgy+bv5qMZP1x2e8/+bVz3VhRFxWO21xFXUURKhOmSKQYpESbqlGAqnDEEiNVsP3EYpT5HxPO4jaPEHuyeybuDJnK2tphpW7+lyFINuKIPpvVP4Y5v9vPhjjyeW3lMPZfnmNfnrZ1Mjb+WN7v/icTAaNp0PMygoduJiC4C5fJpcaPSogkJaFjTDqivmNE41eJ4cTV2p+xzvI5xIfxldBo7atcx4/i/6R7ejnd7Psb226/j8xt61KcIDvNyuHR4bR03zNlNl9c3MOXzXX5Fo934G9ssDjsHSi9grwlWt9NJAt0TQprs060OBVlRLlvu1ZPwEBOKApXVdc3SYLoUsS3C6JaZwqrF+5Dly4uENpefK3WxqeosvwZaxIWGhobGb4cHgaOA/xhL2KQoyvhfsD2/OJ4DrL9VlKZWDgRB4M7pI7l/6vvM/WQjd04f5ff4jaM5rhzUkR0HT/P+t1vompZAfHyUz/FbRYbx9pTx3PnFfB75dhmzbpiArl4R3fN4Y1q2452BE5i+aRH9M2Fq0lAGp8R4OQoaVnqGs75sI5+d/p55+wvJOdgJveRKV/CnpO5Wq5+37zyxZiNPLcumxuYkyCAxvn0Mz45MIzrI6NV2z9Di3aVHiQ2IJD4gusl74bl6lpkUxvHqCxwuLeTlvlcgCgIgIOOa71fbnJgURU3daIz7GgL1IrV2V661JAk80NvEd3v288jw/mQmJ7LkSKH6vAP1Ir3e2oQkCl6pG6PSojEZJHSSqN4PQRDI7NSKjbtPoCjKZd8bNwOGtWfWa8tJlB0YdCLBAAI+KUAaGpfgd99P/xoIgsAfpg2nutLCN59tITQsiGtv6d+sfWPMRnY+P5EXPlnDjp3ZjHtlGWWBoX5Xn4uqrAyetRUUqCWcm7vEMH/fQZLCzdw7uLfPcRuv3o8zp2M2GLln/XyuWf4FHwy9hvbhMX77qMykMGZuyaXO7qTWLhNYnw4XZgrgqbb3safiEF+cWUJgzz1UlYdz9mQq1WXRfifp7v58y/391RSM7gkhXm1zj582h0xt/fjhOel3KjJvHpvDuqJdjG0xgD+2uQZJkAg047efb+ygrnPI1DlkXll3gieGtvHpU10RdNSXFnf9veXCaZyKDFYzQQYJob4/zi21+L1fq3KKmbHlNMEigMzMSV0ZlRZ92f47NNglBF1WZSE8JPCS2zaHMRN68NLT37J/12m6Z7b+fx/v54yKaKo6y6+B5rjQ0NDQ+A0gCEIiMA74B/DIr9ycX43LDbCXmqC2bR/PiHFdWfDldq6Y2JOElpHqfkVV1vrw2IM4ZbwMg6duH8mxM0U8NeN7brl5tN/j90lJ4s9jh/KXJWv4+7K1/HX8cIqrbT6GxrjkdAAe3LSYz1nD8LQpXu33DO+dYh7J4cJydsVvwi47yD3SVTXO3prgCpN1G2RFVVYGztyK1eHEILmMvmCDBAKq06KxAewOLTboFAaMyKGl1IEv9+SrNesbOzn25lcyfeFBHE4FBBjSp4QYUzATW3dk9bESnLKCzdkQpmCxy/zxu/10TwjxSaFxO1r6zthcb4wq3NpF4Ls9+5ncvRN39u/l9byDDJJPdIb73jeVz52eHMuSjYcpqajxem8kUfDK3fak7+B0Zr22nON7cv/f4cIavz+0fvr/T3NTAf1tJwgC054YR1WlhX+9vQrgRzkv3rhvNDf9tQz5zAVKw0XsZrPazxwuqFQdw+60PLNRx8B2nRFx8va6rRh0Enf0z/A5bmMn6aD4FOaOuoG7181n4rLPub5lP6a07eQ1tqVEmOjw2josNgcWh6tfrbXL3P3NPnSiqOoBjUzozsqCrfz7zA+Yw3aRbEpkV3k0zrOJ9G4Z7uWQ8ByLwLuPn39rBrO3nlbT94INEg8Paq2m/CmKwszj81hXtIubk8dxXdKoS6bjQEP/HaATqHM0jA2zt+Tyyc6zvDOxsx+nguAKEXT9D59m7ybWFMz8e8ezN79Kfd7RQcYm7peTAMFJsNEVgddU2drGhAS5KmJV1/iPZvixKap9B6cTGGRk3YoDP4njornO9/+EpsbQXwPNcaGhoaHx2+At4HHAfIlt+gqCsB84DzyqKMrhX6JhvySXG2Av59i4Y/pItq7P5r3Xl/P3d6YCDSsZFrsTS33de0/DIDjQyKsPXsXtf53LymXb0Ivhfo9/XUYXzpVX8uHmncSFmEmKTvZraPSKTOGu1GF8fGod1638ijkjryM20P9jnZZ+FSO+KSSpTQ4mPQQZMmjz8hovwUhwlfcrt7iU1y12mRevSOfFtcdRFBg4cyuguFbR6q+v1i5jlASsToX48HJsio2vtyrMKNhLmEnHOxM7q20PNkj0nbEZp6yo98cQWMuBsnwe6jyYAEnndd+dioxTBqvDVdqv74zN36sVzgABAABJREFUnHhyuGpAu59dbqkFAYFam5WkwEJ+OFrLPQMzeWhYP9Ugdj/vmVtyeWPjKdV50Th1w9/kICnO9f3ZC2X0aJ/EkceGqs4pz9xtLxHRFmG0Totj+8Ycrr1lgKZpofFjeQutn/bhxzgjmrOqfKntJEnkyReuAeBfb69CpxO5+sa+zWqnTifx4v3jmfz0F7StuEB+UACZSWEcLqiky+sb1Owxs1FSowL6tAxnbPoo7E4nr/2wCcDHeeGPblHxfDrkRkbP/5LPcjfy4d4jrP7jNZwrt3npY1gc3rKdLgeAk2AanLfj4gcyKq4v64p2MvfMD8zM/Zza6iAubExl7U03sudcldqfm3TuqA29+lmQQWLI7G3qOYIMEgad6OW0+OjUQlYWbGVK0iiubzna7zNp/Izd/feqnGLuX3CAOruMzalQ51Soszi459v9mPSS+vzcYssWu4xOFPkm+zibL5zmyR5DSAgNJCG0IRKiKT0Ri0PGpHdto5dEdZy43DsYHOj6rKrWN5X0P4l2MAbo6Tcknc1rjnL/k+MxGP5/U/KfOyqiOZoovwSaxoWGhobG/ziCIIwHihRF2X2JzfYArRRF6QrMABY2cay7BUHYJQjCruLi4p++sb8Al8o/vVzpzYgoMzfdNZisLcfZuu4o0LCS4Z6Um3Sij2HQOjGKZ+8axdFTBdyXIDDnxu5+j//I8P5M6NKet9dtpajsvM+K0Jzd50h/dS0vLi2mPC+Z/JoKJi3/ghPlF/FHjNnI6mvvol/QSCJiC3jmwHvUOeuosTmxOmRW5RSz5Egh+RUWr/1+yCkGhfrtnFjtDU4LN9b66IiI6GJkWaD0YgQAdfXOAXfbEVwibhaP/UNjipEdEkm6JJ/7vuyO3niuwymK6x431idJiTARINWRHHQOg1DLU2OG8fDw/j6reDFmI9P6p2DUiQQbJIKNUpOpG545wEmxrueXX1yhHifMpFfLvLpzeRvnDfcZmMaR/WeprrL4HF9Doym0fto/zdElctPcXPvLbSfpJG5/4kpSM1rz3j9X8P03Wc1ub2pcKJ88cy1mg0Q/20V0stOnZKm9PurMHRWgk0RenXQFYzum8doPm3hg3g8UVvrXUvLkVLGdyrOpVBZHYAi7yH1b5pEcq3jpYwTqm5jKNXLe6kUdo+L6cnXwXWTv74bDKZDa8QDT9/+dM9JWAoNqAVep03u/O0CIUWpwNsvezpHx7WPU8c3itDLzxDwW5K/jyvhB3JI8zqcp/p6xpxbU1J6J5DwxnH9N6UaYSadqElnsrpSUVTmud9xzcm4wOJiXt4UIYyCRcoLf96YpPZGA+nt24E9DvCJOLvUOuh0X1Rabz3f/qQbE0DFdqKmuY8/2kz7368dqVVzOtvmtoEVcaGhoaPzv0x+4ShCEsUAAECIIwhxFUaa6N1AUpdLj38sEQZglCEKUoiheM2JFUT4APgDIyMjwVz7+f57LrRxMvL4Pq5fuZ8bLS+ncM9knjeCJoakUVdsorrF6Rwl0SOa2qzL5dHEWbZMiiekY53NsQRB4YcJIymotvL56AzOvGklQYBQpESYGz9rqFdUBwdzacgRzzq7n6uVf8OHQa+gT11I9lucK0TM9r+T1PUbWyEvpM2Anu7O64bAG8cCCg8gKOBsJgK07WYKAK11EJ4nIioxHFTwVk14gNbmYvMJIHA6XyVDnVOieEKKuZrnbLgoCogCKoRpTSDXWiy0YmNygieE2Hju8tk6t9BGoFzHqRB+FfbNRx8L9x4g15GHSG3lxwniGpydf8pleLpS18arYprsyAXA4Gu5N41Urd3ix50pat8zWfPXRRg7vy6P3wLQm26Sh0Qitn/bDjwlxb+6q8uW2K6qy0vnNDTgiomgXU8a7Ly/FYXc2O/KiW2osbz92NQ+88h0PvTafcRMHen0vCq6oNZ0oqtejk0QeHTWM+YcK+eHIIRYfPse2R64nPtTU5Hlc1yFiL03CYg+lLqWQq5Z9xpSUnvQOa6/qEDmdMtd/uRtrffRFoF7k5bHt/R6zT8sIKorjuVgQR1RMCTcMqWVF4Xp6DFAoLwknPz+WgvOxjPlwB3Nv6sHG3FI+2H7a6xgDW7vSKPeWHWNGzlwKraVckzic21L8V2tp/IxX5RTz0KJDPhEKU3smMiotmm8PnOeBBYdQcOle3L/ggJoycuSxoaw5dYEPTq3iQm0VpWeSufPAoWaVNHWPEbtOHWHhvnL13jfnHTQFuMI06qz2Jp7Tj4926JKRTIDJwK5tJ+gzqB3w/9Oq+G+Jivg50RwXGhoaGv/jKIryFPAUuFTpcYUXT/XcRhCEOKBQURRFEIRMXBF3Jb9wU/8n0OklHnluAg/e9i/ef2MFj/71atXgCTFKDJ29DQV4a+Mp1t3bl0mf7VKNjEN/GsK5wgre/fcmEmJCGdbLd2KrlySeHTuSe75ayN+Wrebta8eRW4pPVIckCryy8jyKmIw56RRTf/g3r/cfx8TWHf0aN7e0HcysfxXRpvMe+g3K4tCerhQWhTd5nUadwF19WtE9IZTKOjuPLTmCxS5jkAREQUAnCkTHlGATaig+30bdL0AnkltqoWNciGokeToNHt/+PVlFBtb/YZKPweUpxtY4R7rB+JMIkUr4Yls23ZNaMPP6q4gIurwY2uWMtsbG6b7zFep37vz04W2jvPRB/Bm0IzslotNJHNx7WnNcaDQbrZ/2z4+Z9DU31/5y26m/a7vMsW5tubH0Iu/9cwWyrHDN1H7NanfXtAReefBKHn1jES+8twwxNB5ZEDHpBETR//Xsya+kzBGHURGIMJQz7d+LmXPb1QQZDZe9jpQIE4Pf24g+8hz/PrWLL20HsF1M4MB9E4gNCeDMMyNZlVNMZZ2dZ1dk89SybJ5becw33c3PvbloLWfh2S18Wb2Zjl2yad/pGBXlITyRdYyq8ggwBGAUJQRZh9FYx2t7VvL5+RIiYwtJMMXwatcH6Ria2uS9avyMAVUrI8ggeTkKYsxGWoYHYvTQvbA7FHUbp2jl0zNrXGW2U0fw/JELzdZ1cI8R647sxaDXqzpGl3oH3WPD2Lb1EYd+HBf/qQaEwaCjS89kdm87oX72c2pV/BbQHBcaGhoav1EEQfgjgKIo7wGTgXsFQXAAFuB6xV2fTcOHtA4JTLm1P//+eBO9B6QxcERHxneI5S8rstWQYAWYvfW0l5GxK7+CP989isKSSv46eznhIYF0b+etpl5UZaXbm5uw2UOINVbx0DdLeX78KK+ojhfGtONUSQ0fbD9LtUVEOdOGXj1KeGjz9yw5nsvAyC5+jZvtd17LP7e2Jcu5kG6ZuzmR05pTx5NRFN9wYlEQ+CjrDIoiIIlg1EmIgqtcqUkvgKBw5YBSzlsDqS6NA1xOlQC96GXYuSM/UiJMLMo5zYYLJ7i/cz+Sw33T+BsbiNP6pwCw5EghmUlhHPzTYB5bsIpdp4sZkd6W4R174JClZj2zy+Uoe0fOQGm9yNrJkhqueX0DAH9ffZxAvUhAfV61P4PWGKCnbYd4juzPa1a7NDQuxe+9n/6xk77mripfarvG5aH//PIUPnr5ez54cyWyrDRbsLNvlxSuGt+X7xZtoU35eU6ExSNJerWqhef1FFVZKbfYkUQRqxxHtRzAsYILjJ/1JW9dO56uidE+x/fs07LyyrHbJUrPJBAQHEp4/AVM8bncunYerw8cRafIOKb2dFVacqe7NTXxbXxvooxh3Nl2HH2CBzD04+VExF4gMqqUlNQziOJpv9deV2cgpKYrz3W9jsTQYL/beJ7P8xkX11iprU85rLU5SYnwjjrJTAojQK+jzuFyEhj1ImkxRp7Z+gNfn9yHALzZbyKZMS15cVnBj4p0KKqyMv9gHiIy6a+u452JnRiVFu33HfTULnnxB5kegNXuJzSx0T1tjmaLe5u07q3I2pxD0YVyYlqE/VdV8PhvRPi1+sOMjAxl165dl99Q4/+N+Oj3v3YTNDyQX7/y126Cxn+IIAi7FUW5vKrWb4Tfez9ttzv40x0fc/b0Ra59fjIjM1pRXGNVDRkBfCIu3KtbZZW13PPC15RU1DL76SmktWowSufsPsctc/cCIOJkcGIFhZXlPDduJIGmSDX1wupRcs6gE1n9x96M++5b9KElOGqDsVxohcOh8wknLaqy0umNH2iVfpCYFheorDBzcG8HKitDCDJIPDuiLS+sPo5TVqhzNIiNzpzUmePF1by58RTVNicprYpI77qfP6ZOpndIbzXP2FPl3R354W5rdKt8jOYK5g67jX4t/U8aPI068FSuh6mdFVYcPsZtfTJ4fWs1difNCpctqrKS/uo6rA4nRp1E9uNNi/a5BDgPYaypomVxHiejEimVvA1ns1HHlzf1YHyHWL9G6LsvL2Ht8oN8t/7Jyyrna/yyaP20RnNo/Lt22J28+tx8Nqw6xNS7hzD17iHN+m0XVVnJfG4BMRfPU2s08emz15KRHOV1DnefbncqSCK8M7Ez3RNCGDFrFWYhHxB4Y/IVjO/c1uu4jSs3DZ61Va38hCBjjiwjqWUZ1Q4rI5Pa8lDXAUTrw5osa91YANlfH3m4oJK+MzYjywo22U5MdBUmk41BqSFszC2gzvZ/7N13eFvV/cfx95Fky3sldhwnTuLsvXdCBoEQQti77NKyV9m0P0pLaSmFssNsKXuPAGEFyCKL7L33jp3h2E48pfv7Q7Yj25It75HP63nyxLaupHOvrs4953vP+Z5gjh6JIisrHIcxRIUGVTqnwtS1B/jNu0vIKhx59/6VA8oEV1Izc/lhQyp7cw6TZu3l211rOZafz7EjMRw9EE+kI5z193uST1dmpMPUtQe466NPyXYFsS+nJaEOG6HBdp/78Mj36/nbT5sAMJabgalbuPnikVx7zmC/rx/IVA/vbWKPZtJl/hr+/sJVDBzesfjxhrCCR22qaj2tERciIiI+BAU5uOnh87j9qld4+dEvuGt4L9Y8OI6V947m4+V7uaRvEj0So3zeqYmNCuP5+y/k93/7kDuf/IzXH76M1oXJIL25sfOboaP4ec1CHvn6Bx6ZNI5ttCieThFeOJ3ikr5JfLx8Lxn7WkGGk7hW+2jddTs3dBzLxV07lRkKvPru05m2sS9/nvsj7buuYdiohezZ3pbXT7uMtAzPyIpjBZ47XkXJRvu18ixJ6rAbYiPctO+6nnahrZmYNBK7sXHlgNZlyu899cMenIczKp3Mg82Y8OqS4pVCSvO+MzV17YHCkSP5tA47yPdrjnLH2GG0iU8h/5el5d419G7clV41ZdrGNJ/lPZGA04IcT3LNHHvJYdphQSWTr/q6c9uuYwuOZS0ibf9RElqW/VxFpGEr/b12BNl54LELCXY6ePe1meTm5nP97adXGLxIiHSy8NHz+d8Py5ny9TxeeetHnrn3fLLdprhzamGBRfESqTGhQWw7nM1xVziH81rTOuwA9302lV2Hh3PjKYOx2UyZKQPbDmeXWkEJrIwEHuk5jn3s5PU1Czlr1/8Y06o9b17TDysnkvbNwooDJt7Bj/I61T0So9j84LjigEtR0AOg/ayfSiRxLrA8Uz4qO51hcHIMwQ4bkcaUqGuLAz3NHcw/uIVP961i/ZE0nHYHvaPb8sNCG1nHPfV1Lq7i963Me/dLisROHm48o0SyC9w47Daf+zCuU/MTgYvCRKsV3fAPZKqH9zaOUM8yqzu3pxUHLoqmrzT14EVVKHAhIiLix9Z8i829OtJ16QbaLt/Erzv6c3bPRP46Iap4G39DkhObR/H8/Rdy42Mfcevjn/Dyny4hKT6a8Z3jiQkNKh4dcHaPJH7T/wLu+uQb/jL1Z64ZOpAgO8VDRS/pm8Tol+Z5livNcxFGc7L3RNCy8z6eWf8tttBR3NB9MHabrUSZAA7sS2D3vmh69tpEcvvtPL7tKYbG9Sc6JgjSI7HbbDx/Xk/6tYrilMnzyHPl07rNXrp330YeedzV9TLspuQ0E++7iJ6hz57l8ZwJaWAZMtOaEWojoMZs0bDYpNAjhNmOcuXg/tw8aghpWXllkmQWTSfxzgJf1AB/9IwuAX+mRe8Z7cqjwGYnOCQYXBZuCz64oj/2wiXyymsstu2QAMCObWkBBS5OhjtoIo2d3W7j7j+fi9MZxCdvzSUvp4Cb7p2AzVb+IowJkU4euGgIQ9rF8acXv+Gmv3/MWeecUmI5UWMoM/w/yG4gOIyjVjsu6+bmuRnzWLRjN4+fd4bPKQNFKyhNnrcdW2Gnv3tCNKGHO/KfkZ15Z8NS5h3cwMw9n9EtNoF+BzuR7y4gM9ci0ung4+V7A8qf4H1N65F44lr3652nMOCZ2eS5TnTeXW6rzFSPiiREOpl1y/DiGwAJkU5W7D3CuLe/wxl9GEdYFsZAt5gWXNpmGDf06ktkcAhdf50OeKZqOB32Kk2jSMs8ijFw7eDOvLooHZcbvwlcL3hrMWFBNtwWTL1uIA89tpmKBuEEMtXDextjg+CQINL2n8i5VJ0EnU2dAhciIiJ+DE6O4VjLOHZ0aUPbDTvZ+u1S6Dkx4OentGrGCw9cxG3//IRb/uEJXrRsHsX6+8uO0njkrPE8+OVPvLVgMZd178Sp3fsxMqV58d2ZrDwXIQ4bNwxtywNjOxIc7OaPC77niaUzmblnC/8eMYnWEdGAp+Fzx5RVhck+g9i+rg//O/03zEmfx08HFtJrSD4hJoxO4SlscR9j4abjJHXcR7PmR4iIPEaUrTV/6nMZ0bTwGTDIK0ysFhZsJ8hu49FJbXh+8yqOHWpGiC2EYIetzF00X532hEgnT09syT++X8f5fXvypzNHYYwpm5Su1F3C0ne1okKCiAl1kJvvxhlkY3znsvPFvd9z1T2jufze/zJkYAfuuXZcpYMKLRI9x9m7semPGqEijYfNZuO2B8/CGRLEZ+/O41hWDnf/+Vzsjopz7YwZ2Imn7zmfB5//mnffm0Z4eAtwOotHOyzbU7xoTJm8D/ERwXyydDWPfz+Tc15+h79OGudzNF/R84oScZ4yeS75LuvEtMKgjjx+UQs+27ac93fMJaaDjdCMONyZzbikbxKT522vcv6EHolRLPnDqOKpJMfz3dgMnDJ5Ls+f16vENEJvpa8BqZm5xXX65AVbuPWMcP63dgkRSfnk5waRcyiBB4cO4e/f72Ke6zj/nT6ftfeNZf39p/qcslgZP67bhMNm43fDetCjVYbf1yq6xhzPdxPpdHD4mGcZVGdQ+V1nXzlbSu9/6W2u/WEhwc4Tr6sEnf4pcCEiIuJHUQPj151H2PDFQr796FfatYnj3MuGBvwasc2iueTisXzw0QxP8OKPF5PYPKrEUFCA3k/PJt/lIMoez8/rN7EnPZ3ByWczODmmePnQnAI3/1u0k98OTmbbrmwe6XcmY1t14K+LfuLMr9/gz4PGcVGHXizc5bmTBJ6pIM+f15OWIfG0zR/DQymjmH1gFRm23cxLXY8zZA1ut6FlkoPs7BCWLOzDw0PH8utGG3dMmYHLfWKY8cfL9xZngwcKVweB6akrcbsNOYcTMAZm3TLc58iI0p32DfvTePqn2Qxu15q/nT2uxLDsouGyk+duI6/AXTzMuuiYed/VGt85nvX3nxpwAOLA/sNk5+Rx+uBO5Sbx8xd0aRYfic1mAgpcqBEq0rgYY/j9XeOJiAzhrZenk308jwf/cRHBwRV3m4b0asur/3cpdz31Oe3TdjLxrOH87vReAD6XAPWuCy4Z0ItBbVtz/+ffcdcn33Bun278ccIYokPL1md3fbm61PLZhVNRjIPQvBbc2uEsnGHH+WzbSn7asxFX7EEeWJTBlaPa0CuqHWd3S/KZe6GiOrRoKsmJKSuenBs3fLICh90w//aRJUZp+LoGeOpEN+7wNMIS03hrUwEFeRGk725JTmYEEU4H8c5o8l07y9SbvqYAlldu78csy2LKyg30bNWSIS+UDIaXVvoa0zMhHABnAOeA91QPX4F37zIW5Ltwudw4C5db9fXeStB5ggIXIiIi5UiIdHJ2j0Qmdp3EsSPHeOnJ77DZbJx9if8EXUW8G20RsUl0ObKHGx77iL/edg6nv72suDHz7Lk9Czu3LnA2447RPfh44XwuePU9/n7ueJ4/ryc3frKC7AI3+S6LYS/MwWCKG0LfTWrDPXOnct+8b/li6xru6jmmRMOnX6souj85ozixW6jDYNECm0kgx+XCWIYgm8EYG0EOw8M/bCQ330V2YfLO8GA7w16YA5YnC3xYkK14rnNB0FFWZewg53ALsrINkU5TvFxqeZ3243n53P7xVIIdQfxxwmk47GWnpHgn/owItpcYMu3rbmSgAYFp89cTHGRnaK92AX12pRucdoedmNhwDh/MqvC91AgVaXyMMfzmd6MJC3fy8lPf8chd7/Pnpy4lNKziu/wxcVEsiUwi8dhOpnwxm5D8XNKj4oqDvuUFMFOax/L+9Zfy8uxfeXX2QuZt2cH/TTyVM7qfSNxZVK8WBS1C7IZcl0V4sB27De6Ysro44Lz2vjP5x/DxvLNuBU8vWcDq4H18sXsRS4514apufRnSog02Yyo1Msx7yorbbZFd4PYkei6AYS/MKbGqivc1IDzYzuS52+jZ1hDVbiN2Zw6u7HCeHXkev3t3M/YCNxFOmH/7SOLDnQHVm97XCWMoETjx3ie7DUJMBlG2LDanR5Dr9nwWwTbDpyv3ckvhClfe++h9jTmeeQyAsBDfS9f6KpOv/CZFr1fcLsjOoScQExvu9701Qu8EBS5EREQCYLfbeOgfF/H3hz7hxSe+4fixXC697pRyn+PdaMMZwuWXjeOzT2dyz5OfYYtqSablILJwiKh3I+2awd25rF8Kd37yDbd/9DVndO9CWDDYbHZcbgubgeP5ruKG4K0jUvjwjCt4f+Ny/rVsJldMf4fbJg6gV3gXTmkXz8Jd6Sey0QPZBRYUL+zqCRi4XPD4xM60ig7l1s9XFQctQoNsGAOWRXHC0EndEvh67QGyCwpolryPZsGR7DjagkinKZGTIiUu1G/j889f/8yOQ+kcdiUz8qVfyzSUvRN/FiUpvXVESrUbccdz8vhu7jrGDe5MRDmdkIpGSoRFhHD8eG6F76dGqEjDFMgIg/MuH0pYuJNnHvuKB256i8eev5KomLByX3fhrnRyjIM1Ma3plJXKR1N/5WhYFDkR8YQ7g/x2xL3Lc8fY4ZzWtSP/9+WP3PnxVE7v2pE/njmGltGRpZZ2NsV5irYdziY9O59bP19Vpt7q6GzP0W1HyLVnEtv8KNP3bObbXetoHRHNBe17EONOrPTIsGfP7UlGTj4PfLOueBSey+Vm4LOzMRaEBNv55dYRBNkN4cF2sgvyeHXDL4SkHiIxOoKzk8ZwY+++tIgKYfh9yWU+i0DqzYW70kuMAhz2wpzixNAlgiYON82d+8l2hZDtjsKyPNe3PLfF7V+sZnSHZiVGikDJXB9LdqcC0CzmRIDB3/lTOlhTOr+J9+OJB44A0H9IB7/vLScocCEiIhKgYGcQDz9xKU/95QveePEnjmXlcO2t4/wmbyt9t/3cQe05vWsLbn38U9qk7sAWn0yBPcjPOvJOPrz+Ml6Z/Suv/rKQTpGhbDoaSw4RJ0Y95Ll4ZvZWJs/bztr7xnJll35MaNOZx5fO4M2Ni0gK24AJG0XH2NYlssEXsQHef12+5yjXDWrj1Sj2LN3XJiaEsS/PBzwjLm4e3o4fNx0kInEf9uA8/j7kXJLHxPPx8r2M69Tca+k/w2MTuhAVElRiHvHsTduYumodx9xxHMpxEum0yjSUSx8776BFyTtpnoZ76WVa/TV4f5i3nuM5eVxwap9yP+ui948ItmNRNgFdWHgw2cfzyn2NImqEijQslRlhMP6cfkREhfKPhz7hnt+/weOTr6Z5QpTPbeFE3REeGsyekCRyMg4TfzSN7vm5nDZhCA+c2avcJTKLytO9ZQIf//5y/jd/CZNnLmDii29y86ghXDusv89OfY/EKFIzc30Giz1lsoErivyD0Uy7aiRLjmzn8y2reXHVfNyWRVTbMJwZMVjHYsodGVa0ZCqWZxWqP43rxGM/b/SMyPO6zuRkF7BsTwar7x3DA9PnMv3QOmyOfHION+fBcRO4sNeJaR++VtLwVW+WrtsHJ8eUTJhpnUgMXTTNMjTI0CzoAAaLTHcSwQ47F/duyasLdhY9hY+X7y2RdLu0Q+meERdFgYvyzp/S167SS9J6Px576CiJyXEktor1+96lNYRkz/VVBgUuREREKsERZOe+Ry8gNNzJR2/OYffOQ9z7l/MJC/e99GeZBmakk/88chm3PP4JwQd3cc+1p5EQ6WTN/gwW7TxCSlxocUMg2GHnjlOHM7ZLe2796BuaOfaQVRCGI7gFYzq14IcNaYXzmk1xY615aDj/HjGJyzr24dHFP3P33KkkOKOJjo3m6JEIKFzWzXu6R5EJXRKYtjGNR88oGWyYuvYAYcH24oScR3MKeOCccCavPcgl7fuSHBrPsBfmYFnwzC9bi4fGAtz39VpCg+3F84izcvN45OufaRsXy5KD8WVGafhLYObvjhbAjZ+sKPEe/oIaR7OyefWzefRon0ivTi3L/ZyLMt8X7dfol+aVaJwGBTvIK3x/ETmhIXSsKlLZ3DPDx3Tl7y9cyV/u/oA/XPcf/v7iVbRJ8Z0E2HvVjHGdmnPBW4vJDQ4h6dBeFk+bx5JWYZw5ontA5XHYbfx+5CAGt2vH376bydM/z+WzZWu47/RTOKtbhzLLtfqrN339vU1sT85v35P9xzP5cutaPt+yhg0hezHs5aY5RzmtdUf6xbXhYLqdIW1ii69Tg579xTM1pNDfftqI02HnukHJvDxvu9djFgsPbmHylqnsy0kHdwiZO9tiy4+ga3xUuStF+Qok+doG4E/jOvHXaRux20yJxNAABhfNHPsIsR3jdyOH0TUphcHJMaQdy+W1BTux8FwRL+mb5P9kAfameRJ5JsRFlPt5+TvW3qM5ih7/cckO3p32K6dcNbzc967oGNT1d6w+y6DAhYiISAXW7M8oXrqtR2IUdruNOx6aRHLbZrz+7DTuvPZ1/vL05bRKblbmub7uGrVsHsWbf/kN9z37Ff/67zS27jvCg4uPYBnD337axMybhzGqQ3OvDkAsH/z2coY+/QVh9oOE27exeFs6eQUxgB277cSdtRPPSeDLidfw4YbVPDDnJ6KTjxIWH0z24XheO3Msq/Zl8eTMLcWNTIeB26asLh5yGxPqYP39pwKeO0hOh61wCT6Ym76CD7cs45x23bmr1yi6/msmWbme54U6DHa7jdAgG9n5brIL3DjstuKG3TM/z2V/RibvX38prWKalUlgVjTKoyjY4KszUXTHytd7ACWGDnsHNV79cDYZWdk8f/+FZRr8vmw7nI3BkJVXgM0rOASABcZW8WuInEwaQscqEFXJPdNnYApPvnYdf7r9He65/g3+9vwVdO3pO1lk8aoZ87YX33FvH+Hgubd/4i+vfM+i1Tu55+pTCQ/15ExIiQvFwpOnonR5UjNzGffaEnLywwg2rUgsyOS2j75mYJtW3Df+FPq0LhmE9Vdv+l26OyySG3sO4caeQ9hy9BBTt6/jp92b+deyWQC484NwzQznjkG9+ecPe8l1O4ATq6xk57tx2Gz0axVNSLDBCskiLCqT8OhMvjqQjyvXSe7hNvx5xBBi+jvp1yqqwpWiijr93p3/0ttM25jGbV+sIiPHE0AOD7bx+TUDi5/z1sK1xNq24jAFZLji6ZqUUiK4sPLe0cXBpW2Hs4kPd/o9V7fuPkhis0giQn2Pqih9/lQ0yi4h0snBueux222cf3ngyb6rk+y5pgKK9ZlwWoELERGRcqzZn0Hvp2ZhAY/9tImV946mR2IUxhguuGI47Tq24B8PfcIdV73GfY9ewNBRXQJ63ejIUF544EL+9voPfPrtItqGRLIjKgHL2Bj/6gKm3TiUC95aXKJxt+S+i/h50z6mLFvG8p3bSQlPJ8sVy6MTT/F71yrKnUDGti64Qg4TFX+QqKQ93L3kQ85r343Q8BxyjgYBhgIL7C5Xcfly893FDZKiO0TfbNrJnCMr+XDLJq7rNpCHB47j23WpWNaJ/cousJj5+8HsTM/hjimrcLkpbtgt3bmH9xcu54rBfemX7LnDNam7Z8nVEsGGT1cQGmT32+nxXhKw9HukHcvleJ7LqzyeoMYHs9YxdfYarp40iM5t/S+X6q28xqnbsrAFEPwQOZk0llV0qpp7pmPXljz9xvX86dZ3uP/GN3n4X5cyaESnEtuUPgbbDmcXH4PJD13Mf76Yz1tfLWT5xj385cYzSWzZjNEvzfMEQ71WZfJ+vaIcRccJZfbeEP49sRefLVnGpf/5kFO7tOe2McPo3jKhwvJX1HntEN2MO/uM5M4+I3ln+VbunjYPQjIIDc/i5fWziW4L0YAr34GrwIENG5bbhs3u5pnNm4jqeJwoIMjY6RSRxML1Ng4fCgcMD3yzntAgu1cy6pJBCu+6NiUutMy1rPQ2GTn5xUELgIICN5Pe+BWnySHCfgSnycQimLT8ZIw9okxwoUdiFLeOcAYUaNuy+yDtWzcv/r26uYtS9x/lx6+XM/6cfjSL9z9FpbSqJnuuyYBifSacVuBCpI7Z7v06oO3cT51dyyURkUB8vHxvcRpLX3Nh+w/pwIvv3Mjf7vuIR/7wPuddPpTr7zg9oKXznMEOHr15IqERYXz10zLCCvLYHNOSPIKY8PqvOGyGrMIVNYqScF7evx3jOrWk15PfE0Iq0Y7DvDzjWzKy+tAyLtlPg9BGwfFY9m+OwhlxjNj4dL7dtYbItm7C8oLIzgqH3AgKssPIO+5piDqDbPRJimB7xhFWHtrHR5tWMHf/DhzGxoP9x3BjjyEYY8rMMQ4LspGR6+LKAa0Z3zm+uAxhwYYHvviBpJgo7ho3osRxSIkLLRlsKLyDV16nJyHSWeY9iu7KhQfbi6eqhDpshLnz+OrruaS0asb15wd+d6u8xmlebj5R0aHlPFvk5NOYVtGpau6ZVsnNePqN63n4jvf48x/e5+6Hz+X0s/sWP17eMXDYbdx00QiG9W7HIy9/x42PfcSwod0pKHCRlecuDnR4Ty0YnByD2ys4DIb0vCi+v+M63l6wlDfmLeWCV9/jlI4p3D5mKL1bJ/osd2U7r2d0aIWV1Zz8o82w7PDhtT259KM5FNhyCHLmEhTkonNiOBYumoeFkBIdS+uIaLrGxHNKUgqZ2W66L5tBqMOzQlVRvQ6UOT6l61p/ATDvbaZtTCssqUWoLYeo4OOE2zNxmALcliHD1YwsVxwYG/NLBYOKBBJoO5qVzdbdhxgzsGOJv1cnd9Frz/yAsZkKE3yXVtWASU0GFOsz4bQCFyIiIuW4pG8Sj/20yedcWO+7V8+8+Tv++9w0pnywgNVLd/DQ4xfRum1zv69bxGYz/OmasTSLj+X1D2fS49BOtkW1IC8yCgxEFOaWeNorCWdCpJNV901g4a504pwFfLp0Of+dtwSHbRkxjkjsxGEr1SAsHp2QH0PegVi+OGcAH2xYzScb1xEWnYnNng5ADOAwdsKDgjjlqxXF5WwVHsXdfU/h4g69aBkeVWLf598+sjgXhNNrjrF3w+6Bz79nT3oG71x7MRHOkkvKbTucXTLYEGQr0eAv7y5h6cbj4OQYgh02Io3BbuCWrlHMm70Mm93GU384l4xcNz9tPhBwg8tf4zQrM4d2HRvenWSR+nSyrKIT1zySJ1+/jkfv+5Cn/vIFh9IyuPS6UzDGBHQM+nRuxbv/uIpn3p3J1NlrSAlysjeuJS57kM9pB9//fghjChMkF12HIpzBjO7SnQd+SCXcpDNr0w5+2byNQW1bc/2IAYzqmILNazpbRZ3X0vWsr/2Yfd1ZDHthDnkW4LDx4dX+gx+hkXhde04s0eo7GXXJutZf8Cch0smZXeNZtz+Nwxl7aBu+nyCOYTMWxhhy3WEcKYgnx4rAbdkKl581ZYJBRQIJtC1asxO3ZeGK8Fz3qntOL5m/mV9+WsPVN42lRcuy71eRQJKWllbTAcX6SjhtLMuqeKtaMHDgQGvx4sX18t4nm0Dv8EvDohEXDY8xZollWQPruxx1RfX0CaVzXID/u1fzZ63n33+dQn6ei1vuO5Px5/QLKJ8CwIw1u7nr318Skp9LRkQM7zxwDl+vP8jTs7dyLM9FqMPGqxf34coBJ+ZVFzVYkiIMXyxfwZcr1pHvcjG8Qzsu6t+bAsKLE6sVbeudU8IY+O2gZMZ1DyfPfoy07GMczD5GVkEeiWGRRNhCyTzm4NJunUmMCvG774DfhtOnS1fzf1/9yK2jh3L72GFl9rvkKiElc1xUZYjrgYwcvlq8jVVL1vHryu1069CSU08fxIAOCWXmVle1EXrhmMc5dWJvbr3/rCo9X2qH6mmpS/n5Bfz7L1OY8f0qJl4wgNseOAu7w17xE73MXb6Vv//3Rw4fPc4Fp/XljstGEhIcVPx4Ub0d5bTz86aDxdeh1Mxc2j/+E8fzPHmKDG5uHhzJ6t1b2J+RRZvYaC4b1IcL+vYgJiykTF3qvdoF4LOe9dUhLv23QHIn+NumvOd6P2ZZ+czetI3Zm7czf+tOsnI9Kzq1iommTbN4JvbowPhu7cktMGWucRXV9RWV/4+Tv2Xawo1satWZIIetzCohleF2u7ntylc5npXLa5/cSrAzqOInVSDQa2RDSppb1XpaIy5EREQq0CMxqsxSaf7uXg0b3ZWXP7iZfz38OU8/+iXzZq3nD/93DjGF2cjLM7ZHa7596jqe+nA2Cxas47HnpnDLb8bwgt0T+MgucHPHlNVlOvW5BW6Mgfm3j+TOU4fz3sIVvL9oBXO3bCffCibXimPuXWfTNi6iOKeE96ocr87fwdtLyuaU8G4Q/e2bvcWP+9v3ojsw3g2kVXt288jXPzG8fRtuHjXE534HuoJIRUNc9x3M4Id56/lh3jq27jlEWEgQ1543jIeXp/PFt5uw2IhlUXgXrurDZfPyCsjKzCG6cGk8ETk5BQU5uP9vF5DQMoaP/vcLB1Mz+dM/LyYkNLjiJxca0bc9Hz9xLc9/MIvPflzGryu38dB1pzGwR5tyO6ULd6Xj9loYysLG0A6deebC0fywdhMfLFrBv6bN5rnpczm9WyfO69OdVfeMZsmejDId+2fP7Ulegbt4amJRXezrvb3vtgfaafY3SqC85wbZ3WQe28+dH89g2a59ALSMiuTMHp0ZkpLMoLataRFV9rpa9D6Bjvwpb/RA1vFcZi/ZTGZoJJl5LiKAYS/MwWCqFPyeO30dWzbs596/nl8jQQvwfY0sndgUmsay3ApciIiIVEF5Qy/jW0TzxCvXMOWDBbzx4s/ccMlL3P3ncwNK3NkqLoxnbpnAytN689fXvufh57/ijA6t+M4Ek2E5cLktpm1MIyY0iPTs/BJJLYe9MIfND47jzlOH0ya+HTd/NIsQc4QI+37OfflNLujbnUsH9Cp3VQ7vho2/oEF5++7dGA23Z9E8aB89k1rwwqVn47DbfO5zeXeCKhrimpWdy/RfN/Ld3HUsXb8bgN6dk3jg2nGMG9KZX3ZmkL90KZm5BUQE2zGGag+XPXwwE4DmCZFVer6INB02m43f3nYaCYnRTH7iG+79/f/4y9OX0zwh8KSLEWFO/nj9eMYP68rjb/zErf/8lEmjetClX1e/gdvByTGEBNmKV4aKDnEwvnM8QXY7k3p1ZXC7FKas2sbWAzuZvmEzU1etp0VkBBN6dGb7wWbku9xk5nqCuBk5+cXXkWN5LlLiQgMKGlcnd4Kv557VLYFlu/by7q/L+XHdZvLdbjrFN+MP40YwtnN7OiU0Kx7BmJqZW2JJ1dJqoqM+9Zc15OcXkBkfR6TDgYWFZUFWXuX31+Vy89bL02mTEs+pZ/auVrm8BZLYtL5HWNQUBS5ERESqoKJ5zDabjQuuGE7/IR144uHPeeQP7zPh3P7ccPcZhEeEVPj6vTsn8f4/ruaD75fwv69+pVOeiyMRsRwNbl68kobdZrDwmvJpUdyQGtGuGQW2WI64ogk1OVzS0cmnS1fz/qIV9G6VyD9O74xxxPLAtxtKrMrhrbx5xuWPkHAT5E4j0nGYxOhmvHrF+YQ7fd+BLO+uW1FAw9/Q3J9+3cC/3vyZo1k5tEmM5cYLhzNheDeSEqK99sFWYh9KD4/21/AtL5hyKNUTuGhWiY6JiDRtky4aRPOEKP75p0+54+rXePTZK+jYtWXFT/QysHsb3vvHVfz3iwW8990SZi3ZTFxoHIRGl6mjEyKdrL//1OIklUUj8aBsvbrsD9ewZu8epqxYy/uLVpDvcpHgcBBli6DARBIWZCOsMJ9SWLC9uI6sKC9CoLkTfNWnJZ9rkZa+jwtf/Ym1+1OJdDr5zeA+nN+3B11aNC8z3TKQ60Z1p0Tk5Obz0Q/L6NWxJV/fPbHEFBTP0uCVC35P/24lu7Yf5OEnL8XuFcSvbnkDTWzaFChwISIiUkWBJMlq17EFz731e955ZQafvjOXZYu2ct9fz6dX/3YVvr4z2MG15wxh4sjuPP3ebGYu2kiL7KOkhkaz0xlFSFgo/zqrOw9+uw4sCC6VGLN0cOHI8Wy+WrGOz5at4emfZxNkt3Nx17bERsbTKaFsA7u8AIWvfbcsC+PKpLljB0Emh1writevvICYMP+BGn+NrPIapkezsnnq7elMm7+BHu0TeeoPY+jVqaXPXCK+9qFofnh5Dd/y7ljt33sEoExitZqeQ9yQ5iSLSMWGjurC029cz5/vfJ97f/8Gf3z8YgaP7Fyp1wgJDuLWS0/hzBHdeOLNn8ncsIcBrQu497Kyd86LVlcqrXS9umJfFpN6dGZCj85k5uQyY8NWvly5noXbd5HvSue5H/cTH+Qkwh6G24QzqHV0hcF5f4FlXzkw/E05+eH6frw+bxlLd2zjiWkb6JTQjL9MGsc5vbsRFux/KkVVrhulVVS/vvjRL+xNO8ofrz+9xPWu6JgUjUoJpH52udx8+MZsOnRJZMTYbiXKUBOjIwJJbNoUKHAh0kBp2VSRhiXQBGS+GiHBwQ6uv+N0ho7uwpN//oL7bniTi64eztU3nRrQsqkJcZH88/az2LlvOC9/Pp+fF6wnNvMwx0MjaOVux/r7xrB0b2aFwYXYsFCuGdafq4f2Y93+NL5YvoZvVm3g8PGtWJbh79+Fcefo3pzapR3dWyZgt9lIiHSWmS9b+ljsOnKMdxatZeGWDaw/kEbLyHDO7DWS3w/vXWEjzF8jy1/D9PDR49z42EfsSTvKDRcO55qzB5eZguIrO35lhjhXdMdq3+7DGGNITIqp8LOvqpp+PRGpG+07JfLcW7/jz3e+z5/vep/rbh3HJdeODDhJc/HrtG7OK3+6hKm/rOHFD3/hD//8hPNP7c2NFw4nOrL8pZhT4kKxsAgPtpfpvEaGODmnTzfO6dONnPwCFmzbycyN2/hl8w72pKcCcM7L/6N7yxZEh0VzWpc22EwE4Dv/kXf9tGZ/BsNemFMcSC/q5J+oT+18u24XVsFRpq5az5p9qdiN4bRuHblicF8GtW1V4XFKzcwlPTsfu63stL9ARhukZuaWWemkdP26YOV2PvlxOZee0Y9BPdqUeH7RNbEy9fPsH9ewe8ch/u9fl5bYv9oYHdGUV/ZR4EJERKQCgXYiK2qE9OjThpc/uInXnvmBT96ay5L5W3jw7xfStn1CQOVo0zKWx2+dyKqzBvHmd0tZu2Y7/3jtO6IjQjh1cGeSTBeadWmF3eY7l0QRYwzdWybQvWUCvZK78tsP52FzZxAVdJyXZ8/n5dnziXAG0ymhGa1jYvlwxUHy3TaMsXPVwDa8s2QHWAUE2VwMSHKwdm8qxli4rCAeHD+Gq4b0IthRsonhvaKJ9905f40sXwGNggIX9z37JQcOZzL5oYvo16XsncaKPivvcvi7K1XRHau9uw7TLCGyRHK1mm6ANuXhviJNXbP4KP7939/y9KNf8saLP7Fl437ueeQ8nCGVS8hojOHsUT0ZPaAjr38+n89+Ws6PC9bzu/OHceG4Pjh8rGCSmpnL6JfmgQUWFo+e4T+3UkiQgzGd2zOmc3sA9qRnMG3tVn5Yv51ftuzBYXbw/eqVAMRHhNExvhltm8VyLN+O3X2U4/kGO05mbD7AkDZxDHvhF7JyXdhwY8fw6YotxDrdRNkPEROWQ7DJ5p/fbgCgZ1ILbhszgtjIeE7vnBRQB7vkClSGyRf0LDFFpqK6u+j52Xkusgtzg5SuX/emHuWvr31PSqtm3HLJyOLneV+jKls/T/lgAcntmjNibNcSf6+t0RFNIRGnLwpciIiIVCDQRkogjZDQMCd3/ukchpzShacf/ZLbrnyV3981nrMvHhzwHble7eL5981nUOBys2Dldr6ft47v5qzli+kriYsO45R+7endrS354RGMaN+83Abh0LZxYAsn1woj3TLMvmkwW9JSWbZrLxtTD/Lzhi2E23KhMBby1bI9RBf+bFlwICOaY+4YjuaFYHNE0SI2yWfQomj1k+N5LsKD7cV34/yNiPAV0Hjl07ms3ryPv992ls+gBZT/WVW0HOC7SzzJPcd3ji/3jtWOrWm0TYkv8TdfCdLKSxxXkaLXiwi2Y2GRElf+HVYRaVhCQoN56B8X0aFzIv+b/DP7dh/m//51aZkpZoGICg/hnqvGcv7YXjzz7kyefncmn/60gjsuH8XIfu193sXPKky2ee/Xa3nw23XMv31k8XLe/gTZndz3/X6y84PIzm+DDRexIQVcNyAeGzlsO3iY71Zv4GhOLrEOiC2s6h/5cisASUGAV2zm+Z88fw+3QUxYGAPbpDCiQzLD27clK99WODrjIMGODQGNKitdv8eEBpUZZVhe3V30/KKgRYjDVqJ+Xb/9AA8+9zV5+S7GnzmUjFw3Gbllg+He9b3dZkjPzic1M9dn+bdvPsD61bu58Z4J2ErdVGjKoyNqgwIXjVigUwlERKR6Ar0rUplGyNBRXXjlw5v591+nMPmJb1kweyN3/d85JCRG+31OaQ67jc4dW5HuDOeGS0ezYfMeZi7exLQFG/hy5mrcxpAdGs4D5w3kzGGdaR5Tduk4X2Xu3jKOs3t77gwdyMih51M/k5ufT76rAIMbl2XHYXNgGTv/umgA13+yApvD8ntspm1MK3GHKyvPRaQxfofxepel6PHlG/bw1lcLOWtkd04b4v8OYnmflXejNyLYzsfL93LriBQAuv5rOunZnuVhY0KDWH//WJ/BKZfLza5tB+l9Uckl6L2PY+mlBqsyzSMh0smsW4Yz7IU5WBaMfmmepouINDLGGC697hSSU+J58s+fc/PlL3PqDeO45Ow+Vfout2/dnOcfuJC5y7fx/AezuPeZL+nbpRW3XDKSPp1bASfqwFCHjewCt2fVkYITq06V977FHft8T13tdARh2UK497ShJXIAzdh8gIggF+tT02keZsNm3Bw+lstTMzfjcltYxvDgqV3okRhLclwMybHRJXJWpGbm0uvpn8nK9QRXQgpXyyrK1+FvamYg1+LyRht4P98YC5fbE4AfPXkuTw9vweuf/EJUeCjrY5L4w7St3P/zNp49t2fx6l3hhUvFTuregrX3jS2ccrKKWz9f5beu/+GrZTgcdsb5WUmkqY6OqA0KXIiIiFSgMgGJyjRC4ppH8tjzVzL1k0W8/tw0brr0JW65fyLjJvb2Ofqi9HQLXx3k04d2YcrKvdzy5lyCszKIyz3Gi+/PZPIHM+nbuRXjhnTh1EGdaBYTHlCZW0SFsOa+00rOCQYycwsAiwveWsyMm4eRkevym8Dtjimri4MWBnzOuy7atmhkhjEU3yHMycvnb699T2LzKO6+emy5x7S8z8p7FMOxPBdPz97K5HnbPQ3TwoY6QG6By++omv17jpCbm0+7DmWn9xQdx6lrD9TINI9th7MxGLLyCrD5CfSISMM3fExXHn31Om655W2+/vc3vPTFcm65fRyX9Gtd6QCGMYaR/doztFdbpsxcxX+nLOCGv33EKf3a8/sLhtOlXUJxp/rmz1YWL3Nqea065U/pkQTPn9ez3NVKSnfULx/UL6Dr5LSNaRQUnKhzcwrc3DFlFeM7e0ay+XuP6o5Q8H5+enY+t36+CndWFi2OH2Hy++sY0qstI08dyJwv1hbX33uOZpdYKjbKaS9+rZjQIFxu/Nb1Bfkufv5mBcNGdyE6NtxnmSRwClyIiIgEoLbuihhjOPuSwQwY1pGn/vIFT/75c2ZNW82tD0wkMSm2eDtf0y0wgFU4gsGr0TQ8pRl5EZEcC40gywbfXtGHlet28POvG3nq7ek8/c4M+nVtzWlDOjN2UCdio8JKlMlXcssrB7RmfOd4Fu5KZ+bmNJ6evQ08b8/Pmw7y1wldfT5/4a50XG7Pkq2hQTaenNSdNrFhfofxFt3ZghN3CL/8cQm7U4/y4oMXERFacUPV32dV1GidPHcbT8/eyrE8F7bCAJEzyFYcXHE67H5H1WxYvQeATt2T/L5/Tc1bbsrZ4UVONjssG6sG96D16q0kb93D23/5nMf6d2LlI2dWafSFw2HnotP6ctbIHnw0bSnvfLOYqx9+l1P6tef684Zy5YDW9GsVVTxqy+m16pQ/gU61yMwtIDzYzuS527h1REqJwEJF18miYHaOyyrxd5fb8/pA8XuEBtlKjMQI9D0q2sfTOsbxw6+baZu6g9Cc47hsNq47fzi/P28wh47lE2RfV1zvpmXllnj+z5sOMqpDc6DiOnrx/M0cTT/O6Wf3q3J55QQFLkRERBqApOQ4nnztOqZ8sIC3Xp7ODRdP5sobxnDBb4bhCLIXNxiLOvVZhcELY8pmVvfV+BzcNYnfnT+MrbsP8tOvG/np1w088ebPPPX2dAZ0S2ZcYRAj17LR/ckZ5BW4wWvUQ9HrTuregpS4UJ6ZvQ0LT+zkkr4nOvG+8kh4N+wu6p1UvDJJ6RwQg5NjKDHQxILvVuzkza8X0rN7O9q2qX7gKCHSya0jUpg8bzs2YwiyG8Z3jmf9/acybWMaGTn5RJWTQG/96t2EhAYTFh/tN4dFTc1b1vxnkaZjcHIMboeNtd1SOBwbRbeNO+jxy0re+zSeP1w3osqvGxoSxMSxfYloncS+zTv5avpyrn3kfQb1aMNlE/qz8f5TWbznaEB1SNGKG6X/VlQHFXXUw4PtHM9z8UzhqLXKTGPzDmaHOGzYbaa4Li66htltngtBdr6b275YWWLUR1UUFLjYtDONVZv3MX/ldpas3Uluvovk2Aj6jejP784aQLv4SKBsvZt2LNfv9a6iOvqnqcuJiQtnwNAOVS67nGAsy6p4q1owcOBAa/HixfXy3k2FclwIaDnUumSMWWJZ1sCKt2waVE/Xn9R96bz05HfMn7Weth0SuOW+iSR1TfKZ4NI7wWRlGnaWZbF510F++nUDP/26kd0H0nHYbbRvn8T0w27220OxjI0Ip93nvOg1+zP4ePleLumbVCLh29S1B7jivaXFQ2ffu6K/z+VU/Q0FLrGcnt0w3jrExp0H2ZrUHltwcI3lefA1hzqQ1WNuveIVHM4g3mvdqt6WKg1kad6TleppacjW7M9g6PNzOJbnIjQ7h77rtxORnsWYM3px6wMTiYoOq/hFSildby2+bQS/LFzPR9OWkXYki3ZJcVw4rg8TRnQjKjyk3Nfp+q8ZpGfnAxAT6uCXW0eUmY4IMHnuNp6ZvbV4tN97V/QPeBREeUmSi+qzl+Zu47YvVhc/58Xze3JLYT6iirjcbnbuO8L67QfYsD2VddsOsG7bAXLzPDmMWreIYUTfFIb3SWFgt2SfK7OU5u96V56szGwuO/1JzrpoEDffe2ZAzzlZVLWe1ogLERGRBiahZQx/efpy5s1YxytPf88DN73JKaf1YNb1o9lWQJklRQNtSHkzxtCpTTyd2sRz00Uj2LAjlR/mref7eetoffQ4LY0hPTic4xFRzNlykAv6tirx/B6JUfx1Qtn39TV0tvTQ3vJW/uiRGMXmB8fxw4ZUZs1YyqqVqexv3or0AkOk3aqxPA8Jkc4yAZWKVo9JP3KMLRv2M+SCQeQfq5+lSgNdmldEGp4eiVFseWhc8aiGU9ufxYxPF/Le67NYuWQ7f3j4HAaP7Fyp1yxdb60+eJyrJg3i8gn9+enXjXz4w1L+/c4MXvxwNqcO7szEkd3p3y0Zh91W5nVyC1zFv+fmu/l4+V6fdWLRqLXIwpESlVlFydcohdLXsNKj3h74Zl3xaL3SjmZms3zjHlZu3MvarftZv/0Ax3M8wRdnsINObeI5b2wvendKIrFFHNuPuysd9PV3vSvP3OnryM93caqfpJxSeQpciIiINFDDx3ZjwLCOfPL2HD56cw7zZqxj7IRe9PntqBrtKBtj6NquBV3bteC2y07hi3kb+eO7c4nOzqLZoSyeef5TZndLZnifFEb170Bic/8NuECmN1Q0Lzi/wMU/3viRqMx0DkfFcTwimki3/1VLqqIoAOA9JWZwcgx2myE0yDN8ufR7LV2wBcuymHBadyZP3VAvuScCXZpXRBqmopxBRa74/RgGj+zMk498wcN3vseo03tw0z0TaBbvv571NX2jdH3kcNiZMKIbE0Z0Y/32A3w5YxXfzVvHd3PXERMZymlDOjN6QEf6dmlFcJCDwckxOB32EyuKBNm4pG+SJ0BRznTEqqyiVFGeivGd4wkvTKIMnikaRXXdsew8lqzbxcLVO1i8dhfb9hwCIMhhp3ObeCaO7E739ol0bdeCtklxxQGaug76zvhhFS1bx9G5nHxIUjkKXDRAmgIiIiJFnCFBXHnDWM44tz+fvjOP7z5fwvTvVjLq9J6cffEgevRt43MFkqo6dCyfkLhYvvjLxWw5eIzw3GyWr93B/JXb+Pc7M/j3OzNIadWMQT3aMKhHG3p2aElcqeHNFTVK/QU3LMti+cY9PPzqD0RlHmVveCwZ0QlMPq8nMaFBNTo1YuGudPIK3GR5JQKdf/tIwPJkHKXsVNrZP64htlkEQwa2ZW23pHqZrqGEnSJNT6duSbz4zg18/NZcPvzfLyyet5lrbx3HpAsHYi81lcFXB7yiYHHXdi2IuyiGp7bk4TyWSVZ2Jl/NWs2nP60gLCSIQT3aMLB7G769vCcbj7mx2WzFeSWKVigpraZXUSr92gvuGOmZNui2iHTlsmPNFm6eMouVG/dS4HLjDHbQr0srJgzvRp8uSXRPScQZ7L9rW5dB36NHjrFi0TYuvmZkjV6fT3YKXIiIiDQC8S2iufneM7n8t6fw8Vtz+e6LJcz8YRXtOiRw+tl9GXJKF1q3bVatRpK/O1LjBrQHxrJz3xFmLd3MojU7+XLmKj6etgyAls2j6N4+kZRWcbRpGUfblrEkxEYSExmKzea7PAmRTs7qlsCRjGyWb9jD3OVbmbZgA/sPZhAbHc6+FslkOCOKk2f6S+hZ1XwPg5NjPLfxClkWfLx8Ly43ZBe4cdhtJRq2h9Iy+XXORi68chg2m63WVpmpiBJ2ijQt3nXYlTeMYeyZvXjx8W946V/fMvXTRdzwhzMYNLxT8fb+OuAV1UcLd6WTZxkO2cPIbBbF3y7uTYKVy7wV25i3YhuzlmwBICwkmPiEWHZ0TKRPh0RiYiO5+/NV5GLzOVLBVzC1qvWy222xN+0oW3YfZOOOVC4Py2Lt1v3k5RXw9lfb6Nw2nsvO6M+w3u3o3TmJ4KDAu7J1GfRdMHsDbrfFKeO619p7nIyUnLMB0ogLqQwl56w7DT3pmzHGDiwG9liWNanUYwZ4DpgIHAeutSxraXmvp3q6YcvJzmPmD6v45rPFbFy7F4CWrePoP6Q9Pfu1pc/AduUONfbFV2JNf43h3LwC1m7dz5ot+1m3bT/rth1gb9pRvJsVdpshNioMpzMIF4bYcCc2IK/ARV5+AamHs8jO9cxFttkMmcFhZIRFkR0ZxczbTimRx8NXUAWg679mkFvgwumws/7+yg39LUoEWrRU4Kxbhvsd8vzhG7P53+Sf+e/nt9O6bfNKHVepO6qnpTHxFyy2LIt5M9bz+nPT2Lf7MAOGduC3t59Ox64tqzTloWi1kDumrMLlxufzVu84yEdzNvDx3I04c7Nx5udi86rQC4yNAkcQPZLj6N46jtioMCLCnESFh+AyNnZk5NI7KRqHw86VHywj3wKHzfDJVQOJCXVQ4HKTk1tATl4+x7LzOJqVw9GsbI5kHOfAoUz2H8pkX9pRcgqTaBoDHZPj6d0piT6dkxjYow3NosOrfbyLAipArQWAH77zPXZsTeWtr+7SiAsflJxTRETuBNYBvnqrZwKdCv8NAV4u/F/qSXVXhggJDWbCeQOYcN4A9u89wqI5m1g4ZyMzvvcEM8ATyOjSI4nO3VvRpUcrOnZtSUhosN/XrMwdKWewg35dW9Ov64m52rl5Bew+kM7O/Uc4mJ7FofTj7D6Ywecr9oDbjf1oHiPbNyMuJIhgh52hvdsRFRXOo7N3kG6cZFmeBl6kZWPb4ewKE3qmZ+cXZ8DPznczbWNaibnjFR3nokSg3o/7Gs1w/FguX3ywgL6DUhS0kOpSPS3F/I2eMMYw4tRuDD6lE19/vJD3/jObW694hTFn9OLaW06t1Kgr73w+FvDEWd3KJLpMzcxlzH8Xk53nIjusOYRBZLCd587sSDObm7s+XoI9L5dgVwGmoIAFq7aTnplDvlcyT4CPC//3roXvfmKb37LZjCE6IoQWzaNokxjDkJ5t6dC6Ge1bNyelVTPCy7leVUXRSLnazHeRk53HsoVbmXTRQAUtapgCFyIiTYAxpjVwFvB34G4fm5wLvG15htktMMbEGGNaWpa1ry7LKR413WhKTIrl7EsGc/Ylg3G53GzduJ8Vi7exbtVu1izfxcwfPMvK2ew2Ujom0K1XMr0GtKPPgHbENosofp3qTkNwBjvokNycDsknOvdT1x7ghd0UN8zPOrfkKI6paw9w9NdDZOV67rKFBtl8Bk1S4kKxsIgIthc/7mvetbdAjnPpKR++poB88tYc0g8f47pnTqvU8RDxpnpaSqsoWBwU5OCCK4Yz/px+fPL2XL54bwG//LSGcWf14ZJrRgZUR5fO5/Pgt54VOkpvk++yyC7wJOYMDbIR5LAxsW9bEiKdDOmd4vO6kJObT8axHI5l55GT5xlNkXo0h99/vAyXy8JuM7x0YW/iwoOx22zkuCwu/2AZeZYNW5CDlfePIzHa/xKttaU2810sX7SN/LwChpzSpUZer7STeTlsBS5ERJqGZ4H7gUg/j7cCdnn9vrvwbyUaxMaYG4AbANq0aVPjhRSP2mw02e02OnVLolO3Ew3TI4ey2LBmDxtW72b96j1M/24lUz9dBEDbDgmMGNuNU8/sTXK75gHlbqhMw6mihrn343YbPH9er+KcFt7vN/qleViWZ/jwrFuGkxDpZHzneGJCHeTku7HZoF+rkjexfR3n0kugVuTAvnQ+e3c+Y87oRdeerSvcXqQcz6J6WrwEGiyOiAzlultP45xLBvPR/+bw3ZQlTPt6GYNHd+Xq340uUd+X5iufT+lrTnn1cHn1fYgziBBnyaVLARZ3S/b5nKlrD3DMEeKpk7GxeM9RJlUzcFGVjnxt5rtYOGcjoWHB9Ohb89/Nk305bAUuREQaOWPMJCDVsqwlxpgx/jbz8bcySY4sy3oNeA08c6drqoxSUm01mvw14GKbRTB0VBeGjvLcAXIVuNi0fh8rl2xn0dxNfPjGbN7/zyw692jFxPMHMHZCL79TSirbcKqoYR5Iw70oAHEsz0Wow8ayPRn0SIwiIdLJL7eOKM5TMfqleSXKU/o4p8SFVqrs6Yez+OOt72B32LjutnH+D7xIBVRPiz+VSfTbLD6Ki24ex6OHXDTfupf5czaxcOZ6+g1pzyXXjKTf4PZlpickRDqZf/vIEvl8Sl9z/NXDVe0o+9unmr72lVe+8gIatZnkePmibfQe0I5gHyucVHe0xMm+HHZAgQtjzAQ8yYLswH8sy/pnqcevAB4o/DULuNmyrBU1WVAREfFrBHCOMWYiEAJEGWPetSzrSq9tdgPJXr+3BvbWYRnFS200mirTwLQ77HTt2ZquPVtzyTUjOZSWyaxpq/j+y2U8+9hXvPbMD5w2qQ/nXjqkTE6HQBtOpRtoFS2PWt7jg5NjsNs8P2cXuLljyuriu4HL9mTgcltk57uxGVOiPKWPc2UafRlHj/PgLW+Ttv8of598FYlJsX7LJxIA1dNSIxbuSifb4WBt2yT2tk/iruZBrPtxFQ/d8jZt2scz6aJBnDaxD+GRJ0Yy+MrnU5qverimO8o1fe3zVz7v66HdZnj+vJ5lRvIlRDorPQKvIkcOZbFn5yHOPL9/mcdqYrTEyb4ctq2iDQqzH0/GkzCoO3C5Mab02i7bgNGWZfUG/kZhFFhERGqfZVkPWZbV2rKsdsBlwPRSjWGAr4CrjcdQ4KjmTZ9QtMxmamZunb1nUSOxpu70eDfg8l0WC3elB/zcZvGRXHDFcF796Bb+/Z/fMnRUF777fAm/u/BFHrn7fTatO9F3CqThVNRAu/zdJXT858+s2Z9RrX1LiHTy/Hm9CA3yNFtcbs/+pWbmcseUVWTne+Zl221ly+N9nANt9B05lMX/3f4uu7cf5JGnL6dXv7bVKr+I6mmpKd71mM0ZxE03jeWtqX/gnkfOIyQ0mJf+9S2XnvEk/3j4c9av3k3RCpJVuebURke5Jq99/srnfT1Mz87nxk9W0P3JGSWu8UXXqSveW1rmsaLHK9suWLNiJwA9+pa9ZlTnGl2kKPDz3hX9T7ppIhDYiIvBwGbLsrYCGGM+xJM8aG3RBpZlzfPafgElk8mKiEg9MMbcBGBZ1ivAt3iW2NuMZ5m96+qxaA1KU5kzWhMNTGMMPfu1pWe/tvz+rvF8/ckivvp4Ibdd+Sojx3XnmptPpU1KfEBTO3IL3BwrTAY37IU5bH5wXLWO6/jO8YQG2XHYTiTvXLgrHZcnZkGow8bz5/Ws9LQV75EhzcKC+OazRbw5eTp5eQX8378uZcDQDlUuc1N2MieIq0mqp6Wy/I1aGH9OP/qO7c7AP31Ns+37mf7DKmZ9u4IOXRI5bVJfxozvSVxzf+lVKvdeDYW/8hVdD0ODbGTnu8kucOOw20qMGCkvB1JKXKjPpbErqve2rN+HzWbo2CWxzGM1FQSqzNSipiaQwIWvREHlLc10PfBddQolIiJVY1nWTGBm4c+veP3dAm6tn1I1bI15zmjpRlRNNjDjmkdyzc2nctFVw/ni/fl89u585s1Yx2mT+nLVDWMqnNpRYpq1j2RwleVr/0o3BMd3jg/odYrK4R20ik3PYMLhw2zbuJ9+Q9pz6/1nkdyu9pc+resAQE28X1MJ9tUX1dNS3e+hv87rwl3pHI0MZ3fntsR0a8t9rcPYvWATr/77e15/5gf6DmrPqNN7MGx0F2LiIny8cuDvVZcqyldRunxF14tpG9O4Y8oqXG7KBAvKy4FkYYEFWXmuEkGNiuq9HVvTaNk6jvQ8Nwu3HChR3oYeBGoMAglcBJQoCMAYMxZP4GKkn8eVBVlERBqUxjpn1F/nsaYbmOERIVx5w1gmXTyYj/73C19/vJAZ363k/N8M44rfj/aZxNM7GRwWBPtIBleVhruvpUur0xBcuCsd56EM2q3fSbP0TFJjw3no8YsZfXqPMgnuakNdBwBq6v0ac7BPpL7V5ve+xDQSu+H6a0eScPs4dm5LY/p3K5nx/Sqefewrnv+HZ3Td8DFdGTama73l8AnkOlCdBKFXDmjN+M7xPt+jvBxI4cF2jKFEuyCQem/rxv0kd2rht7wNIQjUmAUSuAgoUZAxpjfwH+BMy7IO+XohZUEWEZGGprHeBanrzmNMbDg33j2B8y8fylsvT+fjt+Yw4/tV3Hj3GYwc171MR790MjjwLIVX9HNNNdyr2hDMOHqcpe/MpueCNeQFB7GrezumPXMxrZsHdheyJtT1Z1hT79dYg30iDUFtfu/9Xc/apMRz7S3juObmU9m6cT9zpq9jzvS1vPLv73nl39+T0qkFg0d2pv+QDnTvk+xzRYyaFkgCTaj+8SrvGuH9WOl6bdYtw9l2ONvvCL/S9V5ebj7796aTPLgj+dkK7NaGQM7KRUAnY0wKsAdPQqHfeG9gjGkDfA5cZVnWxhovpYiISC1qjHdB6qvzmNAyhvsevYAzzx/Ai098w2MPfEzfQSncfN9E2nVIKLlt4XEtfcfs2XN71usd+/mz1vP837/maPpxzrlyOC1H92Bkp7IN5tpW159hTc6xbozBPpGGoLa/9+Vdz4wxdOjSkg5dWnLNzaeyZ+ch5s9az4LZG/j07bl89L9fcIYE0bNvG3oNaEfv/u3o1D2pVgIZ3gEJgBs/WUFosL1MILuu6klf9VqPxKhyH/e2d/cRLMtiQI8kgpalKrBbC0xRptlyN/Is3fQsnuVQ37As6+/eyYSMMf8BLgR2FD6lwLKsgeW95sCBA63FixdXp+xNlu3er+u7CNIEuZ86u76L0OgZY5ZUVLc1JaqnG776TpDoKnDx7edLePPl6Rw/lsv5lw/l6pvGlpk+MnXtAa54b2lxoGLyBb2468vVdZ4jwbIs/vPcND59Zx4pnVpw71/Op2PXlrX+vuVpjDkuGjLV09IYNMTv4bGsHFYu2c7SX7ewcvF2tm9JBSAo2EGXHq3oPaAdPfu1pVuv1oSF19wS3tn5ruKVoSKdDt67on+ZwEtDPF6lzZuxjr/e+yHPv30DsW2aN/jy1qeq1tMBBS5qgypa/xS4kNqgwEX1qUEs4tvRI8d448Wf+H7KUlokxXD1nWeQk9SsxModpaeGAHXesPvf5J/48I1fmHTRIG66dwJBQVW7i9gYGtEnK9XTIjXj6JFjrF62k0WLtrJk0TbSdhzEclvYbIZ2HVvQvXcy3Xon061Xa5KS40pMFwy0jkzNzC2TQLOxJvt9/7+zeOul6Xwx+481EthpyqpaT9f+BCYRERFp0qJjw/nDw+dy2qS+PP3olzz5wEccahHH3u7tWP7IBL9DbOtyesj7/5nFh2/8wsQLBnDbg2dVOfmmVtQQkZNBdGw4nQa159yZO8jv0gFnp3Z8ML4jezfuY82KnUz/biVTP13k2TYmrDiI0bJjIhd/v4lcY6uwjqwogWZjsn1zKi2SYhS0qEUKXIiIiEiN6NWvLef95SIe/Mc3tNq6l5hZy3nl1RD+dNdp9ZpH5NvPF/PWy9MZd1Yfbn9oUrVWDNGKGiJysiiRh8LpILtFLFeN7QqAy+Vm59Y01q3axdqVu1i3cjcLZm8AoI8xZESGkdU8hs++X8315/Qm2Bnk933q8vpQGyPmLMti8/p9ZfI8Sc1S4EJERERqTMcWEWxMTmR7fBzdNu1k7gfzuG3JVm69fyI9+7Wt8PlFjcqUuNASGd2rasuGfbz0r28ZOLwj9/z5XGw2W5VfC7SihoicPMqr7+x2GymdWpDSqQUTL/CM+s9IP86CRdu49/U5RBzMoNW2PUz55x6+feZbevRtw4ChHRk0vCNtOyTUyZLTUDJQATW3opW3rZsOsGfnIc7/zdBqv1ZTl5qZCyER0VV5rgIXIiIiUmO2Hc4mLNjOMYLZ1L8zV3eJZfHHC7jnd28wbmJvrrvtNOJb+G6zFE3DyCtwcyzPRViwHafDVuXG5fFjufzjoU+IignjvkcvwO6wV3f3tKKGiJw0KlvfRcWEMf70Hvw0tCMLd6XTKy6UfRv3sXzRVpb+upX/PDeN/zw3jeYtohg8sjNDRnam3+D2OEP8j8aojrpa0Wr6tyuw222MPr1nDZS66Sr6PIhKSKnK8xW4EBERkRobPjs4OQanw4bNGILsht9cOICbLh3IR//7hU/ensucn9dx8TUjuPjqEWVWHykalpyV5wLgWJ4LmzHFjcs1+zP4ePleLumbRI/EqHLLbFkWL/5zKnt3HeaJV64lJja8yvtUWmNcPldEpCqqUt95P6dtYhRDR3UBIHX/UZbM38yieZuY8d1Kvv1sMaFhwQw5pTMjx/Vg0PCOZa4LlTV7y0Fenredm4e3IyPXVSJQAdTIiDnva489J49pXy1n0MhORMWEVavsTV3RNR5jq9JdBAUu6pBWCxERkYaoJhNO+rtDd80t4zjjvP688cJPvPvaTL7/cilX33Qqp03sXTwSomhYckSwvXjERVHjcs3+DHo/NQsLeOynTcy4eRgXvLXYb5l/+HIpP3+7kqtuHEvvAe2qe4hERKSaEhKjOfP8AZx5/gDy8gpYuXg7c2esZe6M9cz8YTXOkCCGnNKZUaf3ZPCITpUeiTF7y0HGvDwfgI9W7OOLawaWCFSM7xxf7RFz3tfLyOPZnLlnH7k5+fz2ttMq/Vonm6JrPJbbVZXnK3AhIiJykvA3QqGmE076u0OXmBTLHx+/mLMvGcxrT3/P03+dwkf/+4Urfz+G0Wf0LBH0KJ3jYvLcbRQt4G4BL8/b7rfMq5Zu54XHv6H/kA5cfv2oSpVdS52KiNSu4nq2VzIDh3fktgfOYtWyncz+cTVzpq9j9o9rSozECDSI8fK87SV+/3D5nhpf0WrhrnQK8lw027KHDtv2ciDcyfjbxhMaX6W0DSeVomt8iydTt1Xl+QpciIiInATKG1VR1wkne/Vry/Nv38D8WRt4+5XpPPHwZ7z7+kwuuGIYp0/qW9yo7JEYVfycS/om8dhPm7AAA9w8vB0/bjpIRLAdC4uUuFAA1izfyZ/vep+WrWP50xMXY7cHnoyzsiNPFOQQEakc73rWbjM8f15PxneOp++gFPoOSuHW+yeycukOZv+4mrnT1zHzh9WEhAYzcHhHho7qwuARnYj2M/Xv5uHt+GjFvhK/V2dqn6vAxcG0TFL3pXNg31G2bNjHqhW7GLR2Dza3xZEWcazomcKsNYf4y/oZAY9WPJmvHQmRTsjJOlqV5ypwISIichIob1RFXSScLN1QM8YwfExXho7qzNzp6/j47bm88PhU3n5lBhPO68/pk/qS3K558fN7JEax8t7RJXJczLplOMNemINlweiX5vH+KclM/usUYppHcNofJnIcGxGVKGNlRp7U5PQaqRnVyVYvInWjxBKrwI2frCA02F5ch9oddvoNbk+rbq1IOWcQEQePsnr+JhbM3sCcn9dijKFDl0T6DEyh94B2dO6eRFzzSABGdWjOzJuHFee4GNWhud9yWJbFkUNZ7N+bzv49R0jbf5S0A0dJO5DBwdQMDqdlcuTwMSzLKn5OsNNBp65JnHXRYJztWxCRksCtn68iK7eAEIeNaRvTuHJA63L3X9eOqlPgQkRE5CRQ0aiK2kw4WV5DzWazccppPRg5rjurlu7gs3fn8cnbc/nof7/QrVdrRpzanb6DUujQJZEeiVH8dYInKefUtQdIz87HYOBwBu237+Xf38yndUo837Rvw5TvNhI0bVOlGoWVGXlS09NrpHqqm61eROpGUT0bGmQjO99NdoEbh91Wog4te80Yz+0PTWLTur0snLORFYu389VHv/LZu/MAiG0WQUrHFsQnRhHXPJLL4sLJWLaNb1dsJyOngA2704m1WRQczyVtfwap+9NJ3X+UvMLgSZGIqFDiW0TRPCGKjl1aEtc8gvjEaFq0jCGhZQyJrWIICjrRfV6zP6M4mXROgZvbv1jF+M7x5V5zdO2oOgUuRERETgL1uYxnIA01Ywy9B7Sj94B2HD6YyfTvVvLTNyv4z3PTAIiMDqV9p0TCYsL4YuthrAKL0Owc+hzPIfRYDi6HnUtvHEvc4E58+snKKjUKK3OM6np6jZSvutnqRaRuFNWz0zamcceUVbjclKlD/V0zOndvRefurbjyBsjJzmPDmj1s3bifLRv3s2NLKju2pnLk8DHcLneZ93XbDHGx4SQkRpPSsQVDTulCi6QYEpNiSWwVQ4uWMZVe0WTb4WycDhu5BZ73y3O5K7zm6NpRdQpciIiInCTqaxnPyjbU4ppHctFVI7joqhEcSstg+aJtLF+0jT07DrFmxS4SDmXiNobcsBC6dE4kuWsSV/1mCClJMaRm5larURjoMarPQJCUVd1s9SJSdxIinVw5oDXjO8f7rEMDuWaEhAbTZ2AKfQaWHGTlcrnJzMjGVeDmx41p3Pb5Ko66LMLCgnnvygE1eg0cnBxDaNCJwIXTYa/wmqNrR9UZ73k7dWngwIHW4sWL6+W964uWQ5X65H7q7PouQqNnjFliWdbA+i5HXTkZ62mpPTWVjCw1M5fu/5ruGULssPmcClL6vU7mRGgnk9TMXFokNN9sZWd2qu+y1BXV09JU1US9XRf5JFIzc5m2MQ2g3Gkiug6dUNX2tEZciIiISK2rqdEeCZFO1t5/qs8GoHfD0P9c6bpNhKbGat2pTrZ6EWlYKnPN8FXPFv1t1i3DSyytXRvlVELOuqHAhYiIiDQqvhq0/hqG9ZkITY1VEZHa5aueBRpU3auEnDUj8MXNRURERBoo74Zhvsti4a50oH4TofkrU3mKVkxJzcyt/QKKiDRyvurZqtS9takq1yFdC8rSiAsRERFp9Pw1DOsyEVrp4cqVbaxqhIaISOX4q2cb0sodFV2HfOVl0rWgLAUuREREpM7UVs6H8hqGdbGair+GZmWCJhpOLCJSvtLXEH/1bENbucPfdcjXtUPXAt8UuBAREZE6Udt3kepruVfwH3SoTJnqc1qLiEhD5+8a4querc/rQWX4unboWuCbAhd+BLp0qZaYFBERCUxTvotUEw3NupzWIiLS2DTFa4iva4euBb4pcCEiIiJ1oinfRaqphmZjuUsoIlLXmuI1xN+1Q9eCshS4EBERkTrR1O8iqaEpIlJ7muo1RNeOwGg5VBEREakzRQ20ptLg9Kbl60REaldjuobomlCzNOJC5CQRaN4WUO4WEWlYamslkpqk5etERJq2ylyLdE2oeRpxISLSyBljQowxC40xK4wxa4wxf/WxzRhjzFFjzPLCf3+uj7KKVFZR4++K95bS/ckZDfbOlXfSuHyXxcJd6fVdJGlAVE+LNG6VvRbpmlDzNOJCRKTxywVOtSwryxgTBMwxxnxnWdaCUtv9YlnWpHoon0iVNZYs8k0xaZzUKNXTIo1YZa9FuibUPAUuREQaOcuyLCCr8Negwn9W/ZVIpOaUbvylxIUyde2BBjdtpKkmjZOaoXpaGorGMPWuIapsIELXhJqnwIWISBNgjLEDS4COwGTLsn71sdkwY8wKYC9wr2VZa3y8zg3ADQBt2rSpxRKLBMa78ZcSF8rol+Y12DnDygwv5VE9LfVNeReqriqBCF0TapZyXIiINAGWZbksy+oLtAYGG2N6ltpkKdDWsqw+wAvAFD+v85plWQMtyxoYHx9fm0UWCVhR42/b4WzNGZZGS/W01DflXaiexrSiSVOkwIWISBNiWVY6MBOYUOrvGZZlZRX+/C0QZIxpXucFFKkGzRmWpkD1tNQX1aHSmGmqiIhII2eMiQfyLctKN8aEAqcBT5TaJhE4YFmWZYwZjCdwfajuSytSdZozLI2V6mlpCFSHSmOmwIWISOPXEnircP60DfjYsqypxpibACzLegW4CLjZGFMAZAOXFSaLE2lUNGdYGinV09IgqA6VxkqBCxGRRs6yrJVAPx9/f8Xr5xeBF+uyXCIi4qF6WkSkepTjQkREREREREQaLAUuRERERERERKTB0lQRESnDdu/XAW3nfursWi6JiIiIiIic7DTiQkREREREREQaLI24qKZA70yLNEUamSEiNSk1M1fL9ImISK3RdabxUuBCRERE6l1qZi7dn5xBvssiyG5Ye99YNSpFRKTG6DrTuGmqiIiIiNS7hbvSyXdZZOYWkO+yWLgrvb6LJCIiTYiuM42bRlyISK3TlBIRqcjg5BiC7IZIp4Mgu2Fwckx9F0lERJoQXWcaNwUuREREpN4lRDpZe99YzT0WEZFaoetM43bSBS6UTFNERKRhSoh0Mql7i/ouhoiINFG6zjReynEhIiIiIiIiIg2WAhciIiIiIiIi0mApcCEiIiIiIiIiDZYCFyIiIiIiIiLSYClwISIiIiIiIiINlgIXIiIiIiIiItJgnXTLoYpIw1XTyxW7nzq7Xt5XRERERERqTkAjLowxE4wxG4wxm40xD/p43Bhjni98fKUxpn/NF1VERERERERETjYVjrgwxtiBycDpwG5gkTHmK8uy1nptdibQqfDfEODlwv/9WrL7qO5yikitUh0jIiIiItL4BTLiYjCw2bKsrZZl5QEfAueW2uZc4G3LYwEQY4xpWcNlFREREZF6lJqZy9S1B0jNzK3vooiIBEx1V+MXSI6LVsAur993U3Y0ha9tWgH7qlU6EREREWkQUjNz6f7kDPJdFkF2w9r7xpIQ6azvYomIlEt1V9MQSODC+PibVYVtMMbcANxQ+GuW9e9zNng93Bw4GEB5mirtv/Zf+9/wta3vAtSlJUuWHDTG7KjvctSixnLe1TYdBw8dBw//xyEkIpqohBSMzY7ldrV4MnUbOVlH67Z4FVI93XDoO+Wh41Dfx6Bh1F06DzyaU8V6OpDAxW4g2ev31sDeKmyDZVmvAa/5ehNjzGLLsgYGUJ4mSfuv/df+n7z731BZlhVf32WoTTrvPHQcPHQcPHQcGpeGXE/rXPLQcdAxAB2DIoXHoV1VnhtIjotFQCdjTIoxJhi4DPiq1DZfAVcXri4yFDhqWZamiYiIiIiIiIhItVQ44sKyrAJjzG3AD4AdeMOyrDXGmJsKH38F+BaYCGwGjgPX1V6RRURERERERORkEchUESzL+hZPcML7b694/WwBt1azLD6nkJxEtP8nN+2/SN3Teeeh4+Ch4+Ch4yA1ReeSh46DjgHoGBSp8nEwnpiDiIiIiIiIiEjDE0iOCxERERERERGRelGngQtjTIgxZqExZoUxZo0x5q8+trnCGLOy8N88Y0yfuixjbTPG2I0xy4wxU308ZowxzxtjNhfuf//6KGNtqmD/o40xX3udH00uV4oxZrsxZpUxZrkxZrGfbcYUPr7GGDOrrstYm4wxMcaYT40x640x64wxw/xsN8gY4zLGXFTXZZTGzRjzhjEm1Riz2s/jscaYLwrr2IXGmJ5ej1X4/WwsjDHJxpgZhd+zNcaYO31s09UYM98Yk2uMubfUYxOMMRsKr0cP1l3Ja1aAx8Fvu6OpnBOBHAevbcvUv03lfJCaV506t6kIsJ45Gdr41bruNAXVveY0FQEeh3MLj8FyY8xiY8zICl/Ysqw6+wcYIKLw5yDgV2BoqW2GA7GFP58J/FqXZayDY3A38D4w1cdjE4HvCo/T0Ka27wHs/x+BJwp/jgcOA8H1XeYa3v/tQPNyHo8B1gJtCn9PqO8y1/D+vwX8rvDnYCDGxzZ2YDqevDoX1XeZ9a9x/QNGAf2B1X4efxJ4pPDnrsDPXo+V+/1sTP+AlkD/wp8jgY1A91LbJACDgL8D93r93Q5sAdoXfk9XlH5uY/kX4HHw2+5oKudEIMfB67MvUf82pfNB/2r+X3Xq3KbyL8B65mRo41f5utNU/lX3mtNU/gV4HCI4kbaiN7C+otet0xEXlkdW4a9Bhf+sUtvMsyzrSOGvC4DWdVjEWmWMaQ2cBfzHzybnAm8XHqcFQIwxpmWdFbCWBbD/FhBpjDF4TubDQEEdFa+h+A3wuWVZOwEsy0qt5/LUGGNMFJ4Gzn8BLMvKsywr3cemtwOfAU1m36XuWJY1G0/d4U934OfCbdcD7YwxLeqibHXJsqx9lmUtLfw5E1gHtCq1TaplWYuA/FJPHwxstixrq2VZecCHeK5PjU6Ax6HJtjuKBHIcCvmqf5vM+SA1T3VuwN+vJt3Gh2pfd5oEXXM8AjwOWVZh1AIIp1RMwJc6z3FhPFMFluO5KP5oWdav5Wx+PZ7oZFPxLHA/4PbzeCtgl9fvu/HdsGisnqX8/X8R6AbsBVYBd1qW5W/bxsoCphljlhhjbvDxeGcg1hgzs3Cbq+u4fLWpPZAG/M94pgv9xxgT7r2BMaYVcD7wiq8XEKkBK4ALAIwxg4G2nGg0VPT9bJSMMe2AfnhGOQaiSV6LAjwOpdsdTe6c8Hccyql/m+T5IHWmvDq3ySmnnjmpvkdVuO40OVW85jQ55R0HY8z5xpj1wDfAbyt6rToPXFiW5bIsqy+eSmuwv7luxpixeD7MB+qweLXGGDMJSLUsa0l5m/n4W5NY9iXA/T8DWA4kAX2BFwvv0jclIyzL6o9naNitxphRpR53AAPwjEw5A3jYGNO5jstYWxx4hpO+bFlWP+AYUHqu9LPAA5Zlueq4bHLy+Cee4OByPHeXl3FiZFdF389GxxgTgecO+l2WZWUE+jQff2vU16JAjoOfdkeTOicqOA7P4rv+bXLng9Sp8urcJqWC79dJ8z2q4nWnSanGNadJqeg4WJb1hWVZXYHzgL9V9HqOGi9hgCzLSjfGzAQmACUS+hhjeuOZTnCmZVmH6qF4tWEEcI4xZiIQAkQZY961LOtKr212A8lev7fGM/qgKQhk/68D/lk4bGizMWYbnvmQC+u+uLXDsqy9hf+nGmO+wDMEd7bXJruBg5ZlHQOOGWNmA33wzA1r7HYDu71GWX1K2cDFQOBDz2whmgMTjTEFlmVNqbNSSpNWeOG8DjzJ0oBthf8C+X42KsaYIDwNhvcsy/q8Ek9tUteiQI6Dv3ZHUzonAjgOPutfmtj5IHWrvDq3KQng+3VSfI+qcd1pMqpzzWlKKnMuWJY12xjTwRjT3LKsg/62q+tVReKNMTGFP4cCpwHrS23TBvgcuMqyrKbQWQPAsqyHLMtqbVlWO+AyYHqpTjvAV8DVxmMocNSyrH11XdbaEOD+7wTGARTOf+wCbK3TgtYiY0y4MSay6GdgPKWCdsCXwCnGGIcxJgwYgmdeWKNnWdZ+YJcxpkvhn8bhSUTqvU2KZVntCs+TT4FbFLSQmmQ8K9sEF/76O2C2ZVkZAX4/G43CDsJ/gXWWZT1dyacvAjoZY1IKj9VleK5PjU4gx8Ffu6MpnROBHIdy6t8mcz5I3fNX59ZnmWpagPVtk23jF6nmdadJqM41pykJ8Dh0LNwO41llJxgoN4hT1yMuWgJvGWPseIImH1uWNdUYcxOAZVmvAH8GmgEvFe5LgWVZA+u4nHWm1L5/iyfr8GbgOIUR6qas1P7/DXjTGLMKz5C6B8qLujVCLYAvCs9rB/C+ZVnfex8Dy7LWGWO+B1biyQXyH8uyGmVD2Y/bgfcKGzFbgetKnQMi1WKM+QAYAzQ3xuwGHsGTCLroHOsGvG2MceEJnF1f+FSf38+6LX2NGgFcBawqHKINnpWb2oDnWBhjEoHFQBTgNsbchSfrd4Yx5jbgBzwrSrxhWdaaOi5/TanwOOC/3dGUzolAjoNPlmUVNKHzQWpYNercpiSQ79fJ0Mav1nWn7otbK6pzzWlKAjkOF+IJ5uUD2cClXsk6fTIVPC4iIiIiIiIiUm/qPDmniIiIiIiIiEigFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBwVbWCMSQbeBhIBN/CaZVnPldpmDPAlsK3wT59blvVoea/bvHlzq127dpUvcT05mpPP1kPHcVtgM9C+WRjRIUH1XSwRqUNLliw5aFlWfH2Xo640tnpaRKSh1tNqT4s0PeofVk1V6+kKAxdAAXCPZVlLjTGRwBJjzI+WZa0ttd0vlmVNCvSN27Vrx+LFiytT1nqVmplL9ydnkO+yCLIb5t43loRIZ30XS0TqkDFmR32XoS41tnpaRKQB19NqT4s0MeofVk1V6+kKAxeWZe0D9hX+nGmMWQe0AkpXtE1aQqSTtfeNZeGudAYnx+ikFBEREZGAqD0t0vSof1i3KpXjwhjTDugH/Orj4WHGmBXGmO+MMT1qonANTUKkk0ndW+ikFBEREZEqOdnb0yJNifqHdSeQqSIAGGMigM+AuyzLyij18FKgrWVZWcaYicAUoJOP17gBuAGgTZs2VS2ziIiIiEijo/a0iEjVBDTiwhgThKeSfc+yrM9LP25ZVoZlWVmFP38LBBljmvvY7jXLsgZaljUwPr7B5U0SEREREakVak+LiFRdhYELY4wB/gussyzraT/bJBZuhzFmcOHrHqrJgoqIiIiINEZqT4uIVE8gU0VGAFcBq4wxywv/9kegDYBlWa8AFwE3G2MKgGzgMsuyrJovroiIiIhIo6P2tIhINQSyqsgcwFSwzYvAizVVKBERERGRpkLtaRGR6qnUqiIiIiIiIiIiInVJgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLioQ6mZuUxde4DUzNz6LoqInKSMMduNMauMMcuNMYvruzwiIiIijYH6cvXLUd8FOFmkZubS/ckZ5LssguyGtfeNJSHSWd/FEpGT01jLsg7WdyFEREREGgP15epfvY24OJqTf1JFqxbuSiffZZGZW0C+y2LhrvT6LpKIiIiIiEiTV93REurL1b96C1xsPXSc7k/OOGmCF4OTYwiyGyKdDoLshsHJMfVdJBE5OVnANGPMEmPMDaUfNMbcYIxZbIxZnJaWVg/FExEREak5RaMlrnhvaZX7n+rL1b96myritiiOVk3q3qK+ilFnEiKdrL1vLAt3pTM4OUZDi0SkvoywLGuvMSYB+NEYs96yrNlFD1qW9RrwGsDAgQOt+iqkiIiISE3wHi0R6XRUqf+pvlz9q7fAhc1w0kWrEiKdJ0WQRkQaLsuy9hb+n2qM+QIYDMwu/1kiIiIijVNNjZZQX65+1Vvgon2zMOYqqYmISJ0xxoQDNsuyMgt/Hg88Ws/FEhEREak1Gi3RNNRb4CI6JEgnjYhI3WoBfGGMAU/9/75lWd/Xb5FEREREapdGSzR+Wg5VROQkYVnWVqBPfZdDRERERKQyKlxVxBiTbIyZYYxZZ4xZY4y5s5xtBxljXMaYi2q2mCIiIiIijZPa0yIi1RPIiIsC4B7LspYaYyKBJcaYHy3LWuu9kTHGDjwB/FAL5RQRERERaazUnhYRqYYKR1xYlrXPsqylhT9nAuuAVj42vR34DEit0RKKiIiIiDRiak+LiFRPhYELb8aYdkA/4NdSf28FnA+8UsHzbzDGLDbGLE5LS6tkUUVEREREGje1p0VEKi/gwIUxJgJPBPguy7IySj38LPCAZVmu8l7DsqzXLMsaaFnWwPj4+EoXVkRERESksVJ7WkSkagJaVcQYE4Snkn3PsqzPfWwyEPiwcIm95sBEY0yBZVlTaqqgIiIiIiKNldrTIiJVV2Hgwnhqz/8C6yzLetrXNpZlpXht/yYwVZWsiIhIzbLd+3WNvp77qbNr9PVExDe1p0VEqieQERcjgKuAVcaY5YV/+yPQBsCyrHLn4YmIiIiInOTUnhYRqYYKAxeWZc0BTKAvaFnWtdUpUFOVmpnLwl3pDE6OISHSWd/FEREREZE6ova0yMlD/b7aEVCOC6me1Mxcuj85g3yXRZDdsPa+sTqJRUREREREmhD1+2pPpZZDlapZuCudfJdFZm4B+S6LhbvS67tIIiIiIiIiUoPU76s9ClzUgcHJMQTZDZFOB0F2w+DkmPoukoiIiIiIiNQg9ftqj6aK1IGESCdr7xuruU4iIiIiIiJNlPp9tUeBizqSEOlkUvcW9V0MERERERERqSXq99UOTRURERERERERkQZLgQsRERERERERabAUuBARERERERGRBkuBCxERERERERFpsBS4EBEREREREZEGS4ELEREREREREWmwFLgQERERERERkQZLgQsRERERERERabAUuGjAUjNzmbr2AKmZufVdFBERERERkTqjvpB4c9R3AcS31Mxcuj85g3yXRZDdsPa+sSREOuu7WCIiIiIiIrVKfSEpTSMuGqiFu9LJd1lk5haQ77JYuCu9voskIiIiIiJS69QXktIUuGigBifHEGQ3RDodBNkNg5Nj6rtIIiIiIiIitU59ISlNU0UaqIRIJ2vvG8vCXekMTo7R0CgRERERETkpqC8kpWnERQOWEOlkUvcWZb6oSlQjIiIiIiJNmb++UEOiflnd0YiLRsZXohpA0UgREREREZE6kJqZy7SNadwxZRUuN0ogWgcUuGhkvBPVRDodTNuYxl1frlbGXRERERERkVpWdCM5O99Fdr4bgEing4W70pnUvUU9l67p0lSRRqZ0ohpAGXdFRERERETqQNGN5KKgRajDpgSidUAjLkpJzcxt0NMuSieqAZRxV0REREREpA5430i22wzPn9eT8Z3ja7Tv2ND7pPVBgQsvvvJHNMQTpShRTRFl3BUREREREal9tb3iSWPpk9Y1TRXx4p0/ojFNu2gMGXdFRERERESagtrsfzXWPmltU+DCS+n8EZp2ISIiIiIiInVFfVLfNFXES20O+9E8JRERERERkco52fpRtT0VpbFS4KKU0vkjaoLmKYmIiIiIiFTOydqPqo0+aWOnqSJ1QPOUREREREREKkf9KCmiwEUd0Dyl+pWamcvUtQdIzcyt76KIiIiIiDR6ddW+Vj9KimiqSB3QPKX6c7IOLxMRERERqQ112b5WP0qKKHBRRzRPqX54Dy+LdDpYuCtdn4OISCHbvV8HtJ37qbNruSQiItJY1HX7Wv0oAU0VOek19WkUGl4mUpIxxm6MWWaMmVrfZREREZHGp6bb1029PyI1o8IRF8aYZOBtIBFwA69ZlvVcqW3OBf5W+HgBcJdlWXNqvrh152RYdudkmEah4WUiZdwJrAOi6rsgIiIni5O1PS1NU022r2uiP3Iy9NsksKkiBcA9lmUtNcZEAkuMMT9alrXWa5ufga8sy7KMMb2Bj4GutVDeOnEydOjh5JlGoeFlIh7GmNbAWcDfgbvruTgiIieTk649LU1bTbWvq9sfOVn6bRLAVBHLsvZZlrW08OdMPHfqWpXaJsuyLKvw13DAohFr6Mvu1NRwKk2jEDnpPAvcj+dunk/GmBuMMYuNMYvT0tLqrGAiIk3ZydieFglEdfsj1em3aYpK41Kp5JzGmHZAP+BXH4+dDzwOJOC5o+fr+TcANwC0adOmkkWtOw25Q1+TUUVNoxA5eRhjJgGplmUtMcaM8bedZVmvAa8BDBw4UI1mEZEadrK0p0UCUd3+SFX7bRqp0fgEnJzTGBMBfIZnvl1G6ccty/rCsqyuwHl45ueVYVnWa5ZlDbQsa2B8fHwVi1x7iqJuAGvvG8t7V/RvcCdxTY8GKRrm1ZD2UURqxQjgHGPMduBD4FRjzLv1WyQRkZPLydCeFqms6vRHigIfle23NaQR9hr5EZiARlwYY4LwVLLvWZb1eXnbWpY12xjTwRjT3LKsgzVRyJrmK4GLr6hbQ8yLUDqqmBIXytS1BzRiQkTKZVnWQ8BDAIUjLu61LOvK+iyTnBDosqQi0ng1tfa0nNwaUkLMquTbqIsR9oEcI438CFwgq4oY4L/AOsuynvazTUdgS2Eyof5AMHCoRktaQ/ydHI0lUaX3cKqUuFBGvzSvSZzoDanyExEREalJTa09LSe3mu5s10c/oLanzAd6jBpLH7QhCGTExQjgKmCVMWZ54d/+CLQBsCzrFeBC4GpjTD6QDVzqlVyoQfF3cjTkvBalFUUVp6490CROdEUaReqWZVkzgZn1XAwRkZNJk2pPy8mtJjvb9dkPqM2VBwM9Ro2pD1rfKgxcFK4fbSrY5gngiZoqVG3yd3I0xkSVTeVEV6RRREREmrKm1p6Wk1tN9kGaaj8g0GPUGPug9aVSq4o0BeWdHIFE3epjKJO/96yvE72mj0FTCcCIiIiIiDRWa/Zn8PHyvVzSN4keiVF+t6upPkhqZi7p2fnYbU2vH1CZY1SbIz+akpMucAFVPznqYyhTRe9Z3r5YlkVuTj7Hj+Xicrmx3BZuy8LpDCI0LBhnSBCeKZeBW7M/g2EvzMGywOmw1cgxUKRRRERERKT+rNmfQe+nZmEBj/20iZX3jq4weFGdzrZ3H8dug8kX9GJ85/gm1Q9oKgGJhpKL8KQMXFRVoEOZavLD9feeLpeb1H3p7N55iAN700ndl86BfUc5ciiLwwczOXL4GMezcnC7/U+NNMYQHRtGs/hImjWPpGXrOJJTmtMmJZ72nROJjAots1/DXphDVq6rRPlq4gvZVL7YIiIiIiKNzcfL91LUa7AKf//rhKha67SW7uPEhAY1qaBFU9GQchEqcFEJgUxpqOkPd3ByDE7LTVTWMSL3H2fJW7P4elsae3YdJj+voHg7h8NOfIso4uIjadchgb6DwomICiUs3EloWDAOhx2bzYAx5OXmk5Odx/GsXNKPHONQWiYHUzNYtWwH2cfzil+zddtmdOnZml792tJ/aAcWHckFrziIMTSZ4VwiIiIiIierS/om8dhPm7DwJGO5pG9SrXRa8/IKSD98jFaufKIzsoh0uTH5DtoaNxlHjxMVHVYj+yM1oyHlIFHgohICmdJQEx+uZVlsXr+PuTPWsXzhVgau3YvL5QZg4+EoOnROZNCITrRu24xWbZvTslUssc0isNtt1do/y7JIO5DBzq1pbFq/l/Wrd7N0wRZ+/mYFAInJcXSwBXOoWTQZzaKYe/tIRUZFRERERBq5HolRrLx3dIkcF1VdwdCyLNL2H2XrpgPs2p7Gjq1p7N15mAP70jmUlknRYjndvJ5z75yVAETHhtOuQwIduiQy5JQu9OrXBrvDXhu7LAFoSLkIFbiopIqmNFTnwz2Ulsn3U5Yw/btV7N5xEJvdRpcerbjo6hH06teWTt2TiIkNr4G98M0YQ0JiNAmJ0Qwc3hHwVDw7t6WxdMEWli7YwuHF20jYsZ9gp4NP8jJJHd+ToaM6ExqmAIaIiIiISGPVIzGKv044kdci0H5NTnYe61ftZvXyHaxfvYeNa/dy9Mix4sfjmkXQul1z+g1pT2JSDHHNIwmLCCEsLBi7w05udh7Z2XkcOZTFzm1p7NiSxtRPF/H5e/OJig5j+JiuXHjVcNqkxNf2IZBSGlIuQgUualhVPtxDaZl8/NYcvv18MXm5BfQe0I4LrxzGyHHda3S4VFXmqBljaNs+gbbtEzj/N8PIzcln5dLt/PrLRubNWMf8WetxOoMYOroLZ5zbn36DU7DZqjfyQ0RERERE6pe/fo3L5WbT2r0snr+ZJQs2s2H1Hlwud2G/IZ4hp3SmU7eWdOjckjbt48vkzQtETnYei+dvZu70dcz4YRU/fLWMUaf34De/G027Dgk1vatSjtI37usrWacCF7Ug0ESTlmXx2bvzeOvl6RQUuDntrD5c9ttTaJXcrMbLVNk5av5OSGdIEIOGd2LQ8E7cct+ZrFmxi1k/rGLmtNXMmraaFi1jGH9OXyacN4DmCf4zETd2DSW7roiIiIg0XfXd5izq16QfOcbP365n0dxNLJm/hYyjxzHG0KlbSy66ajg9+7Wle59kIiIrH6QorXifB3Vg5KndST9yjM/fncdXHy9k9o9rOOeSwfz29tMICQ2ugT2UyqjPZJ0KXNSTgnwXLz7xDd99sYThY7ry+7vOICk5rsqvV1Gl5p17IzzYzuS527h1RIrPbQM9IW02G736taVXv7bc8IczmDdrAz9MWco7r87kvf/MZtioLpxz6RD6DGxX6WVXG7KGlF1XRERERJqm+m5zpu4/yrwZ65g7Yx2rl+3A7baIjg1n0EjPTcz+Q9oTHcA09soEX3zuc2w4v739dC66agTvvDaDLz/6lcXzN3Pfo+fTrVdyTe1unanvYFR11GeyTgUu6sGxzBwee+Bjlv66hct+ewrX3HxqtaZXBFKpFc1RCw+2czzPxTOztzJ53naf21blhAx2BjFmfE/GjO/J3l2H+fbzxfzw5TLmzlhH156tuey3pzDklM5NYhqJr+MzODmm0VZAIiIiItLw1EcnMSszm19+Wsv071aycsl2ANp1SODy60cxdFQXOnZtWan2fGWDL+Xtc1RMGLfefxYjxnbn33/5grt/+18uvmYkV94whuBg/93ahhQoqO9gVHXVZ7JOBS6qoDonv6vAxcN3vsf61bu5+5HzOOOcfhW+B1DtlUyK5qhNnruNZ2ZvJSvPRaQxPrctfUKmxIUyde2BgPc3KTmO3905nqtvGsuPU5fz8Vtz+cvdH5DSqQXX3HwqQ0d1KTMCoyFVKBXxdXwacwUkIiIiIg1PTXcS/bW38/MLWDJ/Cz99s4IFszeQn1dA67bNuPqmsYwe35PguEgW7konJjmm0jchKxt8KdrniGA7FhYpcWWnniR1TeL8Ry9m3ZRFfPS/X1g4ZyP3/+0C2ndK9LnPtdlOr2wfpiEtL1oV9ZmsU4GLSqruyf/x23NZs2InD/ztQk6d2LvC9/CscGpwuU+8H5QMZARaqSVEOrl1RAqT520n0hif2xZ9+WbdMpxth7NJiQtl9EvzqrS/wc4gzrpwEBPO7c/Maat57/VZ/OXuD+jaszW/vf00+gxMKbO/QXbDrFuGs2xPBgDjO8c3uCBA6S9sY6+ARERERKTh8O4M11Qn0Vcf5viBdH74ahk/f7OCo+nHiY4JY+L5Axh3Vh86d0/CGFPtvo+vfkp5nf2ESCezbhnOsBfmYFkw+qV5Jd6zZHnCePcfF/PGk99y6xWvMu7c/lx3wxiaxUcWv15V2umBBiOqcmwa0vKiVRVoPseapsBFJVWnk7p1037efXUmo07v4TdoUfo9Qh02MJCd7ybS6WDaxjTumLKa3AIXToed9fePrVTkq7xtfX35KpMbwx+7w864iX0YM74n075ezruvz+T+G99k1Ok9uPHuCSw8mF3iPYY8/wvH89wAxIQGFe9jffBXcXl/YZtCBSQiIiIi9c9Xe7w6ncSitmx6dj75LovsrBwSDh/lnt/+h9StqTgcdoaN7sJpk/oycFhHHEH2Es+v7g260n2PtGO5DHthDlgQ7LD5vCm77XA2BkNWXgG2UiPES5fnYPMYZg/oRuL6nUz7YjGzvlnOpIsGMeG8/rRJia90O70ywYiqHJuGtLxoY6PARSVVtZPqdrt5+q9fEhkdym0PnBXwexSNuHDYbATZDRk5+aRn5wOeYMa0jWlcOaB1pSJf/rZduCudnHwXx/PdhAXZir9QgebGqMih7AJcXVrzxNs3MeuLRXzwxi/Mn72Bs649hSAbRDodWFi4XCeek1vgqrcRDIFWXKqARERERBqPhjxFuSZH8ha3ZQvcxB4+SqfdacQeOIzNbZHXKo4rbzuNc87rX26CzZq4QVfU90jN9AQtsnI9jf0IYNrGNO76cnWJ9nZ571n6MYBsh4OVndrQvH0Sl7uzmfLBAj5/bz4tkmLoN6g9z3ZoxlGnk9H92xAXUn731/v4hwXZuHPKKv7v9M70SCy7WmJVj019jVho7BS4qKSqdlJ//mYlm9btZfxNp5HrKP+wFw2R+nj5Xi7pm0R8uLP4/aZtTKuJ3fDJ5XJzPN8z0uF4vpsop71SuTHK42s6yH0b0mm9ahtTXp3BZX3aMPK3Y+jVMZ5TJs8lp8BTDqfDXm8jGCpz4VAFJCIiItLwNfTkiIF0hgMNvHy/YCst124nbs9BQvLyCQ5z0m5UN77It5MZEcbP245xRgD9ktJ9n6oGfhbuSseyvP5QmPLOV3vbX3+rdHmA4uPltgfxp/smYs/JZd7M9Sz7dStzZqwjKyMbgK8AYwzRsWE0i48kvkU08YnRJCRG07Z9ArHJzUjPzsduM4QF2Tie7+ajFfv4eMU+Vt47ukzwQjcv65YCF1VQ2U7qsawcXn9uGlkxETy6LZPHn5xRbiWZmpnLKZPnkpvv5oW521h//6nF7ze+czwxoQ5y8904g2yM7xxf/JzqfGlSM3O5/L2lJf7286aDjOrQvNzcGIG+77SNaWTnu4qnvHy8fC/HnE4W9+xA+7QjONbtZP+fP6HVn85h/f2nFgdo6jPHhaaAiIiIiDQtdZmbrCrt84o6wxUFXjIzspnx/Up+/Ho5G9fupaWBI81j2ZMcz6x/nseyA1m8/d5Sz/4HeDPSu+9TncDP4OQYnA5Pck9jYP7tI4kPd/psb5fX3yr9WJnjFenk7IsHc/bFg7Esi/TDx9i94yDrNhxg1ZY0wgvyOXbkOAf2pbN62Q6yMnOKXyvPGUT7ZtG07NuWb3MtLJsNC/h4+V7+OiGqzGda3ZuXDXn0T0OjwEUd+M9z0zh65BjbhvUkM4ARC9M2ppGeXQBAdsGJ6SBFnj+vF3CiU18TkePp6/YRmXuMyNxcQlz52CyLnC12nvjfbqIjQklKiObDczpxGAdjuiRW6n1TM3O5Y8oqsgtHc9hthkv6JnkCISFBpLdrweMPjef1x7/msfs/4vzfDOX3d47H7rCXea26pCiqiPhju/frgLZzP3V2LZdEREQqo65uTFWnfV5eZ9hX4GVi13iW/bqVH75axryZ68nPK6BDl0RuvGcCvUZ2YUNWfnFbNijYUa39r07gx1/burojOso7XsYYYptFkB8cxNgp68l32QmyO1j72MTi187KzOa9n9bz9KfLcB7JpHlaOnnfHmRUkIMdyS3YmdyCS/om1fhonYY++qehUeCils2atppvP1/CWZcPZUmGIbLwxKxKJenr5AbfFUjRahf+vvAFBS4Wrd3J/JXbWbh6J9v2HKJd4WNuDBFhwaxYuxMsi4xjObjcJ8Z1TWndjL5dWuOIjSG/wO0JxpRTcS3clY7LE7Mg1GHj+fN60iMxqkwl9cx/r+e1Z37gi/cXsHXjAf74z4uJKWfOnfdxqa3ggqaAiIiIiDQddXVjqrZGdqTEhWJhER5sJ8Tt4tD8Dfz2oQ/Zt/swkdGhTDx/AOPP6UfHri2Ln9PJ6/nV3X/v969Kn8ZX27qmRnSUp7zPIyIylPNP686flh0g32Wx11h8OKYd33y6iOBFWxlDHsFHslh4OLtGP9OaOkdOllEbClzUor27DvPsY1/RrXcyt9w5nstyCsqcVL5ONM90kKDilUOKpoP4W+GjdOQ4JS7U7xd+4440vp69mh/nr+dIZjbOIDt9urTmrFO6ExodyQ1fb6DA5iA4yF78vAKXm9RDmexOTWft1v0sXb+bb+esJTs3n042OxlhkRyzxfituEqXr2h/SldcjiA7t9w/kU7dknjuH19z+5Wv8uizV5DSyf8XWJFKEREREamMurgxVRsjO1Izcxn90jyCs3NJ2r6PNvsP8f60Anr0bcO1t5zK8LHdCA6uuHtXmf337quAZ3lSLM9Uj1m3DK/2iIPS/aDaCvhU9Hn4Cuicdlp35k5fx4v/nMod17zO+deMLF5QoCY+05o4R06mvpACF7Vkx9ZUHr7jPWw2w0P/uAhHkJ2EIHuJL56/Ey0h0sn6+8tGQstb4cP7i+ZzBEZiGJM/nsP3c9cR5LAzsl97zhzRjaG92uEsrOCmrj2AyxFMVm4BkTYb0zamERMaxODkGJISoklKiGZwz7Zce84Q8gtc/Lp6B1/PXsvc5VvJz0rnj09/zhUTBzJqQAfsNlvxfgYS2fWuuE4/uy9tO8Tzl7s/4O7r/8sjT11G38HtfR7nupynKCIiIiISiNoY2fHzsl0kr9hM8z0HAeg4sgu33zKWDp0Tq/3avpTuqzx7bk/yXZYnWb/TwbbD2T5X2wjkdadtTOOOKaspcLmhMN9Fj8SoWpvKE8jn4SugM+LUbvQZ1I7JT3zLZ2/M5m9XjyD59D418pnWxDlyMvWFFLioBcsXbuXR+z7C6XTwz5evoUXLGJ/blXei+RtGVd4KH0Xbl/jC22Db6s08+e8luC2La88ZzG/OHEB0RGiZ8pRchtVwx5RVuNz4jN4FOeyM7NuekX3bczwnj29+WcMH3y/lwee/pk1iLDdfMoKxAzthjCkuu7/pK74COJ27t+LZN3/P/93xLn+6/V3ueeQ8Tp3Yu9wyK4GmiDQ0gebCEBGRpqemRnYcP5bLR2/+wmfvzqd5gYvU5ATSOiTx3iNn1viIB2+l+ypAjY0QyM5zkV24iiDAsBfmsPnBcbU6laeqn0dEZCj3/+0CgoMdTHl7LrclxZBQQ8GB6p4jJ1NfSIGLclR2vpBlWXw/ZSkvPD6V1u2a87fnrvAbtICqnWjlrfDh7dlze5KVeZz50xfz7tfrGDuoE3dcNoqkhOhyX7uookjPzufWz1f5DKqUPi5hIcFcfHo/LhjXh5mLN/Pyp3N56PmpdGnXgruvHEPfLq3KHcbkL4CTkBjN0//9LX+950OeePgzjhzO4sIrh/stc1Of1yUiIiIiJw/Lsvj6q+X877lpHD96nFPP7M05141iS6672u3eQKYY+Jruvfa+scWr/3k7npPH2q37ST2cRX6Bi/wCF8buwIqOZlSnhDLtfu+ghWdfOdEHaIA55owx3PHHSaQfOcbkJ74lJi6CU8Z1D/j5tZWH4mTqCylw4Udl5wsdSsvgub9/za+/bKT/kA783xOXEB4ZUu57FJ1ovr78gTyvvNELBfku2qVuJ8a4eezWs+jTox0Ld6XjCA0pdz+KKorUzFyfQRXv42K3eVY4KVrdxG6z0atbW2Y6txAWF0LBrjRufOwjJo7sTtf+3fyOLikvgBMRGcrfX7yKf/3fZ7z2zA8cPXKM6247rXgkh3eZRURERESagvTDWTz1t69YNHsDWVHh7Brek3cemERCpJNuNfD6gUwxKN3nAIqneLhcbiIKcritezRrNu1ly66DuC2rzPu4MTwSEsaDlw7jqtN6Fyf3jAi2Y7MZXG43YHA6bA1+tIDdYeehf1zEg7e8zZN//pzkds1p1yGhwufVdh6Kk6UvpMCFH4HOF7Isi5++WcErT31Hfp6LG++ZwLmXDsFut/l4Vd/u+nJ1pU9kfydoUbmbHdyHMy+Xcy8eQ58e7Sr9ZfEXHPE+LgA3frqCUK9Engt3pZPnsjgcFMHRxEiubxvEtPnrmLVkC83C4iAsukxwwtd7lY5KPvT4xUQ98Q0fvTmHI4ePcdefzq735VJFRERERGrawjkbeeqRL8jMymFn52Q2tkwgIjSoRvMXVDTy27stXnRTs/uTMyg4nkNk1hGaZWfidBfwdaqN/l1bc+25g+nVMYk2ibEEOezM2HqIOz5cTGhWBrE5Wbz41k9s3Lqfl3e5sAqTe869bQTx4c5GNVogJDSYh/91Cbf85hUeu/8jXnjnBkLDyi/3yZSHojYpcOFHINM4jhzK4ulHv2ThnI306NuGex45j1ZtmlXqfap7Ipfu4A9OjiE6J4v4nAyORDdn/OCOTJ67jdwCN8fyXIQ6PEk3rxzQusLX9hUcKTouoQ4b2QVusvPdOLwSeUY57RzLcwGQVWBx/fnDuOPcQfzrzZ85tm4XQ6Lg4d+NL1MxBbIM0u0PTSK2WQTvvjaTY5k5PPj3Cwl2BgV8rMo7biIiIiIi1VHd9qXb7eb9/8zm3ddmktKpBQ8+cwXjP11NRGGbuCZHJAQygtu7Lf7pvI0k7N9FRHYmAEeDw9gb0oxv7h3PoJT44ucVvd6pXVuSExLGQeNkV0RzOhw/xLRfVtMiJJwNkYmEhwYXJ/esqU58XbXvm8VH8dA/LuahW97i2ce+5sG/X1hiNHjpMqVn52OvwdVITlYKXPjh78tc9IWIPpLJS49OISszmxvvmcB5lw3BZgt8lEWR6iRU8dfBPyUklyNxUbx2/zmMfmkeeQVujhcGE7IL3NwxZXXx9I7K8p7ecseU1bjcVolEnhYWoUE2jue7CQu2s+1wNpO6t2DyQxfx+c8ref6DWdz22Af84coxTDqlh88vub9gjjGGq24cS0RkCK/8+3v+eNs7PPLvy4mMKptotCrHTURERESkKqrbvjyWmcO/HvmcBbM2MO6sPtz5x7NxhgSxNiW+1jrjFY3gzswtIMHK5bZ/fsqOnQcIs9nZHxZLalg0efYgwoPtHMj25Krwtf/zbx/JsBfmgAVHwlvyhwk9ePPTOXSypZIW3rpGO/B13b7vOyiFq24ay1svTadD72TCercrNwBktxkmX9Czyn0wUeDCL18Ru6KTL2LvITqt2ERSUizPvXgl7TtVfQmi6iRU8dXB7xgGm3emcs9VY9l1NLd4yaIQhw23ZZHnsnC5rWqP7LhyQGvGd45n2sY0lu9J57UFO8nKcxXPVysdiDHGcOFpfRjSqy2Pvf4Dj70+jQUrd/DQb08jotTwqoqCOef/ZhixzSJ46pEvuPu3/+XvL1xJQjlJUAM5bhquJSIiIiJVVZ325eGDmfzp9nfZsSWVW+6fyDmXDPZ7B78uDE6OISI/m+T0VMJzj5MRFcbdV44hOyaOW75YTV6BJ5eFMRS30/3t/+YHx5XoQ1h5Bbz91QIeGZVU5sZwdYIzpd+/aDR4bY6+uOy6U1j8/+ydd3wUVfeHn5nZmt4rCYROEjqEDgKKFBVUxN79WUCxY+/o+9oVBHvvIIiCSEc6hE4oIRACCQmkkr7ZOr8/NrvZ3eymIJZX5/l83leSzN65c2fm7rnnnvM9W4/x4evLyBiUiiXEv8kCBCF6teK0+B0ojgsv+PLYpeeVE3SymI57j1IdHMDFT0z6XU4LB2crqOJtgf/pDxvQqiXGDulGnU1wK28KMtr68qbe8tgcIqGensCmPJj3/bQfY31ER4BGQqMSWXhjP1YfKWFKL+8T0tzHp/DFku18sGATB4+d5vmp4+jeMc5tPJpz5px3YXdCwwN47sHvuP+Wj5k56zqSOrVsDP9NZYMUFBQUFBQUFBT+eM7GviyqMrJyxwmWvfELlWdqeeHta+k7qKPb3//sKOEjucW8/8Mm2pw6jr+fjqsnD+X6cb3RadQUVRnRLckELEiiyJZ7hjr74+v6Pdc5d14+kH2H8/hg/gaG92qHSqfzeo2tdWa4nt81GvyPHDdRFBlw83nsfvBrOu7O4sDg7i0qQKCkrJ8diuPCC748hh11Eu0P5FAVGkh2WjeGd/t9Tovf+9B6LvD9VQLLNh9iVFpngvx1BEEjJWBfeWxdX1lDucEuuBmiV5M5w91b6NDI8NdIzvFwjJPj9/cPb8+UXnEMm7MZo8XK7E3HyZwxEqDRhHTTJWn06dqGp99dyh0vfM8dk4dw/YT+iKLgvLbmnDk9+yXx2kc38+Q9X3H/LR/x6IuTGTi8S6vHDWDJwUJl8lBQUFBQUFBQUDgrWhtFXVRlpO9TS+i47RCiLDNz1nX0TUtyO8Z1TeKvkZizKYdpQ5Kcf2vKvm8tuafP8OHCzazcehh/vZY7Jw/hygt746fTeBwpI2DfHI30bzhfS8T2ASRR5OnbL+SGp77moTcWcdkVoxqtu9ISQn5XYYFyg5lpCzP+lOjqkd3jeLR3JzptO0i7I7mkJVzQ7JgoKetnh+K48IIv79iCD9agEwVufvISLujb9qwfMkd0g0MjQi0JrJs6mJwyA0lhenLKDC2efFwX+D+u2UdtnZnLR/f0+veiKqPXNtLzyjGaG2opGy1Wtxc8KUzv1MioNVnJPVNLUZWx0ThNG5LEiqxiyg1mAAxmmzNMy5sjqEfnOL568Xr+88lK5s7byK5DeTxzxzjCgv2aHDvXl799pxhmf3k7zz7wLc8+8C23Tr+AydcPbja8zrXsqzJ5KCgoKCgoKCgo/F5aE0W9dNNROm09iFUUyOjXjWxJzSCPYxy2tr9GotZk5c31x5i96TggY7WBvYih4FxPnI0de7qkkk9/3sbidftRqyRuvDiNa8f3I8hf1+jY9LxyrDa7Zp5KEt3SMRx/b8kCPT4qhP9Ov5h7X13I8l82oyUAXNZdZ5t242rfSyLoVSKCAOUGM0VVxkYbt+fC4RMVqGXby5N4/b9q9izbS96Bk0QN7NCoT65jqKSsnx2K48IL3rxjx7OLWL/yANfcNoIL+rYlPa+81U4GaAj5MpisGCx2Z4G/RmLQ7I3Ist0x4F+fctGaycdmk1mwei8dEyJI7Rjr87zeJo+0hBC0atHZH61Kcgtvyykz4K+RqDZZkYGHFx/k6eWHOfjwyBZ5lpsLk5p+w/n0TU7kza/WcsNTX/LC1An07tq46omvawiPDOLVD27mtWcX8dHbKzh5vIRpj4xvUcURZfJQUFBQUFBQUFD4Mzl+tJAlryxGlkR29OqMQav1Kp7vWJPM2ZTDm+uPUW2yolfLINudB3qVCIJ9s7C1duypkkq+WJzOz+v2IwgCl43uyc2XDCA8xL/RsQ6bPSlM75KOgZtQv8OZ4rDRm7Ox+6ck8tT/jWHmhyvoH+hH2sBkbhrT01klsam0mxqDiZLyasoqaqmsrqOq1kiNwYgoCtSabWSV1KI11GIWVFRZRO5asA+ty9rqXG9cRgVqef6pi5mWmc8bzy/iw/l34+fve10kiQJ6tYgkKinrrUFxXPjA0zu2d0cOAGljupP86lqnrkNrnQyOl9jhJNCr7Z5AZBrKiJqsBApCqyafb37dyZHcYp65Y2yzlTq8lUSdNak7lXVmgnTqRpNmWkIIGpWIXpYxmG1OL6ujf659HNM5khC9CqPZhlYtOttqSZhUaodYHpu9mKkvzefWSwdy88QBSC6VWpqaAHV6DY//ZzJftg3nm4/Xk511mqdevZLoZkQ7Fb0LBQUFBQUFBQWFP4vjRwuZccdnaDQqrnj4YtLXHwezzad4flSglmlDkpiz+TiBguB0Eqgk0RlxoRLFFtuxh48X8c2vO1i5LQsBuHhEKjdfMoDo8ECvx3va7I4ocdd0DL1adDpTHCktU3rFNWtjjxuSTLvYMP7zySqWLktn+codxEUG0SYqhKlxfhRWmQjRSrz+yXLKKmspK6+htKIWg9Hc7HUm1v/XLEiUa/2pDQplW+4ZLk6J+UM2LrU6NQ8+O4n7bvqI+Z9v5Mapo5s42u58qv+/RigaGN5p1nEhCEIC8AUQA9iAD2RZftvjmGuBR+p/rAbukmV57znu619K/olSdHoN32aVOPUeoPVOBnfhGLvDoHd8ECPmbsafhoiL1iyid2eeZO68DYzq34lxQ7r5PK9U7wNwLYkKjfUnPF8Q9xKodqEbrWShqLyAJ3/ax96Tpyg3GAjU6QjUabk62Z/QgDAu69mJyACNs42WhEl98cJ1vPLZKj5cuIWdh/J4Yep4IkICGo2dt/ERRZEbp46mc0o8rz79I3df+z6P//cKeqe19zl2v6eqi4KCgoKCgoJCS1DsaQWA/NxSHp36BSq1xKsf3Iw6NICnt+Q163jwps/WGo0Lq83Gpj05zFuxm+0HcvHTqZlyQS+uHtvXp8PCgafNnlNmcKZjeBYBEEXBmdIyZ/Nxp5Ojqb51ax/D5y9cS8aRU2zcc4yTheWcLCwn60QxKpVIiSSiUasIDfKjW/sYwoL9iAwJICLUn/Bgf4ICdAT56fDXa1h+uIg7f9iLoc6M1momUDajNdYRZqwisqiSjz8uR3X5IPp3b/+HbFx2657AeRd2Z8FXWxh/eT8io4O9jqdruo3nGlJJY/eNIMvePT3OAwQhFoiVZXmXIAiBwE5gkizLB12OGQwckmX5jCAI44BnZVke0FS7/fr1k3fs2PH7r6AZzpXH6uG7PmdrZiF7B6VSY7KiV4vUmm2oRQG9RiTrkdGtShfxVmr1bNJPsvNKuOflBfjp1Xz2/LUE6H1/5qudJ7njh73OcLKvr+0DwLVf73JORl9f26dJB0zemRpeXLaBjUcOY7HZCNbr6NUmlqhAf6rqjFTWGTlaXEpRVQ0AscFBpMS3o0dCOyal2iM8HNc5Yu5mry+lLMv8suEgr36+Gj+9hmfvGMeA7m19jp038nNLefbBbzl5vIQb7xrFlJuGIrpEbygonA2CIOyUZbnfX92PP4s/a57+X0R8aPFf3YW/JbbXLv6ru6DwL+fvOk//r9vT/2bO1Vqi8FQ5D932CcY6M699dAuJSZFn1X5rji8qq2LpxoMsWpvBqZJKIkMDGD+iO1FJbRjeKarF5/O1kHbtC+CR0iLy/uSebhHeZ3O9raGoykjnl1dTZ7KhUYv8d3w3nvg1E4vZQpiphqF+Fo7mFpGWksjUa0eSXWU55/04XXCG2y5/h1HjuvPA05O89rEpx8SSg4WtWpv9L3K283SzEReyLJ8CTtX/u0oQhENAPHDQ5ZjNLh/ZCjQWKPgLOJceq4o6CzbsERYBGonr+sTz/tZczDYZS52V4hpji9t2FY5xrWbh+F1OmaHZNmw2mZ/XZfD2N+vQazW8PP2SJp0WYE/j0KulRl7dlnocD54q4pGFyzhSXMrlvVO4dXA/kiJCG6WmFFbW0eO15Qi2agxllZyq2MeKAxm8+GsgtXI4JpvWLdTMc8IQBIGLhqeQ3D6ax9/5hemvLODa8X2564qhLRY9ik8M5+3P/o83X/iJT+esZu+O4zwy8zJCwgKa/WxrUEK5FBQUFBQUFJrjf9me/jdzrtYSxYUVPHLHZ9RUG3n5vRudTgvwvS442/6YzBY27DrG4vX72ZZxApss0y85gXuvGUHXTm3o/sY6zLvKfX7e07ZtKjrZ0y6fNiSpXjzUisFsY/qiDLcU9D86mqC4xkhVnV2Tz2y0R8fbZKixgugXzFXX9MZ0qpBZ367j3pe+56W7Lzrn9ntMXCgXXNyLVUv2cMcDY/EPaBA5dYxtU5EoShq7b1qlcSEIQjugN7CticNuBX79HX06Z5zL/KWkxDCOZp5yPkR6jcqZlSQD8/YU8NzYoBa35/riSqLArEmpzpSR5uoYHy8o4z+frGTP4Xz6dG3Ds3eNIzqs6TAv8J0W0ZJUiW05edz5zSICdVo+vPZShnVq5/M8209WUGfVUGUMAoLQiEZCVJUEqSvRCZVU2QKos0Y6Q8180b5NBJ89dw1vf7OOr5fuZE9mPjOnTSAuqnHYlWNMXa/Dz1/L4/+xp4rMffVX7rr6PR57aTI9+vrue2tQQrkUFBQUFBQUWsv/mj39b+ZcrCXOlFbz6F2fU1Fey3/m3kCnbnGNjmmpTdlUfzKPF7J43X5WbMmkssZIVFgAN16cxoThySREhwL23XxvpUddoyY8++E4b0s26aICtcyalMod8/disNiw2nDr4x8tij9vT4Hb+iy7tNbNCTAgMZSolBj6Jifw2KzF3P/6j7x090UM69OhqWZbzZiLe7F0wQ42rj7IhRPtEe4tvcfNpbH/mzdNW+y4EAQhAFgA3CfLcqWPY0Zin2iH+vj77cDtAImJid4OOad481id7c3u1DGK35bs4bPLuzOkUyTFNUbeWn8MGRCAKb0aT0JN4friAtwxfy+SJIBcr5vhpY6xFhsPdNaz5LcM9FoVT9w2houHp3gV4/R1nZ6e0ZaMx/bjJ7nj60W0CQ3i0xsmI6Piq50nARoJeYJ76aYakxWTTUuRKRKzGImfWEaA6gyBVLM5K4Ah7YII9dP7HCedVs0jN59P/9REXvxoJdc/9RWP3DSaMYO6Nrpeb5OBIAiMv6wfXVLb8NKj83jkzs+46pbhXHPbcNTq36dNq1QkUVBQUFBQUGgN/4v29L+Z37v7XXGmhsemfkFxYSUvvXM9XVO9B9G01Kb07E+0XuTZLzdw4MAxcvNLUaskRvbvyIRhKfRPSXQTuff2+aQwvctGKtzcP5E6s5Vas11kc0VWMff9tL9Vm3RjOkei10iopMa6Hec6msAz1X50pwhmrjriXJ/dkpbAIyM7NlrrtIsL470np3Dfqwt5ZNZiXrp7Auf169Ti8zW3juya2oY2bcNZvXSf03HRmnWDrwjzf/umaYtWboIgqLFPsl/LsrzQxzE9gI+AcbIsl3o7RpblD4APwJ6Td1Y9bgXehGzO9ma362B/eNoYDM6wqX0PjWDengKm9IojJabl0RbQ8OLq1aKzUoe/KCEIuL3M6XnlmC02/M6UEF9bxo+5NiYMS2HalUMJD24oV+SZY9aS62zJw3+goJC7vv2JuJAgPr/xCqyyRNdX1lBusDtcQvRqMmeMbOQcWTd1MANmbXD+zk8tsf7uoUT6a1lz5DR7Thxm0d79rMrM4u7zBnJN/16oJN8aFKP6d6Zr22ieencpT81dytaMEzx0w0j8dHbxT2+TgasHOTA2lAlPXMqBBdv45qN1pG/I4uEXLqNdh6hW3TdXlFAuBQUFBQUFhZbyv2pP/xtxtavPVsS9/EwNj975Ofl5pTz/1rWk9m7r89iW2pSOtc3SPbkc2neEqc98hSjL1Kq0VIREUxcUwsLrz/fZT8+1kedG6rubj1NXX/mw1mSlss7c6k265lJLzlU0gWMdY6ovmuCnkdCqRBbe2I/v9uRz1+B2zvWZtz4HB+h559EruPeVBTzxzi+88eClTk29ps7XknWkIAgMGNaFn7/fhsloRqNVn5N1w79907QlVUUE4GPsYkFv+DgmEVgIXC/Lcta57eLvw9Vj5S08qqU3u0fftmh1arZtzKL/ELtHLiUmyJke0tpIDm+VOjx1HwCOnSyhXeFxdKY6avX+fHT/RQzoFu/WlueL9NbE1Gavs6jKyJxNOZgsNrcID9fj8ssruf3rRQRotVwzcDhWWSI9r5w6s815jNFi9dp+TpkBueEwZGRyygykxARxVZ+2XNWnLbcM7sMLS3/jpWXrmLdzPy9OvICebWJ9jmVcVDDvP3klHy/awmc/pbPvSD4vTJ1At6ToZj3IIGC1yahVAXzxwuV89vqv3H3d+9w8bTSXXjPwrIQ7/8yKJGcbKfRvDidTUFBQUFD4u/C/bk//HfmjbBxvC9TWLg7Ly6p55M7PKThZxnNvXtNkhTtwtymTwvQ+Bfszjxfy8Y9b2bA7G1EUqfQLJl8bSK3arqMQSOMqFd7O5fi7cyNVJWKw2JxOCwB/jUSQTt2ixbY3XYxzFU3guTnr6XSprq/06Kj4eP13uxEQWHmkxC3Vxdt4+us1vPnQpdz54jwem72Yj56+ivZtIrz2u7VOg9ReiSz4ajNHDp0ipVfiOVk3/Ns3TVsScTEEuB7IEARhT/3vHqe+PK4sy+8BTwPhwNz6tAXL31HR+ffcbI1WTe+09mxbf5ipD49zW+iebdhOVKCW6/q2YUznSLeHOCUmiKIqI32fW0xMUR4qQWTkhQNI7daWJC8vk+eLBE0Lbjr6a7TYqK0XG/VMpekcruWBH37CaLFwtCqGaT9mopYOs/DGfm6TmkYSvY5jWkIIWrV9EgTQqqRGx4X4BfJrjj+CNQ5rURFXffQdF3VP5rO9FkxW0eekdcflQ+ifnMjT7/7Kbc99y52Th3Dt+H4+Pch6lQgCzmoqtnbRvD9vGm+9+DMfvLmcLesyuf+picQnhjd7z7zdwz/a03m2z9e/PZxMQUFBQUHhb8Q/xp7+O/BH2ji/d1e7uLCCx6d9SWFBOc+/dW2zTgsHUYFaZ4q4ZxTB8ut7sWDZDlanZxEUoOOWiQM5b1A3Br+3DdFiQ6g/trXrG/eN1P1YrA3ndURCN1fS9GzuhTenk6/oaVdNQJtsw2yR0apFNkwbUl+GtQEZGUEWqDLZ23CkuniOp6d2xxsPXsrNz3zDA68v4vMXriU4oHEae2vXkck9EwA4uC+PlF6JzvH+PeuGP3PT9O9IS6qKbMSeJtTUMbcBt52rTv1R/N6bPXJcD7auP8zOLdnOqAv4/ROct4d4/qbDxBTmYVBpOBmVwJFDFQiHMpxCnq7aEp4v0pjOkY1SZFxVih39rTFZ8ddI3D+8PdOGJAH2FBOL1UK4Kg9/tZlbhp7HMyvznde2+kiJU7tCqxKZfWl3t3F0nYgyZ4xiRVYx4F0LIz2vHKNFpsbkR5kxkVj9GZbsP0SIIFJoicRMSKNJyxGVUiBreOuxK/lw3jre+X4Dm/fl8Owd4xp5kO21pQEEt2oqoYFann39alb8vJv331jOnVfN5YY7R3HZtYOQmkhZ+Ss42+fr3x5OptAYQRB0wHpAi33+/0GW5Wf+2l4pKCgo/PP5J9nTfwf+SBvn92x05ueW8tjUL6iqNPDiO9fRvU+7Vp3bM4rAUGcixnCGaS8cQq9VccukAVw7rh8Bfu4C+96iCVqK50ZqUpie3fmVTF+UwbSFGW4inUsOFjY6V2vvhS9Hh7dxd21bpxKos9gzowwWG+uyS92EQPVqkVcmJPP08sMECgJqyf66eUZliILgpt0hiTBrUnceu30sj725iGfe/ZU3HrwU0cMp0tp1ZEhYAEHBfpw6Wdaq+9Ecf8am6d+V36dO+Bfxe0LDfs/NHjKyK6HhASyen+7muEgK0yMj438Wnk5XHNfVNVTHkiVbsKjV5Ee1xSaJIEOVqUHIU6+RnC+6rxfJUVrJc3LwnBimDUkiKlBbn0pjJVjMQ0Ud1w0cwQVd2/H0ypPOa5vSK445m48j1k8IYzpHuvXf81xjOkeyIquYFVnFjZwXaQkhOHRFZUQqrVHce15f3l+/gTj9aYxyDZ3CB7pNWv4aiUGzNyJgP/9vd40gMDqCVat2cu3jX/DIzedzwcAuXvVNPMdHEAQunNiHfoM7Mus/S/jo7RVsWHWAB56Z9Lu0L841Z/sF+m8PJ1PwihEYJctydX2u9UZBEH6VZXnrX90xBQUFBQWFlvJH2jhnu9F55FABT9zzFcgyr7x/k9fqIc3huK4AtYi6qpK2VUWobFbGDU9l+pVDCQ3ya9RXx7rGEbHdXElVX7i2lVNmwGrD6YxwLPQd0dr+GglNfeRCa4shNOXoeGtiKtCw4enatk2WAauznUd+OcTW6UPdhEAn94hjco84N/tfLQkE1G+6+mkkJBF251dgrI/CALh9/l5UksB/LhnIFws38clPW7nt0kFNjlFLiI4LofBUeYuP/zdQVGUEXYD3EpHN8D/nuPgrw9/VahXjJvXh2082kHe8hIR2ERRVGRkxdzPIIAj2cKqz6Y/rdcWeOU14rYG5MyZTipqkMD0j5m5GL8tOIU+V5J7D5utF8jU5eJuQu0ToiFDZnRZVcjwTUjs2uraUmCCfk7nnuRxhZ+UGMwAhehWZM0Y5PxMVqGXJLWmM/XAbogAalciNaZ0Z0zWBF5dt4lBBNjd9/j33jRrmnLRkZKcTx18jMfidTQgI6CPbMkZVxZNzfmHz3hwevGFkozHxNdGERwbx7OtXs27Ffua8vJRp17zH5BsGc/Utw9HpNa2+l+eas/0C/beHkyk0RpZlGaiu/1Fd/z9F2E1BQUFB4X+KP9rGae0CNX1jFi89Np/AID0vzbmBhHbedRJ84brQ33rXIJ75cDlHT57CoNZyKjqRu64aQWgLxSrPxRrJ0xkBOKO1ob4CoiB4XVdA00UCfDk6vJVh9dT+GDhro7MPAnYHi6/NWweun7dHkuznw60nqK2PHjc6tD0s8Nj2EqamdeHjH7cyuGcSye1jzmr8HETFBJN3vKTFx//Ttekc95mgqKSz+fz/nOPirw5/n3jVABZ8vYWvP/yNR1+c7BbSFahVOQUoW0t6Xrk9/8poJqC6gq7JiQxKbiiZ5E3I05t2hevDXlRlpNxgRhRArxaRxIbPeE7IuWXl3PP9IvxVJqakDeH2wT19Xpu3ydzbucAu3unAaLaxIquYEL3a2Y/LPt+BShSg3jECMPr9rZitIjqpLR0iqnhmyQomd+3AyG49SY0NZcTczQQKgpsTw6ZR0XZQb3p1K2H+sp3szjzJ83eNp0fnlnm7BUHgvAu70yutPR+8uZzvPtnAmqX7uP2BsQwd1c1rydk/k7ONFPo3h5MpeEcQBAnYCXQE5siyvM3j70qZPQUFBQWFvz1/Fxvn53nbePfVX2nfKYbn376G8MjWrQNcF+3BxmqSDaVUVNdRFBzJCW0wgWq1m/3sa0HbkjWSp9Cla0q3ow3HOTydEWpJwE8tUmu24ad2L3XammII3pxOTX3Gte2t04cyaPZGkEElic7N0ZaKkdojSexrmwCNxO0DE3l/a67TGSIj0G9IdzKyTvLSxyv57LlrUKkkr/esJQ6GgCAdtTVGn3/3bPOfrk3neEYRxMaD2gL+5xwXf3X4e0hYABOvHMD8LzZx1S3Dz1l/ksL01JishBhrkGQbFw7u6vZ3X0KeDjwf9nVTBzNi7mZn1RCtSsTXxurOE/nc/f1ibLLMG5MvoU62C9K09NpcxT5rTFZ09efqHR+EViVhqK9ColYJTF+0317dw6X6iatjJKfM0FCWSavh5mGjOX0mj3fWbmF//ilmTrzAzXM6Yu5m/LGXbHp743E0KpEFD1zKW1+s5s4Xv+eWiQO5aeIAt1KrTU02IaH+zHj+MsZd2pc5//2FmTO+p/eA9tz54Li/VfqIgsLZIsuyFeglCEII8KMgCKmyLO93+btSZk9BQUFBQaEZrBYr772xjJ+/T2fAsM489tJk9H6tX2im55VjttgIKT1NTG05qshg3px2EeO/3Y/eYkUUcNu49LWgbc5ud10rSCLIMlTU2dPQg3QqRIFG53B1CKybOphBszfir5GajDJ3pNAHNJFC79l2S9ccKTFBHH10tHMz11WDoyWLfM/zzBjZiZvTEhk0eyOyDFqVyPBOUYTfMIpHZy3m2+W7uH5Cf5/j2Ny59X7aFjsu/urN+T8Dx/gj26zNH92Y/znHxd8h/H3y9YNZ8sN2Pn1nFc+9ec056U9OmQE/jURoRTVmUUIXFur1uJamhMzbU+AmRmO02NB4pJeYrVbeW5/Oe+u30SY0mJcmjufCj3e7vYgtuTZXsU+AOosNtSSSU2Zgw7TBfJKeR4dwP4J0aqYtzGi2+onr7wa1DSMqNZbzOiXx8MJl3PnNT1zRJ5Vbhwxkf2Et66YOZt6eAt5cf8wZtlal0fPli9fx2udr+PDHLWzbf4J7rh9NrsHmdHY0N9l0792WOV/fweL52/ny/bXcddVcLpzYh+vvGEl4ZGDrbq6Cwt8QWZbLBUH4DRgL7G/mcAUFBQUFBYV6KstrefGx+exJP8bl1w3m1ukXnLW4ezs/kXZFJ9AZDVQEhbLgySlo1Cqojyw222wICNTUb/T5WtB6K6nqq2qHXiVilRv2JurMViRBwGCx+TxHTpkBAYHq+ood3qLMHSn0citT6L2t77xtNJosVoqrqskoKMVitVJtshGoVbd4ke/tPFGBWo4+Otrtd5H9OjKsTwc+WriFCUNTCAtu0BZpjYNBp1dTV2dutl/w12/O/xk4xj/61aKcs/n8/5zjAv760LDgUH+uvnU4H89aya5t2fQZ0KFZ9dzmFv9pCSFoVSL+VjNmrY6BbcNa/XnXh90houkqRuOaR/bT/uP8sncHmaeLmNijG0+MO4/1ORVeyxA1h+Pc/hrJKdijloRGToJ1Uwc3Wf3EcW2+KqL8cPvVzP5tKx9v2sF3Ow9zxhoHoh/rpg5mzubjTgXhtIQQAvRanr1zHIN6JvHfT1Zx6zNfczoshgr/IGSZZid/AEklMenqgYwc251vPl7PkvnbWfPrPi6/dhCTbxiCf4Cu2bFRUPg7IQhCJGCud1rogfOBl//ibikoKCgoKPwt8WaDHztymuce/I7SokoeeGYSF17S+6zb37jnGM+99yuhgo1xE4dw84W9nKkTVpu9ekaARgKBJhe0B05XMm9PAVN6xTWqxuetaocj4sJktUdc6NQikmA/Xi1ZSY32R5Zlt1Tpliysnanv9akYzaXQe46vwybPL6+l7xvLEWQDWtFInzgtxVXVlFTXOOPH4zQgq8GCnr0n/IjQGUlrl9CoGogn3taRnr8TBIG7rxzGVbuz+XbZTqZdOaxV43A2/B025/8MogK1UFddcTaf/Z90XPwdmHT1QH5ZsIMP3ljOnK/vQPKS/wQtDyeKCtRy4KHzmHx/FhcO6OI8pjWf93zYvZVIMlmsDHpzAX5CCTISz188hqv6pQCQliC4vYhJYXpnCoggwJZ7hnqdfHydy9Mj6U1Ap6jKPXzKdeKFxuI+D54/FI06mLfXrCNcOkGVLZzvdp30WWP6wkFdKZbVvPzJCuJKC/A3VHM6LLpVk01wqD93PTSOiVcO4LO5q/nm4/X8smAHV906nPGX9v1LBTz/6SI+CuecWODzep0LEZgny/KSv7hPCgoKCgoKfzu82eCZW4/y2rM/EhCo49UPb6Zb94Szattmk/l8cTrvL9hEp8RIXrrnIhKiQ53nLTeYkcQGZ4U3O9dhAwZpJUa+uwUZmLnqCLMvTfUaERAZoGHtHf349VAuKuo4VlLGocIyKg0Gaox19qod9cuZsbOPoJEkwvz1tAkJpmNUOB0jw/liSkfOGCXO7xTbqB9pCSHO1HewbxImhelbNL4aycJ7kzqSU1rC7rwC9uYXEiLa27HJIkZrJCM6JVFpEpi/rwijxYpWEhiQEIBELd+k7+bLbbvoFBnOtPMGcmFyJzeni+v6oiVahEVVRvaXmxncuwM/rtnHzRMH4Kez2/utdTC0RiXvr96c/7ujOC7qae0CUKNRcdu9Y5g543t+mpfOZdc0LpkDrQwnEmVMJgsd4kKb/by3/no+7K4/J0cHsjozm2eWrMVfrKbSHICBGAL8ItyOd3VAzNtTQJ3ZSm29RsWg2RvZcs/QJutER/prnROC0yOpE9AFVrCn+iDpB82UG+v4tdiGZNXx5bYSLHVa1LYAFt3Un/Pe3QLAC6uO8I6PiffKPp15fnUuevk0QVIpX29dx/tb49n/8IWNdD/S88rp3T6SU7HtCDpTQkRFMe01NiZMGMgVQ7q0arEflxDG4/+5gsnXD+bj2at4//VlfP/pBi6/bjAXTe5Pta1xydWzpSXP479BxEfh3CLL8j7g7LeGFBQUFBQU/iW42eAaiTdf/ZVdv+wmuWcCT758pdfU4ZbYb1U1dTz3wXI27MrmwkFdefzWC9Bp1c7PN+hQCMy5LNVZGjTSX+tsO7OoylmVzyY3qNjJwP5TlcjI+GtEdJKRnMLj3JORzp68UxRX1zj7EernT/uIUNLaxhAbFIi/VoNaktBIIjUmMyfPVHGkpAKjycAvGYepMjZsNr6p1dA+IozY4CAW7j+DyaZCENU8fn4K/hqoNsn4aRrSSWRZpsZkpriqhpLqGvLLK1memYc/uagkI2rRwhM/H0USRbpGR3JZr1Q+2l5CnVWLKGn49PpRzg3Pr/atxYgVBIkXJ9odOqnRfmTkn+S99encN/8XesTH8J9JY+gQGc6B05X0eG2d07Gz76ERzUaBOO5BgNlKm1ojP204RGB8jFt6SUscDDar3GwEiELLURwXnP0CcOiobqQN7cxnc1Yz+LyuxMQ11qVoTTiR0VQfrlU/efn6fGv7e6SohP8sW8fmY7m0Cw/lWFUCtfh77Y8jlCz51bWYLDan0wLs3uFBszciILidt6jKSNdX1tq9nyqJzBkjCfKTWFd4mPMHn2FHcR4W2cbHmccJ0ugI1eoxWW3k11QQHG9v22JScd/6ErT+aow1foDA/lOVXscuKlDLgYfPZ86mHN7duIdgqZAQcnh3426eGTcQ8CJWOm0IOWUGgi11vP7ZKr74ehXVhaXcf82w+jzCltM5OZ6X372RjN0n+PajdXw8ayXff7aRwzERFCREI+rUv8uJ0NL765arqBZZkVXMdX3beGlRQUFBQUFBQUGhNThs8BABuuzMZFdJBRMu78ddD49D7cV2bIn9diy/lBlv/URBcSUPXj+SKy7o5RYZ4LlhGaJXO21tR9ui0CCqCaBXNXxeEiz8uPcgoVI1WqEWUbAxZ10OCaHBDExKoFdCLDFBIVz1zQHyywUOVMCW8YO8alXYz6dFLek48NClgIWckjKyS8rILi4jp6SMbcdP4i/W4l8v7zF3TS5xGkADsizw9KJjPLbAhtnaWItRJYqIsgqDTccZsw6V5IdR1lGYL/HuNUO4+zxfG4J2T41NtjFszman6P/Bh0fSr2073tu0h+UZe5ny4Xe8evlY1uWY3Rw78/YU8NxY344L13uARoe/v56ZP6RzMqJNqzcKjXVmtDp18wcqtAjFcUHroiI8Pan3PDqB26fM4Z3//sILb1/rtWzmWxNTAZweU1+YzPaXWqtpuC2+SgY5qoUEaCSf/TWYzLzz2xY+27ILf62GJ8adx9X9elJWa27SG+xaBtVfI2G12b2+VpuMIEO1yUKARmLOphymDUliRVaxsxyRSajj4Q0ryajKpsxooF1gKDd168uoNh3pF9kGjSRRVGXk3kUZbN2fj0pjRutXiz6oivLgU0R3sGGq01JdEoZZjvOZAhIVqGXakCTmbD5OqcWPUFUB327bQo3hDE9PGO01TcURqbLJL5bQAIGFq3az62AuM6eNp1NipM/74u2+g13As/ucG8jcf5K33l5J9a7jRGUXUNQ2mrUZ+YzsHn9WERgtfR7TEkKcZWcNZhvTF2U0+4wpKCgoKCgoKCg0T1SgluWXp/DfR+dRW1HDPU9dwthJfX0e72q/udrJDrts/a5snnn3V7QaFXMfu4JeXey7d56pFt4qcri2rZHc1xqSYOaRYaH8lpXNmZpKAMw2iTo5kKv7dKFHmzgu6Bzn7MeSg4XUWQRnSseg2Rs5+uhoN/vR0xbdfrKCi5KjiQ4KYGD7hlLpdgfHamSrCY1k5b/jOlJRV8fRkirC9RIalYBGklBLEjZZ5NV1JzDZJERRzasTenP3j/ud1Q9ls4zJaiNQK/rU2UvPK3dqf4AIghWD2S4ouiKrmPt+2o/ZKqOV4hkUW8G0b3/m6rS+CMjICAjA6E4RfLXzJJV1ZoJ06ka2s+emcbukWCoPHKe6zkyAruVCoGB3XPyVKeX/NBTHBa0v++nmSY0N4Ya7RvH+68tYuyyDUeN6NHl8U5RU20OwKl28qOCe8lFUZST3TG2z+WNbc/J46ueV5J2pYHLvVB48fyih/vpG7bVkPBbe2I+LPklHFHCKb9aYrLyx/hhzNh/njoEJ6IMqCQg/gz6wmvUlMLpNR27u1o/BMW3dnDmupVORRSxGLRajFqE2gl8vG8C4r5ahDikmrM0pllcX8st3+9hw/WXN6nr0iQ9i4e49zF23jb0nT/PEuPO93tP0vHJMssBR/0hi9AH4V5Rw09Nfc8fkwVw7vh+S2FgRujkPetfUNjz/xjX0fXIJ0UdOEnesgM/v/4pXYsLIbxuLJcS/Vd7Zlj6PUYFaZk1K5Y75ezFYbFjrU1WU3DgFBYW/CvGhxS06zvbaxX9wTxQUFBR+H5vWHOKVpxfi56/ltRboWTjstwAPO3n/g+fx86pdfLxoK12Tonnl3kuIDrenmXimhoDstSKHq20oCmCxGglSVxGkqkInGflx93F6tonlit7JvLy+kDqrBkkU+XBHJdb0SiQxk1mTujOmcyRpCSG47bPKje1HTyHPcoOZoipjI1vWbouPbtFG3ZKDhVRbzzidIaIoolGJ+MmyW4S3JDbo7DUnMAoCKlG0l9iEhkgJrYqbhoxk05F9fJO+k2dG9cUqRjG6UwSTPttOuaFhrRWiV5M5o8FO99w03rQ7mwP7jxGKCZuoaXKd6DkOtbVGxXFxDlEcF7RcZMXXTvjEKwewfsV+5r66lN5p7QkND2jyeG8PdlGVkQs/Tqcd8PiSA4wa0Fh/wTG5GcxWZ8iTn4diryzLvL9hO2+t2URiaDCf3ziZAUneJ1pfeXie45GeV46AQK3Z7rS4qFsUSw4VYbAa0YWV83nBASLbmbGYVNSWRLH6ukvoHhXh9ZyuasMAKlFAI4lO4c/9UyfzzsZjzN6+H3VIMX5hhUz49WOm9RjAbclp6FXu4VauTpi7zxvEwKQEHl6wjGnfLuTpkQNpF9WWgYmhXid+kxTE+w+N4aP565nz/UZ+2pjJk7ddSO+O0Y363JL7uHPmRaTnldNWsPH5ZxsxrT1IxMliyiJD+Wl1DP83qZfXMfGkuefR9bxjOkei10ioJPEfWzpJQUFBQUFBQeH3UlRlZEVWMdB0FLQsy3zz0Tq+eG8tXVPb8PRrV7npWTRnP8/ZlMMb649RY7Kikm08/PbPZB05yYRhKcy4aRQ6TYMt65n2i4yzJKmrfe9o+4e92RzKP8ZvWbmYrVbaR4Qzuc8ALkzuRHyI/djrBtj7V24wM21hhn0hD9zxw170aomDD49kyz1DGTR7I8igUYlu9qPj+tZNHczu/EqmL9rPtIUZPtMkPDdYfdmvnhtzYzpHsm7qYNLe2uA8RqsSmTUplZwyg1fb29NGdoyh49+u7Q9JimBS97EAfJu+k/evnUSl0YrRxUkCYLRYGzluHE6S9Lxy/IP9AdCYzdQh4w1fm5zVlXUEBilVCM8ViuOinpaIrPjaCZckkQeemcTUa95j9n+X8NQrVyIIQqv0KRyRAAA2a+MXCBomN0P9C6dXiWhdJhuz1coTP63g532ZXNy9K89ffD56TYPYj2c1j6aiCFzHw/06YHL/INZX7CQsoBxBlDFU+XOmIAZDZSD3D+/g02kBuKkNA1hsMjqVPd9s2hC72M3dQ9vzzuYTlOTqUBcZiIgr4fU9G/gmaw+P9DmPS5KSET2iOBzX1q9tGxbddR1P/rSSues2M6LTKYa2G+N2XZ5OgQduHsN3x2uxFpzm9ue/4fbLh3Drxf2dYjqtuY+OMZvx5CV0F3SE55wm9sRpfnjhRw7/sosrbx5Gv0EdvaYUueLrefR23n9D6SQFBQUFBQUFhbPFrse2xrnT7rnL7sBYZ+b15xaxbsV+Rk/oyX1PXIxGq3bamklhekbM3dyk/exIZdZazCQU5nHUauahG0Yy+fxejew/9wgCe8SF52aUzSbz25FjfLZlF+nHTxKg1XBFn1Qm90klOTaq0bU6bMiiKiNqSUCvEjFYbBjMNlSi6FxjHH20caSEp5351sRUrLaWp9M3t7bwtFnT88qdac+A06Hh+Le36GNPR0lT7R84XYlWl0jb8CIeWvArH1x3Ber68XCgkcRGG3+u14JspQsgmow+o5t9bXJWVRoICfP3Ol4KrUdxXLSCpnbCE5MiueHOkXw8ayXLf9rF2El9W6VPkZYQgqSSkAGNbPO6c+45uc2a1KA0bLZaeWD+UlZmHmVsag8eumCIm9PCcyJpja5HVKCWXfcPZe6+newsP8qD6XsJDlPTL6wr4+NTuPbzQ8jYy/3cktZ0GF1OmQG/+hA6AJ1KdAunc0xyzhSIOj3V+Uk8d0kcK4t3cd/GxXx4MJ3n0i6gX1QbH+k4AmO69yclLpY56zYz8d2veO3ycc7IE0+nwMojJeRJ/pwOb0u7ykI++mEj2/fl8MRtF9A2NsznfWwuCiPjiTGk55XTI8KPHav2s+CrzTx5z1d07BLLVbcMY8ioboheUlOawtd9U9JDFBQUFBQUFBS8k55X7rbT7m2Xvbysmmcf+JZDGSe55Z7zmXLjUARBcNqaJovNrvcmQG29roI3+zkqUMtXEzrwn4+Wo9aI/Hf65fRLTsQbTUUQRAZoWJOZzdtrN3O4sISYoAAeGTOcK/p2J0DbfPqBo+0VWcVMX7TfKWLpKnbf3AIcfDsQvI1xc2sLz3OmJYSgUYkEAAiw5Z6hzvWVo+++aG4T0bWaiFoIJDmkig82bOadS/ty+7w91FlltJLArV7WLq7X4q+RsIoSfoKNOh9j4Gtzu7K8lsQk3xu6fxStrZb5v4LiuGglTUVmDJ/Uj+WrDjL3tV8pCwvm/N4JjY73Vd84KlDLwRmjuPaRE5zfLcJneoAvscq3Vm9iZeZRqm3RfLrbxFf7fnOL5nB9+eZsymFKr7gWTUQZhSW8vXcr6aVHqDQb6RYaxYsDL2RiUjIBavv54+4K4d3Nx7lrcLtmayOnJYSgVYmIgoAkws39E/lg6wlqTFZEQXBOcp4pENckd+UquQvv7t3FstO7mbzsKyZ36E7fgBS3SdJVmEctCfx84+U8u2QFN33+AzcO7MfDY4Z41bEAMEsqjoTE8VjPULZt2sd1T3zJbZcO4trx/bxOtC2JwnB8JvGaQVx8RX/W/JrBvM82MvOReXTsGsst91xA34Edmhwzz/Fr6ReIgoKCgoKCgsK/Ec+FW1pCCFp1w067ViW52VC5OcU8de/XnCmp5qlXr2ToqGTn3xxpztUuEcOe4pkOZFnmu+W7mfXNOtq3CefV+ycSFxncZF89bcyLkqPZeSKfe75bz9780ySGBvPypRcyPrULaklq1ThEBWq5rm8bxnSObBR57W1h6y2do6WRvS3VxfDsn2f7jr4FaSWmLtznTGfxjOBozlEyb0+BM7HDLKsJDYxnzeFjDOvUBZVKxF+ya/e9vzWXz3acdGvfcxwiA3X0bRvGzDsbjvEcQ8/rkGWZM2XVhIQFtOqe/V7Otlrm/wKK4+IcUVRlJPX13yAikp6HT/H2zJ+YPiCZgzNGuT0srhEHnvoUUYFaEqKCqKqqbdR2Uw/g+iM5fLx5J4M6dGJhptToBXa8fP4aiVqTlTfroxtcnSBgF81xeHh3Fefz/v7tLM87DIC5Opi3Ro3niq6d3cLcDpyu5KJP0pFle+RCcy+HN8/y5zvyEAXBzQHg6aQBSH3tN7t4kdSWCQNlfjx2gOWqLHQhUVjKgp2hZq6T2LFymV2l0fhh47OtO1iTdZw3Jo8nNS7c2acxnSMJ0aswmm1o1SL3XpqGdEkfXvl8NXPnbWTVtsM8dssFJLeP8XkdTUVhOFCrVVx4SW/On9CTtcsy+OLdNTw+7Qt6D2jPnQ+MpV3H5qMmWqrHoqCgoKCgoKDwb8SX3Zw5Y5RXjYuMXcd55v5v0WhVvPrhzXRJiXdrLy0hxB5WXI+fWuT+4e3dKoYAmC1WXvlsNT+v2895/TryzB1j8dM1HRnhufg9VVHFG6s2sjgjk5igAF64+Hwm9Upu0mHRkt111/SRr3aeZPqiDMxWe/SIQ2fOU9vC87PN4Rnh0ZQuhre+Oa7FEd3i5iiiaQFRzzVEWkIIU3rFMXPVEafzIv2UiliNiscXr0eW22C1yejVYqPNU9drcbR1xzNfERuo9ZlS4xntAVBbY8RktBAa/uemirQmqv5/DcVxcY5wPiSSiiMd2tAtK5ewnNNeXzJHxIE3T218VDAZR055b9vLA2ix2vjv8vW0jwjj+YtGsvjIBq+78W9NTGVPfjkfbM2l2mQlUBDYnV9JiF5NcY2REXM3Y7Ja0ASV07OzkeyqYnSSmrozEZQVhmI1a7jtq2zOe7Sd86U9cLqStLc2uOWJteTl8HyxPR0Z3iYCV6cAwMINIn5+nenWq5Kq6DykgDJMxQn0jg9ym8QAzFaBk8YoAlU6bKXFXPb+V0w7bxgdouOdk3zmjFEek76Wl++9hDXbs3j9i7Xc+uy3TD6/J3dcMYQAvdbrdbQ0GkKSRM6f0JPhF6Twyw/b+fqjddx1zXtcckV/+k3qx5LsMqb0ivMZvdLSLxAFBQUFBQUFhX8bvuxmR/SBKxtWHeDlJxcQEx/Ki+9cT3RsSKP2ogK1TjFLWbYLSHo6LSpr6nj07cXsPJTHzRMHcPtlg51aab5wX/zCY8OD+XLrTmyyzF3DBzCsU1d+OlBEcnGNT5uwNbvrriL/Bpe0mUGzN7LlnqH2tYDFhgxIIsiy0KjN5pwkUYFaQvRqN12MFVnFhOjVLdpwW5FV3Kh/AAg0squ9bYZ6jsW+h0Ywc2UWiw8WUmu2USMFEiidodZkxl+jBgGn3Z4Upndu4kbVOykc9rbRZEGjanAetcQ5cKa0GoDQ8ED+THytR/4J6SOK4+Ic4RrVkB8XScyZStoePkGcxex2XHM75u3jI1ix5TC1dSanl7apBfFPew9yrKSMWVMuIiHU32u4VddX1mA021BJArb62tCSKDB9UQZWGyCZ0YaUEBxSiqSycrhEy5MDRjM2oSs9XtuA1Wz3eNpsspuWw6DZG92cFjJyi8LCDpyuZN6eAufi3FW5t9xg9joROMbAVWBIrlHT2daHbadF9BEFqBMP88GBADIeGsHOk5VuCsN6tUiVOYg6q45YXSHvrltHjTUEgxDNwYdH+3QGjOrfmbSUtrw7fyPzV+1h7Y4jPHD9SEb269RIYKm10RAajYpLrxnE6PE9+fzdNfw0L515C3ZysEtbZq4KZd9DI5pNvWkN/4QJS0FBQUFBQUGhKVq6kfTzvG3MfeVXuvVow3NvXkNQsJ/PNlNigryKWQKcLCzngdd/JL+ogvtvPJ+AuGgOFVWRU2YgKUzvNcUbGha/JnM1EapiPtxoZEy3jjxy4QjK63DqM7yw6gi/3TWI4R0aayV4LqCbchJ4ivw7ke1pFZ5RDoAzxXzakCQAur6yFqPFilYleRU3hcaafI71RnOOlQOnK7lrwV5n/wRArxYRRcFN+8IVV/vdV+Tz25O6s/JICZIoYhP8EYQzhOnMyKLWGd3dlOjq6Yo6yipr0ep8p9R4e8ZKiqoAiIg8t46LljiPvK0H/wnpI4rj4hzh+pAkhek5kNOdeU/O46P/LmbW57ejUktux/raMW/fxp7CcOxkKakdYxu17fqQFlQYeHXVJrrGRHFBt45e216RVdxQq9gCGklAoxKYObYLT6zYhyq0kICwMwiiTG1lIFUlYUjGQNoMSaRdaCBLbknjvHe3AGAw25yaHOl55dhs7iWBJEFsFBbm+XK5CuXMXHWEfQ+NINJf61bDWhLtE6WM7K4B8vBIfthXwN0/7gegzmLjo/RcVGIE5VWBBMTk81P+DvJMp3h50LhG4j53LthLrUlDrqENEZpSwjTlaGQDizJyuH1wV5/3NsBPy8M3jmb80GT+++kqHpu1hME9k3j4hlHERbnnLZ5NNERQiB/3PHYRJ6LD2PT5Bnrtz+ZkbATfpicx85LUVrXli3/KhKWgoKCgoKCg0BTNbSTJsswX763lm4/WMXBEFx5/6Qq0OrWP1tzb9bTxDmSf4oHXF2GTZV6YPpEpiw5jtJyktj4l3PFfrReNht5xgQSritGrSrGh4sWJ47i8t90e/WBZplvhzXEfbiPnifMbXUtrnASux4oCmG02RAQ0KpEpveJ4c8MxxwghqqyIkhWLZGX2jr28t3sf1/WNxyCdQRZEaqwiPxw4we1pHVF5aMe5poy4RXs3kbbg2BCtMdmdFjpJ4LVLUkgM9Wt0D5vT5wioX0MEaSVnBIXjeUiN9mfCnI+Z0j2IqSMGOp1KviIoiqqM9HhlFUmyzLvbT3LDRKMzGqO5zcqyYrvjIuwcOi5aas97Pqv/lPQRxXFxDnF9SFJigoh/4hKef/g75n2xkWtuHdGiNrom1SvhZp9yOi482wb7g9vn9aWEiLXkVodSXG1q0ULUZJXRamxsLs8gqH0mAJaqEJ4eMJy7vj8KgODiMKg02qufVJus+LtocqQlhLiFwGklAbPVSp1Fxr++WkpSmN4trO7gwyPdhHJk7B7e/omhbi/Tf8Z35dGlh0CGEXM3O1/KqEAtiaF+6CSBOqu9FZPFxhMXduLF1Ueozm+LX0glR9WFjF/yKWNje/F4/6HEBum5rm8bescHMWj2Rmw2mVJTBLIQQKjqFLNXL0dNDTcO7NNkWF9Kh1heeWgycxZtY+PGDK569DNumTSIa8f3Ra1qnViSN24en8pb+4tpn1NAu9zT5H6ymvxescQnhjf/4Wb4p0xYCgoKCgoKCgrN4WsjyWq1MeflX/hlwQ7GTuzD9McvQjpLGy59/wlmvPUzoUF+vD3jMvaVmTBbZTcRfsd/RUFwi4aoqqvm4QXL8BNKSUvqwLMTzqN9REOU7ehOEbyw6ojzZ1EUfNpub01s2OSatjDDp63nudguNlTzS/ZxVNo6Pslez7ABpewrLkFUmRG8mMMLTh8jun3Dz69kZfNqFoTr/Ij1DyIxIIS2gaFEaAIpKhd5ZcVJzBaR2vpKit50KBxrl/S8clw9NSqVyOQecV6LFfhauEcF2iMoHLb+yHe34K+RnMKejrGIDw5EkE1uERbrpg72GkGRnleOaLSXXK0T1Y10MJqypYsLKwCIjD530dNna8//U8T9FcfFH8iQUd0YfkEK33y4jsHndaNdh8a1lj2JDgskNiKIvVkFXHlhH5/HpeeVI8k1yDLUWv3cHlzXCcEuPKmmzmzFaLESElGFf9QpNpZauKRdCl21nQlW20Vj/L2IhjrKFAV6aHI48v0GzNqAzQYqCWqMdi9prcmK1Wrzqn/hKZQzulMEXaMCXV4mCNKpERCoMlkI9BDLSUsIQaeRqKuPIjFZZV5YeQRBgBqTDaEihKkj+jNz50oW23ay6Ggmiy6ZQt/YaLcwP0foXudwLW+vWc/LK9az7kgO/5l0IbHB3j2jRVVGur+xDrNVRhfVjmsibLw7fyO/bjrIIzeNpk+3pkvBNkdKTBB7Z9idO70w8/UrvzD1+vd5YOZkRgzr/Lva/qdMWAoKCgoKCgoKZ4PJZOGVpxayYdUBrrxpKDfffX6jtF9feC62V6dn8fTcpbSLC+OpqRexr8xEUpjeTQzfNeJCEqkvSWojQKogXFOMv0bDnKsuYXTXDo3OddnnO/BTi9SabehVAoKAc1PR9TjXiOWZY7sgiXi19cw2Kxmlp9leeJLdJfnMPHiK07VVzr9H6QNoFxTKmMT2LMk4g82iQpBVyDYVNquAJIq8e1kP7lywB4tsRa2WeW5cB+psRnIrK8ksK2NvySmW5R7GKtut/KCOYDGpCTTp6BsVy5UpHcmuLOHi9/dhtrpHhTRVFtWV5hbuOWUGBARq69PcHbp+rseF+OnJPVOF2RribCenzOA1giItIQQ/iwmAOo3G7R40l7JRXFhBQKAOvd+5i3A+W3v+nyLurzgu/mCmzRjPnvQc3nhuEW9+cqubV9fXA9+jUxzbD+Yiy3KjCdWhDzG6UwQ6sRazrEMlqdyEVzw9kZkzRrI19wzLCrez9GQeqaExPNRzJCeLJWddZ0kUvL4IDu+lQ5PCtZ+R/lo0koRRtiLLglu1lKu/3kWdi9NCqBfVUWmNfHxzJP/ZsBO9v4HH9u4hpY3E2HEGqsy1WDAzv3YlA0eD1SJhNPiRYSumNjeW1OAOdA5sS+aMUTyzPJP3t+YCUGu24q8RnX0PUOmoym+LVV9KWPxprl79Jfd1H06CKpEBiaFuUTEA71x1MT/s2s9/lq3jkrlf8vSEkVzUvWujsXedLNGqGD22D+cP7Mqsb37jrpfmM2FYCtOvHo4J8awnhpSYIJ4ba1d2ntY7m47bDzHz/m8oe/xiLr2sb6vacuWfMmEpKPzRiA8t/qu7oKCgoKBwjqmtMfL8w9+xe9sx/u++MUy+fkiLP+tpW78zPI63v1hNasdYHrtjHGlztrjt3LtqWzj+W24wM23hXvw4RaBYRbvwGD6+7hIiA/3dzuOq91ZrtuGvkbDa5EZRyOBhlwIPLz6IVi0x57JU+ib6sfvMCXZl5bO7OJ99paeps9qPSwwIIS0qgV6RsaSERdM5OJJQnd55/ge6N/TdUV3EUYVl2PREr9oJJks4COG8NK4LT63KwCTWoNYZ0emNqHVGDhqO8OT2LAD8OwiY6zRg1vHMVhjXMZGOweHsun8o+07VNGmneiu5euB0pTPlw7OSor+XsrXBeh2mqppG6x5vERRRgVqmdA5h1dZCqm0iQ9/ZxOFHRgHeiwm4UlxUSUTUuYu2cPTnbO35f4K4v+K4+IMJCQtg2iPj+c/jPzD/i01cdctwoOlQp/6piSzfkknWiWK6tGuI0vDUh+gXCaEB4bx++WCvk5jDEzm+WxSbK3az9OQB7kgZwM2dBpH62m8YTFZnRIS/RuLdy3s0EvQpqjI6Q6nmbD7eaMK02uwiP/4au0NGr7bnuYkCiKKV4JBKoiIqmNBX5P79z1Nutnt3OyaD2azCaPBDbYuhX1hb/FV6dJIWi2ylss5IbmUFckQ1h6qPsLFsh719SUv34E7EJ7RDTLdis9nP+/KEZGceHIBaEsEQgSE3mH79qnhl7xrM1YGYihM58MAYtxddEASu6NudAUkJPPLjMh5euIyVh47y7EWjCfP3c07kDk+6q/rwiO92YwlsQxQlLNt0iPW7ssnWh1GiC0SoFxM6G4HN9LxyanRatvbuSp+Dx3jvxZ/RIjP+sn6tbsvBP2HCUlBQUFBQUFBoDRVnanhy+lccPXyah567lAsu6tWqz7va1nGWGt764hB9u7Xh9QcmsSq7zM3uzikzNNogS4kJYu/JYiJVJ1AJRmrlCN6/ZhKRge679556b4FaFTIyomCPHNDZZFZkFTOmc6SbXapXi5ioQwyoQRtk4O2j2RQfsNvbalEkJSyGqzv3on9UG5L8osguNnvVjXBdl6ybOphhcza7CXGCd+0EV1HPR5dmopF0qMxaRLPAa6NTGdM5kmA/ieyKUnacPs2jK3eCug6VzsDyU3v59dQewC7G2SYgmK6FUXQLjaSNPhyMgZyXFO2WDuJacnXqgn3OTVNHWrqr5qA3YVSL1YpOrWqxA2BPVgHVai1mWaCizsIP+wpIDPVrNmWj5HQlkTHBPlo9e/7N9rziuPgTGDEmlY2rD/LVh+sYfkEqcQlhTYY6De5pV+7dtOeYm+PCXR9Cpry2jpPVBjcPrGcIUf82wTyyeSnzszO4p/tgHug1jF8OFdlVhV0iImpNVnrHBzVaZDfVT0+vp02W0euriIwuJSS8hMCQM0iS/RxVtmhSA7vw1ZYaKioCKCnzQ4MOjUpifjNCkUVVRtafKEAfVMJx4zG2lx2k2Lif0ReqKDoVw+ncdgTp3B0urpPWx9tyWVdgwT/mNPrETN7fG8VTQwc0inhJDAvhq5un8Onmnby9dgs75nzBg+eP4I5FJ5wT+cIb+7H6SAlTesWRU2awj43ZhhwcxaNXDOSXX7cRlV+AVuPH8aAoBs3eyNFHRzd7fd5C09SSAAE6stO6cUt5KW+/uBhBEOh7fqoSOaGgoKCgoKCg0AyFp8p54u4vKTxVzjOvXcXA4V1a3YbDJouz1hJXWkBKpzhef2ASOq262dD9oioj8/cc5cvNGwjRyUzpP4KbBqQ0ErD3tLfnXNadEL2aIK3kFMmvs9i4a8E+1JKIDTO6wGouHaFne1Ee5eYaAGSrRLewdvxfXD/6RsaTEh5DZa2V9Lxy2mr1DJvtvXKG6/n9NRJP/ppJucFeGdFgtrEiq9hZSta132kJIXaPQz0CArMmpXqtbJIcFk1yWDRjE7o6Px/kJ5FTWcaxijKyK0vJKi8h80wRq/OOYkNGlsG21Y/be3bnppTeJATYx/dIcTVmq62RjohjneLpPHKlymjCX6NtZEt7s8crqg2cKa2gyr9Bb+5YaQ2Te8Q1m7JRXFRJ55S4Zp8vhZajOC7+BARB4K6Hx7Fjy1Hef2MZz715TZMTXXiwPz06x7F2xxFumTTQ+XtXfQgBGUGQqbMImASbW41qVw/ixqIjzM/OYHqPwTzQazhFVUbKDWYEQUYjCpjqK4O4Cm86cBwrCvZICkl072dUoJaVd/bjs/07MOlPcqQ2C62+DoAAwjh8IoHyknDqqsP49L4LSc8r5+TxXc5J8f7h7RvVwfakcf5eGqO1g0nsWMnGsh1sU+8lNuEks48d4cnf2pN++2VOIc+0hBC6vrK2fuINo6rSn6i2+Xx8bC2nLYV8/5uE2Sy6Td6SKHLb0P4M75TEoz8u54mfl+FPEPnGcPw0Gi76JB0BgTmbjzcS8rmoTzvG92rLgKcWEFleRGrpCYqsUWzLPcPFKTHNXp9rPzzvY4hG5LmHvuPtF3/m2OKDFMZGKNVBFBQUFBQUFP7n+LPKs+ccKeSJe76kzmDmpTk30L1327PqQ1Sglq8v6sizcxbTpX0Ms2dchk6rdv7NEQHgSVGVkV6v/kygkI8NFd/eMpl+bWOcf/OMcJBEwWlvO1IzlhwsRCsJGK021DojUlAl+uBqVDoDggCbTmsYHt+O7qHxaCwhXNKpLUL9Aj5BH0JlrdV5HrneEVDjpcJHWkIIkmgX068xWVmWWeR2LZV1Zq/9PvjwSLbcM9RNjN/Rd19j7Rkx0C00im6h7jqAn24/ztTFW9EF1qALqOaTw+l8mpXOhIRkvlsvY6xT2fVD1CIGsw0/LykhvjhTa2BnvoFFR3Y5rwG8p37sOnQSgCpNQ3TMzWmJzaZsmIxmKs7UEBl97iMu/s0ojos/ifDIIK65bQQfz1rJ9k1H6D+kU5MP/Hl9OzLr2/Xknj5DYkwoYPca7ntoBDNXZrH44GnA7sCw2mQ3sRjHhCDLMh/8to0uIZHc33OYc7IxWmzUmqxoVSKCTcavXnHX9WU/cLrSqcpba7ahFu0iOjbZxpGqXPaVH2FbyUEyyrMRdTasZonqyghysztSWRbFdT06svRQrtvk6Omsac5pAXYPsNHS4FF1lEIN0avJnHEVnRnG89sXE5NwgojoQu7dkc9DKZfTNyqp/rMN9agtJi0VJzry8EQ/Pj2cjj5BRU1uPFiCG4V4dY6O4LvbruKN1Zv5dPMOkvxrqLBGY7AFUm1qWshn6eMXM/zNNcSUnib2TCG/Lt7I4PhxhIf440lTES2eE/szr13FXf/3Gba9Rym3gTE+QqkO8jv5s4wnBQUFBQUFhT+vPPv+3Sd45v5v0OrUvPHxLbTr6F6ZrzV9yM4r4eWPltE+Ppx3HrkcP52m0TH3/bQfo8WGUC8smRITxDvrdxIonMRo01JhS+B0jdBIx8Jh/9m1JOT6yhoN5TXahAkERhcRHngGldaMLIPF4EddaTRyXRBb7h5PbJD3lBO1JPDWxFTneQI0EoLgXbzTjoBcL6xptMpuf3ly2WEm94jzabc6xO9dtS8ckc/D5mzCaLahVYtkzhjVovutFlUYa/0x1vpTURjFfy5uT2bdMZbmHcIvUabmRAL+hHD/8PbOKOiW2HJmq5VTFVUYraFu12D/W+Pr2rArmyB/LRseGcPCjNNM6RXn3OR1tdM97cnTBfY2Y+JCm71WhZajOC7+RC69ZiDLf9rFe6//Sq+0pCZzlEaldWbWt+tZt+Mo11/U3/n7lJgg3p7UnZVHSrDJAqJgQ8RdsMfx8oi6KjLPFPPyoHFO76trmaY6i40AL5EPjlrK1UYrgmAjKLiK8IgzhIWf4c49azBjV9cNlSI4lZdIfkEY5poI3pnUC9rD9EUZfLA11ymKIwiw9mgJSWH6Rgv95haOSWF6ak3WRr83WuxhbyPaxnNqXhdyjyUREXeCDp1zeOrQmyQcTqaLMAS1ZPfENiDQJzCZlLR47tu4hKj2xzGXR9E7vnElEY1K4tELhzGiU3ueXLyS/DMFGOVAJKKw1ZeM9TVpHXpyHNtyz1B8LI/PftzM1Y99zuO3XsB5/Tq5naMlIYau4/PMa1dxzVXv0uPgMQ4H65XqIL+DP8t4UlBQUFBQULDzZ5Rn37jmIC8/uYComBBemnM90bEhZ92HkvJq7n/9R/RaNW88eCkBfo3TCtLzyqkzW6mttzcHzd7IG+NjmLd9G2b8KbfFo5IkksL0XnUs1JI918JqA4PFhkoS+Gz/fjKqj7LxVA7+EWCsDqCyNAqhLpj1d57nc6HueW2Am53pEA912I9LDhY6r8FqkzHVOyw0ooAkCciyfb1QZ7byytoj3JyW6FPM39Uedlyn1WZzjovB4p5y4sDbWsBeFVGF0WxDrRJ4eVUeVpsKlaYrfrE5RLbLpe606Fy/eEsJ8Wy3qMrINzuzsckyNRb72LhGk3tel9VmY+OeYwzu1Z6e8SH0jA9pdA7P63XYk6fzzwAQ00ZxXJxLFMfFn4hareLOh8bx5D1fsejbbVxxg29F49iIILomRbM6PcvNcQENYWljZ+dQZ7NRYrAhiQ2VLBwvT0BsLuHhOiYmJQMNi2TXMk0INKoWsiW3lJCwEtpFFRAdW4xGYw8Pq672I1bowlVd+tA9uCMWk47k5WsxWWwgQO/4IHLKDFhtdhGhAI3EtX3a8MHWE7y5/hhvrT/GvodGeJ3YfC0cc8oM+Gskp+iPA63K/gWQnlfurHry5noVebnxdOiUgy0pk+O2w0S36cS0xBG8vfE4AgJalWgX1Zy7G5O1E37Rp9CFFvF/67/jrWEX0zkkstG9GNQ+nuV338CstVv5aNN2VOrjlFuiGDR7A1vuGUZKTJDXa7k4JQZSYhjVtwPPvPcrj7y9mMtH9+Tea0ag1ajc7qU35423NhOjAvnkk1t5/PZPGHwoB9FgBGWxfVb8GcaTgoKCgoKCQgN/dHn2n+dtY+4rv9I1NZ5n37yGkNDG0a4t7YPFYuXRtxdTWV3H+09eSXS4fZPL0z5beGM/5+IcQEc5r608zIhOSTw1fgx7TlWRlhDCiqxiDGYrBrPNTceiYeEMYRFV6MOLmHtkHzF+gUzvMYTRsV3Zd9IINFT38CX87nltYzpHNrIzU2KCyK+oYfAHi1HrqwkIrGFsdx09BxQgqY2o1GZEwYY9rhvMJjV1dVpWV+9l+dJAPrpxCFZDOMPaxjRbsrQ5vNm6jjY2TBviUpElwx41Iqu4NHoEe8w7yY87Qbm1kiga2+7eUnFGzN0M1nIi1GCyadCrRGZNSm2kj+cYp92ZJ6mormNY7/ZNXoM3e9KSVwZAbHyoEt17DlEcF38y/Qd3Im1IJ779eD3jLu1DQKDe57FjBnZh1rfr2XX0NAUmwe2BjwrUkhoXyeacIreJ1+3lURuJ1YWiU7nn4aXnlROklbjok3Rkl/JK4QFqVp3exrzKX+jevxKLRaK0KIqyokhOFYZgNGrJ0Kt4rlcqYVotaGHd1MHOlJJBszey5JY0twnTTyO5CIraBUafG2ufbJtaOLqGmGlUIoGC4KxRHaRT0zs+yFntxDEhzdl8HKtZy+GDnck70Ybk7pl0TM5kY2U+P9x+HZbaMLcxqjaCUJjA9H69WXByCxct+YxH+57HTV37IXqUQi2rNfPS+krM5gRCVacJV5+iylLJkNm/kfXohY2+jFyvpV1cGB89fRVz523km193knG0gBfvvsiZAuQr8sbX+HRuF86rc27g/ls+4tkHvuW1D29Gp28ctqjQNH+08aSgoKCgoKDgzh9Vnl2WZb58fy1ff7iOgSO68PhLV6DVqc+6D0VVRl78bA0ZR08xc9oEN7F8T/ts9ZES/DUSNSYrAVI1oapC+rdNYPaVF6FRqWgTaq9QN31RhjMK2FXHoqjKyFcHDpHSK48T1WW0Cwhjao9RTEpKobzW4nVh7wtf1zaog46Miv3MP51NVtUJjlXnkzrA3hfZJpBbG0r/NmEUlsP+fBMmi1DfTxmV2oxOV0dIaAV+/qf5MP8IAgIbTAkMjOjO4PAeJPjFINTbzg77Sq/2jHqGxBCdM8ojKlDbaCxXZBVz30/7G12vWhIIqB/jT7cVoNVEE925gld3r+fDkZc3GgfPduftKcBsldHJtfaIdVGPXiMxpnOD08PTHl+59TBajcpZNMEX3uzJbxcVExCkx6RWkaJE954zFMfFX8BN00Yz9Zr3+Om7bVz7f+f5PG7MoK68890Grnx7BacDI9zy5gB6xkezKzefzyf3ZHC78EZVRUS1ia5h4W5tOl7Kr3aedJYyFQWBhdm72WdZy4naU3QNbMf1bS6lsDAcKVhFZYKZhxcfBGxYbbgtynPKDCDj9DSP/3gbr0xIJkinZkznSDKLqnhz/THn+af0alDX9faiF1UZ+WFfATN+OYiIgEoSmDm2q7M9x8u+5GBho/JTDnGku3/cR2WNHzu29iYmtojk7od5J/c9eukH0dt2caPz3ta9B//XO5lHNi/l+e2rWXMym9eGTCDGryF9xDkBmtVUmdsQqi4nXFOKH8eZvX4Pc7aWuX0ZeS6C1SqJe68ZQd9uCTz3wTJueOorLp4wiOtHd29RrWrPhXVSp2gefXEyzz7wLW/N/JlHZl7u/MJQaBl/lPGkoKCgoKCg4JtzXc7RbLYw66UlrPh5N2Mu6c19T1yMpJJa3YcDpyuZt6eA0Z0iuG7uWmKL8igLCCGuXazbcZ722ZRecczZfBytUEu4qpBusdG8f+1ENKqGZZY9FcP+b9ed/oyiEsbO/wF1YDk2s4b/DpnAVV1SnRtoK7JO+dwYa+raRnUOZl9FFguOZrLrTCYFBrt4qF7S0k6fQBd1fxbtMFFdFYDV6M9vdw1lXXYppYXl7Nt70mfb4YEy825L4pTlJFuKD/Dl8V/48vgvJPhFMyoqjfNjBhAVGOS0ye9csJdak/3C/dSiU+TesYj3HEto0JrQq0Rn+de3JqayO7+CD7aeqK8gomJkVApL8nZzoKyQlDD3MfF1jwKEOizoef+KXo1ERF2xWG2s2X6Eob3ae9U08RxvT3vyxNEi2nWIYvvJCiW69xyiOC7+Ajp0iWXgiC4s/GYrl183uNFuuWtIUbt2MdTlFlOjCQFBcCuv2bNNLBabjcRgGtU33pp7huk799I2OKhRm4Cb1zcwqIpfKpcTpQtlarvrsVUlkKD247qfNzvz8LRqEVEUkHEXAvUsg1RrsvHQ4oOoJIElt6RxyafbnX8L1KqI9G+YIDxfdICur6ylylhHQlgRcaEl6DQmVpzYiFqy0SayB0YhEX91NP3aNC5DFBWo5bq+bRjTOZIf9hXwyC+HqCqNY++WKNp1zmR3/Gau27SPV/ve5mXBquXjUZP55sgeZu5Yw4U/f8xLA8cyoV1X53U6zicIMiZbBCWWQMJUp5i/fTMBQjAVhKNTqdzCzjzDw4b2bs9bj07hmufnMW/Bet5dc4hNM68gOkjX6DlpbmE9cHgXbrhzJJ+/u4bknglcMmVAyx5ABSf/5lrYCgoKCgoK/+sY68zMnPE96ZuOcO3/jeD6O0ae1UbOgdOV9HhtHTLw0opMepQWUKPScswvvFFpe2/22do7+nHTF/MI8wvmtcsmsOZomdcy964pHD/lHOTRzctQ+ZspPx2JXBlD0KAop9PCM0rDapPJPVNLUZXR64L7ZG0h6WUH2FF2kAMV2VhkK1pRQ4+QToyPHUJqcEcC5Ai6v7a+3r6HWZO60zs+iCHvbKKyrnFqh15tr743KSUWvVri7qHt6lOkOzP9YwFB1YHImCI69a3h8+OL+frEUkZG9eeyNiO5rm8bescHMWj2RupLIiLLOEXuHYt4z7WAJNrPbbDYuOfHDATBrv8hiYLbGN7beyBLCnbzc/Zhck7bdfFctT8879GWuwdxybuZTO7TixC992gcBzsO5HKmspbzB3Zu0fPjak/abDaOZxcxcmx3ksL0yMj4t6LqiYJvFMfFX8SUG4eydd3HLP95NxOvbFhweuZkvTqkG8dyThFkqqVS6w9yQ8RD38R4BGDLsVz6JDZEMkQFarkkJYZn9us5Y6yjqMpI11fWOBV9Z03q7uL1FRg1JBur5M+TnabT/81tmK0l2GR7tRKHgOe1feL5ctdJBFlwEwKNCtQ6yyCZrTJGi406iw0scOGHWzFaGlSJzVZbI0+j40WvNp9iafYC7h23lviwItRSY0HOE8Z1nDhl/7cg6/noplTMpm6kxYwHcAs9mzokyal+XG4wM3WBity8CHr0OsRzh2dzc/uLGdxmkNuEJggC13buzeCYtty3cTHT1i9iSU43RoX3YURSVKOJNT2vnN5xgXy2ZTtfbN1Fkn8t1XK8M+zMl4ZHTo2VE9FtiSguIPxMMY/N+YV3H5zo1L1wpbmF9VW3DONQxknef305nbvF07V7G5/HKigoKCgoKCj8U6ipruPZB74lY9cJ7n3iYsZf1q9Vn3fdXJq3p8CZ2pxQVYJks5ITEo8siG62twNX+8xotvDcLytAlrmo10DSZm/BavNd5r5rtI4Xdi9j8fFDpIbGsm1PCHKdptHC1jVKA6DWbOXuH/fz5LJMMmeMIjJAw+GqE6wu2M3m0n2UW0sBiNfFMDH+PPqGdiM5OAm12LBI94xYDtGrySkzUGd2t7s1ooBOI3F1r3i+2X2SL3baozC+31tA5oyRDZHItSpMxkTOH9qHh7sJ/JT/G6sKt7GycCv9w1K4tM1INt89hPl7TzG6UwSXfb4DURB8CnuC3Zlyxw97MZhtGMxWREGgztJYFyQqUEuQWsfbWzKpPlWFwWzDv75SomPcXds9eCofWZb5cPsZZm3d1WTqxs/r9hMcoGNor6b1LbyRd7yEmuo6YjtE23U1ZBAEe3q9Et37+1AcF7+D3yO2ktIzkW49Elj49RYuuryfM6TNMycrNDaKAH8dscZKbIFBbmVLQ/319IiPYf3R40w7b2Cjc0TrAyisrWJFVjHlBrsX1WCxUVlndnos4xJzKbWdYpB6ApuO1XgV06kxWfl8Rx519U6IwPoKJY7JICUmiKOPjmZFVjF3LdjnrFoiu1dScqZQuI6bUdjOwfLvOG3YBRJYbW1YmdGfnOIY8kqjsFj8qKxTYZNFYoPqePGiaL7YtYN2kbl0is0hOng7a4u+5FB+EpsO92BfXje23DOClJgg54R14HQlNSYr1UWRbPgtmOmXF/HxsUW8UbqBwxk9kC16t4krKSiMH8Zex8s71vPhoW0sOXYU45K27L/nYrcJ0PHvJ8aNoH/bBJ5avBKtMZfF+zK4eVBfnxoVaQkhqFQSxZHxUF3GgYMnuPeVBbxy/0SC/N0jL5p7xkRR5OHnL+Xu695n5iPzmPvNnQSF+DX/ACooKCgoKCgo/A/gzRYqK6niyelfkXO0iBkvXMaocT1a3aanwObMVUcIMNUSWVfJwLSuZJ6GABk329tbv9Ye3M3+gkIqbW14/NdjGCz1Ec1eytwnt1Fz48pvya+t4M7kwTzUZyhl55mdum6O/+aUGUgK09u1IlSis00Ala6ctzMXUmA7TJGxDJtNoKIsjFMFXakui0a2+DPTx4LcVxqyTi1hsjbY/8+N7cLLa4/yxY48t3M7qvo52gnQSM5o7Hi/IKZ2msK17caztGAjiwvW8/i+d6ipCuJkTjvmbI5n3dQhzmvzvKeO8ewdH4RWJWEw2+qrnMgE1EcsuKZ3FFUZKasGm2B2pqxXm6yN1ikO1hw+RpBez6lKbZOpG+VVBtbtPMrk83uhUXtfKjdln2dm2J08hvBAzNYSe5/q09p9iaoqtIxmHReCICQAXwAxgA34QJbltz2O6Qp8CvQBnpBl+bU/oK9/K85FKcXLrxvMzBnfs23jEQaf1zglQS0JDE4KJ3dECt8t280zk5IZ1S3W7Tx92ybw6ebtHDxVRnJsmNuLFB8QRHZlGcM93pFTlXUMSwojNSaQ9dZNlJ8J4ukNRoJ1GUgibmI6GlFAEHA6LfQq0WuokyNNwxESJst2IR2dDCazFUkS2Dp9KMU19lKrfpparhq0nN5JBwhQxdEr7P/oEDSWXaKaV5dsA1lGr1Gx6KZ+XPRJul1Hw6SjoKwNGw7XsPpgVwI0EqEBZ+iTtJehXfbxf6MXcbJ0Ezf9cJx7B13qnNxyygz41Qv6qNEzTHcpEUISayzL6TloE1l7e3kVBm0ndaIqtxR9TC76+KM8u20ts0eNQRLFRhPWmOT2pLW7kUd+XM6rKzew+Vgej48d7bNklKMSypReQzmZU8Dz7y/jrhfnMWvG5YSH+LfqGQsK9uPJl6fwwC0f8+rTC3nurWsQRdHtWf09Og6KGrKCgoKCgsLvQ7Gnzw5XW8gh0q4xW9g8exklpyt4/q1r6D+4U6PPNGe3eG4uVRqt7HlgGPe9NA9dWCAv334BT5hsPttx9EuyVRCqKmBwx64sOAQGi33xr1eLSKJAucHsTO3YcvoEd6xdSLnBSnVBB147UsstXcxOjbrkV9ditNioNVmdkQPrpg5md34l9y3eRUDESRLa5hMUXEWGQaR3aFdS1EN46ScD5TUN6TF6lZVPt+dSa7IypVec22LZVxpy1iOj+GFfAdmltdySluCsEujqtAB7VT+HPfv8hV145JeD4BGNbaxTE1jTm1eSh/JN9kaWVq2nS499VFUc5+N9Om7t0ddNYP/gwyPJLKriwg8b7P+ZY7vw8OKDGCz2KIr/G9iW3vHBFNe4l6GVrSKi1NDHAI+UDMez0D3Gnw1HjnNBcmeO7bYRqBUQBJm1R0tICtO7jdGS9QewWG1cMiLV67Nz4HSlM/3FNbrDQcauEwQF+zGmfzvU644rIvDnkJZEXFiAB2VZ3iUIQiCwUxCElbIsH3Q5pgyYDkz6A/r4t+RclFIcNLwLYRGB/Lpwh9Nx4W1CuWREd75euhNrSQlRge2cny+qMvL6xlJCRRjz7q8sn3qx20TwxKR4Vp/MJqCTe/jXi6uPAvDTgULOO99EeUUoIGCy2nj1omSyS2v5OD0XuT60qao+500AXr04mck94nx+ETiiL1xTKlZkFVNZZ2ZddikzlhykY0wWN49YSoDOgFB3JRppMrEREdTWwWWfr0UlCgiCwIZpg93aC9JKjHx3izOUzybLFFUE89POYfy8awh9kw4zOe037r7wW/ad3MqL749j3R1XkJYQglYlOkPTBiSGMoCRzJ5bRcfuu0jtt51STSSyPIbiapPbFyT4U32iMwEx+Swt2EPJylKe6n0hI9/Z0cihYLIKLDisQS1HsfHocW7/ej4/3ziWMqOqkUfZcZ/mbD7OwYdH8saDlzLjrZ+4feb3zHl0MjERQa16xjonx3P7Axcy5+WlzP9iE1feNMx5rt/jYDsXDjoFBQUFBQUFxZ4+GzxLa943bw9992QRUGvgydfdnRZFVUZWZBUzfdH+RqkanniLPNi5L5vqimoemToenVaNTotPuys9rxyr1Uyo6jQmm44RXVL4OesggVoVkggzx3blyWWZTFuYgVoSeOOqGF7YtYJwTSB5ubFUVEsEamWnvTxnUw5Gi80ZteyIHNhVlMeZwAyGjk7HLFsIFaOYEDea8QlpBKsDKKoy8l95Lf6ahs8aLDYeW5oJwMxVR9j30IhGzgvP64oK1DpTrCP9tUT6a5FE0EkCgijw9AV2rYeiahOZRVVc9vkOp2gogFgf5eDqgBEEWHJLGq8skgmOzKdt58Mc1v3Izeu2gKoLVbUaArUqfthXwN0/7nf2xWgwA6DXSKgkEUmET7fn8WG9MKefRkJb79SR1BasNX74aUSW3jqASqPVaXO72rABUiWBopkr+iTz4Pl2Lbx7ftzPm+uP8db6Y84xstlkFqzeS68u8XRIiGh034uq7Buw1Ub7WAfgnkYkyzI7txylz8D2RAfpFBH4c0yzjgtZlk8Bp+r/XSUIwiEgHjjockwRUCQIwoQ/qqN/N85FKUWVWuLCib357pMNlBZXEh5pn1Q8J5R2cWGkdoxlyfoDXDOur1N0KD2vnDqrhjpZi1ascJb6cSx0/Wz2cpu3Ld4ABPvogwWL2f4YaCSRJ5dl1gvgwKxLuwM40z/8NBKJofY0hK/qc928KfK69t8uLLSfcoMZQbBx5cA1XNhjO3mlkcxZeRUllfFYbftQSwJvTUzFbJWp8QipcrT3zLJMXLNPYgO15FcYAJBlkR3HurH7eGdGpexkYt9NPDDhA9bl1zK5y21OdWPXPi678UK+3dMFS9AW5hX8Qp4xj2R5jNsYNuTSXcDGoiM8uW05V678EnRxVJX5EaCRmLMph2lDkuq/XKHMGIRZpyPYWMzUbxcyJW1go5zFRg6J7m1559HJ3PvqQu58cR7vPjGl0TOWFKZvctwvviKNjF0n+GzuGpJ7JtK9d9vf7WA7Fw46BQUFBQWFfzuKPX12uJbWNBtM9N2bRUCNgUO9OlEV0WDbOhapBpPVZ6qGK54bhaF6FR8s2ELntpGcP6BLs/3q3yaYUNVpRGQqiWNc12jGdY12iwaw2qDKaCEsopKnd+yhb0QbXhlwMf0ztqBXW5FEu22X/OpaTPWRFn71Uc9REdUkdjjKd+W/ohZUjI5OY1zsEDoGJvi8jtwztTy85KBbCVIZ+DQ9l9cuSUWWZWoshVSZT1Jlzud4+QkOFZbTJSoAf42aV9ZUcLwomoLyKH68cQg2GeqsMlhlXlp9hGqjFRl4c/0xZz/B7tyQkQnS2m3iOrPVmbpx0SfpbLlnKPP2FPDWxiiiE4/RvuNxwiKLOZbZjbLTiWSX1nodY0d0cnSglseWZlJd75ixVxUR2HmyHEFlwmoJRiNJhPtrqDQanJ93tWHD/CoI9fenT0I8oihQWGV0rilkYN6eAp4bG0T6gRMUFFdw5xVDvPYpPa/cPRVewM3GP3akkLLSavoO7Oi8P4rdfO5olcaFIAjtgN7Atj+kN/9DnKtSiiPHdufbj9ezZd1hLprc3+dxE4al8PKnq8jMKaRb+xigYTI3ysEEC0X0b6N1LnQlEfQEEKYJwBxUDsXeHReyTUCntfLOpfZwKEdYlkOwx/mFUZ8ikhSmp+sra5yaGSF6NZkzfO/Cp+eVY7RYAZkbhi3nvG57WL2/D99tHc2t/dvzze4C56IYaNIZNKVXHDNXHXFONNll9slJJ4FFBosNrDaJlRlppGcnc9Pw5fRq+xlrTh2lq/8jbnWh100dzIi5mzFabNhs8Tx/dTy/la4iT1eEv183QOfMpXNcx9CETiy5KI7/W72Q2jY5iNooSk9F8Mb6Y8zZfJx1Uwc7+4+o5o0rhnDj54v4YvNG5m7MYudDlxMdpPPp9IqOCeeqK0fx3fdrufs/83n/qSudz1hSmJ5hczZTXu+FDtGryJwxyulRdjyH9z15CdmHT/Pfx3/g3W/v+t0OtnPhoFNQUFBQUFBoQLGnW47D3l6eWcTsp34goNrA3tQOWGLDvG4KOZwWjmoYTdktrovKXzcdpKC4gtcfnIQoNl+VZFtODhqhmom9+vDg6IFOO9jRnsN+Cguvwj82D1NNAOuyw6jrIwAyyPbI4U/S8zBZbFSbrARoJKaOiMQWtocDhlGdoREAAQAASURBVAxMJjVHDrenrKAdHzwwrtm1xogO4ejVEqIg1EdfyMSFlpBdvYNluV9SaTmIoV7AE8BqE9AHSOQZQG2SmTzA6vz9TzkdaRsxgIyTbQABg9nqtnlok6mvtGevdmKzyYx8dwt6teh0WoD9UnfnV9IpMgAJDYXHu1Bd3JYpY3KRUvfzwMQBxEgJvLn+WOPrmdtQ3VAS7Wkgjo1UUYBvMo4iSFBn0CBYbQyavdFrqdUQrQ2NUMPE7v2c99Z1TSHU/wywYNVeQgL1jOzX0esYO6K4wR6VvuWeoW73Zeu6TAQBzkQE+6z+onD2tNhxIQhCALAAuE+W5cqzOZkgCLcDtwMkJiaeTRN/K86FFy0xKZLo2BB2bjnapOPiggGdeeurtSzZcMDpuHBM5r9lF/HikkVsO3bUGVkwfdF+7vlxP34RfmjCigj0s1JVK+GntqdMRAVqySurpaQ4jIjIEgK1Ku796YBzwhcEmXKDmeIaIyCAYJ+kPknPo87UkHpSZ7Y6Iw58heLp1TBl4DLO67aHxbsGs3T3SAI0EncPTWL+vlNupaE8K3e4VgpJiQli30MjuPLLHRwsrHGe48Ku0VzeI45pCzOcoYQVtQHEiI/TLXAnmVVzOVU9lUD9RE6UBhKoVTFvT4FbSN7DX8KnN1/NkvIFjBy5k/MDJjMhqRuAW0WWDdOGsHdPHOoIK36RRUg6A0Un4hEFu5aGa//T88opsSQQIOQTqCriicWr+eDq8V6dXm7hbCGxdCw7yd3/XcD7T0zhouRolhwsrHcA2TGabW4hea6pHI+9NJn7bvqI1579kefevOZ3OdjOlYNOQUFBQUFBQbGnz4aoQC3inmxCi8vpf9VgbhyV0ijy1HWjxVHm01t0qjdkWea75btpFxfGkJ5JzR5fXlvHf5avo2ebWF66ZBiSi66Ya5/fv64tD23di6nWn8JjCQRoBObtKXBqRxgsNt7dlIPRKhOoFWjbMZtMv1XYDHD8aBJHstpisdgrgvywr4DJPeKc0cOOa3OtHKhWibw0rjOB/keoljdTK+8kIrACgEJDNBpSSA7uRZugTny02cCzy0uRZXvfHxjejvn7M4gKLqBDdD5DO2fwwISvOF4cw4L0Eew/2VBdQwCW/Z89LaPcYLbb3/X2dK3Zhp9aRJbtovwqSWT6ogxnNPecy+z3JdhP4IE9b/DRie+Y3XcGv901yE3jIkin9hoBnRSmZ112KXf/uJ+txacIiQGhLggZsFps1FnlRqVWn1qylo1ZAjcP7u28Bseawq43Z9cBKSiuYOPuY9xwcX+fopzN2cW/rTxAVUgg/7ckE37JZMs9QxVBznNIixwXgiCosU+yX8uyvPBsTybL8gfABwD9+vWTmzn8b8u5FCsUBIG+gzrw2/L9WMxWVGrJ63GB/jpG9OvIii2ZTL96hLN0ZlSglim9Eth3oitLMjJ5+IJhhOjVWG32l10sD0cbXsTwHjYe7j2U3PI6pi3cx7H6sKyS4gji2hRSYivAarPfEp1KxGqDaQszkOu9wvaSRDbe3Xwco7Xh1hktNl5fl82bG455fTnD/OGzW5dSatqDYJzEs8Pv4KbudT5rLIPdW70+u4SxH25DFOxKx44cxUh/Ldf3TXDm7gHc1C+Bid1jGdPZnrOWcaqKb/ec5KXV2bz6Wygbpr/GrvKneHDCp7y78moKK+KY0iuO137Lduvr1C9L2PDANGblfMLiyi/paryR7BNhbhVZPk3PxWwRKDsRS3i0Hr+oAuI65VB3ur3zGty97RLV1jao5GI2Hsni9m8sxIZ34qrebdycXm45nFo9V1w+gu/n/8b9r//I3MccOh2SMyxPqxadzpHGqRxx3HbvBbz3+jJ+/HYrl10z6Hc52JQwNwUFBQUFhd+PYk+fHTs2H+XL939j9ISePPzQGGfKtCut3WhxteVz8wrJzCnkkZvPd7bdlK3/xuqNVBrqeP6i0V6dFgD7S0/z5I6ldA2JYlt2JDrJHjUwpVccczYfdwrh11llIsNqGTY4E4NYyqCIPlwSNZY+v+zA4mJv7z9VyZPLMp02abBOxexLu1NZZ6bcYCEy6AwXpO7AGvg6Nn0tepuWoyfbsSpjKIcLOlBeG+Ki+5HKZalGnl22DrA7Im5Oa8vNaW0ZNHsjmfnJ/HZgFN/dXIMtdB4PTvie1Qf68PXGMcgIPDaqI7nldQD0jg9CLQn4a6RGoqI5ZYYGx4ZL+VWHw2Wg+hIWGT7llUNf8HLP6Zx44nxnlPHu/EokUXDb3HTch3l7CgDQB1ZhrNVzfvtY1mSXUmOyj5ck2m3wA6cr+WZnHjuPZ3NBt45EBwW43aOUmCCeG9uwblmwai+CAJeN6tnks+PLLj6df4bc7CJKuiQ601oGzd7I0UdHKxt/54iWVBURgI+BQ7Isv/HHd+nvzR8hVthnQAeWLtxJ1qECknsk+DxuwrAUVmw5zMbdxxg9oLPb365J68kPu/czf9d+Lu7R3el1FmwC5uog9lqzuexLDQ8P70KVsWHnvrQoCjVHMPploZYiCdSqkJGRZXtenlYCEFAJ9nSMOouNAI3EtX3iKawysvxwkTMkbOCsjbx7eQ+3yWV78VuUmnYzJPoJOgbZUzZTYxvSVry9/AdOV3Leu1ucP1ttMiuyihnTOdI59n4a0X4PRIFb5+9lULswogK1TB2SxJKDhXyzO985SWYXtaNryJvsMj7KwxfNY0TUHJJCg/jm2j5c+vkO53kEAQpKdLzZ+0FeOPAhLx38hEHai9z6VmOyIokQqFUjV0Xx8oT+vLBnGZGdT1BkOkMUMW7X5vol+v7GdL7etoPKQ0W8tDqafQ+d53T0eKZkTBnaldRIPx6dtZgXPlzOzGkTyJwx0il0GqRTe/2cI1Jl0tUD2bM9h09mraRnvyQ6dI7h74xSuURBQUFB4Z+MYk+fHSaThXf+u4SEpAimP3YRgiD4tBlautHisOUdApJX+dcQGuTHhKHJbn93tfXBvskUrDEzf2cGNwzsQ5eYSK/tHy45w/Wr5hOk1vHGoIkM2Z4OghW7iwDemphKZZ2ZJ5dlEhGbR4duB1Fr/Hiw820MirCXdV1++0A3Wzg1NgjDjpPOnyvqLNwxfy+Jkae46/wt9EvKxCqL7DnRkfSjyRzO74gk6Zg1qTuk4uY8cEQj7HtoBJ+m59I+3J9If6298km9HoUjCqHq4FDm73+V0anbKasOYumeQby5IRuD2e4kCNGr2TDNXvnEYZ861gGR/lpWZBXX280Ndqrr+LbrlEBd+6PUWuuICtS7iXuCzMsTGhcFmNIrjv9uyEDrb6D8VBTnD41k9VF7CoxeLTJrUneKa4z0eG0dwepyorQmhnZyXzd5Um0wsui3DEb07Uh0eGCzz5A31q20C4yWRYc6fyfL9iIFjvR7xcb9fbQk4mIIcD2QIQjCnvrfPQ4kAsiy/J4gCDHADiAIsAmCcB+QfLYhcH9n/gixwtTebQHYv/tEk46L/imJRIYGsGTDgUaOi+TYKNLateGrbXu4cWAf54K53GBm+i+1BLXLQggo5NkV7l5q0aZhRGR/1pZs4bfpMzheJDn1FMCK3cfh7swXRYHv9xZgscoYLA1/qzFZuX3+Xvw09giJKnktWZU/kRp6vdNp4cD1Swdw+wJyeFIdGK0ydy7YyysTkp1jr1eJqESBWrMNSRTd7oPnYj5IK5H2xjGigi/niYlfsq10BrGBHyFJIn6uuXgClBvMFJTpGaq+Apv/D2ypWUKHdj3IPxmN0WLjy50nEQSBlyd0c06k/eOjuGHV91y94ls+HHk5A2MawjZdv0QtQiTFxnAitaWAwPe783l+XIMgq+dOQVS/Tky7chjvfLeBpLhwbrtskJvzxvFl6m2HQRAE7n96InddOZeXn1zA7C9uR1vv7Pi7oVQuUVBQUFD4F/CvsafP5WbEkh+2cyr/DC/Ovh6dXnNObAa7/po9XVhrMbE3N4+rxvdzRjN72vo/7Cvg0aWHQJaJVOcR6afn7vMGer3WgopaRv/wNZKulsrcDqyNq8BqkzGYbYiC4KLDADOuqGBD+X6SAzvxRMpNhGgaFszDO0SQ4ZLKANQv5u20j8pnYt+N9Eg8hsGkZWXGQH7d14+K2oaoAj+1jco6M8dKaxAFGm1yRfpr+WzHScxWmaeXH3bqv7lWvRuQEMmN347FX1fN5f3XkV8aR+apJBxrA6PFai/X6qIjd/Dhkc6SoTab3MhuXnKw0Dm+BoP93hmsdfir9PbCAy7ino8uPcTkHnFu9y8lJohbR+tYdlJk6dUT6BgawtPLD7tFZ8zZlIOMTKi6nFqrjoxCG5ObeCZ+WptBda2R6y/ynbbfFLIss3rpPpJ7JvDGI+czaPZGZNmu3deSKjcKLaMlVUU24nAR+j7mNNDmXHXq78wfIVYYGh5Am7bh7N99gik3DvV5nCSKjB+azJdLtlNSXk1EiHvI002D+jD1259ZfvAIE7p34aLkaIqqjLBIT215EPrwUs4Uh+F621WSwPiokawr2cayklU8lHwDRVVGruwZy0dbc7F69EEjCdyalshH23Kprlc/ttVHYoD9vypRYNPJDVSpXiRa34ve4f/n1oZnTW6QsdrsEQ+3piUyPCmMeukiJ7UmGw8vOYjNJuOnFlFJAharPa1FqHc4FFUZAXse4BU94ugeG8iIDuHMXJmFDBRWhPPWsit4YuK3rDn1KP3avImuXsTIhoxaFJlaX0FFrxZRqzty7cUyco+9DGo7nO/Wa9wm0hEdwp1fVj+MvY7rV33PDau+5/2RlzEyvkOja9arJc6YQxGQidCWUXTmGLLc1RmW6G2n4Lrx/cg5WcqHP26hfUI4tf7BXh1n3pxnIaH+PPjspTxxz5d8+PYK7n7k7ylSrlQuUVBQUFD4p/Nvsaebciy01qFRU13H1x+uo8+ADvQbbBdLXJFV7CzD2VKbwfO8aQkhOLJNomvLkYHYDg2bTu56GQIzfjlIrclGgKoKtWDg/OQ0AnXaRvbszLFd+PHkdlR+1ZTkxlNbqeWRXw6iliRnRDMy1FiN9O2dwYbyYi6OG87/dbgUSZAa9dM1leGrnSfRSgJ+ugpuGr6cHolHqa7T88vuUTwxbBptkkWGxtby0OKDTpu81mxzKzP6zqWpbtELrvaXv0Zi5sosp0PHXyNx76IMnrygM5kzRrE8qxM2+VEeHL+Cu7+4FaPFniKjVdlT3F3tuBVZxUxduM9ZMhTc7eakML1LZLh9TVJrtdvwSWF6N3FP14iFpDA9OWUGOkdpWXs6i8kdUxmcaL/3npt4U3rFMeu3nahFC0WGSKfzxxsWi5Vvl+2iT7c2yH5+PLMs0xlx0lKOHSnkRHYRdz86gZSYII4+Otq5gewt2kXh7GhVVRGFP06sMKVXIpt/y8RmsyH6yJcDGDekG58vTmdN+hGmjOnt9rfzOrUnKTyUd9dvwyYGMyAxlKhALbMmdWfqz7XogysJjimi5nQ8pvq8OVkWOFIoMzZqBIsLVxMvdWTaF5XO6hWe+GlU3JKWwOc78pzOm+cv7MKDiw86PcFWm4xev4cai8TouFcRBffHzHWi1KkEbDYw1etrOOopL7yxH8sOF/H+1lzn55zlnawy/oJErdk+IdZZbExdsA+VJGK2NghuAgTpVFisDRPgsaJ4vto4gRuGL+JM4BIOPjzRObFMXbDPmZNWa7aBWeCrnztz9QQ4HrCegJB+lJ8JAcBmk93Ui9dNHcxtSWP4NGc1d/32I9+OuYbekfZJ0lmiq76/ZeYwtJLMb1lZPL44iPtHpvl8jgRB4NFbzuf4qTJmfriCtx67slWOs36DO3LZtYNY+PUW+g3qyMDhzZf4+rNRKpcoKCgoKCj8M/C1GeEqIqlVi87KaE2xfdMRqisNXPN/IwC7PTV9UYbTHpTEBpvBl1PElyNlyz1DGfL2OiLqqqj2D2ZUt1jnZ1xt/XKDmbsW7EPARqSmFLOsZdrwPo2uFeDBlVuJbn+CqpJQasvt/ZJlmDUp1bnwHj53I3367CU8spRjh5K5rPfFTqdFUw6fe37MoHviIW4c/isqyYrOfC05BYN5ZngHUmKC6BlrP+6RXw75HM9CjyoXDvvLoU+x5FCRsyRrjcnK93tPMW/vKfY9NILr+3ZkX/Ed7C5/hrbhp8kuasMr9Wkc4F4VsLLO7GZ7g3e7OafMwCFrNevPiFiMWvCDnDKDezQ0MH1RBhar7KwoEhB9Cl2ohUvbNmhReG7+dYrwIzWiFoscxA93jGvSCbE6PYviM9Vcc+lgery2DhmYueoI+x4a0WLnxfJFu1CrJUZckOrWn6Iqo2LjnkN8r5AVfOJ4GM9lqE9Kr7ZUVRjIO17S5HFJ8eEkxoYx/7f9zggDB6IocFW/3hwtLuXWbzeQ/OpaiqqMjOkciUb2x3gmgoCwM8y4MJYQvcqpvJx7ppYnvlZTVR7Mp7k/IEtVbu1qJZH/jO/KF1f3JnPGSFJigjj48Ei+vtaekjK5Rxz+GnvFErCXd1qSeRS1EIpa9Hdrq6jKSLnBjCSCv0aiziI7nRYOZGBXfgUTkmOcbXpSZ3aPBak2WakzW92cFo7jas02tBKo6r3rO46lorb1ZmfJB2zNO0ZaQgi944MafRbAZpUoyx5AXZ2O3v33otXVoRLtY029DojJYi/BdMf3B9m1J5JwnT+3rJlPdoU9385Zoqt+EtarRAxCFEY5gIU7d5D88mIOnPYdBapRq5g5dQKCIPDWZyvZ98Bw59h7ewaLqowsOVjofD5uvvt8kjpF88bzP3GmtNrnef4qHAZCU9ekoKCgoKCg8PfH12bEiqxiyg0WDBYb5QaLszpGU6RvzCI4xM+ZRp2eV45jPaxXicyalOpWme3ar3c5bV9nGy7OBbNVJj2vHLCnG7w+KAZJtvHBtAsa2R4OW39M50i0KpEoXSVq0cKLl4wiNljvdq06lYggWQlvk4+5TkP5qQZdMVG0py5clBxN1+gArrgwh8ioUvbvSSb/RKKzP679NFlszNmU47yObXmnmDLoJ6aN+ZGiylBe/PFW/u/rJN5cf5phczbz1c6TztKbL0/o5nM8+8QHu/3ssL8eGN4e//pSo/4aib5tGo6TaRDDzCm2Oykig08hCSJBOrWz/w47bt3UwTy5LJM6l1Ryf43UyG6et6eAQI3IsoLtFBeFk/bmNoqqjKQlhKBTS/hrJAK0Ei9P6IbVZrfzZaBONqAJLqG2PISL389otBZy2MAfbtpFcXU1T44dwfEzdY2Oc16fLPPtsl20jQ0ls05yRnu7XndzGOvMrF66lyGjuhEU4ud1jBUb99ygOC7+JqT2soeoHdiT2+RxRVVG9hgkTuQV0/0/Kxq9iCGBUVhkFTqhxDlBO16aWaPGEK7zY7chg/0Pncecy7oDAg8vPsiZWis7d6QiCDIpvTMQxQZPp1oSSIkJ4rq+bZxfEG5aDPXt3zGoHWDXpKizyNTZChv1PfnVtUxbmAEIXNcn3ud1ju4UQbnBjEZln7z0Hg4Mq7uvA53KXubVE53aHp6n16gJ0Knqv0hFugTejdFi5Nfjs0h+dS278yvx09jD3bSSgFYlElCvjDxtYFd2pfdEpbLSp98+1CI8MboTKkmsD/0Di9VGldFCbZ3I+PAhmK0y1638ngpjnduXeIhezftX9GTWpB6UmWMwyWpCpXyGzF7rc1IFiIsK5vFbLuDAsdMsWrHLp+PM25e3RqPi0RcnY6g18sZzi5Dlv58Auacz0NP5oqCgoKCgoNB6/uzv03O1ULPZbGzfdJR+QzohSXYb0NWe0mskxnS2i2P6ck54fsbVkWK12fh1QwYpHWIY2t13SdmoQC0bpw4gSlfOsI5JXNW3a6NrvWtwO8LiTiGpLZTmtXGWGAVYcktDVO0H2QvJsx4m80AnTubFU2OykhTm7gQJqHcgvLH+GMmvriWvohCj7jEGdtrH4l2Deemn6ymtDnM6AcoNZm6fv9dp843oEO4zH+m7PfmNnoOoQC3ThiShUdltWo1K5IWxXZ1tCOBMs+gQ2oaaOj3tI4uRRIHpizKc9ibYqwLmlBkwuxjpfmqRdy/vwZZ7hqKpt61rTFZeX5fN5fOXotPXcfJkFEaLjRVZxaTnlbPwxn48MLw9W+4ZyuQecc5xEYDwuCJkoOxUJAazlRVZxc5n/MDpSpJfXct1X2/n7TVb6R4fx43zj3p1aDnYczifQzmFXDW2L1f2jvd63c2xac0hqqvqGDepr9e//xEb3v9WlFSRvwlxCWFERAWxa9sxxl/Wz+dx6XnllOsDCSsvRl9d2ShXalDbMOrkcAKkQkxCrVO9Nz2vnPOSovEPGsO09YtYeGI37fQd7IJBDrEfcwDZB7rTpeceevQ6yJ5dKfhrVKgk0U1DwlsoW1Sglg7hDV7GI6cSGNYlgxNVa9Ez2Blu5xo+6K9pXPpVJdpTTy77fEd9ziDOSiWfbs/lqWWZWGx2R8WN/RJoF6bnhZVZ9lKuAgRoRcz1Xt7ltw+ka1SgVxHQ9LxythztzYBOe1iYPobKuobUGKNVJkgn8s6lDRVSHh/Wnzn7quneZz9hsfk8v0JEq7ZHojy69KDTs2ww23h6yQmCgtoQ1PYoD21cyoejL2uUXlRUZUQWJAoMsbT1yyNEKmRb7hkuTvFd/WP0gM5ctC+Fr37ZzvkDutC5bWM1a18hmu06RHHL3efz3uvLWLl4D2Mu6e3lDH8PFLFOBQUFBQWF388f9X3anFaFN82uMZ0jCdGrMVqsaFUNTgdfVJbXUllRS5fkhsWjr3TtplJOfX1m1dbD5J0u58W7m9f/mrdzN1abjSfGjfB6reelqFlQXkF1USSCyR8/tT3lOEAjUVmv8/Bb0Q6WFKynhy6N9XlhgD3tIafMQEpMEFGBWtZNHczMlVksPlhIjcmKRmVlTcGjIBUwd8U17DxuF/NXqSVc9+oc+nIOh41WJbhFPDhYcqiIlUfWNnoOvI3RPhdh0JSYIIqqjIx6byMvXmXGZFHzyMgOPLf8MHVWGX+N5LQ3XfVDAERBIESvdkZrz9mUwxvrj1FjstAz+Qh1dRoKT0WhEWWmL8rAbJWdZVVnbzrOrEmpzrSSIkshz+85QF1JNFazGgM27v5xH6IgYrXJzqqIeooRsBIT2g7z8bIm9SW+WLKd0EA944d0Q6dVN7rulvDLwh3EtgmjR792LTr+XPJvq8qnRFz8RXh6wAVBoO+gDuzelo3VIy/MlbSEEGSdjjq1lqDayka5UlGBWrbcN5FAnY6Rbe05d6478P3Dk5jQtitv79tIaJDZJRJAxfuTe/Ls4DGcONKJ2Dan6N79KNf2icNktXLXgn0kv7qWFVnFPr3armw+korZ1I7NRa/R683lXPv1LqYv2u9WEunmtESCdO6+swCtijYherdzHCmuprjGyMtrs3H4WOosNr7bk88Lq7KoNdswWmVqzTZkWeDDKb3Ycf9w55dFUpieOZtyKK4xOiescoOZHTk90Kgs9G53mCeXZbqNuywLbrWmX16bzcmTMZSXBdO521FMshmrDY6V1lBtdL9fMlBRqaWuJOb/2Tvv8KiqrQ+/55zpyUx6ISGBUEIJvYReRUAQqaJeu14rdsXu9X52xYqC7doriHQR6b33EkIoAUIC6WWSTKae74/JDDOZSQj2ct7nuVcyc8o+ZfZee+21fovluVksyM4I8LZ68iu1Gj0Vzmh0YhUlZv8IlWDcc9VATKF6XvhoGU5X4HuSnhSOJAro1aJf7ifA2Ct70bFbM2ZOW0JeTknQ4/+WKzONPXZDKycKCgoKCgoKjeO3GE8bSstoiFijlsyHhzDr2h5kPtywA6XAbGXelhMAZFtdfucItnp9viiPuvs4nC4+mLuZVknRDO3ZcJnME8WlzN65n8ndO9I8KiLg+xqng5f3rMRp02ApjkWrFtCoJG/0QnpSOAeLzvDm4W9pHZLCPW0noK2NbpBEWH20iINnK9zREjM38cOhAix2F6EakWv6LwTVYT5cPcbrtABwuFzcnJ6MRvLxEAhuG9CdahF8XbrK5vRGKdSl7j1yC4O29U7et+WUEW0qQKNycLIwgWeWZ1FTG1lR7RM54rFvQ7WSN3LZdxF1cpcEtCqR5s3yCI+o4HBGKk6niss7JeB0udso404NKbPYue27vQyauYm2cTreO7yOthExvDRgKHqVewprd8jU2B2YrQ5cLhmVYCNCXYaVMC7v2hIZmVCNFFRfIutkIZv2ZnPFiG7otOqA626M3ZpzoogDu09yyfhuDWoU/hb83N/iXxkl4uIPoD4PeNf0lvy0YDdHM8/QJi14GoWnc359lprVa/fiqKmBOh10UmQIdw/uxQtL1/LVjsyAFfhnew1na/4pntu9jD0PXMGevEq/SID7FrRCrbHRNOUE67LWUW1L8Tt+Y0RmnC6Jt34ayENjPmdE51V8tn4oRq2aGRM6+tUyznpkKMuyCv1qP3vO4RELemPdcd5Yf7xuVVZsTpc70sIHTxc+YMYmrA4nkihQZXV6hXZW39HHG80hCAlYbbFc3iObzUc6eztgvVr0uzZ3TqUMCBzLbEP3vtto3SqXgpyWtIjy1/DQiGBzufP57GVxpCY7eHLLTwxskkKETu+3rUd1eMupUr7ctIZ3Vm/ksk6pRBj03vekrhc1LFTPA9cM5qmZS5i7ch+XX9wlyN2Xa+9V3TK2Ig8/M4Hbr3yXaU/P5bX/3eTXyf6WkQ4XcuwLEev8p3maFRQUFBQUGstvIX79SyqBBYvEqIvHXjCcKaYd8PLWHJ47VnFem6Qxx/bww/qDnM4vY9r9Y93aCw3w1qpNaCSJOwb28rbP1+74KGMbp6vKqc5vgcXujhyePr6D19aVZZnbN76PIdTF7PXNeTxVImPqEObsy+OueQe8ovRvj++A3SlTaXMSqpH4z6UniYk5yMIdQ9l0xF9YXauSGJsWx5vrjns/W3xTOuDWEnluZBu2nSrj852nA67HYndHKQDeqGLfawKC2lXpSeG0aeJOZz9ZnIDsY3+rJYHduRVeJ4dvVQ3PMX1twMW3duSFo6soKgkj77Q70jg9OZzFh/K9tr9WJVLjcGFxuFBJIo9vWUZxTRUfD51ErCYCveYQKklEEGTMNa7aa3MyItXKsUI1n/xrNJd9sgNZdlctXHtn34D35/PF2zDoNEwa1pm6NNZu/WnBLkRJ5OJLuwR891vzT6zKp0Rc/AHU5wHv1qsFoiSyaU39isDg7pzvHdcTQYAl6zO8n/t6Bq/o3ok4Yygbsg6ilvxrN0fqDLzU5xIOlRbwyZEtAZEAGVOH8ky3q2kutScl9SgtWmXXnsHdSa29s29Qr7ZJp/Zr58G8RKrMFzO4/TYuT9+MWhLomuju1Aqr3G0FuKZ7U+7sl+LV0KgrFlRpcyK7/QaE1Oa4hWokVKLgrY4CoFcJaFQiueUWyix2LHYXlbVOC0/r31h3HIvdidnqoKLGybbjiVg56o0E8USe+F6b78DvqI4mXt2Ejq0q3PWu6+QSqiS3SKnDJeNwuTiQEUWFzcr0vZvrfZaXpcXz/NhhVFqtfLp5l/dZ1udFvbh3G7q1a8rHC7ZgqfGv/uIRrrI4XDhdBKyuxDYJ546pl5CxN4clc3cG7PtbRTpcyLEbmx/7T/Q0/1IEQUgSBGG1IAiHBEE4KAjCvX90mxQUFBQUfht+C2HA37oSmMdecFpsAFQg/qo2SY3VzodzN9GhVRMGdG3R4Lb7c8/y48Esru/TjRhjSIDdkVVUxnsHtjIwvgWC1eS9Jx5bF2DWsa2YIkrIzGhFVZXOqz13rLjau40M7D9T4b2vGpVIm8T9hKpSWHuoH0atW6NtZGo0L1zSlvVT+rLySJFXmy1UI3GqrIa2r6zmum92c9e8A8ze4++0UIugrY1SqKhxctucvbR9ZTUzN2bT9hX3NaW+vIqWL67kX1/uDLCrIkJcXNFrJypXKguvH4POJ93b5nSnedQXGeNnA7qcfJTzLZLk5GRmJ/RqiXC9mkmdEsiYOoRvrunOvocG8eqY9oRoRLfOXXgp24qPcVfHvnSIive+1zMmdOTm9Gbe+xCtq+ZgXh4PXNSPEou7RGuVzYmAQHaJxe9+5BaUsXJrFuOHdsQYogt49o2xW202B8sW7qb3gFQio41+3/0e2jJ1f4spkfq/vT6cEnHxB1Bfpx8WEUKn7s3ZsDKDG+68CCGI2KSvV7RnWjMWrz/ITeN6U1Rlo/201dgcLhBg8939mTK4N/9ZtIIPxndDo40gJVLv3XdYUmtuaNudjw5tp3tsIqOa+YsNjUmLp0fFdYxb+hZt2h9Fr3WRcyyVKXP3By3TNGdfHttOlQa099E5Pfn6FhjVdTkXtUpkwAzZL39NoxLJmDoE8PfwesSCpm/IRiMJqESBDXf1I7vE4q3jvPpoEW/4eJsvS4vnyYtT6T19Q9D7LgArjxaeK6sKnCyKZkBbC2+Nb0qELjboyr1v7l9KpJ5rlmUSn5zNoHfXcn33FuhryzZpVSIuWfbWz7Y6AKsKvTmMb47s5t4ufQjX+kddeGgdG80laal8sXU3ozuk8dXus9gcLiptzgAvaka+GXXTppQcOs2cFXu49tKe5323fBk2ujMrFu/h47dX0GdQW6JijI3e9+dyocduzMrJP9HT/CvgAB6UZXmXIAhGYKcgCMtlWc44344KCgoKCn89LiQSobHHC6YZ8WvhLdFZKySuMWiQfkWb5NufdlNYWsWzU0YHtbM9yLLMtOXriTToubmvW3Sxrt3x8s4NVNqtPJk+hFf7mLx24qCZm7A7ZTQqmVEjt2OpDKX0bDIgY9JKLM7IJzZU43e+jk1M/N+ItmzLKaNropqVBc+TFnEVGVOHeqMzlmYV8VNWES+tPorT5balQzUSkigwd18eFp/qeHUL5V3VtSmLD+Uj4l7cstjd/7t/wQHsQTLUdS6ZZVmFDE+NYVtOGZERC7G6irgk+Xli9WGsn9KPp37MZElmATan7F0sq/uunasm6LYBU1ofJs9+kt6a0dx/eXdWHilicpcE73vkKSH6n58OIyAgaWsIa5JHl5gk7u7Uz+/Y9y04gNXhotrmxKiBMKmAhPBILm7XFkkUG7Q7v/5xJ6IocNXI4IKajbFbN646RHlZNZdO6un3+e+l1VZ3fuJ57/7O+nCK4+J3om5oWX2d/oCL2vP2i4s5mnmG1u0SAo7h+0N4b0gbpn28jG0HT1Ik6b0TXYA+b28g8+EhNIvcwSebtvH8+Mvo8/YGkPE6Cx7vPpS9RWeYunEJqWHRtAqP9jtfE5OBBSPv47XMb6HlbtRqO3v2tMGoVfvV5U59eSUVNYGlRAFcskBpyc3sKcmlS/Ov6dTsEtZldgHc+WtGQWBZViH3LTgQ8GMrrLJSXuPW6bA53f/1dIhp8SZSIvW8ue44tcEYPHlxKtklFr8IiBCNyA8392LlkSLijFoeW5IJuJ0Mkgille7jdU820z66Y73PzzPwL87Ip6Q4koTmx0FXwrubRKwOFyG1+XO+SsrgLtflKIunxnSYr7P2cGfHPkGPX2C2kpbUmh8PZjFs5iJK7VE+AxJecdTCKqu3xnSqxsCni7YxeXhXtBqVt53nMygEQeCex8dw2xUzeffVH3ny5cmN3vfn8lsc+7de9fk7IsvyGeBM7b/NgiAcAhIBxXGhoKCgoNAofm1nSN1jZ0wdwjtvr2Br5kk+va4nfVKifhW7obisis8Xb2NA1xZ0bdO0wW03HD3JthOneWrUEEJ1gRG4Go2D9YWZjG/RgdRwd5qzx070ODdS4s9QZC/mjtRruHljES6XzJB3NxNS62zQqwQcLtBrJCZ1OmfzW13FyDgJ0zQj1qgl32cFXQZq7E5staKYV3dL5P0tp5h/0F8nra4vIj05nKlDWrI7t4K75+332tcep4VG8o9irnG4uGvefkQB4sLyuX/0lzQLGUSsvqNXj8PmcGGvbUcwO8x33iKJcPdIgd3ycU6dSOTHfTbAfS9mbDrhN9H2OIiqHDYSUk6iEVW8PWAsKp/0Zu82tQuhPeIrOF3sZG+hiY6vrSVj6pB67c7SimoWrTvIyH7tiIkIDfr8G2O3Lp6znSaJEXTt5R+583surPnOT/4Ji3lKqsjvQLCQ9vpK4wwe0QG9QcPcrwJTC+qGLamiIokMMzB72W53Z+EzY5dl2JVbwQPD+nOksJjh7y6h0uqk0ubEVltyaNnhIp7pMQq9SsWta+Zitlm97fWEGsWb9LzS8wZGxQ6hSXIOPdP3o1W7/PLgamz1i4mKooCAyGfrxrDvVAtuHPQjIztv8aZ7qGuFhTzXZfWpXV23fvKMDdl+IVBp8Sb2PTSIp4a1Zt9Dg0iLN5GeFI5KEtGp3OFlW+4ZwMCW0UzuksCx4moEAW9Fk633DODe/t0AsLnKG3x+nvOmJ4UjuNxOAkF0R1eEaCQeGNiCzIeHsuUetyBRiEbylj49cO8oOkc1YcXpo/Uev/201Tyw6BgWlwEN5VTZHBg0Erf2TgYE7vx+H61eWsk7G054U1/OGCKorLayanuW3/EaU3YpMTmKf908kPUrDrJzy7EL2vfn8msfW6mN/csQBKE50BXY+gc3RUFBQUHhb8KvESIfa9RistmIijEytlPCrza+v/bFauwOJ/dcFVgdxBdZlnlnzWYSwkxc3u3copav3XHvJUZsLidphlS/a3WLpLv/Hd0kD0u1gZqyJggIbhF53At35TUOXAho1SIb73JHEnjmCkNm7kNARYnVbTdO7pLgV6ZTqxJr9dhEDJqG16CHtozEoBZ59IdDDJq5ia6JJm5OT0LrI+wZohF5/bI0TDoJtc/M0O50oVOXc+tF32Cx6rBWXgecm49U1joNHhjYwmuH+T5/33mLLrSIPa6llJVEcOjAuSjvKpuznhK2ENcsD1Fj5ZXelxJr8Hcw+DqRjKpKckvOUOmKotSq8jtemcXuLZnq4dufdmGzOxg1qFOD72pDduvRzDMc2H2SMZPTA0Q5/4iFtX/KYp4ScfE7cCGet1CjnkvGd2f+t1u58a5hxMaHeb9LidT7qeP2TYmicGgn/jdvCzWV1Sy+KZ2RH25FFNydWnpSODGhsbSIieVIQRFFGHAhIQP3zN+P0+UW1PnyxtFM2TCHe9Yv5Pkel9LptbUB0Q9T2o4nTG3kGxbSs0UGKk1/CszuDkGjFrFZz0VcGGrLNAm1KSsxIVocLjXTf5rELUMWcUXv1YzvaCJecz29ktwKzb5inNPWHOPtjSeYf0MPnl1xxHvc97ec4otduWh90kt251bQOiaUmBDfTkVGqD1mTIiWdceKGPyu2xEkAG+P7+D1bP9naQ7/nQRPLdvJR2OHBnROwcK9PrmyI68e24JGUHsVk6f0S/GmuPgKEnmO1z4skW+O72DzqQL6JMf6Hf/l1UeptjqoccrodCYiVGeJ1DlA1NAlMRzHllPeSJpPt5/07mvW6LGp1MxatodL+rVvxJvoz6Rr+7J88R5mvvID7357J5rzDH5/Rn7LVZ+/M4IghALfA/fJslxR57tbgVsBkpPrr22voKCgoKDgy68ZIp93qoTE5KhfrW3rdh1j5bYsbp/Uj+Qm/tVB6kZFbzh6kr25Z3lmzDA0Kslv21ijlmFtonjqu704qkw88P0xHpGOkzF1CIVV7kW3R4a04oU1B4iMLiX3RApCjOBn53qEJ60OFxpJRXaJhewSizdy2u7UgT2dYxVL6Bp1i3ehbvaePC5qHc24T7fjcMqA7BXpDCx+Wnvd2SXeinwGWabnm+uRajXiDGoRURTYfHd/AJwud/lSARmDRsKoszFl+GwMWivv/HQDK//tjiyoO0n22MB1n//aO/siiRAaWkmH7ruprNKTuacbLte5iX5Inchijy1972gdHx2u4MFOg7mkRaugz2vtnX3Zl1fKW8t/JNYYw6azURi1ePUe2r6ymjKLWwsuXK8i8+GhGCT4bvke+nRpyYgv9/7sd3X+N1vQ6TWMGNs14LvfOp0qGH/EOf8IlIiL34EL9YKNv6o3AvDNx+u8nxWYrQyYsQmH0+2t9ajjThjaGbVK4oP5W5jw2Q5UooAoCt7vBUHgqUsGI+Kkib6EUK3Ey6Pb4XThjdxwWEJ5ptdwVuce4/qf5mN1OIOK0VzTchhPpd3CmZp87tv1Gt1nLmTK3P2oRIEXR7Xl/oEt2P/QII4/fhHfXNOdo49e5K1Nvfnu/ujVGr7cMJ5NWV3QhCwgLuZbYkLV3h/brb2buUPgHC7KLHYWHMznhUvaess9yZzzzC7LKvSKEF33zW7avrLK25H5ilMuyyrkkg/PLSjLuEuYbsspc1czsbgFebSqam+khy/BxHmqnTUAOJ0SBFEqruuhXXesiDeWFQNw8afLOXi2wvtM27y8ijfWHfdWNHEIRtSSxIT2ejKmDnFXWfGJpLE6QSsJbo+4IFAaGsGh42c5dSZQX+R8lNlc9LiyL6dPFrPk+x0XvL/CXxNBENS4nRZfybI8t+73six/IMtyD1mWe8TExPz+DVRQUFBQ+Evya4l8u1wuTmYX/mqOixMFZp7933KaJURyzegeft8Fi4qeuW4LCWEmxnUOvig0K/MApTYLVcXR3mudsy+PTq+u5dkVR3h8SSYxsSWIokx5UTzDU2NYe2dfHhjYgrnX90DyqWQi1JYxTYnUU1W7SFXjcPHaslRsLjPLc+/HbM/zlumssDr97NwKq9MbffziqLZeAU4PDp+g6Gq7ixqHiyqbE71a5MFBLTn66EUApL+5niqbE6tTRq8WubyLyJtXzyYpqojSwil8e9WEOkL+gRGvdZ9/domFFy5LomefXThdIts2d6XK4o6K1kkCJp2Kl0e3AwSmzN1P21dW8+XO03x2cA8fHd7K5FaduKtzr3qf16CZG1lxcBdVNhuvTRpJxtSh3jZll1iwOs4tqlrtLrbllPHd8j1UWWy075L6s9/VstIq1iw7wLDRnQk1Bteu+y0jmOvjjzjn743iuPgduNCQ9tgm4Vw6qSdL5+3kxLECwD0BL7PYqXG487l257onv1HhIUy4qBMrNmci1NRQaXPidMre7wH6tEjkyh6dCZHK+XBCS0w6tbeKhseRcnGT9thK4jhScxIpPL/efLXeUR15pcu9VDvstO+5CX1EHk6XO23jtcvSvI6Kuj+ctHhTrUdX5JuNo1mb0YtDZbNZfOIJFmW4lY+7Job5nWvmxmxeWXMUg8ad2gFgUItIosDG7GKqrA7vtp4Oqa6TCAgodfXRthyu/moXd8/bj9XhcYrYeX3d8QAV5WBOpy35x5FdAkVlOmQZZu/JC3B4FJitfLnzNDM3ZjPig804bG4RJlFt96bALMsq9OYYenh2ZBodE+IwW8q9XufNd/dH5zMQqSQRrdpdI7wm1K1cvXlfNheCp+N/fH8R5ggjs7/YiMMeXKdE4e+D4FYi+wg4JMvy6390exQUFBQU/j78WuHqxw6fpbLCQoeuzX5xmwrMVkb83/eUm6vZKJvIKqrySw+oO9n+cHMGu3POcHm3TgHRFp7jPbFuE067mvIyHQa1WwTyWHG1XxW7/q3dC2Pr/z0KgEEzN/Hm+myu/XY3snwuPsJqd/Dy6qOsPVaMVnXOXj16NpFQx32U2Y6z6NR1HClfjCzLQe+xx6lxY89kQjTudGWdSkTvczyVCDqfy6m2u3DJMoVVVvq8vQGLj4ejWexxerSbRpHlLDOXX8GLy0IZNHMTB89WeO+dr63vSQ9JidQjiW59N0mElnEym5zfIUkutm/uRo1Fj83pdszUOGVkGfLNVpwu9/0vs9i5Y9FG/rPjJ7pHJ/FcrxEBAqq+z0stl7Lx2AkeHNaf1rHRfm1KTwpH6/P8tGqRDjEGvl66k35dUhjbs8XPflcXf7cdu83B2Ct7nX9jhV+Vv15s+F+UCw1pv+bWwSxfvIfPZq7k6deuanDbm8b2ZtHag8SWFVBsaoLF4eKe+Qe89ZkBHh0xgA3Hsnly4XIKHClIosSLo9pg0qm9oW3mglh0Qg3h8QX0a53IG8MGB3WyGOVYNqxNp2XHnXRP30vOsSp6NB183mtyC2cKmG1OPl0/hOLKECakryKz8CS3zbmS5bcOxqSTvEKfVqeM2inz0ui2PLrkEAa1iCAIOFxO3t9yyu/YatW5TueZEW04cKaCDk1MdE00eb3PLpfMUxen8uKqo5hrnR5alYjdKaFTuz3QoiD4pfIEC72yqgqprgpFL2motjl5Y91xr7AQuB0SvsJHbiRkGSSVg8ld/EVXfTHp1HRqGs832/didzpRSxJp8Sa23zfAT1x17Z19yS6xkJ4UzpRnitm87wRXjOgWEO5YH74df25KAsZdh1m7/AAXjQqsZa3wt6IfcC2wXxCEPbWfPS7L8pI/rkkKCgoKCn8Hfq1w9d3b3BXjuqY3XK60MXy/+QhhFSUU6MOoUOno8/YGBARveoCvI0ASBf63cTsqJJ5aWcjEbtaAa1ibXYCkN2MujgQEXDLMvb4HB86aEcArGJ/aRKDKrCM53OQnnKiV3NGzHqxOeGPdcQQgRCtBbZSAVi0yoOlYDLoBbMh/jk0FL3C4fB7do+/g4EOD2X66POAe160yMWDGRiwOty2qV0u4ZMB57uTPrzzKK6uPoq4V5dCobFyevo6hHbZzpjSa91ZcTkFFBDang1CNFHDv6qaHSKJbYw8BNNoaXjnyPjXOGh5sdQvjVxzDVzJUr3I7fCZ3SWDGphPoVAIOqYbw5FM4rGpGRvdGIwU6jjzPK0LrwCQW0Kt5Mtf1Cp6ukfnwEJZlFQIwPDWGH9fspaKyhpvG9m7UuxrMprZZ7SyYvZXmXZqhizYF7KPw26I4Lv6kmMINXH5dPz57dxU7txxjeFpTwvUqrHYXWrXoTiGoJdyo54bL0pk5ewMxhmoKVQactWWMwvVq7w9uTJeevLdmJXrOUu1swqNLDiHLUG1zYtBIVNtckJ+EVutiM3vYWpTMGGO7gLZtyynDYtGxdWMPOnfNJKnlUZ7P+ISH215LUrix3smzp7PRq0QsDheLdveipErPjYOWcPuwzzhW0oZ3xnfi1u/2UOOo9UYL7sm8LLu9wzqVgKuOFqhahHfGdwLwy2cDCNerWT+lr7eM6u7cCreSs1rEYnfnFzqcEmrJWa/X1eN0KjBbWXTwLCerTzOyeQcGSS14Y93xgOooFpvTz3PtuRDZJdK+id6rxzE8NQaTTkVFrYPDpJMYnhrDVnUlVoeT40WltIlzV3qJCdEyc0In736xRi1p8e4OM71DMovXHeRseQ0dXlvTqHw934G6Kj6CpBYxfPf5RoZe0qnB8mC/BY11tij8cmRZ3oBf8pGCwh+D+NCiRm3nenXMb9wSBQWFX5NfQ3tq+8YjNGsZ6y3X/nOpsdlZ9tNWHCo15VFxCLWeBbPNX3POM4HNyi/ig7WHKLRG4RCFoJp0Tk05gihTXe62wWRZZvgHmxEFEb1G4OLWsdw/sAXb7T9ikNxRF27BTvfQa60nuFUGbunVjJZRBo4XV3FjenKtTdSEEYlvc8z8I7uLP2RZ7j2EaZrTMn4kBt3FQJMAO8rT5unjOnLbnL1Y7C5A4OXRbbl/wUHsrnMRH3YXuLAztF0GY7qvJTzEzLpD3Zm/fSilFlVty2r/X4bKOvfOdyFMrxLdFoaqivY9dlJqd/JS57toa2rO9vsSvAtwKklk+rgOXns2Y+oQ/rvyAAuL1gBQkN0MffdAzTnPNW6/px/XfTYLh1PPyE49KKqyBbUfY41arunurh6TXVDBJwu30a19Mh1aNfF+X9+7Wp9ey/ff7aCitJotrQx8P221d9FSsWN/HxTHxZ+Yidf0ZeWSfbz13ELem3UnmQ8PrfeHcdXIbixafxB7QT62Ji0QRMFPgDNj6hD+1b0Nr6/eQ7i6GNlhoNoV5s2nq6otvXn/wBbc1Gsw926ax73rF1Jtc3FFmzS/c3lrbKMlO6MzNVVG5NaZXLvxJZ7tdAvjP8wMOnn2dE7Lsgq5Z/4B7E4XG7M6UWnVc8dF86nWPE6/JtMwaFRIossr7glu5wqA1SGj1wjYbOfao5JEcsstvLz6KDV10h2qbQ5251YwPDXGzyM87dL2PLk0E6cLQOCKLglMSu3md299O0lwqz2L6mp6DqqmuT6Rof1SmLHpBEZB8KuOEui0AK0EgujiaIG7I/Tcl6xHhvp5g2ONWppGuAfD/AozbeKig3aevu2Lj4ukxuZg+YHTjRaBretp3vZTtF8Z3gKzNaBdP4fzOSV+r1rXv6SNCgoKCgoKCr8PRQUV7N91kmtubbjyR0N4xvWMnYfIKyjn5XsuwxpiJCVSz6CZm7x2m8e+80xgHzy0F1kWcAjh9aYPnKgqQiWIqJwGbLijg924bb+fDhey9ngJt47SUmQvw+J0R21MH9eB277bG9RGBPd8f2xaHBM+24HdKfPpjtNem0gQRFqZRtM8dBjZ5uUcqVjEruL32FX8HuHqNL7aFsfBnBYUlDfh4NRzQvPDU2PQqyUkQUBGZlDLKGZf253xn7l1zSJDyxncbg+D2u3BpK/GILbmxR8mkZnnjgw2qN2LhnqVyJPDWvP8yiOEaCRkZFIi3doOnjmBQS3idMmYjDV06LEDlcrBo63voK2pOeBOGQ8mXg+g1cpksRtJ5aTsZAuMqhC/BVp/WxEmtLFRUllJsTOZ27/PQC0datB+LDBbGfHMfCJqbCwok/g/c2AkTV2CFVYY3iqKOZ+txxweSm6IAWOt5t59Cw78oXbsPwnFcfEnRqtT88B/xvLgvz/m47eXc9ejl9Y7EdWoVTx96whueeZbroqR6TuoA1Pm7sdsdbhrJG/MZkq/FLY8cDk3f/E92rIiztoMgJrq2nJGnuoYABu2RaJLKOXhLYtRCSITU89FXvhOesssdu74Xqaw2ECXHvuZdnwGhrBOnD4THnTy7PF+Dk+N4emfMnl/yyn2nmzNK4v/xVNj57G19C423fsCWflNvB3b4gy35oan7NItvZvx7qZsb1SGxe7isSWZQOBSss0pc8/8/Uwf19GvA0qOMJD5sNtp4FSr0KsFBtdGVXjy9Dw1qhHgpVHtsDtlDCa3CGaVOYzYFv6TfwBJdItnyrLMQ4NbkRDm9rYfKCxhScVBLFYJoVYEyJOH5/EGe4g3uVcYzlZUAsE7z/SkcG8nHmq30BSIEJx+4Y6+Cs3B8PU0Dx7RgfdfX8pPC3YR1jSKtq+soszijgQJ16vJfLjxHbHHYPDcw4Y689+z1nV9bf2jHScKCgoKCgoKbtYtP4Asywwa3vH8GwfBM66Llmqanz3BoPQ25Is6sNiJCQmvNz3gdGk1i/ZlYnWFIguqAOF1D/uLz9AuMpYHRnXgrnkHAr6vcbgFML/eXEXHHvD+zr38q11ntxNBI6GS3PoPz41si0mnJjlcx4KD+cSGalhwMB+rRzxTJbIsq9DPRlSJWlqHXUrrsEsx2/M4YV7B3qJljO66itFdV2G2GFiRt5g2UR2I0LREr4pkyW0xXPXFIbQqCzd+/ykRhkpuGniaVk1O0SS8BJcMe0+2YnK7GziW34o9p/biccLo1WKtTQkvrz6GyyVTbXdhUIsMmrnJazPNvb4Hg9/djNFkpmP6LoxaiSfa3EWPOP9Un2ARDjUOO7esmsPJyhJmDBgH6WEBz8bXVozXl7PuSCHD2nfmk10WLI7z248rM/IIqyimWBdKlUrXKFszmJbI0vk7qSyp4kyvdhh1ar9Fyz/Kjv2noTgu/uSkdUlm3FW9mPf1FvoMbkf33i3r3bZjqwSuHNGNb5bu4pJerf1KL/nqMHx63TgmvP8VHUKLuHXQMDo0ifCmUnicEXaHSOmxZJq0OsnDWxeh1wqMatY24JzJ4TqqbU6qCqPZvK4XE0Zk0aH7DgyH21KU27xesZvCKiuf7sjx/n28IBGx+lnU4a+wrfR+BiY/Q2zoAMDdeagkEb1aRiWJ3JSexGc7chAEZ2342zm0KoHreyRx8IyZzadKccrURlUQVITnvgUHeHayky8P5xIjVXgn2jJu0SBPRMojP2SgliSiIqoBGNE8FfDvhA+ercDqcHm97y+sOkqYToVLBo2hipAk0KCF84gARYcaACiqrPJef922+3biosot/FlRXukT0bKfKXP3N3oyHmrU02dQWzasOkSzMT2w+txXq8PZ6I7YYzBYHS6cLhlRcHvr6+vM/+i603+040RBQUFBQUHhHCuX7KNV2yYkNY/+WftvyynD7nDRtPgsDlFi5ikHlpO7gXMLMcHG+a92HkIUnBTbQpFUAtklFm9Kri9Hy4sZkJBS7/l1taVOC4qNOJ0in2Su47nFJWRMHRLUaVJgtjLu0+3exSIPwfTqfDGqE+gYeR2ibRz9Z/xA+6bZtE88ycXtyjhY+jUy5yKQ/zPRf99qq5ass0lsyOzC1mNtqLFFMSwxDQG733YCMjMmuB1Id3y/j+pa27Da7kISRa/NtPJIEZFRJXRL34vDIZFYMYazxSEUGBqObLC7nNy1bgHbC07z1oDLuDQlNeh2HlsxSmvBKBbSo1kzvt5v9UavOGWXNwIkGPu2ZyDIMmURcX62ZkMRt3Ujk40SfPnBWhLaNOG1py7hRGmN9zh/pB37T0NxXPwFuHHKMHZuPsbr/zef92bdidFU/4/zjsv7syvzNG99vpJVj17OZ/sLeXfTCa8Og6eTeefKMVz/6Rzm7dzM2OsnEROi9UulkEQBg0qDOacFnXoWc9e6BbzS186klh39VqmdLpdXRbmqysBgzb84GrIcoV0GN/Y3EhEiBXQMBWa3grHVcS7HLkQjMaJVZ4z6D1iZ9xBrzjxGz5j7aBc+qXYL2ZtgFxNyLuXkrnn7vRoRAFqVxFe7T1NpPTfxFgR3uFzdAePLnaex2JxIogOrXWL2njzvJDZEI+HyyQGUZZg+rgP7nPmcsBtoGhbqd98911TXkWKxO7E5ZaIj3E6Imzq15fruLRrsyNWShEaSqLa5B5BgAkL+YlKgUUsUlVUSa9QSrld7y91eyGS8c4/mrF12gOaSWxTKMyBoVVKjO+JtOWXe1QIP9VWoqe/afk/+aMeJgoJCwyhaGAoKf388dmJcjZWjmWe48+FRP/tYKZF6TFXlhNprOG6KwyKfq8rW0EJMeWUpsiwgqYwN2gNmuxWnQ2Tq0gy/zzUivD62Ayadmnvm78dqFynMjya+aS5nTqV47Zwyi51lWYVeh8S2nDK/xSJN7Sq+zSnjdMnnteGySyw4nWFsPtKR/Se7MLZFdya2jaDCfhqrq5xjxQU88eNuKmo0mGv0VFhCKDKHIcsiBo2IJIhofQTuDRrRrXkHCIJIuF5NSqTem7INeCupePZJbVlMT+0uqqoM7NzSjV1U8MXmXQ0unjldLh7a+AMrTh/l2fThXJYSvPQsuG3Fz65oy/2z52OXtSw6qvGrzOJy4RcB4qHAbGXOpixWbT3M5cO70a57O7+5yPkibn0XJ997ewXlpVVsbNOcRe9u9tv+j7Rj/2kojou/AFqdmoefncC913/IOy/9wKPPT6xXQFGrUfHi3Zdy/VNf8eKHS1kmRFFTOwEVa2tFA3RNSmDaxEu4b/ZiHpyzhOEde/qtPL84qo1bvNMpsW1nDEN7a3ho4w+YbVZi5CTvtnVRC1qe7XQrX538kW9P/cSZ3QV8u6QllhqNt2PYllMGss8+osAPN6fX/ti1jGg6g/Vnn2Zb4essP7oHlfUGb81qlXTOw+tJOVmWVUhFjR2TTg3AzbN2+7Xp5vRkAK9mQ2GV1Vv5w+JwolY5cLpUXmXjUI0EAsyc0JEbZ+8F3OkoXRNNnCxxEFUd6IHfllOGTx/qRa+W0KpAbajCZdPw/qYzfLz17HmjIAwatddxAYHhdXUn/Lf+J5fisvojNBpD+07u+5R/LN+bRgMXpnGRnhSO76sZopF4YGALpvRLaVTKyu/NH+04UVBQUFBQ+CfjO4FMyTxBolpiyMifnyYy5O31JJUVUKnWYTaY/OzNhhZidp7KoU+LJCb17FGvPeB0uah22Plq51ksdv+IEFEUmdQpgVij1mubPvSjjeiY9bTpuI/kiKF+AvLhehWZDw91l+30WSzSqyUEAbS1GnXniw5ITwpHoxL9dDskUUOEtgUFZitjP8inxt7Rq1VR43ChlQR0Gon1U/p5K9R5jrn1HncVO1l2n7/MYmd3rh2DRqLK5sSgFnlwUEum9EshJlTDrFPL+PrMYlqENiPcehGjh4bwzLIsLA6n3+KZb/tjQjU8tW0ZC7IzeKTbYK5t23BVvKLKKp794SdkJE5bmqBViwgCXqH9GocLtc/8wHO/2r+yiqa5xxElNVdc0oPk6HOLjhcScVtSZGbxN5spjovkjF6P0envUPoj7dh/Gorj4i9C63YJXH3LID5/bzVd01MYOa57vdsmxobz39sv4cHX5xOrt1JqjANBoNrqILPA7O0QRrRvzT1DB/DWqvXu0qOSxjvZBXDWCk0aBRVXJQ0iXLeF/9u+gmtad0ctneswPBg07monoiBybfPRNA9pwrRDX5LWM5/tW7pgt4d7OyWNSiQEdyqGWhKY8NkO72ReLeqJFR7jg73PcEnnVRzIOY5BOxEwBEzEfTUiCsxW5uzLo07QAwNTImnx4gqvBxlALYBdBr3GiijA4BZJpMWbWHtnX3pNX4/TCVPm78egFt35fBqJ7BILVQ4LoSpDwD1314uuLbsqy1zXPYm7+jcnJkTL+hOFPLrnAOaS8EZHQejUKmrsgY4hX3w7yujwEIrLq72f/5zJeLOWMWi1ao4dPsOw0Z0DtDcaQ6xRy+a7+/uVbm3IafFnQBlwFBQUFBQU/hg8E8hKi43I3CKad2mOKSzQzmrssULLilC5nJwMT8BW67QwqEVeubS917FQl9JqCydLyujYNKVBu8kbYxxkoWrpLb38xOg9i2tfHDGySr2Qj07Owuo4Z1dZ7S6vLVh3schzLR5798udp72C+5LorhbSNdHkdTrUZ/NtyynD5nB5Uzxk3KVbd+WWM7lLAmnxpoB0GI+IpkdIf8rc/YjCudRpi93F5C4JRISIvHH4K1YWbGNwTHf+lTCRL3ee4b/LsrDWOmEkEUxaiQcXHuSjbadqnSHw7xEi3x7bw/D4Tkxs1rXB6IdKq41bv5pPjc1GhdwUvUaHWhJYe2dfdudW+BUi8J0fbMspI7y4AK3dSk5MU/YVVPk5Li5kke/915ciu2TOtEv+XSJ0FdH4+lEcF38hrrxpIPt3n+Sdl5fQun0iLVPj6922f9cW3DyxHx99v5GmgsRpYwx2GQa/u5n9Dw0iLd5EgdnKUyuK0MgxbDh6nPGpLbm0S09aRYcwYMYmr/dXEqFfs2guaz+e/25fwReHdzJhcBuaudrx1NIj3nM+PqSVX85eeWEidyb/m9eOfEKfAds5ur+r94f+5tgO7M4t54MtJ6myOf1y5QA+3Z7L7C1DySuN5voBP/L42M9RWR7CqA6eV+jp9Cw+VUXUosAzI9tw7be7/ZwW4HZaAMSHlQDw5Q4H41pb2Z1b4betQSP6iV3aBBeCSAANOQus6lLsshNnVXijOzxJFHHWrfvaABEmA3mF5X7t8Z2MN6YTFEWRmHgThfkVjT5vMBpSjlZQUFBQUFBQ8OCZQCaXm1HbHeTER7LuWBEDW164xkWHGAOR5lJKtSFUq93i6BpJ4L1JDS/G7DqVD8Dnuwr5dM/qeqNi1aJEhEaPXVObUuyzUBVMDyPWqOXBbsNolgOfZC+kQ9dSdu1si9OpQqsWSYnUszgjn/Sk8ID2eaIUPLat70Lhrd/txepwL6ppVSIZU4PrdqQnhfup1osCXPvtbgQEZmw64Z38g390rSft2OF0UWlzolOJaFWi95wHigr49OxiMiqOc22z0QyJGETbV1ZT7pO6rVOJPDy4FUPe3ezj55GJTizg22NF2MpimHUY5m5YzZtjOwSNfrA5nNwzaxGHzxby7r/G0jY+wc+2TIs3MTw1Jqi9qakyE2UupjQ0HFuoye9exxq1jV7k27YhizU/HeDa24bwyVV9fnPbVhGNbxjFcfEXQpJEHn1uIndc9R7PPzKbt7+4lZBQXb3b3zI2nRNnS1m5MQObpKbAEA7A7D15/N9Ik9fLXWINAz2sP3qMEI2I3K4bzlp9B71aZPq4jt4fzTPpF5MYYuKlXWuIVRchStG4nO7X6MmfsujfIoq2sUa/H938W+7mg1Ofo+m2k5kHI5j+gwqnS0YShXq9nS2iQgDYcLgT+eURTLl4HpLpCT7fOoL7FnQjw6fcE5zz2Hs6dr1KRK+RSAzTB/WMe0gILwMgvzzCncJSh6eGpVJQaeOjbSeZMnc/HXuU0iPZv664r1Og7sBRYLYydeVGJL0KpyWUGRM6Nir1QiWKOIPlntRDhMnAgWNngn53IZ1gTHwYhWfLg353IShRDAoKCgoKCgrnwzOBvO+Oz8jVqlludrH43c2suaPPBTsv1m/LRJJdlIRFeT8zaFR+pTWDsfZoHgDlVgmdpmFdifgQI2mRIVx5UfdGT2AHhg/gkKGSrfGrmXCphd7a0QxPbteoymtWh8tr22pEAZtL9qaAV9mciD76dXXxjYKVZbfmGzKYbW7HS6/p672LdXUryKVE6r1RFlaHC6NOQiOpiIgsZUHFJ1hdVh5tdyNtdO2ZsTGbaltglHBRldXPaREen48hqhhLSRTms7HUOJwYtW7PSt35gNPl4vEFy9h0/BQvjhvOwNbuhcu61xnM3iwpr+atz1fSNC6CR64ZTpt4Y9B7fT5btbrKytsvLia5RQxX3NgftVr1m9u2imh8wwRZO1b4MxMeGcpjL0ziTG4pr/3ffD9xmroIgsCztw4nrW0SzcyFRFvKEYDJXdz1mX3DpGxCNFMG9WVpxhHm7NiIRnJXgtCrJbommlickU+B2YogCNzeoTdvDbiMUmcZ8a2Oo9bWeM/57qYTfj86q8PF8oPV3JtyGyVFUWy3LSO2eQZmqx2nS+a5kW25b0BKQNmpSZ0SCNOpUIkCR84m8Z85N3E0vylX9/+BK/rM56esk942FZitlFnsSCIYtSrC9Wrev7wzGVOHMDw1Bo1KJFQjYdCIvHBJW0w6FXq1SJhORdeUo1RbdZRVRZGeFE7XRJNfSdWXVh3lvc0nqKhxYrY6cLoEyq1W7/cep8DVX+2i/bTVFJit+LLxZDGqkAqqyo3U2F3syS0LeE6eEqx193VdgOMiJiKE0opqbEHSS3yfh702L6++c4aEh5B7pizgcwUFBQUFBQWF3wKd00lxZh5n4qLwCGW9u+lE0G3rs18AftyQQefURDL+O4bPr+rK51d1bVQ593Cd+5w6jfa8UbHxehOZpUWNdlp47MRpczXs2ZqOJMLKmq/5JHsRLux+tlnda3Q6z4mdC8D/jWxDuF5NqEZCoGHxcw+eKNhvrunO5rv7u/UwtCoEwZ0S7sEjXOohu8SCQSMBYNBIvD2uI49McNKp5zZCVDpe6/oAbXTtaT9tNa+vOx6Qpv308FRuTE+utallwpvkY4otxlwUQeHpODzBGS5ZpmuiiYypQ/jq6m6svbMvW06V8vDcZSzen8mDw/ozvkvaee+zhxqbnalvLsBcbeXFu0czoUsi2SWWADu4Mbz32o8UFVRw35OXoVb/Pmv9imh8wygRF38CLjSXqVP35vz7nov54I2fmP3ZBq64YUC920qiyHsPj+f2l76HrFxevDTNmyayLaeMtXf29RPmMeq0vLJsDT1jI7mmz0A6J0YG9VKOTWlPcmg41y6bjdgqm+JTTbGYjdzRtzltY40BpVjfWH8cma40b3OQlq1PYAyp4XhGZ55cmonThbdUq+/1vz2+IxU1dp5cmondGcbrS65gQo/NXNJlPWU1d/HRxuHsO9UeEL0RHDMmdAiIaKgbCnZTejLLsgqRhXJk42G0zpHsf/Bir7pziEbyhsbZnC6/KA7ZpUKSzqWjnM8zKurMCKILS4WRGoeL19dl8/H2HDIfHtqgqrFLlpHqEWANRkJMGLIMZ4vNJMdH+H1XtxNMidQHPWeB2cr3WUVElVloP63+UEkFBQUFBQUFhV+LzesOgyyTH3vOfrmjb/OA7RqKIM0tKOPY6WLuu3qwn/5ZYwjVuifon17ZlX7No+q1fQrMVpbuq0YbbSbt9WUcfGD4ee0kj85Epc1JZb6JOYu60rFTFnLTrXQfqOHkkRYUn2nmJ8LZftpq7z4eDBqJtHgTmQ+7bdqUSH2AsGZ9eCILCsxW3hzbAYDkcB2D393s3UYlin6TZI92mygI6HV2MtU/sKc8g/TIDjzY9hpCVQYWZ+Rjd8pe0U6nDLIso1dL3NgzmVijlj0PDmTqhqVkWooxF0VSmhePb/6K0yV7K4KkJ4XTftoq9PJZQqQyruvdnVv692zw2nxxuWSe/eAnDh47w4t3jyG1WSzgjh6RkTGoRWTkBkunetiwKoOfFuzmypsGkNY5udFt+KUoovENozgu/mB+bi7ThKv7cPhgLp/OWEmrtgl0792y3m01ahUzH57A/a/O46Nv1xBh0HDrypygE9cHlpxFcDXBWXiGD9au4OreA+qdmHeNSWD5uJu4aulsxJRTXN6sBwNaRCEI7mO+vPqotxRrqEZCEEROHe6IbAulWephOjRVs2B5G8wWAb1KZM6+PEw6tddZ4RHb8ageuzvp3pRWX0J5zVvcOHguB3P2sHDXYLLOxqFXuwOIGipnBO6qInfO3ceITuu4tJuDlsbLvPukJ4WjkkT0ahm15O6wVaKIJApMH9eBHG0JhyqzvMc6n2d0w9njSEi4LOcEgXwFmepzfDhdMqJ4YY4LgLyC8gDHRd1OsL5zbsspwyZJqJxOHPb6S4YpKCgoKCgo/PX5s4gAblhxkLiEcBZOvYj3Np/kjr7Ng6aJNLRYtHr7UQAGda/fHoaGr/mStrHoGlhZ35ZThrXKgDYaZE1lo+yklEi9N/0awOFQsXtXe+JzkkhJPUzrtEySWpxkc0kkl4X2PidW6uO0AHcgiqfNnnMG09Vo6Lp95xtvju1ASG2lEACn7B8y4bEd5x3byzrLQg5UVHFLi/G0kroxbcUpJndJCLCBfRdDARYePMOKop1kWrIZGpfGd5kiEJj24qkI4pJlr9Oi0hlJx6TURr2jBWYrW0+VkrHjECu2ZnHXlQMY0rO197tBMzchy7jF9tUig2ZuCli49Tve2XLefG4hqe0TuPbWIY2+x78WSrp1/SiOiz+Yn5vLJAgCD/xnLCeOFfDS43OY8fXtxMaH1bu9Tqvm1QfGcd+rc3nlo2XoI+IpUYf6nXNZVmFtmSYD1fZEjLoiZq5eTogUB9rQoBPzJiEmfhx7PQ9vWsJ3J3ZQsbaCV/uOBuCT7ae8eXgqSWT9FE8ncREHq/fxRtbXdO5VwrbNXbFY9Nw170BAu41aFdklFu89iQnRsiyrJW/+eDN9U7czqutaHhv7MYdym7F0bzr3LQgs3+nb6QEM++AnJvdeyYC2+9iZncrda09x9NHWPvvIILtFjM612b3v64dkLE6b99gNeUYLzFa+PXQYp12PzXHOCaFVn/Nq1+f4qLbZySmz8uXO043SxGieEAnAkZxCendqHvC9bydY3znTk8Jx1ZaU1TmdSniagoKCgoLC35Q/iwigzWpnz45sRk3owaBWMQxqVb8ehWflPDRIikTWyQKaRJu8CznBqO+aQ7Xu666oqaGiRl3vRDk9KRzRbkB2iqhCzKRE6hucWHsmzZ4AWr1KoMYhY9BIVJSHsXljd6Jjikltd5QPTn7DhtKtXN5kDGpJILTWqaCR3NHTL41qd4F31p+68426CPhrZVicVr7PX8TiinWESZE8kXoXIXIMnV5diww8t+II+x4aFGADe6K6209biSbuJBpjOTe16cVt7fqwcOMaRMG9GPjcyDY8ufQwTpf7WXRLNDFt2Rqv06JGiKVFlOG876in7Gl4cT5R5hIuGdCBa0b1CLhuj4Om2u5CFAT6vL0BASHguNYaO8889C1Oh4tHnpuISi39ovuu8OuiOC7+YH5JLpNOr+GpV67gnus+4PlHZvPq/25sMAcrRK9h+tSJ3PfaPOTM04gR8VQZIoOe0+rScdOAYazK2I4l7zSTOnbk8RH9gw5qepWa6QMuo0t0Ai/sXMXYJZ/xr6RBOF2e70Wmj+vgV3Yp1tiTKG04/9n3AX0HbmP7lq5UlJvqHFcMqGHdftrq2jJLAiNTrmdM07tZeWoW8eELuH/Ud1RZdXx3ZDl9EoeQZGpJtTWM9Df3oVObiQ8v5d997Tw1YT5alY0fdvdm4a7+iLhYllXI8NQYXl59lBqbkxqnjEoSvU4Tz7kTWpSQ2LyGhxYe4Mb0ZNLiTfV6RteeKEDU1GAuPTcIvziqrTd8zn0fAh0f+RU1lFZbWH6klG8P7g4QTApGhMlAQkwYB4+d9X5W32Ban7Ml1qjl9Su68daBbBZe2VkJT1NQUFBQUPib8mcRATyw5xQ2q6PByGHwXzkXBLzaaB5bJ6egnCYxJu+2dW2cArOVGRuzsTrcuhG+15wY7t5vf24RV3ydWe9EOdaoZe2d/bn4+xOoQ8z0e2dDbTSF4K3uEUw4vtruIlQjcf/AFkzukkB2iYVTpdXcNe8ARYXRFBVG8fQkFYctG3jm8HTuv7wr2vKuPP1DDi6Xe7L9yA+H+M9Ph3+2g6nufKNrognJJ7LX197eU3qY6Ue+paCmhLOnmrMpqzXLfjrC9T1qvGKbMh6x/7YB783aEwVomxxHHVJJdUEC3Xq0J86kC7A9J3VyVwnp0sTIS0tXsOzQUW7q25N2ia3olRzBsqxCb0UVnUrk5dVHecSngiHA1lOlRBadJaKylNLQCLr364Tgk2rtuW6PI8igkUAAWYZKm/+7L8sybz2/kKOZZ/jv61fRtNmFV7ZR+G1RHBd/ML80lympeTQPPD2O5x6exQdv/MSUh0c3uL1ep2b61Ak89OZCtu0/wXUDmhMTqgHckQrhehVWuwutWmRS52Ru6pXC04tXsGDvfhyOKl4aNwKTPrCSiSAI3Ny+Jx2i4rhjzXymHVqM1pQIFWGoJSFA0bnAbOVUnol7mt3GC5kf0rvfDnbv7Ehhvnu7MJ2Kt8f7V+DwqCt7vKaP/HAIk64T3ROvYeh7zUhtkkmbhCN0Tj7I/opt7K+t6vnK1f5tPXK6OV9tvJgzZZ4OSeauefsQEPxKOUki3k7c03nW2EAUZd5Yf4w31mWzr7a0bDAMITUIAtiqz9Ujr7Y5z5vKsiG7CEEAl+xOffEIJp3PoEhrGc/erFxkWaaw0ub1UnvSXOqWugp2vOZNa9NMqhVxTgUFBQUFhb8rfxYRwN1bjyNJIh27NWtwO9+Vc080bkyI1mvrtMwtYnj3FkGjKgCvbkS1zekVtfSUyFQLbrHLpZmnz+vMyS6xYK8yoTFWUC1X47D5Oyp8t09PCkcS3QtxKklgSr8Uv6iEJ5cexupwolVJ3JE2hBD9EL7LWc7802uwOvaQmNKc40dTAPG8FUTOR935xrKsQuy1UdGeCoJOlZkXMr5kY9FeEvQxjA27locOFdbeD5mWUQZqC5MgABe1jvYrMQpQUF3J/44vR2WopOpMEs7KSMos9qBiqrFGLYNbhHPvdz+w8dhJHhsxiOv7dHMfx2zlnvn7vTpzNQ4Xb6w7zifbT3l14uwOJ5vW7CKispRiYyRlUXH0So7wOq48OiCetBDP3ymRegbN3IQoCH7v/nefb2Tlkn1cd/sQeg9sc8H3WOG3R3Fc/An4pblMAy5qz4Sr+zD3q82kdWnG4OEdGtxeq1Hx2K0jeerdpXy+cAtVVRYevM7twc18eGiAE+WlcSNIaxLHK8vWMf79r3hj0mg6NY0H3B3LsqxCwO34SDHEkZPZHG38CQxNTtChWXNeHzgiIIXCd1BZdOs9vHfyM3r22ktnzSDaqnoyok1s0BA9X73KKpuT277bi14jsfbOAcze09Ldqa110DqulCeGR/D1nv1o1BWYLSEUVETw1piLuH/VCax2GYNaxiUL1Dhc2B0yDpd/PqHHq+vXedaeX5bd/5i9J48p/bRBHU/HK4oBsNW4P/Ot6NIQTULdx3bI7p+nRhI5eLaC1UeLGJsWR4XVGdTJ1Tk1keVbDnO6oIy9xTbv4At479P5PPVNEt2Oi9xTxedtZ2P4s+TPKigoKCgoKJzjzyICeGh/Dq3bJaA3NHx+X0eLJEKZxe6efNfaOrIABZU1AZEky7IKOVJY6RW79I18GDRzEzaHiyqbg1Yh8O2uY0hinJ8zp64dk54UDjVGAPTGSsxWrV8bAxFqbcdzBqznmJ505JRIvfcco6JHcDirCSvKltO67XESmp7h0IE2FBbEICM36GCqz+bynciXWezM2ZfHEz9mYql1XITo7ZSFbOX2HRuQBIlrm41mfNMhlFfLPCat9t6PSZ0SGNQyitl78riodTQTPtvh5yAqdpRz88o5lNksvNV3HJUVodwz/wBT5u5HEt33wJMakjF1CLJs59av5nG0oJjnxw5nYtdz1UO25ZR5I7d98ejE9U008uj0RezNyuVfo3vSomNreiW7bViPk8oTYeEbDeNZbKz77i9ftIePpi9n4MVpXHXzwAbeRIU/EsVx8Tfh5rsvJvPAad54ZgEprWJp1iK23m0LzFY6vb4Ou0NHXFgU36/cS2FpJc/eOSqoE0UQBK7r3ZVOifE8MOcHrv54Fg9ePIBL0trTbtqaWl0MCNermD6uIzabmuKjzQiPL+B4zAnGLP6CJWP/Rcc4d4SD76CiV4scy5d5v/dDvHH4SzYUrSEmwkJEyOSAdscatSy+Kd1PBdnicCGJArP35DG5SwIzNp1AENQUmeMQHB1Ylyl5vbU6ScBiiyLz4ZbeDnzQzE2oJRFJBJcNPKJBAAWVNm97PZ2nJDlxOEQ8A9BFraNp+8oqb5SKxwsMsP1sPrJTxOVQoZEEXr8srVFCSseLS2pvvBaDWsTucvLYkkwA3lh3HINaRKcOdEL06uBerdh+4BT909uilgT0ahGL3YXF4UJVK37UkJMsPDKEsHADJ44WnLed56Oug6ohISQFBQUFBQWF35c/WgTQ6XCSlZHHJeO6nXdbj6NlWVahz2RYQBLdemhOSQ02e4CD4575B7A73ZEWoRoJjUpkSr+UOiKYAjaXBkmwMn1cB8L1aq+DIJgds+bWIVy/5jT2sErMRVEAtRNzf9z2o4zF7kIlit6Jct1jeqr3eSb37vZ2JD4+kVbtDtGj9x4KzkaTldmKwiprUBuqwGyl7SurvREcnhTj+qqUAGi1Vlq1PkmzlFyWFjgZGtuT61PGEKUNq73ngRP8WKOW/xtp8lYU8TiIPtm/n89PrCNUrWH2iKvpEBXvLunqqrX3VSIIYLG7MGpVLNh/gq+2rMNcY+P9q8fTv5V/xI3nOXoqFHpSVLRqkWjs3Pj0V5SaLTx75yiG92nr3c/TLs+11hep4vvub1qTyevPLqBLegumPjMBUQzyMBX+FCiOi78JKrXEky9PZsrV7/PMQ7N4+4tbMYQEnxx6HQc2J4TFcmV6CstW7OCOF2bzyn1jiYkIDbpfl6QmzL3tGp5YsIyXflrLgn1HsNm1gFu4xlrrIFBLAnpJRdmZeKzVeqKb5nHVyi94e+BlDGnasjZ0zj3xt9hd3DN/P8NTh/JIuxtIOrmUb04tJceSz2PtbiRa618h48BZM2oRb71onUqk0ubktbXHmLHphN/kuLDKiugToqHTSAGKzL4dcmaB2esUEYCb0pOAc52nXiWiUjlwOs85Ik6V1VBmcUc1WBxurQxPCS6nUIPLocWoVXs91Y1h/dHTyDKY7Wr0arDbZb/vq+0uJFFkWVahd3CNNWpJig8nPsrI1gMnmXBRZ58Bfr+3QouvXkgwr7wgCKS0juNY1ll+Kb4OqlCNVK8QkoKCgoKCgsI/j1PZRVhr7KSmJQZ8F8xOiTVqCderz02G1SLTLm1PcoSB7etFNu0+6hdJUmaxM2Xufqpq00PuH9jCm65RV/vAiRatYPFLq12cke9NUTaoRT875vaRqXxj341BI1NtE5DlwMlxsHScuhEhs/fknVvM85ncG9Qi6VHtWLo+nITmp2jZOpv+g7fwzME8Bp7tw/gWXUkwnUtFPiew797fY4/WrVIiSk5i4wpJaHqGmFh3dO2ZvCbkn2zFx1PGEKVtOJ058NokDFGFvH90H+0iY/lo6CTiDUbvNp5UGbVKQBREVKKIQarkvTUrCNGq+eqmybSNDxRk9X2OKZF6dudWIMsyUkkxj7w2F1OojvefvIJ2KXFB2+WradFQKtT2TUd44bHvaN22CU+/eiUazS+fGivRxr8diuPib0RUjInHX7ycR27/lDeeXcDjL17uJ1DjoW5Hetf4XlyUlsDT7/7IjU9/xSv3jaV9i/ig5wg36HjnyjF8uW0PryxbT7wG8uVYqpwhqFVuLQtfj7izJorq06G07ljEjau+49rWPehhTOO5kW2YuigDi8OF1aeDvab5KJqFxPNW1jfcueNlEqqGcEunPqTFmzh4tsKv8kiIRsLhcnswqms9Ge7UjRQAt5Jz7XZPDmtNYlhg3WbfDjnWqGXNHX14d9MJ7ujb3EdI9JyX/8O8LdRUhRKqVTGpU4I3TSYYRdZKhjRrwuR+3fzCABvqxGRZ5mhBHnZCMGrV3tWESuu5SBCDWkQQZO74fh8CoPEJgevVsRkrtmbhcDi9dcyHp8b4nft8SuIdujbj6/+tpaKsGlO4IUgrG4fveyYjBxVCUlBQUFBQUPhncvpkEQCm+Ag/rYSG7JS6i19PLs0k8+GhWFrEsnTDQU6eKaFZk0ivsLqvvetxWkDgxPiTTbtYvG83avGcvZUSqafapxqFQS1SbXc7QU6e0eOUXahDqtC6TH66aB6CpePUtcE90cKeCBEQEAWBapuTlUeKkEQV2Uebc/pkIs1STtEs5TRLKmaxcPv39I1Jo39cR5qHJOCQbdTFKbtoFQfhkcU0MZUQFllCREQZkspFjUXLyewkTp1IorrKcMG2WaxRy/b7+vHAxh/YXZrHoIRWXBrXG9GpqbOlO1VGFETW3dmHjzbtZOn+TJpFxjLjqstoEmYMOLbvxN/TnuZhOl75dAVLN2XSrV1TnrtzNFHhIUHb5ftcG4r03bw2k+cfmU2zFrE8N/2aehd8L4Q/S7WevyvndVwIgpAEfA7E446j/0CW5bfqbCMAbwGjgGrgBlmWd/36zVWoS12vXqfuzblhykV8/PYK2nZoysRr+gbsE6wjje3eiv89fSUPvb6A25+bxWM3X8wl/drXe65re3WlxmXgpR9Xkqg/g9kRxnNjzqVJDE+NYfq4Dt5/mwwST2xaxhdHdvCJJQPL2eaoVSosDnekwl3z9nu3HRDTDYcljKf3fUSV6QcmLTnArEtu4vu9+X7tGdYqihVHi7FyblCZtuYYb2/MZvq4jl4Pc4hG4vmVR7xqQpvv7h80ZaPAbPXm6y0/UuTX2cQatUzsEsOsKjNd9L2Ze5H7u66JJj+hoq6JJu99yq2qoFdcUkBYoO9x6z6/A3n55JZV8NSIIcSEN/EOgnP25XGsuJqxaXGcKqvhju/3eUVKQzknCNWnUwoL1hxg/7EzdG3T1Nt234HofEriPfq24ssP1rBr2/Hz6qU0RN3BI5gQkoKCgoKCwj8BxZ4OJC/HnRo7es5+rILotZEaslNijVqmj+vAbd/txeJw4XS57ZqB3Vvx6uerWb39KDdclu7dtiEdD1/7aELnFBbv282hswX0belOW8gusRCikby2pCDgTV34aksZSWkCgq4Sa2koOlXw9IK6NliwNvn+DTBjYzZvrDvujZLQSiDIWm5qOZqXVh9GH55PQkIxe9VH2Fa213vsi0ZocTrd7VhYvZXZG6pwyk469HRX0TBXhJIkdiBJTOXNDZXYnWCpTaGpa5vVV5nFs2CX2kTise2Lya4o4e60Aby4oIK5zv1+dq5/qgw8t2Qle3JOMrpDG5677GL0GnXA/Qo28S8pLuPJGT+Qm1/OrRP7csNl6Uii2GD1PM89ry9Fe9WP+3j16XlEN4/hoVevPO9CXWOjKP4s1Xr+rjQm4sIBPCjL8i5BEIzATkEQlsuynOGzzSVA69r/9QLerf2vwm9IfV69ydf3Jysjj/+9tYxmLWLp0bdVwL7BQr9aJcXwyf/9i8emL+K/7y1lX1Ye918zGI1aFfRcYzs057Efm6NzFmBUlfLpxpXsONWeK7q1DhDs0UkqhkR157ONZRjiThOSfJi+xq4s2mnFYndRUePgtjl70ddqN6zJsLNpXTpt07Jo0eokzx5+h5vbToIV59p7Q89k1p8oRZZlbE4XDpdbdbjG4aKixh6w2u+Z6Peevp53J3b2CweE2sohNicWhytoZ7M27wAuXAxq0s67X91BbXduBfctOIBddhDR2opRZai3Ewt2T+ftyUAtikzo2pYwvc7bUU7qlOAXuuiHcM7L3zMtGUkU2LLvhNdxUZfzKYmntk/EGKZn24asX+S4AP/37M8gAqagoKCgoPAHodjTdTiTW4repMcqiH420vnslOGpMeg1EipJ9Ps+MSGKJRszuH5MT2/EcWN1PNo1cWvDHTpb6HVcpCeFo1GJGGsXXdbe2ZfZe/KYtuYYNQ6wVhvQhVYBYHO6Gj1JDebM8P17Sr8UZmw6gd4luyOTnWDUijQN16MSVVSXJnC0NIFDex2Ywqoxmap5ZEQchbYScsqr2H6qFHMZOGzRdIiM56eDFsrLwrDb1fQamMJ/LuvA7Z2t9UYl1FeZpe0rqyiz2AmJLCUyIZ9InZa3+01g9QErVTZ35T9fO9fzHMO1LiJVOezNsfLgsP78u18P7/Op6xDws5k1Eq/P2sD6DfsJM+q55l8XMaZfG6/T4udENsiyzJwvNvHR9GVURJjYkpLEkve2NLj/hZzrz1Kt5+/KeR0XsiyfAc7U/tssCMIhIBHw7WjHAp/LsiwDWwRBCBcEoUntvgq/EfVNiAVB4KH/juP+U8W88Nh3TP/8lkbXIo4wGXjnsct5d/YGvlyyg0PZ+bxw16XsKqoJeq6MqRexLaeMrDNnmLF2PWfLt/Dd7kysxFBlkwM6MKojMZ80EJpwki3VOwhPiIK8eCx2/MSLJndJ4LkVR8jY347iwih69TzC26fepUuXJA4ebIndrubG2XuYf0NPRn+0DUcd5WGTTu232t/n7Q3e76psLj8nybnKIQe8Cst1Q/5OlJXxyoE5IOi56sNcDj7U1hvy5zuoVdTYsdicONXVANhqNKSnBu/E6j6/5Vl5zNl1gLGd23udFsE6yvSkcLS1nn2hNoLE04GGGrS0bR7H7szcep/x+VYgJEmk98A2bFqdic3m+FXy/TznVbzOCn8U4kOL/ugmKCgo/INR7OlAykqqiI4ODbCRGhMpUTdKof201RhqNDQpOcOy7ccYkR64aNcQEQY9MaEGjhWW1HueWKOWKf20vL3xBDUOF9YqA6bYQgTRiValxqSVeHppJpO7JDRKjL0+6gqROl2yNz1m7Z19WXus2Js6XVNioLwiFG1FJx7t3pTFGfl8+cMur77YEVmm2n4upeKjbTk8PKR1g1EJweYXAFaXlZjmp9GbKqkxh3BlylCu/eSoV+sN/O3nWKOWmWOTef7HlWhVEq9OHMfA1inebYPZuZ6Jf6ToJLHgNKtzLPTr1pIviyQ2rs/l6U15543KqQ+H3cmMaUtY8v0OWqW35KuwKCocLoxOucH9L+Rcf5ZqPX9XLkg2VRCE5kBXYGudrxKBHJ+/T9d+pvAb0pBXT2/Q8t/Xr0KlEnn6/m+oMtc0+rgqSeTuqwbyyn2XkZNfxjVPfkFVXj7qWuVm33N5JtJPLs/lZHUyFQ4TkZoyYlUnCdfacThdmLSSd9uMqUP4YnIftlxxC7el9UITVkz7zjlEhjn8jp0Wb2LfQ4O4rXczKorjWfJjOieOJROflMPAoRtp3uIkdqedlUeKcMn+4pUhGskbTXFp+zjS4k1svrs/oVoJnXQuL9Je21EVmK3M2JiNw+lfzxrc0Q1nKyy8cuhztPpq9u1uj9Xujs7wRD5kTB3CV1d3Y+2dfXly6WF3BQ+tu171sOZNvdf91dXdAvI0fZ/f4bxsnC4XrZu08IbjWexOzFaHt62+9/Gba7qz+e7+ZJdY/Opjd26TSMbxs1ht5waSunjuTX0d6qDhHaiqrGHn5qONfm9+CQVmK4sz8oPW+VZQUFBQUPg7odjTbswVFiIiQoLaSOezU3y/90wsc1UG7JKKTxdtu6B2eGyQpMgIjhX6l4Ov245Yo5bMh4fw+VVdubVLGoIAT4xqwvwbejDk3c08u+IInV5dy8GzFY2ybepu4/kb4JruTcl8eAgzJnQEZKbM3c+gmZs4Vlztdwyrw8Xd8/ZTYLb62ZYIBGjd2ZwuP322g2creHppJgfPVng/q2uf9mwaRoVYQFTLI+hCqyjNjacguxmF5bJXmB9AIwlMH9eRWKMWm8PJCz+u4T+LfqJtXDTzb7/Gz2kB/g4Bj50bHaLhpe6RtCk8SbTk4tk7RzF0RG+sSH7bXWhkQ1lJJY/e+RlLvt/BFTf056mXJqPSSI3a/0LPdb53V+Hn0+ilVEEQQoHvgftkWa6o+3WQXeS6HwiCcCtwK0BycvIFNFMhGOfz6sUnRPDkK1fw6B2f8czUb3l2+jWNWj33hm2lJvHFc9fw3/eW8vpnK7ixR2t6DejCwNaxfufallOGKIALkXxrLGZHCO0iylBZTlIiRzD03Y3sfWgIafEmPw/vY92HMDAhhfs3LCa8+RFGJXTlsZ7nogdiQrR8tft0bTlTNYcOtuF0TgJt07Jo1yGLlq1PEJ0oEKJ3YrG7nSMGjciWe/oH3IuYEC0zJ3Qit9zCcyuOIOCusmHSSrR6aSWu2hw8T6msrokm2k9bjaipIrXDAcIii8k80JaS4kgEnNw1bx+y7BbOnD6uI10TTbXK0O4O3BBiRRJEusafy8n0XLdvWJzn+bWN1nH5h19Q5TJyz4IspEVHcMkubylXSfTvKD0Oo2ARGZ1TE/j6x50czSkkrWWTRr5N/u3q2rMFpjADa37aT59Bbc+/8y9AETJSUFBQUPinoNjT56gy19CkacQvjsj0VpLQaagwRXL8xFkOHT9Lu3qE5n3xtUHCVdVEa6uQZTmouL1n+205ZXRNNGFzxSOdFakUSnl30wnvg5KBj7fl8NmOnAZtm2Bl4z2lUX33cVdSwbvi3zLK4NVX81Be42BZViHDU2N4c6w7zbdrookBMzYB58qgeqr5dU00sfZYMXfPO4AMPLfiCPseGuS11T32aWKkwGPbF7Eq9xgtw6PZuDMMh1UHwGVp8Xy8PccbrWzQqOiaaOLjLUdYsHsrh/MLubZXF6ZePBCNSqr/uWkkZGR0Diu3Pz+bvVm59O/SgsduHkZ0eGiAyOr5onLqpp8c3HuKFx79joryah55biJDL+kEND6FWYmi+PPQKMeFIAhq3J3sV7Iszw2yyWkgyefvpkBe3Y1kWf4A+ACgR48eAR2xwoUTrLP3/cF26t6cB54ex7T/zOW1/87jkecmNlifONgk8t0nLufzRdv5cO4mDh3LI+6GYcR2a+ndJz0pHJ3a3SG5ZFhyyzB+PHSGTzdvJUpTSqiqkscW7eB/V/YL+LH3a9KcH8fcxNQNS1iYu5Pj1Xm8NfBSWoZFsS2njDrBFAi2cK6Pvx6LOo98426WFi2nx0CB4qJo8nMT+HDUSLJLLMTUKgP7CkNaHe463nq1iCAKzL2+B6M/2ubVvtCKcEvvZkwd3ILvj++iVcedRMQU4HKJ6Ir7UJhrBGQ0kkCN3YXN6W7czbN243CBoVawKUQjoQ2tpEtUAhpJ8nseQMD9vbR9HO+s2YzFbsfsSPSW+PKMSHqVyPRxHQLuXX2ha3FR7pC/4nJ/j3xDBHvuAy9OY/miPVRXWX8VpeX6UISMFBQUFBT+CSj2tD9OpwtJuqDg76D4Tiw7RBu45T+fM+O7TYwc0++CxBQNopoqm42SKgtRoYaACbDHVvLYkzIQk2JgVlYGZcdae48pAC2jDPXaNp7jllns2BwuKmsFMn1Loxq1Km/Z+5RIvd/EfVKnBADunX8Ap8/Tr6ixB9hyvkKmHhxOmT5vb8Bmd/k5W2bvyeP/RrptyBCdwGHrYR5YsRWVKHJvh4GU5IezQz6BA3d52Hc3nWD+DT05VeaO6u6SYGT4zB8IEfIBkUdHXkRsWBxlFgexxkDHRaxRy9o7+9Jn+noiy0t47NXvMeo0XDa6D/8e1ZVoky7g+dYtjxtsDuS9ByK8nKjj+4/XERsfxhsf/5tWbZv4nf9CqqgotukfT2OqigjAR8AhWZZfr2ezhcBdgiB8i1tEqPzvmo/3ZyfYBHTY6M4UF1bw8dsriIw2ctsDI+vdv75J5I1je9G7YzOe/fAnHnpjAcP7tOGBa4YQYTIE7VCiQjS8suYEZoeROG0Bh0/vpeerOay/dyLJkaF+53TaJRauCwFDMvuduYxa9DEPdR3IpUmdvFoOAC+PbucVqSwwJ7AsqxmWimzWFO0gtkke0V0LeSN3HxVlYZRvjcJSGUZ1lR5LtR6HQ6LKdq50qlGrYv7Bs1hdNYSGWtHprZjCKthk28d9ByoxO6owRWjIPdGco8cSEewGahyyV03a10rwRMlV1Q48t/VL4LvifQxLbhXwPN4c2yHg/naIM/DRpl30bJ7Mj8f1GLWeXEbZKzw1PDWwxnV9oWtO0T04nMwvb/R7E+y5D72kE4vnbGfTmkyGje7c6GNdKIqQkYKCgoLC3x3Fnq6HeiIbLhTfieVlQ7vw5aKtzC4Cl97QaDFFBPc2J0tKccpSgD3tsZU8C14A1eVGopqewaGqwSAYGNM+jicvTiUmRMt/fjrstW1SIvUszsj3LqbZnTKCcE44vsrm5KLW0T6lUQXumb8fpwtvNIaviOakTgk8/mMmFTX+acG+jpBtOWVeIVNRFLyLawjuKiM21zlrVgAmd0nA4XKxIPsgr+xaS76lksuat+eWNn0Z9M4OauwlWB0yWkmk2u5i1t4zzN57hn0PDSI+VMUNXyzEKJ6lyqGnwpXAfYtPI5DbYDTtpoxcUs6eQGe3UqE3cjQyjp37y3gjY03Q1KG61CfuaSuvpt3hE8wuqWDAsDTue3IMoUb9BbxRCn9GGhNx0Q+4FtgvCMKe2s8eB5IBZFl+D1iCu3TTUdzlm2781Vuq0CjqczxMvr4/xQVm5n61GZ1OzXV3DA0aBufpwENqw7ZSIs/9yNu1iOezZ6/hs4Xb+GThVrbuP8l9Vw/mkn7tAjoUj0bFc8uzWJxhIEQsIFxdwlUffcOrE0fQp8W50EZ3m8FcZMRR3YbOPSp5fudqFp44xOybB1NdpQ9QO277ymrKLPbaI7Qi+3BrjBElmCKLiY4pJqnFMb+xUHYJOJ0SDqeIKIAoOclSyVw8yl/V01JloInUkimtu2NyNKfPis3UOFyAjF4l0C3RxM7T5VTbXagFsPt4MHQqEY1KJD6+CophcGILv+cRqpHYnVuO5KMVkhKpZ8BbCwkRbSw/LvoNTJ57U99qgcdTPXtPHpO7JHhXA4Z+sIUU4L9LDzGif1qjQtqCOQ9iQjXEJYSzasne39RxoYTgKSgoKCj8A1Ds6ToIooDL6Tr/hkFoqDxlQutmOIXthJYVU6zRN1pMsUkoXP3x12QXl5FXqQqwp31tZM8ilqXChCyfISK2FEeRkbdqNR4Ar412Uetor7NCRsblkqm2u9CpBLSSQI1TRqMSOVVW421LmcXOlLn7vefPLrEEVCJ5Z3xHbp29hxqne2EN/B0hKZH6gNL02SUWvxL1giBzc3ozru7ehF1lR7l901ZyKsvpFBXP8z1HU1NtYP1Rs4/NjTctGkBGZtqKHRw6fZgyi5VCWzRl9jB3+VgZzLbg0bQ1NjsfzdvCl0t2oBIkTkcnYjYYQYbKRkbgBlus7dk0jLgzRSQdzEaQZW555FImXt4jYM7T2PKmCn8uGlNVZAPBc+58t5GBKb9WoxR+PvWtXguCwO0PjcRaY+frj9Zhsdi47YGRAT9kz2S41/T1OJ0wYMZGMh8e6v1Rq1US/57Qh6HprXnho+X83/tLWbIhg0duvIikuAi/Y6XFm3hrXEeWHynC4kwAVziJ6nJu/Px7JnZN4+HhAwnT6/zarELgw8ET2FaczbM7VnLT2m+Z3KoTvVMGUWB2i2Luzi3HYjvXgWolAVkWKC+JIr8ggiOZrZAkB9ERNegNFkJCLNzQK57TFZWsP5GPwyUgyBJXd03mk80FVFZrqKzSIFtNiLKOb2s9vIsz8lGJ5+6PxSGzK7cCi92FQS2CABrA7pDRqAVmTuhM3xQTE5d/wsCEFNpFxBKlsiKJAjqVSJXNyQdbTqKWRGZM6MDw1Bg2nShGJ5RQ5dBjkXUBA9P5OmzPQDhj0wnvwKSyWACoVmnr7fTrdtj1OQ+GjOzI7E83UFpciV2j/s06eSUET0FBQUHh74xiTwcSFm6gvKzxaa0eDp6tcFeLk0GjEgNW8we0iuHJUBNRleVUCq56Izl9baFL28fhcLpQSxLZRSVc17tVg7oKJq3EgoP5xIZq2GGG7cJhnhnWy2+RbcCMTVgdTl5fdxwBqKyNeKiuDdW1OmRCtCI4ZawOF/fMP0Dmw+4U4gKzFUl0pwt7KnXUtd2Gp8Zg0KpQ107cTTo1Bo1Elc2JQSORXWIJ0JeLCXHbhp6FsoQI+Ckvg39vWEGJ1ULX6ATuThtIjdnE5I8O4HSBU/Z3Lnn+Ugl24rSFbDlaTVJkFEfNTSizS+jVIi+Pbs+TSw+jV8sBOm07D+Xw4sfLyTlbxpiBaVw1pjeHSmq8DhVPpb7zReDWXaxdtfc0B2dvJmXvUZq0jufBp8fRsV2g1puirfbX5depc6jwp6Gh1WtRFLn3yTHoDBrmfb0FS7WNex67FKmOYM7u3Aqqa9Mqahwu5uzLIznC4He8Fk2j+eCpK5m3ah8zZq/nX499zrWje3LdmJ7oNOp622PSScxYs5mPN+1k3ZFs7h4yAL0uMiAEboypHUOatuDtfZv4KGM7S04epuhMBIVnIpBl/3xIGbeIksVH2djlVDHr8oupsDq9x1yckc/HB3d5O7i23bux+srweutYe0qdhgJO17mQPq1K9Jamqra70KpEVKK7kskXR7dSarXwYJeBABRWWbE5nThdMjLu/Y1agXC9mlijllJzAZLgoIYmF5wmESy6Jj0pnFBbNTLg0BuCHq++DjuY82DIyE58+/F6fli8h/uOVSqdvIKCwl+axpbFdb065jduiYKCQlhECNlH8gM+b2g1vMBspc/bG6i0uiMLQiFgkSbWqOXDO4bx4CtzmNY3Pqi9Up8t1DwynONFJQ3qKnjE0W0OV62TQEN4sxCe372crnFxdIyKZ1lWoV+UQkhtBQsZGYPanWoRopG4pVcz3tt8AovdhdNVtyynAIJbP27OvjyeXJrpTR3xtLduWVitSkSsZ+LvuWYHNnQmM73byuwpOY2IQO/YFHpGtOHi5OYMfnczFrvTa1eHaCQMGhGXyz0vCNGIGKVyItRFqESB+y8axIj27ej42lqMWvf9HNQyCpBr9drc4cnllRbe+XY9C9ceIDE2jHcenUTPNHcEdsv4MKDxgpngs1irkWhyOp9Zj+/G6XBx24MjGXtFr3r1UxRttb8uiuPiL06wzr2h1WtRFLn9wZEYDBq+/mgdBWfKeeyFSZjCDfWe45EfMhAFMWDCKooCA3q1xWY0sXvrAT6av4UlGzJ44NohDOjawhvNUbc9D148gEs6tOHRecv4z6KfqHGFUE08B6aO8OukQtVaHus+hMtbdeLeNT9SGX2ahLAiKgqjqSw+58AQBBFLbchdjcPdORo0EhVWp995g0WjBKtjffBshTf9wtezPvojd9Uyq0fgqFYRqcbhQhLh1mU/sqcqk7Ep7WmijeTLnae54/u9XicQuEutes4tyzKL9h8kJSqSaUP70ys54oKcAXXVmE1aiR/3nCLBaqZJ83gWP3xR0ONdSIfdvGUszVvGsnpFBvbkJKWTV1BQUFBQUPhViI41sm1DFk6H07uIdr7V8ADhdoGgizT9OiTRKimatdsOc/2o7gHf12cLtYqNYu/pM362YN2KFTM2ZmOtdVoAVNlcSLnNiGp3gok/fsHtHXqhsfnbSC+PbkdyhMGdIjxjEzKgkkRuSk/isx05qETRz9mwLacMZ23FO4vdxQMLD3pF4X0Xq+rOAXzTQrbllNGzaRiyys6uwly+yzyCLvE4Kr07MnfnWTXmkhiqSiI4sU/NQvVpnhZzQcbrtNCrRLSqc6nMVmsFM9ZuJK+slF7Nk3lmzDCaRgQ6HdztB4vDhUoU+N+Pu1m3ZjcVVTVcd2lPbh7XG51WTV0uVDBz2aQOTH9hEWeOnKV1jxTufXIMiUlRDe6naKv9dVEcF39hGhPq5NvxeibmgiBw/Z0XEZcQzjsv/cBd177PXf83gQKdO21jeGoM4Xo1VocTURCQZRmzzUFIrdCPryryufOrmXXfOD78bj1T31hAr47NuO/qwbRIDN55tG8Sy80DL+KOWasIFQvRcpwXf9rIy+MGolH5v5atwqL4ZOjlpE1fhBRxhoiEs5hiC6kpi6SsIAKrQ41OJXJ9j6bM2pvn9UYH64jeHNuBiho7Jl1gZ+m5X51eXetXGsrjWa+bhqlVidgcLvQa0MWdYk9VOfaKCG5sOYD201b7eavBXar1vYmdGZ4aQ6xRy65TuWScKeC/o4cyJu38Jbvq4lVjfnsDLpfMsBkbaF96GpXLyeM3X1xvaaiGOuxgjrCuvVqweM4ONMlN/7SdvJKrqKCgoKCgEMifeXxMbZfIvJotnMouIiQ+3Kvt0NDiSnpSuFe4XRBg8939g16XIAiM6NuWGbM2kFtQRmJsuN/39dlCXZMS+PFgFt1eW4FdVvuVCfXYvbbaqiIGtXvhTCsJiLKKb4Zdw/SDa5m+bxMCENciBEu5CcllYGibcNpEhVNYacM3EiEmRBvgbPC11fQqEYvjXCU7lSAjCC7iTSrav7Ych+xEo3bx5dWdEVVO8i2VZFeWcduqIwjqGiSNFUHyVM+TAB1lZ2OxVBix12jxzV6qrk2FFkXBKxA6fZw7tdnpsvFZ5i4W7ssk3hTKm5ePZkT71n4p575OB0/7o0QnTQpzWbAok7QW8Ux/ZBKpzQIF5y+U6iorX3+0lnlfbUEfouGh/45n2KWd6y1j64uirfbXRXFc/IU538p5sEm4x3kBMHJcd5q3iuP/HvqWJ277hBPtmlPaLI6Mh4eS+fC5SIMh724GoLpW6Ke+81v0IXz53DXMWbmX/83dzDWPf87Eizpzy8S+mEJ0Ae3v0ywSmxBFocNIuKqAHw/sJfPMKR6/ZDADWjX3bucZdNfcPJzduRWcrC7gYNVRNquOY4gqxFJhpKo0nFn7YP2UAQEpH55j+JawCtFIQfMiZ+/JCygN1TM5ArtTrhXprPU+qyWmjWlDpVTIx5nbKXeaKTsTi1wRz7x9+VgdLq/TQicJqFQim+/u73f/v9y6B6NWy5hO7S742XvILrEgIGCx2WlVfha1w0ZOTDJzMouJizL5le/ydXAF67Drc4R17pHCvK+3MGdkK8xRYX+6Tl7JVVRQUFBQUAjkzz4+tumQCMD2HSe481Apdqc7DddXxLzuQsmFTDq7dUiBWRuYu+Ygd0/u16jjdE92lxrVSTXYHWq/MqEeu9dTteOW3s34aNupWrFKgShdCO8OHs/3B7O5+YdVhEaUEZ7oLgozcskx9Co1KlSENHOicwqIosC4pacwalXYnE6OFVfVpj/LxBo1JLV3UeN0Um1zgOC2TgXR/d9Jq/YT2uLc9dy6/rD33wIgGVTYajQ4KsIZmJTA7d3T6N80if9tOcVd8w7Ue89EUWDz3f29trReDf/buINPN+9EluHW/j25fWAvDJrgC4AejGqRR1rrmLviEAadhrtuHMbYwR0RxV9WRUaWZdYuO8AHb/xEcaGZi8d04d/3Dic8IuSCjqNoq/01URwXf2HOF+oUbBLuqc/soW2Hpox/eiKvPz2XFgezKc0vZdXeVK7s35JL28exOCOfEI3kFRTyCP3Ud36VSuLKEd0Y2bcd78/ZyJwVe/lpcya3X96fsYM7IInn8s3qDhqZZ/N4/sc13PLlPAanpvDI8EGEaA1BBt2mQDdOmkt5fN061jmOYAgzIztzeXxbBZPbtqUGLbKs8Xpe65awqrQ5g+ZFTu6SwHMrjiBzrjRUTIi29jpF1PoaLu9pwiqV8+rRuVgcdlKMkZw9nIJsNqGWBC5qHc1zK45A7TFevSzNW8bVw+H8IpZmHOHGPt0I0WqCPt/GrJKkJ4VjcNpoXnoand1KXkQchaKW19cd9xPsDObg8r3uuqGPvtu169gUgFNH84mICgvajj8SJVdRQUFBQUEhkD/7+JiQFElcQjjLlx3AnpCA2epArxaZdmn7AG01Xxoz6SwwWxn88U6aaPV8vHQPk0d2J87kv4jm0avwtbXaxMVg0umodFRidhi9tiAE2r1dE8OQa9MqVKLoPc61X2RQ44iloiAGSe1Ar7dyy4A4ooxQWG1h9v4cZNmFS4BwVSixei3lNQ4cNS7sThmVKJLaJIaUyBDUokiN3cXaY8VkFlSDLCDL0L95NDtzKnA43dEe/5vUjeQwI7H6EGSHmk6vrfUu1i3NF1i1J5OMqU0CIo5VAjhkvJEWnkW25HAtX27dw6dbdlFuqeHSjm25/6J+JIb7zyPqIssy63Ye4/UvV3O22Mzo/u2568qBRIbVn5LeWLKP5DNz2hL27TxB63YJPDXtCtp1TPrFx1X466A4Lv7CnM/rHGwSHozBHRK4s1d7IrPP0uzwKWY9MZuIB0Zw8ZguXoHKYAq/DZ0/3KjnkRuHMX5oZ17/YhUvf7KCeav2cu+/BtGjfbLfMTyDT6wxhd4pSXyxdQ8z125lzMzPSW/REqdTxmwlYNBtZozgjYEjaT9Ng6w1ozOVcTa0hCe2/ARApFZP+8g42kXEEqEORWesAI2ExSoguwSqnU6ijQKFlirOmi1szSmmeZSGj65vzrKjebSK0zDr5BZOVZbRtnMxeVUVuJD5MR+ahoYxLiWNiS070D0mkcJKm19en6+zJznCEPBsXl2+nlCthlv6pwd9JnVXSeqKl4J7cNi4/TCtCk6iUkvcet0IMmskXl93nCqbO83Ht3yXr4PJ1ykC+IU+hmgkv2dtCjcgqUSm/ZjByaOVv2jV5rcIWVVyFRUUFBQUFAL5PcfHnzO+C4JAvyHtWPDtVnTRMZhxC60/uTTTr6Ldz8HjtCnQhNLcXMjiXSe4eXDbgDYHi0j5V89OvL9+G/f3T2Rsx2SySyzEhGgDytCfW9hSIYlQZrGzLKuQc0EFAk67GlHS8UiPft4o2M+Wr6bG7sDqkNmQ644AXntnXwZtry2ZKgm8eYO/nXWw5bkoagF4+bpB3gohwe55xtQhzNiYzRvrjlNpc2KstQnd6eAqrHYXapXIO+M70jXR5LUxJcHJO2s28/mW3VTUWBmcmsLdg/uQlnB+h9fJMyW88eUaNu87QcumUbz35GS6tmn6s5+hB3OFhS/eW82iOdsJCdVy92OXcsn47vWKbyr8fVEcF39xGvI6p8Wb2PfQoACNi2DHyHh4KNtyykgWXHz66hJef2YBP87byR1TRzXoHDmf1zu1WQzvPjGZFVuzeOfbdUx5cQ4DurXknisHktwkImB7jUrFzf16cFmndryzZjPf7TpAjAr0YiR2Icpv0PXod8y9vqe3ekhMqIbjFSVsOnuSg8X5HCzN57PMndhcTvQJoAd8z3rl6sx6277JDCaNlqTQcLrEJDC8aVsEu4EJqa1Ii/XX7qib16eSRPRqGZUkBhgKa7KOs/7oCR4ePpBwQ2AKDfivkoRqJPq8vQEBwTuwhuskXvpkJT+sP0h6h2b897aRRIWHuCMnNp3wU5QOpjrtO1C/ObaDX+jj/QNbMKVfio8Iq4jepEdlsf2iVZvfKmRVyVVUUFBQUFAI5PcaH3/J+H7p5T2Z9/UWrtE6ec+hweJw4XQFRsReKB6njd0UjmwuZM/BkxR0T/FrV30RKVf17Mz/Nu5ASwkTPivwW0SqW4Y+Y+oQlmUVcs/8A0yZux9JFNDUanA4XS6u6JLI1CGtvOf1iG56xOQ9ToXsEst5n9VtvZORgbv6p3ht+vruUaxRy5R+KczYdIJQ3BX4UiL1xBq1ZNba/L7nkbDy1qq1LNqXic3pZGibFtw5qDcdGuGwqKy28r95m5m9fA86jYp7rhrIFcO7oqpTtfBCcTqcLP5+B1+8v5oqcw2jJvTg+juGBi0o8GfWclH49VAcF39z0uJNAekhwfCdeL/2v5tY8cNePpq+nHuv/5Chozpx3W0/f5IpCAIX927DgG4tmPXTbj5duJUrH/uMiUM7cfP4PoQb9QH7xBhDmNwznembKwmVCjFJxejVFXyxdTuXdkxj5dEyb46eR7/D076WYVG0DDvnWHC6XBTXVHOm2sz2vHweWXIAu8uJIMroVCKTOyfy7e4zWKygFdX89+L2jGuXRIw+BJ3KHVJ3blCu4a1l2xsxKPuXgPKw6vBJ7v/uB5pHRXBNeud69/ZdJZGRkWWotLkH1rVZ+az8cTO7D+fy7/G9uXlcH2/OoMdIWZZV6Hc83+e7OCPfb6AG/FZkpvRL8W7nGQDUoru81i9ZtfktQ1Z/j1zFArMVdKF/vlwZBQUFBQWFevg9xsdfMr4nJkUxaHgaG1bsJ6J3GqoQwy+ODvFMYtfe2ZfduRW88u5p1u84QvuzLjJ8Ijnqi0iJM4UysWsas3fuR3Q1xWzVYdSqmL0nL2gZ+iOFlTicLrcTQqtixoSOANwz/wDzDuSz+FCB125MidR7S6Jaakui1q10V2C2+tlgvpp1AFd1TWzUffBEiPR6az12h4v+72zk8CNDvecpqqzi080HWbA3g0NnC9GrVUzomsZ1vbrSIibyvMd3OF3MX72PD+duprzSwmWDOnDbpH5EhfnrTfwcp8Ke7dm888oP5BwvpH23Ztw1dRQtU4ML2f/ZtVwUfj0Ux4VCAIIgcPGlXeg7uC3ffLyOBd9uZe1PBxg1sTtX3TSQyGjjzzquTqPm+jHpXDowjf/N3cycFXv5YUMGN17Wi8uHd0HnI/RTYLbSe/p6qmwS5cSjEa1cnOLifxu288H6HVQ6jWjEMGwubb36HR4kUSTWEApONQ9/t5cqazh2l7v7NwPt+rRArrQjOWUESeCKdqnecL4VOfne9I9gg1WwjnhbThkOp4zF4UISBe8Avv5oDrd/PR8XElvORnKkqLrhKBgflelBMzchCgI62cE3X6+goMTMM3eOYkSftkH3v2/BgXo78LoD9fDUmAYjMnbf3Z/SIjO33tSVhCEdfrY3+6+c0uEZFDHFpvzRbVFQUFBQUPgz8UvH9zumjmLP9mwuPn2GpjcM4eJ2cT979bzuJPbNsR0oCwmjSclZxBqLn1MlWESKZ5J9c7/e7Dp1BmdBHg5tc0RJYHKXBGZsOuG9zpRIPe2nrabG7qTaxwkxPDXGG1lR124cNHMTsuwWwVx9Rx9vxHAwoXRJhOnjOrInt8xvGWzkh1s58cSwgHsTzEGw9lgx1bVi8eU1dmZuyCA+xM6arOPsPX0GGeiQEMcTlwxmTMd29UYC+yLLMhv3ZvP2N+s4kVdCt3ZNufdfg2jbPNBZdaFOhVPZhXw0fTlb1h3GqtdysktrdsZH8ViQKG0Pf3YtF4VfD8VxoVAvIaE6/n3PcMZd2Zuv/reWxXN2sHT+LkaN787l1/cnOvb8kRzBiAoL4ZEbh3H58K688+063pm1ntnLd3PL+D707NKKnXkVlFnsOJ3nummbS8uaHInnRozktZWbCZEqMBoqqHbqqLCbGNM+2rttfZ7dZVmFlFnsAe0x6dRBB666GhO+g7JnsArWEadE6n1qeztJDtey9GAWjy9YjguRU9UJOGSBPm9v4OijF9XbgfuukmRMHcKGY4XM+mYlBRXVvP3oxHrzBs/XgdcXOurZ5sudp7HYnFgcLoxaFSt2nAQgtVUsg3/BQPBXTunw3FME8ZfFPSooKPwmiA8t+qOboKDwj+WXju/hESHc+OAlvPHEHHZ8vI4XWjTFoJHQBqn+dj7q2kAA1SEmXCX5RFSVB61S4rF/6tp+K28dya1fziGcMzwyfBDt44x+Ua27cyvc+mC1jgGnS2btnX29op91nTm+QvFGrYoKqzNggu3bfoDb5uxFU0fLQRQCU2n82w5b7+5HlbWadVlHiNIUoxdr0Ek1fLv1GOB2Vtw5qDeXpKXSqk76c0McOHqGd75dx+7DuSTFh/PKfZfRtnVTtp8uJ9JsDXhWjXUqlJdW8cUHa/jh+x3odGr6XtGbN0pcVDhcGM+TOvRXXhhTuDAUx8UfwF8tDys61sS9j49h0rV9mfXJehZ9t50fvt/BxZd1ZeLVfWjaLPr8B6mlwGz1dvjDU2N4/cHx7DqUwzuz1vP8R8uxqddSaIqhOtSERi1S43R69xWAqFAj1SRQ4YglRCwjzlCJwVrAvz//hmHtWpHevBlTFmRjc4rn9eyqBQjRqRieGhMQSlm3o62be9hQR5xdYsGgkai22YnWVXHn13MoqjTTLDKC7KpwHHLt3FdufA5nTKiG3Zv2cupMCW9MHd+g2FFjOvD6QkcLzFbumX8AS23pV0mEkt3HkSSR9p2TA7a/UP6q5ac89xTZ5Tz/1goKCgoKCv8sfun47kiO5WxyHAknz2IRRI6nJHhFxi/kuIGVP0y4JBXlBiNhlWWUmavrtQvr2nY5FS6+uPFyHpjzA08sXMq8vfuZ3L0L9y04it0pIIkCLp9YCEkUvNX3gjlz6ratW6KJosoqyqprqKixYq6xYq6qIlQqR6d14HC5EJDRCgLD2oaz8UQJAjIqSWBd5h42HxGwOZxY7HZOllZhogxBciAJTkbPOKfhFqkGq0tLhd3Ef0Z2YVLXVGKNoX7Xfr65ydGcQj6cu5k1O44SGWZg6vVDGTu4I6UWR8BCnudepieFn9cmtdsdLJq9jS/eX4PFYmPoZV259a5h2FQq3p62GqMkntcZ8VdeGFO4MBTHxe/MXzkPKzEpigf+M45//XsQsz7dwPJFe/hx7k56D2zDxGv70qFLMoIg1Nv5FZittH1ltTfqIVyvIvPhoXRrl8RHT1/Fq/N38NWirSQW51JTUcSIwZ2ZkVGKxe10RqrVcfCtsBETqmF3zhkW7jvEjwcOs3h/JpECVAt6nHIos3ZlcWvfdmjVqqBKyh6nRV2CdbR1BTh9v28WoePz7ceI1Lk4dKaAGHUOarUFQZCJConhyUsGcnG7VmzMLmHkh1sRBdCo3MKdHpHRhgRU567cx7LNh7l9Uj96d2ze4HP6JR24J7QRQK8WeXloKxY9MYuhozoRG//PlXfw3NO4aQXZf3RbFBQUFBQU/m6kJ4WT2yEF0eGk5Yk81JJAYdvkC149r2sDeeyaHH0E4dUVzPh+C2/dfUm9bQhm+82//Vrm7NrP9NWbeXjuD0QKAtWCAZes59puzfhqTwFOWUQjOYnWOzmQl+92QtRYqbbUMHf3CYqrqimurGZYciV55ZXU2K0MfeNQ0HYYRaBOwYxDeaXE6NwfqiWJjcdOoJZE1JKEQaNGK6lAkLC7NFQ6RERRjSBqmX9TfzRqHfP25we1Mz0LivfM34/TRcDc5GhOITO/28TG3cfQ69TcMr4P/xrVHYNOA8C2nCI/Z8+yrEJvurIowM3pScy9vkdASozL5WLN0gN8/t4qzuSWUh4dxokubdhh13KDSnXBtuxfdWFM4cIQZFk+/1a/AT169JB37Njxh5z7j2RxRj5Xf7XL+wP/6upuf9kfWmlxJQtnb2PRd9swl1to1aYJwyb25Jbd+dhlIaDzW5yRzxVf7MBSG1KnV4nMuq6Hf4jeK6vQmcuJqShCY7dhVWnINURQGRqGJAlIQv2RFA6ni1VZJ/n3t+tQU4lasAHuDr5VTCStYqJoEhZOlUOkd7NY2sZFYNTpqLS62J1XQa/kCO8xc8uqWXLoLDaHg26JoahEF6dKK9mTW0KkXsDmsHO6rILs4gosthpOl1YgCO7fkgC0jo2hSUQ0EzqnMrxditeh4yk7igCb7+4P4Ffeat9DgwIGlUPZ+dzyzLf0aJ/E6w+O9wpxNpYLifCp61h7RG1j5YJdfDjnLpKaNz6y5u+KIAg7ZVnu8Ue34/fi79RPK6kECheC69Uxf3QTFH4mSj/956ehBa4tJ0vY9sV6tq84yKX/6sNdD4xAEC7M7ql7Lo9dk1iSR5S1itmv3ECTaJPfNp72FFZZ611MqrE7+G73YabO30qIqgq16Gh0O0K1GqJCDESHGogODSEqxECEQU9kiJ5wvR6TXotJp8XqgEs/3oHN6a7q9uZlHRnRJpY40/m1JwrMVmZszOb1dce96SgNzTM898Zid3ptc88+zTUuPlmwlQ17juMSREqMkZjDozjw6LCAZ1ZXU2TK3P3eVBfwt29lWWbn5mN89PZyjmedpUVqPGmXdeeJ/UWYG9Fmhb8HP7efViIufmf+TnlYEVGhXH/HUK64oT+rftzH3K82894LC+moVXMqIYby5vF+IX7pSeFoVZK3c9Sq/UuF+pZl7Z5oYuOuYzz3xVpaVORjqy6hJDSCXLWREL0maOigShIZ3i6FHQ8lsC2njNQoLTmlxew6lcuRgmJ2nMzlTIU7dO6rLf7X4vHfqUQBlyxzPneeVqUiOtRArDEEvcZEZpFItUOFIGp57/JeTO4amFbhCUH0qE5nl1jYfqrUe65gIqOVFitPvrOYCJOe/7v9kgadFsEMgQuN8PH1cBdsOMSs9zcz9opeitNCQUFBQUHhH8ZvkdrckF0Sa9RyWYcmjH5hEu+E6Vn89WasZgv3P3kZ0s8srelr1zQz9ODeF2bxxNuLee/JyZTVOP2iDdxSEgJO17lyp77XrVOriAiNpop4CqqdhGoE3rgslTbRWqpsNmRZpqLGwX0LDmJ3iYiixIrb+pMaG45W3bgp1+KMfKxOVe0Cp0hkiLZRTgvPtXpKoIqC4DfPCPYsPXapd0FREgirqWTB3DXsO5yLKVTHoAGd+PB4DeUOGSPieXXTwB21oZEEbLVadR779qrECj56ezn7dp4gPjGCR56byOARHSiqsvPfQ6sx1mmzgkJdFMfF78xfOQ+rvgFMp9cwakIPRo7rxoqVh/jPaz/RKjsP18kz7FLZSLmqF+07JdXWjh7ip3FR9/p9Q70mDelA/26t+GrNQXZtP8TRkwXECEWYjeEkaAJdC572pUS6y6uGG/SkxrXkorYtvdtU1lg5U2Emv6KKAnMlW08W8cXOU9idTrSSyNj28QjA3AP51DhAI6m4e0ArDBoNz604jtkmY9Bo+XLyuUiRdceK+P7dzd5zxJsC60tDcKdVSqSe51Yc8UZcTO6S4N1elmWmfbqSvMIKZj5xOWFBysb6XnswQ+DnKC3HGrWQcYpZ769m0PAO3PbgyAa3V/jrIAjCx8ClQIEsyx3+6PYoKCgoKPw5+a1Smxtjl0iSyD2PXUpUdChfvL+GirJqHn/xcnR6zc86p69t+dQtI3h0+iJe/HQVb+e4/KIN9CoRBLDYXfW2zWPL6VUiKklkTFoz73WlJ7tTU6qcod7rO1nupGNi46dbv3SBM9g84+DZCvq8vQFkd5qy51l6zhUhyYRXV5DirMRsruasI5S7rhzAxIs6U2mX+XjaaoyS3GjdtIypQ5izL4+75h0AwGSuonLRNu7dcozwyBDufHgUoyZ0R13rzPkrz40Ufl8Ux8UfwF8xD6sxA5goigy/OI0uvVvx07Zs8jdnsXHZATYuP0CL1HjGXdmLwSM6ck33+oUl6xIfpuPBsd1hbHc27D/FJ4t3cCjzFHf839d0b5fExIs6M6BbC8pqnN40jCqbs1416lCdltY6La1j3REE/VtZ+WiXBbsgIwsCT48aBMC3B1fjFGUcosAtfTsB8PzqM+g1blEk34575ZEivzavPFLEwJaBEQrBOuZYo5Z9Dw0KGpb47dJdLN2Uya0T+zYoxgn1GwIXOgDKssy8b7bwwes/kd4/lYefmYBUR826Ln81sdl/OJ8C7wCf/8HtUFBQUFD4E/NblZhsrF0iCALX3DqEsIgQZry8hEfv/Jxn37oao8l/EedCbZAhPVtz9ajufLVkJ8bwWEo0JhDcjgitWgQEVOL5BCEF92oTAoVVVgbN3FRvFbpfw/FwodStlNLn7Q1UWt3a4qG4n+3g5uHs3n+cidoK9mSfBqB1u6ZMvvgiBnRriarW9jPouOD2xBq13Nkvhdaii49mrKT0UC4njDquv2Mo4//VG70h8Bh/xbmRwu+PonGh0Ch+rjaHpdrK6qX7WThrG9lH8zGG6Rk5thujJ/agSdPIn9WW4rIqFq07yPzV+zhTVIEpREvr1GS+z7NRKKuhNheyoXb6DnRA0BSLxnwGcPBsRYBORUyI9mcPOg6niw++38Rni7YxuEcrXrj7UiTx/M6D+hxLjR3UK8qreeOZBWxak0nfwW159PlJaHXqn33en8Of3Qnyd8idFgShObC4MREXf6d+WtG4ULgQFI2Lvy5/h376Qvit+unfUkz+Qsf69SszePmJOTRrGcuLM67DFG74RW10OF08Mn0xG3YdpdxgoigqnjcndmF4agwQaBP6sjgjn6u+3EmVzUmIRuKBgS14c322n33sEQX9o20Zj+bFa2uPUW1zonfYiJatXBKvYX9WLg6niybRJi4dkMbIfu1oGhf+q5z32OEzfPXhWjauPoQhRMuka/sy7srehBgbl/Liafuf4R4q/DYoGhcKvyk/N3RNb9DS4+KOONs0xVRSwfpFu/n+q8189/lGuqS3YMRlXek3pN15J8i+RIWHcMNl6Vx7aQ+2HTjJkg0ZrNlxjP9n777Do6rSB45/z9RMek9ISCB0Qm+hSlWw9152XXWta9lddV1/6q5tXcu6Kott1VXXtvaCCEjv0mvoBAgtCYT0ZOr9/TFJmCSTZAZSJsn7eR4eIHPn3nPvTM5573tP6Wp3kKw3kG8KpTw0HKfOUKecp2ZP3orTdaqhq53c8Jb5rS8b3C8xvEavibgQ82k39rn5xTw2Yxabdh3mkokDePjXkxtNWlSVrXZG3LPSb6wR3bbxIH//vy/JP17C7b+fxmXXj0Lnw3Gb8olMW15xRwghhGhPmrP7vr9P18+akk5Q0HU8+eBnPHzn+/z9jV8TGRVy2jGIQa/jxfsvYvoXy/ls1hq6FNpJdvWujp0akhZtoczm7r1QZnMypWcsM1bsr3cVOl9pmsbhk2Ws2p/PsM4RxIWaQbnLajTo0et0jd7Ma5pGUWkF+YVl7D1awO0frUZnraCzzUqovQK95h4Sc9wcybXThjKgbyrFxqAak9OficzN2fzv/aWsWryTkNAgbvjtBC67fnSdXjKNkXhQ1EcSF8Inp9uA1al8Hr+UO/5YwdzvNzDn+w08/9hXhEVYmHbxEC68coRfvTD0Oh2jB6YxemAaJeVWfli2g1krd7Iv6yiOvALMRUZeeNfO5OE96NY1kbU5Zdz37VasdifljlOzJ8/dlUekxejzqhverkG/xPDqSTVnZub41ZA6XS427jzMvFU7mbNyBy6Xxh9vPpvgTgnklzuID2t8Qqra5fK87u5lZDWvy1w5HU4++vdiPntvCQmdInn5vVvp3S+50eNVacrJZpurW6rwj1LqduB2gNTUupPMCiGE6BgCqfv+iLE9eeqV6/nr7z/lwdve4/k3f31GMYhOp7j/mnGcN6o3T/97No+89gPdOseyukxPflAoToORmbdkcLCgAjg1L1tWfjkhJj0llT0uiqzOeuNjh9PF8ZMlHDtRTM6JInLyi8k7WcrxkyXkF5VRVFJBUWkFxWVWbHYHDXWC1ymFA9BQaDpFfGgQRoMOBdgcTqw2BxU2B06nq/o9cYAThd1ookv3ZKYN60ZQVATTBnRGKUWfFxZgtbswG3XseHjyaSUHNE1j09r9fPLOYjatzSIswsJNd0zk0utGEdrA3GwNkXhQ1EeGiohm1dAQE5fLxaa1+/nxyzUsX7QDzaUxbHR3zrloCGMm9MZk9r0XhqcDecWM//tPBJUWE1pRgsHpzoxb9UaKjBZKjEGUGc1gCcJkNFLfTX1tvmaA69vO6XJRUFxOfmEZR48XsTf7OHuy89i48zDHC0oxmwwkpSYS3CWFb/YU4NIaL1N9x1udXVB93S1GHWhQ7nDV+AyOHsrn+ce+YvuWQ5xz0WDuevA8QkJ978bnefymeCLTFjLs7aELsgwVEaJxMlSk7WoP9bQ/2lM97Yst6/fzxAOfEBUTyotv34wzyPvQ3G3Hiupd1rQ2h8PJt4u28PHcTRw5egINKDeYKDOYKTOYseqNBFlMfHfbaAx6Pee/swqH04VJafz78v7oXU7yC8vIKygh72QJOSdKyDlRRO7JElyumvdZIRYTsZEhxESEEB4aRERoEKHBZg4WWvlqaw4VTg1TZUJCAXoF947tysH8Ur7bchSHw4lJr5jUPYbOEUFoLg2TyYDJqMdsNBAdHkx0ZAg6g4Gbvs6kXBkwGnQsvntMjbk4nprWu3ryTIAPrxvi1xx0LpeLVUt28b//LGXH1kNEx4Ry5a/Gcv7lw7zOYeGPthAPijMjQ0VEQGooG67T6RiS0Y0hGd04kVfET9+s46dv1/Pcn78gJDSI8ef0Y8r5A+k/pItfa3hvySujICiMYmUhLLoTv+kfw7crd2MqLyXKWkJcRVH18SMiQjhYoVGqDCiTiXdnb2BK306EWEyU2jV2HC9jYKcwIi1G5u/KRV9Wht1qx2xQvDNrPT2jLZSW2ygtt1JabqOswka51c4VZivHi8sxODRuf+K/lJZbKSmz4aqVKOwcH8Hg3skM7deV3/58gGXFLth6arLP+jLNnskCb5lpz+te1ePCoD812dTC2Vt47W8/oJTiz89dxcSpp7/ARFM9kZFZpYUQQgj/FFbYyS22tts2s/bDkQFDu/LM9Bt57N6PeOj293nhrZvrxCCec489M283mx+c0GDywmDQc+XZgxk/si99n/6JoKICQu0VhNvKiK0odm9UCL975gAAnn0Rn5yxv/rfZqOe2KhQ4qNC6ds9icxdJ7DqDGhGE9/eMY6+KdEEB3lfGSW32Mr7lTfrpWigQYnNSZjZQPcBPbkuJZIPPG7mn76j8Zv5zX1S6o0V954oa/C99bFZ7cyftZmvP17Jwaw8EpOj+N0jFzD1oiF+DftuiMSDoj7S40L45XServvznqpeGPNmbmTZgu1UlNtISolm2sVDmHLBIOISInw6nmem1jPLrFcaT0/qRieDk6PH8tmdfYJFmYcxOmzozuB3Qa/XEWIxERJkIjjISHCQCYvZiCXISKjFTLDFRGiwmZiIEGIig4mPCiMtOYaQyqW9ZmbmcOUHa6rXvAYw6iAsyFgn09zQ+Xlmpr1NQDqsUzjfvruIbz9dRfqgFB559koSOkWe9nl3NG39SZ5S6lNgIhAL5AB/0TTt3fq2b0/1tPS4EP6QHhdtV1uvp/2l79RTi/rt9Db1VNrXuLChJ+/bNh3ksXs/IizCwjOv3UhqWlz1+/4yewdPz9td/f/Hz+7Jk+f28alsVUuHulwa5XYXeqcDk8tBhFHx2gV9CDHp0ekUJTYnBwqtDOsSQ5f4MCLDLISHBFU/aDudSe2rrktatMVrXOdPL5LGruXiu8dw1owVWB1OzAY9Ox5u+PtTUlzOrK/X8c3HK8k/UUL33olceeNYJkzth97g/5Bm0bGdbj0tiQvhs5buulVRbmPZgu3M+W49m9ftRynFwGFdmXL+QEZP7EN4RHCDZa1vosraZc4ttvLLwZP0i7Wgczo5WVTGol25/GPhbqw2B2aDDk1BhUPDpXSYjAb+c/1Q+idHERJsItRixmTU+9UrxFt5ez+/gMIKR/XPgo16frl/XJ3GyVtj6MsM1qXFFTz7yOesW7WXy64fxW/vn+pTYyNO6WgBcXuqpyVxIfwhiYu2q6PV0yqxpxZ+62s+r/bW2vyJJRu7+d+VeZgnHvgEu83BX/5xHQOHdQW8r/bmz42+ZwJhw2F3L92qOS58PYczjZkbmrvsdGNwf2LjKjlHC/j201X89M06ystsDBnZjWtuPovBI9J8jntl6IeoTYaKiGbX0pPlBFlMnH3BIM6+YBBHD+Uzf9Zm5s/axMtPfYf+2R8YNDyNsZP7ctaUdCKiQmq8t/bwhYaGM8SHmbmoX2L1/4PDQogrhbLQXJwuDSsaDoeLCoM7yWcx6nAFh5DaKarJzjU+zMzOP03mL3N28N7qg9hdoNcpsvLL6zS23obfNDZcI/dYIY/f9xHZ+4/z+8cv5txLhzVZ2YUQQgjROnSKM54cuyX5E0s2Nvlmr/RkXnn/Nh6/72MevedD/vDEpUw+f2Cd1d787Z3gGVN5e68v53Cmwx1qx3VNEYN7i429PfjSNI11K/fywxerWb1sFyjFxKn9ueLGMfTo08mvYzZV2YUASVwIPzTlChL+6tQ5mhtvn8gNv53A7u1HWDY/k2ULtjP9uZm8/sIsRoztyZTzB5ExridBFu/jB31RczUOmHH5AIYkh3PWjOVUlLt7Q5gN+mY59/gwM09O68MXm49WZ6UzUiLrZMT9bQz37DjKEw98THmZjWem38jQkd2bvOxCCCGEaHndYoJZ3oaeYPsTS/oS7yQmRfHye7fy1IOf8fzjX7FhzT7u/MO5NVZ7a4lz8NZ7oSlXZWmOGLx2T4i1d41m0+LtzPxyLQez8oiMDuHqm8dxwRUjiE9sfKh2S5ZddEwyVET4JZDGqGmaxr7dOSyYtYmFs7dwIq8Yc5CRjLE9GTclnRFje/q9SkZ93RJzi63M3ZUH1Owu2Bw8jzUkOdzrOEdfrVqyk+ce/ZKwcAtPv3oDaT0lw30mOloX5PZUT8tQEeEPGSrSdkk9HfiaI5a02x189PYiPn9/GdFxYfzh8UsYNrpHk+zbm9rziLXEUAhfrps/13ZmZg43fLQOQ85JUo+fJCn3JA6bg179krnkmpFMmNoPo7FpnnEH0v2DaH0yVES0iJZa09uXCk4pRfdeiXTvlcgt957D5nX7WTY/kxULt7N0fiYGg56Bw7oyemJvxk5KJyYurNHj1pcVjg8z+7VM1Jl64Lut2J0aGhqaBqWVM0v72r3O5XLx1UcrePe1efTs24m/vnwdMXF1nzxIQyKEEEKIltQcsaTRaOA395zN6Al9eOkv3/Do7/7L2Ml9+dWdk+naPb5JjwU1z2FmZk6LDIWob2hHFV/nknC5XGzfcojNP2xkyKLNmK12nHodY6YN4OrrR9Gzb1KzlF2Gh4gzJYkLEXBOZxIfvf7U0qp3P3w+2zdns2rJTlYu3smM52fx+gs/MWBoF8af048xE/vWm8QIhCWYPMcChpr0KIVf3esOHzzBjOd/ZN2qvZx1dj8e/OulXofPyGRJQgghhGhP+vTvzOuf3MnnHyzny/8uZ/mC7Yye0IfzLx/G0JHdMRibflLylhoK0Vjc1tBcEtYKO1s3HGDtyj0snZdJXk4hLqUojY3gQFIsXz1xPkO7xjRLuYVoKpK4EAHnTCfx0et19B/Shf5DunDb/VM5sC+XJT9vY/Hcrfzr7z/yr7//SO9+yYye2IeMcb3o1jOhxszIrZ0VzkiJRK8Di0GHQa9Yes9YsvLLG02klBSX88k7S/jus18wmvT87pELuPDKEfXO+iyTJYn2QIaACCGE8GQyG7nx9olcfHUG3/3vF7773y+sXLyD8Ihgxk3py9CR3YnrlsCeCmeTPKTyfOg1onMEoTo4eiifwpNlFBeVU1pSQWlJBRXldhx2Jw6HE03TMBj0GIx6zGYjIWFBhIYFERZhITIqhMjoEIIsphoxXGNxW3UCxagnpMIKe4/y3vzN7Mw8wraNB7HbHBgMeoaO6s7gS4fzt72FFDjdD8eOlDkYekZXQYjmJ4kLETA8l59qysx1l27x3HRHPDfePpEDe3NZsXgHqxbv5P0Z83l/xnxi4sIYPqYHo87qzdBR3c9ock9f+DY8Q7nX8EIRF2JucEbs/XtyWPDTZn76Zj3FReVMu3gIv757MtGxDQ+NkcmShBBCCNFe1I6vwiODuemOSVx7y1msW7mXhbO3sOCnLcz6eh0A1iATFaEWLhvTjW5pccTEhhEWYSEs3ILRbECv16HTKZwOF1arHWuFndISK8WFZRQVllGQX0pBfilFBWUUnHT/+62TpdisjkZK6huz2UhkdAgR0SFERAajNxvpvuc4DqVD6RR7Z2q8NVtHWamV0uIKigrLOe/ISY7nFOFyupi+aAN6vY6uPeK58MrhDBvVgwFDuxBkMZFbbOXvLy4kzGMy+DO51kK0BElciIBQu/vb4rvH+NTLwB9KKbr2SKBrjwSuv3UCJ/KKWbtyD2uW72bZ/O3M+W4DRpOBISPSGD6mB0NGdiela6zP61T7wpfhGauzC3C6NMrtLgw6XY2MusPu5Ojhk+zYeogdWw6xed1+DmblodMpMsb14qY7JtVYqqqhhiUQhsUIIYQQomW055vNhuIro9HAqPG9GTW+N3a7gw9mZ/LiZ2sx5xcTVmFl+fxMFpRa/T6m0WQgMiqEiKhgIqJCSE2LIzLa3VsiIjKEiKgQwiMthIQGERxiJshixGg0YDC6hwE7HC4cdmdlQqSCkuIKigvL3QmRkyWcPFFK4cnS6qRIeZmVHiUVlJXZUMD8746jlCI4xExoWBAhYUGkD+hMwrQoOiVH0a1XImk94jGZjXXKfiYxoAw1Fq1FEhciINTu/paVX97swxZi4sKYdvEQpl08BLvdwdYNB1m1ZCe/LNnJ6uW7AYiODWPA0C70HdCZhO4J5JrNjOkee9oV9OrsApxWB/bSCoJ18M3PmQyKDaaiwo613EZFuY0ThRWk7j0Edicmh4MVb+WzsNRK7tECjucW4XK5VwIKDjHTu38yF109grOm9CMqJrTGsaoaFpvDBQpW3juuTs+NphgW054DISGEEKI9aO83m74OfzUaDVw8sTePrDmCveupa2HRXBSeLKWosJziwnLsdgdOhwuXS8Ng0GEyGzGbDYRUDucIjwjGEmxq8OFWdXwUG06sl2ttMukwmQwEh5jrxHC+ONP4y98YsOp4BeV2GWosWoUkLkRAaO1hC0ajoXpyz7sePI+jh/LZsHofG9dkkbkpm8VztwKgAa8Emxk5MIVu3eOIjg0jJi6M0LAglE6hUwq73UlhQRlFBaWcyCsmL6eIE3nFnDxRwskTJWRU2KuP+/XyLXztpTxJgMFkICzcwomjBYRHBjNwWFfiO0WSmBxF7/QkUtLi0Ot19Z7T6uwCbA4XJTYnAKOnL2PPI1OaNFBp74GQEEII0R6093mt/Ikj6+ttEBZuabLyNHd81NLxl+fx9DqFXuffxPFCNIVGExdKqfeAC4FcTdP6e3k9CngP6A5UALdomra1qQsq2rdAG7bQqXM0nTpHc/7l7iWGP1u2l0f+swpDQTGRFVayD+WzfeMBrB5JCG/MQUbiEyOIiQujT//ORMWEYAwJ4rgL+neJJikujOAQM5ZgE+YgI+YgI0FBRkxmAzpd/UkJX2SkRFbOk+GmaTR5oNLeAyEhhBCiqbRmTN3aD4iam79xZHNPxN7c8VFLx1+1jzfj8gFEWowBEbOLjsOXHhfvA/8CPqzn9UeBjZqmXaaU6gPMAKY0TfFER9Laq3k0ZPKgzpQkx2BPjKZAr5j10CTiQk2UlVo5kVdMWYkVDQ2XS8No1BMeGUxEZHCdGaFbUnyYmZX3jmP09GVoGpgNuiYPVNp7ICSEEEI0ofdppZg60B4QNYdAiiObOz5q6fir9vGm9oprl98hEdgaTVxomrZEKdW1gU3Sgecqt92hlOqqlErQNC2nicooRKurr8EPCQ0iJDTI63tyi63M357bqgFCv8Rw9jwypdkClY4QCAkhhBBNobVj6kC6sW8PWnMC9JaOvyTeE4GgKea42ARcDixTSmUAXYDOQJ1KVil1O3A7QGpqahMcWoiW40+DH0hzPzR3oCKBkBBCCNEkfIqpJZ5ufb7Eee0t/pJ4T7S2MxtE7/Z3IEoptRG4F9gAeF3AWNO0tzVNG65p2vC4uLgmOLQQgclzLKDdqbE6u6C1iySEEEKIwOZTTC3xdOuTOE+IlnfGPS40TSsCfgOg3IP5syr/CNFhydwPQgghhPCHxNRth8R5QrS8M05cKKUigTJN02zAbcCSyopXiA5LxgIKIYQQwh8SU7cdEucJ0fJ8WQ71U2AiEKuUOgT8BTACaJr2JtAX+FAp5QQygVubrbRCBLDakzTJWMCGJ64SQgghOhKJqdsub/FMc8Z5Ej8JUZcvq4pc18jrK4GeTVYiIdqgQJqMM1DINRFCCCFOkZi6bWrpeEbiJyG8a4rJOYXo8GSSprrkmgghhBCirWvpeEbiJyG8k8SFEE1AJmmqS66JEEIIIdq6lo5nJH4SwrsznpxTCFFzkqa0aEuD4xI7yrhFmbhKCCGEEG1dS8YzVTHi4rvHkJVfLvFTK+kosXpbI4kLIZpIfJiZjJTIBscldrRxizJBqRBCCCHaupaIZzpajBio5HMIXDJURHQoucVWZmbmkFtsbZb9NzYuUcYtCiGEEEKI2pozRmzu+Lc9kVg9cEmPC9FhtEQGtbFxiY29Ll3ThBBCCCF8057ipuaa20J6EPhH5hgJXJK4EB2GZwY1zGxgdXZBk3f7a2wcZEOvS8MihBCBQffgDz5t53rpomYuiRCiPu0tbmquuTRaIv5tT2SOtsAlQ0VEh9FSGdSqcZD1VXTeXs8ttjJjeRY2h0u6pgkhhBBCNKKlu/S3xHCLxmLI0yE9CPzXHJ+DOHPS40J0GIGaQa16YmB1uCizOQk16Zu9YWlPXSuFEKK1+NozA6R3hhBNrSVvyNty7474MDOL7x7D5xuPcPXgpDZTbiFqk8SF6FACcZWLqicGpTYnISY9vx/fjXvGpjVbw9KWG18hhBBCCGjZB1JtebhFbrGVCa+vwO7UmLFiv8R9os2SxIUQraz2E4PmTFpA2258Rcfgz1NsIYQQHVdLPZBqy8MtJO4T7YUkLkTAa+/DGlp6CEtbbnyFEEII0XEESgwYqMONfSFxn2gvJHEhAlpHGdbQkkNY2nLjK4QQQoiOIdBiwEAcbuwLiftEeyGJCxHQpHtb82irja9o22QIiBBCCF9JDNh0JO4T7YEshyoCmnRvE0IIIYToeCQGFEJ4kh4XIqBJ9zYhhBBCiI5HYkAhhCdJXIiAJ93bhBBCCCE6HokBhRBVZKiIEEIIIYQQQgghApYkLoQQQgghhBBCCBGwZKiIEEKIMyKrhQjRuKb+PXG9dFGT7k8IIYQIZNLjQgghhBBCCCGEEAFLelwIIYQQQgif+NpzRHqECCGEaErS40IIIToQpdS5SqmdSqk9SqlHWrs8QgghhBBCNEYSF0II0UEopfTADOA8IB24TimV3rqlEkIIIYQQomEyVEQIcVpyi62szi4gIyWS+DBzaxdH+CYD2KNp2j4ApdRnwCVApreN1x0qlIk3hQhQHW2yT6mLRCCTmEiI5ieJCyGE33KLraS/uBC7U8OoV2Q+NEka6rYhGcj2+P8hYGQrlUUIIYRo8yQmEqJlKE3TWufASuUBBzx+FAscb5XCBAY5fzn/tnP+QaERhMenoXR6NJeTotwsKkoKz2CPbeX8u2iaFtfahThdSqmrgGmapt1W+f+bgAxN0+712OZ24PbK//YGdrZ4QVtOW/neNTe5Dm5yHdza+nVo0/W0v7zE04GkrX+XfNN4TNQxrkPD5BrINagSC4ScTj3daj0uahdWKbVW07ThrVWe1ibnL+cv599xz78FHQJSPP7fGTjiuYGmaW8Db7dkoVqLfO/c5Dq4yXVwk+vQtgRykka+S25yHeQagFyDKpXXoevpvFcm5xRCiI5jDdBTKZWmlDIB1wLft3KZhBBCCCGEaJDMcSGEEB2EpmkOpdTvgDmAHnhP07RtrVwsIYQQQgghGhRIiYsO0TW5AXL+HZucv2gRmqbNAma1djkChHzv3OQ6uMl1cJPrIJqKfJfc5DrINQC5BlVO+zq02uScQgghhBBCCCGEEI2ROS6EEEIIIYQQQggRsFo0caGUClJKrVZKbVJKbVNKPellmxuUUpsr/6xQSg1qyTI2N6WUXim1QSk108trSin1mlJqT+X5D22NMjanRs4/Qin1g8f34zetUcbmpJTar5TaopTaqJRaW882Eytf36aUWtzSZWxOSqlIpdSXSqkdSqntSqnR9Ww3QinlVEpd2dJlFG2bUuo9pVSuUmprPa9HKaW+qaxjVyul+nu81ujvZ1uhlEpRSi2s/D3bppS638s2fZRSK5VSVqXUg7VeO1cptbOyPXqk5UretHy8DvXGHe3lO+HLdfDYtk79216+D6LpnUmd2174WM90hBj/jNqd9uBM25z2wsfrcEnlNdiolFqrlBrX6I41TWuxP4ACQiv/bQR+AUbV2mYMEFX57/OAX1qyjC1wDf4AfALM9PLa+cBPlddpVHs7dx/O/1Hg+cp/xwH5gKm1y9zE578fiG3g9UggE0it/H98a5e5ic//A+C2yn+bgEgv2+iBBbjnYbiytcssf9rWH2A8MBTYWs/rLwJ/qfx3H2C+x2sN/n62pT9AJ2Bo5b/DgF1Aeq1t4oERwLPAgx4/1wN7gW6Vv6ebar+3rfzx8TrUG3e0l++EL9fB47OvUf+2p++D/Gn6P2dS57aXPz7WMx0hxj/tdqe9/DnTNqe9/PHxOoRyatqKgcCOxvbboj0uNLeSyv8aK/9otbZZoWnaycr/rgI6t2ARm5VSqjNwAfBOPZtcAnxYeZ1WAZFKqU4tVsBm5sP5a0CYUkrh/jLnA44WKl6guB74WtO0gwCapuW2cnmajFIqHHeA8y6Apmk2TdMKvGx6L/AV0G7OXbQcTdOW4K476pMOzK/cdgfQVSmV0BJla0maph3VNG195b+Lge1Acq1tcjVNWwPYa709A9ijado+TdNswGe426c2x8fr0G7jjiq+XIdK3urfdvN9EE1P6lyff7/adYwPZ9zutAvS5rj5eB1KtMqsBRBCrZyANy0+x4VyDxXYiLtR/FnTtF8a2PxW3NnJ9uIV4GHAVc/ryUC2x/8P4T2waKteoeHz/xfQFzgCbAHu1zStvm3bKg2Yq5Rap5S63cvrvYAopdSiym1+1cLla07dgDzgP8o9XOgdpVSI5wZKqWTgMuDN1iig6BA2AZcDKKUygC6cChoa+/1sk5RSXYEhuHs5+qJdtkU+XofacUe7+07Udx0aqH/b5fdBtJiG6tx2p4F6pkP9Hp1Gu9PunGab0+40dB2UUpcppXYAPwK3NLavFk9caJrm1DRtMO5KK6O+sW5KqUm4P8w/tWDxmo1S6kIgV9O0dQ1t5uVn7WLZFx/PfxqwEUgCBgP/qnxK356M1TRtKO6uYfcopcbXet0ADMPdM2Ua8LhSqlcLl7G5GHB3J31D07QhQClQe6z0K8CfNE1ztnDZRMfxd9zJwY24ny5v4FTPrsZ+P9scpVQo7ifoD2iaVuTr27z8rE23Rb5ch3rijnb1nWjkOryC9/q33X0fRItqqM5tVxr5/eowv0en2e60K2fQ5rQrjV0HTdO+0TStD3Ap8HRj+zM0eQl9pGlagVJqEXAuUGNCH6XUQNzDCc7TNO1EKxSvOYwFLlZKnQ8EAeFKqY80TbvRY5tDQIrH/zvj7n3QHvhy/r8B/l7ZbWiPUioL93jI1S1f3OahadqRyr9zlVLf4O6Cu8Rjk0PAcU3TSoFSpdQSYBDusWFt3SHgkEcvqy+pm7gYDnzmHi1ELHC+Usqhadq3LVZK0a5VNpy/AfdkaUBW5R9ffj/bFKWUEXfA8LGmaV/78dZ21Rb5ch3qizva03fCh+vgtf6lnX0fRMtqqM5tT3z4/eoQv0dn0O60G2fS5rQn/nwXNE1bopTqrpSK1TTteH3btfSqInFKqcjKf1uAs4EdtbZJBb4GbtI0rT3crAGgadqfNU3rrGlaV+BaYEGtm3aA74FfKbdRQKGmaUdbuqzNwcfzPwhMAagc/9gb2NeiBW1GSqkQpVRY1b+BqdRK2gHfAWcppQxKqWBgJO5xYW2epmnHgGylVO/KH03BPRGp5zZpmqZ1rfyefAncLUkL0ZSUe2UbU+V/bwOWaJpW5OPvZ5tReYPwLrBd07SX/Xz7GqCnUiqt8lpdi7t9anN8uQ71xR3t6Tvhy3VooP5tN98H0fLqq3Nbs0xNzcf6tt3G+FXOsN1pF86kzWlPfLwOPSq3Q7lX2TEBDSZxWrrHRSfgA6WUHnfS5HNN02Yqpe4E0DTtTeAJIAZ4vfJcHJqmDW/hcraYWuc+C/esw3uAMioz1O1ZrfN/GnhfKbUFd5e6PzWUdWuDEoBvKr/XBuATTdNme14DTdO2K6VmA5txzwXyjqZpbTJQrse9wMeVQcw+4De1vgNCnBGl1KfARCBWKXUI+AvuiaCrvmN9gQ+VUk7cibNbK9/q9fezZUvfpMYCNwFbKrtog3vlplRwXwulVCKwFggHXEqpB3DP+l2klPodMAf3ihLvaZq2rYXL31QavQ7UH3e0p++EL9fBK03THO3o+yCa2BnUue2JL79fHSHGP6N2p+WL2yzOpM1pT3y5DlfgTubZgXLgGo/JOr1SjbwuhBBCCCGEEEII0WpafHJOIYQQQgghhBBCCF9J4kIIIYQQQgghhBABSxIXQgghhBBCCCGECFiSuBBCCCGEEEIIIUTAksSFEEIIIYQQQgghApYkLoQQQgghhBBCCBGwJHEhhBBCCCGEEEKIgCWJCyGEEEIIIYQQQgQsSVwIIYQQQgghhBAiYEniQgghhBBCCCGEEAFLEhdCCCGEEEIIIYQIWJK4EEIIIYQQQgghRMCSxIUQQgghhBBCCCECliQuhBBCCCGEEEIIEbAkcSGEEEIIIYQQQoiAJYkLIYQQQgghhBBCBCxJXAghhBBCCCGEECJgSeJCCCGEEEIIIYQQAUsSF0IIIYQQQgghhAhYkrgQQgghhBBCCCFEwJLEhRBCCCGEEEIIIQKWJC6EEEIIIYQQQggRsCRxIYQQQgghhBBCiIAliQshhBBCCCGEEEIELElcCCGEEEIIIYQQImBJ4kIIIYQQQgghhBABSxIXQgghhBBCCCGECFiSuBBCCCGEEEIIIUTAksSFEEIIIYQQQgghApYkLoQQQgghhBBCCBGwJHEhhBBCCCGEEEKIgCWJCyGEEEIIIYQQQgQsSVwIIYQQQgghhBAiYEniQgghhBBCCCGEEAFLEhdCCCGEEEIIIYQIWJK4EEIIIYQQQgghRMCSxIUQQgghhBBCCCECliQuhBBCCCGEEEIIEbAkcSGEEEIIIUQAUEr1Vkpt9PhTpJR6oLXLJYQQra3RxIVSKkUptVAptV0ptU0pdb+XbS5RSm2urGDXKqXGNU9xhRBC1Cb1tBBCtA+apu3UNG2wpmmDgWFAGfBN65ZKCCFan9I0reENlOoEdNI0bb1SKgxYB1yqaVqmxzahQKmmaZpSaiDwuaZpfZqz4EIIIdyknhZCiPZHKTUV+IumaWNbuyxCCNHaDI1toGnaUeBo5b+LlVLbgWQg02ObEo+3hAANZ0OA2NhYrWvXrv6WN+AUVtjZd6IMlwY6Bd1igokIMrZ2sYQQzWDdunXHNU2La+1y1Cb1tGgvpE0VZypQ6+nTdC3waUMbSD0thGhrTreebjRx4Ukp1RUYAvzi5bXLgOeAeOCCet5/O3A7QGpqKmvXrvWzuIEnt9hK+osLsTs1jHrF8ocmER9mbu1iCSGagVLqQGuXoTFST4u2TNpUcabaQj3tC6WUCbgY+LOX16SeFkK0WadbTzc6VMTjAKHAYuBZTdO+bmC78cATmqad3dD+hg8frrWXija32Mrq7AIyUiIlwBKiHVNKrdM0bXhrl6M+Uk+L9kDaVHEmAr2e9pVS6hLgHk3Tpja0ndTTQoi25nTraZ96XCiljMBXwMcNBcMAmqYtUUp1V0rFapp23N8CtUXxYWYuTE9o7WIIITowqadFeyFtqhAAXEcjw0SEEKIj8WVVEQW8C2zXNO3lerbpUbkdSqmhgAk40ZQFFUII4Z3U00II0X4opYKBc4AGk9BCCNGR+NLjYixwE7BFKbWx8mePAqkAmqa9CVwB/EopZQfKgWs0X8egCCGEOFNSTwshRDuhaVoZENPa5RBCiEDiy6oiywDVyDbPA883VaGEEEL4TuppIYQQQgjRnjU6VEQIIYQQQgghhBCitUjiQgghhBBCCCGEEAFLEhdCCCGEEEIIIYQIWJK4EEIIIYQQQgghRMCSxIUQQgghhBBCCCECliQuOpDcYiszM3PILba2dlGEEEKINkHaTiGEEKL1NbocqmgfcoutpL+4ELtTw6hXZD40ifgwc2sXSwghhAhY0nYKIYQQgUF6XHQQq7MLsDs1iq0O7E6N1dkFrV0kIYQQIqBJ2ymEEEIEBklcdBAZKZEY9YowswGjXpGREtnaRRJCCCECmrSdQgghRGCQoSIdRHyYmcyHJrE6u4CMlMjT7uqaW2w9430IIYQQbUFDbae0h0IIIUTLkcRFBxIfZubC9ITTfr+M9RVCCNHReGs7pT0UQgghWpYMFRE+k7G+QgghhLSHQgghREuTxIXwmYz1FUIIIaQ9FEIIIVqaDBURPmuqeTKEEEKItkzaQyGEEKJlSeJC+OVM58kQQggh2gNpD4UQQoiWI0NFhBBCCCGEEEIIEbAkcSGEEEIIIYQQQoiAJYkLIYQQQgghhBBCBCxJXAghhBBCCCGEECJgSeJCCCGEEEIIIYQQAUsSF0IIIYQQQgghhAhYkrgQQgghhBBCCCFEwJLEhRBCCCGEEEIIIQKWJC46gNxiKzMzc8gttrZ2UYQQQrRT0tYIIYQQorkYWrsAonnlFltJf3EhdqeGUa/IfGgS8WHm1i6WEEKIdkTaGiGEEEI0J+lx0c6tzi7A7tQotjqwOzVWZxe0dpGEEEK0M9LWCCGEEKI5SeKinctIicSoV4SZDRj1ioyUyNYukhBCiHZG2hohhBBCNCcZKtLOxYeZyXxoEquzC8hIiZSuu0IIIZqctDVCCCGEaE7S46Kd8TY5WnyYmQvTEySQFEII0Ww82xqZqFMIIYQQTUl6XLQjMjmaEEKI1iZtkRBCCCGamvS4aEdkcjQhhBCtTdoiIYQQQjQ1SVy0I809OZp0/RVCiMATaHWzTNQpxJlRSkUqpb5USu1QSm1XSo1u7TIJIURrk6Ei7Yjn5Ghp0ZYmnSRNuv4KIUTgCcS6OdAn6swttgZs2YSo9CowW9O0K5VSJiC4tQskhBCtTRIX7Ux8mJmMlMgmD2Q9u/6GmQ2szi7gwvSEJiq1fyToFEIIN291c0ZKZKvXkVUTdQaaQEz0COFJKRUOjAduBtA0zQbYWrNMQggRCCRx0Q41R5IhULr+StAphBCn1K6b06ItUkc2IJCS8ELUoxuQB/xHKTUIWAfcr2laaesWSwghWpfMcdEONUeSoarr78c3DG3VQFgmfRNCiFNq181Z+eVSRzYgUJLwQjTAAAwF3tA0bQhQCjziuYFS6nal1Fql1Nq8vLzWKKMQQrQ46XERAJp66EN944vP9DiB0PVXgk4hhKjJs25uzTqyuYfxNcX+A33+DSGAQ8AhTdN+qfz/l9RKXGia9jbwNsDw4cO1li2eEEK0DklctLLmGvpQO8nQXoZYSNAphBD1a606srnbmKbcfyAk4YWoj6Zpx5RS2Uqp3pqm7QSmAJmtXS4hhGhtMlSklbXU0If2NMSiKuiUpIUQQtTVGnVkc7cx7akNE8IH9wIfK6U2A4OBv7VucYQQovVJj4tW1lLdemWIhRBCiObS3G2MtGGiI9E0bSMwvLXLIYQQgUQSF62spbr1yhALIYQQzaW52xhpw4QQQoiOTRIXAaClxtvKuF4hhBDNpbnbGGnDhBDizOke/MGn7VwvXdTMJRHCPzLHRS25xVZmZuaQW2xt7aIIIYQQooOROEQIIYSoS3pceGgvK2/4q7mXsBNCCCGaWntsuzpqHCKEEEI0RhIXHjxnLQ8zG1idXdDuu6XWFyS1x4BQCCECmdS7vmuvN/gdMQ4RQgghfCGJCw8dcdZyb0FSRkpkiwWEEqgLIUT7vRH3hz/tQXu9we+IcYgQQgjhC0lceOiIs5Z7C5JaKiCUQF0IIdza6424r/xtD9rrDX5HjEOEEEIIX0jiwkNHfPrvLUhqqYCwowfqQghRpb3eiPvK3/YgUG/wmyKOkNVThBBCiLokcVGprT/9P5NgqXaQ1FIBYUcP1IUQokqg3oi3lNNpD5riBr8pH1i09ThCCCGECGSSuKjUlp/++xssOexOdm0/wpb1+yk8WYa1wo7N5iAiMpiklGiSUmLo0Sex2c+/owfqQgjhqSM/aW+N9qCpEw1tOY4QQgghAp0kLiq15af/vgRLLpeL1ct2M+vrtWxau5+KchsA5iAjQUFGjCYDhSdLsdudACil6N4rkQHDujBsdA8Gj0jDaGz6r0tHDtSFEEKc0tLtQVMnGtpyHCGEEEIEOklcVPLnaU+gzYXRULBks9r56Zt1fPPpLxw9lE9MXBjjpg3AmBLLRVP60j0lqnrbYwXlLNx8mASng8O7jrJ53X5+/Got33yyiuAQMxnjejJuSj8yxvbEHGRshTMVQgghaqpqk9OiLWTll/vcNvuSaPCnvZdehEIIIUTzkcSFB1+e9jRl19KmSoB4C5acThcLZ2/hg9fnk3uskPRBKdx8zxR6jejGwH8uwb67kGf2/VJd/txiK/1fXlzjvG66YxI2q50Nq7NYsWg7KxfvZNGcrViCTYyZ2IeJ0wYwdGR3DEb9aZddCCGE8FXtdrOqTbY6XJTZnISY9JgMOp/a5sYSDafT3ksvQiGEEKJ5NJq4UEqlAB8CiYALeFvTtFdrbXMD8KfK/5YAd2matqmJyxoQmqpraVOPra0KlmxWOz9+tYYvPlzB0UP59OjTiT/+5VIGZ3QDYGZmjtfy13deJrORkWf1YuRZvbjvUReb1+1n0ZwtLFuwnfmzNhMabmHMxD6Mm5zOkJHdMJkkFyZES5N6WnQE3trNqrar1OYe5lhicxKmlM9tc0OJBpmzQgghhAgcvtxlOoA/apq2XikVBqxTSv2saVqmxzZZwARN004qpc4D3gZGNkN5W5S3HhFNNYa1qQOi4qJyZn3tHtZx8kQJvfolc+u9VzN2cl90Ol31dvWV35fz0ut1DMnoxpCMbvzukQtYt3IvS+ZtY/mC7cz9fkP1cJIxE/syfEwPQkKDTvt8hBB+6bD1tOg4vLWbVW1XiElf3ePCWxt2Oj0cZc4KIYQQInA0mrjQNO0ocLTy38VKqe1AMpDpsc0Kj7esAjo3cTlbXH09IppqDGtTBUT79+Yy84vVzP1hI9YKO8NGdefqZ69k0PCuKKXqbO9Z/rRoS43z8Oe8jEYDo8b3ZtT43thsDpYs2cWPP21m3aq9LJqzFYNBz8BhXRk1oTcjxvQkKSX6tM5PCNG4jlpPi+YXSHM6eWs3a7dpnnNceM59MeH1FX73cJQ5K4QQQojA4Ve/fqVUV2AI8EsDm90K/FTP+28HbgdITU3159BNypdArKEeEU0xhvVMAqJjR06yeM5WFs7ZQtbuHIxGPZPOG8il142ie69En46dkRLpNTFzOudVYHVy7ZKD2IMiMI4dxDfn9mTn2n2sXLyT11+YBUBichRDR3Zj6MjuDBqRRnhEsE/7DqSgWYi2oL3U06Lp+VufNvWQxjNVX7vp2Xb1SwyvU3YNDU2DUpvT7x6O/raL0mYJIVqL7sEfWrsIQjQrnxMXSqlQ4CvgAU3TiurZZhLugHict9c1TXsbd/dkhg8frvld2ibgayDWEl1E/QmIjh7KZ+n8TJbOz2TXtsMA9B2Ywl0PnsfEaf2JjA7169hNOVSl9r4Ko8K47f6p3Hb/VLZsP8oPP2dSvOcoi+ZsZdbX69DpFD37JjFibE+Gj+lBr/Rk9Hpdnf0GWtAsRKBrL/W0aHq+1qeeN95n2k7YrHYKC8ooKiijpLiC0uIKSkusVJTbsFrtWCvsaJo7qQBgNOqxBJsIspiIiAohLjGCuPhwwiIs1T0IfW03PcseatKjFM0+5EPaLCGEEKL5+JS4UEoZcQfDH2ua9nU92wwE3gHO0zTtRNMVsWn5Goi1dhdRTdPYu/MYq5bsYMWiHezdeQyAXulJ3HLv2UyY2p/EpKhG9lK/tGgLGhqh9YwH9kd9SZ7cYiuTPt3kDuIiY9n83eWcPHCc9b/sZd3KPXz878V89PYiIiKDGTm+N6Mn9GFIRhqWYPe1lonRhPBde6qnRdOrfSM/Y3kW94xNq9G21b7xXnz3mDp1u6ZplJZUcCKvuPpP/vFi8qv+faKEk5V/ystsTVL2yOgQeqUn07tfEoNGdCN9YIrXZLen2u3S4rvH+LVU6umQNksIIYRoPr6sKqKAd4Htmqa9XM82qcDXwE2apu1q2iI2LX96UjTlsma+dB8tKS5n45os1izfzZrluzmRV4xSivRBKfz2gamMm5J+RskKz7JMeH0FmgZKweK7xzT5cqxQN4hbf7SYCwen0m9wKtOuH8PizGOYjp5g+5p91RN8Gk0GMsb2ZPzU/gwc3KXRz0q65QrR/urp9qIl66fGjlXV9oWa9JTanLy8ZB8zVuyv0SvAs86OUhpLlu7mtZ7hbMw8gnayjP+75d/kHSv0mpAIDjETExdGdGwYvdKTiIwOJTI6hIjIYMIjgwkNsxAaFkRIqJkgiwlzkBGTyYDecCoBYbc5KC+zUV5uo+BEKXm5ReQdK2Df7hx2ZR5hzfLd/PetRUTHhDJ2SjrTLh5Cz75JXq+Ht3apahhJc2krk3lKuymEEKIt8qXHxVjgJmCLUmpj5c8eBVIBNE17E3gCiAFer+zO6dA0bXiTl7YJtEZPivq6j548UcLObYfJ3HSQDWuy2LP9CC6XRnCImWGjujNibE9GntXL72EgjfFcPi7MbCArv5x+ieFnFMx4S/I01BOjxvV45CL+GKRn28ZsVi7azpJ5mSxfuB1zkJE/TE4nflQPLprQq06ZpFuuENXaVT3dHrRk/eTLsaravhnLs3h5yT5KbU5cLo25u/K4bnAS+3Yd48TKPfTesIvgwhLMFTa+XbAOgCCLieTUaDqnxjB0ZHfiEyOIiQ8nJjaU6NgwomNDq3vKnQmT2YjJbCQiKoTEpCj61Hq9tKSCNct3s3R+JnO/28APn68mY1wvbrx9Ir37JdfZX1M+fPBFa/fU9IW0m0IIIdoqX1YVWQbUXZ6i5ja3Abc1VaGaW0sGMy6Xi/kbswnKKySosJToCiuPP3CE8pxCco4WAO5lRvv078x1t45ncGU3WINR32xl8pZQaI5gxteeGFXdaQePSGPwiDRu/8O5ZG46yLyZm1g0dysVszaxoXcnLr1+FBOm9sdkMjS4HyE6mvZYT7d1LVk/+TME8p6xaUxfnoXZaiPqaBGvPvEVX5WUUVZSAUDvpCgiBqcybHAqgwZ2JqVrLLHx4V5XqWppIaFBTJw2gInTBlBaUsEPn6/my49WcN+v3mbMxD7c8cdzm6RX4plo6WSJv6TdFEII0Vb5taqIaLiLpc1qZ/0v+8jcnM2h/cfJ3n+co4fysdud9KvcxqVTOA1x9BnQmUuuHUmvfsn07NOJIIupxc7BW0JhZmZOvcFMc/XECDXp0dBIi7bUeF2v1zFgaFcGDO3K7X+YxsLZW/j+89W89JdvePe1n7nwyuFcfM3INtMtVwjR8bRk/eTrsQ5m5bF84XambdtD/oHjANjMRrqO6sFF56QzaHhXYuK8D6c40+EFTT08ISQ0iGtvGc/F14zku//9wmfvLeX2K2dw/W3jueKmMZyscAZ0z4fWIu2mEG1Pa60W4utxXS9d1MwlEcJNaVrrTBo/fPhwbe3ata1y7NO17VgRo6cvq54bYuW94+iXGM7G1fuY9c06Vi/bRXmZDb1eR1JKNCldY0nuEkNiUhRBUaHk6PRMGZJCYqSl8YM1oDnGp9bX46K5upV6XkuzQdfofnOKKvjqp60cWLKdjav2EBxi5tJrRzL+0mFsK7BKcCpahFJqXUcaXtEW6+lA0lR1tS/7qW+bnKMFLJq9hYWzt5C1JweAHunJLHLqyY+NwB4RQubDkxss35m2Ay0xPCH3WCFv/uMnli/YTnLXWOZ17kRhaMhplzeQkh5NXZ5AO7+mlFtsJSE+do9WXtyztcvSUqSebv8CfZlTSVwIf51uPC09LnyUW2xl9PRllFid1T8b/dpSHrM4mP/teiKiQpg4bQDjJqczaERXjMbmubTNFQD6O6zjTGXll6NQlNgc6JRqcL+5xVb6vbTIfc4xccx5byI/fbKST95dwref/cLVN48jPG3UGZdJCCGaUlMMG/C1zvc8VlFBGUvnb2PBT1vYuuEAAOmDUrj7ofMYM6kvcQkRft28nmk70BLDE+ITI3jixWv5Zekunn/yW/oc2EJWaifyeqf4dbxAmwOiuYZxtsfhIVXXivD4tNYuixBCiKYniQsfrc4uoHbnlE77jzF/50EuvW4Ut957NiazsUXKUTsAzEiJ9DkAbShY9WeCzcb4OsO9L/utfc5HjSYee/5qsnbn8P4b83l/xny+++wXrrt1PBdcPrxZ5wcRQoiW5OtNv81qZ9WSXcz7cSNrV+zB6XTRuUssv757MpPPHUhics25H/y5eW1oouX66nnP11pyeMLIs3rxjw9v56o7P6LbgaN0OlFA/FX9fX5/oM0BMXdXHuU2J+UOV0CUJ5BVfXYonQQBQgjRDkniwkcZKZGYDTo0TaPM7iKhtJTUXdmkDk3j8tsntUjSoqocngFgWrTF56cxp/Pkxt9Z0nOLrczdlcd9327B6aLRGe592W99QW9azwSefPl6tm08yH9mzOP1F2Yx84s13PngeQwb1b3BcgohRFvQ0E2/pmns3HaYOd+tZ/HcbZSWVBATF8Zl149i0rkD6d470a9JNetLRHirrxtqT7y91lh935TDF9KSIpn18W/5/IdNLH1/MX+9831uvH0i19w8Dr2h4XvaQJoDIrfYyn3fbqXc4QJAr0PmpGhA1WeH5nI2vrUQQoi2RhIXPvIM3LpGBfHUb98jJ8jEV1ExfPPSohbrTlo7gKz9dGjurjwiLUavwd/pPklq6MmcZ7AJkP7iQsrtTsrt7kCrsRnufT1+Q0Fvv8GpvPj2b/hl6S5mvPgTj97zIcPG9eJ3D55HUkp0o/sXQohA5Vn/pUVbWJ1dQN9wE5sWb2fu9xvJ2pODOcjIuCnpnH3BIAYNT0Ov1/l1jFMJ5604Xd4T27Xr64bak/pea6gdaY7hEL+7PoNfXdCfGc//yAdvLGD1sl383/NXE5cQUePYnm1LIC1pujq7AKfL3dXTYtTx2qUD2t2cFE2p6rNLeDE3q7XLIoQQoul1uMRFU6yQcTj7BIVHCzia3pUCF4Q5NZ+SAE31RMkzgPR8OqTXqQZ7OjT1k6TaweYrl/TH7tSqkxYWg67Fnlgppeg2pCuzB/YiNuQIzpV7uP2qf3HVr8dxzc3jWnTVFiGEOFO124sRnSPIePR7YvcfIzonH51Lo3e/ZO7/v4uYMLU/IaFBp32c9BcXVg9HgIYTzlUaak/8bWt8SaqfbvsZHhHMn/92FaMn9OGVZ77n3pve5vEXr6HfoNR6EyaBMgdE7es4tVdcaxephkCc5DM+zAwVJYWtXQ4hhBBNr0MlLprqqc7W9e7JzspiI3wOzFpiUs2Ccjv3fL2l3uCvqZ8k1Q42gRpJlNcu7c/UXnFnfBxfr93q7AJsKHZ2TiAvOY7rrMV88s5i5s3cyD1/uoBR43ufUTn8KW+gBXNCiJbTFEuHVtd5Ong/oxOf/3cFffbmYDfoye0cz+/vnMjN09LPuKxV9XhV0sJi9C3h3FB74m9b01iioynaz4nTBtC1RwJP/vFTHr79fe798wU4enUOqPksaguk3h+1BdokpkIIIdq/DpW4aKpJt7asP0BEVAjrnjyfNYcKW2RW9irbjhXx+cYjTOkZS5HVWX3sC9MTyC22YtQrQkx6NDTSok8tu2qzOziUU8DBYyepKCjlux17OVlUTlmFDavNgc3uxKVpKAU6pTAY9JhNBsxGPcFBJkIsJkIsZsJCzISHBBEeGkSiQU8QTjSjDg2NIcnhzRJk+XrtPINf9IrH/3ouObuPMv3vP/KX33/CWVPSufPB84iND2+ScnkjwZwQHVtT1AGrswtw2J2EHcyl28FjTJ+1ioTkKA70TyOnUyx6k4HzxzTNPD41e+3Ba5cO8DnhvCO3mI/XZRNu1jc62XPtYYX+DM9oqvaza/d4Xvvwdp778xf88+nvuePPFwXMfBb1CZTeH7UF2iSmQggh2r8OlbhoqqESB/bl0r1XIgnhQVyY7lv33KY49rZjRQx8aTEa8PS83YSY9JgNuhrdWxffPYbR05dhcNi54IVZ3Ngzgp37jnEopwCXx7IoSkF4SBDBQabKBIUBpVNomoamadgdLqw2B1abg3KrjbIKu9cydQU0wKnTc8OjWXRPiKB7pwj2xYUTFxlKXHQoiTHhJMaGER0egk7n+0Rx/l47b8Fv/NCuzPj4Dr74cDmfvruEtSv3cPPdU7jo6gy/x4H7QoI5ITq2M60DnE4XZZv2M3jpJszlVkrDQ7jvqcs599wBnCizN3li+HSf6i/Ze5xJry/H4rAxb9VObhsYh7W0nOzjxWgOO2VlNgAMBh06nWJfsQOr3ojDaKLCbKHUZMFg0Ps0PKMphzmGhVt46pUbePR3/+X9f85m/tu3kK30AdejIdAF0iSmQgghOoYOlbhoqm6XRw6dZMI5SS1+7M83HsFzRdZSmxOdUtWBcYXVzneLt5Gac5AQaxkAS4uPMyI9hXNG9aZLpyhSO0UTHx1KRKgFg5cb96oeHVcPTqJf4qmeCU6Xi7JyG8VlVopKKygsrqCwpJzlu3P56Jf9uOx2jC4HO3OLyDp2kiDNhdNZc2Jvk1FPcnwkKQmRdOkURfeUWLp3jqNrUhQmY/1fRX+unbfg12g0cP2tE5h87kD+9fyPvPHSTyyau5XfP34xXbrFN3TJ/SbBnBAd25nUARtX7+PNf8wma08OffsmkX7+YK6+cBAJ4e4EeWNP3093iIqvT/UrbHY27DjEmm0H+XLFboYWFKOrbJUWLM/FZjDi0Blw6fVcMaQLQUY9TpeLrOMl7C3KJbi8BFOpu11woigPCubtmev442UjsATVvzJXUw+ZMBj1PPz05dx17Ru8/bfv+ed/bmN3fhkzlmfVafuEd4E8jKU9UErtB4oBJ+DQNG1465ZICCFan9I0rfGtmsHw4cO1tWvXtsqxz0RJcTlXTPw7t91/Dlf9atxp7eN0g0vPHhcAwUYdQUY9W/44gWWrd/DmlysoKbNiNxgpCImgIiSMdY+eS6cIS4P7rSpPuFnPpDdWogEK2PzghEYDuOqJ3TxWEgGwGBQhesXMm4ZgK6/g2IkiDucWciingOycAg7lFGB3uANYg15Hj9Q4+qYlkJ6WwOA+nUlJiPRpGT9/r6WmaSz4aTNvvPQTFWU2rrt1PNfcfBYGY9Mt+y5zXLRfSql1HSmAbKv1dGvztw7IPVbImy/9xPKF20lIiuS3909l3JT0GnVgY/tsrmFqh3MLWLJ+Hys27mPjrsPY7E5MRj1JidGsPGGn1BhEucHMYxf05/lF+6p7mnx8w9DqIYyeK5YYcBJcUU5QWQmhFSWYHHZCg81cOnEA1583jJjIkDMus69WLNrBk3/8lGk3jOahI/bqtm/6Zf25cmCS1N9tVHuopysTF8M1TTve2LZST7d/ugd/aO0iNMj10kWtXQTRxpxuPd2helw0hdxj7smq4xMjT+/9ZxBc9ksMZ+Fdoznv37+456LQKf57SW8efflrMvflkNG/C7dcMpKkpFif597wLI/d6apOimi4e3g8eW7DiYuqpy7uwHQLVruLcoeLcoeGQa8n16XnwiHd6rzP4XByMKeAPQfz2HUglx37c/l51U6+WbAZgNjIEIb27cy4wd0YPSiN8JC6Q3JO51oqpZhy/iCGjerO6y/+xIdvLmTZgu384YlL6NnXv140DV2T5ngqKkR70d5/B3ztweB0uvjh89W8//p8XC6Nm++ZwhU3jMZkrtn7wJe6rimHqR08epK5q3awYPUu9h46AUC35BiumDKIUQO6MrhPMkEmI0v2HueNFfu5a0xX+sSH8fLSrBo9TTzLrdfBjMvd82fklVoZPX0Zx1zxRDgruLqTgU9+WsfXCzbx64syuPbcoQSZ6u+B0VTGTOzDmIl9mP/1OtSI/mh6d/+RP3y/jSfm7JQ5ioQQQogAIokLP+UdKwIgLjGikS3ryi22MmN5FjaHixKb87SCyyKrE4NeR3GFnVR7MU+++i2RYRaeuvt8po7qXf2Ezte5NzyD3WDjqaEjCrh6sG838vFhZm4c1pmpveJqPFlrqJu0waCnW3IM3ZJjmDq6D+DuDXHg6EnW7zjE+u3ZrNmWzdyVO9HrFIN7d6Z/vy4cUhZuyOhCv8TwMwrUI6NDefS5q5g4tT/Tn5vJfb/+N9fePI4bfjuxSXtf1CaTd4qOTn4H3A5nn+CFx75mx9ZDDB/Tg3v/fCGJSVFet/WlrmtoiEp9QwA9nSwqY/aKHfy0PJOd+3NRCgb3SuaB6ycwflh3kuMj67xnfPdYxnePrf5/7aEDMzNzapQ70mIkPszM6uwCFIoSuxOdOZjJ04bywHXj+ddnS3jji+V8u3ALv79hIhOG9/D/wvrpwqsyWLFoB7EnCsiNjwbA5tSw+7jMuRDNRAPmKqU04C1N0972fFEpdTtwO0BqamorFE8IIVqeJC78lJfj7nERl+DfGNiqYN3qcFFmcxJq0p/WHAhVwWlXayFxhXmMHJTG03ed57VHgj/7qwp2Z902kvm7j5/WOF/PBMbpPE1VStE1KZquSdFcPnkgLpfGtn1HWbZhH7NX7mTdl8twofjy+2CeuHYMU4b38Gksubenu9U/G96Nt7/8HW+89BOfvLuE1ct386dnriA1Lc6vc/eVTN4pOjr5HYB5P27iX3+fid6g50/PXMGkcwc0ODTOl3kz6ptzwHOI4TPzdtcYAmizO1i6fh+zlmWycst+nE4XfdMSeOD6CUwZ2Yv46LA6x/Gnt0x95fb28/gwMy88cAlrMw/yz48W8fCr33PumD48+KvJhJ1m++aL5D5J2MxGkvNOUpgUg0mvA5TMUSRa21hN044opeKBn5VSOzRNW1L1YmUi421wDxVprUIKIURLksSFn3KOFGAw6ImOrRvQNaQqWC+1OQkx6fn9+G7cMzbN7yeN8WFm3pzUmRffy2RSRm/+ds/5p7VSh+f+age7nk/QTnefTXEjotMpBvRIYkCPJI6GxjB/9lZiKoqJrihm+gc/89n3K3h0VF869UhlSt9OPo/7Bur87OGnLmfMxD68+swP3HPDm9x2/1QuvjrDp3k2/CGTd4qOriP/DlSU23jtbz8wf9ZmBgztwsNPX0G8D733fJ0I0Vvd6zmpc9UQwJv6Wflu0VZmr9hOUUkFcVGhXDdtKOePS6d7Sv31f0O9Zep7zVu5Gzqf4empfPDUDbz//Wre+24VG3ce5q93nceQ3p0bvU6nY+2RIgpjIgg/XoBJp2PG5QOJtBjb7TAm0TZomnak8u9cpdQ3QAawpOF3CSFE+yaJCz/lHC0gLjHC76U0awfrp5O0ANi+7xiv/nc+g3sn89Sd03xKWjT2hKyhREOgjEW/Zkgyz87fQ7YxiEOhsXxwXhrrNu7h89lrMeg3kDUunRsvGE5qYs2u1t6e7gJen/iOm5xO+sAUXn7qO15/YRab1mTx+ycuISy84clN/SEzsYuOrqP+DuQcLeCvf/iU/Xty+NWdk7j2lvF+tSOnmxC+enASz8zbDZqL6IpS9q5Yxw0f52A06JkwrAcXje/HiP6p6HWNl6Wh3jL1vVZfuev7edVknkFdUnj+j0m88sE87vnbF9x11ThuOH/4GSXqvclIiaQsOoy4I8cJsdmY2iuuw3wnRWBSSoUAOk3Tiiv/PRV4qpWLJYQQrU4SF346dvgkicmRfr/PM1hPi7acVtDudLl46u05hIdamHLuKAoqnMQ3sIwonNl48kAai94vMZzND06oMU77xrMHkJ1zkk9mrWPm0m18v3gLZ4/sza2XjiItOQao/+lufU98o2PDeOqV6/nmk1W8N30e91z/Jo+9cDW90pOb7FyaqkeKEG1VR/sd2LbpIE89+Bl2m5OnXr2BEWN6ttixwzQnj/UJYv6qnditNsqDIrj32vFcNL4fEWH+JWUb6i3j7TW/V1cpttLnhQUUlDsAiLQYWf+nq3nrs0X8639L2bE/lydun4bZ1HShS3yYmQ/uncgTd2Tx1oSuTdrGBUriX7Q5CcA3lT0+DcAnmqbNbt0iCSFE65PEhZ8OZ+cz4Zx+p/Xe+DAzGSmRXpMBvgQ483/Zxb7DJzgWl8xvv8nEqN/O4rvHkJVfXu/7vD0FS4u2NDpRW33vbY6bDV+Du36J4XVWOUlJiOJPvzmb2y4fzWez1/PFzxuZ98tOpo7qwx1XjiE5PrJ61ZMqjT3x1el0XHHjGPoNTuXZP33OH259j/v/7yLOuXBwk563EKJ98qzTdq3Zy98f/ZK4xAie+vcNpHQ9s6F49R3Hsx5zOF0s27CXL37eyNrMbPR6HeOHdufSiQPI6N+lTq8FXybvhIbrztqvQd0heY3dvK/OLsDqsax2hd3Jf9Yf5oGbz6FvtwRm/G8ZxwtK+McfLyXUcmpfZ5ogGNC3EwBlx4v9fm99AinxL9oWTdP2AYNauxxCCBFoJHHhh6LCMkqKyklOjTntfXhLBtSXzPDkdLl455uVxMVGsCMojGKrgxCTntHTl6EqJxLz9r7aT8HCzfp6J2qrHfw19HTNl0DR121ON5FT4/roDHQZ0It/nzWAOUs288XPG1mwZjfXnTuUCyYN5oHvttY5RmNJmD79O/Ovj+7g2Ue+4KW/fMO8lft44MHz6BTVdENHhBBtU311lGedlngkj7St++jTvzNP/fN6wiODG32/P6/XrjuNmpPvF2/l6/mbOHaimISYMO66aiwXje9PTGSI1/NoaPJOb7zVnZ5lrXqt9ooiviTNM1IiMRt1lDvcyQurw8XLS/YxY8V+Mh+aRKfYCP7y5k/87rkvefWhy4kIszRJgiA4xExEVAjHjpz0630NkUlohRBCiKbVJhMXrdX98kh2PgBJKdGnXS5vyQBfApxVm/dz4OhJHr51KqsWHCJMKTQ0NA1KbA5CTXqv76v9FGzG8qwaE7U98/MuXr10AED1qidKwcp7x9EvMdzr8JaqbRsKFH0NJn1J5DTWq8Tbsa6eOoQ3v1jOhzPX8NWCLQQHRXHIEEJYkNGvADIiKoQH/n4159/2ARtnb+LS9Qf48sPfkhIX6tP7hRDtT0P1W1WdFrn3MF13Z5MyIIW/v/4rgiwmn97vy+uexymusBOv7Px5xo/s3JmN3eFkWN8Ufn/jRMYN6Y6hkXk0vE3eec9Yc70rMaVFW2rUx/WVNS3agoZGiEmPXudOkFzy3uoGEyTxYWaW3jOW/6w+SKnNyUfrD1Nqc6JTyl1vj+qNJcjIn1/7gYde+Z4Zf76yyRIEiUmRHD3cdImLjjwJrRBCCNEc2lziojW7Xx495A5qOnWum7jwtVzeutr6MjZ4wZrdhAabuXhcX84a1pPV2QWEm/VMemMlAKU2J2nR3nsCeD4hq5qorSpQ/X7bMX7enct9YxIwuI5jUFaMys7Fb3xESoSJcrsdm8NBmc1Zvb8go4Eo5ULTA0px+VuHiLQYMej0GPQ69EpRWOEgjFKcOg09Om776Gs6hVswG/SYDAYsRgORliB0OgOh+kJMQQaUTmNIUliNQNSXXiX1Ba5P3HEuV50zmL+/v4DSrKOEm4M5YerkdwC5/mgxWX26km8y0WfXQR773YdMf+vmGk9PhRAdR0M3yxkpkSRl55C6O5uTCVG894/raiQtar/fYtAxd1ceNw7r7NP+qwxJDCOqrJAuRflYbBXsKzRx2aQBXDZlEN2Sfe8V6NkmKGBKz9g6bZnd6WToy3NxOa1oLisWgwODTmNCt0jySioIpQwrCr1m4I1lG7ikfzfO/vc60KhMsCsen72zRoLkvdXZ/OPimsMuc4utTHh9BXanhl6nvN74jxvcjcd+O40nXp/Fa58s5qbLxp5RgqCqrQ2PCeXogRN+vbchHXUSWiGEEKK5tFriorDCTm6x1e/GvDW7Xx497O5xkZgUeUblqt3VtrGxwZv/MJ4l6/cybkg3jAY98WF6LkxPYGZmDsEmPaU2J8EmPVn55Q128QX3PBEL7xrN1LdWEqQrItRQQrAq55NVO4k0gFPTYXMZcWhGkqNi6B0fwd4T5fy8Kw+HS8Ok15GREs2SfcfR0NABg5Lj0OvA4XLhdGk4XC4MegPqeBl6QKc0DDqNvJJS7A4nVoeDcrudgnIrdqeTMB1Q+VBw2mtZpEZHEmVwEqwzY3VZcGhmim3Oeq9rQ0+2+nZL5D9/vY6P5mzgna+WE3Esi9mLN3HD+cN9mkXfc/+F3ZLYFxaEcfNebr/pLZ745w2k94j3aR9CiPajoTpnw8JMUrdlkTa0K/954RqSouomODNSIqnqCFHucHHft1trrGbR0P5PFpXx9YLNfDlvIwmFZcTGhHPVOSO5esoAgoNMdY7VmNoTH2fll+NwOnA5SgjSVXDT+59z6GQ+UTpXdT3t0HSAnkMFBqKDzRiUHYPBiR4nn/6ykk9/WUmU0lNEKOVaFDanCYdLq3Hc7jF1r0vtdnTG5QO8lnna6D5k7j3GZ3PWM3Zwt9NOEHg+cEjLLiIlpxBN05psGez2OgmtTDoqhBCiNbRa4mLfiTLSX1zod4+J1ux+mXu0kMjokDpPz4Aa3WJPp1yeAU7tscHfrd5LUUkFE4Z1r/GejJRIzAYdOqX8OuaGQ0dJDjqIUWfD5jJQ5opgxpVjSYiIZOq/14IGJoOOf145CcA9y3uF+wlepMXIPy53//xM57jQNI3sk6Us3JNDYqii1FrO2oM5rMw6QnxwOUXlhaAHl6anXB+MnTByi8vrJLwan2xT8avzhnLB6N68+OECZvxvGcs2ZPHXO84lKT6i0etVe0WYC56eTfe1O7j75nd4/f3bSO8RL4GcEB1IfXXOysU7eOXp7xg6sjtPvnI9pnpWv4gPM/PapQO448tNlNvdCd+5u/KItBir91c7mf3f5XvYs3UvC3/ZgdXuZMygNK6dNpSM/qlnfKPdLzGc347UmJO5izmZe0gwHEUZQdMUwcZ4ih2RFNqM2Fwm7C4jwSYjJoOOT26pOSfRsORwispL+HHbPl5dvJlIYxGRFFKhRVKgYii2KYw6hcWk48qBSXUmBa3dvqdGBnHhe6vRNDAbdDXihbuvHseKTVlM/2wJHz1702klCDwTJeVmE7YKOwX5pUTFhEqdXg+ZdFQIIURrabXEhUsDu1Pzu8dEa3a/zM0rRh9srnPjXNW9FQ2UgsV3j2mwXI0FRLWDN2dhEQBD+6TU2M7fa1Fus/PXH+fz3abt6JSBfHsSFYSy8t6zqntq7HlkSo39zczMwVk5ybvFoOO1S/tXH6exz62xSdwAhr6yrDoA+vrXw3l+6T40IlBEMP+OYRw4nscTP60lSFdKiCrm77O+5elZobx2xQQu6N+jenZ8X55sxUSG8Ny9F/LT8u28+MECrvnzB9x7wySunuz9qZ63c5mZmcPJyDDWDerFsE27+Ou9/+WpGb9m3PtrJZATogOpXefs2HKI5/78JT36dOKJl66pN2lRZWqvOMwGXXW7cd+3W3C6qDOB8Lrdx7jp5R8JLSkEFOeO7cstF2fQNcn7XEv+OF5SyvebdzBzyw4yj+YC0CMuhhtHDiEsOJorB/Vg49FiFny8nmKHA4tRx2uXpJMaFVyjzfG8Fnqdjr8tPonVkYxeObhliJm5mTuID67g/ikTiAyJISMlkrxSq9dJQT2TxKOnL6PEemqYome8UGh1MmBwT36cvZpFG/dTag72OybwbGtt4e4eIAf25WE3GeXmvB4y6agQQojW0mqJC53itHtMtEb3y9xiK4u3HcWpVJ2eIlUNeUnlcIaGhmxUPa2oPQmmp9oJiadfn0mPlFgiw+rOYeHrtTiYX8Kdn35HVl4ud56VwfheffluW26d2d1r7692EmVIcjgzM3NOayb82k9qXrmkf40A6I0V+2uMgf7L3H1cMziZAmcSxVY7Fl0FYYYSwowlPPT1TF5dEM41wwdy9bABRFiC6r3enuVRSjF8UHe2x+4hLu8w//jPz2TuOcpvrxrHhqPFjQa+VdfDHhfB7oy+hG7cxV/u/RD6dKdY6SSQE6IDOnbkJH/5wydEx4by9Ks3YAluvBeamwIFTpeGE/dcRdWTFCcG8/ZXK5i5NJMQICc4kpLIWDLGD6FrUnSDq5p4HqP2Ni6XxkdrMvlg1UaOFebhdGn0TYyn1BVPqTOU4zlm3vvV6OrtTQZ9jTbgyoFJDdaRVe1hqc1JiMmAMnXmlrM68/PWtTzz4xxuHj2U8/qcVWei6M83HuHJc8NrJInxGF2iFNXnVNWWOOxOeigdd785j4NRSZiNOnY8PNnnJINnW9sjSM/9V23nwL5cDoUEy815PWTSUSGEEK2l1RIX3WKCWR7ATzFqB4WrswtQdifWIFOdniL+NOSrswuwOlyUVk52OXr6MvY8MqXOdagK3pwuF1t2H+GCs9JP+zzm7srj/777mSBVQLGWxDn9BlRPgFa1zFx9n0PtYRJV7/NnJvyqa1lQbq8RDAI1rttdY7ry+aaj1bHq0qyTLMs6SViQnlCTgVKbBR2hODTF9AtTmLV1O/+Yt4w3l6zmkkH96NmpK1N6dqoxC7638qzOLqBcZ2RbRDLdyvP5aelWvl69l0OxyehMJq/n5fld8EwqHc/K5ZG7PqDv+h1sy0hHJ4GcEB1KRbmNJ//4GXabkxffvoHIaO8rDnlL3DpdGuV2F6EmPSgIMxswKY1NazJ5btFmQOPiSQN5ZU85Vk4NQ6wvAe55DPccGgqny3281feNYenuPfxn5XqOFRXjcOkpckTw35umYNfM7l4VVgdh5prtW3yYmcV3j6ke0tFYwrqqPQwx6SmzOfnnkn0ARFpiuX1oEu+vXE+Zzc7Vw0fUmBT06sFJNfaZkRKJyaAj1H0arLx3XJ2HBcV2F4WWMCLKiygPdVLucPHl5iN1eoQ0pKqt1TSNyOgQMjdlc+v5g+XmvB4y6agQTUf34A+tXQQh2pRWS1xEBBkDtsHzdsObkRKJUmDQqRrBY1Xj7WtDXrWfahoNPs3Zd+gE5VY7A3okeX3dl/PQnIXEGQvIt0ViVeF8vvGIX0+TPJ+ANfS+xpY21esUeh3VweDUXnF1rtvmBydw91ebWZp1surycGtGFyb1iK2zDN91I/qz81ge0xf9wserNwAb+RPRLPzdpXSPC6+3S2t1oinISH5wAmP6pbD9l82kHt3P4fjUGudVX/KjOqgfmMITL17L4/d/xOXHjvHUKzcE7PdaCNG0NE3j1Wd/IGv3MS78wwUExdY/OXLt+ghqJm4X3z2GxZsOMGfOar6fV0hRcDgno+O57cpx3EbNnhMzM3O8JsBrr1aCAqvdToKliMvf+pAKu52Y0EiOViRQ7AgFFCsOlHHP2IR6b9Q9V/rwlujOLbbS54WFWB1OzAY9Ox6eROZDk5ixPIsXF+2lwuEea2i1w7jeA4kLs/DvZWuICw2pMSloYz0PPY/p+bCgwhpEdFkhJpcDm97In37cXj3vkz9DPJRSjBjTk5VLdvKwxSA35w1or5OOCiGECGy+LavQwXgGf1W9K+LDzPSJD2VY5wgyH3JPTtnr+flc+f4aej0/H3DP+dBYgBMfZmblveMINesJNekxGXQNPs3ZuucoAP17dGpwv7nFVmZm5pBbbK1xHg6ng2jDMSqcZkpdcRj1iqsHJ53W06TGepZ4e93zWjpdGs+c24cHzkqrngekKgCqum79EsN5+tw+NfZ7Sb8ELkxPoF9ieJ1r3DsxjnMHjiDP0Y0iRygWTnDVvz/iv79sYGhSmNfyVgXE7hnrFd8etrIjqjM6NLrk7GfrrsPV19Hbd6G24WN68MDjl5C99RCfvjYXTdPqbCOEaH++++wXFvy0mUM9U/i/bSdIf3FhjTrYU+0JnKsStx/fMJSND5zFrDlr+OCjn6mwOTgYl8LOsATKdcbq9sez7qsvAe5ZBwcZXUQZj9MtZD+huhOM7JrCF7+9jrdvvIISRxigqns6VNWJH98wtM7NfmN14NxdeRSU2ym3uygotzN3Vx7xYWbuGZtGkFFfvZ3Z6G7r/jBlLJcNTmfG4lVsP3KQJ8/tU+/QyqrlwldnF1Rf123HipixPIuvfz2cGZcPwBHkHkIZbLcSbHSHNA3V1w0ZM6kvJUXlrFu1t841F0IIIUTrarUeF4Gsvhv00FAzBuUOpl5fnkVRhftpl63CyZebj3D32DSf9t8vMbzOJJj12bL7CJFhFpIbWP2ivl4BGSmRhOoL0CsXJ7VOvHXV4Ool907naZK39zU0jKKqDFXXUq9TPDZ7B04XDQ5RKbI6CTbqKLO7CDbqKPKYnM2bjJRIdHozZc5kXJqVYYk2nv1pEV+t38bXN02gyG6qc57xYWYiLUacLvfcJKEhIYwePZblc3/hq68W8/rSvaz968U+DwOadvEQco8W8NHbi0jrEc/lN4zx6Zo2BZn9XoiWtyvzMP9+ZS5pQ7uyKi6hwR5sDU3gPCTWzJ9f/oadB3K5ZtoQrpg2nGHTlxNWWZ97q3OqEuCjpy+rXgWq6vd/zX1jeXnBKpbt3kuZzU6ZK4wK4nj64nOrj+mtp0N9T9H9ndOgqMJePQ/SjocnMXdXHuCejBTgx+253DvxLI4VFvO32YsY170LiRFhXvdVu237+tfDmfTGyuoJPadf1h+r3ghAiHLyzIXpPDFnJzrl7t1XUO7fsuvDx/QgJi6Mj95exPAxPdD5uGS2EEJ0ZL4OeXG9dFEzl0S0d5K48KK+Mb2x8eHs3XkMgL0nymq8p/b/fTmGL10tN+06zMCeSQ0ud1ffkAiXphGkCrC6LLiUpTppcSY3uvFhZtKiLcxYnsWUnrFc/kHd1TQ8z6sqmTF3Vx4bDxfw1qqDNSag83YN0qItKKUIMigMel2jwWfthElcqImft+/h6VkLufOTr7hp5BAm96ibSKiIfG81AAEAAElEQVQdkI/umcgnG1NJyjlIYm42H8zbzEOXjfA5yXPDbyeQtTuHf7/6M2k9ExmS0c2va3s6ZGk6IZpeY3VkaUkFf3vkC6JiQnn4r5fx5VurCGtgWer6JnBeun4vT741G4B//OFSxg1x1xm+1DlVCfCqxIDT5eKztZt5bcEK8svKGdA5hQVZBk5a9XXq236J4dwz1lzdI8FzCJ6382+oPFN7xRFpMWC1uzAaFI/N3lk9r0bmQ5O4cVjn6n161lXzb5/Ar97/lJfmLeOlK87zeo41hr4Ydfxzyb4aE3ruPVGGwT2ZByade+LQKwcmMXdXHvd9u5V7vt7iV71oMhm44tYJvP33mXz37QYuu3xYo+/xhSSXhRBCiDMniQsv6hvTG5cQwS9LdqFpGrdkpPBKZRClgFsyUhrbrdfjNBTMnCgs5VBuIZdNHtTgfup7Ivbpup0YlJ08azSazsWM5VlcPTipwQk2G7PtWFH1EnZPz9tNiElfIxFxXp84KpwO7C4ndpcLp+Yir8zK739cj93pwqo5CQvRY9JrdI01cLy8lKJyJ1uPljEqNQqAs2asqB67XeFwcPdXmzEZdI1OIuqZBJma3pNRaSn8Y94yPli1nlnb9vDcJdMY16Nzjfd4BuQAepORI4ldSM3L5utvlzG8cySTRvT0Kcmk0+l48MnLeOA37/DsI58z4+M7SegU6fO1PR2yNJ0QTcuXZOBrf5tJzrFCXnr7N3RLbnyOo9p1dFq0hSc+XMKcn9fSu2s8f7/3IpI8etX5M4fAA99tRblKiNDnYlBWBiZ34qYx4xnfozMLX19BmLluz42qc7RVzpMRbNJjrqxjgTpzVjS2tPWOhydXT8B8z9dbvNZHteuq7CIXvxk9jDeXruaWMcNI7xTv9brpK5e8Lre7mL8nDwU12t37Rqdy9R928tCEbtXXvqo3nb/1Ym6xlTs2H6d3eAiv/WM2Q0b3oGun+ns7+kKSy0IIIUTTkMSFF/XdDCanRmO12jl2+CT9Okc3OLFYY3wJZtZvPwTA4N7JDe6rvidiOQW5aJrCpQun1ObkhQW7eXnJXhSKEpsTi1HH3F151U/EfPHZhsMYgsoxh5RhNFsxmR1EmOzo9A4e3LCN3611eH1fSFf335EeP7twdmaNbbQ1OqLMFoKSNWKsRhw2E7byIMrLLShnUL3BZ30JoHBLEPdMPIu31xTiLDrCrf/9kgcmj+XO8cOre7DUDsirrmP/uAk88/pMHpvxI1ddMZ7rJ/arN9isffy//ONafnfDWzz35y946d+3YPAY593UZGk6IZpWY8nAhbO3sGjOFn5912TiuidUD4tobILjqrqla1QQlz77LdEFxykJDuPZBy4jKSbktMo6b9dRgjlMsKEIh2bgimGjeWvNSebsP4Bed5Bnzu1NeJCxurdd7XMsqUwQl9qcuFwac3flUVRhp6DcDriTBd7aCG/t14XpCeQWW+skaKquj7e6akK34by7fC2ztu70mriIDzPzzLm9+f23W7FroGmK6Zf1J6fYWt3uFhSXAxAV4n3yTn/qxdXZBdhdkNkjhREbdvD8X7/h9Td/3WCPR5/2KcllIYQQ4oxJ4sKL+oKeXunuBMLOzCN06hxNv8RwnjzXv4RFFV+CmTXbDhAabKZvt8aDHM9JzKqGS6zef4CMtBS+3OF+RmV1gdXmIrjyRrrc7uK+b7fUCWqh5s14bKiJxUf28emujSzN30+nXu6g1uXQ0TUikmBdBCH6IPrERhBiNJFbbKdbVAgGnZ6nft6Fwwk2hwuTQYdBp/jbeX0JNetxaBobjhTwwdoD2DUHRqOLfqmhHOc45pAygiMLqyegczkM/JTrQBfSi7M6pRFmanjJU8/rXOYMJs+aQufgXF5duIzdubk8e8lULCaj1+tY9Tk8eucFXP7oR3z8xWJeXLqfDY9f4PU61T6+MTKU8b+ZwOx/zeX91+dz2/1TG/38TlegLk0nXaNFW9XQTW/O0QKmPzeT9EEpTLoio966x9v3Pz7MzAV947n31VlEFxwnLyiMEzHJbMopIcVL4sJzH1BzVRGXS+OztZt5ef4yLMpOsTOGElc0ydEJ2J0nKba6E8gP/ZCJxaSv7klR+xxDTXpKbA70RgdOo53f/7wUJw6CwvS4HHoc9rp1ZFVZqlY1CTHpq9uvxpbP9nyt6nyGpiazZPd+fjUqo841yy228uhPO7BXjg8pszmZ0D2mxoOCopIKACJCLdU/O916seq62OMjOdSnC2ptFt98svKM5iyS5LIQQgjRNCRx4UV9QU9ajwSMJgM7tx5i4tT+Z3SMxoIZTdNYvfUgw/p2Ru/DBGG1b6B/uHkgRwqLGdszHcXJGtveNKwzH67Nptzhwumquxyr576Cwgvp2eMkh0oLiQ0K5oru/elkjmHfER23DOtBXIiZPi8swGp3Md9gR6ecleObC3nlkv6UnzxBsdVBqEnPPeO7cc/YtBpB5NmdrLw7v4LCyid8K44bWP67C9hwuAi7y0F4mI1Vxw5T6Cpg2bF9/HgwE6NOx7mpvbmx9xByj5saTABVXecQs5kSUrj/rEjeXrqK/fkFvHHdJSSEh9Z7TTNPlHMwLoWUY/tJzMnmp00H+fW4njW2qZ2Amrsrjwe+24rdqdE9NYEvPlzOgKFdGXlWr0Y/w9MVaEvTSddo0ZbVV/+7XC5e+ss3uFwuHn7qctYdLfJa99T3/dc0jdc+XcKadTspCI/mREQ8xnpWlarah7VyKVG9zt3bwKhXzL51MC/PW8z67COMTkvhupEZXPnfrWgaPDZ7B3qdwmLUUW53Ue5wYdDr6tSLBqOT56+O56f9e9heeIRSZ0WN43um4z87Ukxs3CimpvRCV5lJTou2UFbZW6PM5iQtumbSoKHlsz2XyDbqFY9P7MwbS1bS/8W5WJ2GGtdsdXYB9sprAGA26KrnB6lSWOLucREeGlTnc/S3XvSck0nT+rPjoyW88+rP9O7fmX6DUv3aV+19SiJXCCGEODOSuKhU+wmZt6DHYNTTd0BnNqzed8bHayyYyTqSz9HjRfzqwhE+lbn2DfSXG3cCcO3Q3sz4ZQ0VlcFfeJCB343ryhebj2DQ67wmTdz7cqHCj2HplIvmimL6WZcwLbUXJn3lsIch7r8+WneIgnL3071yB5h0Tmwuqpel80zO1E5aVF2HZ87tze++2QpAUYWDDYeLmNorzn1uyZ24oo/7pt/hcrE+7zCzDuzgq71b+WH/drqERmOOCMWRH45eR51zqT3Rar/EcIakJPCHL2dx1b8/4U/TzmH1IavX4T4ZKZHoTEYOx6fSNWc/332zlEsHd67xZK92Agqo/hz29e5CXxz846/f8MZndxETd3q9c9oa6Rot2jpv9f+PX65l87r9PPDYxXTqHE1GrWERnj0jvH3///vjGj75aR1XnTOYmy4dw5pDhfXeyHr2aDhFI9FSxM0ffo7FaOCajFHcPW4Iaw4VVg7/cx9vxuXupPrvvtmC3elCp9yraxwtKmdn8VE+37OJn7N3Y3e5iDRZiNZFc/yIwmE3oZxGNJcOl3KgMzi4b1InFhzbzp2LvqFPVBxvTricYBXM5xuPYKlc+SnEpCcrv5y4EHO9K0rVvj42h8u9mpNJj9VlAsBmt1Fsp/qaZaREUlBux2hQVDYxBBn1der4vIISAGIiTm+4jTdVyWezJYJpCRH87c9f8PrHdxIRdXrHCLTkshBCCNEWSeIC/54QDx/Tg/emz+N4bhGx8Wd2I9pQMLNsw14Axg72vjJF7TIvvntMjSDxaEEePeNj6JcUw46HJ/Hl5iPsO1HKbzJS6ZcYXm/SJLfYyokyKyEJhzFFnsBeHMXnl9xEckRwjW08uzB7slU+HCuzu0iNDPLpSVN4UM3uyEUVdq+fh0GnIyMhha7B8fzrRzsqOJ990ccJTszHFGXGlp+IS9Nq7MvbRKsTe3Xj01uu4Zb/fsMDX3zP4fJOPDNvN5sfnFAjeeGZXAqxDuSxV7/j0ekzefWhyzEY9HW2qboeVZ+DQa946OkreOKO//D8Y1/z3Ou/Qq9v/8vrSddo0d4cO3KSd177maEju3PupUOB+pPP3r7/3y/eyoz/LWPq6N784cZJ6HSKC9OD6j1eRkokntMqGJSdJEsuQbpyhqSkMnufiVeWFzBj1aI6dX/VsqM6BS4NCivsPPDzIoI35KEzWYkyW7ip91AGR6Rx2dvb0HAf6I5RqfxuXFqdBMT/uc7ix/3b+euaeVzx03/J3p1CRZmZ8sqkhcmgIy3a4rXO9tpzMdpSnZAptTmJrKz/7U73z/Q6qvdndbhwujT+b0oPeseHeR/WmO9OXCTEeF9S1V+eiSfMBibfdTZfPf0Nzz/+Nc+8doMskSqEEEK0Eklc4N8T4hFje/Le9HmsXraL8y8f3mxlWrxuL33SEuoNxmqXOSu//NTEkgkhXPT6e9yQcWo1kifm7MTu1Hh/7SGvy5aCe8WQ0dOXEZKQjTnyJONj+/HCpeeQGB5UnayoPW558d1jiLQYsTqcuDSquzYDzN99nPHdYxt90uS5nJ7ZqCM8yNjg5+HuPqwozovAlB+BJbwYS1wOwZ0OcP3Pn/DmlIvoFRnn9TpV7at3Yhyje43g63XL6Ww5wpGKTny+8UidOUtqzHlx6zk89fYcXvtsCX+4cZLXbaDuUob3PHw+Lz/1HV98sIxrbxnf4LVoD6RrtGhPXC4XLz/5HUrBA49fXGOiRm/1aO3v/779R3nu3Z8ZNaALT9x+Ljpd4xM9xoeZmXlLBuf9+xdCDMVE6nMIMur445TJRIcn8P3uDV7r/qrft5mZOThdGvrQfDol5GI023FUBHFt53E8PWEUZr2Bv8zeUZ20APjPmmy+2Hy0eqJNOJWkHp3Sg8+nJXDlT58QlLyHkzu7E2IK4veVw//qq2e9XZ+s/HKCK1ejCjbp2XTUnXhQyoXFqOO1SweQlV9eo8fJs/P3sOXBCV7rktz8YkxGPRGh9SeC/FE78XTBWT2Jf/BcXvvbTGZ9vY4Lr6y/F6QQon3TPfiDT9u5XrqomUsiRMckjw7w7wlxWo8EOiVHsXReZr3beJNbbGVmZg65xdZGtz1RUMq2vUeZMLS7X2WuChJ3HDuC3elkYi93bw3PoNLu1FidXeC1fKOnL8NuKMQceZLy43Fc3TWjOmmR/uJCbvh4PaOnL8PqcFXvKyu/nB0PT+J/Nw1nzm9HVofBCrh6cJJP1yY+zMyOhyfzv18NZ8fDk5naK67Bz8PzaaTNCUUnwyjZ34vyYykcqyjk/B/+w0sblmB1Ohr8bH8zsjuHypOxu4wkBR2lV4yrwc9pxOAeZAzvzf/mbGDOyh0Nnk9V0A4w9eIhnHV2Pz58cyHbt2T7dE2akj/fvaZS+xoI0Vb99M06Nq3N4vbfT/NpeWPPHmkVJWU89q8f6dY5hufuuwijQe/T72NusZXLP1hNtDGHaMNResbH8Mep53Ne/z6MTI2qt+6vXg40zEZ46l5iUw+jufTk7U/hyK5uvLOwmMIydzLg6sFJeKZQbE4Nq8NV3T541vvpLy7EVmHi5i5TUMpFbOdcTAZd9fA/f9rQjJRIzAYdYWYDZoOOYZ3dwy+CjCYsRj1Te8WRkRKJy1Wz99znG4943V/eyRLiokLPaOUPT1WJp49vGFqd5D//8uEMHNaVD99cSGlJReM78VNr1NFCCCFEWyM9LvDvCbFSivFT+/PFh8spOFlKpA9jXv2drHD5xn1oGpzVQOKioTL/vH0PUcEWhqe6V0HxJahcnV2ApmlEJR3DYTNSnp/gdcx2qEmPUngNmgEW3jWaN1bs564xXf1aItZzH7nFVl65xD1O21vXYACH81RQazHquH1UF95bo+fIznBC4o/wry0rWHBoD6+Nv6Te69QvMZx5d57F9KW7OVm4kxfmzOePP+yg3GnxukpA+osLsTsUXcwWnn1nLj1TYunWObbRc1NK8cBjF7Er8zDPPfolr39yJ6Fhlkbf1xRkokwhTl/u0QLeefVnBmd047zLhjW+vcfvm1m5GFeRg16v48XfX0JwkIncYmv1ZMZmo44dD0/2+vv4Y+ZBItR+jDorxc5olh6JYtl3uzDO3F1jdY7adVqp3caLGxbz4c71xEYEcV6nsSTrk3kwazvgqk5cX5ieQL/EcDY/OIEZy7J4a9VBNGpOtDl3Vx7lNiflDveQkNHTl6FQBMfGY47J4dOL+9ZYMcXXNrT2trO2bgNgxhXDmdTjVPLlp9+OZOIbK4GGE+HHC0qJjax/kuXTUbuniFKK3z4wlXtvepsvPlzOzXdPabJjSR0thBBC+EZ6XFTy5wnxxGn90Vwai+du9WnfvvR48LR0wz4SY8IIjwyrfgrj7YmMtzKX2+ws2pXF5N7dMFTOp+DtCVKVqv2mRVsIiSrAZLFSnpfEyt+N9zpm22TQsfLecfXu6/IP1jJrRx6Xf7D2tJ4ebTtWRI+/z+eurzbzwHfer+/cXXmU2U9NWqcUDE6OxOnSKCqD4iMpTI4YxeHSIi768X1W5u3x+tlWlXfu7gI2nYglNMhCuMrGZi+t8zlVf4Y2J4dikzEYDfzp1R8oLbf5dF6hYRYe/dtVHM8p4pVnfkCrNRdHc/H3uyeEcNM0jenPzcTl0vj9Yxf79ES/+vetwk5cziGO5hXy3L0XkhQXAbjrroJyB+UOFwXlDr7cXLcXwYIde5k+fw56HOQ7OlPsigNN1fgd9lb3rzx2gGk/vMsHO9ZxU68hLLr8Dv424Swm9ojFVjmEr/YKIP0Swzk/PZEQk3vOnqqJNnOLrdz37VbKq4f+aaBBsdVB2Yk4gnQm/rX5lwbbo9xiKx+tO8RH6w7VaQs8tz1w4iShZhNXD06pcT594sMIDzJg0ivCggzEhXhvm08UlBIb2XQTc9anV3oyE6cN4KuPVlBcVN5k+z3dOlp6aQghhOhopMeFn3KLrWyzQUq3OOb9uIlLrhnZ6Hv86UbrdLlYv+MQY4Z0p99Li7A7NXQK7C4XCoXZoGvwicxP23ZRarNx6aD0GmWubyLOU096YMCQMqyOKL655zKUUszMzKl+T+2nad56U3gb55yREsncXXkUVdgJDzLW24Oiqjyjpy+jxOqssc/G5sh4/oL06uEloZVjp7/4pYwgc3fGDi/g/mU/sCX/GH8eOokTpfYa5ap6ohhmNnDDqPH88+c5dLYcoVDrWuNz8vwM0SmmnTeKb79azHPv/czTd5/v001NnwGd+fXdk3lv+jzm/tCTaRcPafDzaQoyUaYQ/qn6fXTtPsLq5bu544/nkpgc5dN7q37fuloLCK0o5Y5rJzC0b0q92//px+1cOTCJ+DAzLpfGG0t+YfqilfRPSuAvF0zlQKGzel6hMKW8/g5bnQ5eWL+Yd7evoWtYFF+ceyOpljiW7ikgI0WRlV9OiElPic1ZnZioqr9zi60UlNsxVNYRep2ioNzOl5uPYK1MDluMOp6/IJ0n5uwkTCl0QEF+CKvt+0l/cQGZD9XtNVLVs6RqxalIi5EdD7vnBapd163PPkpCeCR5JbYa+3H3AnQPYTEb6m8LKmwOLJUTfDZVXVrffq64cTSL5mxh6bxtTTbH1enU0dJLQwghREckiQs/eAYLySYLKdsOcDArj9S0uAbf50832l37cykpsxISE4U9O989s7kHTdOYsTzL69KiAP9bt4VusdEM75Jcp8y1AxzPRENUZAVZxSd4btS5KKVqdGdees9YsvLLGyx7VQCs150KwNKiLTWCV4BIi6He7tGrswvAoyOCUnWXN4W6k3lWBf6ZD01ixvIs/rF4L6U2J5qmY4BuGD27xfFO5hr2nDzJzGXB2B3KnQxyuqqfKOp1cOWgLgzvfCV3fvI1aSEnMOlPFaZq/3N35XHft1v42+oc4iLj+HnVTob07swVZw+qU05vrvrVWNat3MvrL8yi74DOBMWGN2sAKhNlCuHmy01tVX2pldsYtGwTvXp34pKrM3w+RnyYmU8u6sHjr2UyKaM3vz5/aI3XhyR7T/hO6RHNw1/P5ucde7hkYF+evOhsgowGBrir8Xp/h/cUnuC+Jd+ReTKXK9MGMTpyABZXeJ0Vp0wGHSGAC42DJ8uqn9JXbafXKZ47vzePzd7BXV9tpszmrK6KlYIJ3WOq6787v9qErSCUuMiTuEzFXhMKq7MLsNpPTdRsdTiZuyuvepnRqrquwm5nx7E8Sl0xpL+4sEb95+sNvc3urJ47xN+61Nt3wtt+qs5pROcYOneJYeHsLU2WuDidOlqWnBZCCNERyVARP3gGC7mJMSidYt7MjT6919ehKBt2Hgbg0tE9MeoVFmPNj6jM7uKfS/aR/uLCOl1Etx7JYdOho1w9bEB1D4CGuqF6BoZBUScIN5q5tFu/Ot2ZR766jGv+u5Y+L9Q9JpwK9O75egsuzcVtI1NZfPcY98zwHsErgNXuYsXBPHIr8jlcnsv+0iNklRzmSHkePRMVQWYXoSY9oWY9K+8d5/V6VU3m+dZVg3jt0gE1fn714CTKK4/pvlZZvDsHJscMYdHRPZg77abUUUFhhYOyyu2CDO6Z7OPDzGR07cTbN1zC0aJi7v98ZvUSfVX7j7QYcbrcXabzQqPp0T2Jf368iB37cxr8XKvodDoefvpyzEFGnv3T56zYe7zZh3LIRJmio6s90WR93eur6svkbVno7U5G/3o8+sqlj32Rd7KEl//zM2nJMdx93QR+3J5b41hZ+eUEe9TpSkG0BS5+81Pm79zLI9Mm8PfLphFkrPlMwdvv8Df7tnLRj+9ztKyYf4y6mPd/Vtzy2ZYaEyiX25xsOFzE4rvHoKFRZnPxu2+20vv5BbywcDe2yu2cLo2cYitOl3uJUs+BbE4XTHh9BeDuOaFQVJSEoLkUxpDiOgmF6iS2x2UzV17D2nXdN5v3oRQU2kx16r+Ghjh6crlcKPwfclHfd6L2fubuyqvert9LixgxKZ0t6w9QVFDW4P794W8dLT3phBBCdETS48IPNYYL6BWDMrozf9Zmfn33FPT6pskB7dyfQ1xUKH06R9d4wu9wajhdGkpBic1JmFJ1nrK8vXQ1YWYzVw7p57XMeh0UlNvJLbYSH2auDgy/zszmxV1buCB1MBaDsU6ZquaTKLe7mLsrjxuHda7xeo1174E3V+7ng7XZLL57DGGhNqJC84iOySc8opjg4Ar+fWIO/z7h/fxHTAKjMhFriuSzvP10KUuiW0gS3UNTSA1OrDEko/bTu/gwc41u0e6yuyizu3h/IVjCU4hNPUR8twPk7uuCy+n++hv0iqm9TvWaGd6lM09fdDaPfDuH52Yv5okLJnu9nka94t6bJvPYP77ikddm8tGzNxJqaTzwjI0P56GnLuOxez9i57drMOqDJAAVohn5+oQ6IyWS6PxCOuXkc6RHMueNqX+C5CpVT+2HJYXz5IwfKbfaefaWqQx9bVmd+ikjJZIgox6lFErBu1f24dfvf4EOB8VaMuf379fgsLPcYivLD5xg6cmNfJ21mYyEFKafdTFr9pdhdx6onkC5qutaucPFfd9u5bVL+6N55JALKxzMWHEAm8NFsFGHhsaUnrFMX55FkF5hdWqYDToqHC6sDhcmva66R4DZoANMOK1BjOxh8jr80OpwUWZzYdYrDHodS+8ZQ1yIuc7N9rbs3Wga6A2hGLzUf1U39FXzOXjrkdApLoLDeYX8xs+b+fq+E7XreKDGdlpiFJqmsWfnUYaObPz70RykJ50QQoiOSBIXfqgdLOz8ZQ/P/Olz1v+ylxFjenp9j79jbnceyKN3l/jq4904rDNTe8WxOrugeqyzXqerE5jtO57Pz9v3cMdZGYQGnTpOzSEOW7nn6y11utE+uXwF5lgX7ywo4/cDrZVDMYxYHU4UVPdMANh4uKDOPBUZKZHodWDSKWwujXK7k4TEXP6x7w2GjXf3ILHbDBQXRjIishcmQkmPiSMm2IJRp0eh2HeyiFUHj9MvKQijuYLj1kKOVRxn5uEl2DV3QiTaFM6wqL4Mj07neG58dTAZZNDx/MI9/GlSDzJSIjEZdITifnJoNigqHJVBfFE4eftTiOuaTXzaAQoPpqFXRq89Oy4dnM6u3OO8t2IdvRJiuXb4wDrfgarPw2CJJzX3AH99aw4v3n+RT/NddBmQytALh7Dghw385y+XonokSQAqRDPx9Ql1hFHHWYePUZEQwbszbvBpqEHVsIL4ojyiC47z1zvP5ahD5/Wm2LP+iDDZuP/zHwAX2eXJGI2hDXb5zy220u+fczAnZGGwlHNl1yH8fdw5GHQ6MlJMNc7vqWm9efCHTCocLhxOd/1tNuo8JtsEa1XSQgM0uOQ/a7A7XaAUYUF6/nZeHx6bvQOnixorSFWVf8EJ+PnQTlyahq6yzvOcNwjA6tQwGVT1vBqL7x7D5xuPMKVnLKuzC9iQfZjeCXH8Y+KIOsM1qtpNoMEhIF07RbFx52G/b+a9fSeqjlvVY7Dq+J7bTR3VjW+BfbuO1UlcNOd8RbXVXvlECCGEaO8kceEnz2AhcnxvwiIs/PzDRq+JC3/H3NodTg4cyWfisB71HrO+wOzd5WsxGfTcNHKI1zK7hzjUDaR/2pmDIfw41lILtgpz9c93PHzq5vysGcsptzmxOjXeWnWQ99ce8nIuCp1OEWSsYOCQ7cTE56HpYhgVPJk35lVw7HgwoSYDW9ZpaC4wG0vZ8fBI4sPMbDtWxG/eXoyGCYWLzQ+eQ7/u4eQWW1l1MJ+UODt5rsOsy9/O0rxN/JzzCxZdMF17JbB3bxJlZcH8c8k+/rMmmx0PT6qRWNhwuIg7vtxUPXykoiSMguwuRKYcYMiQPP475RrSosO8fh5/PHsce3JP8OyshfRNjGNQ5041Po+ZmTnYnRr5ykRwRBxL1+3h+8VbuWTiAK/7q/29cNiN9IsM5Z0XZzHjozskaSFEM2nsprbqhjP7503kHD7Jc6//is6xja9UUfXUXisuJqrgOAMHdOO8senkFlvrTZTEh5npFOLgjk++JzzIzKGKzhiNxjo3z7XL+XHmDiydd4LSyNufwuuZDn7Tq4R+ieF1zi+v1Iq1MnlQanMyJDmcHQ9Prp4ouSohoVWuFlLVQ62KQadIjQpmx8OT65Slqv4r2Z3M11mbOVhcQNfwKC8rkUCoSV/jvCa8vgKrw8Uz83YTYlJ0Mh7lmuEDa9yA1243X7mkf4O9ZbqnxDJ7xQ6yc06SkhBFRkpkg8kDz+vrec2g/gRJ7e9OdEwo2VnH6+y3ofa+JZMaQgghRHskiYszYDIZmDi1P3O+30BpcQUhYUE1Xvd3Aq1jJ4pwaRqdEyIbPXZe6akgyOWy8f2m7Vw9fCAxocFet6/v6dLDC5ZiSbSRfyQFs+5UgO2ZLFl6z1hGvLIU0Ci1OXG6tBpDRlZnF+B0aWiGMkaPW0uwxca1yRdzXbfJnCix88/vFmIxOnFpWnXvjXLHqWEn763Orh5TrQHvrc7mT5N61AkCk+nH4/9ZSHTsSVK6HiK5y36Su2ZxOLsTu3f0oMKuq77GVWXvlxjOkORwRr22DKfL3f352ckjOWzrwmeHlvDEulm8N+VKjLq649j1Oh0vXH4eV7z9Mfd/PpOv77iB6JBT19fzmhZZYjmnk5l//HchA3om0S05pt7Prvp7YXexa1BPYtdt56mH/sdrH/yWIIup0c9eCOG/+p5QV91wGgpKGbBiC2ed09/nIQAZKZGYcdG56Bh2g5E7rh7n9am9543qir0HuOez70kID+M/v7oCvc7U4M1zXKiJj3Zu4F+75qE5jeTsT8FhNQMuRk9fxp5HplQP/as6v9XZBQRXrrAU7LGSSFWdfeXApOrk7th/La97YpUTI1cNb/F2w90nyj28bkdBLl3Do6rbAXCvRPLihemkRgVXv++jdYdq9MZwOspQJo2QoIgah67dbgIN9pY5f1w6b3+1kg++X83t105sNHlQNZRFKVh577jqa1aViPbWXtf+7oSGWygtqWiw3J7vl1VAhBBCiDMniQs/1X5qcvYFg/nhizUsnb+Ncy8dVmPbqhvbEJMeDY20aEuD+z6cWwhAUlzdmeerjp3+4kIq7E7K7C5CTHrMBh13DTfi0jRuGTPMaxnB+xPH77cdxRSVi608CMoieO2q/l6Dqaz8cvS6U8MfKhwu7vt2S/WQkYyUSCxBdoYOW4/JZOP/et/N6MRTPVBcmgunU0On8z6EontMcJ3/ewsC1xw8iUvTcTwvhuN5MYQGW0nueoAuadl0Ss7hwL5UkiPrLk/bLzGcvX+eUmN4h92pYYnszFIti8dXzeW50ed6HeIRGRzEa1dfyHXv/o8Hv/qJf994GXqdzus11Tnt3Pjof3nsXzN576/XE2SuO18I1Ex4aHoj9/31Ml56+DP++fT3PPLsFT4NNRFCNI3V2QXYHS66b9mL06Cn76UjfH5vXKiJKyOsrD3oICuhC1PfXQMonC7vN6jL9x7grk++Iy02indvupzYUHevjvpunlccOMEvxZv5dPdGJid3585eE5k4YzUOKns1aN6XCU2LtqAUlROBamTmHyJv93oKXfmY9WYsehNJ0XH0Scjg1oxU/rlkX/V7jTpVPXyuoRvuXhGxKGBXwXHOTe1dJzletdoT4LU3hkVf7j6eMbR63iWom2Sf2iuuwd4ysZGhXHXOYD75aR0qPLzBhwWrswuwOlyUVvYw8Uz8+DPhpSXYRFmZrfrcqtqW+t4vq4AIIYQQZ04SF37wFsT17p9M5y4xzJ+1uU7iIj7MzOK7xzB6+jLQ3DOzN/SkJfdEMQCJsXUTF7nFVmYsz6pOWoC7C7AOF99v3s35/XuTHBneYKBZ+6nRAfsB9GYr5Ye7YDEZmNorrs7Y4qqAzGzQ4XS6qHC6n6g5XTUD5ssnHybbWcFDPX5bI2nh7ppc2Q3ZpRFsdCdxzAZ99fHCg4yEmnXY7BpBJvfyplD3KVtatIVn5u1GAxSgc4VwYFcfDmSl0KvPXrr13M+LWf/iybBb6BmWWuez8BzeUWx1QEE0lwyO4rM9m+gRGcNt6Rlekz79khJ4/PxJPP7DPN5cspp7Jo6qs183M3+98zzuf/FrXv5oEY/eeo7Xz9lbEin3rsm8P2M+/QencpEfyy8KIc5MRkokiUfyiCwqJWtQdyb06+Tze79btIV1W/aTFxnPCUxY7C5Q7omMa9+grsrK5u5P3UmLD359FZHB7h56nnVOjZtno5P/HlzIuuPZ3N1/NH8cfBZ6nY41D5xV3aaYDLo6w0ugchUQZSexywGSU46w2FUGRyHSEI4DB+XOCpyaizlHV3Lh4Et4Zcmplah/vmMU/RLdbVBDN9zBRhOpYZHsOJkLNDwcx7M3hkmvUECQvgKr08Tjs/fwtwVZ1W2V57xMVRqbz+Geq8exc38u389cSUJELITHek0+uP/vsWaKR+LH23HrYzQZsNscddrb+nrZyCogQgghxJmTxIUfPIM4i0FXPdRhwtT+fPLOEvKPFxMdW3O+hKz8chSKYpvD60og4DG++rg7cREdHlzn9fQXF2JzuGpMlAkQpCvG6nBw3YiBdcroGWjWviE/VFLIG5nLGR6bSnrcYK4Zkgyc6qbs7mGhVU/MtvjuMWw4XMR9326tfppYFTCPeudL+g7bzqF93TkYEk5umLXe5MxNwzozNi26ehWPPi8swGp3YTToeOeaAQxJDvc6/rgqoN384AQ+33iEqwcnERdirl51JStzMEW5qYwZtYM/bnyZG7tcwBUpU9Crmqu91A4gnxw5Cd16K39bt5BYYzi3/Xd/jaRP1TUd37Mnlww8zIzFqxjeJZmRaSlekxyjBnblVxeO4MOZaxiWnsK00X28Xofagfg1N48jc+NB3np5Nj37JtFnQGev7xNCNC2L5mLAwaOE9urEh69c7XMX/v1H8nn5o0UM7pPCVxWhhLnAvbiUwlBrAuV1Bw5z1yffkhIVwX9+dUWNpEVV3Y6Cmbdk8Mol/TluLeLrY0vZkl/Ey2Mv5PLu/auP2y8xnJX3jquuB/NKrYyevgxNA7NBxz8u7ktMUhadu+0lKMjGieNRHMhK5f/ZO/P4Kqrz/79n5q5J7s2+ERIIO4R9iayyKaKgAiruu9Uqbm3FVmtrW61t1aoVUat1QcUNRVRUZN+XsG8hBEIggZCd5N4kd5/5/XFzJ/fm3oTgz+3bzvv16quYO3PmnDMzZ855zvN8Hlt1Ku/MHktuZhzbSs6gxBxn4aklvFjyMq/ecREnj2cxuWcSNpdP9YA424K7d1wyBWeqQsbCtrK1tGS38n9bTKKbJq8Jh1dGJ4lh38ZIWaPaQqeTeO6hGfzznTV8se4Ag6wij9x0QZjYZ3aCudljzv8d1UliSJuqGl3cs3ifahRq67rOJjdJqdaw721xrSNi+7UsIBrniiAIErADOKUoyvSfuj4aGhoaPwc0w8U5EMieAS1p5qb0Sub8C3JY+Po6Nq0+FLZbfraJX/COTVpdBakGXViIQWBy1OD2EW2Q8MkKogCiKDAyQ8bjS2BIZqc2r9d6V+jgQxN4bPu3KAqs2xHDCtdxXt5yIkQEzawXQfG3MzAhC85wEph8fXmwnMye+TQ1mjiY34W7Du/FrJfUCV8gQ4nT48PllXl3ZykLd59ky31j2X3KRp3Dq/anzelRwzgCk9XWk8CcNCt/ntrikdK6TmaTj5eOfMiC419SaD/BQ31uwiS16EZEmkD+c8w0ji87wyN5X+MTu2FvkrAYdSwvrAqZPO94YCz7TpXz0Kff8J8br2LM/G0RJ9Z3XTGaPYdP8fc3V9A3O5WstPizPluiKDL3L7O498Z/85e5H/LSe3eFGcE0NDS+f955dTWNdif/eOVyUq2ms58AuD1e/vDyV5iNev4652KekPRhnmqB8eVgWQV3LlxCmtXCWzddGaKTk1dah9srq+KYE17ZQlysE0vn48SZ9Sy88BpGpGaGXDsgcunxKczbVIzHp6ihDzHWepY53qZHvxpqq+PYvWMQdbX+OllNEtkJ5pBvweYHf8PCsk9ZUrmUOTk3Muv142FjWnsL7j7xyawsPUq/Z1fh8QptGhlal2NzOJn+cgGiZP5OoRWRjMYmg57f3zGFQb0yeGHhWu7/60fcNH0E0yYNZtDz6/0iqs1ipABmnciLM/qHGDdGzdtIg6u5L4kchgPQ2OAkq1vyOXlSaFlANM6RB4BDQOTYYQ0NDY3/QcSzH6IRIMVi5MUZA/yLesAnK+SV1tGlewqduySxcc2hiOfkz53IwuuHRpzQBU/Q8PkwGsPFGYMnR0ad31X4wxuHs2XOeRyuqGTGoL6qLkKk6wVfw+NTeG7XNtaeOsa0TkNxu/Tq34Gg60gY9WLYhCww+Qq0wxh7mhirneNHeiLLEg6PjNsrM39TsbprV/DwROZO6I5ZL9LkkWlw+Rg1byM2pyeknUU1TSH1zCut6/B9CdTJ4ZTor1zCdRmXs7VmP7/f9xL1noZ2z4/SG/j3hFnoRIGYTiewmPy7pUBIfQ5UNPLCVdOodzj57ZLleHxyxLrqdBJP3HMJOknksZe+wuX2dqgd1rgoHn/2Guw2B3Mf/IDTZxwdOq8jVNpdLM2voNLuivjfGhr/ixwtOM3SRduZftUIuvfueIjIq59sovBEFb+/YwpJcTEhY1Dwv0/U1HHnwiXEmk08e8WlbCttCHnncjPjggMXMMfWY8k8huzT8WCvaWFGCwj9Zrg8Mj5ZQRBkuvc8xuCRWxF1Hm7pdAN783JVo4VBhNtzu7D7lC1kTCssl3ms3x30jMnijeOfooiukDHtbJkw+sanIKMg6xxnHbeDF+7fHj4JwLxZIyJ+G9szCAQM8dcv3EW/Z9aEjWHTz8/ho6dvYdKInryxZCsPPP0pXo8Pu8vrT/0qgMWow2yQVM+/QL8qwTdDIKIhQlEU6s40Yo2LOuv3XUPjuyAIQmdgGvCfn7ouGhoaGj8nzupxIQhCJvAOkIbfv/I1RVH+1eqYPsBbwFDg94qiPPsD1PVnwZReyZj1UogrsCAIjJnYh0/e3Yzd5sBiDRXhbG+nJXiCpmtQsEaFT3wi7XrlpFlZvPsgAON7Zrd7veBrGEwuPjt5gH7WDG7uM5S312xpUwQNaDfet8Lm5MOS5cRKcVRVpKl/b3T7eG79MeZvPq5O5uaMyeb5DS0CcChgNemJM+txeX0YdRK35WayYEfpd44Dbu1Z8s4vbuS14+/z0J7n+euAOaSYEtrUADFh5pqsMbxetJqZY708PeYCgCD3ZqhzeIiPTua3F53PE1+vwSKlgjE+Yl3Tkqz84c6pzH3+c/71/joevmVyh9pg6ZTA4T5dcO8t4qK73mXlGzf/f0+GI8Vht/Zs0Sbc/7fRxulwzrbolmWZ+U9/hSU2ipvvntThcnfkl/D+NzuZOWkg5w9tO/tIlb2R29/9FFlReHrWNMa/uj3iOxcQPrYk1RCXXo67yYy7vBvTrs6KWG52ghlZUTDpBPQ6EYPRyaD+u0lIrKPqdDp/GXsrFfUCy37Rjelv5iHLCg6PzOtbT6CTRCSRkDFWL+q4sfOVPF7wAt37HOLw/kHoJSHMOyPSONE/wT/uG8wOLM6os47bgbFIkuuJ10GqJYbR3c8ttKIjQpeJsdH85Z5LGDM4mz+9uoxMUxMlSZnodWK7OhRGnX9TIpBxJNJzU1fbiKPJTafO8WpdNU8Kje+ZF4CHAc3t8v8o4kNf/tRV0ND4r6QjoSJe4DeKouwSBMEC7BQEYYWiKPlBx9QC9wMzfoA6/qxoa0I1akIfPnp7I3kbC5l8yaDvVN43XzRhb4y8yx5pcrS1uITE6Ch6pSaddZL+wuX98co+FpQup6hOYPOuWMbv3MKTU3tjNenVDCHQonBfaXe1GWdcaXeR+/qn9B9xiiP5fREUCfBhEAVEsVk4NEjTI8ViZMt9Y0NE5ab0Sqbg4dC+DBOttLv4ZF8ZRTVN3JabqYrGBeoQfGzrCa1sz+Spgffyp4P/5pF983h60IPklTrDJr25mXHqBD06NZm1HGJXbR+mdunNuntG82ZeKW/klTBn8X411GZT0Qk2HD3OHy4awsyB3SL2+flDu3P9JcNY+PVOBvfOYEobehfB5JXWUZGejL6yns5Fp/jgs108cNOos553tjKD2/zxnjJN4f6/D22cDqIj6SdXfb2P/L2l/PrxGcRYzGHnRxpPG5pc/OW1b+mcGscD145v8/oNLjd3LvyM2kYHb998JSU2IeI759/lV4hNqyA2pZqmegsNZVncPapbm+0aN3+zGhoSF19N7siDOH0u9u7sT31VZybv24WAP2wjoIXx/PpjNLh9WIwC82cNIM6sDxljL3qpgPTsbLK6FzHEOpj7h/oX98GaTp/sKwtJbwrQOSYWq8HIzNx4JicNJTvB3O53KDAWybIbdFBq87XZh20ZBM4lPOOi0X1xeXz89T/LmaSz8+Q9F5OTZg35jgRfL9L3p3V7ykprAeiU2XbKaw2N74ogCNOBSkVRdgqCMKGd4+4E7gTIyops5NTQ0ND4b+OshgtFUU4Dp5v/bRcE4RCQAeQHHVMJVAqCMO2HqujPiUgTqt45GcQnxpyz4SK4vGVfKBj1HZcdOVhWyeDO6VQ1uNucpAeLvxnjq4lOraGpoiu2JgHwMPfLfMwGSRWiDKa9na1lhyvI7JmP02HkWHE6JklRPRO8soJBlhEEJWRSmZNm5ejvJodNBIP7MrhvK+0uev1jNTanP9Ti+fXHeGlmfzXrSOs2Bya0Mc3pZ61GiWOnovl1tzt4tug1/rD/ZR7q/suwSW9IuE5FGtlpPn698WuisTLzjb04PD4czaKoMQaJFUeqGd9nCPtPVbBk1zZuHNGjzXt0z1Vj2X/kNH97cwV9u6WSmdq+3kWgDaf6dyO+ycHq11cz6/yeZHZNave8jpQZaPPswZ2Yv/m4pnD/X4Q2Todytl15p8PNWy+tpHdOBhdODx2v2zN6PPfeWqrPNPD6H6/BbIqc7tjrk/n1oq8orKjm7zOnUWIT1FSZMa1SYw/rbCUm7ST62FoaauJxVGTg9Cq8urmYBTtKwwwu/nSe/sV+ZpeT9BtQQH2TmcK9o2mwxyAIfg0Hu7tFLHLOmGz/+y4IqndH8MJ8/qZi3F6ZQ4e6kpBSzlFpNRNe9bH2l+NCNJ3u++wA0QYJneTXhggYu3MSUjlmr+aRIXFnNRYFxiKj6I/JmNA95ZzvbVubB20Zm0YO7UmtdScUn2LiC2s58PuL2vQwa/39idSekmK/F2JGlma40PhBGANcJgjCJYAJsAqC8J6iKDcEH6QoymvAawDDhw9XwovR0Pj50VFPFPnZS3/gmmj8X+WcNC4EQegKDAG2fZeLCYJwpyAIOwRB2FFVdfaUY/+XEEWR4aN7sGNLET5v27tI7SHLCmLzxPJseH0yJbV1dEuKD9OwCI4xDoi/NXrdmBIrcDdGIzfFqjodDq/cZlxyeztbx7z7iY2zU5DfE9kn8fS0fsyfNYDfTuxBg8uHW1awO30UVNpDtBRaa2S0R15pHU2t9CF+9fkB+j2zhuWFVWFtDqSfRfD35cRXtnDdezuZ/nIR92bfwilHJfOPv8WuX48OiUkOVbyXOFyQTKPHzdVfLcbtbTFagN+T5N7P9vOLRQc4VBfP8Zoz/P3bdW22QaeTeODmC5AR+O2/lkbUuzhYbuPxZQUcLLepk/L3bhrO66/fitGg4y9zP8TR9N21KFrHYeekWbW47P9itHH67LvyixduoabKzp2/uohDlQ3q+we0OZ6u31XEVxsOcuVFwyh2iW3qxfz923WsP3qcX11wPrd+UsT1C3cx/uXNLL55OAigNKfGPlXfxBO7l6GPrWVq+iD+M/lSHF7/+sPhVXB6fGHjciCcoXe/QvoPOkR1VQK7t4zi2n59mT9rAFvuG4tBF6pNFHj/588agKwo3PXJXvo8vYaD5Tb6PbOG59Yfo9HtwyDqyN/fG1OUk4S0UoprHTw5tcVLTAEa3D7qHB7uWrRX1Zfon5DGoTOVzNtYhNsbWfcnQKAul+WkopfEDouhRion+DvSnu7F8sIqSg1+j3tDXW2H0p1C289B8ZEKzFEG0jLivlPdNTTaQ1GURxRF6awoSlfgGmB1a6OFhoaGxv8qHd7eFwQhBvgUeFBRFNt3udh/u4X4vLG9WPHlHjZvK6Y+3nLOac+cHh8Nzbnhz3ZeWb0NjyzTNSmh3Ul6bmYcCGBNqUaUfNgrO/HSjAEA3L9kv5ruNNKue1s7W6cdVRz0rcd2JoG6yk7EmXWM757I+Jc30+BqWZgrwEWvb0VEwKgXKXjYH0ceaVcs0m5ZdoIZb2j2VzwyYUKiwfUPpJ9t8viNRw1uHxZBoKEuid/1vZWn8t9gwamP+H2/2xGbU6UGt7PO4eGeT/fhPp1GQsZpjPE1+GoTVeOFXhJweny4fQpgwmhO4OOd+zm/R1cu6BvueVFpdzHhjR0YY1Jwlp7k7wtW8/gvpqi/Hyy3MfDZdSjAkyuPsO+h8eSkWdVdv0f/dhWPzHmH5/7yOY/+7SpVhPVcae0lpMVl/3eijdN+2tNIqKmy8eFbGxg7uR9CenzY+xdpPK2zO3jqjRV065zEU4ca8RzcFVEv5skLkngvbw+3jBpKWnwGHl+F6vWx6kg1AgINbi+iqHDbqk853HCKB/qfz6+GjubxZQUhbZCVcHHIuGiR+686xfa6E5w6kUnRoX40uWX+vbUEo+4k+XMnhukULc2v8GfycHpU7zWHR+bNvFI1I0mU3h+6t7pIwHYmjsxuxxiaEUOdI1RAWScKeGUlJIVpVlQibtnHvLxDNLoNxBgkVSMjcO3g/k+xGMmKM2KQIk8/zhb2GOmYs3nYuCU9Nr2ZBKe93ecmmLa+q8eOlNO1RyqiqGmba2hoaGho/Jh0yHAhCIIe/2R4oaIoi3/YKv3fZeh53RFFgTn/Ws2JnpnnJHxYaXex46Rf1bzfM2vOel51QyMATq/A/E3FLL55ODaXL+IkceOc0Uxf9h/cDVZEbxQ2pwerSc+GOWMiipQF03qBW+ms5ZF9L6ETRF4e8wtO9NSFhFu4faHrHJdXAfwT3U/2lfHHbw/j9srQLH6Wk2aNkK51PF5pL/vrlvPA1GPEGBsx6t1U22OpbUii2p7M+O6DIy5MshPMKChE6UUcHpnooEl0cWUqV2dcygenvuAvOxdzT+9L1fMC7TxYbqPR7UOpicdstROfXsljY0fw56+Ph6QdDGDzJdEnSeGxL1bQKS6BY2c8IfUJ9EutZMZsSeDr9QcYN7grk0b0AuDjPWVqVgGl+b+D070Ozu3GrfdewBsvrqBXvwyuumlMm8+Exv822jgdSlvGuQWvrEb2ydxx/4W82ur9eyuvhGcv6x82tjw6byn2RidXXTWBr1cUR9SLiTM4+NfqQ0zs1Y25F46jptETOUTLJGLJOM7hBjuN5Rn89aiN63u6mD24E0+uPKLW54Prh4bUodHr4C8HX+NAfRF3dJvB6MGjeTn5uOoxEawpNL1fakiYoAL45FArcPdEv5hmtEGiye1jxZFqAC5InESevJg9jbuZ0msEcWYdTrcPp09BajZcBMbV3Mw4Fu73n+fTNRJlMPOr87sxe3CndgWARUFU61Npd6leEEMyrGcVDg7+XkgivDhjAEMyrBHTgOeV1jEkw0qcWYfbYCTa4QrJJHK256f1c+Dz+jhacJoLLx3coTI0NP5/UBRlLbD2J66GhoaGxs+GjmQVEYA3gEOKojz3w1fp/y7RFhOpPdKwlddhz0o/J+HDvNI6ZAQU2ae6pbZ3XqPLvxN256IDOGSzulsYUQWdM4g6L7f2G8z8sjru/ewAAHFmHQUPT+qwV0it28bv98+n0evgbwPvo4clgwHN0guB3SmzTsTR7CZhlERcvpbJclFNE26vTEPz4n/UvI2q5oXHp+CRG5ncfy/Ly/+NLFQgSlGkWKOxO6Kpa4wit6sbj7ITBA9rqr4iPWo4fTtfRGKMPwNIpd3F+Jc3gwKiKLDm7lHYXD6yE8yMf3kzTo8PnyLTf3An8tLX8+6bTXxx9YwQ401xrYMog0Sj24ezojMJccfYVL+T/LlX8uzaozy3vlhtj1EEo07i75dP5Y73FjH91U+o8XZGL4kRw1DqzKmMTtTz1/+soE+XVDqlxIYsVgRg9uBOYf1+1U1jKMwv4815K8jukcrw0W1ramj8b6KN0x3j2JFyln+xh1nXjyK9cwKzdTqeWHlE/f2NvFIentgzxOixYuthVuUVcvdVY7lkWDa/XX08xBgxb9NxdIKHRP1pPIqB3140GUkUIy58d/16HL9Y8ymFdjsNpztTUxWLxdgy3u97aDxv5ZWQFG3k1o/3qB5xWx8cwYvH3+BE42l+2fV6BFtXqnVueibHtOltFwgTbHCHhy5GGUSuHNiJKwd24h9rjvLK5uOqUfaf3zRy66wufFSynAtyz6Pg4UnM31SsCnzGGCR+dX435ozxZ7N64psSYroL6E1OcArMGZMd5gGxvLAqRBA02qjH6fVSVu+g/7NrqXP4PUGiDRICzZ5ybXw/QzSJgLs+2YtZL4VkC4FQDaQNc8bw0vtrOXb07N6MwbQ2fh0vqsTR5KbvgPA0tRoaGhoaGho/LB3xuBgD3AjsFwRhT/PfHgWyABRFeVUQhDRgB2AFZEEQHgT6fVdX5f/LjBzVnbIFG4kTQTwH4UN/SIeAJLQduhFMo9sNgK9ZpiTSbn2ApccPYdEb6RmTgd1Vo/7d6fZ12LBS4azh8QOvUuOq58kB99DD4p+4HSy38fGeMmYP7kT+3IksL6zi/iUH8Mn+3TmjIuLxyWq609e3nVDLVJSWsJEki527LniX1Nga4vSDyIy6k4telmlyC2pquuRoI98WVoB4kuzU3VS4VrOx4gn21b7N8KT72VPaHZdXptHtI9ogYXP5mN4vlaX5FTg9Ppqawz127+7DqGg73fvvYeJ/onA5okMEPo06EVEQ0KNn7qAJ/GXXcr45dYDBGWkhfXLP2G78dmIPUixGpg0cwuJd25HkGjwkhWRTCV68eJ1ObnzsPR6b/xX//sPV5KRZ2ffQeLUPI6ndC4LAQ3+awckT1fzt0UW8+O6dZGiK9hqhaON0B3jjxRVEW0xce/v5gF8w+KWZ/fn1Fwdx+xTk5jEpMCbW1Dfy9IJV5HRL44Zpw9E1GyWDQzFuHpbOkl2bAKj1duZARSNdE2OA0IWvy+fljzu/otBexh+GTuHhjyuxGJUQD4Gl+RW8vNk/RjqbDcCJVi+PH3oJh2Lj/m63cPW/T+P21vhDPAwSeklk/qz+IZmhoCVMMBiTTkAniWqqz0q7i7e2l6jXAlAUgb7SGL5sfJ9vT2/h0ozzQwQ+9ZLfOJFiMbI0vwKfDB6nCVOUi6cnDIigGySEhCXmz51IjNFfz43F1biCNIR8sj8EpT3h4NZGcodHRhIEPt5TFlKvYMNJca2D9GgDpwwdF7+OxMG9JQD0G6QZLjQ0NDQ0NH5sOpJVZCNh05+wY8qBzt9Xpf4vM2p0Dz5bsJE/D0zh6ssHd3h3J8Vi5IJeKRwtq2Fl8259R2J9haD/j7RbD5BfW8GQ5E7oRSnk74qAqm7fHgW2Yp44+B88ipc/97+LfrH+VH2R9BluGNaZKb2SQyb2wW0IpERVFDDqRLITzGwpLeKvV36EW25iRPxz9E0a2Wxs2EVjszr+7lM27l9yQI25jjN349Dc2/FIO9lR9RKrT8/FKw/EqB9Ho9tKk9uH1SixNL+C7AQzclAEi+yT2LtjECPP30rvgXvZvGE4MQaDumAJXpgkxxjYUFHE07vX8f6kG4gz63F5fRh1kmq0AHhgwnA+2HmIZEMNdYolZMIdmMgHyvz9HRfyyItLefnjjTxwnV/TIpLBKRiT2cCf/nkt9974bx7/zYdM+93ljOmZfE67hxr/vWjj9NnZt/M4OzYf5Y4HpmCxtox7Vw7sxB+/Pazuzge/u8+9uwaH08Mf7rwIndSiidMSirGaKKWMKMlFjScDUTKq5weP3wnReh7c8CVrTx3j76Mu5pqeg5jexRUyTvb8+2rViyBAXIyLAbk7sHk93JV5M476VDy+MtWLorE5xWmcWR82FrQeb/WSoIZVFNc6SI72a0MEOcVh0gkYdSIzuw3m2LFtLCpdwdT0UW1qhgRC83Cb0MXY1TCM1rpBcxbvD9GfSIyOAiDWqCAESUWY9Do2zAn1nGitkxEoO2Ak9/r8xurn1h9j/ubjIRmmgg0gH5VWkZnacm+/C3t3HCc5NZbU9P+/cjQ0NDQ0NDTOnf+/7QeNMPoO6IzeoMNYVXfOi8q4GCM6RVGNFu2lljPq/LfuwxuGsKvMo+7WRzJ2lDTUMSQ5gym9kokz63F6fDi9MiL+cI2A1kQkNlTt5p8F75JojOXv/e8nM6rFO6O1PsNbeSVM6JFMbmZciBdH8L+DU6JmJ5iZ/ta33HPhAqxKAxPSniPekKMaG4InnoCaBhDA5ZHZfrKe3Mzh2Gv+xmcFC5g6eA2PX3GUl1fM4GRNN6a/mYeAf4fwg+uHMnPBDvV8jzOKY/n96T1oD/36nuD08V4hYnLBdf7ryIuY8sV/eGbfag7Nndl83VBjUqrVxLJ7ruT6Nz+kp9VGnLnFSBTpXl514WDe/2YnQ/p05vyh3SP2fet7mZYRzy9/fzlPP/whf33sU44P60X+OYT6aGj8r6IoCm/OW0FisoXLZueG/Ba8EA5m/a4iVm4r5K4rRpOdEe7hlFdah06uI0pnw+5L5J5xA5kzJpuqRhf/WHOUN/JOoCgCegmunuThm5LD/GH4ZK7pOUi9bmCceW/nyTCjRWyMi4kT92L3utm4YShf151g8c3JKCiqLkVUkNZEJFqnoIbQEIp194xGEgXMehGdKHDHeV24LTeTVKuJq7Om8McDr7Cpei8TUoaH6x3ZXYybvwmvV8brNmLUncFkbLEQBxt4WhsRSmv9bb3lgzxEoogyiDw9rR9XDuzkT7EaQfso+BuYYjGqRvL5m4oj6nwEG1pMosKRkirumDnqbI9Km/h8Mnu2FzNmYp/vLJKsoaGhoaGh8d3RDBffMwajnr4DOrN3R/HZD25FlMlAo9MfAnK2GGGT3n/rOlmNXD7Qv/CNNNEzGhVsbheZMbEAvDijP7tP1fPvLcf9oRNen6o10XoBvL32IP849DZ9rdk8lnMHsfqYkN9bi8m9kVfK69tKzypKGpjQfpl/muvHLsYaZeeV5dcTPS6FBz8PnVQH77wZdZKa3cOo93tr9HtmDQ63D4d3KHnHunDfRZ8yd/oHfJp3EesPDaeh2WNDkkT2PzSeJ1cU8mV+BU0emcrTaYzo24suPY7w9MTJbYrCdYq28uiwSTy6dRmrywu4tt/gkPYEGxiemXURd3/wOc+v2sxvLzo/4r3MK63j/mvPZ9+RMp54bRnvPnkjaUnWsDIjTdqd6Qmc6N2FrodP4Dhc2uFQHw2N/2U2rTnEof0n+dUfLsNo0kc85sHPD6jv2457x/D026vokZnEjdNHRDw+JUomVqrAJUfhEpJVo0XAC009LqOSr0qq+PXgcdzeL3JZNmdo9g6j0cklFx7A7nWwfctQ6uv84/e1C3chif7wuYCGT7ARNZLhOtjg0DqEYvcpG6CgKGB3+Xht6wkW7Cglf+5EMnRdsYrxfF66gQkpw8PqvLywStWmEJr0RAPHbLUMTgr1/Isocik3j3eKmwa3EYtRR1Z8VMg342yZQgJlzxmTzbxNxZh1IpLYkokluN1rth9BUWBon+/ucHTkUBkNNgeDR3T7zmVoaGhoaGhofHe0fF4/AAOGduFYYTmNduc5nWeJNtLY5EJRlFYxwnD/kgMhOeoTovyuzsU1NpbmV6gT1rC8880zaIdbps/Ta7jrk728mVcS4lTu9SksL6xSY6wr7S5qXPU8d/g9ukan88SAe0KMFoHjkqON7HtoPH+4oCcvzeyPrBCW87490hM30jPtBIvzLuJkbRZASP2Lax2qTkSKxciGOaP51fndeGlmfwoensTuU7Zmo4XfmFHflMyL39yB5BvK7JHLmDZko9p/dQ4PydFG/jVjACa9REyzAOc367JwOo28c3IRXsXbZv2v7TmIkalZPLVzDQcqa9R+ChgYAvcmp1MG1w4fyNtbdrK1uBSInFbPoNfx1L3T8fpkHn/1G7y+UMX/iPeyuaya7ulUZiTTuegUwrHyDj5dGhr/m/i8Pt6ev4qs7GQuvHRIxGNav2/Pvr+e6roGHr39QvQ6Kex4t9fLU9+sIi7KyMMXTeKFy/0ppoO90ABiE89gSqziiuyBXN11mDpuBFNpd/FYUCrUGJOHq6YV4KKJX2bdiq3ZaAEgCv7wEAFB1fABv0HiYLlNHYv6PL2a93ae5GC5LeSarcciAJ/coqfR6PaLQy8vrKL/s+vYdziJwsZi8mvaH2e8br8x6HRjZLmUgBEhYJhItcRg0ukwiO429SzaS/MdjtD8TYvsCbFs8yHiLGZKvbqw/gdCvn1tsXX9YURJZPio9sWRO1JWR47R0NDQ0NDQCEXzuPgBGDi0KwtfX8eBPSWcN65Xh8+LjTHjkxUamlykWEztxgiP6eLfsfr153uw++JVD4XWEz1zc0jJ8iPl1Dn8/3Z4ZJ66uA9/XXXEnz3DK3PvZ/uaU9Qp6CW4ZcYRXD4PD/e9BZNkUOsYyRPgz1P7UGl38cdvD3dwkgmNnkoKG/5NomEo9+bexnlXxFPV6EJBIcYgqcaGSrtLDZ0J9ogY3z2R+5ccUI0WVpPESzMHMqVXMopyIWtO/5WLB6+hb3Iyz3zbm3s+3YdB5xfWy587UXUvtjl8FOzLwZi7k6zuRzhe2Dti/QVB4O+jLuaiL/7D1E8+wn6qK3pJ5IXL+4ftCs6dcj6bj5XwyGff8sU9N7YZH945NY6Hb5nMn15dxhtLtnDXFS2pTtuatKdYjOQ/PIktxwax/Nml/PtvX9KnZwrde6d3+DnT0PhvoCMaQACrvt5H6fFq/vDM1UhSZFt98PsW43WyY1cxV14wmJzukd+r51ZtoqCiir/PuITbPj2KyyNj1IssuWWE6oVmttiJyzjN6NRsfjNwIjnPro3o0RWsMxFjkrl8agE23xn+MuBuBsb1ZN9DmXy8p4zJPZOYtWAHkiiGCHoGxmOl2XMikB3kjo/34PEpRBkkjLqWTEeLbx7OK5uPc/forvRJsaCXBNWQa5QEAl3k8SkcP5FC155H+LR4C/0SZ4b0uz/NqF/zxyT5NStON9k7dO9EUaB7cgJmvYFrRg6NeA/bGjdb4+8/BYdHRieKIZ4ZlXYXaw6Xs2FXETUx8dz04Z6w/j9bWGaALWsL6D84C2tcVJvt6khZHb2ehoaGhoaGRiiax8UPQN+Bmej1Evt3HT+n82JjTADUNTiAll2qKb2SQxTa6xwe3D4BSRRB8YR4KOTPncjC64eqk6EzjR4URSDvZE3ItTrHmXnlioGYdf5HwO2RaXT5y4pNOcmhhqPc1f0KsqJaMmlU2l3M31SMyyuHeQIEJpnB126PvKoXkBUf4zs9wqX9/NcY//JmFAXk5gn4nMX7VQ+T1juiH+8pw9esuGnSiczISWP3qXoKKu3kPLueX74zih3HetM1YxH9s/bT4Pbh9srkldap7sWBHcey8gRKT3Sic9fjRFttrLtndMT6d7XGc3GnIehibPhMtXh8/uu3NjBEGfQ8M+tiKu0NPPH16pB72brci8f0Y9q4HN76fBs7Dpaof2+vP1MsRi4f1Im/PHctllgzf3hgIVUV9e32t4bGfxOtPZ3a2rn2eLy899paevXrxJiJfdssL/C+vXvtYM6X7CTFRfPLK8dEPHbrsRLe3rKL60YMosEXTZ3Di8MrU+fwUlLnZM3do5jSL4r0bqfoHZfMa5NmsuuULaIHFbQYTawmkYHD9lAvV/Jov9sYGNcToFm8tw/nd08KGxNCUoMqIAh+0WMAt09BocWLIq+0joPlNia+soWP9p5m4itbqGp0kT93Ii9fMRCLSYcgCoDAkAwreklA57PSUB9HuXIkrN/Hv7yZDXNG89GNw8n/zQUYRIljdXUd9iTokZLIidoz6rgY7IUQ+DcQcdwMpnUGk4DB+2C5jR5/X8Vv316PT1aoNltD+j9wjeWFVW3emwBlpbUcL6pk1Pje7bapLU+5cz1GQ0NDQ0NDIxzN4+IHwGjS07v/uetcJMX5wzGqzzSSmRqv/j1URX0/cxbvRy8JDEm00lQb6mrbWkBt+8l6ZLcBQR86kRySYSU52ojZICGKgrpLBxCXXI5ejqHyVGcqY1o8Hvo9swa3V6apOd2oXhJCBC1bX7stTjftoKRxLUMS78KizwBaJnONbh9mnYhb8ae5C3gxBNTr/d4YAqkWI6LgN1o4vTLv7DwFwPPrj2HWCTi8Cv9edRkW84fcMWEp1fZYKuuzQjwXXpwxgLs+2YvDI1OQ34uUtGp69DvIsZoJEcVKK+0uhlh78anzIAkZ5TSVxDGlV3LYrmCl3UWJTeDGkcN4e8sOYqOT+MXogREn35V2F/1z+7On8BR/+vc3LPzrTcRazGod2+vPxGQLT/7rBn59+xs8/qv3efb124iK/r+5c9fR3XON/20Cz0mdw3NW/QOAFV/uoeJ0Hfc9Mv2sgoopFiPu8gqOlVbz5JxpxESFP4eNLje//2IFXRLimHvhON7afjLk903FNdy7r4TozCOIisDmHYkcz3VG9KAKTiV98KEJ/P3QuxS6aniw9w3kJvYPa3N7qUED5a67ZzRv5ZXw3PpiQCEuqoEYg4dGdxJ1Dg9v5lWHCCoHUogeqWoI8VoIGMHzSuso03n5onwljV4HeaW2kH4PhPMBxOiNvLnjOM+XuTHqJAoebt+A3Sslic/3HuJMowOPLKpeCJIoAApenwLNqbDbEo8O3LfW30dJ9HuMNLk8dLfXYtObOYOemKDvVvD1JJF2vQU3rckHYHQ7xq9I96Mj96yjKdM1NDQ0NDT+19EMFz8Qg0dk8/5/1tFgdxBjOXvKUYCUBL/horI23N02xWIkzqzHJ6NOGuOjrXRT6pk3JbKrLfgnSV6XCb3Jof7NpBMornWQk2ZVwyaeWVvUHOeskJh0hqKSVG7et4c4s44lt4zglc3HcXn9aediDBK/Or8bswd3alPQsi18iodtlf8kRteJnLhr1El5cBYRv6uygK7ZJTo7wax6YwDIisxvvzpEo9uHXgxfjDi8ClF6kSaPjnnfzuLxWW9z9wWfc0H6myFpZodkWDHrJSRBoNENxYd702fgfpqiCoC0kDJD3HvNmVizjnDtREVtb7BrcsuEGOJFEws2b+aFTeUcnDslpH8Cx7q8MmYhjh62Ev76xnL+8cBlHVatz+6Zyu//Pps/PLiQvz2yiD89dy1ShJj8nzOa67RGRwh9t86+2HS7PLz/n/X0zslg+Oj2dQkAauubeHXRJob3y+SC8yKH+P1z5UbK6mwsvG02dpfMo98UhPy+YEcpMRkl6AxuKou64moSVfHjYANnsIjnkyuP8PQtbgpd+7mxyzT6Rw1SjcFAyHgCQnM4X8t7ElxuQrTCVbl70cd+Taf4CqzmJn9feHUcr0+iVumCxTQSuzMKARiaEUv3v63CJyu4vLJqkA42RO+t683n5St4+8BOJqQNbHvRrYh4ZC8Oj9/ovLywihuGtS2G2TvVnzr1cGU11Q6DahAx60UUpUV3oy3x6GBafx/NOhEFhUSnHYPso9gaT5Re5Ffnd2POmOww4c/5swaEiF+3NqRuXltAj97ppHWKb7MOgXqcLbyloyEwGhoaGhoaGqFohosfgEq7i6akWGRZYd+O4+3u0gRPkFITLQAcLTuDJ8iLIdLiXi8JjMhK443NJUzqkUCUIbJSforFyO1DevPu0TwE0YciS5j0uhDPA78q+3GcXhmT2Yle78VW79/hanJ5mfDKFrW8aIOEQSeGTf7MOvGsE1WAQ3WLqPecYHKnZyiodDHyxY34ZBmTXseGOaFZRAL9EuyNYZAEvLKAq3lS65GVsGtE6UXuGtWV7on+WGSLlIwS/UfswhtU2ueGLJIX3zycVUeqmdwziXqnl7WuJhafXsbFnUdg1UerZYZMdDEzOa0/X57YzzWnBzAmvWvE48x6kSrSSDOcIJrTbCs5w6U5aSHHBoxBjeiJsiSybmcRn67ay5UXDG63H4MZProH9/72El58ain/eupLfvWHy/9PpevrSPYADY2zLTZb89WnO6iqqOc3f5rR7vsQGF+3rtuFw+Vh7s2TIx6/88Qp3t++l5vOG8LQrAze23kSm7MlhalREtHHVRIVa+dMWSquJv/4oSioz3TguZ6/qVj1fEjvXMbq2oNclDaKifHjQwwVt47IUscIgyggigJOrxzynqRYjFzUx8rh+k9Zc3whTt8Z+qR2YXNRT45VpqAoBtLjqkmLq2RcnzzO711A4YnrOV2bw3ULd6k6QQB3juzCbyf2oKrRHxY4e3AnEszpKLLAq7t38nhxQ0i2p+B+Nwg6BLHFc+9s9E5NAqCwooqpOTkh4R5uX0s5gf4LfAtaX7ct47egKGQ0nqFRZ8QbHYNJLzFnTDYpFmOIB59eEpjSK7lNzYuNtwzn0L6T3HjXhIjPTev6dMTzsKPeiRoaGhoaGhotaIaL75nApMfr8TFcEtm4sbBNw0WkneaE2CheWlVA2e561fU32KsheNJ4oOwkb2yGQ6crGdYlQy2z9WRqbKcuvFeUx/0XJDEssWvIJA38k6iChyfy+LcFvLXbH8ssCP5ptTs02QXT+6bwrxkDSLEYyc2MU4XcHF6Zez/bH1Z2ME5fHftq3yYjahQGeTgjX1ylhqg4vR52n7Kpho/gGGn/dfwLCbdPAfweFQ6Pf4dQJwnMGd2Vf647hiQK6CWRt7aX4JNR+/Wk6wb2n3mHqjPnqYsfo07kkje2IQki8zcfJ3/uRAaIV3Hfzn+w8MTX3N3jqpA6BBuN/pA7gaNrTvLo1mUsu/R2zDp92HGiAPVOHdUkkmKs5njVSYI9OXIz4wheH9XGJDAmQc+/3l/HoF4ZxMZbO7wrN+2KEVRX2nn/P+uwxkVxx/1T2j3+54TmOq3REVo/J+2NNS6nh4/f3sjAYV0Zktt2+srAGCw6HHQtL2bGpEF07ZQQdpzH5+NPS1fRKdbCg5Mja1/Ihkbi0ivxNMTyyIgx/HXVUcCvOdH6mZ7cM4knVh4hNq6e/oMO0c2czT09ZrOsoLpFswJUTzcAt6wgyOHixZL+OKvKfo/DV0aiYTgT0m9H8PbhN++Hhl74ZMhKrOTRS7+lT7eXOdk0DIf3QoIzcQzJiA3zBpk3sz9OpwmdsRGXVw4JDwnGpBeRRBmTJGAySEzplRzSz63HsqSYKOKjzByuqOamkcYwj5RR8zaiKP7+Cw7tCPY2af0NDf4+frZyN2+eKOCRX0wlKikxZCMg4MEnCIRpGrU2kH28eCeKojDhogFhz43mJaahoaGhofHjoRkuvmfUSY9HxpZgZceWorMfG7TTbI2zoDtta5k07SlrM6Y4PdY/wd5SfIphXTIiTqYAbnjrMNHdRD4qKOCRW0e06b7654v6sGi/P2Zbp/NPnAN6EQEeu7CXen6KxchvJ/bgka/97tI2p5flhVVM6ZUcccG9t+ZNvLKD4Un3srGoThXXbE2kdjw5tTe//uIgbp8SEqoSvPN339hufLKvjKX5Faw5UoVLRu3XYZ2v46CyApf+VUz6m7G7Wrw2IHgHsxOXdBrL12WbuDh9DF2jO6ltbe3e+9SoqVy7/ANe2LuRR4ZNDDuuzuHh7k/3UeeOxapr5PWNW5g1uBcZcVb12C33jWXUvI2ggEEn8vhdF/HgUx/zuxeXst6UilsROjwxvumXE7HXN7FowSassVHMvnlsu8f/XNBcpzU6wrk8J199up3amgYe+dtVbR4DzWOwVya9thxZFOk5sGfE497ZupsjVTW8fO1lRBn0qmHVH5ImgyCTnHWKKMnIF1dfR8/EWG7L7dKmh8CsBTuIjfYwdMRe4g0Wnhz8C2obvdQ5PEgimHUiDq/s94LTiciKgtunYNQJXD+0Mx/tLWPO4v2M6bWHa0Yv40yjiXc33Mjxqmzy5/YJ66tAW3Mz45i/aShFTa9z4YAdVNniWL4/FwCTDrLiTDy5ojBEByOvpI4mowmT2UmT20fJmSa1/csLqwC/ZtKx2kYExYROJ7JhzpizZu0QBIG+ackcKq9S72/g2xYYGwMaIMW1joheWa2/oYHvY73dwaJlOxk1sCsThnQPEcAM9uALnBOsodHaQHZyexG9cjLIyEoMK0PzEtPQ0ND4/hEf+rLDx8rPXvoD1kTj54ZmuPieCZ70NCTFUn/oBJWn60hJj2v32MBO884uyRSVVGFpdmGdPbgT8zcfD9uNrrS7GPfyNuIFHf9cs4/ZwwZFnEwBeHwCzoYoDFG2sHCFYFIsRg7+ZjK/3LOBmJhGwK8XEWOQcPtkzHqJ5OjQCfgTKwpDyjhZ54g4SXV4aymsX0JP63TijNnkZrow6SU1jjnGKJIVZ+LxZQWY9RIOj08V51xeWMVjywqavS1AJ4mqy2/whLOq0cV9nx0g2BwiiZCdYGbAs5vJSprMAxe/x2PTjvK7xb1xePzXNuvEkL69ocslrKvcyRvHlvDEgHtC+id4cjoqrQtX9xjIf/LzuCy7HzkJqSHHVdpdzZlLBMqcKRjEUh5e/C3v3Xql6oqek2bl6O8mhyxw/nz3xdz7909IiFY4EpPc4YmxIAjc8/Al2G0O3nhxBTEWE5fMGt7uOT8XNNdpjY7QkefE7fay6J3NDBzWlYHDurZ7bG5mHFZPE7FuB9UJqYzvFV52dUMj89dtZVLvbkzq3T1kIa6TBKIFiaikSnRGF38fOZOeibHtis36x2mZvsP2otd7uchyFS6nXi1TEOCm4Z35YE8ZigKSKDQbLrw4vQrv7SpFAKYOXs20IVtobOrL019czGmbEYtRCQkhCfTVwXIb20vOkJ1gZvbgLgx89gKSLPVcmbuWvSf6UWGLwemFCa9swaxr8cAQgEX7yug5wEh8fD0KMPfLfB5bdhhZkbE5/R5z0QaJuG4KHh8ICOw+ZVONypG+S4G/d46PZ2fJARRFCQnPCU5/PX/z8YipvgP3L9LfX/9sC40ON9dfNjLse3Q2D69go0+a283vb9/C3Q9dHPbcaF5iGhoaGhoaPy6a4eJ7JnjSk+5x8+ht/2HXtiKmzhjW7rGBCW6PrGQkRebJiV25emR3UixG1t0zWt15CkyClxdW4XD7MEgmonVNbCs5w3lZ8REnU3pJQG6MQ7KexGJpP01dqtVEij6VM/GVABglAZ+629cSqx1IjeqTQ2NJTpyJvDN21LYUGS/94q9R275hzmhV40JADNHSCBAIEfE1X8asE3lxRv+Iu60f7ymjtQ/Hk1P7UFzrwOWV2VOSyb6SbmQnf02MsSc60R9P/eKM/gzJsKpx0sW1DqalTubDU1+y+8xhhsS3nQLv0WGTWHXyKI9uWcar42az86RNvZeBzCV3LtqL06vH5ktmZ8lJPtqxj2tGDFLLaL0YG5GTxRVThvLp8l10MkfjlGI7PDEWRZGH/jyTxgYXLz61FKNJz+RL/NfSMndo/C+w5pt91FbbeejPM896bFK0gfMNDqqsUSx+fGbE9+KltVtxe308POV8IFSbJtog8cdpmbxStJ9pWTlc3qP3WcMIcjPj6NKjyC+CfHAgl4zoHZrWFHhn50mMOoknL+6N1aTH5vQw98t8HF4ZRYHJAzYzbcgWNhcO476hf8Hh2YpZJyOJhI0VB8ttIaEf+x4az76HJrD4QBw66fdcNHAL72y8UD0+IG58ab9UBmfE8uflh1FkUQ0fdHhlfIpCsMOcT5YRJB+SokNWFO79bB9Ks7fY4puHh+hJBId9WKVaokUfdqcLq9mklhfJkyLwHZzcMylkHGv9DT1aWsWnK/cya/JAKnxSxO9RRwQ0p/dL5aV/fIXeoGPSJQPDfte8xDQ0NDQ0NH5cNMPFD0Bg0qMoConJFnZujWy4CD4W/AvLuWtOkAn885v9XD3Sv7s3bv4mXB6ZeZuKKXh4EgD3LzmAwyujx4xV30BqtNLmZCp/7kTWFFfw6N4P2VJ1jAlZXdqt/8DYXpz0FGM0OXE5TVh0EhZji1fCwXIbo+ZtRJYVXK202D7YcypM7d8nuzlU9wnp5hHEGlquXVzrQBQEGr0KshIu6hYwUkzplRwW2x5pET57cCeeWHkkpAyrSR+iJbF092gevfw9nrniNAnS5SHK/e7mxUiUQcKkV7j44njeKv6cQXEPIQpixL6KNZp4oP94/rDjG4a8/gmO2qSQxcqQDKsaklLpjGFAlsw/lm9gbI+udI6PbfMe/OracRwoPIXxdCXz7ju3+Gm9Xscfnr6aPz64kGcf/wy9XkefkT1+kphszVii8WPi88l8vGAj3XunMfS8trUtAqzeXsjRkioev2sqGQlRYb8fq6pl0c79XDNiEF0T/RklshPMNDVr8zS5vSyvyiPBZOaJURcAZw8jqJRPktX9KD2M/Xnz+htUvSC9JKghIg6PjCQI/O7rQygKKIoMgkCUXmRI9h5mjljDjmM53Df0CVJizICAgoLHp1DV6Ap514INugrwVl4JE3okc9d557G//iLG9vmWL3aNpK7JLw4dbZAw6kQeu7AX4+ZvwhkIFRRaLBUB77cAJr2EKPmQfTrcXh/NzmxEGySmv5kXoicRHPZhNkkgQnVjU4jhorVHQyCzlNsr8+TKI0Q11zEwjgX6V1EU/vnuGizRRu68YjQuRYxozO+I547T4WbVV3s5/4J+WGPDn43AfQuEy7SnuaKhoaGhoaHx/0/k1ZjG94IgCAwd2Z1dW4vwes6utr68sIp6dPgEAYOjkbzSOpYXVlHn8OLwytQ5/BoSeaUt+hCy4FeuLygvD1kkAizNr6DS7p/EXj0wi4kZ3fjs2EF8skyl3aX+3poYbxYAqWl+rwuv7GP+rAGqZsaoeRtpcPn8sd2ATvR7ZoBfAf7FGQNYeP1QdVJZ5TqIw1dNn7hZIdcJiG6a9SLGVik8o/Qi5maBt4BBZv6sAfzlot68mVdCt7+t5Nr3dtLvmTVqG3LSrKy9exRGnYhREogz69Xzl96Wi1knUlbblWMVmZiilzOtr/+3wEKjwe1DARrdPtxekcGGcRQ1nGRz9d4271ml3cWvPizDZY/BkHCaJp9/Uh4I0ymudRBlCLRNYNvpGBrdPh5ZsgJFiazxAaDXSfzjgUsxSCIvLFiBx9txtX4Ao0nPn5+/jr4DMvnHY5/y8dK96mIhuH4/JIGd5+sX7gq5TxoaPxQbV+Vz8kQN194+/qyZdWRZ4fXFW+jeOZGLRveJeMy8tVsw6nXMGX+e+rfiWgfRze90fLKNI7Yq/jjiAuKM/rTX7YUROH1unj/8HmmmRJ4adhOpVv9iPTDG/fuqQcSZ9ViMOhD8dWx0+2jyKDg8Mp0Syrn5/GUcPNmVhRsvZ09ZA/M3FeP2+nB6/ceOfHFjyLs2e3AngnvijbxS9Z2ME69EL/kY2aMAs15g7d2j+OCGYeTPnci6ohqami3TgqCgKAJGCQKRJNEGicv7pfDSzP6su2+Ev30uUTVa6JpFQVH8Y6qAoIaPBPpHEP392OB0h3yTAv0R+I4EvOaCx+hI49jqvCPsOnSSu64YQ2yMOaycczEsrFtxkKZGFxe3EW5XaXfR5+k13PTBbm76YDd9nl6tjXEaGhoaGho/IJrHxQ/MyPN7s+LLPRzcW8Kg4dltHldpd3H/kv04vAp2vZloZ1PIbk4woRNjPZnxcawsKOLXX1eoafRAwCeH7q7P6t6flSePsvTYEW5/p7jN3feLs3vxxloLnbPKKDmehcOjsOdUnSq62Xq9bZBERFHAoBMippbbeDIfdBBv7BGh5f6JrSTC2rtHqalJbS5fiAEmO8HM/Uv2U+fwhpUQvKN5fvckTvz+gpBd/oAYnigKCAJM7nI1xc5nqXDsJS1qiNqfMQZJ9biQREiSe5FuTOH9E8sYlTQIKYLXhd/oAfWn0knvdZSkzuV4KruFxGAbdSKyrODwyjR4JOy6ZLafKOWzPfmM7dGjTY+E9CQrj95xIY+8uJTXPt3MnKvHRX542sBkNvDEv67n4V++zbJ/LSNhaC+Ij/3RYrI1ATuNHxNFUVj0ziYyshIZPSGyISKYDbuLOF5Wy1/uuQRJFMO8g4qqalh2sJBfjB1BQnTLjnt2ghkEiDEKRCVVkBOfxqVdWzJHtRdG8P6Jbyh31vC3gfcRpTOF1CfFYuSGYZ3VcTY7wewX7m1GJ3m5fcISGpxRvLfhCmRF5O5P96EoimpEBv+iPjg1dU6alTV3j+KVzccZnBHLU6uOqu/kBzu8pHeOJTvlFMv2KZTUOblhWGcOltu497MDaplGowuv24jbh+q90ej2sfJoDRuOn+G9Tn5RU6/boJ4joCCJEqIgYDEK6rgT3D9OZy2PfXESu8vHpAgeYYHxItjLBfyG7TCjkMvDix+so2dWMjMmtWQA+a76OV99sp0u3VPoPzgr4u/+kKGWOrk8sjbGaWhoaGho/IBohosfmGEju6PXS2xZV9Cu4cLvReH/t8MUTZytCsXtZkqvZOLMelxeH0ZdqAdCYGL8xqatLMzbg9fXA7tLxqwTQUAVtwxMpiZ37kG80czbh3bj8cW2uaBMsRgZGTecg8oarFYbNpuV+ZtP8PaOk6y7ZzRGnahOlqP0Iia9xOKbh7PqSDWzB/uzcLy38yQ2p4fHlhUwddAeLhgg0uiIx6IPb7PDK6OTRGwuH3+e2rLgCI4VV1Dw+sI9FAShJaY7eOER3J7WKvL19uHojVEctX1FWtSQkP7MTjCz+5SN+5cc4L7PDpKankHPgbtZV7mTSakjwq4fSAmr85hwVCcTnVLJyxd1VQ0meaV1rLtntFqmT1bwCPEMzBB5atk6jjcdw+H1e5wUPBy+IzhpRC8unzCAd7/azrC+mYwc2LXNZygS0RYTf5t/Ew/f9TbCniNMf2g6My/s96O4NGsCdho/Jnt3HOfIoTIe+P2lSFL7zoSKovDO0u1kpMQyObeXGv4WSL+ZP3ci/96Qh0mv45ZRQwH/+LK8sIr7l+xHUcAUX4uo9/C7YeHeHa1DAPNK60hLbOSzk2uYkjaSgXHh2UsijV9b7hvLeS9uoMktc+mQTaTF1ZAq/JnrBqfz6pYSmpo9+YySgCtofLQ5PSHlzlqwA49P4dvC6pBQvm6J0Ryo6ESP1FMhdXkzrzTkv1PjFSxCPHsNEg1uHwZJQBAEGt0+REFgfUkZAGbBjCwKuGUFjwwmBV6c2Z84sz7EiBPon6/21wFQUNUYohvS+psU8HJpcPsw6UTuGtWV307sETKOvffVDspr7Pzplxcjif9/zqRHC05z+OAp7pl7cZueO36jtKSKPBv14WlvNTQ0NDQ0NL4/NMPFD4w5ysiQ3G5sWn2Iu349td1JUGCR59FZwFbFpj3HmDV5EAUPh+/eBU+MJ/XuxoKtu4iSGlGMFtXjQieG7koZJR2zuvVnQcFODIa+WGh7QXl3/wncvWcdXbudZN+efri8MgZJpLjWEbLIL651qPHHHp/CvE3FyIo/NWoAGS+yIrDiSCXxZrPajuBQEUkMrUdA/NPd7B4cbZBoPReNMohsuW+saiRoS8MhYFww60QkEc7LTKWwcQKljRuQFR+iIIX05+5TNlxef1YTTqcyckgKH5V8Sz9zf1YeqQFC45kVBVxeGVdFIqa4ev65bw3DkzMZ8tyGkPoE38dGVxOXvvwORuU0tZ50HB45ZJc0mF/fMIEDR8v406vf8O5fbyQ5PqbdZ6411rgo/v7KTcy9822WvfANk/ulkdIn/ZzK+C5oAnYaPyZfLsojxmrG3S1dDTdoi0PFFRw4epqHbppEbZNHDX8LsLLwNF8fKOT63EEkREep40uT29ecCUkhLqGK7jGpjE3vCvhFMAMiyoFsRy3jksyAEdvJSDFzW/YM9ToBY0XwGBo8fuWkWTn2yAV8e6QIOeafJOgmcsNbPhzuEzi8LV4WOklEr1NocPn/9tiyw1w5sFNIKJzd5SXGIPGLkV0YkhHLlF7JAGz4NplEyyHizTr1b90TgzUdFAR9E0OT+vCtTsQiCM2iyQoGyf+NEfRODKLE/gcvYvXRGtVI29oDrzU2pxOAnkmWIN0Qn9+rJYjczDh0kgj4+/+t7SX8dmKLB19FrZ13vtrOBef1Ykif8DG0dX+fbTz68uM8v7DxtEFtHpNiMVLw8ERN40JDQ0NDQ+NHQjNc/AicP6U/eY9/xqH9J+k3MDPiMcGLvBGdY5nzxPus2X6EWZMHndXVdXiXDBKjo5iYYWLa4KGq1wCET6au6zWYNw5tZ+60OPpF9WpzApcdH88Fqbmsk7Zzurg3TqcxxNU3UJ+cNCvv7TxJk9ufqs8kCcityjpW0Qn9IB//3LiSogq/R8Y/pvWlf5oFt8+HrICs+BfugYlzn6dX4/DIuLwyMQYJg05UPRdsTg+nbU4OlNs5WtXI7lM2dp+qV40cFqOOT/aVUWF3MXtwp+YUrgIIfiPDJ/vKiInpjhL1NWdcR0k0tWQNUUN2mnfRJFHkqswLefX4QsYu+JBjJ5IAiDPrKHh4EnmldbgDrjKKiP10OicNx3l656aIYRKBjCwHK92M6NabLUcPYZMaafRFt3l/TUY9f713Orf8cSGPv/IN8353RciOYkcm4269nskPXswXTy3h0Xvf5Z//uY3MrkltXvP7QktzqvFDU2l3sfZAGZvXFnA6K5WbF+0LM14GvCXAPyZ+umovZqOei8f2ZW1xHcHpiAQBTtWewivLXNuc/SevtA63V1bTN0fF1SPpPdzQcxiCILC+qFrNihTI3JGTZlXPM8VVEJtQw2DjFBxOiXVH/OFvAeFlsdnY3Oj2ERPB48AYtQKH4Gbvscm4vU7VaGHSiegkgaW35fLB7lO8mVeCRwaf3JIWtXUo3GtbT6heJVWNLoZ0igMgf+54tb+uHNiJR78pwOnxYY3x4MWFx2FVxTUDRubAuPPAlk/pG59Cp1gzNwzrzJAMK2/mlbYygLTcr8B5p+ps6CWJOpffgN3kkTHr/Qby4FTX/gxN/blr0V5/VhM5NETw1UWbUBSl3XC6s2V7CWCra2L1sn1cMH0wMRZzhJJaCIT3aGhoaGj8NIgPfdmh4+RnL/2Ba6LxY6AZLn4ERo/vg96gY923+9s0XEDoIm/i8J4s/HoH9XYHsWeZPEmiyIV9e/D53nx+N3USw17YGDI5C6Z7bCKj0rL4/MR+fjNzTLsutdd0ncya6q385WqRDO/QiAvjSruLez/bpyrPO30KMUYJt69l97Kkyt/mnM4F7Cv1ty84fhrA5YW7PtmLWS/xl4t6h2hZ3Dkyi4cn9lR3INcXVavnf36wQj1OAGIMEoIA9312QE3/N29mfzw+v1K/wyNz72cHiI2CF26EI3VbSUxrMVwEh+wEsppcktmJD0q+plPXIo6dSAQENZ65tbuw12FhVEo2K8r3YTD2woI+xKslePIsiQrxopFUUxVn5BjVaBOJ7IxEHrp5Ek++vpy3v8jj9hkjw8rTS0LIwiJ40RY4JqZPN0bvK+R39yzg+TfvICWt7cwmGho/dwLPdtLRU3TxyZR1SgozFgZEFOsc/vCJBAP0OX2MS8/PIcbs9/wy6ERiAATYOGc0D3z4CaO7ZamZRHIz45CDcnNYk2vwuowkiilU2l1MfX2bWicFfyaPP0+1kp1gptHtZVDfIzQ2mukdN5gef1/lzxSCQpO7tZnXrx0R8DiotLsY9NxyHpv1BUdKe/LvlU24fArRzalFX5wxgCEZVsbN36y2DwjxYFPFjTcV89z6Y2p4xyf7yrjvswNMH3qGWclQ1egi1RqlnrPp3jF8vKeM7Mw6FtXA/DV1PGvbHLLgD2TPOlhbwfRmnQ9/JqyW+jy2rICChyeFeMa5vTIIcEVvN51iLXRPjFLHUIdHDvO4AL/ByWyQ/N4lQWNq4YkqvtmUz/UXD6dTctvj2VmzvTQbVCo3HMLt8nL57Nw2y9LQ0NDQ0ND48fmvzyrSXvaMH4toi4nzxvVizbcHOpRdBGDogGx8ssLidQc7dPwl/Xvj8HhZsO2AOjlze2XmbyoOa/sNvYZyqtHGmlNF7ZbZOSqVUYkDWVG5EYfcFPGYvNI6PN6W7UqTTuTvl/TlrpFZROkFog0SXjkOqzSM4d0OoJPCxTUDBDwsVrQSJB2cEWoweWXz8YjnG3UCvzq/G7fnZoWk/9t/2hYi7AZQ3xRDbYOVwppDIc9HcFiJUS8ypVcyNQ0eeulGYIm1EZ9Q579WczxzwF34pZn9iTKIiAiszDPhUxTGDHKo2VgC9Q+ePPtkgV+MG4NO8DI9POQ9jOnjcrhoVB/e+GwL+wrLwspzeWVGzdsYlsUj+JgGs4lpD02nqcHFHx9cSFOjpoKv8X8X//gjk3CyCntsNE5LVJimSmsRRbOtHo/Xx6zJfm+KwML+/RuGcfR3k3G6Gzhts3Pl0P7qOSkWI3+4oBcAerMTg9mJ80wSI7PiySutQ2wVARjQ+imuddAprR5rbAOlR7tz4/t7aXD5aHT78LXS7AlkZjLqBNVjLq+0juyUY8SYHKw8MEzVsWhy+3j+0hzizHo1tC2AToAnp/YOGTNTLEbmjMnGqBPV/jlW04gCRBuduDw6Fu0tV4+vtLsY//JmXthQzDNbtwNQUWNWM3kEf1eL6muwuV0MTEyP2N8BI2/gt4BnXIPLx/qiU2TExYZkajHqRLX9wQRnCFl3z2i1Hq8v3kyM2cjNl7VvaGhPc0fNgPTuTt55dxM9BmZywI2WJURDQ0NDQ+NnxH+14eLnlI5x8sUDqT/TyO68Y2c9ttLu4tIP9uPUG/nXZ3kdqvfwrAw6xVo5WnEyxC34ufXHwto+JasnKaYYnt25Rf17WwaeackX0uRz8uTOJRH7MDczDqO+5TEy6EQeW3aY93eXYdDpeOWKgeTPncjItFtIiLFxyaBdbbbBpBNocvtYUViFgN8IEkhpGsw1gzMin6/XMXtwJ7onRqnp/wRgQLo1KCVpC/VNVg7XlER4PvxhJSBQ1eh/hv71FXg9eqaPruNX53djw5wxIXojWfFRSIJIg9uH06nHVpXAnvpifr0sL6y/gifPl/bPxqHEsbXoCAOe+abdey0IAg/fMpm0JCuPvfwV9fZWqQWbsw+2Tnna+pqXjOnBY/+YzYljVTz1yCJ8EVKt/hwMfhoaZyM3Mw5rYxOWRgdnOqew5b6xYakvczPjMASJdcY77WSlJ9Azq2VcCXi7pViMLDtYiEmnY0KvburvlXYXf1t9FIDouHoUWeD+oUPV8k16yS9UrBNZe/coNcwhNzOOjKyTeNx6yk+nIgfZKnSSQKxJh1kvEmvSYdT7xyinV+H+JfuptLvITjDTu1MRLq+OwtMt3noKcOvHe7n2vZ3cv+QA+qD2eRW/xkXrd7d1atBbc7MQgNTYWiptCcwOGleDjZ3WuDM02mMwi2b0kkB2gjnku7qqpNjf1lR//bITzIhBWk7BopW5mXEEBmcBGR1uok2WIA0LcHpltf2tCWgjjX95M9cv3MXgJ79m/a4irrt4GNZoU9jx7bU/2LATaK+prBqjw81XkulnMW/Q0NDQ0NDQaOG/2nARPPmKlPP9x2T4mJ7EWEys/mZf2G+BReLBchtL8ytYXliFR4YKkxWj28nn289u7BBFgRmD+rLjxEnW/XIEvzq/G1HNxovWbT/T6KX0VAwFtjJyXviGg+W2Ng08p6pNVJZlkJ51AkHfFNaHfo+DSbxz7RDeuXYIL80cgE/297nXJ3OkqgGA9KhhZESN4qrcrcy/ohNmXegWZYxR4u7R2UQbJH+2EoPE3AndI2bakCSRqGZjibnZy+Kda4ewYc5oxr+8mUe+LiDaKHJ5Tipr7h7F+O6JqseFAPztkj68c+0QsuMziI2yhzwf/lARBYdHxicrfLynDI9Pod6hUFbamSrhKO/uK2Dc/M28t/Ok2lfZCWYU/C7cggCOmhR8Xgl94im2lZwJ6a/gyXNxrYN6bzI+RSKa02wNOjYSMVFG/nrvdGrrm3ji9W9JjjGo5W25byyGoB3V1q7iwRP2YaN6cN/vprF90xFefW5ZyDV+TgY/DY32SLEYeSDFiKSX+PrvM8hJs6oGiGAEwb+TbxV9mF0OLhnTN6JxTpYVVhw6yvk9uxJlaEmBFPDsAIWoWBvOhmj+sfI4/Z5ZA0D+3Im8euUgXrtqEH1SLOp5JpOXlPRKKsrScbhFXM1xaNEGia33j2PjvWN4aHx3Nt47hpdmDvBnhAJ8MiwvrGLc/E30Si/mcFkWXjk8srPR7cMnK7w0cwC/Or8bpubzXV5fxFTawQaanDQr+x4aT7/0Bgam9grRlGgxdkpY4+qY2LlPyJgV/F1dWXKcJFMU2ZZ41VNDaG7jSzP7h4SJ5JXWsfS2XGKMEnFGL4IAE3tmqhoWwe1v63sd/F2Pr63CbDIw+6IhbT0ibbY/mEB7s09X4TIZqEmK/1nMGzQ0NDQ0NDRa+K82XPyc0jEaDDrGT+nPxtX52G0O9e+BReK17+1k4LPruK55B00SwWWNRxYEjhcUd+gaMwb3Q1YU1hQWhrkFB7c9r7QOx5kEFFlAslapi/NIE7XczDjKinshCApdexwlNzMubMIfECi7YVhnpvRKbtPjY0TyfYBC54yXePWqPpiaXaNNksDLswby24k91IW3UScyuWcS8zcVc7A81G04O8GMKPqvYTbouDwnlSNVDSzNr8Dh9vlDIlx+sc9ZC3aw+5QNc7OhI+DVMaVXMumWKFUXQ0EhO8Ec9sxM7pmkGiROl3QBID6thDqHh7sW7aXfM2s4WG5j/MubQfEvkJbelotO0NNUlYo+qhHZWB9yv4OFNP07jToa5BQMopM6ewWtad3fiUlxTBw/mA27j/H52v3qZDwnzdrmjmLrCXul3YXcJ5OLZ+fyxUd5rFveojnid/WW1fATbeKu8V1p/ex+3548iqKwe2MhI8f2IrtZZLI1Ad0al1fG6vKPvf37ZEY0zh2pqqGqoZE6l5n1RdVqXQOeZTqjG53Bg8NmweGVQ8bL+5cc4K5P9tLnaf+Y8N7Ok/xj63p8io/yUy1ZfPSiwCtXDCQ52qiGY4x/eTNDMqwY9ZKaZQnA5fGQFlvLieo0dAIYpPCsVAHnhttyMzE1e234tXz2hRhXgwnch1izE4Ohgi6xfUN+Dxg7n5+djk7vZVxaX3X8CDbS6iU43lTOealZCIKgGhUamnU0suKjQrQtrl+4i1kLdrDlvrHcMiwBgHE9/J4aAQ2Ls32vA2N0kuAlxtnAFRcOIcb8/5fNI8ViZOXsAcTW2Jg5OxdjB+qhoaGhoaGh8ePyXy3O+XNLx3jJrOF89ekOVn+zj8uvPg9o2T1qbPYI8GfFEJg/awBxZj07NhpYueUQNfWNJMb6M0+0VsgPtCsrIY5xPbry8c793DUut82252bGocOA2x6HMfYMl+QkMm/T8YhpSVMsRvbcdwnPH2pkf8Z2TjnKufClQ20qs7clBOcXQuvK+PQ/s7rst6Qkv060cQKSVwEUbE6/kFugzlajxMRXtqgCmwGV/oPlNkbN24gsK4iiwBtXDVKPa43DI6MTRWxOT4vwm1fhufXHmL/5OG/fbic7PkXNNjL+Zb/wXHC613HzN+P1KYgCPDRmAJ9XHyQzq4yjh7vh8PrTEAYMP4GMJiV1TmRFxlEbR1RiFfMObOSy7r2oanBHVLXPnzuRrSVneHvjal7fuJVZg/sQYwoX1gyIb45/eTMer0yWKZrnF65leL8sOqfGqf1/tiweIWUKAlf3y+CFJ7+gR990MjITyU4wt5uaUEOjI7T57J4lq8O5UHS4nOpKGzfdPanNY4KNkTENjcRZzRTYfTg8/pTHwUKNX+z3h4N8uN/Ge/u2EG2QMDZnNHpxxgDWVRxiRTUYvLEhC9vlhVWqGKXDIzP8hQ24vDIDBh8gJVVPVU2LF4ZXVhiSYQ0Ti/TrOijQnGXpVL0Dna4JUVSob4rGq4BVLzKjfwqf7juNTwG9CF6fwpzF+9FLAk9O7c3cL/NxeGVsTh93LtqLUSdye24ml+WkYXP5QlKvDul6mFsnQLp5WFi/pViMRMdXQT0Mje+j3tNgI+27N/Xl7s17GdcpO6yvW+uMBNpq1vs1LBoc9XRLSiDZEq1eryPf68Bxj7z0FUVn9Nw8Lbzu34Uty/Yh6UTSc3uwLjsxTORYQ0NDQ0ND46flv9rjAtp2Df0p6NEnnV79OvH1pztQFP9SOzDRizZI6u6/XhKY0iuZ6f1SufXS4Xi8Pj5ZuQegWSF/NTd9sJubPthNn6dDXfmvGzGISnsjqwqK2mx7YOL3x1HjEESZTVWFBCbMRDABpFiM/G7IDMySkdeKluDx+XfjHZ623ZHb8vjoHD2G4Un3UeHawILbdiIIMo1uf6aPPk+vBvxK9auOVIcIbH68p4xKu4tR8zbS4PLR5JFRFHh7R2lEo0WUvmXHrHWrAuEzda4a3N4ohOY0hIHd00C/7T5lo87hwemVafLI/GVFIZWnsjCaXHTNPKOWP3twp5DJus3pweb04fEJ1JWncNRWxceF+aowXUA4NbBTm2IxcllOGn+ePonqhiZeXt+SoaB1uJPqHeP2UZaQDoLIH1/+Gq8vPDtBW4SUqQiM+cUkREnkqd8twuvxhQjlRRskimsdZylRQyOcNp/d79EFf9uGwwiCwHlj21a3DYx37103hC46LwN7deaBzw8EpTxuGZ+W5xfjkXV4Fb9Nv9HtU0Vv5yzez9fFRaSYYzj44NSInk0BXM3pSpOSa6muTkAnigSkgKKa36nWi3zwh0gEjA6Pf3sYq9kvimxzRKu/Lz1UQUDX0yNDk8en9qnVpA/RHHJ6ZeqdXp5bX8yEV7Zw1YI8Rr64UR2HuqUUg2JkW3FCRM+MXWcO0T2mM3EGv+El2KNCQGDNyeMAjE7rEtLXkXRGAl4kDo/M/Uv2sf3ESXK7hqYS7ej3Wna5OFRwgpmTBp5V26IjOB1uln+xm8qUBH6xtIDxL2/WjBYaGhoaGho/M/7rDRc/N6ZflcvxokpVpDMw0fvghmHse2g8798wLGTC1yU9gQnDe/Dx8j3YG51+N35PyyLV6fGpmUMq7S7sHjMZcbG8sanFOBKJFIuRu4f3Y2RqFu8c3unXdfDKbcYWx+pjuK7LxZR4ikhOqwQCE9BQEbWACzLQZthC37jZ9I+/kSrP19w+4VP0kn+n0uXxh3csza9gcs+kEIHN2YM7+evVqkkrCisjtu/p6X3Va1tN+pDfTDqRuCgHslBCpqV3h8OJnF6Z6sokTEIUN07wqeUHh2isu2c0RTUtGVga62LxugzM27+JrvEm1bMmkPIw2HV+QEYaVwzpz7vb9lBa678HrRc3wUYSwWjgvusmcPBYOR8s29lmvVvTuswLhmTy4O8v5WjBaRa/v0VND2kx6jDoxB/VVVoTBf3vob1n9/tywT+wu4TsnqnEJcS0e1yKxcjozhZq65uoVHR4mlf+gZTHgfHJ423CKRsJKEgGNGsCoreisQmzbEUQhJAF9pReycSZdRiC0ovo9R5MZhf1dVaiDCLRRr0aBhdYFAePkYEwu4DOg9unICv+8kShRT9HJDxcxKz3pwjNijMxtFPbKUFdPv/YowAWo8SArEIOnszihoX76f2P1Tz0xQE1NM/maSS//hjD4/up57e+p7W+WtKjLGTGtFwzkvGhtYaFpDhocnsY1S2r3fvWFotX70NRYPaUjmlbnI01y/bT1OiiPDNF07bQ0NDQ0ND4mfJfHSryc2Ti1AG89dJKPn1vM0PP6w6EuvcHC6QFuH3GSNbuOMpH3+7msguHYtSLOJp39FxemefWH2PepuOAgk8Gi2Qmpq6cbcdPMjI7M6y8YO7KOY9bVy/CHFcHdfHqgqK1FgPAZRnns6oiD/PgQirLz6PBJaqGjun9UlXX8MBu4z+m9eXKgZ0iCOUJDEu6G5/XitxlPnOnNzDv2ysRsHD/kgP4ZL8r+Zq7R7HqSDWzB3ciJ81KcrQRnSRi0ilIosCD47L566qjarkGESTRn8Y0+LpTeiVjNUk43TIGvcDLswbRO2Mj+XYfOYlTyZ+bGdLWQNuHZFiJM+twun24fM0x3aLIqMRBbK7dwW9H3YBZaskskpsZF9L+5tbiqUvhpPEkXx0/qgqmRhkkdp+y8eDnB0Jc5++bOIqvDhTw/KpNPHfVtIju08H/nRxjIG9vEa9/upnxQ3uQlR4f8d4FE6nM5Mn9GD2hD+/+ew1jJ/X7SUKsWocWfB+hBBo/HWd7dv9/760syxQcOMnEqQM6dPyuwtMAfFvSQJNoUsNAAlmLnB4vFTYbt583BEGfxuSeSSGhFTGCD1Hv5tBJH/2eWRPyfAZEipcXVnH/kgO4vT6irH5PpTuH9ue2G0YDhLW9dWhX/tyJahk+WUES/J4OT03LoLFhmFqXaFCNoAB/uKAXggATXtnSob64YWhnRnc/gxxTz9d7xmN3+dNUP7e+mOfXF7PvofGUCwXIKIxMaunf4Hs4onMs05a9ztj0rghCuDGlNQENC50kYpbOIIkiY7plnXW8ao3L7eXztfsZN7Qb6Unh38tzRVEUvlyUR2b3FHYmWrHIaNoWGhoaGhoaP0M0w8WPjMGgY+JlQ1j81gZ2HzjFkP6RU3sG06tLCuOHdeeDb3dx1ZTB6gR596l6Xtt6gka3D7PeH+rh8MpgtJJmruP1jdvbNFwEJosjOmfQKy4Jn7WRB3pOYmRWPEDEBaQkSNzbczYP7XmBHn2LKDrUNyyO2eWV1Qn1vZ8d4NFvDvHSzIHq4iBEmDLteoxSMiJ/5cUb30N03Mu9i2Q15tvm8vHnqX1a1dy/UyorMluOh2bguDU3i2n90shOMKsaFcW1jub0fCKSpKATJSb3jGXbmS+JN/QgwdgDjKiLh0AojssjY9SLbJgzRi0j4N5dKZ9kTfUWttUcYEJKS3x1cPuj9CJ3jerKkIxYJvZI4KoVb7OlNh+jLhlREFTX8OAY94AB6NZRw3h5/TZ6pGdz5aDuYYub1v/98C2Tuea3C/jbmyv4032XkfPs2rMu/luXIQgCV8+5kB3bjvH835byzMs3nVUr4/umdcx/oD80/u9ytmf3/4fS49U0NbroOyCzQ4vfDfmnAKhVdEQbJH51fjfmjMlWj99xohwFyElP5urhoeNO/tyJ/GntLr4+A42NBnTNO/K5mXEhY82UXslsmDOaUfM2Yol2AjAlu5t6jbO1PSB0PKVXMnmldQzvHMPKypewRtUzMStVrcv8TcX8c10RTR4ZneDXAfLKHQ8Xe3dnKU3SGib1Fyk41Ru96A87gZbQPGPWfhINsfSIafmGBPezTW6g2tnIeamRf28rRDGvtI4XV36DXkriRJ0rTPcEwg08wazKK6TO7uCqC78fb4tD+09SdLic+x+dzlNTBv5sNLE0NDQ0NDQ0QtEMFz8ylXYXj5c6GCAK3PHYEr55944OTZDuvGI0N/z+Xd7+Io8HrhuvTm4X7ChFFITm+GEFneR3Gb4hdwivbtjCrpIyhmZ1CqtDsGHiuWuG88cdyzDE1JNiSWNpfkXIAjJYx2JKr05cnD6Gb9jEvQMmMr1bP9VLISBOF4zN6eOuT/Zi1EkEPEKCF9SDkqfQ2ZLF+vLHsYl/YdaI8/hy1wQgfMcrr7QOr0/B2ezRsLqoJuT3a4dk0CfFono9NLl9fq2GZvHNgFjnurJ/4pKKmZT+TFh9/SJ7/t1Hh1dm9ymbuogITGaTlGys+mh21B4MMVwEi1o6PDK35WaqHjS39RvOkztWs+QXE6izG9S2RXKdv3TgAF5at52nl2/kj8tLzup5kBQXwz2zx/KPt1exYMW+77T4r7S7GPv2DpIy03BvK2Lz1mOMHtntrOd1pNyOLgS+Sxagc92t1fjvoaS4GoDYTvEd8tSJRkYWBMxmI3qdGGK0qLS7mP3OFqwiPPBFIRN79wgLdRjTI5qvt4NBMSNJAtkJ5rCxxqATeeHy/ggIuBX/OJJ3wk5ZdUWI8fNsz2qwgSeqNgWb+2TIb3PGZPOvjcfAA14FvB5fWBnBxojWOLxehmbvA89glt0xmfP+tRGP3FJGUozI6tp8Lkg9D1EQ1T4K7uc/X+E3co9O7xLx90j3IcViJD0aSmrPUO9LYdS8jSiK33sk8K1p7YXWuoxFK3bTtVMCw/u1703YUT7/cBvRMSYmXTwQc9T3Z1jT0NDQ0NDQ+H7RDBc/MnmldTh0Ok6lJ5Fxsoo1+09x9ej2F4iVdhcFdpnJI/uwaMUerrpwMJ2SY8NcrwPl52bGEWMUWbRrL/PWbOatm68Mq0NgcRtjkDhywkBWTDwv7NvIlKxeIQtIQYBffrKXpuYZcJxZz67fTGFbzX62e77huqickAmrJPqFMZuCJtKOoK08h1cOW1AnmvowPettdlTNg5wlTOpXxOD4B8MmrLmZcbQO7zZKArLiNwDMWrCDFy7vH5alJaY5Ntxi1DGy5z5c0nL6x99AZsyYs94vm9MTcTI+NK4PO2oP8eXBcs7LiifFYlRFLRuaFzHFtQ7VcHFV94H8c88Gvizdzz9GX6KWH8l1/mBlE41yAhapmgZvU4eMD5dPHMDi1ftYv34PBkvnc9YRCDwTRamJdCou481XVv1/Gy7ONfTjXEMJtNCS/23KSvyGy5OIHTLWNTU5SEuI4fEbhoU9X3mldSiK3/Da6BZZXljFDcNChSMbfP7Qj9dmjWB815TIGaGaQyb0koBR8gvc/nlFAQ0NJSHGjXN5VpOMfal07gv5W4rFyO25XXh+/bE2z/vL1D78Y00RLq8PnShgd7WMyTmdi4mLbuCttd2RhtpU4UyDJKATBZ7fuYm+QzzkRLfoW7T2iFp+ooj0KCv7SlyYs1wd9ph6b8dBAGqcZgw6BW8gDK8dLzTwv++fbTtK/rEKHrppUofCU85GTZWdDSsPcvk152GO0sYOjZ8HgiCYgPWAEf88/RNFUR7/aWuloaGh8dOjiXP+yASMAtXdMxAUhdMbCto9PrA4u37hLv5z0ocgCMz/aIP6e7AQWvC/G1wyQ7v0ZEtxKd8cKIpYh5hmvYUXNhyn8KiFgjNVLD1+qCWl6awB+GRZNVoANLo8bCxq4MFe11HSVM5rRZ+GTFgVReDVKwfy0sz+mPUtE0uD5NeeaGtBrRfNjEp9mIsy5mMxxrCr7vesOPUgFY49qshoisXIlvvGEmVoeWx1kohBJ9LkkXG4fdicnrAsLQadyKZ7R/KfG4u5fszXpJoHMyTxzoj97RfZ02PWi8SZ9VhN+oiZEHpG9cTubeSuL9fS7xl/Zpf2RC1jjSZmZOewpDgfm9sZ8f4F3x+3kICsiFikmrC+Olhu4/FlBaqIHvi1PX5z40Sqahv448DYdjMeRCLwTERFG6nonkHpgZMc2l/aoXNbExDYXF5Ydc5ZJM4lC1DrrBWamN7/FmUna4lLiGZsr5QOeepU1zWSlmCJ+HzlZsahE7z+3X+vwP1LDoQJxJ5ushGjN3DVgExV06atjFD5cycyZ4zf8Kcgq4KYDUHZizqKUehJo7eC3WVFIcK1t+VmRpDpbCEj1kzBwxP56MbhHPndZF6a2R9Ds3Hgwv47sDvM7CzuxubiGiQx0H8isqIQm3waj1uP7UxiSB+19DMcbaig5LSOG97fTb9n1pCdYFb7Q0FpM43y0fJTeBQTRr2JJo+MW/YbfxbfPFwVKG19LwPfwecXbUEWREYM7h6x7HMV9136yXZ8PpnpV43o0PEaGj8SLmCSoiiDgMHAVEEQRv60VdLQ0ND46dE8Ln5kgneVd5m8rPp8JzfeNpbE5MgiY8GLM4w6Ro3sx8oN+5g5qYTh/SIrsh8stzHyxY00uT10jdJx76Jv2Zh5K+mx5pA6BOKkG90+hLpYemQn8I9da5mS1YsUi5E4s57WiUk8Mtz72T4KfzuZ2ZkX8nHpCm7PygyZbAZCK3SiBHgx60TmzRwQFnIRibSoIVya9TYFdZ+wv/Ydlp28h2RTDjlx19E5egzJ0UZevWIQNmdLWMqj3xwC/N4cjy07zIY5o0N0KXqllVNg/xVN0hG6xExkZMpcRCHyo+8X2Qv1Yok0kW6y+Sf0+ugzNNpj1Z3BdfeM5uM9ZcweHC5KenXPgXxwZA/fnDjM1T0HRbx+oA4H517AX74xsCr/AE6PA//Gi//eDnx2HQr+uPY1d4/C5vKRmxnHkD6dGTM4my/X7GXJZSOIMhnavEakawaeywGJZh64ch5ffbKDvgPOzR27tfdNy4Lo+xe7+y6hJRr/PdjqmohPiOmwp47D6cEaEzl1ZorFyMTuCWw9dgYQ8MlKmMfAGZeDBGNUyDkBMc3AeGQ16alqdFFc6+C89AxW2iEmxkFjQ4zqcXEuz2ql3cVtC2Uevgwe+uY98opGYGz22MhJs7LvofE8s6aId3a2hJIYJRGzQVJ1hQJcObATf/z2MBkJJxiYdYxFWyfQ6BZ5dWsJVpPE3y7py6PfHMLp85KSVkl1eQYjz0sIa29eaR3GqEZ+sX4vroY07C4v0QaJj/eUsfjm4Ux/Mw8UGP/y5jDjaUF5FUeqqnlo0ljWlwh8tPe0+tuqI9Wc3z0p4r3MK63D53JhabJxJiaeA1VNdE22hPXVuXhgOZpcfPFxHqMn9CEjM7HN4zQ0fmwU/25NQ/N/6pv/13aaOA0NDY3/ETTDxU9AYFd52JzJbF2VzwdvrOfe302PeGzrxdl9V4yi8NBx/vnOGt598gZ0Oink+Eq7i1HzNja7L4tUuRPpZKrg5Q27eWL66JA6zB7ciSdXHgGg0S1zT7+xPLrzC97M3849A0aRmxmHKIbv6Xm8/kn9DX0vocB2nHdPfsayOfdSXhPVIrzZqt5TeiV3WJhPEvTkxF9L79iZ7K76nIL6D1nr/D06IZqtR7uz+0RvSqs7Y3da8MkKsgImnYDTq+Dy+Nh9ysaVg6I53rAC0bKMLTUHMUtJTEz/G1kx46m0u1hZWtFu1o3WSv+ts474XFF43HqSEu00VrVkYgkIzc3ffDxs4jwoMZ1u1gQWHzvQruEiUIc/XjyKdQX5vLdtD49ePAHwi+YFZi8KcPHr21Rdk3X3jKbXgJ5s2lPMZ6v3cf0lw9VnoiPhF8HtnnjxQFYu3cNdv5mKxRp55zQSrd3F58/qT5xZ/4NoUHzfWSo0fv4EP8t2m4MYq98Q0ZGxxen2kGxoO21qUpSEQtteYfVuJ1E6A0vzQ8eOBz8/oOpcGCQBt08hyiCh03sYPRl+f3EKyZ6h56RxESCvtI6TtUlU1MczJLuQNYeGIgqCalTJSbPSJT70/by4TzKzBnaioNKuGhEC4SkHH5rAytP34fbFsr5guHqOx6tQYXehKAIpaZXodDLX9xgbUaNier9Unt29HkkQwGUh2iDS5Pbx/PpjPL/hWItmRVA9A3y25yB6UeSaEf3J6dyoGi4CKa+DrxFMdoKZmPozCECZ0RrRm+NcxX2/+WwnDTYHs28Z26F7oaHxYyIIggTsBHoA8xVF2fYTV0lDQ0PjJ0czXPyESLHR9B3fl68/28mVN44hLSNe/S14gt56cfar6yfw8L++4KPlu9XFaQB/rHbLfzd4Y/AoNlbl72Pu5KFYzS07jsW1Dsx6f5iFWS9iFRK5oHMP5u/fwoxuOXSyWFl6W25Yij2j3h8GIQkSD/e9mQd2PcNLx9/m4R53n1Pqw4PlNtU7IVIa2NpGgYvnx+KT7yCn8zHuHHeavp23Mry7P97b5ojmZG0SHq8Jj0/C44PEGBt1+jN8VNwIQJyhG8MS76FX7AwMUsx30kUInkgHn99/uJV+WV6+udSvhD9/UzFur+yPdY8wcRYEgQsz+vDvQ5s5WFlDTkr7u3wplhim5vRi8Z6D/OaCsRj1OtXYFLjFoiioO56j5m1EQCDLFMXCb3ZyzdSh1DRG1ug4G9NmDefrT3ewfsUBpl3RcTfqtgxWPxTfZ5YKjZ83rd/dmfUOOnWOP/uJzbi9PvStDL3ByIqP7IQYnr9waMQxq8bh4EBZE9dv26W+S611Llw+/5vZ6PaBW8TpMFHcVMqtgy4GIqe7bt3GkMxLmXHoJZH9Jb2Z0C+PFIsLr08fYlRpPSasKaph5ZFqGoLSpZpkheWFVUzscxKveBDJcSuSYAb8AqJGvcjswZ2Yv/k4WVkVuJwmrhs8uM16rj55lGHJGbw040Lmbyrm+fXHwvSEWht/XB4vX+wrYGLvbuw/3cjU17dh1gkoCCz7xXnt9k3BaRspjnrqjNHooswh+kEBshPMKChqyE57Xi1Oh5tF72xm4LCuHc5Ko6HxY6Ioig8YLAhCHPCZIAj9FUU5EPhdEIQ7gTsBsrIie99qaGho/LehaVz8RAQm4QtkIx5Z4bV5K8N+u37hLvo9swYgJC77/GHdGTu4G699upmyqvqQcnMz4zDqRKINEtEGiZdmDuDtG6dR53DywurNIcdmJ5hV4UyHRyY7wcycfufj9vm45dslVNic2Fz+ySj4hTB/fX42BQ9PUusSb7DyeP+7aPQ6uW/7C9z6yWZV8yF4Udk67jgQ8vDEyiMMfHZdiF5DgMCioN4ps7+0B6LzHv748a956vMbWLjpAvae6I5Z7yXFeoahWbX0TCtDVgQOlPYkyncTl2Yt4LKsd+mfcAMGKSakzO+qixB8vtNhxqnYAX/62OfWH6Ox2R3cp8iUnGkKaXOl3cXz3/oFBScvWNahOOzLB/WjweVmw9HjAKp7+B8u6Mnau0dhbNbUEPxJZbC7vJyJiaemrpHtB0q+c3u7904jPSOeresLz6l/Agarc9XY0NA4G62f5Ua3F/EcBBoFhLDQt2A8Ppkog75NjZVahwvZJ4a8SwFDnUmKXI+aymT21h/G6Tv7u9563A+MoflzJ3JFn2vQSTLzrj4T8l5V2v1hKYtvHs7Vg9J56uI+yAohRgsAp1fmgc/3san8Rapt8Ty4KB1BgJdm9ueda4dQ8PAkctKsbHpgKInJ1VzRZQxpbXhaldjryD9TyaiUbuSV1jF7cKcQbZ8t942N+P4v3V/AmSYHo3v0ZMIrW3B6ZRxeBVEAmys8K0ow5UUl6GQf9XHJGHQi2QnmkG9KwNtNUQAB1t0zut2x5/MPt1FbbafHxYM5WG4L63cNjZ8LiqLUAWuBqa3+/pqiKMMVRRmenJwc6VQNDQ2N/zo0w8VPRGASXiuIlHdJY9PKAxw7Uh7yW1uLTUEQmHuzX1X96bdXqeKV0LJw/OCGYRQ9Mpl7xmQzrkcm144YxAfb97L/VLl6bCALBkC0QWL3KRuT5++i8lQyhQ1lDHz1U7ITzOqkNNqo49bcLPJK60ImjIdK9IzVX4nO4KLf8G0gOdU6R5qMQ3jIw8d7ysL6qPUO2pReybxw+WBO1nRh5YERfLTlMhT7E9zW9yOmdf6Avy25n5eX38In2y5jfMatJBh7IghCiGBbJF2EcxF0Cz7f6zbhUJrYUlKj7rqa9SJen0yTW+bezw7Q5+mWNueV1uFyGPG69YhRtg4ZEUZmZxIfZebrA4fVv+WkWfnz1D5qPPjC64ey5b6x6n1yxliwRBtZtGofdQ4Pkhh5BzRwfyK1XRAEzhvXiz3bj+F0uM9az2DORWBTQ6OjtH53oww6FCXyMxzpbwpwqt7R5nvu8fnQS2Kb50uSgtAqlCQw3r42ezBWkw5dqy9qZVkqXjysOrX3rO3LK63D5ZWxu7y4vLI6PqRYjMzol0uyKQe9eQ3JMQa1jv2eWcO17+1k1oIdfHWokqfXHkUS/cLLAqhinAC53XfjkI/zxc5J1DkUXB4Zq0nPDcM6q+/q7sbdKCjMyBrdunoqK0/6wwufWlrF9Qt3Mf7lzay7Z7RqrMhJs4a9/4qisGDrbnqnJpFfGWo9khXa9Y5odLhZsmoPw3KyeOO2May7ZzTjX94c8k0J9nwRECiudbRZnt3m4MO3N1KXEsfDO8oZNW+j2u+ayK/GzwFBEJKbPS0QBMEMXAC0r+SuoaGh8T+AFiryExE8Ca/skUGPqjO89vy3/G3+TR0SHUxLsnLXlWN4YeFalm8p4KLRfdXfgj0dDpbbeDOvlM7WDOKjC/njlyv5+BfXopekliwYgqCmonN5fTiqEzDH2jAmn2L76UrVJTo7waxqOAQ0FcbN34zL68MgiVjjh9N3yA4GnbeVE43ZVNrj2ow7DnZvDo5vDhC8gyYE7aBN6ZWMWS+hE/26DnPGZAP+Sf+6e0aHxZBHCg0Jbs/ywiru+2w/bp+MUSdR8HBkL4FKu4vlhVUA6nVsJgMLTx4lJ92o3i8FBb+3uKL2Z6DNAbdvX5MFg6WO4Z1j23w+gl2XL+zbg6X7CvD6ZHRS6Moo+F4Hh+b8+6P1fLH+AG9USog6ifmz+oeFbZwtbCZ3bC+WfLiNg3tKGDaqh+ZOrfGT0jr87M+/PI7D5Q17hoGIfzta04S73h86FckbyOPzoZPENt8Lh9dDj8R4Lunbg4xYc0i9bhjWmSm9kvlkXxn3fXZANco22pJwNpn5++6vGBE/qN33JjvBTFOzp0ST2xem49DTejmbK5+i3LGL9KhhkdOxBunKWI0Snx+s4I28ElKs5cwcsRxJzmFvSR9AxuGVue+z/eq44FN8LDu9mb4xPdhZLJOb6YpY36+KDxMrWah16mlw+8f14lpHuyFb648cp7Cymr9ediF9OmXw5Kqj6m/LfnFeyHjdeox5Z2ketgYnc64aQ073VJbmV4R9U4IzvLSX0QTgnVdX09TopGRQTzUleFvhLRoaPxHpwIJmnQsR+FhRlKU/cZ00NDQ0fnI0w8VPROtJ+Javknn5mW/YuCqfcRfkdEh0cPaUwazYWsA/313DiJwuJMRGhfwenIECINkcR21jGa9t2M6cCSPD6gD+tKUOj0xNSQbpPYtYeGId1w68men9wieMb+aVUufwq+k7PDK/HZxLiSOdI4av+cL+Ns+/OYTPr54RYoQJuPjmZsax76HxvJlXSvfEKJKjQ9sYPCmPNki8mVfKkIxYNdVgXmkdVqPEn74t4J2dJxEEQVXbD+6vtgwnuZlx9HtmDY1uHy5vS7jM8sIqbhjWOaQulXYXfZ5eo7bVatLx0swByAb/gqGTNSoku8Cj3xzC5Q8dx6iT1L4N9Pe/duex8PgmGpVGIDzLQeuF07xLO/Pxzv0cKq9kQEZau89UYPFgSU1CVBRosOOzxhJn1oc9R2cTs+szoDOCIHBo/0ky+2d+J60MDY3vk+BnPCraSOWZRjxxSSHPMBD2XAPIgoDPJ6u76q0X2l5ZQSdK5JXW4fT4aPLIROlF1chZbnfisDWwYUcBZp2A2aALeQ9SLEauHOg3wBbVNNE9MYpHvi7gxPEMevc7ypfHDnL7oKFtti3gAdfg9mHUiew+ZQvRcehmuZBdNa+wp+Y/pJmHhizWG5vP8SkyQzKsJEcb6fP0GlxeH9FGJ3dMWkST28jvFk/C7WnxeKh3etUxb2v1fqpcZ9iUl82/T+9EEGDLfWND6nCwsoYdVSdxVKfQ4PYRpRfPaihQFIUX12ymc5yVSwf2pc7hJdakw+HxYdZL9EnxZweJZDByNTWx8OudTB3Tl5zu6UDkbEIpFiPr7hnNqHkb28xoAnBofylffrydC2cOZ6dLjyXICH+uwqkaGj8UiqLsA4b81PXQ0NDQ+LmhhYr8hAS71E+/cgTZPVP593Pf4nS4O+RuL4kij/3iIpqcHv757mr17wE35zfzSkPyZ9W7ohmS1YVX1m+joLwqrA4pFiPzZg7ApBPxeQw0lmdyxFbFY1tWsjS/guwEc8iEMSUmNN3mkysLeXuDg03rzqOxIYpeg3fw6cmVHHhoPAuvH9rsobGJq9/ZQZ+n/fVdsKOUR74uCIstzs2MQxL9uhqNzYr1N32wWz0vO8HMhFe28OrWEpo8smqAaO3m25b3SmDRHjBaBLA5PWEu4n4Xbl/QMV5+8dFu/rbG77lpEP398ODnB3jk6wJEQQyKHffv9gbKTLEYuWFAbwAO1LSE7QTTOlRIFqMB+Ovy3RG1QCIxa1RPFCDJ52pzF/Fsnj3RMSa6dk8hf+9318rQ0PihiLGYkDzesGc40nOdmxkHgoheoM33wSfL6EQBq1GiqVn7p8kjYzX6U30iKKpGhsOrhI03gYX3I18XsGBHKeO7J6KXBGrLuuJx61lW/S3rjlaxNL+Cg+W2sHHGP+b5Pd+cXpn7l+wPDVURjQxJvItK516O2ZephtBXrhiIxahrzmwiM27+Jt7MK6HO4cHp9XLjuM9IjLExf8VM6ppi8MiRhT4+P7UOixhL+elkGt0+Glw+cl/YwPqiarWubx7ciyBAXa1V7R9ZVhj/8uaIbQJYU3iMg6cruXv8SAw6v2FIVsDt82eECvRhpDHmX++vR68TuffqcWp5benoFNc6EBBocPtweHyqh1yAsjNNPPGHxcQnxXDPg1NCyogU3hLMuYQTamhoaGhoaPwwaB4XPxMkncS9v53Gb+54k/deX8sd90/p0HndMhK5fcZIXv1kExNHHGZgv67qrpUgKDRrNgJgMoj8ZfpkbnvnQ+Z++g2L7rwOkz70ERiSYUUnCcSIEoIznhld4lh0bA8LtlQh25NDdqY+2ReqS+GTweWTwWti26YRDB2Wz7a0tRTtK+Q848WUnLFS5/C7Iji8Mm/mlba7468oLSr9AVwe/2Jhe8mZsL4QhPBY6baym7TerTTpRAw6kUe/OYTbIyNJAlvvH0dOmrVZ8FRShUwBXDJIBhder8ThykaKax0hbcmKj2J6v1QOltsYNW8jioLqEdIzNgmdIFJQV8XlEe5p64VXZpwFj6xj/dGTDHx2HfseGn/W7ARZSTH0zU6jyetjfhveER3J/NJ3UCbrvj3AA51jzxq+pKHxYxJjNdNkd0Z8hiP9bVR2AlU2J6vbeB+8skyUqGfVkeqQv686Us3swZ1463QgsM1P6/GmtQfT7lM2Xri8PyfrHLx66CQ5Awu4fulizpRn4PQqRBskdJLAizMGMCTDyu5TNty+FgNpJM+QntbpHLUtZVvVcySbBpBi6UycWY9XbhmbnG4ff1l+GJ3o5caxyxmYdYwF66dSVNEZATAbJBqaxTCtJokhGVZe37uDg7YirsmYzteCVy3L4ZWZ8MoWYgwSBp1AzuBSvE4zXldL/zV5ZERBULMaBXtkeX0yz6/aRGZ8LJcN7ANENphW2l0hejySCHl7itiwq4h7rx5HcnxoGttI2YSCDT8Oj9/wEwiDqbS7uPjOd0krreXo8N40yB3PSPRdMlFpaGhoaGhofP9ohoufEf2HdGHq5UP59L0tTLp4IN16th0WEMyN00ewYVcR/3h7FbfdeknI5HnezP6q2/KVAzuRYjHy1IyL+MV7n/H08vX8cdoktZxIuhJHaxr5+GAx5pRTNHr0IbHMVpM+pB7BAv96QcdNna7hX3vX4O6dzxeetzhxtDuCkIWi+B19uidGIYkCZr2IJLYshivtLuZvKg7zhoCWVKzZCWaeWHlE/XuUXmLLfWM7PKEMXrRnJ/jT65WcaeLez5qzjfkURr64kaJHJgPw4oz+2Jz+UJHffHkQl1chLr6OujOxPLmikMcu7BXWlkq7i1HzNqqLBEBdiKRGxVDeZA+pU6XdxSf7yiiqaWLxzcOxuXzkZsYxf1MxHlmPXvSqQqZ/nmoNOS+wuxisY9EjM5Gt+4632ydnm7x365HK15/uQGhydSh8SUPju3KuGirxiTHU1TaSFK0Pe4ZbP9eVdheNHhmTJLRZttvrw6CTmNwzSR1bAvo7OWlWTHoRpyASpRcRBIG/X9I3pN7BHmmSCPcvOYBPVvD4ZJzezqRnlNOv/2E2VCWgeE1q5o87F+3B5VUw6kSc3hZDbSRDrCCInJ/2Z5aW3Mra049ySeZrYYZVSRKIj67n1gmf0i3lNN/sHcOfJtzDqgy/ASY52qiGtdldXka+uJEBw7cTYzEwIXEUW+5TyH1hA46g8bfB7SM+2sGJhlouzczl34WN6m8mnQCC39Dc4PanZn5gyX4eu7AXe0uKOVJZw4uzp6OXJPXetA5RDBgGJFHgb5f05vGlB/h6WR4eo5lBQ3qq4YVnG8tenNGfuxbtxeGV8ckt4+1HX+4h7VgZpZ2SqU6KjxgqFPysBD+HZwup09DQ0NDQ0Phx0AwXPzNuf+BCtqw/zL+e/JLn3rwdSTp7NI9OEnn8l1O58ffvsnH1TvRilLqbFTBWBDOuR1duHjmUBVt3MbZ7Fyb16Q6E6koEBNdGZSXgruiC2Oko0Z1OEBXdotY+pVcycWYdLo+MUS+y5JYRTH8zT/UuEASBkpJUSspiyRlQQLfeR0jrfIqjh3pTV51C/zQLoDS7hPgn7IHdLZdXDjNcROklltwyQl2kr717FF8cLKdbYnTEdgaXF2m3LHhxk5Nm5b2dJ0PO9ckKywurePDzA82TanhxxgA+vH4YV763FWusnaLCbL48VsG3hdXIigwKyIrc4qashJYXiAVPj7JyurHFcFFpd9HrH6uxOf27nS+sP8a+h8aTYjEye3AnXtugI1psQgBSm3cQUyxGDpbbOO/FDTS5/X0VZ9arAqPxcTFU1zXy5pZipveP3D9no2tPf/+cKKpkxJie2oRd4wfhu+xqJyTG4PPJ2OsdxMZHn7XslHI7Bq9bfXda4/H5UBSBGW/vwNScHmTZL84L8m5SuHtUNj31vbl/yX4e+bqAx5YdBhR8MiFaCXUOD3MW78fu8mKUAAT27+nH2AlbGTD4EDu2DSbgvREwVjibxzuTTkQnCWy5byxA2KI9Rp/OuLQ/sbLsNyw/9QD946/j4NwxrDxSB0IlnZMKOGR7E1GQeX31lVzXfyZ9Uiyc3z1JbeuUXsmqbk9CYi3xSTUUHerDuoR64sx6vvnFeUx/Mw9ZVnB4ZKINEuaEahKMUTw66jw+2rwel0dGrxN46mK/AeexZQWqB9tHe0/zyd6TDEos47yumVzYt0dIXwfG3mAjdeC7U25zklpdBorCyfh0Rs/fhCL7jdbBqbgjMaVXMmaDhE4SW7w5Ttex9vU1NFmjKMvJbtdjLNJz2BGxbA0NDQ0NDY0fHs1w8TPDGhvFL38zlX889imfvreZ2TeP7dB5XdITuOfqcTz/3lr+ec14ErM7t7tD9ZsLxrD9+El+t+RbPr3zOjITIseGp1iM5D90ASuP5TD/6Dc8sPkzFkTNZmhyBikWIwUPTwrZnTr6u8lBIpUFuH0K+Izs3jGIrp3PMHrEMaKG76auJoFrF9fh8cXj8PqzZQQL6wVEOS/omcS3h6twemVEAaa9sY3GoEX6hjmj2019dy67ZVN6JWM16VTjgVEnsudUnTqpBrjrk72Y9RLPX2/hmzpoqEuiySOrtheHV8bhhTs+3oNBJ6AgEKUXafLISKLAuPmbeXFGf6J0RiodLXoVAUHAAMGeFTlpVm7N7cZnu/dhMUk88nUBf/z2sCpGFzBaQEsWk9zMOJ7ZXEoaMOejXTz0dcFZJ/2RyOzqX+ycPFHNiDE9z+lcDY32CN7Z/i672vGJ/vCB2uqGdg0XgbI9soJBCQ+/CNSj0e2hqtFDnaPFdaykzqn+26vIWIx64ox6fDLYXV7MelF976MNfi2MQKajQNiCywcxRpHrB/Rj7ZFauvUpoHNWGSdLMkLqGaUXMegkXpzhzwAEoZ4Igb+nWIxkRI9kgPVhDtS/xhrnIxhEC+aEKBq9FZS4IC26B41195F/sppHSvzjRbAxKKDbIwgyffsX4nQYOVrUiXtL96MofiPMlvvGUlzrIDvBzJqSEp4t2MctfceRGRetjvvBmaYkUeCCHgl8nl8JQJKxmkaXm0enjkdodscLvueB9rm9Mk3N471eEjBXVxLtbOR0QhouvV4d3xzeyOLJwbT25ohC5tcPLET2ybz06i2UIrX7XWzrOdS8zTQ0NDQ0NH56NHHOnyETpw5g3OR+LHh5NUWFkQUcIzH7wiHk9u/CG4s30T8uPItEMAadjn/NnoYA3PfRUhxuT5uiZykWI9cN6srHF11HoimKG1d8RF5FaZtlP/j5AeZ+ma8aAEw6kV+fn83W26/mqrg7KTrUD3NMA4PP20b/YTtIT26MKKxn1Ik8eXEfogwSFqMOBPAFaV44PT5GzdvI9Qt30efp1by382SYeFp2ghkFhZjmSXF7u2UpFiOFv53EO9cO4aWZ/REEeG1rCU1uHyapJXbah4dNtg10NqXRWJ+AQRSQRAGjXlSPc/sUGlwyXp8PWUHdiaxzeLhr0V5WH6nGFRTPnp1gVhc6EJ4iNt3qb4eioIrXfbynLMSjA1qymOSV1qkifAIt2iBno7UIXWxcFHqDjpoq+1nO1NDoOIGd7esX7qLfM2vChH87squdkOzPRlFb3f6zGRhTdJIQFn4RXI+y+iYEIfInsdzmRFYUXB651RglYdSLRBskmppFhPs9swbwh5eZmz03UATqHG5OHe9CbXUcvfsdIdroUcuPNkj8Znx3Ch6eyA3DOoeFKATGjYCIcaXdxZT5Rh545x7+vfJaPM4hWKQ+nJf8Gy7PWsjMrguIN2apBhaXV2b+pmL1vQ6El3TJLsUaayf/QG/0gg63V8bu8uL2ympYYE6alW31B0gwmrmt73CgxWNi9ykbDrcPu8uLT1a4sHcKAhAlNRKrtzNr6EB6pyVHvOfLC6vw+BQamo0Wvz7//7V33+FRVekDx79naia9BwIJvfeqgILA2rGhomtdy8+Cfde6a9lVd3XFtWPvil1ExYaFIk16DUUhQKgJqZNk+tzfH5MZJslMMgmBFN7P8+SBZO7MnHvn3jPnvPec93Tl/TO78eWPKzlpZE+mXzeBJ87sG/LcqStRpr9siWY9D9/5MXt2FvLQkxczqG9mvQmvw42uiCRZthBCCCGOLAlctEBKKW65bxJxCRamPTgTp8NV/5MAnU7x4HWnEmUy8OCL3+J0+QIHwQ294P9nJScy7fzT2XKggH9+8zOaptXZQOsQm8DHp15Cu5g4rvz5E77etrVaQ9R/N83l0QLzoy1GHdEmPXeP70F6nJlR2Skc3NOZlb+OY9fvveiYUcHgUYu59rxtHPDsIi3WVCvbu//3JbecQJRJHyiPXqcCHfkSm5trP1lD7ycOrU4SnLODqpwdQL2N3suGdSQ7KRqPl0Cj+sYxXUi0GIkz6+nWezNl3mLOTD0Dq92L06tR4fAw6y8juLHqbqufw+Mrp1K+YwG+O4der6LCeejzGffiYvRKEW3Uc/3xnWol4DRWTRnS0AJ3JqcMzsRk0BFr0hNt8q1k4p8mMjIrEUPVnHKFFsgNUpeaHYt8qwOlFKnp8RQciGw1EyEiUXMFidwiW8igaV2SU6tGXBSW17mdPyA7tEMiGbHhlwRWeIkxmUi0GLAYdCRaDJzSM418q4P+T/pWM3ph0U6AQFk33z2ezXdP4K9juwaWMvUn1fRPW4itClp+nXOACqeX3M39MBjcXHJaQVWd4gvS3jSmS7X99neiowxVQVP3oaVcfSMmvJTavSzd1pkb3z+RS18fR7J+EonmLhSUOwPJLmsGVfxTZRbdPpj+/XMpzE+jorA9ZqMuMD2vwukJTGtbsn8nv+7bwdQBo6i0U+275NZZGwJ1vV4HFwzM5LfbRtMrsYTMxAQeOmNs2M8cCAQJTAYdF/RO4am3f6RrhxT++X+ncla/dlwwMJNEixGLUUeixciQDvG16qhQPG4PTz70BWtX5PLXh85h8Miu9Z5PwedKQ85DIYQQQhwdMlWkhQkeSnv7/Wfz0B0f8PL/vufWv58V0fPTkmL5x7WncPczXzH944Vces6oasONg+dj59w1nrE9unDTScfzwryl9MpI4+rRw+p8/YzoOD465RIu//Ejblv0BSq2A9b8hMCw2uA7Vv6cEMEJI6sP5T2FWIuX2XsXMmvPXO5d9zw947KZmDIWr5YVeM/gXBSb754QyB8xpEM8415cjNvrW5rQ6dFw2lyB4cQ1c3as3lMWyFdR3zz6mnfe7hnfnbtP6sbTmz9hvT2P8ztOZOXWqMCABw14afEO7j+5J28tz8Pu8i3PGm3SYzbomD91NPO3FXLPNzmAQqfTiDX5kpv6y1leVc4zq+5yBp8TK/KKfQGYoMSp/qBOqCHM6XFmnji9F0+/u5v/TurHlOO61tsIDzdMOiExGmtpZZ3PFaIhwk1La0gOlcSq6SElRRX1bOmzZk8JBpeTvtPmBq79Q+XQo5RG33YJPHHeiGrX1OycA7iqVu0ITvjoH9k0MiuRm8Z0YfriHcQpVX2a3V3jmb4ol//N30aly0u0Ucf1QweR3s7Et/lzmXnjCZSXpIacgpAeZ2b+1NEc/9xCwDc6S6/zHbuCCgeVzkMjtmwuLwadLlCe4Dr/+uOzeHXpLl/9ohTL8ko4vU8qb+V9hEmv442TriW3r44Sm4sbP19HhdNDtElPbpGN+Cg9ty/4lnaWOE7J7Fct/8Mz5/THUzWqy2LU8dy5A0iPM/PsL/OpdNh49ZKzMBkONTFqfuan9EwL1F/9Ui3c99QXuD1eTj1jNFaXF0sUVdMRD9Vx4eqo4O/NFIuBJx6cyfw5G7j2tpOZeMagiM8p/3GXXD5CCCFEyyOBixYkVGKwC68Yw6fvLqL/kE5MOH1gRK8zblh3ppw8mI9+WIUWFxdo6AXPxw5u9E0dezy/5xcybc4CspISaiVSqynNEsOnp13GDXNnsYhc9GY77sIOgcb3/Kmj+WTN3kA2fv8oj+DGeUlVgOGUnmlMyT6ZczqM4+cDy/g07xde2vE+9koL9y3uzLcXXkKnxITAe/tHRPjl3DWeJ+b+zlMLcgN/W7PHd7ezZkO5zO7C5vJgc3mrBVrCdfyDgwJRUW5e2fY56+0rOK/DeM5MPZXP9+2rttzs1zkH+PH3g4G8G/7VSvwjHR78YQsKXwb+gR0txJtNQPjhycHnhNm7l2i9jnKnN5A4tV+7+Dob2U6H727k1Sd0IzrKVOdnWlc5TGYDTqe77icL0QCRLMVbn+gYMzq9DmtZ+Bw3fsvySsDrxY2qtsyovxw//76ff321hcyE2FrX1MisRIxVox70HFoxqGb+iflTR7N6T/WRSf7kuo9WrVJic3mZMjiT7mldWWPdwHu7P2P6sHuJ0ofe/9V7yvBqh4IDj57Wm2V5JZTYXIERHv7H/Ndszc794A6JmAy7qwVV3t/xLRvLtnNX7ytIMyeTSwlDOsRjNujQVW3XJdnCcW9/gim5FNuerizoWlztdYFagYjvN27l89UbmdinH1nJqdX2peZ3g/8zP713Gn/73yx27SsmLz2LW7//A+OP2wLBpeDPI9xSqv7PwoDG5Px8dq3K5ZpbT+bCKyLLESWEEEKIlk8CFy1IqLtJf5k6kZx1eTz776/p1qsdnbqmR/RaN188ljVb9/Dtd78RlZwFZkNgxEVwxnXwTTH573mnsb+snL99/i3Xj5vIhYO719mZsDngoo5jSY+K5wvWMrJnNMrgJt9KIFnb9MU7mD91dOB3f9b9E6cvpsTmm/6SaDEEkkYOjxvB0uJk5m3+jXadcuncaxO3rX+E09uP4szME+gYXbuDnh5n5u7xPXhzeR52lxe728srS3fx9ord5Nw1vtqSpydOX3RoyUCdr2Fe10oG6XFmJvRM4JMdc/ly71xc2Dk5ZQLm4mH0eXsuHi/ERekZ3y2VH7cWVCXg1FVbMtY/cmJ2zoFqoyoO2irpkpAYeJ9QnbjgjPsm5cGj6at1UMLx333cdaCM6ChTREEL/3P8qyIEl8NkNlBWWn/nUIiGONw720op4uItEY0GGpmViF7T8OpqXz/pcWaOy/Lly0iwRFV7nv+6+Orq4Vwybz1/n9jz0CiMqroa4PpP12I26gCFx1u9PsktshFdNV3EP5KhX7t4zk45m5d3v8H0TbP5W//zay3D6ZuKsT5QZ5n0Ou7/fnNgmoVeR62RbQC7iivxaN5AXp/gkQ0jsxLJsa3nk7wfGZdyHLvz2jF51txAmYOv/083/44x6QDlRYm4yn3Hx6hXxJj0aGgM6VB9xJfTbef+r37CpUXx/jo3H2+cW61O9U+J83835Nw1nrRYE8/MmM+SdTs447SRPJVjrTNBa6i60v9ZVFQ6GZCznV0HS8jr04mTJo9o4BklhBBCiJZMAhdHSc1GaSih7iYZjHr+/tiF3HTpyzx4x4ecff95nNi7/iRhZpOBf980iSsfnMGp+jImXzie0V1SAEKWI8po4OGzTmXSizN49qefePjHP1h/12kRLTH63ymn8MTaXzj96ze5KGtMteDLJ2v21vrd4T40xNmfNNI/vNnh9lLpTKUwP4Ok5DKuPdXGt/sW8tXe+QxI6M5p7ccwOnUgJp0x8Br+1U2mL8rlqQXbqXB60FUNiZ7UN4NJfTOYnXMAT9XiGxaDjufO7R9ILFdzBIrL62Jl8WYW5K9iaeF6HF4nB/OT2bRxEN9Z9ZgNawNLGMaZDZw/MJNfc4vQh+gUhf5socRVQYeY+Gr7UHOlg+CM+2nRblBGXrlgULWpN3V9Ntn5u+ifFh9yu7o+z5oBHJfTg8Fw+OlwIrkGhGiI6GgTdlv9OYDS48z0TokiKjaaJ2+vPUWsqNIX/EiKtgT+Vu26MHqI7QoJUb56x389W4w6bC5vIM8DimojuvxTSoJHMozMSmTj/jLOfXEXA4a050fPr3TfMoBrZmyvdg0uyyupVmddMzKLl5fspLIqkBFt1PPyBQMY0iGe3CIbBRWOakFhi1Exf+oJgX2d1DeD5UUbeWrL+/SK7cq0T5KodKwNlN0/kmtS3wyK7Tbe37kAzW3EXdghEADxr2SE5gtQ59w1nkl9M7C73Fzy5mzcXi/F7iysDg9xZlUt+BAqMF+cu4tP5qzm4lOHcunZI3h+y9x6E7SGGhET5XHTd+1W4krL2dQzm9JO7SNamUYIIYQQrYcELo6C+jqGfuHuvKemx3PzP8/j4dtm8Pj9n/F/I3qz+Z6J9Xb+stsn8cB1p3Dfc7PZumoT5w6cCBC2Mfd7oZNCdxbJ+p3Eq118m5PHX46rPW2kZgPU7Ejnb70n8dGuX5n++xxi0tOgoB1GnS+B5PTFOwKN0SmDM3l+0Y7AXUSzUUeXZAv/nfsHlU4PdrdvHviZfdK5/+QTSIsx02vnWMrNW1hYvJxpm98hzhDNCWlDOCltGH0TunKw3MWyvJLAewV3EPxqBoWGdIjnxOmLDyURjbZRYdnEoxu/ZnXxFuxeBzH6aLqZ+vHezybyCw8FAPxBC4tBF/KOZn2fbUaixoU/raVHYmqt7YKPsX8Z1mijjjiTh7E9OpFoMYZ9TrXPxu7C7LCRmNK+zu1DfZ41G/zlVhtpGQl1vEL9Ir0GhGgIg1GPK2gZ4bpYK+wM7tkh5Hl3sNwXuEiNjQ78bVleCU631zdKSue75q0Od2Da2/ypo3lzWR6v/bYDjweMBoVO6TDUCGD6r31/bh7wLXWsAVtyepDRLp83c7/A5RlQ1eGvnS/IqFec3a9dtSlxlS4Pi3ILuXXWejxeX+Jel/vQ0sg2l8b8bYWBaWuLDmzhu7KP6ByTyRjTebzhzsFWFUQ26VVgFNpXG/fxQd48Cu0VvHvyFMrLowL12rK8EhQKq9MdyJdxZp90Hv7mF3L25fPYuWfwfzNziTNr9dbBjgMFvPDRr/zpuJ7cdsk4dDrVqOlDXmslp2/ezoEKG1uH9KA0IyXilWmEEEII0XpI4OIoqK9jGCzc8OmdURa2dM+iz++7KN24k8/W7WVqjRUsQpkwoieXnjGMGd+upG/Xdkwa2y/stiOzEtHpzRR7skkx7OLFuT8xKDOeIVnptbbzN0B1Cm74fC06FCZjB674Uwdmso7s9k7+c9zpIRNIbr57fLUEmydOX0SJ7VAOBZvLyzeb8vlhawGHhl7r2HDn3ezz7OLH/Uv55cByvtu3iCRjAlt2xlF8MJnK0hTm3TiBHcX2kA3fZ87pD8D47ol8tmUTye13kJVQTEpKCZZoG+/mQYoxkZ270jl4IJ2KkjTm3XgCb1QuAqrneEiIMvD8edUTj0Z6d2972UEAeiamhd2mS7IlkHzP4XLhcLuYtbGYd9etqrPj7/9skvUaes3L6L4da20T7jnh7nSWllTStUe7iPYtnIZcA0JEymgy4HLVn3/F69UoLbeTGGcJ+XhhhS9wkRITHRgZFG/2Te8AqHR6SAIe/WkrlUVF+Bb5Ubg9XiqcXswGhU7pA/ltQtU/wYmBZ145nEd/+h2Hw8zvW7rRp/9W0tunwb72gfwSNaduBQc+/N5ctouqGDBmg67m6siBZMCxyfsYNGw9DpuFMy3n0js1KTDtwz9Czat5OXH6YkzJe4hKKeDewRM5KbtT4LXyrY7ASiXBdcWHy9cxc81Gbhx7HOcN7sWYbp3rzRsU46jkwee/YlDPDjx43WnoqpaCbuj0od837eXB2z/A6XDxxMtXktG9nYzqEkIIIdooCVwcBfV1DCO1u0MacRU2uuzaz/9ens8FAzMjapxNnXIiW3bk8/hbP5HdLomBPTOB2kP3g+8M/nUWYNvFlNc/5qNrpjAs+1BjMni7Gz5fS6XT13KORc+ElGGc07U39y35nmsXfMxVvYdzx+ATqjVGgxNszs45gMN16C6hQQcGnY5ypweLQVdt6PWK3WVM6tuLIUm9sHscLC3cwGfbl5KUup30zN0APPDHYjrHZrB6RwplNkVmXDQ6FDPWbsdgshNlsfNxhQ0vXnr1B4fDRHlJElf3OJmx7fuzNhcu27i6qoOtyC2ysfnuCTwx93emL96Jw+0lyqDj+fMGVEsSWp98q4PeT/yCw+Ulvv0+4lL09EoKH7jILbIFku8lmH0dM4fXVG/H3//ZvPzVcr7Zt40TBnaqtU2454Rq8FvLbBw8UEaHTikR72soTXUNCBFM82rolKp3u2JrJR6Pl7SqlUhqKrBWoFcKt1fHgP/5RgZpaFiMOipdXqKqVsfw4PUlOg6qm8A3Csuo16rltwlWM3BX5vCw7s5xvLksjzeXK8o65tOt73puP24YJ2V14cTpi3C4vJiNukAOoFCCqk4cVVPeDDovXo1ATqOMTn/Qq88flBTHs/K3ISzTfsdi3B5IlPn0gu2UOz0odFhS9hOVUoCjJIUOet/KTvlWB3O2FnDrrA14vL5kpNMn9/eNNNu3h0e/m0uf9plMGTYEqDv4kB5npk+cnuuf/Zb2qfE8cfvZmE2Na4Ys+mUT/73/cxKTY3jsxSvo3M0XYJeAqBBCCNE21dtiUEplAe8C7QAv8Kqmac/W2EYBzwJnAJXAXzRNW9X0xW2dmiKD/ik904gxG9jcI5sou4Oum3bw2XfrmTpleL3PNeh1/OeWSVz90Afc/exXvP2vS9CZzbWG7kNV9n3A4TWzy5FJlmUv18+YyTtXTqZfZvXgQ6LF6Fslw09RtX8Z/HD2NTy+ah5vbFrO7B2beGDERM7s1BtVo5MxMisRs1EXmLIRbTJUTfXQoddBVUJ99Lrqnd0ovZmT0ofR19KfvtN+wRRdRlJyMVefkMB+x0Hm7d2MTudhndVLlFERl6THZjNTUR5LV1Nvftng5UBhDDijeeXCwVzWzReEiMp2VOtg++98nt2vHU9XDdN2uL0M6VB/7ohgc7YWBEaVJFisZFvSidL7Lr9QuR9GZiViMuiIU4oovdX3IrqoiDv+23L3kZoUS+fM5IjKF66zsWXDHgB69488SBPu9Q/3GhDhHav1tMvlwRhBxze/0HcNpSfHhX7cWkFqbAwr95QFAgwxJj063aG8NDoUBr03kBCTqtrPv8xpXddluOVfx3dP5dWlO1m5bABjxv3GQvsXRO++PFBX2NzewPLONeucWJMepRReTcPj1bC7vWiaxssXDCLRYiQ9QePWxW+SkrGfvbvb8fuG/jidCvAtnZpbZKu2jGtU0kEs6ftxliXiOtiR47KTAlO8/LmAwDfaItFi5EBZMbd/8g1Or5m5u2IZ8L/59U4BO1Bk5bZpMzGbDDx79/lhR8DUZ+YHS3j1qR/o1a8D/3zqzySlxDbqdYQQQgjRekRyq8MN/E3TtFVKqThgpVLqR03TcoK2OR3oUfVzHPBS1b+iyuFm0E+PM7P01hMY9fxCtg/pQcyyHH58YQ6nDupAt1715zFIiLXw5F/P5Zp/fchtT35Bt9FDAzkU4swG5mwtCAxl1ut8gQKzMYYyrROZpnwuf/tTnp0yiRO7dw68pj/pHIBSsOSWQ4ng4kxm/n38qVzQbQD3//YDNy/4kg/areH+4RPom1w9ALL57gmBYdD+zPjBK4H4xj/XHAR96Pk5d02olWX+1QWrAnc3HzujN/cu2AQamAw63pw6mlnzF2PwaBhNKvCeh17v0Eok/iz4wXdfg1cGaGjCSb3RiSnKQY9Y32cWLvdDcDnm5qxm0bZS5t94Mst3l9b5XvlWB32f+IXOO/dQERNPQbnzsIIEG9fsRClFzz6ZjX4Nv8O9BkSdjsl62uVyR5Q49kBRfYGLctLjYmoFGIKnapz8zRYmD2vHSSlDGZmVSEGFg1HPLyTGpEcpmD91dNhrLVzgrkuypWo6ShSrVw5g5KiVzKv8Ar2+Gx5P9a/n3CIb0VV1EIAXjZcnDyQ7MYrxLy0BoMLpISvBzBrrRj7Y+SPp7SoZYZnAeePHs6aXlVtnbcDt8aKh0SXZFzR45pz+LCnczDf79zC2fTfOH3oCozolV1uxI5ALqCpA0z4GbvzgSywmMztt7SlzeIkz6+qcAlZWYeeOaTOpsDl55f6LaJ/asOAvgMfj5ZX/fc+XH//GmAl9uOeR8zFH1Z33RwghhBBtQ72BC03T9gH7qv5vVUptAjoAwQ3ic4B3NU3TgKVKqUSlVPuq54om0q9dPH/cO5FleSV0ve54/n3re/z95vd46s1r6JBV/1D+Lh1SuOfa03jg+a/Y+NUibAmZxFQ10MvsLmwuT2BaxvTJ/Um0GBmZlYimubhuxhfcMGMWD545gYuGDwTqv4ueb3Wwp0DP62MvZmbuOqZvWMyZs9/igm4DuHPIWDKi4wKvU3PaRfBKIDa3F4Nex5ytBYEyQfXVUWpmmfd3PvQ6uP/7LWiaL7gy88rhrN5Txl0ndSO/3MnVI7Nqldv/esFLHsZWu/vqu2MaLugQKphxSs80Ei1G9IkFaBrcOHhIYB/qy/2w+UA+/TMzyIiPYlLf6ss11rQsrwRDZSV6zUtZVEygHI0Z6aBpGvPmbGDgsM7ExNX9vqJ5Hav1dGWFg+iY+s/pvQVlAGSG6SznWyvomBRfK3DpD1oAJBpi2VlexMjBvutpV3ElHq8WqDNX7ykLm98CfPWK/1r0v3aJzUWUQYfd7aXoYDJb1vdHN3AjY04sYd3KIeCOYUiHeGbnHKBLsiWQCwJ8I0ASLUbKHJ7AcqsZaWXct+5FklILqSiL58kRtzA8oysA/dsnMKRDPKOeX4imwYnTFwNeTCn7iEouYFz7brw64TzM+kPNgpp16XPnDqB9HEz9aBYKjecuOpsz3lxLnNk3haTE5iLf6qi1/3ani7ue/pKd+4p55q7J9OwUfppcOHabk8f+/hlLF2xh8qWjuPa2U9DrZbUjIYQQ9dPd+XVE23mfPOsIl0QcjgZNLlVKdQaGAL/VeKgDkBf0++6qv7XaBnFLFdxJf2z6Ffztmjf5x03v8fRb10Y0XNYVG8e+5PZkFu2je3k+U/40houGdODE6YsC87X1OlVjyU0zM66awh2ffctDs38mZ18+/zj9JEwGQ9i76MGdev9cay/diU7N54vtG5mVm8Ml3Yfy1yFjSDCH7hTXbDQHz7EGDY+XWndFa45WKLG5uGnmeiqcHmJMes58Y1kg4R7AW8vz2Hx33YkuQ919BZi+KLfaqJXgZV1DjaDYeNc4zvj2dXomdmJgRlrIffQ3/AH6TpuL2+Mhw1DICd3qT8Tqf714Rzka4IyJpUuypdGreWzN2cvevCIuvurEOreThn/L0pbr6eBzLTXGSIXVTmx83dMN8q0OFm/ZR3SUifjY0HVNQXkFQ7J8o6D8AYbg+sureTGneciN20vP//6Mx0u1ekSnCKzuEe46C17iuMLpCzYY9TpMBoW9Kr9o8YFs7uh2HC/mvs/YCUs4NXUiJ720EKfbt1LS7KtHMunNZYHRYyOzEnF53aRnHCQjK5ek1EKcDhObNvSkcG8X9neNgaDqObfIhkJR7nRjMXmIz8zDHF+GvTiF7LT+lFZ6SI871CyoGZzeU1LKlNc/RuGlVOtE55TkQL6jm79Yx/Wfrq2Vl8Pj9fLQS9+xduseHpl6JiP6ZUf8efuVFlfw0B0fsGXjHm6+50zOmjKywa8Riqx2JIQQQrQeEQculFKxwOfA7ZqmldV8OMRTao3tV0pdB1wHkJ3d8MaLqC67SxqPPHspd1//Nvff8j6Pv3wlcWEa8f4Gf5dkC7aEJPI9btJLC/Ds2sX27CQ8VUneLAYdz53bv1bjLTbKzMNnncbD3y3g45XrWb83n8nDjueUXqGXF5yztSAwgsNi1IEGNjd4DrSnsjgZS+oB3t6ynJm567ih//H8pfcwYoymaq8RKgBhdbiDXs9LjEnPqOcXolC1AgWT+maQbz2Us6LmcoEAdpe73kSX/kY7+Br+BRUOxr24GKfbS2VVQMQ/CiPcCIp8q4M316+n2FnB5b3/VOs9/Mnvbpq5HqNe8cw5/XF5NNyuCpQR9IbQSQVDlXlYnMIdn87se/50WKt5zPlqNUajnjET+oTdRhr+LUtbrqdrnmsrbhyF16sRW8doIP9zMvbtwehVtaZO5VsdLNlZRHGljdTYQ9dY8HUTZVDY3RqxlWYsSR4qvTbczkN1lcWg45qRWbz2W16d15n/NcurAh6+gKdi+uSBgW38AeO+yZm8vO1zZhd8x6AxZg7sT8Vtj2ODNZ6vbspm1f4DpMZ7eH77O6wr3ULvIS7MRNNVjeXthVG43PpqOTeCV0rR0IiPcRPXYRc6s42KA+0pOpDEswdyeWnJzpCB4El9M9h64CDXfzAThZc8WwdMRnO1/Syz+/YrOC+HpmlMe+cX5q34g79edhKD+nUOLCcbaT2Rv6+Ev9/8Hvv3lnD/fy+qsz5qKFntSAghhGg9IgpcKKWM+BrDMzRNmxlik91AVtDvHYG9NTfSNO1V4FWA4cOHh05aIBqk94COPPDkRfzrrx/yj5vf47EXryCmxl3Fmg3+mVcOZ9Ibv6H3uPlp4UYMeh3GoCXugnM+BAc8/PkeonUd2LB3Hxv2fs3dX7VnzV3n1OoM3DprfWAEh0mvQylfklANDY/TzIEdHUiIS2PAYDvTVs/n9Zxl/F/fkZzeoT8b91dWazT7lwLU6/wjE3wjLvyvhwZWZ+iGZ82h38c/txCH59CdUq9GYK53KMEBEP8x9L9nudNDrEnPHWO7ctOYLoGy1kzC53vuL1iytqCUmaFJnWu9R6LFiMd7qAENvju3MTonAOcO6BrR+VBYWsH23Qe58cITwpYnEgfzy/jhy1X8adJgYutIoNcWGv5tZcRIW6+na55rv+bsB6hzpJn/OXqXE6cpqtr56b+mPR4XGUYw6EJPkfBqGuDBVhaPlrmf2OQi7AXtcXg0Ykx6TAYdV43M5u0Vu+u8zvyvGVs1rSO6KuBZfXSbT3tLGv/sdz0/7VnLQ799TfvMfIymPXxTtplv/OGocnDYoyjKb0dJYQalRcn87Naj18H0yQMC9fj7K3dz66z1uD0a5U43CcmlxLXfR5zZyMPDz2HddsXTxb6VRWIgZCB4+Y7d3PTRVxj1ekq1TpiM5ojqk1c+X8wXv6zjikkjGD+6X9AoFt+0k1D7Hmz3zoPcc+M72CqcPDb9cgYM7Vzn+9VU37Utqx0JIYQQrUckq4oo4A1gk6ZpT4XZ7CvgZqXUR/iSvZW25nnTrc2I0T34x3+n8MhdH/PPv37Iv5+/DJP5UMKymg3+n38/iFI6tkenoAO+n7+e+04bRs/BvTguOynQwKvZWdc0311CtzGGSrJJMuwjXr+Hv37+PY+eNYENByoDow6CR3A8f56vgeq/4+dPJFdmNfHf407GZSjn2bWLeGL1fP67YiH24jQ8Zank/O1kgGqN3eAGeXBAJU6psA3P4OksS289geOeXUilyxe8cHo0Tpy+OOx0kVDH0J+ML8akBwVTBh9aljZU3o/ZOQdQMUXozXbK93Zi1Z4yMhOqBwNqNqBP6ZlGzl3juf6DWVQ4EumZUXu/Qlm+YRcAxw3oFLY8kfj03UV4vVq900Rae8N/4/6ywJx/s0HXakeMHAv1dM1zrXOUL79BYnL4wMXIrESMOjB73DhMpmrnp/+atjudYIT8ykMBzeDrJt6s56SXluBxGbGVxRGbXML/xp3CyKykaiMT/COnwgmXPyPc+aaUYlBCHzav2YfD5SUm2sXn/9eLRIuBJFM8v223c/WHG7E6PEGj0NyBVT/AV3f6R74pnYeUrH3EJJViL4/mxt6ncn7PXpzY3hFYWSRUINjlPMiDX/1E+4R4Lhs9lmFZabXKPqRDPL5wsm9Yz5AO8Xz8wyre+vI3zh7Xn6lTTuCbTfmBOhTg+s/WYjHqw15zO7blc++N7+D1akx77Sq69WwX9tiGEsloMFntSAghhGg9IslsNQa4HJiglFpT9XOGUuoGpdQNVdt8C2wH/gBeA6YemeKKcEaN682d/zqP9at28shdH+N0ugOP1WzwTxmc6fs9ykhRajtOHdOXT75fya4Nv5MWe2gItH+6h9Xhxu3x3XiNMxswG/ToDVEUeztTqaWwamcuJz/3Nld/sIC+0+bSJdkSeD+LSR+4qzapb0YgkRwQWJ1jcGomb028kDt7T8Jli8GSup+YTjnct/hHfti2G4fbi9XhxuXRfMv8BQ1f7tcunpy7xjPj0qHVkmPOzjkQyBURrF+7eF6+YCCmoCR3dpcnsAxsOCOzEtHrfIEY/1xzVdVSH/fi4mrv5S+bvxEcG2snOn0PzkoL7vKEsMGVmvuREmNkb3EhAzLbh92fmpZt2ElCbBS9OqWHLU999u8t5tuZK/jTpEG065AUdjv/3cz5U0dXK3dd6vpsjrZ8q29ViHKHhwqnB4fbW+950IIdkXq61O5qEZ8V1L5GtErfaKSkFN8Uj1DnVnqcmV+vOw4dGvee1q/a+XmoXvTVBQPaJYZ8310ldl+QEnAUpWIweNmrttGvXXyt6+rWWeu5/tO19H7il5DHLbjeiuSa9AeBbW4vFZVGdu6NY0BiD0rLLCzeXo5Sh+pks1FXbRnn6Ytycbq92FweLAmltO/1B9GJpZTsTyd/e2cSTTG1juuSW07AoNdhMfqWo17y+3rumzWHAR3bs7ownVtmbWXci4trdfJzi2zV6vVZ8zfy1PvzGDesG/dc9SeUUoHjbalaBcbm8uLyaCGvue2/7+fu695CKcWTjQha+I+dP1AS7n2CPxMJWgghhBAtWySriiwk9Nzo4G004KamKpRonAmnD8Ruc/Lsv7/m0bs/5oFpF2E0GkLeVQr+PTXGRIzZwLuzl1NWYefuv0yksMJVbbqH3e0l1qxj+uSB1UY8jMxK5JPVv/PMz/NJNuym0hvPhn0lYe9i1VxCNXiaxpQ+Pfjn7N3YDZVYUgqYe2Ajc/M3EpURj+tgCpU2S8hpHcEjKvKtDno/MRe7y41ep2PprSfQr1184LFleSUM6RBPlEmPsyojnsPtrXO6yCGq6kpQ7Cqxo1C+O5NKhZ0isbk4n1sWzcTj1lOwMwuvy0NBRe2s+zX3A2DT/gJK7Q4+WlfK66tXRZRDYvWWPQzp3bHa6gMN9fozc1BKcfn148Nu05jcFi0tH8ayvJJqGR6UotWNGPE7UvX09sJK+k6b2+yflV/wNbL4oG+J0+TUuDrPLbfDDkCPjsmB1wkOus3/YzfP/bSTpGhTtceDk3MGAr+eeE7P7sPrOcsw6HTcMehETHpfh33O1gJKbL46JTjPw+HwB0z9r3nLF+sDy5/6Rzc8f15/LhjoW644eBSaw+3FgY20zvuwxJfjrIzi4I5scEaTaDHUWgbaPyUONAw4SdLt5/PVdq48fgiZKV35cut6bG5fjiH/vgVPJTQbdOiUItFuZfY3WxjRL5tHpp6JoWoHaubz8Xi1kKO0dmzL594b3sFoMvDEK3+hQ3b9K2aFO3ateTSYEEIIIapr0KoiouU7Y/JwvF6N5x+bzWP3fcbfH7sQg1Ffq1Nc8/e7/zKR+Ngo3v5qGQWllcT07B4YZeFX7vAGngsEnj9lSA/++dMuzN6DxOoKeeqHb9BrJzJ5cL9aHej0ODPzp45m1PMLA6MVghNqBgc8HMrGQ4t+5Wf3JmKSSnHbovn492T+nnYcUfrQp66v8+Cq+s3D8c8tZNt9EwHo/cRcHG4PZoOe/5zemzu/2ojdowVGfvgDHH7B86N9dz59Sx8adL6GuL9RrBTM/eMgXZItpMWYA88pdpdxyZyPcLjgwPbOeFy+4dufrNnLv04LvSxjsKXbfdM+Kj3RgaSkdXWGDhRZ2VtQypRThtT72uHmfm/bup9ff87hsutOIi0jIezzG5PboqXlwxiZlYjJoCMWQMGSW05oEZ3zlsSrEbhb3dJylxQVlqPX64hPsPDt5oKw51Z+YTkA7VJ8yy/Xyvlzeb9qr5tvdQRGK5RXrRg0ffKAwONjuyVhUDpe2rCUubu388yJk0g2JLB6T2m11ymzuwKJKIFGT0e4aFAmryz11QWldjf3frMpEG/TgANBy4/6l3F2a26MyftITi1C0xTFe9phLUwGFHeM7cI947uHLMdvu4oxaSXEmw4AiitHn8g1owbQ+4m52KoSG9tcXm6dtZ4hHeIDeY/8qy79uHwbn36+hb7d2/PE7WdjNlWvp/1LX/unDtY8Hnt2FXLfje+gN+h54tW/RLTMdzgyDUQIIYRoWyRw0QZNumAEbpeHl578jsf/8Rn3/vsCDEZ9nc9RSnHjhSegMxh4c+ZiKjbuxR7fniiTEXuNlThq8jUQJ7Isr4SUKA8vzPuV+7/6kU9Wruf+08czsGP1Yb7+JflCjVaoPnoCJqQOYdZiHYbYQqKSCnk391e+3LOcSZ37MLlrP4amdcA3vd/X4Vizp6Tae7mrOl0lNlcgoGFzeSmzu4k2GzB6Dt31C+7MA9U6N/OnjkavU1VDqA/loPhs3V5u+WIDTy/YzjMLthMXpQe9i5jUfMwJRbjdOkp2dMXj8t3NVfhyYkRi4baddElJJj/fCLgCHYaaI178DfJ1W315Fgf3rPv167o7/cnbvxIdY+bcPx9f52s05m5muOc0V3LMhnZs8q0OiIoNH81pg3SKZr1bXde5UXTQSlJKLDqdrs7zMb/INzIjLcmXC6NmAG1zQQUADre7asTWL9idHhwejdiqBJrBnXRfcmA9uujObPLkcdrXb+JxRGG3xmKOiUU5YzDpDfzju804Pd5AcuJwyzeHs2DbQU577Te83ur178qgKQ8KyKiaHpceZ8bqdLDJ9jsJXTeBzoPLmoT9YHus5b460mLUcfXIrJDvm3uwmHcXzyfRsB+7N5pKMrlm1IBA0DaYx+sLwFbLnbRyOzO/WEC3jqk89bdziY4y1XoPv1DLaOfvL+XeG9/B4/Ey7bWrDitoUdf7CCGEEKJ1ksBFG3Xun4/H6/XyylM/oPEZ90UQvADo0KsLe1N20K5wH/2K8zh+4kg+3FyEy+PFbNBXG14cLLiBeHyXKXy1bhNP/vgrU17/kLMG9OaOiWPITPSNMgjOF6EUlNhcgYa3X/Wh2jqemjCBP/VIZUVBHm9tWs1n29YzY+tqUs1xnJ7di5Myu3PRG5uwu6o38h0eL/FmfdAoDJ9Hf97Kb7eeGOhAQPVAhX85Un+jfPWeMqhKXOefX5AeZ+aA1eEbsq3zEBVbgSnBiiWhFBSUFyZTdCAFr9uIxaA4u1877j+5Z62RHTXlWx3M25bP8h27uXjEYPp2SuOlRbnYPRoer29Uye1fbsDh9qKqRgr0axdPzvb9mIx6emSH/oz8wo182L+nmAU/5TD5kuPDLqsb/Hk39G5mqOc09/SRSDs2/nISn97lKBSrxeiaEs2iZpomUt+5UVJUEVhRJNy5tSyvhD2F5eh1ivgY32pLNYMcE3u056k5sK/UWm26B8D/Hd+Je8Z3r3bNWIw6NK+G3RaDs6IX4wbCcutOopMLiUk9iEKRZkpg2z6FqoimvDIag9eMw60RbdQx4plf0etUnclgN+4v46SqJMY1uTQw6RUTuqeyeGcR9327mQd/3Mhtp8fwae4aypwORmd2ZlzKQCb36gbAZ+v2cs83m1BUH+UG4HC5eXXhcl5duAyHG8o86VRqiSy55cTAykR6nSLKoMPh9gZWQ5kyONOX1NNsIMFRziefzadzZjLP3XM+cTHhl6gNpbS4gvumvku51c4Tr/yFTl3T63+SEEIIIY4pErhowyZfOhqAV576gceJbOTFyKxEbPGJ7DIY6Viwm83zl/PBNafgjU+gS7Iloo6qUopzBvVlYq9uvLZoBW8tXsmcTb9z5fFDuXbMcHz3CRUaYLW7ufHzdbUa8TU714kWIzql+Ms723B54tAbemOMKWVfXDHv2lfw3u8riO5kAGsMqiIGR0UMbqcRUPz8+0FuGtOFaJOOSqcvsOHxwvxthWQnRYd8P6Ba58b/HLvXhcmg8c6GjbRPVhSa95DRLReTxYbSaXjdOhxlSdgL0/G4THjdvpUKNFTEQYu+0+Zi8JaQaNB4fkkRdk9lYOlFo15RZndR6XBjr5rKM+r5hfxx70Q25x6gR3YaBkP9n3Gou9MzZyxBQb2jLfwaczez5nNa2vSRcPzlROnqj/61IQlRxmYbYl/fuVFcWF5tKdSauW78QY/2xfvpFBMVGJnln672yZq9TBmcSazZRJTRyLq9B9GZqne4h3RIqLWssFJgdfmCGxV2xeC47nyzTPmClzGVnD0klr2OQmISC4hLKQbA4zLgroylvDQGV0U0dqcJjyd8HowXFu6o89g4PRpztx0kKqYCY0Ih0fFW3tiicVp2T6b2H8XA1PbVts9OikanlO9YVo1yO7NPOnM2/cG0OQvYXVLGkOxOfL/NSKkD4sy6GtPnNBQQF2XghfMOLWOac9d43vt5PTNnbaFbdhrP3T2ZhNjaQc+6Rs7YbU4evP0DDuwr4bEXr6BHn8hGpAkhhBDi2CKBizYuOHjh1T7lvv9cgNEY/mMPvnPZOUbP469+x8MvzmbKacP5y6YKXFXDnSO5Mx4bZeaOiWO4aNgAnv55Ea8uXM6HK9bRJb0zHo8Xu9vX8a5wetDVmDISqnNd7a6nR4fDmYgtP554i+LakxKYsWkDlvhyYpN9c829Hh0uu5kDJo1PdxTznwvSeOjbXGwO8Go67vhmJVEmHWaD4uUL+xMVW44xzo3B4CHPu42rToFtxaVoOhcv5c4moXsZSXpf4GP671sAiDGYSIuNZne+BVtZHI6KaO4Y241zzsxg0pvLiDbqqHR50etUrTudofj3MVpXjFszUOEyYXN7iDHpmdQnnRtHd+bct1cEghYAaL656Vt25nPa6D71nBGh70477C5+nL2G48b34bdCOyOjo45Kh7W1JNDzlxPN66l/a9EU6js3ig6W061X6NUmguuKTI8HXZSvzsu3OqqSQ67H44XnF+0ANBKVnplrt1Hk8aAAs0ERZTQwpEN8IE+FP9iREWfm3m82Ue70XZeVVaO8NK8emzWOMzv4csxc8eEqjFEOzNGVjO5tJNe0H3NCCQBupxF7eQx//bmM9kljqbQZAktR51sdvLsyL+R+mY1gspRjiLViibdiMLnwevS4ylL44vwz6BKfwrK8EtqZq49gq3kszaqSP7/xMWt276NHegpvXXE+3dIy6DttLnHm6kkzg1c2Meh1gZWdAJav+YPPZy2kd+d0nr1rcsiRFnWNnPG4Pfz73k/ZmrOHB564iAFDOtV3WgghhBDiGCWBi2PA5EtHo5Ti5f99z7/v+ZR//PfCeoMX/gDC6w9dzP/encvH362gnTmarXEZEB3VoDvjmYnxTDv/dM4ZNIAr3vsW664tpBn0WHTJHLTHYTEZa3VMQnWugxvfvkT1CoNOh0Ep7h45kqv6DWLkMwtw622YYioxRdmJinaw+MB2vt+dA0BCNoRKUvDX37Zg6XDo91c27SbeZCbFHE2CKZodB8DjSsLrMfLghP6MyEzHgoUJ01dQ6fQEgjAAlU4P5769HE3zJTeMMelDBmeCBWfnj9I7iNbZsXrTMRv16HUaFU4Pszfl883m/GorYUQZdJgMOjpF66mwOeudJhJ8fIPLsXTBFiorHLxt1XhqRmQrmDRUqLuurSWBnr+cGdPyc5u7LK1NY3OY1HVuaJpGaXEFiUkxIZ8bXFforBoxZkOgA21zeQKrJVmMOtCgVEWTZi7CYbcTY4rijrFdmTI4MyivBYDC4/XluDAEBQHO6ZfBMwu2B1b5GNLBN0pBoXDZo3Dbo/j7oFHsKLbx1+9WoJnK0EeXY4m3ojeUcM3C9/G69XgXRHNR/y7YHDosSUXo3V6UzotO78Uc5cQQZcdkduJFw+tV2K2x2A6244ZBg7ntgu4AYQME/mP52dptLP0jh1s+nkVabAyPnPUnzhvcL7DyR6jjHSqApGkab8xaymszlzCiXzaP33YWsZbqn63/cy+xuUKOnNE0jWf/8zXLFm7l1r9PYvT4+oOuQgghhDh2SeDiGHHeJaPQ6XW8+MS3PPy3j3hg2kWYzMZ6nxdlMvKPa0+ha6cMnnrvFwYU7aJAl0mXZEvgTmSknZESp5FCdxZul5X0qGISDQV0SrMyvHNPhnbqWmv7UCuhBDesCyocgeHe/lVJlt0+lhHP/EpFURQV+IIGr1w2jAk9ksi3VbC5sIgrP16JW/Pg9Lgx6XUYdHpemjyIjvGxJJqjSDBFkWi2YK5auWR2zgHmLl4VaHh3NmdxXIYve7/LQyBoYdAp3F6Nd1bkBRKaxpj0KEWdIwpq3pGc3EvH0lwDC64/i7goM9MX5fLUgu1UVN3h9b+eXgfPnesbtr1pq+8Obffs1Ig+i5p++W4dMUkxFCXGNem0jeCATPAKBDU7VS1xekhN6XFmsJeX1r+l8Is0h0m44Ea4c6Pcasfj8ZIQJnARXFf8+K2dg0XWwCiMQNDCoMNs0AMaHk8CUESquRynLpqbxnSpPsLLoAPlS+zrX2Uk0WIMjASLrgpO+lcoAt+1X171t0lvLkOh0OuieHTCYO7/fjMOr4bObEMfVQmmCqKi7Xy3awuVHgexNQaSJJli6JecyaC0dqQZkrn1453g9QUtbzvBt0KIrz4KPbVm8/4CXpi3hJ82byPaZObGsaO47oRhWEzVvwNCHe+a9W6yxcC/X5/D1ws2MuG4Xhw/bgiVbogNek7w566UFgjgBteB7786jx++XM0l147jzPNHhPwchRBCCCH8JHBxDDnnouMwGvU895/ZPHjHB/zzf38myhI+83uwP588iB6d0nn41e8xHMjjgn99xv7EdPRGQ8jOSKiOSGC4PXGUavHcOTqDNTu38vOmdfyYs4F/fZfE9zdMom/75LDl8Des862OQEd4+uIdgTL0axfP8ttPZNTzC9E0MBt8Kw5EG010NproHJ/E+ps6BjrTkWT3DzdkvfoIEMXVIzry6tJdlDt9swl8HSNdvasIBHeQkqNc/Pr7Tq4cNZRuab47tzeN6cL0xTvQKRV2VYKv8w6iFHTr2PDAhcftYdVv2xh3xiAWOHXEVb3P4U7bCO68aFWJTf3LS7bUXBaiaUWSw6QxCVorrHaAOpPI+uuKxT8b2ef21Lpenzu3f7UVemYscbHlQAGf/t+5dY7wMupVIMcD+OoBs0EXuD79143J4LuWNDQ0DcqdvmOQnRTN5rsn1AjopYJesequ8SRGG9haWMKavWWMyU6lU1IsOlV9WekzOveMaGTE1gMHmT5/KT/k/E60yUSZJ4V95Uk8Mq+EP4/wEmH1HziWBcXl3PjYF6zbupeLTh/OfzZV8OJHa2t9bsGfO/hGhhmq6q70ODPfzlzB+6/O4+SzBnPFDeMjK0SV5lqFSAghhBDNSwIXx5gzJg/HYNDz1MNfcv+t7/PwM5cSHRNZ4294z/Z8/vgV3P3qjyxakoO5spz8lPa1OiPhOiL+O3f+Oeb/nb8fjTiMdCKKQmINhVzw6ruc2rcHfx4xiBGdOlBQ7gzZSK2rQ9SvXTx/3DsxbOM2+K5iv3bx5FsdvLgol22FlVw9MqtWAs1wQ9Zr/h3g7RW7iVOqWsfIH1AJ51CHQ0+iPo+U2BguGja02oiWmu/vL7d/mz92FdAhLaHOJQjDydtxEKfDzeAhncgZ27vJOgXBn1EkI09E2xNJDpPGJGi125wAEQVeE+MsFJXZWJZXEjaIOKlvBl0Sx3Lhax/y7tJl/OusPwHwzDn9AcIuQewXvJ3/MX9dV2Z3cf/3m4k16dHQ6JJsqVYHhapb+qen0D89/HKg9Y2MSDA5eeSbOfy4+Q9iTCauPH44j/9agtXh2zYWb4ODhys35fGPF77BZnfy8NQzcCUk4dq4KuTn5v/cLQYdNrcXu9tLnN5AbpEN69Z9PP/YbEaM6cElt53KN5vyI65vmnsVIiGEEEI0HwlcHINOOXsIBqOeaQ99wX1T3+XR5y+rd/lLP6NBz32Xj2fojkpSC/aSVZDHTz/8hs02mHE9M3zTNeroiKTHmUm0GPF4CXRoXSoKNx1xaS5uGBrL9xs3893GraTGxrGjzEKFJw693lStkVpfh8h/x7S+Tni+1UHP//5Cmd13Z/CZBdtZd+e4kMGLUI38mn+PNF9DzbuGG+88iYe+mce8LQ5um3ASw55diMPlxWzUsfnuCbXep2YDfmxFQcT5LWratnU/AN17t2/SaRs1P6P6Rp6ItieSHCaNSdBqt/uWNzZH1T/dzWg2UlZh56J3lmM26QPXU039MjO4/LghvLN0FYnRMfx7fgkuT/VkxJGMFgl2+5cbcHk0dAq8aCitdpLeprzmdhcf5MtVy/j1jx3ER5mZOu44Lj9uCIt2lOHVVgK+0WBetJDLUAfv15ytBQCM75rMN7+s4e2vfqNjRiIv3ncBXTumkm91hP3cqgepN+Dx+o5PUlk5/7n3U7r3bs91/ziHgU8vaNA0otayCpEQh0MplQW8C7QDvMCrmqY927ylEkKI5ieBi2PUhNMHEhVl5D/3fcrd17/NY9MvJzE5tv4n4muUrnrgTBbnFrJs6UZ++nU9v67J5e7kDJb889x6OyL1dWivHTOSUc/MxlFWTKzOSozKx6nF8Pz8Fdx+0hBSYqPr7RBFemduWV4JdtehhSI04JM1e/nXaXUvW1rXsfFPZQmXA6Rm2db9bRwvzV/IvC2bmDJsAHZvHCU2XyDF5g69ZGJwAz7BqNiTX8KZJ/ZtVJn37S4CoGN2+Du8jRFupIg4ttTXMW9MglaPx5enQl+VVLIuBS6FAjSHgxKPKewSpAB/+9MJ7C+z8sqvS4kjht3ONKJNh5IRb9xfFsir069dfJ0d6Wo5MqqSgFa6607S2xiapvFbbh4v/7qMpbl5JEdbuGPiGC4ZMYi4KH+g1zdtDUBDw6jTcdPM9SHrxnyrg95PzKXE5sLictC9/ABRTgenj+nDnVdOCCThrO9zS48zc9mwjpzSM41leSVkul38+7b3SUmP45FnL2Xh/ooGTyOaP3V0q1iFSIjD5Ab+pmnaKqVUHLBSKfWjpmk5zV0wIYRoThK4OIaNHt+Hfz19Cf/620fc+X9v8fhLV5KaHlnHMj3OzOguKVzxsQtPcjadrfmkH9zLzY9/yn9uOK3eBm1dHdp1+yso9yRgdcRgVE6SzeXE6q18umIZn69cTv/MdmQmpXHuwB6c3rsjel3tzkukd+ZGZiUSZdTj9PgCBQqYMjgz7H5HMr+6vqDJnK0FgZUN4s06bvroKzbt28v1J47k9gmjmbFqT53H3l9ufwM+1lkBQP9u7RtV5uLCCuITojEY9fW+b0O1lsSbonk19DzxByy8Xm+928Yk+eqWGJcdu6H61JKa10aJzc2f+g2nU0oaryxYQpfoXThIIM3iZeP+MgY+OR8NePSn31l357g6g7Q1c2qAhkGvO+wOt7/MQzPjWLlrJ28uXsmm/QWkxUZz76njmDJsANEhkm7669wSm4ubZq4PWzcuyyvB5XTS0VpIRmUxXp2eKeeP5W/nDq9Vlkg+t/Q4M8MTTfz16vcwmQw8Nv0KEpNjGWk0NngaUW6RrVWsQiTE4dA0bR+wr+r/VqXUJqADIIELIcQxTQIXx7hho7rz7xcu44HbZnDHVa/z2ItX0LFTZAkel+WVoGlgM5rZlNSRDu5y4opLuPKB9zln/ABuuGAMiXHmsMtghmvwVm/wG5h27nGc3COV4kors9Zs5vUl61m3Zx/fb1hHrNnMsOxMhmZnMjQrkz7t04k1myIefp4eZ2brPRP4bN3eWjkuapa7IaM4wgVN8q0Obp21HofLRaKxjBRDKVv2e3jozAn8ecQgwDdPPiHKgM3lwWLUB+bX1yy3vwGfu+EP3v96F327hl5mtb4yFxeWk5gSenUGIVoif+DC7a47cJFvdfC/3/bQVemIddmwxScFlisNdTc/eOWbGX+ezJuLl7Nxz26ufOcjkmMSSDEp7F4zDk8UH63ewyOn9wnbkQ6VAyf4/5GuyhRcDwH0m/YjJq2IaF0peuWmW2oyj559MmcN6I05gmWu65ri4fZ4KczdTc/9uRi8Hg5GxVGa1o7LJw6os4x1KTpo5e83vYfD7uJ/r19Nuw5JIY9PpNOIJBgqjiVKqc7AEOC3Gn+/DrgOIDs7++gXrI3R3fl1cxdBCBEBCVwIBgztzLRXr+Ift7zP3659k8devIKuPdrV+zx/Nn0ApeD7WybRMdbI6zOX8PnPa/lp6RYuPnME9y4vxOWlzs6+n39u9cOn9iI+ylgt2V1GfBT9s70U/FpOpdNOstnJcV0s5BUXM//3XF85gOzkRPq2T+fOMfG4NBMndc/EpNfQNA1VIzs/+BrQU8d0qVWOmh3+hoziqNnY9ni95B4s5s2lm4hTe0iNKUenNLKTU3n83IkMza4+ykMp0CtFiOJWK/ekvhlcP3MePTulERcTVWubSMpsq3QSE1v7uUK0VJZo38gJW6Wjzu2W5ZXg0RSlpmiS7BXke9yBHBM1r41P1uyt9rtLM/PxNedTVFHJl2s3MWvtZg6WF6BTvuWPv1iex8pty8hOTqBjYgIHSxPISkogOzmB7KREzEZDrU62P3AQaYLJQ9t6idZXMDpLkazyUDqwe2O4buwY/jZ+CDpdHRVFDaECBk6Xm29+zeH9b5azO7+UQd0zSe/TjS3lXu4Y163RIxvKSiq5b+q7HMwv47EXr6Bz99oJRZt6GpEQbYVSKhb4HLhd07Sy4Mc0TXsVeBVg+PDhWjMUTwghjjoJXAgAevTJ5MnXruK+m97lrv97i4efvZR+g+qO4odrVP7tigmcN2EgT78/j9c+XUiWwciumBRc8Yl1zu0OnlsNkGgxsPnuCdW28QcFok1ReHQWpk32NfqLK2zM/30Xc3/Po9JRzvo9+/l+41Y0YMZS33MtRgPtE+JJiYkmOcZCUrSFWLMJTdORX+GiW0osiRYjep2OdfvKMHiL8Xg8GHU6/vfzUjokRBGvLyTGoqFXsGHXVrbt34ZX0/B6vbi9Gh6vF4fbzSX9POwtq0SHh4tff598aznuqmHtJmXArsXj0JJYcNUZtRrjy/JK8Hh9+S0Mel2dx6y03Ma6rXu58uyRIR+PZOSJx+ONKFeAEC1FQpJvhFBpcUWd2/nP/7K4RJIPlmOpLMdlTArUWUa9Cqz2MbFHKtMX76h1rSTHRHPV6GFcNXoYa/eU8PrSLXRP1uFy29lZVMKuohKW79hDhdMZeF8FZCbG0y01mR7pKXRPT6F7WgpdU5PrHZHlL5vH6+TVxRuJZi9mgxW98rIt34idJKyuJHR6M1eO7NegoIVfYPRFkZU3Z61m5i9rKSiuoG/XDJ64ZBwpmWkM+t8CNOCrnPyQCYvrU2G18/eb32NPXhGPRPB9Ul9ZhTiWKKWM+IIWMzRNm9nc5RFCiJZAAhciILtLGk+9cQ333vgO9974Dvf950JGn9S7zueEa1R27ZjKc/ecz3dLt/KP136ie+l+7PZSLLbwr7csrwSH+1CiTIer9pJ94YIlLq+Oa2fmVt3FjCLnrstIiNKzs6iEtXvyWb6zgCiDh5LKCooqbPyRX0hRpY0KhxOnx1OrLACJBgJXyJdrDgAQE9S/f3vpQXRKoVMKpRRGnQ69TodRryPGbMJiNBJvMTO8UybtE+LplJzI8E4dMBuiWL67tNoUlOCh4CU2F3pdZEuHLl6bi1fTGDO4S8jHI7lj6fF4G9X5EaK5xMSaMZuNHMy31rmd//z/YUs+T02fRYfKYvYkJQWuhflTRzPq+YVoGkx+Z0W9K98M6pDI8+cfV+vvmqbxR0EZP27dQ6LJS1GlldyDxWwrKGJJbh6uoDomLTaWFIOXBL0BlJGc3b+zMz8Xq8PFy4v/QGlODMqJXvny7kQpHQ4tBqeWwM83nYlRrw+s+NEYHq+X5Rt28fnPa1m4ejteTWNk/048eN1pjOiXjVKKh77fjP8WbmMSFtsqHTxw+wy2b93Pg09ezJCRXRtdXiGONco3NPQNYJOmaU81d3mEEKKlkMCFqCajfSLPvHUtD97+AY/c9RG3P3AOp549pFGvpZTijFG9GNI3m9e/XcWSxRv4+zOzGDWwM1OnnEjPTtVzN/imnuixuXwjE8xGXdhOe4nNxZytBYGpJOHuYiZGx3HjrBVBw7JPAQ7NNV+WV8KlM1ZS4XASZ9YzffIAxndPQQFFlS7W7C1jeMdEMuKj0CuFvio4odcdClg0xqS+vqkZwcPG/Qn8PF7Q6xTTJ/evNlUmlFlz15OZlkC/rqETc0L9dyz1el1glQYhWgOdTkdyWhwFB0rr3TY9zszlw7MwXTqOp975iYcHHwpK5BbZUCjKnW50SpFbZAu5skXNXDc1A4EF5U5GvbAk5PQPt8fLmt35nP3GAtAc2K1OBrePYX+ZFavNypuLCwPvZUSPUzPgJJqLBnfnquP7kBgdx8o9ZdXe37/MaiTT7/z2Hyxj9oKNfL1gA/sLrSTGWbjszOGcc9IAOmYkVtvXiT1SefSn39GoP2FxTbZKB/ffOoNN63dz378v4PixvSJ+rhACgDHA5cB6pdSaqr/9XdO0b5uvSEII0fwkcHGMiWRVjISkGB5/6Qruv+NDnvrXLPL2lnDN9Sc1upPePsHCA38eQ94pg3npy2X89lsOl9//HicN78415x5Pz07pgK+Dsfnu8YG7iaE67b7pJL8ElgtNtBjZfPf4sFMiagY05mwtqNbo9y2vpyPGbEavV/ypZ/vAe7ZLgL7tkxu1z8Hlret4h1oy0eb2Emc2kGgx1tkh2bqzgDVb9nDzxSei06mIPttQTGYDpSWVjdo/IZpLx04p7NlVWP+GVaZMHMDaTbt4/6ulnDiwExntUuod3VRfAk9/0KCu6R8GvY79FQqrO5YKp4UYk55rxw5jUt8MNE1DqxrakF/uoP+T83B5fa9955+OD1zHkxIsgTJFmmsHwOF0M3/lH3y9YCPLN+4EoEvn9txz3mgmje6FKSiZZ819nXvjKH7+/WBg6Vf/NnXVMf6gRc66PO559HzGntwv4s+nuTW2/hSiqWmathBfzFAIIUQQCVwcQxqSFM7qgXdT08luV8anr83jwJ5i7n3oHPSGxi2ZmW91MOTZX3F5NMypnfl7/3i+nreOeSv+YOzQbvzl7JH06+YLGlw2rGPY11mWV4LDdWh0gMPtCTTcQ02JqBnQAI7a8nqhjrd/H/zvFW7JRL3ON6ok3+oIWSZN03jxk1+JjjJxzkkDGvTZ1mQyGXDaXU2230IcDR2yU1i7cgdfbdjH8Z2S6z3flVL8/ZqT2ZR7gHue+5pVse2x6Yx1jm6qL4Gnv+6pL5dMl2QLlU7fdJFKp4cuyZZAmfzx4HbxURHVRZHkrSktt/H5T2v5ZM5qiq022qfG8+czRvDY2mI2eYz88FMez8UmVNvnmvta5vDwr9MOTe2rr46prHDwwG2HghYnndK/zs+jJTmc+lMIIYQQR4cELo4hDblTtyyvBCeK1b070ycmigXfrsVeZuMfj19IlMV0WO/tNekpTkrjtYcv55dFG/noh1UsWLWNYX2yuHzScI7r3zlszoWRWYmYjTpsVcsgmg36QMM91JSIUEsSHq3l9aqNpjDo+GzdXh78YUutxnHN8s3ZWsCtszZw08z1YRvRs+auZ8m6Hdxx2UnEx0SxIOdAxJ9tTSazAYfD3dS7L8QR1b5bBk67ixteXogzOS6izmZstJn/3nY21z36MZnWHWyPS8cTnxB2dFPNIMGUwZkhE3jWl0smt8hGjElPudNDjElPbpEtZLLL+uoi/6iAcLk4DpaUM+PblXzxyzpsDhejBnbmz6cNY0S/bL7dnI9t/SqsVdf69Z+uxWLSB45bfQGRur4/Kqx2/nHr+2zZuCdk0KKlj2ZoyHejEEIIIZqHBC6OIZHcqau1bZSRA72zuf/sAbzzzA/c+X9v8eC0i0hvH/65db1ejElPpdPD0wu2M33xDnLuGs+fTx/GrLnr+PD7Vdw+7Qs6pidw7viBTBrbj6T46Gqv45tOMqHWdJK6GsY1OwNNNcKivsb4yKxE/It12Nxe7vlmEwAVTk+1xnHN8iVajHi84RvRu/YX88yMeYzsl82Uk4dUO76RfLY1RVlMOGTEhWhl7GkJAJjyS6hIiI24s9mzUxpP/G0y1z8xk14leynx2hmYERNy21ABiXD1R11Bh5FZiZgMOuKUwqhXdEm2MDvnQIPqoLpGBRwosvLu18v4av4GPB4vJ4/qzWVnDKdH9qE8Qv46wmLUYXN5a61aVF/wJVwdYy2z8feb32Pb5n384/ELOWFC31rl7v3EXBxuD2aDns13t7zRDIdTfwohhBDi6JDAxTEkkhUm6tq2S3Yy/73/c2654lX+9fQl9O4ffkpHuNebviiXpxdsp9zpIU6pQKP50jOGM+WUIfyybCtf/LKOFz7+lZc/W8ToQV04bUwfThjcFbPp0OmaaDFWS1bXkGG+TTHCIpL3TI8z89y5A7j+s7XYXF7fhFVV/2ohdTWiC0sruO+5rzEZ9Txw3amBkSkN+WxrMkcZsduc9W8oRAsyYVBHXoqOIqPESnkDO5sje2fy1bSreOL9eSxbsYVbH/2IS88YzqQT+2GJMlbbtmZ90Zj6w399ztlaQJndxYnTF+Hx0qBpCaFGBUzomsS7s5fzwbcr8Hg1zjyxL1dMGhlIthmuDLfOWh94/+DjVte+hapjykoquW/qu+zcns+DT14cMhHnnK0FgSWubS4vc7YW1DkdsDkcTv0phBBCiKNDAhfHmIY0umtue/zYXjz7zv/xwG0zuPu6t7nrkcmcOLFvHa9Q+/VuGtPFN9S66s5jcKPZaNBz6ug+nDq6D9t3H+Sr+RuYs2QLC1ZtIzrKxIh+WfTt0ZF7F+7BpgwYDbpAY/NID/PNtzqqjfII9541R2Gc0jMNi1GPQacLJPera7lF/3EK1YhetSmP+6d/S7nNwZN3nEN6clyt5zVkv/1ldXg0vF6t1t+lAS9asvQ4MxedP4yv3l/MwiuHNfhczUqJ4fnbzmTFxgG8+OlCnnz3F6Z/spBJ4/pz4rAe5Hv1HJed1KTXwO1fbsDm8gRWToqkvvJfj12SLRj1iliTHk3zsnf7bqa8PIuC4gpOHdWbG6ecQPvU0EuWBl/Tlw3rGKjDGnqNB9cxJUXl3Hvju+zeVchD//szI8b0aMCRaHmO1JRBIYQQQjQNCVyIBsnuksazb1/LP//6IY/e/TGTLx3F1bf8CaMxslMp0jtbXTumcvulJ3HLn8eyMiePn5dt5bf1O5m/chudAJfS4TRb+M+7cxnWNZ14ZwVGnRGltCYf5htqJZNfbxpda1REuFEYNfc31Nz2moIb0W6PlxnfruDlTxfRPi2B8y8YR+dO7Q57n/xl7bw1j6yq5VAlSZ1oTc67YDhfvreIVXNz6N1tXKNeY3i/bB7LmsywR78lvuQgn/ywik9/WIXTYKQiJp4X/3ICJw3ujKGRiYnBd11NX5SL0+0NBC0sBl290xJqXo8zrxzOhS/OI6M4nzc+3kLPzuk8dstZDOgRfrnScNf04XTSiw5auefGdziwp4SHn7mEocd1C7vtKT3TSLQYcLi8mI06TumZFnZbIYQQQohwJHAhGiwxOZYnXr2K15+Zw8wZS9ias5cHnphCYnJsRM9vSKNZr9Mxsn8nRvbvhKZprNmWz/kv/IzRbsfisrN8+WaWLM0huNk+nNvsqAAAKSBJREFU5Y5tRFnMpMRbSIiJIjbahCXKhMVsrPYT5f9/1KF/o82mar9bzMaQK5mEWo1kdpgEmY3tJBSVVvLV/PV8/vNa8ovKOWFod94t1PPzj7nc88uOsEGFmqND6luG1atpeKvWZJQkdaI1ad8xmcEju/LN5ys4/7LRmGtM84jU8t2lWI0W9sa3JzbRS7ytnNhKK4mlhfzj2S+JsZjp2rU9k0b35tSRPWpNJ6mLP3DgcHupdHqINekx6HU8d27olUyCn/ffuX9Q6fRgd3tJNGg8/c7PdM7fg1NnYG9KJvdffBIDetQdxGzqa7rooJW7r3+bggNlPPLcpQwa3qXO7f15iWQUlxBCCCEOhwQuRJ3CTRswmQxMvfsMeg/oyNOPfMnUS17mrocnM2Rk1yP23kophnTPYOkj5wf+nhxt5GBxOXsKStlbUMquA2U8N28ryulmd4GNEUYDpeU2Ku0ubA4XNrsTu7NhK2gYDXr6eMGNwqt0KL2OWZ+VMzfGjM6g5xu3RqfUWGIsZlLKi4lXOhR6YhyVbMs7SGy0mZhoE9FmU8jVUjRNw1rp4GBJBYs372X2sm0YbZXk5hXgcnsY2S+bu66cSKk5htc/WF1nByTU6JBQyfCq5dFwe4iLt9T+uySpE63An68eyz03vM1XnyzjwivGVHts4/4yPlmzlymDM+sc6VRzWeJKswlrfDKFysv/xmXx2MzllG3axfqNO/jf2z9y/IDOnHx8L8YO7UaZ01tnp9wfOKioWlHkjrFduWlMlzoDFnO2FnDLF+sptbtRmpd2lSV0qCgmXwfFCSnkx6ViMPqmstSnKa/pwoIy7r7+HQ7ml/Hoc5cyYGjnsPsQfExkGoYQojno7vy6uYsghGhCErgQYUUybWDC6QPJ7pLGY3//jHtvfIfzLxvNVTdPjHjqSGPeu2YjWGc2s08zcdyQHqi8EvavKQ107h+fMrRWg9nr1XA43VQ6nNgd/oDGoX/3l1Sy+UAZ7WOM6DQvdoeLonIH2/KtuN1uLHooKXdQWmFnW34ZyutlheZFp2kED4K+96m8WvtlNuoxmwwYDHq8Xg2v14vd6cbp8hwqH1BpMHPBmL5cdcYwOmcmB45JfR2QmqND7C53yABH8BSWxa8UUbS/dpLPLskWuUsqWrzBI7owfHR3PnxjAX86cxBJKb6RXxv3lzHwyflowKM//c66O8eFDV7UPO9X7ykDDuWz2ZuciTXaRQZOLsi2sGnbHhas2kaU2UCBIYbimARc0THk3D2h3tU4pgzODHtd+VfgqHS6cbq9pNitZFYUEeVx0bFTO5655XTM0dENui4jmZ4XSV6bg/ll3H392xQdtPLo85cxYEinkNvJdDMhhBBCHAkSuBBhRTrEuHvv9kyfcT2vPTOHz99fzNoVudz1r/Po3N23bWOSPUb63jUbyfOn1s49UZNOp3zTQEIM9863Oji/jkZ34P10GppOQ2ufFlje9N2LBzG2UyLWSgfllQ6sFb5/y22+fytsThxONyUVDvaW2mgXH0Ws2YDJaCAlMYa5O0v5OOcgFUYzmtJBx6xA0AIi64CMzErEaFBUDbjA4dbokmwJeYz9AaDvCqyBzp7/7yOzEqXzIVqsmnXK9X89jRsvfomnH/mSfz19CUopPlmzF3/KWQ34ZM1e/nVa+FEX4c774KWhXXoTD1w9ntQYE6u37Oa1b1dTsXY7cRWl2I1m3vguiTsnj8AYlA+jZlBk3IuLw15Xc7YWUFLpJMFZQY/yQqLdTioMZrYkZvK7SsQcHd3oVU3CPSeSQENhgZV7bnib4sJy/v3C5fQblB32vWS6mRBCCCGOBAlciLAaMsQ4ymLilvsmMez4bjzz76+5+bJXuOy6kxh33ggGPD0fp9sLCpbcckJEySkjfe+ajeRQuScaor5Gd/DjsSY9Kmh501GdU0iKM5MUHx329Q91EowYS73k3DUmUMZB+8t48w/fHWIFTBlcO+FefZ2W9DgzL5w3kOs+XYvd7SXGpCe3yBb2mFeU29n++34uvnpsg46DEM0lVEc7u0sa191xCi9O+47P31/MBZePYcrgTB796fc6r6eawp33oeqUYX2yyOqYTr///ozFWkKKtYhZXy9mwYI1nD2uP+eOHxhY5cN/3YbLgwNQbnOwds3vDCjcSZTHhV1vJDexHeXR8dg9GnFe7Yhch3O2FgRWOgl1rR/ML+OeG97mYL6V/9QTtACZbiaEEEKII0MCFyKsxqxtP3p8H/oOzuaFx7/hrek/88236zBmZFBkiQJg1PML+ePeifW+VqTvHaqR3Nj51PlWByU2F3odYRvdNd8vkuVNg9UVEOjXLp51d46rNie/MaNVTumZRrRJj1Ff/6oFm9btxuvVGDC0+rBv6XyIlircNXT2RcexduUO3nz+J/oMzKLfoOxa11N9wp334eqU9DgzG++ZyLK8EoZ3SCB35z4+/GE173y9nHe+Xkbfru0YM7grx/XvRKf2SYzomBB4fZPykqH38OH3q1i6LpfVm3fjcHnwmqLYFpNMcVQcFpMeg04RZ6i9fHSk6qpD8q0Obp21PrDSiV5X/T0O5pdx13Vv+UZaPH8Z/QbXHbTwH5PDCR4LIYQQQoSiNE2rf6sjYPjw4dqKFSua5b3F0bHgx4288MQ3lBRVsCsrg22dM4mKNvHhZcOa9K5hYzr3oV7DfxdXr1N1Zvw/nPerb1h28GsDjZ6uEWkZH/v7pyyZv4WPf7wLS3TtTo10PqpTSq3UNG14c5fjaGnqerqpr9Wa10W51cbNl75CZYWDaa9dRaeu6Ue1jP6yaQ4nyZWlHJ+o+H1nPv6vWbNRT1yshbIKO86gJMGdM5M5bkAnTh3VG2JiGPX8QjQNzAZdg4OjocoTrg6ZnXOAS2eswupwYzHoeOXCQVw2rCPgWz3kruveouigb3pI34FZDXpvIZqL1NNtnyTdFM3N++RZzV2EVq2x9bSMuBBHzNiT+zH0+K7874nvUN+upV1BMXt6ZzOiY0KTvk9TZKxflleC0+2lvGq5wkSLMWwn4XDer667kTU7Gc+c07/R0zUiKWPu7weY98MGLrrqxFpBi0hfw19uCXCI+jRV0sa6rqHYOAv/fuFy7rz2Te694R2mvXYVHTul1ipHXefr4VzfgdEgHoU7PpWL/jyUMR3jWLVpNweKrOzKL2Xb/lJGpcbRKSOBtKRYBvbIJDO9ep34x70Tq5UxktEidZYnTB1Sc4TJKT196YXz95Vw79R3OZhfxn8kaCGEEEKIFkDX3AUQbVtsnIWHHpnMAy9cQcd2CXRd8wf/ueU9ctbVXnEjEvlWB7NzDpBvdTRpObskW6hw+lb2qHB6wia0bAr+jlHNTlNwJ8Pl8d2iDV6iscTmarL91jSNt1/6megYMxdcPrrRr+PvjF46YxV9p81t8s9FtB01z+9leSWNfq1w1xBAh+wUHn/5SjxejXtueId9u4sCjx3p87VmIKBLsoVFu60M6NuJP53Qnye3OfmkLIpndro5ddxAThvTp1bQor79O5zy1Jxq4g8Czbh0aCCQtDeviL9d+ybFheU8Nv0K+odZPeRoOVJ1vhBCCCFaFwlciKPihFHdePfTqdz5z/PI31/KHVe9zqP3fMLevKL6n1zlSHY6cotsRJt8KwFEVyW0PNpC3f3MuWs80ycPADRumrm+1n43plGvaRpvPv8TS+dv4eKrTyQ+IXwy0fo0VWdUOidt39HMm9KpazqPv3QFDoeLO697i53b84GmDZ6EOmeDAwHzp45m3IuLA/XVnK0FTfbekaoZmABCltkfJNmbV8Td17+NzebkiVf+ElFOiyNJAqNCCCGE8JOpIqJejZ0KUPN5Op2Ok88azAkT+/DZe4v59N1FLJm3mUkXDOfiq8dWW5IzlHDDnmu+T2PKOzIrEbNBh041PgleOJGWJ9wQ+ESLEY+XkPvdmKH3M16bxyfvLGTSBSOYcuUJh7VvTdEZbaopBKJlO9pJG7v2aMd/X/4L99/8Hn+95k0efvoSRnbLaJLgycb9ZYx6fiFoYDLoqp2zoVYQiTHpWb2ntFbi36Mxzcq/zOucrQXcOmsDHm/o62zhkm1Mu+8TDErxxMtX0q1X+yNSnoaQ1Y2EEEII4SeBC1GnxnYq63qeJdrM5deP54zJw3nvlbl89ckyvpu1inMuOo4LrxwTdgTAyKxE9DqwGHTodQQa/sHv47/L2dDyHqlOVUOPX6j59eGCAw1t1LtdHt5/bR4fvrGAU84ewk33nIFSKqJ9CHdcmuK4Sefk2NEU+WgaolvPdjz99rX84+b3uHfqO/zj8SmHfb7mWx2Men4h5Q7f1LJYCHnO+q/bGJOeSqeH15buxKDX8dgZvYiPMlJQ4WhUXdWY8vadNheb04PN7Vs9pOZ1NuPT5bz9xDc4okxsG9GbuMzkJi9HY8jqRkIIIYTwk6kiok6NHVodyfNS0uK4/f6zee2zmxl9Um8+fXcRV571DG9N/4nS4oowr6xAVf0b4n0+WbO30cOxm2peebCmGJoeah46NKxRv2l9Hjdf/kogaHH7/Wej09V/+UcyVPtwj5t0TsSR1C4ziafeuIbO3dJ5+M6P2LBwy2Gdr8vySqi2GJci5Dnrv27/OrYrMSY95U4Pbo+Xe7/dxE0z1zPq+YU43d4jPnXEXwf5gxYW46Flkj0eL6+/PJd3Hp9NWWw0vw3pTVmU+ahMY4lEuLpPCCGEEMceGXEh6tTYTmVDntexUyr3/vsCLr7qRN5/bT4fv7WQLz5YyqQLRnDeJceTluFLXrcsrwSPV8Pm8mLQ6QJ3TYPfZ8rgTKYv3tFiOsGH2ykPHu1Q845uJKMdCguszHhtHt/OXElKWhwPPXkxo8f3ifj9j8ZoiKM9hUAcexKSYnj8xSv5598+5L/3f461tJJzLj6+Ua/ln1YGoBQsueWEOlcgumlMF1+dpBQaGpoG5U7f9BGlOOJ1VXAdpNfBc+cO8K0eUm7j3r99wLqVOyhsl8zanp3x6nUY0Zq93gx2tEfpCCGEEKJlUlq1W0dHz7G47nRr1VQ5LiK1c3s+H735K/N+WI9SiuPG9yH7pH6MHJIVcmh1U+S4OJIO5/g1NvfDjm35fPnxb/z49Ro8Hi9nTxnJlTdOIDqmYcdD8k9U19h1p1urxtTTLe36C+Z0uHjs75+xeN5mrrhhPJf+30mNep2G7qN/+y7Jlmp12Pypo8ktsh3xYxVc3kSznh++XMVbL/yM1+vl8ltP4f/WFlBi9019SYgysOWeCS3usxMiUlJPt326O79u7iKIY5z3ybOauwitWmPraQlciBZr/95iPnhnEd9+sRK9x4s1KY4brj2RhD5ZjOqacsQb1s3dAZudc4BLZ6wKjHaYcenQOu88FhwoZf6cDcz9fj1/bN6HyWxg4hmDuOgvJ9C+Y+PnrDf3cWhJpEFct5YW6Ap17nrcHp56+Et++mYtl19/EpddN77Zy3Q0OOwu5ny9mo/fWkjBgVL6D+nEnf88l/Ydk3l/5W6u/2wtNpc3orpGiJZM6um2TwIXorlJ4OLwNLaelqkiosVql5lE+imDWVboIWVXPln7DjJj2rckJEaTd0p/xp82gL4DsyJKMNlQLaEDVtc0E6/Xy/49JWzbso+1K3ewdkUuu7YXANCzbybX3XEqfzpzEAlJMSFfuyGdJxmqLSLVkhKthruG9QY9f33oXJRO8d4r8/B4NK64YfwRq0dqXmdH+nraU1jBr5sP0DVKDzYH27buZ82y7Wxcm4fL6abvoCzueOBshh7fLbDPp/RMw2LUY9DpWsQUOyGEEEKImiRwIVqsfKuDW2etpxwd5dntKO3ZkU8ndmHpD+v44ctVfP3JMjIyExk1rjcjx/RgwNBOmMzGw35fp9PN97/lErOvCMoqife4efQfnxHj9lButWG3ubDbnLhcHjTNN2ddp1PoDTqMBj1GkwG9UY9DKeJizLj1Otonx5CUYMFiMRFlMWKJNmGOMmKOMmE2GzAY9RiMevR6HZrX95oej5c3hqazaU8pGSYdn7/yCwfzyziwt4RduQU47C4Aoiwm+g3O5uRJgxkzvg8dslPqPa7NHZQRbVNLSrRaVxBFr9fx1wfPQa/X8cHr8/F6vfxl6kQKyp31BvQiDfodqetM0zR25RawYfVOdm4rYN+eYvbvLaa0qIKKCgdul6fWc7r2bMdZF45g1LjeDBjaqVaQRvLMCCGEEKKlk8CFaLF8yTh9/7cYdDx33gAmDuvIxPG9qSi3s3jeZhbM2cC3M1cw68OlmM1GevTNpFe/DvTsm0mH7BTS2iWQkBhdq6FutzkpK6lk/94S9uYVsjeviF25B8nbUcDe3cV4PV56V23r1SkKbZWo1DgSkmLIaG8kymLCYNSjdAqFrzPhdntxuzxYK538uGk/yu2FvWUYNS85Hi8pRh0OuwuX092o4xFlMZGWEU9aRgJnTB5Gl+4ZdOqWTvde7TEY9Q06ruE6dDItRByOltQBri+IotPpuO0fZ6GU4qM3f6WgqIInnCZcXsIGGhoSjGjK0SfWMhvLFm5lyfwtrF2eS1lpJQDRMWbadUgiq1MqA4d2Zq/dzRdbCqhUOlS0mQfOGcAFJ3YnMczIq2AyskoIIYQQLZkELsRhW7DtIC8t3sGNozsztltqk71uzY7HKT3TAo/FxEZx8qTBnDxpMHabk3Urd7ByyR9s2biHrz5ZVi04YDQZMEcZ0et9KwFUVDhw1wgeGAx6MrOT6dw9g7F/6kfHzqlEJceyR9Mxrl97MuKjIi737JwDPF+Vm8IveN642+XBbnfisLuw21047C48bi8ulwePx4tOKZROodMpLNEmLNFmYmLNRMeYm2Q4e7gOXX2dMglqiEi0lA5wJEEUf/AiNj6KT99ZROeMZNb06ozZbGDO1gJO6ZlW7fkNCUY0dPRJzXq0rLSSxXM3MW/OBtau2IHX4yU5NY7jxvZkwNDO9B+STWbH5Gp1wsb9ZTzx5Hw0fAtGjxrZJaKghRBCCCFESyeBC3FYFmw7yEkvLQHg47X7mHfjqCYLXkR69zbKYmLkCT0ZeUJPAFwuN7tyD3JgbwkF+0soyC/D5XBjtbn4aNVuXAnxeM1GHjyrH927pNEhK5m0jHj0hshHLdTF32GJNempcHqINumrdVwMRj2xRguxcZYmeb+GCndc6xuJ0ZKnl0hQRYQSSRBFKcW1t56CKdbCjOk/MczmYGPvztz8xXp0SuHxaoFlRId0iI84GNGQ0Sf+etTgdrPg+/WcY9HYsS4Pj8dLZlYyF14+mtHj+9CzbyY6nS7s6+QW2Ygx6Sl3eogx6cktstGvXXy9x0kIIYQQkYs0Qawk8WxaErgQYUXSGXxp8Y5avzflqIvG3L01Gg1069mObj3bVfv77JwDbHMcWqUjZlAXhh2BO8PBHZYuyZYjstzh4XbUQx3Xuu4Qt6SkizW19KCKaB2uuPpE8twav7wxj1HLc9jduT27u2ZSUTVd7frP1mIx6iNewjTSa7SwoIynX53PoPW7SC0sRadpbI+zMOTUgZx37lBGDM2OeKTVyKxETAYdcUo1e44RIYQQQoimJIELEVKkncEbR3fm47X7qv3eUh3NxIHBgYGmvuN5pDrqdd0hbklJF2tqyUEV0br835+P4/ltpWTm7CA7dy8Z+wvZ2yGNXekp2DBi0OnILbLVe37VdY2WFJWzYc0uNqzeyfqVO/lji6/+jDObyOuQxoH0ZDxp8Szx6njty03k9GwX8fXdknKMCCGEEEI0JQlciJAi7QyO7ZbKvBtHHZEcF02trTTqj2RHPdwIl5Z87FpyUEW0LulxZtbdfwrL8kqIKSjhi7d/xbwuj85/7MaaFEdlYiyuzelsN2okp8QSF2+pNcXM4/GyYNN+dGU2DNZKEt1unn3qe/TF5Wzbup+DB8oAMJkN9O7fkatumshxJ/Zil9Lx8pKdDO6QwH9+/qPR13dLyTEihBBCCNGUJHAhQmpIZ3Bst9QWHbAIdjiN+paSR6G5OuottUPUkoMqovk09no9dJ5nMH5cL3blFvDN12tYvGALxbvzefnfX1XbPjhprtfrxVbpBGBI0DYrcxRZnX0rf3Tt2Y6+g7Lo2TcTo/HQV3AXYFz3NPKtDqbN2yaBOCGEEEKIIBK4ECG1tc5gQzsxNbdvSXkU2tpn0xRaalBFNI9Ir9dI6oXsLmnceOvJ3HjrybhdHnbvPMjO7QWUllRQVlKJtcwOmgZKoZRvxaOYuCg0o4ECpeeEgR3o3SU14iWLW/L13VKCt0K0ZUqpN4FJQL6maf2buzxCCNFSSOBChNVWOoP+TozT7QUFS245oc68E6E6PUdiesbhdALaymcjxJEQyfXamGCkwainc/cMOnc/stdeU17f+VYHc7YWAHBKz7RGBxxaUvBWiDbubeAF4N1mLocQQrQoErgQbd6yvBKcbi/lTg8Ao55fyB/3Tgzb6A7V6Wnq6RnSCRDiyInkej0WkrrmWx30fmIuJTYXAIkWA5vvntCouuZYOF5CtASapi1QSnVu7nIIIURLI4EL0eaNzEqEoNUENY06G92hOj1NPXxbOgFCHDmRXK/HQlLXZXklONyewO8Ol7fRdc2xcLyEEEII0XLVG7iob66dUioJeBPoBtiBqzVN29DUBRWisdLjzCy55QRGPb8QTQOzQVdnoztcp6cph29LJ0A0Jamna6vvem3JuSSaysisRMwGPTaXFwCzse66ry7HwvESorVQSl0HXAeQnZ3dzKURQoijQ2maVvcGSo0FyoF3wzSIpwHlmqb9SynVG5iuadrE+t54+PDh2ooVKxpZbCEarqUllmtp5RH1U0qt1DRteHOXoyapp0U4TZXjQojWoqXW0w1RNVVkdiTJOdtSPa278+vmLoIQTcr75FnNXYQWqbH1dL0jLiKYa9cXeKxq281Kqc5KqQxN0w40tDBCHEktLaFlSyuPaL2knhbhpMeZuWxYx+YuhhBCCCHEYdE1wWusBSYDKKVGAp0AaSUJIUTLIfW0EEK0AkqpD4ElQC+l1G6l1DXNXSYhhGgJmiJw8TiQpJRaA9wCrAbcoTZUSl2nlFqhlFpRUFDQBG8tIpVvdTA75wD5VkdzF0U0gnx+4jBJPd0GNaRekDpEiNZB07Q/a5rWXtM0o6ZpHTVNe6O5yySEEC3BYa8qomlaGXAVgFJKAblVP6G2fRV4FXxz8g73vUVkZOnN1k0+P3G4pJ5uexpSL0gdIoQQQojW7rBHXCilEpVSpqpfrwUWVDWSRQsRvPSmy6OxLK+kuYskGuBIfH5y9/XYIvV047Tk66Qh9YJ8BwghhBCitYtkOdQPgZOAVKXUbuAhwAigadrLQB/gXaWUB8gBZC5eCyNLb7ZuTf35yd3Xtkfq6abX0q+ThtQL8h0ghBBCiNYuklVF/lzP40uAHk1WItHk0uPM5Nw1XpbebKWa+vMLvvsaZzawLK9EVjdp5aSebnot/TppSL0g3wFCCCGEaO0OO8eFaB1k6c3WrSk/P7n7KkT9WsN10pB6Qb4DhBBCCNGaSeBCiGOM3H0Von5ynQghhBBCtBxNsRyqEMe0lpzALxz/3VfpjAkRXmu8TlpjfSSEEEIIUR8ZcSHEYWjpCfyEEMcOqY+EEEKIlkN359cRbed98qwjXJK2QUZcCHEYZJlBIURLIfWREEIIIdoqCVwIcRhaQwI/IcSxQeojIYQQQrRVMlVEiMMgCfyEEC2F1EdCCCGEaKtkxIUQhyk9zszIrESW5ZVIQjwhWom2msSyNSYUFUIIIYSoj4y4EOIwSUI8IVoXuWaFEEIIIVoXGXEhxGGShHhCtC5yzQohhBBCtC4SuBDiMElCPCFaF7lmhRBCCCFaF5kqIsRhkoR4QrQucs0KIcTRo7vz6+YughCiDZDAhRBNwJ8QTwjROsg1K4QQQgjReshUESGEEEIIIYQQQrRYErgQQgghhBBCCCFEiyWBC3HMyrc6mJ1zgHyro7mLIoQ4hkjdI4QQQgjRMJLjQhyT8q0O+k6bi8ujYdQrcu4aLwn6hBBHnNQ9QgghhBANJyMuxDFpWV4JLo+G1eHG5dFYllfS3EUSQhwDpO4RQgghhGg4CVyIY9LIrESMekWc2YBRrxiZldjcRRJCHAOk7hFCCCGEaDiZKiKOSelxZnLuGs+yvBJGZiW22aHa+VZHm99HcWxp7ef0sVL3CCGEECIyuju/btLX8z55VpO+XkshgQtxzEqPMzOpb0ZzF+OIkbn0oq1pK+d0W697hBBCCCGamkwVEaKNkrn0oq2Rc1oIIYQQ4tgkgQsh2qjgufR6naLE5mo1yy/KcpEilObKD9Eaz8fWWGYhhBBCiHBkqogQbZR/Lv2crQXcOms9N81c3yqG17eV6QCi6TVHfojWeD62xjILIYQQQtRFAhdCtGHpcWYSLUY8XrA63MSZDSzLK2nR8+uDpwO0hvKKo+to54dojedjayyzEKJxVu4ujSix35FI1tfUCQWFEKIuMlVEiDautS2/2NrKK9q21ng+tsYyCyGEEELURUZcCNHGtbblF1tbeUXb1hrPx9ZYZiGEEEKIukjgQohjQGtbfrG1lVe0ba3xfGyNZRZCHDkyrUOIY0ek13ukU8ia+vUaS6aKCCGEEEII0UIopU5TSm1RSv2hlLq3ucsjhBAtgYy4EEIIIYQQogVQSumB6cDJwG5guVLqK03Tcpq3ZEIIUbcjPbJLRlwI0QrlWx3MzjlAvtXR3EURosWS60QI0QqNBP7QNG27pmlO4CPgnGYukxBCNDsZcSFEK5NvddB32lxcHg2jXpFz13hJvidEDXKdCCFaqQ5AXtDvu4HjmqksQgjRYihN05rnjZUqAHYG/SkVONgshWkZZP9l/yPb/6jYBOLTu6B0ejSvh7L8XOzlpUe2eEdca/n8O2maltbchThaQtTTrUdk10lrOe+ONDkOPnIcfFr7cWjV9bRS6kLgVE3Trq36/XJgpKZptwRtcx1wXdWvvYAtR72gkWnt51JTkeMgxwDkGPilAjGNqaebbcRFzcIqpVZomja8ucrT3GT/Zf9l/4/d/W+pWnPjPxJy3vnIcfCR4+Ajx6HZ7Qaygn7vCOwN3kDTtFeBV49moRpDziUfOQ5yDECOgV/VcejcmOdKjgshhBBCCCFahuVAD6VUF6WUCbgY+KqZyySEEM1OclwIIYQQQgjRAmia5lZK3Qz8AOiBNzVN29jMxRJCiGbXkgIXLX7I2xEm+39sk/0X4uiT885HjoOPHAcfOQ7NTNO0b4Fvm7scTUDOJR85DnIMQI6BX6OPQ7Ml5xRCCCGEEEIIIYSoj+S4EEIIIYQQQgghRIt1VAMXSqkopdQypdRapdRGpdS/QmxzqVJqXdXPYqXUoKNZxiNNKaVXSq1WSs0O8ZhSSj2nlPqjav+HNkcZj6R69j9BKfV10PlxVXOU8UhSSu1QSq1XSq1RSq0Is81JVY9vVErNP9plPJKUUolKqc+UUpuVUpuUUqPCbDdCKeVRSl1wtMsoWjel1JtKqXyl1IYwjycppb6oqmOXKaX6Bz1W7/XZWiilspRSc6uus41KqdtCbNNbKbVEKeVQSt1Z47HTlFJbqr6P7j16JW9aER6HsO2OtnJORHIcgratVf+2lfNBNL3DqXPbigjrmWOhjX9Y3zttweF+57QVER6Hc6qOwRql1Aql1An1vrCmaUftB1BAbNX/jcBvwPE1thkNJFX9/3Tgt6NZxqNwDP4KfADMDvHYGcB3Vcfp+La27xHs/9+B/1b9Pw0oAkzNXeYm3v8dQGodjycCOUB21e/pzV3mJt7/d4Brq/5vAhJDbKMHfsE3v/eC5i6z/LSuH2AsMBTYEObxacBDVf/vDfwc9Fid12dr+gHaA0Or/h8HbAX61tgmHRgB/Bu4M+jvemAb0LXqOl1b87mt5SfC4xC23dFWzolIjkPQZ1+t/m1L54P8NP3P4dS5beUnwnrmWGjjN/p7p638HO53Tlv5ifA4xHIobcVAYHN9r3tUR1xoPuVVvxqrfrQa2yzWNK246tel+NavbhOUUh2BM4HXw2xyDvBu1XFaCiQqpdoftQIeYRHsvwbEKaUUvpO5CHAfpeK1FJcAMzVN2wWgaVp+M5enySil4vE1cN4A0DTNqWlaSYhNbwE+B9rMvoujR9O0BfjqjnD6Aj9XbbsZ6KyUyjgaZTuaNE3bp2naqqr/W4FNQIca2+RrmrYccNV4+kjgD03Ttmua5gQ+wvf91OpEeBzabLvDL5LjUCVU/dtmzgfR9KTOjfj6atNtfDjs7502Qb5zfCI8DuVaVdQCiKFGTCCUo57jQvmmCqzB96X4o6Zpv9Wx+TX4opNtxTPA3YA3zOMdgLyg33cTumHRWj1D3fv/AtAH2AusB27TNC3ctq2VBsxRSq1USl0X4vGeQJJSal7VNlcc5fIdSV2BAuAt5Zsu9LpSKiZ4A6VUB+A84OXmKKA4JqwFJgMopUYCnTjUaKjv+myVlFKdgSH4RjlGok1+F0V4HGq2O9rcORHuONRR/7bJ80EcNXXVuW1OHfXMMXUdNeJ7p81p5HdOm1PXcVBKnaeU2gx8A1xd32sd9cCFpmkeTdMG46u0Roab66aUGo/vw7znKBbviFFKTQLyNU1bWddmIf7WJpZ9iXD/TwXWAJnAYOCFqrv0bckYTdOG4hsadpNSamyNxw3AMHwjU04FHlBK9TzKZTxSDPiGk76kadoQoAKoOVf6GeAeTdM8R7ls4tjxOL7g4Bp8d5dXc2hkV33XZ6ujlIrFdwf9dk3TyiJ9Woi/tervokiOQ5h2R5s6J+o5Ds8Quv5tc+eDOKrqqnPblHqur2PmOmrk906bchjfOW1KfcdB07QvNE3rDZwLPFLf6xmavIQR0jStRCk1DzgNqJbQRyk1EN90gtM1TStshuIdCWOAs5VSZwBRQLxS6n1N0y4L2mY3kBX0e0d8ow/agkj2/yrg8aphQ38opXLxzYdcdvSLe2Romra36t98pdQX+IbgLgjaZDdwUNO0CqBCKbUAGIRvblhrtxvYHTTK6jNqBy6GAx/5ZguRCpyhlHJrmjbrqJVStGlVX5xXgS9ZGpBb9RPJ9dmqKKWM+BoMMzRNm9mAp7ap76JIjkO4dkdbOiciOA4h61/a2Pkgjq666ty2JILr65i4jg7je6fNOJzvnLakIeeCpmkLlFLdlFKpmqYdDLfd0V5VJE0plVj1fwvwJ2BzjW2ygZnA5ZqmtYXOGgCapt2naVpHTdM6AxcDv9TotAN8BVyhfI4HSjVN23e0y3okRLj/u4CJAFXzH3sB249qQY8gpVSMUirO/3/gFGoE7YAvgROVUgalVDRwHL55Ya2epmn7gTylVK+qP03El4g0eJsumqZ1rjpPPgOmStBCNCXlW9nGVPXrtcACTdPKIrw+W42qDsIbwCZN055q4NOXAz2UUl2qjtXF+L6fWp1IjkO4dkdbOiciOQ511L9t5nwQR1+4Orc5y9TUIqxv22wb3+8wv3fahMP5zmlLIjwO3au2Q/lW2TEBdQZxjvaIi/bAO0opPb6gySeaps1WSt0AoGnay8CDQArwYtW+uDVNG36Uy3nU1Nj3b/FlHf4DqKQqQt2W1dj/R4C3lVLr8Q2pu6euqFsrlAF8UXVeG4APNE37PvgYaJq2SSn1PbAOXy6Q1zVNa5UN5TBuAWZUNWK2A1fVOAeEOCxKqQ+Bk4BUpdRu4CF8iaD951gf4F2llAdf4OyaqqeGvD6Pbumb1BjgcmB91RBt8K3clA2+Y6GUagesAOIBr1LqdnxZv8uUUjcDP+BbUeJNTdM2HuXyN5V6jwPh2x1t6ZyI5DiEpGmauw2dD6KJHUad25ZEcn0dC238w/reOfrFPSIO5zunLYnkOJyPL5jnAmzARUHJOkNS9TwuhBBCCCGEEEII0WyOenJOIYQQQgghhBBCiEhJ4EIIIYQQQgghhBAtlgQuhBBCCCGEEEII0WJJ4EIIIYQQQgghhBAtlgQuhBBCCCGEEEII0WJJ4EIIIYQQQgghhBAtlgQuhBBCCCGEEEII0WJJ4EIIIYQQQgghhBAt1v8DaeUH7wOW1iAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = sample.plot_results(nsamples=1000, fig=None, save_plot=True,\n", + " filename=\"modeling_tutorial_mcmc_corner.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calibrating Likelihood Ratio Tests\n", + "\n", + "In order to use likelihood ratio tests for model comparison, one must compute the p-value of obtaining a likelihood ratio at least as high as that observed given that the null hypothesis (the simpler model) is true. The distribution of likelihood ratios under that assumption will only follow an analytical distribution if\n", + "* the models are nested, i.e. the simpler model is a special case of the more complex model *and*\n", + "* the parameter values that transform the complex model into the simple one do not lie on the boundary of parameter space. \n", + "\n", + "Imagine e.g. a simple model without a QPO, and a complex model with a QPO, where in order to make the simpler model out of the more complex one you would set the QPO amplitude to zero. However, the amplitude cannot go below zero, thus the critical parameter value transforming the complex into the simple model lie on the boundary of parameter space.\n", + "\n", + "If these two conditions are not given, the observed likelihood ratio must be calibrated via simulations of the simpler model. In general, one should *not* simulate from the best-fit model alone: this ignores the uncertainty in the model parameters, and thus may artificially inflate the significance of the result.\n", + "\n", + "In the purely frequentist (maximum likelihood case), one does not know the shape of the probability distribution for the parameters. A rough approximation can be obtained by assuming the likelihood surface to be a multi-variate Gaussian, with covariances given by the inverse Fisher information. One may sample from that distribution and then simulate fake data sets using the sampled parameters. Each simulated data set will be fit with both models to compute a likelihood ratio, which is then used to build a distribution of likelihood ratios from the simpler model to compare the observed likelihood ratio to.\n", + "\n", + "In the Bayesian case, one may sample from the posterior for the parameters directly and then use these samples as above to create fake data sets in order to derive a posterior probability distribution for the likelihood ratios and thus a posterior predictive p-value.\n", + "\n", + "For the statistical background of much of this, see [Protassov et al, 2002](http://adsabs.harvard.edu/abs/2002ApJ...571..545P).\n", + "\n", + "Below, we set up code that will do exactly that, for both the frequentist and Bayesian case.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "\n", + "def _generate_model(lpost, pars):\n", + " \"\"\"\n", + " Helper function that generates a fake PSD similar to the \n", + " one in the data, but with different parameters.\n", + " \n", + " Parameters\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + " \n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder \n", + " to generate a model data set.\n", + " \n", + " Returns:\n", + " --------\n", + " model_data : numpy.ndarray\n", + " An array of model values for each bin in lpost.x\n", + " \n", + " \"\"\"\n", + " # get the model\n", + " m = lpost.model\n", + "\n", + " # reset the parameters\n", + " _fitter_to_model_params(m, pars)\n", + " \n", + " # make a model spectrum\n", + " model_data = lpost.model(lpost.x)\n", + " \n", + " return model_data\n", + "\n", + "def _generate_psd(ps, lpost, pars):\n", + " \"\"\"\n", + " Generate a fake power spectrum from a model.\n", + " \n", + " Parameters:\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + " \n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder \n", + " to generate a model data set.\n", + " \n", + " Returns:\n", + " --------\n", + " sim_ps : stingray.Powerspectrum object\n", + " The simulated Powerspectrum object\n", + " \n", + " \"\"\"\n", + " \n", + " model_spectrum = _generate_model(lpost, pars)\n", + " \n", + " # use chi-square distribution to get fake data\n", + " model_powers = model_spectrum*np.random.chisquare(2*ps.m, \n", + " size=model_spectrum.shape[0])/(2.*ps.m)\n", + "\n", + " sim_ps = copy.copy(ps)\n", + "\n", + " sim_ps.powers = model_powers\n", + " \n", + "\n", + " return sim_ps\n", + " \n", + "def _compute_pvalue(obs_val, sim):\n", + " \"\"\"\n", + " Compute the p-value given an observed value of a test statistic \n", + " and some simulations of that same test statistic.\n", + " \n", + " Parameters\n", + " ----------\n", + " obs_value : float\n", + " The observed value of the test statistic in question\n", + " \n", + " sim: iterable\n", + " A list or array of simulated values for the test statistic\n", + " \n", + " Returns\n", + " -------\n", + " pval : float [0, 1]\n", + " The p-value for the test statistic given the simulations.\n", + " \n", + " \"\"\"\n", + " \n", + " # cast the simulations as a numpy array\n", + " sim = np.array(sim)\n", + " \n", + " # find all simulations that are larger than \n", + " # the observed value\n", + " ntail = sim[sim > obs_val].shape[0]\n", + " \n", + " # divide by the total number of simulations\n", + " pval = ntail/sim.shape[0]\n", + "\n", + " return pval\n", + "\n", + "def calibrate_lrt(ps, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, \n", + " nsim=1000, niter=200, nwalker=500, burnin=200, namestr=\"test\"):\n", + " \n", + " \n", + " # set up the ParameterEstimation object\n", + " parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "\n", + " # compute the observed likelihood ratio\n", + " lrt_obs, res1, res2 = parest.compute_lrt(lpost1, t1, \n", + " lpost2, t2,\n", + " neg=neg, \n", + " max_post=max_post)\n", + " \n", + " # simulate parameter sets from the simpler model\n", + " if not max_post:\n", + " # using Maximum Likelihood, so I'm going to simulate parameters \n", + " # from a multivariate Gaussian\n", + " \n", + " # set up the distribution\n", + " mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov)\n", + " \n", + " # sample parameters\n", + " s_all = mvn.rvs(size=nsim)\n", + " \n", + " else:\n", + " if sample is None:\n", + " # sample the posterior using MCMC\n", + " sample = parest.sample(lpost, res1.p_opt, cov=res1.cov, \n", + " nwalkers=nwalker, niter=niter, \n", + " burnin=burnin, namestr=namestr)\n", + " \n", + " \n", + " # pick nsim samples out of the posterior sample\n", + " s_all = sample[np.random.choice(sample.shape[0], nsim, replace=False)]\n", + " \n", + " lrt_sim = np.zeros(nsim)\n", + " \n", + " # now I can loop over all simulated parameter sets to generate a PSD\n", + " for i,s in enumerate(s_all):\n", + " \n", + " # generate fake PSD\n", + " sim_ps = _generate_psd(ps, lpost1, s)\n", + "\n", + " # make LogLikelihood objects for both:\n", + " if not max_post:\n", + " sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,\n", + " model=lpost1.model, m=sim_ps.m)\n", + " sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power, \n", + " model=lpost2.model, m=sim_ps.m)\n", + " else:\n", + " # make a Posterior object\n", + " sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power, \n", + " lpost1.model, m=sim_ps.m)\n", + " sim_lpost1.logprior = lpost1.logprior\n", + " \n", + " sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power, \n", + " lpost2.model, m=sim_ps.m)\n", + " sim_lpost2.logprior = lpost2.logprior\n", + "\n", + " \n", + " parest_sim = PSDParEst(sim_ps, max_post=max_post)\n", + " \n", + " lrt_sim[i], _, _ = parest_sim.compute_lrt(sim_lpost1, t1, \n", + " sim_lpost2, t2, \n", + " neg=neg, \n", + " max_post=max_post)\n", + "\n", + " # now I can compute the p-value:\n", + " pval = _compute_pvalue(lrt_obs, lrt_sim)\n", + " return pval" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, loglike, starting_pars, \n", + " loglike_bplc, bplc_start_pars, \n", + " max_post=False, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The p-value for rejecting the simpler model is: 0.97\n" + ] + } + ], + "source": [ + "print(\"The p-value for rejecting the simpler model is: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the p-value for rejecting the powerlaw model is fairly large: since we simulated from that model, we would be surprised if it generated a small p-value, causing us to reject this model (note, however, that if the null hypothesis is true, the p-value will be uniformely distributed between 0 and 1. By definition, then, you will get a p-value smaller or equal to 0.01 in approximately one out of a hundred cases)\n", + "\n", + "We can do the same with the Bayesian model, in which case the result is called a *posterior predictive p-value*, which, in turn, is often used in posterior model checking (not yet implemented!).\n", + "\n", + "We have not yet defined a `PSDPosterior` object for the bent power law model, so let's do that. First, let's define some priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law indices\n", + "p_alpha1 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "p_alpha2 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the break frequency\n", + "p_x_break = lambda xbreak: ((0.01 <= xbreak) & (10.0 >= xbreak))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_1_0\"] = p_alpha\n", + "priors[\"alpha_2_0\"] = p_alpha\n", + "\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n", + "priors[\"x_break_0\"] = p_x_break\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set up the `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "lpost_bplc = PSDPosterior(ps.freq, ps.power, bplc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2230.14039643262" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lpost_bplc(bplc_start_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And do the posterior predictive p-value. Since we've already sampled from the simple model, we can pass that sample to the `calibrate_lrt` function, in order to cut down on computation time (if the keyword `sample` is not given, it will automatically run MCMC:" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, lpost, starting_pars, \n", + " lpost_bplc, bplc_start_pars, \n", + " sample=sample.samples,\n", + " max_post=True, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The posterior predictive p-value is: p = 1.0\n" + ] + } + ], + "source": [ + "print(\"The posterior predictive p-value is: p = \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we find that the p-value does not suggest rejecting the powerlaw model.\n", + "\n", + "Of course, a slightly modified version is implemented in `stingray` as a subclass of the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod=\"BFGS\")" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_lrt(lpost, starting_pars, lpost_bplc, bplc_start_pars, \n", + " sample=sample.samples, nsim=100, max_post=True, seed=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.2\n" + ] + } + ], + "source": [ + "print(pval)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bayesian-ish QPO Searches\n", + "\n", + "When searching for quasi-periodic oscillations (QPOs) in light curves that are not constant (for example because they are bursts or have other types of variability), one must take care that the variable background is accurately modelled (most standard tools assume that the light curve is constant). \n", + "\n", + "In [Vaughan et al, 2010](http://adsabs.harvard.edu/abs/2010MNRAS.402..307V), a method was introduced to search for QPOs in the presence of red noise (stochastic variability), and in [Huppenkothen et al, 2013](http://adsabs.harvard.edu/abs/2013ApJ...768...87H) it was extended to magnetar bursts, and in [Inglis et al, 2015](http://adsabs.harvard.edu/abs/2015ApJ...798..108I) and [Inglis et al, 2016](http://adsabs.harvard.edu/abs/2016ApJ...833..284I) a similar approach was used to find QPOs in solar flares.\n", + "\n", + "Based on a model for the broadband spectral noise, the algorithm finds the highest outlier in a test statistic based on the data-model residuals (under the assumption that if the broadband model is correct, the test statistic $T_R = \\max_j(2 D_j/m_j)$ for $j$ power spectral bins with powers $D_j$ and model powers $m_j$ will be distributed following a $\\chi^2$ distribution with two degrees of freedom). The observed test statistic $T_R$ is then compared to a theoretical distribution based on simulated power spectra without an outlier in order to compute a posterior predictive p-value as above for the likelihood ratio.\n", + "\n", + "Since the concept is very similar to that above, we do not show the full code here. Instead, the p-value can be calculated using the method `calibrate_highest_outlier`, which belongs to the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# compute highest outlier in the data, and the frequency and index\n", + "# where that power occurs\n", + "max_power, max_freq, max_ind = parest._compute_highest_outlier(lpost, res)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.79715722])" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_power" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_highest_outlier(lpost, starting_pars, sample=sample,\n", + " max_post=True,\n", + " nsim=100, niter=200, nwalkers=500,\n", + " burnin=200, namestr=\"test\")" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.15" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pval" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convenience Functions\n", + "\n", + "For convenience, we have implemented some simple functions to reduce overhead with having to instantiate objects of the various classes.\n", + "\n", + "Note that these convenience function use similar approaches and guesses in all cases; this might work for some simple quicklook analysis, but when preparing publication-ready results, one should approach the analysis with more care and make sure the options chosen are appropriate for the problem at hand.\n", + "\n", + "### Fitting a power spectrum with some model\n", + "\n", + "The code above allows for a lot of freedom in building an appropriate model for your application. However, in everyday life, one might occasionally want to do a quick fit for various applications, without having to go too much into details. Below is a convenience function written for exactly that purpose.\n", + "\n", + "Please note that while this aims to use reasonable defaults, this is unlikely to produce publication-ready results!\n", + "\n", + "So let's fit a power law and a constant to some data, which we'll create below:" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "m = 1\n", + "nfreq = 100000\n", + "freq = np.linspace(1, 1000, nfreq)\n", + "\n", + "np.random.seed(100) # set the seed for the random number generator\n", + "noise = np.random.exponential(size=nfreq)\n", + "\n", + "model = models.PowerLaw1D() + models.Const1D()\n", + "model.x_0_0.fixed = True\n", + "\n", + "alpha_0 = 2.0\n", + "amplitude_0 = 100.0\n", + "amplitude_1 = 2.0\n", + "\n", + "model.alpha_0 = alpha_0\n", + "model.amplitude_0 = amplitude_0\n", + "model.amplitude_1 = amplitude_1\n", + "\n", + "p = model(freq)\n", + "power = noise * p\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = power\n", + "ps.m = m\n", + "ps.df = freq[1] - freq[0]\n", + "ps.norm = \"leahy\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What does this data set look like?" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAu6klEQVR4nO3deXwUVdY38N9JSAj7oqBAWE1AghiUwAjoyybbmLCICnlQRmTYUZRRCMKMOKwyyKMOi4IgqzCYhx0GUBSRTbbhVbaw+mIEH8CAskPIef8I3XZ3ujtVXVVdt7vP9/Ppz6e76tatk67O6du3bt0iZoYQQojwF2V3AEIIIYJDEr4QQkQISfhCCBEhJOELIUSEkIQvhBARQhK+EEJEiCJ2B+DPvffeyzVq1LA7DCGECCl79+69wMwVPJcrmfCJKA1AWkJCAvbs2WN3OEIIEVKI6P95W65klw4zr2bmvmXKlLE7FCGECBtKJnwiSiOimb/++qvdoQghRNhQMuFLC18IIcynZMIXQghhPiUTvnTpCCGE+ZRM+NKlI4QQ5lMy4Vvlyy+/xOjRo5GTk2N3KEIIEXTKj8M3U+vWrQEAMTExGDlypKl1CyGE6pRs4VvdpXP+/HlL6hVCCJUpmfCFEEKYTxL+Xd9++y0SExMxceJEu0MRQghLRGTC//HHH/Huu+/ihx9+cC6bOnUqjh8/jhEjRtgXmBBCWEjJhG/GOPyrV69iy5YtuH37NiZNmoSGDRs61y1btgyvv/46evbs6Vx248YNQzELIYTqlEz4Zpy0feaZZ9C8eXMMHToUw4cPx759+wqU+eabb/zFgFdffRXDhw8HMwcchxBCqELJhG+G9evXA8jvqgnE0aNH8f7772PSpEn46aefvJa5desWFixYgMOHDwccpxBCBIuS4/BVkJub6/W5q0WLFuGll15C5cqVfX4pCCGEKsK2hR8MWVlZAIAzZ87o2k66iIQQdghawieizkQ0i4hWElHbYO1Xq8zMTOfzmzdv+i17+vRprF27Fnfu3NG9n5MnT+L+++/H4MGDdW8rhBBGGEr4RDSHiM4R0QGP5e2JKIuIjhNRBgAw8wpm7gPgRQDdjOzXTN6S9vTp072WXbp0KUaMGIFmzZohNTUVCxcu1L2/zMxMnDt3DtOmTdO9rRBCGGG0hT8XQHvXBUQUDWAagA4AkgCkE1GSS5FRd9cr4cKFCwVa9N9//32BctevX0e3bt0wceJEZGdnAwB+/vlnr3UeO3YMX3zxhdeum7y8PBOiFkII/QydtGXmLURUw2NxYwDHmfkkABDREgCdiOgwgIkA/s3MBcdI2iQ+Ph7lypXzW+a7775DhQoFbgDvU6NGjfDrr79i27ZtaNq0qXP58uXL5cIuIYRtrOjDrwLgR5fX2XeXvQzgSQDPEFF/XxsTUV8i2kNEe4IxyVlubq7XydSOHTvmfH769GldJ1odF4wtWLDAbfnTTz8dYJRCCGGcFcMyycsyZuYPAHxQ2MbMPJOIzgJIi42NbVhYeW8cY/CNOHjwoPM5kbc/qXClS5c2HIcQQpjFihZ+NoCqLq/jAegat2j0StsePXoEtJ3L/lGkiPHvwo0bN+LWrVuG6xFCCDNYkfB3A0gkoppEFAugO4BVeiowOpeO0TtazZ07FxkZGYbqAID9+/fL7JtCCGUYHZa5GMAOAHWIKJuIejNzLoDBADYAOAxgKTMf9FeP2bp37x7M3fm1ePFiu0MQQggAxkfppPtYvg7AOgP1rgawOiUlpU+gdajCMc5/zZo1fsvduHEDp06dQt26dYMRlhAiAik5tYLRLh2Vpi5ISsq/BCEtLc1vufT0dCQlJWH16tXBCEsIEYGUTPhGT9q6jrAJFseMmZ7nD7SM1Dl79ixWrFgBIH+sPpA/E+fXX3/tvCjs7bffxuTJk02MWAgRaZRM+EZb+FevXjU5osINGTIEADBnzhzd27766qvO53l5eTh//jzGjh2LFi1a4M0338T58+cxevRovPHGG4XO8yOEEL4omfDNuAGKmbR0EX3++ecAgF9++UV3/Y7WPQDMmzcPFStWxJgxYwAAU6ZMcZue2XVqBmZGv379MH78eN37FEJEHiUTvmpefvllt6Tsy44dO3QPw9Rya0VfXzjHjh3DzJkzMXLkSF37FEJEJiUTvhn3tDXbP/7xj0LLbNq0SVede/fuRbly5Qq9OGvYsGFel/u6MYsQQnijZMJXrUvHKnPnztXUwl+0aFEQohFChDslE75R999/vy37nT9/vq7yRqZKzsnJQYcOHQLeXq/JkyfLKCEhQlxYJvx3333Xlv26zrDpkJmZGdCNUgozZ84cnD592nA9n376Kdq1a4cLFy74LHPr1i288cYbMkpIiBCnZMI32offpEkTS5JsIK5fv44XXnjB1DpzcnJw6dIlzeXff/99DBkyxOvJ3x49emDjxo2oW7cu2rRp4zWhu/4SkRu4CBG6lEz4kdKHH4gtW7agQoUKGDdunNvyWbNmFSj7+uuvY9CgQXj11VfxwQcf4MiRIz7rvXDhAr744gt8+umnBdapdOWyECJwSib8SKG3zx8AZsyY4bWV3bdv3wLL3n33Xbf782qZqlm6bMIfM+v6hSiM0fur+OrVq/jtt98siUUSvo2uXLmie5v//Oc/Ae8v0Bu5+GrhnzhxwutN4IXaunXrhnLlymHfPmXuNBpSbt++jd27d/v97J86dQojR47EDz/8gAoVKuDFF1/UXH/JkiVRpkwZS4ZdS8IPMVpP1HpL0loSvtbum5UrVyIhIQH9+vXDBx98gLNnz7qtP3ToEHbu3KmpLqFfTk4Oxo4di+zsbN3bfvbZZwCATz75xOywgu7kyZPYuHGjprJXrlzxOzjBU25uLi5evFhgeb9+/dC4cWPn1fDeNG/eHOPHj0fNmjWRk5ODefPmad6vgyVTxDCzcg8AaQBmJiQkcKAWLlzIACLq4apJkyYF1tetW5efffZZBsCvvvoq5+bmFigzffr0Au/l1atXneuvXbvGzMwtWrQoULcr13Xnzp0L+DhGquzsbB41ahT//PPPXtenpKQwAK5Tp47uuh3HZfDgwUbDdHP58mUeOHAgb9++3dR6/XH8LatXr/Zb7osvvnCWvXLlCjMz79ixg1u3bs1ZWVm8fPlyHjp0KOfl5Tm3SUpKYgD8008/8aVLlzg1NZXHjh3r9tn+z3/+47af06dPc15entf/z7fffttnfNevX2dm5iNHjjjLX7p0KcB3hRnAHvaWW70tVOXRsGHDgP/gSEz4S5cuZWbmO3fuaCpfsWJFTQn/ypUrzvXnz5/nvLw8btq0qd8vHNflLVq0cFuXm5vr/OIQ3j3yyCMMgJs3b15g3alTp3y+7/5s2bKFBwwY4DPh5+bm8s2bN52vb926xfv373dLgszM3377Lc+aNcv5evLkybx48WLOyMjwGdPt27c5JyfHbdmZM2cK1J2bm1tgmT/e3oe8vDxu3rw5d+/ene/cucM7d+50K3fkyBG3bZOTk53PH3roIZ43b57m/yHX/U6ePJkB8FtvveWzbGZmprO84712JPlevXq5lZWEr0MkJnwAfOvWLa/JWOvDkfD379/Pa9euZWb3hK/lg3/3A+d81KxZk3Nzc53rWrduzRUrVuTLly87l+Xl5XF2dnbAx9ufnTt38pgxY9xiuHr1qiX7unbtGqelpfHChQsN1eN474oVK+Zznbf3ffHixfzpp5/6rdPx8Ez4jz/+OCcmJvLt27eZmbl79+4MgN9//32v9Xz22Wf8ww8/OF/Hx8d7jYmZuXTp0gyAT58+7YwTAE+dOpWZ8xP9m2++yQDY1/+9ty8Cb+/Djz/+6FxWpEgR7tChg9ek6++z7PglrPV/jpm5ePHimsp36dKFBw4cyAB43bp1nJ6e7rWcJHwdzEr4rVu3tjRBm/2oXLmy4TpcWzcnT57ky5cva9rO4wNX4LF+/Xq3dTt27HCWHzNmDAPgyZMnB3zMfXHsb968eczMPHr0aAbAGzdu1F3X0aNH+aeffuLZs2fz3LlzC6x/7733nPvLy8vjr7/+ukDLVk/Mrgl/3759/Mc//lHT+15YcgTcE77rMf/888+5atWqztf16tXjy5cv88KFC/nXX391q+PAgQN+PwtZWVl88+ZNt/8nZuZKlSq5lV20aJHPv4mZecaMGQyA58+fzxMmTOCjR4/yjRs33LYZNmyYW5dIMB9HjhzhkiVLmlrnxYsXdX9uXI61JHzHIz4+nmvVqqXpTX/ttdds+QDZ+Zg0aZLz+fjx4zkzM1PTdh4fuAKPSpUq8aFDh5yvXRO+Y1lsbGzAx9zTxYsX+auvvnLW/fe//91tX4899phb+d9++42fe+45Xrt2LZ84cYI7dOjgFqNnsgPAW7ZscVv/17/+tUCZtLQ03bE7ti1evDjn5eXx5cuXfSYUb9vduXPHZ52OhyPhe3Z5PPDAA5o/K57dEI7HjRs3uGvXrgzA7XxPVFQUnz9/3q1sbm4uDxo0yG3ZmjVr/MYeCY9Fixbp/ty4vF/2JnwAtQDMBpCpdRurEn5eXh5Pmzat0Dd8ypQpbi22SHkUK1YsoO08PnAFHpUqVXJrOXpL+AD4+PHjzMxek5YetWvXdqvXcdLM8bpJkyZu5UeNGuVc16xZM+fz3r17c+XKlXn8+PFe/66dO3fy119/rfm9Yc7/pVC3bl2eP3++1xOOju2KFy/OTz31lO73/ZVXXuGff/7Z2T3j+R4D+Qk/Ly+PY2Ji3Jbfe++9tn8G4+Li+IUXXuDZs2fzhAkTbI/HjoeRk+qwIuEDmAPgHIADHsvbA8gCcBxAhse6oCf8d955h6Oiogr8gxT2hm/dupWHDRtm+4EPlcf58+c1v7dAfqL0Vd4xqqJVq1Y8Z84c3r17Ny9evFjTsf/oo4+4Z8+ehe7fM+G7ntBMSEgw9b1xaNOmjduXnud7t23bNs7JydFVd15eHn///ff8008/FVhHRNytWzc+e/ZsgXUDBw7k2bNn2/65kYf3R5cuXQLKfXf/nyxJ+P8HwKNwSfgAogGcQH6LPhbA/wWQ5LI+6Ak/JyeHo6Ojna9d3hS/jxs3brglAXkU/hgzZgzPnTtXU9k333zT57HwTIqOXx3fffcdM+efHN2+fTvfuXOHT506xSNGjHAmTa2xBjPhP/nkk37XnzhxglesWBFQ3Y8//rjtx10e5j9iYmICzn/wkfCLwABm3kJENTwWNwZwnJlPAgARLQHQCcAhLXUSUV8AfQGgWrVqRsILGiJyfJlFvL/+9a+ay44fPx6XLl3Ctm3bCi17/fp1APkXntWvXx9/+ctfMGPGDLcyu3btwhdffKF5/0SEv//979i+fTvWrl2rebtAFBbXxYsXMWLEiIDq3rp1a0DbiQjk7VtAzwNADbi38J8B8LHL6xcATAVwD4APkd/6H6GlbjNb+D169GAA3K1bN9dvQb8PrS18x5hpeVj/WLNmDV+6dMnnei3H1dvjn//8p+1/mzzk4fkIFKxo4fvg7fp9ZuZfAPTXVAFRGoC0hIQE04L66KOP0LNnTzRr1kzXdg0aNNC9r3Llynm9JFsYl5qaakm9L7/8siX1CqESK+bSyQZQ1eV1PIAzFuxHlxIlSqBt27YoUaKEru169eplUURCCBFcViT83QASiagmEcUC6A5glZ4KWKH58GNiYuwOQehw5oztbQshlGUo4RPRYgA7ANQhomwi6s3MuQAGA9gA4DCApcx8UGe9hu54ZbXk5GS7QxA+VKlSxe4QhFCWoYTPzOnMXImZY5g5npln312+jplrM/MDzDyusHq81KtMC9/TY489hv3796No0aI+y9SrVy+IEQkhhDZKzoevagu/Zs2a+J//+R+/ZXbv3o0nnngiSBEJIYR2SiZ8VVv4zz77LCpXruy3TEpKSsB3lhJCCCspmfBVbeELIUQoUzLhq9rC10puEC2EUJGSCT/U1a9f3+4QhBCiACUTfiR16ZQqVcruEIQQEULJhB8KXTrR0dHO52XLltW9/VNPPYXc3Fx8/vnnJkYlhBC+KZnw7aS1O2bkyJHO582aNcP06dOxadMmzftZs2aN25eGEEJYTcmEb2eXTs+ePTWVGzFiBBo3boy4uDh07twZAwYMQKtWrSyOTgghAqdkwg+FLh0iws6dO/HLL7+gYcOGdocjhBCFUjLhhwoiQvHixe0OQwghNJGEb4OSJUs6n+fm5toYiRAikkjC91CxYkXL97Fu3Trn82vXrlm+PyGEABRN+HactK1fvz6ysrJw3333+SxTqVIlw/spW7as2+RqrvPtnzp1SlMdu3btMhyHECLyWHGLQ8OYeTWA1SkpKX2Ctc/ExETUrl3ba9L96quvsHnzZvTu3dv0/TZt2hTPPPMMHn30Uc3j+Rs1aoSoqCjk5eWZHo8QInwpmfBV06JFC7Ro0cKSumNjY/HZZ58BkDl4hBDWUrJLRwghhPkk4Yeo9u3b2x2CECLEBC3hE1EJIppHRLOIqEew9huupk6dancIQogQY/Qm5nOI6BwRHfBY3p6IsojoOBFl3F38NIBMZu4DoKOR/Yr82y0KIYQeRlv4cwG49S0QUTSAaQA6AEgCkE5ESQDiAfx4t9gdg/sNS2XKlEFqairatm1rdyhCiDBkaJQOM28hohoeixsDOM7MJwGAiJYA6AQgG/lJfz8UPneQlJSEMmXKICEhAbGxsUHdNxFh9erVzudCCGEmKxJvFfzekgfyE30VAMsAdCWiGQBW+9qYiPoS0R4i2nP+/HkLwvOuZcuWAICqVavif//3f7Fr1y5lkm7fvn3tDkEIEQasSPjesiQz81Vm7sXMA5h5ka+NmXkmgLcB7AtWC7tBgwYYNGiQ83XRokURFWXvj5B7773X+fyjjz6yMRIhRLiwIqtlA6jq8joewBkL9mOalJSUoLXmtV5c1bx5c2sDEUJEHCsS/m4AiURUk4hiAXQHsEpPBaEwH36grLpi1w4PPfSQ3SEIIXQwOixzMYAdAOoQUTYR9WbmXACDAWwAcBjAUmY+qLPeiLmJeahKTk6WSdyECDFGR+mk+1i+DsA6b+s01hv0ydOEPmXKlEGxYsXsDkMIoYOSwyNDvYXvuCjqnnvuKbDO6Ilo126u9957z1BdQojIomTCD/U+/DZt2mDZsmXYunWr2/K4uDi88cYbpu1nyJAhftfHx8ebti9PqgxZFUJop+T0yESUBiAtISHB7lACEhUVhS5durgtq1q1Ko4fPx60i7l69uyJ3bt3W1Y/M1tWtxDCGmHbwi9atKjzuetdpeykJ9m3a9cOAPDkk08GtK9JkyZJUhZCuFGyhW+G9u3bY/jw4ahVq5bbTcNDRa9evVCpUiX84Q9/8Fvusccew86dO92Wvf/++35v1WgG6dIRIvQomfDN6NIpWbIkJk6cqKmsKr8AXBUpUgSpqamFlluxYgXuv/9+t2WOXxLSwhdCuArbLh0tRo0ahYSEBLz00kuW7sdK3lrylStXBgCcPXs22OEIIRSmZMIPljFjxuDYsWNISUmxOxTNoqOjCy3j6G5p0KCBpjpdzy2kp3u9tKIA+fUgROiJ6IQfih5++OFCyzgmftOalH/77Tfncy1fKK7GjBmjq7wQwj5KJvxQv/DKCq1atQIAdOjQodCyehO+64gmAKhUqVKh2zh+RYwaNUrTPoQQ9lMy4Yf6hVdWWLBgARYsWIBXXnml0LKOZJyXl6d7P0SE8uXLF1ou0OGiQgj7KJnwRUGVK1fG888/j7i4uELL6m3heypsyob33nsPr732WkB1CyHsIwk/DDla+IEmfH+t94SEBAwZMgQlSpTQXW+fPjIXnhB2koQfhhwtfMcJXrMuPBs1ahQ2bdoU8Pbt27cvvJAQwjJKJnw5aWuMI+H/4x//wFtvvYV9+/Zhzpw5husdM2YMqlWr5nN9cnKyz3XhdOMXIUKVkglfTtoa4+jSKV26NEaPHo3ExET06tXL8n73IkV8X7hdp04dS/cthCickglfGOPrBuze+vTNnJH0nXfeQd26dTFv3jyv62X+HSHsJQk/DEyZMsXttZ7E2rhx44C39VStWjUcOnQIPXv2LLBOrswVwn6S8MOAZ1eNrxa+FkYSs7TghVBb0BI+EdUiotlElBmsfUYqFRLv0qVL8fbbbztfB+vGL0II3zQlfCKaQ0TniOiAx/L2RJRFRMeJKMNfHcx8kpl7GwlWaKOnD9+TWV8Wzz77LP72t785X997770B15WUlGRGSEJEPK0t/LkA3AZRE1E0gGkAOgBIApBORElEVJ+I1ng8KpoatfDLyPz+WqZV8NSgQQOULl0a1atXD3i/QgjraUr4zLwFQI7H4sYAjt9tud8CsARAJ2b+nplTPR7ntAZERH2JaA8R7Tl//rzmP0T87pFHHtG9zbx589C4cWMMHTpU97Z79+7FhQsX/H7RGPnl4G3bQYMGBVyfEJHKSB9+FQA/urzOvrvMKyK6h4g+BPAIEY3wVY6ZZwJ4G8A+6ffVb9GiRQGdtO3Zsye+/fZbVK1aVfe2UVFRhu8aNnLkSJw4ccLrOm8Jf+rUqYb2J0QkMpLwvTXZfHYSM/MvzNyfmR9g5gn+KpYLr/Rz9JHXqlXLZxlvffh65783wl8rf+zYsYiPjw9aLEJEIiMJPxuAa3MwHsAZY+Hkk6kV9Nu8eTMyMzMLvem5Q0ZGBmJjYwudbrl27dpmhAci0jWnz7Bhw0zZrxDid0YS/m4AiURUk4hiAXQHsMqcsIRe9erVQ9euXTX3lU+YMAEXL14M6u0dW7ZsiR49emgqO378eOdzFYaZChEOtA7LXAxgB4A6RJRNRL2ZORfAYAAbABwGsJSZD5oRlHTpBEfx4sWDti8iQnR0NBYuXOi3jBDCOr5nu3LBzF7vbM3M6wCsMzUi5HfpAEgzc54XEX7TG3Tq1AkrV660OwwhQoaSUytIC18dKnxJ+Gr5P/roo26vly1bhhkzZgQjJCFCkpIJX4QfK7prvNXZpUsX0/cjRLhQMuHLKJ3I5O9LYcuWLQWWlS1b1u01Myvxi0QIVSmZ8KVLxxqhlAxdkz8R4YknnihQRu6RK4Q+SiZ8aeGHH7OnVgCAuLg4t9eh9IUmhB2UTPjSwrffhAkTUL58eaxYsQKxsbFo06aN5fuUYZlCWEvTsEwReTIyMjB8+HAQEa5cueL3frVamJnMfQ3XLVq0qGn7ECIcKdnCDyetWrUCALRt29bmSPRzJOmYmBhbW9+e+y5dunSBMtHR0QXe42eeeSaoVxILoTolE3449eF/8sknePfddzFx4kS7Qwn5Pu7Vq1cjKSkJ8+fPL7Bu06ZNBe6q9dlnn2HOnDm69pGYmKipnEz0JkKRkgk/nPrwq1WrhqFDhxq641M40PILobAyqampOHjwIOrVq2fqfh2Sk5Nx9OhRzeWFCDVKJnwhXAWrO0nPL6BOnTpZGMnv3nvvvaDsR0QGSfhCSXqTfLDPMdSvXz8o+2nevHlQ9iMigyT8CGJnH74ZXTpaeP6NgdQ5bdo0t+mZHVzPKRkdtSSEHZRM+OF00lYUtHLlSs3z4gPB79IZOHAgRowoeBfO0qVL47XXXkOrVq0KTNxmhuHDh5tepxCulEz44XTSVhTUsWNHv/PiB8LxpWDky0HLyJspU6Zg06ZNKF++fMD78cXbSK6aNWuavh8RuZRM+CL8WDG1gjdGuq369++vuWz16tU1l/V1c3ZvXG8D+d///d9y9bEwlST8CKLqOPynn34agO/EHqyk5zmOvzDp6V7vC1SAvxvLewr0GG3evBlNmjQJaFsROSThi6Dwl7TNmBIhHFvCepJ/8+bNkZaWZmE0IhwEdagBEXUG8BSAigCmMfPGYO5fqMlbsjbr14iV3UHeyicmJuLYsWPO10uWLNFVp96Y3nnnHWc/fzh+6QlzaW7hE9EcIjpHRAc8lrcnoiwiOk5EGf7qYOYVzNwHwIsAugUUsQhrHTt2RGpqKqKifv9ohloic0zP8N1336FbN30f85deeklX+WHDhuHZZ5/VtY0Zdu3aFfR9CuP0dOnMBdDedQERRQOYBqADgCQA6USURET1iWiNx6Oiy6aj7m4ngkj1cfhA/pDN1atXm1a/v/1OnjxZd4J15ev9XL9+PTZs2BDQxVmTJ08OOB6reBst16hRIxsiEUZp7tJh5i1EVMNjcWMAx5n5JAAQ0RIAnZh5AoBUzzoo/79vIoB/M/M+b/shor4A+gL589AIYZW//OUvAKB7grXC1KpVS9eJWleeJ471fElb9Uto1apVcsVvmDB60rYKgB9dXmffXebLywCeBPAMEXkdA8fMM5k5hZlTKlSoYDA8EQpCrcvGwXUIpVX0JPx77rnHkhhC9fiIgoyetPX2SfD5CWXmDwB8UGilRGkA0nzd6EKEHqvH4TvKlCtXDsWLF0e5cuUM79eVtymZx40bhxMnTmDz5s2m7MNTiRIldJWPiYmxJA4RPoy28LMBVHV5HQ/gjME6hUVUG4ffsmVLANrHs2sRFxeHo0ePYv/+/Zq3cdwgvWnTpl7Xd+zYES+88EKB5ffddx+++uorlC1bNpBQfVqwYAG6du2KP/3pT37LOb7UHAr7cgv0F8mDDz7o9vrhhx8OqB5hP6MJfzeARCKqSUSxALoDWGU0KJlaITKsX78eWVlZeOqpp7yudyTgLl266Kq3SpUqXu8/kJpa4LQSAODrr7/GjRs3vJ6c1MuMXxTPP/88MjMzUbRoUb9f0lpa9MWKFXM+37lzZ0DxeHat6rkfgUPXrl0D2rcwl55hmYsB7ABQh4iyiag3M+cCGAxgA4DDAJYy80GjQcnkaeHHWyKMjY1F7dq1fW7z73//G+vXr3eeXDW63+XLl/ss4+/iLyvG8kdHR2uuM1B9+vRxux1kvXr1wMy2/NKzu/E2c+ZMW/evCs0Jn5nTmbkSM8cwczwzz767fB0z12bmB5h5nBlBSQtfAPmzU7Zr107TVMRakrJKUxo3btzY9Dpd34ObN29aluQC+RVT2L2FXX+JCOsoObWCtPCtEQrj8FUUirHrnRdID1/nOvx55JFH/K5PTk4ONBxNVDt/ZRclE7608IVZ7J6QzSg9J4Q9T65aoVatWujXr5+pdUb6/Z6DScmELy18oZevBO46RYPZdRuhtcWpJ/5GjRphxYoVOHLkSKBhFWrcuHFB7Rrr0KFD0PYVCdTp1HTBzKsBrE5JSeljdyzCHHa1qGvVqoU2bdpYeiMRlboLzL65uuNamMOHD2Pr1q147rnnTK3fwdfnY926dThw4IDhewirdIzspGTCF9YI5w+9r9E+UVFR2LjR2KSsodL9441Zx/zBBx8MSpeRNw899JDhOsL5s6+HdOmIkPbrr78iOzvbklsOBkLrl4MZM1xakcT+/Oc/m16nUIeSCV9O2oYfq1rJpUuXRpUq/qZvMs7M2OPi4nDt2jVlJwZs06aNZXWrNCw2UimZ8IWwml3dNESk9Jhzq+bWL1u2bMBX+pohFLt0Jk2aZHqdSiZ86dKxxqOPPmrbvkO5HzyUY9ejRYsWAf2thU0vPWXKFDz44INo2LChpi4jmQQunxVfvkomfOnSsUafPn3w8ccf48SJE3aHElLMTPjBbmnWqFEDAFCqVCnT6961axe++eYb9OrVC3Xr1vVZ7rXXXnM+nzVrFvLy8nD58mWf5SPlC7YwVrwPSiZ8YY3o6Gj07t074JtzGKFan7WZiTeQeeiDlfj/9a9/IT09Hdu2bTO97kaNGuHxxx8HABw4cAC3b9/G8OHD8dhjj/ndjohQsmRJ5xDSbt26oWrVqn63iURmz8IKyLBMYbHt27dj69atpo8PD6bCWlqrVq0yZeigFWrUqIFPP/1UU1kjLcqoqChERUVh4sSJ+PDDDzX11y9cuBBffvkl2rVrh0uXLmHp0qUB778wodiHb0UPh7TwhaWaNGmCN954I6x/pterVw/t2rUDAJ9TPXtS8f3wdlXvk08+qbsercm1ZMmS6NixI4oWLYr77rvPudzIe9O5c+eAt40ESiZ8OWkrVKIlAX300UcYO3Ys/va3v1kWR9GiRS27u1b16tUxbdo0t2VNmza15abq3t7v7t27Bz0OM9y4ccPuENwomfDlpK2wmtkt7OrVq2PkyJE++127desGAOjRo4fuuh1TCzdt2tSym4mfOnUKderUcVv25z//WfdtFq2yePFiQ9sbPd6BTinh7z4LdlAy4QuhEjO+HObMmYOVK1fin//8p+5tV61ahdGjR2PJkiWG4wiGQPvLBwwYgM6dO6Ny5cqmxlOqVCk8//zzSEpKCriO/v37B7xtIPclaNu2bcD780cSvhA+OMaDN2zY0HBdxYsXR8eOHQO66KpSpUp46623ULFiRcNx+KLC0NPp06dj+fLlmmLxdctEzy+LlStXYu/evShVqhQOHjyIZs2aBRSbEX369MGdO3c0l3fc6c0KkvCF8CErKwszZszAkCFDTK87FEaNBBqj0b+tV69eAICnn37aZ5mePXvipZdecr4eOnQo1q5d6zbkePjw4ejYsSMSExMNxeNLbGwssrKyNLXg9UxzXaNGDctO6gct4RNRXSL6kIgyiWhAsPYrRKBq1qyJ/v37y5WfQZaRkYGtW7di0aJFPsswM15//XXn6+TkZPzxj390KzNx4sQC25mdSGvXro0+fUJnFndNCZ+I5hDROSI64LG8PRFlEdFxIsrwVwczH2bm/gCeA+D/BpdCWCwUWtiRKjo6Gs2aNUNcXJzubVUc7qqXlZ9NrS38uQDauy4gomgA0wB0AJAEIJ2IkoioPhGt8XhUvLtNRwBbAWwy7S8QQihFlZE9VgvFRoOmhM/MWwDkeCxuDOA4M59k5lsAlgDoxMzfM3Oqx+Pc3XpWMXNTAPrHpglhItVagunp6XaHUECgCa1Hjx7o2rUrMjIycPr0aZOjyud5/NLS0kypd+HChWjdurUpdanIyNQKVQD86PI6G8AffBUmohYAngZQFMA6P+X6AugLqDf/ihBWuHTpkiWX0dslNjYWmZmZQd1nuXLlTKmnR48eOHbsGDZtcu+EUK2BECgjCd/bO+CzScDMmwFsLqxSZp5JRGcBpMXGxhofDyeE4sIp2dstkH7/QD3xxBNB25dZjIzSyQbgOsVdPIAzxsLJJ1faCuHbvHnzAACffPKJzZHYh5m9trpffPFFtGzZEtOnT/e6nZ7hkYWx6kI4FU7aerMbQCIR1SSiWADdAawyIyiZS0eEOyP/1D179sTt27c1T9TmjZYpGlQ7KanlwrPixYvjyy+/xIAB3kd+z5gxA9WrV/c7g6jWv7tChQqayqlE67DMxQB2AKhDRNlE1JuZcwEMBrABwGEAS5n5oHWhCiEcjN4fdtWqVVi+fLnXdW+++SZq166t3IRlhw4dMlxHUlISfvjhByVPkgeD1lE66cxciZljmDmemWffXb6OmWsz8wPMPM6soKRLRwhrlS5dGp06dcLDDz+M5ORkt3Xjxo1DVlYWSpYsaVN03gVyoxmzFNaa37p1a5AiMUbJqRWkS0cI6xER9uzZgz179tgditKaNWuGevXqYdq0aV6v3nWUKcxzzz2H+Pj4Qqd6ULUP3zLSwhciOGJiYgx3D9nByphdE25MTAyWLVsGABg4cCBeeeUVAPB7D19f/vWvf+H06dO2TpmsZMKXFr4QwpsJEyagbdu2zjuMWW3+/PluJ4uLFSuG69ev4/vvvy9Q9uOPPy60PrvH8yuZ8KWFL4TwJiMjAxs2bAjarxLHjWtcxcXFITo6usByVe9r7ErJhC9EuFNtyKP4neux0dMiN9J6D+Q+CYFQMuFLl44QIpJ88803zuf333+/ZftRMuFLl44QIlJZOfxUyYQvhBDh6k9/+pNt+5aELyKS3aMlROQaOnQotm/fjs6dOwd930omfOnDF1aTk6bCLlFRUWjSpIkt4/GVTPjShy/CnfzCUFegjQG9x9SORoeSCV8IIYT5JOELYQPpUlJP7dq1AdhzbILVvRN6k2gIIYQFhg4datu+69WrhwEDBqBOnTqW7kfJhE9EaQDSEhIS7A5FCKEooxcojRkzBosXLzZlnn3AWB8+Efm8S5eZlOzSkZO2wmpy0jT0lS1bFt999x1OnToV0PajRo3CwYO/37MpmPfDtYuSLXwhhNCifv36huv48MMPsWrVKuXu8GUFJVv4QggRLP369cPatWudJ06DddJWhmUKESQySkZEoqAmfCIqQUR7iSg1mPsVQjXyhSOUbeET0RwiOkdEBzyWtyeiLCI6TkQZGqoaDmBpIIEKIYQwRutJ27kApgKY71hARNEApgFoAyAbwG4iWgUgGsAEj+1fAvAwgEMAwv9UuBBCKEhTwmfmLURUw2NxYwDHmfkkABDREgCdmHkCgAJdNkTUEkAJAEkArhPROmbO81KuL4C+AFCtWjUdf4oQ2smwTBGJjPThVwHwo8vr7LvLvGLmkcz8KoBPAczyluzvlpvJzCnMnFKhQgUD4QkhhH7ly5cPaLsGDRrg0UcfNTkacxlJ+N6aSIWehWDmucy8xm/FMj2yEMImgwYNwn/9139h5cqVurYrUqQI9uzZg9mzZ2sqn5iYGEh4hhi58CobQFWX1/EAzhgLRwgh7FWsWDEsWrQooG31dBWOGjUKAIJ6wZeRFv5uAIlEVJOIYgF0B7DKjKBkagUhRLgrUaIEJkyYgOTk5KDtU+uwzMUAdgCoQ0TZRNSbmXMBDAawAcBhAEuZ+aC/erSSLh1hNbvHwdu9f2EdlfvxtY7SSfexfB2AdaZGlF/vagCrU1JS+phdtxBCWKlBgwbYtm0batasaXcoBSg5eZpMjyysJsMyhZWaNm1qdwheKTmXjvThCyGE+ZRM+NKHL4QQ5lMy4UsLXwghzKdkwhdCCGE+JRO+dOkIIYT5lEz40qUjrFKqVCkAQLly5WyNo127dgCAtLQ0W+MQkUXJhC+EVWbNmoXo6GjMmDHD1jjKly+Pmzdv6p6vRQgjSMUr/lzG4fc5duyY3eGIMHPt2jUUL17c7jCEsAwR7WXmFM/lSrbwpUtHWEmSvYhUSiZ8IYQQ5pOEL4QQEUISvhBCRAglE76MwxdCCPMpmfDlpK0QQphPyYQvhBDCfJLwhRAiQih54ZUDEZ0H8P88FpcB4Nm5723ZvQAuWBRaYbzFE4x6tJYvrJy/9b7WqX5c7DomWrcxUiZUjwlgznGx6phoKWfV/4rRY1KdmSsUWMrMIfUAMFPjsj0qxRiMerSWL6ycv/W+1ql+XOw6Jlq3MVImVI+JWcfFqmOipZxV/ytWHZNQ7NJZrXGZncyKR289WssXVs7fel/rVD8udh0TrdsYKROqxwQwJx6rjomWciH1v6J0l44RRLSHvcwlIewlx0U9ckzUY9UxCcUWvlYz7Q5AeCXHRT1yTNRjyTEJ2xa+EEIId+HcwhdCCOFCEr4QQkQISfhCCBEhIibhE1EJIppHRLOIqIfd8QiAiGoR0WwiyrQ7FvE7Iup89/9kJRG1tTseARBRXSL6kIgyiWhAoPWEdMInojlEdI6IDngsb09EWUR0nIgy7i5+GkAmM/cB0DHowUYIPceEmU8yc297Io0sOo/Lirv/Jy8C6GZDuBFB5zE5zMz9ATwHIODhmiGd8AHMBdDedQERRQOYBqADgCQA6USUBCAewI93i90JYoyRZi60HxMRPHOh/7iMurteWGMudBwTIuoIYCuATYHuMKQTPjNvAZDjsbgxgON3W4+3ACwB0AlANvKTPhDif7fKdB4TESR6jgvlewfAv5l5X7BjjRR6/1eYeRUzNwUQcJd0OCa+Kvi9JQ/kJ/oqAJYB6EpEM6De5eXhzusxIaJ7iOhDAI8Q0Qh7Qotovv5XXgbwJIBniKi/HYFFMF//Ky2I6AMi+gjAukArL2I0OgWRl2XMzFcB9Ap2MAKA72PyCwBJKPbxdVw+APBBsIMRAHwfk80ANhutPBxb+NkAqrq8jgdwxqZYRD45JmqS46IeS49JOCb83QASiagmEcUC6A5glc0xRTo5JmqS46IeS49JSCd8IloMYAeAOkSUTUS9mTkXwGAAGwAcBrCUmQ/aGWckkWOiJjku6rHjmMjkaUIIESFCuoUvhBBCO0n4QggRISThCyFEhJCEL4QQEUISvhBCRAhJ+EIIESEk4QshRISQhC+EEBFCEr4QQkSI/w8WZdMUaIgkSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit this, we'll write a convenience function that can take the power spectrum, a model, some starting parameters and just run with it:" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDLogLikelihood, PSDPosterior, PSDParEst\n", + "\n", + "def fit_powerspectrum(ps, model, starting_pars, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + " \n", + " if priors:\n", + " lpost = PSDPosterior(ps, model, priors=priors)\n", + " else:\n", + " lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m)\n", + "\n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + "\n", + " return parest, res\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see if it works. We've already defined our model above, but to be explicit, let's define it again:" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "model_to_test = models.PowerLaw1D() + models.Const1D()\n", + "model_to_test.x_0_0.fixed = True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we just need some starting parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [80, 1.5, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([109.14539343, 2.07102572, 2.00200532])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks like it worked! Let's plot the result, too:" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0TElEQVR4nO3deZgU1dX48e9hYNhXBWWTRRYZRFCRCOgPFNki4IIIvCiKBFE0LrwqICRiUEFfNG6IS0BQEINE2STiLqIgICEKCrIZHJeAIooIwjDn90dPD71Pb9VdPX0+z1PPTFfdunWnq+fU7Vu37hVVxRhjTOlXJt0FMMYYkxoW8I0xJktYwDfGmCxhAd8YY7KEBXxjjMkSFvCNMSZLlE13ASI5/vjjtXHjxukuhjHGZJSPP/74e1WtHbjelQFfRPoCfZs1a8a6devSXRxjjMkoIvKfUOtd2aSjqktU9drq1aunuyjGGFNquDLgi0hfEXn6p59+SndRjDGm1HBlwLcavjHGJJ8rA74xxpjkc2XAtyYdY4xJPlcGfGvSMcaY5HNlwHfK22+/zcSJE9m7d2+6i2KMMSnn+n74ydStWzcAypUrx/jx45OatzHGuJ0ra/hON+ns2bPHkXyNMcbNXBnwjTHGJJ8F/CIfffQRzZs3Z8qUKekuijHGOCIrA/5XX33Fgw8+yJdfflm87vHHH2fbtm2MGzcufQUzxhgHuTLgJ6Mf/oEDB1ixYgVHjhzhgQce4Mwzzyze9vLLL3PbbbcxdOjQ4nWHDh1KqMzGGON2rgz4ybhpe9lll9GlSxdGjx7NmDFjWL9+fVCa999/P1IZuOWWWxgzZgyqGnc5jDHGLVwZ8JPhtddeAzxNNfH44osveOSRR3jggQf4+uuvQ6Y5fPgwzz//PJ9//nnc5TTGmFRxZT98NygoKAj5u6+5c+dyzTXXUK9evbAXBWOMcYtSW8NPhS1btgDwzTffxLSfNREZY9IhZQFfRC4WkWdEZJGI9HD0YP/+N7kx7rJgwYLi33/77beIaXft2sWrr77K0aNHYy7ajh07OPHEE7nxxhtj3tcYYxKRUMAXkZkisltENgas7yUiW0Rkm4iMBVDVhao6ArgaGJjIcSP6+Wfo3p3Pgf5RJA8VtJ944omQaefPn8+4cePo3Lkzffr0Yc6cOTEXb8GCBezevZtp06bFvK8xxiQi0Rr+LKCX7woRyQGmAb2BPGCwiOT5JJlQtN0ZkyfDnj00BRYA7wNnRUj+/fffB9XoP/3006B0Bw8eZODAgUyZMoX8/HwAvvvuu5B5bt26lTfffDNk001hYWGUf4gxxiRXQgFfVVcAgUNPdgC2qeoOVT0MvAhcJB73A/9U1eA+ksnSuDHUqlX88hxgDfA80DBE8gYNGtCwYagtx3zyySds2LAh6iKcddZZdO/enVWrVvmtf+WVV+zBLmNM2jjRhl8f+MrndX7Ruj8CFwCXich14XYWkWtFZJ2IrItrkLORI2HbNh4EDvusvgLYAkwCqvisLygoCDmY2tatW4t/37VrV0w3Wr0PjD3//PN+6y+99NKo8zDGmGRzIuBLiHWqqo+q6pmqep2qPhluZ1V9GrgbWJ+bG+utV4/XPvqI2/C0J/3DZ31FPO1JW4E/EPmP37RpU/HvIqH+pJJVq1Ytrv2MMcYJTgT8fPxbTxoAMfVbTPRJ2yFDhgCwHbgM+H/AOp/tJwLPAP/C85UjxPEpWzbxRxRef/11Dh8+XHJCY4xJAScC/lqguYg0EZFcYBCwOJYMEh1LJ3BGq/fx3Fi4Es/VyOs04A1gKXCKz/pZs2YxduzYuI7ta8OGDTb6pjHGNRLtljkPWAW0FJF8ERmuqgXAjcBy4HNgvqpuipRPsg0aNChonQJzgBbAn4ADPtsuBD4FHgOOT3JZ5s2bl+QcjTEmPon20hmsqnVVtZyqNlDVGUXrl6lqC1U9WVXvjSNfx2a8OgjcAzQHZgDeTpJl8VyltgL/CzE/uBWOt5//0qVLI6Y7dOiQjcljjHGUK4dWSLRJJ5oeNd/iuXF7BvC2z/oawFSI+sGtkuTleR5B6Nu3b8R0gwcPJi8vjyVLliThqMYYE8yVAT/RGr5vD5uS/BvoBvTF023Ty/fBrTo+E6WE462dB94/iKanzrfffsvChQsBT1998IzE+d577xU/FHb33XczderUEvMyxphwXBnwE63hHzhwoOREAZYCp+J5WOAHn/XnAAOmTqX5xIk0jrD/zTffDMDMmTNjPvYtt9xS/HthYSF79uzhnnvuoWvXrtx5553s2bOHiRMncvvtt5c4zo8xxoTjyoDvZBt+JAXA40AzCHpwq/Ybb7C5aH2tEPu+8cYbAPzwww8htkbmrd0DzJ49mzp16jBp0iQAHnroIb/hmX2HZlBVRo4cyX333RfzMY0x2ceVAT/d9kHIB7fKA6Px9O8fA1QI2G/VqlUxd8OMZmrFcPcktm7dytNPP8348eNjOqYxJju5MuAnY07bZPA+uNUZ+NBnfQ1gCvAFnqE/vW/iW2+9FVP+H3/8MTVr1izx4aw77rgj5PpwE7MYY0worgz46WrSCedDPEH/Evxv7DYEngU24BkalBgnNpk1a1ZUNfy5c+fGlK8xxoTiyoCfqBNPPNGRfBfiubF7HeA7MHIbYBnQbfJkzowhv0SGSt67dy+9e/eOe/9YTZ061XoJGZPhSmXAf/DBBx3LuwB4Cs+N3buAX3y2dTx4kHXAC0CTonULFiyIa6KUksycOZNdu3YlnM8LL7xAz549+f7778OmOXz4MLfffrv1EjImw7ky4Cfaht+xY0dHgqyvA8Bf8AT+J/BcCLwGA5uBh4EqBw9y5ZVXJvXYe/fuZd++fVGnf+SRR7j55ptD3vwdMmQIr7/+Oq1ataJ79+4hA7rvNxGbwMWYzOXKgO+2NvxI/gvcALTGv0dPLnAzsAPPGPzJ+ktWrFhB7dq1ufde/xErnnnmmaC0t912GzfccAO33HILjz76KJs3bw6b7/fff8+bb77JCy+8ELTNJl03pnRwZcDPRF/g6dHTEc/TuV5V8IzBvxMYC1Ty2fbcc8/FfJzp06eHrGVfe+21QesefPBBv/l5oxmq2ZpsSj9VjekboklMrN+KDxw4wM8//+xIWSzgJ9lqPOPv98MzAqdXTWAynq6ef8TzDeCXX34J2r8k//rXv+IuW7wTuYSr4W/fvj3kJPDG3QYOHEjNmjVZv965mUZLsyNHjrB27dqIn/2dO3cyfvx4vvzyS2rXrs3VV18ddf5VqlShevXqjnS7toDvkCVAO+B/8IzA6XUi8GjRumuAnBjzjfZGbaggHU3Aj7b5ZtGiRTRr1oyRI0fy6KOP8u233/pt/+yzz1i9enVUeZnY7d27l3vuuYf8/PySEwd46aWXAHj22WeTXayU27FjB6+//npUaX/55ZeInRMCFRQU8OOPPwatHzlyJB06dCh+Gj6ULl26cN9999GkSRP27t3L7Nmzoz6uVzxDxJRIVV234BnL7OlmzZppvObMmaN4hsFP+1IWdDjoLk9Pfb9lC+ggUEnCcXx17NgxaHurVq10wIABCugtt9yiBQUFQWmeeOKJoPfywIEDxdt//fVXVVXt2rVrUN6+fLft3r077vOYrfLz83XChAn63Xffhdzevn17BbRly5Yx5+09LzfeeGOixfSzf/9+HTVqlH744YdJzTcS79+yZMmSiOnefPPN4rS//PKLqqquWrVKu3Xrplu2bNFXXnlFR48erYWFhcX75OXlKaBff/217tu3T/v06aP33HOP32f7X//6l99xdu3apYWFhSH/P+++++6w5Tt48KCqqm7evLk4/b59++J8V1SBdRoqtoZa6ZblzDPPjPsPdlPA9y7lQW8C/S5E4P8EdABomQTynz9/vqqqHj16NKr0derUiSrg//LLL8Xb9+zZo4WFhdqpU6eIFxzf9V27dvXbVlBQUHzhMKGdfvrpCmiXLl2Ctu3cuTPs+x7JihUr9Prrrw8b8AsKCvS3334rfn348GHdsGGDXxBUVf3oo4/0mWeeKX49depUnTdvno4dOzZsmY4cOaJ79+71W/fNN98E5V1QUBC0LpJQ70NhYaF26dJFBw0apEePHtXVq1f7pdu8ebPfvm3bti3+/dRTT9XZs2dH/T/ke9ypU6cqoHfddVfYtAsWLChO732vvUF+2LBhfmkt4MfAjQHfu1QGHQe6N0Tg3wQ6OIHAf/jw4ZDBONrFG/A3bNigr776qqr6B/xoPvhFH7jipUmTJlpQUFC8rVu3blqnTh3dv39/8brCwkLNz8+P+3xHsnr1ap00aZJfGQ4cOODIsX799Vft27evzpkzJ6F8vO9dxYoVw24L9b7PmzdPX3jhhYh5hgv455xzjjZv3lyPHDmiqqqDBg1SQB955JGQ+bz00kv65ZdfFr9u0KBByDKpqlarVk0B3bVrV3E5AX388cdV1RPo77zzTgU03P99qAtBqPfhq6++Kl5XtmxZ7d27d8igG+mz7P0mHO3/nKpqpUqVokp/ySWX6KhRoxTQZcuW6eDBg0Oms4Afg2QF/G7duiUln1BLddBJoPsJDvybQa8AzYkxz3r16iVcLt/azY4dO3T//v1R7RfwgQtaXnvtNb9tq1atKk4/adIkBXTq1Klxn/NwvMebPXu2qqpOnDhRAX399ddjzuuLL77Qr7/+WmfMmKGzZs0K2v7www8XH6+wsFDfe++9oJptLGX2Dfjr16/X3//+91G97yUFR/AP+L7n/I033tCGDRsWv27durXu379f58yZoz/99JNfHhs3boz4WdiyZYv+9ttvfv9Pqqp169b1Szt37tywf5Oq6vTp0xXQ5557TidPnqxffPGFHjp0yG+fO+64w69JJJXL5s2btUqVKknN88cff4z5c+Nzri3ge5cGDRpo06ZNo3rTb731Vsc/LMfhCfw/ERz4t4Jejec+QKo+vA888EDx7/fdd58uWLAgqv0CPnBBS926dfWzzz4rfu0b8L3rcnNz4z7ngX788Ud95513ivP+y1/+4ness88+2y/9zz//rJdffrm++uqrun37du3du7dfGQODHaArVqzw2/6nP/0pKE3fvn1jLrt330qVKmlhYaHu378/bEAJtd/Ro0fD5uldvAE/sMnj5JNPjvqzEtgM4V0OHTqk/fv3V8Dvfk+ZMmV0z549fmkLCgr0hhtu8Fu3dOnSiGXPhmXu3Lkxf2583q/0Bnw8k0jNABZEu49TAb+wsFCnTZtW4hv+0EMP+dXYnF5qgk4E/ZHgwL8DdCRohRSUo2LFinHtF/CBC1rq1q3rV3MMFfAB3bZtm6pqyKAVixYtWvjl671p5n3dsWNHv/QTJkwo3ta5c+fi34cPH6716tXT++67L+TftXr1an3vvfeifm9UPd8UWrVqpc8991zIG47e/SpVqqQXXnhhzO/7TTfdpN99911x80zgewyegF9YWKjlypXzW3/88cen7DMfbqlQoYJeeeWVOmPGDJ08eXLay5OOJZGb6jgR8IGZwG5gY8D6XngGltwGjA3YlvKAf//992uZMmWC/kFKesNXrlypd9xxR8pPdHXQCaA/EBz4/ws6Hs/FId0fyMBlz549Ub+34AmU4dJ7e1Wcf/75OnPmTF27dq3OmzcvqnP/1FNP6dChQ0s8fmDA972h2axZs6S+N17du3f3u+gFvncffPCB7t27N6a8CwsL9dNPP9Wvv/46aJuI6MCBA/Xbb78N2jZq1CidMWNG2j83toReLrnkkrhiX9H/kyMB///hmQd8o8+6HDzPFzXF83zRv4E8n+0pD/h79+7VnJyc4tc+b0rE5dChQ35BINVLVdCxoHsIDvz7Qf8KepILPpi+y6RJk3TWrFlRpb3zzjvDnovAoOj91vHJJ5+oqufm6IcffqhHjx7VnTt36rhx44qDZrRlTWXAv+CCCyJu3759uy5cuDCuvM8555y0n3dbkr+UK1cu7viHU006QGP8A35HYLnP63HAOJ/XEQM+cC2wDlh30kknxf0HpzLgi4ijJ74y6M2g/yE48B8BnQPa1gUf0HiWUaNG+XWL8y6hasFwrG031Hnx3hCM9tidOnXSu+++W3v27KkFBQWOBvySlnXr1mmrVq3Sfj5scc+SKQH/MuBvPq+vxDNV7HHAk3hq/+OiyTuZNfwhQ4YooAMHDvR9UyIu0QZ8b59pp5eyoENA/01w4FfQd0H7E3vPnkxali5dqvv27Qu7PZrzGmp57LHH0v632WJL4BIvwgR8J4ZWCPX8vqrqD6p6naqerKqTI2bgwBSHTz31FMuXL2fGjBkx7deuXbuYj1WzZs2Y94lGATAXaIvnJsnbAdu7AAvwDNQ2DjjekVKkV58+fahRo0bS8/3jH/+Y9DyNcRsnAn4+ntn/vBoA3zhwnJhUrlyZHj16ULly5Zj2GzZsmEMlSsxyoBtwFvB3/MfjbwjcB3yFZwrGM1JeOmOMGzkR8NcCzUWkiYjkAoOAxbFkoC4aD79cuXLpLkJE6/C8wY2Be/B0mfKqgGeS9Y+B9XjG7a+R0tKl3jffpL1uYYxrJRTwRWQesApoKSL5IjJcVQuAG/FUQj8H5qvqphjzTXqTTjK1bds23UUI8jXwJ+AkPDdN1gRsPx3PjZRvgTnAeYRue8t09evXT3cRjHGthAK+qg5W1bqqWk5VG6jqjKL1y1S1RVF7/b0l5RMiX9fU8AOdffbZbNiwgfLly4dN07p16xSWyN9veAL674qW54CDPtsrAEPwtP9vBe4GTklxGY0x6eHK8fDdWsNv0qQJ//jHPyKmWbt2Leeee26KShTZGuAqoC5wPZ6mHV8nA3/G8zVsPXA7/jdfjDGliysDvltr+AMGDKBevXoR07Rv3z7umaWc8hOe/rDt8UzK8hjwY0Ca04EHgF3ACuAWoEnKSmiMSQVXBny31vBLg38DNwH1gP54unEeCkhzLvBXPBOw/xv4C3BmCstojHGGKwO+W2v40cqECaIPAS8DA4AT8DT9LMe/eyfAaXhuBq/D081zBp5eQaWxj78xpZ0rA36ma9OmTbqLEJOf8dzc7YWn5j8CeJXgmn8DPPPwzgP24Gn3vx/oAVRJVWGNMXFzZcDPpiadqlWrprsIfvYAfwP64KnF98dzMdgbIu3pwB14vhnsw3MBeAzPNwC7+WuM+7gy4GdCk05OTk7x7/E86n/hhRdSUFDAG2+8kcRSJdcBPM0+VwF1gE7AXcBKgpt+cvBcAG7E8w1gF55HrpfguQdwCdAoJaU2xoRTNt0FcJs2bdrw6aeflphu/PjxjB8/HoDOnTszYMAAWrZsGfVxli5dGncZ0+EonifsVuEJ4FWBrkB3PDd5TyO49lC/aOnjs24v8AmerqCfA5uLlnw8o0UZY5zjyoAvIn2Bvs2aNUv5sYcOHcrtt99eYrpx48axaNEiPvnkEy6++GLOPDO7+rHsx1N7X1L0uipwNtAZzzeBs4vWBaqF50LRNWD9ATwz5uwAvixa/uPzc3/SSm5M9nJlwFfVJcCS9u3bj0h3WcIREVavXs3BgwepVKlSuouTdvuBN4oW8NT2W+AZuO30ouUMINw4opWLtocb6G0vnhH4vvNZ/uvz+248zxbsxXPxMMYEc2XAzxQiYsE+jEKONde84LO+EdAaz3AOpwCtipbjSsivVtFyahTHPoIn+HuXvUU/f8ZzMfglxE/f33/FM0SF73K46G8yJpNZwE+DKlWOdWIsKAi8/Vm6/adoWRaw/jigJZ4LQuOipZHPzwoxHKMcnpvMdRIqabACgi8EvheEAjz3Orw/j4ZYV1KaQo7NfuH7e+DrSNtiTRvq3km4+ymxrC9NeaSDE+WwgB+gTp1kh4lgy5YdC3e//vqr48fLBD8AHxYtgQSojecBsRPDLHXwNBfVBJz6zlW2aIltRgVj4uPEN0pXBvx03LRt06YNCxYsYOfOnWHT1K1bN+Hj1KhRw29wNd/x9nfu3EmTJiWPYLNmzRo6dOiQcFkyheJpo98NlNx/CnLxBP5aHLsI1MRzE7kKnoDt+zNwXSWgfMASyzcMY9zKlQE/HTdtmzdvTosWLUIG/HfeeYd3332X4cOHJ/24nTp14rLLLuOMM86Iuj//WWedRZkyZSgstFblUA7juaH73yTnW5bgC0F5PBeYXDzPIpRN4GdZPDe7xWcpE+b3WF9H2hYo3NB/sawvTXmk01VJzs+VAd9tunbtSteuXR3JOzc3l5deegnIjDF4sllB0WK9gEyqJDvgu/JJW2OMMclnAT9D9erVK91FMMZkmJQFfBGpLCKzReQZERmSquOWVo8//ni6i2CMyTCJTmI+U0R2i8jGgPW9RGSLiGwTkbFFqy8FFqjqCKBfIsc1RNWbxxhjfCVaw5+FZxj1YiKSA0wDegN5wGARycMznPpXRcmOJnjcUql69er06dOHHj16pLsoxphSKKFeOqq6QkQaB6zuAGxT1R0AIvIicBGeAREbABtw8b2DvLw8qlevTrNmzcjNzU3psUWEJUuWFP9ujDHJ5ETgrc+xmjx4An19PEOr9xeR6RwbZDGIiFwrIutEZN2ePXscKF5o5513HgANGzbkv//9L2vWrHFN0L322mvTXQRjTCngRMAPFSVVVQ+o6jBVvV5V54bbWVWfBu4G1qeqht2uXTtuuOGG4tfly5enTJn0fgk5/vhjs8Y+9dRTaSyJMaa0cCKq5eM/w10DPCPbulb79u1TVpuP9uGqLl26OFsQY0zWcSLgrwWai0gTEcnFM8Xp4lgyyIQpDuPl1BO76XDqqdEMVmyMcYtEu2XOwzPrXUsRyReR4apagGdq0+V4ZrGbr6qbYsw3ayYxz1Rt27ZlzZo16S6GMSYGifbSGRxm/TKChzyPJV/Xz3iV7apXr07FihXTXQxjTAxc2T0y02v43oeijjsueB6nRG9E+zZzPfzwwwnlZYzJLq4M+Jneht+9e3defvllVq5c6be+QoUKUU2QHq2bb7454vYGDRok7ViB3NJl1RgTPVcOj5yOCVCSqUyZMlxyySV+6xo2bMi2bdtS9jDX0KFDWbt2rWP5q7plIjhjTLRKbQ2/fPnyxb/7ziqVTrEE+549ewJwwQUXxHWsBx54wIKyMcaPK2v4ydCrVy/GjBlD06ZN/SYNzxTDhg2jbt26/O53v4uY7uyzz2b16tV+6x555BFOOOEEJ4tnTTrGZCBXBvxkNOlUqVKFKVOmRJXWLd8AfJUtW5Y+ffqUmG7hwoWceOKJfuu83ySshm+M8VVqm3SiMWHCBJo1a8Y111zj6HGcFKomX69ePQC+/fbbVBfHGONirgz4qTJp0iS2bt1K+/bt012UqOXk5JSYxtvc0q5du6jy9L23MHhwyEcrgti3B2MyT1YH/Ex02mmnlZjGO/BbtEH5559/Lv49mguKr0mTJsWU3hiTPq4M+Jn+4JUTzj//fAB69+5dYtpYA75vjyaAunXrlriP91vEhAkTojqGMSb9XBnwM/3BKyc8//zzPP/889x0000lpvUG48LCwpiPIyLUqlWrxHTxdhc1xqSPKwO+CVavXj2uuOIKKlSoUGLaWGv4gUoasuHhhx/m1ltvjStvY0z6WMAvhbw1/HgDfqTae7Nmzbj55pupXLlyzPmOGGFj4RmTThbwSyFvDd97gzdZD55NmDCBt956K+79e/XqVXIiY4xjXBnw7aZtYrwB///+7/+46667WL9+PTNnzkw430mTJnHSSSeF3d62bduw20rTxC/GZCpXBny7aZsYb5NOtWrVmDhxIs2bN2fYsGGOt7uXLRv+we2WLVs6emxjTMlcGfBNYsJNwB6qTT+ZI5Lef//9tGrVitmzZ4fcbuPvGJNeFvBLgYceesjvdSyBtUOHDnHvG+ikk07is88+Y+jQoUHb7MlcY9LPAn4pENhUE66GH41EArPV4I1xt5QFfBFpKiIzRGRBqo6ZrdwQeOfPn8/dd99d/DpVE78YY8KLKuCLyEwR2S0iGwPW9xKRLSKyTUTGRspDVXeo6vBECmuiE0sbfqBkXSwGDBjAn//85+LXxx9/fNx55eXlJaNIxmS9aGv4swC/TtQikgNMA3oDecBgEckTkTYisjRgqZPUUpuIEhnfP5phFQK1a9eOatWq0ahRo7iPa4xxXlQBX1VXAHsDVncAthXV3A8DLwIXqeqnqtonYNkdbYFE5FoRWSci6/bs2RP1H2KOOf3002PeZ/bs2XTo0IHRo0fHvO/HH3/M999/H/FCk8g3h1D73nDDDXHnZ0y2SqQNvz7wlc/r/KJ1IYnIcSLyJHC6iIwLl05VnwbuBtZbu2/s5s6dG9dN26FDh/LRRx/RsGHDmPctU6ZMwrOGjR8/nu3bt4fcFirgP/744wkdz5hslEjAD1VlC9tIrKo/qOp1qnqyqk6OlLE9eBU7bxt506ZNw6YJ1YYf6/j3iYhUy7/nnnto0KBByspiTDZKJODnA77VwQbAN4kVx8OGVojdu+++y4IFC0qc9Nxr7Nix5ObmljjccosWLZJRPEQkpjF97rjjjqQc1xhzTCIBfy3QXESaiEguMAhYnJximVi1bt2a/v37R91WPnnyZH788ceUTu943nnnMWTIkKjS3nfffcW/u6GbqTGlQbTdMucBq4CWIpIvIsNVtQC4EVgOfA7MV9VNySiUNemkRqVKlVJ2LBEhJyeHOXPmRExjjHFO+NGufKhqyJmtVXUZsCypJcLTpAP0TeY4L6b0DW9w0UUXsWjRonQXw5iM4cqhFayG7x5uuEiEq/mfccYZfq9ffvllpk+fnooiGZORXBnwTenjRHNNqDwvueSSpB/HmNLClQHfeulkp0gXhRUrVgStq1Gjht9rVXXFNxJj3MqVAd+adJyRScHQN/iLCOeee25QGpsj15jYuDLgWw2/9En20AoAFSpU8HudSRc0Y9LBlQHfavjpN3nyZGrVqsXChQvJzc2le/fujh/TumUa46youmWa7DN27FjGjBmDiPDLL79EnK82GskM5uG665YvXz5pxzCmNHJlDb80Of/88wHo0aNHmksSO2+QLleuXFpr34HHrlatWlCanJycoPf4sssuS+mTxMa4nSsDfmlqw3/22Wd58MEHmTJlSrqLkvFt3EuWLCEvL4/nnnsuaNtbb70VNKvWSy+9xMyZM2M6RvPmzaNKZwO9mUzkyoBfmtrwTzrpJEaPHp3QjE+lQTTfEEpK06dPHzZt2kTr1q2Telyvtm3b8sUXX0Sd3phM48qAb4yvVDUnxfIN6KKLLnKwJMc8/PDDKTmOyQ4W8I0rxRrkU32PoU2bNik5TpcuXVJyHJMdLOBnkXS24SejSScagX9jPHlOmzbNb3hmL997Son2WjImHVwZ8EvTTVsTbNGiRVGPiw+pb9IZNWoU48YFz8JZrVo1br31Vs4///yggduSYcyYMUnP0xhfrgz4pemmrQnWr1+/iOPix8N7UUjk4hBNz5uHHnqIt956i1q1asV9nHBC9eRq0qRJ0o9jspcrA74pfZwYWiGURJqtrrvuuqjTNmrUKOq04SZnD8V3Gsi//vWv9vSxSSoL+FnErf3wL730UiB8YE9V0Avsx1+SwYNDzgsUJNLE8oHiPUfvvvsuHTt2jGtfkz0s4JuUiBS0kzEkQmmsCccS/Lt06ULfvn0dLI0pDVLa1UBELgYuBOoA01T19VQe37hTqGCdrG8jTjYHhUrfvHlztm7dWvz6xRdfjCnPWMt0//33F7fzl8aLnkmuqGv4IjJTRHaLyMaA9b1EZIuIbBORsZHyUNWFqjoCuBoYGFeJTanWr18/+vTpQ5kyxz6amRbIvMMzfPLJJwwcGNvH/Jprrokp/R133MGAAQNi2icZ1qxZk/JjmsTF0qQzC+jlu0JEcoBpQG8gDxgsInki0kZElgYsdXx2nVC0n0kht/fDB0+XzSVLliQt/0jHnTp1aswB1le49/O1115j+fLlcT2cNXXq1LjL45RQveXOOuusNJTEJCrqJh1VXSEijQNWdwC2qeoOABF5EbhIVScDfQLzEM9/3xTgn6q6PtRxRORa4FrwjENjjFP+93//FyDmAdZK0rRp05hu1PoKvHEcy0XaqW9Cixcvtid+S4lEb9rWB77yeZ1ftC6cPwIXAJeJSMg+cKr6tKq2V9X2tWvXTrB4JhNkWpONl28XSqfEEvCPO+44R8qQqefHBEv0pm2oT0LYT6iqPgo8WmKmIn2BvuEmujCZx+l++N40NWvWpFKlStSsWTPh4/oKNSTzvffey/bt23n33XeTcoxAlStXjil9uXLlHCmHKT0SreHnAw19XjcAvkkwT+MQt/XDP++884Do+7NHo0KFCnzxxRds2LAh6n28E6R36tQp5PZ+/fpx5ZVXBq0/4YQTeOedd6hRo0Y8RQ3r+eefp3///lx11VUR03kval4lXdzi/UZyyimn+L0+7bTT4srHpF+iAX8t0FxEmohILjAIWJxooWxohezw2muvsWXLFi688MKQ270B+JJLLokp3/r164ecf6BPn6DbSgC89957HDp0KOTNyVgl4xvFFVdcwYIFCyhfvnzEi3Q0NfqKFSsW/7569eq4yhPYtBrLfARe/fv3j+vYJrli6ZY5D1gFtBSRfBEZrqoFwI3AcuBzYL6qbkq0UDZ4WukTKhDm5ubSokWLsPv885//5LXXXiu+uZrocV955ZWwaSI9/OVEX/6cnJyo84zXiBEj/KaDbN26Naqalm966a68Pf3002k9vltEHfBVdbCq1lXVcqraQFVnFK1fpqotVPVkVb03GYWyGr4Bz+iUPXv2jGoo4miCspuGNO7QoUPS8/R9D3777TfHglw832JKmlvY95uIcY4rh1awGr4zMqEfvhtlYtljHRcoFuHudURy+umnR9zetm3beIsTFbfdv0oXVwZ8q+GbZEn3gGyJiuWGcODNVSc0bdqUkSNHJjXPbJ/vOZVcGfCthm9iFS6A+w7RkOy8ExFtjTOW8p911lksXLiQzZs3x1usEt17770pbRrr3bt3yo6VDdzTqOlDVZcAS9q3bz8i3WUxyZGuGnXTpk3p3r27oxOJuKm5INmTq3ufhfn8889ZuXIll19+eVLz9wr3+Vi2bBkbN25MeA5hN52jdHJlwDfOKM0f+nC9fcqUKcPrryc2KGumNP+Ekqxzfsopp6SkySiUU089NeE8SvNnPxbWpGMy2k8//UR+fr4jUw7GI9qLQzJGuHQiiP3hD39Iep7GPVwZ8O2mbenjVC25WrVq1K8fafimxCWz7BUqVODXX3917cCA3bt3dyxvN3WLzVauDPjGOC1dzTQi4uo+506NrV+jRo24n/RNhkxs0nnggQeSnqcrA7416TjjjDPOSNuxM7kdPJPLHouuXbvG9beWNLz0Qw89xCmnnMKZZ54ZVZORDQLn4cTF15UB35p0nDFixAj+9re/sX379nQXJaMkM+CnuqbZuHFjAKpWrZr0vNesWcP777/PsGHDaNWqVdh0t956a/HvzzzzDIWFhezfvz9s+my5wJbEiffBlQHfOCMnJ4fhw4fHPTlHItzWZp3MwBvPOPSpCvx///vfGTx4MB988EHS8z7rrLM455xzANi4cSNHjhxhzJgxnH322RH3ExGqVKlS3IV04MCBNGzYMOI+2SjZo7CCdcs0Dvvwww9ZuXJl0vuHp1JJNa3FixcnpeugExo3bswLL7wQVdpEapRlypShTJkyTJkyhSeffDKq9vo5c+bw9ttv07NnT/bt28f8+fPjPn5JMrEN34kWDqvhG0d17NiR22+/vVR/TW/dujU9e/YECDvUcyA3vh+hnuq94IILYs4n2uBapUoV+vXrR/ny5TnhhBOK1yfy3lx88cVx75sNXBnw7aatcZNoAtBTTz3FPffcw5///GfHylG+fHnHZtdq1KgR06ZN81vXqVOntEyqHur9HjRoUMrLkQyHDh1KdxH8uDLg201b47Rk17AbNWrE+PHjw7a7Dhw4EIAhQ4bEnLd3aOFOnTo5Npn4zp07admypd+6P/zhDzFPs+iUefPmJbR/ouc73iElIs2zkA6uDPjGuEkyLg4zZ85k0aJFPPbYYzHvu3jxYiZOnMiLL76YcDlSId728uuvv56LL76YevXqJbU8VatW5YorriAvLy/uPK677rq4941nXoIePXrEfbxILOAbE4a3P/iZZ56ZcF6VKlWiX79+cT10VbduXe666y7q1KmTcDnCcUPX0yeeeIJXXnklqrKEmzIx8GKxaNEiPv74Y6pWrcqmTZvo3LlzXGVLxIgRIzh69GjU6b0zvTnBAr4xYWzZsoXp06dz8803Jz3vTOg1Em8ZE/3bhg0bBsCll14aNs3QoUO55ppril+PHj2aV1991a/L8ZgxY+jXrx/NmzdPqDzh5ObmsmXLlqhq8LEMc924cWPHbuqnLOCLSCsReVJEFojI9ak6rjHxatKkCdddd509+ZliY8eOZeXKlcydOzdsGlXltttuK37dtm1bfv/73/ulmTJlStB+yQ6kLVq0YMSIzBnFPaqALyIzRWS3iGwMWN9LRLaIyDYRGRspD1X9XFWvAy4HIk9waYzDMqGGna1ycnLo3LkzFSpUiHlfN3Z3jZWTn81oa/izgF6+K0QkB5gG9AbygMEikicibURkacBSp2iffsBK4K2k/QXGGFdxS88ep2VipSGqgK+qK4C9Aas7ANtUdYeqHgZeBC5S1U9VtU/Asrson8Wq2gmIvW+aMUnktprg4MGD012EIPEGtCFDhtC/f3/Gjh3Lrl27klwqj8Dz17dv36TkO2fOHLp165aUvNwokaEV6gNf+bzOB34XLrGIdAUuBcoDyyKkuxa4Ftw3/ooxTti3b58jj9GnS25uLgsWLEjpMWvWrJmUfIYMGcLWrVt56y3/Rgi3VRDilUjAD/UOhK0SqOq7wLslZaqqT4vIt0Df3NzcxPvDGeNypSnYp1s87f7xOvfcc1N2rGRJpJdOPuA7xF0D4JvEiuNhT9oaE97s2bMBePbZZ9NckvRR1ZC17quvvprzzjuPJ554IuR+sXSPLIlTD8K54aZtKGuB5iLSRERygUHA4mQUysbSMaVdIv/UQ4cO5ciRI1EP1BZKNEM0uO2mZDQPnlWqVIm3336b668P3fN7+vTpNGrUKOIIotH+3bVr144qnZtE2y1zHrAKaCki+SIyXFULgBuB5cDnwHxV3eRcUY0xXonOD7t48WJeeeWVkNvuvPNOWrRo4boByz777LOE88jLy+PLL7905U3yVIi2l85gVa2rquVUtYGqzihav0xVW6jqyap6b7IKZU06xjirWrVqXHTRRZx22mm0bdvWb9u9997Lli1bqFKlSppKF1o8E80kS0m1+ZUrV6aoJIlx5dAK1qRjjPNEhHXr1rFu3bp0F8XVOnfuTOvWrZk2bVrIp3e9aUpy+eWX06BBgxKHenBrG75jrIZvTGqUK1cu4eahdHCyzL4Bt1y5crz88ssAjBo1iptuugkg4hy+4fz9739n165daR0y2ZUB32r4xphQJk+eTI8ePYpnGHPac88953ezuGLFihw8eJBPP/00KO3f/va3EvNLd39+VwZ8q+EbY0IZO3Ysy5cvT9m3Eu/ENb4qVKhATk5O0Hq3zmvsy5UB35jSzm1dHs0xvucmlhp5IrX3eOZJiIcrA7416Rhjssn7779f/PuJJ57o2HFcGfCtSccYk62c7H7qyoBvjDGl1VVXXZW2Y1vAN1kp3b0lTPYaPXo0H374IRdffHHKj+3KgG9t+MZpdtPUpEuZMmXo2LFjWvrjuzLgWxu+Ke3sG4Z7xVsZiPWcpqPS4cqAb4wxJvks4BuTBtak5D4tWrQA0nNuUtW8k3mDaBhjjANGjx6dtmO3bt2a66+/npYtWzp6HFcGfBHpC/Rt1qxZuotijHGpRB9QmjRpEvPmzUvKOPuQWBu+iISdpSuZXNmkYzdtjdPspmnmq1GjBp988gk7d+6Ma/8JEyawadOxOZtSOR9uuriyhm+MMdFo06ZNwnk8+eSTLF682HUzfDnBlTV8Y4xJlZEjR/Lqq68W3zhN1U1b65ZpTIpYLxmTjVIa8EWksoh8LCJ9UnlcY9zGLjjGtTV8EZkpIrtFZGPA+l4iskVEtonI2CiyGgPMj6egxhhjEhPtTdtZwOPAc94VIpIDTAO6A/nAWhFZDOQAkwP2vwY4DfgMKP23wo0xxoWiCviqukJEGges7gBsU9UdACLyInCRqk4GgppsROQ8oDKQBxwUkWWqWhgi3bXAtQAnnXRSDH+KMdGzbpkmGyXShl8f+MrndX7RupBUdbyq3gK8ADwTKtgXpXtaVduravvatWsnUDxjjIldrVq14tqvXbt2nHHGGUkuTXIlEvBDVZFKvAuhqrNUdWnEjG14ZGNMmtxwww38z//8D4sWLYppv7Jly7Ju3TpmzJgRVfrmzZvHU7yEJPLgVT7Q0Od1A+CbxIpjjDHpVbFiRebOnRvXvrE0FU6YMAEgpQ98JVLDXws0F5EmIpILDAIWJ6NQNrSCMaa0q1y5MpMnT6Zt27YpO2a03TLnAauAliKSLyLDVbUAuBFYDnwOzFfVTZHyiZY16RinpbsffLqPb5zj5nb8aHvpDA6zfhmwLKkl8uS7BFjSvn37EcnO2xhjnNSuXTs++OADmjRpku6iBHHl4Gk2PLJxmnXLNE7q1KlTuosQkivH0rE2fGOMST5XBnxrwzfGmORzZcC3Gr4xxiSfKwO+McaY5HNlwLcmHWOMST5XBnxr0jFOqVq1KgA1a9ZMazl69uwJQN++fdNaDpNdXBnwjXHKM888Q05ODtOnT09rOWrVqsVvv/0W83gtxiRC3PjEn08//BFbt25Nd3FMKfPrr79SqVKldBfDGMeIyMeq2j5wvStr+NakY5xkwd5kK1cGfGOMMclnAd8YY7KEBXxjjMkSrgz41g/fGGOSz5UB327aGmNM8rky4BtjjEk+C/jGGJMlXPnglZeI7AH+E7C6OhDYuB9q3fHA9w4VrSShypOKfKJNX1K6SNvDbXP7eUnXOYl2n0TSZOo5geScF6fOSTTpnPpfSfScNFLV2kFrVTWjFuDpKNetc1MZU5FPtOlLShdpe7htbj8v6Ton0e6TSJpMPSfJOi9OnZNo0jn1v+LUOcnEJp0lUa5Lp2SVJ9Z8ok1fUrpI28Ntc/t5Sdc5iXafRNJk6jmB5JTHqXMSTbqM+l9xdZNOIkRknYYYS8Kkl50X97Fz4j5OnZNMrOFH6+l0F8CEZOfFfeycuI8j56TU1vCNMcb4K801fGOMMT4s4BtjTJawgG+MMVkiawK+iFQWkdki8oyIDEl3eQyISFMRmSEiC9JdFnOMiFxc9H+ySER6pLs8BkSklYg8KSILROT6ePPJ6IAvIjNFZLeIbAxY30tEtojINhEZW7T6UmCBqo4A+qW8sFkilnOiqjtUdXh6SppdYjwvC4v+T64GBqahuFkhxnPyuapeB1wOxN1dM6MDPjAL6OW7QkRygGlAbyAPGCwieUAD4KuiZEdTWMZsM4voz4lJnVnEfl4mFG03zphFDOdERPoBK4G34j1gRgd8VV0B7A1Y3QHYVlR7PAy8CFwE5OMJ+pDhf7ebxXhOTIrEcl7E437gn6q6PtVlzRax/q+o6mJV7QTE3SRdGgNffY7V5MET6OsDLwP9RWQ67nu8vLQLeU5E5DgReRI4XUTGpadoWS3c/8ofgQuAy0TkunQULIuF+1/pKiKPishTwLJ4My+baOlcSEKsU1U9AAxLdWEMEP6c/ABYQEmfcOflUeDRVBfGAOHPybvAu4lmXhpr+PlAQ5/XDYBv0lQW42HnxJ3svLiPo+ekNAb8tUBzEWkiIrnAIGBxmsuU7eycuJOdF/dx9JxkdMAXkXnAKqCliOSLyHBVLQBuBJYDnwPzVXVTOsuZTeycuJOdF/dJxzmxwdOMMSZLZHQN3xhjTPQs4BtjTJawgG+MMVnCAr4xxmQJC/jGGJMlLOAbY0yWsIBvjDFZwgK+McZkCQv4xhiTJf4/BYmLVSBLjekAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")\n", + "plt.plot(ps.freq, res.mfit, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can find the function in the `scripts` sub-module:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling.scripts import fit_powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([108.96093418, 2.0699128 , 2.00198643])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)\n", + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fitting Lorentzians\n", + "\n", + "Fitting Lorentzians to power spectra is a routine task for most astronomers working with power spectra, hence there is a function that can produce either Maximum Likelihood or Maximum-A-Posteriori fits of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "l = models.Lorentz1D" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude', 'x_0', 'fwhm')" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "l.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "def fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + " \n", + " model = models.Lorentz1D()\n", + " \n", + " if nlor > 1:\n", + " for i in range(nlor-1):\n", + " model += models.Lorentz1D()\n", + " \n", + " if fit_whitenoise:\n", + " model += models.Const1D()\n", + " \n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + " \n", + " return parest, res" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make a dataset so we can test it!" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5zklEQVR4nO2dd5gUVdbG3zPDDBmEIUgccs6MsIIBliACs2BCkEX5JKiI+Cm6uopI8lMRMYEiCqIoArKigAQRUFFxCSIIgohjYBhkSEqUCZzvj5puqruruqu6qrqru8/veeqZqVu3zj1d1f3WrRvOJWaGIAiCEP8kRdsBQRAEITKI4AuCICQIIviCIAgJggi+IAhCgiCCLwiCkCCI4AuCICQIxaLtQDAqVarEderUibYbgiAIMcW2bduOMnNl/3RXC36dOnWwdevWaLshCIIQUxDRr1rprmzSIaJMIpr9559/RtsVQRCEuMGVgs/My5l5ZPny5aPtiiAIQtzgSsEXBEEQ7EcEXxAEIUEQwRcEQUgQXCn40mkrCIJgP64UfDd32hYUFKCwsDDabgiCIJjGlYLvZq6++mpcf/31msd+//13tGvXDgUFBRH2ShAEITSunnjlRr766iuUK1dO89jhw4exfft25OXloVgxubSCILgLqeEXwcw4depURMoRBEGIBhETfCLqT0SvEdGHRNQzUuUaZdWqVShXrpxjgvz9999j9erVSEqSZ6wgCNHBkvoQ0VwiyiWiXX7pvYjoByLaT0QPAwAzf8DMIwAMBXCzlXKd4Ny5c4bznjx5EnPmzDFlv3nz5liwYIFZtwRBEGzDanVzHoBe6gQiSgYwE8C1AJoBGEREzVRZxhUdj2mGDx+OgoICvPHGG4ZH7ezYscNhrwRBEPSxJPjM/DmA437JHQDsZ+YsZs4DsBBAP1J4GsAqZv5GzyYRjSSirUS09ciRI1bcs419+/bhp59+CkjPzs7G7bffjpycHEN2ihcvbrdrgiAIhnFiKEkNAAdU+9kAOgK4B0B3AOWJqAEzz9I6mZlnE9EhAJmpqantHfDPNF26dEGpUqWwf//+aLsiCIIQNk4IPmmkMTO/COBFIwaYeTmA5RkZGSNs9SxMDh06hJSUFMt2tmzZYoM3giAI4eHEkJFsALVU+zUBGGvzKCKaoRVyc3OxZs0a5OXlaY7YadeuXUgbr776KoiU596CBQtw8uRJAJCx+YIgRBUnBH8LgIZEVJeIUgEMBLDMjIFohlZ4/fXX0atXLxQvXhzPPPOMqXN//vlnAMD9998PAJg0aRIGDx6ML774AgC8DwFBEIRoYHVY5rsANgFoTETZRDSMmQsAjAawBsAeAIuZebdJuxGp4f/666946aWXfNLUYRF+++03n2Pffvst8vLyvPuTJk3yOf7777/77D/++OO6ZR87dgz5+fmmfRYEQQgXq6N0BjFzNWZOYeaazDynKH0lMzdi5vrM/IQ9rtrH1KlTsXnzZnz88ccYM2YM9u3bh71794Y8r23btti16+KUgzfeeOPiwcJCpGVnoweAvwEoo3G+WuArV66MCRMmhP0ZosX58+e9D7qzZ89G2RtBEMzgymmfTjfpPPTQQ5g/f753/5prrsG4ceM083799ddBbdUGcMmECUDlyrjpiSfwMZRXniMAFgCor3MeMyMrK8u7/8UXX6BmzZomPkV0yMnJ8b65lC5dGjt37oyyR4IgGMWVgh9pDh06pJl+7NgxXH755ZrHUgA8CuAHAGXnzgVOnPA5XgLAIAC7AaT5zbA9ftx/6oIy1v/gwYOmfY80/h3ZWp9FEAR34krBd8sCKBcuXNBMT4dSi58CRdg9nClfHusAfK9KKw6g4zvv4BVcHK/q6dSNZSQInCDEHq4UfKeadPLy8iwvXnINgG0A1DPCtkGJL/HW//0fugNoDmWm2TZVnjsBvApF9PXeKGIBj9B7gsDJyCNBiB1cOTCciDIBZDZo0MBWu1WqVEFmZmZ4PjFjHICJuPiUzAPwbwAvACgEUHbDBm/+zQA6A3gdwD+L0kYAOAZgnerN4bHHHkPbtm3D8kkQBMEMCVXD//PPPzVH45w/f977/7JlgVMGLgHwfmEhJuPiBcsGcBWA6VDEHgCWLFniaxfAbQB2tGnjTXsYwFBVc8iUKVPw4ou+E5DHjx+P7du3G/pMkUaacgQhdnGl4EeTb77xjevWBkrTTB+V0K0H0A7Afw3YuwBgef/+WK5KG7BuHa4EvGP61c0iJ0+exOTJk7Fo0aKgdgsLC7F582YDHtiLeh6CIAixRcIJ/tatWw3n7ZqVhU0A6qnSngbQE8qwS6NwUhIGAfi2aD8FwCIAxYtGuDRr1gwlS5YEAGi91eTm5oKIfGrXW7duRceOHU14YZ38/Hw0b97cJ+3w4cMR9UEQhPBxpeDbMUrn9OnTOH36NI4ePYobbrghYBYsACxcuFDz3FJQ2t7v3LrVOwrnJIAboDTJhNPtewZAJoDcov1qAB7ZscPbiVKpUiXdc0+fPh2QFo2F0rU6vG++2XVr2QiCoIMrBd+ONvz27dujffv2yM7Oxvvvv49ffvklIM9ff/0VkHY5gB0AhqnSvgOQAeD9MH0ZP348AKXdfyAuPjBanDiBp8K0GQ1kRI4gxDauFHw72LdvH/bt2xc0T2pqqvf/EgD+D8BGAOqxQfOhhEr4EUCPHj0s+7UByoQtD2MBtNVYXMWNiOALQmwTt4LvQW9ZwRkzZuDTTz8FoDS17IYyxDK56PifAB6tWRO3ArA7YsxUAB+q9v+5fj1K+QVqiyXkQZBY7Nq1S0ZrxShxL/hDhw7VPdYGwEoosZvVHbPrALQEsLxCBUd8YijDNT3rZ5XIz0eTRx9FWYPnb9q0yRvDxupEMjOIsAsA0LJly4DRbHaxefNm3HvvvY7YjhWcXNrVlYLvdGiFNlDa47dDWWndwzEAdwDoAd81Gj1kZ2fb5sOfUDqBPW8PaYcPYz4uhl+oX1877NqJEyfQqVMnjBo1CgDCHpo5f/580w8Lj+BXAzAHwDT4hpYQEgf/4blffvklzp07F/ScgwcPBoQcHzBgAO677z7MmTMHADBnzpyAeSluJFTcqyNHjhh6KJ45c8Znv7CwEFWqVLHkWzBcKfhOTLyi/HzcBOAzKEJ/nerYBQCzADQCMBtKDVwLrZE+VtgJZfath34AJhT9X6xYMRw/fjxgNM6gQYN89sNdRevWW2/Fr7/+Gta5swDcDqX/QTvGaPgcOXJEszNduEh+fr7ropReccUVeOWVV4Lmueyyy1CvXj2ftPfeew/PP/88hg8fjjVr1miet3HjRizwC0AYDqdOncK5c+fwww8/GD7nm2++wdmzZzFlyhQMGTIEgDJCLlhk2wceeABVqlRB+/ZKAJa8vDzv5M6dO3dixYoVAJTh1mXKXAyknpOTg1OnTpn+XKZgZtdu7du353ABwCUA7gXwHIDzy5ZlBgK29wBuoWh8wNayZUuf/UGDBmnms7pN9fPpeoAff/xxBsAdOnTgn376iQHwhQsXAs694447ODc3l5mZb7jhBn777bcNX59p06bxv/71r5B59+3bx8zM+fn5XMLP1x+L/Dh48GDY98rfr9tvv90WW26iS5cuvGPHDmZm3rRpExcUFIRt65VXXmHlp2uMlStX8oYNG0yXc/78eS4sLAxIB8BfffVVQNrTTz8d1F6JEiUC/FZ/l1u3bs133HFHQJ4mTZp48zAzb9myhc+ePcu//PILT548madOncrVqlULWvbatWsZAD/wwAMMwOf6Hz9+XPc8ADxjxgyf8idOnMgA+Mknn+RVq1YFnJOamuqTv0uXLt79+vXre9OzsrJ8Pqv6WtStWzfo5wkFgK2soalRF/VgW1iCv20b77juOv4M4L80BJ4BzgN4e5Mm3CqEEDsh+Ndee21AWhLAq1X+nQL47xUreo+vWrVKV/AB8Lx58zw3mQcMGGDoMgHgqlWrGhIOAHz8+HHOz8/nDI3rWUr15WZmzsnJ4e+//978vSsq65prrgnrXDcDgJ999lnu1KkTA+Bly5YxM/PmzZv5zJkzPnn/+OOPoPdl8uTJpgQ/KSmJAfCXX35p+JynnnqKAfDYsWMDjgHgTZs2BaSFEnzP93XHjh08aNAgHyH3F/yZM2fy999/z+fPn/fJ5xHJSZMmedP69u3r/X2sXbvWp8y3336be/bsyW+//ba3guQRcWbm3Nxcr72lS5fyzp07eePGjfzggw96f28vvvii7u/58ssvZwA+33f18T/++IPLli2rWVF74403vPdRy7YVEkfwH3lEU+QZ4J8BngBwNYAffPDBkOIcKcEHwJcAvE/law7A6X559AQfAJ87d44BcLly5fiZZ57hrKwsPnDgQMDlWb16tTfvpZde6vPFAsBdu3YNOAcAHzlyhPPz83mExnXN8PuCtm/f3ru/dOlSr2icOXOGz50752O7efPm/OOPP/qUZUXwH3vsMZ4zZ46hvPn5+Xz06NGwy9qzZw8/9dRT3Lp165B5AfD06dO992vJkiXe9PHjx/vkzc7O9rmehYWF3rcDzzlGBWHFihXe/P/4xz8MnfPuu+96z+nZsyf/9ttvnJOT41P++++/z8zKNVi6dKmP4G/dupV///13Pn36NOfm5vLSpUt9/H7sscc0v8Nt2rTxCrJ6q1Klivd/T21by8ayZcsCrktmZiYDSqUIAJcsWdLn+i1fvjzATrVq1RgAv/POOwyAy5cvr/u789TYPZ9/ypQpljUiLgQfykCYOQCWGD0nLMFfu9ZHjHYDPA3gna+/7nMx7RB8zyuqHYIPgJsCfFzl+16AK6mOf/rpp7rnnjx50me/Xr163LFjR60vAs+ePdvni60+5v9F8zwcDhw4wK1bt+aZKv88221F540ZM4ZPnjzJzZs3Z0B5QF155ZVem7Vr1+arr746wJ933nnHZz+U4APQbGrwHKtTp07Q8z2MGzfO8A/rpptuYgA8d+5cn7KM/Dg9eZ5//nnv/++99x6fP3+eAfBDDz3kk3/z5s0+Nj2C6m9v0aJFAQ+3DRs28Pnz5zV99Aj+1q1bveW++uqrfOmll/rYqFy5svecnj17cnJyMleqVIkPHTrEFVVvnnv37vURw3bt2vmU2a1bN+//8+fPD/nbaNeunabga23jx48PmSc/P9/7v1Yt/ZNPPuFRo0aZ/g1HarMCnBB8AHOhRAvY5ZfeC8piUPsBPOx3zFnBP3OGTwwcyAMArqq6eP433F/w/V8vgdCC/69//cv0TQwm+AD4SoDP4aKYfg1waY0fkP/mL/gAuEyZMlpfBO+mJ/iTJk3ib7/9lpmZ169fzwB4+/btDIA3qnzzbE+rbK5fv94r+Bs3buSrrrrKWwYArlixYoA/6n4HvS/7tm3b+LHHHvPmycvL07z9QGjBz83N5ZMnT/Ktt96qWdbq1at1r1u3bt0C0kL9OD15XnjhBe//ixcv9tYGBw0axAcPHuSPP/7Y+5qvtrlgwQLN+6TO9/LLL/Ovv/7KAHj06NG6ebOzs3nw4MHefc//zMwXLlzgvXv3+uTv0aOH7neudOnSAWnqzxjtLdjvJRY2K8Ahwb8KSuDIXaq0ZAA/QanRp0KJVNBMddxZwWcO+NIC8KmZPProozx16lTvPhFxYWEhA0qtx5MeDcEHlE7bQlwU1M9wUfT1Nk/HbqgvjfpY9erVvXnefPNNn2PlypVjZuZ169YxoNRsAd83EM+2XHXeunXruEWLFgyAP/jgA7766qu9ZQDgChUqBPjjEXK1f/40atTIx466Fjt16lS+9957vcfq1KnDe/fu9WmG8C/T45d/WadPnw563fQE/88//ww4p3fv3vzSSy9586grHYsWLfI5v1q1apycnOyTlpWVxcwXBf+vv/7in3/+WfMeA0oHv+ezafno2dSCr7axZs2agPRggi+bs5sVoCP4loZlMvPnAPwXNe0AYD8zZzFzHoCFUEYcRhX12qtTpkzRHc7Yvn17LFq0CE89ZU+Um3AWXHkfwGjV/lUAVgEoo50dgP4ErOrVq3v/37Jli8+xnJwc7/+33Xabz7GTJ08CgOchjWHDhqE6AK2paM1U/3vyA8CCBQuCTtY6duwYAGDy5MkBx/yXl9QLk1FYWIhnn30WL7zwgjctLy8PTZo0Qe/evXXL/u6773SP+TN27NiQeaZNm4bs7Gwfv1euXIl77rnHu6++FurrBChrNfhz+PBh5OTk4JZbbgEAlChRAk2bNg3I5xm665mTsX//fuTn52P37t2avmrdk5MnT2quBbF27VpNG0Js4sQ4/BrwnbeUDaAGEaUR0SwAbYno33onE9FIItpKRFvtnHGWkpLis9+/f3/dvAMGDEBGRoYt5V533XWhM2nwCgD1yrdXAlgNbcEF9GfBepZTPHDgADp06BCWL4AiUOrAyFtxMQhcHSgRRgFg+vTp2LVrFwBg8eLFAX4xMwoLCzFgwADUrVtXt7wNqtXDtDh27BgKCwtRrFixgBDNngfZ2bO+QTHU+dQVgF27doGIsGrVKrzxxhsBZU2fPt3Hf70JRrVq1cLq1asBaAfm01p8x8PZs2cDrlXv3r1Ro0YNnzQtu/5rJB88eBCpqalo0aKFZlm5ubkBaeXLl8fMmTN1/RPiAyeWONRSHmbmY1CWdg0KM88mokMAMlNTU9uHyh8uZcsaDWQQPZ6D8m73XNF+ZwBfQJkd7B9557PPPgtqS29B9lB0797d+79aPr4BUBZAYyi1hsZQJrStXLnS53x/4WZmnD9/Hu+9955P+okTJ1BBFcoi1Czg6tWrY9q0aT5pzz33nM+++q3g0KFDPm87aq69VplvPXr0aGRlZQUtd/369ShVqlRADd3Dpk2b0L17d+/6BmrUgqp1vr/gnzhxIqgvHl566SVD+Tx8/PHHpvIL8YMTNfxsALVU+zUB5OjkdQV6P147SE5ODp0pCM8DGKPabwbgaygdJ2qGDx8e1E44cXD8X/Fbqf7fDeB71X5gQ4N2+X/++ac3XLSafv36Yfnyi+uCffjhhyCioH6rm6SAwJquGnXTij+ekBlqsf/ss89MzUT2NKtMmTIlIHyAFv4zpgFlBq0gOIpWw76ZDcobvbrTthiALAB1cbHTtnk4tu3qtPXvXGVmPnLkiE+ap9N28eLFzMz8ySefBO20vfvuu3nnzp1BO11mzZrFq1ev9km7/vrrw+rAGQDfiWTnAL7d4Ln79u3j3377LWjnkBE736vK7wzwE6r9KTZ0UvXq1UszfezYsZq+pqenh/a5aEKMVd/CvWayyRbuZgU4NErnXQCHAORDqdkPK0rvDWAflNE6j4ZhNxPA7AYNGoT1YdWCn5yczMzsnRHnuZBGBL948eI+edSC/8svv3gurO42a9Ys3rNnDwPgW265hQHwZ599FvYX4EoEjpKZg4szXYNtBw4c0D22YcOGkOdfoiozD0rYisGqtKUR/BFE4pxQW0FBQUQ+r2yJu1kBDo3SGcTM1Zg5hZlrMvOcovSVzNyImesz8xNh2LU9eFq7dv6NIKHxBDyyg5dffhkAkJ6eHraNjQA6QlmBy8PtUNbK7Rzi3KQk/VvdtWvXkGV3Uv3/LYC//Py4LKSF+OKKK66ItguCYBpXRst0OjyyGYK1CwMwHLUwJSUFBQUFqF27tiV/foSyAtd8VVpDAJ9D6dwtp3Oe/2gPs/RV/e/pHt4FZa1fQBmaVcdSCcZgB/tbzPD1119H2wVBMI0rBd+JGr4ROnfujIYNG5o6J1jN2R+rHbgezgK4FcBQKHH1AeVG/i+UdrRhsPfGJkFpY/Pg6Vq9AOArVXok6rx33HGH6XP+85//OOCJIMQerhR8O2v4Zhb5+OKLL9CmTRtT9j0iXkFjdSz/8eF28yaUoZKrVWlVAbwOpad8IOy5wb2gDLUCgKPwFfkvVP+rF5Nxitdee830OTfeeKMDnghC7OFKwY9WDV+LSpUqBT3euHFjANBcpcZ/2KATZEMR2kHwne3WAkqP+h4AowBYuZLqRdfnAlAvybJC9X9fAMUtlCMIgrO4UvDdRIMGDYKGWXDLOq8LoUx+ehyAes2cRgBmQpkIMRfANQBSAs7W535c7LDNA/Cy3/EduLg2bzn4riQmCIK7cKXgR6LTNjU11THbdlGihLkVY88BmAQgHcpSiSdUx0oB+B8ozT9HoDwgRgFoDe0HwKUApgN4VpU2HYDWVCR1B/K/oD3VWhCE6ONKwbfapGNEKMuVK6cZU8QIS5cuRa1atUJnNEnlypV99o0Ml9TiBICJUIR/FJRauJryAG6GUvP/FsqD4hcA/wWwCcrkiUMA7lOd8yWUtwctZuLiYuxtAdwVlteCIDiNKwXfKunp6Th69GjIMe9GHygtWrRAo0aNvPv9+/c3NTrHKF999RX69r04AHLu3LmW7J2CEoStDZQQptMB/KyRLxnKw6EDlCGf9fyOrwbQB0qTjhbHimx7eA5K05EgCO7ClYJvR5NOWlpa0HC0ZujTp4+ple7DpUyZMihe/GK3p9bIn3DZAmAsFDFvDeBeAIug1Oy1wqoVAFgP4CYo06ZD3YkpuDgRKxXAR0VpwUI6C4IQWVwp+E6M0gk23LJfv36O1NiBi8M2w7GvFn872QngRSjDNusCKAmlc7cDlBm7TaFEwuwGYAmUed6hOA/lLcAzUigZyuieHACvQenMrWjbJxAEIRycCI/sSrp166Z7bMiQIbaXR0SoX78+GjRogO+++y5ov8Lx48dRsWL05DAPygxeqxyAEvphMS5OwioLYHjR5smzC8oEsYNQhpUehNKRfKJosy+ghSAIauJa8NXxxOvVq4fnnnsO9913X5Az7OPMmTMoUaIEiMhnIQoiwqxZs3DnnSGXBgCg9DO4IcSEUQ5BWaFrCIB/A2jid7xW0RZsktY5KML/B5TOYM92zu/vWSgPhwIo0fs8W6j9QijNWP4bm0z3P6Z+E2K/v1ppZvNHwm48EDef5dw5QGNdBSvEteC3a9cu5MpJdrJ+/XoMGjQIhw8f1lwAIxw6deqEVatW2WIrUjCAt4q2y6E09XSDEsPfyGDYkkWb9nIlgpAglC4NhLlwkR6ubMO3axx+nz59gh73tK9Xq1bNUjkeunbtGnJmrppFixaFzPPOO+9YcSnqbAIwDorwl4bSP3AjgAegjOZ5ryjPDwByodTABUFwBlfW8Jl5OYDlGRkZI5wsJzk5OarRF/3H3WvhP1InLS3Nu/h3rFEAYG/RFoxSUNbuvQRKTb9UkL/FoUwcK1b013/TSk+GMjksSWMzm+45pg6LR35/tdKCHbOSZsVGPBBPn6WkyYmXRnCl4Av62Bmj36142ucPRtsRQYgifPZs6EwmcWWTjqDP6dOno+2CIAgxigh+CFJSzIQacxc1a9YMnUkQhIRBBD8EPXv2dMx2s2bNcN9996F8+fKYNm2aqQ5fDz169NA91qSJ/6BIQRASmYi14RNRaSjRdfMAfMrMMTH8xMnwx1WrVsX06UoUmrFjx9puXytGvyAIiYulGj4RzSWiXCLa5Zfei4h+IKL9RPRwUfL1AJYw8wgA/7BSbqzTtWtXPPDAA47Zf/PNNwE4H6vf6jq5giBEFqs1/HkAZkCZYwMAIKJkKBFze0CZOb+FiJZBWSXPE1/L+LqDcUijRo3wzDPPOGZ/wIABOHXqFLp06eLoOP7ffvvNtnV6BUFwHkuCz8yfE1Edv+QOAPYzcxYAENFCAP2giH9NKCHYdd8siGgkgJEAULt2bSvuJTR3332342U4FXBOEARncOIXWwO+y6tmF6W9D+AGInoFwHK9k5l5NpT1O76JhVWpBEEQYgUnBF+r4ZiZ+Qwz/w8z3xWqw9ZNi5irGTRoEO69996o+uAZydOgQQND+Tdu3OikO4IgxBBOjNLJhhIQ0UNNKGHRDUNEmQAyjYpapMjMzERmZmZUfUhLS8PRo0fx448/GuqUveKKK0LmEQQhMXCihr8FQEMiqktEqVDW2VjmQDmupHbt2o4tXAIAkyZNwrZt2xyzLwhC/GJ1WOa7UIIdNiaibCIaxswFAEYDWANgD4DFzLzbjF03NOm0adMG06dPN7Qgupp58+Zh925TH9cUlSpVQrt27RyzLwhC/GJJ8Jl5EDNXY+YUZq7JzHOK0lcycyNmrs/MT5i1a1d4ZCukpaXhvvvuMz2WvUqVKqhfv76tvlSrVi3mwyQLghB9XDmuzqkafmZmJmbMmGGrzUiQk5ODW265BQA0l0Ls2rVr0PObNm3qiF+CIMQWrhR8p6hfv35Exqc7xfnz530WY69RowZat26NNWvWBD2vVKlSDnsmCEIs4Mp4+G4dpRNt/Ocl7N27FyVLlvTOdk1KSsKFEEuirVu3LuiC7oIgxC+urOG7odM2FihTpoxX7Dt37owbb7wR8+fPDxglpF7Vy9Mn8cILL0TOUUEQXIHU8OOEtWvXIjk5OeAtwB+P4Ldq1SoSbgmC4CKkhh8nlCxZMqTYAxcF38joo/bt2xsqu0yZMobyCYIQXVwp+IJzlCxZMujx2bNnm7aZnp4e9PjgwYNN2xQEwX5E8BOIe++9F5dddhkA/Rp+qCUdW7RoEZAW6m2hbNmyBj0UBMFJXCn4bph4FU94Om3bt29vaiKZurPXw44dO9C7d29T5VsZCvv222+Hfa4gCL64UvClDd8ZPJO3ghHqgZCUlIRixcz19WvNA7jtttsMnSvNQYJgH64UfMFePDV1s6tTadXwAfNLJ2rld3r5RUEQAhHBT1D0BDccIQ51Trji7ulvEATBHkTwXUbNmjWj7YIXvRp+27ZtTS1gHm4NP9SIIkEQzOFKwU/kTtspU6bglVdesdWmnnCHy7hx47B3717D+StUqBCQZkTwpdlHEOzFlYJvV6dtLApGmTJlUKdOnYiW2alTJ+//Rq5ZcnKy4clWzIxy5cqF5Vcs3j9BcDOuFHy7GDJkCNauXRttN0yjVSO2G7WYEhG6dOnic3zEiBG4/fbbTdsKp3w9atWqFTKPIAjGiWvBr1y5Mrp37x5tN0zTsWNH/PXXX46WoTdixyPEs2fPxj333OOoD6F47rnnACgLwAiCYJ24FvxYxsl1cb/88kv4B6azu50/FEZq+GlpaQDgswaAIAjhE7FomURUD8CjAMoz842RKlcAJkyYgP3793v3O3XqhCNHjthmX9raBSE2MCT4RDQXQF8AuczcQpXeC8ALAJIBvM7MT+nZYOYsAMOIaIk1lwWz9O/fPyDNrklV4RKJcphZHkaCoMJoDX8egBkA3vIkEFEygJkAegDIBrCFiJZBEf8n/c6/nZlzLXsrOMaLL76IvXv3Ij8/PyLliRALQuQxJPjM/DkR1fFL7gBgf1HNHUS0EEA/Zn4SyttAWBDRSAAjAaB27drhmhFC4F/Db9WqFVq1aoV33nnHtC1PW7tThIrgKQiCMax02tYAcEC1n12UpgkRpRHRLABtiejfevmYeTYzZzBzRuXKlS24J4SD2Zr3b7/9hv/85z8OeaMwadIkzJs3z9EyBCERsCL4WsqgO9SDmY8x853MXL/oLUDfcALPtI01atWqhUsuuUTzmFqkhw8frmtj6tSpQcto3bq1ZnTNSI8sEoRYx4rgZwNQz4ypCSDHmjtCpIhEp62WSP/973+3pZyHH37Y0vmCkIhYEfwtABoSUV0iSgUwEMAyO5ySePjxS6gVt4zy5JNBXxJx1113WbIvCPGIIcEnoncBbALQmIiyiWgYMxcAGA1gDYA9ABYz8247nJImHefx1PDT09OjMrHJiVE6L7/8su02BSGeMCT4zDyImasxcwoz12TmOUXpK5m5UVG7/BN2OSU1/Mixfft2PPvss959fyG+6qqrTNl7/fXXNdM9DxgtoTfbFr9ixQrN9KZNm5qyIwiJhitDK0gN33k8IluhQoWgYRzs7hjt3LmzZRt6QdX8A8I5zT//+U/HyxAEO3Gl4EsNP3roCaV/7J1w6dq1a0A5ZsVZ7yFk58MpNTXVNluC4BZcKfhSw3eeypUrG1rU3MO1115ra/lun2lr5OEhw0KFWMOVgi81fOdJSUnRnFXbtGlTtGzZ0rL9X375xWc/WBu+mjfffNNUOSdPnjSVPxjqh5qIuRCPuFLwhejRqlUr7Ny507sfrvClp6drppcqVQoff/yxrvDfeuutpsopW7as938iwpgxYwCE57f/esLDhw/3jvzJyXH/FJPrrrsu2i4ILseVgi9NOu7DqIAaydejRw+r7uiW/fzzz9tm67XXXkOHDh1ssRcJ3n///Wi7ILgcVwq+NOm4h3DXow2FU234VuzGQzOOXQ88IT5xpeDHGsnJyahRQzduXEwzZ84cU/n11uO1U0wbN26smW7nsEz/PgcnHwZ2NsUMHTrUNltC/OFKwY+1Jp3vvvvOdGdjrKAXGE2P/v37+6yupYcVQS5RokTY5/7v//6v7jEtn4L5addDoFSpUrbYEYRQuFLwY61Jp2nTpgEdfolKcnIy6tevHzKfurPVKv369TOcN9h8grZt23r/9xdzJ4eR2vn24PbhrkJ0caXgC+4hKUn5itgtJPfffz/q1Klji60PPvjAFjt9+vSxxY5Z3N53MGnSpGi7INiECL4QlNTUVPz888+GmlHUMXn88Re1ihUr4uqrr7bsn1m0xHXHjh0AfB9qoeYNzJgxA4888ogDHroPz1BXIfYRwRdCYrQmHu3mBK2YQA0bNgx5XrCRSHqfadSoUWjevLlh33744QfDea1QunRp223a2fwmRBdXCn6sddoK0Wf37t3o2LFjQLqR8BHp6en46KOPDJWzcOFCn/2mTZuiWLHQS0MHe2haadLxX/c5OTk5LDvB+jY8zXpC7OPKOxlrnbZC9GnWrJm3Nj5q1CjvaltGmo2ICL1799Y9pubmm2/22d+xYwc+/PBDAEr0zNmzZ3uPadWMH3300ZD+RINhw4ZF2wUhArhS8AX3YbVjUet8PZsDBgzQtbNly5aQZc2cOdM7Q7Zr1654+umndfNmZmZ6/zczLNOTnpKS4q3hP/TQQxgxYkRAjX/w4MHe/5s1axZgK5xr27ZtW3zyySe2dfhGuzlOiAwi+ELUufHGG3329SZvdezY0fLqXP4CuWyZ9qqc/fv3BwA0b948IGRBt27dNG16RDNYv4GZB18wypUrF+CHIIRCBF+IOnXr1jWU7+uvvzbUXu5POLXXpUuXAlDar/1nwn7yySdBz73zzjsxatQo02UGY9y4cUGP79u3z9byhPgkooJPRP2J6DUi+pCIekaybCF2sHtculHBr1q1qqFRPaEYM2YMZs6ciYcffhiA0pFqtcmkZ0/tn4uRtwqjnD9/3rINwd0YFnwimktEuUS0yy+9FxH9QET7iejhYDaY+QNmHgFgKICbg+UVYg+zYQjc1m6ckpKiuyZvODzyyCPYvHkznnvuuaD53DLxyuwqX267f0JozNTw5wHopU4gomQAMwFcC6AZgEFE1IyIWhLRCr+tiurUcUXnCTGCE6LkFqEzQrARY8E+x2WXXYaKFStqHvMPzBasGchfXPUCyIWLXeLtaQozSosWLWwpVzCGYcFn5s8BHPdL7gBgPzNnMXMegIUA+jHzd8zc12/LJYWnAaxi5m/s+xhCPOHkg0Bt24zIlSpVyna/FixY4LN/xRVXeP+fO3cuDhw4oHleq1atMGPGDFNlGe0niTTffvtttF1IKKy24dcAoP5WZhel6XEPgO4AbiSiO7UyENFIItpKRFuPHDli0T1B0KdevXoBaZF86xg4cKBPmZdeeqnPca2AfG+99RZmz56NlJQUXbtDhgwJSLvyyiutuOoY4U4Us4rWrOxEwKrga1WRdH8xzPwiM7dn5juZeZZOntkAJgL4xmybouBeotl8o1eTr1y5ckTKMQIzo0qVKj77WgwZMkRzRrEa/2GukSTYjF030bp162i7EBWsCn42gFqq/ZoALC/+KTNtE5tYatsHjPnreRj06tULrVq1Mn2+3f4YoXPnzobyTZw40ft/rLTJm13nIV6wKvhbADQkorpElApgIADtmSwmkFg67mPgwIHecAV6mK3hRlvYtfz1j01jBDOfIy0tLSDcsF2TsYLh/zZjJOSxeqgnM+uO4qlVq5Zmupt5/PHHo+1CVDAzLPNdAJsANCaibCIaxswFAEYDWANgD4DFzLzbGVeFaJKRkYF58+ZF242w0Ap7rEfdunWj/iBygieeeMJn301DKr/++uuIl9muXbuIl+kGDE9bZOZBOukrAay0zSPF5nIAyzMyMkbYaVdwjj59+uhODgLM1VhjVXCNiqje53NShP07KUOVddNNNznmiwetuEKRIla/Y1ZxZWgFadKJPVasWIGmTZtG242oEAnxaN++PSZMmGC57OrVq/vs33///QF5GjRogMWLFweMoLG67GNaWprlWEh2IYLvIqTTVrCTSDVfBCtH79iKFSs0VwrzF6SSJUva0u7smdxlxNe//e1vunm2b98esiz14uxdu3ZFbm6uUTd16du3r2UbiYwrBV9q+EIksPtBEM7s1z59+ngnRZnpa/AQ7DP4jwYyasez4InewidZWVkha+rDhw/H0KFDfWzq2TNT27Yz9AWQeOPxXSn4UsOPP8z8qCdOnGjbwuTB/IhkkLZINiF4mmK0xMyIH8EmdQHhzdr1lBuJEUlGSNQmHfOxZgXBYWrUqIEaNYJN2HYXZsUjPT3dIU8Urr32WmzYsAF79uwJuWCMmYdUqM/ZpUsXw3lDle1GqlatisOHD0fbDUu4soYvTTpCPNO2bduQgmilBpqcnIwuXbrgrrvuwmuvvaaZx26xLSgowLp16yzb+fjjj4MeD/X2YRYz17latWq2lh0NXCn40qSTGETqtdoNNUkjPkTTT6sLlScnJ4dtQ/09aNu2bdC8FStW9HmT0BvaedlllxkKnXHhwgVjTsYJrhR8If5wYywdNzwI3MDnn3/uHb3TsmVLw0snhlqQPdT1NdsX4AkKt2HDBtx1110AgN279ed5BluZLFifgh7x8H2RNnwhoXDiwVOnTh3bbeqt62sVrc+vjqS5c+dOw+dOmjQJkydPDsuP48ePo0SJEiHL+Omnn1C8eHGkpqaiUqVK3vQJEyYEHaJJREFHKel9D86dO4eSJUuGcj9mcWUNX9rwhViiRYsWtj5IDh486HjEy0jXVv2vT4UKFbzCGuza1atXDzVq1EDlypV9fK5SpQp69+5tu19aDyG9vFaYOnWqbbbM4ErBlzZ8Id4w04ZfvXp17/9lypRx1C83EM3mvmg16QwdOhTjx4+3zZ5RXCn4QvzhhnHP7733ns++uonAaZKSksK6BsFqnJHGrP/hCKRdohrKTjj3wk7Br1y5sk9Y6Ughgi/EPZ4fqrqZ5MCBA5g/f360XLKNDh06hDURynNN3NYRGY4Qu3U1Lzcigi8kFB5BqVmzJsqVKxdlb3wJR3wXLlyIH374wQFvjIuvf9C87t2747rrrnPCJU20rpvVyKXxiisFXzptBcEYycnJpiYjObG6ln+QtbVr16JPnz5R80mLjIwMx8uIBVwp+NJpG3+4cRy+YA6n7qHT341Zs2bhv//9r2U7dn2P7JiRHC6uFHwhMUi01+lQRLKJKRIPQXUZTo5tr1evXtDjWpE6y5Yta7ncb775RjN9xowZQc+LZp+DCL4guIRLL70U58+fj7YbtlO2bFm89dZbhvKGUwmYNWuWV8CNRuMM9sB79dVXNdPVYR+aNGmiGwbi7rvvDupvNBHBF+Ie9Y/bfxUnt6G3UHgs07RpU6SlpQFwJjxy8eLFcckll/ikWXmD0fuODB48OGz7bhkgEDHBJ6KmRDSLiJYQ0V2RKldwB25pvhk5ciQ+++yzaLthmLVr12Ljxo222bNyH9q0aYOWLVva5oud1KpVy6fz2m39NqNHj462CwAMxtIhorkA+gLIZeYWqvReAF4AkAzgdWZ+Ss8GM+8BcCcRJQHQjtkqJBTRqM2WLFkSV111VcTLDRera8CGChxnRhi//PJLW8oORUpKCvLz802ds3r1auTl5Zkuq1u3bhHpRHXLA8hoDX8egF7qBCJKBjATwLUAmgEYRETNiKglEa3w26oUnfMPAF8AiF43teAaxo0bFzD7VXAP/iJVsmRJRzpf/d86fv/9d1StWtWUjbJly3qbjULZV9OuXTvDZfg3G8Uihmr4zPw5EdXxS+4AYD8zZwEAES0E0I+Zn4TyNqBlZxmAZUT0EYAFWnmIaCSAkQBQu3ZtI+4JMYDWj65evXohR1gI0WPw4MG2/AabN28e9Lj/spMVK1ZEmTJlIrK6lKfsnJwcVK9ePcAfNVbettzysLASHrkGgAOq/WwAHfUyE1EXANcDKA5gpV4+Zp4NYDYAZGRkuKPhV4hpMjMz8d1330XbDVdhpImhRIkS6NGjh+WyZs+ebapcM/ms4hH3UqVKOVqOp+/jv//9r+2rdpnBiuBr3RFdgWbmTwF8asgwUSaAzAYNGoTlmCCoSU9P1x1qJziHZ9hisWKRX3Yj2ANDPdrGTpo2bYo9e/ZoHqtVqxYAJfZRNLEySicbQC3Vfk0AOdbcEQTBSVq3bh2xsoYOHeqK0Vn+4n/DDTcE5HHaz2bNmrniWlh59G4B0JCI6gI4CGAggFvscIqZlwNYnpGRMcIOe0L0ccOXPdFR3wNPjdMNqP3yzIgtXbq0LbbXrl2LK664Qvd48eLFg/oTbxiq4RPRuwA2AWhMRNlENIyZCwCMBrAGwB4Ai5lZf4FJE0jwNEFwjlOnTmHAgAEA3DFc0COwO3fu9C48brVN3fO5unfvHnRNgeLFi8e1wPtjdJTOIJ30lQjSARsuUsMXBOdw6ypabp3UZRT/B8cff/zhmtE5HlwZWkFq+IKQODhRw7Y7Hv5jjz1mqvwlS5a4JpyCGlcKvoRHjj/0JsUIghvwnwvgj9mhlDfccIMrmsv8caXgSw0//nj22Wfx66+/RtsNQXA9DzzwgGO2XSn4UsOPP0qVKiUzp4W4wcnae40aNRyzHfkZEYIgJCxazSVaQfTGjBmjG2/eacLtU5g4cSKysrJs9sZeXCn4MtNWECKDHSs/WeXKK6/Etm3bfNIGDhyIgQMHhmXvgw8+gJZ2rFixAn37+ob58oi7/4pY4eAZ6houFStWxPHjxy37EQxp0hGEOKZChQq6x/bt24cHH3wwgt5oQ0SmolaGol+/fpoB24ItrF6+fHnN8M8fffSRbX5p4RH4tm3bol+/fo6WBbhU8IXEw+0rUcUq1113HQ4cOKB5rGHDhpozTROVTp06BaQ5PWfB80B+6aWXwlqjwCyuFHwZpZN47N69WzfwlBA+RISaNWtG242Yws55Aenp6bbZsgNXCr406SQejRs3RpMmTaLthiDENa4UfEEQhEjQqFGjkHmSkpKQkZERAW+cx5WjdARBEJymsLDQUHt5YWFhBLyJDCL4giAkJHpDMeM5eqYrm3Sk01YQBDdy//33a6ZrDekEzI24GTx4MG6++WZHHziuFHzptBUEwY08++yzmulaQzrN8ve//x0LFy60bCcYrhR8QRAEwX6kDV8QBEFFqFDJ48ePt3UIsd7MYCcQwRcEQTDBxIkTbbX3wQcf2GovGBFt0iGi0kS0jYj6hs4tCIKQeEQ9tAIRzSWiXCLa5Zfei4h+IKL9RPSwAVMPAVgcjqOCIMQ+blwFyio33XST7jG3fV6jTTrzAMwA8JYngYiSAcwE0ANANoAtRLQMQDKAJ/3Ovx1AKwDfA9BfQl4QhLhm2bJlOHr0aLTdCEo8j8M3JPjM/DkR1fFL7gBgPzNnAQARLQTQj5mfBBDQZENEXQGUBtAMwDkiWsnMF6w4LwhCbFG7du24W/kslh4QVjptawBQx13NBtBRLzMzPwoARDQUwFE9sSeikQBGAoi7L4YgCEI0sSL4Wo1TIR91zDwvxPHZRHQIQGZqamr7MH0TBEEIYOzYsbj66quj7UbUsCL42QBqqfZrAsix5o4gCIJzTJs2LWQeO5to3NZpa2VY5hYADYmoLhGlAhgIYJkdTkloBUEQBPsxOizzXQCbADQmomwiGsbMBQBGA1gDYA+Axcy82w6nJHiaIAiC/RgdpTNIJ30lgJW2eqTYXQ5geUZGxgi7bQuCIATDTJNO+fLlcfnllzvojb24MrQCEWUCyGzQoEG0XREEQdDljz/+sN1mWlqa7TY9uDJaprThC4IQD/ztb39D3bp1TZ1zyy23IDs72xF/pIYvCILgEPPnzzc96icpKQk1atRwxB+p4QuCIKiwc1hmUlISkpOTbbNnFVcKviAIQrRJTk5G/fr1o+2GrUiTjiAIggYFBQXRdsF2XFnDlyYdQRAE+3Gl4AuCIESLWIp+aRYRfEEQhATBlYIvoRUEQRDsx5WCL234giAI9uNKwRcEQYgW0oYvCIIgxDwi+IIgCAmCKwVfOm0FQRDsx5UzbSUeviAI0WLgwIH466+/ou2GI5CbOygyMjJ469at0XZDEAQhpiCibcyc4Z/uyiYdQRAEwX5E8AVBEBKEiAk+EXUhoo1ENIuIukSqXEEQBEHBkOAT0VwiyiWiXX7pvYjoByLaT0QPhzDDAE4DKAHAmfW7BEEQBF2MjtKZB2AGgLc8CUSUDGAmgB5QBHwLES0DkAzgSb/zbwewkZk/I6KqAKYDGGzNdUEQBMEMhgSfmT8nojp+yR0A7GfmLAAgooUA+jHzkwD6BjF3AkBxvYNENBLASACoXbu2EfcEQRAEA1gZh18DwAHVfjaAjnqZieh6ANcAuATK24ImzDybiA4ByExNTW1vwT9BEARBhZVOW9JI0x3Uz8zvM/MdzHwzM38azLBEyxQEQbAfKzX8bAC1VPs1AeRYc0fBs6YtgJNE9KPf4fIA/GMuaKVVAnDUDn/CQMufSNgxmj9UvmDH9Y65/b5E654YPcdKnli9J4A998Wpe2Ikn1O/Fav3JF0zlZkNbQDqANil2i8GIAtAXQCpAHYAaG7UXrgbgNkG07Y67YsZHyNhx2j+UPmCHdc75vb7Eq17YvQcK3li9Z7YdV+cuidG8jn1W3HqnhgdlvkugE0AGhNRNhENY+YCAKMBrAGwB8BiZt5txJ5FlhtMiyZ2+WPWjtH8ofIFO653zO33JVr3xOg5VvLE6j0B7PHHqXtiJF9M/VZcHUvHCkS0lTViSQjRRe6L+5B74j6cuifxHFphdrQdEDSR++I+5J64D0fuSdzW8AVBEARf4rmGLwiCIKgQwRcEQUgQRPAFQRAShIQRfCIqTURvEtFrRCSB21wAEdUjojlEtCTavggXIaL+Rb+TD4moZ7T9EQAialoUWn4JEd0Vrp2YFnyTYZuvB7CEmUcA+EfEnU0QzNwTZs5i5mHR8TSxMHlfPij6nQwFcHMU3E0ITN6TPcx8J4ABAMIerhnTgg8lbHMvdYIqbPO1AJoBGEREzaCEfvAEeyuMoI+JxjwYvydC5JgH8/dlXNFxwRnmwcQ9IaJ/APgCwLpwC4xpwWfmzwEc90v2hm1m5jwACwH0gxL7p2ZRnpj+3G7G5D0RIoSZ+0IKTwNYxczfRNrXRMHsb4WZlzFzJ1hYSyQehU8rbHMNAO8DuIGIXoH7ppfHO5r3hIjSiGgWgLZE9O/ouJbQ6P1W7gHQHcCNRHRnNBxLYPR+K12I6EUiehXAynCNW4mW6VY0wzYz8xkA/xNpZwQA+vfkGAARlOihd19eBPBipJ0RAOjfk08BfGrVeDzW8B0L2yyEjdwTdyL3xX04ek/iUfC3AGhIRHWJKBXAQADLouxToiP3xJ3IfXEfjt6TmBZ8l4VtFiD3xK3IfXEf0bgnEjxNEAQhQYjpGr4gCIJgHBF8QRCEBEEEXxAEIUEQwRcEQUgQRPAFQRASBBF8QRCEBEEEXxAEIUEQwRcEQUgQRPAFQRAShP8H/NjtD0N+a7IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(400)\n", + "nlor = 3\n", + "\n", + "x_0_0 = 0.5\n", + "x_0_1 = 2.0\n", + "x_0_2 = 7.5\n", + "\n", + "amplitude_0 = 150.0\n", + "amplitude_1 = 50.0\n", + "amplitude_2 = 15.0\n", + "\n", + "fwhm_0 = 0.1\n", + "fwhm_1 = 1.0\n", + "fwhm_2 = 0.5\n", + "\n", + "whitenoise = 2.0\n", + "\n", + "model = models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + \\\n", + " models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + \\\n", + " models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + \\\n", + " models.Const1D(whitenoise)\n", + " \n", + "p = model(ps.freq)\n", + "noise = np.random.exponential(size=len(ps.freq))\n", + "\n", + "power = p*noise\n", + "\n", + "plt.figure()\n", + "plt.loglog(ps.freq, power, lw=1, ds=\"steps-mid\", c=\"black\")\n", + "plt.loglog(ps.freq, p, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make this into a `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "import copy" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new = copy.copy(ps)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new.power = power" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So now we can fit this model with our new function, but first, we need to define the starting parameters for our fit. The starting parameters will be `[amplitude, x_0, fwhm]` for each component plus the white noise component at the end:" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]\n", + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.49011854e+02, 1.06004236e+00, -4.00733295e-05, 4.54780918e+01,\n", + " 1.89830161e+00, 1.10287737e+00, 1.01732386e+01, 7.49528676e+00,\n", + " 6.72319819e-01, 1.99444430e+00])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cool, that seems to work! For convenience `PSDParEst` also has a plotting function:" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAHpCAYAAAAvabtjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADV70lEQVR4nOzdeZxN9RvA8c9jX6OUJISopLKN9k0l7Spp+bVpoT0t2heppJKKlFJJ0iYtCKUSWqjsZJedbFnGzszz++Pcc9175+5z1/G8X6/zmnvP+Z5znrvMzHnOdxNVxRhjjDHGGGOCKZbuAIwxxhhjjDGZyxIGY4wxxhhjTEiWMBhjjDHGGGNCsoTBGGOMMcYYE5IlDMYYY4wxxpiQLGEwxhhjjDHGhGQJgzFZRkTaiYiKyJlJOPZiERmT6OOa2IjIGBFZHGXZciLSS0SWikieu18sx0gEEWkhIhNEJNfz/WyXqnOHiKe/iNi44WEk829JJhORMzPhO2pMNrGEwZhC8PnH47tsEZFJItJRRIqnO0ZT5D0C3AN8DrQD7gtV0HOBGHJ7vERkf+AroDzwIHA9MC7R50klEblURJ5JdxzREpHaIvKMiDROdyzJlqzvcTql8vsmIpU935UzU3E+UzSUSHcAxhQRnwIjAAGq41y4vQ40BDok+FwfAZ8BuxJ8XJOdWgIzVPWhgPXn4nwffbUDauN8NxOpOVAZuEVVv0rwsdPlUuBG4Jn0hhG12kBnYDEwNZ2BpEA7Cvc9HgeUBXYnJpyEuJTUfd8q43xXAMak4HymCLCEwZjEmKyqA90nItIHmA3cKiJPqerqwp5ARCqqaq6q5gF5hT1eJhKRssBuVd2T7liySDVgaeBKVU1lQlnN8/O/RB7UU0NXWlW3JfK4Jnmy4TNT1XxgR7rjMCabWJMkY5JAVTcD43Hu8NZ114vIVSLyq6ed9zYR+UNErgjc39O0qb+InO0pvwUY5tkWtN2xiBwoIm+KyDIR2eX5+aaIVAly/JoiMkhENonIZhEZJiKHh3o9InKriEwWke2efUaJyKlByhUXkadEZImI7BCR6Z7X/Iwn5to+Zft71h0kIv1EZDWwFajh2X6n5zwrPK9nlYgM9D1GkPfrLBEZ73lvl4vII57t+4vI+yKyxrPtWxGpHur1Bhz7eM+x53n2zRWR30TksiBl3ddUSUT6eM63w1P+hCDl9xeRd0VknYhsFaffQbMo42onThv9OsAZPk3invFs9+vD4Hl8BnCY+DehO9OzvaGIfOF5v3eKyL8i8rOIXBghjsXAh56nP7vH9dke1ffS53t9juc7tBDnou7KCOcvIyLdRWSl5/v5p4icG6JsVJ+lOP14bvQ89n2v2nnWHSUib4nI37L3d3mSiLQPF2vAOaJ6v0WktIg87jnXDhHZKM7vaxPf9w742fP0A594x0QbT8A5E/KZieMOz3vjvt8/i0iLgOPUdr+7InKRiPzlea2rPJ9tCZ+yiwnxPfaJJ9RypucYBfowiEgxEXlCRMZ5Potd4vQL6hPkdUcdb5Tv9xjCfN886w/xxLLUE9tKEekrIlUDjnWAiLwmIgs9Ma33vP8Pua8dWOQp3tnnXItjidnse6yGwZgkEBEB6nmervOsex54AvgOeArIBy4DvhCRu1X1zYDD5ABtgHfZe0EW6nyVgN895+wHTAaaAHcAZ4nI8aqa6ylbGadKvibwNjAL5x/wzzjV9IHHfgl4GPgTeByoiNPM6mcRaa2qI3yK9wZu9xzrFeAg4C32/oMK5gfgX+A5nDbwWzzrOwETgF44d66PAW71vJ5jVXV9wHGaABcDfYEBOBctL4rIDpx/xotxqvvrAfd6ypwTJi7XZcBRwCBgCVDFc7yvRORaVf0kyD7fA2uBZz3lHwBGiEhtn8+hpKdcc5xmZhOAxsCPQOBrC2YcTl+B13C+Y10966eHKH8f0A04ELjfZ/1szwXRaM/ztz2v80Cc7+AJwPAwcdwHnI/znXgBp2YNiO176eMVoCTO934zMDfMucFpDngpTkL9PXA4Tn+KYN+5aD/Lrjg31E7DeY9dv3t+ngmcDnzrOU95oC3QV0QOVNVu4QKO9v32fEe+A07G+Y70BioB7YHfROR0VZ2I8114Aef3sy/wi+fYMddsJvgz+wi4BhgMfACUBq4FfhCRy1V1aMBxLgDu9Lwn/YDWOH8HNnheH4T5HuPUtPl+XuDctHkBp6noujAvvRTwEPAlMATn5kVz4BbgVBFpFqTWLpp4oxH2+yYitXBuQJUC3gcW4nw+dwAtRCRHVTd59vkC57v5DjANKIfznT8T6I7zPt2P83fja5zfFdj7d9eY4FTVFltsiXPB+SOswNM4/8AOAo7D+cepwHhPuaae5y8EOcY3OP9kK/qsU89yTpDy7TzbzvRZ19Wz7s6Asnd51j/ns+4Fz7qbAsq+7lk/xmfdkTiJza9AKZ/11YGNOBfhxT3rGnr2/w4o5lP2WJwmVArU9lnf37NuYIj3tnyQdWd79nk4YL164jzBZ10pYJVnfa+A8q969jkyis84WBzlcC6KZgWsd1/TWwHr23rW3+azroNnXZeAsvd51i+O8ju42Pcz81k/JvAYwdZ51l/iOeeVcf4eFPhOxvG9dI8xFygX5XnP9ezTP2D9pZ71WtjPMobvRDHP+7sJKBkh7qjeb5wLOwVaBazfD+fi2Pd39UxP2XaF+dwS9ZnhJGcKdAhYXwKYiJNoiWddbU/Zrfj/jRBgJrAqmu9xiNf4sufY94V7rzznKhtk/1sCP6tY440yznDftyHAGqBGwPocYA/wjOd5JYL8/QlyPDf+Z2KN05Z9d7EmScYkRhecO8prcO7q3AwMxblwAeeumgIfeqr7vYunXEXgpIBjTlPVH6M8/2We8/cNWP8Ozl013yYXl+LceRwQUPalIMdtjfNP8GX1ubumqitx/sEdhnP3EeAiz8+e6rQRdsvOwLnzG8orwVaq6lbwNhWo5HmvpuFckBVo3oOTnP3hs/8unFoRwaml8OXega0fJi6/ODyxlPPcHS6Hc4e4gYjsF2S31wKeu3eTfc93KU4i1SOgbB+cBDKV3LuT54d4PfGK5Xvp6qPRt3+/1POzu+9KVf2GIDUTcX6WBQQcp4znOAcAo3Au5o+KcIho3+/rgDnApIC/GaVwauZOFaffTyIl6jO7DsgFvgmIvTJObVBtCv7+faOqi90nqqo4tZXVRKRCrC9ERG7FqTV4W1VfD1dWHds9+xUXZyShA9n7uxvsb05C4w3GU+NzEc7/iR0B7+ViYAFO4gywHdgJnCBBmm4aUxjWJMmYxOiLUxXs3nWap6q+HUAb4Fy4zglzjIMDns+L4fx1gIka0FlYVfeIyFycGg5XXeAvdTpP+5ZdJSIbgxwX4O8g55zpc7yJPmWDNSGZi9NsJZigr1NEzsKpuTkBKBOwef8gu/wTZN0Gz89FIdYX6N8RJI6qwPM4yVPVIEUqU/AC3y8WVV3vtFLzO19dnDuRmwPK7hSRfwj+GpNCVceKyACcO8bXishfOE2jPlfVWYU4dCzfS1cs3/u6ODVIwfaZjVND5hXnZ1mA52LwGZxmbzWDFAn72cXwfjfAaSa4NszhDgSWRYo5Bon6zBrg3AgJ1yzq4IB9g/0Ou83zqhBDsxkRORsn+R6FM+xwNPtciTMscBOcJla+ov2bE1e8YRyJU3t1i2cJ5h9wbpKIM9xsT2CRiMzCSXi+UdWfEhCL2YdZwmBMYsyPUBsgOMnE+YQe4SjwojyZo4xoiPWBw3AGPg8nlrJ7AwlyN1lEmuP8o18APIpzwb8dJ+7PCD5gQ8iRowKTI99ThYvN0xdlFM7FTy/gL5y7w3nATcD/gsUS5fnc70TMcSWDqt4oIt1x2mWfinPh9ISI3KeqvVMYSizf+3Dvk9+2eD/LED7BuevbF6f/wH84TUMuwGlGFPE4Ub7fAszA6QMTSrhkIlWCfWaCE9v/wuw3M+B5uNHfov6dEJEGOH0R5gJtA5OfEPtcjjOXyZ9AR5wkbAdQHE8zyyC7JSTeSKF5fg4kdF+27e4DVX1bRIYAF+L0TbsCuFtEPlfVqxMUk9kHWcJgTGrMB84Dlqrq7EiF4/APcKSIlPD95+gZreMI/O+E/QMcISLFfS9sReQQnDawvhZ6fjb0eew62ud4sPcu/pEUvPN2JLH5H84/6vNV1Vs7ICLlSeGdd5z+KI2AZ1W1s+8GT3OHwlgInCsi+/nWMohIaZy7vBtC7hm/UAmKs1F1Js5F3MuezvF/4HQcf9PT3CJWsXwv47EQpznGERRMuAObBcX6WQZ9vZ735SLgI1W9PWBbNJ3o954g8vs9H6df1GjfZn6hDhfLucNI1Gc231N+gqomukNtyNfqqUUajtM056LAGrwwrsdJEFr43sQQkUjNyxIl1Gta4NlWKtomqqq6CngPeE+cYW4/Aq4RkR6q+leYcxkTkvVhMCY1PvL8fEGCzP4sAUPjxeEbnAuLwAuf9p71X/usG4LTFOCGgLKPBDnuUJx/Lg95Rmxx4z0E567sEmCKZ/Uwz8+OIlLMp+yxQKsYXgvsvXMXeJfucVL7dytoHCJyDMHbcsdiCE5S9GDA+jtw2sEnwxZgf8/ddi9xhmL0e19VdSNOEliOgk3CovUN0X8v4zHE89Nv0joRuZSCSWqsn+UWz/YDojzOIRR8nUHF8H4PwJnjImgNg4j4NmN0L8oD443VNyTmMxuA87sadMSogNhjFep7XAbnO3EI0Nq3f0EU3IEZfP92CfBkIeKMRdDvmzqjwY0ALheREwN3EsdBnsflRKRcwP557B05zT12or4rZh9iNQzGpICq/iUinXE6R08VkS+AlTj/2JrhNEsoVYhTvIwzEs+bItIU5yK+CU6b17me7b5l/we8K86Y/3/jjBpyEgHDDqrqXE+ziYeBcSLyOXuHVa0AXOvWUqjq3yLS17PtRxH5GucC4y5PPM2I/s7W1zhNO0Z4jrkLZ0bj4wJjTLLZOO/Pw55/xHNx7prehnNnOFh77mh9gPNePS0idXCGTWyC8zkuJDl/nyfg3B3vLSK/41wkjcb5Ptzv+cwW4MyAewZOojfI7Qwah1i+lzFT1e9FZBhwo+dC6zucYVXdz+cYn+KxfpYTgLuBt0RkOM578oeqLhKRUcB1IrIdp2nTYZ7jLCKKfjE4yXo073dPnO99d0+fntE4fSxq4YwYtgNw5zSYhdPJ+E4R2YYzitkaVXU77UYrIZ+Zqg4WkQ9wmsM0xRmCdh3OPCsn4QwLWjfMIcIJ9T1+EDgRpzlSPRGpF7DfDxp6Es3BOMNYj/b0LymJ06m+XIjyiRby+4ZzE+FXnL/BA3A+k2I4719rnOTsGZzv81jP92omTi1lA8/+i/AM9uDpU7UAuFqcuTNWA1tV1b3pY0xB6RqeyRZbisLC3uH5OkVZ/kKcEYP+w6kyXwaMBO4IKFdgqEifbe0IPoSlO+fBcpx/NsuBN4EDgxyjFs4/yM04FxnDcC60FhN8iM72OP+kdnj2+QE4LUi54kBnnCEfd+Lc2boSZyQkBar6lO1PiGEEPdsvBSbhdCJfh9N3oVawGEO9X6HOQQxDUOJcDH6B0x57G04b58tw/kErQYaKDXGcAjHi3OF7H6ej5Fac4SJziG3YyFCfWYFj4MwX8D7OBYJ7R/VMnPkfPsS5eN3q+Yyn4VyAlY4ihqDfyVi+l+GOEeHcZXFGmvoXpy33XzgX3gU+ixg/y2Ke7+1yn/eqnWfbgThNPlbi/E7MwPkdieo1xPJ+4ySO93pe11bPMh/4GDg3oOwFOPMm7CBgiORk/C2J5vXiNPX5xfMad+B8X78CrvIpU5sQw3yG+GxCfY/7s3dI6mDLmeF+/z2f4SxPnKtw+qgcQMDvbqzxRvk9Dvl98/nOdcfpJL4DJyGcgZNUHu0pUwVnhLapnu3bPd+x14FDAs53PPCb5/ukRPn3xpZ9d3HHQDbGmKTx3AU+C9hPQ3cINsYYY0wGsj4MxpiEkSBjwovIcTijQ422ZMEYY4zJPlbDYIxJGBG5Had99nCcZh9H4bTTLwacoqpTwuxujDFFhme+jkgTuOWpaiYMjWtMWNbp2RiTSJNx2oTfi9P2NxenM2IXSxaMMfuYTjh9usJZgtMnwpiMZjUMxhhjjDEJJiJ1iTwS1HZV/S0V8RhTGJYwpNCBBx6otWvXTncYxhhjjDGmCJs0adI6VT0oUcezJkkpVLt2bSZOnJjuMIwxxhhjTBEmIksSeTwbJckYY4wxxhgTkiUMxhhjjDHGmJAsYTDGGGOMMcaEZH0YjDHGGGNM2uzevZvly5ezY8eOdIeSdcqUKUONGjUoWbJkUs9jCYMxxhhjjEmb5cuXU7FiRWrXro2IpDucrKGqrF+/nuXLl1OnTp2knsuaJBljjDHGmLTZsWMHVapUsWQhRiJClSpVUlIzYwmDMcYYY4xJK0sW4pOq980SBmOMMcYYY0xIljDESUQaiMjbIjJYRO5IdzzGGGOMMabwnnnmGV555ZWQ27/55htmzZqVwojSzxIGHyLST0TWiMjMgPXnichcEVkgIo8CqOpsVb0duBLISUe8xhhjjDEmtSxhMP2B83xXiEhx4E3gfOBo4BoROdqz7RLgV+Cn1IZpjDHGGGMSpWvXrhx55JGcc845zJ07F4B3332X5s2b06hRI9q0acO2bdv4/fffGTp0KA899BCNGzdm4cKFQcsVNTasqg9VHScitQNWHw8sUNV/AETkM6A1MEtVhwJDRWQ48ElKgzXGGGOMKWLuu+8+pk6dmtBjNm7cmNdffz3k9kmTJvHZZ58xZcoU9uzZQ9OmTWnWrBmXX3457du3B+DJJ5/k/fff55577uGSSy7hoosu4oorrgCgcuXKQcsVJZYwRHYosMzn+XLgBBE5E7gcKA2MCLWziHQAOgDUqlUraUEaY4wxxpjY/fLLL1x22WWUK1cOgEsuuQSAmTNn8uSTT7Jx40a2bNlCq1atgu4fbblsZglDZMHGq1JVHQOMibSzqvYF+gLk5ORoQiMzxhhjjClCwtUEJFOw4UnbtWvHN998Q6NGjejfvz9jxowJum+05bKZ9WGIbDlQ0+d5DWBlLAcQkYtFpO+mTZsSGpgxxhhjjCmc008/na+//prt27eTm5vLsGHDAMjNzeWQQw5h9+7dfPzxx97yFStWJDc31/s8VLmixBKGyP4C6otIHREpBVwNDI3lAKo6TFU7VKpUKSkBGmOMMcaY+DRt2pSrrrqKxo0b06ZNG0477TQAnnvuOU444QRatmzJUUcd5S1/9dVX0717d5o0acLChQtDlitKRNVaybhE5FPgTOBAYDXQWVXfF5ELgNeB4kA/Ve0az/FzcnJ04sSJCYrWGGOMMSb7zZ49mwYNGqQ7jKwV7P0TkUmqmrBh/60Pgw9VvSbE+hGE6dhsjDHGGGNMUWVNklLA+jAYY4wxxphsZQlDClgfBmOMMcYYk60sYTDGGGOMMcaEZAmDMcYYY4wxJiRLGFLA+jAYY4wxxphsZQlDClgfBmOMMcaYfUPt2rVZt25dXGW++OILGjRoQIsWLZg4cSL33nsvAGPGjOH3339PSrzRyOhhVUWkAtALGKmqX6Q7HmOMMcYYY5Ll/fff56233qJFixYA5OQ4UymMGTOGChUqcPLJJ6clroyuYVDVLTgzK++X7liMMcYYY0zRs3jxYo466ihuvfVWjjnmGK699lp+/PFHTjnlFOrXr8+ff/4JwH///cell17Kcccdx4knnsj06dMBWL9+Peeeey5NmjThtttuw3dS5IEDB3L88cfTuHFjbrvtNvLy8kLG8eyzz/Lrr79y++2389BDDzFmzBguuugiFi9ezNtvv81rr71G48aN+eWXX5L7hgSR0QmDxyygdrqDKAzrw2CMMcYYE5lIcpZIFixYQMeOHZk+fTpz5szhk08+4ddff+WVV17hhRdeAKBz5840adKE6dOn88ILL3DDDTcA0KVLF0499VSmTJnCJZdcwtKlSwFnBubPP/+c3377jalTp1K8eHE+/vjjkDE8/fTT5OTk8PHHH9O9e3fv+tq1a3P77bdz//33M3XqVE477bRCvMPxyegmSR4vA2+JyEeqOi/dwcRDVYcBw3JyctqnOxZjjDHGGOOvTp06HHvssQA0bNiQs88+GxHh2GOPZfHixQD8+uuvfPnllwCcddZZrF+/nk2bNjFu3Di++uorAC688EL2339/AH766ScmTZpE8+bNAdi+fTtVq1ZN8StLjGxIGI4ClgEzRORbYD6wLaCMqupzKY/MGGOMMcYkjE9rnpQqXbq093GxYsW8z4sVK8aePXsA/JoaucRTfSFBqjFUlRtvvJFu3bolI+SUyoYmSc8AjYCSwGXAw551gYsxxhhjjDFJcfrpp3ubFI0ZM4YDDzyQ/fbbz2/9yJEj2bBhAwBnn302gwcPZs2aNYDTB2LJkiVxnbtixYrk5uYm4FXEJxsShjpRLHXTFp0xxhhjjCnynnnmGSZOnMhxxx3Ho48+yocffgg4fRvGjRtH06ZNGTVqFLVq1QLg6KOP5vnnn+fcc8/luOOOo2XLlqxatSquc1988cV8/fXXaev0LMGqV0xiicjFwMX16tVrP3/+/HSHY4wxxhiTMWbPnk2DBg3SHUbWCvb+icgkVc1J1DmyoYbBS0TqicgpIpJVM6DZxG3GGGOMMSZbZUXCICIXichCYC4wDmjmWV9VRBaIyBVpDdAYY4wxxpgiKuMTBhE5E/ga+A/oAni7oavqGmAhzuRuxhhjjDEmC1kT+fik6n3L+IQBeBqYBpwAvBlk+3igaUojMsYYY4wxCVGmTBnWr19vSUOMVJX169dTpkyZpJ8rG+ZhyAE6q2p+sDFugeVAtdSGZIwxxhhjEqFGjRosX76ctWvXpjuUrFOmTBlq1KiR9PNkQ8JQHNgZZvuBwK4UxRIXn1GS0h2KMcYYY0xGKVmyJHXq1El3GCaMbGiSNBs4Lcz2i3CaLGUsGyXJGGOMMcZkq2xIGN4HrhCRW9gbr4pIORHpBZwE9E1bdMYYY4wxxhRhGd8kSVX7iMgpwLtAD0CBT4EqOM2VPlDVj9MYojHGGGOMMUVWxicMAKp6nYh8CVwHHIUztOofwABV/TKtwRljjDHGGFOEZUXCAKCqX+PMx2CMMcYYY4xJkYzvwyAiORJiPFVjjDHGGGNMcmVDDcOfwCYRGQuMBkar6sw0x2SMMcYYY8w+IRsShruAFsCZwCU4IyStA35mbwKxIH3hRWbzMBhjjDHGmGwl2TQNt4gcB5zlWU4D9vNsWq6qh6UtsCjl5OToxIkT0x2GMcYYY4wpwkRkkqrmJOp42VDD4KWq04HpIjIYOBd4ADgaSP6c2MYYY4wxxuyDsiJhEJEqOM2SzsapXagH5AFTgJeAn9IXnTHGGGOMMUVXxicMIjIZOA5n7oW/gZE4fRfGqOrmdMZmjDHGGGNMUZfxCQPQGMgHBuLM8DxOVbelNSJjjDHGGGP2EdmQMFzL3o7O1wO7ReQvnGZIo4HfVXV3GuMzxhhjjDGmyMr4idtU9VNVba+qhwN1gDuARcCtOAnDRhEZlc4YjTHGGGOMKaqyoYbBS1WXAP1EZDzOhG63Aw1wOkMbY4wxxhhjEiwrEgYRqcPeZkktgIM9mzYCQ7BRkowxxhhjjEmKjE8YRGQRUAtnlKStwK94ZngGJms2zTxnjDHGGGNMlsn4hAFYAvTDSRD+UNU9aY7HGGOMMcaYfUbGJwyqema6YygsEbkYuLhevXrpDsUYY4wxxpiYZPwoSS5xNBWRKzxLUxGRdMcVDVUdpqodKlWqlO5QjDHGGGOMiUnG1zAAiMh5wFvAYQGbFovInar6fRrCMsYYY4wxpsjL+IRBRE4BhuJ0eO4FzPRsagi0A4aKSAtV/T09ERpjjDHGGFN0ZXzCADwN/AucoKqrfDeISHfgD0+Z89IQmzHGGGOMMUVaNvRhOAHoG5gsAHjWvQucmPKo9lEDBw7k+eefJz8/P92hGGOMMcaYFMiGhKEUkBtm+2ZPGZMC119/PU899RQLFiyIa/8hQ4ZQsmRJPv744wRHZowxxhhjkiEbEobZwNUiUqD5lGfdVZ4yJoXirWGYPXs2e/bsYfLkyQmOyBhjjDHGJEM2JAx9cJol/SQiF4pIHc9yEfCTZ9tbaY3QGGOMMcaYIirjOz2r6nsiUh/oBJwapEh3VX0/xWEZY4wxxhizT8j4hAFAVR8RkX7AJUAdQICFwFBVnZfW4IwxxhhjjCnCMjphEJFmQD1gHTBOVbunOSRjjDHGGGP2KRnZh0FEyojISOBP4BNgFDBbROqmN7LskZuby9lnn02bNm2K3BCoqsrjjz/OJ598ku5QjDHGGGOKvEytYXgYaAVMAUYDRwAXA+8BZ6UxrqyxePFiRo8eDcD27dspX758miNKnDVr1tCtWzcA/ve//6U5GmOMMcaYoi0jaxiAtsAE4HhVfUhVWwMvAGeIyEHpDc2kwz333MOJJ57Irl270h2KMcYYY8w+JVMThrrA56qa57NuIE5n53rpCckEmj9/PosXL07JuXr37s0ff/zBhg0bUnI+Y4wxxhjjyNQmSWWBtQHr3OdlUhxLUCJyKXAhUBV4U1VHpTei1Nq6dSs5OTmA06cglVKVpBhjjDHGmMytYQhHknZgkX4iskZEZgasP09E5orIAhF5FEBVv1HV9kA7nNmm9yk7d+5M27lHjBiRtnMbY4wxxuxrMrWGAeAGETnR53kZQIG7PXf3famqdkzAOfsDvYEB7goRKQ68CbQElgN/ichQVZ3lKfKkZ/s+b8eOHVx11VU0bNiQF154IWnnKVbMyXOPOeaYpJ3DGGOMMcY4MjlhONezBLo0yDoFCp0wqOo4EakdsPp4YIGq/gMgIp8BrUVkNvAiMFJVJ4c6poh0ADoA1KpVq7AhZrRly5YxdOhQhg4dmtSEwRhjjDHGpE6mJgx10h2Aj0OBZT7PlwMnAPcA5wCVRKSeqr4dbGdV7Qv0BcjJyUltY/847dq1i0mTJnHccccVqeFYjTHGGGNM7DIyYVDVJemOwUewPhOqqr2AXqkOJhXeeOMNOnXqxL333kvPnj3THY4xxhhjjEmjbOz0nGrLgZo+z2sAK2M5gIhcLCJ9N23alNDAkiU3N9fvpzHGGGOM2XdZwhDZX0B9EakjIqWAq4GhsRxAVYepaodKlSolJcB0SGcysXr16rSd2xhjjDFmX2MJgw8R+RQYDxwpIstF5BZV3QPcDXwPzAYGqerf6YwzEzz88MNpO/fbbwftLmKMMcYYY5IgI/swpIuqXhNi/Qgg7sH/ReRi4OJ69bJ/kurKlSuzceNGSpRI31fngAMOYP369YgkbUoOY4wxxhjjYTUMKVCUmiQlOlHYuHEjxx13HJ06dUpbDMYYY4wxJjRLGPYhAwcO5LnnnkvrLM2+duzYQf/+/ZkxYwY9evTwW3/99dfTr1+/NEZnjDHGGGPAEoZ9yvXXX8/TTz/NxIkTGT58OM2bN+fLL79MSyy9e/embNmy3H///QW2LVy4kIEDB3LLLbekITJjjDHGGOMr49p2iMjoOHZTVT074cEkSKb1YcjPz+fHH39k4sSJfP/997Rp0yZl537vvfcAZ3K4QNWqVePhhx+mVatWKYvHGGOMMcaEl3EJA1AXCJwRuTxwoOfxRpzJ1NwOAeuALSmJLE6qOgwYlpOT0z7dsaTb4sWLQ25bvXo1H330kSUMxhhjjDEZJOOaJKlqbVWt4y7A2cB2oCdQXVUPUNX9geo4My1v85TZJy1cuJCffvqJ3bt3py2GXr160a9fP/Lz8yOWLV26dAoiMsYYY4wxiZJxCUMQrwG/q+r9qvqvu1JV/1XV+4AJnjL7pNNPP51zzjknqX0RXn31Va666ipCzVTdsWNHbrnlFmbOnJm0GKKxePFievTowebNm9MahzHGGGNMUZINCcOZwNgw28cALVISSRrl5+fz999/s2HDBr/1K1euBGDr1q1JO/eDDz7IoEGDmD59ethy6azlAOjcuTOdOnXi+++/T2scpqCVK1eyfv36dIdhjDHGmDhkQ8KgQIMw2xtSsM9DRhGRi0Wkb6g79NEYMGAAxxxzDKeddlrIMqpK165deeaZZ6JqHpSNduzYwerVq4Nuc5OpvLy8VIZkotCgQYMC391t27ahmtG/usYYY4whOxKGUcAdInKD+EztK44bgds8ZTJWIiZucy+Gly9fHrLM6tWrefLJJ+nSpQuLFi2K+1yZ7Icffij0Mb799ltuvPFGtm/fnoCITDQ2b97M7Nmzvc93795N+fLlefjhh9MYlTHGGGOikQ0JwwPACuADYIWIjBWRMZ51/YCVnjL7hGLFQn9kvndrY71zu2PHDqZPn572u/NTp05l27ZtIbe7zZ7q1q0b9znat2/PgAEDmDNnTtzHMIXjTh74yiuvpDkSY4wxxkSS8QmDqi4HGgMvARuA44ETPI9fAhp7yphCeOCBB2jUqBFvvvlmukPhmWeeiVjGp7IpZhs3box7X2OMMcaYfU0mzsNQgKpuAh73LCYJ3CZPmXAx/e+//0YuZIwxxhhjUiIrEoZsl2kzPSfLnj0CnAKczNVXw4oVsG4dlCwJFSpA/fqwe/c9wDBgVlTHXLx4MbVr1w66bcaMGRx55JHMmjWL4sWLJ+hVGGOMMcYYXxnfJAlARGqKSD8RWS4iu0TkLM/6gzzrm6c7xnAS0ek5s50IvM0dd1wK/Aq8zOefw6+/wpw5MGMGjB8PAwbA7t0vAn8Dc4D7gQphjxw4IpI7jKxr3rx5aR/O1RhjjDGmKMv4hEFE6gATgTY4V5reW8mquhbIAW5NT3T7LtViwKXAb8B44Da2bCmNkwi8Tf363ejdexbOqLeNGDlyG336QPHiHwFrgSOBV4GlOH3WS0Z13ueffz7RL8Wk2I4dO9IdgjHGGGNikPEJA9AVyAeOAa4FAnu7jgBOTXVQ+6Lly5ezbt06oCVTprwLfA2cDPwHvMRLL43EmTLjDubPf5zc3KE4TY+mc+qp+dx+O5QufTtwCHAJMA7YH+gBTAeciqJwoySZ7Pbqq69StmxZ/vvvv3SHYowxxpgoZUPCcA7wlqouI/gEbUuAGqkNqegKNxtv797fAyNxpr1ojFM7cA9QC3iU/PxpUZ4lD6cfwxnABcBc4Cic2orHmDNnXpzRm0z31ltvAVjCYIwxxmSRbEgY9gNWhdleiiLYefuDDz6gVq1adOvWLaXn7dWrV5CLOQHuYcKEt4HzgE3AIzjNinoDWwHn7nHsRgLH4TRPKgm8AAwFKsYTfgGLFi0KOTO0McYYY4yJLBsShmU4DeFDORFYkKJY4iIiF4tI302bNkW9zy+//MKyZcsYPXp0EiPby3dCuM2bN3sfL14M8BPQi/z8MsBHlCp1NPAy4N8WvXTp0iGPn5+fz7Rp00J0UN4FPAi0AtYBF+LUNhwW8ngLFy4M+3oA9uzZQ926dWnUqFHEsiY13AkF586dm+ZIjDHGGBOtbEgYvgJuFpFjfNYpgIi0AdoCg9IRWLSybZQkp58CzJ17BsceC9ACWMOxxz4N3IBI8GZLy5eHnj+vf//+NG7cOMKIRqNw5uSbBRwL/M6iRWXjeQmAk6RAwZGWTPqsWuVUFt5yyy1pjsQYY4wx0cqGhKErsBz4AxiIkyw8KiLjcRKFaTi9Zk0Izz77bIHhSMMZPnwqMJLff7+RLVsAvgAactBBv8UdQ/S1K/8AJwE/A9W5444GTJkS92mjtnbtWlq1asW3336b/JPtw9wahq1bt6Y5EmOMMcZEK+MTBlXdjHMF+R7OEKoCtMRpQP8W0EJVbZxGYOzYsUHXv/zyy3z66acR969duw7lyt0GzATOo3TpLTi7XYnTVChVNuN0hh7Bxo0ladECnI8+tClTprBixYq4zzhr1ixGjRrFk08+GfcxjDHGGGOKooxPGMBJGlS1o6oeBBwMVAOqqOo9noTCAE899VTIbXl5eWH33b59P9aufYdt294GKgPDuPTSp7j66thiqF69emw7hLQDuJQzz/wPp3LiO0J1Zdm4cSNNmzZl8uTJfuuHDx8e81l37doV8z7GGGOMMUVZxicMIlJLRPZ3n6vqWlVdo562DSJSVkRqpS/CzOHbcTnQI488EnLbF1/AiBEvs3VrS4oX3wK0Ay7h889fZ9SoUQmPM3q7ef75BVx8MUAV4Afg8AKlQk0EFm6IWICdO3cmtfOtqtK5c+e4EpeiYvPmzX6fz549e9IYjTHGGGPikfEJA7AYWCIirUNsvxxYlLpwMpdI4Jx2wT3wwAOeRwfw00/tufJK2LmzImXL/krz5jcDH3rLtmrVKu54vvrqq7j3dZUooQwaBM5ITYcAPwKHxnSM8uXLB11/0kkncdRRRzF16tSYjte6dWtuv/32iOW2bNnCs88+y0UXXRTT8YuSI444wu87ZAmDMcYYk32yIWEAZ6bnL0XkwXQHkmo//vgjHTp0YMmSJQk75vz581m4sCHwN//805zy5aF5835Ur34TZcqsTdh55syZE7FMNEOelikD0BqYANTGGU2pctxxnXTSSX7PYxnuFmDo0KG88847cZ9/X7J69WrGjRsXtow7KpcxxhhjMlO2JAwPAIOBl0XkHREpnu6AYhHPPAy+3n33XUaMGFFgfXyz5VZix44+DBt2K1CNatXmMX061K//E1FWUKTJVpyO0DOBo3FG2y0FwM033xzTkapWrZrg2ExhnHvuuekOwRhjjDFhZEvCsENVrwa6Ae2BkSKSHZMaEHkehuuvv54qVarE3ITnoYceijGSc4EZ7Nx5DbAduI+LLupB3boxHiZtNuBM6rYKZ26I9wD4+eef0xiTKawpqRg31xhjjDFxy5aEAQBVfRK4CTgd+F1EsuZSF5xOtu3atePZZ5/1W//zzz/z33//MWnSpJiOF/1Y9pVwLq6/B2oC44HGQE9ENKZzplpubi5bnMkgPJbiJA1bgOuBZ4PuZ4wxxhhjEiOrEgYAVf0QaIUztOoE4OT0RhS9jRs38uGHH9K5c2e/YU6LF4+/hVW5cuUilHCb8dyCM1TpI8BpwLyojn/22WdTsmTJuOMrrJYtW3LooYGdnKfgzA2RBzyFk0PuNXbsWLtrbYwxxhiTIFmXMACo6licydw2AXekOZyMtGVLSaA/MByogZNbNQFexrnQdrz77rsBd/D9denShZEjRyYz1Ig2bw421cZI4C7P477AOd4tb7/9Nk2bNk1BZMYYY4wxRV82JAxdgOmBK1V1HnAC8AUQfhiWfc7ldOx4NnAjTl+FTsApQPBRi/7880/v40hzF2SWd4CXgBI4feKP9tvavn37NMRkjDHGGFO0ZHzCoKpdVHVmiG3/qepVqtoi1XFlol27DgW+Bb5kw4aywK9AI6AHzsi0/p588knAmWDMFa62ITM9hpMsVMKpTYl9BKT169f7vQfGGGOMMWavjE8YTEGTJk1i1KhRPv0gSjJixHEsXvwtTofgTbRvPxU4A5if0th27tyZ0vOBAjcAf+DM0TAEKBPTEdq0aUPHjh0THpmJXl5eHhdccAFff/11ukMxxhhjTICMSxhEZLSI/CQiJXyeR1p+Snfc8dixI5+vv95IXl6JqPfJy8sjJyeHVq1a8fvvv5OXdxowha++ao5qWeBj4EjOP38RwWoVki14fwN/d955Z4LPuh24BGdS8BOBAUBsk0pMn16g1ZtJodzcXEaOHMlNN90UubAxxgTx77//xjk/kTEmkoxLGIC6QB32XvG5z8MtWTW8quvkk3/g8ssrs2LFPVHvk5/vJgGHs3btO+zc+R3QkIMP3kSNGjcB1wGrkxBt4jz//PMRyxx00EF+z48++ugQJV1rcGtXoC3QNWTJPXv2RDy/SY94Jzc0xphDDjmEAw88MN1hGFMkZVzCoKq1VbWuqu72eV4n0pLuuOMxdao7ss99Ue+zZUtxoDswi927L8KZAfkpnnnma8qXHx90n4MPPrhwgaZB48aN49hrFnAFsAenb8MtBUqoKl9++WWhYjPGGJOZilJ/tFNPPZXXXnst3WEYA2RgwlAUicjFItJ3x44dAVuibzKkWgK4HadPQiegFKVKfUKZMscBz1OyZF7IfWvUqMG1114be+AJlJubW6j9Z82aFWXJHwG3yVMf4CwAVq5cSY8ePSJWVzdq1CjeEAF44IEHEBEOO+wwv7k2Vq5cWajjGmOM2bf89ttvPPDAA+kOw2SRadOm8eijjyYlcbaEIQVUdZiqdihTxr8zrkg0CUMx4FqWLBmJcwF8EM4oss0oX/5uihX7N+64mjVrFlP50aNHx32u7t27x71v7N7FmW+iJPAl+flH8corr9CpUye++eabsHsecMABhTqzezdo6dKlfh3AFyxYUKjjFoaqpqEzujHGmGBGjBiBiDB37lxUNa3/H0zRcuqpp/LSSy+xdevWhB874xIGEekXx/J+uuOOh0joDNBJDi8DpgED2b37MGAu0IaqVa8EJhfq3B06dKBKlSox71esWMZ9ZUJ4FPgSqMyOHYPp2/cbIHn9F/bs2ZPipCh6nTp1okKFChSs4TLGmH3Tc889R9WqsQ/DHcq2bdto2LAhv//+e8Syn332GQB//PEHvXv3pn79+n7zIZnU++ijj1i3bl2hj7Nr1y5EhN69eycgKsfGjRtZsmRJVGWT2SQvE6/+2sW5ZJW8PMjLK+mzphIA+fnwzTcwbNjTwFfAMcBiqlZ9FGgIfMV++1WMePxoRiuKlu9d9169esV1jNQnGgpcD/yJam22bfsEKEOJEtGPSBWLadOm8fDDDyfl2IX16quvsmfPnqTccTDGmGz09NNPs3bt2oQdb+rUqcyaNYtOnTrFtJ+bYIwdO5Zt27bFff7t27fHve++Yvz48UFvGi5atIgbbriBK6+8Mu5jDxkyBBFh0aJFAHTp0iXuYwU67rjjqF27dsKOF6+MSxhUtVgcS/F0xx2rNWsAfMOuw4wZjTn2WLjsMli/vjawCrgLOJJKlb4C8hg6dGhUF+3t2rVLWKxNmjShTp1s7FfuDLcqshTVE4H+qEY/3Gp+fn7UTXn2jl5lirr8/HwmTZrk10fFmFT7448/mDBhQrrDMHEIdhf44Ycf5vzzz4/reDNnzqRcuXJ8/vnnhQ0t6T799NOkjoaXn59P37592bVrFwDz589nv/3244svvuDkk0/m6aefLrCP+3++MH0NX3nlFQD+/vvvuPYXER566KGg25YtWxZyv40bN3pvEOfn5yf1xmDGJQz7ihUrAteMYdiwtsyaBTVrwgknfAIcDrwF7GL+fGcCttNPP51KlSqlNligZs2aKT9nOI899hinn356FCVXU6bMFcBm4Cq++Sb6fhtt27Zlv/32i6opT2EuHnfu3Mnrr7/O8uXL4z5GLFatWpVxF7vZlHANHTqUnJwcPvnkk3SHYhJszZo1Cb3rnEwnnngiJ510UrrDMB7xNAUR8b+BNW7cuLjOPXmy00R5+PDhrF27lptuuimuGoc5c+Zw3333JaxZy/jx4xERJk2aBDiJzf/+9z9uvvnmhBw/mE8//ZTbbrvNO3z7Bx98QG5uLq+++ioAM2bMKLDP6tWJG4o+XC3RGWec4b35+umnn3o/N5ebdMRi//33914T3nPP3iH6E/maXJYwpEnB5miVOOCAtfTrBwsWwNFH/4hzh9y4fJtGXX311VHPClys2CxKlrwW2MPw4Y2IpgXbo48+yldffcWuXbvo06dPxPIXXHBB2O3btm3j2muv5eeffy6wbcKECdx///08/vjjEc9TWP/99x/Vq1fn3nvvTehxC3tX44svvvA+jn5ErPSYO3cu4PzzM0XLaaedxplnnllgfX5+PhMnTkx9QGmWl5dHjRo1+PTTT9MdStYITAJS7YknnqB///589NFHfuv/+uuvAjXmPXv29KvVuOiii+jZsycLFy5MSCzDhg0D4Pvvvwf2/p9I5s0xt/Yi2v4Io0eP9vudV1VEhGeeeSau819//fUht40bN47FixcD8L///Y9WrVrFdY5Q+vXr531cr169hB4bsiRhEJESInKFiHQXkfeytdNzfr4CpwCfcu217ls/FugPXEGHDj256SYoVcp/vwYNGqQyzIwQbO6IwvQ/KF78R5zmXQB9gRYhy+bn5/PSSy95nz/wwAMR77hs2LAh7Pb58+fzySefcPfddxfY5rapXFGw2inh3OFtBw4cmLBjfv7551SoUKFQnfbmzJnjfXzNNdcUqbHUTfaYN29egYR1/vz5dOvWjebNmzNmzJiEnOf777/PiqGWt27dyooVK7jttttSfu6pU6dG9bc300TT6TnVr2nhwoUcf/zxdOzY0W/9fffdx3fffZew82zfvj1obXHg6/3zzz+59dZbQx5nxIgRnHHGGQmpeQ72Xv/777/emoDAGwHuOZ977jnv/sn637xu3TouvfTSuJqSzZo1i3nz5iUhqtAyPmEQkQOAScDnwIPATezt6HwjWdTpeeXK/YBfgatRhWrVfsd5CTcBX1KsWHb9YYxFrL/4TZs25ZBDDklwFH1p3Pgn3OFW4ciYjxCsw1QsVb9FcSZj9+5Rou64T58+vcA/Nl+7du2yEZ9MSmzdupUjjjiCJ598EiDoSCWqGvMF4Hnnncfxxx+fkBhTIT8/n44dO/LPP/8k/Vzffvstzz33HDfddBOvvfYaGzduTPo5EyHYd2D16tXUr1+fBQsWsHjxYkTEL6GIpTZi1apVUdeq+8azc+dOcnJyAPyawLhNdKI5zpYtWyKW2717N+XKleO+++7zrgv3+t5/P/R93gsvvJBx48axfft2Jk6c6L2onz59ul9z2pkzZ3LBBRdE1dfQN5ZDDjmEqlWrFmi2E+wzrFGjBjVq1GDUqFERz+Fr3bp1IRMN3/MOGTKEq6++2vv80EMP9ZtcNtT3v2HDhhx5ZOzXMIWR8QkD8DxwFHArTqN+AVoBDYBPgb+A2McHTYtywBrgeRYsyKd58xeB6IbKisfLL7+ctGOnQsWKkUeDilWVKi8DXwP7AyOAA2Pa/5RTTimwLpb+AKrKqlWrYjrnvuiNN94Iue3ss8/Oqostkxw7d+5Met+XaBLThx56iGLFisXcL6gwdy3dDp2psnXrVnr16uV3YZMsF198MU8//bS36UY2GzRoEAsWLKBnz578+OOPgNNsJJ4ahurVq3P55Zeze/du+vXrx/fffx/0QjnwIn3KlClBLzoffPDBkOfyja93795UrFgx4rCe7ncyWCKwe/fusPuG07x5c5o3b86MGTNo1KgRnTt39m677bbbGDlypF8tgdtfIpDbGdktu3XrVmrVquW3b7AJZt2awFatWjFs2LCYagZr1KgRdH24ViMrV67kiiuu8D4fPHiw93G651PKhoThQmCAqn6A03MVIE9V56rqdTgN/bulLbqYLAJqAk+RYX2I0yYZSUE4zmR51wETgbrAUJxEbq9Qd8p3795d6LGyV65cSfXq1Rk6dGjQ7cuXL+epp55K21213NxcqlWrRuXKlVPWCRtiG673119/DdpxTVV5+eWXC5WQ/fHHH1x77bVh5+vItCYSPXv25Icffkh3GCnXuHFj2rdvn9RzjB07NmIZ97ubyoEExo8fn7Jz+Urmd3/16tVJH+Vn48aNCUkyg124JaLTcyi+d7dVlVtuuYXzzjvP26ynsJ/LzJkzyc3NDRrPV199BRBX7ZJ7vC5dugRtPhPLXAXuhfpff/0VtpxvO/7Nmzfzyy+/eB+D0xzJtWvXLr/+cyLifb3BXHLJJZx88sl+68aOHevt1xbM7t27ue222/wSjUhNmEMpU6YMI0eODPm9SfaNhGxIGKrh1CIAuP/FfadM/ga4JJUBxe8/ILV3hpIp1EVvMKFGWerRo0eiwonBNuBinNqdk3CaJ+2dE6NRo0YF9hg7diylAjuXFEKomT179OjB888/731vV69ezZ133snSpUujPvbzzz9PzZo14/rjsWrVKlavXs2mTZt49913Y94/Xon4Jz5jxgweeeSRoHdBFy5cGNWdoTvuuINPPvkkpclSYd13332ce+65ST3HuHHjCnWXMFHeeOMNb3X+nDlz/C4OkqFNmzZJPX4o//zzD127dg15IZjsmpUaNWokfGCESM4///yINRjvvvtuVP93pkyZUmDdxo0b2X///XniiSci7t+pUyd++OEH9uzZw9ChQ/0+hz/++IPy5csX6KvgW+a9996LeA6A6667zjuJWzju2P6B5xk4cKDf/r4XksG+O6G+T8ceeywXXnhhgfWPPfZYofrt+MYTrPmM76g+sbjmmmsoV65c2DKqyhVXXMFvv/0W9XFVNeJcDEuWLKFbt2488sgjzJo1izPPPDNs5+URI0bQt29f7rjjjqjjAOe9E5ECNylDDbAiIkn/u5ANCcN/QHnP41xgN85tetdunPYlJo169OhBu3btOOGEE4JuP++884KuP/744yOOMJQc/wLn4jQROw8YSLhfh2B3R5IxSo57F8S9OBs0aBB9+vSJaqQm11NPPcXy5csLPXJRvNWfqsqCBQvC3KW/EXgIKJvQGNw7vMH6iRxzzDGcccYZEY+xfv16IPydv0SOguIOqZvIiRYTbdKkSZxxxhk8+uijSTn+9OnTmThxIv/88w8vvfRSyIuaWbNmce+993LVVVcl9PwTJkygTp06UX0GwT77ZCRSzZo148knn4wpcc3NzU3YHcYVK1aEbRYYaPfu3ezevZsff/zR72bIpk2baNKkSVRj00dzU6RDhw60bt26wPo///zT7+9d4F1g2Pu7PWjQoIjn6dGjB+eeey5du3aldevWjBgxwrutW7du5OXlMXz48JBDaLZv357p06d7n0+bNs2vFrAwNQJNmzb1ex44SIT7HXWHNHXvsEPBDr6+fMu5XnzxRe/j3bt3U7duXYYMGcI999xTIGFK9pwgvhfcn332Gdu3b/fGsGnTJvLz8wsMiTx16tS4zxc4+Imvxx9/nJdffpmWLVsCThLx66+/Bi1b2FqzVN64iyQbEoZ5wNEAqpoPTAHaiUhpESkH3AAkvyeWCevqq6/mgw8+8Bv6NFh7wMwyD6c7zCbgSuAdYvk7nuy7m7C3k3Umd/L94IMP/J6PHz+e+vXrh6hVugtnVLCXgfB/CBcvXkyZMmXo379/VHG4/yiD/TPesWNHyFodX6lubjR48GDuv//+mC7OUs39JxzvhESRNGrUiObNm3PHHXfw6KOPhqwJci/M463OD+WJJ55g8eLFEZs6BBPrBUm0M/m6TRJjGcp1v/32i2pumg0bNsT1WiOdu1SpUrRs2ZL69et7148aNYqpU6fGPURlOG4ytXbtWk444QS//z2+pkyZwi233BLy7mu4uSzcO/vu78CKFSsYMmQIAC+88ALly5cPue9PP/3kffzLL79ElahEI9iw025/GBHhnXfe8Tt/LC0BXKrq13kZnDlKFi1axB133EHv3r0L9Oc755xzChwnMMEONnfN9u3b2bZtG507d+bpp58O+TfYt5Yl0Oeff07btm2pWrVqyDLRCGzOGukmSTR39IvSkMTZkDCMAq4QkdKe568CJ+DUPKwBcoDX0hRbxqpQoUK6Q8gSU4GLcLrC3Mr48ZdFvWey2ywX9m7hsmXLuOyy6F9Porh3Cn3bijpKAL6zbF6L048kOLfN7IABA4JuD0xIihVz/pwl+6LfPX4iOq+7F7/WEX7vhVA2TeIXS8fcyZMnU758+ZhGugnXlyaYP/74I+z2xYsXc8ABB8Q9aECo2rVE3NCI5ff2008/pWbNmowdO9ZbsxDq7+VFF11Ev379/H7HfPuIxXJnPFQnVog+/r///jvsaHlr1qyJec4PdxQvX24SEXjnO9zfGt+bLj179vTbFmp+gQkTJhT4XtStW5cbb7zRr8MuBO+r9u2331K+fHmeffZZnnvuOUaOHOndFuyufbDRigYMGFCg78Hbb7+dUZMwprvDciJkQ8LwAlBNVXcCqOog4Arge2Ak8D9VzYp5GCLp169foZsmXHDBBbzxxhveCVNMNH4F2gC7mTr1HCD6CdQGDx4c9I91LIIlHt9//z2lS5dm+PDhcR/366+/5ptvvilEZI4BAwbQokWLmC9eCmoJVAVmAR961l0X99ECm2u4/7RSdcH50Ucf+f1zi2TSpElUq1bN2zSiqNq4cWNUY9HHa/r06XHNYhuKe6EX60Xv8OHD/ZqquMNP+sa2atUq7rnnHvbs2eO9CIzlO1NYubm5fm24E1FLtGrVqpTMGRPuAtz9fvk2+4nluIEJ0xtvvMF3331X4G/chx9+SLzmzp0b9OJ8woQJft+bQE2aNKF58+ZxnTOa64fq1auH7DQfTXPLwN89d0Zl32MsWrSIAQMGMHv27IjHC+T7GkI1Zc4UBW+KheYOP57NMj5hUMfOgHVfqerlqtpWVZM7rEIK/fvvv3499l2+Va2lS5cusN1XxYoVufvuuwvMVtqmTRvOPvtsjj766ITEmk22bt0axcXASJyL13ygK04b+8jatm1b4E6MK9phbd0OU6NHj/beEXGbDPhWa8cqURfON998M2PGjIlqLO7w3A6knwDunafE/UMI1yQp3mMF43sBFm1zKXDaPq9evTqjRzTatGkTdevW5dtvvwWc351Ym1LcfvvtnHLKKQkfscP3M1m2bFmhjrV06VLv98SdfT2azrC+MVx00UUF2hdXrFiROnXqeJ+7zTcSnSQEfsePOOKIoOWuvPJKTj311Lj73TRr1szv+V9//UX16tXD3mmP1uzZsxGRkG2/XZFiD9UE0eU2cXOPk5eXx/z58/3K33vvvZx//vkhm3TF8/698847dOsW+wCOwZrkRXv+aGuvPv7447Dbw/0NDRzBL/CmVmFrmwp/Y8okS8YnDJlKROqKyPsiMjhy6chatHBmHu7bt2+BqqsmTZqwdOlS1q5dS5kyZYLtHtFll13Gjz/+6D2PCWYQLVp8gpM0vEy0SUMooRKJcCKNdZ1Mn3/+uV8b05dffpm8vDxvDYjvbMzhhB7y8UzPz5HAGJzxCo4HKscTbgGJaJIUzb7uxTTE9s/NbaoVz0XEtGnTEJG47tjFYuHChSxatIguXboAcOedd3r7qET7vrqTDsWasMb7uf33338xlf/111857LDDCiRChW2+4P5t9p2UyX0Pkt1MLvAC2BVstKBYRNPvJ5gVK1ZQt27dsO3O3XkJkj2UaqBwnavHjx8ftPNvNDJtuOVw3nzzzaDrY505ONhrjrWp7nXX+dcyR5O4m/TIioRBRMqLSHsRedlzkd4vYElIkyTPsdaIyMyA9eeJyFwRWSAijwKo6j+qeksizgtw4IHOBGJ//vkn48aNK7C9Zs2a3jKF4f5TizfxSBX34i9ZfO8C+mrQYDzOHIGFTxpSOS57Ilx99dXeC0Vw/hn4ji/tjvkdSfA5FWrgzLu4CaffyBbgd6A4ELmjZjQS2STp888/L1RzhGDWrFkDxNeMwu04F00Ts86dOxd6JCf3uxvLcL7pUqVKlZh+19z3/+mnny7QpCjTuCOOuW3eO3XqlPK5a0IJN0zxRx99xKJFi7wdcMNxB8cITPzCtfOPRuAEYtEOkRtNx/FgEn0zrvA1uvGLduTCQw45pNDnCqyJzIa/OfuqjE8YRORknAHz3wE6ATcB7YIsidCfgDYSIlIceBM4H2e0pmtEJOHtesqXL+8d7zjaYfriGS3kkUce4ZNPPsnoLP6OO+6gbdu2ST1H9erVw2z9gEQlDYm0ePFijj322LDNlCLd8Y71Ytq3fKx3n/y5Q5r+ivO+uo/BmQsjPr53QBPZJOnhhx+mXbt2Ecsl6iIz0nFieW3PPvtsQmIqrEix/vHHH37tlSMlOeHGmI8nSZw3b17QsefDSXZSsXPnTjp27Oi3rn79+t427T169IjpQjLwPfW9IVBYCxcujLpsuM8nUmK+bt06nn766Zg/48AbHIWpQYqnWVRh+XaoDza6UDKFqxny5VubZoq+jE8YgDdwrjBaAweoarEgS/FEnEhVx+GMvuTreGCBp0ZhF/CZJ5aoiEgHEZkoIhGHPShbNvK49ACHHnqo93G0w/S5DjroIK655ppCDz+WTJ07d45wQZ849957L9WqVQuyxT9pGD68SUriCWfKlCnMnDkzaHXy0qVL6dixY8QOtWeffXaywovATRjG+Kxzmy7FnzCcc8453n/WhW2S9N1338XUiQ2ibzNcWKEShksuSc6clbG+D76iqd3YunUrJ554YsInRsvPz2fixIlhLy7TXZMQbJSXcePGkZubS//+/YPW0IVqchRMbm5uyNfoO5yq2yTItWHDhrCz3AYK9z66yYTbxNL3uC+99BIXXXRR1OepX78+zz33XMgBINL9eSaL7xwI0cw4bkyyZUPCcDTQXVWHqerGNJz/UMC3h91y4FARqSIibwNNROSxUDural9VzVHVnEQFdNhhh/HaazaSbDL49x/5ALgZyGPo0OZADyBxk3bFK9g/yNdee41evXp5xwgPxb1zlPp5HdyEwfcfnzsEZHOcpknh/frrrwVGAVmyZIm3r0isTZJU1duBb/v27Zx//vlxdbiLpkYwLy8vbP+UYBfZ/fr1Q0TYtWtXyIQhWaOhuaO7hLoYW7ZsGSLCW2+9FfIY4S7k3KEwI3V4jdXgwYNp3rx5xN+DeBWmqZe7b+D3YM2aNZxxxhk88sgjBZpWhXoPfeMIvNO/3377ef8/hIv39ttv9z525zFo06ZNQmY5d2c6Dnw9M2fO5NFHH41r9DffJkq9e/cuXIBZIFLHZGNSLRsShlU4vSPTJdhfXFXV9ap6u6oerqqx92I0Galg/5EPgasoXjwPeAB4n2gubuMV790y9wIs2uZsu3btSmEb2WrAETgTtU/2Wb8OmA+UA44Le4R169Zx2mmncc899xTY5rbrj7VJUt++fdl///2ZM2dO0kfmiGcMbnfSoI0bNya0uZWvWI7nW9ad0f2uu+7yDhc6ffp0brrppqjey6efdubj8E1co22WFc60adOA8MOHhjqP7/rCzosRS/MZt53/d999F/Y9OOuss7yPfUeqCTby3YMPPgj4vw63yWug7777jj///NP7fPTo0VHFHc938aGH9jbvnDx5cpiS0UlV7cKNN95I165dU3IuYzJVNiQM7wH/8/QlSIflgO8MUTWA0L29ghCRi0Wkb0KjMkkR/IL7S+6++ztgK04Xmi+A8MPbxmvGjBlB14f6Zx+LwPGzoxmzO9zQsPn5+X4j/uTn54dIQtzahd+AwM6p7qRJ4ZsluRfcwZpzuGJtkuQOdRnt6E/JNG7cOIYMGULdunWDfi7JSBi6du1Ko0aNWLt2LV9//TU9evSIuomj74Woe4f73nvvpX///lHFGK6JzaxZs1ixYgUXXHBByAv3wHMEPg9MLvbs2cNVV10VdtQg32ZY1atXj6mNfqDAYV9bt25Nhw4dgpZ1kyco2M7evVMPe4d/Bfxm4Q01fG3gexfYKdd9feeff77f+lhmsF+4cGHUtS4iwnfffed9HsuQxOD0Kwom3Pct1N/TeBR2vh1jsl02JAzdgD+B8SJyk4i0EJHTA5cknv8voL6I1BGRUsDVQExzrXuaUwX/b2Eicu9mJks0I6wcffQK4BycLi6XAaPYvr1coc67bds2v3+g4ZQpUybsZD/RuPbaa2PeZ+DAgSG3LVy4kMcf3zvJXfv27alSpUqQkmd6fgZrh+v2YzixwJbPPvss2jB56623vMMzZtNMwe7IMDNmzOCpp55i0aJFQecY8E0YVJW+fftGvLiP9L1+8sknmTFjBu3bt+fyyy+nU6dO3iFUXcEuxgKTalVl3bp1BTpAxprcuK/xkksuoW/fvowcOTLmkapCnXP27NkMGjSoQIficKIdFawwAmtYAocxDexn4IpmJJloRtQK1mk1lvbyqZxTJJ5an+OOC19zaYyJXol0BxCFskAVoBlObUMgAZQEtBMRkU9xrm4OFJHlQGdVfV9E7saZWbo40E9VCz9dpkmLwDbTquod1i+yCTh3y0cCp/Phh7VwahviuxP56quv8tRTT0VVdtOmTd67jdE2OwoUbLjewgh2cRb8bqebzwe7EHFrGAomDIGTYoUyduxYv4scVWXZsmVUrFiRypUrR3WMRJo0aRLHHnsspUqViljW9/0K15TH9y7u8OHDue222yLePX355Zd57LGQ3au8fCcVi2YkmcCEbPXq1Rx00EER9/MV7q70rl27vO3o4x2a+Mknn+T888+nadOmfus3bNgQdSITrFZPRPjvv//8JtMsDN+BLhYvXuw3Mk5h3XnnnRHLNGkS/2AOmdDZuGPHjuTkJKx7YFyGDh2akInsjMl02VDD8CZwJfAN8CBOL1Tf5SbPz0JT1WtU9RBVLamqNVT1fc/6Eap6hKe/QswNGa1JUvSqVq1KpUqVknZ8946emyRMmzaN9u3bx3CEmTgXt1PYtas2zgXvyXHFEsskbcmesCtW0U+WdRDOuAXbgGADhU33bKsPBJ9nxLcpRjSj96gqtWrVon79+gW2TZw4kZNOOsnvwti9ax/KN998Q9++4X993Qvb6tWrk5OT4zfCCcTWWTawrO9nr6reZl+RLu5nzpwZdP3KlSv9Xk+41x5N3KHu/P7+++8xHdc3jliaxYQ6hu/3JlFGjhxJlSpV6Ny5c8KPnQ6F6asRSw1pJKEmEovGG2+8kZAY4tW6desCM2IbUxRlQ8LQGueufhtVfV1VPwy2pDvIcFLRJKlz585+k2xlo1atWrF69WrvpHLuncx476iHc9NNNwEF2/VHZwXOXfPhOBe5o3FaqkXvtddei/sOXWEn5Sqsv/76iypVqtC9e/coSru1C78TfOyCPJxWfxCsliEe7vdm3bp1BRKb7t27M2HCBMaNGxf1+3jZZZdx2223hdzepUsX79C87gVYtBeU4WJwt5155pneSbIScVe3Y8eOIV9PuHb77rmjfd9++OEH7r//fkaNGsXgwYOBvZ9NYb/Dwd6HLVu2+K2fNm0al156qV8txerVq/06+MbKraGMNNeFiLBq1aqEjDiUqe66666EjUZ19913x71vLE0XjTHxy4aEQdh7RVEk7b///px44t6LJd8RMKK1YsWKBEYUvW7dunHfffeFmMugcNy5GKK/mx29EiUK2xpvC04u2xunA/SnOJO8Rdcybvny5XFPeuNO4hRMYf7xRsttZ+3bITO0YMOpBgrdjyEevheNgU2+3G2jR4/2u3NfmAmtunbtyrp164JuW716dUK+v+7fhEQkDH/88Yffc9+L91mzZvltCzxfXl5exA7GrlGjRvH666/TqlUr2rZty4svvshhhx0Wd9y+5wls679o0SIqVqzoN8zrRx99xJAhQ7zD7oJTKxOuX06i5OXlUb169bCdrLNdIptPGWMyXzb0YRiDcyVRJJv0NGnSxDu83NSpUwGnc2q0U7Onmzv0YzJcffXVYdvdFy+eroGzXHnAPcBc4FWcGaGb4tQ2BL+A9PXtt9/GddbOnTtz1VVXcdhhh3lrY4KJtg9AcsWSMMQ/gZsv3zvKgc1y3O9M4PwBr776akLOHchNpKMZfchNYH777TdGjRrlNwlftKMkBfZr6N69O6eddprfDYnATtXRJiFTpkzhtNNO48ADgzcdCxQ4lKzbnyJUX41Yah0CJ6xzR10K1h9p1apVCauVi/Y40XRKNsaYbJINNQz3AWeIyAOeUYqyTrR9GI477jiuuOIKIDl31bNVzZo1KVGiBDfeeKPf+kqVKnHLLbekJAZ3noPgegNnA6s9Pyfi9NFPnqOOOirkMI2uwo4lH8y2bdv43//+F2XpKjjzK+zAGegsFLfj8/EkYo6LcDU3wZLMaC+YI3WOd5vdBBPqQjPY+g4dOnD//ff7JT7RJAz5+fl+o8KoKg8//DCtW0c9MX1Y69evZ/z48VFPFhdq6NSHH3446O9TJnSiNcYYE1w2JAw/AxWA7sAWEVkiIv8ELPEPmJ0C0fZhKFasmDdhSKUtW7ZENTpKutSvX5/du3cHnRPgyiuvTOi5QlWzh7sYdPyCU7swHjgMZ86B5DYPimbYxHDmzJkT82yisQ3N2srzcxwQbuKyNcA/OL/mDWOKJxq+d/cL0xQtUh+htm3b+j2/9NJL4z5XoGAJQ6S5CFxr1qyJ65xTp071q+WIVagRjsaNGxe2Q3Qogc2lovXKK68UaIYVL0tqjDH7qmxokrQUZ9hUkyS+FzZ16tRJXyAZLLoLhZU4o/K+BtwJvAGcS4IG8Uq4yy+/nE2bNtG6dWsqVKgQ1T6xJSlus7qRYUs5JgB1cZolTY/hHOHl5+f7Da2aymZsieoQCnsnpduwYYM3eRg0aFDCjh9MYYbcDGfSpElx7VeYmwOJmlMhnhm7jTGmKMj4GgZVPVNVW0Ra0h1nUdCyZctCH6NevXoJiCS00047DSAl4+u7F2kA48ePD1PS1y7gLqANsAG4GJjG3LmZN073pk2bgOgnOotttKpiwHmex9FMOOe+v6fEcI7I9uzZ4xe372ca7f6um266iffffz+uOGJpkhSMG3efPn1CJiLpuvudzPM++eSTEZoDOlI1WV+8AxUYY0y2y+iEQUQqiMhCEYl+es4MlA3zMNxzzz18//33hT5O9+7dC4xgkkjfffcdixcvplatWkk7h+uuu+5i//33j3Pvr4BGOM1xqvPWW5cCrwOFmx06kKr6zRabOY7H6cOwEJgXRfkxnp9nJysgAA455JCYyvuOrz5z5syEz/4bbcLg23Ts008/jWqfWGbszQSh3otly5Yxbdq0sPtGM0mZMcaY+GV0wqCqW3CuOiLfYspgqZiHobBEJCEjiRQrVoxDDz00AREFV65cuUINzeiqXbu293GouRgOPPBAbr65MM2JlgFnAZ0RUaAjTnObM8LuBdEPWXjvvfdSsWLFDEwa3Pb80XWQdSbE+xeoDjRIWBTRDAEa7g759OmJax4VTDLvzrtzNyRbokYgCvVeNGjQgMaNG4fdN13DSoeSiuGNjTEmlTI6YfCYAKR37vcsty921OvUqVPIbY8++iglS5b0Pg/XpjrcRFbRyQOe5cEHBwHTgMNx7qa/idPJt3B69+7Nnj17ohq2M3UEuMrzOJZJlX70/DwnYZFk+nc/kZPwxftaCzsxYuCs1vHKtIv+wgg1y7YxxmSrbEgYHgWuFJGbJN1T3GaZqlWrAqSk+U6mueOOO6Iu615o1a9fP1nhULPmWqA50BlnxuM7gTnsvbDOTPFdhJ4GHAosAmIZnSb5CUO6Oq0G/umaM2cOqpr2WbuNMcaYaGRDwvAqTu/R94A1IjJBREYHLD+lOcaMdMMNN7B06VI+//zztMbRtGnThA4xmb12A8/izNHwB85F9Wc4IwfHPpyo77wAoWYajlZiR9xp7/n5SYz7uQlDC5zZsxPvpZdeSspxIwm8i9+gQQPeeuutlNWA5Ofns337drp165aS8xljjClasmFY1bo4w6q6U2cenMZY4iIiF+MMl5Pq81KzZs1Un7aA8ePHU6pUVs65lyQzcIYPvQl4EWco1qk4zZSeA2If+74wHVynTZvGVVclqqajKk7/hXwg1pmmVwBTgCY4tQzDvVvifX3RXJCn4qL9t99+K7Duhx9+SOjQq+GOddVVV0Uxl4gxxhgTXMbXMKhqbVWtE2lJd5zhBOv0fMkll6QrnKSLdehK9+5rqJlhi4KCswQr0A84Ame+BsHpFL0QeAIon7LYBgwYEHJb2bJlYzzabTi1A8OAJXFE86Xn5+V+a2ObMG6vTOnD0KpVqwLrli5dGqRk/AInjvNlyYIxxpjCyPiEoaj68ccfIxfKUqVKlYrpAsW9mFq2bFmyQkq7J554IsSWjcC9OLNEjwQqAc8DC3D6OSSnaY6v9957L+S2UCNIBVcZeMDz+LU4o/nK87M1iagAjabzaWE7/cYrtvfWGGOMSZ+sSRhEZD8RuVxEOnmWy0WkYrrjisfNN9+csU10WrduzX777Vfo47Rp0ybqss2bNy/0+cLp2DEbpvGYjjMz8pk4/Ruq4TRR+ge4n1TWOMTvIZyk4Scg3iZSsz1LFaDgXflYRdPJOS8vr9DnicecOXPScl5jjDEmVlmRMIjIrTiD2n8BvOxZvgCWi8gt6YytqHnttde8MwDv6ypVqkS1atVSfNaxwIk4TXKm4cxL8CpO856ngQNTHE+0GgDuULahalOi9YHnZ/uwpRLlr7/+Ssl5jDHGmGyV8QmDiFwC9AXW4rR3aOlZ7gfWAH09nYqNSaizzz6bZ555hmuuuSZi2T59+iT47F8DjYELgd9x7rh3AZYD/cmsqUlK4VzklwLeIbahVIP5EGdEqQuB2GZmjkevXr2Sfg5jjDEmm2V8wgA8jNNGobGq9lTVnzxLL5yG33OAR9IaoSmyDj74YG65JXIlVsWKyWodNwI4Baep0nCgJHAj8BfOhfnNQOGbkBXOG8AJOAOZJeJXcQ0wBKcPg82Ya4wxxqRbNiQMjYD+qrolcIOq5uLcjmyU8qhiICIXi0jfdMdhstlY4CKgHtAd+A84Hngf+BdnPocLSf1Iyd2BDsAOnGZUiWrO9orn5104HcGNMcYYky7ZkDCAM+ZkKJkxbmIYwYZVLawjjzwSEeGEE05I5GGj4naKtllq02ERTqVbDaAdMBooizNj9Lc4ycOHQBugQhLjqICTpHQCdnnOPymBx/8Dp/N0JZzhZo0xxhiTLtmQMEwDbhSRAsPEiEgFnKumaakOKt3OP/988vPz+eKLL1J+7g8++IAHH3yQU089NeXnjseSJfHMB5DptuMkBmcDtYDHgFk4fR1uAAYD64DvgUdxJoormYDzlgCux2kJeBWwGadmYWgCjh2oi+fnI0D6JyA0xhhj9lXZMNPzKziDs08WkV44V0UADYF7cNpoXB5i34yUqUOqRuvCCy/kwgsvTHcYUVu3bh0A1atXZ+XKlQCUKVMGgPr16zNr1qyg+yWvX0KiLcOZMfpFnIngWgOXACcD53oWgK3AnzizSk/DGcp1ARA4qVyg8jjNn1oB1wGHetb/5Xk+LzEvo4BfgM9xEpPXgCuSdB5jjDHGhJPxCYOqfiMidwMv4fSudJsgCc4V0N2qOiRd8cXiyCOP5Msvv6Rfv37pDmWfdNhhh3kThlNPPZWhQ4dy0kkn0bJlywJl+/Xrx2GHHZbqEBNgHk6/gu7AQcBZwBk4naYbAC08i69NOEnHfzg1FztwmjnthzOsa62A8rNxfh0HkPwWgZ1w+ma0walM7J/k8xljjDEmUMYnDACq+paIfIIznGodnGRhIfCDqmbNpAEVKlSgYcOG6Q4jKjk5OUycOJFDDkn+sJbpULx4cS6+OPRovNnyOYW3FucO/eee5wcDzXDGCGgEHAvUxuknEK5j8S6cir0fcPpJjEtOuEEtx+n4/CHQG5jCPtgC0RhjjEmrrEgYAFR1I85kbSYFJkyYQF5eXtY3nzK+VuMM0zoiYP0BOLUI++HULJTBqWnYjJN0LAbSMxuyYwBOX40bgJE4Ta0WpzEeY4wxZt+SNQmDSa3ixYtTvHjxdIeRNkW1ZiW4/zxLJmuPMzLUWTg1HOextzuTMcYYY5IpIxMGEYl1yBVV1dZJCSYBPDNRX1yvXr2o95kwYUK854prP7NX9erVqVnTRuXJLLuAy3AmrzsV+A24CfgmjTEZY4wx+4aMTBhwZqiKRUbPxaCqw4BhOTk57SOVLcy8Cq1ateLee++Ne/+iqlix2EYPjrW8SZXNON2YBuJ0gv4aZ+K6R3GGkDXGGGNMMmTklZGqFou04LRN+Muzy6o0hptQtWvX5oUXXohr3169enHSSSclOKL0cftPVKpUuJl+H374Yc444wwaNYpvQnBLIDLJDpzhVe8FdgK3APNx5mqwGaGNMcaYZMi6KyEROUZEhuNMA3sk8BRQP71RmWS48sor+eCDD3j00UcLdZwLL7yQMWPGUKtW4PCg0UnHbNomkjeAxsB3QGWcOSiWAq8DTdMVlDHGGFMkZU3CICI1RaQ/zriKZwO9gMNVtauqbk9rcAlWo0aNdIeQUmXLlgUoUANQsWJF2rVrR9WqVUPue/jhhye9v0G5cuUScpynn346IccxrjnA+TgT0/2EM8pTR2ASzlwRL+LMOWEjfRljjDGFkfEJg4jsLyKvAHOB63EGlT9KVe9X1fXpjS45rr/+ejZs2EDz5s3THUpKNGvWjB9//JEhQ2Kff+/www9n6dKlSYgq8Zo2Lfyd7+ycTC7ZfgDOAZrg3EdYDRyF00xpNM4IUKNxEojLKTgRnTHGGGPCydROz4hIaeA+nP/6lXGuCh5R1anpiyp1KleuTMmSJdMdRkoUK1aMs88+O91hZIVzzz2Xd999N91hZKipODUMD+DMbn0eTu1DIwrOcJ2Lcw9iNk5NxQKcJk3LcLpE5acqaGOMMSbjZWTCICI3A12A6sBknERhdHqjSqwtW7YwbNgwmjRpku5QUm5fSYTAqRFYsmRJusNIm1KlSrFr164UnzUPp0ZhNPAwUBU43rM0x5nt+iAgx7ME2g2sYG/ysBZY4/PTfbwe2IQz5KsxxhhTdGVkwgC8hzNU6kRgENBYRBqHKa+q+loqAkuENm3a8Oqrr6Y7jJSbO3cuO3fupEyZMukOJWXee+89WrZsme4w9nFrgG89i6sKzpgJRwENgDo4TZVqAQcDtT1LNHbgJA4bPT8Dl63ANp+f2yKs24GThFgthzHGmMyQqQkDgODcDoymIb8CWZMwnHzyydx000188MEH6Q4lpY444ggA9uzZk9TzZNLQsjYk615nnHEGY8eOTXcYHuuB3z1LoNI4s0rXwqmdqIpTI3GQz+OqwAE4Q7mW8SwHJzjGPThDx+7y/Izl8Z4olrwoy/mWz8NJZMIt0ZSJp7wGWQh4bIwxJhkyNWFoEbmIMQV9/vnnnHfeeaxbl9iJvBYuXMibb74ZsmaoePHiCTvXzTffTL9+/RJ2vExx8sknZ1DCEM5OYKFniUYZnMShsudnJZ/n+wHlgPKen6Ee+/4s7VlKeJbyhX5F+xa3ZiZccpGIdYk4ZiBbn7j1yT6nSQx7f5MnsUPCZ2TCoKrZcFURNRG5GLi4Xr16CT/2IYccwjXXXMOePXtsBB2cWoz99tsv4QlD3bp1OfTQQ0NuP++887yPDz74YFavXh33uXr16lUkE4aia4dnif8zD644e5OH0jjDwwZ7HGxbcfYmHNEukfYpiVPxWyzEUjzMtkTtIz4LPvH4slo9Y4xJtIxMGMIRkWI47QX+VdWs6G2oqsOAYTk5Oe0TfewSJUrwySefJPqwJgYHHHAAlStX9j6fMGECderUift4IhK5UBFWvXp1Vq5cme4wMkAee/s3mOj4JhLBkotErUvEMUPFbusLvz7Z5zSJYe9v8iT+vc26hAGnAfEioCXOMCjGGGMM/s1/jDHGJEq21t1aWmqMMcYYY0wKZGvCYIwxxhhjjEkBSxiMMcYYY4wxIWVjwrAd+BCwXpEmI1WqVCndIRhjjDHGJEzGJwwiUtP3uapuVtWbVHVOumIyJpz999/f+zhRIx6NGjWKefPmJeRYxhhjjDGxyPiEAVgsIiNFpI2IZOOoTibL5Obmht2ek5MT9bGaN987UXnjxo1p27ZtXDFVr16d+vXrx7WvMcYYY0xhZEPC8A7OdHWDgJUi8oqINEhzTEVOhQoV0h1C2lWsWBGATZs2hS0Xy6zOvu/rYYcdxqBBg3jggQfiC9AYY4wxJg0yPmFQ1TuBQ4AbgJnA/cBMEfldRG4SkXJpDbCIeOyxx9IdQkIVK+Z8tcuV2/v1OPDAAwGoVq1a0H1atWoV9pj//vsvEDmhMHuVKlUq3SEYY4wxppAyPmEAUNWdqvqxqp4F1AO64cz2/B7wr4j0FZHj0xpklitqNQyHHXYYL774IsOHD/eua9euHb///jt33HFHXMd0myqdf/75CYnxxBNPTMhxMtkBBxwQdL3N5GyMMcZkj6xIGHyp6iJVfRI4CvgYqADcCowXkSkiEl8jcVOkiAiPPPIIZ555pnddyZIlOemkkwp917tKlSqFjM5xxBFHRCxTo0aNhJwr04Sq5THGGGNM5sm6TsQichxwC3AtcACwBHgf2AXcBnwmIg1U9dn0RWmMMcYYY0zRkBUJg4jsB/wPJ1FoCuQBw4B3ge9VVT3legCfAHcBljAYk4XczufGGGOMyQwZ3yRJRAYAq4C3cGoUngRqqmobVf3OTRYAVDUPGAIclJZgTdq4/Qp850DIVmXLluXaa6/lgw8+SHcoafHMM8+kOwRjjDHG+Mj4hAG4ChgBtFLVw1W1m6quDlP+d+CmZAclIuVF5EMReVdErk32+Ux4X3/9NcuXL+ewww5LdyiFJiIMHDiQdu3apTuUpJowYQK1atUqsP7oo49OQzTGGGOMCSUbEoaaqtpWVX+IprCqLlbVD+M5kYj0E5E1IjIzYP15IjJXRBaIyKOe1ZcDg1W1PXBJPOcziVO6dGkOPfTQdIeRcKeeeirg1DoUNSeccALff/99usMwxhhjTAQZnzCo6poUnq4/cJ7vChEpDrwJnA8cDVwjIkfjDOu6zFMsL4Uxmn1Inz59GDt2LHXr1k13KElx1FFHpTsEY4wxxkSQ8QkDgIjUEpGuIjJIRH4SkdEBy0+JOI+qjgP+C1h9PLBAVf9R1V3AZ0BrYDlO0gBZ8j6a7FO5cmVOP/30Qh2jS5cuCYom+SZNmpTuEIwxxhgTIONHSRKR84GvgVJALgUv6JPtUPbWJICTKJwA9AJ6i8iFOCM2BSUiHYAOQND22sYkW7NmzdIdQlRq165N06ZNmT59erpDMcYYY4yPjE8YcGZ1XgdcqqoT03B+CbJOVXUrUXSuVtW+QF+AnJwcjVDcZIHAid98BuoyxhhjjClysqEpzVHA62lKFsCpUajp87wGsDJNsZgkKlYsul+HChUqULt2be/zotgh2RhjjDHGlQ0Jw1qcWZzT5S+gvojUEZFSwNXA0FgOICIXi0jfTZs2JSVAkxgnnnhi1GWbNm3qfXzWWWclI5ygbFIzY4wxxqRaNiQMHwFtUnEiEfkUGA8cKSLLReQWVd0D3A18D8wGBqnq37EcV1WHqWqHSpUqJT7oFHEvVAOb4xQl2VBTcN999/HQQw9lxKhJRx55ZFz73XHHHYgEa+lnjDHGmEyUcX0YRCSwZ3B/oIWIDAF6AosIMoypqi4t7LlV9ZoQ60fgTB63z3r99de59NJLufLKK9MdSlbo06cP5cqVS/hxa9asycsvv8zo0aMTfuxUKVEi4/7sGGOMMSaMTPzPvRgI7EXq3o68KMx+xZMSTQKIyMXAxfXq1Ut3KHGrV68e2Rx/qt1+++3pDsEYY4wxJiEyMWF4loIJQ1ZT1WHAsJycnPbpjsUYY4wxxphYZFzCoKrPpDsGY+JRs2ZNDjrooHSHAcBrr73G/fffn7Dj3XzzzfTr189vnQ0na4wxxuwbsqHTszFZYf78+UyYMCHdYQCw//77J/R4ffr0KbCuatWqCT2HMcYYYzJTxtUwhCIixXHmZNifIImOqo5LeVBRKgp9GBIp2vkOsk3p0qXTHYLXueeeG3Z7nTp1WLRoUaHOccABBxRqf2OMMcZkh6xIGETkEeBRYL8wxTK203Om9mE47rjj+N///kfDhg1Tet5ixYqxcuVKihfP2I8s64V7b5ctW8aDDz5Y6IQhGjVq1GDp0kIPYGaMMcaYNMr4W70icivQDZgKPIkzYtLrQHfgP2AicHOawstqlSpV4uOPP+bxxx9P+bkPOeSQrG7Scvrpp6c7hIzXqVMn3n777XSHEVLXrl3THYIxxhiTFbKhhuF2YIKqthCRKkBXYLiqjhaRnjiJhN2qNinVsWNHSpQowd13353uUNKmSpUqYbd37949RZHEp6g2jTPGGGMSLRv+YzYAvvA8dodlKQGgqquAvkDHNMQVNRG5WET6btq0Kab9bBSazHLCCScAeOej2G+/cC3kkuuoo45K2rF//fXXAusCL66POeYY1q5dm7QYjDHGGJM5siFhyAO2eh67P317Wy4G6qcyoFip6jBV7VCpUqWY9nMvSCtWrJiMsEyM2rVrx5YtW2jZsmW6Q+HVV1/l8MMPT8qxy5YtW2BdiRIleOqpp/zWbd26tUC5bCIikQsZY4wxJisShqVAHQBV3QksA07z2d4cpy9DkfPxxx/zyy+/FLhQM+lTvnx57+OSJUsCsQ9h6h6jMKMqVa1alf/9739x7x/JwIEDC6w79thjk3Y+Y4wxxmSubOjDMA64EHjM8/wL4D4RKYuT8FwH9Auxb1arUqUKp556arrDMCFccMEFvPjii1x33XUx7XfHHXcA0KJFC959991khBbR9u3bw26/9tprY35dxhhjjCmasqGGoSfwpidBAOgMjABuBK4HfsAZctWYlNpvv/145JFHOPTQQ2Pa75BDDuHZZ5/16zT8zTffJDS2SM1tZs+endDzZSNrkmSMMcZEJ+NrGFR1LjDX5/lW4BIRqQTkqeqWtAUXJZu4bd+Wk5PDiSeeGHJ7zZo1ad26dcLO9+yzz3LggQeGLeM2pyqKKleuzMaNGyOWs4TBGGOMiU421DAEpaqbsiFZgPg7PZui4a+//uKNN95I2fmeeuqphFwM33nnnQmIJvVKlMj4+yDGGGNMVsmKhEFEiovIDSIyUER+EJEmnvX7e9bH1ibEmH1IvPMNFKZTdjrde++9UZWzGgZjjDEmOhmfMIhIOWAs0B9oDZwFuMPSbAZeBO5IS3DGJNBVV13F2WefnfDjnnbaaVFfRBcFzZs3j6qcJQzGGGNMdDI+YQCeAXKAy4C6gPe/vKrmAV8BrdISmTGFULy4M0F5/frONCKfffYZP/74Y8LPU6FCBXr27EmZMmUSfuxMZBMeGmOMMYmVDY192wJ9VXWIiFQJsn0BcFWKYzKm0Bo0aMAbb7zB+eefn+5QjDHGGGNCyoYahurAtDDbtwEZPRWyiFwsIn03bdqU7lBMBilWrBh333130mZsTqZkNJ1KlGhrGKxJkjHGGBOdbEgY1gPhOjU3BFamKJa42ChJJhlWrVqVlvMefvjhvPjii2k5dyJZwmCMMcZEJxsShp+Amzydn/2ISB3gZuC7lEdlTJotX748Ledt0qRJQvtDPPqoM+/i/vvvH6FkdA4++OCEHMcYY4wxjmxIGLrgjIr0F85oSAqcJyLdgMnATqBb+sIzpmhq1So1YwlceumlQGImk7v//vtp1qxZoY9jjDHGmL0yPmFQ1QXA2cAe4FmcUZI6AY8Ay4CzVXVZ+iI0pmhKVcIQSa9evaIu26RJk6jLWpMkY4wxJjrZMEoSqjoJaCQixwANcJKG+ao6Jb2RGWOS7YADDoi6bCxJgCUMxhhjTHSyImFwqepMYKbvOhG5DeioqkenJypjMkPHjh058cQT0x2GMcYYY4qYjG+SFIUDgSPTHYQx6fb6669z9dVXpzuMAtxhY4sVS/6fm0ypNTj55JPTHYIxxhiTMEUhYch4Ng+D2ZeNGDGCnj17ctBBB6XsnFdeeWXQ9Q0bNvQ+3m+//ZJ2/hdffJFevXp5Z/E2xhhjspklDClg8zCYfdkRRxzBvffem9K7/++//z5XXVVwAvjBgwd7H7dt25auXbsm/NzHHnsszZo145577qF69eoJP74xxhiTapYwGFMExDI6UFHmJiUVKlTgyCMLtlQ86qijvI/LlSvH448/HtPxjz/++Ihlpk+fTrlyzrQxiRgq1hhjjEk3SxiMyXLPPvssI0aMSHcYGUdVw25PRY1HpBiMMcaYbJCRoySJyAMxFD8laYEYkwVycnKoVq1ausPICJnS6dllCYMxxpiiICMTBuCVGMvbf2VjjJ9kXqzffvvtiAh9+vRJ2jmMMcaYTJGpCUOLdAdgjMk+qaphuPHGGznxxBMLJAxHH+0/HYzVMBhjjCkKMjJhUNWx6Y7BGJPdktGHIdI+w4cPj/mYxhhjTKazTs/G7MO++eYbSpTIyPsGWal27dp+z32TltatW6c4GmOMMSYxLGEwZh92+OGHc/DBByfkWP369UvIcQrDtwYgE5oDxRpDhw4dkhSJMcYYEz9LGIwxCdG4ceOEHGfHjh0x73PFFVck5NyuY445JqHHM8YYY7KZJQxmn9esWTMAKlasmOZIirYzzjiDgw46iDZt2oQtF0/C4NYsJKqGoXTp0nHv6+vqq6+OqXwm1IoYY4wxgSxhSAERuVhE+m7atCndoZggevXqxeTJk2nevHm6QynSGjVqxJo1azjjjDMSetz69esn9HjRiPbC/rbbbkvKcTPFjTfemO4QjDHGpID1dkwBVR0GDMvJyWmf7lhMQeXKlaNJkybpDiNtbrnlFp599tl0hxG3P/74gy1btlCsWDEuvvhi7/pkXHzHOrJSpk0kl2hF/fUZY4xxWA2DMfu4Z555hgsvvDDdYcStZMmS1KxZk88++4yyZcsm5Jh2IWyMMcbsZQlDmmVbEwRT9IgIQ4YMSUvTnkQIdXFvv1vGGGNMYljCkCYNGjQAoGHDhmmOxBgoXrw4FSpUSHcY+zxLcowxxmQiSxjS5KGHHkJVGThwYLpDMSYqVapUAeDYY49NcyT+rIbBGGOMSS7r9GyMj65duyasHXxRc+aZZzJ69GhOOumkdIeSdsGSkerVqyfluMYYY0y6WcJgjI/HH3883SFkrGLFitGiRYt0h1FAKmsYwnWGnjlzZth9ixWLXKGbbQmDdQ43xph9gzVJMsaYALFeCPfu3Zv9998/bJlOnToVJiRjjDEmbSxhMKaIGjJkCE8//XS6w0i6RNcwfPLJJ4UJJ6STTz45KcfdF/nOt2GMMSb5LGEwpoi65JJL6NKlS7rDyDrXXHNNukNIqe7du6c7hJgdfPDB6Q7BGGP2KZYwGJOlSpYsme4QMkJRGiUp0TFHM7fG+eefn9BzGmOMKXqs07MxWeqxxx5jx44dNGvWLN2h7HMCL+wT1fk3UQlDmzZt2L59OwMGDODAAw9MyDEzSfny5dMdgjHG7FMsYTAmS5100kmMGjUq3WGkXaaMkpRJBg0aRLFixcjLy0vqedLxftx1111Wu2aMMSlmTZKMMSZAuhKDaIZeTfRxsiUJCuX4449PdwjGGFPkWcJgjAGy98KxKPVhKFWqVIF1hx56aFLPma2fu+vOO+9MdwjGGFPkWcIQJxGpKyLvi8jgdMdiTCI8/PDDVK9enZo1a6Y7lH3a9ddf7/f8mGOOSVMkmeGSSy5JdwjGGLPP2ycTBhHpJyJrRGRmwPrzRGSuiCwQkUfDHUNV/1HVW5IbqTGpc9VVV7FixQoOOuigdIcSk6JUwwBw1llnpTsEY4wxxs++2um5P9AbGOCuEJHiwJtAS2A58JeIDAWKA90C9r9ZVdekJlRjTKYJTEYSlZxka5KTSqqa9c2ojDEm28i++g9KRGoD36rqMZ7nJwHPqGorz/PHAFQ1MFkIPM5gVb0izPYOQAeAKlWqNKtdu3ZC4jfGGGPMXpMmTQLIiqGmt27dGnF44OnTp1OlSpWk92MyRceuXbvIzc2lSpUqTJo0SVU1cS2JVHWfXIDawEyf51cA7/k8vx7oHWb/KsDbwELgsWjO2axZMzXGGGMKKz8/X/Pz89MdRkYB1Lmsiaxr165avXr1hJ178+bNWqFCBf3+++8jlu3evbsCOnr0aB02bJgCOnjwYF2/fr1fuVhez8SJEzUvLy+u2FNpz549Sf/e7t692+/5P//8o6qqo0aN0p07dwYtf8EFF+iff/4Z9znXrFmj3bp10507dyqg7777bkz7L168WHNzc4Nu++GHH7R79+5RHadu3boK6NatWxXYqgm8bt4n+zCEEKyOO2T1i6quV9XbVfVwjVALYYwpWlauXJnuEEwSfPHFF3z11VcF1qsqkydPTkNEodWsWTMld54HDhzIihUrkn6eQKpKbm5u0o7/xBNPJPT3eObMmWzZsoXHHnssYtkZM2YAsHTpUj799FMArrjiCk499dS4zv3LL7+Qk5NDjx49WLBgAcceeyzr1q3zKzNhwgR27tzpt27WrFkMGzbM+3zs2LGccsop7N69O644As2cORMRYe7cuQCsXr2aEiVK8MQTT7B169aQ++3Zs4cNGzbEdc7JkydTsmRJhg8fDsBXX31F3bp1eeqppzj33HMLfD47duzg8ssvZ8SIEd4BJ/r27cuCBQtiOu+NN97IY489xuOPPw4Q9HvQrl07WrVq5d3+5ZdfsmnTJnbv3k3t2rVDfv4tW7bkoYceCrotJyeHM888E4BevXrxzz//ADBy5MiY4o9KIrOPbFooWMNwEvC9z/PHiLLmINrFahiMyX5ffvmlAvrDDz+kO5R92saNG4PeLSwMAu7o7tq1S0uUKKHHHnusAjpmzJgC+yxcuFD79OkT83keffTRhMaaDLm5uQpo3bp1tXXr1jpt2rSknk9V9aOPPtK77rpLX3zxRQV0+/btUe8by3uS6Pfvt99+K3DM1atX69FHH60LFizQf//9V6tWrarTp0/XG264QQH94IMP9LrrrvPuFxiP77p3331XH3vsMVVV/fHHH3Xs2LHe9+ajjz5SQK+99lpt3769AvrOO++oqur27dv1kEMOUUBvvfVW77G7dOlS4Jzu3ekFCxZ4161du1ZfeumliLUCe/bs0fLly+t7773nXffoo48qoI8//riqqk6YMMF7zqZNm4Y8lltm586dOnDgQB04cKDm5eXp448/rqtXr/aWmzRpkp5yyim6bds277r7779fAb3zzjtVVfXxxx9XQMuUKaOAHn744VqlShWtUqWKjhkzRp999lnv+erXr6+7du1SQA888EBVVb3zzjsV0N69e+tff/2lGzZsCBrzqaee6vc5AvrVV1+pqvN3xPd1TZo0ya/chRde6Pf8mWee8R73v//+865fvny55ufn6+rVqwucS1W9r9FnSWgNQ9ov3NO1BEkYSgD/AHWAUsA0oGEiz2kJg9lXLViwQJcvX57uMBLi4YcfVkBffPHFdIeiqqqdOnXSTz75JKnn+PLLL3XTpk1JOfZ///2n//77r27fvl1nzJgRslx+fr4+//zz3u/RIYccom3atCn0+bdv364jRoxQ1YIXkeeff77fP+D+/fsX2L9OnToK+F20RBLpYnXWrFnaqVOnkBdpf/31V4FjrF+/PqYYwrn22mv17bff1k2bNvm9/pycnKDlN2/erLm5uTp37lxdt26d37bBgwfrjh07Ip6zR48efueqXLmyAvrff//5lfn0008L7Dt37lzdsWOHd99ffvmlQJnt27frgQceqF9//bWq7v0MgsV277336nfffacbNmzQhx56yHvBp6r63XffaaVKlXT27Nl+F6+//vqr95gnnXSS7tmzR3v16qWAXnHFFXr33XcroDfffLPeeOON3rIHHHBAxIRh1KhR3scDBw70Kz9o0CC/hOH666/3XuD27NlTf/nlF2/ZBg0aFDi2u/To0cMvYdi1a5f26dPH7z395ptvdN26dfrzzz/r2rVr/WKdMmWKAlq+fHnvOjdhcD9P34Qh8PXm5eV5m1S527Zs2eJ93LlzZwX0oosu0u7du+tll12m5cqV88a2Z88eXbp0qbf8nXfeqW+++WaB84VbqlWrpk2bNvU+/+effwqUqVChgt5www2ak5OjkyZN0oMOOkiLFSumhx9+eNBjDhkyRAEdMGBATLG43/9oF/emRsCyWC1hKHSy8CmwCtiNMyLSLZ71FwDzcPolPJHo81rCYPZVJUqU0MMOOyzdYUTkti3es2dPyDLuP8EXXnih0OdbunSpNmvWLOyFciSRLj4La/bs2Qro5ZdfHlX5vLw8vwusSJo3b641a9b03hkMbMftmjFjht9rTdTrvu222xTQiRMnFjhm4D/gDz/80LttxYoV+v3333u3bd26Vbdt2+Z3Abp79279/fffVVV13bp1evrpp3vfz3Cx16pVSwFdsmRJ0O2+F5DueQBt1KiRX7mdO3fqwoULvTFt3rw5qvfNLbNhwwa/19+sWTPdsGGD30V84Pt08MEHe9f/+OOPCugDDzwQ9Dy+CU7ghXOwhMHdNmvWLK1cubIuW7ZM169fX+BzqlOnjnefrl27KqDTpk1TcGpLfL9LgM6YMUPnz5/vfZ/c9YcddpjC3kTxnHPOCXnB63th7v59eP755wuUFxE96aSTQl74TZs2Tfv16+cXh++Fe7jlggsuiFjmpZde0ry8vKDbfBOGM888M2iZU045RQE97rjjVFX177//9u4HzgX1Aw88oCeffHJUMc+bN0/btWvnfb5kyRLv43vvvTeqYzRr1iyqculczjjjjHScd6JawpCdS6oThq1bt0Z1Z8ckz9tvv62//fZbWmMYPXq0PvDAA2ntIOn+AUuEUJ09d+3apZdeeqlOnTq1wLacnBy96667Ih67bNmyCs6drVAeeugh7+tZuHBh1HG7d+AWLVrkXffGG28ooPfcc0/YffPy8nTYsGFBX3fge7tnz56QF92RbN68WRs2bOjtuDl37lzvHfRwTQh8uRfg0XLjP/TQQxXQpUuXBi03depUb9nly5d7H3/77bdRn0vVaWLRqlUrnThxoq5du9b7mV966aUF3svAf8C+CUPgNvdi7dBDD/WWcZtD/Pnnn/r+++8r4G0yEu49qlGjhvfiadOmTd6mVytWrNAJEyYUSBh84/DleyGmqvrtt99G9bsYzcVIuPK5ubl600036TvvvKOAtm3btsA5/vzzTwXnDrmqavny5f2OUbx4cYXgCYN7t75Xr166aNGioPG5NWLu808//TSq1+V7V9xd3n777ZDvi+uRRx5J6MWe7/neeuuthB470jJo0KCoyv3++++FPleJEiX8nvsmH7YUerGEIVuXVCYMK1euVEDLli0b090+kzhudapvFW06HHTQQQrounXrND8/X5977jmdPn16Ss69YMECXbVqlfcPmGvPnj168sknB23iEcmVV16p5557boH17gV54F1W1egTFreKe+HChQWq3AOPBU7Tg2i5dxWrVKniXec2WYiUzLhV6wMGDPBbP3/+/AKv7b777lMgrhFT3La1devWVVX1u8sYmDAsXbq0wGgkqtG91/n5+XrdddfpmDFjvOUjJQzuHWJA58yZ4/c5uHG4bZ7D9W0IdfHltvP2jT2wjO/7H+4fteuiiy5SQIcOHepNGFq1alWg3Geffabr1q3ThQsX+h3HvdvaokULVVWtVKmSgtN/xi3j2xQH0I8//li3bt2qqqpVq1b1O1fp0qW9z+fPn+89/7x58/Tnn3/Wvn37Rnxt7jJ58uSQ70WjRo2Cvifbt2/X5557Tt944w3vd9/dFuo8bttw378j11xzjYKTMARrNhLNcWNZevfuHfJY7vc5EefxXR544IGEH9OWfW6xhCFbl1QmDNOnT/d+acLdLc1GO3fu1CZNmugdd9yR7lDCirb6P9ncGNatW+e9AAl3t3jo0KE6ZMiQoBeD8Zz7yCOPLPA+uJ0pixcvHtcxAW9bZJf7nW/YsGHIfcIZP358gT+44c4fy2cbeEHh6tmzp4Jzx3Tnzp06c+ZM7zb3wnbHjh362GOPKaDPP/98yFgC10X6/GbPnq2DBw/W3NxcnThxoo4aNUr/+OMPv+P5VqP7fmfcCzbY22xm3LhxfuXD+eCDDwq8j+5d9TFjxmhubq6+8MIL3gtfVf+/ab7NegDvTRH3jnZgIpqfn6/dunXTJUuWeGt1wi033XSTXy2Gu0SbMLidUd2E4eabb9azzz476HfniiuuUEDPPvtsff311/22u+3RA5cnn3zS+9htNhO4+HaWhOAX8bt37/Y2BXMXt49OpMXtdHvHHXdEVb5ly5baokWLoNsivZ/gJNqB6yIlDNHWKhRmcb9fyT6PLbbEsVjCkK1LUUgYhg0bpm+99VZam7csWLDA+9risWXLFp09e3bc5//nn390xYoVEculK2EIbJLixrBu3TpdvHixArrffvsF3dfdDtGPI71y5Up9/PHHg44hHfgHzOUmDL7r5s2bF1WnzWDHU3U6igJ61FFHhdzH15w5c7Rly5b677//FmirHe5zi1Qm2N3twLvALnckGMCbFLidet2aoVWrVnkvELt06aLr16/XOnXq+P2O+x7Tfe57B9jX9u3bddq0aVqvXj0F/Jqt+N7VVA2eMLjt5X2/J8Heu3AJS2BnYtibMADei+u33nrLu49vu/PAhMF9z933EJx27m7C4Za/7LLL9NVXX437H/Cbb76pt99+uw4ePDhsucWLF+uePXsKjH6SaUvjxo3j3nfYsGFB2/THs4wcOTLufb/44ou0voe+NUa22JJhiyUM2boUhYTBPea8efPi2j8/P1/nzp0bc3OJjh076imnnKI7d+7UZ555xhtHPC6++GIF/6HjYgH+zUpCiSVhCDVhSzzcIfu2bt3qN3xbNAnD3LlzveUfeeQRVXUu5D/66KOQ53MvMgcOHFhgW+AfsGnTpmnHjh1148aNfu+NZ5IZveGGG/z2nz59eoEmdb7HO/fcc3XVqlXeOAGtV69eyDjy8/O9F5HundG+ffv6NXfwXTZv3qzDhw/Xnj17hnxNkydP1g8++EBVVY8++mgF5w6wqtOpc/v27bp9+3a/fVy+7aXr16+vgM6cOVPz8vK8CQPs7fz39NNPe++aXnXVVQWO6Xun8/LLL9fly5cXSMLuuusuv/1KlSoV9LWrqp5++une54cffrgOGTLErxkRBG/zDeiDDz6ogLeZ17PPPqsVKlTQHTt2REwY3MW3RsU3YQjsTOrWBgQbKWT06NEFkqt4l2jbV7vfxaK8+DbhssUWWzJysYQhW5fCJAz5+fm6dOlSvyr6cJKdMMR7h95tMvDSSy/Fdd5///3XmzAEa3oSDXes4sA7sKtWrYoqkXFjCWXXrl26YcMGv4Rh2bJlIcvPnDlTAX311VeDHmv06NExdV53z/nee+/5/fGIlDB06tSpwIVcbm6uHnfccQrBx6BXVe9oJu+//37IWNzlqKOOUsCv+c/ixYv97vA//vjjfhd5Xbp0CXvM8847T6+77jp94oknFNDatWvrU089pc8//7y3Jswt27t3bwXn7qjbXKRv37760ksvBf2D69usI9T53cWdsdVdZsyYoY0bN9aTTjpJt23b5rfNFepiO3C58sorFdAnnnjCmzD4NvUCCox8cskllyg4d+vDvX8lS5YMes4+ffroCSecEDG2aF+DuwRLFmBvHwbfxXd0ncAEKdx7H7i4yUthl4oVK0ZV7qeffkrI+WyxxRZbCrFYwpCtS2ESBnfs5SZNmvitf+KJJ/TMM8/UWbNm+a3P1IShW7duCqGH2Yt03n///dd70XnMMcf4ldm9e7fOnj07YnOpYAmDe/cy0mg1vrEE444VDfgN9zdmzBj94Ycfgo5e4w49eNZZZ+kPP/yghx12mLdT8scff6yAvv766xHjCozv6aef9vvjsW7dOm/TlrJly4bcz3fxvavrO1RhsP2iSRjc5fjjj/c+rlu3boEmQZUqVfJedLVo0UJ37typ559/vl9nz1CL74VnYCfO8847r0D5vn37hjyWb8Lwww8/hKyJiLS4NSiB3x3fJjSFXdwJh9zFt4NruM8kVMIQ7RJrwhDN5+a7dOzY0ft3I9Ry+eWXJ+x9TMTijhRliy222JLGJaEJQzFMVlizZg2Ad9pvV9euXRkzZgy///474EypHmpa93bt2nHiiSeyevXqsOeaMWMGN954I+PGjQtbbuTIkfz888/RvoSEcd+LQE888QQNGjTg+++/j/mY69evB+DHH3+MK6YdO3bw4IMP0qVLF+86389h3rx5tGzZkssuu4xXXnmFTZs2BT3Op59+ypIlS/jss8+4/PLLefnllwFYvHgxQMj9li9fzkMPPcS6detCxrh7926ef/55ALZv386WLVsivq7Bgwf7nSNR/vzzT+/jf/75hw0bNvhtD3yda9euZeTIkbRs2TLisVesWOF9/N1333H00Ud7n1euXLlAeREJeay7777b+7hly5YccsghEc8fjHOdvteuXbuCrk+knTt3Fli3efPmAutC/b2I1osvvlio/V2+n5uvnj178thjj4Xd96uvvkpIDInyzjvvpDsEY4xJKEsYMtS6dev46quvClykFSsW+iPbunUrFStWpGzZsgUuwAA+/PBD/vjjD+bNm8f333/PaaedxtChQwuU+/LLLxkwYAD9+/cPea7NmzdzwQUXcNZZZ0X/ohKkZMmSQMELvdmzZwOwcePGqI7zyy+/cOuttwa9iIrVDz/8wKuvvhpy+44dOwAYN24cDz30EJ9++ql326RJkwAYPXq090Lys88+4+uvv2batGl+5SpXrsybb75Z4PivvfYar7zyStgLpxtvvNHveTSv200wgsnPz6dnz54F1i9evJijjjoqYsLp64MPPoi6bCy2b9/u/V4AHHDAAQXKhEsYPvnkk4TE4RsDQOnSpRk8eHDCLrYBHnjggZDbbr75ZkSESpUqJex8xhhj9h2WMGSozp0706ZNG+68886o99m8eTM7duwgLy/Pe8c8lO+++45ff/2Vb7/9Nq74gt2VzM3NpWHDhlxzzTVxHTPRVJW2bdvy+OOPB93esWNH3n//faZMmVLoc11yySUxld+2bZv38SOPPOJ9PGPGDMC5GPe1ceNGpk+fDgSvBcnNzQX23rkOZtSoUTHFGCwOgGXLliEi3HXXXdx3330FtterV4+5c+fSp0+fqM/jxu/LTfwKU4sVGP9bb71VoEy4hCFRLrroogLr2rZtm9Bz9O7dO+S2ZCVkxhhj9g2WMKTYwoUL+e+//yKW2759u9/PTPPoo48WWPfvv/8ya9YsPvvss0IdOzc3l5NOOsmveY9r6dKl3iZVGzduDNu8aseOHQwePJhu3br5rT/11FP9nhe2SUY0TXuiFaq5Vf/+/bn55psByMvLC7n/Pffc43387LPPhj1X//79Offcc8MeL9A333xDrVq1AHj77bf9tnXo0IGLL77Ye7xYvgdTp04tsK5NmzZR7x+Kbw1NKLHUhMQrUjNAY4wxJpNZwpBC69evp169etSqVcvvzmeXLl1o0aIFv/zyS4F9NmzYwLx585La1jkWZcqUAfzvkBfGxIkTKV++PLfeeivDhg1j9erVLF26lAkTJvDMM88ELe9atmwZ1apVY8+ePUGP/fXXXwddX6VKFb/nLVu25Nprry1QbuPGjSxcuNDvvf/111+jeVlA8LvZgQIv1letWhVxn2HDhnHllVfG1VfD1xNPPMEPP/zA1q1boyq/e/duLrvsspDb8/Ly4q6xGjNmTFz7RfLvv/9GLPPhhx8m5dzGGGNMUWEJQxxE5AIRmSsi80Uk6jZD7oXt1q1b/S5C3333XcaMGcN3331XYJ9JkyZx5JFHMmjQoIjHnzdvXrShFPDee+9xxBFHBG228uCDD3o7S1eoUCHuc8Deu/nffPMN1apVo3nz5mzbto3333+fSy65hNtuuy3s/pMnTwbg8MMP965z39fANvluUuP2eQjH7XBZs2ZN73nq1KlDvXr1qFq1Knl5eUyYMIHTTjvNu8/06dOZNGmSX8dgX5Hu8A8aNCiq2IL54osv6NChA+vXr/dLouKxe/duXn/99aDbMiVRNcYYY0z6lEjlyUSkVjz7qerSRMcSLxEpAfQEzgLWAxNF5GtVjXxrOITixYtHLBOsGVNgM4cOHToE3fehhx7yaycfzE8//cT8+fOZMGFCgW1uZ95QCclFF11EgwYNaNeuXdhzADz99NNAwdGeXEuWLAm7/3vvvQc4TbtcO3bsoGzZsiH3KVWqlN/zkSNHhixbr1498vPzadasmXfdunXr+Prrrwu0Of/ggw/o27dvXLUtXbp0oUGDBoW6IN+wYQNt27bl559/LlR7+CeeeCLjR3WpUaNGukMwxhhj9lkpTRiAxThjw8Yq8hV16hwPzFLVZQAi8jVwEfBuqgMJ7EcQ6uKzT58+UXccnT59Osccc0xMcQwfPpzhw4eTk5MTsWyJEiVCNiECpy37Rx995H2+cuVKqlevHvaYgc14Pv74Y1atWsWTTz7ptz4vLw8RiTg60JAhQwqsC5aw5efnx900a/Pmzfzxxx8ht7vDqIaTm5vr/Vy/+OKLuOIAGwLSGGOMMeGlOmF4lvgShoQRkdOBTkAzoDpwk6r2DyhzJ/AQcAjwN3CfqrodDKoDy3yKLwcOTXLYfn766SfWrFlT4MI33JCrc+bM8T4O1s7cHSnmyy+/DDr0ZDSiuVteqlSpsAkDwIABA7yPly1bFjFhOPbYY/2ef/vttwVe4wsvvOBtsx/J5ZdfHrGMMcYYY8y+Qva1NsoicgFwKjAZGADc6ZswiMhVwEDgTuBXz8+bgKNVdamItAXOUNW7PeXvAKqqasEhfQqcu67CCwBceeWVbN26ldWr1zBx4l8ANGhwNMcddxwAf/75B4sWLfLuW6FCRbZs8R96snTpMuzZs5u8vDyaNz+eOXNme4enPOWUU/ntt+AddIsXL87hhx/OvHnzqFv3cJo3b8748eNZutS/OVCdOnU4/vgT+PxzZ7SbY445lpkzZ4R8fSeddBLjx48H4KqrrgYgP9/p1FusmFNJNHjwFzGNynPOOS2pUqWKN4Z4FC9egrw8J0nJyckJ2+a/Xr16LFiwoMD6nJzm3s/JVa5cebZti67DcNOmTb39L4wxxhhjkuuaSaoauelHlPa5hMGXiGwB7g5IGP4Apqtqe59184HBqvqYiJwMPKKqrT3bugKLVTVokyQR6QB4Ohc0awaF66BqjDHGGGNMeJLQhCHVTZIKEJHiwLXAucDBwMOqOkVE9gcuBn5S1RUpiqUUTlOlVwI2jQJO9jz+E2goIjWBdcBlwDmhjqmqfYG+zvEPUHDuvH/88Sf06NGDyZMnecu2bn0pV1/tbH/77bcZO3ZMgeMVL16CRo0aMXnyJMqXr8Du3bvZtWsnHTrcxrBhw1i1aiXgzPoabuZhXx9+OIB33nmHhQsXcsABBzB79qyg5Ro2PIa//55JiRIl2bMn8twFV199DZ995sxo/O6777F06VKeey78yEGBnnvuOerVq88111wd036+SpcuQ35+Prt374pYSxKqZubWW9vz3nvxd1Np2/ZKvvgi8khXxhhjjDGZJq0Jg4iUY+/F+FagHLC/Z/Nm4EWgH/Bk0AMk3oE4HawDZ1lajScpUNU9InI/8BPOsLQ9VXVldIffAHwOwFVXfcxnn/3C5MnDvFsbNjzcmzCMGvUnY8d+XuAI69dv5O+//+aUUx6mVKn9Ud3Jrl3bOP74lowdO4JVq+YCUK1aM++5IqlZ8zZq157AmjV/cvDBNZg9e0zQcgcfvJa//x5N8eKl2bNnZ8TjNmrUmM8+c2LIzT2B5557IKp4fP3yywby8k4m2tcSTIkS5cnLy2P37h1Uq7aemTMLzpTsWrnyT2BRgfW1ajUsVAxffBH/vsYYY4wx6ZTueRieAXJw7tLXBcTdoKp5wFdAqzTEFdhOS3zXqeowVT1CVeup6huJOukLL7zAlClTCqxv0KBBzMd6+OGHvY+PPfbYApOVAd5RhHwnkXP7QCTChg0bvI/jnQ151KhRQSdwS5TAjuKhmui5w8EaY4wxxuxr0p0wtAX6quoQID/I9gVA7RTGsw7IA6oFrK9KwVqHpGjatCmzZgVvEhSvUqVKcd555xVYHywRCRw+tEePHpxzTsgWVwX4jmj0/vvvRyxfunTpqI578MEHRx1DoK1bt7Jjxw6/daeccgoAd999d9zHNcYYY4zZF6Q7YagOTAuzfRtQMUWxoKq7gElAy4BNLYHfk3nuG2+8keuuuw4oOAa/exFeoUKFsBOUxaJDhw7eWY3DOeGEEwrM9xCtXbt2RSxz1FFHRXWswEnqnnjiCVq0aBFXXLC3JmHNmjVce+213vW+7/25554b9/GNMcYYY4qKhCUMIjJaRAaIyOEx7Lae8HMYNASi7B8QHRGpICKNRaQxzuuv5XnuzkL9KtBORG4VkQYi0hMnsXk7kXEEiYt77rkn6LYGDRqwY8cO/vvvP79Zi32b/ATz8ssvJzTGWIZDTbYrr7ySwYMHx7zfjz86/Rdq1XI+brejdzCnnHIKl156aVTHfeWVwH7yydG+ffvIhYwxxhhjEiiRNQxnAtcBs0Tk9Sj3+Qm4ydP52Y+I1AFuBr5LVIAeOcAUz1IW6OJ5/CyAqn4O3IfT0XoqzpwNF6jqkiDHSpjixcNPZl26dGlKliwJ4NcfIXCm4VNPPZV27drx1ltvJTzGsWPHRiyzcePGiGWiqdlo2TKwkgfKlSvwNYmb2yQJgs/iHKtq1QJbsRljjDHGFA2JTBjqAMfhzJBcL8p9uuCMivQX/2/vvsOkqs4Hjn/f3aWD4Epv0paiSEcQRAWlSJGmAipFRRFERUhU0PgTg8QSCyoRISiIYseCgjUqEQ0oRiIasDeCiDFqNFjQ9/fHnVlnZ+fO3Dtzp+zu+3meeZi55Zwz5bLn3FNemI4zsXiIiPwBJ7DaD8AfAiwjqvq8qkqMx5SIY/6kqi1UtYqqdlfVDUGWIdr8+fOZM2dOcbTlYcOGxa14t2vXrsSk5khNmjTh9ttvZ/r06SW2R/ZM+NW9e/fi50cffXTcY3/6KfZyq0uXLi1+vnVrvFFojlhDr2rWrJnwvGS8+eabrvvGjh0bWD7169f3dNzxxx8fWJ7GGGOMMakKrMGgqh+p6jZVvVFVh3s8513gaGAfzh1+AX4DXAh8Ahytqp8EVcZc1LVrVy699FI6dOhAp06daNeuHQC7du2Ke16jRo185XPZZZexfPlyTjjhBN9lrFOnDkcccQQAo0eP9n0+wKeffurr+H79+iWVj1exGlBFRUUlXjdr1oxTTjmleBhTqiIbTfGsXLkykPyMMcYYY4KQ7UnPqOoWVe2M0zsxDieyWXdV7aSqiW9Fl1F79uwpta1KlSrMnz8/qfSmTp3Kjh07XPc3b96c0047jcmTJ9OnTx+GDRuWVD6Zkp+fT9u2bdOSduvWrYvnMMTTs2fPlPMKqofitttu44kngh6dZ4wxxhiTmOcGg4i0EZEhUdt6ichaEdkoImemUpBQ78T9qnqfqpYORlDO9OgRWLRuX4YNG8bGjRs57rjjspJ/tGRiTKTqhBNOKB7+FU+9evVSzmvGjBkppwFw6KGHMnhwNkKSpCaZoXCRS/MaY4wxJvv89DBchTNUCAARqQusxwms1hG4RURGBVq6cqpBgwYxexjKmkcffbT4edeuXYGSk3+9BIFbvnw5TZrEWygrOzZs2FAc+8Hr3IOwww47LB1FStqAAQOyXQRfEi0AYIwxxpjM8tNg6AFEDuaeAOwHdAPqAZuA8+IlICK/iMjPPh/7/L6pXDds2LCUJiHnokceeYSvvvqquOEQzW050OrVq9O5c+dS2730POy///6ulfM5c+bEPTcc4dmtF6Fbt27Fzw855JCEZYlcdWn16tXFzyO/59q1a3PFFVdQUFAQN63KlSuTn5/PhAkTiudyREek9mP27NlJn5sNc+fOzUg+kyZNykg+xhhjTFnnpxZSj5IxEYYAG0NDiX4E7gEOSpDGHTEeb+JMdn4beAR4NPRcQvtW+ShjzissLAx0eVAvwkHK0ik/P5/atWsHktZnn33GkCFD+OUXJ/h3r169Yh4nIlx22WUx90UOBYpVMezbty8LFy7kuuuuK7WvadOm1KhRw3N5CwsLadGiRfHryHN79+5d/PyII45g3rx5nHvuuQCMHz8+ZnoFBQV888033Hnnndx6660sXLgwbfM50s1v7wyUbHylU1BBEI0xxpjyzk+D4TugDoCI5OPEJ4hcbnQvTo+DK1Wdoqqnhh/AapzlWEepagdVHaOqo1W1AzAmtG91vDTLkm7durF79+6M9S6EK2uJJvjOnj2b1atXJwwEl2nffPMN8OsQlcMOO6y44ly1alXP6ezcubPUturVqzN37tziVakS2bp1K2eddZanYyN7LSJ7E6J7CeL9DqpXr05eXh4dOnRg7ty5xZ9BtoYXTZ06tdS26FWlYkmlZyTdMtGQNsYYY8oDP3/N3wQmisgBwBlATeDpiP0HAn4H5v8euFVVH43eoaoPA0uBBT7TzFkiknA4Slj47noqJk2axMcff8y9994b97h//OMfgLeAaunWuXNn6tSpA8CUKVMAaN++PTt27ODuu+/miSee4PHHH/dUWQ374YcfAGficLI6derkK890GT9+PHv37i0RGyOWV155xXXfSSedxDHHHOMr38WLF5fa1rJlS19p+M3TGGOMMbnBT4PhGpylTz8HFuNER/5rxP5BOMHW/OgEvBdn/7s4E6orjPCd5M2bN8c9buTIkUybNo2FCxe6HiMiNGvWzFOPxsknn8zf/vY3f4WN4OeOv5vBgwfz+uuvU6VKFYASw3zatm1LtWrVaNmyJUOHDvW0ylFY+NhUJ9P+/PPPKZ0fFC+fdbxepauuuiru8LFrrrmmVJyPWA3dyIjjXnhZpjaIpWzXrl3r6TjrYTDGGGO88dxgUNXHgQHADTgRmgdp6C9uqNfhU2CFz/z/g9PQcDME+NpnmmXCt99+G7NiM3jwYE9B2Vq2bMmSJUs45ZRTAinPAQccUFxR92Pr1q289NJLFBYWBlKOdDj//PPp2bMnHTum1vb84IMPgOwtiRupadOmKZ0f7lWKZcCAAaX25+XllZjM3bFjR9/B+BJp3LgxmzZtSjkdrw1DazAYY4wx3vgaYKyqG1R1jqperqpfRmz/d2j+wcM+818NjBSR5SLSQUTyQ48OInIbMBy4y2eaOW/EiBGu+2rVqsWaNWvSHuk4KJ06dSqxUpGfO/+ZMnr0aDZv3ux5CI1bRTK8fdSoUUEVLWnXXXdd3OFtiXohEg2Nq1u3bqm7/dHneB1e51XlypUD+f0cfvjhAZQmNSeddBLgfI7GGGNMWZftGYmX4KyMdCqwDfg+9NgGTAEeCx1Trhx11FGceuqprvt79+7Nhg0b6NOnj++027Rpk0rROPfcc1OKIzB9+nQGDYrXaZS7vv32WyD2JOl4Yg1VGjZsGCeffHIg5YqlVatWrsuPvvnmm+y336/rD/Tq1YshQ4bEPDaeXKh4+7Vq1Spq1arl2lsW2dibNGlSWlYsW79+PXfeeSeqWiY/Q2OMMSaa6y3C0B1+v1RVT/dx8A/AaBEZBIzCWRVJcOY1PKKqTyVRhgrrjTfeSHnYzaxZs5g1a1bSd3oHDx7MkUceWWrJynh3vPfu3QvEHyaTCePGjeOGG25IeFz0kquxhmM99thjQRXLt4MOKrm6cd26dVm/fj3VqlXj+++/95zO/vvv77pvypQpPP744wnT6Ny5Mx9//LHnPFMV/t1u376diRMn8uKLL5bY/+CDD1JQUICqUlRUxHfffefrt96oUSN27dpFjx49qFy5Mi+99FKJ/e3bt0+qcWaMMcbksng9DFOSfPimqk+p6gxVPVZVh6jq2dZY8C9XgsFFL6X5hz/8IW4gtfBqSF988YXvvGIFXku2seN1Xf4qVaowfPjw4tfhuAHHHnssEydOTHh+q1atAGfMfphbTIZ4gp5DEC0ylkWkoUOHJgyMB3Dbbbdxyy23xNx3++23M3Xq1OKhO/H4mTMS/u5btGgRc1WmyN9mMr+T8Dm33347GzduLLU/euGASpUqFT9v3bp1wvRzMeq5McYY49pgUNW8JB5JL0MjIgeISI/Qw9/yKxVY5N3uWrVqBZZuuGIUa2hHooZJ5cqVS1SmZs+ezYEHHuh6fORqSH517dqVzz//vPh1z549XZeRDb+nIGIDxPoM1q1bxx133JHw3GnTprF582ZOPPFEwFnO9u677+a4447zNRxs165d3gucBLdVkLwO4zn11FNdK8CTJ09m2bJl3HVX4ilKs2bN8pQfpN4gSFX06lPz5s0rfu7luy1r0af79++f7SIYY4zJgGBnLSZBRDoDN+IEgovc/lfgXFXN7jiVHFdYWMg777zDL7/84ml1Ja82bdrEhx9+SLdu3Urtu+6661i3bl3cJTCTmX+RrMhehqVLl9KlSxfef//9UseNGTOGrVu3BjK3oGbNmp6PFZESY9kLCgro2bMnH330EeDMdwB45JFHUirTtddeS+fOnVNKo6yLbCS4NRjCk9fjNSiKiop455134qbvRZcuXZI+tyxIFBTSGGNM+ZDVBoOIdAReBKoCj+JMdgY4GBgB/FVE+qjqm1kqYpmQ6kTnWHr27OnaIJg6dWrMyL9BCy8d2qlTp0DSa9u2LXfffbfrfq9Rn8G5c7xu3Tq++OKLhD0WX375ZczhTgceeCAffvhhIMNQmjdvzuzZs1NOp6y69tprmTNnjqdhP2HxKvBuK2XFOydRg708NhiMMcZUDL4aDCJSgDM5uRewP6WHNPma9AxcDvwE9FHVN6Ly6ghsCB0z1k85TfkwYsQIvv3221KTjL1o3rw5U6dOZcCAAZ7PSRTbINygaNiwIe3atWPTpk2cccYZnHXWWXHPC0eujiXeUC2vZsyYwbnnnpvUuX379o05Fj/dgqw8r1u3jiFDhjB8+HDatm2bljy8ePbZZ+Punzdvnqcha0EqKChg3759aUs/W7Es6tWrx549e7KStzHGVESeB3OLSCGwBbgXmIOzFOqU0GMyyU16PgJYHN1YAFDVbcCfgCN9pmnKmPB8gKKiolL7kmksgFNRWrZsGRMmTEipbJHOPfdctm/fXrw0Z6tWrXj22WdTWoY2CMOHD/fVOxJpyZIltG/fPuASxXfOOecEmt6RRx6JiJRoLEDiBoPb/rVr1yasCEef++c//5kOHTrEPcfLdxRUI2f06NGAsypUIm+8Ueq/35znZXEBY4wxwfEz+3MB0B6YCrTGWf50MNABuBt4BfA7WbkG8Fmc/btCx5hyrEePHtx5552sWbMm20WJKy8vj3bt2pW7oSU33XRTtouQErfvI9kGw9FHH53UkKQgBLXS2Zo1a1BVBg4cmPDYVN5TNq6FmTNnlsj3oosuyngZjDGmovHTYBgG3KGqtwPfhLb9rKo7VPUUYC/wB5/5v48TzdnN8NAxphyJHvNfUFDAySefnPRdcnCWNIX4sQNMbMcccww///xzws8/vESoW/TiZJaGhV/jRoRjdfiJFQHpqbT6HWoTVBny8/O54oorSmwbPHhw0ul5KVeuN4Avv/zyUtsiy5zpHjJjjKmI/DQYGuL0IgCEB8VGRuN6GDjOZ/53AINFZLWIHCwi+aFHRxG5CxgErPCZpklCODZAOq1du5bVq1cnPcwonoceeohPP/00kDkBFVFeXl7C5VIHDRrExRdfzMUXXxxz/wUXXJBU3osXLwYojk7tt8HgNuk82R6GeOclU7k+/PDDS8RjSFSmrl27+s4jUqyVzRLlmYpEc39SFbk0rUldkMtvG2MqDj8Nhi/5dXjQf3EmKzeL2P8TzkRoP/4I3A+MB/4BfB96bAUmhPZd6zNNk4Tzzjsv7XkMHz480DkFkapUqWJBr6JMmjQp0B6X6tWrs2DBgsAriF4D5rlxq/AmagDFqyg/8sgjMZffTaZyvXbt2phLtMZSuXJlBg8ezP3338+IESN85wWUmMSe7h4GVeW1115L+nwv8vNLh/fxUub69eunnHeiBQ3KolTi3hhjKi4/DYa3gYMAVPUX4O/AFBGpIiLVgUn4HD6kqj+r6jicuRBLgKeBZ4BbgEGqOj6UlzHGpxUrVvDZZ/GmCJXk9S64X1dccQV5eXlpu7Pp1sOQaGJsvErnIYccwrJlyzyXIV5aderUSdjz9e233zJnzhxmzpxJXl4exx9/fPEQLb8V+vB5XqUayDBWtPVc8fLLL6fcIC1v5s+fn+0iGGPKID9/KZ4CjheRcOjf63CWV/0S+BzoAVyfTCFU9WlVPVtVh6rqsao6U1WfSSYtYyqK8ePHk5eXR8uWLWPuFxFfk2jnz59Pz549XdNL1rx589i7d2/gQ9HCcQ/cKtSFhYUlXidaxSgs6CFJXtSoUYM//vGPMSu3seZTzJo1i9NOOy1huunuYfByrtucl1R4LXPv3r0zEjOmLAmvoGWMMX74aTAsBBqq6g8AqnofcDzwJLAeOElVlwdfxIpr9uzZTJo0iUmTJmW7KCYHTZ48mR9//DGwSZ9Dhgxh8+bNaZk4HtTqP5Gee+45nnrqKc93yKOHl/itKDdt2tT1bnWyle6uXbu6zv2IbiiccMIJxc+vv/56li8P5r/bdI9pX7lyZdz9fn8b06ZNK/F5+10C1w+/50ZeO3/+8589n9enTx9f+bipXbt2IOkYY0w0zw0GdfwQtW2Nqo5R1RNU9d5kCiAiB4rIFSJyn4g8KyJ/iXrEj4ZUjo0dO5aVK1e6Rlw2Jtb47oqifv36npYNdeN3UvT1118feA/DqFGjuOqqq2LuC1eEw3nWrFnTd/peytuwYUPP6UX32iTSt29fhgwZEveYgoICzytBqSodO3Ysfr1w4cKE5/Tv399T2kGIbLwPHx5vAcBfVa9ePbDgiYcffnjM7X4nwhtjTLTUBq+mSESOw5kbMRdnRaRWQMuoR/qX7zHGlDl+K+9BD7WKlGxDws95Xo6tUqVKwmNSccghh/g6fu7cuSnPkUhW+PMKB1rMZJ7RzzPFrbfl9NNPz3BJjDHlTYHXA0XkUg+Hqar+3kf+VwGfAKNjRXs26RUeU+5lsmv4mFxfs92YWF5++WUOPfTQEtsSLasaa3/Hjh1566230jZBPNKiRYuoUaMGhx56KE888UTMY0Qk7pCcoK9Xt+FDF110EVdeeWXC8y+//HLq1KnDueeeW7xt1qxZbNmyBYAmTZqwc+fOhOl4qZj7jaWRKJ90HA/BlDORcDT6cLyaXHbQQQfx1ltvZbsYxpgofm79XBbn8X8Rz/1oAdxojYXs6Nq1Ky+++KKn/5wvu+wyZs2axciRIzNQMpNuQ4cOBX6NfZDLjjnmGI488shS2/1Uznr37l18pzu8qk8ylbsbbriBJUuWUFRU5PvcWOKVoUmTJqxcubK4kh7r2Pvuu6/EJNboY4IeshZZ0Y8UDr7n5q233mLEiBFccsklnHPOOcXbVbVEoLply5YlTCtSOirbkfMQkmkw5OKqUV26dOGmm25i1apV2S5KQrG+0yZNmmSkYWWMceenwRA9VKglUAQMwVlB6W+A39mXHwDp7UM3rkSEvn370qZNm4THHn744Vx//fUW66CcuPLKK3nvvfdo3rx50mmcccYZvo4Pjz3v27evr/MaNGjA888/X+qufrJ3z++66y5OOeWUhKs2xUq/UaNGpSbdplKWVIckHX/88axZs4a//vWvQOnKlogEelfZbdK3W2UuvL1Dhw48+uijnoLlefn/KHx8OiqRXucTfPDBB6W2DRgwwHd+QfUCRfegRecxc+ZMDjjggEDyyrRrr7VwTMZkm59Jzx/FeLynqk8BQ4GfgVN95n8DMFVEgg/9m0Yi0kxEnheRt0Rkq4iMyXaZTPLCFaoGDRpkuSSZU1BQkHJ07wkTJnDbbbd5Pn7AgAF8/vnnjBs3LqV8r7zyStq1a5cwMJubgQMHsmrVKt+RntNROfXyHXjJt3v37imdnyu8ltXLKklu3+MNN9zgu1yxRAdA69ixY1IxDoL6fqpWreo5ra+++iqQPNMh1vdWln7DxpRXgcxGU+dqfgAneJuf85YCy4A3RWS+iJwqIpOiH0GUMWD7gFmqehAwEFgUCl5nPMjPz2fIkCGMHTs220UBnMBiX3/9dYnVV8qj8MTHIJfR9Ht3NN5wDa8Bts4880y2b99OQYHnKVhpl+xd4vHjxweaR7LleOWVV5I6L1G+2Zzz5FbJ9BPVPrL8ieJJuC2PmynR8SZiDeMLc1t+1W2VpWyzBoMx2Rfk8hWVAV/9nSLSABgDNAd+BywHVkQ9bg+uiMFQ1V2q+nro+efAf4DgoxOVUyLC+vXreeCBB7JdFMApT3gs/+bNm/n73/+e5RKlx4033siePXt8rdV+3XXXccopp6SxVHDwwQczaNAgT0tkZlImKrte8hg0aBBQukIYS6yKlZfKVo8ePRIeA+4rTXldFjVoVpH81cSJE1P6PIYPH15iPkmyEjWcHn/8cd9p2mIbxmRfIA0GEekBnAf80+epS4CeOBGixwD9Yzx8DQoVkSNE5FER2SkiKiJTYhwzQ0Q+EJHvRWSLiPTzWe7ItHoAlXBWe/LN/uDllp49e9KlS5dsFyMt8vLyfEfdPf/88z1PlKxVqxbt2rXzXa6aNWvy5JNPBha8yq/WrVtnfTnMeFq0aIGqxh2j7tVvfvObEq+jg9nFMmzYsOLnrVq1YvHixaUmU9evXz+lciX6zOvVq1ei7EH3trgtO+onjWz8X37JJZe47vO7BG6iFbe8ShSIL7zggh/hcn388cdJlcmLbC3/a0xZ4fkKEZH3XR5fAZuAesA8n/kfDSxS1Tmq+rCqvhDr4TPNmsA2nAbM3hjvYxywCCdydVfgJWC9iDSPOGaby6NZVFoHAHcAp6vP/2n79+9PUVFRiT/GxpRllStXZvv27WlLPzxOP+g/7M8991zMlcKiK4uZXL40WbHKEdkoiG7QderUKWGaa9euLfF6xowZrF69Gog/xCxZseamfPLJJ1x99dWB5xV2zjnnsGXLFtatW1die9WqVdOWZxDmzp1b4vXZZ59d/Pzyyy/PdHHSJnztNWvWLMGRyXv22QobI9YYT/z85f0Y+Cjq8SHwDE48hXaqGnuxcHc/AO/6PCcuVV2nqvNU9QHglxiHzAZWqOoyVf2nqp4D7AKmR6TR0eVR3IsgIlWAh4A/qOpLbuURkTNF5FUReXXPnj3F2ydOnMjbb7/NggULUn/TxlQAq1at4tZbb/U1pMqLZs2alYjQm8sWLFjge8jcqFGjUnp/sRohxx13HHPnzk3LuP3Fixdz6aUlw/5UqVKlRDlGjBgBEDOKdDiy8zHHHFNq35133hkzz4KCArp161ZqRamjjjqK3//eT2gh71q3bg2UboiOGzeuOG5CItGNq8jo0pHLw8by4IMPesojVRdddFHx84ceeijh8cmsNBWEoBq/XoZwTps2LZC8jMkkP6skHaWq/aMeA1T1+FAF/cMk8n8cZ9JwRohIZaA7zjKwkZ4CPI+HEOcv1wrgL6oad7yGqi5V1R6q2iMX1+c2JhXxVucJWps2bTjzzDPTnk+8wG2JzvEjmVW5Lr744phD5qpWrcqsWbOKl1eNtnz5cvr161dcSQ1LdghK1apVWbhwYeA9DKpKYWFhwtWGevXqhaqWmnuxfft2Hn/8cZ544gluvPHGUuedfPLJMdNzi/0wdOjQuL+5yAUEghqS1KlTJ156yfUeVCmRcThSkYleMi9RtzMxl2nHjh1pS9vLpPoWLVrEbNAak8uyPWhvNtBMRG4UkdaS/v+x6gL5wO6o7buBhj7S6QuMA0aJyOuhh78Bo8aUA4ccckhOBqrKlMaNGyd13qZNm3jhBb+jLd2JCNdff73r5OU+ffqwYcOGhOPL3Xz66ads27bN93lucxuOP/74uOPvw/xWqtq1a0e1atUYPHgwhYWFns+L9acn3CsT789Sr1694qYbL27NL7/8kjB9L9asWZNUYyVdcy5STTeoVdziTcRv27ZtIHkkK1eGMBrjh2uDQUSaJ/Pwmf8XOHf8zwbeBvaJyM9Rj30pvD830f+jSYxt7iervqiqearaJeJh0apNhVRe//jl5eUljDocXrrS62ewbds2HnroIQ499NCkJoinyktlLnJYS1iTJk04+OCDfeX1wgsv0LNnz5j77r///oRDfVSVp59+2leebho2bOg7+JeXzyrR9+4lSKFbPs888wxz5swBoGvXrkk12LZt28amTZt8nxeUgw8+mOnTp8fcN3Cg++CC6CFZsT6jv/zlLzGHpIVVqlTJ0xydsPB32aFDB8/nROvfv3+5/f/QmHgLmX+Ij0p0hPzEhxS7I8k8kvUFToC56N6E+pTudTDGeDBw4EDuuuuutEwQveOOOwJPM5HIIUlvvvkmJ554Ivfff38gd2QPPvhg3xXvTFu7dm1SlZ777ruPqlWrctxxxwFwxBFHeD433ZWsnTt3lpgsv2bNGj777DNmzJhRquKa7QpfOP+jjz6a/Px8rr32WmrVqpXU7ybeObGigsdSvXp1/ve///nOG3Bt5Ozbtw8RKbXalptY117//v3jToQXETZu3Oi5xyI8H6Rly5b8859+F3x0HH300Z6OU1VOPvlknnnmmaTyMSYb4jUYLqd0Zf44oAvwNPAWzp35g3BWO3odWIsPqjrFz/GpUtUfRWQLzryJ+yN2DQQyMwPMmHJm8eLFTJ8+PeWlNaP169ePiRMnBppmMuJVIG1Z5F+dcMIJSZ/bo0cP1q1b53vZX6+iV9YKj/s/8cQTqVmzZtLpJmpcTJgwgfvuuy/mvmHDhnHzzTfHHTqV6cZLrN/zV199xZgxY3jssccCyydRQyGo6yrWd+s256NFixY89NBD9O/fnzp16iSVn6p6+s4aNGjAlClTOPXUU0vk/+GHHyaVrzGZ4NpgUNXLIl+LyElAS6B7OGhZxL5uwLM4w4qySkRqAm1CL/OA5iLSBfhSVT8GrgNWichmYCNwFtAYJyaEMcan2rVrexp6UZ5l+650snKlwXPhhRfSq1evpGJNpPIeDjjAV6zRYuGVcPr06cNTTz1VohyREctHjRrFwQcfzJtvvlni/E8//ZSGDRtyyCGHlOrh8PJ+3njjDXbt2pVU2cP8zGe59dZb487HyEVu12SVKlVcz4k3KbtatWrs3VtqpXbf7rnnnpiN67Lwf8jkyZNZuXJlYOnVqFGD7777LrD0THr5mfR8IXBzdGMBQFVfAxYDc6P3ZUEP4O+hRzVgfuj55QCqei8wC7gEp1fkcGCoqn6UhbIaY3JMrgfryoR0R/eOVr16dYYOHVomKk1AcTDDSy65pFQjZ/HixfTs2bPUsqbLly8vft6kSRPy8/M588wzXaNnx7J69WrWrVtHx44d484B8GL48OElYjXE++wbN25cvJRtIrlyTWTjt+TlvY8bNy5mLJl0xpgISseOHQNLq3LlyjHj35jc5afB0Bb4PM7+3UBRasVJnao+r6oS4zEl4pg/qWoLVa2iqt1VdUMWi2yMKePKSkXXa2Xuz3/+c5pLUnaEewxiLcman59fapLs8OHD2bx5M5UqVSqx3W0CuBfh723ChAmlYkUkKy8vz9NKVX4k22MT7cILLyzxOvJ363U5YrdrMlZU7+i4H8lKpbFU0VabGzhwIM2b+10nJzel433kYtBIPw2GXcCYWEufikgeMBb4LKiCGWNMLolVGciVu6kmfWrWrMlbb73FlVdemfG8090Q9ZJ++JhEFdo9e/bw8ccfB1KuUaNGlbi2Ip+/9tprxatnxSt/rH116tQptVSvl7gf8SRa+tfrEq6Z+r/Eb+DHdAn3Vvzud7/LcklSl+ycl3hy8SaUnwbDMuAo4EkRGSIiLUWkhYgcCzwJ9AOWpqGMxhiTNX4qVeVFKu9nx44dGR1qkInPvkOHDinf8fNazmz9lhLlu2jRIs444wzX/XXr1i0VeTodGjdu7Ck+R6wGXqz3GK+iHl5lKt5wrOg0Cwp+nRr68MMPlwgSFz18bc+ePdx+++2uaadDrMCPXoU/qzlz5jBr1qyUyrFgwQKgZIPrlVdeSSnN8iRyuGCu8NNguBK4EWdFpMeBd4H3gMeAAcBiVf1D4CU0xpgMKm+V/0xr27ZtSmvZm1+FV4065JDMxAWNV3muWbNmcYMhyLHsYffcc4/rUrzJXJNBBGcLfx7xok9Hlq1fv34lvquRI0eWODY6JkbdunUDC1Tn5rXXXgs8TRFJeQhVuGEV+ZtzCzyZ69LxNyO8PHUu8dxgUMcsoANwEU5vwrLQ84NU9Vy/mYvIbSLiGipTRA4Vkdv8pmuMMZlQ1ocklfXyQ/bfQ/juc7du3QJP+6CDDuLFF1/kuuuuCzztVFStWpUdO3bw6aefltoX/j7Cd5C9GjdunGv08z59+sTc7vbdu00g9tvDEA4gF2/IyfLly5k2bRpfffVVTgVuC0+sDnq567BMXHcVtcehqCjr04Fj8tPDAICqvq2q16jqdFU9K/R8R+IzY5oCtI6zvyUwOcm0jTEmMPH+QOZKJSERr3/ky8r7yQVjx47l+++/9xVVOJ7o76hv375xlwINyh//+Edfx7dt2zbmUqvh8gfxGwrfhU40qXTRokV88MEHnH322Xz77beBzaVYvHgxr7/+Ok2bNnU9pmnTpixZsoTatWsHkmekVCr7CxYs4JNPPglsOVwv6cRa/cmvyGB8Qfc4JLNsc9CmTJmS8JigJuEHLfVvN71qAD9luxDGmIorXsWnTRsn5Eu67uIZ77z8IfbDzx3UTFTo06lXr160atUqYSXfz2fipcEQnrycan5FRUW0aNGCm2++mRo1aqRUpkhVqlShc+fOvsoSJLeelbBdu3YxefLk4t9f5BCo/Pz8uA0dvyKHWrl9Frl+Haxfv56NGzd6Ojb8f7sXDRs2LPE6XkMnei7UsGHDYh6X7Z7TWFwbDKHhQstFJD/idaLHcrf0ItJtLiJHiEh4sGL78OuoxyhgOs5cCWOMyTnz58/niSee4Kijjsp2UUxA4lUqJ0+eHPhSpNn26quv8uSTTwLOGPwzzjgj7uRmCK4HKjzkJ5F09HiFlw6+7bbcGPUcWUH8zW9+4+mchg0bsmLFiuKKerKfU/QSwG4i0w+qRyW6Yhyvojx+/PiY2wcPHpwwn8svv5zCwsJSlftULV++nLvuuqvENrdGQCxer4FcEK+HYUrokR/1OtEjkVOB54HnAAUuDj2PfqwBugJXeUjTGGMyrlKlSp7+WJU1NiQpthUrVvD73//e1zl+7xRm+rPv3r17ceUvPz+fpUuXsnRpZhY8jNcbkA6Rn+3pp5+OqjJ69OiMliFarO/7mmuuQVU9D/GJNQwscvWheHNgioqKePjhhxPmET05+6yzzuKmm26iZs2apcqRLtGTyMO8rGA2bdo0IPjr67TTTvMVfyT6N+elPF4bdOnm+mtU1TxVzVfVHyNeJ3rku6UX4WGcRsPpgOBMnD4t6nEqcDzQUlVXpfQOjTHGxJSL3d7lVXlohCX7e7nssst48cUXXfcPHTo02SIldPbZZ6ct7XQLBw1MJLxq1YABAwB4+eWXS0zCP//88/n888/Zs2dPifNeffVVXn75ZYYOHcpvf/vbUum+++67dO/eHSj9ORYUFDBz5kzWrVuX1u8vW1K5XhOdu2bNGs9ptW3b1vdNinQpSHxIsFR1K7AVQEQOBB5U1W2ZLocxJj2mTp3KQw89lPT5jRs3BpzgTbnEKte5qV+/fkDsSMy5pmfPnmVm5RcRcf3Nx6sQxTrn//7v/1yP/89//pPWnoabb76ZSy+9lAYNGmSt0fbRRx8llfeCBQtKDXcJi2yAPfbYY7z++uv079+fkSNHxlwlKnIZ1AceeICioqISE/XdvuvKlSsD7ne5+/XrR48ePWLG4Hj55ZcDH3Lz73//G1UtXnLYq/D78CqbDfyWLVuWeJ0rNxtSnvQsIt1FZKCI+I5qo6rz3RoLIpLbs2eMMTEtXbqUnTt3Jn1+mzZt2L17N+eff36ApUpervxnHYTyuEpSmzZtUFVPwby8CI8HD2p1mUgbN27ku+++i3tMLjdMg570DM6SpW6V0aA+i2x/ps2bN3dd6jWeFi1auI7b79u3b/HzwsJCBgwYgIh4ymfs2LFJrerl5XOM7Ino3bt3IGlGKiws9DUEKMxvNOZ4v99wQD83qf7e+vbtS2FhIZDe3je/PDcYROQ3IrI2attqYDPwBPCGiDTwk7mIHCsil0VtmyEi3wDfichqEcmNwVvGGE9EJOXVMurXr1+mKq1l1UEHHRR3f9ATBMuCFi1acNddd3H//fcHnnalSpVcoyFfdNFFgecXtCCXTPUjqPzK4v8pqUYY9yry/4JYjY7ISnC8z3HixIkplSPe+032+4uMbh3EbyDW8K2ghHsX6tWrx86dO7nmmmtcj83UXKMwPz0M44HixY1FZEBo2z04E5cbARf4zP+3QPuINDsAi4B/AU8D44CyOwDRGGNyUL9+/dixY0fxmOdoeXl5zJgxg3vuuSfDJcsNJ510UlJ3MYOQaoUmE1G2y2LFO9dluxckcllir42DaEG8h3TEs0hmFbsbb7zRdd+JJ54Y99x4k9UTfUb9+/cvft64cePiWCSxZCoCfJifOQwtgJURr0cBu4BTVFVFpC5wHDDHR5odgHURr8cBe4FDVfWbUA/GZOAGH2kaY4yJQ0Ro27Zt3P2LFy/OYIlMULZs2cKPP/6Ycjqx5jBku1KbrAMOOIAuXbp4jj590003lVoVKF3vPVcaXyJCQUEB+/btK7HN67nRevbsmVQ5kvmcE53jdfJ42MiRIxk0aJDvcoRFxuWpVq0ae/fu9XzuokWLSm1z+x4y1fsU5qfBUAP4X8TrAcAz+us39RZO3AQ/9ge+iHh9DPAXVf0m9Pp5IHcGcBljKqyyWlkyFUu1atV8V5D88jvpOdsKCgr4+9//7vn4mTNnprE05VuPHj2YPn06c+b4uXecOV4aQQ8++GBKeUT2CiS6HsLlqVSpEj/99JPva7ewsJAvv/zSfyGT4GdI0k6gExSvbnQQ8ELE/v2BH3zm/wVwYCjNWkBPIHLttUr8GgfCGGMyLlfuAAYhFytz5V34Tms6hlrksiCuG/u9ZlZ4CdXI727MmDGAM3Hbi/z8fP70pz/RunVrALZv3x73+EMPPTSZohan74WX3+LUqVNp164dV155Jfn5/qudkas2hVdkatSokeff8Jw5c1DVuHmfc845pbbdfffdPkuaPD8NhrXAWSJyM/AATuPg8Yj9HYEPfeb/cijN43GGHRVQcohSG5xhT8YYYwJSnhpBuW7JkiW8+uqrNG3aNNtF8SXWb8RL5Scdlfxc/L0+8cQTvPrqq9kuRqDWr1/Pxo0bS9whnz17Nl9//XVSqzwBtGvXLu7+ZJfU3bJlS9yAdG7clmMdPnw427dv58ILL0yqPHv27ClucIUFdZPA7fevqikNnfLLz5Cky3F6GGbgNBZmqepuABGpBowGlvvM/zLgL8B9odcrVfWtUJoSSvM5n2maHJNMa90Yk1lFRUW888472S5GuVO1atVSFYlYevToAZDUcpeZ5qUCn8lKfjZ6IoKO8J4LvSn7778/ffr0KbFNRNhvv/1KbHMraybfQ+3atWnVqpXv8zIRXTzeb3/WrFlpzz9dPPcwqOp/VPVooA6wn6reGnXIkcAVfjJX1TdxJj6PBI5S1VMjdtcBrscmPJdZe/bsYffu3dZgMOVCLvxBT6e//e1v/OMf/8h2MSqsMWPG8MYbb+TUuuu5btmyZUydOpWBAwdmuyhJS9SwCt+lXrZsWSaKAzjDXEaMGFFqGJJbWYNsHCa7ylfk2P/oRnc2e6ii/24k8/4SlT/R8thB8R24TVW/UdWforbtVdWtqup55oWI1BCRS4GeqrpWVTdEpfkfVV0UigxtyqC6deuWWC3AmLIoF4dDpENhYWHGl+kzvxIROnbsmHO/t8gKT6aHJCUaxtW0aVOWLVvmGvitPLjiiiu4+uqrOe200zKWZ69evXj00UfjLumZzryTcfXVVwPO8rBjx44NskieZeumUqb+z/DVYBCRWiJyqYi8KCLviMhhoe11Q9vbJ0ojTFW/A+YByQ2MM8aYAC1cuDBhBE9jKop4lZBMDUnauHEj99xzT9x17bMhkysA1ahRg9/+9rc58Rlko0K8a9cu13gxkcIBEb387lINSJnou4gsQ6LPLBxUzsuwxWjhtDP1vXhuPopIPZwVjFoB74b+rQagql+IyGScYUSzfeT/HlDxQokaY3LO3LlzmTt3braLkVaHH344Z511VpmIKmxMs2bNGDduXLaLATgr3nz44Yd8//33KUeyL+sy2QvWsGHD4iCK8Sb/+qk0N2rUiM8++yyp8jz99NNJf/+xynjsscfy/vvvF0d4zmV+mqwLcCr3vYB+QPQ39whwtM/8/wScISLZCalpjDEVSEFBAbfccgsHHnhgtotiyqB69eoBv07QrkheeOEF7rjjjgrfWIjHSyCxJUuW8MMPflfgjy1WA8LrtrARI0YkPGb//fcvfn7MMcf4KaJrQ2bDhg1s3LgRIGFjIVy2bM+j8zNAbTjwJ1V9zaWC/z4wxWf+/wW+BHaIyErgHUoGhwNAVe/wma4xxgQq2/9ZG5MNkb/7du3asWXLlgo516V58+ZMnDgxbemrKs2bN+fjjz9OeOy5556btnIko0qVKixcuJDjjjsu4bF5eXnFcQrctGvXjj179iRMK1P/JxcVFbF58+akznUrY79+/TynkSvzmvw0GOriDEVy8wvgN071iojn57sco4A1GIwxWZEr/1kbk0luv/tu3bqVeP3VV1/5GrNtSor87F577TV27UocemrRokXpLFJSghzOmSjYW7To31+2f4NFRUWceOKJXHTRRcWBG4OQ7fflp8HwGRAvtF5XIHHTuKT+Po83xhhjTI5wC05lDW3/DjjggOLx+uVVun4X8dI9++yzS7y+8MILGT9+fOBlmD59OmeccQZt2rTh3nvvBYKt5EenlekGhJ85DOuA00WkUfQOEekFTMKZx+CZqr7g5eEnTWOMMcYEI9t3NY1JVfSqSOmaSD916lRUNfBGX640vv00GOYD+4C/A3/AGSo0WUTuBjYA/wKuCryExhiTA6ziZCqSXKmkGJMJ5eX/93vuuYd9+/alJW3PQ5JU9TMR6Q3cDJyGs0rSRJyGwzpgeqLAbSIyKfR0lapqxOtEedscBmOMb23atOHdd+NNvUrMKk7GGJO7UqnspzumSJANES/lSOcyxL7C+KnqJ8BIEdkPaIfTaHjXR4TnFTgNjHuAHyNex/sUbNKzMSYpW7Zs4euvv852MYypMMLLjiZaCcc4jjzySJo3b86ll16a8NgdO3bw/fffZ6BUsQ0aNIgLLriAkSNHJp1GMpXvcMTp6IBpbmnVqVPHdx5+bdmyJWNL7IbfT2FhYcz9mbrWkor7rarfAK9EbhORvsDlqhovFkP/0Pk/hl4PwGkQlEkikgdsAj5S1eOzXR5jTEn77bcf++23X7aLYUyZ07t3bzZs2OA7wvC8efNQVaZNm5amkpUvderU4aOPPvJ0bNu2bdNcmvg6d+6c1B1zVeX000/ntttuSyrfRYsW0aBBA88NlbPPPpv8/HzOOeecpPLzInq1sHSaNGkSP/zwAxMnTuT3v/89AA0aNKB9+/aAsyrT66+/zo033pjWcnhqMITiLrQGvlTVd6P29QYuxwna9kuCpA7Eme8AgKo+76ewOWg6TrTqpBpexhhjTC5au3YtO3bsoFKlSr7Oq1GjBgsXLkxTqUxFVK9ePa6//nrPxxcUFDBz5sy0Nhi8Wr9+PUOGDEkpjby8PKZNm1Y8NyE/Pz9mpOoGDRqklE/CcsTbKSL5IrIE2A28jBNg7WURqS8i+4nIamAjTs/BaiBRNJfbgT4R6f8sIiel9A6yRETqA2OApdkuizEmfXr37g1AixYtslsQYzJov/32C3QNeVOxlZdJxX4NHjw48DSz9Vkm6ms8BzgTZwWkB4GtQC9gMfAkMA5YBbRX1YmqmijaxndA9YjXgc8mFJEjRORREdkpIioiU2IcM0NEPhCR70Vki4h4D7n3q2uA35G4V8UYU4ZNmzaNrVu3+orMaYwxprRY8w569eqVlryOPPLItKSbLdlegCPRUJqJwBvAYar6PwARWYwzFOffwOGq+rKP/N4EzhGRPcB/Qtvai8gR8U5S1Q3x9kepCWzDmShdarK0iIwDFgEzgBdD/64XkYNU9ePQMdtc0j5WVT8JlVdV9SUROcpH2YwxZUx+fj6dOnXKdjGMMaZcevLJJ1NezS6Wxx9/nN27d6ecTrYr6rkiUYOhLXBZuLEQcgtOg+Eqn40FgHk4PRVrQq8VuDj0iEVCx+R7zUBV1+Es84qIrIhxyGxghaouC70+R0SG4LynuaE0OibIpg8wUEQ+BKoCtURkuaqe7rWcxhhjjDEVQbxhNLVr16Z79+6B51mjRg1atWoVWHrZnnTuJjx3Id0LfCRqMNQAomdWhF+/4TczVX1ORFoBPYFGOMuqLsWZH5F2IlIZ6A78MWrXU0TMrUhEVa8ErgyleRQw062xICJn4gzronnz5r7LbIwxxhhTHqTjbn0yY/pfeeUV6taty3nnnefp+N27d1OjRg3f+WTC1VdfTffu3dMyXyKSl9V9or+J8OufkslQVb8CngYQkfnAOlV9NJm0klAXp7ciuo9qN3BMOjJU1aWEJkb36NGjYs76McYYY4wJUKzGh9fGQ48ePXzlVb9+fV/HZ1K1atWYMmVK2vPx0mAYKiINI15Xx2k0nCAiXaKOVVX1vPaVqrb0emzAon9REmObt4ScpWGfT7E8xhhjjDEmCcn2XFxxxRV88skn9O/fP+ASBS8vL48JEyZw+unZGf3upcFwUugRLVZUFgW8L5abeV8APwMNo7bXp3SvgzHGGGOMSVGuLqvasWNHXnvttbjH1KpVK0OliU9EWL16ddbyT9RgyP0mlw+q+qOIbAEGAvdH7BqIMxnbGGOMMcakQVlccejOO+/MdhFyQtwGg6q+kKmCBEVEagJtQi/zgOahoVNfhpZNvQ5YJSKbcYLOnQU0BpZkobjGGGOMKUcWL15MQYGXARymLMjl+QuZVB5/0T2A5yJezw89VgJTVPVeETkAuARnpaZtwFBV/SjjJTXGGGNMuTJjxoxsF8GYwCWK9FzmqOrzqioxHlMijvmTqrZQ1Sqq2t1nYDhjjDHGGOPRYYcdBkC7du0CTztX50eUN+WuwWCMMcYYY3LHmWeeyXvvvVfccAhCWZwPUZZZg8EYY4wxxqSNiAQaddlknjUYjDHGGGOMMa7K46RnY4wxxhhjknbDDTfQs2fPbBcjZ1gPgzHGGGOMMRHOO+88+vTpk+1iJGXt2rWBp2k9DMYYY4wxxqTBRx99RJUqVTKa5/DhwwNP0xoMxhhjjDGmzKpduzaQm0HWmjdvnu0iBMIaDMYYY4wxpkxSVUaPHs3y5cs5+eSTs12ccssaDMYYY4wxpkyJjMMgIpx22mlZLE35Z5OejTHGGGOMMa6swWCMMcYYY4xxZQ0GY4wxxhhjjCtrMBhjjDHGGGNcWYPBGGOMMcYY48oaDMYYY4wxpkxS1WwXoUIQ+6AzR0T+C+zIdjlyRG3g62wXwkWmy5au/IJKN9l0kjnP7zlej68LfOGzLOVVLl97kNnylddrL9lz/Zxj155/du2lPz+79n7VTlVr+SyHO1W1R4YewKvZLkOuPICl2S5DrpQtXfkFlW6y6SRznt9zvB5v117wv4vyUL7yeu0le66fc+zay97voryULx352bVX4rhArz0bkmSyZW22CxBHpsuWrvyCSjfZdJI5z+85ufw7ylW5/pllsnzl9dpL9lw/5+T67ygX5fpnVh7+9tm1lyY2JCmDRORVVe2R7XIYU9HYtWdMdti1Z0x2BH3tWQ9DZi3NdgGMqaDs2jMmO+zaMyY7Ar32rIfBGGOMMcYY48p6GIwxxhhjjDGurMFgjDHGGGOMcWUNBmOMMcYYY4wrazDkABEZKiI7ROQdEZmR7fIYU1GIyKMi8h8ReSDbZTGmIhGRZiLyvIi8JSJbRWRMtstkTEUhIi+FrrttInKpp3Ns0nN2iUgB8E9gAPBv4FXgaFXdldWCGVMBiEh/oCYwWVWPz3Z5jKkoRKQR0EBVXxeR+sAWnMi0/8ty0Ywp90RkP1X9RkTygReB6ar6erxzrIch+w4F3lLVT0L/UT4EDM9ymYypEFT1OeC/2S6HMRWNqu4KV1BU9XPgP0DdrBbKmApCVb8JPa0ceiRkDYYUicgRoWENO0VERWRKjGNmiMgHIvK9iGwRkX4RuxsDn0S8/hRokuZiG1PmBXDtGWOSFOT1JyI9gEqU/FtojIkhqGtPRDYBnwPPJOpdAGswBKEmsA04D9gbvVNExgGLgIVAV+AlYL2INA8fEiNNGydmTGKpXnvGmOQFcv2JyAHAHcDpamOkjfEikGtPVXvh3KDuIiIdE2VqcxgCJCLfAjNVdUXEtk3AP1T1jIht7wAPqOpcEekDXKiqI0P7rgA+VNVlmS29MWVXMtdexLajQufaHAZjkpDs9SciVYCngWWquiqzpTam7Evlb1/EvguBn1X1j/Hysh6GNBKRykB34KmoXU8BfULPNwMHh1aMqAaMBh7PXCmNKX88XnvGmDTwcv2JiAArgL9YY8GYYHi89uqISN3Q86rAIGB7orStwZBedYF8YHfU9t1AQwBV3QecDzwLvAHcoqr/ymQhjSmHEl57ACLyDHA/MFREPhWRwzJXRGPKLS/XX19gHDBKRF4PPQ7JYBmNKY+8XHuFwJMi8g+clTlfUNXHEiVcEGQpjavocV8SuU1V1wJrM1oiYyqGRNfeMZktjjEViuv1p6ovYjctjUmXeNfe+zi9EL7YxZpeXwA/E3FHM6Q+pVt/xpjg2LVnTPbY9WdMdqTt2rMGQxqp6o84wWgGRu0aiDNr3RiTBnbtGZM9dv0Zkx3pvPZsSFKKRKQm0Cb0Mg9oLiJdgC9V9WPgOmCViGwGNgJn4cReWJKF4hpTbti1Z0z22PVnTHZk69qzZVVTFFqS8bkYu1aq6pTQMTOAC4BGOGvnnq+qGzJURGPKJbv2jMkeu/6MyY5sXXvWYDDGGGOMMca4sjkMxhhjjDHGGFfWYDDGGGOMMca4sgaDMcYYY4wxxpU1GIwxxhhjjDGurMFgjDHGGGOMcWUNBmOMMcYYY4wrazAYY4wxxhhjXFmDwRhjjIlDRJ4XEQ099mUw3yUR+aqItMhU3sYYE8kaDMYYk4NE5KioymL0o3e2y1jBfAFMBCZFbhSRy0LfR49YJ0V8j79JIs/bQnk+lMS5xhgTmIJsF8AYY0xcdwPrYmx/N9MFqeC+U9U7M5mhqm4GNotIG2B0JvM2xphI1mAwxpjc9pqfiqqI5ANVVPV/aSyTMcaYCsSGJBljTBklIlNCw12OEZHfich7wPfAiaH9IiLTRWSLiPxPRP4rIs+JSP8YaVUVkWtE5F8isldENovIIBFZISIadeyHIvJ8jDTCw2+mRG2vIiLzRORNEfleRL4SkbUi0tXtfBE5NXT8DyLykYhc4PIZdBWR+0Vkd+jYT0TkbhFpLSKVRWSPiLzocu4Fofz6xf+kgxU1JyL68WEmy2KMMV5YD4MxxuS26iJSN2rbD6r634jXfwQqAcuAb4Adoe2rgAnAA8DtQBXgZOBpERmjqo9GpHE3MApYCzwJtAbWAB+kUngRqQQ8AfQJledmoDZwBrBRRI5Q1VejTjsLaAAsB74CTgGuEpFPVXV1RNrDgQeB74A/4wzTaggMBjqq6nsishKYIyLtVXV7VD6nAm+r6l9TeY8htWN8T+C812hXhMobqTVwGbA7gLIYY0ygrMFgjDG5bX7oEeleYHzE62pA18hhSCIyGqdxME1Vl0ZsXwT8DVgkImtVVUVkEE5jYaWqTok4dgOpT7idCRwFDFHVJyPS/hOwDaexc1TUOc2Bg1T1q9CxtwEfAecAq0PbquM0gr4OvfedEedfLiLhHvSlwBzgNKC4l0JE+gLtgQtTfH9hz3g9UFWfjnwtIvsDLwP/xvnOjDEmp1iDwRhjcttS4P6obZ9Fvb4lxpyFU4D/Ag/HuPO9FududhHwNk5jAeCayINU9WER2QG0S6rkv5ZjO7AlRjmeBiaLSDVV3Rux/fZwYyFUjv+JyN+AwyKOGQzUBS6KaiyEz/kl9O/bIvICMElE5qlqeFnU04F9wMoU3luks3E+y2idcRpFMYV6YB4EWgLHqKpNZjfG5BxrMBhjTG57R1UT3b2OVVHtANQi/hCXBqFzWwG/uKTzT1JrMHTA6QHZE+eYusAnEa/fj3HMv4EDIl4Xhf79u4cyLAXuAobjNKBq4szzeExVgxoCtDnG0Co8xG24FegPTApoaJQxxgTOGgzGGFP2xVoRSXAq6SfFOW9bxLFuYu3TGNsg9t8UAd4AZsfJI7ox8XOcY6PL5VaWSA8CN+L0KjyMM5yrBqXnEWSUiMzDmUexQFVXZbMsxhgTjzUYjDGmfHoHaAv8TVW/TXDse8Cg0PFvRu1rH+P4L4HCGNtbuZSjHvCX8DChgIQndnfFGdrkSlV/EJE7gHNFpDFOw2EnzmTsrBCRE4EFOPNRLs1WOYwxxgtbVtUYY8qnO3D+j/9DrJ0i0iDi5SOhf38bdcwoYg9HehtoLyJNIo6tgjOOP1Y5GuLSwxBVDj+ewom+PEdEGsVIN7pnZBmQD1wF9AZWqKqXnozAhaJ0rwQ2AVNU1UsviTHGZI31MBhjTDmkqg+IyO3ATBHpBjyGU8FuijN5uA2hHgFVfVJE1uJMQC7EufPeGpiGM2ypY1TyN+MM63lGRJYAlYGJxB4atQgYCFwjIgOAv+As/docOBonbkSpuBAe3t//ROR0nCVjt4lIeFnVejgToq/j14YQqvrPUDyGU3CGMd3mN88APYKzDO79wPFRbZtvVfXhbBTKGGPcWIPBGGPKKVU9TUSeA84E5uJU7D8DXgu9jjQOZ4jMyTgV/G3AWJw4DiUaDKq6MRScbR7Oyko7gVuAV4Fno479SUSGATNwGhXhJWL/BWwmhVWKVPVRETk8VI7T+XWS94s48yaiLQUOB55T1VgTqzOlfujfa2Ps+whnnoUxxuQMsZ5QY4wxbkRkBTBZVeNNjC4TQvMG7gVOUtW7fZz3PE5vTDdAVfXf6SlhqXxr4KwwdQHOcLGWqvphJvI2xphI1sNgjDGmojgbZ1jWmiTObYazmtPPZO5v57U4w8KMMSarrMFgjDGm3BKR+jhzJfoBRwBzVfUHn8nMAfYPPQ9ypadEbsCZoxEWHbDPGGMywhoMxhhjyrODgNXAV8ASYs8biEtVtwRcJq/5bseJkm2MMVllcxiMMcYYY4wxriwOgzHGGGOMMcaVNRiMMcYYY4wxrqzBYIwxxhhjjHFlDQZjjDHGGGOMK2swGGOMMcYYY1xZg8EYY4wxxhjj6v8B8/bkbw17h14AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "parest.plotfits(res, save_plot=False, namestr=\"lorentzian_test\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function exists in the library as well for ease of use:" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import fit_lorentzians" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.47811631e+02, 3.65200027e-02, 1.35036166e-03, 4.03665876e+01,\n", + " 1.89162600e+00, 1.20693953e+00, 1.05461311e+01, 7.49865621e+00,\n", + " 6.36152472e-01, 1.99437422e+00])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Multitaper/multitaper_example.html b/notebooks/Multitaper/multitaper_example.html new file mode 100644 index 000000000..bdf6faaf1 --- /dev/null +++ b/notebooks/Multitaper/multitaper_example.html @@ -0,0 +1,1109 @@ + + + + + + + + Install Stingray in colab — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Open In Colab

+

If clicking the link above turns the screen gray, try right clicking on the link and selecting “Open link in new tab”.

+
+

Install Stingray in colab

+

Comment out the cell below if running locally.

+
+
[1]:
+
+
+
# %%capture --no-display
+# !git clone --recursive https://github.com/StingraySoftware/stingray.git
+# %cd stingray
+# !pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm seaborn
+# !pip install -e "."
+# %cd ..
+
+# import os
+# os.kill(os.getpid(), 9)
+
+
+
+

The kernel will (crash and then) restart after executing the above cell to finish installing Stingray. So the cells below will have to be run again or manually.

+
+
+

Multitaper Spectral Estimator Example

+
+
[2]:
+
+
+
import numpy as np
+import matplotlib.pyplot as plt
+import seaborn as sns
+sns.set_theme()
+sns.set_palette("husl", 8)
+
+import scipy
+from scipy import signal
+from stingray import Multitaper, Powerspectrum, Lightcurve
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/largememory.py:25: UserWarning: Large Datasets may not be processed efficiently due to computational constraints
+  warnings.warn(
+
+
+
+
+

### Creating a light curve

+

Lets create a Lightcurve sampled from an autoregressive process of order 4 that has been frequently exemplified in literature in similar contexts

+
+
[3]:
+
+
+
np.random.seed(100)
+coeff = np.array([2.7607, -3.8106, 2.6535, -0.9238]) # The 4 coefficients for the AR(4) process
+ar4 = np.r_[1, -coeff] # For use with scipy.signal
+N = 1024
+
+freq_analytical, h = signal.freqz(b=1.0, a=ar4, worN=N, fs=1) # True PSD of AR(4)
+psd_analytical = (h * h.conj()).real
+
+data = signal.lfilter([1.0], ar4, np.random.normal(0, 1, N)) # N AR(4) data samples.
+
+times = np.arange(N)
+
+err = np.random.normal(0, 1, N)
+
+lc_ar4 = Lightcurve(time=times, counts=data, err_dist='gauss', err=err)
+lc_ar4.plot()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_8_1.png +
+
+
+

The Multitaper Periodogram

+

Tapering a time series as a way of obtaining a spectral estimator with acceptable bias properties is an important concept. While tapering does reduce bias due to leakage, there is a price to pay in that the sample size is effectively reduced. The loss of information inherent in tapering can often be avoided either by prewhitening or by using Welch’s overlapped segment averaging.

+

The multitaper periodogram is another approach to recover information lost due to tapering. This apporach was introduced by Thomson (1982) and involves the use of multiple orthogonal tapers.

+

In the multitaper method the data is windowed or tapered, but this method differs from the traditional methods in the tapers used, which are the most band-limited functions amongst those defined on a finite time domain, and also, these tapers are orthogonal, enabling us to average the eigenspectrum (spectrum estimates from individual tapers) from more than one tapers to obtain a superior estimate in terms of noise. The resulting spectrum has low leakage, low variance, and retains information +contained in the beginning and end of the time series. For more details on the multitaper periodogram, please have a look at the references.

+
+

Let’s have a look at the individual tapers.

+
+
[4]:
+
+
+
NW = 4 # normalized half-bandwidth = 4
+Kmax = 8 # Number of tapers
+dpss_tapers, eigvals = \
+signal.windows.dpss(M=lc_ar4.n, NW=NW, Kmax=Kmax,
+                    sym=False, return_ratios=True)
+
+data_multitaper = lc_ar4.counts - np.mean(lc_ar4.counts)  # De-mean
+data_multitaper = np.tile(data_multitaper, (len(eigvals), 1))
+
+ # Data tapered with the dpss windows
+data_multitaper = np.multiply(data_multitaper, dpss_tapers)
+
+
+
+

Plotted below are the first 8 tapers (on the left), and the corresponding tapered time series

+
+
[5]:
+
+
+
fig, axes = plt.subplots(8, 2, figsize=(11, 27), dpi=90, sharey='col')
+
+idx = 0
+palette = sns.color_palette("husl", 8)
+for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):
+    axes_rows[0].plot(lc_ar4.time, taper, color=palette[idx])
+    axes_rows[0].set_ylabel(f"K = {idx}")
+    axes_rows[0].set_xlabel("t")
+
+    axes_rows[1].plot(lc_ar4.time, tapered_data, color=palette[idx])
+    axes_rows[1].set_xlabel("t")
+
+    idx += 1
+axes[0][0].set_title("DPSS tapers", fontsize=18, pad=15)
+axes[0][1].set_title("Tapered time series", fontsize=18, pad=15)
+fig.tight_layout()
+txt="DPSS tapers and product of these tapers and the AR(4) time series.\n\
+    Note that, for K=0 in the top row, the extremes of the time series are severly\n\
+    attenuated, but those portions of the extremes, as K increases, are accentuated."
+fig.text(.5, -0.025, txt, ha='center', fontsize=18)
+fig.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_14_0.png +
+
+
+

Now let’s see their frequency domain representations (here PSD)

+

We can have a good look at the leakage properties of these tapers (and the resulting time series) from their PSD representations.

+
+
[6]:
+
+
+
%%capture --no-display
+fig, axes = plt.subplots(8, 2, figsize=(11, 28), dpi=90, sharey='col')
+
+idx = 0
+palette = sns.color_palette("husl", 8)
+
+freq = scipy.fft.rfftfreq(lc_ar4.n, d=lc_ar4.dt)
+for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):
+
+    w, h = signal.freqz(taper, fs=1, worN=np.linspace(0, 0.01, 200))
+    h = np.multiply(h, np.conj(h))
+    axes_rows[0].plot(w, h, color=palette[idx])
+    axes_rows[0].axvline(x=NW/N, color="black", linewidth=0.6, label="Frequency\nW=4/N")
+    axes_rows[0].set(
+        ylabel=f"K = {idx} \nPower",
+        xlabel="Frequency",
+        yscale="log"
+    )
+    axes_rows[0].legend()
+
+    fft_tapered_data = scipy.fft.rfft(tapered_data)
+    psd_tapered_data = np.multiply(fft_tapered_data, np.conj(fft_tapered_data))
+    axes_rows[1].plot(freq, psd_tapered_data, color=palette[idx], label=f"K={idx} eigenspectrum")
+    axes_rows[1].plot(freq_analytical, psd_analytical, color="black", alpha=0.56, label="True S(f)")
+    axes_rows[1].set(
+        xlabel="Frequency",
+        ylabel="Power",
+        yscale="log"
+    )
+    axes_rows[1].legend()
+
+    idx += 1
+# fig.suptitle("Left: DPSS taper spectral windows \n Right: Eigenspectra for AR(4) time series with given K", y=1)
+axes[0][0].set_title("DPSS taper spectral windows", fontsize=18, pad=15)
+axes[0][1].set_title("Eigenspectra for AR(4) tapered time series", fontsize=18, pad=15)
+
+text="Note the marked increase in bias in the eigenspectra as K increases.\n\
+The left-hand plots show the low frequency portion of the spectral windows (of DPSS tapers)\n\
+K = 0 to 7. The thin vertical line in each plot indicates the location of the frequency\n\
+W = 1/256 = 0.003906 = 4/N. Note that, as K increases, the level of the sidelobes of\n\
+spectral windows (of DPSS tapers) also increases until at K = 7 the main sidelobe level\n\
+is just barely below the lowest lobe in [-W, W]."
+fig.text(0.5, -0.06, text, ha="center", fontsize=18)
+fig.tight_layout()
+fig.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_16_0.png +
+
+
+
+
+
+

Summary of Multitaper Spectral Estimation

+

We assume that $ X_1, X_2, …, X_N $ is a sample of length \(N\) from a zero mean real-valued stationary process $ {X_t} $ with unknown sdf $ S(\cdot) $ defined over the interval \([-f_{(N)}, f_{(N)}]\), where \(f_{(N)} \equiv 1/(2\Delta t)\) is the Nyquist frequency and \(\Delta t\) is the sampling interval between observations. (If \(\{X_t\}\) has an unknown mean, we need to replace \(X_t\) with \(X_t' \equiv X_t - \bar{X_t}\) in all computational +formulae, where \(\bar{X_t} = \sum^N_{t=1}X_t/N\) is the sample mean.)

+
    +
  • Simple multitaper spectral estimator \(\hat{S}^{mt}(\cdot)\)

  • +
+

This estimator is defined as the average of K eigenspectra \(\hat{S}^{mt}_k(\cdot),k = 0, ..., K - 1\), the \(k^{th}\) of which is a direct spectral estimator employing a dpss data taper \(\{h_{t,k}\}\) with parameter \(W\). The estimator \(\hat{S}^{mt}_k(f)\) is approximately equal in distribution to \(S(f)_{\chi^2_{2K}}/2K\)

+
    +
  • Adaptive multitaper spectral estimator \(\hat{S}^{amt}(\cdot)\)

  • +
+

This estimator uses the same eigenspectra as \(\hat{S}^{mt}(\cdot)\), but it now adaptively weights the \(\hat{S}^{mt}(\cdot)\) terms. The weight for the \(k^{th}\) eigenspectrum is proportional to \(b^2_k(f)\lambda_k\), where \(\lambda_k\) is the eigenvalue corresponding to the eigenvector with elements \(\{h_{t,k}\}\), while \(b_k(f)\) is given by

+

\(\large{b_k(f) = \frac {S(f)} {\lambda_k S(f) + (1-\lambda_k)\sigma^2\Delta t}}\)

+

The \(b_k(f)\) term depends on the unknown sdf \(S(f)\), but it is estimated using an iterative scheme. The estimator \(\hat{S}^{mt}_k(f)\) is approximately equal in distribution to \(S(f)_{\chi^2_\nu}/\nu\).

+

This summary, by no means, is an exhaustive explanation of the multitapering concept. Further exploration of the topic is highly encouraged. Use the references as the starting point.

+
+
+
+

Creating a Multitaper object

+

Pass the Lightcurve object to the Multitaper constructor ### Other (optional) parameters that can be set at instantiation are: (Given here for completness, feel free to skip as they are later showcased)

+
+
norm: {leahy | frac | abs | none }, optional, default frac
+
The normaliation of the power spectrum to be used. Options are leahy, frac, abs and none, default is frac.
+
+
+
NW: float, optional, default 4
+
The normalized half-bandwidth of the data tapers, indicating a multiple of the fundamental frequency of the DFT (Fs/N). Common choices are n/2, for n >= 4.
+
+
+
adaptive: boolean, optional, default False
+
Use an adaptive weighting routine to combine the PSD estimates of different tapers.
+
+
+
jackknife: boolean, optional, default True
+
Use the jackknife method to make an estimate of the PSD variance at each point.
+
+
+
low_bias: boolean, optional, default True
+
Rather than use 2NW tapers, only use the tapers that have better than 90% spectral concentration within the bandwidth (still using a maximum of 2NW tapers)
+
+
+
lombscargle: boolean, optional, default False
+
Whether to use the Lomb (1976) Scargle (1982) periodogram when calculating the Multitaper spectral estimate. Highly recommended for unevenly sampled time-series. Adaptive weighting and jack-knife estimated variance are yet not supported.
+
+
+
[7]:
+
+
+
mtp = Multitaper(lc_ar4, adaptive=True, norm="abs")
+print(mtp)
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+
+Using 7 DPSS windows for multitaper spectrum estimator
+<stingray.multitaper.Multitaper object at 0x7fed1f89f130>
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+

The results

+
+
[8]:
+
+
+
fig = plt.figure(figsize=(12, 8), dpi=90)
+plt.plot(mtp.freq, mtp.power, color="slateblue", label="Multitaper estimate")
+plt.plot(freq_analytical, psd_analytical, color="red", label="True S(f)")
+plt.yscale("log")
+plt.legend()
+plt.ylabel("Power")
+plt.xlabel("Frequency")
+plt.title("AR(4) Spectrum")
+plt.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_23_0.png +
+
+
+
+

While it seems decent, lets compare with Powerspectrum

+
+
[9]:
+
+
+
ps = Powerspectrum(lc_ar4, norm="abs")
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
[10]:
+
+
+
fig = plt.figure(figsize=(12, 8), dpi=90)
+plt.plot(mtp.freq, mtp.power, color="slateblue", label="Multitaper estimate")
+plt.plot(ps.freq, ps.power, color="green", label="Periodogram estimate", alpha=0.4)
+plt.plot(freq_analytical, psd_analytical, color="red", label="True S(f)")
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency")
+plt.title("AR(4) Spectrum")
+
+
+
+
+
[10]:
+
+
+
+
+Text(0.5, 1.0, 'AR(4) Spectrum')
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_26_1.png +
+
+
+

As can be seen, there is improvement in both the variance and the bias.

+
+
+
+

Attributes of the Multitaper object

+

norm: {leahy | frac | abs | none } the normalization of the power spectrun

+

freq: The array of mid-bin frequencies that the Fourier transform samples

+

power: The array of normalized squared absolute values of Fourier amplitudes

+

unnorm_power: The array of unnormalized values of Fourier amplitudes

+

multitaper_norm_power:The array of normalized values of Fourier amplitudes, normalized according to the scheme followed in nitime, that is, by the length and the sampling frequency.

+

power_err: The uncertainties of power. An approximation for each bin given by power_err = power/sqrt(m). Where m is the number of power averaged in each bin (by frequency binning, or averaging power spectrum). Note that for a single realization (m=1) the error is equal to the power.

+

df: The frequency resolution

+

m: The number of averaged powers in each bin

+

n: The number of data points in the light curve

+

nphots: The total number of photons in the light curve

+

jk_var_deg_freedom: Array differs depending on whether the jackknife was used. It is either - The jackknife estimated variance of the log-psd, OR - The degrees of freedom in a chi2 model of how the estimated PSD is distributed about the true log-PSD (this is either 2*floor(2*NW), or calculated from adaptive weights)

+
+
+

A look at the values contained in these attributes.

+
+
[11]:
+
+
+
print(mtp)
+print("norm: ", mtp.norm, type(mtp.norm))
+print("power.shape: ", mtp.power.shape, type(mtp.power))
+print("unnorm_power.shape: ", mtp.unnorm_power.shape, type(mtp.unnorm_power))
+print("multitaper_norm_power.shape: ", mtp.multitaper_norm_power.shape, type(mtp.multitaper_norm_power))
+print("power_err.shape: ", mtp.power_err.shape, type(mtp.power_err))
+print("df: ", mtp.df, type(mtp.df))
+print("m: ", mtp.m, type(mtp.m))
+print("n: ", mtp.n, type(mtp.n)) # Notice the length of PSDs is half that of the number of data points in the light curve, as the imaginary (complex) part is discarded.
+print("nphots: ", mtp.nphots, type(mtp.nphots))
+print("jk_var_deg_freedom.shape: ", mtp.jk_var_deg_freedom.shape, type(mtp.jk_var_deg_freedom))
+
+
+
+
+
+
+
+
+<stingray.multitaper.Multitaper object at 0x7fed1f89f130>
+norm:  abs <class 'str'>
+power.shape:  (511,) <class 'numpy.ndarray'>
+unnorm_power.shape:  (511,) <class 'numpy.ndarray'>
+multitaper_norm_power.shape:  (511,) <class 'numpy.ndarray'>
+power_err.shape:  (511,) <class 'numpy.ndarray'>
+df:  0.0009765625 <class 'numpy.float64'>
+m:  1 <class 'int'>
+n:  1024 <class 'int'>
+nphots:  -73.38213649959974 <class 'numpy.float64'>
+jk_var_deg_freedom.shape:  (511,) <class 'numpy.ndarray'>
+
+
+
+
+

A look at the different normalizations

+

The normalized S(f) estimates are stored in the power attribute can be accessed like mtp.power if the object name is mtp

+
+
[12]:
+
+
+
%%capture --no-display
+norms = ["leahy", "frac", "abs", "none"]
+
+for norm in norms:
+    ps = Powerspectrum(lc_ar4, norm=norm)
+    mtp = Multitaper(lc_ar4, norm=norm, adaptive=False) # adaptive=False does not calculate adaptive weights to reduce bias, helps see the normalization similarities better
+
+    fig = plt.figure(figsize=(12, 8), dpi=90)
+    plt.plot(mtp.freq, mtp.power, color="slateblue", label="Multitaper estimate")
+    plt.plot(ps.freq, ps.power, color="green", label="Periodogram estimate", alpha=0.4)
+    plt.plot(freq_analytical, psd_analytical, color="red", label="True S(f)")
+    plt.legend()
+    plt.yscale("log")
+    plt.ylabel("Power")
+    plt.xlabel("Frequency")
+    plt.title("AR(4) Spectrum, " + (norm + " normalized").title())
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_0.png +
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_1.png +
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_2.png +
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_3.png +
+
+
+
+

Other attributes with the S(f) estimates

+

If you look closely at the attributes of the multitaper object, there is a multitaper_norm_power attribute. This attributes contains the PSD normalized according to

+

Another attribute containing the PSD is the unnorm_power, and as the name suggests, contains the unnormalized PSD.

+
+
+
+

A summary of the jackknife variance estimate

+

Assume that we have a sample of \(K\) independent observations, \(\{x_i\}, i = 1,...K\), drawn from some distribution characterized by a parameter \(\theta\), which is to be estimated. Here, \(\theta\) is usually a spectrum or coherence at a particular frequency or a simple parameter such as the frequency of a periodic component. Denote an estimate of \(\theta\) made using all \(K\) observations by \(\hat{\theta_{all}}\). Next, subdivide the data into \(K\) groups +of size \(K − 1\) by deleting each entry in turn from the whole set, and let the estimate of \(\theta\) with the \(i\)th observation deleted be

+

\(\large{\theta_{\setminus i} = \hat{\theta}\{x_1,..x_{i-1},x_{i+1},...x_K\}}\)

+

for \(i = 1, 2,..., K\), where the subscript \(\setminus\) is the set-theoretic sense of without. Using \(\bullet\) in the statistical sense of averaged over, define the average of the \(K\) delete-one estimates as

+

\(\large{\theta_{\setminus \bullet} = \frac {1}{K} \sum_{i=1}^{K} \hat{ \theta_{\setminus i}}}\)

+

and the jackknife variance of \(\hat{\theta_{all}}\) as

+

\(\large{\widehat{Var}\{{\hat{\theta_{all}}}\} = \frac {K - 1}{K} \sum_{i=1}^{K} (\hat{ \theta_{\setminus i}}} - \hat{ \theta_{\setminus \bullet}})^2\)

+

This is just a summary of the jackknife variance estimate, kindly explore the references for further in-depth details.

+
+

A look at jk_var_deg_freedom

+

This attribute differs depending on whether the jackknife was used. It is either - The jackknife estimated variance of the log-psd, OR - The degrees of freedom in a \(chi^2\) model of how the estimated PSD is distributed about the true log-PSD (this is either 2\(*\)floor(2\(*\)NW), or calculated from adaptive weights)

+

We’ll do a combination of the valid values for the adaptive and jk_var_deg_freedom and have a look at the results.

+
+
[13]:
+
+
+
%%capture --no-display
+
+# Setup utilities
+import scipy.stats.distributions as dist
+
+fig, axs = plt.subplots(4, 1, dpi=90, figsize=[11, 26], sharey=True)
+fig.tight_layout(pad=4.0)
+
+axs.flatten()
+idx=0
+
+for adaptive in (False, True):
+    for jackknife in (False, True):
+
+        mtp = Multitaper(lc_ar4, adaptive=adaptive, jackknife=jackknife)
+
+        mtp_stingray = np.log(mtp.multitaper_norm_power)
+
+        Kmax = len(mtp.eigvals)
+
+        if jackknife:
+
+            jk_p = (dist.t.ppf(.975, Kmax - 1) * np.sqrt(mtp.jk_var_deg_freedom))
+            jk_limits_stingray = (mtp_stingray - jk_p, mtp_stingray + jk_p)
+
+        else:
+
+            p975 = dist.chi2.ppf(.975, mtp.jk_var_deg_freedom)
+            p025 = dist.chi2.ppf(.025, mtp.jk_var_deg_freedom)
+
+            l1 = np.log(mtp.jk_var_deg_freedom / p975)
+            l2 = np.log(mtp.jk_var_deg_freedom / p025)
+
+            jk_limits_stingray = (mtp_stingray + l1, mtp_stingray + l2)
+
+
+        axs[idx].plot(mtp.freq, mtp_stingray, label="Multitaper S(f) Estimate", color=palette[6])
+        axs[idx].fill_between(mtp.freq, jk_limits_stingray[0], y2=jk_limits_stingray[1], color=palette[4], alpha=0.4)
+
+        axs[idx].plot(freq_analytical, np.log(psd_analytical), color=palette[0])
+
+        axs[idx].set(
+            title=f"Adaptive: {adaptive}, Jackknife: {jackknife}",
+            ylabel="Power, ln",
+            xlabel="Frequency"
+        )
+        axs[idx].legend()
+
+        idx += 1
+
+
+text = "if jackknife == True:\n\
+jk_var_deg_freedom = jackknife estimated variance of the log-psd.\n\
+else:\n\
+jk_var_deg_freedom = degrees of freedom in a chi2\n\
+model of how the estimated PSD is distributed about\n\
+the true log-PSD"
+fig.text(0.5, -0.05, text, ha="center")
+fig.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_37_0.png +
+
+
+
+

Linearly re-binning a power spectrum in frequency

+
+
[14]:
+
+
+
mtp = Multitaper(lc_ar4, adaptive=True, norm="abs")
+mtp_rebin = mtp.rebin(f=7)
+
+print("Original df: ", mtp.df)
+print("Rebinned df: ", mtp_rebin.df)
+
+f = plt.figure(dpi=90, figsize=[11, 6])
+plt.plot(mtp.freq, mtp.power, label="Original", color=palette[4])
+plt.plot(mtp_rebin.freq, mtp_rebin.power, label="Rebinned", color=palette[7])
+plt.plot(freq_analytical, psd_analytical, color=palette[0])
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency")
+f.show()
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+
+Using 7 DPSS windows for multitaper spectrum estimator
+Original df:  0.0009765625
+Rebinned df:  0.0068359375
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_39_2.png +
+
+
+
+

Poisson distributed lightcurve

+

Generate an array of relative timestamps that’s 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve.

+
+
[15]:
+
+
+
dt = 0.03125  # seconds
+exposure = 8.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000  # counts/s
+noisy = np.random.poisson(signal*dt)  # counts
+
+lc_poisson = Lightcurve(times, noisy, dt=dt)
+lc_poisson.plot()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_41_1.png +
+
+
+
+

Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve

+
+
[16]:
+
+
+
ps = Powerspectrum(lc_poisson)
+mtp = Multitaper(lc_poisson, adaptive=True, low_bias=True)
+
+f = plt.figure(dpi=90, figsize=[11, 6])
+plt.plot(mtp.freq, mtp.power, label="Multitaper Estimate", color=palette[4])
+plt.plot(ps.freq, ps.power, label="Powerspectrum Estimate", color=palette[7])
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency, Hz")
+f.show()
+
+
+
+
+
+
+
+
+Using 7 DPSS windows for multitaper spectrum estimator
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_43_1.png +
+
+
+
+
+

Time series with uneven temporal sampling: Multitaper Lomb-Scargle

+

Uneven temporal sampling is quite common in astronomical time series, and a popular method to deal with them is the Lomb-Scargle Periodogram.

+

A 2020 paper (A. Springford, et al.) used the Lomb-Scargle Periodogram in conjunction with the Multitapering concept for time-series with uneven sampling. That method is implemented here in Stingray.

+

Everthing works as before, just - Create a Lightcurve with the unevenly sampled time-series - Create a Multitaper object by passing it this Lightcurve object, with the desired value of NW, just additionally pass the ``lombscargle = True`` keyword during instantiation.

+

NOTE: Jack-knife variance estimation and adaptive weighting methods are not currently supported, so setting their keywords will have no effect if lombscargle = True.

+
+

Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )

+
+
[17]:
+
+
+
# Loading data
+import pandas as pd
+
+kepler_data = pd.read_csv("https://raw.githubusercontent.com/StingraySoftware/notebooks/tree/main/Multitaper/koi2133.csv")
+times_kp = np.array(kepler_data["times"])
+flux_kp = np.array(kepler_data["flux"])
+
+
+
+
+
[18]:
+
+
+
lc_kepler = Lightcurve(time=times_kp, counts=flux_kp, err_dist="gauss", err=np.ones_like(times_kp))
+lc_kepler.plot()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Bin sizes in input time array aren't equal throughout! This could cause problems with Fourier transforms. Please make the input time evenly sampled.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_47_1.png +
+
+
+

Plotting the first 3000 data points of the kepler lightcurve

+

The unevenness of the temporal sampling can be better seen with this

+
+
[19]:
+
+
+
f = plt.figure(dpi=90, figsize=[12, 6])
+plt.plot(lc_kepler.time[:3000], lc_kepler.counts[:3000], color=palette[3]);
+plt.ylabel("Relative Flux")
+plt.xlabel("Days")
+
+
+
+
+
[19]:
+
+
+
+
+Text(0.5, 0, 'Days')
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_49_1.png +
+
+
+
[20]:
+
+
+
%%time
+mtls_kepler = Multitaper(lc_kepler, NW=10, lombscargle=True, norm="leahy") # Using normalized half bandwidth = 10
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+
+Using 19 DPSS windows for multitaper spectrum estimator
+CPU times: user 19 s, sys: 4.61 s, total: 23.6 s
+Wall time: 9.73 s
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+

As stated before, the adaptive weighting method and jackknife log-psd estimate are currently not supported, hence these keywords will have no effect, no matter their value.

+
+
[21]:
+
+
+
f = plt.figure(dpi=90, figsize=[11, 6])
+plt.plot(mtls_kepler.freq, mtls_kepler.unnorm_power, label="MTLS estimate \n NW=10, K=19", color=palette[4])
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency, 1/Day")
+f.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_52_0.png +
+
+
+

But how does this compare to the classical Lomb-Scargle Periodogram?

+
+
[22]:
+
+
+
from astropy.timeseries import LombScargle
+
+ls_freq = scipy.fft.rfftfreq(n=lc_kepler.n, d=lc_kepler.dt)[1:-1] # Avioding zero
+data =  lc_kepler.counts - np.mean(lc_kepler.counts)
+ls_psd = LombScargle(lc_kepler.time, data).power(frequency=ls_freq, normalization="psd")
+
+
+
+
+
[23]:
+
+
+
f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 11])
+ax.flatten()
+ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label="MTLS estimate \n NW=10, K=19", color=palette[4])
+ax[0].legend()
+ax[0].set_yscale("log")
+ax[0].set_ylabel("Power")
+ax[0].set_xlabel("Frequency, 1/Day")
+
+ax[1].plot(ls_freq, ls_psd, label="Lomb-Scargle Periodogram", color=palette[6])
+ax[1].legend()
+ax[1].set_ylabel("Power")
+ax[1].set_yscale("log")
+ax[1].set_xlabel("Frequency, 1/Day")
+f.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_55_0.png +
+
+

A pretty visual reduction in variance can be seen

+
+
+
+

Zooming in

+
+
[24]:
+
+
+
f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 18])
+ax.flatten()
+ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label="MTLS estimate \n NW=10, K=19", color=palette[4])
+ax[0].legend()
+ax[0].set_ylabel("Power")
+ax[0].set_xlabel("Frequency, Hz")
+ax[0].set_yscale("log")
+ax[0].set_xlim([5.8, 13.2])
+
+ax[1].plot(ls_freq, ls_psd, label="Lomb-Scargle Periodogram", color=palette[6])
+ax[1].legend()
+ax[1].set_ylabel("Power")
+ax[1].set_xlabel("Frequency, 1/Day")
+ax[1].set_yscale("log")
+ax[1].set_xlim([5.8, 13.2])
+f.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_57_0.png +
+
+
+
+
+
+

References

+

[1] Springford, Aaron, Gwendolyn M. Eadie, and David J. Thomson. 2020. “Improving the Lomb–Scargle Periodogram with the Thomson Multitaper.” The Astronomical Journal (American Astronomical Society) 159: 205. doi:10.3847/1538-3881/ab7fa1.

+

[2] Huppenkothen, Daniela, Matteo Bachetti, Abigail L. Stevens, Simone Migliari, Paul Balm, Omar Hammad, Usman Mahmood Khan, et al. 2019. “Stingray: A Modern Python Library for Spectral Timing.” The Astrophysical Journal (American Astronomical Society) 881: 39. doi:10.3847/1538-4357/ab258d.

+

[3] Thomson, D. J. 1982. “Spectrum Estimation and Harmonic Analysis.” IEEE Proceedings 70: 1055-1096. https://ui.adsabs.harvard.edu/abs/1982IEEEP..70.1055T.

+

[4] Thomson, D. J. 1990 “Time series analysis of Holocene climate data.” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (The Royal Society) 330: 601–616. doi:10.1098/rsta.1990.0041.

+

[5] Lomb, N. R. 1976. “Least-squares frequency analysis of unequally spaced data.” Astrophysics and Space Science (Springer Science and Business Media LLC) 39: 447–462. doi:10.1007/bf00648343.

+

[6] Scargle, J. D. 1982. “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data.” The Astrophysical Journal (American Astronomical Society) 263: 835. doi:10.1086/160554.

+

[7] Slepian, D. 1978. “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete Case.” Bell System Technical Journal (Institute of Electrical and Electronics Engineers (IEEE)) 57: 1371–1430. doi:10.1002/j.1538-7305.1978.tb02104.x.

+

[8] D. J. Thomson, “Jackknifing Multitaper Spectrum Estimates,” in IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 20-30, July 2007, doi: 10.1109/MSP.2007.4286561.

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Multitaper/multitaper_example.ipynb b/notebooks/Multitaper/multitaper_example.ipynb new file mode 100644 index 000000000..d2abbfb27 --- /dev/null +++ b/notebooks/Multitaper/multitaper_example.ipynb @@ -0,0 +1,1373 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "be4b7e30", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dhruv9vats/misc/blob/main/multitaper_example.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "baae2cbe", + "metadata": {}, + "source": [ + "If clicking the link above turns the screen gray, try right clicking on the link and selecting \"Open link in new tab\"." + ] + }, + { + "cell_type": "markdown", + "id": "0ecdeb50", + "metadata": {}, + "source": [ + "## Install Stingray in colab\n", + "Comment out the cell below if running locally." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "505d88ed", + "metadata": {}, + "outputs": [], + "source": [ + "# %%capture --no-display\n", + "# !git clone --recursive https://github.com/StingraySoftware/stingray.git\n", + "# %cd stingray\n", + "# !pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm seaborn\n", + "# !pip install -e \".\"\n", + "# %cd ..\n", + "\n", + "# import os\n", + "# os.kill(os.getpid(), 9)" + ] + }, + { + "cell_type": "markdown", + "id": "04439f30", + "metadata": {}, + "source": [ + "__The kernel will (crash and then) restart after executing the above cell to finish installing Stingray. So the cells below will have to be run again or manually.__" + ] + }, + { + "cell_type": "markdown", + "id": "59513a94-a334-4efb-b004-763e4f738f09", + "metadata": {}, + "source": [ + "## Multitaper Spectral Estimator Example" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "76bde484-7cfb-49e8-8fe9-a840a0c0ccf2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/largememory.py:25: UserWarning: Large Datasets may not be processed efficiently due to computational constraints\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set_theme()\n", + "sns.set_palette(\"husl\", 8)\n", + "\n", + "import scipy\n", + "from scipy import signal\n", + "from stingray import Multitaper, Powerspectrum, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "id": "33cc5179-9412-4d10-825d-66f987b99b7d", + "metadata": {}, + "source": [ + "### Creating a light curve \n", + "---\n", + "Lets create a `Lightcurve` sampled from an autoregressive process of order 4 that has been frequently exemplified in literature in similar contexts" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "648c871f-4f45-4db4-a09b-89439e08ea93", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD7CAYAAABqvuNzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABgeUlEQVR4nO29eZwdVZn//6mqu/XtJb2kkzRJJBAINLsGZAZFJKyjicAwI0zEnzog34kzOKKMBH2NKMpgHOeF8lVZ/CqMQ4ZhUBIkIJtEQMMmoCxhDUnI0tk6S+/33qo6vz+qTt1TdU+dqrq36nb37fP+53bfW1XnnKpT5znPcp6jEEIIJBKJRDLlUce7AhKJRCKZGEiBIJFIJBIAUiBIJBKJxEYKBIlEIpEAkAJBIpFIJDZSIEgkEokEgBQIEolEIrFJjXcFamXfvmGYZvSlFF1dLejvH0qgRhOTqdTeqdRWYGq1dyq1FUimvaqqoKOjmftbbAJhxYoVePjhh7Ft2zbcf//9WLBgAQBg48aNWL58Ofbv34/29nasWLEC8+bNC/wtLKZJqhII9NypxFRq71RqKzC12juV2grUt72xmYzOOOMMrFy5ErNnz3Z9f+2112Lp0qV4+OGHsXTpUnzjG98I9ZtEIpFI6ktsAuHEE09ET0+P67v+/n6sX78eixcvBgAsXrwY69evx969e4W/SSQSiaT+JOpD6Ovrw8yZM6FpGgBA0zTMmDEDfX19IIT4/tbZ2Rm6jK6ulqrr193dWvW5k5Gp1N6p1FZgarV3KrUVqG97J71Tub9/qCobW3d3K3bvHkygRhOTqdTeqdRWYGq1dyq1FUimvaqq+E6kExUIPT092LlzJwzDgKZpMAwDu3btQk9PDwghvr9JJBKJpP4kug6hq6sLvb29WLNmDQBgzZo16O3tRWdnp/A3iUQikdQfJa79EL7zne/gkUcewZ49e9DR0YH29nY88MAD2LBhA5YvX46BgQG0tbVhxYoVOPTQQwFA+FtYpMkoHFOpvVOprYB/e1u+/1OUPnAMCov+chxqlQzy2daOyGQUm0AYL6RACMdUau9Uaivg397WG24GAAxes6zeVUoM+WxrRyQQZOoKiUQikQCQAkEikUgkNlIgSCQSiQSAFAgSSWMyuV2DknFCCgSJpIFQd+5By3/8PyiDw+NdFckkRAoEiaSByPzxFSjFElLvbBrvqkgmIVIgSCQNBFHsPwxzXOshmZxIgSCRNBS2RDClQJBERwoEiaSRsOWBIgWCpAqkQJBIGgpbIkiTkaQKpECQSBoJ6kOQGoKkCqRAkEgaCUVqCJLqkQJBImkoLIEgfQiSapACQSJpJKSGIKkBKRAkkkbC8SEY41oNyeRECgSJpBGRJiNJFUiBIJE0Egr1IcjkdpLopJIuYOvWrfjHf/xH5//BwUEMDQ3hueeew6JFi5DJZJDNZgEAV111FU499dSkqySRNC6OD0GajCTRSVwgzJkzB/fdd5/z//XXXw+D6aw33XQTFixYkHQ1JJKpgVyHIKmBupqMisUi7r//flx44YX1LFYimTKQKqKMMr97xtl/WTK1SVxDYHn88ccxc+ZMHH300c53V111FQghWLhwIb785S+jra2tnlWSSBqM6D6E7NMvJVUZySSjrgLhV7/6lUs7WLlyJXp6elAsFnH99dfjuuuuw/e///1I1+zqaqm6Pt3drVWfOxmZSu2dSm0Fyu0t5TMwAGTSKkzPb36M2Z/Tu1qgqIrw2InAVH229aBuAmHnzp14/vnn8b3vfc/5rqenBwCQyWSwdOlSLFu2LPJ1+/uHYFYRUdHd3YrduwcjnzdZmUrtnUptBdztzYyVkAVQLOjOyx10L+hws2fXAUDTEqtnHEzlZxsXqqr4TqTr5kNYtWoVTjvtNHR0dAAARkZGMDhoNZQQggcffBC9vb31qo5E0thUs6ey3Id5ylM3DWHVqlX4+te/7vzf39+PK664AoZhwDRNzJ8/H9dee229qiORTEq0LX1QBgahH+0TmUedyqSKKCO5dmHKUzeB8PDDD7v+nzt3LlavXl2v4iWSSGQfXAulUMLYBWePd1Vc5O9cDQAY9BMIlGrGdtOE9u57MN43G0hNbNORJBnkSmWJhEPmz28g/caG8a6GQ+q1t6AMDAUfqFS/habWtxv5ux9A9rd/iHyupDGoa5SRRCKpgpKOpl//FmbntOBjaeqKKvwByugoAEDt3xf5XEljIDUEiWSiY8/2lcHh4GMdH0IN/gDpS5iySIEgkUx06OCuRFgjUMuYLqONpixSIEgkE50oM/ZaoozoJaSGMGWRAkEimeA422GG0RCc5HbVDOrVO6QljYEUCBLJRMcRCAmXQ7UKaTKaskiBIJGIIATKyOj41sGZsYeQCHQsr2ZQN6RAmOpIgSBxoewfCBfvPkVIv/QaWn54B9Q94xiKWSebvkIFgjQZTVmkQJC4aLl5JVp+/F/jXY0JQ2rDewAAde/+cauDYptySKgooxqEB924SjqVpyxSIEgkISB1ygqt7twDjBXcX0bY7KamcFO63kFqCFMWKRAkEhHOAFsfidD883uQ/+9fu7+MEmVE7f/VrFSmGoL0IYw76o7dyN96F8joWPDBcZZb19IkEok/9kCs7dzj/p6acATyQDkwiOxv1zECoYrypVN5wpBZ9yK0vfthvrmpruVKgSABAGhb+6QzkUsdB0e/+x9CQ2i692Fknvsz1N391ZdPNQTJuEPyOetzaKSu5UqBIIG6fSfy/7Uamaeer/laqVfehHKggXa0ovIgStqIavHxFSgkOOxUGbYHjnTa/qYak5GcEEwUSL7J+pQCQVJvVDtpWs2hlaaJpjWPOzn7G4J6mk/8ZuhG8MI0pVB0/19NpBAtvx7CTyKEZDPWH57nmjRSIEiqS57Gwx5QlDrPahLFrJ8ZxXeGbnKej0dQKcWS+9haFqZJJg6KgtYbbkbmd8/Upbi67IewaNEiZDIZZLNZAMBVV12FU089FRs3bsTy5cuxf/9+tLe3Y8WKFZg3b149qiRh4Q041RBiJjvpqGebbIFasd6A51sghP+8HPNSFQKBCr9Gen4NQvbpl1D86F8kXk7dNsi56aabsGCBe9u/a6+9FkuXLsV5552H++67D9/4xjfwi1/8ol5VklBi0hCUBjQ5OKaXeliO6P1TPfePcJzKfhpADfWtKctpSYdSLII056u/xmTCNK3n0UB9HRhHk1F/fz/Wr1+PxYsXAwAWL16M9evXY+/eveNVpakLCQ5rDIURIV5+IsMOtnR2HiKdtLLvQOWisgg4JiPF/VpyB2pC+ELBrCF01Ckn+vNrunsNWm76z+hlTkaKJbSuuBWZP7yQfFl1DgGum0C46qqrsGTJEnzzm9/EwMAA+vr6MHPmTGiatZm3pmmYMWMG+vr66lUlCcURCDV2h0bREFwvofV3mNlzyy3/jfwv7q2+XF8NobLs3K9/i9bv3lLxvVLDwrRIC+A8pLaU31t1z76GXstA/TXpF18d55rET11MRitXrkRPTw+KxSKuv/56XHfddfjsZz8by7W7ulqqPre7u7Wq84y3N0OdNxtKenJtSe3XXr0lCx1AtikNM+BYEaZZRBGAoipV39u4qKV8ohug8/yUpoIAaGvJQgu45hgArX9/1WWbI4P2/VNd1zC25VCCW06k33wXQGU7M2kNpufYoPrQtbDZtAoTgJZSI7eBXqNreADFn/4PUuefgdRHFka6RljGu2+RJg0FACoh6NzXDwyOQFt4VKxl6M3WO8nmlapHu+syovX09AAAMpkMli5dimXLluGaa67Bzp07YRgGNE2DYRjYtWuXc2xY+vuHYFZh++zubsXu3dHj5dX+fWi+7W4Ujz8ShY+dHvn88ULU3tTAKJoAFEZLoFHsVd2b3QNohjWnrub8uKj22TroBuirpxd1aAAGDoxAD7gmPWfw9vtgdrWj+JcfiFSs1j+IPCrvX+qA9XxMw6xQ6XfvHnQNFMWxElKeY4PuBT27MFpEGoBhmPxzxgpovfHnGD3/bOi987nXOPDONjQBGH1nC8Z6F1RcolZqfrYxoIyMogXWxKF0y/8CAPa+b26sZaSHxpADXJpWXO1WVcV3Ip24yWhkZASDg1ZDCCF48MEH0dvbi66uLvT29mLNmjUAgDVr1qC3txednZ1JV6k2bBuxtiuCr4OQCb0KuGxmqLGOTpTMJI9mZs0d9O8Ik470K28i+7tnK75Xt+9C6w03+y/c0+2spn4mozB14Gxyo72zGdmHnqysz9YdrrpQsxjx8SGo+wcAAJmnX/QtXtEbxGzIQe3fZ6UHoW1M8J127l6dTW+Jawj9/f244oorYBgGTNPE/Pnzce211wIAvvnNb2L58uX4yU9+gra2NqxYsSLp6owLTff8BqkNmzF4zbLxrgofjt1Z2T+AzB9fQeGMU0K/3EqjhJ1yBULtL3/6z68DAFLvvofS+4/mlOu3IlngF/DWixNllL/nQQBA4dyPuA5t/q9V/Gv5PT9V5ZfJoutW8V6h1gCkX3wNmT++AtJkhc8num5jnFwwiQuEuXPnYvXq1dzf5s+fj3vuuSfpKow7qQ2bx7sKYjgCoem+x6Bt34nS0Qtg9nSHu46z0nZyDgbKyChafngHxs4+tfydfU+UOGZqQfsd+zmERbugVQgEO4V1Ndqej0BKvbUR2cefxujiRfwyGcoawiTXEnnQ52Y7lWPpE37UEhxQAw341JKmhsGuzmaj1JvvltVbEQZnICjZK1+jzPQmeZSR2r8fgLVLmgN9H4PMNWFeXDpI+h1Lg70qBAIVSpz+46lX2fxXRR19sqqm//w61H0HkNpqRRIJI65sDWGSzgnCUc0grRvRkgdKgTDBIcR6qArzf1QKpVirJELbsh1N9z6M7Nqngw/mCSoqJLQIXSTmzeC197ZD3bojnouFgQ5mdii0i6AZd5j+QIWr38TAV1AIBnmv2YIO1n6rm0X41It4TUUiDaFEBUL1Q0vul79B9pGnIp+nvbMZoOUnSDUL+Fr//Tbkf7Eq0J+Yfv5lZJ5+SQqEiU7miWfR+u+31ZQRUikUoO7cU59N2+0XI0zCOp5TWTGjm38Ux7QhPi71+jvAaPACrvzK+yrt3EkiEghBg0CYQYJqTr4vecgbyF7Sm2vJcSpzDg7QUAN3SqNt5LwDTnH0HtbgQ0i/vQmZF6LF+KvbdyF/z4PhJkC1UuUgre3YbY0jK2711RZyj/0B2d89IwXCRCe9/h0A9mrUKlEKRWtHrDt+FVe1/LHTICulEFoJL4olwobruft/i/zt94TqxMq+ATStfhRNv34suF51RinZUVIpnkCIQUPwEQja5m1oveFmqMP2RMFzKeFiM68gEiW3C5rM+Ak1OraL+oStRYxXlJE6OGQVa2fuTRTevQ05cDuCLsiUW0V0WxxIgRASc5oVaV3TZuv2Q1brsF8AobPckg5tax/MzdsD6+WyXUcIrUu/+ha0HXvcAqFQhDJUfjmVkVGk3troCCjFfoEnFEKTUe0+BBp54/URpJ9/2SqWrvb18SGEcipHER6VNRR/TQR7LlONIAYNoSpomuiUhvzP77HMR0lRhfbloASYDT1lkDr7HaVACIu9KtlJM1xVNsk6Sns6yBdLyP/XahR/eGegM5PtpAp9saPUmREs+f/8FVr+bzlRYdM9D6LpVw9BoXvEqhOv69HkfITjNwmMKAnz4jqDgedatDw/p6OoaD8fAqe+FeYlLwHPWhH5EOjz1MdnLYrjuzBNaDv3ILfm8eQK4/mTwpqS7S6gBDmYQ/hrkmBy5V4YT+i7YghstAEEdoI4oQMC62QzTfHslx0QqIYQJXyRmZ1qdsQOTdPs+DLCRiKNRy4cXtbXsLZczu9q325AVWB2TLMDEnyijOgzce65n4ZQWax3tq5wFqY51Gr2ckxGvIrY2k9pfDQEpWhpCMROsR/oD6kF3rVDl2fflwAB4mx4VGeTkRQIEalpUNeTj4CgcAcGkwAcecBdmEZn+1E6JG9AGysCTdlyfDw9RqAhqH27YXZOC19uXJi0zdEjdHgaRPMdvwQA6PMPRmrDZhT+8v3ca1HznnNvKi4lcDb7LEzjDsfssxTZwb0/OesnKmetuV89BM0VCTYOghwo9z0txOK5GuG9E4phhGo5URTrdgb5EGj967xpkRQIUalJINRRQ+DFlAeFNdY08wEUmvqZmWGrIyMwm7Lljm2b3HxXso6OofmOX6J0+LzQ5cYGTxsQhXyyCAQnXZioUKexn8nImTB4NQT+19a1fHwIPNjBJYqPgXh+Z85Nv7XR+opu+ejUtU6CgRDrnfQ67JPUEHiDdBUmI9EdEprnEkQKhKgYApU8AKWOGkIkkwGVHbxOHUFDKPtX7JkQXbsBRuOgx/hoCNTHoO3YHbrc2BBFdgSajELsl+C3TiNIQyACiVDhQxCsETDN8hV4PgZROQhphnH2Ywg+NA6yDz2BzJ9eR+HUk9zlJ2lqqYPJaLx8CBPPszdhsQc0RkPIPr4O6s494S9Rh0Uzzowp0qAWj4bgOtbPgWrbev1szI7ASI3DXEWoIQQ5lUMMQH7+J69TOYoPwSuIRPUwAzSEIKEmGsQ8JsZY0jqEuEbmT68nV74f1Sz6o9D3ItCpXAdNh4MUCFGhM95iCZln/4z8natDn6rUwWSUe2AtWr93G3h5aXxfkihhjSJCCBSFrtb2iUKhAoGMw14TCi9Chw40o2PI3fuw/4K6MAOCwXfUl30IPmkfRNf2CgDRoM4+C57gCFx8F6IviJzaUamm79XDCVuTQLA/AgWC/XuQmS9mpEDwkH7+ZSh2ml8uTmfgRPEEUQeTUfqVN60/orzwArtrlJmWy+REO75ngHIWyvlFGTnx5G6B4JsyOk54g5n9d+aFV5F+811kXniFf26IgcgZBCqcth4zgq8iF6z1CYMAggaXIH9JKJNRtJmtsn8g2LcV5joRFlLWCs90xn1PdAOZJ54r5wUDQmsItD2Ep60miBQILGMF5B77A/J3/dr3EK+dN9KAWc8oI5424jN7FK+ErVZD8DEZBdwDR0Ng1gKkXnkTLT+5E9rWhLdX5WkIFSuB/fwwIe6TQf0pEQctQR/TNm5B8ae/DHWsq1yBSVHxkwihNASBH8aDumM3Wm5eifSLVjJBbct28b0XQQfYOASCYUAV+bBCmmPTL72G7LoXkHnmT5wyQq4aDzLzxYx0KjNQya+MjPkfZPrYecNQqmOUES9lhacjq/37oG7bWRZuXJNPlJeyUkOoMBkFOeU54a6pDe9Z3x0YBOZE21EvErxQW289fV7kUBMDX6dxuHrx7ln26Zdg8o7lwdRdmDnV5xKsBpi79yH3cV4tM4TQU+00MNrmbTDb25D/3wcwduaHKq8ZBr81HFWQ/d2zyDz3ZwxffjHMro7K+vAW+PHKpRMAqvUC5fUaYRemGR4hzgsbjxGpIbCEmWXUEmVkxKsh5O59GK033AzAmm251hFQ56wg7LT5tv9B0wNrxbO6Wp3K3vtENQS/+8cZUGgyQJLLha9LAKlX3kSKmtcoHNMZHTgJfZGjZipl8BeGYsc1TRoYaqmX6HkFmR+CHOjMtdNvbnRCTt3HhNcQ2D6i9u8DUN6VDbD6sNoXLtqMat+K1yxWxXuq7rTKVAa8eZHsa/EmBbxiaCSdd1CndRPBizKSJqP6oOwfQObJ55wtDPkqof1Zi/Mq5kUmdKN17e2NaL79l64BTuH5NqJuzAJEW4cQJkrJmRkF+TMY4TYWnBk1Kk1rHkeTN70Bz5dC68F7uVnC9Ieq+06E42uIMgrUckI4jBVRvqOKg8sCgfZXkkk7P2eefhHNd/zS0mKDoBoCM/NuunM1Wv79p8HnetFSFdcCwCxcDPme8PwFJGQf4PWVRjAZ7du3D1/96lfx3nvvIZPJ4OCDD8Z1112Hzs5OLFq0CJlMBll7uflVV12FU089NeCK8ZO/636o+wdgzD0IgLgzKxGdZi5icng13bnatQWjtsMKfVX3Mc5wZ00Am4bBbzDzd8hFCt9jO75P2KkSoNqL/RkJmNxMk9kaks4A2ReYCgQFMAR1CHOfzIABNQbnqrCPsc9CZAf3K88WhlxNxZkwla+ReeJZkLYW/nahTDkKIWUTJxNdRjOXan27YM6eyb8GPVYv5zKipKrcS4Nmu63w+YkWvQk0BJd5KKSGwF2YVocIqsQFgqIouOyyy3DyyScDAFasWIHvf//7+Ld/+zcAwE033YQFCxYkXQ0hjpoaxunrbFFYxcMJIRC0Lduh7tmP0vuP8j0mtaUPqS1lB6vjiM2WZ1e8tNeKSfhzTcdUFqdT2S6zwmRUtqPnf7EKyvAIhpd9irmG/0tXy14UvpR0wF5l68xueSp+HBqCYzLyXCPIERuhqwnNSkEmowCBJZ71u5+bMjqG7KtvAYC/QCiVzYdK0dYQ2OiyKCm0aTh4HKHdNLeUR0NQhAKBc8+80WNgfDeBe080qMmovb3dEQYAcMIJJ2D7dkEq5nGEXWmbfvZPyD64FuqufretmfOgMk88C23ztuDrhxjQ8nfeh9xDT/gfwOtIdLFXJsN8F+xDqKhXiC0aHQwDTXfdb0WGON9xfAhepzKjIWjbdrhsxq468lTlJJID8mbNgpfQ34cQ/Gydc/3e6xr8E2FQgmab9CtfH0KIetBzi5ygBm99WG2Rq52EtLcDzKQmhj6S8iQbdKojEgic75wd8liNM2QdOJsRVbVPdkTqGmVkmibuuusuLFq0yPnuqquuAiEECxcuxJe//GW0tbXVs0ouWIGQe9zaeSnz5zcAAPohc60fOLa97LoXgXUvYvCaZeIC4jAZ8WbOTsI4ZhEa74X0K59GQ0RY3azsH0Rq01YnUgTwEXjea/qsxlX2HUD6z6+DNOet/2tJMRwBhXDSObhCHz3RHj73MJTG6HWYl3Soe/a6TSc84poZujQEwaAWVWCx53iTGIooMYsUqdNe5wyeYRz2VNuIoY84JiPaV0u6FdjgRKGFNBk5EUWVE4xAHwtdh9DIYaff/va3kc/ncckllwAAVq5ciZ6eHhSLRVx//fW47rrr8P3vfz/SNbu6WqquT3e3tekNDTJtyajwMxplMimYKKtUvAGLXs8LvX42rTohgkHH+v1OxgrwulizuTRMAC25tFP/bMoqS2WEREd7E1Tmuk69NOtYXvx5S3MGKU5dzNIYigC0tOaclUkp1nUUxdFM2loy0LpbnbJSivXupJnzurtbUbj1v0H2HoB2+gdhANCUcm1SKevY1nyaWxcefvfP2/aujjyUNqsPlXJpGABU5j7Qu0f3Esjm0mjl3Y+B/ShWfOtGtV/opmwabd2tKP7i1zD/9AbUE4+27puzDsBd/1I+gzh0o7aWLDT7uiYpVtSXlq+q7vKLGQ0mys+Oh3Ou/X9Khev58tBzKegAMrk0FLuN+YzqtDWbtsptac66nns3pw+nYJlD6SdLUF/wUmqy6tKSt8ot3vZLmG+8C/X9vTBhRX56y+iY5n63AEDPW+9jRlOc9572J2+bAIAQ4rzbzv1jBEJXRzOU9mhtiUrdBMKKFSuwefNm3HLLLVBte2xPjxVTnslksHTpUixbFjDD5tDfPwSzCmdLd3crdu+2Vr/SWzy8dxBZn+OLRR0pAEQ3oAAghllhr6XX80KvXxgtIh3yWL/fMToGb5cojJWQBjB0YBg0MLM4UkAKgGkS5yXd1z8MM1e+Lr1OcdQ6ltemocExlDh1UXfuRzMAnShOaHRxrGRdBwQgVprfgf0j0HcPOmXpRR0aAL1oOOft3j2I1r2WpjE6NIYMAEM3nHrrunXs0IFRbl28sM/WxVgB2radMOa/z6lP/+5BkILVf7LDBWQAmEzZDnYfKxQMHOBcW9s3jHxAveh1x0aL2L97EM3vvAcVQGFoFGmU7z+B+/lnhgq+/TIK9FkAgNo/hOaKClptNA3TVX6uoCMNwCjq/jZme+AihvV+6IWS6/nyyAyOIQugUNRBRovIABg9MAJq+CwWrP40NFh+7t5nS5+jMVaE6lNH33fJh6xdl6GBEZR2D6L1DSuarzAyZt2HUmUZ+/cNw/CUkz4wihzK7wUAEJNAATA0wOnLplluDy2DGdv69wyChNgRNwhVVXwn0nUJO73xxhvx6quv4sc//jEytp17ZGQEg4PWDSGE4MEHH0Rvb289quMLdcQSnjPL4zuoZvsPkQ9B3b4z1Mbzolz9rmgGnr3dN3pE7FTOPP2SZdpg60EX2zArirnt87PB+9lDOdEilfWsziyQe+Qp5P/3ASjsNqimCW3zNqjbdjDqvGCC4ffgw6Su8Job6f3ymqP81inUSthVwN5nJrKde6GhmWFMN2yABq0PG9hhfxVqTw7eQq5q8TFVUcd36MSR3jQ37HFBId48E2UjmIzefvtt3HLLLZg3bx4uvvhiAMCcOXOwfPlyXHHFFTAMA6ZpYv78+bj22muTro4YUV6iOJbGe22JTBx283/eC2PWdP7vftegOC+TWCAohgFl736Qznb+NXmx6YUSsuteQPqPL2P4is8w33OyljL3hm4EUvEyB8TiOzZk7iYkJrQNm5H/3wcxfOknYc7o4l7DDye1Nt29za5P/r+tVCXF44+0Ky9+8dIvvobSsQuAdDmqK1TqCs+A76yMLwUs1otrIAg7uHh/ihJqXdWxpCwcXO9glGtRgeAzEYoSsUQzG3tDpqlfLmSUUTlYg3McVyBEC3BIgsQFwuGHH44333yT+9vq1auTLj4SIkeYaKAKDfERCPasiK4nsMox+dtdimbObEQC58XIrn0GWt8uDP3jp0HayiojbRs3aZe9Srji3jgrjgPq5h0og1Z6O9fltzP17hYAVg6fqAKBbq8IZqEb2y66Ilg0AGmbtiH96ltQd+5B4a9OA0YLaFr9MMzuEHXxagD0f7rKlrOqW9uxOzYFge5PkXtwrfDeVdQjioZAn1sYpzIbgmlyzosiXOgaCZ5A8HuXfOvFnMdiWxBCp3gRCY4gDYE3cWqEdQiTCpGG4PfSRsHwPHC6cMUvIojXiTkaAp1VuU1Glcdpfbus44ZHQVoZC7JoIR5NG+FJR+3cB56ZiqBsjKzQECpXlLquS9vCDTs1QZpydr0E+ab8oOsMWCEwPMLUTay9AHBMZNSElnpvG1KbtoGESbHgFYZGZX0omSeeRebFV6GMFVFacEjwtcNgEmhb+pB+7W0QOz8UH75ACGcG4pgvPSj9+4Fs2rXIs0JbAoRaefql11xbdwp3GIsqEDzhrnSzp6gaAjeiLuRaBqc97CSP4zCPG5m6gkWwMI2bCkKAMjCEpv9a5RpwfOPAedf2S6LG60i03jyTEbcHEXeHFMzmVLrto3fDGmdGxnRY1wzYZx2CWXme64XRKweBcry66aQ2iPo8rGtWCjGXMA4zE6YCYWTUfWwhKMaIcT940ztw+l123YtQxqxrqgNDgdcOhWmWFyyKZvAVLgzBrNZDGH9Dy213oeX//sLtl+OYfGgfYfu8ufcAUNKRe+hJpO2Fb67yatne0mmD55pUky8J/FuEcFJdcN4R+zO1cSta/v02YLQ8sXGPDxwBZxJrQ64QazyqRQoEBmHsdMTU1ekXXkVq6w6kX1pf/tJnEORpCL5xyqJ1CGxCOJFpxjQDzUsOBbpPsk89XMvymTL9ktsZnPPY+8JzKjMvltNWLXrXVXh1ZgVLmN22aF09ce+Rggw8lw8SbkoxWNiEK5eES85If9MNK9DBo9GEwtOnUm++awVOcMpRGB+C27FaaQotfudW5O+6v7I81kHtQdu2E6033OwOJhDW3XOP6HoCKkw59yH98uto/d5trr1URHs0pDZthaIbSLELWtm6856TrqP55/cgv/K+cO2oAikQWGLUEKiNXhlgQst8NYQoi8j8NQSXmcVndy7AbgtvNsLB6dR04BscQvqFV/kzMtaJRjfI8V6b95Kws0LdPdC6jjVN/r0KC2/GxtMQRDB9RHv3PXdq47BQUwTnmlxCRJ+FwjT9t+lkoesl7nkArT/4eTQfgo3rHg+PoOneh5Fbs7ayPvSTZ2rymvDsemjbODmKBMIq/bK1zWbqnc2u77UNm21BccB9glc40cAJu6/whH/6zY3WoYNMhlSRo9vGtVKfTejIudfqfmssSXK/celDYBBGe0Q1UdgzWJcgYc0gxETmwd9B0Q2Ujj2i8nzfnDkCDcE10xasPi7p7g4n0ow8A39u9aNIbd2B4ges/DRcv4XLZOSJ1BAJEsDZM8I102NsyYpIbQ+ClsO2lxUwYdJP2HVRB4eRv/uB6HUA80wUBSAkcFUv18dUTbmEgIQSCNZHatM217GhMpjysJ34Wv8+9/eMoPFOPKy/PeZDkV9CVL7Pu5R+fQMAILV5G0qd08o/MBMH7Z3N5fBXURkU3ixfpFnpHAHoQ0WalwSQAoGFzrQ5P0V2JjvChbmGR0PI/NmauZR651ee79M5uC8lZ5BUBM5bRdfdJiNR/hdPWmE6OFFnM9tAlw/BZ4Mc51hWKzA5GoLrWGamaFINorLOat9uazbnXZlKTVi0DUwZrsE2TBRHHJscEbdACJxs1BLq7LoOCd6giPNb1YKAns8b5IHQPgRuBFKU8n2eqxOgMOoJULDLyzz/MjLPvxytMI5mK3y/XBUS9z9ldFT4exxMWZMRMQmaVt5n7XlqE2c2Te6sz8dMww33jGAyKptZmDJ1z8vE4jUZ6f7tpgM3rQ+xM4Oqg7az3BUWxww2jmPOp5NztBnrb94+DuW2KBy7MqX5jl+i+ef3wNy0Dc23/jdQKCL9wqto/e4tQLFUfr6MVsBmhQ3cxSrkMYEQ95Sz4ln7LQyrFcZkFDorKhBdO/bCPlPmWnSgVlwCoVJ4lAMRqrz3VMMp6VD2DaDp7jXAaKG8Tas3q2ktApCd3Igc3Z66WecGlFtIzplMmbICAQcGkXpvO7LrXih/V+Oex8rwCNTtu/yvxc7KWVMFL0R041ZkH3qy8uXkzTY4M1+eQ84pW/cIBJGpxPBoGvZiLCd6yuSoyISUr0lMcUge3LN0riBlo01oWwUvmf6b30PdewDatp3IPfIUAEAdHCqfyw5wrIaQRDZVHkEzwSTLDbWWgCDzu2fK9anRZOV6vuy9ZyPKTOYZU7waQrUTNvquFUvIrn0aqXe3IPXOpvLKY2+fqyXen1d/Ub9ig0uC+gXrr4pLa/QwZQUC4XXyGgeE/M/vQfN//sr6xwkFrYxiARA4EGUfX4fMS685u0UpI6PIPPkcPwSRdmjXIit7VsSrqGHyXzyfY12ftNM6EReVJgAFcNqqHhiE9m5lzLurXgH3whVj7gwSgmdlx5wrBWYB2ugYEyHEDFBFZsYaRy79MARlFU0K0wzdxuzTL5X/iVEguHw2TkQZ4a4jcH2n61VP2Jy1LcxESB0ecfqHMzkrlWyhWX0/ULgmI8H75Rdowrs2G22WkLYwdX0IvFDPGk1G6pA9azaMcif0cyqzqjNvi0g71E0dGbUyTb7xLrJ/eAFmx7TKQ+ngH/aF8YadCg511HVPLLrTPp8ZDs0Gm17/DtLr3xFWx9XRRc8gwGTkkLYFwhhz3dGxsvmryJow2AGqXgKBftZZIvBi5Tl4Z6pVrflg8dEQXCmrebvV0ec1VkTrv/8UpSM5vrYwMJMz5x0fLZTLKulQt+1E8y/uxejHT49PQwih2fAEiC+MhqDoOkgsKQ/dTF2BwAtfjGlAUApFrobgSpnNviTc0EV3qJtzHVFMesj6u2y2UaGDRdCsMYJwdZkURIOkWY6jZ+3JuV//1p0HikkJQjTVWr8wWmCck5xBCaijQKi3amBh7ZgX/bmHnmj4ne/SENj7zQRD8BYs0mdtmyfTb2yornxmNzXqQFaKxXIkXkl3QllTb2+qbWLoWt8TwtTlt0CTg2ucSMi8OXVNRhyVKxaHIQCMFqDQ8EmXXZ/pLMzAztcQ6HGe/Cmi2UvYAc2oUiAYRllDCDo2yiwrpElCMco+BNaElX7tLeR+u658IMfJrhRLjK+F78SO7fkHoJR0ZB9fF5+zOCwRTEZmPhd8UFjYvs7+zebQ4kUZUSFR6zoMVkNwBEKprDGWSlDsFfnKWKH6yRIs02RuzeOWEPM4xbmw5qmAcl2CNcYAGJYprCHUqAYLUMYK5U5Y4j9w18MVDYiOfZOaaIIjggIxzeoiKXQj/Ow2yiKmsDZqV7y6/bINc0Lx6EBjmOUY8pJevj+6j9+gTgJB27E70cVFvrBppgNQSjqMGV3QdvXXXKxLA2QnP2y4tGA2XWu4Zdl8a5TNLswEASUd6tCwXddiTSaj9MtvQNu914rGC/EOuBbwBb1bultYJjGdmLoCIcF8IMrYmNuRRfFxKosGRHXfAbTecDPM9jb7vOAEfIF4fAhhUUql0EInyuw3tEAg7igjpX8fVE6SO8Ka2ehLWSqVTRB+Ya71MhmNF2Z4h6lS0p28UbXi8huMsplmywLB0QZ4Idi1zoZZDYGuNSoWodjh1kpJB7EFhVIolcNRq0Cx/YhKoRhuUuQKyggwGQXtdxIDU1YgcKOMYsKtIfDt466XhFcXe3DS7DBWukpRNLMPaw5QqjUZlfRkNKuwuXrYepsGWm77H/5x9qCjjBbKW2CWmMV4Pj6EWm3lEx5iRhtcM5ngY8LAmonYRWCOhhAyHLZKnCR5ul6eqBVL5QG4VIJSsoVfoQAlV72zlmpAyuBwuHsdxans0malySheEhUIxbJ91G8AZQdBjoPbiRyKkrsn7Ay3WKpcnRkCpaQnEpqpiLQe9jiTVPoQOBD6Uo6xg0+Jn2K5Di/ZhMEkkbSg2DQExl/H9jtntk4ISD3uPeuUZcyfSkkHoXUplEBqEITO3tIHBkPdP23rDrTecDMAoHhCwI6R7ESmhtBYEVIgJIBLQ/B5AZWQJiOFTZYVVG5INTLzp/XAn9YHH+ilVH0suAjXwC2C8SEIQyGpQGDMSa4QVF4yPQQ4/8YBY1Z3rL4Gy3kbYSBJRdlDQFBuKcCHAEAxktfOXM5p3Shr7CVGczAMkFoSKNKyRkZBQtw/6rsAgMyfXhdfk/0nIQE67lFGGzduxEUXXYRzzjkHF110ETZt2lSXchM1GY2McuP0XceEdCrXHAMeI6zKHet12U1qRLDZOkVZRu0ZqWs2OuYeDMp/T5z766V40nEguZjMNoCVSC/CQFKLLd0FO/lhfQjsuxFHjqgA2ImHYhiuFf4uoRXH2FAoJrvQsVHDTq+99losXboUDz/8MJYuXYpvfOMb9Sk4YYEQOND45NOZ0JT0RByvytAISJg9b9nUFWE2pPERCC5fzkR2JKsqiBLjK8qs4whFpF3G/HGHWPO1wXqE/FJhSFKa1Y9pmcWSW1uJYdKjAFWZZYOgOxfGmXeNZVwFQn9/P9avX4/FixcDABYvXoz169dj7969yRee4CCsDI8GOihdKRMSFE5xopRKiThe1aERkFw2eEbKxNGHMe9QkxFRFP5aj4mOqpRz8ccBE6UVitgEAtO/49rboQZINgvFKIchK4RAGSuAeHcFrJEk+hyxc4k1pMmor68PM2fOhGZ3PE3TMGPGDPT19SVedqImo+GRwGic0OsQJhBJzHgA+8XJZpw9pn2PY53KYa5rH0vyTeWd3yYTqgrErCFEmYmHsYGHwrUOIZk+FAWSy1oZfnUTRC3vW0Ka4k8FETsZW2jJsFM+XV0tVZ1XTGoQ1jRoI6OBEjxlGs7CkrqvWI1KUxYYLaC5WEBSir3WlAUJEDgqIpo86LXbmkFiWGBVb9ra8yil4hMI2bQKooTPqZdvbYrleauMNq5OAE0t1ZoH2bsPgAI0NwH22gGtJQ8SIYgjNlqboR40A6a965oILZcFwSBamzNIeff9iIFxFQg9PT3YuXMnDMOApmkwDAO7du1CT09P6Gv09w/BjLiyMPXWRjS9Vl1elCDM1uZQOxsZo2Pj78AJiZnJQDEJxrbtRjyBiJXoigJVgTAlhjlWhArbBBRBiJayWaSo/TidmlCOehEHBsaQQ3xqfHGsBKVQQth5/0jBiCd9WqFU3lXVJCApbVx9NyVNQ4oAAIGRyUCDJRBK6XQsAyLJpCOZgY1cFiUtFerd0lUVGoCh/cMo7R4MPJ6Hqiq+E+lxHZO6urrQ29uLNWvWAADWrFmD3t5edHZ2JlpuxWbfMWK2lW80EZlAiiWQmGy0iaMoMNtaoO1OzrdD0qlAB6rjfM9Gi7wh+SZXOZMGRWkMkxEAMNFSJOLzixvCLjxj/qY7qNV8/YjXIdlM6Hvd0D4EAPjmN7+JO++8E+eccw7uvPNOfOtb30q8TNLSnNy1WxmBIOj4SlGPN6QwQYiqwpgzC+q+A8EHV0sqHehApbPKqAumCJuoLZ2UjpMAqhIu+iosUVOWxDhhIVlmEGYWftVrUsT2GeISAvy/ayor6nWymfBrPuiEJqE1M+M+XZo/fz7uueeeupZJWi2BQLKZUOGLUTCnMapYNg342MUVXQdpawZ4ydloPSOYRqKaUSKhKjAOmQu8ZC1mI5oWe5ggSacCncrOsRFmmETTXCtPeZEkE9aMpMQdZUSiBTDEtQ4B7mfmen4prS5JBVkzDiucSC7H/bumsiJeh2QyQMgIJ6ohJBWmO+4awnigHzIX2tmnoPDhE2O/tktDCFgCT9JpoVmJzmTopjjG9A7/i8Wp3ntRVZhM2YloNukUEHY2zMz2hj/3Nxj51Hni67JmIo7JKO5ww9hQlNBCMhSERFrzUuvsnZ2e+AmEWM1SorqwkwJWK/DRFmoqqxqTUUjh65g8G9VkNC5k0kif+2GY3V0VP9X6Erh8CIztmktKE8/C7BfHmDMLg8v/Acb7DvI9lB3UYlfDVRUmY2Zzqf/0uxoHLktDCCcQXC93a7PQhEQyaZffgHvsRPUrKEp4IRnmcroBRTfCp02utR+x9zXjpyEwzyZO4eeFFUJ+QiAuH0LU5HjZdPh7rWmWGVFqCAnAG4xrnLG4Zh8tefGxqZSwIxizukFyWZSOOzJ4tsjWO+5Zl6q4ZuVcp26tL3M6JXSgsoMFyTL24FRKOKCTdMpdd542UKdZqhcz3yQ2f6nxCgRnLUbYAavWd4Ed7FNaeaKS9fEhxGiiqqhLlt9/2cE7rk2BomrQJJ0O//5oKqBpjblSebxxDTL2i1fz7Jo5nzQz0S28Y1MpR2XmmS2MuT0Y+tLnypqB6IVxaQjxPlaiqq6ByWzlOOVrLJOkUiAiDYEdnDJuGzTvmTkDbTrtHphcwsS+9+PgaDbzTRj+58/CbPafNBDEazKiCf7CDlg19yPvJMXe67rCh0DLC2O6q9Kn4tIq/RzMQRp9WNj+FkagG0b4e62q1rsmNYQEYB8C7Zi1zhY1rWz7Z192zgMnac0RINxwSM09EIuElcsWG0GoheqwnkGJtFXGMNc8eKTTwtkw23aX2UfTuMLQseMqCkiGFQicwWg8fAj0nooGOFURC8moRdpJBEObNGqeHKnOpItomiN4/QRCqPLUKuvElsn2JZdAKL+vNfk2Imrrim6ED6jQVKuPSw0hATTO7KRWNVnTMHzZJzH82Qvdpgw68LMPPpUqCwqes9P7gog6DXus3RbeYF88vhejS86wcgeFtVF7BiUqvFxt4bzMRld78LXZa4Y0iXmd9a6Xl7adamfEtEJaKWyEiWYfmx4HkxG9p6L7H7MPAbC0O/3wQ8IdXLMvSin3b01z2uIahFlhzHn3KvpwtRqCnyObXR/BmoxqGAeIpjkWAZHWU7ZKqO6xSDS5Uu1j5X4ICaBWagi1m4xUkNYWkNYWaDv3VJalqU4MMUmlyuXxOmAEgcB2cqdDaWpFdlLSMQ36MQswdMShAICWH/wcCJps2Lb9ocv/DurwCLTN2yrawqtb8UMnwpg3Gy03/adVtig0NsipzN6LrMfEw947+yUz803WilyTBGsIWrTXgOQy7v0VqoG2VSQE4w47hRWgEDZst2btRLEFQgl2eKnd71vy5b7gGgg570BKi2WXPuLjR3KZC1lTkpaCgiqfMSsEMv6h56XjjgRpbkLxL96P9OvvlH/QNH8NQFUBVZU+hCRwSWJHQ6hRRrIdnPVR0LK8QohqDrwQVc9MQajG8mZanMHGeclpOGYEkxHparf8GbRe7Lm8WY2quGdIIoEW5FR2aQgegcDzIVANwTRdYYCuiCNnEqBGinAxp7WFPtYXhXMPK46Jb6Wyy5QWtq0xlE3U8kTLlWzQ7ofEx7zimJo876PSVt2iUsL4vVzvPauZs8+iFg0hk3JSsAiFbzqF4mknA9mMu/+J+oRGfQhSIMQPO2BTM0itzlH2fPZvxpbqHMs6lTmOvooZk0h74dhiuTMub2cLIRC8M0Xnuqx/gzfIeGe4gnsbGHbq8iF47pWrDbYGQgeiphxIE+Ms9Jrs6Hf0+YQZLFMpjHz6fBRO/4vgY30gYTSEONNfU/t9FIFQs4YARgtTUTrqMAC2QKXCJlVpVqXHW79b3xnTO1A86Thkll1cVVVIJoOxMz+E0SVnuDUEnwlgLWtTiF+IrRc/k6vnnXRNLFXVev+kySgBuE7l+DQE9wN3d3Dnb2rz5nUc74AuCq/krUPgzto934V56b3nMP4Q52yeYPGGygp9BGmxg9snUsgPY95smBu3oHDmh1x2Yu5LyGbVY81gPhBVgTGnB8reGlJ5UPux6P7HmcvINtWxs/NAVLWmFfBEUaDQZ5pJo3DqSSiedDxIR1v5fruijDjvjtOXNRTO/BDaOqrM8KmpKJ10nPU3uydDOoWRpZ9w+w+YepV654Nks0ht2hoqaSUAIJMuJ/MTCAS/ySNRFHeSR/a9sKOMpMkoAYjqnq0DqN2RxuvUbFnsgMQ6UnkmI4/aKvRv8FRv3gBcMRgIIntoR/SeQ7/n2O4rjnOZzQRRUgFOZZeZiHOvRj9xBgqnneyo0mZbC4b/YSnMWd2AosDobIc+/32utnDNePVKOEjvlyiySokxyoja72kwQRhqdmgrZUFkR5GRzmmuI/xMRs55jjZaY1V8fFAklYJx8OzKRap2nzC7u1D4q9MiaUsknXYEgVBDUNh3g504CbR4TbW034QEgtQQKHSmXmv+eY96V1EWOyClUk5H53WcCvOFUEMIKdy8IaSq4v+uqXa8s3eWSmfQHDWXnVFWRDFRO7aqVu54FmAycq0f4Kw21o9eAADIPvGsdYxnrcTIZZ8EVBWpV950tw/ul5Foauixh21n6JxTtO1hBts4ncr0fqc0IKSPltCFcdXmyGKqXvHMaPvDOJW9F/PWM8T9JxzzLQD/dyqEwPZFVazcSYWi8y5y6+hXpwqzLlzHEbkOISHYgYCGHkaMOBHCEQiu2Rk7iPNmEpE0hEqnMs8fUjE7FJkkHDu35xwnSoqjIYg6tsjZnSo7lbkzWNfCouAomYpFRjTskWfCYhfehdEQ6LH0BY/igKRlhhIIamwmIyqAiaaGFzK1ls0KE5+B1x12KlhFLnS02v1dVBe/5+pzXWc8qCKrKMlkMPrJj6N07BEg01r9y3GZjATattdXl+BK5amtIbgG7HjWIbjgzQDYh+uyiwdHGTkDPWcDDl4sfhgNIfBFK+kVmopicgZC1rxEJy9eZ7RTL7VylspqCLxwWTYksL0Vpd7DUDzx2Ioqj/zNX6F1e5+/+YkrEHz8Pn54BYIWITQyyoxfQXUzVA6FD5+I9MtvwJhzEFKbt4Y7KWjHogj45ptyrdXhTRQq+/DYWR8GUhpyv3mifJ4O69n5DeARTYHOpCPCwDt2xikwZ3SBdE4DATC2eBHSz7xk/ch5jr5pOzjatus4TQXGpFM5flyDAycMLsbrE97MMF1eh2DO6q44vUIjMMr7AVTsyMQLd/WL/HHVUaCKU6ex9zqOyYgTsifSEJgFbd5SCbtSWVUB+AsEaBrGzj+LW2fj8HlIn3Is4LebFKsVcjSgUOtQ7HqWjl4AbesOGLNnIffwk8HnAczEIOSxMaWuMGbPRPHUk+yywzuVa0JRytN2v2geVxgw5xiO761kTwSoQHD6kyAgwPtcR/72Y+IV2/Q3ej1CryNw6GbSMObN8dRfoBEG+ddUBTA8AkHV+CbXmJjaJiMGZxAV5LWJGpLKXcnr0hA0FM76MEYXL4LBEQjeWU15gxieeYmN91cq60uLjaIhsIvpWByTUeXgKoqndl5+3kCTTokFWQgzURhcTlqODyGUhshEzowtOQNmqziJoat8p6wwJiPE50MIChGmv7HPjD2nSk2lcNoHAQBmu2fthmNu8wk7tX9X7EVd5jRBdBEvOMCL57kahx0Mc84s38OpsKjYd0AUGOEXWAHwHzdvHRQLrz10VbP0ISRMGA0hagQKzzzh8iGkQNpaoB97RKiVyvqh70Op9zAUzj614lC3Pd8TsseW6xPBwLW/+rxopeN7YXS1o/T+Yyqv7zOgAGBMWcxs75gF5e+cZ8BJ4xHXHgysXdwxUWl8Dcf3GoJrBhFl1q2o8e2Y5gpdFE0CfI6LMBkiTF/QjzsSg1f/H27+K8CtIYAT0GHMtKJ/SscdKahzOVjBl6iTObqY0asNCNeNhNDI2TJYrZ7nY+GZmRIOO53aJiMWOiKKBn1BZxg745TKBxjoQ6hcTOaqknfDjnQKY+efBYW3lSVHQ3DbJW0zjJ+GwLO/chbTAQBpa8HI5X8HtW8X/zreetDztEr1f+zjp1s2YTbmnjMwmK0t0Oe/j69JRYG9J5xZaigtsMLsVoVA8HNmsnbjODUEFpEAU1TQXCauPa41DdCNcBFVNDqN/d8Lx5REOAEdZs9MDJ7zkXDvpWjhY1QfAg1K8PiLiKb563YiDYEHb5Ekew43bDxZDSFRgfCtb30LTz/9NDKZDPL5PL7+9a/j2GMt+9/y5cuxbt06dHR0AADOPfdcLFu2LMnqCHFCCIWdyrJV8l6K0gePrzzB5UPgzKD97Kp0mX+EyAj3oh6fwdmoVGtdK2Y9AoHwBItfPXgaiI+/gng1J2qvdUxdfPV59JMf59cjCmzZtnM8eqbY8H4YYfkMTp9iBlMSY5RRrRqCy06vBwxGNLBAeFsqAxO4Cw5VJfiZhNHuIgqE0rFHQO3fh8KHPLsqBiWeq/iO70y23m9mfOBpxTQk3BO6nWS200QFwkc+8hF87WtfQzqdxtq1a3HllVfisccec36//PLLcckllyRZhUCG//5voQwOl5NLMR2n8OETkXnuz2UHLruy1evs4cC1p/tEGbnq9I+XiMPdeB2PfbFo+KbGExI+IW3cQYIxqQTVg/NSVpo7AgSMM2v0cbDFAHtPFDY2n15eNCGgg7a3KhE0BN8JBx1o2SitONcheFe7+sHxsVj1Y7W7IIEQ3k/iekd4O/GFSa2SFkTVUUKajPR5c5DatBVIWSujKwh77yi8+tN9pNkhhGcy8tMQVC0xp3KiAuH00093/j7hhBOwY8cOmKYJNabIiTgwZ04HZk5Hev3b1hfMYFQ89SQUP3wiWr97i/UF6/QMI6FdAyb9dEcZ8SCCTVOs6/I6Gaty2p+cULaKGadQINC8QD6zWq6ay2oInvMC8/fQME6fFyEOWGHDZJ2lN4272Q4VBPag7bVVR9r60c9HRQdar1YXmw+BLUtg11Z80pGEcdzSa1BtQlR3OhiyEwjXSuXK330RrLtxLhdSQxj95MeEIcSBqam9x/O+o2Yn1uwTss9TH8KkNBmxrFy5Eh/96EddwuD222/H3Xffjblz5+IrX/kK5s+fH/m6XV18Z1UYurvLkQvFTAomgJb2ZidEnv5Ok9dqmZSVo4Sm9PW5FoWkCGjWlGwuAxNAyr4GAHTNnAaF2WaTlsO7luu6TRoKnu/aulqdKuWbszAAZPPZcmZre3Ce1tkMjbl+IU3bVPnCpDQVBEDztCZM47Uvqzj1yOTSMAFo6XL7OjqboXa3Ou3KNtn3IJdxjnE9g2yq4ndKu32tsPjdQ9MsOkmNMykVJoC2jmaU7EHSdc9sFNuMo6RSgG4gm9HQylzfHBkKnSg51ZQFAZBKa+jubkUhZeXOV9IpoFiy+pbN9O5W6PaztGyVIQvh0N5Rvn/myGBlfe3rq8ygPH1GGwq2eHD6fogoLHoN2kYetE9M62px+m3btCbnbypL2qY1uforUPlepuzcQams9cmaP9Wj58N8bQOm97Rz+3hYCva7QMvi0dbRXFFXo81qk8IIRzWTAkaA1pYsUszxtD2q3Rc12jcYudoxvQVGaxMMw8D06S2u68ZBTQLhggsuwPbt27m/rVu3Dpr9AB544AHcf//9WLlypfP7lVdeie7ubqiqitWrV+Oyyy7DY4895pwTlv7+IZhm9Delu7sVu5lY9ZxBkAYwdGAENM0V/Z0+Mh0KNAAElekedvPi3kcKzrmFoo40gJJuwPjwiUi/+Br2DBWB0bKkp8dyr8VSKsH7mh0YLoKKlpGRIrIACgWrTADODPHAwBgM5vp53YAGwIRSEXKm6yY0AEOjOkq8OhWKTj2KJQMpADoB6BPcd2AUZm4QzW0tUAeGnPqUSLnjuZ7BWMn+XanomPsOjMEMui823mfLogwWQKcQRZ0gBWBgpIScSaAAKJRMeC3ZRFWgGICZSUMdK6A4UsQB5vrqwCjCJmWmbdN1AwO7B9FU0pFC+f6bKIf+7ekfRqagIwt75k6qNxPs2z/q3D/1wFhFfa0+Tdzl7x1Gi7WRp/NcTaWyn3ih16Bt5NFCrOseGBxz+u3AUAF0fTm1zA0MFaAz12CfrfNelnRoTB2JqkCxb9WBjy2C8qGTMLh3JKDWYpoNw2oT07+9HBgqut4tAEjZbSJ2ewHAVFSoAIb2j7jeq1zvYdAPOxjZJ5+DCssqraJ8LwDrPdDSGeRMgv53toN4w3lDoKqK70S6JoGwatWqwGMeffRR3Hjjjbjjjjswffp05/uZM2c6f59//vm44YYbsGPHDsyePbuWKlWNs/DJu+CLhQlvCyWXWScZ40OgpiivSj38938bLu0uzwHlY+oo/2N/RvEh0O9Em9p4y+I4lYc/fzFgGMg99gfrez+h70R6JWgyYutMV4ezJgJe2TQ0lx7vVddpv4C/1dwxO/nNsHkmGTYXVK0zwSCTEfWLecv3Rt+F2vdYHEnF4vazRQvbLF/E/mAyozqO71QKpKsj+BphEZmMfPYE8eIsiPP8RBdbZp98zjqOdz1NtTY5UhQopVItSiOXRE1Ga9euxQ033IDbb78dc+a4V/Dt3LnTEQpPPfUUVFV1CYl6QwVCxQpglgh2VOt4wToATkc3Z06v+I6Ln6OK4qRU4Ngg/V4w7mIxW6DpPjZVrtOc810mDSBdDt3zNTsIfo/LqcyGOdprG5RC0Uk57LtiFCjfD69AoO1Mp/ztz5oG6Lq/wOctylNQvp+ss9kH4QrWoCgjGm7q17dpLi6BycgVKWVdVFxhAFBVDH/6AihjBc8iMLH/yl0wk0IE1jNWCjXuaFdRhv1By+BEGvIHcM1dRwCFU0+CtrUPpWOP4JdFb5uPD4F0dWDoS58rR+fFSKIC4ZprrkE6ncYXv/hF57s77rgDHR0duPrqq9Hf3w9FUdDS0oKbb74ZqfHY7NyGpo6oWFHJQNgoI4hnhBU4L2S8Nj8K+6I6i1bY+0k31IgSymprOEqYPD3c1dGea3pe3MoCBb/HFW3D3Cf96MOReWk9jLk95d+5QtQON7a34lS8YZc0TDSV8r9XNN+Oz4DK23TIiiiJoCEI93IIiDKiyqDPDJiE0RBsX4uz25nIp5zNWKuQNdV591JvbWQOsD+iaEai7WjjQhhlxNHS6fGMQCDZjLVTWmBZPE3Ovl4CwgBIWCA888wzvr/dcccdSRYdGf2IQzH8mQth9nRjuLuTn+fEO4uLEg8cl+rvYeTvliDzzJ9AWiyrMMlmHHXZNZsrWJoPu52kVR/7k6faOhqC/9TUbMrBOOzgshbh2ejDfUH7M+CF5WsIMZmMmOsYcw/C4DXW2hclhDAifhoTndmmU8CoT7nU7OQdUFVGA2COc/6O0m5Rkr2gNBSitCHM98KV/FSLCSG8zVndUDduAfTy+8MVRoJrDX/+IqCkI/fQk67za9ntLBBWcIvSWXu/Y/2cgWOAT0SgXxkxIlcqM5gHzbA+/Uw3Hg0hlI00l4HZ2Z6YQDDmzcGonVBr7NzToB86F5l1L1g/8nwN3p2hvPZXFmpG8zMZARj+0ucAALnVj1pfqBwzmVOWZ9MTL6m0q06uU+NaoAWgtOAQ6Ece6vpOGbPipcyu9soT6LoOW5ia0902aXN6J8ymHAof/Qs0/fqxitMBlPdZ8K7ebm8D3tsOdWDI+j9KrqmKMtyraCtWPVNEKRYCTEbsgDR6wdkg+SbkV97nOpf6WkTm19FPnInMn16DOYt517hbvvo/d3N6p/2XR5gnMGgSb2grT6MWmIxc5qVakgsmHLIvBUIEnBmI00mDH+zQlZcCALIP/s4+JT6BYDa7c/6X3n+UVQTVEHjrHPyS93E6c+mEowAoKJ7ygeDK+K2OZqFt9zObOCYZjgCKMYXD2IXnVnw3+tfnQNu0ja8ZUnPKtFaMLP1EZfqMbAbDX/oclBE/9QC+jtbiB49D6uU3oB8yF+k3NlS2M0q7vc+QncUGLExztm0MMhkxAl8/0h0mToMtSHsbsHUHlMFh/7rmcyiestBTf7ZfUB9CeKcyBIN1zTiL3wRlCNLNu4VzuPrxdsuLtOalCqRAiILTGeB8jp53pmOuEUJNBjENbINXXebfsTg+hNTi01D44/rKY4m/845kMxj7xBnhKkTbJ/Ih0GP8cuPT+vJMVAm/CPoRh0I/4lCk3ny38kdGuzMO9o+CI6IJAs9HAGuLxqFrliHzhBVZ4m1npAHAOyCxRbkizqxnbjY3QR22hRgvrQh7Hp0MCRdmWceadiI7Y/77wtfde+0oC9MCgxVqxzEXcjQux5fI8z+xOyUaHG1NBG+skCajCYRa+VLrRx0e7lxHiMQ0exGk6aYOZPYFSS06GfuOParyWJEZJ9JmLu6Bw/Wd93o+AoFqNBVO26h1qYVano/g3Ir9MCpWjNufov10AwhrbqImneIpC5F79Pfu+ngHnLSdZoFeWzToOhFRKoa++BnxfgM8uCajMJFKVDtN0JlM+2bJ7psV4bmEL7x4E4Gwz5RnLkt4YpTs1RsEJ/7csaNWhpIF4gwE8dXLD9JkmZIq/AUiuPH34btHeR2Cv8nIiT7xcfoZh8y1PtmoH+da9emqwqiWkL5ALvb9NQ6aieIHjsboEo/mFZRaJExf45mMeH/nshhc/g/ORjMAfNOKEOrX8dFwXLDJ8Jrz0dPFB62l8S3XR5jFiKMhGLY5k3Nv+ZMqjokpqE2cd2n4MxeiePIJ0ocwESBNWTtW3f5fNJP1IyGnMo/CGafAOGgGjHlzgw92TEZVvowUnkCo0BDoLNNHILzvIAx+5TKo/fuRfeJZT13qNHcRtjnki8yDGbQK53zE/1zvJUR5h2jWTG8ZvPr4mO8q/vdeg9nlLpAa+3i1WqqzNoA5f+yMU2B2RF/F60fh7A9bO6LNnI7Upm3lTKQsIpNRNRoC03bzoBko2EEvSSI1hBDQaAZnL2GfpHRC/GaASZBJQz++N6RDTpD2u4rZSBgfgnC2m0mLV00nTQ3yQPiiBw2WfutUBKt+Ry84GwW6LSbvGNeqcf+qsed6+4Ez+XHWN9TQxiCq1VLt82gdSS6D0gePh3H4IdXVgwNpacbY4kXld98VvtxT8Z0D7/mF7MtJO5B5SA0hBKNLzrAiQIpWrh1u9E4QQWF9SRBh2X/ti8EqNY0KDYNez35x9UN9NBhunPxE8CHUoCHY+GpdPhoCNyUI/a0lj+LhJyL71PN+FSofG7buXk3RZy2K2THN/xpxCAQSIcrIrrNywMoLRFqrT3gZCOc9Hr3wXKh7D/DfIcfUVv4q8FlQpECYoOSyKJ1wFNLPv2z9L3Lo+iF4sRMjxIupiFJOR3mxeYvO/ExGhGDwq5f7d3jmvOJJxyHz/MvR7dHVInIMB90OkQ3b2Z1NvFLczzHsSkvt+c23SIUxawQd67NfxugnzkDm6ZdgTu9w9gwZWvYprsOY+Ai1sLj2qnAih4KHKCccvN1Kd6cfcajo8JrgCuhsBmaPz05+TKh62GfhUM+xwkYKhCj4qNWRzp1gAkGsIYRvJy1JZDJy9nnIZsQDPHNe4YxTUPjoX9RvtiSILw/clERUR0OcOoS7ox57zTCbr3gPcdmt/avmOtbrVG5vQ+GvTkP6xddc3wmvUbWGwPFjtYUI6bbPM3pmYPCfPwdECaaolrCmX56mU8vCtISRPoQo+Nl5Q1CePU3MW861V1YjvHh7O9sUP3gcxs49zT+pl43ZygwCipJsbhovvBWoNEw2TE4nDzQ3Fs0v5RsrHzS7FmUCDbqm928eNAIszHapflAXUbUCwW6HfghjSgyhjRO7v5CUlrww8NPkfCD5JhRPOg6jFy8pfxl2QilNRhMcp6MTjJ35IRg9Ebz+9NRxUANLRxwCv9dEtG9ypBeblwvIe76mOauphWQzMJtyFekl6oJAIAgz4fow/Nm/gTIygvzdD1hfBGY79QzuIlu6/VX2ms9j38Y+ZB9/2vN7hOcX5OMKMxeqVUNQFAx//mKYbS3Q+nZB3bs/1GmF006G2dUO47B51ZUbhaimX0Wp3IozSCBQwSoFwgSH6QSlk46Ldi6d4dVZQxj88qVAOlWxoY6DEw5Z5aIgD8IoowjQHEl1h1flDN03IbpAQFMWpCnrrB73zeNEbc3egAWhQLC+UzraYOisAxmVeZPCxr779E9nciBaDhFDSDXNE2UcPFu4KtxFOoXS+4+uuexQBG4DG0zY7TylD2GyUM2uFOOlIdBFdX44Mdw1hp3ynKZ1WHMRO0INIbrJyIGmHxfuqQz/2WOUzWPoytlqFkP5mqzCRPvUqCFMBuJYTxSU7VeU7TRhpECIgiDvTyB1XJgWCVWguVQjvEQmo0kALyTQOGgG0q+/A/2wg0NfZ/gzfw1luLxto+OQ9kvs53evaLQNT1D5jd40bw77c9CjCBrMQ/kQEkwuN1GII1owqoZQx9spBUIUaCx2DVFG9Xy4YXA0A95+vdWYjKpZkTmR4NTZ7GzH4L98Ptz2kfScgzy7/4U0GXm1TyWEyajyexXWzsbhn4VX4JjefTOoQBP0fcdhPg6277pRQ2BJ5TX8frc/pQ9hguO8FFVEvcTRkZLAGYjKM1GlFk1ossNdj4FIwoCLIdYQfAcJUdZPX4FAz4kgnJlcRSOfOq9i4ZnC23TJj3GwfdeNOk7s6hqibpOoQFi+fDnWrVuHjg7LUXTuuedi2TJrh6rR0VFcc801eO2116BpGq6++mqcfvrpSVanZpyXopZ1CBNt1qzSZf8cx0iEutLkX6G225zI1LpAz4fCWR9G9rfrQmxh6nkOohz6ftVicvCHxjEdWjmlKqDrKESCMWJI5mQkcHFiDHC3wK0TiZd4+eWX45JLLqn4/mc/+xmam5vx6KOPYtOmTfjUpz6FRx55BM3NIRaijBcBi4vERMyFXidonLyT0ZU6JCNS3rC+EFvdxgP+YBb+oQ1dfjEUzu0rfeBolD4gioTxK0MkEAI0hCjmO00sROimRaE0hIk26YmV5NtGd+8j+aaAI+Nn3ET5b37zG1x88cUAgHnz5uGYY47Bk08+OV7VCYdRg8mIDhIT7GUpnHEKRj9xJox5dohfFcIAQDmaqVCMp2LjBS+nfhRNqaujYovNqIz+9TkY+eTH7AvSeoUXCITj3A3Kn1MWhD7H6REmQw2sIdTj/XUEQnP9BULiGsLtt9+Ou+++G3PnzsVXvvIVzJ9vbbu3fft2zJ5djjPu6enBjh07Il+/q6v6RFbd3b7R+VxKGRUGgOZpTZgW8Vw9n4EOIJ/PRj43Lnzb29MB870+FAHX3q9R7o8xpxslAM3tLaBGo6j3N06qLZukAa+OM62zGVrCbTG25VACkM2k0Prh48vf93SiBCA9sxPm9l2uc7qmt0CZZtWru7sVhXQKBIBqz/ZT9v8AML27FQpnFe+Y/ZnNZ2ACyOcz3P5Zymh232+u+N343AUAAOXJP4IAaGvPJ3q/xrNfGXvyKMF9b8PWh97roOPpcW2zOlACoChK3dpck0C44IILsH37du5v69atw5VXXonu7m6oqorVq1fjsssuw2OPPQYtxkRl/f1DMHn27wC6u1uxe/dgpHOyg2PIABga1VGKeG5muIAsgJGRIooRz42DoPaqA2PwGusi3Z85c5D6+OnQjzocrQ/9Pvr5MVLNs6UowyPwTjEODIzCSLgtqYExNAEoFHQcYMvq6UHqwnNhtrag+aU3XOf07x0BKZbbmy8Z0ACYhEAFoBsm6Ju2p38IGK5cWEeHmULRQBrAyFiJ2z+zA6NW3y9w+v6sWQCAppKBFICBoQL0hO5XLc82DrT9I8gDKCmqM3iGrU960V9C7d+PwYDjtb/9GNJvvouRwTHkARCTxNpmVVV8J9I1CYRVq1YJf585sxx6d/755+OGG27Ajh07MHv2bBx00EHYtm0bOjutvQb6+vpw8skn11KdxDHmzAJeeq1yk/VIVGmSSZpa1XxFgX7ckfHUZRzh+RDqsjmPYEGYvuAQqDv3RDinhl26fCgdfyTSL7wCfcEh4utgfKJj6oVim0SpzywKpZNPCHWccdjBMA47GOrW6BaTWkm0p+/cudP5+6mnnoKqqo6QOPfcc3H33XcDADZt2oRXXnkFp556apLVqRn9mAUY+qf/D+acWZHPrSUfTj1gB0J9XsiUAY1IjVlfE4O3MM1PUFXjVHZWx/KPM2dOx9A1y0CmhTBdTNAEjnHgCIRsBsasbhSjprCJVFiDhZ1effXV6O/vh6IoaGlpwc0334yUHUp16aWXYvny5TjrrLOgqiquu+46tLQkuLFFTJDWKqOgJrhAYMMtRz/58bIDfaoRV9bXqvHRIHlViLKqOKgNcTZxIgjQpLAjDUm+CSOf+5tkyxoHRStRgXDHHXf4/pbP53HTTTclWfyEgtAEaZNAIEDT6rchzUQjpq1E4yfKOgTO4qnQuYxiGIUa2GRUOqEX6sAQin/5geQLazQNQVJmopuMJsagNwHgzq6Tvzc0yynJ+SQqj7IOgWf+qadAaGTSaRTOOKU+ZY3DM5ECoU4Yh8xB6dgjUPjQieNdFS6EF39fJUOX/115M/IGoB5OUuPQ92HszA+h5OeY51Uh47N5jFPfKLmMAqsYjJQliUC8eaUSpHHe2omOpmFs8aLxroU/1aTj8IF0tcd2rQlBXaKMFOEeG6xnwcznoI6MVQ7y9r9cZ3ONTmVJ/aHWBLOOC9SkQJBYxCgQGo6JYBNnBurhZZWpYNzHWh+RZv0TNBvvlMZ+JmZNYe7RkAJBYiF9CA6jf30OzM52NP8/Kyx6YtwbZqT2MxVRnO04I9SbF6oqGVeMObOQ/uz5GJwRYaveGpECQWIhBwIH/QjPXs4TTEMIfWyUats2qdoylU6A+9RIKAq04xYAdVyZPRGmPpIJRCnEStSpxoRI5xxFKFU12xdkVZVMGaSGIHEYvPLvGyo6KDYmnUAIyFzKQ7QRj2TKIJ++pEwuO3UXpImYCCajavwBkeot2KozJMVTPgCiqTBm1s8JKokXOR2USIKYALl5Iq0TUcI7lYc/+zdQdB2pV95wn1sFxrw5GPrq/6n6fMn4M/49XSKZ6EwIDSHCJj007DREKLHZ0w1jbg+zgVMVdZM0DFIgSCRBTARHa5R1IlWkPHCOnAhtlYwbUiBIJEFMhEEyig+Bl7oiCHunvAm6W4ekTkiBIJH4UDp6wXhXoUwooeTRDCaAHJNMLqRTWSLxYWzx6Rj72GnjXQ2LSFpKFRpCVeVIGg0pECQSP1R1csXlm/amRikZOiypjknU2yUSiRBbIJBqFhcS6T2QJKwhfPazn8W+ffsAAIZh4O2338Z9992HI488EsuXL8e6devQ0dEBwNpjedmyZUlWRyJpbOztHZGir7Uc5CXRqNsWmo899hh+8IMf4MgjyxuAXH755bjkkoBUvhKJJBSK4dEQosgDZx2C9CFMZepmMvrlL3+JCy+8sF7FSSRTD+pDSNvpsSOZgaQ2IamTQNizZw+efvppnHfeea7vb7/9dixZsgRf+MIXsGHDhnpURSJpXLwaQpRBXmoIEtRoMrrggguwfft27m/r1q2DZidKW7VqFU499VR0dnY6v1955ZXo7u6GqqpYvXo1LrvsMjz22GPOOWHp6mqpuv7d3a1VnzsZmUrtbcS2jtmfvLZ1d7dizB7Vm9uboQPIZlIwBeewFLPWsW1tOWgT/N414rMVUc/21iQQVq1aFeq4e++9F1/96ldd382cOdP5+/zzz8cNN9yAHTt2YPbs2ZHq0N8/BNOMru52d7didx03nhhvplJ7G7WtrQBINlPRNtrelpIOBcBQwUAOQKGgg+6tFnQ/coUS0gAGBsagT+B716jP1o8k2quqiu9EOvF1CC+++CIGBwfxkY98xPX9zp07HaHw1FNPQVVVl5CQSCRuhr74GRCRBk3DTjNV+BBkcjsJ6iAQ7r33Xpx//vkVpqCrr74a/f39UBQFLS0tuPnmm5FKyXVyEokfpDkvPsCofmFa4SMfhDI4BP2wedErJmkYEh+Bv/Od73C/Z0NSJRJJ7Zgzp0Pr2+WsQ1AiaAikcxpGP31BUlWTTBLklFwiaRBGLvo41P79UEZt9zMBSC5bXrAmkQQgBYJE0ig05WDOmQXt7U32FwRDX/zMeNZIMsmQAkEiaTToWgICuUe2JBIyuZ1E0mg4kUJy9bEkGlIgSCQNB6MhSCQRkAJBImk0qIYgU1pLIiIFgkTScMjVZZLqkAJBImk0nAR1UkOQREMKBImk0ZAmI0mVSIEgkTQqUh5IIiIFgkTSaMg9DSRVIgWCRNJoOAvTpIogiYYUCBKJRCIBIAWCRNJwmO1tAAB9wSHjXBPJZEPmMpJIGgzS1oLBL18K0I1yJJKQSIEgkTQi2cx410AyCZEmI4lEIpEAiEEg3HfffViyZAmOOuoo3Hnnna7fRkdH8aUvfQlnnXUWzj33XKxduzbUbxKJRCKpPzWbjHp7e3HjjTfitttuq/jtZz/7GZqbm/Hoo49i06ZN+NSnPoVHHnkEzc3Nwt8kEolEUn9q1hAWLFiAww47DKpaeanf/OY3uPjiiwEA8+bNwzHHHIMnn3wy8DeJRCKR1J9EfQjbt2/H7Nmznf97enqwY8eOwN8kEolEUn8CTUYXXHABtm/fzv1t3bp10MZ5i76urpaqz+3ubo2xJhOfqdTeqdRWYGq1dyq1FahvewMFwqpVq6q++EEHHYRt27ahs7MTANDX14eTTz458Lco7Ns3DNOMvkS/q6sF/f1Dkc+brEyl9k6ltgJTq71Tqa1AMu1VVQUdHXxfbaLrEM4991zcfffdOPbYY7Fp0ya88sor+I//+I/A36Lg17Aw1KJdTEamUnunUluBqdXeqdRWoL7tVQipLQPWmjVr8L3vfQ8DAwNIp9NoamrCz3/+cxx22GEYGRnB8uXL8frrr0NVVfzLv/wLzjzzTAAQ/iaRSCSS+lOzQJBIJBJJYyBXKkskEokEgBQIEolEIrGRAkEikUgkAKRAkEgkEomNFAgSiUQiASAFgkQikUhspECQSCQSCYApKBA2btyIiy66COeccw4uuugibNq0abyrVBP79u3D5z//eZxzzjlYsmQJ/umf/gl79+4FIG7rZL8PP/rRj3DEEUfgrbfeAtC4bS0UCrj22mtx9tlnY8mSJfjXf/1XAI3Z3rVr1+L888/HeeedhyVLluCRRx4B0DhtXbFiBRYtWuTqt0D17Uuk7WSK8elPf5qsXr2aEELI6tWryac//elxrlFt7Nu3jzzzzDPO/9/97nfJNddcQwgRt3Uy34dXX32VXHrppeSjH/0oefPNNwkhjdvWb3/72+T6668npmkSQgjZvXs3IaTx2muaJjnxxBOd5/n666+TE044gRiG0TBtff7558n27dvJ6aef7rSTkOqfZRJtn1ICYc+ePWThwoVE13VCCCG6rpOFCxeS/v7+ca5ZfDz00EPkM5/5jLCtk/k+FAoF8slPfpK89957zovVqG0dGhoiCxcuJENDQ67vG7G9pmmSD37wg+SPf/wjIYSQ5557jpx99tkN2VZWIFTbvqTanmhyu4lGX18fZs6c6aTs1jQNM2bMQF9fn5N1dTJjmibuuusuLFq0SNhWQsikvQ8//OEP8YlPfAJz5851vmvUtm7ZsgXt7e340Y9+hGeffRbNzc3453/+Z+RyuYZrr6Io+MEPfoAvfOELyOfzGB4exq233tqwz5ZSbfuSavuU8yE0Mt/+9reRz+dxySWXjHdVEuGll17CK6+8gqVLl453VeqCruvYsmULjjrqKNx777246qqrcMUVV2BkZGS8qxY7uq7j1ltvxU9+8hOsXbsWN998M6688sqGbOtEZkppCD09Pdi5cycMw4CmaTAMA7t27UJPT894V61mVqxYgc2bN+OWW26BqqrCthJCJuV9eP755/Huu+/ijDPOAADs2LEDl156Ka655pqGaytg7RmSSqWwePFiAMDxxx+Pjo4O5HK5hmvv66+/jl27dmHhwoUAgIULF6KpqQnZbLbh2spS7XuaVNunlIbQ1dWF3t5erFmzBoCVuru3t3fSqJd+3HjjjXj11Vfx4x//GJlMBoC4rZP1Plx++eX4/e9/j8cffxyPP/44Zs2ahZ/97Gf42Mc+1nBtBYDOzk6cfPLJ+MMf/gDAiirp7+/HvHnzGq69s2bNwo4dO/Duu+8CADZs2IA9e/bg4IMPbri2slT7nibV9imX/nrDhg1Yvnw5BgYG0NbWhhUrVuDQQw8d72pVzdtvv43Fixdj3rx5yOVyAIA5c+bgxz/+sbCtjXAfFi1ahFtuuQULFixo2LZu2bIFX/va17B//36kUil86UtfwmmnndaQ7f31r3+Nn/70p1AUBQDwxS9+EWeeeWbDtPU73/kOHnnkEezZswcdHR1ob2/HAw88UHX7kmj7lBMIEolEIuEzpUxGEolEIvFHCgSJRCKRAJACQSKRSCQ2UiBIJBKJBIAUCBKJRCKxkQJBIpFIJACkQJBIJBKJjRQIEolEIgEA/P/0VXor3+gHdAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(100)\n", + "coeff = np.array([2.7607, -3.8106, 2.6535, -0.9238]) # The 4 coefficients for the AR(4) process\n", + "ar4 = np.r_[1, -coeff] # For use with scipy.signal\n", + "N = 1024\n", + "\n", + "freq_analytical, h = signal.freqz(b=1.0, a=ar4, worN=N, fs=1) # True PSD of AR(4)\n", + "psd_analytical = (h * h.conj()).real\n", + "\n", + "data = signal.lfilter([1.0], ar4, np.random.normal(0, 1, N)) # N AR(4) data samples.\n", + "\n", + "times = np.arange(N)\n", + "\n", + "err = np.random.normal(0, 1, N)\n", + "\n", + "lc_ar4 = Lightcurve(time=times, counts=data, err_dist='gauss', err=err)\n", + "lc_ar4.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b6853e57", + "metadata": {}, + "source": [ + "### The Multitaper Periodogram \n", + "\n", + "Tapering a time series as a way of obtaining a spectral estimator with acceptable bias properties is an important concept. While tapering does reduce bias due to leakage, there is a price to pay in that the sample size is effectively reduced. The loss of information inherent in tapering can often be avoided either by prewhitening or by using Welch's overlapped segment averaging.\n", + "\n", + "The multitaper periodogram is another approach to recover information lost due to tapering. This apporach was introduced by Thomson (1982) and involves the use of multiple orthogonal tapers." + ] + }, + { + "cell_type": "markdown", + "id": "7da1916c", + "metadata": {}, + "source": [ + "In the multitaper method the data is windowed or tapered, but this method differs from the traditional methods in the tapers used, which are the most band-limited functions amongst those defined on a finite time domain, and also, these tapers are orthogonal, enabling us to average the _eigenspectrum_ (spectrum estimates from individual tapers) from more than one tapers to obtain a superior estimate in terms of noise. The resulting spectrum has low leakage, low variance, and retains information contained in the beginning and end of the time series. For more details on the multitaper periodogram, please have a look at the references." + ] + }, + { + "cell_type": "markdown", + "id": "e9a8e18e", + "metadata": {}, + "source": [ + "##### Let's have a look at the individual tapers." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "608c3d1a", + "metadata": {}, + "outputs": [], + "source": [ + "NW = 4 # normalized half-bandwidth = 4\n", + "Kmax = 8 # Number of tapers\n", + "dpss_tapers, eigvals = \\\n", + "signal.windows.dpss(M=lc_ar4.n, NW=NW, Kmax=Kmax,\n", + " sym=False, return_ratios=True)\n", + "\n", + "data_multitaper = lc_ar4.counts - np.mean(lc_ar4.counts) # De-mean\n", + "data_multitaper = np.tile(data_multitaper, (len(eigvals), 1))\n", + "\n", + " # Data tapered with the dpss windows\n", + "data_multitaper = np.multiply(data_multitaper, dpss_tapers)" + ] + }, + { + "cell_type": "markdown", + "id": "fa535945", + "metadata": {}, + "source": [ + "Plotted below are the first 8 tapers (on the left), and the corresponding tapered time series" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b7b5e756", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAnBCAYAAACY5Ow3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3xUVdoH8N+90zLpjSa9hd4VBCmCiICAYgEVsCzYdbHi6rIrll1d26uiu1YQAbuC0i0UQYpKFaSG3lOA9Gn3vH9MZnJvpmYyyWSS3/fz2SW5bc49Jpl57vOccyQhhAARERERERFRHSVHugFEREREREREkcTAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMRERERVdLx48fRrl07DBkyJCquW1exP8kXfaQbQFQXTZo0Cb/++qtmm9lsRnx8PJo0aYLOnTvjqquuwiWXXOLzGt988w2efPJJzTZJkhAbG4sWLVpg8ODBuO2225CYmOhx7pkzZzBnzhysW7cOx44dg81mQ0pKCurVq4euXbuid+/euPLKK2EwGDTnORwOLFiwAIsXL8aePXuQn5+P+Ph4pKamok2bNrjkkkswdOhQXHTRRUH3xcyZMwEADz74YNDnEBFR5bVr167C5zRu3BgrV66sgtbUXR999BHy8/N9vmcTUfVgYEwUQY0aNUKjRo0AADabDRcuXMD27duxdetWzJ07F506dcLLL7+M1q1b+7yG0WhE586dAQBCCBw/fhy7du3Crl27sGDBAsybN08TqG7atAn33XcfCgoKIMsyGjRogPT0dBQWFmLv3r3YtWsXPv30U6xZswYNGzZ0n1dQUIA777wTW7ZsAQAkJyejTZs2kGUZx44dw8GDB/H999+joKAA9913X9B98NZbbwFgYExEVN169uzpsa2goAD79u3zub9evXpV3q665uOPP8aJEycwduxYr4GxwWBAy5Yt0aBBgwi0rvZhf5IvDIyJIuj666/3CAgLCgrwww8/YObMmdi1axduvPFGfPrppz6f7NerVw+ffvqpZtvPP/+MRx55BCdOnMDTTz+N999/333thx56CAUFBejfvz/++c9/onnz5u7ziouLsW7dOnz55ZeQJElzzZdeeglbtmxBcnIyXnjhBQwePNh9jBACu3fvxqJFi5CUlFTpfiEioqpX/r0DcD48vfXWW33up+rXoEEDLF++PNLNqDXYn+QLxxgT1TDx8fEYO3YsvvnmG2RkZKCwsBBTp06Fw+EI+hoDBw7E/fffDwBYt24dzp8/DwBYs2YNcnNzERcXh5kzZ2qCYsBZzn3llVfivffe0zxJtdvtWLRoEQDgySefxJAhQzSBsyRJ6NixI5544glMmDAh1FsnIiIiIooIZoyJaqjk5GT85z//wdixY3Ho0CGsWLECI0eODPp81/hkRVFw9OhRJCcn49ixYwCAli1bIjY2Nuhr5eTkoKioCADQqVOnCtyFbzNnznSXUQOeY91++uknNGnSBA6HA6tWrcLKlSuxY8cOnDlzBhaLBQ0bNsSAAQNw1113eS2H+tvf/oYFCxbghRdewMUXX4w33ngDGzduRH5+Ppo1a4Ybb7wREydOhE6n89q+s2fP4sMPP8SaNWtw6tQp6HQ6ZGRkYNy4cRg7dqxHRt11Pw888AAmTpyIt99+GytXrsTZs2cxcOBA/Pe//wUAbN26FbNnz8aWLVtw7tw5xMbGIjU1FZ07d8aYMWMwaNCgynYtEVGVOHbsGJYvX461a9fi6NGjyM7ORmxsLDp06IDx48d7fY86fvw4rrjiCvfY5E8++QSff/45Dh8+jJiYGPTp0wdTp071O2Ro+fLl+PLLL7Fr1y4UFBQgPT0dAwYMwN13340mTZp4HO96P9m7dy9++OEHfPzxx9i7dy8uXLiAhQsXokOHDgCAvLw8fPTRR/jxxx9x7NgxCCHQqlUrjBkzBhMmTPCYZ8NlzZo1eO+99/Dnn39Cr9ejU6dOuOeee7y2xZ/yc4VcccUVmv0ff/wx+vTp49GHvu515cqV+OCDD7Bnzx4YDAb06dMHjz/+OJo2bepu9wcffIDdu3dDURT06dMHTzzxBFq0aOG1fSUlJfjkk0+wdOlSHDp0CDabDU2bNsWIESNwxx13IC4urkL3e+DAAbz33nv47bffkJWVBaPRiNTUVLRv3x5XXXUVRo8e7XFOVbwX++tPwDmfyjfffINvv/0We/fuRUlJCRo2bIghQ4bg7rvvRmpqaljujWoeBsZENVjHjh3RrVs3bN++HWvWrKlQYCyE8NgWHx8PADh8+DDOnz+P5OTkoK4VFxcHSZIghMC2bdvQtm3boNvhS6NGjdCzZ0/3mOXyY9lMJhMAICsrC/fffz9kWUZaWhqaNGkCq9WKEydOYN68eVi2bBk++eQTn2/sR44cwYsvvoiioiJkZGTAbDZj//79+Pe//40tW7bg9ddf93hj/f3333HffffhwoULMJlMaNasGYqLi7Ft2zZs3boV69evx8svv+xxHgDk5ubi+uuvx6lTp9CmTRu0bt0aer3zT+3KlSvxwAMPwOFwID4+Hm3atIGiKDh9+jQWL16MgoICBsZEVGO98847+OqrrxAbG4v69eujXbt2yMnJwcaNG7Fx40Zs27YNTz31lM/zn3vuOcybNw8NGzZE69at3Q99165di9mzZ6N79+6a4+12O6ZNm4YlS5YAcA4datu2LY4cOYIvvvgCy5cvx4cffoiuXbt6fb33338fr7zyClJTU9GsWTOcPn3avS8zMxOTJ0/GqVOnYDAY0LhxY0iShD179mDXrl1YtWoV3n//fRiNRs01586di+effx4AkJaWhkaNGmHXrl2444478Nhjj1WoP9PS0tCzZ0/s3LkTVqsVnTt31rxeQkJC0NeaP38+nn32WdSvXx/NmzfHwYMHsWLFCmzfvh0LFizAokWL8MILLyA9PR1NmzbFwYMHsXLlSvzxxx/47rvvPIK9s2fPYvLkydi3bx90Oh0aNWqE2NhYHDp0CDNnzsSKFSvw8ccfIyUlJaj2/fHHH5g0aRKKi4thNpvRsmVL6HQ6nDp1Cj/88AMOHz7sETxW1XuxP655UjZt2gRJktCwYUM0atQIR44cwUcffYQVK1Zg7ty57ocNod4b1VCCiKrdxIkTRUZGhnjzzTcDHvviiy+KjIwMcdVVV2m2f/311yIjI0MMHjzY63kffvihyMjIEO3btxe5ublCCCEOHTok2rdvLzIyMsQ111wjlixZ4t4XyM033ywyMjJE9+7dxdtvvy0OHDggFEUJ6lx/MjIyREZGhs/9eXl54uuvvxY5OTma7YWFheKtt94SGRkZ4vbbb/c474knnhAZGRmiU6dOYuLEiSI7O9u9b926daJ79+4iIyNDfPLJJ5rzzp49K/r06SMyMjLE66+/LoqKitz79uzZI4YPHy4yMjLEp59+qjnvzTffFBkZGaJDhw7ihhtuEMePH3fvKy4uFkIIMWrUKJGRkSFee+01YbFYNOf/8ccfYuHChT77gYioOmzcuNHn3+XVq1eLrVu3evzt//PPP91/G3///XfNvmPHjomMjAzRsWNH0alTJ/Hdd9+59+Xn54sHH3zQ/V7m+lvp8tprr4mMjAxx9dVXi23btrm322w2MXPmTPd55f+eutrfqVMnMW/ePOFwOIQQQjgcDmGxWERRUZEYNmyYyMjIEP/4xz/EuXPn3OceP35cjB8/XmRkZIhXXnlFc909e/aIjh07ioyMDPHuu++6r2uxWMSzzz4rOnXq5Pd92ZfBgweLjIwMcezYMa/7XX3o7bque+3WrZtYsGCBe/u5c+fE9ddfLzIyMsTdd98tunbtqtmfm5srxo4dKzIyMsTLL7+suaaiKOKWW24RGRkZ4r777hOnTp3SnHfvvfeKjIwM8fDDDwd9j3fffbfIyMgQTzzxhCgoKNDsy8zM9HhPrcr3Yn/9+eijj4qMjAxx8803iwMHDri3FxUViX/84x8iIyNDjBs3rlL3RjUXxxgT1XCumaFzc3ODPmft2rXu0t3LLrvM/US3RYsWePjhhwEAu3fvxsMPP4xLL70UQ4cOxSOPPIIvv/wSeXl5Xq85Y8YMpKamoqioCG+88QZGjhyJ3r1747bbbsPMmTPds5iGW0JCAq677jqPp9mxsbG4//770atXL6xfvx5nz571er4kSXjttdeQlpbm3nbZZZfhgQceAAB88MEHmuz6rFmzcO7cOdxyyy2YOnUqzGaze1+7du3w2muvQZIkzJ492+vr6XQ6zJw5E40bN3Zvi4mJAeDM1APAnXfe6ZGF6Ny5M6655ppA3UFEFDGDBg1C9+7dPTJ0HTp0wD//+U8AwLfffuv1XLvdjptuukmTOYuPj8dLL72ElJQUnDhxAkuXLnXvy83NxezZsxEbG4v//e9/6Natm3ufXq/HAw88gCuvvBInTpzAihUrvL7muHHjMGHCBMiy8+OuLMswGo34+uuvcfjwYQwaNAjPPvuspnqqcePGeOONNxAbG4v58+fDYrG4982ePRt2ux2XX3457rrrLvd1jUYjpk+fjpYtWwbTjVXihhtuwLXXXuv+Pjk5GX/9618BAKtWrcKNN96o2Z+SkoKpU6cCcE7YqbZ69Wr8/vvv6NChA/7v//5Ps0JFSkoKXnnlFTRs2BDLli3DqVOngmqf6/3v9ttv9yjBbtWqFW666SbNtqp8L/Zl3759WLRoERo0aID//e9/mvJ+s9mMGTNmoHPnzti2bZu72i2Ue6Oai4ExUQ3nGgtcWFjodX9WVhZuvvlm3HzzzbjpppswYMAATJkyBfn5+WjYsCFmzJihOf6uu+7C/PnzccUVV7jLlY8dO4YlS5Zg+vTpGDx4ML744guP18nIyMDixYsxefJk95jevLw8bNy4EW+99RZGjx6Nhx9+GAUFBWG8+zK///47/vOf/+Cee+7BxIkT3ffsekPas2eP1/OGDRvmdXmR8ePHw2Aw4Pjx4zh06JB7+/fff+/e702HDh3QuHFjHD58GGfOnPHY369fP82HCDXX0lzLli3zfaNERDXY+fPnMX/+fDz++OO44447cMstt+Dmm2/GK6+8AsD332IAXidnjImJwQ033ADAOVmky88//wyLxYJ+/fppylbVhg4dCsA5k7Y3Y8eO9brd9Xd+3LhxXvc3aNAAXbp0QWFhIXbu3OnevnbtWgDAxIkTPc6RJAm33HKL1+tVB1cfqqnnBPG33zX/iIurf8aOHevxEBdwfi7p168fFEXBb7/9FlT7XO9/K1as8DrUq7yqfC8O9JrDhw/3usKGLMsYPHgwAO3PXEXvjWoujjEmquFcAbFrfHB5VqtV8+TSNRHK5Zdfjttvv93rOOKLL74YF198MaxWK3bu3Ik//vgDa9euxYYNG1BQUIB//OMfiI2NxahRozTnpaWlYdq0aZg2bRoOHz6MP/74A5s2bcLKlSuRk5ODpUuXIi8vDx9++GHY7t9ms+Hxxx8PGEy6Zt4ur1WrVl63x8fHo0GDBu7AuFWrVigqKsLx48cBODPk3sYtAcC5c+cAAKdPn/aY+MvX6wHAHXfcgRkzZmD69OmYNWsW+vfvj549e6JPnz5eJ/MgIqpJNmzYgIceesjn31vA999ig8HgsRKCS5s2bQBA85By7969AICdO3fi5ptv9npefn4+AGjGDqv5mtDLVeH03//+1+f7leuhqyvoysvLQ3Z2tqa9vu4jEpo1a+axTf2+4m2/q5LKNbmmi6t/vvzyS5/LGp08eRKA774v7/bbb8eGDRvw3//+F99++y369++PXr164dJLL/V4H63q92JfXPe9atUq/PHHH16PycnJcb9mKPdGNRsDY6IazlWm5Ctw8jWrYjCMRiN69uyJnj174rbbbsOePXswZcoUZGVlYebMmR6BsVqLFi3QokULjB49GkVFRfj73/+OpUuXYt26ddiyZYvHZFqh+uCDD7Bs2TKkp6fjsccew8UXX4z69eu7s93Tpk3Dt99+C7vd7vV8dQl1eenp6Th+/Lj74YPrQxbgnD06kJKSEo9t/mb7vvnmm5GQkIBZs2Zh165dOHjwID7++GPo9XpcccUVeOqppyr8hJuIqDoUFBS4g+LRo0djwoQJaNWqFeLj46HT6XDs2DEMHTrU59/i5ORkd+lxea6/0+rKKHXQGyj4Upc7q/n6e+y69q5du/xeFyj7O68OHn29r/h7v6lq3u5VHVAG2q/m6p/9+/cHfF1ffV/eoEGD8MEHH+B///sftmzZgs8//xyff/45JElC37598dRTT7kn9qzq92JfXK979OhRHD161O+x6vuuyL1RzcbAmKiG27x5MwBoxldVlfbt2+Pee+/Fs88+i8OHD+PChQtey4nKi42NxXPPPYfly5dDURTs2LEjbIGxa7zav//9b68zNl+4cMHv+f7GZrue/rvGBKnfSLdv3x5wPFIoRo0ahVGjRiE3Nxe//fYbNm3ahCVLlmDFihU4fPgwvvrqK6+la0REkbRmzRqcP38e3bt39zoTsL8ssmu/oiheg2NXFk49PtP19/jOO++s8GzPgcTGxiIvLw9Lly71u0xU+XNccnJy3OWzaq77iHaue33//fcxcODAsF23f//+6N+/P/Lz87F582b3+9/69etxxx13YMmSJUhKSqqW92JvXK87Y8YMn1UKvgR7b1SzcYwxUQ22a9cudznP5ZdfXi2vqR7LZbPZgj4vPj7endW2Wq1ha4+rnKpXr14e+xwOh2b8lzeZmZletxcUFLhL5FxLPSUkJLjLnoJ5Ul4ZqampuOqqq/DPf/4TixYtQkJCAvbu3YsdO3ZU6esSEYXC9be4R48eXjONgf522Ww2n1k4199p9bJ7rgxbVfwtdpU8V+TaiYmJSE9PB+Bcs9YbX+830SaU/qmIhIQEXH755XjiiSewbNkyNG3aFFlZWVi1apV7f3W9F6uF474D3RvVbAyMiWqo8+fP429/+xsAoGXLlhg2bFilr5mbmxtwYghX2VJiYqI70LXb7QEzs0eOHHE/La/IzJyuJ8HeSqHU+13ZXbXFixd73a72/fffez3miy++gM1mQ+PGjTVjkVz9/NFHHwXV/nCoX78+mjRpAgA+Z9cmIook9dry5dlsNsyfPz/gNT755BOPbRaLBV999RUAYMCAAe7tl19+OYxGI9atW+czEA3VVVddBQD4+OOPoShK0Of1798fAHzeazB94I3rfS7YsuSq5uqfzz//HMXFxVX6WnFxcWjXrh0A7ftfJN6LXfe9aNGisGT/fd0b1VwMjIlqmIKCAixcuBDXXXcd9u3bh9jYWLzxxhs+x2ZVxHfffYcxY8bgs88+8ygxLi4uxpw5c/D+++8DcM5G6XrNoqIiDBkyBP/5z3+wZ88ej+D6119/xQMPPAAhBBo0aOD+8BAMV4b6119/9br/4osvBgC8+OKLmhmvV65ciRkzZrg/rPkihMCjjz6qud8NGzbgrbfeAgBMnjxZk/246667kJqaisWLF+OZZ55xT+7hUlBQgKVLl+KFF14I+h5d5z300EPYsGEDHA6Hpn1Lly7Fvn37IEkSOnbsWKHrEhFVB9ff4hUrVrhnZwacD3Effvhhd0bZF71ej08++QRLlixxbyssLMQTTzyB3NxcNG7cGCNHjnTvq1evHv7yl7/AbrdjypQpmhmrXfbu3YuXX37ZPeQoWOPHj0eLFi2wefNmPPTQQx5LDlmtVqxevRpPPvmkZvsdd9wBvV6PVatW4cMPP3QH1VarFf/61780k4dVRKD3weo2dOhQ9OrVC0eOHMGdd97pkQm32+3YuHEjHn300aArxB566CH89NNPHsdv3LgR69evB+BcttClqt6L/enYsSNGjx6NvLw83H777R5VEEIIbN++HU8//bRmJu+K3hvVXBxjTBRBX3/9tfuPpisre+zYMfebbefOnfHSSy8FPQYqEEmSsG/fPjz99NN4+umn0bhxY6SmpqKgoACnTp1yZ2379+/vXu/YdV5BQQFmzZqFWbNmITExEY0bN4Ysyzh16pQ76ExOTsabb76pWW8wkBEjRmD//v2455570K5dO/fs26+99hrq1auHv/71r1i/fj1WrVqFAQMGoGXLlsjNzcWpU6dw6aWXon79+vjuu+98Xn/y5Mn49NNPMWjQILRt2xYFBQU4cuQIAOcT6fLjiOrXr493330X9913Hz755BN8/vnnaNWqFWJjY3HhwgUcPXoUiqJUeMy3oihYtmwZli1bhpiYGDRv3hxGoxGnT592Z2DuueceTSkhEVFN0blzZ4wcORJLly7FlClT0LRpUyQmJmL//v0QQmD69Ol4+umnfZ7foEEDDB48GI888ghefvllpKWl4eDBgygqKoLZbMbLL7/sMZZ06tSpyMnJwZdffonJkycjNTUVTZo0gd1ux4kTJ9yVTH369KnQvZjNZrz33nu46667sGLFCnz//fdo3rw5kpOTkZ+fj6NHj8Jms7lLp13at2+Pxx9/HC+88AJeeuklzJo1C40aNcLRo0eRn5+Pxx57DC+99FKF2gI43wdXr16NGTNm4JNPPnGvJvHUU0+hQ4cOFb5eZUmShJkzZ+Lee+/Fb7/9hpEjR6JJkyZIT09HUVERjhw54s5u//vf/w7qmuvWrcOyZctgMBjQokULmM1mZGVluR9KjB49Gv369XMfX1XvxYE899xzyM/Px+rVq3HjjTeiQYMGaNiwISwWC44ePeqehO3WW28N+d6o5mJgTBRBp06dcv/hjImJQUJCArp164bOnTtj2LBh6N27d1hf75ZbbkH79u2xbt06bN68GadPn3YvT5Ceno6OHTti1KhRuOqqqzRZ1ISEBKxYsQLr1q3DL7/8giNHjuDEiRMoKipCfHw8evbsiYEDB+Kmm25CSkpKhdp01113QVEULFmyBAcOHHA/cXW96Xbs2BGffPIJ3njjDWzevBmZmZlo2rQpHn74YUyePBn/+Mc//F6/efPm+Oqrr/DGG29gw4YNyM/PR5s2bXDjjTdi0qRJXjPxXbt2xeLFizFv3jysXLkShw8fhs1mQ/369dGnTx8MGjSowqXtcXFxePnll7F+/Xrs2LEDp0+fRmFhIZKTkzF48GDcdNNN1TaOnIgoFK4HtQsXLsTp06dRVFSEgQMH4p577gnqb/8//vEPtG7dGp9//jkOHDgAk8mEYcOGYerUqV6XOpJlGc8//zxGjhyJzz77DFu3bsXu3bsRFxeHRo0aYdiwYbjyyivRt2/fCt9L8+bNsXDhQnz++edYvnw5MjMzceLECdSrVw/dunVDv379MHz4cI/zbr/9djRv3hzvv/8+du/ejcOHD6Nz586455570KRJk5AC42uvvRZ5eXn46quvcOTIEff7cl5eXoWvFS5paWmYP38+Fi5ciCVLlmD37t04c+YMUlJS0KFDB/Tu3RvDhg0LWLXl8uKLL2Lt2rXYunUrzp49i/z8fMTHx6Nv374YO3YsxowZ43FOVbwXB2I2m/HOO+9gxYoVWLBgAf744w/8+eefSEpKQsuWLdGzZ09cddVVmiFjodwb1UyS4ErURFQL/e1vf8OCBQvwwgsv4Lrrrot0c4iI6qTjx4/jiiuuqNTSgkRE1YFjjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbJt4iIiIiIiKhOY8aYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BMREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1Wn6SDegNlEUAYdDCcu19HoZdnt4rlVbsY+Cw34KjH0UHPZTYNXVRzqdDFmWqvx1qlq43jf5sxkc9lNg7KPgsJ8CYx8Fpya9bzIwDiOHQ8H580WVvo4sS0hLi0deXjEURYShZbUP+yg47KfA2EfBYT8FVp19lJwcC1nWVelrVIdwvG/yZzM47KfA2EfBYT8Fxj4KTk1732QpNREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1WkMjImIiIiIKHyEiHQLiCqMgTEREREREYWF7sgJJLz4DvT7DkW6KUQVwsCYiIiIiIjCwvTjLwCAmMUrI9wSoophYExERERERCGTCosQs/AHyKezysqoJSmyjSKqIH2kG0BERERERNHLuGYTDLsPQL/vEJSUxEg3hygkzBgTEREREVHIpBKL81+HAyhNGAtmjCnKMDAmIiIiIqLQqYNgVym1zMCYogsDYyIiIiIiqoSyIFhyL9XEwJiiCwNjIiIiCsnTTz+Ndu3aYd68eZFuChFFkreMMUupKcpE1eRb8+fPx4cffoisrCx06NAB06dPR9euXX0ev2zZMrzxxhs4ceIEWrRogccffxwDBw7UHHPgwAG8/PLL+O233wAAGRkZ+O9//4vU1NQqvReiOkMISOfyoDt1BrozOZDO50E+nwepuASS1QrYHIBOhtDpAJMRSmI8RGI8lPRUOBqkQWlYDyLWHOm7IKJyVq1ahW3btqF+/fqRbgpRzVZUAt2ps3C0alp7g0XNbQkv24hqvqgJjJcuXYoXXngBzzzzDLp164Y5c+ZgypQpWL58udcgduvWrXj00UfxyCOPYPDgwVi8eDHuu+8+fPvtt2jdujUA4OjRo5gwYQJuuOEGPPzwwzCbzdi3bx8MBkN13x5R7VJigf7QMegPHIHu4FHIRSVeDxNGA4TJCElRINnskIpLIJ/P8zjO0SAdjhZNYMtoCaVxg9r7wYIoSmRnZ2PGjBl47733cO+990a6OUQ1WtycryGfz0PRjSPhaNM80s2pIuqMsWsT36spukRNYDx79myMHz8e119/PQDgmWeewerVq7FgwQJMnjzZ4/g5c+Zg4MCBmDJlCgBg6tSp+OWXXzB//nz885//BAD83//9HwYOHIjHH3/cfV7z5rX1DxZRFRMCusPHYdi+B/p9ByE5FOdmWYbjogZwXFQfjob1oKQmQSQnOrPA5d80bXZI+YWQL+RDzsqB7nQ2dCdOQXcmG7oz2TBu2gYlKQG2jm1g69oBIjUpAjdKRE8++SQmTZqEdu3aVfpaciUn6HGdX9nr1Hbsp8Cqqo9cD3z1Z7MhMlqE9dqR4K2fJNl7KXVd/Xnj71twalo/RUVgbLVasWvXLs1TaVmW0a9fP2zbts3rOdu2bfMImPv374/Vq1cDABRFwerVqzFlyhTccccd2LNnD5o3b477778fAwYMCLmt4fgPW9N+SGoi9lFwqqWfbDbot++BYdN295u/MBlh69QSjrYt4GjZFDAZNadI8FFhZTIApmSI9GQ4WjeFw3X8uQvQHTgK/e4D0B07BdOGrTBu2ApH2xaw9e4KpXnjkJ9M82cpOOynwOpKH82bNw9FRUX4y1/+Uulr6fUy0tLiw9AqICUlLizXqe3YT4GFu49cNVOxsUbow/TzXhOo+8kaY4BS+rXrb6BOrwvb73e04u9bcGpKP0VFYHzu3Dk4HA6kp6drtqelpeHIkSNez8nOzkZaWprH8VlZWQCAnJwcFBUV4YMPPsBDDz2EadOm4aeffsLdd9+Nr776Ch07dqxwO8P5Bg/UnB+Smox9FJyq6CdhtcHx82bYf/4dKCgCAMitm0J3aVfIXTIgGcM4JCEtHmjTGBjeFyL3Ahybd8H+y1bo9x+Gfv9hSM0vgn7EAOgyQq/44M9ScNhPgdXmPsrMzMR///tffPHFF5Dlys/fabcryMsrrtQ1ZFlCSkoczp0rhKKIwCfUUeynwKqqj1x/EYoKrbDlFITtupHirZ+MVgdc7/qKXYEMwKEoyKkF9xsK/r4Fpzr7KTHRDINB5/eYqAiMfRFCQPKTJfK2z7VNUZzPta644grcdtttAIAOHTrg119/xeeff45nnnmmwu0Jxxs8wF+mYLCPglMl/aQo0O/YC8OaXyEXFEJIEhwd28DWtweUhvWcx+RbAFjC83oedEDPrkC3TtDtzoRhw1bojpyE7Z3PUdK8MaxD+5W1Iwj8WQoO+ymwmvYGXxW2b9+O3NxcDBs2zL3N4XDgX//6F+bNm4fly5dX+Jrh6itFEfzZDAL7KbCq6iMhorTvFQXw8iBM3U+au1It1xSV9xtG/H0LTk3pp6gIjFNSUqDT6ZCdna3Znpub65FFdklPT/c4Picnx318SkoK9Ho9WrVqpTmmdevWOHHiRMhtDed/1JryQ1KTsY+CE65+kk+eQcyyNdCdzQEA2Dq0hmVgb4jU5NIXqsb/FpIMpWNb2Dq0gX53Jkxrf4XuyAnEzPoKtp6dYBnYG4gxBX05/iwFh/0UWG3uo6FDh6Jz586abZMnT8Z1112HsWPHRqhVRBROusPHYfxlM0quuRKGzX/AtH4LCu6+xf+8HupcVGlgLDj5FkWZqAiMjUYjOnXqhPXr12PIkCEAnBnfDRs2uLO95XXv3h2//PILJk2a5N62fv16dO/eXXPN8qXYhw8fRrNmzarmRoiilcUK05pfYdj8ByQAjsYNUXJFP+cM0ZEmSbB3bAN7+1YwbPsTpjWbYNy8E/rdmbAM7Qd7x7acGZMoTBITE5GYmKjZZjAYUK9ePbRo0SIyjSKisIr9dBEAwLjuNxi3/gkAMOw+AOtlvXyfxHWMqRaIisAYAO644w5MmzYNnTp1QteuXTFnzhyUlJS4n1BPmzYNDRo0wKOPPgoAuPXWWzFx4kTMmjULgwYNwtKlS7Fz507861//cl/zL3/5Cx577DFccskluOSSS/DTTz9h06ZNmlmqieo63eHjiFm8EnJ+IUSMESVD+sHWtX3Ne8OTZdh6doa9fWuYVm2EYccemL/7Cba9h2AZPpBrIRMREVWEQyn7OtCcAqrPBJI7MK6CNhFVoagJjEeOHInc3Fy8+eabyMrKQocOHfDBBx+41zA+deqUZiKQnj174tVXX8Xrr7+O1157DS1atMDbb7/tXsMYAIYPH468vDy88847eO6559C6dWu88847IU28RVTrOBzOLPGmbZAA2Dq0geXKyyDiYiPdMr9ErBklVw+GrUs7xCxeCcPeg9AdO4WSkZfD0bZFpJtHVOusXLky0k0goqqgTgLrAk22p6mlLt3EyJiiS9QExgAwceJETJw40eu+uXPnemwbMWIERowY4fea48aNw7hx48LSPqLaQso5B/N3P0J3OhvCZETx8EGwd2wT6WZViKPZRSicPA6mn9bDuH03Yr9aBmvvbrBc3gfQVf+kRUREVMcJAf2OPTDs2IPi8aMAQw3/GK4ObCuQMXbPxMXAmKJMDf+NJKLqpt97EDGLV0Ky2mBv0hAlY4ZCJCVEulmhMRlhGXk57G1bwLx4JYy/bofuxBkUX3slRGLdXluRiIiqn3nJKgCAft8h2Du1jXBrAqlIYKz6mmOMKUpVfhFCIqodFAXGNZtg/mYFJKsNlst6oXjCNdEbFKs42rZA4V9uhKNRfehOnEbsrC+hO3Q80s0iIqK6SkTZzPWBSqk5+RbVAgyMiQgotsD85VKY1m+BMBlRdMMIWAf2DvyEOIqIpAQUTbwW1l6dIReXwPz5Yhg274x0s4iIqC6KhphRHeuGUkpNFGVYSk1Ux0nn8mD+Ygl0uefhSE9B8XXDIdKSI92sqqHXwTJsAByN6iNm2WrEfL8WttzzEOOvinTLiIiottNkiSMbGet37oNkt8PW3d+EsxUopfZxGlE0YWBMVIfJJ8/A/OUyyEXFsLdpjuIxQwGTMdLNqnL2Lu1QnJKImK+Xw/D7H7Dl5wOjrgCMtf/eiYiIzIt+AgD/gbE6wK1IxtiNqWOKLrWnTpKIKkS/7xBi538HuagY1p6dUXz98DoRFLs4mjRC0W3XQ6mXCmXvYcTMXQipoDDSzSIiorogGrKqFRkjrD7W9TXjYooyDIyJ6iDD5p2I+Xo5YLej5Ip+sAzrX6vGEwdLJCei+LbrILdtBt3ZHMTOXQAp90Kkm0VERLVeVETGZV8Kxe+RwltgTBRl6t4nYaK6TAgY129GzPdrAZ0OJWOHwda7W91+EzMZYbjzBtg7tIZ8Ph+xc7+BfCor0q0iIiKqev5mx/a2BFMwxwZ7DlENw8CYqK4QAsbVG2Fa8yuE0YDi8VfD3r51pFtVI0h6PSzXXglrz86Qi0oQ+8m30B05EelmERFRbaIOFCP5PFpRvH9dXkVmmtZkjF3nMDCm6MLAmKguUBSYVvwM08ZtEDEmFN08Go7mjSPdqppFlmEZ1h+Wgb0hWW3OmboPHot0q4iIqLaoKbNSq4PhYINXfwE0AO391OEqNIpqDIyJajnhcMD03U8wbv0TSpwZRROugXJRg0g3q2aSJFgv64WSoZdBsjtg/mopdAeORLpVRERUC0jq4DKSsaNDnTH2V0odWiPd442ZMaYow8CYqDZzOGCbtxj6XfuhJCWgaOJYKPXTIt2qGs92SVeUXDUAkkOB+evl0O89GOkmERFRtFMHoRWIGfV7D8Lw6/awNUNyOFTtCK4hUsDjGART9GNgTFRbKQpM3/4IZfteKMmJKJp4LURqUqRbFTVsPTujZOTlgKIgZsH30P95INJNIiKiaKYpYQ5UmlzG/M0KxPy0HrBYw9OOYDPG6mA4UGCsGT/NjDFFJwbGRLWRoiDmu5+g350JKS0ZJZOugUiMj3Sroo6tWweUjBoCAIj57kcGx0REFDp1EOovIPVBk+mtDNV1pGAD9Iq01z35VvCnENUEDIyJahtFQcyin2DYfQBKciKM990EkZgQ6VZFLXuXdigZcwWA0uCYZdVERBSKUCa9UnM4YPhtB6TzeZVrhyOEdlQkY1waGUuMjCnKMDAmqk0UBTGLVsLw5wEoSQkomXgNpJTESLcq6tk7tnVmjoVAzMIfOCEXERFVnDp4DDjLsyfD9j2I+fEXxM36slLNkBRV5tlfJrgCgbykiYtdpdQVbxtRJDEwJqothEDMklUw/LkfSmI8im4ZA5HETHG42DtnwDLyckiKAvM3K6A7xKWciIgoeJoFjULIGMvnLjjP9TXW2OFAzOKV0GUe9X8he5ABbxCBsVRQBCm/wPsazRW9x3CVihOFiIExUW0gBEzfr4Vh5z5nUDzhGohkZorDzdatA0qGDYDkcMD81XLojp6MdJOIiKgm8zWBVQhjjAMtn6TfewiGP/Yi9osl/q+jDkD9Za6DCIzjZ85B/FtzfewP/h4NG7ci4aX3IB8/HfQ5ROHGwJioFjD+/CuMW3ZBiTWj6ObRDIqrkK1XZ5Rc0Q+S3Q7zF0v4Jk5ERMGpZCm1CLSusN0e1HWkIEukJSXArNQh3IMvMas2AgCMm3eG7ZpEFcXAmCjKGTZtg2n9FgiTEcU3jYJITY50k2o9W+9usFzeB5LNjtgvlkA+nRXpJhERUU3kK2McyuRbcoDAOFDg7OIIcoxxoEm6ii3+94ciyFsgqgpRFRjPnz8fQ4YMQZcuXTBu3Djs2LHD7/HLli3D8OHD0aVLF4wePRo///yzz2PvvPNOtGvXDqtWrQp3s4mqjGHbn4hZuQHCoEfRuKuhNEiPdJPqDGvfnrBc1guSxQrz54sh5ZyLdJOIiKim8ZUlDiWQDBT4BhsYq4Jhv2OdVe2VvBwmFRaVfcOJtqgWiJrAeOnSpXjhhRdw//33Y8GCBWjXrh2mTJmC3Nxcr8dv3boVjz76KG644QYsXLgQQ4cOxX333YfMzEyPY+fNmwfBRcgpyuh3H4Bp2RoIWUbxdcOhNGkY6SbVOdYBl8B6cRfIRSWI/WwxpAv5kW4SERHVJOqPl6oMrBRSGXKYAmN1o/ytY6wJ5BXoDh6DfDan7OWKilX71ZNvMe1L0SlqAuPZs2dj/PjxuP7669GmTRs888wzMJlMWLBggdfj58yZg4EDB2LKlClo3bo1pk6dio4dO2L+/Pma4w4cOID33nsP//73v6vjNojCQpd5BDHf/QRIEkquGQpHq6aRblLdJEmwDL0Mts4ZkPMKEPvZIu0TdCIiqttUAaOkLk0OZfKtQAKVWruoX9pPO9TBu1RsQeznixH34Rdl2+yqkmxvCaaQbpFBNUWOPtINCIbVasWuXbtw7733urfJsox+/fph27ZtXs/Ztm0bJk+erNnWv39/rF69WnPdRx99FE8++STq168flrbKwf5RCuIa4bhWbVWX+0g+ehIx33wPSVFguXowlI5tfD7hqsv9FKzK95EE6+ghkKw26PcdgvnzJSiZeA0QYwpfI2sA/iwFxj4iIhfdgSMwrf0NxddcWbaxsqXUgZYzCjZTG+xYZ3V7rbbQr0MUJaIiMD537hwcDgfS07XjJ9PS0nDkyBGv52RnZyMtLc3j+Kysskly/u///g9t27bFiBEjwtJOvV5GWlp8WK4FACkpcWG7Vm1V1/pIOX4a1i+XAnY79NcMQcygi4M6r671Uygq20di8ljYPvgK2H8U8QtWwHjXjZCMhjC1rubgz1Jg7CMiiv1yKQDAtGFL2UZ12XIIpdSaDK3XA4ILjKVgl41St9HbpTWZZy9BP4NlijJRERj7IoSA5OePgLd9rm0bN27E8uXL8e2334atPXa7gry84sAHBiDLElJS4nDuXCGUqii1qQXqYh9JOedg/nghpBIrrP0vRmHn9kBOgd9z6mI/VVRY++iaYYiZ/x10B4+j8P2vYblxBKDThaehEcafpcCqs48SE80wGGrHzxZRbSbUH0WVIANSXxwBlmMKEIhKeQWQrNZy5/gbYxygjaKyY6a9kJzt1B0+DnuXdhyvTNUqKgLjlJQU6HQ6ZGdna7bn5uZ6ZJFd0tPTPY7PyclxH//bb7/h1KlTuPTSSzXH3HfffejXrx8+/PDDkNoazg9DiiL4ATSAutJH0oV8mD9ZBKmoGNaLu8DS/+IKvanWlX6qjLD0kcGAonFXI3b+Qugzj0J8+xNKxlwByFEznUNA/FkKjH1ERG6y6gGWpvS4CjLGAf7uxL89FwBQPGZo2TX9rWOsHhPt8NJeX5nnSmaMYz/+BnJ+IYolyRkcE1WTqPi0ZjQa0alTJ6xfv969TVEUbNiwAd27d/d6Tvfu3fHLL79otq1fv959/C233ILvvvsOCxcudP8PAKZPn45nnnmmKm6DKCRSYRFiP10EOa8Ati7tYBl6GZ+g1mSxMSi+aRSUpAQYdh+A6fu1LCcjIqqr9GWBsaReJinYh2fq949AY4yDzNpqssb+2hEoIyy8H+veHuJbn5xfCADQZeUEOJIovKIiYwwAd9xxB6ZNm4ZOnTqha9eumDNnDkpKSjB27FgAwLRp09CgQQM8+uijAIBbb70VEydOxKxZszBo0CAsXboUO3fuxL/+9S8AzvHG5ccgA8BFF12EJk2aVN+NEflTYoH5s8WQz12ALaMlSkZezqA4CoiEeBTdNBqx8xbAuPVPiBgTrJdfGvhEIiKqVYR6OI0IYfIt9XGqjLEu8yj0+w7BctUASIVFEDExwV/T32zSvrLAXgNjX6XhlcgYqz/jeMtSE1WhqAmMR44cidzcXLz55pvIyspChw4d8MEHHyA1NRUAcOrUKciqcsWePXvi1Vdfxeuvv47XXnsNLVq0wNtvv43WrVtH6haIKsZqQ+wXS6E7mwN7i8YouWZorSrJre1EahKKbxqN2PkLYdqwFYgxwXppj0g3i4iIqpNO9b7trdw4EHWWWRXQxn6xxLn7ovowLf8ZwmyCdVAf7fV9PEiX7KqxyuUzxr5mmvaWWRY+AmdRyZSxt2sSVYOoCYwBYOLEiZg4caLXfXPnzvXYNmLEiArNOL13796Q20YUVnYHzN+sgO7EaTguqo/i60cA+qj6dSUASv0055jjTxfBtGojhMkEW4+OkW4WERFVF/UD7VCWN1Jnmb2UUstncyApCqTCYkh5qgk5FcX35I82VWBcfqyzz8DYf8ZYUxouPPeHhIExVTOmn4hqGkVBzHc/Qn/oGBz1UlE07mqgFi77U1cojRui+PoREDoZpuVroP9zf6SbRERE1cXX2sXBxoy+lkQqJRVbyr5WB7x+JurSHOd3jLE68A2wHFOgMcghkFhKTdWMgTFRTSIEYpatgWHvQSjJiSi+aTRgjol0q6iSHC2boOSaKwFJQsyildAd8L7+OhER1TIOX2sXB1tKrZ4Ay/McqaRE9Vp+xg6r2Wy+j/NVPu3wDIw1M1qrJ+rytj8UzBhTNWNgTFRTCAHTT+th2LEHSkIcim4eDREfG+lWUZjY27VCycjLISkKzAtWQHf0ZKSbRFRh7777Lq6//nr06NEDffv2xQMPPIDDhw9HullENZbXTGv5r/0JkJWVitWBsZeZob21SZUx9ghe1VlizWRhXpZuCrRcU2UxMKZqxsCYqIYw/rIZxt92QDHHoPim0RDJiZFuEoWZvWt7lAy9DJLdAfOXSyGfyop0k4gq5Ndff8WECRPwxRdfYPbs2bBarfjLX/6CEnXWiojKqLK4UgjBoxSoXNmiyv6qX8vfOsmaUuryY4xVXys+Al/FW2DsJTMuBOSTZxH70deQs3N9t0dN8RKAE1UTBsZENYDhtx0wrf0NwmhA8fhRUNJTIt0kqiK2S7rCMuASSFYbzJ8vDv7DAlEN8OGHH+K6665D27Zt0b59e7z44os4ceIE/vzzz0g3jahm8jfG2O4IHCAHCoxVkazkpdzZGynYUmrh49rujLHqmt4m3wJg/mopdKfOImbJap/t0dCUjjMwpurFaW6JIky/Yw9ifvwFQq9D8Y0joTSqF+kmURWzXtYLUokFxt92wPzpYhRNupYVAhSV8vPzAQBJSUkhX0OWK7c2u+v8yl6ntmM/BVYVfeQrWJUtFiS8/B7sbVvAMm6k7/PVX3sbY6wJTssyxrIkQfi4D/WyT5JU7n7Vp/gIymUopYf6yICLsoyx5MpoCyWoftUEw4qI2p9X/r4Fp6b1EwNjogjS7z2ImKWrIWQZxWOvgqPZRZFuElUHSYLlin6AxQrjjj2I/XSRMziOj4t0y4iCJoTACy+8gN69e6N169YhXUOvl5GWFh+W9qSk8PcnGOynwCrbR0IRcM0VbdK7wkhA/dnfkJ0LAUC//zDi/fwOCFlxX8tbebROLkvQGnWS+7VSks2QkrTXdQ140AvFfU5CnAk61euLIr379dTt1ateJzneOSlorNkIu5f97sm3AHdArTca/P6uu9pmVPWX0aT32zfRgL9vwakp/cTAmChCdIeOIebbHwAhUDJmKBxtmke6SVSdJAmWEYMgWa0w7DkI82eLUTThGs5CTlHj2Wefxb59+/Dpp5+GfA27XUFeXnGl2iHLElJS4nDuXCEUf0vP1HHsp8DC1kcOB1wf863FFveHbcXucI9hdIiy8Yw5OQXwRbpQCNc0nMKhoHxezWFX3NexFlvdr3UutwDCrjpaCHeb7FY7XCsc5+eXwKF+/eIS93GK6toOm9399YVzBUhOSURRoQVG135r2X6hCEhwPjxzZYDtikCBn/t095fF7r4Hq82BfD/n1GT8fQtOdfZTYqIZBoOPtb1LMTAmigDdsVMwf70ckkNByYhBsHdsE+kmUSTIMkpGD4VkWQb9oWOI/WIJim4ew3WrqcZ77rnnsHLlSsybNw8NGjSo1LXC9WFIUQQ/gAaB/RRYpfvIUXaucGhLg93bpbKg1d9rSXZfyz25r1T2papEWnEICM1yS6qlnFTXEQ5F8/ra0m/VcapjlNLXEYr3/e47U5VXC1nyuE+pqBj63ZmwdWmnapu2j6L9Z5W/b8GpKf3EybeIqpl84jTMXyyBZLOjZEhf2Lp3jHSTKJL0OhRfdxXsTRpCd/IszF8t084YSlSDCCHw7LPP4vvvv8ecOXPQtGnTSDeJqOZRr+nra21hKcgxlcJ7YF22X/W1v3WMfS0V5W+5JnWw6222aOFjv7e2yZ6ZupjvfkLM92thWr3Re3uC7SOiMGFgTFSN5FNnEfv5EkhWGywDe8PWp3ukm0Q1gdGA4htHwtEgHfojJ2D+ejlgZ3BMNc8zzzyD7777Dq+++iri4uKQlZWFrKwsLtdEpKbJ1KqCZBEo++tJvVyTx5rDgO+Zo8sH0b6CXI/reb+21/N9Hettm+wZcuiOnXT+e+KM93PCtR4yUZAYGBNVE/lMNmI/WwzJYoXlsl6wXtYr0k2imiTGhOKbRsFRLxX6Q8cYHFON9OmnnyI/Px+TJk1C//793f9bunRppJtGVHP4XN/XRxAb7LUC7RfeZ8D22w6P6/sITL0tO1WBQF/ovIQcrmBZc26ABwFEVYhjjImqgZyVA/OniyCVWGC5tAesAy6JdJOoBhKxZhTfMgbm+d9Cf/AYzN98j+LrrgL0/ieLIKoue/fujXQTiGo+n2N2fYz5DfJaXmlKqVXZaQjNrlBKqTWvrXieo14qynuZtzpj7KUs2ltg7Ov1iaoBM8ZEVUzOOQfzJ4sgF5fAeklXWC/vw3Ez5JMrOHakpUCfeQTmBSuC/wBFREQRpymZ1kx65b3E2m+2tSIZYy/Bq7tNio/X85Mw9pURlgqKYV/1K1Bi8brfVxs8dpdmkbUPD4I/nyjcGBgTVSFnUPwd5KJiWHt2dq5dy6CYAhBxsc7gODUZ+gNHELPwBwbHREQ1jHwmGzFLVmkDREAb3PnMhqq2+5twsQKBseSjXNrztSueMVZf2/T1ctgXrYZx/Rbvr+3apv7GW/Y3UMbYy7rNRFWJgTFRFZGzcmCe9y3kgiJYu3eEZVh/BsUUNBHvDI6VlCQY9h1CzLc/MjgmIqpBzAu+h2HHHsT8+It2h6+xtz6CWMnffBIBS6kDjAP2dh1/Y5GDKLn2PgO1/3Z6PccVGNt9zKbNUmqqZgyMiaqAfDoL5vmuTHEnWIYPZFBMFSYS4lA0YQyU5EQY9h5EzILvOSEXEZE3QsC04mfEfL28+kpwSzPFumOntNt9jDGWfI0xtvt56Bkga+q7RFrVhsIibSm034yx6trq7YFm0Q6039t/E9lVSl12/5KvwJyoGjAwJgoz+eRZxH76nXtMsWXYAAbFFDKREI+iCdfAkZoMw/7DMH+5DLDZIt0sIqIaRc45B+OWXTDsOwRYrNXymiI5EQAg5RWU2+Eji6vma1KucgLOzBwgMDZs+xPxb86B8dcdfo8L2JZA2dsQ9rtnqva1/jIDY6pmDIyJwkg+fhqxny2CVGKFpW8PjimmsBCJ8SieeI1zKafDx2H+fEm1ffAjIooK1rIHhn7X6Q0nVymwv7JlH22Rgi0ZrlBg7BlUGjduc/67+Q/v1/S3XJOv16lsO11c/edj/WXJV78wYKYqElWB8fz58zFkyBB06dIF48aNw44dO/wev2zZMgwfPhxdunTB6NGj8fPPP7v32Ww2vPzyyxg9ejS6d++OAQMG4Mknn0RWVlZV3wbVUrrDx51BscUKS/+LYR3E2acpfERcrDNz3Kg+9MdOIfbTRUBxSaSbRURUMwQRjIab8PUWL3wEqz4v5OeYQOerS7W9ZYK99UUIs2AHylwHfBjhbY4M93rIQY6TBmD4/Q/EvfkR5FNnod+xB+ZPvuUQIwqbqAmMly5dihdeeAH3338/FixYgHbt2mHKlCnIzc31evzWrVvx6KOP4oYbbsDChQsxdOhQ3HfffcjMzAQAlJSU4M8//8S9996Lb775BjNnzsSBAwdw//33V+dtUS2h350J8xdLINnssAzq41ynmEExhZs5BkU3j4a9SUPoTp1F7PxvIRUURbpVREQRpwnMHNWUMfZBs75vEDMr+w06AwWk6m+8LcPkNTD2s6xTFSVjJW//TVyvrf68pLkHz3OMG7ZCLipBzNLVMC9ZBf2Rk9DvORjm1lJdFTWB8ezZszF+/Hhcf/31aNOmDZ555hmYTCYsWLDA6/Fz5szBwIEDMWXKFLRu3RpTp05Fx44dMX/+fABAQkICZs+ejZEjR6JVq1bo3r07/vGPf2D79u04c+ZMdd4aRTnDlp2IWfg9oAiUDB8Ea7+ekW4S1WYmI4rHj4K9RRPosnIRO/cbSDnnI90qIqLI8jXWNhKEOosbRKRptUJ3+Lj3ILgiZcPqCbZcbfC2jFIopdSV5e0BgZe+8bvkFAAopZln9YRdzBhTmOgj3YBgWK1W7Nq1C/fee697myzL6NevH7Zt2+b1nG3btmHy5Mmabf3798fq1at9vk5BQQF0Oh0SEhJCbqssVz5L6LpGOK5VW9WIPhIChrW/w7j2NwidDMu1V8LRvnWNetpUI/qphovKPooxwjL+auC7H6HfnYm4eQtQMu5qKI0bVNlLRmU/VTP2EVH1k89kQ87KhYg1u7dJilJV4Z13ruDSZnNmqytY1m3+7ifI5y6gZPgg2Hp0BOAcnmVa8yvsbZoH3w6HZ8bYa6ZWxSNDXFXjd720wx2gq/9k+psx25dIPwihWiMqAuNz587B4XAgPT1dsz0tLQ1Hjhzxek52djbS0tI8jvc1hthiseCVV17BmDFjEBsbG1I79XoZaWnxIZ3rTUpKXNiuVVtFqo+EosC+4Cc4ftkKmIww/mUszG0r8OZVzfizFFg09pGYfB3s366EY+1mmD/5DoZbx0DXsXWVvmY09lN1Yx8RVZ+4WV8CAEqGDSjb6FBgXLMJUlExLCMuD+vrSefyINlsUOqneeyLn/kxJIsVhXfcULYxiOBOPncBAKDfk+kOjGM/XeTcWYFVCDSP5PyNMfZ2nPv7oF+uYrxlf731TaCMsesu1bt8BP+6oydh2PonSkYMAoyGoJtKdVdUBMa+CCEg+RnH6W2ft202mw0PP/wwAGD69Okht8duV5CXVxzy+S6yLCElJQ7nzhVC4eLmXkW0jyxWmBb+AP2BIxBxZpTcNAqFqWlATkHgc6sZf5YCi/o+GtAbBoMRxpUbYP3wG1hHDoK9e8ewv0zU91M1qM4+Skw0w2DQVelrEEUVdQDpcMC0fgsAwDJ8UFjn/Ih/xzkkL/+RsqpEqfQ1pdLVAiSbqrS3AtlMycuEipI1xOX5XH+DAo23VgXQcu6FKsu+ep2cy2tgHL6Mcez8b52766VymBsFJSoC45SUFOh0OmRnZ2u25+bmemSRXdLT0z2Oz8nJ8TjeZrPhoYcewvHjx/Hxxx8jPr5yGd9wfhhSFMEPoAFUdx9JeQUwf7kUurM5cKQlo/jGqyFSEoObdTKC+LMUWDT3kaVPdzjiYhGzZBVMS1YDORdgvbxqZkWP5n6qLuwjIh8UBVJxCURc4Mo83f7DMOzah5JRVwB6Hw+BVIGTumRYvpBfdozdDhjCny3UncnW/I11ZX0BAFbVcnoV+FsgFXlJroRa2lwuYyxQLqPses2CQpjnfwvJbofu5FlYe3QK7fUC8Ts7tnryLdXY4SDvXfI247V6fyEnqaTg1KThkD4ZjUZ06tQJ69evd29TFAUbNmxA9+7dvZ7TvXt3/PLLL5pt69ev1xzvCoqPHDmCjz76CMnJyVXQeqot5FNZiJ3zNXRnc2Bv0RhFt17nDIqJagB75wwUj7saIsYI08atiPl6Odc6JqIaxfzZYsS/OQfS+byAx8Z+tQyG3ZnQ7zvk8xhNhlWVMZZzz6u2+w+aQqV5DUCzQoBkLcsYBxvcOc/zkh2uZGAc6PX1ezKhP3oSupNnAQCGbX+G9nqBeM0Ye27STFYWxIzeAAL/N3Y4oDt4FDFLVnlfNoqoVFQExgBwxx134LPPPsOCBQuQmZmJGTNmoKSkBGPHjgUATJs2Da+++qr7+FtvvRU///wzZs2ahczMTMycORM7d+7EhAkTAAB2ux1//etfsXPnTrzyyitwOBzIyspCVlYWrFZ+mCQt/e5MxM5fCLmgCNZuHVA87mogxhTpZhFpOFo2QeGt10NJSYJh/2HEzl0ASZ05ISKKIP2REwDgDsKC4i84Kin7vKYpX7aUBZhhnbFYHWTaHZ7fu4Tzc2So1SelbROlWW2f9UPlxt5WJJCvkKBLqQOMMZZc/6iqBQL8N5bsDsR+vgSGHXug3384iMZSXRUVpdQAMHLkSOTm5uLNN99EVlYWOnTogA8++ACpqakAgFOnTkGWy+L8nj174tVXX8Xrr7+O1157DS1atMDbb7+N1q2dE9OcPn0aK1euBABcc801mtf6+OOP0adPn2q6M6rRFAWm1Rth3LQdAkDJ4Eth69OdaxRTjSXSklF42/UwL/we+sPHEfvRVygZexUczS6KdNOIiJx03vMy+t0HYNy4FcXjR6mO9T2WXjNu1eYjGLaFMTBWX9du17y+upw35HHBAGK++1Ezw3bQWdPygg1wq2vNZ38BvrqtoYwxDnQP6v9uzBiTH1ETGAPAxIkTMXHiRK/75s6d67FtxIgRGDFihNfjmzRpgr1794a1fVS7SEXFiFn4PfRHTkLEmFB8zVA4WjWLdLOIAjObUDxuJEw/rodxy06YP/kOlsGXwta7Gx/qEFGNZV74A4AKlPOqA1Ob92BYstvDNtGyOuCVHIo2u6kKvkKfMEuBYdd+7WuGOBlW2VJIkv8As5qWOvJ3H9q1iwPNSu2FelxyQRFi534Da8/OZfvV2Xx9VIU+VM3400HkhXzyLMwLVkDOK4CjfhqKrxvO8cQUXXQ6WK4aAEejeohZ8TNiVm6A7vhplFw9mMMAiCiyAgWOqgpAvxlfdaZQHQzbtJld536bM/ssV2IUobXcddWBm7otIZZSS97u1V7JjHGAh6GB1jkOG6+BsWfgqwmS/WXLFe9ZZuOv2yCfz0fMyg1l1wxn1QDVagyMidSEgOHX7TCt3gRJUWDr1Na5/l0VzGhJVB3sXdujqEE6zAu+h2HfIejO5qB47DAoDetFumlEVJeUy6gafv8D+syjKL7+Kr9ZPMnup/RVnSlUL9ekfi27A9KFfMT/dx6sXdvDcvXg0Npf7jUku0MTDKvLtyVL6KXUHkIdIx1kYFxtpcWugNdmg+mn9XBc1CBgRljyt19duq4okPIKIOflQ84+73msOmPOIJn8iJrJt4iqmlRQBPPnS5xPGSUJJcMGoGT0FQyKKeopDdJRePv1sLVrBfl8HmI//gaGTdtCn+2UiKiCNGXIVitiflgH/cGjHqXDALSlrzabM5gpUs1AXWKBnJWrHePrK2Nss0N39CQAwLhjT+VuwqpdK1mT3bT7CNIrKeTBL+7AOMBx1ZUxLn0dw/Y9MG79EzE/rAs80ZfX/aU3pA7oHQri356L2LkLvS55Jfkaf05UDjPGRAB0B44gZskqyEXFcKSnoOSaK6HUT4t0s4jCJ8aEkrHD4Pj9D5hWbUTMyg3QHziCklFDIJISIt06IqqlpPN5nhNoqQJM+WyO8wv1msSqZZgkux2x87+F7tRZFEy9HSLWjLhZX0K+kI+SkZeXXdNb+XTp+TCoPu4qSsjl1Jr1cu0O7RhnzYRfYcwYhyrYNYCra4wxAAgBqcTi/N5qgzAGSDz4uQfNQ5G8stUXJIvF82CFGWMKDgNjqttKLIj5aT0MpU+RrT06wnJFP2aJqXaSJNgu6QpHi8aI+e4n6I+eRNyHX6Bk2ADYO7XlxFxEFF6Kgvj/zQcAFNw7wb1Zk9F1BS3qQKdEFdzY7NCdci7vJF0ogDDHQC5dhk69HrLPjLHdoc0u2uyAyRj8PQgBOec8lPQUbVbYoQ2M1cG+FOq44HByBZU1qTKo/IRlIWWMVdcqpfl58ZYBVz90YcaY/KhQYLx//34cPHgQeXnOP0SJiYlo1aoV2rZtWyWNI6pKuv2HEbP8Z8gFhVDizLAMHwR7RstIN4uoyin10lB02/Uw/fwrDJu2wbzoJ9j2ZMIybABEYnykm0dEtYVFtc5woarE1eFlgiV10KkKdKSCorJjFUVTKiuVL7l2UWeMHQ5tOxwOr7NUyyfPAskJQFo85EPHINJTIeJiYVq2Bsbtu1F082gvGWNVwKUps64BwZerbTUoLoaiaP/bB5p12t9+Tem63et2zeu6MGNMfgQVGH/11Vd4++23cfr0aYhyT28kSUKjRo1w//334/rrr6+SRhKFk1RQBNPK9e5xTbbOGSgZehlgjolwy4iqkV4Hy5C+sLduhpilq2HYfxj6IydgGdQHtp6dKjdzKxHVDkLAsHknHE0ahjRhnzrA1blKpgGvS/Jogk7VeXJhWWAs2WwQJaogVx1Al1uiyc3hgKQKjL0FRtKFfMTN+RpClqH8dQLMnyyCEhuDwql3wLh9t7P9h45DaZiufQ11llsdGPubMKy61MSMsaJo/9uEkjEufZAi+ZhQS/IymZhmjWlmjMmPgIHx3Llz8eKLL2LcuHG4+uqr0apVKyQlJQEALly4gIMHD2Lp0qV4+umnUVJSggkTJgS4IlGEKAoMm3fCtPY3SBYrlPhYlAwfBEfbFpFuGVHEOJo3RuGUcTCu2wzjpm2I+WEdDLv2oWTYACiN6ke6eUQUQbpjpxDzwzoAQP6T91b4fKlYFbiqxw17C1TUGUB1kKmZtMumDXLVJbTqc2zazK7mHC9Bq6ttkqJA5F4AAMjqyb4AQJa05zoU7fjc8jNW1xQ1KDCWFEU7y3ag8c3l1zeWJK9jojWTnXld8qrcz0NRMWB3sEKKPAQMjD/66CM89NBDuPPOOz32paamIjU1FRdffDEaNWqEWbNmMTCmGkl39CRMP6yD7mwOhCTBeklXWPpfzPVciQDAYIB18KWwd2yDmGVroDt5FrEffQ17l3awXN4HIj4u0i0kogiQLuRrvtdlHoXSMB0iLja480tUwaV6UiRvpa0O74GxJugpFxirJ1qSfIwjlRxKufG/do/qYvXxwkfmVyoshpScqNpXPmPsffKvSNGdPAvdmezAMz9XJ0VoHhoEmtXCPWHXhXzE/28+LJd291peLQXIGGtK64stiJv5MSBJKHjgViCW1YJUJmBgnJ2dja5duwa8UNeuXfHWW2+FpVFE4SJn5cK0eiP0B44AAOxNG8EybABnnCbyQmmQjqJbx8KwYw+MazbB8Mde6PdkwtqvJ+x9ukW6eURUHaw2xP13HuwZLTVVI7r9hxH71TI46qWiaMr4oC6lKXVWlUB7W/9XE9DYtFli99c2mybA1lxTTZPZdWjLZ70FreqgVjUWWlKVccuFRVDUQZ1SbiKp8sF4hBm37op0EzyVzxgHQwgYdu4DAJg2boPQ6wKc4EkTjOflu7POcl4+lBADY6mwCIbNO2G9tAcQaHZtihoBA+N27drhiy++wCWXXALZx5gzIQS++OILtGvXLuwNJAqFlFcA09rfoP9jLyQhoCQlwDKwN2feJQpElmHr3hG29q1hWr8Fht92wLTmVxh+3wn7lX2Bdq0BueIfTIgoOuhOZ0EuLoFx+25YVKWm+kPHnfuzcgNewzVBliaoVWeMy88SDfgppVYFUlabZv4Dr0vzoFyQ7XCUW75J9Tq5F6A7k+0sky4lVCXUUn6h9rXLrZ3rLcB33kvkM8Y1kqJAslWszFzKL4T+T9Va16E8dFBnlDUPa7z//LjZHYidvxD2ZhfBOrivZpdp+c8w7DsEOSsXJdcPr3ibqEYKGBg/8cQTmDJlCkaOHIlhw4ahVatWSEhIgCRJyMvLw6FDh/DDDz/g9OnT+OCDD6qjzUQ+SbkXYNy0FYYdeyEpChRzDCz9esLWszMQwlNGojorxgTLkL6wdu/onL169wHYF/4Ec8JGWPv1gq1re/5OEdVC6lmgNUFEXr63wz0Jgfg3PoKQJFiGlAUT6uyu16WVHN5nGZbKZ49VD7cDBjZwBsmaYEwVtMa/+wkAwHqJqjJSlTGWVYGxZLV5BNyax+yBZkam0lmpK/bQwLzge+hyzru/D6U0XFNmr/6ZLvb/8yOfzXaWpJ886wyMbTYYtu+BrUs7yKW/D4Z9h1Di9yoUTQIGxr169cK3336LDz74AIsWLcKpU6c0+xs1aoQBAwZgypQpaNasWZU1lMgf+WwOjBu2Qr/7ACQhIExGWHp1gbVPN44jJqoEkZqEkmuvhK1/L8Rv3Ar8sQ8xK36Gcd3vsPXqDGuPThyjRVSLyKpxxZogwuqjbLkc17hkSQif2TnJy9JKPsuPy435laBqh8XmeXx5DsV7xlgdLOUVuL8WRd5LqWG1abPa5YJfqfwax+RBCiFj7FrDOmxt0Mxq7j+klUsnYgOcPwvuLPH5PIi4OADZYW0bRV5QyzU1a9YMzz77LACguLhYs46x2WyuutYR+SEcDuh2Z8L0+x/QHz0JAFDMMbD27gprz84MiInCSNRPg/GOa3Fu1yHo1/0O/d5DMP38K4wbtsDWpT1svTpDSU+JdDOJqLLUY3jVQbI6uyaEz2FJsqrUWj6nCix8zCBdNiu190yix6Ra6sxyMNlDH2OM1bNkywWqkmn1GGN1kGwrV0pdvr3MGAemiApnjIXJqJ1VvJKkchNxSQWFMK79HfY2zZ2rlNjtzqxw5wztQ6L8Qhj2HQJQ+jOuU1VMWW3QHTsJR4sm2u0UdYIKjNXMZjODYYoo6XweDLv2wbJ9N2IuOJ/yKsmJsF7cBbbuHQADJ0EgqipKw3oouW64c9jCbztg+GMPjFt2wrhlJ+xNG8HWrQPs7VsDhgq/vRBRBEl5BRAGg3ZcsHoNYVWQKJ/JhvnzJbBe3ge2bh2cG+0O5xhSdcCpyrhBPZu0+jVKrDCu3hjcskJ2OyQvsxL7I9kd2jGm+YWInfM17BmtyrZpMsaqMcbqr202TVZbKrcskCbgCrQMUV3lULRLaQWjKvvSYoHhj70wbvsTxm1/Iv/Je2H8ZTNM67dAn3kEjnqp7kM1D4ZkWRPgGzdtg2nd77B1ykDJmCsq1gY/D5mo+vGTC0WHEgsMezKh37kP+mNl5fz21s1g7dUZjlbN+IeFqBqJ1CRYrhoAy4BLYNy+G4Ztf0J/7BT0x05B/LgOtvatYe/QBo5mF2kmyyGi6iOfOgv9wWOwXtod+i27Ydn2J+SrBkJp3FB73NkcxH34BexNG0GoliSSfASJMcvWQC4qRszS1e7A2Pz5YshZubD16V52jo+ybE3GuMQC04atQd2PZHMA9iDKp9UciqbM2bD3kHvcqIt6LLGmlLq47GtY7eXWwy2X+YzyCbdsGS3dGdEqoyja7H0QJJsdIsYEJTEeurM5YW2OZLFqJ/MSAroTpwEA+syjUFSTz2nW4S4qgnqxKd2JMwAAw659AQNj+cQZmNb+hpKrBzsfLG/ajsLbr4eIj3V+jtUzNIsk9j7VWFJhEfT7D0O/7zB0h4+7x+woSQmwd85A/MCeKJQNUCr49JiIwig2Bta+PWC9tDt0R07AsG039PsOwrhtN4zbdkOJNcPevhXs7VvD0aQhy8yIqlHM8jXQnc4GbDaYNmyFAKDfvhv2coGxa0lD/bFTsKnmDJDVwYB6zd7yk14pintIk373gcDnWysY3LrY7RUvqy03KzUCjf8t9JExVhTNOGt/Y4yjkfXS7tAdO6X5bxZukqKEVGYuYkxV8t4hlVgBSfWQpqBIOwbZot6nmoitxAJIqge+PqodhJftsfO/heRwwLj2Nxi37wYA6A8fh3HDViiJ8SieeG2ot0NhwMCYag5FcT7dPnwC+swjkE+ccT+PEzFGWDtnwN4lA44mjSDrZMhp8UBOgd9LElE1kSQ4WjRxjrEqtkC//xAMfx6A7vBxGLfsgnHLLgiTEfYWTeBo3Qz2Vs0gEuIi3WoK0fz58/Hhhx8iKysLHTp0wPTp09G1a9fAJ1LVcDjLmGEwwLhhKwybtqF40rXOoBiAnH3OfahUVALDbzsgn82BZcQgQJYhnS8reZbPB559WjNzdVExoAomdGcCT0gU6uRUkt3he+1iP6+lmeValRH2Sl0SXag9VqrCoDHiZFmzbFWVCCFjDADCaIDQhb/ySLJYNaXaUl6+dlyxeliAamZsWMrNjq4qxXeXRisKrK/NQYzRiOKRgxGzZBXsrZq6f/bl3LLr6fcdhnzB+drSuTzojp2EkpYCpXGD8N0sBYWBMUWO3eGcCv/4aegPn4Du2EnNU2QlMR62ti1gz2gJR9NGzDQRRQuzCfau7WHv2h5SUTH0ew9Cv/+IM6O89yAMew8CAJSUJNibNoKj9H8iOZFDIqLA0qVL8cILL+CZZ55Bt27dMGfOHEyZMgXLly9Hampq4AtQyOTsXEh5hXC0aAzTirXOD98DeyN29lcQMUYU3XEDTKs3AgCMv2wuO0/1wV3OOY+Y/YcBAPaObeFo2QTyubyy/cGsU6wKbuSzOYGzsOFit2vKs4Pi0GYpywe7/mhKqRF4eZ+oJsvaLGhVUERoJeeyDFRJYGzRlPXLOec11RDyBdXvhSqQlSxWzXuVfL7sOOPa32DY9iesV/SDOHEWOgDmb1ZAd+os9IePu49TP0DSHzzq/tr08yYY/jwAJSkBhfdOcI79jzVz3o5qwl6m6mG1Qc45DzkrB7pTzrE98tkcTWmVMOhhb9kUjhaNYW/RBEqDdH5IJopyItYMW49OsPXoBNjs0B07CX3mUegOHYMu5zyM5y4AO/YAAJQ4M5QG9eBokFb6bzpECoPlmmb27NkYP348rr/+egDAM888g9WrV2PBggWYPHlyhFsXWfLpLEAIKI3qQz6bAznnPOxtmzvHDToczgDNZATsduiOnYLSIB1y7nnod2fC2qc7oNdBzj0PR+OG7rGPUmERdMdPwd66OcyfL4GcVwDrJV1h3Panc7/DAbmwCCgsglE1VldfGvwC2g/h6g/4hu27IWflaILhik4cJZ/NqbbfUamgEHJxCYQkBb+erd0e8sRYcmkptev1Ai3vE9Ukqeozxg6H72W5/NHJVZMcsVg15fK6k2c0uyX1A6McVdVFuZ8h9fem0gdSMd/9VHZdL0tO+RpOYPjTORRBvpAPw+adMP34C5TUJBTdfgMM23dDd/QkbF3bw9GmOQy/boeccx7W/hdDJMZDPpMN2OxQLqoP3fHTMP20HtY+3eBo3tg5AZ0ioDt9FvY2LRCz4mcIowGWyy+FceNWKKnJsLdvDf3+Q1DSU6HUT3Nm073NEeL63ZMk7de1QIUDYyEE3n77bYwfPx7p6enur+vVq1cV7dOoaOnWsmXL8MYbb+DEiRNo0aIFHn/8cQwcOFBzL2+++Sa+/PJL5OXloWfPnnjmmWfQvHnzKr+XWsluh3ShoKwc5PwF6LLOQc7JhXQ+H+V/ZZTYGDgaNYDjovpwNG8Mx0X1mRUmqs0MejhaNXNOlgdnSaPu2Cn3/+SzOdAfPKp5ei6MBiipSVBSkp3/pjr/FUkJzqfoteTNOFpYrVbs2rUL9957r3ubLMvo168ftm3bFtI15Up+GNcfOQHLh7/AbLECrljJ9WFNHTy5t5X+X+m/knpb6XEirnQinKJiiMR4Z5ZRliFiY5wfaO0OdwZLKiiC0OshkhLcH6ztrZtBd+g4JEWBUi8VSr1U6DKPAlYbHBktIOde8MjMGn//A8Kgh2SzQ0lLhpRf6Gyz3eERBBp/2+H+2rBrf9n2jWWBcTDjeA27D8CgGhMcCv2ZLIiY6lnLXFdazirSUyAFkdkGKjGeWUXEx0LKL6zVGWNJJ1f5RIlyRSdOc9HpqmaMcbFFUy7tmkTLvV/1eydXoNIgXGJ+WAfA+XMfN+tL9/Jn+v2HYe/REYYtu5zfHz0JpWE69LszAQCOBumQ8/IhFVtg/vZHv69h2L6nbGjD4pUAnA+CRFoy5OxzUOqlQuh1zuETpWXiUrEFwmSASEmCfCYbwmiESE5wlpsrCoTJWPbfSyr9P82/pUofKFgMepjtjnJjtcuOdTRvDOvIyyvcf6GocGCsKArefvttDB48GKmpqe6vqzowrmjp1tatW/Hoo4/ikUceweDBg7F48WLcd999+Pbbb9G6dWsAwPvvv4+5c+fixRdfRJMmTfDGG29gypQpWLJkCYxGY5XeT1QQArDaIFmszv8Vl0AqLIZUVAypsKj032LIBUXOcRmqMUflKckJcKSlwlEvBUrD+nBcVB8iMZ4faonqMBFrhr1dK9jblS6bYrdDzjoH3ZksyGeyoTuTDTkrF7rT2e6xkprzdTJEQhyUhHiI+DiIxDgosWYIcwxgjoGIjYEwl/4vxsTZscPg3LlzcDgcSE9P12xPS0vDkSNHKnw9vV5GWlp84AP9cBx2wHY2F3KgTKDXD2jeP7BJrjG5suRc11aCM25WlUy6GQ3OktvCImc22GqDPrP04U5iPOSs3LJ1T3U66PeWzvyrzra4XtdmB2RZO56xAkLKxoUqOQEoLHZ+GA82exsm+tQkKEEGxnqbDZVtnS45ASK/sFaPMU5OjYNNL1e6r/yJN8gIZe5uQ4wBMJsQ7p9uuVD7uTXcs16Hk3zuAiBJkHt1hPL7LndQjIQ4yOcuOPfHmSHFmIIa5+/ibby/JITzb6DJUPYAz1VRoAjAoHf+LhQWA3rX10XOyhh1EB0kAcDfu7MuMR7xqXGQqiFmCKmUWj3LmrcZ16pCRUu35syZg4EDB2LKlCkAgKlTp+KXX37B/Pnz8c9//hNCCHz88ce47777MHToUADASy+9hH79+mHlypUYPnx4tdyXN/KZbDhOnIQuvxiyQzh/uFz/AzTfS6L0qbcQnv8DnBMdOBRnCZfD4Zw1UfWv82vnfslqA6zWskC4Ak9ZhSxDSU6EkpQAJSkBovRfJT0VSloyYOTawkQUgF4PpVE9KI1UD1qFgFRY5Myw5Z6HnHsB0rkLzqfheYWQz+cHNVkQAGdWz6AHjAYIowEwOP8VBr1z/XO9zjnBi+ws2/P1tbPcsDSQkiSI0jdrWZbgSDBDV2iBLJz7XMe4HgKKGJNzzoRaFqQLIUL60GK3K8jLq1wmRm7VHMn/eQTnzxXAvUiBqy2hfpByBUAmozMjHGd2LvtjsTqzIXqds9RZOD8kwqFAOnfBmTXJyoXhtz9gb90Mjo5toNudCehk97KCun2HAKMBjtbNYFi/BbBYYe/RCcZVG+Fo2hD2i7tAPn4aIiUJQic734/zChDz+RI4WjeHnHMOclauM4tTOnbW0bQRYLW5PxDb2zR3zzQtZDmo8mElLtYjUPDHkZgAe+9uMH2/roKdW3kWkwnBfqpQiks8KtYqyhYTo/nALHRy9T6EqAbnLxQjRvgPUCqrMLcAphDOszoEYFeqbPynkpLkzsYCgJKa7B5yIGJMnrOwV0CFyv5d55RWjgCArXsHKBc1gOHX7bD17gZ79w4wFVuh23sQ1kG9Ye/VGYaN2wGHA7Y+3QAhYFqyGgBgHT4Q+t//gIiPhaNVM+fM2gYDDD//CnvnDMj5hTBs3AbLlZdBKi6B7shJWIdc6kyCFVvgaFN6jqxz/g1U/z212iBdyIdITXL+/csvgEhJcr63lY9ZAI9KHQDOh4CyhOSkWJy/UORcZab8A0MBZ3VObtms4KFKTDTDYPBfeRAVY4xDKd3atm2bR8Dcv39/rF69GgBw/PhxZGVl4bLLLnPvT0hIQLdu3bBt27aQA+PKloShxIKYD7+ETQhUT2GSJyFJgMnoXL/NZIQwGZ0fImNjIGJjIeLMpf+LLfs3PtbnB72q+CPr6udK93ctx34KjH0UnMj1kwQkxkMkxsPRojE8nm3bHZAKCiHlFThLHYuKIRWVOCtcSv+H0nI5yWaHZLVVadbHBgT8211y4wg4MlpWWRuqUkpKCnQ6HbKztRmJ3NxcjyxysMKx5J6kk6FIMhTNhzCEnsk0qT6+x5fOnq6XtWuMukoFBZzvf2kpAAClYX3YR5etZap0aKO5tPp7S79e7q+Lxw4rO6ZJo7ITYmKApEQUPDIZkGXojpxAzLc/wjKkL/SHjsGwcx9sXdpBzj4H3ZlsCKMBtoyW7sDY0awR9IdPOK+VEAeUrtlbdNNowG6HkpoM45adcDRIh3nJqqC7SIkxwdqrC/Q79rgrOsoHGFVFiY8N/uDSWayFyVjxpZ5crxdX7vUMBsBRu8qqFVH2kK/KhNj/ogpKqdUBq6NBuubn1tG4QVlgbI5xJo9KA1UlNsY99rx8G93Lipb+HshdMmA/clI7azWcD2n9zc5tb9nUGaieOANr945QGtWHtXS9cAigeMzQstmvAVgu66U5v/j6shjGMahP2Y6UJOf1x13t3mRRrTuOXl2c/yYnlW2Lj3e/rubvqV7v/psHvQykJDu/Lns6WfqPpPnWgyRBMuidf78lL+OVXdU61ZSIjYrAOJTSrezsbKSlpXkcn5WVBQDuf71d07WvosJREgbEw37tEIic82VZBo//wfmD5CprCHAc9DpIpeUNcP+rg1T6L3SlpQ8xRmcZmNFQLeUK4ZCSwuVegsF+Cox9FJwa2U8NkgIfoyIUxTkTqcUKYbU5l96wWiFcs9c6HM5sYOm/QlVhA7uiehouAEWUVU75quBx7VMEEGNEUre2kGIj9eizcoxGIzp16oT169djyJAhAJxDrDZs2IDbbrstwq2r5UofPjuaN0bhX519be/YBpaBvUvHQTuzvfaMls4qiFL2Vs3cgbHcrgWU350lmI4mDZwBHgDLlf2hO3ayQs0RZufPsGVQH8R+vgSWyy+FLvOIR2Bc2Yyb19eOD/7vkCv4EWZTyIGxKBeIC6Mh7PcUcRKqvJIl1P6HLId9uSbXuHEAUFISNQGvo3EDGP7Y6zzOZCwNjJ3BrUhOAlyTsqketij1UqE77YwfSoYPhKTXIblzKxRu2w/DL5thu7gLzN+scF9ff8T5O+mon+Yu4XZ97WjeGLYeHZ0VKrFm7zcQJZ/To01UBMa+BCrd8rav/Lby34daDgaEpyQMAOTO7ZGSEodz5wrD8iQ9aDYANiuAEP9wVSNZliLTR1GG/RQY+yg4tbOfJEA2AmYjYK58wB90HxXbgeLKrcEeTElYVbnjjjswbdo0dOrUCV27dsWcOXNQUlKCsWPHRqQ9dZosQyQlAHAGi5Yr+jm3C4GSqwbCcVF9zZrDus5tofy+y5kBNWiLkdUTaPkqvxZGg3uYlSswdrRqhoIHb4OIM8N8/JTnOaXjris627U/5QPVoM6JiQFQNuxCSU6AkpoC3ZHjfsuihU7nnKNAvc1QC4eHVcM6xgHXkPZFJwNymDPG8WXVEyLWDCU9FfLRk86fi4SyJJcwGZ0PNkuzvkpKonuSPSUxHrrSMbiOhvXcWWZH44aQTQZnJrRVUxS3aKJZMsye0dIdGNs7tIHubA7sLZuiZPQQ6HdnwtazU+lkfz6CYqoyUREYh1K6lZ6e7nF8Tk6O+3jXZGFZWVmaybtyc3PRuXPnkNsazg+MiiJq0QfQqsE+Cg77KTD2UXDYT4HV9j4aOXIkcnNz8eabb7pXifjggw+4hnFNIknOD9cAYLXB3rIpRHoKTF3aomT81bBd1MDjFFegCwAizuzOpqlLTkVcLCSrMyMsVFUP7kDVy9wkQq93znjsJTC2XNoDuuOnnGWnFZj1V4mLrfDYzfLBbeHdtwCyjPj/m+W3LFq45iRQ87GmrHrcd9SRUOXrGIceGOvCvo6xkhgHXelzHBEXC+vA3sDa32C9pAuEuexnRZiMmjJgJTmxbF9iAlAaGIvEeBROHuf8PfL286HXofCum0rLwmXgh3VwNEyHtVdnKEkJsGe0AAwG2C7uEtb7pIqJitk/1KVbLq7Sre7du3s9p3v37vjll18029avX+8+vkmTJqhXr57mmgUFBdi+fbvPaxIREREwceJErFq1Cjt37sSXX37pd+lEijCjAcU3jYJ1WH9IkgRHm+ZAjOcUSOpgQCnNQju3lwXA6rG9IsHL0DFXAK2+vkEPofcRSCbEoXjS2LKZ6YGgZkUW5pigxpyqy281wY5e5y4b9gh6yzMZNBOICtckfN74uM+oUA3rGLvWDBY+Hiz4ImTZ+d8sjJS0sgd5SnIiHE0bofiWMXC0ban5+RVmk7aaQvVzryTGa49LTnQOSfT5mikQyYkQCfEouOcWFI+7GjAZYe/U1qOCgyIjKgJjwFm69dlnn2HBggXIzMzEjBkzNKVb06ZNw6uvvuo+/tZbb8XPP/+MWbNmITMzEzNnzsTOnTsxYcIEAM4S6ltvvRX//e9/8dNPP2Hv3r2YNm0aGjZs6B43RURERFQnqII9kZpc9rUqM6yklo3nFwmeww8swwfCUS8VReNHlR1ncs747v5ePY7VtV0dKPkILNTnOQPjID7CqoINTbCjDnQDBLPCaNSWTrtmr/d2bAUDvhpFqvrJt1wZ4wqXCFfBGstKWnLZ1ynl5qlQV0/EmrU/v6qfT5GkCowruJa3SElyrpdONUqFf4MlScJFF10Eo9Go+bqqBSrdOnXqFGTVL03Pnj3x6quv4vXXX8drr72GFi1a4O2333avYQwAd955J4qLi/HPf/4TeXl56NWrF95//32uYUxERER1l3pZTnWQkJToLmFWkhM8TlPSU1E0Zbz2UjExgE41pt6gd89OLEqDcXXgKYwGr5M0iRijO+OIGKNzyaRAt2HQuyfJUt8H1J/zvASzmrHUxnIZY/eSbV5Ee8a4igNjuXScrog1AxeCW2YPgHsN8HByNG4AYTQ4qyPM5caQq4NfcwysndpCv/sArJddrBnfrg6oNT9fFLUq/BssyzJWrlzp/l79dVWbOHEiJk6c6HXf3LlzPbaNGDECI0aM8Hk9SZIwdepUTJ06NWxtJCIiIopGJYMvRcyqjbBe3KVsVl7VDNDCbELh/ZOca5Z6K6X2QnI4NGWwmsDXHRiXfRwVsWb3pEgaJpN7NmD4K2dW0WR6jdrg283VBvVY6lizOzBG+THGRoMme6lepkfodRDwvTJNpAQzHltIVT/5FuB8wGFv0Ri6U2eDP6cKSqlFShIK/nq7Mxtd/oGAunoixgSlXhoKHvoLYNBrll5yNKzn/lqpzzkWaoMofrRFREREROFi69Mdtku6agI/Tfl0TAxEQpzXMmqfSiyaUlRNhrZ0u7q0VsSpvjbo3evHivKltAFKqYUsa0tgDT4CY9eoZkkqGyMdHwuczys9VltKLQx6bVmvXudcyg0oDdhl53JvNYCjQTqKbhqNmKWrYNh/2P/BriU+q5itWwcoqlL9oFRBKTUAn5OoAc41xo2btkFxTVRX+jOj/tkXSQkoHnk5EGNiWXQtwcCYiIiIiJyBUblMrK+xuYFY+vaAacNW2Du1hWHn/rJrqIPM0uBWU66tLmM1GNyBsWu5J9c4WBFo+R5Zey/arK+qlNqVSFXFhEK1v3wpNYwG7aReer0qA14awNWQwBiyDMTGBBfwynKVz0oNwLkUUkVnmK6CUupArIN6w9q/l+fryjKKrx5c2l8S7N06VGu7qGoxMCYiIiIiryS7veybCkwuZR3UB/Z2raE0TId+T6Z7uzrwdZcxqyb40mQGjXqgdBlmERsDnLtQVhLspbRWXdYMWXZO/OWiCbhV5wovkbE6cDNoS6lFuVJqj4nFdDLguWpVZLgC4mBKpCVUWQ24MBndDw/UpflBk2WfE55VKR/BuL1r+2puCFWXqJmVmoiIiIiqh+XySyH0etg6t0PhX25EyRX94Gh2UfAXkCQojeqVZqFVY4jVgbF7VmrPMb+ANrts69gWAOBo3NC5odw4X+e5ctlyT7LsmflV7Strj3O7O6AubXvZsZJ2fLKh3BhjdYCukz1LviNIuALiYDLBUtVljDUVAQmxFc4YC53vMeXCy3Zfs4PX3tXlKVyYMSYiIiIiDWvfHrD27QEAEInxUBqkh3wtTfComrnZFdQo6Smwt2kOe7OLIJ+7UHasKsCx9eoMEWeGo2lpcK4OiAyl43zl0lJmRXEGqOXKst1Uwav1kq7QHzkJW4c2MOw+4NF2e/PG2kDZY4yx6qO0rHP+r6ZwtTPSGWNzjHvMthIfB7nEc9Zxv3Q638G0eoy36/X0ZWPTNYwGwFpT0vlUEwV8ZLN+/fqgLmSz2fDII49UukFEREREVIvotFlVj+2yjOIbR8LWp7smsBQm1TI6kgR7hzbu5XI043xLA0BnZlF2v4522R0TlMT40uuWbXe0bYnCO25AyYhBZa8ly85twwfC0aa59l4cDm1ZryYwlis+fraUUhXL/bgC+iDHGFdVtltdKi/iK54xdpZS+8gYe1siS53hV92Tpf/FAADrxV0q9vpUZwT8ybz33nuxZs0av8cUFRXhrrvuwvfffx+2hhERERFRLaAeh6vz/rWbOuCNMXrudx+nOtedGVUH3eUC44R4WC7vA1uH1rD27am5lNKwnja7HB8LpWE92Hp0cgeV9ubOTLVIStSUHKvHK4tKzJ6spKeEdJ5f3vrFnyqalVqzxq9eH1R7hKot5UupNaXS3tah1nvOfA4AjuaNUXD/JFgGXxpky6muCfiTOXToUDzwwAP48ccfve7Pzc3FpEmTsHXrVrz11lthbyARERERRS+hLuXVlFV7m0BL9dHUXwClPs4VRGmyyDrteGajAfZOGSi5dhhEov81mL3ttwzuC8vA3rAM6l0u663NGAvN2Ofgg2SRmICiidegaOI1QZ8TkGsG7wABr5Ak57FVFRgb9LB1aQdLv9IHEsH0i1xuMrRyM4G7v/by8EQklC2dpAmiZdn539ZblpkIQQTGr7zyCkaPHo2HHnoIS5cu1ew7fvw4br75Zhw/fhyzZ8/G5ZdfXlXtJCIiIqIoJCll0x5pAhVvGWN1+bTie7okTbDnnlhaLptlWie7xyO7J+wKwDJqMKSmDWHr0dFjn9KoPqyX9fLIeGpmuC5fSl2RJYZkCY6mF0FJK8scV7q0WQ5yVuqKlFyHQpJQMmoIrIP6AAjyvjQVATptdUH5ydBKFd0yBtZuHWDrqlpCSfPzVnMmRqOaKeAjE0mS8O9//xsmkwmPP/44rFYrrr32WuzZswd33nkndDod5s+fjzZt2lRHe4mIiIgoimgCIc06xl4yxuoMoPC9HrB72SbngaovXYGxDspF9VE4eZxmLWZ/7N06wDTkEhTkFPgPyn1ljHWyJggVOh2kINducq/PrM5mGg1AiSWo871e09XvgWabdjW5CgNjjWAC43Jl8ZqMsXqGcdV2R/PGcDRvDN3+w2XHqrPL1bBOM0W3oGsJnn76aZhMJjz11FPYu3cvvvzyS9SvXx+zZs1Cw4bBPYkjIiIiorpFpCSWfa3O4Ok9AxVNsOyv5NVHXOz+ujSwUuqnBd/QYPnIGAvXrNguFclQugJq9XhsowFSJQLjoNcxdgWMwcxeXZl2uKiDXEkq95CjdLteDwnOe/dYrsnH8l5etxm8B9FE3lSoyP5vf/sbTCYT3nvvPXTr1g3vvvsukpKSqqptRERERBTlbB3awLR6E6xd25crbfUS1KgDQ38zNXsJpiCVbRdVFeQB5YJf32OMK1RK7Q5ifWRGQ+HOGAcKjMu1IdzKXVfI5caZe1taSV++lNp7v3idwE3vY6KuGrTGNNVMAQPjSy+9FFL5H2ghkJmZieHDh3scv2HDhvC1joiIiIiimkhORP4jkwGDHvpd+8t2eAlUhFG9xJLvwFgzsVZpmlhAlX2sqiAP8D3GuFzJb4UCMW/HGv3Myu2DJgMbbMbYtdxVdZVSlx+H7SUw1qx9XX5WaqP/jLHP5bSYMaYAAgbGEyZM8AiMiYiIiIiCZgouyHO0agpb+9awZ7SAo1F9mH7+FdbuHTyO045FLvvS/Ym1Cj+7Cl8TbMmydh1mL7Nu++TtIYF6CSkfJcder+NwlH5dOm45UIBe5Rnjct9rZu7WuXcLWYaklI4r15crUVcHuKryaKVBGrD7ABTVWsmaINqknqiLs1GTfwF/Qh588MHqaAcRERER1XKSLcBkVLKMkrHD3N/mPzJZMwuxizab7MqQql8o9DYGpJlMTDW5U/l1jCs0K7W3wNig3e8KeP1eRwJchwVZSi2qeIyxRyZa82BBnWGXANd8azptyb1QBb7CWLbPntESSlIiHE1U8x2pg+oE1dJbXKaJAmBNARERERFVC/XyOkExGb0GdrbOGQAAa+9uquWaVMdVVym1OtjS68tlkyuwjrHqWMuAS2Dt0anc+OUg70fdtmCXYar2McZ+Mu6uY8qXUvua2VySYe/YRrP2tFD1m5KU4LMdROXx0QkRERERVQt7xzawns6CrWPllvkUaSnIf2wKoNdD/8deL0dU0+Rb6uWA9DqPMuGgqYI2a/+LAQAxS1aV7dfJCGblJyHLZXfuXsc4UCl1kJN0hcrPck3C15js8oGxmjpzHuCBQaUnMKM6hRljIiIiIqoeOh0sV/aH0jgMS30aDICvsbfVNMZYk9nU67XBXUUm3/I2iZQm+xvktdSvGWzAG2xmOVQepdTlZqUupZ5JXLP+cOm4bcvgS+FoWA+Oxg3KzvdWgp4YByUpwVlVwHHFVAH8aSEiIiKi6Kcppa7C11GXg6snFdPrwjsrtSbIDbaUWvL8OlA75OoOjNVLL6n6r/wyTuWOt17aA9ZLe0C3/7DqHC/3ptOh8N4JgCRBv/dgJRpOdU1UZIxPnjyJu+66C926dUPfvn3x0ksvwRFgAoLz58/j0UcfRc+ePXHJJZfg73//O4qKitz7N23ahHvvvRf9+/dH9+7dce2112LJkiVVfStEREREVNWCmMA55EurJ9xSzxyt12vXT67AZFZe111WB9nBXspLxtrXms4eY5Crau3n8oGx6nslNalsuyZj7CNIBrSBta+gn+OJKQQ1PmPscDhw9913Iz09HZ999hnOnj2LJ554AiaTCVOnTvV53mOPPYasrCzMnj0bNpsNTz31FGbMmIGXXnoJALB161a0a9cOd955J9LT07F69Wo89thjiI+Px6BBg6rr9oiIiIioEoQkQQIg2ewQJiMkixXyuQtV94I+AmOUH2OsCs4CLrcUKGMcbKDvLcscZCl1ta1jrCISVZNjaSbl8tHHgLYUOybAMmAMkKkCanzGeN26dcjMzMTLL7+MDh06YNCgQZg6dSrmzZsHm48p/zMzM7F27Vr861//Qrdu3XDxxRdj+vTpWLRoEbKzswEA99xzDx566CH07NkTzZo1w6233ooBAwbgxx9/rM7bIyIiIqJKcDRr5PxCUWDt2al020VV9nrajLGp7Gu9XlsOXJFZsr3MYC0qMKu1+xx1YO6lRNq1X0gS4ArUq3yMsecma5/usFzWy3O5JheDupS6XMa4AuO4A67hTKRS4zPG27ZtQ/v27ZGenu7e1r9/f8yYMQMHDx5Eu3btPM7ZunUrkpOT0blzZ/e2fv36QZIk7NixA0OGDPH6Wvn5+cjIyKhUe+UwlKG4rhGOa9VW7KPgsJ8CYx8Fh/0UGPuIKDJKRlwOyDpYL+kC5aIGUBrVh71Fk6p7QXVgnBBXtr38GGP1nwL1Gr3eeAvgNIFqkCljddmxe33icktIKYp20jKp3PHh5iXgtgzpCwAwbNrm3qYJ6isyo7cfjpZNYG/dHLb2rcJyPardanxgnJ2djbS0NM02V5CcnZ3tNTD2do5er0dSUpI7Y1ze8uXLsWvXLjz//PMht1Wvl5GWFh/4wCClpMQFPqiOYx8Fh/0UGPsoOOynwNhHRNXMHIOSa690f2tvV7VBkNCrJt/SazObwteEWeqsLTyTqF4zm+rgMNhSam9jc9UP67ws++Se8VpSbwtQ+l0R/jLR6n3BZnet1uBfW6dD8biRwR9PdVrEAuOZM2firbfe8nvMmjVrAACSj18oX9t97RNCeN2+adMmPPnkk3j++efRunVrv23yx25XkJdXHPL5LrIsISUlDufOFUJRqnD2iCjGPgoO+ykw9lFw2E+BVWcfJSaaYTCEJ6NCRBXkawkgm933TNLly3+VcunjQGOMg6SetMpdil2ulFoq3zbXl+XbXonAWB1Y+x277KOPJLvvSXZFbGzI7SLyJ2KB8aRJkzBmzBi/x9SrVw/p6enYtWuXZrsr61s+K+ySnp7ukRm22+3Iy8vzOOfXX3/FPffcgyeffDJge4IRzg9DiiL4ATQA9lFw2E+BsY+Cw34KjH1EVLuJcrMkC1mGpCgQCbHlxgr7GGPsraw6QBAcdPZW5zk2V5ONdo2B1pR5e1nvOFDpdyDexjD7Ok79mqVcs1UrsWaPU5RG9VB8zZVwNKxXiQYSeYpYYJycnIzk5OSAx3Xv3h3vvvsucnJy3EHt+vXrkZiYiFatvJfK9OjRA+fPn8euXbvQqZNzEoaNGzdCCIGuXbu6j9u0aRPuuecePPbYYxg3blzlb4qIiIiIajejQfNt4X0TIGefg1IvDdh3uGyHJlMrlcWi3gJFbxNtlc8qB0MqN564/Ou5tqnjbG+Tb1V2Ii51YO3vWrI2m+2iJCehcPI4KAnehyjaO7apXPuIvKjxU7X1798frVu3xrRp07Bnzx6sXbsWr7/+OiZMmABD6QLrO3bswPDhw3HmzBkAQOvWrTFgwABMnz4dO3bswObNm/Hcc89h1KhR7vHJmzZtwt13341JkyZh2LBhyMrKQlZWFs6fPx+pWyUiIiKimk6WUXjnTSi4fxIAQCTEw9GyqedxmkAzwEzK3oJHh+9yYsAzc+28juprV/Y40Dheb4GxeiIsv63wIdgg21e/SIBSPw0wmzzPIaoiNX7yLZ1Oh3feeQczZszA+PHjYTabMXbsWDz44IPuY4qLi3Ho0CHN8k2vvPIKnnvuOdx2222QZRlXXXUVpk+f7t6/YMECFBcX491338W7777r3t67d2/MnTu3em6OiIiIiKKOkp7idbtUYlF9o9ohBwgUvQXBDnXG2Et4qtcD5cbiatZOdgXG5QJOD6VtE77aGMp442ADY9lH0M5lligCanxgDACNGzfG+++/73N/nz59sHfvXs225ORkvPrqqz7PefHFF/Hiiy+GrY1EREREVMdZnUkaEWOqWGmyl8mmJHUptZe4VOh1nnGut7Jpdbmye7/qgpK3SbpUpd+yHDB77UETZPs+TDP+WT0+mqveUQRERWBMRERERFTTWQdcAslmg2Vgbxh/2Vy2I8D65pK3wNPPzMwAtEszuS/kmYHVrAnsbdUW2UsptabEWQIqGBcLSfY/ptpFNbZaUxpe2THORCFgYExEREQB7dmzB++99x42b96M8+fPo3Hjxrj55psxadKkSDeNqMYQ8bEoGTPU+Y2PQFNIkmdC1OFloi3FMxpVr4EsdF4+xnsphxYpSR7btOf4mJXa3zmBBF1K7T1jLJgypghgAT8REREFtHPnTqSmpuLll1/G4sWLcffdd+OVV17Bp59+GummEdVMkrcSZi1b5wwAgL1lE499jsYNnfuaX+R96SNvGWOoX9P5r5KS6HlYRWalVgXJNtds0IHGAAcZWKuz2ZqMcYAMO1FVYMaYiIiIArrhhhs03zdt2hTbtm3DDz/8gJtvvjlCrSKqwXxNvqVSMmoISoYNAExGj332Lu1QlBAPx0X1Ef/Wx2XXcZRGtcHObq3ToXjsMECSYFz3u+d+2XMssnZccllZdMnoK2Ab0hdxS1ZBHDru9Z7Kt8PXQwGPe2ApNUUYA2MiIiIKSX5+PpKSkgIf6IdcycyQ6/zKXqe2Yz8FFu4+klRBn6S6pqQK+mSd7GdJIgmidVNneacrY6zTlZVde2mn+nVkSXKPH1ZcmV7XuOdyQbssS5DUaylL3tsu63WQvGWgPRqiOqf0+l4PM5QFw5K+LCyRZTmqs8b8fQtOTesnBsZERERUYVu3bsXy5cv9rhoRiF4vIy0tPiztSUmJC8t1ajv2U2Dh6iOb2eies0pn0Lurl9WBZrA//yWlgaZk0LtnvtYbDR6TVRtjDHCNVk5INENX7voWg04zThkAjCYD4tPi4UiMhWvhU13pcQA0AbOrvZYAqxvr9GXnxyd4tsNFuRAHa+nXMYlmd38lpcRCDtPfhkji71twako/MTAmIiKqw2bOnIm33nrL7zFr1qxBw4YN3d/v378f9913Hx588EH07ds35Ne22xXk5RWHfD7gzDSkpMTh3LlCKEoF11qtQ9hPgYW7j4wWGwylX9sdAq7cqFDKppbKySkI6lqxwnmOIknuCYLsioLyo4wtVof7NfPzSuAod/2Y0nYIURYcW20O5OcUQFdkRYzr2pDc11ZE2aREOTkFkGUJ8S0aw3HoBJTkRMjn8zza61Cdk19o8WiHi1xghbn062K7gKug/HxeCURMcH1TE/H3LTjV2U+JiWYYDN7G5ZdhYExERFSHTZo0CWPGjPF7TL169dxfHzhwALfddhvGjRuHu+++u9KvH64PQ4oi+AE0COynwMLVR5qZldVjdlEWlAb9Oq7D1JNVSZ5jjAUAy8DeMOzYA1uzi5xRrZqXilVR2g5Z8rGmsKok3NVe/fD+KIqPhz0lGXEff+N5UdXrCOHnPlUl14r63vydE0X4+xacmtJPDIyJiIjqsOTkZCQnJwd17P79+3Hbbbfh2muvxcMPP1y1DSOKdr7WBQ6Jlwm3vI3LlCRYL+sF62W9Arep/Db1msKa8cZexjIb9LB3bQ+Rfa7sHEmCVDoWWpRfB9kX9esYDGVfc/ItigAGxkRERBTQ/v37ceutt+Kyyy7DHXfcgaysLACATqdDampqhFtHVAOps6aVnVyoNC7WLmnkbVbqCjTKval0vWN1MKoLcobo8ks8uSYJC3a5Jtl7MC4CLQdFVAUYGBMREVFAy5cvR25uLhYtWoRFixa5tzdu3BgrV66MYMuIaibha13gkGJk16zUAYLHgNWoXg5wtUfno5TaX3vLr3eseNnuL7BWv47m9RkYU/VjYExEREQBPfjgg3jwwQcj3Qyi6OEzOAwhMnbFs7I6Y+xtwHCAyNg91bR6Y+k3vrK3/trr6x6DzBhrS8PVQbL/SZKIqgIfxxARERERhZsmUPQ/ZjfwtVxfqAJfb+OWA11beImMXV+q26gPJWPsfR1k4e98H1liwYwxRQB/6oiIiIiIws5H0GgIoWDTdb565l5vGeNAY5m97i4dYyz7KKX2e70gysX9TDwmVFnikF6fKIwYGBMRERERhZt68i11NtRk8HJwAO7AWPHcpnnNED7aCy/jlzUZ2+BKqYWvWbj9jjH2MXs1M8YUAfypIyIiIiIKN8l7oCeMxgpfSngJjL3OdB3K7NeKo/RcH+N9/ZZSe39tTduCXa5J9vE1UTXh5FtEREREROGmGX+rCjQNoWSMS6+lKqV2tGwKbN8De7OLoD96svS4igeUkkPxPDfY6/gspQ5+VurC266DMJkgFxUFdw5RFeHjGCIiIiKicPOZMQ69lFpSZYwdFzVAwT23oPimUWXXDhjQutqkGqtsd3ieqxkj7Gcd4mCC4QBtUi5qAJGWzLWLKeKYMSYiIiIiCjf1+NswBcaaMcZCQKQklTsuyMm31Ks6ua6pC3JcsOZ6Qcy8Hey1ZE64RZHFRzNERERERGEmfIyftbdt4fy3TfPgL+YjMPZQgRJkV4ZWsnsZYxzsNYNYx9jrWGhvOOEWRVhU/ASePHkSd911F7p164a+ffvipZdegsPh8HvO+fPn8eijj6Jnz5645JJL8Pe//x1F6rELKlu2bEHHjh1x3XXXVUXziYiIiKiu8bH8kNIwHQX3T0Lx9cODvpS3ybe8LmlUkXJkVyDqbfKtYDO+Pkupva9p7FcoE4cRhVGND4wdDgfuvvtu2Gw2fPbZZ3jxxRfxzTff4K233vJ73mOPPYYDBw5g9uzZ+N///offfvsNM2bM8DiuoKAAf/vb33DppZdW0R0QERERUZ2jLp+WtQGkSIyvWBBber6kCBTdMAKWQX2c1/BxXHDtKw2sSyffCmWMsaZcXHOPobSJgTFFVo0PjNetW4fMzEy8/PLL6NChAwYNGoSpU6di3rx5sNlsXs/JzMzE2rVr8a9//QvdunXDxRdfjOnTp2PRokXIzs7WHPvss89i+PDh6NGjR3XcDhERERHVBb4ysKEEgKqMsaNtC1j79Qz8mgGI0sBYclVh+mpjCBljEcp4ZXgpDSeqRjV+8q1t27ahffv2SE9Pd2/r378/ZsyYgYMHD6Jdu3Ye52zduhXJycno3Lmze1u/fv0gSRJ27NiBIUOGAACWLl2Kffv24fnnn8e7774blvbKYSgDcV0jHNeqrdhHwWE/BcY+Cg77KTD2ERGpaTOwPrKxwfJWSu3tNQMGoaX7hYA9owWMW/+EvWUz5zZ1hlvykf31cTlNGz2+DvKGGRdThNX4wDg7OxtpaWmaba4gOTs722tg7O0cvV6PpKQkd8b41KlT+Pe//41Zs2bBGMJC697o9TLS0ryUtYQoJSUubNeqrdhHwWE/BcY+Cg77KTD2EREB0I4BloPMwPriCjQd/gNjmIL/TGu54jI4WjWDvVVT5wajASUjBkFJjIfOtS4yEOIYYx/jjf0QZlNQxxFVlYgFxjNnzgw4TnjNmjUAAMnHL6Sv7b72CSHc26dNm4bJkycjIyMj2CYHZLcryMsrrvR1ZFlCSkoczp0rhKLw8Zk37KPgsJ8CYx8Fh/0UWHX2UWKiGQYDlzYhqtF8zEotQkgZK4nx0J2A93HFAIrGXw3Djr2wdfZMGKkJ9Usb9LBntNTst3XvCADQHTulOieEwFj1UCBwFrv0uPg4FN04EiI5IajjicItYoHxpEmTMGbMGL/H1KtXD+np6di1a5dmuyvrWz4r7JKenu4xlthutyMvL899zq+//orNmzfj5ZdfBgAoigIhBDp27Ii5c+eiV69eId1XOD8MKYrgB9AA2EfBYT8Fxj4KDvspMPYREQHwPcY4hGWJLFdeBhj0sF7a3et+R6tmcLRqVuHrBiWUMcZ6H9nyABwVWcKKKMwiFhgnJycjOTk54HHdu3fHu+++i5ycHHdQu379eiQmJqJVq1Zez+nRowfOnz+PXbt2oVOnTgCAjRs3QgiBrl27AgAWLVqkOeeTTz7B77//jtdeew1NmzatxJ0RERERUV2nHmNcflbqCl8rLhYlVw8OR7OCVNZGKcC4Zjcfy1OFVDpOFAE1flbq/v37o3Xr1pg2bRr27NmDtWvX4vXXX8eECRNgMBgAADt27MDw4cNx5swZAEDr1q0xYMAATJ8+HTt27MDmzZvx3HPPYdSoUe7xyRkZGZr/paWlwWg0IiMjA2azOWL3S0RERES1gGaMsY+JqWoqdRyfewEAoMTF+j1FHfwLvSr3Fg33S4QoCIx1Oh3eeecdyLKM8ePH4/HHH8e1116LBx980H1McXExDh06pFm+6ZVXXkGrVq1w22234a677kKvXr3wzDPPROIWiIiIiKiu8bVkUTTMXK9qr1LfWbFpb9866HMQYik1USTV+FmpAaBx48Z4//33fe7v06cP9u7dq9mWnJyMV199NejXePDBBzXBNhERERFRWPhc0zhCRIB5EFRtLLl6MPR7D8LWs1PQ52gC45pwv0RBiIrAmIiIiIgoqqjjQV+zN0cBkRAHW+9ugQ9UT76lmZW6xheoEgGIglJqIiIiIqKoUxPLp0vbFLA1oQTy6nvUjDGuIfdOFAADYyIiIiKiMFOvVyyibQIqX9luv+eoZuFmKTVFoSj7LSUiIiIiigKhBJdVTElPBQA4Lqrv/8BQlpRSZ4Z1nHyLog/HGBMRERERhVsNHFdsGXwpRFI8bF3aBTgyhPb6nHyLeTiKDgyMiYiIiIjCTCQlOP81GmrOWr4mI6x9ewY8TISS5dX5KKVmxpiiBANjIiIiIqIwE3GxKLj7ZohYM/SHj0e6ORUTQiAvDIayb9STb9WQbDlRIAyMiYiIiIiqgEhNdn4RbcGhLoQMt7EsMFYv1xR19051Vg2p6yAiIiIiqqWiLTgMJWNsVGeMdb4PJKqhGBgTEREREVUlISLdggoJaXkpdSl1tD0IIAIDYyIiIiIiUguhlFoYOK6YohsDYyIiIiIiKhNSxlgVGHMmaopCnHyLiIiIiIjKhDLGuNxM1AV33QwgukrIqW5jYExEREREVJXqxBjjsrBCSFLZjNxEUYKl1EREREREVCakdYw5xpiiGwNjIiIiqpCjR4+iR48e6NOnT6SbQkRVIZQxwgyMKcoxMCYiIqKg2e12PP744+jVq1ekm0JEVSWEwLb8GGOiaMPAmIiIiIL29ttvo0mTJhg5cmSkm0JEVSWUwDg+tuwbzkpNUYiTbxEREVFQtmzZgoULF2LhwoX46aefwnJNuZIfoF3nV/Y6tR37KbCq7CNJlU2Nhv8Gkmod4/LtLd9PRQ9MglRQBEkVGMuyDBEF91lV+PsWnJrWT1ERGJ88eRIzZszApk2bEBsbi7Fjx+LRRx+FTqfzec758+fx3HPPYdWqVdDpdBg2bBj+/ve/Iza27JdWURR8+OGH+PLLL3Hy5EnUr18ft99+O2699dbquC0iIqKoUVBQgGnTpuH5559HUlJSWK6p18tIS4sPy7VSUuLCcp3ajv0UWFX0kejdEbYDB6Hr2i5sP/NVSbkQC2vp177a6+6n0v1CEbC49qXFQ0rgzxp/34JTU/qpxgfGDocDd999N9LT0/HZZ5/h7NmzeOKJJ2AymTB16lSf5z322GPIysrC7NmzYbPZ8NRTT2HGjBl46aWX3Mf8+9//xi+//IInn3wSbdq0wblz51BcXFwdt0VERFQjzJw5E2+99ZbfY9asWYM33ngDl19+OS677LKwvbbdriAvr3Lvu7IsISUlDufOFUJRomtJnOrEfgqsyvto5BDnvzkF4b92mMn5JTCXfp1Trr3++skV3uSeLwKsdffnjL9vwanOfkpMNMNg8J1UBaIgMF63bh0yMzMxe/ZspKeno0OHDpg6dSpee+013HfffTAYDB7nZGZmYu3atfj666/RuXNnAMD06dNx9913Y9q0aUhPT0dmZiY+/fRTLFq0CK1atQIANG3atFrvjYiIKNImTZqEMWPG+D2mXr162LRpE06fPo1PPvkEACCEgKIo6NixI/7zn/9g9OjRIb1+uD4MKYrgB9AgsJ8CYx8BUN2+r77w10+KkIC63ofgz1Kwako/1fjAeNu2bWjfvj3S09Pd2/r3748ZM2bg4MGDaNeuncc5W7duRXJysjsoBoB+/fpBkiTs2LEDQ4YMwcqVK9GkSROsXLkSU6ZMgSRJGDBgAB577DHEx4de4hKOGvmaVm9fE7GPgsN+Cox9FBz2U2DR2kfJyclITk4OeNyHH34Im83m/v6nn37CrFmzMH/+fDRq1KgKW0hE1a6ys0pH159BIgBREBhnZ2cjLS1Ns80VJGdnZ3sNjL2do9frkZSUhOzsbADAsWPHcOLECfz44494+eWXYbVa8fzzz+Nvf/tbwJIyX8I5VgqoOfX2NRn7KDjsp8DYR8FhPwVWW/uoZcuWmu937twJWZaRkZERoRYRUZWp7AM+mQvfUPSJWGAc7JgmAJB8PLXytd3XPiGEe7sQAjabDf/5z3/QvHlzAMCMGTMwceJEZGdnazLUwQrHWCmA4xKCwT4KDvspMPZRcNhPgdW0sVJERKFS6qfB3rIp7C2bhHYBZowpCkUsMA52TFN6ejp27dql2e7K+pbPCrukp6e7j3Gx2+3Iy8tzn5Oeng69Xu8OigGgdevWAJyzYIcSGAPhGyvluhY/gPrHPgoO+ykw9lFw2E+B1ZU+uu6663DddddFuhlEVBVkGcU3jQr9fIkZY4o+EQuMgx3T1L17d7z77rvIyclxB7Xr169HYmKie9Ks8nr06IHz589j165d6NSpEwBg48aNEEKga9eu7mPsdjuOHTvmnnTr0KFDAICLLrqosrdHRERERFQ3MWNMUajGP87p378/WrdujWnTpmHPnj1Yu3YtXn/9dUyYMME9I/WOHTswfPhwnDlzBoAz8ztgwABMnz4dO3bswObNm/Hcc89h1KhR7kzwZZddhvbt2+Pvf/879uzZgx07duC5557DsGHDQs4WExERERHVeRxjTFGoxv/U6nQ6vPPOO5BlGePHj8fjjz+Oa6+9Fg8++KD7mOLiYhw6dEgzW+Yrr7yCVq1a4bbbbsNdd92FXr164ZlnntFc97333kNCQgJuvvlm3HfffejatSteeOGFar0/IiIiIqLawNGwHkSMMdLNIAqJJISo/QOhqonN5sD580WVvo4sS0hLi0dOTkGdGKcWCvZRcNhPgbGPgsN+Cqw6+yg5ObZWTL4VjvdN/mwGh/0UGPsoOH77SQjn/+p4xpg/S8Gpae+bNX65JiIiIiIiigKSVPk1kIkipG4/ziEiIiIiIqI6j4ExERERERER1WkMjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jRJCCEi3YjaQlEEHA4lLNcyGHSw2RxhuVZtxT4KDvspMPZRcNhPgVVXH+l0MmRZqvLXqWrhet/kz2Zw2E+BsY+Cw34KjH0UnJr0vsnAmIiIiIiIiOo0llITERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BcQ0zf/58DBkyBF26dMG4ceOwY8eOSDep2rz77ru4/vrr0aNHD/Tt2xcPPPAADh8+rDnGYrHgmWeeQZ8+fdCjRw88+OCDyMnJ0Rxz8uRJ3HXXXejWrRv69u2Ll156CQ6HoxrvpPo8/fTTaNeuHebNm+fexj5yOn36NB599FH07t0b3bt3x3XXXYfMzEz3fvYTUFBQgBkzZmDAgAHo1q0bRo0ahYULF7r318U++u2333DPPfegf//+aNeuHVatWqXZH64+2bRpE8aOHYvOnTvjyiuv1PQ7VQzfN/m+WRF83/SN75uB8X3TU6163xRUYyxZskR06tRJfPXVV2L//v1i+vTp4pJLLhE5OTmRblq1+Mtf/iK+/vprsW/fPrF7925x5513isGDB4vi4mL3Mf/85z/FoEGDxPr168Uff/whxo0bJ2655Rb3frvdLkaNGiVuv/128eeff4rVq1eLPn36iNdffz0St1SlVq5cKcaMGSP69+8v5s6d697OPhLi/PnzYvDgweJvf/ub2L59uzh69KhYvXq1OHXqlPsY9pMQTz31lBg2bJj49ddfxdGjR8W8efNE+/btxaZNm4QQdbOPVq9eLV577TWxYsUKkZGRIVauXKnZH44+OXr0qOjWrZt44YUX/p+9+46Torz/AP6Z2XJtr9/RmxzSy4EFRYqFIBIbaDBG1KjETjRRiQUV7F1jiyZGfkRQYxJBjUosiCAgNg6kw9Hr9X5b5/n9sXe7M7uz7W7vdvfu8369EpfZmdlnn9u72e98n+f7iN27d4u33npLDBkyRKxZs6bd3mdHwesmr5uR4HUzMF43w8Prpr+OdN1kYBxHLr30UvHQQw95/u1yucT48ePFG2+8EcNWxU55ebkYOHCg+PHHH4UQQtTU1Ihhw4aJ5cuXe/bZvXu3GDhwoNi0aZMQwv3LOWTIEFFaWurZ5+233xYnn3yysNvt7fsG2lBpaamYOHGi2L59uzjrrLM8F3j2kdvTTz8tLr/88oDPs5/cfvnLX4rXXntNs23KlCnijTfeYB8J4XeBj1afPPXUU+L888/XvNbtt98urr/++rZ8Ox0Sr5tavG4GxutmcLxuhofXzeAS/brJodRxwm63Y8uWLTjjjDM822RZxrhx41BUVBS7hsVQbW0tACAzMxMAsHnzZjgcDk0fFRQUoEePHp4+KioqwuDBg5GXl+fZZ/z48aipqcGePXvar/Ft7J577sGVV16JQYMGabazj9xWrFiB4cOHY86cOTj99NMxY8YMfPDBB57n2U9uo0ePxpdffonjx49DCIHVq1ejpKQE48aNYx/piFafFBUVac7RvE9n/VvfUrxu+uN1MzBeN4PjdTM8vG5GJtGumwyM40RlZSVcLpfmQwEAubm5KC0tjVGrYkcIgccffxynnnoqCgoKAABlZWVITk6GxWLR7Jubm4uysjLPPrm5uZrnm/u0eZ9Et3jxYjQ0NODaa6/1e4595Hbw4EG8/fbbKCgowJtvvolLLrkE9913H7788ksA7Kdm8+bNQ58+fTBx4kQMHz4ct956Kx5//HEMGTKEfaQjWn0SaJ+qqio4HI62an6Hw+umFq+bgfG6GRqvm+HhdTMyiXbdNEbtTNQmhBCQJCnWzWh3Dz30EHbu3Il33nlHs12vL4QQIfcJtj2RFBcX49VXX8V7770HWda/r9XZ+whwv98RI0bg9ttvBwAMGTIEmzdvxjvvvINzzjkHAPsJcH9Z3LZtG/7617+ia9euWLduHe69915069YNAPtIT7T6xHcf33NQy/G6yeumGq+b4eF1Mzy8bkYuka6bzBjHiezsbBgMBr+7RRUVFX53wzu6hx9+GCtWrMCiRYvQtWtXz/a8vDw0Njairq5Os7+6j/Ly8vz6sPnfvneaEtHGjRtRUVGBKVOmYOjQoRg6dCgOHz6MRx99FFOnTmUfNcnLy0P//v012woKCnD06FHP8529n6xWK55//nncfffdmDRpEgYPHoxrrrkGkyZNwqJFi9hHOqLVJ3r7lJeXIysrCyaTqa2a3+HwuunF62ZgvG6Gh9fN0HjdjFyiXTcZGMcJs9mMYcOGYe3atZ5tiqJg3bp1KCwsjF3D2pEQAg899BA+++wzLFq0CL1799Y8P3z4cJhMJk0f7d27F0eOHPH0UWFhIbZv364pA7927VpkZGT4/cFPRJMnT8aHH36IZcuWef7XpUsXXH/99XjttdfYR01Gjx6N/fv3a7bt27cP3bt3B8DPEgA4nU44HA4YDAbNdlmWoSgK+0hHtPqksLAQa9as0Zx77dq1neZvfbTwusnrZjh43QwPr5uh8boZuYS7bka1lBe1SvOyE++//77YvXu3uP/++zvVshMPPvigOOmkk8T69etFSUmJ53++y06ceeaZYt26deLnn38Wl112mW7J92uvvVZs27ZNrFq1Spx22mni+eefj8E7ah/q6ppCsI+EEKKoqEgMGTJEvP7662Lfvn3i/fffF8OHDxdffvmlZx/2kxCzZs0SF154oWfZiXfffVcMHTpUfPDBB0KIztlHdXV1YuvWrWLr1q1i4MCB4h//+IfYunWrKCkpEUJEp08OHDggRo4cKZ588kmxe/dusXjxYjF06FAu19QCvG7yutkSvG7643UzPLxu+utI100GxnHmrbfeEmeeeaYYNmyYuPTSS8XGjRtj3aR2M3DgQN3//ec///HsY7Vaxfz588Upp5wiRo0aJW699VZNeXchhDh06JCYPXu2GDlypBg7dqx44oknhNPpbO+30258L/DsI7fPP/9c/PKXvxTDhw8X06ZNE0uXLtU8z34SoqSkRPzpT38S48ePFyNHjhTnnXeeWLx4sef5zthH3377re7foRdffFEIEb0+WbdunbjooovEsGHDxDnnnCPef//9dnuPHQ2vm7xuRorXTX28bobG66a/jnTdlIRgxQ8iIiIiIiLqvDjHmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBNRzHzyySd4//33Y90MIiKihMDrJlHbYWBMRDGzfPlyLF26NNbNICIiSgi8bhK1HQbGRERERERE1KlJQggR60YQUedz9913+931vvXWWzFnzpwYtYiIiCh+8bpJ1LaMsW4AEXVON998M44cOYLa2lo8+OCDAIBu3brFuFVERETxiddNorbFwJiIYqJPnz7IysqCEAKFhYWxbg4REVFc43WTqG1xjjERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIooZk8kEm80W62YQERElBF43idoOA2MiipkTTjgBO3fuxBdffIGff/4Zx48fj3WTiIiI4havm0Rth+sYE1HMVFRU4P7778f333+P6upqrsdIREQUBK+bRG2HgTERERERERF1ahxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsCYiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqxlg3oCNRFAGXS4nKuYxGGU5ndM7VUbGPwsN+Co19FB72U2jt1UcGgwxZltr8ddpatK6b/GyGh/0UGvsoPOyn0NhH4Ymn6yYD4yhyuRRUVTW0+jyyLCE314KamkYoiohCyzoe9lF42E+hsY/Cw34KrT37KCsrFbJsaNPXaA/RuG7ysxke9lNo7KPwsJ9CYx+FJ96umxxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIqNVsJZvQeHhtrJtB1CLGWDeAiIiIiIgSX+kXvwcA9Lz8K0iSFOPWEEWGGWMiIiIiIooeocS6BUQRY2BMRERERETRw8CYEhADYyIiIiIiiiIGxpR4GBgTEREREVHUCGaMKQExMCYiIiIiougRItYtIIoYA2MiIiIiIooe4Yp1C4gixsCYiIiIiIiip4UZY0fVHrgaK6LcGKLwcB1jIiIiIiKKmpbMMXbZqnH8k2sBAL1+szLKLSIKjRljIiIiapEHH3wQgwYNwuLFi2PdFCKKMU0w3ILAWGGmmGIsoQLjJUuW4Oyzz8aIESMwc+ZMbNq0Kej+n376KaZOnYoRI0bgggsuwKpVq/z22b17N2644QaMGTMGY8aMwa9//WtUVPAXk4iIKJivvvoKRUVF6NKlS6ybQkTxwCcwrtu5DHU7l4Z/vCRFv01EEUiYwPiTTz7B448/jltuuQVLly7FoEGDMHv27IBB7IYNG3DHHXfg0ksvxbJlyzB58mTcfPPNKC4u9uxz4MABXHHFFRgwYADefvttLF26FNdddx1MJlN7vS0iIqKEU1ZWhvnz5+Opp57iNZOI3BRvwS0BBVU/vICqH/4cwQkYGFNsJcwc44ULF+Kyyy7DJZdcAgBYsGABVq5c6QlmfS1atAgTJ07E7NmzAQC33XYb1qxZgyVLluCBBx4AADz//POYOHEi7rrrLs9xffv2bYd3Q0RElLjuueceXHnllRg0aFCrzyXLrfsy3Hx8a8/T0bGfQmMfhSdQPymSN2Osfirc/lTvl+g/A36WwhNv/ZQQgbHdbseWLVtw0003ebbJsoxx48ahqKhI95iioiK/gHn8+PFYuXIlAEBRFKxcuRKzZ8/GNddcg+3bt6Nv37645ZZbMGHChBa3NRo/2Hj7kMQj9lF42E+hsY/Cw34KrbP00eLFi9HQ0IBrr7221ecyGmXk5lqi0CogOzstKufp6NhPobGPwuPbT06rgkNNj7Myk3Gk6XG4v+NWOQ1HIzwm3vGzFJ546aeECIwrKyvhcrmQl5en2Z6bm4v9+/frHlNWVobc3Fy//UtLSwEA5eXlaGhowBtvvIHbb78dc+fOxZdffokbbrgB//73vzF06NCI2xnNCzwQPx+SeMY+Cg/7KTT2UXjYT6F15D4qLi7Gq6++ivfeew+y3PrZWE6ngpqaxladQ5YlZGenobKyHorSsiViOgP2U2jso/AE6ieXtcbzuLKy1vO4vLwurPM6qr37hXtMvOJnKTzt2U8ZGSkwmQxB90mIwDgQIQSkIBP19Z5r3qYo7uEe55xzDq6++moAwJAhQ/Ddd9/hn//8JxYsWBBxe6JxgQf4yxQO9lF42E+hsY/Cw34KLd4u8G1h48aNqKiowJQpUzzbXC4XHn30USxevBjLly+P+JzR6itFEfxshoH9FBr7KDy+/aS4nN7HTqdmv7DO5/LOUe4o/c/PUnjipZ8SIjDOzs6GwWBAWVmZZntFRYVfFrlZXl6e3/7l5eWe/bOzs2E0GtG/f3/NPgUFBTh8+HCL2xrNH2q8fEjiGfsoPOyn0NhH4WE/hdaR+2jy5MkYPny4Ztt1112HGTNmYPr06TFqFRHFAyFUxbdcdtX24IksveOJYiEhqlKbzWYMGzYMa9eu9WxTFAXr1q1DYWGh7jGFhYVYs2aNZtvatWs9+zef03co9r59+9C9e/eotp+IiKgjyMjIwMCBAzX/M5lMyM/PR79+/WLdPCKKAVvpZtTv/UxblVrxBsZhr2ncgrWPiaIpIQJjALjmmmvw7rvvYunSpSguLsb8+fNhtVo9d6jnzp2LZ5991rP/VVddhVWrVuHNN99EcXExXnrpJWzevBlXXHGFZ59rr70WH3/8Mf79739j//79ePPNN7F+/Xpcdtll7f7+iIiIiIgSTennt6Jy3WNwNZZ7N7oc3sfhBrwKA2OKrYQYSg0A06ZNQ0VFBV588UWUlpZiyJAheOONN5CTkwMAOHr0qKYQyJgxY/Dss8/ihRdewHPPPYd+/frhlVdeQUFBgWefqVOnoqamBq+99hoefvhhFBQU4LXXXmtR4S0iIqLOaMWKFbFuAhHFAcVW5XkslMgDY8GMMcVYwgTGADBr1izMmjVL97m33nrLb9t5552H8847L+g5Z86ciZkzZ0alfUREREREnZFwWr2PVRljAQVhLWLHOcYUYwkzlJqIiIiIiOKTJjBuwRxjTfEu0TELGFJ8S6iMMVFn4bJWwlGxC47qvXBZKyHsdYBsgGRMgTGtG4yZfWHOHQLZmBzrphIRERFBcdk8j9VVqVtUfEu4AIlhCrUvfuKI4oSjag8a9q9A46E1cFbvDX2AZEBSl5FI6Xs2UvucBdlsaftGEhEREelQZ4yhmmMslDCHSPsGxgxTqJ3xE0cUQ0IoaDy4CnU73oe9dJNnuzG9N8y5g2HKLoAhJR+y2QIhFAh7HZz1x+Co3AVb6c+wHd8A2/ENqP7pL0gbcD7Sh14OQ3J2DN8RERERdUbC2eh93IKq1EKz3JMLkiFqTSMKCwNjohgQQsB65FvUbHwDjqpiAIDR0hNpA85Hcq8JMGX0CuMcCuylP6N+z//QsO9z1G1/D/XFHyNjxG9hGTgdksxfbyIiImofwqkaSh1BVer64k9hSMnRyRgTtS9+cyZqZ876Y6j6/s+wHlkHADDnDkXGiKuR1P0USFL49fAkSUZSl1FI6jIKmaOuQ+2WJajbtQzVP72Chr2fI+eM+5GU1aet3gYRERGRhwgwx1ggcGAsXDZUrn8SAJA74WHv9nCHXxNFEQNjonYihEDdzvdRU/Q3CJcVBksPZI25Fck9T4ckhbWQQUCGlFxknfx7pA24AJXfPwd76c8o+fR3yD71D8jNvTRK74CIiIhIX6A5xsEyxprh08wYU4wxMCZqBy5rFSq/fQLWI98CshHpw65ExrBZkIxJUX0dU9YJyD/nBdRuWYKazf+HinWPw2g/gqTBvwXCW0WQiIiIKGLCpb+OcfCh1KplmYR2jjFRe2NgTNTGbKU/o/yb+VAay2HM6I2cMx6AOfvENns9STYgY8RVMHcZgfLV96Pkx0VILd2P7NPvg2QwtdnrEhERUeclFKf3sXootRIkMFYHwMwYU4yFP6GRiCJWv+dTlH75ByiN5Ujtfx66TP1rmwbFasldR6PbuX+BObMnGg6sRPnqB7TrChIRERFFiyqw1RbfChzkCqE/lJoZY4oFBsZEbUAoLlT99Coqv30SEAqyTvkDck77E2RjSru2w5TZBwN/9XcYM/rAemQdg2MiIiJqE5pgNtyq1Jpj1NljBsbU/hgYE0WZcDlQsfYR1G1/D5I5HXlnPQPLiRfFrD2mtHx0/cULMGb0hfXIt6j49gltgQsiIiKiVlNlfANkgn2p99MEw/yeQjHAwJgoihRnI8pW3YfGA1/BkNYNXab8BcndxsS6WTCk5CL/nOdgSOuGxv0rUF3011g3iYiIiDoSdTCrGQodJMgNGEAL/32J2hgDY6IoUey1KFtxF2xHv4Mxsx+6/OJlmDJ6xbpZHoaUXOSd+SRkcwbqtr2Lul0fxLpJRERE1EFo5giHmf0VAYpvCcHAmNofA2OiKFDstShdcQfsZZthzh2KLpNfhCE1L9bN8mPK7IvcSY8CshFVP74EW+mWWDeJiIiIOgIRYL5wsKrUmiWanOonotcuojAxMCZqJcVeh9Kv5sJRsRPmLqOQd/YzkJMyYt2sgJLyRyDrpN8DihPl3zwIV2N5rJtEREREcUYozsgyt4o646v/2P81AhXsik5gLIRA9aaFsB0visr5qGNjYEzUCoqjAWUr74ajfBvM+SOQN+lxyKbUWDcrpLQBFyC1/zQojWUo/2aBz11aIiIi6swUZyMOvzsZ5avuC/sYoc7yBiqq5XeQKoB2OdRPhP26wdhLN6F28yKUfnl7VM5HHRsDY6IWUpxWlK282zN8Ou/MJxMiKAYASZKQfcptMOUMdF80trwd6yYRERFRnHDWHAAAWA+vDf+gQEOpg1WY1hTfUt2kj1JVasVeF5XzUOfAwJioBYTiRMU382Ev3QRTzmDknfVUwgTFzSRDEnLG3Q/JkIyazf8HW9nWWDeJiIiI4kGwecEBj1EFueqlm4JkfwMOpSaKgYQKjJcsWYKzzz4bI0aMwMyZM7Fp06ag+3/66aeYOnUqRowYgQsuuACrVq0KuO/vfvc7DBo0CF999VW0m00djBACleufhvXItzBm9EX+WU9BNlti3awWMWX0RuZJtwJCQeXaR6E4GmLdJCIiIoqxYPOCtfupg171UOoAw6r9TqAKpl3ejHG4r08UTQkTGH/yySd4/PHHccstt2Dp0qUYNGgQZs+ejYqKCt39N2zYgDvuuAOXXnopli1bhsmTJ+Pmm29GcXGx376LFy9mWXgKW3XRX9Gw938wpOYj76yn47rQVjjSCn6J5J5nwFl3GNUbXot1c4iIiCjWggWzmv0CFNnSrGkcpPiWpip1+HOMNZnm4HuGuR9RAgXGCxcuxGWXXYZLLrkEAwYMwIIFC5CUlISlS5fq7r9o0SJMnDgRs2fPRkFBAW677TYMHToUS5Ys0ey3e/du/PWvf8Vjjz3WHm+DElzttvdQt+0dyOYM5J31NIxpXWLdpFaTJAnZY++CnJSJ+t0fwlYSfCQGERERdXBhZ2xVgad6KLVm7nCQcykBinQFSVgpthocfvccVH7/fJhtJAqPMdYNCIfdbseWLVtw0003ebbJsoxx48ahqKhI95iioiJcd911mm3jx4/HypUrNee94447cM8996BLl+gEOLIsRe0c0ThXRxWLPqrf+zmqN7wKyZCE/LMeR1L2Ce322i0Vbj/JqdnIPnkOytc8gsrvnkH3X74ByZDUHk2MOf6+hYf9FBr7iIg6irCHMgfKEmuGUkc3Y2wr2QgAqN/1AbJP+UOI9jFjTOFLiMC4srISLpcLeXl5mu25ubnYv3+/7jFlZWXIzc3127+0tNTz7+effx4nnngizjvvvKi002iUkZsbvbmm2dlpUTtXR9VefVR3eAMOfvskIBlwwi+fROYJp7XL60ZLOP2Uk3Mx7IdWoHb/WjiK30P3028KeUxHwt+38LCfQmMfEVHCC3ModcD1ijWPg5xLU3xLXZU6cEArGcxhtY0oUgkRGAcihIAkBb4zr/dc87Zvv/0Wy5cvxwcffBC19jidCmpqGlt9HlmWkJ2dhsrKeigK73Tpac8+ctQewvHld0C4HMg+9Q44M0ajvDwxyv9H2k/po3+PukM/4dj3CyF1mQBTVr+2b2SM8fctPOyn0NqzjzIyUmAyGdr0NYio89KuKRxsxxYEw9oXUh2uPibI39CIAmNeryh8CREYZ2dnw2AwoKysTLO9oqLCL4vcLC8vz2//8vJyz/7ff/89jh49itNO02b+br75ZowbNw5///vfW9TWaH4ZUhTBL6AhtHUfKbYalK64G4qtGpbBM5E24IKE/JmE209yajdkjLwG1Rv+goofXkTeWc8EvfnUkfD3LTzsp9DYR0SU6ETYSyfpV59WF7UNNiw70FDqYMdIsinMtkVSpIsoQYpvmc1mDBs2DGvXehcZVxQF69atQ2Fhoe4xhYWFWLNmjWbb2rVrPfv/5je/wYcffohly5Z5/gcA8+bNw4IFC9ribVCCES4Hylc/AGftQST3PAOZhTfEukntwjJwBowZfWA79iOsh76JdXOIiIiovYUbGIczlDpY1jbIUOra7f+GvWxbeO0IeH5n6H2ImiREYAwA11xzDd59910sXboUxcXFmD9/PqxWK6ZPnw4AmDt3Lp599lnP/ldddRVWrVqFN998E8XFxXjppZewefNmXHHFFQDc840HDhyo+R8A9OjRA7169Wr/N0hxRQiByu+fha2kCKbsE5FzxjxIcucYtigZTMg6aQ4AoOqnVyCcthi3iIiIOgLr0R9Q+f0LzOIlgPCHUgcoshVmhelAGWN7xXZU//QySj7TqXcSRmEw2/EiOOuOQAgGxhS+hBhKDQDTpk1DRUUFXnzxRZSWlmLIkCF44403kJOTAwA4evQoZNkb548ZMwbPPvssXnjhBTz33HPo168fXnnlFRQUFMTqLVACqd36Nhr2LIchJQ95kx6DbEyJdZPaVXL3U5Dc8wxYD69B7fZ/ImP4VbFuEhERJbiyr+4E4L7GpPQ6I8atoWDUQariaIC9bAuSup3sN70qrCxxuMs1qZd7stcGbpvPUlCSpM3zuayVKP3ydgBA1ql3Bn5tIh8JExgDwKxZszBr1izd59566y2/beedd15EFad37NjR4rZRx9FwYCVqNv4NkjEZuZMehyE1P9ZNiomsMTfj2NHvULtlCdL6n9dp+4GIiKJLOK3RP6cQaNjzKYTTCsugGVE/f2ejDoxrt76N2i2LYRk8E1ljbvbd0fsw4NrFQYZSBzpGCjJKT/2aTiskU6r2aUeD9x8cSk0RSJih1ETtwV62DRXrHgMgIWfcAzDnnBjrJsWMMb0n0gdfCuGyoebn/4t1c4iIqKOQov/101lzAJXrn0LVjy9CcbZ+hZBOTzWU2na8CABQt/09nR3VmWH9LHHQ4lsBMsuSHCR3p84su+z+z6uOFQyMKQIMjImaOOtLULbqPsBlR+aYm5HSa1ysmxRz6UN/A8mcjvo9n8JRrb9mOBERUUTaYLUDoQ6GGQy1mjr7KydlBtkx0HJN6sfBMsaBlngK/BkJmY3WnNP7WRDB2kEEBsZEAADF2YjyVfdBsVYgreB8WAZdGusmxQXZnI6MYbMAoaB6499i3RwiIuoApGDDZFtIBFwPl1omvDnCIqyh1EHmGGuWdVI9DnZzI+C85uZN3nYoDt4wofAxMKZOTwgFleseh6NyF5K6FCLr5Ns6zdq94bAMvBiG1K6wHvoGttLNsW4OEcXQ66+/jksuuQSjR4/G6aefjltvvRX79u2LdbMo0bTFNTZEsEQRCnuOcDQzxqogO2hgrK54rfOzVj2v2KpVzeANEwqOgTF1ejWbFqLx4CoYLD2QM2EBJEP4C8d3BpIhCRkjrwUAVBe9xqFIRJ3Yd999hyuuuALvvfceFi5cCLvdjmuvvRZWa/SLKVEHFkbgWl/8CY7/7yYo6kJKwaizxAyAWi9AJlhnR91jtMFwkOWaNMfrr2nsOwJAm6XWG0qtHxgzY0yhMDCmTq1h3xeo3fIWJFMa8iY9DkOweTSdWGq/yTBl9Ye9dDNsR7+LdXOIKEb+/ve/Y8aMGTjxxBMxePBgPPHEEzh8+DC2bt0a66ZRAglnjdzK9U/BUb4NjQe/Du+cYRZ7igXhssFRtTfWzYiIJuAMNjQ94BJN6mHV4WWMA61pLFw27blCDNPWnseueszAmIJLqOWaiKLJVrYVFd8+CUgycs94EKbMvrFuUtySZAMyRlyD8tX3o+bn/0NS91M53JyIUFvrXms0M7PlNxVluXV/S5qPb+15Orp46icJrrDbIcly0H0VRwMUWw0kyRsgyZJo0ftsqz46/sWfYCspQpcpLyG5y8ionrutSJosr6pvZUnTT4G+CqhvTkgI/POQAlWlVgW3kmKDLKehasPrqN+3ApkjrvK2R+fcMvSDellS2u3zH0+/b/Es3vqJgTF1Ss76EpSvug9QHMg66fdI7nFqrJsU95J7nQFTVgHs5dtgPfodUnqMjXWTiCiGhBB4/PHHceqpp6KgoKBF5zAaZeTmWqLSnuzstKicp6OLVT8JIXCg6XFaikH35+5srET9sS3I6HeGZ9/0DAtygnxGfn7jEjjry9D33Ic92zIzkpCc3fLPVbT76EBJEQDAULsVuUMSY8ULW4oRNU2PjQYJzTlb9c8tOzsNVpGMozrHy5I3nE5LMwX8PXemmlDV9NggA805XbPZGyhlZSXDbLHgwJa33RtqdqieS0FSlvbc9Q4zjjU9NhkFmid6ZGelwmSJzt+bcPHvUnjipZ8YGFOn465AfS8UayXSBlyItIHTY92khCBJMjJG/NaTNU5m1pioU3vooYewc+dOvPPOOy0+h9OpoKamdWvOyrKE7Ow0VFbWQ1FYAyGQWPeTer3Z2to6oLzOb58jH14LZ80B5E161LOtvt4BobNvM2d9GQCg6vgBz7aqylqYlMDHBNLWfdTQYEd5kPcSTxobvMOXHQ7vsOby8jpNP1kr9d+PosrU1tdZIQd43w313voELqd3qLO1wft3obK8BkZbquffdqf3u0dFSQkq//cQ0gdOR2qfiQAAW1W9d1+b931UVNTCaEvRbUe0xfr3LVG0Zz9lZKTAZApeEZ+BMXUqQiioWPsYHJW7kdR1DLJO/j2Duwgk9xoPU/YAOJg1JurUHn74YaxYsQKLFy9G165dW3WuaH0ZUhTBL6BhiFU/KQ5vgKI4HbptcNa4g1t7xS7PNgFDeO2VvF9pFZerVe+xrfpIiMT5jCqKau6uevmjpvYLxYWGY0WAZNY9Xl0wSyhKwPetfh3t3GBvkKy4nD7He4Ob2l0fwXbsJ9iO/YRev1np2V+vHUqQdrQV/l0KT7z0E4tvUadSs+lNWA+thtHSE7nj50OSeW8oEpIkIWP41QDc1bxZoZqocxFC4KGHHsJnn32GRYsWoXfv3rFuEiUITWVj4YSz/hisxzfo7yyrVocI8+a1OpCKt+JbCUlTPMu/+FbJT4tR8tnvUfn984FOoHrk/11BcTRAcfpUsw+wXJPvz1NbmMsOX5r91QW3+LmgEBgYU6dRv/cz1G5ZDMmUhtwzH4eclBHrJiUkT9a4YjusR9bHujlE1I4WLFiADz/8EM8++yzS0tJQWlqK0tJSLtdEofkEPcc+vAJlX/4BjpqDfruqb1oHqySsCZ7UARKXa2o9oV8Uq1n1Hne1cEfFDr/n3McEX2v4yL9+iSPvTfWpSh0ooHVpf9aaStM6P2tFP/PMwJhCYWBMnYKtZCMq1z/trkA9fgFMGX1i3aSEpc4a1259O8atIaL29M4776C2thZXXnklxo8f7/nfJ598EuumURsQiguV659G46G1LT+HUPyW2BEuhydwclTs9D9IPZoryFJBir1O/Q91w1G79V1UF73e4nZ3VlU/vYq6XR9AswyS3uiwEJl8EXBNY89G9/+rsr8BM8aKC0K1nrVmuS+9myABhmRzlBuFwnGk1OE5ag6gbNU8dwXqU/6A5O4nx7pJCS+51xkwZvSBvXQTbKU/Iyl/RKybRETtYMeOANkh6pCsR79HffHHqC/+2DN/MxJCCBz/+BoYUrsg57S53idUwYqrocTvuLAzxk79YEkIF6qLXgMAZIy6nrVEwqQ46lG3/T0AgGXgjBB7h+hTTRAaOFOr+fn7DLf3PlaguFSjUpTggbHvsP1w2kEEMGNMHZzLWomylXdD2GthGXI5LCdeFOsmdQiSJCN96OUAgNqtLa9IS0RE8UsdeLaI4oSzZj9sx77XZBDVWUJXY4X/62qGvwYbSq3ODKoCY3u9aicOqw5XoHm9enO2Q95s0ASn2kytOnPrqjvm3a7oZ4whXNrh0aph87rzyTWfi+BDuonUGBhThyWcNpR/fS9cdUeQ0udMZBb+LtZN6lBS+06GITUf1sNr4ajaE+vmEBFRtLVy6KlmmKwmyxd8/qpm2GyQjLF2eLY3WHI2HNfdHmu682HjiXqIsrpgls/NBcVpDV0UTfUz9gteVedTHOqbGPpzjIXi8hke7dDdT/f1GBhTBBgYU4ckhIKKdY/CXr4N5rzhyDntHkgSP+7RJBlMsAy+DACzxkREHZFeNeKIjlcFpS5rteoJVUCrM7xVkxEMGhirs4iqLHRDqXefYMe3N8UBxVYDe9m2WLdEl/CZp+2hCi6ri17HoXfPhbV8b6izBXiMgHOAA80xhnBpM9iajHGIOcaCc4wpfIwUqEOq3vAaGg+uci/LNPERSMakWDepQ0ob8EvI5gw07P8SzrqjsW4OERFFU2szxqoARrF6h0wLncJO6qBFuLxrHgcLbLWZQVWwpAms1VnQ9iOE8BsmLlx2HP/0OpR8dhPslbtj0q5gtEWt9NcXbr4R7tQZAh/4xD5DqRX9OcCB1jEWfkOp9dtpO16Eyu+eDfL5YcaYgmNgTB1O7fZ/o277e5CTMpB75pMwJGfFukkdlmxMgWXQDHcF0KaCHURElLiE4kLZyntQu/1frR56qskY2/QzxqqddY9ryVBq9ZDgWAXGVT+8gKNLZ8BWslHTluZstrN6X0zaFYym38O8ORHeiYNljAMMdfbJJGsywwEqWZd+eTvqd3+Ehj3/Uz2tCrCdVpSvfqBVVdapY2NgTB1K/d7PUP3Ty4DBjNyJj8KU0SvWTerw0gZOh2RMRn3xx3BZq2LdHCIiagVH1W5Yj6xD9U+vaIehKi5Ub/w77HrLKwWiHprrCjBMt3mYrSbIVQdlLihOK5z1x+EnQEEvzWNXbIZS1+/6AADQeHCVqi2qgC6G07uc9SUQQkC4bGg8vM7T3+qh1IrTWwW6tUPqfTO1mmA4jOWaEGSOsd6NE81NGNVr1e34DxoPrkL5qnsjaTx1IgkVGC9ZsgRnn302RowYgZkzZ2LTpk1B9//0008xdepUjBgxAhdccAFWrfL+cXI4HHj66adxwQUXoLCwEBMmTMA999yD0tLSIGekeNZ4+FtUfvukZ61iLiHUPgxJmUjr/0vAZUf97g9j3RwiImoFzbJHTm+A2rDvc9RueQsly6+P4FzqzG+AwLjpsWYYrSowFsKJ459ci2MfXAZXY7n2/AGzzAGKfsWAZErz/kMdYMYoMK7f+xmOfTATNZv+jqqf/oLyr+9B9ca/NzVP1YeqwLi1lb395vYGmmOsKfilHUotAgyl1txE0T3W+ziimzrUKSVMYPzJJ5/g8ccfxy233IKlS5di0KBBmD17Nioq9Oc4bNiwAXfccQcuvfRSLFu2DJMnT8bNN9+M4uJiAIDVasXWrVtx00034f3338dLL72E3bt345ZbbmnPt0VRYiv9GRXfPAgIF7JPuxspPU+PdZM6FcugGQAk1O1cFlcVQImIKELqoaeqoKMldSS0Q3PV6wzrzF9V9ANjKA646o4AAFz17jVvnfUlaDy8zifLrB8MBx2K3Q5kU6r3H6r2xqogaMOeTwEAtVsWo3H/CgCA9ch695OagFOVMW5tNW2fofPaYdH65/YryhVodIDTPzDWjBLQrJnN5BcFlzCB8cKFC3HZZZfhkksuwYABA7BgwQIkJSVh6dKluvsvWrQIEydOxOzZs1FQUIDbbrsNQ4cOxZIlSwAA6enpWLhwIaZNm4b+/fujsLAQ999/PzZu3Ijjx3WG61DcclTtQdnKeyBcNmSOuQVpJ0yJdZM6HWN6TyT3OgOKtQIN+7+KdXOIiKiFtMOQbbqPwz9XgCyuXsVjdeDjVB+nCpwMZgDAsQ8uQ/nX98ChLmClabc6MI71zVrvV+1QawO3C1VArjgb3ZuMyQB8fl7qjHGrl5nyyRgrgTLG+vtAaIdSa3/WOj/fgKMEolOVunb7v1G3c1lUzkXxxRjrBoTDbrdjy5YtuOmmmzzbZFnGuHHjUFRUpHtMUVERrrvuOs228ePHY+XKlQFfp66uDgaDAenp6S1uqyyHWNctgnNE41wdVXPfuOoOoeyruyAcdcgYPguZQ2fGuGXxpT0/SxlDZ8J66BvU7fgXLAXnQgq1xmGc4O9beNhPobGPqCMQTcES4Dus2qq3e/BzufQrRWuzf+6AJ+BQalV7vAGPO8BRbDX6rxVindtoEkIEvd5pbiiog2FXjIZ4Swbv46Z+8gTG6p+3Q/U5EG1YfCvAuYVPgS4RKJjWOT5gsB2l5Zqqf3oZAGAZeHFUzkfxIyEC48rKSrhcLuTl5Wm25+bmYv/+/brHlJWVITc312//QHOIbTYbnnnmGVx44YVITU3V3ScUo1FGbq6lRcfqyc5OC71TJ2arPoSSL/4IV2M5cofPQO+zb0+YYKy9tcdnSeSMQ23REDSWbENS43ak9z6lzV8zmvj7Fh72U2jsI0pkiiogUgcwir0u4nMFrBQtdOaSBqgw7VIv86Q4fIIeSfWcfmDcllWp6/d+hsp1jyF/yqtIyhuqu482MFYHd7HJZEvqwLiJbGgOjAPdXGjL4luBglifatURFN8KPHy+9YGxdhkpgeoNf4EhOQfpQ3/d6nNT7CVEYBxIqLt0es/pbXM4HPjDH/4AAJg3b16L2+N0KqipaQy9YwiyLCE7Ow2VlfVQFC5GrsfVcAwln98GR91xpPWfitRRc1BRUR/rZsWd9v4spZ54CRpLHsHh9f9AfuqQNn+9aODvW3jYT6G1Zx9lZKTAZPL/gkvUWpoMrToYcUQeGCPQkGad4ksB17b1maes2GtV/7bq7qedJ+2A4rSi4psFSCuYhpTeEyJ/HwFUrnsMAFD90yvoMuUV72uq12RWV3d2hRgC3B5k/78bkjEJgE/AqSm41cr1rINkjAMtCeY7Dz1gMK0XtLc2wx2E5udpr0Vd01KVliEzYzZvnKInIQLj7OxsGAwGlJWVabZXVFT4ZZGb5eXl+e1fXl7ut7/D4cDtt9+OQ4cO4R//+AcsltZlfKP5ZUhRBL+A6nDWH0fpF7fBVX8MqSf8Almn3gUhJP8/vOTRXp+l5F6TIKe8hsbD62CrOgBTRu82f81o4e9beNhPobGPKJFphlIr+gFq2OdSH6/J3Kp+PzxzjAMMlfU5R6B5z9qgUzuUuvHgKliPrIP1yDr0+s3KiN9HIAZLD7jqjsBZe1D7RBjDwkWMhlLrZYw9mfcA/d5qwYpvBaIJhF3acwRa1slz/tbP327Y+zmqil5Dl1+8DKOlu7cpzgbvY7t3KL+z9nBCfechfQlxa8NsNmPYsGFYu9a7ILeiKFi3bh0KCwt1jyksLMSaNWs029auXavZvzko3r9/P/7v//4PWVlZbdB6iiZn/TGUfvkHuOqPIWvgucg9/R5IOnc/KTYkgwmWgdMBCNTt+E+sm0NERBHSVvyNfF6x5lxCm7lVvYj/PoGWXvKpNq2uQqwtEKWfnRaKA1JT0a5oa6447RfkqufDajLGqrbHqiiYzncmobdkVlQD48DFtwIfow6EfYpvafbT2R6FbHzFukehNJajoalyt+flVFMNXKo57opVf5UcSiwJERgDwDXXXIN3330XS5cuRXFxMebPnw+r1Yrp06cDAObOnYtnn33Ws/9VV12FVatW4c0330RxcTFeeuklbN68GVdccQUAwOl04ve//z02b96MZ555Bi6XC6WlpSgtLYXdHusKhqTHUXMApZ//Hq66I0jtcyb6nfsQg+I4ZBlwASRDMhr2LNcURiEiovinKXKkGVYdfhaufs9y1O9Z7rMEkypY1alKHWiorPCpNq0+j6IOkgNWpdYGeK3NJjrrjsJeWdx8Mvd/fYbQam8IqNvYugx8NOgO9/UsmRViiHKLtSBjrBpVIIQr4DERBfAt+NkbUrT1itS/E9rib7FdL5uiIyGGUgPAtGnTUFFRgRdffBGlpaUYMmQI3njjDeTk5AAAjh49Cln2/rKPGTMGzz77LF544QU899xz6NevH1555RUUFBQAAI4dO4YVK9x3gS666CLNa/3jH//A2LFj2+mdUTjslbtQtuIuKLYqpJ5wLnJPnwtJTpiPb6ciJ2Ugtf+5qN/1AeqLP0b60Mtj3SQiIgqXuuCWZlh1eF/8hRCo/PYJAEDmmFu9TwRYrskT8ARYpzb4UGpVxliTYdQOCRY+hb2aqzC3xLEP3de0Hr/6RHVebf0adbCmqDPGoZYZag96Q6n1MsZhBa9h8p1ZEmnQLZTAx0Sznbov7Wj6rwuSbND8TqiHUrdlkTdqPwkVWcyaNQuzZs3Sfe6tt97y23beeefhvPPO092/V69e2LFjR1TbR23DVroFZSvnQjjqkTZwOrJOmsNMcZyzDJyB+l0foG7XMlgGz+TPi4goQQTKGIcbyGmzzAHmGGsyxk3FtwIM49UMOQ4yx1jTBpf6eKc2eFIcAFoeGDezV+xAc8Tnl4VVAmSMAxQIa1c6gbGnv8OpFt0CAoq7qrlshGxMjjjoFkrgjHFb0BZPs8FZdwTHPpqFzMIbYFTNI1YXggu8djIlkoQZSk2dU+PhdShbcQeEox7pw2Yh66Tfs+pfAjBl9kVSt5Pgqj8O65FvY90cIiIKV4DhvuFmxBRblfcYp37VaO1yO/4ZY818YZd2nrLmPE79wFibnXYFrAzdGs6ag942+w2l1p9jjIBVn9uT/3Biz88jipWofV4AR/59Po4uvUTndcI5Psgc47bgc2OmbtcHgFBQveEvPp+/6H+uKLYYYVDcqtu5DOWr7oNwWZFZeCMyR83mOsUJxF2EC6jbuTTGLSEiorAFLIIVYI6wD5e10vNYvfZxwHm/wj9bGaiaddCh1Oq3oGgzxi0ZEq57Xk1/2FSBsc93E83cav05xrHKGKtvNHg0va+oFtxSv6ajoem/TctqRnModSs4647AUXNA5+VUnxGXPfBSYAGGyVPiYmBMcUcIBVU/vYqqH14AJANyzniAC6cnoOQep8OQ2hW2Yz/AUb0/1s0hIqIwaDKZLm2A4BEkgFKs1d7HzYGQ+x+6523OGGteVxNAajPN4WSMtXOUXZpKwq0Z8qp+P8Jl994gaMoYl319H0o+vzVgkS3tzYUYZYx13r9+xjiKL6m+QeK0RT6UOkjxrZZyNpTg2Ie/QekXt/m/nu8NEM1oh0CBcWQ3Fezl2+GsPxbRMdT2GBhTXFEcDShf/SDqtr8H2ZyB/LOfRWrfs2PdLGoBSTYgbaC7sF39rg9i3Boios5HcdR7bkxaSzbi0Mqn4Kwv0d3XVrrFvW/AbK02OLAe+0Eb+OrspwmIFP3gwpMxDpCF1mQ4XeHNMda8B+HSZJYDDXl11h2FYvd/P5q2aAJjmyqLKcHVWA7r4TWwl27W7IcAhcTaIgMaDm0AJ2m2iTZqk+LwzsV12Sojf++KK+r95ajY6T61tdL/c+RTJC3QaAfNiIUIiqkpthqU/O9GHPuASZ94w8CY4oajej9K/ncjrIdWw2jpifwpryKpy8hYN4taIa3/NEA2oX7PcihNQ6mIiKh9lK9+EMc/vhr28u0oWzUfpRv/idrt//Lbz9VQitLPb8Hxj6/2KYKlvwRSw77PUbbiTpR/M9//RdVBhCPQUOoQGWMV7b5O7TrGgYpv+QSjvufwa3JjOY59eDmOfTLbfYi9TlOAyXMqn8DY8/qKA47qfd79bNWq/QK8b2cjjn18Dao3LdR9D21F0zfNQ8A987zbPmOsWKtakDFWop4xVt8E8b0h4ls9PGCVdM0Q/fAzxs76o5E0ldoRA2OKC40HV6PkfzfBWXMAyT1OQ5epr8GU0SvWzaJWMiRnIbXfORDOBjTs/SzWzSEi6lRsx34AADTsXwHFWgEAuuvLW49v8P4jjGHAjYe+cZ//6Pd+51IHEeqAQzNPU+hkTgMFPppCWk5txtipP8dYu/ST06dKtX9mz9VQCsA959RecxSH3vslKtY85H6usRy12/7pDpDUQbnTplrKxxl4fdsA1bjt5dvgrN6L2s2L9N9DFAkhUPLFbShbNU93GHxbZ4yFKjB2WVuQMRaugCMKWtwm1U0ORXUDx/1yvhljn6HVzce1cI6xq6HM89hWsgnH/nsV7JW7wz6e2k7UAuP//e9/GDJkSLROR52EcNlR9dOrKF99P4SzARkjfovcSY9BNqfHumkUJeoiXHp34ImIqG256o97HusVzlKsVd7nFf3iW5r1jVXziD2v0VAKZ+1hbWCsDjg0Abd6qLPOUkEBCMXlU906jCydcGrmKesGhqo+qd67CgDQeOArAMCxj3+L6g1/QcO+L/xvFDRnuxWHZh6zS5MxDjTEtv1yU46q3bCXbIT10Dc+w9ibrsme4exxmjFug+WaNG2y+wTGivbnrJkeoBr9FqjieCBVP76Emi1LPDdiAKB64xtw1hxA6We3RNR+ahvMGFPMOKr3oeR/N6Fu+3uQTBbkTnoMGSN+y+WYOhhzziCYc4fCWbMfNnVWgoiI2oe6arLODUrNF3y/NX/9+WbYAODosl/h2EdX+GRV1UNNtesRex8HH0qtfWFtxjicYMQdTOsPCfe20/v+FZ+CXqJprVqXtcJvfrMnqHc5oDi9AZN6KHWgQmWaYdlRzob6ctYc8r6Wps9E0zaX5r/Rpp6L67JWRB6Ai+jPMVbsqpsXvoGx7w0Ql3YIvPexdu66o3o/XI0Vuq8nXA7U7fgPajb+TdMfhuSspudtEIoTjpqDTCLEkDHUDvfcc09YJzpy5EirG0OdgxAC9bs+QNWGVwGXHeYuo5Bz+n0wpnWJddOojVgGTkfFuq2o27kUyd3GxLo5REQdluK0wlV/DKbMfqqt6sDYP1DTLGcURhEhSTIEfM6pWv5GOx9YP9Or2Kpw7L9Xw5CSE/J13cdFGDQoLp/lm7ztcNQcgKNiJyRTqmeby6YuGKbKkttq/IfUes4rNIGuYlcPV9dvr2Yor63GEyC1Be3w80adHdo2Y6zmaiiFISkzsoPaYB1j9c0LxVHnLih3eB3MecO01dgVp/bnrskYq4bP22tw/OOrAQC9frPS//Uc+hlq9e9I1Y8voX7XB8id+BhSeo1r2RujVgkZGC9btgz5+fnIz88Pul9Njf+cFSJfjpoDqPzuWdhLNgKSARmF1yN98GWQ5MAXWUp8KX0mQd7wKqyH18BZfxzGtK6xbhIRUYdUsfZhWA+tQf7kF70b1QW1dJY40nzBD6NQou88XXWGy15VrHpZ1Wv5zPtVc9bsh7Mm9LJ+QjgBvXV4QxwjAgylPv7fqwAAliHe6sDOhnLPY1eDt4K3Yq3wWSpKG2Cq5xUr9lqE5u0z4WwAkBXGMeFpPLga1qPfIevk2yHJBm1gbPfP9nszxm2/tnL97o+AgmkRHSOEEvVstm9wWrNpIWq3LkFq/6lI7XuO9znFoZ0e4NQfSq1ev9vZUAKzRfs9R/16ztrD3u2qGyTNK3g0HvyagXGMhAyM+/bti5EjR+Kpp54Kut/y5cvxhz/8IWoNo45FuByo3fYOaja/BSgOmLIKkH3aXJhzBsW6adQOJIMZaQXno3bLW6jf9SEyC38X6yYREXVI1kNr3P89+p1nm7pIkOKywVa6Ga7640jt5w4ANMNDdYZJ+9IOkXZpCxKp5k8GLqjVwgBMcUUeIClO7VBYnaHUSqM3GHY0eIfCuhq9RZJc1iqfpai0lYw1BbciXIUh0HrMkajf+xnqd3+IvEmPo3z1/QCA5J5nIKXnaZrz6y2x5fl5tMfaysIFe/mOyI5Rol98SztKwgprc6G6vZ8hpddE73PCFTBjrKiXAVPPWW6sAHwCY/Xz6vWL9aYlSMaUiN4LRU/IwLiwsBAbNoSeFyhJEsfEkx8hBKxH1qF6w2vu4VUGMzJG/Q7pQy6DJIf8+FEHknbiBajdugT1xf9FxoirIBmSYt0kIqIOwXr0e0AIJPc41bNNu96qtpJz6ee3AgCSuhbCkJLrMyQ0+Fq+AKA41BnmOs0arr6FjPREUsFXe5wzrHnFmmOEy2e5JvdjdYDoslV5Hmszxt7AWDgafIZSaytiq7PEit5w5WBtdFrhaiiDITUvouPUKtc9BgCo3fZP73mbgi7NOs46bWvrqtTN5JQ8KI1lPkPNwyCiX3xLO1fYBjTXtxGKdoSByydjHKD4lmaotOrc1pJNqNm8BKn9JnuPCzG6gKMoYydkZDJr1iwMHTo05IlOOeUU/OMf/4hKo6hjsFfuQvVPf4Ht+E8AgKRuJyH7lD/AmM5lmDojY2oXpPQaj8aDq9Bw4GuknTAl1k0iIkpY9Xs+hWKrQdqAC1D21V0AgJ6//sLzvKYSdYAv866GUhhScjVf5PUyWH7Ugaa91icID7CEklpLgxyfdYzDPkbdXkcDqn54CUmqehfqjLGzscrz2KXarjgbNDcAfANM9ZzhSDPGNVsXw3poDXInPoqUXmdEdKwvZ6230Fbz8N6Q88aFy53cauOh1LLZ0hQYhzPU3EsIBVKUg3bhkzFWVEOh/dYn1vzcA80xVg3NVv38Sz6/HRAu2EqKvPtq5hv794Vir0PjwdWo2/Uhcsc/wJVa2lHIwHj48OEYPnx4yBPl5OTg1FNPDbkfdXyOqj2o2bIEjftXABAwZvRB5ugbkdzjdEjqypjU6aQNnI7Gg6tQv3MpA2MioggpthoozgbI5gxUfvskAMBo6e55Xj130WWt0Bzneaz6Iu5qKAVyB2ur6+oNtQ3apto2r6rcTPisYxzWMYpLM5S6Yd/nsJdvQ93O/3i2qTPDLpsq86vKJAtHo88cY5+MsfrmQ4SBcfPw9+qfXm11YKy58dEU2Adc71lzYPSzsr6aA7xIP2PuodTRDoy1lcjVgbF6vjB85qhr5uCrPvfqEQiNh1ajesNrME2+x9NuzeupR1Xo3LRQbNWe4fDWYz8itc+Z4b8xahWOZaWosVfsQM3mxbAeWg0AkJOzkTHit0gr+CWHTRMAIKlLIYwZfWEv3wZ7xQ7OMSciisDx5dfDVX8MuRMe9mxzVO1RPfYWvlLUgbFq6Kq6oFTzeqq6lYrDFPGw2Nbwmc8cFt+h1HrrOKv7Rx0Yq9d3dgYPjNWZRHWBpkgEyqSWr3kIzur96DL19ZDfp9TzopsD0HD6TCjONp9j3NLMp2iDoF09HUA46rXz5FUjBYTi0C73FeB3RT2HuGHPcgBA8dKbIRlT/I8J8V40N7ICLP9EbYPRCrWKcDnQeHAV6nYthb10MwD3HJL0Ib9G2oDzIRuTY9xCiieSJMFy4kWo+vFF1O1chpzT/hTrJhERJQxXU9Ee9Zrwjur9qsf7vPuqvlAH+jLfPKRTOFoTGNdp10luQ0JxhlU12/cYTWAcMmj11stRzz1WnL5zjH3WOw6wjE9EbRUKytc8DENyNlJ6T4C9fBtS+5/XNALPPUxavQyXYq9F2df3Iq3/ed42q37uzX0V1vBzxRn1tYJ9tXhIsFCiXnxLMwxa9XMGfH53lMDFt3zOqL+5ee5yBFyNparHZX7PCyEgnI2QVcuMtYS9cjcaD65G+tBfQ2bBLwAMjKmFHFV70bDvC9Tv+cQz/MSY3guWwb9CWv/zIBnMMW4hxavU/ueieuPf0LD/S2SNvglyUkasm0REFDOKrQb1+z5HWv/zgn7RVQc3ttKfPY/V6wa76o569w9juGpz4KSEMy840DnsNYBsavHxkb2Y0y+ICUUoTk3GL5ziYJ59VRljKE79is6ep9XFnFrWn8JRh8b9XwJw3/xwVBXDXr7d87yjslgTGDfs/Rz20p9hV30e1CMFvBnj0O1xZ2Xbeo5xSwPjFlQjD+OczVyqNY0B7TQE4bJr9o14xEIL2u1SVXZ3NZRBuOywHd8Ac/4IyKZU1Gx8A7Xb30PepMeR3P1kv+Pr93wKKC6kDTjf7znhcqBu1wdI7n4yqn96FbbjP8HVWIrUPmfBemQ9Mguv79Tf4RkYU9ictYfQeHA1GvZ94R2uJclI7nUGLCdOR1K3MZBacGeMOhfZlIbUE6agftcHqN/zKdKHXBbrJhFRhJYsWYK///3vKC0txZAhQzBv3jyMHDky1s2KuYb9X0GSjUjpPQG1W99B45FvkTfxEb+AQLjsaNj/FVJ6T0Dpij/CUbkbcDmQPvTXfud0WatgL98OY1oXzzZnzUHPY0et97Gz/igioVgr4ag52LqMsa0WkrF9vkgLl10zzDQsPpWsIyn8pJ53CvhnFjVtizCTHUrz9yxbySbPNvUyP4A2gNNjr9iBim+f0mRAA1KcbV6VWjKlteg4obggteEwb80NEPjeXGjdz7W1Q8Bd1kpU/fgS6nd/BMvAGcg8aQ5qty4BANRseQvJ3U9G48FVACSk9J4AZ32Jp/5AUveTUfXDSzCk5CD71Dvcx/y8ELVb34a120me4rjOqn0oK3YX8DNm9EFa//MgXNZOWfSLgTEFJFx22Ep/hvXwt7Ae+RZO1cXXmHkCUvtNRmq/yTCmdQ1yFiJ/lhMvQv2uD1C36wNYBv+KN1SIEsgnn3yCxx9/HAsWLMCoUaOwaNEizJ49G8uXL0dOTk6smxczzrojqFizAACQP/nPqC56HQBQu/3fyBx5DazHfoKrsQyp/X6Bms1voXbLW7AeXuMOigHYSjfB8e1+2I7/hLxJTwCyCZIkofK7Z2A7vgFJ3U7yvJYmA6ga5umsiywwbtj7PzTs/V9L3zIAd8ZYUtpnGKbLWg5AQDKlhV3AyXe5pkgqL7t8AmHfAMrnlcI+byTUQZqroQS240UwpveCUByaYmv6x1aiYc8nYb2OUFwRL4UVKcnYwmUa2yJjrKLYfG6AWL0Z5NBD70OdvHV9qlgr0FC+FQDQsP8LWIZ4b545q/fDXrED5asfAADknfM8XKrPRHXRG7Aedhd2S+p2Mlz1x2CvcK8hbTv2o2c/R413Ooa9fCsaD6yEvWIHuk5bqLkhpyaEAsVa6V7uTQgIR12HCKQTKjCO9A71p59+ij//+c84fPgw+vXrh7vuugsTJ6oX7RZ48cUX8a9//Qs1NTUYM2YMFixYgL59+7bH24k7zXel7aU/w1a6yT18R/ULbcoqQHLP05Ha92yYsvrHsKWU6ExZ/WHuMgr2ko2wHf0eyT3GxrpJRBSmhQsX4rLLLsMll1wCAFiwYAFWrlyJpUuX4rrrrotJmxz1pXDWVUFRdIIToUBxNEA2pUIyJMHZUAJTRm93UCFJMKTkoX73RzDnj4RkMKN2y2JYBk6HvaoYrtrDSDvxQtRt/zeSup+CpLxhaDy8Fqas/kjKHw5b6WZUb3wDSV1GwZCc7XnJ2q3veB7bjn6HxtwhKP/6bk976nd/CABNmZ6m91BZDFeDe4mlmp//D9ZjPzYFf+73pP4iG4i6aFB7Uey1kNupKnVz5tOQkgNnuJWNXfYWz0/1BN8GM+Cy+wXK7a1+1weo3/VB25xcODXLbrUF2dCyujNCtHHG2GcUQrsWlAvBWXvYcyNMsdVoh83bqlBf/Knn3w17lgOqNZCth7/xPK745sGAr6G+ydR4YKVnKkDVjy/C1ViO5K6jkTHyOjTsXQ57+XZYBk5H9aa/w3poDTLH3ALbsZ9gPboe2WPvgmxOh6u+BKkn/ALO+uPuucsGE4S9HoqjHpIxCabME2A99iMkgxkpXUag7vAG2BslyKnd4GqsBKBAkk2AZACEE4bk3JbfVIlQxIGxEAKvvPIKLrvsMuTl5Xke5+fnt0X7PCK9Q71hwwbccccd+OMf/4izzjoL//3vf3HzzTfjgw8+QEFBAQDgb3/7G9566y088cQT6NWrF/785z9j9uzZ+Pjjj2E2d8zx9UIIKLZqOOsOw1V7BI7qvXBUFsNetdvvgiqbM2DuciqSu49Fco/TAt41ImoJy4kXo6JkI+p2LmNgTJQg7HY7tmzZgptuusmzTZZljBs3DkVFRS06pyy3rnBT/e4PceDbZ1txBgm+2T7rkW+95y/+GIB7mR8N2eS5eewo3xbweHv5NlSuf8rz76ofX4bQWSu4OSgGgMaDX0f2FmJIsVa2V+0tT39Hkplq6XxfNWNKHpx1R6D4zEXtSCThaod1jFs2skASCoC2uPni87svmwElxJrP7cx3fnjjga80/27++wS4/+7ISZneY1vw2VcfYz3kDqwd5dtQt+N9T1vqd3/k2af6p1c8j5uHcAPuoDog2ej9rEmGkFW6jem90f3Ct9plydeIA2NFUfDKK6/grLPOQk5OjudxWwfGkd6hXrRoESZOnIjZs2cDAG677TasWbMGS5YswQMPPAAhBP7xj3/g5ptvxuTJkwEATz31FMaNG4cVK1Zg6tSpbfp+oqm5Op1w1ENxNECx10GxVsBlrYCrscL7uL4Ezroj+sOPJBnGzBNgzj4R5vzhSOoyEsaMPhziSm0mpfcEyMk57mH6dUc1a3ESUXyqrKyEy+VCXl6eZntubi72798f4KjAjEYZubmWVrUp2TEK9iNjIVw+X+pV36EMZgtctlq47PUwpeXBVn0IptRcOBrKYas8gLTuI9FwfKs7Y6b7RU1yV14WCrIHT4PiaEDdwR8ghBGZ/c9E5Y5Pva+jKu7U/G/FWgFLr5PgqC+HrXJfq95vvDBn9IC99hhctfuRlNq66riRSkrLhN2/WK8uSURYLEnv9TK6BP7+FAOWnieh7nDoEQSRyMwwoxxtO8c4IysLLVl8yGgEDEag5TPh9RmS0uFSZYvNabmw10Y2HaG9NTYFq2ndR6H+6EZAcUAyJiGt6zDUHf4p+jdvZAOMKdlw1pchrfsoyKYU1B5w3/gzWbrAUede/s2c0QP2miMAgNSuw9BYthupXQa7q3ILF2SzBYYkC+w1R9BYsh2WPqdBcdrQWLodad1GQggXHPWlMKXlQ5IM7mWyFBckgxGWXicjL699hmm3aCi1EEL3cVtpyR3qoqIiv4B5/PjxWLlyJQDg0KFDKC0txRlneBdST09Px6hRo1BUVNTiwLi1d76FEKjZshi1jUdga2zwrJ8mFCfgsnuWHRCKA8JpheKodxcGCHOYkGRMgSmrAMb0HjBaesKU2Qfm7BNhyuoLydA+wxSiobmfW9vfHV1c95NsguXEC1Dz8yI0FH+ErNE3xKYZ8dxHcYT9pCWaKtS6h4fVQbHXA4oNVZUyGqproLjsEJ7/OTyVTSVjMtIHTodsblkRmnglhGjR3XynU0FNTeu+7spJ/TBg+quorKzXH0odhBACUOyQDEnIrD0CZ2MZkvJHwHr0BxhSsmFIyYP16A9I6X0GFFsthMsOU0YvAEDGWBcAAUk2wtrYgMYDXyN95DWo2/G+Z+6nZfCvUL1pIQAgbdi1sJVvh+2Hl9zPDZqOuh1L/dqUO+4+1O5cipRe42FM7w5n7VFYj/0A27GfWtFL0ScMqTCm94Kj5gDqRPv+XXAh/CG5Tlvri2IJk3ZkomRKjXqxrXCZsk9E9pnPom7JmVE9b1VFNVzOts2W1rfwV91hs8Mp2qBtxhTAXu+9EZaUDcRpYJzc/WRYj/7g+be515nuwBiAOWcwTD3PAg67/0ZkDL8SNVveDmtdavU6y7I5wzOMPPeM+2E9/hPSB82AKaMvhMsG2WxxxyM/vQZDSi4sJ16Iyh9ehDG9FzKGXoa64uUw55yIpLwhQV9Tfb2QZQnZ2Wkh/36Xl4dfTT6QjIwUmEyGoPskxBzjltyhLisrQ25urt/+paXuEujN/9U7Z/NzkYrGnW+XrRYHN74Zdnl32ZwGY1o+DOY0GJIskM1pMJgtMKXmwJiaB1NaLoypuTCl5cKU1gXG1Jx2GYrQXrKzO9aXy7YSr/2UfuqvsWXzYtQXf4wTzrwVcjvNIdETr30Ubzp6PwmXA/baY7BVHYS95ggc9WVwNJTDUV8GZ9Njl60GSiuq+Ob0Goys7mdGr9HtKDs7GwaDAWVl2nRdRUWF3/U0XJEGs8HO06JzSWYIRUBO6w5zWncI4S5U0yyl7zkAADkl2ae97hFVQhHIOeNBKGPKYUjNh/XI957AOG3wZXA2VsKQmg9T7jAYswdBuJwwZZ4AY0YvT2CcWjANDcXuIknJfc5GSr9faJrorC9RBcb+Q7/l5Gz3yLGmYZByUmabD/uVZBNSeo1Hzc//51lfub1IxvD/DjV/6ZcMSZEvtdNETtZ+n5SNqXC1R2Asyd7ER9NjY0ZvCAEk9zgN1iPfQjJZdIfmR6p682K42niOupBM2vcU7nFCaZNh3pJscn8umgpsyclBige2oN2tJSdleOY/p/Sb4gmMjZaeSOrunYJmzhuK1P7ToDitEC4b0gfPRP3ez+GqPwbJmIycMx6EcNSjvvgT2I7/hLSB01G/0/23J6nbybAeWg0ASO03GXU73wfQ9Heo6W+fAACjselvnwGZY27xvHb2aXd79kkbcAGA8P6m+yZWW/z3O8oSIjAOJNQdar3nfLf5/ruld72B6Nz5BiT0vPAtpBrrUVvvBCSjuzKlbIJkMEGSjZBkM2Bw/1eSg9/5AABn0/8arQCs8TEMqLXCvcPU2cV/P6Uipfd4NB74Ggc3fARL//afwhD/fRQfOlo/CcUJR81BOCp3w16xG46qPXDWHnYvhxLsLrskQzalwWDpDtmUBtlkgWx235SUjSlITkuD3QH3XDXZBMlgbvrb7f6fbE6HM6Ow1Xe/w7nz3RbMZjOGDRuGtWvX4uyzzwbgnmK1bt06XH311e3ennghSTIMqe4pZZbBl8J67EdYTrwYsjEZ2afc7t1PNmqWqEsfNgtCcSJ9yGUQ9jqk9puse103ZXqLghrSusHlsyyTbE6HkM1wNQXGhtT8tp8PazAj7cSLUPPz/3k2SYbksNbMbS0pghEXzcGwZEptcWBsSNEGxpIpDWj0H8stGZOjMqe5WXL3Uz3z1XPOeAB1O/4Ny6BLPf+2Hl4HoThQ+e0TTQ3wTgOwDLwELls1Gvd/EdZrqQvBtRnZAEk2RfxzEIoLUltUpZZNkIzewNgQJDCWTZZ2L8plzOgDe+lmAEBS/nCkD78KtdveRfqIq2G09EBSt5NgL9uG1P7nQZINSB/8K8+xksG9trhwWpHS83T3ObqfAmfNQUiGJE9gnNzdGxhnjJoNxVGP1L7ndKgkWiQSIjBuyR3qvLw8v/3Ly8s9+zfPiS4tLdUU76qoqMDw4cNb3NZofGE0WHrCkmuBrbwu6PkE3HeqO7N4ucMU7+K5n9JOvBiNB75G7Y5lSO13bszaEc99FE8StZ8Uex1spZthL90IW8km2Ct3aZa5aSan5MGY3hNGS08Y07rBkJoLOTkXhpRcGFJyICdlBbwhKcsScnMtKO/gf7uvueYazJ07F8OGDcPIkSOxaNEiWK1WTJ8+PdZNiwvJ3U5Gj0s+gGQMXWgoc9Rsz+PcCQ8F3C+lz1loPPA1LIN/1ZShhSaDJSdlQRgaPQW8DCn5nmWgAhW3Mab3hqux1BvINVVeDpckm2BIdg83dzWWAZAgmS0QjW0fGMstWA9XNqZCQWXoHX1IxmS/QFwy6c+plkyWFgfGyb0mwJCcBXPeME+ga8zoAzQFxql9zkRqnzM9+8umVKT2O0ezzrExvYdnjeukHqcipcdYHDq0KqKfa1uSJIO7aF2kNyiEq02ytZLBBElVKVvvBkjzvHLJbAEiCIwlg9k9haYVkrud7AmMDWndkTnyWmQMvwqS7A7f8iY9BuG0QU7K8Ds2Y+RsVHzzIHLGL/BsMyRlwpCfCeGyuVeXkU1I6z8VwmVHUv4IyKZU5Jx+T6vanOgSIjBuyR3qwsJCrFmzBldeeaVn29q1a1FYWAgA6NWrF/Lz87F27VoMGjQIAFBXV4eNGzdi1qxZbfuGiMgjqUshjJn94CjfBnv5dphzB8e6SdQBCKHAUbkL1sPr0Hh4HRwVO6EefiqZLDDnDYMpawBM2QNgyi6AMb0XZGPLlhPpTKZNm4aKigq8+OKLnuUT33jjjU69hrEvOUDg1FKG5CzkT34BAFC98W8AoMm8GZKzoDhMnv2Nlh7etiRlQLH6B4TZY++EKWcgXPUlqNm8CEl5w4NXkvUhye7XM2b0aQqMBWRDkk7tYP+h360lmyKftuYbzGYW3ghj1gmo+GZB0LVqJWMqZKPq2KaRIN4dVDcojMlQWjjkVjanIfvUOwAA5pyBUJxW9xz3I+uQOer6wMclZ3keG9K6ewLj5r9lkmSEQHwExpBkSAYTRKRL+woFog2Wa5Jks2YZIDlF+zdMNqXB1RQYy6a0iEqTSaa0lgXGqorNqSecC2f9MSR3PcmTwW0OigH39IBA9YFS+0xC8q8+1r2JJBmS0HXam55/qzPNnV1CBMZA6DvUc+fORdeuXXHHHe4/KldddRVmzZqFN998E5MmTcInn3yCzZs349FHHwXgHkJ91VVX4dVXX0WfPn08yzV169bNE3wTUduTJAmWEy9C1Q9/Rt2uD5DDwJhaSAgBe+nPaNj3BRoPr9EsQWdI7YKkLqNg7jISSfnNVfc751CxaJg1axZvIsdIc5CmHo4qGZIhS96RDM3DuoGmgjrNgbEqeywZkyEbUyBn9kXuGQ9EPJS2eaimOkiUdG4suTNnra8MrTlnCzLGvoGxZdAM91QH1VBaPbIpTXOsZDBrgxNjijeraDC7328LssbqzKUpq7/ncbfz3wp6nDG9F8xdRsFZvQ+mrALYjn7X1K6m87XzvNhgJMngng4YIaE42mQotWQwQVJUGeNk/yJrzTQBpmRwV6nXmfdsGTgDdTvfR+bwK1H5g/tGk3dURWhyUhaUpn0NKbnIaZrD2xItGVnR2SVMYBzqDvXRo0chy96lhcaMGYNnn30WL7zwAp577jn069cPr7zyimcNYwD43e9+h8bGRjzwwAOoqanBSSedhL/97W8ddg1joniVesIUVBf9FQ37v0Tm6BthUK3DRxSKs+4I6os/RcO+z71FgCQZ5vwRSOk5Dsk9xzEQpg7DMmQmKr6Zj/Rhs1C3/d8QLivklBxPkSnA5wt9kneZE2Oqe9kVQBuIuXeM8CthU4DTHITLyTm6gbF7iHZ0A+OWVHXXZH0l2T2kF9rAXrWzJ+iRTCmaAMMdGJtU/07yLuMkmyDJZghEHhi3dJSBJMnIP+cFQLGjbteHqna5fxZtkWltMdmguakQLuG0QYQxNSHy9pggG72jGWSzRbM+uebnrvrMSbIRkCR3hWZoKzunj7gamSfNgatql/e8eoFxgCkOhmRvYKz72aQ2FfGnU5Ik9OjRA2azWfO4PQS7Q/3WW/531M477zycd955Ac8nSRJuu+023HbbbVFrIxFFTjalIfWEc1G/axka9izXFKch0iOEAtvRH1C3831Yj6xH81BNc/4IpPb7BVJ6T4RBNcSQqKNI7XMmTOe/BaOlO1L6nIm6be8irWAa6nf/17OP+gu9nJTledy8HikAzRBSAJpgLxzNGePMwushXHakD70cVT/4D8WWZGOUB1K7A5GwqgSr9tFmfZO9Q1N1hqLK5nRPll02pkIyeYMy2ZSmuYmgvhkgGczuGwEt0JIsuOdYSQIMSZrgunmOu2RIglAiHbvcRiQDYIjscwYAwtUIiOivYysZmqpkN//bmALZlOopXKf+mWiG78tGqBdK1yx51PTZkpOzPc8bLd3hqNiueW3ZnOapOK1myuznrQ9A7S7iwFiWZaxYscLzb/VjIqKWspx4Eep3LUPdrg9gGfwrSKqLFVEzoTjRsPcz1G59B87aprl0KXmwDDgfqSecC6Ole4xbSNT2TBm9AQDm7AHIGTcPgLuCccOe5cgcfaMmkDOov6CneB/7ZowjDoyb9pfN6Z6CPXoZLnd2LbpL3bgDY0PIc0qy2VMlWxs0eoNhT2CsaqMhKcsTGEumNG3m0JSq6SvZmOKZeyoFmX8cSjSGvWoCuaaAXTalwhVkOafWLGMVKUluwVBqSXbPt26L4luyGZC855WMKZCMqYCtumk+tLetms9A02e6ea60bEzxzq1vOsaQnO2eTy0EssbcjMYDK5HabzIa9n3uPofJAjQFxuoiX8k9x6Fh3xdI6n5K1N8vhZYwQ6mJqGMzZZ0Ac5dRsJdshPXo90jpMTb0QdRpCJcD9XuXo3bLEs9waXP+SFgGTkdK7wktGp5H1JEkdz8ZPS51D6W1HS/ybDekdfM81gTGvuvGhxMYqzOwepk/vYrtkjFgEGsZPBP2ih1w1hzQLRAWiGxMhiTJITPR7vnN1qZmpKi2q7K8nvftzQDKyVlA02pXsqkpWGp+zpTmM8dYmzHWzLk2JAedv6xpaxQKtsnq92h2ZzgzR9+EijULYBl0Cep2/Mf/dY0p7RYYNxffiugQYyqEo67VFZ71m2NyzxVu4l6CL9V9o0Mo2iHzZm3GWH3zXn0jyjsSwYShv/0QVTVOSKZ09PjVx5AMSZ7AWDane26oGFLz4ayu9zzuccmH/r+f1C74TYKI4oZl4HRUlGxE/c5lDIwJgLugVuP+Faje+Fe46t1L0ST3OA3pw69EUt6wGLeOKD6p55WqM6WmlCzPY98hxJIh9FdCTWEpvcyfTqQqyQZIkgEC/sN5DSm56DL5z6hc/zTqiz8O+fqeczZnjEPRBKmqLLFmLnRToyXJ+1Czb6p77qnq3/CZY+x9bNZkRN3rGocXGEejIr6iKvrVHLil9j0Lyd1PgauhNGBgDFtVq187HO7iW5EFxs0Zb2ftoeg3yGCEJHk/97LZp9Ca6kaPJmMsGf2GYOsxW7rAYHMv3+c7h9yQnO35jTCk5MFZvc/9OklZussvUftgYExEcSOl13jIKbmwHvkWzrqjHBbbydnKtqL6p1dgL9sCwB0QZ4z4LZf0IgohKW84TLlDkNrnLE0QqJ537ztdRROwBBgCLBmSPIGxXuZPdy6rrA0ifF7Uu0+I14Zq2SfJmKKfnfZrrzpI1Q+MVYu4qY4zaR77VqFWB0yaoMhnKLVuMbIAlBauf6yW3G0MDGndkVYwTbNdNlugBFiDVzalRLQMUavIkc8xDtTuaJBkbYYfshmyWRWUqm+A+A6llkMHxkGpPlPq9ZMNPktGUftiYExEcUOSjUgrOB+1mxehbteHyBp9Q6ybRDHgslWjesNf0LBnOQDAlD0AmWNuQXLX0TFuGVFikIxJ6HruXwAADQdWerYHLcKkyYLqLznkmx31o3N+STIEDGKlpqyvOmunXp9Z+9reZZ+kcIdSB8jsyupseXMQrq5arwrkZbPPKgmKA5LsDZ60Q6lNmqBaNiaHDDpzxs1D3a4PkdJrfIg9Q5PN6eh+0Tu6z2lGCBjMQNPQ5KSuoyGn5HmWeWpLLVmuqSVLX4XLPSdc9ZmWJG0mWBW8ajL6Pjd7WjKVR31jSr28mnrYPrU/VrchorhiGXABIBnQsOfj9pv3RHFBCIGGfV/i+H+vRsOe5ZCTs5E9di66nPs6g2KiFlLPp80ddjGSuoxC7plP+u+nzooGqKysDYz9s6HC5Wg+mfqgwMUUPRljVeAcIMjQvnZS6KHUkhzwPekOpRaqMFsIJPeaAABI6Xs2ACC51xkAAHP+cJ+q1Kp2yT5DqXX6CIDmJkRqv8no8osXW7xcU7ikAMPKDWndkH/WU8gcfSMAwDLoV23ZiLiqB+E7GgCAdui7+jmfG0eaERYtKAwmVJ83Q0qe99xcVjCmQgbGa9euDetEDocDf/zjH1vdICLq3AypeUjpPQGKrQYN+1fGujnUTlwNZSj/+l5UrH0Yiq0KaQXno9v5/0BawTTNsEUiiow602WydEHXKS/q1nDQZFfVWb0AwaXenNjmjLT2XIbAQ6mbfrcln6BDlzqwk6TQfxckWRNwawpuqc5lSGnK1mmy3QI54+5D94v/DVNGLwBA1phbkTN+PiyDLtVWpTaoi3qZtO3UZBkjX6YomjQ/O02W1N1HlsEz0f3ifyG13zlt2IjIi29lj53bRo2Bex3jpqHLppyBALyffTk5O+DnUjImaz5/IoLAuHn+sGZagzEFeWc9jS5TX4/8PVBUhQyMb7rpJnz99ddB92loaMD111+Pzz77LGoNI6LOK+3EiwAAdbuWxbYh1C4aD63F8U+vhfXIOhgtPZF3zvPIHnsnZHP0160k6mxMOSfClDsEWSfdAjlYUKLOjqmDgECFpnQCY1NGXwCAOXeI5rySpJ8RlnTmGAfKKPoFzOFkjDXtVQ0lVh2bWfg7QDZ6MqbNryUbk2FI9WbyjJbuSO1zpjujF6AqNWTfqtTqbHJsA2PIgQL25uHssntIbzhFzVpIkg36RduCSD1hiuc7QdTbY0xCWv9pyJ34KHLHLwAAZJ1yG5K6jkH+2c/6jDhQ/R4Yk7U3OiIIjPPOfh6p/X6BjJHXerYptkokdz8F5pxBrXg3FA0hA+PJkyfj1ltvxRdffKH7fEVFBa688kps2LABL7/8ctQbSESdT1KXQhgz+8FRvg328u2xbg61EeG0ofL7F1C+6l4othqkDZyOrtPe5LBpoiiSTWnoeu5fkDFkZtD9tNlgnyxo82O99X9VMk+6BenDr0bOGfer9kvWBFuSb6EtQFvMSjP8WFUQyzdDrJeFVs/7lOSAWWL1fqbMfug5839IH/JrzzZDcvACSIH6RDam+ATG6psK6vfd/sNl1UN01YWk/ALhtmybZIg4YwxI2nm3gUYfhH069dxgMyTZgJReZ3iKfRrTuiH/nOdgyurvc8NGe7NI/TmOZB60ObsAOePugyE5G7kTHoYpewBSTzi3Ne+Ioijkp+uZZ57BBRdcgNtvvx2ffPKJ5rlDhw7h8ssvx6FDh7Bw4UKceeaZbdVOIupEJEmC5cSLAQB1uz6IbWOoTThrD6Hks5tQv2sZ5KRM5E56DNkn38a1G4liRJMdU893lQNkQHUq8RqSMpE58hpNlV3JaNbOIZbUAWLTdp+qz97XVu0rtKW2dIdSq4M8yeBTGMt/+HCgc4WqDOxbpdr7ONmnurc6U64KkhHbeaSG1C6ex3590drAMwhJ9lmuKZzXkmTIqnWCWxsYa+eAB89eB5x3L8maz2bz8PPssXdF1JaU3hPQ9bw3YEjODr0ztYuQM+AlScJjjz2GpKQk3HXXXbDb7bj44ouxfft2/O53v4PBYMCSJUswYMCA9mgvEXUSqSdMQXXR62jY/yUyR98IQ1Jm6IMoITQe/hYVax+GcNQjqdtJyDn9Xs0XaSKKAU0FXvVarqr5tKqAMdybWJJs1gRbkmz0VJP2VKVWB62qIEiSTZ55y555nM3n0hny614v2QlAQJIMmnnQ2qrM+l9/s0+9A43Fy9xFIIORfYbVqtquDaDUmXJ1pjS2gbFRFRj7VQxvw6HUfhnjgEtzqXaRJBhSu6q3tLIJZgiX1fM46L7qn5n6Zy7Jmn5KO/FipPQ5SzNvmBJT2KXhHnzwQSQlJeHee+/Fjh078K9//QtdunTBm2++iW7durVlG4moE5JNqUg94VzU71qGhj2faoa5UWISQkHtliWo2fQmAIH0oVcgY+S1LK5FFAc0wasqY6xZfshk8W4Pd41eSdZm+XSGUqsDWM0wblUQ7ckYNw+/1mSHmwIsSXL/Twj3HGN10GpMgmXgJWjY9znSB12q29T0gRei3+m/QXl5HRQl8GJQmmV8VMO1ZUOydii1rB8YS6YUT3AWC+q5074Z41YPVQ5Gkn3mGIcIcpvaktrvHNgrtiO1z5ko++pPEAiy7FgohggyxprfA++NFcVe57fME4PijiGimul33303kpKS8Ne//hWjRo3C66+/jsxMZnGIqG1YTrwI9buWoW7Xh7AMntmmQ7yobQmnDRXrHkPjwa8hGZORfdrdSO1zZqybRUQ6fLO2nsfqQEIJtUJvE+EKPcc40FxgdQCanAVX/VFAcTbvqGmjcNnc2yRDU5CsnWMsJ2Ui6+Q5yBxzU6uXDNIMx1UHT6YUbVGmAEXHjBl9YLdWtqoNLZF10u/hrDsMWT2H2ue62mbLBUmye963+ucmGUIEuVLToUZkn3xb80Eteu3mzLQUQWCsvhEkJ6VDMqZAOBuh2Kp8stjUUYT8y3Daaaf5/ZIIIVBcXIypU6f67b9u3brotY6IOjVT1glI6lIIW0kRrEe/111ihOKfy1qF8lX3wV62BQZLD+RNfBSmrBNi3SwiCkA9lNq3QnVyr/GwHvoGxow+YZ1LuOx+Q6m9j5uGUmuqJKuf9waZhpRcbQjlu/axywZJlgFFhoA7A64+r8Gc6ff6LaW+caCdT52sfa/qx6rMu2XABago2YjUgmmtbkskLINmAAAa9nkL6voVw2qrodTN51WHFKGC3BAF1iJ67ebAOECVdT3qlRFkkwVJXUbBeuRbGNK6t2jtYop/If86XHHFFVxsmohiJm3gxbCVFKF+51IGxgnIWXsIZV/9Cc66wzDnDkXupMc45Iwo3mkCWfU8SyNyJzwMKI6Q2bZmwmX3D2J9Xkcz5DlAEJ3abzKsh75Bcq8JTftps9ACaMoYS57X8R1KHS3q4d6awFg2w1l7SLWj/lBqU84gdJ/+PuRY/S0MOPcZbTaUuvnnZQiSrdY5SGebzjGy0TuSQO80ssG7xnYkQ6nNqqkDsgHZp92Nuu3/hGXgJaj8/rngbaeEFDIwnjNnTnu0g4hIV0qv8ZBT8mA9sh7OuqOeJRUo/tnLt6Ns5Z+g2KqR3GsCcsfNY9VpogTQHEQA2oyiZDC7kyVhBsWec/kMn1Wd0P0fdcZY/bzqtVN6jUeXqa/DlNGvaT9VgKQuyNU8FVkyaALYaNIMn1a/hiQhucdpaNj3OSyDZ2qDNZ/1m0NVvm5LmroOfutDS+odVZlRCUDgeddhvCgAILX/VDiq9sCUMxBVP70S/BCdxXMkSfZrhSQbIYIExprPn2YERIjA2CebbkjOQmbhDe5/iFb0BcUtTtgjorgmyUZYBpwPQKBu14exbg6FyVayEaVf/gGKrRqWQZcgd/x8BsVEicJl9zzUFBmKZBhyUybSdyi1X3Vf+GQtA2SMIRlgzhnk+TuiCe48BblkCDQFcrIBKX0mwZDWLerrxKrX1ZWMKcg/5wWkD5sFc95wpPQ9G12nvYnM0TcFybzHuOBgoD6G/o0LANpMf0s0D5uXjcg6+fdI6z819IjUcDPG6iXAfDPg8Bm+r74REOIGjyElP+B+sSyeRm2HgTERxb20gvMByYCGPR+7C6xQXLMeWY+yr+ZCOBuRMfJaZI65lZWniRKIZErzPlYPR9YJOgJJH3o5ACCt/9Qgxbea5516AyBNEC2ps6w+QZL6nM0TVyVZVb3aAENKLrpdsAQ5p98TdrvDIaszxrIBSV0LkTlqNiRJgiRJMGX1d7dXDvS+Y/z1O8yh1Nrh6q37G+5X/RpA6DBEL3CW/J7zHdXg/zLqNbrTWCcUmQABAABJREFUgu+rYkjOQtdpb6L7Rf/0e06x1zedI8zq7JQQGBgTUdwzpOYhpfcEKLYaNOz/KtbNoSAaD65C2ar7IFw2ZI65BRnDr2KdCqIEkT/lVaT0PRvpQ3/j2aYZjhxBYJwx4rfoev5bSBtwYcAiVM3bZXOG98AA+/pSB1qeQa2aTKhB899oUg+lDrpfoCG8bblWcBgCtcu9QZ3dD5A9bgm9n0OLMsbeOeSeTToF3bSHeLcZUnKRPvQ3MOePhDEt9HKzpqz+MCRn+21XHHXuc6vmIVPia31pPiKidmA58WI0HliJul0fuDMQFHca9n2JinWPAkIg+9Q7kTbg/Fg3iYgikJQ3FEl5D0Co5k9qM2zhB8aSJMOU0dv9D03mVBWINQVhxrSuyBk3D8aM3qgv/lT1ekGmX2iyru72Sup5sG0YfGqqdgejDtQ1c5FjHBhrqoBrf6aST8a4+ZMgyabWzDAOcDOgBVWpVefzLPUUaIksvW2SjMzC64O/bhhEU2AsMzDuUBIiY3zkyBFcf/31GDVqFE4//XQ89dRTcLmCr59XVVWFO+64A2PGjMEpp5yC++67Dw0NDZ7n169fj5tuugnjx49HYWEhLr74Ynz88cdt/VaIqIXMXUbBmNkPjvJtsJdvj3VzyEfDga/dQTGAnHHzGBQTJTD1KA/1kjWRDKXWnlD1ddOgP9c2td9k9xxiTcY4yFBXWW+uqeQZSt2WWVnJYELe2c+iy9S/hdrR+1A9/DqCGwxtIWhbAmWMWzrH2FMYLcDPK9ihes97hsoHWAJM5+euziJLURrGnjH8t+7/DpsVlfNRfIj7wNjlcuGGG26Aw+HAu+++iyeeeALvv/8+Xn755aDH3Xnnndi9ezcWLlyIv/zlL/j+++8xf/58z/MbNmzAoEGD8OKLL+LDDz/EjBkzcOedd+Lrr79u43dERC0hSRIsA6cDAOp2/CfGrSG1xkNrUbHmIUAI5Jx+L1L7nRPrJhFRlGiyti0MjKUAc1p1g9dwA2Pd9KUqY6wXOEdRcreTYM45Meg+6oBMVmfeQ1RDbmvq4fGxnWPseTbA4yA/Q/W8dL1565p9o1hErIll0Az0uORDpPabHJXzUXyI+8D4m2++QXFxMZ5++mkMGTIEkyZNwm233YbFixfD4XDoHlNcXIzVq1fj0UcfxahRo3DyySdj3rx5+Oijj1BWVgYAuPHGG3H77bdjzJgx6NOnD6666ipMmDABX3zxhe45iSj2Uk+YAsmcjob9K+BsKIl1cwjuQlvl3zwICBeyT5vLLwlEHYzks8xQy04SYK6qbhYxQCVnX55lhKBdOsfzOA6+4kr6gXG0grOWkoIExlKAjLGkKoSW1O0k99OaNYkDBL7NP49ggbXvElF62/0OCRDs6s5l1g/2W0tOygi9EyWUuJ9jXFRUhMGDByMvL8+zbfz48Zg/fz727NmDQYMG+R2zYcMGZGVlYfjw4Z5t48aNgyRJ2LRpE84++2zd16qtrcXAgQNb1V5Zbn2RmeZzRONcHRX7KDwdrZ9kcyrSB16Ems2LUb/zfWSPuan15+xgfdRW9PrJevRHlK26H1AcyBl7BywDpsWqeXGBnyXqiITwTl0LulZsMJrAJEAQ5NmmDlyCzWoV/o8l9ePY/x5qKnqrg9EYt00yqeY7+w3rVgem+sFn9ugbkZ2XjSMbP0H1pjebnjcAwaY5Bp1j7Lt2ssv7OOD59Odv6w6lVvd3jG9KUHyL+09HWVkZcnNzNduag+SysjLdwFjvGKPRiMzMTE/G2Nfy5cuxZcsWPPLIIy1uq9EoIzc3epPws7PTQu/UybGPwtOR+injtFnYsu2fqN/9EU6YeBMMSdH5netIfdSWmvup/thmHFp1H6DY0evMucgfdVmMWxY/+FmiDkWVjRWKPciOgemtOQwECmK8zwt1VjhIu1RHt6R5bUZWB8YhlgZqT+olhoIOpQ6w3JRkNCM55wTNcHV1oS6t5jnf/kGu3g0CdVEtKdjPU3WsMTUfdp3tqp1Vh8V96EMxFLNPx0svvRRynnDzfN9Ad9aC3XHTe04Iobt9/fr1uOeee/DII4+goKAgaJuCcToV1NQ0tvj4ZrIsITs7DZWV9VCU1tQA7LjYR+HpmP2UgtR+k1Ff/CkOfP8eMobMbNXZOmYfRZ+6n2yV+3H8s99DcTQis/B6yL1+ifLyulg3Meba87OUkZECk4lrQ1M7UAWnmuHAkdAMjw3wuHmTOoDUDX6bngpRIzloUNVONAFoPAXGgebnujeoHquHKJt0HgfILuvRHUrdfLzqZxni8+F9Sn9esabitmejOmPMv5sUWMwC4yuvvBIXXnhh0H3y8/ORl5eHLVu2aLY3Z319s8LN8vLy/DLDTqcTNTU1fsd89913uPHGG3HPPfeEbE84ovllSFEEv6iHwD4KT0frJ8ugmagv/hS12/6NtBOn+1/YW6Cj9VFbsdeVomTFnVBs1bAMuhSWIZez33zws0QdiRAudDn3NViP/Yikbie36BzaJYCCB1OaYl9BMsaa8+gF0HE2lDrehvBKhmQIl9V/uyZoVq93rF4r2NS0rza7HPSvnm5RLL11isObY6wJ2iUZ3S5+D67646jdsgT+FYj0s+BEvmL2W5qVlYWsrKyQ+xUWFuL1119HeXm5J6hdu3YtMjIy0L9/f91jRo8ejaqqKmzZsgXDhg0DAHz77bcQQmDkyJGe/davX48bb7wRd955J2bObF3WiYjajynrBCR1PxW2o9+h8cDXrILcTpy2WpSuuAuu+uNI6TsZmWNujvlcOSJqY8IFc+5gmHMHt/wcAQpuSTqVozWZ1WAjA/UygwGrG8dG0HWYY6zHpR8EH6oOaIJPTTXx5nnJIW5yaE4VrCiWet1sWVYF2MFGhmoDaGNqFxhTu6BWd2f1YwbGFFgclOwLbvz48SgoKMDcuXOxfft2rF69Gi+88AKuuOIKmEzuX8xNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75ievX78eN9xwA6688kpMmTIFpaWlKC0tRVVVVazeKhFFIH2Ie05r7bZ/QgQZbkfRoTht2PPhH+Co2oOkbqcg57Q/RW09SCKKP2kFvwQApPQa3/qTBaxKrROkqALjYIFlyCGz8XDTLo6zk5IhSbNsk/4+esOnVUFygOyy7rl05vbqXkNCVS3XeS50pekgQ8eJVOL+02EwGPDaa69h/vz5uOyyy5CSkoLp06djzpw5nn0aGxuxd+9ezfJNzzzzDB5++GFcffXVkGUZ5557LubNm+d5funSpWhsbMTrr7+O119/3bP91FNPxVtvvdU+b46IWiyp6xiYsgfAUbkTtpIiJHcdHesmdVhCcaFizUNoPLIB5tzByJ2wQPuFiYg6nKxT70TmmJtbPq84gFDLP0kBqg377WdQB8bxWYgrmksDxYKkFwwDniA51LB4Dd2McfCh1PrzxPWGzauOMekV5FTfMEnsnwm1rbgPjAGgZ8+e+Nvf/hbw+bFjx2LHjh2abVlZWXj22WcDHvPEE0/giSeeiFobiah9SZIEy+CZqFz3GOq2/ZOBcRuq3vAaGg9+g6SsPsg760lIptRYN4mI2pgkSZCiFhSrghlZOzfU/4VDFFJqPo16yaE4DYwTPQhTD2vX3NBofhxJ1lY3++tffEsKs/iWz8k9jwyp+f7PGnTaTqSD4+CIKGGl9j0bhtR8WI98C3tlcayb0yHV7foAdTv+BTkpEwUXvQhDclasm0RECUc9h1S/mrDe83KwwDgpS2erpPswVozpPQC4s5hyUmaMW9MCmiyxOrhs/rmFqvasXiYpysW3NKfxntto6aZzSvW89cS+WUFti4ExESUsSTbCMuTXAIDaLYtj3JqOx3pkPap++DMgm5A36REkZfWOdZMohrZv344//vGPmDRpEkaNGoVp06Zx6hGFR10HQp0RDlaQCb7DpbXSTrwQyT3PQO6kJ/RH18bBV1xDcja6nr8Y3S96B0ldCpEx6nfIn/JqrJsVNvWUGd1Ma6j54lLwIcytm2Os/zppJ0xFUvdTkDPuft3zMGNMwcT+rwYRUSukFfwScnI2Gg+shKPmYKyb02E4qvag/JsFgFCQc9qfkNxlZOiDqEPbvHkzcnJy8PTTT+O///0vbrjhBjzzzDN45513Yt00SiBSiKHU6mA5udcZAIDUfpP99pONKcib9ChSep4W4IXiIGUMwJTRC7I5HZIkIWPYFUjKGxrrJoUt4Bzj5m0hi2+pA2O9kMP/Z6QNloP8DNU3QzTz0pOQf9bTmtUqNNnqOC6IRrHH2yZElNBkYzIsg3+FmqK/onbr28g57U+xblLCczWWo2zl3RDOBmSMuEb3Syl1Ppdeeqnm371790ZRURE+//xzXH755TFqFSWEQBk7nWDJkOYdCmvK6I0el34UoKCSl2iKkrh8XJSpA0q9gouhim9JkieA1f3ZhCq+FeYcY80SX3o0Bd8YGFNgDIyJKOFZTrwItVveRsPez5Ax4moY0/znGFF4FGcjyr6+F66GEqT2+wXSh18V6yZRHKutrUVmZuvmTspy64KZ5uNbe56OLpb9ZEjK8DxWF0IyGIyQfNqTnDcIueMfhDnnRMiyBDk5A6FIaI6/JPe8WMUBV2N5xO+VnyUtdTArq+d+N/WPOkusnzFWBbZC8e/X5iH2kgEQrqbXVA+llnR+FpLnOc+rGExBf2a+7WyPny8/S+GJt35iYExECU82pcEy6BLUbl6E2q3vIvuU22PdpIQkhIKKtY/BUbED5vyRyB57FzMwFNCGDRuwfPnyoKtGhGI0ysjNDZ4NDFd2dnSXFeqoYtFPjuw81DY9tqSnoarpcW5ehu6cz9zcCyM6/+GmP1MGowxDdl9Yy3dDaSxp8Wers3+WDjT9NznZhPqmxympSZ6fYXP/pFmSUd60zWQ2w958gqZAV5Ikz4hnk0ny+3mUyAIOuEcRCJc7MDaYjGhefNVoMvodc0SWoAAwGCQ4m7alpqXo/qyb30dSSjIamx6nW0zIitLfnHB09s9SuOKlnxgYE1GHkD7oEtRtfw/1xR8jY/iVMKTkxrpJCae66HVYD62G0dITuRMfDj08jTqEl156CS+//HLQfb7++mt06+YdibFr1y7cfPPNmDNnDk4//fQWv7bTqaCmpjH0jkHIsoTs7DRUVtZDUfSW7SEgtv1kc3mLaNU3uDyPKyqtUTm/0pR5dDkV5J7+J5SsuAvZY+eivLwuovPws6RltTk8jxsbvY8rK+uRnZ2GhgbvNqdLdaBqCHUzu83m9/NwOpqOVw2ZdqnO43IKv2Oafy4ul/cFGq2uoD9ru927b01NHVwRfi5agp+l8LRnP2VkpMBkCj6UnoExEXUIclIG0k68CHXb3kXt1neRddItsW5SQqkv/hh12/4JyZyO3DOfgCERlxahFrnyyitx4YXBM3T5+d61QXfv3o2rr74aM2fOxA033NDq14/WlyFFEfwCGoZY9JMpv9D939whmrmo0WqHJMkQAITLBmP2QHSfsQySJLX4/PwsNRGq4cop+UjpPRGmnIGevhFCPaJIp2iWasSRUFx+fSqah0/LJojmnK4qSBbQ+xkKn/8G2k/dHNU5Xf7taEv8LIUnXvqJgTERdRjpg2eifucy1O1ahvQhM2FIzQ99EMFWshGV3z8PSAbkTngIpgwuy9SZZGVlISsrK6x9d+3ahauvvhoXX3wx/vCHP7Rtw6jDMGX0RrcL34EhJQcNB76O+vmNGf1gL90EZ+0hACzC1RYk2X198NnofayexysZ0DRI2vu8UPxP2hQYaypFa4pvhflzDFVQS3V+odcOoiZcromIOgxDSg4sg2YAigM1XNc4LM66IyhffT+gOJF1yh+Q3HV0rJtEcWrXrl246qqrMG7cOFxzzTUoLS1FaWkpKioqYt00SgBGS3dIhqQ2OXfW6Jvc/z3lj21yfoL+0lrq5ZokvWrjqoyxbmCsNO2uWhZKU+k6zDAlxH6agl6KK/CO1OkxY0xEHUr6kF+jbtcHqN/9X6QP+TWMlu6xblLcUhz1KPv6Xii2GlgGXQrLgPNj3SSKY8uXL0dFRQU++ugjfPTRR57tPXv2xIoVK2LYMkoobZCxM+cNQc9ffxmgMjJFhe5yTAHWB5ZUQ6kl2f0z1wlIRfM2TQE29drH4WWMQy7BJBuRWXgD6nb8Bym9x4d1TuqcGBgTUYciJ2UgffBM1Py8EDWbFyHntLtj3aS4JBQXKtY8DGf1PiR1PxWZo2+MdZMozs2ZMwdz5syJdTMo0SnO0Pu0AIPitqW7prAmY6zuf8n7X8kACMUzn1jDM8dYJ6gGoDuwVS/jGzJjbET60MuRPpTrrVNwHEpNRB2OZfClkJMy0LD3Mziq98e6OXGpuuh1WI98C2NGX+Se8YDukilERNGmGyBRnFIVQ9INPvXnGKszxp6gV+fn7skYS+FnjA1pXQEApswTVLuFCGd404TCxMCYiDoc2ZSG9CG/AYSCmp8Xxro5cad+939Rt/09yEkZyJv0GGRz+63pSESdHOd4JgyhCoz1hitLmkJZquJbTcGtJEmQ5CDL/nkyxur5yeostH+YknXy75E24EJkn/Yn1THBA9+QQ62JmjAwJqIOKW3gxZBTctF4YCVsZVtj3Zy4YTte5K1APf4hGNN7xrpJRNSJiDYaSk1tQITIGKszupqMsfdB7qTHYcrqj+yxf4Ivz+gBnaDa50QeSfkjkH3qHyGb0vRfWyV77FwYUvJgGThd93kiXwyMiahDko3JyBx5HQCg+qdXIUTs18eLNWftYZR/8wAgXMg+9Y9I6loY6yYRUSfTXPwojcFK3ErucZr7v13HeDfqDGvWVBnXBM7eqtRJ+cPQddqbMGcX+B1vyuzf9N+++ucJMUQ6fdgsSIZkpDS111dawTR0n/5vGFLzgp6HqBkDYyLqsFJPOBemrALYyzaj8WD0185MJIq9zluBevBMpBX8MtZNIqJOyGjpgZ6X/Q/ZJ98W66ZQADnj5yP/Fy8jpd9kzza9TL+cnOV5LOnNDQ5RVTp3wkNIHzYLWWNuCbBH8OMzR81Gj5mfQk7KCLofUbgYGBNRhyXJBmSOuRkAUL3hdQiXPcYtig2hOFG+5iE4a/YjucdpyCy8IdZNIqJOrK3WM6bokI3JSMofrlmnGIrDbz+DKjDWz+4GD2yNaV2QOWq2NrCVIluuSQpzSSeicDAwJqIOLbnbSUjuOQ6u+qOo2/F+rJsTE9Ub/gLb0e9gzOyHnDPu57ImREQUEd2MsVmdqdWZG9yioFVd0IthCrUvfuKIqMPLHH0jIBlQs/kfcDWUxbo57apux/uo2/EfbwVqdcESIiKiMAiXf8Y44PrDkneOccSkgP8ganMJERgfOXIE119/PUaNGoXTTz8dTz31FFyu4OX+q6qqcMcdd2DMmDE45ZRTcN9996GhoUF3359++glDhw7FjBkz2qL5RBRjpow+sAy+FMLZgKqfXol1c9pN46E1qPrpZUA2IXfiYzBaesS6SURElIgCVBPvMvWvyJ/yCtRBbPOjlgxzlhB+8S2iaIv7T5zL5cINN9wAh8OBd999F0888QTef/99vPzyy0GPu/POO7F7924sXLgQf/nLX/D9999j/vz5fvvV1dXh7rvvxmmn6Ve0I6KOIWP41TCk5qPxwFewHv0h1s1pc/by7ahY8xAgFOSMuw9J+cNj3SQiIkpQQmeOMQCYcwYiKW+YdtizJyBuScaYWWKKHWPoXWLrm2++QXFxMRYuXIi8vDwMGTIEt912G5577jncfPPNMJlMfscUFxdj9erV+M9//oPhw91fBufNm4cbbrgBc+fORV6et2z7Qw89hKlTp8JkMuGrr75qdXtlufW/0M3niMa5Oir2UXjYT15yUhqyT/49ylbdj6ofnkf38xdCMiR1yD5y1h1F2df3QLhsyBpzEyz9zmr1OTtiP0Ub+4iIOhrLoF+hbse/kNJnUog91X/3WjGUWnMMl1mk9hX3gXFRUREGDx6sCWbHjx+P+fPnY8+ePRg0aJDfMRs2bEBWVpYnKAaAcePGQZIkbNq0CWeffTYA4JNPPsHOnTvxyCOP4PXXX291W41GGbm5llafp1l2NucChsI+Cg/7yS0n5zzYDyxHzb41cOz5N7qf5q3O3FH6yGmtwa5P7oFirUTeiEvRa/x1Ua3a2VH6qS2xj4ioo8g66RZkFs4OXUlc7zrTorhYdZBgYEztK+4D47KyMuTm5mq2NQfJZWVluoGx3jFGoxGZmZkoK3MX3jl69Cgee+wxvPnmmzCbzVFpq9OpoKamsdXnkWUJ2dlpqKysh6Lwj4Ie9lF42E/+LIVzUHvwBxz7/k0gbyySc0/sMH0kXDaUfDkXtoq9SO55OlJG3ISKivqonJufpdDas48yMlJgMrG6OBG1vfCW19KLgjmUmhJLzALjl156KeQ84a+//hpA4Mn7wbIges8JITzb586di+uuuw4DBw4Mt8lhieaXIUUR/AIaAvsoPOwnLzm1GzJG/Q7VP72M8jWPodt5rwNIS/g+EooT5d88BFtJEUzZJyJn3P0QMEBE+T0lej+1B/YREXU6UQpoJUl9w49/R6l9xSwwvvLKK3HhhRcG3Sc/Px95eXnYsmWLZntz1tc3K9wsLy/Ps08zp9OJmpoazzHfffcdfvzxRzz99NMAAEVRIITA0KFD8dZbb+Gkk05q0fsiovhnGTQDjYdWw16yEdWb/4G8s2+LdZNaRQgFld89A+uhb2BM74W8M5+EbEqNdbOIiKiziFYFaYkjYSh2YhYYZ2VlISsrK+R+hYWFeP3111FeXu4JateuXYuMjAz0799f95jRo0ejqqoKW7ZswbBhwwAA3377LYQQGDlyJADgo48+0hzz9ttv44cffsBzzz2H3r17t+KdEVG8kyQZOaf9Ccc/uRY1m5egfug5gKlfrJvVIkIIVG94DQ17lsOQkoe8s5+BISUn1s0iIqJOJUpDoFWBsRBKdM5JFKa4X65p/PjxKCgowNy5c7F9+3asXr0aL7zwAq644gpPRepNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75icPHDhQ87/c3FyYzWYMHDgQKSkpMXu/RNQ+jJYeyBx9MyBc2PfpPVDstbFuUovUbl2Cuu3vQTZnIO/sZ2BM6xbrJhERUScTrSKPmmWfOJSa2lncB8YGgwGvvfYaZFnGZZddhrvuugsXX3wx5syZ49mnsbERe/fuhcPhXWPtmWeeQf/+/XH11Vfj+uuvx0knnYQFCxbE4i0QUZxKG3ABUvucCXvNEZSvexIiwSpg1m57FzUb34BkTEbemU/ClNkv1k0iIqLOKFoBrSbAZiEual9xX5UaAHr27Im//e1vAZ8fO3YsduzYodmWlZWFZ599NuzXmDNnjibYJqKOT5Ik5Jx2F5zVu9F4cDXqdvwH6YMvjXWzwlK79V1UF70GyZCM3EmPw5w3JNZNIiIigjcwbl1gK3G+MbWzuM8YExG1JdlswQnTngBkE6o3/AXWYz/GukkhqYPivDOfQHLX0bFuEhERdWbqjHHz6KvWDq+WGaZQ++Injog6vdQuQ5Az9g5AuFC++gE4qvfHukm6hBCo+fn/NEFxUtfCWDeLiIjIo1WTklRTmpgxpvbGwJiICICl4DykD/0NhKMeZV/fA5e1KtZN0hCKC1U//Bk1P/8fJGMq8s56kkExERHFB3UF6abHUmuXcGJgTO2MgTERUZOMUbOR0nsiXHVHULZybtxUqhYuGyrWPoz6XcsgJ2cjf/KfkdRlVKybRURE5KYpXhmdOcYMjKm9MTAmImoiSTKyT78X5i6j4KjYibKVd0NxNMS0Ta6GMpR+cTsaD6yEwdIDXX7xMsw5J8a0TURERFo6aw63Ni6WGRhT+2JgTESkIhuTkTfpcZjzhsFetgVlX90Fl606Jm2xl23D8f/dCHv5NpjzhqHLL16GMb1nTNpCREQUiGa5Q8/j1g6lZphC7YufOCIiH7IpFXlnPgFz7lDYy7ag9PPfw1l/vN1eXwiBuh3vo+SL30NpLENq/2nIP+d5GFJy2q0NREREYVPPMUZ0qlKz+Ba1NwbGREQ6ZHM68s55Fsk9ToOzZj9K/ncjrMc3tPnruhorUP71Paj68UUAAlkn/R7ZY++CZDC3+WsTERG1XmvqUquOZcaY2hk/cUREAcjGFOROfARpAy6EYq1E2Yo7ULNlMYTijPprCaGgbvdHOP7xb2E98i2MGb3RZcqrsAyaAam1a0ESERG1JVXG2DusurXrGDNjTO3LGOsGEBHFM0k2IvvUP8KcPxxV3z2Hmo1voPHAKmSPvQPmnEFReQ1byUZUb3gN9vJtACSkDZyOzMIbIBuTo3J+IiKiNqUzx7i1yzW1erknoggxMCYiCkPaCVNgzhmEyu+ehr10M0qW34iUPmciY/iVMGX1j/h8QnHBduwH1G77J2zHfwIAmHIGIfuUP8CcOzjazSciImozAjpzjFuLc4ypnTEwJiIKkymzL/Inv4j64o9Rs+lNNB74Co0HvkJS19FI7fcLJHc/FYbUvIDHC8UJe/k2WA9/i4b9X8DVVNDLmN4bGcOvQkrfs7k8BRERJR6hEwy3tvgWr4fUzhgYExFFQJJkWAZcgNR+v0D97v+ibvu/YDu+AbamwlwGSw+YMvrAkJoPyZgCKE64bDVw1h6Es3ofhMvmOVdS1zFIG3ABUnpPgCTzzzERESUq9VDq5uxxywJjU85gOCq2w5w3ovXNIooAv4kREbWAbExG+uBLYRk0A7aSjWg88DVsx3+Cs+YAXHVHdI+RTGlIyh+J5B5jkdLzdK5JTEREHYNmuaZWnQj55zwLR+VumPNHRumcROFhYExE1AqSJCO562gkdx0NAFAcDXDWHoLLWgnhbIQkmyCb0mBI7wFDSj4rTBMRUcejGUrdfJ1r2Vxj2ZSGpC6jWt0kokgxMCYiiiLZlApzzsBYN4OoTR04cAAXXXQRzGYz1q9fH+vmEFGMaYpvNd8A1pt3TBTHWAediIiIwuZ0OnHXXXfhpJNOinVTiCheqINgzzJLDIwpsTAwJiIiorC98sor6NWrF6ZNmxbrphBRvFDNMZaahlKLFsw7ZpKZYolDqYmIiCgsP/30E5YtW4Zly5bhyy+/jMo5Zbl18+6bj2/teTo69lNo7KPw6PWTpnxG0z8kRN6XktQx+p+fpfDEWz8lRGB85MgRzJ8/H+vXr0dqaiqmT5+OO+64AwZD4PXNqqqq8PDDD+Orr76CwWDAlClTcN999yE1NdWzj6Io+Pvf/45//etfOHLkCLp06YLf/va3uOqqq9rjbRERESWMuro6zJ07F4888ggyMzOjck6jUUZuriUq58rOTovKeTo69lNo7KPwqPup1mxAfdNjWZahAJBlhP37faDpv0lJxqj9TYgH/CyFJ176Ke4DY5fLhRtuuAF5eXl49913UVJSgj/96U9ISkrCbbfdFvC4O++8E6WlpVi4cCEcDgfuvfdezJ8/H0899ZRnn8ceewxr1qzBPffcgwEDBqCyshKNjY3t8baIiIjiwksvvYSXX3456D5ff/01/vznP+PMM8/EGWecEbXXdjoV1NS07roryxKys9NQWVkPReE4zEDYT6Gxj8Kj1082q93zvCLc2T+XS0F5eV1Y58w6eQ6qfngJ5hMuDvuYeMbPUnjas58yMlJgMgVOqgIJEBh/8803KC4uxsKFC5GXl4chQ4bgtttuw3PPPYebb74ZJpPJ75ji4mKsXr0a//nPfzB8+HAAwLx583DDDTdg7ty5yMvLQ3FxMd555x189NFH6N+/PwCgd+/e7freiIiIYu3KK6/EhRdeGHSf/Px8rF+/HseOHcPbb78NABBCQFEUDB06FE8++SQuuOCCFr1+tL4MKYrgF9AwsJ9CYx+FR91PuvOJhRJ2P1oGXoK0ARdBko0dqu/5WQpPvPRT3AfGRUVFGDx4MPLy8jzbxo8fj/nz52PPnj0YNGiQ3zEbNmxAVlaWJygGgHHjxkGSJGzatAlnn302VqxYgV69emHFihWYPXs2JEnChAkTcOedd8JiafkQjmiMkY+38fbxiH0UHvZTaOyj8LCfQkvUPsrKykJWVlbI/f7+97/D4XB4/v3ll1/izTffxJIlS9C9e/c2bCERxT29qtQRVtKS5LgPS6iDi/tPYFlZGXJzczXbmoPksrIy3cBY7xij0YjMzEyUlZUBAA4ePIjDhw/jiy++wNNPPw273Y5HHnkEd999d8ghZYFEc64UED/j7eMZ+yg87KfQ2EfhYT+F1lH76IQTTtD8e/PmzZBlGQMHct1uIvIGwZJnS+wzgESRiFlgHO6cJgCQJP2774G2B3pOCOHZLoSAw+HAk08+ib59+wIA5s+fj1mzZqGsrEyToQ5XNOZKAZyXEA72UXjYT6Gxj8LDfgot3uZKERG1G/VQ6hZmjIliLWaBcbhzmvLy8rBlyxbN9uasr29WuFleXp5nn2ZOpxM1NTWeY/Ly8mA0Gj1BMQAUFBQAcFfBbklgDERvrlTzufgFNDj2UXjYT6Gxj8LDfgqts/TRjBkzMGPGjFg3g4jigNAEwc3JqcjXMSaKpZgFxuHOaSosLMTrr7+O8vJyT1C7du1aZGRkeIpm+Ro9ejSqqqqwZcsWDBs2DADw7bffQgiBkSNHevZxOp04ePCgp+jW3r17AQA9evRo7dsjIiIiIuoULCdeBOuh1cgYeS3qiz9xb2TGmBKMHOsGhDJ+/HgUFBRg7ty52L59O1avXo0XXngBV1xxhaci9aZNmzB16lQcP34cgDvzO2HCBMybNw+bNm3Cjz/+iIcffhjnn3++JxN8xhlnYPDgwbjvvvuwfft2bNq0CQ8//DCmTJnS4mwxEREREVFnk9z9ZPT41SfIGH6Vaig1M8aUWOI+MDYYDHjttdcgyzIuu+wy3HXXXbj44osxZ84czz6NjY3Yu3evplrmM888g/79++Pqq6/G9ddfj5NOOgkLFizQnPevf/0r0tPTcfnll+Pmm2/GyJEj8fjjj7fr+yMiIiIiSnSyKRUAIDUNpWa+mBJN3FelBoCePXvib3/7W8Dnx44dix07dmi2ZWVl4dlnnw163q5du+KVV16JShuJiIiIiDq95gK4zBhTgon7jDERERERESUIybtgE1EiYWBMRERERERR0pwxZmBMiYWBMRERERERRUdz8S1mjCnBMDAmIiIiIqLoYsaYEgwDYyIiIiIiigqpKWMsmDGmBMPAmIiIiIiIooRVqSkxMTAmIiIiIqKoSCv4JQDAMuiSGLeEKDIJsY4xERERERHFv7SB05Hc41QYLD1j3RSiiDAwJiIiIiKiqJAkCcb0XrFuBlHEOJSaiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqDIyJiIiIiIioU2NgTERERERERJ0aA2MiIiIiIiLq1CQhhIh1IzoKRRFwuZSonMtkMsDhcEXlXB0V+yg87KfQ2EfhYT+F1l59ZDDIkGWpzV+nrUXrusnPZnjYT6Gxj8LDfgqNfRSeeLpuMjAmIiIiIiKiTo1DqYmIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsA4zixZsgRnn302RowYgZkzZ2LTpk2xblK7ef3113HJJZdg9OjROP3003Hrrbdi3759mn1sNhsWLFiAsWPHYvTo0ZgzZw7Ky8s1+xw5cgTXX389Ro0ahdNPPx1PPfUUXC5XO76T9vPggw9i0KBBWLx4sWcb+8jt2LFjuOOOO3DqqaeisLAQM2bMQHFxsed59hNQV1eH+fPnY8KECRg1ahTOP/98LFu2zPN8Z+yj77//HjfeeCPGjx+PQYMG4auvvtI8H60+Wb9+PaZPn47hw4fjF7/4habfKTK8bvK6GQleNwPjdTM0Xjf9dajrpqC48fHHH4thw4aJf//732LXrl1i3rx54pRTThHl5eWxblq7uPbaa8V//vMfsXPnTrFt2zbxu9/9Tpx11lmisbHRs88DDzwgJk2aJNauXSt+/vlnMXPmTPGb3/zG87zT6RTnn3+++O1vfyu2bt0qVq5cKcaOHSteeOGFWLylNrVixQpx4YUXivHjx4u33nrLs519JERVVZU466yzxN133y02btwoDhw4IFauXCmOHj3q2Yf9JMS9994rpkyZIr777jtx4MABsXjxYjF48GCxfv16IUTn7KOVK1eK5557Tvzvf/8TAwcOFCtWrNA8H40+OXDggBg1apR4/PHHxe7du8Vbb70lhgwZItasWdNu77Oj4HWT181I8LoZGK+b4eF1019Hum4yMI4jl156qXjooYc8/3a5XGL8+PHijTfeiGGrYqe8vFwMHDhQ/Pjjj0IIIWpqasSwYcPE8uXLPfvs3r1bDBw4UGzatEkI4f7lHDJkiCgtLfXs8/bbb4uTTz5Z2O329n0Dbai0tFRMnDhRbN++XZx11lmeCzz7yO3pp58Wl19+ecDn2U9uv/zlL8Vrr72m2TZlyhTxxhtvsI+E8LvAR6tPnnrqKXH++edrXuv2228X119/fVu+nQ6J100tXjcD43UzOF43w8PrZnCJft3kUOo4YbfbsWXLFpxxxhmebbIsY9y4cSgqKopdw2KotrYWAJCZmQkA2Lx5MxwOh6aPCgoK0KNHD08fFRUVYfDgwcjLy/PsM378eNTU1GDPnj3t1/g2ds899+DKK6/EoEGDNNvZR24rVqzA8OHDMWfOHJx++umYMWMGPvjgA8/z7Ce30aNH48svv8Tx48chhMDq1atRUlKCcePGsY90RKtPioqKNOdo3qez/q1vKV43/fG6GRivm8HxuhkeXjcjk2jXTQbGcaKyshIul0vzoQCA3NxclJaWxqhVsSOEwOOPP45TTz0VBQUFAICysjIkJyfDYrFo9s3NzUVZWZlnn9zcXM3zzX3avE+iW7x4MRoaGnDttdf6Pcc+cjt48CDefvttFBQU4M0338Qll1yC++67D19++SUA9lOzefPmoU+fPpg4cSKGDx+OW2+9FY8//jiGDBnCPtIRrT4JtE9VVRUcDkdbNb/D4XVTi9fNwHjdDI3XzfDwuhmZRLtuGqN2JmoTQghIkhTrZrS7hx56CDt37sQ777yj2a7XF0KIkPsE255IiouL8eqrr+K9996DLOvf1+rsfQS43++IESNw++23AwCGDBmCzZs345133sE555wDgP0EuL8sbtu2DX/961/RtWtXrFu3Dvfeey+6desGgH2kJ1p94ruP7zmo5Xjd5HVTjdfN8PC6GR5eNyOXSNdNZozjRHZ2NgwGg9/dooqKCr+74R3dww8/jBUrVmDRokXo2rWrZ3teXh4aGxtRV1en2V/dR3l5eX592Pxv3ztNiWjjxo2oqKjAlClTMHToUAwdOhSHDx/Go48+iqlTp7KPmuTl5aF///6abQUFBTh69Kjn+c7eT1arFc8//zzuvvtuTJo0CYMHD8Y111yDSZMmYdGiRewjHdHqE719ysvLkZWVBZPJ1FbN73B43fTidTMwXjfDw+tmaLxuRi7RrpsMjOOE2WzGsGHDsHbtWs82RVGwbt06FBYWxq5h7UgIgYceegifffYZFi1ahN69e2ueHz58OEwmk6aP9u7diyNHjnj6qLCwENu3b9eUgV+7di0yMjL8/uAnosmTJ+PDDz/EsmXLPP/r0qULrr/+erz22mvsoyajR4/G/v37Ndv27duH7t27A+BnCQCcTiccDgcMBoNmuyzLUBSFfaQjWn1SWFiINWvWaM69du3aTvO3Plp43eR1Mxy8boaH183QeN2MXMJdN6NayotapXnZiffff1/s/n/27ju8rer8A/hXV5L3HrHjFSdO4jjOcDbZJKyQsqHQllX2LvwKpEBDSRhljzJadqDMAiVQ2hBGQghkk8Rx4kw7cbz3nlr394ct6V75ypJsyZKt7+d5eFCurq6Ojq4lvfc95z0FBeKDDz7oV8tOPPTQQ+KMGTPEHTt2iNXV1Zb/bJedOPXUU8Vt27aJ+/fvFy+77DLFku/XXnuteOjQIXHz5s3iKaecIj7//PNeeEWDQ1pdUxTZR6Ioirm5uWJWVpb42muviUVFReLnn38uTpo0SdywYYNlH/aTKF5xxRXieeedZ1l24uOPPxYnTpwofvnll6Io+mcftba2igcPHhQPHjwojh8/XvznP/8pHjx4UKyurhZF0T19UlxcLE6ZMkV88sknxYKCAvH9998XJ06cyOWa+oHfm/ze7A9+b/bG703n8Huzt+H0vcnA2Me899574qmnnipmZ2eLl1xyibhv3z5vN2nQjB8/XvG/f//735Z9Ojs7xVWrVomzZs0Sp06dKt5+++2y8u6iKIqlpaXi9ddfL06ZMkWcM2eO+MQTT4gGg2GwX86gsf2CZx91++6778Rf/epX4qRJk8Tly5eLa9euld3PfhLF6upq8U9/+pO4YMECccqUKeLZZ58tvv/++5b7/bGPtm/frvg59OKLL4qi6L4+2bZtm3j++eeL2dnZ4mmnnSZ+/vnng/Yahxt+b/J701X83lTG703H+L3Z23D63lSJIit+EBERERERkf/iHGMiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIvGbdunX4/PPPvd0MIiKiIYHfm0Sew8CYiLxm/fr1WLt2rbebQURENCTwe5PIcxgYExERERERkV9TiaIoersRROR/7rvvvl5XvW+//XbccccdXmoRERGR7+L3JpFnabzdACLyT7feeivKy8vR0tKChx56CACQmJjo5VYRERH5Jn5vEnkWA2Mi8oq0tDRERUVBFEXk5OR4uzlEREQ+jd+bRJ7FOcZERERERETk1xgYExERERERkV9jYExERERERER+jYExEXmNVqtFV1eXt5tBREQ0JPB7k8hzGBgTkdeMHj0aR48exffff4/9+/ejqqrK200iIiLyWfzeJPIcrmNMRF5TX1+PBx98ELt27UJTUxPXYyQiIuoDvzeJPIeBMREREREREfk1DqUmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msabzdgODGZRBiNJrccS6MRYDC451jDFfvIOewnx9hHzmE/OTZYfaRWCxAElcefx9Pc9b3Jc9M57CfH2EfOYT85xj5yji99bzIwdiOj0YTGxvYBH0cQVIiNDUNzcwdMJtENLRt+2EfOYT85xj5yDvvJscHso6ioEAiC2qPPMRjc8b3Jc9M57CfH2EfOYT85xj5yjq99b3IoNREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+bUhFRh/8MEHWLp0KSZPnoxLL70UeXl5fe7/9ddfY9myZZg8eTLOPfdcbN68udc+BQUFuOmmmzB9+nRMnz4dv/nNb1BfX++pl0BERDRsPPTQQ8jMzMT777/v7aYQERENyJAJjNetW4fHH38ct912G9auXYvMzExcf/31doPYvXv34u6778Yll1yCL774AqeffjpuvfVWFBYWWvYpLi7G5ZdfjrFjx+LDDz/E2rVrcd1110Gr1Q7WyyIiIhqSfvjhB+Tm5mLEiBHebgoREdGADZnAeM2aNbjssstw8cUXY+zYsVi9ejUCAwOxdu1axf3fffddLFq0CNdffz0yMjJw5513YuLEifjggw8s+zz//PNYtGgR7r33XkyYMAGjRo3CGWecgfDw8MF6WURERENObW0tVq1ahaeeeooXk4mIaFjQeLsBztDpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK6666TbVuwYAE2bdoEADCZTNi0aROuv/56XHPNNTh8+DBGjRqF2267DQsXLux3WwVB1e/H2h7DHccarthHzmE/OcY+cg77yTF/6qP7778fV155JTIzMwd8rIH2lz/1+0CwnxxjHzmH/eQY+8g5vtZPQyIwbmhogNFoRFxcnGx7bGwsTp48qfiY2tpaxMbG9tq/pqYGAFBXV4f29na8+eabuOuuu7BixQps2LABN910Ez777DNMnDjR5XZqNAJiY8Ncfpw90dGhbjvWcMU+cg77yTH2kXPYT44N9z56//330d7ejmuvvXbAx3Ln9+Zw73d3YT85xj5yDvvJMfaRc3yln4ZEYGyPKIpQqexfYVC6z7zNZDIBAE477TRcffXVAICsrCzs3LkT//rXv7B69WqX22MwmNDc3OHy42wJggrR0aFoaGiDySQO+HjDEfvIOewnx9hHzmE/OTaYfRQREQytVu3R51BSWFiIv//97/jkk08gCAOfjeWO702em85hPznGPnIO+8kx9pFzfO17c0gExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/6OhoaDQajBkzRrZPRkYGysrK+t1Wd76pJpPIPyYH2EfOYT85xj5yDvvJseHcR/v27UN9fT3OPPNMyzaj0YjHHnsM77//PtavX+/yMd3VV8O5392J/eQY+8g57CfH2EfO8ZV+GhKBcUBAALKzs7F161YsXboUQHfGd9u2bZZsr62cnBxs2bIFV155pWXb1q1bkZOTIzum7VDsoqIipKWleeaFEBERDWGnn346Jk2aJNt23XXX4aKLLsKFF17opVYREREN3JAIjAHgmmuuwYoVK5CdnY0pU6bg3XffRWdnp+WLeMWKFUhISMDdd98NALjqqqtwxRVX4O2338bixYuxbt06HDhwAI899pjlmNdeey3uuecezJo1C7NmzcKGDRuwY8cO3HvvvV55jURERL4sIiICERERsm1arRbx8fFIT0/3TqOIiIjcYMgExsuXL0d9fT1efPFF1NTUICsrC2+++SZiYmIAABUVFbL5TtOnT8ezzz6LF154Ac899xzS09PxyiuvICMjw7LPsmXL0NzcjFdffRWPPPIIMjIy8Oqrr/ar8BYRERERERENTSpRFL0/oHuY0OuNaGxsH/BxBEGF2Ngw1NW1+sR4e1/EPnIO+8kx9pFz2E+ODWYfRUWFeKX4lru543uT56Zz2E+OsY+cw35yjH3kHF/73hx4SUkiIiIiIiKiIYyBMREREREREfk1BsZERERERETk1xgYExERERERkV8bMlWpibzBZDKgraMcbe3lMJp0gEqF4IBYhIYkIzAg0tvNI5IRRRFtHeVo76yCTtcMlaBGgCYc4aGpCAqM9XbziIiIiHwWA2MiG126JpRUfo+Kmm2obdgHk0mnuF9E6Ggkxs/BqOTliAgdNcitJOpmMhlQVbcTxRXfobpuN3T6JsX9ggJjkRg3B0kjFiExbjZUqqFf0ZiIiIjIXRgYE/Vo66jAocJ3UVK5wRIMazVhiI2ciNCQZGjUIRBFAzq66tDUUojmthNobjuBo0UfIyFuDiaNvQFREeO8/CrIX5hMBpws/waHj/8T7Z2VAABBpUVM5ESEhaQgQBsJEUbodM1obj2B5rYiFJWtQ1HZOoQEJWLsqEswJuU8qNWBXn4lRERERN7HwJj8nl7fioOFa1BY8gVE0QCNOgTpqcuRmngaYiInQhCU/0zaO6pQXPEdTpR+haraHaiq3YExKedj8vibodGEDPKrIH/S2HwMu/OfQmPLUQBAQuxspCcvx8j4eXYDXZ2+BZW123Gy7GtU1+9G3pGXUXDyM0wadyNSEpdCpVIN5ksgIiIi8ikMjMmvVdbuwJ78p9HRVQONOhjj0q/EuFGXQutEYBsSnIAJY67A+PTLcKLsfzhY8DaOl36JqrpdmDN1NaIjxg/CKyB/Iooijp38BAeOvQZRNCI2ajKmjL8VMVETHT42QBuOtJFnIG3kGWhqOY78gjdRUbMFO/c/jOKK7zA9+14Ecx4yERER+SkGxuSXTCYD9h/9BwqKPwMApCaehimZdyAoMNrlYwmCFhmpFyB5xGLsPfQMyqt/xo87b8fMSfchJXGpu5tOfspo7MLu/KdQUvk9BCEAUzJvR0bqBVCpXF9cIDJ8DOZN+ytq6vdiz8FnUFm7Dd9v/T1mTnoAI+PneqD1RERERL6NyzWR3+noqsPmX+5CQfFnCNBGYm7OY5g95S/9CoqlggKjccrURzFp3M0wmnTYkbcahcVr3dRq8mcGQzu27L0fJZXfIyQoAafOfgVj0y7qV1AsFR8zDafNfQsZaRdBp2/G1r3341DhOxBFk5taTkRERDQ0MDAmv9LUchw/bL8JdY37ERWRiaWnvI6kEQvcdnyVSoXM0b/F3JzHIAgByD38Ao6d/MRtxyf/YzB04Oc996Kmfjciw8diyZxX3TpMX6MOQs6EO3HK1EegUQfhYOEa7Mhb3b08GREREZGfYGBMfqO2YT9+3HUHOrpqkDbyLJw66yWEBid65LmSRszHvGmPQy0EIu/IKygq+9ojz0PDm8lkwPa8h1DXeAAxkROxaOYLCAqM8chzJScswpI5ryI0OAllVZuwZc+foDe0eeS5iIiIiHwNA2PyC5U12/HT7j9Cb2hF5ujLMXPS/R5fpiYhdibm5jwGlUqNPQefRlXtLo8+Hw0voihid/5TqKrdgYjQ0Zg//SkEaMM9+pwRYek4dfbLiAwfi5r6Pdi86y506ZTXRSYiIiIaThgY07BXVbsL2/Y9CJNJhymZt2PSuBsHbWmahLhZmD7xXoiiEdv3/QXNrUWD8rw09B0t+hDFFd8gOGgE5s/wfFBsFhQYi8Uz/4b46Bw0thzFz7vvhk7fMijPTUREROQtDIxpWKuu24OtuQ/AZNIhJ+v/MG7Urwe9DenJZyNrzO9hMLZj+76/wGBoH/Q20NBSVfcLDhx7E2ohCPOnPYGQoBGD+vxabRjmTX8S8dHT0NhyDD/vvgd6feugtoGIiIhoMDEwpmGrtmE/tu69vydTfAcyUi/wWluyMq5GQtwctLSdxJ6Dz0AURa+1hXxbe2c1duY9DMCEGdn3IjI8wyvt0KiDMG/aXxEbNRkNzYfx0+4V0Bs6vNIWIvKe9o4qGI1d3m4GEZHHMTCmYam57SS27r0fRlMnJo27GeNGXeLV9qhUAmZN+jNCghJQUrkBRWX/9Wp7yDeJogm/7H8MOn0TMtIuQurI073aHo0mBPOnP4WYyImoazyA73++HyaTwattIqLB09pejq9/uhQbd9zsluMZTTq0d1S55VhERO7GwJiGnc6uOmzZvQJ6QwvGp/8GmaN/6+0mAQACAyIxe8pDAATkHXkFbR0V3m4S+ZiC4s9Q05CLyLAMTB5/i7ebAwDQakIwb9oTCA9Nw8myzcg99CJHPBD5icbmowCA5tbjbjnejztvx9c/XYqWtlK3HI+IyJ0YGNOwYjC0Y8ue+9DeWYmUxKWYNO4mbzdJJjYqG5mjfweDsQO7DzwBUTR5u0nkI5pbT+DAsTcgqLSYNfnPUAsB3m6SRWBAJBbOeArBQbEoLPkCR4s+9HaTiGhQuPc7qqH5SM//D7n1uERE7jCkAuMPPvgAS5cuxeTJk3HppZciLy+vz/2//vprLFu2DJMnT8a5556LzZs32933hhtuQGZmJn744Qd3N5sGiSgasSPvYTS2HEVcdA5mTrofKpXvneJZGVcjMiwDNQ25KCz5wtvNIR8giibszn8KJpMOE8de57V5xX0JDUnC8lP/BrU6GAeOvY6Sig3ebhIReZinRoeoVGqPHJeIaCB8L2qwY926dXj88cdx2223Ye3atcjMzMT111+P+vp6xf337t2Lu+++G5dccgm++OILnH766bj11ltRWFjYa9/333+fQwOHgfyCt1BZuw3hoaMwN+dRn8q4SamFgJ6gXY38Y2+go6vO200iLztR+l/UNx1EdEQmxqdf6u3m2BUfOxFzc1YDELA7/0k09AyzJKLhSXRzxthMhcFZMpGIyBVDJjBes2YNLrvsMlx88cUYO3YsVq9ejcDAQKxdu1Zx/3fffReLFi3C9ddfj4yMDNx5552YOHEiPvjgA9l+BQUFeP311/HXv/51MF4GeUhJ5UYcOfEBtJowzM3566Ct+dpfURHjMDbtYhiM7dh/5O/ebg55UWdXAw4cew2AgGkT7/b5TMrI+FMwefzNMJq6sG3vA+jsUr44SURkj69/zhGRf9J4uwHO0Ol0yM/Pxy23WIvRCIKAefPmITc3V/Exubm5uO6662TbFixYgE2bNsmOe/fdd+P+++/HiBHuWSdUEAZ+FdR8DHcca7iS9lFD81HsPvAEAAGnTF2FyPBU7zbOSdnjrkVJ5UaUVH6PMannYkTsNLc/B88lx7zdRweO/QN6QyvGpl2M2KgJXmmDM6T9lDn6MjS1FqC4/FvsyHsIi2c9D0HQermF3uftc4nI3TxWB0PFvxEi8j1DIjBuaGiA0WhEXFycbHtsbCxOnjyp+Jja2lrExsb22r+mpsby7+effx7jxo3D2Wef7ZZ2ajQCYmPD3HIsAIiODnXbsYaroGAdtm9aCaOpC6dMuxPZE5Z6u0kuCMOCmXfj+y33I+/o33DJ2R9BrfZMcMFzyTFv9FFFdS5Oln+DkKA4LJzzBwQGuO/zw1PM/XTmwlX48vsy1NTl4eDxV7B4zkovt8x38O+NhjJRNGH7vgcRHzMDWk2IR55DNXQGLBKRHxkSgbE9oihC1cdVR6X7zNu2b9+O9evX48svv3RbewwGE5qbOwZ8HEFQITo6FA0NbTCZOPdZiSCoEBkZiK9/uAet7ZVIG3k6UkZchLq6Vm83zSVRYfMwImY6quv34Jd9H2LsqIvdenyeS455q49EUcRPO58BAGSPuxGtLSq0wnfPX6V+mjP5YXy/7QYcKvgcoUHjMDrlV15upXcN5rkUEREMrZbDUcn9GlsKUF79M8qrf8bM7Ps99Cz8PiLPa20vRXn1FoxNuxgqlRomkw5qdaC3m0U+bEgExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/Xbt2oaKiAqeccopsn1tvvRXz5s3DW2+91a+2uvPHkMkkMpjpwy/7X0d1/V5Eho/F9IkrIIqeq6DpSZMzb8OGbdfjYMG7SB15FrQa92ebeC45Nth9VFq5EfVNBxEVPg6piWcMmfdH2k+BAXGYM2U1Nv9yF/YcfB6R4eMRFT7Wyy30Pv690VAmmgzW2x4qviWKRo8cl0jq+63XwmjqglYTgrrGAzhZvh5nL/oUIUHumT5Jw8+QGMsSEBCA7OxsbN261bLNZDJh27ZtyMnJUXxMTk4OtmzZItu2detWy/6/+93v8J///AdffPGF5T8AWLlyJVavXu2Jl0FuVFm7E3sOvAWNOgSnTF09pK8ARoWPRdrIM9Glb8TRoo+93RwaBEaTDgeOvQEAmDz+Vp9cVsxZcdFTMGncjTCZdNi+7y/Q6303601EjkmDYU/NMTZJgm8iTzGaugAAre3lOFm+HgBQXfeLN5tEPm7I/Bq75ppr8PHHH2Pt2rUoLCzEqlWr0NnZiQsvvBAAsGLFCjz77LOW/a+66ips3rwZb7/9NgoLC/HSSy/hwIEDuPzyywF0zzceP3687D8ASEpKQkpKyuC/QHJaR2ctduY9CkDEzEkrEBYy9N+v7LHXQRACcKzoE3R01jp+AA1px0u+QFtHORLj5mJE7HRvN2fAxo26DEkjFqCtvQy/5D85JEduEFE3aTbXU5ldk8jAmAaP9DweyheiyfOGzNmxfPly3HfffXjxxRdx/vnn49ChQ3jzzTcRExMDAKioqJAV1po+fTqeffZZ/Otf/8L555+Pb775Bq+88goyMjK89RLIDUwmA3bufwRdukZkj/s1UkcOpWJb9oUEJ2Bs2sUwmjpx6Pg73m4OeZDB0I7Dx98HIGDy+Ju93Ry3UKlUmJF9H0KDk1BevRkFxZ96u0lE1E/SC1vuDGClx+VQahpM0vOYS4VRX4bEHGOzK664AldccYXife+9916vbWeffbZLFaePHDnS77bR4Dh0/F3UNuQiKmIc5s74I5oa9d5ukttkjr4cJ0q/QlHZOmSOvhyhwSO93STygMKSL6DTNyFt5FmICEv3dnPcJkAbjlOmrsYPO2/D/qOvIjoiC3HRk73dLCJykTRodeeQZ5Ool9xmxpgGjyxjPHRyguQFPDtoyKiq3YXDx9+DRh2CuVNXQzOE5xUrCdCGY+yoX0MUjT0ZRRpu9Ib2nnnkAiaMucrbzXG7qIjxyJnwB4iiETvyVqFL1+jtJhGRi0wmveJtnb4F32+9FkVlXw/4uKKJGWMaPPKh1MwYk30MjGlI6Oisxa793fOKZ2Tfi7DQoT+vWMnYtIuh1YThZPnXaOuo9HZzyM2Ol6ztyRafgfBheg6nJ5+DtJFnorOrFrv2P+ax4j1E5BlGSWZXlGR2T5R+habWQuzOf6Jfx5VlopkxpkEkHfnAOcbUF54d5PMs84r1jRiTegFSEofHvGIlAdpwjE27GKJoxJETH3i7OeRG5myxSqVGVsbwyxabqVQqTMv6I8JD01FVt5PnMdEQI88YGxS3u+LYyc9QUvG97CKZP84xNhq7sGnn7The8qW3mzIkuHMYv8g5xuQkBsbk8yzzisPHYcr4W73dHI8bO+rX0GhCUVS2Du0dVd5uDrlJYfHn0OmbkTbyjGFRSb0vGk1w9zJqQhDyC95GTf1ebzeJ3OS1117DxRdfjGnTpmHu3Lm4/fbbUVRU5O1mkRuZTDrrbdl8Y9cDY1E0Ie/IS9i5/xFZYOyPyzVV1u5AXeN+7D30nLeb4vMOFb6Dtd+fhubWIrccz+SBSusNzUexededaG0vdcvxyDcwMCafJp1XPGfqqiG9XrGzrFljA7Ntw4TR2IWCk5+ie27xld5uzqCICEvHtIn/B8CEnXkPo7Or3ttNIjfYuXMnLr/8cnzyySdYs2YNdDodrr32WnR2dnq7aeQm8gDYGswaJQFzf44lQlqV2v8CY4DL2DnrYOEaAHA4n71L14jahv0Ojydfgsw959623D+jpiEXvxzo39QC8k0MjMln9ZpXPMyzbFLjRv0aanUwisq/RmdXg7ebQwN0snw9uvSNSEk81a/O41FJy5CevBydunrs3P+oXw6fHG7eeustXHTRRRg3bhwmTJiAJ554AmVlZTh48KC3m0ZuIg2ApUssGY2uX/yQF9ySDMsWjWhtL0Nl7Y5+tnIoUg34CMM90277HWES+74Y893Wa/DjrtvR0Hy0z/1MJun8dvd8D5mM3W3r0jW55XjkG4bUck3kP/xpXrGSAG0ERif/CgXFn+F4yVpMHHutt5tE/SSKRhw9+S8AwPj033i5NYNv6oQ7Ud90CDX1u3Ho+HuYmPF7bzeJ3KilpQUAEBkZ2e9jCMLAAgbz4wd6nOHO2X4SRXsZY2tg7HRfq6xBiMHUJnkSI775+XcAgGUL3kd4WJpzx/MwT55L0mP25/jVdXvw4667MGvy/UhPdn4pUk/wRD8VnPwcew+9gNPnvmHZZjLp+3yOLl33SKTm1kLERmXa3U+E9IKCyS3tVquDAH3334XS8fi55Bxf6ycGxuSTrPOKx/vFvGIlY0f9GoUla1FY8gXGj/4dNOogbzeJ+qG8+me0tZchPmY6oiPsf3EPVxp1EOZMXY2N22/CocJ3EBc1GSNiZ3i7WeQGoiji8ccfx+zZs5GRkdGvY2g0AmJjw9zSnujoULccZ7hz1E9BFdbiRAGB1h+rarU1uHD2PWttb7ceN9gacAcGWQcsmlQViI2d2H3bZEBrezUiwpJgNOrQ1lGLiLAkp57LnTxxLjW3B1tu9+ec/2n3OwCAXfufwIwpv+51f1NLMcqrdmNCxgVQqQYnyHBnP326/gUAQFH5vy3btFqTU30VHNz354ggWM/d0FCNWz5zAgOC0d4JiKKuz+Pxc8k5vtJPDIzJ51jmFWtC/WZesZLQ4ESkJJyKksoNOFn2NTLSLvR2k8hFoijiyImPAPhnttgsInQUpk+8G7v2P4qd+x/BaXPfQnBgrLebRQP08MMP4+jRo/joo4/6fQyDwYTm5o4BtUMQVIiODkVDQxtMJs7jtMfZfmpv75Tctga27R2tltt1da1wRlt7o+V2ba21mGR7e5d1e10lIkO7j7dlzwMor/4ZS+a8gn2H/476pnycteCfiAhLd+r5BsqT51JLi7Vfne0/qS5d9+MFQav4+M++6V7RQq8LQnLCQrvHMZkMqKnfi7joKf3+feXJfurSWYPY9o52p/qqpaW1z/06O9sl+zp3TMe6+06nVz4eP5ecM5j9FBERDK2276rkDIzJp8jmFU+8F2Ehyd5ukleNT/8NSio34NjJTzEm9TwuMzDE1DbkoaH5ECLCxiAhdra3m+NVaSPPQG1DHk6U/gc78x7GwhnPQhD4FTRUPfLII9i4cSPef/99JCQkDOhY7voxZDKJ/AHqBEf9JJ2PaTRas7wGY5dkH+f6WW+0zhHV6a3Bg7RCdWdXveV45dU/AwCqan9BfVM+AKC24SDCQkY59Xzu4olzyWSSVuV2/dimnvdCELQoLt+IppZCZI+73nK/eX5uc2sJRsbbP/6RE//CgWOvIW3kGZg1eaXL7ZC1yRN/c7J57Xqnjm80GfrcTzp32Wjse19nmS8qmEw6B39P/Fxyhq/0E4tvkc8wmQzYmbe6Z17xhUhJXOLtJnldVMR4xMfMQFtHGcqqfvJ2c8hFR4us2eLBGtrmy6Zm3o7I8LGobcjFocJ3vN0c6gdRFPHwww/j22+/xbvvvovU1FRvN4ncTFpwyyT2b+1iy7Fk6yBbb4uSucsGY+8RA4KgldweHhfQ+rsOtOXxPe+FoNJgR94qHD7xnuKSjiYH1cMrarYCAIorvhtQezxFWr1c6bV0dtXheMmXspUObPdrbD4KvcE6p11+Trun+JZa8M/RjMMdA2PyGQcL30ZtYx6iIjIxJdM/5xUrMQ/BPXbyEy+3hFzR0laMytptCA6MR2riad5ujk9QqwNxytTV0KhDcPjE+6is3entJpGLVq9ejf/85z949tlnERoaipqaGtTU1HC5pmFEGrQOOJiTPF4aZEsDFSUqlTUYFlTDJDAe4EUG84UFtRAgOWbvIM/598z3L9aaFJZW2nPwOew99Bzyjrxs3U9y0aWh6TA2bL8BP+76g+RR0qXC3BMYSy/e0PDBwJh8QmXNdhw58QG0mjDMmbJK9sHv7xJiZyE8NA31TfloaD7i7eaQkwpL1gIAMtIuHDYZD3cIC0nBjOwVAETs2v8o2jurvd0kcsFHH32ElpYWXHnllViwYIHlv3Xr1nm7aeQm0mHOA89yKmeMIXkOJdLfAKph8vk50KWWzO+FNCBTqVQoq9qMjq46yzbjMAqMVQptbGjqXhpOukST9KJDVd0vAICmlgLLNtEDgTENT8Pj04aGtPbOauw68BgAYEb2nxAWMvgVKH2ZSqVCRupFyD38AgqLP8fMSfd7u0nkgN7QjpNl6yEIAUhP/pW3m+NzUhKXoLZhHwpL1mJn3sNYNPMFXjwYIo4c4cW54c6tgbF0HWNReSi1UvJY+nmgGsI5HFEUkV/wBmIis236wgSVyrXXZQ2MrX1TUb0F+468hMCAGOt+Dtb+Nb+/Q2J6j5N9JL3o0Kmr672D2P/AuK7xAIIC4xAanGh7UJeOQ0PD0P20oWHBZDJgx75V0OmbMTbtEiQnLPJ2k3xSWtJZ0KhDUFK5EV26Rm83hxwoLv8GBmM7UhOXIjAgytvN8UmTM29FdEQm6hr3I7/gLW83h4gslAPj/mTapNlL28DQcht9H3coZ/iaW4/jyIkPsC33AZvsuesXHMyPF1TWjHFjyzEA1vV8+3tsX6WUMbZSngvf2dU7MJbNW3bhfOrsqsOmnbdh/U+XOf0YGtoYGJNXHTj2Buqb8hEdkYXJ42/2dnN8llYTglHJZ8Nk0uFE6X+93RzqgyiKKCz5HACQkXaxl1vju9RCAOZMWQ2tJgxHiz5ERc02bzeJiGCTMZZmefsRoMrmGMuGEvedwTOZBhZE+gqD0Tr3Xvo6jA4KZClRyhgrDc923F/mvh8KGWPn2ijrW6NS30rONxeGtNsmIrp0TThYsEZW+Gsg6hoPYOf+R2WFwsi7GBiT15RXb8Gxkx93zyue+hALGTiQkdq9jvHx0i8HPFeJPKe6fjda2ooRE5mN6Ijx3m6OTwsNGYkZ2X8CAPxy4K+KFVaJqP9q6vch78g/XApqRTvDTvvzvSMdPi0vviXJGJt6t00aOCoVYBo6pJlK6+vo0jXgu62/R1GZ83PzrX1m/emuVNDL2aC772xs93mQe+gFlFR873Qb3UJy/rltGL1k1LMrGWPRZrj0noNP49Dxd7A7/ym3NGvTzttQUvEdjpd84Zbj0cAxMCavaGkrxS8H/goAmDnpAYQGj/Ryi3xfeGgqEmJno6OzGhU1W7zdHLKjsLi76NbYtIu83JKhITlhEcam/Ro6fTN25K3mRR8iN9r8yx9w7OTHKK36EfuPvo73Pl+GusaDfT5GOrRZGkT0J0CVZ4ytx1JaPkcaLOsNrZLHDd3PBOlrlvZFQfG/0dx6Arvzn3T9mKK9LHw3pQsNsvvNfd+TjbXXv82tx7vrQOx/xOU2uo975vHK57Q7HxgbjfJq+/WN3Wtrt7QXu6Vd5HsYGNOgMxjasT13JfSGVmSOvhxJI+Z7u0lDhnlobkHx515uCSlp66hARc1WBAXEIDlhsbebM2RMHn8ToiOyUN+UjwPHXvd2c4iGnbb2Mhw+/j7aOqpxovSrPve1lzEW+xUY28kYywIVQ8//rduMxi7Fxw01RpPkdZikGeNG1w/WE8jK+kZp2LTD0cfW97e08ges/f40lFX/1Gsvbw3vlZ8bfVcvt3L0ouXndHPbSZRW/uDwqNKh8KIoQm9oBwBo1MFOtss5Adootx6P+o+BMQ0qURSxO/8pNLedwIjYWcgee523mzSkJMbNRmhwMmobctHcWuTt5pCN4yVfAjBhdMp5nBrgAkHQYs7UVdBqwnHs5L9QXv2zt5tENKx06Zuc3lc+fFo5e+wsWcZZGsSJvTN40ueVZupcmRPqa2SvQ/KadTrn3w8z89Bn6TGVs/jOB4l7Dz0PAMhXuCApDeoHk/QCgmJ2V3HesYji8m/xy4HHFY9pW2n9uy1XYUfeKnR01vTZFmlfG42dMJq6/61Vh8guIHV21eNE6X+dGt1QVrUZ/910AZpajlu2qdUBOHz8PZwsW+/w8eRZQyow/uCDD7B06VJMnjwZl156KfLy8vrc/+uvv8ayZcswefJknHvuudi8ebPlPr1ej6effhrnnnsucnJysHDhQtx///2oqen7j4QG5mjRxyit+gEhQYmYPflBqFRqbzdpSFGpBIxOOQcAcKKMRbh8iclkwMny9VCp1Bidcq63mzPkhAYnYtbkBwAAvxx4HK3t5V5uEdHwoXMiQ9nWUQGdvhn2CmOJdoZCKyko/jcKiv8tG5Ytzz5LC3wpBMbSTKuTmWpRNCLvyCuorN3p1P6DQfo6pH3hyoUKq57AWDr/2k6hrfLqLdhz8BnFjKu19JYAgyUDGtprP+UiVp4nKlw0ceYxuw48hpPl69HaXtbnMds7qy23HWXFDcYO677GdsttjSYE0r+T/II3sefg007NPd6+70F06RqQX/Cm7HnyC97EL/nKgT0NniETGK9btw6PP/44brvtNqxduxaZmZm4/vrrUV+vXBlu7969uPvuu3HJJZfgiy++wOmnn45bb70VhYWFAIDOzk4cPHgQt9xyCz7//HO89NJLKCgowG233TaYL8uvVNX9ggPHXodaCMTcnEcRGBDp7SYNSaOSzoZKpUFx+TeyIVXkXZW129Gla0BC7GwEB8V5uzlD0sj4eRif/lvoDa3YtvcBVuokchOjbKmk3kGtwdCO9T/9Bt/8fIXdwMTebSX7Dr+IfYdflAXTsvnGCseyO5TaQRauqeU4Sis3oanlOI6d/ARb9tzrM5WspYGVNPNtDkhdoVIYSq30PqigwrbcB3Ci9CtU1+/u85jmYerdgZ6cweh6G93B3gWUvkgvFiitDy2/6CK9sNB38C/NGEvfM0HQyNpmzv4WV3zjVHu722nNfHvrIgT1NmQC4zVr1uCyyy7DxRdfjLFjx2L16tUIDAzE2rVrFfd/9913sWjRIlx//fXIyMjAnXfeiYkTJ+KDDz4AAISHh2PNmjVYvnw5xowZg5ycHDz44IPYt28fqqpYGdXdWtvLsTPvYQAmTM++F1ER47zdpCErKDAaSSMWQKdvRln1ZscPoEFhri6anrzcyy0Z2rLHXo+E2NlobjuBnXmPDOk1TIl8haMKxE2t3T/sdfomu4Gxs0s3SQMPUbYmsvISTOZjmfqZMf5+2zXYkfcQWtpLLNukAak3SYNY+dBk54pKdXY14Ofd96Kmfh/MGWN58S2lOcZ9B1zWe61t0CoFxv0I3t1BNscYzgXGHZIssNJcePmQfmufGB1cQLG33JYoyv8GlPrPMWsIZlvki7xH43gX79PpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK66+TzVxcsWIBNmzbZfZ7W1lao1WqEh4f3u62CMPB14czHcMexfIFO34Kte/8Enb4J40b9GunJZw74mMOtj1yVkXY+yqo24UTpV332p7/3kzPc0UedXXWorN2OwIAoJCfMG5b9PVjnkiBoMTdnFTZsvxmVtduQX/AGpmTe4viBPoB/bzRUtbRZg0qlYc7d253L5On1LdbH2ym+JQ/u+s4YOzvHWBrI+Uola+nrkBVycjIwPlL0AarqdqKqbic06u7gy96Qc2eZp7BJ31uNOshy+2DhOwgLTvJe8S3R9eJb0gsASnPhRTuBsaORBfJgWL4Ot+zikEKW2jHrOSAbci8aOc3Qi4ZEYNzQ0ACj0Yi4OPnwxNjYWJw8eVLxMbW1tYiNje21v705xF1dXXjmmWdw3nnnISSkP1d+AI1GQGxsWL8eqyQ6uvecj6HGaNJj3Q/3oqWtGGlJC7Bk3goIgvv+4IdDH/VHTMxC5B5KQW3DPgiaGkRHju5zf3/tJ1cMpI9yD34OUTQic8yvEB8f7cZW+Z7BOZfC8KulL2LtN1fhyImPkJQ4AZljhs68bf690VAjHTarVDEasAmS+8jk6SSBsaxQlIOMsd3hrqIe9U2H0NB0GBlpF8qeS3pMX1z7WNp/BkOH9A7Z9raOckSGZ/R6vPT1KQ0Rlh3TcmjnRtmooLKEZub/6w3tOFS4BkD36B1vkI9SsP9apBcX5Gtk9x0YOzNH21FbRNEkC9odjciwc3Rrm2wuoGg1/A7xliERGNsjiqJsjL4tpfuUtun1evzf//0fAGDlypX9bo/BYEJz88CH7wiCCtHRoWhoaIPJ5J413LxBFEXsOfgsyip3IDJsDKZPXImGBvcMbxoufTQQo5J+hf1HX8Oe/f9CTtbtivuwnxwbaB+Jooj8o91TOhJjz0BdXauDRwxNg38uxeCUqaux+Zd78OP2RwFTHOKiJw/C8/bfYPZRREQwtFpmFchJkt8+SkGjLMMqKg9/FmXVgk1obS9FSFAiBEH+U1K6BrF0SLP0eZXmG8uzegbZ7R923AwAiI+ZhoiwdMt9XboGy22j9Ll8JGMsGx5uZ7js5l/uREPzESyd8xqiIyfI7lMLgX0eX2nIuL2h8PuPvgq1OqjPwFHpgkX37b5/b7uTvTY4+xil995kJzA2OphjbLJzToowye5TumjhiHSuv2wuMwNjrxoSgXF0dDTUajVqa2tl2+vr63tlkc3i4uJ67V9XV9drf71ej7vuugulpaX45z//ibCwgWV83fljyGQSh3Qwc+zkJzhe8h8EBsRg3rQnoBaC3f56hnofDUTayGU4cOxNnCxfj+yx10Ottv8F6s/95Kz+9lF940G0tJ1EdEQmwkNHD/t+HsxzKS56OqZO+ANyDz2PLXsewKmzX0F4aOqgPPdA8O+NvOlE6X9x+Ph7WDLn79aN0rWJlQIH6bxgJ+YYV9XuwM79jyBt5BmYNVmeUNDp7QTGJuW5sUrFt+xlAG0DJYM002aQBuG+UXxL3n/SdZyt70dD85Ge/x/tHRirAyT/6h2YKgfGvYdat7aX42jRRwCAyPCxdh9jr0CaSdRDrQro9Th3sT9837mh1PJzq3ewKysCZ+xfxli0ubAjb5vrFw1kUwdMNudx39dDyIOGRPGtgIAAZGdnY+vWrZZtJpMJ27ZtQ05OjuJjcnJysGXLFtm2rVu3yvY3B8UnT57EO++8g6ioKA+03j+VVf2IvCN/hyAEYN60vyIkOMHbTRp2ggJjkDRiIYtweVlReXfRrVEsuuURGakXYGzar6HTN+Hn3fegs6vO200i8ml7Dj6N9s7KnnXVu8kDj74zxrKCWXaC0uKK73v+/53CsSQZObtDqXsX8rK35rGsAJJNYCwbquyDax+Ldl6TUvEtpYvb0rm/jqotW7f1nqvd1FLQ+35JBticvZQVTrPbdveyHZZsOzLBGdL2KWWB+xqm33fblC8MmUw6txaGlBVp85HCcf5qSATGAHDNNdfg448/xtq1a1FYWIhVq1ahs7MTF17YPd9kxYoVePbZZy37X3XVVdi8eTPefvttFBYW4qWXXsKBAwdw+eWXAwAMBgP+8Ic/4MCBA3jmmWdgNBpRU1ODmpoa6HQsmz4Q1XV7sDPvEQDA7MkrEROZ5eUWDV/m9XJPlH7l5Zb4J4OxEyWVGyEIAUhNPM3bzRm2pmTeipTEpWjvrMSWPX/iMk5ELpL/qFcaairN0DpeR9bQx9+gyc68Wvl8ZYWMMZSHrUovhtlmA6Xtszds25tM0kyltC8VlsySBsFWrmcilap7yzP0CmsbWzLG1v61l+13p7Kqzfj8u6Woqd9rfS4H84WVOMoY26tKrfS6TCYDquv2wGjskr9/Jmm/6mUXkPo3lFp67nYq3qbBNySGUgPA8uXLUV9fjxdffBE1NTXIysrCm2++iZiYGABARUUFBMF6Yk6fPh3PPvssXnjhBTz33HNIT0/HK6+8goyM7uIGlZWV2LhxIwDg/PPPlz3XP//5T8yZM2eQXtnw0tB8BNtyH4BJ1GPaxLuRnLDY200a1kbETEdocBJqG/ahpa1kSAwzHU7KqzbDYGhDauJpCND2v5o99U2lEjBz0v3o6mpATcNebM99EPOnPwlB0Hq7aURDgqM1iO0Nc7a3rJC+jzVuZev12pn3K69W3RMYy4JI5UDHXH34aNG/UFLxHaZOuENyn+cDOVfZDr+1blcKTntvc7TOrhJplt6ciZQvtaU0YkDf6/n0+rZe97vbrv2PARCRe/hvkudylDHuuVggOTWNDofOS4ct9x0YHzv5CQ4cew2jU86TzfEWbTLGThYWt0v6tyF9z0TRiJa2UgQGRCBAGzGwJyGXDZnAGACuuOIKXHHFFYr3vffee722nX322Tj77LMV909JScGRI0fc2j5/19JWgi27V8Bg7ED22OsxJuU8bzdp2FOpBIxKPhsHC97CyfKvMWncjd5ukl8xr13MYdSepxYCMDfnUfy46w+ort+NHXkPY86Uh3oV/iGi3mQZ4z4CI0A+rNOevta4NdnN4vY9b9jemsdGhWGy+492z5+uazwoeS7psG3fWP/c3vBwpfdAaQiwdJuzWUmlgEsa1Ck9j7lt0vukRdTKa7bgWNEnmDftMUSE9b0Khis0mmAYdZ2yUUCOi2+JPfcpX3RwRD6suvtxjS0FCAyIRnBgLCpquqdtnij9DzJSrVXQewfskqrY/bhwIHufJHOMu3T12PzLnQjQRuLcJf9x+bg0MENmKDX5ttb2cvy0+4/o0jciI+1iZI5WvoBB7jcqaRkAFU6Wf+PWOS/Ut7b2CtQ07EVIUAJGxEz3dnP8glYbhvkznkZoSDLKqzdj14HHeM4ToTvLdeTER7JtssyYrOCQ0lDqvgMnW8rZTT0Mxk6beb92MsbSDKZlHWPHw11NJh30doJy2yD8ZPl6FBavdfhaPMnePF3lIbyOtjk3rFqWMbZkgiXvr8KFD/NFC3lgbA1Wcw89j7aOMvy8Z4VTbXCWumf4uDQId7gsmGU+dN/96QyTSYequl+wYdt12NUzBVCjDlZuiyzrbrR70cNZSpl9AGhqPQEA0OmbXD4mDRwDYxqwtvYK/PTLXejorEbayLMwNfP2QSvrT0BI0AiMiJ2Jzq5aVNXu8nZz/MbJ8q8BdF+Y6M/8Iuqf4MBYLJr5AkKCR6K0ciN+OfAEg2PyS/VNh1BVuwuiaETekVdw4NirsvtlyyZJMlKiaMTBwnfw8+57LQGuvHiR44yxStV7qbBvt1yFLzecJQvC7M37VSpqJBtKbW99YpPOZjkoa5Asnc9sMLThlwOPI/fwC04XcPIEe+vgOp8xlgRcThei6j1sWvHCh3S5IEsAbX0+aT8HBXRPW+zorHaqDc4yB6HyqujK54l1m6nXY/o7rtlk0qO+MR8AUNPQPc9ZLZnrrVTh29wGe1XU7WluLUJnl3V5MVmBOZM1SO7skq+oQ4OLv+ZoQNraK7D5lzvR3lmFtJFnYuakPzFI8IL0pO4pA0U9wRp5liiacLJ8PQBgVJLydA3ynJCgEVg083kEB41AccW32HPwGQbH5Hd+2HEzft5zD1rbKyzbjLLli9oVt5tEAw4VrkFV3U60d1R1b3NQvMiWUiavraMcANCpq7cey87SOEpVqeXVsO3MMTbpZK9LdlsShEuHWNtbP9iT9D1LVtnLKirP81Ya4iytoOxsISrpY3oCY4WMsbS/zfPCbS9CeJpa6L0ElKO52OZ+cMda1d39Iw+qpdNz7BXIEkWT7EKF0ajcV1t+eRpHiz5BW0clvtt6NTbusE53k62nLPn7bHfzxQdyDSdnUb+1tJXi59139wTFZ2DmpPsUryKT5yWNWACtJgwV1VvQpWtCYECkt5s0rFXX70F7ZxXio6chNGSkt5vjl0KDR2LRzOfx4647UVS2DkZjF2ZOeoBzjskvSH+kN7cet9zukgy/NMiGakqXMupd5EoeODkOiPoaOtreUaG4n72MsbUisnKBMNuleKQBsHS4r/Q16mT90AGNJqSPV+NelbU7sWXPvRif/lu7y/0okb7OorJ16NI1KQa5jihVIJcX3DL1bOvdNnlfK69p7E7KQ/L7Lr5lDujdsVa1yaSHqJI/h20hLOt2+agL6VrUSm3RG9qw/0j39Aa10H3+STPu8nn91ufU61tcfh3kPkztUb80NB/FjztvQ3tnZU9QfD+DYi9SqwOROvJ0mEQ9Siq/93Zzhr2TPUW30ll0y6vCQlKweNbfEBKUiJLKDdiWu9KpwkFEQ1VV7S4cO/kZ2trLLNukGVqdrtFyWxYYm+QZYzNzYOlqplA+9FW0rIMLwJKFtj2uaGeOsaUqNZSDL9u2SQNjexlj6RBrvWFw14VtajkGADha9JHN8PC+Aznp69yd/yQOHHsVBmmm38kMrlGWce2dMVZiCYyNyueBp5a/UsycO1iuyRwsu2OUkMlk6HUuS+ewy5a+sgmYZUOpFbLc0qH9lbXbej230WYkhJmB32Fe5VRg/MMPP+Dqq6/Gueeei7vuugu7dvWex7hv3z5kZXG9Wn9QXbcHm3fd2V1oK/VCzJz0AINiH2AeTn2yjMOpPUmnb0FZ9U/QaEKRlLDI283xe2EhKVg8+yWEh6ahsnYbft6zwjKMkWi4+XnPPcg78hIaWwos26QZJmnG2CirTiwNsHoHxq4W3zLaBFDS4KJDtu6w8xlje4GObSEuacChN1ozxvKAWfra7VfQ9gT7r9lRxrh3v0svdPRvTd/ec4yVmAN4e8N7RQ9V+XbYLulQZkNHz0UY97XFJOrlF15EvezvRhr8yi5SiEab+ce9LyLIRjYoZIFNdi5GGWXV1X1jPW5/4jAw3rJlC2699VZ0dXVh1qxZKC4uxlVXXYUnnnhCdoWQ/ENJxffYsmcFDMZ2TMy4FlMn3Mk5xT4iKiITEWGj0dhyDI3Nx7zdnGGrpHIDTCYdUhOXQiMp0kHeExI0AotnvYSoiEzUNuTih523oU0y75JouOnSWYv46CQXgrpkGWPl5WAM0mCyJzsmurhckzSrZzB2yLLTzizRJGUJjO0EX7bBmtFOxli2Bq9BOWAeDAY7Q3EdMb9O6W/rrn5UJpYtY+RqxthOFtNTNRwcHdccmLa2l+PLjcuQe/hv7g2MbTLGRmOnLACWB7/yOcb2hvubR0bIRzA4P89d+rfqzEWq/urorOEIKwUOI5qXX34ZF1xwAT7++GP85S9/weeff45HHnkE//rXv3D77bejq4ud6g9E0YQDx97Azv2PwCQaMS3rj8jKuJrVp32ISqWyDO1lES7PMWfk05M4jNqXBAZEYdHM55EQNwctbUXYuOMm1DbkebtZRB4hrW6rN0gyxnaGUkt/xEsDaXPlYaOdLKc98qJEHfIf8y4Gojp9Mzb31Apw9Fwm0WAzx9je0k2DO5S6qeU4isr+1/Pc0gsDzgdxluyuJBjS6ZsH1C7rUliOMsZ9F99yx3xexed1UGnbfH9p5UYAwPGStW4NjEXRIBv9YDBIz2XBZo6x7VDqvteolo1skFyoccTeMk6uMhq7UFz+reIQfr2hHd/8fAXWbb4EJpMB1fV7ZCM9/JnDwPjYsWM477zzZNsuueQSvPfee9i3bx+uvvpqNDY2eqp95AP0hnZsy12JIyfeh1YThvnTn8CY1PO93SxSkDbyTKhUapRUfO/RK43+qqmlEA3NhxEeOgrRkZw64mu0mlDMy/krMtIuhk7fhJ9++aPdH9tEQ5l0SRedZJimdBqBvWrM8sxqdwApD4ZdGw1oMHTInqs/GdqahlyUVf/ocD+TyWB3LrGsTbL2eH4o9ffbrsHu/KfQ0HRYFhCJLqxvKyoMwZVe6OgPS3E1R8O4LQXQBvd3g8OMcU+hLZ2HClKZTHqb+b0dkmDUZLP0mG3GWFKVWnKMppZCHCx8R3ZRQ7r0lSPSjLVO34Qfdtzaa41yZ+Qd/Qd2HXgMew+90Ou+zq56GE2d0OmbUVGzBT/98n/49ufLXX6O4chhYBwYGIj29t4fKpMmTcJHH32E+vp6/OY3v0FpaalHGkje1dRSiB923ISKmi0IC0nBkjn/QGLcHG83i+wIDIjCyPi50OmbUFG91dvNGXbMmfj05OUcLeGjBEGDnAl/QE7W/0GECbvzn8QvBx6X/VglGoqkQUSHJDDWy36AS4dJOz7nzYGQo8JQfekefjo4SyKZRL3NesXKQa9RNse4E6Io4kTp/9DaXu7+Nkn6rlPXKK8wbKd9SoxGHXbkrcaREx9Ktg5syqI1C+1oLq85Y+yezLBO34y9h55HR2cNmltPYPMv/6c4vcXReSeKRhiNXWhqLXRLu3o/v81QalOXzegHO5XdRaPNUlzWY2z+5S4cKlyDY0WfWra5VvfCGnBX1u5AfVN+rzXKnVHbkAsAKK3c0Os+6aiO1p5CfoM95cBXOQyMMzMzsXnzZsX7UlNT8dFHHyEkJAT33Xef2xtH3iOKIgqL12LjjpvR0laMhLg5WDLnVYSHpnm7aeTAqJ4hvic5nNqtTCY9Ssq/g0qlRtrIM7zdHHIgI/UCLJr5PIIC43CyfD027rgZza1F3m4W+RGDod2pNUnrGvPx7ZYr0dTS949/aSZJNsfY0HtoNCCfE2mPOwLj7izbIAXGNhljeyOjDDaFx6rrd2PPwafwzc+/dVtbCku+QFnVZllWt0tXJx/qbXR+CG1twz6UVm7EsZP/clsbLRW/3ZgxbmopRHn1lj7rDOUeegHHS77Alj1/wta9D6Cmfg92H3xa4XkdD9vPO/IKqut6F/11B5NoUJjDLhltYCdIFmFyOAy8ua1I8jz9+/vqlAxvdrWuU2BADADlgNfeUm5tHRX4/LulOFj4jostHT4cBsZnnnkmNm/ebHe4dGxsLN5//33MmjWLxbiGic6uOmzLXYncwy9AFE2YPP5WzJ/2BAK04d5uGjkhMW4OAgNiUFm7Ex2dNd5uzrBRUbMNXfpGJMadgqDAWG83h5wQFz0Vp899Cwmxs9HSVoQN22/A0aJ/eayQDFFV7S5L8cOte+/H15t/LVu+SMmmnbeipa0Y+QVv97mfvWWKdHYyxs4wZwgHFhh3DloRH5NJL5/DayeQkxcw6pJ9F7rj71+nb0Huoeexfd+D0EuGand01dl9nxzp6HL/97XTyzUpzDG2Z8P2G7Flz/2orNlrdx/ziIam1kK0d3af/9LKzC1tJejsanDqvDte+qXDffrLZNLLziGDod1mXrF02L5tUa6+A2Nn1gN3pKWt2HJbp2+CyWRAZe0OSxv3HXkZG7bdoPj311dxUGkw3Cm5yFZQ/G+IohGHCtcMuO1DlcPA+De/+Q1++OEHREVF2d0nJCQEb7/9Ng4fPuzOttEgE0URRWVf49stV6Oi5meEhiRjyexXMD79MlaeHkIEQYO0kWcCMOFk+bfebs6wcVIyjJqGjsCAKMyf/iQmjbsJEEXsP/p3bNp5O7PH5HYGQzt+3nMPNmy/Hnp9K2p6hjLWNioXgbMdXhkYEOng+NJiPpIsseQ4BhcDY3NgMpB1ag3G9kEbhmkSDS5PizAaO23mZA98Obe2DuuQbOma0jp9s01xMNfeD3dzdrkm9GRAnQlUzcF2W3sNTCaDYlJMqwmV7N8dxJmX9axvPIhvt1yBnXmrnVqOKDgw3uE+/WUSDbKgUmeQz2WW3ufMCAzbYw+UdDRC9/D057BlzwoUlnRfLCg4+SkaW46isnZHr8cqZbSPnfwM3/x8hWwkS5dkHXRWqXZyHWMa/ppaCvHT7ruxO/8J6A2tGJt2CU4/5U1ER07wdtOoH9KTu9c0Lir7miM53KCjqw6VtTsQGBCNxLhTvN0ccpFKJSBz9O9w2tw3EB2Rhfqmg9iw7XocOPa6S3MAifoirera0HzUcru1rXcNlqq6XfjPD79CkZPrzouiSbYer70CVK5njN00lNo0WBljnctBuMHYJQsE3FHISRoMS5dHNBjaZYH7YBezsmW+kOBMAGo7rNiRorLN+Pe3S1FS+X2v+6TJFI06uOf43edYdf1uAEBNw16nhhi7I8C0e2yb4lu2VcANA6gQ7Y73XlpxXm9os1Q+P1H6lew8lg7bNlOqDp935CW0tpfgROlXlm3SCvfSCz7+uoayxtsNIO/q7KrHwcK3caL0fwBMCA9Nx4zsexEbNcnbTaMBiAhLR3REFhqaD6GqNg9aIcPbTRrSisu/gSgakTbyTAgCPzaHqoiw0Th19ss4dvJTHCp8B0dOfICTZV8je9wNGJW0jCNjaEA6u6yZl+bW49btkoyMWf6xNwAAu/OfsGzT61t7hpjWIz5mqnXfgrdwtOhjZKRe5LANrgbG7iq+pcLgFCM0mVwL3oDuTJ88wz6wJZAAoEPyXkuHQOsNbS4vV+VJjc1H8OXGZdBqHE+FE01GmFwY/ltQ1H1RZ9f+xxCgjURbexky0i4EIB/FoFJpZNtcXZu5S9cEtToYYSHJaGopcOmxjoiiUR4Y6+Tnhr3iW4NFGvy2tlsvsBkM7WjvqLT8u6vnfDSPhIoIS5d9FlTV7pL9DXTpG623JUOppdM+9IY2h6NYhiP+wvNTnV0NKCj+FIXFn8Ng7IBWE46JGb/HmNQL+MN/mEhPPhsNzYdw5Ph/MGns/3m7OUOWKIqSYdRne7k1NFCCoEHm6N8ideRpyD/2OoorvsPu/CdxtOhfyBpzJVISl1iG/BG5olNnzRi3SX+09gyHbGg+grb2cqQkLoFaCOz1eJ2+CdtyH0BLWzHmTXsSI+O7R6ccPv5PAEBJ5XcO2+BqYNzeWYXSyo0DyxgbOjBYAxBNJr3LgafR2CULMAa6NnD3MazBnTQbbTAM3rByV+gNjrPkrmaMpbbsuRcAkBA3G2EhybLg13zxxTxMWefyElQmBGjCIKjc/9vUdo6xzmATGEtGQgxW5XUpaTDbKBmF0tFVIzuPO3UNaO+sxvfbrgMg4ox578g+C37ec4/suO0dFbLHmkmDZL2h1anAuKOrDlp1CDSaYOdelI9jBORn2joqcOzkpygq/S+Mpi4IKi3Gpv0aWRlXIUAb4e3mkRulJC7FviMvo/Dkd5gw+hYIqt4/xMix+qZ8tLQVIzoiCxFho73dHHKTkKARmDV5JcakXoj9R/+Busb92Ln/ERwsfAfj07sD576Kl9DwJYrGfl0ckWaMpUMSu3QN6NI1YeP2GwEAocEjFYfz6gytlmI7TS3HIIoG2SgGZ4YAu7JeKgBU1/2C6rpfXHqMLYOxc9BGW5hEg8uBrdHYJctg2s4j7Q/p3E9pYS+9odUrAZQ7iKKxn8N/rdO1GpoOISwkGTqdNTA2B5cGQxtMJgM6+7E2s0YTCkHQ9qNtfTOZDLIiWbYZY6nBmi4gJS0E1ioZvi+KRllhri5dAyprt1vmfxdXfOf0RTKjUbl2QXtnFVraShAfPQUaTYhlu8lkwM97ViAiLB0TRl+Jb3++HFERmVg862+obzqE0OCkIZ1pZmDsB0wmAypqt+FEyX9QVbcLgAi1EIixab/G+PTLEBzkucIG5D0B2nAkj1iIksoNKKvajNRELjHUH+Y5gCy6NTzFRmVj8ayXUNuQi0PH/4ma+j3Yc/Ap7D/6d4xKWobRqechInSUt5vpcz744AO89dZbqKmpQVZWFlauXIkpU6Z4u1n9Iooi2jsqERQUi8raHdix7yHMzXkMTS0F6OiqxaSxN+BI0YdISzqr17nQ1FKILXvvw+jkX8mybfLAuEkWfNY25ikOr5YuzdLcWoT8gjdl9zsTtHhjTqvB2AFhkEZZmEx6tLu42kL3UGprMNzRWY1fDjyBtKQzUVa1GVW1O7Fkzt9xsOBtxMdMRWzsBYrHKav6EQeOvY7J42+RZYylgXH3xZGhWdeje03fga1j3NJeClEU7Q6X1htaZVlJZ6kFrUfOMZNokzHu46KLt1czaLNZg1s6tLqzqwEtrSct/25pPenyRTJbu/IeQaeuHhlpFyNnwh8s25taC1FTvxs19bsRGpwEg7EDtQ25KKvajO37HkRM5EQsmfOPAT23NzEwHqZE0Yiahn0oq9yEsuqfLFXnggLjMDr5HGSkXYjAgCjvNpI8Lj3lbJRUbkBR2dcMjPvBYOhAaeVGCEIAUhOXers55CEqlQrxMdMQHzMNdY0HUFj8OUqrfkRB8WcoKP4MUeHjkZK4BCmJSxAaPNLbzfW6devW4fHHH8fq1asxdepUvPvuu7j++uuxfv16xMTEeLt5DomiCJVKhS5dEwSVGtX1u7F9318QH50DvaENomjE1r33WfZvbj2B2oZ9OHLiA5wx710cO/kJxqRegOiI8Sgs+QIdndU4WLgGqYmnWR4jnavXpWtAfdNBy7+bWgplgZV0P7OK2m3uftkeYzR2wDBIU7C6dA0wGjsgqLROrw1rsMkYF5WtQ2t7qWWKDAAcOPYaisrW4Xjpl5gwbjFMJhUAayAmikbsyFsNUTTiyIkPoBYCLPfJgm5J9euhZiBDqc06Oqtg6PkbUqLTN8uy7c4SBC1UHjjHbOesu2OYvae0dpTJ/i2/+FYvG9Lf2FIw4EDefPGuqnYnSis3oamlAONH/xZ1Dfst+0j/hsxTPuqbDqKppRDNrUUYOWJ+r5FXza1FKKvahDGpF6BL34Saul8QHvFriKIIo0kn+9vyBpfPMlEU8corr+Cyyy5DXFyc5XZ8vOezjq5eof7666/xt7/9DWVlZUhPT8e9996LRYsWyV7Liy++iE8//RTNzc2YPn06Vq9ejVGjhmZ2oK2jEjX1u1Fd1/2feXK9SqVGQtwcjEk5D4lxp3AOsR9JiJ2B0JAEVNftQVtHJUKDE73dpCGlrPpHGIztSB15BrTaMG83hwZBbNQkxEZNwpSuehSVrcPJ8m/Q2HIUjS1HceDYa4gIG40RsTOREDMTcdFTh828KlesWbMGl112GS6++GIAwOrVq7Fp0yasXbsW11133aC3R29ow5Hjm9DQWAeDoRNaTSi6dI1oaj2OlITFaOuoRFHZ/5CSsASdugaUVm7E6JTzcKLsKwgqDUKCEgAANQ25inN/axv2WW7/tPtudHbVorz6Jyw95XWUV2223CddMkVeKbpFFhg3NB1x+JpcXXbJmwyGDo8Mc1XS1jM3MiQ4Ea3tJU49xmjslA2flmbazIrK1llub9v7AgqKvkFM5ESEBiciJiobIUGJlkCjofkIQoOTFZ9L9GAFZU8T3RAYF5Wt63Moeb8DY5UGgsr951j3fHBrht+XA2NzZjtAGwGdvhmtkgyy3tAqX0LMJogeiNb2EuzIWwVARGXtDoRIfkdKi6E1tlirs3+/7VoAwIiYGUiImwO9oRUqCEiMPwW79j+G1vYS1DTsQ2dXPVraitDYmgedzoiKmq0Yn/4bxERmo7n1OFQqAcFBIxAXNQUhwQlue019UYkuruViNBoxadIkfPbZZ5gwYYLldnZ2tqfaCKD7CvWKFStkV6i/+eYbu1eo9+7di8svvxx//OMfsWTJEvz3v//FG2+8gS+//BIZGd0Vel9//XW8/vrreOKJJ5CSkoK//e1vKCgowP/+9z8EBLh+xUKvN6KxceBLfwiCCrGxYaira4XJ1PvtEUURnbp6NLUUorH5CBqaj6Kx+SjaO63FPlQqNeJjpiElYQmSRiwYdtlhR31E3QRBhYKSd7A3/21MzLgGWRm/93aTfE5f59LmXXeipiEXC2c8hxGxM7zUQt/gr39zoiiiqbUQpZU/oKxqM1rbrfO6VCo1IsPGIDpyAqIjJiA6chxGpWahpVn0eB9FRYVAqx38ImE6nQ45OTl4+eWXsXSpdRTFn/70J7S3t+Oll15y6Xh6vRHNzQMrVnTkxIfIO/LqgI5B/RcfnYPg4BEoLv920J4zLnoKahuU14e2FRaS6nQQ7c/OWvAetux5wKN9NWfKg9iR94jLjxsROwMadQjKq39ya3tsRx5oNWEDHoLsaTGRE1HfdBCCENBr6oRKpUZgQLRs3e7hICgwDucu+XzAx4mICHb4vdmv1KE0lh6sNVJdvUL97rvvYtGiRbj++usBAHfeeSe2bNmCDz74AH/5y18giiL++c9/4tZbb8Xpp58OAHjqqacwb948bNy4EcuWLRuU16XEYGhHXUMFqmrL0NFVjy5dAzq76tDWXoHWjjK0tpcpVGVUISJsDEbEzsCImJmIi54CrWSyPPmvzDHnYW/+2ygqX48JY67ikjROam0vR01DLkKCEhEfM83bzSEvUalUiAofi6jwsZg07ga0dVRaChbVNOxDY8sxNLYcwwn0rAu5DQgKjEV4SCpCQ5IQFBiHoMBYBAfGIygwBsFBIxAcGOvdFzUADQ0NMBqNiIuLk22PjY3FyZMn7TzKPo1GQGzswEZj5IRcjJCQIAAiNOogdOlaYDLpERmRhvyjn0KrDUFWxoXYtud5iBCRkXY69h/5CKEhCWhtq3B4fFvZ436Nto4aFJVuAgCkjpyHkoqtDh8XHTkGHZ316OxqdPk5fVF4WDJaWsvQqa9BWNjgDqEPC41FrZNTVTt7llMK0IZBp3cu6AkPTUL2+F/DaNJjd97rMIkGhATFITVpHo4c/09/m+3TwiO0AAY2x9gRvbHc8U4KAgODoNW4vxii7XB8Xw+KASA2Oh31TQctQXFQYJTlMyU0OL7n3+4PjGdOuRm/5Dl/ATI+NhtdumZEhY9CUsJMdHU1Ye/Bd6DVhGBy5m+wJ/8tAN2fp/nHPoVaCMDiUx7E0eP/g0YTjJSRcwBRRGt7JWKixg34e8JZQ2JMrU6nQ35+Pm655RbLNkEQMG/ePOTm5io+Jjc3t1fAvGDBAmzatAkAUFpaipqaGsyfP99yf3h4OKZOnYrc3Nx+B8aCMLC1/AyGdvzvx1/3WX1SowlFVMR4RISOQnRkJqIjMhEVMc6vAmFzPw+0v4c7QVAhKiLNcnW9vmk/4mNyvN0sn2LvXCquWA+ge562Ws3le/g31y08dCTCQ89FRtq5EEURHZ3VqG86jPqmQ2hpK0JbRymaW8vQ2VWHmoZchSOosGjWc0gYZiMQzPN2XWUwmAacMRaEIORMvAoNDW29MvWLZi623D5rwSyoVAJUKgHpSZdBqwnFidJ1KCpbjwljfoete/8MAIiJzEJ90yHZcWKjslHXmA8ASIpfhoiwdIQEjYagUiMhdqYlMNZqw6GXfH8HaCMt84lDgpIhihqHgbFaHeSVNVNdJSAQQYExaG2rREjg4M69V8H53zvmob2hwcnQ6a3D2FMTlyIoMA4VNdvQ2l4ClUqNuOhJqKnfh8njb0ZywqkAAI0qESdK/4esjKvQ2GwdLhoYEGOp3wIAaiHQK5WL3aWoeC86BnDRJj15OUorN8mmEdgyB0OuMhoAlQfzcCqV2uvFtZyl1ciHFIcGp1o+UwID4qEWPLOaQlrCxTga9g2aW08gc/TvcOTEhz3PGW2pjxAbNQmCoEVj8zHMmPgAwkNTZceIj16EAG1ET1bbhNDgRIxOORtpyQsgGqMRHpqOuTmLez03ANTVDfyihccyxoOtP1eoa2trERsb22v/mpruK4fm/ysd03yfq9xx5dtkCsbo1FPR0dmA4KBoBAfFIjgoBiFBsQgPS0JkeBqCAqP69QNkOIqODvV2E4aESZkXYNP2PJTXfocJ4xZ4uzk+SXoumUxGlFR8AwDIyb4YEWGcX2zGvzlb4UhNyQDwK8sWo0mPltYytLRVoq29Gu0dNWjrqEF7Ry0AEanJ4xEeOjTPqejoaKjVatTWyjMS9fX1vb5PneWuYecmk6Mh7GqIYncQr9V0LycyOuU8jE45D6IoIiF2NnT6Fsyesgo/774HoSFJGJ18DvYcfAZZGddCow6GTt+CiLCxAICsMb8HIF87OCw4CY0Ga+GbsJBk1Dc19dxOgyiqLOuRBgXEKFanHhEzAxU1WxAeOgqjU85Fa3sZ6hvz0dhytNe+3qRSqREekobOrlzUSgryDAatxvXlJUNDktHQ3B0YBwfGY/aUhwB0Vw1vbS/ByPh5OGXqX6AJaIBoTLScS0kjFiNpRPePdYPBOnQ1LCRZFhgHBcWhzbKkjgDA1I9X5j2/HHhyQI9PTz4H49J/g++2XNXrPrU6WDbS0dXh7SqVxqPry2s1YbKCeL40pFqjDpatjW07vz08NA11jd1/f8FB8W7tpxGxs9DQdAjpyedApQrAopkvoLZhH5JGLLAExpHhGZaq+yFBCZg1+UEYjB3QakJ6fR6Hh46x3DZ/fooiMCp5oc9M0xoSgbE9jq5QK91nu8323/296g2458o3AORMWIHo6FDFq9/tbUB729ApyuEpgqCy20dkZe6nmIj5UKuDUHjyO0wcc5tfjS5wROlcqqzdidb2SoyInQF9VwTqunzjC9Kb+DfnmLmPmpt0MJniEBIQh5AAAFHy/XSdQF3nwM4pZ658e0JAQACys7OxdetWyxxjk8mEbdu24eqrrx709riLSqXCghlPW/595vx3AQhQqVRITlhk/4EAtBrrxSKtNgIadYilUnFoSLKl8FZYSIps+ll0ZBYqarb0Ot64UZdidMq5iIoYbxl2v3nXXY5eAQZ7mSCVSoPE+Lmoacgd9ExpgNa5wFiaCQwOtF64CZLcnpJ5G+KipyAx7hSo1YGIiRprNzsVETZKcns0GpqPWIa0BgdaA+MAbbhi5fHhLEAbKSvwGRaSYil0FhMxATUNewEAsVGTMTJ+Pg4cc35YrqDSQqXyXMhi+35pNaGWwFil0ni1qFpgQDRMXd1rTKtU6l4rI4SHplluh4WkwGCwxiH9CfClIx9iIiZgwfQn0X2hBwgMiEJyQvdFopHx81FRswUpCafCYOhAfVM+RsbPg0qlGtK/MYdEYNyfK9RxcXG99q+rq7Psb66iXVNTIyveVV9fj0mTJvW7re78wej46jexj5yjFoKRPGIxiiu+QUnFD1yTV4H0XDpR2l2hdFTS2Ty/bPBvzrHh3kfXXHMNVqxYgezsbEyZMgXvvvsuOjs7ceGFF3q7aW7jatYldeQZKKn4DqmJS9DaVmIJjMMk2Z3IsDHQqK0/GONjciyBsfTHd3BQHMJCUmTH1zj4oalRB8No6rIEgUqFedxNENQYGT8f+49a1ywdrCAiQBvp1H7STKA0mA6SzPMPDIjE6JRznDpeYID192JYSAoCNGGWrH9w0AhJ+yL8LjAODIiEIGgwMn4eWtvLerKKHwDoHmJb33wYALBo5gsorvjOpWMLgsajlc+1mnD5v7XhQGf3kmtqdSAMhoGc0wMbPaBWByFQG4mOrhoEaCO622Y+shCA0BDrZ0xYSLJsXe3gwHhLYJw5+vLuav0tBZaRE0pCghPR0nbSctveZ+HMSfejtmEfRsbPR2L8PNQ35iNpxMJ+v05fMSSq8EivUJuZr1Dn5OQoPiYnJwdbtsivxG7dutWyf0pKCuLj42XHbG1txb59++wek2goS08+GwBwsuxrB3v6N52+BeXVP0OrCUPyiL4zRUT+aPny5bjvvvvw4osv4vzzz8ehQ4fw5ptvDok1jD1lRvYKzJ/2JEYlLZct7RYdOcFyOyJsNBLjZiNpxCJMzLgGYSHW+XfSTFugNqrX8R1lYARBC0Gy/qdW7XrGRnBx/VCVSoOwkGTZD+cAzeBMEQjQhsOZn7DSbL40MJZud4VKpUL22BsQHz0NyQmLZO91cKB12dIAbbjSw4c1c5/Om/Y4zpi3BlrJuaDVhuPM+f/EsgUfQhA0vda2dUQQtBDcnDGWZqBt3y/puaK0hJsrBrpEqkYdZLngpVYHIUAyjSAoIBqxkdZkXkzkJAQEWC8aSZdWykz/HWZkr4DGwd+oNAMdGpxkd78AbTiSRiyASqVCcGAskhMWDYtpnkMiYww4vkK9YsUKJCQk4O677wYAXHXVVbjiiivw9ttvY/HixVi3bh0OHDiAxx57DED3h9tVV12Fv//970hLS7Ms15SYmChbgoJouIiLnoqQ4JGobcxDa3tpr4wEdSup+B4mkw6jkpZBrR7YFyLRcHXFFVfgiiuu8HYzfIZaCEBi/CkA5EFXfMw0zJnyENTqYMvnydyc7uVqmloKLftFho+1DDvVKARtAZJg2Xa+pvn5AVi2azQh6NI3uvQaXM0wq1Tq7nVGA+PR3lkJlUrd/Ro9W9gYQPfrEwSNgzarZJn2AG04IsMy0NRaiLDQ/n//TRhzBSaM6T73pcGfdFlMZzPaQ1V68tkoqdiAmZPvx+4DTyE95RzZihcqlRoatXWNd406CCGSjLpa7dr674JKA0Fw79QRaSZYeoEDkAfKahcvGNka6EogaiEQpp5RGBp1sKxtgQHRCAqMxsSx10FQqREemoLm1uOW+2OjslFZu637sT2fKxqF3zUadYilaJpWE4qE2NmoqtuJqIixA2r7UORyYKxSqZCUlISAgADZbU9bvnw56uvr8eKLL6KmpgZZWVmyK9QVFRUQBOvJN336dDz77LN44YUX8NxzzyE9PR2vvPKKZQ1jALjhhhvQ0dGBv/zlL2hubsaMGTPwxhtvDMrrIRps3ZVYl+Fg4RqcLFuP7HHXe7tJPqmovDujzuHmRNQf0sBYow5CSqLyxXbpXMGo8HEoq9oEQLk+SqAkC6TVhPYKjG2zvY6GXruD0JMpDg7qDoxF0ag43NV2rVh30GpCIajUfQ5QFVQam6xlBKZO+ANqG/YhM/23bmmH9PUGSoLh4KB4pd0HVXREJto7qy0Vg90pbeQZWHbqY6ira0XyiMWKw23Vkqyw2iZD7GrGWCVo3D7HWC0EwIDumj0BGvsZY5Wgls1Vd32awsCyqGp1EKZl3Y2d+x9GevKvZBloc3Y4a4y14Jn0cyUhdhbyC97sbkXP54rSMrvBQXFoaSvueb5gzJ32GExGXa8LBv7A5bNMEARs3LjR8m/pbU/r6wr1e++912vb2WefjbPPPtvu8VQqFe68807ceeedbmsjkS9LSzqrOzAuX4+JY6/xaJXHoaippRCNzUcQEToa0RETHD+AiMiGs3MhpcFr6sjTUVW7A+NH/05xX1mQoZDBUgsBst/fGicyciPj50NvaEVtwz6n2mvL/P0hDSKUhmMLggYmo/sDY0eBkkrQICjQOrw/QBuB6IjxHluyMECSMbYtkOQNY1LPx6ik5Vj7/elun/ctHU1l73eENPi1PR9dHkqt0rp9jrF0iLRGEwzpXGDZOa1SQ1BpYDQPZ3YxMFYNMDDuvrh2KhLjZjt1wUtWjCs0DWfOfw+Cytp3Shls6QiHAG041ELAgDPlQ9WQGUpNRAMXGjwS8THTUVO/B9X1e5AQO8vbTfIpRT3zr0clnz0s5soQkRe4UHftnFP/A0BEYEAUFs9+yf4hRWtu1Bx8SrNYanUgYLJ+ZkkDEXtrtGakXYiE2FmoazyAA0dfQ0LcbEt2yRnWzJX1BauVMsaCFjAOfMUOKY0m1GGgJKg0CJIWy+pjvmR/SYMr6ZqtvhAYdw91V0GlEqCQJLRQC0EwmlxbN9uZwFZaJMp2aLlaFjSH9Ln2MdBTfMvNF/Klwb1aCIRWE2IpVCUtxqVSqaESNEBPpWa1OtClSs/9GUotHWVhbqc0KE4beSaKK77FmJTzez1WrQ5E0oiFMJp00GpCoNWkye6Pj5mGipotssy3NHgPDIh2ub3DyZAovkVE7pOexCJcSkwmPYorvoVKpUbayDO83RwiGqJSR54GoLsSryOBAZGyuan2jEk5F8kJp2LxrBeVM8bqQNl26RBIe5kfczGj2KhJWDz7JYSFJCvuZ4/58dKhmUoZ4+6MovKFxuiILKefT5qZ1KpDHAZKgqCR/cj3xLDQ5ITuYcQzJz2AsJBkxEfnICJsjCxT7S3m/nKUsezOljrDGjJonSiyJr0oERQoD7akF26cKYQmCO5frkl6UUMQAnplTc1UPRljpcdJ2cuc9ycwlr4nSqM/crLuwtJT3kDSiPmKj5+b8ygWTH9K8b6M1AsxYcxVWDzrRZj/LkXJxS1/LBwnxcCYyM8kJSyCRh2CsuqfoNO3eLs5PqO8egt0+iYkxs31iR81RDQ0JScsxvzpT2HO1IfddkyNJgSnTF2NuOipltEs0h/iasEmMJYEG/Z+yNtmXF0NPMzPb57fOH3iPYpZXHORLiWjks7C3JzHkOTECgC2c1ZVCtV+pX0iqDRIGrEA0RETMHn8rQ6P3x+jU87B+Uu/xqikswAAC2c+h9Pnvu1yhW9PMPeF6GAIg+17M2ncjYr7See5BwQ4XkdaviSWPDCWZYydGB7cXXzLzUOppRljdYC84JbNUHHB5m9N8Xiy7d19Gh6WLBvt4Szpsm5K/aPVhCI6YrzLxwW6Lxhlj70OMZFZlvdeFE2YPflBJI1Y4PercTAwJvIz3fNVlsBk0qG0cvBqBPi6E6X/A8CiW0Q0cIlxcxAsCQzcyWQuAiTNYqkDIEh+zEszevaq69tmuFzNbJmHUsdETcRFZ2xEevI5dgJjASo7PzdVghpJIxbIsub2AnTp8F2VSqW4fI88C6hFRFg6lp7yGsanX+bUa+oP2yDKtm3uznQ6y9znSsPopRLj5iAmciLm5vwV5y75yuYihfV9k2ZUNU4sByZfHkueYZa+l85mjN0+lFpy8UIQAmTnrvT9E8xDqc3/Vitf9JCeBxMzrsbolHNxwRlvw9CPaQTyit6uVfB2hfncCNBGIHXk6Zib85jfr8bBwJjID5mDv5Pl673cEt/Q2laJytqdCAqMRWLcHG83h4jILtHU/WPW2YyxIEjnUkqCAZuAzdVijNL9LfNZFX5W9pUxVkHd00bpUFXlzKBtFlYevGh79pEEN27OMLpC+tyuFDFSykaqBdcKVZmpepY3UqpCLBUSlIglc/6BpBHzEaCNsBk2bG17oLRSsxM1OFQqFSaOvQ4TM67ttb/0vQwKjLNzBOs5050xdvNQapuCdiaTtUCcNBDuPZRa+jckfZ+t711E2BjMnHQvQkPiHV6YUOJoKLW7jEm9AAAw3k1V2ocDh4Hx1q1bnTqQXq/HH//4xwE3iIg8LyYyG2EhaahvOojm1iJvN8frjhz/CoCIUUnL3P7lS0TkTubPKJOk0rBlDeEe8mHH1h/y0h/ctp91rmaMlQJp5W0CYC8w7gmYZEGuvYDWJsBTSda1Nb92eYDtveHM/Q2MBUGL8em/QfbYG6yPt5OhdHgsy3vRPZTX/hxYm5EDsn61Prczw6dtZY25ClkZVys8pwoj4xcgMW4u4qKnKj5W+l52F99y74UOrWSIsiBoLcuqjU45z6aKs1qW9ZdnmiXvs1o+Z7kvju6XZYydngPuuimZt+HshZ8gPkb5PfBHDj8Fb7nlFvz444997tPe3o4bb7wR3377rdsaRkSeo1KpkJ68DABwsty/i3CJogmHC78EwGHUROT7zD/AjUZrJWGVSrCbDZZu12ikw5EHljFWGtqqlB0T+soY92xXOREYm49t3lcavJgDDacC7EHQ38y1IGgxefwtmDDGujRpf4diW7P3ff/Ut31vZPO0JedOcNAIZI6+ArMmr+xXe2zNm/YY5k9/QjZCQP7c0qHNWlnA7g4ayfBujToE40ZdikUzX8SkcTdAEOSjIaT/FuwFxrKRGdL3vPvij3Qour15ykrPofZgxlgtBCAkOMFjxx+KHAbGp59+Om6//XZ8//33ivfX19fjyiuvxN69e/Hyyy+7vYFE5BlpI88EIKC4/FuYTO5d43Aoqa7bg5a2csRH5yAsJMXbzSEi6pP1R7U0g6qy/4NdtjSO9XbvodTOZIytQ2KVil8pBcYqqO3PMe7ZLssOyrJ1SkGh2Osx1oJk0sDYixljyWtwJeOntMxTf+fWmgNJ84URe0N6bS+IyAtNSS+2BGDSuBvcvmqDSiUftmx9PtuMsXtHc0mLbWk0wVCpVIiPmdprOLlgO5RarTw1wV7GeMmclzEyfgEmj79Zsm+A4r5KxzUY+l7KitzL4afgM888g3PPPRd33XUX1q1bJ7uvtLQUv/3tb1FaWoo1a9bg1FNP9VQ7icjNgoPikRA7E526elTV7fR2c7zGXHRrdOo5Xm4JEZFjoT3LKgUHxlu2GU1dsoBGPqRYWpRLsr6xYD8gskeexXMuY6xSCQ4zxrJgTDb30/p85syWaCk+Jnn+nmHW0ufxbsZYGkg5DoyjwrsrDCuNWupvgG+ev61UTEl2EaVXETbl7Ki9ud8DJR8yrTwEXRC0bn8/pfPwbQuA2QbrKjvLNdkbSi3tq7joyZg37THZ36u8X5WXX5s//SkkxM5GSuISp18TDZzDyy8qlQp//etfERgYiHvvvRc6nQ4XXHABDh8+jBtuuAFqtRoffPABxo4dOxjtJSI3Sk8+G1V1O3GybD1Gxs/zdnMGXZeuCWVVmxGgDUNKwmJvN4eIyKFJ426AKBoxNu0S1DcdxJ6DzyAl4VTU1O+17CPIhk9L5ytKM8a2yzU5ERirNDBB17N/75+QJsXA2HYotQqWbLfCUGpZVlsIAHqq+qYmno66xgNIiJ3d81DrY5TKSzlav9eTpAGTM8WTZmSvgN7QirjoHMu2iRnX4GDhGsRFT0FbR5nLbTC/n0qBl/x9tB8Y25tP606ybKxKC/P4Nek5rFJpXB7q74i88rO8yrZ8NIJgc6EjUHE/23WRbdkLhtVCAPQ2+6rVgUiMm8NioF7g9LiEhx56CIGBgXjggQdw5MgRfPrppxgxYgTefvttJCYmerKNROQhI+PnQ6sJR3nNFnTpGmVLZviDkorvYBL1GJt+AdTqQJhMfVfvJCLytgBtBGZkrwAARIaPQerI06FRB6G8eotlH8FOhksWGPcqvuVMxlgDGHs/h5k1YyzAWvRJnjEWVBqYxO5QwDqUWjmQlLZxVNJZCA8dhaiIcb2fXzQ/lyQYdqJysqeo7b0eldb62lUaiD0F1DSaUMvrMsvK+H3PxY9DTtcCEYQAmEzmgLenbxWKdwmC1vI+9jmUWj0IgbG9jLHNc0vfW5VK3a9qz1LyAlc2gbHN6Au7w8vtDKUODe4dF0lfj9rBHGJHc5DJc1wqQXjffffhhhtuwDvvvIOxY8fio48+YlBMNISp1YFIHXk6RNGA4grlOgLDlSiKKCrrnh6SlXG+l1tDRNQ/5gyrubJsd3V9ba/7u29LgzTX1zGWrc+rUAxJaZiz7TrGKpv7bNuoVitntVUqNUbETpfMDVUKfCXBkxczxtLXqJENX7eXGVfOU2m1YS5lSpWGus+a9GcEB8bLimYJsoJXfRTfkhU480xgLBu2bC8Dq5JXpVbLssn9yySrJe+L1iZjLJurrtLK2yXNGEvnkkuOYRto27ZZK5nfrLxusPfOXX/nMGN8yimn9Fp/TBRFFBYWYtmyZb3237Ztm/taR0Qel568HMdL1uJE6VcYm3axU+sTDgeNzUfQ1FqIqPBxiIvJQn19m7ebRETUb2kjz0JE6GhER2ahuv4Xy3bpSCBZVWrbjDHsDHeWbrVTJMvMXMhRJWgAY3dmtDvbJ8/AGU09x+sJyuwWCLOTTbQl2hlM7QtsL0aY85zSIbS2c1ylHAV+0syz7MJFT9/GRmVj+eLP0NnVIGmHcsEr23/LLlIMQsZYbWfOriBobOaPW4fYCyotjP3IHgdL1k+Wvk7bNtkW/pIXubNuDwyIxJwpDyFEoYBa977W1yMr/KXuvU61dCk2GlwOA+PLL7/cb34oE/mj6IjxiI6YgIbmw6hrzLO7puBwc6Ksp+hWynJ+xhHRkCcIGsRETey+rVIeqqnV9FWVWl4R2DzkV/Ycsqxd70DJ/IM/ODAOre0lPe3SyoY1ywOx7u3S4EBlJxi2zWwqD6WVPo9vfK7Lh4ZLMrCSwK+veciCg2WK1IIWBqOh57b9TKo82JPuZ5sxtvabNNvtseJbKuWLLfaKXHXfJw9OzRdaXBEdMQHjRl0KEWKvc8V2+TD76xjL+9u8FrIS2ZrQsqWbeg91FxkYe43DwPiOO+4YjHYQkReNST0fu/MP43jJl34RGOsNbSiu+A5qIRBpSWd6uzlERG4lX3dVMnxXOqy3V0AkGe4syfjKj9t3Bnf6xHuRd/QVZI+9Ht9tvbp7P5XWZo6xfI1YwHb4tHJVZFvyLHFPVWpJYOyLy9xIg0CNIF1T2v4wdkcZY1n2tI8LCfK1leXLEdmjsTOs3Z1ss7PW2zbrckuCV8HB3Gf7c5CtIyFUKhWmZN7muE0qTR+Vs/uu0i4lDYClGWOVQvsHOn+a+s+lOcZENDylJC6FVhOG0qofZcOthqvi8m9hNHYgdeRpsi8oIqLhwNhTgAmwnQfZe9immUrlOFiSB1e9f9CHhozE3JxHERGWbtmmFgIsSwd1P4/0tkLG2KZQl33WwFgUzVWuu6tXA0B0ZFYfjx08hp6gFbCfDe+Lo4DLdpi60vbu4ygPWe4rKBf6yNq6i721p22Lb9krKGcvMFZ+LufmIws2GWN7Q8/lFyKcD4zlw+sVqrubmDH2FgbGRASNOghpSWdBFA1OV78cqkRRxPGSLwEAY1JYdIuIhh/pD2t59tj+j3dZxlghqwvYZnOdC5RUgrqPY5urUkszw86tRaxVS+flmoNkFWZOuh+zJq9E5ujLnWqfp0kDY+lFCmezgo7nGNvMvbXzOHvrEytlLM2kAbTyPO6Bs1eRXB78auyuJay8HJWdwNjJeee2GWLb5ZuU2u5UZl9hX6X2KxXvosHBwJiIAABjUs4DAJwo/Qqi2I8JO0NEXWMemttOIDoiE9GRE7zdHCIitxsRMw0jYmdi+sR7ZQFFV1ez3ccI9gJglXKW09mhtd3rGEuGwUqDDPNyTQrBMmCvYm83rcJoHxVUEAQN0kae4fXRQOnJ5wAAkkcssmyTXphwtn0uBcYq+4Ga9D3QasIkj7GflZe+3zpdk+PG9oP0vZcGhNL3XmUznFl6n23hLKCPCypOzjuXj57Q2AzrVg5qHQfGGkRHZCFpxEL5xSHJObFkzqtIGrEIEzOucaqd5H5Or2NMRMNbRFg64qKnorZhH6rqfkFi3GxvN8kjLNniVGaLiWh4EgQtFs54FgBQUrnRsl2tsKatWa85xpbt0qDV9aHAEE12j2F5TjsZZaVsmllgQGTvjT5ScAsApk+8G1kZV/dax9gsPGw00pKWISo8o8/jqPocTi6vJi4PJu3nvgK0EdY22VkqynL0nrWRFfvbDaTnmlYaGMuywlpIC6upHRQu63sIvmO2IyOURjl033ZurrbZkjn/gEqlwrGTnyneHxOZhbk5j/SnyeQmzBgTkYV5aPGJ0i+93BLP6OyqR2nVj9BqwpCSeJq3m0NE5HHSICF73K8xJvV8LJ3zWq/9bKtSK27vxxxZk2iQBW/yAKJ7e0RoOsJD0zF21K9tAg/7P1PTRp4BoPt7y1PDfAdCpRIQEjSijznAAtKTz0ZUxPg+jyPP3ivNp5UExnYym7ZkgXEfQaQoGnHGvHeRM+EuJCcs7rOd/SWrRC0bSi1Z91cTJsuwOxxKPcD50PL3SaNYMK77uZ0fSt29j6rX44zGzgG1ldxrSATG5eXluPHGGzF16lTMnTsXTz31FIzGvudmNDY24u6778b06dMxa9Ys/PnPf0Z7u7VC4Y4dO3DLLbdgwYIFyMnJwQUXXID//e9/nn4pRD4tKWEhArVRKK/eivbOam83x+2KytZBFA0YlXR2n0VoiIiGC+mP/ICAcMzIvltxGokzmbDeWTzHTCZDH3OMVZY2njn/XUzNvN0mGLafAY4IG43zlq5DTtb/OZWt8xZ7xcT6Cvplj7dTYVzpOGo7RcxsSYPMvoJIk2hAWEgSMtIudLpwlaukr0mrVh5KrVYH2sxFlmTGlfqkzyy4Y7YFtlR2LxRJ52o73z/Sdatb20sBAJo+1rKmwePzgbHRaMRNN90EvV6Pjz/+GE888QQ+//xzvPzyy30+7p577kFBQQHWrFmDf/zjH9i1axdWrVpluX/v3r3IzMzEiy++iP/85z+46KKLcM899+DHH3/08Csi8l1qIQCjkpcDMOFE6Vfebo5biaLR8prGpJ7n5dYQEQ0O+fBn+wGD/Ae/8hxI+RBcZwNjvU3Bor6DQ2kFa4h9Z4K1mlCoVCrMmvwg1OpgnyyoaHeIOpwLpOwFYlbW48sCxj4CWen87L72G4xlg+wVdOtrqS5HQ5ilS2HJHudk8S1Z+wQNggKjJcdQLr7lysUZjWSOd2zUZADAqKRlLreN3M/nA+Off/4ZhYWFePrpp5GVlYXFixfjzjvvxPvvvw+9vvcaewBQWFiIn376CY899himTp2KmTNnYuXKlfjqq69QW1sLALj55ptx1113Yfr06UhLS8NVV12FhQsX4vvvvx/Ml0fkc7qLcAk4UfoVjMYubzfHbSpqtqO9sxLxMdMRHprm7eYQEQ0Kwcl5kPbm9kq3S4sjuTSU2s7waJXCz1BpUC7CuUKQiXGzcd6S//rkRU/5MHLlJZP6ItgZim05vqywmZOBsdq591E0DUJgbGfpqL6CcqPJ+ttE+jpnT3kIcdE5SE9ernh/v9qn0mJM6gVIG3kWFs96yf5yTU5e6ADkGeMpmbdh1uSVmDz+5gG1k9zD54tv5ebmYsKECYiLi7NsW7BgAVatWoXjx48jMzOz12P27t2LqKgoTJo0ybJt3rx5UKlUyMvLw9KlSxWfq6WlBePH9z3XwxFBGHjhB/Mx3HGs4Yp95Jz+9FN4WBKSExagrGozSqs2YnTKcscPGgIKij8FAIwbdbGsP3guOYf95Bj7iHyRSbQu3dQ9PFV5jVTB3hBRO4WHHBc4EgCYujPGsuCw7zV07QUejvRdRMp77GV8nW2vysEcY2nxKXvrQZtNzLgWLW3FCAiIkhzTfjuk546n2BumrBTQjoyfh4qarYgKH4fSnqJy0v1SE5ciNXEpTpavlx3HGmT3J2OshkYdhFmTHwAAlFf/bLlPNsfYhaHU0vdJqwm1zJcn7/PNTxGJ2tpaxMbGyraZg+Ta2lrFwFjpMRqNBpGRkZaMsa3169cjPz8fjz76aL/bqtEIiI0Nc7yjk6KjOd/AEfaRc1ztp5lTrkLZd5txovTfmDHl17Ir0kNRbf0R1NTvRURYCiZNOFNxLU+eS85hPznGPiJfEh2RiaDAOGSknd/nZ7m99XDtLeNkcjDMVi1oYTR1wWQyyIb4yoJdheBNGjRo1EN/PVdpn0urgju9DrSDCwXBQXFoaDYfXzoHvPdSV1kZVwMAqmp3SY7ZOxQI0EZAp29GcNAIp9o4EPaW6oqLmoyMtIuREGtdIWNuzl9hMulQUrlB8nilLLq8kJwJOvMdLrevs6te3l7ZcG/Xim+ZKS0xRb7Ba4HxSy+95HCesHm+r70P8r4/4HvfJ4qi4vYdO3bg/vvvx6OPPoqMjL7L5vfFYDChubnD8Y4OCIIK0dGhaGhog8nke5UWfQH7yDn97SetMA7REZmoazyCw8c2Y0TsDA+20vN25b0LABiTchEaGuR/ozyXnMN+cmww+ygiIhhare8WHCLfERgQiV8t/rfDkQzy6sbKP/hlw6odBK0Tx16L/Uf/gYy0C3tl8JSe0/rc1oBOO8wKEqkF+dq8zrC3prRZcGC85XZQQIx13z4y0rZrBNs6dfbfcbJ8PcaPusypNg6EWh2IiWOvQ0jgCOgNrdZ2CWrkTPiDbF+VSgW1OtBupW/rfjb391zDUQtaGI3O/U7XasKhN7T0CmKl0wyk97kyxzg4MLbnWAyQfY3XAuMrr7wS553X91yQ+Ph4xMXFIT8/X7bdnPW1zQqbxcXF9coMGwwGNDc393rMzp07cfPNN+P+++932B5nuPPHkMkk8geoA+wj5/Snn8aO+jV27X8UR4s+RVz0dA+1zPM6u+pQUrEBGk0o0pLOttsPPJecw35yjH1EQ5O9jLF8qOvpc9egufUEwkNT+jza+PTfIG3kWQgKjEZxxbeSY0vnZfYO1mXVhzVDP2MspbaXOe+DbO63JBBTq4NhNHYgJXEJVCo1YqOyHWbxzWRrKyu0Izw0FZPG3eDUsdwha8xVAIDjJdalIpXmn5vZWz5J6bHSwD8kKAE6fbNTbTpj3hoUV3zXU3dF8tyy6tjWfnQlY6zRhODshZ8Muws/w4HXAuOoqChERUU53C8nJwevvfYa6urqLEHt1q1bERERgTFjxig+Ztq0aWhsbER+fj6ys7MBANu3b4coipgyZYplvx07duDmm2/GPffcg0svvXTgL4poGElJOBX7j/4DFTXb0NJW6vBHkK8qLPkCJlGPjOQLoR1mP7KIiNxFNuTXTsZYUKkRGT4GkeHKv79smav5yiv5Ks8pVdoWHBjX6/6hTN2vOcbSqtPWwPiMee+gqaUAcdFTERc9FQBQWrnJuXZIA2MfWurKUcVy633ScyS+9/2C8vD/0JAkNLYcc6otwUHxyBz9u17bpe+hdNSEq0W+QoITXNqfBofPV6VesGABMjIysGLFChw+fBg//fQTXnjhBVx++eXQars/uPPy8rBs2TJUVVUBADIyMrBw4UKsXLkSeXl52L17Nx555BGcc845lvnJO3bswE033YQrr7wSZ555JmpqalBTU4PGxkZvvVQinyIIWmSkXghARGHxZ95uTr8YjV09V6AFZKRd5O3mEBENCfaLb/UviLJ7DIXpbdIM9aiks5CevBwLZzzXr+f1NdJso1plfzkiKVlgrLEGtKHBiUgascDuvn2RHseVAmee5qgwm/U+6zmUlnQWJoy5Cqed8qb1flnG2Lrv2LSLER0xATOz7+9/G2WBcf8yxuS7fD4wVqvVePXVVyEIAi677DLce++9uOCCC3DHHXdY9uno6MCJEydkyzc988wzGDNmDK6++mrceOONmDFjBlavXm25f+3atejo6MBrr72GBQsWWP6THpfI341OOQ9qIRBFZV+jS9fo7ea47GT5euj0TUhOWIjQ4JHebg4R0ZAgLzDkjsDYGgDLghaFJW5k2T5BixnZfxrydS6U9KeKtqOiTc6uOywbSu3kXOfB4Gg0gdJ9gqBB9tjrEBUxzrrNzhxkrSYcS095DaOS+79msCww1vhm5p36z3f+GvqQnJyMN954w+79c+bMwZEjR2TboqKi8Oyzz9p9zBNPPIEnnnjCbW0kGo4CAyKRnvIrFBZ/joLifyN77HXebpLTTCYDjpz4EACQmd57OBQRESlT21kPt/+BsZ11jBUzxsM3wJBnMl3PTUkDWiXOB8bSuc6+EwqopBl1haraZg7nGNu5vz99bkvNjPGw5vMZYyLyrvHpv4VKpUFh8efQ61sdP8BHlFZuRHtnJUbEzkJ05ARvN4doyDt8+DD++Mc/YvHixZg6dSqWL1+O9957z9vNIg+wtwxNvwNjKAcnyusY+06g5naSCwH9Kc/naNizs8W33PGeeoI0ey0tVGZLOqpAqUiX7XJNkjsG2EL3FN8i38XAmIj6FBI0AqOSzoLe0IrCki+83RyniKIJh098AACYMPpKL7eGaHg4cOAAYmJi8PTTT+O///0vbrrpJjzzzDP46KOPvN00cjPZmsaSwKK/2Vx5AKw8rNosNqq7aOqI2Fn9eq4hQ3Q9NBZFk4P7nQuMfZU0ey0dsmxLvmxY7wBadvFFOjzbDWGP2s5Q6qDAGKXdaYgZxpfliMhdxqf/DkVlX6Pg5KcYO+oSWWVMX1RRsxUtbUWIjZqMuOgpjh9ARA5dcsklsn+npqYiNzcX3333HX772996qVXkCdIAS57h7WdWTDrH2EHGOCgwFuctXedw2PBQJF+eyv2B8YiY7rnYKYlLHR5r4YznYDTpXG6DJ0mLb6n7CIylF2jUCueJbSV163b3Zoylw71DgkYM+NjkfQyMicih8NAUpCSeitLKjSgq/S/GjrrE8YO8RBRFHD7+TwBA5ugr3PJFSETKWlpaEBkZOaBjCMLA/kbNjx/ocYY71/rJGoCp1ZJAQK3uVz/LAhlZVlBQPF5gQJjLz+EOnj6XZEXIVP15Huv7ovTYsNBEXHj6eqjVwQ6/+xLjZ7r43Fae6ieNWrqGtf1h49JzSK3ufXFFrVYuviUI/Tt/pWSBsdp6bI0mwGY/fi45w9f6iYExETllwugrUFq5EUeKPsLolHP7nP/jTeXVP6Gh+QiiIjKRGDfH280hGrb27t2L9evX91kc0xGNRkBsrHuCoOjoULccZ7hzpp8CA63BRnCQda3W8PDQfr1fQUGSzFqINcMXGxuB4CDvBMF98dS5FBJqHW0VGhbocl8GBVmDL/uPHbz+dHc/mRBhud1X3+hNwX3uZ0S45XZAgLXPoqPDEBHmvv6Jj4/C0rkPIzgoxm57+bnkHF/pJwbGROSUyPAMJCcsRlnVjygo/hyZo31v6KQoGnGw4G0AQPbY65ktJnLCSy+9hJdffrnPfX788UckJiZa/n3s2DHceuutuOOOOzB37tx+P7fBYEJzc0e/Hw90Zxqio0PR0NAGk6k/JY38gyv91N7Rabmt11s/R9va9Kirc70Io05nHZrd1WXNejY0tKM9wLn1fAeDp8+ljnbrsqJdnRqX+zIt8QJUVudjQsYV/Xof3MVT/dTSYu2fvl5ffX1Dn/u1NHdZbhsN1vO3qbED+q6B99uCGU9CBTXq6loRG3mqYjv4ueScweyniIhgaLV9TwdhYExETsseez3Kq3/GkRMfYHTKOQjQhjt+0CAqqdiA5rYTiIuagoThXriFyE2uvPJKnHfeeX3uEx8fb7ldUFCAq6++GpdeeiluuummAT+/u34MmUwif4A6wZl+MpkMltvyIkjqfvWxvM6UINku+OR75qlzSasJx6KZL6KiZisSYue4/ByBAXE4be6bljZ6m7v7SZRUL+/ruHpDR5/7iaJ0yLo11DGJ7um3hNhTHLZR2j5feK98na/0EwNjInJaeGgaRiUtQ1HZ/3Cs6F/IHne9t5tkYTIZcLBwDQAgexyzxUTOioqKQlRUlFP7Hjt2DFdffTUuuOAC/N///Z9nG0ZeZP381KitQ6ndscawtMq1vBjV8HXq7L+juPwbpKf8CmohAPExU116/KxJf0ZrR7nPXYx2N2erRpuLao5OOVf5OLLiXJI1ubkYDznAwJiIXJKV8XsUV3yHYyc/RUbahQgKjPV2kwAAJ0q/QltHORJiZyMu2rUfHUTk2LFjx3DVVVdh/vz5uOaaa1BTUwOgu9BNTAyXKhkO5k9/CocK30HWmKtwovQ/AAC12pox7v9ardZMkHwNXf8IVGKjsi3LUPVHWtKZbmyN73J2uakAbQQuPH2DrLCWlPQcC9BGSLb7x4UY6j8GxkTkkpCgEchIvRDHTv4L+QVvYUb2Cm83CTp9Mw4Wvg1AwKRxN3q7OUTD0vr161FfX4+vvvoKX331lWV7cnIyNm7c6MWWkbskxs3pVbRQvtyNGzLG0mDGTwJjco40iHXEXlAM2AbG4YrbiZQwMCYil00YcyVOlq9HUdk6jE45FzGRWV5tz8HCNdDpmzE65VxERYzzaluIhqs77rgDd9xxh7ebQYNMOkezv4GFKPp3xpicExQYg0UzX0DwANcElp5X0rWRGRiTI/xEIiKXBWjDMWncDQBE7Dv8IkTR5PAxntLcegLHS76EVhOG7LG+M+eZiGg4cE8gaycw5s9QshEfMw1hIckDOoZ07rpsHWMV84HUN34iEVG/pCcvR1REJuqbDuJk+XqvtEEUTdh76HmIohFZGVcjMCDKK+0gIhqupIGFs3NAe7MGxoIbMtBEfZFerJddiBF4vlHfGBgTUb+oVGrkTPgDABXyjvwdHV11g96GE6VfobZhHyLDMpCRetGgPz8R0XAnzRJLl3Fy7RjK85RZDIk8ISQ4EePTf4M5U1bJzjdmjMkRBsZE1G+xUZOQkXYh9IYW5B56TjaPzNPaO6ux/+irAATMmPSnPgtxEBFRf1mD1/5mjLWaMMttgVk78jCVSoXJ429BSuISm+JxDHuobzxDiGhAJo29ESHBI1Fe/TNKKwenMq0oithz8BkYjO0Yn34poiMyB+V5iYj8j/WCp0nsX8ZYy8rA5CUqXjQnFzAwJqIB0WiCLUs27T30HNraKzz+nAXFn6GqdgfCQlKRlXGNx5+PiMhfSUcCqYXAfh0jQJIxZsEtGkwcPk2u4KcTEQ3YiJjpGJ/+G+gNrdie9xCMxi6PPVdD81HsP/oqBJUWc6Y8BI06yGPPRUREJiya+QLGpv0aI+NP6dcRggJjLbe9uYoB+R+OUCBXMDAmIrfIHnsDYqMmo7H5CPYdedkjz9HZVY/tuSshigZMzryFaxYTEXmYKIqIj5mGqRNu73eQkTRiIVITT8MpUx+Bqd+VrYlcx/oj5IohERiXl5fjxhtvxNSpUzF37lw89dRTMBr7/mBtbGzE3XffjenTp2PWrFn485//jPb2dsV99+zZg4kTJ+Kii1jVlqi/BEGDOVMeQqA2CidK/4NjJz9x6/GNxi5sy/0z2jurkDryDFahJiIaBO7I8AqCBrOn/AXJCYsGsOQTkesEZozJBT4fGBuNRtx0003Q6/X4+OOP8cQTT+Dzzz/Hyy/3nZG65557UFBQgDVr1uAf//gHdu3ahVWrVvXar7W1Fffddx9OOaV/w4OIyCo4KB5zpz0GQQhA3pFXUFKxwS3HNZn02JG3CvVNBxETOREzJt7LZT6IiAaFe1cbYGBMg0nFOcbkAp8PjH/++WcUFhbi6aefRlZWFhYvXow777wT77//PvR6veJjCgsL8dNPP+Gxxx7D1KlTMXPmTKxcuRJfffUVamtrZfs+/PDDWLZsGaZNmzYYL4do2IuNmoQ5Ux4CIGDXgcdQXP7tgI5nDoorarYiLCQNc3Meg1rdvwIwRETkGnfPCWZgTIOJSzSRK3z+Mkpubi4mTJiAuLg4y7YFCxZg1apVOH78ODIzey/TsnfvXkRFRWHSpEmWbfPmzYNKpUJeXh6WLl0KAFi3bh2OHj2KRx99FK+99ppb2isIA89imY/hjmMNV+wj53irn1ISF2LOlJXYuf8x7DrwGLr09Rif/huXs7xdukZs3fsgahv2ISwkBafOfgHBQbGOH+gCnkvOYT85xj6i4cm9GWPOMSYiX+XzgXFtbS1iY+U/hM1Bcm1trWJgrPQYjUaDyMhIS8a4oqICf/3rX/H2228jICDALW3VaATExoY53tFJ0dGhbjvWcMU+co43+ik29gJER0fju5/+hLwj/0Bz22GcesqDCAqMcurx5VW78cOOh9DSVo74mCwsW/wCQkPiPdZenkvOYT85xj6i4US6BrE7RIaPAQCEBCW69bhEynihkpzntcD4pZdecjhP+McffwQAu1mmvrJPSveJomjZvmLFClx33XUYP368s012yGAwobm5Y8DHEQQVoqND0dDQBpPJvVdqhwv2kXO83U/hwTOw5JS/Y1vuQygq/QEffrkbEzOuRnrKr6DVhCg+pqWtBIcK/4mT5d8AAFITT8PMyX9CZ0cQOjta3d5Gb/fRUMF+cmww+ygiIhhaLYvKkOcsmfMqSiq+x+jkX7n1uCNiZmL+9KcRHeG+319ERO7gtcD4yiuvxHnnndfnPvHx8YiLi0N+fr5suznra5sVNouLi+s1l9hgMKC5udnymJ07d2L37t14+umnAQAmkwmiKGLixIl47733MGPGjH69Lnf+GDKZRP4AdYB95Bxv9lNk2DicNud17D/2Gk6UfoXcwy/hQMHbSIidhZjIiQgOjIXJZEBreylqGvairvEAACBAG4mpE+5AauLpUKlUHm8/zyXnsJ8cYx/RcBATmYWYyCy3H1elUiExbrbbj0tENFBeC4yjoqIQFRXlcL+cnBy89tprqKurswS1W7duRUREBMaMGaP4mGnTpqGxsRH5+fnIzs4GAGzfvh2iKGLKlCkAgK+++kr2mA8//BC//PILnnvuOaSmpg7glRGRLa02DNMn3o2M1Atw7OQnKKnciLKqTSir2tRr35CgRIxOORcZaRfZzSoTEREREbmTz88xXrBgATIyMrBixQrce++9qKmpwQsvvIDLL78cWq0WAJCXl4cVK1bg3XffRUJCAjIyMrBw4UKsXLkSq1evhl6vxyOPPIJzzjnHMj/Zdgh1bGwsAgIC3Dq0mojkIsMzMHPS/cjJ+j/UNuxDc2sRunT1EFRaBAeNQHTkBESFj+NSTEREREQ0qHw+MFar1Xj11VexatUqXHbZZQgODsaFF16IO+64w7JPR0cHTpw4IVu+6ZlnnsEjjzyCq6++GoIg4KyzzsLKlSu98RKIyIZGHYTEuDlIjJvj7aYQEREREfl+YAwAycnJeOONN+zeP2fOHBw5ckS2LSoqCs8++6zTz3HHHXfIgm0iIiIiIhq61OpAbzeBhpAhERgTERERERG5YkTMdKQnL0di3FxvN4WGAAbGREREREQ07KhUAmZk/8nbzaAhQvB2A4iIiIiIiIi8iYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERuaS4uBjTpk3DnDlzvN0UIiIit2BgTERERE4zGAy49957MWPGDG83hYiIyG0YGBMREZHTXnnlFaSkpGD58uXebgoREZHbaLzdACIiIhoa9uzZgy+++AJffPEFNmzY4JZjCoLKLY8f6HGGO/aTY+wj57CfHGMfOcfX+omBMRERETnU2tqKFStW4NFHH0VkZKRbjqnRCIiNDXPLsaKjQ91ynOGO/eQY+8g57CfH2EfO8ZV+GhKBcXl5OVatWoUdO3YgJCQEF154Ie6++26o1Wq7j2lsbMQjjzyCH374AWq1GmeeeSb+/Oc/IyQkxLKPyWTCW2+9hU8//RTl5eUYMWIEfv/73+Oqq64ajJdFRETkdS+99BJefvnlPvf58ccf8be//Q2nnnoq5s+f77bnNhhMaG7uGNAxBEGF6OhQNDS0wWQS3dSy4Yf95Bj7yDnsJ8fYR84ZzH6KiAiGVms/dgSGQGBsNBpx0003IS4uDh9//DGqq6vxpz/9CYGBgbjzzjvtPu6ee+5BTU0N1qxZA71ejwceeACrVq3CU089Zdnnr3/9K7Zs2YL7778fY8eORUNDAzo6BvYFTURENJRceeWVOO+88/rcJz4+Hjt27EBlZSU+/PBDAIAoijCZTJg4cSKefPJJnHvuuf16fnf9GDKZRP4AdQL7yTH2kXPYT46xj5zjK/3k84Hxzz//jMLCQqxZswZxcXHIysrCnXfeieeeew633nortFptr8cUFhbip59+wr///W9MmjQJALBy5UrcdNNNWLFiBeLi4lBYWIiPPvoIX331FcaMGQMASE1NHdTXRkRE5G1RUVGIiopyuN9bb70FvV5v+feGDRvw9ttv44MPPsDIkSM92EIiIiLP8/nAODc3FxMmTEBcXJxl24IFC7Bq1SocP34cmZmZvR6zd+9eREVFWYJiAJg3bx5UKhXy8vKwdOlSbNy4ESkpKdi4cSOuv/56qFQqLFy4EPfccw/Cwvo/38kdk8d9bSK6L2IfOYf95Bj7yDnsJ8eGex+NHj1a9u8DBw5AEASMHz/eSy0iIiJyH58PjGtraxEbGyvbZg6Sa2trFQNjpcdoNBpERkaitrYWAFBSUoKysjJ8//33ePrpp6HT6fDoo4/ivvvuczjXyh53FhEBfGciui9jHzmH/eQY+8g57CfH2EdERERDj9cCY2eLfQCASqV89d3ednv3iaJo2S6KIvR6PZ588kmMGjUKALBq1SpcccUVqK2tlWWoneWOIiIAJ+w7g33kHPaTY+wj57CfHPO1IiKedtFFF+Giiy7yahuIiIjcxWuBsbPFPuLi4pCfny/bbs762maFzeLi4iz7mBkMBjQ3N1seExcXB41GYwmKASAjIwNAdxXs/gTGgPuKiJiPxR+gfWMfOYf95Bj7yDnsJ8fYR0REREOP1wJjZ4t95OTk4LXXXkNdXZ0lqN26dSsiIiIsRbNsTZs2DY2NjcjPz0d2djYAYPv27RBFEVOmTLHsYzAYUFJSYim6deLECQBAUlLSQF8eERERERERDRGCtxvgyIIFC5CRkYEVK1bg8OHD+Omnn/DCCy/g8ssvt1SkzsvLw7Jly1BVVQWgO/O7cOFCrFy5Enl5edi9ezceeeQRnHPOOZZM8Pz58zFhwgT8+c9/xuHDh5GXl4dHHnkEZ555Zr+zxURERERERDT0+HxgrFar8eqrr0IQBFx22WW49957ccEFF+COO+6w7NPR0YETJ07IlpF45plnMGbMGFx99dW48cYbMWPGDKxevVp23Ndffx3h4eH47W9/i1tvvRVTpkzB448/Pqivj4iIiIiIiLzL56tSA0BycjLeeOMNu/fPmTMHR44ckW2LiorCs88+2+dxExIS8Morr7iljURERERERDQ0+XzGmIiIiIiIiMiTGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NZUoiqK3GzFcmEwijEaTW46l1aqh1xvdcqzhin3kHPaTY+wj57CfHBusPlKrBQiCyuPP42nu+t7kuekc9pNj7CPnsJ8cYx85x5e+NxkYExERERERkV/jUGoiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2Mf88EHH2Dp0qWYPHkyLr30UuTl5Xm7SYPmtddew8UXX4xp06Zh7ty5uP3221FUVCTbp6urC6tXr8acOXMwbdo03HHHHairq5PtU15ejhtvvBFTp07F3Llz8dRTT8FoNA7iKxk8Dz30EDIzM/H+++9btrGPulVWVuLuu+/G7NmzkZOTg4suugiFhYWW+9lPQGtrK1atWoWFCxdi6tSpOOecc/DFF19Y7vfHPtq1axduvvlmLFiwAJmZmfjhhx9k97urT3bs2IELL7wQkyZNwhlnnCHrd3INvzf5vekKfm/ax+9Nx/i92duw+t4UyWf873//E7Ozs8XPPvtMPHbsmLhy5Upx1qxZYl1dnbebNiiuvfZa8d///rd49OhR8dChQ+INN9wgLlmyROzo6LDs85e//EVcvHixuHXrVnH//v3ipZdeKv7ud7+z3G8wGMRzzjlH/P3vfy8ePHhQ3LRpkzhnzhzxhRde8MZL8qiNGzeK5513nrhgwQLxvffes2xnH4liY2OjuGTJEvG+++4T9+3bJxYXF4ubNm0SKyoqLPuwn0TxgQceEM8880xx586dYnFxsfj++++LEyZMEHfs2CGKon/20aZNm8TnnntO/Oabb8Tx48eLGzdulN3vjj4pLi4Wp06dKj7++ONiQUGB+N5774lZWVnili1bBu11Dhf83uT3piv4vWkfvzedw+/N3obT9yYDYx9yySWXiA8//LDl30ajUVywYIH45ptverFV3lNXVyeOHz9e3L17tyiKotjc3CxmZ2eL69evt+xTUFAgjh8/XszLyxNFsfuPMysrS6ypqbHs8+GHH4ozZ84UdTrd4L4AD6qpqREXLVokHj58WFyyZInlC5591O3pp58Wf/vb39q9n/3U7Ve/+pX46quvyradeeaZ4ptvvsk+EsVeX/Du6pOnnnpKPOecc2TPddddd4k33nijJ1/OsMTvTTl+b9rH782+8XvTOfze7NtQ/97kUGofodPpkJ+fj/nz51u2CYKAefPmITc313sN86KWlhYAQGRkJADgwIED0Ov1sj7KyMhAUlKSpY9yc3MxYcIExMXFWfZZsGABmpubcfz48cFrvIfdf//9uPLKK5GZmSnbzj7qtnHjRkyaNAl33HEH5s6di4suughffvml5X72U7dp06Zhw4YNqKqqgiiK+Omnn1BdXY158+axjxS4q09yc3NlxzDv46+f9f3F783e+L1pH783+8bvTefwe9M1Q+17k4Gxj2hoaIDRaJSdFAAQGxuLmpoaL7XKe0RRxOOPP47Zs2cjIyMDAFBbW4ugoCCEhYXJ9o2NjUVtba1ln9jYWNn95j417zPUvf/++2hvb8e1117b6z72UbeSkhJ8+OGHyMjIwNtvv42LL74Yf/7zn7FhwwYA7CezlStXIi0tDYsWLcKkSZNw++234/HHH0dWVhb7SIG7+sTePo2NjdDr9Z5q/rDD7005fm/ax+9Nx/i96Rx+b7pmqH1vatx2JPIIURShUqm83YxB9/DDD+Po0aP46KOPZNuV+kIURYf79LV9KCksLMTf//53fPLJJxAE5eta/t5HQPfrnTx5Mu666y4AQFZWFg4cOICPPvoIp512GgD2E9D9Y/HQoUN4/fXXkZCQgG3btuGBBx5AYmIiAPaREnf1ie0+tseg/uP3Jr83pfi96Rx+bzqH35uuG0rfm8wY+4jo6Gio1epeV4vq6+t7XQ0f7h555BFs3LgR7777LhISEizb4+Li0NHRgdbWVtn+0j6Ki4vr1Yfmf9teaRqK9u3bh/r6epx55pmYOHEiJk6ciLKyMjz22GNYtmwZ+6hHXFwcxowZI9uWkZGBiooKy/3+3k+dnZ14/vnncd9992Hx4sWYMGECrrnmGixevBjvvvsu+0iBu/pEaZ+6ujpERUVBq9V6qvnDDr83rfi9aR+/N53D703H+L3puqH2vcnA2EcEBAQg+//Zu+/4pqr+D+Cf3MzulZYWKBTKngVkb0QEFMWJA5wIivpDRXmcj+B+3PsRBzwouAVciMjeQ2wZZZcySkvbdO+Me39/tEnPTZNmNOnN+L5fL1+WNLk5Oblp7vec7/me3r2xa9cuy208z2P37t1IS0uTrmGtSBAEvPDCC1i/fj2WL1+O5ORk0e/79OkDpVIp6qPs7Gzk5uZa+igtLQ3Hjx8XlYHftWsXIiMjm/zB90cTJ07EL7/8gjVr1lj+S0hIwJw5c/DJJ59QHzUYMGAAzp07J7rt7NmzSEpKAkDnEgAYjUYYDAbI5XLR7RzHged56iMbPNUnaWlp2Llzp+jYu3btCpq/9Z5C35v0vekM+t50Dn1vOkbfm67zu+9Nj5byIi1i3nZi1apVwunTp4XnnnsuqLadeP7554VBgwYJe/fuFQoKCiz/WW87MW7cOGH37t3C4cOHhRkzZtgs+X7PPfcIx44dE7Zt2yYMGzZMeOeddyR4Ra2Dra4pCNRHgiAIGRkZQs+ePYUlS5YIZ8+eFVatWiX06dNH2Lhxo+U+1E+CMHPmTOGaa66xbDvx7bffCr169RJ+/vlnQRCCs48qKyuFo0ePCkePHhW6desmfPnll8LRo0eFgoICQRA80yfnz58X+vXrJ/znP/8RTp8+LaxYsULo1asXbdfkBvrepO9Nd9D3ZlP0vekc+t5sKpC+Nykw9jFfffWVMG7cOKF3797CjTfeKBw8eFDqJrWabt262fzvp59+styntrZWWLRokTB48GChf//+wkMPPSQq7y4IgpCTkyPMnj1b6NevnzB06FDhtddeE4xGY2u/nFZj/QVPfVTvr7/+Eq666iqhT58+wtSpU4XVq1eLfk/9JAgFBQXCv/71L2HUqFFCv379hClTpggrVqyw/D4Y+2jPnj02/w69//77giB4rk92794tXHvttULv3r2Fyy+/XFi1alWrvcZAQ9+b9L3pKvretI2+Nx2j782mAul7UyYIVPGDEEIIIYQQQkjwojXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBDJrF27FqtWrZK6GYQQQohfoO9NQryHAmNCiGTWrVuH1atXS90MQgghxC/Q9yYh3kOBMSGEEEIIIYSQoCYTBEGQuhGEkODz5JNPNhn1fuihh/Dwww9L1CJCCCHEd9H3JiHepZC6AYSQ4DRv3jzk5uaioqICzz//PAAgMTFR4lYRQgghvom+NwnxLgqMCSGS6NChA6KjoyEIAtLS0qRuDiGEEOLT6HuTEO+iNcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEMkolUrU1dVJ3QxCCCHEL9D3JiHeQ4ExIUQynTp1wsmTJ7FhwwYcPnwY+fn5UjeJEEII8Vn0vUmI99A+xoQQyRQXF+O5557D/v37UVZWRvsxEkIIIc2g701CvIcCY0IIIYQQQgghQY1SqQkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDWF1A0IJDwvwGTiPXIshYKD0eiZYwUq6iPnUD85Rn3kHOonx1qrj+RyDhwn8/rzeJunvjfp3HQO9ZNj1EfOoX5yjPrIOb70vUmBsQeZTDxKS6tbfByOkyEuLhzl5TXgecEDLQs81EfOoX5yjPrIOdRPjrVmH0VHh4Lj5F59jtbgie9NOjedQ/3kGPWRc6ifHKM+co6vfW9SKjUhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKDmV4HxypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3btib3OX36NObOnYuBAwdi4MCBuOWWW1BcXOytl0AIIYQEjOeffx7du3fHihUrpG4KIYQQ0iJ+ExivXbsWr776Kh588EGsXr0a3bt3x+zZs+0Gsenp6ViwYAFuvPFGrFmzBhMnTsS8efOQlZVluc/58+dx++23o0uXLvj666+xevVq3HvvvVAqla31sgghhBC/tHnzZmRkZCAhIUHqphBCCCEt5jeB8bJlyzBjxgzccMMN6NKlCxYvXgy1Wo3Vq1fbvP/y5csxZswYzJ49G6mpqZg/fz569eqFlStXWu7zzjvvYMyYMXjiiSfQo0cPdOzYEVdccQUiIiJa62URQgghfken02HRokV4/fXXaTCZEEJIQFBI3QBn6PV6ZGZm4oEHHrDcxnEcRowYgYyMDJuPycjIwL333iu6bdSoUdiyZQsAgOd5bNmyBbNnz8bdd9+N48ePo2PHjnjwwQcxevRot9vKcTK3H2t9DE8cK1BRHzmH+skx6iPnUD85Fkx99NRTT2HWrFno3r17i4/V0v4Kpn5vCeonx6iPnEP95Bj1kXN8rZ/8IjAuKSmByWSCVqsV3R4XF4dz587ZfIxOp0NcXFyT+xcWFgIAioqKUF1djc8//xyPPPIIFi5ciI0bN2Lu3Ln48ccf0atXL5fbqVBwiIsLd/lx9sTEhHnsWIGK+sg51E+OUR85h/rJsUDvoxUrVqC6uhr33HNPi4/lye/NQO93T6F+coz6yDnUT45RHznHV/rJLwJjewRBgExmf4TB1u/Mt/E8DwC4/PLLceeddwIAevbsiX379uG7777D4sWLXW6P0cijvLzG5cdZ4zgZYmLCUFJSBZ4XWny8QER95BzqJ8eoj5xD/eRYa/ZRZGQIlEq5V5/DlqysLHz88cf4/vvvwXEtX43lie9NOjedQ/3kGPWRc6ifHKM+co6vfW/6RWAcExMDuVwOnU4nur24uLjJLLKZVqttcv+ioiLL/WNiYqBQKNC5c2fRfVJTU3Hx4kW32+rJN5XnBfowOUB95BzqJ8eoj5xD/eRYIPfRwYMHUVxcjEmTJlluM5lMePnll7FixQqsW7fO5WN6qq8Cud89ifrJMeoj51A/OUZ95Bxf6Se/CIxVKhV69+6NXbt2YcKECQDqZ3x3795tme21lpaWhp07d2LWrFmW23bt2oW0tDTRMa1Tsc+ePYsOHTp454UQQgghfmzixIno06eP6LZ7770X119/Pa677jqJWkUIIYS0nF8ExgBw9913Y+HChejduzf69euH5cuXo7a21vJFvHDhQrRp0wYLFiwAANxxxx2YOXMmli5dirFjx2Lt2rU4cuQIXn75Zcsx77nnHjz++OMYPHgwBg8ejI0bN2Lv3r144oknJHmNhBBCiC+LjIxEZGSk6DalUon4+HikpKRI0yhCCCHEA/wmMJ46dSqKi4vx/vvvo7CwED179sTnn3+O2NhYAEBeXp5ovdPAgQPx1ltv4d1338Xbb7+NlJQUfPTRR0hNTbXcZ/LkySgvL8cnn3yCF198Eampqfjkk0/cKrxFCCGEEEIIIcQ/yQRBkD6hO0AYDCaUlla3+DgcJ0NcXDiKiip9It/eF1EfOYf6yTHqI+dQPznWmn0UHR0qSfEtT/PE9yadm86hfnKM+sg51E+OUR85x9e+N1teUpIQQgghhBBCCPFjFBgTQgghhBBCCAlqFBgTQgghhBBCCAlqFBgTQgghhBBCPOJCTQEeO/IhTlZekLophLjEb6pSE2JLjakOmWVnkVNTgEpTLWQA4lSR6BTaFp3D2kIuo7EfQgghhBBvy6stQht1DN46/R2OV57DouPL8PVl/5a6WYQ4jQJj4ndMAo9dRUfx18l9+Ft3AgbBZPN+kYpQjNcOxDWJI9EuJL6VW0kIIYQQEhy26jLw6qkVuKrNcNSa6gAAet4gcasIcQ0FxsRvCIKA3SWZ+Pzcb8it1QEAIhShGBHVDZ1CkxClDAcvmFCoL8PxinM4UpGNny/twK+XdmFKm6G4u8NUhCtCJH4VhBBCCCGBZVvRQQDA7/m70SEkAQAoa4/4HQqMiV8o1pfj7azv8HfpCQBAWlQX3NVjMrrLO0ImyGw+ptRQiXX5e/Fj7hb8nr8be0uO4okut6J/VJfWbDohhBBCSECTofFajBfq96OVyWxfnxHiqygwJj7v79ITePP0Nyg1VKKdJh4PdJqOIbE9GjcEF2xvCB6tDMct7S/HVW2G479n12CT7h88fexTPNjpekxtM6yVXwUhhBBCSGDimCBYQENgDAqMiX+hwJj4tFW52/DZuV8hQMBVbYZjTsdroJYrXTpGhDIUC7vehrSornj/zI94/8yPKNKXYVbylV5qNSGEEEJI8OCYjW7MExaUSk38DQXGxCeZBB6fnf0Vay5th5pTYkGXWzAmrn+LjjkpYTCSNLF4/vgyrMz5C3KZHLe1n+ihFhNCCCGEBCc2bZoHX38bzRgTP0NDOcTn8AKP97J+wJpL2xGlCMNrve5vcVBs1jcyFS/1nI0QTo0vL6zDb5d2eeS4hBBCCCHBirOxxpijNcbEz1BgTHyKIAj44MwqrC/cD60qCm/3eQg9Izp69Dl6RaTghZ73QCmT4+PsNUgvO+XR4xNCCCGEBBOZjTXGHIUZxM/QGUt8hiAI+OTsz/ijYA9ilBF4rdf9Xtt/uG9kKv6v843gwePlE1/iUm2xV56HEEIIISTQsTPGJqE+lZpmjIm/ocCY+Iyf8rbi50s7GtKn56K9l4JisysSBuOGpLGoNNXgtVMrYeRNXn0+QgghxJ/UmQx45PD7+OXSTqmbQnycrRljWmNM/A0FxsQn7Cg6hM/P/QY1p8QLPe9Fx9DEVnneuztMRffwZByvPIcVOetb5TkJIYQQf7C/9BiOV57Hx9mrpW4K8XHsjLFgWWNMYQbxL3TGEsmdqDiP1099DRlk+FfX29E9vEOrPbeCk+PJrjMRKlfj+4ubcKLifKs9NyGEEOLL+IaUWEIcYYNgSyo1zRgTP0OBMZFUqaESL55cDr1gxOyOV2NEbJ9Wb0OSJg73dZwGHgLeOfMDpVQTQggJanuKM3G+Oh98Q0osIY6wadOW4ls0Y0z8DJ2xRDImgcd/Tq2ETl+Gy7WDcH3SGMnacmXCEPSN7Iyz1Xn4MW+LZO0ghBBCpJRfV4xFJ5ZhzsE3LCmxhDjCFtoyb9cko+JbxM9QYEwks+LCeqSXnUJKaBIe7nyDpH9AORmH+Z1vglKmwMoLfyG3VidZWwghhBCplOorLT9TWEycxW7NxINSqYl/8qvAeOXKlZgwYQL69u2Lm2++GYcOHWr2/n/88QcmT56Mvn37Ytq0adi2bZvd+953333o3r07Nm/e7OlmExv2lhzFNxc3IFSuwXPd7oBGrpK6SWgfEo9b2l8Og2DEF+d+l7o5hBBCSKszoXFdMaVSE2fR7DAJBH4TGK9duxavvvoqHnzwQaxevRrdu3fH7NmzUVxse//Z9PR0LFiwADfeeCPWrFmDiRMnYt68ecjKympy3xUrVlC6UCvS1ZXhzdPfAgAe73KL1/YqdseNSeMQr4rGzuLDOFTW9FwhhBBCApn4eoiujYKdkTfhUm2Rw/vR7DAJBH4TGC9btgwzZszADTfcgC5dumDx4sVQq9VYvdr2FgLLly/HmDFjMHv2bKSmpmL+/Pno1asXVq5cKbrf6dOn8emnn+KVV15pjZcR9HiBx1tZ36LCWI3piaMlKbbVHLVciXs6XgUA+PTcL1SRkxBCSFDh2RljmjQIeotPLMNd6a/iaMXZZu/HrjE2p1VTxgHxNwqpG+AMvV6PzMxMPPDAA5bbOI7DiBEjkJGRYfMxGRkZuPfee0W3jRo1Clu2bBEdd8GCBXjqqaeQkJDgkbZyXMtHzMzH8MSxfM3qizsa1hUnYnanq9x+jd7sownxA/DLpR04VnEOW4rSMTHhMo8/R2sJ5HPJU6iPnEP95Bj1EQkEbDAsUGAT9PaXHgcAHCw7jV4RKXbvJ2Pm2sxp1ZSNSfyNXwTGJSUlMJlM0Gq1otvj4uJw7tw5m4/R6XSIi4trcv/CwkLLv9955x107doVU6ZM8Ug7FQoOcXHhHjkWAMTEhHnsWL7gVFkOlp5fCyWnwGuD70NSVEyLj+mtPnq83824d+cbWHnxL1zffTSUnNwrz9NaAu1c8pQyfRX2647jok6HWpMesepI9I7piB5RHWibCTvoXHKM+oj4MxOTKUWBDTFTcs2HDOyMsfknGlgh/sYvAmN7BEFodrG/rd+Zb9uzZw/WrVuHn3/+2WPtMRp5lJfXtPg4HCdDTEwYSkqqwPOB8UdFzxvw5MHPYOCNmJtyDWKN0SgqqnT8QDu83UfJSMRl0T3wd+lxfHdsM6YkDvP4c7SGQDyXPOF0ZQ6+ztmAXUVHbKZ6aVVRuKHtWFydOAJquVKCFvoeOpcca80+iowMgVLp3wN2xDeZBJPlZ0qFJWYqWfMhA7uPsflnGlgh/sYvAuOYmBjI5XLodOItdIqLi5vMIptptdom9y8qKrLcf//+/cjLy8OwYeKAZ968eRgxYgS++OILt9rqyYshnhcC5gL0i7O/42z1JQyI6oprE0d57HV5s49mtZ+Ev0uPY+WFvzBeOwgqB6OlviyQzqWWqDMZ8L8Lf2BN3nYIEBClCMOw2N7ol9AJxloBhbWlOFh2GocrzmDJ2V/w66VdeCx1BvpEdpK66T6DziXHqI+IPzMwgbGR+ZkEj79LjuPLC3/i393vstzmaMaYZZ49poEV4m/84kpfpVKhd+/e2LVrFyZMmAAA4Hkeu3fvxp133mnzMWlpadi5cydmzZpluW3Xrl1IS0sDANx222248sorRY+ZNm0ann32WYwdO9Y7LyRIHS7Pwuq87QiXh2BB6i1+k6LaPaIDhsb0wt6So/izYC+mJY6UukmkBYr05Vh0fClOVeUgTK7BnR2mYHLCEGgUKsTFhaOoqBI8L2Bm8iScrb6EZed/x96SY1iY+V880Olaev8JIUHBwBstP5soMA5Kzx7/HACwMme95TaFrPkMFTZtWsYkUxPiT/wiMAaAu+++GwsXLkTv3r3Rr18/LF++HLW1tbjuuusAAAsXLkSbNm2wYMECAMAdd9yBmTNnYunSpRg7dizWrl2LI0eO4OWXXwZQv97Yeg0yALRt2xbt27dvvRcW4GpNeryT9QMAYF6n66BVR0ncItfMSr4Se0uO4ofcLZiSMAwKP19rHKzy64rxxJGPUaAvRe+ITniq68xmz8WU0EQs6n4P/ircjw/O/ISPslejRF+BOzpMbsVWE0JI6xPNGPMUGAczE5MK7WjGmC3aZim+5Z1mEeI1fhMYT506FcXFxXj//fdRWFiInj174vPPP0dsbCwAIC8vDxzXOBM5cOBAvPXWW3j33Xfx9ttvIyUlBR999BFSU1OleglB6csL65Bbq8PQmF4Yrx0gdXNc1iWsHQZFdceBshPYVnQQE+IHSt0k4qIifTmezFyCAn0pxsalYUGXW5xKi5fJZJiUMARtNfF4/vgX+PriBqg4JW5pf3krtJoQQqTBzhgbaMY4qIm3YGq+2r7AbPNlnjGm7b6Iv/GbwBgAZs6ciZkzZ9r83VdffdXktilTprhUcfrEiRNut400dbTiLFbnbUeYXIP/63xDs4XSfNnN7cbjQNkJ/JC7GeO1A/z2dQSjWpMe/z72OfLqijAyti8Wdr0VcgfpYNb6RHbCSz3vw9NHP8X/LvyBJE0cxmrTvNNgQgiRmEGgVGpSj73aYauV2yKaMTYX36I5Y+Jn/GOxJ/E7et6Ad7K+hwABc1OuQZzKv1KoWf0iU9E9PBnZ1Xn4u2E/P+L7BEHAe2d+RFZ1LvpFpuJfXW93OSg26xnREc90vwMcZHg76zucqszxcGsJIcTz9LwRl2qLXXoMmz5toFTqoMZOBJjsBLmnKnNwrOKcKAjmaB9j4qcoMCZeseLCX7hQU4BBUd1xRfxgqZvTIjKZDDe1rS/69n3uZolbQ5z1a/4ubNb9g3hVNJ7uNqvFVcUvi+6OezpehTregJdPfolqU62HWkoIId7x5NFPcFf6KzhXfcnpxxiZGWMe4lnCw+VZqDBWe6x9xLex6dO8nRnjhw+/i0ePfGBzdphmjIm/ocCYeNzJygv4MXcLQuVqPJJ6U0CkHo+I7Y32mngcLj+DE5XnpW4OceBCTQE+P/srFDI5nu12B6KV4R457g1JYzEqti8u1RVjydlfPHJMQvzJkiVLcMMNN2DAgAEYPnw4HnroIZw9e1bqZhE7jlacBQAcLM9y+jFsSiybPptRdgpPZP4XC4586LH2Ef9hK5W6zmSw/EzriUkgoMCYeJSeN+Lt09+BB4/ZHachXh0tdZM8gpNxuC5pNADgl7ydEreGNMck8Hjr9HfQC0bMbD8J3SM6eOzYMpkMD3e+ETHKCPxZsA+7i4947NiE+IN9+/bh9ttvx/fff49ly5ZBr9fjnnvuQW0tZVD4shpTndP3ZfeeNTKFuDLLswEA52sKPNcw4jesswcAQKcvs/xsa3ZY5qBgV7ASBAEfnvkJv+fvlropxAoFxsSjvs3ZgLM1l5AW2QVTEoZK3RyPmhA/CGFyDbYVZaDUUCF1c4gda/K24XjlOXQLS8ZN7cZ5/PhRyjA8mnozAOCj7NWUUk2CyhdffIHrr78eXbt2RY8ePfDaa6/h4sWLOHr0qNRNI82oMdVhQ8EBPHPgC4dBssDMDBqZ4lu1vN5r7SO+iQ11baVS6/SlzO8pldpZOn0ZfsvfjQ/O/CR1U4gVv6pKTXxbVtVFfJe7CRpOFTAp1KwQuRqTEoZgdd42rM3fi9vaT5S6ScRKkb4cKy78BbmMw2NdZrhdbMuRITE9MS5uALYUpWPlhb9wX8o0rzwPIb6uoqJ+kDAqyv0CixzXsu8K8+NbepxAVsPX4fVTXwMAYrlI3NXB/o4dgoyZMYbtwDhQ+5rOJTH2Mo6H0KR/6oTGVGrba4wDvy8rjTVQyhRQy5Wi25s7lwwwNrlfsPK1zxwFxsQjjLwJb2d9D5PAY27HqUjUxEndJK+YljgCa/K24/dLu3Bz2/FQcN4JvIh7lp77HTV8HW5IGouU0ESvPtd9KdOwr/QoVudtx8T4y9ApLMmrz0eIrxEEAa+++iqGDBmC1NRUt46hUHCIi/NMDYCYmDCPHCcQ8YrGALdaVttsn6sLGy/wOSVTfEnROGPoqffMV3nrXPpbdwIp4YnQavxjpw61uvFcCAlVNnnfQ8NUlp8V6sYkVDlX/7OMC+xzRRAETPp1AcIUGmyb+p7N+9g6l4rLG1PQ+TAjVp/bjls7T0SEMsRrbfV1vvL3mwJj4hE/5G5GVtVF9InohKsTR0jdHK9pq9FicHQP7Cs9hl3FhzGG9rP1GUcrzmKj7gBilBG4rf0VXn++OFUk7kiejE/O/ozPzv2KV3rN8fpzEuJLXnjhBZw8eRLffPON28cwGnmUl9e0qB0cJ0NMTBhKSqrA85S6aUt5dWMl6Tq9AUVFlXbvW13dmGpdVdv4c1lN4zGae7w/8+a5dKYqF/dnvI0QTo2fh7/i0WN7S11d44xweWUN7tn6BnqEJ+O+ztMQExOGiorGz25VTeOyIvOWX0aTKWDPFQAwNKzBrzLWokBXDrmscXCguXNJV1Fu+fm5/cuwv+Q4ThTl4Onus1qn4T6kNf9+R0aGQKlsfkKLAmPSYmerL+HrnL+gkinwaOrN4GSBvXT9mqRR2Fd6DD9f2kmBsY8QBAFLzv4MALinw1SEKTSt8rxXtxmBXy7txD9lJ/FP6UkMjO7WKs9LiNRefPFFbNq0CStWrECbNm1adCxPXQzxvECBsR1srwgO+snE/M7AFN+qZdYmB3o/e+pcMgkmPJm5BINiuqOtRgugPq3dX/rPxDdmCRTUleBg2WkcLDuNe1OuBgAYmd+ze16b1xsLQmB+JpeeWwuFjMPN7SZYbiuoLUEbdWyT+9o6l6qNjZ+l3JoiAEB66amA7Ctn+crf78COYIjXmQQe72R9B4Ngwp0dJqNdSLzUTfK6gVFd0U4Tj8yKbJypypW6OQTAnpJMnKi8gNSwdrg8flCrPa+Ck1vW6i09/7vdfR4JCRSCIOCFF17A+vXrsXz5ciQnJ0vdJOJhAlN92MgEO+zWPMQ5pypzcLjiDP53/g+pm+IWA7OntS1spWoTU6it8ffSBzre8H3uJnx9cYPo9evqypp5hBi7Xt+8e0uZscpj7SPuo8CYtMiavG04UXkB3cOTMT1pjNTNaRWcjMPUNsMAAOsK9kncGmISeCw/vw4AcFfy5FbPWBgd2w/dw5NxuuoithYdbNXnJqS1LV68GL/88gveeusthIWFobCwEIWFhbRdk49jt81xVBiTrS7MBkYGG4EPaR67969vlBZyjZ7JGLBVdZoXVTDnm9weiFWpBaYf7O357QgbGEcpfGNtLalHgTFx28WaQiw/vw5KmRyPps4Qra0IdJfHD4JCJsemwgM0ii6xbboMnK25hF4RKbgsukerP79MJsM9Ha4CAKy4sN6lL0dC/M0333yDiooKzJo1C6NGjbL8t3btWqmbRjyEneWjv2ctY2vvX3/CptIbbc0IiwLDxt+bA2LBRjDt79h+0PON138mF97rOhNT4Z0ZqDpQegIPH3oXBXUlLWwlcRetMSZu4QUe72R9D71gxB3Jk71eAdjXRCvDMSK2D7YVHcTO4sOYED9Q6iYFJZPAY0XOegDA3R2mSLZFWP+oLugXmYpD5VnYUXQIY2ntOQlQJ06ckLoJxAm8wLudPSO4OQtGmrI1y+or/i45Dr1gxIjYPnbvw2YMGG2kVbODKGzAaFlj7MKMsYE34kJNATqFJvn0dp960br7xgDX3Rlj9hR55thnAIDl59fhia63tqCVxF3BM8VHPOq3/N04UpGN1NC2uLnteKmbI4nJCUMBAH8U7JG4JcFrZ9EhXKzVIS2qK/pGurddjKeY97X+JmcDrTUmhEjm+4ubcNWef+FSbbHN3zuaxRPPGFP6dEuwM66+Nnv67PHP8cKJ/zV7H3aNOVtcy0ycSs0Exg2zp64MDLyd9R3mHXob23x8SZKB2bu5mmcK0rnwve8oiA7Utdn+gAJj4rJLtcVYeu53cODwaJcZQbuXb1pUFySqY3G4/Axyagqlbk7QEQQB3+VuBgDMYCpDSqV/ZBf0DO+IszWXsKfkqNTNIYQEqaXn10KAgL8K91tuY9cY25vFMwduvI21osQ9tUyqrd5HBxmaC9j1ojXmTYN8e2n3JmaNsa6uDEvP/Y4yQ/PFpTbr0gHA578/2RnjGlNjbQVXZowd3TeYlib6Gup54hJBEPDemR9Qy+txc7vx6BLWTuomSYaTcbgyYQgA4M+CvRK3Jvj8U3YSWVUX0TWsPdIiu0jdHMhkMtzKzBr72uwAISS42AuGTTb+NpkEEx46/C7ey/rB6r6NF/CCn6+XlUIdkzLLzh5LzVYQa4tojTE7e9wQ5POC7arUbPGtV059he9zN+Pj7NVOtY3z8TJl4sDYvVRqUb+h6YAJR+GZZKjniUvWFexDetkpdAhJwG3tr5C6OZK7In4wOMjwV+HfPvWlFwy+v7gJQP1ssa+sRxoc3QOdQ9viVFUOjlSckbo5hBACwPG2OuerC5BVdRF/FOwVF1Rit26i2WOXscWZHG191JpEAbtVu8RVl22nSpuvd9hzxSgKkgXL709V5gAA8mqLnGqbj3yd28W+pzXs3t5OZAT8lLsVGwr/Fs+0800/V5yvd0IAo8CYOC2vtgifnv0FHGR4LHUGVBzVbtOqozA4pidKDZXYW3JM6uYEjeMV53CwPAvtNFoMb6ZwSGuTyWS4Lmk0AGB17naJW0MIIfV4O8GO2cXaxuVA7Iwx7+TMorOOlJ/B0nNrgyZFu44NjJmfpc4oYmc6jVZrh+2lRxtspFWLBlz4pmuMBQiWgNrZZXcyH58xZidBqpnA2NHnQxAEfHbuV7x5+lvHM8YUGEuGAmPiFJPA463T36KGr8PN7SagR0RHqZvkMyY3pFNvKPxb4pYEj1V52wAAN7Yd53NrccZqByBGGYHdJZnIrdVJ3RxCSJBiL63FF+JNg7ISQ4Xt+9pJlXXX45kf4/vcTfin9GSLj+UP2OrDbDAq9exxXTNtEexkDLDFt8zBtHjGuOn5IQiCZaBFKXM2MPat73Rrerb4FrvG2EHBLIOoOBnTb7ZmjH28DwKZX/X8ypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3bNsvvDAYD3njjDUybNg1paWkYPXo0nnrqKRQWUhElW1bnbauvQh3WDrdTCrXIZdE9EKUIw/7SYyg1VErdnICnqyvDjqLDiFSEYoJ2kNTNaULFKXB14ggIEPBz3g6pm0MICWDmIOaP/L34/dIu8e+Ynx0FuOzv7c0YWs8stkQNU803kLH9xwZRUi+9YvvfOjBmZ4HF64ptzBg7yChgsw8UMueyDH19spQdIGDTqh2lUrPbXdlbm23m7lZrrkovO4XXTq4UbTsV7PwmMF67di1effVVPPjgg1i9ejW6d++O2bNno7jY9nYE6enpWLBgAW688UasWbMGEydOxLx585CVlQUAqK2txdGjR/HAAw9g1apV+OCDD3D69Gk8+OCDrfmy/EJ2VR6Wn/8DSpkCT3S5FUpKoRZRcgqM1Q6ASeCxVZchdXMC3u/5u8GDx+SEYVDLlVI3x6ar2gyHUqbA+oL9qDLWSN0cQkgAev74F5h36G1LUcwPsleJfm9r+xzA9hY69rYV8sSMcZG+HBWGatFtzgZJ/o4XBcZsMCpthepmU6ntvOfsOWJZY+xg7To7yOLstaPvF99i0+Mb+8RRKjUbUNeJqpU3HSSRt9LowFNHl2BLUTrWXKKlX2Z+ExgvW7YMM2bMwA033IAuXbpg8eLFUKvVWL3adpW75cuXY8yYMZg9ezZSU1Mxf/589OrVCytXrgQAREREYNmyZZg6dSo6d+6MtLQ0PPfcczh48CDy8/Nb86X5NANvxBunv4FBMOGuDpOREpoodZN80sT4+plLSqf2Lj1vxB8Fe8BBhqsTh0vdHLuileG4PH4Qavg6rCvYJ3VzCCEBaG/JMWRX56GSGXxjg9o60WyW7WDX1m329jEWVah2co2sIAi4/cALuOnvf4tuD5Y1lGyfsQWvpF5jLS6+5dwaY1tBsr3iW2bseaJwMpUaPh4Yi4qQCc4HxuyMcZWx+ewBV/Z/9oScmoJWfT5f5hdDdnq9HpmZmXjggQcst3EchxEjRiAjI8PmYzIyMnDvvfeKbhs1ahS2bNli93kqKyshl8sRERHhdls5ruUfaPMxPHGsllp54S+cqc5Fv8hU3NBurM98mflSHwFA94hkdAhpg1NVObhQm4+OPjKA4Gv91FI7dAdRaqjEqLi+SAyJ9cgxvdVH17UdjXUFe/FH/h7c2G6sz1TOdlegnUveQH1EWgs7y1egL2m8XWBnpWwHYrZm9tjH2Zsxtp6BlsNxoMMG5yypU4lbCxvgsOmqrR34WBMV1bJ6L+xXJWdSiAUjDhZniW5zNGNs6ytQEAQUGyoQp4pkb3XqNUhF3He2B45sYe/rKK3eE+v5XaGrK2vV5/NlfhEYl5SUwGQyQavVim6Pi4vDuXPnbD5Gp9MhLi6uyf3trSGuq6vDm2++iWuuuQahoaFutVOh4BAXF+7WY22JiQnz2LHcsV93At/lbEKYQoOXh9yD+NBIxw9qZVL3EevalBH44Nhq7Kg4hIHJ0u+ry/KlfmqJ3zN3AwBmdb/Co581wPN9FBfXFf3PpeJgSRaykYvBcd09enypBMq55E3UR8Rbcmt1KNaXI1HdeH1TUFdq+Zkt9sTut2qv8I+Z3bRr2F5DahIEyJ0Y/6mzs7WNvYDZnwiC4HDAkw1wREGkjUrErcnegAfQXPG1xp8/zFqFU1U5CJeHWG5zlB5uK3D8LncT/nf+Dzze5VbmOEbsKDqM7y9uwgs970W00rPf9c6qMFZjX8kxjNcOACfjkFNTiDbqGLuVutnPii3sfdnA2FYqtZ43YVfxEfyUuxXPd78LkUrvfKfIZRxMAo9a3oD8umJkVeVihA/t9CEFvwiM7XH0R8nW72zdZjAY8OijjwIAnn32WbfbYzTyKC9v+XpCjpMhJiYMJSVV4HlpRs5K9BV4OuNzCBDwcOcboK7RoKjGdwpL+UIfWRsW1gcfYg1+P78HtyRM9Ilqyb7YT+46VnEOmaVnkRKaiBS0RVGRZ85Hb/bRJO0QHCzJwjcnNqKzrJ1Hj93aAulc8pbW7KPIyBAolc6mJpJAcU/6awCAV3rOsdxWylSUZmclxUFZ8ymfRjsp0/Z+ri805PgSspYp8sTuY6v388CYF3jcf/AtdAhJwLPd77R/P2YQQjQ44UMzxsZmim/Zm1k+VVW/N3GlqYa5r6PAuOnvv8nZAABYk9dYHFfPG/HSyeUNt2/HXR2mNHtcZ6wv2Idu4clICU1y+jGPHv4AObWF4AUeSRotHs/8CMNjeosCR1fWGLNZHlVsYGzjs2AUjHjhxP8AAJt0/2B6wzaQnmY+DWUA7k3/D4yCCW/3eQi9IlK88nz+wC8C45iYGMjlcuh04q1PiouLm8wim2m12ib3LyoqanJ/g8GARx55BDk5Ofjyyy8RHt6ykSlPXgzxvCDJBSgv8Hjj1DcoNpRjUvwQjIsb4LMXwlL1kS1xyiikRXVBetkppJecwsDoblI3ycKX+sldv+XVV1ydljgSguD5fSC90UejYvrhv/I12FF8GEW15YhRub9Mw1cEwrnkbdRHxNsu1TUWHmVnX+2laLJpnLaq59orsmRvZtHk5N/fOlNj2wr1pTbb7I9qTHU4X5OP8zVNa9KYBB5Hys+gT2Rnq6re4qrEJfoKRCnDWq0CMYu3sw0TYL0e3flUYceBYdPfqzkl6niDKDhkMx3YLAN3nay8gLezvgcArBv+ptOPy2nY27vIUI4LNfU/7y7JxLDY3pb7uLLGmL0v+7pspVKzn7VwhXtZrK6QyWSW57xYUxjUgbH0U1pOUKlU6N27N3btatyKgOd57N69G2lpaTYfk5aWhp07d4pu27Vrl+j+5qD43Llz+N///ofo6GgvtN7/rMrbhr9LT6BDSALmdbpW6ub4lcvjLwMAbCw8IHFLAkuVsQbbig5Cw6kwXjtA6uY4TS1X4oqEwTAJPP4spCJchBDPYAMJdpaYveAWp1KzF/ACNhT+jU/P/tL4e95Oyq+9GWMHaaOWtjGp3dUOCg75k2qrgO3v0hP4OHs1eIHH+oJ9+NfRT/D26e9EgxBsv56qysGtBxbj3awfW63NLHvpwID9Qm229ilmOf590/dcxdXvLKEXDcaw2yG1/Dxh9+h2R4wywu4AgStrjO2tx7bVb+znw9n9n91ja1mFtIXhpOYXgTEA3H333fj222+xevVqZGVlYdGiRaitrcV1110HAFi4cCHeeusty/3vuOMObNu2DUuXLkVWVhY++OADHDlyBLfffjsAwGg04v/+7/9w5MgRvPnmmzCZTCgsLERhYSH0+uDdz+t4xTksO78WKpkCT3WdBY1cLXWT/MrI2D7QcCrsKD7kkZFOUm+LLh11vAFjtWkIlWukbo5LprYZBgD4I3+P5JVICSGBgQ04RcGnyfb+tEarC/g3T3+LVXnbUNiwPtnejDG7D629FNvmsAXA2Flif58xZmfmeYHHs8c+wy+XduJoxVkcrzwPANioOyCaWWdTqc27Faxv5QHTHUWHsSZvu+i7qMmMsZ332VHg64itIFfdEBjbq6BuEKQ/Twy80e62VAarvYkPlJ7A2epLdo/T+LPtz5uZqNCZFz8r5p6WMZXAW7vwl6/xi1RqAJg6dSqKi4vx/vvvo7CwED179sTnn3+O2Nj6yrR5eXnguMY4f+DAgXjrrbfw7rvv4u2330ZKSgo++ugjpKamAgAuXbqETZs2AQCuvVY8K/rll19i6NChrfTKfEeJvgIvnfwSJoHHvM7XoVOY82sxSL0QuRojY/tio+4AdhdnYkL8QKmbFBDMFxGTE/zvc5kckoB+kak4VJ6FA6UnMDimp9RNIoT4OXb2lQ0+nZkx5m1UGhZXHHZ8IV5prMEn2T/jmqSRzaZdsrPZor1b/T4wbuxndk9gQIYEVbTlX6IZdyYYyq2xXQjW28xrd+emXGO5rckaYyYwZQdGWhoY23q80jJj3Hg+mJpJ85aCnjfazZxgg9pyYxWeOfYZANsp2wY7AbXNGWOrCuCeVG2qxb+PfYGpbYZb3l+2+lJL32d/5zeBMQDMnDkTM2fOtPm7r776qsltU6ZMwZQpthftt2/fHidOnPBo+/yZkTfhlZNfQacvw8T4QZiaMEzqJvmt8doB2Kg7gC26dAqMPeB01UWcqspBx5A26BHeQermuGVKm2E4VJ6F9YX7KTAmJEgcKT+DoxVncVPb8R7fro0t3lPLrOOt4dnAuPF2e+uGzfcR7c3qRDDyTc4GbClKx5aidJtBwOqGYkpaVZTltub2zvU37Iyxjlk7recNooJborW8zGsuN1Z7t4EOlOgb04utC4E5mybvKlsBl5qrD0PYQRN72QvuqjW5ngVqshooYgdCxDPabKXpxvvUmvQI5cQZl0bRjDE7UNU0ndneZ9cT/sjfgyMV2ThSkW25jZ0xdqe/AonfpFIT7/rs3K84XHEGXcLa4eFON/r9nqtSSovqiihFGA6UnUCZoUrq5vi9dfl7AdQHl/56Xo6I6YMwuQZ7ijNRYZD2gogQ4j1r8rZjV/ERAMDjmR9j6fm1ONGQWmsPL/DIqSl0qaBgFTNj7Mw6XvEa48aLfvNjjXZms+zJqyuy+ztBELDk7C9YcvYXu+nTzqZi+yo2MC5m1rBWm+rsrjtlZ2YFiffqLdKXW362DoS9VTHbVmAsb1g/a29dO+eB73z28+HsZ8w61dlgZw00ez924IctjldQV4LVedtE2RyOZmUNdoJoTyh0sGcxe24HIwqMCTYU/o2fL+1AlCIMz3W/E2q5Uuom+TUFJ8fouP4wCTx2FB2Uujl+rdakx2bdP1DK5Jig9d/Zd7VciXHaATAIJmwuSpe6OYQQL6g21eKTsz/jhRP/E12Alxqa31rum5wNmJ3xH6zN393s/dhjVjHb5Nhbx8sGuOKq1I2Bh3l2yMTbTg+1p8pof2vKCmY2lD2W9VZSv13ahReO/88vC3Gxs4PlzAB4LV8nWhfL9rXRB9KCzYr0jcGR9SCFt2ph2Hr9tgJVcSp3y7mzf7b4s2O0GjiyPYiktxPMPpX5KZac/QXf5W623OYoMG7psoPcWh0u2knXt1WMzNWBsUBGgXGQO1KejfeyfgAHGZ7qNhNt1LFSNykgmCsnb9FlSNsQP7ej+DCqTLUYEdvXaxvct5YrGiqW/1WwX+KWEEK8gQ388pkZI0drBL/KWQ8A2KRrftCMDWAqmcCU3RKpzs62N+JiPkywamvG2JnAuJlZJXY2kp19sp4x/jB7FXaVHMHfpf63rI3tI/F64zqrCsu2i1d5ertBV7HBUZPA2Euz2bYCLlsz5x5PpbazBr857PPqeaNott9emrPezqDUhZoCAMDZ6jybj3P4/G4Eqvekv4Z7M/5j83fs3uKNtzX2kS8N4EiBAuMgllNTiMUnlsEgmHB/p+lIi+oqdZMCRs+IjkhQx+BwxRlL1U/iunX5ewAAk9v4X9Eta93DO6BDSAJOVeWIviAJIYGBDfxKmFniCieX1MQ62OdctA+qnarU9i7O2QDEei0kYF18y/GFeHPptkWGxsC4wmh7Zpt9vpyGwMGTcmt1Xq2uy/Yt+7pqTXrReyCq/izxumrx2nJxNWWW12aMbbx+W+cR78FK2IB4wKrUUIkFRz7CBgdbaopmggWDVcq07cDY3u22OBp8sLevs9me4kw8c/Qz0QCZmb3iYI2apqezA11GwQRBEDyyVZY/osA4SJUaKvHcsc9RYazGDUljcU3iSKmbFFA4GYdxcWkA6rcaIq7LqSnEkYpsJKnj0D8yVermtJhMJsMV8YMBAH8V/C1xawghnlZnJ0AtNToXGEcpwpv9vVG07pGdJbZX+dn2hS07a+bujLFCZv/ysZY5vmhm284a4+Zmn93xZ8E+3JP+Gtbk7fDocVnse8EGXtVWM8biLbPYgYrWZy+Ia60ZY5up1DZnjO3vsewO9nV/c3EDMiuy8ebpb5p9DNtWvVUqtbiInL0Z4xZubSVK5W6aSr3oxDIcKDuBb3I2NPkd+5mrMFZj5YX1WJO33XKbzEZgXGcSD1q9eHI5rtn7ZFCuN25RYFxXV4cLFy6gro72a/Un1aZaLDq+FHl1RRgZ2xf3drxK6iYFpHHmdOqiDGkb4qc2NozoTowfBK6ZizB/MiF+EDhw2KT7J+jTlQgJNGywwa4rZlOdWdbVXx0VGtLbWc/IHkec5mn7edlgxNaMsTOzdLaKZ9WZDKgy1ooCkUo7M8aenhVk/Td7DZTj3n8AAQAASURBVADgl0veC4z1otl7cSVw8Wxy43sgSqW2eg8ueGHW3Jq9tF/ze1lhrMavl3Z6bc23rffZVmBsb/9td7Hn6umqi049prk1xuzn2Trl2owdBFE0FBhzhd5O0Tpr52vym9xWzgzElRoq8VXOenxy9mfLbbb+yojPU95SQNDensyBzKmrzWXLluHaa6/F1KlTsXLlSgDA559/jqFDh2LSpEkYMmQI3nnnHa82lHhGncmARceX4XjlefSKSMETXW4NmKDD13QKTUKHkDbIqrqI89VN/3gR+3iBx0ZdfWB8efwgiVvjOXGqSFwW3R0lhgr8XXpc6uYQQjyIvWAuYwJjg419gfeVHMP0fU/jz4Y92gHHlZrtBTa1dotvOQ4qzGsn2QDEmUDVVrr1fRn/wQ37nxX9rtLUWIirzs6a5zoPbw9j7o8kjdblx2ZV5WL5qT8dphPbmzE2CEa7Bcd4O3sCP3PsM9yX8TrOVOW63F5rgiBgVe42m8di96e23h7paMVZvHziS3yUvRpLzv7S4nbYYisrwdZaa3tr411hEng8ffRTLD+/TrQ+2NlzzSCaMTZYzbbb3naM/Uyer8nHh1mroKstg5pzvaCtoQV9wO6GklPbtACXrXwAe9tlBSOH+xh//fXXeP3113HVVVchOjoa7733HoqKivD5559j7ty56N27Nw4cOIAvvvgCXbt2xdVXX90a7SZuMPBGvHRyOQ6VZyE1rB1e6HEvNHKV1M0KWDKZDOO1A7D8wjps0aXjjg6TpW6S38isyEZBXQn6RnRGoiZO6uZ41BUJl2Ff6TH8Vfg3hsX2lro5hBAPYS+Yqx1Uwl3ZUHDr/TM/Wm5zVH3W3kyko/WIzR+z/iLY1YthvdWFtFwmR0HDfr4FdSWW37EzxrUm22uMna0U3JxLtUV44cRyzEqeZLnNnbWyD2S8BQBQdVFiYsPSF7MqYw3y6orRJaydeL23aMbeaDXb5zgQy2zYT/ZMdS46h7V1uc2sQ+VZ+PRcfWBrvb+0vRTvA6Un8MX53y3/Pl55rkVtsMe8dvVQeRaePfYZxmrTYHK0h6+bQVqxvhz/lJ3EP2UnMSK2j+V26zTxGlMdBAgIlWtEt4tmrQWT3fPVXnr6ypy/UMcbkF5xyq3JJ7ad5iA9uyoP7UK0UDkItCuZqvBsJoIgCJDJZDY/6+zMPTvow27/FiwcBsbffPMN5syZg0cffRQAMHr0aNx///148MEH8eCDDwIAxo0bh7q6OqxYsYICYx+l54147eQK7C89jg4hbfBKzzkIV4RI3ayAN84cGBdlYFbylX67D29rMxfGCKTZYrOhMb0RLg/BvpKjqDTW0OeQkADBXhiza/NsBavm/VvtFUSyxd6McUu2djE1XAS7OivFtrXaVIcIRajl3+zFuL1UamdTRZ31yskVOFOdiw/OrLLcZg6Ma016qDiFSwHK8coLmBg/2BJMAMDH2WuwUXcAj6XeLAoeRDOIvFHUN668thBO7fR97bH1fIIg4FJdsd22FOqb39fWk4yCCUfKz8AgmLCh8AA6hCQ0uY91GrM72CyKS7WNFeLFKex1uDv9VYTKNVg64ElxG6wqixvtzAzbG6wy/3yhqgDh8pZ9xxsEI/7I34P3zvyI29tfgZntGwd/zPUCygxVkAGIVIaJXjtb/NUgGKGSKR0ONpQxqdiVJvvbsrH0vAGlhkokqGOcur8vc/hX4sKFCxg+fLjl34MH1/+hGDpUXCV25MiROHfOO6NMpGVqTXVYdHwpdpUcQTuNFq/2moMoP9/6xl8kaeLQI7wDcmt1OFl1Qerm+IU6kwHbiw5CJVNgdFw/qZvjcSqu/nUZBBN2FB2SujmEEA+ptRMY27q4V9pYd+goiGIvzsUzSrbTPJ1hvkh2NTBmA4waU52oDRdrdZaf7VXMrmJmotj75Nbo8MPFzS7P9hbo62epQ+QqcA2XtjwEFNSV4K70V/DCieUAgIyyU3j/zI+iWW09b8SX59chi1l/Wqwvx//O/4E7019BacPWRublPXtLjokCInb7G71gEKWS17rwftS4+N7ZYmvm77f8Xbg7/VV8d3GTzce4es60hFEwWVVNbnreiVOp3QyMmVl8ds9vNnX7cPkZlBoqkVura7KNExs8GgWT1UCI7c+pvUEpW+uoXWHkTfjywp8AgDV520Wf1RpTHQRBwMwDL+LWA4shCILotesasjiAxj5xNNhQymzl1dx+5eer8/HZ2V+h54146/R3uOOfl3Gy0v+vcx0GxiqVCrW1jX/A1Or6Ea3Q0FDR/ZRKpeh+xDdUGWvw9LHP8E/ZSaSEJuGN3vMQp4qSullBxVKEi6pTO2V3yRFUm+owPLYPwgJ0NnW8diAAYLPuH4lbQgjxFL0oMK6zebuZrdlLPW/A36UnLIUHzX64uBm3/L0I+0uO2XxeNkh2NZXa6GZgzKo21YkCCzaVk71IZwOKKjv7G9+T8Rq+OP+7y4OGbKVdeUPfGnkTdhQdRqmhEntKMmESTHjj1DdYm78HP+Vutdx/Zc56fH1xA1468aXlNgECvr24EQV1JU2qWytkclFAx6ZSG3iTeKDCTuE1W2o8UAFYXCG7/ng/XNwMwP73jXUROG8yCibxnrk2zjtRITg3i2+xwT47CCPeUq0xACzWl8PAG7EmbztyagqbrPEVD4TYfk/tfYZaGhgbBCO4hvM7QhEq6r9qUx3KjFUwCEaYBB4Xa3Wi39sagHI02MCez5XNnJOPHvkAP+VtxfcXN2FrQ5FZc9Euf+YwME5OTsaJE42br8vlcuzYsQM9evQQ3S87Oxtt2rTxfAuJ2y7VFmNB5sc4WnEWPcI74I1eDyBWFSl1s4LOmLj+4CDDVt1Bh8VVSGM16kBMozbrE9kJ8apoHCqnfa4JCRTsxXiNKDCuvxBdk7cdTx5dgjqTQXTx2fh4A145+RXeOP0NDpadttz+xfnfUWqodLj3av1zuZaWbA48WvLdVGOqEw0E2JsNZgMwtn9sFUSqNrm224k5MOYFwVLdu47Xo4TZUzm3tsiyxzJbNdzc13l1RTaPXW2qtRr0qBUHSlZVwUXFt1yZMXbxNTs6hjkIdDQT7UobW8rIm0TnvqMBGXcHbMQzxrbPR7ZIVbGhHF+c+x2fnP0Zn5/7TfT+mgST3WUMzmhuz29nGAWTZV2xgTeKBluqTbXIZTI0zlVfsruk49dLO/H26e9sztKzau38HbNm7lf2+Vsz+8BbHAbGN9xwQ5OqcVqtFnK5OA1o9erVGDJkiGdbR9yWWZ6N+Yffw9nqPAyM6oZXes1BhDLU8QOJx8WqItE/qguKDeU4XJ4ldXN8WrG+HAdKTyBaGY5B0d2kbo7XcDIO47RpECBQJgEhPiSj7BRu3Pccjlacdfmx1hesZnrBgEpjDT45+zMyyk4hq/qizWBEzxssj7O1DYsze7q6ul7XHHi0ZIueGqsZY/a12ytaZGvvZYPVumVXsFtdmVOpa3h9k1lBW+0ykzOz+Gxba0x1qGBmwSuNNaJZNzaV2mBVfMuV2UJXX7MttiqUO5oR9vR2WY6ey7q/muNu8a1aJ94DdnCkRF9hSaXfU5JpNWNsf42xM1o8Y8wboeTqS0LpBWOTATgdM7hebqy2OwD1Q+4WrC/cjzPVzVc/r3VQONAam6Via8DP3zgsvnXbbbc5daAff/zR8Z2I1wmCgHUF+/Bx9ioYBBOuSRyFuSnTLIU+iDTGawcgvewUtugykBbVVerm+KzNunTwEDBeOzDgz9nx2oH4IXcLNuvScVO78VI3hxAC4I1T36DSVIPXT32NKW2GodxQhftSptm9v0ngsbfkKAZGdW2S4mim5w3Iq22cjSzWl9ucJWVnbcuZQMzMuYtU9wLjlswYV5vqRFvSWFf+NTMItmfdzBf67EV8mbExaLGnxlSH97J+xKSEwY0zxmgMYvS8ASX6xuOwRYXY5zI/lp0DKtU3BtSVxhpREbEqUw2i+HDLv623a7K1lZUzWjJjvOz8WhyvOIc+kZ0tt/ni7J1BMIqCp2oH6eNGDxTfsqeYXUtrqrMqYsfMGPPiqtSupp63PJW6cV22njeI2ykYRTPi5cYqu3+HnMWLCpTpkVurQ4wyAiFy28XhxBXaWz64IzXawDaAVBlr8dqplXjvzA8wCQIe6nQ95nWaHvABhj8YEdsXSpkcO4oOubwGLJhsakgVnBjAadRmncPaIiUkEWeqc3G2+pLUzSEkaNWZDPj10k6cr863VIkvN1Zh2fm1+ClvK/aXHMON+57D5sKmazT3FGfihRP/w4LMj8XFpayqUrNpusX6cpsX7tbrdH/P340/8vdabquwESw3eS0uB8YN+xi3YNawxlTr8gWxwcZMMnsRX2qoxNr8PVhw5CO7x16VuxVbitLx9LFPmcDBaLlQ1/NGlDPBcDmTOsv2JQ9e9H8AKGSKFlUaa0TvZ0WTGWP72zW5wtY5YeRN+DZno6hYmDVdXRm+u7gJB8uzRN8l5n5V+NA1oJE3iWYk7Q2imBkatnhyliAIDenGjs9Hdq/xalMtdEx1bnZgxiiYROnHrn7GWpxKzTfOEpsEvsl5wqaElxuqbK4zd9fJqgu4J/01vHDif6Lb2feELdbV0ufzBRQYB4hDZVl46NA72FqUgQRVNN7sMw9XJ46QulmkQbgiBIOje6LSVIMDpSccPyAInanKRVZ1LlJCk9A5tGV7OfqL8fFUhIsQqW3SHcBH2avx6JEPLAX/2CDt3awfUGmqwX9Of93ksaeqcgAAWVUXm6Tfmul5o6iWQLGhwuasE7s1SpmhCh+c+QnvnfnBpdfi6sBrRtlpvHpyRYvWmdaY6lDNuz9TZO4Lts8qDNV4/8yPyKzIRqadtPbzzLZQ5vazgbCeN4iOyaZVs4GxrcC7gpkhrjDViKrz1vF6UaptjdWMsaM1nPboeQMqjNXQ80a8l/Ujnj++FL/n78b/LvyBhw+9a/dxxcw6ajaANvdrS2csPckomFDjwrkiQBANWADAjqJDWJj5X1FqvNmKnPWYvu9pZDsx2MyeA9WmWlFqdVFdY5BsEIyiNjizpIHV0lR1g2C0vJdGwdRkb2H2vC4zVooyBRwNPDhiTi9PLzsFAPi75DjmZLwhSscuYbIrak16bCs6iNdPfd2i5RlSosDYz1UZa/Be1o9YePS/yKsrwsjYvvio/2PoFZEiddOIlXHxVJ26ORuZ2eJg2e95nDYNALC58B+XtychhHhGfkMwUWVntsP6wvZc9SXL57XYKuXWTJReyxtEAVulsdpmIMo+ni1o4wpXZ7N0+jJLRVl3VfN1LUqhrDTVYE7G6/j24kbLbewMe6Gd2VJbhb3YlHCjYBK1q9BqLaal/Q7aXmWsEVXnreMNohlv61RS60DOWTk1hbh5//P4z6mV+KNgD/aWHEV2dR6A+jRwQRCQX1fc5LuCDfDYwLiON9TPoLqZ2u0N9e+Ja4MwNSY9ivTlOFSWhTJDFd7O+h6HyrPwcfaaJvddmfMXTAKP3/J3OTwu+3krMVSI3rciZrChNat222LkTaJgt5T5WwKI10pXGmu9VkzNJPB49vjnOF+Tj+8bKp0D4sC8mq/DKye/wibdPzhSkW33WHreiOeOfW6pDl9QUwJTK651b47DNcbENxl5E/4o2IMVF9ajzFiFKEUYHug0HWPj0oImqPA3Q6N7IYRTY09JJmpMdXbXawQjk2DCJt0/4CDD+IbtrYJBG3Us+kR0wpGKbBytOCtaH0aIL1u5ciW++OILFBYWomfPnnj22WfRr59/7TueUXYKKk4purC0FSSxa1N/z9+ND878hPs6TsMNbccinwng2KCkRrS3rVGUxltqqLQ5i8fedq66afEtZ7gblLVEjdUaY3ecrykQzQDn1xVbfr7E/MxiZ6rsvW42AGZTZatNtfgpdytilREO0z8rjeIZY5PA21wjbj6uu8zZBzuLDzfexuwL+1H2KvyWvxvzO9+IKW2GIbsqD1/l/Ik26ljLfdhzdVXuVrx5+huf2g3DKIhTqZ3xUfYqbG6YUBivHWDpYzaF90TleXQMcW1nHHZAQcfMEAPiQm2tWbXbllpeLxqIKWNed/2/G/9+VRlrLIW6PI3tE7ZmAts29vb82mLAanfYHUWHkaSJRR1vwP7S49hfehx9ojrh0Z0foHtEB7zd+yHJYxgKjP2MkTdha1EGvsnZgJzaQsggw6T4wbi349WIUoZJ3TzSDLVcieGxvbFJ9w/2FGda0mgJkF52GiWGCgyK6h50+2yPjx+IIxXZ2KT7hwJj4hfWrl2LV199FYsXL0b//v2xfPlyzJ49G+vWrUNsbKzjA7SyCzUF+O7iJsxoNwE5NYVYceFPzE+9CU8eXQIAooKIF5ngzJYPzvwEAPjs3K+4oe1YUdBmL4DT80ZRwFJsdWFriyvpplKrMdVZtpPxFHaAoshGyiwgnqmyh50t1THrhoH699AZNXyd6P0D7GcXeKKyNCuLSVn9LX83gPrgYkqbYfj38S9Ea6GtHa4449JzjdcO9PqyHgNvdLh9lLXNTJYd+7O5r09WXsD8w+8j1cUlWOzShSK9ODBmzzlXszA8zfpcYwfyrP9dZapFCLwz6cJW6j9XYztVnR0Yyq3V4VJtMSKVoQiVa3C84hxeOrkcAPBwp+st99tYcAA8BByrOIcCfQniVdGQQSZZgEyBsZ+oNNZgQ+HfWJW7FQUNfwjTIrvgvpRpSA1rJ23jiNPGaQdgk+4fbClKp8CYYS66NSEI+2RMbH/8N3sNtukO4oGU6V4b7SXEU5YtW4YZM2bghhtuAAAsXrwYW7ZswerVq3HvvfdK2jYjb4KCk+PXSzuxJm8HHux0Hdbm78GO4kM4WnHWkqK84MhHlsdkNKyfA1zbHia3VidKz7UXqOl5g2jG2Poi3N9VeyEwZpXoK/BL3g4kqGNQaapFp9BEdA5t61RgDNRXnRYgoLDO/X63Ln7FpuG2thJDBQRBaDYodsf1SWNwsOy0aM2yp7kzY2yP+T3ZV3IMgHgQwVU6q89kmcFxVXSpNAmMjWxgXOO1gPJweeNAizODBduLDuHH3K3oF5WK13rNFS3Z2FZ00PKz+f0D6tePf5OzEUmaOLzV50GoOCVya3UIl4cgspUm/1y+AhMEAR999BFmzJgBrVZr+Tk+Pt4b7RNxNXXrjz/+wHvvvYeLFy8iJSUFTzzxBMaMGSN6Le+//z5++OEHlJeXY+DAgVi8eDE6duzo9dfiDANvRHrpafxVsB+7io9YRj4HR/fATW3Ho29kZ8lTDohrBkZ1Q6QiFH+XnkC5oarVPui+rMZUh53Fh6HhVBgZ20fq5rS6CGUoBkf3wO6STBwoPYFhsb2lbhIhdun1emRmZuKBBx6w3MZxHEaMGIGMjAy3jslxLfsey60txJKDP+NwUTZOV+ZgeGwfSzrqW1nfotxQ3XC/xnW7nlh3+WfBPqeK2xgFk+jilV2XHAhqTHXQyL0XGB8oO4EDZY1FK5UyOZ7oeqvTRY20qigU6ktbNAufb5UNYG/GuDWcqc7FCyf/5/HjquQKKDjvVrCuEwxu7U3cPTwZIXI1MspOW26rNNXg6WOf4p/Sky1ul3VGgLtbbrUG67aKZoyNtVDKvDO47moGgrlOQEbZqSbv08HyLMvPbKbNsvN/wCiYcKoqB5+c/Rmhcg1+zN2CBHUMvhr0TKvEPC73Hs/z+OijjzB+/HjExsZafvZ2YOxq6lZ6ejoWLFiAxx57DOPHj8dvv/2GefPm4eeff0ZqaioA4LPPPsNXX32F1157De3bt8d7772H2bNn4/fff4dKpfLq62nO7uJMbDuTgd0FmZZUkVC5GhPjBuHqxBE0Q+zHFJwco+P64/f83dhRfBhT2wyTukmS21V8BHW8ARO0A6EJ0nXX47UDsLskE5t16RQYE59WUlICk8kErVYruj0uLg7nzp1z+XgKBYe4uHDHd2zG2tO78dO5bZZ/s2s07aXhesJ3Fzc5fd9ifTk4yMDDt4ohtYRGrkKtSY9SvgIR8pBWe16DYMIrJ1c4ff+E0OgWz64WGuofH6bQoMpYK3ml593FmR4/pjY2AmqFEvBmFr/GvfXOUZowxKkjkWE16d/SoFjNKUWzn7GqCJ8fuKoS6rMVQuVqUeq+XMah2lSLEKV3rqPOtWBbSWffJ3awa23+HgD1r3NWl4nQaiPcfn5XuDWswO5f5cr+Yi3haurW8uXLMWbMGMyePRsAMH/+fOzcuRMrV67Ev//9bwiCgC+//BLz5s3DxIkTAQCvv/46RowYgU2bNmHy5Mmt8rqsVRir8fyxpQDqP7BDY3phTFx/jIztC41cumCdeM44bRp+z9+Nzbp/KDAGsKlhb9AJQbB3sT1DYqgwG/FvgiC4NZpvNPIoL29ZWurU2GHoPbIj9FU8IACLji1DpDIU47UD8fm53wAA1yaNxM95O1v0PGbDY3sjqyrXksoZoQh1uMdwtakOWlUUKozVkq9Z9JR4VTTy64pxvrIAEbJQrz/fR/0fRfuQeHx8ZjX+LNjv9ONUgrJJEOGqvOr62a9oRTiqjP6/V6stFaW14Hjvzsjlldpeh++IklciTLA/+BKvcm/wI1oZbqlKDwCxykifD4x1NfWjAxGKUNE5rVVFIb+uBMV13hsMlEGG9iHxuOCgFoOZUiZHWnRXnK8uQJhCg6sTR+D9rB+bfYxWFYV/dbsNa3J3IFyhwW3JVyBJE4eiopant0dGhkCpbD4rwi8Ws7mTupWRkdEkYB41ahS2bNkCAMjJyUFhYSFGjhxp+X1ERAT69++PjIwMtwPjlqaERanCsLjXPYiKCEVXeXsoZd5LT/Jn5n5uaX9LoW9UZ2hVUThSno1iQzm0au8Vm/L1firWlyO97CRilBEYFNMVnARLA3yhj0I5NUbG9cGGwgPYU5KJyxN8b5DAF/rJ1wVDH8XExEAul0OnE28nVFxc3GQW2Vk837IBdo6TYWBcNxShEjwv4MuB9Sl3Rt6EEn0FIhShmJY4Auvy96GON2BGuwn47uKmJrNFzkpQxaBLaDt8lbMeANA7ohP2lDiewYtUhNVXNA6QwFghk6OtJh5nq/NwpmFbIW9KDa3PlhsR29elwFjDqRAmD7EEEZGKUFG16ubEKSNRZCi3pMzHKCNw0c2ttDxhVGxfJKhjkBySABWnxFZdBvaVHnP8QCdw4CCXeTeVukxf5fhONoTIVYhRNs4YmrMvAGDVkJdwuPwMnj++1I3jaqDhVJbK03GqKJxu2LvXV5lTpyMVYU2C+vy6Eq9WIe8e3gFRyjCnA+MoZThe7DHb8m+TwFsC444hbXCupr76fo+oDsgqz4VBMKJ/ZBf0jUhF3+6plse19DvCFX4RGLuTuqXT6RAXF9fk/oWFhQBg+b+tY5p/5ypPpIQBwNVxQ1t8jGARE+Ofa3SnJA/BV1l/YX/NUcxse4XXn89X++nPrD3gIWBq8hAkaKWtRi11H13TeQQ2FB7AjrJDuLnnWEnb0hyp+8kf2OqjrPJcbL6UjuyKS/i/XtejTUiMBC1rOZVKhd69e2PXrl2YMGECgPolVrt378add94pcevqmWeuFZwc96VMs9z+dp+HECJXQ6uKRjuNFp1C2+Lhw+8CAMLkGqfXjWpVURgZ2xcrc/6CRq7CqLh+TgbGoajj9U4XjfJ1Cpkcg6N74Gx1XpPiVC2hlMkt61A7hSYhuzoPfSMaK/b3Zar3D4zqhn/Kmk/T1MjVCFOEWGYU49UxzgfGqijRnraxqki79zUX+fKmdiHxuLvDVMu/M5vZK5YVpQhrsjbVmlwmh8LLgbF1kStnhco1iFE29v3N7SZgV/ERjNWmIVSuQZI6rplH26fhVAiRqy2Bcbwf7IphHliLUDRmaYRwaoQrGmfUnclicVaUIgwauQr5dSWY0W6CU3/rEtQxKKgrwTir7TflMs7yM5sFG6MKx8zkK7BVdxC3tp/okXa7yy8CY3scpW7Z+p31bdb/djcdDPBMShhQP/odExOGkpKqVh0l8Sf+3kfDwvvgK/yF387uwZTo4V57Hl/vp1/O1m8/MSKin0fSZNzhK33UhUtGlCIMewqP4sylS4hStnyQzZN8pZ98mXUfFdSVYH3+fmzVZVhGxgFgfPQAKKJblg3kTEqYt9x9991YuHAhevfujX79+mH58uWora3FddddJ0l7nMXW55iUMET0u46hiaLtSKyxgUWSRou2IVosHfAkABkK9Y1BYXOz0JHKMKeC7xhlRJPgOVYZ6dVqwe6Qy+SYGH8Zvr64we1j9IpIadLvsapIy0zYg52uw8nKHIyK62v5fahcg0dTb8au4iMYEtPTcWDMqRAu11j+3UYdg6xmZgXj1JEoakhH1aqicLKqfi9hDjJEKewPDIbK1V4pytVOE4+LtfUTNuysKQDRHsa2pEV1xcs9Z+OlE19it4OARi7jvF58qyWBcayq8bV3Ck3CXR2mWP7dPiQeIZwaNXydJShzhkauQqhcY/m8WW8XyYGz7JHtboaJp4TLQ0RbTLFbtGrk9VkRZrHKCI8Fxhq5Cu/2+T9crC1En8jOOF7ZOCHJLlFgZ94f7FT/XTA4ukeT413dZjh+y9+Ny7WDkKTWYktROsYk9sPlkYMxo93lHmlzS/hFYOxO6pZWq21y/6KiIsv9zcXCCgsLRcW7iouL0aeP+5VxPXnByPMCXYA64K991DmkLdpr4nGqKgcXqgrQLsS7xet8sZ/OV+fjVFUOOoQkoHNIW8nbJ3UfceAwOq4/fsvfhW2FB3FV4gjJ2tIcqfvJ1wmCgAPFJ/Fz3g7sKc60pPt1Dm2L0XH9MDy2N1JCk/y6D6dOnYri4mK8//77ll0iPv/8c5/cw9iR13s9gK8vbsBVbYZZArREdWyTPYl7RHTE3pKjAICu4fUBdqKmfpaK3bszTB4iuniWyzhLamOEIhTl8sZZO/aim6VVRVku1N/s/SBKDZX47uJGnwuMFTIOSZo4qGQK6AUj5DIOMsiaVItuLqAYF5eG2R2vxsnKC/jk7M8AzGuX6wObTqFJNvd3vzJhCK5MGOJUESqNXIUwZjZtVGw/dAtPRrewZDx97FMA4vdcq46yBMbsDHGoXAM1M8tl/f6FMIGxJ4KowdE9sL/0OCbGD8LyC+sAAEkaq0xIGzPYSpnCUuAtlFNDLpM7tZ2WQiYXzeh5g3l7M60qyqUgOUSuRiwzY9wkgJVx+N/Ap1GsL8dn5351PjDmVAhlanporY4bKldbgtFQuUbSwDhKGS4KjCOYQZpQuRphisbBH60qWjQY2xIKmRwxqgjENAxMRCkaB+1jlZGoNjUO2pgrUbfVaJEckmDzeHd3mIoJ8YPQM7wjxmjTcFXSMIxP6Y/iYvfS7D3NLwJjd1K30tLSsHPnTsyaNcty265du5CWlgYAaN++PeLj47Fr1y50794dAFBZWYmDBw9i5syZ3n1BJOjJZDKM0w7Aipz12KJLx+3Jk6RuUqvbpGsouqUdRNuONRivHYDf8ndhsy7dZwNjYpsgCDhQehIrj/6FIyX16Y3RynBMThiKy+MH2b1I8FczZ84MiO/KflGp6BeVKrqQTtTENQmM63gD7kqeggJ9CRJU4jR49oI0XKERBbChco1l5iZCEYpQZuYyUhnaZE9SAJiUMBja0iiM1w5An8hOAIBVeVtb8CqdYy9Qt0chk0MmkyFeHYOLtYXgwEHJKWA0iQNjpUwBPYw204wVnAK9IlJQxuzz3C4kHkcaUoTZ/rIljPk9O9NuDtYB84xxY2AcptDglvjLYeAbq4O308Rb3vNYdePMJFsDJEyhgZoJMEPkKtEMcX1byxp+p3YriAqXh2Bep+sQIlejb2RnlBoqkaCOsQTG1n9HxmsH4Hx1PobF9sZjRz4EUP93x5w2bk5XVXGOL/flMu+vMTYHTgnqGJcC41C52jIQxUHWZIAAqJ9BjVKGuVSotn79ORNQqqPFz6vQWIJRDSdtAdxoZbglcwAAothUarlaNGMcowqHQiZ3ekuz5lin10cz2WyxqkjkNLQpXh1teX/ZNG9rYYoQ9IpIsRwrVh3hU9eAfhEYA45TtxYuXIg2bdpgwYIFAIA77rgDM2fOxNKlSzF27FisXbsWR44cwcsvvwygPjC544478PHHH6NDhw6W7ZoSExMtwTch3mQOjDfr0nFb+yt86g+Dt/ECbwmMrdegBLOeER2RoI7BkYpsFNSVIEHtn+tQg82pyhx8evYXyz6PncPa4sakcRgV18+pC1IivWgmRXVYTC9klJ0C0LiGtY06Bre0t53mxwZdGk4tmiUOl4cwgXEIQhWNs1PRinCbgXFySAKmJY4U3aZycW9SdtbQWSpOYUmFdIY5iIpUhOIi6veGDuM0qLa6Fldwcih4zub+tYqGGUr2YptNF3b0vSieJWucaQ9ThEDf8HOIXCW6XwhX/x4omc9mh9AEy17JcZrGYFirirb8HC4PEc28hlilTrMzjyGcGqVwb3nQhPiBjc/ZMNN9VZvhOF+T3yR1Wi6T456OV4luYwNjc5vUTswYy2VyyOHdGWMASFLHYWRsn2aXLlgLkWug4hT49rJFKKgrsTlTbiaD89dSGrkKIXzj+xalCBMFlOzAjNQ7w0RbLa+KZWa3Qzg1YlSNv49ShENlY5DKHZ1C29ptR6I6FodQvydxx5A2ONSwP3FzSw58ncvf2DKZDG3btoVKpRL97G2OUrfy8vLAcY0f6IEDB+Ktt97Cu+++i7fffhspKSn46KOPLHsYA8B9992Hmpoa/Pvf/0Z5eTkGDRqEzz77TNI9jEnwaB8Sj65h7XGqKgdZ1bnoEkT7Ux+tOIuCuhL0jeiMRI3/pV96CyfjMC5uAL7P3YStugzc1G681E0izagy1mD5hT/x26Wd4CGgY0gbzOt9LfqrugJC8Ax0BQIVp0CSOg75dSW4qs1wrC/Yj3YhWjzS+WasubQd11gFqix2ezU1p4RCJrcExpHKUNEsCjuTEq+OxtmapnuD2pqZUjoYYGGr9Jpfj8HkWmDsaiCtaLjmYmeUzIEjO/tcn6IrtxMY17+uECbo6BHewek2sGmd8eponKrKAVAfrJuDZHNVajP2/Vqa9iSyqi+CA4fVedsB1K8xNktkAtFQqxlj6/eJDaJC3dxyL0Zle6/Whzvf4PwxmIEF82tVOpVKzVneU2+6ss0Q0YCD/fY0BqhhDa8jWhneJEC05krfazgVDMz7Vp/VobYUZxMNdkiwjSJbiC6mSWAsfp/baRqX5LVRx0ApU6Alm1I/3uVWXKotwkSrrTTZtc3dIzpgfeH+htsb2+fPEz0uB8Ycx2HTpsZN7dmfva251K2vvvqqyW1TpkzBlClTbNy7nkwmw/z58zF//nyPtZEQV4zTpuFUVQ626NKDKjDeWHgAgHhknNQbr60PjDfr0ikw9mH7S47hnawfUGwoR5hcg7s7TMVVScORoI1EUVEleMF/1xAHqw/7PQIB9UHox/0fs9x+e/vmdw7gmHWZoQoNlDIF6lCfRhvJzJxEKEJFQYu9jBC1G4GxmlOhhm+8CFZxSpcLQbm6zYt5xrhTWFscrjiDDiFtLMdQcnLU8Y2Bsb1qx+YZ4+SQBPSKSEH/yC4YGtML96dci57hHR22gZ05ZPuW7XeNXIVwgZkxZgKctiH1hdTMGQIAoGVmjNsyKbtRinCrVGpxoMTOSmtcDKLMmQl3Jtu/ZnUWm6ViDlYczRjLIAMn4yCHd1Kp2TXXSeo4h+czUJ8mby545yilnnVlwhD8Vfg3BkR1RXrD+2pvzbdGroKJGbCJVIQhVK6xBMbs4Af7szPLDtjMEXepORUMDanc7GBCqFzdJGjvENLG8u/+UV3wfe7mFj13sia+SVAMiD9b7MDRlQlDsEn3DybFD27R80qNcrwIkdCYuDR8fu53bNGl454OU0UXWIFKzxuwregglDI5RsX1k7o5PqdTWBI6hrTBmepcnKu+hI6hiVI3iTD0vAFfnPsdP1/aAQAYrx2IOR2nIUYVIck+3MRz2AJN7opQhNZX9jU1/pv9HRu8xTPrGdmZIVspm0oHqdQqTmEVGHv/8s4c7N7TYQqUMjmmJY7Ev49/AUC8LYt1USf2tSoa2imXyfF2n4cs95meNNqpNshkMsxoNwF/l55A59Aky+0RSvH6S3agytbMHzujzM4Ys7OTCepoUSp1mFWwxr7Xrs4Yz0q+Ev/X+UaPZFBF2UhLd1R8yzxA4a1rkDhVFHIb9n9O1MSiwuC4YnK4ItQSGLsyW9snsjM+7vcY4tXRuGn/vy2PNwfGbMBqfW6o5UrRc7EDOuLbORgFQZSlYY3NHHGXRq6yrHFmB2nC5SGiAbQQuRqJmlg8020WjAKPjqGJDv9mOGJv8CJWFYlBUd3ROSxJtEVUvDq6oVK/fwv8q3BCfFi8Ohp9IjtBpy9zab2NP9tXchxVploMienVbIGGYDZeWz+TvkWXIW1DiEhujQ7zD7+Pny/tQIQiFM91uxP/6nqb3fRHEnxqTXWii2l2diXcOjAWzQAxs402ZoxtzSKzlJxCtLbSmSrEA6O6oXt4sqXar6t/j80zxhq5GvelTEOiJtbSAg7WgXFjn7BpvZ6ognx3h6n4qN+jooGNKKt+Zy/gQ2wMPLCvnU0VZQPFMLk4lTpUIQ6MrWepXREiV7U4KE6L7AIAGM0MOJsHSNiBElvnl/n98VZV6jimorSzM8bigQbnZ4yB+joP7OPZ18zWBAiVq5u8V+yAhzgwbryf3Gqwx9a6Zk8UMmPbza4pDlOE2MxeGB3XH+Mb6raw7/nE+MvQP7JxKSnbdvY47M/2sjzkMg4v97oP93a8Gu019cXgLovu7toL82E0Y0yIxMZpB+Bw+Rls1qXb3JYi0GzSNaRRaymN2p5x2jT878If2KJLxx3JV/r1ep1AkV52Ci+f+BKVphr0j0zFE11uE1WsJcEtNbQtsqpz0VYTj6yqXMvt7MxlhCIUWlUUeoR3wDjtANHFfpgixDI7ZiuoYi/K2f1CzeQyDgpZY4ErNjC2Xn9sdl3SaAyO6YlLtcX4LX8XktSx+CB7ldOvWWEjiDI/C5s9oeDkovuqOIWlQFdLZ7VY7Gtmt7IJl4eg2tiYVm4uvsVK1MTipR6zkRyWgF7xybi741QMiqq/2L8jeTK+vLAOA6O7i/aG1XAqq+24GgMuVwcZVLKW7WsOAM90vwN5tUXoFp5s2R+6e8N6beuZblvnD/t/T2O3V4pQhDoVGEcyfWg9O+8qNuALZz5roXKNZUmDOXWfHeCQM2uuNcx5w8lk9YM/DZ83pUxuqYJuFquKQHVNy/a1ZrcHY/8uhMjVogGcEAfLLx7vcgsAYPLuxwHUF/4raqiez6aZsz87le6u0ODnIa96fZuv1kSBMSESGx3bDx9nr8b2ooN4IGV6fRpegKowVGNfyTGEy0MwOKan1M3xWYmaOPQM74hjledwovI8ekQ4XmtHvOeXSzvxSfbP4MHjhqSxuKfjVQF1IUBa7qWe92FdwV7c0HYs9pQcsdweJVpjXF/V+N2+/wcAOFh2WnS/XNSnmtpaD8qmcWrktgJjcYEr9hhKTmFzfaV5RitRE4vZHa/G9qKDzr9g2J9RsnU/uY0CXfVt8NzniD1uFDMgEa4IQawqEkqZAlPaDLU70HhZTA9wXP1a21vbX27Za/y29hNxbeIohCk0ovdMzaks6bIKmVy8FZeLVXnV8pYHxhGKUESE17/u13rNRZmhypKubz3TXWS1J7b5vXT2PXVVqEKNaxNHIVoZDplMZndARAaZZVuvSKXtWXx3sDO6bPZAmFyDoTG98GqvuZYMDva9sD9jzIm2H1NwCugbit091+1ObCs6iMtiuuOt099Z7u9OWrX1Gud2Gi0u1urQRh0jGvyxlWreXNaIRq5CQxkEaDgVylE/4FOfmVL/s7PngifOXV9CgTEhEotUhmFQVHfsKz2G9LKTAR0wbis+CKNgwhhtf9rGxoHx2gE4VnkOm3XpFBhLRBAELDu/Ft/nboZSJsejnWfgigT/LixCvCNGFYFb208E0FhpGQD6RnYGBxm0VutTAfGaZraIlK11nuxska2gQiHjREEmu70TWwyMZR2Uci6urmsuVZSdn1bKFHZTN52ZlXKWmjlWolq8HjNCGYrVQ152uw6AubCWKFCR11cgr4MBSplCVHBLlI5tp1BTCKe2rAuP8PD2NipOKVrDzp4PtmbMvZ1KzUGGBzpNZ9onTu02D/SwM6/s8oEWr31m3vdwedMU7QFRXS23VTHZBew5zr6/cplctDaZzYJIi+qKkXF98XfpccvvQzi1Za2wK8QFtlR4oce9+PLCn7i3w9Wi98rWvs7KZj6f7N8idlbaW59Nf+LwTNu1a5dTBzIYDHjssccc35EQ0oR5L9/NunSJW+Jdmwrr9y6eoG1a6ZCIjY7rDw4cthUdFFXNJK3DJPB4/8xP+D53M8LlIXit1/0UFBOnsDMtscpIfDd4MT7o+0iT+4UzM4zs+kFb2IDMfHyOmQVTyBSi52Uvau1lITUJjF0MPmzNKJlbJDBBg0ausrmlk602tAQbSHVntnwy7x2t4OQtDrDYwQzzjDFQX4WbTWdlZ4yVdvqfDXq8PVDMrodmzwfzOeTtVGrrfmfPTzYYE836e3CwgP2ssYMW1uvEAVhmgjWc+LwNFQXG4oEodrDK/Bh2MMvt7buYtdkRijC0C4nHU91mNlnG0z4kocljmwts7a0rVosG4AI3e7E5Dj8BDzzwALZu3drsfaqrqzFnzhysX7/eYw0jJJgMj+0NNafE7uJM1Jr0jh/gh3JrdMisyEYbdQx60QyoQzGqCAyI6ooSQwUOlmVJ3ZygYuRNeP3U1/ijYA9ilBF4o/c89I7sJHWziJ9gAw8FJ0eEItRmKmg4s4bSlcEvc5DBpgRbpyuLZn7spK1aByvOzKayKanOBlFqTgU50yfWs9mewm5XE6EIxfzON2FOx2s8UgTJLFwhLpJm7meFTCFKZ2WDOnuvsTVn5HpFpDQ+r43+sAy2eCkYss5GYPtEFIwxfdI5rB3+1fV2fJa2sMXPzw5UtAtp3O83WtF0T+T7U65F17D2eL33A6K18aI1xg3bW9lqt3kv6Oa29nIWm0lia/DkxR73YnbHq5FiY/cKW59P8/vcIaTx/uyAUijzGmnG2I6JEyfioYcewoYNG2z+vri4GLNmzUJ6ejo+/PBDjzeQkGAQIldjeEwf1PB12FV8xPED/NBfhX8DAK6IHxwU21J5wvj4+kyCLQGeSeBLTAKPN05/g61FGUhUx+KtPg+iU1iS4wcS0kBlY/bIFnYW6Yr4yyCDDPenXGvzvtWmxq2YbF7wcuIquexsVXPVZUX/diKVmj2WrZno8Q1701+ZMMRym4pTNCm+Za8NLaGRq7B0wJN4p8/DUMuVmNJmKK5vO8ZjxwfE2zqp5UpL8CBAQOewtpbfsUXX2H4SVw5vvcAjQhGKp7rOxLPd7rQ5UOD9GWPxoAs7M6wRDeIw55eMw3jtACTbmA11Fft+hMrV+N+Ap/BCj3ttFlBsFxKPD/o9gm7hyaK+aq4qNdtu8yCA2qpYljvCHWwhNzimJ25sO87Ob5sOdH2WthBPdLkVg2Maq0irRUXrmPOWZoxte/PNNzFt2jQ88sgjWLt2reh3OTk5uPXWW5GTk4Nly5Zh3Lhx3monIQFvYsJlAIC/CvdL3BLP4wUeGxoC44nxl0ncGv8xPKYPVDIFdhQfht5G8RziWbzA492s77G1KANt1DF4o/c8tNVopW4W8TNsINTcrAs7QNgjoiN+Hfqa3f172SDKfMHKZCtDIZOLLmTZWSC2DeIZX/GFrzMDlmxasK0L55vajsfbfR7C3R2mMseVWa3VbH69dEu01WjR04sZSeIUYJWlz3iBR4QiFNckjsSYuP6idby20mwBIDWsPW5rNxEv97zPa+1ljdWmYVRcX1EbzKeQOcizVWncE6y3M2LPI/G56tk0e3PQeE3iSNHzJWriMMSJei5sX2ms1jzbmzE2Z3KwAafGhcCYfd2OAuPmcDYC4yRNHC6PH2T3dbHPF6wTGA7/IslkMrzyyitQq9V44oknoNfrMX36dBw/fhz33Xcf5HI5Vq5ciS5durRGewkJWAOiuiJOGYmMstMorCsVFc7wdwfLs1CoL0X/yNQW79UYTMIUGgyJ6YUdxYewr+Q4RsX1lbpJAUsQBHycvQZ/Ff4NrSoK/+l1f0B9BknrUbgQ7C3qfrdlK6XmdiS4qs1wnK2+hKlthuG/2WsANNQTEszPKbdf4Eq0vrexQrX1DLEzqdTsBbW9mUc2bRcA9LzRqm3MzBvnvxffnUOTLAGfeV3qvE7XAahfOmTGBk1KTgFDQ/VihYzDHR0mt1ZzLdjzzNxu8/vqybRzlnWQy25PpbGTSu2Jttzb4Src3v4KcVV3B3uCs8T7b4szHXjB9hpjW8/D7p3siLnSOVB/XXhF/GUeL8oqWnbBVJUOa0EgHiic/uv9/PPPQ61W4+mnn8aJEyfwww8/ICEhAUuXLkViYtPcdkKIa+QyDpfHX4bvczdhY+EB3NL+cqmb5DHrC+pnwal4kevGawdgR/EhbNH9Q4GxF317cSN+y9+FGGUEXut1PxJtVPkkxBmupCAOi+3t1P1C5GrLXqTmYEwODqaGasfOzhir5I37lLpTlVohWh/s3OusNentzlC5MojgKyYnDMXZ6kvoGt7eMivHVigGxAE/20/iVGFpUlVtPa85WG6t4lvs86SEJOJw+RkA4v7xRFtkMlmTNGZXtsRkZ9AVVm0z2VkeYMYOTnUMbYMdxc49J1tFXsUpsaDhc+8q6y3dWPb+VngrY8CfuPQX6cknn4Rarcann36K/v37Y8mSJYiKar6SIiHEeVck1AfGfxX+jRntJtjdb9GfVBlrsKv4MEI4NUbFUmDnqsExPRAm12BvyTFUGWtoRNcLNhX+g+UX1iGEU+OlnrPRninOQoirvL3HtXnrH07GNc4Yc3Jxmq+dvVjZC/imxbecCIydTBNn1fJ6q7RSx+uffdkjqTdZfjb3mQBxYGw/8PBs4OcOWzOx5hlP9hxg9xRuKetUavbahh2EFFcs98654cp+wnI757uKU4iOY2uAJ1ShwS2dJiBKCBetTW98jBxGG0X3lJwCaLi5JUsNahoKudoa8BLVI2DOT5mLW7YFIoc9PmzYsCYX54IgICsrC5MnN00B2b17t+daR0iQSQ5JQI/wDjheeR7HKs81SUnzR9uKDqGON2BS/BCX1tmQeipOiZGx/bC+cB92Fh/BJJp196iDZafxdtZ34MDh6W4zkRrWTuomET/nyoW3O8yzk5zVbJa9LXDsBcxNt2tyLZXaUWAcJtegylQLAYLditn+PkNlvj5uMmPMpo6zgxTsVkmSzRg37XPzeykXnVMcDB7aKtDWufV2n4fAQYaTlReatMO6LZ5k5I1O31dhZ4ZfxSlRxxxHYWdJwBN9Z6CoqBJHyrKb/E4u4yyBsVzGWf5uiDIMXJjdtlbbULCPLRpmaa+9Nf8teL5A4TAwvv322wNi1ooQfzEx/jIcrzyPDYV/B0RgbC4mRgGd+8bHD8D6wn3YokunfvSgCzUFePHEchgFE/6v840eX8dFgpN5Rtdrx2+4gOasCmmx1bBFayNl4jWujfdpWVVqR7NZL/acjQ/PrMK8lOuwIqdxO0+1n6dSs8zvgPV7bn8gwPuBnyO2ZgXN76v1GnLPBcZNn9N8fZNVddFymzdTzduoY5BfV4KONrY2skf83onPffb9c7QMoWd4R1yTOBI9I1Lwn1MrLccwp0yz64o9tc7anEptqyK2ws752Sm0bZPbgo3Dv0gPP/xwa7SDENJgrDYNS87+jK26DMzteK1otNnf5NQU4mjFWbTVaNE7AIJ8qfSLTEWMMgIZZadQoq9AjCpC6ib5vSpjLRYfX4ZKUw1ubjseU9sMk7pJJEA4s1a3JRpTqRsDYw4yu0GvvZnkpjPGjtNolS7MGPeKSMHH/R8DYP9C3JX1nr6osK4UgHifXMB+KrWn19C6w9bAjfm9Z9vkyfY1N+jC2Tk3PN0/H/Z9FBdqC9AtPNnpx7Bbqll/vtiBKUcJ5zKZzFKYzRwYKzi5KGXaHCQrPTR4MiYuDd/nbsIV8U0H0+V2qoKPjO2D/+t8IwZEdXX7ef2df+ewEBKAIhShGBbbG1WmWuwpyZS6OS1ini2+Iv4yyjxpAbmMw9i4NPAQsK3ooNTN8Xu8wOPN098gp7YQQ2N64q4OU6RuEgkgcapIrx7fHEiw6bsymVVgDHGatZnKyVRqexfkojXGLsz22quYLVVw6CkpDbOPo+P6iW63O2PM9J9Kotly3kaqv/l8sXfetFRz3//suvdQufe2C4pQhrqchRcq11h+DmN+tt6CzJ212PaWJXhqsOiO5CvxZu8HMTP5ChvPbXsARCaTYWqbYUgK4uKT/v0XiZAAZR7h+7Ngn8QtcZ+RN2F9wX5wkNHexR4wXjsAALBZly5xS/zfNxc3YndJJtpptHiiy21Bu18j8Y7OYW29enzzrKNBaFzjKIP9mSbrokGW+8BqH2PYvlhmZ8ZEValduIBng25VAKVpLux6G+5PuRb3drxKdLu9gQCFnbT21mRrDbztGWNmPXQLwwVbe+qasf0TwRSXtFXpubWxacjhilDLzzJwor4SBNcDY9Fn1IUlCs5ScHL0iexkZ1u1xttsFQALZtKfdYSQJgZFd4NWFYX0slO4VFvkl1vH7CnJRImhAkNjetF+sB7QLTwZSeo4HK88h7zaoqAe0W2JvSVHseLCemg4FZ7rfhfCqco38bCJ8YNwsaYQI2L7eOX45pkm9oJW1iSV2vYWQWxQ2rQqtXjNMhpSOzkZB77hudy9gGfjBk9VOvYFcaooTE8a3eR2e/s2qzhfDYzr33sFO3NpNatoa6a5OWxBqeYGH9lzMkLZGHyqXdhv2FvYwJh97wTwos+LezPG7Cxx488aG8WyPM0fq8G3FhomJ8QHyWVyXJkwBAIE/FGwV+rmuGVt/h4AoLWbHiKTySyzxlto1tgthXWlePP0txAgYEGXGZY0SEI8SS6T456OV6FHREevHN+caskGODKZTDSrp3BmxriZNcb21ppq7AQKjvBM4OCpgk7+gg382ArBnpoZdJWtNcbmQRaVnWDNnZR39nxsruK5eMa4MTDW+EJgzNneSaPGpG9xKjX7utl+t16v7g3sc09KGIyBUd2wIHWG15/XH/hFYJybm4s5c+agf//+GD58OF5//XWYTM3/YS0tLcWCBQswcOBADB48GM888wyqq6stv9+7dy8eeOABjBo1CmlpaZg+fTp+//13b78UQpw2OWEoOMiwvmA/jLx/XUjk1urwT9lJxKuicVl0D6mbEzDGMenU7qRuBTOTYMJrp1aiwliN6YmjMTquv9RNIsQttmZ7BEEQF+Oyt81MM2uM5XZSqdmfo5Xhlp9dC+wa/1752/dZS7EFNJUy29totSZbM8a1DXve2ivU5s4Mo7NVm1V2AmNfrIxsDmBrTHXi4ltufB2r7GypFsn0gbfEqiIxN+UavNZrLiIUoXil1xxcQTteAPCDwNhkMmHu3LkwGAz49ttv8dprr2HVqlX48MMPm33c448/jtOnT2PZsmX473//i/3792PRokWW36enp6N79+54//338csvv+D666/H448/jq1bt3r5FRHinHh1NAbH9ECJocLvinCty6+f5Z6cMMTvi6v4kg6hbZAa1g7na/KRXZ0ndXP8yooLfyGzIhtdwtrhHqv1gIT4E1sVng2CCTLYLp7lfFVq5vGwHdS4UpWaxQYOHUPbAADiVdFOP96f2etzpUTprLZSouv4horIbEovM2Przve4KDB2Y8bYFyqWdwhtgwFRXS0FGs2p1TWmOvEaY7dmjNm09cbXGtZKy3uuSxqDtCCuPm2Pz1+x7tixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nQ4AcP/99+ORRx7BwIED0aFDB9xxxx0YPXo0NmzY0Jovj5BmTW0zHEBjWrI/MPBGrC+sL7o1KWGI1M0JOJRO7br0slP49uJGhMrVeLrrLJ8o6kKIu3qEd7D8/+N+j2FwdA/MaDdelCLLXrSr7BR8arrGmJklZoIScYDj3mVjuKKxou/AqG5Y3OMevN93vlvH8jfsDK0vFCFj22MOSusa9rxlswDUTNo3Z+d8ag4nmjF2LjD2hfRpllzG4dVec3FLu8sBANqGeikqTil6L01uLA+Q2Rm8oroX0vL5q4OMjAz06NEDWq3WctuoUaOwaNEinDlzBt27d2/ymPT0dERHR6NPn8bCFyNGjIBMJsOhQ4cwYcIEm89VUVGBbt26tai9HNfyLWnMx/DEsQJVsPTRkNie0Kqi8E/ZSVyqK0LbEK3jBzGk6Ke9xUdRaqjE8NjeaBMS02rP6y5/O5fGxafh83O/YUtRBu5JmdpqFZX9rZ/MSvQVeOPU1xAgYH7qjWgfFu+15/LXPiL+5aZ2ExCtisCImD6IUUXgxZ6zAQCVxhoA9esi2WCWnYFSy+1f9omqUovSqpnqxKJ0befP806hSZafZTIZhsb0cvqx/q7aVGv5WSaq8C39jLGGU6GON1hmjEXroZkglW3r0gFPYWfJYewuO4KM4tN2n4cNhp0tvuWL6dOsJ7vejo+zV2NOx2vwvwt/WG43V6xOVMc6fSy2f9gBieSQBABA17D2LW0ucYPPB8Y6nQ5xceLqq+YgWafT2QyMbT1GoVAgKirKMmNsbd26dcjMzMRLL73kdlsVCg5xceGO7+ikmBjvL8D3d8HQRzd0Go0lJ37D5vJ/8H/tr3frGK3ZT78f2wUAuLXrBI9+HrzNX86lOIRjYFxX/FN0CjmyAgyI69Kqz+8v/WT2n/0rUWyowLUdRuLGHmNa5Tn9rY+If1FxClzVkE3EmpU8CVXGGjzY+XoU68stt4uK/DQTeNjbx9h6reirvebiWMU5dAxxvnjdFQmDcaD0JEZZ7fcbDKqNjYEx18L0W08wz06qOSWmJ43G8gvrMKlhi0h2Cy62OjJ7DmjVUbiu7WjsKTvS7POIB1TsB8bqZiql+5rkkAS82mtuk9tvaXc5FDI5Zne82q3jsjPGYfIQ/DT4JWjkvj1IEKgkC4w/+OADh+uEzet97W0M3tyG4bZ+JwiCzdv37t2Lp556Ci+99BJSU1ObbVNzjEYe5eU1bj/ejONkiIkJQ0lJFXieCuzYEkx9NDZiID7DWqw+ux03aMe5VMq/tfvpdGUO0otPo51Gi27yDigqqvT6c7aUP55Lo6L745+iU1iTtRMd0DqVlf2xn7bpDmJj3j9oo47B3UlTvX4+tmYfRUaGQKmUfg0e8R0poUl4rff9AIAyQ+O5LkqrbmYZgTNVqeUyDgOiumKAi2sTVZwS/+5xl0uP8XdXtxmB3/J3YXRcf/yaXz9gzM7K8xIFxg90mo7a09/j3o5XoVt4MkbG9rXMUqpk7OwtGxjbKPjm4Hns7YVtTXxO+sd3i7Wu4e3xVLeZLj2GHYhSWi1dCGOWHpDWJVlgPGvWLFxzzTXN3ic+Ph5arRaZmeLCQ+ZZX+tZYTOtVttkZthoNKK8vLzJY/bt24f7778fTz31lMP2OMOTF0M8L/jNBahUgqGPYpWRGB3XD1uLMrCx4ACmuLH9UWv106rc7QCAaxJHAYIMvB9VTvanc2lUTF98JFuFbboMzO14TatWN/WXfio1VOKDrJ8AAI+k3gwNp261dvtLH5HAxdlZF1xrsl2bBRCnTyvs7Ins6zN6vuTBTtfh9vZXIEYVYbmNDYBc3RfYU9pqtHijzzzLvzs0FEMDYLUXtu3BEbP2YfHIKD4NDpzNLaDYwE/WzHmjkasxMf4ytNVo0U4TD60qCoOim2aDBhpxWr3tAnmk9UkWGEdHRyM6Otrh/dLS0rBkyRIUFRVZgtpdu3YhMjISnTt3tvmYAQMGoLS0FJmZmejduzcAYM+ePRAEAf36Nabx7N27F/fffz8ef/xx3HzzzS1/UYR4yfSk0dhalIE1edsxOWFos9kSUinRV2CrLh2hcg2uSLhM6uYEtEhlGIZE98TukkzsLTkalOmJjnycvRplxipMbTPM5dktQvwdG3Sxs5Tmdci2iGawZLaLb9EuA86TyWSioBgQryX1xS332NlbNnCzdcXxWO+bEMKr0T+yK5499lmT37MDKvJmZowB4PEut1h+/mrgsz55jWNN5uA1uYLtd6m28SL1fP4v3KhRo5CamoqFCxfi+PHj2L59O959913cfvvtUCrrR1UOHTqEyZMnIz8/HwCQmpqK0aNH49lnn8WhQ4dw4MABvPjii7j66qst65P37t2LuXPnYtasWZg0aRIKCwtRWFiI0tJSqV4qIXb1jOiIHuEdcK4mH+llp6Rujk1r83fDIJhwZcJghMopDcjbrmyo+P1nwT6JW+J7thcdxLaig0hQRePeDu6t+SLEn+l5o+VnNuA171drCzsbzAZw4sCY0vdbQsnJ0S0sGQDQLTxZ4tY0xb7vjmZ8o1RhuC9lmqjglL0tw1zJNPCHoNgTZHaKb9GuCdLy+cBYLpfjk08+AcdxmDFjBp544glMnz4dDz/8sOU+NTU1yM7OFm3f9Oabb6Jz58648847MWfOHAwaNAiLFy+2/H716tWoqanBkiVLMGrUKMt/7HEJ8SXTk0YDANbkbZe4JU3peSN+y98NGWT1adTE6wbH9ECMMgIHSk+gsK5U6ub4jDJDFT48swpAfQo1rdUiwcggsIFx46XerZ0mICU0EU93m9XkMZwolZpmjL1BKVPgzT4P4suBz6BdiPcq5LuLrT7Nng/NhaqcvWCYnXEOkmDXFWyXsCn27Dpv0vr8YliiXbt2+OyzpmkaZkOHDsWJEydEt0VHR+Ott96y+5jXXnsNr732msfaSIi3jYrtB63qN+wrPYYLNQWWYhm+YGPhAZQYKjA8pjeSNLbX/hPPksvkuCL+MnyfuxkbCv/Gre0nSt0kn2BOoZ6SMBQDo1u2/R4h/qqtpj47LlweIgpw2oTE4NMBT9hcAy9OpbY9Y9xcESXimJyTQ8UpkKD2za0M2b2L2WC2ubRh0RZeoiDZdpAdKFr+SaAZY18UeGcqIQFKwclxTeJIAMD3FzdJ3JpGJsFkac+Mdrb3CCfeMakhnXp9wX7JCrn4kh1Fh7G1KAPxqmjM7jhN6uYQIpnkkAS81/f/sHTAk5CL9h62f9nH/k48Y2z7Z+I6T65L9QYVp8DSAU/i28sW2Z0JtsbZSbUXb//l26/bHUbB1KLHi1KpRWuMacZYShQYE+JHrmozAuHyEGzS/YP8umKpmwMA2F50CHl1RUiL7IIeER2lbk5QaR8Sj94RnZBXV4TD5Wekbo6kyg1V+DC7vgr1/NSbKIXaC44fP47HHnsMY8eORf/+/TF16lR89dVXUjeL2NE9vAMilWF2t2GyxtmZwWKrVVMqdeBrq9EiWhkumjHmmglsOTvnh7trjP1Fc+v1naGws6ZfSYNPkgq8M5WQABam0ODapFEwCTx+uLhF6uZAEAR8Z54tbn+5xK0JTlSEq95/z65BqaESVyYMwWVBsNWHFI4cOYLY2Fi88cYb+O233zB37ly8+eab+Oabb6RuGmmGszN/smb2VXXm8SSwiNYINxMu2AugxQFz4AV7tXx9YOzq9kqv93oAPcM7irKa2M8brceWFv2FI8TPXJs4CiGcGn8W7EORvlzStuwrPYbs6jx0D09GWmQXSdsSrEbH9UMIp8aOokPNbsUSyHYVH8FmXTq0qijMoRRqr7nxxhvx7LPPYsiQIUhOTsa1116L66+/Hn/99ZfUTSPNsLencXPE1YkpMA5Gzr7vcpntdcWBPqBiDow1nMrBPcX6RaXinb4PI1HTWM2b/bwRadE7QYifiVSG4arE4fgxdwtW5W7FfSnSBAKCIGDFhfUAgBntLqdRTomEyNUYq03DuoK92KJLx9WJI6RuUquqMFTjgzMNKdSdb0SYIkTiFgWXiooKREVFtegYHNeyvx3mx7f0OIFKwYln7jjOcT0Cds0ju95YwckDup+9fS7JZP5znorXCDODK5xM1E92K5gztysD8Lwxp1Jr5Gqbr82Vc0klb5x1DrR+csTX/n5TYEyIH7o+aQx+yduB3/J34bqkMdCqW3Zh6o6dxYdxqioHXcPaY1hMr1Z/ftLoyoQhWFewF2vz9+CqNsODapDiv2fXoMRQgUnxgzE4pqfUzQkq6enpWLduXbO7RjiiUHCIiwv3SHtiYsI8cpxAEyM09q9cJnOqnyJCGweYNKrGi/aoiFCPvV++zFvnUmioym/6L6xQbflZrWoMF9j2x8SEQWFgUvDljffTKBvPm5ioML953c6qE+oD43CVptnX5sy5FBnR+HkLtH5ylq/8/abAmBA/FKuKxPSkMfg+dxNW5KzHI6k3terzmwQTll9YBwC4u8PUgCys4U96hHdAamhbZFXn4ljlOfSKSJG6Sa1id3EmNun+QZwyEnNSrpG6OX7rgw8+wIcfftjsfbZu3YrExETLv0+dOoV58+bh4YcfxvDhw91+bqORR3l5y5YAcFx9sFdSUmVzG6JgV1RWYflZJVc61U/GusZZZb5xS2TUVOlRVFTp8Tb6Cm+fS9XV/tN/tTUGy88mY2NfFBVVivqpQt/4+ZUxXcY+prKiDkXwj9ftrFGx/bA2fw+GR/ex+Z66ci6VlFfh+rZj0EYd4zfnh6e05t/vyMgQKJXNr3enwJgQP3Vzu/H4o2AP1hfsw3VJo9ExNNHxgzxkQ+EBXKgpQFpkFwyI6tpqz0tsk8lkuDpxJN478wN+vbQzKALjCkM13j/zIwDg/1JvRDilULtt1qxZuOaa5gcW4uPjLT+fPn0ad955J26++WbMnTu3xc/vqYshnhcoMLZBAfGFoDP9pGDWirJVcmXggqKPvXYuCZ47373P9v7EbPt5XhAFw2zBLfYxnBB45839KddiVGw/9ItMbfa1OXMuVRlrMKfjNZb7ByNf+ftN0zyE+KlwRQhuaXc5eAhYdv6PVnveGlMdvrrwJwDgrg5Tgipt15eN1w5AmFyD7UWHUKKvcPwAP7fk3M8oMVRgYvxlGEqp/C0SHR2Njh07NvufXF4fHJ06dQp33HEHpk+fjkcffVTilhNn9I1MxcIut2HFZc86/Ri2iJKGa0yp5eiy0S2Pd7kVKSGJmNrG/eyK1sZu09VcoU97xd0CvWibilNiYHQ30Rprd1Wb6jzQIuIJgXemEhJEpiWORII6BntKMvF3yfFWec5vcjZCpy/D2Lg02rfYh2jkKkxKGAyjYAr4rZv2lhzFhsIDiFVGYi6lULcac1A8YsQI3H333SgsLERhYSGKi31jT3Vi34T4gUhQxzh9f15oTKXWMIWBAjHAaQ0T4wfhk7THEaX0jXWUzmAHvYfF9AYA3Jk8ucn97O1jzGYd0HIr21LD2gEAUlox4480j85UQvyYilPggZRrAQAfZa9Gncng4BEtk1NTiFV5W6HhVJjd8WqvPhdx3dVt6itS/56/GybBJHFrvKPCWI33sxpSqDvfgAhFqMQtCh7r1q1DcXExfv31V4waNcry34033ih104iHmZjA2N4WPCSwsanQt7S7HG/3eQi3tLu8yf1kdqpX29sLmzR6rddcLO5xD8bE9Ze6KaQBrTEmxM8Nj+2DYTG9sackE99e3Ig7OzQd0fUEXuDx4ZmfYBRMuCP5SsSro73yPMR97ULiMTCqG/4pO4m9JccwIraP1E3yuE/P/oIiQzku1w7CsNjeUjcnqDz88MN4+OGHpW4GaQXiwDiwU2KJbeyWXWq50m7tCtFaYma+TcVRpoEjEYpQWgrkY+hMJSQAPNDpWqg5JX7I3YzsqjyvPMfv+buRUX4aKSGJmJ40xivPQVpuWuJIAMCavO0St8Tz9pUcw1+FfyNGGYH7GzIlCCGex2acsGtNKSU2eLCBcXPszRirOZXN2wnxZXSmEhIA2qhjcUfyZBgFE/5zaiX0vGdTqnNrdfj83G+Qyzgs6HILVE5+YZLWNySmJ9pptDhUnoWTlRekbo7HVBprGqtQd74REUpKoSbEW+zNGLO3k8CmlLn+Pc+eKxp2xhgtL1BFSGugwJiQAHFd0mikRXXF2ZpL+OLc7x47bp3JgFdOfoU63oBb2l2OruHtPXZs4nlyGYfr244FAPyUu1Xi1njOp2d/hU5fhvHagRhOKdSEeJWRnTFm1hgb2U2NSUBzdsaYxYlmjCmVmvgfOlMJCRCcjMPjqbcgQhGKny/twIbCAy0+piAI+Ch7FU5XXUTfiM64td1ED7SUeNtE7WWIUoRhe9FBXKr1/4rB+0uOYX3hPsQoIyzF5ggh3sPuC84GNUaaMQ4aLZ0xVssplZr4HzpTCQkgWnUUnuo6Exw4vJf1PY6Un2nR8VblbcP6wv2IU0bi6W6zPLJfH/E+tVyJaYkjwUPA6rxtUjenRSqM1Xg36wcAwMOdb0CkH213Qoi/+bDfo5icMBQ3tR1nuY0TBcY0YxwslG5837PFtzS0xpj4ITpTCQkwA6O74cFO02EQTPj30aU4WnrWreOsy9+Lz879CjWnxHPd70SMKsKzDSVedXXiCKhkCvxZsA/lhiqpm+O2T7J/RpGhHBO0AwOyyjYhvqRLWDs8knoTwqxmjGUNlYdd2QuZ+LcWzxhTKjXxQ3SmEhKArkocgVvaXY5KUw0e2PUu0ktPOf1YQRDwY+4WvHvmB8hlHJ7rdid6RHT0YmuJN0Qrw3FlwhDU8nqs8tNZ413FR7BRdwBxykg80Gm61M0hJCjJZRyWD3waz3e/y+6WPSTwcEy1aWcpmPXobCo1J6NsM+IfKDAmJEDdmTwZM5MnodJYg6cyP8V3FzfByJuafUylsQavnVqJz8/9BjWnxPPd78ZlMT1aqcXE025uNwFKmRy/XNrhd7PGZYYqSxXqR1JvQoSCqlATIgUZZEhQx2A4ZWwEFc6NEIGKbxF/5xdnam5uLubMmYP+/ftj+PDheP3112EyNX+BX1paigULFmDgwIEYPHgwnnnmGVRXV9u87z///INevXrh+uuv90bzCZGETCbDHR2uxAsD7oZcxmHZ+bV46NA72FT4T5PtnEr0FfgxdwvuSX8VW4sykKCKxuu9HsCQmJ4StZ54Qrw6GlcmDEW1qc7vZo0/zP4JpYZKTE4YisF0HhIiGZ4KbgUld4JZDTNLzK4x5uD67DMhUvD5zUhNJhPmzp0LrVaLb7/9FgUFBfjXv/4FtVqN+fPn233c448/jsLCQixbtgwGgwFPP/00Fi1ahNdff110v8rKSjz55JMYNmwYSktLvfxqCGl9VyUPQ1vE472sH3G4/AxeP/013smSIyU0CWFyDYoN5cipKQQPARxkmBQ/BHNSpomqkhL/NaPdBPxZsBe/XNqB65PG+EXxqq26DGwvOoQEVTTu6zhN6uYQEtR4CFI3gUiAcyMwDpc3XjewM8YyN9KyCZGCz88Y79ixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nU503xdeeAGTJ0/GgAEDWuPlECKJDqFt8HqvB/Bqr7kYFdsPak6FU1U5yCg/jfM1BYhVReLaxFH4pP/jeKzLzRQUBxB/mzUurCvFB2d+AgA81mUGwhQaiVtESHATKDAOSu6sMWb/XstpXTHxQz4/Y5yRkYEePXpAq9Vabhs1ahQWLVqEM2fOoHv37k0ek56ejujoaPTp07geZsSIEZDJZDh06BAmTJgAAFi7di1OnjyJl156CUuWLPFIezmu5aNi5mN44liBivrIOeJ+4jAophsGxXQDL/Ao0VeghtcjShkW1Os3g+FcuiV5Av4s2IfVedtwTdJIaNVRLh+jNfrJJPB4/fTXqDTV4Pq2YzAwppvXnssbguFcIsGHFygwDkaRCtezi0LlasvPtK6Y+COfD4x1Oh3i4uJEt5mDZJ1OZzMwtvUYhUKBqKgoy4xxXl4eXnnlFSxduhQqlarJMdyhUHCIiwv3yLEAICbG91MepUZ95Bxb/RSPSAla4rsC+VyKQzhuK70cy0//ie8KNuLfaXe4fSxv9tNnJ37H4fIz6B6VjCcG3AyVXOn4QT4okM8lEnxoxjg4JWni8GjqzegQ0sbpx4TIG2eMOZkMQ2N6AXT+ED8iWWD8wQcf4MMPP2z2Plu3bgVgf21Cc2sWbP1OEATL7QsXLsS9996Lbt08NyNhNPIoL69p8XE4ToaYmDCUlFSB5+kPii3UR86hfnIsWPpoetxorDm7A7+c34UpscPQOaytS4/3dj9llmfj0xO/Qc2psLDzbagorQNQ5/Hn8abWPJciI0OgVFKqIvE+gWaMg9aVCUNcun+IaMZYjsU97vF0kwjxKskC41mzZuGaa65p9j7x8fHQarXIzMwU3W6e9bWeFTbTarVN1hIbjUaUl5dbHrNv3z4cOHAAb7zxBgCA53kIgoBevXrhq6++wqBBg9x6XZ68GOJ5IaAv1D2B+sg51E+OBXofhXAa3J48CR9nr8aS7F/wSs85bhVE8UY/VRiq8erJleDB44GUa9FOE+/X70Wgn0skuFDxLeKsEKpETfycZIFxdHQ0oqOjHd4vLS0NS5YsQVFRkSWo3bVrFyIjI9G5c2ebjxkwYABKS0uRmZmJ3r17AwD27NkDQRDQr18/AMCvv/4qeszXX3+Nv//+G2+//TaSk5Nb8MoIIcQ3TU0Yhl8v7UR62SlsLcrAOK30RQdNAo//nF6JgroSjInr7/IMBSHEuyiVmjiLnTF2p6o1IVLz+bN21KhRSE1NxcKFC3H8+HFs374d7777Lm6//XYolfXrzw4dOoTJkycjPz8fAJCamorRo0fj2WefxaFDh3DgwAG8+OKLuPrqqy3rk7t16yb6Ly4uDiqVCt26dUNICFXkJYQEHgUnx8OdbgAALDn7CyqMtvd2b00rL6zH36Un0CEkAY+k3kTbehDiYyiVmjhLHBjT33Lif3w+MJbL5fjkk0/AcRxmzJiBJ554AtOnT8fDDz9suU9NTQ2ys7NF2ze9+eab6Ny5M+68807MmTMHgwYNwuLFi6V4CYQQ4jP6RaViUvxglBgqsOz8Wknbsrs4E19f3IBQuRrPdb8LoXLamokQX2HO3hge21vilhBfd1u7iUiL6or2IfGW2zjfDzEIaUIm0FCgxxgMJpSWtnwGhuNkiIsLR1FRJa1Ts4P6yDnUT44FYx+VG6pwX8brKDNW4ZWeczAw2nERQk/309nqPDx25CNUm2rxXLc7MTKub4uPKbXWPJeio0MDoviWJ743g/Ez7A5X+0kQBNTwdUE1YEXnknPs9ZOBN2La3icBAF8P+jdiVcG7+wWdS87xte9NGs4hhJAgE6kMw4OdrgMAvHn6W5QZqlr1+Yv0ZXju2BeoNtXitnYTAyIoJiTQyGSyoAqKScspZI1BB60xJv6IzlpCCAlCY7RpmBQ/GMWGcryT9X2rrSOsNtXi38e+QKG+FJdrB2FW8pWt8ryEEEK8i60RIacQg/ghOmsJISRIPdBpOtpptNhTkokfc7d4/flqTXq8cPx/yKrORf/IVCq2RQghAYqKbxF/RIExIYQEqRC5Gk91mwU1p8TS82uxpzjT8YPcVGcyYPGJZcgoP43U0LZ4rvtdUHKS7RhICCHEiyiVmvgjOmsJISSIdQlrhye63AoBAl47tRLHKs55/DmqjLVYdGIp0stOoVNoEl7tNRfhCtoWjxBCApWcAmPih+isJYSQIDcqrh/u7jAVtbwezxz7DCcrL3js2EX6MjyR+THSy04hpSEojlSGeez4hBBCfA9t10T8EZ21hBBCMKPdBNzabiKqTbV48ugSHCg90eJjHq04i/mH38eZ6lykRXbBW73nIVoZ7oHWEkII8WW0xpj4I1rgRQghBABwR/KV4GQyrMz5C88d+wL3drwK1yWNdnmtmIE34sfcLfjqwnrw4DEx/jLM73wjrSkmhJAAd3/KtSjSl9EaY+KX6CqFEEIIgPqtNmYlX4m2Gi3ezfoen537FbuLj+DhzjegU3iSw8cLgoADpSfw6blfcb4mHyqZAvM63YArE4ZQ9WlCCAkC05NGS90EQtxGgTEhhBCRy+MHoVNoEt46/S2OVGTj/oNvYXRcP9zYZQw6c+2gsPrqKNKXYVfxEawr2IesqosAgLSornio0/VoHxIvxUsghBBCCHEJBcaEEEKa6BzWFu/1nY9fLu3E97mbsK3oILYVHYRCJkf7kAREKkJhFEwoqCuBTl9meVzXsPaY0e5yjIztQ7PEhBBCCPEbFBgTQgixScHJcX3bMZjaZhj2lGZid/kRZOhO42x1nuU+HGToEJKAQdE9MCq2L3pFpFBATAghhBC/Q4ExIYSQZmnkKkyIH4ibeoyBTleBcn01KozVUHIKRCnDoOKUUjeREEIIIaRFKDAmhBDiNJlMhghlKCKUoVI3hRBCCCHEY6iWOiGEEEIIIYSQoEaBMSGEEEJccv78eQwYMABDhw6VuimEEEKIR1BgTAghhBCnGY1GPPHEExg0aJDUTSGEEEI8hgJjQgghhDjto48+Qvv27TF16lSpm0IIIYR4DBXfIoQQQohT/vnnH6xZswZr1qzBxo0bPXJMjmvZ9l7mx7f0OIGO+skx6iPnUD85Rn3kHF/rJwqMCSGEEOJQZWUlFi5ciJdeeglRUVEeOaZCwSEuLtwjx4qJCfPIcQId9ZNj1EfOoX5yjPrIOb7ST34RGOfm5mLRokXYu3cvQkNDcd1112HBggWQy+V2H1NaWooXX3wRmzdvhlwux6RJk/DMM88gNLRxixGe5/HFF1/ghx9+QG5uLhISEnDXXXfhjjvuaI2XRQghhEjugw8+wIcfftjsfbZu3Yr33nsP48aNw8iRIz323EYjj/LymhYdg+NkiIkJQ0lJFXhe8FDLAg/1k2PUR86hfnKM+sg5rdlPkZEhUCrtx46AHwTGJpMJc+fOhVarxbfffouCggL861//glqtxvz58+0+7vHHH0dhYSGWLVsGg8GAp59+GosWLcLrr79uuc8rr7yCnTt34qmnnkKXLl1QUlKCmpqWfUETQggh/mTWrFm45pprmr1PfHw89u7di0uXLuHrr78GAAiCAJ7n0atXL/znP//BtGnT3Hp+T10M8bxAF6BOoH5yjPrIOdRPjlEfOcdX+snnA+MdO3YgKysLy5Ytg1arRc+ePTF//ny8/fbbmDdvHpRKZZPHZGVlYfv27fjpp5/Qp08fAMCzzz6LuXPnYuHChdBqtcjKysI333yDX3/9FZ07dwYAJCcnt7i9nsiR97V8e19EfeQc6ifHqI+cQ/3kmL/2UXR0NKKjox3e74svvoDBYLD8e+PGjVi6dClWrlyJpKQkL7aQEEII8T6fD4wzMjLQo0cPaLVay22jRo3CokWLcObMGXTv3r3JY9LT0xEdHW0JigFgxIgRkMlkOHToECZMmIBNmzahffv22LRpE2bPng2ZTIbRo0fj8ccfR3i4e+udPLlWCvCdfHtfRn3kHOonx6iPnEP95Fig9lGnTp1E/z5y5Ag4jkO3bt0kahEhhBDiOT4fGOt0OsTFxYluMwfJOp3OZmBs6zEKhQJRUVHQ6XQAgAsXLuDixYvYsGED3njjDej1erz00kt48sknHa61sscTa6UAWpfgDOoj51A/OUZ95BzqJ8d8ba0UIYQQQpwnWWDsbLEPAJDJbKel2bvd3u8EQbDcLggCDAYD/vOf/6Bjx44AgEWLFmHmzJnQ6XSiGWpXePJiyFfy7X0Z9ZFzqJ8coz5yDvWTY8HSR9dffz2uv/56qZtBCCGEeIRkgbGzxT60Wi0yMzNFt5tnfa1nhc20Wq3lPmZGoxHl5eWWx2i1WigUCktQDACpqakA6qtguxsYE0IIIYQQQgjxL5IFxs4W+0hLS8OSJUtQVFRkCWp37dqFyMhIS9EsawMGDEBpaSkyMzPRu3dvAMCePXsgCAL69etnuY/RaMSFCxcsRbeys7MBAG3btm3pyyOEEEIIIYQQ4ic4qRvgyKhRo5CamoqFCxfi+PHj2L59O959913cfvvtlorUhw4dwuTJk5Gfnw+gfuZ39OjRePbZZ3Ho0CEcOHAAL774Iq6++mrLTPDIkSPRo0cPPPPMMzh+/DgOHTqEF198EZMmTaLZYkIIIYQQQggJIj4fGMvlcnzyySfgOA4zZszAE088genTp+Phhx+23KempgbZ2dmibSTefPNNdO7cGXfeeSfmzJmDQYMGYfHixaLjfvrpp4iIiMCtt96KefPmoV+/fnj11Vdb9fURQgghhBBCCJGWz1el/n/27ju+jfL+A/jnTst77x07sRM7w9kkcRIIIQ2UDSU/9gpQVqFllNUSoIwCYVNICVAgFEqB0FJCGJkQZxPHiTPtxHvJlvfUuN8fsuQ7+U7Lmtb33VdeNRqnR49Ouvve832+DwCkpqbinXfekbx/7ty5OH78uOC2qKgorF692up2ExMT8eabb7qkjYQQQgghhBBC/JPPjxgTQgghhBBCCCHuRIExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCAxnAcx3m7EWOFwcBBrze4ZFsKhQxard4l2xqrqI/sQ/1kG/WRfaifbPNUH8lkLFiWcfvruJurjpu0b9qH+sk26iP7UD/ZRn1kH186blJgTAghhBBCCCEkoFEqNSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBsY/5+OOPsWTJEkyZMgVXXHEFSktLvd0kj1mzZg0uu+wyTJ8+HfPmzcNdd92FyspKwWMGBgbwxBNPYO7cuZg+fTruvvtutLa2Ch5TX1+PW2+9FdOmTcO8efPw/PPPQ6/Xe/CdeM7jjz+OvLw8rFu3znwb9ZFRY2Mj7rvvPsyZMweFhYW49NJLUVFRYb6f+gno7u7GqlWrsHDhQkybNg3nn38+vvrqK/P9gdhHe/fuxW9/+1sUFRUhLy8PW7ZsEdzvqj7ZvXs3LrnkEkyePBnnnHOOoN+JY+i4ScdNR9BxUxodN22j4+ZIY+q4yRGf8c0333AFBQXc559/zp08eZJ77LHHuNmzZ3Otra3ebppH3HTTTdwXX3zBnThxgjt69Ch3yy23cGeddRbX19dnfsyf//xnbvHixVxxcTF36NAh7oorruCuuuoq8/06nY47//zzuRtuuIE7cuQIt3XrVm7u3LncK6+84o235FabN2/mLrzwQq6oqIj76KOPzLdTH3Fce3s7d9ZZZ3EPPfQQd/DgQa66uprbunUr19DQYH4M9RPHPfLII9yyZcu4PXv2cNXV1dy6deu4iRMncrt37+Y4LjD7aOvWrdxLL73Efffdd1xubi63efNmwf2u6JPq6mpu2rRp3LPPPsuVl5dzH330ETdp0iRux44dHnufYwUdN+m46Qg6bkqj46Z96Lg50lg6blJg7EMuv/xy7sknnzT/t16v54qKiri1a9d6sVXe09rayuXm5nL79+/nOI7jOjs7uYKCAm7jxo3mx5SXl3O5ublcaWkpx3HGL+ekSZM4tVptfsw///lPbtasWdzg4KBn34AbqdVqbtGiRdyxY8e4s846y3yApz4yeuGFF7grr7xS8n7qJ6Nf//rX3Ntvvy24bdmyZdzatWupjzhuxAHeVX3y/PPPc+eff77gte69917u1ltvdefbGZPouClEx01pdNy0jo6b9qHjpnX+ftykVGofMTg4iLKyMixYsMB8G8uymD9/PkpKSrzXMC/q6uoCAERGRgIADh8+DK1WK+ijnJwcpKSkmPuopKQEEydORFxcnPkxRUVF6OzsxKlTpzzXeDd7+OGHce211yIvL09wO/WR0ebNmzF58mTcfffdmDdvHi699FL85z//Md9P/WQ0ffp0bNq0CU1NTeA4Dj/99BOam5sxf/586iMRruqTkpISwTZMjwnU33pn0XFzJDpuSqPjpnV03LQPHTcd42/HTQqMfURbWxv0er1gpwCA2NhYqNVqL7XKeziOw7PPPos5c+YgJycHANDS0oKgoCCEhYUJHhsbG4uWlhbzY2JjYwX3m/rU9Bh/t27dOvT29uKmm24acR/1kVFNTQ3++c9/IicnB++99x4uu+wyPProo9i0aRMA6ieTxx57DBkZGVi0aBEmT56Mu+66C88++ywmTZpEfSTCVX0i9Zj29nZotVp3NX/MoeOmEB03pdFx0zY6btqHjpuO8bfjptxlWyJuwXEcGIbxdjM87sknn8SJEyfwySefCG4X6wuO42w+xtrt/qSiogJ/+9vf8Nlnn4Flxa9rBXofAcb3O2XKFNx7770AgEmTJuHw4cP45JNPcPbZZwOgfgKMJ4tHjx7F3//+dyQmJmLnzp145JFHkJSUBID6SIyr+sTyMZbbIM6j4yYdN/nouGkfOm7ah46bjvOn4yaNGPuI6OhoyGSyEVeLNBrNiKvhY91TTz2FzZs344MPPkBiYqL59ri4OPT19aG7u1vweH4fxcXFjehD039bXmnyRwcPHoRGo8GyZcuQn5+P/Px81NXV4emnn8by5cupj4bExcUhOztbcFtOTg4aGhrM9wd6P/X39+Pll1/GQw89hMWLF2PixIm48cYbsXjxYnzwwQfURyJc1Sdij2ltbUVUVBQUCoW7mj/m0HFzGB03pdFx0z503LSNjpuO87fjJgXGPkKpVKKgoADFxcXm2wwGA3bu3InCwkLvNcyDOI7Dk08+ie+//x4ffPAB0tPTBfdPnjwZCoVC0EenT59GfX29uY8KCwtx7NgxQRn44uJiREREjPjB90dLly7Ff//7X3z11VfmfwkJCbj11lvx9ttvUx8NmT59OqqqqgS3VVZWIjk5GQDtSwCg0+mg1Wohk8kEt7MsC4PBQH0kwlV9UlhYiB07dgi2XVxcHDC/9a5Cx006btqDjpv2oeOmbXTcdJzfHTddWsqLjIpp2Ykvv/ySKy8v5/70pz8F1LITjz/+ODdz5kxu9+7dXHNzs/mf5bITZ555Jrdz507u0KFD3IoVK0RLvt90003c0aNHue3bt3NnnHEG9/LLL3vhHXkGv7omx1EfcRzHlZSUcJMmTeLWrFnDVVZWcl9++SU3efJkbtOmTebHUD9x3DXXXMNdeOGF5mUnPv30Uy4/P5/7z3/+w3FcYPZRd3c3d+TIEe7IkSNcbm4u9+GHH3JHjhzhmpubOY5zTZ9UV1dzU6dO5f76179y5eXl3Lp167j8/HxarskJdNyk46Yz6Lg5Eh037UPHzZHG0nGTAmMf89FHH3FnnnkmV1BQwF1++eXcwYMHvd0kj8nNzRX998UXX5gf09/fz61atYqbPXs2N23aNO6uu+4SlHfnOI6rra3lVq5cyU2dOpWbO3cu99xzz3E6nc7Tb8djLA/w1EdGP/zwA/frX/+amzx5Mnfeeedx69evF9xP/cRxzc3N3B//+EeuqKiImzp1Knfuuedy69atM98fiH20a9cu0d+h1157jeM41/XJzp07uYsuuogrKCjgzj77bO7LL7/02Hsca+i4ScdNR9FxUxwdN22j4+ZIY+m4yXAcVfwghBBCCCGEEBK4aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrNmzYgC+//NLbzSCEEEL8Ah03CXEfCowJIV6zceNGrF+/3tvNIIQQQvwCHTcJcR8KjAkhhBBCCCGEBDSG4zjO240ghASehx56aMRV77vuugt33323l1pECCGE+C46bhLiXnJvN4AQEpjuuOMO1NfXo6urC48//jgAICkpycutIoQQQnwTHTcJcS8KjAkhXpGRkYGoqChwHIfCwkJvN4cQQgjxaXTcJMS9aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrFAoFBgYGvN0MQgghxC/QcZMQ96HAmBDiNePGjcOJEyfw448/4tChQ2hqavJ2kwghhBCfRcdNQtyH1jEmhHiNRqPBn/70J+zduxcdHR20HiMhhBBiBR03CXEfCowJIYQQQgghhAQ0SqUmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQ5N5uwFhiMHDQ6w0u2ZZczkKnc822xirqI/tQP9lGfWQf6ifbPNVHMhkLlmXc/jru5qrjJu2b9qF+so36yD7UT7ZRH9nHl46bFBi7kF5vQHt776i3w7IMYmPD0NnZB4OBc0HLxh7qI/tQP9lGfWQf6ifbPNlHUVEhYFmZW1/DE1xx3KR90z7UT7ZRH9mH+sk26iP7+Npxk1KpCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEOKUxx9/HHl5eVi3bp23m0IIIYSMil8Fxh9//DGWLFmCKVOm4IorrkBpaanVx3/77bdYvnw5pkyZggsuuADbt28f8Zjy8nLcdtttmDFjBmbMmIH/+7//g0ajcddbIIQQQsaELVu2oKSkBAkJCd5uCiGEEDJqfhMYb9iwAc8++yzuvPNOrF+/Hnl5eVi5cqVkEHvgwAHcd999uPzyy/HVV19h6dKluOOOO1BRUWF+THV1Na6++mqMHz8e//znP7F+/XrcfPPNUCgUnnpbhBBCiN9paWnBqlWr8Pzzz9MxkxBCyJgg93YD7PX+++9jxYoVuOyyywAATzzxBLZu3WoOZi198MEHWLRoEVauXAkAuOeee7Bjxw58/PHH+POf/wwAePnll7Fo0SI88MAD5udlZmZ64N0QQggh/uvhhx/Gtddei7y8vFFvi2UZlzx/tNsZ66ifbKM+sg/1k23UR/bxtX7yi8B4cHAQZWVluP322823sSyL+fPno6SkRPQ5JSUlIwLmoqIibN26FQBgMBiwdetWrFy5EjfeeCOOHTuGzMxM3HnnnVi4cKHTbXXFB+trO4kvoj6yD/WTbdRH9qF+si1Q+mjdunXo7e3FTTfdNOptyeUsYmPDXNAqIDo61CXbGeuon2yjPrIP9ZNt1Ef28ZV+8ovAuK2tDXq9HnFxcYLbY2NjUVVVJfqclpYWxMbGjni8Wq0GALS2tqK3txdr167FvffeiwcffBCbNm3Cbbfdhs8//xz5+fkOt9OVB3jAd3YSX0Z9ZB/qJ9uoj+xD/WTbWO6jiooK/O1vf8Nnn30Glh39bCydzoDOzr5RbYNlGURHh6KtrQcGAzfqNo1V1E+2UR/Zh/rJNuoj+3iynyIigqFQyKw+xi8CYykcx4FhpK/Mi91nus1gMAAAzj77bFx//fUAgEmTJmHPnj3417/+hSeeeMLh9rjiAA/Ql8ke1Ef2oX6yjfrIPtRPtvnaAd4dDh48CI1Gg2XLlplv0+v1ePrpp7Fu3Tps3LjR4W26qq8MBo72TTtQP9lGfWQf6ifbqI/s4yv95BeBcXR0NGQyGVpaWgS3azSaEaPIJnFxcSMe39raan58dHQ05HI5srOzBY/JyclBXV2d02115YfqKzuJL6M+sg/1k23UR/ahfrJtLPfR0qVLMXnyZMFtN998My699FJccsklXmoVIYQQMnp+UZVaqVSioKAAxcXF5tsMBgN27tyJwsJC0ecUFhZix44dgtuKi4vNjzdt0zIVu7KyEsnJyS5tPyGEEDIWREREIDc3V/BPoVAgPj4eWVlZ3m4eIYQQ4jS/CIwB4MYbb8Snn36K9evXo6KiAqtWrUJ/f7/5CvWDDz6I1atXmx9/3XXXYfv27XjvvfdQUVGB119/HYcPH8bVV19tfsxNN92Eb775Bp9//jmqqqrw3nvvYffu3VixYoXH3x8hhBBCCCGEEO/wi1RqADjvvPOg0Wjw2muvQa1WY9KkSVi7di1iYmIAAA0NDYJCIDNmzMDq1avxyiuv4KWXXkJWVhbefPNN5OTkmB+zfPlydHZ24u2338ZTTz2FnJwcvP32204V3iKEEEIC0ebNm73dBEIIIWTUGI7jxuZEKC/QavVob+8d9XZYlkFsbBhaW7vH7Dy10aI+sg/1k23UR/ahfrLNk30UFRXileJbruaK4ybtm/ahfrKN+sg+1E+2UR/Zx9eOm36TSk0IIYQQQgghhLgDBcaEEEIIIYQQQgKa38wxJmPLoEGPLq0WABClVEFmZT1qQsjY1qfXoVunhZxhEKVQWV2fnhBCCCHEHSgwJh5T29uNTc012KtpQnVPJwxDt7NgMCE8CnNjk/CrpAxEKlRebSchxP2Od7bhx6Zq7Gtrhnqgz3x7sEyOieHRWBCXjMUJaQiW0WGKEEIIIe5HZxzE7Rr7e/Bh5TFsV9eZb4tVBiFOFWy+/3hXG453teHT6uO4NHU8rsiYACXr/4VlCCFCdb3deLviEA60qwEY5/MkB4UiWqnCgEGP2t5uHGhX40C7Gh9WHsNl6eNxUUo25CzN/CGEEEKI+1BgTNyG4zh811iFtafK0G/QI0qhwgUp43BmQhoSg0IEj6vq7cJ3jVX4vrEan9acwM8t9Xg0fzbSQ8K9+A4IIa7CcRy+bajE2tNlGDQYkBwUgkvSxmNBXLIgS0TPcTjS0Yrvm6qxrbkO758+gs1NNXhg4kxkhUZ48R0QQgghZCyjwJi4xaBBj1dPlGCbug4sGKxIz8Vv0scjSCQtkmEYZIVG4LacKbg4NQd/Ky/F/rZm/KFkOx6aNBszoxO88A4IIa6i5zj8veIQvmmohJxhcF3mRFyaNl50FFjGMJgSFYcpUXFYkZ6LN8sP4lBHK+4r+Ql3T5iGMxPSvPAOCCGEEDLWUW4acbku7SAeKS3GNnUdElTBeLGwCNdmTRQNii0lBoXg8YK5uCojD316PZ4q24PdrY0eaDUhxB0MHIfXT5bgm4ZKRCmUeHbqAlyRkWtXanRaSBienjIf12dNgtagx4vHf8HnNSc90GpCCCGEBBoKjIlLdWkH8dihnTjW1Ya88GisLlyI3PBoh7bBMgyuyszDneOnQscZ8NzRfTjaqXFTiwkh7sJxHNZUHMKPTTWIVQbhhWkLMSkixqFtsAyD36RPwOOTz0AQK8M/Ko/iw8qj4DjOTa0mhBBCSCCiwJi4TK9Oi8cO70RFTwemRsbh6SnzEK0Mcnp75yZn4bacKdByBjxVtgcNfT0ubC0hxN3+V3/aPFL89JT5SA4OdXpbM6MT8NSUeQiVK/BZzUl8UVvuwpYSQgghJNBRYExcQmcw4Nmj+1DR3YEpkbH4c8Ecu1KnbbkgZRwuTMlGp24QfzmyBwN6vQtaSwhxt0PtLXjnVBnkDIs/FcxFWkjYqLc5KSIGT04+A6qhkeNNTdUuaCkhhBBCCAXGxAU4jjMvv5IZEo7H8l0TFJvcnF2Awqg4VPV24b3TZS7bLiHEPTq1g3j+2H4YwOGO8VOR5+B0CmvywqPxyKTZkDEMXj1xEAeHln0ihBBCCBkNCozJqH3TUImNjVWIVqjweMFchMoVLt2+jGHwh7wZiJAr8U1DJXa1Nrh0+4QQ13qrvBRt2gEsTUzHsqQMl29/ZkwC7p4wDQZw+OvR/VAP9Ln8NQghhBASWCgwJqNysqsda0+VQc4weKxgDhJ46xO7UowyCL/Pmw4A+Ft5KXp0Wre8DiFkdH5S1+GnlnrEq4Jxa/Zkt73O0sQMnJ88Dp26QTxzZC8GDTTNghBCCCHOo8CYOK1bp8Vzx/ZBxxlwc/Zkl6ZLipkdk4izEtKgGRzAP04fcetrEUIc16PTYk3FYQDAvbmFCHFx9oilm7MLkB8Rg5Pd7XjvFP0mEEIIIcR5FBgTp3Ach9dOlKCpvxdFcSk4PznLI6+7clwBwuUKbKivxCFNi0dekxBin0+qj6NdO4AlCWmYFhXv9tdTsCwemjQLEXIl/tdwGvs0TW5/TUIIIYSMTRQYE6dsaa5FcWsDkoJCcPeEaWAYxiOvG6lU4cZxBeAAvFq6n9YyJcRHVPd04ev60wiWyXHjuHyPvW6MMgh3T5gGAHjlRAnaBwc89tqEEEIIGTsoMCYOaxnow5qKQ2AA/D53usuLbdlydmI6ssMicUjTgh0tVIiLEF/wzqnD0HMcrsrIG9X65c6YF5eMXyVlol07gNdOltAFM0II8VP1fd3o1g56uxkkQFFgTBzCcRxeP3kQPXodLkrNRkFkrMfbIGMY3JxtHJF6/9QRaA0Gj7eBEDLsYLsaB9rVSAsOwwUp47zShluyC5ASHIo9miZsU9d5pQ2EEEKc160dxK37NuOa3d95uykkQPlVYPzxxx9jyZIlmDJlCq644gqUlpZaffy3336L5cuXY8qUKbjggguwfft2ycfecsstyMvLw5YtW1zd7DHlh6Ya7G9rRlpwGK7NnOS1dkyPTsC8xGQ09PdgY0Ol19pBSKDjOA4fVh4DAFydmQc5653DSpBMjt9NKAQA/L3iMDq0lFJNCCH+RDM0FUZHWT/ES/wmMN6wYQOeffZZ3HnnnVi/fj3y8vKwcuVKaDQa0ccfOHAA9913Hy6//HJ89dVXWLp0Ke644w5UVFSMeOy6deso9c4ObYP9ePfUYbAwVpxVyWRebc9dk43LN/279iQt1UKIl+xra8bxrjaMC43AgrgUr7ZlcmQszk3KRKduEGtPlXm1LYQQQhzjoXI1hEjym8D4/fffx4oVK3DZZZdh/PjxeOKJJ6BSqbB+/XrRx3/wwQdYtGgRVq5ciZycHNxzzz3Iz8/Hxx9/LHhceXk5/v73v+OZZ57xxNvwa2tPlaFHr8MFKdmYGBHj7eZgfGQ0FsQlQzM4gO8bq73dHEICjoHjsG5otPiazIlgfeCs5oZx+YhRBmFLcy32a5q93RxCCCGE+Am5txtgj8HBQZSVleH2228338ayLObPn4+SkhLR55SUlODmm28W3FZUVIStW7cKtnvffffh4YcfRkJCgkvayrKjPzE0bcMV23KVkjY1tqnrEKsMwrXjJnq9babXvyorDztaGvB57Umcm5IJBevdUWxf44v7kq+hPrKPWD/ta21CRU8HcsOjcEZckseq01sTrlTirglT8WTZHrxRfhBrZi9BkMwzhzralwghhBD/5ReBcVtbG/R6PeLi4gS3x8bGoqqqSvQ5LS0tiI2NHfF4tVpt/u+XX34ZEyZMwLnnnuuSdsrlLGJjw1yyLQCIjg512bZGY0Cvx1v7DwEA7ps+G+mJ0V5u0bBZGalYWJuKnxrrsLO7GZeMm+DtJvkkX9mXfBn1kX34/fSfstMAgJUFUxEXF+6tJo3w69gJ2N7WgK31NfhfSxVuy5/m0denfYkQQhynp2mNxMv8IjCWwnGc1REKsftMt+3atQsbN27Ef/7zH5e1R6czoLOzb9TbYVkG0dGhaGvrgcHg/R+Jf1YeR013F2ZGJ2CaKhqtrd3ebpKgjy5LzsFPjXX4x9HDWBCeBJkPjFr5Cl/bl3wR9ZF9LPvpWKcGB1qMhfjylVE+8bvAd336ROxsrMdHx49gQUQSkoPdH6x6cl+KiAiGQkEZMoSQsUPH0SojxLv8IjCOjo6GTCZDS0uL4HaNRjNiFNkkLi5uxONbW1vNj9+7dy8aGhpwxhlnCB5zxx13YP78+Xj33XedaqsrT4YMBs7rJ+qNfT34V/UJKFkWv82ZAo6DTxUqMxg4jA+LwtTIOJR2tGCnugHz45K93Syf4wv7kq+jPrKPqZ8+ry4HAFySlgNwxvnGviReGYzfpE/AuqpjeLv8EB4vmOux16Z9iRBCHKen303iZX5RfEupVKKgoADFxcXm2wwGA3bu3InCwkLR5xQWFmLHjh2C24qLi82Pv+qqq/Df//4XX331lfkfADz22GN44okn3PE2/NJ7p49Ayxnwm7QJHhlxcdbFqdkAgP/Ujaw6TghxrbrebuxsbUC0QoWzEtK83RxJl6blIDkoBHs1TdjT2ujt5hBCCLGCRoyJt/lFYAwAN954Iz799FOsX78eFRUVWLVqFfr7+3HJJZcAAB588EGsXr3a/PjrrrsO27dvx3vvvYeKigq8/vrrOHz4MK6++moAxvnGubm5gn8AkJKSgrQ03z3R86TS9hYUtzYgXhVsHBXyYbNiEpEaHIqyTg1OdrV7uzmEjGnr6yrAAbgwNRtKHy54p2RluDVnCgDg76cO07JuhBDiw/hzjGm+MfEGvwmMzzvvPDz00EN47bXXcNFFF+Ho0aNYu3YtYmKMywY1NDQICmvNmDEDq1evxr/+9S9cdNFF+O677/Dmm28iJ8e3Azxfoec4vHPqMADghqx8j1V1dRbLMLgoxThq/BWNGhPiNj06LbY010LFynBuUqa3m2PT7JhEzI5JRGN/L76spd8GQgjxVXreiLGeRo+JF/h2tGPhmmuuwTXXXCN630cffTTitnPPPdehitPHjx93um1jzQ+N1Tjd04lJEdFYFJ/i7ebYZUliOj6sOoafW+px82ABYpRB3m4SIWPOpqYaDBj0WJaUgTCF0tvNscut2ZNxoK0Zn9ecxLKkDPptIIQQH6TjjRLrDAafzkgiY5PfjBgTz+nRafFR1VEAwC3Zk31ibVJ7BMnkOCcxA3qOw4+N1d5uDrGhT6/DofYWbGmuxc/qelT2dPpUYTcyEsdx+KbeuETTeclZ3m2MA5KDQ3FBSjb6DXqsqzzm7eYQQggRwR8l1hpoxJh4nl+NGBPP+Ff1CXRoB3F2Qjpyw31nzWJ7LE/KxPq6CmxsrMJl6RNo6SYf1NjXg4+rj2NHSz0GLQ588apg/Do5CxekZEMloyvFvmZ/SxNqeruRFx6N8WFR3m6OQ1Zk5GJTUw1+aKrG+SnjkB0W6e0mEUIIwfBqJzpeVWotpVITL6ARYyJQ39eN/9afQhArw3VZk7zdHIelhoRhamQcmgf6cKCt2dvNITwGjsNnNSfx2/2bsaW5FjKGxfzYZFyeNh4XpmRjUkQ0Wgb68I/Ko7j7wFYc7dR4u8nEwhenTgIAzk/J8m5DnBAmV+CqzDxwANaeKqPsBEII8QEGjsPNe3/Ek0f2CApuUYVqzznYroZmsN/bzfAJNGJMBN47fQQ6jsNVGRMQq/LPeXjnJmeitKMF3zZUYVZMorebQwAM6PV44fh+7GpthIqVYUXGeFySmjOiqFttbzfePV2GvZomPFy6A7+bUIglieleajXhax3ow7b6GkQolFgQ5x91BywtT8rE/+pPo7SjBXs1TZgTm+TtJvmdNWvW4Pvvv8epU6cQFBSEmTNn4v7770dWVpa3m0YI8UODBj2aB/rQPNCHhbxjC6VSu9ep7g7EKoPQOtiPRw/thJJl8eWC873dLK+jEWNidrBdjV2tjUhQBeOiVP+t3n1GbDKiFErs1TSiZaDP280JeP16HZ48shu7WhuRGhyK1YULcWVGnmil87SQMPw5fw7uGD8VBg546cQBbBia00q868emGug5DuckZvhtQRQ5y+Lm7AIAQxcB6cTLYXv27MHVV1+Nzz77DO+//z4GBwdx0003ob+fRhsIIY4TjhIP/01JPe7To9Pidwe24erd36GhvwcARkxtC1QUGBMAxh+mtafKAAA3jsv36/mdCpbF0sQMGAB8T0W4vErPcXjx+C842N6CcaEReH5qEbJCI6w+h2EYnJechT8XzIGcYfFWxSFsV9d5qMVEDMdx+GHou7QsOcPLrRmdWdEJKIyKQ21fN75trPJ2c/zOu+++i0svvRQTJkzAxIkT8dxzz6Gurg5HjhzxdtOIiL2aJqw+/gtdBCI+i79v8otvGUCRsbv06LTmv9sHB7zYEt9DqdQEALC5qQanezoxMTwaRX6aJsn3q6RMfF5bjk1NNfi/jFywVITLKz6sPGoeKX56ynxEOLC8z6yYRDw4cSaeO7oXr5w4gNTgMORQwSSvONqpQX1fDybHxCE9JBwGg/+esDAMg5uzC/C7X7bhk6rjOCs+1W+WnfJFXV1dAIDISOe/myw7ut9n0/NHu52x6Imy3QCAmTEJWDp0UYv6SRrtS/ZxZT/pmeHjiSAYZvz7c/DlfYnjNYm/8ow32upr/USBMUG/XmdenmlldoHfLM9kTXJwKAoiYlDWqUFZRyumRMV5u0kBZ6+mCV/UliNMrsCfC+Y6FBSbzI9Lxo3jCvDu6TI8c3QvXi1cREGMF/zYVAMAOD8z28stcY1xoZE4JykD3zdW4181J83p1cQxHMfh2WefxZw5c5CT49z0G7mcRWxsmEvaEx0d6pLtjEU6xXD/UD/ZRn1kH1f000DP8N+qkOHje0RkMGKjXPPb4E2+uC/1dA+PzEeED9cTctVvsTN8pZ8oMCb4srYCmsEBLIxLwcSIGG83x2XOTkxHWacGm5prKDD2sLbBfrx64gAA4N7cQqQGO/9je3FqNo53teHnlnr8/dRh/CFvhquaSezQr9fhp5Y6qFgZzknLxEDnoLeb5BLXZk7E9uY6fF1/CucmZyJlFPtooHryySdx4sQJfPLJJ05vQ6czoLNzdLUgWJZBdHQo2tp6/DqbwZ1aOnvR1tZD/WQD7Uv2cWU/qXu7zH93dg//FrS196JV778Xwu3pI3V/H/ZoGvGrpEzs0zQhQqFCfqT7z8M1vcNXI3q6h1Op65rb8fzR/Tg3OQuzYz1TvNaT37mIiGAoFNanilJgHOBaB/rxRW055AyL68f53/JM1hTFpWBNxWHsaKnHb3OmiBZ7Iu7xZnkp2rWDWJ6UiTNik0e1LYZhcNf4qTjS2YrNzbVYEJeCuVRN2GN2tNSjT6/HWQlpCFMoMYCxERhHK4Pwm/QJ+KjqGN4/fQSP5s/xdpP8ylNPPYXNmzdj3bp1SEwc3QmUq06GDAaOghkJvTqtuW+on2yjPrKPrX56/eRBcODwuwmFko8Z1BtE/9YZDFa33TbYj3C5EnLWt8slWeuje3/ZhjbtAAwGDm9VHAIA/G/hhW5vk47f57w53t81VGNXayN2tTZ6pB18vvKd8+29ibjduqpjGDDocWHqOCQF+UYag6uEyBU4IzYJfXo9drY2eLs5AWP30I9qUlAIVrooRTVMocRd46cBAN4sPygoHEHc64ehNOpzkvy76JaYi1NzEK8Kxs7WRhxqb/F2c/wCx3F48skn8f333+ODDz5Aejotp+YP+vQ6bzeBBKDvGqtsFkHlF98aNOjNf1tba765vxfX7v4efyzdMfpGelGb1jha29jf69HX5c/llur/QEWBcQA71d2BH5uqESFX4or0XG83xy3OHloDd9PQyT1xr369DmuGrnq6epR+TmwSzkpIg2ZwAP+qPuGy7RJpjf09ONzRigRVMKaOwekIKpkMN2QZM2XWni6DgdYHsemJJ57Af//7X6xevRqhoaFQq9VQq9W0XJOPo8CYeJq1wJZPy6tEPaDnBcZWnnO6pxMAcLyrzam2+ZogD68Ewx+Y1XFUsZ6PAuMAxXEc3j1dBg7AVZl5CJMrvN0kt5gWFY9YZRAOtrdATWsau92/a8rRPNCH+bHJmBXj+vkpN47LR7BMhv/Wn0Jdb7fLt0+EtjUbl8k6KyF9zFZ2XxSfirzwaFR0d2BzM11As+WTTz5BV1cXrr32WhQVFZn/bdiwwdtN8wkDer1gXVZfoec4fFZ9Ajdt2UgZN36oorsD+9uavd0Mu3xecxJrKg4JAl5rFx2lRiytPcfTgaS7qVhPB8biI8a0rBsFxgFrX1szDra3IC04DMuTMr3dHLeRMQzOSkgDB2BLc623mzOmaQb78VVdBZQsi1tyJrvlNWKUQbgiPRc6jsPa02VueQ1ixHEctg2tH31mQqqXW+M+DMOYU/4/rDxKI2s2HD9+XPTfpZde6u2meZ2eM+Cy4m9wz4FtAICtzbV44dh+jwfK3TotDrarR4zY/eP0UZS1tWJ9bYVH20NG754D2/D44V3o1+vQ2N8jWO/X1/yj8ii+rj+NPt3wb6m19vJHLPnzXQ0chy9ry3GsUzPiOUoPB5LupuC9H09kLgkCY17/aykwpsA4EOk5A947ZQwqbhyX7/OFC0brrIQ0AMB2Cozd6tPqExgw6HF+yjjEq4Ld9joXp2YjMSgEezVNONLR6rbXCXSVvZ2o7u1CdmgE0kPCvd0ct5oUEYNF8anQDA7gi5pybzeH+ClTIFA5lOb54vFfsE1dhzIP/049XLoDjx7aKRhh5C/D2DZIae/+an9bM1bu3YS/Ht3v7abY1K0fzkywFnBpJUaMj3e14b3TR3D/wZ9HPGesTXvR8t63J+b58ucY80f2OasJ7IFhbEdERNR3DVWo6evG1Mg4zHFDuquvyQyNQFZIOCp7u1A1dMJCXKu+rxvfNVYhVCbHb9ImuPW1FKwMV2XkAQDWVR1362sFMlMa9eKhC0tj3Q1Zk6BgWKyvq6BpF8Qp/JFhT5zo9ui0okGuaf7lia52t7wu8Z59GuPFjmI/KCjKT9nXOjFibC17h/9d8+XRc3vxLw64atRWZzDgcEeraP/oBanUFAzzUWAcYHp1WnxcfRwMgJuzCwRXkceyRaZRY3W9l1syNn1cdRx6jsNlaeMRrnD/uoNnJqQiNTgUpR0tKKVqwi5n4KVRL4ofu2nUfAlBIbg4LQcDBj0+rDzq7eYQP6TjnWy28gJWd41urdj5La7d/b1kkaPRHN2b+nvRq/OvaQX9ep3dBZ/8lczHz9n4/S8IjK2OGA8/h38RyVo2Iz+Ytmc/3d3aiMa+HpuP85ZBfgEyF11I+7DqKB4q3YGPRQYQpFKpfbE+gqdRYBxgPqs5iQ7tIM5OTEdOWKS3m+Mxi+JSAADb1bVj/sDpaXV93fhJXYdIhRIXpmZ75DVlDGseNf646hh9pi52tFMD9UAfJkfEujUt3tf8Jm0CohQqbGmuHTPVTonn8EdmOrXD630bXJyeaBlo6zgOm5pq8IPlsjiM6J82dWgHcPPeH3Hbvk3ON9LDSttbcHnxBvyv/rS3m+JWtgJjrUGPp4/sQXGLdwYB+CPD3bzA2FrlY+GIMX+5JunX0UsEdmJOdXfgqSN7sNKH92d3ZJj8NDQQJFZfR6r4lquCcn9GgXEAqevrxld1p6BiZbgmc6K3m+NRScGhyAuPRkN/L052t3u7OWPKF7XlMAC4KCXbpcsz2VIUn4qMkHCUdWpwiOYau5RptHjxGC66JSZELse1WcbfxndPldEFF+IQnUQVXlcWtHn26F5ctWsj+vXCwkYvnziAV0+WCB7LSITDtvbq+qGRNdMaq/7g9aH3/o8xnu0h9ZmaFLc0YmdrI545us9DLRIa5C23JAiMraTrSo1YWgsQ9YLvmvU2NQ94do1gW2p7u/F2+SHBxTPhPGsDWgb6BN9xZ5gqXWtF+lGwjrFEKnugosA4gKw9VQYdZ8CKjFzEBdAokMmieNOocZ2XWzJ2tAz0YXNTDYJlcpyXMs6jry1jGPwmfTwA4MtaKpjkKjqDAT+r6yFjGCwYyrQIJEsTM5AVGoEjnRr87KVRF+KfhPMeh//u17tuFGZHSwO6dVqUd3eYb+uWWH6JH0I5ks7tj0u2mIKM5OBQAECXdtBnL2xxHOd00NNvsP48A7z72Q3w9h3hHGPp74BB4nujFVRLNj7fVJWbH2hLZWQcam9BY1+PzcDZ0x49VIz/NZzGB7yLOPyAVDPYjxv2/IBb920e1esohlLRxYJd/ldDZ+fFiEDhV4Hxxx9/jCVLlmDKlCm44oorUFpaavXx3377LZYvX44pU6bgggsuwPbt2833abVavPDCC7jgggtQWFiIhQsX4uGHH4ZarXb32/CKvZom7NU0ISkoBBd7KN3V1xTFpYKBMb1krFU09Jb/1J2CjuPw6+Qsr6yFvTAuFfGqYOxra6bCai5S0q5Gp24QM6ITEOGB+eK+RsYwWDnOuHzTP04fpRMFYjepka9+N+xD/NGmFl6xOMFIGsQDDluHP2uFknyWKcWY47CjpR5X7tqIH5qqrT/HS1Yf/wWXF29A64Dj1cFtzadlvXxaz/+95F8QsjZiLAyMxYtQ9Qy97zt/2YqVezcJRoHFikt1DA7g4UPFQ+nTvnW+Z6o/0Nw//B74/VbT2w3AGCCPhmlJK7FjmGDEmJ9KzfvMAnW+sd8Exhs2bMCzzz6LO++8E+vXr0deXh5WrlwJjWbk+mYAcODAAdx33324/PLL8dVXX2Hp0qW44447UFFhXL+vv78fR44cwe23344vv/wSr7/+OsrLy3HnnXd68m15hNZgwNpThwEAt2RPHnPrv9krVhWEKZFxaB3sxxGRdfGIY3p0WmxsrISCYXGRly62yFkWF6YYX3t9Ha3N6QqmeUmBUnRLTGF0PObEJKJpoBdf0ZqvxE56g3h6oq3RwZaBPrx3qgztg/anLnfy0pxbeAGWVHVb/omwrTnPWou1ZP9x+ojPFznkj46/dqIEAPBJ9QmvtMWWrUNZa6Ud9vUpf+SbX6m5ZaBPsCQX4P3iXPw5qvy/xdJ5TSRHjPn78tD3qWkomGzgFdISG+jo442s+9qIsQl/aST+e+3Vi2eAOEo5NGKsE+kfg8TIPP8zM/jjBTIX8JvA+P3338eKFStw2WWXYfz48XjiiSegUqmwfv160cd/8MEHWLRoEVauXImcnBzcc889yM/Px8cffwwACA8Px/vvv4/zzjsP2dnZKCwsxJ/+9CccPHgQTU1Nnnxrbvd1/SnU9fVgxtDJXiAzpVNvozWNR+3Hpmr06fU4KzEN0cogr7XjV0mZCJXJsbW5VjByQhynMxiwW9MIOcNiboD/VtycXQA5w+JfNScFV/YJkSIMhnkBgo1U6meP7sOXdRV4Z+gCtj16eQESfy7woB2jP7ZSpfnbLmlX4/PacjxyqNjutnmKnjPgo8pjOMVLK+cA9Ay1P8OH1l9vHxzA7tZGp9K7+Z8d/7O598A2PH54F452avB9YzXKfWB5rkGJwFgsODORymzgb0tvsc/yK1YbOOBguxpdvCwKYaqwbwZ4/ICd/177XFQN3togmNTvgaDPA3TE2HOVckZhcHAQZWVluP322823sSyL+fPno6SkRPQ5JSUluPnmmwW3FRUVYevWrZKv093dDZlMhvBw539MWXb0V+tM23DFtjQD/fik+jhkDIPbxk+BTOY310KscraPihJS8VbFIexobcAduVMhY8ZGf0hx5b7EZ+A4/K++EgBwUWqOy7fviDClAuelZOHfNeXY2FiF68ZNcuj57uojf3S4vRXdOi1mxyQiTClMow60fkoPDcfl6ePxafUJvHPqMP40ea7N5wRaHxEhnWBeMa84lo0RWlMFdEcu7AkD7+HXEqSyCkZ/ONG/xfTx5oZ28IINT+rWaREsk6NbN4g/HPgJF6fl4AKLOhY/NNbgXzUn8K+aEwgfmsrDf2e+9C184OBPaOjvxZ/y55hvs7d9/MCOP2LcPvTZbFfX4euhatx3jZ82+saOgtSFGWsF6KQqTPOfo+M4wUUF/uscaGvGmlOHkRocijWzzh6xndZRpiS7C3/EmP9+uiRqBjhKYWW5K6nlmgYtskUCkV8Exm1tbdDr9YiLixPcHhsbi6qqKtHntLS0IDY2dsTjpeYQDwwM4MUXX8SFF16IkJAQp9opl7OIjQ1z6rlioqNDR72N1/eVok+vx1XjJ6IwPdkFrfItjvZRLIDZ8UnY1dyAaq4Xs+KS3NMwH+OKfYnv54Y6NPT3YEZcAmZler9A0zXBk/FFTQW+b6rGXTNmQOHEdAFX95E/2ldVBgD4VdY4yd+yQOqn2yOnY1tLHXa2NuLoYAeKku1LLw+kPiLD9BIBjOVolxRba8DrJQJv/smscF6n+EmurZGgPsGokedH2zSD/bhu9/eYHhWPaVFxaBroxZqKQyMC49q+LvPfYtWafem0vmEo66SCN7ptb2AsTC8emX1Q19dt/lvNu7jCcRwYK6nVb548iF69Dg9MnGlnS2zj72eCVOpRFt/ScQZBMS/+xaBjQxeW6njp1fyg2lczfqRGtTs8UA1eqiq1VGX9QOIXgbEUW196sfvEbtNqtfj9738PAHjsscecbo9OZ0Bn5+hTOVmWQXR0KNraemAYxeSIkjY1vq0+jWilCpckZqO1tdv2k/zEaPpoTlQidjU3YENFBcaxrruQ4YtctS9Z+uexIwCAcxMyfWK/UgCYE5uIXa2N+Pr4SSxOSLP7ue7qI3+j5zhsrasBCwaTg6JHfK6B2k+3jpuMJ8p244UDe5AtWwKVTPqiiyf7KCIiGApFYNaL8FX8AkP2ppHy2SpgKEi3lBol5t0ulaJqK7WUH1B7o0L10aEaIAfa1RgfHiX5uB4bKae+eGLPb5O9rbO1nI6GN8ec//kPGPRWl1D8ttE4sOTKwFgvOV/V8eJbg4LvkEGQRj5gI+WX32f8gNpW3OBJBsGI8fD76R3lMk3WfNdYhQ0NlVielGm+jf+7xb+IR6nUPiw6OhoymQwtLcJCBRqNZsQosklcXNyIx7e2to54vFarxb333ova2lp8+OGHCAsbXaDkypMhg4FzenuDBj3eOHkQAHBr9mQEs/IxeTLrTB/NjU4EC6BY3YBbs6d4vViFJ4xmX7JU29uN/W3NiFcFY05Mos/sV+clZ2FXayP+V3caC+McLxzlyj7yR2UdrWjXDqAwKg5hMoVkXwRaP82OScScmETs0TThs+oTuNqONeADrY+IkWDkRXCCaV9wGWxjHXj+GrH9EnM5ewXrG4sX3LJ1wuvuitq28E/Ue62klfIDnuGi1PzA0/e+g3qJ9Fmrz7GxJjb/wgu/6JS1CzJai6yA0U4rUw/0oUM7IGirvRWO9RL7Jv+96g2ccNsWQbMl/vevR68TPFbB+MYFRf4FgUGJonmjIdblrw/FBVt4dXa0EhfxbBXpM9nSXIOMkAjkhEU62VLf4hcTLJVKJQoKClBcPFz8wWAwYOfOnSgsLBR9TmFhIXbs2CG4rbi4WPB4U1BcVVWFf/zjH4iKinJD673j3zUnUd/Xg5nRCSgKwLVIrYlUqjA5Mg5t2gHzlWliv28ajHOZfp2c5VNztAuj4pESHIqyTg0qaekmh+0YWrN3Pv1ejHBrzmSoWBk+rylHfZ/3MySIb9JLjOxJBQWOFmIakBwxFq+ArZdIi7Q1kspvb4+L5jvydQwO4MY9P+DrulOi90uN9lnir+lrurzNf2e+eG1KGAzZd9FBJ6jObH3pnX69fWnwnVp+WvLoA7GVe3/EvQe2o41XWZ3fVrHvwF+P7sMLx/ZbzHcV7x8dZxDsFwMSUwbEtsN/rL0XIzyB3yOC4NRVgbGVwNZy/rb5dokl56TU93Vj9fEDuOfANidb6Xt856zWhhtvvBGffvop1q9fj4qKCqxatQr9/f245JJLAAAPPvggVq9ebX78ddddh+3bt+O9995DRUUFXn/9dRw+fBhXX301AECn0+F3v/sdDh8+jBdffBF6vR5qtRpqtRqDg94pNuEqtb3d+HdNOVSsDLePn+IzaSO+pCjOON+6uKXByy3xL4MGPbY010LOMDgnMcPbzRFgGQbnJWcBAL4ZKkRC7GPgOOxsaQADYF5sYMy7d0RSUCiuSJ8ALWfAGydLnaosS8Y+R04wj3VqsGLnt9jT2mi+zdZuxT+pl0ql7pMoeKS1YwRba9CD4zjB/e4ovrVNXQf1QB/WSFThFs55lO4UsXnFfD45YiyRamz9OdZHjPmBZZ9ExoDJpqZqfFx1DF264c/V2lJK9jK9Vnl3u/k2QYquSFt+aqnHNnWdYE1uvcQ+axkY99sYMZZagsiX1qU3SHyujganUqw9U1DkjP96Dhbfcmfat7f4RSo1AJx33nnQaDR47bXXoFarMWnSJKxduxYxMTEAgIaGBrC8CmwzZszA6tWr8corr+Cll15CVlYW3nzzTeTk5AAAGhsbsXnzZgDARRddJHitDz/8EHPn2q5A6osMHIc3yw9CxxlwTeYkJAVRERgx8+KS8VbFIRS31GNldgFYunhgl+KWBnTrtCiKS0GkUuXt5oywNCEdH1Uew5bmWtyUXWAzNZEYnexqR8tgPwoiYry69JYvuzRtPLar61Da0YLvGquwfOgiDCEm1uZHWlpTcRi9eh2ePbrPfJvN9YU5/lxi8eWg+KOo/JPtQRtznvv0OnPBq6Sg4QKk7hgxDpFb/13mvzdrx2bhfca/+cGw74XFwkBi0MYyXia2LhTwA5h+G4Hxy0NrPGeHDqe9DrqwwBq/EJi1AI9/cbGcV5BMuFyT8H0L5vDrxfdnncGANu2AXyxBJAzYJS4IGAyQWalrYY21wJbfD3qLCxBij5HkO93pMn511njNNdfgmmuuEb3vo48+GnHbueeei3PPPVf08WlpaTh+/LhL2+cLNjZU4lBHK7JCwnFxao63m+OzopVByI+IQVmnBie62jAxIsbbTfIL3zdWAwB+leRbo8UmYQolFsQlY3NzLX5W1+McH22nr9nRSmnUtihYFvfkFuL+kp/w7ukjmBmTiHhVsLebRVysZaAPX9efxqVpOYhUOHbxj3/irrUx8mIK6qSqw4rRG/hBg/gc436pEWMbJ7x7WpvQp9ehuLUBF6Vki27PVWzN8ezVDwfj1tIaR4bFxvN0Zuj/fTGzo5ufwuzEiLGt+wWp1FZScvlLGNkboNujz46q6IBwX+fPI+dfXBLMgzZYpFIbxPfzJ4/sxi9tavxfeq7o/b4UGPMvYvAveo2oEq0HlCzrcPantVR6y9H44b9tT7ngOA5vlJciKyQc2bx5xTqDAa+dLMGCuBTM9ePMM79JpSa2Nfb14L3TR8CCwb150wULoJORFgwFATsondou9X3dKO1oQYIqGNOi4r3dHEnLhqot/tBU7eWW+AeO48xTCiiN2rrc8GhckjYefXod3jx50CdPvMnovHjsF3xRW443T5Y6/FzhSb34iaeJqeijwWK0y/r2xQPvQUGQwF8ix/5Uav4SMcJRO9fPfbRVUXjAiUCNHzOYUqztLR7kSQMWn09xSz1qerusPMN2MCc1b9na89r4gbGVpZQcJVUUy2Cxzwn2X/7j+I+xCNikCnvx08d/aTMuybqvrclmm7xN+B0W/662DQ7gsuJv8Pyx/aLb2K9pxvraCtH7dFYm2QtTqcWrgkvtP53aQXzXWIU1pw4L+na7ug6bm2vx1JE9kq/rDyhyGiMMHIdXTpag36DHFekTMD4syttN8nnzefOM6QTXth+aagAA5yRl+HTqeUFEDJKDQnGkU4PaXiqUZMvpnk409vdiQlgUEoKcW8M9kFyVkYfU4FDsa2vGZl5lTzI2mNbGrex1vICfI3OMxYpF2QqApOYF8k+qpeZTWgZMzf29ONnVLnG/+Em6qwoX8degFZvfKrWWrbXHmXDccJBsLTDwJE4icK3t7cYzR/fh9v1brD7f5vJaDqTwm/CLZA26oPiWiVZiJNfys9JKjAzz6SwuLkkVIesTmec6KHHhyJeW8JL6jeDfXtbZCsA4H1vM42W78O7pMtGLK9Y+f6liX1red0bqwpJg/jbvAoWGd7HFn1FgPEZ8U38ahztakRUagRUZubafQBCnCkZeeDSaBnpRwZvjQkbSGQz4sbEaLIClPlZ0yxLDMDgnMR0AjRrbw5QxsWDoQhGxTiWT4Z4JhWAA/L3iEJr7e73dJOJCCtaY5uvMkimSaaBWUqn5bL2mcMRYPJVaquCWZZBy094f8fuS7egeSmMV3M87IXZH4aJ+G6PQgiJLVkaPhSPfwyPwphFjXxkdFFZaHm5Tp52FzaylRFtu01o1dH6A3sbLEHBlQapBiUwJvUWQpRVczBF/f3qLkUyp9ZzFvjdS+62v7BOAdAaGzsZ7E9Pc3zfiNmsX2gQp75ap2zaeL5i64aPzt0eDAuMxoKqnE/+oPAoZw+APudOhoBRqu5mCgZ8lrsYRo31tTWjTDmBGdIJfzKtckpgOFsCmphqXpf+NVcXmZZooMLZXfmQsLknLQY9ehxeP/2L3OrXE9ymHjp9agx4fVR7FW+X2p1QLRowtCuhYEquobHOOseRIru0gWRgwDf/dPRScDUiMqmktgoqD7Wp08EYbnSGYBy3ynvkn2Pz5xoAwuOP3t+l2PWcAax4xNm67V6fzajViqbmx9qZ6W6vMDdg/Siu1DJcri29JLaNk2RadPSPGgmkGnGTQJrYPCS4c6W0He87gOM78/XGGVDYEv+38KQ7WNPT3jLiN319HOzXYr2k2/7et6QyA9Og6/zPmX9zxxprn7kARlJ/r1+vw12P7MWDQ45rMiYKJ8MQ2/jxjSqeW9uNQGvUyPylmFacKxozoBLRrB7C/rdn2EwJUTW8Xavq6kRUagZTgMG83x69cmzkJOWGRONKpwWc1J73dHDJKpgJAphHjQYMB/6o5iW8aKu2e8ypYakbkJL6hrwfbhtLvxYJg24GxeOA9IFlwS3xUSFCsaehkViqI5gdNu1ob8eihnfhz2S6r7RSjMxjwxsmD2NPaKFo5m+M4vHeqDD+p6yRHjE91d+CCn7/G10PL8YkFXjqLEePDHa34v50bJOdoeoJwCSLxFGBrF3BtXXjj3yuVEt822C95AWW0xbck56QLRnylR4ylUvSF+6xBMjVerO/4o9D8CxCuDIw3N9fi/3ZtxLbmOpuP7dfrcPcvW/GP00dstoX/btp5F6EG9Hoc7dTgjv1bUNnTKXjfYssm8bf/wMGf8biD31vJwJj3GfPTp7t4QbI/n0+PKjAeHBzE22+/jYYGKl7kLWtPlaG6twvTo+JxWdp4bzfH7yQGhWB8WCQa+ntwusfxOWWBoFM7iH2aJoTJFZgdk+jt5tjNVJGa0qmlmYpuLYil0WJHKVgWD+TNhIqV4ZOqEzjaqfF2k4iTfmlrxhU7v8U/Th8xjxjzT9ab+ntR2t4iqCIrxlqxK47jcMu+TXjh+C+o6e0yn/TLeCnVOgOHjsEBtAyMTIs0bkd8lEyYlioeJPOJrXvLD2gE1XJ529jZavy9cGbq0XZ1HTY2VuHJI3tEA/m6vh58WVeBvx7bL1l9++Mq40oiayoOAbDsD/3QbcJ+OdapgQHGoN5bpOaD9+mG+5m/rrBJcUs9bt23CaUdrXa/lljxre8aq3Dt7u+xvm64SBP/Mxjt3HGpZcqsFXxzdKqCluMkLxyJZQNIXczSGgzY3FSDxr6RI6yO+qTauD/+rfwgyrva8dDBHZJB8sH2Fpzu6cTnteUOvUY7b8S4SzeIJ8p2o7q3C3+vOGyeBgGIv9/Rpo3rOQM6tYMjglypecX8fdifR49HFRgPDAzg1VdfRV2d7aslxPV+VtdjY2MVohQq/CFvuk8XRPJlplHjYqpOLepndR10HIeFcSnm0RR/MCcmCRFyJfZqmuxORwo0pn2e0qidkxYShltzJsMADs8f2z/qFFPiHaZA7/PacigY42kR/6Tys5oTeORQMV449suI5+oMBmxoqES3Tis5cqbnOMEJbod2UDQw0HEG/LlsF27Y84OganBTfy+2NNcKRoXEgkLAvpE4fvDcOxScaSVGafnvo2kU8+mrecWBxIqI8YNxqbmklumiYo/jVy/Wc5wgeLB1YcPVenVa7NU0WcwxFh8xVg/0YVtzreCixTNH96G+rwc7HTg34X/ipn74V/UJAMAnQ/8PWKbSji6AEixNJmiL9NI/jgZtes4g2U6xsUmp7f+r+gReOnEAbw1dXBmN9JBwAECPXod/1ZzA4c5WvHe6TPSx/PWdHcH/zg8Y9Ob9ecCgF6TDDxhERoxHWXxuQ0Mlrtq1EV/yLqiYXtuE//3q0loP1P2FzXWM582bJ3kfx3HgOA6333475EMLtu/cudN1rSOSanq78OrJEgDAfXnTEa0M8m6D/Nj82GR8UHkUxa0NuCZroreb43NMlXeXDBW08hcKlsXC+BR801CJn9X1+HXKOG83yac09vWgoqcDacFhyBg6wBPHLUvMQGl7C7ap6/Dc0X34W+I53m4ScZCttL/dmkbB//N911iFtyoO4X/1pzErJsF8u+Vczw5emmGPTmtOg+S/ttZgMAfpJe1qnJVg/M1dffwXHOnUSH5PpapSS43K8U+oe4bm8PJPZPmpzvYu/2ML/wRarCiYVNA/IFIkyDQEIJZKbeA489JAeo4TvNeWgX6khYSB4ziH14R1xqqy3TjSqcF1WZPMtwlG5nl/v3T8AGr7ulHf34MrM/IE27GcZ20vvfmig/F1WAwHrrYKUg3o9SjvbkdBZKzN17Gnjoe1VGp76AwGQcVkZx1oNy7n5IopVnLePmR6P/z1oTmOw6p9xYiEQqSigH34F6ks528PGIT3cRyHj6qOoVenwy05k0c9YrxVbRz0LG5pEGSk8tvEv9gkmLdu54hxc38vKns78evYCaNqqyvZDIzb29sRGxuLyy67DAqFQnBff38/1q5di6VLlyI1NdVtjSRC3TotnjqyB316Ha7MyMX06ATbTyKSUkPCkBkSjqreLtT0dpmvAhLj2sXHutqQHBSCieHR3m6Ow85KSMM3DZXY3FxLgbGF4tbh0WJPnCSOVQzD4O4J01Dd24WD7S34W1kJrk6hlQH8CT+wFDv1DpYpBFVc+UwjwaYpTWLbNKUkmvTqdeaRUqkRth5emu2RoTT9Bon0T6mRaqniTvy22R4xHr7dVb8SYssL8ftHavkh2VALOPPjRr4/PWcw96mOMwhHtHSD+KDyKLY21+IvU+Yh1c11FUyf24muNvNtAxJLI9UOjShuaqrBRSk5I1LsnWHqH9NFB5ZhzRcNhBccRm7/uWP7sFfThEcmzcL8oaw6KdaW1DKxHDF2NDDWc5zPFTnkvyOxY2i3Totvq43z4c9OcG5gQZDdwQtCe/Vai+XYDKjv7zHXu1iamO6yCtwDFpkWgqrU/MDdjotyAFDd04WdrQ24PH08/nJkD071dEIVqsT0YNsXYTzBZmD8xRdf4KmnnsLGjRvx4IMP4uyzzzbf19XVhbVr1+LSSy/F7Nmz3dpQYqTnOLxwbD/q+3pwRmzSiCuLxDnz45JRVd2FnS0NSM+gwNhky9Bo8ZkJaX4ZPOWFRyM5KATHu9pQ39dNBaZ4TMs0zaf5xaMWJJPj0UmzcW/Jdnx88ijS5CFYGEcXi/0F/wSTEwkm5VZ++/hTmKSWPdFxnDAw1mlFTxz5t4mtzWpPFWNHAw7T6LBUii8/6LZVHdnq6wgKTY0sItbNm5/YrRUfebJ8/2KBkmXBJ35g3KvT4d9DgcMXteX43YRCR9+GU4J4U5BsfYYd2gFcsXMDohQq8238VHlHmIJR077IMjBHc4IRY5F9Zq+mCQBQ1qGxGRjbO2J8uKMVQTIZxodFORy06TjDqPY/d+A3RybyG8EPZGudTKUesEi3N+nR6UbUFuDXJijvbndZf1l+UsLAWCd6u7WLJY+X7YJ6oA8Mw+DUUG2fH2qrMH2CbwTGNucY5+fn45NPPsHtt9+OVatW4cYbb0R5uWOTx4lrcByHtacOY39bMzJCwvGH3Bk0r9hFzNWpW2mesQnHcdg6FBiflZDm5dY4h2EYnDnU9q12VI4MFC0DfTje1YZEVQhyqJK9SyQFh+KhSbPAgsFLxw7gsAMFc4h38U/oxM4l+cGVJX76oFTVaD1nQCcv8OvR60QDWP62xAJje1KZHV2WyNSOQT1/xFh8Lu5o5uhKrStrOoHm9zG/JgS/lyz7xNaJv44zCIKTHl5K8mgrMdvCT5HvsrL/WDJlJvDnpEtlK9hiGXxKzQW2FqSGK5Q2X8eeEeNBgx4Ple7AvQe2j2iLPXRWim95i63vGn+ftnfNakv8742aN8e/V68TVIwfMOjROjCcxq0e6LO5/rW9LEf7+cF6v0SQbK1vTAH+L7zlo3xpWU27i29dfPHF2LhxIyZOnIjLL78cTz31FNrb293YNGLp89pyfF1/GpEKJR7Ln40Quc0Bf2KnzJBwpASHoqK7A40i68EFomNdbWjo78XE8Gi/Hmk1BfVbmmv9egkBVzIVc5kXl+SXmQC+akZMAv4wbSa0nAFPHdmD6p4u208iXieYqydyQscPrix/Q/gpzwMS8zb1HGdeDgoYGjEWOcm3DIy7tYNWg3IxjlYYNp3ADnLW+wAQnvg6Ot+Yn3LJv0hgCpD4rykVSPZZnHjbOpnWc5xooTHAvmBuNPjb5xdS8yTTZ8RapKBbsnaBQWpfMJHKfrDEH+3s1A46XnzLYHBZoOcqUhd7THot0videg3e96aNd7FExxkEVc0H9HrB/OYenc6FI8YWgbE9I8ZWPiuWt5waX3FLPd4qL3X4oomrOVSVOjQ0FH/84x/x5ZdfoqqqChdddBGdVHnIj03V+KDyKIJYGVYVnOHXgYovYhjGnFJK1amNNg+tXeyvo8UmKcFhyAuPRkN/D050tXu7OT7BlBmxwEaKHHHcb3Ly8Jv08ejRafF42S40j6KSL3GvDfWnsbmpRhBM9tgIRDu1g3in4rA5bZGfAtwjUWBKz3Ej5uKJBXX9FkHc/+3aiGt3fefAOxrFiLEd1az5tzr6OsIAdWQ/CQuIiY9M80dOjVXAbZ9A8wMLfhEr/ufR3N+LRw8Vo7ilAV/XncIV338tWD/WGfygpd1LqyKY+kcszZfPcl8UjHZbGenc1dSAy3dswH/rT9lsSzMvMK7u7XJqxNjdFzPsMWjQY2NDJfr1OosR0pFt41/UcvQClwn/N8Fy1Jm/X1lWqe7R2/f9sMfIEWP+tAvxegT725rxlyN7RFdqMAXa/IxXA8fhL2V78U1DpV37kzs5tVxTdnY21q5di5dffhkPPfQQMjIyXN0uwrOluQavnSiBjGHwSP5sTAiP8naTxiRatmmY1mDATy31kDMMFsb7/1xJ/qhxoGsfHMCRjlbEKIOQ54cF1fzB9ePycVZCGtQDfXjkUDEFx15m4DjU9Rrn+PXqdNiraYLWYMDfKg7hpRMHBEGercD4lZMl+E/9Kbw4tHQTf8SY/1zhiLEBfQbhyIqtk/zmAeM+42gw4Hxg7NjzHE1F7hcUDuIvzWTcjqAqth3b7tFp7RoR448y90qsG/zayRIcbG/BR5VH8Vb5IVR1d5rnIjurT1Ct17PLRJmYRoxt9VJlTyeu3fUdNtQbC0UNWAnG+D44blya6Mehi+jW8NOAK3s6Hd6vjcs1uT7jq1+vc2i7b5UfwhvlpXj3VJlkGrEpKJRaj9wR/LZZfhYdFoGx5TJKruotjjNmPRwdKiYnlRnD91nNSexqbcTr5Qfteg1+/9W7YI3p0RjVOsaLFy/G9ddfj8TERFe1h1j4sakaLx0/AIDB/XkzMIMqULvN+LBIJKiCcayrzSU/aP5sn6YJ3TotZsUkIsKOOUa+bmFcCmQMg+3qOp+ay+INu1obYAAwLzaJahS4CcswuDe3EEVxKWjs76Xg2Mu+bajEbfs34/vGKrx4fD+eKNttXtsVADT8FEQb82gPDi33UtFjXFapR2JUSFC0ysAJR1nsCJRMRWkcNeBkKrWjI3i2UmwB48ijKUDkBxH8oFFrMKBLO2hRAM22bp3WrnRcqYCcv+aqKXW7aWD4OzqaNZstX8uevnKHI50a/K281GY/HepoQZt2AH+rOIQ/HdqJmt7hQlH9EqP3AByazsf/Xr1dcQinhpYls5eWM7j82F3V04n/2/ktHjz4s93P2TR0EeBQR6vgAg7/u//44V3Y1dqIT6pOjHj+aFimY/Nfc0CvF3yvOlyYpWAAh4dLi/HAwZ9xqrvDof25ysrvGP83kX/xyNPrjVsaVWBM3OvrulN49UQJWIbBQ5NmjomRO1/GMAzmxRnTqXe2jlyvMpBs8fOiW5YilSrMiE5Ap24Qv7hg/UJ/Vkxp1B4hY1g8MHGGOTj+Y+kOqycJxPVMI4SfVB8HALxz6jD2DFXb3dQ8PMrFDwRsMc2PM6UX2pMuqQcnHEG0Y11aWyPXUrSOjhhzzo0YV/Z04r6Sn7DLSsHKn1vq8ZviDdiraZJcAupQRyuu3LUR3zdVO/T6xlRq2yE0PyDvkkh7t/xMTbY21+KFY/udOlEXK57mad83VmNDQ6XNx/H74kC7Gn89ts/83/16PY53tokGsiqZbMRt9jrY3uLQ4/UGzuVVqfdomqDjOBzvarM7dd50LVnJsiNGaC25OoXecsTYct1gfqDZ4WSxLzEd2gFzVe2drQ12ZXSYWF7K4Kd38/uszwWFylyFAmMfpOc4vHRwH94qPwQZw+KRSbNtlssnrrHAPM+43sst8Z5unRZ7NE0IlSswO2bsZINQOjXQrR3EwfYWRMiVKIiM8XZzxjxTcGxKq37w4M/mEUfiXv+pq8AVOzfgZ3U9VKxxZEvBDJ/I87OCHAliTIHWgEEPPWdAt96OwNhgEJxEuzO11tHiW419vdjUVO1wYPzC8f043tWG908fkXzMG+WlAIC/lZeOWAvVZJvaudUCnBkR459wd+sGzYGw6WICPzDu1Wnx4vFfsE1dh6/q7J/zuE/ThJ/UdT4RGNvLco9p5I2W9+i0eOxwMX53YJt5He2f1HW4a98WVHU7fqEvK8S4HGbzgGMj8jrO4PJ1jI/z1peu6rXvvTBDF1H69DrBPu3sHGJHWAaMllkJ/ItA3S4MLvm/KUc7NQ6NGFsrVtimHc7U4S/R5q05+SYUGPsYjuPwTNke/KviOCIUSjwzZR7mxiZ5u1kBY2JEDKIVKpR1tIoWDQgExS0N0HEGLIhLhpJ1/oqwr5kbk4RgmRy7NY2C4i+BZLemCXqOwxmxSZAx9PPvCTKGxR9yp2NFei569Dr8+fAulI+BInAff/wxlixZgilTpuCKK65AaWmpt5sk8M4p4/zHna0N5hFafnVVV4w9qfv7BL8lUieMOo6zmOvqO78/hztb8fKJEoeXBDI9vs7KfMAQmfGCxIBe7/J0YmeKY1kuA/VFbTmKWxrMqdT8sItfLOr0UNr8xoZKPFy6wxwgWlIP9GFV2W789dh+h7IQfFljf6/5sz4yNMf0r8f241RPJ8o72h3eXnxQCADHL+Do3VB8iz+XtaGvFxwnnPJgUtPbhaqeTvTqdOa09A7toMfXVe63+A5ZS6V2dokvW051d4r2kRTLKRrCUe7h+zS8paZcmQbuDDoz8jF9eh32apqRFR6Bl6cvQn6kbyx4HSjYoXRqA4BdmsBMp96mNo6oLh5jqfsqmQzzY5MxaDBgZ4CuV20qLDd/aMoA8QyGYXBt1kTcM6EQ6cFhfj+3e8OGDXj22Wdx5513Yv369cjLy8PKlSuh0Wi82q4+vQ67WxsFRZaqejrNJ5CuHtU51dNpV4Bt4AyC9ENb85j9jdRFZFMKspxlXB5EOJNuaZle+kHlUTxzdK9gmRsTftB0uqcTPTot3igvxaGOVvyr5gS0BgM2N9UIUowPtA1ng1hLMfcn/AsatX3dox6JTFSFOPU8HWeA3uDafUjNG7VuGejDuqpjuLz4G/ynrsJ8e+tAP+7+ZRvu/mUbjnQOr03f68XvcPBQCrugCj5nEATGlkssuUqnblCw3JotXbpBrKk4hFdOHMA7pw6bU7Kt6dAOoq63G388+DNeOLbf4WyW0aKFcH1MiFyBf5xxDrISo9HZ1geDi38IiG3zY5OxoaESxS0N+FVSpreb41GawX6UtrcgRqnC5Mg4bzfH5c5MSMWm5hpsba7D2YmBVU2/V6fDL23NCJXJMS0q3tvNCUjnJGXgnCT/3+/ef/99rFixApdddhkA4IknnsDWrVuxfv163HzzzV5pE8dxePzQLhzuaMUZvCyryl73rSVdYWcBIQMsqxT7zoixK5zsbsfM6AQc6mhF62A/vm2oxJyYRPNIrMYN2VeOpFsGy+To0+ucXoKpoa8Hpbw5sQfbW/BjUzXeLC8FA+NF5JkxCTjBS82tduN+5y3HOjU4MsqVDKKVKqeepzMYoGNdO2LMH1Vt6O/BjpYGcADeP30ESxLScbqnE/vamsyjxN82VLn09Z0VLleiT9834nfEdLFIybIOj8g7os6BbAgdx+HroWrnAPCdHX2o5zi8erLEnKEwPiwKl6TlON5QJzk8YsxxHN544w2o1WrB357gaOrWt99+i+XLl2PKlCm44IILsH37dsH9HMfh1VdfRVFREaZOnYobbrgBVVXe3/FjlEFQjKEUVn8zJSoWEXIlDrarPTJvxJf8pK4HB2BhfKrNtQ/90dSoeEQrVDjYrkabyCjBWLavrQlazoA5sUlQsJQsRJwzODiIsrIyLFiwwHwby7KYP38+SkpKnNomyzKj+nekU4MVP/wPhzuMIzq7PFQ88VSP/ZV1e+xIufZXn9WcxNunDuGRQ8VYffwXHOnU4B+VR936mo6MWoXJFQAcX/rKhAMExcHUA334rrHKfN9WdR1WHz8gmC/d5YfnDg9OmokohXTgeqijFU8e2TOq14h0MjDWg3PLck0m+9uazQGwjuPw6OGdeORQMb6sHR493usjWYThQyuFWAbGHdoBMBje391lNCntlungUkxBMWDMYhztMcL0zx4Onx0ZDAa8+eabaG5uFvztbo6mbh04cAD33XcfLr/8cnz11VdYunQp7rjjDlRUDO/k77zzDj766COsWrUKn332GYKDg7Fy5UoMDnq3IhrxLhnDYm5sEnQchz0BVp3alEZ9ZvzYqEZtScYwWBSfCgOA7erAKrBmTqOOpTRq4ry2tjbo9XrExQkzSmJjY526SC6Xs4iNDRvVv3ZGi6ruTnN1YU85xhshtKVHrx1zFxszwyIQHxSMI50afFNfCWB0lYod0WVlGSFL0UFBTr+OKQjZO1TNPCciEgBQPpQtkBkWYX6sPxXcEjM7PQWJoaFufY2UmAjbDxLByFgwCtdf0DV9vqZBkIVJxilk/BT5tFBjwTBfWegxJjgYwMgpGYMGA4JkcgQr3BMYO7I8lyW5EzVNpsTEIT0sHOXdHRgIwqiPE7GxYVAobP8+ObWX8auMWVYccxd+6tb48ePxxBNPQKVSYf369aKP/+CDD7Bo0SKsXLkSOTk5uOeee5Cfn4+PP/7Y3O4PP/wQd9xxB5YuXYqJEyfi+eefR2NjIzZv3uyR90R8l2kOZvEYmSdkj/q+bpzoakdyUCjGh0V6uzluc+ZQdeqtAVSdul+vwz5NE4JYGa2FTtyC4zgwTgR+Op0Bra3do/q3ICIRaxcvw5o5S3BxarZ52+G8kZNgFwZsueFRYAB0OTDfsl+vR6hMMaaC41iFCi9PX4SrMvMwPiwSj+TPxvqi87Eyu8BtrxkzNOLY0G1/OqcSrNMXTWbwpp0oGBZL49PN/70gLhlvzTwLb89aYr6tMMp/pyD1dQ4gWCIsODc5E5FDQeToXkTv1CfRN6hF34DrB61ilCrB78TCmBTMHDpGLoxPwSvTF+GVwoWCxyi8XLgyyOIzUvIywFSsDKybwrJ4VbDTz3122nykBjt20SUjKAzzY4zTYv686+dRHydaW7uh1doesfaLOcam1K3bb7/dfJut1K2SkpIRc52KioqwdetWAEBtbS3UarUgHSw8PBzTpk1DSUkJli9f7lRb7R2qt2cbrtjWWOXuPpoRE48QmRy/tDVjgNMjWOYXX5URHOmnn4aWqDorMQ0y2dhNtc2NiEJqcChOdrejob8H6WHGq8Fj+ftWolGj36DHwvgUBCuc25fpd8m2QOij6OhoyGQytLQI1yHVaDQjRpHtNdpaGizLYEpsPFpbu5EfEWNeXmdBXAo2DqW85oRFmVOtRytGGYTU4DBzIZlIhdKudUODZLIRRXL8WahMgSi5Cldl5OGqjDwAxs+ykBdMTgiLwsnudpe9ZmJQCDq0jhUAUjAsgmQyc8GkCLnS7ufPiI43p0jnhEViKq/2xpyYRBgMHNKCw5AcFIqG/h4UxaXieFeb26oCu5MMDEIl0nBnRSfi6oyJuGHPD+aUY2fIwSBoaM63I3QGw4gKx64QLldCDhZdOuMIcXZIBP44cRYOtDdjZnQCgobO/TJCwlE2lN6bGx5l/tsbwmTCzyhMroRmaGpYkEwGJeOerI0EVQiqepybO58ZHIEYZZDVKvYAECpXmFPEs0MjkR8Rgy9qytE62A+93uDUxVdH+cXZvrXULak5wS0tLYiNjR3xeFOql+n/XZUOBgynhLlKdLR7U1rGAnf20aKUNGysqcSxwQ4sTfPvIly2+onjOPz0izEwvih3AmLDXbcf+6LzsnLwztFS7O5qxtR04xXJsfx923fK+Jt27rjsUf9GjeV+cpWx3EdKpRIFBQUoLi7GkiXGkTKDwYCdO3fi+uuv93LrgLmxybgkNQfhcgXCeCNcueHDgTELZlRVW4NlcuSERZoD42iFys7AWI4Bgx59/hcziZIKorJCI3B52ngAxjm4rgyMVawM8apgwVq7tshZi8BYMTIwDpbJzMFsckgoGnqNJ/AFEcPnkTOiE5AZGoGrM/PQ3N9nzj4CgEfzZ+N4VxvOSczAf+oqUGNH9V1fo2RlCJOLjwqHyhWIUqqwunAhVKwMv93vXGalgpUN9bVjgbHeDVWpAeNFkkRVCCqG6gUkBoWAYRgsiEsRPG5caKQ5GB7v4cBYxjCC+dURFiP3YXLFcGDMyiB3Uw2RhFGMGIfI5YL56zHKIHOb+VKCQs2/FzmhkUgPCceHc38FFSvzSFAM+ElgLMVW6pbYfZa3Wf63s+lggDElrLOzz/YDbWBZBtHRoWhr66Gq1BI80UezIuKxEZXYePoUpgf757JZ9vZTRXcHKrs6kRMWifBBGVpb/e+g7oi54fF4B8CGqlO4LCkbMTFhY/b7pjXosa2+FkqWRZ4y0unPln6XbPNkH0VEBNs1X8odbrzxRjz44IMoKCjA1KlT8cEHH6C/vx+XXHKJV9rDJ2MY3DyUynuUd/I6KzrRXEgnJTjUrmVDpITI5IhVBQNDI4mpIWF2Vb8OksnQp7f9mfGDNE8KYmV2F8cBrBf5uWFcPgDgy9py822hMrl5XqSCYZ0q4qNgZYhUqBwKjBUMCxWvoGl+ZAxq+7qRFRJu/twmhEWjtMOYBTE5Js4cGMeqgnBLdgFK2lvMq1RcOTQ6zpcVGoGsUOP82ThVsDkwlgoAfJGSZSU/U9PtOUPTrBzdV0wULDs0CutYhXCtG6pSA8Y5xoVRcdjUXIOliemS5/9nJqTifw2nsTAuBTFK5+esOyNUphBcyLG8eMH/zFQyuSC12pUcTaWeH5uM1sF+zB1aJSCKV3gtXhVs/l6EyRXmOd4ZIeHmwDhzaG635YUAd/OLwNiZ1K24uLgRj29tbTU/Pj7emOqjVqsRExMj2ObkyZOdbqsrT4YMBo5OQG1wZx8VRsZDxcqwt7UJfVqdx4qKuIOtftrSVAPAuOxEIOxzSapQ5IZH4URXO451tGF+TNiY/b7tb21Gn16HebFJUDGyUb/HsdpPrjTW++i8886DRqPBa6+9BrVajUmTJmHt2rWCY6kvmBgejWVJGQiRyZHMm9/GH+11RrBMjoyQ4cyLjJBw7IDtehRBrBxK1na14gi5Cn16YeAXpVCifZRryNri6Ch6uB0nrPx5qdHKIPQM9XuwTA6tA+nQJgqGRYiDU5uULAsV7zkTw6Pxm7QJSAgKxkU//w8AMC40whwY50VF44daYzaigpXhotQcXJRq/3IxCUHDa/XGejkwzgmNxO/zpuPT6hP4uUW64CQLBjJGGBjz9znLgPmZafOx5tRhBDMylLQLz7WtUbAsglnHQ48+vXvOwcLlChTFpWDC7CgkWFljeWJEDN6aeRaSgkKxaeh8CXD/0kiAsaCdXM+aU9jDFZap1MJaCjI3zYGO5/WP5Si2mGilCo/kzzb/N/+CQizv72ilyhwYnxGbhMzQcCQFhXhtdR6/mEjIT90yMaVuFRYWij6nsLAQO3bsENxWXFxsfnxaWhri4+MF2+zu7sbBgwclt0kCS5BMjlkxCeg36FHS7pklybzBwHH4SV0PBsCi+FRvN8djTJW3t4zxIlymAnKWqWGEjMY111yDLVu24PDhw/j3v/+NqVOnertJIzAMg99NKMTK7MmCNL6zhlJgM0LCndpusEyOCWHG9VzD5QpkhthXaVclk0Fpx8leGO/E99bsybggZZxxhNrN7DnBFwZOtpfeieA9hj9iFOxkhVvFUFq0Y8+RIYjX7yrWeKFExrD4fe50zItNMo9qAcCFWeNxTdZEvFS40Kk2xqmGT/odbaurKWUsskIjbC7RZxpl5KfHR/I+u0iLz3piRAw+PPs8ZDtYqFPJypzqkx69Fjo3FPsNVyjBMAySgkLB2sgWTQ8Jh8JiVJ3/t7sSfeUMI7goEG5lxDhIJnfbcowJQcO/QaEy25WvVRa/dfziW+m8395oXpAcrlDi0rTxmO/F8xW/CIwBY+rWp59+ivXr16OiogKrVq0SpG49+OCDWL16tfnx1113HbZv34733nsPFRUVeP3113H48GFcffXVAIwHzOuuuw5/+9vfsGnTJhw/fhwPPvggkpKSzPOmCDEtbbPDypVWf3ekUwP1QB8KImMR54GTL1+xMD4FLBhsb66Dzs1XfL1FazBgZ2sj5AyLOTGJ3m4OIV6jYFm8MeNMrJ19NmbFJOKlwoV4dNJs208UESyTI1YVhA/nLsPrM84UnJhaqzodxNoZGPO2d2FqNm7LmeLUcieOsidVkp/WGGXHmrSCEWNecMUf9Y1XBePZKfNx13jbF1eUrMzhYpiWwTT/77MT0/Fo/hykDJ20h8kViFSqcFVmHnLDox16HZPJQ/OS58Qk2vV5m9vlhhEyxVAhJtuBsfFxggsfvM9X6vmWwY/t9rDmglb2CpMr0KfXo7Kn06HnWWuDiWWQaY9Q3kUdfloz/+KBK9OZ5QwL1dD2ZAwzYv/ntyGIlbmtajb/9yHaju++ZQ2C1ODhLBt+kM0fSQ4dxZJQruJwCxiGQUpKCpRKpeBvd7OVutXQ0ACWtyPOmDEDq1evxiuvvIKXXnoJWVlZePPNN5GTM5wOc8stt6Cvrw9//vOf0dnZiZkzZ+Kdd97xyPsh/mF2TCLkDIvdmiZoDQa3XYnzpm1DI6aLA2i0GDBepSyMjsMvbWrsUzdigty59RV9WWlHC3p0WsyOSUSIlfmAhAQC0xxQAMgNjxYsN8mf52aLaT1P0wldM2++q5JlJecHG0eMh48hcoYVrfBbFJcCBcPiYl76rjtOdhfFp8LAcbgmcyK2NNciJTgEL58osfqceFUw6ocqy9ozYhwpNWLMO7lXsTJMiYqza8RawbJQOjimY5xjPPx6YiOWcapgvDZ9MeKDR39xeEpUHD6ddy5ULIu/Httv9/NmxiTgZFc70kLC8Euba7LUTOcstvYf037JD4ztuVDiaJCrZFmHL2y4eomzULkC7VrjHOcIJ9b85Qd84RYXEkzbnRebjG3qOtwyaQreOXpoVO2VsyxUnHGflTHMiKCb34ZQucJtVe/5+0acKhhVInUV+KnlloFxRkg4rsmciHGhERjgzU/nB9n2jES7m8OBMcuygnV+Pbnm7zXXXINrrrlG9L6PPvpoxG3nnnsuzj33XMntMQyDe+65B/fcc4/L2kjGlhC5AtOj47FX04TSjhbz+nZjhc5gwI6WBshEqjAGgjPj0/BLmxrf1VRiwjjfSwUdreIWYxp10dC63ISQYfxCOxEKpdXAmF9EyTIg5M+FU7LCwln8uXgqixHjIJkM3bqRwWBGSDjOTc4S3CazsQSYZTEreypvn5WQhtlDmSTXZk3EXk2T1ccDxn5YGJeC0o4W8yirNfwRY376pGVgDAByO5Y5UzCswxeoLUeMpUY5s8MiXbbUmimI4H/etj6TMLkS7805B+2DA7hm93cuaYcp08BWnylERowvTMnGj001VqdY8VN85QxjM93ZmVR4eyq+OyKMFxg7N2LMC4wtMiIqh/4+LzkLd+dOQ3piNN49egijyUmTM6z585Ex7IgsBP5nFiJX2Jz76yz+RRCp/SlEpsCgwdi3loExwzD4v4xcABD81vBHjH3hAv7YG/4ixMUWDAUVpiBjLDnQrkanbhAzohM8XvnPF5wRmwwVK8PW+hr0j5G1RU30nAE7hy56zI1Jsv0EQgKYrRPkZF5BJcsUYv5JouVJK390J8iiYqzUyJnYciu2UqmVMunXlWI5EmfPyJyCZXH/xJn4cO4yu0b+gmRyXJAyDldm5GIcb8Sen0qtlBnbKvUeWd7sTQUrLL5lTyqvgmUFAZyjo5yjwR+ptVU8yvRYfjqpPaPyVrc5tB/YSukWGzHOCo3Ap/POxe9zp0s+j9//IXaM9skZx0eMk4Ncu/xdmGDE1/HzHv46wvyCXfyRzxC53BzkjXailoJlYRgKdhUWgbGMYQT7c6jFHGN3pVXz15Tm/25E8c4jrVWt5+8DgsDeg99NKRQYE2LD3JgkyBgGu1ob3HYlzltMadRnBlgatUmIXI4zYpPQq9Nhd6vt0RJ/crijFZ26QUyLihOs50oIGal9cHj5GLETd8HcWotgRSkIjIWnVaY5noDIiLFEsCJ2MmtzxM8iqOW/jlwi4LUMRKUCU/6zFQwLGcM4VPn2tpwpuDpzoqBN/PczPGI8fBv/NfkB5fByP0ZSQRa/DxWsTJCi6Y65vFLE3qcU00gqPwMhxo65nJYEn5fdqdTG1+SP8rEMgzC5wuq+x/9sbM0PVTAsGItAzp69aFXBXIeDaUv8iyvJwaGYHhWPuTFJSA1xPOjmj2rmhA1f7OFXbU4Ldq6wnxg5w5oDUQXLCn5jVKzM4jMQfl6uruT9zJT5yAwJx7VZE823BQm+18N/W7vMxv9Nmh2biJSQMKzMLrBZAM0TKDAmxIZwhRJTI+PQoR1EWUert5vjMv16HXa1NkLFygQVOQPNmYnGCrVbx1h1alOGQyCmyBNir0vTjPN4zxyqVA2IB1usYFTEMjDmB6GsZFBnWZVaarkjsUDE1oixbChgFduGVGBj74ixVEDrKH5wJhcZZReMrrIyyb/5n0+IRDDGH0FXMKygrz259CK/72y9rljg7MyauZb7IyC1Tw1/3qagPFyuRH5EDM4dWrPZFkdGjIdHr4fbwtpxgSU5OBS/5k0tYJ2o/2wZTD41ZR7+VDDHqaWN+H3JHzGOUqrw/NQFWDvrbJfWo5GzDLSc3vzaltMx+NMVQmQKKHkX4xwp/maPqVFxeHPmWUjjFdLiL4UmYxjzqK+1Yq5pwWFgwWB2TCJilEFYv/wiXJo+3qVtdZb3x6wJ8QPz45JxoF2N4pYGTI0SXzvb3+zRNKHfoMfi+FSPppb5mpnRCYhUqrBP04RO7eCYSCnXcxyKWxrAAjiD0qgJkXRjVj5+nTwOndpB/KvmBABjOp/G4nEsGPx91hL06nQjUp35J8FyhgXLm1ccZBHU8edXSv3WiAXB/CCGAUbMVJUxDOQMC/3QCbRSkE4pQx9GFgSzNmLMny+qYmXmYjmOViHmU0qkeJpHjBlhsNxvek2ZDBia/q2SyYWBscSxS8Wy6DG9FssimOEHE5473lkGZPzbLYuN8QPnS9Ny0DogXP/Ych65tdc0fV7mEWNBCr9xHjzLMIBpPx3qE5Zh8Py0IrveGyBMRZa6SGGaW23qi2CLQEpnIxGPZRjBkj4yhjGnFtuLvz+5opjXS4ULwYIRfA9VrAz5kbEjHnt2Yjo2NdVgdkyiXfP4LckZ1hzAtw0OWOxTcsHFk3CFxYjxKAP0+bHJqOvrxnKLmgf87yr/N03Osnh71hJU93QJih1aClMo8dn8cz1Sbd9RvtciQnzQGbFJYGBcE9bRH2Rfta25DkDgVaO2JGdZnJ2aAT3H4ecxsizX0U4N2rQDmBwZh0gnUvEICRQMwyAxKEQ48iVygt+n1yElOAzjw6NG3CeY88cyghEtfhAWJBOm9ErNwRMbbVKy1keBZEMB+fA2hCerYiwLevH/WyEx0jmawFhucQHBcvv84ltSr6liZYI1kKVGKRUWQSg/RdgXUqnFPkN+u24aV4AHJs4cEUw7+poK84jx8HbEMiKcXV4om5dKLDU6ORycG+8/JzED06LicGVGrs0g1fRdOicxAwURMbgvb7pT6baCizIuGM3NDY/G+PAou4q6/S63EK9NXyw413LkHcgZFjdkTQIAXJKaM2LEOJYXGGeGCNesFvtMHJm3HqFQ4s2ZZ+GClHGC2/mfG/99yxkGMcogFEbH29x2kEwu+dvkTTZbVFxcbNeGtFot/vCHP4y6QYT4omhlEAoiYqEZ7MeJrjZvN2fUurSD2N/WhHC5AtPHWKVtZ/wqPQvA2EmnNs0dXxRPadSE2EMwT48XbJlO/zp10pVxBSnCFinNlgEeP+jmj7bJGfGg0cRWOrNxxNh2KjW/bdZGjKXmTVsW+XKEUiI4M72u3K5UamHxLalRSpVFf/EvZzMenMfIbwf/QohYICqWai3IRrA7MB55UUQhGOEb2WfOjtyFyBU4KyENC+NSbM5RN72XULkCT0+Zj6szJ9oOjBnT68jx12lFOCshXfQ5ttKrlS66uGNJsG/KxN+/gmWRHRZp8Z2y3gZ+XypYFosT0vD2zCVYkTFB8P6DZDLBnOdYVdCIKvkmr89YjPfnnGPX+uMmUp8PI5KGb3y87wW6jrL5Dm6//XZs27bN6mN6e3tx66234vvvv3dZwwjxNfOHqlOPhVHFHS310HEcFsSljMm1mR01NTYeCapgHOnUCNYk9Uf8Jbjm0/xiQuzCP8FNCOJXmjWOxgxIrE0MCE8eZQwjGNGyDPD4I5z89Uct0xFHtE9mfeTQWBCLEX2MVGVka3OMpUaoRxNU8ANayyJPgGV1b/E2q2TCdPQQQYAt3u9KVoZ5sUlYHJ+KVQVznW6/M/jBMD91XiyA4K+1PHwbv5iRfQF9sMgos6BvRV57NOnF9+XNwB8nzZJcbst0UUKsAJjtwHjk/WLP4QelYvuokrE/KHWEI9kUjszVt1zvHADSQsKgYGWCoNT0mh/NXYZ1c3814rn8NoXLlYhXBds9Sg/YdzEmiLffjoXzSZvvYOnSpbjrrrvw448/it6v0Whw7bXX4sCBA3jjjTdc3kBCfMWCuBQwALar6/2+OvXmoRHFJbyCM4GMZRhz8Z2t6jovt2Z0Dra3BPQSXIQ4g3/Syl+f99H82UgOCsVdE6ZJPpexGKllJUZTVDKZoHIvvyCUoLKr6IjxyBNlwQkswwoKGVmOmA63YeRIrdh/S6Vjjiao4J9k8wNj84gi7/X5FxCsFd8SrIcssYyTkpVBwcrwwMSZmDW0brOnhPGyAoIF1ZhHBidi5xX8/uZsrEttwu9b02sK0/2N/cx/OVvrD9uDv/+Y3h+L4fcltu/YCvbF+kksWOZXfxerwi5W7M0VLANPa5QiFywA8bRqe1O/TRdYopVB5pFgqQthptttBcaWNRNssXaxzR/ZfMcvvvgiLrjgAtx7773YsGGD4L7a2lpceeWVqK2txfvvv48zzzzTXe0kxOtiVUGYEhkHzWC/X1enbujrwZFODZKCQjApIsbbzfEZZ/GqU3N+fOFjm5rSqAlxFH/EaWJ4tPnvvPBovDP7bLt/K0NkCuEcY95oShArF5wc80cTVbZGjHnPMwUG/AE6GStMpZYKZoPsHDG2p0L0aARbLDEDCN93iFy8wJbKYuklfhqpMK3VPamzjuJ/xoIgQyR+6NNrR9zGTwG297AktpxVQaRx/01QBYsGmxqLQl/O4O8/w/soAz03vNSQJVtxlFgQzA+6TVQ20nmFWRyuG9VUsTKcEZuEJQlpyA6LtPpY4fQG66PHUunQlsRq3kj9xphex1bwKlULQIrlBTp/Z7M0H8MweOaZZ6BSqfDAAw9gcHAQF198MY4dO4ZbbrkFMpkMH3/8McaP940y24S405kJqSjtaME2dZ3fVqfe3FwDAFiSkO7RuVa+LjM0AuNCI3C6pxOVvZ0YF2r9IOeLBvR67GxthJJlMTcm2dvNIcRv8E+mx4VGYFlShqCojb2CZfIRcwBNVDIZMpXG9U3PiE2SDDjFTlyVNu4fMbdZYgTaWgAhlxil4o9yu2qpIwNnLPy4TV2HZUkZxtdn+K85fEIfHzS87ItKJhee7EtUx5VKJ/U0qQsR/E9wVnQC9rU1u+xCtTBjwfjZRSpUeG/2UjAMg7+U7QFgLHY2PjQaRzvbEKkcfXYR//MzVZtmedXNxYMmx1OpTTfJeZW9bc3FFsyfd+FyXQzD4LH8OXY9VpDFYFFTYBDCauP2jhiLncLxH8/PGjMHxjbGRPlrokutgc5nrW6BP7K7Zv3jjz8OlUqFRx55BMePH8e///1vJCQk4L333kNSEi0HQgLD/Nhk/K38EHa01OO3OZMFV/X8AcdxlEZtxZkJaTh9+gi2Ntdh3Dj/C4z3tTWhT69DUVyKZFEaQoh1IXIFfjeh0KnnMozl6JQw+E0KCsW6ub9CuEKJQ+0t5vtCJSpUm7fL+1tsRMw4x1gihVIiSLQ86RUE9PyRbt4IpFiatzPC5Arcm1uIW3MmI3KoSi7/9S1HiU10nAEMwyBCrkSnbhBxqiDRx0mNHnuaZcVyE34K8WP5c9CuHRBd93VArzP/bRBJpZbxlgbj32bCT9E3zZ03bYcBg4cmzsbntSdxWdroB7eEI8ZD/897n2Jz46VCZc58/8jAzPR2+QGlUuJCkNhru3ptX3vxv4dhCgXQZ/xbLJi0rKouhb+Osgn/Ygz/4p55CoatEWOJKRVS+NvzxSrTjnLozOmhhx6CSqXC3//+d0ybNg1r1qxBZKT/nTwS4qwwhRKzYhKwq7URv7SpMTfWvy4KHenUoKm/F/kRMUjizaMjRovjU/GP00ewXV2H67MmObUshDdtH5ofTWnUhDjuo7nLRr0NrcEgDIxlIwM001xAlUg6sRTTurSAeDAhZ1jJVGr+yapgxNjiJFZsCSVAGPDw2+GMv05dgH1tzZgeHQ+WYRDJLy7Fe51QQQVnGa7OzMMOdT3GDa2N+tass9DU3ysICoWj83Le8713sj4uNAK/Ts5CfkQMqnu7zbdbFlsTC4oBoJ9X9E0skzpUphhRMZ0fTIqOuPK2F6sKwm05U2y/ETvw9zNzurONY6jURR7TKLNEPS/z40wi+YXNrD0J3ssg4L9uhHy4MrRYMKmUSLs2uSV7Mj6oPCJ6QYM/lz2Wd+HI9P1yZI6xPRcRZA6OMPs6m4HxGWecMSLdkuM4VFRUYPny5SMev3PnTte1jhAfdGZ8Gna1NmJrc63fBcY0WmxdnCoYkyNjcaijFWUdrZjiR+nyvTot9mqaECKTe7zADCFjQbQTqdOWBvR6i1Rq/hxj4UkmPziSWtPYpI8XIJmCCX6gJGMYyVEmYYVn8SrOpm2YWC6nFKcMQstgPxKDRo5QOaIgMhYFkbE2H2e5fu9vUifgyow8822RChUiFSrB8on8UW5fGCEEjMHI7eOnAgA+qz5hvj1GGYTTPZ02nz/IuxAhVvsiRC4fERjbCnxM5/SurqUhrM4+cnRSrLiYWAwrY1joOP2I51t7vWje2ryhImtb81/ZW8VTpVKcxS7c2BoBvyg1GxemjBOdDscvXBerHHnBxdbFCntHq034FzcCYsT46quvpnmIhPDMjklEsEyGPZom9Op0fpOyOmjQ42d1HRQMiyJaxkfS4vg0HOpoxVZ1nV8FxrtaGzFoMGBhQqpXTwQJCWRaTjhiHCQ4yRR+Ly0rJ1tjGvkJlsmGCxuBgX7olF/OstLFfSTm4Y6YYyw5X1eG12ecifq+HmQNjdi6Gz90sTZlSSp9PMTKBQlv4c9tjZcYIbZ0Wfp4HGhX44asfLx6sgSAMWPANCNVbE1ivmCR+02jua4ODwVVqUVSqbWcwfIpovGFICVbLJVa9PUY/GPOOWgZ6MO/a8qttm20WQ/O4n/Hwy0yIizxv7NSwalUbMY/J+WPGJvYunASIsi2cHTEOAAC47vvvtsT7SDEb6hkMsyLTcbm5lrs1jTgrIR0bzfJLntam9AzNP80jJbxkVQUl4y3Kw7hZz+bR24qqrYoIdXLLSEk8Nw0Lh/vnT6C81PG4Z2Kw+bb+ZVqLUdT+EGNeqDP6vbPScxAj06L+XHJeOHYfgBDIz9DUYKMYQQnpfzRYIXEfFt75xgrWRbhCiXyPHjc4PeUtVErqYJj6SHhw8/34hxjPn6QsSQhDRsbqzDbRnZPUlAo1s5eCgB49eQBAMKiU1J98/SUeTjQpsYUkdF5U5eJVTQeDctA1fT/pkBeZxgZGMtEAl/+dqwNzPG/TzLGmI4epwpGRmg4dmsaBY/lXzRypqieK0hNbxD7DKVqBNiDH9hGDC0hxb84ZGvEmB9YWwuMTb95v07JwsbGKgABEhgTQkZanJCGzc212Npc5zeB8SZzNWpKo7YmTKHE7JgE7GxtxO7WJhT5wXxd9UAfDra3IEYZhMKoeG83h5CAc2naeCxPykSIXIH3eCee8apgPD1lnug6sfxA7tLUHPzS1oy7JdZLVrAsfpM+AcBw8SF+GqqcsTJiLJFKbRl08P87aBQn5q4gqJDNWBsxFk9b54/Iuqpg2GjxlwnKj4zF32ctQbxI8SQphqHPPYiVY9BgTJ8We28cgGlR8ZgmcSxgzCPGrg2M+VvjzzGWMSwMnEEildr6OsXW5kjz7+PvBxemjMP25jr8OiUL750+AsDYT2tnnY2jXW2iFws8QS4xEm5rxNjRi/P835VgmRyfzTtPsiK6GKkpCZYuTRuPi1KzhanUYyDDmAJjQpxQGBWHKIUKB9qa0TrQL5qu4ks0A/3Yr2lGpEKJGdEJ3m6OzzsnMQM7WxvxQ1O1XwTGW5pqwMF40cNWmhQhxD1Ma+panrBLBSj8E9jc8Gh8teB8u6aumdKn+SfXxjnG/GBS/G97KzSrLFKpPeWpyWfgf/WVWJ6UaQ5qnBkxljMsnpu6AP16nc9MB1SxwlPulOAw57YjkwFDxarFLlrYCnj5xbdcScdLlR5O9weyQiNwsrtdNH1c7Hhlbyq1sFI7b76xMgjvzjGOsg/vQzIkBYd6tegowzB4b/ZSKFkZvm2oNN8uVgxMrJCZI6/D345lporY586vbs7//bL13becjiFVRM6fUGBMiBNkDIsliWn4srYCm5trzFfyfdUPjdUwgMPZCeljojiCu82MSUCMMgi/tDWjub/XvMyFL+I4Dj8OZQOcnegf2QuEjGW2RrxMLNMp7Q3gDCInsAwYyVRNW2u8ilFJjDi72/ToBEy3uHhrrVgSv3q1YP40yyAvzDsjg1JG24+mgJc/b9iZqT6m/cbVxbe0vFRp/r788KRZ+LK2AisyRp4nie3zlushS2FsVN/m80bWgxjTuQS/vWJt49/WoR1w+HUeyJspuFBhi5xhoRcpeGZvRffXpi/GjpYGLEn0/4xE39hTCPFD5yRmAAB+aKp2+QHGlQwch++G5n8sS8r0cmv8g4xhcU5iOjgYP19fdqyrDfV9PcgLjxbMqyOEeIegOq+doz2OjGqajjf8wIBhLOYVS6xF2qvT2vUa/JEgpZdTka2d4IfLh+c98+dRjsXMGVMqtUqisJq12/jOHJpOdUFKtusaB+nPKSEoBL8dP0W06rtp3rFg9Few3rN9/CUwNpHZGJVVMKx5CaoYJ+ZEL05IlbxQLna6KhyhFr/dmuywSFybNVF0+S1/4xfvoL6+HrfeeiumTZuGefPm4fnnn4deb72qXHt7O+677z7MmDEDs2fPxqOPPore3l7z/bt378btt9+OoqIiFBYW4uKLL8Y333zj7rdCxpD0kHBMDI9GfV8PjnZqvN0cSfvUjWjs78XkiFikhTiXuhWITBc+fmyq8dryDvbY1ESjxYT4ElvryPI9PWUenpx8hkPbN6eSWmxaOAolXnyrW2tfYCxYN9mHA2PhexamUvua0R5HxJY2El0D10a6/LlJmXhjxpm4KTt/VO2xxC+uZW9Aa/ps+cGhzIHvj4mtlF9fmWduwn9fYvNyWYbBq9MX454JhZgXl+zS1xZLtZdLZLn47pmP+/jWniJCr9fjtttug1arxaeffornnnsOX375Jd544w2rz7v//vtRXl6O999/H2+99Rb27t2LVatWme8/cOAA8vLy8Nprr+G///0vLr30Utx///3Ytm2bm98RGUuWmkeNa7zcEmn/OW1cuuBXyRlebol/SQoOxbSoOKgH+lDSpvZ2c0QN6PXYPrQE1yJagosQn2BvKjVgLJLkaN0H02gTP9Bihv5nIucVrOJXqS2INqYXF0TEWH2NPr3O/LfegZRMV7pwaERzpp39w+9qXxwxHm2xK1Pgz1/bWHQNXCvFygBjdkJWaITLR/f4yzGZdk1bmRCm9GuVxGi//YGx+HvJC48GAJ9belFszWc+jjPO1z0nKcMj+7JYRXFjOwIvNPb5wPjnn39GRUUFXnjhBUyaNAmLFy/GPffcg3Xr1kErceWzoqICP/30E55++mlMmzYNs2bNwmOPPYavv/4aLS0tAIDf/va3uPfeezFjxgxkZGTguuuuw8KFC/Hjjz968u0RP7coPgUqVoaf1HWCEwlf0TE4gK31tQiTKzA/lgInRy1LNKaem1LRfc3O1gb06nU4IzaJluAixEcIT3pdf1JrOonlB6wMhKN0/BFj/pzUxSnpeKGwCI8XWB+l7tMNH88cmavoSrfmTMZ/is4XTcHle2TSbFyUmo2skOE1ln1xxHjyUDXkZYnOXaQ2pbTzA9Bzk7MQrwrGHTlThh8n8857548YG0QKxInRiiw7JZMI0qyR+ryfmjwPf526ALN8rOgo/z2KXTAxuHGsVqxPBanUDIMbx+WjICIG48Oi3NYOX+XzxbdKSkowceJExMUNX+0pKirCqlWrcOrUKeTl5Y14zoEDBxAVFYXJkyebb5s/fz4YhkFpaSmWLFki+lpdXV3Izc0dVXtZsVwXJ7fhim2NVb7SR2FKJYriU7CpqQY7Wut9bg7vpuYa6DgDliRmIVjh8193r7C2Ly1ISMbbFQrs1jSiQzdg8wTN00xrB/4qOdPt3wVf+c75MuojAlimSbo+SDHNwdQaeCfPjHDuoDCtmF+llkFBZCwMBvET75nRCdjf1oyCyBj8r+E0AIguNeUp9oxqzo9Lxvy4ZBxqbzHfZm9A5UmRChW+WnC+0wUwTfNk+UWuohQqvD/nHADA3yoOARCvcuwJprmwUQoVr8Kx9eeYU6ktCqeZiAfWI/dHqQtQIXI5Cry0PJM1QTbS3V29xjQf/0KZCb+OAAsGl6WNx2Vp493WBl/m82fKLS0tiI0V7tSmILmlpUU0MBZ7jlwuR2RkpHnE2NLGjRtRVlaGv/zlL063VS5nERvrujmc0dHeKyvvL3yhjy7PzcOmphpsVtfiyoICbzfHzMBx+H6/sXDUiokTERtJ84utkdqXLsjKwT/Lj2FbewNunjRF9DHeUNHRjsMdrUgLDcPZ48d57ETQF75zvo76KLCxgqJYnhkx7tZq0TLYZ/5vhcSomzHQlD7pfnjSLJzu6cTE8Gj8FftHbMuX8QNOXxwxBuwvZiRGKZJKLRZAeXJ5Lb4rM43n4+clZ+GPpT8DsH1hY3jEeHSp1L76eUsRC0753DliHCIWGPMCdV+8qORJXguMX3/9dZvzhE3zfaUOLNYOOGL3cRwnevvu3bvx8MMP4y9/+QtycnKstskanc6Azs4+2w+0gWUZREeHoq2tR/KqbqDzpT7KYEKQFhyGUk0L9lTWIic8yqvtMdmnaUJ1dxemxsYj1qBEa2u3t5vkk2ztS2fHpOETHMMXFSdwflymzyx39c+TxvUZf5WYiTZNj9tfz5e+c77Kk30UEREMhcI7J8DEOnefWJqCAA7AWQlp2NJci2lRcQhXKPH8sf343YRCyfm2xr+l980gmRyThuYf/2XyPGxsrMKyJP+oT2GroJG/448Y3zyuAMe6NEgSWUpQbL1gTwiTK3BLjjFT0/TzZ+tTiFMFo7avG4mqEFT2dAKwLF5n32v74pxya4JsBcZuHDEO4S1xZqJkhSPGgcxrgfG1116LCy+80Opj4uPjERcXh7KyMsHtplFfy1Fhk7i4uBEjwzqdDp2dnSOes2fPHvz2t7/Fww8/bLM99nDlyZDBwNEJqA2+0ke/Ts7CmlOH8XXdafwut9DbzQEA/Kf2FADg/3LyfKaffJlUHyWqQjArJhF7NU34WV2PRfGpXmidUJ9eh01NNVAwLM5OSPfoZ0v7km3UR4HN3Sfp/O3/Pnc6zk5IR35kDBQMi8Iz4hGhUGJ/W7P5MY4UA+MrjI5HYXS8axrtAbFDqbwKhoXKRuDhj0yB8aDBgEvScgAIB3Jenb4Ye1obsdAHjlGm3czWr+Bj+XPwWc0J3DAuH7t3Nw4913oqtdhPq78tE8QftRXrI7cGxiLfDUcq6Y91XtuToqKikJmZafWfTCZDYWEhjh07htbWVvNzi4uLERERgexs8TXYpk+fjvb2dkFAvWvXLnAch6lTp5pv2717N2677Tbcf//9uOKKK9z3ZsmYd3ZiOoJlMmxV16JTO+jt5qC2txv725oRpwrC4hRaxme0LkgZBwD4X/1pL7fEaFtzLfr0OhTFpyCCim4R4lPcPmJsUSinMDoeSlYGhmHMvwd63jxUftDgbymnjohTBeOdWWfjndln+9y6ta4wYagQUq5EVlpOWCSuzMzzidFTU6BlKyU4LSQMf8ibIVir11aQljg0Sp4QNDwyLvezug625oG787LqlKE519mhw8XqGCdG6ccqn//lKCoqQk5ODh588EEcO3YMP/30E1555RVcffXVUCiM6QClpaVYvnw5mpqaAAA5OTlYuHAhHnvsMZSWlmL//v146qmncP7555vnJ5uC4muvvRbLli2DWq2GWq1Ge3u7t94q8WMhcgWWJKRj0GDAD03V3m4Ovq43jhafnzLOZ1J//VlhVDzSgsNwpFOD8u52r7aF4zhsaKgEYJzLRQjxLe5ORcy1ESABwnRJfntkY/ysNzk4FHFeSiV2txvG5ePGcfl4eNIsbzfFJtOorzPL/fBjYUbku3TjuHyclZCG+/JmmIOYlCD/quvAv3DTrRu5wo47R4wnRsTg5cJFeG7qAvNt/MrY/jb67mo+/+5lMhnefvttsCyLFStW4IEHHsDFF1+Mu+++2/yYvr4+nD59WrB804svvojs7Gxcf/31uPXWWzFz5kw88cQT5vvXr1+Pvr4+rFmzBkVFReZ//O0S4ohfJxtHFTfUVwrWl/S0bp0Wm5pqoGJlWE6Bk0uwDINfD40af13n3VHjQx2tONXTiezQCEwcWqOREOI73D1id3n6eNw5fir+lD9H8jEFETG4NnMiXphWZHPNVOIfgmVyXJY23udWRxBj2uecmVEiuJAj8l2aGhWH+/JmIFKhwjuzl+LhSbOQ74OVp63hFxur7e0CAETIlbg+axIA91/0nhAehRC5QvQSntSa0IHCLyZhpKam4p133pG8f+7cuTh+/LjgtqioKKxevVryOc899xyee+45l7WRkIzQcEyNjENpRwv2tDZiXlyyV9rxfWMV+g16/Copk9JsXejshHSsqzqGrepaXJM10WsFTtbXVQAALknLcUvFW0KIb1OwMpxr48SZYRisyDAuP1nq48sYkbHH3lRqMfxd1Nb+mhgUYk6t9icJqmAUxaVgfFgkdByHdVXHsCIjFxelZuPClGyobCzn5Gr8T8lby335isC+LECIi12Uapz3/nltuVMpRKM1aNBjfW0FGAAXp4rPwSfOCZHLcX5yFvQch69qK7zShuqeLuzVNCFOGYSFcd4vsEIIGcmdS604g58mGeijQcQzTBn7zmTPBUIhKIZh8NCkWbg8fQKuSJ+AN2aciQuHstI8GRSL9W6gT78L7HdPiIvNjklEZkg4jne14VBHq+0nuNiPjdVo0w5gXmwy0kPCPf76Y92FKdlQsTJsbKxCh3bA46//ZV25sR2p2QF/8CKed+zYMfzhD3/A4sWLMW3aNJx33nn46KOPvN0sn+PFmTSiunjTzCjLhHgCa06ldmbEmLcOuMta5LtYhkFWaITPfDdlAdHr0ujMihAXYhkGl6dPAAD8u+akR19bZzDg81pj4HRFxgSPvnagiFSqsCwpAwMGvccrVLcM9GFrcy1CZHIsT8r06GsTAgCHDx9GTEwMXnjhBfzvf//DbbfdhhdffBGffPKJt5vmUzgfGzGeFZOA2TGJeDR/trebQgKEqWiWM9+FwA7LPG1kb4/VUXp7+cUcY0L8yaL4FKyrOoYD7WqUd7VjvJXKoa60TV2L5oE+zIxOwPgwz7xmILokNQcbGirx3/rTuCglG2Eemsf9eU05dByHi5OzBBVnCfGUyy+/XPDf6enpKCkpwQ8//IArr7zSS63yPb62hHWQTI7HC+aCHeMVqYnvGM2IMX9JMR/7Ko1Z/AsYFBgTQlxKxrC4LDUHf6s4hI+rj+Pxgrluf02twYBPqk8AAK5Ip9Fid0oICsE5iRnY2FiFL+oqzFUk3Uk90IeNjVUIlslwSVqO21+PEHt1dXUhMjJyVNsYbcBmer7PBH784kG+0ib4YD/5IOoj+9jqJ35g7GhfWq5B7a+fhT/sSwyDoasP/CXdWI+22df6iQJjQtzgnKQMfF5bjr2aJhzuaMVkNy8l8F1jFRr7ezEzOgEFfrZsgT/6v4xcbG6uwX/rTuGClHGIcfPyGZ9Vn4COM+CylAmIVKjc+lqE2OvAgQPYuHGj1VUjbJHLWcTGhrmkPdHRvrGWaVRIEDBUYsJV782VfKWffBn1kX2k+mllwRQ8tmcH7pwy3eHvQHDQcEaUXOG63wdv8Yd9SS4fvhgRHhbklT73lX6iwJgQN1CwMlybNRGrjx/AP04fwQvTitxWWKFPr8On1cfBAB4ZvSRAnCoY56eMw5e1FfhX9QncPn6q216rrq8bPzRVI0Qmx8WpNFpMXO/111/HG2+8YfUx27ZtQ1JSkvm/T548iTvuuAN333035s2b5/Rr63QGdHb2Of18wDjSEB0dira2Hhh8II9ZoR/+rW9t7fZiS4R8rZ98EfWRfWz104zgOHy+4DyEyBUOfwcGBnTmvwcH9T71HXKEP+xLpl8qrVZvvq2/Z8Cjfe7JfoqICIZCYb3qNwXGhLjJ4vg0fFlbgWNdbditacQZse5Z1/iLmnK0awdxZnwqssNGl9JI7PebtAn4rqEKGxurcH7KOLdVAX/3VBl0HIer0icgnNalJm5w7bXX4sILL7T6mPj4ePPf5eXluP7663HFFVfgtttuG/Xru+pkyGDgfOIENFQ2fGrlC+2x5Cv95Muoj+xjrZ+CWPmo+9DA+f/n4A/7krB1jFfa6yv9RFWpCXETlmFwQ1Y+AODdU0cwaNDbeIbj6vq68XltOVSsDNfRaLFHhSuUWJGRCz3H4a3yQ25Zt/pAWzP2aJqQGBRC61ITt4mKikJmZqbVf7KhtTVPnjyJ6667DhdffDF+//vfe7nlvimCLmAR4jT+sZSWJfScS9NyIGMYzIxO8HZTvIr2OELcaEZ0PGZFJ6Chv8flyzdxHIc1FYeg4wxYkZGLhKAQl26f2HZhSjYyQsJR2tGC7ep6l25ba9Dj7xWHAQA3jcuHkrWe/kOIu5mC4vnz5+PGG2+EWq2GWq2GRqPxdtN8yrKkTBRExOD+vBnebgohfk0W4BWS3U03dBEiWCbDTeMKsH7B+QF/YY8CY0LciGEY3D5+KlSsDP+uOYma3i6XbXurug6/tKmRFhyGS2juqVfIWRZ3DM0vfufUYXRoB1y27U+qT6CmrxuFUXGY76Y0fEIcsXHjRmg0Gnz99dcoKioy/7NcxinQBcvk+Ou0IpyZkObtphDi1/hLNxH3CZMbg+FAX6oJoMCYELdLDArBVZl50HEcXjp+AFqDYdTbbO7vxVvlpWAA3DVh2ojlDYjnTI6MxbLEDLRrB/D6yYMuSaku72rH5zXlCJbJ8LsJhW4r3EaII+6++24cP358xL/Nmzd7u2mEkDFITsc+jwiTK2w/KEDQ2TQhHnBxajbyI2JwsrsdH1YeHdW29JwBq4//gl69DpeljXf7UlDEtltyJiM5KAS7WhvxXWP1qLbVq9PixeO/wAAON40roBR5QgghAYnmGHsGFfYcRnscIR4gY1jcnzcDYXIF1tdVYGdLg9PbWnuqDGWdGuSERuLqzIkubCVxVrBMjvvzZoIFgzUVh3C007k5lwaOwysnSlDb1405MYlYnpTp4pYSQgghvoufcyWjVGq3uiBlHADgrHia9mFCexwhHpIQFILf504HALx4/BcccyJ4+rruFL6uP40IuRIP58+iFGofkhcRjVtyJkPLGfD0kT2o63NsHUCO4/Du6TIUtzYgOSgEf8ibQSnUhBBCAhalUrvXrdmT8fn885AR6p7lJv0RnVUT4kFzY5Nw87gCDBj0eLxsN450tNr93K/rTmHNqcNQMCwezZ+NpKBQN7aUOOOClHE4P3kc2rWDeLi0GLW99gXHHMfhg8qj+E/dKUTIlfhzwVya80MIISSgUfEt92IYBkG8ddcJBcaEeNwlaTlYkZ6LHp0Wfzq8Cz82VVst2KQ16PFWeSnWnDoMJcvisYI5KKB5xT7r1pzJWJaUAc1gP+47+BP2tDZafXzP0Jziz2vLESKT44nJZyA9hK7eEkIICWw0x5h4Gl0mIMQLrs2aiAiFAu+eKsMrJ0rwk7oeV2bkIi882pw+qzUYsLu1ER9WHUV9Xw8iFUo8NHEWpkTFebn1xBqWYXDX+GmIkCvxeW05njyyB0VxKfi/jFxkhUaYHzdo0GO7ug4fVR5D62A/4lXBWFUwF5m8xxBCCCGB5sqMXHxSfQJLE9O93RQSYCgwJsRLLkrNwYSwKLx04gD2tzVjf1sz4pRBSA0Jg9ZgQGVPJ3r1OgDAjOh4/G5CIeJUwV5uNbEHyzC4YVw+8sKj8XbFIfzcUo+fW+qRGBSC5KAQDBj0ONXdiQGDHgBwZnwqbsmZjEiFysstJ4QQQrzr6syJWJGeSyPGxOMoMCbEi/IjY/HWzCXY1FSD75uqcLKrHS2D/QAAJctiTkwifp0yDjOjE7zcUuKMeXHJmB4djw0NldjcVIPK3i409fcCAIJlMhTFpeDClHHIp9R4QgghxIyCYuINfhEY19fXY9WqVdi9ezdCQkJwySWX4L777oNMJpN8Tnt7O5566ils2bIFMpkMy5Ytw6OPPoqQkJFrgv7yyy+45pprMHHiRHz55ZfufCuEjKBgWSxPzsTy5Ez06XVoHeiHnGEQHxRMSxWMAUEyOS5NG49L08ajR6dF++AAFCyLWFUQfb6EEEIIgJvG5eO900fMSwgR4g0+Hxjr9XrcdtttiIuLw6efform5mb88Y9/hEqlwj333CP5vPvvvx9qtRrvv/8+tFotHnnkEaxatQrPP/+84HHd3d146KGHcMYZZ6C9vd3N74YQ64JlcqSFhHm7GcRNQuUKhFK1aUIIIUTg0rTxuCAlm5ahJF7l83vfzz//jIqKCrzwwguYNGkSFi9ejHvuuQfr1q2DVqsVfU5FRQV++uknPP3005g2bRpmzZqFxx57DF9//TVaWloEj33yySexfPlyTJ8+3RNvhxBCCCGEEGKBgmLibT4/YlxSUoKJEyciLm64Em9RURFWrVqFU6dOIS8vb8RzDhw4gKioKEyePNl82/z588EwDEpLS7FkyRIAwIYNG3DixAn85S9/wZo1a1zSXpYd/WLkpm24YltjFfWRfaifbKM+sg/1k23UR4QQQoj/8vnAuKWlBbGxwsI0piC5paVFNDAWe45cLkdkZKR5xLihoQHPPPMM3nvvPSiVSpe0VS5nERvrujTY6OhQl21rrKI+sg/1k23UR/ahfrKN+ogQQgjxP14LjF9//XW88cYbVh+zbds2ADCv62pJ6nap+ziOM9/+4IMP4uabb0Zubq69TbZJpzOgs7Nv1NthWQbR0aFoa+uBwcC5oGVjD/WRfaifbKM+sg/1k22e7KOIiGAoFNIFKAkhhBDiGK8Fxtdeey0uvPBCq4+Jj49HXFwcysrKBLebRn0tR4VN4uLiRswl1ul06OzsND9nz5492L9/P1544QUAgMFgAMdxyM/Px0cffYSZM2c69b5ceTJkMHB0AmoD9ZF9qJ9soz6yD/WTbdRHhBBCiP/xWmAcFRWFqKgom48rLCzEmjVr0Nraag5qi4uLERERgezsbNHnTJ8+He3t7SgrK0NBQQEAYNeuXeA4DlOnTgUAfP3114Ln/POf/8S+ffvw0ksvIT09fRTvjBBCCCGEEEKIP/H58m9FRUXIycnBgw8+iGPHjuGnn37CK6+8gquvvhoKhXHZk9LSUixfvhxNTU0AgJycHCxcuBCPPfYYSktLsX//fjz11FM4//zzzfOTc3NzBf9iY2OhVCqRm5uL4OBgr71fQgghhBBCCCGe5fOBsUwmw9tvvw2WZbFixQo88MADuPjii3H33XebH9PX14fTp08Llm968cUXkZ2djeuvvx633norZs6ciSeeeMIbb4EQQgghhBBCiA9jOI6jiVAuotXq0d7eO+rtsCyD2NgwtLZ20zw1CdRH9qF+so36yD7UT7Z5so+iokLGRPEtVxw3ad+0D/WTbdRH9qF+so36yD6+dtz0+RFjQgghhBBCCCHEnSgwJoQQQgghhBAS0CgwJoT7EWkvAAEAAElEQVQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQohDqqurMX36dMydO9fbTSGEEEJcggJjQgghhNhNp9PhgQcewMyZM73dFEIIIcRlKDAmhBBCiN3efPNNpKWl4bzzzvN2UwghhBCXkXu7AYQQQgjxD7/88gu++uorfPXVV9i0aZNLtsmyjEueP9rtjHXUT7ZRH9mH+sk26iP7+Fo/+UVgXF9fj1WrVmH37t0ICQnBJZdcgvvuuw8ymUzyOe3t7XjqqaewZcsWyGQyLFu2DI8++ihCQkLMjzEYDHj33Xfx73//G/X19UhISMANN9yA6667zhNvixBCCPEb3d3dePDBB/GXv/wFkZGRLtmmXM4iNjbMJduKjg51yXbGOuon26iP7EP9ZBv1kX18pZ98PjDW6/W47bbbEBcXh08//RTNzc344x//CJVKhXvuuUfyeffffz/UajXef/99aLVaPPLII1i1ahWef/5582OeeeYZ7NixAw8//DDGjx+PtrY29PX1eeJtEUIIIT7h9ddfxxtvvGH1Mdu2bcOrr76KM888EwsWLHDZa+t0BnR2ju64y7IMoqND0dbWA4OBc1HLxh7qJ9uoj+xD/WQb9ZF9PNlPERHBUCikB1Xx/+zdd3hb1fkH8O+9mpaXZMmOY2c7ew9CSAgEAqWBAmWVlEKgQICyftBCKbS0rFIoqxRoC4VCIQQoLYRRAmWEDJKQhJBBduIMJ/GU5KU97v39oeFzZcmSbMm6kt7P8/DgaFwdHV3pnveM9yALAuOvvvoKtbW1eOWVV2AymTBu3DjcdttteOqpp3DTTTdBpVJ1e05tbS3WrFmDd955BxMnTgQA3Hvvvbjhhhtw1113wWQyoba2Fm+++SY+/PBDjBgxAgAwePDgfn1vhBBCSKYtWrQI559/fo+PKS8vx4YNG9DY2Ig33ngDACCKIgRBwPjx4/HHP/4R5513Xq9eP1WNIUEQqQGaAKqn+KiOEkP1FB/VUWLkUk+yD4y3bt2KsWPHwmQyhW+bO3cu7r//fhw8eBBjxozp9pwtW7ZAr9eHg2IAmDNnDjiOw/bt2zF//nysWLECgwYNwooVK7B48WJwHIdTTjkFd955J4qKej+tKxVz5OU2316OqI4SQ/UUH9VRYqie4svWOtLr9dDr9XEf949//ANerzf87y+++AIvv/wyli5dioEDB6axhIQQQkj6yT4wNpvNMBqNkttCQbLZbI4aGEd7jlKpRGlpKcxmMwDg6NGjOH78OD7//HM8/vjj8Hg8+P3vf4+777477pSyWFK5VgqQz3x7OaM6SgzVU3xUR4mheoovV+to+PDhkn/v2LEDPM9j9OjRGSoRIYQQkjoZC4wTXdMEABwXvfc91u2x7hNFMXy7KIrwer344x//iKFDhwIA7r//flxxxRUwm82SEepEpWKtFEDrEhJBdZQYqqf4qI4SQ/UUn9zWShFCCCEkcRkLjBNd02QymbBz507J7aFR38hR4RCTyRR+TIjP50NHR0f4OSaTCUqlMhwUA0BNTQ2AQBbs3gTGQOrWSoWORQ3QnlEdJYbqKT6qo8RQPcWXL3V00UUX4aKLLsp0MQghhJCUyFhgnOiapqlTp+KFF16AxWIJB7Xr1q1DSUlJOGlWpGnTpqGtrQ07d+7EhAkTAABff/01RFHE5MmTw4/x+Xw4evRoOOnWoUOHAABVVVV9fXuEEEIIIYQQQrIEn+kCxDN37lzU1NTgrrvuwp49e7BmzRo8/fTTuPzyy8MZqbdv344FCxagqakJQGDk95RTTsG9996L7du3Y/PmzXjooYdw7rnnhkeCTz75ZIwdOxa/+c1vsGfPHmzfvh0PPfQQzjrrrF6PFhNCCCGEEEIIyT6yD4wVCgWef/558DyPhQsX4pe//CUuuOAC3HrrreHHOJ1OHDp0SJIt84knnsCIESNw1VVX4frrr8eMGTPwwAMPSI7797//HcXFxbjssstw0003YfLkyXjkkUf69f0RQgghhBBCCMks2WelBoDq6mq8+OKLMe+fNWsW9u7dK7lNr9fjySef7PG4AwYMwF/+8peUlJEQQgghhBBCSHaS/YgxIYQQQgghhBCSThQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJa5woimKmC5ErBEGE3y+k5FgqlQJerz8lx8pVVEeJoXqKj+ooMVRP8fVXHSkUPHieS/vrpFuqrpt0biaG6ik+qqPEUD3FR3WUGDldNykwJoQQQgghhBCS12gqNSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBscwsXboU8+fPx6RJk3DppZdi+/btmS5Sv3nhhRdw8cUXY9q0aZg9ezZuueUWHD58WPIYt9uNBx54ALNmzcK0adNw6623wmKxSB5TX1+P66+/HlOmTMHs2bPx2GOPwe/39+M76T/33XcfxowZg9dffz18G9VRQGNjI+644w6ceOKJmDp1Ki666CLU1taG76d6Amw2G+6//36ccsopmDJlCs4991y899574fvzsY42bdqEn/3sZ5g7dy7GjBmDL7/8UnJ/qupkw4YNuPDCCzFx4kR873vfk9Q7SQ5dN+m6mQy6bsZG18346LrZXU5dN0UiGx999JE4YcIE8T//+Y+4f/9+8d577xVnzpwpWiyWTBetX1xzzTXiO++8I+7bt0/cvXu3eN1114mnn3666HQ6w4/53e9+J86bN09ct26d+N1334mXXnqp+JOf/CR8v8/nE88991zxpz/9qbhr1y5x5cqV4qxZs8Snn346E28prVasWCGef/754ty5c8UlS5aEb6c6EsW2tjbx9NNPF++++25x27ZtYl1dnbhy5UqxoaEh/BiqJ1H89a9/LZ511lnixo0bxbq6OvH1118Xx44dK27YsEEUxfyso5UrV4pPPfWU+L///U8cPXq0uGLFCsn9qaiTuro6ccqUKeIjjzwiHjhwQFyyZIk4btw4ce3atf32PnMFXTfpupkMum7GRtfNxNB1s7tcum5SYCwjl1xyifjggw+G/+33+8W5c+eKL730UgZLlTkWi0UcPXq0uHnzZlEURbGjo0OcMGGC+Mknn4Qfc+DAAXH06NHi9u3bRVEMfDnHjRsntrS0hB/zxhtviCeccILo8Xj69w2kUUtLi3jqqaeKe/bsEU8//fTwBZ7qKODxxx8XL7vsspj3Uz0F/OAHPxCff/55yW1nnXWW+NJLL1EdiWK3C3yq6uSxxx4Tzz33XMlr3X777eL111+fzreTk+i6KUXXzdjoutkzum4mhq6bPcv26yZNpZYJj8eDnTt34uSTTw7fxvM85syZg61bt2auYBnU2dkJACgtLQUA7NixA16vV1JHNTU1qKqqCtfR1q1bMXbsWJhMpvBj5s6di46ODhw8eLD/Cp9m99xzDxYtWoQxY8ZIbqc6ClixYgUmTpyIW2+9FbNnz8ZFF12E999/P3w/1VPAtGnT8MUXX6CpqQmiKGLNmjVobm7GnDlzqI6iSFWdbN26VXKM0GPy9be+t+i62R1dN2Oj62bP6LqZGLpuJifbrpsUGMtEa2sr/H6/5KQAAKPRiJaWlgyVKnNEUcQjjzyCE088ETU1NQAAs9kMrVaLoqIiyWONRiPMZnP4MUajUXJ/qE5Dj8l2r7/+OhwOB6655ppu91EdBRw9ehRvvPEGampq8PLLL+Piiy/Gb37zG3zxxRcAqJ5C7r33XgwZMgSnnnoqJk6ciFtuuQWPPPIIxo0bR3UURarqJNZj2tra4PV601X8nEPXTSm6bsZG18346LqZGLpuJifbrpvKlB2JpIUoiuA4LtPF6HcPPvgg9u3bhzfffFNye7S6EEUx7mN6uj2b1NbW4q9//Svefvtt8Hz0fq18ryMg8H4nTZqE22+/HQAwbtw47NixA2+++SbOOOMMAFRPQKCxuHv3bvz973/HgAEDsH79evz6179GZWUlAKqjaFJVJ5GPiTwG6T26btJ1k0XXzcTQdTMxdN1MXjZdN2nEWCYMBgMUCkW33iKr1dqtNzzXPfTQQ1ixYgVeffVVDBgwIHy7yWSC0+mEzWaTPJ6tI5PJ1K0OQ/+O7GnKRtu2bYPVasVZZ52F8ePHY/z48Th+/DgefvhhLFiwgOooyGQyYcSIEZLbampq0NDQEL4/3+vJ5XLhT3/6E+6++27MmzcPY8eOxdVXX4158+bh1VdfpTqKIlV1Eu0xFosFer0eKpUqXcXPOXTd7ELXzdjoupkYum7GR9fN5GXbdZMCY5lQq9WYMGEC1q1bF75NEASsX78eU6dOzVzB+pEoinjwwQfx6aef4tVXX8XgwYMl90+cOBEqlUpSR4cOHUJ9fX24jqZOnYo9e/ZI0sCvW7cOJSUl3X7ws9GZZ56JDz74AO+99174v4qKClx//fV4/vnnqY6Cpk2bhiNHjkhuO3z4MAYOHAiAziUA8Pl88Hq9UCgUktt5nocgCFRHUaSqTqZOnYq1a9dKjr1u3bq8+a1PFbpu0nUzEXTdTAxdN+Oj62bysu66mdJUXqRPQttOvPvuu+KBAwfE3/72t3m17cR9990nzpgxQ9ywYYPY3Nwc/i9y24nTTjtNXL9+vfjdd9+JCxcujJry/ZprrhF3794trl69WjzppJPEP/3pTxl4R/2Dza4pilRHoiiKW7duFceNGye+8MIL4uHDh8V3331XnDhxovjFF1+EH0P1JIpXXHGFeP7554e3nXjrrbfE8ePHi++//74oivlZRzabTdy1a5e4a9cucfTo0eJrr70m7tq1S2xubhZFMTV1UldXJ06ePFn84x//KB44cEB8/fXXxfHjx9N2Tb1A1026bvYGXTe7o+tmYui62V0uXTcpMJaZJUuWiKeddpo4YcIE8ZJLLhG3bduW6SL1m9GjR0f975133gk/xuVyiffff784c+ZMccqUKeItt9wiSe8uiqJ47NgxcfHixeLkyZPFWbNmiY8++qjo8/n6++30m8gLPNVRwGeffSb+4Ac/ECdOnCiec8454rJlyyT3Uz2JYnNzs/irX/1KnDt3rjh58mTx7LPPFl9//fXw/flYR19//XXU36FnnnlGFMXU1cn69evFH/7wh+KECRPEM844Q3z33Xf77T3mGrpu0nUzWXTdjI6um/HRdbO7XLpucqJIGT8IIYQQQgghhOQvWmNMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCMmY5cuX49133810MQghhJCsQNdNQtKHAmNCSMZ88sknWLZsWaaLQQghhGQFum4Skj4UGBNCCCGEEEIIyWucKIpipgtBCMk/d999d7de71tuuQW33nprhkpECCGEyBddNwlJL2WmC0AIyU833XQT6uvr0dnZifvuuw8AUFlZmeFSEUIIIfJE101C0osCY0JIRgwZMgR6vR6iKGLq1KmZLg4hhBAia3TdJCS9aI0xIYQQQgghhJC8RoExIYQQQgghhJC8RoExIYQQQgghhJC8RoExISRjVCoV3G53potBCCGEZAW6bhKSPhQYE0IyZvjw4di3bx8+//xzfPfdd2hqasp0kQghhBDZousmIelD+xgTQjLGarXit7/9LTZt2oT29nbaj5EQQgjpAV03CUkfCowJIYQQQgghhOQ1mkpNCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvKTNdgFwiCCL8fiElx1Iqefh8qTlWrqI6SgzVU3xUR4mheoqvv+pIoeDB81zaXyfdUnXdpHMzMVRP8VEdJYbqKT6qo8TI6bpJgXEK+f0C2tocfT4Oz3MwGovQ0eGEIIgpKFnuoTpKDNVTfFRHiaF6iq8/60iv14HnFWl9jf6QiusmnZuJoXqKj+ooMVRP8VEdJUZu102aSk0IIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYSQXrnvvvswZswYvP7665kuCiGEENInWRUYL126FPPnz8ekSZNw6aWXYvv27T0+/uOPP8aCBQswadIknHfeeVi9enW3xxw4cAA33HADpk+fjunTp+PHP/4xrFZrut4CIYQQkhO+/PJLbN26FRUVFZkuCiGEENJnWRMYL1++HI888ghuvvlmLFu2DGPGjMHixYtjBrFbtmzBHXfcgUsuuQTvvfcezjzzTNx0002ora0NP6aurg6XX345Ro4ciTfeeAPLli3DtddeC5VK1V9vixBCCMk6ZrMZ999/Px577DG6ZhJCCMkJykwXIFGvvPIKFi5ciIsvvhgA8MADD2DlypXhYDbSq6++ilNPPRWLFy8GANx2221Yu3Ytli5dit/97ncAgD/96U849dRT8ctf/jL8vKFDh/bDuyGEEEKy1z333INFixZhzJgxfT4Wz3MpeX5fj5PrqJ7iozpKDNVTfFRHiZFbPWVFYOzxeLBz507ceOON4dt4nsecOXOwdevWqM/ZunVrt4B57ty5WLlyJQBAEASsXLkSixcvxtVXX409e/Zg6NChuPnmm3HKKaf0uqyp+GDldpLIEdVRYqie4qM6SgzVU3z5Ukevv/46HA4Hrrnmmj4fS6nkYTQWpaBUgMFQmJLj5Dqqp/iojhJD9RQf1VFi5FJPWREYt7a2wu/3w2QySW43Go04cuRI1OeYzWYYjcZuj29paQEAWCwWOBwOvPTSS7j99ttx11134YsvvsANN9yA//znPxg/fnzS5UzlBR6Qz0kiZ1RHiaF6io/qKDFUT/Hlch3V1tbir3/9K95++23wfN9XY/l8Ajo6nH06Bs9zMBgK0dpqhyCIfS5TrqJ6io/qKDFUT/FRHSWmP+uppKQAKpWix8dkRWAciyiK4LjYPfPR7gvdJggCAOCMM87AVVddBQAYN24cNm7ciH/961944IEHki5PKi7wAH2ZEkF1lBiqp/iojhJD9RSf3C7w6bBt2zZYrVacddZZ4dv8fj8efvhhvP766/jkk0+SPmaq6koQRDo3E0D1FB/VUWKonuKjOkqMXOopKwJjg8EAhUIBs9ksud1qtXYbRQ4xmUzdHm+xWMKPNxgMUCqVGDFihOQxNTU1OH78eK/LmsoPVS4niZxRHSWG6ik+qqPEUD3Fl8t1dOaZZ2LixImS26699lpcdNFFuPDCCzNUKkIIIaTvsiIrtVqtxoQJE7Bu3brwbYIgYP369Zg6dWrU50ydOhVr166V3LZu3brw40PHjJyKffjwYQwcODCl5SeEEEJyQUlJCUaPHi35T6VSoby8HMOGDct08QghhJBey4rAGACuvvpqvPXWW1i2bBlqa2tx//33w+VyhXuo77rrLjz55JPhx1955ZVYvXo1Xn75ZdTW1uLZZ5/Fjh07cPnll4cfc8011+Cjjz7Cf/7zHxw5cgQvv/wyNmzYgIULF/b7+yOEEEIIIYQQkhlZMZUaAM455xxYrVY888wzaGlpwbhx4/DSSy+hrKwMANDQ0CBJBDJ9+nQ8+eSTePrpp/HUU09h2LBh+Mtf/oKamprwYxYsWICOjg48//zzeOihh1BTU4Pnn3++V4m3CCGEkHy0YsWKTBeBEEII6TNOFMXcXAiVAV6vH21tjj4fh+c5GI1FsFhsslunJogimpw+OP0CdEoe5VolFD0kQEsXOdeRnFA9xUd1lBiqp/j6s470el1Gkm+lWiqum3RuJobqKT6qo8RQPcVHdZQYuV03s2bEmGTW7jYXPjrWjm8tTth9Qvj2IiWPE8t1uGCIHkOL1BksISGEEEIIIYT0DgXGpEctLh9e3GvGBnOgR1/NcxhbqkGxSgGb148DnR6saLBhRYMN368uxtUjjShQZs3SdUIIIYQQQgihwJjEtsXiwBM7mmHzCRigVeLS4QacMqAQGkVX4Ov0Cfi8vhP/PtyK/x3vxHetLtw3tRKVBaoMlpwQQgghhBBCEkdDeySqL+o78eDWRth8As4bXIJnTxqEM6uKJUExABQoeZw3pBTPnDQYJxh1qHd48atv6nHE5slQyQkhhBBCCCEkORQYk24+r+/As7tbwHHAzyeUY/FoU7eAOJJercCvpwzA96uL0ebx44GtDWhx+fqpxIQQQgghhBDSexQYE4n1zXY8t9sMBQf8atIAnFZZnPBzFRyHG8eYcObAYljcfjy4tQEuvxD/iYQQQgghhBCSQRQYk7CDnW78aWczAODOiQMwq7ww6WNwHIebxpowtawAdXYv/rbHDNoRjBBCCCGEECJnFBgTAECH14+HtzXCLYhYVFOG2RXJB8UhCp7DHRMqYNQosLLRhpWNthSWlBBCCCGEEEJSiwJjAlEU8dfdLTC7/Th1QBEuGlra52OWqBW4Y0IFOAD/2GdBm8ff94ISQgghhBBCSBpQYEzwWX0n1rc4UFmgxI1jTeA4LiXHnWAowNmDStDpE/DSPnNKjkkIIYQQQgghqUaBcZ5rcHjx0j4LeA74xYQK6JSpPSUW1ZTBqFFgTZMdWy2OlB6bEEIIIYQQQlKBAuM8Jooi/rbXDLcgYuEwA8aUalP+Gjolj+tGmwAArxywwk+JuAghhBBCCCEyQ4FxHlvVaMM2qxODC1W4eJg+ba9zUrkO40o1OGzz4MsGSsRFCCGEEEIIkRcKjPNUh9ePf+y3AABuGlsOFZ+adcXRcByHq0cZAQBLD1rhpr2NCSGEEEIIITJCgXGeeqO2FR1eAd+vKsZ4feqnUEcaU6rFnIpCWN1+fFrfmfbXI4QQQgghhES3t92Fv+81wyvQMscQCozzUJ3Ng/8d70CRkscVI8v67XUXBqdrv3ukDR4aNSaEEEIIISQj7vqmHh8d68CnxzsyXRTZoMA4D71ywAIBwMLhBpSoFP32usOKNZhVroPV7ccXtNaYEEIIIYSQjGpy+dDu8WNXmyvTRck4CozzzLcWB761OFFVoMLZg0r6/fUvHWYAEBg19tPUDUIIIYQQQjLG7hVw89dHcc/mehzsdGe6OBlFgXEe8YsiXg4m3PrpqLK0JtyKZWSJBlPLCtDs8mGD2d7vr08IIYQQQggJsPv86PQGljjW2TwZLk1mZVVgvHTpUsyfPx+TJk3CpZdeiu3bt/f4+I8//hgLFizApEmTcN5552H16tUxH3vddddhzJgx+PLLL1NdbNlY3WjDUbsXE/RanGjSZawc5w8uBQB8WEdrGgghhBBCCMkUu68r70++ZwDKmsB4+fLleOSRR3DzzTdj2bJlGDNmDBYvXgyr1Rr18Vu2bMEdd9yBSy65BO+99x7OPPNM3HTTTaitre322Ndffx2imNvTen2CiLcOtQIArqgpA8f1/2hxyDRjAap1Kuxqd2F/R35P2SCEEEIIIaS/hWaOOv1dMVCOh0NxZU1g/Morr2DhwoW4+OKLMXLkSDzwwAPQaDRYtmxZ1Me/+uqrOPXUU7F48WLU1NTgtttuw/jx47F06VLJ4w4cOIC///3v+MMf/tAfbyNjVjR0otHpw7Sygn7ZnqknPMfhvOCo8X+Ptme0LIQQQgghhBBAQH5HxspMFyARHo8HO3fuxI033hi+jed5zJkzB1u3bo36nK1bt+Laa6+V3DZ37lysXLlSctw77rgD99xzDyoqKlJSVj4F63ZDx0jFsQDAK4j41+E2AMAVI8tSdty+OKO6GEtqrfiqyYZrRhth0CR3Kqa6jnIV1VN8VEeJoXqKj+qIEEJItmGvWPmeFzcrAuPW1lb4/X6YTCbJ7UajEUeOHIn6HLPZDKPR2O3xLS0t4X//6U9/wqhRo3D22WenpJxKJQ+jsSglxwIAg6EwJcd5Z78ZZpcPc6tLMHuEKf4T+sm5NWX4114z1rd7sGicvlfHSFUd5Tqqp/iojhJD9RQf1REhhBC5i7aMlALjLCaKYo9rZaPdF7rt66+/xieffIL3338/ZeXx+QR0dDj7fBye52AwFKK11Q6hj2eo2y/gle8aAQCXDi6BxSKf/YPnlRXgXwDe22fG2eUFSa17TmUd5TKqp/iojhJD9RRff9ZRSUkBVP24Dz0hhJDcxLa+RZpKLX8GgwEKhQJms1lyu9Vq7TaKHGIymbo93mKxhB+/adMmNDQ04KSTTpI85qabbsKcOXPwj3/8o1dlTWVjSBDEPh/vf8c6YPX4MaeiEEML1bJq0FbrVBhXqsHudje2W52YZChI+hipqKN8QPUUH9VRYqie4qM6yl9NTi90Sh7F1GlBckBthxsGjQJlSS53I9kr3y9dWZF8S61WY8KECVi3bl34NkEQsH79ekydOjXqc6ZOnYq1a9dKblu3bl348T/5yU/wwQcf4L333gv/BwD33nsvHnjggXS8jX7nE0S8VxdIbrVwmD6zhYnhrOoSAMCnxzszXBJCCCGk9zx+AdevO4orVkdf4kVINml1+/CLTcdx9Vd1mS4K6Uf5npU6a7qArr76atx1112YMGECJk+ejFdffRUulwsXXnghAOCuu+7CgAEDcMcddwAArrzySlxxxRV4+eWXMW/ePCxfvhw7duzAww8/DCCw3jhyDTIAVFVVYdCgQf33xtLoqyYbWlw+zDAWYFixJtPFierkikK8uNeM9S12dHr91MtOCCEkK3nyfaiF5BSz25fpIpA0C/9iMXOpKSt1ljjnnHNgtVrxzDPPoKWlBePGjcNLL72EsrIyAEBDQwN4vmsAfPr06XjyySfx9NNP46mnnsKwYcPwl7/8BTU1NZl6C/1KEEW8c6QNAHDxUH1Gy9ITjYLHvMpifHy8A6sbbfhBcBsnQkjiLC4f9na4YPMKKFYpMLZUk3Smd0JI3+R3c5LkGj+d0HmDXWOc7597VrWcrrjiClxxxRVR71uyZEm3284+++ykMk7v3bu312WTm80WB+rsXowp1WR83+J4Th9YhI+Pd2BVEwXGhCRjd5sLSw9a8V2rq9t9M4wF+MmIMowskedsEUJyDdugdPsFqHkOHkGERpEVq9YIkfDTDIicF+0T9uX5555VgTFJ3DvBfYsvHqpPKttzJowu0WBggRJ7291ocHgxUKfKdJEIkTWvIGJJrRUf1LVDBFChVWKGUQe9WgGr24dvLA5stjixxXIclw7X48fDDbL/HSAk2wnM4jybV8Df9pqxyezAklOHooSWCZEs09uRww6PHx5BhElLIUY28lJgTHLNrjYXdre7MbhQhZkmXaaLExfHcTitshhvHmrFqkYbfjzCkOkiESJbLr+AP37XhG8tThQqeSwebcS8yiIomMDXJ4j4rL4Trx6w4K1Dbah3+PB/48uh4ik4JiRd2ECi0ydgk9kBADjQ4cZ0o/yvxYSwkl1rGtpCddGaQPK59+YPpw5ZuQt+xOynlO+BMc3vyUGh0eKLhurBZ8mP0rzKIgDAqkZb1A3HCSGBC9bD2xrxrcWJwYUq/HnWIMwfWCwJigFAyXM4e1AJHjuhGuVaJVY32fDc7hbJiBYhJLXY75dXEMJ/09eOZCOfEP8xIX/a2YyfflUnmYab72tVs1VvPraDnW4srbXmxPR7CoxzzOFON76xOGDSKHDqgKJMFydhA3UqjCnRoN7pxf4Od6aLQ4jsiKKI53a3YHurC8OL1HhkRhXK40xVG1KkxqMzqmDSKLCy0YY3Drb2U2lJrnrhhRdw8cUXY9q0aZg9ezZuueUWHD58ONPFkgW2Tcj+nf1NRZKPkhk5XNloQ5vHjyaXN3ybn3qEsgbHjBn3Jrb9+cbjePtwG75szP6tVykwzjHvBvctvmCIHsosmzYZGjVe2WjLcEnyk8cvYH2zHS/vt+BPO5vx/B4zPq/vQIfHn+miEQAfH+/AykYbTBoFfju1MuGtzUxaJe6bOhCFSh7/PtyGby2ONJeU5LKNGzfi8ssvx9tvv41XXnkFHo8H11xzDVyu7gng8g0bCEgDYwoQSPbpzfZjHmaY2EenvexF+4j68ntldmV/e5HWGOeQJqcXa5psKFby+F51caaLk7S5A4rwj/0WfNVkw7WjjFBkWWCfrQRRxCfHO/DWwVa0eyPmTh0H1LwF368uxk9GlEGnpL60TKizefDKfisUHHD35EoYk9yKaUiRGreMM+GP3zXj6Z3NeGbWIOhpOyfSC//4xz8k/3700Ucxe/Zs7Nq1C9OnT89QqeRBOmIcPUgm+UkUxazLUM4uB0iUiwmMc2Faba6L9gn15WPLhVkC1DLKIe/XtUMQgXMHl0KbRT++IaVqBSYbCrDF6sTONhcmlxVkukg5r8Pjxx+/a8KONhd4ALPLCzGrXIdyrRIdXj+2WZ1Y2WjDh0c7sKHFgd9MqcSwInWmi51XfIKIp3Y2wyOIuLKmDKN6uf3SnIoiLKh24pPjnfjHfgvumDggxSUl+aizMzB1rrS091vt8X3sBA09v6/H6SuRfXlm3b+IzJcNkFE9iSK+bLBhokGLigJ57UKRrjr6224zlh/rwF9nD8bgLLmGepkYJ7I+YtWTw8+srecyf65lkly+b4kQI/72A3D4BJSqk8um70fy71du9USBcY5o8/jxWX0nNDyHcwaXZLo4vXbygEJssTqxrtlOgXGaNTu9uG9rI+odXgwvUuP/xpdjRLE06JpTUYTLhhvw/F4z1rc48KtvjuM3kyvps+lHHx1rxyGbBxP0WlwwtG/7fF810ohNZgdWN9lxWqUDM7Igaz2RL1EU8cgjj+DEE09ETU1Nr46hVPIwGlOTD8NgKEzJcXrLzHV1SBcVa8N/a3SalL3HVMh0Pa053o4/7WyGTsnj80smZbQssaS6jpYfqwUAbLF5MXVoWUqPnS7Klq5lN7HO38h6EjRdHR3FpToYC7OjEyCdMv19i0YQRWlyXkXX3xqtCr/YdByHO9xYfuGEpGaXKTXKXv/WyaWeKDDOER8dbYdHEHHe4JKs3i9xlqkQf+XMWN9ix3VjjN2y7ZLUaPf4cd+WRtQ7vZhl0uGOiRUxp3jpNUr8atIAvH24DW8cbMXD2xvxwLSBGFuqjfp4kjoWtw9vHGyFggNuHGvq8/dBp+RxwxgT/rC9CS/tt2BKWUHW5SIg8vHggw9i3759ePPNN3t9DJ9PQEeHs0/l4HkOBkMhWlvtEDI4fdPa3rXOupV5T5YOJyyWzI+MyqWe9jcFZhk4fAIsFnnlFEl3HTkdHtm951g6bF2JUCPLHKuejlu7gmmz1Q6ly5P+gsqUXL5vkSwuH3665ohka1S3t2ttsMPpxeFgEtydx9owVp94W8/ei/O7P+uppKQAqjgxEgXGOcDhE/DRsQ4oOOCHQ/SZLk6flASnU2+1OrGrzYVJBhqZTDWvIOL324JBcbkOv5o4IO56bo7jsHC4AUqOw2u1Vvx+ayOePLEaA2Q2DS7X/HO/FS6/iIuGlmJwinreZ5UXYmpZ4Dv2WX0nzh6UvTNMSOY89NBDWLFiBV5//XUMGNC3afmpagwJgpjRBqhkqxpmraXbJ8iqYZzpemK7YOVUL6x01ZEoZrbuk8GuEbZ7/Njb7sKUsgLJ3sSR9dTq9oX/9vjldd5nSqa/b5FWNQQ6pt5idqlgM5Cz+RF6Ol8tbh82mx04Y2BXTiNvH96rXOop+xaikm4+Pd4Bu0/AvMqiuNu3ZIOTKwLTKdY22TNcktz02gEr9nW4MaZEgzsmVCSV5OziYXqcN7gEnT4Bf/yuCR5/8sk5SGIOdrqxuskGg1qBS4cZ4j8hCVeNLAMH4M2DrXAks1klyXuiKOLBBx/Ep59+ildffRWDBw/OdJFSaqvVgavWHMHe9uSzbEuSbzGr9pLZ9iZXiaKI9+vacKDDndezVLLpTGDLuqTWivu2Nsbd8s/JtAloH2N5ckX5YNhOPTZ/Vk/f1Hs3N+Ave8z45HhH+LZcaBJSYJzlvIKI948Gtmi6MMtHi0NOKi8EzwHrW+w5keFOTjaZ7fjgaDuKlTx+OWlArzJk/nSkEeP1WtR2erCU9sVNm6W1gbpdONyAghRnAx9RrMFplUVo9/rxQXCLN0IS8cADD+CDDz7Ak08+icLCQrS0tKClpSVntmv64/YmtHn8+Nsec9LPZa9X7LY1vdn2JtdssTrx8n4r7th0nJZIZQl25HCrNbA04O3DbT0+x81mpab2myy5o2Qb98fo1OtJvTOwZ/UhW9d0eV8OfOYUGGe5VY2dsLr9mGXSYUiWZDqMp0StwER9Ado8fuxuy43GlhzYvH48tzvQ2Lt1fHmvZxcoeQ53TqhAoZLHB3Xt2NOLkRXSsz3tLnxjcaBCq8SZVenZeu2yEQbwHPDfo+1w0qgxSdCbb76Jzs5OLFq0CHPnzg3/t3z58kwXLSVC00R7841g4182GKYRY+AI03hW5HFcnE1xA3vaGhLMTuySjBjL6822uHxY15wd67vTyRllg2m/GH3EOJFRf/bxvhz4rcv+ebd5zC+KePdIYLTn4mH6zBYmxU6uKMT2VifWNtsxkdYZp8Trta1o8/hxxsAizCrvW/Y/o1aJa0aV4dndZjy7qwV/OrEa6izcIkyultZaAQA/Hm6AKk3TDgcUqDBvQBG+bLThf8c7cMFQfVpeh+SWvXv3ZroIaRX+tvWiUc82LtmRsxxoK/ZZm6cruQ9Nsc0O7MeUaEcR2wkkh/7WOpsHa5tt+NEwA362rg4+EfjDdAUm5HG7Mt6IMfu5JzICzI4wy60zpDeoJZvFNrY4cNzhxUS9FmNyLEPwSRWF4AF83WKXTOchvbO33YVPjnegWMnjpyONKTnmGQOLMa2sAMccXnxwtCP+E0hCdre5sL3VhSqdCqdVpneLl4uH6cEBeK+undaLE4KuwDiVI8aJTk3MZe1MYEwj6NlBkIwcJvaZ+SKec7jTjcOd7thPSLP/23AMbx1qw/+Od4TL1uTy9fykHOeO0jPlj5F8K5ER4GRHmOWOAuMsJYoi/hNc63FRDo706NUKjNVrYXX7UZvBH9VcIIoiXtxrhgjgqlFlKElyw/ZYOI4LbqkF/PtwqyQbJem9ZXVtAICLh5YmlRitNwYXqnFSeSFaPX6sbKQpZoSElr/2pj+WDR6kWV77Wqrcwo5C5cIIUzIEiFjbZMMftjfKtoNgi8WBg51uiEjsHGYDKTbA8okibtt4HLdtPJ6WciYiVJpmJhjO49xvAKJ3TPkl38mu2xMbMe6SC1VLgXGW2tbqxIFON4YXqTHdmJtTQmaZdACAr5lN5knyVh1rx952N0YUqyVp9VOhWqfGDwaVwuUXKRFXChx3eLCxxQGDWoF5lelZWxzpgqGlAICPjnVAzLNGKiGR+tKwizXClm/BXzRsvq187jTwCiIe29GMDS0ObGyR384bbr+A+7c24ucbj0uzrPdwDgsxAik5TKUOYc85ZZ4nf4v27mMFw4l8hpJzIweqlgLjLPXO4a61xVyOfslD62DlePHIFn5BxPPbGwEAV9aUgU/DubJwuB7FKh6f13fiqN0T/wkkpvfr2iECOHdwadrWFkcaU6JBTbEah20e7KJkdyTP9S35Fo0YJ0Ky33OedRp4hegjc3LhjnHe9nQOxxptZLcCzHSnK3vOUVb07mLlR0hkVkOu/b5RYJyF9ne4sL3VicoCJeb0MYmSnA3UqTCkUIU6uxcNDm+mi5OVVjR0oq7TjcllBZhalp6ZBUUqBS4ZqocI4O1DNGrcW20eP1Y02KBVcFhQ3T+jxUAgEDh3cGDU+L/HaK04yU+hhmFX8q3eHCPW3znWcuwFNhTxxQik8gEbaGQqPnP4BPzncBusUZY/eWOsNe1pxFgy2sg83+aTT8I1L30Hu0Q579jPxxMxHT4eCoxJxrFri9O9BjHTTgyNGptp1DhZflHEvw+1AQCuHFmW1pkFCwaVoFSlwJomO40a99KnxzvgFUR8r6oYRarUrANP1NyKQpSoeHzdYkdLnicmIflnd5sLl3x5CCsaOsPBigAR/zrUipf3WxI+jhBj+nS8hmOn148P69phl9Pc0xTjmNZ4rOAr17j8Ana1uSKSGXXdn6kG+JJaK5bUWvHod03wCyL2tbvC5yv72bCfTE+fUqzz3ubterOZXk+dz7MUEsHWiJtJxJlQ8i3m2bkQkWRVYLx06VLMnz8fkyZNwqWXXort27f3+PiPP/4YCxYswKRJk3Deeedh9erV4fu8Xi8ef/xxnHfeeZg6dSpOOeUU3HPPPWhpaUn32+iTo3YPvg6uQZyf4vWickTrjHtvXbMdDU4vThhQlPas5VoFj4uGlgZHjdvS+lq5yC+K+LS+EwBw9qCSfn99tYLHWVUlEMRAgE5IPvmysROCCPx5V4ukYffGwVa8X9eecEOaDWu9STTE/7SzGS/tt+DVA4kH4dmGzczNBoeZHklMp0e2N+GezfX4qqmrY5+th3QsbUrE4eCe0nvb3XjzUCt++U19uBPdE2ObsZ4D466/2azUnWxgnOFgVLqNVA6fdCnA1lUiHRq5VptZExgvX74cjzzyCG6++WYsW7YMY8aMweLFi2G1WqM+fsuWLbjjjjtwySWX4L333sOZZ56Jm266CbW1tQAAl8uFXbt24cYbb8S7776LZ599FgcOHMDNN9/cn28rae8eaQMA/HBI/61BzKSRJRqUaRTY0+ZCB7PdA+mZKIp4Jziz4MpxFf3yml2jxjYco1HjpGw2O9Di8mFKWQGqdeqMlOH71cXgAHzR0Ek96iSvVGhV4b9DV1X2K+BMcCQ31ihxvLblZosTAHDUlrtLhmIl98nlEeOt1sDnuru9K3dDb7ZASqdPgstn1jQFdiVgp9Gy+932VFTJGuMYU6kzPWLsZNfNyqDeMyle5OCL8V1NRDIPr3d4E/5t7U9ZExi/8sorWLhwIS6++GKMHDkSDzzwADQaDZYtWxb18a+++ipOPfVULF68GDU1Nbjtttswfvx4LF26FABQXFyMV155Beeccw5GjBiBqVOn4re//S22bduGpqam/nxrCWtx+bCq0YZCJY/vV/f/qFIm8ByHE006CAA2mWnUOFGbLU4csnkwqkSDGQPSuxduiFbB44LgqPEHR9v75TVzxSfBUdqzM/i9rihQYXJZASxuP7YFG3SE5AO2oRhacsK272wJNt5iZedNdFS0SJU1TbKk+WOM2OXyiHGITtn1ubIdAR4ZjFy6gmXQKgJlZANYFzt63MMxYnV6sEsDMj1K65CUJYMFyQKxpv7Hfjzzd4Kv0eLy4cb1R3H7xmPwiyJe29WEQzLZmlWZ6QIkwuPxYOfOnbjxxhvDt/E8jzlz5mDr1q1Rn7N161Zce+21ktvmzp2LlStXxnwdm80GhUKB4uLeT1HmUzCKGzpG5LECU7oCGWuLUrQXbTY4qaIInxzvxEazA98LTjONVUck4L3gXrgLRxjAcVy/1dOCQSX416FWfNlgw6KRRpRmwXma6XOp0enFtxYnyjQKnFRRmNFz+ntVxdhmdeKLhk6cEJHYL9P1lA2ojrJTtDVybDPe7hWABHIX+sXowV+io6I5HRjHGEHP5RHjEJ2i63ONlagqU7zhwDhw5rOjxC5mrak/Rlm9ghh7D9wkp+Smky/GdzMfxfvKsfWTWPKt5H/rzMFcJo1OH7ZYHOHdU94/Y0RCz0+nrAiMW1tb4ff7YTKZJLcbjUYcOXIk6nPMZjOMRmO3x8daQ+x2u/HEE0/g/PPPh06n61U5lUoeRmPqRucMhq6GqdXlxaf1HdAoOFw5pQoGbVZ8dClxml4H3XdN2GJ1oLBUBy3T+8rWEQmobXPiu1YXqovUWDAmMI26v+rJCOC8GiP+vc+MVRYXrp44oF9eNxUydS79a1s9RAAXjjKhojyzeQN+UKrDC3st2NDigLJIi1JN998Z+s7FR3WUXaJlkGZD1ESTYsWaJhvt2R6/gI1mB6Ybu9obhcrcDYwljWewDenoj9/f4cYArRIlWdC5Go90fbV8gkVW1BFjX88B0tcNHfjFqkO4cEhp+DbJzAAZdQKwxc/3qdTxfs2knVjx6ypWNv6esEtBZfQ1AJAlgXEsoij2mGk32n3RbvN6vfj5z38OALj33nt7XR6fT0BHR9+nIPI8B4OhEK2tdgjBM+Yf+8xw+0VcMKQUgt0FS54laZ5uLMBXTXas2N+CWcFRtcg6IgFLdwU6fxZUFaO9zdHv9XRWuQ7v7AP+va8FCyoKoFbIu7GXyXPJJ4j4b60VPAecYtDCYrH16+tHc8qAQiw/1oFlu5pwHtPgoe9cfP1ZRyUlBVD1c/byXBVtbTDbVDju8OLDo+24ZJi+x0SGkhHjOGtJ3zrUhneOtGFuRXKdKKIoQkD/78Xa6PRiX7sbp1b2rvM/1ohxtLo5Zvfgzk3HUapS4LVTh/bq9eSEnZLMrnWVw1TqEE1wxNgjKWv06ceiKMLlF/HqzmYAwLK6rqVTsUZm+zMYFUQRbxxsxQmmrk4nNhjMdJDeH17aZ4ZHEHHT2HJsMtuhVfCYZAhMe4kX7Ca7DESI8vsZD/u9d0RMuVdmeMZVVgTGBoMBCoUCZrNZcrvVau02ihxiMpm6Pd5isXR7vNfrxe23345jx47htddeQ1FR30Z8U9kYEgQRgiCize3D8qMdUPNcIDDOgy91pBNNhfiqyY4NLXbMZH/sgnVEAmxeP75s6ISG5zC/sihcN/1ZTxVaJWaVF2J9ix0rG2w4syo7sqdn4lza1GJHm8ePmSYdDGqFLM7l+QOLsfxYB76o78APomTIpu9cfFRH2cXPNvqD/2c/vqW1VnT6AiO8PU31k6wxFnpuLG5vDXSib2ByZyQSOzz6XRO+a3Xh1VOG9msCzhvWHQUAlGuVGKdPfpcDtiHsiVM3R4JZk9u9uZFwk93+xsNMVZbTiHGIJPmWnw2Quv7+5wEr3qtrhzHKzEU2kJJmN05xQYM+PNqOz4534NETqsNruVc32fDvw234dzABKRAI5kOSTSiVjT48GshbcuMYE36/LZA3KfTbFS/YTTZBXOQIs18QYfMJPS6l88U4z7wyCIzlPZQTpFarMWHCBKxbty58myAIWL9+PaZOnRr1OVOnTsXatWslt61bt07y+FBQfOTIEfzzn/+EXq9PQ+n7blldOzyCiLMHlcAQZWpjPphuLAAP4BuzQ/IDR6S+aOiEWxBx2sCift8Ll3Xe4EBA9fEx2vqnJ180BLZoOkNGW6+NLFZjkE6F2k4PjjsouzjJfdEaf+xt7MhZz8eJ/vyeRmjY61kiV7avWxyw+wRY3D581+rE2qb+nWVidSe+z3mj04vndrfA4vbFDJii1b2cRlJ7i/1cIxv+0f7OtNA5KtnWKEYw+V5whNgSZc/7WM9J13t9aZ8FR+xerGvu+h4c6OiexIl99VxPvsV+pzqj9EjEHTGO03EFSM/vyGUjv9vSgCvXHEFLlPMj/BrMcdl17XLI1J4VgTEAXH311XjrrbewbNky1NbW4v7774fL5cKFF14IALjrrrvw5JNPhh9/5ZVXYvXq1Xj55ZdRW1uLZ599Fjt27MDll18OAPD5fPi///s/7NixA0888QT8fj9aWlrQ0tICj0c+jcE2jx/LjwVGi9l1HPmmWKXAWL0WrR4/DnbK5/ORE0EUsTwYiJ4zKLPnyni9FkMKVTjQ6cb+KBcpArR7/PjG7ECxipdM+co0juNwSjCT+ZrGPFuzQfIS24APjVWwjWd1giMYgiQQ6Lo92ghNqPHFNluTaRSKInDvtw14bEdz2hqTZpcPKxs7JY1gTRJLY/6wvQmf1Xfixb2WmNmYo9WNnALG3pI2/KNPsZfT+wx9DrEC40TXjkpGG/uxE4Cdoh4tIBMj6v2o3ZNQp5JfEHHP5nq8dbC1230tLh/+sc8iu61E2an7ligdWfE+Cn+MoDfWMSJHjHe0BbYni9ZBEe24bMeRHKa5Z83w4znnnAOr1YpnnnkGLS0tGDduHF566SWUlZUBABoaGsDzXT/Y06dPx5NPPomnn34aTz31FIYNG4a//OUvqKmpAQA0NjZixYoVAIAf/vCHktd67bXXMGvWrH56Zz1bdqQNHkHED4eU5u1occgJRh12tbmwyezAqF5M5cp1W61ONDp9mKjXYlhRZvbCDeE4DguqS/D3fRZ8crwDo0rKM1oeOVrVaINfBE4dUCS7PclPrSzCm4dasarJhoXD9T3mciAk20Vri7FBgYrneowMHD4BBQouZrblaCM0oa88e1cyI1kdzDRjnyBCoUj9d/TOTcfR6vFDw/duDOVocEp0m0faOPcwI/DR6sYdEVD9fa8ZpwwowuSyBFKD9zObN7C93ZyKQsnvJNvAZ7M7xwo8My1UrFjLAWJlpe6Jlz1Wmt8rux9utK8q+9Vy+wXc8vUxAMDLpdqoU8JDjto92NXmwq42F348wiC576kdzdjV7oLZ7cOvJskn0Si7Ztfi7h60x+tIi5UPgMXWZ6w1xj11KLLnFttR5pXBVyKrIq0rrrgCV1xxRdT7lixZ0u22s88+G2effXbUxw8aNAh79+5NaflSrdXtw8c0Whw206TDa7VWfGNx4CcjyzJdHNn5vD4wLVcue1yfNrAYrx6wYk2jDVePLMvo1G45WhGcRi3HNdhVOhVGlWiwv8ON2k4PRpZoMl0kQtKGbSiG/mIDmJ7WvO1pd+FX39RjUU1ZRPKtnqcjRtsvOV7wwI7cHrZ1zZzyCCI0afh5bQ2OhB21d72WO8Fp5UBX41mt4CWBizQxWffnsY/9vL4Tnwb/k8NWLpH+vs+CVY02XDpMj8trutoliYyIZWpwLHQeceg6/0LnXqxR4t7MPu5rYJ0MV5whbTZ4a2FGUTt9AozRnhDUU9KweqcXAHBQJvvvhrDfH3bpgyCK4Dku7nnH3h0riI6VaJA9dk99dT7J94OmUpMEvX2oFe48X1vMGlyoQoVWif0dbrQmsc4pH3R4/NjQYkehksdJ5fKYlluo5HFqZRHcgoiVjZnPtiwnBzvdOGTzYFiRGsMzPLofyykDAtly1/TzGkZC+hvbsAsFDewoRk9NtU+PB5avLKm1Roy2df0dauzZfQJqg9MLo7UZ400jZMvEThf1CiIsLl/UNZ+pwI7gunsR4Kh5LqE9nr2CGM54HHLMLu+lU7uC00Y/isinIZlKzWZ3TmCaarpFiyFDn0msteC94YsRPKVCZAcNmwcg3neLPb/idfSwa3QFMbBn8zdmB7yCGE725ZDZomWHnx0x7vpNCNVBMqX1CiJe2mfGjlbpjjtCjPOE3RO+p8+crTK5TaWmwFimjnW68fGxDugUHC4Zqs90cWSB47jwWszNTCZPEpiW6xOBeZVFstoeaUFw9PqT4x2UNI3xRXB0f/7AItlOU547oAgcAoFxInsZEpKtIoOzSO4eRqMqC1Rdx0H0oCd0yMVfHcEvNh1Hi8sXNdiOFyix6yhtXun03GvW1uGatXU9Pr+32NE+j19Ek9OLbdbEt6ZU81zMhnToLbn9Ai758hAe3t4kqQerzNZvRjIGh+qdEcGRP0ZngnQqdZoLF0OoftlLjzccGKduqrdkxDiF15ANLXb8ZNVhLDvSFr7NK4j416FW3PNNfdRys3XNTm3v6bsNSL9ndp+AVw9Y8dC2Rrxx0Bred1x2gXGMqdShacrJfBbrm+348GgHfvNtg+T2WB1d7PndU6dDrCz1FBiTmF78rhF+EbhwqD4nNrhPldBWTRspMA4TRRGfBaflfk9m03JHlmgwsliDo3Yv9lESLgCBBtOaJht4DphXKa/Pi2XUKDHRoIXF7Q+PihCSS3a3uVDb4ZaOkkVpl/XUwGP3E2aPI5lKjcCaYEfwAWaXL9wAZKcbxguU2ODL7utq8NY7vOG/RTEw6prKxjrb2PUIIq5fdxS/29KAZqe3h2d1UXCxA65Qp8Tx4HvYZHbEbGjLUaxuTelU0dij5U1Ob7egOt1C5xlb9tCU4VRO9falKeD5+14zfGLX8rGQNw62Yle7C83OKNmyY4wYx8uA3sms5e/0CuGdNjZbnFAGKzBTHRyxsO+JLX/ou5TMR+GI6Dj41uLAjeuPoo5ZysF+R20+IertIdusTjQ4vLG/HzKoSwqMZehAhxuf1bXBoFbgfFpbLDFRr4WG57DV4oA3ibVOuay204MjNg+GF6kxolh+a0FDa2i/iLiI5avtrU60ewVMLSuAXuadXnMrAtmp1zVTdmqSvfxiIAutZGskUcTdm+vxi03H4wZiPTXWXDESSUWOlrEjT25B6Bq1Y18nTouVDdDtTAO0ltmpweUX8eI+Cy5bdVjSeO0LtrHL7sNrSzCg84uxp+iGjiCtL/a5Mmgp94BD97XiQOytiti/LW4/rl93FP+34VhayxjS4fXD5vVHXe/r70XQFE+8teS9FToUW8cWyVraaGWJPpIZbyq1M+KxoaDTpFGEXycNee/6xMNUtiuiU0YUxT7NAHtgayPqHV68wWTplpzfPXQ6WNw+/G5LA362/mjEVOroSw0yhQJjGXrtgAUAcNkIA7QymhYrB2oFjyllBXD6RWxtocY60NVrKsckTkBgraqK57CmyZZU4pZctTq4Zje0JZKcnVSuAwdgfYudplOTrPX2oVbc8vUx/O94J9o9fnxR3ymZlpzMuR25JCTW1kORmV3ZEV6XXwzfL8lkHKcc7Gg2GxjbmFEhp18Ir3dd32LH+mY7HvuuSZIJOhFsnbCjTg5f7IYvEAiwdrY6u40yx5p6GbrdKRk1Yh+bVLH7xTuH2/DMruao580bB614Ya8ZbHXHmj7dEBwlb07T2nCWXxCxaPUR3LbhmKRTJrw9mRj6f+p+52PtaZwO7PeB3Rc3/Pqx1hjH6Qlgzz/2fNco+PB3mE/hcqhvzA7c8vVRNMaZjfGN2YGHtzVKvvshkd+9kGd3t+CatXVxE5Ulgn3PksA4xhRpAJJtrSTJ6XJpKnVoyg5JHZvXjy0WJwYXq/E9mWQXlpvQdOq19R1xHpn73H4Bq5tsUHKBLXbkqEilwCyTDg6/iK9b8nsKvFcQ8XWzHSqew0nlhZkuTlx6jRLj9VpY3X7sa6ep8CQ7fVDXDgD477F2/H5bI57Z3YJ3JOsTEz9WZJvSFSOjauTfduZFXD4hagPQLwR2o4i2D2vkMdlGJzttmv1byXF49LsmrG22J50AUTI9kil7E9NgjzYF+N26Nvz62wb8c78lfJvLL0gTk0V0GgDSjgO/ZLRVfpHxa7VWfNFgw+42VziyFBEIzv51qA3Lj3VIRhrlMB18b3Apk9ntl5zDofAmVOepHKGX7HXbj1mpo52XyawxdvgE/HO/BW1unyTQ80Z06IRyCqRyxPihbY04avfirYOtWNVowy1fH0VblHX2D21rxEazA0tqrd3uY38b2MGIrVYnrG5/SjpiChQxAuMYQTkg7byItRY5K0aMv/rqK9hs0h/Uzz//HBdeeCEmTJiAiRMn4qKLLsLKlSvTVca8UqRS4J7JA/DEqSN63CIin80wdgXG+d4xs8nsgN0nYFZ5IUpkvB3SGcHR7NAWRflqs8UBh1/ECcaCcEZLuZtdEQjg1zZTdmqSnQqYJDmhXAdsltVOX+IJnvyiCLdfCF972Ia1RzJtses5gRHjrhucfjHcAGSvYV5RxL3fNmDx2jrJPsVdx4y+Li/y2CHs1dGS5E4OkqzKbBDuZ1+rewCyPrjs4jNm6YzHL0YEu907ECQjfjGmgsoB+3nV2b2SSma37WGDmViBMduJke4p4+znH3otEcy05ChZqVMp3WtH3f7o34Fo2LvdfgENDi9+s7ke79e1AQD+sd+CZXXteHBbY8z9dn2CGP6+p+NKLgJ4amczjtq9WNNDp1adPdBR5fAJ4fOpp+A0leULYX8Fespqzmb4Zr8f7ojfzWanNzybIhPifp7XXXcdDh48GP73Z599hltuuQUajQZ33HEHfvGLX0CtVuOmm27CV199ldbC5os5A4owWIZrReXCqFViRLEax22ecMKOfBWaljtPpqPFIVPKCmDUKLDN6ow5GpIPQhe4bJhGHTI7OLK9rsme9x1RJDuFOqGk27SwU4UTH5XcaHbg0pWH8WXwu+yKEcR1GzFmgiCXXwg3GqWjpyKOBa9pWyzdsz5Lp4NGD1DZYCsycVAyvDFey8UU2Bkl2lEFO/Sl04dFSYM52npidkTdJpkWK6/fHDbocvoFyYgiW/ftbGAc43eT7WSwJfn5xOMTREkZoq079YtdAU7o7nSN7KYy8I92JPZcTOaVXP5AMswdbS68vD8w+hpKKlfb6YkZZLqYzi2O4yCKYtRpzb3FjosVqmKHaqEEYDetP4rr1tZBFEVJOT0p7Olgv7eJ5BeIfG3298jKZMtmv+NNTi+uW3cUv/62vi9F7ZO4gXFkQ+ivf/0rTjvtNLz11lu49tprce211+Ktt97CySefjOeffz5tBSWENdMUaKxvyuOpuTavH5vNDhQqeUw3ymPv4lgUHIfTK4shAvgyT0eNnT4BG80OaBVd245lA5NWidElGjS7fNjXlvgWLYRk0jG7Bw9ubcAxuyc8pVPJNDbZxlhnEg3af+wLTBF+fo8ZgDQZFbu2MXK7JkdEYBytXcnGJOzU4sM2Dz6r75AEZZ4YI8ZsMMSOOie6dq/N7cMnxzoka5LdEcFgtL9DQoFx5CiSpD6Y+0LFYhvzbIAhmWYZ5T3sbHVGHV1PF/ZccfoESeAkCYyZx8Wqevb2aHWZrHaPH98FZ0I8tK0RV645Et7bmq3faK8VCvLSNZU1HWtH2aK6ell/3oj17wAks7nY+vBEdoowW1x9crwTl68+gtVJLlkAgNoON+765njMtlFPWctDU/hbPX7YfAIanD7J8oNUjhg7JR058b9zkR1CNl/03w72O74/OKPH6vZnbAlC0jMA9u/fj4ULF3a7feHChdi5c2dKCkVIPCeWBwKLb8z5m4Dr6xYHfGJgqqsqC6bdz68KjJJ+0dCZlyOPG80OeAQRJ5UXQpNlSfVC06lXHm3PcEkIScxd39Rjs8WJtw61hhtY7O8k2xhLZjQ11KBTB48Ve8S46zmCKEoCcXa0icUGoGySqxf2mvHcbjP+dai167ExAjKbL8YoYYKNzF9/24C/7TXjA+a7ztZVrJHqkGjXIp8gxgwOQ0EJ2wiONa06spH/VZMNv/62Ac/uaon1dlKuIyLRWay13m3u5IL1VIzsPbStEfd+24DNZge2BveZ3tMe2GqP7cCJ9ln4w0Fen4sRVTqOK8k03csgyiOI3abrs3GodCo1E3D6xfDjvIKIz4I5b57a2Zx0GT5v6MTedjeeZs5jdgTcEfE9EyNmKbCz8OrsHumIcQqDS1uMWR2xRHaGuGL8jkh+99jM+/3Y4cVKunVWVFQEna77aEdBQUFeNnZJZows0cCgUWJnmyul01eyyZrgNOpTs2RabrVOjbGlGjQ6fXm5L+6aLMpGHWlOKDA+RoExyQ6h4ErFc+Hgi82kGi2hTSJCjThlODCOPvLhk0yllgY+XkGMOoJmjzGiEvq9ZDPVemIEkpJs1b7oDdGehJYnHWa2eooM6sNliBLtqKJk6PWL3UflQqKNGEvXGEsTf92zuR4bgjtS/O94IBjZaO6/mWPOiKnkvhifQ3uS7RKvIPZ514bQaNsGZsAgNGoXL0AKva10rXVOx3FTMQrtFcRu3+EOyd6/XY9lO6t8Ylfnll8ECoOjzL0pUbTvUaunK9gNdbh0eP0QIqZKO3wCzExgbPMKMRNb9VWHN/q64FgiP3PJzBOmLtnfF3Z0vDNDKekTCowXL16M2bNnY/bs2bDZbNi9e3e3xxw8eBDl5eUpLyAh0fAch9lVxfCLCPeM5pM2tw/brU4Y1ApMNGgzXZyEzR8YSMK1qhfTjbJZp9ePLRYHipWB7cayTWWBCiOK1TjS4U7Z3qiE9AdR7GpAS5M+9e54oRHRUIMzVqIots0uiNJp1l4h+oixJLFVlEZhrDKzr8uO6nRGNGS/szrx2q6mhLan4pgdliOTFYVEC7aiHTlyH2OWEGXEWNrB0PXYp3e1YFebC8/ubgk+t+u+1Y02/GZzfdxtbnpji8WBu785jhaXr9tUcrYOOiTbWiXXqP/oWDsuXXkYO1v73p6RJDkKjlzHG5H2M0FeOiQbxG6zOvHI9kZYoySNCx0qXpKtRLgFQfL9sTNJrABpB1enV5pQjT1nU11t7PfY7hPwjdmBRauP4MOj7ZLyOnyCZHDI5vVLk4SlsGDseZVIwO0TgAMdbrQFP8NYs02kyxGi/5b1J2W8B9xyyy3dbjMajd1u+/TTTzFr1qzUlIqQBJxcVYLlh1rxjdmBuVk4CtcXa5vtEACcXFEIRQr30Eu3kysK8fe9ZqxttuO6MaasmAKeCuub7fCJgZHXbH3PsysKcbDTgw0tdgwaqs90cQhJiMMvhEckersOkRW57650NDX68SNHeQL7+nZ/XOR61RUNnZIkPLFG/ZwxRonZhqXTL+DXmwMJbbQTynF6Zfd979lZf+yIFUsyYsyU54jNg0E6VdR1gb4eRoydfgGvHrBIMjrHmhYbWi8bClzYnTv+dagVxxxe/H2vGb+bOjDq8xMliiL+d6wD4/UaVOvUuH9rI4BA8G3SdjWb2XWmgHR9d7TEZD35oiHQWfzCPguemTWoL8WXlikYNMUbMfaLgfedvuRbyT3+1QMW1HZ64PA146HpVZL7Qu8vFdOEIwNcm1eQdFBJ7mMD5ojOrd78tDQ5vdAq+KidZJL1uD4Bz+8N5DT416E2yVaPDr8o6SDojFj3nkqSnAUJvESd3YM7Nh2HQa3AP08ZGrHsJHqFSaZSB+tgk9kOBcf1Wy6dXgXG0SxZsqTPhSEkGSdWFkPJBbbA8YtiVgWIfRXKRi3XvYtjKVIpMMOkw4YWB761ODArC/byTYU1TYGpbdncgTOrvBBLa1uxscWOiykwJlnC5hXCo7qpGGEKHUJEYF2mO8ZaOZaAyKzA8VvRNp+APye4dpY9GrsuT5LdmXn9fe3uqIExG2hYY6yRZV8r9J7WNdvwx++accGQ0qh14O9hjfGyI+1ojZjWHutjCgXCofvZUcjQFPC+jDJ9dLQdo/Va6PzAc8FR6WXzh4fvb3J5UcRkCHb5pEEVO6IWuS40UdYYuzY8tbMZdTYPnpxZDUWczlV2lDUUoCc29TV9ybf8YmDKMgeEc2xsNjug4ICpUQKeZmfgPZijnIepDPw8gtgtuZwjIigNYc8td8Q5bU9iyzcg0Llz/bqj0Co4TI0yi4wdBXb5xfBeySqekwSYXkGU5hjw+lOaiZqVTJJCIDBaDCD8/ZZOpY7+/XBGvJcDHW78flsTCpU83pg3LMkS9052ZYAhhFGoUmCCoQAdXiG8tiYfNDu92NPuRkUwW3C2mRcMDlfmyXTqVrcPO1oD094nZNG090jDitQYoFNhb3vX1ChC5IhtOLe6/Smf5hjS6RMSGgXxR4wYJxKgsyOoyWCD4cgtokJiBRaR0zfjCb2n0J7F79W1wyV0f15PiZEig+KesNMvBVGaNCkUKvb2sz7u8ODv+yy4c+Nxye8bOwrc4PBK16MKQsykYclOpQ4RERiZ/sbsQKfXj6N2Dzx+AasabThk86DRJZ0q7hVEvLDXjO3MkjLJyHWwvJ4on0skvxh9JkMqeAQRt3x9DL/e3AAg8Pk9uK0R921tjJonJlQMNkjZ3eZChye12Yo9flFyXtl93adWh7CJ7SITdrHfu0TWU4fWBbv83ZN/AdIRWZdfDCf7c/uFbr8z7ZKp1GkcMfYkd05HPppdThLrN1CS+donoCG4NGKGsf+WoMUdMSZEzmaadNhmdeIbswNjS7M36EhGaPTxlAFF4LJwlHymSQedgsMmswN2nxBOWpGrQtPe5w7IrmnvkTiOw9zqEryz34JvLA6cWVWS6SIRImFx+bD8aHs4izqAtG7l0+5JbD2fICY2WsKyJJnVOCRWQCtZhxzjMYkEw6xQsMW2w11RKiFVmXHZ99Dh8UsD5eD/exsUmF1d9b2fSQ55xN6VU6HV45eUwekXJYG4PcZIYzJsPgFPBjMbzzAWYLPFicuGG8L3H7d7Ua1Th/+9qtGG5cc6sPxYR/i29ogp9EBin4FPTF/yrcM2D1pcPrS4fOEp8SF72t0o0yhQoOAxUKcC0LX2PHTJ3Gp14L4tjRhbqklpR5c3YsQ4cqaEPcaIcSTJsgWfgCKVosfXtTCdL+YYswRC3Mxadm+ULNqRHSHp2uUo2RFjli+i3LGKGJkvIXQ+juzHQaDcbpGSnDczuB/spn7MSplpXdmos3MaslrBY05FEbyCiPXNub/d1uoszkYdaW5VKQBgYx7vH07k63ff1uPtw22SbY0S2Vakt+I1aEMCI8Y9b3OUKrEa7+woU0eMUdpk6yoUhNY7ukYxo40Yp6OhbnH7o9Zjp9eP/R1ufFDX3i3IO2zzdAvKNpsd+Ptes+SzrGNG64/au95bm9svqcfIUWH2372dSi0pmyUwChy6hgBAk1Na/mjZ1dnOAadPhBgxYyEWvyD2aq1sItgs599aHWhm6nt3mws/33gcD2xtCN8W6l8JJZf6+97A/uF72lM7O9ATkZXaEjEbKlaW90jsrAir2x+exWj3+qMmqjIzr3PM0XPCOJcgwh78XvvE7tO22ySBsdgva4yT1e6JXg89sfn84Y6KMk3/jeNSYEyyWlWhGtU6FQ7bPGhOQzZKuTlq9+CQzYPBhSoMLVLHf4JMzQuujV7VGH1D+1zR5PRib7sblQXZOe090rSKQhQoOGyxOlO6DQTJPkuXLsX8+fMxadIkXHrppdi+fXumi4S6YBBT29k/mdObEwyMA1mpkxsx7q1Y2xeyIzGxRn6SXSfp9oswu3ySekhmT+i+MLt9cEWpx06vgGd3t+Af+y14v65re7nDnW7ctuEYbt1wTBI4PLitER8d68DnDV3XorqOrhHjo0xA1+kTJO8vcoTdLplO28s3FsVxJnCKDITjtXu2tzpx6crD2JdAQMluQZROL+2zYGdb19TvVcHAv8Hpg9svSEZI7T4BL+6zSOoglTyCKEmU1mNgnGBg+PD2Rty56Ti+Mdvx44/24M6Nx7sFqxZX4t81l0+QlCNyVFuyt7ZPSOnexdLX6f13uy1itkUibF4hvF6+TN3zCHwqUWBMsl4+jRqzexdn4zTqkAkGLYwaBb5rdXXrwc8lXzFJt7L58wpRK3hMN+ngEURsT8G2IiQ7LV++HI888ghuvvlmLFu2DGPGjMHixYthtVozViZ2XWhLP/2mJPo6IqTJt1KRBCwWRwLH7vQK2G514itmJLLd4086cZVXEPHukbZut/UHi9sXtaHtFkQcCQazu5gp0ZssgfaB3Rd47/d8U48lB7rOV/axsUaMAemIbeR7TVdAwjru8OClfWZ8cqwDKxo6JSOPsXgEMaG13OlMvsVy+UV8zEz9Zr9HR+1eSQDm8otp3ZLTI4iSta89BayJfj8ag+fIWwdbYXH5cNjmwY7g9dLjFwJTypPI09Hq8UvW60YG75FTqeU4Ytzq8Se97t7mE8KdAEYtjRhHlWwP9ccff4wFCxZg0qRJOO+887B69WrJ/aIo4s9//jPmzp2LyZMn46c//SmOHDmSzrdA0uDEPAmMRVHEmsau9cXZTMFxOGVAEUR0Bfu5aE0OTaMOCWUSp+nU+euVV17BwoULcfHFF2PkyJF44IEHoNFosGzZsoyV6SAT2PSXFlfio1iR+99mUqvHj99uacDjO5rx7pE2PL/HjCvXHMGKhuRm8HgEEeua7eA5oKa4f2cw1Tu83ZL7RNrX7sLBTje8gohtTHD16gELdrW78J+IoD6EXXN61C6dfZDMZ54O61sc+PBoB/6214w/72oJT7dOBb+Yvmm4Id+vDmRDj5ZtGgDu2HQcbx6UdrC1efyoKlBhgj71eWQCyaxijxizkv3W7mVG6d881IqrvzqCH608jOvX1WFDS+LLyCI7XCJHjCO3CUvbiHGSybdYbR5/0jkM7N6uwNgg5xFjURTx3HPPoaWlRfJ3uiXbQ71lyxbccccduOSSS/Dee+/hzDPPxE033YTa2trwY1588UUsWbIE999/P95++20UFBRg8eLF8Hj6ZxoWSY2xpVoUKXl81+rsdSbIbFDb6UG904tRJZpwgopsdlplbmenDk17H1KowrAsnvYeaYZRBx6BjiihH0YXiLx4PB7s3LkTJ598cvg2nucxZ84cbN26tVfH5HmuT//t63Djli9r479QirUkMx2SaXz306BqQl49YMXHxwOjd9tbk+tcaHL50OrxY2ihut+vSYlMrW33Cvj5xuP4+cZj+K6VTaiVeHDbGWxTVAffX6LT57ORACDdTahxCQS3oT2dWWVaBQrSkKgzchS4p8C4L/a2u8NBniD2bclBaHpxqDbYfHfpHDHuS/KtZ3e3JB2wd/r8sLh9KFLyKFAp+nyd4ONscxaS9FkmCAL+8pe/oLm5WfJ3uiXbQ/3qq6/i1FNPxeLFi1FTU4PbbrsN48ePx9KlSwEEAvzXXnsNN910E84880yMHTsWjz32GBobG7FixYq0vx+SOgqewwyTDj4Rkl7hXNM1+pidSbciDStSY0ihCodsHtTZcq8zKhdHiwGgRK3AOL0WrR4/anu5pQzJXq2trfD7/TCZTJLbjUZjrzrJlUoeRmNRn/470oeRjL5oSCJIcvqF8JYrclGqVmBGRRFGG3q3FUqoI3pEmQ7Gov7JoVAczPa7vyPxa0ZoOvTIPow4jg7utRvq31Bm+LOcU9V9H+q+KiopgJDmtzV6QAm0iuQD3PIiDfS61HcwR24l1pd1tIk4bVBpn4/RFoyE9RHTi/UaRXBqeHoC4/7+lW1x+eEWRJQXqvt8jQj9p4qTLRzo5XZNIjNKIPbDiEGoh/rGG28M3xavh3rr1q249tprJbfNnTsXK1euBAAcO3YMLS0tkl7v4uJiTJkyBVu3bsWCBQt6VdZEeyQSOUYqjpWrIutoVnkhVjXasMniwMmVuRWIAIGtC75qsoEDcGplceI9X7I+lzicNrAYrx2wYnWzDVeWGDNSinTUkSiK4W21Th2Y+OclZ2w9zSovxM42FzaZnRij77/9BeVO3t+39BJFsVfr6H0+AR0dfevQnKPX4KuKIiCYuGdnmqdVDyxQosHpS2o/b7dfRJGShyCKMbd16m+/mjQAk8oC39+b19WFk5clq0AUoEzfrlgSgwpVaHIA1jhrZi+vMaBMo8TgQjWe3tmMNo8fN48x4ecbjgEAVDyHwYUqFCh47G5zxW30V6qkwVyJko9bhnQZVqTG3ePLcX59apNXtljt8KR5yNjncKNcq8BRu/R1lBxww9hyvLCnJer3QyuKEBLYi7m3ChScZO2/VsElnSwqlnmVRVjVaMNtE8pxxsBirDne3qfkbM2OQKdQsZIHO2e2VKVAm9svmVqdzULZwvVKDhZLamYWlpQUxA2Os2If4556qGOtCTabzTAajd0eH+rRDv0/Vb3eQFfPd6oYDLkxMphOoTo6s7gAT+5owmaLE3pDIRQ51jDd0myD2e3H9IpCjK7WJ/18uZ5LP9Sq8doBK9Y02XHbiUPAZzBBVSrraI/VgXqHF+PKCjBpsCH+E7KIwVCI749W4uX9FmxudeK2FP7m5Qq5ft9SwWAwQKFQwGw2S263Wq3drqeJEvo4wlGo5PHc/BpYLDY8uq2xT8dKRLlWiRaXL9yAV3CJZSHWKDj4RA6+NCbfSsYgnSpc94ML1b0OjIuVin4bQdXyHAYVqmH19NyZYtIoMX9gYFT1uZMGQRADwXDImBINHp5RBQC4bm1dj1OkC5V8t6y4xarogTGP9I+s6dUKiGJg3WUiSbUSdd+3DeGp4+mi5jhUaJXdkpqVqhU4q6oYgiDib3sDvy2VBcpwIqsSFZ+yQDUag0YJJzM9X69WhF+7L0HyFFMh/m98ORZUl2BcqQaiCPT2mxIqR6gspUxnjVbBoUDRP9/BQiWf9HrhZLF1blAr+nyNSEZWBMaxxOuhjnZf5G2R/+5trzeQmp5vIDDaYDAUorXV3q8nQzaJVkcTDAXYbnXi60MWjE1DkoZM+u++QGfNbKMuqZ4zuZ9LagAT9FrsbHPhq1ozJvRySl9fpKOOPtwXuLDPMSX3eckZW086QcSgQhUOtLmw61grBhRk/5r3VOjP71siPd/poFarMWHCBKxbtw7z588HEFhitX79elx11VX9Xp5IJUydsI2rVDbmNAoeJm1Xo71QySc0BVPNc/Dw8RvZHAKZrFOlWMmHAx6TVhnes7eUCfYGF6okf0cGLj0pVSt63dhPllbBQ8sEADzXtWa7RNX1ObCBrILjEHrKaZVFWNlowwnBpJ1AoPw9BcYGtSI8hRsIjG7GWu9apErsXEjUsCJ1eA/g0yuL8GWjLZxw9LdTKvFarRXVOhU+YrI8h0wyaHHE5km4POkOioHAd7JCqwIQaCureQ4eQURRsH4HSc5Ddfg7VqpSgEP6RkINaoVkP+4yTdf3u0DBw+VP7rUX1RigVvD40YRKeG0ujGfapJeNKMOSWmv4XExUhVYp6bxif+s0PI8CZoq6iufSttbYoFb0+rf0BKMO31jiJ+4cWBBYZgcEOrn6U1YExr3poTaZTN0eb7FYwo8vLy8HEBg5Lisrkxxz4sSJvS5rKhtDgiDKMpiRE7aOZhp12G51YkOzPSf2jA3xCYFp1AoOOKlc16tzQs7n0rzKIuxsc2FlQyfGlWauQyNVdSSIItY0Bqa9n1xeKNt6761QPc006nDM3o4NzXacO7jv66ZyiZy/b6lw9dVX46677sKECRMwefJkvPrqq3C5XLjwwgszXTSUqLsah2xDsliVusBYyXEo701grOChSuC8KFHxaI84XrzRwchRa7ZToFitCAc95wwvw+t7mvGjYXrJ89mkSKUqBY4i8cC4RMX32/pDrYKDkWkol6kV4QzHFVoVOryBvAeGGI3pW8aV46yqYoxlrjXRgvoKrTIcLBs0CpRIRuf4mOvFEz0XohlVosFhmwcnGHVYH8xaHLoNAG4dX46LhupRHQwea0o0eGDaQHxrcYQD41Lm3DlvcClmlRfiohUHU7qvcl9oFDwqCwKfTaGSD+/pHUrkOKRQHT6Xx5RqwruNlKoVKQ/02OnTkVmPjZquf6t5DkquK8lV5LTrELbuhxapMauiCCUaJSL7xn84pBQzjIFBgHiBMfs9rtCqJIEx27FVoOQknTU6BY92IfUdCSqeQ6Eq8TXiCg64c2JFsEOLhyiKCQXGo0s04cB4RHH/tuezYrsmtoc6JNRDPXXq1KjPmTp1KtauXSu5bd26deHHDxo0COXl5ZJj2mw2bNu2LeYxibyF9jPeaE48DX422GZ1otMrYFqZTtJDmCvmVBRCyQX2/O2vPTDTaXebC2a3HxP02n7de6+/5dP+4UTqnHPOwd13341nnnkGP/zhD7F792689NJLkk7mTGF/I8uZ719xCn871QpOcuxCZWLHVvMcVAnMSGPLevv4clw+wgBTnN8SXURCoyKmkcxOuZxg0uHN04bjsuHSJR5TDAW4cEgpbhlngjrJKZmlaoXk9dJJq+BRxgQtFcxslVDABUDyGJaK5zDBUCBZbjUluM56alnXjCV25DJyxLhIxUumZbNBskYhvS8ZVToVXjtlKO6cWIEzq4oxw1gQHslX8xwUHIchRWooIs6hYubzZc8TTfBz7G150kHNczirugSXjzDg8ZlV4ZHUMSWB/5eoFfjjCVV4dtYgVDGfbYkq9Vmp2ePpuwXGXfWo4jlomO9XIfM89rNnO2Mij8dS8RyGF2ugS+D9sL9nFQXS3wD2HI+cSaFXp+f7WKLiE/oNC1HzHOZUFGG6UYfxem3CSy7YGR1jSvs3MM6aVlu8Huq77roLAwYMwB133AEAuPLKK3HFFVfg5Zdfxrx587B8+XLs2LEDDz/8MIDAFOorr7wSf/3rXzFkyBAMGjQIf/7zn1FZWRmeHkayy0CdCoMLAz1qTU5vzkzvXB3KblyZm+sWi1UKzDDpsKHFgc0WB04qz+73Gfq8Ts3BJHCssaVaFCt57Ahuk5bIRZ7kjiuuuAJXXHFFpovRDduQZIOEkiRGOeJR8Zxkqq5BowASyIOk4bmEghT2u3R6cJ3sljg7LqgVHJT+rlGtYlXXSGqJJKhTQKfoPruN4zj8dFQgL8vmJDu7SlQKuNOYGImlVXCSDscBWiV2Bf8eXarBV812VGiVSXWEXDbcAJNGiSllBfjZ+qMAIAk+dUoeJcznXapSSAKiQiUPT3A0X81zUPdyGqua58Kf/a3jArMavYKINo8fZ1WVxHyeXt1VHyatErWdgZE2DS+v32QFF8jmreQ5XBrsmLlzYgX+e7QDFzMzGEYFg2R2hkSpWoG2FCeVCkw9DhxTp+Qlyy3YwFgZ8b0tZL5bBQoenuDIrFGjwOHgAPDgwvgZtBMNjEMzFwZEdI5FdoKwU6lL1QqglzkDelJZoEoqn4AmosNOmUBQreQCHe//N64clQVKlNFU6ujOOeccWK1WPPPMM2hpacG4ceMkPdQNDQ3gmR+B6dOn48knn8TTTz+Np556CsOGDcNf/vIX1NTUhB9z3XXXwel04ne/+x06OjowY8YMvPjii1Crc2fP0Xwz06TDUXs7NpodOC8Hpne6/QK+brFDzXOYZcrugLEnp1cWY0OLAysbOrM6MPYJItY226HkgNkV2fs+EqHgOUw36bCq0YZtVmfOv1+SHdgpkOzatFTOtlHznKSxlugaOLUiscB4okGLwzYPrqjpGtWN97zQqJYv2LBnR7WKmaCuUKUA4kyxVCewnU5obSgQaITbfekblWTXXGsVvOQzZkfRRhRr8OysQRhQkFzTVsFzWDBIGngWqXhMKyvAFqsTU8t0ko6VErUCKqa9WaDkw0FcKDDuzbw1bZSRehXP4aqRPe/YUK5V4uzqEuxpd2FooRobWgIdG6ERY9lMo45yDhs0SiwaGX2mCRs4GjUKNLtSe46xgWTovAoFxuw0ZSXHSTtCFOxnz6E9GH+Wa5W4fIQB1TpVQltSsa+vZwJ/yTII5rwbWtQVm+gUnOQ7XqDgJSPgpT2MWPdFlU6VVAeFMuIjSyQxrprnwHEczkjDlmSJSDow5jgOVVVVUKvVkr/7Q0891EuWLOl229lnn42zzz475vE4jsNtt92G2267LWVlJJl1oqkQ7x5px6YcCYy/MTvg8os4uaIwLZvby8UJJh0KlTw2mR2wef3hRBzZZmtw2vtMU25Oe480MxgYbzTbKTAmsjBOr8W5g0rAcdKGNTu1MdYawUSpeE4yjTHWtN1I6uBoWTzTynS4YkSZpBEZb/qiKmJUix0xZYO6IhUPuHtu2LIBTKyMvOwoaZGKl6zTZZN9JapAEcg2vb+j+97oBQoOjmAZdEpe0hFRycwMK1byGFLUt/boJcP0+M/hNlw8TI8CnkeD04tJEUkheQ7dRoxDNAqu1/tVFyQQTMXys7GB/Dkf1rWHbwuVQy4TqSNHD+Op0qlQpOQxuawARSpFn+onmgKl9Dxng1kN00mh4iM+b+b7pJN89nx4JDwR7G+BUdMVGBcpu5J9sbMjqnSqcCdRiVohmRGgVXAolXznFSlL4scmtRtSqIbNm/h2eJHJjCMD5WhUGZ7pkPSr8zyPFStWYNSoUZK/CZGD0aUalKh47AxO78x2a/JkWq6K5zC3ohA+EVjbnL1rxMOf14Dc/rxCppUVQMEFpl76+2FPe0Li4TkO140xYfFok2QETromuG8NLxXPSYIzY6IjxhHBa6xRYBXPdRtZiTcTXMVLA7JSZo0h20lXmECHHXucWMEI21Gr4DhJgMBOO04kKCtW8lg6bxiuGBE9qNCySYWUHAwaJaaWFUDDc5jOrAuOlXArGYtGluGziydiaJEGJq1SEhR/LziCNUGvlXx2kdmAVREdC4lKRee3lok8QoGoJk4ZkiljX8QrR6RCJY9/BtdcA9J6Lk5BXemijBgDwES9VtIR1W0qdcRIbUi0EfFEsTPv2YGBYcyU7MjfGbY+tQoeJi3zPVfySNXHynZojChWx/0tYkUWoaffvJBkcxykWu4OQZG8pOA4zDDq4BOBLQlkvpMzu0/ANxYndArpxT9XnRZcS7eyITu3NwpNe9fwHE4s18V/Qg4oUikwXq9Fu1fAgSgjPYRkEtugY9fjJRIc9kTNcxherMbC4XpcPsIgGTHuqW0cGTTFakhHa/OzoyjRGpeRx2Yb0WzQmlBgrIgf2EXezI5+DWNGbdnGOztaxL5FZTCxVKxplmwAEwpE7ptaiX+eMhR6jRIvnTwEj8yoSsn0UZ7jYtbR4tFG/OWkQTh/cKmkjgqZN6bmecl7TmadbypGRKONesY7bqpHYmPpzUi6KnhuANKOg6IU5AxgO3C0Cg7XjzHhzKpi/GSEQfJdUnJcxOcdfcS4NwHd3OBMq1lMm4E9fnmBdK3ztGA263Gl2m4zO9jOv0GF6pTtLc4BeGJmFRaPNmJCRAKteC8ReTe7dl8tKX/Pv2/9iQJjknO6slNnd2C8oSWQpfmkisKE1nxlu3GlmkAilXYXmpypTxqRbpuC095nlesSWl+UK3Ll+0ZyT4U2+jrgvmZQVvEceI7DT0aU4dLhBklDsafkMmpemtE11ghatGOwAao2+Hps+1HFcZLHGJhgvUoXmG5coEhsKjcbzLGjV+zxewpyRhR3BcbsbyH7HGWUv5UxGs0FUQIRnhmlLtcqJfvEpotWwWNQYWAZoSpG+dQRU6mTGzHue0DABrmhDoWbx5mg5jksqom+lre/RozVfZwiywbDxTHOy2SwWzQVqxQo0yhx67hyTDAUSIJcZcRsjNgjxsm/v9snVOCvswdhurErMGZ/nyYZClCo5LGgOjBwcNv4CvxomB6LRxslQblWwWOQTg01z4EHMF6v7Za9vLc4BBKinTe4FBzHSb6nyWSoBqTfe0lgHyPTdybkT+uN5I1pRh2Uwemdvize/md1Y35Ny+U4DvOCU8ZXJbHpvVyEPq9T8uTzCpkZTApH2zYRuWFHLgsljeq+B8YsSUMx4j62za7kpVOiY625jBa8RhsJZJ+t4qVZadnAYZKhAPdNrcSLc4dGfb1IbIDGrltkG/7RtqN5YmYVHpo2ULJ9lSSYjjEqFGpcKyV1E32qslyy38cKlNQ8J3mf2iTKm4os0uyZEzqPppbp8K/ThuGkGDOZetpaKJV0fQz82enTxRH7SvcGu8SgJKIO2M9XHREYs+dggWTqeu9GxKt1ask5xCbZKlTyWHrqUPxsTGANuV6twBU1ZShSKaT7GAeTb/1t9mA8ekIVyrXKhNbzJiIy9mV/n+KN7nZ7LvNv6TruxI+ZbvL4hSEkhXRKHlPKCtDpE7CzLfEkAXLS5vFjW6sTpSoFJhtyfxp1yGkDA0Hll402iFm0ZtXm9WOzxYEiJY9pxvyYRh1SpVOhWqfCEZsHzVk40k9yl0bB44YxRtwyziQZnUg0i3QskSMakuC3W0NQOs1WujY1/nq7EOlobaDpxkWMsLKN68iRnOlGXcJTjUsl2ztFT0g0K7h7AHt9GlWixeSyAknwzwbokhFjyRrO7rexnxebeTrTjeaQWGuMI4MobRLltfn6vh1RrBkBfERmZfbvGSYdfj15AM6uDmTm/n6asgH3dSYVe75LM0r37pzoqbNMsuQhYhZAtFF5oG8jneysgzGl0tkPHMd1S2IVKFf3OjBpleHnJ5IBOhF8xITonjoC4z5XUq989NspMCYk9UIZctdnaSKntU02CCIwd0Bhyn7cskG1To1RJRrUO7xRs5PK1foWO3wiMKeiUDYNt/4Umk5No8ZEbs4ZVIrvVZVIRvHOCgYAY0o1vTpmZAM42rTgaP+OzEodKwlY9KnUTLKrKE9T8tJ1kL0ZvQqJ3Kqmqwxdf58xsBj3Ta3EryZVRC1LiCRYl4wKdX+8goveaFbzHH4ywoBRJRoM0nVloc6knqbWSgJj5j72Y2M/nsuGG1Ck5DEzBZ2qkwxaLKox4MmZ1T2WWRVxXs4qL8R1o43486xB3bauSpVUTJF9ZEYVFtWUYVRJ13e3t8n02GA4cheJyE6EWGv82YC2L9859j1UaJPvuKsu7P69SGTP4EREHiaZ0d2BOul7ibVcIplR6HSLezatW7cuoQN5vV784he/6HOBCEmFWaZC8AC+brFDyKKRx5DVwezG83I8G3U0pwff88osmk69ujHQAZPr2cNjocCYyB07cje0SI0X5wzGryYOSPj5saZSAhGjnxGtyMhghJ0uyzaGo02BlRxHEfs1QsdmA8vxei0uGlqKB6cNjPZ2eiTJOB1j6reS5zDdqIu6tR47Ws0GH7ECs9D7iQzW2PsXDjfgiZnVssm3Eet80Cn5mCOz7OfKflY/HmHAklMDicT6iuc4XDLMgJEl3Tt9VDFGN/lgWRQ8h2FF6rSNmKUi3hmv1+KSYXrJ96E4yjmYyDTi8foCGNQKVOtU3YIx6bnIS6b5s5+jdMS49zWnVfA4u7oEV40sw+BCFS4eqsddE7t3OkUKze4YWdz9805ZYBx5XOZtxgpiQx0XFw/VS26XLi2J/t3I9BrjuN/CG2+8Ec888wzmzZsX8zEOhwM333wzNm3alNLCEdJbJWoFJhi0+K7Vhb3tbozrh8QcqdLk9GJPuxuVBUqMjnJxy3VzBxThH/stWNNkwzWjjCnLrJguLS4fvmt1wqhR9EsCGDkaV6pFkZLHd61OOH1CTu+5TbKTgufw6Iyq8NTgigIVvEwOChXPSf4dqUTFwxzc/zcyiy/7z+7bLEkbfOyaRHYtrobZLzhaY9PD7CUculvBAaHFC0qOQ4vbxzyGw1UjjTHfT08MMUaME53iyAaKRcroU6mjBYxso1kjWZssv2sA+xvHrk/VKbmITgxI/vbEOB6foiCmJ7HqP7J601UWhy91gxTxthRT8xx8UfbfVnBA6OZCJY+/zxkcda9fSV0pOGgEdsS463F9XWPMCu1FDQBXjoyeKC3Sn2dVw+YTom5Vlqo+pO7rhOOP7i6qKcOwInW35RscF+u7kUUjxmeeeSZuueUWfP7551Hvt1qtWLRoEbZs2YLnnnsu5QUkpLdmB9dArcuy6dSrmb1wo60ryXWlagWmG3Xo8ArYYpX/COSqxk6IAE6rLE5ZFshsowiOHvlEYKvVmeniEBLVOL0Wg5l9QdmGWbxRCjb4icwezDbqeHRPisX+zTbi2TWObNAZbbTL5RfCf4fid/Z1OA6YbAh0zJ3bx6mwAwpUuGtiBf48a5CkYzLRDi+2kc6+R+lepczoczj5FjttO3rdyAWbOdgQkQQp2mgsIH3/mXhH7HmlkgTG0tKksrrZQzl8QszHJUsZEbhGUsUYvY18r2oFHzUJXuS2auzMh1hJ7tht2/qLQaOU/KaxUjViHFk7saY9R/7uxctpIB0xlj43k+L+yj3xxBM477zzcPvtt2P58uWS+44dO4bLLrsMx44dwyuvvILTTjstXeUkJGknBdcZf91iz5pETqIohjMy5+u0XAA4LfjeV8h8T2NRFMNlnD8wfz8voGs69Tc0nZpkicjkVT1h1yB2GzFmjqPgOckIS+TIkzZG4p5YiWhChgQz1Q7SqeAPXs8UEQH5D4fo8cC0Slw7uncjxayTBxRhWJFaMi060f1u2UBRkrFZIQ02QkIxB9uQl+wPK8fAmAmU2DWhganUzFT0GFNHM9GHyp7v7OeSzhFjngNODrbFxupTNwNOMi0/amKqvr2HyORbPxxSiillBbh3ygBJ3bHnelWBPNa/h7C/D4+dUIUHplX26jiRAzSqGJ090qUCyZUv1jKDTIg7lZrjOPzhD3+ARqPBL3/5S3g8HlxwwQXYs2cPrrvuOigUCixduhQjR47sj/ISkjCjRokxpRrsbXejttMTdc2N3ByxeXDU7sXwInXMXsB8cKJJhyIlj40tdrR7/AlnU+1v+zrcOO7wBpLC5PHnBQDTjQXgOeAbiwOCKPbL1MBsI4oijtq9GFyoysvZIHLGNqR5AJFjW2wgFxkgsiNxPAKBRSh4jVxXK5lKHWP9bbSG4ckVheAnVmCCoQC/3lwfeC1OGmipeA5Ty1KbFb83e+sWxxglVsUY5Ys2YixZuynDqdTsFHF2uyNFRPZn9jNK1QheKpRplAACCS4jf6tj9UMoOSDZ2dA8x+GWceU40aQLJ0VNBXWMZFjXjCrDfw634cyqYrxxsLXXx+clnWY8ilSK8Hr9Y/auCfGlagVuHmtCsUohu990dhQ2MtN1Mtx+6a9hrPXAKp6DJzidJZHrP3ueSTr5MlyNCa/0v++++6DRaPDrX/8ae/fuxb///W9UVFTg5ZdfRmVl73ohCEm3OeWF2Nvuxvpme1YExquaaLQYCExvOq2yCP891oGVjZ344RB9posU1YqGTgCBDK35rkilwPhSLXa0ubC/w92nC3Gu+s+RNrxe24rfTqnECab82tZL7jQRIx+eiPXGbGMtckpx5GgH267rnlAqevKteCNcPMfh5OAe6aGEkmyZ0hV0sZ0AiW7/zHMcLhxSCo6LvUY53hpjaaeB/HIWSBKncRwKFBycfhFlGgVEZtVqrBHjTDNppcE8SzJFHwi/G2WMdbs94REYRT8txddI9nvFfhY/HKLH+YNL8UXw2gxI30NvPoHIGQuFEcnWQlnu5aavvwlVBSrUO72YGLFlKPs7IE2i13V7In1Z7E+skpdPYJzUr83dd9+N6667Dv/85z8xcuRIvPnmmxQUE1kL9VCuy4Lp1IIoYk1TYD30KQPyOzAGgO8F91L89HinLD87j1/AmiY7lFxgWy1C06l70ub24T+H26DkgMFRttYgmaVWRB+BCuE4DiOK1VBy3fdNjRztYJ/OjnYGslJHb9AnOk05VBYgcM24eawJo0s0OKMf9p5NZh/an44y4qqRRkkDOVomaqCrUcw2jmNls5aL0GcXKtvzswfjsROqMKhQjQ5v1whbrOmimgwH+wZ117hYZPWyo32xPr/Qb/2wop5nSqXro2PPiQuGlmKyoQB3Twpkmec4LqXJnDq80v2lJYGxTLKkR9PTVp+J7P188zgTbh1nwmUjDJLbY2XhT3Y6NLtjjPQ3VOZTqU866aRu0wNEUURtbS0WLFjQ7fHr169PXekI6aMBBSqMKFbjYKcHdXYvhsb5Ec+kPe1utLh8mKDXorwX+9jlmmHFGowq0WB/hxt7ZJhZfKPZAbtPwMkVhVG3i8hHM8t1eOWAFZvMDlxek1hWzXzxr8NtcPlF/HBIKQbIbC0aiZ/8igPwxMxqCGL3hlvk2rqekm+xDUlJIq4kMrmHyuoWRJxVXZLWESu23Z9MYBwinXbJbgPVvb7ZxrGWT3w0PRMUPIdX5w4Jd6joNcrwdkvnDy7FYZsH144y4vP6rpFLdm1mpU6J9nZpwNUfFlQX47DNI0kUFRk4SmYiMKPE7Ln74xEG3Dd3GN7d2YSX91uC93dNtQ79na71omxXebFKgYemS7clU0R870IzQJIpzi8nVuCfB6zhNdIhbCdaT8FnpvW0CkLDd2XBZ0fUWSqew5lV3X9bYiXfUkX8DsYTaxOAyoLMtn/jvvrll18uu3nzhCTj5IoiHOy0YnWTDYuK5NtY/zI49edUGi0OO6uqGPs73PisvkN2gXFoGvV8mkYdVq1To0qnwiGbBy0uH3XwBDU7vfj0eAcKFBwuGabPdHFIFJHBQLT7FRwXtcHH3sZzXLDNFGj1RU4fHl2iwU1jTZhaVoA2T1dgFC0zbiyh0bKetpdKFZ6ZfJrIKFOkyORjXcftEm/f5n54m70Sa9/hgToVHplRBaDrOgFI13xOL9Nhb3Bbxv5049hyAMDqxq7ElpFTbqUjxl3nsiQDMcehTKuKGUQrOA4+UUzbiHG8UzHWqGYyxZk7oAhzY7THrhttzHiSqHh6GnmN7MyLtnY85lrzWEsiup03PYv8Xk82aLG91YVZ5ZmdgRf3G3nrrbf2RzkISZtTBhRiSa0VaxptuGKEQZYdPW6/gK+abFDxHE3LZYT2NP6qyY7FowVJptJManZ68a3FCYNagWllBfGfkEdmmnR4v64d35gdOLuP28bkin8dboNPBC4eUirJbkzko52Z/hptbV5PV43Iqac9jRhzHIfvB0d4ncz2NVZmD+J4QkFjkss9e4VtHJ9WWYSlB1vxoyQ6dyKT80Q7bry1kJHrvbOJIkaAdmplEQYUKLut3+wvsaZIA5GfTfTHhf5m35+K4+AKBtFKnoNbSF8SxtElGlwzqgwT9NHrT7r9T9ffFVoljti93Z+QpHMHl/b5GOnWU80rIoJYn9h99JiPcYRY09Rjfb9jKY5IWnDv1IHo9PhhynCHujxamYSk0YACFcaWatDk8mFfhzvTxYlqfYsdDr+Ik8p1KKKGc5hOyWNuRRHcgijp4c60z+oDexd/r6pY1lOpMiG09myTObv2D0+XBocXKxo6UaTkcX4WNKbyVTszehttTWKi2XgVHCddY8zHXivLjhKPLg0kh5xhjB8o9eea21C2/UIlj4oCFd49fTiuSGKZBDvym8j+viFuJuovSTTrlwzFmomg4IDTBxZnbFZNT/XP1rZkynuUkcJYycVCAXW6TlWO4/DDIfqYSVUVMd7fNGPg+lQkk072dOqpTyL22uD4z2erTpJdPsk1xvqI3UYKlHzGg2KAAmOSJ0LTk1fJKLhihfbCpezG3X2vOpiEq74jwyUJ8AkiPqvvBA/INhtlJo0r1aJQyWN7qwsuf+SmN/nnrUOtEETgwqGl1OklQzePNQEALhmqD98WLVBL9FxWKzjJrKRYIyqANFA8u7oEv5tSGU4g1JPQiPOFQ9Lf0TKsSI0/TB+Iv540CEDyayo1MToG2MNEO6RbEPDMrEFYPMqIqVk8KydWgJbpBEOSgDaiKLG2mGIfF/os+RgBVuj2TAUZsUY15w8sxk1jTfjjCVWZKFa/6nHEmPlgIpeCRPubxa6Vl+zFnuAa41BnELtzhZzmhFBgTPLCyQOKwHPA2mY7/DKbltXi8mG71QmjRoHJWdwASJcxJRoMLVShttODve2uTBcHm8wOtHr8mG7U0RraKJQ8h+nGAngFEduszkwXJ6PqbB6sarShVMXjB4NotFiOzqouwbunD5fkMIi25tWV4LxlDS/drkkdZZQt/Fim9ahV8Jhh0kkS+8Qyq7wQL88dgqtG9k/OjAmGgpjraeOJ9f7ZaZrspgMjigMj1COKNBhapMZ5Q0plufwpUWyAwK7RzvREo1gBe+C+6H9LOjkUUUaMo4w2ZqoDIFaCKJ4LdCyFZkLksp5qPtZ64Mg92aM+l6lPXYwt53oaMX54+kDcNNaE0wfKM58OBcYkL+jVCkwxBJKdfNcqr8b6lw2BabmnDyyWfTKHTOA4Lrye579HMz9q/MnxQBkWDKLR/VhmmgLr5Dfm+bZNbx1qhQjg4mH6bnvfEvlQ8JykQRjtb3eiI8Y8Lwl6ehoxZqdSq5NMbGXUKLMiYIzcriok1pZWD00biIemDcT0BKaUZwP2ms4GlpmeOyKZ9txtjXGMoCnKuRxvSnymOgBiraHOdIeEXMSaPh259Vw0bH0WMD+WmgSzdQ8oUOH71SUxZxtkWlZcqevr63H99ddjypQpmD17Nh577DH4/T2nuW9ra8Mdd9yB6dOnY+bMmfjNb34Dh6OrkbZhwwbceOONmDt3LqZOnYoLLrgAH330UbrfCsmgUyuD06mb5DOdWhRFJruxPHvP5GBeZRGKlDzWNttgSSJJTao1OLzYanXCpFFgenCtEuluurEAPAdsNjskexXmk2N2D9Y122FQK7CAptzLXuT2LiGhbZQSHTFW8ZykwRcrMASiT03NNez7KmXWFLJvl515U6QKzJzKhqA/Eez7ZIMIPsOft7aH8zJWxnB2qXfXVOrojw397GfqXcZMCpWxEvW/aEnrpgRnJU4yRJ8hw/52xVxjHGMqtTZGPoFEDJTRCL7sA2O/348bbrgBXq8Xb731Fh599FG8++67eO6553p83p133okDBw7glVdewd/+9jds2rQJ999/f/j+LVu2YMyYMXjmmWfwwQcf4KKLLsKdd96JVatWpfkdkUw5qbwQap7Duma7JBtoJu1ud6PB6cO4Ug2qdfL5YZAbjYLHWdXF8IvA/45nbtR4+bHAa59VXUKj+z0oVikwrlSLVo8ftZ3yTHiXbsuOtEMEcP6Q0qS24iGZwTb22D2FQ8tbaooT+30WIEoaVrGyMgOQBH+ZXnOaLuy6Q3bvXPb3c1AOX/uUUTpZgMx3hLB7aKsizj22aOxoYrTkabGybodCskx1cMRe252J0mRGtMD4vimVeGXuEAxhAlFJhmrmxytmVuoYW7CxMyJ62kM5mokyGmiQ/dX6q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXm/0lOu1tbVYs2YNHn74YUyZMgUnnHAC7r33Xnz44Ycwm80AgJ/97Ge4/fbbMX36dAwZMgRXXnklTjnlFHz++ef9+fZIP9IpecypKITLL2JtszxGjUNB3hlVNC03nrOrS8AD+ORYZ7/s3xnJ7hPwWX0HVHzXdisktlB26o0t+Ted2uzyYWVjJwqVPI0WZwk2AGCTpN04thyLRxlxwxhTQsfxCaJkpGVEcVfW3GjB76kDCjE7w/t2phO7Zlqv7hoZVvEc7ptaiYXD9RhbGj2zcC5gOwY0PQSj/Y1d2hE5jZWLMZVaxXcPGWJNWRaDQ8YZS77FvDC7RV6udkBF4wnvKd11m4LnUKZRSn6jlJKOkPidCLEez64xTrRD5KmZ1bhyZBlOl9GODbLPHLN161aMHTsWJlPXRWnu3Lm4//77cfDgQYwZM6bbc7Zs2QK9Xo+JEyeGb5szZw44jsP27dsxf/78qK/V2dmJ0aNH96m8qZgeEzpGpqfayFlv6+is6hKsbLTh83obzspwMpx2jx9fNdlQqOQxb2BxWj7vXDqXKgvVmFVRiPXNdqxptuHMqtQEHInW0Wf1nXD6RZxVXYyyPEy6ley5dGJFIf55wIpvLA4sGmVMZ9FkI1Q379cF9i2+cHAJitSZXk1IEsFOpWb31yxU8jgviezPPlE60mLUKPD0idUxt3u6Y2L8LNTZLFamWhXPYbpRl/NLUrSK6KPEmd7mr6ep1CzpjIfu98daJyqE7+99GfuCHb02xJjCn+tCI8bRZiewv1GKGN/RWJ0I0qnXXbdrk8yTAAA1JRqM0mtltXRC9q07s9kMo1HaqAoFyWazOWpgHO05SqUSpaWl4RHjSJ988gl27tyJ3//+970uq1LJw2hM3TpRgyF3e5FTJdk6mldWiEF7zdjd7kKnUolhTLr4/vbx7uZA43lEGaor0juqlCvn0qKJlVi/ohbvH+3AjyYOTGnvb0915BNELF9bBwD46eQqGDN43mRaoudSWZmIQUVNONjpgb9AjYocni7Janf78L/jnVArOFw1pQplWlWmi0QSwI58FCl735nhE8SIrYg4DC/O3RHReBQ8hwuGlKJMo+gxE3Ku0vRh3WU6sQF7T58Fe1+0BEmxslKHJnXJYYQ22f11c4U7HBh379GQTpePscY4xnF5yd/s+S37ScgJyVhg/Oyzz8ZdJxxa7xurJ6GnHoZo94miGPX2DRs24J577sHvf/971NTU9Fimnvh8Ajo6+p7xmOc5GAyFaG21Q5DZ1kJy0Zc6ml9ZhNcOWPGfXU24enRmRrIEUcS7+1oAAKcbC2CxpGdqd66dS4MVwHi9FrvaXPhodxPmDOh7R1QidbSqoRNNDi9OMOlQ7POl7fOSs96cSzPKCnDM5sGn+1pwtoymSqULz3NYdrwTTp+AcwaVQLS7YbGnZ411SUkBVLQvcsqwjfriaENjCfJGTKXOjaZi31wdnDHS6e1KmprpqcT9hQ1A5ZR5VxVjlDBSvGC+mPkNkowYh6ZSZ+gts+u5Y+1pnOs8wUz6migfMHtLrO25YlWVlqlbScdIjvzYZSwwXrRoEc4///weH1NeXg6TyYSdO3dKbg+N+kaOCoeYTKZuI8M+nw8dHR3dnrNx40b87Gc/wz333BO3PIlIZfAhCGJOBDPp1Js6Om1AEV4/YMUX9Z24fIQhIxerby0ONDp9mKjXolqnSvvnnEvn0o+G6fHA1ka8fagVs0y6lE3BiVVHgiji34fbAADnDy7NmXrsrWTOpROMOrxf146NLY68WJft8gv49z4zeA64YAidK9mEHTUp7cX096oCFeqdXpRrlWhyduU/yZP4LyHqOKOPuainfazloqdRXTaQLFMroeY5jGf2/B5S1DUTiA1AQz99mXrHRSoFnpk1CKVqBb6o7wzfrpLnR5AWFw7V48V9Flw0VN/tPskU+BhrymPFuVoFj6dPrEaxSgEzs0sIjRj3kV6vh16vj/u4qVOn4oUXXoDFYgkHtevWrUNJSQlGjBgR9TnTpk1DW1sbdu7ciQkTJgAAvv76a4iiiMmTJ4cft2HDBvzsZz/DnXfeiUsvvbTvb4pkBaNWielGHb6xOLDRbMeciv7fJunjYHbjswflfrCQatPKClBTrEZtpwdbrM60r1H7usWOIzYPxpRqMNmQv1Ooe2O8XotCJY/trU64/ULOZ2f+9HgH2j1+nFZZhAEFNIU6m7CBml6twA8GlaBMk3gT6f5plfj4WAcuGabHvd+6wrfn9hmfHOkWOhksSD9KZAQuUxaPNsIVZ39uNuuwWsHhrXnDJO9Dp+Rh1Cig5jlJUNW1xjhzb3poMGiPNx08V507uBQnVxTCEOV3TDKVOsk1xgDCy0NaPWxgnBt1K/ufprlz56KmpgZ33XUX9uzZgzVr1uDpp5/G5ZdfDpUq0PDYvn07FixYgKamJgBATU0NTjnlFNx7773Yvn07Nm/ejIceegjnnntueH3yhg0bcMMNN2DRokU466yz0NLSgpaWFrS1tWXqrZJ+tGBQIAv0f4/2/9Y/DQ4vNpkdMKgVmJXD2UjTheM4XDJMDwB462BrOPtlOgiiiH8dagMAXDbcIKsEEdlAyXOYVlYAjyBiq7Xvy0zkzCeIWHakHQBwcfD8JNmDbRAWKnlcP8YU/p1JxIACFX46yogilUI6lZp+M8JiJWrKZex7ltuW7ucNLsWPhhl6fEzklGsFz3W7Dr548hA8e9JgyXco01mpWewU33z7PkYLioHYW3KxnRuJVBW7xjhXpqnL4ZztkUKhwPPPPw+e57Fw4UL88pe/xAUXXIBbb701/Bin04lDhw5Jtm964oknMGLECFx11VW4/vrrMWPGDDzwwAPh+5ctWwan04kXXngBc+fODf/HHpfkrhlGHQYWKLGzzYWD/bzP6vt1gf1NfzC4JGd+SPrbSeWFGF6kxt4ON75O43ZA65vtOBwcLZ4a3M+UJCe0bdM35tzetml1kw1mlw9zqooxLI+TLWUrtsFc2MfFcuyvep61wxOWL2uMs/0Sz06zjRVUKjguZltGDn0B1M7qjmOzUnPSzo+QRDoR2MeXqGUfUiZE9lmpAaC6uhovvvhizPtnzZqFvXv3Sm7T6/V48sknYz7n0UcfxaOPPpqyMpLswnMcfjC4FC/ts+DDo+24bXxFv7xuu8ePLxo6oVVwtL9pH/Ach6tGluH+rY14rdaKE026lG9/4RVEvFZrBQD8ZASNFvfWdJMOPIBNZgcEUczJHntBFPHukTYAwKJx/fNbQtKnr4FxIpld812+jBjXFGswtlSTE9tSxduNhw2CFRwHnyjCL4Nh8nzphEkG+/WLtS9xIrXG/tZNMRRgUY0BU7J8ECE3wntCeuGMgcUoUHBY3WhDm8cf/wkp8PGxDngEEWcOLJZkcyTJm1pWgMmGAtQ7vPiUSa6RKsuPtaPR6cMMYwGmlmV/oyZTSlQKjNVr0erxo7bTk+nipMUmswNH7V6M02sxpbz/cxaQ1FL3cS28ZDsTapTnNSXP4Y8nVGPh8J6nLGeDZLY6CnV8+DMfF9OIcRTsb1SsbdQS2ZaYPSUCy9wMGFWS3blYKDAmeUun5HFmVTF8IvDxsfa0v57bL+CjY+3gOeD8Ibm/dU26cRyHq0eVgQewpNaa0s6NDo8f/zrUBp4DfjoyM1t65ZJZwenUXzfbM1yS1BNFEf8JZi1PZk1qNtqzZw9+8YtfYN68eZgyZQrOOeccLFmyJNPFSplTBhRibkXf8z5I9zHu8+FykhxGEvtbKBlUZUFWTNbsJpkR49B575NBZv5UzybLBWyHnYKPHhgnUmty+HxTjQJjktfOG1wKngM+PNoBh6/n7Ix9tfxYBzq8AuZWFFLG2hQZUazB2YNKYPcJeGW/JWXHfWm/BXafgO9XlUi2oyC9MzsYbKxttqU1WVom7GxzYV+HG0MLVTjBlNszC3bs2IGysjI8/vjj+O9//4sbbrgBTzzxBN58881MFy0l7pw4AL+cNKDPx+FoKnVcOdiejmtQoRrPzhqEP504KNNF6ZV4sx/Y3/bQ2mQ5dIDQd7A7TjJ9uutvdolDIrNdvDn4Rc7ObitCUmRAgQqnVxbhiwYblh9rxyVxMjT2lsMn4N0jbeCBnJhSJSdX1JRhXbMdKxttmFdZ1Oe1XBtb7FjVaINRo8CikWUpKmV+G1CgwshiDQ50unHY5glv9ZAL3gmuLb5omD7np81ecsklkn8PHjwYW7duxWeffYbLLrssQ6WSn1jTFEmXHGxPJyTbOlrZzynewKt0jXHg/3KYSk26Y3+j2ARr7JZLifx0DS/WoKpAhZnludMpTIExyXs/GmbAlw02vFfXjh8MKkVBHxOvRPPRsXZ0eAWcVlmEQYXZdWGUO52Sxw1jTHj0uyY8vbMFf55VHXOLgng6PH78ba8ZAHDT2PI+J+EhXeZUFOJApxvrmu05Exgf7HTjW4sTFVolTsnAfuhy0NnZidLSvi0N4fs41TH0/L4eJ1XYcigVnGw6TORQT1eOLMPHxzows1wnm8+LJYc6khWmGlQ8361+pPXUfTsuvyhmvC7Z719/lkXO55JC0f2zAiL2Gk8g14KG5/DC3CF9Kovc6okCY5L3BupUOLWyCCsbbfjwaDsuTfGIbofXj2VHAmuLf0yjxWkxu6IQ368uxv+Od+KpnS24f1pl0iM1flHEkzubYXX7MX9gUc5Pi+1vcyoK8VqtFWub7TmT5TuUifqCIaV5uY5ty5Yt+OSTT3rcNSIepZKH0ZiaTgWDQR77wmuYxIrlpuIMliS6TNbTz4xF+NkJGXv5hMnlXMo0NdPJXFSs6fZdZetJrTZ3/a1UAPBBAJey73dvFbu68o9koixyPJcMIrM9na5rsKaY+bu/60ou9USBMSEIBKxfNdnwzpE2nFlVjLJejjhG80ZtK+w+AWdXl2CgjtYWp8u1o4zY0+bC9lYnXtpnwfWjjQkHX6Io4pV9Fmy1OjG0UIUbxpjSXNr8M1CnwohiNQ52elBn94YT0WSrBocXa5vsKFUFkvhls2effRbPPfdcj49ZtWoVKisrw//ev38/brrpJtx6662YPXt2r1/b5xPQ0eHs9fOBwEiDwVCI1lY7BBnM0fX5uhriFostgyWRkls9yRHVkZTT5Q3/3druCp/P0erJ5fF1PVEI5Gzx+oWMfwc6O1zhv/uzLHI+l9g68bq7PmMf8xn2V131Zz2VlBRAFWdHGAqMCUGg0X7u4FK8V9eOpQdbceu48pQc91CnG/873oEiJY+f1NBocTppFDzumVyJX31Tj+XHgnWewMikKIp4ZWcT3q9rR7GSx92TK6Ht43YtJLqTKwpxsNODtc02DC3K7vXb79W1QQBw7uBSaLL8fFm0aBHOP//8Hh9TXt71m3jgwAFcddVVuPTSS3HDDTf0+fVT1RgSBFEWDVD2bJBDeSLJpZ7kjOooQGBykrr9Qrc6YeuJzbP1/eoSvLjPgh8MLsl4PQ4KDkgY1IqMlEWW5xJTHAU7BZ5pLvV3meVSTxQYExL0o2F6fNHQiS/qO/H9qmKMLu3bXmyCKOKFvWYIAH4ywoAS2rc47QbqVPjd1Erc+2093j7chjaPH9eNNsbcl9QriHhxnwX/O96BAgWH+6ZVoopG9dNmTkURltS2Yl2zHT8Zkb2Bcavbhy8abNAqOJwzqCTTxekzvV4PvV6f0GP379+Pq666ChdccAF+/vOfp7dgWYqjPLgky2kVHFx+EQZNV7vFEydoYbNS/2BQCaYbdRgog62pBupU+POsQTBpqA0Wwq78UUjWkdNvV3Z3cxOSQkUqBa6sKYMI4M+7WuDx9237pv8e7cDudjeGF6mxoDr7G8/ZYmSJBn+YUQWDWoFP6ztx+8bj+MbsgMBctEVRxLcWB+7YdBz/O96BMq0SD82oyvqN6eWuSqfC8CI1jtq9qLN5Ml2cXvvgaDu8gogF1SUoyqMOr/379+PKK6/EnDlzcPXVV6OlpQUtLS2wWq2ZLpqs5MDyeZLnHj+hGucPLsXFQ/Xh2zxJpJjmOA5VOpVsckkMK1Ln1W91PJKs1EwwTFn0acSYEInvVRVjbbMdW61OvHmoFVeNNPbqOEftHiyptULJAbdPqMjLxDyZNKJYgydmVuMve1rwrcWJh7Y1wqBWYERxYF3rYZsHFndgHeBEgxYPzR0Opcsji2k8uW5ORSEO2TxY12zPuq1LAMDuE/DJsQ4oOeD8IX3LxpxtPvnkE1itVnz44Yf48MMPw7dXV1djxYoVGSyZvNDPPcl2Q4rUuHZ0oP1TqlKg3etHZZzRX7p6Zg+2w0Ih+TsTpZEXCowJYXAch1vGleP/vj6KZUfaMUFfkHR2YodPwCPbm+ARRCyqKcOwLGz85wKTVonfTanEBrMDH9a1Y1e7C5stgSQ/PIDxpVqcO7gEcyuLYCpUw+LK3hHMbHLygEIsPdiK1U02LByul82IQqI+PtYBh1/EWVXFMKYwSV82uPXWW3HrrbdmuhiyR1PxSC7504nV+K7NidkVPWcNNqgDv4fFKvoGyB3beaeU/J1d1+N0yK+rOiEJKNcqccu4cjy2oxlP7mjCYzOrMTjBvYe9gogndjThuMOLmSYdLhqaXyNKcsNxHE4qL8RJ5YVw+AQ0u3yAKKK8QBXeozjbArNsV61TY1SJBvs73DjQ6cGokuzZ09jtF/BBXTt4ABcyUwwJYcll32JCUsGoVeK0yviZ9y+vMUCAiHMHUbtH7thfKEWM0eN8Rd06hERx8oAiXDpMD4dfxG+/bcAxe/zRRK8g4skdzdhscWKQToXbx5dTA0lGdEoew4rUGFasCQfFJDPmVQb2R1zV2JnhkiTn8/pOtHv9mFNRSEnaCCGEUaxS4Kax5Vm5RCbfsG1TNjcpTYenwJiQmC4bYcD3q4vR6vHj7s312Gx2xHys1e3Db7+tx/oWOyoLlHhw+kBK9EBIDKdUFILngNWNdvizZF23TxCxrK4dAHDxMH1mC0MIIYT0Eh9j+rRIoTEFxoTEwnMcfjbGhB8OKUWnV8CD2xrx1M5m7O9whTMcm10+/PtwK275+hh2t7sxqkSDP0yvyru1h4QkQ69RYlpZAdq9fmxrdWa6OAlZ3WRDi8uHGcYCjCjOnunfpP9R05IQImexplKL9ONFa4wJ6QnPcbhmlBHjSrX42x4zVjXasKrRBjXPQckBjuD2BTwHnDe4BFfWlMXcM5cQ0mVeZTE2W5xY2WjDdGNyCe76myCKeOdwGwDgkmGGzBaGyJ5IrUtCiIyxU6m1TCrqvm1SmhsoMCYkAbMrCjG1rACfN3Ti62Y7jtg98AsihhapMcVQgAWDilGto3U1hCRqVrkOWgWHr5vtcI4RUCDjdd8bWhw45vBivF6L8Xra65r0jBqXhBA5M6gVGFWiwegSDfRqWvbHosCYkAQVKHmcN7gU5w2mjIuE9JVWwWN2eSG+bLRhbbMNZ1aVZLpIUYmiiH8fbgUA/IjWFpNE0IAxIUTGlDyHJ2ZWAwC2WbuWMxXJuIO6v2RFDdTX1+P666/HlClTMHv2bDz22GPw+/09PqetrQ133HEHpk+fjpkzZ+I3v/kNHI7oyZO+/fZbjB8/HhdddFE6ik8IISSK71UFtgD533H5ZqfeZnWittODEcVqTCsryHRxSBaguJgQki18TALM0wcW4weDSvDHE6oyWKLMkn1g7Pf7ccMNN8Dr9eKtt97Co48+infffRfPPfdcj8+78847ceDAAbzyyiv429/+hk2bNuH+++/v9jibzYa7774bJ510UpreASGEkGjG67UYpFNhX4cbhzvdmS5ON6Io4q1DgdHii4fqac9rkhAKjAkh2cLH5ERQ8RyuH2PC2NL8XTIk+8D4q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXq836nNqa2uxZs0aPPzww5gyZQpOOOEE3Hvvvfjwww9hNpslj33wwQexYMECTJs2rT/eDiGEkCCO43BWdWDU+NN6+Y0ab7M6sbvdjSGFKsypKMx0cUiWoNxbhJBs4acfLAnZrzHeunUrxo4dC5PJFL5t7ty5uP/++3Hw4EGMGTOm23O2bNkCvV6PiRMnhm+bM2cOOI7D9u3bMX/+fADA8uXLsW/fPvz+97/HCy+8kJLy8nzfRxRCx0jFsXIV1VFiqJ7iozpKTLrqaX5VCV47YMXKRht+OtoIrUyyuouiiDeCo8U/qSmDMoFy0blEAEBBHz8hJEsMLwpsPzhIp8pwSeRB9oGx2WyG0WiU3BYKks1mc9TAONpzlEolSktLwyPGDQ0N+MMf/oCXX34ZanVqsgkrlTyMxqKUHAsADAYaoYiH6igxVE/xUR0lJtX1ZARw+mA9Pqtrw3a7D2cPL0vp8Xvr64YO7G13Y6Rei3PHDZBsbxEPnUv5Tc4Z1gkhhDVQp8LzswejTEPZqYEMBsbPPvts3HXCq1atAoCY67p6Wu8V7T5RFMO333XXXbj22msxevToRIscl88noKPDGf+BcfA8B4OhEK2tdggCTXGIhuooMVRP8VEdJSad9XR6uQ6f1bXh7T3NOLEk89ueiaKIv22pBwBcOrQUrVZ7Qs/rz3OppKQAKhU1ZOSoQCazHgghJBEDabQ4LGOB8aJFi3D++ef3+Jjy8nKYTCbs3LlTcnto1DdyVDjEZDJ1W0vs8/nQ0dERfs7GjRuxefNmPP744wAAQRAgiiLGjx+PJUuWYMaMGb16X6lsDAmCSA31OKiOEkP1FB/VUWLSUU/jSzUYUqjC3nY3drU6M574Y5PZjv0dbowoVuNEoy7p90vnUn4rUNJcakIIyUYZC4z1ej30en3cx02dOhUvvPACLBZLOKhdt24dSkpKMGLEiKjPmTZtGtra2rBz505MmDABAPD1119DFEVMnjwZAPDhhx9KnvPGG2/gm2++wVNPPYXBgwf34Z0RQghJBsdxOH9IKZ7bbcYHde0YOylzgbFfFLHkgBUAcNlwA2WiJkmjEWNCCMlOsv/1njt3LmpqanDXXXdhz549WLNmDZ5++mlcfvnlUKkCQ//bt2/HggUL0NTUBACoqanBKaecgnvvvRfbt2/H5s2b8dBDD+Hcc88Nr08ePXq05D+j0Qi1Wo3Ro0ejoID2qiSEkP40b0ARSlU81jfb0eSMvuNAf1jR0Ikjdi/G67WYadJlrBwke1XTtERCCMlKsg+MFQoFnn/+efA8j4ULF+KXv/wlLrjgAtx6663hxzidThw6dEiyfdMTTzyBESNG4KqrrsL111+PGTNm4IEHHsjEWyCEEBKHWsHjnEGlEAD892hHRsrg8gt442AgE/XVI8totJj0yuyKQlw9sgzPzBqU6aIQQghJAieKtIFVqni9frS1Ofp8HJ7nYDQWwWKx0Tq1GKiOEkP1FB/VUWL6o57aPH4sXlsHBQe8ePIQlPRzcqm3D7Vi6cFWnFxRiLsmDUj6+f15Lun1upxIvpWK6yZ9hxND9RQf1VFiqJ7iozpKjNyum7IfMSaEEJIf9GoFvldVDJdfxPt17f362la3D+8caYOSAxbVyGPLKEIIIYT0HwqMCSGEyMbFQ/VQcsB/j7ajw+Pvt9d9Zb8FLr+IcweX0tYVhBBCSB6iwJgQQohsmLRKnFVdApdfxHv9NGq83erE6iY7yjQKLBxu6JfXJIQQQoi8UGBMCCFEVi4eqoeK5/Dh0Xa0uHxpfS2vIOKFvYF9768dZYROSZdFQgghJB9RC4AQQoismLRK/HBIKTyCiCW11rS+1tuHWnHM4cWUsgKcXFGY1tcihBBCiHxRYEwIIUR2Lh6qh0GtwKpGG/a2u9LyGvs7XPjPkTZoFRxuGmui7ZkIIYSQPEaBMSGEENnRKXlcEcwO/bc9ZnhTvI2D2y/g6Z0tEETg6pFGVBZQwi1CCCEkn1FgTAghRJbmDyzCBL0Wh2wevHO4LaXH/sc+C445vJhuLMD3q4tTemxCCCGEZB8KjAkhhMgSz3G4dVw5NDyHtw+34mDn/7N33+FxVPf++N9ndtW7JVnF3XLvhWZjUxziryFAaIHLpaVwISHhS+4FfCHhJiYkIaGFhHAvJAF+XCDwvbnBJCRAEjDVBgPGRu5FLpItWV2WZLXdnfP7Y7SrmdWOdrbPat+v5/EjeTU7e/bs7Mx8Tvmc/qjs9836TvytvguF6Q58Z3Yph1ATERERA2MiIrKviuw0XD9tDDwS+Pn2RnS7IlvbeHdHH57Y2wpFAGvnjUVxhjNKJSUiIqJkxsCYiIhs7Uvj87GsNAfHe914eGcT3GHONz7c1Y/7Pj8OlyrxjenFmFuUFeWSEhERUbJiYExERLYmhMD/nVOKCTlp+Ky1F7/c1QSPDC04PtzVj3XbjuOkW8UVkwpx4YSCGJWWiIiIkhEDYyIisr1sp4J1iyowNtOJ9xpP4oHtjejzqJae+1lrD+7eUo/2AQ/OH5ePa6uKYlxaIiIiSjYMjImIKCmUZDpx35IKVGal4aPmHqz95NiIaxx3uzz4zd4W3LvtOHo8EldNKcTNM4uZbIuIiIiGYdYRIiJKGuVZafj5qZV4aEcTPm/rxb9/Wo8lxVk4qzwXVXkZcAqB470ufNrSg7ePd+OkW0WuU8G3Z5dg+djcRBefiIiIbIqBMRERJZX8NAfuXVSOtxq68MLBdmxp7cWW1t5h2ykC+D+VefinqUUYw+zTRERENALeKRARUdIRQuC8ynycU56HT1p6sKO9F7UnXVClRGmmEzMKMrCsNAdFDIhjora2Fl/+8peRnp6OzZs3J7o4REREEeMdAxERJS2nIrBsbA6Wjc1JdFFShtvtxp133omlS5di+/btiS4OERFRVDAwJiIiIssef/xxjB8/HmeeeWZUAmNFiSwZmvf5ke5ntGM9Bcc6sob1FBzryBq71RMDYyIiIrLks88+wyuvvIJXXnkFb731VsT7czoVFBdHJylaURFHDVjBegqOdWQN6yk41pE1dqmnpAiM6+vrsW7dOmzevBnZ2dm49NJLcfvtt8PhcJg+p6OjA/fddx/efvttOBwOrF69Gt///veRnZ3t20ZVVTz11FP4wx/+gPr6eowdOxZf/epXcf3118fjbRERESWN7u5urF27Fj/+8Y9RUFAQlX263So6O4cnTguFoggUFeWgvf0kVFVGpVyjEespONaRNayn4FhH1sSznvLzs5CWZh47AkkQGHs8Htx8880oKSnBSy+9hKamJvz7v/87MjIycNttt5k+74477kBzczOeeeYZuFwufO9738O6devwwAMP+Lb56U9/io0bN+Luu+/GtGnT0N7ejt7eyC7QREREyeSxxx7Dr3/96xG3effdd/HLX/4S55xzDs4888yovn60boZUVfIG1ALWU3CsI2tYT8GxjqyxSz3ZPjD+4IMPUFNTg2eeeQYlJSWYPXs2brvtNjzyyCO45ZZbkJaWNuw5NTU1eP/99/HHP/4R8+bNAwDcc889uPnmm7F27VqUlJSgpqYGL774Il599VVMnToVADBhwoS4vjciIqJEu+6663DxxRePuE1paSk2b96M48eP4/e//z0AQEoJVVUxZ84c/PznP8dFF10Uj+ISERHFhO0D423btmHWrFkoKSnxPbZixQqsW7cOBw8exMyZM4c9Z+vWrSgsLPQFxQCwfPlyCCFQXV2NVatWYcOGDRg/fjw2bNiAG2+8EUIIrFy5EnfccQdyc8Of7xSNyeN2m4huR6wja1hPwbGOrGE9BZesdVRYWIjCwsKg2z311FNwuVy+/7/11lt4+umn8cILL6CioiKGJSQiIoo92wfGLS0tKC4uNjzmDZJbWloCBsaBnuN0OlFQUICWlhYAQF1dHY4dO4Y333wTDz74IAYGBvDjH/8Yd911V9AhZWaimUQEsM9EdDtjHVnDegqOdWQN6ym40VpHU6ZMMfx/x44dUBQFM2bMSFCJiIiIoidhgbHVOU0AIETg1nezx83+JqX0PS6lhMvlws9//nNMmjQJALBu3Tpce+21aGlpMfRQWxWNJCIAJ+xbwTqyhvUUHOvIGtZTcHZLIkJERETWJSwwtjqnqaSkBDt37jQ87u319e8V9iopKfFt4+V2u9HZ2el7TklJCZxOpy8oBoCqqioAWhbscAJjIHpJRLz74g3oyFhH1rCegmMdWcN6Ci5V6uiyyy7DZZddluhiEBERRUXCAmOrc5oWLVqEJ598Eq2trb6gdtOmTcjPz/clzfK3ePFidHR0YOfOnZg7dy4A4KOPPoKUEgsWLPBt43a7UVdX50u6dejQIQBAZWVlpG+PiIiIiIiIkoSS6AIEs2LFClRVVWHt2rXYs2cP3n//fTz66KO45pprfBmpq6ursWbNGjQ2NgLQen5XrlyJe+65B9XV1diyZQvuu+8+XHjhhb6e4DPPPBOzZs3C97//fezZswfV1dW47777sHr16rB7i4mIiIiIiCj52D4wdjgceOKJJ6AoCq666irceeeduOSSS3Drrbf6tunt7cWhQ4cM2TIfeughTJ06FTfccANuuukmLF26FPfee69hv7/5zW+Ql5eHq6++GrfccgsWLFiA+++/P67vj4iIiIiIiBLL9lmpAWDcuHH47W9/a/r3008/HXv37jU8VlhYiIcffnjE/ZaVleHxxx+PShmJiIiIiIgoOdm+x5iIiIiIiIgolhgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQhpZSJLsRooaoSHo8alX2lpTngcnmisq/RinVkDespONaRNayn4OJVRw6HAkURMX+dWIvWdZPHpjWsp+BYR9awnoJjHVljp+smA2MiIiIiIiJKaRxKTURERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgbDMvvPACVq1ahfnz5+PKK69EdXV1oosUN08++SQuv/xyLF68GMuWLcN3vvMdHD582LBNf38/7r33Xpx++ulYvHgxbr31VrS2thq2qa+vx0033YSFCxdi2bJleOCBB+DxeOL4TuLnhz/8IWbOnInnn3/e9xjrSHP8+HHcfvvtOO2007Bo0SJcdtllqKmp8f2d9QR0d3dj3bp1WLlyJRYuXIgLL7wQr7zyiu/vqVhHn3zyCb75zW9ixYoVmDlzJt5++23D36NVJ5s3b8all16KefPm4Ytf/KKh3ik0vG7yuhkKXjfN8boZHK+bw42q66Yk2/jrX/8q586dK//3f/9X7t+/X95zzz3y1FNPla2trYkuWlx8/etfl3/84x/lvn375O7du+W//Mu/yHPPPVf29vb6tvnBD34gzz77bLlp0ya5fft2eeWVV8p//ud/9v3d7XbLCy+8UH71q1+Vu3btku+88448/fTT5aOPPpqItxRTGzZskBdffLFcsWKFfO6553yPs46k7OjokOeee66866675Oeffy5ra2vlO++8IxsaGnzbsJ6k/N73vidXr14tP/74Y1lbWyuff/55OWvWLLl582YpZWrW0TvvvCMfeeQR+be//U3OmDFDbtiwwfD3aNRJbW2tXLhwobz//vvlgQMH5HPPPSdnz54tN27cGLf3OVrwusnrZih43TTH66Y1vG4ON5qumwyMbeSKK66QP/rRj3z/93g8csWKFfJ3v/tdAkuVOK2trXLGjBlyy5YtUkopOzs75dy5c+Ubb7zh2+bAgQNyxowZsrq6WkqpfTlnz54tm5ubfdv8/ve/l6eccoocGBiI7xuIoebmZnnWWWfJPXv2yHPPPdd3gWcdaR588EF59dVXm/6d9aT50pe+JJ944gnDY6tXr5a/+93vWEdSDrvAR6tOHnjgAXnhhRcaXuu73/2uvOmmm2L5dkYlXjeNeN00x+vmyHjdtIbXzZEl+3WTQ6ltYmBgADt37sSZZ57pe0xRFCxfvhzbtm1LXMESqKurCwBQUFAAANixYwdcLpehjqqqqlBZWemro23btmHWrFkoKSnxbbNixQp0dnbi4MGD8St8jN1999247rrrMHPmTMPjrCPNhg0bMG/ePNx6661YtmwZLrvsMvzpT3/y/Z31pFm8eDHeeustNDY2QkqJ999/H01NTVi+fDnrKIBo1cm2bdsM+/Buk6rn+nDxujkcr5vmeN0cGa+b1vC6GZpku24yMLaJ9vZ2eDwew0EBAMXFxWhubk5QqRJHSon7778fp512GqqqqgAALS0tyMzMRG5urmHb4uJitLS0+LYpLi42/N1bp95tkt3zzz+Pnp4efP3rXx/2N9aRpq6uDr///e9RVVWFp59+Gpdffjm+//3v46233gLAevK65557MHHiRJx11lmYN28evvOd7+D+++/H7NmzWUcBRKtOzLbp6OiAy+WKVfFHHV43jXjdNMfrZnC8blrD62Zoku266YzanigmpJQQQiS6GHH3ox/9CPv27cOLL75oeDxQXUgpg24z0uPJpKamBv/5n/+J//mf/4GiBG7XSvU6ArT3O3/+fHz3u98FAMyePRs7duzAiy++iC984QsAWE+AdrO4e/du/OY3v0FZWRk+/PBDfO9730N5eTkA1lEg0aoT/23890Hh43WT1009Xjet4XXTGl43Q5dM1032GNtEUVERHA7HsNaitra2Ya3ho919992HDRs24Nlnn0VZWZnv8ZKSEvT29qK7u9uwvb6OSkpKhtWh9//+LU3J6PPPP0dbWxtWr16NOXPmYM6cOTh27Bh+8pOfYM2aNayjQSUlJZg6darhsaqqKjQ0NPj+nur11NfXh1/84he46667cPbZZ2PWrFn42te+hrPPPhvPPvss6yiAaNVJoG1aW1tRWFiItLS0WBV/1OF1cwivm+Z43bSG183geN0MXbJdNxkY20R6ejrmzp2LTZs2+R5TVRUffvghFi1alLiCxZGUEj/60Y/w97//Hc8++ywmTJhg+Pu8efOQlpZmqKNDhw6hvr7eV0eLFi3Cnj17DGngN23ahPz8/GEn/GR03nnn4c9//jNeeeUV37+xY8fipptuwhNPPME6GrR48WIcOXLE8Njhw4dRUVEBgMcSALjdbrhcLjgcDsPjiqJAVVXWUQDRqpNFixZh48aNhn1v2rQpZc710cLrJq+bVvC6aQ2vm8Hxuhm6pLtuRjWVF0XEu+zEyy+/LA8cOCD/4z/+I6WWnfjhD38oly5dKjdv3iybmpp8//yXnTjnnHPkhx9+KLdv3y6vuuqqgCnfv/71r8vdu3fL9957T55xxhnyF7/4RQLeUXzos2tKyTqSUspt27bJ2bNnyyeffFIePnxYvvzyy3LevHnyrbfe8m3DepLy2muvlRdffLFv2YmXXnpJzpkzR/7pT3+SUqZmHXV3d8tdu3bJXbt2yRkzZsj//u//lrt27ZJNTU1SyujUSW1trVywYIH8+c9/Lg8cOCCff/55OWfOHC7XFAZeN3ndDAevm8PxumkNr5vDjabrJgNjm3nuuefkOeecI+fOnSuvuOIK+fnnnye6SHEzY8aMgP/++Mc/+rbp6+uT69atk6eeeqpcuHCh/M53vmNI7y6llEePHpU33nijXLBggTz99NPlz372M+l2u+P9duLG/wLPOtL84x//kF/60pfkvHnz5AUXXCDXr19v+DvrScqmpib57//+73LFihVywYIF8vzzz5fPP/+87++pWEcfffRRwPPQr371Kyll9Orkww8/lF/+8pfl3Llz5Re+8AX58ssvx+09jja8bvK6GSpeNwPjdTM4XjeHG03XTSElM34QERERERFR6uIcYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIgS5rXXXsPLL7+c6GIQERElBV43iWKHgTERJcwbb7yB9evXJ7oYRERESYHXTaLYYWBMREREREREKU1IKWWiC0FEqeeuu+4a1ur9ne98B7feemuCSkRERGRfvG4SxZYz0QUgotR0yy23oL6+Hl1dXfjhD38IACgvL09wqYiIiOyJ102i2GJgTEQJMXHiRBQWFkJKiUWLFiW6OERERLbG6yZRbHGOMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExECZOWlob+/v5EF4OIiCgp8LpJFDsMjIkoYaZMmYJ9+/bhzTffxPbt29HY2JjoIhEREdkWr5tEscN1jIkoYdra2vAf//Ef+OSTT3DixAmux0hERDQCXjeJYoeBMREREREREaU0DqUmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmnORBdgNFFVCY9Hjcq+nE4Fbnd09jVasY6sYT0FxzqyhvUUXLzqyOFQoCgi5q8Ta9G6bvLYtIb1FBzryBrWU3CsI2vsdN1kYBxFHo+Kjo6eiPejKALFxbno7OyFqsoolGz0YR1Zw3oKjnVkDespuHjWUWFhNhTFEdPXiIdoXDd5bFrDegqOdWQN6yk41pE1drtucig1ERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGltKQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee++9YdscOHAAN998M5YsWYIlS5bgn/7pn9DW1hart0BERDRq/PCHP8TMmTPx/PPPJ7ooREREEUmawPi1117D/fffj29/+9tYv349Zs6ciRtvvNE0iN26dStuv/12XHHFFXjllVdw3nnn4ZZbbkFNTY1vm9raWlxzzTWYNm0afv/732P9+vX4xje+gbS0tHi9LSIioqT09ttvY9u2bRg7dmyii0JERBSxpAmMn3nmGVx11VW4/PLLMW3aNNx7773IyMjA+vXrA27/7LPP4qyzzsKNN96Iqqoq3HbbbZgzZw5eeOEF3za/+MUvcNZZZ+HOO+/ErFmzMGnSJHzxi19EXl5evN4WERFR0mlpacG6devwwAMPsDGZiIhGBWeiC2DFwMAAdu7ciW9961u+xxRFwfLly7Ft27aAz9m2bRu+8Y1vGB5bsWIF3nnnHQCAqqp45513cOONN+JrX/sa9uzZg0mTJuHb3/42Vq5cGXZZFUWE/Vz/fURjX6MV68ga1lNwrCNrWE/BpVId3X333bjuuuswc+bMiPcVaX2lUr1HgvUUHOvIGtZTcKwja+xWT0kRGLe3t8Pj8aCkpMTweHFxMY4cORLwOS0tLSguLh62fXNzMwCgtbUVPT09+N3vfofvfve7WLt2Ld566y3cfPPN+N///V/MmTMn5HI6nQqKi3NDfp6ZoqKcqO1rtGIdWcN6Co51ZA3rKbjRXkfPP/88enp68PWvfz3ifUXzujna6z1aWE/BsY6sYT0Fxzqyxi71lBSBsRkpJYQwb2EI9DfvY6qqAgC+8IUv4IYbbgAAzJ49Gx9//DH+3//7f7j33ntDLo/braKzszfk5/lTFIGiohy0t5+EqsqI9xeIlMAIVWd78aij0YD1FBzryJpUqadIzo3xrKP8/CykpTli+hqB1NTU4D//8z/xP//zP1CUyGdjReO6mSrHZqRYT8GxjqxhPQXHOrLGbtfNpAiMi4qK4HA40NLSYni8ra1tWC+yV0lJybDtW1tbfdsXFRXB6XRi6tSphm2qqqpw7NixsMsazQ9VVWXU9ud2Acf2A8cPC3S1A6pHICNborgCmDBToiBwNdpeNOtoNGM9Bcc6sma01ZPqARoOAfUHBTpbAI9bID1ToqgMGDdNorgy9EB5tNWR3ueff462tjasXr3a95jH48FPfvITPP/883jjjTdC3me06mo013s0sZ6CYx1Zw3oKjnVkjV3qKSkC4/T0dMydOxebNm3CqlWrAGg9vh9++KGvt9ffokWLsHHjRlx33XW+xzZt2oRFixYZ9uk/FPvw4cOYOHFibN5IgjTVArs/Fujv0e7unOkS6RkSfb1AfY1AfY1AxVSJ2adLOJlDhYhSxIkWYMdGgZMntHOjwymRmSPR3ws0HhFoPCIwplxi7nKJrOjNkklq5513HubNm2d47Bvf+AYuu+wyXHrppQkqFRERUeSSIjAGgK997WtYu3Yt5s6diwULFuDZZ59FX1+f70K8du1alJWV4fbbbwcAXH/99bj22mvx9NNP4+yzz8Zrr72GHTt24Cc/+Ylvn1//+tdxxx134NRTT8Wpp56Kt956C5s3b8add96ZkPcYbVICNZ8LHKzWbvrKJ0tMniuRN0brAXEPAA2HJQ5+LtBwUKCzFVh6nkSmPYb5ExHFzPHDwI4PBFRVYEyFxNQFEkWlgFAAjxtorpOoqRZoOy7w0V+BxaskCksTXerEy8/PR35+vuGxtLQ0lJaWYvLkyYkpFBERURQkTWB8wQUXoK2tDb/61a/Q3NyM2bNn43e/+x3GjBkDAGhoaDDMd1qyZAkefvhhPProo3jkkUcwefJkPP7446iqqvJts2bNGnR2duKJJ57Afffdh6qqKjzxxBNhJd6yGymBPR8L1O0VcKZJzF8pUTreuI0zHZgwAyifJLH9A6DlmMAnfwdOXc3gmIhGr4ZDwPb3BSCAmaeqmDjLOFza4QTKpwBjJ0rs2wLU7hH49O9acFxckbhyExERUewIKWXiB3SPEi6XBx0dPRHvR1EEiotz0draHfZ4+wPbtJ7i9EyJU1ZL5BaOvL2qAtXvCTTVCuSNkThtjYTDxs0m0aijVMB6Co51ZM1oqae248CWNwWkBBaeJVE2KfhzDu8E9m1R4EyTOHWNRF5R4O3iWUeFhdkJSb4VbdG4bo6WYzPWWE/BsY6sYT0Fxzqyxm7XzchTSpLtNB4BDlZrPcVLzwseFAOAogALzpIoKpPoahPY9VESp6wmIgqgv1drAJSqwOzTrQXFADB5LjB1gYTbJbD1LYGBvtiWk4iIiOKPgfEo09MJ7NgkAGjDp/PGWH+uNzjOyJZoOChw/HCsSklEFF9SAjs3CQz0CYybLjFhRmjPr1ooUT5Zoq9HYMcmrceZiIiIRg8GxqOIlFpQ7HEJTJ2PYXOKrcjIAuadqd3x7d4s0B/5ssxERAlXf1DLo5BTIDHzlNCjWiGAOcsksvMlWo4KHN0Xg0ISERFRwjAwHkXq9gAdTdoc4akLw+/OKK4Axs+QcPUL7P+MQ6qJKLm5+oF9n2rnsrnLwl+WzpkGLFgpIYTEvs8E+iJPKUFEREQ2wcB4lOjtBvZtFRBCYt5yCSXCT3b6Eom0TIn6Gm0ZJyKiZHVgm4CrX2DcNInCsZHtK78YmDQH8LgEdm/mkGoiIqLRgoHxKLH/MwHVLTB5HkKaV2wmLR2Yvki749vzCW/+iCg59XQBR/cBzjSJ6UuicyKrWiiRlSvRXCfQciwquyQiIqIEY2A8CnQ0AccPC2RkSUyZF70Idtw0ILdQoqNJoK0harslIoqbms8FpBSYNFciPTM6+3Q4gZmnaufafVsEVDU6+yUiIqLEYWCc5KQE9gzOnZu2JPy5c4EIRVuiBPDeXEZv30REsdbdATQcBNIyJSbNju6+S8cDRWUSJ08IHDsQ3X0TERFR/DEwTnLNdUBni5Zwq3Jq9PdfNgnIKZToaBZoOx79/RMRxcqh7QKAwNR50W00BLQs1d7s1jXbBNyu6O6fiIiI4ouBcRKTUuvJBYBpiyREDBJICwFUzddu/g5WM0M1ESWH3m7g+GEgLV1i3PTYvEZ+MVA+WWKgT+Do/ti8BhEREcUHA+Mk1lwHdLUL5JdIlIyL3euUTQKy8yTaGwU622L3OkRE0VK7W5tbPGEWot5brKdNN5E4vEPA447d6xAREVFsMTBOUvre4qqFsekt9hIKMGGW1mtcu5u9xkRkb64B4Oh+QFEkJsyMbXKE3EKt8XCgT6BuX0xfioiIiGKIgXGSaj6q6y2ujP3rjasCHGkSDYeA/t7Yvx4RUbjqawCPW6CiCsjIiv3reZMUHtoBeNzMUkhERJSMGBgnqSO7tJ7bqfNi21vs5UzXlm+SKufSEZF9SQkc3aedFCfGuLfYK68IGDtRor9H4NBujqcmIiJKRgyMk1BnK9DeKJCdJ1E6Pn6v673JPLafSzcRkT11NAEnT2ijafLGxO91J8/RTop7trh4fiQiIkpCDIyT0OHB3uKJsyVEHD/B7Hxt3c6+kwJtDfF7XSIiq7y9xROmxzc6LSgFCkokTrRKtPL8SERElHQYGCeZvpNA4+HBJUimxf/1xw3ebB47wCRcRGQvA31A4xHAmSZRNjm+ry0EMHmu9vvhnfF9bSIiIoocA+Mkc2RwCZLxMwGHM/6vXzZRu+lsqgVc/fF/fSIiMw0HAVUVqJga2yWazGhL2wm0HBPo7oj/6xMREVH4GBgnEY8bOHYAEIqMW1IZfw4nUD5Fu/lsOJiQIhARBVR/UBvJMm5aYs6PigLMXKy1WNbu4agaIiKiZMLAOIkcPwy4BwTKJgIZ2Ykrh/em81gNb/yIyB66O4CuNoGcgvgm3fI3bX4aHE6J+oPaesqUfPi5ERGlpqQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee+89023/5V/+BTNnzsTbb78d7WJHjTepzPgZiU15ml8M5BRIdLUJnDyR0KIQEQEAGg5p58eKqfFZws5MeqZAxRRAdXNUTTKq3Q28/ZLCz46IKMZcA8CJlkSXwihpAuPXXnsN999/P7797W9j/fr1mDlzJm688Ua0tbUF3H7r1q24/fbbccUVV+CVV17Beeedh1tuuQU1NTXDtn3++echbb6+RmcrcKJF6w0pKktsWYQAKqZo9eW9GSUiShQpgYZD2u8VUxJbFgCYMFP7eXQfl7ZLNge2ade0Qzt5bSMiiqWPXxf48C8Crcc9iS6KT9IExs888wyuuuoqXH755Zg2bRruvfdeZGRkYP369QG3f/bZZ3HWWWfhxhtvRFVVFW677TbMmTMHL7zwgmG7AwcO4De/+Q1++tOfxuNthE3fW5zI3hCv8snaz+OHwRs/Ikqojiagr1ugcKxEVm6iS6ONqskbI9HdIWzXGk5ERGQHJ09oAU1jnZrgkgxJQF7j0A0MDGDnzp341re+5XtMURQsX74c27ZtC/icbdu24Rvf+IbhsRUrVuCdd94x7Pf222/H3XffjbFjx0alrIoSedTq3Yf3p3tA6w1RHBLjpwkoNmjOyC0E8oslOlu17KsFxfF9ff86osBYT8Gxjqyxcz0dP6z9rKxKbPm8r+1wCEycKbHzQ61Rc0yCR/kQERHZVV+PfXrYkiIwbm9vh8fjQUlJieHx4uJiHDlyJOBzWlpaUFxcPGz75uZm3/9/8YtfYPr06Tj//POjUk6nU0FxcfS6K4qKcgAA+7a54HEPoGqeE+WVGVHbf6SmzXPhs3cH0NGQjqkz0hNSBm8d0chYT8GxjqyxWz2pqkRTbQ+EAOYszkFGVuID96KiHOSeIrF3Sw8ajwjkrslGRmbiy0UWeD8m+9ynERHZVmerlhA4Iyv8ffT32ueEmxSBsRkpJcQI44oD/c372EcffYQ33ngDf/rTn6JWHrdbRWdnb8T7URSBoqIctLefhKpK7NkKAAJjJ7vQ2uqKeP/Rkj/YyX5o1wAmzh2I6xBv/zqiwFhPwbGOrLFrPbU2AP29AsWVEt09J9Hdk7iy+NdRxRSgbq/Ajk9OYvKc6L5Wfn4W0tIc0d0pERGRRX09wEd/1Yaxrr4+/OHQDIxDVFRUBIfDgZYW42Sttra2Yb3IXiUlJcO2b21t9W3/ySefoKGhAWeccYZhm1tuuQXLly/HU089FVZZo3nDqKoSHS0SXW0KcoskcoskVPsMw0d6FlBUJtDeKNDepKKwNP5lUFVpq5t0u2I9Bcc6ssZu9XT8sNYiN3aifc6P3joaN10LjOv2ARNm2iM/BI0s0g5jKcHPmYhSQr+uIVpK4OB2oLgCIccD9rmjSJLkW+np6Zg7dy42bdrke0xVVXz44YdYtGhRwOcsWrQIGzduNDy2adMm3/b//M//jD//+c945ZVXfP8A4J577sG9994bi7cRlvoD2hV2XJU9b6rGTtQO56ZaGxaOiEY1KYGmWgCQGDsh0aUZLn+MloTrZIdAZ2uiS0OWRBAZSwl89BeBHRt5PSSi5ON2AZ+9JdB81Nr2+pxHbQ1AzTYFH7+eFKGlqaQp/de+9jW89NJLWL9+PWpqarBu3Tr09fXh0ksvBQCsXbsWDz/8sG/766+/Hu+99x6efvpp1NTU4LHHHsOOHTtwzTXXANDmG8+YMcPwDwAqKysxfvz4+L/BAFSPlnRLCImKqYkuTWDem9GmWmanJqL4OtGsDaMuKotsflMsjavSToz1NQyWRjv3ANDVLvhZU8qTUpt7apdRPGTNsQNAyzGBrRushYdCt9lAf4wKFWdJMZQaAC644AK0tbXhV7/6FZqbmzF79mz87ne/w5gxYwAADQ0NUHRNF0uWLMHDDz+MRx99FI888ggmT56Mxx9/HFVVVYl6CyFrOgq4+gXGTpBIz0x0aQLLytV6RLraBE6ekMgtTHSJiChVNA6OVCmbaN9WufIpwN4tEg2HgBmnAA5OC7YdtwtoPAyMnZTokhCNDod3Avs/UzBpjsTMU+x7fiZNdweQmaN1yIVCP5LVjqNaw5E0gTEAXHvttbj22msD/u25554b9tj5558fUsbpvXv3hl22WDi2X/tZWWXvk0rZRC0wbqoFA2MiigspgcbBRQnsHNCkZwKl47XpJs110rcGPNnHoR0Ch7YLNNbKoaHUYdCPmuJcY0plDQe1g//YAWDmKQkuDI3o5Alg058VZOVKTJgZWrwRzZGiUtUaKZ1p0dtnOJJmKHWq6T2pouUYkJ4pUWKPkd2mxk7UfjZynjERxUlXG9B3UqCgRCIzO9GlGdm4adrdw7EDPEfaUU+n9rPlmBiaYhzmHGMvt30WkCCKO+93IZQznqtfa+zk8Ov46u7QfvZ2i5Ab8/TnvEgbAj/bAGx4UUF/5Iv7RISBsU0d2uWBlAIVU42T2+0opwDIztd6jXu7E10aIkoFTXVD2ajtrrgSSM+SaG3Qlrcge8kpiM5+pO6G3j0QnX0SJbUQ7l+3vi3w+bsKju6LXXFoOEU/vSfUwDiMRgwpAVeA82PzUe3F24+Hvs9osnnIlZqkBA7u1Jqb7T6MGtBaifRJuIiIYq3lmPaz1OYjagCtcbNyKgAp0FCT6NKQP8Wh7/YY/Blhj3GgG79kI6XWi0cUKm/AFEovYkeTtnFHM0fWxJO+8y3UmjdMH7EYJO/5WODtlxR0tgX+e6IbjxkY21BnK3CiVSK/WCKvKNGlsca3bNNRntCIKLb6eoDOVoGsXBm13r5Y8zZyHqsRSZ3B/8knn8Tll1+OxYsXY9myZfjOd76Dw4cPJ7pYthDOTaKd7dgo8Pb/U9BlcgNLZMY3lDqMW0LeRcZXRD3GunOex2Lirrq92ot456H76+tJ7BHAwNiGjg4m3Ro3LbHlCEVBCZCWKdHRODpayonIvvS9xcmS4Ci3EMgvkejpFDjRkujShO/jjz/GNddcg//5n//BM888g4GBAXz9619HX19foosWFZEcTv7Jt5Kd98bV6pqmRF7ewz9JTs8pLaLM0vrAOMS8Ch534MdDzYwdbQyMbca7drHigG3XLg5ECKB0HCClQGt9oktDRKNZ8+D84tLxyRV9TJotAciEX/gj8dRTT+Gyyy7D9OnTMWvWLPzsZz/DsWPHsGvXrkQXLaoktGHEoSSC0fcSSwl0NANHdke9aPHH6IZC5f0uMMqwvUga8SJJOGjXPAxJtVxTKlBV7Ro0da4T6RmupMrOVzJOor5GoOWYQPnk5LphJaLk4HEDrccBh1OiqCzRpQlNxRQtmE/0chTR1NXVBQAoKAh/TLuiRBZ5eZ8f7n6EyX/e/n/aXf2ar1q7nhl6XiDw8evaA2PKJApKwipaVIVbT4oibJ8ENFoiPZZSRbB68n5jFBF6XYownmNHyXIsCZMTYKjllmpozzXrMQ7ntaOJgbHNONOAc64ESsemo60tudZ7KK4EhJBoPsY1HGPlZCfQWq+l1Xc4gNxCieJxQFp6okuW2k6eAFobtM9FcQB5RRIllYCTn0vUtTUCqltg7ERpnBuVJEZTUCylxP3334/TTjsNVVVVYe3D6VRQXJwblfIUFeWE9bz6rAEA2vVWURQAEo7Bn979WrlRE24PAG1IeV5elu/3zPRMFBfb53bLej2dBADk5maguHgUHbgWhHsspRr/eurvlUjPBAR6AUg4nAqKi62up6cdbxmZaehscmDHhwM476pMZOUkd6uM3Y8l18mh81ZWVgYArSvXynlZ/9z09HR4z6MjP1f7nCEdGBpaMCQzMw3FxRnWCh8D9jlTk4/DCYgkjCrT0oHCsUB7o8CJFonC0kSXaPTo7gD2firQWu9/XAg4nBLjZwBVC0dXT1Qy6GrTPpe244E/l4mzganzJRw800ZNy9HkHEY9Gv3oRz/Cvn378OKLL4a9D7dbRWdnZAtXKopAUVEO2ttPQlVDPy5OngS8PSVSVQEIeDyq77HmxpOWGrlOdAzt58SJXt/vnZ19yGgNuVhRF3o9aeXv6elHa2tqpKeO9FhKFYHqqfkosOVNganz5WAiJgFVVdHaanUdT+146+93YdNrWnfi1g96MPOU6Jc/Hux+LB3ZDZxo8U7bHDxXdfT7fh/pczt2AMjK9a45PXieODng+72luRvCpD1DCG3apcvlQaB5Gn19LrS2xqZjMD8/C2lpI7eo83aNoqp0vER7ozacurDUfieCZHR0H7DnEwHVI5CZK1E5Bcgp1OYptjcKHD8MHNkl0FQLLF4lkVuY6BKPflICdXuAvVsEpCqQlSdRMQXIKZBQ3UBbo0DjEeDQdu1zWXSuRE5+okud/KT0JgKSKBmX6NKktvvuuw8bNmzA888/j7KyyMa0R+umUVVlWPtSdUMAAz17YEBCsXC35A0GAED1yKHfVWmraVHW62lo7So7lT8ewj2WUo2+nur2acfLwe0CaenetNShfL8HG6f8Mh0n++dgx2NpoA/YvVmLXPOLhxoB9clzzcrsGgC2f6A9d8kXhp6rHxrtdpt3CEgZoOPPL6N/IuuLgTFFVel4YN8W7eZ12qJElya5SQkc3A7UbFMghMT0xSomzTWuOTdumsT0xcDuzUBTncDHr2tB2JjyxJV7tJMS2LdF4MguAaFIzDxFxYRZfp/LdO1z2fkh0FovsPk1YOl59phnmMy6O4C+kwIFJRIZWYkuTWqSUuK+++7DP/7xDzz33HOYMGFCoosUOTn8d/2grZHmwhl2M8qyUvsIoKdLW0qyfHKiC0N2pb8GRisrdTInKrQz/TlNnzRQX99mUyL9t/E9rhp/N++X1Xaq37edzpfJPXCfbCc7H8jKlehqEwlfpDvZHd6pBcWONImlqyWmzEfABCgZ2cDCcySmLpBwuwS2vi3QaYNhe6PVga1aUJyWLnHaGolJcwJ/Lpk5wJJVEpPmSLgHBD57S6C7I+7FHVW8y8ZwGHXi3Hvvvfjzn/+Mhx9+GDk5OWhubkZzc3NSL9cUMKANJzD2y0rtNRp6Wz9Yr6D6PQUdTYkuCdmVfuhstCYDjob1wO3INKA1CXot7Uf/3BA/N2mjyJiBMUWVEFqvMTC01iiFrqkW2P+ZgOKUWHqexJggIxWFAKYtkqhaqMLj0oIwNkxE37Ea4NAOAWe6xCmrg/cACwWYsVRi0mwJV7/A1g0CrtSYqhcT3jn2HEadOC+++CK6urpw3XXXYcWKFb5/r732WqKLFrZg92Th9Bjre6FVi8+3K/2NM68rZMbQuzj4ezjxjn4/o6FRyY7MAlrVpHHP8FyzBsAQg2rD8WKj0TYcSk1RVzJOonaPNs94/HT7tAIli95uYMdGAUBg/plqSEnMpi4A+nokju0XqH4POG1NzIqZcrragF0fCgghsfBsibwx1p4nBDDjFInek0BTrcCOTcCicySztofI7QI6moC0TOt1T9G3d+/eRBch+gJcpqI5lNqTRMNBO5qAw7sE5pwx9AakrvzJmAme4sOwXFkEgbEeh1LHhmH4tC7HwrBe3wDfd7Pg2XCeCyWFAczPnYnAHmOKuqIyQHFItDWwtS9UUgI7Ngm4XQKT50qUTQrt+UIAs06TyBsj0dEkcLA6NuVMNaoH2P6Blmhr+lKJ4orQni8EMG+5RHaeRHOdwLH9sSnnaNbeqCXtKK7gUnAUXYFuxAw3fBEGxsl0c//xGwqaagUO79TdLOuu4wyMyYxhKHUEgbEh8OI9ZEwYzlUmQ6lNn2vy+VjpbdbTX8bt9JkzMKaocziBorGA2yXQ2ZLo0iSX2j1A+3GB3EKJaYvCazZzOICFZ0soTomaauBEK68skTqwTaC7Q6CoXGLS7PD24UwH5q+UgJDYt0Wg72R0yzjaeYdRF1dyFApFV8DAOMSbxZGeYzWwthNjcp6hW1i2SZEZQ66NoYTmITMLtih6IpljbLp9iEOpYdOh1AyMKSaKx2lHdsuwdXfJTH+vFoAJITF/hYyoZT47T5tzLFWBj/7Wn/ATTTLragcO7wIcaRLzlkc2BLqgBJg8R2s02vMJvxuhaKnXfobaW08UTLAeY6lqOTPcwZbWNOllTqYeYy99759/tlmiQKLWY5yE35dkY9aIZ6XnVv+4R3dODLXH2LBPBsY02nlvXlvrE1uOZHJgq4DHJTBxFqIyh3LiLCC/WKKlQcVRDt0Ni5TAno8FIAWmLZLIyo18n1ULJTJzJJpqBdqOR76/VNDbDfR0aiMpMrMTXRpKRiMGdEF6jI/uE/jsLQWfvzNyY5ZqEhjre1yThb73z2xpFyK9aE1x0QdGnDYTG2ZDqa0Epfpzqem5wUpwaxIMJ/ocw8CYYiK3EMjIljjRCmbhteBEC3DsgJZYaOrC6DSXKQowd5n2+4GtFno7aJjGI0B7o0BOocSEmdHZp8MJTF+ifcZ7PxUJbx1NBq0N2s/iysSWg5JTfQ3w5vOKb9SBP8NN2eBP/c1fR7N2d97aEOQuPYJlT+xG3/vnHhj6nT3GZEYEGkodBsP3hYFxTJgNpbYSJBt6jN1DH1Covb5m2yf6fMnAmGJCiMFeYyl8N7Vkbv9WLQv19EUSaenR229BCTB5lgP9vcZkKhScqmpLZgHArFNlwLWKw1U+GSgo0db7bjgYvf2OVr75xRVJGGFQwu36SDt+DmwNfA4MtMySoddCWDvujDebgZNXJQtDVu4I1iel1GG2/M5ITnZqq3D09wZ+bjLctTQeQdKN/opouSazKSMh9jwzMI6CF154AatWrcL8+fNx5ZVXorp65JS7r7/+OtasWYP58+fjoosuwnvvvef7m8vlwoMPPoiLLroIixYtwsqVK3H33Xejubk51m8jZZQMJslp5TzjEbU3Am0NAtl5EpXTor//hSvSIRSJw7tgvPjQiOoPAL3dAsWVoWehDsa7hBMA1FSLpLxxjhepaj3GiiJRFGQ9b6JAvI1a/t+zpjrt2Ap0U2bIxGzxEhbJmp52Y7hZNrlxpvjq7wV2bhI4eSLRJQksnON829sC9TUCuzeH3/OYSKoKfP6ugk//rti+rAYWeozNGjesDKWOKDDmUGprXnvtNdx///349re/jfXr12PmzJm48cYb0dbWFnD7rVu34vbbb8cVV1yBV155Beeddx5uueUW1NTUAAD6+vqwa9cufOtb38LLL7+Mxx57DAcOHMC3v/3teL6tUW1MBQBItNbb/+SWSAc+1y4IUxdEt1fSK7dAwaTZgOpmr7FVqgc4uF2rq3CzgwdTNFbrAe3tEjh+KCYvMSp0tgHuAYHCsdowdKJQicFEht4bLu/1aNvbCrb8Qwk4101/cyYsnpfNbgwTfaMXDrMbXgbGibPnY4FjBwS2brDndTzQ8e/9aTaVy7s6Q2/X8Of6/24nh3cBR3Yb33N/T+LKEyqzJZes1L3pEk2hJt8ynCN166Yn+DNPmtuMZ555BldddRUuv/xyAMC9996Ld955B+vXr8c3vvGNYds/++yzOOuss3DjjTcCAG677TZs3LgRL7zwAn7wgx8gLy8PzzzzjOE5//Ef/4GvfOUraGxsRFlZeF0TitWmZQv7iMa+EikzWxvKe6JFoLdLm3ccLaOljtqOa8sz5eRLVFaJqAfG3vqpmi9Qu0fi6D6gaoFAemZ0XyeZBTqWju4D+k4KjJ0gUTQ2dsfYtEVaj9XB7QLjqqzfgCdCor5zbYNTMUrG2f/7PlrOS6ONr8fYAzQcBHZtFjhtTeAbsaHgWbdEkdXAeBT1GJsOkWRgnDC93drPvh4tL0lvF1A+ZejvJ1qAplotUWQiriWBpiRAAnV7gd2bFSw4S0X5ZONzFAXwwLzBxa7H275PtQoeVzVUwN5uIDMnUSUKjem5KsQ5xqbDp60k8bLpUOqkCIwHBgawc+dOfOtb3/I9pigKli9fjm3btgV8zrZt24YFzCtWrMA777xj+jrd3d1wOBzIy8sLq5xOp4Li4iikrR1UVJQk37ARTJg2gBMtLvSeyMCkqrSo7z/Z66j6vT4AHiw4MwOlpdGvH6/ycTmYvqAfe7e60XgoDYtWRHEi8yjhPZY8bol3d/QCkFh6dhbGFEewblYQxcXA4R29aKxT0d2agcmz7H9Kjvd37rPmXgAqqubE9rOIpmQ/L402+qHU2z/Q/nNg29Dfg/XuWm2wNM30atOb+5GYDZ9Ohh5jKUdnNmNvY4XDAWx+TTsoi8pVZGRpj3sfyymQqKyKf/kCBTdSAnu3aB/GoR0C5ZONUY93WUqzeeyqDRuVzALDZPhueJmuY2whMDZrKAt1frLZuseJPl/a/y4MQHt7OzweD0pKSgyPFxcX48iRIwGf09LSguLi4mHbm80h7u/vx0MPPYSLL74Y2dnhrQfidqvo7Ix8EqeiCBQV5aC9/SRUO54VQpBTBAACR/b1o3RS9NJTj4Y66u4A6g8KZGRL5JX2o7U1+um79fVUMU1i3+fAns8GUD51AGkZUX+5pOR/LB3dr80tHjtBQjp70doa29efMBtorBPYsbkPuSX2vaFLxHfO7QKajwHpmYCqxP6ziFQ86yg/PwtpacnRUJAIUgKdrUD+mKGbb2vDB8P/Appmek2SS5Qx22zgxxN90zoSqQJb3hIY6AOWfSkxvaax5A0eFSeAwUzhHvfwhgDv8OR4MxtK7Q2AAjUweac5qPrjLcSex3jTfzdcuoztdv5u+LMyHNqs7s3WQLY0DFt/jmSPcfRJKSFGuIsM9LdAj7lcLvzrv/4rAOCee+6JqEzRvBlSVZm0QZ9XXjHgSNOGDLtcEo4o38clcx0dGpzvO3GWVv5YtjaqqkR6lsS4KoGj+wWO7FExdX7sXi8ZqaqExyN987AnzZVxaQEuKtOmGZxoEWhvVFE4NvavGYl4fuda6gEpFRRXSEgpE37BtCqZz0ujRc3nAgerBWYsHfoSm/aS6G7uAgn2d9/+I5lvZwOGbLNJ2GPc1a4lsgQAt0uOusZfVddj7DXQC2z+q8DUBUMfnraETvwPOrMeY29jkxLg/s8bLHts2nsYiCEw1vVnhPLdkCqw+Q2BwlJt1Yt4M+u5NQtW9Ux7mK2c88x6jG10vkyK9rSioiI4HA60tLQYHm9raxvWi+xVUlIybPvW1tZh27tcLnz3u9/F0aNH8fTTTyM3N3pDoUk76RWXA6pHoKMp0aWxj4E+oKEGcDglxs+I3+tOmqudcer2MBNyIK31QHeHQEGJRGFpfF5TCGDSbO1zObLbpt3FCeJbpqkySSILso2D1dqx01g7tFa4vgfRrHc0EKvnSitrg9qZ4YbXtMfYvueoZAngw+UNHvVJCOv2CbgGBPZ+qgzbLt4C9jbql14KcOgoQXqM7di+6I5Cj3FPN9DZIlCboGt+tNYxjmQotf6zNZvnnAhJERinp6dj7ty52LRpk+8xVVXx4YcfYtGiRQGfs2jRImzcuNHw2KZNmwzbe4PiI0eO4P/7//4/FBYWxqD0VMxlm4ap26utczluOqK6bnEwOflAyXiJ/l6BxsPxe91kcXiXdoxOnivjOqS5fCqQlinRWDuUYIXgWwM92stlUerIyR+60dJ/p82WHAlE9ZifDFRVW8fUNTDCHOME39xLCdTu0abvBNvOy5B8y2TpJrsJZRRAMvK+J30DT6D36THJAB0rUtXKYdZj7BWox9j7zdJPYVADBdg2Eo0eY/dA8G1iyUo+hEh6jBtqBN5/WQwb1m/2uqqNslInRWAMAF/72tfw0ksvYf369aipqcG6devQ19eHSy+9FACwdu1aPPzww77tr7/+erz33nt4+umnUVNTg8ceeww7duzANddcAwBwu934v//3/2LHjh146KGH4PF40NzcjObmZgwMJPiIHWWKK7WfrfWJLYddqCpwdL9xGHU86XsnE30CspOuNm0YXlauxNgJ8X1thwOYMAOAFKjdwwYkQGsg6OkUyC2UyAgv7QMRFAci7jEeydF92jqm1e8K2/YYd7UBez5W8MErAnKEk76VpEJSBQ7tADa/LmwXfCbLXOhwea8MwRoq4t1j/P4rApteFcb69/4M0mMcqEfYbIitXZgFxqGU1RX9lDIhiWiOselQ96EP+NgBgd5ugf1bjR96JL3N8ZI0c4wvuOACtLW14Ve/+hWam5sxe/Zs/O53v8OYMWMAAA0NDVB0M/uXLFmChx9+GI8++igeeeQRTJ48GY8//jiqqrRUfcePH8eGDRsAAF/+8pcNr/Xf//3fOP300+P0zka/7DwgO0+iq12gv1f6MiimqpZjQH+PQHGFRHZ4CdAjMqYcyC2U6GwVONEsbT+nNV5q92g/J85KTNKWCTMkDm0H6muA6YsDt66nEl9vcWViy0HJTZvjqP2uv0ULpcd4JF3t2l5bGwQKx+p6PWyUWVe/hqzHDRyr0a4D/tdi06Q6fjet+z/TTpDdHRL5xhynCTHQB/T3Dr/R7mjWek9HzTlk8AA2fJ4BguB4Nli4XUBft1aw/DHDj39DEBVoB1L/i7YfwxDbAE/q6dKuD+OmWc8YH03684X+swilx3hAFxi7XUDzUaB8UvyWbDRbrklf3x631ghWNgmGe9VQ1jXXr0897HUtnG8SIWkCYwC49tprce211wb823PPPTfssfPPPx/nn39+wO3Hjx+PvXv3RrV8ZK64EujZq61JWjE10aVJrKP7tJP/+BmJuVvyzmnd+aHWO6m/mUtVrn6J+oOA4pConJaYMmRkA6XjgaY6gaY6OWy9x1Tjm19cweOTImBhnlwogbF/BuDM7KEberPhoIm+0dMHTwd3ubH9fYGMLODsrxgrx6yX2Kw3xy4Z9N97WUB1C8xZNlRQ1QN8/LoWZXzxOtU2ZT26HygoAfKKwnjy4HvQD5VWAxy78XyvJ0/oyhLomDdJtjRsO12+sGA9/7s/EmhtEOjtkpixNP7XB8M0A/dQZVv5nm//QPvuaecNzb4tAkf3CXQ0Scw+PT7vxyxAhe4ctusjgZMnBNobJZZ8QQbcPth77u8zf1279hgnzVBqSm7em9uWFJ9n3Nut9RinZ0mUxnm4rl75FMCZrs1pHegLvv1od2i3Gx63QMWU+M759jdusLHE23iSqqSq9QgoikRRWaJLQ8lMVTF0w6274QrW62bG/6ZNP7LDrnOM9b0xPZ1aYfp7h59jrMw71A8BTVSSJ3/e4GRAt1pmj66nyi5DvjuagV0fKvjwVeu33t5lxzyeoREP+uRPZj127gHzOeU9XcAnfxPoCLx6aUj6dXVurGdvY5Hu7wHK6u2hNBvNEahhq30wkWvz0RAKGkX6AN9j4bPQ/73hoMDhncbkp97P4ei+6JXRTGeb1gtsZdrByRPap9LTaXw8lB5j/88vkqRf8cLAmOJiTDkghERrQ+IP+kQ6tl8AEAkbAuTlcAKVU7UMo8cOJK4cdiAlsO9z7S45Ub34XiUVQGaORNtxYbixSzWdbYB7QKCwzJiBlShUUh26+dbffOmT3+h7fazsT89j0mNkpx5jfcAyUsOflTnG+obUSIagR4v+vXl0SdL0PZnuOCejMhPOvNKmOuCjvyrY/r7w9QTrM4ObfQYf/VVg05+VgNeR3ZsF2hsFtm6IvAE2+MgLASG0L2CghpRA341g0xD01wS3y/hZx9KJFu31DNMwQhgCbBZEZ+YMPj+CNdSt+ugvCvZ/pqCp1iTZWQD+07r0x1/I5zZD41vg95vo8yUDY4oLZzpQUAoM9IqgmTFHK1XFYBAqMX564lsHvEHgsf2pnYSrowk40SKRXyxREHj1t7gRCjBu2tDnkqq8ifo4jJoi5fEM3WgZ5xWH9/3yP1ca5saF0GPs8QANB7UA3ePWViqIVaCpL6NrhNyi5r05ukDMZhmq9T2W+iHGblfw4DHe9AGda0DrtT1+eOTneNdlbqoVxm5V735Mgu2eLm3j7vYAzxk8BqLRYKCa9J4GEmgodaAe4VAalT75m8DGPykxua/0uLVrkZTaz82vKdj2jjHJmNmyZmb783L164LLGH2PPB6g+Vjg72mvLlt0sCXY/D+iSJZFs3Kvmej7UQbGFDfem9xUzU7d2qANXyuuBLJssFx2biFQOFaip0ug7XiiS5M4tYOpBibOSmw5vMZNAyAkjh0YnWtxWtE6eDNYMlqS5lDCqLrAOBo9EaoHaGscutnU3+yGkpX64OcC2z9QsOsjgW3vCOzerKDm8+g2hvX3auXQ3xgP9AeeKziszCY366EEQvGgL4/bFfh3O5QTMB4HtXuA9kaB6vdGvg13pg39HujoCNTQYQgsAj3JO3w5CoebWe+pgRi+7bAimc1FDhIkdbVpOz8RhWHh/ra8KbDlTQXNR4euSW0NYliCKi9V1UZUmDU46Lc1NOjEKDCu2Saw9S1lWGZoIPDcdFP+w6FDCIz9P75RHRjX1dXhnXfewbvvvovjx1P4rposG1q2KTV7wo4f0t535VT79IJ5e65TdU7rQB9w/DCQlgFUTEl0aTSZOVpAONAn0HIs0aWJP7dL68VPz5TIDSdBDZGOPjCORnbowzsFPv2bgn1bhG//+tfyCtZj7M263lQ7dE2M5vSJvh7g3T8o+PRvwq/HOHDmbP//mw3rTJbA2GPDwFgfAJ3sMF/GRs+Rps92NvzvgXr7gjXKBFrXO1yqSe9pwG0DDaX2/abrQdUnsbP4nY1FI3JH09AcW2nSaGTMUC3wzv8o2Pgnk++OSWCsr5eOZmDbO8Lw93B552Af2z/8b54I6stKA9rQBn7/tfC6th9K/dRTT+Gpp57y/b+7uxv/+q//itWrV+Ob3/wmbr75ZnzhC1/AD37wA67/SyPKL9YSPrU32edCFS8et3YDpDgSm3TLX9kk7TNpqkNUTsTJpuGQdmMxZbbTVnNZK6u0q0nDwdRrsGg7rt0YFVfYJ+stJRf/pUgCzTEOlzcng/enocfIZNkT7+vu/VRg05+FaY9SVk7k5fPyzrvsaPYLjHVDb/0DFSs9NZ4wA2NXP1D9nkDjEevPsUJ/k27oMdaVzePSyvrZW9F//VAYkqDpGkH2fybw5gsCfT1BdmDxfGg2l9739wDreofLSkOJ9/UCDr0PcswF/M4GWg85hsP6HU6/KQT6HmP9aIzB+ff9PSLgEHdDED0Q+PGPX9fm/x7aEfnFL31wOTb9tAKvUHqM/c8LwRKqhbIvs22kqmXwPrwrtP1HQ9CvxYsvvojCwkLf/3/yk59g06ZNuP/++/Huu+/inXfewX333Yc33ngDjzzySCzLSklOUbQkXKpHoKMp0aWJr+Zj2py20vHGoVGJ5nAClVVacFhfk+jSxF/9Ae2CUTXPRlExgNIJgDNNorlu5DmBo5FvmaZK+4ysoOQi/Yd3DvZABZtLZ4X3JtabkMYsUPTvMR7oA47sEujuEIZkQbE6yvXJHfVJqfQ9xv43tVYaDlSThoBg9m8VOH5YYO8n0W3tstpj3HwUaDkm8Pm7iZtBaDY/+9AOASkFmusCPEc3F95qzQVaZ9ft0ubjfv7uUE6RaHwSw75rATcaHF0xuK2rX2ukOLQj9KzGZqKdYM0/g70+kJUmn6P+mDPM4ZVax4P+czH7PdC+wjVSor2QciyM0OsbamOj1cC4q13rGNj3qRL3lVOCniGampowceJE3///8Y9/YO3atbjkkktQVlaG8vJyXHbZZbj99tvxl7/8JaaFpeRXUpmayzZ5h1FXTLHfzb53OHV9TWol4epsA7raBfKKJIrG2ivdgsOh9earqkDj4USXJr68Q0yLKxJbDkpeoQzvDHnfg0GmNzBWTW5w/QNj/YgcQy9eBL0vI9GXRX9jqW9oC6fHOJSh1F3twMdvaBn2vWXo64nOtb+zFTi8y2+Oq8nwabcbMavnUJglavMKFMgYjimLr6PvrXQNDM6NPa7NaW48InyNJvpANdxrv2GUhMWh1McOaI0U+z9Tgr5uoKHU3iNI/1zv+4wWQ+DqEsYGMF1DU6BGCMBYL/u2aNMamuoCPy/Q98hhow6UkZJvhZpJ21JgrGoZwL3ivUJH0LvB4uJiwxxil8uFysrhGVEqKirQ3d0d3dLRqDNm8GbXe/ObClwDQMtRrQewZFyiSzNcbiGQXyxx8oRAZ2uiSxM/9TXaCX3cNEDYcMyudzh1fQoNp+7tBno6BXILJTKyE10aSjbengbDTWeshljK4fs3W45FqubBqf7UE83hoOaBsbXkW2aMc6pHPjd98jeBjiaBPZ+IqE+L+OivCvZ9qhhGn+kbHPyDlAH9+stxXr6p7bh2c2/IYBwoG3Og7OW6slrNXhwo6DL0qHqXfQJwdD/w9v9Tws5nEUqQ5N3WrAEpkJH+7j9lIpr8G1ZUkwB4WANMgMe9w6Lr9uoC4yBz4KOxnGfU5uoOjnjx3h+GtN9h2besPEkYGtDCWeYsEkGr/oILLsB//dd/ob1dy/n+xS9+ES+88AI8uquB2+3G73//e8ybNy92JaVRITsPyM6T6G4X6A82n2aUaKrTev7GThy+Hpxd+IKwmtQIwtTBpVKEkKiYmujSBFY4FsjMlehoSp01jX3LNDEbNYVhzyfAh68qqN0du6V6hKKdK703x2ZBeKCh1F5ul+7v+iHPUSyr2XxGlz4rtX+PsZXAWDccPVAg3d0BbPqz0NZ8HezFC/eq0nwU2LFR+DJr+4YFG97P0N7NAhbVrSUzDPS3WOvrAT79u4IP1iumidq89O9r3xaB7R+IsBp5As17Nwvsdn2oHYCHdwX/lKQEtr0tcGCbtm1/nwyp912q2qg0w9rfweYYj/B39wijHyJl7DE21r1hfrDJUOpg5fEEaWCKylJaus/m+BEtE3q4PvmbwEd/1ZbFCukzH2F+8kj058t4D6UOOrHu1ltvRXV1NdasWYM1a9agqqoKv/3tb/HFL34RixcvBgB89tlnOHnyJJ555pmYF5iSX3El0LNX6zWurEp0aWLPO4y63IbDqL3KJwN7P5VoOATMOEUbyjuaNR/TbqhKJ0hkZCW6NIEJAVROAQ5u15KEVS1IdIliz7skBucXUziODN7ct+iWBIz2UGrvPGXvja3ZUFL/HmOXPjAeGHq+/pY40oCtqx3YuUmgfLI0JBPU92Tpe6tHykptRaCb/x0btXnU294Zeiwtw9hjC2iNYHljgPRM8/1v3aAFbSXjJOprtCz95/6TxIBuWLr+plkfcPkHlPpep3gGxgOGZXkC9xgGeuzwzsFzoW4td6tz5AMFxsY1dLWf+r1ZSfzW3ws01Qk01WmrBuz5uAfZeZaKZChPKD3GkAJSSgihrSBRUDLU6Wg2dDka/Oeum81lV/0CaK+WYwI1nwNnrPZAKHLYZxfsswyUNC1U+nqujmBuvZTAyRNaeTuaQztP+I+CsBwYm3zH4yFoTWVmZuLZZ5/Fd7/7XezatQuPP/44enp6UF9fj7/+9a/YunUrVq1ahVdeeQVz586NR5kpyXlver03waPZQB/Q1qBdRMaUJ7o05tIzgdLxWgt/oAQgo4036da4KnsHYBXe7NQpMP9bqlpjmaJIFI1NdGkomRmGJ0ch4VZA0tv7NfTQSHOMjcGpCHgjH+mw74aDAp2tAvu2KJZ6ssKZY6wXsNdz8LX8k3Tp66alHtjypoJP/2490Gs5JgBoicv0N8pmqyn4B4dmaxx7SQns+ST6WasNr6sf6h0gOHcPBvb6z0GfxMkqfQ+kLzA29HgOfx0rgaW+cWHPx94lxkL7fqmqf/1b66luqgWq31PwyRvCN6RcH1x63EDjEa0RORr8G1b8e5ADbaf/TOv2at/Fv7/YF9aKF26XVle9EcxQjVYDkP77drJDhNZjHMaoFP/X1I8KiQdLH5eiKLj66qtx9dVXw+VyoaOjA6qqoqCgAJmZIzT3EQUwpkwbwtpar53wbDi9M2oaj2jzbsomyajMGYmlcdMkmmoF6mu0HofRqr8XaDkGpGXYc863Xk4+UFAicaJFoLNVoqAk0SWKnc427YZtTIW01dJZlHxiNq/Yj9tviKXxRtS4Fqt/b6bH15MXvSG+ZkG62bBM7w1uZytQUy1QNDa0837AG2TvLnTX9YF+Y3naBhvFuzuE7gl++9bVa1e7Pqu2Meg2603SB02qR5jWjVd3B1C7W6B2NzB7scTxw1qPdlZu4P1bpe8p10+JCdRj6A2c9Z9XJIERoBvZECALsVkvqL/Du4ADWwXmnBH5fYF/I4kVbQ3Atne0G6i+HgHFMbwcvd3wZRwvKlORGWGOCv+GFcOSZyaBvenc9TCqzeMGPv27Nkd/2UUq8orC20c06BtaerpC7DH2H5USxlDqeC/vGvLtR1paGkpLS2NRFkoRznSgoFRbPL27XSJvTKJLFDsNSTCM2qu4UuvZbq0H+nswapMfNRzSGisqpkrbzvnWK5+iBcbHDwsUlNj/OAqXb35xxeh9jxQ7UnfHFa9kLa5+86zUelL160H1S+bje9yjBSF9JwVmniJDbjTWD5P2uILfsB+sFtj9sdYLBGhJIkPhDRZcA0DNNoGJs2XADkD90HEAhvwiZo3j+veiX95qoNcYpJj1GOt5POa9fB3NQHsjDI2OR/Z6sO0dAcUBnHeNHFbOw7u0JIGzTw/+GemPxWBDQj1uoPp9YZjeE+kSY4F6jIcYGxzM7PtUCzgP7YioKL7yhJr8bOsG/2HIw7fRrwHd06ldT0rGIeypUv6BsdkIDEO5TJKPhXNFc7uArjZvAxISGhjr9XQD6RnWt1dVbSQGpJZjp9Bi45vbr/7jie3ylBAllVpSoZbBeUajUd9JLfjPzJEoTIK2JEUBKqZq8/QaDklMHoUzI6RMnmHUXmWTgL2faD0YM5aO3hEW3iXcSph4i8IQaA5lrPkHfGY3cFL63Vh7Am+reoaCkOIKidLxwcsgVW1o8phy4zxmffBp1hvYdtwv4Ahx6RXve9j/mcDRfQJtQwuYGHqGPB5jQ4C+F9Q9oM1B9urr0aZUFOoCVf17Gegz9kK5LSzT499LqQ9sPn5dq+/Jc4cK3HbcM/g8bX7rjo0Cxw8Dp58vkVc09BmVTpAoDTLqyLB0UpDjsqnO2vsJxdDIhJG3s/KdGbDQCBGMqgYeRj4S/+My0HGqr7e9nwp0tQkUlUucunr4db6/d/CYk8C2d7TnLV4l0dUGfP6uwKQ50hD8qX7Hb8iJscK41dAf81YafwKJRWA80As4Q1lKSmqjMLyyLE5VCJa1O5ZsPriTRitv1tnRPM/4+GHtZ/nk5Alm9NmpR+Oc1q42bfheXlHyjFTIzAaKyoD+HmFYmmQ0cQ8AJ5q1EQu5YbSMEw30hZ6kKPLXBKC7STftMVKHD20OfHM/9Ht3h7Uy7PpIYOsGBXX7jMN2jXNTrdWHECEOpR4MurxrjnZ3DA1Z9u8hN1s+yr8Xdcs/BHZuVAxL2/T7zTcc6A09gPdPQLbnY+EbpQJoicu8OlqNow8aDgpIVaCxVqBb13vd1aZNl3r/ZYGutsCvrZ8f6Z+AzF+0g2IgcPKtQEbqMR7aJvLyhdNjHGjo9Ei8Pa3tx4eX90SLtqbw/i1ax0zLMYGWYwJ9J4H9WwV6uwX2fyZG7DEONTAOZ9kkfRb1/hDW/u5s1e49pYzNsmSugciWgerttvZeVJO1ouOBgTElRP4YwJku0dEY/4M+XpJpGLVXXhGQN0aiu8P8Qp/MvMtRVU5Lns8EgG/O9/HDSdLCEqK241qgUFyZPI1IZC/9cc5cChiHb47EP0mXWe9cvy7gs3oDeWxwBExTrTAO2w2jlynk5FuDN8je4FZRpO9mXPVLjKR///0mGWf12W+bdevqunRBgtsV+ogAj9sYJBw/IlC7R2DLm0O3wPrrXUfL0J2/voGis8XY293Xra3R3NstsH1j4M/LMFfSFf+T24lmgS1viqBzld39g0niXMDm1wR2faSVNdrDWP0biaxQPQLpWRJ5RZFft73Zvo/sNt7jnGgBegfngHvcwnCMetx+ib5C/BwDrU8dCqs9xn09wMdvCFS/p6C+JvQRIJZIEfd1hRkYU0oQClBcoV082xsTXZroO9mptVrmFMiw5oYk0mhd01j1aPOLhZComJLo0oSmbJJW7sYjoa0hmCy8w6i5TFPyeOGFF7Bq1SrMnz8fV155JaqrqxNaHn2PcbxYvWH1Dwas3Fj2dgHV7wns3CSwf6vAe38U6GzTAi1vQK4PZKVq7JEMr6Eg9J7Yk51DPVqqKuAOEDT4B8b6hGMDJkONe02yHbsHQn9v/kOp+wM0aOh76Hq7hyrW2xsOaImH9M/t7R4KfP3njB87oM1zjXcQEUhrvZbEaSRSCnhcQONh4ESLNjTe4wl/GK8Z/957q9IyEFZOkGP7gY/+OhTo6gN9byMMoH22PbrGg+4OXWNMpEsnRRig9vdqx1lT3fDe2oPbh9YNb64b6mltqo3d/Vu8l0+KVzJFLwbGlDCjedmm44NLBpRPDj2BSqJVTNGCsIZD8U96EEst9dqwtpJxI6+daUfpmdocwoG+0dmQ1Nqg/SyuSGw5yJrXXnsN999/P7797W9j/fr1mDlzJm688Ua0tSVumElCAmPLQxyFocfSSrDU2qAl3Dt2QODQdoG+kwI12wQ2/llg45+0oZ/6G9SeTmPm4Xj0TqoeLVtxMFogHHg7/bxoKxmY3a6hnj2r/IOxvhCWQDrRoguYTxp78ntPDvUkar9rj7cdB3ZuUrDlTSXuQUQkXANAly4g7GqLQWCshjfE1+EAlDCyIu38UEFnq8C7fxjsOdd99vrh852twhDA6v9mZZh5LPX3ADs2CWx7W8HeT42jJw5sVdDdIXBkt7Y8lFdHc+zK4wmQ4TwWFKd2To/2WvRBXzfUJ0gp8etf/xrNzc2G3+Mh1Bbq119/HWvWrMH8+fNx0UUX4b333jP8XUqJX/7yl1ixYgUWLFiAr371qzhyJMqL2JEp702wfp7PaCClfhh1ggsThvRMoGS8FkS2HAu+fbLw9oBXJEnSLX/eIfnHDyVZS0sQPV1a71BekQw7gyjF1zPPPIOrrroKl19+OaZNm4Z7770XGRkZWL9+fVj7UxQR8b/+BATGoQxXdofYYxxI81EBV5+AxyXw3h8VvPdHfVbh+J8XVI92/XY4ZdjZ5FsbtIBl5ybhG+Y6kp5OLWu3UKy/npb8y7h8k1Wdrbr/SGEIOHo6dfPLVYG6vQIf/UXg078ruucnz/naPSDQ0zn0/60bBBqiPHJM9YiQ6t9LcWjBcfgEWusFunVLf+l7jPUjAwBtJIT+uYnU0wm0HNXKcHSflkW+vkb4EokC2pJW+mH/8V77NxbS07WfHk90rhGKYq1OQm5/UVUVjz/+OM4991yMGTPG93usl3DytlDfe++9WLhwIZ599lnceOONeOONNzBmzPAsOlu3bsXtt9+Of/u3f8O5556Lv/zlL7jlllvwpz/9CVVVVQCA3/72t3juuefws5/9DOPHj8cvf/lL3HjjjfjrX/+KdO8nQjGTlQtk52vzWft6ZMTrztlFV5t2wcwbI5GTn+jShKdyqkRznUD9QYGxE5MzkNRz9QPNR7V57VYyvdrR2InAro8kmmqB2aeHN6zMjnzLNDEbdVIYGBjAzp078a1vfcv3mKIoWL58ObZt2xby/pxOBcXFkS0Wq3okdh6J/5hVd78DgLW5DapbgTc9bbTm/sUryZiZk4OBYWmlgrwiBa0NoXftNB4J7T30DA6xLqlwoPmYxbp3DdV9qPpOaq+XWyDQfUKOOCR5zyfJHYzs+lDBCUPiMYG6fdF9jYy0DAChd8FmZDqQniEAxGYYm3f0R0bWYC95LObnhk3XqKMKbPzz8C0G+gQG+rSM0emZAj1d9rpvc6aFnrQsPVNBf6+EVBUUF8cvQAhruSb9eoEyTqlr9S3UAHDvvffinXfewfr16/GNb3xj2PbPPvsszjrrLNx4440AgNtuuw0bN27ECy+8gB/84AeQUuK///u/ccstt+C8884DADzwwANYvnw5NmzYgDVr1sTlfaW64orBNecagHFViS5NdHgTJFUkUdItf6XjgbR0ieaj2nC9ZBt67O/4Ee0msnyyjLDVOXHS0rWljJqPCrQ2JG+A74/zi5NLe3s7PB4PSkpKDI8XFxeHNeLK7VbR2RnZeM1D2wWO7I1oF2Hp7PDAam/SQL+qbStkWDfdQkhfQD1tkUT9QWOPZSKlZXqgwnpdBFJUJtHeaP35GTnWX6+3R7W8rZmiMhXduh7GnAJp6HH0yiuSKJ+s9XIdrLbH52OVNygWioxZo0tbaz/C+Sw8Hg/cHoT13OJKrePl2IHhz80vluhqH2pkyhsj0X/Mnp9b+WSJpsF5xN7PKDNHorhi6L3lFEgAEjCZox8JZ7oMO3P69CUSuzcDoX1+KhQn4BqQaG21MM/Cgvz8LKSljXwTmBTrGIfTQr1t27ZhAfOKFSvwzjvvAACOHj2K5uZmnHnmmb6/5+XlYeHChdi2bVvYgbHVrnor+4jGvuyudDxQtxdoaxCYMN368+xaR1IOLdNUMVVASfAs/nDrybumce0egcYjwKTZsShd/DQc1H6OqxpeF3Y9lgKpmKr1fDceESibGN/XjkU9qao2H09xSBSXJ/77EqlkOpaiTUoJEWZCBTXCtK3a3MP41XlWrkRvtwjpJtE9oB3nihK85yQtU/oyMc9YqqKnS8CZBhzeqf198jyJMRXAx697e7mkL6N1eqY0JJKKB2cGkJYhEe5nMHaixNzlEh++CuQWaj123iV3zOTkW38977DScOtGCImiMom6fYPfb4c2GuzkiaHye5MdTVusNVq21MNy+ewmtxCorFJx8HMR9SH64a6FrCgI+/pQOl77TAIFxpk5WgK4vsG4K78YtppCpm+kqJgqMW2xNkImOw9orJUoKtPK631vuUXRWW86kLT08BOROZwSikOElLdGKNrweddA5NeII0iSSQABAABJREFUUCRFYBxOC3VLSwuKi4uHbe+dD+39GWif4c6ZjsaQML2iopyo7cuu8vMktr7dg7YGgTFjskO+sbJbHTUd86DvZB9KxykYP9E+EybDqac5Sz2o3dOHxsMOLFlhn/cSqq4OFR1NvcgtEKiabX6M2e1YCiQ/T2Lnph401QkUFmTD4Yz/jVc066npqAceVx8qpzhQOjbJhyXoJMOxFK6ioiI4HA60tBgn5bW1tQ27nsZLvm42VXae9A23jZWMbKD35FDPr74315yAwzmYjDFIYFw0FmiqBcZOkJg8FwAkTrRoS81UVmnBdUEJUFAqMdALlE4Aandrz83MjX/W2LQMifSM0J6TWyR98z3zx0ikpQMrL9NufrduEAiWXyu7IPRypmca60ZRtHXTT54YOaFQZg6Qo3u97DwgXXdJLB2v5UdwOLVRPQCQrbsVjGUPbFToRjFkZkvMOUOioATILZTY8g9vY580LMEVrlASn+kpjhCnD+neU1au9hl6ZeZI3xD5zOzBTO++wNjY4OJwSt+x4UyTAbOux1J23lADTN4YGKYcelfXKB039FjpeG0aXCykZVhLkBeIM037/EIJjBWH9p0a6BNQVRm3hvOkCIzNBGuhDvQ3/8f8/x9Jq3c0hoQBWm9DUVEO2ttPxrWVJFEKS4H2RoHD+08ivzj49oB962jvNgAQKJ3gidrQj0hEUk/Sqd0MtDWqOFLTjdzC2JQx1vZvBQCB8ikq2tqGX5XteiyZKR2vDdffU30S5ZPi97qxqKeDuwFAIL/UbYvvS6TieSxZGRIWC+np6Zg7dy42bdqEVatWAdByj3z44Ye44YYb4l4eACgcC8xfloYB9wCa67SEbrHkcAIZmUMZe53p1hJqOZzW1ukeP11i6nwtaPMqKAHOvERF1mDAJQRw6moJKbVRV96b+excbb1dqwrHSpRNkti3RYQdvKWlA2kW2rXSMqSv9zYtXetpba7TRsIAQ3WTpguy9UGlvgEiJ89qg8SQjCxjgqIv/LMEBPD+y2LYWqn63uWsXCArb+hv2flARvZQAJWZDYybZvy+6wMxfXBjR/ljtCRjxRUSS7849D4KSoD0LInCUm2JsFCOKzPhBlbeIMmq3EKgezCzdGaOdmx5h+tPmCGxf6v3s5UY0CWqyikwBsDpWUNZ0NMyQp8nG6mScdqxI4R5Hp6MbGDROSpcA9r9gX8isWhJiyD1kjNd6/0NJQuB/jNX3YASp9RPSREYh9NCXVJSMmz71tZW3/beZGHNzc2G5F1tbW2YN29e2GWN5s2QqsqkuFGPVHGFFhg3HzPeCFhhpzpSVS1gEUJi7ERpq/Vmw62nyqnA/q0CR/cDM5bao55DIeVQNuryKSN/JnY6lkZSNkk7zhoOaj1K8RbNemoenF88ptxe35dIJcuxFK6vfe1rWLt2LebOnYsFCxbg2WefRV9fHy699NKElEcIYMHydLS2DsRllQNF0W5GfYFxmvXA2MroWmcaAjYS+ydz9Pag6XNA6AM4K3ILtakyNZ+HP0wyPcNaHor0zKF6cqYB886U8Li0uvTfziszZygwycge6nHMzNHev39A608fWOt7eZ3pEmKwByotfXC/ul7GnIKh3uWsXK28JeMkWo4JjCmXht7LQHWu/3t6ZmIC4zEVEu6B4JmxiyuB+StVQy83oL3nsy7XzmOfvRWdXsiO5sHh/9kyhOXOQu8xzh8zFBh7e/sXni3R2y2RluFtMAdyCo1LUmXlaseZe/DzSs80BsbhBvbhqpgikZ0ng3YajdVNrUrPHGq00fd4RyotxFEhes600JfbUnRLdHk88QtYk2JGl76F2svbQr1o0aKAz1m0aBE2btxoeGzTpk2+7cePH4/S0lLDPru7u/H555+b7pNiw5uNtrXexkONLGg7rg35GFOR/MmqvLSWfImGg8MXlk8GHc3aupOFpdqcnNGgZJx2sWs+Fv/W62ga6NN6IDKzpWGYItnfBRdcgLvuugu/+tWv8OUvfxm7d+/G7373u4ArRMSb+c1z9BoqhALD0mLONGvPczj9lpwRgcvksLg/L/25raBEv8/g79lbnkiy3KdlwDCUWptvPPx3/XXRkabVm39QDGi9eL7fdT2v+sDWaqDk1PUy6V9f3/slBvej783X/11LaKQF8qesVjFhpjbcfai8gV978lzteRNmJqaRrGKKxBlfkkGXtnI4tTnTIkBE4J3ba/UYtyrUc76iAA6H9XrMLZKomCox81TVNwQ3PVPrBc/K1UZKOJwS+WO0hGmAtkqKovg1oOiisZB7TE2+36FwpgMTZmrltipDf5xH8V7UGWGPcajnGEUZOj8FawCLpqToMQaCt1CvXbsWZWVluP322wEA119/Pa699lo8/fTTOPvss/Haa69hx44d+MlPfgJAG0J9/fXX4z//8z8xceJE33JN5eXlvuFhFB/5Y7QMyO1N2sEfynAZO/GuL5vM2aj9ZeZoPfqtDQKtx6Vv/lSy8K7BWJmkaxcH4nACYydoa2U3H5W+eUbJpq0BAASKK6Wl4aVkL9deey2uvfbaRBdjGLOs8w5n9G6uFAVw6m8+LfakKA6/4CtNSyzjL9QgJF9306yf8pKWEbwn29sjE2lgrL8B1/cM63/X19NI71EfaOobCfxPEw5H0OnaWm/+YM9vWvpQT5rhM5ND+/deKYSiDU9tqReYOGvovYwp137PzgemzJPIzDE/f01fLDFxdvzmRvrzvm6wxWOsrNQQzeUBS8ZLlI6XaGsIscfYwr3h7NNVHN0nMK4KSJsT+I0LAZyyWutNT88EyqcAHo/qC9Yz/RpgvPTHjOKQg/Nlzd+Dw8KIhsDlG5oiEE4vrT6wT88Ymj8dqYh7jEP8HuiHUts6MBZCoLKyEunp6YbfY+2CCy5AW1sbfvWrX6G5uRmzZ882tFA3NDRA0dX6kiVL8PDDD+PRRx/FI488gsmTJ+Pxxx/3rWEMAP/yL/+C3t5e/OAHP0BnZyeWLl2K3/72t1zDOM6EAoyp0DLttjdKlIwL/hy78Xi0ZCmKQ2LshESXJroqqiRaG7QF5UuSaEkdj0fLEK4oEmVxnIsbD+VTJBoOCTQeFknbEMNlmigW9Dey2s3rYPKgaAbGDi0TtPemOMNibkL/Rl9neuDAONTGYUUBzvyyNqRHH3BaCYwdTu37F8kydmkZxtfNLRwaOpyRNfS7vsd2pMC4uEJrYPYOXfYqKtPmT2bmaGUOFqwJIQ11qe/xMgY5Q3/3Dp8WQhueOnaieXA1fcnI5y6haPOPQ0k4FE2+HmBvkjj9fG3d75aC3ghP0/r55RWTZci7G2mEgCNNwjM4J3jCTGs99IoydDwKAYzXrYpiPIcM/a4/foQyOPLeO5IuwDJsaenhnXOcGUONOeH01KeH0Whnhb5hKVSjOjBWFAUbNmzw/V//e6yN1EL93HPPDXvs/PPPx/nnn2+6PyEEbrvtNtx2221RKyOFp7hSovGIQGu9QMm45LtRbjkGuF0CYyfKiIab2NHYCdrNU1OtNgctWd5fc532mZRNklG9ONhBcYU2R675mHZjHUlSjESQUvvOCCF9UymIosFwI5sGDAwGJVZ6Fy2/hmK8+UyPIDAe+ps++23oZfL2dumDMP15z2yuoW8odYg3rf69Wvpe06Iy7XoOGJNQGW/Yza/zigOYv1L7e2vD0ONVCyWkqjXWAsF7EIVirHOzHuu5yyS2btCGPu/6SCt3XhRnBeiHKAeb86k4JVS/v4ebEdr/M1UUwDMYyOnnxVvpic0enN8e7pJXmTlDr5dTEHqCPEWRfo03xt5/TwymFaVlSPMeY0Urgrc+Hc6hMsw8Veu1njQb2PWR9lgoGa3T0ocC43BGU+m/Z9l5QGvouwgokvuMkLOKQzs3SW/yrTg2LiXpoFUabYortJ8tDcDMxBYlLN5h1OVJ2ns3EmealvCpvkbg+BFpaFm1s4aDQ2v/jTaKAyibqK1d2FwnUVkV/Dl20tmqzccvKpNJF9STvelvvhxpAAZvMKM5RUf4zUPUJ7sZicMJQ8+bf8+Ot1ckkmGrZjfyzrSh/RuC8PRArxn8/TjShpJ1eet28SoVrn7j8GdDYKxb69hqHg795+ZwAjNPHapAfZm9PaCGUQKK8Wbev8fPK6cAWHGptt/MbImWo05Mmh29Lip9cOPU9SIGyqpdUALMXabNi33vj1ohHU5ADSMxmvc9entU9UOq9YGxldECU+drQ4eLKyTcLomD1QIZmQ60NFhLPpKVC3S1ab/nFGhZrkPhH1il6UZbpKX5vuZRMW2RhNul/Ty8a+jz0a/V7e0x9nI4hgLjcdOASbO1DNi+52ZazwmSnQf0dIZffv33vqBEom6vVo6ySRIdTdrj3nXPw91vOALNYQ+2vfczj2ePcVIk36LRLytXS3BxskOEvc5dorhdQPNR7eJTmoTDwK3wztH1Bpt219+r9UimZSTn0HwryiZrn8nxw8nxmeg1H9XKnIyjQ8jeDENndb9Hc46k4jAmuNEPpR6W6Eh39+xwGnvn9M+LxagW/f71wWqgoZZKiHWlr2dv4Fc6HqisMs4Rzsobev9mvccj8Sa+ClgGfSOIbq60GKxz4RiecMs7DNvs9cdOBFZelBn1ZFNe/kPdveavUFEyTmLBCi1RpL6uRJjHrrfH2Hus+o+m8LKS7E1xaCtTFFdqDeVnfhlIzwxtqSzf6zkjG1YLGBs5oj2KLSNby2CdU2A8xvSNLIowvgd92byPp5kM3R8S+Nj2XhcLS8O7PgqhfW/SM42JLeevlDjrChlycj8vp98yasHLYdwm1M/ckSxDqYlipbhSm4vUfAyYMCPRpbGuuQ5QPQIVk2TSJg4LpqhMu6FobxTo6bJ/hufjhwEptfm3iUp8EmtjyrXAv7VemxeXTJnQW45pP0vHJ7YcNPooDt1SJfqb/yiemxVFG2pbXKFNndFnVtYPV/X+X9UN59b3mui/s7EYCqoPfswCIW82af8gM9jQxZESOuXqbsb1WaX1r2v1vDx+OtDdIVE+efgLGuaCKkOPqR5AerTgRR+QZGRp84Kb67Qe0ETw79H3zmkeO3H46KaMLIn+XoHMHGCgFyHzHmvzV0psfx+YdZr0Lbuk/yycYX43VI/1OhQKcNYVquFzCoU3O7aXPhguGafdm4QbSI74uiaBsXAYx1QYGoqU4WUMVMdmCQGzcoGzr1DDDmABYNlFEpBDxxcwVH+h9tx6GRoGHMbzXCAOp7GXXP/5ma5BrpurrTikr9WNPcaUkkrHaye15rrk6gFrGMXDqL2EgG+4bsPBxJYlGCm1IcbA6MpG7U9RtJZ7KQWaahNdGuv6e7V1NTNzuUwTRZ/DrFcsij3G3rmrS78osfBsY+Ob/02n4hdwGpYvyhr6vahM+2mW7CkUzjRtH7mFxt5qX5l0ZfT1GAfofR3JSHMftTnCKhasVA3Bf0YWsOQ8FRNnSV9252AUBzDnjMDbG4ZSD5ZHUeCLWBSHsb4zc4CKKcCCs2TCGhKFSXAXqM5PO19i6gKJCTOsHxOKrifPWz8FJdpQcX0+B6sZwkcSytrzQmiJyNID9F6bP8f4XhSTHuMx5cDpF6hYcl5sA2P/hh39Z6kEGEGhL2NRWYCGHUMwrXuvg+ukRzJqQRkchhzoOFfCvMUOlLBuJN4lpvLGDI7g0NeXyfMVv228yQEZGFNKKirTLuhtx+P7JYjEQB/QWq9dfL3zpEerysHW7PoaEXT5h0TqbAW62wXyiiTyixNdmtgqT8Lh1L7e4nHhJRYhGonZcFErCYYsv4bfMELDDZ/fXZU+IFecxkSA+uGy46Zpa+QuOCvyk+sZX9LWb9XnHvC/4fTyzTE2GRZqJlgm7oop2jI4/omASiq1nstwe62CEbo1lxQHkFek/Z5XZI9l4Qy9bkHqICtXm+eqP06CCRSgBfp/tsmSWKGomKQdSLlFVobVGv9vZcSAfgi54hhhWLNDC8JiMfxdcZg3LukDzEANb2npwLipDkyaLVExVXtMPzVA/5z0EINOqxSHlqV76oKh1w33u5ceYmNKZg5w1uUqTjt/eBZ5S4Gxbh3jeCbfClo9mzZtsrQjl8uFf/u3f4u4QJS6FEUbTq16hCETpZ011Wo9dmWTQp8/kWyy87U5L73dwpfAwY68vcXjpts4eo+SorHacLu2Rq0nNhl4l1/h/GKKBbMenuEZbaPzGsDwmzk9/+RR+ht6fXDiTNd6vqJxHcnOBybNNgYj/sOOTztf69H1Brih9hh7ex+9vUFm/AOYaArUQCvE0OOKQ5uusfgLKuatsMf5Rt9QUFiqNYgsWDly12uwY8I0eBuhvvXBbLjTDGafmoYlqyTmLbcQGI8wksLs++j/vTJt9IrhvZfh++v3HRFBGpOEAM65NBOzT9cahc78sopT/0/getevAx7JEOpAZp8uMW2RsUc6HGbDys0IRQuOA2W+NyuDf2OIt6HHVj3G3/rWt/Duu++OuE1PTw9uuukm/P3vf49awSg1lU4YHE591AZNuxakwjBqPe/Q5Poae34+Hjdw/JDWo1MxJdGliT2hAGWTAUiBxiOJLk1wqqqNsFAc1odSEoXCNMFQFBNx+d/k6/+v/R44c7LDaZ4EK9bL4Pn31hSWaj26gf5uJVCaOEti3pkqlnwh+Fq+Z12u4uyvhDDu1iJ9oGIohTcwHvxcSscN9Rwnmr6n3ZkuMXe5NHwOgQQ7Xg0BW4B514EUlurKEWYg5nAIjJ1o7dgd1mNsGElhsn+/76whkDTJMB5t+l5S/0Yu45zZ4PvKKTD/zutfJ9YrNUSjvqwcM8NGLIQ1lFr7faQlzqItaPWcd955+M53voM333wz4N/b2tpw3XXXYevWrfj1r38d9QJSaimpBCAkWo6OnNzDDvp6gPZGICNbomhsoksTH2WTtaCz8Yg9h7s3HvGuJx2bLK92lEzDqTuatM9nTHl0kyEReQXKVAz4BX4RBsb+AYf+BlAI4//9e5yKK4Dpi1Usv1iNyjzPcAQKmMzqzRhy6oZjDuadCDakGtB6jaxsFyrD/Elv0YTuVxuN4iqu0EpVMn6oDq1+5sHeh1mjRqDnzV+hYtoi1bcusf/zw2FpWPQIGYrNvo/+31/D9yU9cONTtOlfM92QfT7y48ssa3Ws712iMaXAUh6CEUYJhB4Yh1a+SAT9WB966CFcdNFF+O53v4vXXnvN8LejR4/i6quvxtGjR/HMM8/gnHPOiVU5KUWkZ2otmf29wrfmnV0dPwwAAuWTU2euZFq6lj3T7bJnD2UqDaP2KijRMoZ3NNl/qTNvYr3S8anz+VB8GXuMAwchkc439g8EhiXfMhnC7HBq14op84HcwtB7aSOhb2gOdFNqtlyTWS+PHaYOmS7lNJjV1k7X5UXnSiy7SMWYsqHHrH7mweraMKQ3yBDjiqnA1AVa3UxfrGLK/MjnXps+XxcMWw2ShDAfFm74DsfpWDRrvBJ+yzWFc0UzW3M81ueCaDQYWZnzO9K8crPPzP9z9TaaWF0DOhqCVo8QAj/96U/xla98BXfeeSdeeeUVAMCePXtw9dVXo7+/Hy+88AIWL14c67JSivBlpz6a4IIE4V3TtyJFhlF7eYPOo/tsdNcBoKcTaG8UyMpNrWG6QgDlk7Xfj9uwscJLSqCpTvu9dEJiy0KjV65uyKxxvnH0epj8A2vDUOqReoz9nye0Obq5hfFNDBXoxlg/T9UwN9nkZtYOvbHjpwMTZ0ucdr461Etsr8uSj8M5fDi31bIag4jh9xv6/ThDGGI8ZT4wfXHk9y9mr6NPTjVSkOQwaYgJNCzce5xm6pZIi2UPq1mvvsfj977DqEZ9neiHUsf6GI5GQ4InjMDYcJ602GOsjWyQaG8MtYThs9wu8cMf/hAZGRn43ve+h7179+IPf/gDxo4di6effhrl5Sl0F0oxVzoe2P+ZNs+4aqE9g86TJ4CuNoGcAom8MYkuTXyNKQey8yQ6mgW62qVt5m75lmiaZo/so/FUPlni8E6B44cEJs+x53emux3o7RYoKJGGmxqiaMrMBs74kgqPBzjZMfR45Es36dZHDhIYw2JgDGgZpOMt0OnRLOhVFMB7DywcAFzDt0kUxQHMOnWw/kwScdmZ1U/ef1kg1W9Yqf59psUpKZXh9UdKpDQ4tXykOcb+2Z59634HGMWw8jKJ3m5pqLxYfs7Z+VpWZ+8ayYpDQvUIuPqNAXmkU/+0ZcXic8CG8t11OGXA+b2GHmPd2sN6w0bW6NaYN02+5RcYZ+UCM0+VcPXF78scUof9XXfdhYyMDPzmN7/BwoUL8eSTT6KggAtRUnTlFABZuRKdrQJ9J0NbqiBe9L3Fdr/4RpsQwPiZEvs+FTi6T2D26YkPxFQPcOwAACExriro5qNO3hitsaKzVaCnSyI7L9ElGs7bWzx2QuKPFxrdvMu09XQOPeaMMDuyMx1wD2i/+wfW/kGlaTZok8y18ZAV5Dpq6LXT9/SZDFm1w1DqoGx+bXZaHUrtNz9+WGBssjZyvBovDMeLIiHVweBH6BpVRug91M8VN8v07K2DjCztX7xGFAoBwz1OWrq2AoRrwG/efISXNYcTWHmZaovcG0JIyMFAt2wS4OqXqBhMvDrnDBW7PlIwZZ7E5+8Ofc6q7/0PBb/CYawUsyXjgm0zabZ3v/ER9CM444wzIPyOaCklampqsGbNmmHbf/jhh9ErHaUkIbR5rEd2acshTZyd6BIZSQk0HNJ+D5ZNcrSqnAoc+Eyi/iAwfUl8E8cE0lgLDPQJjJ1gz4aUWPMOpz64XZv7PnV+oks0XFOtdh0ZOzHBBaGUYQgYTOYnWpWmD4xH6DGGMMZjwXqMY83bw1VUJnFk92DJAgSM+uViTIdSxzDJUcR0ybe87NpovfQ8FY21AqXjrW3vP+zYf7qllUzsseTfYOLx9hKPMPRe/9nkF8O3RKfZetr+DTGFpdAawqeFXeywzDpNCwhnLJGoPzj0JsJphND3MovB3lE7EAogB1s0nGnAvDOHCjp+BlA5TYWrX7e9fmSAAsjB3xW/75+VeeF2yGMQ9GtzzTXXDAuMiWKtbJLEkV0CjbUCE2fbq4fpRIs2JLSw1J49c/GQnqllqG44KHD8kMT4GYktT90e7Rw1Yaa9jpV4Kp8icXC7QMMhgSnz7DWSoacL6GrXph7kcJARxYn+xizSdU/1PXGB5grrX9OsxzgRgfGyCyU6WmTQBqmCkqHfrcwxtiupWxXKritbFFcCxZXWC+c/lNpfdh58yUozsnQ9dnG6BvgPf/VmEB42xcDP1AUSQvFeq8Sw5+i/L/5LQqVlAOddI+N+TJZNAs67RoXiABoODj1eMUWivQmYf6b1z1XGaTh4qPTD2QOVS/EfFaMbGWBoGPFrSDNbJUA/ysDKkk6xFvQ0feutt8ajHEQGBSXaMkjtjdqwlVgs9RAu7zDqVFm72MyEmRINBwXq9gmMm564QKyzFehoFsjOlxhTkZgy2EFuoZbIp6tNoKtN+oaT2kGzbxh1YstBqUUfRBgyyoYTGI+Q1Vrx6zE2nWOcgBu9nAL4GqO88wUDJSvKzgPmLFORmQ001QXuCbNzYJxbpC2fqLq14LC/V6CvO9Glig6zXlQvb8LSwlKJ9ATkb7CUrC3A/cG0RVq5D+0weX6Q0RaJOh4DBWwVU7VcH1bOLRNmStTtFSifLH0rNfTbaEWJkXr6fY+bTLcY6XxhNnpG6JZYs8MIFRuf5iiVCQGUTQQAgabaRJdmiKpqQ1WFkL5MwKmqoATILdICsRMtiStH3V7tDD1xpr16SROhcqp2edEP8bID7412KecXUxzp5y7ql7EJZ+rHiNmlR5hj7NDNs0v0/MGl5wFV852Dc/aGGz8dKBnnP2dU97uNh1IvWCkxplxi7nKJJedJZOZIzDxtdJxv9J+Bfu3bxV9QMW66RPkUYOHZEpPmGHvME8EsSBopYDQ73vyDJ7uz2uA261SJMy9RUT55aH1rOyVxDdbTr/1h6Fez7OMjBcb649gsGGZgTORn7CTthNF4xD5nxNZ6wNUvUFxpvOlKRUIAE2dpn9GRXYn5jFz92nxvh1OiMgWTbvkrn6I12jQc0hpx7KC/R+vJyciShuGaRLGmH2mk760tGRd6wGQMds3/Nmy5pgh7qqNpTDlwxuqMoFOAzG5u7RycZGQDp6yWKK7UlkU663KJ0nGJLlV0GLJO63r7S8cBc5cZhxMnOjAOpcfY9zezXsbR0a4xjFCAnHytThadK3H6BSqKK+P3+sEa6BSThgo9Kwn6/J9rNjTe7PNP2IiAxLwsUXBFpUB6pjaceqAv0aXR+LJRTx2lZ+wQVUzVPqPGWm0eabzV7QNUj0DF1OFzkFJRRhZQPA5w9Qm0HEt0aTSNRwBAoHyyvW+safTRB8b6m6+yScCs01QsXjUURQgx8jndECyOcGOpOGDoTSkqAybNkZh9upo0x79prw8vewkX7DoXyzV9rVDMeoxHCozNRiikQITicGqj7+J5bgg2Ysb4uQX+0ltJ0DdSj7HZuul2mGOcAocdJSuhaBlspRS+pV4SydWvZcl2pknOlRzkcAz2GksR915jjweo3S0ASEyy6dq9iVA5uKxCfY097sKPH+acfEoMxaGtD5qdJ4fN05w4C4acBEGHCQttDu7UBXLEucIOh1+PsROYeYrEhJlhvYXEMOkNosQLNk+9ZBxQtVDF6Rckpus4rB5jkyCrsFRi8lyJJV+wyfAnP3ZN7hZMoMYVoegCVQufm+nw9xFGyJgtCWc2fJqBMVEAZd7h1IcTf5OvDU8VKJ+S+LlidjJ+htb6d6wmvj37DTWDSzRN1IYlkaZ0POBMl2g+CsOSConQ260lRsvKtVcyMEodZ39FYvmXZcCbvZHmw/kTQpuD600YZEbxC4wTf+UKndmw8VTowbO7YFNkhACqFiJh01bMhtKOOMd4hOfMWCpRYtMh8d7l25JtKIUzbXh5zRo0TINTCwnXhp1TLcxF1k9R5FDqEdTX1+Omm27CwoULsWzZMjzwwAPweDwjPqejowO33347lixZglNPPRXf//730dPT4/v75s2b8a1vfQsrVqzAokWLcMkll+Cvf/1rrN8KhWhMGZCeJdF6XJurmEjHDmjf5HHTkuskGGvpmcC4aYDqFji6Lz6vKVXg8E7t85gyj5+HnsOhrWksVeFbbztRjh/WfnIYNSWKogwuLxLgbsd0CGeQYdUjcfgNpU7GyNhsOGOi16unxM8hDsY0+dYI34NwepntwDUYGKcl2TSuksH5zN7EX8DIjROB+OdVCPi733P1w/zNtisoGSxTBOfgSNk+MPZ4PLj55pvhcrnw0ksv4Wc/+xlefvll/PrXvx7xeXfccQcOHDiAZ555Bv/1X/+FTz75BOvWrfP9fevWrZg5cyZ+9atf4c9//jMuu+wy3HHHHXj33Xdj/I4oFEIBKqYAkAINhxNXjs5WoKtNILeQPV+BTJojASFxZLeA2xX712usA3q6BIrKmdApEO9wam9jTqJwGDXZhaJoCeCKygPPbQt2Q271Jn1Yj7HNb+4DMRvmmGwBwGjkTRw31qYZ/s3WCx+px9gwzUE/FNfm3x1vj3Gy5TfJGwOsvEzF4lWBA2OHheHMpue4EUbhZGYDS7+oYsWlqum5V1GAs7+i4qzLGRib+uCDD1BTU4MHH3wQs2fPxtlnn43bbrsNzz//PFyuwHfgNTU1eP/99/GTn/wECxcuxCmnnIJ77rkHr776KlpatHVlvvnNb+K73/0ulixZgokTJ+L666/HypUr8eabb8bz7ZEFFYM31Q0JXIJG31ts95N1ImTnaQ0Yrn6B2j2xfS2pAjWfs7d4JAUlQG5hYpfSOnlCa0zKKZDILUxMGYi8hADOukLilC+aJJOJUtIfKUdDYKxbYkrfY5xkAcBoUlCqNT6XTgBWXKpiwdn2vPaZZYIfaVisPvgym4dqR9mD64MnY+N8Vq7ffF6TtdctDWc2mToSaA52cYV2vwiznmWhHUOZCViP28v2MyW3bduGWbNmoaRk6MhbsWIF1q1bh4MHD2LmzOEZLbZu3YrCwkLMmzfP99jy5cshhEB1dTVWrVoV8LW6urowY8aMiMqrKJF/k737iMa+RgP9Tf7JE9pSDPGsI48bOH5IS04wbppI2LyHcMSznqYtAo4fkjiyU2DS7Nj1LtQfBk52CBSNlSgdJyK+eI7W79uEmcDuzcCx/QJFYyPfX6j1VF+j/aysAhyO0VW3ZkbrsTRaWB3OGUlgrKownUuXLEx7jBOc8TiVnbZGQkrtOA223FYiGeaIWpyfbljuRx+V2Py7M3+FRN1eYPIoSP5p9hlYud816zEeKTmZ2RJNdjhf2j4wbmlpQXGxceyqN0huaWkJGBgHeo7T6URBQYGvx9jfG2+8gZ07d+LHP/5x2GV1OhUUF+eG/Xx/RUU5UdtXsps2bwDbPnChvSEdk6cNRVzxqKODO11wDQxg4gwHKsYl5+LF8ain4mJg6rx+1Gx3o+lQGhYsj35krHokNlb3ApBYem4WSkqil7ZwtH3f8k6V2LelBw2HBJatzkZ6ZnSuOFbqSVUlGg71QgiJeadkIzsviVqTomC0HUupIFpDqVWP3/28DW70QmU2x3hMucTBaoG8ouQPBJKN//rYdpWVI+E96EdaukfPP2O8l93fb2Y2MH1xsn8XtM/L0GOsb9CwcItlNkJGHSEVlCGWZmCseeyxx4LOE/bO9xUmNWX2uNnfpJQBH9+8eTPuvvtu/PjHP0ZVVdWIZRqJ262is7M37Od7KYpAUVEO2ttPQlWT/UsXHQWDy2rU7BjA+FkDcDrjV0e7PgUAgbIpbrS2dsf0taIt3sfS+JnAwZ3Ark8HUDJhABlRHg5Tuwfo6hAorpRwZvWitTXyfY7m71vFFODofoEdn57EpNmR7SuUemqqA/pOCpSMk+gd6EFvFD6nZBDPYyk/PwtpaVxLJ1qCDaW2ujSL6kn+odRmw1nHlAOn/h8VuUXxLxPZ28KzVZw8AWTperOt9hgn61Dq0cTs/Bdqj7H/UnVWnsMe40HXXXcdLr744hG3KS0tRUlJCXbu3Gl43Nvr698r7FVSUjKsZ9jtdqOzs3PYcz7++GN885vfxN133x20PFZE82ZIVeWou1EPV0YWUFwp0Fov0FSnonyS9nis6+hEC3CiRUFuoUThWBl0qQS7itexlJENTJylrWm8d4vEvDOj95oDfcD+z7R1i6cvjv5nMRq/b+NnaIFx7V5g/IzozI+3Uk9H92svVDkteb8zkRiNx9JoF+zmbKTeD8N2o2AotWEopV/bS1FZfMtCyaFs8J6so2noMatr0hqTbw31OCfjdyfpaLdUxodCWMYOGD5H+JTVKlqOCRRXjvAks4ZIG3zmCQuMCwsLUVhYGHS7RYsW4cknn0Rra6svqN20aRPy8/MxderUgM9ZvHgxOjo6sHPnTsydOxcA8NFHH0FKiQULFvi227x5M775zW/ijjvuwJVXXhn5m6KYmjBDorVe4Og+4QuMY612j/YtnTCLSbesmrpAouEgUF8jMH6GRGFpdPZ7YJuAa0DbJzODW5NfDOQXS3S2CrQ3Sowpj/1rDvQBzXVAWrrE2PGxfz2iaAjWuxVkhUhkZkv09QhkZPotLZiE1w1jVtqhQIUoGLPlvUac32+2JBgPu5jzxsVmw5lHatAw7ET365hybdrFiE+xcY+x7Sd+rVixAlVVVVi7di327NmD999/H48++iiuueYapKVp36Dq6mqsWbMGjY2NAICqqiqsXLkS99xzD6qrq7Flyxbcd999uPDCC33zkzdv3oybb74Z1113HVavXo3m5mY0Nzejo6MjUW+VgigZry230XIM6OmK/ev192rrsDrTpLZkFFmSlg5MX6KdFHd/JCz3tIykoxk4uk8LtqYtYk9cKCbO0urryK74XHGOHQCkFKiYavGiSmQDhiVDwugxXrpaYsJMiWmLZfIPpdZ1mTj4HaYQGINcGfDxkZ7DodSJYXbOiiT5luXXY2AcGofDgSeeeAKKouCqq67CnXfeiUsuuQS33nqrb5ve3l4cOnTIsHzTQw89hKlTp+KGG27ATTfdhKVLl+Lee+/1/X39+vXo7e3Fk08+iRUrVvj+6fdL9qIowLjpACBwdF/sX+/oPkCqApXT/FoxKajKKqCoTKKrXaCmOrIznccN7NgoAAhMXyoNWS8puPLJQEa2RPNRLat7LKkqUOcdZTGTDRiUPESwHmP3yM/PyQdmn66dn5I9MLY6BJbIn1nvr9XkW4LHXkKYDmcO8fxl9Xxn2ittg/Ol7bNSA8C4cePw29/+1vTvp59+Ovbu3Wt4rLCwEA8//LDpc372s5/hZz/7WdTKSPExfrrEwe3A0f2AZ1XsbrzdLqB2t4AQEpNm8wY/VEIA886U2PQqcGgHUDIOYS8ZtG+LQE+nlshp3LToljMVKA6t13j/ZwKHdwnMXRa747mpDujr0ZKj5RTE7GWIok4xCWaFIiHVEEe+jKLAOJKlqyj16INcw1Bqi8m3DCM3GBjH3uBYakMsHOI5y5CYMJweY5udL3nKo6SSmQOMnQAM9Akc2h2kCT8Cx/YDrgGB8inaQugUuqxcYNapEpAC1e8K9PUEf46/YweAur0CaZkSc5Zxnne4xs/Qkpo01GhTBGKldrf2AU1kY9KotGfPHvzbv/0bzj77bCxcuBAXXHABnnvuuUQXKyrcQwPODDfxzsHug1ACY7NhgsnCUP7EFYOSkGFYtG7FxhF7jE0CYw7jT4xQ77PCCqpNeoztcI+XhKdsSnWT5w7OX/3EZXkJjVCoHuDw4HxM72tReCqrgHHTJPp7Bba9LeAesP7c1gZtjrIQEgvPksiM8tJPqSQtHRg/HVBVEbO5xidagI4mgex8iZKRslFS0tqxYwfGjBmDBx98EH/5y19w880346GHHsKLL76Y6KJFzBAY674iJYMJ5ApDGfFisx6QUBmCed4lUghMk29ZHUrNHuPEi2D4dFhDqW02xzgphlIT6RWWavNX2xuBplqgdEJ093/sANDfI1AyXiKP6zVGRAht3l1PF9DeKPDpP4Cl50mkZYz8vNZ6YOvbAqoqMPt0NS7ZlEe7SXMk6vZqa0FPmqMtgRZNBwfnkk+ew5790eqKK64w/H/ChAnYtm0b/vGPf+Dqq69OUKmiQ99op785n326xJhy6VuOxopkP/7ZY0zhCmeOscOpNaBn50nT3mOKDW9Wav/R0NMWq2iuE9ZWAAnjJGE6qsYGJxwGxpSUps4HtjQCB7drLfrRuhFxu+BLFjVtIXuLo0FxAIvPlfhsg9aj+OFfgQUrAy/jJFXg8C5g/1YBSIEZp6iYMDP+ZR6NMrOBCTO17NSHdgwOc4+Szlag+ahAZrZEZVXUdktJoKurCwUFkU0oVwKlgQ7j+eHsJyNLG9GSlgGgy7u/ob+nZwhMmBHaPo29ITa40xtktZ7yx2j1MnaicVs7vZdYieRYSiVm9eT/3fFyOMWI92nzVwCAQFvj0GMOZ3J/Bsl0LBmGQyvAtIUC0xb6/yUwQ48vrL1f45B5Yfg90Q0iDIwpKWnJnBS0N6loqg2tNX8ktXuAgV6B8slcKzeanOnAki9I7NwENB4R+Ph1LVtyxVQtSZPHDXQ0afOJuzsEFIfEnDNUBllRNmWexNF9QN1eYNLs6M2f9/YWT5kvOfwthWzduhVvvPHGiMkxg3E6FRQXR+dALCrKCfk5q/9Jxe4tLkya4cRb/9sHAMjKcaId2qTicMqWkdEHRPD8WLNST5d/S0IIgcN73AD6AdjzvcRKOMdSKgpcTycBAKVlOQC05CIlJdaOHTngAaB9D0fL8WbnY0koJwEVcDodAFQAQE5uOoqL00d+IgDv55yR4YT3fJeW7kRxcfClQwa6hj7nrOw0ANpclqIx2cjNT2xkzMCYkpIQwOKVadjwx37s/0ygdIKMuJWpvxc4vEOb08q1cqPPmQYsOEvi2AGJ/VsFjh/W/vkrHCsx+3QOY4+F9ExtGPXBaoF9W4CFZ0d+nHc0AU11AhnZzBqerB577DH8+te/HnGbd999F+XlQ3Ma9u/fj1tuuQW33norli1bFvZru90qOjsjywinKAJFRTlobz8JVQ39mJ62BOhqd8HbO6Kqbt/vra3dIe9PWzky/OfHSjj11N0N2PG9xEqkx1KqGLmetOPlxImTCPXY6eoaen6yH2/JcCxpeXoE3G4PvPXePzCA1lYrCWG07QcG3IbfrXxuXbrzysDAUIKHjo4e9LsCPyca8vOzkJY2cus9A2NKWhWTnSiu6ENrg8DRfRITZ0W2v/2fCbhdAhNnSWTnR6eMZCSElgSqfLJEU61Ea4NA30ltWE1uEVA2UaKgNPnn6NnZ5LkS9Qe0nvvWeoniCBJlSQns+WRw6sFi9hYnq+uuuw4XX3zxiNuUlg7NfThw4ABuuOEGXHnllbj55psjfv1o3TSqqgx7X94bRECb86jfZ+iGTmB2vCEOpZ5yiwBAIDsv/LpNRpEcS6kkcD1px7+ExFBjk8W6FEPPHy31b+9jafCzkvpHJFTV+nMNpLXPTX++hRg6TqS0+tqxw8CYktrMU4BNr0oc2CZQNkmGnVCorRGorxFIz5SoYm9xzDnTtIzVlVWs63hzpgEzTpWofldg98cCyy6SYS+LUV8DdLYK5BdLVE6NbjkpfgoLC1FYWGhp2/379+OGG27AJZdcgn/913+NbcHiSJisvxrWvkZRw15OPnDmJWrUk/XR6OVd+1sIYOVloUU5o+m7kxQC1HfIS8xFmHzLblmpmfONklp+sZZQyD0gsOfj8L5R7gFgx0btuTNPkUizMrWCKImVTQSKKyR6OgUObA3ve9N3Etj7iZbTctZpzESdCvbv34/rr78ey5cvx9e+9jU0NzejubkZbW1tiS5axPTHryPCwNgOmVWjKSc/8sYCSh2r/kni3KtUCKHlsQgll0UsluAkc6rbmyBs6LGQ1zHWbW/14zPLSm2H+wj2GFPSm75EorlOGxpaXxNaVlwpgd0fC/R1C4ydKFE+JXblJLILIYC5yyU2vaplqS6uDG3tYakCOzdpUw8mzQmcYZxGnzfeeANtbW149dVX8eqrr/oeHzduHDZs2JDAkkXOEBg7h4b2RbovolTjcBqnI4SC353EyMjW/SeCwNj6k4Z+tVuPMQNjSnrONGDeColP/wHs+kggr0gib4y15x7eCTQc1BIHzTmDvV6UOjJzgDlnSFS/J1D9nsDp52sZwq04sE2gtUEgp4CJ6lLJrbfeiltvvTXRxYgJ/bk/0t5R9noRhSc7HyifIlFYyi9RPOmnSoR8H6zf3upUct1zDKM0bXAPzqHUNCqMKQemL5ZQPQKfvSVwsjP4c+prtIRbikNi0TkS6cEzzBONKuWTtWRc7gHte9NrIQlo3V7g0A4BZ5rEonNl2D0DRHYSzcCYiMIjBLBgZeTJVMmaMRVaJDt24lBEa3WOcWaO9pzcAkPmLkvMpq7YoXOKgTGNGpPnAuOmS/T3Cnz6N4GO5sDbSQkc2g7s2Kj4TsIFJfEtK5FdTF8iUT5Zordb4OPXBU60BN5OSmDHRwPY+aGAUCQWnC2Rw+ztNFroh/Y5gPRMicKxYfZasbOLiJLA4nMlzrhQxZihlfgsB6en/h+JmaeqmKBrxAgnsDXMN7ZBYMy2fho1hNCGhgoAR/cLfPIGMGEWMGGGtvySVIG249oarh3NWk/xwnMkSscluuREiSOENhXB4QSOHRD4+HUtod2EmX7fm+1AR5MLDqcWFIcyJ5nI7vxvzs7+SvjRLYdSE1EycDiBfL+ph1aD06xcYNJs42OKxe5Wl26ZZAbGRDEkBDD7DIm8MRL7PhOo3a39UxyDa6NJ7VuXWyQx/0zrc5GJRjNFAeYs031v9mj/FIeEVAE5+L0pKlUwZ7nH8lxkomRhGD4o7HGDRkQUb5Gc+6w+NztP+5mVJ00zVCcKA2MadYTQerzGTpQ4uk+i+ahAbxeQlgHkj5EonyJRPskeX0AiuxACmDgLKJuk+96c1ILmvCIt2/vcpZlobz+pNTIRjSLGrNSR7Ys9xkSUrEJZXsuf1fvqrFxgxSUq0rOArtahk68dGiQZGNOolZEFVC0EqhbyLoXIKrPvjaIIKIoNrlpEMWAIjB2JKwcRUSKc+WUVHS1AUVn4+wglsM0ezFEy0B/+68UCA2MiIiJKafobOoU9xkSUYnIKEPE0qdEwEpOBMREREaW0aPYY22E4IBFRvIVz7iubBMxY5ERRhSv6BQpDUsT29fX1uOmmm7Bw4UIsW7YMDzzwADwez4jP6ejowO23344lS5bg1FNPxfe//3309PQE3Pazzz7DnDlzcNlll8Wi+ERERGRnUZxj7EyP7PlERMkonB5jRQFO/UJGREO4o8n2gbHH48HNN98Ml8uFl156CT/72c/w8ssv49e//vWIz7vjjjtw4MABPPPMM/iv//ovfPLJJ1i3bt2w7bq7u3HXXXfhjDPOiNE7ICIiIjszDKWOsMc4jYExEaWg0TBaxvaB8QcffICamho8+OCDmD17Ns4++2zcdttteP755+FyBe52r6mpwfvvv4+f/OQnWLhwIU455RTcc889ePXVV9HS0mLY9kc/+hHWrFmDxYsXx+PtEBERkY0xMCYiCt1oCIxtP8d427ZtmDVrFkpKSnyPrVixAuvWrcPBgwcxc+bMYc/ZunUrCgsLMW/ePN9jy5cvhxAC1dXVWLVqFQDgtddew759+/DjH/8YTz75ZFTKG42srd59MAOsOdaRNayn4FhH1rCegmMdjQ6RDqXOypUwjM0mIkoBTL4VBy0tLSguLjY85g2SW1paAgbGgZ7jdDpRUFDg6zFuaGjAT3/6Uzz99NNIT49O867TqaC4OIIFwPwUFeVEbV+jFevIGtZTcKwja1hPwbGOklukvR4VVcCJVonyyUxPTUSpQ1GS/5yXsMD4scceCzpP+N133wUACJOrlNnjZn+TUvoeX7t2Lb7xjW9gxowZVosclNutorOzN+L9KIpAUVEO2ttPQlWT/yCLBdaRNayn4FhH1rCegotnHeXnZyEtjQvu2pGiAHPO4HeEiFILh1JH4LrrrsPFF1884jalpaUoKSnBzp07DY97e339e4W9SkpKhs0ldrvd6Ozs9D3n448/xpYtW/Dggw8CAFRVhZQSc+bMwXPPPYelS5eG9b6ieTOkqpI3oEGwjqxhPQXHOrKG9RQc6yg5nXOlmugiEBElnYwsif5egdyiRJckcgkLjAsLC1FYWBh0u0WLFuHJJ59Ea2urL6jdtGkT8vPzMXXq1IDPWbx4MTo6OrBz507MnTsXAPDRRx9BSokFCxYAAF599VXDc37/+9/j008/xSOPPIIJEyZE8M6IiIgo2aRnJroERETJ54wLJTqaJUrHJ7okkbP9NOkVK1agqqoKa9euxZ49e/D+++/j0UcfxTXXXIO0tDQAQHV1NdasWYPGxkYAQFVVFVauXIl77rkH1dXV2LJlC+677z5ceOGFvvnJM2bMMPwrLi5Geno6ZsyYgaysrIS9XyIiIiIiomSQkQWUTRwdQ6ltHxg7HA488cQTUBQFV111Fe68805ccskluPXWW33b9Pb24tChQ4blmx566CFMnToVN9xwA2666SYsXboU9957byLeAhEREREREdmYkFJyIlSUuFwedHT0RLwfRREoLs5Fa2s356mZYB1Zw3oKjnVkDespuHjWUWFh9qhIvhWN6yaPTWtYT8GxjqxhPQXHOrLGbtdN2/cYExEREREREcUSA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIqKQ1NbWYvHixTj99NMTXRQiIqKoYGBMRERElrndbtx5551YunRpootCREQUNQyMiYiIyLLHH38c48ePxwUXXJDoohAREUWNM9EFICIiouTw2Wef4ZVXXsErr7yCt956Kyr7VBQRledHup/RjvUUHOvIGtZTcKwja+xWTwyMiYiIKKju7m6sXbsWP/7xj1FQUBCVfTqdCoqLc6Oyr6KinKjsZ7RjPQXHOrKG9RQc68gau9RTUgTG9fX1WLduHTZv3ozs7GxceumluP322+FwOEyf09HRgfvuuw9vv/02HA4HVq9eje9///vIzs72baOqKp566in84Q9/QH19PcaOHYuvfvWruP766+PxtoiIiBLusccew69//esRt3n33Xfxy1/+Eueccw7OPPPMqL22262is7M3on0oikBRUQ7a209CVWWUSjb6sJ6CYx1Zw3oKjnVkTTzrKT8/C2lp5rEjkASBscfjwc0334ySkhK89NJLaGpqwr//+78jIyMDt912m+nz7rjjDjQ3N+OZZ56By+XC9773Paxbtw4PPPCAb5uf/vSn2LhxI+6++25MmzYN7e3t6O2N7AJNRESUTK677jpcfPHFI25TWlqKzZs34/jx4/j9738PAJBSQlVVzJkzBz//+c9x0UUXhfX60boZUlXJG1ALWE/BsY6sYT0Fxzqyxi71ZPvA+IMPPkBNTQ2eeeYZlJSUYPbs2bjtttvwyCOP4JZbbkFaWtqw59TU1OD999/HH//4R8ybNw8AcM899+Dmm2/G2rVrUVJSgpqaGrz44ot49dVXMXXqVADAhAkT4vreiIiIEq2wsBCFhYVBt3vqqafgcrl8/3/rrbfw9NNP44UXXkBFRUUMS0hERBR7tg+Mt23bhlmzZqGkpMT32IoVK7Bu3TocPHgQM2fOHPacrVu3orCw0BcUA8Dy5cshhEB1dTVWrVqFDRs2YPz48diwYQNuvPFGCCGwcuVK3HHHHcjNDX++UzQmj9ttIrodsY6sYT0FxzqyhvUU3GivoylTphj+v2PHDiiKghkzZiSoRERERNFj+8C4paUFxcXFhse8QXJLS0vAwDjQc5xOJwoKCtDS0gIAqKurw7Fjx/Dmm2/iwQcfxMDAAH784x/jrrvuCjrXykw0k4gA9pmIbmesI2tYT8GxjqxhPQXHOiIiIko+CQuMrSb7AAAhAre+mz1u9jcppe9xKSVcLhd+/vOfY9KkSQCAdevW4dprr0VLS4uhh9qqaCQRAThh3wrWkTWsp+BYR9awnoKzWxKRWLvssstw2WWXJbQMRERE0ZKwwNhqso+SkhLs3LnT8Li319e/V9irpKTEt42X2+1GZ2en7zklJSVwOp2+oBgAqqqqAGhZsMMJjIHoJRHx7os3oCNjHVnDegqOdWQN6yk41hEREVHySVhgbDXZx6JFi/Dkk0+itbXVF9Ru2rQJ+fn5vqRZ/hYvXoyOjg7s3LkTc+fOBQB89NFHkFJiwYIFvm3cbjfq6up8SbcOHToEAKisrIz07REREREREVGSUBJdgGBWrFiBqqoqrF27Fnv27MH777+PRx99FNdcc40vI3V1dTXWrFmDxsZGAFrP78qVK3HPPfeguroaW7ZswX333YcLL7zQ1xN85plnYtasWfj+97+PPXv2oLq6Gvfddx9Wr14ddm8xERERERERJR/bB8YOhwNPPPEEFEXBVVddhTvvvBOXXHIJbr31Vt82vb29OHTokGEZiYceeghTp07FDTfcgJtuuglLly7Fvffea9jvb37zG+Tl5eHqq6/GLbfcggULFuD++++P6/sjIiIiIiKixLJ9VmoAGDduHH7729+a/v3000/H3r17DY8VFhbi4YcfHnG/ZWVlePzxx6NSRiIiIiIiIkpOtu8xJiIiIiIiIoolBsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUoTUkqZ6EKMFqoq4fGoUdlXWpoDLpcnKvsarVhH1rCegmMdWcN6Ci5edeRwKFAUEfPXibVoXTd5bFrDegqOdWQN6yk41pE1drpuMjAmIiIiIiKilMah1ERERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBjbzAsvvIBVq1Zh/vz5uPLKK1FdXZ3oIsXNk08+icsvvxyLFy/GsmXL8J3v/P/s3XmYHFW5P/DvqaWXmcksmQmEsIVMSMi+sERCILKIAQHZLqhsgiyCcuF3wVxQroCIKAiioheURYQIohAUBa5KCASygJAQEgiQAGFJgMyW2Xqp5fz+6GWqerqne2Z6qZ7+fp6Hh0lPdU/16eqqes95z3u+jffff9+1TSQSwfXXX4958+Zhzpw5uPTSS9Ha2uraZtu2bbjwwgsxa9YsHHzwwbj55pthWVYR30nxXHvttZg8eTIefPDB5GNso5hPPvkEV1xxBQ466CDMnj0bJ598MrZs2ZL8PdsJ6O7uxnXXXYdDDz0Us2bNwnHHHYfHH388+ftKbKOXX34Z3/zmN7FgwQJMnjwZzz77rOv3+WqTNWvW4KSTTsL06dPxhS98wdXuNDi8bvK6ORi8bmbG62Z2vG72N6Kum5I84+9//7ucNm2a/POf/yzfeecdec0118gDDzxQtra2lnrXiuK8886Tjz76qHz77bflm2++KS+44AJ5+OGHy1AolNzm+9//vly4cKFcuXKlfP311+Vpp50mv/a1ryV/b5qmPO644+TXv/51+cYbb8jly5fLefPmydtvv70Ub6mgli1bJk844QS5YMEC+cADDyQfZxtJ2dHRIQ8//HB51VVXyddee01+8MEHcvny5XL79u3JbdhOUn73u9+VRx99tHzppZfkBx98IB988EG53377yTVr1kgpK7ONli9fLm+77Tb5f//3f3LSpEly2bJlrt/no00++OADOWvWLHnTTTfJzZs3ywceeEBOmTJFvvjii0V7nyMFr5u8bg4Gr5uZ8bqZG143+xtJ100Gxh5y6qmnyh/84AfJf1uWJRcsWCDvvvvuEu5V6bS2tspJkybJV155RUopZWdnp5w2bZp8+umnk9ts3rxZTpo0Sa5fv15KGftyTpkyRe7YsSO5zR/+8Ad5wAEHyGg0Wtw3UEA7duyQhx12mNy0aZM8/PDDkxd4tlHMLbfcIr/61a9m/D3bKeZLX/qSvPPOO12PHX300fLuu+9mG0nZ7wKfrza5+eab5XHHHef6W5dffrm88MILC/l2RiReN9143cyM182B8bqZG143B1bu102mUntENBrFxo0bccghhyQfUxQF8+fPx7p160q3YyXU1dUFAKirqwMAbNiwAYZhuNqoubkZ48aNS7bRunXrsN9++6GpqSm5zYIFC9DZ2Yl33323eDtfYFdffTXOOussTJ482fU42yhm2bJlmD59Oi699FIcfPDBOPnkk/GXv/wl+Xu2U8ycOXPwzDPP4NNPP4WUEitWrMBnn32G+fPns43SyFebrFu3zvUaiW0q9Vw/VLxu9sfrZma8bg6M183c8Lo5OOV23WRg7BHt7e2wLMt1UABAY2MjduzYUaK9Kh0pJW666SYcdNBBaG5uBgC0tLQgEAigpqbGtW1jYyNaWlqS2zQ2Nrp+n2jTxDbl7sEHH0Rvby/OO++8fr9jG8V8+OGH+MMf/oDm5mbce++9OOWUU/C9730PzzzzDAC2U8I111yDvfbaC4cddhimT5+Ob3/727jpppswZcoUtlEa+WqTTNt0dHTAMIxC7f6Iw+umG6+bmfG6mR2vm7nhdXNwyu26qeXtlaggpJQQQpR6N4ruBz/4Ad5++2089NBDrsfTtYWUMus2Az1eTrZs2YJf//rXeOSRR6Ao6fu1Kr2NgNj7nTFjBi6//HIAwJQpU7BhwwY89NBDOPLIIwGwnYDYzeKbb76J3/zmN9h1112xatUqfPe738XYsWMBsI3SyVebpG6T+ho0dLxu8rrpxOtmbnjdzA2vm4NXTtdNjhh7RENDA1RV7ddb1NbW1q83fKS74YYbsGzZMtx///3Yddddk483NTUhFAqhu7vbtb2zjZqamvq1YeLfqT1N5ei1115DW1sbjj76aEydOhVTp07Fxx9/jBtvvBGLFi1iG8U1NTVhwoQJrseam5uxffv25O8rvZ3C4TB+9rOf4aqrrsLChQux33774dxzz8XChQtx//33s43SyFebpNumtbUV9fX10HW9ULs/4vC62YfXzcx43cwNr5vZ8bo5eOV23WRg7BE+nw/Tpk3DypUrk4/Zto1Vq1Zh9uzZpduxIpJS4gc/+AH+8Y9/4P7778eee+7p+v306dOh67qrjd577z1s27Yt2UazZ8/Gpk2bXGXgV65cidra2n4n/HJ01FFH4a9//Ssef/zx5H+77LILLrzwQtx5551so7g5c+Zg69atrsfef/997LbbbgB4LAGAaZowDAOqqroeVxQFtm2zjdLIV5vMnj0bL774ouu1V65cWTHn+nzhdZPXzVzwupkbXjez43Vz8MruupnXUl40LIllJx577DG5efNm+T//8z8VtezEtddeK/fff3+5Zs0a+dlnnyX/S1124vOf/7xctWqVfP311+Xpp5+etuT7eeedJ9988035/PPPy8997nPyZz/7WQneUXE4q2tKyTaSUsp169bJKVOmyLvuuku+//778rHHHpPTp0+XzzzzTHIbtpOUZ555pjzhhBOSy048/PDDcurUqfIvf/mLlLIy26i7u1u+8cYb8o033pCTJk2Sv//97+Ubb7whP/vsMyllftrkgw8+kDNnzpQ/+clP5ObNm+WDDz4op06dyuWahoDXTV43h4LXzf543cwNr5v9jaTrJgNjj3nggQfk5z//eTlt2jR56qmnytdee63Uu1Q0kyZNSvvfo48+mtwmHA7L6667Th544IFy1qxZ8tvf/rarvLuUUn700Ufy/PPPlzNnzpTz5s2TP/7xj6VpmsV+O0WTeoFnG8X885//lF/60pfk9OnT5bHHHiuXLl3q+j3bScrPPvtM/vd//7dcsGCBnDlzpjzmmGPkgw8+mPx9JbbR6tWr056HfvGLX0gp89cmq1atkl/+8pfltGnT5JFHHikfe+yxor3HkYbXTV43B4vXzfR43cyO183+RtJ1U0jJih9ERERERERUuTjHmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJqKSefLJJ/HYY4+VejeIiIjKAq+bRIXDwJiISubpp5/G0qVLS70bREREZYHXTaLCYWBMREREREREFU1IKWWpd4KIKs9VV13Vr9f729/+Ni699NIS7REREZF38bpJVFhaqXeAiCrTJZdcgm3btqGrqwvXXnstAGDs2LEl3isiIiJv4nWTqLAYGBNRSey1116or6+HlBKzZ88u9e4QERF5Gq+bRIXFOcZERERERERU0RgYExERERERUUVjYExEREREREQVjYExEZWMruuIRCKl3g0iIqKywOsmUeEwMCaiktlnn33w9ttv41//+hdef/11fPrpp6XeJSIiIs/idZOocLiOMRGVTFtbG/7nf/4HL7/8Mnbu3Mn1GImIiAbA6yZR4TAwJiIiIiIioorGVGoiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiaaXegZHEtiUsy87La2maAtPMz2uNVGyj3LCdsmMb5YbtlF2x2khVFSiKKPjfKbR8XTd5bOaG7ZQd2yg3bKfs2Ea58dJ1k4FxHlmWjY6O3mG/jqIINDbWoLMzBNuWedizkYdtlBu2U3Zso9ywnbIrZhvV11dBUdSC/o1iyMd1k8dmbthO2bGNcsN2yo5tlBuvXTeZSk1EREREREQVjYExERERERERVTQGxkRERERERFTRGBgTERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGJejkA2x0wK4LhoREREREdGwaaXeAcqRJaGtCUNfFYLymQUAkD4Bc5YfxpFVkA0DL1hNRERERERE6TEwLgOiw4L/gU6oH5kAAHuMChkQUD4xob8chvZaBJH/GAVrpr/Ee0pERERERFR+GBh7nGizEPjfDiidNqy9NERPGgV7XPxjC9nQl/dCfy4E/x86EQ3XwDwoWNodJiIiIiIiKjOcY+xlvTYC9+yE0mnDnONH+KL6vqAYAIIKjGNqEDmrFlAA32PdUDdFSre/REREREREZYiBsUdJKeH7UxeUFgvmVB8i/zEK0ETaba1pfkT+YxSEBPx/7ILotIq8t0REREREROWLgbFHWc91Qd0QgT1aQeT0UYCaPihObj8nAOPgAERvLKCGZMVqIiIiIiKiXDAw9qIuG9E/tUIqQORrtUAgt48p+qUa2Luo0N42oK5nSjUREREREVEuGBh7kP73biAkYc0Pwt5TH8QTBSIn1gAAfE/2AAZHjYmIiIiIiLJhYOw1IRvaK2GgVoVxdPWgn243+2BO90HpsKGv6C3ADhIREREREY0sDIy9JiAQ/XIN/P+5KxAc2scTPbYGUgH0FSEgYud5B4mIiIiIiEaWsgqMlyxZgiOOOAIzZszAaaedhvXr1w+4/VNPPYVFixZhxowZOP744/H888/322bz5s246KKLMHfuXMydOxdf+cpX0NbWVqi3kJ0QsBZUQZ0QGPJLyEYV5mw/RK+Evjqcx50jIiLqc+2112Ly5Ml48MEHS70rREREw1I2gfGTTz6Jm266Cd/61rewdOlSTJ48Geeff37GIHbt2rW44oorcOqpp+Lxxx/HUUcdhUsuuQRbtmxJbvPBBx/gjDPOwMSJE/GHP/wBS5cuxTe+8Q3o+iDm9XqUcUQVpAD053s515iIiPLu2Wefxbp167DLLruUeleIiKhM2TsMwPRGrKKVegdydd999+H000/HKaecAgC4/vrrsXz58mQwm+r+++/HYYcdhvPPPx8AcNlll+HFF1/EkiVL8P3vfx8A8LOf/QyHHXYYvvOd7ySft/feexfh3RSeHKPBmu6D9noU2voIzP2HPgJNRETk1NLSguuuuw6/+c1vcPHFFw/rtRRl4OUIc33+cF9npGM7Zcc2yg3bKTu2UW7UT0yEb/0M/gk6Ihc3lHp3yiMwjkaj2Lhxo+viqygK5s+fj3Xr1qV9zrp16/oFzAsWLMDy5csBALZtY/ny5Tj//PNx7rnnYtOmTdh7773xrW99C4ceeuiQ9zUfX4B8fZmsQ6qgvR6FvioE+8DgsPfLS3jCyQ3bKTu2UW7YTtlVUhtdffXVOOusszB58uRhvY6mKWhsrMnLPjU0DL5gZSViO2XHNsoN2yk7ttHAzI2diAJQ3jXydi0YjrIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7b79ixAwDQ2tqK3t5e3H333bj88suxePFiPPPMM7jooovw5z//GVOnTh30fubzAg8M/8skR0uEn+iB8qGB+k4N6j4jb9SYJ5zcsJ2yYxvlhu2U3UhvowcffBC9vb0477zzhv1apmmjszM0rNdQFIGGhmq0t/fAtr2RjudFbKfs2Ea5YTtlxzbKjQYDiQmsra3dBf1btbVB6LqaZX/KmJQSQmTumU/3u8Rjth2r1nzkkUfinHPOAQBMmTIFL730Ev74xz/i+uuvH/T+5OMCD+T3y6Qe5IdvqYGeJ9tgfKV22PvmFTzh5IbtlB3bKDdsp+yK2Ua5XOALYcuWLfj1r3+NRx55BIqSnzIl+Wor25Y8NnPAdsqObZQbtlN2bKOB2f6+WM0L7VQWgXFDQwNUVUVLS4vr8ba2tn6jyAlNTU39tm9tbU1u39DQAE3TMGHCBNc2zc3N+Pjjj4e8r/n8UPPxZbLn+KE/2QP1tTAix1cPeQkor+IJJzdsp+zYRrlhO2U3ktvotddeQ1tbG44++ujkY5Zl4cYbb8SDDz6Ip59+uoR7R0REZcVjM4/KIkry+XyYNm0aVq5cmXzMtm2sWrUKs2fPTvuc2bNn48UXX3Q9tnLlyuT2iddMTcV+//33sdtuu+V1/0vKr8Cc4YcwAW1DpNR7Q0REZeyoo47CX//6Vzz++OPJ/3bZZRdceOGFuPPOO0u9e0REVE6cfchW6TuUy2LEGADOPfdcLF68GNOmTcPMmTNx//33IxwO46STTgIALF68GLvuuiuuuOIKAMDZZ5+NM888E/feey8WLlyIJ598Ehs2bMCNN96YfM3zzjsPV155JQ488EAceOCBeOaZZ7BmzRpXleqRwJzrh/7vMLRXIzBHWBEuIiIqntraWtTWuqfl6LqOMWPGYPz48aXZKSIiKk92ys/FnyHkUjaB8bHHHou2tjb84he/wI4dOzBlyhTcfffdGD16NABg+/btrvlOc+fOxa233orbb78dt912G8aPH49f/epXaG5uTm6zaNEidHZ24s4778QNN9yA5uZm3HnnnUMqvOVl9j467HoF6rsGRLsF2VDio46IiIiIiCqbLP0osZOQ0mN7VMYMw0JHR++wX0dRBBoba9Da2p23eWr60z3wPduL6BerYBxR/hVTC9FGIxHbKTu2UW7YTtkVs43q66tKUnwr3/Jx3eSxmRu2U3Zso9ywnbJjG+VGezsK/z07AQA9NzQBvsJNOs7lulkWc4xp+My5fgCAto7zjImIiIiIyEM8MFbLwLhCyF002GNVKJ9aEDvMUu8OERERERFVMpnh5xJhYFxBzOnxUeMN0RLvCRERERERVTQGxlQqicBYfZ3p1EREREREVAK9NmBLd1VqBsZUTHKsCrtRhfqxCdFulXp3iIiIiIiogohOC9XXtyLwm50cMaYSEgLmDB8AQN3AUWMiIiIiIioeZXtscE59z3AX3GJgTMVmJecZMzAmIiIiIqLikQHHkkwcMaZSsvfQYNcpULaaQLed/QlERERERET5oPcFxsIRDAsu10RFJwSs/XwQElDfZnVqIiIiIiIqkkzp06WPixkYVyJrv9g8Y20TA2MiIiIiIioSZwAc5RxjKjFrog9Si48YWx44ComIiIiIaORzzOQUIQbGVGo+AWuCDhGSUD4wS703RERERERUCVzp0wyMyQMS6dTqW6xOTURERERERWBn+JmBMZWKNTm2bJPKecZERERERFQMzlFijy2Qw8C4QskmFXaTCnW7BdFhlXp3iIiIiIhopHOODNvOVOrSDxkzMK5g1uR4OvVmo8R7QkRE5AG2hNhuum/WiIgof1yBcYbHS4SBcQWzJuoAAHUz06mJiIj0p3tQdXs7tBWhUu8KEdGIJDLNMfZAWjUD4wpmNeuQCqC8E/VE+gIREVEp6avDAABtbbjEe0JENEJlSqX2AAbGlcyvwN5Lg9ItIT7hPGMiIiIiIiogx2CcYCo1eYk1MTHPmOnURERU4USpd4CIaIRzBsPOcTkGxoOzZMkSHHHEEZgxYwZOO+00rF+/fsDtn3rqKSxatAgzZszA8ccfj+effz7jthdccAEmT56MZ599Nt+77Wl9gTELcBERUeVRPjYQ/EkrlC1RBsZERIWWIZVaMDDO3ZNPPombbroJ3/rWt7B06VJMnjwZ559/Ptra2tJuv3btWlxxxRU49dRT8fjjj+Ooo47CJZdcgi1btvTb9sEHH4Ss0Dm29l4apE9AfTcKmJXZBkREVLl8f++B0mYj8Nudyce8cINGRFQO1PURBP63HQjnWD0rY1Xq0p94yyYwvu+++3D66afjlFNOwcSJE3H99dfD7/dj6dKlabe///77cdhhh+H8889Hc3MzLrvsMkydOhVLlixxbbd582b85je/wY9+9KNivA3vUQWsZh0iCigfcNSYiIgqi6yK3QoxGCYiGrzAkk6o75vJ4oVZZapE7YFzsFbqHchFNBrFxo0bcfHFFycfUxQF8+fPx7p169I+Z926dfjGN77hemzBggVYvny563WvuOIKXH311dhll13ysq+KMvw8rMRr5OO1cmHv6wPejELbYsCc6C/K3xyuYrdRuWI7Zcc2yg3bKTu2UXmSdWUzRkBE5F1GjpGtc2TYWZWagXFu2tvbYVkWmpqaXI83NjZi69ataZ/T0tKCxsbGftvv2LEj+e+f/exn2HfffXHMMcfkZT81TUFjY01eXgsAGhqq8/ZaA7EP9CH8127437NQl8f9L4ZitVG5YztlxzbKDdspO7ZReZFVjo4M9mkQEQ1NrusQZ0ylzuO+DFFZBMaZSCkhROarWLrfJR5bvXo1nn76afzlL3/J2/6Ypo3OztCwX0dRBBoaqtHe3gO7GOt7+SUC1QLWexG0bu8CfN6/Myh6G5UptlN2bKPcsJ2yK2Yb1dYGoetqQf9GxUh3yeMhTkQ0OLle9xzBsNeWayqLwLihoQGqqqKlpcX1eFtbW79R5ISmpqZ+27e2tia3f/nll7F9+3Z87nOfc21zySWXYP78+bjnnnuGtK/5vBmybVm0G1Brgg7t9SjwXjSWWl0mitlG5YztlB3bKDdsp+zYRkREVGmElX0bIKWeg8dSqctiYo3P58O0adOwcuXK5GO2bWPVqlWYPXt22ufMnj0bL774ouuxlStXJrf/2te+hr/+9a94/PHHk/8BwDXXXIPrr7++EG/D06wJ8WWb3mUBLiIiqnAeuEEjIiorOQbGLL6VB+eeey4WL16MadOmYebMmbj//vsRDodx0kknAQAWL16MXXfdFVdccQUA4Oyzz8aZZ56Je++9FwsXLsSTTz6JDRs24MYbbwQQm2+cOgcZAMaNG4c99tijeG/MI6x9dACA+m4UBjg/joiIKpD3ZxIREXlTrplSruJbGR4vkbIJjI899li0tbXhF7/4BXbs2IEpU6bg7rvvxujRowEA27dvh6L0DYDPnTsXt956K26//XbcdtttGD9+PH71q1+hubm5VG/B0+SuKmSVgPKhGasqp/PugIiIKkDp78WIiMpfriPGmVKpAaibIoAJWNNLs0pO2QTGAHDmmWfizDPPTPu7Bx54oN9jxxxzzKAqTr/11ltD3reypwhY++jQNkahfGDAbi6fecZERERDxsCYiGj4ch4xdj7H/XPgvk4AQM9PxuRttwajrAJjKixrQiwwVt9lYExEeWBIaK+Eob4Vhei0IYMCdrMPxkEBoLosSlzQCCA+NeH7Zy+ix1VD1qep5J3uXo7BMhHRoIhhLtckunN9gcJhYExJ9gQfgB6o7xpgCS4iGg71rSh8f+6C0plyoXvHgL6sF9Hjq2EeGAAGWHKPKB8Cv9sJpc0GDInIuXX9N3AeojwciYiGZkjFt/qiZKXF8QJSluT+gIExJdljVciggPKBwXnGRDRk2gu98D/RAwAwp/tgzA9C7qJB7LSgvRKGtjoM/6PdUD61ED2umsFxGbnrrrvwj3/8A++++y4CgQD2339/XHnllRg/fnypdy0j0WW7/t8PR4eJiIbPGnzxLecoswilFOVKk+BTaMxloz7xecbCBJQPOWZMRIOnrQzB/0QPpAaEz6hF5Kw62M0+yFEK7D10RL88CuFv1kNWC+gvhKD/X0+pd5kG4aWXXsIZZ5yBRx55BPfddx+i0SjOO+88hMPhUu9aZkq84yXTPZvjJo0xMhHREOWaCZ1puSY7Q7XqIuKIMblY++jQ3ojPM57AecZElDv1rSh8f+2GVIHweXUZaxXYe+sIXViP4J0d8D0bgj1WgzU7UOS9paG45557XP/+8Y9/jIMPPhhvvPEG5s6dW6K9yiI+BCAyFYbhHGMiouJxnl+tDMGwLVGKuS0MjMnFnpBYz5jzjIkod6LTgv/hTggJhP9jVNYCfnKshvDXahG4dyf8S7sRGq+nL4xEntbV1QUAqKtLM3c3R4oyvJufxPMzvk4iN85Ov41w3JcJIQBIQAx/v7wmazsR2yhHbKfsKrGNRI7nTVe6svP86wiMFSn6sn2KiIExudjjNEh/fJ6xKQGtcr7QRDREUsL3526IXgljfhDWnNxGf+1JPpgLgtBXhOB7tAuR8+o437iMSClx00034aCDDkJzc/OQXkPTFDQ21uRlfxoaqvv2LWrDWtsLdXYVQqoCwIIq0v+taCACEyEAgIjfiKlK/vbLa5ztROmxjXLDdsquEtqoF58BAHw+DaNyOG8aQQMGYtOoVCiQ8apdfl1L1u8aXVcNUVv8znIGxuSmCFjjdWhvRaF8bMLeWy/1HhGRx6nrItDeisIeoyJ6zOBuAqJfrIa6KQrtbQPmG1FY0/wF2kvKtx/84Ad4++238dBDDw35NUzTRmdnaFj7oSgCDQ3VaG/vgR1Pl9b/3AltTRjmgiBUSAgAlmGhtbW73/P13mjyZkha8W1tG52/2gbRbSN6fv2w9s8r0rUTubGNcsN2yq6S2igY/380aqI7zTk2ldYTRSK6sE07mTAdCRnJc3FbSzdg5Dcwrq0NQtcHfk0GxtSPPV4D3opCed9gYExEA4tK+J6M9fxGTqkBfIMc8dUFosfXIHDvTvie7EFoso+ZKmXghhtuwLJly/Dggw9i1113HdZr5eum0bZl8rXUf8eKgYn3DUglPlPNTv+3pHNeW6IQlwC0V2KvYZt2SVL6CsXZTpQe2yg3bKfsRmobiQ4L6sYozM/1ZYhJ5HY+l455xdKWfTOJnas1mRKyBO3GwJj6scbH5xm/b8BcWOKdKVOiw4L6egTKdhPCAuwGFdZkX6zTgamiNILoy3uhdNowZ/ph7zO0gn3WZB/MSTq0tw1oL4Vhzg9mfxKVhJQSN9xwA/75z3/igQcewJ577lnqXUpLxG+wZL0C0RuPfDNVOZVZbr5MAKxFSZWkx4a6OQpruh+iV0J5z4A1w8f7F0oK3NURWx/eGbzmenhkmFfMqtTkSfaeOqQKqFuNki2wXbZCNnxP90BbE3YVdAEAPNsLaw8N0RNrYO/JkXgqf6LTgv5cL6QGRI8d3jwq45gaaG+3Q1/eC/OgAEeNPer666/H3/72N/z6179GdXU1duzYAQAYNWoUAgHvVRaXNUrfaK8tIXZaUDdEYB4UBPQsyzglROXgMyGIyljg3p1QPzIROVFCf7YXyk4b4bNrOdWFkpS2WOSqfGJl2TINZ9BrZXi8RKPsDIypP13A3l2D+oEJ0WJBjuFhkgvxmYnA/Z1QWizIoEB0XgD2BB+kD1C2W9BeDkP9yETg1x2IHl/DUTEqe/ryEIQJRD8fhGwY3lwge5wGc4oP2ptRaGvDMA/k98OLEvOJzzrrLNfjN910E04++eRS7NLABJKjGAJA4O6dUD6zIMIS5tx4B0yWkQkRlVy9iSqK+pEJAFA+MqHsjAdALRaGEAKVniXhf7gL5jQflwUsAGHlfnYUHRZkUHF3RsoMo8Txg03ZakCEbFj7FadThhEPpWXto0P9wIT6ngGTgXFW4hMTwbs6IHolzKk+RE4dBVT3FaS39wHMzwWgrQnD90Q3/H/phohIGIdXlXCvRzaxw4S6KQqlNXZ2tceosPbzQzZySaB8EJ0WtDUhSB0wDs3PcWwcXgXtzSj05SGY+wdG1LzOkeKtt94q9S4MjkTyZksKAeWz2PlA+cxC1Y/bAADGgVlulqMMi6lCOdbVkXp5no/VzQa09RFo6yPoYWCcf7n2lvTaqLqpDbJGwDjA8Tm4guG+c62wY6dv/5JOiKhE73UMjKmE7PE68FwIyvsGcBBHbgYi2i0E7t4ZW6pmQRDRL1Wnv6FXBMyDg7DHagjc2wHf0z2QfsGR4zwTrRZ8T3RDezPa/5d/7YE5zYfocTWQoxkgD4f+fHy0+LAgUKNkf0IO7L31WKfcewbUdwxYkzmxk4ZJom9EItNhKjP8HCcMjhhTfmivhmHtoUHuUia3385bGX95BsYw+e0tKGf7DtDUIp55ILqleztHYNxvvnG3DWWnDXts8e7X8nM3QyOOtXeiAJdZ4j3xOFPC/2AnlC4bxoEBRI/LEBQ72PvoCJ9bB6kBvie6oWxJE8DRkKhrwwje3gbtzSjsOgXRI6sQPqcW4bNrET28CnatAm1jFMGftUPdGCn17pavXhva6hCkBhiH5TfrwTg41pOsrRreEj5EAGI3YIkRDecdT7pK1Intnf8HOGJMeaFsNeD/Yxeqbm0v9a7kzjliXCaxPBWZc8RYAuqbEfj+3NV/jrBwb5dkZwisLUDZEc/4K2JHEgNjSq9agT1GjaWhdpWoNFwZ8D3VA/UjE9beGqIn1eRcqMye4EP05FEQNhBY0sk2zgPt+V4EHu4CTCB6ZBVCi0fDOLoa1lQ/rGl+GIuqEVo8GtHDqwBDwv9AJ7TVDL6GQns5DGEglu48Kr+XEWuaH/YoBeqmKERbWc5oI69J3Gw5D9V0wbDzZ2fVVAbGlAeiowzPZ857Gn4NKA3XHGMJBH7XCf3lMNS33IM+ztFgkSlLx075OT4aLYtY/JCBMWWUXLZpq1HiPfEm5T0D+gshyCqByNdqAXVwX1xz/wCMeQGIHgn/0q7sS4ZQRtrqEPx/74HUgcg5tTCOrk5f1VgXMBZVxz8vwL+0G+racPF3uJzZEnp8NNc4pADTADQB86AAhAS0l9hxQcMk0Tci4bzJz3aT5kwPZGBMQyUlfE90Q10fKc8VPhxRgijX/nt+fQtCJg5nV1VpR2On9gNlSrnOMMcYtuwLuos4842BMWVk7xMPjN9jYNyPKeF/tAsAED2+BrJ+aN/a6JdqYI+OpfeqrzG1dyjUt6LwPd4NqQLhc+tyqlxozfQjcmYtpALof+yE9Q6D41wpG6NQ2m1Y++qQuxYmvck8KAApAO3fEfeFkmiwbNmXweeMS5w3Y84ZQ4nDLdMSIkSDoGy3oL8QimWGlbtcBry7be918vP7WxiJCNIR8Lo6GVMjTNMd9CYNNGKc+PcgB56Gg4ExZZQYMVbeZ2CcSn8hBGWHBWtfHeacYVTK84tYBWsAvr/1ABGPXVA8TnRa8D/cCSGByGmjYDfnXqzJmuJH9Ms1EBYQvfNToIdXz1xoL/YCKNBocZysV2FN1KF02VA38/xDQycspB8xcna4uEYyZPx5GW72iAbDw9kG6obI4DKmsqwrq74ZQfUNrdD/r2eYe5Yfot0CwjYEi28VRmI8KGWOcVJKhCmcl/JIhvOrM5PHkn2vzRHj9JYsWYIjjjgCM2bMwGmnnYb169cPuP1TTz2FRYsWYcaMGTj++OPx/PPPJ39nGAZuueUWHH/88Zg9ezYOPfRQXH311dixY0eh30bZkKMV2KMUKNtMT5/ci67Hhv5sL6QCRL6c+7ziTOxmH8zZfihdsdelHNkS/j92xaqBzw8OaX1Cc14A5twAZLsF3586vdfT7TH2x1GoWwzYjWrBK0abc+NFuJjqTsPhKrLV96NrvpuRZvSCI8aUD3b/ThevCDzQGavLMZA068pmor0cO1f7nvXAFJiQjaoft8WWZDO81e4jh3D9D4D7eEktROscWQ6n/0yE8/tiI9mBKRkY9/fkk0/ipptuwre+9S0sXboUkydPxvnnn4+2tra0269duxZXXHEFTj31VDz++OM46qijcMkll2DLli0AgHA4jDfeeAMXX3wxHnvsMfzyl7/E5s2b8a1vfauYb8vbhIA9XoOwAeUDjtok+J7thQjLWLpnntZ4jh5TDakD+opeiNYyLNBRAtqqENTNBuyxKqLHVg/tRYSAcXINxC4a1I1RqK+zQvhAzBWxmyhjXuHXGLam+yF9sVENZlLQkFkZAhNXKnWax1PnurVaWUfMvEx86o0ObvXtKHxL01SsHakcl3PhpUU+pPv4zsgZVHptWoshM3Y2iJDs+7+HR4yVrQb8D3cCYRv6k93QVnqgUyFnado1U7VpwB0YZ7qmp6RSi+SKAkyl7ue+++7D6aefjlNOOQUTJ07E9ddfD7/fj6VLl6bd/v7778dhhx2G888/H83NzbjsssswdepULFmyBAAwatQo3HfffTj22GMxYcIEzJ49G//zP/+D1157DZ9++mkx35qnJQtwMZ0aQCw1R1sZgvQB0aOGGIylIetVGAurIExA/5c30pC8THRa8P1fbNQ+/JVaQB/GSdOvwHf2GACA76/dQIjDQ2mZEubKLkilbzS3oHwC5nQ/hAFoXFqLhip1zlryZ8eNmePylhxJdgQ06sYoqm5ug29pdwF2sPDEpyaqbmuH/47SLxMUuGcn9NX9K9aOVK6K5l4K0JxB+gB98c5siqzFt4pZW6zbRvU1LfD/IcOIt6uqvONxjwX3wV93QFsbgf5CCL7nQvD/pYzOMema0tlRkXJcuTqGMh1LqYW4SlB8qyxWJYtGo9i4cSMuvvji5GOKomD+/PlYt25d2uesW7cO3/jGN1yPLViwAMuXL8/4d7q7u6GqKkaNGjXkfVXy0KuReI18vNZwyX18AHqgbjVheWB/EkrVRvqKEIQFGIdXQanL7zfVWlgFuSoEbW0E1pEWZB7WbfPSsZRP+t97ICISxmFBiN31YV2PFUVAnRqEdUAA6r/D8P+zF8aJQz8HjFTaxgjQbcOe7s/7sZ+JvX8QeDUC7bUI7AMKN6c5X0bq962sWbLvBs550+UMhtMELM55b9qm2J21/lIY0VPK79ygtMfuUJXtJqRX0nk9MHpdFJkCYylLW6U6krJfmTqXnSPGHuozVj+KfYG19RFEzkizgbNGwE5HhGahqEFWzryUTTBYmVKpUztccsk+SE2lLkHxrbIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7bZ5pDHIlE8NOf/hQnnHACqqqqhrSfmqagsbFmSM9Np6EhfyOSQyXrJUL+DqhbDYyur4Yo4sGZi2K2key0EHp5B+ATqD1+DMSo/J9djWNtGH9qQ/WKKPwX1uftdb1wLOWL9VYIkXURiAYVtafvChHMT+JLzZm7IrTxQ2irQ6j5UiOUsYWdQ1tuwmu7YAMIHlGPUY3FOZ7kQRKhP3RCfSeK0cEqiKrySHIaSd+3cidsZF+beITOQRSdFmSVAulcus4r7zWXewkpY4Glvzy+9+k4U0ZdxYdMAHrRdyfJNcdzoKDMcAfQgZ+3w95Lg3lKbZoXzdvuZSUDWY4JZwp7pyNaMyRQxDVxcxbw4D5lk+ZU4jqvpga/6aaspHLWfijRHOOyCIwzkVJCDNDjlu536R4zDAP/7//9PwDANddcM+T9MU0bnZ3Dnx+gKAINDdVob++B7YF5OL49NaibDbRv7IDcvYRncodStJH2dDf0qIS5IIi2aAhoLcAfma0i8JQCc003ehb4hr0cjteOpWGTEr6HO6ACiCyqRm9vLzDMemWJNuqwwlA+H4T+VA96HtqB6Nl1ednlEaHDQmBDCKJORdceEnZr8dK99Kk+aC+HsfPFNljFSOEehmJ+32prg9B1Lw59eIxz1MH5kURyDAwGSbRakAEBVJc2mBMdFqpuaoO1hxZb1z3B6yUsTAnRYUE2afA/1AXttQh6rxoN2VCmx7ozUIikdMYMZwrQMIlIXwQiTJlxqV9nMC/aLajbTKjbzPSBcVEjY+fP/UffnVXlncG9sDK/11KSzt03JaCVUaDsbFDH8Z46p17kkr6fOt2lBFWpyyIwbmhogKqqaGlpcT3e1tbWbxQ5oampqd/2ra2t/bY3DAOXX345PvroI/z+979HTc3wRnzzeTNk29ITwYw1Xoe62YB414C1m7cOmaK1UcSOzS1WgOiCIGSh/qYGRBcG4f97D9TlvYj+R37S9rxyLA2X+mYE6lYD1m4qjJm+vBZwsW0J85Ag1JUhqK9HgPeisPf2RkdQqekvhyAkoM2vQUjk9zyXjTktFhgr68MwZg9jabQiGinft7Llmucmk+cJZ8VT90jewJ+VVHKYXwkAhkTVzbGCoD0/GZP7/haAsj12F6p+ZMKwU9rDCzK0uf/BTmhvRhG6uB7aa7HaAuq7Bsz9yzMwdqbpC2f9ilKnJbtGjFM+C5n+d5m+A+racKxIkiOWE9tNBB7uROSkUbDHF+A66jyOQxKoSq2A7NiXXOa2lphI7UAph8A4TSaOK+BNPdc409tzSaW2HMW3uI6xm8/nw7Rp07By5crkY7ZtY9WqVZg9e3ba58yePRsvvvii67GVK1e6tk8ExVu3bsXvfvc71NfXF2Dvyx8LcAHaS2GIkIQ5x1/wnmvzoACkX0BbG4bo9Hr3fhHZMrk+ovHF6sJUKdQFjC/ERldYBC1OSmhrYzeo2oLiz6+09vVB+gXUt6OVMy+Rhie14Fa6GzhjgMAgVa6nfC9UTzcTqYeO86PV//cl4Qi4RFRCtFhQ3nEX4dLejP1b3dL3uPRWf/zgONve2RlT4o4zV2dQasZEpnmi6Y7vkI3Aw13w/6nLFRj7/9gJ5RML/j905mFv+3N1OKS7TcowYuzVwNg1qu2F88hgZKr2n9rWOSyBJ1Kfn/gcixitlkVgDADnnnsuHn74YSxduhRbtmzBddddh3A4jJNOOgkAsHjxYtx6663J7c8++2w8//zzuPfee7Flyxb88pe/xIYNG3DGGbFZ+qZp4j//8z+xYcMG/PSnP4VlWdixYwd27NiBaLQyqiXmyt5Lg1QA5X3Dc+vwFYUtoa+Orc9nHDq0+eeDElBgfC4AYaHMSvcXlro+AnW7BWsvDdZ+hZv/a871wx6tQHvbgPJR5XYGJYhPLCg7LNi7a1B2K8G8a03AmuKDMFAxlWxpmFJv7O3+j7vXMc7yejl2whVt3rIloa4NA73xNxG/kVbfjKDqmhaor4Xdd3eOIEGWsq/V+fWNSgRvb0Pw7p1QPu7/AUhnmnE5jJ5l4jzOou7RsJJy7le/EeP0v0sXsCkfOodmHT/2Dj2gEe0WEM4SwTrbL2TDf+9OqI7VC0SmziAvBMaGjN1PW+6OoqRofG59mWQdOdvaNRKcelzlkrnifNiVSs3iW/0ce+yxaGtrwy9+8Qvs2LEDU6ZMwd13343Ro0cDALZv3w5F6fsGzp07F7feeituv/123HbbbRg/fjx+9atfobm5GQDwySefYNmyZQCAL3/5y66/9fvf/x7z5s0r0jsrA34F9m4a1I9NiHYbcnR5pjQNlbLZgNJiwRqvQRYpldw8JAh9RQj66jCMw6vKuvhIXkgJ37OxycTRL1YXtpqnKmAsrIJ/aTf0Zb2IVPhcY2197GbDmlW6NGZzmh/augi0DRFYM8ojnZpKyHljb8v0VakHI9cbVOf8uk4bsrEw10p9RQi+p3pgNeswZ/rhX9qN8Bm1sSwjCQT+0IXw1x1zQFPXbC7VnZ9zVMyQyQ4J9R0Ddmr9Ej3DiHe5sVICngSJWHtoKE116kzreKf+LtOIceJ9Zci8SAZ6gy10FbJR9eM2yCqB3mvTT5VM/Vv66jC0t6LQ3or2TWFwBp2uVOrSB5v+R7ugrY0g8mXH1E3nuaPLRtXP2mHtoyP8zfri72CuErvsSp/u+7HfSH6G7Vz6dWqy+NaAzjzzTJx55plpf/fAAw/0e+yYY47BMccck3b7PfbYA2+99VZe928ks8frUD82ob5vwKywwFhfHRu1NQ4u3nIxsk6FOdsP/dUItH+HYR5ShJFqD1PfikL5xIK1pwa7ufDzfs0DAtCf6YW2MYroJybk2LI6VeaPlH2B8czSFb6y9vNBaoC6KRq74fFYdXzyGGcwYjuWXhpqxlOOxblca772Fi4wVrYk0o0NqFviy9ZsjEA6C345b7QdAY3sMOF7uB3G54Owpha3k8mVPuwYPRY70/RYZBi1LDeuzATHcaR8aiLwk05EDw/CWJS/1Uxy5gqMU36XYdRPpBYPS9020r8TQA4yMBY9sR1Ljjhn4gys0o0ue3jEODk1yTnC7fi+Ktvi9QHeK5OMNStNh0nqz0gJlDNWpXbPaU8+p4hLIFb4MBTlKjHPWCmXL2qeiHYL6htRyBoBa3pxbyLMeNq2vipcmSnsDvryeOfE4VXF6V3XBIzDYh0hvuXDLHtdxpTtVixbYg+tYDf5OfEJWM0+iLCEsrWyzkGUO+XdKII3t7pT7nO5GctC5Hr6LVKqbGq1VyCeeizTbyN6+964+Wwn1K0GAvcXZu7ngJyjSa5U8/jPzjnI3SlL7JSrDAGa9mLsmuZ7trjTpbRVIfie6HYHIAOkUmcLfEWGVPFkQDPYytvZOqFCNsQnpjvFO91znCPGhjvY8gznvjg7inq8tJMDSDdiPNA6xs5jLmPxrZTtE69RxLEJBsaUE3ufyizApb0US00zDgoWfZ6TPU6DtZcGZYcFZUtltbuT8r4B9T0D9hgV1pTizXE15wUhgwLq+kjFFkFTk6PFpU9fTswr5zxjysT/vx1QWm3oL4X7HrSKN1rkCvYKWf05UWDLeQcn4e5Ade6L8/KRJVARXTa0l0N53X91XTj2vc1UmCdNqrtrnd1yC4wtCfXNiKsieuzxvh+Vz0pzTfE/3g39hRBEl7PjIWUj5+eQoTMjGQRb6Y+z5PJDg0xddo1Kp8kUCN7ajqqftUO02Wm301aHEPxpW+b3F5Xw/a07Nse31JwdWc4R404PBMa9sQ6IXDiDXFfHQ7+q1Bl+dko9RySOHxbfIq+RoxTYjWrsZF4uvVnDZUto/w5Dilil6FJIpG/rqyq3CJf+fGzE1vh8VVHTaeATMA6KF0FbHc6+/UjjSKM2PTCv15ocC4y1TQyMKYsMoxY5j/wOlXPUJ49rI/eTeG1nEoeU7iJi0TRBDADhG/i2L3BXB/x/7ob2Sp7OebZE4KEuBO7dmdJJkabDIkN6bNbiaB6jvRpB4Hed8P9up/v4c45yhksb7CvO9PWU4FVkKpLkGjFO/N7xPGcHhtL/9zlxVu7utaG8G4XY2fciSjzgVdodL+z4rvmXdkPZYUFf4zh+nfORn+2FviKEwN0dg9yxAnBNLXDXJyi1qlvaYh0QuQwKZJjq0G90PnU0ON1zXNkKSH62kss1kRdZ42O5DGqFpDKqmw0onTbsZr3gSzRlYs3wQ1YLqG+4Lw6VQrTFUtntGgGzBGvYmgcHIQWgrwmVdpmTElC2mVBa42nUHqgrIBtV2GNUKJ9YsaqlRJk4U3LzPXI7wAiYu+pw4c4XyQDLmcWUKOaUug3guumWWar9Kjti3y3Rnqebc+dImPM1040eWRkCx2wjxobsq9BdROITM3kuEi1mMsNGiY+0aW8b7uOlkJ0lgyQ6+j6AAQMYZ+CbbjTQ+TmmC4wH+bG4Rk4/NhG8ayeCN7XFXyt99kfadcid3wXHPqrx5cE80dmSqWJ5iZYlFJ+a0F4KxTrZ4nO8XSPzqdunS6V2SnmqGGz2ju3IuCjiLQgDY8qZXWHzjBM95sYBpSs6BF3AODAAYcfSuiuNtjoEIWNpzaVYskM2qLCm+SC6JbTXItmfMIIkbvJMD6RRJzCdmgYt38HIQDd0rlTqPP9dp8SdmzMV005dLsrxO+d+hTOPFDrJagHtpRCCN7cCXUMPOp0BiPjM8WGkm+PqDMJC7pRa/ekeBH/WljZIDvxvB6qvbwXCdqxwUTECC0ui6mftqPpxLGiruqUdgSWdULaZkIG+a5UrmHR2VpS4n1V0ODspUnYmQyq16/ndNsznOyFcI/uO10mM8A0jlTqRDp0MwJwFuUKOnUw3+p6pM6X0g7F9nLvoHDF27nsR68sEf9YO/6PdUN5x5sRnasf0HQ+ZtgEwcMXqNFzFt7w0YtzS0lKM/aAyYFXSPOOQDXVDBNIvYE0rbWBgzouNWmprwoWdt+Y1hoT+chhSAczPla5zwjgkls6uvRCqnCJormrU3gmMzURgzHRqGshA89yGa6AbOmfgU8BztVTSBB2m7LccUpLjZ+kMIgboNBAWYjfJrTa0dcPolM1QHTtdwJhplFsYgO/ZXiifWFA+S9lpW0L9OF7Fd6uJ4M/bUfWj1oKfq10FkuyUgM11HDie48o6KsG1xBnMOI+DgUaMM/At6UT0dy3Qnu7pe9B5zMUP0VwCIJdohuPTlO7jx7H/ItR/hz0xIpyFyOH7Wswsg0QHhLqt74+mTfmXMrfDN5HFkvguDnapLAt951EvjRgfeuihOPnkk3HPPfdg+/btxdgn8ijZpELWCCgfF6lHtoS09REIEzBn+Qe/Dl+eydEqrEk+KF12RY2UaevCEL0S1nQ/ZG3pUnntfXRY4zSo20woWz2UC1dAyscmlDYb1p5ayaYRpGOP1yF9AurmaPkV5KHiyZBGmRepAa8hof+jB6LTchcqMgH9yW4Ef9Ka/+tluvmbJtzfiUypmc4R437ViDPMJx3ONTCa4TVT9z3lMZGyrmtSanqmY66saI2nNYdk+lHEPBLdjv1z7kNYQjgv05lSqUtx+nL+feex0i8wzr5ziSDV1cGRLhgdZAeRyNSR0m27v9fOwDjdtSDTvFcvXTZCGb4bzuPHkEDKey801xznlO+Ruj6Cqh+0Qvkw+72Q6LZRfU0L/H/oij0w2NF6Z1VqLy3XJKWEYRi47bbbcOSRR+JrX/salixZgra2tmLsH3mJELDG6xAWoHxYBt1xw6D9O9ZDbu5fwjRqB/PA2H5oL1dIOrWU0FbGU9kPKd760WkJkRyx1l6qjCJoXkyjBgBoAtZEHcIAlA9G9jmIhk4Usv8w5eZOf64Xvmd6Ebijo9+Ise+5EJQ2Oz9LjNkS+nO9seAv8Wdca+S6i2+5ggpnZqQz9TW108AZmEbycyPuCnRco5RpAhtXhWPH752js/H9Ut+MwPdYl+vG3bmdKHTnvWM5KWfNA9Er3Z0BmbIXHD8qb0fh+2Nn3upYaKtDEJ+mCVwyjVAOkEo9GO7CSfF/DLYv2dkGzk6cqEyZEpCh4yexL2VQhsJVjC1DZoHSZqH6htZY8bpi7Zejno1rSgOAwJJOiF4J3z96Up/WTyK7NJF9NujpJTaSx5H00ogxANx444147rnncNVVV8G2bfzwhz/EYYcdhm984xtYunQpuru7C72f5BGJ9YxHcjq12GFC/cCE3aTC3ruIi6cNwJriixXh2hR1956PUMr7JtRtJqxxmic+A3O2H9IXP8GnSdsaUZxp1B6oRp3K2jeeTv3OyD0H0eDJTEsV5ZnSbsF//87kfNlEsKfstDMuR9Jvndgh0P4dhu/JHgRva+srYuMcRDFl5grCmeYYp+6X89+O81zqzfGgOIOxTCPGaQo5ZSpGJCIyVun6d53Q14RdxUBdAXSBA2Pn31Kc83VDdsYUWdfa0o6fg/fshP5qBOqG4dexUN6Nwr+0G1W3tfff50zpunbfY+pb0fys9Rv/WAZd/M7ZRs5Oj6jMfCyV66Ug0zHqLEAWz1JT3y3im3R1ZqU/GGQu61OnvL9BHwu2IyPBa4ExADQ1NeHss8/Gww8/jGeeeQb/+Z//iba2Nlx99dWYP38+vv3tb+Opp54q5L6SByQLcI3gwDi5RM0cPyBKm0adpAmYc+JFuF4d+aPG+urYyKw5P+CNz8CvwJwdgDAAbd3ILsKlfGRCabdh7eWtNOoEa2K8c25z5UwroBxkCqryzP9wF7Q3ogg80AkArkJLrqrKjirJonv4kUaySqyJ9KNwBgYOKuLkQIGxc8S5J8Po3CCJDKnU7iAt/limEeOU13B2Dmdq50LPMXWNfnendCJkSh/PJg8FhgY89jOsba102PD/bieCN7chcO9O6M9kHw3Muh+JP5XLKKEtEfh1O/wPd7q/Q6704pSMCGfw5qX06AEoWw2INsdobIbRdNfosfPckWbevPjUhPp2+muh8oGB4I9boXw8uC+D69zRKxG4syOZRZmk5/A6qbs12ArlliOV2kvFt9IZN24cLrzwQixduhRPPfUULrjgArz77rv4r//6r3zvH3mMPU6D9MWKXAx6In2Z8NLarU6GM516JBeB6rGhvh6BDAiYs7yRyg70rWWtrRnZRbg8m0YdJ8eosGsVKB+ZJVmihTwqmj6oyjelJT6PNT5i6LqJdN7QOoO3PGT5uEZorP7zO4Ul3YFlxhHjDHNekZLa6RwxzrLEU/odjr9WhjmjrscTf9c1B9bxszOgjkpX0O6a69ud/vULwrn/Ifd7FJlGNrPJRyp1mqJmypYoqv97B9Q3+iIVZzCpvhOF9mYUSnxuqbYhj52OubynXgl1qwltbcQdLKZ27uR7yURbQnslDKUInaziMxPBX3cgeHv/kfyBKK2Ok0pIQnRa0J/sTl77qm5rR+Cencn59U7+hzqhtNvwL+kc3L462l1dH4H6ngH/n7rcGw2ls2wII8aeLL6VzT777INLL70UTz75JJYuXZqPfSIvUwXsvXSIiISyfeQVIhKfmVA+sWCPVSF3LX0Kr5Mcq8HaU4OywxrRRaC0dWEIKz5iX+LCZ072Hhqs3VSo261YUDYSeTyNGkCs1sG+OoQscnoZeZsxwNzZApCJc5Mr0MwQEOWhEJSr8m4uI8ZRmfZn1xJPA6RSu0ZEhzDfOPCLDgTu7HD/bWeAbaRpN+dooXM/U4PrTKPEztG1QqdSO4Pf3pS/Gx3aZ5+2AvBgpTnu/I/Eghr/kxlGggtZqCyXZXmcn2GnY0TVtZY18t7hpbxvwP9IF4K/3VnwgZ5E4dTBzt13tU2vhP/+TvieC8Xm+Do66AeqY5DTcSUzHLPOpzrrAgwlC2bQc4z7Royll4pvjRs3Dj6fL6cX22+//Ya9Q+R91ghOp/bqaHGCGV9TuV9ay0ghJfT4es2JgmOeIQTMg+JLN43QNaWVD00oHTas8RpkvffSqBP65hkznZpiZJ6KReUqEay51nENpb+5zEchK9fIdCTNTakl3SMymapSO6WOGDsv6dmq/g6k24a6zYT6npGxHVx/K74fmVJLXcFeRLqLbDkDB+fjhoS2ohfa872D2/dcOYP13pS2ypQGnkU+AmMR6f+3sx1/+Sq0lva1bWQNOl3ztXc4oqfUTIE8B8aurI40gZ62JhRL7x5KxkSc8fcOqC+Fhj5P35mNELahxjvllQ9N17rOSluaqFOLB5MD9eNHY1X1lY/TL9Hk6jzLsFxWTkw5+KJuFvqOHS+NGC9btowBL7kk1zN+b+SNmmmvezuN1Jzlh9QB7bXIkHrxvU75MDZib+2uwd49h0ksRWbOibf/ugiQ7ua0zGkeT6NOsCfGA+PNI69zjoao2Mt3Jeb8Om94nenHg7yJFDtMBH/UCt9fMxQzdd4gp+sPMqU7lTuaIQh1SrP0VPI5KaN12ith+O/fmVM6q/JJ372BMxU0Yyp1jw3/AzuhZlgvOXXNY1cg2uUeUUtQtxjw/60H/r/35C0FV/nYgP50N0SH5W7flBFj1+czmABiGNcUZZsJdV04fRtnCc4LGRgDgPpmFFU3tGRczcQ11aDHHQgmRWXei2y5UvJ39m97/2Pd0NZGoG7KoQNWSqibIq6KzgjZMB5tg+9PXa7vxKD20dnx5jzWQ7ZrWSXnsZ+U+PUAyY/+R7vge6YXvqV95x2RqdOnO/35LScRCTHYUXnbkf3j9TnGVNnsPXVIJT5iPILmWopPHWnUu3grjTopqMCc4YeI9qW8jiSJkdjEfF7PcbX/CButtCXU9RFIAVjTvR0Yy1EK7LEqlBbLtVQKVS5Z6DmlKYRE7GbdObqSaV3SHG4i1XcNKDtt6C+mXxIu7Six8/ep7z+H9hCmdF/DM6SCi14b/kdiRcdyWr+0K8MIYIZRaGHG5rXqr2a/psXmGKcfJXZt95ljBKwzP52Y/ke64Hs2BP2ZXneQ5gweUlKpB1MYKlMHivjUHHh+ZsRG8OftCDzUBeFo72Qbl3hGUuD3nRDdMvOx7ez0ydC5hJSq1PngCjQ7Uo6RTOtoZ6C9EELgvk74nnAEmI5AcuiBsWNU2Dmq2yXd7RNvN+U9o68DIl31+hTKe7Ft1RymhyltQ5+qEJsjPqinxFOpPThiTNSPX8Aep0HpsiHaRs6omddHixOS6dSvjLB03ogN7bUwpB4bGfeqZPuPsOrgyocmlJ027PE6ZJ1306gTrIlMpyaHaPGvRaLL7lfBNflzOP3PqbTVIWgv9rqD6nQjnFkO89RR5FyW3PE91YPgj9qgbDXge6I747xB52iacw5oxn1xBjrOKrzOpw61I8Nwj/QhQ4qq4tznjkF0nhkSdkssWFA+NGKp2KYEbAnlk3jhtS7bPaoWShkxHmoA53hNdUME2sthKFuiqLqtHb5HuzI+TWl1BGAtjveaeL0izs8ciMywG65OmAGKb+U9lTolDV99K4rAHe1QN0bcnS85BMZqPMDUXncUOHOOSLcP8fwUzvBdiqZWZ5cQrRYCd3UgeEcHRIvV164DfdcG03HTkb2idkaGHHTxLWGhb15yEaNVjw6LkdfZ43WoH5lQ3zdgNnr/JjoXZZNGuo8Ou0GB+p4B0WpBjpT2fy0CEQWM/f1A0Lt9dsn2fze29IIcPULav0yO/wRrXx36CyGoW4zk3G+qYMVOpUYsSHSNcDkDJOcIb6YRY1PCH09hNA7oy5IR3Xa/Of75DgoAJAO94K87AADq6PTnXVcAkSblNEFb0Qulw4YM9kVAGYPtISZ6pFYnztQB4BwBHGifU+lPdCO8ageU8+qg/asH6gcmhCFdNS9Epw1Z29dWrkA9ZY7xYIiQhP/3O2Hto8P/t1ihLGNe7O/qr0QQPQ2xEf7UJQx703cCJIN3j6wgoqSOyiZkGil3HiOGzHtw5C5sZUN7NQz1QxPiiW5EzqhN/i5RrVt0WJCjlL603oiEtjacrLuTfK2dVmwJpeq+7/BQ14Z2Pk9JCa5d0xR6baibo8kMBe31vul2IorY+UgCCKQ04iCOjX6j6oMgjKGMGAOwAKmg/zFfQN69+yRPS8wzTqRhlDvxqQnlUwvWbirkGI/3FykC5v4jrwhXMo36QI8HOYqAOXeEjdq70qhzK7ZYatZ4HVIAyrsja0pHuViyZAmOOOIIzJgxA6eddhrWr19f0v0pdio1EA+4nDf1Kcv29P2c/oZS+bTvTlF7sy+NWH3HQPBnbdCf6YGy1YD6RqTwyw8hcwDpDFCUTGnJtoT/bz3QXwi51nrP+3rChsyYPu3kGtFNBEADnSdCdqwq/6pYuq+2KgT1g3iho22mq22U1DnGzp/DcshBv/ZGFNrGaDIoBgDls74X05f1oOrqFqjx7DbRFlu6x5li6wye1I1R+H+3c/CjewWSdtpLVOY0X1WkrGOcl/1xjrj2yGTav9Juu78LPTa01SFU3dQG/em+z0Z/rhf+pd3wP9LlyhYJ/GYn/H/uznvht9TMB1cnSK90TVtQPjFdx2Hwp+2ovrYV6LZdFazT1ivI8e8PShT9q+BnY8fnJRd57IGBMQ1JoodMHSGVqZNL1JTJaFkyMH4l7Jne4OEQ202oH5qwx6iwx3u8YwLoC4xfHRntr3xgQum0Ye+jQ9aWyQh4QIG9uwal04ZoHXpPNg3ek08+iZtuugnf+ta3sHTpUkyePBnnn38+2traSrdTJQiMlTbLXfDKsQvOm/hEKrX6dhTCMdfQNR/UMeqorQxB+cSC7x+9CP66A4H7O93rmRZKDoMyroAh2jdH2bmOqmtecZ4JQw56XWjRIyE+NRG8uQ36P/svWaS+GUHVDa3wPdH3O7HNEWx+Yrnfd0hmPN6GtIzNAFTH4IPv/3ohZF+HbOD+nfA9F8q4DJP+chjam96ZaiI6bFc6rf/hTlRd2wLlgxzuIwsxx7jbPdLuDG6dSzKKHgltTazNfc+Hktf8xJKl6semu7J2PJ1dzfPAUeqIrbv4lu2e07zN3RuS6NCquqkVwV93xOYhG3JQVdMzjvjnwpCDL4JnIzbKXMTCWwADYxqqGgV2kxq7AOb5QlAKXl+mKZUcrcJq1qHstKFsKf/OCf3l2EXHOChQ1JSZoZJNKqzxGpQ2e0QsW1ZuadQJdqJC/rveufmrBPfddx9OP/10nHLKKZg4cSKuv/56+P1+LF26tHQ7VYI5xsqnOQaAEQl1XRiBe3Yi+Mt2iM9MiHarX2pkgrqt/xDfkJd7GYRcRhZFpwXREUsVrbquBYF7dgKWhLK9SEXwwtLVoZAL0W1Df64XSpsN3796+82T1v/ZC2HBVRzKNUe5zV3kT9jIXPSrCJcD0WEBsm/Oc76Ez62FrCrc9VfIvuBOtFrQ1kYg7NwKP4koClp8K/W7rDqCddFrQ3F+/omR5e2O4Lml8Md/Iq1axscOUjtrnIGyM9PA9RrxXVY3RgbdiTOcEWNhyMGvY5xYrsnrI8ZSStxxxx3YsWOH6+diGGzq1lNPPYVFixZhxowZOP744/H888+7fi+lxM9//nMsWLAAM2fOxNe//nVs3bq1kG9hRBkpo8biExPKZ2WSRu2QKAKll3s6tRGbpyPVvpHYctA3al/m1cHLqBp1Kqs5ERiX9zmonESjUWzcuBGHHHJI8jFFUTB//nysW7duSK+pKGLY/8kSzDHOdWRUmIC+MpT8uerWdlT9uA36P9KP9HmZ+r6J4I/bELhnJ4QVS/v2/as3bTBfCMr2WIqonWE+dNrn9Niuc0Tg/k4EfrcTwVvaUHVDK9SPB953YQPaB+5t8lXpeijU7RYCv92Z/xdu0CB9he2Y1t4z4H+0C1U3Dy67RBgy7ynhztdL/S47R7GVdtvVMeV/ohvBO9pdHVtDnUM8FLIhFik6pzUI2fceZA5fDd+zIfgfzlzQLZ3hzDFWjMG3kbDjwbQ6/OtD4r+c9nWwb862bfzqV7/CZ5995vq50AaburV27VpcccUVOPXUU/H444/jqKOOwiWXXIItW7Ykt/ntb3+LBx54ANdddx0eeeQRBINBnH/++YhGOfqQi+RoTZnPM05Uoy6XNOoEc7of0i+gboi41s8sN+obEYheCWuKD6gpnyQWc0Z8TePXizP/r1CUrQaULhv2BD1WWKSMcJ5x8bW3t8OyLDQ1Nbkeb2xsHFInuaYpaGysGdZ/DQ3Vxf0O+mM3WDmPGANQt5qAJoC64RfkKbVkyniNAvgE9GW90J/N73zKjH873uTauNyv1+qHpiuIUT4yob4ZjS33luOoWTKwjgeOpZ63qxYgU6y+sQqqv7DDc74/dSXriQyGLhX4RBGGDuNTiQYa+VffMXJatqxQtDGxOiCpnTOi0wZ8AsoYPd3T+hnsoNZwzle+hzoH/RxVKBA2oOjDv0Yk/tP17MfQkIbHpOMGRBbpZsSZugUA119/PZYvX46lS5fiG9/4Rr/t77//fhx22GE4//zzAQCXXXYZXnzxRSxZsgTf//73IaXE73//e1xyySU46qijAAA333wz5s+fj2XLlmHRokVFeV/lbKQU4CrXNFL4BMyZ/tg8ovURmPM8XrQqg0QatbPqZ1kIKrCm+aGti0DdEIFVRqPdTmV7/ANAUIG9mwZ1mwnRbo+YCuHlSEoJMYRpEKZpo7Mz/fqmuVJMILi2eKOvdoMSS2Md5Jw5a6IO4+RREB8Y0J/tdRVNKjfR00bBmumHaLHgu29nMvVYKsUJ+KM1g7iBjafMmvODsbTvD0yYC4Owd9fhW7IT4jML9hQf1I3xQRG/SFb0tffSoHxgJqeM2buqJQ2KCqmjOwSfsAsyx9J5XBgLqyCbVMh6Bb57d+a01rPZa0JaIu9ZtVIHoIhkATBrTxXqxr4OL+nv+505yw/ttb4MManEV2gpcsZStFq6jn1ZqySDZLtGAH45IubJWmELCgBLSLS2dmfdPhe1tcGswXFZ5I0mUrcuvvji5GPZUrfWrVvXL2BesGABli9fDgD46KOPsGPHDlc62KhRozBr1iysW7duyIFxrkP1ubxGPl6roJpU2HUKlG0mlIgs6hI7+WqjRBq1PU6D2EXPpfaIp9gHBoCXw9D/HYZ9cFW/33v9WBLtFpTNBmSdArmfvyT7OZw2sg4MQlsXgf5qGPKAMuyYsCW016OQArBnBgZsA68eS7JZB7aZ0N4zYDWV9pLm1TbKp4aGBqiqipaWFtfjbW1t/UaRc2UPs4Cd9mwv7M3Fm9IggwpksC+90nnzPBBrVxVWnQLM8AMdFvwfm7BrlbSVnmWVcBUD8hojPpUEu2mIfGUUAks6EV1YBX112FWIq1Ds+tzuN+wGJTlabI7XYM1yd2CGLm2IzSH9xEoGxurMKlgvxzpazGYffPE0aikAa1ctGRindgJIgZyCvOEwDgjAHq/BHqsBAtCf7YW2IT9ZjraQkFphzl3mHD+gCshRCowvVCVrieijlNzS0sP5X64JAGRAAfS+KvLWXnpfBwkAexcVavzztsdpiOytQ303iugJNZCKgLYxUvDAWKruyvB2nbsh7HoFarwNZa0CGVQGbKre/9cAdasB/2OxYHOwx22xzk3JwmDK8K8Rg1EWgfFAqVuZ5gS3tLSgsbGx3/aJVK/E//OVDgb0pYTlS0NDdd5eq1AiU0OwVnWjbocKbU7x93e4bRRd0QYTgP/gUajJ42dXLHK0RHjXHigfGGiI+qDsln6pHa8eS8YL7TAkoB1ai+oxo0q6L0NpIzlPIvznLqibDTSIAJTRZXFKTbLeCiHSZUOZEkDj3rXZnwDvHUvmbIHoihCCH0v4F3njO+y1Nsonn8+HadOmYeXKlTjiiCMAxKZYrVq1Cuecc06J9644pAbYo9Xk3FQ5SoGIpA8GnTedckzfSIU5PwhZq8Aer6PqR7EpYfYYNTlP0Jrsg7Z28MH+YG9yrYk6jAMD8P+lO+vNrr2LCuUzC2bKkm72BB96r2kEhIhVQU4JjAsximzXK1nfq1QAe08dSnt8utTENNdHTUDWqrA0ARkUsHfR4JvVFxhbE3Xg2fjr1SuQNX2Bo6xW3BWyqwTQk/8beBkUfZ0w9YprScPEfNOMz60SMPfzQWmxkstPZdxWFYWLCoIKosf3Pz/LOgXIITAWLRYwpgAZQQEB6RdAW3zEdawK6YsV+5IiVmgTicC4XoE1OwDzEEf7O9azltXCvaZ1nsgqBeix+4pvpXQKydEqkOi8qVFi7yfxO0enXfiMWshGBXKsBnOsBu21CJT3DFj7+aC9kVvnilRjgbnaW4Rie0bf3yym8rqLS5EtdSvd71IfS/33UNPBgPykhAGx0YaGhmq0t/cUtZdkKNQ9BXyrgN51nTD2Kt6+5qWNpIR/dRcUAF0TBWSeUjWKTZvjg/60ga5/tcE81n3h8fSxZEv4n98JBUD3NKVk7T/cNtLm+KEv60XXv1phHlleAZG+ogsagPAUHT1Z2t+zx1KTjYAAjDd60V3i73Ax2yiXlLBCOffcc7F48WJMmzYNM2fOxP33349wOIyTTjqpJPvjujlNGV0pCF1AjlaARGBcqwDxqrSpwZocrSZHUG1ncUdV9Bu9tBv7AmN7Nw3R0SogAN+/BjF/1y/caytnYTeqsGYHIJ/uyRoYR4+Nnd+s5jQBZvy+KW3xpmD+A0ZZo8TuYAcarPMJGAcFoG6MwDgsCFQPMI5WpaD3e41QfALV4di0ElklYO/e95nJRtWdGVctAEf9IlmlQPTEjwNHMDtUUo/NdbV3UWNz1BEPJJ3bZKnLYe2pI3p6LfwPdiK29s0AVAAFynaRmaa96rn9PSEBkaHS8nDIQKxDJPnvUUrsOxuv+O1sX1nf/3zrPPdYe+nJ5bHsUQqUQS4rlpEOICCA+PfTrnPvh+3oHJH1qmvZNVmrJKto23tqro6U8NfrIEI29BW5xy2yQY3VSiiGxFSVImdglUVgPJTUraampn7bt7a2JrcfM2YMgNjI8ejRo12vOX369CHvaz5vhmxbeusGNA25jw4fALHFKMm+DqeNktWox2mwRqtlux6tMccP7f96oP47jOgXqtKu+ebFY0l5Jwql3YY1QfdE+w+1jYy5scBY/XcY0c8Hy2K5KQCALaGsD0MKwJjmy7n9PXcsBQTssSrU7RZkq5l1BKUYPNdGeXbssceira0Nv/jFL7Bjxw5MmTIFd999t+taWkzOonGyOsfUzOHQhKsqst2ouoszOdKq7SY1uQaxnWXEKzG6p26OwmrWYe8RiyYSgXEuKdvSJ5LrJuckHsjKgCM40NIXl5J1KuxxA982it40aeE+EVtOJo8fi6xRYkFVSjXyREVeYcf+rr2vD703NuV2XtYFIASUPXyIfLMe5i7uQNjaU3O3U0C4RsNltQDiCYdDDYylX0A2KLDrVFhTfFDfisL4QhWCv+gAANi7uNvfnOyD76kemFN8yaDMleoaHz3MGJg6qaJwo3MZAuBEoD9Qeq4zkyLfZEC4OkzsOjWZTi6kOzC2m9IExo5zj723DsQ/A+OoKugvhRE4ugHR+4a5co8mIAOA6JWxpZpSltSSDY59qFdc3117nNZXrbo2pRPFJyB9qvuYzpLdYe2lQWkrztJsyf3w+nJNpeBM3UpIpG7Nnj077XNmz56NF1980fXYypUrk9vvscceGDNmjOs1u7u78dprr2V8TepPjlZjc3i2m0CaC6KXJYoOlVs16lSyXoU1UYfSZUN9p3wqqieWmSq7olsp5BgtdrFosWJFWsqE8p4BpVvCbtbLqhp4OvaE2AgWl20qnjPPPBPPPvssNmzYgD/96U+YOXNmyfbFOYqWbQQtL39Pi48eJv7tuGFOHTG1d3Pc1Q00YonY8iuRr9ei97qmZFDs+ru5LKXjH1zHXPI1nemXjmDQ+TedN9CZmAfH0kyjixzZMz6R8ebWnJF++k82cpSSfj6sCiARXyX2dwidlXazL/l5RU6pgV2rwJwdcI8uBhRXwCcdn68MDPE4VIDQZQ2InFcH8+AgIl+vg71737Fg7+puSLmbht6rRiNyRt9UGNcoZ6INcjl2VKTtWM8HmSEwjh5ZBWN/P0Lfqu/bNuUYjpxcwCkyASWWqpxQJWDNiN0TGgcFksuSAkh7nXS2tTVeh3FIEMahQZgHBRC5fDS0Q4c/RUzqom+UVhfuQFZ3p9PLetW1FrU10bH/GT5bV3unWcfadgT/1r6+4o0YJxTomMykLEaMgeypW4sXL8auu+6KK664AgBw9tln48wzz8S9996LhQsX4sknn8SGDRtw4403AoilUJ999tn49a9/jb322gt77LEHfv7zn2Ps2LHJeVOUG2uCDv2VWAGCslkHVcq+arwzymSfB2AeEID2jgHt3xFY+5XB++m1oW6IQPoFzHI5ZgZg7h+A+kE3tH+HEd07t6USSi1RXbMsq1GnsCbo0F8MxZZt2r+8O1po8OQ4DfpZTeiJRKC+UoR13TUB2xEYu0aSNHc6tzXZh8gYDdakzOeF6BFV8C3rhTk7EAvi9P6/15f3wprph/LiwGmPqUFFVokRY1/KzXE8RVgGRbIITi6vbc7xx0ZWm1T4no7N05W6gND6j+4CgLW3jsipo+D7ew/0LMv4SF/fvqCqfzsBAHQBEf87uQTyuTAPCsI8KD6vdKdjACAoYunO8angruXugkP72zIo0qaOhi5riA0+pClympolI2sVIJF27O8LqLJSULjRuUwjxmM0RE+rhXO5vdTMCHu8jujhVfAVYEmw1FRqKALGYUHYY1RYk32ACkSPrsqcKaEKhC5rgPK+AXtvDdF9CnD915FMo5a6gPQ7Oj6qFFh79O2bvbfm6qCXoxT0XtkwcHDp7BSrUiC6U0aEFSB8Xh2UzVFYKZW5B8tZDC9nXp9jLITAuHHj4PP5XD8XWrbUre3bt0NR+g6WuXPn4tZbb8Xtt9+O2267DePHj8evfvUrNDc3J7e54IILEAqF8P3vfx+dnZ3Yf//98dvf/rYo72cksZt9wCsRqFvKJzAWn1hQdliwdtdcvf3lyprmhwx0Q30jErt4Vnl7BFBbF4EwAWN/f2492R5nzvLD90Q3tNcisQIjXn9PloT2egRSGRkdQ1ZyTfXyyZigPBIC+uGjYLV2Q1lbpMB4Lx3mFF+sIJMjlRGqiP1nyeS25gEDd9YYR1fBmu7LePNtfLEaxheqoHxsQs8SGA96xDixvWOEMzbyGU+/rBLAzvgvcgn2hIAck/I+grEU3bTP1kTsbztHXuPFj/rtqyNIhyJSnhP7ndQFRGLIuADnYedonAwq8b8RD1qcc90HGRhb++pQ3zEQ/WL6OhXZUthd++gc1Y6PYmcasU1upyLWKZPH0TnXfPtsgblzVN8ZqMXnPZsHBaAv74VxRBX0Zb35q/4dELD29UGuCsE4KP49VQSsaX3XRSNL7RB7nDbg55NYTinX6vX9ODp7hCX7MiEQPx6rFEQXVUMqgKxVIev7Ak+7Qe3/fUzdP3/K66VSYx181mRf8t+5klp8LnOvDfVDE9Y+OgK/H9yaxrLIt7ODDowVRcGyZcuS/3b+XGhnnnkmzjzzzLS/e+CBB/o9dswxx+CYY47J+HpCCFx22WW47LLL8raPlchqjt+Uvls+N6XJNOoREBQAAHQBc7Yf+uowtHWR2HqNHqaV69rFmQQVWNPjaxpvjMCa4+33pW42IHolzP18nu9EyUm1kqyYKzotyNry7+yiISpC2p3UAegCka/XAQDEZ44pFCpid1aJy2EuaYdCuNJl01KEK7hxzW11BJK5pFs75xAnA6dMN8fBviB5qEVwpC4gVEcA6SyQpiS2cTzBJ4BomgAi5c+7Uql1xNrc2UYFOBb6Bb+as92UtNvlInp0NeSX03QqDGUfnSOKiWkG2Y4LNeX/+aD3fY65zHFOBNKuYzj+GcrRamyuuALoz/VmrSOWKxkQsMfr6P3+0Jaay0Xkonqoq0Owm1T4lw6+QKTUBYx5Qfie6YVxYMAducWPOePwvuU6nfPQ5egcPlB/+mM4o8GkUquxef4AYM0ClM05Vr92znUucur2CLgjolKT9SrsRgXKJxbQXQbzjGVstAwYGWmkCYlRCe3fRRgxGQblYwPqNhP2WBX2HmUzmyMrM57Cq3u8/QFAfS22j9askXP8J+aCKe+XzzxvKoBi3NWk3qg5gzFNuAIymc9TnJ5+VM0V9DhvcjMkv7nmwlZnmWOchznbwpDuNnO+D8fcyeTfdO6L88/Hg2mZ+HW6UUjn9gXoH3PN3w0K9xxs50jtIDvnpH/4QXGiuJs1pe+DT3QeZD0OEwFoPkeMMx2jmSh9/0/urzOgVoVrVFsOcVedx9RgR/aH9Pd20RA9rsbdcZLl8HC9N03A+EIVQhfUxQJgx+h62kwAX6yInzVRz6ndXd83Z7Gx+PHUL1V/MIdp6vvMtbmdf6PIkSoDY8oLq4yK37jSqBtHzsiSvYcWW9bhYxNiu3eDg0TgbhwQKJ8KzjmwJuqw6xQoWwyI9uJUbRwSU0LbEIXUAHPqyJk2YifSqd/3/jmICqgYp/SUG0PXzama8vt8jnY4ggTX6LFzhNCXQzDiHOVMM2LsDDjt+jzcJkak63Nx7Xvi8QxFrJzvIdmRqg8Q7AnAjq81XJBCbM5OjzGq+7N2prg6C8LlcgjkuGzRQMLn1yF8Vi2s6f7YyCL6Mvqc7Ziu3WQhRowdl5ec5r4nmszGwIF68pgZ4n4592WoRdKG+3ezBazOz0tHLKtkoi/n/Y2cW4fwBfW57ZeWPjAOn1EL49AgIiekFD8bROdJv88v58C4f9ZAsTAwprxIplNv8X469UipRt2PELFgEx4etTQktLURSBUwPZ5uPGiKgDk3ACEB7VWPtj8A9a0oRETC2i/3i2w56BsxZmBc0YqRSt1vxDjl7zv3IY8jxjLDiLGryJTz8XQBKOAOfuLPdY0aOfY5MdfSGj/4NxKNp3eacwP9054T4unZrtHWqvSBfvTLNTCn+hA+J16B2dnOiWQ1AUTOqIWxvz+2dnEBRE6uQXRhMDbn0tG5azc5iiA5U6kzNJ0zvVhmqVieC1mvJuu8RE+pQc9NTcnK2q5jIfGZC0fQnmjLPAbGrk6aXK41iVR9W/ZFJ2mD+Ph2Q5xDnrrkVrG4vmPOwDfNLmTr4Ep8H/NxH2vvoSF6RBVCF9W527taxEa6x6Z8CNrA++6S+rHnOB3DlXXj9eJbROnYycDY4zelI6wadSprbgDy6R5oa8OIHltd9IXRs1E3RCBCEuZ0X9kvEZSOub8fvmd7ob0ShnFElSdHxJPVqGeNrI4J2aDArlWgbDOBiA34R97xRdm50iQdc1ldhYCGKzUwdo1uwD06mtcR4/Tpxq6RykyjUvG1hGP7KBD+yigo203I+ni6pCuQcwR7u2voXTwasmbw78M4ugrWjFhRMc1ZLdyVSh3fb+fcxgyj17JWQeScur7fOdcKj/8oRWz5tuiEwmXDmPMcAbezmnJTbOlE9Ep37YY06y0DsZR1YcQj+sFWE89GCPfonPP1NQEgHnymrhWbz44lX4bjMgvX93SA74/09RVakzogBrj9dM1rz9SpVGiZgl0NQOq+O9suTWAcOaMWygcmrGl5OM6FgBEv+qZ86KhonWl5J1dGDPrv+4B/K8ftnMFwke9jeedAeSFr1eQi7GKnd9NIle0WlJaRl0adIEcpsCb7IHok1E3eG73XV8cqqhqf83ZxsKGSYzRYe2tQWm1vznWNSqhvRCB9iI0YjyRCwN5bh5Aoq/WkKc+U1AAgLp+n+9QhBdV9o+26ocxnYOwMuJ1zXTONROnpf4YGWHMCMI7tS5G0ZvpjaZP/McrdVok1m4fS0aTEi4oJ4R5lcqWex0cvndWene/TeZpKuVEXzpImiWCqRJ2RiZGz8DfqEP7PelfwkLFzpIhDU5ZzGcF034Vk6nL+/qZrrnouAajZtyRR8nkD7Y9IH2imHcV0Hn8ZOpUKzfU9rUvpOBlg23QjxrI2nh2Q7+M9TadVP5nqBeQi181z2Y8CyXqmW7lyZU4vZBgG/uu//mvYO0Tly4pXnlPf9u6osTpS06gdvFqES2w3ob5vwm5SkxkGI5FX2x8A1DcjEAZgTR0Zy2SlsvaJXUE5z7iCpQR1fY/n73gfqPKz9IvM+zBczqI71Y6fnTf3wQw31K45pmn2X42lTZoHBNyvl68bb2ebpC7Hk7qvOXYsuD6HZGA85D0cmtR6o4rov+yRK0h2/FzMFQFqFITPqo2loTs6jxKjs8n9Gub3xNWp4VwKM4cR4+SIri76Ps9c/26GAnRJznZ3rDftWnu6wJzBrl3f1zbpC2g5nlfMa3Uu58zhZMTk2Nyu9+y1EeOLL74Yzz333IDb9Pb24sILL8Q//vGPvO0YlR9rUjyd+m3vjVQCGPFp1AnWfj7IKhEbMfZQlXB9TXy0eF7Acyne+WTO8EPq8bns6ZYcKSFtXSKNemQe//Z4FuCqeM5U6kKNGA90kx9Q3MFcgc51rsJSrnVN08/PdS+Bk+W1CxAsyEwjdvF9cQXjzhvvAUb0nFlf9i5qv8eKIrHs1ZiUv+v8pytt1hEc7aoi/JVR6L28oXD752BN98Oa6u8Lgp2Xp8RxmjIVYdCc78/5WQwigJK+wQfGyJQdkXjMmdVRoyB0UR3C59UVd2k/5/fR0bGVdkQ4lyJ6BdCvkGA6zs8yW8df6q7n+lbSnCOKJevZ76ijjsK3v/1t/Otf/0r7+7a2Npx11llYu3Yt7rjjjrzvIJUPq9kHqQLq5qh77o9HKNtMKK0WrD1GZhp1kiZgzglA2IDqlSJQEQnt1UisEvL+I2tuaz/xNY1FVELbECn13vTptqFuikJWCViTRlgadZw9VoP0CSgfGIDlvXMQFUGG0cbhLkPjGukb6EZVQXFu5JwBsLMqtXPE2LU2sOPnLG3hTIHNG9coev+OA9mkIfrFKoTPdY9oDtQJET28CtYeGsJfGYXI6aMQXRhE9ItVGbcvhOhx1bD20RE+t871uKsjIHU+aYIiYM0JQO5W7FzR+P44T5GJY2W41YCdb8UnYE71wZwyuOuNK2jMMWMhYxune0wVsCf4YsXTiilN0Tkgw/xrPcPxU2jOr36GtpfDycTJ9fPMUAywGLKe/X7605/i+OOPx+WXX44nn3zS9buPPvoIX/3qV/HRRx/hvvvuw+c///lC7SeVA19soXTRK6F87L05fuprI3u0zCmZzvtyCFKWPkDQ1oUhIjK2bnQeqm96nZFsf490TADQXgtD2IA525/feY9eogrYe2sQUUDx8JJlVDiuUS5Xtehhvm51huJQqUIyvwW3Mu1PpuJbVemLaLmCzWwjxoXoOHbti/Pxvh+NI6ph7efPvfBOtYLwpQ2x4HIXDcaxNZBNxb2Ltpt9CH+zHnJ05hFj102+mvvnUDDp/m5iCawMn02uo8euDgENiJxTh8jX6wZ4Rp/QhXWwJugwFlXn9secf7cmw3Gf5rFiB1pJQqD36tHo+X5jxqkFSY5gOG9FA3MwUAGzpEz1AnKQ89rTJRoxB3KY/SKEwI9+9CP4/X585zvfQTQaxYknnohNmzbhggsugKqqWLJkCSZOnFiM/SWPsyb5oG4xoL4dhb2nh+aROtKoR/L84gR7nAZrdw3qxybst8NAUwl3Rkpoq2MBoqua5whmT9Bhj1agvmtAfGpC7lr6BQC0V+IdQyN8xN4ar0N9x4DyvgF7Dw+dg6g4MqZSD3PEuFoBdsampgw0giMKnKlgNyhQ2m3YjtTdTHOMXUFOphHbNGSjivBZtbCb8he5ueaeun5Ol/bq+IcHs89y4mzjfhWh40o1pShN33Tyc3AFkH1Vn6ECiM8BDl1YB98LIQSmVMN4tB3mdB+0DfEpdM5AaZBBk93sQ7h5EKO4zinmo9JPIUhyBfyl6xhOVIF3dZykS6XWM3yPCy2Sw/dtMMvRDTGVOuM0kCLI+W7t2muvhd/vx3e/+1289dZb+NOf/oRddtkF9957L8aOHVvIfaQyYk3yAU/1QH07CuPIwff6FYryoQml3Ya1t9Z3YhrhzEOCUB/pgvmvTuArpfsslK0m1G0mrN1U2HuXPkAsCkXAnBeE76ke6GvCiJ5Qk/05BSQ+MWOdJLuosHcf2Z+B5ZhnbC4o8c5Q8SkZbtqGe9rPUiU2dGEdfH/rQfSoKvj+0j3MP5ZZ6IrRQFRCmI5lguoypFJnGKnMZfQvsR5u3qgZAsIBRi/7bVtOMgU+ecxiGC7XSGTiEMq03rUmkjUz7GYfovv6UdNQja49AbtKQNvQBgCutZmHFYAmOpgGeomU/e/9rwYoO6y0mVqukUovXALVLB0ImkDvd0ZDez0Cq4hZjvY+sQ/QHGDVCvdyTfkvviUFSjpiPKh+iKuuugoXXHABfve732HixIl46KGHGBSTiz1WhV0jYsulhL1T+EmroDTqBHOmH7JawFrbA9FRuiW09Bd6Y/szP+jJdX0LxTggAKkC2qvhkhfhSqwhau4fGPGfgb2XDqkgtlyWB6YRUJFlGBl1jVIOZQQmQ2psgt3sQ/iyBsgmzb2MUL7pAqhWXCNk9i6a+/fJ/XS8UdfocYnPAa7gK81omXOZn+oyPV9lmCft6qAo8ZQWV7CYaHLXMjkDz9EXioDcXU9ZCsyZZjv0fROJomZVubeR3FXL3KGjeKfdAfc5KH1qt4RsUmEcXlXUziF7nIbeq0cjcnZt5o0ypKXnlCad4zayVFW5kUO/yec+9zmIlBspKSW2bNmCRYsW9dt+1apV+ds7Kj+KgL2vD9raCNQtBqxpHghEbQl1fQRSANYIrkbdjx4btdSX9UJdFYL1xeKPGos2C+qGKGR1rCBYRalRYM3wQ1sXgfZaBOaBJXr/loS2Nnb8m3Mr4Pj3CdjjNKgfmRBt9sgutEf9ZboBTp3bOcjg1RVMZ7tRK0Z/jPN9NihpH3cXenL8XIqvhLNNMs03TnAEVEVd0qhAXB0prtG2ou9KZokiaK6OFWcRrAGeq6UPjPOSslwzwOfvfHnX8ZVlWw8ExlnPISUcV8qaVelsXz3lu5w6BtMvlTqHthcpr+u1wPiMM87oFxgTDcScFA+MN0U9ERgrW00onTasCXpxS/N7gHlwEPryXmhrQogeUTX4xdiHSX8xBCGB6MHBov9tLzDmBWKB8ZpQyQJj9e0olC4b5qTKOf7t8TrUj8xYOjUD44riShPOFISoAjAGGb2qAr1XNECEZPYR1yLd1PZeNTo2J1ARiPzHqIHn46o5BjmF4hxx1zN0XqR5zJrmA57phblvGdcLcKVSD30ObkEljh1nMweydGAkZMqmyEMAmvM8d0db2qlLZwEZC76VStbK76VL8svKXUAupcMxZb9lIOV95tLPJTw+x/jSSy8txn7QCGJN9kEKxNbRtWXJ5whp6+NppBVQdKufehXq3GpY/+6Bti4M88AiFr8K29BeDkNqgPG5yii6lcreR4e9iwr1QxPKxwbs3Yt/c6etiR//B1XOZ2CN16G/EILyvgGM8GJjlCJTkanBFIxJRwHkLlpOg8HWPjrU9wxYuxW2U0Y29L1+YiUC9waZnliY/RmIrHfcEWebZ+tcC3d3Hb3faSjv2iCO9nZVqC5VYJxmsEvEiy65AhJ/joGxMy24yvn+hryHCF1cD+2lEIzD+i+/JZtUoMuGvasKpSUWiTlTb80DgvA9G4IxPwB9ZXy+cZZ1josta4q4l4vOOdOnXZ0nAqknF5nasZFrKnVtjqsAFED556iQ91QrsMfrUDptKNtKvGSKLaG+Ho2lkVZSGrWDdnRsqQT9uVBRT7bay/ElmmYHgFEVeqoRAsbn4ks3rSr+0k2i3YK6KQp7lAJr6shcuzgd21GAiypMhlTqbJWQs79u7psaR1Uhekw1oqcNME+vwtjj+u6ms1ULT72Zlk2aN9Jfh0iEHNddbZgdNHmWnCKQqEbsDCCdQc9AmaPO32VaLmyQ7PF67PuTZrQw8h+jED089h1Lcu53k4qeG5oQPb6v6KXMMq+96IID70NB6xQMl5rhGHG0sTk9dr9hHJ7SsZFTYCxcHWFp13kuoAq9W6VCM+M34erGaEn3Q9lsQOmyYU/UB56rMoKpEwOw9tGh7LCgvlGkz8OQ0J8PxX48tHJGKtMx5wYgfQLa2jDQXdyrnbYmDCEB86CAN24GikSOUmA3qlA+s4AeL99hUN5lSpkc9vqxg/j+qALG56tcwWAxGfFpG16YypRgTfYhcnw1Qv9Z704hTvNZ2OM0hM+pRe9/jy7a/hWSa+TUObrqgZHLxGhccsQ409zOHHfVNWJcoM4M2ajCWFQNOcbR2ZIaQPtEynz74X7/88vZziLcf8CiqEs0DZbztOZcHs5xjjUOq0LPjU39z4G5plI7Mkz6jToXmJebnspYYnRKfTNS0v3QX42nkc6t7HRK84hYr53+bG9RKvVqL4ehdNowp/kgx3qgW7yUggrMAwMQJqCvChXv75oS2suhWLZEqQp/lZA1PnbcqVs5alxR1Aw3w5mC5Fx5IIbJVfSUGvRc2+i+KZWxNZCBWAXtohMC5oKq2HSSHD4La6ofcrQHIphhCH27HuYcP4xD+0bN3GtLl/6gMg6KXRvMRDVnZ4CpDCEwds4pLealP1sng/Nc4IH5u86q8qIr1nlr1ysInV8Ha08NxtHeWe40lSsTx/l5O7+uCtJnDORSs0oBZJ2KyPHVCJ9bW/TpmBV+x0qFIps02GNUqNstiDarNBe4iIS6IQLpA0wP9ZyXgj3ZByteqVd5x4A9qYA3RqaEvjy2RJNxlHdP7sVkLAhCWxmCvioE4/PFKYKmboxA6ZYwp/hccxErhT1eB16JQHnfgDW1sr//lSTTMijugk9pnqcCYqAb5nIaRhACSDOHMfr1OtR2aQhNQknmGSd4YqS0COw9dUS+ors7o8Xgg828E33/N75YDWuKD/ZesWFt12fj3L8cLyGuubNF/JxlloxA13fe8sD83aCC3ssbgCoB0WXD95duRE4fBdmkIbyvx6c9ZepwdAawGT6OwSzpZC7oP7+8GMriVL9t2zZceOGFmDVrFg4++GDcfPPNsKyBu3w6OjpwxRVXYO7cuTjwwAPxve99D729vcnfr1mzBhdffDEWLFiA2bNn48QTT8Tf//73Qr+VipJMp36zNOnU2oYIhBHvCS3yHAXPEQLG52Mpzb5nego6aqz9Owxlpw1zqq9kqYReI0ersKb7IHpkLKW64H9QQl8RG502D67MVHZrH84zrkiZim85R8LSjdSVxd3Q0MmggBynQ5s/quRrmQ/YATESOdvbmVZdogJLkS/XwG5UET6vDlAF7H18fd8JZ2eSs5Mp19HtoOhLay5Cf2zowjoYC4LZa2hoHuiQSCF30yDrVNh76Ah/K7YGellwjQxnSFHPdI4ZRGBcKp7/FCzLwkUXXYSmpiY8/PDD+Oyzz/Df//3f8Pv9uOyyyzI+78orr8SOHTtw3333wTAMfPe738V1112Hm2++GQCwdu1aTJ48GRdccAGampqwfPlyXHnllaipqcHChQuL9fZGNGuqH3guBG1jBOYhxb8515hG7WLN8MMe2wv1fTO2lNaUAoyiGRL6svho8ZGl6e3zKuPQKmivR6E/H4pVkC1gepDyvgH1QxP2WBXWpDJe5mQYZJMKWS2gfGTGluapkFGqipcplTp1vc1UaSqqupT54eOp9YBND4zYlYrzmCxRM8ixGkKLM8zfDgiYs/2xJY+cS5rlePjIgILe7zfGPuMidMDYzT5Ec5kaoAmEz6qF9koY1nRmEA2HK5Xa1Xni+DnTR5/DIZHTqHIBeehMmd4LL7yALVu24JZbbsGUKVOwcOFCXHbZZXjwwQdhGOlHArZs2YIVK1bgxhtvxKxZs3DAAQfgmmuuwRNPPIGWlhYAwDe/+U1cfvnlmDt3Lvbaay+cffbZOPTQQ/Gvf/2rmG9vRLP30mCPUqC8awBdxS2AIzosKFsM2LUK7ObKDAz6UQSii2Kpzb6newrSW62v6I2NFk/3wd6D7e5k7633FUFbX9i59/pz8cJnh1WVfHSoZISAtbcOYQHKhxw1rhiZUqmzFRLKclNX6pu14cq6PEwxDXYN6RHElapc4qUs0xICka/WxqZBOa4dIsfPTPpFrBMq2zq9RSY1wJruR+ScurKucO4JqXOJkz/nsLyX8/ycMXgu7efj+RHjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX4/p06cnH5s/fz6EEFi/fj2OOOKItH+rq6sLkyZNGtb+Knk40SVeIx+vVVKKgD3LD+2FEPQNEViH5G8EMVsbaa9FYtV45wagaN46QRdTajvJqX5Y43Wo7xvQ10VgHZDHkfxOC/ryEKQKmF+qKZvjt5jfN/OL1VDv7IDvmV5EZhdm1Fh8akJ7MwpZp8CeE8jb+yrH85Kc4APeiELbasKcWPhRgnJsoxHHVZU69wq7UhUQiSE8Bf0K9Hh6+ZQBSB0QBjw1rcWa4Qf+1oPoERWYVaQA4a+MgvZq2PtL6Dm+S3atAuUTK7kMTyayzlv3W/ZoBUqbDXt37xz/ZS+oIPzVUZD1KsROx4kyU8DslDrHPl1/C1OpB9bS0oLGxkbXY4kguaWlJW1gnO45mqahrq4uOWKc6umnn8bGjRvxwx/+cMj7qmkKGhtrsm+Yo4aG8i9cZC3UEHkhhMBGE4ET8tc2CenaSEqJ8CvtkABGHTkaSqPHLz5F4Gwn62s6Ij/aBt9TvQgeOhqiKj8TgSJ/3QErIqEdXYfqyfV5ec1iKsr3rREILw8Dm8Ko2wxoB+f/OxH506ewAPi+WI/qXUfl/fXL6bxkzdIQ+Vs3/B/bqMvjuTmbcmqjkca15qVzFDhTtd0026a9MSvTUc7Q/xsN5UMD9kSfZ1IEZb2KnpuavDliWmgCsOYEYM0pgylejo8neuIo2K+FXRW2nXq/OxqiR7rXMfaA8MX1UN41YM1i+nQ+WbNjx6+6wdFj6JzGksscYwVAug7HSg2Mf/nLX+KOO+4YcJvnnnsOACAyNHCmxzP9TkqZ9vE1a9bg6quvxg9/+EM0NzcPuE8DMU0bnZ3DX45FUQQaGqrR3t4Du0TFGfKmTsLfoADvhNG6ZSdQn58gbKA2UjZH4f/UgDVeR3sgCrSWdi3lUkrbTg2AfkAA2r/D6PrDZzBOGn7wpGyOwr+iC7JaoOsQHWjtHvZrFkuxv2/K5wPwbwoj/HgbIs3I65IdYpuJwEs9kKMUdM5S8/o5lOV5qUYioAPWO2G07ugq+I14MduotjYIXa+8auPZ2HvpMCf7YgUGRfoR47QVbPsVlEn5/KJlcsynkI0qrEYPHieVGBSXG2faa4MC44jMHX6yToWsK8I+DZKsVWHN9uDxP1JkqlyeQyp1xroOJe5bKVlgfNZZZ+GEE04YcJsxY8agqakJGzdudD2eGPVNHRVOaGpq6jcybJomOjs7+z3npZdewje/+U1cffXVWfcnF/m8GbJtWT43oAMwZ/rhey4EZV0Y5mH5TZ1K10aJtWLNgwIjov3yIbWdIsdUQ90YgboqBGOOP7lUw5BEJfx/7oy97pdrYAdEyaptDkexvm/2Pjq0iTrUzQaUVSGY8/OXzu7/RywQjh5eBVtDQT6HsjovKbFASd1iANvMoqWTllUbjTSqQOS82B269kpfBXjpOMUZ8wMQrRbsfXToL8Q7szNVV43LdY4l0YihZMmyIHLVdMih8ncuS4BVavGt+vp67L333gP+p6oqZs+ejU2bNqG1tTX53JUrV6K2thYTJkxI+9pz5sxBR0eHK6BevXo1pJSYOXNm8rE1a9bgoosuwpVXXonTTjutcG+2wiVSWLTXCltwCADQbUPdGIEMCpgzmTqTUY2C6JeqISTgf7gTiAx9Ap3vqR4orbHlmSy2eU6iX6qBFIDvHz1AT34mLyrvG9A2RmHXKTDnlUGaXpFY42MRkcJlmyqOs2Kqa8S4WkH4PxsQ/ZJjBCzbaEflJh5RhZIcaKVsnB0mzn7nXAJjjxbf8tZkgDQWLFiA5uZmLF68GJs2bcKKFStw++2344wzzoCux2541q9fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45PzkRFJ911lk4+uijsWPHDuzYsQMdHR2leqsjlj1Ogz1GhfqRCfGJWdC/pb8ShrDiSzRxeZYBmQcEYE7zQWm14X+se0hrG6uvhaGvDEFWC0RPrCn5Ca1c2OM0mPMCECEJ3z978vCCEr6/xEaLjUXVrLrpYMcDY/U9BsYVx7kyjnOOceLa4Py9Y0qDVJw/xzct01Rq8phyOjX7ymlnqRRkpmKHGYtvYXDblIDnA2NVVXHnnXdCURScfvrp+M53voMTTzwRl156aXKbUCiE9957z7V8009/+lNMmDAB55xzDi688ELsv//+uP7665O/X7p0KUKhEO666y4sWLAg+Z/zdSlPhIB5YGwES385nGXjYbAltDXxZWoO4ohZVkIgcsoo2HUKtHUR6M/2DurpyocG/H/ughRA+Cu1kHXsXh6M6BeqIYMC2uowlGEGbdrqMNRtJqy9NZhzOGrvZO2tQYr4iPEQOn+ojDlHM5wjxsnAOEP6tOPOyJoWK95oTeDyc1RhOLhA2WRIpZaZUu9Fhm1yGUkuEs9XpQaA3XffHb/97W8z/n7evHl46623XI/V19fj1ltvzficH//4x/jxj3+ct32kgRlzA9Cf7oH2ahjRYwozoqW+GYXSasNq1iHHlsWhXXrVCiJfr0Pgfzvg+79eyICS05xXsd1E4N6dEFEgekw17Ems/D1oNQqix9fA/0gX/I90InT5aMA/+O+FaLHge7IbUgGiX+aofT9+BfY4DerHJkS7DTmaHTgVwxHLukeM02yrph/tiH55FMxpUVjT2OFEQ2c3KFDabdi7lc+9iWRgTNm4RowdP+dy6CgpPydWfuKIMVWEUQqsqT6IXgl1Y2HmGuvPx0Y8jUPzuDZvBbDHaYicWQupAf6/dEN/ugewMo+sqZsiCP5vB0SvhHFoEMZCtvdQmXP9sXT2Nhu+vw4hnd2S8D/SCWEAxuFVsHfnqFY6yXRqzjOuKDLouMVx3uSn65jtVy01/hp+EVtah2mlNAyhbzcgfE4trCll1IlcRrtKJSLc58qkXPqfnefcDB2TpcDAmIommU69Jv/p1MqHBtT3TdhjVFiTeTYfLGuyD+Hz6iB9Ar5nexH4dQfUt6OuqsZihwnfI50I3NcJEZGIHlUVK17DEcqhEwKRk0fBrhHQ/x2GtnJw3w3fE91Qt5qwdtdgHJnfiu8jSbIAF+cZD8umTZvwX//1X1i4cCFmzZqFY489Fg888ECpdysjGUiTPg2kXSJNZiq+xbskyocaBdZUf1ldL2UelxKkEcp53gxk6XxMpaQPhiVTqalSWJN8sEcrULcYUD428jq6pT8XHy1eEOSyAkNkN/sQuqwB/j92Qv3AhHrPTsiggN2gQvTaUDpi1ZNljUDkxFGwZjC1MC9qFETOrkPgNx3wPdENWS1gzc4+R15/rhf6qnDs8zirNq/rIY809j4cMc6HDRs2YPTo0bjllluw22674dVXX8X3v/99aJqGr371q6Xevf6CgxjBUDNsy68VVSrOOqFsnAUMA47odkgjxvGBmBJ3HjEwpuJRBIxDq2LpuitCiHwlP4Gx2G5Cez0Ke5QCc38W3RoO2aQifHE91Ncj0F+KFYVSt8UqiVu7qbBm+mEcHASCHEbJJ3tvHZHTRsH/UBf8D3chGpIwPxdIf4GwJfR/9sK3rBdSB8Jn1UE28A5mIHKUArtRhfKZFVseq5rH71Cceuqprn/vueeeWLduHf75z396MjB2pVJn+4o4RywyjGQQVRQOMlA2zmPEmUqdS3DrPLey+BZVKvOAAHz/7IH6WgTii1Zebuh9/4otd2McXsUqivmgCFizArBmBWKp1CEZO+FxCaCCsmYFEBEC/oc64X+8G+pbUUQXVfcVkpMSyscmfH/vgfquAekXCJ9bl5w/SwOzxmtQWi2oW41YSiPlRVdXF+rq6ob1Gsowb8ATz+/3Oo6PWdGUftu7OM5vwnHDpqgjJzLO2E6UxDbqIxz3U6ntwXbKrhLaSDjPm1rm4yUt5zaq+/xbyjZjYEzF5RMwDg7C90wv9BUhRE+oGdbLiY8NaBuisGsVmFyiKf8UAVSP3JO611gz/Qg31MP/UCe0N6PQ3ozCblIhaxWIDgtKWyyd3R6rIvzVWlZfHwR7vA68EoHyHgPjfFm7di2efvrpAVeNyEbTFDQ2Du86kNDQUN3vMeM/LEAVCO5ag8jUbii76q6/14vPAAD+Kh0WYoUhtYAKG7FMmXztm5ekaydyYxsBMmgjhHaIvX0Zvwdsp+xGchvZkSjCaAMA1NQFEEUngIHPm4lzrubrO88KJZlIDc2noqaE513eVVHRGfOD0Ff0QlsdgnFocMijxlJK6H/rjr3mERwtppHB3lNH6PLR0FaHoL8cjqX/tsTWMbDGaTDnBWAeEOAI/iBZjnnGnGns9stf/hJ33HHHgNs899xzGDt2bPLf77zzDi655BJceumlOPjgg4f8t03TRmdnaMjPB2KjCw0N1Whv74Ftp1R2Pyh+m9PWA5w7KvZza3fy14ma+hHTTN4QGZpMZl63OrYtdwO2EwFgG/VzQxOgC/SmfA/YTtlVQhuJDhOJIamu3kgySWeg82binGvaVl82tWPE2DBt9BTovFtbG4SuDxxzMDCm4qtRYBxaFRs1/kcPoqfXDullrFd6oG42YO+icrSYRhafgHlYFczDqoBeG6JXQtYIIDBy0jqLTTapkNUCyscmEJVcfsfhrLPOwgknnDDgNmPGjEn+vHnzZpxzzjk47bTTcNFFFw377+frptG25ZBfy1kJ1bnm8Ui8oR1OO1UKtlFc4ruQoS3YTtmN5DZSjL73JdH3cy7vV2aq/i9K214MjKkkjMOC0FeHoK2NwDzYgL3XIOdJhm0Yf+wAAESOr2FFXhq5qhRIrsQ0fELAGq9D2xiF8qEBu5nLuiXU19ejvr4+p23feecdnHPOOTjxxBPx//7f/yvsjhWTYxDBtR4nERGlJx0B7HBiWec9fImrUnP4gUojoCC6qBpCAv5HuwBzcN8o/a/dkK0mzJl+2JN4g0tE2VlctmlY3nnnHZx99tmYP38+zj33XOzYsQM7duxAW1tbqXdt+DJVVyUiorTs3TSYc/yI/Meo4QXGmSpUlwBHjKlkzAMD0NZFoG4xoP+zB8YxuU22V9dHoL0cBmpVGCePKvBeEtFIkajgrTAwHpKnn34abW1teOKJJ/DEE08kH999992xbNmyEu5ZHkQdKYEMjImIslMEIl+JTYdU10cG91yRvip1qYdsGRhT6QiByCmjEPx5O3zLQ7B312HNHLharPKRAf8jnZACCJw3BqFqO+PcFyIiJ3ucBqkD6lYzdt4YwctoFMKll16KSy+9tNS7URAiwsCYiGjI5CDvxVOyp2Wax0uBqdRUUrJRReRroyAF4P9jJ9S3ohm3VT42ELh3J4QBmMfWQJ3JiZdENAiqgL23DhGRULabpd4b8pKw3fdzgIExEdGg5GmOsWRgTJXO2s+P6Ak1ECbgv38n9OW97jnHloS2OoTA/3ZA9EgYC4IwFwYzvyARUQYW06kpDRFyjBjHl/6za3mLRESUC7lLLAlZ5tqx6AykXXOMSxsZM5WaPMGcHwR0Ad/jXfA91QPthRDsCTogAOU9A8pOG1IBosdUw1gYhFLiLw4RladkAa53DZiHlHhnqOSMQ4LQXwzBnOmH+mE8i0ABem5o4tABEVGO7HEaQhfVwd5l4NBSCkBIZE69ZvEtohjzwACsvTT4/q8H6htRaK/1TeQ399VhLKqGvccgl3UiInKw99Ih1VhgzHnGFD2uGsb8IGRAwP/3ntiDAlznmohokOwJQ1wlRmHxLaK05K4aImfXAb12cg6gPVYDqtl1T0R54BOw99KhvmdAfGpB7sbLYEVTBGSTCvTY2bclIqLhEYilUcuUx9L9XAKMNsibqhTYzT7YzT4GxUSUV9aEeDr1lszF/qjCuG7MOFpMRFRQDIyJiIhKz2pOBMYswEVxzpsx3hkRERVGusCXgTEREVFp2HvpkBqgvmdwHXSKcVVFLdleEBFVBteIsUj/cwmURWC8bds2XHjhhZg1axYOPvhg3HzzzbAsa8DndHR04IorrsDcuXNx4IEH4nvf+x56e3vTbvvqq69i6tSpOPnkkwux+0RE5CV6fD3jENczpjimTxMRFZxIhG/OAoceytjxfGBsWRYuuugiGIaBhx9+GD/+8Y/x2GOP4Y477hjweVdeeSU2b96M++67D//7v/+Ll19+Gdddd12/7bq7u3HVVVfhc5/7XIHeAREReU1inrHCdGoC3Ddmasn2goioIshMgTFTqQf2wgsvYMuWLbjlllswZcoULFy4EJdddhkefPBBGEb6G5otW7ZgxYoVuPHGGzFr1iwccMABuOaaa/DEE0+gpaXFte0PfvADLFq0CHPmzCnG2yEiIg9IzjN+l4ExwXUzJnWOHhMRFZQ/fWAsuY7xwNatW4f99tsPTU1NyccWLFiA6667Du+++y4mT57c7zlr165FfX09pk+fnnxs/vz5EEJg/fr1OOKIIwAATz75JN5++2388Ic/xF133ZWX/VXysCZm4jXy8VojFdsoN2yn7NhGuRlx7bS3D1KPzTNWJACV5+6K5vzINH5+RESF5B4xzjB6XAKeD4xbWlrQ2NjoeiwRJLe0tKQNjNM9R9M01NXVJUeMt2/fjh/96Ee499574fMNcUHqFJqmoLGxJi+vBQANDdV5e62Rim2UG7ZTdmyj3Iykdgrv2w37jRDqe3So+wTy9rojqY0qhiswLtleEBFVBkdgLFzFD0sbGZfs9P/LX/4y6zzh5557DgAgMjRSpscz/U5KmXx88eLF+MY3voFJkyblustZmaaNzs7QsF9HUQQaGqrR3t4DmxVT02Ib5YbtlB3bKDcjsZ20vRTobwDdr+yEWTv8IlzFbKPa2iB0nZNh88aZyscRYyKigpACEBKwmxzXLw/NMS5ZYHzWWWfhhBNOGHCbMWPGoKmpCRs3bnQ9nhj1TR0VTmhqauo3l9g0TXR2diaf89JLL+GVV17BLbfcAgCwbRtSSkydOhUPPPAA9t9//yG9r3zeDNm2HDE3oIXCNsoN2yk7tlFuRlI7mRN06ADE5ijshVV5e92R1EYVw9mZzjnGREQFEbq8Adr6CMyDAvA/3t1/g0oNjOvr61FfX591u9mzZ+Ouu+5Ca2trMqhduXIlamtrMWHChLTPmTNnDjo6OrBx40ZMmzYNALB69WpIKTFz5kwAwBNPPOF6zh/+8Af8+9//xm233YY999xzGO+MiIjKgb2HBukTsfWMTcm5pRTDVGoiooKQYzUYY1NOslyuKXcLFixAc3MzFi9ejE2bNmHFihW4/fbbccYZZ0DXY1VF169fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45P3nSpEmu/xobG+Hz+TBp0iQEg8GSvV8iIioSVcCaqEMYgPI+q1NTDFOpiYiKyEOnXM8Hxqqq4s4774SiKDj99NPxne98ByeeeCIuvfTS5DahUAjvvfeea/mmn/70p5gwYQLOOeccXHjhhdh///1x/fXXl+ItEBGRR1n7xoovqu9ES7wn5BkMjImIisc586hSU6kHY/fdd8dvf/vbjL+fN28e3nrrLddj9fX1uPXWW3P+G5deeqkr2CYiopHPmhQPjN82YBxT4p0hbyiLOyMiohGoxOU5PD9iTEREVCiySYU9WoG6zQS67FLvDnkB16EmIqpIDIyJiKiiJUaNNaZTExERFZeHFnFgYExERBWtL52agXEli3y5BpETa0q9G0REVCKcSUNERBXNatYhlXhgbEum0lYocz5XpCAiKqkSX345YkxERJUtoMDeW4fokVC2m6XeGyIiIioBBsZERFTxrEk6AEB9i+nURERElYiBMRERVTxzih8AoL7BwJiIiKhoWHyLiIjIO+RYFXaDAvVDE4LLNhERERUf1zEmIiIqMSFgJUaN34yUeGeIiIgqj/SXtvoWA2MiIiIA5tT4sk1MpyYiIio6WVPa0JSBMREREQB7Hx3SL6C+EwWiHpr0REREVAkYGBMREXmAJmDt54MwEQuOiYiIqGjsegbGREREnpBMp97IecZERETFEDmvDtGFQdj76CXdD62kf52IiMhDrMk+SA3QNkYRNSWglbYQCBER0UgmJWBP8cOe7Cv1rnDEmIiIKCmowJrsgwhLqG8znZqIiKhSMDAmIiJyMGfFlm3SXmM6dSYffPAB5syZg3nz5pV6V4iIqIyJoHfCUe/sCRERkQdYU/yQvvg8Y1an7sc0TXznO9/B/vvvX+pdISKiMieqvROOemdPiIiIvMAnYE31QxiA+iZHjVP96le/wh577IFjjz221LtCRETlzkOBMYtvERERpTBn+aGti0B7LQJrVqDUu+MZr776Kh5//HE8/vjjeOaZZ/LymooyvAJniecP93VGOrZTdmyj3LCdsmMb5U5Uq55pp7IIjLdt24brrrsOa9asQVVVFU466SRcccUVUFU143M6Ojpwww034Nlnn4Wqqjj66KPxve99D1VVVcltbNvGPffcgz/96U/Ytm0bdtllF3z961/H2WefXYy3RUREHmVN8kEGBdRNUaDbBmq806NdKt3d3Vi8eDF++MMfoq6uLi+vqWkKGhtr8vJaDQ3VeXmdkY7tlB3bKDdsp+zYRplFZnfDWtcLdWYVGhpKu0xTgucDY8uycNFFF6GpqQkPP/wwPvvsM/z3f/83/H4/LrvssozPu/LKK7Fjxw7cd999MAwD3/3ud3Hdddfh5ptvTm7zox/9CC+++CKuvvpqTJw4Ee3t7QiFQsV4W0RE5GWagDk3AP3FELRXwjAXVmV/Tpn65S9/iTvuuGPAbZ577jn8/Oc/x+c//3kccsghefvbpmmjs3N4111FEWhoqEZ7ew9sm3PCM2E7Zcc2yg3bKTu2UQ6+Wg3lpGpU7aoXpZ1qa4PQ9cyDqkAZBMYvvPACtmzZgvvuuw9NTU2YMmUKLrvsMtx222245JJLoOv9exi2bNmCFStW4NFHH8X06dMBANdccw0uuugiLF68GE1NTdiyZQseeughPPHEE5gwYQIAYM899yzqeyMiIu8yDooFxvrLYZiHBQHhjVSvfDvrrLNwwgknDLjNmDFjsGbNGnzyySf4wx/+AACQUsK2bUydOhU/+clPcPzxxw/p7+frZsi2JW9Ac8B2yo5tlBu2U3ZsoyyqYtdVr7ST5wPjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX58MigFg/vz5EEJg/fr1OOKII7Bs2TLsscceWLZsGc4//3wIIXDooYfiyiuvRE3N0NO68pEjz3kJ2bGNcsN2yo5tlJuKbKdxOuy9NCgfmNC2mrAn+AbcvFzbqL6+HvX19Vm3u+eee2AYRvLfzzzzDO69914sWbIEu+22WwH3kIiIqPA8Hxi3tLSgsbHR9VgiSG5paUkbGKd7jqZpqKurQ0tLCwDgww8/xMcff4x//etfuOWWWxCNRvHDH/4QV111VdaUskzyOVcK4LyEXLCNcsN2yo5tlJtKayfzSBvR+1pQ9aoB/4Gjc3rOSG2jffbZx/XvDRs2QFEUTJo0qUR7RERElD8lC4xzndMEACJD+lqmxzP9TkqZfFxKCcMw8JOf/AR77703AOC6667DmWeeiZaWFtcIda7yMVcK4LyEXLCNcsN2yo5tlJuKbaeJAoEqAfPlHvQcuROyIfP8pGK2US5zpYiIiCh3JQuMc53T1NTUhI0bN7oeT4z6po4KJzQ1NSW3STBNE52dncnnNDU1QdO0ZFAMAM3NzQBiVbCHEhgD+ZsrlXitiroBHQK2UW7YTtmxjXJTce2kAcbBQfie6YX6fC+ix2fPCqqUNjr55JNx8sknl3o3iIiI8qJkgXGuc5pmz56Nu+66C62trcmgduXKlaitrU0WzUo1Z84cdHR0YOPGjZg2bRoAYPXq1ZBSYubMmcltTNPEhx9+mCy69d577wEAxo0bN9y3R0REI4QxPwj9uV5oL4UQPbIKqOLSTURERCON56/uCxYsQHNzMxYvXoxNmzZhxYoVuP3223HGGWckK1KvX78eixYtwqeffgogNvJ76KGH4pprrsH69evxyiuv4IYbbsBxxx2XHAk+5JBDsN9+++F73/seNm3ahPXr1+OGG27A0UcfPeTRYiIiGoFqFJgHBiCigP4il/QjIiIaiTwfGKuqijvvvBOKouD000/Hd77zHZx44om49NJLk9uEQiG89957rmqZP/3pTzFhwgScc845uPDCC7H//vvj+uuvd73ub37zG4waNQpf/epXcckll2DmzJm46aabivr+iIjI+4zDqiBVQH++F+iyh/YiUQl1bRgwR36aNRERUbnxfFVqANh9993x29/+NuPv582bh7feesv1WH19PW699dYBX3fXXXfFr371q7zsIxERjVxytApzfhD6ihB8/+pB9KRRg34N39Iu6K9GENYErBn+AuwlERERDZXnR4yJiIi8IHpEFWRQQFsThvKhkf0JDsqWKPRXI7BHKbAm6gXaQyIiIhoqBsZERES5qFIQPbYaQgL+R7pyT4nutWPbA4geVw0EeeklIiLyGl6diYiIcmQeGIC1rw7lMwu+v3YDMktwbEv4H+2C0mHDnOWHNYsp1ERERF7EwJiIiChXQiBy6ijYoxToa8LQVgxQpVpK6E/1QNsQhT1aQeSkGkCI4u0rERER5YyBMRER0SDIehWRc2ohNcD/9x7o/+gBrJSRY0PC92g3fM+HIKsEwl+vYwo1ERGRh5VFVWoiIiIvsffUEf56HQK/74TvmV6ob0RgzQvC3EtA29wDdXUISpsNe5SCyLm1kLvycktERORlvFITERENgb2vD6Fv18P/aBfUrSbUx7sRRTcSNafNqT5Ev1wDWa+WdD+JiIgoOwbGREREQyR31RC+uB7K+ya0zVEETRUhvw1jig9yN15iiYiIygWv2kRERMMhBOx9dJjNPvgaa9DV2g1p57iUExEREXkCK4EQERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGBMREREREVFFY2BMREREREREFY2BMREREREREVU0IaXkYot5YtsSlmXn5bV0XYVhWHl5rZGKbZQbtlN2bKPcsJ2yK1YbqaoCRREF/zuFlq/rJo/N3LCdsmMb5YbtlB3bKDdeum4yMCYiIiIiIqKKxlRqIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjD1myZIlOOKIIzBjxgycdtppWL9+fal3qWjuuusunHLKKZgzZw4OPvhgfPvb38b777/v2iYSieD666/HvHnzMGfOHFx66aVobW11bbNt2zZceOGFmDVrFg4++GDcfPPNsCyriO+keK699lpMnjwZDz74YPIxtlHMJ598giuuuAIHHXQQZs+ejZNPPhlbtmxJ/p7tBHR3d+O6667DoYceilmzZuG4447D448/nvx9JbbRyy+/jG9+85tYsGABJk+ejGeffdb1+3y1yZo1a3DSSSdh+vTp+MIXvuBqdxocXjd53RwMXjcz43UzO143+xtR101JnvH3v/9dTps2Tf75z3+W77zzjrzmmmvkgQceKFtbW0u9a0Vx3nnnyUcffVS+/fbb8s0335QXXHCBPPzww2UoFEpu8/3vf18uXLhQrly5Ur7++uvytNP+P3vnHdZU0v79b0CkCIKAAqIICicgCAiKropiw7K6K5a1LPayoq69rq6yumvvYMWGvXewKzZURMGKIEoRpEkRkBbIvH/wnvMQkkASgujP+VxXLuXMmTlT72n33PMbGTZsGOdeXFxM+vTpQ0aNGkVev35NgoKCSJs2bcjGjRtrIknVys2bN8kvv/xCOnToQA4cOMA9p3lESFZWFuncuTOZP38+efbsGYmPjydBQUEkKSmJe4fmEyF//fUXcXd3JyEhISQ+Pp4cPHiQWFtbk0ePHhFCfsw8CgoKIuvXrydXrlwhDMOQmzdvirgrI0/i4+OJg4MDWbFiBYmOjiYHDhwgNjY25P79+18tnf9XoP0m7Tflgfab0qH9pmzQflOc/0v9Jp0Yf0MMHDiQLF26lPu7pKSEdOjQgezatasGY1VzpKenE4ZhyJMnTwghhGRnZxNbW1ty+fJl7p3o6GjCMAx5/vw5IaS0cdrY2JC0tDTuncOHD5NWrVqRoqKir5uAaiQtLY107NiRvHnzhnTu3Jnr4GkelbJmzRoydOhQqe40n0r5+eefyfbt20Weubu7k127dtE8IkSsg1dWnqxevZr06dNH5FvTp08nEyZMqM7k/J+E9pui0H5TOrTfrBjab8oG7Tcr5nvvN6kq9TdCUVERXr16hfbt23PPVFRU0K5dO4SHh9dcxGqQnJwcAICuri4A4OXLlxAIBCJ51KxZMzRs2JDLo/DwcFhbW8PQ0JB7p0OHDsjOzsb79++/XuSrmQULFmD48OHg8/kiz2kelXLz5k3Y2dnhzz//xE8//YT+/fvj3LlznDvNp1JatmyJGzduICUlBYQQ3L17F6mpqWjXrh3NIwkoK0/Cw8NFwmDf+VFlvaLQflMc2m9Kh/abFUP7Tdmg/aZ8fG/9Jp0YfyNkZmaipKREpFIAgIGBAdLS0mooVjUHIQQrVqyAi4sLmjVrBgD49OkTNDQ0oK2tLfKugYEBPn36xL1jYGAg4s7mKfvO987BgweRl5eHMWPGiLnRPCrlw4cPOHz4MJo1a4Y9e/ZgwIABWLhwIW7cuAGA5hPLokWLYGZmho4dO8LOzg5TpkzBihUrYGNjQ/NIAsrKE2nvZGVlQSAQVFf0/89B+01RaL8pHdpvVg7tN2WD9pvy8b31m7WUFhKlWiCEgMfj1XQ0vjpLly5FVFQUjhw5IvJcUl4QQip9p6Ln3xPv3r3D1q1bcfz4caioSF7X+tHzCChNb4sWLTB9+nQAgI2NDV6+fIkjR46ga9euAGg+AaWDxYiICOzcuRNGRkZ48OAB/vrrLxgbGwOgeSQJZeVJ+XfKh0FRHNpv0n6zLLTflA3ab8oG7Tfl53vqN+mO8TdCvXr1oKqqKrZalJGRIbYa/n+dZcuW4ebNm/D394eRkRH33NDQEPn5+cjNzRV5v2weGRoaiuUh+3f5labvkWfPniEjIwPu7u5o3rw5mjdvjsTERPz333/o2bMnzaP/j6GhIZo2bSryrFmzZkhKSuLcf/R8KigowIYNGzB//nx06tQJ1tbWGD16NDp16gR/f3+aRxJQVp5Ieic9PR16enpQU1Orruj/n4P2m/+D9pvSof2mbNB+s3Jovyk/31u/SSfG3wi1a9eGra0tgoODuWdCoRAPHjyAo6NjzUXsK0IIwdKlS3H16lX4+/ujcePGIu52dnZQU1MTyaOYmBh8/PiRyyNHR0e8efNGxAx8cHAw6tatKybwv0e6deuG8+fP4+zZs9yvQYMGmDBhArZv307z6P/TsmVLxMXFiTyLjY2FiYkJAFqXAKC4uBgCgQCqqqoiz1VUVCAUCmkeSUBZeeLo6Ij79++LhB0cHPzDyHplQftN2m/KAu03ZYP2m5VD+035+e76TaWa8qJUCfbaidOnT5Po6Gjy999//1DXTixZsoQ4OzuTR48ekdTUVO5X/toJNzc38uDBA/LixQsyePBgiSbfx4wZQyIiIsidO3dI27ZtyYYNG2ogRV+HstY1CaF5RAgh4eHhxMbGhuzYsYPExsaS06dPEzs7O3Ljxg3uHZpPhHh6epJffvmFu3bi6NGjpHnz5uTcuXOEkB8zj3Jzc8nr16/J69evCcMwZP/+/eT169ckNTWVEKKcPImPjyf29vZk1apVJDo6mhw8eJA0b96cXtekALTfpP2mItB+Uxzab8oG7TfF+b/Ub9KJ8TfGgQMHiJubG7G1tSUDBw4kz549q+kofTUYhpH4O3XqFPdOQUEB8fb2Jq1btyYODg5kypQpIubdCSEkISGBjBs3jtjb25M2bdqQlStXkuLi4q+dnK9G+Q6e5lEp165dIz///DOxs7MjvXv3JmfOnBFxp/lESGpqKpk3bx7p0KEDsbe3J7169SIHDx7k3H/EPHr48KFEObR582ZCiPLy5MGDB+TXX38ltra2pGvXruT06dNfLY3/16D9Ju035YX2m5Kh/Wbl0H5TnP9L/SaPEGrxg0KhUCgUCoVCoVAoPy70jDGFQqFQKBQKhUKhUH5o6MSYQqFQKBQKhUKhUCg/NHRiTKFQKBQKhUKhUCiUHxo6MaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhVJjBAYG4vTp0zUdDQqFQqFQvgtov0mhVB90YkyhUGqMy5cv48yZMzUdDQqFQqFQvgtov0mhVB90YkyhUCgUCoVCoVAolB8aHiGE1HQkKBTKj8f8+fPFVr2nTJmCP//8s4ZiRKFQKBTKtwvtNymU6qVWTUeAQqH8mEyaNAkfP35ETk4OlixZAgAwNjau4VhRKBQKhfJtQvtNCqV6oRNjCoVSI5iZmUFPTw+EEDg6OtZ0dCgUCoVC+aah/SaFUr3QM8YUCoVCoVAoFAqFQvmhoRNjCoVCoVAoFAqFQqH80NCJMYVCoVAoFAqFQqFQfmjoxJhCodQYampqKCwsrOloUCgUCoXyXUD7TQql+qATYwqFUmNYWFggKioK169fx4sXL5CSklLTUaJQKBQK5ZuF9psUSvVB7zGmUCg1RkZGBv7++288fvwYnz9/pvcxUigUCoVSAbTfpFCqDzoxplAoFAqFQqFQKBTKDw1VpaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkyhUKqdR48egc/nY/jw4TUdlWolISEBfD4fXbp0qemo1AgfPnzAtGnT0LZtW1hbW4PP5+P69etVDvdHqT+U/5vMnz8ffD4fp0+fVmq4w4cPB5/Px6NHj5Qa7vfMggULYGNjg+joaKWEd/v2bfD5fGzevFkp4UnCx8cHfD4fPj4+1faNHwman5SqUKumI0ARZ/jw4QgJCRF5pqmpCW1tbTRq1Ah2dnbo0aMHWrduLTWM06dPY8GCBSLPeDwetLS0YG5ujs6dO2PkyJGoW7eumN+UlBT4+/vj3r17+PDhAwQCAerVq4f69evD3t4eLi4u6N69O9TU1ET8lZSU4MyZM7h48SLevHmDnJwcaGtrQ19fH5aWlmjdujW6deuGhg0bypwXrGD7888/ZfZDofzIPHr0CCEhIXBxcUGbNm2+2neLioowcuRIJCYmwsDAAI6OjuDxeNDT06vU7759+5CTkyNVJv2IRERE4Pr167CxsUG3bt1qOjqUr8z3Xv5lxyCTJk3CtGnTKnyfz+eLPatduzYMDQ3h4OCA33//vcIxDwC8efMGZ8+eRc+ePWFpaVlpHKOjo9GvXz8IBAKYmpri5s2bYu906tQJDg4O2Lt3L4YMGYIGDRpUGm5ZEhIScObMGZiamqJ///5y+aVQKF8fumP8DWNiYgInJyc4OTnB0tISmpqaePbsGQ4cOABPT0/0798f7969qzCM2rVrc2E4OjpCS0sLr169gq+vL/r164ePHz+KvP/o0SP07t0bu3fvxtu3b6Grqwtra2toa2sjMjISR44cwYwZM5Ceni7iLzc3F56enli4cCEePHgAQggsLS3RsGFDpKWl4erVq/jvv/9w9uxZufLA19cXvr6+cvmhUH5kQkJC4OvrK7a4Vt3cuXMHiYmJsLe3R1BQEI4ePYojR46gVatWlfrdv38/fH19kZ2d/RVi+n0QEREBX19fpey4U74/vvfyL9vXnzt3DoQQmfwxDMONWZo0aYJPnz7h0qVLGD58OHbv3l2h33Xr1kEoFMLLy6vS7xBC8Pfff0MgEFT6rpeXF/Ly8rBlyxaZ0lCWxMRE+Pr64syZM1LfqVevHiwsLFCvXj25w6eIQ/OTUhXojvE3zIABA8R2SnNzc3Ht2jX4+Pjg1atXGDRoEI4cOSJxtRUA6tevjyNHjog8u3PnDmbOnInExEQsWbIEfn5+XNjTp09Hbm4uOnTogMWLF6NJkyacv/z8fNy7dw8nTpwAj8cTCXP16tV4+vQp9PT0sGLFCnTu3Jl7hxCCiIgIXLhwAbq6ulXOFwqF8u0RExMDAHBxcUHt2rVrODYUCqWm+PjxI0JCQqCiogJNTU0kJibi8ePHcHFxqdTvokWLRDRdsrKysGjRIly7dg3r1q1D165dYW5uLuYvNjYWd+/ehZ2dHRiGqfQ7R48exdOnT9G1a1fcuHGjwnc7duwIQ0NDnDt3DnPmzIG2tnal4cuDp6cnPD09lRrmjwzNT0pVoDvG3xna2trw8PDA6dOnwTAMvnz5gmnTpqGkpETmMDp27IjJkycDAO7du4esrCwApWdpMjIyUKdOHfj4+IhMioFSde7u3btj586dMDIy4p4XFxfjwoULAErP93Tp0kVk4szj8dC8eXPMmzcPv//+u6JJp1Ao3zCFhYUAAA0NjRqOCYVCqUnYHeK2bduid+/eACC3thgLu9iuqamJkpISXLt2TeJ7x48fByEEffv2rTTMtLQ0rFu3DtbW1jLZLVBVVUWvXr2Qn5+P8+fPy50GCoXy/UB3jL9T9PT0sGrVKnh4eCAmJgZXrlzhOiBZYM/qCIVCxMfHQ09PDx8+fAAAWFhYQEtLS+aw0tPTkZeXBwCwtbWVIxXS8fHxEVGhLr8jfuPGDTRq1AglJSW4desWbt68iefPnyMlJQWFhYUwNjaGq6srJkyYIDKJZ5k/fz7OnDmDFStWoFWrVti0aRMePnyInJwcmJmZYdCgQfD09ISqqqrE+KWmpmL37t24ffs2kpKSoKqqCoZh8Ntvv8HDw0NsR51Nz5QpU+Dp6YktW7bg5s2bSE1NRceOHbF161YAQFhYGPbu3YunT58iMzMTWlpa0NfXh52dHX755Rd06tRJpvxTRr64urpi8+bNCAoKQmZmJndGaty4cVLz5ezZszhw4ACio6OhoaEBJycnhc+HJyQkoGvXrtzZr8OHD+PYsWOIjY2FhoYG2rRpg2nTpqFZs2Zifrt06YLExETcuHEDHz9+xK5du/D8+XNkZWXB19eXO7OXkpKCHTt24M6dO0hJSYGmpiZsbGwwePDgCtvT7du3sXPnTrx+/Rq1atWCra0tJk6ciEaNGkl8/9GjRxgxYgRcXFxw4MABie+wdTwyMlLMraSkBOfPn8f58+fx+vVrfPnyBfXr14eVlRV69eoFDw8PkTAA8WMIHh4eWLlypdQ0laW4uBjHjx/HuXPnEB0dDYFAgEaNGqF79+4YO3asyDng8m217HcrSi8gbguha9euIu779+8XOydNCBGpC1paWmjXrh1mzZoFU1NTid8pKCjA4cOHERgYiJiYGAgEAjRu3Bi9evXC6NGjUadOHTE/irTF2NhY7N69G8HBwUhNTYWGhgZsbW0xfPhwsbRVBFt/AeDMmTMiaphl8zQtLQ1XrlxBUFAQYmJikJqaCnV1dVhaWuLXX3/F4MGDoaIivv5dtq4FBgbC398fUVFRUFVVhaOjI/788084ODhIjd+DBw9w8OBBhIeH4/Pnz9DT04OLiwv++OMPidpLsrTH4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD5fZPoUy8uXevXvYsWMHXr9+DaFQCDs7O0ydOlXqOdfs7Gz4+Pjg2rVrSE9PR4MGDdCzZ09MmTJFpjhLyi+g4vIvS2xsLDZv3owHDx4gNzcX5ubm8PT0xODBg6V+5+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxMRyCkce7cOQBA37590ahRI5w4cQJXrlzB4sWLFVo409HRgbm5OSIiIpCQkCDxncDAQACQyfDhv//+i9zcXPzzzz/cgl5ldOnSBQcOHEBAQACGDRsmk5+y9mJCQkJE2kbZM81lxwdl+0tWPnp4eOCff/7Btm3bEBAQgJSUFDRo0AADBgzAhAkToKqqisLCQvj5+eHChQtISkqCgYEBfv31V0yePFnMHgyLsuQVy/nz53HixAlERkbiy5cvqFu3LgwNDdG6dWsMHToUVlZWYn6qQ5ZIy08WecdviqaN8n1CJ8bfMc2bN4eDgwOePXuG27dvyzUxlnTeh1UPio2NRVZWlkxGcwCgTp064PF4IIQgPDxcKQKCPV/99OlTAICTk5OIu7q6OoDSAdDkyZOhoqICAwMDNGrUCEVFRUhMTMTBgwdx6dIlHD58WKLqFQDExcVh5cqVyMvLA8Mw0NTUxNu3b7F8+XI8ffoUGzduFBOSoaGhmDRpEj5//gx1dXWYmZkhPz8f4eHhCAsLQ3BwMNasWSNRuGZkZGDAgAFISkqCpaUlmjVrhlq1SpvhzZs3MWXKFJSUlEBbWxuWlpYQCoVITk7GxYsXkZubK/PEuKr58vHjR3h4eCArKwtWVlaoVasWYmNjsX79eiQmJmLp0qViflauXIm9e/cCAIyNjWFgYICHDx/i/v37mDRpkkzxlsayZctw8OBBGBsbo1mzZtxi0N27d7F37144OjpK9BcYGIgNGzZAW1sbZmZm0NTU5NxevHiBcePGISsrC+rq6rCyskJWVhYePnyIhw8f4t69e1i+fLlYmAcOHMC///4LADAwMICJiQlevXqF0aNHY/bs2VVKpyRyc3MxadIkzvKssbExGjVqhJSUFNy5cwe3b9/mJsZOTk5ISkpCUlISTExMYGJiwoUjrazLU1hYCC8vL9y/f5/zp6Wlhbdv32L79u24ePEi/P39uUUAtq1K+m5lKo0GBgZwcnLCy5cvUVRUBDs7OxE1bB0dHTE/c+bMwYULF2BmZgZzc3O8f/8eAQEBCA0Nxblz58TOlaWmpmLs2LHcxM/ExARaWlqIiYmBj48Prly5gv3794v4U6QtXrlyBbNnz0ZRURG0tLRgYWGBrKwsPHjwAA8ePMDEiRMxY8YMmcrAzs4OampqiI2NhYGBgYj2Ttk8PXHiBDZt2gR1dXU0aNAAfD4fmZmZIrJo8+bNEmURAOzZswerVq2CgYEBmjZtivj4eNy9excPHjzApk2bJBp9WrVqFfbs2QOg9CyflZUVEhMTERAQgGvXrmHz5s3o3LmzxO9V1B5nzZqFy5cvAwAaNmwIAwMDZGVlISoqCq9evYKDg4PME+Oq5suxY8ewZMkS6Ovro0mTJoiLi0NISAhGjx6Nffv2iU0aMzIyMGzYMMTExEBFRQVWVlYoLi7Grl278OjRI5iZmckUbxZZy5/l9evX8PLyAiEEFhYWSE1NRVRUFBYvXozPnz9jwoQJYn4OHDiA5cuXQygUQkdHB5aWlkhNTcWtW7cQFBQEb29vDBkyRK54A8CzZ88QExMDdXV1uLu7o06dOmjYsCE+fvyI69evo0+fPnKHCZQe5QIgcdH+w4cPSEpKgp6eXqV5HRQUhMuXL2Pw4MFwdHSU2aJ3ixYtwOPx8Pz5cxQVFcl0XIRhGK4Oa2tri5Rd/fr1ZfouAAgEAowaNQrh4eGwtLSEsbEx4uPjsXHjRiQlJWHhwoUYOXIknj17hmbNmsHExARxcXHYtm0bUlNTJfZjypRXQOlxOvYMeP369dG4cWPk5uYiPj4eUVFRMDU1FRsbVpcsqQhFxm+KpI3yHUMo3xyenp6EYRiyefPmSt9duXIlYRiG9OjRQ+T5qVOnCMMwpHPnzhL97d69mzAMQ6ytrUlGRgYhhJCYmBhibW1NGIYhv/76KwkICODcKmPo0KGEYRji6OhItmzZQqKjo4lQKJTJb0UwDEMYhpHqnp2dTU6dOkXS09NFnn/58oX4+voShmHIqFGjxPzNmzePMAxDbG1tiaenJ/n06RPndu/ePeLo6EgYhiGHDx8W8ZeamkratGlDGIYhGzduJHl5eZzbmzdvSM+ePQnDMOTIkSMi/jZv3kwYhiE2NjZk4MCBJCEhgXPLz88nhBDSp08fwjAMWb9+PSksLBTx/+LFC3L27Fmp+VAd+TJp0iSR8r969SpXP969eyfiLygoiDAMQ5o3b07OnDnDPc/JySF//vknsbW1JQzDEE9PT5nT8OHDBy5MW1tbcv78ebFw2TrO5iFL586dufzesGEDKSoq4twKCgpIXl4e946XlxfJysri3G/evEkcHBwIwzDk6NGjIuG+efOGNG/enDAMQ3bs2EFKSkoIIYQUFhaSpUuXcuks3+4ePnxYafql1XU2nW5ubuTx48cibsnJyWJygq1rssgPSaxatYowDEN++uknEhYWJvKt3377jTAMQwYPHizmryrfZcviw4cPEt3Z/LO1tSXt27cnT548EYkX23bWrVsn4k8oFJJhw4YRhmHIpEmTSFJSEueWkZFBvLy8CMMwZMaMGSL+5G2LkZGRpEWLFsTW1pYcOHCACAQCzi0kJIS0b9+eMAxD7ty5I3OesDJ83rx5Ut95/PgxCQ4OFvkeIYTExsZyMvncuXNi/ti6ZmtrS3bt2iVSj5ctW0YYhiHOzs4kNTVVxN/x48cJwzCkY8eO5Pbt2yJuR44cITY2NsTZ2VlEnhJSeXt8+fIl983Q0FARvwUFBSQgIIC8fv26gtxSbr7Y29uTY8eOcX1YYWEhmTFjhtS6P23aNMIwDOnduzeJi4vjnr948YK0b9+ekwunTp2SOQ2ylD87VrC1tSWLFy8W6Y/27dvHpSU7O1vE37179wifzyfOzs7k/PnzIn311atXScuWLYmtrS2JjIyUOb4sS5YsIQzDkGnTpnHP1q5dSxiGIWPHjpXqj837hw8firm9e/eO2NjYEIZhRPoXljNnzhCGYciYMWMqjNuXL1+Im5sbadu2LcnMzCSE/E+2SBsrlcXd3Z0wDCMmhytCFtkvTXaydcDW1pb07t2bxMbGcm7BwcHE1taW8Pl84uXlRXr37k1iYmI49/v373P1Ljo6WiRcZcur9PR0YmNjQ5o3b06uXbsm4lZcXEyCgoLEyrW6ZAkh0vNTkfGbImmjfN/QM8bfOcbGxgBKV6xl5e7du5zqbvv27bmdEnNzc26FMCIiAjNmzEDbtm3RrVs3zJw5EydOnJBqNdbb2xv6+vrIy8vDpk2b0Lt3b7i4uGDkyJHw8fFBVFRUVZIpFR0dHfTv3x/6+voiz7W0tDB58mQ4OztzakKS4PF4WL9+PQwMDLhn7du359Tfdu3aJbK7vmfPHmRmZmLYsGGYNm2ayColn8/H+vXrwePxuJ3T8qiqqsLHx0dE5ZNVLYuNjQUAjB8/Xmw12s7ODr/++mtl2cFR1XzR1dXF6tWrRXbRunfvzqmp3blzR+T9Xbt2AQAGDx6Mfv36cc+1tbWxevXqKhkrKS4uxpAhQ0TOjrHh1qtXD4mJiZwaXXlcXV0xffp0EVUydXV1BAQEIDExEXp6eli7dq2IUbjOnTtzVk137NghUv579+5FcXEx3NzcMGHCBE4ds3bt2li0aBEsLCwUTqckXr16hStXrkBNTQ27du0S26kyMjJS6lVmubm5nLG+RYsWiezEGxkZYcOGDahVqxbCwsJq5O5UgUCAhQsXimiQGBkZcVfB3L59W+T9oKAghIaGwsbGBhs2bODkJVC6Q7F27VoYGxvj0qVLSEpK4tzkbYu+vr4oLCzE9OnT4enpyWmBAKXHVv755x8AkCoXFKVVq1b46aefRL4HAE2aNOHU5lm1Vkm4urpi7NixIvV44cKFYBgGOTk5OHr0KPeuQCDApk2bwOPxsHnzZnTs2FEkrCFDhmD48OHIycnBiRMnpH5PUntk87tt27ZwdnYW8aOuro7evXvDxsamktz4H1XNl/79++O3337jdo3YfFFTU0NYWBg+f/7Mvfvhwwdup3vFihUiO5Z2dnZYtGiRTJaPq4KFhQWWLFki0h+NHDkSzZs3R0FBgVhbXbduHQghWLZsGfr27SuyO9a9e3dMnz4dAoGgwmMQkigqKsKlS5cAQERes+0lODgYaWlpMoeXnZ2NO3fuYPLkySgpKYGZmZlEzTj2do3KrlLauHEjPn78iLlz58qsEVcWNvzyt3lUN8XFxVi5cqWI5sBPP/2E7t27gxCCmzdvYuXKlSJaQe3ateM0Pu7evSsSnrLlVXx8PEpKSsAwjJiWiaqqKjp16iRyJKY6ZUlFKDJ+kzdtlO8fOjH+zmHVir58+SLRPS0tDUOHDsXQoUMxZMgQuLq6Yty4ccjJyYGxsTG8vb1F3p8wYQIOHTqErl27ckLmw4cPCAgIwKJFi9C5c2ccP35c7DsMw+DixYsYO3Ysd3Y1OzsbDx8+hK+vL/r27YsZM2YgNzdXian/H6GhoVi1ahUmTpwIT09PLs3sgOvNmzcS/bm7u0tUaRo8eDDU1NSQkJDAWdsFgKtXr3LukrCxsYGpqSliY2ORkpIi5t6uXTuRwXlZWPVTdmChDBTNl59//lniuUv23CF7Hh0A8vLy8OTJEwCQaAlSQ0MDAwcOrFI6JBltKxvuvXv3JPpjVYzLww4UBg0aJFE1b9iwYVBTU0NiYiLev38v5k9SOnk8nsxnz2SFNTTTpUsXiWeplc2TJ0+Ql5eHBg0aoEePHmLuDRs2lDrY+hro6uqiV69eYs/ZehkfHy/ynG2vHh4eElUf2fPJQqEQjx8/5p7L0xaLiooQFBQEFRUVDBo0SOI7nTp1gpqaGkJDQ1FcXFxpmPKQl5eHU6dOYcGCBRg7diyGDRuGoUOHYt68eQCkt3FAcrsqW4/Ltqvw8HCkpaXB2tpa6vljtm5IWzSR1h5Zmfjs2TOlTTqqki+S5Dt7JAUQlX93794FIQSOjo6wt7cX8+fu7i733bfyMnDgQIlnplu0aAFAtF0kJSXh1atX0NPTk9jGgcrLURpBQUHcMSxXV1fuuaWlJWxsbFBSUsIZ6pTGiBEjwOfzwefz0bp1a4wfPx7v379Hx44d4e/vL7EdsxsDFd168fLlSxw8eBCtWrWSWg8rgw1fno0IZWBjY8OVZVmaN28uk3vZ+lod8oqVl7GxsRW2K5bqlCUVocj4Td60Ub5/6Bnj7xx2QixtR66oqIg7pwuUDgRtbGzg5uaGUaNGSVw1bdWqFVq1aoWioiK8fPkSL1684M6d5ebm4u+//4aWlpbYWSEDAwPMnTsXc+fORWxsLF68eIFHjx7h5s2bSE9PR2BgILKzsyu9i1AeBAIB5syZU+kAlrW8XZ6mTZtKfK6trQ0jIyNuYty0aVPk5eVxhj+8vb2lnk/LzMwEACQnJ4sZuJL2PQAYPXo0vL29sWjRIuzZswcdOnSAk5MT2rRpI7bzWxlVzZfyFslZ2HiwxtaA0nPaJSUlUFNTk3qO1dLSsvJIS0FNTU1qfNhwyy5elEXaZJJdGJAWLx0dHTRo0ACJiYmIjY1Fs2bNkJ2djU+fPlXoryrplAR7T7m0M9TKhs1HCwsLqQbWrKyscPnyZS4PvyaNGzeW+JzV+ChbLwFwmionTpzgdvXKw07EkpOTuWfytMW4uDgUFhZCTU0NEydOrDD+hYWFyMrKgqGhYYXvyUpkZCT++OMPkd3u8khr44D09iGpXbF5mZycjKFDh0r0xxoyKpuXsnyvZcuWaNmyJcLCwuDu7o42bdqgdevWaNWqFRwdHcV2fiujqvki7ZyqgYEBYmJiROoZm0fS0qaiosKd+60upMlHSe2CNe4nEAik3hLBaslIK0dpsEbCevToITaB/eWXXxAREYEzZ85gzJgxUsNgGAba2toghCAtLQ0JCQlQVVUFn88XsZlQlqKiIgDSdwxLSkqwePFiqKioiG0GyAMbvqwGu5SFNLnHyiJ55GJ1yCsjIyP07t0bgYGB8PDw4GSls7MznJ2dxQyuVacskYai4zd500b5/qET4+8ctuOXNnEqa/lQXmrXrg0nJyc4OTlh5Po355AAAHFKSURBVMiRePPmDcaNG4e0tDT4+PhUaETD3Nwc5ubm6Nu3L/Ly8rBw4UIEBgbi3r17ePr0qZgxLUXZtWsXLl26BENDQ8yePRutWrVCgwYNuA5s7ty5OHfunNRVz7Iq1OUxNDREQkICt/iQk5PDuYWFhVUat4KCArFnFVn7Hjp0KHR0dLBnzx68evUK79+/x/79+1GrVi107doVf/31l9Td5vJUNV+kGbJgdyXKqhez+aOnpydx1wKoOJ8rQ5ZwpWlMSEsHO1CorPwTExO5sMsOLqT5q0o6JcFqWEgyQlUdsGmsaCBUWZ5XJ9Laj7T6wbbZt2/fVhp22cGuPG2RPV4iEAhEFiGlIUkuKEJJSQmmTZuGpKQkdOjQAePHjwfDMKhbty5q1aoFoVAIGxubCnd8KqvHZcuYTWdmZiY3eJSGtIlDRXLFz88PW7duxblz53Dv3j1ut7pevXoYM2YMxo0bJ7Wcy6KMfKmsnpWVf7LKkupEHnnNluOXL18qra/yTAAzMjI4LZJffvlFzL1Pnz5Yu3YtoqKiEBERIVU1vvw9xk+fPsWUKVPg5+cHHR0d/PHHH2J+2AX+siruZTl06BBevXqF8ePHV8lIEht+eQN/1Y20+shO7ipzl1T+ypZXq1atgqWlJU6ePInQ0FCEhoYCKDXOOmTIEEybNo0bf1SnLJFGVcZv8qSN8v1DJ8bfOawKa0VXaygLa2treHl5YenSpYiNjcXnz58rVF1i0dLSwrJly3D58mUIhUI8f/5caRNj9pzY8uXLJVpsltZRslSkEsXuDrIqxWU7n2fPnlXLSmGfPn3Qp08fZGRk4PHjx3j06BECAgJw5coVxMbG4uTJkzJZw6xqvsgDmz9ZWVkQCoUSB6/p6ekKhy9LuJLUviuCLcuK4lVR+aenp0vcvZAWnqQBSlnK73SysJogZTv16oRNI5t2SSia5zUBmx4/Pz+xc2yVIWtbZPPB0NCQs+T9NXjx4gViYmLQsGFDbN26VWxgVtGOKEtGRobExTZJZczmZe/evbFhw4YqxFwyOjo6mDdvHubOnYu3b98iNDQUt2/fxu3bt7Fu3ToAkGhduTzKyBd5kEeWfAuw8XVwcJB4LEpRAgICuLPU0naiWc6ePSvzmXEnJyesXLkS48ePh4+PD37++Wexa/HYjQFp/drr168BlGqOlL36CgAX56SkJLRv3x5A6VlxSfKCDV9eDa5vieqSV7Vr18bkyZMxefJkxMbG4smTJ7h79y6uX7+O3bt3Izc3l7vNorpliSSqMn6TJ22U7x96xvg75tWrV3jx4gUAwM3N7at8s6zKjjwGRbS1tbnOhFV7Ugasakx5gy1A6c7By5cvK/TPqqqWJzc3lztjwqoH6+jocKrRsuxAVQV9fX306NEDixcvxoULF6Cjo4PIyEg8f/5cJv9VzRd5MDMzg6qqKgQCgVT1Wmn5LAsCgUDs7Gj5cGW9ioiFfV9aOebk5HCqj+y77L2FABAdHV1hfMrDrm5LGzxLSx+r0hoeHi7RXRLSVMRkgTUe9v79e5SUlEh8h80zefO8JmDzryrttbK22KRJE6ipqSE9Pb1KC0Dlqawc2TZuZ2cncbdCFlkhrb5KalfsTlt1yz4ejweGYTBs2DDs2LEDf//9NwDIPIlTRr7IA9tmpOWlUCiUetSjIqrSjiuCLcf3798r9bw7O+HU0dGBoaGhxB+7s3vx4kWp8kUSHTt2RLt27SAQCETuTGdhz9JKk8ssWVlZ+PTpk8iPnewKhULumaQxCiGEK0f2e7JQXeWoKNUlr8pibm6OAQMGYOPGjdiyZQuA0juZ2fr2tWRJWZQ1fqssbZTvHzox/k7JysrC/PnzAZR2zO7u7lUOMyMjQ+qOFgurglK3bl1uoltcXFzpDmRcXBwnhOWx3Muu6klT52HdJa3IX7x4sdKV+qtXr0p85/jx4xAIBDA1NRU5F8zm8759+2SKvzJo0KABt0Iu6zm1quaLPNSpU4fTADh8+LCYe2FhIU6ePFmlb1QWbllDL7LAvn/y5EmJu7VHjhyBQCBAo0aNRMq/Q4cOAEpV8yQh7Tl7ZjEhIUGilkJZ679lYevbzZs3ZV5cYCcDiqjsOjs7Q0tLC2lpabhy5YqYe1JSEm7cuAFA/jyvCLa+KvvsHmtc6NixY9w9qFVBUlvU1NSEq6srCCHw9/ev8jdYKitHNs+kWfmVRUZJalfA/+px2TJ2dnaGgYEB3r59K9XYXXXALu7JK/uqki/y4OrqCh6Ph/DwcIkLjteuXVPofHFV2nFFNGnSBHw+Hzk5OTh16pRSwnz37h1evXoFoLRO3b9/X+Lv5s2b0NLSwqdPn+SuQ+x52AsXLogYkwJKd7/V1NTw7t07ifJ85cqViIyMlPjbv38/gNJjZ+wzSfd3v3//Hjk5OWjYsKHM92kDlY9hvjbVJa+kwY4NBAIBp61RU7JE2eM3SWmjfP/QifF3Rm5uLs6ePYv+/fsjKioKWlpa2LRpk0xnryrj/Pnz+OWXX3D06FGxwXt+fj78/f3h5+cHoNQiIPvNvLw8dOnSBatWrcKbN2/EJtchISGYMmUKCCEwMjLiJheywO5Qh4SESHRnr69ZuXKliMXrmzdvwtvbu9JzH4QQzJo1SyS9Dx484Falx44dK7LiO2HCBOjr6+PixYv4559/xM7H5ObmIjAwECtWrJA5jay/6dOn48GDByIr6YQQBAYGIioqCjweT+aV6qrmi7yMGzcOQOkEr6zV0dzcXMybN69KqsC1atXC4cOHERAQwD378uUL5s2bh4yMDJiamkq8wqMi+vTpA1NTU2RlZWHOnDki15Ddvn0b27ZtA1Ba3mXLf/To0ahVqxZu3bqF3bt3QygUAijVgvjvv/+k7gzp6urC0dERRUVFWL58ObcjQQiRqN7HYmNjg169ekEgEGD8+PHc0QmWlJQUsR0Uts2EhYXJvYqtra3NWST+77//8OzZM5FvzZgxAwKBAC1btlTqFRWVtXNF6datG5ydnREXF4fx48eLLS4UFxfj4cOHmDVrFlcmirTFadOmQUNDA35+fvD19RU7f52ZmYkTJ05w1+TJApsnL168kDipZ41ShYWFiSw85efnw9vbW6bzg7dv38a+fftE6vHy5csRFRUFbW1tEeut6urq3HV+M2fOREBAAOePJT4+Hlu3buWsv8rK+fPn4evrK6Y5kZuby/U5tra2MoWljHyRh8aNG3MD7gULFohM2l6/fo1///1X5EoZecIFpJd/VZgzZw5UVFTw33//4dChQ2I7pCkpKfD39+eubqsMVn41b94cDMNIfa9OnTrcpPPs2bNyxblNmzZo2bIliouLuTrBoq6ujtatW6OkpEQu7Rp5YGWvPOMXANxCWnR09Fe3Zi0NZcurBw8ecIsPZSksLOTCMDEx4c7hV6csqQhFxm/ypg0ALl++jC5dunDXW1K+L+gZ42+YU6dOITg4GMD/dmU/fPjACRA7OzusXr1aade48Hg8REVFYcmSJViyZAlMTU2hr6+P3NxcJCUlcSueHTp04IQa6y83Nxd79uzBnj17ULduXZiamkJFRQVJSUlcZ6Cnp4fNmzfLZTShV69eePv2LSZOnAg+n8+duVy/fj3q16+PqVOnIjg4GLdu3YKrqyssLCyQkZGBpKQktG3bFg0aNMD58+elhj927FgcOXIEnTp1gpWVFXJzcxEXFwegdHWxvMXEBg0aYMeOHZg0aRIOHz6MY8eOoWnTptDS0sLnz58RHx8PoVAo95lvoVCIS5cu4dKlS9DQ0ECTJk1Qu3ZtJCcnczsfEydOlFl9tar5Ii9ubm4YMWIE9u/fj9mzZ2PdunUwMDDgVHKnTJmi8FkiIyMjdO7cGTNnzsSaNWu4cPPy8qCpqYk1a9bIfd5bQ0MDGzduxLhx43D9+nXcu3cPlpaWyMrK4lQxBwwYIHatg7W1NebMmYMVK1Zg9erV2LNnD0xMTBAfH4+cnBzMnj0bq1evlvjN2bNnY/To0bhw4QJu3bqFJk2aICUlBenp6Vi6dCmnMlqef//9F+np6QgJCcGwYcNgYmICQ0NDpKSkIC0tDYQQ7t5toLR96urq4smTJ3Bzc0Pjxo1Rq1YtuLq6ynRGc+rUqXj9+jWCg4Px22+/wcLCApqamnj79i23i7527VpZs1omevXqhaCgIHh7e+Pw4cOcyuVff/0l1/215eHxePDx8YGXlxceP36M3r17o1GjRjA0NEReXh5noRUoPY8PKNYWra2tsWnTJsycORM+Pj7YsWMHLCwsoK6ujvT0dHz8+BGEELkWcGxtbWFubo7Y2Fi4ubnBwsICampqsLa2xsKFC2FoaIjRo0fDz88PCxcuhI+PDwwNDfH+/Xvk5+fj33//xcKFCyv8xsyZM7FixQr4+flx9fjz589QVVXF8uXLxa4ZGjRoELcYM3PmTHh7e8PMzAyEECQnJ3NaQfJa/s3IyICPjw98fHxQv359GBsbo7CwEPHx8SgoKICOjk6laWFRRr7Iy5IlSxAZGYmoqCj06NEDVlZWKC4uRnR0NFq0aIHWrVuLLOzJQmXlXxVcXV2xdOlS/PPPP1i6dCnWrl0Lc3NzqKqqIjU1lTtGNH78+ErDEgqFXF9S/n5vSfTr1w/nz5/HjRs3kJOTI5dhwT/++AMTJ07E6dOnMXnyZJFbHwYNGoTg4GBcvHgR7dq1kzlMWWHLT96rB/X19dG2bVs8fPgQ3bp1g6WlJdTV1WFoaPjVzteWR9ny6suXL9i7dy/27t0LPT09mJqaQigU4sOHD8jNzYWampqYJejqkiUVocj4TZG05eXlITExUWnxpnxd6MT4GyYpKYmzOq2hoQEdHR04ODjAzs4O7u7ucHFxUer3hg0bBmtra9y7dw9PnjxBcnIyZ1bf0NAQzZs3R58+fdCjRw8RIaCjo4MrV67g3r17uH//PuLi4pCYmIi8vDxoa2vDyckJHTt2xJAhQ+S25jhhwgQIhUIEBAQgOjqaW9lmB7PNmzfH4cOHsWnTJjx58gTv3r1D48aNMWPGDIwdO1bqZIOlSZMmOHnyJDZt2oQHDx4gJycHlpaWGDRoEIYPHy5xJ97e3h4XL17EwYMHcfPmTcTGxkIgEKBBgwZo06YNOnXqJLdqe506dbBmzRoEBwfj+fPnSE5OxpcvX6Cnp4fOnTtjyJAhcp0jr2q+KMLChQvRvHlzHDhwANHR0cjPz0fbtm3x559/Vtl41N9//41mzZrh2LFjiI6Ohrq6Otzd3TFt2jSFr0iyt7fH+fPnsXPnTty+fRuRkZHQ1NSEi4sLhg4dKnVQMGrUKDRp0gR+fn6IiIhAbGws7OzsMHHiRDRq1EjqxLh169bYs2cPfHx88PLlS8TExMDW1pYz9CKtTLS1tbF3716cOXMG586dQ2RkJNLT01G/fn106tRJ7F5fbW1t7N69G5s3b8bz588RHh4OoVAIU1NTmfJFXV0dfn5+OHbsGM6dO4e3b9+ipKQEjRs3Rvfu3TF27FiZjO7JQ79+/ZCdnY2TJ08iLi6Okztld/IVxcDAAIcOHcLZs2cREBCAiIgIpKSkoF69erCxsYGLiwvc3d05LQpF26KbmxsCAwPh7++Pu3fv4sOHD5yWTMeOHdG5c2d0795d5nirqKhgx44dWL9+PUJDQ/H8+XOxc5mzZ8+GiYkJDh8+jLi4OBQUFKBly5YYO3Ys2rdvX+kEasyYMTA2Noa/vz+3E96hQwdMmTIFLVu2lOhnypQp6NixIw4dOoTHjx8jKioKGhoaMDY2xk8//QR3d3e5DZ316NEDxcXFePDgAWJiYhAVFQVCCBo2bIgOHTpg7NixcqmvVjVf5MXAwADHjh2Dr68vrl27hnfv3sHIyAjjxo3D5MmTFTLMI0v5V4VBgwbB2dkZ/v7+ePjwId6/fw9VVVUYGRnB3d0dXbt2lWnH68GDB0hJSUGtWrXQt2/fSt//6aefYGRkhJSUFFy+fFnqXbqS6Ny5M6ytrfHmzRv4+flh0aJFnFu3bt2gr6+Pq1evYsmSJUrVikpJSUFISAj4fL5Chk7XrVuHdevW4f79+3j16hWKi4tllsfVhTLllbOzM/7++2/cv38fb9++RUxMDDcmcnd3x5gxYyRaA68OWVIZ8o7fFE0b5fuFRyo7VEqh/B9k/vz5OHPmDFasWIH+/fvXdHQoEkhISEDXrl2rdOUYhUIRh8/nA4CYeiCF8j2zZ88erFq1Ct7e3lLvx1WEtWvXws/PD5s2bULPnj2VFi6FQvn2oGeMKRQKhUKhUCjfNZ6enmjUqBF27typtNsvMjIycOjQITg6OtJJMYXyA0BVqSkUCoVCoVAo3zW1a9fGqlWr8ODBAyQlJaFJkyZVDjMxMRFjxoyR6xgEhUL5fqETYwqFQqFQKBTKd0+rVq24WxmUQYsWLdCiRQulhUehUL5tqCo1hUKhUCgUCoVCoVB+aKjxLQqFQqFQKBQKhUKh/NDQHWMKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkzB6dOnwefzMX/+/JqOitK4dOkSBg4cCEdHR/D5fKVaqaSIw+fzwefzazoaHF26dAGfz0dCQkJNR4XynUHrDuVb4fXr1xg/fjxat27NydiIiIgqh/u99fnfW3y/dWh+UqrK8OHDwefz8ejRo5qOitL54a5revToEUaMGAEAqFevHq5fvw5tbW2J77ID/Rs3bqBRo0ZV/vbp06eRmJgIDw8PpYQnKz4+PgCAP//886t9syIiIiJw/fp12NjYoFu3bkoP/+7du5g+fToAoFmzZtDV1UWdOnWU/h15SEhIQNeuXQFIr09xcXEYOXIkkpKS0LJlS+zatUtq3awqaWlp2LJlC+7cuYO0tDTo6uqiffv28PLygrm5ebV8U1k8evQIISEhcHFxQZs2bWo6OpVy/fp1REREoFu3brCxsanp6PzQfG9152tSU/0TRTKfPn3CyJEjkZ2dDWNjYzRr1gw8Hg9aWlqV+v3W+vyKyM7Ohr+/P3R0dDBq1Kiajg6FQvnB+aF3jDMzM7F///6v9r0zZ87A19cXiYmJX+2bAODr6wtfX9+v+s2KiIiIgK+vL65fv14t4R89ehQAsGDBAgQGBuLIkSPYtWtXtXxLWbx//x6enp5ISkqCi4sLdu/eXW2T4vfv36Nv3744cuQIsrKyYGVlBYFAgLNnz8LDwwNPnz6VO0wLCwtYWFhUQ2zFCQkJga+vL0JCQr7K96rK9evX4evrq5SdHkrV+N7qztekpvonimQCAgKQnZ2N7t2749atWzh69CiOHDmCJk2aVOr3W+vzKyI7Oxu+vr4VjsV0dHRgYWGB+vXrf8WY/d+F5ieFIp0fbseYRVVVFSUlJdi7dy88PT1Rt27dmo4SRUnExMQAAFxdXWs4JrLx9u1bjBo1Cp8+fUK7du2wdetWaGpqVsu3hEIhpk2bhszMTHTp0gVr1qyBtrY2ioqK8O+//+LYsWOYOnUqrl27JlccLl++XC3xpVAolB8Rth9r164dVFR+6D0MdO/eHd27d6/paPyfgeYnhSKdH1baGhsbo3Xr1sjOzsbevXtrOjoUJVJQUAAAUFdXr+GYVM6bN28wYsQIfPr0CR07dsT27durbVIMANeuXUNUVBR0dXWxevVqble6du3aWLx4MczNzZGWlobjx49XWxwoFAqFUjGFhYUAAA0NjRqOCYVCofw4/LATYwCYNm0aAMDf3x+ZmZly+SWE4OLFixgxYgRat26NFi1aoFu3bli2bBlSUlJE3n306BH4fD6nvjdixAjOkAafz8fp06dF3i8oKMCePXswcOBAODs7w97eHj///DN8fX3x5csXmePo4+MjYhCp7DelGZcpKirC1q1b0aNHD7Ro0QIdOnTA4sWLpeZPcHAwli1bhn79+qFNmzaws7ND586dsWDBArx//17s/S5dumDBggUASlX3ysZn+PDhMqdNEqzRHFYVsGvXrlLz+O7du5gwYQLatm0LOzs7uLm5YcGCBdwqfXnKGhp48+YNpk2bhvbt28PGxgb79u1TKL6vXr3CyJEjkZGRgS5dumDLli3VPpm/evUqAKBnz57Q0dERcatVqxb69+8PQP4dYGnGt8oaMnr+/DkmTpwIFxcXODg4YODAgbh27Zrc32FVBH19fUXqjzRDIop898GDB5g8eTLat28POzs7dOjQATNnzkRkZKTMcU1ISACfz8eZM2cAlKr2l40vew6Q5fPnz1i/fj169+4Ne3t7ODs7Y8iQITh69ChKSkrEwmflyvDhw1FcXIzt27ejV69esLe3R/v27bFgwQIxWSQLZcssJCSEayfW1tYixx9SUlKwdOlSdOvWDS1atICLiwtGjhyJwMBAsTBv3rwJPp+PcePGiblt3bqVy5P4+HixPLG2tkarVq0k5oE8fE91R9Ewi4qK8Ouvv4LP52PNmjUSw5ozZw74fD5GjRoFQojM/RNbn7t06QIAOHHiBAYNGgQnJyfw+XxkZ2dz30hNTcWKFSvQs2dPODg4wMnJCUOGDMHp06dBCBGLE9tX+fj44PPnz1i2bBnc3Nxgb2+P3r1748iRI9y7nz9/xsqVK9GlSxe0aNECPXr0qFQGv3z5ErNmzUKnTp1gZ2eHNm3aYOLEiQgNDZX4fn5+PrZt24Z+/fqhZcuWsLOzg6urK4YMGYJNmzbh8+fPFX6vPAUFBdi5cycXXsuWLdGvXz/s3LmTW8hlmT9/vki+l5UblRlL+hp9PlCq/rx582b88ssvaNmyJRwdHdG/f3/s27cPAoFA5nyZP38+Z3sjMTFRLL4s0oxFlZWBQqEQe/fuxc8//wwHBwd06tQJq1atQn5+PoBSban9+/ejb9++cHBwQIcOHbB06VLk5uZKjZ+89bgybt++jfHjx+Onn36Cra0t2rRpg969e2PhwoVSjzDJW3dlGatUZnxLkfJVJG2SKCgowMWLFzFr1iz06tWL+36fPn2wYcMGqW1P1jFaSUkJTpw4AU9PT27s3r17d6xYsQIZGRkyx5MlKSkJ3t7e6N69O1q0aAFHR0d06dIF48aNw8GDByX6kSd/161bBz6fj4ULF0qNQ2ZmJuzs7GBjY4PU1FQRN3nTK4+cL8+AAQPA5/MljgFYLl68CD6fjwEDBkh9p6b5YVWpAaB169Zo164dgoODsXv3bsyePVsmf4QQzJ8/H2fPngUAmJqaonHjxnj37h0OHjyIgIAA7N69G7a2tgBKz3M4OTkhKioKubm5YBhG5PyogYEB9//U1FSMHTsWUVFRUFVVhYmJCbS0tBATEwMfHx9cuXIF+/fvR7169SqNp4mJCZycnDih5OTkJOJefhImEAgwduxYPH78GBYWFjAzM0NMTAyOHTuG8PBwnDx5ErVr1xbxM27cOJSUlEBfXx9GRkYASju406dP4/Lly9i1axecnZ259+3s7KCmpobY2FgYGBiInJdiGKbSNFWEnZ0djIyM8PLlSxQVFcHOzo6Lb9k83rRpE7Zu3QoAqF+/Pvh8PmJjY3H69GkEBgbCx8cHHTt2lPiNx48fY8eOHVBVVUXTpk1Rp04d8Hg8ueP6/PlzjB07FtnZ2ejRowfWrVsHNTU1BVItH+Hh4QAgUiZlYZ+/ePECJSUlUFVVVcp3b9++jRUrVkBTUxONGzdGYmIiXrx4gSlTpmD9+vX4+eefZQrHyckJSUlJSEpKgomJCUxMTDg3SUbDFPnuqlWrsGfPHgClBvqsrKyQmJiIgIAAXLt2DZs3b0bnzp0rjau6ujqcnJwQFxeH9PR0mJubQ19fn3MvG/cPHz5g5MiRSExMRK1atWBlZYX8/HyEhYUhLCwM169fx9atW8XaH1Aqj/7880/cvHkTZmZmsLS0RFRUFE6fPo27d+/i0KFDMp1LLE9gYCA2bNgAbW1tmJmZiWgyvHjxAuPGjUNWVhbU1dVhZWWFrKwsPHz4EA8fPsS9e/ewfPly7v3WrVtDRUUFT548QXFxMWrV+l/XU/a876NHj2BmZsb9/fjxYxBC4OzsXOW6+D3VHUXDrF27NtauXYsBAwZgz5496Nixo4iRscDAQJw/fx66urpYuXIleDyeXP0Ti7e3N44cOQIjIyM0bdoUHz584NxCQ0MxadIkfP78Gerq6jAzM0N+fj7Cw8MRFhaG4OBgrFmzRqLczM7Oxm+//YbExERYWVmBx+Ph3bt38Pb2Rk5ODgYOHIhhw4YhISEBlpaWIIQgNjYWK1aswJcvXzB58mSxMA8cOIDly5dDKBRCR0cHlpaWSE1Nxa1btxAUFARvb28MGTKEe7+4uBijR49GWFgYAMDMzAy6urpIT0/HixcvEBYWxk3KZSEzMxOjR49GREQEeDweLC0twePxEBkZiYiICFy+fBl79+6Frq4ugNK6KE1uVGYY8Wv0+e/evcPYsWORlJQENTU1mJqagsfj4c2bN3j16hVu3boFPz8/ibKqPObm5rCzs8PLly9Ru3Zt2NnZVepHGjNnzsSlS5dgYWEBU1NTxMbGYs+ePYiKisKuXbswffp0XLlyBebm5mjUqBFiYmJw6NAhvH//XuLCSlXqsSQOHTqEpUuXAgD09PTA5/NRUFCApKQkvHv3jusvyiJv3S2LomMVRcpXkbRJg10IUFVVhaGhISwsLJCXl4e4uDhs374dly5dwtGjR0X6UlnTnZubi0mTJuHRo0fg8XgwNjaGiYkJ4uLisG/fPly5cgUHDhxA48aNZYprYmIiBg4ciIyMDKipqcHMzAwaGhpISUnBvXv38OTJE3h6elYpf/v27YudO3fi6tWrWLJkicR2dfnyZQgEArRr1w4NGjTgnlc1vRXJeUkMGjQIL1++xKlTp9C7d2+J77AbBewmzDcJ+cF4+PAhYRiGdO7cmRBCSFhYGGEYhjg6OpJPnz6JvMswDGEYhnz48EHk+cGDBwnDMMTBwYHcvHmTe/7582fyxx9/EIZhSNeuXUlBQYGIP09PT8IwDHn48KHEuAmFQjJs2DDCMAyZNGkSSUpK4twyMjKIl5cXYRiGzJgxQ640s+mQxqlTpwjDMMTW1pb06NGDvH37lnN7+/Yt6dChA2EYhhw9elTM75EjR0TiSQghRUVF5OjRo6R58+bE3d2dCIVCid+bN2+eXOmQlc6dO0ssN0IICQoKIgzDEBsbG3L8+HEubgUFBeTvv/8mDMOQ1q1bk7S0NBF/bNnZ2NiQBQsWkC9fvnBu+fn5lcbpw4cPXDmcP3+eODk5EYZhyMyZM0lxcXGFflNTU8mQIUMU+pWlsLCQWFtbE4ZhyNOnTyV+Kzk5mYtnfHx8pelikVbH2LKwtbUlvr6+pKioiBBCSElJCVm5ciVhGIZ07NiRlJSUyPytzZs3E4ZhyObNm6W+o+h3jx8/zrndvn1bxO3IkSPExsaGODs7i8mKipg3bx5hGIacOnVKortQKCQDBw4kDMOQwYMHk+TkZM4tLCyMtG3bljAMQ9atWyfij5Vltra2pGXLluT+/fucW1paGidLfvvtN5njSsj/8s7GxoZs2LCByztCSttJXl4e946XlxfJysri3G/evEkcHBwkyot+/foRhmFIeHg496yoqIg4ODgQV1dXwjAMmT17toif//77jzAMQ/z8/ORKgzS+t7qjaJj79u0jDMOQTp06kc+fPxNCCElKSiKtW7cmDMOQgIAAsW9V1j+xMszGxobY29uTK1eucG6FhYWkpKSEpKamkjZt2hCGYcjGjRtJXl4e986bN29Iz549CcMw5MiRIyJhs+Via2tLfv/9d5KSksK5nTlzhuujx4wZI+Z++vRpwjAMadGiBZdWlnv37hE+n0+cnZ3J+fPnRfqiq1evkpYtWxJbW1sSGRnJPb9y5QqXd9HR0SLh5eTkkBMnTpCEhASJeSSJqVOnEoZhiLu7u0h40dHRxN3dnesHylOZ3KiI6urz8/LyuDj//fffJDMzk3NLSEgggwcPJgzDkLVr18ocV7ZesWOyiuJbfsxQVgZ26NCBPH/+nHOLiIggLi4uhGEYMnnyZDH3169fc+2hfNtStB5LQyAQcN86dOiQSJ8vFArJo0ePyLVr10T8KFJ3CZFtrCItPxUpX0XSVhEJCQkkICCA5OTkiDzPzMwkS5YsIQzDkIULF4r5kyXds2bNIgzDkKFDh4q0xby8PG78J09/uWzZMsIwDBkzZoxIXhFCyMePH8nevXtFninafvr27UsYhiFXr16VGA+2ry8vKxRJryxynhDJ/UVOTg5xcHAg1tbWIuMYluTkZGJtbU3s7OxExg3fGj+0KjUAODo6ws3NDXl5edi5c2el7xNCsHv3bgDApEmTRFb/69ati3Xr1kFPTw8fPnxAQECAXHEJCgpCaGgobGxssGHDBhgbG3Nu9erVw9q1a2FsbIxLly4hKSlJrrBlobi4GKtXr4alpSX3zNLSklN/vH37tpifIUOGiMQTANTU1DB48GD07t0bsbGxePbsmdLjqihsGQ8aNAiDBg3iVhLV1dXh7e2Npk2b4vPnzyKqe2WxtLTEsmXLRK7MkPcM2Pz585Gbm4t+/fphzZo1le6EFRYW4unTpwr9ypKbmwuhUAgAUo3NsbsWAORWF6yIdu3aYfLkydyuuIqKCmbMmAFDQ0MkJydXSc1UWd8VCATYtGkTeDweNm/eLKY1MGTIEAwfPhw5OTk4ceKE0uL48OFDPH/+HGpqatiwYQOneQGUyidWherAgQMS1f4EAgGmTp2Kdu3acc8MDQ2xfv16qKmpITw8XKG7Bl1dXTF9+nQRTQZ1dXUEBAQgMTERenp6WLt2rUid6dy5M7y8vAAAO3bsEFE3dHFxAQCRuDx//hz5+fno06cPTExMxKxFs3+zfr8mNV13qhLmiBEj0KFDByQlJWHJkiUQCoWYO3cuPn/+jF9++UXqar4slJSUYOrUqXB3d+ee1a5dGyoqKtizZw8yMzMxbNgwTJs2TUTLgM/nY/369eDxeFLteqiqqmLt2rUiux79+vWDg4MD8vLyEBoaKubu4eEBe3t7FBYWitXzdevWgRCCZcuWoW/fviI7Zt27d8f06dMhEAhw4MAB7nlsbCwAoEePHmjWrJlIeNra2hg4cCBMTU1lyqu4uDhcuXIFALB69WqR8Jo1a4aVK1cCKLVAXdluTHUgb59/6tQpxMbGolOnTli6dCn09PQ4N1NTU2zatAlaWlo4dOgQd0b6ayAQCPD333+L7OJbW1tj0KBBAEpta5R3t7Gx4dzv3LkjEl5V63F5MjMz8fnzZ+jq6mLYsGEifT6Px4OLi4vY1ZWK1N2yKDJWUaR8FUlbRZiamqJ3795it3Lo6enB29sbxsbGCAgIQHFxsVzpjoqKwoULF2BkZIRt27aJtEVNTU14e3vDzs4O4eHhMqt+s0fvhg0bJpJXQKn2RvnrxxRtP3379gUAXLhwQSwOSUlJePLkCdTV1UVkclXTW5Gcl4a2tjZ69OgBoVCIc+fOibmfPXsWQqEQ3bp1Exk3fGv88BNjAJg6dSp4PB6OHDlS6Zm8d+/eITExEWpqahg2bJiYe506dTjd+bt378oVD/b8p4eHh0R1CS0tLbRr1w5CoRCPHz+WK2xZsLa2hr29vdhzBwcHAJDacUdERGDDhg2YNGkShg8fjqFDh2Lo0KFcHL+Va2q+fPnCCQD2LuuyqKiocGov0sru119/VZp6cVpamlThXpZGjRohMjJSoV9ZygpaaWpuZZ+XP/tWFX777TeJ37K2tgYAsbOlNfHd8PBwpKWlwdramqvz5WE7eGVeas/Wte7du4uo97L06tUL9evXR15ensQOTE1NDQMHDhR7bmRkxFkevXfvntzx8vDwqDC+gwYNknin6rBhw6CmpobExEQROwOtW7cGIKo6zcqINm3aoHXr1khOTubKJDs7G5GRkahTpw53LOVrUtN1pyph8ng8LF++HHp6eggMDMT48ePx6NEjmJqaYvHixTJ9vyKk1Q22Dxs8eLBEdxsbG07NVVJf6+rqKrbQCgDNmzeXyb1sH5WUlIRXr15BT08PPXr0kBgfSfnHhv/gwQNkZWVJ9Ccr9+7dAyEEDg4OEsuwZcuWaNGiBQghCrXRqiJvn8+Wr6S2AZTKnBYtWuDLly94+fKlkmMrHV1dXZEBPAtbL6S5s3Kl/Nnrqtbj8ujr60NdXR3Z2dm4f/9+pe8rWnfLoshYRZHylTdtskAIwe3bt/Hvv/9iwoQJ+P3337lxZW5uLqdaLQlp6S5rX0XSpExFRYXb6JJVRrP99fXr12Uayynafvr06QMej4egoCCxxfGLFy+CEAI3NzeRxQRlpFeanK8IdixS3q5P2WfftBo1fvAzxiy2trbo1q0brl27hh07dlQ4cGBXk42MjKTeM2tlZSXyrqxERUUBKD3sLs340cePHwEAycnJcoUtC2XP9pWFPWMmyfDX8uXL4e/vX2G4VR1cKIv4+HgIhULUqlVL6p27lZVd+R0ERVi2bBn++ecf3L9/H1OnToWPj89XOV9c9nxZUVGRxHfKPlemNVRpZ1zZupWXl6e0byn6Xbb9JScnY+jQoRL9sYsLymx/bF2TVrdUVVVhYWGBtLQ0xMbGiu0cGhsbS5VFbJjSjMpVhLT4sPEtu8tUFh0dHTRo0ACJiYmIjY3lwmHPGT99+pQ7ZxwSEgJVVVU4OzsjNTUV58+f584ZP378GEKhEE5OTkpbjJKHmq47VQ3TyMgIS5cuxdSpU3Hv3j2oqKhg1apVYkb35KVevXoSz/fl5eVxEwxvb2+p5xlZo07Jycki2hEApJ51Y78nzV1SmbALgwKBAL///rtEf6xGQ9n86969Oxo3bozIyEi4ubmhXbt2aNWqFVq3bg07Ozu5bEpU1raB0j7nxYsXco8XlIG8fT5bJ7du3cppzpWHTYcihv8URdF6w7qXTacy6nF5VFVVMWLECPj5+WHMmDGwtbVFu3bt4OTkBBcXFzH5rWjdLYsiYxVFylfetFVGbm4uvLy8Kr1rXtq4Ulq62bTdunULL168kPhOeno6ANlltKenJ86ePYvTp0/jzp07cHV1hbOzM9q0aSOxbSnafkxMTNCqVSs8fvwYV69eFZlYsrvIv/zyi8RvKZpeaXK+Mlq3bg1zc3PExMQgLCwMLVu2BAA8ffoUsbGxMDIyQvv27eUO92tCJ8b/n6lTp+LGjRs4fvw4xo0bh4YNG0p8jxWghoaGUsOqaCJZETk5OQBK77WtjOpQU5K0+wNAasdw/vx5+Pv7Q1NTE7Nnz0b79u1hbGwMDQ0N8Hg8zsiVLCtpXwO2POrVqydVHaSyslPGVUouLi7w9fWFl5cXbt26hTlz5mDdunXVPvjX1taGiooKhEKhVMuCZdWnlanqIi3f2HIgClj4VPZ32TzJzMys1Eq9MtsfO5ivSKawbpLqpSTjSLL4qwxpecfGt7LvJiYminxXV1cXDMNwRkZsbW0RFhaG5s2bQ1tbmzMSFRISgkGDBnG7yTWhRg3UfN1RRpiOjo7Q1NREfn4+LCwspBrdkwdp/QTbfwHgDFdVhCSNlMr6oMrcJZVJWU0haZTNP01NTRw+fBibN2/G5cuXcePGDdy4cQNA6QB18uTJnApuZcjSthUdLygDeft8toxfvXpVadjK1DiqjKrWm7Ioox5LYubMmTA2NsahQ4fw6tUrLg/V1dXRt29fzJs3jzvipGjdLYsiYxVFy1eetFXGypUrERISAnNzc8yYMQOOjo7Q19fntNl+//13hIaGSh1XSks3m7b4+PhKNdRkldHW1tY4fPgwfH19ERwcjDNnznDGpezt7TF//nwRmVuV9tO3b188fvwYFy9e5CbG0dHRiIyMhK6urtiCeVXTK63NyMKAAQOwbt06nDlzhpsYs/nSr1+/b/5edjox/v8wDINevXohICAAW7duxb///ivxvTp16gAAPn36JDUsdhWGfVdW2Iro5+cn1SrytwR7hmDu3LkS1cqVeUZVGbDlkZmZCaFQKLFxKlp28uLq6oqNGzdi2rRpuHTpEtTV1TkrseVJS0vD1KlTFfpO2bPStWvXRsOGDZGQkID4+HhOYJWFVZ1TU1OTujj0fxW2/fXu3RsbNmz46t+tSKawbpLqZUVXTFTkT1HY+LJtRZ7vtm7dGm/evMGjR48gFAqRl5fHTXzNzMxgbGzMTYhr8nyxvFRH3alqmOT/356Qn58PFRUVvHv3Dn5+fvjjjz+UEr/ylB1IPXv2rMbv32Xj4+DgIPe97A0aNMC///6Lf/75B69fv8aTJ09w/fp1PH78GIsWLYKWlpZMlvRladtfq89RBlpaWsjOzkZgYKBStKe+RaqrHrNHtTw9PZGUlITQ0FAEBwfj8uXLOHnyJFJSUrBr1y6ROChSd6uCouUrT9oqori4mLPNs3XrVolxUHRcyeapt7e3VA0cRbC3t8fOnTs5i+UhISEIDAzE8+fPMW7cOJw7d47bPa5K++nZsyeWLVuGhw8f4tOnTzA0NOR2i3v06CF2PK660isLHh4e2LRpEwIDA/HXX38BAHeFkyLq2V+bb3va/pX5888/oaqqijNnzkhdYWGvS0hJSZF6/x2741vZ1QrlYVUTZdkx/hZg1Y2k7UJIM7qlyPVGysDMzAwqKiooLi6WqlqqaNkpQrdu3TjjW2fPnsWSJUskvqcs41vA/86OPXnyROK32Od2dnY1or4qC9VVf1g1emW3v8riy9a16Ohoie4lJSVcfZVUL5OSkqTuNrFnfJVZn9mwpOVTTk4Od5di+e+W3RWWtCPcunVr7nzdmzdvoKWlVaUrXMrzPdWdqobp7++P4OBgmJqacteX+Pj4yLRboQg6OjqcSum30Iex+ff+/XuFtZZUVVXRokULjBo1CgcPHsTYsWMBQObJSmVtG/i6fU5VqY4xSk2NB6TxNeqxiYkJ+vbtixUrVuD48ePg8Xi4e/cuZ1RVGXVXEZRRvpWlrSIyMjKQl5cHPT09iRPH7OxshY4FAdU/vtbU1MRPP/2EadOmISAgAC1btkReXp6IwayqxEFXVxeurq4oKSnhJpkXL14EUHoGuTw1OZ+oX78+OnbsiJycHFy7dg1Xr15Fbm4unJycpB5j/JagE+MyWFhY4JdffkFxcTG2bNki8Z1mzZrB1NQUAoEAhw8fFnPPy8vDqVOnAJTuCpaFXXmUpnrDGlk4duwYdym9Mqjsu1UNV9JqeGhoqFTjG+xZ16+pagWUrsizd+nt379fzJ0QgkOHDgEQL7vqonfv3vjvv//A4/Fw7NgxrFixQuwdZRnfAsAZILl8+bKIyhhQulrLGkfo2bNnNaRWOVRX/XF2doaBgQHevn2rVEM4lcWXrWvXr1+XOHi4fPky0tLSoKWlJfEuSIFAgJMnT4o9T01N5QxwKLM+s2GdPHlS4tnwI0eOQCAQoFGjRmjatKmIW6tWrcDj8fD06VMEBwdDVVUVrVq14tzZifPWrVtRUlICJycnkTuPq8r3VHeqEmZUVBTWrVsHFRUVrF69Gh07dsSECRMgEAgwZ84cielXRj/ByhdJ98J+bZo0aQI+n4+cnByuT64qbPtjF34qw9XVFTweD8+fP5e4UBweHo4XL16Ax+OhQ4cOSokjUH19PjtG2b9/P3fDQVWprrhWha9Zj62srLhz/2y9qo66KwvKLl9JaasIti7k5uZKHAMfPHhQ4YUCNm0XLlyoUNtJGdSqVYszalc23VXN37LWqZ8+fYqEhAQYGxtzhi3L8jXTKwn2uElZ9fJv3egWC50Yl4O9nkOSWXSgdHWTvcpg27ZtCAoK4txycnIwZ84cZGVloXHjxmKqVqwBCGkWpbt16wZnZ2fExcVh/PjxePfunYh7cXExHj58iFmzZkk1niQJ9ruVGTOQF3ZAu2HDBpHJ8dOnTzF9+nQRY0+S4vPixQupCwAJCQng8/ng8/lKtQA8YcIEAKUGzk6ePMmdSSssLIS3tzfevXsHXV3dr6p64uHhwe0W79u3r1rVeN3d3WFlZYXPnz9j7ty5nNZDUVERli5ditjYWNSvX1+q1cRvAbb+hIWFKXU1XV1dHTNmzABQemYqICBArPOKj4/H1q1buQmnPPENDQ2VeJa6bdu2cHBwgEAgwIwZM0SMbjx//hzLly8HAAwfPlyiIRM1NTX4+PjgwYMH3LP09HTMmjULAoEA9vb2SlVH7tOnD0xNTZGVlYU5c+aInFe/ffs2tm3bBqC0rZXfDapXrx6srKzw5csXPHz4EDY2NiJpYuPJnumU1OEDpdYtWfkgD99T3VE0zKKiIsyZMwdFRUUYN24cJ6enTJmCFi1a4N27d1izZo3Y9yrrn2RhwoQJ0NfXx8WLF/HPP/+InY3Ozc1FYGCgxAXA6mDOnDlQUVHBf//9h0OHDon1mykpKfD39xc5crJ3717s3btXzHhURkYGt6Aqq5V0MzMzbpFx3rx5IlbaY2JiMH/+fADAzz//LNVAlCJUV58/ePBgmJub48mTJ5g+fbrYQl5RURGCgoKwYMECmcPU19dHnTp1kJ6eLjbmqSmUXY+jo6OxaNEihIeHi/QBJSUl2LdvH7Kzs6GhoSGyS6pI3a0qipSvImmTRt26dcEwDIqLi/Hff/9xaSaE4MSJE9iyZYvUcWVlNG/eHH379kV2djZGjRqF58+fi7gTQvDs2TMsWbJE5qvTFi9ejIsXL4ppbL158waXLl0CABGNp6q2ny5duqBOnTp4/vw518/+/PPPEo8FVkd65aFTp06oX78+Hjx4gIcPH0JTUxO9evVS+neqA3rGuByNGzdG//79cezYManvDB06FM+ePcPZs2fxxx9/oFGjRtDT08O7d++Qn58PPT09bNq0SawB9+7dG4cOHYKfnx+uXbuG+vXrg8fjYfz48ejYsSN4PB58fHzg5eWFx48fo3fv3mjUqBEMDQ058/TsIXl2sCwLvXr1wtu3bzFx4kTw+XxuILp+/XrUr19fgVwqZdy4cQgICMCLFy/QpUsXWFhYID8/H3FxcbCyskLfvn2xZ88eMX+2trYwNzdHbGws3NzcYGFhATU1NVhbW3N3tlYXnTp1gpeXF7Zt24aFCxdi06ZNMDIyQmxsLHJycqChoYG1a9dWaCylOhg6dCgKCwuxYsUKbN++HRoaGtx9sMpERUUFmzZtwrBhw3Dz5k107NgR5ubmSExMRFZWFjQ1NbFx48YqGV6objp06ABdXV08efIEbm5uaNy4MWrVqgVXV1du4UNRBg0ahJSUFPj6+mLmzJnw9vaGmZkZCCFITk7mVl69vb1lDrN79+7YsGEDAgICEB4eDhMTE6ioqMDDwwP9+/cHj8fDunXrMHLkSISFhaFr166wsrJCQUEBN5Du0KEDpkyZIjF8R0dH6OjoYNSoUWjSpAm0tbXx9u1bFBUVwcDAAKtXr1aquqKGhgY2btyIcePG4fr167h37x4sLS2RlZXFHa8YMGCA1KtOXFxcEBUVBUKI2IS9SZMmMDY25qxkKvt88fdWdxQJc8OGDXjz5g2aN2+OP//8k3teq1YtrF27Fh4eHjh06BDc3NxENAkq659koUGDBtixYwcmTZqEw4cP49ixY2jatCm0tLTw+fNn7mYAaddPKRtXV1csXboU//zzD5YuXYq1a9fC3NwcqqqqSE1N5Sa/48eP5/x8/PgR+/fvx8qVK9GwYUOR/lcgEMDIyAjTp0+XOQ5LlixBbGwsIiIi8PPPP3MqjtHR0RAKhbC1tVXKFVplqa4+X1NTEzt37sSECRNw5coVXL16FU2aNIGenh5ycnIQHx8PgUAgV//J4/HQs2dPnDp1Ch4eHrCysuL6H2l39FY3yq7HAoEAJ06cwIkTJ6CtrQ0zMzPweDyu3+XxePjrr79EFgkVqbtVRZHyVSRtFTFr1ix4eXnhxIkTuHr1Kho3bozk5GR8+vQJHh4eSExMVHjBZ9myZcjJyUFQUBAGDRoEIyMjGBsbo7CwEPHx8ZwGlKTrPCXx7NkzHDt2DKqqqjAzM0PdunWRmZnJHcV0cXFBv379uPer2n40NDTg7u6OM2fOcHdvl7dGXZ3plQdVVVV4eHhg586dAEp3sOW1UF5T0ImxBLy8vHDmzBmpu7I8Hg8rV66Eq6srjh07hoiICKSkpMDIyAhubm6YMGGCRPP9rVq1wrp16+Dv74/o6GjOLHvZw+gGBgY4dOgQzp49i4CAAC7sevXqwcbGBi4uLnB3d5dr1WzChAkQCoUICAhAdHQ0l66qWtY1MTHBsWPHsH79ejx8+BDv37+HiYkJxo0bBy8vL+zdu1eiPxUVFezYsQPr169HaGgonj9/jpKSEpF32B1odXV1pRv5mD59OpycnHDgwAE8f/4cb968gYGBAbp164YJEyaIqX9+LUaNGoX8/Hxs3LgRGzduhKamptgF8cqgWbNmOH/+PLZu3Yrbt28jKioKenp66Nu3LyZPnvzNnwHR1tbG7t27sXnzZjx//hzh4eEQCoUwNTVVSvhTpkxBx44dcejQITx+/BhRUVHQ0NCAsbExfvrpJ7i7u8tlHM/MzAzbt2/Hjh078Pr1a3z8+FFsUti4cWOcPn0au3fvxrVr1xAdHY1atWrBwcEBHh4eGDRokFSVYnZBzc/PD+fOncPbt2+ho6ODjh07Yvr06RLvfa0q9vb2OH/+PHbu3Inbt28jMjISmpqacHFxwdChQ9G7d2+pflu3bo2DBw8C+J/qdHn3CxcuQFNTEy1atJAYBisf2HtKZeV7qzvyhvno0SPs27cP6urqWLNmjZhBFnNzc8yfPx+LFy/GggULcOHCBdSrVw+AbP2TLNjb2+PixYs4ePAgbt68idjYWAgEAjRo0ABt2rRBp06dJN4pW10MGjQIzs7O8Pf35/opVVVVGBkZwd3dHV27dkWXLl2494cMGQI9PT08fPgQ8fHxiIiI4K74c3Nzw5gxY7g8k4V69erhyJEj2L9/PwIDA7n7VxmGwc8//4wRI0Yo3VBZdfX5QOni1dmzZ3Hs2DFcvnwZ7969Q2JiIurXrw8HBwe0a9dO7qM4CxcuRJ06dXDjxg1ERkZCIBBUOZ5VRZn12NzcHP/++y+Cg4Px+vVrxMfHo7CwEPr6+ujVqxdGjBgh8ZiMvHVXGchbvoqmTRpubm7YvXs3tmzZglevXuH9+/ewsLDA5MmTMXTo0CpN4jQ1NbF9+3ZcuXIFZ86cwYsXL/D69Wvo6urCwsICTk5O6NGjh8xjoAULFuDWrVt4/PgxkpOT8eHDB2hqasLJyQl9+vTBb7/9JnYVZ1XbT9++fTnVZEtLS1hbW3+19MpL//79uYnx92B0i4VHquueFAqlCuzevRurV6/GsGHDpBqlolB+ZB49eoQRI0bAxcWlxnZWaoo//vgDQUFB2Lhx43ejnkWhUCgUyo/C48eP4enpCVNTU9y4ceObM7QnDXrGmPJN8vTpU9SqVQtjxoyp6ahQKJRvCEIIwsPDYW5uzhkYoVAoFAqF8u3AGgUdMGDAdzMpBujEmPKNEhYWhl69einVIAmFQvn+effuHbKysjBu3DiJRkcoFAqFQqHUHBEREQgICEDt2rU5C9XfC/SMMeWbJDg4uKajQKFQvkEsLS0lXkVGoVAoFAql5pgxYwYSExPx+vVrCAQCjB07Fg0aNKjpaMkFnRhTKBQKhUKhUCgUCkVhnj17ho8fP6JBgwb49ddfMXXq1JqOktxQ41sUCoVCoVAoFAqFQvmhoQe0KBQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxpUbw8fEBn8+Hj4+PUsJLSEgAn89Hly5dlBLet8D/xTRRJKPs9kChKIv58+eDz+fj9OnTNR2Vb4IPHz5g2rRpaNu2LaytrcHn83H9+vUqh/vo0SPw+XwMHz5cCbGkUCiU75/hw4eDz+fj0aNHX+2b/2cnxtevX4ePjw8iIiKkvrNv3z74+PggOzv7K8bs2yEhIQE+Pj50wKMgstSxijh9+jR8fHyQkJCg5JhRqovTp09Xulhx48YN2NnZgc/nY9myZaD2DSnfKhEREfDx8VHKxO5HoKioCCNHjsTly5ehoqICR0dHODk5QU9Pr1K/P/p4QxrZ2dnw8fHBvn37ajoqFEqN8y22h0ePHsHHx+erTk5rkv/TE2NfX98KJy379++Hr6/vD9tRJSYmwtfXF2fOnKnpqHyXyFLHKuLMmTPw9fVFYmKikmNGqSmuXr2KadOmQSAQYMyYMfj777/B4/Eq9VevXj1YWFigXr16XyGWFEopERER8PX1rXBiXL9+fVhYWEBHR+crxuzb5M6dO0hMTIS9vT2CgoJw9OhRHDlyBK1atarU748+3pBGdnY2fH19sX///pqOCoVS43yL7SEkJAS+vr4ICQmp6ah8Feg9xhQKhaIEAgMDMWfOHBQXF2PixImYMWOGzH49PT3h6elZjbGjUBRj1qxZmDVrVk1H45sgJiYGAODi4oLatWvXcGwoFAqFomzoxJhCoVCqyLlz57BgwQKUlJTgzz//xJQpU2o6ShQKRckUFhYCADQ0NGo4JhQKhUKpDr75iXFBQQGuX7+OW7du4fXr10hOTgYhBI0aNULXrl0xZswY6Orqcu8nJCSga9eu3N8LFizAggULuL+nTJkCU1NTkWdl3wdKVZ7atGnD/Z2dnY19+/bh+vXr+PDhAwghaNq0KX755Rf8/vvvUFNTE/F/+vRpLFiwAB4eHli6dCl27dqFc+fO4ePHj9DV1UWXLl0wY8YMMbXJsv5Wrlwplhds2kxNTXHz5k0Rt2fPnuHq1at4+PAhkpOT8fnzZ9SrVw9OTk4YO3Ys7O3tRd4fPnw4pxYREhICPp/PuUkK/+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxUNbLCwkLs3LkT58+fR3JyMurVqwc3NzdMnz5d4vvK5PDhwzh27BhiY2OhoaGBNm3aYNq0aWjWrJnYu2zaIyMjJYbF5hVbL2SpY3/++afUuD169AgjRozg/i77fwBYsWIF+vfvL+YvICAA+/btQ3R0NFRVVeHs7IwZM2bA2tpa4nc+f/6M3bt34/r160hISICamhqsrKzQr18/DBo0CKqqqmJ+wsLCsHfvXjx9+hSZmZnQ0tKCvr4+7Ozs8Msvv6BTp05ifmJjY7F7924EBwcjNTUVGhoasLW1xfDhw8XaVlUJDg7GjRs38OTJEyQlJeHLly+oX78+2rZti/Hjx6Np06YS/Z0/fx4nTpxAZGQkvnz5grp168LQ0BCtW7fG0KFDYWVlpXCcTp06hUWLFkEoFGLWrFmYMGGC3GH4+PjA19dXrO4oKktYcnJycODAAVy/fh1xcXEoLi6GsbExHBwcMHDgQLi4uHDvdunSBYmJibhx4wY+fvyIXbt24fnz58jKyoKvry+6desGoFQmHz58GIGBgYiJiYFAIEDjxo3Rq1cvjB49GnXq1BGLx9cstwcPHuDgwYMIDw/H58+foaenBxcXF/zxxx8ico4lKysLfn5+uHXrFnfeX19fH40bN0aHDh0wevRopewOlpUj2tra8PX1xdOnT1FQUABLS0sMHz4c/fr1k+r/7t27OHDgAJ4/f47c3FwYGhrip59+woQJE2BhYVHh93R1dbFt2zaEhoYiIyMD8+bNw/79+7ljHGfOnBE5UuPi4oIDBw4AKDW+debMGalyqSrxMjIywubNm/HgwQPk5ubC3Nwcnp6eGDx4sJi/4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD0fDhg0rLYey4R0/fhznzp1DdHQ0BAIBGjVqhO7du2Ps2LGoW7cu9y7bPll8fX25v8vmlSTYNsxS2XgDAAghIn2YlpYW2rVrh1mzZsHU1FTidxRpl5UhT5hPnz6Fp6cnVFRUcOLECdjY2IiE9enTJ/Tt2xcZGRlYtWoV+vXrx9UtoPRoV/n2yfbJZeWjp6cntmzZgps3byI1NRUdO3bE1q1bOT/ytv+yci8lJQVbt27F8+fPQQiBg4MDZs+ezaUlLCwM27Ztw7Nnz1BYWAh7e3vMmTMHLVq0kJh/JSUlOH36NM6dO4fIyEgUFBTA2NgYXbp0wR9//AF9fX0xP9HR0di5cyceP36MtLQ01K5dG/r6+rC2tkaPHj3Qt29fWYoOgGJytzrzuiLS0tJw5coVBAUFISYmBqmpqVBXV4elpSV+/fVXDB48GCoqkk9/lpSU4Pz58zh//jxev37NpdPKygq9evWCh4eHmJ+IiAj4+/sjJCQEaWlp0NLSgqmpKdzc3DBkyBA0aNBA5P2vMQ+QtT1UJpOlzSVKSkpw69Yt3Lx5E8+fP0dKSgoKCwthbGwMV1dXTJgwAUZGRiJhlY1DWbkHQOJc5fLlyzhx4gRevXrF9Qeurq74448/0KhRI7G4AkBKSgo2btyIO3fuICcnB6ampujXrx/Gjh0r8f3q5pufGL98+RKzZs2CqqoqDA0NYWFhgby8PMTFxWH79u24dOkSjh49ygkYdXV1ODk5IS4uDunp6TA3NxcRPiYmJjAwMICTkxNevnyJoqIi2NnZiQx8yp6levfuHcaOHYukpCSoqanB1NQUPB4Pb968watXr3Dr1i34+flJHDgJBAKMHTsWjx8/hoWFBczMzBATE4Njx44hPDwcJ0+eVJo61uzZsxEfHw89PT3Ur18fDRo0wMePH3H58mVcv34d69evR48ePbj3GYZBVlYWoqKioK2tDYZhOLf69euLhH3gwAEsX74cQqEQOjo6sLS0RGpqKm7duoWgoCB4e3tjyJAhIn4KCgowZswYPHnyBADQrFkz1KpVCydOnMC9e/eq1dLysmXLcPDgQRgbG6NZs2aIiYnBlStXcPfuXezduxeOjo5VCl+WOlYROjo6cHJyQlRUFHJzc8EwDLS1tTl3AwMDMT8bNmzA9u3bYWxsDHNzc8TExCAoKAihoaE4efKk2AD0w4cPGDlyJBITE1GrVi1YWVkhPz8fYWFhCAsLw/Xr17F161aR+nfz5k1MmTIFJSUl0NbWhqWlJYRCIZKTk3Hx4kXk5uaKTYyvXLmC2bNno6ioCFpaWrCwsEBWVhYePHiABw8eyK1SXBnjxo1DSUkJ9PX1OQGemJiI06dP4/Lly9i1axecnZ1F/KxevRq7d+8GUFq3GzdujNzcXMTHxyMqKgqmpqYKT4yPHj0Kb29vEEKwYMECjBo1qkrpk4YisiQ6Ohrjx4/Hx48fwePxYG5uDi0tLSQkJODcuXNISkqSOKAPDAzEhg0boK2tDTMzM2hqanJuqampGDt2LKKioqCqqgoTExNoaWkhJiYGPj4+uHLlCvbv3y82Uf9a5bZq1Srs2bMHQOm5bSsrKyQmJiIgIADXrl3D5s2b0blzZ+793Nxc/Pbbb4iLi4OKigqaNGmCOnXqIDU1FaGhoQgJCcGgQYMkDmAV5enTp9i2bRtUVVXRtGlTfPr0CS9fvsS8efMQGRmJefPmifnZtGkTNyCtX78++Hw+YmNjcfr0aQQGBsLHxwcdO3aU+L3Hjx9jx44d3Pfq1KkDHo8HOzs7qKmpITY2FgYGBmjSpAnnp2x/UBFVidfr16/h5eUFQggsLCyQmpqKqKgoLF68GJ8/fxZbYJo1axYuX74MAGjYsCEMDAy4PuzVq1dwcHCQeWJcWFgILy8v3L9/HwC4tvH27Vts374dFy9ehL+/PzeQMzExgZOTE5KSkpCUlAQTExNOzleWV/KMN1jmzJmDCxcuwMzMDObm5nj//j0CAgIQGhqKc+fOibUvRdtlRcgbppOTEyZMmIBt27Zh9uzZOHXqlMjO+oIFC5CRkYGePXtyC0Dm5uaws7PDy5cvUbt2bdjZ2VUYp4yMDAwYMABJSUmwtLTkxhUs8rb/sty8eROrVq2Cjo4OGjdujLi4ONy7dw/Pnj3DsWPHEB0djVmzZqFOnTowNTVFbGwst8h98uRJsUX33NxcTJo0CY8ePQKPx4OxsTFMTEwQFxeHffv24cqVKzhw4AAaN27M+Xnx4gWGDx+O/Px8aGpqwsLCAqqqqkhKSsK1a9cQGxsr18RYEbn7NfJaEidOnMCmTZugrq6OBg0agM/nIzMzE+Hh4QgLC0NwcDA2b94sZrOjbD4DgLGxMRo1aoSUlBTcuXMHt2/fFpsY+/v7Y+XKlRAKhdDS0oKVlRW+fPmCt2/f4tWrV2jUqJHIhPNrzQPkbQ/ykpaWhsmTJ0NFRQUGBgZo1KgRioqKkJiYiIMHD+LSpUs4fPgwzM3NOT/S5B4bX5bi4mLMnTsXAQEBAMAtTMTFxeH48eO4fPkydu/eLbZJFxcXh2HDhuHTp09QU1MDwzDIzs7G+vXr8ezZs5oxXkq+cRISEkhAQADJyckReZ6ZmUmWLFlCGIYhCxcuFPM3b948wjAMOXXqlNSwO3fuTBiGIR8+fJDonpeXR9zd3QnDMOTvv/8mmZmZIvEaPHgwYRiGrF27VsTfqVOnCMMwxNbWlvTo0YO8ffuWc3v79i3p0KEDYRiGHD16VKK/efPmSYzPhw8fCMMwpHPnzmJuZ86cIbGxsSLPSkpKyNWrV4mjoyNp1aoVyc3NFXF/+PAhYRiGeHp6SvweIYTcu3eP8Pl84uzsTM6fP0+EQiHndvXqVdKyZUtia2tLIiMjRfytXr2aMAxD2rdvT16+fMk9j42NJb169SK2traEYRiyefNmqd+WBzZvmjdvTmxtbcn58+c5t5ycHPLnn39yeZefny/il2EYwjCM1LA9PT0JwzDk4cOHIs9lqWMVIS3c8mmytbUljo6O5Pr165xbdnY253/mzJki/oRCIRk4cCBhGIYMHjyYJCcnc25hYWGkbdu2hGEYsm7dOhF/ffr0IQzDkPXr15PCwkIRtxcvXpCzZ8+KPIuMjCQtWrQgtra25MCBA0QgEHBuISEhpH379oRhGHLnzh35MqYCjhw5QpKSkkSeFRUVkaNHj5LmzZsTd3d3kTqanp5ObGxsSPPmzcm1a9dE/BUXF5OgoCCp+S8Jto127tyZHDhwgPD5fMLn88nBgwerlK7NmzdLbA+KypLc3FzSpUsXwjAMGTFiBImPjxdxf/XqFTl06JDIM1Ye2tjYkA0bNpCioiLOraCggAiFQjJs2DDCMAyZNGmSSDlkZGQQLy8vwjAMmTFjhlj6vka5HT9+nDAMQzp27Ehu374t9n0bGxvi7OxMPn36xD3fs2cPYRiG/PLLL2LxS09PJ/7+/mJyU1HY9mpra0umTZsm0qedPXuWNG/enDAMIxb3oKAgrlyOHz/O5VNBQQH5+++/CcMwpHXr1iQtLU3i92xsbMiCBQvIly9fODdWBlbW5xAiXc5VNV62trZk8eLFJC8vj3Pbt28fYRiG2Nvbk+zsbO75y5cvCcMwxNnZmYSGhoqEV1BQQAICAsjr16+lpqE8q1atIgzDkJ9++omEhYVxz5OTk8lvv/3Gyc7ySGunslDZeIPtj21tbUn79u3JkydPROLFyufycrsq7VIaioYpEAjIgAEDCMMwZOnSpdzzAwcOEIZhiKurq8g4ipCKxzUsbL7b2NiQgQMHkoSEBM6NrcuKtH9C/lcutra2ZMeOHaS4uJgL948//uBkqLOzs5j7+PHjCcMwZPr06WJxnjVrFmEYhgwdOpRER0dzz/Py8rj28dtvv4n4Yb83b948Mbnz7t07cuTIEal5JAl55S4h1ZvXFfH48WMSHBwsMo4gpHTMOHToUMIwDDl37pyYP3Zs5+bmRh4/fizilpycLNZWb926RRiGIdbW1mT79u0iY53CwkJy4cIFkXC+9jxAlvZQ2dhTmlzPzs4mp06dIunp6SLPv3z5Qnx9fQnDMGTUqFFi4cki99avX08YhiE///wzCQ8P554LBALi4+PDpalsfguFQjJo0CDCMAz5/fffRfqKu3fvEkdHR26uIM84rap88xPjyujYsSNxdHQUa0zKmBizwnz8+PES3ZOTk4mjoyNp2bIlKSgo4J6zlZLP55Nnz56J+WM7fy8vL5HnVZkYV8SGDRsIwzDk4sWLIs9lmRh7eHgQhmFIYGCgRHd/f3/CMAxZtGgR9yw3N5c4OjoShmHIpUuXxPw8e/aMm4wqe2LMMAxZtmyZmHt+fj5p06aNxDrxrU+MGYYhfn5+Yu4RERHcYLEswcHBnED++PGjmL8LFy4QhmGIo6OjyODczs6OMAwjtgglDbZDkhQ3Qgi5fv06YRiGjB49Wqbwqsrs2bMJwzAiA92wsDDCMAzp16+fUr7BtlF2EsMwDDl27FiVw61sYiyvLGEnfO7u7mILQdJg5eGECRMkut+8eZMwDEN+/fVXsYUTQko7144dOxJra2uJ9U4ayii3oqIi0r59e8Ln80U65bIsX76cMAxDtm3bxj1jB6j+/v4yx1dR2Pb+008/ifQXLP/8849EecxOUBYvXizmp6SkhPTs2VNi3WG/17dvX24wX56qTIyrGq8+ffqQkpISMb/9+vUjDMOILIhcvHiRMAxDJk+eLDWespKTk8P1TwEBAWLuiYmJXPsuL5u/xsRYWn977do1bhGnLNXRLqsSZkxMDJe/QUFB5O3bt8Te3p7w+Xxy//59sbDkmRjb2dmJTfQIUbz9E/K/cvnjjz/E/ERHR3NlUpF7+T44MjKSWwjIysoS81dSUkL69+9PGIYRWQDp0aMHYRiGRERESM4IJSJJ7hJSvXmtKHFxcYRhGDJmzBiR5+yCma2trcjiQ0WU3QCQha89D6jOiXFlsAsQKSkpIs8rk3vp6emkRYsWxNHRUWwRnmXy5MmEYRiRTauyi4FlN3BYdu3axbW/rzkx/i6uayKE4Pbt2/j3338xYcIE/P777xg6dCiGDh2K3NxcTrVa2Vy9ehUA8Ntvv0l0NzIyQosWLfDlyxe8fPlSzN3a2lpMbQAAHBwcAJSquyqTuLg4bNmyBVOnTsXw4cO5PLp06RIAyH2tUFJSEl69egU9PT0RNeyysOcOy95vFhoairy8PDRo0ADu7u5ifuzt7bk8qA5+//13sWcaGhoYOHAgAODevXvV9u3qQtKZO2tra6irqyMnJweZmZnc87t37wIAunfvLlGtu1evXqhfvz7y8vLw9OlT7jn7LltfKqKoqAhBQUFQUVHBoEGDJL7TqVMnqKmpITQ0FMXFxZWGKSsRERHYsGEDJk2aJFLPHz9+zLmzsGmKjY3FmzdvlBYHUka9JykpSWnhSkNeWXLt2jUApec55TUUJOk8FvA/eejh4SFRZYw9BykUCrmyKEt1llt4eDjS0tJgbW0tVbZIklXsd27fvo38/PxKv6MMBg4cCHV1dbHnrNx68uQJ8vLyAABfvnzh2mh5WwQAoKKiwlkzZ9t9eX799VeJ9gSqgjLiNXDgQIlnBtnzmvHx8dwzY2NjAKW2ND5+/FiluLP526BBA4n9WsOGDbm6Ii3u1Ymuri569eol9pyt12XzBah6u5REVcI0NzfnjgP89ddfmDlzJgoKCjBixAi0a9dOpu9Lo127dlxdKIui7b8skvqxZs2acfKzIvfyfTCbfz179hSxgcOioqLCqRlLkkdXrlxRmgqpPHK3LNWZ19LIy8vDqVOnsGDBAowdOxbDhg3D0KFDufpUvi9g+7kuXbpItB9THvYYTq1atWQ+v/q9zQNkITQ0FKtWrcLEiRPh6enJ1YnY2FgA4vlcGXfu3EFhYSHatWsncjSgLJLqxJ07dwAA7u7uYmebgdJxb/mz21+Db/6McW5uLry8vCq9PysrK0vp346KigIAbN26lTvrVh62IqWkpIi5mZmZSfTDniH98uWLEmJZyp49e7Bu3boKJyDy5hF70F8gEEicbAL/myAkJydzz9grLZo2bSrVWEKzZs3w7NkzueIjC2pqaiJn5cpiaWkpEr/vhXr16km9Q1RfXx9JSUnIy8vjznqxdVJaR6GqqgoLCwukpaUhNjaWOwM4evRoeHt7Y9GiRdizZw86dOgAJycntGnTRuyMZVxcHAoLC6GmpoaJEydWGP/CwkJkZWXB0NBQnmRLZPny5fD396/wnbL13MjICL1790ZgYCA8PDy49Dg7O8PZ2Vlh67LGxsYYMmQI1q1bh61bt0JTU1Mho1uyIq8seffuHQAodJ5eWr1h5eGJEye4s57lYSctZeUBUP3lxsYtOTkZQ4cOlRg+a1G4bNwGDBiAvXv34t69e3B1dYWrqytatWqF1q1by3zOVl6kGRqzsLBArVq1UFxcjPj4eFhbWyM+Ph5CoRC1atWSaMgKAHfOmm335ZFlwCgvyoiXNDnN1ml2cQAAWrZsiZYtWyIsLAzu7u5o06YNWrdujVatWsHR0VHk7GNlsPKfPb8pLe6XL1+WGvfqRNrAUlK+AFVrl9KoaphDhgxBUFAQbt26hU+fPsHKykopV35JazuKtv+ySJOx+vr6+PjxY6XuZftgNj63bt3CixcvJPpLT08Xi8+oUaPw4MEDbN26FefOnUOHDh3g7OyMtm3bSpw4VIa8crcs1ZnXkoiMjMQff/xR4UJz+bjK289FR0cDKE1bWeN6FfE9zQMqQyAQYM6cOZVufig6V3j58qXUOpGTkwNA8lxBWh+lra0NIyMjzijm1+KbnxivXLkSISEhMDc3x4wZM+Do6Ah9fX1uFfP3339X+o4UC1uQr169qvTdgoICsWdaWloS3y1vPKCqPHnyBKtWrYKqqiqmT5/OWa7W0tICj8fDyZMnsXDhQrnzKDs7G4Do7oA0WEEI/K/jlmREikUZkyRJ6OnpSZ2M14QgUgbS6hEALq1lV5fZ/K8oj1m3snkxdOhQ6OjoYM+ePXj16hXev3+P/fv3o1atWujatSv++usvbgWZrRsCgaDSugFIbh/ycv78efj7+0NTUxOzZ89G+/btYWxsDA0NDfB4PM4QUPl6vmrVKlhaWuLkyZMIDQ1FaGgoAKBOnToYMmQIpk2bJnEHrzImTJiAgoICbNmyBevWrYOmpiaGDx9e5XRKQl5ZkpubCwAyd/5lKWtsqyysPHz79m2lYZSVB1+j3Nj6mJmZKbJzU1ncGjRogGPHjmHTpk24desWAgMDERgYCKC0s541a5bSLatLk4sqKiqoV68e0tLSuHbJ/luvXj2F5Zq08qwK1RkvSTJNRUUFfn5+3ITh3r17nOZPvXr1MGbMGIwbN05qXMoii3ysyb5CWluXljZF22VFKCPMtm3b4tatWwCAvn37KiRjyyMtbxRt/2WRVh9ZGVuZe9n6yuZffHy82A5/RfHp1KkTdu3ahW3btuHp06c4duwYjh07Bh6Ph59++gl//fWXzIYiFZW7LNWZ1+UpKSnBtGnTkJSUhA4dOmD8+PFgGAZ169ZFrVq1IBQKYWNjIxZXtp+TtnFQHnnfB76feYAs7Nq1C5cuXYKhoSFmz56NVq1aoUGDBlzbnDt3Ls6dOyf3XKHspLeyxRBF5gp0YlyG4uJizsLZ1q1bJa4qfP78udq+r6WlhezsbAQGBlbLqnt5JAnYskhT9Tt37hyA0h0/Ly8vMXdF84ht0A4ODjh+/Ljc/tgVUUl8+vRJoThVRlZWFoRCocRBBBsfaddWEEIkCqvyK/TfOmz+V5THrFv5vOjTpw/69OmDjIwMPH78GI8ePUJAQACuXLmC2NhYzoIi68/Q0JCz7FrdsPV87ty5GDZsmJi7tHpeu3ZtTJ48GZMnT0ZsbCyePHmCu3fv4vr169i9ezdyc3OxdOlSheI0depUFBQUYPfu3fjvv/+goaEhVbX8a6KtrY2srCxuEKMM2Hrl5+cn1dKwJL5GubFx6927NzZs2CBXuiwsLLBx40YUFRXh+fPnCA0NxZUrV/D69WtMmTIFhw4dgpOTk1xhVkRGRobE50KhkBtosu2L/TczM1NhuVYd1ES8dHR0MG/ePMydOxdv375FaGgobt++jdu3b2PdunUAIJPWhizysSbyVFEUbZfVGeb79++xceNG8Hg8EEKwfft29OjRQ8SKrTKpSvuvDtj4eHt7S91Bk0aHDh3QoUMH5OTk4MmTJ1wfHBwcjNGjRyMgIECienZ5FJW7lVEdef3ixQvExMSgYcOG2Lp1q9giirQdTPY2D3ZiVhnyvg98/XmALFR1rrB8+XKJV29WtU6MHz8es2fPlttfTcwVKuKbPmOckZGBvLw86OnpSayQ2dnZUtVilbEaw6reyrJqqgzYFUlplUTaOWr2LkppZvelqSxXlkfsyuT79+/lWkFiVetiYmIgFAolvvP+/XuZw5MHgUAgdYWWVbsp3zlX1jilhVcTK36ywKaPVRsqT0lJCddupA1U9PX10aNHDyxevBgXLlyAjo4OIiMj8fz5cwClapBqampIT0+vUKgpE3bVUN56XhZzc3MMGDAAGzduxJYtWwCU3vlXFY2TuXPnwtPTE4QQLF68GOfPn1c4LGXByq7w8HClhymvPPwa5cbKqqrI6tq1a6NVq1aYOHEizpw5g169ekEoFOLkyZMKhykJabIvNjYWxcXFUFVV5dTvzMzMoKKiguLiYql9HZtmRSYdisqw6o5XRfB4PDAMg2HDhmHHjh34+++/AUDmxVu2f3r//j1KSkokvlNdca8OqmOcUpUwi4uLMWfOHOTn52PkyJEYMmQI8vLyMHfuXIlyVhn9qDLavzJRRpno6OjAzc0N8+bNw6VLl9C4cWOkpaVxu/CVoQy5K4nqyGs2rnZ2dhI1C9hxR3nk7efKjmllXTT+2vMAWdqDonOFiupESUmJxDPSssRJ0TrBymJ2bF6e3Nxcierp1c03PTFmz5Hl5uZKXAE5ePCg1AEt27gqUuFkw5em7sEa5ti/f7/UCZ4yYQdDb968gUAgEHM/duyYRH9sWiWtrMTHx0sVpGz6peVRkyZNwOfzkZOTg1OnTlWegP+Ps7MztLS0kJKSguvXr4u5v3z5UqkD9vIcPnxY7FlhYSE3wHV1dRVxY890SRK+gYGBUgWoLHWsIirLf0Vh03f9+nWJ53UuX77MXWgvy05YgwYNuPs8U1NTAZQKZldXVxBCKj3DpCzY/JJUz0NDQ6UKdWmwaRcIBFW2UbBo0SIMHDgQQqEQ8+fP5wx21BTdu3cHUHoHuazqbJXBysNjx47JZajqa5Sbs7MzDAwM8PbtW6UZ12vZsiWA/9V5ZXHy5EkUFRWJPT906BCA/8lPoHTHkk3v/v37xfwQQjh/5eWaLCgqw6o7XvLADvJkLSc2f9PS0nDlyhUx96SkJNy4cQOAcuNe2XhDURRtl9UVpo+PD16+fAmGYTBr1izMnz8fFhYWePbsGbZt2yb2vjL6wepo/1WBzb8LFy4oZeG4Tp064PP5AGSv58qWuyzVkddsXNPS0iS679u3T+Jz1rjrzZs3pU6uytK4cWNYW1ujuLhYapjl+drzAFnaAztXkHR+PTc3l9O0lRa2pDpx8eJFqbuzlfUTbm5uqF27Nu7duyd1Q0YSrHy9evWqxHp9/PhxiXOh6uabnhjXrVsXDMOguLgY//33HzeYIITgxIkT2LJli9RzK+xkJzQ0VKq6AfuONMNegwcPhrm5OZ48eYLp06eLTTJYy7wLFixQKH3lsba2hpGREdLS0rBx40Yu3sXFxdiyZQsePHgg0V+rVq0AADt27BDZ3YyOjsbEiROlrvawk53o6Gip6n1z5syBiooK/vvvPxw6dEhsQJeSkgJ/f38cOXKEe6atrY0hQ4YAAP7991+8fv2ac/vw4QPmz59foaW5Ll26gM/nw8fHR+o70qhVqxYOHz4sIhi+fPmCefPmISMjA6ampujdu7eIH1alZOPGjSKrU2FhYfjvv/+kxlWWOlYRrH9ZLYXKStu2beHg4ACBQIAZM2aIpOn58+dYvnw5gFKLxaxqUW5uLqZPn44HDx6I7KIQQhAYGIioqCjweDw0b96cc5s2bRo0NDTg5+cHX19fsfN4mZmZOHHiBLZu3SoWRz6fDz6fj9OnT8ucLraeb9iwQUSAP336FNOnT5coCx48eICVK1dyxiFYCgsLuXiZmJhUeMZFFng8HpYtW4Y+ffqgpKQEM2fORFBQUJXCrAqDBg1C48aNERsbCy8vL06rhCUiIkLiAlJFdOvWDc7OzoiLi8P48ePFBiLFxcV4+PAhZs2aJSInvka5qaurY8aMGQCAmTNnIiAgQGwQEx8fj61bt4osWqxfvx7Hjh0TWxhJSEjAiRMnAAC2trYibj4+PuDz+ejSpYuUnKqYz58/Y8GCBSLt5cKFCzh69CgAYNy4cSLvs+rBJ06cwMmTJzlZU1hYCG9vb7x79w66urpyq2wC/5NBL168kHsCVJ3xKs/58+fh6+srpr2Tm5sLPz8/AOLlJA1tbW1OtfS///4T2TlLSUnBjBkzIBAI0LJlS7Rp06bKcWepbLyhKIq2y+oI8+nTp/Dz84OamhrWrFmD2rVrQ1NTE2vXroWamhq2b98utlOpr6+POnXqID09XabJjSQUbf/VRfPmzdG3b19kZ2dj1KhRYovuhBA8e/YMS5YsEbFKPH36dNy4cUOsnB4+fIjg4GAApbuqsqCI3JWF6shr1oBeWFiYiIZOfn4+vL29pdoxsbGxQa9evSAQCDB+/Hg8efJExD0lJQW+vr4iz2bOnAkA2LZtG/z8/ETyuqioCIGBgZw9C+DrzwNkaQ/shPLGjRsim09ZWVmYN2+eVJVotk6sXLmSO28NlC4seHt7VzqfCgsLk7gZWb9+fYwZMwbFxcUYN26cxAWTyMhIrFmzRqSM2rRpgxYtWkAgEGDWrFkii0jBwcHw9fWVOv6+fPkyunTponA/XBHf9BljAJg1axa8vLxw4sQJXL16FY0bN0ZycjI+ffoEDw8PJCYmSuxounfvjg0bNiAgIADh4eEwMTGBiooKPDw80L9/fwCl19YEBQXB29sbhw8fhp6eHoDSKwZsbGygqamJnTt3YsKECbhy5QquXr2KJk2aQE9PDzk5OYiPj4dAIFCaISkVFRXMnTsXs2bNwq5du3Dy5Ek0atQIHz58QF5eHhYsWCDxLORvv/2Go0ePIi4uDr1794aFhQWEQiHevXuH+vXrw8vLCxs3bhTzp6+vj7Zt2+Lhw4fo1q0bLC0toa6uDkNDQ+7siKurK5YuXYp//vkHS5cuxdq1a2Fubg5VVVWkpqZyk67x48eLhD116lSEhYUhLCwMHh4esLS0RK1atfD27VvOou+BAweUkm9lMTIyQufOnTFz5kysWbMGBgYGeP/+PfLy8qCpqYk1a9aIWbQdM2YMzp07h8jISHTt2hVNmzZFQUEB4uLi0LdvX6SkpChcxyqid+/eOHToEPz8/HDt2jXUr18fPB4P48ePr9JZMR6Ph3Xr1mHkyJEICwtD165dYWVlhYKCAk6Ns0OHDpgyZQrnRygU4tKlS7h06RI0NDTQpEkT1K5dG8nJydwq7sSJE0VUC62trbFp0ybMnDkTPj4+2LFjBywsLKCuro709HR8/PgRhBCxhQhFGTduHAICAvDixQt06dIFFhYWyM/PR1xcHKysrNC3b1/s2bNHxM+XL1+wd+9e7N27F3p6ejA1NYVQKMSHDx+Qm5sLNTU1eHt7K0WdT0VFBatWrUJRURGuXr2KqVOnYseOHfjpp5+qHLa81KlTB9u2bcO4ceNw//59rl5raGggMTERWVlZcHFxkXj2TBo8Hg8+Pj7w8vLC48eP0bt3bzRq1AiGhobclXnsbhi7+AJ8vXIbNGgQNxCaOXMmvL29YWZmBkIIkpOTuU7X29ub8xMdHY0dO3ZgyZIlaNSoEfT19ZGdnY24uDgIhUJYWVnJfK2HrEyePBlbt27FzZs30bRpU6Snp3ODrREjRoid/erUqRO8vLywbds2LFy4EJs2bYKRkRFiY2ORk5MDDQ0NrF27VqF+yNbWFubm5oiNjYWbmxssLCygpqYGa2trLFy4sEK/1Rmv8mRkZMDHxwc+Pj6oX78+jI2NUVhYiPj4eBQUFEBHR6fS+JZl6tSpeP36NYKDg/Hbb7/BwsICmpqaePv2LQQCARo1aoS1a9dWOd5lqWy8oSiKtktlh5mbm4u5c+eipKQEs2bNgrW1NReenZ0dJk+ejI0bN2LOnDk4e/YspxXB4/HQs2dPnDp1Ch4eHrCysuLc5BkjKNL+q5Nly5YhJycHQUFBGDRoEIyMjETqLWu7pOx1Z/fu3cOlS5egpqYGc3NzaGpqIi0tjZMPffv2lfnKK0XkrqwoO68NDQ0xevRo+Pn5YeHChfDx8YGhoSHev3+P/Px8/Pvvv1Lb97///ov09HSEhIRg2LBhMDExgaGhIVJSUpCWlgZCiMhYp1OnTliwYAFWrVqFtWvXYuvWrbCwsEBeXh4SExNRVFSEFStWcJPIrz0PkKU9NGvWDIMHD8axY8cwefJkmJqaQk9PD2/fvoWuri4mTpwocWNp6tSpCA4Oxq1bt+Dq6goLCwtkZGQgKSkJbdu2RYMGDSQeBevQoQN0dXXx5MkTuLm5oXHjxqhVqxZcXV25BdJp06YhPT0dJ06cwNixY6Gvr49GjRqhuLgYiYmJ3GS97GIjj8fD6tWr4enpiZCQELi5ucHKygq5ubmIi4tDly5dkJOTI3HziC2v6uCb3jEGSrfod+/ejVatWqGoqAjv37+HkZERlixZghUrVkj1Z2Zmhu3bt8PFxQWfP3/GkydPEBISIpKR/fr1w8KFC8Hn8xEfH4+QkBCEhISIqM42adIEZ8+exYIFC+Do6IiMjAy8evUK+fn5cHBwwNSpUyWqkilKnz594OvrC3t7e+Tn5yM+Ph729vY4dOiQxMPyQOkK+OHDhzFgwADUrVsXMTExyMvLw+DBg3HmzJkKzfyvW7cO/fv3h7a2Nl69eoWQkBCxFd1Bgwbh/PnzGDJkCBo0aID379/j/fv3qFOnDtzd3bFq1SoxoyeamprYt28fJk2ahMaNGyMuLg6ZmZkYOHAgTp48KdV4RHFxMWeApuzupDz8/fffWLJkCXR1dREdHQ01NTW4u7vj5MmTEs9W1KtXD4cPH0afPn1Qp04dxMTEoHbt2li4cCHWrFkj9Tuy1LGKaNWqFdatWwd7e3ukpqbi8ePHCAkJUYqxgcaNG+P06dOYMGEC/l979/fSZB/Gcfztr0DcKrADTaMSEyxIM1IGsq1OFrQDFYMOMkqqURqW1JFoHkywogM7apYIoeIvFAqiv2EHFkUzt4nBJHVYZCT2C9bBQyNbPc8m88fTPq/j3V++7N5973t9r/u+rtzcXPx+P7OzsxQVFdHa2orL5VrWnzIjI4Nbt25RWVlJTk4Os7OzjI+PEwqFOHz4MC6XK7xL/DOr1crjx4+pra1l586dBAIBfD4faWlpmM1mWltbI/7Qfn5cKpZznJ2dzcDAAEePHiU9PT0c5J89e5b+/v7fVn88ePAgzc3NHDlyBKPRyNTUFH6/ny1btlBVVcXo6ChWqzXqOfyX1NRUbt++jcVi4fPnz1y8eHHZ7vNa2rNnD48ePaKuro6CggJmZmaYmppi69atVFVV0dDQEPOYmZmZ9Pb24nQ6MZlMfPz4kZcvX/L+/XsKCws5f/48w8PDy3ae1/K81dfXMzg4SEVFBUajEa/XSyAQIDMzE7vdzp07d6ioqAh//sKFCzgcDoqLi/n06RMej4dgMEhhYSGNjY0MDg5GVPb+8ftd6f2ppKSE/v5+ysrKmJ6e5t27d+zbt4/29vY/Lv4uX74cLoT05csXXr16RUZGBpWVlYyOjq54Iy05ORmXy4XNZiMlJYXnz5/jdruj7mO5WvP6lc1m49q1a5SXl7Np0ya8Xi+vX78mKyuLkydP8vDhw6gzafBP1uvevXu0tLRQVFTE3Nwck5OT7NixA4fDwcjISPiJqniJZr2xUiu5LuM9ZltbG4FAgNLSUs6cORMxnsPhCGehf127NTU1cerUKbZt28bExET4u4lVrNf/akpPT+fu3bt0dHRgtVr59u0bHo+H+fl5du/eTU1NDT09PcvanbW3t3PixAny8vKYn5/H4/GwtLSEyWTi5s2b/7oe+dVK7ruxiPd3ffXqVVpaWsjPz+ft27dMT09z4MABurq6qK6u/uNxBoOB7u5unE4nhw4dYnFxkYmJCdLS0rBYLNy4cSPimNOnTzM0NITdbmfz5s14vV4WFhYoKCjg0qVLEa9QrHUcEM31cP36dRobG9m1axfBYJBgMIjdbmdkZITt27f/dty9e/fS19eH2WwmKSmJyclJDAYDV65c4f79+39sX2cwGOjq6sJsNvP161eePXuG2+1eVi8jOTkZp9NJd3c3NpuN1NRUxsfHefPmDdnZ2Rw/fpzOzs6IREFeXl54E8BoNOLz+UhJSQknXNajlk9SKF5dxEXi4MWLF1RXV4cX9Ru1wJWs3JMnT2hoaMBisdDZ2bne0xGJid1ux+fzMTQ0xP79+6M+rqamBrfbzYMHD+L6iK6IiIjEx4bPGEti+fEuyblz5xQU/6V+nONoWquIbCQfPnzA7/djMpliCopFRERk41NgLBvK2NgYOTk5HDt2bL2nIqtkbGyMkpKS8Ds8Iv8XT58+JRQKaVNHRETkL7Thi29JYuno6FjvKcgqi3dfWJG1YrFYIipli4iIyN9BGWMRERERERFJaCq+JSIiIiIiIglNGWMRERERERFJaAqMRUREREREJKEpMBYREREREZGEpsBYREREREREEpoCYxEREREREUloCoxFREREREQkoSkwFhERERERkYT2HRSRoKqf7C0rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(8, 2, figsize=(11, 27), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + " axes_rows[0].plot(lc_ar4.time, taper, color=palette[idx])\n", + " axes_rows[0].set_ylabel(f\"K = {idx}\")\n", + " axes_rows[0].set_xlabel(\"t\")\n", + " \n", + " axes_rows[1].plot(lc_ar4.time, tapered_data, color=palette[idx])\n", + " axes_rows[1].set_xlabel(\"t\")\n", + " \n", + " idx += 1\n", + "axes[0][0].set_title(\"DPSS tapers\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Tapered time series\", fontsize=18, pad=15)\n", + "fig.tight_layout()\n", + "txt=\"DPSS tapers and product of these tapers and the AR(4) time series.\\n\\\n", + " Note that, for K=0 in the top row, the extremes of the time series are severly\\n\\\n", + " attenuated, but those portions of the extremes, as K increases, are accentuated.\"\n", + "fig.text(.5, -0.025, txt, ha='center', fontsize=18)\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "b373cc2c", + "metadata": {}, + "source": [ + "#### Now let's see their frequency domain representations (here PSD)\n", + "\n", + "We can have a good look at the leakage properties of these tapers (and the resulting time series) from their PSD representations." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eb8f5358", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAp2CAYAAABbLXaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gU1dfA8e9sSU9IhdBD2xASQi/SOwhYAAELior6qoCCvYu9YIefDUERsaKg0hUBQTqE3gkJJBAgjfRky7x/JLvsJptKSAI5n+fhIZl65+5kZvbMvecqqqqqCCGEEEIIIYQQQlQxTXUXQAghhBBCCCGEELWTBCWEEEIIIYQQQghRLSQoIYQQQgghhBBCiGohQQkhhBBCCCGEEEJUCwlKCCGEEEIIIYQQolpIUEIIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIB6GhoYSGhlbLvrdu3UpoaCh33nlnle3zzjvvJDQ0lK1bt1bZPsXV5ZlnniE0NJTffvutuosirhIHDx7k/vvvp0uXLrZr6qFDh6q7WNUuNjaWiIgIHnvssUrb5rhx4+jSpQupqamVtk1RPr/99huhoaE888wzV8V2a6uaXJ+66i6AEOVx5513sm3bNodp7u7ueHl50ahRIyIiIhg6dChdunQpdhu//fYbzz77rMM0RVHw8PAgJCSE/v37M3HiRHx8fIqse+7cOebPn8/GjRs5ffo0RqMRPz8/goKCiIyMpGvXrgwePBi9Xu+wntlsZvHixSxdupTDhw+Tnp6Ol5cX/v7+tGzZki5dujBo0CAaNGhQ5rqYNWsWAFOnTi3zOuLq8NtvvxEfH8+oUaNo1KhRdRdHiGuGs3uIM6NGjeLtt9+ughKJivrmm29IT08v9n5dnRITE5k4cSJpaWkEBwfTokUL23NGTaGqKoMGDSIuLg53d3c2btyIl5dXscvPmjWL2bNnO0xTFAUvLy9CQkIYOHAgd955Z4nbAHj//fcxm808/PDDZSrn448/ztKlSwF46623GD16dJFlJk+ezAMPPMBnn31W5PmuLOSeWz3S0tKYP38+3t7e3H333dVdHFHNJCghrkr169enfv36ABiNRi5evMiePXuIiopiwYIFhIeHM3PmTFq0aFHsNlxcXIiIiADyb85xcXEcOHCAAwcOsHjxYr777juHIMHWrVt5+OGHycjIQKPRUK9ePQIDA8nMzOTIkSMcOHCAH374gfXr1xMcHGxbLyMjg/vvv59du3YB4OvrS8uWLdFoNJw+fZro6GhWr15NRkZGmW/SgO3hQIIS157Fixezbds2unbtWusekNzd3WnWrJnt71uIK8H+HuJMSEiIw+9BQUE0a9YMb2/vK1wyUVbffvut7YtkTQtKLFu2jLS0NAYPHswnn3yCRlPzGibv2LGDuLg4ALKzs1m1ahVjxowpdT0vLy8MBgMAFouF+Ph49u3bx759+1i8eDHff/89gYGBTtfds2cPq1atYujQobRs2bLUfW3cuNEWkChJ3759CQ8PZ+HChUycOLFcL3igdt9zq1NaWhqzZ8+mYcOGxQYlvL29adasGUFBQVVbuGtUTa5PCUqIq9KYMWOKfBnPyMjgr7/+YtasWRw4cICxY8fyww8/FNsMPSgoiB9++MFh2r///stjjz1GfHw8L7/8MnPmzLFte9q0aWRkZNCrVy9eeuklmjZtalsvOzubjRs38ssvv6AoisM23333XXbt2oWvry9vvfUW/fv3ty2jqiqHDh3izz//pE6dOpddL0Jc7SIjI1m5cmV1F0Nc45zdQ0ry+OOP8/jjj1/BEolrycmTJwHo0aNHjQxIACxZsgQAHx8f0tLSWLJkSZmCEm3atGHBggUO09atW8e0adOIjY3l3Xff5d1333W6rnU9Z60dCsvJyWHGjBm2F0AHDhwocfnRo0fz2muv8dNPPzF9+vRSty+uDoMHD2bw4MHVXYxrRk2uz5p5pRSiAry8vBg1ahS//fYbBoOBzMxMHn30Ucxmc5m30adPHyZPngzkR+it/RPXr19PcnIynp6ezJo1yyEgAflvdwcPHsyXX35JvXr1bNNNJhN//vknAM8++ywDBgxwCFooikKbNm14+umnueOOOyp66EIIIYSoIXJzcwFwc3Or5pI4l5OTYwv+zpgxA0VR2L59O2fOnKnQ9vr168fEiRMB+Ouvv5w+d6WmprJ69Wr8/Pzo2bNnqducNWsWp0+f5vnnn8fT07PU5YcPH45Op+O3334r13OfEKJmkKCEuOb4+vryzjvvAPlvK1atWlWu9a35KCwWC6dOnQLg9OnTADRr1qxcfUKTkpLIysoCIDw8vFzlKM6sWbMcWn9YE2hZ/1mbY5rNZv7++2+ee+45Ro4cSZcuXYiMjGTIkCG89tprnDt3zun27RO6nTp1iscff5yePXsSGRnJyJEjmT9/fok3/PPnz/PWW28xbNgw2rVrR8eOHbn11lv57bffUFW12OOZNWsWKSkpvP766wwYMICIiIgyd2c5fvw4Tz31FP379yciIoKOHTsyaNAgpkyZYgsKWdkn+cnKyuLdd99l4MCBtG3bln79+vHmm2+SlpZW7L5ycnKYN28et9xyC506dSIyMpIRI0Ywe/ZsMjMzi10vPT2dTz/9lNGjR9OpUyfatWvH0KFDeeqpp2x93K1JHq2/33XXXQ6frTXJXlxcHKGhoQwYMACAX375hbFjx9KxY0dCQ0Nt5T99+jRz5szhrrvuol+/fkRERNC1a1cmTpzI8uXLy1S3ZTF16lRCQ0OdbnPw4MGEhoZy++23F5n3zTffEBoaymuvvWabVlyiy8LHvGzZMsaOHUuHDh3o3Lkz//d//8fhw4eLLeO5c+d49tlnbefy9ddfzxdffIHJZCrx2EwmE99//z3jx4+3fd7Dhw/nww8/LHKeqKpK9+7dCQ0NJTEx0WFeQkKC7XP86KOPiuzn4YcfJjQ01OF6ZTKZ+O6772z7joiIoGfPnowePZp33nmnwl8gRPmVlujy119/ZfTo0bRr147u3bszefJkDh8+XGri1rS0ND755BNuvPFGOnToQPv27Rk9ejTffPMNRqOxyPL216+8vDw+/fRThg4dStu2bW2t+FJSUpzuKyoqikceeYRevXoRHh5Oly5dGDp0KI8//jjr1693WNb+upyUlMRLL71Enz59aNu2LUOGDGHWrFm2L96VcVxWFy5cYObMmdxwww106NCBDh06MHz4cF5++WUOHjzoUAfx8fEADBw40OE6aU1Ya1/3JpOJuXPncuONN9K+fXs6d+5s2+fRo0eZNWsWt956K7179yYiIoLrrruO//u//+O///4rtqzOFD5Pnn32WVu5CieWO3HiBM8884zt2ty9e/cS91kZ90qrv//+m4yMDBo2bMjw4cPp0qULqqry+++/l2s79tq2bQtAVlaW03Pw77//Jjc3l969exfJu1XY4cOH+eabb+jTpw9Dhw4t0/79/f2JjIzk/PnzZcobA2W/50J+15OZM2cyZswYevbsSUREBL179+bRRx9l7969Trdf1c8bZT3nAWJiYnjxxRdt5enSpQt33303a9asKbY8ZrOZ+fPnM3LkSCIjI+nZsydPPPGE7Rm5PJ555hkGDhwIQHx8fJFnWaviEjPaH6vFYuHrr79mxIgRtGvXjr59+/LOO++QnZ0N5D/Pf/vtt9xwww20a9eOXr168eqrr5KRkVFs+cr7LFua9evXc//993PdddcRHh5Ot27dGD58OM8//7yte3dh+/fv5/HHH6dv375ERETQrVs3HnzwQXbs2OF0efuk3YcPH+bRRx+lZ8+ehIWF8c0335RYn1YVuXZX5Nicke4b4prUpk0b2rVrx549e1i/fj3Dhw8v87rOLjbWxE0xMTGkpqbi6+tbpm15enqiKAqqqrJ7925atWpV5nIUp379+nTs2NH2h96xY0eH+a6urkD+w93kyZPRaDQEBATQqFEj8vLyiI+P57vvvmPFihV8//33RfpOW8XGxvL222+TlZWFwWDA3d2dY8eO8eabb7Jr1y4++uijIl1VduzYwcMPP8zFixdxdXWlSZMmZGdns3v3bqKioti0aRMzZ84ssh5AcnIyY8aM4ezZs7Rs2ZIWLVqg05V+idq3bx933nkn2dnZtnwEWq2Ws2fP8tdffxETE8MNN9xQZL28vDzuvPNO9u/fT4sWLWjWrBnHjh1j/vz5bNiwgYULF+Lv7++wzvnz55k0aRJHjx5Fq9VSv359PDw8OHnyJLNmzWLVqlV8++23+Pn5Oax3/Phx7r//fs6cOYOiKISEhODh4UFcXBy///47Z8+eZcGCBXh7e9OxY0eOHj1KRkYGBoPBIWlYQEBAkeOYMWMGP/zwA/Xq1aN58+YODweff/45ixYtwsPDg7p16xIaGkpSUhJbtmxhy5Yt7N69m+eee67UOi5N165dWb16NVu3bnX4Wzt37pwtsLd3715ycnIc3hxaHwRLSkzrzIcffsjnn39OcHAwISEhnDx5knXr1rFjxw4WLVpEs2bNHJaPjY3l9ttvJzExEb1ej8FgIC0tjQ8++IA9e/YU+4CRm5vLQw89ZPuSYP3cjh07xueff87SpUuZP3++rQ+yoih06dKF1atXs23bNoe6sB/Zo/ADs6qq7Ny5s0hdPP7447a3mQ0aNCAgIIDU1FSOHj3KgQMHaNeuXbn7TovK9+qrr7Jw4UIg//ocEBDApk2b2Lhxo63lnTMnTpxg0qRJnD17Fr1eT8OGDVEUhcOHD3PgwAHWrl3LnDlzcHFxKbKu0Whk0qRJbN++nWbNmtGkSRNOnjzJTz/9xO7du1m0aJHDev/88w9TpkzBbDbj5eVFy5YtsVgsJCQksHTpUjIyMujbt2+R/aSmpjJ27FgSEhJo2bIlXl5enDhxgtmzZ7N582bmzZtXpDVARY9r+/btTJ48mYsXL6LVamnRogUajYa4uDh+/PFHcnNzefvttwkICKBjx47s37+fvLw8IiIiHLZVOO+HqqpMnjyZdevW0ahRI1q0aEFSUpJt/ptvvsnmzZvx9vYmKCiIoKAgzp8/z7p161i3bh3PPvtsmZPwhYSE0LFjR2JjY0lKSiIkJMR2H7G/165bt45HHnmE3NxcvLy8CA0Nddjn1KlTmTJlitN9VPReac/adeOGG25AURRuvPFGtm3bxu+//85DDz1Urm1Z5eTk2H52d3cvMn/79u1Afhe9klgsFl566SW0Wi0vvfRSucoQGRnJrl272LFjB9ddd12py5fnnvvEE09w6tQpfH19CQoKom7dupw5c4aVK1fy999/88EHHxQbQKnK5w0o/ZxftWoVTzzxBHl5eXh4eNCsWTNSU1PZvHkzmzdv5sEHHyzSBUZVVaZPn24LnDdu3BgfHx9WrlzJv//+6/TFQ0lCQkKIiIhg//79DjneKuKxxx5jxYoVNGvWjIYNGxITE8O8efM4evQoX331FdOmTWPVqlWEhITQqFEjTp48ycKFC4mOjrZ9Wbd3Oc+yzixcuJBXX30VyH9xGhoaSk5ODmfPnuXEiRO4uroWeZZfsGABb775JhaLBW9vb1q2bMn58+dZu3Yt69atY8aMGdx6661O97d9+3a++OILtFotzZs3t30XKU1Frt0VObZiqUJcRSZMmKAaDAb1k08+KXXZt99+WzUYDOrQoUMdpv/666+qwWBQ+/fv73S9uXPnqgaDQW3durWanJysqqqqnjx5Um3durVqMBjUm266SV22bJltXmluu+021WAwqO3bt1f/97//qcePH1ctFkuZ1i2JwWBQDQZDsfPT0tLUX3/9VU1KSnKYnpmZqc6ePVs1GAzq3XffXWS9p59+WjUYDGp4eLg6YcIENTEx0TZv48aNavv27VWDwaB+//33DuudP39e7datm2owGNSPPvpIzcrKss07fPiwOmzYMNVgMKg//PCDw3qffPKJajAY1LCwMPWWW25R4+LibPOys7NLrYf/+7//Uw0Gg/r000+rGRkZDvNOnDhRZH/Wzz88PFzt3bu3euDAAdu82NhYdfjw4arBYFCnTZvmsJ7FYlFvv/121WAwqA8//LB69uxZ27zk5GT1oYceUg0Ggzp9+nSH9TIyMtQBAwaoBoNBveuuu9RTp045zD9w4IC6cOFCh2nW83zLli1Oj/n06dO2OouMjFRXrVplm5ebm6uazWZVVVV13bp1alRUVJHz7eDBg7bPY8eOHUW2X9q5VdihQ4dUg8GgDhs2zGH677//rhoMBrV3796qwWBQN23aZJtnsVjUrl27qgaDweEc27Jli2owGNQJEyY4Pebw8HC1ffv26t9//22bl5aWZquzxx57zGE9i8Wijh07VjUYDOodd9yhXrhwwTZvw4YNavv27dXw8HCn9f3OO++oBoNBve6669SoqCjb9ISEBHXcuHGqwWBQx48f77DO/PnzVYPBoL700ksO059//nlbXYSHhzuc29b6Gz58uG3a/v37VYPBoHbq1KnIZ5STk6MuW7ZMPXjwoCrKpzz3EHvW6+Kvv/7qMP2vv/6ynZfLli2zTc/IyFAfe+wx27lV+HzOyspShwwZohoMBvXFF19UU1JSbPPi4uLU8ePHqwaDQX3vvfcc1rO/fg0dOlQ9duyYbd6xY8fUXr16qQaDQf3xxx8d1hs5cqRqMBjUDz74QM3NzXWYt2/fPnXJkiUO06zX5fDwcHXkyJEO1639+/erPXv2VA0Ggzpz5sxKOa6zZ8+qXbp0sV177a8Jqqqq27ZtK1LG/v37qwaDQT19+rTqjPVaEhYWpnbr1k3dvn27bZ7939+KFSvUQ4cOFVl/69atas+ePdU2bdoUu4/iFHe+qKqqnjt3Tu3UqZOtjqxlsVgs6s8//2x71vj3338d1rvce6XV+fPn1bCwMNVgMKjHjx9XVTX/Gtq2bVvVYDCou3fvdrqedf+Fz2WrJ554QjUYDOrAgQOdzh84cKBqMBjUXbt2lVi+b7/9VjUYDOr//vc/2zTr362z+rT3559/qgaDQZ04cWKJyxVW2j1XVVV18eLFakxMjMM0s9msrl69Wm3fvr3auXPnIs8gVf28UZZz/siRI2rbtm3V8PBwdcGCBarRaLQts23bNtvfduHzb+HChbZn2Q0bNtimX7hwQb399ttt17qnn3662DoszHpfL+55XFUv1WHh7VqPNTw8XO3Vq5e6d+9e27xDhw7Zni8mT55cZP7Bgwdt15v169c7bLeiz7LFMRqNtn0tXLhQNZlMtnkWi0XdunWr+tdffzmss3HjRjU0NFTt1KmT+scffzg8w61evVrt0KGDGh4erh45csRhPet5HBYWpj777LNqZmambZ718y+uPity7a7IsZVEum+Ia5Z1BIzk5OQyr7NhwwY+/fRTAHr27GmLQIeEhNiixocOHWL69Ol0796dQYMG8dhjj/HLL78U2wRvxowZ+Pv7k5WVxccff8zw4cNtTehnzZrF0aNHL+cwi+Xt7c3o0aOLRN89PDyYPHkynTp1YtOmTZw/f97p+oqi8MEHHzi8KejZs6ft7c1XX33l8IZ53rx5pKSkcPvtt/Poo486vCkJDQ3lgw8+QFEUvv76a6f702q1zJo1i4YNG9qmlaU/bkxMDAB33313kX6nzZs3LzaSbDQaefHFF2nTpo1tWpMmTXjrrbcAWLFihUOrA+ub+LCwMD788EOHEVb8/Px47733CA4OZsWKFZw9e9Y27+effyYuLo6QkBC++OILGjdu7FCONm3alPsNg5XZbOaRRx5hyJAhtmkuLi62xGp9+/alffv2RSLkYWFhtjdQl9Nc1yo0NBRfX1+io6Mdui1YWwTcf//9gGNrgSNHjpCamkrLli2dtgApjtFoZPLkybZmn5B/rj///PMARZqhb9u2jT179qDX63n//fcdssL36tWLKVOmOG2SmJGRYUuE+8ILL9C+fXvbvHr16vHhhx+i0+mIiopyOK6uXbs6HLt9OQICAhg9ejRGo5GoqCjbPOv61nXh0nndvXt3OnXq5LAtV1dXhg8fTlhYWDG1JEoze/bsIs2FnXUBKM3cuXOB/HPcvmWMp6cnb731lsN1wt6vv/5KTEwMffv25dVXX3VofdewYUM+/vhjPDw8WLhwodNuEiaTiXfffddhBIOWLVty3333AUX/Dqzn0/3331+khUJERAQ33XST03IajUbefvtth+tWeHg4L7zwApD/lsy+GXlFj+urr77i4sWLdO7cmffff7/INaFLly7FlrE0ZrOZGTNmODRft7+3DBs2jNatWxdZr2vXrjz66KOYTKZK7e72ww8/kJ6eTsuWLXnllVdsZVEUhbFjxzJ27FgAvvzyS6frV/ReafXHH39gNptp06aNbYQyb29v+vXrB1xqRVEWZrOZU6dOMXPmTP744w8A/u///q/Icqqq2u6LdevWLXZ7CQkJfPjhh4SEhNjO5fKwjihwJbq23XzzzUXyiWk0GgYPHmwb/nXdunVO162q5w2rks752bNnk5uby7Rp05gwYYJDK5suXbrwyiuvADg8q6mqyldffQXAlClT6NWrl21eYGAgH3zwQTG1duVZ69bafQigdevWtr+jv/76q8j8sLAw2/x///3XYXuX+yxbWEpKChcvXqROnTrcfvvtaLVa2zxFUejatSuDBg1yWOf9999HVVVee+01W2smq8GDBzNt2jSMRmORhLNWLVu25LXXXnPobl7aNaIi1+6KHFtJJCghrlnWP8bi+vlfuHCB2267jdtuu83Wl/S+++4jPT2d4OBgZsyY4bD8Aw88wMKFCxk4cKCti8Tp06dZtmwZL7zwAv379+fnn38ush+DwcDSpUuZNGmSLQlmWloaW7ZsYfbs2dxwww1Mnz69xL5tl2PHjh288847PPjgg0yYMMF2zNaH1OL64Q8ZMsTpkEHjx49Hr9cTFxdnyzAOsHr1att8Z8LCwmzN6pzls+jRo0exD/AlsQ7rt2rVqnL186tXr57DF1uryMhI2rVrh6qqDn17rcc3atQop82pPTw86NGjBxaLxdZMFfJviJDf1+9KJD0bNWpUifNTU1NZuHAhTz75JPfccw+33347t912G++99x5Q/OdfHoqi2B5+7L+Mb9++nYCAAG655Rb0er3DvIp23QDn51jr1q1xdXUlPT3doT+z9YFjyJAhDklo7bflrH/zzp07ycrKom7duk6b5DZo0MB2s92wYYNturMAzblz54iNjaVLly5069YNcAzQWM8X+7qw/i3s2bNHckdcAdZucMX9K8vQn5mZmezevRuAW265pch8FxeXYr9IW68n48aNczq/Xr16tG3blszMTPbv319kfuvWrZ02g2/Xrh1AkT7e1uvkihUrijka5zp06OA0H9KQIUOoW7cuWVlZDn2GK3pcf//9NwD33XdfpY9W4eXlVWq2+XPnzjF37lymT5/OxIkTbffJb7/9Fsh/GVFZrNeLCRMmOG1SfddddwGXrkGFVfReaWXfdcPejTfeCMDy5cvJy8srdv1t27bZgndt2rRh8ODBfPXVVwQEBPDSSy/ZvuzZS0tLs+XvKWmksVdffZXMzExmzJjh9D5bGuu2y/MyqjxiY2P53//+xyOPPMKdd95pO0+sf1fFnSdV9bxhVdw5n5eXx7p169BoNE4/J8h/maHX69mxY4ftM4uOjiY+Ph69Xu/0/luvXr1qG9GhTp06Di9mrKwBoOLmW69r1jxsVpf7LFuYv78/rq6upKWllSlHzdmzZzlw4AC+vr7FdgeyPnsUFzy/6aabHAIEZVGRa3d5j600klNCXLOswQj7/oH28vLyHB6mPDw8CAsLo1+/ftx9991O80Z07tyZzp07k5eXx/79+9m3bx8bNmxg8+bNZGRk8OKLL+Lh4cHIkSMd1gsICOCpp57iqaeeIiYmhn379rF161b++ecfkpKSWL58OWlpaba3bpXBaDTy5JNPlvoQah1hpLDmzZs7ne7l5UW9evVsQYnmzZuTlZVlu7BbM3k7Y/2ymJCQUOQLYnH7K83dd9/N5s2b+fTTT/n999/p1asXnTp1onv37k6/hFo1a9as2IffFi1asGfPHoegi7VFyy+//FLskJXWL48JCQm2aSdOnABweNNeWfz8/Iq0hLG3efNmpk2bVuxnDMV//uXVpUsX/v77b1teifPnzxMTE8OwYcNwd3cnMjLSIa+ENShh3zqgLPz8/Ir9wujv78/Zs2fJysqytXKyfobWN4KF2Z/P9qzrWXOUONOqVStWrlxpC/BBfoCmU6dOrFmzxpZXwv5YO3To4BCgUVXV9lBpXxfWJH9RUVEMGTKEbt260aVLFzp37kz79u3L3YdcOCrvkKDOnDp1ytbf1/6ttT1nb+Dh0vXk008/Lfa6bz2vnD34NmnSxOk61hYGhYPx99xzDzNmzOCFF15g3rx59OrVi44dO9KtW7cSryHFXZc1Gg3NmjXj/PnznDx5kt69e1f4uDIyMmxve6/EdTIkJKTEB/SlS5fywgsv2JLiOVNZ10m4dPz2rVzsNWvWDJ1Oh8lk4tSpU0XOoYreKwEOHjzI0aNH0Wg0jBgxwmFe37598fX1JTU1lXXr1jn9Igf510yDwQDk55GIiYkhKysLHx+fYoPM9q1irC91Cvvrr79Ys2YNI0eOLFM+CGesgX/7/BaVZd68ebz//vslJkcu7jypqucNq+LO+djYWHJzc9Hr9Tz44IPFHgfkf2apqakEBgbayhYcHFzsM3Vx99grrXDrUyvrda20+fbXysp4li1Mq9Vy1113MWfOHO69917Cw8Pp0aMHHTt2pGvXrkXq88iRI0D+M3xxo/JZX8A5++yhYp9FRa7d5T220shTjbhmWR9yinvgatiwIf/880+Ftu3i4mJ7ozZx4kQOHz7Mfffdx4ULF5g1a1aRoIS9kJAQQkJCuOGGG8jKyuL5559n+fLlbNy4kV27dpU9IUwpvvrqK1asWEFgYCBPPPEEnTt3pm7durYHgqeeeorff/+92BtsSU3qAwMDiYuLs13M09PTbfPsm6UXx9kDQ3lGNbHXt29fvvrqKz777DN27drFTz/9xE8//YSiKFx33XU899xzThOMlnZ84Hizsh7jsWPHSi2T/QOYtQWMj49P2Q6oHEqqs4yMDFtA4oYbbuCOO+6gefPmeHl5odVqOX36NIMGDSp19ImysrYAsH7ZLhx06Nq1Kzt37iQqKoru3bvbskeXt6VEScdsfeizbzFjfdNYlvPZnnU9++4ehRX3BbBr166sWbPGFqCxBh26deuGm5ubQ4AmNjaW1NRUmjdv7rAvjUbDnDlzbMG2jRs3snHjRiA/MHPvvfdekbfKouysn3tJwxUWN896PTlw4ECp+ynP9bK4h+jbbrsNb29v5s2bx4EDB4iOjubbb79Fp9MxcOBAnnvuOadv3yt6nSzPcdmvX9XXydOnT/PMM89gNBqZOHEiN910E02aNMHT0xONRsPmzZu5++67K+06CaVfk7RaLb6+viQmJjpt6VnReyVcaiXRtWvXIl+m9Ho9119/PT/88ANLliwpNijRpk0bh2bjmZmZzJw5kx9++IFJkybxxx9/FEm+aP+SJy0trcixZ2dn89prr+Ht7V3sqABlcfHiRQCnyR8vx86dO3nnnXfQarVMmzaNgQMH0rBhQzw8PFAUhUWLFvH8889X+HkKKud5w6q4c8TazdhoNJZpVITCf6NlOY6qVtq1sDzXysp4lnXmscceIzg4mIULF3LgwAHb9dHV1ZUbbriBp59+2nbts35GmZmZpX5GxY2A5CzRbGkqek8qz7GVRoIS4pplzWZvbc56JbVu3ZqHHnqIV199lZiYGFsfq9J4eHjw2muvsXLlSiwWC3v37q20oIQ1V8Cbb77pNKu69eZdnJKaP1qbpVsfuO0v+nv27Knysdl79epFr169SE9PZ+fOnWzdupVly5axadMm7rnnHpYtW1bk8yjP8cGlY5wzZw59+vQpc9m8vLxITU0tcdivK2H9+vWkpqbSvn17p1miK/PNH+R3W6hTp46t24I1KGENVnTr1o3PPvuMrVu34u/vT0pKCs2aNXPaRagyWT83+8zjhRUevtN+PWfzrKzbLPzFs3BeCesxW9+M2gdojh8/DjgPznh7e/P000/z1FNPcezYMXbs2MH69etZv34977//PpDfrUxUD+vn7qyJvVVx3Qc9PDxIS0tj+fLlVfaGceTIkYwcOZLk5GS2b99uu06uWrWKmJiYIiN2QMWuk+U9Lvv109LSKv0LZUlWrFiB0Wjk+uuvdzoSUWn3yYrw8PAgPT2dpKQkp60ezGaz7fpcUsCrvEwmE8uWLQNgy5YtDsMuFvbvv/+SkpJSps/C09OTl156icOHDxMVFcUHH3zgMMwz5L/I8fb2Jj09ndTU1CJfbpOSkjh37hwuLi7cfPPNRfZh/RzeeOMN3n//fVq1auV01ARrvZXU+qcirM9T99xzj9PRSSrzeQoq/rxRGus+AgMDy9Xc3rpeee+jV5sr9Syr0WiYMGECEyZM4OzZs+zYsYNNmzaxcuVKFi1axLlz52w5O6xlaNeundMu4VdKRe9J5Tm2UrdV0cILUZMdOHCAffv2AdiSN11p9k3EShqHvTAvLy/bDbSkfpzlZX3zWzhJHuQ/9Djrp2zP2u2gsIyMDFvTLesQZ97e3ra3LmWJ7F8p1mRdTz/9NCtWrKBx48ZcuHCBtWvXFln25MmTWCwWp9uJjo4GHIdws36hLO/xWdez9j2vKtbPv0OHDk7fCBQ3rnpFaTQa27m2bds2tm3b5vBF3L7bgrPuCleKdXjQspzPztaLjo7GbDY7Xdd6LhQeVrd169b4+PgQHR3NoUOHiImJcQg6WI9769atDq0oiqMoCgaDgdtvv50vvviCF198EaBKH1hEUU2aNEGj0ZCWllZs3g9rU9zCKno9qQz+/v4MHTqUl156iT///BNvb2+OHDni9JpQ3N+NxWKxNem+3Oukl5eXbWjb6rpOOrtPQv4Xk8pmra/i6ujkyZOYTCa0Wm2x3XQqYsOGDSQmJqLVagkMDCz2n4uLC0aj0RbAKAuNRsOTTz4JwG+//UZsbGyRZayJeYs7pyD/GSgxMbHIP+szVUZGBomJiQ55g+xZt22fULIyxMfHAxU/T6rqeaM0TZs2Ra/Xk5SUVGKAoTDr/TAhIaHY/GfW4yiPsg6pWVWq4lm2fv363HDDDbz11lv8/PPPKIrChg0bbK27rS17o6OjK7WFVmkq45wr7dhKI0EJcc1JTU21Nf9r1qxZsU0QyyM5ObnUJIrWpl4+Pj62IIPJZCo1gm4dz9xa3rIqre+kdb6z6PXSpUtLjWqvXr3a6TI///wzRqORhg0bOrzlsdazs7cX1cHT09P2JsjZCCMJCQlOu+/s37+f3bt3oyiKQ4Zpa8Khn376qcS+x4VZkz8tWLCg2KZ2hVVGv1hrN50LFy4UmWc0Glm4cGGFt10c65ftZcuWcfLkSYcv4m5ubrRt25a9e/fakk9WRVDC2td99erVTs8D6/lcWKdOnfDw8ODChQu2cdntnT17ljVr1jjsw8o+QDN79mzAMejQsWNH9Hq9Q1CiPN1YrNsubuQcUTU8PT3p0KEDkJ+5vDCj0WgbkaAw6/Xk22+/LfbLSlWoW7cujRo1ApyfT1FRUU6T9/3111+cP38eDw8Phy9qFT0ua+K2efPmlTlhsfU6WdbrqjPW66Sze93FixdZvHhxhbddHOv1YuHChU6P1Zpc03oNqizWrhuDBg3iv//+K/afdbSk8ozCYS1v165dMZlMfPHFF0XmW5MhOwt+NWrUiCNHjhT7z3qveOuttzhy5Eixo0ZZt20/6kRZlHbPLek8OXXqlNMXH/aq6nmjNO7u7vTu3RtVVZk/f36Z12vevDkNGzbEaDTyyy+/FJl//vx5W6LE8riSOUAqqiqfZVu1amXLkWW9/jZt2pTQ0FDS09Od3leulMq+Jzk7ttJIUEJcMzIyMliyZAmjR4/m6NGjeHh48PHHH1dKn+s//viDG2+8kR9//LFIM7zs7Gzmz5/PnDlzgPxsydZ9ZmVlMWDAAN555x0OHz5c5AFk27ZtTJkyBVVVqVevnsNNqTTWlhmFhx60st6U3377bYfI9j///MOMGTOKTTZlpaoqjz/+uMPxbt682fYla9KkSQ5R7gceeAB/f3+WLl3KK6+8UuRNRkZGBsuXL7cNgVVZpk2bxpo1a4q0MtmyZQubNm0C8oe8K0yv1/P66687jD5x+vRpnn32WSD/Am3f+mXQoEF06tSJ2NhY7r///iJve0wmE1u2bOHxxx93KMvYsWNp3LgxMTExPPTQQ7Y3LlaHDh3i+++/d5hm3a+zrNplZf38V61a5TA6RGpqKtOnTy+SQ6EyWL9YW7+sF37737VrV4xGoy0oUZGRN8qrW7dutG3bFqPRyOOPP+7wdmjTpk3Mnj3b6egbXl5etqFa33jjDYc3YefOnWP69OkYjUY6dOjgtJWD9SHaWhf2ARhrgCYqKork5GRCQkKKDJP3xx9/MHv2bE6dOuUwPSMjw3atcTYqgqhakyZNAuCLL75wSEiXlZXFc889V2wLivHjxxMSEsLOnTuZNm1akTdJ1iz51uvR5bDml9m8ebNDqx9VVVm+fDlHjx5FURSnb5f1ej1PP/20w2gehw4d4vXXXwfyc1XYNzuv6HHdd9991KlTh23btvHEE08Uuc/u2LGjSICntHtgWVivk99//71DX+qzZ8/y0EMPldg1p6Ks+T2OHz/OjBkzHIIqv/76K4sWLQIqt2tWWlqa7YtzaUOrWrtP7Nu3r8RWDc5YhwP9448/ipz71ucba9fayqaqKlFRUWg0Gnr06FGudUu751rPky+++MLhmnz8+HEefPDBUt/4V9XzRlk8+uijuLm5MWfOHGbPnl2ki1lKSgq//PILn376qW2aoii2a92sWbNsz1aQ36Xj8ccfL1cZrPz9/fH09CQpKanc59qVUtnPssePH+eFF15g9+7dDt8BzGYz33zzDWlpabi5uTl0mXjyySfRaDS88cYbLFy4sMhnfO7cOebPn28btrwyVOTaXZFjK4nklBBXpV9//dV2UbS2Rjh9+rQtuhcREcG7775baX11FUXh6NGjvPzyy7z88ss0bNgQf39/W9Zwa5S3V69eTJ8+3WG9jIwM5s2bx7x58/Dx8aFhw4ZoNBrOnj1re/Dy9fXlk08+KVdymuuvv55jx47x4IMPEhoaasty+8EHHxAUFMQjjzzCpk2bWLt2Lb1796ZZs2YkJydz9uxZunfvTt26dYt9iwf5D9s//PADffv2pVWrVmRkZNiaZA4ZMoTbbrvNYfm6devyxRdf8PDDD/P999/z008/0bx5czw8PLh48aItU31l5/jYuHEjK1asQK/XExISgru7OxcuXLBdUG+44QanDyhDhgwhNjaWm2++mRYtWqDT6Th27Bhms5mQkBBeeuklh+UVRWHWrFk89NBDbN++neHDh9OoUSMCAwPJysqyZbWG/DweVp6ennz22Wfcd999/PfffwwcOJDmzZvj5uZGfHw8qampdO3a1fYFGGD48OEsXLiQOXPm8NdffxEUFISiKNx///1l7l8aERHB8OHDWb58Offddx+NGzfGx8eHY8eOoaoqL7zwAi+//HK567skbdq0sfUbhqItIbp168bnn3+OqqqEhISUmrW6MiiKwrvvvsuECRPYtm0b/fr1czifBwwYQHp6utOH0UceeYSDBw+yadMmxo0bR7NmzXB3d+fYsWMYjUYaNWpkG1q1MOuxq6rq0I3Ffr41iZWzFiPJycnMmjWLWbNmERQURHBwMLm5uZw6dYqcnBy8vb15/vnnL7d6ai37e4gzISEhZXroHDhwIHfccQcLFy7k0Ucftd0bTpw4gdlsZsqUKXz44YdFguPu7u58+eWXPPDAA6xatYrVq1fTtGlTfH19SU9P59SpUxiNxkpJHmexWFixYgUrVqzAzc2Npk2b4uLiQkJCgq0l1YMPPlikGxLkP6iuXbuWoUOH0qpVK0wmky0PSocOHYqMYFLR46pXrx6zZ89m8uTJLF26lJUrV9K8eXM0Gg1xcXFkZGQwatQo27CVkH8PXLduHTNmzOD777+3JVN87rnnbF0FSjNo0CDbKDe33HILISEhuLi4cOzYMdzd3XniiSd44403ylrVZVK3bl3ee+89HnnkEX788UeWLl1qG8nE2pVs6tSpRVpgXY7ly5eTm5uLn59fqfeQJk2a2Ork999/57HHHivzfnr16kVERAT79+9nzpw5DveYTp060aJFC6Kiojhz5oyty05l2blzJwkJCfTu3ds2BG5ZlXbPHTduHD/++COxsbEMHz6cZs2aYbFYOHHiBEFBQTz00EN89NFHxW6/qp43yqJ169Z8/PHHPPbYY8yaNYsvvviCZs2a4erqSlJSEmfOnEFVVYYPH+6w3m233cbmzZv566+/uOeee2jatCleXl62l4CTJk3i888/L1dZFEVh2LBh/Prrr4waNYpWrVrZWgfZJ1OtSpX9LGttXfLLL7/g5eVFkyZNUBTF9vynKArPPfecw0gVvXv35tVXX+WVV17h1Vdf5b333rONqGJ/nbC2aqoMFbl2V+TYSiJBCXFVOnv2rO1Lp5ubG97e3rRr146IiAiGDBlS6c3Cb7/9dlq3bs3GjRttNz7r8DmBgYG0adOGkSNHMnToUIeIube3N6tWrWLjxo38999/xMbGEh8fT1ZWFl5eXnTs2JE+ffpw6623lju51wMPPIDFYmHZsmUcP37cFkm13qjatGnD999/z8cff8zOnTs5ceIEjRs3Zvr06UyaNMnWL704TZs2ZdGiRXz88cds3ryZ9PR0WrZsydixY7nzzjudtkCJjIxk6dKlfPfdd/zzzz/ExMRgNBqpW7cu3bp1o2/fvpXSncbe22+/zYYNG4iKiuL8+fOkp6fj5eXFddddV+Qh1p6LiwsLFixg1qxZrFq1ivPnzxMUFMTgwYOZOnWq00SlAQEBLFy4kCVLlrBs2TIOHTrEuXPn8PPzIywsjK5duzJkyJAirVBatWrFn3/+yTfffMPff/9te+tYt25dBgwYwJgxYxyW79y5M++//z7z58/n+PHjtmGYRo0aVa66sQbmlixZQkJCAllZWfTp04cHH3zwiiSTs3ZbWLdundMv4ta8EkajsUpaSVg1b96cX3/9lY8//ph///2XY8eO0ahRIx577DEmTZrEPffc43Q9V1dX5syZw08//cTvv/9ue4hs3LgxgwcPZtKkScUmtA0LC7MFaLp06VLkTZo1QAPOW4wMHToUk8nE5s2bOXnyJEePHkVVVRo0aECvXr2YNGlSpT/U1yb29xBnyvOG/MUXX6RNmzYsXLiQEydOkJmZSbdu3Zg6dartS7+zh7KmTZuyZMkSfvrpJ1auXMmJEyeIj48nKCiIdu3a0aNHD4YNG1b+gyvE09OTmTNnsmnTJvbu3UtCQgKZmZn4+vrSv39/br311mJzL/n6+vLLL7/w8ccfs27dOpKTk2ncuDE33ngjDzzwgNNEcBU9rq5du7J06VLmzZvH+vXriY2NRa/XExwcTLdu3Rg3bpzD8jfffDNpaWksWrSI2NhY2z25PEmFtVotc+fO5ZNPPmHlypWcPn0aX19fhg8fztSpU4sdcu9y9evXj8WLFzNnzhw2bdrE4cOH8fT0pG/fvtx1113lajVZFtauGCNHjnTaMqywm2++maioKP744w+mTZtWrhanDz74IFOmTOHXX3/loYcecmgFNm7cON566y3+/PNPW6uKymJ9yTJ+/Phyr1vaPdfLy4vvv/+eDz74gHXr1nHy5EmCgoIYP348U6dOtbX+K05VPm+URb9+/Vi+fDnz589nw4YNnD592tZit0+fPvTv39/W9dRKo9Hw8ccfs2DBAn755RdOnTqFj48PQ4cOZdq0aRVu2fn888/j6enJmjVrOHLkSLlysl0plfksGxISwuuvv86mTZs4ePAgp06dIjc3F39/f66//nruuusupwnux44dS6dOnZg/fz5btmwhOjoarVZLvXr1GDJkCAMHDmTAgAGVetzlvXZX9NiKo6hl7bwnhKgVnnnmGRYvXsxbb73F6NGjq7s4le63337j2WefZdSoUbz99tvVXRwhxDVs3rx5vPPOO0ycONHp6A411axZs5g9ezZTpkwp0hpCiIrKyspiyJAh6HQ6Vq9eXWS0l4pKTk5m4MCBNG7cmCVLltSYoZLleUOIsqsZf7VCCCGEENcQs9lse0NdXNZ+IWoTDw8Ppk6dytmzZys1id+8efPIysriiSeeqDEBCSFE+Uj3DSGEEEKICpo/fz4dO3akbdu2tmkpKSm8+eabHDlyhODgYPr371+NJRSi5rjllltISUlBp6u8ryD+/v4899xzZc65JISoeSQoIYQQQghRQWvXruXNN9/E09OTJk2aYDabbWPMe3h4MHPmzEprpi7E1U6r1fLggw9W6jbvvffeSt2eEKLqSVBCCCGEEKKC7rzzTnx8fNi/fz8xMTGYzWaCg4Pp0aMHkyZNcjqqhRBCCCEukUSXQgghhBBCCCGEqBaSDUYIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIIYQQQgghqoUEJYQQQgghhBBCCFEtJCghhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCghJCCCGEEEIIIYSoFhKUEEIIIYQQQgghRLWQoIQQQgghhBBCCCGqhQQlhBBCCCGEEEIIUS101V0AcXWwWFTMZstlb0en02AyXf52rkVSN45Onz5F48ZNbL9L/RRP6qZ4UjfFq4y60Wo1aDRKJZVIWMk998qTuimZ1E/xpG6KJ3VTssutn2v5nitBCVEmZrOF1NSsy9qGRqMQEOBFWlo2FotaSSW7NkjdFHXnnXexZMlyQOqnJFI3xZO6KV5l1Y2vrwcajbYSSyZA7rlXmtRNyaR+iid1Uzypm5JVRv1cy/dc6b4hhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCEl0KIYSoNKpqwWKxoNaAHFcajUJeXh4mk0mSbhVS1rpRFNBotCjKtZntWwhxdaque43cV4ondVOystRPbb7nSlBCCCHEZTObzaSlJZObe3kjBlS2xEQNFosMT+ZMWetGUTT4+9dFr3etglIJIUTxasK9Ru4rxZO6KVlZ6qe23nMlKCGEEOKyqKpKUtJZNBotfn510Wp1QM2I8ut0CiaTvLFxpmx1o5KRcZHk5PPUrduoVr69EULUDDXlXiP3leJJ3ZSs9PqpvfdcCUoIIYS4LBaLGYvFjL9/PXQ6fXUXx4FOpwHkrY0zZa0bL6865ORkYrGYC74ECCFE1asp9xq5rxRP6qZkZamf2nrPrT1HKqqdy4r15Ow+iIdGA1otasH/6DSorq6obi6obq6obq7g5orF0wPVxwuLtxeqjxeqlwdoJDerEDXNpT69tSeiX7vkf641IU+IEFctoxG3P9agScsga+JoeZ6pALnXiNqhdt5zJSghqozq6Q5enmAyg8WMYjJBbh6KxQKkl76+oqB6e2Lx98US6IclwBdLQP7/qqdHfnYYIYQQQogaxmXHfvRHTwKgSUrFEuRfzSUSQoiaQ4ISosoY+3TFZ9QAkpIyHLPOWiyQk4eSk3vpX3YOSmYWmrQMlPTMgv8zUNIy0KVlQEycw7Ytnu5Ygutirh+EOTgIS/26+S0rhBBCCCGqmeZc4qWfLyRJUELUOHPnfsGmTRuZO3dBdRdF1EISlBDVT6MBDzdUDzdKbalkMqFJvogmKRVNUkr+/4nJaBJT0J2IRXci1raopY435iYNMDVpgLlJA1Rfnyt6GEKIq8sbb8xgxYqlRaYvXfo3vr6+VV8gIcQ1S5OSeunnC8nVVxBR5d54YwbZ2Vm8/vq7tmnLl//JzJlvMn36U9x446hybzMt7SIffjiT//7bgEajoV+/ATz66BO4u7tXuJy33XYnt9wyvsLrX61uueUGbrttAmPG1L5jr0kkKCGuLjodlroBWOoGOE43mdCcT0J79gLahAtozp5HcyEZ/b4j6PcdAcDi44W5aUNMLZpiatYI3GrXUDtCiKJ69OjN008/7zCtTp06Dr+bTCZ0OrldCiEqSFXRJF+0/SpBidrtl19+5NNPP+aFF15h4MAhFdrGK6+8SFJSIh9++D9MJhNvvfUK7733Fi+++GqFy+Xh4QFIK2NnTCYTWq22Vo2GUdUky464Nuh0WBrUw9gpgpwR/cm6bzwZ0+4he8ww8rpEYq4XiJKWgX7fEdyXrMbr429w//4P9Nv2oNg9KAghahcXFz0BAYEO/8aOvZFvv53Hq6++yODBffj44/cB2LMnioceupcBA3oyZsxIPv30Y/Ly8mzbSkpK5KmnpjFgQE/Gj7+ZdevWMGLEQJYv/xOAXbt20KtXZ7Kysmzr/PffBnr16uxQpn//Xcfdd9/OgAE9GD/+ZhYunO8wrnmvXp1ZunQJTz01jYEDe3LnnePYs2e3wzZ2797Fww/fx8CBPbn++gE8+eSj5ObmMn/+XO655/Yi9XDrraP44YfvLrs+hRBFKZnZKHlGLF6eAGgyskpZQ1yrvv56Dp9/Pos335xZ4YBETMxJtm7dxDPPvEh4eATt2rVn2rQn+euvlSQnJxW7XlpaGm+99SojRgxk6NC+PPbYFGJjY2zz5879gkmT7rT9bjKZ+PDDdxk6tC8jRgxk7twveOGFp3jjjRm2ZXJzc5k160NuumkYgwf35v7772H//n22+cuX/8mIEQPZtGkjt946miFD+vLCC0+RkZFhW2bt2r+5885xDBjQgxEjBvLYY1Ns97w33pjBCy88xdy5XzBixECGDevHJ5+8j9lsLrYMDz10r0MZoPh74pQpD5CQcJYPP5xJr16dbfdja7n//Xcdt98+hgEDepCamsqUKQ8we/ZHDtueNOlO5s79wvZ7r16d+eOPxTz22FQGDuzJXXeN5+jRwxw/foxJk+5i0KBeTJ8+mZQUCU7ak1c/17jo6Giee+45MjIycHFx4bnnnqNz586lr3gtcHfDZGiGydAs//fsHHQx8eiOx6A9cQpdbDy62HhYswlz3QBMbVpiDGsp3TyEEHz//bfce+8DTJr0fwDEx8fxxBOP8n//9zDPP/8KSUmJvPfeW5hMJh555HEg/+EpNTWF2bPzH04+/HCmQwCiLPbs2c2bb85g2rQnadu2HadOxfLuu2+g17swbtxttuW+/vorpkyZxtSpjzF37he88srz/Pzz7+h0Ok6dimX69MncfPMtPP74MwBs374FVVUZPvwG5s37kmPHjhAWFlawzyjOnj3D0KHXX3a9CSGKUi6mAWAJDkRzPBMlJ7eaSySqmqqqzJr1AUuX/s7778+iffuODvO//XYeCxZ8XeI2Fiz4heDgYPbv34uPTx1atw6zzevcuSuKonDw4AF69erjdP2XXnoGd3d33n9/Nh4e7vzyy09Mnz6ZhQsXOe32sXDhfNasWc2LL75Kw4aN+eGHBWzfvpU+ffrblvnoo5nExsbw2mtvExAQyJo1q5k+fTLff7+IoKC6AGRlZfHrrz/z2mtvkZOTw4svPsN3333Dgw9OITExkRkznufhhx+hT5/+ZGZmsmvXdodybN26BVdXN2bPnsPp06d4661XCQwM4vbb73Jahr/+WulQhpLuiW++OZO7776dUaNuYfjwGxz2m5WVxY8/fsfzz7+Cp6cnnp6eJX4+9r755iumTp3OtGmP89FH7/Hqqy/h7+/PlCmP4ubmycsvP8uXX37K00+/UOZtXuskKHGNc3V15c0336R58+acOHGChx9+mFWrVlV3saqHuxumsBaYwlqAxYLmzPn8PBRHT6I9n4T2fBKu67ZiblAPY5uWmNq0zB/VQwhxzdqwYT2DB/e2/d6v30AAOnfuxrhxl1oUvP32awwbNoJbbrkVgEaNGjN58jReeOEppk59jNOnY9m2bQvz5n2HwdAagMcff5r77rurXOWZN+9L7rrrXoYNGwFAw4aNmDjxXhYt+skhKDFy5E307z8IgHvvfYDbbx9DfHwcTZuG8N1339C2bTseffRx2/ItWrQEwM3Nja5du7Ns2Z+2oMTy5X9y3XU98fcv1C1OCFEplOz8IITF2wtVq4HcvFLWEGXltvQfdAWjmlQVc2hzTCP6l76gnU2bNmI0Gpk9+8siAQmAm28ew4ABg0vcRmBgIADJyUn4+zsmStXpdHh7+xTbUmLPnt0cOXKYP/5YhV6vB2D69Cf599+1bNq0kYEDi+77119/5q677qVXr74APPnkc2ze/J9tfkJCAsuX/8nixctt9497772PjRv/ZfXqFdxxx0QAjEYjTz75HMHBwQBcf/1Idu7MDzwkJSViNpvp23cAwcH1AWjZspVDOVxdXXn66RdwcXGhWbPmxMWd5qefFnL77Xc5LcPdd9/Hpk0bbWUo7Z6o0Wjw8PAgICDQYb9Go5EnnniW5s1bOK3Tktjfo2+77U6mT5/MAw88TIcOnTCZLIwceTO///5rubd7LZOgxDWuYcOGtp+bN29Oeno6qqpKnyiNBkujYPIaBZPXtxuaC0noDh5Hf/A42jPn0J45h/rPZkytmmJs3wZzs8Yy5KgQ16DOnbsxffqTtt89PDx44IG7Hd5AARw/fowTJ46xcuWlxJgWi4Xc3FySkpKIjY1Br9fTqlWobX5oaJjt4a+sTpw4yr59e/j66zm2aWazBVW1OCzXvHlL28/WB9WUlGSaNg3h+PFj9OnTr9h9jBhxI++99xaPPjqd3Fwja9eu4YUXXilXOYW4ZpnMYDaDq0ulbVLJzgFAdXdDdXVFyZWWErVNy5YGkpOT+Oqrz3nvvU9wc3NzmO/jUwcfnzrFrO2Ms2fS4p/vjx8/SmZmBsOHD3CYnpuby5kzcUWWz8jIIDk5ibCwcNs0vV7vEDCIjj6O2Wxm/PibHdbNy8tzWM7T09MWkAAICAggJSUFyA9AdOjQibvuupXu3XvQtWt3+vcfiKenl235Vq0MuLhc+nuMiGjLp58mkpGRUaYylHZPLI6rq2uFAhIALVpcOn5rsKRZs+Z20/xtdSDySVCihtu+fTtz585l//79XLhwgc8//5z+/R2jswsXLmTu3LlcuHCBsLAwXnjhBSIjI4tsa82aNYSFhUlAwglLUAB5fQPI69MVzdnz6A8cQ3fgGPojJ9EfOYmljjfGdmEYI1ujepe9+ZYQomZzd3ejUaPGTqY7NmXNzs5i9OixjBo1tsiyvr6+qCqlXls1Gmsap0vjDJlMJodlsrKyuf/+h+jdu2+J23JMvJm/X/u8EyXp1asv7733Nhs3/ktmZhYuLi706NGrTOsKca1zXbSCvVE78XnobuqHNK2UbV4KSriCmwtKVjaYTCAJdC9bzsgBpS9UyXQ6DZjKdr21qlevHq+88iZTp/4fTz75KDNnfuwQmChP9w1//wBSUhxbRJhMJtLT0/Hzcz7UbHZ2FkFBdfn448+KzPPxKb7bcuH7mqpeun9lZ2eh0+mYN2+hbTmtVsFsVh26OhROFK0oii3QrtVq+fjjz9i3bw9btmzihx8WMHfuF8ydu8D2Zb64e6uiOC+DVXm6WzhTOHAE+fdx+zqAovdxcDxma7EcpylFXjbUdnI1rOGysrIIDQ1l9OjRTJ06tcj85cuX89Zbb/HKK6/Qrl075s+fz3333cfKlSsdmnbFx8czc+ZMvvzyy6os/tVHUbA0qEdug3rk9r8O3dFo9LsPoos9g+u/23DZsB1TWAvyurXHEhxU3aUVQlSRVq1COXky2mkAAyAkJIS8vDyOHTti675x5MhhjEajbRlfXz8AkpKS8PDIf1g6fvyow3YMhlBOn44tdj9l0bJlK3bt2sHdd9/ndL5Op2Po0OEsXfoHOTk5DB16vYwuIgSgZGWz6u+V/Hs6GuWTFKa8+FKxX/LKtd2C7hvWlhIASk4eqpf83dUmDRo0ZNasL5g69f946qlpvPvuR7YvvuXpvhEREcnFixc5cuQwoaH595tdu3agqipt2oQ7XddgaE1i4gX0ej316gU7Xcael5cX/v4BHDx4gIiI/BedRqOREyeO23JFtGplwGQycfFiqm0ZnU6DqZwBG41GQ7t2HWjXrgP33vsAN9wwmK1bN3P99SMBOHr0CHl5ebbWEgcO7CcgIBBPTy+nZSis9HuiHrO5bGX29fVz6CKTlZXltKWJKD8ZfaOG69u3L9OnT2fIEOcZer/++mvGjx/PmDFjaNmyJa+88gqurq4sXrzYtkxGRgYPP/wwL774Ik2bVjzqr9Eol/2vsrZTJf9cdFgiDOROuJmsB28nr3t7cHNBf/A4nl8vwuP7P9BHn0Kj1MK6qYJ/hetD6qfsdVVdZbiW3XHHXezeHcVHH73HsWNHOXUqlvXr/+F///sYgCZNQujcuSvvvPMGhw4d4NChA3z44bsO3TcaNWpM3br1+Prr/GRda9f+zbJlfzjsZ+LESSxf/ifffPMVJ09Gc/JkNKtXr2D+/LllLuuECXezb98ePv74faKjj3PyZDQ///wDOTk5tmVGjryJLVs2ExW1k+HDbyzTdmvj5y5qF/PhE2w9cwoA9cBRti5bjuZ8Eq7/bEJJyyhl7eLZWkq4uaJau4VIF45ayRqYOHMmnqeemma7Lvv41KFRo8Yl/rMGj0NCmtGtWw/eeec1Dh7cz969u/ngg3cZPHhosbmBOnfuSps24Tz77ONs376FM2fi2bNnN//738cOI3DYGzNmHN9+O4///ttATMxJ3nvvLfLycm0tEpo0CWHgwMG8+uqL/PvvOs6ciWf//n18/fUcoqJ2lqk+DhzYz7ffzuPw4YMkJJxlzZrVZGdn06RJiG2Z3NxcZs58k5iYk2zYsI4FC75m7Nhbiy3DgQP7HcpQ2j2xfv367N69iwsXzpOamlpieTt06MR//21g69bNnDwZzdtvv4bzrjSivCREexXLy8vjwIEDPPTQQ7ZpGo2GHj16sHv3bgDMZjOPPvoo48aNo1evijfP1ek0BAR4lb5gGfj5XYXdHwK8wNAI9aZ+mHccwLx+O9rYeLSx8Sj1AtAN6IamYxsU7eXF+a7KurlC9HptkXNO6qd41Vk3eXl5JCZq0OmU/GatNUxxZVIUBUVxXmaNxnF6WFgYn376BZ9//ikPPXQvGo2WRo0aM2LESNtyM2a8xhtvvMrkyfcTEBDI1KnTeOedN23b0ulceOWV13n33be4++7b6NChI5MmPcBbb71m20bv3r15990PmTfvSxYs+Bq9Xk+zZs0ZM2acQ3m02kvls/6v1WrQ6TQ0b96Mjz76H599Novff/8VNzd3IiPbMWbMLbZlW7VqSWhoaywWM6GhhlJqUEGj0eDn5+HQr1c4l52dzfDhwxkxYgRPPPFEdRdHlEP80aPkmk009fHjVHoKB9et50avurgcOoF+z2Eypt9boe0qObmk5mSjcdGjd7NrKVGZhRdXDfsWE08/PZ133vnQaVeBkrz88mt88MG7PProw2g0Cv36DWTatCeLXV6j0fDee5/w+ef/4/XXZ5CWdpGAgEA6dOhUbPeNO+6YSFJSIq+88gJ6vY7Ro8cRGdne4T7wwguv8vXXc/jkk/dJTLyAn58/ERGRDBo0tEzH4enpye7dUfz88/dkZWXToEEDnnrqecLDI2zLdOvWnaCgujz88H2YzSauv/4Gbr11QpnL0KRJU95/fxZffPE/2z2xbdtIbrppNACTJj3IzJlvMn78zeTl5bFx445iyzty5E0cPXqEl19+Djc3N+699wHi46WlRGVQ1MIdY0SNFRoa6pBT4ty5c/Tp04dffvnFIYfEu+++y65du/jxxx9Zu3YtU6ZMoWXLS0nRFixYUGL/MWeMRjNpadmXVX6NRsHPz5OUlEwslqv8tLNY0B6NQb91N9q4hPxJ/nXI690Fc5uWoCnfF7Nrqm4qyY03Xs8ff6wApH5KUhPqxmQycf58HIGBDWtcN4CKNCWtTCNGDGTy5GlFhhqrbhaLhXHjbuL22+9i9OiieTLsmUwmEhPjqVu3UZHP18fHHb1eeyWLetX58MMPiYmJoXHjxhUOShiNZlJTyzecbGEajUJAgBdJSRly3SykuLr574NPWLNqJTe2DOdAYgLHXOChdtfR0pj/JjT96f8r9/0dYPcb7/HHv/8QNLgvU1t3xn3fUbLGj8TcvOLdtK6kmnruWK9F1X2vqe77SnUxmUyMG3cTY8fexm23TXC6TGXXzRtvzCA7O4vXX3+30rZZncpSPyWd576+HtfsPbdmPT2KSmE/ukb//v05cOBApWy3sm5MFotao25yFaNgMTTDaGiG9vRZXDZuRxcTj9vvf2PeuIO8Xl3yhx4tZ1LRa6NuKk/hupD6KV511o18JleX5OQkli//k4yMdIYNG17m9eTvr3QxMTFER0fTv39/oqOjq7s4opxOnT0DQHD/3mjWbeRYUhwHTx6nZaOCTPp5Riho6VBWJpOJ1Xvz37yeSbzA/nPxdAEZgUPUeGfOxLNr13YiIzuQm5vLTz8t5OLFVNtQl0JUpprXzlaUmZ+fH1qtlsTERIfpycnJtmQ44sozN65P9m03knXHTZga10eblIr773/hMfdntNGnq7t4Qgjh4MYbh/LTT9/z3HMv2RJuivzRrh588EF69epFaGgoa9euLbLMwoULGTBgAG3btmXcuHHs3bvXYf4777zDY489VlVFFpVIVVVOnz+LVqMQ3KI54QHBKEYjh+JP27LtK7l55d7usWNHyc7OyX9HodNy+Fx+4EPJKf+2hKhKGo2GpUv/4P7772LKlPs5e/YMs2Z94TC8pxCVRVpKXMVcXFwIDw9n06ZNDBiQPySSxWJh8+bNTJw4sZpLV/uYmzQg+46b0MbG47JhO7q4BDx+WoqpRRNyB/TAEuhX3UUUQlSxZcvWVHcRirD2l62tTZCLc7mjXf3999+EhITQrFkzoqKiquEIxOVITEwkOzuHZt5+aP398HZzp5HGhfjsFM5lZRDs6Y2SV/48EHv37kYxmxnTpiM/aiwcTYhHDfaBPAlKiJotOLg+n38+r1rL8PzzM6p1/6LqSFCihsvMzOTUqVO23+Pi4jh06BCBgYEEBQVxzz338NRTTxEeHk5kZCTz588nJyeHUaNGVWOpazFFwRzSiOymDdEdPYnrP5vRnTiFNvo0xo7h5PbqAh7lS2YkhBDiyuvbty99+/Ytdr79aFcAr7zyCuvWrWPx4sVMmjSJPXv2sHz5clatWkVmZiYmkwkfHx8eeOCBqjoEcRlOn44Fs5kmfkFYfLwBiPCvS/zFFA4mJhDs6Q25xlK24igvL48jRw7jioZ2TZqx0SOXuPO7SczOxCevfNsSQohrmQQlarj9+/dz11132X5//fXXAZgyZQpTp05l+PDhJCcn88knn3DhwgXCwsL46quv8Pe//HG1xWVQFEyhzTG1aIp+5z5c/9uJy8796A8cJbdvN4wdwsudb0KIq82LLz7Dvn17S1+wkrRtG8lrr71dZfsTtUdZRrt6/PHHefzxxwH47bffiI6OvqyAxOUOuWo/XLBw5Kxu4uJOg8VCUx8/FC93VL2ONgHBrDp5hP1JCQxo2gptXh7KxTRc1m7B1C4Mc4smRTeenYOSm4fq68PRo4cx5uXSMaAuLu7uNGoURPyevcSlXyTcZKqxn01NPXdqWnmEuJJq29DbEpSo4bp168aRI0dKXGbChAlMmOA8C66oZjotxm7tMbUNxWXDdvRRB3FbtQH9/qPkXN8XS5Dz8aSFuBZIgEBcK1JSUjCbzUXyNQUEBBAbG1vp+6v1w3BXEfu6SUpKQCkISvgH+5Hr4Ub9PG8C3D04nZbKxdxsfLfvQY3OH/5Pd+gErq9OQfHycNhmzsvzIT0T19emEh19GDe9lnZBDdC6u9KmjYFda/4m7mIqnbUKPpX0GV8pNe3cqUnDT1f3/msyqZuSlV4/tXMYbglKCFEFVA93cof2wdguDLcV69HGn8Nj3iLyurUjr2dncNVXdxGFqFV+/fUn5sz5jOXL/0FTMMRfUlIiN900jN69+/HWW+/Zll21ajlvv/0aK1euxdW1Yt2v1qz5i5dffpZ+/QY4Hdrs5Zefo1mz5tx993306tUZFxdXfvzxN+rWrWdbZsqUB2jdug1TpkyrUBlE5bMf7cre6NGjL2u7JpNFhuG+ggrXTU5ODidPniJQ54KPtw/JKZm4u7qgURTCA4P5Nz6GqHPx9HN1d9hOasw5LPWDHKZ5pmcCEH8gml3bo3DVaAn1r4tJo8XDw488k0p8+kVy0rNJS8qosmMuj5p67phMJiwWCyaTClRfPhzJx1M8qZuSlW1IUBWLxUJKShY6nWPumWt5GG4JZQlRhSzBQWRNHE3OwB6g1eC6OQrPr35CExNX3UUTolbp0KETGRkZHD16qSXa7t27qFu3Hnv2RNmy7Vunh4WFVzggce5cAv/730dERrZ3Ot9kMrF162Z69uzjMP3rr+dUaH+i8lXHaFfWIVgv519lbeda/GdfN6dOnUK1qDT1rIPqos+f7po/9GeX4Caoeh3bEk45XBcA1Owcx+3ajahx6Muv0WzbQ2TDJmg1GlS9nsDAIPSuLsRnXETNzav2Orgazx0haovadv5LUEKIqqbRYOzajsz7b8XUsima1DTcF/6BcfEaMJqqu3RC1ArNmrXA19ePqKidtmlRUTsZNmwEer2e48ePOUzv2LFzhfZjsVh4/fWXmThxEg0bNnK6zO7du/Dy8qJVK4Nt2pgx41i+/E9OnYqp0H5F5bIf7crKOtpV+/btq69g4rJpY+KI37kLLBZCvH3BJb/louqWH5QI9vSmSd1gLmRlEn0xCdXVhbwO4QAoObkO29KkXMxfV1XZcfQQAN00+d07VBc9Go2G+vXrk2MykZSSXBWHJ4QQVwXpviFENVHreJN9y/XoDp3AbdW/mDfsxP1QNNk3DMQSHFT6BoQQFaYoCu3bdyQqaie33Zafk2f37l08+ujjxMefJipqJ61aGUhMvEBc3Gk6dOgEwIQJ4zh37myx242M7MD7739i+/3777/Fzc2Nm24azf79zpN+btz4Lz179naY1r59R06cOM6XX37G66+/c7mHK8pARruqhcxmPH74k4S9W6BpEE3rBKBa+3DrL3Wr7N4mktOnT7Em9hgh4RGoBXkkNGfPo8/KtiWvtgYloi8mcSYjjfpePjRWCx61C4Id9Rs04gxwJvE8l8KQQghRu0lQQojqpCiY2rQku0l9vFb/C0di8Jj/G3m9O5PXvQNopDGTEFdKhw6dmDPnUywWCxcvphIXd5qIiHacPn2a7du3Mm7cbezatRMXFxciItoC8N57H2MyFd+iybWgyTfAkSOHWbToJ+bOXVBiOf77bwNPPfVskekPPjiZ++67i8OHD9K6dZsKHqUoKxntqvbRXEjGolqITUtBT10aePqgFuR4Ul0uPSJHtg5j7b9rOZaSyImsNJoUtKJw3bI7f1lXV0zhrVAupgOwJja/pVX/xi3RJabkL1MQ5GjYuDE7gTgJSoga6qGH7uXWWyfQt+8AAI4dO8rbb79GdPRxmjZtxieffMaECeOYO3cBQUF1q7m04lohQQkhagDVxwv9/WNJW70Fl3824bp+G9oTp8i5cRBqHe/qLp4Q16SOHTvb8kqcORNPaGgY7u7utG/fga+++hxVVdm9eydt2kTY8kkEB9cv07bz8vJ49dUXmDbtCQICis85cOLEcdLSUunQoWj3EIOhNf37D+Tzz2fz0UefVuwgRZnJaFe1jybhAmcy0sgxmWjiF4DWosHopKWE4leHQU0N/Hg4iiX7d/DwdV0dt5OY3xVDyc7hYGICx1ISCXT3pF3dS9cLa5CjQdMQAE4nXbiCRyZqil69Su76d8899zNp0v9VSVkOHz7EV199xuHDB8nOziYwMIiIiEieeeZF9AXn+4YN68jMzKRPn/629T77bBZ169bjjTdm4u7uho9PHa6/fiRz537BM8+8WCVlF9c+CUoIUUMoGgVTl7aYQhri9scadHEJeHy9iJwbB2Fu3ri6iyfENadZs+b4+fkTFbWTs2fjad++Y8H0FigKHD9+jN27dzFw4BDbOmXtvpGUlEhsbAwvv/ycbZ7Fkp9xu2/fbixa9CdBQXXZuHE93br1QKdzfju+//6HueOOW9i5c3tlHLIQwo4mIZHo1CQAWvj4Q6oZClpBqPpLf5PmuoF0rNeQ7QmnOJqRxoodmxlrtx0lzwhA5sU0Fh/bB8CNLcPRKHatHQu6bwTVr4+rVseZlCQsFott9B9xbfr995W2n5cv/5PFixcxZ8582zR390tDyqqqitlsLvZ+cDlSUpKZPn0yffr048MPP8XDw4P4+DjWrl2DxWIG8s/PRYt+5vrrb3AYVSg+/jRjx95KcHCwbdqIETdw9913MHnyNLy95eWZuHwSlBCihrEE+JF11yhc/9mMy459uP+0lLxencnr1RmcDD0nhKi4Dh062YISDz/8KJCfbyIysj1r1qzm1KlYWz4JKHv3jaCgunz77Y8O8+bM+YycnBymTp2On19+k/+NG/9l7Nhbi91eo0aNGTnyJj7/fFaFR/8QQjinSU7lREFQorm7F6ReRHUtaCnhYjdUt4seRVEYG9qOj+IPsWlfFL7ZWgY1NaAoCkp6JhkZGfz41zJSc3PoWK8RYQH1HPZl7b6haDQ0rOPHifRkLlw4T716wYhrl31LOQ8PDzQajW3arl07eOSRB3nvvU/44ovZREef4PPP5/Hbb7+QnZ3lMHz0Cy88hbu7B88/PwOA3NxcvvzyU/7+exVZWZm0bNmKyZOn27oaFrZv315yc3N46qnn0Wrzh5Rs2LARXbt2ty2TkpLCrl3befzxp23TrC09PvroPT766D1by44mTUKoWzc/sH799SMrp7JErSZBCSFqIq2W3MG9MDcMxm3FOlw37kAbf46cGweieriXvr4Qokw6dOjEp59+TF5eHpGR7WzT27XrwNy5XxaMunDpIa+s3Td0Oh3Nm7d0mObl5Y1Wq7VNT0pK5NixI3Tv3rPEbd1zzwOMH38TqorklhCiEqnJFzl5MRmdRkMI+cEIa1BCteu+oep0GCMMBOw/yu23TuCbtStYfWg/h5PP0y6oARkpZ/jv6HZyEs/RvI4/txgii+7LLsjR2D+Q6NQk4uJOS1DiMv36688cOnSwSvcZERHBzTffUmnb++KL2UyZMp169YKpU8e3TOt89NFMYmNjeO21twkICOSvv1Yyffpkvv9+kdM8D/7+/uTl5bFx47/06dPPoSWE1d69u/Hw8KBx4ya2ab//vpL775/IqFG3MHz4DQ4tO0JDw9izJ0qCEqJSSFBCiBrM1KYlWfUCcPttFbqTp/H4ehHZo4ZiaSCJhYSoDB07diY7O5vWrdvg6ellm96+fSeys7No376jQ/LKyvTffxto27YdPj4+JS4XGBjILbfcysKF80tcTghRdqpFJeHsGbJNRlr4BuBSkKRSddJ9A52WnOH9yOsQTqOG9bi/eRP+OPI8p9JSOZWWCjotxo7hdGsYwhi/huRNGofRbMbtt1VoMrPzt2EXlGjkHwjHDxEfd5pOnbpU1SGLGur++x8u13mQkJBQ0BVkOf7+AQDcffd9bNq0kdWrV3DHHROLrBMREcntt9/FSy89g7e3N23atKVLl24MGzbC1v3i3Lmz+PsHOAQsAgIC0Wg0eHh4FMmPFBgYyIkTxytyyEIUIUEJIWo4S4AfWRPH4LZiPfqDx/BYuIScEf0xtWlV3UUT4qrXtGkIGzfuKDK9deswp9Mvh7XZrdXGjf/Sq1efIss52+9DD03loYemVmp5hKjV0jM4lngOgJZ+gWiycoBLQQn7IIKq04FWi6VRfquGeiEhTO/UhxOpScSlp+Ki0xPSticNTsQBkFvHBzzcCpJl5gcl7FteNArMf7EQZzcEraiYMWPGVfk+dToNJpOl0rbXunVYuZaPjj6O2Wxm/PibHabn5eXRsmXxz4YPP/wIt902gR07tnHgwD4WLpzPwoXz+eqrbwkMDCI3NxcXl7IH4V1cXMnNzSlX2YUojgQlhLgauOjJuXEg5vpBuP6zGfff/yY3MYW83l0kz4QQV6l27dozYMDg6i6GELWSmpLGoaRzqDotrf3tWh866b6BXuu4slaLpUE9WioKLf0K3h4XBCTyt1EwrKjWbj27lhe+3j54ubhw7uwZTCbTFUlsKK4ebm6O3XIVRUFVVYdp9rmMsrOz0Ol0zJu3sEg3DE9PzxL35efnz+DBwxg8eBj33fcQt946iiVLfuW++x6kTh1f0tPTylzu9PQ0fH39yry8ECWRlL9CXC0UBWPXdmSPvR7VRY/rfztxW/IXGItPuieEqLnuuGOijPEuRDXJjDtLTFoy3r6+NPSqY5tuS3RpF0RQnQQNssdeT167sEvL27MGI3SXghKq3c+46Gni7YfFZCI+Pg4h7Pn6+pGcnGT73WKxEB19wvZ7q1YGTCYTFy+m0qhRY4d/1iTKZeHl5UVAQADZ2fmteQyGUBITL5CZmVGm9WNiTtKqVWiZ9ydESSQoIcRVxtyiKVl3jcbi643+8Ancf/wTsqX5nBBCCFFWh7bvRFXBYGjt8LbZllPCfvQNnbbw6qieHuQO74e5Qb0i82y0do/ZdoEN1cuTZnX8UXLyiIk5WfGDENekDh06ceDAfv7+exWnTsXyySfvc/Fiqm1+kyYhDBw4mFdffZF//13HmTPxHDiwn6+/nkNU1E6n2/zvvw289tpLbN78H3Fxpzl5MprPPpvFyZPR9OzZG4BWrULx8anDvn17Sy1jbm4uR44cchi9Q4jLIe3FhLgKWYL8yZo4Bvefl6OLS8BjwWKyx49ErSNjRQshhBClObAn/4uXoX17OHgpt4NqTWxr331DWzQoYVvezUlLCes8rfOWEub6QTTzDUC5cIKYmJP07du/nKUX17LrruvJHXdM5KOP3kNVLYwdextdunRzWOaFF17l66/n8Mkn75OYeAE/P38iIiIZNGio022GhDTDxcWFjz9+n/Pnz+Hm5kbTpiG8/vq7dOyYP+ynVqtl+PCR/PXXSrp371FiGf/7bwN169YjIqLoSDNCVIQEJYS4Sqke7mTdfiPuS/5CdyIWj29/I3vcCCz1AktfWYhKdOklo1rSYuKqlf+5Svoaca0w5uVx4NhR9DodzTq2dwxKuFlzStg9Ipdw8jvtvmFlH8ywaylhCQ6ikVcdXGNziI2NwWw2oy0h8CGuDWPGjGfMmPG23zt27FxsQuX/+7/J/N//TS52W3q9ngceeJgHHni4TPtu2LARTz/9QqnLjRt3BxMnjufChfO27oWLFv1ZZLlffvmBiRPvK9O+hSgL6b4hxNXMRU/2LcPIaxeGJiMLj4W/o4lLqO5SiVpGo9ECCnl5udVdFHEFmM35eWvyP2chrn5H9u0lNzuH1k2b4eJRKDGgNdGlffeNkriUFJSw775h11IiOAiNi57mFh2m84mcORNf1qILcUUFBgby1FMvcO5c8c+SaWkX6dWrD4MHO2+VIURFSEsJIa52Gg251/dF9XTHddMuPH78k+yxwzE3bVjdJRO1hKIoeHr6kJaWDFAwpFhNea2uYDJJCw7nylI3Kunpqbi6ehTJ8i7E1WpfVBQA7Zq3cggcqBoNaAp+15ctKFG4pURun66X5jl037B75HZ1Ie+6jrQ4cZjDFy8QE3OSxo2blPcwhLgiSutO5ONThzvumFhFpRG1hQQlhLgWKAp5fbuBix7XdVtx/3kZ2aOGYm7ZtLpLJmoJr4Ls9fmBiZoTBNBoNFgslTee/LWkrHWj0Wjx85NRQkQNlZuH259rMHaJLFMwPicnhyOHDuKq1WEIaY7ZvtuEfcsGrQZTy6ZYfErO1WQflMgZ1BNjF7s+9g7dNxxbGplCGtHCLxAunuX48WP07t231LILIcS1SoISQlxD8q7riKrX4/bXRtx/XUnOqCGYDM2qu1iiFlAUBW9vX7y86mCxmFFrQFxCo1Hw8/MgJSULi6UGFKgGKWvdKEp+UEJaSYiaymXzLvTHYtAfiyH92YcuzTCZUPKMqB7u+b+rKsrFdPYePYQ5N5e2QfXReXlidghE2AUOFIXsscNL3b99UEL1cHOcab9tjWOPadXDjcbedfDQaImJOUlubi6u1iSbQghRy0hQQohrjLFzW1S9Drfl63BbvJrs0UMxtwqp7mKJWkJRFLTamnFr0WgUXFxc0OnyJChRiNSNuFZoMrKcTnf/bTW6E7FkPDwBtY43rmu3oN8Sxc7cBDCZ6d6gKaq7a36XjQJqRZJNOoyq4Tg8qP2IG4WTZaru7mgUDaG+QeywmImOPkFYWJvy778WkaTKonaoncmlJdGlENcgU7swcob3Q7FYcF+8Cu2J2OoukhBCCFH58vKcTtYV3Pe0BcmfXbbu5nR6KucPHqZ+HT+aePuCm1uxySjLyhLgB4A50A/Vv47jzJKSw7q5oCoKrev4A3Ds2JFy77u2kaTKojaorcmla8brLCFEpTO1CyPHouK2cj3uv64i+5brMTdvXN3FEkIIISqNJiO76ES7/mNKQdBC1WrYevYUmC10axGKciEb1d3VscuGtvzv6iz1Asm8axSWuk6G4y4pyKEoqO6uhJp8ITeLI0cOo6qqdJUqQc1JqiwJlIsndVOy0uqn9iaXlqCEENcwY4c2YLHgtnoD7r+uJPu2kZgb1a/uYgkhhBCVQkm5eOkXkxl0WpSsS4EKbfw5VL2edFR2nYvDxcOdDg2awoXDqG5uDm2kK9R9A7A0DC6mcCWvp7q7452VQ+P6DTl9No4zZ+Jp2LBRhcpQW9SEpMqSQLl4UjclK0v91Nbk0hKUEOIaZ+wUAWYzbms24f7LcrLuuBlL3YDqLpYQQghxeVTVIQChZGah1vFGSUmzTdPvO4J+3xHWnzyMyWKhV/0muBV8KVDdXR07blcwKFF8+UqZ7eEGSRDRoiWnz8axf/8+CUqUorqTKksC5eJJ3ZSsLPVTm5NLS1BCiFrA2LUdSlY2rpujcP9pKVl3jkL19anuYgkhhBAVZzI7NEawBiU0qWkOi+WaTGyKj0GrUejToBlKVg4Aqnvh0TIqOyhR8hcz6/4jQlqwYuM6DhzYx5Ahw2rlF5Lyqq6kypIkuHhSNyWT+imZJLoUopbI69uNvPZhaDKy8PhxKUqm84zlQgghxNVAMRodfy+4r9m3ngDYfCaGbJORDnUb4ado0cbGg06H6uPlsJyqq+TH4tJe47voAfBz96RRo8akpCRz5kx85ZZBCCGuAhKUEKK2UBRyh/bBGNoMTcpF3H9ZAYUe6IQQQoirhtHk8KuSnT8qg5J7aUSOHJORdadPoCjQv0nL/PkmM9peHcDN1XF7Vd19wzocqdlCREQkAAcO7KvcMgghxFVAghJC1CYaDTk3DsLUKBjt2fO4/flP6W9yhBBCiBqoSEuJnKJBifWnT5BpzKNzcGPqelxqGaEEFx0to6KJLotXyv21YLQPzbkLdIhPBYvKnj27JVGgEKLWkaCEELWNTkfOmGFYfH3QH4nGZd3W6i6REEIIUX55hVpKFApKpJny+DcuGp1Gw5CmoY7LFm4lAaCp5FwOpQX9C1pKuK3dQr0TcbTSu5OWdpHo6BOVWw4hhKjhJCghRC2keriTPW44qpsLrlui0O8+WN1FEkIIIcrF2lJCLcjNoOQUtJDIzQ9OLI07Tp7ZTI+GIfi6uTuu7ObibIuVW8AyBiWsOoeGA7Bz5/bKLYcQQtRwEpQQopayBPiRPXoYqkaD66oNaE+fqe4iCSGEEGVXkFPC4p3fLcO+pUR0ahK7khLwdnFlcFNDkVUVVyctJap40AtV6/gYHt6oKa6ubhw8eICsLElGLYSoPSQoIUQtZm7akNyhvVEsFtx+W42SllHdRRJCCCHKRCkISlhH0bAGJSxZOfx2bB+mpg0Z3rMvbjp90ZWroKWEMbI1ALk9OjpfoFBLCb3JTLt27bFYzOzZE1WpZRFCiJpMghLXuEceeYQuXbowffr06i6KqKGM7duQ16ENmqxs3BevApO5uoskhBBClK6g+4bF2xO4FJRYd2gv5zLTaRYWhuHpRzE1bVBkVcXVSVCikltKWBrUI/2J+8jr2835AoUSayo5eXTpkr/sli2bUCURtRCilpCgxDXujjvu4J133qnuYogaLndwL8wN66E9cx7XvzZUd3GEEEKIUtlaShQEJcjJJT4+jr+P7EOv03HjzWNQFAXVxUkAoipySgDonbTSsCrUUkLJzSU4uD4hIc1JTk7iyJHDaI+dxGP+ryhZ2ZVfNiGEqCEkKHGN69atG56entVdDFHTabVkjxqKxdMDl92HJPGlEEKIGs+W6NLDHVWjwZSZxaJFP6GaTIwIa09gYMGwn85aRTgLVFRzTgklO7+lR48evQDYvPk/PBatRHvmPLp9R6q2cEIIUYUkKFGNtm/fzoMPPkivXr0IDQ1l7dq1RZZZuHAhAwYMoG3btowbN469e/dWQ0lFbaB6e5I9emh+4svVG9GcT6ruIgkhxFUlOjqaW2+9lZEjRzJ69Gh27NhR3UW6Jimpaei3RKGNzU/QrLroUd1c+HPPNpKiTxLqG0j3FpeGAFV12qLbcDr8ZxVHJYq0lMgfPSQ0tDV+fv5EHz/G2Yy0/Jk6HVgsuC39B93ew1VbTiGEuMIkKFGNsrKyCA0N5aWXXnI6f/ny5bz11ltMnjyZxYsXExoayn333UdycrJtmZtuusnpP7NZ8gKI8rM0Cia3XzcUsxm3Jashz1jdRRJCiKuGq6srb775JkuXLmXmzJk8//zz1V2kq5LmQlKJ3RXcVqzDbe0WdNGn8ifodWxWctl69hR1LqQyLrQ9uNmNrqEpGpRwqopjEkWCEgU5MTQaDd2794CsbNadPpE/LzsH7Zlz6PcdwX1Z0ZdYQghxNdNVdwFqs759+9K3b99i53/99deMHz+eMWPGAPDKK6+wbt06Fi9ezKRJkwD4/fffq6SsABqnbxXKv/7lbudaVJPqxty9PabYeHQnTuH210bybhhQbWUpXC81oX5qGqmb4kndFE/q5spo2LCh7efmzZuTnp6OqqooitRzWSlZ2XjMWwSqStY9t2CpF1hkGU3yRYffTyclsvjMCbSKwl1NwvBxdcPoX+fSAtqyvoOr4s+pcLkKghIAnTp1YcOvv7H7fDyDQwz4ZGZDdk7Vlk8IIaqIBCVqqLy8PA4cOMBDDz1km6bRaOjRowe7d++u8vLodBoCArwqZVt+fpLjojg1pW7UiTeS+97X6PcexqNtC7Sdwqu8DHq9tsg5V1PqpyaSuime1E3xpG4cbd++nblz57J//34uXLjA559/Tv/+/R2WWbhwIXPnzuXChQuEhYXxwgsvEBkZWWRba9asISwsTAIS5aRJTEGxWABwXfMf2bfdCPZ1aLGgpGfafk3Nyeb7lX9gspi5uUUbmtfxz1+s7qVghqqtmS0l1EItJTTZOegOHcdkaIarqys9I9rzz/7DrIk9xuiOkWgu2g3bbTYXGb1DCCGuVhKUqKFSUlIwm82XkjQVCAgIIDY2tszbeeCBB9i7dy/Z2dn06dOHL7/8ktatW5e7PCaThbS0y8v8rNEo+Pl5kpKSicUiw1zZq4l1o7lhEG4Lfyfvl9Vk1/FF9atT+kqVyGg0k5SU/wBWE+unppC6KZ7UTfEqq258fNzR66+dL0bWbpWjR49m6tSpReZbu1W+8sortGvXjvnz53PfffexcuVK/P39bcvFx8czc+ZMvvzyy6os/jVBk3KpFYQu9gzeb39O9sgBmNrm54hQ0jNRCobKzDYZmbtvK6khwXTo0oWeJ9Ns65rrBlzaaKEWCebG9Z3vvKoDSJqiLTjcl/yFqXkTsseP4DpDGFv0enadi6Pf+fP4eV8K1CuZ2ag+lfOySAghqpsEJa4y5W0GWpkPRJX1UG+xqPIFoRg1qW4sTRqQ17MTrv/txOWPNWTfcZPTB6grWoZCdVGT6qemkbopntRN8aRuHFVGt8qMjAwefvhhXnzxRZo2bVrhstTWLpPWoISxrQH9vqMAuBw4iqVd/gsVTXp+sNpkMTN//3YSMtNpGTmYUaNuQfnw60sbqhdgO3bFLtFl5mP3onF3xRMndaMoVVpfSjEBPV30KTRGI65o6N2oOatOHmHt3l3cEhRkW0abmYXF1/uKlOtqPXeqgtRN8aRuSib1UzIJStRQfn5+aLVaEhMTHaYnJycXaT0hxJWS17MTuuOx6OIS0G/fi7Fb++oukhBCVIuydKs0m808+uijjBs3jl69elV4X7W5y2ReRiYWwLN/F9SOYRjn/4425aKtPswnjWRbzMzfv4MTqUk09K7D1EcexkWnJ9duO34NA1Bc9ACYgv0xFUwPaHTpGcpaN9ZMDW5ebnhXUr2XhbmOJ8Wlk/bTg1mj0qthMzbGnWRX7An6nonH2sbDR7GgvcJlvdrOnaokdVM8qZuSSf04J0GJGsrFxYXw8HA2bdrEgAH5iQYtFgubN29m4sSJ1Vw6UWtoteTcMACPrxfhun4b5hZNsAT6l76eEEJcY8rSrfLff/9ly5YtJCYm8vPPPwOwYMECfHx8yrWv2txl0u1CClogRdFDo4a4B/qhSUwh6fQF8HBHOZXA9/u3c0hnoX4dX+547lkyMoyAEQ9FsXXtSE7LAaUgTNGsKS7d2mEKa0lmUkaRutHcfgMuG3eS1aU9alJGsWWrbNrMXNyKmXfxXCq61EzcdHoGhxhYcnw/f0Zt44EW7QDIOJOIqUEx3VAu09V67lQFqZviSd2UrDLq51rrMmlPghLVKDMzk1OnTtl+j4uL49ChQwQGBhIUFMQ999zDU089RXh4OJGRkcyfP5+cnBxGjRpVjaUWtY0lKIDcPl1xW7sFtz//IeuuUZJcSwghCth3q+zfvz8HDhyolO3WmC6TqgomM+ir6JHRmN92wKLXg0XFHBSQn/zyfDLZ9QL4+Y9fiU6+QGD3ztzx5FO4eXldOj6dFowmVL0Oi1pQdgBFQ86AHvk/29WFtW4sTRthatqoyPwrTVEudYlUNRpbgk8ANScPcvMA6F6/Kf/Fn+ToubMc8atPqH9dyMm94l/8pHtX8aRuiid1UzKpH+ckKFGN9u/fz1133WX7/fXXXwdgypQpTJ06leHDh5OcnMwnn3xiy/L91VdfOSTTEqIqGLu2Q380Bm18Ai6bo8jr1bm6iySEEFWqtnardF27BZetu8n4v9tQ/X2v+P4UY0FHi4I8EKqnOwA5m3bw3e+/EJecRLCnNxPuuQ8PL8fuC6pOh2I0oequksdbuwScqpsrSpZd65g8I0pBUEKr0TC8eRjzD+1i6YmDtPILBGs9CSHENeAquWpfm7p168aRI0dKXGbChAlMmDChikokRDE0GrJHDsBz7s+4/LcTU1gLLAF+1V0qIYSoMrW1W6XL1t0A6A8cI693lyu/Q1NBUKGg9Ynq5sr5rAy++vFbUrKzaO4bwMTwzpjrBxdd15rQsqpadVwujWNQArughJKbB3n5QQmLuxvhAcE09/YjOjWJ/+Jj6GZsnz88ak4uqod7VZdcCCEqVdWm0hdCXLVU/zrk9e6MYrHguvLfS81ihRDiGpGZmcmhQ4c4dOgQcKlb5YULFwC45557+PHHH1m8eDEnTpxgxowZtadbpV3XgitJMZouBReAAwnxzNq1gZTsLNrXbcD9kd3w0LuAq0vRla23pSoeKaqiVPtyurk6zFPsWkqoHu4oisLNLSPQKAqrTh4h9WIqLhu24/XxN2jOXqjKYgshRKW7SkLJQoiaIK9LJLr9R9GdOoNu3xFMka2ru0hCCFFppFtlIXaBCE165pXfX0H+CtXNFYvFwpo1q9nwzwp0JhMDmrRkWLPWJQ+LbsshcZUMuWfffcO9cFAiDyUvP7+G6uEGSVDfy4e+jVuw9tRxlm/bxN2++XkwXLZEkTNqSNWVWwghKpkEJYQQZafVkjOsLx4LFuP6z2bMLZtKs1EhxDVDulU6UtIujUShpFyslG1qzifhunoDOdf3Qw3wdZxptqCoKkl5uXz39RxiYk7i5u7BnRFdCA/M765hcXfD2CHc+cYLghLq1RiUKNRSgtz8lhKqix7scmQMatqK3efj2Rd7goMmHW0Cg9EmnL+0ydh4NAkXZAhvIcRV5epo3yaEqDEsjYIxdmiDJjsH17Vbqrs4QgghrhDNxfRLP6ekVco2Pb5bgu70WVzXb0G5mO7QFVDNM7I94TQfbv6LmJiTBAc34OF77rMFJFRFIfPRu8nr29X5xq+ylhJq4ZwSdpTc/NE3VBcXVLvuLHq9Cze3jEDJzuHXo3vJMuahSU2HnPzhTz2+/wO3fzajSUypmoMQQohKIEEJIUS55fbtjsXDHf3ew2hPnanu4gghhLgCFLsuG0pB0sXLoTt8wpYnQXcsFq9Pv8Nlw3YAUlKSWfj9t/x8eDd5FpU+ffrx4IOTCQiub1tf9XArMeCg2IISl13UqqG5FGwoEpRIS0dR1fxj1jku1yYwmM6+dUnLy2XxsX35m0pMccz1lHv5n5cQQlQV6b4hhCg/d1dyB/bA/c81uP79H1l3j7lqEosJIYQoG6Xg7TsAJnPFt1PQDcR11b+XphXkq9Bu2MbW5ctYnZVMnquO+u6ejOk3lHqDhwGOX9ZVd7dS9nR1tZRw6L5RKHGnJjW/ZYrq4Q5au6CEe/4oHTe3jOBESiK7z58hIrA+hqQUVF8f23JKds4VLrwQQlQeCUoIISrEFN4K8879aM+cQ7f/qCS9FEKIa4z9F1tFVfMTX1YgAO31vwVFpqmqyt4LZ1l58jCJ2ZloNQoD7p/E9XXOoNRrgHVwTIegRGk5jKwNBa6WoIR9XdoFHuBSdxnVw92h+wZu+YEZN52eca3b88XRKH47tpcpp/rg6e9rW0yxG15UCCFqOnm1KYSoGEUhZ1APAFzXb4WCLOFCCCFqFuViOp6zv0W/Y1/51rNvKQFFW0sYTfl5IUpidlzHXL8ux1Iu8MmuDXx3cCeJ2ZmE+gfxeOd+DOzWE71Wi6q3e2dm93PhESqKsI4WcpUEJRyGBNU6PpIrJlP+Mh5uRVtKFGjlF8R1kR3JMhr5afUy1KRLeSSkpYQQ4moiQQkhRIVZGgZjbNMSTUYWLluiqrs4QgghnNDvOYQmPRO3vzY6DPNZmsJBCesXZSv3H//E69PvUEpIgmndhqqqHExM4H97NvHlvm3EpV+kkXcdHmjXnfsiuxNQv/6l7esdG/IaIwxYfL0xti2lRd7V1lLCvvuGi4vTRVRPd8ecEi56h2DGsL4DaODlQ8yZOP75d51tui0oYbGgZGZVbrmFEKKSSfcNIcRlye3XHd3Rk7hs3YOxfRtUH6/qLpIQQgg72vhzl34+fRZz04ZlWs8WUNDrUIymIi0ldHEJALhsjUKbkEj2Ldejenk4LGO6mM72hNOsP32Cc5npmBsFE+znz9B6TYkMqo9SEEBQcvPAWNA6QOfYlSHnhoFlO9CrbPQN++4bplYhGNu0xNSqGe6//2Wbrnq42+oFyB8eVK+zJbLU+vsxIbwzH+3bzLqo7RgCQwj1r4uSlR+UcNm4A9f/dpJ51ygsDYOr5riEEKKcpKWEEOKyqHW8yevaDsVkwnWdDBEqhBA1jTY+wfazklrK0J5GU/4oGSlptmEmVc+CQIN9UMKuFYVL1EG0Z8+j333QNu3cuQSWLfuTdz9+j58P7+ZcZjohdfy5Y9ztTB92M+3qNrAFJCA/AKLkFmxTr6/YgV5to2/Yd9nQ68i5aTCmNi1R7btreLjnByKsv2u1qPa/u+gJCAhkbPNwsFj44VAUKTlZtpwSrv/tBMBle/m67gghRFWSlhJCiMuWd11H9HsOoz9wjLzuHbDUDajuIgkhhID8vA92b9o1WSXnGnBftAJdTBymJg1sLSUsXh5oUtNQzGZbDwnt+aQi66Yac9mz+T/27t1NXNxpAHRZWbQPakCXQQNp3LcX5pBGWDZsB7vWG7ayFeSnKNxSoqyMkaG47D6EydC8QutXOfucEvatO/Q6Wy4Oi4c7SqHgBYVybqjenrQPrE+0l57NCZv5ev92/i+ksUNXHenCIYSoySQoIYS4fC568np0xO2vjbhs2E7OmGHVXSIhhBAUTXhofYOujYnDZdtecvt0wRIclD9TVdEWdMnQxiWguruhKsqlUS+sLSVUFU1yKqqqkpidyZHk8+y9cJbjsVFYgvwBCAgIpHPnrnTRuBO4fge5rQzkNWucv5nQ5rY3+A5ls7bi0Ffs8TR3cG9M4QbMja7ubgqqXncpn4e7q2NLCZ1jIlBVq83vMnMObmgSSuKRYxxLSeTnrRsYO/JStxftmfP5LUmulq4tQohaRYISQohKYWwfhsuWKPRHT5KXcOHSQ64QQohqY80toLq6oOTmoWRmQ3YOHj/8CYDF1wdTeiaum6PIGXCdLdmkUpAg0eLuZku0qJhN5O7YS8IPizjkAicOHSQp+9IbeN9GQYT17ENERFsaNmyEoii4FAQfVA8323KWeoFk3zgQ9z/WOJRVk2ptKVHBx1OdFnOTBhVbtwZR7bqvqC4ujsOFarUOQQr0OiwFeTx0aelMaNOJWbs2cuDsaQJWLOfGgsUUkym/y437pc/BKYsFl+X/YmreANqEVtIRCSFEySQoIYSoHDodeT064bbqX1w3bCd77PDqLpEQQoiClhKWAF+0Z86jZGWjPXvBNluTlIzHzvx8Ax6/LHdYNc9s4mxOJqdPHiPu8G6OzznDxS2OLRwaePkQ6l+X8MBg6t04DON1HcFiQRsbj7lJA1tLDbXQl2FTuAEKghKqTodiMqG5eHktJa5G2SP6F2294GLXEsLVxaE7i9OWEgUtWZScPDz0LtzTtiuf7N/K2q3/UV/nT5fg/BYqGmuQqQTamDj0ew5h2nNIghJCiCpTe676QogrztiuNS6bd6E7HovmzHksDepWd5GEEKJWU2xBCb9LQYmES0EJ49nzJGamk5qTRXJONqm52STo4PzZMyRlZ6HW8UZ1dUFzPglLXjr1PDxp4uNHK98gDP5BeLu42raVW9C9Q7f/KO7L1mIMa4GSnglQZFQOe5Y63miTUlCsLSW0FcspcTUyRRYd5tS+pQR6nWNLCZ3OMRGoXgcujolB63p4MaFtF+YknmTRkT146vS0CQxGyciCQP8Sy6M/cMz2s5KeCZ7Ff25CCFFZJCghhKg8Wi15PTvhtmJ9fmuJ8SOqu0RCCFErxcfHsW7dAdJ2HkI5fIAcSwocOkH2Ycjc5krumQQyjUaMFnN+wkW7pIjmBnXRZmcR4O5BQCsDwb7+tEhIpWkdfzz1LsXu05pQUxedn+RSf+hE/vYC/TA3qFdkeVOLJuhOnMIU0Qrt+m2XBs3Q1vLB4exbiiiKrfsMADotqtulQJCq1eZ38Sgk1DeQseEt+PXEPL47uIsH2nWnXhmSXWrOJTr8bG7epGLHIIQQ5SBBCSFEpTK2Dc1vLRF9Ck1cAparPOGYEEJcjTZv3sThw/vIOxGHJiEBsxtoUi+gmMyo7q5o8nJwC/DHLysPX1d3/Nzy//m6euB9y0iartuBq05HzvB+KCkXcd0cVeo+NReScV25Hk1SisN0Y7swx5EmCmSPGYaSmY2Snokr2y7NqEUtJZwpnFOj8BChqvuloAR6HWqhlhKqooDZTPuQlhhbhvP76WN8vX8b98Zdh3+4ocR9a9IzLv18LhGsQYk8Y36wRBJlCiGuAAlKCCEql1ZLbs/OuC9bi+t/O6W1hBBCVIORI2+kT5/ryF7+H24HjmEa3g+37fvwSMvE3cUVdxdXzOGt0O89XGTdzObNcd24GwCLjxfatEtfVHP7dcd13Ran+9RFn3I63VK/mK58Wi2qj1f+qBD2nAQwajW7lhLmhvUcWjOg0xbpvqG6uaLJzkExmujdqDkpvl5s2LGVr5f8wsROkQQGBjrfT24eSk6e7Vel4HPXxsTh/ssKjB3DyR3Yo/KOSwghCshVXwhR6UzhrbD4eOW3lnAylr0QQogry83NjbCwMAx+gTT3DaBRs+Y0CK5PoLsnnlod+HihuhbTFcNVT/aNgzBGGPJHs7B7c2/x8Sx3Wcz1ivkSXED1dHf8vZZ331DsutIA+a0UCqieHo7dN3S6op9jwe9Kbn6AYWjPvnSr34T0i2nMm/clSUlF78tuS1bj/cHc/G0WtMRQMvK7e7gvWoFiMqHbd+TyDkwIIYpRu6/6QogrQ6slr2s7AFy27K7esgghRG1W8MVUdXVxGAHD4uVRbFBCdXHBFN6KnBsG5rdmsB/9wce7TLs1hrfK34+PV5E3+UUU/mKtqd3dN7A4thyxJo02RuR3vbAPSqDTOnTfULWXRudQcnLzJ3p7MsYQSZcmzUlPzw9MXNy8A21svG09a/4PAHP9/PwfSkYWqKotV0jhEVSEEKKySFBCCHFFGNuFobq5ojt4DOVienUXRwghaiXFmP+WXdXrHd+we3uWEJQoFESwC0pYyjgag6lZYzKmTiRz0rgyLe9QllreUqJwdxbV04P0Jx8gZ0T//N/tgxIaDdgnutRrL+XkKAhKqK4uKIrCmA7d6NChE2nJycx/600yv/o+fznjpZYYAJb6QaCAkpEJBQEJAE2Wk0SZFgsu67ehsRvRRQghyquWX/WFEFeMi568ThEoqorLjn3VXRohhKh1TP/uQBtT8DbcVQ92CRJVL0/HL7f2CucosE88WVqrhwLmxvXzhwEtbh+F2SdzrO05JVRL0Wk67aVcG+6OderQUkKns7VssbWUsHbnsKjcfPMYOrQwkJqbw6e7/+Ns3GmUtEyH7VkaBYOnB0pmFordiB1KTh4UDPtqK9axGFw37cTz60UVOlQhhAAJSgghriBjxwhUjQb9nkMOfWKFEEJcYbl5mJb8Y/tV1esdu294e9q+rAJY7JvmlxAUUO2Gq7QU05w/65ZhqL4+5SqufReR2j76RuHuG4Wpbo717jAkqE5na9liDUrY5lssaDQaxnbtTY+GIWTk5TH38085dfiQbfW8Dm0wt2iC4u2JYragSUp12JdSeFhR+/wXhROWCiFEGUlQQghxxaheHpjatETJzUO/XxJkCSFElTFdanavQv7QkXZfZi3+vg5dJlT/OsVuSrFrwo9dUEL1Kxp4UN1cMLdqVv7y2nfZqOXdN0yG/PrLa9/G6XzVrXBiS7uWEnqdLaij2HXfAGwBBG3KRW5uGcGgpq3IS0vnmx8WcDjpHLk9OpI7rC8oCoqPV/6yhZJVK5nZjvu2OzcUu1FahBCiPGr3VV8IccXldW4LgH7HPnmLIoQQVcQhkOCiB0WxjaoAYKkb4BCUsJSUwNI+54BdKwqLb9FARuG3+GVm3zqilgcljJ3bknnnKHKH9HI6v0i3G/uWLfbdN7Jz8pe3dd/ID0poklNRFIWhzVozoksPTNk5fL1/O1tPn7y0He/83CGaxGSHXRVuKWHrIgJo7YcqFUKIcqjdV/0S5OXl8dlnn3H4cNHxu4UQZWepXxdzw2C0SakOmb6FEKI0ci++DPZBiQKqa/GJLlXv4of6VP19gfwRO+xZnHTRKDZPRSlUySlxiaLk53UorhuLTkfmvWPJeHhCkVmq7lKiS1tgqlBLCetQnwC9m7ZkXLfeKAos3ryeVatWoKoqSsEwrZrElPxVPfKDTdZAh62o2ZeCEtgFKIQQojxq+VW/eC4uLnz++eekpaVVd1GEuOrldQwHQB91sJpLIoS4msi9uOIU+9YNBTkKVBed3QKKQxLKwgEHe6ZWIWTfNIisu29xmK76Fm1dYZ9zoly0klOiPCz1AlHrXKp/S8FnoXp7Fqk/taB7h5JnxO3XlejiEmzzlOxcOjZpwQOR1+Hu7sHGjev5/vsFGAuSZ1qDEtYcIUqh/FD2LSWUQkkwhRCirCQoUYLIyEgOHDhQ3cUQ4qpnat08f3jQoyeLJskSQogSyL24guxbShS8Ibc0qEfO4F5k3pMfXHBoKVFM0koAFAVTm1ZFWlPYr5MzsAeqVoO5UXDFymvfZaO2t5SogJwhvckZ2IOcYX0dk4ZyqYWMJvki+qMnHeYpRiOK2Uxz3wAevGMi/v4BHDx4kP+t+J3UnGwUc36gwWINgJgcW+DYByUKzxNCiLKqYDi75jp27BjR0dG2tyo+Pj40b96cVq1alXtbTz75JE888QR6vZ6+ffsSEBCAoigOy7i7u1dKuYW4pul0GNuG4rJ9L/q9h8m7rmN1l0gIcZWQe3HFKE6CEigKxoI8PwBotRgNzWxJiY0nYjFGhJZ5H6qrCxkP3gE6Daq3F8YO4baRH8rL/ou0WstzSlSEuUVTzC2a5v+iLVSXJdVnntE2PyCoLg888DA//vgdcQf28/GxKCa06UQL30DUgpwjhVtDSEsJIURluGaCEosWLeJ///sfCQkJqIWS6SmKQv369Zk8eTJjxowp8zbHjRsHwOuvv84bb7zhdJlDhw45nS6EcGTs0CY/KLH7EHndO+Q3HRZCiFLIvbiC7EdFKGGxnDHDLv08amiZNp3XrT26IycwN6jnMBoHFe26AaCxC2ZIS4nLouoKfSYl1KeSZ7zU5UanxdPTk3vvvZ91v/zAhgMn+HLPFkY0D6PL4IKkm0ZpKSGEqHzXRFBiwYIFvP3224wbN44RI0bQvHlz6tTJzwh98eJFoqOjWb58OS+//DI5OTnccccdZdrum2++WeRtjBCiYiwBfpgaBaOLS0AbdxZz4wbVXSQhxFVA7sUV45BTopLlDriO3P7dKze4rJPRNyqNXf2puoKRVxQFxe6lnarXoRhN+TkirB9jwWeg1Wq55ZaxNPjvAL8e3cuf0Yc48d8/3G7SoBQOPNi3lMjJxXXZWpTcXHJuHFzhVjNCiNrnmghKfPPNN0ybNo3777+/yDx/f3/8/f3p3Lkz9evXZ968eWUOSowePbqyi1otsrOzGT58OCNGjOCJJ56o7uKIWszUNhRdXAK6fUckKCGEKJNr5V5c5ZyMvlGpKjlQpEpOicpjHwywtoLQasC+e4VWA0byh3stqHv7FhaKpzudgxtT38uH+Uf3sPfEURJPX2Bs8wYE2O1Kyb0UlHDZud/2szE+AXPThpV5VEKIa9g1cdVPTEwkMjKy1OUiIyNJTCz/GMrHjx9nyZIlfP7551y4cAGA2NhYMjIyyr2t6vD555+XqX6EuNKMrVugarXoD5248g/MQohrytVwL/77778ZOnQoQ4cOZfny5dVbmKvtGquV7huVxT64YMvVUahO1YLuMkqe8VIuCPtgRkES04ZedZgyYDihLVpxPiuDT1csZtOmjbau0sXlkdDGn6uMQxFC1BLXREuJ0NBQfv75Z7p06YKmmBuZqqr8/PPPhIaWPYFTZmYmzz33HKtWrUKn02E2m+nduzdBQUF88MEHNGjQgKeffrqyDuOKiImJITo6mv79+xMdHV3dxRG1nZsrJkMz9IeOozt2ElOb8iegFULULlfLvdhkMjFz5kwWLlyIVqtl/PjxDBo0CBcXl9JXvgLsE11m3zSoWspQLjIMaOXROmkpUeT5WEXVavMTXRaMwqJq7VpKaDWoWi2K2YyXSWXC2NvYfTSeP1LiWbFiKcePH2P06LF4mYsLSiQ4nS6EEM5cE6Hop59+mn/++Yfhw4fzwQcfsGTJEtasWcM///zDkiVL+PDDDxkxYgRr167lmWeeKfN23377baKiovjmm2/YtWuXQwLNvn37smHDhssq9/bt23nwwQfp1asXoaGhrF27tsgyCxcuZMCAAbRt25Zx48axd+/ecu3jnXfe4bHHHruscgpRmYxtDQDo9x2t5pIIIa4GV/peXFn27NlDaGgogYGB+Pn5ERkZyc6dO6uvQKb8nBI5Nw26KgLAqgQlKo/9SCYFQQm1UFDC1KoZqos+P/eINU9EoRwQ5pb5o3koeXkoej29GjVnSt/rCQwM4tixI8ye/REHz51xWgTN+aTKOhohRC1wTbSU6NSpE7///jtfffUVf/75J//P3n3HR1HmfwD/zMz29EYgobcQQgJIR7qiiKdgPxV7ORunnvUsd+p5ds9T7jxFEevpTz3LqQgcKhaa9E5IaCEJ6X37zjy/P2ZndjfZTXaT3WzK9/16+TI7OzvzzJMlM/Od7/N9Tp065fN+v379MHPmTNx4440YOHBg0Ntdu3YtHn74YUydOhVis0hwRkYGSkpKOtRui8WCrKwsXHjhhVi6dGmL91etWoWnn34ajz/+OMaOHYt33nkHN954I1avXo3k5GQAwKJFi/xu+7PPPsMPP/yAwYMHY8iQIdi5c2eH2kpIuIhDBkAyGiAcLwasNjVFlBBC/In0uVixdetWrFixAvv27UNlZSVee+01zJ0712edDz74ACtWrEBlZSWys7PxyCOPqMMjKyoqkJ6erq6bnp6OioqKsLStPdRMCa02am0ICRW3DBvv6VWhcf/+lboReh1s586Fa8gAaI4Xg7PaPN+VZkEJx4JZgM0Gx+Rx6pCQjNh43HrdZVi16its3/Yr3t67FxP69sei4WNg1GjBeB4s1gSuoUkOdmg0AGM04xYhpFU9IigBAAMHDsQTTzwBQC7s2NDQAACIj49v9/zldrsdiYmJft8zm80QOhjVnz17NmbPnh3w/ZUrV+Kyyy5TpzF9/PHHsX79enz++ee44YYbAABffvllwM/v3r0bq1atwpo1a2A2m+FyuRAfH4+bb765Q+0mpEN4Hq6sIdDtOghNwXG48kZFu0WEkC4s0udiRTgeFHQpDvlGk3Vkms7ORDM1hA3zGjLEtL41JZhOC1fWUPVnAOCsNrnQaLPAAYs1wXqF/PCLa7LI/3e6oNPpsHjxRcgekYVvdz+K7RUlKKytwsUj8zByyDBIyYnQNDSBr2sEX1IGw5qfYbn+Ykipvv9OhCNF0G3bC+vi+eoQEkJI79RNzlShMRqN7Q5EeMvNzcWXX36JWbNmtXhvzZo1GD9+fIf3EYjD4cD+/ftx6623qst4nsf06dOxa9euoLZxzz334J577gEgZ04cPXq0QwEJnu9YlFv5fEe30xP1tr4RRw8Hdh2E9tARSOOyA67XvF96S/+EgvomMOqbwLpT33TWubijDwr69OmD8nJPcb/y8nLMmDGj3e3p6O9GmbqR12u7xe/ZOygR6fZ2p+9/e3AGrxt8bbPfP8d5XitBCacLTK9r/Zyrk28ZONGlLs8eMRKjJ83BlycPY0fRMazY+ytOEy1YOPdMJAAQ6hpgWLVe/vjmnXCc71vbxPTxN/J7h4/BNTa4BxTCkSJICXFgqUlBrR9uPf270xHUN62j/mldjwxKhMudd96J6667Dtdeey0WLFgAjuPw448/4u2338aaNWvw/vvvR2zftbW1EEURqampPstTUlJw4sSJiO03EI2GR0pKbFi2lZQUE5bt9ES9pW9YYhbsX66D5lgxYgwCuJiWQUStVmjxnest/dMe1DeBUd8E1h36JprnYkUwDwry8vJw6NAhVFVVQRAE7N69G3/961/btb9wnHMdHIMEIC45DnyYzt+R5Io1QCnNGa7rjbZ0h+9/e0iWBDjcPxvijIhLiYVNuSESPN8tR4wBkns9Tqdt9ZzLXEbYAQiSpK7HmnjYtTpcMWkG8uJT8Z/De7CzsgQF67/BQjEGU+wWKAOu9DwHw8ZtELcfAJ81GLA51H3HJhghBPE7Z2Yr7B99LW/vhXvBRXGWlp763QkH6pvWUf/4R0GJVkycOBFvv/02XnzxRfzlL38BYwzLli3D2LFjsXLlyqhMs8kYA9eOcXkdnefd5ZLQ0GDt0DZ4nkNSUgxqa82QJNb2B3qR3tg3uhFDoN11AA1b9sE1tmW2hNMporpanuqvN/ZPsKhvAqO+CSxcfRMfb4RWG9m0+65wLg7mQYFWq8W9996LK664AgBw1113Qa/Xt2t/4TjnGmwOCAAabC6I1V1n2tRANGYHlN6qjnB7e/rfBs7qgsn9s01kaKhuglGUwAOQmKd/9eDVGwGJ51s/5zIGE8dBsjnV9biGJpgAuDQa5KT2xZCEZHwFM7ZUFOP/CnZhy9siLjGkoo8pFg6zDfyJU+AbmiBt3efT3qbKBriC+J1zlTXqcdX/egDiiMHt7qP26unfnY6gvmldOPqnM8650UJBiTZMmDAB//73v2Gz2VBfX9+hGhWhSEpKgiAIqKqq8lleU1PT4qKos4TrD4wkMfpjFUBv6htn1lBodx0An38MUq7/tM3mfdGb+idU1DeBUd8E1l36Jlrn4rY0f1Bw1lln4ayzzgrLtjv6e3FOyoNuQF+IifHd4nfs3cLOam93+f6HivOqIyIJgnyMXrPWKMfMvIqgMmU9Ly36h+PAN5mhXfsL7GeeDs4l50EotSlMWh0Wz5qBXJOAb//yNI6dOI6/Ne7D3AHDMTMzHQa7A37Z7EH9HgSLJ1DHF56Ac9igNj8TKT31uxMO1Deto/7xj0odt2LTpk2wWuU/gAaDAenp6Z12EaTT6ZCTk4ONGzeqyyRJwqZNmzBu3LhOaQMhkSQOzADTaaE5XuyZjowQQpqJ5rlY0RUfFLRFHDoQ2vPm0KwHvZB3oUsoAQolKOH1fWDexSWDKDTKSfKAC93WPeDqGgBlNhyvYrMsxogBY3Jw14RZOGfQSPDgse5EAV5c/Rl2nzjiM6Wvc/Rwebs2e1DHxVk962kPFMozfBBCegTKlGjF9ddfD0EQkJ2djYkTJ2LChAmYMGECkpLCU1zHbDajqKhIfV1cXIyDBw8iNTUVaWlpuO6663D//fcjJycHeXl5eOedd2Cz2XDBBReEZf+ERJVGgGtwf2gPH4NQVApxaPDT9RJCeo9In4uD4f2gYN68eQA8DwquueaaTmtHj0bBk/DxypRQpvKEnwezzBBaUMKbJv8oxCED5BdeQQkpxgRoteAS4jBPEDB2UgJWHT2AvdXl+Hd1DTamnMTC0+egzyXngzNboT1QCNjswU0barWpP3I2O0zvfwHzrVfSd4eQHqBHBiUYY/jnP/+Jyy67DKmpqerPaWlpIW1n48aN2LZtG7Zv345ff/0V7777LiRJwtChQzFhwgRMnDgR559/frvbuW/fPlx99dXq6yeffBIAcMcdd2Dp0qVYuHAhampq8Morr6hzor/55ptdc+oxQtrBNXwQtIePQVN4goIShBC/In0uVtCDgiij+8rw8b5JV4ZouDMUWIBMCTV4EewubHZAlDMnmOBJvGYxctUHKSkBmkYzUo0xuDpnEo7UVeHLwv045rLh5bJ8jPv5O5ydOwEmALo9h6A9dASWKxZB6hf4Wp3zCkoAAF/fCK6mHiwlMaS2E0K6nh4ZlJAkCf/85z8xd+5cJCcnqz+HGpRISkrC/PnzMX/+fADyHOabN2/GypUr8fHHH+OTTz7p0IXQlClTkJ+f3+o6S5YswZIlS9q9D0K6MtE9HlRTeAL2+TPoaQchpIVIn4sV9KAg2ujvfyQwJQPCz/ANGLwKsYaYKcE5nP6Hb5gM8v9jfWcYGJaYirsmzMQmI4dV9mrs2rUD+7dtw9wqG+YMGAYTAP33G2G9clHgfbqHedjnToVm32EIlTXQHC+Gk4IShHR7PTIoAcBnzJr3z6Eym83YuXOn+pRmz5490Ov1mDNnDiZMmBCOphLSa7FYE8R+fSCcqgBfVQspjS7uCSEtdca5mB4URBnFJCKjebDf6yXzmh0mmEwJy5WLoN2xH9qDhYDDqdaYgMBDMhrAW21gsXKmBNO13B7P8ZiUm4eRMybgp59+wMaffsQPRYXYXHoCcwcOx9TkBM+6JWUwfrkOYnoqbBctkJvuzpQQ01Igzp4C06ffgq+sDqobCCFdW48NSoTDhRdeiPz8fKSkpGDixIlYsGABHn74YWRlZbVrWk5CSEuuoQMgnKqAcOwkBSUIIS3Qubh3YEZDtJvQM7kDB5y/QpfeNSWEtjMlxIEZYIIA7cFCn0wJJvAw37ZEXqYENwIEOZjJCIPBgLPOOgdTJ0/F5rsfwq+nirDq6EH8XFmM6eOGYuLESTBu3AG+vhF8fSNs7noTSqFLZjR4jivIIpmEkK6NghKtyM/Ph0ajwbhx4zB+/HicdtppdBFESJiJg/sDG7ZDKCqFc/LYaDeHENLF0Lm4d3CNHAL7tPFwDR8c7ab0LEowoo3ZN1hMkDPauKf/lIMS7kwJXgB0WnVqUAA+P/s0xyv4FJ+YhAvHTMCs/kOx9ng+dlWV4euvv8Avv/yI+TVOTDElQsMLgNMF6LRqpgQzGsC5AyKcLcA0o4SQboWCEq3Ytm2bmi66du1avPjii9BqtTjttNMwceJETJo0iabnJKSDxIx0MI0ATVGp/OSDp5mKCSEedC7uJTgOjjlTo92KnkeZHtRvUMIzfENKjA9qc2qwwelUAwMQ/Jy3A2VKaH2XM4MeaaZYXDl6AuY01eOLEekoOHwIX2zfh/U6PWYPGI6chkZoUpPBOd3Th+s0YEzeDmVKENIzUFCiFUajEdOnT8f06dMBAE6nE5s2bcIbb7yBF198ERzH4eDBg1FuJSHdnEaAmNkXmhMl4MurIPXrE+0WEUK6EDoXExI6y5WLoDl4BK6sIYFX8hq+ISUlBF7PC3PP5sFX18L42Rp5oZ+hH82DD6pmBTW9MyoyYxNw9VXXomzzr9hwrAL7q8rxZeE+rP77C5hxzjmY7XTACIDxvDrtaaSDEsKJEojpqb5FQQkhYUdBiTbU1NRg27Zt6n/5+fmQJAkjRoygQpeEhIk4KBOaEyUQTpRQUIIQ0gKdiwkJjTgwA+LADM+CtjIlkoLLlIDeHZSweKbnZP4yJbQBhm80z6DQ6XxecmYLRqzfgRFjJqO0qQHfnyjAjoYGrF79DTYePoHTE/ogz2xGbGqKPLNIBIMSfGk5TP/+L6TEeJhvvTJi+yGEUFCiVWeffTaKioogCAKys7MxZcoU3H777ZgwYQISExOj3TxCegxxkHzhpDlRCufU8VFuDSGkK6FzMSFhoExE512LxStrgSUEGZQQBDCe98y84V7WYnfBZkrofYMSfEWN+nPfAQOwJDYeM2aMxfdlRTi0rwDrThRg7csvYtyECTjDaUc/ickBl1ZqzHBmC3Q/boFr5FCIwwcFcZDuttQ1uv/fANgdQLO2EkLCp0cGJTiOQ0ZGBnQ6nc/PoTr33HPVsapGY5AFgAghIRP79QHTaiAUn5KreQdRBZwQ0jvQuZiQMFAzJXwXO07Lkd/ThHDe1Wl9MxT8Zkp4bjF8ghgtghK+GRV8lRyUcIwdBSklCYbvN6GvIRaXXPJb2EuasGnfLvysEbB9+1bs3puPbGMCJubPxpBWit8a//1fCFW1ECpqYAkhKAGXy3OIRSUQR7QyFIYQ0iE9MijB8zy+//579bX3z6H4/e9/H64mEUJaI7jrShwvBl9ZA6lvWrRbRAjpIuhcTEgYMDVVwmex/exZoW9Kp/Wp5cD8Zkp4zcRhNIAzW9zrNit02eyhoVBRLS9PiFdn6lBm3UjWG3HesBxMvfMabN+5HVuPleJQZQX2vvUG+gwYgClTpmHs2HHQew1LAWMQqmrl7dhDG+rhfYzKdKSEkMjokUGJcDp58iTefPNN7NixA3V1dUhMTMSECRNwww03YMCAAdFuHiE9hpjRB5rjxRBOVVJQghDig87FhHRQgEyJdm2q+XSf/mbN8s6UMBkAd1CiRUZGs23xlXKmhJQQpw7t4JT6Fe5jMBiNOP30mZh7sg4HNm/BurQ4lFSU4auvPseaNaswfvwETJo0BYO/2+z5LCBPLRoCn6BEiJ8lhISGghKt2LdvH66++mro9XrMmTMHqampqKqqwtq1a/HVV1/h3XffRU5OTrSbSUiPoBS45E9VAONHR7k1hJCugs7FhISB+4aetVJ7IWjNi1i2UVNCyXgAIBen9F4vQFCCJcSqdTA4p1P+QZLk9ruPgTcaMT49E1mXLcIJXsSWLZuwd+8ebNmyEVs2b8CoglJMyxiMMal9IfA8OIu1zfoT3ji7w/OzwxnUZwgh7UNBiVY8++yzGD16NN544w2fcaxWqxU333wznn32Wbz77rtRbCEhPYfYT86OEE5VRLklhJCuhM7FhHSclJ4KobwKUnJih7fVPJDgb/YN1jxTQtE8U6JZlgUnigAAKTZWHfIB0V2PQmIA7zV7iMkzvKN/1lD07z8ACxaci507t+PXX37Gkbq9OFJXjVidDqel98fE9AGIdTiDLljpM90oBSUIiSg/+VZEsXfvXtx4440tCmsZjUZcf/312LNnT5RaRkjPw+JiIcWa5KckTjr5E0JkdC4mpOOsFy2Afdp42OdN7/C2fIIMgP/Mg2Y1JdSfm9WUCJi1oNN4AhjuQAUkySeIwWJN8iaaLOqymJgYzJgxC/dc9zvcmDcFOanpsDid+OnkUfxt2494/dVl+PXXLbBa3VkTXtkQzfkO34jMdQl/qgJ8cVlEtk1Id0KZEq3Q6/Woq6vz+159fb1vIR1CSIeJ/fpAW3AcfHl1tJtCCOki6FxMSMexhDg45kwNy7akpASf15xLbLm/AMM3WmZK+A9KMK0WnHtYiJI9wTUbeiHFtAxKqJu12pCV3AdZyX3Q6LBje9lJbC07ieKiEyiuqcSqVV8hTxuLaXUO9Lv7d0BGestGeAcsIpApodl3GMavvgPTatB09/UthsFo9uaDc4lw0pBW0gv0iEyJjRs3BrWe0+nEH/7wh6C3O2fOHLzwwgvYtm2bz/Jt27bhxRdfxNy5c0NqJyGkdUqBSxrCQQhR0LmYkK6leVDCb3ajd6aEwStw2MbwDc/nNZ5hIW1lSpjNLT7OWazqvmPj4zFj5izcO2kObr3ockycOBmCIGDfTz/hjT2b8cIjD+Gbb77CyZNFYOosJZHPlNDuOuDetgtcfaPvm5IE49ffw7D6R/AllElBer4ekSlx66234pVXXsHs2bMDrmOxWHD77bdj69atQW/3wQcfxG233YYlS5YgJSUFKSkpqKmpQXV1NcaPH48HHnggHM0nhLiJ7mKXwqnKKLeEENJV0LmYkK6FJcX7vPaXKQHvOhPeGQDNghCSyXdYFgAwjUbOiFA+p2yfMTDvmhKxMfImm6wttqHMumGfNh7OKeOg++lXaE6UYmBCMjJmTMM55/wGx6sex86KYuSbzdi8eQM2b96ApKRk5OWNRW7uOAz1Dko4nBCOnICmrBJs0ZyWxxsquwNCSbn6kq+ph+hV74OrrVd/1u3YD1tm347vk5AurEcEJc4880zccccdeOmll3DmmWe2eL+mpgY33XQTjhw5gn/84x9tbs9ms+HHH39ESUkJLr/8cixZsgTHjx9HZWUl0tLSMHbsWMyYMSMSh0JIrya5i13ylClBSK9H52JCuiYp0TdTQkqIbbkSx8GZPVwexuFndg6Fa8xIOCprwAx66H/6FYDX0A+NMnxDKXQpAZxXpkSMHNDwmylhdmdKmIwAx3mmF3UPydAJAib07Y8JffujXifg19PHYO/e3SgqOoEff/wBP/74AwbmF2FscjrGpPZDitMJ08er5G1OHgPoWwZTQiGcqgAnSeprvrYe3qEdwT0LCQBwTS2Pj5CepkcEJV544QU8/PDDuOuuu/Dcc89h4cKF6nvFxcW44YYbUFdXh5UrV2L8+PGtbuvkyZO49tprUVJSoi6LjY3FSy+9hJkzZ0bsGAgh8sWDFBsDvrbeM6c6IaTXoXMxIV0XizXBNSgT4Hm4sobAlT3c73q2xfMBAJo9hwJvjOdhP2M6+NJyNSgBd1CCCc0LXTaffcMIxnHgq2qh3X0QzpyRnkCG1SsoAQAajc+2uDrPcIkEh4ipU6Zh6tTpqKmpxt69e7Bnz26c2roXpxrqsPpYPlKP70eeMQFj0vphSG090LdjQQmuoUluTloyhMoa8DV1vt3iHZRwZ30AAFfbIAdYmhcbJaSb6xFBCY7j8NRTT0Gv1+O+++6Dw+HA4sWLcejQIdx0000QBAEffPABhg/3/0fT2/PPPw+e5/HBBx9gzJgxKC4uxmOPPYbHHnsM3333XSccDSG9m5ScAE2T2ZOuSQjpdehcTEgXxnGwXnF+8Ou3kimh0nmm6WRKPQrvmhKMgWMMzHv4B8dBSkqAUFMHw6r1YFotXKPla33OKt/Iq0U2lWCF+9qCr2/w3b/DCb6qBgO++B/SzjsDs2fOhrncgT2N1dhffAKllZX4HpX4vqgQKS/WYOicWRg1KgeDBg0GH6guRiv4Rjn7QRzQTw5KNKsp4T20Q6mPAYcTMW99DEgSzDdfDpYQF/J+uyybHTD0wKLFzYqzksB6RFBC8ec//xl6vR4PPfQQ8vPz8cknn6BPnz5466230LdvcGOxdu7ciQcffBATJkwAAAwbNgxPPPEEFi5ciIqKCvTp0yeSh0BIryclJwJFpeBcrmg3hRASJXQuJqQHCeKejBk8QQklUwKCZ/iGpuC4e1u+G3NMHQfjqvUA5CEQuh+3wDF5HDi7uzCle7tMyZRwX1twzWbT4BwOGP/7HfiGJhi++QHmGy5F35g4pA0ciLP6Dka11Yz9VWXYW1WGospKbNy4ERs3boDRaMLw4SMwalQ2hg8fCZPJFFyXNMqZElJ6qvza6smGgM0O4UQJJKMB4NyZEoyBr61X263dfRCOWZOD2ldXp911APpvf4RjxkQ4Zk6KdnPCxvD5GvA19bBcc1HLAq+khR4VlADkglh6vR7Lly/H2LFj8frrryMhIaHtD7pVVlZiwIABPssGDhwIxhiqqqroQoiQCJOS3f9enRSUIKS3onMxIT1IEKMxvacNVWtK8Lw8PKOuAcb/rJbfa5aV4MobBfHX3RCqatXhH0JRqVqvgSkZGM0yJZpfY3B2p2e2DY7zPBjRasC0GqQgBrMGDMOsAcPQNKQvfh3WD/v378exY0exd+9u7N27GwCHgQMHYuTIUcjKGoX09L7gAjwlV6YxFdOS5ddeQzQ0BcfBSRJcwweBL6sEb7EBNgf4Gk/xS857utIO0G3YDq6hEfYFs6PzRF8UoVu/BRwA/S/b4BybDRbvp0ZJdyNJ0B46CgDQ7s2naV2D0COCElOnTm3xj54xhiNHjmDBggUt1t+0aVNnNY0QEiIlKEGZEoQQQkhPEERUwnuIh9d0ohAENbsBgE9NCQByQc1xoyGs26Au0hSXQUxJlPfsLnDJms3kwTV/8OFwqFObMp1WXY9pBDCd1mf9OLuEKVOmYdKkqbDb7ThypBCHDx9CwZ49KPnuRxTlH8a6dWsQH5+AESNGYtiwERg6dBhiYmI8h+EevsES4+Xte2VKaPflAwCcOSOga2wCKuUhHHxtnVd7OzBFKWPQ/bzVp7ioc9JYSKlJ7d9mO/FlVeC9jl04VQFXDwhKcPVN6s+agmMUlAhCjwhKXHnllQEjke1x4403QvAz/u3aa69tsZwCHISEF1OmxKJMCUJ6NToXE9JDhFi3mnlPJ6rhAe/LAX/1G/z8neDsTjCO8wwFUQtdujfm8pMp4Z7lg2k1nmsQjcYdJPGadtQrS0Gv12P06ByMHp0DU6kVZcOM2GfksS8tBqe++wm7tu/G9hGDAXDo1y8Dw4YNx7BhwzG6rgE8z8vFOk0G8HWN7toZgHC8BJLJCHFQJthuuUgob7X6Zko4/QQlGANfWg4pI73VrAfN3nzoN2z37cJjJ0MOSghHTkC3ZTds550BFhfT9gf84KtrAQCS0QDeagNfVglkDW3XtgC5qKpu535YzzvDcz0ZBXxNrfqzdxYMCaxHBCWWLl0atm3dcccdYdsWISR0UmI8mHfqJCGk16FzMSG9F+dV6JoJgm9JiuaZEpCzGZrjm8xgBr3n5rzZ8A0l84FpNeCcLs/QDQDCqUp5FjD355RsC3V//rIUbHYI9Y3IjE1A38x0zB6TBbHchcLaKuydMA6FRwpRlp+P8p278Ut6Kozb92FQn77o/9NIjLaaMUiSwFntABg4AFJCnDx8xaRMe2oFX1nt6SM/bdAcOgrjF2vhGJsN+8I5LduorHf4WItlQlEpnJPyAn6mBYtNnSJVu/sgHDMmBv9ZL0pQwpUzArpteyGUVbZrOwr9z1vBNzTB9OFXMN9+VdCfE06Wgj9VKfdBGB5089V16s/e3y0SWI8ISoQTXQgREmWCIFeUFiU5PVGnbfszhJAehc7FhPQcIc8S4f1QonkWBOcvU8L/7BfewQQ1cKEEPNz7YDFGcHWNPkMjOFGE6RP5hptpNUCzoIQydEIoOA79hu2wXnwOuAbP7BlcTT2EolIYtDqM7ZOBoeeeDzRZYH/pDRRIldjftz9OCgdR2FCDQ+vWYH3+MegaLegb68DgAYOQXVuJzIH95P27C3XyNfUQyqrA4K4b6i8oceQEAEC3+yDsZ0xv2W6lfdaWT+75hiY/awamOXZS/Vk4Xgy0MyghVLmDEllDodu2F5zXLCRCwXFwDgdcOSOD2xhjaq0Nrsmiznyh27QDfGUtbOfNCxhwML3/JQBA6pMCcXD/dh2LN+/ZVPz1N2mJghKEkC5HqSvB19arlakJIYQQ0v2IA/rBuuhMiP3SW12PCQI4UfSt99A8KOEnUyLQlKM+GQ6BMiVMJqCuEVyjxX+jBKHlwxGHE2AMpk+/BQDoNm6HOKCfp4lWG5hXVgNfKxfqjDPGINUYgwmj8qBp4FCUaML+MUNQYv0WJw8exLGjR3Hs6FH8fOgIUJKP9KYSDLUxjKqqRP+9B6EH4MoeDu3BQv/DN0RPhglfXQcpw39BYH9P7jlzgOMPQCj3ZDQIxWWAJAF86DNM8DV1AAAxPVX+/XvdwCv92zQgI6jil1yTxROUkOQHW0J5FfTrtwAA7POmgsXGAHYH+MoaSJnuYS5ew3E0h4+HJSjhMwTZZm93//QmFJQghHQ5knscIAUlCCGEkO7PNXpE2ytpBfnG2itTgjXLgmg++4a8TttBCRagpoQUY4QAgDOb/W9Dq5GfuHtth3O5fAIAnMXm82Qc8GQAAIDh6+/B1zWon9UUHAfP8cjMyETKrDnQO7TQJA/EsZmn4cSpEpRUW1BgElBcfBKlFdXYdLwE2L8NqQYT+motGFZcjgG8iARR9Kmvw9d5PZ1vZciAvyf3nNmqZhYEgy+rkvuD48AxJgdqQpj2UvfDZkAjgGs0y9kgeh2Y0SAHRxjz6V/tvsNwTD+t7TZV1fgek8UK4WiRZ4HdCcTKQzx0W/fAMWUc7POm+QwZEU6WBn0MrfEegswBgM0BxBrDsu2eioIShJAuR0pyZ0q4I+iEEEII6dmYRgMODrXgJAA/wzf83DRrAtzO+MmU4KtqYfzwK3DK7BcxJnl5k7XFx5X9M51nnyzGKA8x8Bo+wZkt4NwBASkxzic4AABCuXwDb77pMsT+6wPwdQ3ytgwGdZs8x2NgTROGlJnB50yEbcZEnMoegpPf/4jSb9agqKEWlRYzyk4ew74jR8GK8iFZTiEjIwP9+w/EgAEDMOLUKaQxDhzHgbMFGDLAmLt2hYeUECcHVax2wGTw/7lm+IpqMEGAlJ4CobRCrnER7GdPVUK/eaf6WkyQC2wyox58kxmwO3xrfJSUAYxBOHoS4uBMaLfvg27jDliuu9hnaJBQXOazH85s9dkO53CAARBOngIA6LbskoMSpeWedcJV/0GZvUWvA2d3yIEgCkq0ioIShJAuR82U8Ko0TQghhJCey3bBWTB8uQ6238z1LGwxfMNP/QhNEDUlBPmWh2+ygG/yDFVgMUohSTlIIcWYAK3GEzjQanzulliMEahv9Ak8CBXVamBEzOjbIiihtIUlxHkyCwAw9028lBgPANAeKPR8wGREamoq0sefBtORCgCAxelA/rkzUbnyQxQ11OCIXo/i4pMoLj6JzRskaLfvg0GjQUZsAvrESkizNyAjIxNpaX3AK/3mcMpDG7xIKYng6xvBmy2QggksSBJ4qw1SfCyYXi/3n8PRxoc8tHsO+vZNrDxzBzPK++asNp/fEWe1Q//DZjmIMH0C9BvlmUO0O/bBMXeaup5S58I1MAOaolLwFqtPAEYpDqrU6ZBfMPAlXkEJu+9xaPbmQ3ugELazZ4K5f0/BUDIlpLgYCHZH4CARUVFQghDS5bAEeewg1xTaGEdCCCGEdE9i/34tZkxoMbOGv9k3Qqgp0WIdd6YE586UcOWMgDNnBGJWfur+nMZnn0p2g3DQE0DgbHZwTXJQQ+yXBu2Bgpb7UWYC0evkGgPw3IRLfm52mVG+2YfOcwxGrQ7Dx43F2FH7wDVZ0Hj/zaiprUVxcRGKD+WjqqAEpU0NOFpXjYJd2yFVyDfpgqBBenpfZGRkICMuEUPra9A3Jg4Gjda3D8wWIC25WUOY/J93MEi5udfrwPTueht2PzUuAuDrfYtqsliTT39wVpvanwAAqw3aLbsAeIp5KuupnE7wpRWQYk0QB2VCU1QKzmL1DQa4Ayecd1udLgil5WA8L2c1WG3qMBaurgHGr78H4M6qOHtWm8fGmS3gSys8mRKxMUBVLTirPdSZcXsdCkoQQroc5UKCplEihBBCei+foRxAgNk3AgQcTF7p8oGCEsqUmy7PFKHKzbHyOab1KnSpk2+ddJt3+TbLIgc1lOGnLfbjvq5hBp16beMJSrT8jDq0w2vfLDZGHk6i1YJnDJwkISUlBSkpKRif3h8xR2shMQmVFjNODE7H8cxUnDpVirKyUygtLUZpaTFgtkK7Xw6aJOoNSI+JQ7LGigFlVUg8chTJGX2g8wqEaPbmw/jNDzBffaFcGBKebAKm16lBE87p9LnpFk6UQDheDMfpE1oMr2meNSD5yZRQhtco66thIa/giOCuayGv4wDHmJy9oQZZmg3fcAcjOLtnGV9dB95shdg3FRDlDBA4nIBe5zMjiebgEdjPPD3gd00+AIbYV96Rf9TKx8ziYtRjoqBE6ygoQQjpcpR0QNiDTwckhJBoO3r0KB566CE0NTVBp9PhoYcewsSJ7ZsqjxACwO77cIL5m30jQMDBe0YM8DwYz7cYuqA+6VfotHJWg/K+RgPmNfuGd5BAio8FMxkhlFWCs9jAOC7g9KdqUEKvByAP71CDH0Z9yw8oBT692qfOQOFuD+dwqgU81WEHCfFI53gk9x2A7HPmyZ9jDPX1dSgtLUX5jt2oLW9EqY5DbVk5qmM0wOEDEIpKIZrLIa1fhaSkZPTpk460tD4Y8M2PSDPGInHtemiuvVSuV6HsS69X+4ZzeIIS2u83QbdJrhkh9u8HcdhAn0NrXmjTkynhHgpitcu1Jdx4i2d93qsoJV9V6ynO6Z6NhGm1XkNymg/fcLfbK1NCOCUPjZHSUsDV1qt9yfQ6n2tQ3mqD5kAhXLlZCEQo8hTJVGZ3kZS2+JsthfigoAQhpOtRpu6yU6YEIaT70Ov1eOqppzB06FAcOXIEt912G9asWRPtZhHSbTUf4++vpoT38A0p1qTWIxAzm01BqhEAR7OghFdWAOAOOnhPAaoRfPep9dw6MZPRc1MuSWA6rXqD3aKN7kCHdz0D5lW/gRn04Gx22ObPgFBcBrF/X3f7vIIg7qGt6jKHE1AyPdwZAVJivPyE3ztDgOOQmJiExMQk5DEdjCfr4ZgyDk2nn4aqmmpUbdqGum/XoSQ9AaVJcaitrUFtbQ3y8w9Cm79H3ufRPeCLDyA5OQV9eC0yjx1CoglI5jOR6XR4hqTUN6oBCcD/TB9oVmhTCbZ4Z0o0X0fdntdMKJwoyoEDg94zjaxWA0nJTmhsalboUsmU8Ao2uKc2lVISIbizXTi7HQyxahBDzEyHUFIO7Z5DrQYl+IrqlguVIUQuseV7xAcFJXqwvXv34pFHHlFfFxQU4D//+Q+ys7Oj2CpCgsBxAM+3vBghhJAuLDMzU/156NChaGxsBGMMXJDT7BFCfLUMSrSeKcES4uBKSoCUkghofbMgmCCAQ7Mn1vrmQQmNzwwfrHlNCe+sCb3OJ52fabW+Qz/87EfNBIVX5gMA802/BWezQUpNhnNirtf+dC3XdwdGfIZMKEGBxHigqNR/MADwGTqi1evRr18G+k+cCFN+CZw5I2E7/ww4HA5UVJSjqqIC1gobKi1NqBCAUwDKykpRXteAgyeOQ7JWg+3RQyg+BU3FYSRkj0SmKCG+sBDJBhOSDEaYTp5E7LABMBrdQ2kYazE01zW4v9omwD18wx1k8Jfd4nM8Zosc8FHW12rVbBW+ps73+2N3AKLoM12nMgRESk4EXy4HFZTPKMM9XEMHgi+tAF/bevF1vrGpxTK1EGjzYUikBQpK9GC5ubn48ssvAQAlJSW46qqrKCBBug+eA+cS5eiyjv5UEUI6buvWrVixYgX27duHyspKvPbaa5g7d67POh988AFWrFiByspKZGdn45FHHkFeXl7I+/ruu++QnZ1NAQlCOoBzNE97b73QJTMaYL1kof+N+RnmwZpPJ9oskAFJ8v2cd6aEXuc7Rak7oOEalAnNiRLfmTaUISHeQ0O8al6wWJP/LAuv/Unx8s22GqjwGobgnSnh/bo5JVjBvIaMqEMMzHKGid7uwMj/bcbQUcOgHyxnBjCNgMY/3ACz1YLajVvR+PVanBqYjiqHHfW1Tah0uVBWVobaomJIZdVgiXHg6hohlR8F+/QDaAdmIjElFYkxMeiTvxvxphjEa3SIyRsNQ10N4uLiEacMRXG61OEOLD4WnHsmFH94sxViSpJnfXdNEKbVQKiq9T12h7NFQU6hzJMpoWax2NxBCXemBDMawGJNcvF1UQxYV8K7Dgbg/l4q3x2RMiXaQlf6vcTq1atx9tlnR7sZhASNudMlObudghKEkLCwWCzIysrChRdeiKVLl7Z4f9WqVXj66afx+OOPY+zYsXjnnXdw4403YvXq1UhOlqvSL1q0yO+2P/vsMwjui9WSkhI8//zzWL58eeQOhpDeiPkpF9gsKBFQ8wAE4KndoHxe26woo9MFl7smgnP0CJ9MCeh1Pu1RPmtbPB/67zfBOXYUTO/LDwfVmhLe+wsmYMnzYFoNOKfLM8xBr9Rx8GQBcO4baSkuRs4uaDMo4TV0xHv2DQDafQUQyqp8C0m6ROg37YTpeDGSB/SDvt8g2KdPhhQXCyOXANu08WiYnAv7KytQk1KJ8nFZMK/fiFqbBTW1ZlRJxSh3OVFus+No6QmwuBi4RgwGju0D/rEPAKBrsiLlWCliqo4igXFIqLfAmNkP8XWNiNXqEavVIUYn/1+blAih0ay22TN8QwtwHKTEeAiVNfLxuYNDnN0RcOpSKTHeU2RdrT3hDkrotGDxceAbzeCaLAHrhjQPSkAjeAJmFJRoE13pR1FnPrFZvXo1Hn300XA1nZDIU8Zw2hyAe3ygZs8hCAcKwbRauEYOhitnZBQbSAjpbmbPno3Zs2cHfH/lypW47LLLcNFFFwEAHn/8caxfvx6ff/45brjhBgBQMxADaWpqwm233YZHH30UgwYNandbeX9p6u34fEe30xNR37SuK/WP2CcFgtdYfQ6sZbu8H1wYDYHb7SdTgm+2jNNrfT7PiS5wcTEwP3AzIAjQ7jzgWVmvkzMpFFr3Z2NNcJx/hu92BQE8z4F3eoYOBNu/TKeVb7oT48DzHDj3zTPvcKqFP3l3DS7OZACMerlYJAeA48CfKAHX0AQxNwu8EqwwefWTUQ+mEcA3WSBU14JvlpmgDKHQ/7wVAKA5eUp+w6AH584uEFwi4p0iDEyLzLyxGHnGDBhLGtVtiKlJqLryPDQVHIH93f+gpl8KaiaMRkNDA+rr69HQUI8mZymqrGZUlpUCNrscALDVgKuqa9EnQlIC4ix26BtPwjhqBGKq6xB3+DB0egc0Jgnx1acQW1ENo0YLfWZfxNQ0QNvUCI2fWmVMI4DXacG5s1h4h1P+XSk1KAx6ear6EkBobIKU1HIKVwDgm2dKaDTgtPL3ixfFLvXvqiuioEQUdeYTm5qamnYFMwiJGvcTBHXqKVGE7n8b1Oi/puAYzJl95fGThBDSQQ6HA/v378ett96qLuN5HtOnT8euXbuC2oYoirjzzjtx6aWXYsaMGe1ui0bDIyUltu0Vg5CUFBOW7fRE1Det6wr9w265FOLeArg+XwcA0GkFxPr5t6FUUDCmxCMuwL8du0aQazDotRAm5YJLiEVSSiy8b1MT0uLBp8TCdf5cuP63CfEzx4Pzqv0gJsepVSkMibGA0wnlGbjWpEdMs32r7XLaEZ8SCweToIQxgv03bjcZwMxWJA7uCy7GCFdSHFwAYrUcNO5tKNuN75MIZ4wRzGxFcrwBnE4L21/lQKp+6hg4XS5IABL6JYP32r89Phasph6m5R95dizw4PqkgI+PgZR/XK6tIXkyQ2JT4oH4WDgBGDgGrqoaLgDaUUNg6JsE75wEwe7AoEF9IVoscKb2hTAhD9pLF/gcp3SyDOYXVqJpeCbqSk6hseQUrLnD0bB5J5qcDpgdDjQ57WhyOmBJSkB9XRG4ynLwsRpIpyohlZ4Ar3OCt1VDOloM6WQZAIAXh0PaXwju8DbwO9aD21sAvaCBThCgEzTQmYyI+cgATVEZNAcOwxjjgLGpFNzO3RCOn4S+oD+Eygqg5BgMu7dB5xoBjUYDvr4J2HkQhnnTIJiMqDxZJGdkQC4uygsStPZG1DQ1QNNUh1S9fF3bFf5ddUUUlIiiznhiAwBr1qwJy9ANemoTOdQ3frgzJXiHA+A5SIUnwdnsEAdnQkpPhXbLbhh++hX2xfOj3NDoou9OYNQ3gVHftFRbWwtRFJGamuqzPCUlBSdOnAhqGz/99BM2b96MqqoqfPzxxwCA9957D/HxoQVPXS4JDQ3WkD7THM9zSEqKQW2tGZLkJ+W9F6O+aV3X6h8OGD0SMe6ghMPuQmN1y4KCym2emXFw+XkfAHT9+kB7qhKugZkwz54qL6y3wvsWsc7iBKtuAnKzgTGjYHYC8NqeRqOFUo3BKgEQAaUUpQNci7Zpp46DbvMuNA0bDKm6CZq+adDvL4Rr5BBUB2hnc8L0CeBrG2C2iYCtCRoJ0AOw7SmEfdBAQKeFvr4JGgB1Dgl6rRYCgNqSarC4GPX4akuqoW9oggCgzi7Jx+mmT0qApsZTyJHpdbD84Xr5vc/XyjeMzb4LjU4JzOaCEYC90QIcK4EGgDUpES67BO8KGazJgurqJggVdTAAsPICGpodP2d1wiQIiIcGCTGJ4NM42MdOhL7M0qJP7PNPh3btz2gYNgA186bCuWUHJP1mNJw2Gk3DB8Da2ATHoQJYJQmWWCPEklpYTAZYdEaIGg0cogizU3noZYdr70HwVTUQKkoh7XRBrCyDpuAYuNoGuNYxcGYLhOMlkCyVEDfLM6NoDhTI2Rxf/xfi4Exodh6QhwO5i1oyox5S8QEI+ccgndgL7d5f8dxzT8Nsdrb731V8vBFarf+aFt0dBSW6qHA8sVGEY+gGPbXpHNQ3HkpKZbyOh5AUA+d3GwAA+im5EMaNgv1AITT7C2A6ayp477nIeyn67gRGfRMY9U3bQpk9Y+7cudi/f39Y9huum0FJYl3gxrJror5pXZfsH0lqtU2SQR/wfdtZM2GflCfXUFDWafZvWxI0YN6fb1bDQozzXAtLWq3PzBBMq2mxb/ucqXBMzAWLiwUkBseEXEgJ8fKME0H2rTR6hPsHpu4XADSHjkCKNcE+f4anpoROB2aQ60WwJguY90wiZis4i5y7Ier1Pvu3LZgN/feboD1YCABwjRwCyV1UtEUxUK/jV99zOMG5Z69w9UmB2GxWE47J3yXBvX9J3/L3xAnKtlyA0wnG85C8pk2V4mPl6U4hz9ihMxiQcPwUNDojtMlp0Kekw5adA+f4HPkDZ8gPrTizBbFlDoj9+sAxMRfGmO8gGQ3gLFY4RBHWtETUXbIQ0v7D4Fd9D/OYEWg6LQfcf/8HVlqGpoVnQjRboFv9I+x9U2GdMQEulwhtgwixoREiGCxDRkBbUg9XSiL4qlowMLjiY+AcPgzaKgtcffsgccJEaLVaSJKj6/276gIoKNFFheOJDQCUlpaipqYGubm5ba/cCnpqE1nUNy0pp/mmynpINU0w7isA4zjU9+sHNDmgmTER+m9/hGXNJtgvOKvtDZqt4MurwEkSxKED/M513h3Rdycw6pvAwtU3PempTVJSEgRBQFVVlc/ympqaFudiQkiUtPHnSrkh94vjwJITfZfxzQtdNpt9o/n2vWbIYHqtbwFDfzfvHCcHJBSCAFfW0Fb30SavG35Bqe/g8CrK6J5ZI2blp75NsdrA2exyQc5mtTRYfCxsi+fDNaQ/tAcKYZs33fNegD5hGsEzXarEwFdUA1oNWFICAE6uheE9e4rd4bfQpro9pYio0ynX0HDPpKGQkhPVoIQUHwdnbhZ02/ZCKCr1TAnq53fAePexSpJnRo24GPBWG/QaDYSEBAgpKdD07QtjQjIc6Rmwj86BactBCEyPpmnTwfR6xOafAtPpYJ43H+A4GCvtan0N28TTYaiR4JgyDrotuwAAYmZf2OZNQ4xZB2f2MDgWnk2zMbWCghLdTKjznWdkZGDdunVh2Tc9tYk86hsPpXgTs9mB4jKgwQxpUAYko0F+2jB6BHRrfgZ/vBiSKLVaxVq3eSd0P2xWJxIT05Jhnz8D4qDMTjiSzkHfncCobwKjvvHQ6XTIycnBxo0bMW/ePACAJEnYtGkTrrnmmii3jhACwP/sG95ve025GZTmDyj8FMP04T0dpFYL6DxBibYCGuHCvIISfGUN4PJMoQmdNmAfcBYbYLOrs3j44xqbDdfYbN+FugDHxfFgnHumNIsVnM0OLqOP3KcSAzMafIISnMMJzuqu4OFvlhT37CWcwwk4XWAmg29QIiUROF6srqtOf2q2eGbf8NdWZcYTUQTnnhJUnnFEzuxQZ0ZRvgvu4RdqAEOvAzQCpD6pEE5VgKtvBEuMB2fxPKzVFB6XP5qSqC5jGt7zfXLR7Btt6RmPCnsgemJDej1lSlCbA8Lh4wDg+3RBp4WY0Qe8xSaflAPQ7jwA/Q+bAa0GzpyRcPXvC6GyBsaPvgZfXBbJIyCEdDFmsxkHDx7EwYMHAQDFxcU4ePAgKivlueqvu+46fPTRR/j8889x5MgRPPbYY7DZbLjgggui2WxCiKKtoESgG+hAOM5niEPzKUJb5XD6PpnXds6zXu+gBCdJ8jWQw+nOXOADBiX4ugZwCD1w03yaVM8GOTVTQilK7p3FIcU1Gx7odHllSvhpgyDIgQG7Qx4Wo/UNsEjeWS4cp2at8GYr4A7K+G2rcj0pSYB79g3m3Ta9Xt2/vCNRbS8D1AwY5XiUguu82VPrQnP0pLzdpATP1KJNFnWbHE0J2iYKSnRR3k9sFMoTm3HjxkWvYYR0FiX6bneAr6oFAEiZ6T6rKJkOwokSv5vgT1VCv/pHMIGH9eJzYDv/DFiXLIbtjOngJAnGL9aqc1wTQnq+ffv2YfHixVi8eDEA4Mknn8TixYvx0UdyxfmFCxfiwQcfxCuvvIJFixbh4MGDePPNN9UZrwghURYgKMHcT6RZ8xvhYHhnSwQxtJPPGgwAEDP6gHlNRxrw5j3MmM63XoNQVgnO4VIzNfwNjQAArl6eopM1q/fQ9v4CBHp43pOl6s5U4LyG8zX/XXBOJzhb4OEbAACdFrwSuNBqfIIXklcWAqBkOzTLlPAblFCGmEhqpoSUnODZjtIf7oAU586UgCT5BqkEr6wHl0ut46Fuh+MgpSZBSpK3zdfUgymfoaBEm2j4RhSZzWYUFRWpr5UnNqmpqUhLS8N1112H+++/Hzk5OcjLy8M777xDT2xI76FG3+3gvMYQehMHZQIbtkM4UQLnpJZT3mp37gMHwDZ3GsTB/eWFHAfnpDwIFdXQ7s2HfvVPsF20oMVnW+VwQnugAJr9BfL4zNgYOEcNhSs3q8fUqiCkJ5oyZQry8/NbXWfJkiVYsmRJJ7WIEBIa/0GJpjuuAWe3Bx5q0BqBB0RRvoEMYoi09saLUHuySr4prvfMINFZQQkYfIMK/KkKcC4XWIxRbkegTIn6BvmHUPsomEwJZfiIV+ZIi8CD06UO3whU+4NpNWomAjQaeYiM8l5sDOyzp0ByDz+R3MfLmS1qoMbvEBqel781ElMzOsS+aZ7tKsM3BN/hG5CY7zWdGrQQIRyXH4Z5181wnpYDZjJCSkqQA0WMqcM3OJenICrxj4ISUbRv3z5cffXV6usnn3wSAHDHHXdg6dKlWLhwIWpqavDKK6+gsrIS2dnZ9MSG9Brq2D67A3xjkxyhjjH6XI+ImelgGgGaolI5ou198rA7oD1QCKbRwJmb5btxjoPt7FkQjhdDe/gYHFU1kFKD+3fF1TfC9NFX4L2mzkJFNTRHiyBu2wvbojOD3hYhhBBCQhBo+IZR739IQDCUJ+lBDt3gBEHOApCYbyCis2pKNMuU0BTJxRaVtoj9+/r9HK9kSuhCzJQIVOiS49SsVvjJVGi+H762vvXhG/DNyvDOQpHboYFj+mme10qmRJMFiOPVdfxSpupU6kR4B0yUukrNshq4ZteVSjYORBHG/6wGALiGDYLUJxngODgmjQUAOCaPhfZgIezTT/OpZ0FaR0GJKKInNoS0wn2RwDdZwJmt4FIS5ScY3hckGg3E/n2hOV4CvrwKUr8+6lvag4XgnC45IOHvqYFWA8ekPBi+3wTtr7thXzi3zSZxtQ0w/ftL8A1NcA0ZAMfpEyCmJkGorIHuxy3QFJfB+OFXsCxZ7K4+HQZ2h3zMoRbvIoQQQnqaCBTmZTwv11oQQp9JiCV6MjhDLrLZXl7FOCWjAXyt+yGJ+4aeJcaj6ebfInb5Rz4f4+qUoESIwZPWhm8omRKs2Y29n88Zv/7es/9Afe0dAGk+k0bzgINeByYI4MxWT12IQIEhnncP31CKV3p+V3yT2d32lsM3fGqGKPUhmizqVLCO0ydASvN9ECVl9EHj3dfL9TWUQp8UlGgTBSUIIV2TOzrNV8v1JJAY53c1cUAGNMdLIBSX+QYldsuF7JzNq0h7cY7Nhv6XbdDuOwzHrCk+U321wBgM33wPvqEJztEjYPvNXPUEJQ7MgHXJYujX/ATdzgMwffgVLNdeBGYyhnLEHnYHdBt3QHuwUH2yIcXFwJU1FI7pp6lPBwghhJDegAHyDFptFLpsF+VpeHuCErExaLr1SmiOF8M1ckiYGxYAx8Fy8QJAo4H++02Akn3gnWWQkgTn6BHQHijwfEz5IdSaEgGHb/C+RULhW1OiRaFLZXuB6kk025eSoWG5chH42vqW1z7uYpd8fSNEpQ8CHRvPg/MKSkCvhX3OFOjXb4Fj3Gj5s3yz+g+S5MmiAdTvh1AlF1d3jhzSIiChMvgWz+Ro9o02UVCCENI1uU90ylg9LkBQQi0o1Gj2fNRsgVBaASkxPmAaIwDAoIdz3Gjoft0N7a4DcMyYGHBVzeFj0Jw8BTE1Cbbz5rWsHcFxsJ81E5zNAe3BQujWbw4q+6I54XgxDF+uA2+xginHx8lZGrpte6Hdcwi2s2fBNWZkyNsmhBBCuqXmmZLh3jYQ2swbXlhiPJzuG9vOIo6QAyDMsMPTjmZZAs2HP3iWhylTguNa1uDwyixw5YyAo7gMfG29PMzWLVCwovm+1OEoAzMgDszwuzqLMQL1jXLQopW2Mp4H53Sp03gyvQ6OqePhmJDr+Yzy+5f815RQhm8oM76xpPjAx6Gg4RtBo6AEIaRr4jgwvU6NanOJ/v/4K9WduSZPUIKvrgMAiP36tFm0ypk3Crpfd0NztChwUMIlyk8jANjPOD1wMUuel2tVnCiGbvchOMeNhpSR7n9dfx8vLoPx02/lYSdjRsI+ZwpYnFzQibNY5eyJbXth/Oo72Kw2v8U9Q8YYhMIT0B4+Br60HJwkQYoxQRzcH868Ua3OZ04IIYR0CndQgovA8A2ffXQzPlkHzW/Imw9/UD4TYlAiUE0JefhGs+shre9wB/vCOdBu2eUTlGhteKtP24Ko0SHFmCBAHj7C9LrAv0OBB2d1gWt0qW0D4Ntn3lkNjMnb9Cl06RuUkJIS22wfOE4uoElBiTZRUIIQ0mX5BiUCZErEuoMSjS2DEs2nj/L7+dQkSDEm8KUVcv0GP6l/mgMF4Osa4Bo2EOLQAa1v0KiHfc5UGFeth2HtL7Bcc2FQFzpcTT1MH38DzumCbe5UOKeO93mfmYywn3k6XIMyYfxiLQzrNoAZDZDysgJssW18VQ30q3+C5uQp3+U19dCcPAXdL9vgmDZeDta0I62VEEIICQvlPBqJbAllm908KNEyUyLATX3Yhm/4y5Twc63QrF3e03G22JdXcUymbzso4T2ko9WpToOZGU3NlBA92RLen1MyJdzXm1JqYtvbBABBAEdBiTZRUIIQ0mV5n2C4AGlySh0I3idTQq5DISUntr0TjoM4OBPa/QUQikohjhjcYhVt/lEAgGNicJkJrrxREHfsg3CqAkJxGcQB/dr8jOG7DeDsDjimjG0RkPAmjhgM68XnwPjR1zCs/RnWQRlASujZDHxpOUz/9w04mx1iWrJctHNgBphOC76uEZr9h6Hbvg/6jTugOV4My6XnAq2MAw2J3QHd9n0QjhZBKC2XUyT1WrgGZsKVNRSu0cNpalVCCCEeWo172s4InBsiNSykE/jMYtE8CBEgmBBypkSAOlaM431rLgDg/GRnNA9qSAn+HzIB8A2YBBE8UaZBBYIPSkgB6n2phU5FSQ1KMK/j8y6EKvbrA7F/29d2yuc4ZXYSEhBd9RFCuiyfoESATAnotHJGRZNFXcTX1AEILlMCAFyD+wMANMeLW77pcEI4Xgym10Ec5H9MYwscB+f4HACAds+hNlcXjhZBU3gCUmIc7LMmt7m+OGQAHFPHg7M7oP9yHViI6ax8WSVMH34FzmaHfeo4WK6/BK7s4fKFh1YLKS0ZjjlTYb7+UogZfSCUVsD0ySpAmYe8AzR78xHz2r+h/3GLnKGh1cqBJZcI7eFjMH71HUxv/wd8cVmH9xUIZ7FCc/gYtLsPQrM3H3xZZbe+KCWEkJ7Octm5EDPSYV84J/wbd//9b160sTvwzZRoNoVmwOEboWVKBAwO8FzLBwh+MyWatauVYaG+U4IGE5TwCpi0sr73MAzrlef7X0mdfUP0zPLiZ/gGALgGZwafWaMRaPhGEChTghDSdXlNr8UlxgNW/5FmKTYGQnWtOvxCHb4RTKYEAHFQJgBAOFHS4j3NsZPgXCKcI4aENITBmT0c+nUboDlYCMyfEbhQlCRBv24jAMA+b3rAMaDNOWZNguZoEYSTpyDtLwQygovYw+WC4b/fgXM4YZ8xUR6aEeDEypLiYbn8fJg+/ApCSTkMX66D7aIF7UtxZQy6n7dCv2E7AMA5ZiQck8dC6pMib8/lgnCiFPoN2yGUlMH0wZewnTcPrtEjQt9XAELxKeh+2gqNn9+zZDLCOTEXjkl5gX9XhBBCokLKSJeHQ0aCEpPu7kGJ5ueuQNcsQQyLCIq/4Rt+sjO8h5XYzpjeaoaB98OooIZvxAY5fMMrw0aKCVBoUwlAeGVK+Ct0CSC06wRBkKdMVbZJ/KKgBCGky1JOMEyrAYz6gEEJFmcCqmvBNZnlNLn6Rrm6c5AnDZYQBykpAUJlDbgmi89JTlNwHABCn+pLr4Nr1DBo9+ZDc+gIXHmj/K4mFJVCqK6Fq3/f0PYhCLDPmgzTp9/C9d1mYMnioD6m+3mbvL8hA1oNSHg+oIXl0oWIefczaAuOw7W/oF0zf+h+3AL9pp1geh2sFy1QA0EqjQbisIGwDB0A7c790K/9BcYv18HmdLU6rWtQRBH6NT9Dt/MAADl11DUoEywhTg6GlJRDKC6D/qdfod2xD7bF8yEOCDIrJgR8abk8TOh4sTzcSJTkGWIy+8KZNwpSRtuFWQkhhIQXp9aUiG472sXr4U0whSGBdmRKBMLJN+yM4zx92EamhHPy2Na3GXKmROjDN6AJXKyccRwgSuD81ZTwCmwELP7pr41KcIimBW0VBSUIIV0W08snWxYfC66VmzXmLnbJN1nAJLlishjk0A2Fa3AmdLX1EIpPwTVqmLxQkqApOA7G83ANGxhy+515o6Ddmw/t3vyAQQnNgUJ13VBvSMXhgyD1SQZfdAr8iVJIAabMUvBVNdBt2QWm08J2zuzg92c0wHbuXJje+wL6dRvgGjoQMAVfX0I4WiQHJAx6WC4/D1LftMArcxycp42BFBcD42droV/9E8S05JBmMfHGbHYYPvoawvESSDFG2OdOgytnRIuUU662Afoft0B7sBDGD7+C7Zw5cOW2v4ioz7Ybm6D/3y/Q5h/ztEurAXgeQmUNhMoa6HYdgGtQBmznzA1umrH2cLkgFJVCc7wYnMUKp0kPnD4J0Ovb/iwhhPRY3bnQpefvt5jZ7DwZ4Ml8KDfU6qYS48HXNfguVOot8Bwgyn3ot6ZEkBmgQLNARBA1JaQ4z1CQoIMSrWW9Cu6hFn6DEp7PhVSXQwnU0BCOVlFQghDSZTGDO1OijWkpvWfg4Gx2eVlyUkj7klLk9Tmvky5fWQPOZodrUGbI1aoBQBzQD5LRAKGkTI6QN3+CIIrQ5h+Vgx5ZQ0PePjgOjmmnwfDlOmg37YCrjaCEdutecIzBNmOinCUQArF/PzjGZUO36yD0P22BfcHs4JposcLw9Q8AANvCOa0HJLz3N2II7GdMh+F/v8D4+VqYr78k9EKbjMH5728gHC+B2CcF1ksWBvwusaR4OUNiYAb0a3+G8evvYdXrQs+QaYYvLoPpk2/A2RyQEuLgmDwWrlFD5UAaY3J9i/xj0G7bC82JUsSs+D/Yzp0HV/awDu3XhyhCu2M/dBu2g7faPIsB8FnDIWX2Dd++CCGku+nGwzfElGQwgx7O7GEtz6+BaiW1o1io9eIF0K/9BUJpBTiXO2tV6S+OB+C+ifdXXDOEYQveQzaCufH3Oaf7y9JQeAcXWiukreHlLAl3TQmfQpfewZWQhm+4a1VQpkSrqNAlIaTLUqLeUhtBCRbnDko0mUOaDtRnG+598A1es3i4AxRSamgBDhXHQcpIBydKcjHFZoSjJ+Wgx7CBvimYIRBHDwfiY+VtWayBV7TaoN13GEyrafdwCPucqWA6LbR78lvflxfdj7+CN1vgyBsVcuDFOWEMnNnDwTc0Qf/z1pDbq92wHdK+QkjJCbBcuajN4BYAOE/LgW3xfACA4avvwFdWh7xfhXCiBKaPvgJnc8AxIRfmGy+Dc2KumtkDjgOLMcF5Wg4sN1wC+4yJgEuE4cv/QbPvcLv3641raILpnc9gWLcBnM0O54jBsC2cA+uVi6D7402QgpgZhhBCerRuPCUoTAY03Xkt7GfPavEWSwyQddeO45TSUmC9chGk9NSW2/GegcNPYEA59waVMeFTUyKIh0Fex8LVNwZcLdhZWxjvzpQQ28iUaM/wDcqUaBUFJQghXZZSVZklBZ7TGvCeFtQS2nSgXpTAB9fgOakpWRNSoBN7EJR0SqG0vMV72oPy0A3X6OHt3j54HkLOMHAAhCNFAVfT7jkEzuWCc0xWuwMgMBrgzB0FThSh3d32rCJcoxnavYfA9DrYz5ge+v44DrazZoLpddDuPACutqHtz7jxZZXQ/vgroNPCdvE5IR2za9Qw2GdOAudwwvD52nZdSHB1DTD+ZzU4pwv2OVNgP6uVYqcAIAhwzJwE2/lnApADIq39PoPBV1TD9M5nEMqr4BrQD5brL4Ht4nPgHJsNaXAm+LR2BtsIIaQn6c41JQD5xtlPoME1YjBsC2aj6ebLm63f/gNl/j7rvW9/hS7jY2G+7mKYb7uy7e17D98IMhvBNWyQ/NnWrvuCnWZc4OWaEsxPUMK7FkWIhS4BUFCiDRSUIIR0Wa5RQ2FbOAfO03JaXc97+Eao04Eq1EyJxiZ1GV8nBygCPm0IghqUKGkWlGAMwtGTYAIP1/DB7d4+APA5clBDU3jC/wqMQbd9HwDAOXFMh/blnOCe6nTHvjZTMnVb94ATJTjG57Q/EGIywDFlHDhJgv6nX4P+mH79FnAANOfNAUtLDnm3jtMnwDW4P4TqOmjdfRc0SYLxv9+BsztgnzoOjmmnBf1R1+jhsJ13BjgAhq+/95nqNhSc2QLjx9+AbzLDkTcK1svPk2c6IYQQEkB3jUoEwHFwjh8NlpzQYnlHttnaMi5AvQapb5rv9J0B+EwJGuSwWesF82E7eybsMycFXinooIR7pgxlqIX37BvtzJRQs0do+EarKChBCOm6tFp5qEEbtQSU4Rt8RTX4U5WQTIagUvV9tmEyumfu8A5KhCFTol8fMI5rkSnBma3grTZIqckdnoKSHz4QTKOB5miR30g8X1ULvr4RYma6vL8OkFKS4BrcH3xDU+AgCADY7NDu3A8mCHBOyu3QPh2T8iDFGKE9UADOnQnTGuF4MTTHTkJKToAwNa99O+U42M88HYzjoP9lW9DDVQBAt3kXhJIyiH3T4Jg1OeRdu3JGwDF+NHiLFYavvw88LjgQUYTh87XgG81w5mbBvnBOSNPZEkJIr9Kdh28Eg+PgfRZhwd6g++Pnsz7ZE/5qSoTAJxAR7HlLq4XztDGt7zvI7BBlmAfXKA/l9Tk2n0KXIRTvdH+Oo0yJVlFQghDS7SnRd6GmDhxjcGUPD/3iguPA4mLkQoBOuYiTOnwjxKKQPvQ6SGnJ4BuawHlnYbhrFXQ0SAAAnE4LcUh/cA4nhJOnWrwvFJUCgFywMwyUzBWNe/iJP9oDheAcTjhzR3pqKLSXTgvnBDmwod1X0Obq+h+3AAAcc6YEfGoTDCktGc7TcsDZHdBt2B7ch2x26DbvBON5WM8/s93BAPsZp0NMTYLm2EkIrQV//NBt3gXNyVMQ+6bCdvasnnuhTQgh4dDdh28EwzuYEO5MCZ8hDh2cQ8H7IU04z13Bxvbdx2L6ZJXPawC+9TLaNXwj+IKfvREFJQgh3Z9GgOSVTeHMGdmuzUgJSl2JJoAx8PWN8nbbMfOGN39DOPjKGnmf7Rha4HcfIwYDADQFx1u8pwQlxDZm5wiWa3B/OfvjRGnAp/iaI/KNtGv0iLDs05kjb0d7oKDVzAG+qgZCaQXE1CSIozo+g4VjxkQwgYd2b74arGqNbvs+cHYHnHmjwEIcQuRDq4F97jQAkIt8BpktwZktnqDIorM6/NSKEEJ6vG48+0bQvI+tQ5kSbdWU6GBWniBAzOwLZ1bHZr5qKchzaPPzPA3f6DQUlCCE9AjKEA4pKQFSRp92bsNTV4JrMoMTxQ7Vk1CIGYGDEmK4ghKD5SwI4VSzWT4Yg1BUCsbzEMM19aNeBymjD3izp7CoD5cI4UQJmE4LsX949skS4yFm9gVf1wC+eX0OL5r97uKhOSPCcoHJTEa4Rg4FZ3dAk3+09ZUdTuh+3Q3GcXBMHd/hfYvDBkLs1wdCeRU0h48F9RndL9vkDJUJY1qOIyaEENKSGvTtwUEJ72BCV86UAGC5ajFsFy7o8HZ8BBvYbz5UM8DsG6FkStDwjeBQUIIQ0iMoM3A4O3AzKsXLwzS4hqaw1JNQt5uS5N6uZ2YPIcyZEiwhTq6J4S70qeCr68BbrJD6pXW4doU3ZSiIcLykxXvCyVPgnC55nTDWMlCzJfYHGMLBmJxJAcCZHZ4MDQBwjpOnUNXuPtjqeto9h+QpXnNGgCV1/HsDjoN9lly4S7ex7eEjXG0DtDsPyLOdTJ/Q8f0TQkhv4L5hZT04JuGbKdGR2Tf83Dp6F7r0MyVoyCKRsSIFGZRwOH0XePUV8z62ULJN3J/jauvBQq0R1YtQUIIQ0iO4hg2CFB8LZ96odm9DnYGjoQmce+YNKbED9SSU7bqHlnBWm3sBA19VA6bThlyQMyCeh5QUL9fEsNjUxWo9iTAN3VCIg/vL2z/RMiihDN0Qhw0M6z5d2cPAeF6uZeHnxM6fqgRf1wAxo094ggJu4qBMSIlx0BSVgquuC7ie5tARAIDjtI7NcOKz7yEDIKYlQyirAl/VepFP7d5D4BiDY1IeYGq9OCwhhBCZetvZW4ZvdOQ42xq+0WWLKrcvGMACZUqEsg335/Rrf4G0bX+7ttEbUFCCENIjOCfmwnz7VWAdKEopxbunFvXKlAjH8A1PUMIu/7+uEZzTJWdJhPEiSJkGlffKlgh3PQmFmJkOphGgKSppMTWocLQIAOAaGt6gBDMZIWb0AW+1gaupb/G+1l1405k9PKz7BcfBmSsHu7T5R/yvY7FBKC6DFGtq9/ChQPt2uY9HCXr4xRi0+w8DAJy5WeHbPyGE9BYUlGgX3xkquuitZXszFAIVugyFV58wc/um+e4Nuug3hxBCOh9zD9/gwzx8AwYdGMepmRJ8lTzzhpiW0vFte5GSE+XtewUl+Ar3vtx1LcJGo4HYvy84mwN8WZW6mGtoglBdBzE1qUMBokCkvmkAAKGsosV7StaGK2to2PfrGjJA3oef2U0AOTuEYwyu4YPDfsHnHCUfT2uznQglZeDrGuHq3zcsgTRCCOl1enBMgrnPS4zjwh986Q6ZEu0dNeEdlOB5WM87A5bLfhPaNnxm7ehY4fSejIIShBDiJsV7Zt/gwhmU4Dgwox6cxSYXngxzPQmF36CE2QKm1QAGfVj3BQBihlzEUqjwBCV49/AGJXgQ9n32k7MQWhT0FEXwVTWQjIbwDYnxIvVNBdNo5GKlUstpvTQFciFKl3sWlHBiKUkQ+6RAqKpVC6S22P8+OUvCNaZ9M88QQkhvxZQn2WEo0thlKdkMHagnEXjb3kMcuuitpZ/ztj+WSxb6LmjWX64xIyEOHRDSrr1n7eDCWNurp+mi3xxCCIkCvQ5MrwNf3wihqgaM48J2g8uMBrnystMFvlKuDSClJoVl2wp1+IZS98AlgrPZwWJMYd2PgiV6CoMq+PowBnP8kPrJwQ6+zDcowVfXgRMlSOmpkUnBFQSImX3A2R0tAwMuFzRHT4JpNeosKOGmDuHwly0hSdAePAIm8HCGYRpUQgjpTSxXLIKrf1/Y5s+MdlMih+N9/99e/jIOvAtddmS60Qji3O1mbVwfiMMHQUrymrkqHMfTzlk7epuu+c0hhJAokeJjwblc4GwOuLKHheeEBN9il1yjfBMvJYT3xl1KloMcSqYE5x67GKmghKROoWpWl6kZJhEYugHI2SBMp4VQVunz5IMvl7M1pPTwDonxJvbvB6DlEA6huEyebWTIgIg9aVMyMJQaId74yhpwNjvEAf0AIxW4JISQUEj9+8J61QVhLZDc5UQyU6I71OJQakoE0Vbv4pYsHJkf3sM39BSUCISCEoQQ4kUcmAmm18F21kzYzj8zbNv1DkrwTe5gQWyYgwVGPSSTAXxtPSBJ4MzyfNtSrDG8+3FjXsNdFLx71pKIXdxxHMS+aeCcLt+Cnu6ghNgnNTL7BeSbfshBCG/KrBhSvzAWuGxGSkkE02ogVFS3KNglnJLra4gR3D8hhJBuTLkZj0QAIRKBjrALPijhczxh6C/f4RtUUyIQCkoQQogX+/zT0XTXdXBOGBPek7fXDBxckxnMoAO04X+qLiUnghMlcPWNkc+U8BuUUDIlIvfESalXwXvVlVAKekrpEQxKZKSDcZycKeEVGOCr3UEJ9/CZiOB5SGkp4OwOdbpa9S33UJZI1fEghBDSzUUwm4F10SEbPpRTdlBBCd7/z+1FwzeC0g2+RYQQ0ok4LmxDNrwxo1xokm9wTwcaExP2fQBexS6r68BHOCgBnRbMoAff0KTepHP1DWACDxYXmeMDALGfMgOHOyjBGITyKjBBiGxgQK+DlJ4KvskMrt4TGFAyNiK6bwCie2iKd2FRwFP0kzIlCCGE+KVmSkRw210Zcw/3DKapPrOJhHn4BgUlAqKgBCGEdAJl+IbyRD/sQzeU/SjFLmvq1OEbEQtKwFODA1Y74HCCt9jkqVUjeJEiprszJdxDNrhGMzibXZ7NJMJPbMQ+cmCAr6lXl/HVdWAcBykxIdDHwkJqdtwAAJcIvqIakikys46Q0FmtVsydOxcvvPBCtJtCCCEAABbJIRbdYfiGkikRzDWCd02JMFxTeNel4KimREAUlCCEkE6gBiWq5JkbIhWU8J4WlHPXrohUTQnAU1eCb2zyDN2I0Mwb6j7dfcdZbfK+lXoSERy6oe47Ru5LZWgM7A7wjWawxHjfpyERoGZKeAUl+MpqcJIEqW+f7vG0qhd47bXXkJeXF+1mEEKIR9jOD36m3/A3I0cXo1wbiUFMxc7CXFOChm8EpwdPyEsIIV2HJ1MiwkEJr0wJZpD3yUwRzJSIU+pKeIYzSImRmXlD5a7FwTldAACh0l1Pok/kZt5QKFknSlBCyZiI9NANAJDSksE4zidTwjN0g+pJdAXHjx/H0aNHMXfuXBw9ejTazSGEEJl6cx2B4DXr+lEJ+1kzICXFw3namLZXDndNiebDN8zOjm+zB6JMCUII6QRqUMKizIgRoZoSifHyjWt1vafQZYQCIIBXpkSD2TPzRoQzJcDzYFoN4JBP7JxFzpiI5HEqlEwJ3j00hq9xF7l0P4WJKK0WUkoi+EYzOPf3iFdn3qCgRFu2bt2KW265BTNmzEBWVhZ++OGHFut88MEHmDdvHnJzc3HppZdiz549Ie3j2WefxR/+8IdwNZkQQro+d1CCdeFsPWYywjF7SnD1rrwDEWGoKeEz+0Z3KAoaJZQpQQghnUAJSqivI3UDLQhgifHytKDKhUJM5IZveM/AwbnkzIVIzryhYFotOLtdfuEOTrBOSIv0ZEq4gwLVdQA6J1MCAKQ+qRCqasGXV0Mc0l8dykEzb7TNYrEgKysLF154IZYuXdri/VWrVuHpp5/G448/jrFjx+Kdd97BjTfeiNWrVyM5WU75XbRokd9tf/bZZ/jhhx8wePBgDBkyBDt37ozosRBCSEgimM3AsRCm2+wOvIdvhHv2DRIQBSUIIaQTtAxKRG52CiklEXxtPXizBUyvAzSR+1PvyZRoBOcODkS6pgQAQKeVswVEUd0v64T5v1sO36gD0IlBifQU4EAB+Eo5KMFZrGAcF9HvU08xe/ZszJ49O+D7K1euxGWXXYaLLroIAPD4449j/fr1+Pzzz3HDDTcAAL788suAn9+9ezdWrVqFNWvWwGw2w+VyIT4+HjfffHO72st3sHic8vmObqcnor5pHfVPYN21bziv2Tc60nbvT6rbaRaU6G5904JXIIIT+A4fD6f1DUp0+/6JEApK9BC///3vsWnTJsyYMQMvvfSSunzdunV4/vnnAQB33nknFi5cGK0mEtKrKVOCKqRIzoiRnAjgRMT3AzTLlLA75GWRrikBr6wIhwucQ95vZxSQkpRCl5bmmRJJEd+3vH/fIp+c3QHotT3nCVWUOBwO7N+/H7feequ6jOd5TJ8+Hbt27QpqG/fccw/uueceAHLmxNGjR9sdkNBoeKSkhGc2laQkClgFQn3TOuqfwLpb39gFHgzy8IGO/G1x6DRwT66pbsezbfk81N36pjmHQaseY2y8EUIH/xZLThscXq+7e/9ECgUleogrr7wSixcvxldffaUuc7lceP755/HBBx9AEARcdtllOPPMM6HrhKeJhJBmBAFMp/U81Y9g/QPv+gaRrrPA4mLAAAiVNYDTBWbQAwZ9m5/r8H7dAQjO6ezU4Rsw6MF4Xp7ZhDF3QVF9i0yYSGHuvuVsDkCSwDmckBIiHwTq6WprayGKIlJTfWdwSUlJwYkTJzq9PS6XhIYGa4e2wfMckpJiUFtrhiR1/UJ0nYn6pnXUP4F1174xihJ4AExiqK5uavd29A6XevOobMfgcEGAp6ZEd+ub5vQuST3GRosTYgf6CwA4mwjvK7GO9E98vBFabc8cDkJBiR5iypQp2LJli8+y3bt3IysrS73IysvLw/bt2zFt2rRoNJGQXo8ZDeAcTrlIoz5ywUHvoQSRrCcBQA62xJrAu6cftc2Y2DlP7ZWghMPRqcM3wHFgMUZwTRZwdQ3gXKI8FWlnZSoY5GPk7HbAnZnCOiEI1FsxxjxpzyG48MILO7zvcF3USxLr1jcIkUR90zrqn8C6W98wpcYUOva3xbs0hbqdZsM3ulvfNMc43utnruPHEmOC9aIFYMkJMKD790+kUAnQTtAZFb/9qaioQHp6uvo6PT0dFRUVHd4uIaR9lKfpkR7/75MpEeHhG4CnroQzZyScE3Mjvj/Ae/iGUx02An3nzP/NYozgGINQXAag84ZuAADTezIlOJs7KBHBAFdvkZSUBEEQUFVV5bO8pqamRfYEIYR0O51xD9xThhF61XxgYar/4Bo5BKwTpi3vzihTohNEuuK3QFVdCekWlKCEFOkhFTFGML0OnN0R+UwJAI6p4yEcOwn7GdM776JEq2RKyMM3mMB3WoVrZpJ/f8LJUgCdNB2osm8lK8JuV2cfoaBEx+l0OuTk5GDjxo2YN28eAECSJGzatAnXXHNNlFtHCCFdmOSuwNBDYhK+U4LSPVZnoaBEJ4h0xe9A+vTpg/LycvV1eXk5ZsyYEfJ2FFQJPHKob/xr3i/dvn9M7roDcTFhOxb/fcNBSk6EcKoCiA3fvgKRsodByh7Wual37htx3umSAxM6XYvjjNT3RqnToSk6Jb9OTeq876a7YCpvd4B3D1uBUR/y/nvMv6kQmM1mFBUVqa+Li4tx8OBBpKamIi0tDddddx3uv/9+5OTkIC8vD++88w5sNhsuuOCCKLaaEELCKBJ/8pUsDK5nJOD7ZEdQUKLTUFAiysJR8TuQvLw8HDp0CFVVVRAEAbt378Zf//rXdm2LKoF3DuobD61WaPGd6+7940yKgwhAn5qA2DD9e1I07xtH/z6QTlUgtn9qhytHd0XOhBiIAOK0HJwuF7j4mIB/o8L9vXGmJkAEwNfWAwDih2WA76Q+ZozBznHgHQ7E63g4ARgSYhHXzv13939Todi3bx+uvvpq9fWTTz4JALjjjjuwdOlSLFy4EDU1NXjllVdQWVmJ7OxsvPnmm2rGIiGEdF+RG7/BMTlTgvWUGLdXpgTTUFCis1BQIsrCVfH75ptvxp49e2C1WjFr1iwsX74co0aNwr333osrrrgCAHDXXXdBr29fQTSqBB5Z1DctOZ2iWtm5p/SPlhOgA2DV6NDQwWrOikB9w00eByEhHuaUVCBM++pKtCKDDoC5rAY6AC6NBk3NjjNS3xuNoIHyl5TxPGo5Taf2scmgAyw2NFXWQw/AyriQv0/h6pvuVAl8ypQpyM/Pb3WdJUuWYMmSJZ3UIkII6WwRiBz0sEwJn2GolCnRaSgo0UWFWvF7+fLlfpefddZZOOuss8LSJqoEHnnUN76a90V37x/n8EHgjxfDOWxQ2I+jRd/Ex0GcNFa+WGDdt88Ckdw1JdBoBiAXvgzUp+H+3khGT50OlhgHieOBTvxeMr0evLUBzCIHiiW9rt3H193/TRFCCIky1oNrSlCmRKehoESUUcVvQnoPqW8arEsWR7sZPYIy+wbnnopUmSK0U/btVTxU7MSZN9T9u4td8vWN8msqdEkIISRalLg230MyJbyHbwh0q9xZesi3p/vyrvitUCp+jxs3LnoNI4SQrkyZfaNJyZTovBtz72lWWSfOvKHu0+Au8ukOSsDQvmF5hBBCegl1iEXHNiOlyw9MxX59vBYqmRI9I1XCp9Clhm6VOwuFfzoBVfwmhJDwUjIleHemBItapkRip+1X3b+7NhBHmRKEEEKCwIUpKuGYOh4s1gTXyCGehWEKeHQZlCkRFdTTnYAqfhNCSJhFc/iG0QDG8+AkCVJUhm/4ZkqwdhYwJoQQQkKiEeAcN9p3mVK3qodkSvgcB9WU6DQUlOgEVPGbEELCS60p4XK5X3ditgDHgcUYwTWaIUVh+AaUTAmHEwBlShBCCIminhaU8K6NIdDwjc5CQQlCCCHdTovhGvrOy5QAAPusyeAbzYDJ0Kn7BTyFLlUGCkoQQghpRSQnWerJQYmeUryzG6CgBCGEkO6nWVCiM2tKAIArb1Sn7s9b88wIypQghBASlAjEDbgeF5TwOo6eckzdAIV/CCGEdDtM2zwo0XtuzL0zJZhWAwg05pUQQkh0MKOcMciikDkYCYyyI6KCep0QQkj3o9X4ZqN2cqZENHlnRlCRS0IIIW1ikRu/Yb14AZwjBsP+m3kR20enouyIqKDhG4QQQrofjpMDEUqxx14UlIB3pgQN3SCEEBK08N9wS6nJsF18Dni+h9zMU1AiKihTghBCSLfkHYjoXcM3vI6VilwSQggJFt1vty2CWSUkMApKEEII6Z68syM6efaNaPIeskHDNwghhJAwoqBEVFBQghBCSLfkmynRi4ISNHyDEEIIiQxJinYLeiUKShBCCOmWvGfg6E3DN6DVgLnHvDIavkEIIaRN9PQ/WBxlSkQFBSUIIYR0T96BiF6UKQGOU7MlaPgGIYQQEkYSBSWigYIShBBCuiVlyAbTanpftWxl2AZlShBCCAlWbztXtgcN34gKCkoQQgjplphO4/5/77sxp0wJQgghQaOH/8GjTImooKAEIYSQ7kkJRvSmoRtunqBE7wvIEEIIIRHDKFMiGigoQQghpFtSCl32xhtzpcAlFbokhBBCwkgQot2CXkkT7QYQQggh7aLUlOiFmRJi/37QHC+BlJYS7aYQQgghPYZjUh6E0go4Jo+NdlN6FQpKEEII6ZbUYEQvDEo4J+XBOTGXipYRQghpmzLNJZ0z2mbQw3rZudFuRa9DwzcIIYR0S+rsG72w0CUAurgkhBBCSI9AQQlCCCHdkxKU0Pe+TAlCCCEkWMxokP9voBmbSNdEQQlCCCHdkmtABpwjBsOVMyLaTSGEEEK6LOuiM+EaPgjWRfOj3RRC/KKaEoQQQronkwG2i8+JdisIIYSQLo2lJMF6ycJoN4OQgChTghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhUUlCCEEEIIIYQQQkhUUFCCEEIIIYQQQgghUUFBCUIIIYQQQgghhEQFBSUIIYQQQgghhBASFRSUIIQQQgghhBBCSFRwjDEW7UaQrk+SGERR6vB2tFoBTqcYhhb1PNQ3vg4fPoSRI0epr6l/AqO+CYz6JrBw9I0g8OB5LkwtIgo650Ye9U3rqH8Co74JjPqmdR3tn558zqWgBCGEEEIIIYQQQqKChm8QQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkqQoH3wwQeYN28ecnNzcemll2LPnj2trv/tt99iwYIFyM3NxXnnnYeffvrJ533GGF5++WXMmDEDeXl5uPbaa3HixAmfderq6nDPPffgtNNOw6RJk/Dwww/DYrGE/djCobP7p7i4GA899BDmzZuHvLw8nHnmmfjHP/4Bp9MZkePriGh8dxR1dXWYNWsWsrKyYDabw3ZM4RKtvvn+++9x0UUXIS8vD9OmTcMDDzwQ1uMKh2j0ze7du3HVVVdhwoQJmDx5Mn73u9/hyJEjYT+2cAh3/6xduxY33HADpkyZgqysLBw+fLjFNrrT3+TeINzfgZ4klL4pKCjA0qVLMW/ePGRlZeH999/vxJZGRyj98/HHH+OKK67ApEmTMHnyZFx//fXYu3dvJ7a2c4XSN+vWrcNFF12EiRMnYty4cVi0aBG++OKLzmtsJwv1b45i+fLlyMrKwrPPPhvhFkZPKH3z2WefISsry+e/3NzcTmxtF8QICcI333zDcnJy2KeffsoKCgrYI488wiZNmsSqq6v9rr9jxw6WnZ3N3njjDVZYWMj+/ve/s5ycHFZYWKiu8/rrr7MJEyaw//3vf+zgwYPslltuYWeeeSaz2+3qOjfccAM7//zz2a5du9jWrVvZ/Pnz2X333Rfx4w1VNPrnxx9/ZA8++CD7+eefWVFREVu3bh2bNm0ae/755zvlmIMVre+OYunSpeyGG25gI0eOZE1NTRE7zvaIVt+sXr2aTZo0iX300Ufs6NGj7PDhw2zNmjURP95QRKNvGhsb2aRJk9hDDz3Ejh49yg4dOsR+97vfsTPOOKNTjjkUkeifzz//nC1btox9/PHHbOTIkSw/P7/FdrrL3+TeIBLfgZ4i1L7ZvXs3e+aZZ9jXX3/NTj/9dPbee+91cos7V6j984c//IG9//777MCBA6ywsJA9+OCDbOLEiay8vLyTWx55ofbNr7/+ytasWcMKCwvZiRMn2Lvvvsuys7PZhg0bOrnlkRdq3yj27dvH5s6dy8477zz2zDPPdFJrO1eoffOf//yHTZ48mVVUVKj/VVZWdnKruxYKSpCgXHzxxeyJJ55QX4uiyGbMmMHefPNNv+vfeeed7He/+53PsksuuYQ9/vjjjDHGJElip59+OluxYoX6fkNDAxszZgz79ttvGWOMFRYWspEjR7K9e/eq6/z4449s1KhRXe4fbjT6x5833niDnXXWWR05lLCLZt988skn7Le//S3buHFjlwxKRKNvnE4nmzlzJvv444/DfThhFY2+2bNnDxs5cqTPhfaOHTvYyJEj27zo6mzh7h9vJ0+e9BuU6E5/k3uDSH4HurtQ+8bb3Llze3xQoiP9wxhjLpeLjR8/nv33v/+NVBOjpqN9wxhjixcvZsuWLYtE86KqPX1jsVjYOeecw3766Se2ZMmSHhuUCLVvlKAE8aDhG6RNDocD+/fvx+mnn64u43ke06dPx65du/x+ZteuXT7rA8CMGTPU9YuLi1FZWemzTlxcHMaOHauus3PnTiQmJmLMmDHqOtOnTwfHcUGni3WGaPWPP42NjUhISGj3sYRbNPumqKgIf//73/Hcc8+B57ven7po9c2BAwdQXl4OjuNw/vnnY8aMGbjlllsCDn+Jhmj1zZAhQ5CYmIhPPvkETqcTVqsVn3/+OXJzc5GcnBzWY+yISPRPMLrL3+TeIFrfge6gPX3Tm4Sjf6xWK1wuV5e63giHjvYNYwybNm3CsWPHMGHChAi2tPO1t2+eeeYZTJkyBTNnzuyEVkZHe/umqakJc+bMwezZs3HbbbehsLCwE1rbdXW9K3XS5dTW1kIURaSmpvosT0lJQWVlpd/PVFVVISUlJeD6yv9b26a/bWg0GiQkJKCqqqr9BxRm0eqf5oqKivD+++/jt7/9bbuOIxKi1Tculwv33Xcf7rzzTgwYMCAsxxJu0eqbkydPAgBeffVVLF26FK+++iq0Wi2uvvrqLlMbIFp9Exsbi3feeQefffYZxo4di/Hjx2PXrl149dVXw3Jc4RKJ/glGd/mb3BtE6zvQHbSnb3qTcPTPiy++iH79+mHq1KmRaGLUtLdvGhsbMX78eIwZMwY333wz/vSnP2HatGmRbm6nak/f/PDDD9i8eTPuv//+zmhi1LSnb4YOHYqnn34ar732Gp5//nlIkoTLL78c5eXlndHkLomCEqTdGGPgOC7g+/7ea76s+evm2/S3jbb221V0Rv8oysvLceONN+Lcc8/FhRde2M4Wd55I981rr72GpKQkXHLJJWFobeeKdN9IkgQAuPXWWzF//nzk5eXh2WefRUNDA9avX9/B1kdWpPvGZrPhkUcewdSpU/Hxxx/j3//+N/r164fbb78dLpcrDEcQWeHon7Z057/JvUFnfAe6K/qeti7Y/nnjjTewatUqLFu2DDqdrhNaFn1t9U1MTAy++OILfPrpp7j77rvx1FNPYdu2bZ3YwugJ1Dc1NTV49NFH8dxzz8FoNEahZdHX2vdm3LhxOP/88zFq1ChMnjwZy5YtUzM1eytNtBtAur6kpCQIgtDiSVhNTU2LqKAiNTW1xfrV1dXq+mlpaQDkp5feadE1NTVqarC/bbhcLjQ0NLR42hNN0eofRXl5Oa6++mqMGzcOjz32WEcPJ6yi1TdbtmzBtm3bMHr0aADyiQEAJk2ahN///ve45ZZbwnB0HRPNf1eAPFRBYTKZkJGRgdLS0g4eVXhEq2+++uorlJeX45NPPlEvJP72t79h0qRJ2LhxI2bNmhWeA+ygSPRPMLrL3+TeIFrfge6gPX3Tm3Skf1asWIHXX38dK1euxMiRIyPZzKhob9/wPI9BgwYBALKzs3HkyBEsX74cEydOjGh7O1OofVNQUIDKykpcfvnl6jJRFLF161a8//77PWr2lnD8zdFqtcjOzu5SQ2k7G2VKkDbpdDrk5ORg48aN6jJJkrBp0yaMGzfO72fGjRuHDRs2+CzbuHGjun7//v2Rlpbms82mpibs3r1bXWf8+PGoq6vD/v371XU2b94Mxhjy8vLCc3BhEK3+ATwBiZycHDz99NNdrnZCtPrmqaeewpdffokvvvgCX3zxBZ588kkAwEcffYRLL700fAfYAdHqm9zcXGi1Wp8Tn81mQ1lZGTIyMsJzcB0Urb6x2Wzged7nyYbyWglsdQWR6J9gdJe/yb1BtL4D3UF7+qY3aW//vPnmm3j11Vfx5ptv9tipC8P13WGMweFwRKCF0RNq3+Tm5uKrr75Sr8O++OILjBkzBhdccAE+++yzTmx55IXjeyOKIgoKCtQHKL1Sp5XUJN2aMtXNZ599xgoLC9mjjz7qM9XNfffdx1544QV1/e3bt7Ps7Gy2YsUKVlhYyF555RW/0/NNnDiRrVu3jh06dIjdeuutfqcEXbx4Mdu9ezfbtm0bO+uss9i9997beQcepGj0T1lZGZs/fz67+uqrWVlZmc+0Ql1JtL473jZv3twlZ9+IVt888cQTbPbs2WzDhg2ssLCQ3XPPPWz27NnMbDZ33sG3IRp9U1hYyMaMGcP+8pe/sCNHjrBDhw6xpUuXsmnTprG6urrO7YA2RKJ/amtr2YEDB9j69evZyJEj2erVq9mBAwdYbW2tuk53+ZvcG0TiO9BThNo3drudHThwgB04cICdfvrp7IUXXmAHDhxgJSUl0TqEiAq1f5YvX85ycnLY6tWrfa41uto5NRxC7ZvXX39dnZq9sLCQrVy5ko0ePZp9+umn0TqEiAm1b5rrybNvhNo3y5YtU783+/btY3fffTfLy8tjR44cidYhRB0N3yBBWbhwIWpqavDKK6+gsrIS2dnZePPNN9U06FOnTvk8pT/ttNPw4osv4u9//zv+9re/YfDgwfjnP/+JYcOGqevcdNNNsFqt+NOf/oSGhgZMmDABb7zxhs8YxRdeeAF/+ctfcM0114DneZx99tl45JFHOu/AgxSN/tmwYQNOnDiBEydOtEgrz8/P74SjDk60vjvdQbT65oEHHoAgCPjDH/4Ap9OJ8ePHY+XKlTCZTJ138G2IRt8MGzYMr732GpYtW4ZLLrkEGo0GY8aMwZtvvtnlqsxHon++//57/PGPf1Rf//73vwcAPP3002qtmu7yN7k3iMR3oKcItW8qqurRcwABAABJREFUKiqwePFi9fXy5cuxfPlyXHDBBXjmmWc6u/kRF2r/fPjhh3A6nerfBMUdd9yBpUuXdmrbIy3UvrHZbHjiiSdQVlYGg8GAoUOH4vnnn8fChQujdQgRE2rf9Cah9k1DQwMeffRRVFZWIiEhAWPGjMH//d//YejQodE6hKjjGOtCOamEEEIIIYQQQgjpNXpnOIsQQgghhBBCCCFRR0EJQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhWaaDeAEEJas2zZMvzjH/9osXzatGl4++23O79BhBBCSA9F51xCSDRQUIIQ0uXFxcXhzTffbLGMEEIIIeFF51xCSGejoAQhpMsTBAHjxo1rcz2bzQaDwRD5BhFCCCE9FJ1zCSGdjWpKEEK6peLiYmRlZeG///0v7r//fkycOBG33HILAKCurg5/+tOfMH36dOTm5uK3v/0tdu/e7fP5hoYG3HPPPRg3bhxmzJiBf/3rX3j22Wcxb948dZ1ly5ZhypQpLfadlZWF999/32fZJ598gnPPPRdjxozB3Llz8cYbb/i8/+CDD+LCCy/Ehg0bcN5552HcuHG4/PLLUVBQ4LOeKIp4/fXXcfbZZ2PMmDGYNWsWHnzwQQDABx98gPHjx8NsNvt8ZvPmzcjKysKhQ4dC7EVCCCGkbXTO9aBzLiHhR5kShJBuweVy+bxmjAEAnnvuOcyfPx8vv/wyeJ6Hw+HAddddh4aGBtx///1ITk7Ghx9+iGuvvRZr165FWloaAOCPf/wjfv31Vzz00ENITU3FW2+9haKiImg0of9ZfPPNN/HSSy/hxhtvxOTJk7F//368/PLLMBqNWLJkibreqVOn8Nxzz+HWW2+FXq/Hc889h7vuugtff/01OI4DAPzpT3/Cl19+iRtuuAGTJ09GfX09Vq9eDQA477zz8Oyzz2LNmjW48MIL1e1+/vnnyMnJwahRo0JuOyGEENIcnXPpnEtIZ6KgBCGky6urq0NOTo7PsieffBIAMHbsWPz5z39Wl3/yyScoKCjA119/jcGDBwMApk+fjgULFuCtt97CAw88gIKCAqxbtw4vvfQSFi5cCACYMmUK5s6di9jY2JDa1tTUhH/+85+49dZbcccddwAATj/9dFitVvzrX//C5ZdfDkEQAAD19fX48MMP1XYxxnD77bfj6NGjGDZsGI4cOYJPP/0UDz/8MK6++mp1H0ob4+PjcdZZZ+Gzzz5TL5DMZjPWrl2Le+65J6R2E0IIIf7QOZfOuYR0NgpKEEK6vLi4OKxcudJnmU6nAwDMmTPHZ/mmTZuQk5OD/v37+zzpmTRpEvbt2wcA2Lt3LwD4pI3GxMRg+vTp2LNnT0ht27lzJywWCxYsWOCzv6lTp+LVV19FWVkZMjMzAQCZmZnqxREADBs2DABQXl6OYcOGYcuWLQDg80SmuYsvvhjXXnstTp48iQEDBuDbb7+Fy+XCb37zm5DaTQghhPhD51wPOucS0jkoKEEI6fIEQUBubq7PsuLiYgBASkqKz/La2lrs2rWrxVMeABg4cCAAoKqqCjExMS0KdDXfVjBqa2sBAOeee67f90+dOqVeIDWvXq7VagEAdrsdgPx0ymQytfrkaMqUKRgwYAA+++wz3Hnnnfjss89wxhlnIDExMeS2E0IIIc3ROdeDzrmEdA4KShBCujVlXKgiISEBY8aMwWOPPdZiXeVJT2pqKsxmc4vK4dXV1T7r6/V6OJ1On2X19fUt9gcAr7/+ut8LrCFDhgR9LImJibBYLGhqagp4kcRxHC666CJ8/PHHWLRoEbZv396iwBchhBASCXTOpXMuIZFAQQlCSI8ybdo0bNiwARkZGQGfwihPgL7//nt17KjZbMbGjRt9LkzS09NhNptRXl6O9PR0AMCGDRt8tjV+/HgYDAZUVFS0SGsN1dSpUwEAX3zxhU+xruYuuOACvPLKK3jooYeQnp6O008/vUP7JYQQQtqDzrmEkHCgoAQhpEdZvHgxPvroI1x11VW4/vrrMWDAANTV1WHPnj1IS0vDtddeixEjRmDevHl47LHH0NTUhLS0NKxYsaJFaunMmTNhMBjw0EMP4brrrkNxcTE++ugjn3Xi4+Nxxx134K9//StKSkowadIkSJKE48ePY8uWLfjnP/8ZdNuHDh2Kyy67DM888wyqq6sxadIkNDQ0YM2aNXjppZfU9dLT0zFz5kysX78ev/vd79SiXoQQQkhnonMuISQcKChBCOlR9Ho93n33Xbz88stYtmwZqqurkZycjLy8PJ8iW8888wwee+wxPPXUUzCZTLjiiiuQm5uLNWvWqOskJyfjlVdewXPPPYfbb78dOTk5ePHFF9UnPYqbbroJffr0wTvvvIOVK1dCr9dj8ODBLdYLxp///GdkZGTgk08+wRtvvIHk5GS/T2XOPPNMrF+/vtUCXYQQQkgk0TmXEBIOHFMmHiaEkF5OmY/8+++/j3ZT2nTnnXeisrIS//73v6PdFEIIISRkdM4lhCgoU4IQQrqR/Px87Nu3D//73//wt7/9LdrNIYQQQnosOucS0jkoKEEIId3IrbfeitraWlxxxRVYsGBBtJtDCCGE9Fh0ziWkc9DwDUIIIYQQQgghhEQFH+0GEEIIIYQQQgghpHeioAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkoQQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQpNtBtAugdJYhBFqcPb0Wh4uFwd305PRH3j6+TJIgwYMFB9Tf0TGPVNYNQ3gYWjbwSBB89zYWoRUdA5N/Kob1pH/RMY9U1g1Det62j/9ORzLgUlSFBEUUJdnaVD2+B5DikpsWhosEKSWJha1jNQ37R01VVX44svVgGg/mkN9U1g1DeBhatvEhNN4HkhjC0jAJ1zI436pnXUP4FR3wRGfdO6cPRPTz7n0vANQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBhS4JIYSEDWMMkiSCdYEaVzzPweFwwOVyUdGtZoLtG44DeF4Ax/XMat+EkO4pWucaOq8ERn3TumD6pzefcykoQQghpMMYY2hqqofZ3ACg61yMVFXxkCSansyfYPuG5wWkpPSDIPTMit+EkO6jK5xr6LwSGPVN64Lpn956zqWgBCGEkA5TLhLj45Oh0+kBdI0ov0bDweXqOkGSriS4vmGoq6tCQ0MNkpLSOqVdhBASSFc419B5JTDqm9a13T+995xLQQlCCCEdwhhTLxJNpthoN8eHRsMDoKc2/gTbN3FxiaitrQBjEjiOSlERQqKjq5xr6LwSGPVN64Lpn956zu09R0oIISQiJEkEwNxPrUhPIwjy8wtKySWERBOda0hv0FvPuRSUIIQQ0iGeQmNdY8gGCTf599oVipcSQnovOteQ3qF3nnNp+AbpVSSnBa6GIrjM5ZDsdZBstRBtdWCiA5CcYJILAMBp9OAEAziNAbw+HoIhBYJR/k8TlwFOoCg9IYQQQgghhHQUBSVIj8VcdtirD8BRsQf2qn1w1Z+AaKkIw5Y5CDHp0MQPgDZhCHTJWdClZEGIzeyVU/gQQgghhJDubcWK17Fx4y9YseK9aDeF9EIUlCA9imirhfXkT7Ce+AH2qn2AO/MBAMDxEGIzoI0fBE1sBnhjMgRDInh9opwZwWkAXgOAAxPtYKINzGWDZKuDaKuBaK2GaKmEq/EkRHM5RHMZ7Ke2ejavi4M+LQ/69PEw9D0NmoTBvapADSHdzV//+hi+/fbrFsu//nodEhMTO79BhBBCepy//vUxWK0WPPnkc+qyVau+wvPPP4W7774f559/QcjbfOedFdi0aQMKCvJhMBjwzTffdbidl19+FS6++LIOb6e7ufji83D55Utw0UW979i7EgpKkG6PSSKsxT/DXPgV7OU7ASYXhuH1CdD3GQtdWi70ffKgTRgctmEXzGWHs/EknLVH4Kg5BGd1Phy1BbCVbICtZAPqAfCGJBgyp8GYOQOGvhPAaWjIByFdzfTpM/HAAw/7LEtISPB57XK5oNHQ6ZIQQkjHffLJR3j11ZfxyCOP44wzzmrXNlwuF+bOPQM5OblYvbplcL09TCYTAFNYttXTuFwuCIJAGdERRFdZPdzRo0fx0EMPoampCTqdDg899BAmTpwY7WaFBXPZYT62Go0H/w9iUykAORBgHDgHpoFzoUsbE7FMBU6jhy5pOHRJwxEz9Gy5PaIDjqoDsJXvhL18OxxVB2A5sgqWI6vACXoYMqfBNPgsGPpNAidoI9IuQkhodDotUlJSfZZdfPF5OP/8C3D8+DH8/POPWLDgXNxzzwPYvXsnXnttGfLz85GUlIQzzpiPG2+8FTqdDgBQXV2FZ599Etu2bUVaWhpuvXUpnn/+Kdx++11YuPA87NixDb///S1Yu/Yn98UfsGHDz3jggbvxyy/b1P3/9NN6vPXWchQVHUdaWh+cf/4FuPzyq8Dz8t+zGTMm4sEHH8FPP63H9u1bkZGRiXvvfQhjx45Tt7Fr1w4sX/4q8vMPQqfTY8yYXDz55HP46KP3sX79d1i58t8+x/zb316ARYsuwuWXL4lENxPSrdjKd0ITkw5NbEZYtidaq1G+6jrEZl2M+DFXh2WbpHtaufINvP/+23jqqecxbdqMdm/nhht+B0DOuAhWQ0MD/vnPv+OXX36Ey+VCTk4u7rzzXgwaNBhAy+EbLpcLy5b9DatXfwONRoMLL7wUx44dgdFowsMPPwYAsNvtWL78VaxbtwYWixnDh4/E7bffhTFjctX2/fOff8fDDz+OV175G2pqqjF58hQ8+OCfEBsrT+v6ww/r8NZby1FSUgyj0YisrGy88MIr4HlezTIZMmQYPvvsY4iiiIULz8Ptt98FQRACtGEEbr/9brUNQOBz4j33LEVZ2Sm89NLzeOml5wEAv/yyTW33Aw88itdeW4bi4pP48ss1ePTRBzBq1GjcccddXr+LqzB9+gz1dzJjxkTcf//DWL/+e+zevQOZmf3xyCOPg+cFPP/8X3HkSCFyc8fiT3/6C5KSkkP8zfdcFJTo4fR6PZ566ikMHToUR44cwW233YY1a9ZEu1kdwiQRlqPfon7PCki2WgCAPv00xGZfBkPfieB4ISrt4gQd9OnjoE8fB+A6SPYG2Eq3wFqyQf5/0XpYi9aD18fDOHAeYoafB13SsKi0lRDSun//+11cf/3N6kVGSUkx7r33Tvzud7fh4YcfR3V1FV544Wm4XC78/vf3AJBTdOvqavGPf7wOAHjppedhsVhC2u/u3bvw1FOP4a677kNu7lgUFZ3Ac8/9FVqtDpdeerm63sqVb+KOO+7C0qV/wIoVr+Pxxx/Gxx9/CY1Gg6KiE7j77tuxePHFuOeeBwEAW7duBmMMCxeeh7feWo6CgnxkZ2e797kTp06V4uyzz+lwvxHS3YmWKlR9dzcAoP8V68OyTWvRj5DsDWjY8xYFJXopxhiWLfsbvv76S7z44jKMG3eaz/vvvvsW3ntvZavbeO+9T9C3b992t+FPf3oQRqMRL774D5hMRnzyyf/h7rtvxwcffAqj0dhi/Q8+eAfffbcWjz76BDIzB+DDD9/D1q1bMGvWXHWdv//9eZw4cRx/+cszSElJxXffrcXdd9+Of//7U6Sl9QEAWCwW/Oc/H+Mvf3kaNpsNjz76IN5//23ccssdqKqqwmOPPYzbbvs9Zs2aC7PZjB07tvq0Y8uWzdDrDfjHP97AyZNFePrpJ5CamoYrrrjabxv+97/VPm1o7Zz41FPP49prr8AFF1yMhQvP89mvxWLBRx+9j4cffhwxMTGIiYkJuq/ffvtNLF16N+666x78/e8v4Ikn/oTk5GTcccedMBhi8Oc//xHLl7+KBx54JOht9nQUlOjhMjMz1Z+HDh2KxsZGMMa6bfqRo7YQtVueg7PmMADAOHAO4rJ/C13KqCi3rCVeHw/TkPkwDZkP5rLDWroJlmP/g610M8wFX8Bc8AV0qTmIGbEIsYPnAIiNdpMJ6XV+/vlHzJ8/U309Z84ZAICJE6fg0kuvUJc/88xfsGDBubj44t8CAPr3H4Dbb78LjzxyP5Yu/QNOnjyBX3/djLfeeh8jR8p/j+655wHceGNoNyBvvbUcV199PRYsOBcAkJnZH9dccz0+/fT/fIISv/nNIsydeyYA4Prrb8YVV1yEkpJiDBo0GO+//zZyc8fizjvvUdcfNmw4AMBgMGDy5Kn45puv1KDEqlVfYdq005GcnBJSWwnpiVyW8rBvU7RWqT9LTgt4LaXIh0vNpqdhLf6lU/dpGjgTSVMeDOkzGzf+AqfTiX/8Y3mLgAQALF58EebNm9/qNlJTU1t9vzW7d+9Cfv4h/Pe/a6DVytm6d999H3766Qds3PgLzjij5b7/85+PcfXV12PGjNkAgPvuewibNm1Q3y8rK8OqVV/h889XqeeP66+/Eb/88hPWrv0WV155DQDA6XTivvseUgMq55zzG2zfLgceqqurIIoiZs+eh759+wEAhg8f4dMOvV6PBx54BDqdDkOGDEVx8Un83/99gCuuuNpvG6699kZs3PiL2oa2zok8z8NkMrXImnQ6nbj33j9i6NDQHyB6n6Mvv/wq3H337bj55tswfvwEuFwSfvObxfjyy/+EvN2ejIISXdzWrVuxYsUK7Nu3D5WVlXjttdcwd+5cn3U++OADrFixApWVlcjOzsYjjzyCvLy8Ftv67rvvkJ2d3S0DEoxJaDzwIRr2vAUwEbqU0Uic+PsuGYzwh9PoYRo4B6aBcyDa6mA5/j+YC/4LR9V+OKr2o37nv+AafwWE/ucAWgpOENJZJk6cgrvvvk99bTKZcPPN12LUqGyf9QoLC3DkSIHP2F1JkmC321FdXY0TJ45Dq9VixIgs9f2srGz14i9YR44cxt69u7Fy5RvqMlGUwNy1chRDhw5Xf1YuVGtrazBo0GAUFhZg1qw5Afdx7rnn44UXnsadd94Nu92JH374Do888nhI7SSkp2KiA6LEwHtdKjHJhfrdb8I4YCb0qTkhb9NRW+j5ufogOF4LXepocDxdhvcWw4ePRE1NNd588zW88MIrMBgMPu/HxycgPj4hwKc7rrDwMMzmJixcOM9nud1uR2lpcYv1m5qaUFNTjexsz/ddq9X6BAyOHi2EKIq47LLFPp91OBw+68XExPhkeKSkpKC2Vs50Hj58BMaPn4Crr/4tpk6djsmTp2Lu3DMQE+O5Fh4xYqQ6TBIAxozJxauvVqGpqSmoNrR1TgxEr9e3KyABAMOGeY5fCZYMGTLUa1my2gdERn8NuziLxYKsrCxceOGFWLp0aYv3V61ahaeffhqPP/44xo4di3feeQc33ngjVq9ejeRkzzilkpISPP/881i+fHlnNj8sJEcjajb+FbbSzeAEPeLH3YbYkRd025ktBEMi4kZdgtisi2Ev3wlzwRewnvwZpzb9E5zmLcQMPw9x2ZdBMNJTS0IizWg0oH//AX6W+6ayWq0WXHjhJbjggktarJuYmAjG0GbAV6kJATB1mcvl8lnHYrHipptuxcyZs1vdlm/hTXm/kiT5X7mZGTNm44UXnsEvv/wEs9kCnU6H6dPbP7aZkJ7kcH4+3v26BH0Tdbiyzx8QN2gmBGMKmg5+hKaDH7VrSIer/pj6c82GJyDZ6xE/9ibE51wZxpb3TsnT/tjp+9RoeLhcwf29VaSnp+Pxx5/C0qW/w3333Ynnn3/ZJzAR6eEbVqsFaWl98PLL/2rxXnx8fMDPNT+vMeY5f1mtFmg0Grz11gfqeoLAQRSZz1CH5oWiOY5TA+2CIODll/+FvXt3Y/Pmjfjww/ewYsXrWLHiPfVmPtC5leP8t0ERynALf5oHjgD5PO7dB0DL8zjge8xKs3yXcS0eNvR2FJTo4mbPno3ZswNfnK5cuRKXXXYZLrroIgDA448/jvXr1+Pzzz/HDTfcAECOdt5222149NFHMWjQoHa3hec7lmGhfD6U7bjMFaj8/j44649DEz8QabP+Am3i4A61o+vgYMqYAFPGBIhNJbAV/gfVB75C06GPYS74ErFZFyI+53II+shFzru65t+Zjn4He6Ku0De94fcyYkQWjh076jeAAQCDBw+Gw+FAQUG+OnwjP/8QnE6nuk5iYhIAoLq6GiaTfLFUWHjYZzsjR2bh5MkTAfcTjOHDR2DHjm249tob/b6v0Whw9tkL8fXX/4XNZsPZZ58T1OwiPM/1it816b0YY1j93Q9wiUBxtQM7fv0JYyt3IHnGYx3YpgTRWqO+luz1AABb8S8UlOhlMjIysWzZ61i69He4//678Nxzf1dvfCM9fGPkyFGoqqqEVqtFenrbgY3Y2FgkJ6fgwIH9GDNGzr52Op04cqRQrRUxYsRIuFwu1NfXqeu0J2DD8zzGjh2PsWPH4/rrb8Z5583Hli2bcM45vwEAHD6cD4fDoWZL7N+/DykpqYiJifXbhubaPidqIYrBtTkxMQk1NdXqa4vF4jfThISOghLdmMPhwP79+3Hrrbeqy3iex/Tp07Fr1y4AgCiKuPPOO3HppZdixoz2PwnTaHikpIRnWEFSUnCRS3vdSRT87w44m8oRP+h0DF74NARdx6KeXVZKFjDoIfSb+jtU7HgPlXs+RuOBD2Eu/C/6jF+CPhOugqBtWYSoJ9NqhRbfuWC/O71RNPvG4XCgqoqHRsNBo+l6GUyB2sRxHDjOf5t53nf51Vdfi5tuuhavvPIizjtvEfR6PY4cKcS+fXuwdOndGDp0KCZNmoLnnvsr7r//IQDA3//+HLRarbqtwYMHok+fdLz99hu44YbfobDwsFo5XdnX9dffhPvvvxt9+/bF3LlyfYv8/EM4daoU113nuaASBE/7lP8LAg+Nhse1116PK6+8FMuWvYjzz78APM/j1183Y9GiC2AwyH9HFi++AEuW/BaMSbj77nvb+L1x4HkeSUkmnxRaQnqa8lPFqK7y1H84UGTB2CGx4ATP9z7UulzM0QQwscVyTfzAjjWWdEtKYOL3v7/FJzAR6vCNsrIyNDbWo7y8DKIooaAgHwAwePBQv8MGJ06cjNGjc/DHP96DW29diszMAaisrMQvv/yI3/xmkToDh7eLLroU7777FjIz+yMzsz8+/PA9OBx29fs/cOBgnHHGfDzxxKO44467MXz4CDQ01GHTpo0YN+40jB8/oc3j2L9/H7Zv/xWTJ09FYmISdu3aAavVioEDPe2x2+14/vmncOWV1+DkyRN4772VuOKKqwK2oba2Fr/+ukltw5Il1+Kaa36Ll1+Wz98cx2Pr1i04//wLYDAY0K9fP+zatQNz554BrVaHxMTEgO0dP34C/vWvZdiyZRP69El3D7WkYH04UFCiG6utrYUoii0ipykpKThx4gQA4KeffsLmzZtRVVWFjz/+GADw3nvvtZqq5Y/LJaGhwdqh9vI8h6SkGNTWmiFJrNV1XZZKlK+5A6K5HDFDz0bC1PtR18gANHWoDV2V0jdNDgMMo29ExuALUL//PTQVfIWyLa+jcs9/kDj+ZpiGzO+2w1ZC5XSKqK6Wf9+hfHd6m67QNy6XC5IkweViALpWOmJrT20YY2CM+X1fknyXDx06Ai+//BreeONfuOmma8HzAvr3748FC36jrvfww4/jmWeewC233ICUlFTcdtvv8cILT3ttS8Cf/vQXvPDCM1iy5DKMG3carr32Rjz77JPqNiZPnoann34Rb7/9Jt5++y3odFoMHjwUF154iU97RNHTPuX/oijB5ZKQkTEAL764DK+//k98/vl/YDAYkZubh9/85gJ13QEDBiMraxREUcTgwcNafbLlcjFIkoTaWgs0GofPe/HxRmi10ZnxqKuyWq1YuHAhzj33XNx7773Rbg4Jkmirw/aVF8BeUYfJI+NwuMSCkhoHGiwu/D975x0dR3X24Wdmtquuqi25994bxrhRY0hoiYHgUAIhoSW0jxBKgISE0BJCQkIoIZCYECCUUE017rj3blm2ei+r7bsz3x+rXe1KK2nVZek+53DYnblz7ztX452Z332L1dPw7KG6a1BMyW3ot4ryWi+r91QzPNPEzFEJAEi6/rXQIGgg3GPi5z+/ncce+0PUUIGWeOml5/j444YcR9deG/C6efPN/zFwYNNStrIs8+STz/Dcc8/yyCMPUVtbQ2pqGtOnz2z2neDKK6+moqKchx++H70+UBJ0ypRpEeL0/ff/ipdffoFnnnmK8vIyrNYUJk2awllnnRvTecTFxbFz5w7eeOM1HA4nWVlZ3H33fUycOCnUZu7ceaSnZ3DTTdfj9/v41re+zeWXN5Svbs2GIUOGhu6J773XcE+88MJLALjuup/wxBO/5bLLLsLj8USU6G7MBRdcyOHDh3jwwXsxmUz88Ic3UFAgPCU6A0lrHBgj6LWMHTs2ItFlSUkJCxcu5M0334xIbPnYY4+xc+dO/v3vf3fa2F6vn+rqtpW2a4wsS6SmxlNRUdfiy5PqtVP66c34anIxDz2TlPn39fkX8ebmxmcvpmbn8zhPfAmAPnU81pk/xZA2vrmu+gwXXbSMd9/9CIj92umP9Ia58fl8lJcXkJaWHVMYQHfSHlfSzuT888/k5ptva1JqrKdRVZXlyy/k+9+/iksuaZonI5yW/r7JyRYhSjTiD3/4A7m5uQwePLjdokR33nP7I9Hmxpm3lpVP38zekw4umpdKQYWbLUfqWDolmcWX3kHtzkBOroxzn2s2ybY952MMqRPQJzWEyrpLd/GH+y6n1GFC9dj4wZIMMpMNWEacR8q8tlVw6C5667XTW+41PX1f6Sl8Ph/Ll1/I9753BVdcsSJqm86em9/85iGcTgePPPJ4p/XZk8QyP/31ntu33/T6OFarFUVRKA9zNQSorKzsUNxZT6JpGlWbHsNXk4tx4BxSTvtFnxckWkIXN4DU039J+tl/Qp8yFm/FAUo/vYnqrc+gejv2wCoQCPonlZUVvPbaq9TV2TjvvGU9bU6fIjc3l5ycnBZzQQl6J5LeQmFlwBMoK8XAqIEBT4ajRU5UR8Nzls9eHPV4b00uVZseo+TDqyMS4RXlH6O42otsCHhIHCoIeJ1q3o55nwoEXU1hYQEffPAuJ0+e4MiRw/zud7+mpqY6VOpSIOhM+u/bXh/AYDAwceJENmzYENqmqiobN25k2rRpPWdYB6g79BbOvDUo8Vmknv6AKJdVjzF9Mhnn/hXr3P9DMsRTd/htSj64qttrcwsEglOf73znXP7zn9e4995fhhJuCgIluH/yk5+wYMECxo4dy1dffdWkzcqVK1m6dCmTJ09m+fLl7N69O2L/Y489xh133NFdJgs6EXtdDZV1PpLjFCxGhYFWAxajTH65m7rqolA7zRcQE+qOvo+zYFNou+qxhT57Kw6GPu/etROAGVMD7ui5Ja76flxddi4CQWcgyzIffPA/fvSjq7jllh9RVFTIn/70t3ZXABEIWkK88fVy7HY7J0+eDH3Pz8/nwIEDpKWlkZ6ezrXXXsvdd9/NxIkTmTJlCq+88goul4uLL764B61uH97afGp2Pg+yntQFD4dWFQQBJEkmbuT5mLJOo3r7szhPfEHFmvuxDDub5Fk/FfMlEPRCPvzwi542oQnBeNn+6oLcHB0twf35558zbNgwhg8fzo4dO3rgDAQdIb/+WSsrxQgEQhhGDjCx54SDw0dyGFOfg7Du0H/RxQ2kevNTAGRf8VWgvF+Y96Kn8hCGtPF4ak6y/ev/ALBo4WIO7/yC0hovTrcfg1+IEoLezYABA3nuub/3qA333fdQj44v6D6EKNHL2bt3L1dddVXo+yOPPALALbfcwq233sqyZcuorKzkmWeeoaysjPHjx/Piiy+SkpLSUya3C03TqN76B1C9JE79EYaU0T1tUq9FMaeQevoDuIafQ9U3T+DI/Qx36U6s836OacCsnjZPIAjxwAP3sGfP7tYbdhKTJ0/h17/+XbeNJ+hbdLQE965du/joo49YtWoVdrsdn89HYmIiN9xwQ7vs6Yky3P2FaHOTX1gABEI3gowaaA6IEsfzGTMtUNHAW3WUsi9uC7VR6/LRJw0Bf1g4huZFliVOHlxPtd1PVoqBtIFDGWA1UG13UlLtJXGgs9f+bXrrtdPb7BEIupL+VoZbiBK9nLlz53Lo0KEW26xYsYIVK6InnDlVcJ74EnfxNnSJQ0kYt7ynzTklMGXNJfP8l6ne+kccuZ9T/uVdxI/9LknTfoykNC0HJRB0N0IgEPQVYinBfeedd3LnnXcC8Pbbb5OTk9NuQaInynD3R8LnpqSsFIDs1AZRYkiGCb0ikZNXhm/yQHRK0xcEnf0gqSMmQHGD15HZGEgUebi+TOO4QRayJixkQLKBg/lOSqo9jNXcnfY37ip627XTm8pP9/T4vRkxNy3T+vz0zzLcQpQQ9Dia6qNm90sAWGffLl6o24BsSCBl/v2YBi2gevPvqTv0Fu6yvaQueBBd/MCeNk8g6LX897//4YUX/spHH32JLAceECoqyrnwwvM444zFPProk6G2q1Z9xO9+92s++eQrjMa2lW0L8sUXn/Hgg79g8eKlUbOIP/jgvQwfPoJrrrmeBQtmYTAYef31t8nIyAy1ueWWGxg3bgK33HJbu2wQtJ9YSnB3Jt1dhru/0XhuVFXleG4BBp3EsNlX4K/NxVW8Db0iMSzTxJFCJ8dLXIzOalrGs7r4GFJWHbXVVaFtjjo7ZWW1bNu5HwmYd/G9VNV4GHfW7Wwoep2SmpP43I5Q2eveRm+9dnpL+WkR+tY8Ym5aJrbqG/2zDLcQJQQ9jjNvDf66QowDZmLMnNbT5pySWIYsxpA6gcr1v8JTvpeSj39Eymn3YB60oKdNEwh6JdOnz6Suro7Dhw8xblygxO7OndvJyMhk164daJqGJEmh7ePHT2y3IFFSUsyzzz7NlCnTou73+Xx8881GVqy4JmL7yy+/wM9/fn+7xhR0D+HXSTiXXHJJh/vurJfBwEt373mx7E0E5ybv2G5shTsZkm7EkDoWR83xUJsJgy0cKXSy94Q9qiih+X2Bfjz2hn59bo4cOUJtTQ1DM4wkJA9AVTWGzfwuxk/2UpKfi+pz9fq/S2+7dnqTLQJBV9Pb/v11NcK/RtCjaJqGbd9KABImfL+HrTm10cVlkH7W08SPvxzNW0fFmvup2fUimiYUa4GgMcOHjyQ52cqOHdtC23bs2MZ5552PXq/n6NEjEdtnzGhfvhZVVXnkkQe5+urryM4eFLXNzp3biY+PZ/ToMaFtl166nI8+ep+TJ3PbNa6gc+mLJbgFDex+82YAslMMyDoz0PAiMGKAiTijTE6xC5vD1+RYTfMDoIaV+NT8XrZt24LmdzNpaByyMREAk8lEamoatU4Nh713ekkIBAJBTyBECUGP4i7agrf6GPqUsRgzZ/S0Oac8kqwjefpPSF30WyR9HLZ9/6JizQOoXnvrBwsE/QhJkpg2bUaEKLFz53amT5/BtGnTQ9vLy8vIz89j+vSZAKxYsZyzzz6j2f/uvPOnEeO89tqrmEwmLryw+ZXzdevWcPrpZ0RsmzZtBjNnzuH55//aWacs6AB9sQS3IICmqRSU1gIwMMWApDNFiPnG5KFMHBqHBmw7FkVIUANCheZrqL5hq7Nx4MB+jIqfUQPNyMak0L6srGwkWUdJpRNNbSpyCAQCQX9EhG8IehT78U8ASBi3PKoLrKB9mLPnk3HuX6n4+j5cBesp/fRm0hb+Bl1Cdk+bJhD0GqZPn8kLL/wFVVWpqakmPz+PSZOmkpeXx5Yt37B8+RVs374Ng8HApEmTAXjyyT/i8zX/ImE0GkOfDx06yFtv/YeXXvpni3asX7+Wu+/+RZPtP/nJzVx//VUcPLifceMmtPMsBbHSn0pwCxrw1eRSWOkGYGCKEUkXGaJhSB3PzJHH2XbUxq7jduaMScBibIjp1tSAp0R4SdBNO46gqulMGZ6ATnGghIkS2dmDQNZRUuNB8zmRRDlvQS/jxht/yOWXr2DRoqUAHDlymN/97tfk5Bxl6NDhPPPMX1mxYjkvvfRP0tMzethaQV9BiBKCHkPzuXEVbERSTJgGnd7T5vQ59IlDyDj3L1Ss/xXuoi2UfnojqYsexZg2sadNEwh6BTNmzArllSgsLGDs2PGYzWamTZvOiy8+h6Zp7Ny5jQkTJoXySQwYEFsCWY/Hw69+dT+33XYXqanNu/cfO3aU2tpqpk9vGh4yZsw4liw5k+ee+zNPP/2X9p2kIGb6SwluQSRVJblU2/2kJegwG2QknQlCnhISuvgs4kwKU4fHs/1YHWv31XDujLC/eb23g1rvKWFz+Ni8aQ36tEnMnGgEzYVkaKiykZ09CEnWUVzlQPU5kYUo0adZsKDl0L9rr/0R1133426x5eDBA7z44l85eHA/TqeTtLR0Jk2awj33PIBeH0gyv3btaux2OwsXLgkd99e//omMjEx+85snMJtNJCYm8a1vXcBLL/2Ne+55oFtsF/R9hCgh6DFcRZvRfE7Mgxch69qXQE7QMrIhgbRFv6Nmx1+oO/Rfyr+4g5QFD2LOnt/TpgkEPc7w4SOwWlPYsWMbRUUFTJs2o377SCQJjh49ws6d2znzzHNCx6xYsZySkqJm+5wyZTpPPfUMFRXlnDiRy4MP3hvap6qBF51Fi+by1lvvk56ewbp1XzN37nx0uui34x/96CauvPK7bNu2pTNOWdAC/aUEtyCS3Lw8AAalBbycAs8j9TklJAnFElgJPm1cIgfzHew54WBstoVhmYHnFk2rD9/wOtE0jS92V+P1a0xPysWkJiEbk5CkhmjpQPiGQnGVB83n7qazFPQU7733SejzRx+9zzvvvMULL7wS2mY2W0KfNU3D7/c3ez/oCFVVldx++80sXLiYP/zhL1gsFgoK8vnqqy9QVT8QECXeeusNvvWtb0d4LxcU5PG9713OgAEDQtvOP//bXHPNldx8820kJAhhTdBxhCgh6DGceV8DYB6yuGcN6eNIskLyzFtRLBnU7PgrFWvuxzr7DuJGXdDTpgkEPc706TNDosRNN/0MCOSbmDJlGl988SknT54I5ZOA2MM30tMzePXV1yP2vfDCX3G5XNx66+1YrYGV1nXr1vC9713ebH+DBg3mggsu5Lnn/tTu6h8CgaB5TpzIB2BwvSgh6cygBRNdSihxAVHCbJA5c0oy72+p5IOtFVy2IIP0JH2Dp4TXwaZDNo4WuUiOUzhtbOBFTdbHR4xnMBhIT46nqKAUW20NKYmDu+EsBT1FuKecxWJBluXQtu3bt/LTn/6EJ598hr/97c/k5Bzjuef+zttvv4nT6YgoH33//XdjNlu4776HAHC73Tz//F/4/PNVOBx2Ro0azc033x4KNWzMnj27cbtd3H33fShKIPwoO3sQc+bMC7Wpqqpi+/Yt3Hnnz0Pbgp4eTz/9JE8//WTIs2PIkGFkZASE9W99SzxPCjqOECUEPYLm9+DM3wCKAVPW3J42p1+QMP4yFHMalZsepWrzk/jdNSROvLKnzRIIepTp02fyl7/8EY/Hw5QpU0Pbp06dzksvPV+f4LDhIS/W8A2dTseIEaMitsXHJ6AoSmh7RUU5R44cYt68lsPXrr32Bi677EI0DZFbQiDoZHJPBkSJQRGiRH34RpinBMDYQRaKqz1sOVLH62tKWTgpiSlpLqio4OMNh9l5oBaDTuI7c1LR6wLeEZIhrsmYAzOSKCqA/IJ8UgZN6uIzFPR2/va3P3PLLbeTmTmApKTkmI55+uknOHEil1//+nekpqbx2WefcPvtN/Paa29FzfOQkpKCx+Nh3bo1LFy4OGoet927d2KxWBg8eEho23vvfcKPfnQ1F1/8XZYt+3aEZ8fYsePZtWuHECUEnYIQJQQ9grt0N5rPgWnQGch6S+sHCDoFy7AzkU1WKtbcR+2uF9D8HhInXyOSjAr6LTNmzMLpdDJu3ATi4hpWNKdNm4nT6WDatBkRySs7k/Xr1zJ58lQSExNbbJeWlsZ3v3s5K1e+0mI7gUDQNmy2WiqqqkmJ1xFnCqweS4oxrCCohM4S+YK3cGISOkVi40Ebn+2s5qsjGzCvfYK6I0VYjDLfnpNKRrIh1F7WNxUlstKT2A4UFhYypWtOrd/w3/++wYED+7t1zEmTJnHRRd/ttP5+9KObmDlzdszti4uL60NBPiIlJRWAa665ng0b1vHppx9z5ZVXR7F5Ct///lX88pf3kJCQwIQJk5k9ey7nnXd+KPyipKSIlJTUiGfC1NQ0ZFnGYrE0yY+UlpbGsWNH23PKAkEThCgh6BE8lYG4XWN6dDczQddhGjCDtCVPUr76bmx7XwHVQ+LUG4QwIeiXDB06jHXrtjbZPm7c+KjbO0LQ7TbIunVrWLBgYZN20ca98cZbufHGWzvVHoGgP6F6HUg6c8S97ujRo6CpDE43Yso6jfixlyDJCklTr6P8y7tImfdzJF2kKClJEqePT2LkADPbj9VRUl1OvFzChJEmZo7LxKK4IttHWXgZmGEFoKCwsAvOVHCqMW7c+Da1z8k5it/v57LLLorY7vF4GDVqdLPH3XTTT7niihVs3bqZffv2sHLlK6xc+QovvvgqaWnpuN1uDIbYRXiDwYjb7Wq9oUAQA0KUEPQI3qqAsqpPaf7HU9B1GNMnkr70Kcq++j9s+/+N5veRNOMmIUwIBN3I1KnTWLr07J42QyDo83hrTlDy4dXEjbwA69y7QtsPHz6IpqkMzzRhSJ+EaWBgtdo0YBbZl3+BJAe8JzKX/R1vzQkq1z8cOnaA1cCyWcEqHMeBJAypw/FUHIgYW9Y19ZTISElEkaGgsAhN08S9twNceunybh9Tp5Px+dTWG8aIyRRZhlaSJDRNi9gWnsvI6XSg0+n4+99XNrl24uKaXm/hWK0pnH32eZx99nlcf/2NXH75xbz77n+5/vqfkJSUjM1WG7PdNlstycnWmNsLBC0ht95EIOh8vFVHADBYR7XSUtBVGFLHkX7m75GNSdQdepPaXS/2tEkCQb/iyiuvFjXeBYJuwHlyNQD2Yx8AAa8JZ9VJjhw5jCzDkHQjkhy5ThcUJAD0ySMwxFBOW5c4pMm2aJ4Sit5ARpIBp9NJZWVlW05F0A9ITrZSWVkR+q6qKjk5x0LfR48eg8/no6ammkGDBkf8F0yiHAvx8fGkpqbidDoBGDNmLOXlZdjtdTEdn5t7nNGjx8Y8nkDQEkKUEHQ7qteBz5aPEjdA1OfuYQzW0aQt/T2SPh7b/pXU7lvZ0yYJBAKBQNCpqF57xPfiD6/j898vw2GrZFhWGgadjCTrW+yjsWgRjWiiRLS8WZKsIyvFAJrKiRPHW+1X0L+YPn0m+/bt5fPPV3Hy5AmeeeYpamqqQ/uHDBnGmWeeza9+9QBr1qymsLCAffv28vLLL7Bjx7aofa5fv5Zf//qXbNy4nvz8PI4fz+Gvf/0Tx4/ncPrpZwAwevRYEhOT2LNnd6s2ut1uDh06EFG9QyDoCCJ8Q9DteIKhG1YRutEbMFhHkrbkccq/vIPaXS8g6y3Ej7m4p80SCAQCgaBT0LyOiO++ukJySlz43bWMHDIUOABhnhHRkJSWRQsAXcKgpsdFSXSJpDA43cj+fI3jx3OYMWNWq30L+g+nnXY6V155NU8//SSapvK9713B7NmRleruv/9XvPzyCzzzzFOUl5dhtaYwadIUzjrr3Kh9Dhs2HIPBwB//+BSlpSWYTCaGDh3GI488Hrr+FEVh2bIL+OyzT5g3b36LNq5fv5aMjEwmTRKpWgWdgxAlBN2Ot7I+dEPkk+g1GNMmkLroUcq/upvqrX9E0scRN/ycnjZLcIrQENKqtdRMcMoS+LuKsHfBqUq4p4Q9ZxWapnGk0AnJKqOHZMBJWvWUIAZPiWBOiojDonpKKGSnGqFelBD0Dy699DIuvfSy0PcZM2Y1m1D5xz++mR//+OZm+9Lr9dxww03ccMNNMY2dnT2In//8/lbbLV9+JVdffRllZaWh8MK33nq/Sbs33/w3V199fUxjCwSxIMI3BN2Opz6fhPCU6F2YMqeTesavQFKo2vQYruLtPW2S4BRBlhVAwuNx97Qpgi7A7w8kWJNbWUkWCHor4Z4SVZsepbTGS1Wdj6zMVJLM9QkLWxEdWhMtrPN+Hl2A0JmbNpZ1mA0yGanJ1NRUU11d1fpJCATdQFpaGnfffT8lJcXNtqmtrWHBgoWcfXZ0rwyBoD0ITwlBt+MJekoIUaLXYc4+DeucO6n65nEq1j5AxjnPok8a1tNmCXo5kiQRF5dIbW0gYVugpFhvWVaX8PmEB0d0YpkbDZutGqPRIioECHotmupDddegmFOj7ld9kTklDuYHRIohvg3UHQoI8K3mjJAaRLmEiSvQfE7qDv0XAEPGVOJGfKuZ45qu/0lSYKyh2Rnkr/6AHW+Xs+SHItm0oHewaNGSFvcnJiZx5ZVXd5M1gv6CECUE3Yrm9+KtyUU2WZGbeXgQ9CxxI5fhqyvEtu9flK/+ORnn/KXZBz2BIEh8fBJAvTDRe0QAWZZR1c4r3daXiHVuZFnBahVVQgS9l9o9/8C271+kLXkiaghFuKeEpmkcyq+vNjCg4TG41USXYaKcedAC9CljQ6KEJBuaP1CL8ntY73U00FiG31HO0X2bafk1UCAQCPo2QpQQdCt+jx1UH4o5Vay69WISp/wQX10RzhNfUP71vaSf9UdknamnzRL0YiRJIiEhmfj4JFTVH/U5vLuRZQmr1UJVlQNV7QUG9SJinRtJCogS4vda0Jux7ftX4P/7/x1VlAjPKZFX7qbW6WdQqoEES9hjcFvCk2R9xL+JlpJgRg3pqPeUSPfsQJYgt8SF6vcix5BMUyAQCPoiQpQQdCuaVr8qJ4nY5N6MJMmkzPs5ZY4yPGW7qd78JNbT7hMvJoJWkSQJRekdtxZZljAYDOh0HiFKNELMjaAvIZvTUJ3l+Gx5UfdrXmfo8+7jAYFi8rDIqhitJroMb9tIPIh2bOLU6/E7yjBlnxbF4MAzkMkgk5ViIL/CQ2FeDoOGjY3Zhv6ISKos6B/0z+TSItGloHvR/EDgpVfQu5EUA6ln/ArFkoEj93Psh9/paZMEAoFAIGiCPnEwAH5HWdT9mt8DgMPt50iRE6NeYkx2Iw+GGKprBGksQkTzlLAMPRPr7Nuj5qqQwrwyhg8IeCEePLA35vH7KyKpsqA/0F+TS/eO5SxBv0FThafEqYRiSib1jF9R+tmtVG9/Fr11FMYMUZNaIBAIBL0HKSxEQtO0Jl59mhZ4yN930oFfhanD49ArkW1aTXTZUtuwnBIZ33oRny0fXfzAFjpoOH5Epom1+2o5euQAZzWTK1MQoPckVRYJlJtHzE3LtDY//Te5tBAlBN1LKHxDeEqcKhhSx2GdfXugIse6B8k87wUUS1pPmyUQCAQCARBIoh1C9YBirP9oC3hJqD5UVWPX8ToApjQK3YCGPA/tIdxTwmAdhcE6quX2YaJGWqKeeJPMybyT1NXZiI9PaLcd/YHekFRZJFBuHjE3LRPL/PTX5NJClBB0K5oI3zgliRu5DE/FAexH36di/UOkn/l0m1aVBAKBQCDoCvzOSlRnRei75nMjKUZ8tgLKPv8Zfmc5AIcLnVTb/QxNN5KWGCV/RAy5cCSdGc3nRDYkRm5vQz4KICJURJIkRmeZOej1sm/fPubOnde2vvoZPZ1UWSRQbh4xNy0Ty/z05+TS4q1C0K00hG8IUeJUI3nmrXgqj+Ap20vt3n+SNOXanjZJIBAIBP0Yb20+JR+siNim+d3U7nmV2j1/b9imaWw+bANgzpjongixeEoMvPi/aD4nks4YuaONsd9SoxDWsdkWDub42Lt3txAlYqSnkiqLJMHNI+amZcT8tIx4MxR0L/WeEiKnxKmHpBhIPf1+JJ0J275/4i7d3dMmCQQCgaAfY9v/rybbKjc9HiFIAJwodVNa42VAsp4h6cYmxwAQg7eDrLegmFOj7YnF3LDmkc9A2akG4sx6cnOPU1dX17a+BAKBoA8gRAlBt6KpInzjVEaXMIjkWbeBplK54TeoHltPmyQQCASCforfWdlkm7t4S8R3TdPYcLAWgNmjE5p1i5Y6kOm+ra7WjcMfJUli3PABgMb+/fvabYdAIBCcqog3Q0G3ogUTXfazMjd9CcvwczEPWYLfUULV5t+jdXdAp0AgEAgEgOZzttrmWLGLwkoP6Ul6xmSbm23X5rwQkQe3sX3TZ6CxwwKJ7fbs2dl+OwQCgeAURYgSgu4lFL4hLr1TFUmSsM65A8WSifPkVzhyP+tpkwQCgUDQD9G8jhb3q6rGun01AJwxIbFlj4aOJG9u4zNNhKdEvRgyON1CUlIyubnHqaioaOZIgUAg6JuIN0NBtxJMdCnCN05tZEMCKfPvBaBm25/xu6p62CKBQCAQ9DfUVjwl9pywU27zMSjNwPBMU4ttO1ZRqo2Z8sPGUizpAPhqjjN17CAAdu7c1gFbBAKB4NRDvBkKupdg+IZIdHnKY8yYStzoi1A9tVRvfaanzREIBAJBP6Ol8A2H28/a/TVIwOJJya3nfeiAKNHWhZbw/BVBUcJVuJHskudA9bF9+zbUYLUygUAg6AcIUULQrWgifKNPkTTtRyiWDJwnv8KZv76nzREIBAJBP0LzNi9KrNlbg8ujMW1EHAOshlb76pCnRBsTXYYvzOgsGaHPiRYdg9P01NbWcOzYUdylu/FUHmq/XQKBQHCKIN4M+zg//elPmT17NrfffntPmxJAE+EbfQlZH0fy7DsAqNryB1SPKGUmEAgEgq5HU/1oflfUfXnlbvaedGAxypw+Piliny5pGAnjL0NntkYe1BEPzg7klFDiMiP2TRwYeE7atGkDZZ//lNJPfozPUdp+2wQCgeAUQLwZ9nGuvPJKHnvssZ42I0SwJKjwlOg7mLPnYRl2NqqznJqdf+tpcwQCgUDQD2hOkPD4VFZtD5QKXTw5GZMh8nlDMadhnXkT+oRIMaCtZT0jaWNJUCk8p0RGxL6RaR4SEhI5fHAvVXVeAOoOvd0B2wQCgaD3I94M+zhz584lLi6up80I0SBKiJwSfYmkGTcjG5OxH30fT8XBnjZHIBAIBH2c5ipvfLW7mmq7n9FZZsYPilYCNCAgdKgEaOMe27rQEiWnRGiX6mHu3NNQ/R62Hwt4H3qrc/C7azpsp0AgEPRWhCjRg2zZsoWf/OQnLFiwgLFjx/LVV181abNy5UqWLl3K5MmTWb58Obt37+4BSzsREb7RJ1FMySRNuwGA6q3PoGlaD1skEAgE3U9OTg6XX345F1xwAZdccglbt27taZP6LNEqbxwpdLLnhIM4o8w505pJblm/SVY6T5RoHILRGuHhG7I+cuFI87mYNWsOMir7Tjpwe1XcRZsp+u+FnWKrQCAQ9EY6Uv9I0EEcDgdjx47lkksu4dZbb22y/6OPPuLRRx/l4YcfZurUqbzyyitcf/31fPLJJ6SkpABw4YXRb1Jvv/02itL7vBFCiS7l3meboGNYRpxH3eF38VTsx5n7OZbhZ/e0SQKBQNCtGI1Gfvvb3zJixAiOHTvGTTfdxKpVq3rarD5JY0+Jqjovn2wLhG2cO8OK2djcc0YUT4l2LpRknv8KrqLNmIcsbtuBYd6ikj7Sm0P1OYmLi2PqhJGsO6axJ9fOrNEJgX1eB7Le0i5bBQKBoDcjRIkeZNGiRSxatKjZ/S+//DKXXXYZl156KQAPP/wwq1ev5p133uG6664D4L333usWWwFkuSPxlvXHBz0lZLnD/fUlgnNxas+JgnX2rZR+eis1u57HMvQMZF0019nYaTwvp/b8dA1ibppHzE3ziLnpGrKzs0OfR4wYgc1mQ9O0DuYrEEQj3FPC41N5b1MFbp/GvLEJjBjQ+r3HOvZcbHnfYBl2Nslz7myXDfqkoeiThrb5uPCSoNE8JQDmTB3N+vdhyxEbU0fEo1ckPJWHkPXxGFJGt8tegUAg6K0IUaKX4vF42LdvHzfeeGNomyzLzJ8/n507d3a7PTqdTGpqfIf7qa4IeEqYzaZO6a+vYbX2nvwf7SJ1Pp7cc6k+vApfzlsMPO3G1o9pBr1eaXKNnPLz04WIuWkeMTfNI+Ymki1btvDSSy+xd+9eysrKeO6551iyZElEm5UrV/LSSy9RVlbG+PHjuf/++5kyZUqTvr744gvGjx8vBIkuIlgOVNM0Vm2votzmY1iGkfnjEls8Tqr3lEiZ8B08xmEoCUM6Vg60PYSNJ+kiPR+CokRqgp4x2WYOFTjZnVvHzJEJlH8RqKSW9b2PhMeEQCDoUwhRopdSVVWF3+8nLS0tYntqaionTpyIuZ8bbriB3bt343Q6WbhwIc8//zzjxo1rsz0+n0ptbfP1wGMh3FPC5fZTUSHKRwaRZQmrNY6qKjuqemrnY7BMvI6aY6sp2fYqctZZ6OIHtqsfr7fhGulL89PZiLlpHjE3zdNZc5OYaEav7zvheJ0RVglQUFDAE088wfPPP9+d5vcrtHpPiTX7ajhU4CTJonD+rJTWvX/qRSJJkjBYR/bIb0N49Q25UfiG5nehaRqqt455YxM5VOBky2EbU4fFo1MCthe+uYy0pU9hGjCzW+0WCASCrkKIEqcYbXUD7cwHos64ccv1ooSGLF4SoqCq2ik/L7I5g/jxl2Pb+wpVO14k9fT7291X47noC/PTVYi5aR4xN80j5iaSzgirrKur46abbuKBBx5g6NC2u/YLYkP12tl2zMaWI3WYDBKXzk9rIY9ELyPcM0M2RO7TVFA9aJ460pP0jM4yc6TQye5cOzNGNngPVqx9kOzvfdBNBgsEAkHXIkSJXorVakVRFMrLyyO2V1ZWNvGeOJUIlgQV1Tf6NgkTLsd+9H84T3yBZ8IVGKwje9okgUAg6BCxhFX6/X5+9rOfsXz5chYsWNCh8Tolj1Mn9NNb2b13H6t316DTKVw8L4WUBD2DLl9FwX8vjkiCaRl2Jn57Ke6yPYENktTzc6M0PH4rikzixCup3beyYb/qRvMGPAXnj0vgaKGTTYdqmTTUgkFX//ykervM/h6fn16MmJvmEXPTMmJ+WkaIEr0Ug8HAxIkT2bBhA0uXLgVAVVU2btzI1Vdf3cPWdYB6T4n2ZroWnBrIOjOJE39A9bZnqN31ImmLH+1pkwQCgaBDxBJWuWbNGjZt2kR5eTlvvPEGAP/85z9JTGw5z0FjOiuPE/TuvCGa6sPnrEIfl96m47Zs2cKHX25CkuDaH91CpncnA+ZcjzUzDet1H+F3VrP/lYsAGDDlOyQNX8COPwZCHYwmc2hOempu/G7Ir/+cmhpPypm34z/9h+S8fwf2ol1IpWvRS4HcEpPO/DHjjzzF/jwHWw7bOH1CEgCa6u3y3Fy9+drpacTcNI+Ym5YR8xMdIUr0IHa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3INWd4ygp0R4OSxB3yRu1AXYDv4HV+FG3GX7MKZP7GmTBAKBoNMJD6tcsmQJ+/bt63CfnZXHqbfmVNH8Xio3P4X92McADLzgFfTJw3CXH6B6+3MkjP8e5uzTIqpUBNm+fStvv/0WPq+bb89JZeTYGVgG/xQV6vMQSYCVjDN/j7NgA96EKVRU1JFx1h+o3v4ccZNvoKrK3qNzo6l+JH0cBuvIsPxaOvwEQjnyv34i1FbKPIOLbhrJofuuYctRG1OGxZFg0YGmdllurt587fQ0Ym6aR8xNy3TG/PS1PE7hCFGiB9m7dy9XXXVV6PsjjzwCwC233MKtt97KsmXLqKys5Jlnngll+X7xxRcjkmmdamiaCN/oL0iKgcRJ11D1zWPU7n2F9CWP97RJAoFA0G66O6yysx7qe2PekOqdL4UECQBH0VYSEofiyFuHu3Qn7tKdAKQuehRz9mlAQPxZv34tn3z4Lv7aHC5aMJzBsgt0lqjnZ8icgSFzBpoWONaQMZ2M8/4GNMxtz82NTNal74GkRI6vmCJambJOQ0kcTnrCUBYsXsbadWtZf6CW82YGngO72vbeeO30FsTcNI+Ym5YR8xMdIUr0IHPnzuXQoUMttlmxYgUrVqzoJou6gWD4RpTVD0HfwzL8bGr3voK7aDOeioMYUtte+UUgEAh6A302rDIGNL+b6m1/xjL8XIzpkzrcn7toc+QGvycwjuqN2Fyz46+Ys09DVVU+/PB9Nm/eiL9yD+eNqWWwXA2ArD81y4tHK0Pa2DMkbvR3Al44ksK3rn2cXQcvY9/JfUwdEc9Aq6HJ8QKBQHCqIparBd1KQ/iGuPT6A5KsI2HilQDU7n21h60RCASClrHb7Rw4cIADBw4ADWGVZWVlAFx77bW8/vrrvPPOOxw7doyHHnrolA+rjAXb/n9jP/o+ZZ/d0mRfxdpfUrX5qZj60XxuSj6+Hm/1scjtfnf9/z0R23WJQ3E6nbz22j/ZvHkjcXFxXH7mSEYObCijKRv6Tny26okMx9Anjwh9NplMLJ43GQ34bEcVqqrhd1Z0s4UCgUDQNQhPCUH3Uu8pIcI3+g9xw8/FtvefuAo24Kk6JipxCASCXkt/DKuMBU/V0ajbNU3FmbcGgOTZd7RastxVuhNvlL5CYkQjUaLMBv987s9UVlaQlpbOD35wDVLOv7AfPhhqI+ksbTmVXo3qro34rlgyIr5PnzyWLasNFFR62JFTh+6j68i69N1utFAgEAi6BiFKCLoVLVR9Q4Rv9BckxUD8uOXUbP8zdQffIOW0X/S0SQKBQBCVfhlWGQP+uqLAB1kfEBBkHZIkhzwcAFR3NYrJ2vRYZwXusr2YBy+MGrIA4HeU48xbg+qr95jQNPaecPB17nr0mXMYP34il1zyPUwmE1XHImOxZcOpGb4RDdVTE/pszJzRROSRdSbOmmbln1+VsP5ALWOyyhmo+pqdV4FAIDhVEMvVgm4lmOhShG/0L+JGLkPSx+M48QV+R1lPmyMQCASCNuCrFyUkxUDBf86h6psngUA4RhBXwQY85QeaHFu66kYq1z1Iwetn4sxfF7V/R+6nVKz9Jc4Tn+Nw+/msbC6rdlTh87o5a9F8LjxtIEajMTCm3xVxbF96ITcPWQJA/PjLSVv8WJP9kmIkPUnPzFHxeHwan+6sxlub36SdQCAQnGqIN0NB96KK8I3+iKy3ED/6O6D6qDv8dk+bIxAIBII2oPkcgf977QA4cj4KfA/zlKj65glKP72xwSOyHr+jtL4TFfvhd5ofQ9M4XOjgH1+UcOREKclxCt8/cxRjXW9RtfERnLmf19viaraPU52kKdeRfubTJE29HknRN9kvKQFhZv64RKzxOo6XuNiy4bOINpqmUvblXdTsfrlbbBYIBILOQLwZCroV4SnRf4kfcwnIOuqO/A/V5+xpcwQCgUDQAXx1hZSu+kmT7aqrqs19Vdt9vLOpgv99U4nDrTJ71iyuWppJllXGV3sSAHfpLqBvixKSoseYOa1Z7w9JFxAl9DqZy66+DQn4eNUqKisbEl76HeW4i7di2/tKd5gsEAgEnYJ4MxR0L6HqGyKnRH9DsaRhGbIYzWvHmftFT5sjEAgEgliJspBQvfWZqAJEW0L0PD6VDQdqefnzYnKKXSTHKXx3fhrfufBSDDoZzeto6NdVCTSIEnrrKBKnXNfWMzmlCXpKAAwdOYE5YxLwOOt455230LRgrg0t+sECgUDQi+k7gXiCUwJNVN/o18SNvghH7ufUHXkXy8jzW83ULhAIBIL2oWkaaid4FWiaGqqcFY6rcFPU9n5HKaSOa7FPv6qxO9fOpoO12N0qihwISZgzJgGdIiHpTEg6C6rXDrIOVB9+Z0CUCJ5T2uLHUcx9u+pJYySdqeGzYmL++ETyfWZyc4+zZs1q5o1Poezzn4XaaH4PkmLoCVMFAoGgTQhRQtCtNIRvCE+J/oghbSL65JF4q47iqdiPMW1iT5skEAgEfZKqrc9QmPs5Ay98HWIsm+l3ViIbk5DkwD1a9dRRs/P5No3ra8FTwufX2J/nYPPhWqrtgeeBcYPMLJiQRHJcwyOppBiQ9Rb8rkoUcyp+Rxlq0FOiPtFl+At6f0GSG/JMSDoTiizx7TPG8sZ2A59//imG3esYnNrwfOV3V6NrVFZUIBAIeiNiuVrQvYhEl/0aSZKIG3MxAPbD7/WwNQKBQNB38dny8btrYw6n8NacoOidS6hc/3BoW82uF7Ef/V+bxo02ntursvmwjRc+LeLTHVVU2/0MyzBy1ZIMLpidGiFIAEiyAUlvAU1FqhdU/I5S6o6+Hwrf6I+iRHhoRvD80xIVvv3tCwGNDzaX4HD7Q21UV03jDgQCgaBXIt4MBd1KKCu3ECX6LZZhZyLpzDjzvg645goEAoGg0wm67VfvfAFPxcFW2wfDMZx5a0LbvNU5bR43XJQoLi7i851VPP9JEWv21WB3qYwaaOL7C9P57unpZCRHCy2QQNYh6eOAyMSWzrw1ge+Kod8vbgRFCc3nZvr0mUyfPhO7S+WjrZWoakC8aE/SUYFAIOgJRPiGoHsJhm/IInyjvyLrzJiHLMGR8xHOk6uJG3l+T5skEAgEfY5gUkRn/jqc+evIOPc5DC3ketD8nibbVI+tzePa62zkbPmGbdu2UFCQj+24HUWGyUMtzB6dQEpC01KXkXYbkCQJWWcO2OCubrDHVYXmdyH3Sy8J0CePBMA8eCGSUi9K1IezXHDBhez/8AFyS92s3V/DoknJuEt3oUscjC5+YI/ZLBAIBLEgRAlBt6KJ8A0BEDfiPBw5H2HP+USIEgKBQNAFNE5wWLP776QvebzZ9prqbbotRlHC6VE5VuTkYL6DAsdGTIMC9/j09Axm6ZOYMNiC2diwGCEbEpENCfjqCpp2Vp83IWi/5neHdvkd5Wg+N7IhMSa7+hqy3kL25Z+DpKB6aoEGTxIdbi6cm8bKr0vYcqSOtEQ9E1mJbf9KBn1/NT57Cbb9/yZp6vXIhviePA2BQCBoghAlBN1LKNGlECX6M4b0ySjxWXjK9uCz5aNLGNTTJgkEAkGfIrx8JIC7eCuqr3kvA83TEE5Xtfkpkmffgeqpi95W0yiu9pJb4uJEqYvCSg/1EQMkpEjMnj2XKVOmMXToMAr+3TQnRcr8+7Dt/3dIlDCkTcRTvq/ebkPwBCKOUSzpodCQ/plPIoAkBx7d5bDwDc3vwVdXiDVex3fmpPLW+nI+3VFFcpyO7FQjmt9D6ac3oTorkGSF5Jm39uQpCAQCQROEKCHoVkROCQHUJ7wcfh61e/6O/finJE35YU+bJBAIBH2KJqUgNRVv1TGM6dGrHvnrq1sA2I++T+Kkq0KhAV6fSnG1l8JKN0WVHgoqPDg9DWVCLUaZUQPNjM02M3LCNAacc3ErtkUKJulnPUPB62dG2h3+nCDJKJYMIUqEIxsACZ8tj4I3zw+FaAxJN7F0SjKf76rmvW8q+P6iDDLtpajOCgA01deDRgsEAkF0hCgh6FY0VZQEFQSwDD+L2j1/x3nyKxInX4skST1tkkAgEPQZwkUJJT4Lf10h3spDLYoSPr+Gzemjwubj0Fefc2RzBeU2L5U2X8gTQjYmoujjGZxoY1imkeEZJtKT9KHfcJmw6g/NhH9IihHCfvMDJUglQAvZLYXlnpJkA4o5Nex4IUpIkoSkMwbCN1QvvtqToX3TRsRTXutl53E7/91Qzg9HvkRwthWTtWcMFggEghYQooSge6kP35CEKNHv0cVnobeOwVt1GF/NcfTJI3raJIFAIOgzaJKe4ioPflXDYBqEvSQH/Y61GJ3DcDqdOJ0O7HYHVcc3UG33UHZ0Pbba6tDx5oLPcRY4AYgzygxMMZCVYmTExAWMWfpTKlddF33c+twUmuqj8K1vR20j6YxNNyp68HsaFi3CPSUUPYo5LfRVnzS0DTPRd5F05ojqJOEsnZJMncvP0SIXK//9OsvPSMegk1F97qjtBQKBoCcRooSgWwkmuhThGwIA85BFeKsO4zjxFUlClBAIBIJO45O1e9i4uhQA04ATuIrLkQ2ridvXIAhoqkrd4bcBUHQGkuMUEsw6UhJ0DJs3GWPePtIS9ViCSSplPRln/RR90jCMGdNwl+5sOnC9R2RLlTuahJYAOksmPlsefkfA5vCE2JKsxzLyW7iKtwEqiVOvb8tU9Fkah8GEI8sS589O5b/ry8iv8PC/byq4+LQ0NJ+jGy0UCASC2BCihKBbCeaUENU3BACWIYup3fUCzpOrSZzyQxHCIRAIBJ3EhLEjqTxsRpIgedIMXMeLkLw1WEdZSB21BLPZjFFyU7duLYkWHXFGGVlu+A1OHJ1CrashTMI8ZAkpp/8y9DudftbT5L+2uMm4wZwFLYsSTV+mdQnZ+Gx5aF57sFFYez0G62gGXPAKmqaJe0U9reXW0CsSF81L4/W1peSWevhoayXfGyZECYFA0PsQooSgexHVNwRh6BKyQyEc3uocDNaRPW2SQCAQ9AlGDh+KdU4gD0P62edj21eNq3Aj8CXZ836BpOjxVB2h9ED01XafozjiuyQrTcQA2ZiE6q6J2BYM31DdbRUlBgObwhuFjd3gWSEEiQbCc2skz7kTxZhExdpfRrQxGWQunZ/Om1t8HCoo439fbeea+SqyLJ7DBAJB70H8Igm6lYbqGyKnhCCAechCAFwFG3rYEoFAIOg7hIdISDojcWMuCn1X670RVFd1s8f77SWRG+Sm61iZy/5O2uLHIzeGwjdqmzcuSviGaeCswC5LRsDm8MWLKGMLInNzmLPmYco+PWq7BLPCigvPINGssO9oEW+//SaqqkZtKxAIBD2BECUE3YsaTHQpLj1BAFPWPABchd/0sCUCgUDQdwj3RpAUI+asuRgzZwCgeuoA8LuqIg+S9aGPjUUJSWoqDCjmVExZc0hd9DsM6ZMDxzlKKPviDlR3dZP2qWf8iuTZdyBHCTswZc0lddGjpJ/953pbIsM3BE2RdeaGzyZrRMWSxiQlxrP8jHQSzTK7du3gnXfeCgkTfmcFtftWovm97balds8rVKx7CE3T2t2HQCDov4g3Q0G3EvKUEG6Dgnr0ySORzWl4KvajultYWRMIBAJBzER4StS7+cuGeAA0b0CUaOwpETfiPDLOewEAnz0yfKMlbwVz9jwyzv5TaBx3yXY8FQebtDMNOoP40d9poZ/T0MVl1BsdnuiyqWeFAHy2/NBnqRVvEsuwc0iO03HZksEkJiaxc+d23njj3/j9fko++iG1u16g7sh77balds/LOE+uDl1bAoFA0BbEm6Gge9FE9Q1BJJIkYcqaA5qKq2hLT5sjEAgEfYJIUSLwWaoXJYKeEqo70lNCNiahmKyBL/UJK0N9tLAK39BBQxu/s7ypTW3IByFJwlOiNcxDlwKQesavm28zeBEDvr0ycJ8Fkowq1113A1ZrCvv27eGf//wHbnv9ddDobx6O6qnDcfyzJt4U9pxPsB18K/Rd83vaezoCgaAfI94MBd1KMCu3JHJKCMIwixAOgUAg6FQic0rUe0ro60UJbzB8ozriGNmQgGxORQoLC2jY2XpeByki/KMsYl/CpKtisjuss7CxhSgRjcTJ15J16f8wDz6j2TaS3owuIRtJkpF0JjSfk5SUVH70o5+QkTGAI4f28Ob6cpweNSRaRcN28E0qN/6GinUPRWyv2vQ7arb/OfRd87k6fF4CgaD/IUQJQbciEl0KomEcMBMkBVfR5oZrRCAQCATtJjKnRECgkJt4SkRWzpCNiUiShC5xSNP+ouSUaEKYcOGzF0XYkjTlhxFN40YFwjiaFSuEp0SrSJKEbExsuU2YoCPpLKi+QEnQhIRErrvuBgamWiis9PCftaXUVFc1Od5TeYjKTY/jrT4GgKtgPZrfDYDqbVpeVBWihEAgaAdClGgGj8fDX//6Vw4ebBoTKegAqgjfEDRF1sdhSJ+E6q4OPfgIBAKBuBe3nwhPifp7btBTQqsXJbT6l0p9ypjAfkPgBVcfRZSIzVOiQUjQPA0lQYNlQsOxDF3CwIvfJnHyta32JQlPifYT9neTdWZQffgdZbjL9mCxWFhxydkMyzBSXuvjpdc/pqAgP+Lw0k9+jCPnI1z560LbQolSo4ToaH4hSggEgrYj3gybwWAw8Nxzz1FbKxLvdSaaJqpvCKJjzJgKgKd0Tw9bIhAIegviXtx+wj0lQtsMkeEboVXzCd/HNGgBxszpAM14SrTu4diseNCMB5xiTmk+z0REokshSsSKZEiI/B7uKaGPA6Do3e9R9tmt+Byl6HFz8WlpTBkWR53DwYsv/o39+/e1OEZQZPI7K5ru87k7egoCgaAfIt4MW2DKlCns29fyD7OgjYhEl4JmMKZPAcBdJkQJgUDQgLgXt49oIQ+Nwzc0nxMAc9ZppC18BFlvAaKLEsSS6JLYE1m22lP4c4II34iZgd95jczzXwl9D6/K0TjUo/jd5VRt+h2KLHH2tGTOnDcBn8/Hylef55X7zyb/rYujjqH5A/nB1KiihPCUEAgEbSeGAMH+y//93/9x1113odfrWbRoEampqU0UfbM5SjIoQbNoasBTQuSUEDTGkDYBJBl32R5R51wgEIQQ9+J2EiXcIhi+4a08jKt4G6rXGVgkUCJLbkYL32it5CTQrEdEuwjPKSFKgsaMbEhADveWCPOUkI3JzR4nSRLzpgxl0MzTef2lR/l03W7yBps5Z5oVva7RQlJLnhIifEMgELSDfiVKrFq1ittuu40DBw7E1H758uUAPPLII/zmN7+J2ibWvgQBgkkMRfiGoDGy3oLeOgpv5WH8YQnSBAJB/0bci9uHbEjEOm4ZqmlQwzZjEgCeiv2Uf3knEHDpbyzy6BKym3YYw327UxMVR4Rv9KvH1U4lfO4UU1KLbTW/l4nTJvGDixfxzxe2ciDPSXmtj+/MScUa39CPCN8QCASdjfiVb4Hf/va3baqpLYgBEb4haAFj+mS8lYdxl+7uaVMEAkEvQdyL24ckSQw799dUVNShqgHvM13iEJS4gRHCbzBkI+JYJYpnQiwebM2IEsaMaTHZHGFDeLiIyCnRbqQYPSUA6g69BZLMQGscP1iSwYdbKjlR5uZfq0s4f1YKIwYEPJKCooTqaZrrJRgSJBAIBG2hT4gSv/jFL2JqV1hY2KZ+L7nkkvaYI2iBYKJLIUoIomFInwKH/otH5JUQCAT1iHtx5yFJEmmLH6Xkw2satumaihIApoFzcRV9E7YllrC6SFHCmDGNuDEXYRowsx3GhodviJDPdhOeU8KU3GrzuoNvAGAxKlw6P421+2vYcqSOdzZWMG9sAqeNSwQ1kFOCYEhuGMFyoQKBQNAW+oQo8e6775Kenk56enqL7dqbvfvo0aPs3buX4uJiLr30UtLT0zlx4gSpqanEx8e3q8/uxOl0smzZMs4//3zuuuuuHrUlmFNCPGAIomFMnwyIZJcCgaApp8K9+PPPP+eJJ54A4Gc/+xnLli3rYYuaok8ahnnIYpwnVwMg6aLn40hd/Ciaz0nhm+fH3Hfj8A3ZZMUyZHH7DBXVNzqF8ISnirHl8I3GyLLEoknJDLQa+GR7FRsP2ThZ5uYHcyoZkBG20BSGGpboUtNUXAUbMKRNQolBEBEIBP2XPiFKDB06lClTpvD444+32O6TTz7h9ttvj7lfu93Ovffey6pVq9DpdPj9fs444wzS09P5/e9/T1ZWFj//+c87an6X89xzzzFlypSeNiNAKHxDiBKCpijmFBRLJr7aPDStaTk7gUDQ/zhV7sU+n48nnniClStXoigKl112GWeddRYGQ+9L0hheLjRa+AYEcj8FS0gGiMFTovHKeQfu9RElSEVOifYTJu60Fr7RHGOyLaQnGfhwSwUFlR6ee+k1Ll2RSlaUcJ3wRJc1O56j7uAbxI36DtY5d0Ttu+7wO/gdZSRMuCIyQadAIOhX9Akf+mnTprFr165W20mS1Kas/r/73e/YsWMH//jHP9i+fXvEsYsWLWLt2rXtsrc7yc3NJScnh0WLFvW0KUB49Y0+cekJugB98nBAE2XFBAIBcOrci3ft2sXYsWNJS0vDarUyZcoUtm3b1tNmRUXSmRo+62OsXBLT41PkS6qvNjdmm5oQ4SkhFjI6g454nFjjdVyxKIPZo+Nxu1288cZrfLT2AB5f5N88PNFlMBTEU3Gw2X6rt/0J2/7XqNn5fLttEwgEpz594s1wxYoVXHnlla22mz17Nq+++mrM/X766afcddddzJs3D0WJvCFmZWVRUFDQZlvD2bJlCz/5yU9YsGABY8eO5auvvmrSZuXKlSxdupTJkyezfPlydu9uWwLAxx57jDvuiK5O9wii+oagFfTJIwCRLEsgEATo6ntxkI7ek0tLS8nMzAx9z8zMpLS0tFNs62wiPCWaCd9ojEbrlTU0NbJN/Njvts2wMCKECEl4SnQGeutI9MkjUCwZ7TpeqQ/n+P7F5xAXF8+uw0W88kUJJ8vCQjbqPSXUsHu4PqmhxKyn6hjFH/wAd2n9YmL9c6HqrmmXTQKBoG/QJ94MJ02axFVXXdVqu5SUFObMmRNzv263m+Tk5Kj77HZ7k4ejtuJwOBg7diy//OUvo+7/6KOPePTRR7n55pt55513GDt2LNdffz2VlZWhNhdeeGHU//x+P59//jnDhg1j+PDhHbKzMxGJLgWt0SBKCE8JgUDQ9ffiIJ1xTz5VCBclmkt02T4C7hR66ygGXPgGluHntr8rURK005EUA5nL/k7yzFuabSObUkKfFXNq1DYjhmRyyy23MWaIlRqHnzfWlfPFriq8PhXN58JTdZTCN74Vaq+FhfVUbfodvto8KtY+GNFntPwUAoGg/yB+5Vtg8uTJvPfeeyxcuLDJvlWrVjF9+vQO9b9o0aIWwypefvllLrvsMi699FIAHn74YVavXs0777zDddddB8B7773X7PG7du3io48+YtWqVdjtdnw+H4mJidxwww3tsleWO1aSTZYlqF9FkRWdKPEWRnBuOzrHfQGDtUGUaDwvYn6aIuamecTcNM+pNDddfS8O0tF7ckZGBiUlJaH2JSUlLFiwoN32dMo9t5l+ZL0p7LMlprGkWGwKK/ttSMhsuW0ryGGeErKi79Rr9VS6/juKLDU9z/C/f9KUa0HWh8IndHGZeFwBoU0xp+B3VjTpU9J8JCQmcPGiMYyIK+LzXVXsyLFzvMTFd4ylDKx8IKK95ndRtfkJLIMWoPkc9Z3IkXap/lPi79Gfrp22IuamZcT8tIwQJVrgZz/7Gddeey3XXHMN5513HpIk8fXXX/OPf/yDVatW8a9//avLxvZ4POzbt48bb7wxtE2WZebPn8/OnTtj6uPOO+/kzjvvBODtt98mJyen3YKETieTmtrx7OYFmgpIpKWJZEbRsFrjWm/Ux1GTJ1AsK2h+Z5NrTsxP84i5aR4xN81zKsxNT96Lg8RyT54yZQoHDx6kvLwcRVHYtWsXv/nNb9o1XmfdcyH639ifmEjQWT4uKanFsU7W/99i0bdqU169KKHXt962NaTyOIKvw/GJcZ02H+GcCtd/ewn+3eLiTE3mrs5lpaz+8+DZlyEpevbUixKWlEF4Kg4AYLAk4YniCGQxB67PKr3MuEEWBqcZ+WxnFUeLXLz+yU7GptaxcFIyZkPA28VVsBEA+9EP0ccFKuXpjGZSUiwhO/U6uuRv3FX05Wuno4i5aRkxP9ERokQLzJo1i3/84x889dRT/PrXv0bTNP70pz8xdepUXn755S6taFFVVYXf7yctLS1ie2pqKidOnOiycZvD51Opre1YjL8sSwH3PEmmoqKukyzrG8iyhNUaR1WVHVWNPRlrX0WfOATNf4DSgjwUk1XMTwuIuWkeMTfN01lzk5hoRq/v2iSEPXkvDhLLPVmv13PXXXfx/e9/H4DbbrsNo7F9VYQ6657b3N/Y2ZCLELff3OI9WbGk43eU4TMMavXeHXTB9/m1Dt/n7XZPw2eHDzrxuaE//TbU1bmQGs2d296Q+6PapoLUMNd+fUPIhp/olWPqbHbkijo8nsCFFGdSuHBuKgfynaw55GbPCQfHil0snpTE+MGWCM9YnydwXWuSgYqy6tB2j9vd6jVTe+AN3CU7SVv0SI/lJutP105bEXPTMp0xP91xz+0phCjRCjNnzuS1117D5XJRU1NDYmIiZnOMmaq7AE3T2hX2cMkll3R47E75gVFVkBTxY9UMqqqJuQF0SSMBcFcewzRgZmi7mJ/mEXPTPGJumudUmZvedi8O0viefM4553DOOed0St+d9XeJ9jfW5LCcEvqEFsfKOPdveCr2Yxg4r3WbwsI3Omq/pjW8dGqSrkuu01Pl+u8ImqY2PUe5IXwjcC007JeN1tBnSTERDW9NHva8DRGJTSVJYsJgCyOyjazZ5WN3rp2PtlWx54SDs6clk5IQqPyheeuFB8WE3+dtsEP1t/q3qN72bGB8WxG6+KwW23Y1/eHaaS9iblpGzE90RLbBFti4cSNOZ0DRNZlMZGZmdttDkNVqRVEUysvLI7ZXVlY2Wak5ldA0v6i8IWiVQFlQ8Fbn9LAlAoGgp+nJe3GQvnZPjqi+YUxqsa1iTsE8aEFsCyIhUaLjK3nh1TdEosu2I+kDoRD6xKFN9+nCRClZifh76RKHIptSSB59dkTp2HDsR96l4utf4ClrWhHOJLs5Z7qVKxamk5aoI6/czStflvD13mrc3gYRQ1aMoPoaDgz/HAXN7wn7Il7oBIK+hviVb4Ef/vCHKIrC+PHjmTVrFjNnzmTmzJlYrdbWD+4gBoOBiRMnsmHDBpYuXQqAqqps3LiRq6++usvH7zJUP4h644JWCFbg8FYf72FLBAJBT9OT9+Igfe2eHP6yKRsTO69fxYTmd0WIHu3vLGwBQ5QEbTMDLngFT+VhjJnTmuxr7AERLjjJhniyL/0vqakJ5Hz5TNsGlfWgBrwfslON/GBJJluP2th00MaWI3XsO+lgwYQkJg2xgKJHCxMiWqu+4bM1lP6NECgEAkGfoE/+ymuaxrPPPstll11GWlpa6HN6enqb+tmwYQNbt25l27ZtbN68mVdffRVVVRkxYgQzZ85k1qxZfOc732m3nXa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3O4xexpNU5E6YQVF0LfRJQwGwG8v6mFLBAJBT9PV9+Ig/emeLEd4SnSeKJG29ElqdjyHddbPOtxX+LOC8JRoO4o5FXP2aVH3SUr0XBEQEKwkSUaSJBInXI639iSaz4WrcFOrY0qKEU1tCMnQW1KYO0ZiwuA41u2vYd9JB5/uqGJnTh3nLqnA2gZPCZ8tL/RZU4UoIRD0Nfrkr7yqqjz77LMsWbKElJSU0Oe2ihJWq5Wzzz6bs88+GwjUMN+0aRMvv/wyb7zxBm+++WaHHoT27t3LVVddFfr+yCOPAHDLLbdw6623smzZMiorK3nmmWcoKytj/PjxvPjii6SkpDTXZa9H0/xIsr6nzRD0chRz4BqPVopMIBD0L7r6XhykP92TIzwlDJ0nShjTJ5Fxzp87p7PwBQzhYdmpSDozusQh6JOGNdkn6xpCo2RDHKkLHsJ+9INWRQnFkoGmqaGcEfFjLiFh4gqK3rmEBLPCt2amMG1EPKt3V1NQ6eG1T/ay3/0fpni9pCbo8TvL8daeRJ84JGr/wlNCIOjb9ElRAgLeEtE+txW73c6OHTtCqzS7d+/GaDSyePFiZs6c2XoHLTB37lwOHTrUYpsVK1awYsWKDo3Tq9DUTok1FfRtZL0FJBm/M0otMoFA0O/oyntxkP50Tw5fKZd0PZ8wNCph4RtiMaNzkSSJzPNfiZonJFoeCfOwM7HnfoZiTMKZt6bJ/pTTf4kxczpln91KMGuEpDM1EZMGWg1cvjCdg/lO1h+TOXDwINuPlzBxiIX5432oH1xF1vKPI4SRIOFChOYPeGM4TnyJbd9K0pY+hWJKbsMMCASC3kafFSU6g0suuYRDhw6RmprKrFmzOO+887jvvvsYO3ZsuypgCEBTVWSR6FIQA5KsR/PWofncYIiebEsgEPR9xL248wnP+dBb51Akuuxamvu7RwvtkHVmMs76I66iLVFFCVP2fGSdKfK60pmjhutKksT4wRbGjckix7KQT179jL0nHRzIdzBteDzfObuYpPThTY6LyD/h96BpGpXrfwWAu2gLluFnt37SAoGg1yLeDlvg0KFD6HQ6pk2bxvTp05kxY4Z4COoomj8yeZVA0BxK4CHU7xLeEgJBf0bci7uAU+E+HG6jCN/ochKn/gjLsHNCVTui0ow4FBQfwr0sJJ252fYAOsnLabOnc/05AzhtbAKyJLHtWB1PP/MnvvjiU+x2e+QB4YkwVQ/eqqMNY+ktLZyZQCA4FRDScwts3bo15C766aef8tRTT6HX65kxYwazZs1i9uzZTJs2rafNPGXQwuqXCwStEXTX9TsrIbFn65ELBIKeQ9yLOx8lbgBxo76NIXV8T5vSPOHhG6L6RpeTOPHKVts0G0ZT/7eKyFWij+4pEUTzu9FUH0a9zOkTkpg+Mp5Nh2wc8bpZvfpLNmxYz5w58zj99DOIj4+PqM6h+T346sJyTLSSJFMgEPR+xK98C5jNZubPn8/8+fMB8Hq9bNy4kRdeeIGnnnoKSZI4cOBAD1t5ClEvSojqG4JYCD78qC6R7FIg6M+Ie3HnI0kS1jl39rQZLRLxrCBySvQKmg2jCYoSYaVGJaVpTolwNJ8nouKGxaiwdEoy5865ks0Hyti2bQvr1n3Nxg1fM3vOfKYmNHhOaH4P+BuqfLRWuUMgEPR+hCjRCpWVlWzdujX036FDh1BVldGjR3dacq3+gqbWq9zCU0IQC/UPP9GSXWpqIAxIuG8LBP0DcS/uh0SUBBWLGb2CcHFIUkIhucF7saQLyymhNyO18LwX8JTwNtmeFKdn2dmLmGLezo7CRNZ99DyrC7ezVqcwLqGKmaMS4JvHiRt9UUNfQpQQCE55hCjRAueeey4nT55EURTGjx/P3Llzufnmm5k5cybJyck9bd6pR73rnXi4EMRCQ/hGpKeE31lB6ae3gOYnftz3iB/1nYgHIYFA0LcQ9+L+iUh02fsI/zsoJit+Z3mkeNQ4p0T4sfo4NG94nggNzedsMobmc1K7+yWU0q+ZpYPx5wxk69FS9lUNZOdxO7uO2xmVZWZWxX/ITjUGD+qcE2yE6nUA9RXBBAJBl9Inf+UlSSIrKwuDwRDxua2cf/75oVhVs7mXlsw6lRA5JQRtIPjw4w8L39D8HirW/hK/vQiAmu3P4inbS+oZD/eIjQKBoOsR9+J+SkSiyz75uHrKESEORQmpkcPCNxqX9ZT1FvzeyOSVtXteadKH6nPhd1WFvseZFBZNSuaM1Mls3lDCjmN1HCl0cqTQyUCrgdmj45nl8zTppzMofHMZAIO+v7pL+hcIBA30yV95WZb58ssvQ9/DP7eFn/70p51lkgCR6FLQRhQ9oKGGhW9U73geT/k+DKnjSZ59GxVrfokz72tcxdswDRAu3AJBX0Tci/sp4YkuhSjR64j2N4kI34jiKQFlEdu8VUea9KH5nFFzj+lsB5k3NpFZoxI4kOdg21EbRVUe/re5km+q3mXRBelMmzYDi6XzvRp8tnxUrwNDyphO71sgEAQQv/KtkJeXx4svvsj27duprq4mOTmZmTNnct111zF48OCeNu/UQiS6FLSBQPiGJyKnhOPEVyDJpJ7xaxRLGkkzbqRy3UNUb/sTmd96UTy4CgR9FHEv7n9EJroUv+29AV1CNgmTrsaQOo6anX8LbAwuOFGfgLIexZIWcaysi00sqN7yh6jbVU9twAZFYvKwOCYNtZBb6mbrERvFNTY+/vgDPvtsFVOnTmPOnHlkZWU36UPTtJhzUWlhiTSL318BQPZln4Hcds9rgUDQOuJXvgX27t3LVVddhdFoZPHixaSlpVFeXs6nn37K+++/z6uvvsrEiRN72sxTB00kuhTEjiQrIMn4XQFRwueqxe8sR5c4NPSwYx68CGPGNNylO3HkfkbciG+1aYy2PKAIBIKeQdyL+ymiJGivJGnKtQDU7n6pfosW2ifp4wHQW0cj6+MijpMafe8okiQxPNPE8EwTzuwzOVCTxc6dO9i2bQvbtm0he0AG08cNYOai5eh0OlyF31C54TekLvotxvRJzfZbu/ef2HM+Jv3MpuKI6qlF0adFOUogEHQU8SvfAo899hgTJkzghRdeiIhjdTqd3HDDDTz22GO8+uqrPWjhqYUI3xC0DQnZlILqqkRT/bgqcgDQJw9vaCFJJEz6Ae4vd+I8+XVMooTfVU311qdxl2xH9dSht44hcfJVmLJOEwKFQNALEffiforwlOjdRBGKEsZ9F9kQT9zIZVGaN3gYJEy6Gtu+fzUsVnWQzJR4Ri+6mHPO+RY7d25n8+ZNHN7wKgdX1/Hpl+uYteB8svKfJDVOo3rrH8n81gvN9hUUW5z565rsUz02iBOihEDQFYi3wxbYs2cP119/fZPEWmazmR/+8Ifs3r27hyw7RQmFb4jLThAbiikFNBXVXYOr4hgA+qThEW2MGVOR9PG4ireFMmU3h6fyEKWf/AjnydWoXieyIQFv5UEqvr6X6i2/R9O0Fo8XCATdj7gX908iqm8IwbjXEfr7hN03ZUMCCeO+18RLAiLDcYzpk0ie1Xm5Ymr3vEzNzufx5r7PvHnzufXW2/nuHBNjssw4aorZsGEtL3+ax79Wl7DzaBVOZ9OqH43RPLYm21R3bYfsDA9vEQgEkQjpuQWMRiPV1dVR99XU1GA0ijKEbSLkKSFySghiQzGn4K0Cv6sSd70ooUsaFtFGknWYsubhPPE57uKtmAcvjNqX5ndTsfYh/I4yLMPOJnn27Ug6M66CjVRteQr70feRDYkkTftRV5+WQCBoA+Je3E8RCxi9m5D3Soxifng4js6EYsnsVHNs+18DwDJ0KYo5lSHpJoakm5BHn88x1yi+yn+X4iovn27JZ2PFb5gwYSIzZ85ixIhRUUUvNZooEWVbrDjzN1Cx5l7MQ88iZf59zQptzoJNuAo3kTzz1ghhTiDo6/SJX/wNGzbE1M7r9XLHHXfE3O/ixYt58skn2bp1a8T2rVu38tRTT7FkyZI22dnf0dR6Nz25T1x2gm5AMacC4HdWNHhKJA9v0s48aD4Azvz1zfZlO/gmfnsRpuz5WE+7F1lvQZIkzIPmk77kCSR9PLb9K3GcXN1uezW/G2feWmp2vUjtvn/hOPk1mto19dMFgv6CuBf3T0RS7N6NRFu9VxraS4oJxZjUuQbV09ibId5i4owzFnHtWZl8f2E608YMQFEUdu34hr+/+BeefPJ3rFr1MUVFhRHekqqnrmnfnvZ7SrgKAu8qzhOf46s53my7iq/vwX7kXVxF37R7rFhQvQ4q1j2Mq2RHl44jEMRKn/CUuPHGG3nmmWdYtGhRs20cDgc333wzW7Zsibnfe+65h5tuuokVK1aQmppKamoqlZWVVFRUMH36dH7+8593hvn9h/rYQfGgIYgV2ZQCBEQJZ8VRkA3o4rOatDNlzQVZh6twI5rqa1KFw+8oC8SvynqSZ9zUZIVCnzyC1NN/Sfnqu6nZ8TfM2fORlLZl2LYf/5Tqrc+geSMfZBRLOomTr40aYysQCFpH3Iv7KcJTonfTkZAaSUI2JnaeLWH4XVXoCV+80OqHlMhKNTJs3GCSFt7Lmr+cz+7DRVTJ32Lduq9Zt+5r0tMzGFhey7hBFkxRQjVUd/s9JTxh5U+9NSfQJ49osb3msTe7z1W0FUfuZ1jn3NnmZ5Ug9mMf4jz5Fc6TXzHo+6vb1YdA0Jn0CVHirLPO4pZbbuEPf/gDZ511VpP9lZWV/OhHP+LYsWP8+c9/brU/l8vF119/TUFBAVdccQUrVqwgNzeXsrIy0tPTmTp1KgsWLOiKU+nTiESXgrYSrLLhLNiE31WD3joqatlPWR8XqMJRvBVv5REMaeMj9tcdeQ/N5yJ+/BXoEgZFHcuUNQdT1jxchZuoO/wuCeOXx2SjpmnU7noh4DoqyZgHL8SUNRdN9eEq2IircBNV3zyOtzqHpOk3CndMgSBGxL24nyOeFXo57RclJEluVpSIG30h9iPvNTpAjig92hKqswLVG/ZCr6movoYcEqq7Fr3sY3ymj/GZ6WjDhnNCnczu3bsoKiog52At6w/UMujgN4xOtjEmy0yCJfDc0V5PCU314a3OCX331Z6I3i7MU8PfwljlX90FgDFzOnEjzmuXTbHOp0DQXfQJUeLJJ5/kvvvu47bbbuPxxx9n2bKGFcn8/Hyuu+46qqurefnll5k+fXqLfeXl5XHNNddQUFAQ2hYfH88f/vAHzjjjjC47h36BECUEbcQ8aAE1O/6G8+TXQPTQjSCGlLEBUaI2t4ko4SoMuEHGjTy/xfGSpt+Iq2gztXtfJW7U+VGTdTXGfvR/2Pa/hqSPJ3XBQ5gGzgrtix99Ie7S3VSsvZ+6Q2+h+d1Y59zZap+t4S7fjyPnYzyVh1E9tVQmDUROHodl1IXo4jo3Tlcg6AnEvVggvCp7OW31lJAkkmf9DHfpbnRJ0e/lhtQJmLLmNhElZJMV1VkR0zCVG38TuUEDv6PhWNVdg+quaTAr7z3mfft7LFiwkLKyMr58ZhUH850UllSRn2fjqz01DLQaGJ1lZmp6EdZgt6oP24H/Yh58Brr4gS3a5LcXg+oNfa/d8w9MgxZgsI6KNNXXkKzb7yht9Vy1VpJ7t4SkM7X7WIGgK+gTb4eSJPHb3/6W733ve/zf//0f7777LgAHDx7kiiuuwO12s3LlylYFCYAnnngCWZZZuXIlu3bt4sMPP2T8+PE89NBDXXsS/QERviFoI4o5laSp14e+G1pwd9QlBjwgfLX5Edv9zkq8VUdQ4rPQJWS3OJ4+aSiWoWeheetw5q1t1T6frYCaHX8FSSZ96ZMRgkQQY8YUMs75C7IpBfvR93HkftFqv83hd1VTsfZByj69CfvR9/FWHsJfV0RdwXZq971G8f+uoHrrn9D83tY7Ewh6MeJeLEB4lfVy2p5TIn7MxaQueBBJkqInepQkZH18k82yISH02ZQ1r43javgdxaFvqqcWv6uqYbffg/PEVwCkp6dz+vgkfnhWJlcuSmPWqHiS4xSKqjys2VfDX//9Bc888wc++eQTjm38F9Xbn6V01U9atSCYn8KQPim0LThmOH5HedjnsjaeZ9sIFzTCPUkEgp6iT3hKBHnwwQcxGo3ce++9HDp0iDfffJOMjAz+/ve/M2DAgJj62LFjB/fccw8zZ84EYOTIkfzqV79i2bJllJaWkpGR0ZWn0KcR4RuC9hA3+kIcuZ/iqTiIvtGqQji6hCEA+Gx5EdtdxYHkeKaBc2IqK2cZfg6O3E9xnPiiRbdITdOo/OZxNJ+LhElXY0gd14Jtg0iZfx/lX95F1eYnMaSNj5oboyX8zgrKvrwTX00uijmNhMlXYxo4B70lhXh9LQU7/kfdoXeoO/xfPBUHSF3461Ci0M7AXbYv4IlSfQyQkM0pmAbMxpQ1J2pIjUDQEcS9WCDJOtLP+mPEC6mgF9HmnBIxtJckZENTUUJSGirsWE/7BUX/vRAA2ZDYakiFpqn46orDNqj4bYUA6FPG4q08hDNvLQnjLwszQyIz3kvm5GQWTUqirMbLkUInObUSJSUlrFq1iuqT27G4ihk5oIb5044wbNgIFCW6kBZ86dfFZ6NLGIQj5xM0v6tJO3+YN4jz5GrUOXeBJOPMW4NiSceUGbm4qtUv9rWH8BAXv70EuVFlM0H70VQftXv/iWXoEvRiXmOmzz1J3nPPPRiNRp5//nmmTp3K3/72N5KSYs/wW1ZWxuDBgyO2DRkyBE3TKC8vFw9CHaFelJCEKCFoA5KskL74tyi1u9AyZoeXRI8g6CnhrW0kShRuBsA0cHZM4xkzpyGbrLiLt+F3VaOYkqO285Tvx1O6C13SMBIn/aDVfk0DZpIw8Ups+/5Fza6/k3r6/THZA4FVlrLPb8Nny8M4cA6pZzyMrDMDIMkSJuswkqf+EMvI86lc+xCeiv2Uf/2LwAN9fbv24qk8RPX2v+Ap3dVkn/3wO8gmK0nTfoxl+LkxiT4CQSyIe7EAwJgxtadNEDRL237vY7s9SEh6S8QW2ZiMpOjD+ml48ZdN1tbzPKjeQPhEGN7ak0DguUB11+Ip34u7bC/ust1R7JbISDaQYTVxhsmK4Yw7OLb7Cza688jdf5Btx+o4/I+XMBiMjBo1mjFjxjJmzFgSEhpyZmjegCgh6cyYsk+rFyU8TcbyOxs8JdBUane/hGxMpnb3SwBkLf8EOSzsIlqFkFgJFyV89hLx8tyJ2I/8D9veV6g7+AbZyz/uaXNOGfqEKDFv3rwmD8OapnHs2DHOO6/pSufGjRu7yzRBOMJTQtBOFHMqqYO+Q0VFXUQiqIg2xiRkYyI+Wz6a6keSFTRNxV28BWQdxszWw7cgsDpnHrwI+5F3ceZ9TfzoC6O2sx97H4D4sZfG7CmQMPFK7Effx3nyS7yTr0KfOCSm42p2PIfPlocpax6pZ/yq2WzbOksG6Wc9TdlX/4endBdVGx8lZcFD7RYCHblfULnpd6B60SUOJm7UhRhSx4Kk4LcV4DjxZSCR56bf4Tz5NSmnP4Dc6IGyI2iahrt4G86TX+GtPYHqrkE2paBPHoFl6JkY0iYKIUQgEAh6gLaXBI2lUzkil9PAS95FkmQq1j3U0EYOFyWSoZmkkUE0vxu/q7q+vRXVVRXyqJSNySROvpqqTb+jauOj+OoKmu1HF5+Fz5aPuWo92cXP8d2xYBs8gJwSF1VDx5OTc4z9+/eyf//egO0Dsxk7diyjR48lxRcQD2S9Gbne68N+9H2MmTOwDG0oaeytOgqAeehSnCe+xHFyNebs+aH9qqsKKcwDUvO0vxpIeHUPzdt8pQ9B2wmKXpoIi2kTfUKUuPLKKzv1wfT666+P6oJ1zTXXNNkuBI7YCbmZiZwSgi5ClzAYT/k+/I5SdPED8VYdRXXXYMyc3qaXZcuwM7EfeRdH7hdRRQnVY8N54isknQnL0DNj7lfWmYkffxm1O5/Htm8lKaf9otVjXMXbsB/7ANlkxXraL1ot/yUpBlIXPEzppzfhzFuD/dhHxI+6IGYbg9iPfkDV5idBkkmacTPxYy6JrBySNgHL8LNxl+2hatPjuAo3Uv71L0hb/LsOe2dAIFyk6pvHm2Ypr83DU7oL++F30KeMxTrnLgwpozs8XnNomobfURJakdInDEbSGVs5StAZiHuxQNCL6YTwDb11DN6qw2EtJGRDAtbT7kVnyQh5KkpyuKdEw6tLtFCPxmh+D/66IgAMKeNwFW7EV//SqBiTMA6YAdCiIAGBMEyfLZ/afStD2xIsOqYOjyf7iqvw+/0cP57DoUMHOXz4IEVFBRQVFbB69ZdIjjwyvOWMp5DxZjuapiFJEpXrH44QJdwlOwBImno9qrMSd+lO3KU7Q/tVd03EM4DaAVEi3FNC87vb3Y+gKdFCcwSt0ydEiVtvvbXT+rrllls6rS9BI9T6RJey8JQQdA26xIAo4avNQxc/EJ8t8JCht7btpdWQNhHZZMVTvhfN746IZwVwHP8Mze8mbuQFbfYMiB99EXUHXseR+xmJU65FF9d8vhtN9VO95Q8AJM/6GYoxtlA0xZRM6um/pHTVT6jd9SKWIYtjengL4qk4SNXWP4KsI/WMRzBnN59YzJg+mYxz/0LZl3fhKd1FxZoHSFv8WLtLn2qaRt2B16nZ9QJoKoa0ScSN/g7G9EmhDOyu4m3Yj36At/IQpat+TNL0G0kY9712jdccfmcFtv2v4cxbh99R0rBDUjCkjid+zEWYhywW+TS6CHEvFgh6Ox0XJdLP/D2eqiOUf3F7fZPA82Hc8HMiG4aFb0R4Suhar5DlrTmOp/IQkj4evXUkrsKNoZVs2ZiEbEoBxQBRwinC0SUMBjZFTUCp+Rzo9HGMHj2G0aPHoGnfpry8nMOHD3L06BEObzvG0SIXeev38cXOUuSiIoZmmBiabiTJVktCQiKqx4a36iiKJRMlbiC6hGzcpTvx1QsqEEh2LYWJ/h0TJRpCP6KFkvRWHCe/RjFZMWZM6WlTmkXzCZGnPYinqUaIB6EuJBS+ITwlBF1D4KEBfLZ8YA5qfYZtxWRt4aimSJKMIWUsrsJNeKuPN0li6cj9HIC4dnggyHoLcSPPx7b/3zhPriFh/PJm27qKtuCz5WPMmIZ58KI2jWNIHYdlxLdw5HxM7d5XSZ5xU0zHqR4bFWsfBNVL8qyftShIBJENCaQvfZKyz3+Gu3grdYfeikga1hbqDvyHmp1/Q1KMJM/6KZYRyyI84eSEQcQnDCJu5AXYj75PzY6/UrP9WTSvk4RJP+iw15ymadgO/BvbnlfqV48k9NbRKJb0QK35qiN4yvdSWb4X3d5XSJn/yy7z1PDZS3AVbMBdtre+hJ2ELiEbY/pkTINOj4gt7muIe7FA0MtpR0nQxsiG+Mjkjc30Gekp0bCwJRkiRYmkGTdTs/3ZiG2eskA4RcL45Ui6+kUE1RcY35SEJEno4jLxNcpHFY4+ZQyKpfnE0X5nVUTYiSRJpKenB6p5nH4GFVNUDq3Jo8I6jbwqiSPHVfaddLDvpIM1j/2W9PR0sq0yiYV1jJpan5Q76BFRbyuA6q5GDVtg6EhOifDqG5rv1FjZ99aepHLdgwAM+v7qmI/T/F5KV/0YU9Y8kqbd0EXWhY3XgVKt/RkhSgi6DVF9Q9DV6BMDokRwFcTvqgQCcaRt7ss6ClfhJjxVRyNECc3vxVN1BNmYiD5lbLvsNA9aGBAl8te1KErYj7wLQNyYi9r1sp009XqcJ7+m7vDbJIy/LKZqHLb9r+N3lGAesoS40RfFPJZsSCBl/gOUfHIDNbtexDRwNvoWSrhGw3H8M2p2PoekmEg78ymMaRObbSvJCvFjLkKfPILy1fdQu+fvyMZE4sfEbnNjNL+bqm+eCIhOioH48VeQMH55hKilaRru0p3Y9r6Ku2QHpZ/ehHX2HcSN/Fa7x22M31FGze6XcRxfFSqlHMRdvAX7kXeRjUnEj/seCeOWtxrSIxAIBJ1PV+Tzif582NxvXLgQkLYkUJbbby+h7tBbEe10ScNIGHcZzrw1kcfXex8qlgHRRQlZT/rSp9Anj8Ce80mzVjtyPsRdto+UeT+PWnpc0TwMSTcxbcECjGmTyElaRX65mxOlLqpSkik+eYCCg2V4yqsw5O4nfe+jZJBDmqeOQWlGUuJ1SJIUECWMDQk0eyJ8Q1P9OE+uxpR9GrLeguZ3U/71fViGnUnCqGUA+F1VlK/9FQkTv49pQNNS6e3FfvSDCJvDvVg9Vcdwl2zHW3WUhAlXRCTu9Nbk4K0O/NcdokR4wlJ32R6qtzxNyvz7MKaM7PKxT2WEKCHoPkT1DUEXo0sIVOAIeErQbk8JaAj58FYdidjurT4Gqhd9yvR2r8rrU8eimNPwlO3B76qKap+vrghX4TfI5lTMgxa0axzFnErcqAuoO/gG9uOrSJzw/Rbb+13V1B3+L8h6kmfc1Obz0ycPJ2nq9dTs+CtVW/9Ixll/jPlYn6OUqi1PgSSTsuChFgWJcIwZU0hb8gRlX/yM6u3PYkifiKGN4ToQEE0r1j+CK38tiiWTtMWPRhVVJEnClDkdY8Y06g69Rc3Ov1H1zWNIsg7L8LPbPG5jXMXbqVz/K1R3NZI+nrhRF2AaMBMlLhM0FW/VMZz563DmfU3trhdx5q0h9fQHoz4ICwQCQZfRCZ4STds0sznMUyJie1j4ZCjXT5S25sGLkHTGkAgRJPhdFz+AaK/lijklFCbQUqiebf+/AeoXGpp6CQYTHso6M5LOiNkgMzrLzOgsM2lLz+bERx9SUOEmLzGOqsQRVNTWUlZWhKeiOmC/QSYrxcAIxxaGjHZh8aoY9XJECEZb0DQNzdO+8A1n/loqN/waJT6Lgd95DWf+etzFW3EXbw2JElVbnsFdsh132W4GXf55u2yMRjARKIDPVog+eXjoe+nH14U+u0u2M/CiN8OObHjv8NUVUb76HpKm3YB50OkR/Wt+L868rzFlze1QKeLw0q7lX9+L5rFR9c2TDPjWX9vdZ39AvB0Kug2R6FLQ1QRezKTQioe/XpSQTSlt7ivoku+tjBQlPJWHAvsbhXS0BUmSMQ1aAGi48tdHbWM/9iGgETfygg7lLYgbeT4AjmMfNVu5JIht/2toPhfxo7+DYklv13jxY7+LLnEIntJduMv2xHxczfa/oPlcJIy/LKaQkXCM6RNJmnoDqF4q1/+qXfGctn3/CggS8VlknPuXVr08JEkiYdz3SF3wMEgylZseDZWfbS+OE19S/tVdqO5q4kZfxMCL/kPy9J8EvE4Sh6BPGoZl2JmkLniQARe8iiF9Mt7Kw5Ss+gmeqmMdGlsgEAjaRsdzSjRt0cxrSaN7YNLMW9ElDiVuWIMQHPSmiHa/DHoJymFeBigGJCUQAtdcyfDw/A2NbYiG314a+d1VTcnH12M/+n6ov8ZeH96qY8SZFMZkWzhzqpWbb7mDe+/9JZdfcAZzxiSQlWLA41M5Vuxi9aZd/OvND/jzB4X84/NiPv6mgM2bv6G4uAhVVVu1DwKCRM22P0eUUm1L+EYwaai/rhBv7cmo3hqeevGgs3MuaWqDeBJcfIpqY6O8H+GJJ2v3/RNf7Qkq1tzX5Djbgdep3PAIlRt+0yE7I/J11M+PKiqctIoQJQTdhwjfEHQxkmJEicvE7yipLwPWfk8JJW4gkj4Ob3UOmtrgQu+pOAAEsnh3BPPgM4DAyko0nPViRUfDAvRJQzGkTcRny8cTpQZ7ENVjw37kPSTFSEIrHhUtIclK6HhbWJbylnAVbcV5cjWKJYOESVe1a9z4cd/FOHA2vto86o7+r03Hukp2ULv7ZSSdibSFj8QU5hLEPOh0rPPuAU2lctPvUN21rR8UBXfpLio3PgqAdd4vsM6+LcI1uTG6hEGkn/kH4sdeiuaxUf7VXXhrm39IEwgEgs6kS8oxK814RDR6kU8YeykDLngF2ZAY1ibgKRHNq6JBlGjwlFCMSaFzMA9eSPrZzzY5zm9vSHIcS/Jmn70o4rvtwOsRq/uS3gJyo1CUiGdiCV18FmazmVEjBrNwYhLfX5TBLRdkc8XCdJbMyGL88AEkmBXKbT725tbw/vvv8Oyzf+SRRx7ixRef48MP32fHjm0UFxfh9/vxu6obwqcJVPioO/xfZGMySdMDuabaEr6hhgkYvpoTUV+2g9VNdIlDW+zLXbo7prwYdYffpWrL02i+2ESJkK2eOorfX0HtnldD21patAhWOnEVbgICi1Cu+ooo3uocij+8ttXFFk1TI/KAhLar3lbt7e+I8A1B9yHCNwTdgC5+IH57MT57KWoop0Rym/uRJAm9dRSe0l34bPnokwI3V0/FQQAMqe3LJxHEmDEVSR+Pq3gbmt+LFPYwpnps+GpyUeIGtFidI1biRi7DU74P+7GPMGZMjdrGVbAJze/GMuK8Nr2UR8My7Cxqd7/ckJPDOqrF9rV7Aw8MSTNuanc5UUmSSZ5+EyVFP8S2byVxI89HNraemV3TVGq2/RnQsM6+s815MCCQKd5dsgNHzsdUb382plKv4fgdZZSvuT+QXHT27cSNODem4yRZR9KMW9D8XuxH/0fFml+Qed6LomSpQCDoBjrPUyL9zKep3vFcswmZmwvfCK/EERIuoogHSr23pGJu8JpsHMphTJ8YEAjCXuDDPQbDS5FG9B2fhYSEr64gVClDU304jn8aIUhAINF1YzFH8zUkRZRN1tCzQPg5GwwmslMlhmdYMaZNxDZwL3aXn2KbgmfCYvLy8jhxYCOHt+0kN3VCKFJG8juxlH1K9sjJjFlyB1lZWcTbA56k8WMuwpAyJmCD34Pmc8d07wgkXQ7gd5Y3SeoYLlqEi0meqmMo5pTQIpGreBvlX96JPmUsmef9rb6/Smp2vUjChMvRJw4JbHPXUL316UB/Ycmd/Y6GvA3N4SrchM+WHyFghNvrrclFsWQ0W0Wt9JMfA5B9xZdUffMEvprjVKy5n6xL32t+0ObEh1OowklPIUQJQbchwjcE3YFS/xLvryvC76pCNia224XQYB2Np3QX3qoj6JOGonod+GpOoFgyOvziLsk6DCljcJdsx1dXEJGUyV2+H9Awpk/q0BhBzEOWULXlaZz569E0Naow6MxfG2g7aGGHx5NkHfHjl1Oz7U/Yj36AYfZtzbb11pzAU7YbJT4L8+COja1PHo5l2Jk4cj+n7vA7JE9e0eoxjtzP8VYfw5A2EfOws9o9dvKMm3AVbcZxfBWW4edgGjAz5mOrt/8FzWMjfswlxI++sE3jSpJE8uzb8NtLcBV9Q83ul2KutCIQCATtps05JZrfZcycRuZ5zzV/aDMeFOHPk5IcDN9o2lauv1+HJ0YMhm406U9T0SUOwZgxjfixl4Z1Ev05In3pkyhxAyl883z89iI0TcNVsIGqbx5v2n0U0T3cu04OqyYS/kIvm1ICfftcqPUv1XEmhVHxZrLPPg+Ak//6F9V2H77Jiyit1SgqKuTE/rUUV3sp3radw/Z3gUBeBou9mMHFO8garqLLd5Ba+wG2Y5+QufRxTFlzo54nBEIQIkQJR1nIniDu6qYCgLtsH2Wf3YxxwCzSlz4JNCzweOtDYgGqt/8Z54kv8VTsZ8D5/0Dzuan4+t6G/sIED9XXeoWLULWVMIL5PQBKPrwG06DTSVvYcriG5nOFPB1Udw0+Ryk6S0b0tv7ookR46IkgOkKUEHQf9fFukiw8JQRdR9CzwFuTA34PcnxWu/sKJrv0VB3BMuwsvJWHAa1D+STC0SUNDWSLrsmNECU89e6BhvTJnTKOrLdgSB2Hp2wPvpoTEcmhIODO6CrcjKQzYRoY+8t0S1iGLqVm259xFaxHm/WzZl19g9m040Zd0CleVAmTrsFx4kvqDv6HpAktlyXV/G5qd70IQNL0n3TIHVk2JJA842Yq1/8K275/xSxKBEJXvkKxZJA49fp2jS1JMta5d1H84TXUHXwT8+CFnSZoCdpGTk4O9957L3V1dRgMBu69915mzeq87PMCQe8htt9L06AFuPLXYRrY/MtuqzSX6DLsNzu4yh81p0RYCKekj0fz1qF6apq0kyQZjcCKvHXOHZH7wvqVZB1avYu+pBgDZUUTsvBWHUV1VTa7ii9HeUkOFyUiSp+GfVbMqQFRwu9GC09uWe/V4XdWIMsSKQl6UgaZmTFkMQDOgkkc//gYpTVe1OlnUlhYSO7uE5SX+LDnFHGk2IPjeMCjVJEhbfM9DJ9/PZmZA8jIyCQ9PYM4tRhzygjcJTuoWPtAhO1+R1mTJJnu6pMN51YvStTu+UdgX/HWhvOLUlHFVx+C6KsrDFS6qtiPp3xfk3YQW9nNaCE3wbDeIJF5vaJf043HKn53ebMlSZtLGtqWZKL9FSFKCLoPkVNC0A0EPSU85YHcD+3JJxFEbw248vtqTgT6rAwo+/pOEiWCQoS3+jjUP0QAoZhFQ1rnvVga0yfjKduDu3xvE1HCVbwVze/CPGRxxEpSR1BMVgzpE/GU7cVbdRhDlPKpmt8dKHsp64gb0TklNfWJgzBlzcNVsAFX8TbIaN77wZm/Ab+jFFP2fIydIACZBy9CF5+Nu2QHnoqDrYpXmqZSve0ZAJJn3tKsC2ksKJZ0kmfeQtWmx6jZ+RwZZ/+53X0J2o/RaOS3v/0tI0aM4NixY9x0002sWrWqp80SCDqfGEXc1NN/ibf2BPrklsP4WhwqhnwOQU+JaHkpwj0tFGMSPm9dxIp/WMPA/7UoSSPDbFDMyfjs5fWHBO6ZeutovFVH8VQcip6jQdZDlBfxCDukcOEjXJQIhJ2Ee0oAoVwR4S/u3uocHKof2ZCAJOtItAT+y168BEnWUbPLS9mOAnyjv021z8qhjzZQYfNRXuulwubHsW8Pu7Z8FRJeXCdXY03NJNnsJ8ngxBqvJyVeR3K8Dr29DIlGZavDRAm/vQh32R58dQWBKQgXh6LMRdCbQJIN1O56Edv+5vNSRcxDFO8Eze+Nmsehcd6PiGPCvCi0sLwQbUlS2VzuCCFKtI4QJfowe/bs4f777w99P3LkCP/9738ZP358j9gjwjcE3YEuvl6UqE9IKXdAlAgm0QrekHy2QoAIr4aOoE8KiAO+2hOhbZrqw1txEEkf12njABjqV849ZXth1Lcj9gVrt5sHndFp4wGYsxfgKduLM399VFHCmb8B1VOLecjiDolHjbEMXYqrYAP23C9gSvOihCP3MwDiRl7QKeNKskL8+Muo3vJ7bAf+Q+qCB1ts7y7ehq/2JIb0yZg6Ye4tw8/FduA/eMr24i7dHSplJ+g+srMbSrOOGDECm82GpmldkxRQIOhRYrumJcXQrjLNkcSwmBWl+oYhfTLWuf8X0cw87Exse1/FlB1ZDrL+4MD/o4gS4TkldKakBlGiPs+BIXUcjpyPcZz4ot6rEhKnXh/yxpPDEmuG4w+rghERphL2WdLHg6yvFyXCXpDrn6vdYaKEp3Q3tvo8TamLH2sYx1mOLm4Ams+JySCTOmQYo1PHM6ggTCjIPhv3wAvZ98Y1lNd6cSTPorhMobKihGqdpUnIhM74NdYEPUl6B0kWHaPWr8VcsgWtxkOiRYdRL1P22a3hs9hgelgoRvA3MvjiLimGCEFClzg04jkpcHy4KNG0eojqrokuBDTeFrZQqrqqGz6HzXMsXhkNtjSTU0JTW62A1t8RokQfZvLkybz3XiAZS0FBAT/4wQ96TJAARKJLQbcQyinhCJTm6sjLbvBhI3jzDNUa18d3xMQQuvrkmd6a3NA2b+URNL87kAgzhtWhWDHWe11EyxztLtkBktxiLGl7MA06nZqdz+HKX0/SlB9GGXc7AOYwL5FOGTd7PpJixJm/DrWZTNt+VzWuwm+QjYnNloNrD3HDz6V2999x5n2Nz16KLi563ClA3ZFAlZD4MRd3ykurJMkkjL+Cqk2PYtv/mhAlorBlyxZeeukl9u7dS1lZGc899xxLliyJaLNy5UpeeuklysrKGD9+PPfffz9TprR9Lr/44gvGjx8vBAlBH6Ubr+sYnhuD/84iEkRaR4cSJgZJnHQ1+uSRmLLmRBkmEL6hRfOUCBMJdObksGMCr1JBzzjniS9C+/TJI5EUE5rfhRJejjSMcE8J65w7w/oNyymhMyPrzGh+F1r9y3Kg38D9zVO+P9TWHV5lK6xymN9eUi9KBJ5nJJ2pSWJLi9lEirkKw4jAM078uJnUHTyG16dS4zFTWVVFVZ2PareeSpuHqlonZeU2ggU4D3/4Hu6ib/DUBp6/TAaJRLOORItCkkVHUqKPUfv3kZiYCFUVqKqGLEtoPieS3tIgImiR3hf65BEhUULSx6F57RGeEmqYh0PofN1VMXknhOf58LurI+arof82lPNsIXeE5qkDEmLvq58hRIl+wieffMK558aW0b3LEJ4Sgm5AMafWJ6sKXG+yKaWVI5onWAkieBNXw27mnYFiTEI2WfHV5oUqcLjL9wJ0ek4A2ZiILmkYvppc/M6KUKJO1evA7yhFF5+NbOgcsSWIPnEwusQheKuP4asrQhc/MGJ/UCDpjNCJcGS9BVPWPJx5X1Obux6sTR8+nXlfg+bHPGRJ80nU2oGkM2IZcS51B/6Dq2AD8WMuitrO7yjDVbAe2ZjcqR4qlmFnUrv7pfrKJ8cwWEd2Wt99AYfDwdixY7nkkku49dZbm+z/6KOPePTRR3n44YeZOnUqr7zyCtdffz2ffPIJKSmB35ILL4yejPTtt99GUQL3t4KCAp544gmef/75rjsZgaAH6U6xraXFrIxzn4t0mQ/PKREtlENWsAxZ1MxA9c+nqr/prrBnV12Uil5KlMSHsiEeTWvIPRGNoChhnffziOpP4feloICgOmyoHnuob7/TRe2+f+Ep2xPIleF3R1Z/0BpCEIJ5LsKfYxrbpHodgbDH4OH1L/56nUyazk2aJRBiGLTTW52Dy6NSbfdR6/Chm7WEws05lORVYnP4qHb4KK3xUloTtKmOzY5/IkmBMtjeygIsJpms0j+QnD4Y77584vUe4k124k0KcSYZs1HBEtfggSYbk/B77RHeC+FeF6HzrSuOqdSp5rUHQjU0LST4AKFKKuHzEHFcfUJTn70Y1VVF4qSr8FQeCS2IRUON4tEhaECIEj1Id67YfPLJJzzwwAOtN+xCNJFTQtANSLIOxZKBvz5usENhAbIeJDnkIRH8f2eJEhAI4QivwOG3B25oukarO52BMW0Svppc3GV7Qw9loXriSS3XE28vpoFzqas9ibtsT4QoobprA2VP47M6XMkkGuahS3HmfU3Vkc9JnNNUlAiGbliGnd35Y2fPrxclNjYrStiPfQiaStzIZZ0risg64sd+l5odf8GR+5kQJRqxaNEiFi1q5oUEePnll7nsssu49NJA1v2HH36Y1atX884773DdddcBhDwQm6Ouro6bbrqJBx54gKFD2//vSpY79tIXPL6j/fRFxNy0TCzzI+sbVpi7eh4lpUEQaDyWKT3SA1gOzx+ht7TJNiksfKPxcbIurF9TQznRUDtD08oaOmMiBBNiyrqotgRfhGWdKWK/rAvzlDCY66uFaKju6kByzfpwlWB4iDF9Et7aE/jDXqYJfwnWvIH+67cpenPEGIEmdbhKdzV8b+QhYEgZS9zI8zBnn0bl5j/grc7BZJAZYDAwwGrA4H2fSbMH4hhcEThe03B6VGocfmrtAZHCNGsOtTY7xepRKp0KdpefgoITFFfUYjsSPUGoacdnUFmAxaAQn+zHLNkxm1wMTfocneM4iu0waokLo0HGpJcx6SVKv74fy4BpUfsDSJhwBc789YFnIJ+9ybuJ5m5IiKn5HNAo9KLg35Hva357Sei5ojmkepFI/O5ER4gSPUh3rthUVla2S8zoVET4hqCb0MUPCIkSHckpIUkSks4ccg0MqvFylLJe7aVxBQ61Pr60cQ31zsCQPhn7sQ/whIkS3qAokdg1okQwqWZQ/AgSjIE1dmIyz3ACIRkSjqLdNHaaVb12PGX7UCzpGNImdvrYhrSJSPp4XCXbUX3OqNdLMI9H3MjzO31885BF1Oz4C66C9TD9J53ef1/F4/Gwb98+brzxxtA2WZaZP38+O3fujKkPv9/Pz372M5YvX86CBQvabYtOJ5Oa2jmeS1ZrXOuN+iliblqmpflJXHQLJ9wlDJhzPfGddK02hxZvJviK2Nq/C50tgeCrbXxySpv+HRUpOvyALGtNjnP4Ewg69MuKnoGn3YhiTAy10zQL+ZHdkZqZSVAi0BuNobblmRNxlERWlUiyJpEUNqbdm0RwzT0+KRmPyYLPVr84IikoOh2+sOOHLv4p+V89hj1MlDDpG0IJ4swKqanxVEoBrwVrWiomawJ5YX24Cr8JfZYUAwqRngZp488hc9ZVALiPDMRVGJoQUP14yg8QHrwgSRIWo4LFqDDQGhBAJl9+ITpzMsc/zqf6cDmqqpG++Pt49Bns+Ndq6px+7C4/Nqcfh0fF4fZjGjiQ/DKNyjofNtWN3+tB9dooiPuasp3/pjkMukKMehmjXgqIFQYZo15Gr9cxbsRYynNW46uyUb1nE+a4ZE4WOtErEnqdBJVFVNX50MmQ7KvD47Hj82vo5OheQt7yXVEsiCQxPvDaLX53oiNEiR6kO1ZsAFatWtXzoRsITwlB9xHMKwEd9JQg4BURTH7UNZ4Sw4CGChxBV85gks3OJOhyGcyEDQ1iQeO4284iKHZ4ayKTVDWUPe0aUULWW9AlDsZTexK/uxZJ3xDH6a08QqC0a9fE+0uyDlPWXJwnvsBdvB3zoMiEan53Dd7qHJT4LHQJ2c300n50cZnoraPwVh3FW3sy6t/WXX6AY2v/SfyM25DN6Z1uw6lIVVUVfr+ftLS0iO2pqamcOHGimaMiWbNmDZs2baK8vJw33ngDgH/+85+BGOo24POp1NY2jZNuC7IsYbXGUVVlR1VFgrVwxNy0TGzzY8S68HHcgLuirpk2nYPd3hCSUNHKWK66hld1p0dptX04qha4H/h9vibHeWobXrclRY9x9BWoqhbRTlKMESED1faG512fXw61TVnye/T7/0PN7r+H9tscKr6wvjy2sPNwy/gJ86jT/PjD0l6kzr8Pp5yNqk+OsLmuqiL0Oe/L32CrqsDjDIxRU6diV5ufG83vxW2PrFDi1WeHzsGnNDxbGdMn4y7Z2Wxf4ZQXFeA48S9qDgeqEsmyhG3/m3jK9zFqYPQFn4xzrqP00514fSq+xPHU1VRQW55HwqLzOe79EKdbxe1VcXk13F419J/Lq1Ln9GNr9FMqKQaOfbgKV2Ex3toaNtveQtaZqTvWMF+Gvf/DU1kcOL/t/8RTeSSUo0KWQJZBkaWw/4qQJQlJqs+2IitIqEgQ2jZSfZ0bb7uH6mpHu393EhPN6PV9MwxeiBK9lM5YsQnSWaEbHXU3kgj8gsqKIlyXGiFcSaPTeF5inR99fIMoobOkdGheZZ0JVfMjab6Qp4RisCB10t/KUO9J4K89gSxLIU8JnTkpJrvbMjc6S+AhQnVXh9oHk0cZkod2yfVntA4NjRPev6c+d4Ypc0qXXffGlNH4ak/iqz6KMXNGaLu3KpAZ3ZA6tsvGtgw6DeeJL3AVbiRuSOSKuSt47hldd+7mQafjrTqKu2ADxuSmXjB1h9/BfmI9plEXYWohGaeANlXPWLJkCfv27Wu9YQx01suyqmrixbsZxNy0TG+ZHy0sqWZr9mhhVTLQWdpmf/2imaapTY7TUMKa6aLOjaSLFCU0KUxIkJSG9rIRfWqjxPOSIaK/iGMVc0T+h4RJV4W87QAkU0ogaWSjHFp+d23E9+odz6ELVvWSja3MjYbfWRGxRUkaFjpGNgfEWyVuYJRFFAlT9vyAt14j7Ce+pnb3yxHbwkuaRkPSBTwL9DqZ+IQ4Ek2Qri8nc1QmGWMaxtanjifltF9Q8sFVDWehaXg0PS6nKyRU+PVpJJ9xOeU7PdTm1mKZMAWfLoUy1uD1qXh9GpI1kbr6OVJS4nB4JFS/DlXT8Pk1/GrgWnR71QiBKGSzIjepxOE/chSv19tr/l31NoQo0UvpjBUbgMLCQiorK5k8uWOJ5DrDldRn0lEFWOLMneaW2tcQLl0N6PVKk+sk5vkZMIya+gTU6VmDkHXRE0zFQpkpHp8NkhMVilQXkqInLT253f01xmseTymgOYtITY2npD6GM33gQOQ2eGTEMjdqspFCAG9NaG5L7QGH04zhE9AZu+LfZTzFcWn46gqwJhuRFT2qz0NexUEUYwIDRkzsspAu36BJ2HO/QHHmkpq6MLTdZs8BIG3YVBK76LcoKW4pFRsexVP0TZPr2LkvkCk9dcTcLvstNE88m9o9r+At2UTqwh812V9cERBGMkfOQGcWv8cAVqsVRVEoL4+Ma66srGxyLxYIBN1IW+4RYVWrZH3bnqkM1lE46wpD5bojTdCFfY6eByiQ9yGsxGe4mNmomlbjPE6NK2FEJroM5pQIkDTlh7jy14UbB9AkP5PqtjWx0Vdf7Svo8Wk97V5UZyW1e/4RKq0ZqnDhqoo4VjE3/A4qcZlAoOqIGla1ImC7kdTTf4m35jilqyJDCJsIHZZ0/I6yhmN15pBXamhbWMUzTfWF8mmUfHRtRDvTgJnoE4eQNOMWarb/OXCsJJG18EEkQzzlX9wOgC4pjQGTp1Irz6BW2UbSxIGYBsygxJ7c0FfWcFyFgYAdy4gpOHIKaQ5N01C1QNoJTdPQANmSgd9eihoo54IGDP7WNRgMBqD1qiD9ESFKnGK0td55VlYWn3/+eYfH7QxXUoc9cLzD2dQtrr8jXEmb4vX6Q9dJW+fHpQU8AiR9PFU1XqCZutExoBK4+VWUluP3OJAUc6dev5qmA0nBU1dORUUdXmcgiVVVjQ9ofZy2zo1kiMdrr6Siog5N9eGqOolsSqGmToK6rvl3qSQMwWcvpzT3EPrkYXgqDqP5Pegzp1FZGXv977biNwUe+mry96Eb1nButqKAKODSD8HbZb9FCvqkoXircygtyEcJy9Zec2IrAL64cV32W6gpg1DMadiLdjcZ3+cox1NTgCl1JDaXHtXRfhv6kiupwWBg4sSJbNiwgaVLlwKgqiobN27k6quv7mHrBIJ+TBtEiXDBQNJb2jRM8uw70CUNJ350lHxt4aKEEv31KUJYqLfZOvduqr55nMRJP4hoq5jTkU3W0It/40oY4ech681NK7CGzUmwMkgwR5NsTER11+KpPBDVTmR9SGSJG34OALYDr6P5XUj6eHRxGXircyK8PiSdKUKYMWbOIGn6jZgHnU7FuoeazIOkM4bKpIYTXgIVQJ8yNkKUMKZPwVX0TUQb2RAfmH/VB6oPT8V+ohEs72kaOIvwUSTFEHld1Isa+qQGT06tUQltNczLJNy+qONKEkro7xP4oDMn4PNECtyKLJ7vW0KIEr2U3rhi09GXZS1UYkkWL97NIFy6Imk8F7HOj2wJKPiKydrx+axfnfB7HGg+F7IloZP/RlKgxJWrGr/Ph+qxoZhT2zxGrHOjGK34bHn4PM5A6SrNjz5xSJded7qEIbiLt+OuzkVJHIrXWRmwxZLZteNaRwHgrjwcGkf1OvDV5qHEZSLpE7v4vAfjrc7BU3MSoyGQuFT11OGpOoJiTkOyDOjS8Y0DZuI4vgp3+UFMWXND210lgYRc8VnT+t1vjt1u5+TJhqSr+fn5HDhwgLS0NNLT07n22mu5++67mThxIlOmTOGVV17B5XJx8cUX96DVAkH/xpAyFgj8prZG+ItzWz0lFFMySVOujbovFk8JaBAKBl78NgBxI5dhGXFeE49ASZIwpIzFVbgp8L1xyVA5siRo07KXYf0FRYnMaWQt/5jaPf+g7sB/8NXmEY1oebGC3g76pGFoatOV/HBPjYD9MgnjLwsc67E1ahtZ1SMc58mvIr7rk4aHvD4GfHsltoNvRrHXjCTp0PChqT5MA+c2ES6gIQl5k7+PYoj8+9XbF57zqnGoRfg5ucPKpMaKHEUQiyhdK2iCyDjYSwlfsQkSXLGZNm1azxnWEUSiS0E3oVgySJhwBQmNVibaQ/DmHVD3tU5NchlEMVkDiavsRYFSZF2Q5DKIXF/KTHVX46tPPtlV5UCDhK9GBMauT+bZBRVGwlGMSegTBuCrzQtVUPFWHQW00ENuV6JLDDxAhz8Yusv3gaZiyJjaJUk2wwklUW1c+aQ+yWhc1rQuHb83snfvXi666CIuuugiAB555BEuuugiXn/9dQCWLVvGPffcwzPPPMOFF17IgQMHePHFF0MVrwQCQfejTxpK5vmvkHHe31pv3AFPiRaRInNKtGiCMTnCO625EEV9ypiw7iNf5MO/B0IagqKEFDQiav+yzoysa/m8NU/TsI7g+cWPvSSq6NLSOTeu3tVYwGgJXXgOsITsiFKzcaMvJOX0BwP3yvrxNdWLdd7dEXmigpgGzQ98aFRmW1IMkfMp14sS8QNB1geeTdTGokRtsHFomzFjGpbhsRUOkKL8DTS/L0pLQRDhKdGD9LcVG02r95SQ+oarr6D3IkkSSdN+3Cl9BZV3vyuwui91YjnQ0BimFOAY3prA74Fs7EJRwlif7NJVHVYOtGsqbwRpWI04GRo7YEvXihIAloxx1NiK8VYdw5g+CU/lISDyYbCrCM6rN0yUCCb0MmZ0fYnm4Lz7Glc+KQ0kXInPmo6tny3czJ07l0OHDrXYZsWKFaxYsaKbLBIIBLGgj1E874inRKz9SkpznhJBYvM+CxfHWwzfCBMlggsjEUKH3MgLox1iTPqZf8BbnYN5yBLqjkSp7NeCKJEy7+dUb38W54kv621sPY9X4tTriRv1bTzlkaEY4c9Y5sGLMA0IiA+SokfzAqoPxZxKwsQrcZdsb7D/nGfR1VdeC4oOoT4VY6PwG0N9Ox26+PqFi0ZCTfC73joKb+Xh0Bw08WhphmieEo2FD0EkQpToQfbu3ctVVzVkiH3kkUcAuOWWW7j11ltZtmwZlZWVPPPMM5SVlTF+/PhTe8Wm3lOiq5LaCQRdQchTIhj32VWeEoC3NhfomnKgDWMlA+B3VXd5OdAgDZ4SuUD3eUrw/+zdd3gUVdsG8HtmW3pvEHoLIYXem6AoYkNQrC8WbIiIvig29BO7YkGwIILYsAv6qgiK0qRID4SeBAgJpPe6bb4/NrvZze6mbkty/66Li2R2ypnDsjPz7HOeA8A7PAbFqVugKTgFVXi86eZCGdzb6cdW1KQaa0trg8+6CsPM83L/Ts4/fqAxKHLWtEyvLjVMR+obCWVAB4D1fYioDbGoHeDILxEshm845vFJaZEpUXf4htnxbAQlLAIRde6rjVNX1uUXcwNEpV/tDBxmVBGJpmC5rfOzP2TFUGAzeOh/a4MS9QzfqN0mHDJVILw6Dodf3xnwihpi2NYsw8C8TwRTpoS25rXaezHRKxiqsDirdWv3Y7umBFBbRLO21oUAQDI9s8i8QkxVyQRR3oiAlHG/1gExDt+oH4MSbtTuvrHh8A1qhYw3ADrjt/vOyJTwNgQljN9oOzVTwss4LWghtGWZAJz/gCx6hUBQ+EFbct4w1VrNxV/mgqCEV3A3AIC23DDfuLa05pyDrKurO5qt4RvGyuMyL+cHl2W+NampxemmIsnq/JMAJKjC451+fCIilzN/mHfg/abQiEKXaOKQPNFsNou6mQjmw/sEuReUYf2gLcs0Pbybj8AX6mQgm4Ye1G2eTIWAhDsbbJfNAEQDgRhB4WsYOqPX2PzyRhUxANU5h8zaUpOtIIgIGvRg7WHMMgwsMi6Mbap5sBfMZzOpc/51AweCTAlBsM6UMJyW4Z6u7NS6mvPwgaQpN71ucX8kymBdcdQ282Eoxn5hUKJ+fDokl5H0NUEJkW87aj2M37TUZko4PighqxlSoTEGJZyZKaEKAmAYQqEtuwgIMsh8wp12PMBwc6UI6AxJVw1dRR50LsyUkNVMcyppDLN86LWGv0Wlv9OPLSr9IHoFQ1t2wfTtjt5Y5LPO1G3OIIgyQxFTdYmpiFltpkbDBeOIiFobQXTSEOEm1JRo9C4FoaZWxsf11hgSRDmChsxD0JBHEDT0kZptrQtdGvnH3Gh7P438lt9WAKKhcxYEwZSJaWuIgyD3gq/ZrCb22mI+9MR8P3L/aAC1U5Fa/HvUHRZeJ6giiErLOhMWmRKGezpNUWrNpj7mG0Lu19HsOPLaL1gbYJ7xISpr7kNYU6JefDok16mpKWH14UHkwURTpoTzghLG7AVjIUhXZEpoy7Ogr8w3zELhoBus+hgDH7rKXJcO35DV3Azoa775kDTlgCA2qRBXS8gDugB6LbRlhkwNXVWBYTo2FwRFTMdHbRaOsTaKzLuVDgMkIqpHY8f8N3m/5pkLDrxmKgK7QhliezhhQMLd8I83DPMWlX7w6zO1tk6GYH/4hswnDAGJd1vvsJ4hGOZsD99o+JyN9xc2h29IkkWtB3vDQcyzUc0zJUKGL4Bvr2sQMmphzfbmmRJ1ZzYRrWpIWAzfEK0zJUyvmQ27kPlEWGZ9iPLa+njmbbZxz2Ye3DD9m9mY1YRqcfgGuYzE4RvUCtXNlBCdWFNCqpkhwrlBiSAAgDrfMH+53C/aaccyJ/OuCUpU5NUGJcyqkzuLqDTcDBj7Vq+pgCD3cfrMF0YK/85Q5yRBW5oOuV8U9FVFhhsdVx0/sCsqAWhKzkEVOQD6SsP72PieIyJqSwSZEpFXfWb6dto5x2hkxkELBSTMtP+indk3al+2MYNGI2o9GLa18XjYiICGzCsIGti+T5KgtxyOYact5pkSotmXBzKfcAQPm2+2onnmivWXnYIoN6s/UaeIqMXMJpYFKc2DFHK/jta1RGxkSggKP6C6zpAZ8/bV1K0wtods49MhuQ6DEtQK1daUKLD43ZGMNSVMv7tg+Iam0JCqKPfr4LRjWRzXxzB2VleZZxhKIFO6JFtBVnODo9eUQ5L0kDQVtqtiO4l5XQlDYEtyaZZC7QwchmKbzJQgorZOEdjVqUPkGs4aaNzsGy1shO2fjWxlOzQyKGErANGYTAmZKVPCRraKVCcYINoJStgpdGndHvs1JSz3XzOdqEXmhFkBTUXdTIna48t8Iy2zu0WZzaCErQCYef0I05cjOtaUqA+fDsl1OHyDWqHa2TeKan53Qk2JOkUPXTF8w/j/0Xy8pDPJagp66SpyoFeXQqYKdEm2gGhWU8JQvVxy7Nz1DTDWbtCWnDcFBEQX1JMwMs58oimpO3zDdW0gImpL7A09MD24N3KYRIvaYDElqK2HcluBheZnSigCGy4ObZxy3PyhX9VhmOHv8HjLoISdbBOLLw3qC6KYt9FWUKZm/4LCkBlpMfzGotBlnUwJs+EboiqwTuFUeW3Wt51tbDbVlCnBoER9GJQglzGNw2JQgloRYxBCqimQ6JRMiTq1FZyZKSEq/S0u4HJ/1wQlxJpMCU3RGUDSu6SeBFAnU6KmroQj565viLGmg6Yk3aUzb5iO798JEERTvRJjoU2RwzeIiJrF3uwbwSOehCKoB0LHvOCKRtT+aDNTwFamRNMLXao6DENAwp0I6D+rwc1qC13WPvSHjn4WISOfgX+/W+pM8WknsGNeU6K+4p8NDd+omW3D1hdJlsM36mRKmP0uKv0sZ10R5bb71Wwbn+5XQBEaC9/ul1vsBwDA4Rv1Yk0Jcp2a6KIjp2gicra6RZCcMSWoIMohqgKgrxmT6MwHdkGUQVQFmmpkyFw1fKOmpoSmKA2Aa4pcAobzNczxXgF9zQwcLs2U8IsyTMtZchY6F868YSTIlJD7doC2LBN6bSV0VQUQ5D5OqY1CRNQe2BvKoAzuhcgpn7ioEWYP7I0cvtH4Qpe16yn8OzVqGlEAUNRMtW0+LFRU+sOn+yTDfpuaKVFvI+sfvmH8ItTWkBWLdijqyZRQWAYlIMoREHcbNMVnEZBwB/L+fsy4F9Mqvj2vgioi0WKohrF4pqRjocv6MChBrsOaEtQK1c2McMbwDQAQvUJqgxJOLNAFwCIo4bLhGzWZEvrKPFMbXEWQexumxXRDpoQgyqEI6AJNUSo0hSmG47t46ITMPxraskxoi85C0pRbzrtORERN4glfrgkN1JRwWKHLxtahAODVcTj63fkzSjWBkGyU1bCoEWGv0GWj616YZ4rY+PeomemioX6wnn2jzlSeFpkSMsi8QxExaZndZpmOZ7adaUpQZkrUy/3/q6jdkPQ1QQmRbztqPVwVlDAViFL4On2KTuOxRFWgyx7QRbmXqQK18diuIip8Ab3WUGAT1tW2nU1eMxa3Ons/ANcO3wBq53evzksGwKEbREStXgPDN2wXumz68A17wyxsNkkQoArsZHfYheXwDfvBhw5Tv0eHaT/VfyyLDAYbmRI1mQo2gxzm04PWU+hSqJspITR8b2asG2HeB6wp0Th8OiTXYaFLaoWsgxLOSXsXzQIFzibWzMDhqiwJI2O2BFA7C4grGNNBdRW5Fr+7iiKoGwBDsUvA9TNfGKd9VeceMRzfxUERIqK2xTVTOtffhGZkSjSj0GWjMxcaoxHDNwDD9J+yhqYMb2j4hq6eTAnYLnoJWBa+FJV+FoGIxnxhJNq4vhqHb4BBiXpx+Aa5DodvUCtkldrnpKCEKXtB6e+U/ds6lszVQQnvcGiLzwJw8fCNmum4dBWGoSOCC4dvANZVy10984UpU6ImKCFyOlAiolbNYjaJRhe6bGxQwiyToLHZFY3Zr8WUoC3br9BQpoixuL6t9ptncugtZ9OoO3zDMGuXcYH9x+aoa7+CpjgdigDr4ZGm4RucErReDEqQy0gMSlArJMgsgxDOKHQJ1EbXnTkdaO2xggC4N1PCpcM3ar750FW6KVMisJvZb4LLh08YgxKm4qYcvkFE1HwekChhmSlgf0pMy00aW6/BPDvAcZkSFsdv6bSpYv2ZEqaXbLbfbGiFV53Zz8xn31D4QafXme3L3nEkyP062r2nMg6TZU2J+vHpkFyHs29QKyTIFJYXaKdlSgQBAESl8x/WvaJHQR7YDd5dxjn9WOZk3u4JSgh1hm+4OlNC5tfBNJZWVAU6vWZIXXLfKJjfhHH4BhFR0/nF3gy5fzS8w2Lc3ZRGDN9oyewbzSt02eB+zWtK1DPdZ6P2ZXbO9oMFdjI9zI6tDIlB0LD5tS+Z15RQ1l9Twjg00vi33TYojUEJZkrUh0+H5DLG6Xnqi2gSeSLzbAlnFbqsvbhFOWX/5pTBvRB11adQBvd2+rHMuS1TQmE5fMPVmRKCIEIe0BWA64duAIZvp2S+EabfOXyDiKjpggY+gI7XfQVR7sA6C83U4OwbNooyNr7QpfnwDecEJRyqvkwJm+23DIj49brG9LN5TQlBprIIeNQN9IRNfBP+cf9BQOJdNo8dNGQe/ONur72HZFCiXhy+Qa7DQpfUSolyL+g0ZTU/OycooYzoj7BL34EyxAO+gXES80wJmUuDEsbhGzU1JVw8+wZgmL9dU3jKZhEsV5D7RUNXng2AmRJERK2eeaaArawDmY2gRCNmjzDsunmzbzS4X0cWzbTYsf3v2G21v94vByxqdQiWdSTEupkSHRDYf5bdXfn1uR4AoC3PAsCaEg1hUIJchzUlqJUSFN5AJQzvXSddVAVBgFfkQKfs21NYZko4v3aGkTEdU9KUG47t4kwJoLauhKtn3jCS+0ejOvsAANvVwYmIqBVp4F7aZjChkUMmBKdlSjjp/qme4RvmtTUirvwY6txkKMMT7K4u6XUIm/Cmqa0WfdHMoZfGfXD4Rv0YlCCXMRW6FBmUoNZFkHnX/O3V4nGQ7ZkxU0JQ+DrvGxMbxDo1JFxdUwIAVFGDAUGEMizO5ccGaotdAmh4qjUiIvJsDQYlah/xvLtOhL6qsPFFls2zMOSOG3LhtHpKNjKwVVFDUJ21D15RQ0zLlMG9Gxy2KsiUUIXHmS+o/bG5QYma+x3jNKVkG4MS5Dp6Y6FLDt+g1sVY3NJZRS7bC9ErGKJXMGQ+EQ2v7Mjj1smMcEemhDKkDzre8KvTapI0xFizRFQGuDQgREREjic0VBbQ7Bv+oEFzmlTPSFTVTk2uCrOfVdBUgsIPPj2mQBHQ2WH7BGwX0A8d+wI0haehDE9s1D7CJryJ6twjUAT3stx3PcM3Gt2+mpoSFtOLkhUGJch1TIUumSlBrYsxGOGsehLthSCIiLxypUPHqDbquHUyI+pmTriKO4IhRsZMCVdPR0pERE7QhEyJphaYV0UMQPCIJ+DVYZhjMyUEASEjFjhsfyY2hm+ICh+oIvo3ehdeHYbAq8MQ6xfM62s080tVQaYABBmDEg1gUIJcRmJNCWqljMEIZkq0nDtmn6gbDBDcGBxwF3lAF6g6DGvSTRoREXmohoZCWxSrbNrDtCDK4dvjyua0yk2c91zhiEwJwHD/qNcxKFEfBiXIdSTj8A0GJah1MQ3fUDBTojWyCELIlM4b1+rBBFGO8AlvuLsZRETkAA3dS1tkJLb5YdOS83btgJoSht2ooFeXOqJFbRafDsl1TJkSbf3DkdoaYx0AY8FLal3Mh2u4a+gGERGR4zR++EZTMyVaH+cFJSyKm7cwUwJ6DSS91gGtapsYlCCXkWpqSrDQJbU2ppoSzJRolcyHb4jy9jd0g4iI2piGso5bUFOCbGvJ84tYcx+p13AIhz0MSpDrsNAltVLGi4mxgjK1LubDN9wxHSgREZFDNTR8w/z1th6UkJw4fMNcC4dvAICexS7t4tMhuYyp0GVDxXmIPIzAQpetmiDzMt3AsS4IERG1fo1/ELcYgkDN1qKaEjX3kXpNpaOa0+bw6ZBcR89Cl9Q6sdBl6yYIAoSaYRusKUFERERN1dJClwAzJerT/kqQk9sogrpBJhMBUeHUQrlEjib3jzb87dfRzS2h5hIVvtBpyqymByUiImqLZH4dIbWHh2BXDd9owTAY45dbem0VoGhg5XaKQQlymbBxLyA02BsFRdWQXPUBQuQAXlFDEHXdN5D5RLq7KdRMxiwX1pQgIqJWrxH30VHXfOm6B3aqlykooalkUMIO5tGTywiCCEHG/4nUOsl9ozgusxUzDttgpgQ5W2VlJSZMmIA333zT3U0hojar4WCDIIjtYDpQoDWkX5uGb3D2DbsYlCAiojbPOAMHMyXI2ZYvX47ExER3N4OIqJ1oBUEJ8+EbZBODEkRE1OaJxkKXcmZKkPOcPXsWaWlpGD9+vLubQkREDmHIkpV5BTd7D6Jp+AaDEvYwKEFERG2eMUNC4PCNdmvv3r144IEHMGbMGMTExGDz5s1W66xZswYTJ05EQkICZsyYgcOHDzfpGK+//jr++9//OqrJRETUAGeXzegw/SdEXv05RFVAs/chyJgp0RAWuiQiojZP5h1S83eom1tC7lJRUYGYmBhMmzYNc+fOtXp9/fr1ePXVV7Fo0SL0798fn332Ge655x5s2LABISGG9891111nc99r167F5s2b0a1bN3Tv3h0HDx506rkQUTvHApZmnNsXMlUgZKrAFu1DkNdOCcqMANsYlGgjHn74YezatQtjxozBO++8Y1q+adMmLF68GAAwb948TJkyxV1NJCJyG//Ym6AMiYEqcpC7m0JuMn78+HqHVaxevRo33XQTpk+fDgBYtGgRtmzZgnXr1mHWrFkAgJ9//tnu9klJSVi/fj02btyI8vJyaLVaBAQE4L777mtWe0WxZYV1jdu3dD9tEfumfuwf+zylb8zrbru7LUbu6htB8Jw+sMcrIh4ynwj4RPSF1sPb6i4MSrQRt912G6ZOnYpffvnFtEyr1WLx4sVYs2YNZDIZbrrpJlx22WVQKpVubCkRkeuJSn94dx7r7maQh1Kr1Th69Chmz55tWiaKIkaNGoVDhw41ah/z58/H/PnzARgyJ9LS0podkJDLRYSG+jVr27qCg1nc1R72Tf3YP/a5u2+qvZUoqfnZUZ8VjuKqvkmv+VuplHtcH1gJHYQOvX93dys8GoMSbcTw4cPx77//WixLSkpCTEwMwsLCAACJiYnYv38/Ro4c6Y4mEhEReaTCwkLodDrT9dIoNDQU586dc3l7tFo9SkoqW7QPURQQHOyLwsJy6PVM9TbHvqkf+8c+T+mbykq16ef8/DK3tcOcu/pGXa3xmD6ojyP6JyDAGwpF25zmlUEJF9i7dy9WrVqF5ORk5ObmYvny5ZgwYYLFOmvWrMGqVauQm5uL2NhYLFy4sMVTiuXk5CAyMtL0e2RkJHJyclq0TyIiovZCkiQIQtNTbadNm9biYzvqpl6vl/hgaQf7pn7sH/vc3TeSpLdoiydxdd9IUut6n7r7veOpGJRwAWcX15LJ2mbEjIiIyBWCg4Mhk8mQl5dnsbygoMAqe4KIiIgci0EJF3B2cS17IiIikJ2dbfo9OzsbY8aMafJ+jFh0y3nYN7bV7Rf2jzX2jX3sG/vYN5aUSiXi4uKwc+dOTJw4EQCg1+uxa9cu3HHHHW5uHRER1SWqgqCvLoLMJ9zdTSEHYFDCzRxRXMuexMREnDhxAnl5eZDJZEhKSsLLL7/crH2x6JZrsG9qKRQyq/cc+8c+9o197Bv72lPflJeXIz093fR7RkYGjh8/jrCwMISHh+Ouu+7CggULEBcXh8TERHz22WeoqqrC9ddf78ZWExFZ44ygQPikpShP+RUBCQwctwUMSriZo4pr3XfffTh8+DAqKysxbtw4rFixAn379sVjjz2GW2+9FQDwyCOPQKVSNaudLLrlXOwbaxqNzlS4iP1jH/vGPvaNfY7qm9ZUdCs5ORkzZ840/f7SSy8BAB566CHMnTsXU6ZMQUFBAZYuXWqq77Ry5UrTMEoiIvIcioAuCBr0oLubQQ7CoISHampxrRUrVthcfvnll+Pyyy93SJtYdMv52DeW6vYF+8c+9o197Bv72lPfDB8+HCdPnqx3ndtvvx233367i1pERNRc7eNzm9oP0d0NaO9YXIuIiIiIiIjaKwYl3My8uJaRsbjWgAED3NcwIiIiIiLyQMyUoLaFwzdcgMW1iIiIiIjIEUSlv7ubQORQDEq4AItrERERERGRI/jFTIe2NAO+va5xd1OIHIJBCRdgcS0iIiIiInIEUe6NkBFPursZRA7DmhJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbmFIEmS5O5GkOfT6yXodPoW70ehkEGj0TmgRW0P+8bSqVMn0KdPX9Pv7B/72Df2sW/sc0TfyGQiRFFwUIvIiNdc52Pf1I/9Yx/7xj72Tf1a2j9t+ZrLoAQRERERERERuQWHbxARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMSlCjrVmzBhMnTkRCQgJmzJiBw4cP17v+77//jsmTJyMhIQHXXHMNtm3bZvG6JEl49913MWbMGCQmJuLOO+/EuXPnLNYpKirC/PnzMWjQIAwdOhTPPPMMKioqHH5ujuDq/snIyMDTTz+NiRMnIjExEZdddhnee+89aDQap5xfS7jjvWNUVFSEcePGISYmBuXl5Q47J0dxV9/8/fffmD59OhITEzFy5Eg88cQTDj0vR3BH3yQlJeE///kPBg8ejGHDhuH+++9Hamqqw8/NERzdP3/88QdmzZqF4cOHIyYmBqdOnbLaR2v6TG4PHP0eaEua0jenT5/G3LlzMXHiRMTExODLL790YUvdoyn989133+HWW2/F0KFDMWzYMNx99904cuSIC1vrWk3pm02bNmH69OkYMmQIBgwYgOuuuw4//fST6xrrYk39zDFasWIFYmJi8Prrrzu5he7TlL5Zu3YtYmJiLP4kJCS4sLUeSCJqhN9++02Ki4uTfvjhB+n06dPSwoULpaFDh0r5+fk21z9w4IAUGxsrffzxx1JKSoq0ZMkSKS4uTkpJSTGt89FHH0mDBw+W/vzzT+n48ePSAw88IF122WVSdXW1aZ1Zs2ZJ1157rXTo0CFp79690qRJk6THH3/c6efbVO7on61bt0pPPvmktH37dik9PV3atGmTNHLkSGnx4sUuOefGctd7x2ju3LnSrFmzpD59+khlZWVOO8/mcFffbNiwQRo6dKj0zTffSGlpadKpU6ekjRs3Ov18m8IdfVNaWioNHTpUevrpp6W0tDTpxIkT0v333y9deumlLjnnpnBG/6xbt05atmyZ9N1330l9+vSRTp48abWf1vKZ3B444z3QVjS1b5KSkqTXXntN+vXXX6XRo0dLX3zxhYtb7FpN7Z///ve/0pdffikdO3ZMSklJkZ588klpyJAhUnZ2totb7nxN7Zs9e/ZIGzdulFJSUqRz585Jn3/+uRQbGyvt2LHDxS13vqb2jVFycrI0YcIE6ZprrpFee+01F7XWtZraNz/++KM0bNgwKScnx/QnNzfXxa32LAxKUKPccMMN0gsvvGD6XafTSWPGjJFWrlxpc/158+ZJ999/v8WyG2+8UVq0aJEkSZKk1+ul0aNHS6tWrTK9XlJSIsXHx0u///67JEmSlJKSIvXp00c6cuSIaZ2tW7dKffv29bj/uO7oH1s+/vhj6fLLL2/JqTicO/vm+++/l26++WZp586dHhmUcEffaDQaaezYsdJ3333n6NNxKHf0zeHDh6U+ffpY3GgfOHBA6tOnT4M3Xa7m6P4xd/78eZtBidb0mdweOPM90No1tW/MTZgwoc0HJVrSP5IkSVqtVho4cKD0v//9z1lNdJuW9o0kSdLUqVOlZcuWOaN5btWcvqmoqJCuvPJKadu2bdLtt9/eZoMSTe0bY1CCanH4BjVIrVbj6NGjGD16tGmZKIoYNWoUDh06ZHObQ4cOWawPAGPGjDGtn5GRgdzcXIt1/P390b9/f9M6Bw8eRFBQEOLj403rjBo1CoIgNDpdzBXc1T+2lJaWIjAwsNnn4mju7Jv09HQsWbIEb7zxBkTR8z7q3NU3x44dQ3Z2NgRBwLXXXosxY8bggQcesDv8xR3c1Tfdu3dHUFAQvv/+e2g0GlRWVmLdunVISEhASEiIQ8+xJZzRP43RWj6T2wN3vQdag+b0TXviiP6prKyEVqv1qPsNR2hp30iShF27duHMmTMYPHiwE1vqes3tm9deew3Dhw/H2LFjXdBK92hu35SVleGSSy7B+PHj8eCDDyIlJcUFrfVcnnenTh6nsLAQOp0OYWFhFstDQ0ORm5trc5u8vDyEhobaXd/4d337tLUPuVyOwMBA5OXlNf+EHMxd/VNXeno6vvzyS9x8883NOg9ncFffaLVaPP7445g3bx46d+7skHNxNHf1zfnz5wEAH3zwAebOnYsPPvgACoUCM2fO9JjaAO7qGz8/P3z22WdYu3Yt+vfvj4EDB+LQoUP44IMPHHJejuKM/mmM1vKZ3B646z3QGjSnb9oTR/TPW2+9hQ4dOmDEiBHOaKLbNLdvSktLMXDgQMTHx+O+++7Dc889h5EjRzq7uS7VnL7ZvHkzdu/ejQULFriiiW7TnL7p0aMHXn31VSxfvhyLFy+GXq/HLbfcguzsbFc02SMxKEHNJkkSBEGw+7qt1+ouq/t73X3a2kdDx/UUrugfo+zsbNxzzz246qqrMG3atGa22HWc3TfLly9HcHAwbrzxRge01rWc3Td6vR4AMHv2bEyaNAmJiYl4/fXXUVJSgi1btrSw9c7l7L6pqqrCwoULMWLECHz33Xf46quv0KFDB8yZMwdardYBZ+BcjuifhrTmz+T2wBXvgdaK79P6NbZ/Pv74Y6xfvx7Lli2DUql0Qcvcr6G+8fX1xU8//YQffvgBjz76KF555RXs27fPhS10H3t9U1BQgGeffRZvvPEGvL293dAy96vvfTNgwABce+216Nu3L4YNG4Zly5aZMjXbK7m7G0CeLzg4GDKZzOqbsIKCAquooFFYWJjV+vn5+ab1w8PDARi+vTRPiy4oKDClBtvah1arRUlJidW3Pe7krv4xys7OxsyZMzFgwAA8//zzLT0dh3JX3/z777/Yt28f+vXrB8BwYQCAoUOH4uGHH8YDDzzggLNrGXf+vwIMQxWMfHx80LFjR1y4cKGFZ+UY7uqbX375BdnZ2fj+++9NNxJvv/02hg4dip07d2LcuHGOOcEWckb/NEZr+UxuD9z1HmgNmtM37UlL+mfVqlX46KOPsHr1avTp08eZzXSL5vaNKIro2rUrACA2NhapqalYsWIFhgwZ4tT2ulJT++b06dPIzc3FLbfcYlqm0+mwd+9efPnll21q9hZHfOYoFArExsZ61FBaV2OmBDVIqVQiLi4OO3fuNC3T6/XYtWsXBgwYYHObAQMGYMeOHRbLdu7caVq/U6dOCA8Pt9hnWVkZkpKSTOsMHDgQRUVFOHr0qGmd3bt3Q5IkJCYmOubkHMBd/QPUBiTi4uLw6quvelztBHf1zSuvvIKff/4ZP/30E3766Se89NJLAIBvvvkGM2bMcNwJtoC7+iYhIQEKhcLiwldVVYWsrCx07NjRMSfXQu7qm6qqKoiiaPHNhvF3Y2DLEzijfxqjtXwmtwfueg+0Bs3pm/akuf2zcuVKfPDBB1i5cmWbnbrQUe8dSZKgVqud0EL3aWrfJCQk4JdffjHdh/3000+Ij4/H9ddfj7Vr17qw5c7niPeNTqfD6dOnTV+gtEsuK6lJrZpxqpu1a9dKKSkp0rPPPmsx1c3jjz8uvfnmm6b19+/fL8XGxkqrVq2SUlJSpKVLl9qcnm/IkCHSpk2bpBMnTkizZ8+2OSXo1KlTpaSkJGnfvn3S5ZdfLj322GOuO/FGckf/ZGVlSZMmTZJmzpwpZWVlWUwr5Enc9d4xt3v3bo+cfcNdffPCCy9I48ePl3bs2CGlpKRI8+fPl8aPHy+Vl5e77uQb4I6+SUlJkeLj46UXX3xRSk1NlU6cOCHNnTtXGjlypFRUVOTaDmiAM/qnsLBQOnbsmLRlyxapT58+0oYNG6Rjx45JhYWFpnVay2dye+CM90Bb0dS+qa6ulo4dOyYdO3ZMGj16tPTmm29Kx44dkzIzM911Ck7V1P5ZsWKFFBcXJ23YsMHiXsPTrqmO0NS++eijj0xTs6ekpEirV6+W+vXrJ/3www/uOgWnaWrf1NWWZ99oat8sW7bM9L5JTk6WHn30USkxMVFKTU111ym4HYdvUKNMmTIFBQUFWLp0KXJzcxEbG4uVK1ea0qAvXrxo8S39oEGD8NZbb2HJkiV4++230a1bN7z//vvo2bOnaZ17770XlZWVeO6551BSUoLBgwfj448/thij+Oabb+LFF1/EHXfcAVEUccUVV2DhwoWuO/FGckf/7NixA+fOncO5c+es0spPnjzpgrNuHHe9d1oDd/XNE088AZlMhv/+97/QaDQYOHAgVq9eDR8fH9edfAPc0Tc9e/bE8uXLsWzZMtx4442Qy+WIj4/HypUrPa7KvDP65++//8ZTTz1l+v3hhx8GALz66qumWjWt5TO5PXDGe6CtaGrf5OTkYOrUqabfV6xYgRUrVuD666/Ha6+95urmO11T++frr7+GRqMxfSYYPfTQQ5g7d65L2+5sTe2bqqoqvPDCC8jKyoKXlxd69OiBxYsXY8qUKe46Badpat+0J03tm5KSEjz77LPIzc1FYGAg4uPj8e2336JHjx7uOgW3EyTJg3JSiYiIiIiIiKjdaJ/hLCIiIiIiIiJyOwYliIiIiIiIiMgtGJQgIiIiIiIiIrdgUIKIiIiIiIiI3IJBCSIiIiIiIiJyCwYliIiIiIiIiMgtGJQgIiIiIiIiIreQu7sBRET1WbZsGd577z2r5SNHjsSnn37q+gYRERG1UbzmEpE7MChBRB7P398fK1eutFpGREREjsVrLhG5GoMSROTxZDIZBgwY0OB6VVVV8PLycn6DiIiI2ihec4nI1VhTgohapYyMDMTExOB///sfFixYgCFDhuCBBx4AABQVFeG5557DqFGjkJCQgJtvvhlJSUkW25eUlGD+/PkYMGAAxowZgw8//BCvv/46Jk6caFpn2bJlGD58uNWxY2Ji8OWXX1os+/7773HVVVchPj4eEyZMwMcff2zx+pNPPolp06Zhx44duOaaazBgwADccsstOH36tMV6Op0OH330Ea644grEx8dj3LhxePLJJwEAa9aswcCBA1FeXm6xze7duxETE4MTJ040sReJiIgaxmtuLV5ziRyPmRJE1CpotVqL3yVJAgC88cYbmDRpEt59912Iogi1Wo277roLJSUlWLBgAUJCQvD111/jzjvvxB9//IHw8HAAwFNPPYU9e/bg6aefRlhYGD755BOkp6dDLm/6x+LKlSvxzjvv4J577sGwYcNw9OhRvPvuu/D29sbtt99uWu/ixYt44403MHv2bKhUKrzxxht45JFH8Ouvv0IQBADAc889h59//hmzZs3CsGHDUFxcjA0bNgAArrnmGrz++uvYuHEjpk2bZtrvunXrEBcXh759+za57URERHXxmstrLpErMShBRB6vqKgIcXFxFsteeuklAED//v3xf//3f6bl33//PU6fPo1ff/0V3bp1AwCMGjUKkydPxieffIInnngCp0+fxqZNm/DOO+9gypQpAIDhw4djwoQJ8PPza1LbysrK8P7772P27Nl46KGHAACjR49GZWUlPvzwQ9xyyy2QyWQAgOLiYnz99demdkmShDlz5iAtLQ09e/ZEamoqfvjhBzzzzDOYOXOm6RjGNgYEBODyyy/H2rVrTTdI5eXl+OOPPzB//vwmtZuIiMgWXnN5zSVyNQYliMjj+fv7Y/Xq1RbLlEolAOCSSy6xWL5r1y7ExcWhU6dOFt/0DB06FMnJyQCAI0eOAIBF2qivry9GjRqFw4cPN6ltBw8eREVFBSZPnmxxvBEjRuCDDz5AVlYWoqOjAQDR0dGmmyMA6NmzJwAgOzsbPXv2xL///gsAFt/I1HXDDTfgzjvvxPnz59G5c2f8/vvv0Gq1uPrqq5vUbiIiIlt4za3Fay6RazAoQUQeTyaTISEhwWJZRkYGACA0NNRieWFhIQ4dOmT1LQ8AdOnSBQCQl5cHX19fqwJddffVGIWFhQCAq666yubrFy9eNN0g1a1erlAoAADV1dUADN9O+fj41PvN0fDhw9G5c2esXbsW8+bNw9q1a3HppZciKCioyW0nIiKqi9fcWrzmErkGgxJE1KoZx4UaBQYGIj4+Hs8//7zVusZvesLCwlBeXm5VOTw/P99ifZVKBY1GY7GsuLjY6ngA8NFHH9m8werevXujzyUoKAgVFRUoKyuze5MkCAKmT5+O7777Dtdddx32799vVeCLiIjIGXjN5TWXyBkYlCCiNmXkyJHYsWMHOnbsaPdbGOM3QH///bdp7Gh5eTl27txpcWMSGRmJ8vJyZGdnIzIyEgCwY8cOi30NHDgQXl5eyMnJsUprbaoRI0YAAH766SeLYl11XX/99Vi6dCmefvppREZGYvTo0S06LhERUXPwmktEjsCgBBG1KVOnTsU333yD//znP7j77rvRuXNnFBUV4fDhwwgPD8edd96J3r17Y+LEiXj++edRVlaG8PBwrFq1yiq1dOzYsfDy8sLTTz+Nu+66CxkZGfjmm28s1gkICMBDDz2El19+GZmZmRg6dCj0ej3Onj2Lf//9F++//36j296jRw/cdNNNeO2115Cfn4+hQ4eipKQEGzduxDvvvGNaLzIyEmPHjsWWLVtw//33m4p6ERERuRKvuUTkCAxKEFGbolKp8Pnnn+Pdd9/FsmXLkJ+fj5CQECQmJloU2Xrttdfw/PPP45VXXoGPjw9uvfVWJCQkYOPGjaZ1QkJCsHTpUrzxxhuYM2cO4uLi8NZbb5m+6TG69957ERERgc8++wyrV6+GSqVCt27drNZrjP/7v/9Dx44d8f333+Pjjz9GSEiIzW9lLrvsMmzZsqXeAl1ERETOxGsuETmCIBknHiYiaueM85H//fff7m5Kg+bNm4fc3Fx89dVX7m4KERFRk/GaS0RGzJQgImpFTp48ieTkZPz55594++233d0cIiKiNovXXCLXYFCCiKgVmT17NgoLC3Hrrbdi8uTJ7m4OERFRm8VrLpFrcPgGEREREREREbmF6O4GEBEREREREVH7xKAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRW8jd3QBqHfR6CTqdvsX7kctFaLUt309bxL6xdP58Ojp37mL6nf1jH/vGPvaNfY7oG5lMhCgKDmoRGfGa63zsm/qxf+xj39jHvqlfS/unLV9zGZSgRtHp9CgqqmjRPkRRQGioH0pKKqHXSw5qWdvAvrH2n//MxE8/rQfA/qkP+8Y+9o19juqboCAfiKLMgS0jgNdcZ2Pf1I/9Yx/7xj72Tf0c0T9t+ZrL4RtERERERERE5BYMShARERERERGRWzAoQURERERERERuwZoSRETkMJIkQa/XQfKA4aSiKECtVkOr1XJ8ax2N7RtBAERRBkFom4W1iKh1cte1htcV+9g39WtM/7Tnay6DEkRE1GKSJKGsrBjl5SUAPOdmJC9PhF7PSuC2NLZvRFGG0NAOkMnaZnEtImo9POFaw+uKfeyb+jWmf9rrNZdBCSIiajHjTWJAQAiUShUAz4jyy+UCtFrPCZJ4ksb1jYSiojyUlBQgODjcJe0iIrLHE641vK7Yx76pX8P9036vuQxKEBFRi0iSZLpJ9PHxc3dzLMjlIgB+a2NLY/vG3z8IhYU5kCQ9BIGlqIjIPTzlWsPrin3sm/o1pn/a6zW3/ZwpERE5hV6vAyDVfGtFbY1MZvj+gim5ROROvNZQe9Ber7kMShARUYvUFhrzjCEb5GiGf1dPKF5KRO0XrzXUPrTPay6DEkRERERERETkFqwpQeQgOl01ikpPo7g0DZVVOaiszkVFVS602jLoJR30eg0kSQ+5zAsKuS/kcj+olIHw9e4If99o6NALki4CosC0RCIiIiJynVWrPsLOnf9g1aov3N0UaocYlCBqJr1ei7zCw7iQsw35RUdRXJYKSdI1f4dJACAiwK8bQgL7IjgwFhEhQ+Dn09FRTSYiMy+//Dx+//1Xq+W//roJQUFBrm8QERG1OS+//DwqKyvw0ktvmJatX/8LFi9+BY8+ugDXXnt9k/Z38eIFfPrpShw4sA/5+fkICwvD5MlXYebMuyGXN//R7pZb/oMbbrip2du3VjfccA1uueV2TJ/e/s7dkzAoQS6l02sgteJBUpIkIb/oMM5d2IgLOf9ArSk2vaZShiAksC+C/PvA17sDvL3C4e0VDoXcD6KogCjIIQgitLpKaLTl0GjLUVVdgPLKC6iovAi19iJy8k6gpCwNJWVpOJu5HgDg6x2NyLCh6BA2EhGhQyCK/G9L5CijRo3FE088Y7EsMDDQ4netVtuiGz0iIiKj77//Bh988C4WLlyESy+9vMnbnzt3FpIk4fHHn0Z0dCecOZOK119/GdXV1Zg9e26z2+Xj4wPAp9nbt2VarRYymQyCwHomzsK7rDYuLS0NTz/9NMrKyqBUKvH0009jyJAhbmnLnsOv4NyFDRAEGZSKQPh4hcPftxuCAnojPHgAAv17euzUN5KkR2b2Fpw4swbFpSkAAEGQITJ0GKIjL0Fk6BB4e0U06sNKJlNBpQyyWCaKAkJD/ZCfX4byilwUlpxEftFhZOfvQ3FpCtLOZyLt/E9QKgIRHTkOnaImIjx4gMf2F1FroVQqEBoaZrHshhuuwbXXXo+zZ89g+/atmDz5Ksyf/wSSkg5i+fJlOHnyJIKDg3HppZNwzz2zoVQqAQD5+Xl4/fWXsG/fXoSHh2P27LlYvPgVzJnzCKZMuQYHDuzDww8/gD/+2FZz8wfs2LEdTzzxKP75Z5/p+Nu2bcEnn6xAevpZhIdH4Nprr8ctt/wHomj4/z5mzBA8+eRCbNu2Bfv370XHjtF47LGn0b//ANM+Dh06gBUrPsDJk8ehVKoQH5+Al156A9988yW2bPkLq1d/ZXHON998Pa67bjpuueV2Z3QzEREBWL36Y3z55ad45ZXFGDlyTLP2MWLEKIwYMcr0e3R0J6Snn8P//vdTvUGJkpISvP/+Evzzz1ZotVrExSVg3rzH0LVrNwDWwze0Wi2WLXsbGzb8BrlcjmnTZuDMmVR4e/vgmWeeBwBUV1djxYoPsGnTRlRUlKNXrz6YM+cRxMcnADBkhLz//hI888wiLF36NgoK8jFs2HA8+eRz8PMzTOu6efMmfPLJCmRmZsDb2xsxMbF4882lEEXRlGXSvXtPrF37HXQ6HaZMuQZz5jwCmUxmpw29MWfOo6Y2APavifPnz0VW1kW8885ivPPOYgDAP//sM7X7iSeexfLly5CRcR4//7wRzz77BPr27YeHHnrEtO9Zs/6DUaPGYNas+wEYrtELFjyDLVv+RlLSAURHd8LChYsgijIsXvwyUlNTkJDQH8899yKCg0Oa9R5oixiUaONUKhVeeeUV9OjRA6mpqXjwwQexceNGt7QlwK8rAvw6Qa2pRLW6GNXqAhSWnET6RUN7vJQh6BQ1EV07TkZQQG+3tNGW3IKDSDqxDMVlqQCAIP/e6NH5ekRHjoNS4e/w43l7hcHbKwwdI0YjAUBVdT6y8/YiI3sLsvP34kzGLziT8Qt8faLRo9N16BZ9JZSKAIe3g6g9++qrz3H33feZbjIyMzPw2GPzcP/9D+KZZxYhPz8Pb775KrRaLR5+eD4AQ4puUVEh3nvvIwDAO+8sRkVFRZOOm5R0CK+88jweeeRxJCT0R3r6ObzxxstQKJSYMeMW03qrV6/EQw89grlz/4tVqz7CokXP4LvvfoZcLkd6+jk8+ugcTJ16A+bPfxIAsHfvbkiShClTrsEnn6zA6dMnERsbW3PMg7h48QKuuOLKFvcbERFZkyQJy5a9jV9//RlvvbUMAwYMsnj9888/wRdfrK53H1988T2ioqJsvlZWVoaAgPrvBZ977kl4e3vjrbfeg4+PN77//ls8+ugcrFnzA7y9va3WX7PmM/z11x949tkXEB3dGV9//QX27v0X48ZNMK2zZMlinDt3Fi+++BpCQ8Pw119/4NFH5+Crr35AeHgEAKCiogI//vgdXnzxVVRVVeHZZ5/El19+igceeAh5eXl4/vln8OCDD2PcuAkoLy/HgQN7Ldrx77+7oVJ54b33Psb58+l49dUXEBYWjltvnWmzDX/+ucGiDfVdE195ZTHuvPNWXH/9DZgy5RqL41ZUVOCbb77EM88sgq+vL3x9fevtX3OffroSc+c+ikcemY8lS97ECy88h5CQEDz00Dx4efni//7vKaxY8QGeeGJho/fZ1jEo0cZFR0ebfu7RowdKS0shSZJb0o/69rgNo4fej/z8Muh0OlRV56O47AwKi48hJ38/8ouPIiX9B6Sk/4Dw4AHo22MmIkIHu7ydRmpNKZJOvIv0i38CAEIC49Cv192ICBns0v7zUoWia/RkdI2eDLWmBJnZ25F+YQPyig7jyKkPcDRlJbp0mIQ+3W6Bv29nl7WLqC3Yvn0rJk0aa/r9kksuBQAMGTIcM2bcalr+2msvYvLkq3DDDTcDADp16ow5cx7BwoULMHfuf3H+/Dns2bMbn3zyJfr06QsAmD//Cdxzz8wmteeTT1Zg5sy7MXnyVQAM34Ddccfd+OGHby2CEldffR0mTLgMAHD33ffh1lunIzMzA127dsOXX36KhIT+mDdvvmn9nj17AQC8vLwwbNgI/PbbL6agxPr1v2DkyNEICQltUluJqHF0erWp0DU51r7kV3Eh5x+XHjM6cgwGxz3VpG127vwHGo0G7723wiogAQBTp07HxImT6t1HWFiYzeWZmRn48cdvMW/eY3a3TUo6hJMnT+B//9sIhUIBAHj00cexbdtm7Nz5Dy691PrYP/74HWbOvBtjxowHADz++NPYtWuH6fWsrCysX/8L1q1bb7p+3H33Pfjnn23444/fcdttdwAANBoNHn/8aVNA5corr8b+/YbAQ35+HnQ6HcaPn4ioqA4AgF69LL+YVKlUeOKJhVAqlejevQcyMs7j22/X4NZbZ9psw5133oOdO/8xtaGha6IoivDx8bHKmtRoNHjssafQo0dPu/1qj/k1+pZb/oNHH52D++57EAMHDoZWq8fVV0/Fzz//2OT9tmUMSni4vXv3YtWqVUhOTkZubi6WL1+OCRMmWKyzZs0arFq1Crm5uYiNjcXChQuRmJhota+//voLsbGxHjEeShBEU82FqLBhiO15J6qqC3A+62+knl+L3MJDyN1/CFFhI9C/71z4+XRyafvyCg9j75GXUFGVDS9VGBJj5qBT5AS3951SEYDuna5C905Xobg0DWkZPyP9wh84m/kbzmb+jk5Rl6Bv99sR6N/0D1Ci9mjIkOF49NHHTb/7+PjgvvvuRN++sRbrpaScRmrqaWzYUFsYU6/Xo7q6Gvn5+Th37iwUCgV6944xvR4TE2u6+Wus1NRTOHIkCatXf2xaptPpIUl6i/V69Ohl+tl4o1pYWICuXbshJeU0xo27xO4xrrrqWrz55quYN+9RVFdrsHnzX1i4cFGT2knU1lVW5cJLFeaQ6/76rTdAp6vC1Mv+cEDLqDXq1asPCgrysXLlcrz55lJ4eVkGqAICAhEQEGhna/vy8nIxf/5cXHrp5Vbf9JtLSTmF8vIyTJky0WJ5dXU1LlzIsFq/rKwMBQX5iI2NMy1TKBQWAYO0tBTodDrcdNNUi23VarXFer6+vhYZHqGhoSgsLARgCEAMHDgYM2fejBEjRmHYsBGYMOFS+Pr6mdbv3buPaZgkAMTHJ+CDD/JQVlbWqDY0dE20R6VSNSsgAQA9e9aevzFY0r17D7NlIaY+IAMGJTxcRUUFYmJiMG3aNMydaz1ObP369Xj11VexaNEi9O/fH5999hnuuecebNiwASEhteOUMjMzsXjxYqxYscKVzW8SL1UIene9Ab26XI/M7K1IPv0xsvJ2I3fnIST0eQA9Ok91SVDgbOZ6HDj2JiRJh85Rl2JA7KNOGabRUoH+PTAw9lHE974Paed/xumz3yIj629kZP2NTlETEd/rPvj6dHB3M4k8mre3Fzp1ss4wqpvKWllZgWnTbsT1199otW5QUBAkCQ1+PhlrQgC1xX61Wq3FOhUVlbj33tkYO3Z8vfuyLLxpOK5er7e9ch1jxozHm2++hn/+2Yby8goolUqMGtW8sc1EbU1ZWSm+/n4xiirX45rJj6Bvj5bVWZEknakotiTpIAgyRzSTagyJb1rGgiPI5SK02sZ93hpFRkZi0aJXMHfu/Xj88XlYvPhdi8BEc4Zv5OXlYu7c+xEXl4DHHqu/HyorKxAeHoF33/3Q6rX6hn3Uva6ZF6uvrKyAXC7HJ5+sMa0nkwnQ6SSLoQ51C0ULgmAKtMtkMrz77oc4ciQJu3fvxNdff4FVqz7CqlVfmB7m7V1bBcF2G4yaMtzClrqBI8BwHa9bsL/udRywPGdjsyyXCVZfNrR3DEp4uPHjx2P8ePs3p6tXr8ZNN92E6dOnAwAWLVqELVu2YN26dZg1axYAQ7TzwQcfxLPPPouuXbu6pN0tIQgydIqaiA4RY3DyzFc4kfY5Dp1YgvyiZAyOWwCZTOW0Yx9L/RTHU1dDEGQY1O8xdIu+2u3ZEQ1RyH0R0/1W9OwyDWczfsXJs18hI+tvXMjejp5dpqNvj9s9MqhC1Jr07h2DM2fSbAYwAKBbt25Qq9U4ffqkafjGyZMnoNFoTOsEBQUDAPLz8+HjY7hZSkk5ZbGfPn1icP78ObvHaYxevXrjwIF9uPPOe2y+LpfLccUVU/Drr/9DVVUVrrjiSs4uQlRj1afPY9eenwAAwcGrWhyUqKqu/TZUq62EQuGHMxm/4kLOdowc8DJn1GpHOnaMxrJlH2Hu3PuxYMEjeOONJaYH36YO38jNzcHcuQ8gJqYvnn76/8yC3rb16dMXeXm5UCgUiIy0XZfCnJ+fH0JCQnHs2FHExxuyrzUaDVJTU0y1Inr37gOtVovi4iLTOs0J2IiiiP79B6J//4G4++77cM01k/Dvv7tw5ZVXAwBOnToJtVptypY4ejQZoaFh8PX1s9mGuhq+Jiqg0zWuzUFBwSgoyDf9XlFRYTPThJqOpftbMbVajaNHj2L06NGmZaIoYtSoUTh06BAAQKfTYd68eZgxYwbGjGnZN2GiKLT4T1P2o5CrEN/7Lkwc8SF8vCJxPmsTtu17FFpdmUPaUvfPibTPcTx1NeRyX4wb8iZ6drkWMpnolGO1tG9s/VEqvNGn+424cuxXiOs1C4Iox+lz32DjP7ch/cIGCIJj/g3d1R+Oeg+2xT+e0Ddt3W23zcShQwexZMmbOH36FNLTz2Hr1r/x/vvvAgC6dOmGIUOG4fXXX8bx40dx/PhRvPPOGxbDNzp16oyIiEisXm0o1rV58yb89tv/LI5zxx2zsH79L/j005U4cyYNZ86k4Y8/fsdnn61qdFtvv/1OHDmShHfffQtpaSk4cyYN3333NaqqqkzrXH31ddi9excOHtyPKVOubdR+2+O/O7UvZWVl2F0TkACAM6ebVqjWlsqqHNPPGp1hfweOLUZW3m4Ulpxs8f6pdTEGJi5cyMSCBY+YPpcDAgLRqVPnev8Yg8fGDInIyEg89NAjKCoqRH5+HvLz8+wed8iQYejXLw5PPTUfe/fuxoULmUhKOoT3338X586dtbnN9Okz8Pnnn2DHju04e/YM3nzzVajV1aYv67p06YZLL52EF154Ftu2bcGFC5lITj6C1as/xsGD+xvVH0ePJuPzzz/BiRPHkJV1EX/99QcqKyvRpUs30zrV1dVYvPiVmhmxtuCLL1bjxhtvttuGo0eTLdrQ0DWxQ4cOOHToAHJzc1BUVFRvewcOHIwdO7bj33934cyZNLz22oswZitSyzA824oVFhZCp9NZFb4JDQ3FuXPnAADbtm3D7t27kZeXh++++w4A8MUXXzRYobcuuVxEaKhfwys2QnBw09KpQkOHILrDl9i4bT6y8w5j56EFuHriB1ApHfftf/Kp73A0ZRUUch9cfen7iAyzHW11tqb2jW1+iIycg8GJN2Hv4Q9xPOUn7E1+FZm5f2LcsGcQFOD52TIAoFDIrN5zjumftsmdfaNWq5GXJ0IuFyCXe16s216bBEGAINhusyhaLo+NjcUHH3yE5cs/wOzZd0MUZejUqTOuuupq03rPP/8iXn75BcyZcy9CQ8Mwd+4jeP31V0z7ksuVWLToJbzxxqu4885bMHDgIMyadR9effVF0z7Gjh2LN954B598sgJffLEaCoUC3bv3wPTpMyzaI5PVts/4t0wmQi4X0aNHdyxZ8j4+/HAZfv75R3h5eSMxsT+mT7/BtG7v3r0QE9MXer0OMTF9GuhBAaIoIjjYx2JcL9lWWVmJKVOm4KqrrsJjj9kvPEeeJz39HCQAnbp442JmFTIzqiy+oW2Oyupc6PUSMtMrkdM3E107196zyUT+f2qPzDMmnnjiUbz++js2hwrYs2fPbmRknEdGxnlcf/0Ui9fMp5c2J4oi3nxzKZYvfx8vvfQ8SkqKERoahoEDB9t9JrjttjuQn5+HRYsWQqEwTAmamDjA4v/DwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllVzTqXHx9fXHo0EF8991XqKioRMeOHbFgwTOIi4s3rTN8+AiEh0fgwQfvgU6nxZVXXoObb67NYGqoDV26dMVbby3DRx+9b7omJiQk4rrrpgEAZs16AIsXv4KbbpoKtVpttw8BQ0D/1KmT+L//expeXl64++77kJnJTAlHEKS6A2PIY8XExFgUuszOzsa4cePw/fffWxS2fP3113Ho0CF8/fXXDju2RqNDSUlli/YhigKCg31RWFgOvb7pbzuttgLb9j2O/KIjCAtOxPih70AUm1ZEzpbcgkPYuvdRCBAxbujbCA/p3+J9NlVL+6Y++YXJ2Hd0MUrKzkAUFOjX6y707XGLx49rvfbaK/G///0OwLn909p5Qt9otVrk5GQgLCza44YBNCeV1JGuuupSzJnzSL0FyNxBr9djxozrcOutMzFtmnWdDHNarRZ5eZmIiOhk9e8bEOANhcKzP0tc7Z133sHZs2fRuXPnZgclNBodiopa9i29KAoIDfVDfn4ZPzfrsNc3Gzb8ik+/mofBI4KRfaEK2RdkePrxrxEb269J+z+W+ikC/XogOnIcTp/7AZ9+8QJST5WjT/erMO+R+diy1zArz4RhHyIkqGn7dgVPfe8YP4vcfa1x93XFXbRaLWbMuA433ngLbrnF9rAmR/fNyy8/j8rKCrz00hsO26c7NaZ/6nufBwX5tNlrrmfdPVKTBAcHQyaTIS/PMl2roKDA7rRBLeGoC5NeLzVrX6LojdGDXsf2fY8ir/AwDh1/DwNiH2lRWyqr8rDr4HOQJB0GxT2G0KBEt16Am9s39QkOjMOlI1bi9LnvcCx1NZJPr0BW7m4MSXgGvt4Njyt0p7p94Yz+aSvc2Tf8N2ldCgrysX79LygrK8XkyVMa3qAG//817OzZs0hLS8OECROQlpbm7uZQE505axhOERqmhFwmIOeiDsePH21SUKKyOh/HUw0FC6dfvhWFRRk4k2IIMJWVl+LfPX+Zsr11eo293RC53YULmThwYC8SEweiuroa3367BsXFRaapLokcyfPybKnRlEol4uLisHPnTtMyvV6PXbt2YcCAAe5rmBMp5L4YMeAlqBRBSD2/DukX/2z2viRJwqET76BaU4Qena5Dt+jG35y3NqIoR0z3W3HpyJUI8u+DvKLD2LTr7hb1HxG1TtdeewW+/fYrPP30c6aCm2SYgvuBBx7AmDFjEBMTg82bN1uts2bNGkycOBEJCQmYMWMGDh8+bPH666+/jv/+97+uajI5UGnZBaSkHoZCISIgUI4O0V6QyeQ4efK4aWabzOxtOHX2W5vbazRl+GPHTBw9XTudb7W6GKdOpUGvl+AfIEdh8XH8ueUt0+t6Se3ckyJqAVEU8euv/8O9987EQw/di4sXL2DZso8sZgAhchRmSni48vJypKenm37PyMjA8ePHERYWhvDwcNx1111YsGAB4uLikJiYiM8++wxVVVW4/vrr3dhq5/LxisCwxP/D9v3zcej4EkSEDIGXKrjJ+7mQsw0Xcv6Bj3cHJPSZ7YSWep4A366YMPwDHE35BKfOfo29R15CXmES+vd9mGNbiZzgt9/+cncTrBjHy7bXFGR7WjoF96ZNm9CtWzd0794dBw8edMMZUEt887/pyMzOQVQHLwiCAIVSQMeOQaioqMDWncsQGRWA42mfAgC6d7oaCnltQE+SJGTl70Fp+TmUlp8zLS8qOYWUU5kAgAFDgrBrWx5ysw1ZR6IoQKdjUII8V1RUByxf/olb2/DMM8+79fjkOgxKeLjk5GTMnDnT9PtLL70EAHjooYcwd+5cTJkyBQUFBVi6dClyc3MRGxuLlStXIiQkxF1NdomI0EHo2fk6pJ5fhyOnPsTQhKebtL1WW4lDx5cAAAb1ewxyubcTWumZRFGBhD73IzJsKPYcfhFnMn5BcWkqhvdfBB+vCHc3j4jILVo6BXdSUhLWr1+PjRs3ory8HFqtFgEBAbjvvvua1Z6Wzm5iPjMPWbLVN/l5hgBBaHhtgL5r91CcTxGwefsn6D84yLRcr6+CKNYWYk5N/xkHjr1tdZyL2cnIzMiHt7cMEVEqhIarkH2xCsWFGgSHKgFoPfLfx1PfO57WHiJnam+zXDEo4eGGDx+OkyfrnzLq9ttvx+23t2we7dYortc9yMzeivSLG9Et+qomFahMy/gZVeoCdIqaiMjQIU5speeKCBmES0eswO6k51BQfAx/774PI/ovQliw6wt9Utv07LNP4siRww2v6CAJCYl48cXXXHY8aj+MU3DPnl2bVVd3Cu758+dj/vz5AIC1a9ciLS2t2QEJd8541Z6Y901+bjUAICTMPCjhj7xMBdIyqpA4SDJNhRgQIEeAf+2/z/cbrAMSAJCamgJBkNCpq7ehKHGIAtkXq1BYYAhKePs47t/ZGTztveNJMz25+/iejH1Tv4b7p33OeMWgBLVaCoUfEmIexN4jL+F42qcID3mnUdtpdVU4dfYbAAJie9zh3EZ6OG+vcIwb+i6STizDmYz/Ydu+/2Jo/FPo3IFFjKjlGCCgtqIxU3A7klard/uMV22Zrb7Jz1NDgKHIpZFMoUNISAQOn9CiuEiLoGDDjF95+YXQqIMaPE5S0mlodVp07uYDAAgOMWxfWKAG4IuSklLk55c59NwcwVPfO1qtFnq9HlqtBMB9Q8849M0+9k39Gjf7hgS9Xo/CwgrI5ZZDvNryjFcMZVGr1jlqInx9opFbcACFJfVnlBidyfgfqtWF6BQ1AQF+3ZzbwFZAJioxqN98DIydD0nSY8+RF3HyzNfgbMHUlv3447eYPPkSUwE7AMjPz8OYMUPw1FOW0zhu3LgeEyaMRHV1VbOP99dff2LMmCFYuHCBzdf/7/+exqefrgQAjBkzBBMnjkZOTrbFOg89dB/ee29Js9tAjidJtd+em5s2bVqzpwM1Ms520pI/jtpPW/xj3jeFhQWoKNchIEiBXt1qi17rdNXo188w88a5tHLTcq22yrStTqe1OcV2WakWFzNz4eenQEioIRhhGLIBFOZravZT7fZ+aG3vHaL2or29/xmUoFZNEGTo0/UmAKjJfqifJOmRcu4HAEBsj5kNrN2+9Oh8LUYNfBky0QvJp5cj6cS7kCSdu5tF5BQDBw5GWVkZTp2qDWYeOnQAERGRSEo6aBGUO3ToAGJj46BSeTXrWNnZWXj//SVITBxg83WtVot//92F0aPHWSxfvfpjm+uT67l6Cm5yrbPnUgEA0Z06Ykj8UxjR/0UAgF6vRmJiAgQBOJtWAZ3O8LlQXHYGF3J2AADKK7NN18qI0KG1+0wth17SoEevYFPgysdXBqVKRHGRxvCQIXFKUCIigEEJagO6dpwMlSIIGVlbUF55sd5184uSUVGVjbDg/gjw6+6iFrYeHcJHYdzQJaYpV/ceeQV6vdbdzSJyuO7deyIoKBgHD+43LTt4cD8mT74KCoUCKSmnLZYPGtS82jN6vR4vvfR/uOOOWYiO7mRznUOHDsDPzw+9e/cxLZs+fQbWr/8F6elnm3Vccqz2OAV3e5KefgYAEBEZCACIjhwHUVRCp6uGt48SHTt5Q12tR8Y5w5Ca/Udfw65DT6OyKhcVVVkAgC4dLkff7rcBMHzDeTa1AnpJix69A03HEQQBwSFK6PUSSoo00OsZlCAiAhiUoDZAJlOhe+drAeiRkWU9r7y581mG6fk6R7Fmgj0hgbG4ZPgH8PGKwvmsTdib/DIDE9TmCIKAAQMGWQQlDh06gIEDB2HAgIGm5Xl5ucjIOI+BAwcDAG6/fQYmTRpr98/8+Q9bHOerrz6Hl5cXrrtumt22/PPPNowePdZi2YABgzB48DCsWPGho06ZGlBeXo7jx4/j+PHjAGqn4M7NzQUA3HXXXfjmm2+wbt06pKam4vnnn2/zU3C3F+nnDEGJqKja6cVlohI6vRp6vQa9+xqKUR5PLrFIodZoy6HTGYZ1yeU+UMgN650/W4nKSh2iOnrD28dyeI+xrkRBgYZTgpJHmj37bmzd+rfp99OnT2HWrP9gwoSRuPPOW1FSUoxrr70Cubk5bmwltTUsdEltQnTkeJxI+xwXcrYjpvutNtfR67XIyNoMQZAhOtL+tG8E+PlEY9zQd7Ft3yPIyPobkqTDsITnIIr8yKC2Y+DAwfj44w+g1+tRXFyEjIzziI/vj/Pnz2Pv3n8xY8YtOHBgP5RKJeLjEwAAb775LrRa+0E6lUpl+vnkyRP44YdvsWrVF/W2Y8eO7Viw4Cmr5Q88MAf33DMTJ04cQ9++/Zp5ltRYnIK7fdJoNMi8kAmlSkRwsL9puUymQlV1PvYffR3hkSqER6iQm1ON9DMV6NbTMCuFJOlMgQWZqIJC7ge9XsLx5BIAQGxcgFU2hKmuRJ6awzfagTFj6s+yu+uuezFr1v0uacuJE8excuWHOHHiGCorKxEWFo74+EQ8+eSzUCgMwbLt27egvLwc48ZNMG334YfLEBERiZdfXgxvby8EBATiyiuvxqpVH+HJJ591Sdup7eMTBrUJgX494eMVhYLiY6iszoe3KtRqnZz8fVBrihEVNhIqZaCNvZA5X+8ojB+6FNv2PoLM7K34V3oewxOfZ2CC2oxBg4aY6kpcuJCJmJhYeHt7Y8CAgVi5cjkkScKhQ/vRr1+8qZ5EVFSHRu1brVbjhRcW4pFHHkNoqP2aA6mpKSgpKcLAgdY3rn369MWECZdi+fL3sGTJB807SWo0TsHdPp0/nw6tVo3wCBXk8tq6MaJoCB5k5+8BAMQPCMDmP3KRdKAYHaK9oPKSQa/XQKc3TCUqE5VQKHyRcqIMpSVahEeqEBwmWQUljEUvC/LV0OmZKdHW/fzzBtPP69f/gnXrfsDHH39mWubt7WP6WZIk6HQ6yOWOv88qLCzAo4/Owbhxl+Cddz6Aj48PMjMzsHnzX9DrdQAM78sffvgOV155jUUB38zM87jxxpsRFRVlWnbVVdfgzjtvw5w5j8Df37/u4YiajE8X1CYIgoCOEWOQkv4DLubsQI/O11qtk5mzDQDQucOlrm5eq+XjFYHxNRkTF3K248CxNzE47gmb1eaJWpvu3XsgODgEBw/ux8WLmRgwYFDN8p4QBCAl5TQOHTqASy+93LTN7bfPQHa2/do1iYkD8dZbS5Gfn4dz587i//7vadNrxpk+xo8fjh9++AXh4RH455+tGD58lN2b0HvvfRC33XYD9u/f64hTJqI6zp5NgyTpEB6pgkyszXQy/xkAwiJU6NHbF2mny7F7ewHGXhoGvaStDUrIVMjOKkByUglEUcDAoUHQaiusAvnePjJ4eclQXKSBurpl076S5zMPSvv4+EAURdOyAwf24eGHH8Cbby7FRx+9h7S0VCxf/gnWrv0elZUVeOmlN0zbLly4AN7ePnjmmecBANXV1Vix4gNs2rQRFRXl6NWrN+bMedSU1VfXkSOHUV1dhQULnoFMZpgtJjq6E4YNG2Fap7CwEAcO7MX8+U+YlhkzPZYseRNLlrxpyuzo0qUbIiIM17Arr7zaMZ1F7RqDEtRmGIMSF3K22wxKFBQdAwBEhAx2ddNaNW+vcIwd/Da27JmDcxd+h5cqBPG973N3s4gcYuDAwaagxIMPzgNgCHImJg7AX3/9gfT0c6Z6EkDjh2+Eh0fg888tZwT6+OMPUVVVhblzH0VwsCHl/59/tuHGG2+2u79OnTrj6quvw/Lly5o9+wcRWauozMe2vU/h6LFAU1BClClNr2u0ZVbbJA4KRH6uGjnZ1dixJR/D4ktNwzeyLhZj9/YvoNNJSBgYiMAgBfSSBlptBQABgKEWhSAICA5V4GKmDrm5Ba44VXAULycAAQAASURBVPJwH330Hh566FFERkYhMDCoUdssWbIY586dxYsvvobQ0DD8+ecGPProHHz11Q8ID4+wWj8kJARqtRr//LMN48ZdYvPLpcOHD8HHxwedO3cxLfv55w249947cP31N2DKlGssMjtiYmKRlHSQQQlyCAYlqM0IDUqAUhGAnIID0GorIJfXfnBqtOUoKT8LH68oeKk4/repfLwjMWbwYmzZMxcnz6yBShmM3l1vdHeziFps4MDB+OCDd6FWq5GY2N+0vH//gVi1akXNrAu13zw1dviGXC5Hjx69LJb5+flDJpOZlufn5+H06ZMYMWJ0vfu66677cNNN10GSwNoSRA5yIHklLuTsxa59F9C982UIDJJDJtYGJaqq86y2UShEjJkQiu1/5yPrQhU+/GA1wiPlOHs+F9BuRZB/T/SK8UNMPz8IggySpINWVwmF3M8iyBESpsTFzCpkZTEo0VI//vgdjh8/5tJjxsfHY+rUGxy2v3vvfRCDBw9teMUaWVlZNUNB1iMkxDBc+c4778HOnf/gjz9+x2233WGjzYm49daZeO65J+Hv749+/RIwdOhwTJ58lWn4RXb2RYSEhFoELEJDwyCKInx8fKyGIoaFhSE1NaU5p0xkhbNvUJshinKEBiVCkrQoKTtr8VphyUkAEoID+7qlbW1BgF93jB70GmSiCodPvofzFze5u0lELTZo0BBUVlaid+8Y+Pr6mZYPGDAYlZUVNfUkVPXsofl27NiOhIT+CAgIqHe9sLAw3HDDzVCrq53SDqL2SKHwQX6uGnq9hOjoCAiCYBGUsMfHV46JV4SjZx8/ZFzcjuPHjiI3pxoBAf64/vobMGBIIARBgCDITNvU3W9ITbHLbAYlCEDfvrFNWj8tLQU6nQ433TTVYvankyePIzMzw+52Dz74MH766XfMm/cYOnbsiDVrPsN//jMDeXmGGYaqq6uhVDb+eqdUqlBdXdWkthPZw0wJalMC/brjYu4/KC47g5Cg2m8UC4sNU7yFBPJbxpYIDYrH8P7PY+fBZ7Dv6Ovw8+nEQA+1al27dsM//+yzWt63b6zN5S1hHAts9M8/2zBmzDir9Wwdd/bsuZg9e65D20PUnnmpgpB1wfBA1alzODQw1IUwCvTrieKyVJvbKpQiBg0LQsJAPUqK1ZDLInHpmFvQNXoIMjcHQa0pRnjIQGTn/QsAEEWFxfYJ/S7H9r+/Qk52kVPOrT2ZPn2Gy48pl4vQavUO25+Xl7fF74IgQJIki2XmwwYrKysgl8vxySdrrIZh+Pr61nus4OAQTJo0GZMmTcY998zGzTdfj59++hH33PMAAgODUFpa0uh2l5aWICgouOEViRqBmRLUpgT4dQcAlJSdsVheYApK8AG6pTqEj0JizIPQ69XYdWghqqrz3d0kolapf/8BmDhxkrubQdQuabXVuJhpCEqERRoeMEWzjIYxg9/CuCFL692HQiEiNEyJwGAFFArDg+XksV/jijFfY2j8M6b1zIMS0ZGXYGDcffDzl6O4qByVlSx2SZaCgoJRUFB7b6XX65GWVhsg6927D7RaLYqLi9CpU2eLP8Z6RY3h5+eH0NBQ03uwT58Y5OXlorzcup6KLWfPnkHv3jGNPh5RfRiUoDYlwK8bAKCk3DooIQgyBPn3cUOr2p5eXW5A146TUVmdi91Jz3FaM6JmuO22O2wWJCMix8vM3or//X0V8gqTkHLuR2RlnUNJsQYBgQrIlEUALGfc8FIFIzykv529WTNuq5D7ws+nI1TKQKiUhgdECbXfeouCHKKoQEioEpKkx/nz6Q44O2pLBg4cjKNHk7Fp00akp5/D0qVvobi4yPR6ly7dcOmlk/DCC89i27YtuHAhE0ePJmP16o9x8OB+m/vcsWM7XnzxOezatQMZGedx5kwaPvxwGc6cScPo0WMBAL17xyAgIBBHjhxusI3V1dU4efK4xewdRC3B4RvUpvj7doEgyCwyJSqrclFVnYdA/16Qy73r2ZoaSxAEDIz9L0rKziG/KBmHji/BoH6Pc6pQIiLySLuTngMAbN37MAAg5aTh2+AO0V6orDKMqZfJGq4pYY+tbY21JPQ688C9BJmoQFiEEtkXdDh7Ng19+vDbZqo1cuRo3HbbHViy5E1Ikh433ngLhg4dbrHOwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllV9jcZ7du3aFUKvHuu28hJycbXl5e6Nq1G1566Q0MGmSY9lMmk2HKlKvx558bMGLEqHrbuGPHdkRERCI+PtExJ03tHoMS1KaIogJ+Pp1RWn4W1epiqJSBZkM3mlZIiOonk6kwcsBL+Hv3vTib+RtCgxLQLfpKdzeLiIioQRcyDEM3LIISYvOL2oo2imQal5lnE0qQIIpKhEeqAKkaZ86kNfuY1LpMn34Tpk+/yfT7oEFD7NYuuv/+Obj//jl296VQKHDffQ/ivvsebNSxo6M74YknFja43owZt+GOO25Cbm6OKZPvhx9+sVrv+++/xh133NOoYxM1BodvUJsTaKorcRYAUF55EQDg79vVXU1qs7y9wjC8//MARBw68S5Ky+1Xfaa2qzZBRqpvNWq1DP+uTISi1sx8NoyqKh1ysqqgUokIDVeioioLgO3Agrn+MfaLzdoKaBizJ/TmQQlJD5mohH+AHCovAZmZmaiu5sw65BnCwsKwYMFCZGdn2V2npKQYY8aMw6RJtrMyiJqDQQlqc+rWlTDODa6U+7urSW1aWHB/xPb4D3S6Suw98gL0eo27m0QuJooyAAKnrGyjdDpD1XfDvzNR6yQKtcUmM9MrIUlAp64+EMXaaJsg2L8tju99H3p1vQEj+r+IHp2vt3rdfOYO0zIbmRKQJIiiAoIgIDxSxboS5HHGj59Q77CMgIBA3HbbHRyySw7F4RvU5gT49QBQOwOHWlMKAFAoGJRwlr49ZiKn4ADyi47gaMonSOhzv7ubRC4kCAJ8fQNQUlIAADXznHvKzYoArZYZHLY1pm8klJYWQaXy4Q0otWqiqIBObxiycf6sYbaBzt0s60zJZfbrTuklHQAgOnIcqtWFVq/bypQwZl5INdsCgAQ9BEGEIMgQHilDfgZw5kwqevXq3cQzIiJqOxiUoDan7rSgmpqghFLh57Y2tXWiKMfQhIX4a9csnDr7NSJDhyAidLC7m0Uu5OcXCAA1gQnPCQKIogi93nHzybclje0bUZQhOJizhFDrlZbxP2i0hnuBinIt8nKq4e0tQ1h47XCNyNBh6Bgx2u4+JH1tYEEUrW+f6yt0abEfSarZhxLhkRLyM4DTp09j0qTJjT8hIqI2hkEJanP8fDpCEGQoqzDUN1DX3IgoOHzDqXy9ozCo33z8e3gR9iW/ikmjP4dC7uPuZpGLCIIAf/8g+PkFQq/XQfKAuIQoCggO9kFhYQX0eg9okAdpbN8IgiEowSwJ8nQ6vRoHj72F6MhL0CF8JABAr9fgbObvOHj8LdN6Z1IqIAHo2sMy+yehzwMWdSfqklAbwBMEG0GJejIlLOlr1lfCx68awcEhuHgxE2VlpfDz430KEbVPDEpQmyMIMigVgVCrSyBJklmmBC/2ztYpaiIyc7YjI+tvHEtZhf597RcFo7ZJEATIZJ5xaRFFAUqlEnK5mkGJOtg31Naknf8Z5y5swLkLGzD98q0AgNTz63D45PumdfR6CWdSyiEA6N7L12J7H69Im/tVyP2g0ZbBxyvKtEwUFVbr2QpA2MqeqM2UUEDSlqF37xjs2bMLp06dNE3NSLaxqDK1D+2zuLRn3DkSOZhKEYhqdQG0ukpToUvWlHCN/jFzkZ23BynpP6Jzh8s4FSsRETldftERq2XGYZxGWReqUFmpQ1QHL/j5W94CK+wM8Zw44mNczN2Brh1rZxoQbWRK2Momsjl8oyZTQhQVkCQdevfuxaBEI4miDKIoQ1FRHvz9g2oC4O54cmOtIvvYN/VrqH8klJUVQxDEdldcmkEJapOUykCgHFCri6HWlEEQ5C2af5waz0sVgoQ+s3Hg2GIcOPYmJg7/yOb4WyIiIkcpLD4JwHKoZt1hFqmnygEA3Xv7ml4f0f8Fm8EDIz+fjujd9UaLZY29pvXqcgPOXdiA+N4PIPn0csPCmkwJ4zG7dO0MmUyOlJTT0Ol0kMna14NIUwiCgNDQDigpKUBhYY7b2sFaRfaxb+rXmP4RBBEhIRHtbtgknxSoTVIpDEX3qjVF0GhKoVT4t7v/3O7ULXoK0i/+gbzCJJw+9z1iut/i7iYREVEbVlmdBwDw9eloWmZeI6K4SIOsC1Xw9pahYycvAIZpPOsrbmmP+fSiPTpfjwDfrjbXCwrojesv+wuiKIdKGYD9R99A3x7/MeyjZgiIXA706tUbJ08eR2pqCvr0iWlye9oTmUyG4OBwSJIeer3e5fWLWKvIPvZN/RrTP+25jhODEtQmKZWGoERlVQ70koZFLl1MEEQM7Dcff+2cheOpq9Ep8hL4+nRwd7OIiKgNqazKRUHxcURHjoMgiJAkQNJrTa+bD7M4ecxQX6pPPz+IouGGXy5rXgaleaZETPdb4eNlf3Ya47rdoq9C146TTYESY6aETq9BfHwCTp48juTkwwxKNJIgiJDJRJcfl/V47GPf1I/9Uz/X/28mcgFjpoRxBg5OB+p6Ab5dEdPjduj01Thy6kN3N4eIiNqYTbtmYXfSs8jO32t62NfpNabXjcvKy7VIP1MBpVK0KHApE72adVzzYSH1Df2w3q42c8OYKaHXq9G3bz+IogwnThyHTqeztzkRUZvFoAS1ScZMibKKTAAscukuMd1ugbdXBDJztiK34JC7m0NERG2IWlMMACguTYNQU/BQr1ebXjemQJ86VgZJAnrG+EKhqL31lTkgU8LWTByN24cxU0INLy8v9O7dB5WVFUhLS23W/oiIWjMGJahNssqUkDNTwh1kMhUSet8PADh88j1IEosfERGRY6Wd/xlaXQUAoKIqGyVlZwEAer0GZaVapJ0uh1wuoHeM5b2AlzK4WcczD0Q0JVPCnMyUKaGBVleFuLh4AEBy8uFm7Y+IqDVjUILapNpMCUNQgpkS7tMp6lKEBPZDUelpnM/6y93NISKiNqa8MtPsNwl/7rwDlVW50OmrcexwCfR6CTFx/lB5Wc5s4eUV1qzjmdeqqDvDR6P3UROUKCo5jZ//ugI62XbIZHIkJx+BWq1uYGsioraFQQlqk4yZElXV+QAAJQtduo0gCIjv/QAA4FjKaujNipARERE5Q0HxMWRn5SH9TAVUKhG9+xqyJCaN+sy0jrcqtFn7Nh++0dwq+cYMi7OZvwEAzmWtQ1xcPNTqahw9esRqfUmSILl6qgkiIhdhUILaJGOmhBEzJdwrPKQ/IkOHobwyE2cvrHd3c4iIqI0rLj2D7VuPQgIQ1z/AVEvCW1WbHaFUBNrZun7mU4I2l7GmhEZbblo2ePAQAMDOXX+ioioHlVWGaU7VmhKs3zYdx1NXt/i4RESeiEEJapNUdW40OPuG+8X1vgcAcCL1c+j0TE0lIiLn2bN3O7KzChEcorCYccN8BgxlM7+wEMTmDdkwZxy+odVWmJZ1794T/v4+2L77Y3z/2/VYv206CktOoqgkBVXV+Tie9hk0mrIWH5uIyNMwKNHGPfzwwxg6dCgeffRRdzfFpWQyb9O3EACg4PANtwsOiEGH8DGorM5F+oWN7m4OERG1UdVVOuzacQySpMegYcEQxdohFuZDLxTN/MJCFGQNr9TQPmqCEuaZEoIgoF98TwDAmRTD8pRzP1oE8rPy/m3xsYmIPA2DEm3cbbfdhtdff93dzXA5QRAssiWae+NBjtW3x+0AgJNnvmJtCSIicoqDe4tQValGr5hghIRZzo5hninh6x3l6qaZGGtKGGcNMRo4IAGCAKSdLodWq0duwQGLdcyDGEREbQWDEm3c8OHD4evr2/CKbZB5XQkWuvQMIYGxiAgZjPLKC8jI3uzu5hARUSslSTqby9PPVOD8uUr4+MowcEiE1euCIGLiiOUYPWQBQgJjm3VspSIQHcJHo2+Pmc3aHqitKWF+Hn/suAMX8n9B564+UKv1OJdWgcrqXIshHjp9NbLy9iCJ02wTURvCoIQb7d27Fw888ADGjBmDmJgYbN5s/ZC2Zs0aTJw4EQkJCZgxYwYOH+b81Y2ltMiUYFDCU/Tt8R8AwKkzX7OSOBERNYtOV221rKJciwN7igAAI8ZEQSY3ZOR1jrrUYr3QoH5IiLm52ccWBAGjBr6CuF6zmr0PmWhdLLO0/Cwu5Gw3zRRy+kQZJEmyyI7Q69XYceBxpJz7Htn5+5p9fCIiT9LySj3UbBUVFYiJicG0adMwd+5cq9fXr1+PV199FYsWLUL//v3x2Wef4Z577sGGDRsQEhICALjuuuts7nvt2rWQyVo+5rE1U5lnSjAo4THCggcgyL8PikpPIa8wCeEhA9zdJCIih0hLS8PTTz+NsrIyKJVKPP300xgyZIi7m9VmSJKElPTvERoYD1+fjhav6fUSdv9TAI1Gj959/eAXVIzS8mIAgFzu447m1ku0EZQAAK2uEiFhSoSGK5Gfq0b2xWpUdy8yvW4ejKlWFzq7mURELsGghBuNHz8e48ePt/v66tWrcdNNN2H69OkAgEWLFmHLli1Yt24dZs0yROd//vlnl7QVgEWhqJZs39L9NFZtUEKEUuHb7LnEXcHVfeNeAnp3uwF7j7yC1PM/IDJsoN016/ZL++ifpmHf2Me+sY994xwqlQqvvPIKevTogdTUVDz44IPYuJGFfVvq36TnodaUIK73vTh88n0AwOSx31qsk7S/GPm5aoSEKpEw0HIGLnsBAHcyL8ZtS+++fsjPLcCJo6UYOijHtFynrw1KaHWVTmsfEZErMSjhodRqNY4ePYrZs2eblomiiFGjRuHQoUMub49cLiI01DHFIoODXVPjIijQMBe5SumPsLDWkSnhqr5xt6Cga5F8+iNcyNkBhaoEAX4drdZRKGRW77n20j/Nwb6xj31jH/vGsaKjo00/9+jRA6WlpZAkyaOD4q2BsQZRdOklpmU6XZXp53NpFUg5WQalSsTIcSGQySz7WxQ873bX1vANc9GdveEfIEdudjXOnEmB3Nuw3HwmDvM+ICJqzTzvU5oAAIWFhdDpdAgLC7NYHhoainPnzjV6P/fddx8OHz6MyspKjBs3DitWrEDfvn2b3B6tVo+SkpZF5EVRQHCwLwoLy6HXO7+WgE5rSNeUy/2Qn+/Z83q7um88Qffoa3As9VPsP7wGiTGzrV7XaHSmf7f22D+Nxb6xj31jn6P6JiDAGwpF2xkquHfvXqxatQrJycnIzc3F8uXLMWHCBIt11qxZg1WrViE3NxexsbFYuHAhEhMTrfb1119/ITY2lgGJFigsOQm5rDZwlleQZPrZ+HCur+qJfbu3QQAwcmwIfHytb20FDwxKNFRTSRQFxCYEYM+OAuzdcxIjx6sAWA7f0GqZKUFEbYPnfUpTvZr6jcuKFSscdmxH3dTr9ZJLHhCU8oCav/1azQOJq/rGE3SLvgbHUj/H2cyN6NfzHou5443q9kV76p+mYt/Yx76xj31jyRG1ngAgMzMTixcvdug1uL3R6qrw9+77LJblFx0x/azTVaG4SIO9289Ar5cwYEgQIqK8bO7L1vXF3SJCByPAtzsgCCgpS7O5Tueu3jh2WI6M83nIywlDWIQKerNMCQ7fIKK2wvM+pQkAEBwcDJlMhry8PIvlBQUFVtkTZJtxSlDOvOGZvL3CEBU2HFl5u5CVtxsdI8a4u0lE1M45otZTWVkZHnzwQTz77LPo2rVrs9vS2uo4NZVer0VW3r+ICBloKkSp1VYiM2c7OkdNRHlFutU21eoi089FxfnY/nceFEIn9I3zN81YUdek0atxIXu76XdRFDyib/x9O+KKsZ8BADbtvBeFJSet1hFFAbHx/ti7qxDJh0owflKY5fANfaVTzsET+sdTsW/sY9/Uj/1TPwYlPJRSqURcXBx27tyJiRMnAgD0ej127dqFO+64w82tax38fDoDEOHv09ndTSE7ukVPQVbeLpzNXM+gBBF5tMbUetLpdJg3bx5mzJiBMWOa/5nWGus4NdX+Iyux9/AH6NXtSlw2+mUAwNoNDyInPxleXhLkMpXVNsYij+XlWnz3zY+orNBh0Kie6NBda/c4PbomoKh0j+l38371lL5Rqbztvtaluw9OHitDbk41LmZWoWu0zvSaKNM47H1ii6f0jydi39jHvqkf+8c2BiXcqLy8HOnptd8EZGRk4Pjx4wgLC0N4eDjuuusuLFiwAHFxcUhMTMRnn32GqqoqXH/99W5sdevh6x2FK8d9Cy9lSMMrk1t0CB8FlTIYWXm7UVmdD29VqLubRERkU2NqPW3btg27d+9GXl4evvvuOwDAF198gYCAgCYdy9PrOEmSDtv2PYawoATE9b67Wfs4fXYTACAt/S/k930KWl0VcvKTAQC5+eeh19sONJSXa7H1zzz4KC6iUxdvjLtkIFLST9k9TkFBBSoqa7ML8vPLPK7ejKS3X/RSFAUkDgrEP5vzcPhAMRLiamtklZcXOaVmlqf1jydh39jHvqmfI/qnrdVxMseghBslJydj5syZpt9feuklAMBDDz2EuXPnYsqUKSgoKMDSpUtNBbVWrlxpMW6V6ufjFeHuJlA9RFGOLh0ux+lz3yIj62/07nqju5tERNQk5rWeJkyYgKNHjzpkv55cx6m49Axy8vcjJ38/Ynve1ax9aLTlAABFTd2n/MJjptcEyGzWWSgp1uCfv/NRXq5Fv8Eh6BITAoXCp97j6PUSIAmWv5v97AkPT6JonRViLqqjChFRKuRkVeP4sUxE1EzyotaUOrX9ntI/noh9Yx/7pn7sH9sYlHCj4cOH4+RJ6zGE5m6//XbcfvvtLmoRket1jppYE5TYzKAEEXks1nqqpdFWNGl940wTyac/Qml5OkYOeBlajTEoYUhlLi2vzRzVaCuh1hRZ7CMvpxo7tuRDrdajSzcfjLmkGzKyT1lMrRkdeQm6dJiEk2fWoKD4GFoLmUxZ7+sdwkfiwXuuwaKX7sDB/ecxMcIHCoUeak2pi1pIRORcDEoQkVsFBcTAxysKBcVHUVGZDR/vSHc3iYjICms91TJmOTTWtn2PQK9XmwIFOl0VNDpDYKOs4jwu5u60CEpodeVQa0pMv58/V4E9Owqh10voE+uPxEEB0GiLAACiWPtAr5D7oWPEGKSkr23uqbmFzG6mhICrxq+FShkMnb4aXXv44GxaHo4c9MWgYcHQMChBRG2E6O4GEFH7JggCOkVNAABkZG9xb2OIqF0rLy/H8ePHcfz4cQC1tZ5yc3MBAHfddRe++eYbrFu3DqmpqXj++efbZa2nulkM9mi1FUg+vQJ5hYcsMhf0ktZiasudB5+qkylRDrWmDHq9hMMHirF7ewGkmmk/+w8OhCAIqFYXAgBkZkEJUTCOta6bGu3Z1e5lMttTmQKAlyoEgiBAJiqRMCgQSqWItFPlKMhTQ62trSchSRKOpqxCbkGSK5pMRORQDEoQkdt1irwEAJDJoAQRuVFycjKmTp2KqVOnAjDUepo6dSq++eYbAMCUKVPw5JNPYunSpbjuuutw/PjxdlPrSaerRlHJaeQVJmFf8qum5ZKks7vN8bQvcPLMGqvler3GallxaYrpZ422HCUlhdj2Vx5OHiuFQiFi9IRQi2k/q2qCEuaZEoIoMzbKYt/Gmh+eSiGvvy4GAAiCCC8vGRIGBUICsP/fQmi11dDpDDOS5BTsw4m0z7Ft38NObi0RkeNx+AYRuV1QQAx8vDugoPgYKqpyWKCUiNyCtZ7sO5H2BU6c+cJq+do/J2Ly2G/g693B6rWyivM296Uzy5IwqlIXmH5OOXUGm//KRHW1HkHBCowcFwo/f8tbVuPwDvOaEgIMQQmplWVKeDVh5qnuPX1wNrUc+blqnD5RBvWEMnjLVKisynViC4mInIuZEkTkdoIgoEP4KABAdt5eN7eGiKjtqKzKRUbW3y3eT0r6D3ZfO5vxm83l9rIoqqrzbC4XJD/s3VWIP35PRnW1Hj16+2LiFRFWAQkApuEf5pkStcM2Wldley9l44MSgiBg8PBgiKKA5EMluHDhDADDUBkiotaKQQki8ghRocMAANn5e9zcEiKitqGo5Cx+3TId/x5ehJyCAw2uX16ZheTTK6DWlEKSJOw98gpOpBmyIwL8utvdrqT8nM3lejtBiWOpqy1+lyQJGemV+HN9Ic6mlkOp0mHMhDAMHh4Mmbz+LAeZaGPmCqmVBSWakCkBAIFBCsT1D4BeL2Ht2rXQ6XSmwqFERK0Rh28QkUcICxkAUVQiJ38f9Hqtu5tDRNSq6fUafP/LNNPvjZmpYeueh1BZnQtBkKF31xlIv7gRANC3x39QVV1gdzvzIpXm7GVK5OTvM/1cVqrFwb1FyLpQBR+vKHTtHoj+g32g8pLZ3LYu0Ww6TeOwjdrhG0Kdvz1TU4MSANAn1g8XMipx8UImtm7djPBOTZsRhYjIkzBTgog8glzmhbDgRGi0ZSgsOeHu5hARtWqaOun8kqRvcJvKakNdAr1eazElp06vRqWdIRcAUFp+DpKN7ASpngBzVZUOB/cWYeMv2ci6UAU/fzmumToMYyd0aXRAAqibKWE5fEMQWsdtrrdZUEKpCLC7np9PF9PPoihg2KgQiDI9tmz5GxkZF0yvSZKE4tJUmwVFiYg8Uev4tCaidiHSOIQjj0M4iIhaQqevtvi9bpCiLvOggq9PB4ugRHFJCiTJMsAQ4NfDfGv8svlqq2wKW8M31Go9jiaV4PefspBysgyiCMQPCMDlV0eie/eupqk+G8uipkTNOdQNkHj67Bsymcr0s62CoUaXjVxp8bufvxyjx8ZBkvT44/d9UFcbAk9ZebuxadfdWL/tRmg0ZbZ2RUTkURiUICKPERVmrCvBYpdERC1hnCrSSGun5kBZxQVs2H4LTp/71rRMgGARlMgvPmq1nVLuZ/G7RluGzJxtFsvMh29UVuhw+EAxflt7EceOlECvB3r39cOVU6MQGx8AmUyAUhGI6Jopor1V4QgJ7NfgedqsKWHMlKi5zTUWUu7S4YoG9+cu3qpwAMCguAV21zEELyxv3fvERiI+PhElJWXYu6sQkiShojILAFCtLkRx2RmntZmIyFFYU4KIPIa/bzd4KUNQWHISkmTrRpOIiBqj7rSb9mZnOHj8bZRXXsCRUx+alkmSZBGUKCo5bbWdeS0H0zF11SgtPw9/384ADMNACvLVSD1VjvQzFVDIAqHXA917+SI23h++fpa3oTKZCsMTn4NW9wQUch8cOrEUBcXH6j1P80wJ0+ANY6ZETYaEv28XXDvxd8hl3vXuy50mj/0aer0GcrkPwoL7I68wyeZ6giBY1PHUastx3XW3YOfeFbiQUYnTx8sgCEtMr2u0rDVBRJ6PmRJE5DEEQUBwYD9Iks7ut3pERNQwna7K4netrgJ6vRbH0z5HflGyaXlRySmrbSVJZxGUKC0/CwBQKYJMy0RBYbXdkVMf4I8dt+Nsxhbs2fMvfll3FH/9noOzqeUIDY7BqNEjMGVqFIaMCMbgxLutttdoyyAIMijkPgAAmWh9jLps15QwDGMQzApcKuQ+Hj2MQxQVkNecd32zhwiCZb0Nra4SXl5eGHNJR4iigMMHi5GTVZslo9Vy+AYReT4GJYjIo4QGGdJ1Gxr/TERE9hmHb6iUwQAMn6kp6T/iWMoq7DjwhGk9tabYalsJEtRqs6BERQYAQKkMNC0TzQIGowe+Dq1Wj/PnKrBrWz7eeOM1/PLLOuTlliIwSIEBQ4Jw591XYNSYeHj7GB6qo8JGWB03LCjR4nfR5tAM1FnHOnBR+0jvuUGI5hLq3Lobg0/efhUYPDwIkgTs2paPslJDDRA1gxJE1Apw+AYReZTgwFgAhpRUIiJqHmOhS5UyCNXqQmh1lTh3YQMAQ0YCALvTL0uSHmptbVDC+HkcFTYcpeXnEB4yGIChTkTWhSoUZe7A39suQqczhANUqvO47JK70CN+L/yDNBAEAV7evhbHMM9w6NfzbkSGDUNIzee/ka2AQ10yG4Uuo8KGo6jkJDpFTWhwe48k2J/KVLB4TYJWV4lqdRGq1YXo1tMXxUUanDpehh1b8jHxinBeS4moVWBQgog8SnBAXwACMyWIiFrAmCnhpQxGCc5Aq62ARlMKwJCBIEmSKThhTW+RKWEkF6PQK/J1ZGbmYPM/H+B8xkUAQPfodAgC0KWbDzp19UZURy907pQC6aIOxgdrmai0mJbUvCaFXO5tFZAwbtMQ88CFVJMjEdtjJkKD4hEePKDB7T2SZDm1qTnj8A2ZqIJOXwWtrhLFZWmm1xMGBqKkSIusi1X4d0cBYntZ/zsSEXkaBiWIyKMo5D4I8OsOvf4UKqvy4O0V5u4mERG1OqbhG6oQAIZCl8bil3q9GmpNMdR2povU63UoLMpF1oUqlBRpUFigQX6eGtu91sHftxMAoCC/HH7+ckR19MJt0+7FkTMHIZMLiOl+G06eWYOi0tOwGEghiBb1EGSiyuyItkcT28qUCPDtjpLyMzX7lEEUrW9lRVGBqLDhdnqmdRMEQ1/JZIagRG7BAeQWHDC9LooCRowNwV8bcnAxswqb/96LxJgHGl1PQ6/XNipDhYjIkRiUICKPY/jGbCMKio8h2mucu5tDRNTqGIdveCmDABgLXWogSRK0WgkXs0+jorwcFzOrUFGuRUW5DhXlOpSXa7Fz0zrk5J2CRltqsc8enSPQr+8QdO7cBXnlVSivPggAiI2Nx7HzQs06U3HyzBqLQpmAYUYMmVl2hHkWhPFBuy7zh+OOEWMRHjIQQf69sHXvw1b7aFPqG75RE8Cp79wVShFjJoRh88ZcJB9Ow+bNf2HixMsAGP4dSivS4e/T2arfM7I249/Dz2PckLcQGtpKh74QUavEoAQReRzj3PQFxccRHcmgBBFRUx1NPok/fsvGweB/cTE3C3KxAlXVJdBodNDrJfz791IIghwXcvKsto0I1cA/QIOgkGD4+usRFKxASKgSl4+9G6FB8QCAfw78gPLaSR4wJP4paLQVUMj9AADVausCmuZBBpmsNlNCsFOQUibUPnh7q8LQq8t0FBafMNtf3Qdz+7NWtCZdOkxCXmESene9wfrFmkCCrSlZzfn5yzF2Yii2bsrBV9++CG9vGUaOnICU9O9x+OT76NtjJuJ6zbLYZs+RlwAAR06tQL8YBiWIyHUYlCAijxMc2BcAatJ/iYioqXJy8lBcpIFKrEZ5mQ5yeSUAHZQqEUqliMgof/j5BkEV4AsfXxl8fGTw9ZPDx1eGfn1G49yFAoQE9kNRaQr0NcM+FHKzYpV1pq3s2nEygNphI5JUt4imZDGNqExUwte7I8orLyAooI/NczB/8BYEwy2rYDZcw5gt4OfTGWUV5xHg16PxHeTBukVfjbDg/vDz6WT1mmkYRiPiL0EhSowc54/tf2fisy9fQ0BAODKLfgMApJ3/2SooYfw381KFmpYZhnPwcYGInIufMkTkcYw3YuUVmW5uCRFR6zR8VB94h3TEsMQ7kXxaA4220OL1+N5joFT448CxHVbbVlQZPnsNQYOLqFYbghJys6CEBL3VdgDqfYA1f00Q5Jg44iOUlJ1DaFCczfUth3gY6lGIZnUpjJkS44a+i+y83ejS4Qq7x25NBEGAv28X26/VDN+w1f9eyhBUqQsslkVEeWHY6GAk7S3Bd999ja59ixAYan/IDAB41wQlikvP4I8ddyChz2z06XZzc0+HiKhB9j+RiIjcRC7zgigqUFGVbXfKOiIisk+nq4ZCIUKl9IGvT4TV61pdpd1Cl2Xl5wEAvj4dTcMxAEAh8zH9LEm2v6oXBJlFQUvT+pAgMxu+IQgClIoAhAUn2D0H8+EZoiir2c46U8JbFYpu0Ve1i2/0TX0rWQclZHJvm+t27uqDwcP8oNfrsfWvdFzMrETdehW2ZkY5fe57AMCRUx86qvlERDYxKEFEHkkmU0KSdKioynJ3U4iIWh1joUuZTAUfr3Cr17W6SqtClkaV1bkAgCD/XhZDNuTmD702HoqNRME8I8LwYNylw+UQmjirg/kMHcYMAcEiU6L9zRJhzHCQbPS/eRZJbI874e1VG4zq0EWN4E7bUa0uwc6tBbiYaTntdlV1bYaFcQiOxk7QiojI0RiUICKPZLwZLeMQDiKiJjM+WMpElcXDqZFWW9ngQ2doUILFg795QECqp6iBed2H+N73YdqkzfD1joJMaGJQQlb/8A1ZA8Ue26SamhKSpLN+CYa+Ucj90a/XXfD1irJ4vWt3GQYPD4ZeL2H73xdw/PgxAEBJ2RlUVdcWPNXpqgAAajtBKyIiR2v7eW5E1CoxKEFE1HymoIRMBW9VbVBCJqqg01dDp6uE9WNtLV+faHipQkzfoPt6R1u8Ht/7XmzZMxfDE5+12tY8U0Iu96mtX1BPHQNbLDIljMM3zAIe1rNvtH0+XpEor8iEt1d4nfoRtX1rLIapUPihrh69fSFJEo4cUOPrr7/EhEv7o6D6A8hltVkw2pqghDFoJTYxmERE1FTMlCAij2ScLo7FLomIms7e8A2lMhAAcD7rL5zP+svu9j4qwzbxve9FWHB/jBu6xOL10KB4TJv0NzpFTbTa1jy7wrwORVOn7DTPhBBtZUq0w6DEkPin0LXjZAxLfN5i+WUjV5llrxiCEnKZl8199Ozjh1HjDEGm77//AqdPlEGrqzS9bsqU0BgyJWwFN4iIHIlBCSLySMabTWZKEBE1na5mGk+ZqIKXKsy0XKUIbNwOah7+O0VNwPihS+FjYwiIaXrKOiwzJcxm7KinDoUt5pkSYE0JAICPVwSGxD8FP5+OCPDrDgAYNfB1BPr3QN2gj7dXpN39dOsZhNtumwlB1OPQviIcTSoxFS/V1mTZqDUlAGCzcCkRkSMxKGGHWq3Ghx9+iBMnTri7KUTtkilTopJBCaL2itfi5uscdQm6dBwDP59oi2KVSkWA1boqZbDVMrEFD6Lms2Ao5OYzdjQxKCGrDUoYZ99o75kS5sYNeRejB72BqLDhAGpnRBFqMiX6dr8dXTpcjgnDrGfPEAQRMTF9MfnqRCgUIo4dKcHenYXQ6STo9FXQ6dTQaA3DN7TaCqvtiYgciUEJO5RKJZYvX46SkhJ3N4WoXRIEGVSKIJRXXLRZ0KuqugCHTryL1PR1rBBO1EbxWtx83TtdjSkTlkIU5RbZCsbhG0aCIINC7m+1vdDE+g/mzGsQWBxbYX2cevcjWhe6tMyUaN9BCZUyEFFhw60zVmp+l8u9MTThGYQE9bPa1jibSUSkFy65PBzePjKcO1OB7X/loby8HFXVxaZ1tbpKu1PAEhE5AoMS9UhMTMTRo0fd3QyidsvXJxp6SYPKqjyL5TkFB7Bp1yykpq/FoRNL8Nu2G5CVu9tNrSQiZ+K1uOXMMyUUcsv6AKKohMzGMIgWBSXMMiXM6xqEBiUgrtc9GD/0vUbtR2YjKGG+7/aeKWHNsqZEfYyBDK2uEkHBClw6OQLBIUrk5lTj9/+dwI49n1rsV6erRGr6Ouw5/CL0eq1hqaRHZXW+Y0+BiNolBiXq8fjjj+Prr7/Gl19+ifPnz6OiogKVlZUWf4jIefx8DIW4yioyTMvUmlLsPPAUqtUF6BY9Bd2ip0Cnq8SeIy+ivOKiu5pKRE7Ca3HLmQ+hMB8SAQCQJNODvvkMDC0JSghmNSVkFvsU0LfHfxAWnNDI/dS2oXbYhtmy9jglaD0kGIbH2Kr1Ed/7vjpLDP1oLHDp7SPDJZeHIbqzNwoLS/DOO28h60KVaW2NrhKHTizB+axNyM7fAwDYl/wa1m+dhoLi4044GyJqTzglaD1mzJgBAHjppZfw8ssv21zn+HF+EBM5i68pKFFbV+JCznbo9FXo2nEyBsc9AcAwRvrU2W+w+/D/YcKw99tl8TOitorX4pYz/0y0zi6QTMMgFHI/00NqS4obWmRKiKp61mw8Y4BCEAQIggySpGOmRF2mERbWQYk+3W5FUWkKMrL+NqxhzJQwqxchl4sYMTYERw6W4NTxUvzzdx7iBwQiJs7PYr2cggPoED4K6Rc3AjBcl0MCY51zTkTULrSZoMTmzZvx6aefoqCgAD179sRtt92GoUOHWqyTlJSEm2++udE3L6+88ordytJE5HzGau/mwzfO19xQdelwuWlZXK97kV90FPlFR3D+4l/oGj3ZtQ0lIqfhtdix6tZhkCCZghYKhR8qq3MBtDQoYRYEsTMtZVNZ1JIQ5NBJunZfU8KaZaFLc4IgwNe7Q+3vdTIljERRQP/BgQgOUWD/v4U4cqgYBflqjBlUaFqnsNiy8Kwk6VGtLsKWPXPQOeoy9Ot1l8POiIjahzYRlNixYwcefPBB9O/fH0OHDsWhQ4cwc+ZM3HHHHXjiiSeafTMzbdo0B7eUiJrCOA5aU/MNTbW6CLkFB6BSBiMsuL9pPVGUI67Xvdi272GknF+LLh2vaNL/+9LydOQWHEJ5ZSaC/HsjPGQQvFQhjj0ZImoWXoudTJJMU3ia15sQWjDC13xKUPOsiZap/Uw3BiiYKWFJQv3FKM0LkMKspoQtXbr7IDBIgZ3b8pF5vhKrVn6GDj01CAxSmKabNR1X0uPU2W9RVpGB42mfMihBRE3WJoIS7733HqZOnYpXX33VtOyHH37Ayy+/jPPnz+Ptt9+GStX89MGUlBQkJycjKysL06dPR3h4OM6dO4fQ0FD4+fk1vAM3q6ysxJQpU3DVVVfhsccec3dziBpNXjMOWqsrBwBkZG2FJOkQHTne6kY3LDgRgX49UVRyEgXFRxEaFN/g/vV6LZJPr8Dpc99aLBdFJeJ734teXW5o0bhqInKc1n4t9hR6vQb9es3CsZRVAAx1CMyHbxg5aviGo5jPwlRb9JJBCQvGGTLsBOVlZjU4TJkSWvs1WQKDFZh8TXfs2HoeubnZOHYqBwOGBGHAAI3FenpJg+zcnS1sPBG1Z23ibvv06dO49tprLZbdcMMN+OKLL5CUlIQ77rgDRUVFTd5veXk55s2bh6uvvhoLFy7Eu+++i5ycHADA22+/jffff98RzXe65cuXIzEx0d3NIGoyucwQlDBmSmRmbwUAdIqcaLWuIAjo2cXwjWpK+o8N7luv1+CfAwtw+ty3UCoCENP9NgyOW4Duna4BJAmHT76PXYeeMVUZJyL3aE3X4k2bNuGKK67AFVdcgfXr17u7OTbp9RrE9piJkMA40zJjEEGhMA9KOGZKUEfRS7Wfxcb22po1hGwP3wAsh9UIggBJkqwyJeoGo/z9wjH6klAMG9ELer2E/f8WYstfZ1BRUVtjoqq6AGUV5wEAAX49HHUaRNSOtImghEqlsvhwNIqPj8fXX3+NgoIC3HzzzcjIyLCxtX2vvfYaDh48iE8//RQHDhywmKN5/Pjx2L59e4vb7mxnz55FWloaxo8f7+6mEDWZcfiGscBWeaVhdo2QwL421+/c4TIo5P7IzN5qCmTYc/Ls18gt2I8Avx6YOHwF4nvfh27RV2FQv8cwccRH8PPpgou5O5F0snFT1zWGJOlQVV0ASdI7bJ9EbV1ruRZrtVosXrwYa9aswTfffIMlS5ZArVY3vKGL6WtS72O63wYASIyZY3q4t8yUaMEtohNqgJgHiJkpYZtx9g17U4Ja9pcIra4CqDPkw0sVavo50L8XukVPgSAIiEsMxYQrIuDrJ0f62UK8997byM2pBgDkFSaZttHrLbMoiIgao00EJWJiYrBt2zabr3Xu3Blff/01fHx88OSTTzZpv3/88Qcee+wxjBgxAjKZZeS4Y8eOyMzMtLNl4+zduxcPPPAAxowZg5iYGGzevNlqnTVr1mDixIlISEjAjBkzcPjw4SYd4/XXX8d///vfFrWTyF2MwzeMAQaNthyioLCe0s64vswLUWHDIEk65Bcdsbvf0vJ0nEj9HKKoxMgBL8LXp4PF64H+PTFm8GKolMFIO78OZzJ+afY5SJKEzOyt2PzvbPz012T8tvV6/PzXldi6Zy4u5Pxj8YBFRNacfS12lKSkJMTExCAsLAzBwcFITEzE/v373d0sK7qah8aOEaNx7cT16NVluulhVemg4RvmQy0cxXyfxpoVrClRR0PDN+pkSqg1JVbreKvCTD8PjnsMKmUgAKCiKgehYUpMmhKBrt0DUFiYh61/5OLwgWJUVBaYttHrGw7Enb+4Cf/sfxzJp1egrOJCo07NXLW6GPlFyU3ejog8V5sISlx++eXYtm2b3SEaoaGh+PLLLzF06NAmPQBUV1cjKCjI5mvl5eVWN0dNVVFRgZiYGDz33HM2X1+/fj1effVVzJkzB+vWrUNMTAzuueceFBTUfvhfd911Nv/odDps2rQJ3bp1Q/fu3VvUTiJ3UdQM39BqDTUlNJpyi/RiW8KCBwAAcgsO2V3n0Il3oZc06NfzTvj5dLK5jq93FEYOeAmCIMORU8tt3rw1pFpdjG17H8bupOdQUHwMMlGFQP9eEEQZ8ooOY9ehZ7B170Ooqs5v8r6J2gtnX4uNWvpFQU5ODiIjI02/R0ZGmoaZeAKF3B8A4G32TbgxG61Lh0noGDEWYSG1BYQ9LShhM1NCxqBEU5hnSkiSDmpNqdU6XmZBCbnMC0pFAACgsiobAKBQihg5NgJXXX0Z5AoRJ4+VYtNv2SjIMwQj6hbBtGXPkReRnb8HJ8+swa5DzzT5PP7aNQtb9sxBUcmpJm9LRJ6pTRS6vPnmm3HzzTfXu46Pjw8++eSTJu03ISEBP//8M8aNG2f12saNGzFw4MAm7a+u8ePH1zusYvXq1bjpppswffp0AMCiRYuwZcsWrFu3DrNmzQIA/Pzzz3a3T0pKwvr167Fx40aUl5dDq9UiICAA9913X7PaK4otS8c0bt/S/bRF7BvblEpjoctKaHXV0EsaKOS+9fZTZKjh/2VeYZLN9corLiInfx98vTsgpvvN9e4rPCQB3TtdjbTzP+PU2a+QGDO70W2vVhdh+/7/org0BYH+PZEYMxuRoUNN43iz8nYj+dRK5BclY/O/D2LskDcQ4Net0fs3svfeqVYXI6/wMKrVxRAEEcEBvRHg190pBeg8Ff9f2dea+sbZ12Ij4xcF06ZNw9y5c61eN35RsGjRIvTv3x+fffYZ7rnnHmzYsAEhIZ4/W8+E4R/gbOZv6NPN+n4pPGQgwkMGorDkpGlZS4Zv6J2SKWEdlJA5oXZFW2Bv5hTzzBK9pIPGRlDCPGgll3mZglkVldmm5RL06NuvKyZdHYH9u4uQfbEKx/b3QmiHFPSJK8CZjF/RvdPVjWprWUXThlYDME1bW1J2FkEBfZq8PRF5nvZzd9oM8+bNw1133YU777wTkydPhiAI2Lp1Kz799FNs3LgRX375pdOOrVarcfToUcyeXfsQJIoiRo0ahUOHDjVqH/Pnz8f8+fMBAGvXrkVaWlqzAxJyuYjQUMdUNw8O9nXIftoi9k0thUKGsLBAyOXe0OoqoFaXAQC8vQLqfS+GhMTC2ysUhSUnEBAgQqHwsXj9fPYuAECfHlciPDyowXaMHvog0i9sRMq5HzG0/3/g5xvV4DZ6vQ4//zkHxaUpiI4ahsnj34FC7m2xTljYJMT2Ho/Nuxch5ezv+Gf/Y7hhytfw9gpucP+2GN87RSXp2JP0Hs5mbLEq0unrE4mB/e5A317XQ25nCExbxP9X9rWGvnHVtbilXxREREQgO7v2wS07Oxtjxoxpdnsc/UVAoH9X9O/7YAPb1D7MioKs2W2wGGrRwvNQyP2g0ZbBz6ej2TkZghJyuapZ+29NQbmmMNaUEATb52Y++4Yk6aDR2QhKeIWbflYofOClMgQlqjVFFttqdaXw9ZXjppunQqoci81/78KJoweQfk6HwvyXcMv1/eCjCodSGVBvm/19uzT730EURZf/G/4/e/cd3lT5xQH8e292d5tuWgpllNJBy17KEBBxAoqiiLhFQFSciHsibpwM+TlwobgREBVUluxZCi3QvZuO7HV/f6RJk2Y0adOktOfzPD62N3e8923IzT33vOftqu8db6C+cY36xzUKSrgwdOhQ/O9//8Prr7+O559/HhzHYeXKlRg0aBDWrVvXoTNayGQyGAwGREZG2iyXSqUoKCjosOM6o9cb0dDgfNood7Asg/DwQMhkChiNNI7eGvWNPZ3OgJoaOfg8CbTaBkuaKcNIUFMjd7ltZNggFJX/idNn9yA2crjNa7n5m03rhI5tdT8mEvTrNQs5+Z9i76H/ISt1Yatb5BVsREX1MYSHDMCIjBfRUG8A4PhYWSmPQac1oqB0CzZvfxQXDV3hUdq09Xsnv/BXHMp5GwaDCgJBMHrGXYRASRz0BhVq606iSnYY/+5/Fcdzv8fo7OcRGBDv9nE8odbUQK2RwcjpERyYaEkR9zX6d+Wct/omJEQCgcA7wyec8ee12MydBwWZmZk4deoUqqurwePxcOTIEbz44ottOp7fHgSwzccMCBC3uQ18q2+X7T2PWVd8jeKyPRjQ5ypL9oZAYLq5Dg8Pbdf+L4SgnCfYploSPB7PYb+otKGWn7U6GfYcfsZ2e5YPaURz4D0yUgqN1tEQGQPEYlMAJDa6H0ZkXYdxF0/Cg4//jsKCCvy1tQqyqsVI6luHrPRZuHj4UputQ4N7or6xEAAQHBjZ5r9hULDEa/9OPNXV3jveRH3jGvWPYxSUaMWQIUPwxRdfQK1Wo76+HiEhIZBIJK1v2EE4jgPThqrWM2bMaPexvfWl3mjk6AbBCeobW0YjBz4vEGquFiq1qZYKnxfYah9Jw01BicqaQ4iOGGZZLleWQtZwCkEBCQgOTHa7r3snXIOc/M9RVP4nMvrf4zJooFJX49iZ1WAYHgYPfAgMI2z1OFmpD0LWcAYVNftx6uxXSOl9o1vtsnb63Hc4lPMWABapyfOQ0vtGu4KgdY15OHJqJaplh7Ft910YM/hVRISmenwsRwwGDfIKN6Ko7HfUy/OtXmEQGpSM5J7XICl+ql8K09G/K+culL7x97XYnQcFAoEADz30EG680fTv9/7774dI1LaMJH89CKhvVFt+1qgNbgZu7TXPOsK0eR/NghEdPhm1tc0zKhkNpu9BcrkBNazn+++qAUuD0RQoMBg4h/0ulzfPjKHW1Nm9zmPF0Gqabw0aG/TQ6e2HghiMesjqTNdknZbfdCwBLrk0GSeO63D4QB2OHTmLnJNalJV8itTeC22ycBg0/7tQqeXIO3sAx/PWYnjGUoiEYW6fr0Ku8cL7yzNd9b3jDdQ3rnmjf3zxIMBfKCjhwu7du5GVlQWJRAKxWAyxWOyzY4eHh4PH46G6utpmeW1trd2XIkK6MkHTDBxyhSktWthKoUsAiGoqdlkts52tpqRiOwAgIWaCR8E9iUiKqIgsVNUeRLXsKKIinI9hzzn7P+j1CvRLmoWwkH5u7Z/PE2PEoGewbdetyD23Hr0TrrAUF3PHuaLtOJTzDlhWiDHZyxEtHexwvbDgvrhoyOs4dvpD5BVuwK5Dj2PCiA8RKGl9SIorlTUHcfDkCihUpirqpqBPTwBAfeNZ1Mvzcejk68g9ux7DM5+CNCytXcdzhuM4KNXlaJAXwGjUQCQMRVDQIHSRms7dlj+vxa1p+aBgypQpmDJlilf27Y8HARxn/bnItrkN5qFjDMPrkJsTc2CYgaBd+79QgnLuM58L4/C8OM71ZyGPJwKf13yN5TgGDIRgGQGMXHNAw2jUQ6c3Bc14rNhyLB5PhKTkAMT1EOPkUS3O5Fbjv121WHx2EMaOS8fooXejR8w4ywwwAKDXq7Bt950AgJ/+vAqjsl5CfPQYt87WaDTi9LkN0BvUGJA8x61tvKXrvXe8h/rGNeofxygo4cJtt90GHo+H1NRUDB06FEOGDMGQIUMQHt62Md+eEAqFSEtLw65duzBx4kQApg/f3bt345Zbbunw4xPSWfCbZuCQK01BCb4bQwGCAxPBMDwoVGU2yytrTdPzxcdc5HE7EmMvQVXtQRSWbXMalNDrVSgq2waWFWJA8lyP9h8SmIRePS7HueKfcPr8V0jv5179F5W6Gn/uWgaAw7D0pU4DEmYsy0dmygIYjBqcK/4Juw49hgnDPwCf37anzsXlf+G/Yy+A4/SIixqN9H53ISTIdsaf2voc5OR/gvLq3dixbxGyBtyP5MSr2nQ8RwwGDc6V/IqzRd+jUVFo89o/+/mIjBiEfknXIzZyhNeOSXzHn9dis+7yoMC6uGV7Zt8wF7pk27EPV8xTW/J4nSdA1Sk0zTDnLObeWjCexxPbzXDFMAwEgmBotM0zv3GcHvqmqbrNU3cDzYU0hSIW2cOD0COJwcG9dagoV2Dj13tx+NBxLH1gt02AQ2dozoABgN2Hl2LmlB2tnKiJwajBkdyVAODzoAQhxLsoKOHCrl27sH//fhw4cAD//fcfPv30UxiNRiQnJ2PIkCEYOnQorrqq7V+sFQoFCgubv0AXFxcjJycHkZGRiIqKwq233opHHnkEaWlpyMzMxCeffAK1Wo3p06d74/QIuSCYgxCKpqCEgN96pgTD8CAWRkClqYHRqLfMOCFXFANgEBLYy+N29IgZh0M5b6KkYgeyU+8Hy9pXfS+p/Bt6gwqJcZMhFAR7fIzU5LkoKN2MvIJv0afnTJsq6M4cP7MaOr0S/XvNQkLsBLeOwzAMsgYshkJVisqa/Th17jO3gyDWSip2YO/R5wAAgwc+gt4JlztcLyI0FaOzX8a54p9x5NQ7OJTzuumJWvylHh+zpbqGM/jv2AtoVJwHAIQG90VYcD8I+IHQaGWokh1EZc0BVNYcQEzkCAxJe9Stfm0LubIEpZX/olFRAK2uHkJBCIICEhEXPQYhgUkdcszuoKOvxe7oLg8KbIMSbc8wMhe6bE9gw5WU3nMgDc9EgDim9ZW7kYiwgSir2oXwkAFub5MUPxWyhlw0yM+Bz4otDwKstRwKCAC6pqm6+bzmgLbtlKN6REWLMPnyaOTlynHyaCPyTyvw1luvIUBagYReHPh8EdTqart9u0ujrWvztoSQzqVLBiU4jsN7772H66+/HpGRkZafo6KiWt/YSnh4OCZPnozJkycDME0XtmfPHqxbtw7ffPMNNmzY0K4vQsePH8fcuc1PU1944QUAwMKFC7Fo0SJMmzYNtbW1eOedd1BVVYXU1FSsWbPmgph6jBBvMc9aIVeWN/3uXoEgiTgKKk0VNFoZJOIoGIxaKNWVkIijHH7Bao1QEIzYyBEoq9qJqtrDiIkcZrdOQclvAExf8tpCIo5Cn8RrcKbgGxSUbMKA5Jtdri+rP4XzJb9BLArHwD7zPDoWy/IxJO1RbP33Zpw+/zWS4qchODDB7e0VqjLsP7EcAIcRmU8hIXaiy/UZhkFy4lUIEEdj1+GlOHBiOcSiCMRI7fvRXWVVu7Dn8FMwcjpES4chvd9dCLeaHs40flOC46e24kju+6io3ovte+djdPYrCA1ObvNxW6pvPIujue9aMnFaOn7mI0jD0pHRfz6kYeleO64zBoMGjcoigOMg4AchQBLbplpEnUVHX4vN6EEBYD3UqT1BCfMT844qchsTOczhZ3B3NyTtMRSWbUWv+Mscvs4ytl/7oyOGYGj64/hrr2lWFh5PZJP5YMZzEITX6U3Fp23Xt09JZ1kG/VODkdQ7ACeONkCtVuPknnLkHOcwZHg8pDFajz6frGeVkitLmo/MGTosCEYI6XhdMihhNBrx3nvvYcKECYiIiLD87GlQAjB9STl06JDlKc3Ro0chEokwfvx4DBkypF3tHDFiBHJzc12uM2fOHMyZQylppPsyZ0rIPciUAACxyJRSrdJUQyKOahrKYURQgPs33i1FRQxGWdVOyBpO2X0hVqjKUCU7BIk4GtERrodQuNKrx+U4U/ANisr/aDUocTxvDQBgeNYCCARBHo9RDBBHY0DyzTiRtxpHc1dizODlbm1nNOqx79iL0OsV6N/rxlYDEtZio0ZiyMBHsP/Ey9h//GVMGf2pXbqwO6pqD2PPkadh5HTI6H8v+iVd5/AmimV56BFzEaKlw3HgxKsoKvsdO/Ytwvjh7yEkqJfHx7XGcRxOn/8SJ/LWguP0CBDHIin+UoSHpkIsDIdG14DauhMorvgLNXXHsf2/Bejb8zpk9L/Hkr3jLQajFkVlv+Ns0c+oazxtMyWjSBiB2Mjh6Jc0C6HBfbx6XF/pyGuxGT0o8N7wjSFpj+LgydeQNeA+bzSLuEkkDEW/pOucvh4W0h89osehpNI0PMI8/MX8ecTjSSARSZGZMh/xsdYBXvsCxVpdAwDbTAnrzx27tol5GDw8HGMHLcYrb25BRZkC/2yvRGi4DhnZoYiKdv2wQKWuxtniH9GrxzTLMoVVUMJo1IPHo6AEIReqLhmUAExfFh397IkZM2YgNzcXUqkUQ4cOxdSpU/HEE08gJSXlgn7qRMiFxFJTQmEOSribKdEUlFBXAaGpTUM30K6ghPkpvKzhtN1rpZX/AgB6xk1p1xPGkKBeCA3qg3p5Puobzzp9oq9UV6KyZj8k4igMSL4aMlnbKvX36zUL50t+RXn1HtQ15iEsuG+r2xSUbkZN3TGEhaQgre9tHh8zqcdUVNYeQGHZVhw78xEGD1zi0fYKVTl2HV4Ko1GLQQMWo2/P1mcX4rFCDEt/AmJhOM4UfIPdh5/AhBEftmmYDWC6rhw7/T7OFHwDlhUio/8C9O050+5GLjZyOFL7zEVh6e84evp95BVuQKOiACMHPevwiWRbVNUewf7jL0KpNv0bEQsjEBrcFywrgFpTg7rGMygo3YyC0s1IjJuM7AH3QyRq23n7g6+uxfSgwHtBiZCgXhg//F1vNIl4EcOwGJn1HL7bOg6Aqcgy0JxBwW/KIkzpPRtSaZBlZguWsc+UME/Tbf05ZjQ6D0qYxcTE4uJJUagoDcfJoypUVlZg+9YqxMaLkZEdirBwAYxGnd0Qyd2Hl0HWkIO6hjOWZfKm4sqAqY4JhSQIuXBRSXIXcnNzwefzkZWVhezsbAwePJgCEoT4mHn2DbVG1vS7e0/VJSJTZpRKYxqvKleagxI92twW0w07gzoHQQlZg+lmxjzzR3skxl0CACgu/9PpOkVl2wBw6Bk3GSzb9q9iPFaIPk039eeKfmp1faNRj9xzXwAAslMfcFhbwx2ZKQsgFITiXPFPqKk77vZ2HMfhUM4bTTOc3OBWQMKMYRhk9J+PuKixkCuLse/Yi20OWp/IW40zBd9AKAjFhOHvo1/SLKc3cQzDQ1KPqZgw4kMEB/ZCRc1/TcVBW/8C35rcc1/g7/33Q6muQGzkKIwf/h6mjduIsUNWYHT2S5g48iNcOeEXZKYsglgUiaKy37Ftzx2oa8hr97F9ha7FvsN4afgGuTCYMyUYS6aE48KhjjK7dDpTwMLdTAlrHKdHYlIorp45CMNHRyAwkI/yUjV+/7UCe/+tRVl5gd02soYcALApZqxSV9rs0xG9QY1q2RFwnNGtthFC/IOuOC7s378fH3zwAfr27YutW7di9uzZGD58OO6++26sXr0ahw8f9ncTCenyWj5NFgjczJRoGr6hbgpKmNM825MpwecHIDgwEUp1OTTaepvX6pqCEu5OA+pKQoxpOERR+R8Ob5o5jkNB6RYA8EqxyKT4S8GyQhSWbYVOr3S5bknFDihUJYiOGIKI0NQ2H1MkDENG/7sBAKfOfu72dkXl21BRvRdBAYltytJgGBbDMp5AUEAiyqt3o6xqp8f7KK/+D7nn1kPAD8ZFQ99w+28eFBCP8cPfRVBAIsqqduLY6Y88Pra10+e/xvEzH4HHE2Fo+uMYM/gVSMPS7W7WBfwA9Eu6FpNH/w89osdBqSrDjn0PoLYuv13H9xW6FvuO9XuHghJdn2X4RlMmBN9pUKJ5+IY5+Ko115SwKozpTlDiSO674Dg9WEYAoTAQSckBmHp1DLKHhUEs5qHwvBIrV76FDRu+QmVlpd32zgLhzrI0/jv6PHbsuw9F5X+02jZrGm09Kmr2e7QNIaTt6IrjgkQiwejRo3Hffffhs88+w759+/D6669DqVTi9ddfx+zZs/3dREK6PAHPNgjh7vANsWX4hulLjTcyJQAgLNg0hKOusTlbQq9XolFRhABxDETCsHbtHwACA+IQEToQClWpZVYJa3WNZ9CoOI+w4H4IDe5tvwMPCQUhSIiZAL1BhaLybU7X4zgOuefWAwBSvDD9Ws+4SyERRaG8ejcaFUWtrm806nDs9AcAgMEDH25TwVLAdJM+qGms+9Hc92AwaNzeVqtrwIETrwAAhqQ94tZwF2tCQTBGZ78CoSAEZwq+RkXNPo+2Nyss+x3HTr8PHivC2MGvulVcVSgIxohBz6Jvz+ug1dXjlz/mQ62pbXU7f6Nrse9YZ/tQ0cCuz1yQ1Jxtx2Mdf6ZaF7o0Z0boLMM3mjMljG4EJfIKNjQdk2/ZF8sy6JsShMuuiUF6VggEQgb/7NyIt95+BV99tR7l5c3Tezsqugk4z5QoqzINrayqPdhq26zt2Hcf/j2wBOVVezzajhDSNl22poS31NbWYv/+/Zb/cnNzYTQa0a9fP68V1yKEOGeXKeHp8A21efhGCQAGgZL4drUnLKQ/isq3oa7hjGXmiLrGPAAcwqxmfmgvaVgmautPQtaQi5Ag28BDScV2AEDP+CleO15y4lUoLNuCgpLfkJzgeCYDWcMp1MvzER4yAFHh2e0+Jsvy0afndBw/swp5hd8iO/UBl+sXV2yHWlODuKgxiIoY1K5jx0YOR2zkKJRX70Ze4XdI6X2jW9sdO/0h1JoaJMVPRY+Yi9t07ODABAwe+BD2HHkKh3PexqTRH1tuDtyhVFfi0Mk3ALAYmfUCIsMz3d6WYRhkpiwAx+mQX/QjFMpSCEPD23AWvkXXYl+hTInuxJx1YK4p4Xz4RnMggMcTQ6eXw2DUAGBtAhmeDEljGYHN0A8A4PNZpKaHIFCixKEDeSg6V4ETJ4Q4ceIYlMYaDEgPRkSok0wJJ0GJ5nPwLIhtfiBQU38CsVEjPdqWEOI5Ckq4cOmll6KwsBA8Hg+pqakYMWIEFixYgCFDhiAsLMzfzSOkW2h7UKJ59g3zdKAB4ug2P103Mxe7tK4rYS586c2gRHjTkABZw2m7p+C19aaxtdERQ712vIjQNIhFUsgacqHTKxxmpJRX7QYAJMRO8Np4/t4JVyIn/1MUlGxGWt87XBaezC/cCADo2/Narxw7M2UByqv3IK/wO/RLmtXqjBhKdSUKSjdDwA9CZsrCdh07PvpixEiHo6LmP5w5/w0GuJl5wnEcDp18HXqDEv17zUZs5HCPj80wDAanPYiLRz4AeSPj8awtvkbXYt+xKXRJZQO7PHMwwhx0cD58wzpTonkdPl9icy1oGZTg8yQYkvYI5MoSnGiaLcp6nwHiaIfHU6jy0H9gMPqmMEgMvwp//70dZ46rUFKkQl7Pk0hIViGuh9jm2EajAbX1OZCIoiyFrq05ywJpjcGgbdN2hBDPUFDChcsvvxzDhg1DVlYWJBJJ6xsQQrzO+uaYx4rcnkqRz5dAwA+CSlMNhbIUgBGB7Ry6AQBhwc3BAjNzgCI82HtBiTAHwQ/AdFNa13AaLCtEcGBPrx2PYRhEhWehqPwP1MiOOXwyVFZtSmONjfTeUyOhIASJcZfgfMmvKKva5bRGRm3dSdTWn0RIYG9ERbQ/SwMAggMTESMdhoqa/1BevRfx0WNcrn/m/NfgOAP69JzR5lk7zBiGwaABi7Ft1zzknvscfXpOd2toUknFDpRX70FQQCIG9rm1XW0QCYMhh7xd+/AFuhb7ju3sG5Qp0dWZgw3moTrOMiWsM7ms1xHwbB8atAxKsKzQMmV0QelmyzBK02t8BAUmumxfgCQcI0eOxuDB2Xhr1Xc4nSNHaWkdCgrlCA7ho39qMJKSA8DjMZAri7Hr0KNgWSGuuWQr6lpkGbIsH3kF36Ky9gBGZb3g9vAkg1EDvV6J3YeXISF2Avr0dJxJSAhpny55xWEYBvHx8RAKhTY/e+q+++7DqFGj6EsQIX5knd7pbpFLM7EoEgaDynJj354il81tCEJgQA8oVCXQ6RUAmgMH3syUCApIAJ8nQV1jnk3VcIWqDDq9HGHBfd0O0LgrMiILAFAlO2z3mkpTg7qGXARK4hEcmOTV48ZFmYIBFdX/OV3nbLFpZpA+STO8OutC74QrAQDnin92uZ5GW4dzxT+Dx4rQt+dMrxw7ODABiXGToDeoUFi6tdX1OY7D6fOmmU+yBixud9bPhYKuxb5jPfsGSzUlujzL8I2m/zvLJmAd1JQAbOtJAEBavzudbse2GKLGsoJWA+vCphpNemMj+vQPwqVXxmDE2CBERovQ2KDHgb0y/LqxDCePNuDP3Q8BAIxGLY6ceht/7r0beU3ZdYApuHAkdyXKqnahXn7O5XGtGQxq5BV+h8raAzh48jW3tyOEeKZLZkqwLIs//2yeSs/6Z08VFRVhzZo1OHjwIOrq6hAWFoYhQ4bg9ttvR2Ki6wgvIaT9rJ8euzt0w0wijkSj4jwqakw3u+0tcmnZr1AKhbIEWl0DGLBoUBRAIoqCWBThlf0DpqeUocF9UVN3DHJlseXLW0cEQMzMdSKqZUfsXjMX+4qNGuX1qRijI7LBMHxU1OwDxxnsnmBxHNf0N2SR2DQzibfERY2GWBiB8uq9liE+jpwv+Q0GowZ9es70SjFTsz49p6Og9DfkF32P5MRrXPZttewoZA25CA3ui2ip94buXAjoWuwblCnRvViGb7RWU4Jpvl2weVDAt80Y6xk3GQJ+EHYdesxuO0d1c4IDXP/bNQfGzEU1WZZBXAIfcQlRqKnW4vTJRpQUqnDiaANyjjcioacEffoHguM2gmEYVNYesOxLr1dZfjYadS6Pa81g1KC8eq/b67dG1nAaBoMaKnUVEmIn0tTGhDTpkkEJbzl+/Djmzp0LkUiE8ePHIzIyEtXV1di6dSt+/vlnfPrpp0hLS/N3Mwnp0qxrSngclGiqK1FYZpoKzFs3crymp0MGgxqNuiIARoR6OAuDO8JDUlBTdwx1DaebgxJNs36EeXGoiFlQQIJVXQklBFZ9X169CwAQFznK68fl8wMQGZaBKtkhyBpO20012qgogFpTg4jQgRAIPHsPtIZl+UjqcRlyz61HUdnvSOl9k8P1zFOHujPLhSfCQ1IQEToQtfUnUSU7hOiIwU7XPVPwDQCgX9J13eqLLF2LfYeCEt2LOZPBHGg1XzPt13M8fMPRMDbrZbYFMm2zMIxGfauf59qmYITBaFvXQSQMhzRShlEXSyFv1CMvV47z+UoUnjf9FxomQN+UIIQGNQcidE1TmFrvtyWjUY9q2RHLlNuAqaaErGnK79CgPi7b2xqNth5/7mnOJhEKQywFswnp7igo4cLy5csxcOBArF692iZtVKVS4a677sLy5cvx6aef+rGFhHR9tk9lPBu+YZ6BAzAiRjrc4+kbnbfJ9KVMb1BDbzB96REJQ72yb2thlmKXZ5AYN6np56b6FU2veRPDMIgMH4Ti8j9RU3cMsZEjLK9Vy46CZYWIbOesF87ERA5HlewQKqr/swtKVNUeAgCv1ZJoKT5qLHLPrUdl7SGHQQmNth41dScgFkVaaop4U3LiNaitP4lzxT87DUoolGUoq9oJsUiKxNhLvN6Gzoyuxb5jG5Sgr4hdnXkIYN+k6yANy3A6k4/t8I3m4ILAQVDCOiPCeohhy+Eb5voTl4/7ARptLbbtvs1uX9qmQELLaZsDxLHQaGUAgKBgPrKGhiE9KwSF51XIz5WjTqbDgb0ynDzyL3okAcl9AxEWUm7ZXqdrgF6vQknFDsREDrdkOZ7M/9gy7bWZwaiBsSko4iyTxF2NigKb3+XKEgpKENKEwuAuHDt2DHfccYfdOFaJRILbbrsNR48e9VPLCOk+GIa1BCY8fUouEUdZfnb2BLwtzO3R61WWlFAez/vj3c3ZEHVNT2ksRS4Zgd00od7iaAiHVtcAra4BQQE9PJq60hPmAEhFzT6718wpuNERHTP1Y1hIf/B4EtTUHYfRaD+tXHn1HgBGxHXA0BUA6BEzDiwjQGXNfpv6IdbKqncB4JAUP9XmBqE7oGuxL1GmRHfCMs2zbkRFZDn9m/NsakM0/yx0kL1oHXww79+0D9trh3kKT7EoHBInw+b0egU4zmCXKSFoMSsXYJpONLlvICZNi8bEqdFISg6ARqtAXq4cW3+twPcb9iL/tBxarREqTTV+/Xsm9p94GblNdXoAoKTiH7v9Gq0CIlwr0462RqWusvmdodswQizoX4MLIpEIdXV1Dl+rr6+HSNQ9iowR4m/8pgwJjzMlxDEAgIjQgYgM994TfnMAQm9QwWBQm9rYAUGJ4MCeYFkh6uVnAQAqTRW0unqEBCd32I1paLApPdW6SrpcWQLAezU5HAkJSoZYGIGauhPQN/UpYHqaVlV7CCwrhDQsvUOOzbJ8SMPSTUVRG8/YvW6eCjUuanSHHJ/PE0MalgatrgF1jXkO16moNgVrYqQjHL7eldG12Hesg24UlOj6ggLdK/5sHWiwzqBxnCnR/O/RNlPC9pplHQB2FezW6uSWTAXr9vCdfB9gGAbSSCGGj47AFTNikTk4FMEhfFRXyXHwvzr8/G0Z1q5bjpKiGnAcB7Wmxmpr++mRDcbmoISxxewinlKoylo0tl27I6RLoSuOC+PHj8drr72G/fv32yzfv38/Xn/9dUyYMMFPLSOkezE/FfG0pkSMdCgG9rkVQ9OXevUJt3n4hsFq+Iaz+d3bg2X5EAqCodObpm2sazDdMHtrGIoj5uwSlbrasswcoAiUtH/2EmcYhkFIcB8AxqYpXE3qGs5Ap5dDGpbeobNNRDUFrVoW+TQadSiv+Q8sK0SUi3oP7T6+1JQFUllzwO41g0GDqtpD4PMCIA3rfrUT6FrsH/QUt+uaetFXGJX1IsJDUtxa32YWDatCxI5qSrA86+Ebzdu1LC5pnXXgKsiu0zfaDd/gsUKHWRoticQ8pAwMxqVXxmDi1Ggk9w0EywIF5xrw9x/V2PRDOf7bk4uqqiqn+9DbZEq0PSjBcRwqWhTMZCgqQYhFlxgwuGvXLowe3foTLJ1Oh0cffRRvvPGGW/t97LHHcO+992LOnDmQSqWQSqWora1FTU0NsrOz8eijj7a36YQQN5iLXXo6JSjL8pHaZ57322OpKaFqDkrwO2a6Qh4rAscZYDTqodU1AHBejMwbxMIIAAzUmuaghMIHmRIAECSJRyVMT5NCg5MBANV1ptR8VwUgvcGcSVNVexj9e91gWS5ryIVer0Bs5MgOCTyZRUcMxkmsRVXtQaT0nm3zWnXdMRiMasRHj/X6NLAXAroW+wfD0pSgXVWgJA6Bkji317eeRcMmU4LfSk0Jq3XNU2ibWWdKuMrK0eoa7YZvsKyg6SFFhc1yAT/IEsS3Zs6ekEYKMWhoKIoLVDh/VomqCg0O7juLyqLXERsbDy1bhchYPQICrdvdXBSzPUGJ8yW/WK5nhBB7XeLbzfz58/HOO+9g3LhxTtdRKpVYsGAB9u2zH6/cklqtxo4dO1BSUoLZs2djzpw5OH/+PKqqqhAVFYVBgwZh7Nix3jwFQogLAl7bMiU6SvPwDetMiQ4KSjRlBxiMGstQkfYW23KFZfkQCcOh0tSA44xgGNYnwzcAIDAgHgCgUJVYlilUpuJkwYFJHXrs8NABYFkhauqO2UxLai5M1hFTsNocP2QA+LwAVMuOwmjU2Tw5rKg2TWnb3YZu0LXYvxhQUIKY2GRKsK4zJayvhdbb6VrMeGF0sz5Dg/wc9HqlzTIeT+iwxlSfxOk4de4zu+UMw7MEFPh8Fr36BKJXn0DIG/WoqQgDXx+N8vJSnC8ph04vR1S0CIm9JEjoKQHLNFi1uTkoceTUexDwgzEg+WaX7Vepq1FQ+hsKy7Y5eJWykQgx6xJBiUmTJmHhwoV48803MWnSJLvXa2trceeddyI/Px/vvvuuy30VFRVh3rx5KClp/lIcFBSEN998ExdddJHX204IaV1ba0p0FPOXLoOhudBlhwUlmsbnGgway9Oijio2aSYRRUKjrYVGWw+xKNwSlAjs6KCExBSUkFsN3zAXBrMuWtoReKwQ0tCBqJIdRr38nGWITKPCNHQlKKDjhq4ApmBQVEQWyqp2oabuJKKsZjmxBCUiu0+VdroW+x/VlCDNrGuNNAclHGVK2NaRsM44sM1gcDfr4MCJ5fbHYAQOH1I4yliUiKLAwdiidoRJUDAfMdEhuHTsA6ioKMe6L/bhzBkVqio1qKrU4NC+OsTEitGjpwTxCWIEiA1NbTfi9PmvAcBpUEKvV4HHE2PHvvssgfaQoN7QG9RQNtWWMI8q5TgOSnUFAiWxbvQIIV1Tl7jivPbaa7jyyitx//33Y9OmTTavFRcXY/bs2SguLsa6deswfvx4l/tasWIFWJbF+vXrceTIEfz6669ITU3FM88803EnQAhxqbmmRGcJStgP3+iI2TdM+/VtpgQASMSm4SFqjSkgoFCWgGUECOjgwIA5E8M8XASwCkqIOvbYABDaNM2qXFFkWSZXmn4ODkjs8OOba1ZU1zXXtdDrVWhQnEOAh+nWFzq6Fvuf9c0n6d6sSzJZD8kQtjIjlvVsQi1rSjia6chdLCtEgIMbeD7PflaOwIB4Jw8NGPBYEXR6BRiGQWxsHLKHxWDaNbEYPyUKffoHQiBkUV6mxoG9MvzyXRm2bjqHnTv/RVVVmYP9NauqPYwf/5yKc8U/2WT+hYek2MxkYs68yMlfh83/XI+C0s1u9gAhXU+XCEowDIOXXnoJ1113HR5++GH88MMPAIBTp05h9uzZ0Gg0WL9+PbKzW5/j/tChQ7j//vsxZMgQiEQi9OnTB8899xxKS0tRWVnZwWdCCHEkNnIEQoOTEBGa6u+mAAB4/ObhGwYf1JQAzJkSpoJbHVnwEQDETTUrVJpq6HRyaHR1CAyI6/CbFPNNt0JllSmhqQLD8CAWhXfosYHmwIfK6oma3Jwp4WaV+vYICewFADaFPs3V2n0RFOlM6Frsf5QpQRxhrLIfAppmuHJGZzXsYnjmMwgOTLJkOLTnOsbjCTGwzzzER1+EGOlwy3JHwYdAieOgBJ8nhoAfCJ1eAY4zz7rBgWEYREWLMHh4OK6cGYdxk6LQNyUIYgkPleUKbNr0C557/nls21SJnOMNqKgot9re5NjpDwEAh3Jsa9hJxNE2M5mYAzM5Zz8FAJwr/qVp6KRpfy1radTWnUR+4ffudBEhF5wuMXzD7Omnn4ZIJMLSpUuRm5uLDRs2IDo6Gh9//DFiY91LiaqqqkJiou2Xv549e4LjOFRXVyM62vFcyoSQjtMzfhKyM65BTY0cRqP9lF2+5nj2DV9kSjQFJdiODUqYC2mq1NWQNwUIAiUdO3QDMBU0FQkjoFCVg+MMlunaAsTRPnlqKxFJAcBS5JPjDJCrSiAUhEIoCOnw4wdITF/wlerm4m3moER3ypIA6FrcGVBQgjhiPSuLo7oOgClz0DS8sbm4ZVTEIEwZ8ykaFcU4ePJVZPa/t81tYBkBhIIQjMp6Abnn1qOixjTEzdHDgaCAHjbZd2Z8ngR8fiDU2loYjVqUV++1CYgDAMsyiI4VITpWhKyhoZA3iNEjbBxyTu1DTp4Wslot3pW9hdDQMPTvn4L+/QcgObmPJcOupQBxtM3wy5bZIzV1x7Bpxwxk9J8PjbYep89/gcmjP0FIUC8AwF//zQcAREVkISSot/sddgFTaWpQUPIb+vac2WEPf0jn0KWCEoCpSrdIJMKqVaswaNAgfPTRRwgNDfV3swghXQjfUujS1zUlzJkSvhq+Ue2zmTfMAiVx0GhroVRXNU2XxnV4PQkz6wwRAFCqK2E0ahHcwUUuzcxPHZUq66BEU1CoqQgoIb5CwzeII9oWBSsdEfADYDCo7GbcAIDgwASMG/aO3fKJI1ehqvYwjp1+HwAgFIRCq6t3uH/rAprW71OHwzck8ZbsRtt9CC1DQ3V6JfYcedLlOTEMg3ApH5dOugyTp2Yi6IvfUFKkQmRgPEpLy7Bv317s27cXPB4PderziOshRlwPMQKDmm+1TJkSzqdJNTuZtw4Go2m4ZmHZ70jvd6fN67L6XFTWHkSfxOmdJnhoMGjAst7/bnL89EcoLNuCmrpjGDPYvr4I6Tq6RFBi5MiRYBjbuX45jkN+fj6mTp1qt/7u3btd7u+OO+4Aj2d/MZ43b57d8tb2RQjpesxBAb1e5btMCYNVTYkOzpQQW4YxVFtSTTu6yKVZUEA8autPQKEsBa9pvntf1JMAmoMSarUpKCH3UZFLMx5PZJr5RF1pmfmkOVOi+wUl6FrsXywFJYgDKk3rw6cE/ECoNTUOgxLOhIekQCgIdSsoYb42ALZTlFovN2ERFpKC0sp/7PbBwQh+01CSksodbrWRM5pqQBgMaoSGCxAaLkBG/2jESeciLy8fubmncPr0CZSXqlFeqsahfUBwCB8xcWJEx4rAGxJq016jUecwyGPkdFbr2Nfe2H/iZQCAkB+MnvFT3Gq7zf5bzPDUXueKf8XBk69idPaLkEov89p+AUBvMA0BKq/eA47j7O73SNfRJYISN910k9fepAsXLvTKfgghXVfz7BtWwzc6qqaE1fANfdPwDX4H15RoHr5RBcA0XMZ3mRJNxS5VJZbCpr7KlJCIIgA015RobErB9VVQAjBlS8i0Mqg1tZCIIy31Jbrb8A26FvtfZ3kCS/zPepaN5uC486fifJ7ps7vljButsb5RFglDIFc6WY+xmqLUKnhmfcOfnHgNUpPnQiyS2lyf+fxA6PUKcJzBkilxOOdNt9pnnjHEulbGsdMfQNmzAtnZi5GdPQSNijKs3/gnykrUKCtRo6Feh8YGOfJy5ag8vxZa7jgCQ+sREyuG0bgOOWf/5/Q4pp/1Tf+3H7paULYFiXGTPboHqqo9hL/334/s1AeRnHi129u5cuSUKfMlJ/9TZA70blBCIm4eqqfW1lqGWbaXwaDBoZw3kRR/KaIiWq85CABVtUdQUbMXaX3voM/HDtAlghKLFi3y2r7oixAhpDWOZt/ouOEb5voVvit0aR6+odJUQ6EqBwCfjV81D1OQK0shEoY1tcc3QQk+P8A0xrhp+IbcEpTwXZHJAEkMZA2noFSXm4IS3bSmBF2LOwH60k2axEePQb+kGxAfPRpCQSg02noMGuD8u3d46ADIGnIQGtTHo+NYBxiEAudDr62LRdpOQSqw+VncdANrPTuWgBdgCkoYDR4PUTLPlmEetmmWX7gRWQMWAwA4ToOoGBGiYkTIHBwKldIATpsOVWMsZNUCnMqXo7CwETnHGsHnM4iMFlnWD48QgGWZFsc0BSXM3zWsVdbsR2HZFiTF22eFO5OT/wkAUxFOR0EJnV4BpaoCocHJDrdXaWqg1dZB1nAaSfFTwTCMJYjSEUO+rIe4aDTuBSU4jkN94xkEByY5/b5UUrEDBaW/oaD0N8yc4l6mzN/77wMAhAX3RULsRLe2Ie7rEkEJQgjxJR7PevYNNRiG79VUSNtjmTMl1FaFLju2poSAHwyWFaJRUQCOMyA0uC8CxL4pLGiZFlRVYklhlYh8V9RQIopEo6IAOr3SMnwjONCHQQmruhIRoWlQqEohFIQ4LShHSEdhQMM3iAnD8JCZMt/y+4QR77tcP73fXRAJQtGrxzSPjmN9HXVVXNjZ8A3roAZrU2vCOlMiANCYAgxJ8Zeipu64JRDdOiM4zgidzj6Fw2jUg2X5dsEDSQAPQ4dPR1L8peA4Dj/9XoScU/tQUaZGVYXGMtTDdF4MpJHCpkCFEBGRQsvwjZZDWcJDUiBryEW17IhHQQld03AI68AOAMgaciFXFOPU2c/QoDhnU2DT+hy37rzZUsA0ODAR0rB0S+CkY4ISzTOQaLR1bm1TUbMPOw8+jBjpcIwdssLhOtazyHhq79FnUS8/h7S+t7u1fqOiEApVOeKjR7T5mN0BBSUIIcRDfEudBzX0elWHZUkAsFTqNhi0zUEJu3Gz3sUwDCSiKMv86nFRozv0eNbMtRMa5YWWZb7KlABMdSUaFQVQa2ogV5qCEr6qpwFYBSXUFZaq8IHdpMo66Vxo7DZpKwE/AAP73urxdqxVgEEkdJEpwVgXumzO6LG+0bQOVlhfo82BD44zIC5qNCaNGohftrs/jIHjDNDp1XbL9QYlhGwI9Hr7gIV5GlSGYRAeEYB+A4LQb0AQjEYOtdVaVFdqUVWpQU2VFpUVGlRWaIBjAMMAfXrvQnXxbwiN4KBSGiAJMN34B4hjIWvIhdFosDueK+aAgtGoRV1jHkICe8HI6fHnnrts1muQn7ULSuj0cpsZVRrk5yENS4d5mCfr4Y1+XWMeTp/7EtkDH7QM12zJelpUtbbW5f7OFGxAcEAiautPAoBlVhZHrN9rHOd51syps5+6HZTYuvNmAMAV478DQA8YnKGgBCGEeIhheOCxIugNSugNqg69aTYX1TQYNZZq3B09+wZgmh7THJSIjx7b4cczEwnDERTQEw2Kc9DqG0xt8WFQwpwaKlcWQ6Eqh0QcbRmu4wsBEtP01UpVuVU9ie5X5JIQ0v1Y39S6Hr5hlZloVWvBttaEVVDCqqaEeUpT85ADT6+nRs5gU1PCTKdXQCgIcTjMwhyUMB2/Gcuahm9ERoswAMEwGjk01OlQValFdaUGVRUaVFTU4d9/d0ChqkBpZRkkATxII4UYOKAKWmgQK9XaHU+jrbOZXcS2nc1t/2P37QgO7Am5gylTrYM6Zi3PzRy4t5yP1Y29waCBQl2OkMAku/1YHx8wXeMz+t/jcB2b4Rtamc1r5oLQptfqcDT3XQBAZkrrw/rNw2EBQKmqRGCA7RBJjjNAoapAkBdnvnI306O7oqAEIYS0AY8nhlbXAIDr0JvW5ilB1TAYtDbLOpK4qa6ERBSFsGDfTIkJmJ4kJcZdgpz8dVBragCwEAsjfHZ88wwcpZX/AjAiPCTFZ8cGbDMlaDpQ4l+UKUF8y/pptbMn54BttiAHo+Vn2/oSjjMlzMcw14fw9HrKcQa7mhIALBkSzZkSLNDUNqHV8Dv7cpXNWJZBWIQQYRFC9BsQBI7jECwaBmnQDBw5vhmKg7vRUKdDcaEKctl51DVW4eDOHTiydyUSEnqgRvEz+vcZjtLaLyEShuCqib84aKftjCiNikK7dWzPw3qZqul8TDOjnD7/pc3QEeu/36GcN1BQuhnDMpYhIWaCyywKZ1Ojtnzt2OkPEBLUG7GRI6BQlWPzP7OR3u8OpPS+yWY9V+8dM3PmKWAKrrQMSuw/vhyFZVswJns5KmsPobJ2v8v9cRwHo1HrsuYXxxmdvkYoKEEIIW3C50ksYzw7dPhG05cvg1ELg1ENhuF5nCLZFuZpOOOiRvs8jTsx1hSUMLVD6pPzNTNnSpinkJOGZfjs2IB1pkQFlN20yCXpHBgKShA/YllB082sEIVlW2xfY6yCEjaZEtbDN3gOl8dIh0LWkIP4qDFN67l+nwv4QTaziHBGZ5kSpnXMNRvCgvugrvEMANOMH23BMAyCQlgMHTwcYVGFCIuPgU5nhKxGh0DBIBw+VgStiofS0hKcO38MReV/Ywv+BssyCA2rgrHhO8TF9UBcXBxiY+MgFAptMgRc0TqYOcWcKREW3BeVtQcAAMfPrLZqb3OfF5RuBgDsO/YCautOICv1fgCmYEB+0fdIjL3Esi6fH4CSyn8gq89BWt87bf4mhhYBi5N5axEbOQIFJZsAGHH8zCqk9L7JZpiH9VS0pZX/Iiykv11dLPMsMoB9vQ4AlvdcSeXfOF/yq93rLe0+/ATKqnbiygm/QCgIdriOq+ALoaAEIYS0iU3hrA4NSljNvmHQ+GToBmAaslFevddrU4Z5Ijgw0VLEy5dDN4DmTAnzlxRpWJpPjy/gB4HPC4BSXQ550/CNAApKEH+gmATxI5YVYMSgZwDAPijBWo//bz1TAlY3uQP6zDU9bY8a6VY7xg9/D2eLf0JF9T7IlYUwcnqHNSV0LTIlQq2CEu48uW9uKg9hwf0ha8hp2p8CRqMe+UU/mvYlYBEdK0JmymAESndDGpaK6urTkNUaEBARDFmtFnUyHWS1Whw4sA/APvOeERkZiZKaWoSGCRAazkdIqAABgTyHgRmdrtFumTkoYQ6em867OXhhHRhgGL5lOtP8ou8tQYlT5z7HqbOfIr9wo82x9hxeBgCIlg4FAx6iIgYBsC10acJCq2u0CVZU1R6xzIwBwBLQB0zBggBxLC67+GubvVi3VaWpxvEzq9C353UQCAKhUrde+LRlhk1Z1U4AQH1jntMpRvUG+/cNaUZBCUIIaQPr4ACvQwtdmi58ppk+NBA4icB7W2R4JqaM+cQnx3IkIfYSU1BC5NughHk6VMBUnTwsxHdDVwDTk7EASQwa5OcsT6KopsSF4+zZs1i6dCnkcjmEQiGWLl2KoUOH+rtZbdKyOj8hvmSd3TA840motTJLzQBzXQjAvUwJ66wfHitEYlzzU/rWhAT1QtaA+7D9vwWQK83DN5xnSphv3EOD+wEwZQtYByWcxfqEglAYjTr0iLkYyqapuAFT5oVCVQq50naYhXmfdQ2nwfDViIgGIqJNdTg4zlQUMyP5KpSVlaK2RonS0hJUV1ehsMC27Xw+g5BQAUJC+QgNEyAkTIDQMAE0uga7NlpPgT5++PvY/t+9NsMVZA25+HbTjcjovxCBknibNv+9bzFiIkegvjEPgGmIopnGKlPhn/0PAADGD38f0rA0u+wCWUMO/th9B+KjL7Is23nwYZt1FFZBCdOxylFbdxJ7jjyFoelLES0dbDN849jpD0zbKUuh1Teissb1UA3A+ecjw7AordwJlhUgNnK4zWuO6o2QZhSUIISQNrAunGX9s7c115RQwcjpXI5X7Ep69ZiGmrrj6J14pU+Pa86UAExTrvH8cGMWII5Fg/wc1JpqxEaOouEbFxCRSISXXnoJycnJyM/Px7333ostW7a0vmEnMirrJTQqCixDmQjxB+tilolxkwDAEpSwznwwF6wEbGffsA5QsF64blrXonA0fKO5pkRTNoHVcAHrGUKc1ZSIixqN7NQHwLIC7Dz4qNV+VQ6fsAv4pgcU5gLYtm1lEBDIR37F4wAL3HTTDgBAQ0MVPtv4Fxrqdaiv06OhXoeGOh1qa7SorbHNSNgd/isyB/IRGRkFqTQSUmkk1Poi6HRG8HkSiIThAACttjmgoNM1olp2Cv/sfxihwX0ht+qmKtlhVMkOI0Zqe6MOwCYIY1Zbn2MTlLhi/I+WWVKU6nKbDIqWQ1LM9Zis/fWfaUrbAydewWUXf+Ow3xrk59GgONdiqeO/GI8nQlnVHhzNXYnR2S9bvcJi9+GlAICZU3bY1JGgoIRrFJQghJA2sC5u2ZHDN8zTj2qbUil9UeSyMxAKgjEq63mfH1csai6q6euhG2YhQUkor96NhNiJGJa+lKZmvID06NE8fWxycjIaGxvBcdwF9TeMjx4DYIy/m0G6OUezPzS/Zn2T7yxTovnnuMhRiI++GAkx49vRHlNQoqTib+gcFLo01zHQN9WU4PMlmDzmU5vZQVzh8cSWhw7WWR56gxIGc4YCP9BSqNKTISFGox4sy4eRqUdsvBix8c3fXziOg1JpQEOdHtAnQKMKQd7ZPdDpNCguLkJxcZFl3brGfFTVluJQwh9ITmpEQYUMUukZCMQqBAbxERjIg0DIQm9QoabumMO2qDT2QyNkDbkO2mwKNJiHabT8nmVsGhriiKPZRMysh8S2ZDOrSxNnxSl5rAi7DpmCR8fPfGS1vu0UrdbDRAw0fMMlCkp0YceOHcOyZcssv585cwbfffcdUlNT/dgqQroGno+CEjxLUMJcVLN7BCX8hccKLZXFfV3k0mxA8lxES4ciOmKIzZdv0n779u3D2rVrcfz4cVRVVeHDDz/EhAkTbNZZv3491q5di6qqKqSmpmLZsmXIzMz0+Fh//PEHUlNTL6iABCGdhat/N9Y35ImxlyD33Hr0S5pl83lpXXeCZfntDnKbAwVHTr0Lidg+i8gSlGjKmODzAlxOh9mS9bXd+tx1egX0TTfQQkFIm4ISOr0cImEY5Ioiu9cYhkFgIB+BgXzERaVg0ID7sPmf6xEekor+PW+CRiVGdXUNyisK8Pee3xGk40Ol0qOgsBhnixQ4m6eEdTaBUMgiIJBnClIE8RAcEgixRI/AQD4CgnhokJ+1a0PLG3kA0OoaUFN33DIEpGXAwNUNvjmLYnjGk9DqGnH41Fs2r+8+/CQaFQV22zkKSjjLbrCeAcam3XrbWhzWwQ9Hs7aQZhSU6MIyMjLw44+mwjglJSW4+eabKSBBiJf4qtAl25QZYR7f6atCl91ZcGAiZPVKSMPS/XJ8AT8QMdJhfjl2V6dUKpGSkoIZM2Zg0SL7uew3bdqEl19+Gc8++ywGDRqETz75BHfccQc2b96MiAhTFs3VVzsu/rpx40bweE1PU0tKsGLFCqxatarjToaQbmbcsHdQ33gWQQEJlmUiYSguH/ed3bqsi0yLtmCtshdU6hq719WaahgMGtTL8wEAAqtpQK2l97sTf+09YLecx1pf25uDK0aj1vJQQiQIsRRx5PMd79+RX7ZfjYkjV0GuLHa5Hp8fYJk5QtaQg73HF+KiIW+gT5+R2H98O0aLgwAEIWvAPASLh+DrX/6BvEEPuVwPhdwApVwPhcKAOpkOdTJThoOAz0BndaMuELCQBPBM/0mafxZLzMt4EIlZKNWV2P7fAgCmgBDDsBiZ9YKlIKZaK2v1vFlWCEmLWTcaFQUOAxKA4+CIs0CCbdZq89/LukAoxxlshpZQoUvXKCjRTWzevBmXXnqpv5tBSJdhE5TowJoSzcM3moIS3WT4hj8NTX8CWm0dRMIwfzeFeNm4ceMwbtw4p6+vW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wHAEux3Ri6X495778WTTz6JpCT3n5S2xLLty7Awb9/e/XRF1DeudYb+YRnW7vjR0ixES7Pc257H90r7m/vC9S1TQelmMAyLRkUhIsMzERrU02G2R2T4QEyftBnfb5tqs5zPFzvtd3XTkAfra5JIGODReew//jIa5C3rJdgS8AMgFATCdJNtGrZQXPEnYqOGQqFqHhIhEQchNjYOPRKDLTNsmHEcB43aCIXCAKXcCMYYjYqqAijlBigUeqiUBlMti3rn02MyDBAetgUcI4NIxEIkYRFg+BVBQcGoKguH3lgKZcNpcKweIjELPt9xRiGfL4TYg9o4jUr7TBJ3MiWs/8x66+ljoQfHWde+MAUl6HPHMQpK+JEv00g3b96MJ5980ltNJ6Tb8/nsG00pm92l0KU/BQXEAwE040V3o9VqceLECcyfP9+yjGVZjB49GocPH3ZrHwaDAYsXL8asWbMwduzYNreFz2chlbr/JNSV8HD307y7G+ob1/zZPyEh4nb9GwgNCfLKvyHzPsSi1q+9pVX/AAAG9r8KkZEhTtczGO33FRoSYjmWSGg7NIBj6gAAwUERKK82tyus1fZYay0gYdp/CCIjgyEUBECra7q5ZpSQSoMQFhKHatlRAEB4eDik0iAIBBJotbbDFRiGgVhiynyQRgIhQSFIkIc3nwvHQa8z1bFQqwwYMnAJNGoWCoUWv//9ElRNy2WyCpsSkweFewEAeQVlUKpqADRnq/D5DAQCFgIhC6GIhUDAQChkwVMfQFRkMk7nNEIoNL0uELDgCxjw+eb/TL+zLGP5nmXLcXaDWNwcFOLxmutO8PjN64eGCsAXNGfY8Pn6pv6jzx1HKCjhR75MI62trW1TMIMQ4pivCl22DEJQpgQhHUMmk8FgMCAyMtJmuVQqRUGB43Tflv7++2/s2bMH1dXV+OabbwAAn332GUJCnN+gOKLXG9HQ0L7xxyzLIDw8EDKZAkaje8X2ugvqG9c6Q/80NKpRUyNvfUUnFHJ9u7Y3M+9Dp3PeD+n97sDxM2ssN+g6jcjlsTkHxS/VasayjVZrO4xAVlfStF3zjXBdXfPNL8PwMTr7eew8+Hhrp4PUPrcgJ9/xdN+NjXWoqZGDx0oAmNoiV8hQUyMHg+bPMJXS1FaWEQFodLgvy3lpTK8HBfSARlsPnV4OgZBBqJBFaJgAQ4dcAQE/EAaDBkq2uWCk0chBqzVCozb9d9Hga6FQyBF46BQqqlSm5RojNGoDNGoj1CoDVCoDrLM8jKpDEIuKcKag3kHLbDGMKRjM5zOWoAWPz0IsUsNglINlGbAswPIY8FgG58PPoa6xDjweg5JzZ9AgbwDDMGio2ofyqkaAAX75ZTO0ujrk5cpN+zeew9hhaNe/q5AQCQRWgY6uhIISfuSLNFIA2LJli1eGblAqacehvnGsZb90pv4R8Ju/HAgFAR3WNoYRgGF4lrGO1imeQOfsm86C+sY56hv3eTJ7xoQJE3DixAmvHNdbN4NGI0c33k5Q37jmz/5hIGjnsXlubx8gjoFSXeHwNcs+GOc3ghGhtg/9BPxgj9vOMiKrbWw/b5SqKtN+ecGWZRxnXdRTgNjI0egRMw4lFTtcHidQ4jwLUKGuhNHI2WR/VtUewuZ/5iBAHNu8IsdrWq/1hyTmAqB8fhCEglDU1p+0arcQLCOB0ciBYZqzQ8TCCKi1tRCLeRCLTf2enm7qY4PwV5RV2f+tzBkYLBOGRnkNdFojBqVcDRE/Dlv+2Qqd1hTk0GmN0Ou5pv+M0Os4GAxNv+uMUKuM4KziwQyjd1hrokJSDoXKFLgRiwqg1piG2J4LOAa50hQEqSv7DXqDEiUVdQCAMyf24eZZGvrccYKCEp2UN9JIzbwxdINSSX2D+qaZQMCze891pv6plIVZfjanMnYUPk9kmRc9MNBxSmpn6pvOhvrGOeqbZuHh4eDxeKiutp2yrra21i57ghDSMUZkPouKmr2IDPdddu+YISvwz/4HLbUbHHF0Y2rWcjYOoaD1zKipF30FtaYW2/+7F0CLItYtgqCyhlNN+20OSlgX3jQX9TQanddpMOOx9rNGRIVnoUp2GAkxpiHkghZ1shoVhWhUFFp+FwpN58dnWy+8HR89FiUV2xEfNRpKdYVNUELID7IJ+Kb2uRU5+euQ1GMacs997nB/1lmqEaFpqK03BYEZhoFAyCAkKBI8gSlAMDB1IEKD+yA8+jnIGnJRWPa7ZXpVZziOg9EI6HVG6A0cjAYORgNgMHLgjKbXDAYOfJ4Qao0URgMHsSgGcoUBHMchPDgBNfWm7JAhaeOgVtfg6OlDAAck9ewDkUgEubz1v1N3REGJTsobaaQAUFpaitraWmRktG9qO0ol7VjUN/Z0OoMllbEz9o9a3XwhVSrglTRRZ1hWCMAUlNBpWZtjdca+6Syob5zzVt90pVRSoVCItLQ07Nq1CxMnTgQAGI1G7N69G7fccoufW0dI95AQOx4JsePbvR8O7n+uhQQmYWjaY/j34ENO1zFPM+mIWNgyKBHa6jEDJXE2wzFtCifCcWaWRBKDjP73Ijgw0TJFKdBchNPgoo3N69oHJTJSFoBhWIQG9QFgms7UmQG9b7bMfmKdKREoiYdCVWq3/pCBD6NHzDj0iL4IeYW2s6TwW0xrmpp8CyLDMyENTYOsPgeVtfazlFgXFheLIuxeF1n1vXmKz94JV6A3rkB51W6oWglKMAwDHg/g8XhwnQeiAyBpOiYDjc50LuEhQYhoMD04GjosE0pVGbRNwaRIegjgEgUlLjCepJECQHx8PLZt2+aVY1MqacejvrHVsi86U/9YT9/FY8Ud2i7bY4kcHqsz9U1nQ33jXHfrG4VCgcLC5id+xcXFyMnJQWRkJKKionDrrbfikUceQVpaGjIzM/HJJ59ArVZj+vTpfmw1IaTDtfLd2tAiCyEkqBeE/BCk9L4JfL4EfH6gpVCiOZOgNeabZsD2Oh8S1Nvh+nxWjP69rrduNADOo0wJR0EJluEjNDi5+Th850GJ2KhRzW22yloIDkxyGJQQCIKQGDuxaZ1eNq+1PA7DMIiOGAwAGJX1Iv458KBNZkXLYzoKngiF1kEJ23NVaUzDYEKCertV+NNdGl2d5WetvsHys9GohcHQPCVofWM+dE6mGCUUlOi0KI2UkM7NdvYNz6bm8vxYzRdWlgpdEtJmx48fx9y5cy2/v/DCCwCAhQsXYtGiRZg2bRpqa2vxzjvvWGa9WrNmjaW4NCHkQuFZsJWB42klzYwG2yyEAEksxmQvt/wuFkohN8+S5eDG3xHr9fhWWQf9kmaBZYXgOAOOn2ku/mgzxKOp1QBnCW64N3xDYLeMYW2z3VwFJazbbJ3pERzYE+XVu10eOzgw0eZ3gYsi4Xy+BNHSoXZBCeu/E9+uP2wzJRydKwBIwzKgVJU7ne6zPXS65kxWWUMu6hvzml/Ty3Gu6C9IQy72+nG7AgpKdFKURkpI52Y94waf33GzbwC2T1AcXYQJIe4ZMWIEcnNzXa4zZ84czJkzx0ctIoR0Cq0kIRs5vc3vLWfdCg9NgVxZCE/YZErYPOgQoX+v61FRs6/FMVs+lDA27cd0O5fW9w78c+BBDM94EgajBjV1J6HR1qGs6l+rYzrOlLD93fmQPJZnHUixzpTo6XQbs0BJHOKjL0JppWnqVFfBD8BxcMd6GI2j714iYVhzW1tsLxJGQKOtRXz0WAwasAglFTuw79gLrbbbVvPsHo5odc2ZEkdOvWP5OTnhaqg0VYgM7w8X5Um6NddhQdKhFAoFcnJykJOTA6A5jbSqypRedOutt+Krr77C999/j/z8fDzzzDOURkpIJ2ETlOjAKUEB23Gb1lkThBBCCHHAwbSbrri6EQfsa0q0zEqICs/26HgAwDDNt2H2WRBAdMRQpPe72+U6pv2YggrR0iGYPukPJMZNQq8el2NI2sPITn3AZl2HmRKtnLvt9laZElbfTSTi6Fa3ZRgWo7KagwCualeY9m9/vtbDaAR8+6Lf1kVG2RbnOn74Sowc9DxiI0eAxwpdfHezvT0ekfm01T5be57v+H0XEtQbY4e8goiwvq1s331RpoQfURopIRcu23GNHTukwjZdkjIlCCGEEEfM00kGByZ5tF1EaBqiIoagykFxRcC+iKRCaVs/oWfcJBSV/4EY6VDPGtyE52BoJsMw6Jd0nWUIh7OghPXNd8ub5pbZle5kSrjbTuvjSkMH2q07IHmu3TLbtjgeXmEWFmy6gbcuHGodDGpZKNO0rDnQ0TIAExSQYCnSCdgGhawJBcHQ6uotv1tPo8qyApdFT51x1O/EFgUl/IjSSAm5cJkv9DxW7NFThrZomdZJCCGEEHtTxnwGlaYagQFxHm3HsnxcPPQNfLd1nGVZSFBz8ceWmRHmabrNeDwRLh76RhtabOJsaKZtMUzH139XQYWWgQxHN8f232Gcj2WxfkgSFzUGNXXHMbDv7RAIgjBj8u84efY9nMr/AZeOXW8TAHDY7laCElER2RiV9RLCQ/pblgVIYgAAElEUBA6CEtbn29p3M2evtwxKBEhim/fPCKB3tFErnNW3IM0oKEEIIW1gTvvzRY0H2+EbFJQghBBCHBEIgiAQ2Kf1eypaOgxD0x+3/G4dlIiKSEV6v4XtPoY1V0/SgwJ6Qq4sdHgTbtrW+Q0vy/LBskLL031HdRpaZle4muXPuqZEXNQoxNnMxiHC+JFPYWCfhWDQ+k1460MhgPjoMTa/p/S6EQCQFD8VDfLzdusLm6bfdIfzoERIi9/tpxkFgABxLJTqcgCm90tlixog1loLwBAKShBCSJuwrBCBkh4IEEd1+LGcVbsmhBBCiPf1SZwOiUhq+d1cyyAoIBEzL1uPmhq5V6ZTHpaxDFpdg8tAwOTR62A0ap3exLdWD4PPE0PbFJRwdHPsSbYny7R+c81jhW71jSfDRsz4fAnS+t4OAFCpm2coTE64GgzLQ2T4ILf3ZT18g88LgN5gyn6xDkJcOeFnm7+Ndf8xDAuG4YHjDBjYZ14rQQkavtEaCkoQQkgbMAyDSaM/bvXLgDfYDt+gmhKEEEKILw1KWYD/jj2PzJR7vLrfnnGTW13HlO3g/JattaACjycGmmaFcJgp0WL73glX4XzJJgj4QdDpm6e4ZFmhy+CJp5g2BCWsCQTNmSOJcZMRGZ7h0fbW583nNwclBvaZB4WqFKl95tllTbQMSky7+LumPnIdhHEnK6S7ox4ihJA28tX0nNbZETR8gxBCCOkYKb1vwvniXxEVYTubRmLcJPSIGQc+vxM+8W4lUGA9y4Q7mRIRoam4+pIt0Onk2PT3TMtyRwGN9mjvjbr1cBbr70bjh7/nVlap9XkL+AFQa0w/B0jiMGXMp61uwzAsxKJwiEXhUKjKXB6Lhm+0jqYEJYSQTs6mpgQN3yCEEEI6RHq/u3D5+B8g4NtPV9lZbyyZVm7nbKfJtA8EOMq04PPEkIgjMWXMessy7wcl2tef1lOCWrdNGpaOsJB+rW5vG5Sw2pebD38YNG/fWt94u++6IgpKEEJIJ2cdiPBVdgYhhBDSHXlziIIvtNbelkMQhmc86fb21t85vFUXIbpp2tToiCHt2o914KgtQ1ttakrYTCXq6DzN6zYP07DevrW+aUv9jO6GeogQQjo520wJirYTQgghxMyzoERi3CTU1p9CXuGGVvfMs5ptw1vDR0dnvwylqhzBgT3btR/rTIe2ZJHaZkoEWi23f2bPMjwYOaNN6QjbQpkSu21stu+kWTadCWVKEEJIJ0c1JQghhBDiSGuZEiJhqN0yd2fcYG1m//LOQxEeK2x3QMJunzzP28Y6CUo4Yg5AcE4zJfjguQhM0OwbraOgBCGEdHLmQATLCDyauosQQgghXZ3r2znregmWLVj3vkvwrJ7wd8Yb6/CQAWBZYduGttpkOrgXlLAdvmHbh0JBsNPtKVOidTR8gxBCOjlzpgRlSRBCCCHEWmuZEo6GFrRWHLN539bTZroeouAPE0Z8AI4ztOmBjXWmRGvfr5r37zhTAmiuv9FyKlWAghLuoKAEIYR0cuaLZVsKORFCCCGkK2slKOEgmNCWm/hASZzH23Q0hmEd1oBwa1t4MnzDtC5nXVOiRWCHaSpmaT3Ew4xHQYlWUVCCEEI6OUtQgqYDJYQQQogVprWgBM9+etO2zDASKIn3eJvOjLEawiIWRWBI2qNOz9Hx8A3boIR5hg3OqLfbnmUoKNEaCkoQQkgnR8M3CCGEEOJQq1OC2he6bItASaxX9tNZWGc6sAwfifGTnK9rKXRptFrIa7GO6Xcj5yAoQZkSraKgBCGEdHKUKUEIIYQQR1qrDxEVkYVePS5HjHR4u44jEUe3a/vOxnoIS2vDWcx9zHHNQQm7TAm2KVOCM4DHk8BgULm9f0KzbxBCSKdnTr3k8+1TMAkhhBDSjbWSKcEwLIakPYKE2PGWZfZVD1oXKOnRhq06L+sZSBjW9XP65poSBqtlLYdvNO9v4ogPbWYractwme6GMiUIIaSTC5TEIbXPrYgMz/R3UwghhBDSibRWU8Ihzv2wxCWj1kKlroZYFO75cTox2+EbrWRKWIISVpkSLQtdWgU2QoJ6YVDKQhzKecMbTe0WKChBCCGdHMMwGNhnnr+bQQghhJBOpm2zT7gflAgL7ouw4L5tOEbn5tHwDUdBiRbbDOg9B5U1+5E14H4AzcM5iHuotwghhBBCCCHkgkRDA9rCOphjnjmjtXVdDd+IisjGNZN+B69p2AbNuOEZqilBCCGEEEIIIRegttQr4NpUVaJr8SxTovWgBABLQMLZ68Q56i1CCCGEEEIIuSBRpkRbeBKUkIijAABikdRqG9e30RT48QwFJQghhBBCCCHkAhIc2BMAENoF6z34gnWGSWv1HwYPfAg946ZgVNaLVtvTNJ/eRDUlCCGEEEIIIeQCcvHQt1BevRc946Z4vrEHs290B60FGALE0RiW8YTtNvRs36soKEEIIYQQQgghFxCxSIpePaa1aVsaWmCrtSlBHaGaEd5FvUkIIYQQQgghpFtqy1AMCkp4F/UmIYQQQgghhHQblClhjWllSlDH27gOZAj4gW1tTrdEwzcIIYQQQgghhHRLLNuGTIlWZj2JjRyJfknXIy5qVFub1a1QpgQhhBBCCCGEdBNxUaMBAD1ixvu3IZ1Em2bSYFwHJRiGRWbKvYiKyG5jq7oXCkoQQgghhHiJSqXChAkT8Nprr/m7KYQQ4pA0LB3TLv4WIzKf9ndTOoW2FLpEK5kSxDM0fIMQQgghxEs+/PBDZGZm+rsZhBDikkQc5e8mdBptKnTZAe3ozihTghBCCCHEC86fP4+zZ89i3Lhx/m4KIYQQt1GIwd8oKEEIIYSQLm/fvn245557MHbsWKSkpOCvv/6yW2f9+vWYOHEiMjIyMGvWLBw9etSjYyxfvhwPPvigt5pMCCHEB9o0vWcrNSWIZ2j4BiGEEEK6PKVSiZSUFMyYMQOLFi2ye33Tpk14+eWX8eyzz2LQoEH45JNPcMcdd2Dz5s2IiIgAAFx99dUO971x40b89ddf6NWrF3r37o1Dhw516LkQQghpv/R+d6NRUQABP6gNW1NQwpsoKEEIIYSQLm/cuHEuh1WsW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wEAP/74o9Ptjxw5gk2bNmHLli1QKBTQ6/UICQnBXXfd1ab2smz7vvCat2/vfroi6hvXqH+co75x7kLsm9Q+N7V5W4bx7FwvxP7xJQpKdBH33Xcfdu/ejbFjx+LNN9+0LN+2bRtWrFgBAFi8eDGmTZvmryYSQgghnZJWq8WJEycwf/58yzKWZTF69GgcPnzYrX0sWbIES5YsAWDKnDh79mybAxJ8PguptC1P7uyFhwd6ZT9dEfWNa9Q/zlHfONdd+kYiFrbpc7q79I+nKCjRRdx000245ppr8PPPP1uW6fV6rFixAuvXrwePx8P111+PSZMmQSgU+rGlhBBCSOcik8lgMBgQGRlps1wqlaKgoMDn7dHrjWhoULVrHyzLIDw8EDKZAkYj56WWdQ3UN65R/zhHfeNcd+sbtVqPmhq52+t7o39CQiQQCNoyfWnnR0GJLmLEiBHYu3evzbIjR44gJSXF8iUrMzMTBw4cwKhRo/zRREIIIeSCwnEcmDYUM5sxY0a7j+2tL/VGI9ctbhDagvrGNeof56hvnOsufcNxbfuc7i794ymafcMHfFHx25HKykrExMRYfo+JiUFlZWW790sIIYR0JeHh4eDxeKiurrZZXltba5c9QQghhFCdS++iTAkf6OiK3zxe10zjIYQQQnxBKBQiLS0Nu3btwsSJEwEARqMRu3fvxi233OLn1hFCCCFdGwUlfKCjK347Ex0djYqKCsvvFRUVGDt2rMf7MaNK4B2H+saxlv1C/WOP+sY56hvnumPfKBQKFBYWWn4vLi5GTk4OIiMjERUVhVtvvRWPPPII0tLSkJmZiU8++QRqtRrTp0/3Y6sJIYR0RgylSngVBSX8zBsVv53JzMzEqVOnUF1dDR6PhyNHjuDFF19s076oErhvUN80Ewh4du856h/nqG+co75xrjv1zfHjxzF37lzL7y+88AIAYOHChVi0aBGmTZuG2tpavPPOO6iqqkJqairWrFljyVgkhBBCmlFQwpsoKOFn3qr4fdddd+Ho0aNQqVS4+OKLsWrVKgwYMAAPPfQQbrzxRgDA/fffD5FI1KZ2UiXwjkV9Y0+nM1iqGlP/OEd94xz1jXPe6psLqRL4iBEjkJub63KdOXPmYM6cOT5qESGEEEIACkp0Wp5W/F61apXD5VOmTMGUKVO80iaqBN7xqG9stewL6h/nqG+co75xjvqGEEIIaQvKlPAmmn3Dz6jiNyGEEEIIIYRcONowWzRxgYISfmZd8dvMXPE7KyvLfw0jhBBCCCGEEEI6GA3f8AGq+E0IIYQQQgghXQWlSngTBSV8gCp+E0IIIYQQQkhXQUEJb6KghA9QxW9CCCGEEEIIIcQe1ZQghBBCCCGEEELc5MksiaR1FJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIcRtNHzDmygoQQghhBBCCCGEEL+goAQhhBBCCCGEEOImhjIlvIqCEoQQQgghhBBCSCuyBtwPPj8QvROv8ndTuhS+vxtACCGEEEIIIYR0dn16TkefntP93YwuhzIlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AXDcRzn70aQzs9o5GAwGNu9H4GAB53O4IUWdT3UN7ZOnz6F/v0HWH6n/nGO+sY56hvnvNE3PB4LlmW81CJiRtfcjkd94xr1j3PUN85R37jW3v7pytdcCkoQQgghhBBCCCHEL2j4BiGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/oKAEIYQQQgghhBBC/IKCEoQQQgghhBBCCPELCkoQQgghhBBCCCHELygoQQghhBBCCCGEEL+goAQhhBBCCCGEEEL8goIShBBCCCGEEEII8QsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBHHb+vXrMXHiRGRkZGDWrFk4evSoy/V/++03TJ06FRkZGbjyyivx999/27zOcRzefvttjB07FpmZmZg3bx4KCgps1qmrq8OSJUswePBgDBs2DE888QSUSqXXz80bfN0/xcXFWLp0KSZOnIjMzExMmjQJ7777LnQ6XYecX3v4471jVldXh4svvhgpKSlQKBReOydv8Vff/Pnnn5g5cyYyMzMxatQoPProo149L2/wR98cOXIEN998M4YMGYLhw4fj7rvvRn5+vtfPzRu83T9bt27F7bffjhEjRiAlJQWnT5+228eF9JncHXj7PdCVeNI3Z86cwaJFizBx4kSkpKTg888/92FL/cOT/vnmm29w4403YtiwYRg+fDhuu+02HDt2zIet9S1P+mbbtm2YOXMmhg4diqysLFx99dX44YcffNdYH/P0M8ds1apVSElJwfLlyzu4hf7jSd9s3LgRKSkpNv9lZGT4sLWdEEeIG3799VcuLS2N+/bbb7kzZ85wy5Yt44YNG8bV1NQ4XP/gwYNcamoqt3r1ai4vL4976623uLS0NC4vL8+yzkcffcQNGTKE+/3337mcnBzunnvu4SZNmsRpNBrLOrfffjt31VVXcYcPH+b27dvHTZ48mXv44Yc7/Hw95Y/+2bFjB/fYY49x//zzD1dYWMht27aNGzVqFLdixQqfnLO7/PXeMVu0aBF3++23c/379+fkcnmHnWdb+KtvNm/ezA0bNoz76quvuLNnz3KnT5/mtmzZ0uHn6wl/9E1jYyM3bNgwbunSpdzZs2e5U6dOcXfffTd3ySWX+OScPdER/fP9999zK1eu5L755huuf//+XG5urt1+LpTP5O6gI94DXYWnfXPkyBHulVde4X755RduzJgx3GeffebjFvuWp/3z4IMPcp9//jl38uRJLi8vj3vssce4oUOHchUVFT5uecfztG/+++8/bsuWLVxeXh5XUFDAffrpp1xqaiq3c+dOH7e843naN2bHjx/nJkyYwF155ZXcK6+84qPW+panffPdd99xw4cP5yorKy3/VVVV+bjVnQsFJYhbrr32Wu65556z/G4wGLixY8dya9ascbj+4sWLubvvvttm2XXXXcc9++yzHMdxnNFo5MaMGcOtXbvW8npDQwOXnp7O/fbbbxzHcVxeXh7Xv39/7tixY5Z1duzYwQ0YMKDT/cP1R/84snr1am7KlCntORWv82ffbNiwgbvhhhu4Xbt2dcqghD/6RqfTcRdddBH3zTffePt0vMoffXP06FGuf//+Nl+0Dx48yPXv37/VL12+5u3+sVZUVOQwKHEhfSZ3Bx35HrjQedo31iZMmNDlgxLt6R+O4zi9Xs9lZ2dzP/30U0c10W/a2zccx3HXXHMNt3Llyo5onl+1pW+USiV32WWXcX///Tc3Z86cLhuU8LRvzEEJ0oyGb5BWabVanDhxAmPGjLEsY1kWo0ePxuHDhx1uc/jwYZv1AWDs2LGW9YuLi1FVVWWzTnBwMAYNGmRZ59ChQwgLC0N6erplndGjR4NhGLfTxXzBX/3jSGNjI0JDQ9t8Lt7mz74pLCzEW2+9hVdffRUs2/k+6vzVNydPnkRFRQUYhsFVV12FsWPH4p577nE6/MUf/NU3vXv3RlhYGDZs2ACdTgeVSoXvv/8eGRkZiIiI8Oo5tkdH9I87LpTP5O7AX++BC0Fb+qY78Ub/qFQq6PX6TvV9wxva2zccx2H37t04d+4chgwZ0oEt9b229s0rr7yCESNG4KKLLvJBK/2jrX0jl8sxfvx4jBs3Dvfeey/y8vJ80NrOq/N9Uyedjkwmg8FgQGRkpM1yqVSKqqoqh9tUV1dDKpU6Xd/8f1f7dLQPPp+P0NBQVFdXt/2EvMxf/dNSYWEhPv/8c9xwww1tOo+O4K++0ev1ePjhh7F48WIkJiZ65Vy8zV99U1RUBAB4//33sWjRIrz//vsQCASYO3dup6kN4K++CQoKwieffIKNGzdi0KBByM7OxuHDh/H+++975by8pSP6xx0Xymdyd+Cv98CFoC190514o39ef/11xMXFYeTIkR3RRL9pa980NjYiOzsb6enpuOuuu/DUU09h1KhRHd1cn2pL3/z111/Ys2cPHnnkEV800W/a0jfJycl4+eWX8eGHH2LFihUwGo2YPXs2KioqfNHkTomCEqTNOI4DwzBOX3f0WstlLX9vuU9H+2jtuJ2FL/rHrKKiAnfccQcuv/xyzJgxo40t9p2O7psPP/wQ4eHhuO6667zQWt/q6L4xGo0AgPnz52Py5MnIzMzE8uXL0dDQgO3bt7ez9R2ro/tGrVZj2bJlGDlyJL755ht88cUXiIuLw4IFC6DX671wBh3LG/3Tmgv5M7k78MV74EJF71PX3O2f1atXY9OmTVi5ciWEQqEPWuZ/rfVNYGAgfvjhB3z77bd44IEH8NJLL2H//v0+bKH/OOub2tpaPPnkk3j11VchkUj80DL/c/W+ycrKwlVXXYUBAwZg+PDhWLlypSVTs7vi+7sBpPMLDw8Hj8ezexJWW1trFxU0i4yMtFu/pqbGsn5UVBQA09NL67To2tpaS2qwo33o9Xo0NDTYPe3xJ3/1j1lFRQXmzp2LrKwsPPPMM+09Ha/yV9/s3bsX+/fvx8CBAwGYLgwAMGzYMNx333245557vHB27ePPf1eAaaiCWUBAAOLj41FaWtrOs/IOf/XNzz//jIqKCmzYsMHyReKNN97AsGHDsGvXLlx88cXeOcF26oj+cceF8pncHfjrPXAhaEvfdCft6Z+1a9fio48+wrp169C/f/+ObKZftLVvWJZFUlISACA1NRX5+flYtWoVhg4d2qHt9SVP++bMmTOoqqrC7NmzLcsMBgP27duHzz//vEvN3uKNzxyBQIDU1NRONZTW1yhTgrRKKBQiLS0Nu3btsiwzGo3YvXs3srKyHG6TlZWFnTt32izbtWuXZf2EhARERUXZ7FMul+PIkSOWdbKzs1FXV4cTJ05Y1tmzZw84jkNmZqZ3Ts4L/NU/QHNAIi0tDS+//HKnq53gr7556aWX8OOPP+KHH37ADz/8gBdeeAEA8NVXX2HWrFneO8F28FffZGRkQCAQ2Fz41Go1ysvLER8f752Tayd/9Y1arQbLsjZPNsy/mwNbnUFH9I87LpTP5O7AX++BC0Fb+qY7aWv/rFmzBu+//z7WrFnTZacu9NZ7h+M4aLXaDmih/3jaNxkZGfj5558t38N++OEHpKenY/r06di4caMPW97xvPG+MRgMOHPmjOUBSrfks5Ka5IJmnupm48aNXF5eHvfkk0/aTHXz8MMPc6+99ppl/QMHDnCpqanc2rVruby8PO6dd95xOD3f0KFDuW3btnGnTp3i5s+f73BK0GuuuYY7cuQIt3//fm7KlCncQw895LsTd5M/+qe8vJybPHkyN3fuXK68vNxmWqHOxF/vHWt79uzplLNv+KtvnnvuOW7cuHHczp07uby8PG7JkiXcuHHjOIVC4buTb4U/+iYvL49LT0/nnn/+eS4/P587deoUt2jRIm7UqFFcXV2dbzugFR3RPzKZjDt58iS3fft2rn///tzmzZu5kydPcjKZzLLOhfKZ3B10xHugq/C0bzQaDXfy5Enu5MmT3JgxY7jXXnuNO3nyJFdSUuKvU+hQnvbPqlWruLS0NG7z5s023zU62zXVGzztm48++sgyNXteXh63bt06buDAgdy3337rr1PoMJ72TUtdefYNT/tm5cqVlvfN8ePHuQceeIDLzMzk8vPz/XUKfkfDN4hbpk2bhtraWrzzzjuoqqpCamoq1qxZY0mDLisrs3lKP3jwYLz++ut466238MYbb6BXr15477330KdPH8s6d955J1QqFZ566ik0NDRgyJAhWL16tc0Yxddeew3PP/88brnlFrAsi0svvRTLli3z3Ym7yR/9s3PnThQUFKCgoMAurTw3N9cHZ+0ef713LgT+6ptHH30UPB4PDz74IHQ6HbKzs7Fu3ToEBAT47uRb4Y++6dOnDz788EOsXLkS1113Hfh8PtLT07FmzZpOV2W+I/rnzz//xOOPP275/b777gMAvPzyy5ZaNRfKZ3J30BHvga7C076prKzENddcY/l91apVWLVqFaZPn45XXnnF183vcJ72z5dffgmdTmf5TDBbuHAhFi1a5NO2dzRP+0atVuO5555DeXk5xGIxkpOTsWLFCkybNs1fp9BhPO2b7sTTvmloaMCTTz6JqqoqhIaGIj09HV9//TWSk5P9dQp+x3BcJ8pJJYQQQgghhBBCSLfRPcNZhBBCCCGEEEII8TsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBCGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/4Pu7AYQQ4srKlSvx7rvv2i0fNWoU/ve///m+QYQQQkgXRddcQog/UFCCENLpBQcHY82aNXbLCCGEEOJddM0lhPgaBSUIIZ0ej8dDVlZWq+up1WqIxeKObxAhhBDSRdE1lxDia1RTghByQSouLkZKSgp++uknPPLIIxg6dCjuueceAEBdXR2eeuopjB49GhkZGbjhhhtw5MgRm+0bGhqwZMkSZGVlYezYsfjggw+wfPlyTJw40bLOypUrMWLECLtjp6Sk4PPPP7dZtmHDBlx++eVIT0/HhAkTsHr1apvXH3vsMcyYMQM7d+7ElVdeiaysLMyePRtnzpyxWc9gMOCjjz7CpZdeivT0dFx88cV47LHHAADr169HdnY2FAqFzTZ79uxBSkoKTp065WEvEkIIIa2ja24zuuYS4n2UKUEIuSDo9Xqb3zmOAwC8+uqrmDx5Mt5++22wLAutVotbb70VDQ0NeOSRRxAREYEvv/wS8+bNw9atWxEVFQUAePzxx/Hff/9h6dKliIyMxMcff4zCwkLw+Z5/LK5ZswZvvvkm7rjjDgwfPhwnTpzA22+/DYlEgjlz5ljWKysrw6uvvor58+dDJBLh1Vdfxf33349ffvkFDMMAAJ566in8+OOPuP322zF8+HDU19dj8+bNAIArr7wSy5cvx5YtWzBjxgzLfr///nukpaVhwIABHredEEIIaYmuuXTNJcSXKChBCOn06urqkJaWZrPshRdeAAAMGjQITz/9tGX5hg0bcObMGfzyyy/o1asXAGD06NGYOnUqPv74Yzz66KM4c+YMtm3bhjfffBPTpk0DAIwYMQITJkxAUFCQR22Ty+V47733MH/+fCxcuBAAMGbMGKhUKnzwwQeYPXs2eDweAKC+vh5ffvmlpV0cx2HBggU4e/Ys+vTpg/z8fHz77bd44oknMHfuXMsxzG0MCQnBlClTsHHjRssXJIVCga1bt2LJkiUetZsQQghxhK65dM0lxNcoKEEI6fSCg4Oxbt06m2VCoRAAMH78eJvlu3fvRlpaGhISEmye9AwbNgzHjx8HABw7dgwAbNJGAwMDMXr0aBw9etSjth06dAhKpRJTp061Od7IkSPx/vvvo7y8HD169AAA9OjRw/LlCAD69OkDAKioqECfPn2wd+9eALB5ItPStddei3nz5qGoqAiJiYn47bffoNfrccUVV3jUbkIIIcQRuuY2o2suIb5BQQlCSKfH4/GQkZFhs6y4uBgAIJVKbZbLZDIcPnzY7ikPAPTs2RMAUF1djcDAQLsCXS335Q6ZTAYAuPzyyx2+XlZWZvmC1LJ6uUAgAABoNBoApqdTAQEBLp8cjRgxAomJidi4cSMWL16MjRs34pJLLkFYWJjHbSeEEEJaomtuM7rmEuIbFJQghFzQzONCzUJDQ5Geno5nnnnGbl3zk57IyEgoFAq7yuE1NTU264tEIuh0Optl9fX1dscDgI8++sjhF6zevXu7fS5hYWFQKpWQy+VOvyQxDIOZM2fim2++wdVXX40DBw7YFfgihBBCOgJdc+maS0hHoKAEIaRLGTVqFHbu3In4+HinT2HMT4D+/PNPy9hRhUKBXbt22XwxiYmJgUKhQEVFBWJiYgAAO3futNlXdnY2xGIxKisr7dJaPTVy5EgAwA8//GBTrKul6dOn45133sHSpUsRExODMWPGtOu4hBBCSFvQNZcQ4g0UlCCEdCnXXHMNvvrqK9x888247bbbkJiYiLq6Ohw9ehRRUVGYN28e+vXrh4kTJ+KZZ56BXC5HVFQU1q5da5daetFFF0EsFmPp0qW49dZbUVxcjK+++spmnZCQECxcuBAvvvgiSkpKMGzYMBiNRpw/fx579+7Fe++953bbk5OTcf311+OVV15BTU0Nhg0bhoaGBmzZsgVvvvmmZb2YmBhcdNFF2L59O+6++25LUS9CCCHEl+iaSwjxBgpKEEK6FJFIhE8//RRvv/02Vq5ciZqaGkRERCAzM9OmyNYrr7yCZ555Bi+99BICAgJw4403IiMjA1u2bLGsExERgXfeeQevvvoqFixYgLS0NLz++uuWJz1md955J6Kjo/HJJ59g3bp1EIlE6NWrl9167nj66acRHx+PDRs2YPXq1YiIiHD4VGbSpEnYvn27ywJdhBBCSEeiay4hxBsYzjzxMCGEdHPm+cj//PNPfzelVYsXL0ZVVRW++OILfzeFEEII8RhdcwkhZpQpQQghF5Dc3FwcP34cv//+O9544w1/N4cQQgjpsuiaS4hvUFCCEEIuIPPnz4dMJsONN96IqVOn+rs5hBBCSJdF11xCfIOGbxBCCCGEEEIIIcQvWH83gBBCCCGEEEIIId0TBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF/w/d0AcmEwGjkYDMZ274fPZ6HXt38/XRH1ja2iokIkJva0/E794xz1jXPUN855o294PBYsy3ipRcSMrrkdj/rGNeof56hvnKO+ca29/dOVr7kUlCBuMRiMqKtTtmsfLMtAKg1CQ4MKRiPnpZZ1DdQ39m6+eS5++GETAOofV6hvnKO+cc5bfRMWFgCW5XmxZQSga25Ho75xjfrHOeob56hvXPNG/3Tlay4N3yCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiF1TokhBCiNdwHAej0QCuE9S4YlkGWq0Wer2eim614G7fMAzAsjwwTNes9k0IuTD561pD1xXnqG9cc6d/uvM1l4IShBBC2o3jOMjl9VAoGgB0ni8j1dUsjEaanswRd/uGZXmQSuPA43XNit+EkAtHZ7jW0HXFOeob19zpn+56zaWgBCGEkHYzf0kMCYmAUCgC0Dmi/Hw+A72+8wRJOhP3+oZDXV01GhpqER4e5ZN2EUKIM53hWkPXFeeob1xrvX+67zWXghKEEELaheM4y5fEgIAgfzfHBp/PAqCnNo642zfBwWGQySrBcUYwDJWiIoT4R2e51tB1xTnqG9fc6Z/ues3tPmdKCCGkQxiNBgBc01Mr0tXweKbnF5SSSwjxJ7rWkO6gu15zKShBCCGkXZoLjXWOIRvE20x/185QvJQQ0n3RtYZ0D93zmkvDNwjppDiOQ7W2HhUaGRr1SjTqlZDrVWAZBgKWDyHDRwBPjGhROGJFEQjiS7pltV5CCCGEENI+a9d+hF27/sXatZ/5uymkG6KgBCGdhNqgxT7ZKRyqO4N8RQnOKkpRr1e4vX0AT4xeAbEYENQTA4J6IjW4F6JEYR3XYEIucC+++Ax+++0Xu+W//LINYWFhvm8QIYSQLufFF5+BSqXECy+8alm2adPPWLHiJTzwwCO46qrpHu/z8ccfwunTpyCT1SI4OBhDhw7H/Pn3ITKy7cURZ8++Gddee32bt79QXXvtlZg9ew5mzux+596ZUFCCED/iOA6H6s9gW/V+7Ko9DrVBa3lNwPDQJ7AHEsRRCOEHIEQQiCC+BBwHaDkddEY9GvVKVGhkqFDXolxTi5ON53Gy8bxlH70ksRgZkYZR4WnoF5QAthsVzCHEHaNHX4RHH33CZlloaKjN73q9Hnw+XS4JIYS034YNX+H999/GsmXP4pJLprRpH9nZQ3DTTXMRGRmF6uoqvPfeW3jyycfwwQdr29yugIAAAAFt3r4r0+v14PF4lJHcgehbFiF+YOCM2F59CBtK/sJ5VTkAQMwTYqw0A0NCU5AS1BOJkmgIWPf/iRo5I0rU1TjVWIBceSGONOTjvKoc50vK8VXJH4gWhePS6OGYEjWMMigIaSIUCiCVRtosu/baK3HVVdNx/vw5/PPPDkydejmWLHkUR44cwocfrkRubi7Cw8NxySWTcccd8yEUCgEANTXVWL78Bezfvw9RUVGYP38RVqx4CQsW3I9p067EwYP7cd9992Dr1r+bvvwBO3f+g0cffQD//rvfcvy//96Ojz9ehcLC84iKisZVV03H7Nk3g2VNQcWxY4fisceW4e+/t+PAgX2Ij++Bhx5aikGDsiz7OHz4IFateh+5uTkQCkVIT8/ACy+8iq+++hzbt/+Bdeu+sDnnG26YjquvnonZs+d0RDcTQggBsG7danz++f/w0ksrMGrU2DbvZ9as2ZafY2PjcNNNt+CJJx6BwWAAj8dzuE1DQwPee+8t/PvvDuj1eqSlZWDx4oeQlNQLgP3wDb1ej5Ur38Dmzb+Cz+djxoxZOHcuHxJJAJ544hkAgEajwapV72Pbti1QKhXo27c/Fiy4H+npGQBMGSHvvfcWnnjiWbzzzhuora3B8OEj8NhjTyEoyDSDyl9/bcPHH69CSUkxJBIJUlJS8dpr74BlWUuWSe/efbBx4zcwGAyYNu1KLFhwv+U87dvQDwsWPGBpA+D8mrhkySKUl5fhzTdX4M03VwAA/v13v6Xdjz76JD78cCWKi4vw449b8OSTj2LAgIFYuPB+y75vv/1mjB49FrfffjcA0zX6kUeewPbtf+LIkYPo0SMBy5Y9C5blYcWKF5Gfn4eMjEF46qnnER4e0eb3QFdDQYku7uzZs1i6dCnkcjmEQiGWLl2KoUOH+rtZXqM2aJCnKEGpugY12npojXowAIL4AYgShSJJEosekijwOlGGwJH6PHx4/kecU5YBAAYE9cRVcWNwZb+RUNXrYTS2rbINy7BIlEQjURKNydHDAAAlqirskZ3ArtoTONF4Dp8VbcH6oq0YFj4AM+LGITOkD0V9CXHgiy8+xW233WX5klFSUoyHHlqMu+++F0888Sxqaqrx2msvQ6/X4777lgAwpejW1cnw7rsfAQDefHMFlEqlR8c9cuQwXnrpGdx//8PIyBiEwsICvPrqixAIhDZfQtetW4OFC+/HokUPYu3aj/Dss0/gm29+BJ/PR2FhAR54YAGuueZaLFnyGABg37494DgO06ZdiY8/XoUzZ3KRmpradMxDKCsrxaWXXtbufiOEEGKP4zisXPkGfvnlR7z++kpkZQ22ef3TTz/GZ5+tc7mPzz7bgNjYWLvlDQ312Lp1MzIyBjkNSADAU089BolEgtdffxcBARJs2PA1HnhgAdav/xYSicRu/fXrP8Eff2zFk08+hx49EvHll59h3769uPjiCZZ13nprBQoKzuP551+BVBqJP/7YigceWIAvvvgWUVHRAAClUonvvvsGzz//MtRqNZ588jF8/vn/cM89C1FdXY1nnnkC9957Hy6+eAIUCgUOHtxn0469e/dAJBLj3XdXo6ioEC+//BwiI6Nw441zHbbh998327TB1TXxpZdWYN68GzF9+rWYNu1Km+MqlUp89dXneOKJZxEYGIjAwECXfx9r//vfGixa9ADuv38J3nrrNTz33FOIiIjAwoWLIRYH4umnH8eqVe/j0UeXub3Pro6CEl2cSCTCSy+9hOTkZOTn5+Pee+/Fli1b/N2sdqnS1GFHzWH8W3MUp+XFMLYy328IPwDZof0xPjILw8JSwWedf2B3JKVBjdXnf8ZvlXsBAAODe+G2ntOQHpIMlmUQwBdDBblXj9lDEoWZkvGYGT8eJaoqbKn8D79X7cdeWQ72ynIwMLgXbuwxCUPCUig4Qbqlf/7ZgcmTL7L8Pn78JQCAoUNHYNasGy3LX3nleUydejmuvfYGAEBCQiIWLLgfy5Y9gkWLHkRRUQH++28PPv74c/TvPwAAsGTJo7jjjrketefjj1dh7tzbMHXq5QCAHj0ScMstt+Hbb7+2CUpcccXVmDBhEgDgttvuwo03zkRJSTGSknrh88//h4yMQVi8eIll/T59+gIAxGIxhg8fiV9//dkSlNi06WeMGjUGERFSj9pKCCH+9lreV9hde9ynxxwjzcCDfTyrP7Br17/Q6XR4991VdgEJALjmmpmYOHGyy31ERtpm9b3//jvYuPEbqNVqpKdn4tVX33S67ZEjh5Gbewo//bQFAoEAAPDAAw/j77//wq5d/+KSS+yP/d1332Du3Nswduw4AMDDDy/F7t07La+Xl5dj06af8f33myzXj9tuuwP//vs3tm79DTfddAsAQKfT4eGHl1oCKpdddgUOHDAFHmpqqmEwGDBu3ETExsYBAPr27WfTDpFIhEcfXQahUIjevZNRXFyEr79ejxtvnOuwDfPm3YFdu/61tKG1ayLLsggICLDLmtTpdHjooceRnNzHab86Y32Nnj37ZjzwwALcdde9yM4eAr3eiCuuuAY//vidx/vtyigo0cX16NHD8nNycjIaGxvBcdwFeQNaqKzAlyV/YEf1YUsgIkIQgoHBSUiQRCNKGAoRTwgjx6FRr0S5ugbnlGXIlRdiR81h7Kg5jAhBCK7rMR6Xx4yCkBX4tO3Pn/4ERapKhPIDcW/v6bhYOsinf4cekijclnQ55iZOxT81R/BVyR842Xgey06tQf/ARNzd6yqkhfT2WXsI6QyGDh2BBx542PJ7QEAA7rprHgYMSLVZLy/vDPLzz2Dz5ubCmEajERqNBjU1NSgoOA+BQIB+/VIsr6ekpFq+/LkrP/80jh07gnXrVluWGQxGcJxt8DU5ua/lZ/MXVZmsFklJvZCXdwYXXzze6TEuv/wqvPbay1i8+AFoNDr89dcfWLbsWY/aSUhXlq8owQu5n2J63EUYFp6KOLH7AbuDdaeRryjBdT0mtL4y6Tb69u2P2toarFnzIV577R2IxWKb10NCQhESEupka8duvHEurrjialRUlOHjj1fjpZeexSuvvOFw3by801Ao5Jg2baLNco1Gg9LSYrv15XI5amtrkJqaZlkmEAhsAgZnz+bBYDDg+uuvsdlWq9XarBcYGGiT4SGVSiGTyQCYAhDZ2UMwd+4NGDlyNIYPH4kJEy5BYGCQZf1+/fpbhkkCQHp6Bt5/vxpyudytNrR2TXRGJBK1KSABAH36NJ+/OVjSu3ey1bIISx8QEwpKdHL79u3D2rVrcfz4cVRVVeHDDz/EhAm2F7r169dj7dq1qKqqQmpqKpYtW4bMzEy7ff3xxx9ITU294AISSoManxdtxY/l/8LAGRHMD8DU6OEYH5mN5ID4Vs9HbdBgf91pbK38D/vqTuGj8z/h+9K/cV/ytRgaPqDD23+o/gyeO/U/qIwaDA9LxZK+NyBU4H4KmLfxWR4mRA3GuMgs7K49gS9KtuG0oghLTryH8dJs3J50OdWcIN2GRCJGQkKig+W2qawqlRIzZlyH6dOvs1s3LCwMHIdWP4vMNSGA5iFaer3eZh2lUoU775yPiy4a53JftoU3Tcc1Gl1njZmNHTsOr732Cv79928oFEoIhUKMHt32sc2EdCUcx+GtPZ+hmCvD+5ofgPM/YPOo11rd7ryyHAq9CktzVgEARkWkI0EShT+qDuDzoq1YkXYvIkWe3XSS1j3U9wafH5PPZ6HXu/d5axYTE4Nnn30JixbdjYcfXowVK962CUy0ZfhGWFgYwsLC0LNnEpKSemPGjMuRk3PCJpBgplIpERUVjbff/sDutZCQEKfHbHld47jm65dKpQSfz8fHH6+3rMfjMTAYOJuhDi0LRTMMYwm083g8vP32Bzh27Aj27NmFL7/8DGvXfoS1az+z3Mw7u7YyjOM2mHky3MKRloEjwHQdt+4DwP46Dties7lZtssYu4cN3R0FJTo5pVKJlJQUzJgxA4sWLbJ7fdOmTXj55Zfx7LPPYtCgQfjkk09wxx13YPPmzYiIaC6eUlJSghUrVmDVqlW+bH67nVWU4sXTn6FEXYUAngg3JkzGFTGjIOaJ3N6HmCfCWGkGxkozcF5Zhk8Lt2CX7DiWnVqDy6JHYn7vayD0oKCkJ3bXHsdLpz+DjjNgTsIU3JgwqdPMgMEyLMZIMzAqIg1/VR/CxwW/YnvNIeyWHcechCmYET+uU9XiIMSf+vVLwblzZx0GMACgV69e0Gq1OHMm1zJ8Izf3FHQ6nWWdsLBwAEBNTQ0CAkxflvLyTtvsp3//FBQVFTg9jjv69u2Hgwf3Y968Oxy+zufzceml0/DLLz9BrVbj0ksvo9lFCGmyc+c/OLVxFyqYBsTMHASeWIBqTX2rAYV7jtgGLjRG02xaK/K+BABsqtiNuT2ndkyjyQUhPr4HVq78CIsW3Y1HHrkfr776luXGty3DN6yZb5S1Wp3D1/v3H4Dq6ioIBALExNjXpWgpKCgIERFSnDx5AunppgedOp0O+fl5lloR/fr1h16vR319nWWdtgRsWJbFoEHZGDQoG7fddheuvHIy9u7djcsuuwIAcPp0LrRarSVb4sSJ45BKIxEYGOSwDS21fk0UwGBwr81hYeGora2x/K5UKh1mmhDP0R1HJzdu3Dg88MADmDLF8ZRB69atw/XXX4+ZM2eib9++ePbZZyESifD9999b1pHL5bj33nvx5JNPIikpqc1tYVmm3f95sp/dsuO4//g7KFFXYUT4QHw8+DHMSpiAAIG4zcdPDorHMwNvxdMD5iFcEIzfKvfg8ZMfol4v98r5Wf93pCEPL57+DHrOiPuSZ2Ju0qXg83he6Rtv/sfn8TA5Zig+HvIYZidcAiNnxNrCX/HwifdQqqn2S5sc9Ye/+udC+K8z9E1Xd9NNc3H48CG89dZrOHPmNAoLC7Bjx5947723AQA9e/bC0KHDsXz5i8jJOYGcnBN4881XbYZvJCQkIjo6BuvWmYp1/fXXNvz66082x7nlltuxadPP+N//1uDcubM4d+4stm79DZ984v40b3PmzMOxY0fw9tuv4+zZPJw7dxbffPMl1Gq1ZZ0rrrgae/bsxqFDBzBt2lVu7bc7/t1J92IwGPDPP9shZPkwqrRQnDTNjnVKXujxvhjY/vsQ84RO1iTdiTkwUVpagkceud/yuRwSEoqEhESX/5mDx6dOncSGDV/hzJlclJeX4eDB/Xj22WVISEjEwIH2WRIAMHTocAwcmIbHH1+Cffv2oLS0BEeOHMZ7772NgoLzDreZOXMWPv30Y+zc+Q/Onz+H1157GVqtxpKR0LNnL1xyyWQ899yT+Pvv7SgtLcHx48ewbt1qHDp0wK3+OHHiOD799GOcOnUS5eVl+OOPrVCpVOjZs5dlHY1GgxUrXmqaEWs7PvtsHa677ganbThx4rhNG1q7JsbFxeHw4YOoqqpEXV2dy/ZmZw/Bzp3/YO/e3Th37ixeeeV5AHQt9AZ6NHIB02q1OHHiBObPn29ZxrIsRo8ejcOHDwMwXWAXL16MWbNmYezYtqfn8vkspNKg1ld0Q3h46+lUm4r34oXcT2HkONyXOgNz+07x6rCTq6SjMKpnKpb89wFO1J3H46c+wqrRDyFc5J1zzG8oxfO5n0DPGfDEoDmYkXRR6xvBvb7pOEF4KHoWZva7CE8dWoeTdQWYf+R1LEqdgRt6T/D5sB+BgGf3nvNv/3Ru/uwbrVaL6moWfD4DPr/zxbqdtYlhGDCM4zazrO3y1NRUvP/+R/jww/cxf/5tYFkeEhIScfnlV1jWe+aZ5/Hii89hwYI7IZVGYtGi+7F8+UuWffH5Qjz77At49dWXMW/ebGRnD8btt9+Fl19+3rKPiy66CK+++iY+/ngVPvtsHQQCAXr3TsbMmbNs2sPjNbfP/H8ejwWfzyI5uTfeeus9fPDBSvz443cQiyXIzByEmTOvtazbr19fpKQMgNFoQEpK/1Z6kAHLsggPD7AZ10scU6lUmDZtGi6//HI89NBD/m4O8UBxcRGUSiVCIsIAZTmU+dUIzk7AaXkhxkozWt3eGgfbFG8JQ/92iIl1xsSjjz6A5cvfdDhUwBmhUIR//92BdetWQ61WQSqNxIgRo/Dccy87rWPEsixee+0dfPjhe3jhhWfQ0FAPqTQS2dlDnA7fuOmmW1BTU41nn10GgcA0JWhmZpbNdWDZsuewbt1qvPPO66iurkJ4eATS0zMxadKlbp1LYGAgDh8+hG+++QJKpQrx8fF45JEnkJaWbllnxIiRiIqKxr333gGDQY/LLrsSN9zQPH11a23o2TMJr7++Eh999J7lmpiRkYmrr54BALj99nuwYsVLuP76a6DVam2m6G7piiuuxunTuXj66aUQi8W47ba7UFJCmRLewHAtB8aQTislJcWmpkRFRQUuvvhibNiwwaaGxKuvvoqDBw/iq6++wl9//YWFCxeib9/momifffaZy/Fjjuh0BjQ0qNrVfpZlEB4eCJlM4XLayz21J/F0zsdgwOCR/rMxMcq+SrG3aAw6PJf7P+yTnULfwB54NX0+gvj20yJ5QmXQYP7hN1CqrsbshEm4Nan1afbc7RtfMXAGfFX8Jz4v2goDZ8SYiAw81O8GBPLdv2i211VXXYaffvoNQOfrn86kM/SNXq9HZWUxIiN7dLphAG1JJfWmyy+/BAsW3G831Zi/GY1GzJp1NW68cS5mzLCvk2FNr9ejuroE0dEJdn/fkBAJBAL/zGjUWb355ps4f/48EhMT2xyU0OkMqKvzbDrZlliWgVQahJoaOX1utuCsb3bu/AebN/+K+oFi/HNkF3RVckRPH4QrBkzAg31nudzn1N22f+u30+9DSnBPTN39EFQFtUg+xGJK1nhcMv1yhAqCIOL5rti2pzrre8f8WeTva42/ryv+otfrMWvW1bjuutmYPXuOw3W83TcvvvgMVColXnjhVa/t05/c6R9X7/OwsIAue83tXN8eiVdYz64xYcIEnDhxwiv79daFyWjknO7rnKIML+d+Dg4cHut3E8ZJszr0gihg+FjW7xY8dWoNjjTkY8XpL/FUyrx2ZQV8ePYnlKqrMSI8FXMTLvWo/a76xpcYsJjdYxKGhaXixdxPsbP2GAqOlOPJlFuQFND6WERvadkXnaV/OiN/9g39TS4stbU12LTpZ8jljZg6dZrb29G/v9adP38eZ8+exYQJE3D27Fl/N4d4qKjINExDEhMCSS8pdFVyqApqoeqvdrmdwUHBOh2nh4EzgjNykO06Cw2/Jw4cO4APeX8hPSUN7w16sEPOgRBvKS0twcGD+5CZmQ2NRoOvv16P+vo6y1SXhHhT58uzJW4LDw8Hj8dDdXW1zfLa2lqXxXA6K7VBg+dyTbNUzE2cinGRWT45rognwFMptyJeHIndshP4ofyfNu9rr+wkfqvcgzBBEB7oM+uCm+mkpb6BPbAy836MCE9FsboKi4+9g39rjvq7WYSQdrjqqkvx9ddfYOnSpywFN4lptqt77rkHY8eORUpKCv766y+7ddavX4+JEyciIyMDs2bNwtGjtp+Hy5cvx4MP0s3mhYjjOBQUnAfDsOBHBkKSFAGpKBTq87VQGTQut9Ua7YsLao16NOoV0JQ3wKjQokJTi80Ve6EulCFfWdpRp0GI17Asi19++Ql33jkXCxfeibKyUqxc+ZHNDCCEeAsFJS5gQqEQaWlp2LVrl2WZ0WjE7t27kZWV5b+GtdEnRVtQpqnByPA0zO5xiU+PHcgXY2n/myFgeFhT8AvOKco83ofeaMBH501F6+5Pvg5hgmBvN9MvgvgSPJ1yK25OvBQaow4vnv4MP5b96+9mEXJB+PXXPzrd0I1//92Pn3/eiokT6WmXNfNsV0899ZTD182zXS1YsADff/89UlJScMcdd6C2thYAsG3bNvTq1Qu9e/f2ZbOJl9TX10Eub0RMTCy0rAGCMAnGJA2BrlYBmUzmcluNg6CEjtNDppVDddb04EiVYfpOoC6us5tSkJDOKDY2Dh9++DG2bNmBLVt24L33VmPgwPTWN/SiJ554pssM3SCuUVCik1MoFMjJyUFOTg4AoLi4GDk5OaiqqgIA3Hrrrfjqq6/w/fffIz8/H8888wzUajWmT5/uz2Z7LKexAD+U/YNAnhiLkmf6JcOgb2APzOs5DQbOiI8KfvL4S8Omyj0oVVdjSGgKRkY4rn58oWIZFjclTMaTKbeAz/Dwwfkf8L/C3+iLFSGky2jvbFdHjhzBpk2bMHHiRCxfvhxffvnlBTcNd3dmHrrRs2cSVEZTZkRmmqm4ZUW+60J2jjIl9EYDajT1UJ6rAXgsggbEQCANhKFRDYNCi/fP/QADZ/DyWRBCyIWJakp0csePH8fcuXMtv7/wwgsAgIULF2LRokWYNm0aamtr8c4776CqqgqpqalYs2YNIiIi/NVkj3Ech4/O/wgOHO5MuhJSoWdFOL3p6tix+K1iDw7Xn8Fe2Um3gwtKgxrri7aCAYPbky7v4Fb6z+iIdLw08E48c2odvir5A7XaRizuMxM8pmsW3SHt8+STj+HYMd8N98nIyMTzz7/is+OR7sOd2a6WLFmCJUuWAAA2btyIs2fP4q677mrzMds75ar1dMHElqO+KSoqAMAgKSkJasMpAMCwjKHA90B1fonLftRyDoISMKA4/xw4jR7ipAiwIj6EUUHQ1SigrZbjp6B/kR7SC+Ojsr17cl7QWd87na09hHSk7jb1NgUlOrkRI0YgNzfX5Tpz5szBnDmOq+BeCA7Vn8EpeSGSA+JxafRwv7aFz/JwV6+r8NSptVhd8DOGhaeCx7SeULSl8j/U6xW4JHIIkgPjfdBS/8kI6YPX0hbgiZzV2Fr1H3ScDg/1ne1WP5HuhQIEpKuQyWQwGAx29ZqkUikKCgq8fjxfT8PdXVn3TU1NBSQSAbKyBkJz4BfwGBbDB2dCGChBY3kNJBIWAQEBDvdTxa+1WyYK4ON83hkAQEAf0/tGEBkEoAK6agXQS4oCfbnX/s4dobO9dzrT9NP+Pn5nRn3jWuv90z2n4aagBPG7L4u3AQBuSLikUxSGHB6eisyQPjjakI/9dacwInygy/U5jsOmij0AgJnx43zRRL/rHRiHN9IX4pET7+Ov6kMQsUIsTr62U/z9CHHHd999jdWrP8CmTX+CZU1fEGpqqnH11VNx0UXj8fLLr1nW3bJlE1555Xls3vwXRKK2TYv7xx+/4+mnH8f48RMdjo99+uml6N07GfPm3YGxY4dCKBThq682Ijo6xrLOwoV3YcCAgVi48P42tYF4n/VsV9ZmzJjRrv3q9UafTcPdHbXsG51Oh7y8cwgICATHCaHQqSFhRZDJlAjrFYPqk4XYsWMXhg8f6XB/lQ31dsuqamXIPXoKjIAHcWI4AEAoNd3ka6vlAICTNQWoqZF30Fm2XWd97+j1ehiNRuj1HAD/TcnZXacEdQf1jWvuTQnKwWg0QiZTgs/X2rzWlafhplAW8avjDWdxrPEsEiXRGBOR4e/mWFwVOxYA8Ev5rlbWBE40nkORqhIDgnp2+SwJa7HiCLySdg8iBCHYXLkXH57/kWpMkAtGdvYQyOVynD7dnIl2+PBBREfH4MiRQzbv5cOHDyI1Na3NAYmKinK8995byMzMcvi6Xq/H3r27MWbMxTbL161b3abjEe/zx2xX5ilY2/Oft/bTFf+z7puioiIYjUYkJvaE0chBbdBAzBPCaOQQndoTRs6IPf/tcbovtcF++MbfB3dBpVGbhm403USERIZDwBdAV60Ax3Go0Mj83g8X2nuHkO6iu73/KShB/Gpz5V4AwHXx4ztV+v+oiIGQCkKwvy4XZeoal+v+2pQlcVmM4ycoXVm8OBKvDLwbofxA/Fj+L9YV/ubvJhHilt69+yAsLByHDh2wLDt06ACmTr0cAoEAeU1p1+blgwcPbdNxjEYjXnjhadxyy+3o0SPB4TqHDx9EUFAQ+vXrb1k2c+YsbNr0MwoLz7fpuOT/7J13eBv1/cdfd6dpee+R7STO3hBGSAibsKEFWiijjDJLB6UL2kIpLQV+pbS0zFIoUMpKgQJhQwgESMh2tp043tuWrS3d/f6QJUu2ZMuOLcXO9/U8PEg3vzorurv3vT/vz9Ay2rpdCcL5cvcG1rXu5FNpF1du/D0qGmbFCEBWYS66jCQOVB2gpqY64vqRgi4/+PIjtraXYSnJDU7LNqeTkp2O6vTgs7mFkC8QCARdHDp3gYLDDrfqZW1LKXpJx5KsOYkeThiKpHB63lFoaLxZvzbqcp1eB2uat5CkmFiWNTeOIzx0GJeUx+9nfI9kxcyLNR/ydv2XiR6SQNAvkiQxb96CMFFi06YNzJ+/gHnz5genNzU1UlVVyfz5CwG49NILOfnk46L+9+Mffz9sP88//wwmk4lzzolu51+zZjXHHntc2LR58xawcOGRPPbY34fqIwv64XDpdiXozXs71lDlaGCnqYE6lz8fwiz7RYkknYnkaXl0eO3c+9+HcfhcvdZ3+cIt1u5mG+5aK0qqCWN+d3h3mj6Z5Fx/KYenyYaawBIEgUAgOJQQmRKChLGxfTc2n5NjMmeRpAzOFj2cnJ63mOeq3mN182auGndGxLrhze178WhelmXOxdT1VOVwZJKlkF9Pu4Kfb3+Mv+57hSJTNnPSihM9LIGgT+bPX8jjj/8NVVVpb2+jqqqSWbPmUllZybp1X3Lhhd9iw4avMRgMzJrlLy+7//4/4/V6o27TaOz+Hdi1aycvv/wfnnzyX32O47PPPuW2237ea/p1193I1Vdfxs6d25k2re9sG8HBczh0uxJ0s9dazQ3rHuTGCefRXF0PsoQxuzt00qz4A+aSFCOWkjw+27QBdYOHv298kR8t+g4A7R4be21VuHo4JTo2+x0VKbMKw64d0nQWUvP83xd3UyfqVOGUEBx6XH/9d7n44ktZtuwEAPbs2c0f/vBbysv3Mn78RB566O9ceumFPPnkv8jJye1nawJBbAhRQpAwVjdtBmDpIeowyDKkMclSSJmtmlpXM4Wm3nXDm9r9Fu95aVN7zTvcmJ1azE0Tz+fB8pe4e/fT/Hn2LRSYshI9LIEgKgsWLArmStTUVFNSMh2z2cy8efN54olH0DSNTZu+ZsaMWcE8ifz8gpi27Xa7ueuu2/nBD24lKyt65kBZ2V6s1jbmz+9dHjJ16jSWLz+RRx75Kw8++LfBfUhBzBwO3a4E3Ty26380u63c8dXfMTgcGHKSOangSN5vXA8QfNDg8LmRdDIpcwtp/2I/n6x6j7OnLWevrZr/VH9IrauZJZndbk9XQweOfc3IZgOWqeE3bBmGlKBTwt3YiaoJp8RoZ8mSvkv/rrzyGq666ntxGcvOnTt44om/s3PndhwOB9nZOcyaNYef/ewO9Ho9AJ9++jE2m42lS5cH1/v73/9Cbm4ev/vdfZjNJlJT0zj99DN58slH+dnP7ojL2AWjHyFKCBKCW/WwtrUUg6Trt7tFIpmfNoUyWzUb2/dEFCU2W/cCMC91cryHdkhyWt5iKhz1rKxdza93/oM/zboZi+7Qc8EIBAATJ04iIyOTjRu/pra2mnnzFnRNL0aSYO/ePWzatIETTzwluM6ll15IfX1t1G3OmTOfBx54iObmJioq9vPrX/8iOE9V/Tcgy5Yt5uWX3yAnJ5c1az5h8eJj0Okin46vueYGLrnkG3z99bqh+MgCgaALg+z/N+eqtaLXNIwFaaTqult+Bso3jsyYzhZrGcnT87HvbsRa08zlz99GyuzuYOudnf62sJpXpXVNGWgaaYvGIfVo/ZepT8GYYQFFxt3UiVfzDffHFCSY115bFXz91ltvsHLlyzz++NPBaWZz93dO0zR8Pl/U88HB0Nrawg9/eCNLlx7Pn/70N5KSkqiuruKjjz5AVX2AX5R4+eUXOf30s8IcPtXVlXzzmxeTn58fnHbGGWdxxRWXcOONPyAlJWXIxys4/BCihCAhbLPuw95VumE+hMse5qdN4eWaj9nYtocz8o4Om9fsbueAo4ExphyyjWkJGuGhx9Xjz6DSUc/6tl08sPcF7ii5XLQKFRyyzJ+/MChK3HDDLYA/b2LOnHl88MG7HDhQEcyTgNjLN3JycnnmmRfC5j3++N9xOp3cfPMPycjwW7jXrFnNN795cdTtjRkzljPPPIdHHvnLoLt/CASC3iR1CeauWitJGhjzU0kJFSW6yje+UXg8a1tKKe3YR8bSYni3ivavKlCSDCQV+x9WuFQPmk+l+aPdeFvsGIvSSZqa02ufmYZUJEXCkG3BXd+Bq90Wh08qSCShTrmkpCRkWQ5O27BhPd///nXcf/9DPProXykvL+ORR/7Bq6++hMNhD2sfffvtt2E2J/HLX/4GAJfLxWOP/Y33338Hu93G5MlTuPHGHwZLDXuydesWXC4nt932SxTF3w2mqGhMWJvb1tZWNmxYx49//NPgtIDT48EH7+fBB+8POjvGjZtAbq5fWD/99DOH5mAJDmuEKCFICLttlQDMTp2U4JH0zcyUieglhc3Wvfg0NaxDyOb2MgDmpU1J1PAOSRRJ4edTLuWmLQ/yees2Xq/7jHMKliR6WAJBRObPX8jf/vZn3G43c+Z0l5LNnTufJ598rKvrQvdFXqzlGzqdjkmTwh1UyckpKIoSnN7c3MSePbs46qhj+9zWlVdey0UXnYOmIbIlBIIhQkND0zRctVY0KRVDXgrJOnNwfmhOVIEpk9KOfRiykyk6aR4Nb3xEy0e7cVa2Yp6Yhc3dQOfWWjwtNnRpZjKXT4koxmcaUtE0DUN2Mu76DhwNHXH5rKOZV155kR07tsd1n7NmzeLcc78xZNt79NG/ctNNPyQvL5+0tPSY1nnwwfuoqNjPb3/7B7KysnnvvVX88Ic38vzzL0fMecjMzMTtdrNmzWqWLj0+4vdzy5ZNJCUlMXbsuOC0115bxTXXXM55532DFSvOCnN2lJRMZ/PmjUKUEAwJovuGICGU2fwhUMVJRQkeSd+YFAMzUibQ4bVTbqsJm9edJyFKN3pi0Zn5xdTvoJcUnqh4g722yG3UBIJEs2DBIhwOB1OmlGCxdIfczZu3EIfD3pUnMTxurs8++5TZs+eSmpra53LZ2dl84xsX43b3Tv0XCASDw+qx4213ojrcKNlJyHolzCmRFCJKZOi77en6CRlknTIN2azHvreR5vd20vrJXjwtNgwFqeSsmIli0kfcZ6Y+FQ0w5Ph/axwN7cPz4QQjimuuuYGFC49gzJixMZVC1NXV8dZbb3D33fcyZ848iorGcMUVVzNx4iTefTdya/ZZs+bw7W9fxq9+9TPOOutkbrvth7z00gt0dHQLY/X1tWRmZoUJFllZ2ciyTFJSEllZ2SQldf8byc7Opq4uejmjQDAQhFNCkBDKum7wiy2F/SyZeOanTWWztYyN7buZkjwmOH2LtQwJiTmpostEJKYkj+Gq8WfyyP7XuG/P8/xlzg8wyJEv1ASCRDF+/ATWrFnfa/q0adMjTj8YArbbAGvWrGbJkqW9lou03+uvv5nrr795SMcjEBzOdLjtuKrbAHDn6DBAmChhkg3B15YQB0WbpwPz2AyMFy7AXtaEp6kTSadgGpOOsSitz3LFTEMqKhr6LlHC2Wgd2g91GHLBBRfGfZ86nYzXO3QhpdOmTR/Q8uXle/H5fFx00blh091uN5MnR3fv3nDD9/nWty5l/fqvKC3dynPPPc1zzz3NE088Q3Z2Di6XC4MhdhHeYDDicjkHNHaBIBpClBDEHZvXSY2ziQJjVtiJ/lBlWorfxrbPXhec5la91LlayDVmkKq3JGpohzxn5x/Ll63b2di+h6cPrOKaCWclekgCwSHD3LnzOOGEkxM9DIHgsMTqseE40AqAVugXI1J13efz0LwrJcRY3ObpBEDWKyRPywPyALhq3Bl4NB/PVHYHG/YkXZ+MpqnoUk1IRh2upg58Pl+wxl9weGIyhV8LS5KEpoW3iw3NMnI47Oh0Ov7xj+d6iWAWS9/XpBkZmZx88mmcfPJpXH319Vx88Xn897+vcPXV15GWlk5HR+xCWUeHlfT0jJiXFwj6QpRvCOJOsHRjBLgkAPKM/kC6BldrcFqTu80/zyB+jPtClmR+VHwRFsXEq7Wr2d6xP9FDEggOGS655HLR410gSBCtNiuuOiuSUYch12+Zj5YpkRRDIHeKLolvFZ3I76Zf02ve5WNP46pxZ6BIMhr+m05DdjI+r0p9fV3vjQkOa9LTM2hpaQ6+V1WV8vKy4PspU6bi9Xppb29jzJixYf8FQpRjITk5maysLBwOBwBTp5bQ1NSIzdYZ0/r79+9jypSSmPcnEPSFECUEcScgSky2jOlnyUODbEMaElKYKBF4nWNMT9CoRg45xnS+N+FsNDQeKnsZrypaoAkEAoEgsTRU1IBPxVSUjiT7nzYnK92ihDmkfOPEnEUszujbYp+iS0KSJApMWb3mnV+wjG8WLQf8AZsAxrwUQGPfvvKD/SiCUcb8+QspLd3G+++/w4EDFTz00AO0t7cF548bN4ETTzyZu+66g9WrP6ampprS0m089dTjbNz4dcRtfvbZp/z2t79i7drPqKqqZN++cv7+97+wb185xx57HABTppSQmprG1q1b+h2jy+Vi164dYd07BIKDQZRvCOLO3hHmlNDLOrIMqTS72/GqPnSyEhQlco3CKRELJ+ccwfuNX7PFWsYrtZ9wUdEJiR6SQCAQCA5TVE2leV8diqTDNLb7PB6aexRavmFSDNw57Sp+v/tZPmneFHGbAZeF2sN2799u9+V2YL6hwB9wu29/902hQABw9NHHcskll/Pgg/ejaSrf/Oa3OOKIxWHL3H77XTz11OM89NADNDU1kpGRyaxZczjppFMjbnPChIkYDAb+/OcHaGiox2QyMX78BO6++48sWOBv+6koCitWnMl7763iqKOO6XOMn332Kbm5ecyaNWdoPrTgsEeIEoK4U9YZECUO7c4boeQaM2hyt9PkbifflEl9lyiRJ0SJmJAkie9P+gbXb36A56ve44TsBcJlMoroLmntfTEuGA34/6595PcJBCOKTrcDx/5mkvUmMifk48Lv4NPJ3dkO5gglGyl95GAFQjKzDX6xwSQbcKpugB51/11OiZwUUGT27d+Hpml9BmQKRgcXXHARF1xwUfD9ggWLogYqf+97N/K9790YdVt6vZ5rr72Ba6+9IaZ9FxWN4ac/vb3f5S688BIuv/wiGhsbguWFL7/8Rq/lXnrp31x++dUx7VsgiAVRviGIKx7VS4Wjngx9CpmGvtvgHUrkdmVHBBwSwikxcMaYc7igcBku1cOTFW8mejiCIUSWFUASLStHKT6fP2BNlkUYn2B0sHPvTlSnh8zxecEWhzISitR9WRzqbgiQooseIhgQJUyKkVeO+C1Pzf95xOVunfwtcg3pSDoZQ04ydrtN5EoIDhmys7O57bbb+/xOWq3tLFmylJNPjuzKEAgGg3BKCOJKp8eJT1PJGkGCBHSLDw1uvxjR6GoLmy6IjYuKTuDdhnV83LyRszuOZUbKhEQPSTAESJKExZKK1doC0NVS7FB56ifh9QoHR2RiOTYaHR1tGI1J4kmuYNSwZcsmAPKnjsfXlR3R8/stRfgNC20Z2ntet4vCojNj0iLnJ01PGc8zC2/ne5vuo73gAFqtPzAwP79goB9DIBgWli1b3uf81NQ0Lrnk8jiNRnC4IEQJQVzxdZ2kQ59GjATyukoNAmUbgf/nGNITNKKRiVkx8t3xK7h/7ws8tv8N/jTrJnGjM0pITk4D6BImDh0RQJZlVHXo+smPJmI9NrKskJEhuoQIRiZbrWW8WfcFPyj+BibFiNfrZfv2UlBkCiaPo1HrAMCn+f8tFCcVUmavCXbeCiVV3y1KjDHlUOVsDL43hgRjAiiSwuVjT4vaNlyWZIwFaWi1GmVle/ut4RcIBILRjBAlBHHFGxQlRpYNOOiUcLWiaipN7jbSdBZMiqGfNQU9OSF7AStrVrOzs4Kv2nawOGNGoockGAIkSSIlJZ3k5DRU1UeErLe4I8sSGRlJtLbaUdVDYECHELEeG0nyixJCPBSMVH5S+ncAJicX8Y3C49m+fRsOpwPzuAySzRY6nM6w5R+acwtOnxuLztRrW6FOie9P+gayJHNb6d9IUkwR/418a8xJUcclSzLGvBT0ej1lZXvxer3odOKyXCAQHJ6IXz9BXPF1PZUbaU6JUFGi1dOBR/OJ0o1BIksyl407jV/v/AdPH1jFEenTkEfY90EQHUmSUJRD49QiyxIGgwGdzi1EiR6IYyM4HHi34avga4fPn3mzbt2XeDUflpI8TIoBUwSHgyVKoGWoKDEleQxmxch/F9/DYMrVFGQkRWbcxIlU7i2nomIfxcVTBrydwwkRqiw4PDg8w6XFnYAgrgScEroR5pTICxElROeNg+fI9OlMSx5Pub2GNc3998MWCAQCgWAg+DQf/1f2YvC9hERtfS17yvdgTkvGWJSGSTaijxBoGQ2z3N2RI9CdwyDrI4Zi9kdAjJ80pRiA3bt3D3gbhxsiVFlwOHC4hksfGo+zBIcNIzVTwqQYSdNZaHC1dedJCFFi0EiSxGVjT+UXOx7jP9UfclzWXGEPFwgEAsGQ4VHDgyYlSeKKl35Gdd0erjznO+yUyjAphgGVk05IyufSMacwPWX8QY9P7jrnTSgu5hPeY/funZx++hkHvd3RzKETqiwClKMjjk3f9Hd8Dt9waSFKCOKKVx2ZmRLgL+HYY6tiT2clIJwSB8v8tClMsYxhj62Kje17WJA+NdFDEggEAsEIQdM09tlrGWfOQxfyRHGvrZo6Zwtz04rDlve63NRs3weKTMa0MdDsFyV0A3hIIkkSl449ZUjGH3g4k5yWQm5uPg0NdTQ2NpKTkwNAh9feZ7ePw5VDIVRZBChHRxybvonl+Byu4dJClBDElUC69UhzSkC3KLGpfW/wvWDwSJLENwuP5549z/JSzUdClBAIBAJBzLzXuJ7/K/sPp+cu5pbibwJ+oeKmLX8C4LG5PwlbfuembWguL0lTc/Ea/TezJnlgTomhROmqoH684n8cPXMGDQ11bNu2heXLT+Sz5q38dvfTXDXuDL5Z1Hd7xsONRIcqiwDl6Ihj0zexHJ/DOVxaiBKCuOLtEiVGWqYEdIsQ5fYaQDglhoJjs2ZTcCCLje172NNZxZTkMYkekkAgEAhGAF+1bgfg7YYvg6LEbltlcH6rpyP4WvOp7F6/FYCUOYW0e2wAmBRDwoKWA/v9rGUrU/L8T0W3bdvK8uUn8lrdGgCePPCmECWikKhQZRESHB1xbPpGHJ++GXmPqwUjmu7yjZH31TsxZyHz0qawOGMGl4w5mUlJhYke0ohHkRTOLTgOgDfr1yZ4NAKBQCAYKSRHKG3Y2LYn+LrDaw++tu9torOjE9P4TPTpSd2ihGxI2PWIHPIk1JkCOTl5wRKOkfjgRiAQCA6GkXdnKBjRjNSgS4DJliL+MON73Dntu3xn7KmHpbVqODgpZyFGWc/HTRuxeZ39ryAQCASCw56UCG07WzzW4OuAKKH5VKwbK3GrHlLmFgHQ7ukE6Aq6TMz1SOh+nT43s2bNBmDbti1ClBAIBIcdI+/OUDCiGclBl4LhwaIzsyxrPk7VzUdNGxI9HIFAIBCMACwRRImAAwLA2iVKdO6sx9fpQj82DWNuin85b7dTIlECgBxyCe5S3cyaNQeALVs2ISeko4RAIBAkDiFKCOLKSA66FAwfZ+QdBfhLOLR4p1YJBAKBYMQhRbhxDzggAKweG6rbS8fGKpAkzAsKgvMaulp7J9IpEZpl4VTdfOrdwRZdNW/v+ZSa6uqEjEkgEAgShbgzFMQVb1f5hrAmCkKZmjyW4qRC9tlr2WsTF2MCgUAg6JvA9QT4yx8A2rzdTokOrx3rxipUp4ekyTm4UnuLGGbFmLjuGyGihMvn4fGKN2geq1HlaGDzRuEaFAgEhxdClBDEFd8IDroUDB+SJHFCzgIAVjdvSuxgBAKBQHDIEygHBWjr6rRhDSnfqKurpbO0lolpReQcOSniNjL0yQkrlQgt33CqflElaVI2KDL2siZUjy/aqgKBQDDqEHeGgrji1USmhCAyS7PmAfBJ82ZRwiEQCASCPvFpoaJEJ5qmYe1ySmiaRumH60DVmHbsfDLTMnutf/XUM0jTJ3Ny7hEAXFx0YnwG3kVY940uUUI26jBPzELz+HDsa47reAQCgSCRCFFilPP973+fI444gh/+8IeJHgoAXpEpIYhCjjGdGSkTaHC1srPzQKKHIxAIBIJDGE+IKGHzObH5nMEHH/bdDbRU16PPtDBx3nTGmfN6rX9k9jQAJiTl8/riP3DFuNPjM/AuQjMltnfsD75OLvGPtbO0Vgj0AoHgsEHcGY5yLrnkEu69995EDyNIwG4pMiUEkTi+yy0hSjgEAoFA0Bde1Rt8bfM5gyGXXquTti/249Z8pC+ZhFGnZ3xSb1EiRd/dvcMg64Z/wD2I9nDGkJ+CPsuCp9mGu74jGBAuEAgEoxkhSoxyFi9ejMViSfQwggROrrJwSggisCRrDjISnzZvSfRQBAKBQHAI4w25Wbd5ndh9LjRVo2P1fjSPD9PcPIy5KegkHeOT8nutn6JP7LWRHOUSXJIkkmf5O4V0ltbi9LniOSyBQCBICOLOMIGsW7eO6667jiVLllBSUsJHH33Ua5nnnnuOE044gdmzZ3PhhReyZcvIvlkTTglBX2QaUpmaPI4md3swTV0gEAhGCuXl5Vx88cWceeaZnH/++axfvz7RQxq1eLVup4Td50DVVDo2V6M22tDnJJM8txAAnawwIaIoYe41LZ4oUvSAzaRJ2chmPY79LdQ01cdxVAKBQJAY4u9XEwSx2+2UlJRw/vnnc/PNN/ea/9Zbb/H73/+eO++8k7lz5/L0009z9dVXs2rVKjIz/aFN55xzTsRtv/rqqyjKoXfj79NE9w1B3yxMn8rOzgo6vPZED0UgEAgGhNFo5J577mHSpEmUlZVxww038M477yR6WCOGr1p3UGwpJMuQ1u+yPZ0S5Xv3Yt1QSbophdRlxUiK/zrDIOmYmFTYa32LzoQLW6/p8ULu4+GMpMhYpufTsaGSzz5fzZTzJ8RvYAKBQJAAhCiRQJYtW8ayZcuizn/qqae46KKLuOCCCwC48847+fjjj1m5ciVXXXUVAK+99lpcxgogywfXNkuWpWAIlV5WDnp7o4nAsRDHBBZllPBc1Xt0+hy9jos4Pr0RxyY64thERxyb4aGoqCj4etKkSXR0dKBpGlIfT8UFfra0l/GrnU+SqU/l+UW/irjMl63baXK1cUb+MWFOicaWRjb8dwNoGiUnL6I63Rmcp5OViJkRif6b9OWUAEienk/n1ho2fL2eb5xyHsnJKWHz/1HxJnmmTM7IO3o4hykQCARxQYgShyhut5vS0lKuv/764DRZljnmmGPYtGlT3Mej08lkZSUf9HZ8Tf4nG6nJ5iHZ3mgjI+PQyf9IFMdkzMCyw4TN68CSbsCkGILzxPGJjjg20RHHJjri2ISzbt06nnzySbZt20ZjYyOPPPIIy5cvD1vmueee48knn6SxsZHp06dz++23M2fOnF7b+uCDD5g+fXrCb35HCjs7KwBo8VijLvPrnf8A4LisufhU//WE6vbyxbsfkukwkjy7kJIZM2hq2YpL9QCgl/yXuuPMeRxwHDqlENEyJQIoZj2WaXl4ajx8+ulqTj/9jOC8VncHL9b4S36FKCEQCEYDQpQ4RGltbcXn85GdnR02PSsri4qKipi3c+2117JlyxYcDgdLly7lscceY9q0aQMej9erYrU6BrxeKKFOCafdS3Nz50FtbzQhyxIZGRZaW22oqmgBNi91ChvRWL1/KwvTS8Tx6QNxbKIjjk10hurYpKaa0esPvVLBwTIUZZUA1dXV3HfffTz22GPxHP6Ipt0TeylFq6cDj+ZF86k0f7AbrVnHrJmL2T/XglE2MD1lApva9wDdGVYPzLyRP5e/zJqWQyObS45BrEqZXYjU4GPdui857rhlJCf7H+bUuVqGe3gCgUAQV4QoMcIYqA10KC+IhuKiPpApISOLm4QIqKomjguwIH0qTwHrW3YxP3VqcLo4PtERxyY64thERxybcIairLKzs5MbbriBO+64g/Hjxw96LENRMjkU24kXnb7uHKH+xtzm7cSjemn5tAxXdRv6wnGceMEZrC1/Fp0sMzetOChKGBQ9siyRZrRw3aSzWdOyhSxDakz7GU5iuZZTkgxMnT+J5i2VfPZZt1ui3t0tSgzHZxhp3514Io5NdMSx6RtxfPpGiBKHKBkZGSiKQlNTU9j0lpaWXu6JkUSg+4Yium8I+mBe6mQASjv2JXgkAoFA4CeWskqfz8ctt9zChRdeyJIlSwa9r6EqmYSRU6LjLOvuuNTfZ3cZXFSs2YpjbyNKspHxZ80nPSsFysFiNjE9axwc8C+bkWoJbi+LZF5e/huyTen+eQk8Noa62C7BF524mC8qWti8eT0rVpxMZmYmbU0dwfnDWQo7Ur47iUAcm+iIY9M34vhERogShygGg4GZM2fy+eefc8IJJwCgqipr167l8ssvT/DoBk8gLVt03xD0RaEpGwWZclsNPs2HLH6qBAJBgomlrHL16tV88cUXNDU18eKLLwLwr3/9i9TU1AHta6hKJkdS+VKjrT34urm5E03TsHptvFKzmuOy5vBUxVuA3zH63xdWUr2pDNlsIPu0GTj1Km1Wf/mH1+VD79QHt+W0ecLKRVNJwetVIYOEHhub3RXTcg6fysKFR/Hhhx/wn/+8woUXfouy1prg/OEohR1p3514Io5NdMSx6ZuhOD6jrWQyFHGln0BsNhsHDhwIvq+qqmLHjh1kZ2eTk5PDlVdeyW233cbMmTOZM2cOTz/9NE6nk/POOy+Boz44Ak4JnRAlBH0gSRJmxYhb83LA3kBxSu92bgKBQHAoEFpWuXz5ckpLS4dku0N1UT9SSnSsXZkSqbokVFXjnt3/YnXzZgBeqPoAAE3VaPu8nNJKHbJZT87JxejTzXR6HXjU7vLQdF23e0CHEvXzJ/LYqCEtTb8z9lT+VfkO35twNhOSCvj59keD81w+D0uPOY4vv/yCzZs3cfTRS6hzdpdvDOf4R8p3JxGIYxMdcWz6RhyfyAhRIoFs27aNyy67LPj+7rvvBuCmm27i5ptvZsWKFbS0tPDQQw8FU76feOKJsDCtkYYv6JQYnSqfYOgwK0YA9tiqhCghEAgSzmgtq0wEG9p2s6Ozgm8XnRQUdDq8/kyJwG9/QJAIoHp8tHyyB+f+FtTscUw8/QhqjVaSFCM2rwOv6m8RKksymYZuZ4ouQjvQQwGN7puSS8aczPkFSzErRvbb68KWc6kejEYjJ510Civ/+wpvvf0/mhZ0u0p8mircpwKBYMRzaP5SHyYsXryYXbt29bnMpZdeyqWXXhqnEQ0/ge4b4gQq6I/AheleWxVwZGIHIxAIDntGa1nlYGh1d9DssTLZUjSo9X+xwx/CfWzmLCYkFeDTfFi7RAlfiIMggM/hofm9nbgbOtClmRl79ny8FgkcVjL0KVT7mrB6/U4LnaQEzx/Q3RL0UEPt8TkDYy4yZZOhT6HV48+NcHe1Np0/fyG/+u8DvLduHRbzBIyT/A+oPKoXJaR1tkAgEIxExJ2hIK74NBF0KYiNoFOisyrBIxEIBIcLNpuNHTt2sGPHDqC7rLKxsRGAK6+8khdeeIGVK1dSVlbGb37zmxFfVjkYLttwNzdt+RMtbutBbcfVdcPd6u4MOgc8XY6HAO5mGw1vbMXd0IEhL4Wcs2ZhNbmD5RoZ+hQAWtz+m/ieDz00eoschwI+LbJ9Wy/reH7hr7h18reA7mP0WetWHAvSsHudNK8tR3X5j5NH80bcjkAgEIwkDk35WDBqEZkSglgxyDoUxUS5vSbikzOBQCAYag7HssrB4Ol6wNDm6QwrlYiFwMMJAJvXCUCzp7scIfQm27a7gdbPysGnYp6UTebSyUg6mWa3lXS9PzcivUuUaPf6Ax91PR56dHbt41AjtHyjJ5IkYewqOwmINFut5RgLUkmamot9dwPt6w+QcewkXqj6gCvGnY7+EC1TEQgEglgQv2CCuOIT3TcEMSIhMdlSxBZrGZWOBnIZ2IWvQCAQDJTDsaxyoGghT/gH85Q+4GgA6PQ5uqZ1Oy48qg+n00nL6r3YdzeALJG2eALJswqC+RMaGq2eDnSSQqo+CfC7LcCfKQFw2djTeK9hHXPTigc8xnjQs3yjJwbZ30Ek4JSod7UCkHbEeBwVLdh21pM0JYdX+AS7z8ktxd8c3gELBALBMCLuDAVxRQRdCgbCFMsYQJRwCAQCwaFCQEgAsPtia2sZSpO72xXR6fVvqzlElOisaeHhh/+MfXcDstlAzukzSZldGBQkQtFJCqk6C0AwgyHw0OPbY07iqQU/J0kxDXiM8UDtp6wkIEq4g6KEv+OGYtaTfuR40DRaV+9F86q83fDl8A5WIBAIhhnhlBDElUD5hnBKCGJhQlI+AJWOhgSPRCAQCAQQLiDYB1Ea0RwmStiD21Q9PqxfV9JZWktzfjrmiVmkHzsJxaSPui2dpJCi63JKdIkSPcs3DlXUKJkSAYwhTglN06hzdbcBTZqai31fM66qNtrXHyD9qAnDOVSBQCAYdoQoIYgrge4bI+WiQZBYso3pADS52qMus7F9D6/UfIxB0jPGnMuFRctJ1pnjNEKBQCAYHXzdtguX6uGYzFl9LhdaamH3OVE1lTXNW5iTNjmY89AXPZ0Smqaxa/t26t7aiGpzIxl0VMyDzMKpEd0RoehkhdQuUaLN4y/fGCkPPfrKlIDuriEe1Uu71xYs4wB/5kTmcZOpe3UTnaW1mMcfXpkmAoFg9CFECUFcEU4JwUDINqQB4U/WAmiaxr+rP+Bfle90X9y1wqfNm/llyWWDblUnEAgEhyO/3PE4AG8fdV+fYkCLp1uUcPhcfND4NQ+U/YcJ5nwemXdrv/txhJR8VNdU888Pn2TD16tRHW7MxdmkL55Ac5KKRN+CBIQ7JQLngZFyfRGrU+Lz1m1MqR/Ta75iMZBx9ERaPt5Dy+q92E630ahZeaLif1w/4VyKzDnDMm6BQCAYDkbGL7dg1CAyJQQDIasr1b05Qtu5L1u380zlKoyynlsnX8xDs2/h2MzZ1Lqa+cm2v1HjbIr3cAUCgWBEEtoRo7/wys3te4Ov7T4XZbYaAPY76nD4XGxs3xMWhtkTt+rFa3XS/OFuPn3uTcrL92JITyJ7xUzyT5iOkmSIedw6SSHXmBE2baRcX/TXVSqQKQHwdOWqXvP1koK5OBvzxCx8HU5W/vcVfrPjKda37eLP5S8P+XgFAoFgOBGihCCuBMo3RsqTDEFiSVJMJCnGMLtvgFdqPwHgtinf5qScRUxNHsvtUy/jgoJlOFQX9+35d9iFtkAgEBxu7LVWc/FXd7K2pbTP5awee/C13Rc9J6LZbeW9xvVhy4aez2/d9jA/3/4oL9V8FHH9+vp61r39CXUvb8RR3gQmhbPOOo8ZFy3FVJhGcpfroS8CZQ3gFyWKTDlhroqRcn0xPikPgAnm/IjzDf20+ExSTEiSRMaSYpRkI1u3bWH/Fn/nmFZPB/+uej+iy1AgEAgORUbGL7dg1OBTRaaEYGBkGdKw+5xhgWp7OqvYai2n0JTNURkzgtMlSeLKcSuYahnLjs4KXqyOfGEsEAgEhwN3bXqGFo+Ve3b/q0/3QiCPAfruqGH12ACCIsCLNR/xZev24Pwyu9818Z/qD3GrfseFpmns37+PZ599mr/+9U8cKN2DpFdIXTSOogsXkjtrPG7Jv6wlhk4Zern7+kEnKRgVPTld+UMwckSJi4pO4LoJ5/C7GddGnG+Uowd8Ali6spNko47ME6aCLNG0tgx3s41KRwNPV67irl3/ZFfnAZw+95CPXyAQCIaSkfHLLRg1CKeEYKBk6f0lHA3OtuC0lbWrATi34LhgT/oAOlnhtinfRi/peLH6I2xeBwNF0zTWt+3iyYr/cdeuf/KX8ld4r2FdWC20QCAQHOpU2vydizyal59tfyTqcoHOFdC3KBE4h6eGOBqqnI29lrP5nNRY63n9kzdZ8rOz+PlDv2LXrh2kpKQy+bi5FFy8kNR5Y6j1tXLd5vvZ2VEBxPbAIrQ8I1DiMMbUnZ8wUh56GGQ95xYcFyxTjDS/L0IFHGNuCseduBx8Ks0f7EJ1+UWeXZ2V3LL1Ie7a9c8hG7dAIBAMByLoUhBXujMlhCghiI2srrDLBkcbKXIybtXD6ubNWBQTJ+csirjOGHMOJ+YsZFXDl6xq+IoLCpfFvL8aRxMP71vJ1+27wqa/Wb+Wfx54m6vGn8ny7Pn9psILBAJBogkty9hsLYu6XHuIU8IRUr6x11ZNkmKk0JQNdOdNpOottHttvbaj+VScNe04ypq457Xfsr+jhnZnCzuzXFy24jJOOfIE/q/8RbY3fR22ntoVUtlTZI5EqOgQcBMUmrLY0FWpEMs2RgKRxBUJKRjo2dNJMffIRZg/zcKxv5nmD3eTfep0JNl/ntrQvnv4BywQCAQHgRAlBHGlu/vGyHiSIUg8AVGiydlGcdIYapzNeDUfs5MnYVaMUdc7t+A4VjV8yWt1azi3YElM37l6Vwu3lv6NFo+VIlMO3yw8nvFJ+TS521jTvJVPmjfxx73Ps9dWxTXjzxLChEAgOGTxqL0DKzVNi/i71ebtXb5h8zq4acufAFh19P1A9zk8JcQpoXlVnLXtOPY146hoQfGAV/WyVt9CUnE2uSVz0GdbSC8pQFEU3Jq/tWWSYgxzZSiSHBQn+kIfwSkRei4YLdcXkiTxu+nX8ErNJ0FRwaKY6PT53X89RQsfPjKWTcZjdeCqbqP9y/2kHz0x7uMWCASCwSBECUFcEU4JwUDJNoSUbyQR7KpR1PXkLhoTkvJZkDaVDe27+axlG0uz5va5fIfXzh07nqDFY+WUnCO5edL56INBY+M5LmsuZ7Qfzd27n+bV2tV4NZXrJ5wzZMKET1OpcTahIJOmtwTrhQUCgWAwhOZEBHCpHkxK7+4WkTIlKhz1vZbzaj40TUNvVenYVoOzqg1XnRV8XZ0kFJnxUybTWgimcRnI+u4b58A+AlkTZjlclDDLRjyqp9/PpURwShjl7s+kG0XXFwvTS9hnrw2KEim6pKAo0dMR4lF9yHqF7JOn0fDaVjpLa9FlJJE8LS9sObfqRS8pQlQXCASHFEKUEMQVrwi6FAyQYPlGV6ZEtcNfvxxLD/ZzCpawoX03HzVu6FeUeKLifxxwNHBk+nRuKb4g4tO2OWnF3Dvjen62/RFer1vDtORxnJCzYICfKJxyWw3PVr7LxvY9ONTuC/SZKRM5KWcRp+QeIUQ8gUAwYCKJEk7VHVGUCARYAjh8Ljo8dnZ3VgKgurzs2LOd+uo6Ptn5BTVb1mHQVTDVkMaezmbcioxpXAamcZmYx2dw6rhlvF73Wa99tHftI+Dg6HlTbFIMQcGiL0KDLg1BUaK7lGG0/V6aQgQXi84EXaeJnp9zW0c5ALoUE1knltC4ajttn5ejSzZiGpMO+LulnP/V7SzOmMGd074bl/ELBAJBLAhRQhBXRNClYKAEQsAaA6JEl1OisB+nBMD8tKkYZT2brXvxqj50cmQxrMbRxHsN60lWzPx0yrf7tP9OtBRwe8ll3Fb6CH/bt5I5qcVkG9MG+Kn8zojH9r/O63WfoaFhkg3MTpmELElUO5so7dhHacc+3q7/gh9NvpAJSQUD3odAIDh8ieyUiNyFodNlx9PuwNfp4ovmtdy19348rXY8rXZUm5tv8hUn5S6iw2NH86pkjc/lO0ecxzrjAT5kezC7AGBiUmHYtk/PPYq3G75gn70Wj+rF3eWGuLjoRP6679XgckbZQKfXTn9ECro0hggto6V8I4AppDQlWel20PV0Sjy6//Xga2NBKhnHTqJ19V6aP9hFzoqZAOy31wGEdUwRCASCQwEhSgjiSkCUkEXjF0GM9HJKdCW9F5n6d0oYZB1zUotZ17aTnZ0HmJUaub722ap3UVH5RtHxMZVNzE4t5ryC43i1djV/2fcyd067KsZP48er+rhv77/5pHkTqbokLh17KqfnLg6Wi6iayvaOCp6oeIOdnQf4wda/cPf0q5mVOmlA++kPh89Facd+ahyNuDUv2YY0piWPI9+UNaT7EQgE8aeqsYaO0lo0rwqqhqaqvNu4ilTNhMPhwGaz4XA46Ozs4KPKL6h3tgDwgf4AnQFBQ5bQpZvRZ1rImlXMkgklVHW8y3FjT+CE8SdTdWAVUvWOsP1OTMoPe78ovYS3G77gk+ZNWHSmoBtiSdZssgyp3NnVGcKkGGj1WPv9XOFBl/7fzFA3wWh76BHulOg+P/X3OS1Tc/HZ3VjXH6Dp3R00HdOEZug/s0MgEAgSgRAlBHHFp6ookixqGQUxk2lIQUYKOiVqHE3IyOQbM2Naf2F6CevadvJ1266IokSVo5GPmzaSprNwTv6SmMd1xbjTWdtSypetO9jTWcWU5DExr/tQ+St80ryJfGMmf5jxvV4igCzJzEqdyAOzbuL5qvd4ruo9bt/xxJAJE22eDp6v+oD3G9djD0naDzAjZQLfKjqRIzKmH/S+BAJBYvj8409oX7svbNoXlZ+RaUgJmyZJMkqKCWNGGkqyETnFTGZqAbqMJPTpZiTFf/P7GZVUaW4kRUYn+S8fDUp4Bwi9pJDZo8VlaMvLt+q/CLq+9JI+zAFmkvsu30jVJWH12vn2mJOCQkbAKWEKK98YXU4Jc4gLJDlElIilDDZlbhE+hwdbaS3/fPpJjvvW6cMyRoFAIDhYhCghiCtezSfyJAQDQpEU0vUpNDnbsXmdNHusFJqyo5Zi9GRB2lQANrTv4nJO6zX/0+bNqGicnX9sn908emKQ9XyjcBl/2fcqL9Z8yC+nXhbTel+0lPJu41dk6lO5f+aNfZZ+KJLMd8aeilHW848Db3H37md4ZO6PSdenRF2nPza07ea+vf+m1dOBXtKxNGsukyyFmGQDdc4WvmgtZXvHfu7Y+STLs+dz08Tzhy1006epVDsacfhcyJLMOHMexh43OQKBYHAUHVlCGnuQZMlfXiHLHFd8Mqta17OsaCFnj1vKNlcFX9l2MdGWieSo63ebgfDLQJhkz7aUafpkDHL4pWXA7RYgEGZpkHWk6izB6SbZwI0Tz+fP5S9F3PcZecdw6dhTcISEYxojlG+MpqBLCHdKhJZvxCK+SJJE+uIJqA4Pjc2NrHzuP/gWelDMep6o+B/fHbdi1LRQFQgEIxshSgjiik9TR521UjD8ZBvTaPFY2dGxH+i/80YoY825ZBvS2N1ZhdVjI1VvCZu/vm0XAEdlzhzwuE7KOYJ/Vb3LZ81bqXE0UWjue1wdXjsPlb8CwC3F34g5i+LCohOodTbzdsOXPFj2Mr8uuWJQbqPVzZv5/e5n0dA4LXcxV45bQVqP4/G9CWeztrWUv+1byUdNG6l0NPC76df2Wu5gOGCv54XqD1jfthNrSA25jMy0lHGcnX8sSzLnxCw8CQSC3ngsEikzw7NoqnOc1MlO/uP8jCuzzuP3a38/qG3ruoQHQ09RQmcJuigCpOuTw943uduRkNBJCjql+9+4LEmcnreYE3MW8o2vbsethbsmZElCkeQw0SPg1DCOaqdEt1geKhBfPvZU9tlqUGSFMlt11PUlWSJz2WSKdo5j884tNL1dQfaKGbxc8zEL0qayIH3qsI5fIBAIYkHcHQriilf1jboLBsHwE7D/bm7fC8QWchlAkiQWppegobHZujdsXqfXwY6OCjL0KUzqEc4WC0ZFz7n5x6GisbJ2db/Lv1T9ES0eKyflLGJxxowB7evaCWdTaMrmi9ZSPmj6esBj3Wot4749zyMBt07+Fj8o/mZEoUGSJI7JnMWjc29lTmoxe23V3Fb6Nzq9jgHvsyce1cvf9q3kus3382HTBuw+F7NSJrIkcw5Hpk8nXZ/M9o79/GHPc9y45f8ot9Uc9D77wqf52NVxgC9aSvm0eTN7bdXBED6BYKRj9fQOjQxtwXkwBByPkZwSPd2QOknhqIxu0delejDIOiRJQpIkMvX+3/eN7XsAgvMCnFdwHDmGdM7IOzps36H7D20JqoyyS9twp4Qp+DrflMUj827lmJBjm6UPL50JICkyb5bsZ0/DQAs0AAEAAElEQVRKC54WG01vb0d1ebH7XDy+/42wkEyBQCBIBMIpIYgrPs3X6yJGIOiPceZc1lLKG3VrgdjagYYyNXks7zR8xQFHQ9j0Te17UFFZmF4y6JyTFXlH8UzlKj5r2cb1E8+NaoV1+Ty83fAliiRz5biB1/WaFSM/Kr6IW0sf5tnKdzk+a37MToI2Tyd37Xoaj+bjxonncVLOwn7XsejM/Hba1dy165983b6LB8te4pdTvzPo49ThtfPbXU+zxVpGsmLmW2NOZEXe0WFPATVNY2P7Hv5d9T5bO8q5ZetD3FL8zZjGOxBqnc08V/Uea1u2YeuRqWGQdCzNnsc5+UsGlBMiEBxqnJp3JIWpmaysWBOc5uhDlDDKelwxinL6qKKEJaxlp05SkCSJ30y7kicq/sfLNR93rd99+XndxHO4Z/e/uKBwWXBaIAy72FLE9yacw/cmnNM9L+Q3NiBGhDkl5FEmSoRlSiT1mq8LcY48Mf+nnPfVLyNuR9LJmJaPx/ieA1dNO41vleIsdvBK7ScAXDv+LJH3JRAIEoYQJQRxxav60OmEU0IwML5ZdAIfNm8Mhl0OpHwDoMDoD5KsczaHTQ+UbixKLxn02FL1FmakTGBbxz7KbDVRb2Q/bt5Ih9fOsqx5vWqsY2VW6kQWpE1lQ/tuPm7eyEk5i2Ja76kDb9HhtbMi7yjOyj825v0ZFT2/mHopN275E2tatvBm/VrOzD9mwON2+Tz8Yvtj7LFVUWwp4q5p3414DCRJYkH6VOalTWZl7af848CbPLD3BRRJZnn2/AHvtyc+TeXZynd5qeYjvJoPg6RjYVoJReZsZGSqnY1ss+7j/cb1fND4NefkL+GKcaeH3RQMJQ6fiy9aStltq6LB1Ype0pFlSGVOWjHzUqeIfA3BQbEkazbnZB0dJko4e7QENUi6YJlEsmIOihJFphyWZM1mq7Wc7V1lc6FEK984Pns+MjISEhpaWLmmOeSJf+h6S7PmMmleIbnGjOA0uevmWNP67hbRHXQZ6pQYXdcYob8/kX6LQgUek2wI+5v2RNYrZJ08jeZ3d+Kqbef1f/0H7xFudMlGtnWU49NU5qVNAfzH3uXzhG1fIBAIhgvxSyOIG6qmova4SBEIYiFVn8Rv5l3OjV/8GRi4KJFv8nfqqOtqeQf+C671bTuRkYJhmINlccYMtnXs44vW0oiihKZpvF7rvzE4ewCiQCS+PeZkNrTv5t9VH7A8ewFyPxfgOzsqeKfhK9J0Fq4ct2LA+7PozPx8yqX8qPSvPF7xBkdnzgpL0+8PTdP4y75X2GOrYmbKRO6efnW/gaKyJHNB4TLyjBncs/tZ7tvzb1J1SSw8CPHI4XNx757n+aK1lCTFyCWFJ3NuwXG9xmL3OXm/8WueObCK/9Z9yibrXn4//VoyDIMPF+2Jzevk2ap3eKv+i4hPpl+p/YQkxcgFhcdzQcFSTAMIYBUI+iJUYHD5PGE3r6HOq3R9MleOW8Hvdj8TcTuRyjd+O+2qYMcenaTg0bxhpRahN9Q9wzDH9HC/SfhFCZW+RYlAS9BQAW+0XWOElqboI5S/hjpTJEnCIOtx+6J3MZH1ClmnTKPlw93UNdbR+L8ask+fwU9K/w7AC4t+TaYxld9teZaVFWv45/xfBM+hAoFAMFyMrl9uwSGNT1OB0RdCJYgPR+XO4PqJ53JW3jHkxdgONECuIQMZmVpXt1Oiwd1Kk7udYktRr/DLgRLIh/iydXvE+XtsVZTZayi2FDEjZcJB7WtW6kTmpBZT7Wzkq9Yd/S7/RMX/APju+DNIiWD9jYWSlHGcV7AUl+rhhar3B7Tue43reL9xPVn6VG6fetmAOpwsyZrDjyZfhIrKA3v/g9VjG+jQAX/Z2G93Pc0XraUUmXL4y+wf8K0xJ0UcS5Ji4uz8Y3l03k+YlzqZ/fZabtv+d5rd7YPad082t+/lmk1/ZGXtp0hInJi9kJ9OuYQ/zbqZ+2fewI+KL2JJ5hw8qpd/Vb7DNZvuY09n1ZDsWyAIxeoN//fk9HW7KAJOBYMU2a0TuDkOdTxMTR7XPb/rRjlMlJCjixI9Cexf7bpuiIYhQqbEaOvwFSqy9HSmAL2CRfX9HFvoEiZOKiF9cj6+TheN/9uGu9n/fdjeUQEQdNh81db/eQb8v7N373qa9xvXx7S8QCAQhCJECUHc6BYlxNdOMDjOKzyOGyedP+C6V52skGtMp8ndHgwybHT5bzIHEpoZjbHmXAqMWey1VdPk6n3zuqkrwG1p1twhqdk9syvwbU3zlj6XO2CvZ1vHPopM2ZwcY6lHNC4sXE6SYuTthi/DHCd94fC5eOrA2wD8Yup3BuU2OClnISflLKLFY+Wv+17t184dicf3/48N7buZYM7nwdk3x5RJkmVI5a7pV7E4YwaVjgZ+s/MpPGr0p4+x8FnzVm7f8TgtHivLsxfw1Pyf85Mp32J59nymp4xnVuokTsk9gttLLuOxebdxbOZsGt1t/HjbX1ndvPmg9t2TNc1b+NFXf4v4fRUcHvQUJRw+F2NM/n8bgd/FaL9XitzbKdEzSwLCH0KEtu3U95MtFciN0PpxSgT2Eyp4jOYWl7GU/sUqykiKTO7yaVim5/tbhr5ZirOqja3W8vAFY/zN3dVZyZqWrdy/94WYlhcIBIJQRu8v90Hidrv5+9//zs6dOxM9lFGDT/MBo+8phmBkkG/y50rUu1oBaHK3AZA9yHyHUCRJCrol1rX1/s0IXOTNTp100PsCWJQxDb2k48vW7X3eKL/T8BUAp+QeedAX6ql6C+cVLMWr+fh3dWxuiVdrV9Pq6WB59nxmpk4c9L6vn3AOuYZ0VjdvDib0x8rHtZt4tWY1qbokfjPtygG5RQyyntunXsaMlAnssVXx1IG3Bjr0IOtbd/K73c/g1VRumng+P53y7T5FmgJTFrdPvYxrxp+FV/Pxh93PsaFt96D3H8CnqTy2/3Xu2vk0q+u20OrpOOhtDifiXHzwXDPhzIjTQ9vxArg1L3dPv4az84/l2vFnd02NfEMaySkRmj0QECNCS0LCnBL95BQEyzf6uSEOLBe6n9H44ON7E87mkjEnM8acw8+mXMLf5/w4OM/bIz/CEyFP4tkFd5AUwRnW5G4n/ZiJpCwYi+b20vTuDtZ+9XnYMrHKwCJ7QiAQHAyj75d7iDAYDDzyyCNYrdZED2XUIJwSgkRS0FXyUdsVdtnUZcfPMaYPyfZnpk4AYJ+9Nmy6T1Mp7diHUdYzxTI03RySFBML0qfS6XOwub0s4jIe1cv7jeuRkWMOxOyP8wuWYZT1fNK0CWc/rQXbPJ28XP0xOknhsrGnHdR+LTozV084C4Dnq96LeT236uX/Sl8C/G1QA8LUQNDLOn4+5VJSdEm8Wrt6UMJAo6uNP+59HhWNH0++OOawUEmSuKBwGT8svhAVlbt3P8P+Ht+vgaBpGn8tf5VXa1eTokvioaNuOuQ7jIhz8cHzzaLl/GP+z3pN//n2R3tNyzdlcsPE87Do/K0no4kCkRwKoQ8cAmJBaHvOAZVvEFv5RiQnx2h88HFewVK+M/ZUwB8mOtFSEJzn63GM2jydvdbPMqRGdAU2uNuQJIm0BWPJWDYZJIldH3zN22+/GXSl9edWCaDSPY7BONoEAsHhjbg77IM5c+ZQWlqa6GGMGkSmhCCRBG5Ig6JEl219KJwS4C/hAKjq0Xa03FaD3ediesqEmGp9Y+XYzNmAvyQgEl+27qDda+OIjGkDCqbsC4vOxDGZs3Cqbr6Ikp8R4J2Gr3CoLlbkHUXBIMSAnhybOZux5ly2dexjqzWyENOT/9Z8SrW9icUZ0zmyK4BvMOQY07ll0jcAf0ZHfzdKofg0lT/seQ6r1845+UsG1d705Nwj+HbRSdh9Tv6w53m8qm/A2wD4d/UHvN3wBRn6FP4y5xaOyZ01qO3EG3EuPngKTdn8qPiiAa8X7YY0UveNUIEgUtFHaBhlfx1tYi3fkCPsST7M2lrGUlYmSRLJirnXdHtIS2TLlFxyTpuBV6+xZs2nNH+wC9Xji1mU8IT8Ltn7Ea0FAoGgJ6NelHC5XFRWVuJyDfwH8ic/+Qn//ve/efbZZ6msrMRut+NwOML+E8SOt6t8QzglBIkg4JSocwWcEm3A0IkShaZsZCQqe4gS2zq6SjdSBl++EImjMmYgI/N5y7ZeT8oAPmvx502cknPEkO73+K7WnB81bexzuY+75q/IO2pI9qtIMhcXnQjA8zGEbXZ47Txf9R6KJHNNl8viYDg2czbTk8dTbq8ZUL7Dx00bKe3Yx2RLEVeNj2yjj4XvjD2V2amT2G+vZWXt6gGvv6W9jGcqV5GkGPnt9KspNB98lkq8EOfioSFDnxxx+ik5RwJw1bgzes2L9sBbH+y+EVlojeRgMMnd5QMpur7DhQPrR+u+MT15PAATkrodA2flHcPRGTNHdaZEJEJLVwDum3k935twdi9nXlKX+6UvjAWppJ85jYzMDJz7W2h4fSttza0xjSO0bKTtEC8LEwgEhx6jpgDsqaee4r///S8ej4dLLrmESy65hCeeeIK//vWvuFwuDAYDV1xxBT/84Q9j3uaFF14IwN13383vfve7iMvs2BFbKrGg2ykxGq2VgkOfgi7ram1XSGOT228HjyU4LBYMsp48Yya1rmacPlewjWMgT2LWEOVJBEjVW5iZMoGtHeXs76gjnXA3xM6OAwDMSSse0v0uTCshVZfE12276PDYSdH3zmiosNexz17LBHN+2E3DwXJ89jyeqVzFxvY91Dlb+mxT93HTRuw+F+eOW8K4pDxU9eDsxJIkceW4Fdy2/e88U/kOSzLn9LoZ6IlX9fFs5bsAXDfhnH4t6/3t//uTvsH1mx/g2ap3WZo9N+YuNG7Vy0PlLwNw88QLmGwpGvQ4EoE4Fw8NZiXyTemctEncNOn8iN/PqE6JCJkS/RHqjugv26W/8o37Z92Iw+ciWdf99P/GSefHPJbRxGm5i9nUvjcYgDw7tZjZqcW8U+/PFArkd1ii/P17oqSZuOTqK3nu/o9xVbXxzjOvctSVU5g+fUaf64U6Nlo9HTEFCgsEAkGAUSFKPP/88/zxj3/kjDPOID09nT//+c80NzfzxBNP8L3vfY+ZM2fy9ddf8+STTzJlyhTOPDO2p1X33HPPkCTlC/z4hFNCkEACN7B1zm6nhIxE5iA6QkRjrDmXWlczVc4mJluK0DSNUus+dJLCtK4ne0NJsaWIrR3l7O2oZpGpW5Ro83RQ62pmnDl30G1Ao6GTFY7Lmsub9WtZ07KF0yM4IT5u2gR0uyqGCkVSWJY1jxdrPuKzlq1cULgs6rLvNfjb0p07fgnEXm3RJ3PSilmQNpUN7bv5snU7x2bN7nP5dxq/otbVzMK0kiERpcaac/lG4fG8UP0B/6n+kO93lZT0x4vVH1LlbGRhWsmQ/03igTgXDw2Rgg4BzLIxqmDWX/mGLMkUmrLJ0oeLooFMidD1QzMlUvsTJQLlG1GsGookhwkShzNmxcid077ba/p+Rx0A45Pyge7SxVhw61WyT5mOdWMlrj1Onn/+GZYuPZ4TTzwFWe6+htvdWckHjV9z1fgzwkSJlhicEts79pOkGIdUuBYIBCOXUSFK/Pvf/+baa68NuiCOO+44rrvuOm688UZuvPFGAI4//nhcLhfPPvtszKLE+eePDtXd4XCwYsUKzjjjDG699daEjUNkSggSSYouiWTFTK2rGZ/mo8XdQaYhdUi/j2PMOXzVtoNKRwOTLUW0e220e21MSioMq6ceKgIXm2XWahaZujMTAi6J4RBCwF/K8Gb9Wja17+0lSmiaFizdWJY9b+j3nTW7X1Fiv72O3bZKxppzmZU+gZYWW8TlBsMZeUezoX03HzVt6FOUUDWV/1R/CMAV404fsv1fULiMlbWr+aDxa64cuyKiUyWUTq+Dl2s+xiDpuGkQ7XQPBUbLuTjRmKOJElGmQ19Bl903pk/Muy0oQvQkVJQIbR/an1ga7L4Rc+8HQTQmdJ0nZqVOYlvHvpjWaXF3IMkSaQvHMbtkHIYvW1i9+mMqKytJWzqJ6XnFzEiZwPe3/hmAiUkFYU6YSGGboaiayo+2/RWAVUffP5iPJRAIRhmj4pF1ZWUlRx99dPD9EUccgaZpLF68OGy5Y489loqKigFvf+/evfz3v//lkUceobGxEYCKigo6O/v+0T1UeOSRR5gzZ06ihyEyJQQJJ9+UiUv1UG6rRUUdsjyJAD3DLtu7Lswy9EPnxghlYtfF5t6OmrDpOzu7RImU4RElAh0b9tiqes2rcNRT62qmJHnskARc9mSqZSw5hnR2dFTQ7I7ckeG9hnUAnJp7xJDfhB+RMZ1kxcyXrdvp9EbPMtjRUUGDq5XZKZOGtMNFii6Jk3MW4VI9rGr4st/l321Yh1N1c2LOomH5e8STkXAufv/99zn11FM59dRTeeutwbeQHQ6iiQ992fqjZcLoQto/ypIc9d9ZqKQwoPINKbbuG4LoBIItF6RNBeDiohO4a9pVTEoq7HfdRld3jkTqxByuu+4mcnPz2bpnG3f+6S6uf+uusOX/tm9lWCcot+rpc/uB60GBQCAIMCruDg0GA05nd4Kw0eg/8SYlhZ/09Hp92HL9YbPZuOWWWzjzzDO5/fbb+fOf/0xDg/9m4//+7/94+OGHh2D0w8v+/fspLy9n2bLoNud4ITIlBIkmIBqsbdkGDF3IZc/tB8IuA0+L0vR9h7oNloBTYq+1Omz6jo79AExLHjcs+03RJVFoyqbG2dTrxnyvzT+WWSlDm6ERQJIkjs2cjYbG5y29O48EnBoyEicOotNFfxhkHUuy5uDRfKxp3hJ1uU+6wjCXZs8d8jGcU3AcAK/XfRYsi4uET1N5o+6zrnWOHfJxxIuRci72er3cd999PPfcc7zwwgs8+OCDuN3uRA8riFkeuFNiQfpUXjnit72m93cejyRR6EOEjFgzJWLt/CDozZ9m38wtk74ZLNkyKUaOzJjOD4svDGsPGulBUZ2rJfja6XOTnZ3N9dffxMxF81CdHprf3cmbb76B5vNf17k1L283fBFcpz/RIbRTR3/tpQUCweHBqBAlxo4dy65du4LvFUVhzZo1TJs2LWy5ffv2kZeXF/N2//CHP7Bx40b++c9/smHDhrDaxmXLlvHpp58e1LjXrVvHddddx5IlSygpKeGjjz7qtcxzzz3HCSecwOzZs7nwwgvZsiX6RXAk7r33Xn70ox8d1DiHCuGUECSauamTAXi/6Wtg6EIuA4zpIUq0e/1lA+lRUu8PFrNipMCURbW9CUfXhZ1PU9nVWYlJNgRFi+EgkOy+t4dboqxLlJhk6f9p3GBZ0lU2sbald5vIelcrzR4rxZYisoxD+/cNsDzYgWRDxPk+TeXT5s3ISCzJHHqX2lhzLgvTSmh0t7GxbU/U5da17qDW1czc1OIRXbc93OfioWLz5s2UlJSQnZ1NRkYGc+bM4euvv070sIJEy43oS5QAsOjMvLDo1/xz/s+D0/T9hLwScE6E/K1C3RT9iRL6kMwKweAYa87l9LzFvVwsU5LH8I/5PyPHkA5AkmIK/qYt7mqdXGGvDy7vVP3Cmk6n4+iTjyfr5GlIRh3vfPouDa9txd3cuzzO10/b4lDRor9SD4FAcHgwKn7tL7jggl5hSNnZ2ShK+Elz5cqVHHnkkTFv99133+XWW2/lqKOO6rWtwsJCqquro6wZG3a7nZKSEn71q19FnP/WW2/x+9//nhtvvJGVK1dSUlLC1VdfTUtLt4J9zjnnRPzP5/Px/vvvM2HCBCZOHNpWhINFDWZKjIqvnWAEsiDdb2Nt6LKmDrVTIk1nIUWXRLWjEVVTQ5wSwyNKQHe98H67P9Sswl6HU3VTkjx2WP+tBUs4OsNFifIuUaJ4GDs8TE8Zj17SsddW1eu3f2dnRXCZ4WJ26iSy9KlssZZji1DCsc1aTqungzlpk8kYwiDVUJZk+cWOr9t3RV3m3a4ylrPzlwzLGOLFcJ+LAxzsg4KGhoawBx95eXlBR8ehQLQSi6QYujKk61PCur2Elm9E3FfX/6P5HFL7yUL5cfHFFCcV8puSK/sdm2BwBIJCPaqXHxZfyJ9nfZ+Li04CYJ+9Nric09ft9rH5nJjHZ5J//jw+0+3F02Kj4fWtWDdVoYV0OPL2U3bjDWsfKkQJgUAwSoIuv/3tb8e03Msvvzyg7bpcLtLT0yPOs9lsvS6OBsqyZcv6LKt46qmnuOiii7jgggsAuPPOO/n4449ZuXIlV111FQCvvfZa1PU3b97MW2+9xTvvvIPNZsPr9ZKamsq11157UOMeLN1OCVG+IUgMucYMikzZVDubAMg2pg/p9iVJYqw5l+0d+2lwtQUzJYbLKQEwIamAtS2l7LfVUmIZFyyfKBmm0o0AAafEbltlcJqmaZTZajBIOsYOYzs4RVIYZ86lzF5Di8ca5njZ1ZWnMZyfX5ZkZqZOZHXzZvbYqpiXNiVs/qddpRvLsoa+dCPAovQSAL5uiyxK+DQfm6x7Mcp6jsiYHnGZkcJwn4sDBB4UnH/++dx888295gceFNx5553MnTuXp59+mquvvppVq1aRmRlbe9ZDEXNI1kNfhIoa/Zdv9F1+Ecg7iMZESwEPzz00XJ6jlUA3FKfqxiDrKUkZR7vH73qocjQGlws4JcAvSgAoFgPZK2bQWVpL+/oDWNcfwFHRQuZxk9FnJuHVvHhVHzafM2L5Ymj5xpv1aylJHjciQ3gFAsHQMSpEieFi9uzZvPbaayxdurTXvHfeeYf584evtZrb7aa0tJTrr78+OE2WZY455hg2bdoU0zZ+/OMf8+Mf/xiAV199lfLy8oMSJGT54E4YgRRtvawc9LZGG4HjIY5LOD2Py1AcnwXpU6mu84sSucb0IT/mY8w5bO/YT42rCWugfMOQPGx/20nJflt+haMOWZaC+8w2pg3r92lqyljA75QI7Kfe2Uqnz0FJ8lj0yvCeXiZaCimz11DhqCPHlB6cHgj5nJE6YVj/XZWkjA2KEgsypobN297l1jgqc8aw/Q3yzBmMM+dxwFFPk6eNXGNG2PxdHdXYfU4Wpk/FpOvd+WUk/ebE61x8sA8KcnNzqa/vtr3X19ezZMngXSoH+7eJ9De+fuI5/H1f+MMM3SBEHYOi63N8oTeYocvdNuXb1LtaSDEMbavigTKSvv/DRWjwaOA4pBssJClG7CE5D07VjYrKSzUfU+fsdupKkkTKrEJMYzNoXV2Gu95K/WtbSJ0/Bk+el0cqXuN/dZ/z6LxbmWgJLx9TpW4nxXuN6zkxd2HQyXioI7470RHHpm/E8ekbIUr0wS233MKVV17JFVdcwWmnnYYkSXzyySf885//5J133uHZZ58dtn23trbi8/nIzs4Om56VlTWoDiIHi04nk5V1cE97zV7/hXGSyXjQ2xqtZGQMTyDiSESvV3p9T4bi+Cxzz+WNus8BmJJXSJZlaL+LE5vyoAHsegd2yf9UaXx2LlkZw/Odn2eYBDuh0t1AVlYyaoP/CVR+esaw/jvLIpnxyXlUdNajpPiFl621ewGYkTV+2P+Nz8wZz/uN66mnObgvt89Dma2aNIOF2UXjgzdGw/Hv6githMf3/4/97tqwz+pRvRyw15NpSGFKQeGwPv1bUjCL58vr2eWpYHrh2LB5O5v3+5cpnNXn32Ik/OYk8lwcIJYHBXPmzGHnzp00NTWhKAqbN2/md7/73aD2NxTn3AChf+Ors1bwXNV7WD324LSB7GdRdgn7OmrJz0nrM+9Bkf3zJFkK2/5FWYkP3Q5lJHz/h4sUkxna/a9D/0ZjLbnssnY74Dyal3/WvsWLFR9H3I4+zUzOGTPDXBNrW9/mwAwNY14qq60bWTQu3E3Wam0Pe+82uEfcdeHh/N3pD3Fs+kYcn8gIUaIPFi1axD//+U8eeOABfvvb36JpGn/5y1+YO3cuTz31VELabGqaNqiL3IPt8+71qlit0dvfxUJ7h/8iyOtWaW4WNYShyLJERoaF1lYbqirSxgE8Hl/wezKUx2eSXISMhIqGbNfR7Bza72Kyz3+y2ddcR6PNf+El2WWa1eH5zqdKySiSTLm1lubmTho7ui72nPKw/zsrNhdR0VnPlwd2sSijhI11/pZwY5S8Yd93Hv72lqWNFTRn+Pe1s+MAbtXLPMsUWlpsw/rvKteXiYTElubysM9aZqvBq/mYmFRAS0vvALihZIbJnxf0SdUWjkueFzbv8xp/COhU/fiIf4uhOjapqWb0+uEtyTsUzsWxPCjQ6/XceuutwZLSH/zgB8FuYANlKM650f7GN008n3t2dws5A/m3+rup16Ci0dpi73O5wP58vkPzfC/OuXBU6kxW12/hhJwFYX+jHH06u+gWJZw+D+9UretzW5IskTLb75po+6yc5romGstqsUzLY09SCc0F4d+Bps6OsPet1s4Bf0+e3P8mGYYUzi/s7aAaTsR3Jzri2PTNUByfeJxzE4UQJfph4cKFPP/88zidTtrb20lNTcVs7rsWcijIyMhAURSamprCpre0tPS6KIoXB/sD41H9wUYysvixioKqauLYhNDzWAzF8UmSTXx7zMm4VDc6lCE/3oFE83pXC20e/4VXqmIZtr+rLMukG5Kxum34fCodHv+NTJJsGvbvUoHRLww0udpQVY2yTn+excSkgmHf93izP+Cz3FYb3NcOq//msMQyNmz/w/HvyiQbGWfOpcJRT7PTGgy03NvhD/6cmFQ47MdgVvIk9JKODW278fh8wWBTp8/F9o79pOiSmGju+28xUn5zEnUu7o+eDwpOOeUUTjnllCHZ9lD9XXr+jZdmzWPWwkl8++u7BrUfCQlVi20djUP7+zVSvv/DwfKsBeQbsyhOKgo7Bvldv+sBfKov5tas+nQz2Stm0L63CflLPbad9XxYvZIN2kI848xMsBSQY0zH7fOGrWf12Af0d1A1lf9UfwjAufnHxbzeUHI4f3f6QxybvhHHJzJClOiDtWvXMm/ePMxmMyaTCZOp/4TqocJgMDBz5kw+//xzTjjhBABUVWXt2rVcfvnlcRvHUOIT3TcEhwiXjh2am4ZI5Br8tf3+oEsbBkkXDBQbLtIMFppdVlyqG5vPL0oEktWHE0tXWF2n11+mUmavQUJiUhzaT2bqU0jTWah01ONVfehkJZgnMW0YO2+EMjV5LBWOenbbKllsmAFAub0GgOKk4WuJGsCkGCi2FLKz8wDN7vZgrsS2jv14NB9HpU0eFS0VE3kuDnAoPig4GDINqfx51vfJNKQOy/ZFxfShjyRJzEiZ0Gt6gTE8tNWnqXg0b6/l+tquZUoO5nEZtH1VgW1PM39//lHW6SqYunQeR0yeFxQ5JCQ0tGCAZqyEthQVCASjAyFK9MF3v/tdFEVh+vTpLFq0iIULF7Jw4UIyMjL6XzkGbDYbBw4cCL6vqqpix44dZGdnk5OTw5VXXsltt93GzJkzmTNnDk8//TROp5PzzjtvSPYfb7xdacu6/vqbCwQjmGyjvxNEnbMZq9dOtiFt2FPFU7vSza1eO51dLSr7S7cfCiw6/82hzedA0zSaXG1k6lMwKYOzrA8ESZKYkJTPZmsZVc5GJiTlB1u9jhnGzh+hTE0ey3uN69ndWcnijC5RwuYXJSZZhl+UACgwZbGz8wC1zuagKBHoQDI7ZVJcxjDcDPe5OBZG44OCkpTh7NAjZImRSr4p3CnhUt3BoPKBIBt1ZB5XjDo1n86tXtz7rWx7aTXlU3aStmgcisVAuj6ZVk9H8LwVKwHnrUAgGD2MSlFC0zQefvhhLrroIrKzs4Ovc3IGdqH6+eefs379er7++mu++uornnnmGVRVZdKkSSxcuJBFixZx9tlnD3qc27Zt47LLLgu+v/vuuwG46aabuPnmm1mxYgUtLS089NBDNDY2Mn36dJ544okR23rMR5dTgpH/5E4giIZB1pOhT6HB3QYMbzvQAGkGvyjR4bXTGXRKDP/T5IBTwuZ1Yve5UNHi4tAIMDGpkM3WMvbba5mQlE+H11/nnqqLT4jU1GR/uGRABAi0RNVLurgJI4ESmlpnM3PTJgMExZlC08h7gh+J4T4XBzjcHhQMJwFJIlbbv+DQoSCkfCNTn0qLx9prmbPyjuGN+s9j2p6cZyFv0ngyNjhpX38A+54GHPubSZlbxLgjF9DKIEQJ4ZQQCEYdo1KUUFWVhx9+mOXLl5OZmRl8PVBRIiMjg5NPPpmTTz4Z8Pcw/+KLL3jqqad48cUXeemllw7qQmjx4sXs2hW5x3yASy+9lEsvvXTQ+ziU8HU5JRThlBCMcnKN6bR25UlE6tE+1KTq/e31OrqcEjpJwTjMJSPQLXx0+hx0+uxd0+LX6m9Ckj9XYr+9DvB/fr2kDHu5TIBx5jwA6rtEgCZ3O50+B1MsY1Ck+PzOBZ5q1rqag9MaXW0A5BjT4zKG4Wa4z8UBDrcHBcNJwB2mxZg9ITh0yDNlckzmLGZmj+f1im7hoTipkHavDafPTZ5pYN/5XfZKLCV5mCdmYd1UTWdpLdb1B6jY58E+w0LnEb1DgasdjWxs38MZeUeHuQ3LbTX8cNtfBv8BBQLBIcmoFCUg/ER4MCdFm83Gxo0bg09ptmzZgtFo5Pjjj2fhwoVDMdTDBpEpIThcyDFkBNPL4+OU8O8jUL5hUUzDXjIC3U4Ju9eJrStXIp5OifyuC+MmdxuaptHhtZOiS4rLZwcwyQb0khJ0aJTZ/EGf8SrdACjsEiXqnC3BaQGnRKCcYzQQj3Px4fagYDgRxRsjF0WS+c30K8nKSubNA18Gp6fokvjT7Jtx+Nysbdk2oG0Grv9kg470I8eTPC2P9q8qkOp9tH66ly932dl2ydHMnDkr+Pt91aZ7AX/+SUnyOLK68k/+XP4SLtUzFB9VIBAcQoxaUWIoOP/889m1axdZWVksWrSI0047jV/+8peUlJTE7aJ3NBEIJtIJUUIwyskLuRlM08VBlOhySrS4rXg0L8m69GHfJ3RnSnT6HMEb83hkWQQIHNt2jw2n6sar+UiJo1NDkiRSdBbavZ1omsZ+h9+xMTEOQZ8BCkzd5RvgF+Eb3W2k6JIwxyHbIx6Ic/HI47yCZfy5/CUuLDoh0UMRHAShD5GMigGDrA/+1x8L0qZi97nY2VnRa54u1UTWSSUsZzovvvkyHY1t/Oc/z1FYOIZTTjmV4uIpwWXv3vU0Khq/m34NC9NL8HYJHAFUTeWVmk9YlD6NiZYC3qj7jDXNW/jt9GswyIO7zdE0jQpHHWNMuSIHTSCIE0KU6INdu3ah0+mYN28e8+fPZ8GCBeIi6CDodkqIH3jB6CbUNh8Pp0RqV6ZE4MY0Xm6FYKaEz9kdsBlHp0SgNKbN04nV67f/psZRlABI0Zlp8Vix+1y0uv0lO9ldbWHjQYY+BYOkC5ZvtHttuFQPY0zxybSIB+JcPPI4PW8xR2fOIF2fkuihCA4CXcj1WmhZXCyiRLo+GbWHgNCTojFjyTtjFrp6N0kH0ti6bzs1/6xiwoSJONPaMBamoXb9M/+4aSML00uC15IBVjdv5skDb/LkgTf56ZRLeHjfSgA2tu8OBhAPlI+bN3Hvnuc4OWcRP5588aC20ReBjlECgaAbIUr0wfr164N20XfffZcHHngAvV7PggULWLRoEUcccQTz5s1L9DBHDD7hlBAcJoTa5uOTKREuSlji5FawKF3dN7yOkIDN+IkSgUBLq9dGR5coEk+nROj+Orz2oDCSHoe/eQBZksk3ZXHAUU+n1xHMkxhNpRviXDwyEYLEyCfMKREmSvR/+6CXdWHihVk24lBdvZZJ1plx5it8nNuEI9vBWfXj2b9/H0012zHkpZA6fyzGorTgOmqPkMtAphDAvXueC75+oeoDSpLHDerBwGfNWwF4r3H9kIsSm9v38tPtj3DzxPM5I/+YId22QDCSEaJEH5jNZo455hiOOcb/o+HxeFi7di2PP/44DzzwAJIksWPHjgSPcuQQrCkUTgnBKCdclBh+p0R6wCnhiq9TQicrGGV9mFMinqKATlZIVsy0e2zB8pF4ixIBYaTDa6fdYwubFi8KTJkccNRT62wO5knkjCJRQpyLBYLEEOpsNSndAoMxBqeEXtKFiRfJOjMOd7gooZMUTIoRq9eOJEkkTczivLMu4eONa9C9vh53fQdNq7ajz0mmaXkRWrGGr0dOXOC3vyc7Oiv41Y4nuW/mDRiV/scbynCasP5T/SEAf9n3qhAlBIIQhCjRDy0tLaxfvz74365du1BVlSlTpoigywEiMiUEhwu5Ifb99DhkSgTKNwJhh/F0KyQrZlo9ncELw4B7Il6k6S1UO5to6nIIxFuUSA5xSrQHSkji6JQAKDD6W3/WuZppcrcD/g4wowlxLhYI4k+oUyK0fEMfg1PC0MMpEUk8iNQtaZe9kpf168k7fy6OihY6Nlbhaexk8//W8PAehZasKrSxeiTFP7Z2T2fUMey2VXLOVz/nvIKlfG/CwXfoGQpkUXYmEEREiBJ9cOqpp3LgwAEURWH69OksXryYG2+8kYULF5Kenp7o4Y04RKaE4HAhRZeEUdbjUj1xcUoESkQ8mheIb9ikRWem2WMN3gzHsyUo+J0o1c4mqpyNAKTo458pAV3lGx4bElLchZFAF5JaZzOtXRfoo6l8Q5yLBYLEEJopEeqOiMkpIevClkvWmXG63eHbl3WYlXBR4utWfwccSZJImpCFeXwmzspWajdW8d7uz6hxNuIyaSTPKPB38fD0bifak5W1qwckSkjD2D9GRjyYEwgiMSpFCUmSKCwsxGAwhL0eKGeccUawVtVsjt9F/mhFZEoIDhckSWKsOZcKez0ZcairTjOEP5mPp1Mi4Iyod/ldGilx3DdAWlepRJWjS5SId/mGvjvXwuq1kaIzx73tcXcHjhY6utwauXEM2xxuxLlYIEgMYU4Jpf+gS72k4Om61vOXb3Qvd8fUy3m26l3KbTU0e6xAV/lGD6fEurbwUixJkjCPy8Q0NgNrXQdJ21Uc+2qwrqugY1MVhllWvFOT0KXE16U3WGRxDSwQRGRUihKyLPPhhx8G34e+Hgjf//73h2pIAoRTQnB48bMpl9Lu6RxwLetgMCtGdJISLJGyxLN8o2tf9V1ZBvEK2QwQcKJUORqARHTf8O+v0dWOS/UkxKFQYOwSJVzN2L1OYHRlSohzsUCQGJQwp0RI+YYU+fbBKBvwdIUe+4Muu5ebmjyW306/mp+U/i0oSuglJUzsAIKiRk8kScJYkAoFqeS15dFZWottdwM1m8twb/JiHp+JZXoexsK0g+7MM6xOCVG+IRBEZFSKEkNJZWUlTzzxBBs2bKCtrY309HQWLlzIVVddxdixYxM9vBFFtyghVGLB6GeMOYcx5vi0ZZQkf8lAq8ffkjKe5RtJXU6JJlegfCPeooTfqVDjbAIS0X3D/3mru8pH4h1yCZBvysIkGyi1lqOTdOglhYw4lA3FE3EuFgjiTzSnRLTyDb2sgy5NoWemREAoMEjd03Sygkk2Dnhc+nQzGcdOInXBWGw76vDuqMOxvxnH/mZ06WYs0/OxTM5BNh56tzmifEMgiMyh96/1EGLbtm1cdtllGI1Gjj/+eLKzs2lqauLdd9/ljTfe4JlnnmHmzJmJHuaIIfAUVzglBIKhJ0yUSIBTQkXtGkd8RYmACBB4upao7hvVXeUjaQkQJQyyjgsKl/Fc1Xt4NB8FxqxRZREW52KBIDFEy5SI1hJUDnEY6CVdRPEidF2dpAtzYAwUxawndcFYUuYW4djfQuf2Otz1VtrX7sP2dRXGSZlYpudjyIr/73I0DvbBnFf1oUgyr9WtwSjrOT3vqCEamUCQWIQo0Qf33nsvM2bM4PHHHw+rY3U4HFx77bXce++9PPPMMwkc4cgi4JQQmRICwdCTqk8Cv2s2vkGXId02dJJyUBeYg6FnkGi8nQoBEaS6y6mRFufOGwG+WXg8b9d/SYvHOuo6b4hzsUCQGEJvoA1hokRkp0Ro2YRe1hGpEiN0Xb2k9Aq6HAySIpNUnE1ScTbuZhv5FQrufa3s3LkP28569DnJfKV8yezZc2LKpTlUyzc8qpdzv/oFs1ImstlaBiBECcGoQdwd9sHWrVu5+uqre/2Amc1mvvvd77Jly5YEjWxk4gs6JcTXTiAYakIdAvHMlAjdl0UxHXQt70BJ7yFCxNupETjugc4n8W4HGsCkGLls7KkAjDHnJmQMw4U4FwsEiSH0ei3U9aCXdZyeexRTLeGlU6EOLb2kCz6MCkUvd7svdHLvTImDxZBlYczxM1lx3cWkHz0RXXoSnsZO3nhjJffe+ztefPHflJXtQdO0Xuvu6Kig2d2Ot+v3PBSP6mWbtTx4LTsQOr0O2ro6I8VavlHnbEHtcfzaPJ34NDUoSAgEownhlOgDo9FIW1tbxHnt7e0YjQOvgzucEUGXAsHwESpKxLV8I8QpEe92oBDulNAnwKnRs1wkTZe4LIdTc48kw5BCSfK4hI1hOBDnYoEgMYRer/V0R9xS/A3WtpRy566nupcn1Fmhi3gDrw/NlJB0vbpvDAUu1U2KOZnkmQVYZuTjbuxkoXYEW7duYevWzWzdupm0tHQWLFjIvHkLyMzMos7Zwg+3/QWDpGNu2uRe2/zHgTdZWfspV4w7nZuzzx3QeC75+i5cqoc3j7o3JqfEFy2l/GbXU5yeu5hbir8ZnO6NcDw1TYv7wwCBYDgYFY+sP//885iW83g8/OhHP4p5u8cffzz3338/69evD5u+fv16HnjgAZYvXz6gcR7ueIVTQiAYNsKcEkr8WqMlhQgg8XYpQHi5RIrOEveLM6OsD0uiT5RTAvzW6cUZM0gfZSGX4lwsECQGXQ/nQ0963mCHvlckBTWCGyE0UyJS942hwOlzB50dkiRhzE3h9LPO5qc//SUXXHAhEyZMoq2tlQ8//IA//ek+Hn30Yd799D18djduzYtH7e2UeLv+SwDWNA/MmeX0uXGpHgDsPhdSyK3Xhrbd2LyOXut80rzZv8+GL3ttqyeR3CgCwUhkVDglrr/+eh566CGWLVsWdRm73c6NN97IunXrYt7uz372M2644QYuvfRSsrKyyMrKoqWlhebmZubPn89Pf/rToRj+YUN3poRwSggEQ02gFaZR1vsT0ONEqFMi3u1AITxDIhGiSKDzSUtXi7u0BLhFRjviXCwQJIZwp0QEUaJH9kJoFoMsSRFvmMOCLmUlqnt2QdpUNrTvHvCYAZyqG2MPscOhOkk3pFA8cxprUvexefwuMithbmseVVWV1OzdRG3rdoyFaVTPllFzvcgGv9tDkRTcXUJFz/OrW/Vwz+5nOSlnIUuy5vQayz57bfC1zevApXYLC7/Y8RizUyZx36wbeqzVW8wJfK6euFQPOllcVwtGPqNClDjppJO46aab+NOf/sRJJ53Ua35LSwvXXHMNZWVl/PWvf+13e06nk08++YTq6mq+9a1vcemll7J//34aGxvJyclh7ty5LFmyZDg+yqhGOCUEguEj4JSId/eJ0EyJeLcDBX+bOqOsx6V64v7ZA6SGihKjzKWQSMS5WCBILDo5ctBlgJ5dfkLfy0gszZ7LizUfclbeMcHpYc4ynSVitgPA4owZgxYlrhl/dq9ciDaPjXR9Cn/Y8xxft+8Ci0T9NJg4/iiUqgOY9jaw7vM9uKrbKG/YRLtqxzw2g6/NG5g7fU6ww5Shh2NkdfNmvmgt5YvWUlYdfX+vsey1VQVf/2z7o9S5WsLmb+0oB+A/1R+yu7OSX079TtTP5fC5ek1zqx4sxM8dKRAMF6NClLj//vv55S9/yQ9+8AP++Mc/smLFiuC8qqoqrrrqKtra2njqqaeYP39+n9uqrKzkiiuuoLq6OjgtOTmZP/3pTxx33HHD9hkOB1SRKSEQDBspev8NeTxLN3ruLxFOBfALAQ2u1rh33ggQKoYkagyjDXEuFggSj0w/Tok+RAlJkplsKeKVI+4mSenOfVFCnupnG9LQQlwBOknBq/mQkAbVqW1B2lTunPZd9LKOtS2lYfOu23w/j8+7zS9IhPBoxesArDjqKArGL8RV246zrBlpvxPH/mZeevHfvGV4jSZpJ+YJmTB7Qtj6gdKMaOzoqAi+7ilIBFA1lacOvAVAk7udKDpNmMsigFvre//DQYW9jjHmXPGQUTCkjIpvkyRJ3HPPPXzzm9/kJz/5Cf/9738B2LlzJ9/61rdwuVw899xz/QoSAPfddx+yLPPcc8+xefNm3nzzTaZPn85vfvOb4f0QhwHCKSEQDB+BG+N4h02GlmzEs+tHKGldQkAigjYhXJRIVEvQ0YY4FwsEiadfp0SP8o3Q94HXFl14V6ZWtzX4WpKkMFEicH2ok2TkQT7ACpRXGCOM98mKN6Ou927DOiRZwlSUTvrSYgovWUTWSdOYNnsWer0e54EWWlfvZcNT7/K3v/2NL774HKu1nagKAv4Qys3te/sd8357XfB1p9cRdkxCcUTIlHBHyL8YTja07eZ7m+/nwbIX47pfwehnVDglAvz617/GaDTyi1/8gl27dvHSSy+Rm5vLP/7xD/Lz82PaxsaNG/nZz37GwoULASguLuauu+5ixYoVNDQ0kJs7ulqtxRORKSEQDB+ZhlSAuIccJutCum8kIFMCuj9zopwaAZeKYZiS5A9HxLlYIEg8YZkSUu+b/J4PmUKDLqOFDje628PeT0seD8AUyxiqnU2AB0VSDvoBVqQAzd2dlVGX79nZQlJkzBMyOXnuGRQZs3nv1UocFS0o9RJ79uxhy5btvPHGa7SleGi3VGEem9GrE0aNs4lmj7XnrsKwKCZKO/YF33d47VGXjZYpMRD+Wv4q45PyOCv/2AGtF2BLVzvS9xrX8+PJFw9qGwJBJEaVKAH+QCyj0chjjz3G3LlzefTRR0lLS4t5/cbGRsaODe+7PG7cODRNo6mpSVwIHQTeYPmGcEoIBEPNeHMet0z6BjNTJsZ1v0bZgCLJ+DQ1YU6FgDshUZ0vAk6JVH38u3+MVsS5WCBIPGHdNyKEKfYq30AOZvwUGLMibvPbY05id2clP+hqdTk9ZTwPz/khhaZsLt/wu679RhYlflNyJY3uNh7et7LfsUdySrT0IxBEwqV6UCUN05h0TGPSydVn0O5MYnpjFs3ltZRXl9LRXknHhkru3f47pk4tYerUaRRNHMcnrZv73X6yzkxziHukI0I3Dk3TUFGjZkrESqu7g//V+zsWRhIl6l0tPLrvdb4z9lQmWgoibiPHmB62vQxDSsz7Fwj6YlSIEkcddVSvC0FN0ygrK+O0007rtfzatWvjNTRBCGqXCi2cEgLB0CNJEqfnHZWQ/VoUE1avPWFOhUCOQ6KCLgP7FSGXAoFgNBFaQtFTgIAI5RuSzNMLfkmjq418U2bEbZYkj+Pfi34dNq3YUgR0OzMUSY64vyMypqNIclRRIrT7hzHEtXbb5G/zx73PR1ynP6xeG9YQ90KDp5UGpZWKse1cfeyZGKvGs3/dazgqW7Hb7Wzc+DUbN37NmpatWDNUTGPTMRalo89MiihaJ+uSwtwOHV57r/KNO3Y+QbmtltPzFvdaP5Io0ehq465d/+Q7Y0/lyIzpwen9tQ99bP8bfN66jT22Kv618PaIy4S2S91nrxWihGDIGBWixCWXXDKkT6euvvpqFKX3jfMVV1zRa7oQOGIn4JSIdKIRCAQjF4tixuq1JyxT4pjM2ezoqGBe2uSE7D/QjjVNhFwOKeJcLBAklv7CJnsHXUqk65MHXUYYcEf0LN9YkDaVS8eeEtVpK+HPpjCHBGqGOiWOyJiGQdLh1gaev7CxfQ85hvRe09s8ndxf9gIAKXOKSJlTxM/n3cHevXvYvXsnr320FrXWg6u2HbNSh0uvYixMw1iYhqkwDV2qv/QxSTaGBVh2RijfWN/mD+esjxCUGSpo2H1O/lP9IeW2GvbYqvjVzifDOoJEy6roue9Gd1vUZUJFiaYepTgCwcEwKkSJm2++eci2ddNNNw3ZtgTh+AJOCdFPWSAYVVh0JnAlLlNiVupE/jR76M4DAyVYviFEiSFDnIsFgsTTX7ltT1FCOcj8/ICTVpaksG1NthQxI2VC8P281MlssnYHSD4w60aerXyX7004OzgtNN/HKOtJ0plwezpjHsvc1GI2W8v4qnU7J2QviGkds9nM7NlzKJk5nccKvsTTZMNZ3UZWs559B/bhKG/CUd4EgJJqwlSYRuMUA+kTu8+dHV47akh4pjMk3PKr1h299hkqEty75zm+jLBMcNkIokyru4Pf7PoHJ2YvDHOXPLb/dU7NPZLxSfm4VQ/f3/oQ+cZMdnZ2dxOJVZTwaSqKJKNpGnft+ifjk/K5YtzpMa07UlE1lWa3NazcRdA3o0KUGErEhdDwEcyUGB1NXwQCQRe5xgzKbbVkG2LP7xlNTLYUkayYmZ02KdFDGTWIc7FAkHj6a+Heu3xjaFzLElKYINKz7Pd3M67l97ufZU3LFgCmJ4/nnhnXhi1jVLqdEnpJh1k20kZsooRe0nHvzOv51vo7qXY29QrB7I8Kez2SJGHIScaQk8zynCNx1azFXd+Bs7oNV3U7nhYbNquTvWV2apRtNJhsGPNT2TU9DymvO0A61LVgjeCiCHVKBBwV0fCq4Z/jP9UfBluR7uqs5LisOcF5r9au5n91n/P6UX+gtGM/++217LfXhq3fHCJK/LvqfbZYy/j7cT/ErXrQdd1ivtuwjv8r+w/3z7yR8Ul5rG0tZW1r6aBEie0d+9lqLefCwuVIkkS5rYZXa1dz9fgzqXe2MDl5TPB7s7l9Ly/XfMxtk78dDKOOJ38uf5l3Gr7i7unXsCi9JO77H4kIUUIQN4RTQiAYnXx/0jf4VlHbYVtbmm/K4sUj7hSlaQKBYFSh9tHuEiKVbwzNb6CGFratQJvPAIokBztOQeROH3pJFzY/KaS047yCpaxt2UZdVznETRPPp8HVxo6O/WztKGdcUh7g7+zU6unA6rENaPyb2veEvS8wZSLrlWBYJsBfp97Md1f9mrQmGbXejre+CW+bg4371+DRvLTo7RjzU/nEuRqP04EuzRTxc4a2BO0vM6KnUyIgSASQeohMgXIXLcr3INQp8XTlKgAuX/17dlkreW7hHWQZ0vi/sv8A8HzVe/x8yqV9jq8/frTtr4DfKVOSMo5bSx/G7nPxfuP64DIXFi7nu+PP4KfbH/Hvt/r9MAdNgI8aN+BD5aScRTHte23LNgpMWTxY9jIFpix+OuXbfS7/TsNXAHzWvEWIEjEiRAlB3JieMp5UYxJ6SddXW2eBQDDCOJga4tGCECQEAsFoQ+3nJrdneUfPm9qDoS+nRKR996TnDXyS0u0+uLjoRL434Wy2WffxYdPXnJSzCJNioN7Vwj8PrOI7Y08BusOL+2vrGSDQEnR1c3jXjXxT704kRen5JE3KpmBmLun6FNx1O3DVWcm0WmitbsRX14Z9byPvNP2P+rbdSEYdhpxkjLkpGHJTMOQkIxt1waDL/v5W0Nsp0ZPOCJ0/IHLZB3SLEnafMzhtl9XfdnVj+15OylkYnH7AUc+PSv/a7xijEdp5xKG6uvbbuxvJizUf8d3xZwTfhwpKqqYGz9X3dgWfxiJKNLrauHPXP4Pvd3ZW9CtKBAh8T7dZy8kxpZPF4X2t1BdClBDEjZ9M+RaZmRZaWmxRVVeBQCAQCAQCQeLx0feNbs/yjaFs+a704ZSItO9I/LrkiuBNaGgIZiCceFbqRGaldrfRzjNmht1spuv8N5Cv1HwS05i9mg9N09hjqyLbkBa8ac+IINoHhBavpuJS3ShJBpImZZOVVEiWNBmtpQJXfQdF3kmUltbibrLhqmrDVdXWvY00M48U1ZN7rIScnYTmU5GU6GJOT3Eh0L41QI2zKeLnsnudEac3ulrRNI0D9voIny/8u3AwoZh2n5Pzv+ruBtI+AOdKIER0U/sefrb9UaZYxoR1KtM0ja3WcorM2WRFKUHtiFA288c9z+NWvdxeclmf+5clmSZXO7eW/g2Ar4sejXnshxtClBDElaHskiIQCAQCgUAgGB76e/oeqfvGUNAzU0If0SnRfynw0Zmzgq9DO0/Eei2apveHFx9w9L7pjoRb9QZv/DP0KZxXsBTQgplqoQRFCdWLyxfeEtSoGJCNOszjMsjNmULupFY0n4qnxc5J0kz+u+19XA0deNsdVLaX8UjNk/g0H9WdZegzktBnWTBkW9BnWtjXXs3ENH/LVU+PbIxkxRwmStRF6O4B0OmL7KCweu1ct/l+Ts49IurnGwhftJSSa8xgkqUwOO3L1u1hLgmA9n4CS0O/t4HP93jF/wDYY6tiT/nLwfm7bZXctv3vZOhTerWq7YsPmzZEnN7m6aTcVhN8r0hyVLFHEI4QJQQCgUAgEAgEAkEY/WUU9BQhQnMcDhY5JBRdF8kpMUABJFCaMJASk4GWJXo0D46ubhkmxcAFhcsA2NVxoNeykiShk5Qup4T/xtksG+nwOiDks7V2lY5IiowhJ5kL55zP6mx/Bwyf04O7sZMp8ix27t+NvE/B09SJp6kTe1fm5Vn/u5BrZp9PQUEh7clenPY29FkWnjmwKuayFFsEp8S05HHs7DxAhaM+ipNkYH8ffxeQpwCCbUy3Wsv49c5/9Fp2n72uz+9mqIgRKG+JJGxBdzhoq6cj6vbcIcJNT0JLQgBu3fYwVc7G4HsZGVsUUUcQjhAlBAKBQCAQCAQCQRj9OiVChINkxczV488asn2HOyV6364MNL8iYMFP0cXeujpVP7A2z1dtvJc/zLgOICxYc2ryWG6YcC4Af9v/3+B0RZLxal5Q/c6CdH0yta5mFG/3Z28JuVmelzqZ4qRuF4Fi0mMem8FRk5dSNxUKOpPw2dx4mm14mm24u/5f31hPU1MjNc5mmlq2A3C/eRP69CR0mUno081+h0VGErIx/FhrmhbRKTHZUsTOzt5iS4BoORShqJpKu8dGhiEl4j6qHI1h70/JOZJ3G7/i7YYvKDBlRt1uh9feJfj4cHUFgUZzbkQqPQnFp/ko7dgfdb5b9WJSuluphgoSAC0eK60DaEV7OCNECYFAIBAIBIIhoLy8nF/84hd0dnZiMBj4xS9+waJFsaW7CwSHGv07Jbpvnv8y5wfk93GjOFBCyzMidW0LLceIhcBnydDH3iWq5xPyJMUYMVwxgM3nDN6UmuRuUUKSJM4uWEKZrTpseb2kw+FzoeLEKBtI1pnBFV4uEVjnb3N+xBhzLpIkccfUy/nt7qeDy3hULw6fy+++SDaiSzZiHt/9t7hu2g/xtHTy9o7VbNlSj6fVjrfdiau2HVdtO5MsRZTbygGQLQb06X6BQpduZlfuLlpsLcEQzwCn5B7J/+rXAmD19s546MtdAH5B4pnKd3ih+gPun3kjyTpTr2V6Ck9z04p5t9Hf1eL5qvejbrvD68Ao6/H6fMFMiUi5JACfNG/qc5xPVLzJytrVUed7VC8e1cuqhi85LXdxr/kfNW3ko6aNfe5D4EeIEgKBQCAQCARDgNFo5J577mHSpEmUlZVxww038M477yR6WALBoFD7CbpUQm5ShypPonvbfWdKDFSUuHXyxfy5/GVui7FrAsDi9Bk8yuvB99mGNA44Gvpcx9ZVJhLqlAjQ0/GhSHIw58Eo60npCuCMRJ4xE0PXjfWxWbN5ffHvOfvLnwPgUT19iiVeg0Zx8RSmpVrJytoBgOZT8XY48bTYOc58BLXbV/nFCqsTl60NV3UbAI/vfpStHeXUelvQpZrQpZnRpZmo1e3jQsPRvNDxKRh73066+hElvJrKC9UfAPBuw1eckXd0r2V6ZpZMCnGJTE0eyxZrWcRtd3jtGGQ9Np8Tt+rhrfov2NijTWtPzLKRl6o/osicwzEhWST/q/usz/Vcqoe/7HuZL1t3UG6v7XNZQd8IUWIUs3XrVm6/vTutds+ePbzyyitMnz49gaMSCAQCgWB0UlRUFHw9adIkOjo6ej1hFAhGCtOSxwMwxTIm4vzQ8o3Q10NBqMgRqXxjoF3cZqZO5LF5PxnQOoXmbL4z5hT+VfUuAFkxiBKBbAJTBFGiZ3eS0Kf3dp+zT1HCHFIiAGCQ9Vw/4Vz+vv+/uDW/U0IvKb3CLKG7dMWjdpdUSIrsd0SkJ3H01OP4oGAf4BcrPG0OvG0OPO0OJqVOZXdZA9S1BMtCAN6seY1aVzM1Xe1KdakmdMlGlC6nRoW3jHppMqrHh6zvLSp5Q8o7TIoBZ5ejIZSeokSuMSP4Ot+YyRYiixKdXntQwHGpHh4KCbaMhkv18OSBN4HuTAvov0zIrXnY1L4XgAP2un73I4iOECVGMbNnz+a1114DoLq6mu985ztCkBAIBALBYcu6det48skn2bZtG42NjTzyyCMsX748bJnnnnuOJ598ksbGRqZPn87tt9/OnDlzBryvDz74gOnTpwtBQjBiWZI1m3umX0tJ8tiI80NvGoeiHWio+6G/8g11gE6JwWIJyaCIpfSjrSs/IJJTwtxjWugxc6mePkWJnjfoQNiNt1N1h7UhDaW9q7zCGyXnIXRckiJjyLJgyPLnaSydeQq79rtxd+ajOjx4rU687Q6W5h/PVxWb2bqnCq/ViaexE09jd3bCJ9tW0ZCynZqaL5FNepQUv1ihWIwoFgOrlc9w1VlRkgw0pbbiTI8gSoQIAgZJh0VnYlnWPD5p3oRPU5GRwr4HgXmrGr6i3tUK0KtzRzSiuYJkSaavr5pb9QRdIb44fSdHK0KUOExYtWoVp556aqKHIRAIBAJBwrDb7ZSUlHD++edz880395r/1ltv8fvf/54777yTuXPn8vTTT3P11VezatUqMjP9NdrnnHNOxG2/+uqrKIr/5qm6upr77ruPxx57bPg+jEAwzEiSxIL0qVHny2HlG0PrlFBCu28MgVNisISWjhSZsrl07Mk8W/le1OVb3V1OCdnQa16mIZUbJpxLkTkH6P0Uvi9RIuLYukSJDo/fCWFRTLRJnXh7uCXKbTWMNeXiUXu7KKC3WBJKvasVh+rPq1CSDChJBoz5qZx+1AqyWyfx1a42NE3zCxadLnwdLrwdTsYYiilWJqCzrcPb6ULtIVq8sPt5Glv9pSQvsoHt2Z9Qp1ajJBl4te4lXEaNZrkTe3MTitmA0ZKCzWbjnPwlfNK8Ca/mQ5Zk1JDPmmlIBWBD++7gNJuvd+eQgdDf99od4j7xqv2HewqiI0SJBBLPJzarVq3ijjvuGKqhCwQCgUAw4li2bBnLli2LOv+pp57ioosu4oILLgDgzjvv5OOPP2blypVcddVVAEEHYjQ6Ozu54YYbuOOOOxg/fvygxyrLB+ewCKx/sNsZjYhj0zexHh+dFu5mONjjGXqTrlO6t21UdL23HfJ2OP+OOkUX9vqScSfxeds2yjsi5we0ef2ihEVnijiuc4uOC77uKR6k6rtFieOy5pBlSOO/tZ8CkT+jUdEDYPX5nRBJOhOGroDHUF6o/oAXqj/goqITIo7ZEhIy2TPMs9LREHQCjDHnBDti6BUdZp1feAkIFpbkZJy5fsfDjMIj+O7Ec3jhsx3dokWHE5/Njc/uZkrKTErLG/HZ3fhsbra1loFPxdti5/n2V9nZUYFJMeLsGkuHYuQPa+6mzdtJTccWvsysp4EWNKOCbNYjGxRMU22ktPpoUNuRjAqyQYdsUJCNOiS9ErNr7ZH9r3H1hDMxyLqw3JRIhHYZ6fn3jIb43YmMECUSSDyf2LS0tAxKzBAIBAKB4HDA7XZTWlrK9ddfH5wmyzLHHHMMmzZtimkbPp+PW265hQsvvJAlS5YMeiw6nUxWVvKg1w8lI2NgbQ0PJ8Sx6Zv+jo/b1x1mmJ2VQoo+9nabkZAVKfj/rMzu7392RgpZaeH/Hoy13bcwQ/VvJRLp9m6hINViIiPDglHWB6f9YMY3eHB7d2ZBe5dAkJOW2u+4fD1KBsZkZMF+/+vs5FTSQlqSRtpWlsdfTmLH7wZINSYh9e6sGaTO19xr2lVTV1CY3Z3VkGNKp8JWH7aOR/NiVPTce+S1XPLJ74LjyZPSw7aVbkymztECgKTvHnOoyyLAp9SQNb7bhaNpGprbh8/mpsnuJsM+GZ/Dg87pQXV4SNfMTC6awIGWWtRmH/a2dlwOK74Q98felk3M16XwxoGtQfdIEElCCggUOhlZp/iFCp3sf69XkHQKkl7mGd0LPKt7kVvmfhN7eRN21YkkS0iyjKTIIEv+94qMw2nF2+lCkiXcmhOfy+MXPyT/PgOfHwkMOv/3RvzuREaIEgkkHk9sAN55550hKd0QT22GD3FsItPzuIjj0xtxbKIjjk10xLHpTWtrKz6fj+zs7LDpWVlZVFRUxLSN1atX88UXX9DU1MSLL74IwL/+9S9SU1MHNBavV8Vq7ePuIgZkWSIjw0Jrqw1VFbXOoYhj0zexHh9fyJPh9lY7biW2J8VRt+fz70tTwdrWbbu3Wd00ezvDlrU7ujMImpvD5w0lTlu38OK0e2lttWEMCZ1ckXE0D0srgwGTzU4rAD5H/+MKFXUuG3sqBnf3dvVePTq63SKRtuXs9K/fZPfvU6fqsHmjlyvsaq0Me//aUfdgVoxYrd0tPdOVZCroFiXK2mtweF0YZD1Oa7croLm5E6ctvFzhyPTpvO7wd6uwOuw0NXVEHUuA+WlT2Ni+B0mSkIw6ZKMOfWbvMpZJlkKunHcdlfYG1mzoYF7SJLY3ltFp60R1elHdXo6feDKyF75Kr8NnbUB1e1Fd/nma24fq8uKz9j4+OlkXsfTij+seQtVUXL7eeRcBHvn4r9S1lALQGuLsiIQxzYLnNA+dne5B/+6kpprRRwgOHQ0IUeIQZSie2AQYitIN8dQmPohj041er/T6zonjEx1xbKIjjk10xLHpn4F0z1i+fDmlpaVDst+hullWVU3ceEdBHJu+6e/4hMU6qBKqdLDHskuU0DQkrfvfnILSaxxqyM6H828Y2lVEQUZVNSpt/g4cEhKqqnHjxPN5sPwlgGAXCaNs6HdcgW4YUyxj+PaYkzlg7xYDLIqZ03KPYk3zNs4pWBJxW7qu2zhrV7hmzw4dPalztYS9N0r+MRql7vUy9OECaoOzFa/mI1lnxiB1O0RUVQt7LyNx9fgzkfTw2oHPcPk8uHz9ZywUmrL7bdcJ3cdeQUaSJDS97L/JT+7++xx95BKSFBOvZ+/A2RlZSNZUDc3rQ/OoqF4fmlclVTPR5uxA9fj887wqmsfHGF02LU4rHW4bmk9FUzVQta7XKqganSYJgzEVfBoKCnpV7/+HoXUFt2oE3xvSk1AURfzuREGIEocoQ/HEBqCmpoaWlhZmz559UOMRT22GF3FseuPx+IJPBsTxiY44NtERxyY6Q3VsRtNTm4yMDBRFoampKWx6S0tLr3OxQCAIDwGUh7jLTGhnCp3U+zdG0yJ3SxhqQvcdGFPgc59b4C/ROi1vMQ7VxaP7Xw8ua44QdNmTQAaBoascJBDUCJCsM5OsM/Pg7N7l3QEC3TcC3TXMcvTAyr4IbU2aaejuMKKXdLi7MhOMsr7X38EY8hmNsgGTYuDiicv9ooTqwa166I9IXUoiEcgbCYSeRspvCLSODf08vbYjS0gGHRgI+lBSDek43b2/Y7mWMShuK4rHGnV7bUAus4Jj1NCQkSN280hSjMjy0AbCjiaEKDHCGGi/88LCQt5///0h2bd4ajP8iGMTTq8nI+L4REUcm+iIYxMdcWy6MRgMzJw5k88//5wTTvAHwqmqytq1a7n88ssTPDqB4NBmqLtvhDoUIt1kanFqvxguSvhf/37h1azat57LxnaXRicr4XkafXW0CBBoZxno8GFRugMnU5T+8zn0IS1B/fs09bV4TIQKI2bFgMfrFyUMsj7YHaQ4qRAI7zASCN0MlLa4YxYlYhtzQPQKtId1+dy41PCyisDfSh+hW0tf6KKIGO1eW0yfIUDgO1loyqLK2dhrfuh3WtAbIUocoognNgKBQCAQDC02m40DBw4E31dVVbFjxw6ys7PJycnhyiuv5LbbbmPmzJnMmTOHp59+GqfTyXnnnZfAUQsEhz4yQ+eUkAh3SugjOCXUOIkSSgSnxPysKYyjIEzQNfUonUjVxV4aFxAXQh86GvspxYBuh0WA/so3YiEtZNwm2YAVf2CkUTagkxVeX/z74DExKd37D4R/BsQJt+qN6YY+FvEGup0Sge9Cmb0mbL5e0gWPn6EPp8SJ2Qv5oOnrsGm6KIJag6s1prH1pMicHVGUEPSNkGwOUUKf2AQIPLGZN29e4gYmEAgEAsEIZdu2bZx77rmce+65ANx9992ce+65vPDCCwCsWLGCn/3sZzz00EOcc8457NixgyeeeCLY8UogEERmIC7e/tDoWb4RwSmhJc4pEQlTj3KNgKtgoPsIEMvn6ynWmBUjR2XMjHm/kQh1W+jlUNHB/zcwyPrg3yb0eAQ+f6Cko7RjHw+Vv9Lv/oyyISYHQeD7Fem74B9r91hCxZpz8pdwdMgxiSTcRNpmun7wOXpjzXkRp0cq6RB0I5wSCUQ8sREIBAKBIH4sXryYXbt29bnMpZdeyqWXXhqnEQkEgkiEiRJy75v2OanFvN3wJfPSpgzrOEL3He2JOoTnKyQr5ohjjmUfN0w4lw+avo7pc+l7OCWSFBN3lFxOp9fBRet/HfP+AY7JnMUXLduZbCkMTgv9Gxj7ycgIzA91T2xo393vfg2yDr2s4FLDb9iz9Kk0R8hyiHZcfSEZI6ECxfUTz+Xt+i9Y2+oPIJYjCECRRKGBlG305Mj06QC8XPNx2HQ1TkLaSEWIEglk27ZtXHbZZcH3d999NwA33XQTN998MytWrKClpYWHHnqIxsZGpk+fLp7YCAQCgUAgEAhGLRLhGRVKBDHg+Oz55BjTmWwpGtaxKGFhnn04JUKewKfqB9bVKDQD4eyCJZzdFaDZHz3LFFJ0ZhRJJm2A+we4Y+rl+DQVt9Z9Mx762XuWivQk8PcyKH0v1xO9rEMv6XARLgJkGsJFiUD5RqTvAnTnakDvTInQsUcKSI20TXuP1p53Tvsuv975j4j7ztCn0Orpbn9qVoycV7C0tyghnBJ9IkSJBCKe2AgEAoFAIBAIBN0lAP3dAIPfzj8rddJwDynsBrcvp0Ro+cZA8iT82x3c7VjPm29LDOGY0ZAkCZ2kENrVNdwpEflvUmwposxWTaY+JbjO8uz5fNS0MbhMkSmbYzNn82LNR73WN0g6v/uhRzONLEMae2xV3eMbwGfJM2aGjT907L4QYWB59nxOyT2Spw+83e82+yrHyTSkhokSJsUQOQdFOCX6RIgSAoFAIBAIBAKBYMA8Me+nqEPUnvPnUy/lL+WvctPE84dke0OB0o9jI0CoUyJNH1ueRI4hnUZ3G+OTImcQ9EfPriTJusGLEgEUSeGsvGPIMqSxtnVbcLoxigPigZk38FHTJmalTgxO+3nJpSzLmsdvdj0FwDcKj+f0vKMiihIBp0RPskK6gMDAMkvOK1hKu7eTk3OOAMJFrlBh4KdTLgHgKe2tXtu4Z/q1/G3fSqqcjXxnzCkRSzwCZOpTKAt5b+oKBe2JECX6RogSAoFAIBAIBAKBYMCMMecM2bYmJBXwwKwbg+8z9Cl9dlKIB7EGXWYZ0oKvzXJsbS7vn3UDnzVv4+z8Ywc1NkWS0UkKXs1vM4j0ND9Dn4JH9fLHmdfjVN38YfezNLjb+tzujZP8otBXbTuC06I5JUyKkdPzFvferyEl+Dqzh8AQikHWRbzh77mONACvhFHR870J53S/DxMlegtokdrLLkifyhPzfxp8v89WG3V/Y8y5rGvbGXxvUgwR3S+ifKNvhCghEAgEAoFAIBAIDimeXXg7AzPuDz2RWoJGXq57Xp2rJaZt5xkzOb9w6eAHh7+EIyBKWHS9xZDjsuZy/YRzgk6DGSkTaWje2Gu5SCjEHnTZk0x9asTXPdFLurBgSoBcYwazUiaGTZuUVMhgCf0b+iKIErG0l43kfJhqGcuC9KnMSS1mZe3q4HSTbIj6XYlX15iRiGgJKhAIBAKBQCAQCA4pFEnpUwiIB7E6JQDOzDsaIKyUYbgJOElkZMyysdd8ifDSh0iugGgMJOiyJ2khLTV7lmKEYpD1wfINGZmH5/yQJ+f9lKSQ1qSn5h7J5eNOG9D+Q5FDPv/U5LEATEseF5wWS/lRpIyIh+bcwhXjTu9V4qOXdWFBraFEEkUEfoRTQiAQCAQCgUAgEAh6EGtLUPC3n5yTNpnF6TOGe1hBArkSFp0pYu5Cz7KHgZQQyGFBlwO7ZQwtuwkVKHqil3VBsUeRJIq7uqmEZnRcVHQCZqW34BIrocfgzPyjSdNbWJA2NTgtFvdCz/yOUEJFCVM/jpKBiEKHG0KUEAgEAoFAIBAIBIIeDMQpoUgKS7PmDveQwsg2pNPkbqfDa484v6dOMZDygfDuGwMr3wC4feplOFV3n24XvaQL3qjLUW7uIwVhhnJh4QnMT58SdX5qSNaGIikcnz0/bH5M5Rs9xvDrkiuDr+UBHCfhlIiOECUEAoFAIBAIBAKBoAe6GLtvJIpx5lx2dlb0sURPp8RARIluEWag5RsAS7Lm9LuMXtYFxyQTuQVpX50v7pt5PbNTi/vcR5E5hx8WX8gEc37E+bG4F0LHcPPE8zk6c2bwfagTI9ThEYmh6lQzGhGihEAgEAgEAoFAIBD0INagy0QxyVIIjdHn9yzoGKxToq/yhYPBIOuCN+qh2Q+hjoNo+z4z75h+BYkAp+YeGXVeTJkSIWOQe4gkoeM29OPqEG1BoyNECYFAIBAIBAKBQCDowUDKNxLBabmL2WotZ1mUspHemRKDFCX6udkeLHpJFxRK5LBgze79RXNKDJVIFItQEOqY6ZktEurwUEIySMyyEYfq6rEv4ZSIxqEn+QkEAoFAIBAIBAJBggkNj+wv6DIRmBQDd5RcztLseTEtf8XY00nTWbh96uX9LhvulBg6QcYS0lnDX77R5ZQIEVBCj3u0fUfrcDFQYinfkMPKeMLHE9Z9I+TW+oVFvwkTLGBgotDhhnBKCAQCgUAgEAgEAkEfHIpOif7o2ZFjoqWA/xxxZ0zrKmHugIP/7H+Z/QN2dOznrPxj/5+9+w6PotweOP7dmt4bIYQSIKGEEHoHwY4NG9Zr74rlei3X3rvXggVRRK+9oV79KVZQqtI7IQXSIL3Xze7O749kN7tJNnWzm3I+z8OjmZ2deefNZmfmzHnPy6mb77Luw2QdvtFykKHpjX1L7euKjgYKmu7XNhvFrjioRoeP1tOuCGl9pkTPC271BBKUEEIIIYQQQohWOOvJvCs1nyS0/dTYTofa9aDESN9BjPQd1Gy5ZfhE05v9cyPnUWqsbHGq05bW76yODqloGpxS22XT2L/WtIaHWVG69DvpyyQoIYQQQgghhBCtcMaNuas1rSnREd1Z6HJCwEhrBoRl+EbTtl479IzW2+ekjINBXuEUGErbvX7TYIi6AzO0mBUzGnrf58gVJCghhBBCCCGEEK3oibNvtM05QQlnB2SeGn2dNQPCUaZEWzROqnNx14gLWXX0T3aVpZBSmd3m+uommRu2wZG2smlMiiIhCQd641+XEEIIIYQQQrhMbwxKNL2B7ojuDErYDskwt1FToqnbYs4jVB/AqeHTnNKWEH0A1w49g0Cdb6feb3ssbX1GFGT2DUckU0IIIYQQQgghWuGo4GJPdF/sP/gs6zcWRc7p9Da6c/iGLUuhyfYONTk1YjqnRkx3ejvaMTNow3r2K6rtghJNako0KaJpau9O+iEJSgghhBBCCCFEC+4ZeQn5tcV4aHTubkq7zQ0Zz9yQ8V3aRndmStiyZEpoupDV4UpNAw22wao2MyU6WFSzP+k9IT8hhBBCCCGEcKH5oRNYHLXA3c1wOdun/t0ZlJgaNBqASYGjum0f7TEuIAaAqYGjW13P3CxTwnFQomlehGRKOCaZEkIIIYQQQgghrOyHb3RfUOLmYWczNWg004LGdNs+2uO8yOMY5BnOhICRra7XPFOitZoSSpOfJFPCEQlKCCGEEEIIIYSwUtsN3+i+W0ZPjQdzujjUxBm0ag2zQ8a1uZ65aVDCLlOi9eCNZEo4JsM3hBBCCCGEEEJYuaqmRG8Tqg+w+1ndyuwbTWMQZqkp4ZBkSgghhBBCCCGEsNLgmuEbvcWKxHtIqshkjN9Qu+UdKXTZtB6FaCRBCSGEEEIIIYQQVrZDEXrTdKjdJcorjCivsGbL7TIlaFro0j4IIZkSjsknTAghhBBCCCGEle1Tf1Uvma7THewzJVrPKGlaj0I0kqCEEEIIIYQQQgirtoYiiHqt1pSQTIl2k0+bEEIIIYQQQggrCUq0j/3sG1JTorPk0yaEEEIIIYQQwkqCEu2jpjFTQt1mUEIyJRyRT5sQQgghhJNUV1czf/58XnjhBXc3RQghOq2tG2xRT9XK8I2mTBKUcEg+bUIIIYQQTrJs2TISEhLc3QwhhBAupm1S6FJpMlyjaY0J0UiCEkIIIYQQTnDkyBHS0tKYN2+eu5sihBBdIvUPOq5ppsRJ4VPsfpZMCcckKCGEEEKIPm/Lli3ccMMNzJ49m7i4ONasWdNsnY8++ogFCxYwbtw4Fi9ezO7duzu0j2effZZ//vOfzmqyEEK4jTzV77imQYkbhi7iP/G3cGr4NKB55oRopHV3A4QQQgghultVVRVxcXGcc845LFmypNnrP/zwA08//TSPPvoo48eP5/333+eaa65h9erVBAcHA3DWWWe1uO1Vq1axZs0ahg4dyrBhw9ixY0e3HosQQnQ3yZToOE2T4RtatYYxfkP5PX87IJkSrZGghBBCCCH6vHnz5rU6rGLlypVccMEFnHvuuQA8+uijrF27lq+//pqrr74agG+//dbh+3ft2sUPP/zATz/9RGVlJUajEX9/f6677jrnHogQQriAZEp0nKPioJbl0qeOSVCij7j11lvZtGkTs2fP5qWXXrIu//XXX3n++ecBuO2221i4cKG7miiEEEL0SAaDgX379nHjjTdal6nVambOnMnOnTvbtY0777yTO++8E6jPnEhLS+tSQEKtVrW9Ujve39Xt9EXSN62T/nGsf/VN4w10e463f/VNy7RqTYvHr2mYocOkmPt1/7RGghJ9xCWXXMKiRYv47rvvrMuMRiPPP/88H330ERqNhgsuuIATTjgBvV7vxpYKIYQQPUtxcTEmk4nQ0FC75SEhIaSnp7u8PVqtmpAQX6dsKyjIxynb6Yukb1on/eNYf+gbr7LG+4WOfB/1h75xJMDXq8W+8j7mAYBZMffr/mmNBCX6iGnTpvHXX3/ZLdu1axdxcXHWi6yEhAS2bdvGjBkz3NFEIYQQoldRFMVuDvr2Ouecc7q0X6PRTFlZdZe2oVarCAryobi4ErNZUoZtSd+0TvrHsf7UNxWVNdb/LyysaHP9/tQ3jlRX1bXYV4ZaI1Bfp6Mr/ePv74VOp2l7xV5IghIusGXLFlasWMHevXvJz89n2bJlzJ8/326djz76iBUrVpCfn8/o0aN54IEHujzPeV5eHhEREdafIyIiyMvL69I2hRBCiL4mKCgIjUZDQUGB3fKioqJm2ROu4qyLerNZ6bc3CG2Rvmmd9I9j/aFvNDTe/HbkWPtD3ziiUdQtHrtKqQ9umxVzv+6f1khQwgW6u+K3RtM3I2ZCCCGEK+j1esaOHcvGjRtZsGABAGazmU2bNnH55Ze7uXVCCOF6C0InsrloH6dETHN3U3qNplOCWlgKXZql0KVDEpRwge6u+O1IeHg4ubm51p9zc3OZPXt2h7djIUW3uo/0Tcua9ov0T3PSN45J3zjWH/umsrKSjIwM689ZWVkcOHCA0NBQwsLCuPLKK7n77rsZO3YsCQkJvP/++9TU1HD22We7sdVCCOEenho9j42+2t3N6FUczb6hojFTQrRMghJu5oyK344kJCRw8OBBCgoK0Gg07Nq1iyeffLJT25KiW64hfdNIp9M0+8xJ/zgmfeOY9I1j/alv9u7dy2WXXWb9+YknngDglltuYcmSJSxcuJCioiJeffVV61DKd955x5qxKIQQQrSu5UC/WmUJSkimhCMSlHAzZ1X8vu6669i9ezfV1dXMnTuX5cuXM2rUKP71r39x8cUXA3D77bfj4eHRqXZK0a3uJX3TXF2dyVosSPrHMekbx6RvHHNW3/SmolvTpk0jKSmp1XUuvfRSLr30Uhe1SAghRF/iKPdQLZkSbZKgRA/V0Yrfy5cvb3H5SSedxEknneSUNknRre4nfWOvaV9I/zgmfeOY9I1j0jdCCCGEczi6d7PWlJCghEMtD3wRLtMTK34LIYQQQgghhGg/lcPhG1Losi0SlHAz24rfFpaK34mJie5rmBBCCCGEEEKIdlE7ypSQ4RttkuEbLiAVv4UQQgghhBCi/5FCl22ToIQLSMVvIYQQQgghhOi7HA3fUCE1JdoiQQkXkIrfQgghhBBCCNF3qduaElRqSjgkNSWEEEIIIYQQQoiukJoSnSZBCSGEEEIIIYQQogtaDkk0zr5hkpoSDklQQgghhBBCCCGE6IK2pgRVJFPCIQlKCCGEEEIIIYQQnTDYKxyAId4DWnx9qPcAPNQ6YvwGurJZvYoUuhRCCCGEEEIIITrhtYR/Um6sIkTv3+LrY/yG8s30JwkPDaCwsMLFresdJFNCCCGEEEIIIYToBL1a6zAgYaFRaVzUmt5JghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItVIqiKO5uhOj5zGYFk8nc5e3odBrq6kxOaFHfI31j79Chg8TGjrL+LP3jmPSNY9I3jjmjbzQaNWq1ykktEhZyzu1+0jetk/5xTPrGMemb1nW1f/ryOVeCEkIIIYQQQgghhHALGb4hhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCgh2u2jjz5iwYIFjBs3jsWLF7N79+5W1//xxx855ZRTGDduHGeccQZ//vmn3euKovDKK68we/ZsEhISuOKKK0hPT7dbp6SkhDvvvJOJEycyZcoU7r//fqqqqpx+bM7g6v7JysrivvvuY8GCBSQkJHDCCSfw2muvUVdX1y3H1xXu+OxYlJSUMHfuXOLi4qisrHTaMTmLu/rm999/59xzzyUhIYEZM2Zwzz33OPW4nMEdfbNr1y7+8Y9/MGnSJKZOncr1119Pamqq04/NGZzdPz///DNXX30106ZNIy4ujkOHDjXbRm/6Tu4PnP0Z6Es60jfJycksWbKEBQsWEBcXx4cffujClrpHR/rn888/5+KLL2bKlClMnTqVq666ij179riwta7Vkb759ddfOffcc5k8eTKJiYmcddZZfPPNN65rrIt19DvHYvny5cTFxfHss892cwvdpyN9s2rVKuLi4uz+jRs3zoWt7YEUIdrh//7v/5SxY8cqX375pZKcnKw88MADypQpU5TCwsIW19++fbsyevRo5e2331ZSUlKUl19+WRk7dqySkpJiXeett95SJk2apPzyyy/KgQMHlBtuuEE54YQTlNraWus6V199tXLmmWcqO3fuVLZs2aKceOKJyl133dXtx9tR7uifP/74Q7n33nuVdevWKRkZGcqvv/6qzJgxQ3n++eddcszt5a7PjsWSJUuUq6++WomNjVUqKiq67Tg7w119s3r1amXKlCnKp59+qqSlpSmHDh1Sfvrpp24/3o5wR9+Ul5crU6ZMUe677z4lLS1NOXjwoHL99dcrxx9/vEuOuSO6o3++/vprZenSpcrnn3+uxMbGKklJSc2201u+k/uD7vgM9BUd7Ztdu3YpzzzzjPL9998rs2bNUj744AMXt9i1Oto///znP5UPP/xQ2b9/v5KSkqLce++9yuTJk5Xc3FwXt7z7dbRv/v77b+Wnn35SUlJSlPT0dOW///2vMnr0aGXDhg0ubnn362jfWOzdu1eZP3++csYZZyjPPPOMi1rrWh3tm6+++kqZOnWqkpeXZ/2Xn5/v4lb3LBKUEO1y3nnnKY899pj1Z5PJpMyePVt55513Wlz/tttuU66//nq7Zeeff77y6KOPKoqiKGazWZk1a5ayYsUK6+tlZWVKfHy88uOPPyqKoigpKSlKbGyssmfPHus6f/zxhzJq1Kge94frjv5pydtvv62cdNJJXTkUp3Nn33zxxRfKhRdeqGzcuLFHBiXc0Td1dXXKnDlzlM8//9zZh+NU7uib3bt3K7GxsXYX2tu3b1diY2PbvOhyNWf3j63MzMwWgxK96Tu5P+jOz0Bv19G+sTV//vw+H5ToSv8oiqIYjUZlwoQJyv/+97/uaqLbdLVvFEVRFi1apCxdurQ7mudWnembqqoq5dRTT1X+/PNP5dJLL+2zQYmO9o0lKCEayfAN0SaDwcC+ffuYNWuWdZlarWbmzJns3Lmzxffs3LnTbn2A2bNnW9fPysoiPz/fbh0/Pz/Gjx9vXWfHjh0EBgYSHx9vXWfmzJmoVKp2p4u5grv6pyXl5eUEBAR0+liczZ19k5GRwcsvv8xzzz2HWt3zvurc1Tf79+8nNzcXlUrFmWeeyezZs7nhhhscDn9xB3f1zbBhwwgMDOSLL76grq6O6upqvv76a8aNG0dwcLBTj7EruqN/2qO3fCf3B+76DPQGnemb/sQZ/VNdXY3RaOxR1xvO0NW+URSFTZs2cfjwYSZNmtSNLXW9zvbNM888w7Rp05gzZ44LWukene2biooKjjvuOObNm8dNN91ESkqKC1rbc/W8K3XR4xQXF2MymQgNDbVbHhISQn5+fovvKSgoICQkxOH6lv+2ts2WtqHVagkICKCgoKDzB+Rk7uqfpjIyMvjwww+58MILO3Uc3cFdfWM0Grnrrru47bbbiI6OdsqxOJu7+iYzMxOAN954gyVLlvDGG2+g0+m47LLLekxtAHf1ja+vL++//z6rVq1i/PjxTJgwgZ07d/LGG2845bicpTv6pz16y3dyf+Cuz0Bv0Jm+6U+c0T8vvvgikZGRTJ8+vTua6Dad7Zvy8nImTJhAfHw81113HQ899BAzZszo7ua6VGf6Zs2aNWzevJm7777bFU10m870TUxMDE8//TTLli3j+eefx2w2c9FFF5Gbm+uKJvdIEpQQnaYoCiqVyuHrLb3WdFnTn5tus6VttLXfnsIV/WORm5vLNddcw2mnncY555zTyRa7Tnf3zbJlywgKCuL88893Qmtdq7v7xmw2A3DjjTdy4oknkpCQwLPPPktZWRlr167tYuu7V3f3TU1NDQ888ADTp0/n888/5+OPPyYyMpKbb74Zo9HohCPoXs7on7b05u/k/sAVn4HeSj6nrWtv/7z99tv88MMPLF26FL1e74KWuV9bfePj48M333zDl19+yR133MFTTz3F1q1bXdhC93HUN0VFRTz44IM899xzeHl5uaFl7tfa5yYxMZEzzzyTUaNGMXXqVJYuXWrN1OyvtO5ugOj5goKC0Gg0zZ6EFRUVNYsKWoSGhjZbv7Cw0Lp+WFgYUP/00jYtuqioyJoa3NI2jEYjZWVlzZ72uJO7+sciNzeXyy67jMTERB555JGuHo5Tuatv/vrrL7Zu3cqYMWOA+hMDwJQpU7j11lu54YYbnHB0XePOvyuoH6pg4e3tzcCBAzl69GgXj8o53NU33333Hbm5uXzxxRfWC4n//Oc/TJkyhY0bNzJ37lznHGAXdUf/tEdv+U7uD9z1GegNOtM3/UlX+mfFihW89dZbrFy5ktjY2O5splt0tm/UajVDhgwBYPTo0aSmprJ8+XImT57cre11pY72TXJyMvn5+Vx00UXWZSaTiS1btvDhhx/2qdlbnPGdo9PpGD16dI8aSutqkikh2qTX6xk7diwbN260LjObzWzatInExMQW35OYmMiGDRvslm3cuNG6/qBBgwgLC7PbZkVFBbt27bKuM2HCBEpKSti3b591nc2bN6MoCgkJCc45OCdwV/9AY0Bi7NixPP300z2udoK7+uapp57i22+/5ZtvvuGbb77hiSeeAODTTz9l8eLFzjvALnBX34wbNw6dTmd34qupqSEnJ4eBAwc65+C6yF19U1NTg1qttnuyYfnZEtjqCbqjf9qjt3wn9wfu+gz0Bp3pm/6ks/3zzjvv8MYbb/DOO+/02akLnfXZURQFg8HQDS10n472zbhx4/juu++s12HffPMN8fHxnH322axatcqFLe9+zvjcmEwmkpOTrQ9Q+iWXldQUvZplqptVq1YpKSkpyoMPPmg31c1dd92lvPDCC9b1t23bpowePVpZsWKFkpKSorz66qstTs83efJk5ddff1UOHjyo3HjjjS1OCbpo0SJl165dytatW5WTTjpJ+de//uW6A28nd/RPTk6OcuKJJyqXXXaZkpOTYzetUE/irs+Orc2bN/fI2Tfc1TePPfaYMm/ePGXDhg1KSkqKcueddyrz5s1TKisrXXfwbXBH36SkpCjx8fHK448/rqSmpioHDx5UlixZosyYMUMpKSlxbQe0oTv6p7i4WNm/f7+ydu1aJTY2Vlm9erWyf/9+pbi42LpOb/lO7g+64zPQV3S0b2pra5X9+/cr+/fvV2bNmqW88MILyv79+5Xs7Gx3HUK36mj/LF++XBk7dqyyevVqu2uNnnZOdYaO9s1bb71lnZo9JSVFWblypTJmzBjlyy+/dNchdJuO9k1TfXn2jY72zdKlS62fm7179yp33HGHkpCQoKSmprrrENxOhm+Idlm4cCFFRUW8+uqr5OfnM3r0aN555x1rGvSxY8fsntJPnDiRF198kZdffpn//Oc/DB06lNdff53hw4db17n22muprq7moYceoqysjEmTJvH222/bjVF84YUXePzxx7n88stRq9WcfPLJPPDAA6478HZyR/9s2LCB9PR00tPTm6WVJyUlueCo28ddn53ewF19c88996DRaPjnP/9JXV0dEyZMYOXKlXh7e7vu4Nvgjr4ZPnw4y5YtY+nSpZx//vlotVri4+N55513elyV+e7on99//51///vf1p9vvfVWAJ5++mlrrZre8p3cH3THZ6Cv6Gjf5OXlsWjRIuvPy5cvZ/ny5Zx99tk888wzrm5+t+to/3zyySfU1dVZvxMsbrnlFpYsWeLStne3jvZNTU0Njz32GDk5OXh6ehITE8Pzzz/PwoUL3XUI3aajfdOfdLRvysrKePDBB8nPzycgIID4+Hg+++wzYmJi3HUIbqdSlB6UkyqEEEIIIYQQQoh+o3+Gs4QQQgghhBBCCOF2EpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hQQkhhBBCCCGEEEK4hQQlhBBCCCGEEEII4RYSlBBCCCGEEEIIIYRbSFBCCCGEEEIIIYQQbqF1dwOEEKI1S5cu5bXXXmu2fMaMGbz33nuub5AQQgjRR8k5VwjhDhKUEEL0eH5+frzzzjvNlgkhhBDCueScK4RwNQlKCCF6PI1GQ2JiYpvr1dTU4Onp2f0NEkIIIfooOecKIVxNakoIIXqlrKws4uLi+N///sfdd9/N5MmTueGGGwAoKSnhoYceYubMmYwbN44LL7yQXbt22b2/rKyMO++8k8TERGbPns2bb77Js88+y4IFC6zrLF26lGnTpjXbd1xcHB9++KHdsi+++ILTTjuN+Ph45s+fz9tvv233+r333ss555zDhg0bOOOMM0hMTOSiiy4iOTnZbj2TycRbb73FySefTHx8PHPnzuXee+8F4KOPPmLChAlUVlbavWfz5s3ExcVx8ODBDvaiEEII0TY55zaSc64QzieZEkKIXsFoNNr9rCgKAM899xwnnngir7zyCmq1GoPBwJVXXklZWRl33303wcHBfPLJJ1xxxRX8/PPPhIWFAfDvf/+bv//+m/vuu4/Q0FDeffddMjIy0Go7/rX4zjvv8NJLL3HNNdcwdepU9u3bxyuvvIKXlxeXXnqpdb1jx47x3HPPceONN+Lh4cFzzz3H7bffzvfff49KpQLgoYce4ttvv+Xqq69m6tSplJaWsnr1agDOOOMMnn32WX766SfOOecc63a//vprxo4dy6hRozrcdiGEEKIpOefKOVcIV5KghBCixyspKWHs2LF2y5544gkAxo8fz8MPP2xd/sUXX5CcnMz333/P0KFDAZg5cyannHIK7777Lvfccw/Jycn8+uuvvPTSSyxcuBCAadOmMX/+fHx9fTvUtoqKCl5//XVuvPFGbrnlFgBmzZpFdXU1b775JhdddBEajQaA0tJSPvnkE2u7FEXh5ptvJi0tjeHDh5OamsqXX37J/fffz2WXXWbdh6WN/v7+nHTSSaxatcp6gVRZWcnPP//MnXfe2aF2CyGEEC2Rc66cc4VwNQlKCCF6PD8/P1auXGm3TK/XA3DcccfZLd+0aRNjx45l0KBBdk96pkyZwt69ewHYs2cPgF3aqI+PDzNnzmT37t0datuOHTuoqqrilFNOsdvf9OnTeeONN8jJySEqKgqAqKgo68URwPDhwwHIzc1l+PDh/PXXXwB2T2SaOu+887jiiivIzMwkOjqaH3/8EaPRyOmnn96hdgshhBAtkXNuIznnCuEaEpQQQvR4Go2GcePG2S3LysoCICQkxG55cXExO3fubPaUB2Dw4MEAFBQU4OPj06xAV9NttUdxcTEAp512WouvHzt2zHqB1LR6uU6nA6C2thaofzrl7e3d6pOjadOmER0dzapVq7jttttYtWoVxx9/PIGBgR1uuxBCCNGUnHMbyTlXCNeQoIQQolezjAu1CAgIID4+nkceeaTZupYnPaGhoVRWVjarHF5YWGi3voeHB3V1dXbLSktLm+0P4K233mrxAmvYsGHtPpbAwECqqqqoqKhweJGkUqk499xz+fzzzznrrLPYtm1bswJfQgghRHeQc66cc4XoDhKUEEL0KTNmzGDDhg0MHDjQ4VMYyxOg33//3Tp2tLKyko0bN9pdmERERFBZWUlubi4REREAbNiwwW5bEyZMwNPTk7y8vGZprR01ffp0AL755hu7Yl1NnX322bz66qvcd999REREMGvWrC7tVwghhOgMOecKIZxBghJCiD5l0aJFfPrpp/zjH//gqquuIjo6mpKSEnbv3k1YWBhXXHEFI0eOZMGCBTzyyCNUVFQQFhbGihUrmqWWzpkzB09PT+677z6uvPJKsrKy+PTTT+3W8ff355ZbbuHJJ58kOzubKVOmYDabOXLkCH/99Revv/56u9seExPDBRdcwDPPPENhYSFTpkyhrKyMn376iZdeesm6XkREBHPmzGHt2rVcf/311qJeQgghhCvJOVcI4QwSlBBC9CkeHh7897//5ZVXXmHp0qUUFhYSHBxMQkKCXZGtZ555hkceeYSnnnoKb29vLr74YsaNG8dPP/1kXSc4OJhXX32V5557jptvvpmxY8fy4osvWp/0WFx77bWEh4fz/vvvs3LlSjw8PBg6dGiz9drj4YcfZuDAgXzxxRe8/fbbBAcHt/hU5oQTTmDt2rWtFugSQgghupOcc4UQzqBSLBMPCyFEP2eZj/z33393d1PadNttt5Gfn8/HH3/s7qYIIYQQHSbnXCGEhWRKCCFEL5KUlMTevXv55Zdf+M9//uPu5gghhBB9lpxzhXANCUoIIUQvcuONN1JcXMzFF1/MKaec4u7mCCGEEH2WnHOFcA0ZviGEEEIIIYQQQgi3ULu7AUIIIYQQQgghhOifJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxC6+4GiN7BbFYwmcxd3o5Wq8Zo7Pp2+iLpG3uZmRlERw+2/iz945j0jWPSN445o280GjVqtcpJLRIWcs7tftI3rZP+cUz6xjHpm9Z1tX/68jlXghKiXUwmMyUlVV3ahlqtIiTEl7KyasxmxUkt6xukb5r7xz8u45tvfgCkf1ojfeOY9I1jzuqbwEBv1GqNE1smQM653U36pnXSP45J3zgmfdM6Z/RPXz7nyvANIYQQQgghhBBCuIUEJYQQQgghhBBCCOEWEpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hhS6FEEI4jaIomM0mlB5Q40qtVmEwGDAajVJ0q4n29o1KBWq1BpWqb1b7FkL0Tu4618h5xTHpm9a1p3/68zlXghJCCCG6TFEUKipKqawsA3rOxUhBgRqzWaYna0l7+0at1hASEolG0zcrfgsheo+ecK6R84pj0jeta0//9NdzrgQlhBBCdJnlItHfPxi93gPoGVF+rVaF0dhzgiQ9Sfv6RqGkpICysiKCgsJc0i4hhHCkJ5xr5LzimPRN69run/57zpWghBBCiC5RFMV6kejt7evu5tjRatWAPLVpSXv7xs8vkOLiPBTFjEolpaiEEO7RU841cl5xTPqmde3pn/56zu0/RyqEEKJbmM0mQGl4aiX6Go2m/vmFpOQKIdxJzjWiP+iv51wJSgghhOiSxkJjPWPIhnC2+t9rTyheKoTov+RcI/qH/nnOleEbQvRRiqJQWmeg0FBDeZ0Bk6KgU6vRqlToNRrC9F746/T9ssKvEEIIIYQQomeQoIQQfYTBbGJPaSE7i/M5VF5MWmUZ1SZjq+/x0WiJ9PJhsLcf4wJCSQgMJcLT20UtFkIIIYQQPcGKFW+xceN6Vqz4wN1NEf2QBCWE6MUUReFAWRE/52awoeAo1SaT9TVPtYYYH3/CPLzx0+nQqtQYFTN1ZjO1ZhM5NVUcq64kpaKUlIpSfs/LAiDC05vpwQNYEBFNjI+/ZFKIPuvJJx/hxx+/b7b8++9/JTAw0PUNEkII0ec8+eQjVFdX8cQTz1mX/fDDdzz//FPcccfdnHnm2Z3edllZKZdffhH5+Xn8/POfeHt3/sHSRRf9g/POu6DT7++tzjvvDC666FLOPbf/HXtPIkEJIXqpbcV5fJKexMHyYgA81BpmhkQyKTicMf7BRHn5om4joKAoCkWGWlIqSthdUsDu0gIOV5bx7dE0vj2axhBvP46PiObkAUPw0epccVhCuNTMmXO455777ZYFBATY/Ww0GtFq5XQphBCi67744lPeeOMVHnjgUY4//qQubeu5554kJmYE+fl5XW5XfUBDsmVbYjQa0Wg08qCuG8lVVh+XlpbGfffdR0VFBXq9nvvuu4/Jkye7u1miC3KqK1mWuoetxfUnoMHefiyKimF2aBTeHbxxUqlUhHh4EuIxgGkhAwAoNtTwR342v+dmklZZxruH9/NZxiFOHxjDmVHDCNBJ1WvRd+j1OkJCQu2WnXfeGZx55tkcOXKYdev+4JRTTuPOO+9h164dLFu2lKSkJIKCgjj++BO55pob0ev1ABQWFvDss0+wdesWwsLCuPHGJTz//FPcfPPtLFx4Btu3b+XWW2+we5q1YcM67rnnDtav32rd/59/ruXdd5eTkXGEsLBwzjzzbC666B+o1fW1qWfPnsy99z7An3+uZdu2LQwcGMW//nUf48cnWrexc+d2li9/g6SkA+j1HsTHj+OJJ57j008/ZO3a31i58mO7Y77wwrM566xzueiiS7ujm4UQQgArV77Nhx++x1NPPc+MGbO7tK3vv/+WwsJCrrnmBv76a2Ob65eVlfH66y+zfv0fGI1Gxo4dx223/YshQ4YCzYdvGI1Gli79D6tX/x9arZZzzlnM4cOpeHl5c//9jwBQW1vL8uVv8OuvP1FVVcmIEbHcfPPtxMePA+ozQl5//WXuv/9RXn31PxQVFTJ16jTuvfchfH3rp3Vds+ZX3n13OdnZWXh5eREXN5oXXngVtVptzTIZNmw4q1Z9jslkYuHCM7j55tvRaDQO2jCSm2++w9oGcHxOvPPOJeTkHOOll57npZeeB2D9+q3Wdt9zz4MsW7aUrKxMvv32Jx588B5GjRrDLbfcbt321Vf/g5kzZ3P11dcD9efou+++n7Vrf2fXru1ERQ3igQceRa3W8PzzT5KamsK4ceN56KHHCQoK7vwHoI+RoEQf5+HhwVNPPUVMTAypqancdNNN/PTTT+5uVo9VYzKSVlFKdnUlJXW11JnNeGo0BOk9GOLtzxAfPzRumjNYURR+yc3g7bS9VJtMRHp6c+WwscwIGeDUyG2Q3pNFUcNZFDWcw5WlfHf0ML/nZvJZ5iG+zU7lzKgYFkePxFMjXx+i7/r44/9y1VXXWS8ysrOz+Ne/buP662/i/vsfpbCwgBdeeBqj0citt94J1KfolpQU89prbwHw0kvPU1VV1aH97tq1k6eeeoTbb7+LcePGk5GRznPPPYlOp2fx4ous661c+Q633HI7S5b8kxUr3uLRR+/n88+/RavVkpGRzh133MyiRedx5533ArBly2YURWHhwjN4993lJCcnMXr06IZ97uDYsaOcfPKpXe43IYQQzSmKwtKl/+H777/lxReXkpg40e71//73XT74YGWr2/jggy8YMKD+AVJ2dhZvv/0mb7zxDrm5Oe1qw0MP3YuXlxcvvvga3t5efPHFZ9xxx8189NGXeHl5NVv/o4/e57fffubBBx8jKiqaTz75gC1b/mLu3PnWdV5++XnS04/w+OPPEBISym+//cwdd9zMxx9/SVhYOABVVVV89dXnPP7409TU1PDgg/fy4YfvccMNt1BQUMAjj9zPTTfdyty586msrGT79i127fjrr814eHjy2mtvk5mZwdNPP0ZoaBgXX3xZi2345ZfVdm1o7Zz41FPPc8UVF3P22eexcOEZdvutqqri008/5P77H8XHxwcfH5929TPAe++9w5Ild3D77Xfy8ssv8NhjDxEcHMwtt9yGp6cPDz/8b5Yvf4N77nmg3dvs6+Suoo+Lioqy/n9MTAzl5eUoiuKW9KNtRXnsyTqIuk4h3MObEb4BDPHxR+PmVKgak5F1+UdZk5fF/rJCjK3MweOl0TA1eADHhQ9iUlB4m8MjnMVoNvNm6h5+yklHDVwQHcuFg0eiU2u6db/DfAK4dWQiF0bHsiorlZ9z0/k8M5k1eVlcGxPv9ICIEK62bt0fnHjiHOvPxx13PACTJ09j8eKLrcufeeZxTjnlNM4770IABg2K5uabb+eBB+5myZJ/kpmZzt9/b+bddz8kNnYUAHfeeQ/XXHNZh9rz7rvLueyyqzjllNMAiIoaxOWXX8WXX35mF5Q4/fSzmD//BACuuuo6Lr74XLKzsxgyZCgffvge48aN57bb7rSuP3z4CAA8PT2ZOnU6//d/31mDEj/88B0zZswiODikQ20VQgh3eylpB5sLj7l0nzPCIrl95IQOvWfjxvXU1dXx2mvLmwUkABYtOpcFC05sdRuhofVZfUajkccee5BrrrmBqKhB7QpK7Nq1k6Skg/zvfz+h09UPx73jjrv48881bNy4nuOPb77vr776nMsuu4rZs+cBcNdd97Fp0wbr6zk5Ofzww3d8/fUP1vPHVVddw/r1f/Lzzz9yySWXA1BXV8ddd91nDaiceurpbNtWH3goLCzAZDIxb94CBgyIBGDEiJF27fDw8OCeex5Ar9czbFgMWVmZfPbZR1x88WUttuGKK65h48b11ja0dU5Uq9V4e3s3y5qsq6vjX//6NzExw9vs36Zsz9EXXfQP7rjjZq677iYmTJiE0Wjm9NMX8e23X3V4u32ZBCV6uC1btrBixQr27t1Lfn4+y5YtY/78+XbrfPTRR6xYsYL8/HxGjx7NAw88QEJCQrNt/fbbb4wePdptN5FfZCazu6TAblmgzoOZoZGcMXAY0d5+Lm2PwWzi+6OH+TwzmQpjHQD+Wj3xASFEe/sSrPdEp1ZTbTJSWFtDSkUpSeXF/JGfzR/52Qzx9uPiIXHMDIns1j6tMRl5cv8WdpTkE6Tz4L4xUxjt79p0r3BPb24YMY5zo0fwTtpeNhQc46kDW5gcFM7NI8cT5tE8wi5EbzB58jTuuOMu68/e3t5cd90VjBo12m69lJRkUlOTWb26sTCm2WymtraWwsJC0tOPoNPpGDkyzvp6XNxo68Vfe6WmHmLPnl2sXPm2dZnJZEZRzHbrxcSMsP6/5UK1uLiIIUOGkpKSzNy5xzncx2mnnckLLzzNbbfdQW1tHWvW/MYDDzzaoXYKIYRovxEjYikqKuSdd5bxwguv4unpafe6v38A/v4BDt5t77//fZfAwEDOOGNRu/efknKIysoKFi5cYLe8traWo0ezmq1fUVFBUVEho0ePtS7T6XR2AYO0tBRMJhMXXGDfDoPBYLeej4+PNSABEBISQnFxfT20ESNGMmHCJC677EKmT5/J1KnTmT//eHx8fK3rjxwZax0mCRAfP4433iigoqKiXW1o65zoiIeHR6cCEgDDhzcevyVYMmxYjM2yYGsfiHoSlOjhqqqqiIuL45xzzmHJkiXNXv/hhx94+umnefTRRxk/fjzvv/8+11xzDatXryY4uPHGNTs7m+eff57ly5e7svl27hszhQxzJceKy8msLCepvJh9pUX8cOwIPx47wszQSK4eNpZwF0xJebCsiBeTtnOspgo1KuaFRXFq5FDG+Ae3mv1QYzKypSiX/x1N40BZMU8f2Mq04AHcNCKBEA9Ph+/rLIPZZA1IDPXx5+Gx09waAAjz8OLfo6ewrTiPZSn1dS1u3b6W22MnWGtSCNGbeHl5MmhQdAvL7f/OqqurOOec8zn77PObrRsYGIii0GZw0lITAhqzsYxG+2l7q6qqufbaG5kzZ16r27IvvFm/X7PZ3PLKTcyePY8XXniG9ev/pLKyCr1ez8yZXRvbLERfkZ2dxZdffoYh0B/t9EncGpvotmGbom13xE0AOpa10FVarRqjsX3ftxYRERE8+uhTLFlyPXfddRvPP/+KXWCiI8M3tm/fyu7dO5k3bxpQPzQE4NRT53P11ddz2WVXNXtvdXUVYWHhvPLKm81e8/f3d7jPpuc1xSabuLq6Cq1Wy7vvfmRdT6NRYTIpdkMdmhaKVqlU1kC7RqPhlVfeZM+eXWzevJFPPvmAFSveYsWKD6w3847OrSpVy22w6Mhwi5Y0DRxB/XlcaZJR3fQ8DvbHbGmW/TJVs4cN/Z0EJXq4efPmMW+e44vTlStXcsEFF3DuuecC8Oijj7J27Vq+/vprrr76aqA+2nnTTTfx4IMPMmTIkE63Ra3uWjZAoNaDYUHBFHtVYjbX/0GX1tXyW04mq7JS2FBwjO3FeVwdE8+pkUO6JftAURS+zkrl3bT9mFGYEhzBNcPHtjtLw1utY17EIOaGR7GjOJ/Xk3fzV1EOh3YW8/DYacT6B3WqXZa+te1js6LwQtJ2dpTkM8zHn2fGz8JPp3e0CZeaEhLB+KBQ3kvbzzfZaTy+/28WRcVwZcwYpw4padovXf0M9kU9oW/6w+9l5Mg4Dh9OazGAATB06FAMBgPJyUnW4RtJSQepq6uzrhMYWP/9UFhYiLd3/cVSSsohu+3ExsaRmZnucD/tMWLESLZv38oVV1zT4utarZaTT17I99//j5qaGk4++dR2zS6iVqv6xe9a9G/fffcNBQX5fLPrL0JVNUwLGcDM0IHubpboAwYOjGLp0rdYsuR67r77dp577mXrjW9Hhm/cd9/D1NRUW5cfOLCfp59+jGXL3mXAgJY/q7GxoygoyEen0xER0fZDJF9fX4KDQ9i/fx/x8fXZ13V1daSmplhrRYwcGYvRaKS0tMS6TmcCNmq1mvHjJzB+/ASuuuo6zjjjRP76axOnnno6AIcOJWEwGKzZEvv27SUkJBQfH98W29BU2+dEHSZT+9ocGBhEUVGh9eeqqqoWM01Ex0lQohczGAzs27ePG2+80bpMrVYzc+ZMdu7cCYDJZOK2225j8eLFzJ7d+SdhWq2akBDftldsh6CgxshlCL7EDAjhH+PiWXlwLx8c2s9rybvINlbyr/FT0Kqd93RCURRe27uDD9MO4KHR8M+EyZw1dHingx8nhvoxZ9hg/rN7K98eSeWe3Rt4ZtocZg6IavvNDtj2zXsH97Kx4BjRvn68MfdEgluI2Lrbv8NmMPtYNI9t28Q32WkcqirluelzCfPqeraLTqdp9pmz7R9hz519YzAYKChQo9Wq0Gp73hNFR21SqVSoVC23Wa22X37ZZVdw7bVX8OqrL3LGGWfh4eFBamoKe/fuZsmSO4iJiWHKlGk899yT3H33fQC8/PJz6HQ667aGDh1MeHgE7733NldffT0pKYf44Yfv7Np41VXXcvfddzBgwADmz6+vb5GUdJBjx45y5ZWNF1QaTWP7LP/VaNRotWquuOIqLrlkMUuXvsiZZ56NWq3m7783c9ZZZ+PpWZ8BsmjR2Vx66YUoipk77vhXG783FWq1mqAgb7sUWiH6mqKiQrKzG28wKpNTqDaZrD+nVZRSUlfLxKDwTu/jt9wMhvoEMNy3fan6om+xBCZuvfUGu8BER4ZvDBxof51ZUlICwJAhw6wzOzU1efJUxowZy7//fSc33riEqKho8vPzWb/+D04//SzrDBy2zj13Mf/977tERQ0iKmoQn3zyAQZDrfW6efDgoRx//Ik89tiD3HLLHYwYMZKyshI2bdpIYuJEJkyY1Oax7Nu3l23b/mbq1OkEBgaxc+d2qqurGTy4sT21tbU8//xTXHLJ5WRmpvPBByu5+OJ/OGxDcXExf/+9ydqGSy+9gssvv5BXXqk/f6tUarZs+YszzzwbT09PIiMj2blzO/PnH49OpycwMNBheydMmMSbby7lr782ER4e0TDUUoL1ziBBiV6suLgYk8lkjZxahISEkJ6eDsCff/7J5s2bKSgo4PPPPwfggw8+aDVVqyVGo5mysuq2V2yFWq0iKMiH4uLGTAlbiweMIME7mMf3/s3Xh1M4WlbB/WOcF5h4O3UvX2el4qfV8di4GcT5B1FUVNnl7V43eCxhak/eSdvHvZvX8WTCTMYEdKzmQ9O+2Vmcz1v7d+Gh1nDfqMkolUYKKyu63NbuMEYfyNIJx/Hsga3sLy7kit9/5OH46V2+4KqrM1FYWH/MbX12+rOe0DdGoxGz2YzRqAA9Kx2xtac2iqKgKEqLr5vN9stjYkbyyivLePvtN7n22itQqzUMGjSIU0453bre/fc/yjPPPMYNN1xNSEgoN910Ky+88LTNtjQ89NDjvPDCM1x66QUkJk7kiiuu4dlnn7BuY+rUGTz99Iu89947vPfeu+j1OoYOjeGcc863a4/J1Ng+y39NJjNGo5mBA6N58cWlvPXW63z99Vd4enoxblwCp59+tnXd6OihxMWNwmQyMXTo8FafbBmNCmazmeLiKrRag91r/v5e6HTdW3C3t6murmbhwoWcdtpp/Otf/3J3c0QHZGTUXztNmzaT737IpuZoDlWVjdcJt+74A4AvZi7EqwMzUFVUlLNmze/4Rg3kpcr6oozfzznTiS0XvYltxsQ999zBs8++1OJQAWdSq9W88MKrLFv2Ok888QhlZaWEhIQyYcIkh/cEl1xyOYWFBTz66APodPVTgiYkJNoFpx944DFWrnybV199kYKCfIKCgomPT+CEE05uV7t8fHzYuXMHn3/+MVVV1QwcOJC7776fsWPjretMmzadsLBwbrrpGkwmI6eeegYXXtg4fXVbbRg8eIj1nPjtt43nxLPOOgeAq6++geeff4oLLliEwWCwm6K7qdNPP4tDh5J4+OH78PT05KqrrrMLZIrOUylNB8aIHisuLs6u0GVubi5z587liy++sCts+eyzz7Jz504++eQTp+27rs5ESUnHprZrSq1WERLiS2FhRas3T3k1VTy0dzNZ1RWcEBHNbSMTuzyUY/WxI7yWsht/rZ6nEmYy1KdjQZn2+CY7lXfS9uGr1fFi4hyivNqfWWLbN1V1ddy0bQ15tdX8K24ix4UPcnpbu0Od2cxrybv4LS8TL42Wh8dOIz6g89X8Fy1ayDff/AC0/7PTH/WEvjEajRQUZBMaGtWuYQCu1JlUUmc67bTjufnm25tNNeZuZrOZxYvP4uKLL+Occ5rXybDV2u83MNBbghJNvPTSSxw5coTo6OhOByVcec7tjxz1zf/+9zVbtvzF4sUXc/2Pn1N+8BA3XvgPbjrpDKpNRs7fWH9OWjn1xA7Vd3rvvRWkpiZTUmfg0OyJ6AL8e3RQoqd+dnrKucbd5xV3MRqNLF58FueffxEXXXRpi+s4u2+efPIRqqureOKJ55y2TXdqT//013Nuz8uzFe0WFBSERqOhoMB+RouioqJm2RO9SbinN4/FTydU78mvuZl8npncpe0dKCvizdQ9aFUq7hszpVsCEgCLooZzTtRwKox1vJi0HVMnC9h8lplMXm01M0Mie01AAkCnVnN7bCIXDY6l2mTkob2b2FqU6+5mCSGaKCoq5OOP/0tFRTmnnLLQ3c3pU44cOUJaWlqrtaBEz5WRkQHA4MGD8Rpcf/7NTE6pf62y3LpelbGu+ZsdKCoq5I89O/irMIejVRVUHa7Pxnj50A6+zkp1VtOFcLqjR7P5/vtvyMhIJzn5EM888zilpSXWqS6FcCYJSvRier2esWPHsnHjRusys9nMpk2bSExMdF/DnCDc05tH46fjodbwUXoSyeUlndqOwWzilUM7MSkKNwxP6NKT+/a4fNho4vyCOFRewucZHQ+mZFaV83VWCp5qDdcOj2/7DT2MSqXikiGjuC4mHoPZzJP7t7C9OM/dzRJC2DjzzJP57LOPue++h6wFN0X9FNw33HADs2fPJi4ujjVr1jRb56OPPmLBggWMGzeOxYsXs3v3brvXn332Wf75z3+6qsnCiWpra8nNzcHPz5+AgEA8BwxArdORfSQNg8HA4cpS67pVpubV9gGMZjPJ5SWYbZKQd+3ZzdbiPErCgjhUUUJ19lEAfs3NZMXhfd17UEJ0gVqt5vvv/8e1117GLbdcy7FjR1m69C276T2FcJaelWcrmqmsrLRG7gGysrI4cOAAoaGhhIWFceWVV3L33XczduxYEhISeP/996mpqeHss892Y6udY4iPP1fHjOWNlN28mLSdVybMw0PTsZSlzzKSyaquYFJQOCcPGNxNLW2kUan5Z9wEbt3+B59kHGJOWBSDvNs/jOPT9EMYFYVLh8S6derPrjozKgatSsUbqXt4Yv/fPBY/o9sDQkL0RP/3f7+5uwnNWMbL9tcUZEe6OgX3r7/+ytChQxk2bBg7duxwwxGIrsjOzqTSaCDbQ0WpoRaVRo3XoIGYiypJSUkmx6txGGnToERaRSkDvXz4IP0g32ancV1MPGdGxQCwdutmAAInJWLIL6Q2Lx9zXR1qnc51BydEJwwYEMmyZe+6tQ333/+IW/cvXEeCEj3c3r17ueyyy6w/P/HEEwDccsstLFmyhIULF1JUVMSrr75Kfn4+o0eP5p133iE4uGOFFnuqUwcM4a/CHLYV5/FtdiqLB8e2+73ZVRV8mZWMp1rDzSMSumWK0ZZEefly0eBY3jtygE8ykrhrVNvVhwGOVVXwR142flodpw8c1s2t7H4LBw6jTlF4O20vj+/7i2fHz+62oTOiZ3rwwXvZs2d32ys6ybhxCTz++DMu25/oW7o6BfeuXbv44Ycf+Omnn6isrMRoNOLv7891113XqfZ0dfrVnjBdcE/VUt9kZmaws7gA45BwnjqwBQCvwdEoxQc5eHA/NeNHWdetNhmt791TUsA9uzaQEBjK7pL64bQbCo+xKHo4ubm5JGWmow8KRB8UhEdEGFXpmRgKi/AcENGsDT1FT/3s9LT2CNGd+ts03BKU6OGmTZtGUlJSq+tceumlXHppywVnejuVSsX1w+O5YesaVmWnctrAYfho2/d04ausFEyKwiWDRxLu2fUpKjvi9IHD+CY7jT/zszk/emS7bsY/ST6IGYXTBw7DswNVvXuys6JiKK2r5fPMZB7eu5n/JM4lxKPnTW0quocECERf0Z4puO+8807uvPNOAFatWkVaWlqnAxLdNQ23sGfbN0VFuShq8AgLY19ZEQBegwaiPZBMZmYa2glx1nUVDxU/FGYwzM+fTFP97ByWgARAoJcHISG+/P33OqoUE97D6h806ENCmgUlnPV77g497bPTk6afdvf+ezLpm9a13T/9cxruvnHnI/q0gV6+nDAgmp9zMvgmO5VLhoxq8z0FtdX8npeJt0bLaW7IOvDUaFkcPZLlaXv5OD2J+8ZMaXX98joD/zuSil6t5vTI3p8lYesfQ0Y1/D6yeOrAFp5JmIlO3TcrB4ve46uvPuPtt9/khx9+R90w7XBhYQFnnXUKc+Ycx9NPv2Bd96effuCZZx5n9eo1eHQyqPbbb7/w8MP/5rjjFrRYRfzhh+9j2LAYrrjiGmbPnoxe78Gnn64iPDzCus4tt1zHqFFjuOWW2zvVBtF57ZmC25lcMQ13f9a0bxRF4cCBZHx1HphDghrX0+s5oFMTnJOHPjkVvOrPXc/urM+kCPPw4uIhcc22rzOrKSgoZ8OGzdTU1eE9bAgA+pD6LFZDQaF1XcvU1z1JT/3s9JTpp2Xom2PSN61r3+wb/XMabglliV7hwuhYtCoV32SnUdmOqtdfZ6diVJQOZVY42ymRQwjUebC58BjFhppW191UcIxqk5H54dEE6D1c1ELXUKlULBk5nji/IJLKi3kzZY+7myQEEyZMoqKigkOHGjPRdu7cTnh4BLt27cB2tuydO7czevTYTgckcnNzeP31l0lISGzxdaPRyF9/bWLWrLl2y1eufLtT+xOuoyhKi0MDzznnnE5PB2phNitd/ues7fTFf7sL88msKMdsVsjLy+e3zFSOeelQNald5R0zlF9zM0nf27woZX5tNXpV8xsET7WGI0eOUFBQgEdYKDp/PwD0oQ1BicIip/6eu+NfT22bEP1Ff/v8S1BC9Arhnt4cFz6IapORDQXHWl23xmTkp2Pp6NVqznRjbQa9WsO8sCjMwJ/5R1tdd2PDMc0JG+iClrmeTq3h/jFTCNZ78HNuBr/nZrq7SaKfGzZsOIGBQezYsc26bMeObZxyymnodDpSUpLtlk+cOLlT+zGbzTzxxMNcfvnVREW1PMXvzp3b8fX1ZeTIxpo55567mB9++I6MjCOd2q9wrr46BXd/VW0ycu0fP3PtlvpCtJmZ6eTVVuMR1vx36T1kCGqdjrzUVEy1tXavqVFhbGH679U56Xz2568A+Iwcbl2u8fRE6+NDXWkZ5rr2TysqhBB9nQQlRK+xIDwagLV5Wa2ut704nxqziWnBAwjSu7d+wXHh9TchrbW5ymhke3E+fjo9CYF99+I2WO/JXXGTUANvpOwmu6rnpayK/kOlUpGYONEuKLFz53YmTJhIYuIE6/KCgnyysjKZMKG+YO2lly7mxBPnOPx355232u3n44//i6enJ2eddY7Dtqxf/yezZs2xW5aYOJFJk6ayfPmbzjpk0QV9eQru/shgMtn9nJlZP8uZR3hYs3XVOi0+w4dRaail4qD9VN9qFdSZmwclzLUGPlr3O1qtDt2QaLvXGrMlirt0DEII0ZdITQnRa4wNCCFE78me0gIKa2scFkzcVFifdTAr1P1ZByN8Axjo5UNyRQnZ1RVEeTUvaLWtOBejYmZ2ZBRatbpPp2eNCwzlwsFxfJyRxAtJ23khcTYalcRGhXtMmDCJt99+A7PZTGlpCVlZmcTHjyczM5MtW/5i8eKL2L59G3q9nvj4cQC88MIrGI1Gh9v08GgcfpWUdJAvv/yMFSs+aLUdGzas4+67/91s+Q033Mw111zGwYP7GTVqTCePUrRXf56Cu79pmt1wOP0IAB7hLT8Y8Bs7mqMHD1G77wB+Y+Ks03kqQF0LmRLlB5MwG42MHTeenaqGFRs0FrssxHNAuDMORwinuvHGq7jwwkuZN28BAMnJh3jmmcdJS0thyJBhvPrqm1x66WJWrPiAsDD5DAvnkKCE6DU0KhVzw6L4OjuVdQXZLIoa3mydOrOZvwtz0KnUTAp2/xelSqViXlgUn2Qc4o+87BYLYlmGbswfGN3stb7ogsGxbC/O42B5MV9npXJe9Eh3N0n0UxMnTrbWlTh6NJu4uNF4eXmRmDiBd95ZhqIo7Ny5jTFj4q31JAYMiGzXtg0GA4899gC33/4vQkIcZ0ClpqZQVlbChAnNh4fExo5i/vzjWbbsNV5++Y3OHaRot/4+BXd/YpvdUFFRQXbOMbR+vmi8W56pS+fvh0/MUCrTjlC2ex+BkxIBMCkKBrN91oW51kD5voOoVCre9qxFp+jx0miobsjOsGZK5Bci+r7Zs1sf+nfllddy9dXXu6QtBw8e4J133uTgwf1UV1cTGhpGfHwC9977ILqGQNu6dWuprKxk7tz51ve9+eZSwsMjePLJ5/Hy8sTfP4BTTz2dFSve4t57H3RJ20XfJ0EJ0ascFz6Ir7NT+SOv5aDE7pICKk1GpgUPwKuHTKs5J7Q+KLGjJK9ZUMKkmNlanIeHWsO08EgqS1sviNkXaFQqbotN5Nbtf/BhehLTQgYQ7e3n7maJfmjYsBiCgoLZsWMbx45lk5g4sWH5cFQqSElJZufO7Rx//EnW91x66WJycx3XtUlImMCLL75KYWEB6elHePjh+6yvmRtuhObNm8aXX35HWFg469f/wbRpM9FqW/6+uvbam7jkkvPYtm2LMw5ZtKK/T8Hdn9hmSqQcSaPObMYzovUHGYGTJlCdkUXZnn14DxuCPrh+lo6qJsW3i7dux1Rbi+/I4ej86s9tnmqtTVAiBLCfgUP0Xd9+u9r6/z/88B1ff/0lb7/9vnWZl1djIExRFEwmk8PzQVcUFxdxxx03M3fucbz00ht4e3uTnZ3FmjW/YTabgPqgxJdffs6pp55hV8A3OzuT88+/kAEDBliXnXbaGVxxxSXcfPPt+PnJNZzoup5x1yZEO8X4+BPu4UVKRQlVxjq8m8yssbFh6MbM0AEtvd0tBnn74qPRklZRhkkx2w1XOFpdSbXJSEJAKJ5aLZVubKcrRXv7ccmQON47coA3U/bw5LgZLVawF6K7TZgwyRqUuOmm24D6DKeEhER+++1nMjLSrfUkoP3DN8LCwvnvfz+1e+3tt9+kpqaGJUvuICio/mnp+vV/cv75Fzrc3qBB0Zx++lksW7a007N/CCHs2WZKHEpNoU4x4xEZ0co7QOvrQ/jkCeRs3kL+b2sZcPopaLy8qLT5PqhISaPiUAoaTw8CJ0+wLi8zNk7rp/HwQOfvR11ZebPCmaLvsc2U8/b2Rq1WW5dt376VW2+9gRdeeJW33nqNtLRUli17l1WrvqC6uspu+ugHHrgbLy9v7r//EQBqa2tZvvwNfv31J6qqKhkxYiQ333yHdahhU3v27Ka2toa7774fTcMMM1FRg5g6dbp1neLiYrZv38Kdd95jXWbJ9Hj55Rd4+eUXrJkdgwcPJTy8PrB+6qmnO6ezRL8mg7lFr6JSqYj1C0IBUipKm72+p7S+MvqU4J4TlFCrVAz3DaTWbCKjqtzutcOVZQAM8/V3R9PcalHUcAZ7+7G7tKDNGVWE6C71QYmtZGSkk5Aw3rp8/PgJfPXV5w0FDhsv8gYMiGTQoGiH/yzja7VaLTExI+z++fr64ePjQ0zMCLRaLYWFBSQnJzF9+qxW23jlldeRlpbK/v3NpyQUQnScbVAiNS0Vo9mEZ0TrQQmA6MREfIYNwVhRSc53q6k5lkOF0YDZaKRszz6K1m9CpVIRMmcWGs/GIKLJZophNfV1JaA+W8J2+mHRP7311mvccssdfPTRlwwaNLhd73n55ec5cGAfjz/+DO+99wnTps3kjjtuJj8/r8X1g4ODMRgMrF//p8PP3O7dO/H29iY6urEN3367mvDwCK6//ma+/XY1F130D+trcXGj2bVrRweOVAjHJFNC9Doj/QJZX3CUQ+XFdrNV1JiMHKuuJMzDC3+d3o0tbC7WL5DdpQUkl5cwzCfAuvyIJSjh0/+CElq1muti4nlg7yZWHN7H5OBwPHvIkBvRf0ycOJnq6mpGjRqDj09jIdrExElUV1eRmDjRrnilM23YsI5x48bj79/6339oaCjnnXchH330fqvrCSHax1Kc0lRby7HcY5i8PNH6NS9E3ZS3RkvInJmAisrDR8hd/Su/bdpGdkUZismESq0mZM4MvAY5LrStVqk5O2ESHx4+gqGgEDMKGiRTsLO++upzDhzY79J9xsfHs2jReU7b3rXX3sSkSVPavX5OTk7DUJAfCA6uD3BdccU1bNy4np9//pFLLrm8hTYncPHFl/HQQ/fi5+fHmDHjmDJlGqeccpp1+EVu7jGCg0PsMldDQkJRq9V4e3s3q48UGhpKampKZw5ZiGbkDkD0OiN9AwFIriixW55RVY4CDO2BN/gj/QIBOFRewkkDhliXWzIlhvbDTAmAxKAwZoZEsrHwGN8dPcz5UvRSuNiQIUNZv35rs+WjRo1ucXlXWNJuLdav/5PZs+c2W6+l/d544xJuvHGJU9sjRH9lyZSozckjs6qcY/4htGdCbk+NFpVGQ8i8WXgNHkT5/oPUllehUqvxio4iIHEc+qCgZu97JmEW9+7eANTXVbowcRrf/N//MOQXYlYUNBKT6NdGjRrdofXT0lIwmUxccMEiu+UGg4ERIxxfR910061cdNGlbN36N/v27eGjj97no4/e5513/ktoaBi1tbXo9e0Pwuv1HtTW9v1aaMI1JCghep0RvoGogOTyErvlPTnrwBJISWkSSDlSWYYaGNyPCz1ePmw0mwtz+CorhVMjh+LbpE6IEH3V+PGJLFhworubIUS/YwlKVGdlk19RSmhUfLve56nRoFGpMAE+MUPxiRnKEG8/0psMzbR16oAhjPFvnKFFo1IRGTkQtUpFdX4BRrMZnVrTpePpz849d7HL96nVqjEam08F21menl52P6tUqmZDLGxrGVVXV6HVann33Y+a1ePy8fFpdV9BQcGceOIpnHjiKVxzzY1ceOHZfPPNV1xzzQ0EBARSXl7W7naXl5cRGNg8CCdEZ0hNCdHreGu1RHv7kVdbTamhsUjUkcr6i4Ih3j0vKBHm4UWATs+RyjLqGqYPqzDWkV9bzUAv3349bCHKy5cTIqKpMNbxbXaqu5sjhMtccsnlMse7EC6WUlHCw3s3oygK1ZnZAHhGOR5uMcqv8abLU6NF0+QmsMrkuPAtgLdWh9rmPRqVCr1ej1dwMKaaGkpKm9fHEv1bYGAQRUWNs7OYzWbS0hqvj0aOjMVoNFJaWtKsrpGliHJ7+Pr6EhISQnV1NQCxsXEUFORTWVnRrvcfOXKYkSObT3UvRGdIUEL0SpbMg0M2mQc9OVNCpVIx0jcQo6KQ1tBOS3t74nATV7twcCxalYpvslMprzO0/QYhhBCiE549sA2AuqIiTNXVeISHoXFQN+b48GgW2wwr9FRrmgUl8mur7X4e4RvA8eHR1p8t05OrG+pGWN7v2zAFaUbGkS4cjeiLJkyYxL59e/n115/IyEjn1VdfpLS0xPr64MFDOf74E3nssQf588+1HD2azb59e1m58m127NjW4jY3bFjH448/xKZNG8jKyuTw4TTefHMphw+nMWvWHABGjozD3z+APXt2t9nG2tpakpIO2M3eIURXSFBC9EqNNRqKgfq5nY9UlqFVqYnybj11zV0sbU5pGHZyWIISVuGe3pwQMZhqk4mfctLd3RwhhBB9VE1DZkN15lEAvKKj8NZoWzwXm1HQ2wyt8NXq7ab1bsn88Ghui020/mwJSliCEeqG9/s3ZGccPpzWySMRfdWMGbO45JLLefnlF7jxxqsIDAxiypRpdus88MBjnHDCybz66otcfPG5PPDA3aSlpRIaGtbiNocOHYZer+eVV17ksssu5Oabr2X37p088cRzTJxYP+2nRqNh4cLT+eWX1W22ccOGdYSHRxAfn9D1AxYCqSkheinLDX5aRf2NfXFdLWVGAzE+/m1eMLhLpGd9sKTIUF8UqCdndrjDoqjhrM5J57ujh1kUNdzdzRFCCNEHWabnrMrIBOqDEmEeXpw5MIZXk3farVteZ0Cvbrym8NE2H77RlE6tthuuYc2UUKlAaQxO+A+sD0qkHznSpeMRvce5517AuedeYP154sTJDgsqX3/9zVx//c0Ot6XT6bjuupu47rqb2rXvqKhB3HPPA22ut3jxJVx++QXk5+dZhxd++eV3zdb74otPuPzya9q1byHao2fevQnRhhB9/fzf5cb6VP/ekHVgqRtRbaqvKZHe0OYhPv23yKWtQd6+TAmOoNBQw/qCo+5ujuiAxuvvluc+F71d/e+1jXsxIXoFMwp1pWUYCovQBfijCwxEq1bbTcppuTguN9ah1zRmSvhodW0HJZo8GPFoyLSwvMvyfk8fH3T+fuTn51FR4bhQphCuFBoayt13P0Bubo7DdcrKSpk9ey4nnniyC1sm+jrJlBC9knfDDX6VsQ7oHfUZvK1BifrU0bKGgIolwCJgUVQMW4py+TZb0ll7E7Vag1qtoaSkAD+/QDQaLdBT7mBVGI0SLGlZe/pGoaKiFJVKjVpmCBB9gFlRqDpcP0zQe9hQVCoVOpUatc1Xlp9OT2mdgXKjwRpUAPDW6NrMxtSp7V9XGoJ6lr+0xmEcKjwGRKCUGjh8+DDjxkkavOgZ5s2b3+rr/v4BXHLJ5S5qjegvJCgheiVL1oGl6nVOdSUAg7x83damtng1CUpUG41oVSqZCsxGQkAog739SK4owdhGRXPRc6hUKkJCIikrK6K4OM/dzbGjVqsxm503dVtf0t6+UanUBAeHN5t6TojeIK+miu3FeZw4YEj9dJ5mM5VphwHwiRkC0JAp0fj59tM2BCXqDE1qSuiYEzaQVVmOZ4pqGpQwN5na0RLU0KhUeA6IQCnN4MiRNAlKCCH6NQlKiF5JrVLhpdFagxKVDf/11erc2axWNQtKmIx4a3pue91BpVKxIHwQ7x05QHFdbdtvED2GRqMhKCgMRTFjNptRekByglqtIijIm+LiKszmHtCgHqS9faNS1WfCSEBC9Fa37/iTMqMBL42WeeGDqCkspK60DH1QILqAAKB+yEWwTdbi1TFjeXTfX1w/fFyzmhL/GDKaiYHhrM3P4tfczGb7swzfSAgIZXdpAaP97adoVNtkSngOHICSlMGhQ0koiiJ/Z0KIfkuCEqLX8tZoKTbUoigKlQ3DOHx6cFDCs2FcarXJiElRqDGbCNC1PA1ZfzY/PJr/HjlAiaEWk2LusYVLRctUKjUaTc/4nanVKvR6PVqtQYISTUjfiP7CMlQyt6YKgNKDhwDwjR1hXUerVjM+MJSrho1hfGAYw30D+HrW6ejUauswUQBvrQ6dWk1iUJjDmaIsmRKPj5tOaZ3BGuywDOOwDt9AhcbLi/DISEryCygoKCAsrOWZE0Q9qV8k+of+WcepZ1w5CtEJ3hotZhRqzSaqTD0/KGFbU8IyJZmXRoZuNBXi4cn4wDCMipmdJQXubo4QQoheZktRLplV9sUjPTRaamtrqUg9jEqtxnv4MOtrOpUalUrFOYNGMNy3IXuiIbhgN3zDJrvxzKiYFvdtGZKpaZJ9Yckes5TUtAQnMv29SS4vITk5qVPH2p/U17VRYTBIJqXou0wN9wj9rY6TZEqIXsu7IQBRbTJSaaz/A+7JwyG8tI1BCcuwE+8eHERxp+MjovkYWJObyaSgcHc3RwghRC9RWFvDo/v+AuD7OWdal3uo1ezevROT0YjPiBg0Ho2Zik3rQNjS2rzmrW28bB7tH8x7U0/kir9/sVu/6ewbTVmeflqGcST76skpKyIp6SAzZ85u4+j6N5VKhY+PP2VlRQDo9R64p6iyFFB2TPqmdW31j0J5eQkeHt79bjiXBCVEr2XJPKg0Gqk01qGmZ2ceaFRq9Go11SYj1UZLpoT8CbZkWsgAVKjYWpyHSVFQ95iZHIQQQvRkBrOpxeU1JhPfr1sDgF/cSLvXtO0cJtg0GzOwhSGYjgIcltsQS0FNS1BCHxaKWq/ng63rOeXc84j0D2xXW/or34ZMlvrAhHtufqWAsmPSN61rT/+o1RqC+uEDObkjEr2Wl3UGjjqqTHV4a3U9PqroqdZSY2ocbuItQYkWeWm0+Gh1VBjrOFRezNjAEHc3SQghRC+gtrkOqLGZxendTWs5vHc7+pBg9GGhdu/RtpIpYUvfJJ26pfe1lnVh186G4IRKrcZ78CDyU9J4ee2PPHvmRe16f3+lUqnw8wvE1zcAs9nk8qLKUkDZMemb1rWnf/pzcWm5IxK9liWNstxYR7XJRIRHzy8a6aXVUlZjsA43kUwJx/wankhtKcqVoIQQQohWvZa8i4Laaq4bHm9dVmJTe+DYzp0A+I8b2+yCv60hF8+Pn02dg6ebK6eeiAqswzgcb6vp1KCNbfAeNoSKlDSykg612g7RSKVSoXHDNZQUCXZM+qZ10j+tk0KXotey1I8orK2u/1nb82/wLUGIQkON3c+iOT+dHoCtRblubokQQoiebnVOOluL8zDYBA+yayoBqM0voOZYLl4BAVwz94Rm79WqW38qOdo/mITA0BZfC/PwItTDy2ZbbQ3fqGeb0eEZGYlar6MgPYPK6ioe3LOJj9IPttomIYToSyQoIXoty9CH/IagRE+eecPCUvOiqCEo0RsCKe7iodYQ6elDWmUZBQ2/YyGEEKI1tlN4ZjXMwFG6aw8AE6ZN55Kho5u9p701Jdqj3cM3bIISKo0a78HRmM0m1u7Yyo6SfD7JkKwJIUT/IUEJ0WtZbugLautv8H168MwbFpbMiCLJlGiXycH1hX62FeW5uSVCCCF6gyqbOhLJ5SXU5ORRnZmN1teH+PGJLb6nvYGE9tCpWi643bT2gabJEBLvYUMwKwo79uxyWluEEKK3kKCE6LUsmRIFvXD4hjVTQoISrUoMDAPgQMP0X0IIIQRAaV0trybvJLMhG8LCNihxoKyIkm07AAiYMJ5AL28Awm2GW0DbNSU6QudwKEh9VKLplKAWnpGRaDw9STp0EFN1/XWNSZFZDIQQ/YMEJUSv5dWQGWEdvtGLMiUKayVToj1G+AYC9U+7hBBCCIv3jxzg55wMHtizCbNNGoJtLYbDhw5Rm5ePPigQn5ih1lpFy6Ys4OuTz7Ku197ZN1pzyeA4TowYjE7d+tTk1ilBm0x1rdKoCY4dQUWdgcqUNADK6+qavV8IIfoiCUqIXsuSGdG7akpIocuOCPHwJFjvQXplud3UbkIIIfq34oaZNQoNNXYZBdnV9cUtzXVGiv/aAkDg5Imo1GrrrE6eGi0DfXyt73FGpsRFQ+K4LTax3es3Hb4BEBQbS5XRSEVyKoqiUFZn6HK7hBCiN5CghOi1LEMfas0mAHx60fANyzRl3r0gkOJuI3wDMaOQXFri7qYIIYToIWxv6luarrN01x6MlVV4DxmM16CBAPhp9W1uy1WaDt8AyNSrKPT1pK60DEN+AWVGCUoIIfoHCUr0cbfeeitTpkzhjjvucHdTnK5pDQnvXjR8w9wwtlQyJdo2smEIx8Hiwnatn1dTxcGyIirkCZMQQvRZrQUlDMUllO/dj1qrJXbObOtyy/ANd2hS57LFoASAT+wIAMoPHqKsrrabWyWEED2D3BH1cZdccgmLFi3iu+++c3dTnK5pEMK3F2QdeDYJQlimCBWOjfALBOBAcRELAqMcrpdUXsx7h/ezp7QxeDHWP5gbRyQw1Me/u5sphBCiG5UaavmrKIf54YPQqTV203jW2QzfUExmCtdtRFEUAickEBEcQnF5MeA4U6JpwKA7WPZhCUVocBCUiBlGydbtVB1OJ6e4CEIHuqB1QgjhXpIp0cdNmzYNHx8fdzejWzSduaI3zL7h3SQI0RuyO9xthG8AAAdLHGdKHKks46E9m9hTWkiYhxfTQwYQ4eHNvrIibtvxB/939LCrmiuEEKIbPLb/b15N3sWqrFTAPtPAaJMpUbprD4bCIjzCw/AbM4pAvYf1NT9dy+dcVwQlLKyFLh1kSqh1WnxjR6KYzezY+rcLWyaEEO4jQQk32rJlCzfccAOzZ88mLi6ONWvWNFvno48+YsGCBYwbN47Fixeze/duN7S0Z2o69KE3zb7h6GfRXJDek1APTw6XlbVY7LLIUMMjezdTaTJy3qARrJhyAg+MmcryKQu4NiYejUrFm6l7WJOX6YbWCyGEcIakhmyH5IoSwH7IhiVTojYvn7Lde1FrtYTMnYlKrbbLonSUUenKoIRFa3Us/EbHoVKp2Lt9O0Zjy0Weiww1/GvnOnaXFHRXE4UQwmUkKOFGVVVVxMXF8dBDD7X4+g8//MDTTz/NzTffzNdff01cXBzXXHMNRUVF1nXOOuusFv+ZTCZXHYbbaNVqPGym3uoNmRK2QQiNSoXeCdOQ9QcjG4pdplWUNXvti8xkCgw1zA8fxOVDR1ufPmlUas6KiuHeUZNRo+KlpJ3sLW1fXQohhOiMtLQ0LrzwQk4//XTOOecctm7d6u4m9TmW2T+rbYLUv+VmYqquIX/NnyiKQtC0yej8/ID6BxaRnj4E6PRoHM2yobgwLNEQi3CUKQHg4++P1+BoispL2bVrR4vrrMpK4WB5Mfft2dgdrRRCCJfq+Xdxfdi8efOYN2+ew9dXrlzJBRdcwLnnngvAo48+ytq1a/n666+5+uqrAfj2229d0lYAtbpr1akt7+/qdmx5a7TW2Tf89Hqnbrs72M624aXRotHUXyB1R9/0BZb+iPL2hULIN1QzRh1sfb3GZOT33Ey0KjXXDY+39qet6WGRLIkdzyuHdvJ6yi5emzQfXR8KBslnxzHpG8ekb7qHh4cHTz31FDExMaSmpnLTTTfx008/ubtZfYrSkNdgmzn3RcYhCtauw1RVjc+IGHxGDre+5qPVsWzy/FbjDq4dvlFP7aCmBMAgL1+qxo0lLyOLdev+YMKESagbzlsHyopYn3/Ueu0jhBB9gQQleiiDwcC+ffu48cYbrcvUajUzZ85k586dLm+PVqsmJMS37RXbISjIeTUufD30FDdUp44OD2xWSLKnidQ2XkT56nTN+tSZfdPb6XQaa/9EFflDJtRozHZ99t2RVCpNRk6OHkpMZIjDbV0UPIZNJTn8nZfD6sIMrhgV36k2Gc1m/jiayY8Zh0kqLabGZCTU04vJYQM4Y0gMsYHBbW+km8hnxzHpG8ekb5wrKqqxGG9MTAzl5eUoioLKDVNO9lWWAEKNTUZoydYd1OTkog8OInjGVLv+9tHq6jMkWvkVuOPaodVpSFUQM2QoBQPCOZqXy+7dO0lMnEh5nYG7dq0H7AtlV9QZ8HXjzCJCCNFVPfsOrh8rLi7GZDIRGhpqtzwkJIT09PR2b+e6665j9+7dVFdXM3fuXJYvX86oUaM63B6j0UxZWXWH32dLrVYRFORDcXElZrNznkt4NIxA0qpUVBRXU9nDL/xqaxqnqfRQaygsrAC6p296u7o6k7V/PE31v+eskjLrMoDPkw8CsCA4ym55S64dMpYd+XmsOLiHmf4RhHh4dag9x6oreebAVpLLS4D661u9WkNaWSlpZaV8kZrE8RHRXDM8Hn8XXhzKZ8cx6RvHnNU3/v5e6HR9ZxahLVu2sGLFCvbu3Ut+fj7Lli1j/vz5dut89NFHrFixgvz8fEaPHs0DDzxAQkJCs2399ttvjB49WgISTqY0pDxUm+uD/OUHD1G27wBqvZ7QBXNRNxnK6dPK0M6nE2byW24m88MHdV+Dm1C1Fh2xUCDKy5eAxAR+/PFndn2yko9HjaLKJjui2iYok1FVzpgAx4F5IYTo6SQo0ct09InL8uXLnbZvZ13Um82K07Zlmb3CW6NDURovVnoqT1XjxbuXWtusH5zZN32BpS+CdPXV04tqa6zLMqvKOVReQrSXL2P8gtvst0hPH84YOIxV2an8cPQIlwxpf3AuqayYh/ZuotJkZJRfEOdHj2RSUDhatZr82mo2FRzjs8xD/JqbycGyYh6Nn06Ep3cnj7pz5LPjmPSNY9I39iy1ns455xyWLFnS7HVLradHH32U8ePH8/7773PNNdewevVqgoMbM6Wys7N5/vnnnXoO7q+yqirYXHjM+rPl01ptNFKVnknRpr9RqdWEHT/PWkfCls5RHQlgfFAY4wJCHb7enYytXK8oKER5++I5IBzPAREczcnl3v/7gttOOL3F9WtkKIcQopeToEQPFRQUhEajoaDAvqpyUVFRs+yJ/sxS3NLHQUXtnsY2RbQ3FObsKYIbpnQrMtRYl6VWlAIwKTi83YG6hQOH8nV2Kj/lpHNBdCzadtSWKDLU8OSBv6k0GTln0HAuGzLa7n1hHl6cGRXD8RHRvJi0nb+Lcrlr1zqeGz+bAZ7OS403KWYyqypIryxDo1Ljr9Mzyj8IT7V8joRwFmfUeqqoqOCmm27iwQcfZMiQIZ1uS0+s4+QOS7avtc6uYaFWqyjOzqJg7ToAQufNwnNARIvvV6lVzfrAnX2jUtXv19RGJYtB3vVDFQMSx1GzOpdtf/7JG4OjWlzXqJhRVPVDDD00Xc9c6iufne4gfeOY9E3rpH9aJ1ezPZRer2fs2LFs3LiRBQsWAGA2m9m0aROXX365m1vXc1hms2gtPbMn0anVaFVqjIpZpgPtgGC9JwDFhlrrsqyq+uEa0d7Nn4w5MsDTh8nBEWwpymVzYQ6zwwa2ur5JMfP0gS0UGWo5KWIwVw4d4zAA4qPVcf+YKbyWvJtfcjN4+sBWnh8/G726axeIlcY6vjt6mP9lp1FmNNi95qnWMC10AEsSJ+HdnpRgIUSntafWk8lk4rbbbmPx4sXMnj270/vqiXWcygy1bMnPZV7koHYFdJ2laUBCq9NQUHiUzNW/opjNBE+bjPdQx8GfAUF+DvvSHTVV9DotISG+6I85vgZQa9WMGRAGSeAZOYDL587n/T/XsHfbdvzHNs/y8/DRc/P2NWRUlLPx7IsczzLSQVJzxjHpG8ekb1on/dMyuStyo8rKSjIyMqw/Z2VlceDAAUJDQwkLC+PKK6/k7rvvZuzYsSQkJPD+++9TU1PD2Wef7cZW9yzeDTf2lmEcvYG3RkuZ0SBBiQ7w0mjx1GjsMiWyquuDEoO8OnbhflrkULYU5fL9scNtBiXW5mVxoKyYkb6B3DBiXJsZGRqVmltGJnCsupK9ZYW8lbqXJSPHd6h9tpLKi3ly/98UGWpRoyIhIJQYX39UqDhWU8nO4nz+yMtmwy/HOD96BBcNjmt1mjkhROe1p9bTn3/+yebNmykoKODzzz8H4IMPPsDf379D++qJdZz+tWMd+8uKuGHEOM6Miuny9praV1pItcnI5OCWMx4s8tKO8NInX2M2mRg0YxqaUSOtr431D2ZfWf206ROCwoj29mWk1r9ZzSF31pupqzNSWFhBeWWNw3WMRjN+dY0B7UtOXcRXG9dTunM3viNiUHvY1y0qKq0ko6IcgJz8si4X7pR6PI5J3zgmfdM6Z/RPX6vjZEvuitxo7969XHbZZdafn3jiCQBuueUWlixZwsKFCykqKuLVV1+1FtR655137Mat9neWKTZ9e8nwDQBPjYYyY+8KpLibSqUi1NOLrMoKDGYTerWGzKr6CzBLimt7TQwKJ8zDi72lhZQaagloGBrSlEkx82lGMgDXDY9vd8aDRqXm7tGTuG37H/yUk86C8EGM7UQBso0FR3n+4HbqFDNzw6K4bMgoBnjZR9drTEa+O3aYzzOS+STjEBlV5fwzdqJT0neb7mdLUS6pFaUUG2rx1GiI9PJhYmA4g33an6kiRF9kW+tp/vz57Nu3zynb7Wl1nPY33OwnlRVjjnRO2xRF4d7dGwj18OKP/GwAvpt9hrU/f83NsFu/6kgG+zdvY2JAKEFTJzF6yhT8tHq2FecB2H33TQoKZ1HUcFDA7KB+g7tqqpjNCnVmc7PlU4Mj+Lsol1i/QHw1OmaFRuKv1RMZEcmYxAn8vfVvSnfvJWjKRLv31doUvawzmdGretZnpy+SvnFM+qZ10j8tk6CEG02bNo2kpKRW17n00ku59NJLXdSi3sfHkinRS4ZvQOOQE8mU6JjghqBEsaGWUA8vsqsr8dfqCdC1HFRwRK1SMTEonJ9y0tlVWsDcsJbH6P6Rl82xmkoSA0MZ7d+xQGCw3pMrh43hP4d28O7h/bwwfnaHCtSmVJTwQtJ2TIqZa2PiOXPgsBbf76nRcsHgWE4fMYIl635jQ8ExakxbeGjstNanm2unapORT9KT+OHYEQeF1PYx0jeQK4aNZnxgWJf3J0RPJrWe6jkzFyu3tsqa2WBhVMzoVBrK6wy8fGindXnZvgMU/72NYL0nx51yCgdUlXiqtTwaP53T1/0PwC54rOnhQ9paKnR5e+wE1uZlcUJENAD/Hj3F+trc4xawded2yvcfxDd2BLqAxuwbg02Aw9TDC34LIURLXDcoUIhuYBm+4dOLsg68emEgpScI9ayfwrPIUENeTRVGxdzhLAmL8YH1NxC7SgpafF1RFD7PrM+SuHBwXKf2cVz4IIb5+JNUXswmm8rxbSmtq+XJ/VswmM1cOWwsZ0XFtBnQGOznz0sT5jLY249txXn898iBTrXZVlJZMTdtW8Oq7FQUYF5YFHfETuCJ+BncN3oKlwyJY5CXL8kVJdy/ZxP/SdpOjcnY5f06Umc2cbCsiDV5maw+ls6mgmPk1lR12/6EaMq21pOFpdZTYmKi+xrmYl0dIlZjMrI+/yi1JhNJZSXNXk8uL2FbcR4ZDdlwislM0V9bKP57Gyq1Gu+501ntWx98aC2439OHspmU5pkS/jo9Z0bFWLNAbUUEBeOfEI9iNlO06W+72cYMNkFjy3ZzaipZm5fV42clE0IIkEwJ0ctFNqSzD/TqPUVjJFOicyxBiWJDDRXGOqDjQzcsxgdYghL5Lb6eVV1BVnUFw30CiO/k3O9qlYorh43hob2b+Tg9iRkhke3Kllh5eD/5tdXMC4tiUQfGbQfoPXhgzBTu2LmOr7JSiPMLYmZoZKfavre0kEf3babaZGJWaCTXxYwjxMPTbp2ZRHJhdCwbCo6xPG0Pv+dlkVNTxUNjpuKr0zvYcscV1FbzVVYKa/OyKG/4vdsa6uPPGQOHcUJEtNOKu4n+S2o9tU3VxQyEt9P28VNOOmcMHGb9Lrd19+4NAFw5bAymqiry166nNjcPjYcHYScchyY8jMOVZUD9cEhHnJEt1h0s/WdsYfhGa/x0evzjx1CZmkbNsRyqDh/BJ2YYgN1QEEumxG3b/6DSZMRfp2diULiTWi+EEN1D7opEr5YYGMbbk48nwtPb3U1pNwlKdE6IZ/1NcZGh1vpUqKNFLi0C9B4M9fHnSGUZOTWVzabu3FpUPz55ShsF19oyMSic4T4BpFaWklpRygi/wFbXz6wq5/fcTPy0Om4akdChIR8AA718+VfcRB7d9xdvp+1lYlBYhwuepVSU8PDezdSaTVw2ZBSLB8c6XFelUjE7bCDjAkN4dN9f7C8r4v49m3h2/KwuF1pTFIWfctJ59/B+qkxGNCoVk4LCGerjj6dGQ7Ghlt0lBRypLGNp8i6+zU7jzriJDPcN6NJ+W1NprGNvaSHpVeXUmU14arQM8/FnlF+wZD71EVLrqW1dvdff0VD/4bujh1tdb9P+vRz79gdMNTXoQ4IJmz8XrZ/9d37T86ht7Qh1DwtSPhY/nbdS93Dd8Hig48Ms/LR6VBo1wTOnkfvjLxT/tQ2vqCjUHnq74XXGhkyJyobMtSOVZRKUEEL0eHIVJXo1lUplzZboLazDNyQo0SGNmRK1FDfMwtGR6UCbSgwM5UhlGbtKChgwwP4ztK04F4BJwV2/kFsQEU1qWim/5WW2GZT44MhBzMD50SPx6WTx1inBEcwMiWRj4TG+zkrloiHtH35SYzLywsHt7QpI2ArQefDkuJk8uvcv9pYV8nrKbv4ZO6HDQRULRVF4J20f3x5NQw2cHTWc8waNaLEoaVJ5MSsP72dvaSF371rPHbET2pxVpaOyqir4LPMQf+RlY6b5jYSXRsO8sEGcFz2iWYBL9C5S66ltageZEibFbJetZFsA1JZHG0WDFZOJkm07+ePgIUwmE76xIwiePgVVC1kRTYMStn+dPS1TYmJQOG9NPt7687zwKNYVHG33+/0bMtA8B0TgOyKGipQ0yrduJ2DWdCptMk6aBjtqTC3VAxJCiJ6lZ4WRhegHZocNZIx/MKP8g9zdlF7FdvhGZ6cDtWUpzNi0rkS1ycje0iL8tDpi/br+O5oXFoVGpeKPvOwWq61bHK4sZWPhMUL0npwWOaxL+7xq2Bh0KjVfZqVQWOt42rmmVh7eT1Z1BZOCwjk/emTbb7DhpdFy7+jJhOo9WZOXxeqc9I42G6i/kXkrdS/fHk3DX6vnufGzuTpmrMNZUuL8gnh63EyuGDoag9nEMwe3sq6hin9XKYrCqqwUbtq2hjV5WfhotcwPH8T1MfHcHpvIVcPGMCd0IGYFVuekc/O2tfwvO81hpX9nOFRezNupe7l39wau/vtXrtv6G/fu2sB/jxwgubyk2/Yr+rZak4mUipJ21R9oqVbD55nJnLX+e9IbhlXsLS3kos2r2d6QFWFSFL7KSmFp8i4yqyuavd/CUFhEznc/UrbvAAa1mtC5swiZNb3FgAQ0H76h2GVK9KygRFPTQyJ5b+qJXNzOukV+2sZhcYFTJqLx9MSQeoTqzGyqbOr5mJpU9a/uxlo/QgjhLPKoVggXmxIc0eVhAf1RiE2hy6yqCrQqNeFdGLYzqiHgcKThItpid0kBRsXMhKBIpzxpC9R7MCkonL+LctlWnMv0kJbrPKzNq7+RPisqpstTeg7w8uGMgcNYlZ3K6pwjXDJkVJvvOVxZyv8dO4K/Vs/tsYmdynII1Hvw79FTuGvXet47vJ+ZoZEdnh3lt7xMvj92mECdnifGzWSoj3+b71GpVJwXPZKBXj48c2Ar/0naQYjek/igzs+IYDSbeTFpO+sKjqJXq7lo8ChOHzisxWFXFXUGvs5O48usZJan7SW5ooTbYxOdWuMipbyEN1J3c6iFwMPR6kr2lhXyeWYyCQGhXDlsDCPbyMoR/U+d2URmVQXDfPyb/X0/dWAL24rzeGTsNCY3nJ/K6wzk1VY3GxLV0jeDpbjuz7kZXBsTz57SAiqMdSSVFzMxKJw/87NZeXh/i+0K0XuSX1FGyY5dlO+vz1LxjBxAyJwZaH1azzyy/D1ODxnA5sIcJgVHsLUhENLTMiVaEurh1e51/XWN2XMaT0+CZ03HtG4Thes3UTKy8Tve2KSAZkldbdcbKoQQ3UwyJYQQvUJIw8XbzpICyowGRvgGdOmi01erw1ujJa+myu7p2tai+qEbk504BndBeP30bhsKWp6FQ1EU1jek8c5xMEVpRy0cOBQV8EtORotV3pv6IjMFgIsGxxKk92xjbcfi/IM4NXIIlSYjn6Qf6tB7j1ZX8FbqHtTUT4XXnoCErZmhA7l2+DjqFDNPHdhCeZ2hQ++3UBSF11J2sa7gKBGe3rwwfg7nR490WAfGV6fnH0NH8VLiXMI8vFiTl8WzB7a1q9/b05ZPMpL45851HCovYYi3HzcOH8ebk+bz7ezTWTXrNF6feBzXxsQT6enD7tIC/rVrHV9mJndrxobofV5M2sGtO/7g74bvOFvbGm7kd9tkjv1z5zpu2/EHGZXlduu2VuhS1xCIs2RoVZuM5NVU8XlGy98FKgU8s45xdNV3lO9PQq3TETxjKuEnH99mQAIagxL3jJrEqxPmMcumuG9vCEp0hK7JsBfvwYMYMjYeU00NB9autS43K4rd335BbbWrmiiEEJ0mQQkhRK8Q6OGBRqWyPgW6bOjoLm1PpVIR7ulNjdlkN6tDSkUpAOMCO/+UvanEhm0dKCtq8fXUylJya6qI8wsirANPzlozwNOHCUFhFBhq2NZQuNORo9UVrM/PJkCn58QBg7u874sHx+Gt0fLDsSNkVTlO1balKAqvHtpFtcnE4uhYxnZy1hPLTBwldQbeTWv5yWxbPs08xK+5mYToPXkmYRYx7SyeGeMbwLMJsxjo5cPGwmN8cORgp/ZvoSgKy9P28lF6Enq1mptGJPDaxOM4beAwor390KjU6NUahvj4c1ZUDMsmL+DG4ePQqFS8d+QAS5N3SWBCWFkCn3tLCx2uYzvk4VhNZcP69kPcWrvX11qCEg11f2pMJpbs+KPZkA1FUajOPkr5j79w+Lc1mKqr8Rk+jIHnnonfqNh2Z2pZCurq1BpimgSq+1pQwpalLseUBfXBm9zkFCpSUoH6TAnbIRsFHRjCJ4QQ7iJBCSFEr6BWqQhsGAowJ3QgCU4IGkR41A//yKupsi7Lr61Cq1IR0oVsgaZ8dXqivXzJqamixNA8ldaSQTGrk1N4OnLKgCEAbdZ3+CorFTNwVtTwLs+aAfWzmyyOHomZ+poM7bG7tIC9ZYUM9vbjwnYW2HTk6mFjCdDp+SknnR0FrQdkmkqrKOWT9EN4aTQ8Gj+9w0GicE9vHhs7HR+Nli+zUvi7MKdD77e18vB+vjt6mACdnhcS57AwcmirN2salYrTBg7jP4lzCdZ78ktuBm+k7G5XnQDRf4R6OP5ua+lGPt9gf1Pb2sdJo65/f1HDjXCJodauCKOiKNTk5JL306/k/fw72pIyggYMIOLUEwmdOwuNV8f+3ryaDHXT2gyZclSQs6dRWiie64hvQwFkyxTNEf4BhMydiVFRKN60BUNxCSZFsevzalPzaVeFEKKnkaCEEKLXGOkXiK9Wx1UxY52yvfCGOhW5tfVBiVqTiZI6A6EeXk4vkhbXUNj0YLl9toSiKKzPr3+COSvUubNGTA0eQKDOg61FuZQ5GMpQZzbxZ34WHmoNp0UOddq+T40cil6tZl1BNjXtKLT2aUN69wXRI9Gqu3Zq8tPpuSamftq9V/dsb/dNuUlReD1lN2YULhs6psPDRywGePlwe+wEAF4+tJMKY8dvCv4uzGFVdir+Wj1PtbO2hsVQH3+eHjeTIJ0Hq3PS+eHYkQ7vX/Qttn8DrU1H3dL3XtP0f9uaBX/mZ/Povr+sP1uHbxjq37Ox8Jh1/1XpmeT+30/k/vgLNcdy0fn7sWDROcy84AI8B7SvztKJEfaZXJ5q+2Oxz5Toe5e47045kfemnkhAw0wcwXoPPAdE4DdhHGajkYK166iprbX7zqlTFGpMRv69ewNr8jLd1XQhhGhV3/vGFkL0Wf8eM5l3Jh/vtCEOEQ2FMnMbMiUKGi6knbV9W6P8ggE4WFZstzy/tppjNZXE+Phb2+MsWrWaycHhmHGcsr23tJBqk4kJQWGdnoa0JT5aHbNCB1JtMrGhjWnv9pUWsqe0kCgvH2Y7qabGcWFRDPXxZ39xIfsdDJtp6pecdJLKixnpG8jCLgZoZoRGcmLEYMqMBr7MTO7Qe4sNNbySvBOA22ITGdKJ4EiUty8PjZ2GRqVixeF9ZFaVt/0m0WeVGRuDksZWgnQtzRCU30pQ4rmD29hiU6NCrVKRXF5CSUMQ1FRTQ9m+Axz7+jvyf/+D2vwCdIEBhMyZQeTZZzB5/AQ82pmd9VzCLBIbZk2yaFoU2DYQ0VuGb7RWo6Mpb62WUA8vazDGktHnGT8Gr6hI6kpKWbv6BypsgtBGs5k1eVnsKS3kxaQdzm28EEI4iQQlhBC9hk6twVenb3vFdgq3Dt+ov+jOr+nGoIQ1U8I+KJHecLM4wjfQ6fsEGNdQm8FRUMJS9G5qN8wIY3mq+XNORqvrfX/0MADnR4902o2ESqViUVQMAN9mpbW5vllR+Cqrfkz2jSPGOaUdlwyJw0Ot4X9H05rd2LXm3cP7Ka0zsDByKNNCBnR6/yP9ArlkyCgMZjMvJG3HJMM4+q1Mm9ouxiaBB9u6I9UmIzuL8/kpJ936NL6oyfCNpu+39WH6QW7fvpaaYzkU/LGe7M9WUfz3NupKy/CICCf8hPlELjod3xHDUanVRHv7otc4vhSNb/j+GuUXxJiAECYFheFvMzVm0ywo27/bnj4lqEVHhm9YnB89ksXRI631blQqFSFzZqHx9uLgnt1s+XuzdV2jYrarmySEED2RTAkqhOi3rJkSDcM38hpuHC3BCmca7O2Ht0ZLcnkJJsVsfaKX3jAlabS3n9P3CRAfUF97o2mxOqi/oLcEJSZ3Q1AiPiCEAZ7e7CsrIru6gigv32br1JlNbC3OxUOtYU6oc7IkLI6LGMT76QfYWHCUvJqqVqeQ3V6cx7GaSuL9Q4htmC62q0I9vFgUFcNnmcl8kp7ErbGJbb4nu6qCP/Ky8NfquXLYmC634dxBI/irMIek8mLW5x9lXrhz+1j0Dl83BNyg+ZSRtsOryuoMPLB3E9BYr6HObLabScaSaWEbEFAUhdrcfIqOpFN1JANTdf13qVqnwzd2BL6xI9CHBNvt96yBMYzyC2J7seO6L9fFxJNeVc7EoPoMCV+dno9nnML5G/+PapOJsCZ/0+peGJTojITAUBICQ+0KWmq8PAmbPw/1lt2s/Wk11VPH4RU1sFmNCSGE6IkkU0II0W9FNGRE5DcM38hvCE6EeTo/U0KtUhHnF0St2cThhkAEND7BHOzTPUGJCE9vwjy8OFxZZpfSC5BVXUFuTRUjfAMIdmJhTwu1SsW8huEY24vzW1xnd0nj8JGmqdhdpVdrOGdYLGbgp3Zma5w+cJhT23DuoBF4aTT8kZ9NVTtuDD7PTMYMnD1oeKtj/9tLo1Jx2dBRAHySkSTZEv1QlbGOLUWNBVeLDbV8lnHIekNrW39gnc1Qq2qTCQCD2YTBbBuUqP//nNJiKtOOULhuI9mfrSL3x58pP5CEqboaz8gBhMyeQdQF5xI8Y2qzgATAedEjUKlU6NWO/+4HevkwP3wQAQ1Fji3emXwCr0yY12pWW28ZvtEV+ib1dzzCQ5l5yqkUG2ooWLuOutL6c42jmkJCCNFTSFBCCNFv+Wh1eGm05NZWoyiKNcU+vBuGbwDWJ/Ap5aXWZRkNwzeGdFOmBNRnLCjAvia1FSxZElO6IUvCwjK1p6PpUDc1FMKb3oVhCq05JXooAFuLcx2uc6y6km3FeYToPZ3eDm+tjtmhUdSaTdYpGVtrx5q8LPy0Ok6LdF5wJCEglPiAELKqK1iXn+207YreIbm8BNvciK+zU/kg/SAfptdPWdvW0KL6oIQJY2UVVUfSObRuPcuWvcZTzzxBwR/rqUhJqw9EDIggeMZUBl14HhGnnIDvyOGodY4Da7qGYERrQQlHswEF6D0Y3sZUvf0hKNFSMc+hY+LRjYnDbKijbM06TLW1EpQQQvR4MnxDCNFvqVQqIjy8OFJVToWxzlpbIqwbhm/Ub7c+2FFcVz9G26woZFSV463ROnUK0qbGBYSwJi+LvaWFdjUKLIGCiUHh3bbvUX5BqKkvZqkoit2UlmZF4e+iHNR0X2Ak2tePAZ7epFaUUmyoIaiFfl5XcBQFOGnA4C7P/NGS4yOi+SU3g19zMzmpYZrWlvyel4kZhTMHxuCtdd7pWaVSccngOP69ZyNfZ6VyXPggp21b9HxJDXVshvsEkFrZGBDNrqqgzmzint0b7NZXTGbqysqoKy6hrqSUguISXlm3g+yk3fUreHiRHRqJ2ssL39gReA6MxHPgADQe9tkMbbHM1OHh4G9uWCdnv7Hoi7NvtEeVqY66sbGEFxZiyMom/9e1FJ93rrubJYQQrZKghBCiXwv39OZIVTm5tVWNwze6KVPCv6FwnOWpVV5tFbVmE6P8guxu1p0t3kGxy6PVlUD31bOA+kyBYQ03Q/m11XZ1HZLLSygy1BLvH9IsPdtZVCoVk4LD+b+jR9henM/xEdHN1tldUj+0pLsCI2P8gxng6c3+siKOVlcwsIXaGgAbC+qzRuZ2Q92HcYGhDPb2I7WylOyqCqJ9u+93LnqOmpoakvNzMVZWEe0dxMHSUsy1dZgNtRzNLeK/WfmUHNyBsbwSY2UlpspKjJVVzbZTHAH6oED0YaEMGzaCWxecwY8VBaRmdWxmGVu6hmCErkmmRJiHFy9PmIu3pmuzAan7fqIEAOcMGs4qm5ohx6orQa1m2mmnsfObbynJymTv6p/RzZmOqhuCrkII4QwSlBBC9Gu204Lm19YQoNM7vbaBRUCToERGZf3QjcHdGBQAiPT0wUOt4VhNpXWZWVE4Vl2Jv1aPrxOnAm3JmIBgUitL2VdWZBeU2FtWHySZHNx9mRoAk4MiGoISec2CEnVmEwfKivHRaNtMB+8stUrF8eHRfJSRxB952Vw0JK7ZOtlVFaRXlTPE26/FgqDOMDt0IB9nJLGu4CgX+zZvg+hbfv55NR//8j3b8nMxA3/5BXHUZvafCo2WbA8vSqvKSQgIZXdDMVwvHx8Uf190QYHoAgPRBwVy+dxTST64FYBAvyAUPx92Zh/oUvsshSg9bIISJw0YzJVDx+DnhFmWNP1khPJVw8baBSVyGmokDfDzZ8xpC8n59BPyDh/GS6Mics4sdzVTCCFaJUEJIUS/ZplpI6m8GKNi7rYsCWieKWGpJ9FdRS4tVCoVwXpPjtVUUmsy4aHRUFBbTZ1iJsbLp1v3DfWZAt8dPcz+0kLm2wwdyGoo8jnMp3uCARYJQaFoVSp2FOdjUhS7seZJ5SXUmk0kBg/o1nTvaSED+CgjyRqIacpSW2NmaGS3tWFOWENQIj+bi4dKUKKv8wsOZpfJgDYkGJVGw6DwKNKLPVHpdGg8PFB76AkKCqXSbOCW6SfwyOHdaL19GBcU1uxzWmcTqE0qL+aqLb8CEKL3JNzTiwNl9lMdTwoKZ1srs2rYsi3WOD4g1CkBCeg9s2/MDYvik4xDnDUwxinbswSfwzy8yPf2Jvyk48n5v9VUJKdS4uWNMuu0bs3ME0KIzpCghBCiX4tquClfk5sFdM90oBbWoISxPiiRXuWaTAmAEI/6oESRoYZILx/rhetAFwQlRvvXV95vWuwyq7r++Ad5d09mgIWXRssY/xB2lxaQUlFCnM2Un7sahm4kBIZ0axuG+PjhqdZwqLy4WWAEYGNDUGJGSPcFJaK9/Rjq7ceRqnIyKssICenefhfuFTcugcizTrP+fGbcBJKTdtitU6fR4msyMmZ4LHOUanJrqgjxaF53pcLBzDERnt7WDDCLBeGD+GfcRC7dvJqSdhRYjLHJUDLjvNlhesttd7S3H6tmndZqwc+OsGRKhHt4c0hdgtbXh/CTFpD7w88U7t7LK6s+IXhiImdGDQfqv5dndGMwVAgh2qN/5LYJIYQDk4LDGe4bQHFdLdB99SQAfLV6VDRmSmS6MijRUOCx0FBfZPNYQz2JgZ7dH5QI9fAiwsOb9Kpy67SYiqKQWVWBXq3u1j63GBtQHxg5XFFqt3x3SX3KekJgaLfuX6NSE+sXRLXJREZVmd1rRYYaDpWXEOHp3eXifm2Z0zBF6/r8Y926H+F+NWaj3c8+LdRoqGyYFtRbq+OBMVNZOvE4a60HW0erK1rch5dGy7gA+78dy3CM1yfOJ7AdWQ+hHl7MCR0IODdrqjdNfuusgARgneo1zMPLWkxUHxRE+MkngE7Liv/7huXffcXX2ancuWsdTx7Ywrai5lktX6Ye4pq/f7UGboUQojtJUEII0a9pVGqWjByPuuG5Wrhn990ga1Qq/LR6a1DiWE0VHmpNt868YWENSjRM/2cpchnpgkwJqM/IUGgMipTVGagw1jHQy9cladaWjJCjNnU1akxGksqL8dfqGeLdvcEAgNH+9RkaTVPdUxsCJeMCQro9rXpSw0wrjqZoFX1Hjclk97Oj2jEeao1dIELbwjCmlCbBPAsvjZbTBg7luLDG4qz6hqEeAXoPRjVkSVmc0/B0vqm7R03ivaknMtSJQTmlV4UluuakAYObLQvz8LL7vXqEhhB+8vGodTpKd+7h/35ZTW5DVkVLQafVmYc5Wl3J/Xs2dV/DhRCigQQlhBD93gjfQC4YPBKAWJvU/u7gr9NTazZRYqil0lhHmIeXS8b3WlKyLUGBoy4cvgEQqK+fXaPYUJ+RktlwERzdTUUdm4psyAjJqW6cWSC9shyjojDaP9glgRHLDdrBJgGB9Mr6zAlXBEaG+PihUalIc3CTKfoOyxNzC09NyyN2fZoEK1oKSiSXl7T4Xi+NFo1KzRlRjfUQPG2e+jf9q3KUEaBSqQh1QcZUX3XziATOGWQf8PHV6pr9Lj3CQgk/6XjUWi1JmzdTvHUHiqJQ3sLwHINNUEtR+k+ARwjhHhKUEEII4JIho/h0+inW+gfdxVJXIq2y/qawpfHb3SFEX3/BX1jbEJRw4fANgKAmQQlLkcvuridhYQlK2GZKFBjqs0YiPLuvjogtSy2LppkSrip4CvXTL0Z7+1FcV0tBdXW370+4T22TTAnbG9RgfeMUvE0zKLQtzKVZ0jC8rSmvhkCHzmbberughP229C6YknJ26EA81RoGuOjvuifQqNTNhgF6arRoW+hvj/BQwk8+AbVeR9mefRRt/Iu86spm6xU1nCsA9pQWSmBCCNGtJCghhBANfJ1U9b011qBEw5PqUL1rng5agh9FhhrMikJOTcN0oC44ZoBAXf1NkOXmxlrk0kWZEv46Pd4aLTnVldaL64KGi+5QFwWG/HV6ohqKjJYaGm/yLEGJIS6oLQIwoqGwYFKpDOHoy5pmStgGG2yzEny09hkULWVKAPhrm39XWIIStoVbW5tSWefE2gmO3Dt6Mp/PXOiSffUktrMHaVUqdGo1Wpvfi21GjEd4KBELT0Lj6UnFoRQ2fv8dpiaZEcW1jd9R9+3ZyNZ2zqYihBCdIUEJIYRwIUtQ4nBDyr6rUpaDbQpdFhpqMJjNLqsnARDUsP/ihuEjjZkSrrkRV6lURHr5UGM2WQMjlvoaIS4KDEHjTCSHKkoAMDcU/PTWaF1SWwQgpqGY4KGS4jbWFL1ZTdOghM1Nq20wtGkBzJYKXULLwQavhmW2T+TtMiWaJF24IlMCes90oM5kGxiyDNWx/V3aBpU0KhX6oCAiTjsZrZ8vmYcO8cEH75FZUsTLh3ZwpLIMo2K2237TOjT1xYrLMTVZTwghOkOCEg4YDAbefPNNDh486O6mCCH6EMuFoaW4oaue0luDErU11pk3Il2Y3hzULFOiPigR5cLAiGUIh+X4CwyuzZSwbUN+Q0Akr6aKWrOJwd5+LqktAo1TMB4s6fmZEnIu7rwas/3wDdsb1DC7TIm2a0pAywEF74abX9v3eNgEJdRNhm/4uygzqz+yzYrwauH3Ytv3lt+/zt+PiFNPwuTvS0pKMne99AyrUw9y87a1zbYfoPOw+3lT4TFu3LaG11N2O/MwhBD9lAQlHNDr9SxbtoyysrK2VxZCiHayXBhmN9yUuypTQqdWE6DTU2iosQYEBrpo6ATYF7o0mE3k1VQR5uHlsPhed7BkhhxrqCtR0BAYcGWBvYCG339pQ3Am3TJ0o5unArUV07Cv3pApIefizms2fMPmBjXMs5WghINshpaKVHq2EZSYGhJht/6koHDOHBjDo2Ont9V80UG2wzcsxUZtA1EBLQQlALQ+3oSeciLRw2IoKcgn57sfqS0obLZ97ybf1b/nZQHwc06Gcw5ACNGvSVCiFQkJCezbt8/dzRBC9CGWC0NLyTBXPqUP0XtiVMyszz8KwEi/QJft2zZT4mh1JWZcV0/CwlrssmEGDkvRz2AXDZuAxqeNlmlhrUUuXTSMBcBbq2Oglw9HqyqoaKHqfk8j5+LOaTolqG2wwbbArblJAUPbAINtnoNerWF6yAC7G9rGJ/It15Q4LmwQzyXMsv6sU2u4bng8k4LDO3g0oi0tDd+w/V3aBp/CmgRi1R56Fl5wAf5xsZhqasj94Weq0jPt1mk6nKPKaB/0EkKIrujzQQmDwcCyZcs4duxYh99711138cknn/Dhhx+SmZlJVVUV1dXVdv+EEKIj/JukwLqq0CVASMOF6O7SAjzUGhICQl22bz+dHjUqig21Lp95w8Iy/WlOTSVmRaHQUE2gzsPhGPru0JgpYR+UcFWRS4vhDUM4esPUoHIu7pzWakp4arS8NvE4JgWFc2rkULv1dI6KI6o13D96CiumnGBdZg1K2NWUsAlqqFR2Mxpp+2GtB1fRtDB8w/a7zXaGFNsZhyzvqjCb8J42iaDJE1FMJvJ//4PKXXushYHrzPZBiUpTfUDTkpVxqLyYvwpznHdAQoh+xXV5s25SW1vLK6+8wuTJk4mMjOzQexcvXgzAE088wZNPPtniOgcOHOhyG4UQ/YftuF4PtabZdHzdybaQYkJgaKtV8p1NrVIRqNdTYqgls+FGPNrFmRKWKQKPVldSWleLUVFcmqkCjZkSluEbGZWumw7U1pTgCDYWHLNLte+p5FzcOdXNpgRtvGnVq9UM9fHn0fjmwyhsAww+Wp01m8ZDo0Glsp/k0/IdYjf7RpPPlG2tFFfVTemP7IZvWH8vjcuqbIJUXjZDMcI9vcmtqaKgtpoiQw3+48ag9fej8M8NqPcdIj+vgJC5M6lrkilR2fC58G6YveX15N0cqSrjsxmnunRYnhCib+gT3xozZsxw+JqiKCiKwo033oi24Ytz06ZN7druU089JSdQIYRTBdhUQA/x8HTpd4ztMIUpQa5Pnw7UeVBkqOVAeX2BRVfNvGERrPfEQ60hp6bSOnTDlTNvgE2mhKEWRVHIqq7AR6uzDm9xlRMGDOasuFgqS2swm5W23+BGci7unKaZEiq7oITjYJRtRoWvRkeu9T3NM4osW9Q5mH1DuE5LhS5tZ8awFPjVqtR2v6MIj/qgxKHyEixrew+JRnfGqcxMyuR/B3aT+91q/p+9+w5vqmz/AP49J6tN9y6lZUMplNKyZQooIqggKDgQUXAgICqKijhwC27UVxDEhfo6UF/9IShuBRRkll0KhQLdO02adX5/pEmTNmnTNm06vp/r8rI5OeM5T0JOzp37uZ/ckA5AbA/bdtbhG9bZW8pMBpgkCSUGPYMSRFRvbeJTo6ioCGFhYZg+fToUCsdfHXU6HdatW4dLLrkEHTt2rNd+p02b5slmEhE5ZEo059ANwBIEsRoUGlXLmk0jROkDaEpwuNgalGjeTAlREBDto0ZGeSnSNc07+4mVn1wBmSCg2KBHiVGPCrMJMb5+Xrnp9pHLoWn2o9Yfr8UNUz0oYa+2DBn7TIlgpQrWN4mzYIM10Gk/y4azDKxlCYNRVUmHmoKs2vAcADDa1Qsprxxu0Unt7/BaRvr4AsXAv4U5AIDeASE4WloIRXAQli66BsYN7+Drf/7Ezxs/xjCZGsnJAwDYDd+oPJZ1eEep0QBWDCGi+moTQYkvv/wSTz31FLZs2YKlS5di/PjxtudKS0uxbt06TJs2DYMHD27Q/tPS0pCamoqsrCxMnz4dERERyMjIQFhYGPz9m/dLdUNotVpMmjQJkydPxv333+/t5hC1a74yOeSC4JWhA9bhG53VAYhsxulArYIrswF0ZhPUMnmzZwcAQK+AEGSUl2JbtqWIW1gzzrwBWH6tDlIoUWzQI6/COiVp87ahtWoN1+Jt27Zh1apVAIDFixdj0qRJXmuL/Q3pgh5JDs8paxm6JXdRe8A+kLFu8Hhk68ptnyNCLcM3AGB4eP2Gz1L9yUT7QpeW18BoVwdica8UrDl5EA/0HuhQSyZKZXkNrfVtRkbE4GipZWYeP181Lpk2Db+aymA8dhpffvkZ0tJOYPiEy2Cy1pqozMawHqvUoMc5bRlePrYXt3Ttg8SgsKY6ZSJqQ9pEUKJPnz745JNP8PXXX+OJJ57ARx99hEceeQQ9evSoe+NaaDQaLFu2DFu3boVcLofJZMKoUaMQERGBl19+GTExMXjwwQc9dBZN5+2330ZSUlLdKxJRkxMEAYEKFQr0uma/Ge0TGIrEwDBM7NC5WY9rFaKsCkJ09PX3SnbA0LAo/Jh9BodLLNka4c0484ZVYOUwlgyNZZrL6pXwyVFruRYbjUasWrUKGzduhEwmw8yZM3HJJZdAqVTWvXETuDauJwZGR2NyeCcIkuO/tdoyJeyHYkS7CEpE+/gh2m4GD3f3TU3Hvq6HdfpO+zoQiUFhWD3gYgCwFRsGgN6BIQ77GRQShdhEf3SLDAVMlgyZoKREDE5Mgfyfffhm+2949o8fEDZmBFQR4aiorF1ikCz/LzXq8WbqAVzQabAuPRWvpoyx7bvMoIe/wvHfg9FsdjkNLRG1H23qU2Dq1KnYsmULevfujWuuuQZPPfUUioqKGry/559/Hnv37sV7772HPXv22CoQA8CYMWPwxx9/eKDVTev06dNIT0/HmDFj6l6ZiJqFdQhHcwcl1HIFnu8/AhdHxjbrca2C7YISzT10wyo5OMJhbLw3shSsdSVOVv5a6Y3ASGvSWq7F+/fvR3x8PMLDwxESEoKkpCT8+++/XmtPYnAYbumd6JDWb+WsPoSVfW0C+0yJ2rIrHPfNoIQ3KISqfrcGhozVZsywsn8tO/r644vhkzC5QxcMD+uAGF8/DAmLRnywZdYUa5AqICYGCxYsRnZYEAylpcj+v60oOXgIFZUFL63DN4oMelzQWcb8BNjVUPr+wmlct3MLfss5Z1u2MeMopv71Hc7ZBUmIqH1qU0EJAPDz88ODDz6ITZs2ISMjA1OmTGnwr3E//PAD7r//fgwbNgyyahfjmJgYnDt3zsWW7tm1axfuvPNOjBw5EvHx8fjll19qrLNx40aMGzcO/fr1w4wZM3DgwIF6HeOFF17Afffd16h2EpFnBVZ+UWtvN6P2wzWae+YNKx+ZHMnBEbbHYc08hAaomoHDFpRgpkStmvpabNXYa3JOTg6ioqpqtURFRSEnJ8cjbfMUawFEdwtdOgQl3Pw12931yLM6+vrZphaOqByS0aNy6t9ufoEO69pns6hEGXxkcszvkYRlfQZDrPad2fpeMZjNUKvVCBs7GqEXDQEEAYW79+Lkt5uRk5trGy6UrauqVGOyCyB+nHEMAPBhRtVMOZ+cOQ4A+D3XM/+Giaj1ahPDN5zp1q0b1q1bh99++w2nT59Gp06d6r2PiooKBAcHO31Oo9HU+HJUX+Xl5YiPj8e0adOwaNGiGs9v3rwZzz33HFasWIH+/fvj/fffx7x587BlyxaEhloi2FOmTHG6702bNuGXX35Bly5d0LVrV+zdu7dRbSUiz4lT+yO1OK/Zp4H0tpaQKQEAw8Ki8U+BZU6BMC8EhmyZEhoGJdzR1NdiK09ck1u6j4ZeBoNkrnHjac8+ld5+aFFdwzJmxPVEiUHPmVK8RBAEvJYyBqc0JeheGYwYFdERPjI5+gQ6vj/tA0d1ZcBYMyUMkhkHi/JQajIgoHcvqKIikf/Hdmiys/HGm6+iJDoIAX3iUaCvsG1bZKj6O0zlg0JDBXJ0WmzPu4DBoVXlMNXNODU2EbVMbTYoYTVmzJgGD13o168fvvnmG4wePbrGc1u3bkVKSkqTtm3Dhg2YOXMmpk+fDgBYsWIFfv31V3z11VeYO3cuAOCbb75xuf3+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1F5RbNwXDev2jd1PW8S+ca56v7SV/rm9Rz9c26mnR4pNtqa+sc9K6OQX0ORtdtU3Q8OjIZzYjwCFEmpF838ZDqoMzmgrZ0eI8lU3++vXmt43TX0ttmrsNTkyMhLZ2dm29bOzszFy5EiPtM1TVDIZVKjjJtR+SlC79Pu6hmXM7pLQuMZRo8lFET0Dgm2PRUHA0LDoGuvZv5Z1va7W94PBbMLDB7dXbRcSjOjJE1Fy8BAMOaUo/Gc3tBlncP7ySba5YovtghKWmVqKYYaEZ4/swgi74qd+8jZ/O0JEdeCnQC0WL16MW265BXPmzMHEiRMhCAJ+++03vPfee9i6dSs++uijJju2Xq/HoUOHMH/+fNsyURQxfPhw7Nu3z619LFmyBEuWLAFgyZxIT09vcEBCLhcRFuaZXzZDQpwXxyL2jT2FQlbjPdeW+icagXWvVA+toW/k/pYAgEwQ0LdjlNtj1Buret+EwR+PDboIfnKFxz7X6qNjseNr37NDuNNpFJtDa3jfePNabOXONTkpKQlHjx5FXl4eZDIZ9u/fj2eeeabBx/TWDwEKu/eiQub4i3prCGK5ozUF5ZqCr10QwP41trLvH6W8sj6FVHNKV0EmIii5H27slIgfVr8AXXYO/vnkU8j7JSCgTwJKoIckSJAJYo2hcn/lXajajyC0mteivb93asO+qR37p3YMStRi0KBBeO+99/DSSy/hqaeegiRJWL16Nfr3748NGzY06YwWhYWFMJlMCA8Pd1geFhaGjIyMJjuuK0ajGSUl2kbtQxQFhIT4obBQA7OZ85XbY9/UZDCYkJ9vKX7F/nGtNfWNJEno4OOHcJUPSosa93nijtr6ZqifJXXY+h5rTnJ9VVuCFEqUFWnR3K3w1PsmMNAXCkXTBlS8eS22cuearFAocP/99+OGG24AANxzzz1QqRo27a03fwjIlxlsf9u3wVet9EoQrym1hqBcUzBrqwIRtb2mISF+iFBYZtUoMRtcrtehexyir7gcxQcOQnPwMIy790Jz8hRCLxoCmb8CYT6+8PFxnZWm9PVOgLgx2ut7xx3sm9qxf5xjUKIOAwcOxMcffwydTofi4mIEBgbC19d7438lSWrQeM1p06Y1+tieuuExm6UWf/PkLewbR9X7gv3jWmvpm9dSxkAUPPd54o6W1jf2FenDVb5ebVtL6xtXWtq12Kr6NXnChAmYMGFCo/frzR8CikqrChXaB+2Ky7ReCeI1hdYUzG0KGoPe9rez19S+fzTlOgBARkmxy/19eDgVgkxEcEp/+HXrgoLt/0CXlY2szT9grdkXs66aBo1W73L7wtLyVvPeau/vndqwb2rnif5pjh8CvIVBiVrs2LEDycnJ8PX1hY+PD3x8mq8gWkhICGQyGfLy8hyWFxQU1PilhoiotVBz7LCt0CXgWEiQnPPmtdjKG9dkb/0Q0EUdiInRndE/ONxhO4PJ3OZuNFpLUM7T7OuG1Hb+ZrMEWWWBCJ3Z5HK9bdlnq/YdFITIiZdAczIdRf/swe7d/yAvPR05vbpACguA4GR2Fr3J1Opeh/b63nEH+6Z27B/n+O2wFrfeeitkMhkSEhIwaNAgDBw4EAMHDkRISEiTH1upVKJv377Yvn07xo0bBwAwm83YsWMHbr755iY/PhERNY0gu6lRvTH7R2vjzWuxVXu6JguCgIU9+9se+8kV0BgNiPZAYV5qGZSiDHO6JLg184+iWiHMjr5+OKfVuFjbQhAE+PfoDt/YjuiWVYrS4ydw+KefkeurRMjQQfCJjnJY32A2AwCydeX4KOMobuwcj2gfxxT3YkMF/OVKyDi7C1Gb1CaDEpIk4c0338TMmTMRHh5u+zsiIqLuje1s374du3fvxr///ot//vkHH3zwAcxmM7p164aBAwdi0KBBuOqqqxrcTo1GgzNnztgeZ2Zm4siRIwgPD0dERARuueUWLF26FH379kVSUhLef/996HQ6XH311Q0+JhEReZe/XAERAsyQmCnhhqa+Flvxmuzc6pQxOFicj2FOZnGg1uuauJ5urWefVQEA46M64YPTR9zaVubjg+RLhyG1RxfkfbMJ+pxcZH//I9SdOyF4cAoUAZZpsfWSJSjx+ol92F+Uh/NaDV5KHmXbT5ZOg3m7fsLwsA5Y1mdwncf9JecswpS+SApmZjFRa9EmgxJmsxlvvvkmxo4di9DQUNvf9Q1KhISE4NJLL8Wll14KwDKH+c6dO7FhwwZ89tln+Pzzzxv1RSg1NRWzZ8+2PX766acBAAsXLsSiRYswadIkFBQU4PXXX0dubi4SEhKwbt26VjMfOhER1SQKAgIVShQZKtz6pbK9a+prsRWvyc5F+qgxnlkS7Zai2nCLCJV72V1yQYBRkqAxGvCzUYOoSRNQfuo0inbvRXnGGWjPZiKgT28EJvWFvnJoSKHeMoXoOa2lvoS1Zss/+ZapdrfnX3B+sEpakxHbss9izcmDAIDvRjX+c4GImkebDEoAlg8yZ3/Xl0ajwd69e22/0hw4cAAqlQoXX3wxBg4c2Kg2Dh06FMeOHat1nVmzZmHWrFmNOg4REbUsQQxK1EtTXouteE0mqkkUBMgEAabK79LhyqrPLB9R5rLWRIjSB7kVWpQZLbN2CIIAv25d4RsXh5LUwyhNPYyS1MMoO3YCxy4ugT62F1SVQ0UqTJZ9Lju4HaIgoFeAe0O11pw86FDfwiRJHO5B1Eq02aCEJ0ybNg3Hjh1DWFgYBg0ahIkTJ+KRRx5BfHx8g2bAICIiAoBoHz+cLS9FjC+nBqsLr8VE3qUQRJgkS6DAfshZnDoAJ8qKnG4TolQht0KLQoPOYbmokCM4JQmrrr4BW3/6EZv++BlH/9qOlzMuoCguElLHSBgqy1gcLM6vccza/JXnmElRoNdxiBxRK8GgRC2OHTsGuVyO5ORkpKSkYMCAAfwSREREjbawZxKydD0QykKXdeK1mMi7FKJoy4gIsxu+0dmvlqCEwrJejq7c6fNDYrsi8OprsCPcD2FpZ6DJL8HZP08gXylDUHI/mEeYbeuer6OwppXWZHR4nK0rZ1CCqJVgUKIWu3fvtqWL/vDDD3jppZegUCgwYMAADBo0CIMHD0ZycrK3m0lERK1MiNIHIQxIuIXXYiLvstaVUMvkDrNxxPr6O6wnALAOmA5RWmYZytZpne5TJghQiCIUQYGIn3ApbgnpiGPvv43s40eR/8cOvFpoQFmQHH7du+FkWTEAQOlkOtHa5OjKgaCwem1DRN7BoEQtfH19MXz4cAwfPhwAYDAYsGPHDrzzzjt46aWXIAgCjhxxrwIxERER1R+vxUTeFa7yRYG+AuXVMhH85Ap08wtEuqYEAOAjk9uyFaqCEs4zJQDL1KQAYJDM6NAhBj0mTURB904o2X8QOzJOIr+0EMX7DiIwqS/8e3aHSRBsxS+rc1Y/rrZjE1HLwqBEHQoKCrB7927bf8eOHYPZbEbPnj09VlyLiIiIXOO1mMh7uvsF4XhpUY3lClHEayljcOWf3wKwFL60BSUUlqCEGa6LzVszMAyVQ0O0JiN8oiPhEz0eRTl58D1wENqz51Cw4x8U7z+IwMQ+KBs4HgG+NWeDKa0sqGmv+nAOV1KL87E+/RDu7z0AHatlfzSV33PPQSXKMJRT7RIBYFCiVpdddhnOnDkDmUyGhIQEDB06FAsWLMDAgQMRHBzs7eYRERG1ebwWE3nX+Kg4fJ+VgYEhkQ7LFYLokLXgI5MDBsu0noEKFUQItQclBEtQYl9RHr7MTHMIIqgiwxF5yVjo8wtQvP8gyjPOovCff7Ey51mMGjYCw4YNR2BgkG39UqO+xv7P6zTI0ZUjso4pbR868BcA4P1TR7Csz+Ba1/UESZKw8ui/ADhtKZFVmwxKCIKAmJgYKJVKh7/ra/Lkybaxqr6+LJRDRETU3HgtJvKu3oGheHPAxTWmMJYJjjUefGVV9SYUogh/uQIlToIF1uCG0q4+xYZThxGssHxXjw8IwbHSQss6YaGIGDcG+sJClKYegbZcjz/++A3/98s2GOJicOvEKzGoWy/onUxNujM/Czvzs9y+8W+u6UM1bmZwELUnbTIoIYoifv75Z9tj+7/r4+677/ZUk4iIiKgBeC0m8r7OfoF1ruMjq7qtUIoi/JwEJb4aMRnyymBG9cKVRQY91DI5etsFJWz7CwlB2KjhmNNjAM4dTMXSTR/CnH0W544cwdQBw9ChXz9IZjMEJ8UwXdWhqM5PrqhzHU8oqcwmIaIqbTIo4Ulnz57FunXrsGfPHhQVFSE4OBgDBw7E3LlzERcX5+3mERERtXm8FhO1XBdHdMSvuecwNjIWh0sKAAAKUQZ/Jzf59rN3KJwEEHQmE2J8/VweS+anxkVjx6GjXAPNiZOQZ5xHenoa/j5yEOd1JfCP7wn/nj0g862a3UhnNsFXVvctj9qNdTyh1FCz/oW7TmtK8HjqTtzVI4n1KKhNqd/cOu1MamoqpkyZgh9++AGJiYmYOnUqEhMT8cMPP2Dq1Kk4dOiQt5tIRETUpvFaTNSyLe6VjJeSR+Gy6M7wqQw6WIdv1EZuN/zDOnTDDAn+ctdDrrUmI4oNFRAVCgT06Y0BN1yP666bhQ6dO8NYpkHRv/tw7rNNyPv9L1Tk5EGSJGicFMF0RmU3/KQpORvS4q5PzxxHvl6Hpw7/48EWEXkfMyVq8cILL6BPnz545513HMaxarVa3H777XjhhRfwwQcfeLGFREREbRuvxUQtm0KUIT4gBAAQoFBCV6G1Dd+ojf2QikGhUdiWfRZA7bUddCYjig1VN/W7inIwoc8QXDrzOmzvHIHSo8ehOZEOzclT0Jw8BWVoCH40+mDUgMGIDQ6tsT/7qUSNTqYVrcsLR3ajzGjAU/0ucnubUrv2mySpXrUs3Mn4IGqNmClRi4MHD2LevHk1Cmv5+vri1ltvxYEDB7zUMiIiovaB12KilsnZ8IvAyiwHheB8+IYrF0fE2v4Wa7lHt2ZKWBklCSsO/Y0ifQUUQUEIHToYHWdOR+jwoVCGBENfUIhnP1qPSfffhU8/+wS7jqRCYxcUsJ/xw2BXLPPP3PN4+vA/0NVRlPKPvPPYW5TrENyoi32mhNFsdns7AAhoproXRM2N4bZaqFQqFBUVOX2uuLgYKpWqeRtERETUzvBaTNSyPNR7EP7KO19jilAAiFX746y2FMFKlVuFI+MDQlCkr0BySAQeThiEON8AnNeVuVy/wmzGeW1xjeW7CnNsf4sKOQLie8K/Vw/oc/NRdiIN5emn8e++PXhmy1fwDQjA81OuQ0rKQGh9qoaKGCoDBGfLS/H80d0AgMMlBRjg5DwBAMzzhgABAABJREFUS5aDlVEyQyG4N/zDMVPCDMD9YSMGqSqIYTSbIXcSGGqI7XnnkVZWjFmde0NspllIiOy1iaDE9u3bMXz48DrXMxgMePDBB/Hyyy+7td+LL74YL774ImJjYzFo0CDb8t27d+Oll17C2LFjG9xmIiIiqhuvxUQty8iIGIyMiHH63D29kjHP2Bf+cgX83BhqsLL/SFhvgUeEW/aZXVHucv09hTnYmZ9VY/muguwaywRBgCoyHKrIcIQMGYRRqjD8+n9fQJuVjV9++Qm//PIT1B2iUao0Qd2lk+2GP62syLYPawDhtKYEG04dxvye/VChAXbmZCI5KMK2nsFsdijiCViyLSRIGBXR0WF5iV1Qwj7IAFiGkzx9eBeifdW4rVtijXMqs6uPkVehRXQtRUHr49kjliDM0NBoxAeGeGSfRPXRJoIS8+fPx+uvv44xY8a4XKe8vBwLFizArl273N7vQw89hLvuuguzZs1CWFgYwsLCUFBQgPz8fKSkpODBBx/0RPOJiIjIBV6LiVoPhShDiNJyc+7OgAZn9RREuP6l3llAwt68bn3RRR2I5ak7HPepkKNbYiKizMUwlJTiYp8I7NnzL9JPn0ZB3nkU7tyF3Ql9cXCCgLIgtW07awDhsdQdKNBXYN3JQ/i3MAcGsxkLe/S3rWdwMgzDmm1RPShhH1gwVRv2YZTM+LvAco7OghLlxqrhJIWGCo8EJeyHsBwqyWdQgryiTQQlLrnkEixcuBCvvPIKLrnkkhrPFxQU4LbbbsPJkyfxxhtv1Lk/nU6H3377DefOncP111+PWbNm4fTp08jNzUVERAT69++PkSNHNsWpEBEREXgtJmrt9PWsl2DlrKaEUhShN5vhJ1fUOpuGWiZHuMrX6XPW7RSBAbh45CUYN+5SbD6wG/u+/wrlp8/g4OFUvJtXhFyjHnlBvvDr1hVFHbsDAAr0ljoWAqoCECfsMir01TIeTHaPJUmCIAiQJAlrTqbij7zztueq15SoHqSocQ6mqnOvMJlqWdN9pzUltr8PFudjWmwPj+yXqD7aRFDixRdfxCOPPIJ77rkHK1euxKRJk2zPZWZmYu7cuSgqKsKGDRuQkpJS677Onj2LOXPm4Ny5c7Zl/v7+eOWVVzBq1KgmOwciIiKy4LWYqPWLVTfsV3xnNQ2Uogx6s7nO6T2VogxyFzUR7DMUygwGBClViIiNQ9iIYQgdNgTac+exI/00uhZL0KSfhib9NL769yDkQ0ehXF8An5gO2GGXqWHfFvsimYBjRoO13sQ5rQbfXTjlsJ6xWjCjrhlAyu2OmVuhtQU8GuOUXVCiQK9r1L6IGqpNzL4hCAKeffZZXHvttXjggQfw9ddfAwCOHj2K66+/HhUVFdi4cWOdAQkAWLVqFURRxMaNG7F//3783//9HxISEvDEE0807UkQERERAF6LidqC0RGxuLtnMm7sHF+v7WRCzduT6rNbPNF3qNNtlaLMZaFG+yBCaeXfuspggiAToe4Ui/CLR6J40jiEjxkBdVwsdAY91v78PXJ//g2Zn3yO3J9/g+bkKZgr9Cizm0Wj+vAN+wCINaMhx0mtjOqZESa7/aw5eRBvpTnOLqSxG2rx2ol9WJ223+m51kehXSDCYDZjXXoqNmWm1brNybJinNLULDhK1FBtIlPC6vHHH4dKpcKyZctw7NgxfP7554iMjMS7776L6Ohot/axd+9ePPTQQxg4cCAAoHv37njyyScxadIk5OTkIDLSeQVeIiIi8gxei4laP5kgYEJ0J/yUfaZe2zn7xbT6QBC1iyKaKlFWI6jRNzAUh0oK8E9BVZZDqVGPz84cxwcZR2seXyGHX7eu8OvWFYnqQPx96CD8Ms5Ae/YcyjPOojzjLARRhNClC8qiwuEb27FGwUr7AIjObII/LJkN1VUPZthnSnx73pJVcVePJNuy8mqZIj9kncHdPZMdlunNJnx25gR8ZDJcHdvdaZDHXoVdlofebMLX59IBwOkwjk2ZaYjyUeO5ysKY/xt5JWfrII9oU0EJwFIQS6VSYe3atejfvz/WrFmDoKAgt7fPzc1FXFycw7JOnTpBkiTk5eXxixAREVET47WYqO0YEhoNP5kcV8Z0c2t9Zze51TMl1C6mG1WKokPxzMGhUYhQ+eJQSQH2FeXZlpcY9E4DEtWVQIJf187w69oZkskE3fkslGecgfZMJnJOZ0CXbrmBf//QKYxKSkGvXr3RqVNnp5kSWTo3MiWkmnU4rEM0jpcW2jI8arMj7wI+PXscANA7MBSJQWG1rq83VR3TftiJZUaRqoBGmUGPd08ddtg2W1eODpXFNjVGA/zsMjnOactgNJvR2S+wzjYTtYmgxLBhw2qMp5IkCSdPnsTEiRNrrL9jx44ay4iIiIiIyLMCFEp8etHlbtc+cBqUqPbY1y5TQiGItkwFpUzmEJSQCwKUYs1MgVK7oRe1OVNeavtbkMngG9cRvnEdIZnNqMjOgfLsOWgzzyE3Jxt//PEb/vjjNxTADERFoMxPAd+OMbZMhCytpsb+q9eUcFbo0ihJUAgC/pN2sM72/pOfhVXH9tge11WDA3DMlLCfiaPIUIEIu6KhOnPNwpony4rRwdcPOpMR127fjJ5BIXgteTQA4I7dPwMAvht1VZ1taE1ydOX4tzAHE6I7O509hhqmTQQlbrzxxkYXebE3b948yGSyGsvnzJlTYzkDHERERJ7HazFR21Gf7+nOghIdfP0cZomwH77RwdfPFjyoPnxDLohQiTU/R149vs/t9gBVs39YCaIInw7R8OkQjZAhAzGzYzx8c/Jx+OhhfPPnNkjnTtvWfT81HX4xHfCXzABzWChERVXbSwx6FBsqEKRQAagZpACAs+WlMEhmZGot55gSHIG9RblO2/nk4X8cHuvcmKHDPihhPwyloELnEJRwNtvH8bJCnNeWIaxyvRPFhTBJksOkriZJarab90K9DsEKFQRBwG85mdAYDZgU0xUA8Hd+Fv7Oz8L8HkkOGSD1tXDPryg3GeErk+PiyFhPNb3daxNBiUWLFnlsXwsXLvTYvoiIiKj+eC0mar/sb2C7+wdhVHgMQpQ+eOX4Xtty+0yJWF9/W1Ci+vANURCgdBKUqK9wlS/OO8l0sLUnKBDDusWjZ8oAfNEpFLoLWdBlnoP2/AUcPXMah1Mt2QuCKEIVGQGfmGj4dOiAJ807IYgiXksZg+7+QU4zJe7e+5vt746+frg4MtZlUKI6vZPshupcTS1afSYOrdlYY51NmSdrLLug1SDGp2rmFYPZBJmLGiAbTh3GweI8JAWF4+rY7rbgTENsvnAab6UdwN09+2NCdGdbxsjlHbpAEAQ8VRmwiQ8MwWXRnRt8nPLKbJL8esxUklehxYbTh7Gg/wD4t415JjyuTQQlPIlfhIiIiLyL12Ki9ku0+5092keNa+J64q+887ZlKlEGuSjiod6D8N+zx3Fb90Rsz78AwDL7huPwDbHBQQl/ucJWGyKijqCEtWBlmVEPUSGHulMs1J0sv6InqQKQdWAPdOcvoOJCNnRZlv+A/RAVCqiiI/HymSw8NHoiKgJrn0Y12sfPaeaHVXxACI6VFtoeV9QSlEgvK8b/zqej2FDh9PkaQQljzaCEMyfLihGlUle1wWSCj0wOrcmIAr0OHX39bc99WTnLx/HSImTryvFgwiC3jlFdjq7cNlPJ9rwLmGAXdDBDgszuPXWspLBRQQkrP7tAiyRJeOX4XnT1C8LVsd1rrLsj7wJ+yzmH5KwoXBYaV+N5YlCCiIiIiIhaCPvhG9YAhX2gwZolMTIiBiMjYhy2VQiOmRIyQYCqWqp+sEKFIhc34tXXsw9K1MYalHBWiFLy90NAfE8ExPeEJEkwFBRCd/4CdOezoMvKhvbsORzJLsBbh0/imLYE2b5yqKKi4BMVCWVEuMNwjygfNVROhrVZWQtlXt+pFz45c9whKLHh1GHsLsjGKymjoRRl+Pb8KWzLPmt7Xi4IDrN/FOgrbPt8+djeWgMc9jLLS2EIqSpGbN3uzRP78Ufeebw/ZAKClTUzImoL+tRlbXqq7e8QpQ8M9kNSzGbIZFXvgZOVU5nuKsjG2pMHsSJxGGLsAiXuss/WKTHq8XNOJoBMW1CiWF8BvWRGhMoXBZXvt2BVwzNB2joGJYiIiIiIqEUQqw2/AByzJ9TymrcvM+N6Ia2sCAEKpUP9CpkgQFntJj7KR+1WUCJQoQQqZ/EMU9YRlKgMBjgrLGm/TBAEKMNCoQwLRWC/vpBMJujz8hFeUo7cwhKcPJ4Jc5EBugvZKLauHx4GVWQElBHh8A+LhaJafQaj2YxSox7FBr0tOOJfOTuJdWhGmdFgy0r437l0HCopQKnBsdinn1yBYrtl/z17HOe1ZZge1wO/5Z6rq7tsyk1GhwCG9e88vQ4mSUJehRbBSlWNGVUaM7WofUBDYzRAY5fVYTSbARnQRR2A0+WlttokKw79DQB4J/0QHu871OW+z2nLkFehRf/gCJftdTLqBjf+vRWAZdrUwsqsk3Cf2t9H7RmDEkRERERE1CLYp9pbb/zsi1f6ijVvX27q0tv5vpwM34jyUTsMcXDYT+fe+LByqlAfu2BGsEJZa5t1JhPKjUans3qU1zLsQZDJoIqKRGkUUAogdlAiDIVF0GXloCI7BxXZ2ajIzUNFrmU605/3H8OBoGDkmsqhjAiHKjIcB/Ky8Nix3QCAoMp2WoMS1poSf9oFFd47fcRpW6oHJQDgj7zzGB3RsdZzr05rMjoUBbUGJaxZHBqTobJtjkU9rRkuH54+CrVcjumxPWznYJIkh8yE6krs2q0xGWzHAKoCRtb3kEmSHAIydc1QYp1F5IOhExxqXthnlRicFCi1PWc2o7Ay6yRM5Qu4Nwqm3WFQgoiIiIiIWgSxWqaDZVnV8/J6zJwgE4UaNRgiaxmK0dkvwPa3j13wI7COAozvpKfinfRU3NS5ZnCk3FT3tJxWgijaMinQtzckSYKxpAQVuXnQ5+YjTuaPkrxclGdnovxsJgDg5i3boAwJhjI8DKVhoVCGhkDR3XLDbA0I/JRz1uUxrfxkCqfLT9nNeuIOrdEIvV3xTOvfRrOlTdYsBvvpRwHL6240m/Hfs8cBAFfFdINCFHHP3t9xprwUX42YDEW119IkmfHq8X0OmS/lRqNDIMgaPLAPHJzWlECEADOkGu1wJb9C5zA0yFy5v90F2XiiMusCsARR7ANhFWaTQ6aEscz990N7wqAEERERERG1CPZBCQE1MyXk9UjzlwlCjSBGlI/axdpw+CXcvnZDUB2ZElYZlbOA2NO4WSDSGUEQoAgKgiIoCOjRHbcPHAuT3oBDP26CvjKDQp+XB31hEfSFRcCJkxAh4ON/DuK8QYNdXXsiJvEC9uSegjI0BDIfH6fHUYkyl9NkplfWYHCXq+Eb1qCANUhTPVgjEwSHTJPTmhJ08w+yzaxSZjQgROkYlDhYlI9fcizBmWgfNbJ05ZZMCbvsB2NlRobJLiiRrimBKABmyVIkU5Ikh2E/zqYxLTcZUGqounW2Bjuss3xYPXZwJ1YkDnM4/wJ9BeSCgEClEgVgUMIZBiWIiIiIiKhFqD6lp/3/Lc+7nykhF0SYqw3495croBBEpyn3UT5qXBzREbHqAORVaG3Lg5TuBSWczWThbEhHQ4UofaCVyeETHQmf6KpikkZNOfT5BdDnFwCFRQiS+cGQfgHnjh3DN2cykVOQDQCQ+/lBERoMRXAwFMFBUIYEQx4UCIWPAnIX/ZpeVv+ghMFuaIZ1mIY1OFCVKeFYOFMUBIfhI8dLCx0yIAxmM85oSuErl+OTM8cACbgovIPt+TClD/IqdCg3GhwCHsbK19l+uMWewhzbY43JiL8LsjAoJApyUcSx0kI8cmA7bunaB5Njutq2KTboHTIgTGbndURSS/IdanBojUaUGCoQpvJ1CHyQIwYliIiIiDwgPT0dy5YtQ1lZGZRKJZYtW4ZBgxo2xR1Re2Vf1NJ6m+wwzadYv0wJY7XaBQpRhEomg8FYtXxet77wEWUIVfrg/t4DAQDr7GZ0sM+gmNKlB/4v46TDTa6VfSDDykkNxAbzk8lrBFkAQO6nhtxPDXWnWATKlbi930U4sGMr+pjlCNJokXpoP/QFBTAUl8Co0UB71rFwpTIwEOaOsShSiFCEBEMREgRFYCAEmQw5Ts6pNtpqmRI66/ANa6ZE5U189WETMkFwqA2xuzAHuyqDKYAl2LFwz68O2yQGhdn+VssV8JPLoTEaHbJTDNWCIgDwb2GOw36ePrwLF4VFI11TgmxdOQBgY8YxTOrQxbZOsb7CYSiQs9e/qq1VgYrcCi3McD/bpr1iUIKIiIjIA1QqFZ599ll069YNJ0+exF133YWtW7d6u1lErUpds2/UJ1NCJojoZFcnAgAUgqzyF++qG8eBIZGIUzuuZ19TQm1XZLFXUAh+kslt04Xau6Atd7ttDSEIApR11NRQiCJUogwyHx+ogyMgl8kRHhGAnv7BOFaYB0NxMQyFRTAUFcFQWAxDURH0JSUo0p9Gsc6x/fIAfygCA+AbFAwE+EEeGAh5UADkfn4QqrUjPiAEx0oLLTUl7IIS1r9tmRIm50EJEY5BifPaMofnnQV8LuiqZt2oMJmgllmKddpnrFgzYkxOMmOCFUoUVR5zR36Ww3N9gkKhszuP/cV5GCjaZafUUtzSvohnocFST8JP7rxmB1kwKEFERETkAR07VlWp79atG0pLS2uMVSai2jkbvuGQKVGPf08igI6+/nhrwFjctecXAFU37fYUTgId9jUl7AssKmWiy/oLZo/mRThnP4QgztcfZ6vdvCtE0Ra4sNQzsNwUd/cPwomyIqjCw6AKt2QYBMgVKDUaYNbrkSL64K/04zBU1qcwlpTAWFoGY2kZfHIKUGh3oy+IYmXAIhDREZEYGNcVUyO6Y1lmBjQQHYIS1qwJa2ZBucmIvAotMssd2727MMfhxr16LQ5nQYlPzhy3/a0zG+FXOV2sfXaHNRhSPbMhTOmDPoGh+CPvfI39ApYgiX3gZGd+Fk7aDWUx1ZIpkW93/KLKmTdqmz2EGJRo0w4ePIjly5fbHp84cQJffvklEhISvNgqIiIi79i1axfWr1+P1NRU5Obm4u2338bYsWMd1tm4cSPWr1+P3NxcJCQkYPny5UhKSqr3sX766SckJCQwIEFUTw6ZEmhcTQlUbmefLWEdvmHP2Ywe9hkJ9kERhSirMc2ovQiVL+IDQtA/OBxvph2os4lKUawxPaYzSyuHlTgUAnXy+aIQqs6vwmyyBQWcDR/oGRCMPYW5EJVKhEbGwF/u2A6zwQhjWSkGy/zw++njMBaXwFBSCmNJCQzFlv80OfkwZBfh8937kHXhNDIlMz6I+R1ZFaWQ+fth95lcRPToi+IzZ6D3UaLYPxQ3//2D07bb12KoXggzr0JXa/8IEGwZLbn2QQmp5vANwNLv6lqyFwySGdpqgRH7/ZokySH44qqt1mAOgxK1Y++0Yf369cM333wDADh37hxuuukmBiSIiKjdKi8vR3x8PKZNm4ZFixbVeH7z5s147rnnsGLFCvTv3x/vv/8+5s2bhy1btiA0NBQAMGXKFKf73rRpE2SVNwLnzp3DqlWrsHbt2qY7GaI2yunwDSfThDaUs0wJZ0EGs4sfwpV2mQjOpIRE4O6eyTjt5lSackGEHrUHJW7oFI/REVWZWKsHjIFcEPHCkd011rU/vwqTCQazGSIAlZOb4p7+lqAE4DxbRFTIoQwJwZBufXHDyLF45OB2W8aBuUIPQ0kJ+ogqXBISg+LiIuzcZ0J+QT7KteWoKMgH8vJxKL8UpqMnkHn+FIyShF9Vvsg16iFXqyFT+0Jm/b+fGjK1GvLKZWZfH4jyqjbn6WuvbTG/ez98dvYEAOCCtmpYh3Uq0uqZEgpRBr9aAgVGsxlas+uZU0yS2ZYFUZ19W63rqOW87a4Ne6ed2LJlCy677DJvN4OIiMhrxowZgzFjxrh8fsOGDZg5cyamT58OAFixYgV+/fVXfPXVV5g7dy4A2IL9rpSVleGuu+7Co48+is6dOze4rWI9ivnVtn1j99MWsW9q5+3+kcMuQ0EUIIqO03oqRNHttglCzfNwFpRQyWU11rMfimH/XF2ZEp39AiGKQo1sDFdqGwZgpZbLHdrQPSC4sl01AwkKUQafyhtgvdkEg2SubHPNdcdExeK/Z08gPiAECpnrQMvgsCjEqgMwq0tvvHfqiOXYKiVUEeGIiYjB2D6DIYoCfu4ShrTiIgyK6oSc9KMwlZUh2T8Mo/1C8MtfP0Cv0UBhAoSCfBhKS2EorTmFqj1RLofo6wOZjw8+9lFB5uMD0ccHMh+V5f+Vz60ZfhlilD4IUVoKkmbaDWkxwQxBqFkDQiWTQa2oPVOiwkUmBACcLS+DxkXQIt8uU8Ja38KalcHPHecYlPCi5kwj3bJlCx599FFPNZ2IiKhN0ev1OHToEObPn29bJooihg8fjn379rm1D5PJhMWLF2PGjBkYOXJkg9sil4sIC/Nv8Pb2QkL8PLKftoh9Uztv9Y/97BJqXyXCwvyhUVXdUPpVLnOHWl1z3cAgX6iUjrdA0eGBNYZw+ORW3bDa70Mpk8FX6fpmtnNYEMLC/KH3dauJbgUlwgLVTs9ZIa8Z+FCrFIgID7DMMAIzjJIZKpkMwQGODbolPhEDO8Xg0+ArEK32w9uH9zs99g09eqN/nGXqzZBCdY3nVSqFrW3W4Q4/ZJ+xzQgS1z0eVycNxAuwZI50CQiEvLQEkskEY3k5TBotTOXllv805TBptTCWa2HWamHS6Wx1LWqz8dBJiIKAw4X5OFtaBFGptP33S/p5FMV0ROGBf6Hy8YFRJkKQy1EeHgGdwQTt+QsQ5QoIChkEudzyt1wOsyBBrra8T4KUKhRXy4r4M+889hfnOW2P/VSmpWbLMJRQf0v/83PHOQYlvKg500gLCgoaFMwgIiJqDwoLC2EymRAeHu6wPCwsDBkZGW7t4/fff8fOnTuRl5eHzz77DADw4YcfIjAwsF5tMRrNKCmp3zR81YmigJAQPxQWamB2lYfeTrFvateS+qdCZ0R+fhlKtHY1AvQm5OfXfpNqpS3X11i3qFgLs9HxV/OiAk2NGgeioerc7fehFEWItYy2UFRY1i+rowaC1dioWPyYdabWdYw65+dsNtVsiGQ0Iz+/DCpBhnKDESZJgkohg0Hr+Kv+lRGdkZ9fhkDIUF6sg6mi5q/+Uzt2w6yO8bZjG7U11zFUWF4jURSQp635uVVSrkN2XlVGRJHOcsMuyGRQBARAEVBV70MuiHhz0MW4Y9fPVedjMsOk08FcUQGTVlv5fx3MOh1MugrM6dAdCpMJWq0WgQYDUFwIY5kGgGUIx9EKCcUnTqHk/CmH+h0nVL7Qqf2RUzl8xUoEYAZQqlShICgMZ4tyUaTyQZnZCEEmgyCKlplHRBFZ1scyERBEDAyNtAyHEYTK/4A8QQAg4FB2CaT4RBQVlTf431VgoC8UCvcycFobBiW8qDnSSAFg69atHhm6wVTSpsO+ca56v7B/amLfuMa+cY194776zJ4xduxYHDp0yCPH9dTNoNksef3GsqVi39SuJfSPWNkOQbJfJrjfLqnq39LCHknYX5SHzr4BsP8XPSo8BpJk+bdu75LIOJwuK8HYyFiH48lEwWn9BasguQpmswQZan5uRKh8MTG6M0aEx+C/Z49jUocu6OYXhGiVGh9mHHW5zwilr9NzdvbJZKx83QIVStswBoUg1pi1RJAc+1FmN2ymb2AojpYWYnKHrg7rODtvCVV9vHzgMDy66y+H53VGI/SmqmEQJXZZBFM6dkOkyhfvpFs+N2/q0hsxKsdMAqVcDoOfGvBTAwhxeM5HlOGOEZNtj/8tzMGZ1J2QzGaY9XqY9QZc1rEH+voGYsff2xACEXnlZZAMRnT29UeiXxCOnzoKs9EIyWCEZDRibGgHbDt/CjJBBsjlgADITCaYdboa75HqCkq00JcW1qhfAQDHSrTQ33pri/h31RIxKNFCeSKN1MoTQzeYSto82DdVFApZjfcc+8c19o1r7BvX2DdVQkJCIJPJkJfnmI5bUFBQI3uCiJqHs9k35PWZfcPOxA5dMLFDFwCOM3g8mDDI6foKUYb5PWpmGQsQXE4JCsBW18DZjB6+MjlmduoFAFgSP8C2fHREx1qDEj38g5wuF5yEJQyVtRNClKqqoIQoQiE4/sJevWCo/TlNj+2BQaFRDv1ubX/NNlSZENcFHxw9hBOlRbZlR0sLYbCb+cL6V4TKF/O69oUgCLaghL9cAUEQHDIa1HI5ig162/Z3du+HXQXZSAmJwEVhHRzaElrZ94IoQuZjqTcRFBWFTuEd4JfTGR39AqGvLEAaHx6Di6M64ZdDoQ77uD5xGA6n7gQAxIVGIasgGynBEdhblAvJbIZkNgNmMySTGZLZZHlsMkOSzLgsrhdii/JxsDgXkgRYol0AJDOuHzgSKpUKZWWOs4qQBYMSLZQn0kgB4Pz58ygoKEC/fv0a1R6mkjYt9k1NBkNVqiL7xzX2jWvsG9c81TdtKZVUqVSib9++2L59O8aNGwcAMJvN2LFjB26++WYvt46ofbLeFMs8OPuGZb8N31YAatys27NOS1mf4EkHXz/c2ysZrxzfBwAYGBKJfwtzbM/7uJglwtl5WKe+DFH62JYpBNEh6ODsHGoUE3VyjgFOphWtsU61aTazdOX4pyDL6XrVs9D8ZJZtlaKsKighU9iCEnf1SMKkDl1wRUxXp8cOtTtnK6PZbKvbYV+gVCGKkFDz+ucjk0OAJZawqyAbABBYed62oRsuRERFY3RkJI6l1xxWEx4S6mQLsmJQopWpTxopAMTExGDbtm0eOTZTSZse+8ZR9b5g/7jGvnGNfeNae+sbjUaDM2eqxm5nZmbiyJEjCA8PR0REBG655RYsXboUffv2RVJSEt5//33odDpcffXVXmw1UfslOJ0StGGZEvZqCyq4tb3TgRMW1jZXHy5Rl/FRnWxBiXGRsVjYsz9u+edHTIjuVK922DIlFCrbMoUocwhKOAvs2A/NULiYXSRQ7k5Qomqd6+J64dOzx/F15ska6zl7Ha0zlliCB5aMAvupNHsHhNTYpq72GSSzLVBj/5ooRZnTIIaysq/0dtkd4Sr3qpYqBAHdA8KcPucsy4SqsHdaKKaREhEReVZqaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26b9WrdunW24tJE1Lyst632N7D1vdl3pjGBjUhfNdxpgiAIkAtijako3SETRESofPHl8MlOh4HYH6M6o93wDSvL8A37oISzqUTtghIu+ieglik0rfzt1rkypiu2ZGXgdHnNqT+dBUas05aq7NpifzNf1429IAhY2KM/3krbj3CVL3IqtDCazbY+sT9vpSiim38QlsSn4NXj++yyKSx9pUf9gxJyUURHX+fDItUMStSKvdNCMY2UiIjIs4YOHYpjx47Vus6sWbMwa9asZmoREdXGmtFgnxEgq+Um3e39NmCbDUMuRZ5eiyi1n0Omhb9cgTKj5Vf9l5JHOWyjEAUYq2o81lko0UpeOS7DmjngirNMiarhG45BCfuhC84yRfoFhTus74y/k0yE6vuyz5QIVCjRwVftMEWmlbOgRFBldod9W9X1CEoAwMQOnTEyvAO252fh9RP7KjMlLP1uf17WY4yNjMP3FzJwuKTAtk71YE+kXVBCLghOC1kClmCOWu48cFNbHRJiUMKrmEZKREREROSczElNCU9kSjRk+EaEyhdRvmrL9nbBgGf6DcdHGUcxv3s/RPqoG902wP1MDmenYc0KCK6lpoSzgECs2h8P9R6Efwqy0NkvoMbzgHs31vZ9KwgC1DLnN+n25/hsv+FIKytCFz/L9Mn2wRj7oIT9UI7a+CuUtrYaJckuU8J5bRJ/u0CCQpDZsiasgu2GwihFGYymmlOjAjWLmyYFhSNfr8U5rcbtbIv2ikEJL2IaKRERERGRc4KT2TfqM/TC1dCHxtalsL+n7+4fhMf7DnW6XlOX7HGeKWE5aJBdxoJCrDsoAQAjI2IwMiKmUW0qNzresLvKbpDbVelMCg5HUnBVpoZDpoRDwMD91826rn2hS/vio/Y9YJ/doRRFmKoNubF/H6lEGcpdBSUq9+8rk0FrMmFoWBSujOkGvdnkslgpWbB3vIhppEREREREzjmbfcOdTImHEwbhu/OnMCGqs9PnGzuDR22FLu2Z3RyuUZ27wzzsTyNKpUZ2Rbkty8HXLqtA6Uahy/oaGBKJ46WFmBnXy2F5Jz/LdO6xvpb/uwpK1BYYUtkFJey3r0+x/6pMiaqaEo5BKrtMCbs6GApRtAV2qtpqVyBTJrPW4HR5zFeTx+DnnExcFt0ZoiAwIOEG9hAREREREbU41lvB+mZKjAiPwYhw17/4DwqNxJasDAwLi25Yu9y8OXY25aR727nHPjhyZ49+OF5aiMs7dAFQNb0mYC10WXWj74kZTIaGRmFF4rAayy+N7gRJAgaFRAFwXeCxtsCI0i544FNHXQ1XrFkLf+Sex5nKQpv2x7Q/usPwDVEGs90r0Ccw1GE7lYuZSeyP2VHtj5u69G5Qu9srBiWIiIiIiKjFcXZzbp/231BDQ6PxesoYxKn9G7S9+5kSDdq92xkW9sGRQLkSN3auuhH2s8uUkFerKdGYKVGjfdTI0pUjVu287oRMEHFZdFWGiuPsGZZhDdY2uWI/fEPmZl9XZ32fFBkqUFRUUesx7Ydv2AcgIlW+eCrxIuTptbZltQUlGv/ObL8YlCAiIiIiolbBE7/yC4KAbv5BDd7e3Zv6hmdKuLedfXCkepMUdjfPltk3PDN84+Xk0UgvK3aoAVEb++KUapnCFpSorQ0qFzUl6sNZAEIuOO+vABfHiFX7QyWTOWZK1JK50cQlRNo0BiWIiIiIiKhV8EQ9hMZyN1mj+k2quzet7q5n3xW1ZW9Yako0PvsAsEzzmRwS4fb6vi6m9KztdbRfr7t/EGZ37o1eASH1aqezIqeuCp86m+rU0kbR4f9A7ZkS1HAMShARERERUYvjdPhGCwhK2NdnqI9OLoY8WN3VvR9+ysm01WOoi2OmhOt+EVBtOkw3pvb0FF8XU3rWlvHiuJ6AGZ16uVzX5XHFmre5roZv+LvIlJA7KbSqrKXvGpoZQwxKEBERERFRK+GJ4RuNNbNTTxwvLcS1cT3dWr+zOgDDwzvgipiuta43KaYrJtWxjj37OERtoRqD2XGKy+bMNlE3IFPCzy5IUFvtidoEKWtmP8gEAUlB4ThQnIekoKrhJy6nLbVlSrhX6LKuoBO5xqAEERERERG1PE4KPjb0JtWTgpQqrOw/0u31Q5U+DkUoPcU+U6K2Ohd6s8nhcXMGJRwyJWSOxTddUVebOaQhApwMyZAJIh7vOxQXdBp08QusWlfhPFOiakpau+EbTgIYK/oOQzf/QIQofRrUVmJQgoiIiIiIWomWUFOivpqqyfaBiNpqShgkS6aETBBgkiS3Zw/xBN9qhS6tansd/eXuBS9q4yxIk1ZWBJVM5hCQAIAQpQ/u7pmMaB+1w3JnmRLOhm/4yGQMSDSS90ONREREREREbnBVrLAla6oggP1eawt8WIdvWG+yTW5OOeoJ9tkRPexmPJHVUi3U3eBFfY2O6OjyuQnRnWrMKGJto0M9DiftaY3vyZaGPUhERERERC2Os1vn1pkp0URBCXczJSqDEtbsAXMzBiWiffxwSVQc7uiWiOHhMbbltdUGsa8p0dDhG/YGh0Zh7aBxuDgy1q31H04YhI6+frguzlJg0/495yxzQ9EChhS1dhy+QURERERELU5bmcugqTIlHGffqPn8rM698VHGUVzWoTOAqtkkjJK55spNRBQE3NMrBQBQYtDbltc2i4raA8M37BnNZsT4+ru9/ojwGIywC6DY97OzYIonAiftHYMSRERERETUKrS+PImmqylhv19ngY/rOvXClTFdbZkHMi8M37BnX4+htkwJf7vhG54YGtHYIIxQx/ANZko0HnuQiIiIiIhaBaEVhiWaasYQd2bfsB8KIfNCpoQ9hUNQorZMCfspQRv+et/VIwkAcI2bU7e6Qy4I+M/AsXhjwMVVy5gp0WjMlCAiIiIiolahNZWUWJE4DBtOHcacLglNsn/7QIQ7dSu8UejSnn12RG1BCYWbGRV1mdShC8ZFxsLHyTSeDSUTRcSpAxyWMVOi8RiUICIiIiKiFqjmzXNrypQYGBKJgSGRTbZ/wcXfrlhnkzB5KVPCnrvBBlcZIO7yZEACcJG50Xreki0WgxJERERERNTiOPs9vzVlSjQ1+xt2d27eZZV3z0az90uI1jUsY1X/kdCZjM3UGvfZB1MGhkTieGkh/O2Gm1DDMChBREREREQt2vCwDtiZfwGx9ZhFoa2zzxpxL1OicvhGC5jXpK5MiYTA0GZqSf3YDzt5ou9QmNE6p6ltaRiUICIiIiKiFiNArkCp0YA436qx+8v6DIZJkngDaKeu2Teqs/adyez94RtiK30Z7YMpgiBA5sW2tCUMShARERERUYvxxoCxOFZagAEhEQ7LGZBw5M7sG/aqZt/wfqZECxhB0iAyvgWbBIMSRERERETUYoSpfDBcFePtZrR4DZ19w9wCCl2aW8AQkoZhVKIpcP4SIiIiIiKiVsZx+EbdrJkS3g9JAOYWkK3REAxJNA0GJYiIiIiIiFoZ++Eb7mRKtKThL602KNFyurBNYVCCiIiIiIiolbEPRLhzr+wrk7u9blNrvcM3qCmwpgQREREREVErY//rsjtZELd1S0SxQY/ZXRKarlFuaq2ZEi0jpNP2MChBRERERETUygj2wzfcuFmO9FFjZf+RTdkkt7XWoARDEk2DwzeIiIiIiIhamfrOvtESDAqJBAD0D46oY82WqXX0cuvDTAkiIiIiIqJWpr6zb7QEj/YdggJ9BSJUvt5uCrUgreX9S0RERNTiabVajB07Fi+++KK3m0JEbVx9Z99oCWSCyIAE1cCgBBEREZGHvP3220hKSvJ2M4ioHWgtgYi2JFip8nYT2iQGJYiIiIg84PTp00hPT8eYMWO83RQiagd4I9d8XksZg9u69UVSULi3m9Im8b1MREREbd6uXbtw5513YuTIkYiPj8cvv/xSY52NGzdi3Lhx6NevH2bMmIEDBw7U6xgvvPAC7rvvPk81mYioVsyUaD7d/YMwpWN39nkTYaFLIiIiavPKy8sRHx+PadOmYdGiRTWe37x5M5577jmsWLEC/fv3x/vvv4958+Zhy5YtCA0NBQBMmTLF6b43bdqEX375BV26dEHXrl2xd+/eJj0XIiLAsaYEUWvGoEQbcffdd2PHjh0YOXIkXnnlFdvybdu2YdWqVQCAxYsXY9KkSd5qIhERkdeMGTOm1mEVGzZswMyZMzF9+nQAwIoVK/Drr7/iq6++wty5cwEA33zzjcvt9+/fj82bN2Pr1q3QaDQwGo0IDAzE7bff3qD2imLjbjas2zd2P20R+6Z27B/XWlrfyOza4e02tbS+aWnYP7VjUKKNuPHGGzF16lR8++23tmVGoxGrVq3Cxo0bIZPJMHPmTFxyySVQKpVebCkREVHLotfrcejQIcyfP9+2TBRFDB8+HPv27XNrH0uWLMGSJUsAWDIn0tPTGxyQkMtFhIX5N2jb6kJC/Dyyn7aIfVM79o9rLaVv/Aurii566jOjsVpK37RU7B/nGJRoI4YOHYq///7bYdn+/fsRHx+P8HBLQZakpCT8+++/uOiii7zRRCIiohapsLAQJpPJdr20CgsLQ0ZGRrO3x2g0o6RE26h9iKKAkBA/FBZqYDZLHmpZ28C+qR37x7WW1jfacr3t7/z8Mi+2pOX1TUvjif4JDPSFQiHzcMtaBgYlmsGuXbuwfv16pKamIjc3F2+//TbGjh3rsM7GjRuxfv165ObmIiEhAcuXL2/0lGI5OTmIioqyPY6KikJOTk6j9klERNReSJLUoKJm06ZNa/SxPfWl3myWeIPgAvumduwf11pM39g1oUW0By2ob1oo9o9zDEo0g6YuriWTtc2IGRERUXMICQmBTCZDXl6ew/KCgoIa2RNERC0FZ4KgtoJBiWbQ1MW1XImMjER2drbtcXZ2NkaOHFnv/RAREbVlSqUSffv2xfbt2zFu3DgAgNlsxo4dO3DzzTd7uXVERM5x9g1qKxiU8DJPFNdyJSkpCUePHkVeXh5kMhn279+PZ555psH7YyXwpsO+ca56v7B/amLfuMa+ca099o1Go8GZM2dsjzMzM3HkyBGEh4cjIiICt9xyC5YuXYq+ffsiKSkJ77//PnQ6Ha6++movtpqIyLV29BFObRyDEl7mqeJat99+Ow4cOACtVovRo0dj7dq16N27N+6//37ccMMNAIB77rkHKpWqjj05x0rgzYN9U0WhkNV4z7F/XGPfuMa+ca099U1qaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26r77Ru3TrbMEoiopZGYKYEtREMSrRQ9S2utXbtWqfLJ0yYgAkTJjS6PawE3rTYNzUZDCZbJWn2j2vsG9fYN655qm9aUyXwoUOH4tixY7WuM2vWLMyaNauZWkRE1DjMlKC2gkEJL2tNxbVYCbzpsW8cVe8L9o9r7BvX2DeusW+IiFozRiWobRC93YD2zr64lpW1uFZycrL3GkZERERERC0WQxLUVjBTohmwuBYRERERERFRTQxKNAMW1yIiIiIiIk+qR/k5ohaNQYlmwOJaRERERETkSRJLAlEbwZoSREREREREROQVDEoQERERERERkVcwKEFEREREREREXsGgBBERERERERF5BYMSRERERERErQxn36C2gkEJIiIiIiKiVoazb1BbwaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShAREREREbUyMoG3ctQ2yL3dACIiIiIiIqqf4eHRGJwbhYsjYr3dFKJGYVCCiIiIiIiolVGIMjzed6i3m0HUaMz5ISIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxCkCRJ8nYjqOUzmyWYTOZG70ehkMFgMHmgRW0P+8bR8eNH0atXb9tj9o9r7BvX2DeueaJvZDIRoih4qEVkxWtu02Pf1I794xr7xjX2Te0a2z9t+ZrLoAQREREREREReQWHbxARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxLkto0bN2LcuHHo168fZsyYgQMHDtS6/vfff4+JEyeiX79+uPLKK/H77787PC9JEl577TWMHDkSSUlJmDNnDjIyMhzWKSoqwpIlSzBgwAAMHjwYjzzyCMrLyz1+bp7Q3P2TmZmJZcuWYdy4cUhKSsIll1yCN954AwaDoUnOrzG88d6xKioqwujRoxEfHw+NRuOxc/IUb/XNzz//jOnTpyMpKQkXXXQRHnzwQY+elyd4o2/279+Pm266CQMHDsSQIUNwxx134OTJkx4/N0/wdP/88MMPmDt3LoYOHYr4+HgcP368xj5a02dye+Dp90BbUp++OXHiBBYtWoRx48YhPj4eH330UTO21Dvq0z+fffYZbrjhBgwePBhDhgzBrbfeioMHDzZja5tXffpm27ZtmD59OgYNGoTk5GRMmTIFX3/9dfM1tpnV9zPHau3atYiPj8cLL7zQxC30nvr0zaZNmxAfH+/wX79+/ZqxtS2QROSG//u//5P69u0rffHFF9KJEyek5cuXS4MHD5by8/Odrr9nzx4pISFBeuedd6S0tDTp1Vdflfr27SulpaXZ1lmzZo00cOBA6ccff5SOHDki3XnnndIll1wiVVRU2NaZO3eudNVVV0n79u2Tdu3aJV166aXSAw880OTnW1/e6J/ffvtNeuihh6Q//vhDOnPmjLRt2zbpoosuklatWtUs5+wub713rBYtWiTNnTtX6tWrl1RWVtZk59kQ3uqbLVu2SIMHD5Y+/fRTKT09XTp+/Li0devWJj/f+vBG35SWlkqDBw+Wli1bJqWnp0tHjx6V7rjjDmn8+PHNcs710RT989VXX0mrV6+WPvvsM6lXr17SsWPHauyntXwmtwdN8R5oK+rbN/v375eef/556bvvvpNGjBghffjhh83c4uZV3/657777pI8++kg6fPiwlJaWJj300EPSoEGDpOzs7GZuedOrb9/8888/0tatW6W0tDQpIyND+uCDD6SEhATpr7/+auaWN7369o1VamqqNHbsWOnKK6+Unn/++WZqbfOqb998+eWX0pAhQ6ScnBzbf7m5uc3c6paFQQlyyzXXXCM9+eSTtscmk0kaOXKktG7dOqfrL168WLrjjjscll177bXSihUrJEmSJLPZLI0YMUJav3697fmSkhIpMTFR+v777yVJkqS0tDSpV69e0sGDB23r/Pbbb1Lv3r1b3D9cb/SPM++88440YcKExpyKx3mzbz7//HPpuuuuk7Zv394igxLe6BuDwSCNGjVK+uyzzzx9Oh7ljb45cOCA1KtXL4cv2nv27JF69epV55eu5ubp/rF39uxZp0GJ1vSZ3B405Xugtatv39gbO3Zsmw9KNKZ/JEmSjEajlJKSIv3vf/9rqiZ6TWP7RpIkaerUqdLq1aubonle1ZC+KS8vly6//HLp999/l2bNmtVmgxL17RtrUIKqcPgG1Umv1+PQoUMYMWKEbZkoihg+fDj27dvndJt9+/Y5rA8AI0eOtK2fmZmJ3Nxch3UCAgLQv39/2zp79+5FcHAwEhMTbesMHz4cgiC4nS7WHLzVP86UlpYiKCiowefiad7smzNnzuDVV1/FypUrIYot76POW31z+PBhZGdnQxAEXHXVVRg5ciTuvPNOl8NfvMFbfdO1a1cEBwfj888/h8FggFarxVdffYV+/fohNDTUo+fYGE3RP+5oLZ/J7YG33gOtQUP6pj3xRP9otVoYjcYW9X3DExrbN5IkYceOHTh16hQGDhzYhC1tfg3tm+effx5Dhw7FqFGjmqGV3tHQvikrK8PFF1+MMWPG4K677kJaWloztLblannf1KnFKSwshMlkQnh4uMPysLAw5ObmOt0mLy8PYWFhLte3/r+2fTrbh1wuR1BQEPLy8hp+Qh7mrf6p7syZM/joo49w3XXXNeg8moK3+sZoNOKBBx7A4sWLERcX55Fz8TRv9c3Zs2cBAG+99RYWLVqEt956CwqFArNnz24xtQG81Tf+/v54//33sWnTJvTv3x8pKSnYt28f3nrrLY+cl6c0Rf+4o7V8JrcH3noPtAYN6Zv2xBP989JLL6FDhw4YNmxYUzTRaxraN6WlpUhJSUFiYiJuv/12PPbYY7jooouaurnNqiF988svv2Dnzp1YunRpczTRaxrSN926dcNzzz2Ht99+G6tWrYLZbMb111+P7Ozs5mhyi8SgBDWYJEkQBMHl886eq76s+uPq+3S2j7qO21I0R/9YZWdnY968eZg8eTKmTZvWwBY3n6bum7fffhshISG49tprPdDa5tXUfWM2mwEA8+fPx6WXXoqkpCS88MILKCkpwa+//trI1jetpu4bnU6H5cuXY9iwYfjss8/w8ccfo0OHDliwYAGMRqMHzqBpeaJ/6tKaP5Pbg+Z4D7RWfJ/Wzt3+eeedd7B582asXr0aSqWyGVrmfXX1jZ+fH77++mt88cUXuPfee/Hss89i9+7dzdhC73HVNwUFBXj00UexcuVK+Pr6eqFl3lfb+yY5ORlXXXUVevfujSFDhmD16tW2TM32Su7tBlDLFxISAplMVuOXsIKCghpRQavw8PAa6+fn59vWj4iIAGD59dI+LbqgoMCWGuxsH0ajESUlJTV+7fEmb/WPVXZ2NmbPno3k5GQ88cQTjT0dj/JW3/z999/YvXs3+vTpA8ByYQCAwYMH4+6778add97pgbNrHG/+uwIsQxWs1Go1YmJicP78+UaelWd4q2++/fZbZGdn4/PPP7d9kXj55ZcxePBgbN++HaNHj/bMCTZSU/SPO1rLZ3J74K33QGvQkL5pTxrTP+vXr8eaNWuwYcMG9OrVqymb6RUN7RtRFNG5c2cAQEJCAk6ePIm1a9di0KBBTdre5lTfvjlx4gRyc3Nx/fXX25aZTCbs2rULH330UZuavcUTnzkKhQIJCQktaihtc2OmBNVJqVSib9++2L59u22Z2WzGjh07kJyc7HSb5ORk/PXXXw7Ltm/fbls/NjYWERERDvssKyvD/v37beukpKSgqKgIhw4dsq2zc+dOSJKEpKQkz5ycB3irf4CqgETfvn3x3HPPtbjaCd7qm2effRbffPMNvv76a3z99dd4+umnAQCffvopZsyY4bkTbARv9U2/fv2gUCgcLnw6nQ5ZWVmIiYnxzMk1krf6RqfTQRRFh182rI+tga2WoCn6xx2t5TO5PfDWe6A1aEjftCcN7Z9169bhrbfewrp169rs1IWeeu9IkgS9Xt8ELfSe+vZNv3798O2339q+h3399ddITEzE1VdfjU2bNjVjy5ueJ943JpMJJ06csP2A0i41W0lNatWsU91s2rRJSktLkx599FGHqW4eeOAB6cUXX7St/++//0oJCQnS+vXrpbS0NOn11193Oj3foEGDpG3btklHjx6V5s+f73RK0KlTp0r79++Xdu/eLU2YMEG6//77m+/E3eSN/snKypIuvfRSafbs2VJWVpbDtEItibfeO/Z27tzZImff8FbfPPnkk9KYMWOkv/76S0pLS5OWLFkijRkzRtJoNM138nXwRt+kpaVJiYmJ0lNPPSWdPHlSOnr0qLRo0SLpoosukoqKipq3A+rQFP1TWFgoHT58WPr111+lXr16SVu2bJEOHz4sFRYW2tZpLZ/J7UFTvAfaivr2TUVFhXT48GHp8OHD0ogRI6QXX3xROnz4sHTu3DlvnUKTqm//rF27Vurbt6+0ZcsWh+8aLe2a6gn17Zs1a9bYpmZPS0uTNmzYIPXp00f64osvvHUKTaa+fVNdW559o759s3r1atv7JjU1Vbr33nulpKQk6eTJk946Ba/j8A1yy6RJk1BQUIDXX38dubm5SEhIwLp162xp0BcuXHD4lX7AgAF46aWX8Oqrr+Lll19Gly5d8Oabb6J79+62dW677TZotVo89thjKCkpwcCBA/HOO+84jFF88cUX8dRTT+Hmm2+GKIq47LLLsHz58uY7cTd5o3/++usvZGRkICMjo0Za+bFjx5rhrN3jrfdOa+CtvnnwwQchk8lw3333wWAwICUlBRs2bIBarW6+k6+DN/qme/fuePvtt7F69Wpce+21kMvlSExMxLp161pclfmm6J+ff/4ZDz/8sO3x3XffDQB47rnnbLVqWstncnvQFO+BtqK+fZOTk4OpU6faHq9duxZr167F1Vdfjeeff765m9/k6ts/n3zyCQwGg+0zwWrhwoVYtGhRs7a9qdW3b3Q6HZ588klkZWXBx8cH3bp1w6pVqzBp0iRvnUKTqW/ftCf17ZuSkhI8+uijyM3NRVBQEBITE/Hf//4X3bp189YpeJ0gSS0oJ5WIiIiIiIiI2o32Gc4iIiIiIiIiIq9jUIKIiIiIiIiIvIJBCSIiIiIiIiLyCgYliIiIiIiIiMgrGJQgIiIiIiIiIq9gUIKIiIiIiIiIvIJBCSIiIiIiIiLyCrm3G0BEVJvVq1fjjTfeqLH8oosuwnvvvdf8DSIiImqjeM0lIm9gUIKIWryAgACsW7euxjIiIiLyLF5ziai5MShBRC2eTCZDcnJynevpdDr4+Pg0fYOIiIjaKF5ziai5saYEEbVKmZmZiI+Px//+9z8sXboUgwYNwp133gkAKCoqwmOPPYbhw4ejX79+uO6667B//36H7UtKSrBkyRIkJydj5MiR+M9//oMXXngB48aNs62zevVqDB06tMax4+Pj8dFHHzks+/zzzzF58mQkJiZi7NixeOeddxyef+ihhzBt2jT89ddfuPLKK5GcnIzrr78eJ06ccFjPZDJhzZo1uOyyy5CYmIjRo0fjoYceAgBs3LgRKSkp0Gg0Dtvs3LkT8fHxOHr0aD17kYiIqG685lbhNZfI85gpQUStgtFodHgsSRIAYOXKlbj00kvx2muvQRRF6PV63HLLLSgpKcHSpUsRGhqKTz75BHPmzMEPP/yAiIgIAMDDDz+Mf/75B8uWLUN4eDjeffddnDlzBnJ5/T8W161bh1deeQXz5s3DkCFDcOjQIbz22mvw9fXFrFmzbOtduHABK1euxPz586FSqbBy5Urcc889+O677yAIAgDgsccewzfffIO5c+diyJAhKC4uxpYtWwAAV155JV544QVs3boV06ZNs+33q6++Qt++fdG7d+96t52IiKg6XnN5zSVqTgxKEFGLV1RUhL59+zose/rppwEA/fv3x+OPP25b/vnnn+PEiRP47rvv0KVLFwDA8OHDMXHiRLz77rt48MEHceLECWzbtg2vvPIKJk2aBAAYOnQoxo4dC39//3q1raysDG+++Sbmz5+PhQsXAgBGjBgBrVaL//znP7j++ushk8kAAMXFxfjkk09s7ZIkCQsWLEB6ejq6d++OkydP4osvvsAjjzyC2bNn245hbWNgYCAmTJiATZs22b4gaTQa/PDDD1iyZEm92k1EROQMr7m85hI1NwYliKjFCwgIwIYNGxyWKZVKAMDFF1/ssHzHjh3o27cvYmNjHX7pGTx4MFJTUwEABw8eBACHtFE/Pz8MHz4cBw4cqFfb9u7di/LyckycONHheMOGDcNbb72FrKwsdOzYEQDQsWNH25cjAOjevTsAIDs7G927d8fff/8NAA6/yFR3zTXXYM6cOTh79izi4uLw/fffw2g04oorrqhXu4mIiJzhNbcKr7lEzYNBCSJq8WQyGfr16+ewLDMzEwAQFhbmsLywsBD79u2r8SsPAHTq1AkAkJeXBz8/vxoFuqrvyx2FhYUAgMmTJzt9/sKFC7YvSNWrlysUCgBARUUFAMuvU2q1utZfjoYOHYq4uDhs2rQJixcvxqZNmzB+/HgEBwfXu+1ERETV8ZpbhddcoubBoAQRtWrWcaFWQUFBSExMxBNPPFFjXesvPeHh4dBoNDUqh+fn5zusr1KpYDAYHJYVFxfXOB4ArFmzxukXrK5du7p9LsHBwSgvL0dZWZnLL0mCIGD69On47LPPMGXKFPz77781CnwRERE1BV5zec0lagoMShBRm3LRRRfhr7/+QkxMjMtfYay/AP3888+2saMajQbbt293+GISFRUFjUaD7OxsREVFAQD++usvh32lpKTAx8cHOTk5NdJa62vYsGEAgK+//tqhWFd1V199NV5//XUsW7YMUVFRGDFiRKOOS0RE1BC85hKRJzAoQURtytSpU/Hpp5/ipptuwq233oq4uDgUFRXhwIEDiIiIwJw5c9CzZ0+MGzcOTzzxBMrKyhAREYH169fXSC0dNWoUfHx8sGzZMtxyyy3IzMzEp59+6rBOYGAgFi5ciGeeeQbnzp3D4MGDYTabcfr0afz9999488033W57t27dMHPmTDz//PPIz8/H4MGDUVJSgq1bt+KVV16xrRcVFYVRo0bh119/xR133GEr6kVERNSceM0lIk9gUIKI2hSVSoUPPvgAr732GlavXo38/HyEhoYiKSnJocjW888/jyeeeALPPvss1Go1brjhBvTr1w9bt261rRMaGorXX38dK1euxIIFC9C3b1+89NJLtl96rG677TZERkbi/fffx4YNG6BSqdClS5ca67nj8ccfR0xMDD7//HO88847CA0NdfqrzCWXXIJff/211gJdRERETYnXXCLyBEGyTjxMRNTOWecj//nnn73dlDotXrwYubm5+Pjjj73dFCIionrjNZeIrJgpQUTUihw7dgypqan48ccf8fLLL3u7OURERG0Wr7lEzYNBCSKiVmT+/PkoLCzEDTfcgIkTJ3q7OURERG0Wr7lEzYPDN4iIiIiIiIjIK0RvN4CIiIiIiIiI2icGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxC7u0GUOtgNkswmcyN3o9cLsJobPx+2iL2jaOzZ88gLq6T7TH7xzX2jWvsG9c80TcymQhRFDzUIrLiNbfpsW9qx/5xjX3jGvumdo3tn7Z8zWVQgtxiMplRVFTeqH2IooCwMH+UlGhhNksealnbwL6p6aabZuPrrzcDYP/Uhn3jGvvGNU/1TXCwGqIo82DLCOA1t6mxb2rH/nGNfeMa+6Z2nuiftnzN5fANIiIiIiIiIvIKBiWIiIiIiIiIyCsYlCAiIiIiIiIir2BQgoiIiIiIiIi8goUuiYjIYyTJDLPZDKkF1LgSRQF6vR5Go5FFt6pxt28EARBFGQShbVb7JqLWyVvXGl5XXGPf1M6d/mnP11wGJYiIqNFMJhNKSgpQUdG4GQM8LS9PhNnM6cmccbdvBEFEaGgkFApVM7SKiMi1lnCt4XXFNfZN7dzpn/Z6zWVQgoiIGkWSJOTnX4AoyhASEgmZTA6gZUT55XIBRiN/sXHGvb6RUFZWjIKCHERGxrbLX2+IqGVoKdcaXldcY9/Uru7+ab/XXAYliIioUcxmE8xmE0JDoyCXK7zdHAdyuQiAv9o4427f+PsHQafTwGw2Vd4EEBE1v5ZyreF1xTX2Te3c6Z/2es1loUsiImqUqjG97Sei375YXteWUCeEiNovXmuofWif19z2E34hojpJkoQivQl5FUYU6U3QmyRIAHxkIgIUIqJ85AhSts8CPERERERE5HkMShC1c5kaPXblleNAoRYnSipQaqg9rcxPLqJbgBIJQT5IDvVF7yAfyEQGKYiIiIhaq/Xr12D79j+xfv2H3m4KtUMMShC1QwazhN+yyvB9ZgnSSitsy+UC0NVfiWhfOYKVcihlAgQAWpMZxXoTcnRGZGoMOFiow8FCHT47XYQghYjhkf6Y0DEA3QLaV6Vgat2eeeYJfP/9dzWWf/fdNgQHBzd/g4iIqM155pknoNWW4+mnV9qWbd78LVatehb33rsUV111db33ec01VyIr64LDsjvuWIibbprT4HZef/1NuOaamQ3evrW65porcf31szB9evs795aEQQmidsQsSfj5Qhk+Ti9AfoUJABCrVmBklB9SwtToEaCCvI6sB5NZwlmNHgcLdfg335Jh8f25Enx/rgTxgSpM7xKMIeFqDvGgVmH48FF48MFHHJYFBQU5PDYajZDLebkkIqLG+/zzT/HWW69h+fIVGD9+QoP3c8cdCzBp0pW2x2q1X6PapVarAagbtY+2ymg0Qibj8OWmxEKXRO1EpkaPB3efx+ojucivMGFouBrPD4zBG8NicX23UPQO8qkzIAEAMlFAlwAVruwUhCdSOuC9UZ1xW68wxKoVOFZSgWcPZGPJrnNILdQ2w1kRNY5SqUBYWLjDf9deexU++OBdPPnko7j00tF47bWXAAD79+/F/Pm3Yty4EZg+/Qq89dZr0Ov1tn3l5+dh6dJ7MG7cCMycORW//voTJk8ej82bvwUA7NmzGyNHDkJ5ebltm7/++gMjRw5yaNPvv/+KOXNuwLhxwzFz5lRs3Pi+w7zmI0cOwnfffY2lS+/B+PEjcNNNM7B//z6Hfezbtwd33TUP48ePwOWXj8MDDyxGRUUF3n9/PW655YYa/XDddVfjk08+anR/EhGRaxs2vIO3316NZ59d1aiABGAJIthfu3x9fWtdv6SkBM899yQmTx6Pyy4bg/vuW4iMjNO259evX4O5c2+yPTYajXjllZW47LIxmDx5PNavX4Ply5fimWeesK1TUVGB1atfwZQpE3HppaNw2223IDX1oO35zZu/xeTJ47F9+5+47rppmDBhDJYvX4qysjLbOr/8sg033TQD48YNx+TJ43HffQtt17xnnnkCy5cvxfr1azB58nhMnHgxXn/9JZhMJpdtmD//Voc2AK6viQsX3o6srAt45ZVVGDlykO16bG3377//ihtumI5x44ajqKgICxfejjfeeNVh33Pn3oT169fYHo8cOQj/+99XuO++RRg/fgRmz56J48ePIi3tBObOnY1LLhmJe+9dgMLCglpfr/aGP/20cenp6Vi2bBnKysqgVCqxbNkyDBo0qO4NqU35+UIp3j6ahwqzhB4BKtweH4b4IB+P7DtQIcMVcUGYHBuIXXnl+O+pIqSVVuCRPRcwMtIPt/UKQ7CKHzXUunz88Qe49dbbMXfuHQCAc+cycf/9i3HHHXfhkUdWID8/Dy+++ByMRiPuvnsJAMuXp6KiQrzxhuXLySuvrHIIQLhj//59ePbZJ3DPPQ+gX7/+OHMmAytXPgOFQokZM663rbdhwzosXHgPFi26D+vXr8GKFY/gs8++gVwux5kzGbj33gWYOvUaLFnyEABg166dkCQJkyZdiXffXYsTJ44hISGh8ph7ceHCeVx22eWN7jciIqpJkiSsXv0yvvvuG7z00mokJw9weP6DD97Fhx9uqHUfH374OaKjox22effdtYiMjMKECZNw7bXX1ZrV99hjD8HX1xcvvfQG1GpffP75f3HvvQuwceMXTgMaGze+j59++gGPPvokOnaMwyeffIhdu/7G6NFjbeu8+uoqZGScxlNPPY+wsHD89NMPuPfeBfj44y8QEREJACgvL8eXX36Gp556DjqdDo8++hA++ug93HnnQuTl5eGJJx7BXXfdjdGjx0Kj0WDPnl0O7fj7751QqXzwxhvv4OzZM3juuScRHh6BG26Y7bQNP/64xaENtV0Tn312FebMuQFXX32NQ9aJtd2ffvoRHnlkBfz8/ODn534mynvvrcOiRffinnuW4NVXX8STTz6G0NBQLFy4GD4+fnj88Yexdu1bePDB5W7vs63jnUIbp1Kp8Oyzz6Jbt244efIk7rrrLmzdutXbzWrT8iuMOFqkw7lyA4r0JkgA1DIRHdQK9AhQopO/EmIzpX9JkoSP0wvx2ekiiAJwQ7cQXNMlGLImOL4gCBgS4YdB4Wr8ma3Be2n5+DNHg30FWtzVOxwjovw9fkyixvrjj99w6aWjbI8vvng8AGDQoKGYMaMqo+D555/CxImTcc011wEAYmPjsGDBPVi+fCkWLboPZ89m4J9/duLddz9Cr169AQBLljyIefNm16s97767FrNn34qJEycDADp2jMXNN9+KL774r0NQ4oorpmDs2EsAALfeejtuuGE6zp3LROfOXfDRR++hX7/+WLx4iW397t17AAB8fHwwZMgw/N//fWsLSmze/C0uumgEQkPD6tVWIiJve+1wDv7OrV/wt7GGRfrh7oSIem2zffufMBgMeOONtTUCEgAwdep0jBt3aa37CA8Pt/09Y8b16NWrN/z9A3Dw4H6sWfMmCgvzcdddi51uu3//Phw7dhT/+99WKBQKAMC99z6A33//Bdu3/4nx42se+8svP8Ps2bdi5MgxAIAHHliGHTv+sj2flZWFzZu/xVdfbbZdP269dR7+/PN3/PDD97jxxpsBAAaDAQ88sMwWULn88ivw77+WwEN+fh5MJhPGjBmH6OgOAIAePXo6tEOlUuHBB5dDqVSia9duyMw8i//+dyNuuGG20zbMmTMP27f/aWtDXddEURRtWSf2DAYD7r//YXTr1t31i+KC/TX6+utvwr33LsDtt9+FlJSBMBrNuOKKqfjmmy/rvd+2jEGJNq5jx462v7t164bS0lJIktTqx0RJkgSN0ZLa5SMT3Rp20JQqTGb8fKEMP10oxYmSilrXjfCRY3SUP66IC0RoE2YQSJKENcfy8f25EqhlAh5OikZSaO2pfZ4gCgJGR/tjULgaH54swObMEqxMzcFlhVrc1iscCs7UQS3IoEFDce+9D9geq9Vq3H77HPTuneCwXlraCZw8eQJbtlQVxjSbzaioqEB+fj4yMk5DoVCgZ8942/Px8Qm2L3/uOnnyOA4e3I8NG96xLTOZzJAkx1lxunXrYfvb+kW1sLAAnTt3QVraCYwefbHLY0yefBVefPE5LF58LyoqDPjll5+wfPmKerWTiIjc16NHLxQU5GPdurfx4ouvw8fHMVs1MDAIgYFBLrauyT5o3qNHTygUCrz44nO4/fYFTrMl0tKOQ6Mpw6RJ4xyWV1RU4Pz5zBrrl5WVoaAgHwkJfW3LFAqFQ8AgPT0NJpMJM2dOddhWr9c7rOfn5+eQ4REWFobCwkJb21NSBmL27OswbNhwDBkyDGPHjoefX9UPWT179oJSqbQ9Tkzsh7feykNZWZlbbajrmuiKSqVqUEACALp3rzp/a7Cka9dudstCbX1AFgxKtHC7du3C+vXrkZqaitzcXLz99tsYO3aswzobN27E+vXrkZubi4SEBCxfvhxJSUk19vXTTz8hISGh1QYkjhfrsD1HgwOFWpzVGKA3S7bnon3l6BmowkWVv9SrZM1TLkWSJPySVYaPTlYVjuzgK0dSiC+6BqgQrJRBJgBlRjMyNQYcLtLiSHEFvswowrdni3FlXBCu6xoMH1Hm8bZ9nF6I78+VIEQpwxMpHdDFX1n3Rh6klou4Iz4cQ8LVePVwLraeK8XpMj0e7heFEA7noBbC19cHsbFxTpY7BvC02nJMm3Ytrr762hrrBgcHQ5JQ52erKFo/l6o+u4xGo8M65eVa3HbbfIwaNabWfTl+6bQc177uRG1GjhyDF198Hn/++Ts0mnIolUoMHz7SrW2J2jq9Xo+//96BmJgYhxsLapkW94ls9mPK5SKMRvc+b62ioqKwYsWzWLToDjzwwGKsWvWaQ2CiIcM37PXpkwij0Yjs7Cx07Bhb43mtthwREZF47bX/1HguMDDQ5TGrX9ckqer6pdWWQy6X4913N9rWk8kEmEySw1CH6kESQRBsgXaZTIbXXvsPDh7cj507t+OTTz7E+vVrsH79h7abeVfXVkFw3gar+gy3cKZ64AiwXMft+wCoeR0HHM/Z2izHZUKNHxvaO94ZtHDl5eWIj4/HtGnTsGjRohrPb968Gc899xxWrFiB/v374/3338e8efOwZcsWhIaG2tY7d+4cVq1ahbVr1zZn8z1iX345PkovdMhA8JOLiPaVQxQEaIxmZGmNyNIa8Ue2BgFyEdO7BGNSbGCTBidK9Ca8fiQXu/IsaYMXRahxdedg9ApU1Xpzkqsz4ruzxdicWYIvM4qwO78cD/SLRFiY54Y3/Hi+BJ+dLoJaJuCJ5OhmD0jYSwlT49UhHfHsgWwcK67AA7vPY0VKNDqqvdcmovrq2TMep06lOw1gAECXLl2g1+tx4sQx2/CNY8eOwmAw2NYJDg4BAOTn59uqpKelHXfYT69e8Th7NsPlcdzRo0dP7NmzG3PmzHP6vFwux2WXTcJ33/0POp0Ol112OWcXIar0/fffYffufyAIIhYsWIyoqKg6t9mdV44PTxZgef9oRPg4/lvSmczwaaYfSqhli4npiNWr12DRojuwdOk9WLnyVduNb32Hb1SXlnYcMpnM5XTWvXr1Rl5eLhQKBaKinAc27Pn7+yM0NAyHDx9CYqLlh06DwYCTJ9NstSJ69uwFo9GI4uIi2zoNCdiIooj+/VPQv38Kbr31dlx55aX4++8duPzyKwAAx48fg16vt2VLHDqUirCwcPj5+TttQ3V1XxMVMJnca3NwcAgKCvJtj8vLy51mmlD98VtICzdmzBiMGeP6F7MNGzZg5syZmD59OgBgxYoV+PXXX/HVV19h7ty5ACwpWHfddRceffRRdO7cucFtERuZdm/d3t39lBpM+M+RPPyRbanQG+enwOWxQRgYrkYHX7nDjb/GYMLBQh1+zSrFjmwN3ksrwNZzJXigXxR6eqigo73z5QY8+u955OiMiFErcG/fSPQOdu84UWoF5saHY0rnYLx6KAf7C7R44J9zeMlXhc6KxmexnCnTY+2xfIgCsDy5A7o1wfnXV5ivAs8NisFrh3Pxe1YZlv17ASsGdEC3AFWt21V/zzT2PdgWtYS+aQ+vy403zsYdd9yKV199EZMnXwWVSoVTp04iNfUgFixYjE6dumDQoCF44YVncP/9lkJar776osPwjdjYOERGRmHDhndwyy23IS3tOP7v//7ncJybb56Lhx9egsjIKIwZY0mzPXHiGC5cOI+bb57rVltnzZqDm2++Dq+99hKuvHIKBEHErl1/46qrrrZ9Ab7iiimYM+cGSJLZVqizLqIotIvXmtovnU6HvXv3AAAkyYx//tmBK6+cWud2T+3PAgB8kl6Au+1+uT9erMMDu89jRpdg3Ng91NXm1I5YAxN3332nQ2CiPsM3UlMP4PDhVKSkDIJarcahQwfx+usvY+LEyQ7DHuwNGjQEffr0xcMPL8H8+YvQsWMccnNz8eefv+GKK6agc+cuNbaZPn0GPvjgXXTsGIuOHWPxyScfQq+vsH3/7tSpC8aPvxRPPvkoFi68Fz169ERJSRF27NiO5OQBSEkZWOe5HDqUin///QdDhgxDcHAI9u3bA61Wi06dqtpTUVGBVauexY033oyzZzPw4YcbcMMNN7lsQ2FhIf75Z4etDXVdEzt06IB9+/Zg7NjxUCiULgM7AJCSMhD/+c9q/P33Dtv13JqtSI3DoEQrptfrcejQIcyfP9+2TBRFDB8+HPv27QMAmEwmLF68GDNmzMDIkQ1Pz5XLRY/9kh8SUnc61eliHZbuOIvMMj0ifRVYPCAGF8cGucxACAPQKToIkxOicLpEhzf3XcBf50uwdPd5LBnYEVO6e66AW3qxDsv+zUC+zojxnYLx8OBYqBX1H34RBuDNmCC8m5qNdw9l497f0rFqdFcMigpocNsqTGa8/M856M0S7kyKxsU961eIqak9GxGAV/acw5cn8vHYngt4c3wPl0EThUJW4z3nznunvfJm3+j1euTliZDLBcjlLe8XQVdtEgQBguC8zaLouDwhIQFvvbUGb7/9FubPvxWiKENsbBwmT77Ctt4TTzyFZ555EgsW3IawsHAsWnQPXnjhWdu+5HIlVqx4GitXPoc5c65HSsoAzJ17O5577inbPkaNGoWVK1/Bu++uxYcfboBCoUDXrt0wffoMh/bIZFXts/5fJhMhl4vo1q0rXn31TfznP6vxzTdfwsfHF0lJ/TF9+jW2dXv27IH4+N4wm02Ij+9VRw8KEEURISFqh3G95JxWq8WkSZMwefJk3H///d5uDrnp2zPFOHr8GEwmI7p374n09JNITT2ASZOuhExWdY3P1Rnx0ckCzOoeWiMrQqq2zx/OlwIA/nuqEBf7lCMsLNxpSji1L/YZEw8+eC9eeOGVer0vFAoltm37Ae++uxYGgwEdOnTEddfdiJkzb3S5jSiKePHF1/H222/i6aefQElJMcLCwpGSMtDl8I0bb7wZ+fl5WLFiORQKOaZNm4GkpGSH68Dy5U9iw4Z38PrrLyEvLxchIaFITEzCJZdc5ta5+Pn5Yd++vfjss49RXq5FTEwMli59BH37JtrWGTp0GCIiInHXXfNgMhlx+eVX4rrrZrndhk6dOuOll1ZjzZo3bdfEfv2SMGXKNADA3Ll3YtWqZzFz5lTo9Xr8+edul+294oopOH78GB5/fBl8fHxw662349w5Zkp4giBVHxhDLVZ8fLxDTYns7GyMHj0an3/+uUMNiZUrV2LPnj349NNP8csvv2DhwoXo0aOqKNqHH35Y6/gxZwwGE0pKtI1qvygKCAnxQ2GhBmaz67fdqdIKPLz7PDRGMy6K9MM9fSOhrueNjiRJ2JxZgnXH8mCUgDviw3FFJ/cLCLlSpDfi3r/PIU9nxGUdA3FXQrhHZtL45kwx1h3Lg59cxCtDY9FBXb/ieFb/TS/ERycLkBTqi6cGdGi2WT7qQ5IkvHs8H1+fKUaoUobnB3d0er5XXXU5/ve/7wG4/95pj1pC3xiNRuTkZCI8vGOLGwbQkFRST5o8eTwWLLinxlRj3mY2mzFjxhTccMNsTJtWs06GPaPRiLy8c4iMjK3x+gYG+kLRgKBsW/bKK6/g9OnTiIuLa3BQwmAwoaiocTMKiKKAsDB/5OeX8XOzGmd9M+WndBTu+wsjClIx5UrLjceJE8cwZ85ch9oSt/91Btk6I0ZH+WNJYqRtWwAYG+2Pe/pWZUq8cSQXP54vRdGBHRhdcBChoWFYuPCeehfAbW4t9b1j/Szy9rXG29cVbzEajZgxYwquvfZ6XH/9LKfreLpvnnnmCWi15Xj66ZUe26c3udM/tb3Pg4PVbfaa27K+PZJH2M+uMXbsWBw6dMgj+/XUhclsllzuK0trwGN7LkBjNGNqpyDc3CMUoiA06NiXdwxElI8czx7IxppjeVCKAi6JaXgWgsEs4bn92cjTGXFxtD/mx4cBEmD2QFxvSqcgaAUBG4/m4pn9WVg5KKbeY1ALK4z44nQh5AJwV3y4x9rWFOb0CIXWaMbW86VYsfcCVg6Kgb+TD9nqr3tt7532zpt9w9ekdSkoyMfmzd+irKwUEydOcns7/vur2+nTp5Geno6xY8ciPT3d282heqrIPQ8dzIiL6wS5XI4TJ47hyJEjDkGJbJ2lqJ1SVjPo7+xfh9loQHHq30CMGgUF+Th4cD+SUwa2yB8NiOydP38Oe/bsQlJSCioqKvDf/25EcXGRbapLIk9qeXm25LaQkBDIZDLk5eU5LC8oKKi1GE5LVWEy46l9WSjSm3BZxwDMqQxINMaAMDWWJ0VBFIA1x/JwqrT26Tpr8+mpQhwu0qF7gBJ39Q73+CwmdyR1QP9QX2SU6fFxev2nCdqYXgidScIVcUENzrRoLoIg4I7e4Rgcrsa5cgNWpubAyJsdomZx1VWX4b///RjLlj1mK7hJltmu7rzzTowcORLx8fH45ZdfaqyzceNGjBs3Dv369cOMGTNw4MABh+dfeOEF3Hfffc3VZPIgyWxGRd4FGEUFoqM7VE4LLODIkUO2avv5uqoq+75OghLOaM+ehGQ0wMfHMqPP1n8P4uqfT2FvfuMyYYiamiiK+O67/+G222Zj4cLbcOHCeaxevcblDCBEjcGgRCumVCrRt29fbN++3bbMbDZjx44dSE5O9l7DGuj9tAJklhswIMwXd8R77qY/OUyN2d1DoTdLeOFgNsobkFaWqdHj64wiqEQBD/WLapJZPeSigCWJkfCVCfjubDEyNXq3t71QbsC286UIUIi4tkuwx9vWFGSCgPv6RqKLvxL7C7QNCsQQtXT/938/tbihG3/+uRvffvsDxo3jr132rLNdPfbYY06ft852tWDBAnz11VeIj4/HvHnzUFBQAADYtm0bunTpgq5duzZns8kDJEmCoTgfkqECfhHRkMlkUPr6IbhDR6Rl5yP9rGXMeLHBZNtGZ3IvkK45fRQAcNVVUyGKMny26wAksxkfnizw/IkQeVB0dAe8/fa72Lr1N2zd+hvefPMd9OmTWPeGHvTII0+0maEbVDsO32jhNBoNzpw5Y3ucmZmJI0eOIDw8HBEREbjllluwdOlS9O3bF0lJSXj//feh0+lw9dVXe7HV9be/QIv/yyxBgFzEooQIyDychTC1UxAOF+nwT145vswowk31qIItSRLWVNamuLF7CCJ9my4LIUQlx4yuIXg/rQDrjufj8eRot4IzW86VQAJwZVyQ02EQLZVaLmJZUhTu/eccvswoQr8QH6SEqb3dLCJqhxo729X+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1J7mnvGqPaneNwazZegGAKgjYyCKAh7bnYWdhnAU5h7CM1u34707roPWLhChM0lO+9Z+mU6nRfm5dIhKFRIT+2HXrr9hPr0XhpICxMZ0abGvTUt977S09hA1pfY24xWDEi1camoqZs+ebXv89NNPAwAWLlyIRYsWYdKkSSgoKMDrr7+O3NxcJCQkYN26dQgNbT1TT5klCeuOW4ag3NE7HKEqz78tBUHA7fHh2FdwFv87U4yJHQNrVM12ZVdeOQ4U6hDnp8BVcY0vllmXK+OC8OP5Uuwt0OJQkQ6JIb61rl9hMuOn86WQCcCERtTM8JYoXwUW9A7HytQcvHIoF6uHxSJI2XoCK+Tao48+hIMHD9S9oof065eEp556vtmOR+2HO7NdLVmyBEuWWKZX3bRpE9LT0xsckGjuGa/aK2vflOlNVUGJjp0RFuaPI8U6qDv1QOGe33Dg0CGEhflD1FZlShgri0HaU6rkCA31w+t7zyMhVI0Lp04AZhPUnfsiMjIIcd27Ar/thT4/Cz6qnthZrMeIjoEIboLvPZ7Q0t47LWmmJ28fvyVj39Su7v5pnzNetcxPQbIZOnQojh07Vus6s2bNwqxZzqvgtgbbczQ4ozGgT5APRkY23QUwwkeOqZ2C8NnpInx4sgD32VXIrs03Z4oBADd1D4W8GSKWClHAtV2C8drhXGzOLKkzKPFXjgalRjNGRvohpIV+sanLiCh/XFqgxY/nS/HuiXzc6+ZrQy0bAwTUVhQWFsJkMtWo1xQWFoaMjAyPH89oNDfbjFftUfW+Kaww2oISv2p88fepfACAIjAUisBQGApzceJEBrJ0VZmSJVoD8vPLHPZbUWFEamYR/lv5Q4vxwF4AgF+X3sjOLYXJJ9iyXkEOtmYUYmtGISZ0DMCiPi3rmtdS3ztGoxFmsxlGowTAe7NftNfZN9zBvqmde7NvSDCbzSgsLIdc7jiUuy3PeMVQFnmVWZLw6SlLLYHruoV4vHhkddM6ByNYKcNvWWXI0hrqXD+9tAKpRTp08JVjcHjzDSsYEekHf7mInbkaFFUYa113S2YJAGBSbP2meW1pbukZhhClDL9mlWEPC4BRE/vyy/9i4sSLYTZXfTnIz8/DyJGD8PDDjtM4bt26GWPHXoSKCl2Dj/fTTz9i5MhBWL58qdPnH398Gd57bx0AYOTIQRg3bgRycrId1lm48Ha88carDW4DeZ79bFf2pk2b1uDpQK2ss5005j9P7act/mffNwUlpTCUFEAeEAyZjxrfnSmyvQ7qzr0AAHv27EGZvurzQmsyw2yW8GdWqcP7QV95w2EsL0Pm6VMQff3gExWHz9IL8fo5y3tFn59l2yZTY/B6X7Sm9w5Re9He3v8MSpBX7czV4GxllkRSiE+TH89XLuLyjpab923nS+tYuypL4sq4oGadvkslEzE+JgAmCfjxgut2FlUYcaykAlE+cvQJbvr+a0p+chF39rb8Cvn20Ty00NlMqY1ISRmIsrIyHD9elYm2b98eREZGYf/+vbZq+9blCQl9oVI17N9YdnYW3nzzVSQlJTt93mg04u+/d2DEiNEOyzdseKdBxyPPa2uzXZGjjDNnAQCqiBgAwE8XqjIg/LtbCvvt2bMbpfqqHwm0lcGHFw7mOOzLWPnZoUk/DEhm+HdNgCCK+ORUIeSBIRAUSugLciBVBkSj3BxKSkTUljEoQV71c+WFf1qXoCbPkrAaHxMAAcBPF0phqiXqWGow4c/sMvjJRYzr0Py1Gqz1IX44V+pwg2RvX4ElvXdAmLrZ+q8pDYvww+BwNbJ1RuTXkSFC1Bhdu3ZHcHAI9u7917Zs795/MXHiZCgUCqSlnXBYPmDAoAYdx2w24+mnH8fNN89Fx46xTtfZt28P/P390bNnL9uy6dNnYPPmb3HmzOkGHZc8q63NdtWe7c4rR1a5Y6bkmbOWIThdOnWusb4iMAQ+0Z2QU1CIU2lVQUytSapxbZZgCVZIkoSytIMAAP8e/WzPC4IAZWgUJKMBhhLL7BvuzuJBRNSWMShBXlNmMGFvfjkC5CJSQptvaESEjxzJob4oqDBhT4HrYQJ78rUwSsDwSD/4eqFoT6yfEvFBKuTojDijcT7UZG9lUCI5rPa6E63J7O6hEAHk6owos5t+jciTBEFAcvIAh6DEvn17kJIyAMnJKbbleXm5yMw8i5SUgQCAWbNm4NJLR7n8b8mSux2O8/HHH8DHxwdTpkxz2ZY///wdI0aMcliWnDwAAwcOwdq1//HUKVMdNBoNjhw5giNHjgComu0qNzcXAHDLLbfg008/xVdffYWTJ0/iiSeeaJWzXbVnF8oNeGp/Fm77q2pWs4wyPQ6ePAUA6N6li9PtAnoPgM5kxuG//7AFInQmM6rHEyTJEqzQZp6EoaQAqogYKIMdM2lUYVEAAH1+tm0/RC3J/Pm34rfffrY9PnHiOObOvQljx16EOXNuQElJMa666jLk5ubUshei+mHOGHnNztxyGCVgWKRfsxSQtHdpTAD2Fmjx47lSDA53Xlzz38q6BoOasZZEdf1DfHGsuAKphVp09neswCtJEvYVaCEKQL86imG2Jp38lbgkJgAHJQlfZhTh5h5h3m4StVEpKQPxzjtvwWw2o7i4CJmZZ5GY2B9nz57Frl1/Y8aM67Fnz79QKpVITLT82vnii6/BaHSdxaNSqWx/Hzt2FF988V+sX/9hre34668/sHTpwzWW33nnAsybNxtHjx5G7959GniW5K72MNtVe1dRLQAgSRIW7cjAmdQTEBRKREREAdmaGtup43rAP3c/jqVnwnz+FNQdu0FnklBerWCdSQK0RhOKD+4EAAQlDkWQQgaVTMCk2EC8l1YAZVi0pS0F2fDv3hcVzJRo00aOrD3L7pZbbsPcuXc0S1uOHj2Cdev+g6NHD0Or1SI8PAKJiUl46KFHoVBYirj+8cev0Gg0GD16rG27//xnNSIjo/DMM6vg6+uDwMAgXH75FVi/fg0eeujRZmk7tX0MSpDX/JltGboxMqr5p5waEuEHH5mAfQVaGM1SjaCISZKwJ78ccgFI8uINf2KILz47XYSDhVpMrjYdaUaZHkV6ExKCVPBrY9MvXdctBK8KAjZnlmB652AEttJZRahlGzBgkK2uxPnz5xAfnwBfX18kJ6dg3bq3LYG/ff+iT59EWz2J6OgObu1br9fjySeX45577kdYmOuaAydPpqGkpAgpKTW/uPbq1Rtjx47H22+/gVdffathJ0luaw+zXbV39rf/JXojCipM0OdnQzIa4BvTFSqFDFM7BeHrynpSVoIgYMCo8dh58j0U//0TfK6KgyhXYNme8w7rGSUJR1L3oyLvAhQhEfCN7Y4PRluGhKQWWjIbVZVBCX3lbB86MzMl2rJvvtli+3vz5m/x1Vdf4J133rct8/Wt+uFLkiSYTCbI5Z7/zlNYWIB7712A0aMvxiuvvAW1Wo1z5zLxyy8/wWw2AbAEJb744jNcfvmVDkOCz507i2uvvQ7R0dG2ZZMnX4k5c27EggX3ICCg9U1HTy0Pv+mTV5ToTdhfqEWQQkS/4Oa/6VeIAnoH+WBfgRbppRXoFeRYwO54cQVKDWb0D/WF2os3/L2DVJALQGqRDmZJcii2aR26kRLmvUyOphKmkiNYKYPOJOGH86W4pmuIt5tEbVDXrt0QEhKKvXv/xYUL55CcPKByeXcIApCWdgL79u3B+PETbNvMmjUD2dkXXO4zKSkFL730OvLz85CRcRqPP77M9px1po8xY4biiy++RUREJP788zcMHTrc5ZfQ2267CzfeeA3+/XeXJ06ZqF0z2kUlMkoqkF9ugC7bUuTSJzoOSlHALT3D8MuFUhQbHIMFcT16wz+uB/JPHEX+zh8QPmISzlYbWllWXIST274HAIQNucThxs76XUIeEAxR5YOKwhxIZhNrSrRx9kFptVoNURRty/bs2Y27774TL774OtaseQPp6Sfx9tvvYtOmz6HVluPpp1fatl2+fCl8fdV45JEnAAAVFRVYu/YtbNu2FeXlGvTo0RMLFtxry+qr7uDBA6io0GHp0kcgk1mmlOzYMRZDhgyzrVNYWIg9e3ZhyZIHbcusmR6vvvoiXn31RVtmR6dOXRAZabmGXX75FZ7pLGrXGJQgrzhYqIVZAoZG+EHWzEM3rPoEW4ISh4t0NYIS1qEbA71cq0ElE9EryAeHi3Q4U6ZHl4Cq1PBDRZbpCb2ZydGUwlWWi+a3Z4sxpXOwdxtDbVZKykBbUOKuuxYDsPwqmpSUjJ9++gFnzmTY6kkA7g/fiIiIxAcffOrw3Dvv/Ac6nQ6LFt2LkBBLyv+ff/6Oa6+9zuX+YmPjcMUVU/D226sbPPsHEVmY7ApTZpToUFJugC6rMigRZQlKAIBSJgIGM8JUMoyK8sfXZ4phNEsIHHIpFOfPISwnDQX/bEPo4HEQRMu1ylBahAPbv0GArhwBCQPhE+VY2NYalBAEAYN7dEVJ5imUFOWhwjemOU6dWrA1a97AwoX3IioqGkFBwW5t8+qrq5CRcRpPPfU8wsLC8eOPW3DvvQvw8cdfICIissb6oaGh0Ov1+PPP3zF69MVOi6MfOLAParUacXGdbMu++WYLbrvtZlx99TWYNOlKh8yO+PgE7N+/l0EJ8ggGJcgr0kv1AIBeQao61mw6fSun0DxcpMPUagW397SAehJW/UIsQYmDhTqHoMT5yurh1WtNtBUqmYjB4Wr8k1eOP7LKcG0E0wPJ81JSBuKtt16DXq9HUlJ/2/L+/VOwfv3aylkXqn55cnf4hlwuR7duPRyW+fsHQCaT2Zbn5+fhxIljGDZsRK37uuWW2zFz5hRIElhbgqgRjHYzbhVWmJBVpoMu9xwEuQLKsCioZJYbNZnd/Zqs8uZNa5JQKvNBwuUz0Cf1e2w6vh/nzp+GOq4nzIYKaE4fRZBgQteEPtD2u7jGse2zLgf26ILM0vPYXZAFXaR7nynk3JdffoYjRw436zETExMxdeo1HtvfbbfdhYEDB7u9flZWVuVQkM0IDbXU3ZozZx62b/8TP/zwPW688WYnbU7CDTfMxmOPPYSAgAD06dMPgwcPxcSJk23DL7KzLyA0NMwhYBEWFg5RFKFWq2sMRQwPD8fJk2kNOWWiGtrWQHRqNU6WVgAAugd4LyjRM9AyNOJwsWVohJVJkpBRpkeAQkSMr8Jr7bNKrBzecrByPCpgaWO21oBAhejV4SVN7crKOhrbzpd4uSXUVg0YMAharRY9e8bDz8/ftjw5eSC02vLKehJN8zn1119/oF+//ggMDKx1vfDwcFxzzXXQ6yuapB1E7YXR7lqvMZiQduYsJIMeqoiOEEQZlGJlNkPlOhKqAhTZWssPAZ1iYnDnnQsQ1bkbjKVFKDm8C2UnDkAymxDZ/yL0u/waCGLN67JaVrUsNjYOAGAqzKlRfJPan969E+q1fnp6GkwmE2bOnOow+9OxY0dw7lymy+3uuutufP3191i8+H7ExMRg48b3cdNNM5CXZ5lhqKKiAkql+9c7pVKFigpdvdpO5AozJajZSZKE9NIKyAUgzs97v/KrZCJ6BKpwtLgCmRoDOlVmHOTqjDBKQEe1wml6W3OLr8wmydDobcsKKkwwSkB0CwiaNKXEEB+Eq2Q4WKhDlkaPtn225A2dO3fBn3/urrG8d+8Ep8sbwzoW2OrPP3/HyJGja6zn7Ljz5y/C/PmLPNoeovbGfrKMHedLcKKysKlvB0u6pHX4hlAZlpAkSw0qAMiqDEqE+8gREhKKlKtuhOnUWejzsyHIFfCJikNkaCAqXJSIsC+o3TmuE3YCMORdgFGC04Lb5J7p02c0+zHlchFGo+eCST4+jsNwBUGwTT1rZT9sUKsth1wux7vvbqzxPdXPr/bi8SEhobj00om49NKJmDdvPq677mp8/fWXmDfvTgQFBaO01P0fgUpLSxAczJpf5Blt9ydWarEKKkwoNpgR56e0Xey9pY/dEA4r67CIjuqWcQuskonwl4soqDDZLlIXKtvY1oMSoiDg4mhLWuEPGYVebg2RZ/Xvn4xx4y71djOI2g37mhIninQ4n34cAOAb2w0AoKxMi7De51kyJSwPLmgtN4URPpbf8/wVIpTB4fDv3hd+nXtB5uMLoyRBa1dN09U3nIjgQAQEBMJYnA+z0QAdsyXITnBwCAoK8m2PzWYz0tNP2h737NkLRqMRxcVFiI2Nc/jPWq/IHf7+/ggLC4NWa8nE7dUrHnl5udBoytza/vTpU+jZM97t4xHVhkEJanYtYeiGlTUocbykKihxrvKGP0bdcmo1hKlk0JslaCoj89ZfbKJ9236y08UdLCn1358urPHLAVFrduONNzstSEZETcO+poRJq4E+Lwsyv0Aogizj8qsyJSwkSYJ1hOSJEst3F1tQwsnQySytETtyNbbHrpIt5YKAuLhOkAkSKvIuoIIzcJCdlJSBOHQoFdu2bcWZMxl4/fWXUFxcZHu+U6cuGD/+Ujz55KP4/fdfcf78uf9n777j26jv/4G/7k572bK87ezhOE6cnZABGWU1tMwCLaRQyigrpS2F9keh39JSRoEOKDSsUgp0QBugtDRhQyEBsnecOE484ynL2vPu94d00kmWZNnWsJ338/HgQSydTh99LOt073t/3m8cOLAfzz//DHbt2hF3n59++j/84hc/xdatn6KlpRnHjzfgD394HMePN2D58tMBANOmVcFgyMO+fXsHHKPH40Fd3aGo7h2EDMfYP6MhI86x0IF9sj73J/0lqmCmgdkTCN820jIlAMColKHR4YPZE4BOzqE9dMWmbASNMVPGaRWYqlei3urBMZsXk8doYU9CCCGZJW0J6mxtAABoKieHU+BVXHSgQZopIRILYOvkA1/Xq47p7HXLjEKcsHtRoOQwYcJEcMzn8HS0wEWZEkRi6dLluPLKq/Hb3z4CQeBx6aXfwKJFS6K2ufvun+P555/BY489iu7uLhiNBZg1qxZnnnlO3H1OnDgJCoUCv/vdo+js7IBKpcKECRNx332/wvz5wbafHMdh7dqv4J13NuG005YlHeOnn/4PxcUlmDWrNj0vmpzyKChBsk7svDF5BGRK5CuCrbws3v5BifIRdMJvCrXHNHv8GK9TSDIlRs4YM2l5iRb1Ng92dDspKEEIIWRIpMs3XC3BdHh15ZTwbcbQdwJxZakgBLMaRGvKdDApg1+dtTIu6XOtm2LEmWXRXaPOrogUtZ00aTJkDAN7RxNlSpwiLrnkclxyyeXhn+fPX5iwdtF3vnMLvvOdWxLuSy6X44YbbsYNN9yc0nNXVFTiRz+6e8DtLrvsSlx99eXo6uoMZ/L94x9v9tvu1Vf/iquvvi6l5yYkFbR8g2TdMZsHDICJI+DkUidnwTL9gxIMRtbSCPFLUE8oo+NUWr4BAHNNwStTe8zOHI+ExBP5zk5frMem4O91BNT9JWRYxOUbvM8LZ2sDGLkC6tLx4fvzQxcAxMwJAYB0lYa0Dla85Rvh/Sg4XDrRCKMy8TG6pKQUapUK7q42dDiogwEZGQoLC3HnnXejo6M94TZWax9WrDgDZ50VPyuDkKGgoATJKqcvgC63H2VqOdQjoJUlyzDIV3Do8wXACwI8AR5dbj+KVDIoudyPT1QQ+mJj9vohCALaXX4oWSZ8VWesm6xXIE/B4ZDFTQXBRiCW5QAw1LJyjAoEgsvFgr9nQkaH7d1OPHGoKyo7QmwJ6myuBwIBaMZPA8NFAgd58lBQIvRz7PINueTf+iTLN74+aeCOBCzLYva0KUAggPcP1afykgjJipUrVyddlmEw5OHKK68eER3qyNhxalxmJSOGK1SoUZvCWsxsyVdwMHsCsPl4WLwBCBhZSzcAoCB09abHHYDNz8Ph5zFBOzJalmYDyzBYWKLDe819OGhxY34oc2IgPR4/3mqxotnhhdUbwHidArPy1VherAVH7dfShmEYaLUGWK1mAAj1OR8p88vA76cMjvhSmRsBNpsFSqXmlPm8IWPDL/YEr/QuKtRgcVGwTaIY03acOAwA0E6cEfUYWUyhS14QooISYncOANDL+wfptDIWP59Xhikp1sxaMbMK//piN7YfOgKsWZDSYwghZCyioATJKl8odVI+gr7cGiV1JUZiPQkgOlOi/RRpBxprYake7zX3YbfZNWBQQhAE/KPRglePW+CRVFs/1OfB5lYb/nZcjm9PM4ULlpHh0+nyACAUmBg5QQCWZcHzlF0TT6pzw7IcjEbqEkJGJ3eoXsNBixu93gACbhdcbSfAKlVQl02I+xhpS1BpUqe0vkRenEzFF0+fMKiA9+yqaZCzDLqaGlJ+DCGEjEUUlCBZJQYlZCPoKrX4xaLX60erM1iEcyR13gCkhS4D4c4bpSNsjJm2uCRYMGy32TXgtn893ou/H7dAzjK4eEIelhVroZNxaLB5sKnVir29bvxiTzu+NbUAF47PoyvAacAwDPT6fOh0eeD5AEZC91aWZWA0atDb6wTPj4ABjSCpzg3DBIMS9DdCRgtBECANtTEMsKvHiZ/tDmZO2Bv2A3wA2omzwSRYkiR9t0sDEdKaEoY4GZ+DzcArKyuHXK2Fs7MNLpcLarV6UI8nhJCxgoISJKu8odzJEbR6I6oDR+sIzZTIU3BgmWD3jWZHMHBSdoplSpTpFChTy9Bo98LmC8RNnQWAd9qs+PtxCzQcg/sXlGOSpMtLmUaOZcVabO1y4LcHuvCnejPsPh7fnFqQrZcx5jEMA44bGYcWlmWgUCggk3kpKBGD5oaMVb/a34kvuhzhnwUB2NbtDP1bgP3IXgCAftqchPtQh2pKKVk26iKKNCghPQYVKjncM6d00GNlGAZ54ybDeXgv6uuPYPbsxGMiVFSZnCpOzeLSI+ObIzlljMRMCaMi+GfQ5w2g1REMSoy0TAmOCRa17PUGsKc3mCkwIy/3LVWzbbJeiZMuP5odPszM7x+UsPkCePZIDzgG+H+1pVEBCRHDMFhWrEOhUoaf727HPxotmKBT4IxSXTZeAiGEkAza0unod1uXO5hh6Olsgc9qxsTx44GC4JKkr44zQM4yWFkSOQbcUl2Exw914dvTCuCU1F2RBiWk32O+Pc2EiUNsc54/bgpOHt6Lw0coKDEQluXAshwslm7o9fmhAHguvk9SraLEaG6SG2h+BNjtfWAY9pQrLk1BCZJVI7GmhJgp0esJoMXpg4JlUKQaeX8aBUoZejwB1PV5kCdnMWEEtFTNtnE6BdDpQLPDi5n5qn73/7u5D+6AgC9XGFBbkDwNdnqeCj+cVYx7d7fj94e6MEGnSNuc2n0BHLcHi2tq5SzGaxXhuiCEEEKyx8cLOGYLdgayHdkDALhw1em48+tzcKilFyZF/+VJ5Ro5HlhQDgA40BtZMijPwAWV/HETAYbFkSOHIQgCLZVKgmEYmExlsFrN6O3tzNk4qFZRYjQ3yaUyPwzDoqCg+JT7LKBvySSrvKGCU5k4sA+VGJQ4bvfC4ecxSacAOwI/CMQOHAAw26gekWPMtPHaYNBAXMIi5fTz+HezFRwDXDQhL6X9zTVpcOUUI1481osNh7tx/4KyYR0EDve58crxXuzo6V/3osqgxHnj8nBGifaUO9AQQkg2eOK0jLb7A+jxBOC3W+E4UQdWqcK06hoAQLFaPuDypUTLN6RcgaFfGVapNFCVVMBq60Nj4wlMnDhpyPs6FXAcB6OxCILAg+f5rNcvolpFidHcJJfK/JzKdZwoKEGyyseLNSVGzh+bGJQ4ZHEDAMZpR9bSDVGBIvLnOmeALICxSvzdNIeW2UhtbrXC7uexpkyHkkHU27hoQj7+1+HAwT43tnY5sKx48Ms4AryA5+t78GazFUAwgFSdp0KBkoPDz2N/rxt1Vg/qDnTirRYlvjezGGUjbIkQIYSMZt1uP679tKnf7SedwaUb1kPbAYGHvmoeVMrUl1pIW4LKEpwo+IZxAiZjGWgmVIFv/hwHDuynoESKGIYFx2W/QBnV40mM5iY5mp/kKChBsiq8fGMkBSVCGQhi68hK7chcFmFSRTIlBlqaMFZVaBVgET9TYmuosNn541LLkhBxDINrphXg/3a144V6MxYVagf1/vQGeDy4rwM7elzQy1l8a6oJq0p1UVfXBEHAvl43nq/vweE+D+7c3oq7aktRHWcJCiGEkMHb2eOMe3uL04uA2wXb0b1gOBkMM+YnDC7EI5NsGnts+N7MIrzZ3IfTS7RDGrO4T+346RBavsCBA/uwdu1XTsmrpISQUxsFJUhW+Ubg8g2djIWMAcS6M5Uj9Aq2KVSToFglQ+kp1nlDJGcZlKrlaHP54PTz0IQayHsCPI5ZPTDIWUwcQl2IuQUaLDCpsaPHhQ/bbTir3JDyY5850oMdPS5UauS4Z25p3N8NwzCoLVDjkUUVeP5oMKPip7tO4hfzyzAjL32BCV4QcNDixmddDrS7/LD7AshXcKjUKrCsWItJOgV92SWEjEneBFceWxw+WA/vBBPwQzt9LjiVZlDFtrkkyzdWl+mxukw/tAGHyBgGnFqLivETYW5tRFNTIyZMmDisfRJCyGgzghozklOB+KVhMFcpMo1lGOQpIlkIIzVTQly6sKhQk+OR5FZkCUckW+KI1QO/AFTnq4Z80n3JhHwAwDuttpQf8/5JG95usyFfweEX88sGDBZxDIPrphfi6qkF8PICHtzbge5QVfjh2tnjxC1bW/CTnSfxZrMV27qdONTnwdYuJ149YcH3v2jF7dtaw8uUCCFkLEkUlOi22mA9tB15SjkMNYsAANwgDhPS7yuZuKAitkifMmMWAGD//n1pfw5CCBnpKChBssoXGHk1JYBIXQkWwarbI9E0gwoPLyzH1VMLcj2UnBoXLnYZqStxMHSiXTOM5RAz81Uo18hRZ/Wgyd5/eUgsizeAp+q6wTLAHbOKB9Vd46LxeTinQo9ebwAP7utAYBhrCwO8gF9ta8H/7TyJNpcP1XlK3DyjEL9eVIFnlo3DrxaW45qpBZikU+CYzYsf72jD03Xdw3rOVHkCPNwBPivPRQg5tXkTFJu07PsMgs+LmvmLINcFl/cN5jtIKoUuh0MMekyqmgmGYbFv324EAoG0Pw8hhIxktHyDZFU4U2KEBiVK1fIRFzCRmp7GVP/RKl6mhBiUiNcmNFUMw+Cscj1eqDfjnTYbrp1uSrr9640WuAMCvjrOgFnGwdX4YBgG108vxAm7F3V9HmxqteK8QdbCAIIBid8e7MLHHXbkKzjcWFWIpcXRa5uL1XJU5alw/vg8fNxuxx+P9uA/LVa0u3y4Y1YJ1LL0xqYP97nx3xYrDlnc6AhlgXAMMFmvxLwCNb5caaD2qISQtItXbNJn74OtbjcYuQKLl69CS0fwuMENIqOOi6opMexh9iN+H1JotJg+vQp1dYdQV3cYM2fWpP/JCCFkhKJMCZJVkUKXOR5IDDEoUTFCO2+QCDFToiWUKRHgBRzuc0PFMZisS72iejxrSnXgGOCDdlvSauoWbwBvtVihYBlcHFr2MVhylsFNVYVgAfyloRdW7+CvjP2hrhsfd9hRplXg0cUV/QISUizDYFWZHg8vqkClRo4dPS48eqATgTT1U+ty+3HPzjb8aHsbPmy3o8PtR6lahnFaOXQyFketHrxywoLrP23Cs0e647buI4SQVO3oduK4zRP+Od7yDfO29wE+gLyZi1BqjNQKGkwsNmr5RgaWnooXQvy8AN2UWfjgpA3vbP0Mn3bYcf+ednjps5IQcgqgy1Ukq7wjdPmGMdRuc6S2AyURYuCozRUMShy3e+EOCJhToI4qSDYU+UoZ5hVosL3Hibo+d8IMiDeaLPDwwSyJ4Vz1n6RX4pwKA/7basXLDWbcNKMo5cd+1uXAO202FCg4/H7NFCjcqbWYKlHL8eDCcty5vQ3bup146ZgZV09NnhUykC+6HPjtwS44/DwqNXJcMD4Py0t00Ia++QuCgFanD++22bCp1Yo3m63YY3bhztkl4SBTOgV4AXt6XdjS6UCb5yQ6HF6oWAYmlQxzjGosLdaO2GVahJCBeQI8fr6nHQDw+ppJ8PEC9vW6orZxNtfD1VwPmS4fhppF4YsPwODqWkkzOzOR5SmOxR0Q8Ee7AQ5OhY/37Mc7JYvBqbX4pNOBVqcPDh+PG2cUpv35CSFkJBhh16tJun33u9/FokWL8P3vfz/XQwEQvBIAjLygRI1RBRbAAtOpXURyNFBxwW4pLn8wwHXUGrxSVp03vCwJUW1BcAnI/t74BSF5QcD7J+1gGQw5S0LqyilGqDkG7520w+pLLVuizxvAk4e6AADfrSlG2SBP7PVyDvfMKYVOxmJjY1/CVnqp2NHtxEP7OuDw87hofB5+u6QSZ1cYwgEJILhcpVKrwLemmfDk0nGYW6BGk8OHu3a0pVS/YzC2dztx82fNuHd3O95ps+FAjxPdbj9anD7sMbvw52Nm3Ly1Gb8+0IkOl2/gHaaJIAhwB3gIacpMIeRU5pEEYI/ZvHhgXweOSz5LeL8vmCUBoGDJl8DK5ChQRoISgwlgRy/fyEBQIvRRecLuBcNy0E2eCZ7nYasPFrx0+Hj844QF/221gqfPD0LIGEWZEmPclVdeiQsvvBBvvvlmrocCIJJemYkUyOGYb9Jg45pJ1C5xlFBxLFyhrBtb6ETelKY6BTX5weyIAxYXAGO/+49aPbB4A5iVr0pLbQS9nMPqMj3earHivTYbLkoh0PGXBjP6fDzOKddjwRC7sZRr5Fg/swgP7O3AU3XdeHxJJRTc4OLUdX1uPLivA34BWF9diDNTaKVaoJTh/+aW4tkjwdoW9+w6iQcWlA87c8HPC3jycBfeO2kHANQaVTizwoAVk0xgXR64fTxanD5s63ZgU4sNH7Xb8UWXA7fNLE667GU4WhxefNhuxxfdTpx0+uDlBciYYJ2P+QVqnFGqQxXViSFk0KRJYbvMTuzsic6SsOz6H/z2PmjGTYOmYjIAIF8R+bweVKZExrtvBPcpBqX10+fAfWIPbHW7kFezCA5/ZPmGOyBAI6PvKYSQsYcyJca4JUuWQKvNzBfuofAFRmamBAAKSIwiKo6BJyCErj4LodvS83E2Sa+AhmNwuM8Tt67Etu5gVsHiovRl1Xy5IngyvymFK2EWbwDvnbRDxTG4apidWJYUarDApEa7y4/Xm/oG9VhPgMdvDnTCywv49rSClAISIpZhcP10E75cYYDFG8Aj+zuS1vAYiDvA4/697XjvpB0mJYef1JbgF/PLsbpMj1KtAhzDQC1jMc2gxBWTC/DUsnH42oR8uAICHtzXgX+csAz5ueMRM1nWf9aCV09Y0Gj3QskyqNDIoZWxaHP68O8WK+7c3oZf7G6PKtqaKbwgoK7PjQ9O2vBGkwXvtlmxv9tBmRtkVJLWwoltc+xqb4L10A6wCiUKFq8J3y7N3hpMTQk205kSoe8e4mew3FAAVfkkBJx2OBuPolHy+eCi+hKEkDGKMiVyaNu2bXjuueewf/9+dHV1YcOGDVi9enXUNi+//DKee+45dHV1obq6GnfffTdqa2tzNOLh8/HBA+pI675BRhcVx0JAAF4+mBIfvC097ymOYVCdr8KOHhfqrR5Ux3T0EIMSiwrTF+wbr1OgJl+FAxY3dptdmJ9kGdF/mvvg4wV8eVwedHIu4XapELuA7P08ePJ8bqUBhhT3+ZeGXpx0+bGoUIPzh9A5hGEYXF9lQqPdi4N9bvylYWi1LQRBwG8PdGJHjwvjtHL8bG4ZClXJD21qGYtvTi3AjHwlHt3fiRePmaGXszinIvXASiINNg/u29OOHk8AehmLCybkYUWxDmWSTBCzx4/Puhx4o6kP23uc2NvrwvrqIpxRqhv288ey+gL45wkLPmy3wxJbTPVAF365oByzhtG1hpBckMYw213+yO1eD7o/eQsAYFpyNmTayN+0QlobYhAXIZgMZ0rE+z6krJoP1B+B9dB2NMycFb7d5ecBZTAQc6jPjYvG59EFFULImECZEjnkdDpRVVWFn/70p3Hvf+utt/DAAw/glltuwWuvvYaqqipcd911MJvN4W0uuOCCuP+N1B7X3hGcKUFGDzErwhUQwleO0pUpASBc4DK4hCOi0+XDCbsXFRp52gslnhs6If6o3Z5wG3eAx39brGAZ4Kvjhn8CDQBlGjnOKtfDywt4t82W0mOO2zz4V1MfNFywg8hQvxRzDIPv1RRBwzF4rbEPR63x63gk86/mPmztcqJULcP9C8oHDEhILSrU4q7aUsgYYMPh7mHV1gCAfb0u/L8dbejxBLCqVIcNy8bh0onGqIAEEFzCsrYyD78/bRzWTTHCzwt49EAnXj3RO6znj/Vumw03bmnG6019sPoCqDWqcMmEfHx7WgEun2TEuuoiTDWkpxYLCWpoaMDXv/51fOUrX8HFF1+M7du353pII16AF/Cf5j50uf0DbxwizSgTjwGCIKB76yYEnDaUTpuJJy5dA3GlA8tEn/wPpiWoVCa7b0g5Cyohzy+Ep/skGpuawre7AgLsvgB+vKMNL9Sb0WDLfJYVIYRkA2VK5NDKlSuxcuXKhPc///zzuPzyy3HJJZcAAO699158+OGHeO2113DttdcCAN54442sjDVdxBTtwVylICSWmBXhDvDh5RvqNK6zrcmPFLv82sTI7ZEsifQXRJ1vUoMFsLfXBUEQ4p7ob+10wObncUaJFsXq9AVF1lYa8FaLFf9tseKC8XkDfmF/rakPPIArphTANIggQDwlajmunmrCH+q68deGXvx0blnKj22wefCnejPkLIMfzS5JOctDqrZAjdtmFuPRA514/FAXHl9SOaQMlJNOHx7c2wF3QMCVk424dGL+gMEaOcvg0olGTNUr8at9HXjpWC/yFRzOGsRSmHgCgoDnj/bgzeZgAOvLFQZcPikfRkkNFJZlYDLp0NNjT6lrC0mNUqnE/fffj8mTJ+PYsWO4+eabsXnz5lwPa0R7u82Gp4/04J+NFvxxxYSUHhOQvGWdoZoL1gPb4Gw8ApkuH+OXn4OqPBX0cg693kA4S+JXC8vR4/FDPZj1GxLD7fAUT7zvQwzDwDBjPno+ext9+79A8eoLAQA/2t4a9dobHV5MMSjhC9WroawJQshoRUGJEcrr9eLAgQO46aabwrexLItly5Zh9+7dORkTO8yDMcsy4UKXShk77P2NJeJc0JxEi50X8f/iF0rp8g2NjEvb/E3LU0HBMjhq9UTt86gt2OljXqEm7b8rg1KGqQYljlg9aHP747bK3GkOZm6sLNMnnJuhmKBXYk6BGnvMLuwyu7C4KPHSlB63H5902KGTsTin0pCWeTi70oCNTRbs6HHhiNWDGSkuJ3ih3gxeAK6bbsLUOAUjU52bVeV67DQ78cFJO/5Ub8Z3a4oHNX6nn8d9e9th9/O4eEI+vj5lcLU+FhRpcdfcUvxs50k8ebgbpWo55gyxE5AgCHjqcDc2t9qgl7O4a05p3Na29JmTGRUVFeF/T548GTabLWGQkQS1hGom9HhSz/CUZkq4AwJcJxvRu+tjMJwMxasugEIVfM+rZSx6vQGIsz8SC8smio/optTAsncLnM1H4e3tgsJYFBWQAIBGuxfNDi9u/awFX5+Uj29MHl6dIUIIyRUKSoxQvb29CAQCKCyM7kltMpnQ2NiY8n5uuOEG7N27Fy6XC2eccQaefvppzJgxY9DjkclYmEzDX+/s54NtDAuNGpgKqP1mLKNx5BQlzTW5nOv3nhPnx6BRAHBCoVPBH/qyX1aog2mQrTGTKdUq0GTzQG1QQxO6ct7tOwkAmFWeD5Mufc8lOq0iD0esnTjm4TF3fPRr5wUBe3tdkLEMVk4pDI9JNNz3ztdnlmDPJyfwbocDX55RknC7V/ecREAALpxmQkVxepaQAMB1s8vwyy+a8UpTH343pXDA7be127Db7MI4vQLr5pQnrVOTytz86DQV9vy3Du+02fC1mSWYPYiaIX/d3YYWhw9Ly/T4/pLxQ7qausakg0cmwy8+b8bvD3fjpS9X9fsdpzSWw13Y3GqDSSXDH740FZX65Msz6DMnWjprPb333nuorq6mgMQABpunIwgCmh2Rdr6+PjO6Pv4XIAgwLT0HioLicBtPdegfsSfzg/W7xRXwZSihKFHmKMPJkFezGOZt78OydyuKV57fb5smhxf/abYCAP523EJBCULIqEVBiVFmsFdcnn766bQ8r9/Pw2p1DbxhEizLwBu6qu20udAjUBVpEcsyMBq16O11UCp1iM8XQE9PsL5C7Pyw/uAVtQ6zA7bQOmS3zYUed/rW1+bLWTQBOHqyD5WhYEez1QMZA3BuD3o86V/LO10dPAnd0mzBqoLoK3pH+9yweAKYbVTBZXVB/GtM13unWslCL2exrd2G1k5r3Bod3gCP1+q7wTHAlwo14d9POizSy1GmlmFbhx17m8yoSBJgEgQBj+9sBQBcMcmIvl5H3O0GOzffnGLE7w504dndbfjpvNSWkbQ6vHilrgtqjsGN0wpgSTCWVCw2KLC8WItPOx14bFszrq8aODgjddDiwu93t0HBMvhJbQnUXh96enxxt03X+8ZgUEM+zIKrI4lY6+niiy/G+vXr+90v1nq69957MWfOHLzwwgu47rrrsGnTJhQURE4IW1tb8fDDD6ftGDyWDfbd99KxXvyj0QIA8Dvt6HjvH+A9bsxbsgy9k2cCCHb4ASIn/IFhdpmZOEBwbzhia0poZWy4DahuWi0s+z+Hs+kIvJZuKPKjPxNaHL4R12KdEEKGgoISI5TRaATHceju7o663Ww298ueyJZ0nCyLNSU4MHTyHQfPCzQvErFzIc6PWFPC6ePDRc7kTHrfUyZFKDvC5Ue5Wg6nn4fFG0C5Rg5GwICtO4eiyqCEgmWw1+yCL8BH1XbYEapnMa9AE/d1Dve9wwCYbVRjS6cDB8wuzIuzfGCf2QWbj8eSQg0KFFxa55sBsKpUj78e78XH7XZcPsmYcNvDfW7UWz2YrFdgaWH8+ZBKdW5OL9bhpXoztnU7cdzqwYQUsmGeqeuGXwCumGhEvnz4c3L9dBN2m114s6kPq0t1mJziyVCAF/CHQ90QANxYVYgpemVKY6HPnGjpqPVkt9tx880345577sGECanVSIgnHUsm07GfTJOeUw801v29rnBAgvd60Pn+P+G390E7cQYuO/98PFXXAyBYyJJlmXAGVUCI3vdImhtFTAC4QMmFgxKsTI68msXo3f4BLHs+RfHKC6K27Xb7o1qdpuv1jKT5GWlobhKjuUmO5ic5CkqMUAqFAjU1NdiyZQvWrAn22eZ5Hlu3bsXVV1+d49ENnS8gFrrM8UDIqCZexfeECl3KmPR3dDGFigJ2e4KZGO2u4BXnMnXmPjYVHIsZeSrs7XWhwebFNElnhF09wdyIeab+9QHSZW5BMCixO0FQYneopkWylqXDsaJEGw5KXJakUOTHoQ4lZ5Xr05oaL2cZXDg+H88d7cFrjRZ8b4DaEg02D3b0uFCqluH88YNvixqPUSnDFZONeOZID15r7MPts1Krb/HfVitO2L2Yma/CmrL0txYlqdV6CgQCuO2223DZZZdhxYoVQ36udC2ZBEb+Eh2l0hL+90Cv+ekvghlSvNeDjndfhdfcCVXpOBQu/zKMhshnoyK0/E+liHxex9v3SJgbnTU6665Up4xanqKfPgfWg9vhbDwCd1crVEWRuiU8gOP24OO18vS9Z0QjYX5GKpqbxGhukqP5iY+CEjnkcDjQJGn11NLSgkOHDqGwsBBFRUW45pprcOedd6Kmpga1tbV44YUX4Ha7cdFFF+Vw1MPj5UNXtSlKSIZBzJRwBYKFLtVpbAcqMqmCmRLmmKBEaRq7XsRTkx8MStRbPeGghNPP47DVjXwFh4kZqGUhmlsQ/FK/xxx/qZZ4+9wMBUYqtQpM1ivQYPOi0eGL+1oDvIBPOhxgGWB5cfpPvs8q1+OV4734uMOOb08zwaBIvDThnVAL1fMq89L6mXZWuR5/a+jFJ512XOUuQNEAHU6cfh5/aegFywDfmW6iGgYZkkqtp48//hifffYZuru78corrwAAXnzxRRgMg6u/kq4lk5leFsgLQnipxFC53JET8IGWhPW6fOGAhKf7JJRF5ShedREYTgaPM3JyLwT4YGcZSXt06b5H0pJJc0wrZL3ks8So4NALwDhvBbo//S96t3+I0nOvAMMw0MtZ2HyRZbAOH4+OLlvS+jqpGknzM9LQ3CRGc5NcOuZnrC2ZlKKgRA7t378fV111Vfjn++67DwBw6623Yv369Vi7di3MZjMee+yxcEGtZ599Nmrd6mgjLt+goAQZDjFTwhXKlNCr0v8BHc6UcAe/1La7gsGJsgwHJUpCmRhdoVoZQLA6PS8AVXnKYZ8AJH9uOUrVMhy3e2Hx+JEvaSFp8fhx3O5FqVqW0cDM6SU6NNjM+F+HHRN1/T/r9va60OcLYL5JjbwkAYOhUstYLC/RYlOrDdt7nFhTpo+7nSfA46N2O2QMsKo0vcERJcfiy5UGvHLCgn839+Gaaaak23/cbofDz2N1qS6ja99JfNJaT6tXr8aBAwfSst90fanP1BKdgxY3/t+ONtxeU4wzhvE3EJCMbaBxBtxOtL/7Crzd7VAWV6DkS18DKw8GL6UZmAwT3BeHyI2ZWPaWDm5/dH2tAmXkc61YJUOvNwDt5BpYD+2Ap6sNzqYj0E6oQqVGjkN9nqjH9nn8Ua1/h2skzM9IRXOTGM1NcjQ/8aX/8iJJ2ZIlS1BXV9fvP2lxrXXr1uGDDz7A/v378eqrr8at8D2aUFCCpIMYlOjzBgMGYoX1dBKDEmKmxElnKFNCk9lYbrFKDEpErh6KAYriAa6Yp8McMVuiN/rqnfizeH+mrCgOpjV+3hW/YOTHHcGrnWeUZG6JwuJQ540vEowBALZ2OuDw8zitSJs0m2Ko1lYaIGOAza3WcNvbeARBwKbWYPX9L1emrxsK6W8k1nrKpRePmQEAjx7oHNZ+3Cm2xujp6cGxN18MBSQqowISQPT3CvHLbQaS6NLOw8cEJSSfJ+JnC8MwMC5YBQDo3fExhIAfFZr+mWR9PiogTggZnUbBxzUZS8I1JSgoQYZBDEL0hoIS8TpFDJcpdLWqf02JzGZKiKn6nZJMiY7Qv0tUmX1uAJhjDAYdDliiU8d3m4OFNudmOChRrJajWCVDi8PX72RcEARs73ZCxgBLijK3JnO2UQUVx2CX2RXuGBTr3ZPBpRtnVcTPpBguo1KGJUVauAIC9iZYTgMAR60eHLd7MUmnwHQDZUlkkrTWk0is9TR37tzcDSxXBnmh76jVg1/t6wgHk0Ueyd/Yzh4nrvr4BI5aIxkAJ50+/PHz/XjqqSfgsVqgGTcNJWdGBySA6KCEmFCWqN3mSLJE0n744gl5yJcEJVSSgLu6bALUlVPgt1vQt/+LuJli1pi5JYSQ0YKCEiSrvDwPlkFUVwFCBksZCkL0ejIXlMhTcOAYwOyJLN9gEFzikEkmpQwsE718Q/x3UQaLbIrGhVpxistVRPt73WAA1BozG5QAgMl6BQQAx23RBeC6PQFYfTwm6BTQyDJ3+FJwLOYVqOEOCNgXkzECBE+iDlrcyJOzGZ2PRYXBgqLbQ51X4hGzJM6pMFAtiTRwOBw4dOgQDh06BCBS66mrqwsAcM011+Bvf/sbXnvtNRw7dgw/+9nPRn2tp+FK9V139842fNrpwEuhDAuRW5LG/LuDXejz8XhkfweAYCDyyhf+jd9t2ICGnj7oZsxH0crzwcr6fw7Hy8DMQBJd2o3XKfDXlRPx+ppJuHqqCWrJZ5sytjPHojUAx8Gy/zP4bebYXcHmo6AEIWR0oqAEySpfQKCe2mTYxEwJi9cf9XM6sQyDAqUMFm8ALj+PLrcfJiWX8aVHHMvApJTB7AmElzt1urK3fEOsadHpiiwf8fECutx+FKpk0GWhwNKUUF2EY7bo9dINoZ+nZKFuwuJQJsbn3f2XcBy1ehAQgBn5qozW+Fhg0oABsL3HCSFOC1peEPBFVzBzZGWa61qcqvbv348LL7wQF154IYBgracLL7wQf/vb3wAAa9euxY9//GM89thjuOCCC3Do0KFRX+tpMARBCNeAEEKpEqn+BYjLNMRAb/h2SU0FMdjY6fLD5/Phb/94FT2fvQ0IAmpXnQvjojVg2PhfXaWfzeKfy4w8Vej/IzuLSCNjw0FFacB1figzTcygk+vzkV+7DAgEcOCD//b7XPDQOnVCyChFhS5JVvl4gZZukGETMyPCyzcydNXcpOTQ5fajrs8NAUCZJvPLJ4DgF9Autx/dbj/KNHJ0hupLZCMooeRY5MmDr1usrG/2+CEAKEpjAbVkBgpKTM5CUGJhqO1pvE4kh/qC2RPVoROeTDEoOEzPU6Kuz4MTdi8mxbzuJocPNj+PmnxVRjNHTiViradk1q1bh3Xr1mVpRCPLj3a04YTNi7+tmjjY1Rth23uc+LzLEV6CJc2U0IXexy5zB+79zT/R3tEOTq1F0coLUDCzBjhhSbjfeBc8zq00IE/BoTbDy87SSdpNalmxFj+fV4Z8BYfvft4CAMirWQRHw0F0txyHQ3cQuik14e29KdbnIISQkYa+xZCs8vICFbkkw6YKlVkX26GpMpSjKxa73G8JnoRmuh2oKFLs0g9BENDp9kPDMVnJUgCC2RJ+IXJFU1w+UpiFoAgATNEHl5Aci1m+If48WZ+5tqgig4JDsUqGDpc/as07ABwKvR+q8zMblAAiwZHtPf2XcBzoDQZMarIwDkIAoK7PAw8vwCM9+R3Cx+/9ezvQaA/+PUszJfo8Plj2fYaTb72MNw804IiyGOVfuRqq4gp0SLK34om/fIPBihIdDKOohZ40vsgwDOYUqGGQR25kWA6m086CjGFg3v4+/E5b+D4fZUoQQkYpCkqQrOEFAX4KSpA0UMWk76ozVGJdDEq80xb80peNZQNAdLFLmz/Y9rQ4SwERIBIUEYtthmtaZCkoka+UwaTk0OzwRgUEGmwesAwwUZf5oAQAjNPKIQBodUZOhnhBwOE+D+Qsk5X3w8IkdSUOhIIjNUYKSpD+NrVY8f0PGzJyouqXLBuId0R3+Xn4Y55XEXPs/+7nLfj57pPhQr4ecwf2vv4iLLv+BzDB+gn5a74GTh3MqIitcxNrrHy3MCqCn7PS1qCxGaaqknGYt3gpeI8bPVs2h5dx0PINQshoRUEJkjXihZWx8sWB5E7sco3MZUoEvxRavAFoZWzW1u1L24J2ubIbEAAixTzFK5PZDkoAwSUavACcCF1NtXgD6PEEUKmR9yv+limVoaKfTY5IxkaLwweHn8c0vTIrn2WTdApoZSyO27zgJSeCgiDggMUNjomsmydEaluXA5+329Di8A688SB5A0LC5RtWbwBf/+gEfh3TKjTe38uOHhd4rwc9X7yHk/95Ea6uNigKS1HxlW/BUL0gqnjrUDIlRiONjMWfVozHhqXjwrfF6yKy+kvnQG4ogKvtOOxH9wIIFhMnhJDRiIISJGvEqzVj5YsDyR1V7FWjTGVKSE7Cz6nQZ23dvjRTQcxWyEY9iXjPD+QmKBFZwhGsI5HNehKiylANkRZH5GRIrCcxIz8742AYBuUaOTy8EFUgsNXpg8UbwFS9MmPvfzK65YeCqr2e1DoyeAI8XqjvweE+N5x+Hq81WuD0xz/J9fJCuCVo7BF9b2hZ0aed0UVipZkSlRo5hIAf1kM70PL6s7Ad3glWroDptLNQdu6VkOf1LxzaF1qup0zwHWIsfbcwKmVRwdd4tbgMaiUKV6wFGBbm7R/AZ+2lmhKEkFGLvsmQrAkHJaj7BhkmjmWivuBmLCgRWr7BMcB5lXkZeY54xNafXW5/uMhlSRbagYrE58p1pgQAnAjVkchm5w2R2B5VeqX5SF9wHJkucilVEQqOtEmWkRykpRtkAOIygF5v4mUPfd5IwGJDXTc2Nvbh94e68LfjvfhTvRn37WkHEMzM+bwrEmRItiRErBUBAEetkZa64om1wPNY6WtB17//BPO298F7XFi0YCEqLrwO+ulzE3bXECX6vB9LQYlYsjgvTckyUBaWIW/2aRD8PnR9/C+4vImzSY5ZPbhnZ9uAGSeEEJILFJQgWUOZEiSdlJIlG5loCQoAE3QKmJQcvjouL2tFHoFIl4tOlz/cDjSbAYFide4zJcT11LbQlVrxRGdSFopcisZpg8GAZkmmRI8nOBfZKnoKAOWhoIS0tkVdKDgyk4pckgSMA2RKfNphx1X/a8Q/T1jg8PN4/6QdQLCdZm/ofS7WLdnY2If793aEH+vlEy/fOGqNdM354ba2SEFLrw+2I3vQ+q8/YstbGyE4+qCumIzy867CjVd8A5xKk/C1SJfoJVquF9USNOGeRicmzsUc8fXm1y5FXtl4eM2d2Pfx2wn38VRdN/b2unHv7vaMjZMQQoaKWoKSrBGDEtS5jqSDmmMj3Tcy9KbSylg8t3x8RvadjIJjka/g0O3xh4vAFauyWehSrCkR7P7R5fZDK2Oz2nZSLF4qpo9bQ79royJ7VfR1cg5GBYeTLh/8oXbGfb7gCV5eFscRCUpErkB3h04aS7L4viCjS37oPdrrDSAgCNjV48L0PCV0MhYsw+BfzX0AgJeOmaNO6E0qWdTnjSfA48/HzFH7/l+HHUes0S17RWIQU7TxSBsc9ftx+IMP4XMGsy1m1M6FfWktunQlAID5JjVYBkiUgDFVrwx3QUoUlIiXTTCWiZknDMti8przseeff8SJfduxb98czJ49p9/24vtBGtwkhJCRgoISJGsoU4KkkyoqUyJzJ8vxrlBlQ5FKBos3gL3m4PrsbNaUkLMMCpTBoEifNwAPL6BMk92TXzEAIgYlxP9nMzACAJVaOfb1BnDS5cM4rQJ93gAYADp59sYRb/lGbyjtXlqhnxApo6RQ7892ncTeXrG1sSyqiCIA7A/VgQCCx2qPpGBip7v/8o/Xm/rC/xY/Ix872Il9vW50hloZu9ubYDuyB39qrgf4AMAw0EyYju9f+GVcNn8G/t+ONnSFAg0sw2B9dRF+d7Ar7muZYpAGJeL/7eXqszpXpMUv8/PyULTiPPBbXsfrr29EcXEpSkpKorYvliwBdPl5qOkKESFkBKGgBMkaCkqQdJJ+Mc1U941cOr1EiwabBx5eQJ6chT6LJ8EAUKKSwewJ4FBomUA2l24AwSwVoH9QQpvtoIRGgX29bjQ7vKjUyGH18dDLWXBZPAEqU8cJSnj8kLNM1ueDjB75oZoSTXZvuIsNEGyt6ZIWRGSAZsl7y8cL8Ejudw9QPFH8S3i3zQavuRPOxjo4TtTBb7cAAFiFEtopc2GomotJpSW4bH4wIBL7sb2mTI8ytRxtTh8eOxQdnJDWkslW952RTlr8Ui1joS6fiMIFK+Bt3ImXX34B3/nOLdBqteFtpDVLXQEKShBCRhYKSpCsEfuax6siTchgZStTIlcuGJ+Ps8oN2N/rQqFKlvWrgMVqOQ71eXDAEryCmu2ghIJlwDKAMxD8Ju3w8+CY6Ar+2SDWlWhx+OAqEODjBZRmsegoEDzhMCk5dLj98PECGASXsxTn4H1BRg9xqZM0ICFySM5QeQFod/mgZBl4eAF+XogKRCTqwAEAAh+Aq6sd77xTh9Y3PoLfZgnfpyyuhH5aLTQTpoOVBf+OpLWA4r1zq/NVUa1vRZWSTK1UagiNtZoS8UiXq2hCx8DSectRo/PhwIF9+NvfXsaqr30TD+3vwtcnG+GTzGuyQqWEEJILFJQgWUOZEiSdxnqmBBBcqrC4SDvwhhkgnniLbf2yHZRgGAYajo3KlNBwbNZPwsMdOJw+WMV6EvLsL5ko18jR4wmgw+ULv/ezWV+DjD5qGQu1jIUrTlDB4YsufskLwCSDAof7PP2Wb9gl2wqCAF9fDzydLXC1noCrvQmM34uPxxngt/VBUVgK7cQZGDetGhdXj8c5FQZsbrXiT/XBmhSpBJBjL1yoOSaqhku8TIm8UCYZg1MjIAFEL1cRl7X5eODiiy9FT08Pjh9vwN//8CJUC7+EPx7twQJTpJAoBSUIISMNBSVI1lBLUJJOUUEJSkNNuzPL9Hir2QpzqHJ/oTL7hwuNjEVnKDvAwwvhQm3ZJAZjutz+cPtEQw7GUa6RY1+vG61OX7iOhJHqSZABFKhkaB0gU0I0UScJSgQECIIAv70Phw73wLKnDp6uNri72iD4IgUuGU4GbcUkrF27DPu7NOC1wdbJxXolLpqQDyB6yZUyhQBy7N+5Rha9fC1eELo4i91wRiJNKG3CywtQKBRYffE3cOW9D4Fv3gWj2gDZ7MVRv3M/L6AzFODMxecZIYTEoqAEyRrKlCDppB7jyzdyrVgtx52zS/Cz3ScREKKLpGWLePVPbMOZ7SKXAMKtYLslQYlcZErEK3ZpVNAhnCRnShCUsPt5BHgBvNeDgNsJv8MKpxvoq2uBy21Dm6MXLe0dEPw+vJungqUvWGQSHAdlcSVUxRVQlU2AqrgCSrkcS5dOguyD4/CGjvNqWf+r+EDiIpVSJWo5flBTjF8f6AQQDGooueT7yHYm10gjzrE4/40BJUpWX4T2t/+O3p0fgVNrsE2YFd7ewwu4bUszAOCNL03O/oAJISTGqf0pTrIq0hKUghJk+MQvqRxz6rWCy5baAjVurynGzh4XpkkKzWWLuE66O1T9PxdFHeUsg3wFB7PHD0s4UyL746jQBJeRtDp94RMQypQgydTXH0XL+++ho9sGIRAAhACEQAC814MbX3WD87nh80eWZhwwaWA1u8AyoUAvI4OyqBylU8ejI6CFsqgcCmMRGDb6fSfWi5LWgpAGDqRBCenfsHiBIt7n9xklWvz6QPDfOln088W7sNGvO9EYX53ww1nFUT+LgXkxKOHwB6AsLMOCtV+D+ot/439bNoNVaaCpmBy6P3GdEEIIyQUKSpCsoUwJkk5iCq8qB3UGTiXLS3RYXqLLyXOLJzNiUCIXmRJAcOmKxRtAkyN4xTmXmRLNDm94KQ3VlCDJ7Nu3F+aGw3BZ3f3vZDkwShXkOjVYpRoynQFnzJ2Ejg4/WK0BxYVF6GLVYBgGU8r0OH7SlvB5eAEICAISNemQBiIKJcGDa6eb0Lu/E9dOM/V7jPQzXRvTecgfpxDmPJM6+DiM+XgElhRpcHrMZ7KMZaBgGXhDhYHtvuD/r14+H4YpOux4/Dl0ffQvlJx1KVRFFUmLlxJCSC5QUIJkjZ+CEiSNxHZmY7XIJYmsk+7O4fINAChUcai3AcdsoaBEDoIBJWoZVByDJrsXE0LFNylTgiRz/vkXYl/RDHjbbMHsBo4Dw7JgFSowXP/OLV9dMR4fftEKqy8AXsGBCdWTsfkD8XYfxccLUcEAadxA+ncrrU1ToVHgN4srB9y3Lubv3iuJftww3YQKrRxzCzRR2whjODQRJyYDIPjdSsyUsIeCDjo5i7lz52P8acdx+JN30fHuP1F69mVw+gvj7FfAX4/3YrZRjTkmTb/7CSEkk2ghNskasR0VBSVIOojBCKonMXapw5kSwZOiXGZKAECDLVjgz5CDTAmWYTBOq4AzIOCINTgOqilBkuE4DgXFZVAYiyDPK4BclweZRg9WJo+bXWZUcJCzDAICojp2iFfdk/HEpElIgwKaBJkSqdLFZEpIO4PkK7h+AYmxLl5MQhCC7ZLDQYnQ70wM6IyfexryapdC8HnQ8c4raG5tDT9WXHZzwOLG349bcPfOk5l9AYQQEgd9mydZQ903SDqJa5ZTKZxGRiexpkRXrpdvhE6k3KETr1xkSgDABF0wQ+J4qHAhZUqQgdw0pxTTDErcN78s6XZ6OQuWYcIXDVySIIPdN3CmhCcQHbiQxiiil28M/j0r/t0bQsEJ6fIpji5yhCm5YEDJxwtwhLJbdKG5UrAM8ucsR96sJeC9Hrz36p/hMXcAAN5qseLtVmu4kC8hhOQCfZsnWUPLN0g6RWpK0PtprArXlPDkrtAl0P/qbp48N+OYGApKAMG18/k5yNggo0uxRoFfL6nEbKM6YS2U04o0eHhhBYD4x2dbCvUH/t1ijfpZejVfKdnnUFoLK9jg39sDC8rxlUoDvjYxP3xfv7/EU+BwEG/5hgCgNNQW9YTdE1m+EfrMVHIMGIZB/rzTYahZDIfTiY53XoWnpx3PHOnBE4e7w9mshBCSCxSUIFkjZoBSUIKkg5ghoc7RiSrJvHBL0FCmRK6W6sSeSOlzFAwQa0kAwSUkdJWYDMb9C8pwwfg8LCmKLHc4r9KA/1dbirJQIdV4x+dUlm+80dQX9bM0ACJdKqIcwt+wGNSo1CpwfVVh+Oo/AHAJMi/H8ul1onoZNfkqAMBBizv8OxMDuYrQHDIMA+P8M1AxZwl4jwvtb/8drvYmANG1OgghJNvo2zzJmkhL0BwPhIwJ4pfeXHRCINkhBiXEK7UjIVNCL2NzFgyQZkoU0NINMkiVWgW+Pc2E/ze7JHybeHVdJF1eKbbqFOsUxNqwdFy/2xQsg5WlOnx7WkHU7S+fMQF/WTlxSONWJMmGi/1TPHXDdAKqQ0GJQxYPHH4eao4Jf1ZJg0EMw6Bs8Wrkz10BwedFx3v/gLO5Hm1OX05GTgghAAUlSBZRS1CSTpP1CvxwVjGumGzM9VBIhsTWkMhVTYkCBRc+WOaqngQAGBRcuA1oPrUDJUMkzVwoUUdnAckkx2fDAO+xMo08KlAGBOue/KCmGMaY7CKdnBtyUFGR5DtDbKbEsmItAGBOgXpIzzUaxIsRCQAqQ9kuHW4fHH4+KqMkdg6dAQH5tUtRsPhMIBBA54dv4MUPtvTb78YTFvw3ZmkOIYRkAgUlSNb4qfsGSSOGYXB6iQ6mIVRzJ6ODJibVO1eZEhzLhItKDnSilmlisUsqcknSITa4JS2XkigLTcky4SyJu+eU4rxKQ/i+TJT4EZeWxBP7fLdWF+EntSW4dOLYDVYnWmRhCAVPm0KFcKWtVPsFJULZZ4YZ81C44jwAQPenb8GydwuE0He1AC/ghfoe/LXBnPLYetx+PF3XjZ5QHSBCCEkVBSUS8Hq9+MMf/oDDhw/neihjBnXfIIQMRmy9kFxlSgCRJRy5KnIpEoMSBadIO1A6FmfGbTOLcHa5HtMMyqjbpRcNEtVOWVqsDQcKilSycHYCEGxdmy5PnFaJ788swow8VcJtYp9PxbFYXKQ95S5+CEIwa8Sg4OAPRS3KJcGc2FoeTknxUt3kmShecxEYuQKW3Z+i+9O34PP5YPUGwAuAI4VCp6LfHuzEf1qseOJQ1/BeECHklENBiQQUCgU2bNgAq5XS1tKFlm8QQgYjNjMip0GJUDp6rjMlFhdqwDHALGPiE7WxhI7FmbGmTI9bqov6ndRLj8/5itT+3qRLKNKZKVGpVWBVmT59OxwjpMs3poeCSmI9CaPk86lSGwlKxGZKxAYaNBWTUXbON8Bp9HA0HMRzzz+HVnOweKlfiHx/4wUBj+7vxNut8f8emx3BuhRUn4IQMlgUlEiitrYWBw4cyPUwxoxIoUsKShBCBqaJOcPJZVCiKJwpkdugxCyjGv9cPQnzTJqBNx4j6FicPdKgRJ6CwwJT/9oMsUs+pH+WibphkOETPw6l8/2L+WX49aIKzDYGf0/S302lJlLvI/Z7lzNO9oOioBhla9dBYSpFw/EGbPj9Y/BaugEArtD2jXYvPu6w44nD3XHHKAZMmFO45CghZGjGfFBCEITw+rjBuuOOO/DXv/4VL730Epqbm+F0OuFyuaL+I6mjTAlCyGBIl28wANSZWLCeovGhdpzlSda3Zwtzip340bE4e6THZyXH4ns1xeGfvz4pH1+uMOCySdH1GqSBiGwf3k+lJpa/mFeGaQYlbpheGL5NxbGYIlmCI601I82UiP29JJo3mUaH0nO+jilVM3Gyswsn33oJjsY6OAPBoESCRiyS/QY3OMU+ogghaTAmFqV+8sknmDt3LnQ6Xfi2d999F0888QTq6urAMAyqqqrw3e9+F6tWrUp5v5dddhkA4L777sMvf/nLuNscOnRoWGM/lVBQghAyGAqWAccAASEYkEjnevXBWlWmwwSdApP0ioE3JmlFx+LskdZ8UnEM9JLA4GS9EkuKtP0eI4tavkHH90ypMarxyKKKpNu4A5GowTht5LNqMPFcViZH3unnY6axBFv/+S90ffQvbC7w4Zvnf2XAYIMQzpQghJDBGRNBieuvvx5///vfUVtbCwB45513sH79esydOxe33357+Labb74ZTz/9NFasWJHSfu+///5T7opUJtHyDULIYDAMA42Mhc3H53TpBhA82ZoaUxSQZAcdi7MnKlOCZaPmPVHBQ2kNxaxnSgwxE3asWlGsxZZOB75TZYr6XbKDDBO83NCLFdMWoniNDN2f/Aeff/ox3N0nsfwrX0v6OPG3QX+uhJDBGhNBidiD0pNPPolVq1Zhw4YN4duuvfZaXH/99diwYUPKQYmLL744rePMFZfLhbVr1+K8887DD3/4w5yNg1qCEkIGS8ONjKAEyZ2xciweDRRcdKaE+H93QIAhQT0VaabEYE9+SXotK9bixdMn9CvIm2qQYFkoqAEAuzvtwQKYa78J7H8HT/5vN14/cAKBBWdDXTah32NtvkA4KOHjBRzodWGqQdmv8wchhMQzJj8pjh49issvv7zf7ZdffvmQimXV19fj9ddfx4YNG9DVFWxz1NjYCLvdPuyxZsOGDRvCWSS5RC1BCSGDJQYjKChBRsOx+N1338U555yDc845B2+99VauhzNo0sCDeDL5+9PG4Xszi+IWvQQy130jFZQnEY0JtQWNleq1IGmXDrsvmBkj1+fDtuwS6KbORpvZgo53X0Xvzo8RCATC2758zIx1HzeGs2naXX7ctfMkHjuYWmvQFocXfzjchf29LtyxrRVNdm9qAyaEjBljIlMilk6ng0bTvzK5Wq0eVKqfw+HAXXfdhc2bN0MmkyEQCOD0009HUVERfv3rX6O8vBw/+tGP0jn0tDtx4gQaGhqwevVqNDQ05HQsVFOCEDJYYjAitj0oOXWMlmOx3+/Hww8/jJdffhkcx+Hyyy/HmWeeCYVi9NQhkXZvEDMlilQyrE7SmlMmOaRzWTq+XzYxH592OsItMUlyqWaw+BJUsrQKLAqXnQt12UR0f/Y2+vZ/jmeesePSS78Bk8mEV05Y4j7uk04H7kjhee/c3gaHn8emVhsA4IV6M+6ZW5rSmAkhY8OY+ZZ33XXXYenSpVi6dCnsdnvcolcNDQ0oKipKeZ8PPvggdu3ahT/96U/YuXNnVEBj5cqV+N///jesMW/btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/GBY40wXCkoQQgaLMiVIpo/F6bJnzx5UVVWhsLAQRqMRtbW12LFjR66HNSh5CmmmRGrHai6qdkF2XDmlAE8uHQcFLQ1IibQrRzKJ6oaItJNmoPwrV0FZWIaWlhY8+eRj2L79i0HX9jhq9WBjoyX8uNjnNaU4XkLI2DEmMiVuvfXWfreZTKZ+t7399ttYsmRJyvt9++238ZOf/ASnnXZaVJoaAJSXl6O1tXXwg5VwOp2oqqrCxRdfjPXr1/e7/6233sIDDzyAe++9F3PmzMELL7yA6667Dps2bUJBQQEA4IILLoi7740bN+KDDz7AxIkTMWnSJOzatWtYY00HjYyFTs5GpQcSQkgy6tBJh4ZOPk5ZmT4Wi7Zt24bnnnsO+/fvR1dXFzZs2IDVq1dHbfPyyy/jueeeQ1dXF6qrq3H33XeHl0d2dnaipKQkvG1JSQk6OzvTMrZskWZKKNnU/uY46r4x4i0q1OCKyUZM0inwy70dcbe5ZUYh3m6zDbgvuT4fped+AzsOfIaq9n14442N6PQXwLT0bMi0hpTG88Ntwb/ZSToF5pn6ZzbHW4JCCBnbxmxQIp4XX3xxUPv1eDzIz8+Pe5/D4QDHDe9Dc+XKlVi5cmXC+59//nlcfvnluOSSSwAA9957Lz788EO89tpruPbaawEAb7zxRsLH79mzB2+99RY2b94Mh8MBv98Pg8GAG264YUjjZYcZTPjJ3DLItErIAwHwAzW7PsWIczvcOR5rYueF5qe/sT43Wnlo+YacG/RrHOtzMxyjaW4yfSwWpeNCwWiXF2f5xkCilm+M/LfTKYllGFw+yQg/L4AFEJsPcd00E86uMOC1xr6U9sewHBSzl+Pk+KmY1LwFrp31aP3Xn1CwaDV0U2ZFdW0RBCFh95xebyBulkWiZSSEkLFrTAQlMmX27Nl44403cMYZZ/S7b/PmzZg3b17Gntvr9eLAgQO46aabwrexLItly5Zh9+7dKe3j9ttvD7dE3bhxIxoaGoYckJDJWJhMuiE9VtQ/d4XEMhr794A/VcnlXL/3HM1PYmN1bkx6KwCg0KAa8mfQWJ2bdBgNc5OtY/FwLxQUFxejoyNyFbqjoyPlbl/xDDdgNJTAk/QKtTrFQKCciWRUsCwzKgJdoykol04KlkG+koPZEwAL4NoqE/553IIVpTqwLIMVpVq8ctyS8v7ceSVYf+H38I9H/gzrwW3o2bIJzsY6FCw5C3JdHgDAFuBh8/Ko1MoREIBf7Yv8jQgA7IE4QQlBGLG/m1P1vZMKmpvkaH6So6BEErfddhuuueYafOtb38K5554LhmHw0Ucf4U9/+hM2b96Ml156KWPP3dvbi0AggMLCwqjbTSYTGhsbM/a8ifj9PKxW17D2wbIMjEYtensdlCkRg+amP58vgJ6eYFV9mp/ExvrcyPzBdH2Zzx9+P6RqrM/NcKRrbgwGNeQJWkWmSy6PxaJULhTU1tbi8OHD6O7uBsdx2LNnD375y18O6fnScSFANNTAU2mhDia1fFCP0aoVaRt3NoyGoFy6mdRymD0ByFgG18yrxLfmVoQzGW41arFmciEe3dGCoxZ3avsrykPBgpXQjJ+K7k//C1frcbT963nk1y6DYeYCfPOj4HfWp8+cih6PH1tDLUcB4Km6bhj0qn77ZOWyEf8+OhXfO6miuUmO5ic+CkoksXDhQvzpT3/Co48+il/84hcQBAGPP/445syZg+effz4nbTaTpcElk44+7+n6Us/zAp0gJEBzEy12Lmh+Ehurc7OqRAenj8fSYu2QX99YnZt0GA1zMxKOxalcKJDL5fjhD3+IK664AgDwve99D0rl0LpDjIQLAR6rCz1Oz6Ae4/P4Bh08zIVTOWDpkxSVjPe7qmAHd3Jwoj245ENVVIGKr34Lln2foW//F+jd+RHsDQdgOu1sqIorcLzThkMxgQ5PQMB9nzf326fN5R2x76NT+b0zEJqb5NIxP9m4EJArFJQYwIIFC/CXv/wFbrcbfX19MBgMUKvj9+pOJ6PRCI7j0N3dHXW72Wzu96WIEELGKqNShiunjI31+mTocnUsHkjshYKzzz4bZ599dlr2nasLAc+vGA+rj4eSZQY9BgbpG3c2jIagXLqJNRxYJvHvarxWjkMWN/RyFjZf8o4cvZ5I8VmGk8E4dwV0k2ai+7O34eloRvumv0A3rRZHys7Hfzq8KY3RGxj5v5dT8b2TKpqb5Gh+4qNy5kls3boVLlfwSoVKpUJJSUnWvgQpFArU1NRgy5Yt4dt4nsfWrVsxd+7crIyBEEIIybVcHotFp9KFggKlDBN1iiE9lrpvjHz60FVWY5IOF9+aZsLl0wvxywXlA+6vzxvod5s8rwClZ1+OwuVfBqtUw350L/7w2KPo3r8NAt9/+1hDLXQpCAJ6Pf4hPZYQkluUKZHEt7/9bXAch+rqaixcuBALFizAggULYDQa07J/h8OBpqam8M8tLS04dOgQCgsLUVRUhGuuuQZ33nknampqUFtbixdeeAFutxsXXXRRWp6fEEIIGekyfSxOhfRCwZo1awBELhRcffXVWRvHSEfdN0a+784swhOHu3HdtMTlx3VyDrfNr0B398AtQjfUdce9nWEY6KbMgrpiCix7PoHtyB44t38A+5E9MC5aDU3F5IT79MYEJZ470oMejx93zCpOuoT5i24n7t/bgeunm/CVcXkDjp0QMnKMyaCEIAh44okncPnll6OwsDD876KiokHtZ8uWLdi+fTt27NiBL774An/+85/B8zwmT56MBQsWYOHChTj//POHPM79+/fjqquuCv983333AQi2OF2/fj3Wrl0Ls9mMxx57LNwT/dlnnx0zrccIIYSQgWT6WCyiCwXDR0XlR74StRw/n1eW0rap1DBrc/oS3ndmuR7tThX2q86CfvpcmLd/CM/JE+h8759Ql0+CceEqKPL7Zxr5JB05eEHA5lYrPLyA9QEBalniMb3VEuzW9MyRHgpKEDLKjMmgBM/zeOKJJ7B69WoUFBSE/z3YoITRaMRZZ52Fs846C0Cwh/lnn32G559/Hq+88gpeffXVYX0RWrJkCerq6pJus27dOqxbt27Iz0EIIYSMZpk+FovoQsHwMaCoBIlYXKhBs8OH/RY3FMYizFh7OZwtx9Cw9T242o7D9eYJ6CbXIH/Ocsh0hvDjpJkSPZ4APKGfrb4A1LLEK8/HaeXYbQ4u9XL6eWiSbEsIGVnGZFACiBTyif33YDkcDuzatSt8lWbv3r1QKpVYtWoVFixYkI6hEkIIISSJbByL6UIBIcOn5hi4QpkOHMNELemp1CrQM3EaPEXjYT28C337PoP92H7Yjx+Cvmou8mefBk6lgU/yvb3FESmOafXxKElSTsYp6Sxy0OLGwkINAODzLgcs3gDOqTAkeighJMfGbFAiHS6++GLU1dXBZDJh4cKFOPfcc/GTn/wEVVVVQ2rLSQghhJDBoWPx6CGAKsqf6tQyFq5AsJglxwAyyd+oTs6i18uAYTnkzVwI/dTZ4I7tQuuez2E7tAP2+n0wVC9EyYKl4ce0SJaH2HzJi2TaJUGJQ5KgxP17OwAAS4u08AkCTMqhnf4EeAHOAI/E1TgIIUNFeU1J1NXVQSaTYe7cuZg3bx7mz59PX4IIIYSQLKJj8ehBXe6IhoucWnAME1VnRMZEL/BhFUo8d91l+MP/3QND9QIIgQD69m7B/r//Ae+//y6cTidaHZGghDVOpw8ph6R96cE+d7/779zeim9/0gTLAPtJ5HeHunDtJ01wDBAcIYQMHmVKJLF9+/Zwuujbb7+NRx99FHK5HPPnz8fChQuxaNEias9JCCGEZBAdiwkZPaQ1H2QsA5kkKiGLUwlVLWOh1+tQsGgNDNULYdm7Bb4TB/HBB+9iy5ZPcMQ0HYHxc8Cp1LD6eHS4fNDKWOy3uKHhWNQWqNHi8MKklMEmyZRodwWDGZ5A5LaTrmC70CN9biwu0g76tbU4vHD6eTRaPSgZ9KMJIclQUCIJtVqNZcuWYdmyZQAAn8+HrVu34plnnsGjjz4KhmFw6NChHI+SEEIIGbvoWDx6UKIEUUdlSgSzJUQyhkFsgpOKY8JLPGQ6AwqXnQvZvGVYxB/Hjh3bUbftE3i2fwb99LloLFiD5472QMEy4WKYv15UgR9sa0VNvgp2XwAMgHwFhz5vALwgwCrJnhAds3mGFJTwhGpldDi9KNHQKRQh6UR/UQMwm83Yvn17+L+6ujrwPI9p06ZRoUtCCCEkC+hYPDoMo644GaGumGzEXxp6cWaZHu+etA24vbRlZ2yhS45Fv/4sLMOAi82g0Bhw/pqLsGj5Srz39D/hProH1oPb8K/GvXCWVyFv5iLI84Jdb/b1BrttHLC4oeIYaGUsjEoOvd4A7D4efXGWanzS4UCFRoEzSnXh2/b1unDS6cPZcYphegI8frLzZLi+RbvDh1oKShCSVvQXlcQ555yDpqYmcByH6upqLFmyBLfccgsWLFiA/Pz8XA+PEEIIGfPoWDx68JQrMeZcPsmIi8bn4YN2e2pBiYEyJeI8RhZzo18AeEGAXa6BafGXMHHBcjTu2grviQOwH90L+9G9UFdMhqFmEXrHRYII7oCAUjWHfAUHALB4A7DGqf/Q4vTh0QOdMCo5zDYG23ncvfMkAOC0Ii1+tb8D47UK3FBVCADY2ePCUasn/PgOpxdApA2IxePHh+12nFNhSNqylBCS2JgMSjAMg/LycigUiqh/D9Z5550XXquqVifpQUQIIYSQjKBj8ehBmRJjk4Jjo7poJKORRRe6lGZKxNaU+PHskvB2sXy8ALMnGFCYUmSEbeFq6BesAHNgF6yHd8DV2gBXawNeP/gp7JPmQjthOhiWg1bGRgclkhS17HT5AWP0bX2+APb1urGv1x0OSvAxb+x2SZtSAHhwXwcO9XnQ7fHjuumFCZ9vpNrf68Ljh7pwV20pJugGf75ESDqMyaAEy7J4//33wz9L/z0Y3/3ud9M1JEIIIYQMAR2LRw+KSYxdXJIEgEsm5OOfjRYAMZkSbHQgIlhTIvizVsZiaXGwrkO8Apg+Xgi3AC1QBoMMLlaOvFmLYZi5AI4TdbAe3IbWtlb4WlrQu10L3bQ5kC1ejPyCYPCy1xuIW1NCJD6tIAk62CTb/+ZAJ26eUdjvfd0uaVMKAIf6glkUJ+xeDEaP249POu34yri8uIGZqOewuPHI/g7cMbsEM/JUg3qegfwklCWysdGC79cUp3XfhKRqTAYl0qm5uRnPPvssdu7cCYvFgvz8fCxYsADXXnstxo0bl+vhEUIIIWMeHYsJyS15kpNmpSQdQlpTQsYw0cs3JDUlpIGA2OUbAODlI0UqTcrg6Yo/9BCG5aCbPBPaSdVwtzfBeiiYOdG3dwv21G8HZs2CK38aeqcaYfMnDpWJQ3MGIttIa1B82G7HdIOy35KMDkf84MNgmxTftLUZHl5AnoLDqlJ90m3/UNeNbk8AD+3rwPMrJgzymRILSH4Phaqhnxa2OLzo8gRwtkk38MaExEFBiST279+Pq666CkqlEqtWrUJhYSG6u7vx9ttv480338Sf//xn1NTU5HqYhBBCyJhFx+LRg6dUiTGrXzFKCenqBoVkOzZ2+YYkQCF9q8TbtycQyZQQgxKxGIaBumwC1GUT4LNZYD+6F8q2Q+g6dhgdPTux8fD/UD5rAQKGieAUweyCYpUMne5ga1Dx/Spd4hFbg8Lh5xGba9HnDcAd4KHoF6hJPSzh5wV4QgNwJwmciMQgjrikxe4L4NEDnVhVqsfK0qEHAt6X1AmJXaYyGLd81gIAmF2RD1oAQoaCghJJPPTQQ5g5cyaeeeaZqHWsLpcLN9xwAx566CH8+c9/zuEICSGEkLGNjsWjh0ALOMas2JoSDCKBBR4CzizX45jVg7xQPYfgY2IKXbLxgxLSfas5Bq6AAIs3EF5KIS7fSEauz4dx/hlYec7ZmGprxoHX3kZ7VxfMH21Cs5uHdvx06KbOhm7aVHSGHiO2+LRJAhGx3ToEAE5//yUgnS4/KjXyqNuky0G+6HZillENrYyFIAj46/FezMpXo7ZADU+Ax6edjvDjAnGCAUKonWmegoMgCOiVjMviDeCQxY2dPS7s7HFhkk6B8SnUgmiweVBv9UR1GNnY2Bf+d7zXOVjtTi/GD/zrIqQfKhGbxL59+3Ddddf1K6ylVqvx7W9/G3v37s3RyAghhJBTAx2LCcm92CUWDICvhjpfLC/WYX11EX67pDJqmQfHxrQEZSIn7lLSbUrUwRP9Ho8fdklNidiHxQYERGqFHGctWYSyL1+J0vO+ieLqeWBYDo7jh9Dxzis49PcN6N39KXz2PrgCPLrdftyxvS38+NhMCR8vwBHnZL0rlG0Rz2tNfbh/bwc2HO4CAOzrdePvxy24Z1ewdsM9O0/idwe7wtvH7t/PC3jicDeu+l8jjlo96JUEaIBgEKXHE3n+Zslykh6PP2ppjNT3v2jFE4e7cdwW6STSK9mPM4WMjXg8gcjYumLqbRCSKsqUSEKpVMJiscS9r6+vD0qlMrsDIoQQQk4xdCwe+UpUMnS4/RivpcTtsapfMUoGuHaaCVdOLoiquSDdjmOYfoUuRdLzZuntJSoZTti96PH4wyfiejkHOcvAG1rucFqRBt+eZsINW5r7jVPBslDLWBQqOZhhwqzl56Br+jI4G4/AfmwfPL0n0bd3C/r2bsG7dTOwdUoNeG0lWHnwvRtbGNPqCyAQ51y90+2DtC0oEAy4tDi8eKHeDAD4rMsZ3odUnaS9KBAdlAjwAq746ER4acf/OuxYFioIKnIHhKighLjt510O3L+3A9dPN+Er4/L6DzqkLzQePy/AJXlxrsDQMiWkAZp2pxfQxw8YEZLMmMiU2LJlS0rb+Xw+/OAHP0h5v6tWrcIjjzyC7du3R92+fft2PProo1i9evWgxkkIIYSQwaFj8cj34MJy3DazCF8qT16sj4xesUEJBqGaDjFFIKOWazDBuhIiOctgXChwNUkfCWBJd12sDl4v/eNRMxpDGQB6OQelZKOZ+aqoZSJSYtHNSq0CPIB6qwesTI5VixfhD3d+D3O/cSPyapeC0+jR3nQcH/9nI5pe+T06P/oXHE1H0euKDhjs7HHh3TZbv+cRazvEzsmzR3rCP4tBOumSkHhZDNJlE40ObzjIAAAuP4+emKwMb4BHtzuyT3EZyj9PWAAAz0jGkIw99LwGOdtvHIPRKQ1KODKTKbHX7EKHa2RnYXgDPP7bYoUlSRtaktiYyJS46aab8Nhjj2HlypUJt3E6nbjllluwbdu2lPf74x//GDfffDPWrVsHk8kEk8kEs9mMnp4ezJs3Dz/60Y/SMXxCCCGEJEDH4pGvQCnDmjIKSIxlsS0rE5V0lC7zYBkm6meOYXD9dBNK1DKcI6lrwERlSkSustt8PFgG0HAM5BwDhM59FSwbFaTgGISzGcRCmzX5Kuw2u8KdNb47swh5Cg6v6o0wzl2B/NplmC+YYfliGzwnjsDZWAdnYx3+t20zfOXToJ04A6qScQmXabgTnMAfkWRBiC+rW5LV4IqTdiHNlKiPyaJwBfioxwNxMiVCGQ6xAaKEQkMQl8cUq+Sw+jwpByX+09yH15v68Mv5ZShWy9Hpioylw5l6W1Snn8dBixsLTOqo90CsDpcvvPTljS9NjrwMQQDDMOj1+KGVsVAk61ubBa+esOCVExZ83GHHAwvKczqW0WhMBCXOPPNM3HrrrfjNb36DM888s9/9ZrMZ119/PY4dO4bf//73A+7P7Xbjo48+QmtrK77xjW9g3bp1OHHiBLq6ulBUVIQ5c+ZgxYoVmXgphBBCCAEdiwkZSeSxqzcSnERyMcGC2EKXOjmHKyYXJHyeEnX0qUmJSgaGYaK6eig5Jur5i1QytIdOjMVMidVlevyloTdcUFMVul0sxsqwLHSlE2FaXoTSpWdD09OEA/v2wH3yOFxH98J+dC84tRaaCVXQjJ8GVXElGDZy0uuOE1zw8QLK1HLUh2o2iF09pIENs6d/kMPp5yEIAny8EBXUEO/r8YhdSDj0eIKdP2KXbwR4AScl9Rys3gAMCbJJdppd+LjDHg4kFqlkqLd5Ul6+8XQoE+PpIz24e04p9vS6wvd1DqKmxG8PduLzLidumG7CeUmWm/TEyUrp9fhx+7ZWzDaq8VG7HavLdLhtZnHKzw0Efy9bOu34coUhLQEN8Xd30OIe9r5ORWMiKPHII4/gJz/5Cb73ve/hV7/6FdauXRu+r6WlBddeey0sFguef/55zJs3L+m+mpub8a1vfQutra3h23Q6HX7zm9/g9NNPz9hrIIQQQkgQHYsJGVli23YmzpSIaQnKSu8b+HlK1HIUq2RQcwy+NtGI6vxgK8+ooETMWLSSDAFFKHBQpJIhX8GFu1Yo4lTYdAeCgQCDUoHT589Fl2kSOL8HlhNH4Dh+GO72RtgO74Tt8E6wSjU046ZCM34a1GUT4Ob7n8B7AgK8odtZRGpJSIMSvXFS+x1+Hj/ZeRIHLG5M1UfXyHH5BRy3BbMPKjQK9HhccIYKdEqf99EDneiQ3Nbt8cOg4BAQBDTavZgs2e8bTcGOG+LSmnwFBwXLRGVK7DW78FZLH26aUdRvqUy+goPFG8BeswtOP49t3U5oOAbOgIC+OEGXRD4P1dzY2uVIGpSI16r0/ZN29HgC+LDdHv5ZDEps7XRAyTGYb9Ik3Kc7wOO6T5sABFvOriiJtFVtc/rAMZGiq/E4/Tx+ta8D51QYsDSm5gcZmjERlGAYBvfffz+USiXuuOMOeL1eXHjhhTh8+DCuv/56cByHl19+GVOnTh1wXw8//DBYlsXLL7+MWbNmoaWlBT/72c/ws5/9DO+9914WXg0hhBByaqNjMSEjS2xL0ERiz/0TtQRNRMkx2LB0HISY7eWSfyu46P2oJZEPpeQ+g5wNBwHiZXY4/DyE0L7F/QdkSuinzoZ+6mwE3E44m47C2XQUrvYm2Ov3wV6/D4xcgV3V1dgXWIbJU6eF9+fhhXAxzkKVDJ1uP3y8EFV/ojfOVX+nn0dLKMPguD06U+JgX+Sqe4VGjr29Lhzt80DaKCO2xSiA8Dg2HO7G22023DOntN/z+kPb6OUsNDI2vJwDAH53sBPdngB4dOG8yjx0u/3hmjGRrBOEX2OtSY1jNi8s3kDC7h+xlCwDDy/0Ky4ai4+zO3mc99InHXYsL9biwX0dAKKXekh1uHx4/mik7kbsEp2btjYnfTwAvN5kwS6zC7vMrvB28cZ50unDyw1mXDfNhIIkQQ4yRoISov/7v/+DUqnEXXfdhbq6Orz66qsoLi7GH//4R5SW9v9jjGfXrl348Y9/jAULFgAApkyZgp///OdYu3YtOjs7UVw8uNQgQgghhAwOHYsJGVliAwqJ4guxwQtpUCK2LkWix8dmZQDRmQ4KNjrVXlpLQZpFoZdzAKKXE1Tnq3CoL3jib/NFsihix/3k0kr83652dKnmQD99Di4tV+OFT3dgofck/rt9L9qOHMArlhPgwaLdq4e6cjL6pkyHoDOCZQCjgkOn2w+rNxDVfaPPFz9TQhSv04eoTBM8bdsXWh4wzaDEUasHbl5AqTq4hGWCToFGuxfegABBEPB2qEjn512OfvsTx6KTs9BwLCzeAHy8EHXC/3mXM5zRcFqxFloZG16WwiAS2FCwDAzy4D5cAQGq0D4+73Jgsl6JIpUMO7qd2NnjxLXTTWAZBgYFh67QHCXDo/+kcHHeSg/v78SUpeMijxOEqEKroju2taJPEgiR/n4CksiCWLMinpa4BT37j/Pnu9vR5vLBzwu4a25Z3H2RoDEVlACCBbGUSiWefvppzJkzB0899RTy8hKnBMXq6urCuHHjom4bP348BEFAd3c3fREihBBCMoyOxYSMLKksvQD6L/OQPi6VOoyJgh3SNf9igGJ1qQ4ftNuxslSHbd3O0HaRHWjjPOHXJxmhl3N4od4cDkrIJJkSIg3HRgVCVo034coZ56HHG8D+KcfgajsBj6cV+w4dhtvSBHd7E5y7PgKny4emcjL81dUQlEXo9vij6k9440Qd4i3piPXDWcXhgpZtoayKWfkqHLV64A3w8PICWAaozlMGgxK8gGbJibM7Tr0IMWtDL+egDv2inH4eeQoubnDE7gsEl3mE7gwIAvyhrAgZywSXeTh86PMGoFLJsLXTgQf3daBcLccflo3Dz/e0AwCWFmsxSa8ML8uw+QJJAwDx5ixewVAAUR06utx+qDi23/KTvpjMjI2NfeAYBuumFETV1XAFBGhkDAK8gN8f7kJNvgpnlhtCz9N/mYo0U6LT5UOxWo620HioI8fAxkRQ4rTTTuv3RhYEAceOHcO5557bb/utW7dma2iEEEIIIYSMarHBhmkGZdztYoMX0uwIeQqZEom2iC10CQDrZxbhyikFUHPxsyhil3kEH8vivEpDKCjBh/cdmwmikbFRS0EUbLC4popjwcrk0I6fhjpMg3zKGSjraYeztQGBtgY4ezrhP7QTR07sRYsHePFoDaxCAVRlEyDPM8ETpxZFKrQyFrGrIiaG2qp6AgI8AQFKlgm/fi/Po11ygt4c58q+WHRTJ2OhCgV93AEeGp6NGyix+3jcub0p/HNAiGRKyBgGBnnw5N/qC6BEJcMX3cHsjLaYVp5eXsA3Pz4RDnz4hWBxyBqjOu5r98ZZF+HwR8YnFgAFooti3rAluAzj9TWTknb3AIKdM9ZNKYgKINl8AWhkLD7vduD9k3a8f9KOxYVaPH6oK1zM1CgJeEiHef2W5qjlH6lkCZ3qxkRQ4sorrxzwzTYY1113HTiuf8Xab33rW/1upwAHIYQQkn50LCZk5JAub5hvUuO26qK428WefEV140ihpoQqQReEqJoSoX9zDIMilQw+ydmgNJAQr+6A+HgGwRoQ4nbyqAKdwW0UcZ5TFRPoYFgWyqJyKIvKwc5bAa/DBlVXEwotzWg5WIcjdYdhDtWF4NRafFIzA3ZlCVRl4yHT6MMFIgciY5h+z10cap8q1rKQZnd4eQFWybKQZkf/Vp1ixoBRKQvPmycgRBXRlOp0+6Ou+AuIBAxkLANVKDNFXI7RaA8+Z+xvwccL/TIxNrVaEwYlPAO0UZ2sV6LWyOKDdntUVxKRmPEARC/PiEeaKWH1BVCilmOvOVLX44V6M74IZeXEbu9I0r2k1xuA08/DlPTZT21jIiixfv36tO3r1ltvTdu+CCGEEDJ4dCwmZGSRZkBcNtGIfGX8U4jYjAPpeXSyYplPLRuHPm8gqj6EVHSmRPQ28QIWsbdLiS1GpUEJ6bi1HBvaJvI88tBzxttniUqGDrcfvADINHqUVs/FaUXLcXJ2D2bCgva9hyB0NMLaeRInDu5Fd2j5hTy/EOMnTYEjrwyq4gpwqsTdIoLPG/26TcpgcNbl5+HjBSgVTDg7xBsQ0OuNnKD7k5yLFyi4cC0OD8+j1xt/43gn/GLAQJopIdaqOBEKSozXKaIeE6/YZ5szcdcOb5w6Dw7JEgwFy4SDWfHGKGY8AIA5yTIKQRCilrmImTRiVgQAtDqjgzvugAA/L0DGMlGFQgFEBctanT78bOdJPPdlQ8LnP9WNiaBEOtEXIUIIISS36FhMyMgSlfGQJOEh9q6o7htJHleqlqM0SXcCabAhXq0IUeySi2T7i8qUkGwrBkbi7SteZvYTS8fh9i9a0BhaIqHgGKhkDBiWgze/Asa5JkzSrcExsw2T3J2wHj4Cd9sJ+CzdsB/uQ1doeYM8zwRVSSWUxZVQlVRCpo2cwMpYRBVt1MvY8Im2WKhRyTFRmRLmOCf/sRgEW3yKgR5PQIhaGiEV74RfPImXsYBBEdxHnzcAqzcQzoaI/b13uKOXc7BAVABF5PTzePmYGZ2SzI3PupwwKrmoTImrpxbgrRZraIz9xy5mPAD9O21I/bvFignaSABFnNfwa2T616MAALufR74iekzBsUQ/1yFJJxXSHwUlCCGEEEIIIQlxUcsbUl8yHZUpkcLyjUSkj9QkCUpEZTckC0pwDOCPbCc9cRb3Lw1qJAuoyCVLF8THiW1KxcKLhSoZjiuUUBROhckQLOLrd1gxn+/B+/vq4O5sga+vB76+HtiO7AEAcFoDVCWVUBVXom+SDKaikvBzGBRcODtAWhtDGpQQ60LIWSbqqr1UnoIDxzJRyzfi1XAAIssxAKBIJUOX2x/OlJCzDMaFTugP9LoxXhM5uY997pMxWRF5Cg4Wb6Bft4z/23USR6zRLVLFdp9iTZM/rhgPk1IWXtpijhM4+X87TuLZZeOQr5ShN3R/VZ4S10w1Yb/FhZeO9QIAnj3Sg+umRRZY2LzBefWGC3si7tIWuy8AnYyNqkcBRLq7kNRQUIIQQgghhBCSkmSxhdjiktKTzOEEJTqTXOGOej7Jv8+pMGBjYx+unlrQb7vYZR7SAIYmTqbEQLXrtFFBiUjhyO7QlfvC0HIX6YmqTGvAvKkTsVc/CQDgd9rh6WyBu7MV7o5m+CzdcDQchKPhIF5q3AKVUol2jw5KUylKJ02E25EHFsEr9cHxslHLN8QT9FK1LG6hSyBSqFHJRgpdikEEo4KLKni5o8cFINj1pMnhRZcb4cKdMobBbKMaegWHXT1OlGsiWS9eXkBAUqVTWoCTZQCjMvg8zx7pgcPP45IJ+SjTyPsFJKSaQgESXWjew/Pt7h8I8PECXjhmxm0zi8M1IOYVqFGdr0J1vgr1Vg8+C7U9ldbMEDMlxCCNtIaGlMPPR9WWCN8ek1VRoOhfI4lEUFCCEEIIIYQQkpJknQQMcg43VRWiVN3/FGM4HQjEFox6efwsiTPL9ThscSNfGTnxK1XL8dqaSXEzO5IGJUInuEo2cUZGLI2kzoWSY6I6ggDAOG3wJN2e5ERVptFBNnEGtBNnAAACHhc8na1wd7ZivN6F7vY2uE82wn2yESeO7cSv9mxCWy/AmcqgKCyDe+pEMEVTAASDBZ1uP2RMMCCSKChREJovMdPAwwvhzABlgnU6Ko4N1wcRswNkoboc84q0+LjViu2SYpA+XogqVim2NJ2oU+D7M4vw52NmAMB/Qksw9vW6sD5BIVWRhxcgY6QFSENLRxJkJzTZfbB4A+FWomrJ70u65EMalBAzUBJljoh2m124L9TuVMoWChatLNXho3Y7tAneuySIghKEEEIIIYSQlAyU8HBuZfxifvJhNMpbWarDX4/34uIJ+XHvX19dFC6CKJVoqYmCi15uIYvKlGBC26Q+YG3s8g3JzywDzMxXAYhkNYhUSZaicEo1NOOmQjNuKr65fDz0HLDr9e3wdLehyN2DIs4OvrUeblsfHCcO4+ABOWzvKdDqUeKV0jI4dIWonTQOnLY84XPki5kScZZvqBN0QlFxTDjAFKm3EPxZH9pfhyQbwstHF5AUa3n8eHYJyjRyGBXRp6M9ngAe2d+ZcMwiZaggqXT8idTbPLj+0yZcOjE/9Boir22yToGjoawMaW0LccyJghJiJslfGnrDt80tUKPT7Ueb0xcOQOWFCoCm0GTllEZBCUIIIYQQQkhKhprxkEpL0EQunZiPhYUaTNYrEm4z0BILKXmSTAkxoJCsW4hIPOHUJKgpAQATtAro5P1T9/MVXNyUfhnTv1uGnAFUchnWzJiETzqLcd6kfHxjcgGOf9qAA8cb4elqQ6nfAoPLDN+xNrRYg9kH1kY1jrn9OCmooDCVQGEshsJYBIWxEDJdfvjkXMwK8UiWb3ypTI/tPU5M1iuwsbEvPBYVx0J8eeHuG6GftaHXKR2/zcfjmk+aol7P0iINykJLPKTZLaeXaLG109EveBOP9HcW2y41Hi8vhItRSoNG35pmwuY2G4DoTAkvL0AQhH41MSbpFPhSmR4ylsGGuu6o+1SSLJkPTgb3KQaseIGiEslQUIIQQgghJA0aGhpw1113wW63Q6FQ4K677sLChQtzPSxC0mqosYVUTvIT4VgGU0PFDdMhdvmGdGziSeRAw63OU+K2mcUAYoISHBN1kjxFrwy33BR9pdKAa6aZIGMZ/KS2BB+027Gl0xEejz/msrqYyfGDmmIsK3ZgrinYPvSbM0pxrxtQl03AwnI9VpXqcGRrA7zmTnjNnViQ58WWoyfQ0nISrmYbXM31kZ1yHLZOrICxehKaWT2cNjnMpqmQ6/IABJfK3DuvDN1uf0xQIpIpIXazEOdPGxN8yQ8VsYw1WR/5XZZLuq7U5KuxqFCLJw93YVmxFv/rcCQs0iktPirNfJhvUmNnqP5FLLEDhvT3o5GxuGh8Hl5r6usXlIiXJTFJr8BXx+dhh2SJikgpWdpSF8q+iAQl4g6JhFBQghBCCCEkDZRKJe6//35MnjwZx44dw80334zNmzfneliEpNVQL/gOp9BluimTZUqETnATjfava6vwyXEzzirThbMzki3fKNXI+i0FmahXhOdjcZE2ql3kGaU6bG61RW0vbsuxDJaX6MK3z8hTRb0mBcuAU6qhLpsAddkEfG3pOGharLAf74a3txOnyZ3gbD3494Hj8PV1w9Hdib17+9Di8KGzx4nffQCU6tUwK/Kw5cQkCJMrUFhYiGuLNHimLQBWroCSY8NdVb4InZiL8yetm6CTsQkzGKTzIy5tAYJdPRYWarCiRAuOYbCjuxF9fPw6EbKoTInI/r46Lg9XTC7AWy19sPl4bJMED+r6goGC2KUp4uOl9SUSBSXExxap+p9Gq1imX0aQWsaABaKKfZL+KChBCCGEEJIGFRUV4X9PnjwZNpst7jp3QkazoZ5aDaJEQ8ZJgxDBmhKR+8Sr+ImGO8Gggq7SAF5ywirNlFBKum8AQIlKHvV8ZWoZ1pTqo/YpXRKzvFiHC8bn4e/HLfio3Q4gcZZJ1PNyTFQGiHi/gmPAyuRQFVVgbW0J5CyDHePaIQgCLi5XYpHShQ+ONOLIjqPwWbrRYemBYGvHiUM2uE4cBBAsVtnUYgWn1uKj6eNxUqZDn6CBPK8AMn0+EMgLPV8kU8Kg4BK2UpUWBpUWRS0MLeUQ50MtY9AXv0Zn1JxIgx9FKhnGaRW4bWYxTti9UUEJkTpmYPFqUvgStEcVAyrxghLSTInI2FiwDGVKDISCEmPYvn37cPfdd4d/Pnr0KP75z3+iuro6h6MihBBCcmPbtm147rnnsH//fnR1dWHDhg1YvXp11DYvv/wynnvuOXR1daG6uhp33303amtrB/1c7733HqqrqykgQcacwa6N//HsElh9gYRFJ3NBmrkgYxhoJSfT803qQe8vdvmGtPtGiVoWFXSo0Cj6XU2XnsjKWQYVGkVUNkcqAR0fL/TLyNDI2Kj9SDMEGIZBnsGAKZWVsOVX4E3FZACAIAgIOG24oEKGQr8dPT3d6OrqxDvWevhtfehqbUSHw4deSTHLv36qwa4SIxwaAzq7eMj1+TCWFILRGOBjNeC0erAyedS4pOO4qaoQB/vcGKeLrhmiSlBsU5wnkTImKBF5vYk7iAz0PB6eD3cikRLnUC1joZWx4ToVwf1EB7jEfbMMQ5kSA6CgxBg2e/ZsvPHGGwCA1tZWfPOb36SABCGEkFOW0+lEVVUVLr74Yqxfv77f/W+99RYeeOAB3HvvvZgzZw5eeOEFXHfdddi0aRMKCgoAABdccEHcfW/cuBEcFzyxaW1txcMPP4ynn346cy+GkCxjEMySyItTnDGZpcXajIxnOGJrSuQrONw9pwQVGkU4eDKY1SbS5RsGORe1/xJJzQQg0vFCSnpOLF7Ely5PSCW4afXxULDSjI3gshTpCbtWxkZd/RfvU8YEK2RaAyZPKUe1ZGnFxsoGCHwA35yoxKa6JriPt8FvNcNnsyBfG4DL5URvnx3O1mD9iZPH5LD7AuGilaxaC5lGD06jw7aOSngrimEwGGAwGDBPZ8CqKXmIDQ0kK2ApnR9p+1ZpgEGdoLtJ7PIN6RzdWFWIDXXd8PL9i1wGHxvZtlglw3G7N2o/sZkSao4BR5kSA6KgxCli06ZNOOecc3I9DEIIISRnVq5ciZUrVya8//nnn8fll1+OSy65BABw77334sMPP8Rrr72Ga6+9FgDCwf5E7HY7br75Ztxzzz2YMGFC+gZPSI79+YwJsHoD0MfpJDHaSE/exQDCosLo4AmTcAFHf9Ir/7ONqqggQp48+gQ4blBCsr14sj3YwqBWbyAqGCKOSXrCrpGx4P2RugmqcFCi/3PJ40RlGJZDYWERSrwq5KkjrUa/UVuCxUUa1PXZcOQ/u+G396Fa5cPR9i74zb3w2/vgd9jgdTmAHuCItx1dh/rPg1yugMFggF5vgE6nQ1unDxY/B06lAavSglOqwak1YFUayBAplqkLzXHs8pVkbU0T/VwQWkLi44Vw+1Ip6e/6x7Ul+P7nLXCGMiqC9TbiLd+gTImBUFAih7KZRrpp0ybcc8896Ro6IYQQMqZ4vV4cOHAAN910U/g2lmWxbNky7N69O6V9BAIB3HbbbbjsssuwYsWKYY2HHWZRQPHxw93PWERzk1yi+clXypCvHBunDkpJTQGFjI37XpBeZY+dk9jtpV0nxukUYBgG9y8InrRzMSfG+Uqu3+OjalxwwfFIl2Ike69eMjEf/zxhwRmlOqgkY9bJg/uJuk3BwSs5OVaFXnu8jAJVgnnh0b9oqYJjIZNxKCssgKqkEiipxOlTC2BrsUIW6tCh4wCLzY6Ay45Lp+ug8TlhtVrD/9lsfejr60NPTw96enoAAC0ddlg8/riv261R4uEPS6DRaKDRaLCWlcOg1WDTpgNQqdRQq9VQqdRwNneBVajAKlVgFUqwMgXUHBP12qRzVKCSgWOAXk8AP9zW2u95NfLI769cq8ALKyfi0vePAwi+Z2KDORp5sDCo2CaVPnfiGxufLKNUNtNIzWbzkIIZhBBCyKmgt7cXgUAAhYWFUbebTCY0NjamtI+PP/4Yn332Gbq7u/HKK68AAF588UUYDIZBjUUmY2Ey6QbeMAVG48hLnR8paG6SG8vzk3/SEf63KU8d9+/tCoMaR50+XDTV1O/+2LkpKBBw5QwXqk0aFBYGi1iuSvA3XJKv6be/PHOk+0ZRgRYmvRKGNntkjEk+D75n1OJrM0swXq+MWiKQp5LDZNKh0Bk5qR9XrAfriCw3KDZqYTLp4FJ4+u232KSFSRfJRshXcrB4Aqguz8M2S/T2BfkaGI1auCX7nlVmwL9brACA8XolfrFsAq7efAQyjQ4rl89EkSZ6WYvI6/Wir68Pdrsdzf/dB6bbgoDbgYDHDd7lQMDjQsDlgFoeQCDgQV+fC319wSBGD4DjMfvrrOsCEFl+BAAP7SqCTCaDQqGAQqFAjw9oa7SBkcnxSdc4mOvM8DEyMDIZGJZDiV6FTjcPhmXRLBsHfaceMpkMHMeB4zg4TjQADAub0Q57txPONivAsmDAwNnLwd3eBK8q+L4Yy39Xw0FBiRzKRhopAGzevDktSzfoqk3m0NzEN9CVCUJzkwzNTWI0N6kbTPeM1atX48CBA8N+Tr+fh9XqGtY+WJaB0ahFb68jqksAobkZyKkwP35PpEijz+lFT4897nZ3ziwCgPD9yebm6+MMUdsmwrv7P5/bGTmZt/U50eP1weuOjHGgfeoAmM3RGQVuXwA9PXZ4nZEAgtXihMMZ2a/H7kYPBygEAfNNauzsiXzuOPpc6JHM0xOnjUO3xw+lxwe/N/q5XHY3ehUMtNpIEMMo8PCI9SQEAU5bZN9umws9rv6BEBHLqmEwqMGUToa+IH5L0CVFGvy/OaVwuVxwu11wuVyhf7tDP7vhcjnxFk6A93owXsGjwWwD7/NCrdbD6/XAZnPC6+1Dn9cPb2iO6/b1wXnSBo+kyGWBToG+UO2I90/qsCcmY6iryQIAeOugFu0uHzoldSaePZKHpjYrPAILz7olcDr9Q/67MhjUkI+B5VPxUFBihEpHGqkoHUs36KpNdtDcRMjl3IBXJkgEzU1iNDeJ0dxEGI1GcByH7u7uqNvNZnO/7IlsSNfJIM8LY/bEcrhobpIby/Mjl8QZi5XcoF/ncOZGxTH9HsvF/JvnhaiKFoN5rlK1DO0uP046feB5AXJJUJXnhajnkjNM+Ln+b24Zbv2sGc2OYCBCxkQ/r07GQidTgOeFfgUp2dC+9ZIuJoUKDv7Q4zkm+qRTwaT2mmySzhbifsRYAccwEARApQou08jPj7+Px5kGAMAdc0rx8z3tAIDvf2ly+H5BEHDC4kDDlhPgfV7cdloZmrY2otvhghDwQ+B5LCpWY6bHh709dlw60wQlA/j9fvj9fvB8AB/uaAUEHnMnGVFncaG3xwlAAAQBi2uKsLuuGy6VAQqFAna7b8z+XQ0HBSVGqHSkkQJAW1sbzGYzZs+ePazx0FWbzKK56c8XivADND/J0NwkRnOTWLrmZixdtVEoFKipqcGWLVuwZs0aAADP89i6dSuuvvrqHI+OEJJO0noNJlV2ToeumGzEZ10O1OT3bzka1X1jmBlsk3RKtLv84cKKsQEE6f5jCz4Gi5gGgxKxRSMT7QOIBHlkLIMrJhuhkUUXd5SxTNT+Um0Pe1NVIR471IWrpxbg/ZM2XDfdhP/bFQwspFoIdH11EeqtHsw3qXHHrGIYYo5ZDMNAp1aBU2nAqTQoKy1Dfqk/KqOkfHwevjW1AALQr5AlEAl8rJxfBkWnA42hZSu/nF+GWUY1/vtpEzrcfurAkQQFJUaZwaSRAkB5eTnefffdtDw3XbXJPJqbaLFzQfOTGM1NYjQ3iZ1qc+NwONDU1BT+uaWlBYcOHUJhYSGKiopwzTXX4M4770RNTQ1qa2vxwgsvwO1246KLLsrhqAkh6Sa9AB/vJDMTLp9kxOWTjHHvk55gD7brRqzvVJlg9wdw2cTgcwViPuKjWmnGFOE0SjqDxOu+IYqdM+k+vzGlIHxcEYs7yhlmSMGWL5XrcUapDnKWwcUT8hGQHK8SdPvs58xyPc4sD9ZzWFESP+s79rXGBmQcPj6lQIqA6LmoCbVUFeeLpw4cCVFQYoQaaWmkhBBCyGi3f/9+XHXVVeGf77vvPgDArbfeivXr12Pt2rUwm8147LHHwl2vnn322XBxaULI2NCToKNDrsRrCTrU0IRRKcN98yPtOkvUwdM9DSe2Go1sG5spUamNFJ9MdhIe20E0UcBhTZkO75+047QiLVShAEi8lqjJyKMyLOLfPlz5Cg6XT8rHOK0CQJyghD9+XYtYehkbFVQSLySLu4sNEJEICkqMUJRGSgghhKTXkiVLUFdXl3SbdevWYd26dVkaESEkFxaYNHj1hAVnlulzPRQA0Vf9ZWlO3ChRy/HoogoUhZapSAMIsSf24kn5QPplSiQIYNxUVYgzy/SYka8CxzB4+YwJ/bIzBoNJY0ZJrCsmR4LPfMx9Dn/yaMIjiypwzOrBRL0SW7oc/e7nwkEJikokQkGJHKI0UkIIIYQQQrKrOl+FP64YH7VcIZe4OFfX02mqIdIVQ/pcsdkQKQclYuIKiTIlFByLGmOkhoYujTWI0pkpEcvmi2RG5Mk5XD01ebbcNIMS00JzHC9YIs4zBSUSo6BEDlEaKSGEEEIIIdlnUo6c06B4J7JZKnURpUIjH3gjxMuUyMRokkt3poSUzRfMlZigleN3SyoHFSiKV6NEjJ+cQiWcBm3k/DWegiiNlBBCCCGEkFNbbI2GTHtkUXnck2c5y+D++WVQD1BFMna8mcxaSCTVQpdD4QhVQtXLuUFnrgjoH3kIZ0pQVCIhCkoQQgghhBBCSI4Mtw3oYE0zqBLeJ11ukUhsQCNbHUyy/Zz6ISw3iRd34CSZEhmMpYxqNC+EEEIIIYQQkiPxTrDL1MGlFLGdIEYC6Xn3lZONWQ+qZNqKYi0A4PQSbVr2J2ZK+KmmREKUKUEIIYQQQgghORLvlP60Ig1umVGIOQUDZy5km/Tc+rJJxtwNJENum1mECyfkYapeOfDGMZJnSlBQIhEKShBCCCGEEEJIjsQ7VWUYBmdXGLI+llSM9ZNrBccmXeKSTPKaEsMa1phGyzcIIYQQQgghJEdG2yk+nVsnFi9Tgg3fN9p+09lDQQlCCCGEEEIIyZnRdbJKJ9eJxQvYiDVDAjRvCVFQghBCCCGEEEJypEgVLGqpynZv0CGizpZJxMuUCP1aAzRvCVFNCUIIIYQQQgjJkXwFhyeXViJvCC0oc4GCEomVaYIBJoM8cu2fCl0OjIIShBBCCCGEEJJDFRpFroeQsnjFHEnQ6jIdfLyAhYWa8G0sLd8YEAUlCCGEEEIIIYSkRCsbHRkducAxDL5caYi5Lfh/XkD8/q+EghKEEEIIIYQQQlJzToUeTQ4vzizXZ/25qwxK1Fk9qM4fWsvOXBAzJfy8AFA8Jy4KShBCCCGEEEIISYmSY3FrdVFOnvvn88vQ4vBhqkGZk+cfClaaKUHiou4bhBBCCCGEEEJGPBXHjqqABEA1JVJBQQlCCCGEEEIIISQDqPvGwCgoQQghhBBCCCGEZAAbqm4Z4HM8kBGMghKEEEIIIYQQQkgGiDUlaPlGYhSUIIQQQgghhBBCMoCjmhIDoqAEIYQQQgghhBCSAdR9Y2AUlCCEEEIIIYQQQjKAMiUGRkEJQgghhBBCCCEkA8I1JShVIiEKShBCCCGEEEIIIRnA0fKNAVFQghBCCCGEEEIIyQCWlm8MiIIShBBCCCGEEEJIBlCmxMAoKEEIIYQQQgghhGQAZUoMjIIShBBCCCGEEEJIBoiZEhSUSIyCEoQQQgghhBBCSAawCGVK8DkeyAhGQQlCCCGEEEIIISQD2HBNCcqUSISCEoQQQgghaeJyubB69Wo88sgjuR4KIYSQEYBqSgyMghKEEEIIIWmyYcMG1NbW5noYhBBCRgiDPHjKrZVzOR7JyEVBCUIIIYSQNDhx4gQaGhqwcuXKXA+FEELICHFakRb3zS/DVyYX5HooIxYFJQghhBAy5m3btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/CBdQyaEEDIGcCyDOSYNlBydeiciy/UACCGEEEIyzel0oqqqChdffDHWr1/f7/633noLDzzwAO69917MmTMHL7zwAq677jps2rQJBQXBq1sXXHBB3H1v3LgRH3zwASZOnIhJkyZh165dGX0thBBCyFhCQQlCCCGEjHkrV65Muqzi+eefx+WXX45LLrkEAHDvvffiww8/xGuvvYZrr70WAPDGG28kfPyePXvw1ltvYfPmzXA4HPD7/TAYDLjhhhuGNF5WLNc+ROLjh7ufsYjmJjman8RobhKjuUmO5ic5CkqMEd/97nexdetWrFixAr/5zW/Ct7/77rt4+OGHAQC33XYb1q5dm6shEkIIISOS1+vFgQMHcNNNN4VvY1kWy5Ytw+7du1Pax+23347bb78dQDBzoqGhYcgBCZmMhcmkG9JjYxmN2rTsZyyiuUmO5icxmpvEaG6So/mJj4ISY8SVV16JCy+8EG+++Wb4Nr/fj4cffhgvv/wyOI7D5ZdfjjPPPBMKhSKHIyWEEEJGlt7eXgQCARQWFkbdbjKZ0NjYmPXx+P08rFbXsPbBsgyMRi16ex3geWpDJ0VzkxzNT2I0N4nR3CSXjvkxGNSQj9EOHhSUGCOWLFmCzz//POq2PXv2oKqqKvwlq7a2Fjt27MDSpUtzMURCCCFkVBEEAQwz+FTbiy++eNjPna4v9Twv0AlCAjQ3ydH8JEZzkxjNTXI0P/FRCdAsyEbF73g6OztRUlIS/rmkpASdnZ3D3i8hhBAylhiNRnAch+7u7qjbzWZzv+wJQgghhKQXZUpkQaYrfnPc2EzjIYQQQrJBoVCgpqYGW7ZswZo1awAAPM9j69atuPrqq3M8OkIIIWRso6BEFmS64ncixcXF6OjoCP/c0dGBFStWDHo/IqoEnjk0N/HFzgvNT380N4nR3CR2Ks6Nw+FAU1NT+OeWlhYcOnQIhYWFKCoqwjXXXIM777wTNTU1qK2txQsvvAC3242LLrooh6MmhBBCxj4KSuRYOip+J1JbW4vDhw+ju7sbHMdhz549+OUvfzmkfVEl8OyguYmQy7l+7zman8RobhKjuUnsVJqb/fv346qrrgr/fN999wEAbr31Vqxfvx5r166F2WzGY489hq6uLlRXV+PZZ58NZywSQgghJDMoKJFj6ar4fcMNN2Dv3r1wuVw444wz8PTTT2PGjBn44Q9/iCuuuAIA8L3vfQ9KpXJI46RK4JlFc9OfzxdAT48dAM1PMjQ3idHcJJauuRlNlcCXLFmCurq6pNusW7cO69aty9KICCGEEAJQUGLEGmzF76effjru7WeffTbOPvvstIyJKoFnHs1NtNi5oPlJjOYmMZqbxGhuCCGEEJJr1H0jx6jiNyGEEEIIIYSQUxUFJXJMWvFbJFb8njt3bu4GRgghhBBCCCGEZBgt38gCqvhNCCGEEEIIIYT0R0GJLKCK34QQQgghhBBCSH8UlMgCqvhNCCGEEEIIIYT0RzUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEIwiCkOtBkJGP5wUEAvyw9yOXc/D5AmkY0dhDcxPtyJHDmD59Rvhnmp/EaG4So7lJLB1zw3EsWJZJ04iIiI65mUdzkxzNT2I0N4nR3CQ33PkZy8dcCkoQQgghhBBCCCEkJ2j5BiGEEEIIIYQQQnKCghKEEEIIIYQQQgjJCQpKEEIIIYQQQgghJCcoKEEIIYQQQgghhJCcoKAEIYQQQgghhBBCcoKCEoQQQgghhBBCCMkJCkoQQgghhBBCCCEkJygoQQghhBBCCCGEkJygoAQhhBBCCCGEEEJygoIShBBCCCGEEEIIyQkKShBCCCGEEEIIISQnKChBCCGEEEIIIYSQnKCgBEnZyy+/jDVr1mD27Nm47LLLsHfv3qTb//e//8W5556L2bNn46tf/So+/vjjqPsFQcDvfvc7rFixArW1tfjWt76FxsbGqG0sFgtuv/12zJ8/H4sWLcJPfvITOJ3OtL+2dMj2/LS0tOCuu+7CmjVrUFtbizPPPBO///3v4fP5MvL6hiMX7x2RxWLBGWecgaqqKjgcjrS9pnTJ1dy8//77uOSSS1BbW4ulS5fiRz/6UVpfVzrkYm727NmDb37zm1iwYAEWL16M73znOzh27FjaX1s6pHt+3n77bVx77bVYsmQJqqqqcOTIkX77GE2fyaeCdL8HxpLBzM3Ro0exfv16rFmzBlVVVXjppZeyONLcGMz8vPLKK7jiiiuwaNEiLF68GN/+9rexb9++LI42uwYzN++++y4uueQSLFy4EHPnzsUFF1yA119/PXuDzbLBfuaInn76aVRVVeGhhx7K8AhzZzBzs3HjRlRVVUX9N3v27CyOdgQSCEnBf/7zH6Gmpkb4xz/+IRw9elS4++67hUWLFgk9PT1xt9BTcM0AAQAASURBVN+5c6dQXV0tPPPMM0J9fb3w29/+VqipqRHq6+vD2zz11FPCggULhHfeeUc4dOiQcOONNwpnnnmm4PF4wttce+21wvnnny/s3r1b2LZtm3DWWWcJd9xxR8Zf72DlYn4++ugj4cc//rHwv//9T2hqahLeffddYenSpcLDDz+cldecqly9d0Tr168Xrr32WmH69OmC3W7P2OscilzNzaZNm4RFixYJf/vb34SGhgbhyJEjwubNmzP+egcjF3Njs9mERYsWCXfddZfQ0NAgHD58WPjOd74jfOlLX8rKax6MTMzPa6+9Jjz++OPCK6+8IkyfPl2oq6vrt5/R8pl8KsjEe2CsGOzc7NmzR3jwwQeFf//738Ly5cuFF198Mcsjzq7Bzs8PfvAD4aWXXhIOHjwo1NfXCz/+8Y+FhQsXCh0dHVkeeeYNdm6++OILYfPmzUJ9fb3Q2Ngo/PnPfxaqq6uFTz/9NMsjz7zBzo1o//79wurVq4WvfvWrwoMPPpil0WbXYOfmn//8p7B48WKhs7Mz/F9XV1eWRz2yUFCCpORrX/ua8POf/zz8cyAQEFasWCE8++yzcbe/7bbbhO985ztRt1166aXCvffeKwiCIPA8Lyxfvlx47rnnwvdbrVZh1qxZwn//+19BEAShvr5emD59urBv377wNh999JEwY8aMEfeHm4v5ieeZZ54Rzj777OG8lLTL5dy8+uqrwte//nVhy5YtIzIokYu58fl8wumnny688sor6X45aZWLudm7d68wffr0qC/aO3fuFKZPnz7gl65sS/f8SDU3N8cNSoymz+RTQSbfA6PdYOdGavXq1WM+KDGc+REEQfD7/cK8efOEf/3rX5kaYs4Md24EQRAuvPBC4fHHH8/E8HJqKHPjdDqFL3/5y8LHH38srFu3bswGJQY7N2JQgkTQ8g0yIK/XiwMHDmD58uXh21iWxbJly7B79+64j9m9e3fU9gCwYsWK8PYtLS3o6uqK2kav12POnDnhbXbt2oX8/HzMmjUrvM2yZcvAMEzK6WLZkKv5icdmsyEvL2/IryXdcjk3TU1N+O1vf4tf/epXYNmR91GXq7k5ePAgOjo6wDAMzj//fKxYsQI33nhjwuUvuZCruZk0aRLy8/Px6quvwufzweVy4bXXXsPs2bNRUFCQ1tc4HJmYn1SMls/kU0Gu3gOjwVDm5lSSjvlxuVzw+/0j6vtGOgx3bgRBwNatW3H8+HEsWLAggyPNvqHOzYMPPoglS5bg9NNPz8Ioc2Ooc2O327Fq1SqsXLkSN998M+rr67Mw2pFr5H1TJyNOb28vAoEACgsLo243mUzo6uqK+5ju7m6YTKaE24v/T7bPePuQyWTIy8tDd3f30F9QmuVqfmI1NTXhpZdewte//vUhvY5MyNXc+P1+3HHHHbjtttswbty4tLyWdMvV3DQ3NwMAnnzySaxfvx5PPvkk5HI5rrrqqhFTGyBXc6PT6fDCCy9g48aNmDNnDubNm4fdu3fjySefTMvrSpdMzE8qRstn8qkgV++B0WAoc3MqScf8PProoygrK8Npp52WiSHmzFDnxmazYd68eZg1axZuuOEG/PSnP8XSpUszPdysGsrcfPDBB/jss89w5513ZmOIOTOUuZk8eTIeeOABbNiwAQ8//DB4nsc3vvENdHR0ZGPIIxIFJciQCYIAhmES3h/vvtjbYn+O3We8fQz0vCNFNuZH1NHRgeuuuw7nnXceLr744iGOOHsyPTcbNmyA0WjEpZdemobRZlem54bneQDATTfdhLPOOgu1tbV46KGHYLVa8eGHHw5z9JmV6blxu924++67cdppp+GVV17BX/7yF5SVleGWW26B3+9PwyvIrHTMz0BG82fyqSAb74HRit6nyaU6P8888wzeeustPP7441AoFFkYWe4NNDdarRavv/46/vGPf+D73/8+7r//fmzfvj2LI8ydRHNjNptxzz334Fe/+hXUanUORpZ7yd43c+fOxfnnn48ZM2Zg8eLFePzxx8OZmqcqWa4HQEY+o9EIjuP6XQkzm839ooKiwsLCftv39PSEty8qKgIQvHopTYs2m83h1OB4+/D7/bBarf2u9uRSruZH1NHRgauuugpz587Fz372s+G+nLTK1dx8/vnn2L59O2bOnAkgeGAAgEWLFuG73/0ubrzxxjS8uuHJ5d8VEFyqINJoNCgvL0dbW9swX1V65Gpu3nzzTXR0dODVV18Nf5H49a9/jUWLFmHLli0444wz0vMChykT85OK0fKZfCrI1XtgNBjK3JxKhjM/zz33HJ566ik8//zzmD59eiaHmRNDnRuWZTFhwgQAQHV1NY4dO4ann34aCxcuzOh4s2mwc3P06FF0dXXhG9/4Rvi2QCCAbdu24aWXXhpT3VvS8Zkjl8tRXV09opbSZhtlSpABKRQK1NTUYMuWLeHbeJ7H1q1bMXfu3LiPmTt3Lj799NOo27Zs2RLevrKyEkVFRVH7tNvt2LNnT3ibefPmwWKx4MCBA+FtPvvsMwiCgNra2vS8uDTI1fwAkYBETU0NHnjggRFXOyFXc3P//ffjjTfewOuvv47XX38d9913HwDgb3/7Gy677LL0vcBhyNXczJ49G3K5POrA53a70d7ejvLy8vS8uGHK1dy43W6wLBt1ZUP8WQxsjQSZmJ9UjJbP5FNBrt4Do8FQ5uZUMtT5efbZZ/Hkk0/i2WefHbOtC9P13hEEAV6vNwMjzJ3Bzs3s2bPx5ptvhr+Hvf7665g1axYuuugibNy4MYsjz7x0vG8CgQCOHj0avoBySspaSU0yqomtbjZu3CjU19cL99xzT1SrmzvuuEN45JFHwtvv2LFDqK6uFp577jmhvr5eeOyxx+K251u4cKHw7rvvCocPHxZuuummuC1BL7zwQmHPnj3C9u3bhbPPPlv44Q9/mL0XnqJczE97e7tw1llnCVdddZXQ3t4e1VZoJMnVe0fqs88+G5HdN3I1Nz//+c+FlStXCp9++qlQX18v3H777cLKlSsFh8ORvRc/gFzMTX19vTBr1izhF7/4hXDs2DHh8OHDwvr164WlS5cKFosluxMwgEzMT29vr3Dw4EHhww8/FKZPny5s2rRJOHjwoNDb2xveZrR8Jp8KMvEeGCsGOzcej0c4ePCgcPDgQWH58uXCI488Ihw8eFBobW3N1UvIqMHOz9NPPy3U1NQImzZtivquMdKOqekw2Ll56qmnwq3Z6+vrheeff16YOXOm8I9//CNXLyFjBjs3scZy943Bzs3jjz8eft/s379f+P73vy/U1tYKx44dy9VLyDlavkFSsnbtWpjNZjz22GPo6upCdXU1nn322XAa9MmTJ6Ou0s+fPx+PPvoofvvb3+LXv/41Jk6ciCeeeAJTpkwJb3P99dfD5XLhpz/9KaxWKxYsWIBnnnkmao3iI488gl/84he4+uqrwbIszjnnHNx9993Ze+EpysX8fPrpp2hsbERjY2O/tPK6urosvOrU5Oq9Mxrkam5+9KMfgeM4/OAHP4DP58O8efPw/PP/n737Do+ruhY+/NszI416GxVb7nKRi9wrxtiYjumQC4EQSiAJNYSPBAghCeRCEiCkQAqhhJCEkAsJhJDQe7Ex7r1KLpJs9S6Nyszs74+tadJIlqwyKut9Hj+WppyzZ2ukM2edtdd6lpiYmP578ccQjrmZOHEiTzzxBI8//jj/8z//g81mIycnh6effnrAVZnvi/l5//33+d73vuf7/lvf+hYAP/3pT321agbL3+ThoC/eA0NFd+empKSECy+80Pf9k08+yZNPPslFF13Ez372s/4efp/r7vy88MILtLS0+P4meN1yyy3ceuut/Tr2vtbduWlsbOTHP/4xRUVFREVFkZWVxSOPPMKqVavC9RL6THfnZjjp7tzU1NTwgx/8gNLSUhITE8nJyeH//u//yMrKCtdLCDul9QDKSRVCCCGEEEIIIcSwMTzDWUIIIYQQQgghhAg7CUoIIYQQQgghhBAiLCQoIYQQQgghhBBCiLCQoIQQQgghhBBCCCHCQoISQgghhBBCCCGECAsJSgghhBBCCCGEECIsJCghhBBCCCGEEEKIsLCFewBCCNGZxx9/nN/85jftbj/hhBP405/+1P8DEkIIIYYoOeYKIcJBghJCiAEvPj6ep59+ut1tQgghhOhdcswVQvQ3CUoIIQY8q9XKnDlzjvm4xsZGoqKi+n5AQgghxBAlx1whRH+TmhJCiEGpoKCA7Oxs/v3vf3PnnXeyYMECbrjhBgCqqqr44Q9/yNKlS5k5cyZf/vKX2bJlS9Dza2pquOOOO5gzZw7Lli3j97//PQ899BCnnHKK7zGPP/44ixcvbrfv7Oxs/vrXvwbd9tJLL3HOOeeQk5PDypUreeqpp4Luv/vuu7n44ov57LPPOO+885gzZw6XX345+/btC3qc2+3mD3/4A2eeeSY5OTksX76cu+++G4Dnn3+euXPnUl9fH/Sczz//nOzsbHbv3t3NWRRCCCGOTY65fnLMFaL3SaaEEGJQcLlcQd9rrQF4+OGHOf300/n1r3+NxWKhubmZa6+9lpqaGu68805SUlJ44YUXuOaaa3j77bdJS0sD4Hvf+x5ffPEF99xzD6mpqfzxj3/k8OHD2Gzd/7P49NNP88tf/pLrr7+eRYsWsWPHDn79618THR3NlVde6Xvc0aNHefjhh7nxxhux2+08/PDDfPvb3+Y///kPSikAfvjDH/Lqq69y3XXXsWjRIqqrq3nzzTcBOO+883jooYd46623uPjii33bfeWVV5gxYwZTp07t9tiFEEKItuSYK8dcIfqTBCWEEANeVVUVM2bMCLrtgQceAGD27Nn86Ec/8t3+0ksvsW/fPv7zn/8wfvx4AJYuXcpZZ53FH//4R+666y727dvHu+++yy9/+UtWrVoFwOLFi1m5ciVxcXHdGltdXR2//e1vufHGG7nlllsAOPHEE3E6nfz+97/n8ssvx2q1AlBdXc0LL7zgG5fWmptvvpm8vDwmTpxIbm4u//jHP/j+97/PVVdd5duHd4wJCQmcccYZvPzyy74PSPX19bz99tvccccd3Rq3EEIIEYocc+WYK0R/k6CEEGLAi4+P59lnnw26LTIyEoCTTz456PY1a9YwY8YMRo8eHXSlZ+HChWzfvh2Abdu2AQSljcbGxrJ06VK2bt3arbFt2rSJhoYGzjrrrKD9LVmyhN/97ncUFRUxatQoAEaNGuX7cAQwceJEAIqLi5k4cSJr164FCLoi09aXvvQlrrnmGvLz8xkzZgxvvPEGLpeLc889t1vjFkIIIUKRY66fHHOF6B8SlBBCDHhWq5WZM2cG3VZQUACAw+EIur2yspLNmze3u8oDMHbsWADKysqIjY1tV6Cr7ba6orKyEoBzzjkn5P1Hjx71fUBqW708IiICgKamJsBcnYqJien0ytHixYsZM2YML7/8Mrfddhsvv/wyp556KklJSd0euxBCCNGWHHP95JgrRP+QoIQQYlDzrgv1SkxMJCcnh/vuu6/dY71XelJTU6mvr29XOby8vDzo8Xa7nZaWlqDbqqur2+0P4A9/+EPID1gTJkzo8mtJSkqioaGBurq6Dj8kKaW45JJLePHFF7ngggvYsGFDuwJfQgghRF+QY64cc4XoCxKUEEIMKSeccAKfffYZmZmZHV6F8V4Bev/9931rR+vr61m9enXQB5OMjAzq6+spLi4mIyMDgM8++yxoW3PnziUqKoqSkpJ2aa3dtWTJEgD+9a9/BRXrauuiiy7iscce45577iEjI4MTTzyxR/sVQgghjoccc4UQvUGCEkKIIeXCCy/k73//O1/96lf52te+xpgxY6iqqmLr1q2kpaVxzTXXMHnyZE455RTuu+8+6urqSEtL45lnnmmXWnrSSScRFRXFPffcw7XXXktBQQF///vfgx6TkJDALbfcwoMPPkhhYSELFy7E4/Fw8OBB1q5dy29/+9sujz0rK4vLLruMn/3sZ5SXl7Nw4UJqamp46623+OUvf+l7XEZGBieddBIffvgh3/zmN31FvYQQQoj+JMdcIURvkKCEEGJIsdvt/PnPf+bXv/41jz/+OOXl5aSkpDBr1qygIls/+9nPuO+++/jJT35CTEwMV1xxBTNnzuStt97yPSYlJYXHHnuMhx9+mJtvvpkZM2bw6KOP+q70eH39618nPT2d5557jmeffRa73c748ePbPa4rfvSjH5GZmclLL73EU089RUpKSsirMqeddhoffvhhpwW6hBBCiL4kx1whRG9Q2tt4WAghhjlvP/L3338/3EM5pttuu43S0lL+9re/hXsoQgghRLfJMVcI4SWZEkIIMYjs2bOH7du388477/CLX/wi3MMRQgghhiw55grRPyQoIYQQg8iNN95IZWUlV1xxBWeddVa4hyOEEEIMWXLMFaJ/yPINIYQQQgghhBBChIUl3AMQQgghhBBCCCHE8CRBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIUEIIIYQQQgghhBBhIUEJIYQQQgghhBBChIUEJYQQQgghhBBCCBEWEpQQQgghhBBCCCFEWEhQQgghhBBCCCGEEGEhQQkhhBBCCCGEEEKEhQQlhBBCCCGEEEIIERYSlBBCCCGEEEIIIURYSFBCCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFrZwD0AMDh6Pxu329Hg7NpsFl6vn2xmKZG6C5ecfZsyYsb7vZX46JnPTMZmbjvXG3FitFiwW1UsjEl5yzO17Mjedk/npmMxNx2RuOtfT+RnKx1wJSogucbs9VFU19GgbFovC4YijpsaJx6N7aWRDg8xNe1/96lX861+vAzI/nZG56ZjMTcd6a26SkmKwWKy9ODIBcsztazI3nZP56ZjMTcdkbjrXG/MzlI+5snxDCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIoUshhBBCCCHEoKG1xuNxo/u5nqLFomhubsblckkxxzZkbjrXlflRCiwWK0oNzQ4bnZGghBBCCCGEEGLA01pTV1dNfX0NEJ4T37IyCx6PtL0MReamc12ZH4vFisMxEqt1aHbZ6IgEJYQQQgghhBADnjcgkZCQQmSkHej/K8o2m8LlkkyAUGRuOnfs+dFUVZVRU1NBcnJav41rIJCghBBCCCGEEGJA01r7AhIxMXFhG4fNZgEkGyAUmZvOdWV+4uOTqKwsQWsPSg2f8o/D55UKIYQQQgghBiWPxw3o1gwJIYYmq9XkDAy3ZTCSKSGEOG5ag7MO6mug2Qlul7ndFgGRURCTANFxpnCPEEIIIcTx8he1lA8VYigz7+/+LuIabhKUEEJ0S3MjFB+C0kJFZTG4Wzr/cGC1aZLSwTFSkzHOBCmEEEIIIcTA8cwzf2D16k955pm/hHsoYhiSoIQQokvqqiBvm6L4EGiPCURYbZqkNE1sItijwRphwrquFkWzE+qrobYSyo8oyo8o9m6A5AzN2Kma9DEwjJbKCSGEEGIYevDB+3A6G3jggYd9t73++ms88shPuP32Ozn//IuOa7uffvoxf/rT0+Tl5RITE8OSJUu59977j3ucl1/+Vb70pcuO+/mD1Ze+dB6XX34ll1wy/F77QCJBCSFEp5obYe8GxZFcAIUtQjNysiZjnCYpDSwhOxb5c848Hqgp05QWKI4ehMpiRWWxIiZBM3muJn2sLO8QQgghxPDw0kt/53e/+zX33ns/p556xnFt48MP3+Ohhx7khhtuYe7c+bhcLvLzD/VoXDExMUBMj7YxVLlcLqxWK0o+sPYZCUoIITpUchh2rFG0NCkiozQTcjyMngLWbvzlsFggKR2S0jWT5kJZoebgDhOY2PKRInmEZvoSTWxC370OIYQQQohwe/bZp/jrX//ET37yCCecsOy4tuFyufj1rx/l5pu/xbnnXui7PStrYqfPq6mp4be//RWffvoRLpeLGTNmcttt32HcuPFA++UbLpeLxx//BW+++V9sNhsXX3wpBw7kEh0dw/e/fx8ATU1NPPnk73j33bdoaKhn0qQp3Hzzt8nJmQmYjJDf/vZXfP/79/PYY7+goqKcRYsWc/fdPyQuzqzn/eCDd/njH5+ksLCA6OhosrOn8fOfP4bFYvFlmUyYMJGXX34Rt9vNqlXncfPN38ZqtXYwhsncfPPtvjEAbN68kSef/B179uwiMtJOTs5MHnjgYe6441aKio7yy18+wi9/+QgAn3663jfuu+76AU888TgFBfm8+upb/OAHdzF16nRuueXbvm1fd91XWbp0Gddd900Ali1bwJ13fp8PP3yfLVs2MmrUaO69934sFiuPPPIgubn7mTlzNj/84f+SnJxyXO+BoUiCEkNcXl4e99xzD3V1dURGRnLPPfewYMGCcA9LDHDaA/u3KA5sMxHh0VM0k+dpIiJ7tl2lIG00pI7SVBzV7FmvqCxSrHkNshdoRk+RrAkhhBBCDC1aax5//Bf85z+v8uijjzNnzryg+//85z/yl7882+k2/vKXlxgxYgR79+6mtLQEUFx99eVUVVUydeo0br31/zF69JgOn//DH95NdHQ0jz76G2Jionnppf/j9ttv5vnn/0F0dHS7xz///HO8997b/OAHP2bUqDG88MJfWLduLcuXr/Q95le/eoRDhw7yv//7MxyOVN57721uv/1m/va3f5CWlg5AQ0MD//zni/zv//6UxsZGfvCDu/nrX//EDTfcQllZGffd931uuulbLF++kvr6ejZuXBc0jrVrP8duj+I3v3mK/PzD/PSnPyY1NY0rrrgq5BjeeefNoDEcPnyI22+/mQsv/BJ33HE3AOvWfY7Wmp/85BGuueYKLrroS6xadV7QfhsaGvj73//K979/P7GxscTGxnb68wn0pz89za233s63v30Hv/rVz/nxj39ISkoKt9xyG1FRsfzoR9/jySd/x1133dvlbQ51EpQY4ux2Oz/5yU/IysoiNzeXm266ibfeeivcwxIDmMcDOz5THD1glmrMPEmTNrp396EUODJhyTmagzs0uVsUu9ZaqCzWzFiqu5WJIYQQQggxkK1e/SktLS385jdPtgtIAFx44SWccsrpnW4jNTUVgCNHCgHvie//Iz09nb/+9U9861s3dBhg2LJlM3v27Obf/36LiIgIAG6//bt8/PEHrF79Kaee2n7f//zni1x11ddYtmwFAN/97j2sWfOZ7/6ioiJef/01XnnldVJSHAB87WvX8+mnH/P222/wla9cDUBLSwvf/e49jBgxAoCzzz6XDRtM4KG8vAy3282KFacwYsRIACZNmhw0Drvdzl133UtkZCQTJmRRUJDP//3f81xxxVUhx3DNNdezevWnvjH89a9/YubM2dx22x2+bU6cOAmAqKgoLBYLMTExOBypQfttaWnhO9/53jEzUEI599wLWLnyNMDU6rj99pv5xjdual1q4+Hccy/k1Vf/2e3tDmXy0X+IGzVqlO/rrKwsamtr0VrLmqgBrKXZFIhsrDff2yIgNhGiYvs+i0B7YPuniqKDiqhYzfzT+3ZZhcUKWbMgZaRm68dQdFDhrIe5K4dZHyQhhBBCdNv2zxQlh/t3nxnjYMbS7j1n0qQpVFSU8/TTT/Dznz9GVFRU0P0JCYkkJCR2aVsej/mMdPXV17FihclauPfeH3P++WeyevUnIetU7N+/l/r6OlatOiXo9qamJo4cKWj3+Lq6Oioqypk2bYbvtoiIiKCAQV7eftxuN5dddmHQc5ubm4MeFxsb6wtIADgcDiorKwETgJg7dz5XXfVllixZyqJFS1i58lRiY/2t2iZPnkJkpD9VNydnJr/7XRl1dXVdGsP+/ftYvvzkdq/xWOx2+3EFJAAmTvS/fm+wZMKErIDbUnxzIAwJSgxw69at45lnnmH79u2UlpbyxBNPsHLlyqDHPP/88zzzzDOUlpYybdo07r33XmbNmtVuW++99x7Tpk2TgMQA5GqB3RtbyN0BVSWhW1LYYzQZY2FMtul20Rf2bWoNSMRpFp6h+619Z1KayZrY9D5Ulyq+eNNkbAghhBD9ra6ulqioaGw2+ZgsekdGRgb33/8Tbr31m3z3u7fxyCO/DgpMdGf5hsNhTnLHjh3vuy86OpqMjBEUFxeFfK7T2UBaWjq//vXv292XkNDx1ae25wxa+y8aOZ0N2Gw2/vjH532Ps1oVbrcOWurQ9vdIKYXWntbHW/n1r3/Ptm1b+Pzz1bzwwl945pk/8Mwzf/GdzHd03qJU6DF4dWe5RShtA0cAFoslaA7A1N5oK/A1e4cVfJt/DoQhf20HuIaGBrKzs7n44ou59dZb293/+uuv89Of/pT777+f2bNn89xzz3H99dfz5ptvkpLiL55SWFjII488wpNPPtmfwx/QmhqgoRaam8BqhchoiEsyhRn7i/bAod1wYBu0NDUDCnuMJtEB0XGmZWZzo2nHWVMOh3crDu+BzCyYMl8T2f7v5XE7mgcHdyhskZoFp/VfQMIrMgoWnKHZ8jGUFShqK8xr783XKIQQQnRm69bNvPTS/5GWls4NN9zsu0LbWG8+J/TnZwRxbDknajixf/dpsylCnIceU2bmKB5//A/ceus3ufPOb/Pww7/ynfh2Z/nG1KnTiIiIoKDgMLNnzwGgqamR0tJiMjJGhHzulClTKSsrJSIiosPHBIqLiyMlxcHOnTvIyTEXOltaWsjN3e+rFTF58hRcLhfV1VW+x9hsFlyu7p1sWywWZs+ey+zZc/na177Beeedztq1azj77HMB2Lt3D83Nzb7fxR07tuNwpBIbGxdyDG1NmjSZjRvXc80114e832aLwO3u2piTkpKpqCj3fd/Q0BAy00R0nwQlBrgVK1awYsWKDu9/9tlnueyyy7jkkksAuP/++/nwww955ZVXuO666wCTgnXTTTfxgx/8gHHjxh33WCyWnmVYHN6t2FjgxGJTxCaamgLJaebEu780NkD+big6BPXV7V+P1aZJGQFjsk1Bxr5MKmmoha2fQFWJAgUTptsYOdFFfEro/TY1QGGu5sB2OJKrKD8Ks5dDyrGPLV0ay441gNLMORniksKTTWOJhHkrYeP7GrcLNr2vWHQWWGxmPD19Dw5F3jmRuWlP5qZjMjdCtKe15u233wQ0paXFrF//BUuXLqO2Eta8ZiF1lGbeqT1bXlhTDps+UMxarklO751xi8HDG5j41rduCApMdGf5RmxsHOeffxHPPPMH0tMzSE/P4LnnniE2No6lS08K+ZwFCxYxffoMvve9O7jxxlsZNWoMpaWlfPrpR5x77gW+DhyBLrnkUv785z8yatRoRo0azQsv/IXm5iZfRsLYseM59dTT+fGPf8Att9zOpEmTqampYs2a1cyZM4+5c+cf87Xs2LGdDRu+YNGiJSQlJbN580acTmdQFkhTUxOPPPITvvKVq8nPP8Rf/vIsV1zx1Q7HUFlZyRdfrPGN4corr+Hqq7/Mr3/9KOeddwFKWVi3bi3nn38RUVFRjBw5ks2bN7Jy5alERESSlJTU4Xjnzp3P73//OGvXriE9PYNnn30KkONob5CgxCDW3NzMjh07uPHGG323WSwWli5dyubNmwFwu93cdtttXHrppSxbdnyth8BEPh2Onl0631nRSEmBu/U7Re4WiEtUZM+LYPIsG1Zb3/1Su1o0W1e3sGdTC57WISQkK5LTLUTFmIh3fY2HsiMeSgugtAASUxVLTreTmmnt9fFUlLhZ+3ojTU5IybCw9Gw7iQ4LYO/4SQ7IHANzTtCs/6CZvB0u1r0Fy861M3bK8f8qa63Z/H4jHreHmSdEkD2zhy02esGpl2gifqyoLlPs22Bl6dlmXpKTe5aKN5TJ3HRM5qZjMjdC+BUVHaW6uorISDvNzU1s3ryJpUuXUXHU3F9WqICuByWanCYAMXGWv2D03g2KpgbFujcVZ1wl6dvDUWDGxF133c5DD/0y5FKBztxyy+1YrVbuv//7tLS0kJMzm1/96nchi1yCOT/4+c8f44knfssDD9xHTU01Dkcqc+fO73D5xle+cjXl5WXcf/+9RESYlqCzZs0Jqu9w770/5tlnn+Kxxx6lrKyU5OQUcnJmcdppZ3bpdcTGxrJ58yZefPFvNDQ4yczM5M47v8+MGTm+xyxevIS0tHRuuul63G4XZ599Hl/+8pVdHsPYseN49NHH+cMffsurr/6TqKhoZs6cxQUXXAzAddfdwCOP/ITLLruQ5uZmPv10fYfjPffcC9i7dw8/+tE9REVF8bWvfYPCQsmU6A1Kt10YIwas7OzsoJoSxcXFLF++nJdeeimohsTDDz/Mxo0b+fvf/84HH3zALbfcwqRJk3z3/+Uvf+l0/VgoLS1uamqcPRq/UooISzSlxU4qizUl+VBRZAIRcUmamcsgMfUYGzkONRWw+QNoqFVYIzRjs00mREx8+8d6PFCaDwd2tGYwoJk4CybN7b2siapSWP82uFoUY6dqpi4EW4QiOTmWysp6XwGjY8nfCztWm3HNPQXSO+4C1anC/bDtU0Vckmbpeab45EBw3rlnc8fVb9BYr5i2COad1L35GS4slu6/d4YLmZuO9dbcJCREExExQP5oDBBOp5NVq1Zxzjnn8J3vfOe4ttHS4qaqqqFH47BYFA5HHOXldfL+b6Ojufn88zX897+vcvLJp7B9+zbKykq57bbvUF+ayp51Jq2zO4GEfRsVB7YryioOU2H7J1OmTCEzdhVHclW3t9WfBup7x+VyUVZWSGrqqLDW+zieJQpDgcvl4tJLL+B//udyLr/8ypCP6e25efDB+3A6G3jggYd7bZvh1JX56ex9npQUM2SPuZIpMQQFdtdYuXIlO3bs6JXt9vTAZLFAfJKFZrcmPkUzdhrUVmj2rFdUFCk+/69pB5l5fIVuQ6oogs0fKFwtitTRmulLNFEx5r6OCimmjYHU0XBkvxlb7laFs14z/QTd47WkjfWw8T0zngkzNZPmaFD+sXg8usvzPKo1zrRjtYXNH2pOOLf7BTDdbnPVBmD6kuCxhJuywJyTNWvfgN3rYcJUDx5L1+dnuOnOe2e4kbnpmMxN73viiSdCFpsWA19+/iEAxowxS10//PB9du3awbjUjpfRlhaYiwOpo9rfZ7FptIbVm14keWwJxcVHOWXxNMBU4fd4pEaFGLiOHClk48Z1zJo1l6amJv7v/56nurrK1+pSiN4kfwoHseTkZKxWK2VlZUG3V1RU+IrhDHTxKTD/dM3UReZMePtnFg7t6p1tVxbDhndNACBrlmbuSn9A4liUglGTYdHZGnuM5kiuYsdqRU/yitxu2PyhorlRMXqKZvJc3ePsi1GTYNIcDx63Yusnyrc0pasK90GTU5E+VpM0ANe2Jjhg8lyN9ihWv97Y7dcnhBD96eDBg+Tl5XVaC0qEX20lHNjVvlJhfr7pLTl69BimTp0OwO7dO3F3cOzRGja9b2Hje6E/TlssUF5VQE1dqe/zw/7c7b77G+t68CKE6GMWi4X//OfffP3rV3HLLV/n6NEjPP74H4LaewrRWyQoMYhFRkYyY8YMVq9e7bvN4/GwZs0a5syZE76BdZNSMHYqzFmpsVg1e9ZZKD7Us20660wAQHsU2Qs9TJpzfAGAuCRY3BqYOJqnONyDgEneVkVNuSIpTTN1Ye9dmZyQA0npmtoKk9XRVR636bYBkDVz4F4pHTcdUkZoqso0B3on6UcIIdpZt24dN9xwA8uWLSM7O5sPPvig3WOef/55TjnlFGbOnMmll17K1q1bg+5/6KGH+H//7//115DFcfrsVcXq15uorfTfVldXS2VlBWlp6cTExJCZOYqEhER2bj3M1tX1vscFXpxwNbffdkuzyZ5ocoKrWXGocAsAixaaAoSH8vf5n38cHRyE6C8jRozkiSf+yFtvfcRbb33Eb3/7FNOn5xz7ib3o+9+/b8gs3RCdk6DEAFdfX8+uXbvYtcucDRcUFLBr1y5KS0sBuPbaa/n73//OK6+8Qm5uLvfddx+NjY1cdNFF4Rz2cUkbDbOWm6P99s8UdVXHtx2P2yzZaGkyNRvGTevZuKJiYW5rwGTvBkVlSfe3UV8DB3eYVM6ZJ+lerdugLDBzmcZi0xzaabp0dMXRA9BYr0gdpUlw9N54eptSMGOpueKUt9V0UBFCiN7mbcH9wx/+MOT93hbcN998M6+88grZ2dlcf/31VFRUAPDuu+8yfvx4JkyY0J/DFj3Q3Oj/+vBhkyUxZsxYwNTBGj1iOuVHoLDYf0UiMBDRFFBqyxus2PqRYtP7FrZ+rGhu0hws3AJKMTfnJFJT0yirKMHZWAuAR4ISQggBSE2JAW/79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899hilpaVMmzaNp59+mpSUlHANuUfSx8DEOR5yN1vY+jEsObf7dRwO7YLaSkVyhmbKgt7JAEhwwLRFmh1rLOxeC0vO0V1uZao17F5rsjYmzfEQ3bMmJiFFx8HYbJP5cGA7TF107NdduM9kSUzIGbhZEl6xCTB1fgQ717Wwb6MJwgghRG/qaQvuLVu28Prrr/PWW29RX1+Py+UiISGBb3zjG8c1np62a5W2r8dmsSjfZ4yCgsOAYty4cVgsZjlkc0kO8Dn5RTuZNG4RAPs3KSbMNMWyWwKCGmiFxWouQoBptV1efQBnYw0ZqVno5kTGjBnLzk1lVFQXMipqKh6PGpA1JQbqe2egjUeIvmT+Pg2f97wEJQa4xYsXs2fPnk4fc+WVV3LllaGr4A5GWTOh4qimslhRsFczdmrXn9tYD7lbFcpiilr25sE+cxIU7tdUlSoK9mnGZHfteZXFUH5UEZPQ86yNzoyfocnfAwV7YXwOndbPcNZBVakiKnZg1pIIJWdJBLnbmzmapxg/QxOfHO4RCSGGi6604L7jjju44447AHj55ZfJy8s77oBEb7Th9pK2r6GY5Rjx8VE4HCZ1saKiGLvdRkrMFJKTY6mv0WQ4soiIiOJoyT5crmZstkjy9ypczVaWn2/no3848bYITYiPNS3GW8y2PW7F/gPbABg/ag4N1TamTZvEO69toqKqkFEZU4mNjsLhGLgfxQfae6e5uZmyMgs2m8JmC280J9z7H8hkbjp37PlRWCwWkpNjgtqvDnUD9y+hGLaUgqkLNWv+C/s3K0aM10R2sX3z3g0Kj8t0tuhuJ4oujWuR5vP/mislIyZoIrrwt+LQLhPlnDird5dttBUZZVqdHtxhal9Mmd9xNoG3ZseI8b3X6rSvRUQqJuTA7nXmNUq2hBCiv1RWVuJ2u9sVkXY4HBw61MMiSCG4XJ4et+GWlridMQe+6upGbDGaumo3X3y2H3dzBHvWJuFqrMcxEiwWK6MypnKwYDP5RTuZMHoOADUVLjZ+4sJZ5z+AlpXWExll6kgANDnd7N67BaUsjBmZQ3GBi6xRKbhcmvKqAgAO5zZiTxg4rbi9Bup7x+Vy4fF4cLk0EL5WYcO1JWhXyNx0rmstQTUej4fKygZstuDCNUO5DbcEJcSAFJ8CY6ZA/h6zHCG7C8swnHVQdAgio3SfFW5McEDmRDiSqziad+wsjoZaKM2HyGhNxrg+GVKQsVM1B3coig7B5HkdBxyKDpo7RkwYOB82umL0FMjdoik6AJPm0CdLYYQQoqsCW3AHuvjii3u87d46GZS2r6GYn5mrxczNG38/QtkRNyPTJ6KUoqxQExOvAUXWmHkcLNhM7uF1vqBEkxOaGoO3aLbl33Zh8S5q6xoYlTGdhMQYmhoUaWkj0RoqqgsBOLBd0eTU5Jw4MH8+A+29M5DGIkRfG2i/f31N8mvEgJU1S6MsmsL94O5CMajDuxVoxegpYO3DcNvYqeYPRP7eY7cIzd+jAMWYKX2bJeEVFQuJaZrGOkVNeejH1NdATblZTjLYlkDYImDsNI3Wytc5RAgh+tpQaMEt2vO2mS4sMEUu01LM1QOlzHJQgBGpk4mNTqKodD8jppQSFadxtSjf/V5uV3DhzP2H16PdMHn8AuzR5jYLkSTGpdPgrKaxyfQDPZIrxzIhhJCghBiw7NGQMdakQhYd7PyxrhYo3A/KohmT3bdRxQQHJDg09VWKqk46cXg8/jGNntKnQwqSMc68/uJDoT/olBd6Hzd4lm4EGpMNFqvmSF7XglVCCNFTQ6UFt6A1m8HwHkNKK01QIjXZ23kDnPXmADn/dDhp5QISHHCw5GOiW8ssVJcGb9ft9gclauvLOVK8B7s9lnFjs7HZze2uZkhJHA3gW8IhhBBCghJigBs9xZxgF+zt/Oz56AETvBgxHt8Vib40Zoo/W6IjVaVmTI6R/TMmrwzzmYriQ4TM5KguN2NOTh+cKWGRUaZLi7tFUZIf7tEIIYaK4dSCezgLbMPpzZQoqzgESvmCEi4XNLR20YiOhQsvP4GMMZFs2LCeZncVAE1OhVKazInat93m1jIgO/d/hNYepk44kehYq6/+VN42RXy0CUpUVBX26esU4njdeOPX+Oij933f79u3l+uu+yorV57ANddcQU1NNeeffyalpZ1cmROim6SmhBjQkjMgNlFTXaaoKdckOEI/rqQ1K2D05P450R4xAfas15QcAvdSsIZYmlFeaMbkyOzfk//oOEhI1dSUKWor2s9ZdWv2cUdzORiMzNIUHVQczVOMPI66GFqbeSg+qGiohZbm1nlL0Saw1UnnEiHE0DTcWnAPV2538NeVlRXUO6tITswkMsJU1W6sNzWhrBGa2ARQlhhOOGEpH330AV9s+S8zRpmOZ1GxZlkhtC7faIKaulIOFK4jIiKK7KylRMfiC0ocyVWkJo0BoKzKRNUt1sF5gUB0zbJlCzq9/9prv851132zX8aye/cunn769+zevROn00lqaho5ObO4++4fEBFh3siffPIh9fX1LF++0ve83//+cdLTM3jwwUeIjo4iISGRs88+l2ee+QN33/2Dfhm7GPokKCEGNKUgc6Jm30ZFaUHoE2m3y7TdtEVqEtP6Z1xWGySPgNJ8RXWpJmVE+8eUHTH/p47qnzEFShttghKVJcFz1tIMDTWK6LiudzQZiByZEBGlKT9i0mW781oaamDbp4rqsuAsl6oSOJqn2LvRBCamzNf9muEihAiv4diCezgKXPbnccGBA3kAZKRm+W73dtBIGalRrTnFJ510Mps3b+JA7lbi2Mq4UbOIivV3znC7oblJ8/nmf2KxeZg+/mQiI6KJivVvAyA5MROlLJRX5qN1/9SbEuHz6qtv+r5+/fXXeOWVf/DUU8/5bouO9l8F0Vrjdrux2Xr/9KyysoLbb7+Z5ctP5pe//B0xMTEUFhbwwQfv4fG4AROU+Mc/XuTss88LKuBbWJjP//zPlxkxwv9h95xzzuOaa77CzTd/m/j4+F4frxh+ZPmGGPAcI83/FUWhl0pUFoPHo1rbd/XfuFIytG//bTU5obbCnPzHhOFvtbeAZV1l8Jx5i18O5iwJMD/nkeNBa0XRga4/r+QwrPmPCUjEJWumLvKw5BwPyy7yMP80D+Oma6w2E5xY85oJhAkhhBg6PG0yJQ4eNAeRDMeEdo/1HucB7HY7F1xwMbYIxepNL1JSfgB7NFht5jGuFs2Hn7xGSfkBRo4cwfRJywGIitVERPq3Y7XaSEoYQWNTHQ2N1RKUGOIcjlTfv5iYGCwWi+/7Q4cOcsYZy/n889Vce+0VnHzyEvbt28ODD97HvffeGbSde++9kwcfvM/3fVNTE48//ksuuOAsTj/9JG688Wts376tw3Fs27aVpqZG7rzz+0yePIVRo0azaNES7rrr+9jt5spOZWUlGzeu48QTT/I9b9myBRQWFvCrX/2cZcsW8MwzfwBg7NjxpKen8+mnH/XibInhTDIlxIAXn2KyIKpLzRWOtp01yo6EZ5lEcmvAuKJIMXF28L7LA7IkwlFM0heUqAq+vaZ16UZi6uBPFx0xQXN4t6KkQDF22rFfT3UZbP1Y4dGms0vWLB0UxIqJN++hibNh7wZTx2TTB5BzoiYzq+PtCiGEGDzcbWpKHDiQB0qR7jB/6DMnakZN1jjrTP2iQJMnT+H0M87mhWff4N3VT+GJWcn06TmUlDex+98fsHvXbuyRMVxx5ZXkbzHRhqjY4K4cAKnJY6isPkJZZT6O1MS+fLlD3j//+SK7du3s133m5ORw4YVf6rXt/eEPv+GWW24nI2MEiYlJXXrOr371CIcOHeR///dnOBypvPPOm9x++8387W//IC0tvd3jU1JSaG5u5tNPP2b58pNDtjLeunUzMTExjBkz1nfbq6++yde/fjUXXfQlVq06LyizIzt7Glu2bOLss8/t/osWog0JSogBTylIGQElhxVVpdqXOeHlCwBk9u+44pMDgiXu4LoSZWGqJ+EVFWvWwtZVmfoJ3mOPt8hlwhDoYJfgMK+xqtRUU+8sS6axATZ9oPB4FNkLPYyb1vFjbREwfYkmJUOz7VPF9k8VIIEJIYQYCgKDEpUVlZSVVpIUn4k90pxsRdghOd38C2XlKcvJ3WBn/fbX2LDlHTZsfYfKIkVSuiYhLpW5c77KiBEO8reYx0dGgfYEb8ORNJp9rKWiqgCLNacPXqUYTL7+9ZuYP39hlx9fVFTUuhTkdVJSTOrrNddcz+rVn/L222/wla9c3e45OTmzuOKKq/jhD+8mPj6e6dNnsnDhYs466xzf8ovi4qOkpDiCAhYORyoWi4WYmBgcjuAPj6mpqeTm7j+elyxEOxKUEINCSoam5LCiskjhGOk/0W+sh/pqRWyiJiq2f8eklCnEGaquRG2l+b+jDzX9Mba4JKguVTjr/EtIasoApUkYAnXZLBYzv2WFpghqUif1RPZuUDQ7FaMma8ZO7dr2R0wAZdVs/Uixc40iPln7MlB6g9bmfVJXCS1NYI0w2RqJaaELpwohhOi5wEKXGz7fT+E+RXaWP+psi+z8YoI9GqZMOIGR6VNojlnD0aICYrSd+SdMZmzGAqqKorDazNLAiiLzOaGsTaONJStH8/lmKKvM79dlp0PRJZdc2u/7tNksuFyeYz+wi6ZO7eRKSQh5eftxu91cdtmFQbc3NzczadLkDp93003f4vLLr2T9+i/YsWMbzz//HM8//xxPP/1nUlPTaGpqIjLS3uVxREbaaWpqPPYDhegCCUqIQcG/VCL49orWeg5tsyf6S0qGpjRfUVmMLyihNThrIcKuiej63/ZeF59k+qjXVZqT3SYnNDYo4pK0r1r4YJecoSkrVFQU0WFQoq4Kig6YwpjZC3S3ltNkjIXJ8zR7N1jY8hEsOafnc+fxQP5uOLxb4axrPxhbhCZjPGTN1ETH9WxfQgghggW2BC0s3g3AqIxs323H+hvvPYbExzqYd9oqXE2w9RML46draivMfVYbxCb66zcFfhaIT9FMnZOOzRpJRXUhbvfgX04peiYqKriqtlIK3aanu8vlf+M6nQ3YbDb++Mfn2y3DiI3t/ApdcnIKp59+FqeffhbXX38jX/7yRfzrX//k+utvIDExidrami6Pu7a2hqSkXrxaI4Y1ic+KQSEuyZxUVpeBq8V/e0ON+WMclxyeg3pyhvm/qsR/UGhqMIU3w1HgMpB3TmqrzPdNDeb/cI+rN3nnv7K440hD3lYFKCbkHF9AYdx0SB2taahR7N/UswIhtZWm0Oae9RacdYqEVM2EHE32Ag9ZszTpYzQeNxTuU3z2qiJvW/u0XyGEEMfPmynhdrs4WrofmzWSDMdE3/1dOU5Ex5nja2wCWFov7zXU+rMk29a+8rYE9d4XEWEhJSmTlpZGKipLjveliCEqKSmZiopy3/cej4e8vFzf95MnT8HlclFdXcXo0WOC/iUndz0VNi4uDofDgdPpBGDKlGzKykqpr6/r0vMPHjzA5MnZx36gEF0gQQkxKCgFiQ7TbaGh1n+7s/XvZriuKMckmP8bG/y3eccX7pP/uDYdOFqazfe2yA6eMAglOEzl86oSk4HQVn01FB2EyGjNmCnHtw+lYMYJGmuEJn+PaSl6PCpLYN2bivoqRfIIzQnneViySjN5nmbcdJg0RzNnpWbFpaYIJxr2b7Kw5WMVtAZaCCHE8fNmSpRUHMDlaiIjbSLWgChCV4ISS87RnHiBh+g4fwCi5LCiudEcb9sGJWxtghLWCEhLGQ9AUUk3WkiJYWHu3Pns2LGdd999i8OHD/HYY49SXV3lu3/s2PGceurp/PjHP+Djjz/kyJFCduzYzrPPPsWmTRtCbvOzzz7hf//3h6xZ8xkFBfkcOJDH73//OAcO5Pm6bUyenE1CQiLbtm095hibmprYs2cXixYt6ZXXLIQs3xCDhrdmRFMD0BoIdoY5AGCLMMUWmwKDEq0nrdFhDkrEJ5n/vR04XK1BiYghFJSwWCApHcqPhK4rUXwYQDEm29PuQ2J32KNhwgzN/s0W9m2C2Su6l5lTUw4b3lF43IoJMzWT5nS8jCQi0gQoRk6ATe+bD7ob3oX5p+terTWhtVnnXHRQUVVq6rOgwR5jgj0Z4zQZY5F2dUKIIcWbBe9fuhFcaKgrQYkIu39JRlRM+/uPlSlhscD5V49n5w/haMkBYHEXRy+GgxNOOJGvfOVqfvWrn6O1h//5n8tZuDD4PXLvvT/m2Wef4rHHHqWsrJTk5BRycmZx2mlnhtzm+PETiIyM5Ne/fpSSkmKioqIYN248DzzwMPPmLQDAarWyatW5vPPOmyxZsrTTMX722Sekp2eQkzOrd160GPYkKCEGjagYDShz8tSqoQ6U0thDfCjoL/Zos4zE1WKWBzTUmrPNmPjwrhONsIM9RlNfY6qN+zMlhtb61eQMTfkRRXVp+7oS3i4oaaN6vp9x0yF/j6b4kAmAeNcKH4urpbUVqVsxaY6HrC4ev2MTYdHZmo3vmeVBO1bDzGXdq4nRkaoS2LlW+bJoACKjzLYb66GxXlFyWLEnWjNlnmZkVnha2wohRG9rrDfr9fOPbAfaByWs3VzmF+rzh2qThxwY3PUGlydMGIfFYjIltNYhWzSKoeWSSy7jkksu830/b94CPv10fcjHfvObN/PNb97c4bYiIiL4xjdu4hvfuKlL+x41ajR33XXvMR936aVf4eqrL6O0tMTXWvQf/3it3eNeeukFrr76+i7tW4iukKCEGDTsrZkSjQ2mRaPbBc1ORUy8Dmv1anuMyY5octIalDC3e5d2hFNsAjQ1mA4criG4fAPMawRvMMgfcGlpNoU+I6M18b3QbcRqgwk5mt3rFAX7FNMdXQvu7P5C0VCrSButmTCze/uMjIK5p2jWvg5FB0wHkAk96B6nNRzcAfs3KbQ2NS3GT9M4Mv1X/VwtUFWiyd+rKM2H7Z9ZKD6kyVmm+zTLprnRZJQ0maWtRMWY1rVDKbNHCBEegW27G+ugtOIQ9c4q0h3jiY1OCnpsd2sPhXp8Z/EFbw2KqKgoUlNGUVxSSFlZOWlpQ6BXtxj0UlNTufPOeykuLvIFJdqqqalm2bLlnH566KwMIY6HBCXEoOFNkfQulQh3PQkvb9HkpgZzguxdUhLucYE5qQXTcrKl2XxKGmoned55drapy1R+xNQgSc3snewCgJFZsHeDpugAZC9on6LbVnUZHMlV2KM1M5Ye3zjs0f7ARO5mRfpY7QvEdNf+zYoD2xQWq2baIg+jJrX/8GyLgNRRkDpKU1kMO1ZDaYFiwzsw71Tte0/1Bq2htAAO7TLtfkNxjNSMnaZJHSXZGkKI7juw3QRiJ+TApLkaZx0cOrKF0ZOszJrcPnWtzwP3AfHskRlZFJcU8q8/HWDVRamMmtTH+xaiC1asWNnp/QkJiXzlK1f302jEcCGFLsWg4Q1KeItKejMSwl27wZu62eQ0J1kNtabORG+evB0v79XvliaGbKaE9+ffNijhXbqROqr3lqtE2CF9LLhaFMWHjv140/kDJs7u2fshPhmyZmk8HsXuLxT6OF7S4V1wYJvCFqFZdJZm9ORjn+QnZ5iCbskZmppyxfq3VVD3m55obICN7yk2f2ChskgRFaMZOcEU+cyapRkxXmOP1pQfVWx638LGd1W7n3Ff0Brqa0xQq6wQairA4+77/Qoh+kZthckMy9umWn+/PeQf3UpcooVZc9qnr/V1y+zAosyjRpquH4fzc9mxWj6SCyGGL8mUEIOGvW2mhC8jIbw1EuyttS6aGkwKutuliE/pvavzPREqKDHUMiUiIk2dDGe9OaFUyvxffgRQGsfI3t3fqMmaooOKwv2KzIkdv/dqK0yGgT1Gkzmxw4d12fjpcCTX1M8oOazJGNf159aUw+71JkNi7ildr4cBJog171TNpg+g4qhi5xqYeVLP3t815bDhXUVLkyI20XQgSRvVfh22xwOlBZr9mxTlRxVrXoM5KzUpI45/3x2pr4HDuxRFB6GlKfjFKYsZ3+hs834aCL/bQoiuCQwCtDRBfuFeWjx1ZGfnEB/f/qrG8RRFTs7QnbamDhTY5nnUiAlYLFaOlu7FE6qFlBBCDBMSlhWDhi0CbBGaxtaTT2edt6BkeMdl9y7fcKoB0w7UK9JuTpqbm4ZmS1Cv6DjwuBTNjeb7Jqf5eSSk+AMzvSVlBETFmQ+gga1g2zqw3bw/J+ToXulgYbHC1IXat+2uZkt4PLBjjQKtyF6gSc7o/r6tNpi9XBMVawIy+Xu6vw2v2grTiaSlSTF6imbJOZr0Me0DEmAq1GeMhSXnasbP0LhaFBvfU5QWHP/+2/K4Ye8GxWf/UuTvMZkgiamazImaUZM0jpEaqw1K8hUb37Ww4d3gtsR9paUJSg63pp5vVhzaaTI3eitTRYjhIrClcmM97Dv0BVYbLFmyJOjvji3StPk8nqDjnJXmb0VXBMYe7FF20h0TaG52Ul6V3/0dDzP+n83QKtgtRDDz/h5uF0AkU0IMKvZYqK8ynS4aBkjthsAMjnC3KG3LnymhhmymBJj3QG2FWcJhj8bXocXbRrY3KQWpmVCwFyqLYeSE9o9xu6Ak3wTRenONsCMT4pLMUorqsvYtUEM5vNukLyelaUZPOf59R9hhzsmatW/Avo2KjHHaF5DrqiZna4ZEs2L8DJMh0ZWDrtUKU+ZromI0u9dZ2PKh6UzSnYyPjsaz8T1FbYVZ1jI+x8OYKe0DWR43FB/W5G1VVBxVrH7NBGnSRvds/6HUlEPeNkVJPqADJ8d8bbGaLJkJOZq4pN7fvxBDTeDyq/KyKgqKd5HiiGXmzJlsX+f03RcTb7oeHY+ISMicZJabdWc8FitkpmdTVLqfI8V7gDHHN4BhwmKxAorm5iZsfb3ORogwcbdGUi3DrCe7BCXEoBIVA/VVrQEAb6HLAZIp0dhgWoMCRIe5HahX4PKNoZ4pAeY9kZTmX+LTF0EJgJQMTcFeRWWxYuSE9j/r8qPgcSvSx+jjSgXuiFIwdppm5xrF4V0m0NAZtwsObFUopZl+Qs+XFCU4YOxUOLRTsX8zzDih6+9zrWHXWkVzo1n20tWARKCx08Dj8bB3g4UtH5l6F8ebCdPcCOvfVtRXK5IzNDkn6g4DnBarCT5ljNXkbTO1QjZ/ADNO1GRmHd/+2/JmbBzebSYlMkrjyNQkODQ2m8l2qq0wWSJH8xRFB0yb2klzeicTR4ihKjBTYuPG9aA107IXYLVag353etrFK30MJKVrMrNC/10cN11zaGfwMcNiNS1JN+74L4XFu4HTejaIIU4pRWxsAjU1FQBERtrxBmz7eSS4XAPjc97AI3PTuWPNj6a2tgq7PWbYtQmWoIQYVLzFLp315gQ0wt63bQq7IrDQZVWZ+To+OXzjCdS2poRSvXuSPFCYuiL+QojeZRVRMX1zYExqXQJRWRz6/tICcyBJG937+x85AfZt0BQfMhkhnWXlFB00XVcyxvXeVfWsmZoj+6FwvwlQdPW9fjQPSg4rouM0Uxcdf4Bk3HSoLtMUH1Ls/Bxmr+j+HLvdJmOjvlqROkoz5+SundhbrCYIEBOv2bFasf0zhT3KtFTtieZGk7FRU66IsGsmzdFkTvK3MPTTuFqgYK8md4vi4A5FdZnJYOntZUpCDBXezAS328WmHV8AMCN7IUDQ732oJWTdYbXBorM6/ns0Zb5mTHZw8NNqhYS4NOJiU6ioLmTv1iqmzErq2UCGuLg4k85iAhPhOfm1WCxSA6QDMjed68r8WCxWkpNDt2Mdyobg6YkYyrwBgJoycyU6Lin80VirFSIiNU0N5gq9NUITnxLuURneE5XmJmhpMVkSQzHw6uvAUasATWO9eZHe90tvi4qBmHhNfbWiuTG4s4bWUFaAKbLZw5PVUKw2yJxkshWKD2smzAj9OK3xXXUfO7V3O5BkzdbsWWfhwDaYtfzY23a7Ye9G87PJOVH3qLq9UiZDo7oUig8pKou7Xycjd7NZspGUrpndxYBEoMyJgNJs/9TC1k9MxsbxLiNrafYHJJLSNLOW604zfGwRMH4GjBhvio9WFiu+eNOcDElgQoj23K1BiQMFm6ipqWH0iBkkJ6cCwdkRfZ1xpFT7ILLFaq7+jx05k537P+KNf+5gQvaJ8rvcCaUU8fFJxMUl4vG4j6sbVU9YLIrk5BgqKxvweML/GXQgkbnpXFfmRykTlBhuWRIgQQkxyETFmiviBXvNL2tianjH42WPgbqq1haUI3SP00B7i/dkudlpCkHao4fmQSImYPkGBCzf6KOgBJh2mQ21JlsisBNGbYUpspmU3ndtYdPHmDTg8iOqw6BEValJ949P1iT1csB99GTI3awpPmyu8h/rdR7JhWanIn3s8RXabMsWCZPnabZ9qtizXrF4VdczLyqK4eAOU+9j1kk6RDZC12RmQU255vAuxdZPTFCgu58htAe2fGgCEskZmnmndj2TKSoWFp6p2fIhlB9VbPkI5p02cP72CDFQeFygtWbn/o/ArpiRfbLv96Q3l28cD+/+x2aaoMShI1uprTyxTzoMDTVKKaxhSP20WBSRkZHYbM1y4t2GzE3nZH46Jx9fxKAS5VsqYT79j5o0MH6pA6/IJ2cMjDGBuaquLKZdJgzNIpcAUW2CEn1Z6NLL+3OuLAk+E/V2huiLpRteiWnmpLqiKHi9dKAj+824xkzt/fa0VhuMmADaozh6oPPHejxwMKATSW8ZMQESHKboZ9HBrj3HW9cCFFMXd56R0BVT5mviUzTVpabGQ3cd3g0VRSZwNHdl95dW2SJg9smauGRNRZFi7/rhd2VFDF+5W8wSNbc7uHhkW243FBTtoKaulBHpE0hLGecLBvRnpkQo3n06kkYTG5NMWcVhjh6u6v+BCCFEmElQQgwqgSf/CY6eV9/vLYFdCHrjSnBvUcqk22uPOVkZikUuwSyhsUebdrEej7emRPe7Q3RHcgd1JWrKzVz35ZUuiwVSRpolTB3VtagoAjDtNvvC6MkmwFC4r/P2pCWHTPvelJG6VzOblDLZEuBfpnIspfmme09img7ZNaW7LBZ/m9a9G1W32nXW18C+TQpl0eQs08f9u2mLgLkrNRF2zeHdiqrS49uOEINJkxNyt1jY+rGF95638OFLHf8NcLdotux+F4BZ01YA/mBAb9aUOB7eoIhSirGZMwHYvHmHtP4VQgw7EpQQg0pgOv6oyQMnI8EbLLHaBk6gxCtwbepQzZQA04FDa0VjvVm+ERndt1e+omJNtoK3Na2X9/uYhL7bN0Bqpnn/lxa2v89ZZwIB8cnHXlpxvBIcEJ+iqatS1JR3/LgjeeZkYfz03v99TRlhantUlyrqqjp/rNaQ15qxkTWz97JHkjMgY5ymqUFxeFfXn7f7C4XHrZg4S/e4MG50nMnaANj1uUJqjImhrm1mhKs59C+01pCXv4WqmqOkpYxjZGo24A8GBGVKhHH5BsC4zFkArP9iC++/YKG5sf/HI4QQ4SJBCTGo2CJNxw2rTTNyfLhH4+et1ZCUHp4PNp2JDAhKDOW23t5ilxVFJjjRl/UkwFypt8eAu8V/hVxrcNb2T1cYbxHNshBBCZMlAcl9vC7Z29qu7Ejo+90uMxZbhCZlZO/vXyn/Eq7C/Z1HGSqKoKZMEZesSR3Vu+PwZmzk7+1aQKCmHMqPmE4k43N6ZwyZEyEpTVNbqSjY2zvbFGKgOlZxw5ZmU9+nucnNlt1vAzB3+tm4WszfiVCZEuEI2lut/hfiSBpNQlwa5ZX5VNUU8+GLFnas7jwTTQghhooBdvokROeUgnmnahaeefzpzn0hOQMs1o77k4dTYKbEQJqz3pacbub+6AHzobOvgxLgX7bjLazZ1AAej+q0TWdviY6D2ETTAcRZH3wmXFHkXULSt+9H7xKVyuLQAYHyo2aJSeqovgvWZU40rW6P5NFpQKBwX2tdixm9X2MjJh4cI022RKggUVsHd5gBjJvee4UplYKpi83P++BOhZZsCTGEhaohUZIPrhbT/vrDFxVr/mPh3y99Sl19BaMyppLumEBLs3lsqJoSkVH9f/wOWj6iFBPHLgAg9/A6wARbj5UFJoQQQ4EEJcSgk5jKgFsiEZ8Mp16hGZkV7pG0F7R8wz7wgia9xZsVUNmaJdBX7UADeffR2BqU8C3d6IegBOBL+6+p9P9ctW7NlFC90+miM3HJpgVuVWnogEBZQWtHmj4s+mmPgdRR0NLYcUDA4zYZJRarJq2vamxMMa+xYF/nEQ9nHRQfMr+Loyb17hgSUkwgqrFOhVzWI8RQESoosfkDC++/YOHjfyq0R1HvrOKTT9/DYrEyb8Y5ALiazGNViO4bfbXUrTNtlxhOGDMPpSzkFWzE0/oiW5r6f1xCCNHfJCghRC8ZqC2Fh8vyjZh47zKa1kyJ2L4PwPi6wXiDEjXm/+h+Ckp4gx91lf6IQEMtNDUoElL6Ph3ZYoGkNNNutm1dCa1bO5EoTWpm344jfWxrJ5Si0L+ElcXgalGkjOy734G0MeZKa1mhv/tLKAV7FVorxmTT7W4bXTF2aveKfwoxGLk76bbhXaKxfttrNDW2MG3ichLj04PuC7V8I7IPCyN3pG1QIiYqgcyMbJqa6iksNkVqpOilEGI4kKDEEPetb32LhQsXcvvtt4d7KCJMArMjhnKhS6WCO170y/KNGDO3vqBErfnAG5PQPxkp0a37qa3y76+qxPzfX11gfK1R23QBqa0wrXuTUvv+CqSvE0pJ6PtL8s3/6X2YsWGxmKUkaEXxoY4f520Zmzmxb8aSNhqi4jQVRyXtWwxdnbUABSgo2kn+0e1E25OYOeWUdvf7ul4EfAoOzCrsL6GKMU8auxCA3XmrAXB3EpRwu+DAdijc3xejE0KI/iNBiSHuK1/5Cg899FC4hyHCaLjUlABIDqih0B/LN6J8yzdMMKK/l2/ExJn/a6v8mRLeq/Sx/RQY8QcEgq/Me1tTOjL7fhzRcRAZramtaH9VUWvtC0qkje7bcaSOMq+1ooMaG846qKtSxCbqPnuPKAuMae1MVHSw42yJqhJ47yUnzrq+GYcQfamzoERjUz2fb/4nAAtnXoDNFoktIvjvUOiaEr09ymOzhghKjMqYRlxsCsVluVRWH+00U2L/ZsW+jRZ2rZXMKCHE4CZBiSFu8eLFxMbGhnsYIoyCa0qEbxz9ISUgOyCqH9723sBHk9P87+zvoERr29G6gEyJJqcKGltfS3SAxaKpKiaouGJDjRlHbGLfj0EpSE43XVeqy4Lvqy7XOOsUCQ7d53OSmGbmorI4dHcAb82L3u7+0VZqa/Cl/GjHjzm4C4oOe6iv6duxCNEXOlq+obXmi62v0NhUx6RxC8lImQa0X5oRcvnGAKgpkeDQ2CIUUyecCMCeA591GpTwZsZ53OqY2SNCCDGQSVAijNatW8cNN9zAsmXLyM7O5oMPPmj3mOeff55TTjmFmTNncumll7J169YwjFQMZhHDpKYEmFoO0XEai63vT0AhuNCl1iZTwhah+y34ExkFVpumtsrjOwn2Ft3sr6CExQoJqWatdkPAVXdf1khC/4wjqbX7SlWbJRwlheaTel/XtQBz1TMxDVzNirrK9veXFbYW/hzVt9kjcUmmvkpNGb5uA4G0hoqjJqsiKa1PhzLs5OXl8eUvf5lzzz2Xiy++mPXr14d7SENSRyfgefkbOHxkG5ljU5ifcx4et7cTUfDvnW/5RkCCQTiOj22DEpFRkL1AkzV2ATabnbz8TdTUhC5Ss2e9orrM/wKkIKYQYjDrgzJboqsaGhrIzs7m4osv5tZbb213/+uvv85Pf/pT7r//fmbPns1zzz3H9ddfz5tvvklKSgoAF1xwQchtv/zyy1hD5QWKYSew0OVQrikB/paxLc2h02J7W2QUoDRNDdDcCG6XIj6l91tOdkQpk5VRW2k+kNoi/fUt7P1YtC06Fqow+45tDUJ4i372V9ZIsqlj17qMxH/yUVNh0jfikvtvOUtlMVQUQ3yK/3a3G8qLTLcS71j7ilKQMhKO5ikqijQZY4Pvr6uE5kZF2igLtgh3p61URffY7XZ+8pOfkJWVRW5uLjfddBNvvfVWuIc16GkdHEDwuNo/pryqkLVbXiE6TnHdDV/iwFr/wS8uUZM6yh8YDAwGjJyg+6TobFeEqilhtUFkRBQTxy5gT95nbNnyOTOXnBq01MTjhkM7gw80Lc39F4wWQojeJkGJMFqxYgUrVqzo8P5nn32Wyy67jEsuuQSA+++/nw8//JBXXnmF6667DoBXX321X8YKYLH07EzL+/yebmco6su5CTw5jYxSQR9sBrq289KV+fG2yewPFouZ32YnOFuLXMYm9O97PDZRUVsJzjpFYqoZi1KaqBjVb8ER7wfhlkbz/vJ4TP0Ee7Qm0t4/g0hwmKyR6lIAMw6LRVFTYYIR8Un98953jIS8rVBVopgww397RZHpUpIxzqRn97W0UXA0DyqOKkaOD76vorVt7shxViwWiUj0plGj/GtzsrKyqK2tRWuNGqjtmQaBA9th30YLyy7y+IKcbTMlGpvq+fiLP+PxuDjzzHPImjSBA2vNfbZITeYkgjoEBQYDZp4UvlbZbYMSSoG1NWNjataJ7D2who8//ozUqGWc/CW7//WH+LWVTAkhxGAmQYkBqrm5mR07dnDjjTf6brNYLCxdupTNmzf3+3hsNgsOR1yvbCs5WWpcdKQv5sbj0UADFiukpccOmg/HERHWdu+5gfjeiUtwUt7gobE2AmjBkR6Jw9F/KSkpac0UHWxBue0kJ1tpcjYQE69ITe2/S2YpaS0cpBmrsuNwRFBT6UFrJ4kOCw5H/6VspGY6KT7sIdISTaLDRCBqKkzqyOjxsf0SDEhM0Gx4p4GqEkVKSozv9630UAvQTOa4/nl/xER52PqJk6piCw5H8HthS1kj4GbEWCvJyUM8faqb1q1bxzPPPMP27dspLS3liSeeYOXKlUGPef7553nmmWcoLS1l2rRp3HvvvcyaNavdtt577z2mTZs2aP7mDlT7Nprf5cL9islzTQAhsKaEx+Pmsw0vUO+sYtyo2SyYf2JQADIu0SzNCFyeMVCC8+0y+hTYWj+Zx8c6mDBmLnmHN7A793NmHllBTHb7bdhjNE0NSoISQohBTYISA1RlZSVut5vU1NSg2x0OB4cOddJvro1vfOMbbN26FafTyfLly3nyySeZOnVqt8fjcnmoqXF2+3mBLBZFcnIslZX1rSfKwquv5ybBYT6EVVSEXps6ELW0uCkvN0UKBvJ7xxoJoNi7uRlQ2OObKS8PsZC/j1gizQlPydEmIuM0oIiI8vjmrj+4PQCKirImysubWrtdKCKj3f06DnOFUVF8tAEXoD2K+hrTnaO6g3XZfSEh1WRKHD5QT1xroc/So2ZsWPvv/RGfbJb25B+sC7rCXFIAtgiFY4Slx79TCQnRREQMnaWCvbGsEqCwsJBHHnmEJ598sj+HP6Qd2Gb+1k2ao32ZElprPt/8T46W7iMpYQRL5lyCzRacJebN5ArsPhVq2UQ4dJYpATBzyikcyN/EztyPaG5ZApglKd4aQnHJmoyxmtwtEpQQQgxuEpQYZLqbBtqbH4h662TQ49ED7sRyoOiruVl0tnf7vb7pPtV2Lgbie8cebX4fG+sVEZGalBG6X+c5Og5AUV+jcdaboIQ9uvd+X7siIsqMobHB7Le+2nwfHd+/cxEZ5f1ZmP2aYpOmBWd/zkdMvKKqBBpq/a0/61u7kUTF9d+cJDjM0p7aKu3rRlNZAm6XhbQxGotVDcjfqXDqjWWVdXV13HTTTfzgBz9g3Lhx/TLu4eLANkVCivYVsNy6+x3y8jcQE53IyiXXEmGzY7UF/4L5ghIDMFOio5oSXvGxqUwYPZe8/A1s2LCGiTknA/5OR0r5i1k3S1BCCDGISVBigEpOTsZqtVJWFtzfrqKiol32hBDHMlA+gA1F9hgTCADIGNf/V+BiAgpLhqPIJbRvjdrQWl+jvzpv+MYRbX4WzY3m+7pq839cUv+OI8o7Hw3+27ztYqN7ZxVcl0S3Zs549w3+AqQJKSGfIjrRlWWVbreb2267jUsvvZRly5b1aH9Sxym06jKF1rBz/8ds2/seERFRrFzyNWKjkwCTBRR4zIu0mzkIbPnpXcoV7rmxtfkUrhTYbMFjypmykgMFm/h83Yecd+kiYmNjfZkgSvmDsa6W3qubM1TfO71B5qZjMjedk/npnAQlBqjIyEhmzJjB6tWrOeWUUwDweDysWbOGq6++OsyjE0J4BVY7HzGh/684R8WYK2v11dBY7x1T/47DGwRp9gYl+rnzhpf3pKPJaTpw1LcGJWIT+3cc3kCVN0gTWPizP9sOegMgjfX+jiTOevNhKHrglWcZ8LqyrPLjjz/m888/p6ysjBdffBGAv/zlLyQkdC9CJ3WcAgUvvXLWWNl76CM27vgvNmskJy+6muSEEb77k1OicTisvuclJJlaN4HbSk4xf7TCPTeuFlPzyctut5GWHgn4l8smxKUxefxi9h1cw6cffcoVX70EZ70HcBIRacWRGgE0YSUCh6N3+1GHe34GMpmbjsncdE7mJzQJSoRRfX09hw8f9n1fUFDArl27SE1NJS0tjWuvvZY777yTGTNmMGvWLJ577jkaGxu56KKLwjhqIUSgqNYTcnuMJjmj//evFDhGWCgp8FB+tHVM/dwWzhZhWl16MwPqawF0/wclvMGR1kyJ8AUlzP9NDSYY0FgPWitiEvo3WBTdOv/OgLIe3sBVVD9mbAx1gcsqV65cyY4dO3q8TanjFCj4quKHH73H7vw3sVkjWbnkWjJSs4Lur6t3Yiv3P6+p2dS6CdxWba2TmLjwz42pDeF/fS0tLhqaXOScaDo5NdZDfQ00Np1GXv5Gnv/jh8xfNI+46DRA4Xa5aWh0A4q6uhbKy1t6ZVxD573T+2RuOiZz07nemJ+hVscpkAQlwmj79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899pivyvfTTz8dVExLCBFeiamQmKoZNUn3WwvOttJGWSkp8FB2xHzf38s3vPtsqFG0NGka6yAqNnhtdH+NAfzLSLxBibj+Dkp4x9EapAlX5og3GyJkUEIu1HRbfy+rlDpOXuYPq9aajTv+y67cT4iJiwgZkABQFlO3JWWkaYmbnBFYx8X7R9rMx8CYG/+BQ2PGlDnRfJ+YBg21sH9zHDmTV7J515u88fqbXHzhleZ5CiwWk5nlbun9WkIDY34GJpmbjsncdE7mJzQJSoTR4sWL2bNnT6ePufLKK7nyyiv7aURCiO6yRcLiVeE9uKSPtrBjrek2AcFLSvqLCUpARTGAIia+/+fEu3yj2WkKwdXXmNsi7P5q9f3Bm6nS6A1KeOtJ9POcREaDxapDBiVk+Ub3DcZlleH+4NvkNHV2InrYedbtdvHZxv+jqHIr9sgYls25mnTHeN/9I7M0R/PM3z9vMHTeqZqWRh3093DeqR6cdWCLHJhrusdNa//z8haynDpxGXsPruGtV3YQUb+fpOgpKAWW1tcb2CZVCCEGGwlKCCHEIJc20gpKgw5vUAKg5LAZQ2IY6vFG2EEpTXMjOOvB41YkZlhQyt2vQYnIKDOOdoU/+zlTQimTEdFQo3C1aKw2E5SIsOt+z2IZLIbSsso96+HoASfLLgxPC0ztgY9esqAsmkVnmV/Ajv4u1FXBkVzFxNnt35sNzmo+Xv9XyioOM3ZiMnPGX0dCXFrQY6zW9l9bLO3/FqaO6sEL6iOnXmHSOJQldFFqbx0amzWC+Tnn8cm6v/LR6lc59+TbUcrqmy+Pq58GLIQQfUA+lgghxCAXYVfEJ0NtBVhs/VtM0cv74b803/yfmNb/V2hNJXpTU8K7dCMhxQL07yVEZTFZCt6MjXAt3wBT7LKhxizhiIwCj0cRGytpox0ZSssq66pNe9yG2v7vQAPgaj1J1h7F2tdNYO6Mq0L3w/38PwqPR2GL1GTN9N+el5fL6x+/QGNjPanJY7nxpq+y4+P2RUNVwMm8ZZB9sj1WgDBwWeDYkTlkZmRzpHgPO/Z/yMmjT/UFYdwSlBBCDGKD7E+3EEKIUJLTTVAiKpqw1LbwtuN0tZidJ6V1/vi+Ehltum9UlZjvTVCi/9mjTaHL5kbtW74RrqAEmKCEpzU2I0s3OjaUllV6l0y4mrv3PFezWQrQ09o0nhCxQO0JDiD4Htu69KzogOJILsxe4Wbj1o947713aGzUTBm/hPk555GSGvr3OXCb1iFYAy5nmYftn1pQSrFw5gW8VvoLtu/9gLnzZ2G1mfQTWb4hhBjMwvNpTQghRK/ydv4Ix9INCD6BiUnQvvoO4RqHqW0BCSnhWTseWFfCZClobD1cV388ouNaW4HWSZHL4cb7fmtp6vxxba19Q/HRSxZcPWzkEOrKfeA2tYbcrfDFG/7f0boqRfHRch558EneffctLMrKCXMvZdHsizjhXEvIgAaYQKwt0rzXO3rMYJaZBfHJ5vXFxzqYlX0aHo+Lj9f8E40HlJZMCSHEoCaZEkIIMQSkZpoPreljw5OaHxgMCVeWBPiLXda0NkhITLHQHDpjvE9556OiyKSvh6PwJwRmSihftc+oWJPVIoY2b6ZESzczJeqrVev/Xa8N42oxy4QSHK3bqIEN77R/j7U0+ws3VhyF3M3+CILH42H/obVs3PE6tqhm5p4wmgvOu4zt72cQn6JJSvO3+21LKVjxPxrtCV8XpL4WGNScPmk5h49so6jkIGvWfIrVukJqSgghBrUhGE8WQojhJ8IOJ5ynGTctPPsPzJRICkM9ibbj0FqhLJrYxPCcodhjzBwcyTX792ay9LfA5RuN9WYskikxPBzP8o3AAIa3Lovvviaz/CKUnWsUn//XQvEh8/22T5Tv/dZ2G3nboKrUn7kDUF5VwJuf/JYvtv4Lt8fFjEmnMTX1JjxOE+H0LsnoMFPCYh4Tjno6/SWwg4nFYmXpvMuw2qy8885b1DYUy/INIcSgJkEJIYQQPRYUlEgP3zgio/wBkdgEsFjCFJRonQ/vVWdHZngzJRrrTEcSkKDEcGE7jkyJwPaxdVX+352GWvjwJUXuVoXHA5XFwW12iw6axx5pbctZVxl6+2WFsH+ThS/esODR4GysZe2Wl3nj499QUVWAI3kMZy2/hWnjT6fFaWPnGvMx1RLQUSOUoZodEajt8q+khAwWzT0Tj8fNpxv+D1eLp1+7DAkhRG+S5RtCCCF6zBrhDwjEJoZvHJEBwZFwjiMqYDmL1abDtqQlwm7231ALntYTFglKDA/HkykRFJQIyJSoqzTLkIoPmZad+zZayJqpmTTXW8dBoz2KxtbnewtXtuVtj9vc0sinqz/knXc/w+VuJjIymrnTzmbSuEWoEBEGb0eNjjIlLJahfzYeEaImzewZy3BF7WBN7iE27XqT091nd9rNw+06drcPIYQIB/nTJIQQoseUgvmnm/Xc4bxqGZixERfGoERgjY2UEf4rvf1NKUgdBcWHFPVV5uSxp10VxODQ00yJZmfA163FMuurFfl7zdd525QvKBEda7IpApdkhFJX28C2vWvZnfsJMcn1eLSNaRNPYsbklUTZO46W+ZZvdPC3ZThkSkREta8FY7Va+NKXLmPjZ4+xa//H7NwxnpmzQ6/hO7AN9m1WLDpThzWbTQghQpGghBBCiF4RnxzuERDU9SOcmRKBQYlwLd3wmr5EU1MBzlqFPWZ4nMCJ4yt02dTgf3MEdu0I+jqg2KT3yntklAlKtDQrXC3t3+/1zip25X5Cfula6mtaQCkWTJ1P+qwziI059h8O79V9pfxZGYGGYseNtkJmOClISkrm5BMv5T9v/JmXX3mJMeNuJSnJzKnWZs6cdbBvk5mkyhIJSgghBh4JSgghhBgyArMAYpPCNgxsEWCxajxuReqo8I0DzBKOuSs1694Mb2cU0b+8XS68yzeaG/23dRSYClzqERjMaGnyP8Ht8n/d1AAxCQQVWXTWmv+11hwt3cu+g19QULQTrT1YLDYmj1/M9EnLmbcsxXeifCyBmUYWC7jbFNwcDoG2UEEJ7+ueOH460yaeRHXDx/z9789z/fU3kL/bxqGdiqXna3Z+7p8gWb4hhBiI5E+TEEKIIcMW6b+SGpsQvnEoBWOyoaVJExMfvnF4xSXB8i/psC0jEf3Pt3yjCWoq4PP/mABAXJJmynyNI7P9yXxgIMLVrEyLTUvHrTi9j3cHtKP88N9l7N23jf2H11HfYCpe2iNjmDRuMVOzTiQ6yvxCeDpq5RGCNeB9GyorYjhkSkR3EpSw2mDu9LPZW3mQwsLD/PvfrxBbeylKKYoPa6pL/c/xSJcOIcQAJEEJIYQQQ4ZSkJkFHo8Oe3vA7AUDq/ieXCEdXmwR5mfe2GC6XnjVVSk2vmfOZuee4iFttP8+7zINa4TG3aJwtZjsCt/yDaVB+yMZ3syKyqoy9u3fzqEjW6msPuK7PyM1i8njlzBmxAysbd6AbZdgdMYa8LscqgPHcAhKBC4J8/IFJaymTehF51/JC//8DZs2bcChRjJ90nI8bnC1+Ofa0/VYkBBC9Bv5iCKEEGJImbHUGwwYBjndQnRAKYhNUNRUAIQOkG1638JJF3vY8I5i0hztCzLExEFtpQlGRNj9hS6TM6CyCFpcTRSX5VL81h7KqvayeU0FuvUKfEJ8OuNHzWb8qNkkxHW8XqijRImYeO3r0uFli/CP33si7l0eFXjbUBayHap3Llo/zUdHJ/CVr1zF00//gY3bXicxPp2sxuygp5g5G1gBUyGEkKCEEEIIIcQQFJtgoabCHVQToq28rYqGWsXWTxRRMRrQRMe3BiWaTW2IqspqDhfmc7TxAJu/yKey+ggej5uUkRqLBRJjMxkzcgbjMmeRlJARcj9Wmw6qR6F958XBXSWi40zRzEChsp5sEdDcGggZDpkSAKMnawr2+ecqcPkGmMyVUeNHc/HFX+KRrX/n0w0vMGn6DcBI33O6sWpGCCH6jQQlhBBCCCGGoNgEc9Ya2OozUHScpqH1Po/HQ0VlFQ2NlVTmlbB/Vwm7y45S31TEnk1OtIbMLE1FlSIyMpaRaZNZtGwSrspsYqKOXcAlwh5ce8Jb28BiDa5zkDJCU1EEOmCZSKighCXgE6xlGGRKAEw/QZM6SrP5QxOF8QYlElJMYGfrxxYa6z3MnDmbmdllbNvzLi//5xlOmn0TCfHJeNxKakoIIQYkCUoIIYQQQgwxTU1NFJXncvhII8U1Luqq3Hg8LppbnDS3OGlqbsBDA/X1ddTVV9HQWIPWHmwRpqNGTTmkNmnik60kxY1kRMY4zrpsDOmOcbjqU9j9hZWRIzRHnV2LCETYobHe/319jfm/bVAiMhpO+4qm6JBm2yfm5NsaKigRsNvhsHzDKzArxPu6R4yHPes1LU2KvK2KcdM1s7JPw9lYzeGSdby35hkuPPtGcMcds6aExxPchUUIIfqDBCWEEEIIIYaY1157lbWfbeHoQbdZHdFZGQGliLbHExeTjCMtkfGTUqkvyWThinRmzHfwwd9txCZq5swxGynJN0+rq+r6eNpmO5QfMWfUbWslWG3mxDuwLuaxitYOl+Ub0CYA46uvAYtXaT59ReFqUThrNUopFs26GPe2Og4c3MUHnz/LslnfxOPufDLXvaWoLlVccqPUnRBC9B8JSgghhBBCDDFLlpyAxRPPTqsbq8WGRVmxWKxERERhj4whMiIae2Qs9sgY4mMT8X4kdIzUjJig2bHagqtWU1thTk4DsxW87UY7CkqMm6Y5tCs4faGjdrRtb/cGI4KCEpGdv9ZhlSnRQYZITDyMn6E5uENRWWJus1gsLJl1BXU1T1NRfYgPv3iOy7OuJvDj/7ZPFUpBzonm51xdajZaXuSmttYEfFJG9PWrEkIMdxKUEEIIIYQYYkaPHsPI86YQ09B4zMemjtK+tqG2SFNsEqCiSFFRZE5SbQGfGCNagwSBdR8AFq/yEJNg7i/YD+6AVpQdtaRtG5Twft+dTInh1Ggn1PINL3uMqS0RuPzCqiI5efE1rN//Bw7s289/3/kzM5ddhc1mo8kJR/PMRrxBCa+WJtjwrgIUZ1wl1TGFEH1rGCW8CSGEEEIMHxHHyDDwiozyf221+YMSgQKzFToKEiSm+ve57ELNwjP9J7MhW1qGuD1UpkRHAQ2v4dRRoqNMCfDPpbtNMUt7ZAyXfek6khJGkF+4j7/97S+4XC4qizveT3OTLN8QQvQfCUoIIYQQQgxBtsjgs1arLfSJZmDAwWqDqJgQjwkIRNijwRbR+UmrPRqSA7qDdjVTwheUCLj9WJkSxyreOJQE1c9oG5RonTOPu33qSEpaHKct/TpJCens27eHF174K2VHO27F0eT0/3zbBjmEEKK3SVBCCCGEEGIIimgTlOjo5D4i0n8C6i002VZgUMFihSnzzXNSRmgS0zRzT+k8MtBRTYm2Y/IGIyxt9tcZyZQwvPPkbmn/vOhYiLLHcc6pXyctLZ29e3fzymvP0uJqAkC3iTHV1/pv6KwbR3UZVJWar+uqYON7ivrqLr4YIYRoJUEJIYQQQoghqO3yjY4KRgZnSujW5+oOHwMwegosv8TD/NM1i8/WpI0Ove2xU812RmaFzqyYMFOTnOG/zxJi+caxDKtMiaCgRPCceoMSLW2CCMqifUt0oiLj+drXvsGIEZnkF+Ty7uqnaGyqbxeUaKg5dlDC44G1r1v44g1zOrH5A0VZoWLX2mFU5EMI0SskKCGEEEIIMQRZbQqLxX9yGZiVYLH6b49os3wD4ITz2gQlQizXiIo9dueLqYs0p17hIcER+n57NCw8MzhTI/D/ruioXsVQ1FmhS29QwtUmU8Ie5b+vqlSRvyOe6677BumO8ZRX5vPOZ3+guio4veHoIf+ajbZBDq1N69A1r/kH0FADDbXm++EUJBJC9I5h9GdcCCGEEGJ46ahAZUctN723R8VCgqN9sOB4WG0dBw7aLhXxLd+wwKKzPZx4QcdnuPNO9TBigmbE+OMf22ATFIhoE5Twzl3J4eA7IqODl8Dk71FERUVx2rKvkZmRTXVtMU89/XuKikJXvmybKeF2QWWxor7av59P/+X/QQYWThVCiK6QoEQHmpub+f3vf8/u3bvDPRQhhBBiWJJjcc9ZI479dUfBio4CF72p7dX+wCBFUhrEJnb83NRRMOskfcyaE0NJp5kSHXyqj4wOfZ/yRHLyoqsZP3ouVZVVPPnk7zlSsrfd4wIzJZobOebyDAlKCCG6S4ISHYiMjOSJJ56gpqYm3EMRQgghhiU5FvecrZvBh7YFLUM9tzd5T5aXnu9h8SrPMZeD+AzTsgVdKXTZVlRM6PtcLWCxWDlx3mUsX34qjc5GPvj8WfYdXBv8uICgxO4vFEfzhunkCyH6jAQlOjFr1ix27NgR7mEIIYQQw5Yci3smKCgRuJSjC0GJoEyJPgpKeE+s45IgMbVv9jGUdDcoER2nGT9Dt3usxwNul2rdjuLkFadzwXn/g1KKtVteZsP2/+BpLQ4RWKOiofbYY/R0o4VowT44LIlQQgx7PVghOPDl5+eTm5uLUors7GxGjBjRred/97vf5Tvf+Q4RERGsWLECh8OBavNXPTo6ujeHLIQQQogAcizuma5kSgSezHYUlIiw93wsC87w0OSExnrYt9FcFwvVflR0LGi+jhGUSErXLDyzfUAC2rcN1R6YmTOfU09w8PH6P7Mr9xOqaoo4cf7luJpjAN1+/x3oTlBi5xqzwTHZ3ciSEUIMOUMiKPHMM88AcN111wFQV1fHD37wA9588010a48jq9XKJZdcwr333ktkZNcWRl566aUAPPDAAzz44IMhH7Nr166eDl8IIYQQHZBjcc8EBhNMBw1z5teVQETg171RJyCl9drQoZ3+2447KBG6w+iQ151MCber4+4obTt0aA1uN2SkZnHeaTfz7id/5WjpPt746DESRn6VyfMyzT668PNydzEoEdiG1O3qu2wcIcTANySCEi+88AI33nij7/sHH3yQ1atX89Of/pQTTjgBrTWrV6/mZz/7GTExMdx9991d2u5PfvKTdldjhBBCCNF/5FjcMykj4Eiu+bqjmgPWwABFB9kUvZEp4RU4DvnRdk+nQYk2AYO2XTM6u097/BkOjpRUzjrpZtZs/geHCrfwj1d/R0Lmhcybt6BLPy+P69iPgeCMipYmCUoIMZwNiaBESUkJY8eO9X3/zjvv8L3vfY8LL7zQd9vFF19MS0sLjz/+eJeDEhdffHFvD1UIIYQQ3SDH4p5JzfR/3dFVbksXCl125Qp5VwVmR/TmdoeDTrtvtAk6tc2G6Ow+b6YEgM0ONlsky+ZfTmryGHbn/5dXXvkH+fmHyYg8DwiOUC0808O6t/wD87Tp4trSDF+8oWioNR1V5p+usViCx9DSBNFxHY9XCDG0DYlDgcPhoKioyPd9S0sLmZmZ7R43cuRI6urqur39/fv3869//YsnnniC0tJSAA4dOnRc2woHp9PJypUr+fnPfx7uoQghhBDHZTAci999913OPPNMzjzzTF5//fVwDweAqFgYN12TNVMHndAGps4HBgYCgxJ9tUSiJ5kSMQnB/w83QfN1jKCE7uTn56wP/r74EFSXmK8jIrz7UkybeBLnnPZ1YmPjWL/+C15543Eqq48GPTc5I3hb7jaZEqX5UF+t0B5FZbGisa7941qaOh5rdxzeDeveVl1eQiKEGBiGRKbEqlWr+P3vf8+yZctITk7m9NNP5/nnn2fRokVYW3MSXS4Xf/vb38jJyenyduvr67nnnnt46623sNlsuN1uTjrpJNLS0vjFL35BZmYmd911V1+9rF7zxBNPMGvWrHAPQwghhOi2wXIsdrlcPPLIIzz//PNYrVYuu+wyTjvttC7XsepL2QvM2enRvGM/NjAo0fbksrcEBkG6W1Ni5kmagztgQs7wLCrRaaZEm7mcc3LHc7R3Q/CTc7f4n2xr85bNcGRx8vm38c9/vsSn7+3jjY9/w7wZq8iesDTk0iqPGyqKoOigYuQEzfbPggfmzZAILLbZ0uwfV9EhWHqubjeOtvs4tAsyxkFMvP/23V+YfZUf0aSP6fj5QoiBZUhkStx66604HA7OOussfvSjHzFx4kRWr17N6aefzh133MEdd9zB6aefzsaNG/ne977X5e3+7Gc/Y9OmTfzpT39i48aNvqKZACtWrOCTTz7pi5fTqw4ePEheXh4rVqwI91CEEEKIbhssx+ItW7aQnZ1NamoqycnJzJo1iw0bNoR7WEGCAgAdnK8Gntj2R1Ciu6JiYOpCjX2YNlzprKZEoOlLPL7Col4pI/0/9GanIipOM2J8+zdC2/ohbjfExcVz1VXXsmj2OYBm/bZ/8+EXz+FsND1Cx07VJKZq3+PXv22hYK8KWtbh5Q1AtF2+AVBRDI11ipqKjl8bmIyIfRstfPFm6Elo6aSehhBi4BkSQYmoqCiee+45vv3tb7Nz505++9vf0tDQwJEjR/jvf//Lpk2bOOWUU/jXv/7FjBkzurzdt99+m+985zssWbLEl3HhlZmZSWFhYY/GvW7dOm644QaWLVtGdnY2H3zwQbvHPP/885xyyinMnDmTSy+9lK1bt3ZrHw899BD/7//9vx6NUwghhAiXvj4We/X0mFxSUkJGhj+PPSMjg5KSkl4ZW68JOH9reyq6eJWHhWcGFwPoq3adqoOCm+LYuhqUsIbIhZ5/miYq1v+Tj7SH3kbbDAVv4UqlFNMnncSZJ91EfFwqhUW7+M8Hv2Dbtq1MXaRZdLYGpY9Z6NIXlHCFuK31/4aazrfhrDMDb3aGnoRmp/9rrSFvK1QOsF9HIYTfkFi+AWCxWLj88su5/PLLaWlpoaqqCo/HQ2JiIlFRx9fHqqmpiaSkpJD31dfXt/tw1F0NDQ1kZ2dz8cUXc+utt7a7//XXX+enP/0p999/P7Nnz+a5557j+uuv58033yQlJQWACy64IOS2X375ZT744APGjx/PhAkT2LRpU4/GKoQQQoRDXx+LvXrjmDzg6Q6+BhJT2z984ixNYz1kzerdpRJS3PL4dVZTIlCooIRS7QuZhgo8te2CEVifwd0CjqTRrFrxLTbtfIO9B9bw4ot/Y8eObZx77gVYrfFBXTWU0mitiIzWREZBXaXC1eTflldLkwK0LzhRX22+BygtgOYmGDUxYLshxh1YQ6Ox3v/8ymLYv9k84YyrPO2fKIQIuyETlAgUERFBWlpaj7czc+ZMXn31VZYvX97uvrfeeou5c+f2aPsrVqzodFnFs88+y2WXXcYll1wCwP3338+HH37IK6+8wnXXXQfAq6++2uHzt2zZwuuvv85bb71FfX09LpeLhIQEvvGNbxzXeC2WnvXt8j6/p9sZimRuQms7LzI/7cncdEzmpmODaW76+ljs1dNjcnp6OsXFxb7HFxcXs2zZsuMeT18cczvsvtHBvqLjYMHp0OnZ73GwBZ4Yh+E9OJje/52xWlWHP1NrROj7AothWm2h3xPaEzwvHpd/rrxLeiJsdhbNupCxI3Mo5SV27NjOoUMHSLddyOiMHNq+Z2adBPXVsGstuFrM2DxtCl0qpfyZErX+fW563/w/aqL2jTeoLolSNDmDW9s21vufrwPiEPJZtu/I3HRO5qdzQzIo0Vtuu+02rr32Wq655hrOOusslFJ89NFH/OlPf+Ktt97ir3/9a5/tu7m5mR07dnDjjTf6brNYLCxdupTNmzd3aRveehpgMify8vKOOyBhs1lwOHqnV1NycmyvbGcokrnxi4iwtnvPyfx0TOamYzI3HRsMcxPOY7FXV47Js2bNYvfu3ZSVlWG1WtmyZQsPPvjgce2vr465dWUuwFymjoiwAuZsrbf21WUtbqAxPPsOMBje/6GZ1hnxCVE4HG0/ypv7khKjcTjaZxFFRjrx/tyjo21ExyjARAdmL4vg4G4Xk3Ps7N/c6HuOx6NwOMxcuV31RMVA6kgrBbluRqRN4pZbfsC///1vVq9ezSebnycjZRqLZl5AbEwyWpsTsMTEaOw2DTRhs0TicERSGtkCtEYhPDaSEu1oTwMAzloLDkdM8GtKiEVZTEAiJqYFMKkWVUfsrH2nmemLIny3NdZbcDXYUQrsEWa/AMoVzfoPmpm3IpLUkcefZTV43zt9T+amczI/oUlQohMLFizgT3/6E48++ij/+7//i9aaxx9/nNmzZ/Pss8/2aUeLyspK3G43qanB+ZQOh4NDhw712X474nJ5qKlxHvuBnbBYFMnJsVRW1uPxDM+q2R2RuWmvpcVNebnpGybz0zGZm47J3HSst+YmISG69eS274TzWOzVlWNyREQE3/nOd7jiiisA+Pa3v43dbm+3ra7oq2Ou6Z5qThJbWty+r71/a/tLTa1/HP29bxgKfxvM3NXVNlJeHvq+2jonEe3uA7fH/xiXx0VTk//7uJRmTjgXlKUx6DmuFk15eR1Hck2AQlk0Hlz+cdS1cMopZzN27CR+feBfFBbt4rXSXGZmn8q0iSdhsViprXW2ZlkoaqqbKS9vpro64LVUuyg+GrDNGg8lxXWty03MbUeP1PPJywrHSE1Smv/2PZubAMXOL/zrQWorPbz7onkdUxdq32Pf+Ku57ZPXnCy/pPNZbjA1PIO6ewz+907fkbnpXG/MT38cc8NFghLHMH/+fP72t7/R2NhIdXU1CQkJREeHr+Sz1jpk+6Vjufjii3u87976A+PxaPlj1QGZm2Bt50Lmp2MyNx2TuenYYJmbgXYs9mp7TD7jjDM444wzemXbfXHM9QSckAauvw/Pe0CFcd/49j0Y3v/ttf4M0a0/0/b3oULdB6rtcp6gGhWBz/HfoT2K2ioPWz8xayacdYqkdP+8eecwK2sSZy69nR17P2DH/g/ZtPMNDhRsYtGsi9CMbS2gqSjYq8ia6cHV7N9HoxOam/zBA7SirtpDfLJ/LFWl5v7yo4qkdI/v9rgkqCrtYB6A+hBFM7Xu/L2nNax9Q9HUoDjhPO84/Abve6fvydx0TuYnNCk11Ik1a9bgdJorFVFRUWRkZPTbh6Dk5GSsVitlZWVBt1dUVLS7UiOEEEIMVeE8FnsNlWNyZEDdbx3Gz8THcW1FhBBqHnNO9DAyS4csXArBtRistjbdPDo5K/jsX/47R03WxCaaN1B0XPAbyWaNYPa0Mzjn5G+T7phAVU0Rb3/6e/7z3xdpaKr2PS5/rwpqCdrcaIpZBmrbgcObudDWsVrX1oTIGIk8xp+QJic0NZjJObBN3rBC9DXJlOjE1772NaxWK9OmTWPBggXMnz+f+fPnk5ycfOwn91BkZCQzZsxg9erVnHLKKQB4PB7WrFnD1Vdf3ef7F0IIIQaCcB6LvYbKMTk5A7IXekhOh93r/FfU+52c4/WKUEGJzImQObHjn2lg4MFiDQ5SWLqQFW6P0UxfYjIqLBYPGeOC709M1VSXKRLj0zn9xG+Sl7+RjTv/y7YdG8k7tJ24lpVMm7Qct8sWHEzQioYa3TpGjfYo6qsJyvaoq/S/4JaALIu2QYm00ZrSAv/9NRXm/3HTNYd2mtsjj7Gyqr7K/7X3+UKIvjMkgxJaa377299y2WWXkZqa6vu6ux05Vq9ezfr169mwYQNffPEFf/7zn/F4PGRlZTF//nwWLFjA+eeff9zjrK+v5/Dhw77vCwoK2LVrF6mpqaSlpXHttddy5513MmPGDGbNmsVzzz1HY2MjF1100XHvUwghhBhM+vpY7DUcjslKwbhp5mvvCagtDJ8EJVOidxzPPLbNlOjovo5Ex7a2FrXC+Bnt7597iuajl0BrhVKKiWPnM2bkDFoS32Pztk8prHuL/e99wVmRZzNu1CzAtAttdqrWNqAQn2yyG+prFB63P8BS50+0oLHe/7U3KDFruYlgJKfDR/8IXn4C4BjpD0oEti0NJXBfDTXgamnfKrUrTDtSxcyTNFExHT/O4zbLRZx1kJACk+ZqEhzSPlcMH0MyKOHxePjtb3/LypUrSUlJ8X3d3aBEcnIyp59+Oqeffjpgeph//vnnPPvss7z44ou89NJLPfogtH37dq666irf9w888AAAt9xyC7feeiurVq2ioqKCxx57jNLSUqZNm8bTTz89ePqhCyGEED3U18dir+F2TJ6+WLN9NWQv6P9MiahYiE3SJKf3+66HveDMCN3aLrO1VWEXMiWOtewhMgpGT4H8PQG3RUSx4pSzWb5yES+/+DqfvLuTN997gTTHaiaPPIvsaRNodpqWoQBJaa1Biergdp71VQE1KBr8t7c0+58X1UFjA4tVkzICMsZpig8FLx0BE9gIDNL4szJMHYv9m70FM7tn/TsK7VHs2wg5J2r2blDEJWtGTTS1LqJjzbzXVUFthdlnRRF88YYiOUOz8EypPSCGhyEZlACTLRHq6+6qr69n06ZNvqs0W7duxW63c/LJJzN//vwejXHx4sXs2bOn08dceeWVXHnllT3ajxBCCDGY9eWx2Gu4HZNjEmDRWeE54bFY4MTz5WQrHAKXb1itEJgw0KXlG10o55K9QON2wZHcwIIV4EhxcNmlX8XuPMD6ba9xMO8QB/P+QH7lFLLSzyYqdiQA8ckaq81kKHSU0RCYKdHc2qgmMKiQvcDDnvX+Fzv3FI3FCjOWtg9KHMmF7asVWTNh0hxNYz0Utza6mzhHk7tZcXgXTJrTftlHSxN8/l/FmGwdMnPEm6VhalTQmqmhiI71sP5tCyOzNDOX6ZB1MSqLFTXlJmMCzPPLjpjgS2wirUtoQuyz9VdLMpLEYDJkgxK94eKLL2bPnj04HA4WLFjAWWedxfe//32ys7OPqwOGEEIIIbpHjsVChHY8YZ2gTAlbcM2Grvw62aOPvVeLFSbP1UFBCe+2rTYYkTqRc06+jYOFm9my+22OFO9l9869jBs1m9lTTycy2kFMgskccNaH3l+z07/tpkb/tr3GTYexUz0c2gVpYyA2Ifgx7oCgRGmBAq3I2wqjp2g+/qeZpNgkzcRZUJqvqSlXOOs0kXaorfJQmAsjxsPRA6Ybyd4NivEzgtudBGZ5NDkJCoSUHG5tc5qnmLlM0xzchdWnvhpfUGLH54qyguAf0tRFHsZO9X/v8cCa18xSmIRUzbxTdFCB26Gu/KiZ2+wFuktBNjFwSFCiE3v27MFmszFnzhzmzp3LvHnz5EOQEEII0Y/kWCxEB44jKtE2U8IT8H3gr9Syc+3s2thI+ZHg37OuZEpA+3oV3v1aI7z7UkwYPZdxmbNojlnLf/71HocKt3D4yDaa4+cxLnUlkErB3uD9O0Zqyo8G36Y9CqV0u+4hytK+7oVSYLVpXC6zZONoHhQf8m+vstj/2JETzAQnpprlJPs3KeauhP/+1YnbZbIn7J3UiWio839dX20CE74xt/nZdRSUcAZkhDTWtb//0E7F2Kn+jVWX4qvNUVOmOJIbOoOjrZJ8qClXTJytB22GhasZNrxj3gSOkZr0sWEekOgWCUp0Yv369b500bfffptHH32UiIgI5s2bx4IFC1i4cCFz5swJ9zCFEEKIIUuOxUL0nrbdNjo6AR2XbSMuFY4e8LDlI/+T4rtYQqVdUEKFvt1isbJo8RJsdQvYfeAzduz7kG071rGNDdib5jKjdiWJ8f7iI/Ep5mp4qP119WTaFmGCAPs3K1/hS6/KYvN9ykjNhNaT+eh4U1eitECxe71/qUV1Wcc7LD8KWz4KuF+bTAuvuqrAfbZvh+q1f5OFjLEeYhNDPyY2Kfj7ssLgMTnrFKDRGmorTRHRUPO0+QPzMx4xXhPXuk3tMUtbYhLpdv2Xgn2Qt0Wx4ExNTHz3nns8tAd2rPG/sIoiRfpYWSI2mEhQohPR0dEsXbqUpUuXAtDS0sKaNWt46qmnePTRR1FKsWvXrjCPUgghhBi65FgsRGjHc8ql2nTfaJtd0FbGOJh7iodN75sHek9Yu7Ifi1XjcZsTRe+JcKhuL/YosNkiyZm8kinjlxAz/lM+X/sZ+7ZuJC9/E+MyZzFzyqkkJWSQ4DABgrbaBjs6Y40A7VRUl7WfQW+mhGOkP/MiOs5//+HdHW83sEOH94p9IBMgMKrL/beve8vC6Ckd/zQ3vKM46RJNSxNERmnmn66xWOCzVy142tSiKC0I/j5/j6K50Z8NMnqKJjldkzYabJHt99XYYH7Gh3fD7i/8r2HhmR6SMzocYhCtYeca89zCfTB5Xt8HB/ZuVBQfUr52suVFXXuex23G2533Tyh1VaZwaYZkZxw3CUocQ0VFBevXr/f927NnDx6Ph8mTJ/dacS0hhBBCdEyOxUKEcBznel3NlOjw+d1Yp68s+CppevcTKggSEVA8MiY2ilNOPZUTly3j2V99zoYtn3CocAuHCrcwZmQO4xYuAya020Z3Tiq9gYPaCvP/vFM91FbCvo0W39KH6ICr+zEBQQl0xxPW5Oy8bWjg8guPK3g73s4jk+Z62L8peJIaGxRulznZjrBr4pP9S0EC61Q466CuShGbqFl6vubjfyianCpoeUrBXkXBXsWkOR6yZpnbvN1LAIoPKlJG6KCABEDRQdMN5Fi01uxa6/8+MPgS+vGmeGd8UsedU9qqrzbLZgLnuuig+X/p+Zq1r5tOLfs3Q9Ys3a4YqKvFBBGS0kyR0voaOPWK9o/rjtX/Nk8+4VxPyGwitwuUnHV3SqanE2eeeSaHDx/GarUybdo0Fi9ezM0338z8+fNJSkoK9/CEEEKIIU+OxUL0nraZEiGSDtpxjDStNDPGdS8KEhTw6GQ/EQFX7L1FGe12OwvmnszYtBPZd2gtO/Z9SP7R7fzl+W04S8YxLWsFo0dMx9J6JtndTAkAt0thj9akjmofnAkMRMSnwIylHvK2qqBsh7aaGvwFNUNxtqkJkTxCU1nUWv+hNUCSNgr2bwp+nMXmL4TpnR9fwc7WTAlXCxTuM9vyvp75p2s2vg+NIcbc2GCWdUBwJ5PC/SaoEROvaagNXA4R+jUd3m2Kjk6aq6mvgQ/+r4Emp8Jq07hdiqri9u1WA+VuVuRt845bM2elPzjgDbjYIkwGR95WExjZ9okFi01zwrma2ARvZxMz7tgEM0euZvN4i1WTNTN4n9s/U5QcVsw91UNda5vZliaNPdrUDik7AuOnmyyKL95UjJjQfhsdqatuv8SppQk+fEkxYjycclHXtjMcDcmghFKKzMxMIiMjg77urnPOOce3VjU6uouVfYQQQgjRa+RYLETvsVj9yx8s1vYFF0M/B2av6H5aRmAApLOMDFtApkRgIc0Iu1nWMW3iSUwZfwIHCjbiSvyYzbmH+XjdX4iPdZCddSKTxi7E2lmKQhtRAcUpvWMMLFhpi9TEJQc/Z9Qks7SjbWAhkDd7wRPchAN7tKbJqdo9N2ep5uAOs8TC3WJO5GMSYMp8j5kHBds+seBx+wtherNKTEBJ+07ct31ial4ApI0xP6u4JDjhXJO5UHQg+AfQElCfIjAoAaYjiDcjZmSWprrMFM9sbgzu5OFq8S/xGDddcyTXPwfzTtUc2mU6YVSVaByZ7efL44aDASvvygoVH/wdFpyhSUyFta8rXM2w/Euaz/+raHYqX+FTj0uxf5N5X3oDOt4uJZF2aGjdZn2VP/gCJivE2/lk03v+N2hLk3nv7VitqK1UVJdqRk/R1FUp9m9SpI/xdLh0KTBbpfigqR0yIce857WGokOmGOvRvNDPF8aQDEpYLBbef/993/eBX3fHt771rd4akhBCCCGOgxyLhQitKwGFtgKDA5F2jq8wRRdZAvbVWVDCGrAkxHtiCcHLOqxWG5PGLeL0r87nlfi9rPn8E4rLclm/7d9s3fMOc+csZNLiRaSkBGygA5PnaYoPgcetfEsGYgIyHJLSCJnKH6oGw/IveTiaC/s2WXyBg7rK4MdEx7VezXeqdrfbY/xBosnzNFZbcMeQw7s01WWKuiodNCdKmfoc3tampQGtQpPS/M+PiIQZS01xziYnaDfUVpqTfa+2wRJ7jMkYUBZNzomarR8rGmrMsonAoERg9sTeDWYZBMD80zTJGVBXpSk5rNizXjFqsmbsVDPefZtMx5CmxvbLWNwuxZaPYeEZ2reUpqpEB7WA9SrJN4GNvC2q9XW3zlFU4PaCn3M0t91mAH8RUe8ymtICFTSnxYdMJsr4HN2uA03g/JXkK0ryFbEJHtLHwpE82PW5/82kj+eXdpgYkkGJ3pSfn8/TTz/Nxo0bqaqqIikpifnz53PdddcxZsyYcA9PCCGEGPLkWCyEX3yyprZSkdDFThiBnAEp+VGxxxfY6CrVxaBEoMC6BYFBCf92FFOmTCXOOo2K6iPs3P8xhwq3sHXXxxT98mOmTMlm8eITmDx5Sodtg6Ni4ORLNQe2mUwAMEGIxas87FmnmDQn9KRERLYvsmmPhsjWLIuWRoX2aD7/b3BEIzoOqkqDtzVjqUmnCMzQCFUkMSoWqsugtsLsNzIwUBNhAg1HAk60sxd42gVUrFaYu9K8piYnfPSS8tWR2Pm5P/tg9BRNwV7l6+BhjzbtQWMTzWPrqwkqdhnYLrZwv/naFgmpmSbWlTLC3FdXpdizTpGc4eHwLsWRXEVlCWS0dsfw7tfL1QQVAa1ZA2tieCllamwUHzJBm7hkTeZE2s2R93U2OU12ycFdZlszT/Kw7ZOATIlG2LVW4fGY+2MT/UERgNwt5rHlRbD0vOD3h7O23fDY8pGFKQs8VBQFj72jLitCghKd2r59O1dddRV2u52TTz6Z1NRUysrKePvtt3nttdf485//zIwZXWj+K4QQQojjIsdiIYItPkf71sB3V2KapmCfInOiObHq06BEF5dvgDnhb2lWba7yBwcBFp1lTuS92Q0piZksm/9l5k0/m5bYteQVrmXv3t3s3bub5OQUFi5czLx5C4iNbV9B0RbRvitEYiosOrvjCYkIkSmhlP8kuLkJ3O72jwns3pE+VjN7hQ7ZjSQwQOHlXWriXaIQYfePz2oDtGL7Z2ZjjkzNuOkdDj/oNXgzJYoOmP+zZmkmzg4ODngzDmITzc+hrtq/FEJ7TLCkLccIC8riRnto1wq06IDytXNtavB3I8kYq8mcqPniDfOGsdigutQ/jpL8EPvJhLJCk5kAJhDirVsRGMxy1pmlL5+8ooiJM/U14pI1IyeAUh62fmz2WVmiyN9jthWfrBk3Q7P90/Zv2rpKRcE+TVWJoskJc07WVJWGfnPvXW9pzYQJHI/uUh2X4UiCEp146KGHmD59Ok899VTQOlan08k3vvENHnroIf785z+HcYRCCCHE0CbHYiGCWSwcV0ACIDMLYuI9JKW33tBPmRKBJ2I5J3rY/lnw5fwTzte4W4JrFgSeXE6a6x9zVMCSh9krPLQ0xzN68mm43SvZtWsna9eu4eDBPN5++w3ee+8dpk+fwfz5C8jKmtRh9kRXBNa+cGRqZiw1k+cdc3Nj++UCAFFx/vGOnaqD5iU5wwQaRk8Ovc+oWPNc70l64DKTtmU0IkNklrRlsZq6Ii3NphaCq8UUiAyVHeJqvarvzZQ4vEuRmaUpPwq5W1W7pRcASQ5/y5W2nVaKDpiClOZ1+etkREYHB26anQpnrX88jfVt9qM0KSM0ZYWKksPeMYZ+IzfWK4oOajwuRV2VuS26NUY1Yjy0NHnYtdYSFPhocgYvgWnL2+4UYPMHJgtGWUyQsO1YmxoU8cmaBIfJJnHWeYiMb7tFAdCD5idD37Zt27j++uvbFdaKjo7ma1/7Glu3bg3TyIQQQojhQY7FQvQeZTEnwt4T437LlAj4OnMijBgfvOOoGP/Jr1dgUCJwSUJg68iMcfhO6K1WKzk5M7nuum9wyy23s3jxUmw2G9u2beFPf3qGRx99iPfff4fKyorjej2BmRIJDn8Wg3ecLU2mxgFAUroO+bzAk28wAY2TL9VMmhv6B9E2eyKw5oa1TVCi7fcdiYg0mRLeApdRITI0wNuhw9uu04yv/IhpD+oNSLTNBEh0BJ9aep8XuD0wtSUCO4rYIuDkSz2+5TvlR1v3ndJ+XuzR+IpOau1dbuG/X7cpNNq2vWng+8f7swvsUOIY2f7n1JHyowq3SzEmG+aeEvpnmJjm/zk21ElNiY5IUKITdrudqqqqkPdVV1djt3chJCmEEEKI4ybHYiH6TthqSnQhYSHwZNkSUAwzqv1qjHYyMjI499zzufPOe7jkkksZPz6L6uoqPvjgPX7xi4f54x+fYsuWTTQ3Nx97Y60CgyRxASfBvkyJgKCE1Qor/sfDii95gjIaQi3RUKrj5S2BrzUyWgfNia1NvvvE2V37Ydrs5mT+izf9WQtei872EB1ntjNygvlfWfBlUtRWKV+3ifgUTc5SzfzT/FGA+OTgU8u5p5hWshNygsfWUKuoKTfLQbzzGhkF2QuCHzd+evvXFJ/Svu1mYFAiIbXzeQgMlATXLdFkL/QwdbHJZll2kYel53uwRXa+vcgoTfYCTXwyrPyyp939SWma6NZ9urr+dht2hsTyjdWrV7N06dJjPq6lpYW77rqLX/ziF13a7sknn8zPf/5zRo8ezYIFC3y3r1+/nkcffZSVK1ce95iFEEIIcWxyLBai71j78Eygs5oSXVlFEbhUoaNMiWOJjIxkzpx5zJkzj4qKcjZt2sDGjRs4cCCXAwdyiYy0M336DGbNmsPEiZOwhGq70Sow4yGw4KPVZtL3Wxr9NSUsVv8Sm4aAQoidbD6kwCBEYpvGIoHBjuyFni4v6fFmSLiavUEJ/0l3UhqcdLGmolgHFVL17iuwtejis7UvWJQxTlNaAI4MCzUB3Sjik03bzuLDECoSZYsMnpMEhwl2eAt7hmolmugIrqcSHaeDfjYjxoPV6iExDQ7tNK1WYxPx1Y8ICvQEBCXSxsC4af7vvTUxomKgrjWYkL3Qw5517QuZ+mqEhMhWSUo37wWtNeOn2ahrkGqXoQyJoMSNN97IY489xooVKzp8TENDAzfffDPr1q3r8nbvvvtubrrpJq688kocDgcOh4OKigrKy8uZO3cud911V28MXwghhBAdkGOxEH1n1CSoLNaMntz7KROdZUp0JSgR6gTPe/voKRp7dPfGnJLi4NRTz2DlytPIy8tlw4Z17N69i82bN7J580ZiY2OZMWMms2bNYezYce3qTwReVY+O82eZeItdNjeCp7WmRGCwp6vLKkIJPPlOGRn8egO3G6pdaUfcLcGvK9TyjZSM4O/bvgZbhA7KXpl1kkYpRYRdQZsWowD2qPa3gTcwEvy67NHgjeNERvk7YYwYryk6qBiZZe5TSqO1CgpemdshvbWTyZT5/m1v/dj8HxjAiE00S23qqmDctNDvJ8dIfPUokjPa3x84D0rByss8oCB3s6KxwR+0GDsV7NGKuobQczHcDYmgxGmnncYtt9zCL3/5S0477bR291dUVPD1r3+d3NxcfvOb3xxze42NjXz00UcUFhZy+eWXc+WVV3Lw4EFKS0tJS0tj9uzZLFu2rC9eihBCCCGQY7EQ/cFqM1ey+0LbQoeBRk/WHMlVZM3q2r6d9cEnr9OXHP+YLRYLkyZNZtKkyTQ1NbFr1w62bt3C/v37+OKLz/nii89JTExi1qzZ5OTMYuTITJRSREbB1EWaEaOjUKoxaOlLZDQ0OZXprkDwiWpCCkw/wUNiavfHGjiH3habXvaAgp+hOoN0ZPoSDzs/92+47Ul9KG0DRG1/tsrSeRZIZDcKs7bN3lm8SuNxa2wRMG2xf7nH7JM1e9ebn0lXTJ7noeiA8hd5xfycFp3V+fPHzdAU7If0MeZnGR2ncdYpRk3SFO5XTG5TD8Q7vq6OSxhDIijx85//nO9///t8+9vf5uGHH2bVqlW++woKCrjuuuuoqqri2WefZe7cuZ1uKz8/n2uuuYbCwkLfbXFxcfzyl7/kpJNO6rPXIIQQQghDjsVCDH6dZUMkpcMpl3s6zIbwShutKS1QJB6jTsDxstvtvuUd9fX17Nixna1bN3Ho0EE++eQjPvnkIxITk5g+PYfp02cwfup40tJslJcHbychBWor/AUaA4MSQIfdNbpi2mIPDTXKV9zRKzpgGUJ3MiVGT4HmRg/7N5soQleCJW1/TqG6jHQmsKtK1ixNVQlUFIV+g7QNStgigNb9B85r+hhIH9P198WEHNrVtuiKqBhY8SXtG9cJ52qqyzQpI2HqYo3V2vnzRdcMiaCEUoqf/OQn2O12vvvd79Lc3MyFF17I7t27+frXv47VauX5559n0qRJx9zWI488gsVi4fnnnycnJ4eCggLuu+8+7rvvPt57771+eDVCCCHE8CbHYiEGv2PVTzhWQAJg1nJNXZUO6jrRV2JjY1m0aDGLFi2mqqqS7du3sXPndvLzD7NmzaesWfMpcXHxLF48nzFjJjJ+fBbW1jPS5BHmqnn5EbOt3jxRHZMNoXq3BnaI6E6mBATPfdsASihtl2943O2XXXR1f3FJmqyZsGc9jMxqv40JOZqjeQMr08DWZqmMt9aFBCR6z5AISnj96Ec/wm63c88997Bnzx5eeukl0tPT+eMf/8iIESOOvQFg06ZN3H333cyfPx+AiRMn8uMf/5hVq1ZRUlJCenr6MbYghBBCiJ6QY7EQg19X6kYci9XWtSv5vS0pKZlly5azbNlyamqq2bVrFzt3bufgwTxWr16N0/kRUVFRTJ48hezsqYweOQWIp8nZminRD2dYPQlKZE6CqlLN6Cld7NjRi6/HajOBkGmLQ+87NhFO/+rACUiI/jGkghJgCmLZ7XaefPJJZs+ezR/+8AcSExOP/cRWpaWljBkzJui2sWPHorWmrKxMPggJIYQQfUyOxUIMfp3VlBhMEhISWbx4CYsXL8HpbKCo6BCrV3/Bvn372LZtC9u2bQEUzuJxZKZPY1TGVLIs6XSp72kPBBbB7M7yDTBX/mct7/qJf9tMiRH/n737jo+iTv8A/pmZLemk0nuHQAClSBEExYIFlRMbZwMLKnr8vFNP0VPPXs7CnQVBDhX1UFFPD8VeaIrSpJMEAqGm120z8/39sSXZZDekbHY2yef9evEimZ3d/e6TbfPM832+PZvS06PRV6VWrFUkJU477bRaHXKFEMjKysK5555ba//169eHa2hERERERG1OKColIo17isdo9OkzGDabHdnZWdi7dzf27NmNw5k5OFGQgy27vsDWg/EYc2Ag+vUbgF69eiM6ugGdHutJkt2rYKguqVmXdgX8/5btuwsMHtvwpMTQCTpOHJKQVL/idWpjWkVS4uqrr66VlGiKOXPm+OaIVXfdddfV2s4EBxERUejxs5ioZWstlRLBWK1WDBo0GIMGDYYQAl99cAy/b92DI8d3o9KWg19//QW//voLAAldu3ZFnz590bt3X3Tv3gOmEM2HmPgHAaGLsCaAOvQQ9eoHUlOn3oF7SBABrSQpMW/evJDd1u233x6y2yIiIqKG42cxUcvXGislgpEkCd26dwZsXTC0/xT0Hl6GCrEXmZn7kJWVidzcQ8jNPYQffvgOJpMZPXv2Qp8+fdGnT1907Nip0SdXG5McaCo2d6Tm0CqSEqHEL0JERETG4mcxUcvX2islaoqOE/D2kYiNi0Xf3iMwbNgICCGQl5eH7OxMZGVlIjs7C5mZe5GZudd9vegYdO/eAz169ETPnr3QuXOXgFVikaKt/V0pPJiUICIiIiKikGpLlRKA/2oY1VffkCQJ7du3R/v27XHaaeOg6zpycw95EhSZOHToEPbs2YU9e3YBAMxmC7p16+5LUnTt2g0WSwM7WTYja+jbYxAxKUFERERERNQU0fFVP9dV6CDLMrp374Hu3Xtg8uQzoaoqcnMPISfnAA4c2I+DB3OQne1OWLj3V9CpUyd07dodXbt2RbduPZCcnBzSfnr1MfZCHWWFQEJKWO+W2ggmJYiIiIiIKKTadKVEA2ZfmEwm9OzZCz179sKkSZOh6zqOHTuKAwf248CB/cjJ2Y/Dh3Nx+HAufv7ZfZ2YmBh06dINXbt2Q7du3dGlS1fExMSE9gHVEJ/k/kfUHJiUICIiIiIiagJztRkWDUlK1CTLMjp37oLOnbtg3LgJEEKgsLAQhw8fwqFDh5CbexBHjhzBvn17sG/fHt/1UlJS0bFjJ991O3bshLi4uDruiShyMClBREREREQUIpoautuSJAkpKSlISUlBRsZwAICqqjh69Ahycw/h0KGDyM09hIKCfBQU5GPHjt99101IaIdOnTqjc+fO6NjR/X+7dolhn/pBdDJMShARERERUUi1xePe/qfqOJIlITGtee/HZDKhW7fu6NatO8aOHQ8AqKysxLFjR3D06FEcOXIYR48eRV7eCZSWlviaaAJAVFS0p/FmB7Rv3wEdOrj/j42NY7KCDMOkBBEREVEIZGdn47777kN5eTksFgvuu+8+jBw50uhhEVGY9EwHeqYLQ+47JiYGvXv3Re/efX3bnE4njh8/hiNHjuDYsSM4cuQITpw4joMHc3DwYE6t63sTFe3bd0RaWhpSU1MRH5/AZAU1OyYliIiIiELAarXi8ccfR+/evZGVlYVbb70Vq1evNnpYRMbgcazhLBaLr6LCS9d1FBUV4cSJ4zhx4jiOHz+GEydOIC/vhK+5ZnVmswUpKalISUlBamqq52f3v9jY2HA/JGqlmJRoxX7//XcsWLDA9/u+ffvw4YcfYtCgQQaOioiIqHXq0qWL7+fevXujrKwMQgieZaQ2ic/6yCTLsq9HxaBBg33bdV1HQUGBJ0lxHPn5eSgoKEBBQT6OHXNXWtQUHR2DlJQUJCYmITk5GT17doEsW9GuXTISExNhMvFQk+qHz5RWbOjQofjkk08AAIcPH8Yf//hHJiSIiKjN2rhxI5YsWYLt27cjLy8Pr776KiZPnuy3z/Lly7FkyRLk5eVh0KBBWLBgATIyMhp8X9988w0GDRrEhAS1XXzqtyiyLCMtLQ1paWkAhvq2CyFQUVHhSVLke/4VID/f/XNu7iHk5h4CIGHjRjNsNhcA9xSWuLh4JCUlITExCUlJSUhISERCQgISEhLQrl07xMTEQpZlQx4vRRYmJdqIL774Auecc47RwyAiIjJMZWUlBgwYgEsvvRTz5s2rdfmqVavwxBNP4OGHH8awYcOwbNkyzJkzB1988QWSk5MBANOnTw942ytXroSiuNcBPHz4MJ555hksWrSo+R4MEVEYSJKEuLg4xMXFoWfPXn6XCSFQWlqCoqIilJQUQ9ftyMk5gsLCQhQXF6G4uBjl5WU4dOhgkNuWER8f70lUtEN8fIIvaREXF4/Y2FjPvzjf+yu1TkxKGCicZ2y++OILPPDAA6EaOhERUYszadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwA8FUgBlNeXo5bb70VDzzwAHr06NHoscpy004ze6/f1NtpjRibuoUqPtWLhFpLrPncqUlCUpK7CkKWJSQlxaKoqAK67q6U0HXdl7QoKipCaWkJSktLq/1firIy9/9Abp33FBVlRVxcHGJj43yJiri4OMTExCA6OgbR0dGIiopCVFQ0oqOjEB0dA7PZHDHVanzu1I1JCQOF84xNYWFho5IZREREbYHT6cSOHTswd+5c3zZZljFu3Dhs2bKlXrehaRruvPNOzJw5ExMmTGj0WEwmGSkpcY2+fnVJSWxEFwxjU7emxicqygFABYCQPZ8jBZ87wdWMTVpaAoBuQffXdR1lZWUoKSnx+1deXo6ysjKUl5f7/lVUlKKiorTeY1EUBdHR0X7/rFYrLBaL7/+6fjabzTCZTFAUBYqiwGQy+X73/t/QpAefO4ExKWGgcJyxAYDVq1dz6gYREVEdioqKoGkaUlNT/banpKQgJycnyLX8/fjjj9iwYQPy8/OxYsUKAMBbb72FhISEBo1FVXWUltoadJ2aAp21JDfGpm6hio/DAXgbSxQUlIdmcAbjcye4psVGQWxsMmJjk9G5c/C9XC4XKirKUVFRgYqKcpSXV6CiogJ2uw02m63a/3bY7TZUVtpQVFSKvLyiJj22OkeuyFAUBbIsQ5ZlX5LC/b/k29a+fRrmz78DJSW2Rj93EhKiYTa3zmksTEpEqFCcsfEK1dQNlpI2H8YmsJpxYXxqY2yCY2yCY2zqryGrZ0yePBk7duwIyf2G6oBH1wUPnoJgbOrW1PgIUfW6aW1x5nMnuOaMjaKYPM0yExt0PVVVPQkLO5xOB5xOp++fy+Ws9rsDTqcLLpcTDocDmqZB0zSoqgpNUz0/a57tqme7+3dd16GqGoQQAf9ZLGbous7nThBMSkSoUJyxAYAjR9zNZoYOHXrynevAUtLwYGyqmM1Krecc4xMcYxMcYxMcY1MlKSkJiqIgPz/fb3thYWGtz2IiOrkImcpPBJPJhLi4eMTFxRs2BlmWuERqHRiZFqah65137twZX3/9dZPvl6WkzYuxqc3l0nzlnoxPcIxNcIxNcKGKTWsqJbVYLEhPT8e6deswZcoUAO65zuvXr8e1115r8OiIiIhaLyYlIlQknrFhKWnzY2z81YwF4xMcYxMcYxNcW4tNRUUFDh6sWpouNzcXu3btQmpqKtLS0nD99dfj7rvvRnp6OjIyMrBs2TLY7XZccsklBo6aqIVipQQR1ROTEhGKZ2yIiIhCa/v27bjmmmt8vz/66KMAgNtvvx3z5s3DtGnTUFhYiJdeesm3FPfixYt9K14RERFR6DEpYSCesSEiIgqfMWPGYM+ePXXuM2vWLMyaNStMIyJqvVgoQUT1xaSEgXjGhoiIiIhaJWYliKiemJQwEM/YEBERERERUVsmGz0AIiIiIiIiImqbmJQgIiIiIqKQ6tjTvbJP5z5tZ4UfImocTt8gIiIiIqKQapcKnDFTh9lq9EiIKNIxKUFERERERCFniTJ6BETUEnD6BhEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQTEoQERERERERkSGYlCAiIiIiIiIiQzApQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIYwGT0Aaj2EENB1DUIEvlyWJTidTqiqCl0PslMbFYmxkSRAlhVIkmT0UIiIiIiIqJViUoKaTAiB8vISVFSUAqj7gDo/X4au6+EZWAsTmbGREBubgLi4dkxOEBHVg81mw7Rp03D++efjz3/+s9HDISIiinhMSlCTeRMSCQnJsFisAIIfvJpMElQ1MioBIk3kxUbA6XSgtLQQABAfn2jscIiIWoBXX30VGRkZRg+DiIioxWBSgppECOFLSMTExJ10f5NJBhBp1QCRIRJjYzKZAQClpYWsliAiOokDBw4gOzsbkydPRnZ2ttHDISIiahHY6JKaRNc1AMJTIUGtkftvKzx/ayKilmnjxo245ZZbMGHCBAwYMADfffddrX2WL1+OKVOmYOjQoZg5cya2bdvWoPt46qmn8H//93+hGjIREVGbwEoJapKqppY8g956uf+2wRqYEhG1BJWVlRgwYAAuvfRSzJs3r9blq1atwhNPPIGHH34Yw4YNw7JlyzBnzhx88cUXSE5OBgBMnz494G2vXLkS3333HXr27IlevXph8+bNzfpYiIiIWhMmJVqJO+64A+vXr8eECRPw/PPP+7Z//fXXeOaZZwAAd955J6ZNm2bUEImIiAwzadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBL0+lu3bsWqVauwevVqVFRUQFVVJCQk4KabbmrUeGW5acl+7/WbejutEWNTN8YnOMYmOMamboxP3ZiUaCWuvvpqXHzxxfj0009921RVxTPPPIPly5dDURRcfvnlOOuss2CxWAwcKRERUWRxOp3YsWMH5s6d69smyzLGjRuHLVu21Os27rrrLtx1110A3JUT2dnZjU5ImEwyUlJO3qepPpKSYkNyO60RY1M3xic4xiY4xqZujE9gTEq0EmPGjMHPP//st23r1q0YMGAAUlNTAQAZGRn47bffMHbsWCOGGHEee+whfP75Z7W2f/bZ10hMTAz/gIiIyBBFRUXQNM33eemVkpKCnJycsI9HVXWUltqadBuyLCEpKRZFRRXQdc6/q46xqRvjExxjExxjU7dQxCchIRpmsxLikUUGJiXCYOPGjViyZAm2b9+OvLw8vPrqq5g8ebLfPsuXL8eSJUuQl5eHQYMGYcGCBU1eUuzEiRPo0KGD7/cOHTrgxIkTTbrN1mbcuNNxzz33+21r166d3++qqsJk4kuFiKitEUI0atWhSy+9tMn3Haov9boueIAQBGNTN8YnOMYmOMamboxPYFx9Iwy8zbUefPDBgJd7m2vddttt+OijjzBgwADMmTMHhYWFvn2mT58e8J+mcUWEprBYzEhJSfX7d9llF+HNN9/AI488gKlTJ+LFF58DAGzduhlz596AKVPGY8aMC/Dyyy/C6XT6bqugIB933/0nTJkyHpdffjG+//4bnH/+mVi1yj2lZtOmXzFhwkhUVlb6rrN27U+YMGGk35h+/PF7XHfdVZgyZRwuv/xiLF++DLpetVTohAkj8dlnH+Puu/+EM88cjz/+cSa2bt3idxtbtmzCrbfOwZlnjsd5503BX/5yJxwOB5YtW4Lrr7+qVhyuuOISvPvu202OJxFRS5SUlARFUZCfn++3vbCwsFb1BBEREYUWT/+GQXM31wqmffv2OH78uO/348ePY8KECQ2+Ha9AjVlaa7OWd955EzfccBNmz74ZAHD4cC7+/Oc7cfPNt+L++x9GQUE+nn32CaiqijvucM8hfuyxh1BcXIR//vM1AMDzzz/jl4Coj61bt+Dxxx/Cn/70FwwdOgwHD+bg6acfg9lswcyZV/r2W7p0MW6//U+YN+//sGTJa3j44fuxYsUnMJlMOHgwB/Pn34aLL/4D7rrrXgDAxo0bIITAtGkX4o03FmHfvj3o12+A5z434+jRIzjnnPPqHJssS2H/e9dsCtRan29NwdgEx9gEx9j4s1gsSE9Px7p16zBlyhQAgK7rWL9+Pa699lqDR0dERNS6MSlhsFA01womIyMDu3fvRn5+PhRFwdatW/HYY4816raCNd1yOp3Iz5dhMkkwmepXeFPf/ZqbJEn46acfMHXq6b5tkyefBQAYPfo0XHXVLN/2xx57BNOmnY8rrnBXGfTs2QN33DEff/3rXzB//p9x8GAOfvllA5YtewcDBgwEANx9919x/fWzIMvu2CiK+3GbTLIvBooi+bYBwNKli3DddbNxwQUXAgB69OiOvLw5WLHiXVx11dW+8Vx00cWYOvVsAMBNN92CmTMvwbFjh9GzZy8sX/5vZGQMw113/cW3/4AB/QEAcXExGDNmLD7//DMMGjQIAPDFF59h3LgJaN8+LVikIMsykpJiwtok1WxWaj3n2BwoOMYmOMYmuLYUm4qKChw8eND3e25uLnbt2oXU1FSkpaXh+uuvx91334309HRkZGRg2bJlsNvtuOSSSwwcNRERUevHpITBQtVc66abbsK2bdtgs9kwceJELFq0CAMHDsSf//xnXHWV+0D6T3/6E6xWa6PGGazplqqq0HUdqioA6LWvWIPJJENVT75fOAghMHLkGMyfX3XwHhMTg5tuug79+w/0G+e+fXuRlbUPq1ZVNcbUdR0OhwPHj+chOzsbZrMZvXv3812vb98BMJvN0HUBVdWhae7tqqr79tE04dtmMsnIzNyLbdu2YsmSRb770TQdQuh+4+nZs4/v98TEZABAfn4BunbtgX379mHixDOCxnnatAvx7LNPYO7cO6BpGr755mssWPBw0P1VVUDXdRQVVcJkcgbcpzm4XBoKCsoBsHlSXRib4Bib4EIVm5bUdGv79u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJ199p8eLFSE5ONmrIREREbQKTEhGqoc21Fi1aFHD72WefjbPPPjskYwr0xbWlf9GPjo5C167dAmyP9vvdZqvEpZdehksuuazWvomJiRACJ/17ybK3QqQqZqqq+u1TWWnDjTfOxemnB5/uA6BG4033/VbvO1GXCRMm4dlnn8S6dT/BZrPBYrFg3LiTT+sxojFPzftjc6DgGJvgGJvg2lJsxowZgz179tS5z6xZszBr1qw69yEiIqLQYlLCYGyu1TL06zcA+/dnB0xgAEDPnj3hdDqxb98e9O/vnr6xZ89uuFwu3z6JiUkAgIKCAsTEuEumMzP3+t1O//4DcOhQTtD7qY++ffth06Zfcd11cwJebjKZcM450/C//30Kh8OOc845j6uLEBERERGRISJjcn8bVr25lpe3udbw4cONGxj5ufrqa7Bly2a88MKz2LdvLw4ezMEPP3yLf/3rRQBA9+49MXLkaDz11GPYtWsHdu3ageeffxpms9l3G127dkP79h2wdOnrOHToIL777mv873//9bufa6+djVWrPsW//70Y+/dnY//+bHz55edYtmxJvcc6a9Z1+P33rXjxxeeQnZ2J/fuzsWLFu7Db7b59LrhgOn7+eR02b/4N06Zd1MToEBERERERNQ6TEmFQUVGBXbt2YdeuXQCqmmvl5eUBAK6//nq89957+Oijj5CVlYWHHnqIzbUiTL9+A/DSS69i//5szJ17A+bMuQbLli1BWlp73z4LFjyCpKQk3HbbjXjwwb/iiiuuRkxMjO9yk8mEBx/8O/bu3YNrr70Sn376Ca6//ka/+xk7djyeeOI5rF+/FrNn/xFz596AlSvfR6dOnes91u7de+C55xZi587tmDPnGtx224347bdf/KaX9OrVG/37D0S/fgPQp0/fJkSGiIiIiIio8SQhRNuYTGqgn3/+2a+5lpe3uRYAvP3221iyZImvudYDDzyAjIyMcA81KJdLQ3Fx7eUtVVVFfv5hpKZ2qdcUgEhqdBkO559/Jm677U+YNu3Ck+4bztjouo6ZM6fjqquuwaWX1u6TUV1D/8ahcvHF0/Dxx6sAuJvypaTEoaCgvM3Mf68vxiY4xia4UMUmMTGmxTS6bEmCfeY2BJ//wTE2dWN8gmNsgmNs6haK+LTmz1xOJA8DNteiSFJYWIBVqz5FeXkZzj13mtHDISIiIiKiNoxJCaI25qKLzkFSUjLuuWeBr+EmERERERGREZiUIGpG//vfN0YPoZY1a341eghEREREREQA2OiSiIiIiIiIiAzCSglqNg88cC9+/32b3zZJApqjterQoRn4+9+fDP0NExERERERUbNhUoKaTaAkQaSsvvHhh//B66+/glWrvoUsuwuGCgryMX36uTj99DPwxBPP+vZdvXoVnnzy7/jii+9gtUY16v6++eYr/O1vf8UZZ0zBo48+Xevyv/3tPvTp0xfXXHMDJkwYCYvFivfeW4n27Tv49rn99pswcOBg3H77nxo1BiIiIiIiokjD6RvUJo0YcSrKy8uxd2/VqihbtmxC+/YdsHXrZlRfKXfLlk0YNCi90QmJ48eP4V//egEZGcMDXq6qKn7+eT1OP32i3/alS19v1P0RERERERG1FExKUJvUq1cfJCYmYfPm33zbNm/+Deeeez7MZjMyM/f5bT/llJGNuh9d1/Hoo3/DtdfORpcuXQPus2XLJsTFxaFfv/6+bTNmzMSqVZ/i4MEDjbpfIiIiIiKiloDTN6hNkiQJw4efgs2bf8OVV84C4E4O3HnnXTh8+BA2b/4N/fr1R35+HnJzD2HEiFMBALNmzcTx40eD3m5Gxgg899xLvt/feedNREVFYfr0S7F9+7aA11mz5keMH3+637bhw09BVlYmFi16BY8++lRTHy4REREREVFEYlKC2qwRI07F66+/DF3XUVJSjNzcQxgyZBgOHTqEjRt/xsyZV2LTpt9gsVgwZMhQAMCzz74IVVWD3qbVavX9vGfPbnzwwX+wZMlbdY5j7dqfcPfdf621/ZZbbsOcOddg9+6dGDhwcCMfJRERERERUeRiUoLarFNOGenrK3HkyGEMGDAI0dHRGD58BBYvfhVCCGzZ8hsGDx7i6yfRsWOnet220+nEI48swJ/+9GekpKQG3S8rKxOlpcUYMaL29JD+/Qdi8uQz8eqr/8QLL7zcuAdJREREREQUwZiUoDarV6/eSEpKxubNv+Ho0cMYPvwUz/Y+kCQgM3MftmzZhDPPPNt3nfpO3ygoyEdOzgH87W/3+S7TdfeqI5MmjcEHH3yKtLT2WLPmB4wZMw4mU+CX4o033oqrr/4DfvttYygeMhERERERUURhUoLatBEjTvUlJW699U4A7n4TGRnD8c03X+LgwRxfPwmg/tM30tLa48033/O77PXXX4Hdbse8efORlJQMwN1P4rLLrgh6e127dsMFF0zHq68ubPTqH0RERERERJGKSQlq00aMOBUvv/winE4nMjKG+bYPGzYCS5YsgsViQXr6UN/2+k7fMJlM6N27r9+2uLh4KIri215QkI99+/bgtNPG13lb119/Ey6/fDqEAHtLEBERERFRq8IlQalNO+WUkbDZbOjXbwBiY+N824cPPxU2W6Wnn4S1jltovLVrf8LQocOQkJBQ536pqan4wx+ugNPpaJZxEBERERERGYWVEtSm9ejRE2vW/Fpr+8CBgwJub4r773/I7/c1a37EhAkTa+0X6H7nzp2HuXPnhXQ8RERERERERmOlBJFBhg0bjilTpho9DCIiIiIiIsOwUoLIIFdffa3RQyAiIiIiIjIUKyWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBTSJJ3p+EkcOgZuX+21b9rYmIiIiIiEKDjS6pSWRZgSwrKC7OR3x8IhTFBKCuo1cJqsoERmCRFhsBTVNRVlbs+zsTERERERGFEpMS1CSSJCElpRNKSwtRVHTipPvLsgxd18MwspYnUmNjtcYgKak9JJZKEBERERFRiDEpQU2mKAqSktIghA5d1yGCnOyXZQlJSTEoKqqErkdSRYDxIjE2kuROlEgSZ3kREREREVHzYFKCQkaSZChK8ANYWZZgsVhgMjkj5sA7UjA2RERERETUFvEUKBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAhJiGBtCYmq6LqApjV9ZQizWYHLpYVgRK0PY+Nv797d6N9/oO93xic4xiY4xia4UMRGUWTIMlfmCTV+5jY/xqZujE9wjE1wjE3dmhqf1vyZy6QEERERERERERmC0zeIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgupt+fLlmDJlCoYOHYqZM2di27Ztde7/+eef49xzz8XQoUNx4YUX4scff/S7XAiBF198ERMmTEBGRgauu+465OTk+O1TXFyMu+66C6eccgpGjRqF+++/H5WVlSF/bKEQ7vjk5ubivvvuw5QpU5CRkYGzzjoL//znP+FyuZrl8TWFEc8dr+LiYkycOBEDBgxARUVFyB5TqBgVm2+//RYzZsxARkYGxo4di3vuuSekjysUjIjN1q1b8cc//hGnnnoqRo8ejZtvvhlZWVkhf2yhEOr4fPnll5g9ezbGjBmDAQMGYO/evbVuoyW9J7cFoX4OtCYNic2+ffswb948TJkyBQMGDMDbb78dxpEaoyHxWbFiBa666iqMGjUKo0ePxg033IDff/89jKMNr4bE5uuvv8aMGTMwcuRIDB8+HNOnT8fHH38cvsGGWUPfc7wWLVqEAQMG4KmnnmrmERqnIbFZuXIlBgwY4Pdv6NChYRxtBBJE9fC///1PpKeniw8++EDs27dPLFiwQIwaNUoUFBQE3H/Tpk1i0KBB4vXXXxeZmZnihRdeEOnp6SIzM9O3z2uvvSZOPfVU8dVXX4ldu3aJW265RZx11lnC4XD49pk9e7a46KKLxJYtW8TGjRvF1KlTxV/+8pdmf7wNZUR8fvjhB3HvvfeKn376SRw8eFB8/fXXYuzYseKZZ54Jy2OuL6OeO17z5s0Ts2fPFv379xfl5eXN9jgbw6jYfPHFF2LUqFHivffeE9nZ2WLv3r1i9erVzf54G8KI2JSVlYlRo0aJ++67T2RnZ4vdu3eLm2++WZx55plhecwN0Rzx+eijj8TChQvFihUrRP/+/cWePXtq3U5LeU9uC5rjOdBaNDQ2W7duFU8++aT47LPPxPjx48Vbb70V5hGHV0Pj83//93/i7bffFjt37hSZmZni3nvvFSNHjhTHjx8P88ibX0Nj88svv4jVq1eLzMxMkZOTI958800xaNAgsXbt2jCPvPk1NDZe27dvF5MnTxYXXnihePLJJ8M02vBqaGw+/PBDMXr0aHHixAnfv7y8vDCPOrIwKUH18oc//EE88sgjvt81TRMTJkwQixcvDrj/nXfeKW6++Wa/bZdddpl4+OGHhRBC6Louxo8fL5YsWeK7vLS0VAwZMkR8/vnnQgghMjMzRf/+/cXvv//u2+eHH34QAwcOjLgXrhHxCeT1118XZ599dlMeSsgZGZv3339fXHHFFWLdunURmZQwIjYul0ucfvrpYsWKFaF+OCFlRGy2bdsm+vfv7/dFe9OmTaJ///4n/dIVbqGOT3WHDh0KmJRoSe/JbUFzPgdauobGprrJkye3+qREU+IjhBCqqooRI0aI//73v801RMM0NTZCCHHxxReLhQsXNsfwDNWY2FRWVorzzjtP/Pjjj2LWrFmtNinR0Nh4kxJUhdM36KScTid27NiB8ePH+7bJsoxx48Zhy5YtAa+zZcsWv/0BYMKECb79c3NzkZeX57dPfHw8hg0b5ttn8+bNSExMxJAhQ3z7jBs3DpIk1btcLByMik8gZWVlaNeuXaMfS6gZGZuDBw/ihRdewNNPPw1Zjry3OqNis3PnThw/fhySJOGiiy7ChAkTcMsttwSd/mIEo2LTq1cvJCYm4v3334fL5YLNZsNHH32EoUOHIjk5OaSPsSmaIz710VLek9sCo54DLUFjYtOWhCI+NpsNqqpG1PeNUGhqbIQQWL9+Pfbv349TTz21GUcafo2NzZNPPokxY8bg9NNPD8MojdHY2JSXl+OMM87ApEmTcOuttyIzMzMMo41ckfdNnSJOUVERNE1Damqq3/aUlBTk5eUFvE5+fj5SUlKC7u/9v67bDHQbJpMJ7dq1Q35+fuMfUIgZFZ+aDh48iLfffhtXXHFFox5HczAqNqqq4i9/+QvuvPNOdOvWLSSPJdSMis2hQ4cAAC+//DLmzZuHl19+GWazGddcc03E9AYwKjZxcXFYtmwZVq5ciWHDhmHEiBHYsmULXn755ZA8rlBpjvjUR0t5T24LjHoOtASNiU1bEor4PPfcc+jUqRNOO+205hiiYRobm7KyMowYMQJDhgzBTTfdhAcffBBjx45t7uGGVWNi891332HDhg24++67wzFEwzQmNr1798YTTzyBV199Fc888wx0XceVV16J48ePh2PIEYlJCWo0IQQkSQp6eaDLam6r+XvN2wx0Gye730gRjvh4HT9+HHPmzMH555+PSy+9tJEjDp/mjs2rr76KpKQkXHbZZSEYbXg1d2x0XQcAzJ07F1OnTkVGRgaeeuoplJaW4vvvv2/i6JtXc8fGbrdjwYIFOO2007BixQq888476NSpE2677TaoqhqCR9C8QhGfk2nJ78ltQTieAy0Vn6d1q298Xn/9daxatQoLFy6ExWIJw8iMd7LYxMbG4uOPP8YHH3yA+fPn4/HHH8evv/4axhEaJ1hsCgsL8cADD+Dpp59GdHS0ASMzXl3Pm+HDh+Oiiy7CwIEDMXr0aCxcuNBXqdlWmYweAEW+pKQkKIpS60xYYWFhraygV2pqaq39CwoKfPunpaUBcJ+9rF4WXVhY6CsNDnQbqqqitLS01tkeIxkVH6/jx4/jmmuuwfDhw/HQQw819eGElFGx+fnnn/Hrr79i8ODBANwfDAAwatQo3HHHHbjllltC8OiaxsjXFeCequAVExODzp0748iRI018VKFhVGw+/fRTHD9+HO+//77vi8Q//vEPjBo1CuvWrcPEiRND8wCbqDniUx8t5T25LTDqOdASNCY2bUlT4rNkyRK89tprWLp0Kfr379+cwzREY2MjyzJ69OgBABg0aBCysrKwaNEijBw5slnHG04Njc2+ffuQl5eHK6+80rdN0zRs3LgRb7/9dqtavSUU7zlmsxmDBg2KqKm04cZKCTopi8WC9PR0rFu3zrdN13WsX78ew4cPD3id4cOHY+3atX7b1q1b59u/a9euSEtL87vN8vJybN261bfPiBEjUFxcjB07dvj22bBhA4QQyMjICM2DCwGj4gNUJSTS09PxxBNPRFzvBKNi8/jjj+OTTz7Bxx9/jI8//hiPPvooAOC9997DzJkzQ/cAm8Co2AwdOhRms9nvg89ut+PYsWPo3LlzaB5cExkVG7vdDlmW/c5seH/3JrYiQXPEpz5ayntyW2DUc6AlaExs2pLGxmfx4sV4+eWXsXjx4la7dGGonjtCCDidzmYYoXEaGpuhQ4fi008/9X0P+/jjjzFkyBBccsklWLlyZRhH3vxC8bzRNA379u3znUBpk8LWUpNaNO9SNytXrhSZmZnigQce8Fvq5i9/+Yt49tlnffv/9ttvYtCgQWLJkiUiMzNTvPTSSwGX5xs5cqT4+uuvxe7du8XcuXMDLgl68cUXi61bt4pff/1VnH322eLPf/5z+B54PRkRn2PHjompU6eKa665Rhw7dsxvWaFIYtRzp7oNGzZE5OobRsXmkUceEZMmTRJr164VmZmZ4q677hKTJk0SFRUV4XvwJ2FEbDIzM8WQIUPE3//+d5GVlSV2794t5s2bJ8aOHSuKi4vDG4CTaI74FBUViZ07d4rvv/9e9O/fX3zxxRdi586doqioyLdPS3lPbgua4znQWjQ0Ng6HQ+zcuVPs3LlTjB8/Xjz77LNi586d4vDhw0Y9hGbV0PgsWrRIpKeniy+++MLvu0akfaaGQkNj89prr/mWZs/MzBRLly4VgwcPFh988IFRD6HZNDQ2NbXm1TcaGpuFCxf6njfbt28X8+fPFxkZGSIrK8uoh2A4Tt+gepk2bRoKCwvx0ksvIS8vD4MGDcLixYt9ZdBHjx71O0t/yimn4LnnnsMLL7yAf/zjH+jZsyf+9a9/oU+fPr59brzxRthsNjz44IMoLS3Fqaeeitdff91vjuKzzz6Lv//977j22mshyzLOOeccLFiwIHwPvJ6MiM/atWuRk5ODnJycWmXle/bsCcOjrh+jnjstgVGxueeee6AoCv7v//4PLpcLI0aMwNKlSxETExO+B38SRsSmT58+ePXVV7Fw4UJcdtllMJlMGDJkCBYvXhxxXeabIz7ffvst/vrXv/p+v+OOOwAATzzxhK9XTUt5T24LmuM50Fo0NDYnTpzAxRdf7Pt90aJFWLRoES655BI8+eST4R5+s2tofN599124XC7fe4LX7bffjnnz5oV17M2tobGx2+145JFHcOzYMURFRaF379545plnMG3aNKMeQrNpaGzakobGprS0FA888ADy8vLQrl07DBkyBP/5z3/Qu3dvox6C4SQhIqgmlYiIiIiIiIjajLaZziIiIiIiIiIiwzEpQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBAmowdARFSXhQsX4p///Get7WPHjsW///3v8A+IiIioleJnLhEZgUkJIop48fHxWLx4ca1tREREFFr8zCWicGNSgoginqIoGD58+En3s9vtiIqKav4BERERtVL8zCWicGNPCSJqkXJzczFgwAD897//xd13342RI0filltuAQAUFxfjwQcfxLhx4zB06FBcccUV2Lp1q9/1S0tLcdddd2H48OGYMGECXnnlFTz11FOYMmWKb5+FCxdizJgxte57wIABePvtt/22vf/++zj//PMxZMgQTJ48Ga+//rrf5ffeey8uvfRSrF27FhdeeCGGDx+OK6+8Evv27fPbT9M0vPbaazjnnHMwZMgQTJw4Effeey8AYPny5RgxYgQqKir8rrNhwwYMGDAAu3fvbmAUiYiITo6fuVX4mUsUeqyUIKIWQVVVv9+FEACAp59+GlOnTsWLL74IWZbhdDpx/fXXo7S0FHfffTeSk5Px7rvv4rrrrsOXX36JtLQ0AMBf//pX/PLLL7jvvvuQmpqKN954AwcPHoTJ1PC3xcWLF+P555/HnDlzMHr0aOzYsQMvvvgioqOjMWvWLN9+R48exdNPP425c+fCarXi6aefxp/+9Cd89tlnkCQJAPDggw/ik08+wezZszF69GiUlJTgiy++AABceOGFeOqpp7B69Wpceumlvtv96KOPkJ6ejoEDBzZ47ERERDXxM5efuUThxKQEEUW84uJipKen+2179NFHAQDDhg3D3/72N9/2999/H/v27cNnn32Gnj17AgDGjRuHc889F2+88Qbuuece7Nu3D19//TWef/55TJs2DQAwZswYTJ48GXFxcQ0aW3l5Of71r39h7ty5uP322wEA48ePh81mwyuvvIIrr7wSiqIAAEpKSvDuu+/6xiWEwG233Ybs7Gz06dMHWVlZ+OCDD3D//ffjmmuu8d2Hd4wJCQk4++yzsXLlSt8XpIqKCnz55Ze46667GjRuIiKiQPiZy89conBjUoKIIl58fDyWLl3qt81isQAAzjjjDL/t69evR3p6Orp27ep3pmfUqFHYvn07AOD3338HAL+y0djYWIwbNw7btm1r0Ng2b96MyspKnHvuuX73d9ppp+Hll1/GsWPH0KVLFwBAly5dfF+OAKBPnz4AgOPHj6NPnz74+eefAcDvjExNf/jDH3Ddddfh0KFD6NatGz7//HOoqooLLrigQeMmIiIKhJ+5VfiZSxQeTEoQUcRTFAVDhw7125abmwsASElJ8dteVFSELVu21DrLAwDdu3cHAOTn5yM2NrZWg66at1UfRUVFAIDzzz8/4OVHjx71fUGq2b3cbDYDABwOBwD32amYmJg6zxyNGTMG3bp1w8qVK3HnnXdi5cqVOPPMM5GYmNjgsRMREdXEz9wq/MwlCg8mJYioRfPOC/Vq164dhgwZgoceeqjWvt4zPampqaioqKjVObygoMBvf6vVCpfL5betpKSk1v0BwGuvvRbwC1avXr3q/VgSExNRWVmJ8vLyoF+SJEnCjBkzsGLFCkyfPh2//fZbrQZfREREzYGfufzMJWoOTEoQUasyduxYrF27Fp07dw56FsZ7Bujbb7/1zR2tqKjAunXr/L6YdOjQARUVFTh+/Dg6dOgAAFi7dq3fbY0YMQJRUVE4ceJErbLWhjrttNMAAB9//LFfs66aLrnkErz00ku477770KFDB4wfP75J90tERNQY/MwlolBgUoKIWpWLL74Y7733Hv74xz/ihhtuQLdu3VBcXIxt27YhLS0N1113Hfr164cpU6bgoYceQnl5OdLS0rBkyZJapaWnn346oqKicN999+H6669Hbm4u3nvvPb99EhIScPvtt+Oxxx7D4cOHMWrUKOi6jgMHDuDnn3/Gv/71r3qPvXfv3rj88svx5JNPoqCgAKNGjUJpaSlWr16N559/3rdfhw4dcPrpp+P777/HzTff7GvqRUREFE78zCWiUGBSgohaFavVijfffBMvvvgiFi5ciIKCAiQnJyMjI8OvydaTTz6Jhx56CI8//jhiYmJw1VVXYejQoVi9erVvn+TkZLz00kt4+umncdtttyE9PR3PPfec70yP14033oj27dtj2bJlWLp0KaxWK3r27Flrv/r429/+hs6dO+P999/H66+/juTk5IBnZc466yx8//33dTboIiIiak78zCWiUJCEd+FhIqI2zrse+bfffmv0UE7qzjvvRF5eHt555x2jh0JERNRg/MwlIi9WShARtSB79uzB9u3b8dVXX+Ef//iH0cMhIiJqtfiZSxQeTEoQEbUgc+fORVFREa666iqce+65Rg+HiIio1eJnLlF4cPoGERERERERERlCNnoARERERERERNQ2MSlBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQJqMHQC2Drgtomt7k2zGZZKhq02+nNWJs/B06dBDdunX3/c74BMfYBMfYBBeK2CiKDFmWQjQi8uJnbvNjbOrG+ATH2ATH2NStqfFpzZ+5TEpQvWiajuLiyibdhixLSEmJQ2mpDbouQjSy1oGxqe2Pf7wGH3+8CgDjUxfGJjjGJrhQxSYxMQayrIRwZATwM7e5MTZ1Y3yCY2yCY2zqFor4tObPXE7fICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgo0uiYiIiIioxRBCQNc1iDD3U5RlCU6nE6qqspljDYxN3eoTH0kCZFmBJLXOFTbqwqQEERERERFFPCEEystLUFFRCsCYA9/8fBm6zmUvA2Fs6laf+MiygpSUTlCU1rnKRjBMShARERERUcTzJiQSEpJhsVgBhP+MsskkQVVZCRAIY1O3k8dHoLg4H6WlhUhKSgvbuCIBkxJERERERBTRhBC+hERMTJxh4zCZZACsBgiEsalbfeITH5+IoqITEEKHJLWd9o9t55ESEREREVGLpOsaAOGpkCBqnRTFXTPQ1qbBsFKCiMJLF5BKdUjlOuAQ7tSoVYaeKAMxzJMSERFRbVVNLdteE0BqS9zP73A3cTUakxJE1OzkIyqUHQ4omU7IR1RIzsD7iVgJWncztL5mgHMSiYiIiIhaPSYliKh5aALKVgfMP9mgHFF9m4VVgtZNgUiQIaIkSDoAu4BcpEHK02Da5YRplxPKQRVRrxfDNSEaYjBLNYmIiIiay5Ilr2HdujVYsuQto4dCbRCTEkQUcspeJyyflEPO1wAAekcF6ogoqAMsEB0UQA5SeukSkHNdUHY6Ib4ElEwXlEwX9G4maFeZgNQwPggiIiKiJnrssYdgs1Xi0Uef9m1btepTPPPM45g//25cdNElDbq9TZt+xR133BLwstdfX4ZBg9IbNc4rr/wj/vCHyxt13ZbsD3+4EFdeOQszZrS9xx5JmJQgotBxCFg+LoN5kwMAoPUxw3lWDPReZkCqxxxQswS9l8X9b5EZ9j8mwPxtJZRDKhxPHYV5TBQc58cCVvaeICIiopbn/fffw8svv4gFCx7GmWee3eDrDx06DJ988oXftsWLX8Wvv/6CgQMHN3pcMTExAGIaff3WTFVVKIoCqT7fZalRmJRo5bKzs3HfffehvLwcFosF9913H0aOHGn0sKgVkvJVRL1ZCvm4Bj1BhnN6HLQhTZh2IQHaECu0wRaYtzlh+V8FTD/bIe9zwn5NO4hOfPsiIiKilmPp0tfx9tv/xuOPP4OxYyc06jbMZjNSUqpKR1VVxZo1P2LGjJl1HjSXlpbiX/96AWvW/ABVVZGePhR33vln9OjRE0Dt6RuqqmLhwn/giy/+B5PJhEsvnYn9+7MQHR2D++9/CADgcDiwaNHL+Prr1aisrEDfvv1x221/wpAhQwG4K0L+9a8XcP/9D+Oll/6BwsICjB49Bvfe+yDi4tzLun733dd4441FOHw4F9HR0RgwYBCeffYlyLLsqzLp1asPVq5cAU3TMG3ahbjttj9BUZQgY+iH226b7xsDAGzZsgmLFr2MPXt2wWKxYsiQoXj00adx113zcOzYUTz//DN4/vlnAABr1vzqG/c99zyAV19diNzcQ/jkk9V44IF7MHDgYNx++598tz179h8xbtwEzJ59MwBgwoSRuPvu+/H9999i69ZN6NKlKxYseBiyrOCZZx5DVlYmhg4dhgcf/DuSkpIb9RxojfitvpWzWq14/PHH0bt3b2RlZeHWW2/F6tWrjR4WtTLyERVRi4shVQio/c1wXJkQupU0ZAnaKVGIHpOE8tePQtnhRPTLxXBcFQ9tEHtNEBERUWQTQmDhwn/gs88+wXPPLcTw4af4Xf7mm2/grbeW1nkbb731Pjp27Fhr+5o1P6CkpBjnnXdBndd/8MF7ER0djeee+ydiYqLx/vv/wfz5t2H58g8QHR1da//ly5fhm2++xAMPPIIuXbrh3XffwsaNP2PixMm+fV544Rnk5BzA3//+JFJSUvHNN19i/vzb8M47HyAtrT0AoLKyEh9+uAJ///sTsNvteOCBe/H22//GLbfcjvz8fDz00P249dY7MHHiZFRUVGDTpo1+4/j55w2wWqPwz3++jkOHDuKJJx5BamoarrrqmoBj+OqrL/zGcPBgDubPvw0XX/wH3HXXvQCAjRs3QAiBxx9/BtdddxUuueQPmDbtQr/7raysxHvvvY37738YsbGxiI2NrTO+1f3734sxb958/OlPd+GFF57FI488iOTkZNx++52IiorF3/72Vyxa9DLuuWdBvW+ztWNSopXr0qWL7+fevXujrKwMQgiWH1HIyEfcDSmlSgHX+Gg4L4gN3jOiCaQEBc5r20H5ugKWLythfbMUjqsSoA1lYoKIiKgtsqwohWlHkCW9mok+xAr1svgGXWfdujVwuVz45z8X1UpIAMDFF8/AlClT67yN1NTAjbU+++wTjB59Gjp0qJ2w8Nq6dQv27NmN//53NcxmMwBg/vy/4Mcfv8O6dWtw5pm17/vDD1fgmmtuwIQJkwAAf/nLfVi/fq3v8mPHjmHVqk/x0UerkJycAgC44YY5WLPmR3z55ee4+uprAQAulwt/+ct9voTKeeddgN9+cyceCgryoWkaJk2ago4dOwEA+vbt5zcOq9WKe+5ZAIvFgl69eiM39xD+85/luOqqawKO4brr5mDdujW+Mbz99r8xdOgw3HnnXb7b7NOnLwAgKioKsiwjJibGr/rEO+4///mv6N27T9C4BnPBBdMxefJZANy9OubPvw033XQrRow4Faqq44ILLsYnn3zY4NttzZiUiHAbN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkKGSkUg3WN0ogVQo4J0XDdV5s/XpHNPoOJbjOjIVIUmBZUQbrO6VwXJ3QtGkiRERERM2ob9/+KCwswOLFr+LZZ19CVFSU3+UJCe2QkNCuwbd74sRx/PLLBjzyyBN17peZuRcVFeWYNm2K33aHw4EjR3Jr7V9eXo7CwgK/pplms9kvYZCdnQlN03D55Rf7XdfpdPrtFxsb61fhkZKSgqKiIgDuBMSIEafimmuuwGmnjcPo0adh8uQzERsb59u/X7/+sFgsvt+HDBmKl1/OR3l5eb3GkJm5DxMnnlFnfAKxWq2NSkgAQJ8+VY/fmyzp1at3tW3JvhiQG5MSEa6yshIDBgzApZdeinnz5tW6fNWqVXjiiSfw8MMPY9iwYVi2bBnmzJmDL774AsnJVfOUDh8+jGeeeQaLFi0K5/CpNXMJWN8shVymwzUqqvkTEtWop0RBALCuKIP1vVLYb0mE3tUclvsmIqLWq7CwAKtWfYauXbth0qTJPJET4ZwzExDeOgnAZJIBVW/QdTp06ICHH34c8+bdjL/85U4888yLfomJxk7fWLXqUyQktPNVMwRjs1UiLa09XnzxlVqXJSQkBL1ezee/EMLvNk0mE954Y7lvP0WRoGnCb6qDyeR/uClJEoTQPfsrePHFV/D771uxYcM6vPvuW1iy5DUsWfKW72A+2GtQkgKPwash0y0CqZk4AgBZlv1iALh7b9RU/TF7h+W/rSoG5MakRISbNGkSJk0K/kazdOlSXH755ZgxYwYA4OGHH8b333+Pjz76CLNnzwbgznbeeuuteOCBB9CjR4+wjJvCSBeQD6lQdjogH9MgF2sQEoBoGVo3E/Q+Fmj9zCGfUmH5ogLKIRVaDxOcF8eFLSHhpZ0SBVeZDsuqCliXlcI+LxEiQQnrGIiIqHX5738/RlbWPuzZswtdu3arVUreUFKpBmWfC+oIa7NMbaSWo3PnLli48DXMm3cz7r77T3j66Rd8B76Nmb4hhMD//vcpzj33/FoH/jX17z8Q+fl5MJvNdU7z8IqLi0Nycgp27tyBIUPc1dculwtZWZm+XhH9+vWHqqooKSn27WMyyVAbmLCRZRnDho3AsGEjcMMNN+HCC6fi55/X+3pk7N27B06n01ctsWPHdqSkpCI2Ni7gGGrq27cfNm36FdddNyfg5SaTGZpWvzEnJiahsLDA93tlZWXAShNqOCYlWjCn04kdO3Zg7ty5vm2yLGPcuHHYsmULAEDTNNx5552YOXMmJkxoXJffqttu2oep9/pNvZ3WqFGx0QWUbQ6YvqyAnKcF2EGDku0CfrBBT1GgTomBNioqJMkDKccF01obRLQE5x/bQbY0zxKdNeNSMz7aGTFQj2sw/WaH9cNyOG9oF/bkiNH4ugqOsQmOsSGqraysFFlZ+3y///rrL01OSkQtKnF/RusC6qjazQSpbfEmJu644xa/xERjpm/89ttGHD16GBdcMP2k+44cORqDB6fjr3+9C3PnzkOXLt2Ql5eHNWt+wAUXTPetwFHdjBkz8eabb6BLl67o0qUr3n33LTidDl9FQvfuPXHmmVPxyCMP4Pbb56Nv334oLS3G+vXrMHz4KRgx4tSTjmvHju347bdfMHr0aUhMTMKWLZtgs9nQvXvVeBwOB5555nFcffW1OHQoB2+9tRRXXfXHoGMoKirCL7+s941h1qzrcO21V+DFF5/DhRdOhyTJ2LjxZ1x00SWIiopCp06dsGXLJkyefCbMZgsSExODjnfEiFPxyisL8fPP69G+fQcsXfo6AH6OhgKTEi1YUVERNE2rlTlNSUlBTk4OAODHH3/Ehg0bkJ+fjxUrVgAA3nrrrTpLtQIxmWSkpMSdfMd6SEpqWjlVpBAuAVGoQpRpkMwSpCQTpCaeqa9vbPRCFc4lJ6DvtQMA5L5WKKPioPSPgpTqflmLYg16lh3qhnJgtx2W98sg71RhuSENclLjX/rCJWBfmQshAMsVqYjt3bBmT/VlNiu1nnOB4iNujIX98GEou51ot1PANLF5xhPpWsvrqjkwNsExNqFns9kwbdo0nH/++fjzn/9s9HCoAQ4cOAAAGD78FOzatRO7d++C3W6vKuPWBcyfV0DvZYY2+CS9jHQB2AXkPA1OzYl1X/+ELp0Ho0uXrs37ICjiVa+YuOee+XjqqecDThU4mc8++wRDh2agZ89eJ91XlmU8++xLePXVf+HRRx9CaWkJUlJSMWLEqUGPCa6++loUFOTj4YcXwGx2LwmakTHcr7/DggWPYOnS1/HSS88hPz8PSUnJGDIkA2eddU69HkNsbCy2bNmMFSveQWWlDZ07d8bdd9+P9PQhvn3GjDkNaWntceutc6BpKs4770JcccWseo+he/ceeO65hXjttX/hk08+RFRUNIYOzcD06ZcCAGbPvgXPPPM4Lr/8YjidTqxZ82vQ8V5wwXTs3bsHf/vbfYiKisINN9yEw4dZKREKkqg5MYYi1oABA/waXR4/fhwTJ07E+++/79fY8qmnnsKWLVvw7rvvhuy+XS4NpaW2Jt2GLEtISopFUVEFdL0RTztdQCrWgXJ3iZVIkIEEObzlkJ7qBOU3O+QsJyRXjYtTFWiDLdDGx0Ak1z9B0ZDYyNlOWJa5m0vqnUxwXRQHva+lzutIOS5YVpRCPqFBT5ThvCUJIqVxCRRlbSUsH5dD62uG86bEZqtMuOii8/Df/34O4OTxkQ66YP1nEWCRYP9zMpDYdqZxNPl11YoxNsGFKjYJCdEwm9vO660+nn/+eRw4cADdunVrdFLC5dJQXFzZpHHIsoSUlDgUFJTz+V9DsNisWvUZ1q9fg0svvQxZWZnYunUzLh/7B5xa0A+Oy+Ih56qIfr0EAFDx91SYf6yEemoURFLt14D17RKYfnd3O3gn8yNslndDHhqH+fP/jPj4hp0YCrdIfe6oqor8/MNITe1y0ukKzakxUxRaA1VVMXPmdFx22ZW48spZAfcJdWwee+wh2GyVePTRp0N2m0aqT3zqep4nJsa02s9cVkq0YElJSVAUBfn5+X7bCwsLgy4b1BSh+mDSddGg25KznTD/bIey1wmp0v96erwMbaAF6tgo6F2at9GhsscJy3/LIee7p0oIqwSttwkiTgZcAnKhBvm4BvlHG0xrbFDHRMF5Xhxgrf9B+8liI2c7YXmjBJILcI2LhvP8WMAkuc/I1KWbCbY7kmD9sAymzQ5YXimC/ebEhicmVAHrt+4vys7z49x324x5zZqxCBqfria4JkbD8oMNptUVcDZwqa7WoKGvq7aEsQmOsQmtAwcOIDs7G5MnT0Z2drbRw6EGOnTIXWXarVsPWK1R2Lp1M7KWbMKYvj2gd7JBVEt4Wz4rd3832e2E/fakWrflTUiUucqxtXAnkCTB5XJi27atGD/+9PA8IKImOHLkMDZt2oiMjBFwOBz4z3+Wo6Sk2LfUJVEoMSnRglksFqSnp2PdunWYMsW9xI+u61i/fj2uvfZag0fXdNIJFdaV5VD2u8sRhAJo3U0Q7WRAAFKxDvmICvNGO8wb7VDTLXBOj4NoF+IMoiZgWVUB8xp3pYjWxwzXpBhofczuhED1MRdrMG20w/yTDeb1dihZLthnJUB0aPpLTT6iImqpOyHhPC8WrjNiGnYDZgmOmfEQMmD+zQHr8lLYb02s9RjqYtpoh1yqQx1sgd45st4+XJNjYN5oh+k3O1ynR0N0jKzxEVFkC8US3E899RTuvvtubN68OdzDpyZSVRVHjhxBTEwMUlJSkJCQAEUxYXdxJjRdg1Su+00dN//smT55rHbn/eq2FeyCEAJd47siB/nYt28vkxLUIsiyjM8++y8WLnwegHtZ04ULX6u1AghRKPBbe4SrqKjAwYMHfb/n5uZi165dSE1NRVpaGq6//nrcfffdSE9PR0ZGBpYtWwa73Y5LLrnEwFE3nWmjHZZPyiC5AL29AufkGGjp1tpVB5U6TFsdMH9XCdMOJ5QDRXBcngBtQN3TGepNFbC+WwrTdidEtATHjHhoQ4PPIxWJClxTY+EaGw3rf0ph2utC9CvFsN2cCNGpCS83h4B1eSkkJ+CcGtPwhISXLME5Ix5ygQblgArzVxVwnVfPXiGagPk7d5WE66xG3n9zipbhnBID62cVsHxeAcf1DV/vOxApX4V8RINcpEGYJYg4GVpvMxDXPM09icgYTV2C++uvv0bPnj3Rq1cvJiVaoMOHc6HrGrp16wFJkmCxWDCwshv2aDuRVZaDXq7BkPJrN5UWCXV/Fmwt3AEAuKD3VCwxfYwDB/bD5XLBbOYy1hTZOnbshFdffcPQMdx//0OG3j+FD5MSEW779u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJd+Zm8eLFSE5ONmrITWb6sRLW/1VAyIDzHM8BeLC+ETEy1LHRUEdGwbKqHOZ1dliXlsBxdUKdyYN60QWs75TCtMMJPUWB/cZ2AeeNBhQnw3F9O4hVFTD/ZEPU4mLY5yZBpDauisPycRnkfA3qIAtcZzYxIaBIcFyegOgXimD+wQYt3Qq9+8m/HCn7nJBLdKj9zM0+Vaax1LHRMK+1wbTbCecxtfHVEkJA2eKAea0NyqHAZ8G07iZ3xcxgC5d5I2oFmroE99atW7Fq1SqsXr0aFRUVUFUVCQkJuOmmmxo1Hq541XwCxcbdrE5Cjx493Ns1gaF5vbAHO7GzaC96uwb5pm/63VaBDvN6G7TxtT+bixwlOFCWi2RrO/SM7ooenXtgz549OHHiGLp1695sj6+pIvW5E2njIWpOsiy1qec8kxIRbsyYMdizZ0+d+8yaNQuzZgVuONPSmNbZ3AkJM2C/vh30PvWseDBLcE6Ph97VDMv7ZbC+WwqHpV2TKibM37qrL/RUBfab2jV8WogsuXs+uATMG+yIeqsEtnlJDZouAQByphPmTQ7oCTIcl8WHpLGkSFbgPD8W1pXlMH9VAcfsxJNex7TZAQBQT214h+iwMUlwjYuG9X8VMG+wwXlxw3tLSKUaLB+Ww7TbPR9YT1Og9bNAT5YhaYBUoEHJdEI5qEJ5qxRaNxMcVyQ0OuFERJGvPktw33XXXbjrrrsAACtXrkR2dnajExJc8So8qsemsPAYoqPNyMgYhJSUOIhKHYOT+kM6sAo7i/Zi+nY7JC3w56/l43JET0uDVO3zvRInsLXAXSUxLCUdSrGOfomdkKPuQ0VFEVJSBjfvgwuBSHvuOJ1O5OfLMJkkmEzGVisaff+RjLGp28njI0GWZSQlxfitdNLaMSlBEUM+4ILlv+UQJsB+XQMSEtWop0YBmoD1w3JYl5fCNj+p/tUN1ceS7YT560oIC2C/NqHxfSokCc7pcZDzNChZLpi/qYTrnAZ8yOvufhYA4LwgFogN3Ru9OjIK5u8rYdrrguuQC3q3OqofHALKDgeEBe5pNBFMHRkFy+oKmH5zwHleLGCtf8ykYg1RrxZDLtKhpypwXBoHvbe5diJICCh7nDB/VQnlkIroFwvhuCwBWkZkx4aIGqc+S3CHkqrqxq941YrVis0xF3Z//DscnVTExiajoKAcKNUQZ45Fj7guOFCWi9ySo+gW1znobRbtLvGbphlllbDFk5QYnpIOaECHX2Oh7i3HzpF7MXDgsGZ/nI0Vqc8dVVWh6zpUVQAwbvWLtrr6Rn0wNnWr3+obArquo6ioEiaT0++y1rziFZMSFBlsOqzvlUISgOPi+JMucVkXdXQ0pHwNlh9ssL5fBvucdg0rr3cJWFeUucdySTxE+ya+TGQJjj/EI/r5Ipi/r4SWboHetX7TH5RtDiiHVWhdTaE/4FUkuCbHwPphOczfVMJxXfAeDMoOh3vFj1OsgCXCS8liZKjDo2D+1Q7TJgfUsdH1u16ZjqjXSyAX6VAzrO6qlGCPVZKgDbRC62eB+dtKmL+phPWdUji0eGgjIriShIhCSggBKUD12qWXXtrk2zZqxatWTQj3sazZnaz2xsbxXA4qMovRLb8TzHkS9E4Ckt0ds2HJ6ThQlotf87eiW1xnCAsgOQPc9mEX9A5VBwtHtTwcqTyODtFp6BjdHgDQNdad1Mg9mNsi/iaR9tyJpLEQNbdIe/01N9bXUESw/K/CfTA41Ap1ZNMPvl1nx0LvqEDJcsG0wd6g65rW29xjGWyBekpoDjBFsgLntFhIOmD+qp5rzwsBy1fe5TdjQzJtoyb1lCjoiTJMu5yQCmrPlfUybXbHsKUccKtj3eM0bazn314IWN/39O1It8BxRR0JieoUCa6psXBclQBIgPU/ZVC2O5ow8uCkUg3KdgfMX1XAvLoC5m8roOxyABU8I0HU3MK9BDc1j6jXShDzcAGg+X/Rz8l3NxTvYe2CmBeKIBVoiHqlCAAwInUITLKCzfnb4dScQSsn5aP+/Yc2Ht0CABiZluFLXCWY4xBvjkXB74ehHXcANr5/ExEBTEpQBJDyVJh+tUPESHBcGheag2+Tu5mjkADLNxWAs56ZRpsOy3eVEBLgPDe0cynV0Z4EwG4npKN1LyEGAPJ+F+R8DVp3E/TezTSnzCRB9SQalB1BDqY1AWW/C8IquZdBbQH0rmboKQqUwyqkkuDJFi9lqwOmPe7+IY4rEwClYc9BLcPqvh7grrIJ0AytseQcF6xvliD68UJEvVUKy9eVsHxbCcvqSkT9uxRRj+TD8epxSLmukN0nEfmrvgS3l3cJ7uHDhxs3MGoQZb8LkkMADv/vBAfLDwMAesR1AQBYV5ZBLnfvE2OKxpCkgbBrDvyWv803a0DU+JiQynXAJaDsckB1uLDl2O+QJRmnpA6FHifBdkciRJoJXWM7AdlOlDyyGzFPFEI+xPduIiImJchwlq8rIQnANSkGiAndU1Lv7J7yIJULmH6p39xc8082SJUC6qlREB1CPLtJkeCa6O7Obfn+5NUSpl/dZ/nVUc1bnaCluxMepp2B6lHdZ38kl3u1iYYerBtJG+h+XMqewI/Lp1KH9b/lAADHjDjA3LjHqGVY4ZocA8khYH27BHA1seROFTCvKkfUK8Uw7XBCxEpwjY6C45I4OC6Ph+OiOPd0GqsE7ZcKWF8qguXT8von4IjIT0VFBXbt2oVdu3YBqFqCOy8vDwBw/fXX47333sNHH32ErKwsPPTQQ61iCe42o3oZdI3355zyXABA97iu7g3VKtCECRj12DnQOyv4qssmOEa6k/Ouif5TAyUVsKyqQNS/S7H11Z9Q4ahAelJ/xJvjIOmA3sUMES2hS2wnAEBuxRFIDgHTzw2r5iRqbnPn3oAffvjW9/u+fXsxe/YfMXnyWFx33VUoLS3BRRedg7y8EwaOklob9pQgQ0nHVChbHe4DrnH1nPvfAM7JMTBtdcD8gw3qadF1r3yhCZh+sUNIgOusJi67GYQ6KgqWbyqgbHVAOkeDSA7SrMahw7TNAWEG1GHN2zxR72KCniBDPuACynUgzj8xJOe4qzr0Hi2jSsJLHWhxL+m52wl1dPDnlnmDDVKFgGtUVJMrUlxTY6AccEHJdsG8xgbX5EY+j5wCUW+UuCtUoiQ4psW6m7jWev5GQ1WBhN0Czg8KYF5jg5zlhGN2IkR8M+acNQH5uAZU6pBUAT1JgUhRGryyDFEkaYtLcLclUnlVokGqlpRwOBw4Unkc8eZYJFsT3ZdXK3ZTR0Wh88A09Dl3KPbt24O11q0Yf+dp0NsrsPxQ7YSHKqDscUDVVaz56ntAAGd2nuC+zHt/EtyVEgAOVRzBWADy8ZNXTlLLNWHCyDovv/76GzF79s1hGcvu3buwePEr2L17J2w2G1JT0zBkSAbuvfcBmM3u73g//fQ9KioqMHHiZN/1XnllIdq374DHHnsG0dFRSEhoh/POuwBLlryGe+99ICxjp9aPSQkylHmDzd1QclJMszRQFJ1MUNMtMO1wwrTJXufBqZLpglymQ+1nbtSKHfVikeAaHQ3Ld5VQfndAnRT4oNW01dNY8lRrg1aPaBRZgpZugXm9HaZdDqij/GOk5LhLS1taUkLvbYawAMo+J6CKwAfMetVZKtekECTFZAmOGXGIfq4I5m8r4RoZBTQ0OeASiFrmTkhoXUxw/DGh7uejRYJ5cjxKewpY3imFkuVC1MtFsN+YGDzp1UhyrgvmH2xQ9jjdJdDVCLN7ZRbX6KhGrZxDZLS2tgR3WyOVVevfUC0PcPBgDnSho3dCD1/vB6l6pYTnu8nZZ5+LzMx9+PrbrzD4jiFoZ0r0vwNVQCQo+GbrGhSXlyA9qT86x3Z0X+ZNckjwreCR06kAwgJ3gleIZukbRcb75JMvfD+vWvUpPvroA7z++jLftujoqu+BQghomgaTKfSHZ0VFhZg//zZMnHgGnn/+ZcTExODw4Vx899030HUNgPs73gcfrMB5513o18D38OFDuOyyK9CxY0fftvPPvxDXXXc1brvtT4iPb/jy60Q1cfoGGUcT7moA2b2MY3NxjXcfbCrb6m5AaNrkmS5xapimS+wKPq1A2eEMy1i81MFWv/utTs5xQUiA1q2F5TBNErS+FkhOd3+OQJQ9TsjFOrS+Zoi00Dw+kWqCOi4aklPA8mVFg69v+W85lEwXtE4K7HPa1T9BlqDAfkM7qEOtkAt1RC0rqTVvutFsOqzLSxG9sBimbQ5AE9D6muEaGQXXqChfrxHTFgeiF5XAuqwEUmHo+moQETWVX1KiWqXE/v1ZAIA+8T2q9q2o9t7pmdLXsWMnjB9/OpxOB9555204nf6fl3KpjswT2fjuyDpYZDMu7HF21e1571oC4s1xSLQk4HhlHmzJGiSHgFTChpetVUpKqu9fTEwMZFn2/Z6TcwBnnz0RGzasw/XXX4UzzjgN+/btwWOPPYQFC+72u50FC+7GY4895Pvd4XBg4cLnMX36uZg69XTMnXsDtm//Peg4fv99GxwOO+6++37069cfXbp0xejRp+Gee+6H1er+rllUVIRNmzZi/PjTfdebMGEkDh/OxQsvPIsJE0ZiyZLXAADdu/dE+/btsWbNDyGMFrVlLewog1oTOcsFqUJA7W8GYpsvP6b3NEPESFCyXO5O19EB7suuQ9nhgLBI0NLDMF0iXoac4wIq9dp9NHQB5YALwhy+6gS9txnC7G4CVv2MjVSiQS7WoXdUAsctwmkDLTDtdMK0xwlnv9pn731VEqeFduqQ88wYmDbZYdpoh2tKTL0TC8oeJ8y/2CHiJNjnJDa8x4pJguOqeOANHaZ9LlhXlMIxK6FJZ+Ckoyqi3iyBXKhDbyfDNSXGnSyr2XvDKWD63b06iGmnE8r+IthnJTRped86qQLKXieUXU7I+Rqkch0iWoJIVKD1NUMdZAWCdMknorZHKg08fWP//mwAQK+EHrWuA8CvivOss85Gbu5BHDiwH2+8sQjX2c9GSlQShBDYuXMn/pP9CXShY3qvab6pIP6DcN9W17jOKEAWci0n0B+dIB9ToSXy/aqteu21f+L22+ejQ4eOaNcusV7XeeGFZ5CTcwB///uTSElJxVdffYH582/DO+98gLS09rX2T05OhtPpxJo1P2LixDMCLmW8bdsWxMTEoFu37r5tn3zyBW688VpccskfMG3ahX6VHQMGDMLWrZtx3nkXNPxBE9XApAQZxrTVXbmgDW/magBFgjrYCvOvdii7nQGXtTTtcLqnS4y0Nss0Ej+yBG2gBeaNdih7ao9HOq5Bsgtovc3hm6NvkqCnmaAcUYFyAcS779fbT0JrYVM3vLzjlo8EmLNbpkPZ7YQeL0MbHOID5xgZrjHuaTqmjXa4zq7HSi42HZYPywAAjkvia/X2qDdZguOqBMgLi2Da7oS2se5pS3WR8lREv17sTh4OscDxh/jgySmLBPXUKKgZVlhWV8D8kw1RS0rguDw+tK9x3d37xfJlhf/ZTK8cFaatDlhM5dDGREPMaBnL2BJR8wpUKeFwOHD48GG0M8egfVRKwOuJaglYRVFwxRWz8M47b+LgwRw8s+0VdI3tBJtqQ569EABwbrfJGJU2PPAgPG+f3WI7YSuycBDH0B+dIB3XgIFNfoht0ocfrsCuXTvDep9DhgzBxRf/IWS3d+ONt+LUU0fVe/9jx455poKsQnKy+3l73XVzsG7dGnz55ee4+uprA4w5A1dddQ0efPBexMfHY/DgoRg1agzOPfd83/SL48ePIjk5xS9hkZKSClmWERMTg5QU/+WPU1NTkZWV2ZiHTFQLkxJkDFXAtMMBoQBqqA8IA9CGWGD+1Q7TdkfApISc5S7D9E6taPbxDHYnJUw7aycllAPuqQZaz/AmAkSaAhxRIeep0OM9K1ccbJn9JLxEqgIhA1KARmJKjguScDfEbI5VRdTRUTB/70lKnBlz0vswr7dBLtGhDrdCG9LEap0YGY6rEhD9z2JYvqiAOsTa4KoLqVRD1JISdxPQ8dFwXhhbv4oLswTnBXHQO5pg+bAM1hVlsMfLIekzIZXpsC4rgXJIhZDc7x3qMCv0LiaIeBmSXUA+pkLZ7YTpNwdMa22wbc2FPDMe+oBmfG1X6DBtdUA+5IKcpwECgFVyrwDU1wytvwWQOV+cyEjVKyXgmdF38OABCKGjd3zPgGeOAdSqCouNjcX119+In376Ab+t/8q3nGjnmA44p9sZGJTYr45BuP/rFtsZ0IBDzqMARsC6qgKigwJtYPNWalJkGjhwUIP2z87OhKZpuPzyi/22O51O9O0b/Pl366134MorZ+HXX3/Bjh2/Y/nyZVi+fBkWL34TqalpcDgcsFjq/xy0WKxwOLh6DIUGkxJkCHm/C5JNuBMSYZgWoPW1QFgk9/KQLlHrS4Zy0FMR0D08B99aXwuECVD2OgFN+B2wKJ7+B3qv8CYC9DR36ah8QoPe273N2xdAb99Cy0pNEkSqAvmE5l7irdo0IbmZG3iKZAVaPzNMe13uipjBdXzQuwRMa20QEuCcWo+qinrQu7l7Pph/tcPyVSWc0+Pqf2UhYPmwHHKRO0nivKCeCYlq1JFRgCZgXVmOqDdLYZuXBJHa+OeRdExF1NISdw+QbiY4L46D3tX/byeiAC3R/cXeOTUW1q8rYVpng/WNEkjTYt3LDodShQ7L5xUwbbZDClCMo2S5YP7JBj1JhuuMGKijo8KXnNAFYBOQdEDESkyKUJsnFVebvqG6KyX27t0D6EC/dr18l6kjrDBtrupBJQLkM00mEyZPPhPnfz4URc4SWGQzYk0xwRMbvjt2/9c1tjOkMgm5tmO+iywfl8N2L5MSDTVjxsyw36fJJENVQ9cHJCqqxvKykgQh/CsBVbXqQ8Zmq4TJZMIbbyyv9ZyLja37O0RSUjKmTj0XU6eeizlz5uKKKy7Bxx9/iDlzbkG7dokoKyut97jLykqRmJhU7/2J6sKkBBlCyfUkAXqH6cDbLEEbYIbpdyfk/S7o/at9y6jUIedp0JPlxpfMN5RFgt7dDCXb5T7w7+C5XyEg7/c0luwe3penN/Eg51U1KPQuoSbCFZdmoHcwQT6hQT6hQu9V9Xf3riqi9Wi+OKtjomHa64LpZ3udSQnTZjvkcvcUiaYcuNfkPC8Wpu0OmDbY4JoYXf/eFtscMO12Qk9R3FM2GnlAq46JhlSowfK9DdYPy2C/qV2j+ltIZTqilpRALtWhjrC6x3SyqU2xMlyXxCPm1AQ4XjsBy6oKd1Pd00OTmFB2OmD9oAxShYCwSnCNtkIbaIXeQYEwSZAqdCiHVJg226FkumD9qBymLQ44ZsaHfFUUnwod5p/dy+DKh1Rfcz1hAvROJqhDrdBOiWre5WKJIpRUUq35rktACOFebUUXGFitukHrZPJLStT1XiNJUuDeEUEIz01FmaxITUzFicoilLsqEGeOhWiBfZuoeSQmJuHQoRzf77quIzs7C8OGjQAA9OvXH6qqoqSkGEOGZDT6fuLi4pCSkgKbzb20bf/+A5Cfn4eKinLExp78RMaBA/txyil1L3lKVF98ByRDyIfdSQm9S/gOvL1nVWuuCa4c8owlTFUSvvGkBUgCFOmQS3XonUxAVHhfnt7VJ6QTVfFpHUkJT5yPV194XkA+rELESCFNAtSkDbJAREtQMp1+3d79Byhg/sn9hcA1McRn8uNkuMZHQ9IB0wZb/a5j02H9bzkAwDEjrnZDywZyTY2F3lGBku2C6ZdGlHm6BKxvuhMSrlOscFxej4RENaYRsXDe0A7CDFg/qzjpKjz1us2NdljfLHVPbRkdhcq/JsM5PR7aAAtEogLEyRAdTFBHRsF+YyJs8xKhdTZB2e9C1MvFkI4GKKtoClXA/GUFYp4sgGV1JZQcFYiWoHU2QetiAiwSlEMqrKsqEP1UAcxfVQDOEK3MQtRCyMX+PSXy8vJQUFCATqmd0M5StaShNsACdVC1ExdNOCGut1eg9TbDNrude0O1pGy3Dt0ACdh7kefMtOBrktxGjDgVO3Zsx9dfr8bBgzl46aXnUFJS7Lu8e/eeOPPMqXjkkQfw44/f48iRw9ixYzuWLn0dmzf/FvA21679CX//+4NYv34tcnMPYf/+bLzyykLs35/tW22jX78BSEhoh99/33bSMTocDuzZswujR58WksdMxEoJMoR8xFM63ymMSYlAB6cA5IPeM+ZhTkp4DoalPA3eryLyAWOmbnjHI6SalRLus8BNPTA1kt7B/RyrnoySD6uQVEDta27esnZFgtbLDNNOJ+SDroB9FeSjKuQTGrRupmaZSqKOiYL5u0qYN9rhOiv2pH9L8wY7pHIB16nWkPSBgEmC4w/xiPpXMSyrKqAObVh/C/PXFVAOqtC6m+C8NL5RlRZ6HwscsxIQtbQU1pVlsHU3uZMHjWD61Q7rB2UQMmC/Mh7asJM30tS7mmG/PRGWj8th/sWO6FeLYb85EXrnpr//ScUarMtLoRxUIUzuJZBdo6IgOipVsRIC8lENpt/sMG2wwfJ1JfQdTujzo3zl5EStmfW9Uki2qoN+yQXs3Olujjig1wDgRLWdoyU4rmsH0z157t/1xicLRJQE+82JVRuqvd56du6J34q3IasiByOkToEb91KbNHbseFx99bV44YVnIYSOyy67EqNGjfHbZ8GCR7B06et46aXnkJ+fh6SkZAwZkoGzzjon4G327NkLFosFL774HE6cOI6oqCj06NETjz76tK/aQVEUTJt2Ab766gucdtq4Ose4du1PaN++Q5MqNYiqY1KCws+mQy7QoaeEd5nJQAenQFVSQg/zdAlRrVLCt4R5gaeHQwcDejhYJIhE2T3v1ikACZAcwpc8aakCJaOq+kk0/99c6+tOSihZgZMSyh5Pk9Vmavgq2inQ0q0w/e6AaZvDvZxn0MEKmNZ7qjYmh65qQ+9mdidHNthh3mCDa0r9+mZI+RrMP9kgzIDj6oQmJce0gVa4To+G+ScbrP8pg/3Gdg1OSMlHVFg+cickHNckQBvUgPnfigTnpXEQMZJ7OsubJbDNS2rScshSkYaoV4ohl7j7bDiuSgg8NURyN910do6Da3w0rB+UQclywf7IYUh3JAHtWm4lFNFJCeE/HQMAXALbt2+HVKBi2PrOfnXDwrMCl95OhlyiQ2/f8M8JIQGSAFCzKKraW06vLj2BncCBnANAzFhIlbrfktzU+syYcTlmzLjc9/spp4zEmjW/Btz35ptvw8033xb0tsxmM2666VbcdNOt9brvLl264p57Fpx0v5kzr8a1116OvLwTvqVFP/jg01r7vf/+u7j22jn1um+i+uA3EQo77/KMoThL2BAiUYYwew5OvWWSunB38jcBescw93DwJiXyq1UmeJYsEwnGvDT1NAWScI/JN5a4lv0FSaQqEIp/MkoJY3WM5klEKJ4VXmpS9nrG0oyrQ7jGuRMRJ5vCoexwulcAGWDxTecJ2RgmxkBIgHmtLfhUlhos/yuHpAGuKTGNrmyoznluLLRO7qkkyvbAf4+gHALW5aWQVHevjgYlJLwkCa5zY6FmWCEX6bC+W9r4s7DlOqIWl7j/XiOssN+SWK9eFSJZgX12O6inR7vL0itD16yNKCJVm6qkJ7k/W0tKS5CdnY2UzCh0lzr57291f+bZ/pQE2+2JEHVUdHo/x2uJct+Gt6GmT7WP9qSEJCQktMPRo0dQaXa6m+W66veQiJpLamoq7r57AY4fPxZ0n9LSEkyYMBFTpwauyiBqDCYlKOwkA/pJAABkCXoHEySH8HXhlvI1SDYBvaupQfPUQ0EkeZarDJSUMKgRnfCcEZLyVEgVLb+fBABAkSDSFEjlwr0CBwA5172kZM3VG5qD6KBAxEqQD6qAo8YXVLsOOccFESs161QmvZcZepIM+ZDqi0Eg5rWVAAB1fHTQfRpLpCjQhlohlQuYfjt5bwk5xwXTTqd75YoQNaeESYLzfHfzLstXFQ1KCJi/rYCcr0EdaIE6oQnxkdzTWfQOCkz7XDBtakSPCyEQ9V6pezyDLXBc1rA+G1AkuC6KR/RLPSC6tMzlfonqSyp3v861LiY4p7lf/79nbYcQAhnJg3yrF+gdFNivS6iqoIqRoXer+/VhuzUPMMtVAAEAAElEQVQRtpva1drurbZAzaREtZeppMjo2bMXAIH9zkPubXW8PxOFy6RJk+uclpGQ0A5XX33tyVebIWqAFn60QS2RfNhTOh/upASql/K7EyOyb8lLA2YyKRJEigK5TAfsni8iZcYmAqovCyoZPJZQ8v59vX93qVwHoiXfGbFmJUnQ+lgg6YBywP80mJLlgqQDWn9L8/a2kCRofS2QBNxNNwPtUqhBOaBCT3EvZdocXJPcB/PmtSdvumn6udo0khD2NNH7mqH1MkM+oUHZWr+EgFSmw7zWBmECnJfGNf1vZZXgmOFurGf+ogJwNOxAxPSrHco+F/T2ChxXJQBK48YjcZlQagMkTzWQSJIBz1vb7/u3AwCGp6T79tP6WRpeARUjB+69400S1qx8kPx/7tXLvf52Vrl7pQXvMtxERG1Nyz/aoBbHu/KGFubpG0BVXwnJ21+g0n0WQ8Qa8+W8erNLAJDK3P8blpSotixoa1h5w8v3uPI1QBOQXO4GZOGi9fWs/FJjCoey1/272r/5pm74xuC5D2Vf4Ppgb7JCG9x8CRK9qxlaZ/cSrVJeHStQ2HSYtjkgLIA6vBHTJOoiSXCe7a68sHxTWa+O9+bvKiG5AHVsNES70PRY0XuYoY6wQi7TYf62st7Xk0o1WD6rgJDgrpBowU1oicKh+meZMEvIsxfgUN4hpKSkoEts1dQNX3VDKHiSH5JWs1KieqkE0KdPXwDA3uJsAED0opImNdYkImqpWv7RBrUowqVDOqFBbycDBhzsihqVEr4zKA1YDSCUqi8LKoSAVKZDxEhhn0pSNR7v9I3WlZQQnmaCkk0Adk8iKoxLrupdPZUaJ/zPgimZnn4S4UhK9DFDSJ5ESIADcW+ywptAabZxeJbaM+0M3tPBtNXhTgIMiwKsof876b0t0LqZIOdpviRpMFKpBtMGG4QFcJ4R2iVbnefGQpg9lSO2+lVLmL+rhGQXUMdHh30ZY6KWyLuqhYiVAZOEjSe2QCrVMerUUf7l5yFMSgjl5NM3IAFJSclITU3DMZGPIkeJe7uNSYlgqv5cjBG1Zu7nd1ubHdPyjzaoZanUIQkDGzn6VuDwVCZ4KiXCuQpIdcJXKaECds8ZfCOTAHESRLQEOU81vL9FKIlozzu7TUDyJCUQxkoJ3dOkUSqulpTQBaRCDXp8mBJ0sTL0LibIJbpfHxPvWJQsJ4QMaL2aN0HiXWVE2Rl86oRpo7vnhDrq5MttNpa3AqNWV/4alC0OSBqgjo4O+d9JJCpQR0RBcp18HACACh2mjXYIM+CcEtoECVFr5euPFCtDlVRszNsC2S5hpHmI334ihNP5XKe7p6q5zqyx0lD1u/C8nfTvPxCikwm7Yg/4jZdqk2UFgASnsxG9eIhaCE3zTDGXW/bqdw3FJUEprIT3gDCUZZINuf9EGcIquSsldFFVKWHU9I20qukbotQzdcPIJIAkQU9ToBxUIee63xRFE5YsjBjeTuh2HZKnf0c4p28gRnKv/FJc9WVTKtUh6VXd4MNB62eBkqtC2euCWm11DfmYBqlCQOtlbvY+G3oXE/QEGXKOCpTrtQ70pWINSq4KPVVp1mV6tQwrxGcVULY5gPNjg05ZMXn6TqinhHgaiYc6JgrmX+ww/2yDOjaqzlMj5g02SC7ANTaqSUuJErVauoB0QnNXRXpfSxVVn/M7cnaiQrUhPWkAov9bYypbCKdCaSOiUNHPUjuR6Vcp4f6lf//+WLfuJ+wuy8K46GGQKnTWAQQhSRJiYxNQWloIALBYrPAPathGArVmFQx5MDZ1O1l8BMrKimG1xrS5RqJMSlB4eRq6hfKMRINIEvRUBcphFagU7nJ+AMKoSgnPgaGcp0GUREBSAqidlIhv+W+K3r+v//SNMD4uSYJIVCDnae6mplEypCLP3zspfJlwra8Z+M7dcLP6Chuyt59EM0/dAOBuujnYAvMGO0x7nFBP9a+GkHOqTSNpxg9kkaBA72OGkumCvN8VsFmdVOBJkKQozbaEsd7VDK2LCcphFXKOCr1nkL+BS8C8zgYhIXSrkRC1MpZVFTD/ZINjehy0wRbIxzVfRaSIkfHLr78CAE5rf4o7KVqNCHWRWIDKKlF9k+ftrUePXjCbLcgs3g+X1eWbbkKBxcW5VztxJyaMiZUsy9B1VrQEwtjUrT7xkWUFSUntwzSiyMGkBIWVcBhbKQFUTY+QyvSqMygxBlVueKZLSCdUiGLVb3xGcS8L6oDkec80ejyh4EtA2I2ZvgG4KyLkPA1SsQ7RUYZUpPu2h4vwNPys2eHd19uib/P3tgDcfSXMG+xQAiQllBxPI9wezZ8gUYdZoWS6YNrqgDNAUsK0zeHbrzkTJOqYKCgry2HaaIczSFJC2eeEVC6gplsgUtpWSSdRfZnWu1ftMW2yw/K/ckhqVaPj3PxcHMjJRurIjugv96595XB8L6n2PiI8P5pMJvTvPwC7sjZhT3E2+lUkNf84WjBJkhAfn4i4uHbQda0+vYpDSpYlJCXFoKioEjqbkvphbOpWn/hIkjsp0daqJAAmJSjcvJUSBnaMF3GeUv4yvapSwqBGl5Ak6B1NUPa7oO9zz6OPhEoJL2FCeJbNbG7e6Rs23ZeUCGejS8DdPwBwQS7WoHU0QTagUkLEyRAm+O7bSz6iQsiA3i08HwlaN89qJMdrN5mUPcumBq0YCCF1kBVWlNdaqtVL8SYlMppn6oZvHBlWWD4qr2pCGuDLiLLbU80ypHnHQtSied/WdUDyvL14V7f6adNPAIDTT5kAaWvt11hIV98IJkBPCQBITx+KnV9vxrbCnehfMaL5x9EKSJIERQn/YYwsS7BYLDCZnDzwroGxqRvjU7eWfwqUWhRfpYSBB7reg36pXPf1lIBBlRIAoHtWBNF2us/wGJ6UaF8tKREnt4r2v/7TNwzoKQFAeCoivBUS3v/DmZSALEEkKe7yYE+CEKqAVK5DtJMBJUwxiZUhYiX3wUL1JfMcAvJRFXq87ItXs4qXobeTIZ3QAGeNLwgVOpQj7t4WomMz/42iPU1IS3VIBQHKOoWAsscJIYVn+ViiSCcVar5pZ368vWGqfeGXBJBnL8COrJ2IjY3DiPRTAt9oiJISjotig18oBf55wICBMEdZsKt4H7TSwElSIqLWjEkJCi9vpUQkTN8o1yFVCnd/i3AdjAWgd3Rn+sVR9xcRo5MSIlnxzXttDVM3AAAWz1xee1UfkXBP3xA1VuDwViuEc/oGAOjJ3ikcnuRIqWdFnHZhHkd7EyTNfyqJnOtyN//saQpbMkzvaoIk3NUi1clHVd/l4RiL1ttdGaJk1z7Qko5rkIt191hay2uSqAlinipE9Osltaaieb/VSjU2f3dkLQQExo2bAJMl8Nn1UHwvcZ1ihTq+jp4vQZISFosF/fsPgENzYl/23iaPg4iopeG3GwqriOgp4Tnol0vcpfxG9ZPw0muchTU8EaBIvjnrho8lVCQJiJJqTN8Ic0+JRM/zrrhGpURiePsDiGTPODxf5iVvg9V24R2Ht0JIPlF19OCdRhGOfhK+cXT1NJvN9T876U1SNFeDy1rj8CUlap8lVfZ4pm4MYJUEUXW+HkEeotr0Da9jlXn4Lf93xMTEYvTo04KfhGjC9xLXOHdvHG34SZYxDrD6hld6RgYAYFv29kaPg4iopWolRxzUYkRSpYRnnqlh/SQ89A7+Bz26wZUSQNUUjlaTlADcDUVdALxTdgzpKeGplNAFpGLN3d8kzK+FqkoJT1LCkyTxJk3CNo72tZMSsqfJZTj6SfjG0dWTDMj1r5RQvEmJTmHqs9HTDCEBcpYLNTu3mbxJiYFMShBVJ2q+bQWYvrE69zsIITBp3BmIioqCCJJ/bcr3EudFcai8P/nkicMAq294DRg4EFbFgh2Hd8Futzd6LERELVHrOeKglsFXKWHcEHyVEic8ByEGV0ogRvaVzgsJQKzxPRy8zS5bw3KgXt7GlnKRQT0l2skQkrtCQirXIWmAHs5+Et5xeJISsmf6hlziiUe4KyU8y+FKJ6qSAXJeeBMBAKB18VZKBJ6+oYVrLMH6SmgC8gEXRIwEvQt7UxP5+uEAkNQavWC8b2OeXfaXHcSOor1IsrbDmJGnefYJfaUEJAkioR7vodWrI2p8AzfHWTEseTBUVcXO19ZD2cLEBBG1HUxKUFiJCKqU8B2cRhv/MvD2lUCcXHWmx0DaQCuECdB7t6Izs9GeFTg8PR3CnZSAIkEkyO4eDvmeMYR56gZQveFmzekbYa4cCTB9Q6oQ7r+LKYx/m1gZerLs/pvYqzX/PKG5q5bCWLkUqK+EVORJYHUwRcR7A5HRpNLqSbsaF1abvqELHR8d+BwAcE7XSVW9JILl9sKR8wvSUwIAYJYwKm04pEodW776BVHvloVhQEREkcH4ozFqWyKgpwSiJb+STxEJlQneZpcRMHUDAPReZlQ+lgatFXX69yYhvNMVvEmKsI4hSYYkAMU7TSE5/H9v7/QNucB/+oYI8/QNkSBDWCV3xZIu3IkAhzDk9ah38W92KR9X3Q03O4W5esTb3+J4tSktnr+TnhL+BBZRJJLKqiUlalZKeBJ3kiaw9vhGHKvMQ+/47hiRMtT3jVcEq5QIR3PdOpMSQPe4LkizpOBQ+REcq8xr/vEQEUWIyDgComZzxx13YNSoUZg/f77RQwEQGZUSkCW/XgmRUCnhXXKwNfVwiDS+ZUE932dFmHtKAFWVEbLnTHhYlwP1ipbd/TWKNEAISAZN34AkQW+vQHICUknV8rxG9Hjx9pWQD3uSEkc8iYAwNbn08v4Nqp8JljxJCZHC9wYioMbro3qlhBC+6Rsl5aX4MvcHyJKMi3ueB0mSqpIRAV7WWpgSkKKORpeQJXe1ROowAMDPJzaFZUxERJGA33JauauvvhpPPfWU0cOo4q2UsBpbnVC9IsHo1TcAQO9jASxSWBv8tTnVpmsIGYABofY2k1QyPcu/hrk6wTeOZMXd9LNcQC7RIBRjKob8ml1WeFZFiTUgKZHgSVh5xuBbDjSMvS0Ad/UIAEilASolklkpQQTUnL7hfs0qm+yIfqwQUpEOIQQ+3PMpHJoTEzuOQceYNPe+3reWGpUSQgHsdySFYeTwq44Qgd5yPVM4TLKCjXlbYKusDM+4iIgMxqREKzdmzBjExsYaPQwfX6WE2eCkRPWKBINX3wDcZ8yjX+oB9cw61jenJhHVp2tESeEp1a1BG2iFiJMg6e7xeM/Qh5u3r4R8QoVULtz9JAzoVyDaVzW7rKqUMOC9wZMklRwRkpQoqXYm2LNKikhlUoIIqOoHBQDw9KeN+k8Z5DIdkkNgw4nfsKckG2nRKZjadWLVvkqN//1uNEzvO3VN34D7u1GsOQanpmbAqbuwaeOv4RkXEZHBjD8aa8M2btyIW265BRMmTMCAAQPw3Xff1dpn+fLlmDJlCoYOHYqZM2di27ZtBow0hCKhpwTgXorR+3MEVEoAgGSJjCaXrVX1aTphb3Lpofcyo/KBVFQ8lorKBSmG9RDx9idQDngqNsI9dcM7Dm9ypET3VSnAgEoJ4a3c8iRNvXPWRbirE0wSRKzkPhPsWRaUlRJE/ryJOgAw/WKrWuYZQJ69AP87+A1kScaVvafDLFdL/Ho+X0U4G+nWVP0zPtAwPN+NxncYDQDYsG4ddF0PsCMRUevC9cUMVFlZiQEDBuDSSy/FvHnzal2+atUqPPHEE3j44YcxbNgwLFu2DHPmzMEXX3yB5ORkAMD06dMD3vbKlSuhKJH3JdZXKRFR0zeYm2sLqicijOgn4cfIL8UAhKexqmmje8m5cK+84RuHtzKgTI+MSgmnJzFiF+4pPgZ8QurtFCgVqns6S4z7AExESxFR0UUnl52djfvuuw/l5eWwWCy47777MHLkSKOH1arI1ZMSe12QlpcCAJyaE2/t+wBO3YWpXSeia1znGlf0/G/kV6Pqb28BXtLCk0PpGJOGfu16YVfBUezatRPpvQcj+uVi6J1MkAo1aOlWuCazspKIWg8mJQw0adIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBKWsQKA3MSz+LIs+Sol5CiDqwKqrScuxclNfmxN5b1/o8cRaWrGpSnxkaof1EVJrSbWjYmNPiwK4rPyqmVxkxRD4iF5GzuW6ZBtnoRAXOjGUt/YSJ4kleRw7ys5hfs5ohiQCGgnA0cApUyHEDIkF6B3CP3fh+85zcNqteLxxx9H7969kZWVhVtvvRWrV682elithxB+lRKAu0ePEAIf7P8fjlXmoV+7Xjiz84Ta1w3SUyKsTjJ9A9Wmtp7ecQx2aR/hxx+/x5DY/pBPaL4llJVDKpMSRNSqMCkRoZxOJ3bs2IG5c+f6tsmyjHHjxmHLli1hH4/JJCMlJa7Jt2Nz5AMykNw+DpIBc/q91I6AE+UAgKQu8ZDiI6OqJCkpcvp/GM1sVmo955oSH62DCQ6UAAAs7cyID8HzOZI0NDaus1S4PikCAMR0jobZgHiIOB02FMJUDiiaAhVAXMcYmFJC+zo4WWx0SYUdhTDrEuKSYmFznICUYgrJe15DOTvYoO5yop2wAi4JDgDmzlbENdNY+J4TWl26dPH93Lt3b5SVlUEIYejnXWsilemQ1Nrb1x7fiC0FO5BkbYer+lwCWfJPKAoZVX2Ean7c11hVtFnVtfoG4De1dUC7PugU1xFHjuRiX9ZeDEOH5h8fEZFBmJSIUEVFRdA0DampqX7bU1JSkJOTU+/buemmm7Bt2zbYbDZMnDgRixYtwsCBAxs8HlXVUVpqa/D1qpNlCVaHDmGRUFhY0aTbaipZcsIKd/frQnsl4DS+UiIpKRZFRRXQ9XB+Q4pcLpeGggJ34igU8ZFcKqI8PztkHeWe227pGh2b4Qqi/gdIKlBuUqEbFI+oKAmiWIWrwAkTgDLNAb0gNK+BesfGpiMagFquouJIGaIBaGbhe/6Fk8miwwygLLcCUAALAHucCPnzNVTvOQkJ0TCbIyOpGwobN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkQsC00Q75kCtg89mdRXvx6cGvYJIV/LHvDMSaA1QQVM9RGFkdVI9Gl76LJQnnHRqNN1I/w3drv0GGuNL/uaQLyAdV6F1MfhUWREQtEZMSLUxDz7gsWrQoZPfd5INlIdzTN+Jkww+8ffPWoyToABAhiQBdF4bHJpLUjEVT4iNZqn4WVqnVxbnBsYmR4Do9Bua1ldC6KBAGxUMkyJBPaJAK3ac/tWgp5GM5aWy8vfCcAsJW1ffGiOeInuB5byrWfGdw9eTme8/ke46/UPR6AoDDhw/jmWeeCelncIvjcDewDUXDWMtn5ZDsVc9Tvb0C+YSGg+WHsTxzJYQQuKz3hbX7SHjVlYgwrFIiwOU1kgvpSf3RyZKGQ0dzsVfPxoDEPr7LTL/ZYf2gHOpQKxyzEppnvEREYcKkRIRKSkqCoijIz8/3215YWFireqLF0ADogDB45Q2gqtFlpKy8Qc0vElbfiDSuc2Lgmhpj6BxrkSADJzTIxzxLXxqw+gZkCcLsWRLU0/fGqGa8wtPvRirRIbncY/GulkLNLxS9nsrLy3HrrbfigQceQI8ePRo9lpD0cQrB7TSWZUkplBwX7H9NaVpiQgi/hAQA6D3NyMs5jqV73oNLV3FB97MwInVI8NtQ6o5DuGIkVXuvlRQJUs37rfH9SJIkTBk3Be9+9A5W536P/u16+05MmXY63f//7oCLPWfChrEJjrGpG+NTNyYlIpTFYkF6ejrWrVuHKVOmAAB0Xcf69etx7bXXGjy6RvIuB2rwyhsAgFgZzonREGn8st9mWNzziiWdSQkfSTK2Ez2qEoS+gw6jEoVWCbBXO/gxaIUW3bMSilSqQS7xVG2k8n0qEtSn15Omabjzzjsxc+ZMTJgQoNliPYWqjxNgXN+QypwTAICEIgWmfg1/LHqhCilJAVwCNuRVXWCVUNq+Aq/tehMVqg2ndxyNiZ1Oq/O2JJPkF89KnKi6DAhb/xhXrAoX3NNXk1NiISX6fw13xtuhwu637bRew7EB3yGnIgdbCnb4ki9mVYZ3sdDmGj97zgTH2ATH2NSN8QmMSQkDVVRU4ODBg77fc3NzsWvXLqSmpiItLQ3XX3897r77bqSnpyMjIwPLli2D3W7HJZdcYuCoG8+73F4kVEoAgOv81tXokE5CkoAoCah0r6xAkUFPqFHBYlDVhrBKkMsFJJuxyxZ7l0lVDqmQbAJ6e8VXPUHGqk+vpx9//BEbNmxAfn4+VqxYAQB46623kJDQsPL6UPVxMqxXkS4Q7fmx/EgltIJq4/rdDtHJBJEa/Cuo8osNlvfL4DovFuroaEQD0Lua4LiuHY4fOoo3Fr8Ou6sSYzucigu6Tz3pcIQEvx4x0dUvA8LWP8Zkc/pmixUWVwKaf/LTpKu+y71cS/IxTZ6EV/Am/he9BuldhsByGFBLXL5WGQUF5UC5jqgXCqGOioJ6TtO+37DPVXCMTXCMTd1CEZ/W1sepOiYlDLR9+3Zcc801vt8fffRRAMDtt9+OefPmYdq0aSgsLMRLL73ka6i1ePFiv3mrLYonKcGGTGQUES1BqhSslIggonpSwsDpVMIqA9AhlXrOPRpV0RXtmUriWSJVHWo1ZhxUb9V7PU2ePBk7duwIye2G6kt9KPuGSHkqJLuA3q3moXON/Yqqlu2UTqi++5cPu2B9sxQAUPFUWtDrW9a6EzKmbyrgynC/BoRFwsGSw3jrk6Ww2SswscMoXNTj7Hr12RJy8HhKInSxPhm9WgMLXYha/axEtW/lepLsW7a5V3x3pCcNwDZbNtYc/gVTMBpSuSeB6nls5p9tkEp0mL+uhHNqaM7EsudMcIxNcIxN3RifwJiUMNCYMWOwZ8+eOveZNWsWZs2aFaYRNTNnBE3foDZJRLkPPI0qzafaqlcBGNJPwsvTCNWblDCqUgKSBJGgQCpwH9QxKRE5WmWvpwaKeda9jHDFY6mAKfhrxPv8BQA5r1qCokQPtHttnrcFyQmYv3JPd9hRuAdvL/kMqurC+BHjcdG+cfVv/B0pb/kna3RZ7X1HRMtAUVW8pnWfgu22A/j2wBqM6jIYcZWeagjPN3k51xX68RIRhUmkvE1TGxBp0zeoDYp2P/dYKRE5vD0lAGOTEu5KiaqDJiOfI8LTV0JPVSA6ts4yzZaoeq8nL2+vp+HDhxs3MCO46j7LJxdWS0TkV/0c8EA8kGpPe9Nvdqw9thFvb1oBVXXh3HPPx3mTz2vYUquR0liu+pgDvN35vQdG+485LSoFYzNOg0M48NnBryF5/wQmCbDpUDLdSQl+vhFRS8SkBIWPt9ElkxJkEK23GXq8DJ0NTiNGpEzf8J6hNHz6Bqpiog61+h/EULOrqKjArl27sGvXLgBVvZ7y8tyNFq+//nq89957+Oijj5CVlYWHHnqoRfd6ajSt7oulyqqkhVyiV1VK1jsp4d7RqTmxIvtTfJKzGrJZwcyZV2H8+NMhmRr49TVS3vJPUikhYqtVSgR4P5xy2pmIj0vA5vzt2Fey372fIsG8xuZr0is4RZaIWiBO36CwYaUEGc11ZixcU2J4oBdBqiclEGNkpYR/UsKw6RsA1HQr5MMq1FFRho2hrWpzvZ4aSXIKmP9bDr2LCeqpAZ6nDv9KCjlfg97ZVO/3XqEA+fZCvLXvAxytPIFESwIun3o1Og4d6N6hgd9eRaScgqs+jgCxEHHVkrTRtQcdFRuF80efh/9kv4OPD3yO+UNvgmy2QD6sVt2sk3PViajlYVKCwsfJSgmKAExIRBaz5G5AahN+ZwnDzuJNSnhOARtYAq1lWGHLYC8JI7TFXk/yYRf0jiYgwEFwMMrvDpg9zSgDJSW8Z+31ZBlyoQ4pTwU6myDq8bISQuCX3E1Y9fsqOHUX+ib0xFV9L4GlUxq8XRNEQ1fpqTF9Q09T/HpdhM3JKiXi6q4cEyYJQ/qkY2tiH+wuzsLXh3/C2R3OgnzcnZQQ0e6ljSEEP+uIqEWJlNwxtQVMShBRAN5qCREJlRIVwu93otbM8mk5ol8tQfSrxQ26nnmTve4dHO6KI72Le5UO2dNXQjrJSfyyslK89da/8dG2T6EKDWd1OR1zBl6FOHOs/5SqANMxRF2n2Wrs75ifDKlD3SuINIuTTt84SeWYWQKiZUzvcS4sshnfH12PQ8W5kAt16MkyRLzsjjF7XhJRC8OkBIWNb/oGv+wTUTXeZpeGrr7hTUp4D5qs/Hik1s+bLJCPae6z69UvO+yCab0t8PWOVVUZmNbZai1t6auU6OrOFPiqErTAWQld17Fhw3q8+OI/sG/fHqREp+C2wdfh7K6TIEue94fqJzQCrfxR1wmPmi9nswQp2YBGE9WHGOgtptpjENEBHo8JEIkKUqKScGGPqdCFjhW/fQyX7oLe3lQVIwencBBRy8LpGxQ+vkaXxg6DiCKLnqpAyXRBJBlfKRHsd6LWRNnrdC8haau2RKdNANFwl/9Hy4h+qRgAoHcyQe8ZvKrA+kk5oAuoE2J82yTP573WzZOUyHEh6sUiiOQar3EhkLv/ID5d/SmOHMkFIGHs2Am4oMNoRB+q8RqsnnQItHKFWYKEIAfjDZ3u0VyqT6k4yZACvQcJkwThadQ8Om0EdhTtwe7iLHx+6FucN+oiSC5PctUhIOJDNmoiombHpASFTVWjS56BJKIqzrNjoQ22Qu9i4EdSzaQEl9WjVixqSUmtbVKZDmWLC9ZPymGf3a5qe6EG1JGUAADzWpsvKSEfcFUtT5mmQJgBuVAHoANHqq6Tn5+PHx77BNs3b4M6Ogrd+vbAhRdejE6dOsOysAiA6ncffgfpgV6eDamUCHojzewk0zeqCzidzSxBJHqWL5YkzOh1AZ7//TWsObYRffPS0T+ut/sypwiWniEiikhMSlD4OFkpQUQBxMrQBhj7xlDrrCQrJagVUjbbIZfqAS+TynR31QMA87eVVdvrMRXAnXQAYNMR/Uqxb7uIlt2VUEerpnsUOUrw3ZG1WPfsbsibK9HOEo9Jp5yH4ZeNheUnOzTNFXgFiWpvESKq9gF7oKUwhRmQXICQI+P1LE6y+gYA2OYlQj6qQXQIML3EDL+qj3aWeFzScxqWZ67Ef35diTsm3owUWH09PYiIWgomJSh82OiSiCJU9aSEUBB4zjpRCxf1XlnQy8y/VmteWa33g3xchbLZDm3YSVaEEQLmH2v0oDABIs0EHNVwtPIEfji6HlsKdkAXOmILo3BGt8kY32EUtJFpkH91wPJ5BYSpqs+M381X/+5glVA5Pwnm9TaYN3jGHSivaZUAlwjYGNOIQon63Kfe1Qy9q9l/ao2H8LwvOc+MgWmLHXKBjmEpg5FdloO1zq14b9NKzI2+vF6JJCKiSMKkBIUNG10SUcSq/r7EqRvUSgghIB1XgWT5pH0VTJsdVb9UWy3TvN4O83o7bEl1N4aUD6sw/1Dpt00XAjtM2fhtz4/YXZwFAIgxRWFsh5E4veMYxJiiAQB2DVB2OwEAkgrAJSBMgN7FBCXHM42jxgkN0dEEUW1MIsAJD2Hx9JkINH0jQpMSPoFO4HiqQVxnx8J1dixiHs6HVClwYfepyLYfx/7CHHwpfsC5Syej4qEUQAdQVwNhuw75mFZnzxAionBgUoLCh5USRBShqh/QMHFKrYX2awWiXimEa3QUnDPq3/lQKq99ll4KMu3Dy/JBGSQN0JNklB4rxsb8LVj73F6U5hXDVGxHoiUBp3cag9Fpw2FValRdaALyIXfyQcRKgBPu7wrVX5dBpmf4BLrc+1qOkOkbwaZsBORJIgkFkLxJohp5IWFyJ11MsglXTbwc//r4FXx7ZC26xnbG4IWDIRVrcMxKgDY4cJVL1L9Loex3wT67HbT+nFtLRMZhUoLCxltOGOhsBhGRoaxMSlDro21xVy6Yf7HDeUlcwH3U/u4je9Nel29boASEZK87KVGeU4xtJbuwKTobh7dkum+7VzT6DO6PsT2HYNj+HlDkINUWKiB5pisIkwSpUoeIliGqV3cESDr4TbMK9N3Cu82A1T8DauBbS8VDKYAiIfaBfPeGmsmVat/iUxJTMOOKy/HeP/6N97I+xm1RiegU0wHW98tQ+bfASQllv/tvLmc6mZQgIkMxKUHhw0oJIopQfomIAE30iFoiqfoKDmrgfUSSAuel8dB+scH6obvRpRSgJYFk898ohMCRymPYU5KNPcWZOFCeC2ESUJOtSLO2w4iUIUiffyaSk1Pc13+8ACgJnNhQ9rvc0zbgrtKQhOcERrVvqQFPaFRLSgSbvgHUaDBppIZ+/Yl2D7zy/uTAf7/qSRsF6H/hcEx2nI9v//kZ/r13Beal34BYLc79/auO714BG4sSEYURkxIUNnpnExSzwqQEEUUeTt+g1qh6P4FgB56eqQHqqVGQ8jWYf/x/9u47vKmqjwP492Z1l07KFMpIKaWl7FX2UnABDkBApoKAoCgqL25EFHEAInuKCwQRGUVkKHuvsjctUDopnVnn/aMkbUjSmTalfD/Pw0Nzx7nnnntzxy9nZFgNShjSdLiVHotr96JxJfUGLty9jFRtTh8SXipPNHisPtTj2qBGWgCEvwLCJ1cVhTy+V8o9OR1kGpsqCKVkXhPCWvOMXE+xBmujVeTVfKOs9ymRi/C0XtUj9/4bAxQRvTsj8ecrOJYQhRUXVmNEvZfg+kE8sobm0URDa30yEVFpYVCCSo22nyc8fNyRnpQGGBiVJ6IyRC6Zhg/kcKBUXkiqnKDEg7+Ga1s7Q3ZLD10L5+wJcgnaHu6Qx+hgOJ+OOxnxuJ0eh9iMOMSk38bVm7HQ3sgJQsjkMtTyeAxqr9pQewaiqltliAAFMqr7wFp9CFHYDmSV90fCyfXZcpmcNPV1VMjsJ4PiaBYU9zvNFGWt+Ya9a2zkqilhrA0iyWR4+vUXkTB9Lq7cu4FfLq1D/zq94LzoLjJeqQBDbcvAhJRpgBSng+KUBsrt6dAMqQD42jmvRER5YFCCSo8kQSornU0RET1IlT18IGtKULmhywlESJkCBmFAhi4T92rokByajozgTKTG30PyxSQkJycjKSkJaf/eRnJ0IoQwD2IoXJxR27MGarhXQw2PaqhZMxAuyeaPkYY8akJa+14JFSBp8lg+d/MEa88PuecrJOjDnSG/nqudg6mmhM1slS57X1pyF3+uWiVS+wp4sfIILJo0Cyfiz8D9mhueqdEdyl0ZyLISlFCc0kBxKudAqJbeBZr72DmzRES2MShBRESE7JcgKU2wpgSVC/v27cHu5VugOZ8GvdBD85kCUlQmhK8MejcnYIn19eQZGvioPBHg4odKLhVRydUflVwqwq9hVagu5owVqvdRAskP1PvPq3mmlZoSwkUGSWOjA00nWb5PqWajbxhrQ+QKQBiqKCCcJBiqWalm4ZDmG3beqFnQxnyWm9oHw1oPxNxNC7An9hA8lO7oUKtjzgJ51FiVMlmblYhKF4MSREREyPklt9DVzInKII1GA40m+9dvJ7kKTpILnJycofR1g6qWD1xcXODq6gpXV1dUqOAFb28fVKjghYp/y+B63DJQoM8y/14IK00i8hpdSzhZVlcQrhJw19byD9SUsCZ3R5fGITRzByUCFEj/yNdqLQuZrwIGAIYKpViNws6XFrNjYKWsfLx9MSyoH+aeWYHI6B1w3++K8NC20LVxBfIJPAgrQQvprh5SkgGy2zrowpwA17JSBYWIHnYMShAREQGmGhJsvkHlQbt2HdAztSV021MAAJr2LlDtzIC2pTM0vTxsrqd0vgcg02L6g6NvWP2WWOv3wchasM9VBlNPmw8qyPcwd0eYxhf03KvJYL3ZBwBlHx9k6nXQtHTOfzt2IuzefCN3UMbKfJWEqm6VMaju81h87mesuboJ8kVyNHCPMNUeMXjIILtnGYQSSZbHxXVqoulveVQWRAU5tG1cICoX/3VCuqWD7J6BQ5MSPaIY4iQiIkKuX3kZlKByQmhzXjaNQYW8ajMAMH/Rz0XKyElL28YFsPJDe941Jaw13zCfpquf80IqnCSr2zBbP3cQxJjv3EGIPJ5yJTc5tE97QPiV4u9zJRiUsFZTwljmdSsEYkD95yCDhFVX/kLUd7uh+jN7+FdDdRv7n/lAoOLBPkbOa6E8mAmXWUlFz38urt8mwXnRXSDDRnMeIirXGJQgIiICstuwgzUlqBzR5uro0ljTIZ+ghLBV2+F+dX9dfRU0T7tbDxjkFZSw1qdErur/WS94QF8n18adJVgdxiO3/GpK2LsPh+Kyd/MNsyFBrSyQ63gEV6mHAXX7QIKE366sx4ldh7LTcLGeKfFgUCLNeoRIslHRpaikdPZnQfQoYlCCiIgI99u3AxBuvDVSOZE7KGF8yVTm82ZsY77p5dP48lvImhLWaiAZv3NA9stx7u+ecJLyHT5cKKzUisj19RVl7atckjUlrOzrgwGmEO8gvFSnNyRI+PXyehy4cxRwsVFIWeZlL4vPI/qgs3GcsgyApgBBhlzHWUplTQmiR1FZu1wTERE5hLadKzQ93GAIzKthPNHDQ+QKSqCYzTdM8hraO4+Ah9UOZHO9EAulBOH+YFAi76yY9YxmrBWR+8m2jFWUsLvcx9Jap6C5Dr90/8U/1KceXqrTGzJIWH1lA3bG7rWatMgyL3xZgu2ghCw2ZxhW+eksqNanAgYBl5nJcJ2aAPmxTEi3dTbXR67aEVIagxJEjyIGJYiIiAAIPzm07V3z7/Gf6GGhK0rzjfyCEtn/6WtkB+909XJ1TJhXQCOfmhJQmteUQEGCEtbyKuVde6A8yX2srHV0KeUuv1wxhVCfehgS1BcqmRIbo/7G5hvbIR7oM8JUU0IjILuhhXTHdlBBSsrZkPOyFCh3ZUAepYEsXg8pQ8D553twmZ1ks+ZL7toRDEoQPZrK+eWaiIiI6BFlpfmGzT4jjPLp99HYJELb2RVZL3ogq2+ukTz0tqvqC2crQ4LmnqYE8GBNiQdflB9krR+F3JvJq1ZHeZD7WOZTUyL3sckc4gl1hVoYUe8lOPu4YtvN3VhzdSMMwgCD3/1CvX++OP2YApfZyVDtyLCZDemuZSBBflFjvowWpto6Fuun5Q5KsE8JokcRgxI2aDQa/PDDDzh79qyjs0JERPRI4r24eMyabxiryOfTkWv+NSXuz1dK0DV2Nu+TII8a+rmbb2g6uULb3BmGijlRBaGUzGtOOEnmv/RbY6UjS7NhN8t5TMLsWFkL0JgFJe7/V00BvVoFfU0FqnSojWEjXoVrrQrYf+coFnj/iXtN7q96v/mG4px5cMEaKcWyaYfsmhYAoG3iBOGenU9b/UWY1ZSI10OKy+NEIqJyiUEJG1QqFebOnYuUlBRHZ4WIiOiRxHtxMeWuKXH/z3xHl8ndJMBaU4+8nhzzqCmROxiia+YMTR8P8+YXSsns137hJEHbwhkAoOniajPZ9Pd8kDbZN2dC7pfz8v6Uq8q7qYq+Wna1F31leU5TGBkAmYTMUd7QvOCJSpUqY/j0cfB5/DGcS7+E+ZsXISnrrkVHl9YIt+zty+4aACGg/DvNNE9+KztQIXzk0Kmzm/jYCkrk7q9CeTATrl8lQUq287AeRFSmlffLdbGEhYUhKirK0dkgIiJ6ZPFeXAxaKy+WTvk8+uVqviE8ChaU0FfOjgQYqthu+2HW0aUxjVwBBIsaGnIJhkAV0j7xg7arm+10veSAR65MPUJ9SpgFkKw039CHOyFzoCcyR3hB2z27DLURLhbLefv6Yvi411C7dl3cvnsHs6MW4+r6s3D6NtE8vZrmx1d//3hLKQbIrmqh2ppukbbwkgP3+wqx1jRDStZDFWm5nuwma0sQPUryaTn4aHv77bfx1ltvQalUon379vD19YX0QFVBFxfLizsRERHZB+/FxWAlKJFfTQmzzhPdZEDCA79uW+mnIXOEF+RXtNDXV1nMM8m1XeNQnmZDet7/1T+rhxvk17QQXjKL9Qok95CgVpp3lCf5Nt+QSdA3cAIAaDu4QNvM2azfjtxcXFwwcOBgbExbjSPn9mDOviV4LrAnGvmFmpYx+MqhecodLrOSsz9XVQAXtJDuGiAlW68FYfCSQUq9H5SwUlNCdst68EHKawhSIip3ykVQIj4+Hn5+fnZP94UXXgAATJkyBZ999pnVZc6cOWP37RIREVE23ouLThQhKJF7BA3hYuUF1to7rZvM9PJrk0yCUAGSJlcauZ9C7/+ta++aV9cU+cu9e+W+pkSuv/MbNUiSAPe8l5HL5Xi6+7Oost8VG278g58vrcONtJvoWb0L5DI5oJRgqJazUeEug3CVICXrId2zHpQQbjLTqCpO61JheExhloaUkr2epqsrZNe0UJzP7otCdsc8KCGl6KHYkwltexfzfkyIqFwoF0GJtm3bIjg4GD179kSPHj1QuXJlu6Q7depUi19jiIiIqPTwXlwMVptv5NenRK6/rbz7WRt6sqCEkwySxpDzAp27poS9RsrInedyftqY1ZSw03u65CxDu8otUdk1AD9dXINdtw8iJu02BtTtAyfVAzWSVBL0dVVQHM+C4liW9QSdJVNHlwDgvPAu0j/0NTWzMQYlhKcMWf09ITakQXkwE/JLGqhW3YNwl6B9wh3O3ydDlmwAJJiaohSGPCoLwl0GQ3UF5FEa6INU+Q6Pa8YgIIvWATXyG76GiIqiXAQlhBDQarX4+uuvMWPGDISHh6Nnz5544okn4OPjU+R0e/fubcdcEhERUWHxXlxEQlgEJYQM+T/55de/YTGCB8JLBpElcvJQjACHTTL7v6iXWUrLJjHFZQx01K0QiNcbDMeKC6tx5d4NfHdqIV5o/BKqon7Osu4y6MKcoDieBXmM9fotwlkyq3EjZQhIdw0QXnLIz2lM/VAITxngIoOmtzvkV7SQxeshS8wEAOhauGQHJADIEq0069AIyC/dDzQYj79eQEozQHjKId3WwXm5eWe52rYu0DzpXuByUf6dDtW2dGiecQee8ch/BSIqlHJzuf7ss8+wc+dOvPvuuzAYDJgyZQratWuHYcOGYe3atUhNTS1y2hcvXsQff/yBuXPnIi4uDgBw7dq1YqVZmjIyMtCxY0d89dVXjs4KERFRkTwM9+KtW7eie/fu6N69OzZu3OjYzBhgGWBQSVaH0czNrENKa4rx5Jj1kicyXvPKqSlRAjVgzIYEtVftizJK5DP6RpHkqknj7VQBr9V/Gc39w5GiScWCf5Zg27atSH/ZHdqWztAHqyC889mwkwTDYwpoWzpnB8UASPeHp3VaejdnXzzvR6hkEjIHeJpGDgEA+amcWhiKY1lQHMwEsnKaiyj/SYPz0hS4vRcPZWT2CCCq3+/B9bNESPE6yK10mik/baNmhw3K7dnBE9W6VOj23CvUukSUv3JRU8LIz88PgwYNwqBBg3Dz5k389ddf2LRpE9577z18+OGHaNeunakGRUGkpaVh0qRJiIyMhEKhgF6vR9u2beHv74+vv/4aVapUwTvvvFPCe1V8c+fORVhYmKOzQUREVGgPy71Yp9Nh+vTpWLlyJeRyOV588UV06dIFKlUenT+WpKL0JwFA+CmQ2c8DhgAFVJFplgsU4+VXeFtWjUh/2zv//hAK4xFqvlGoPiUKSLhIEFLOELIKmQLP1XoSNT2q43flNmzfvhVXal7Cc8+9iAoyyfqwsbndDwxpenkAOkB5KBNIux9QkME0VKnBM+fAicoKZI71htOiZCjOa6H8N8MsSafV9yDdc4W2U3YzDsWJnACDals6tF1doTycPU1+TgvpbnbtCm1zZygPZNe+KGxATMr1ddIsjIO8lzsMLdnBLpG9lJuaEg+qUqUKXnnlFaxduxabNm3CiBEjcPnyZbz55psFTmPatGk4evQoli5diiNHjkCInCtS+/bt8d9//5VE1u3q6tWruHz5Mtq3b+/orBARERXaw3IvPn78OIKCguDn5wdvb2+EhYXh8OHDjsuQtcELCjiShT7cGaKywvpLvZ1rHwg/hdVgRZE9Uh1d5jP6RlE4yaAZXAGqURWR8Zk/MkZUAAA09W+IMc+/hkqVquDq1Sv4/vuZiIo6Zd4vSD6E2/1+JNKzIxGGSrl+G3W1TMdYe0J2vxNNffWc5WVXdVDuSIeUqLcIMMjPakx/Syl60wgfupbOSJ/oA6EEpAQ9lJtSId3WQbX6HuRnrdSc0Amo/rgHpx9TLGYpI9OAdOude9qNEJAfz4SUzJFIqPwr75drAEBgYCDGjh2LjRs3Yu3atQVeb8uWLXjrrbfQsmVLyOXmV/sqVaogJiamWPk6ePAgRo4ciYiICAQFBWH79u0Wy6xcuRKdOnVCaGgoXnjhBZw4caJQ2/jiiy8KFYghIiIqS0r6XmxU3HvynTt3EBAQYPocEBCAO3fu2CVvRaIrWk2JfJX1J8fcQZMyVlNC+GWfv4Z8RsEocHol0NElABjqO0HRzD27uY9LzjZ8/f3w6quvoXXrtsjISMcvv/yI1ZtWI12XkUdqubjeHxo0LfvclO6fo1kveFgNdolctSc0HVyQOaIC0t/0BgAozmmg2pQG5yV3ISXqYaggg75WdtUR52U5QQTVjgwozmshZIChogLCVw59HRUkkT3PZU4ylAcz4bwkBfJzGjj/kATZVS2Uf6dBcSATyr2ZUJx8IGAhz26C4rQ21er3zF7kZzRw/ukenOcl50zMEiW6TSJHKeu3lgKpUqVKgatH1qtXr8DpZmVlwcvLy+q8tLQ0i4ejwkpPT0dQUBA++OADq/M3btyIzz//HKNHj8batWsRFBSE4cOHIzEx0bTMM888Y/WfXq/H1q1bUbNmTQQGBhYrn0RERI5S0vdiI3vck8sS6f6Pq2Z9LNghKCHK+pNj7vyVsT4lhKcc6RN9kDHR1z4JmvUpUTL7ahb4UElQKBR44omeGDRoKDw8PHHs1FF8c3I+ziZfzD+t+7UhFMcyofrjHpAmICRA18j6cLLCPedgaru7AU4yiACF2Qgwsjt6SAIwBMhh8M+ZkftvADBUU5hqlmiedENWTzcY/OSQsnJe8J0X34X8qg4uPyRDtTUdTuuy+6sRLhK0bXKaajiNrQThLEFxIguqzfebOBkElJtTIT+emW85WNALwGAeaJAS9JBfvD88aqIhexmNgMuXCXBekJyzvEFAdlED1Z+pgI1hWQFkN5nR52xDtfoeXL5KhDyqcH1rEJWUctGnxLZt20ok3dDQUKxbtw7t2rWzmBcZGYlGjRoVK/327dvn2axiyZIlePHFF9GnTx8AwMcff4wdO3Zg7dq1GDZsGABg3bp1Ntc/fvw4Nm7ciMjISKSlpUGn08HT0xOvvPJKkfIrK+YNz7h+cdMpj1g21j1YLiwfSywb21g2tj1MZVPS92Kj4t6TK1asiNjYWNPysbGxiIiIsEveisT4a6qTBGRm/13omhKl0HzD7sp49oSvHZuqlMToJQ/KPcJHrr/r1lVjzJjx2LTxL5zasxuLz/2Cpv5hePqx7nBW2AgyuGUHGeTXdJBfy25SIZwk2+eUjU5L9WFOUBzNgnCSTEEFQ6DSLH/6xxQweMmguJD9Yp+7qYjwU0DXTgG4yeD0W/6dVmYO9IShtgq6hk6Qx+rhGuaKrFe84DwzCYpDmdlpGwRU27NrjGS6yKBXq0xNQvT1rJcHAEjJerh8kwRtc2fo1SoIbzlkd3RmtT0AwPXDeOjCnCBLFUCqDopDmdA1d4HT8hQozmQ3V5HSDcjq6wmkGyBlCVOzKClFD5fpiTBUVCBzWAVIOgHlwezgifPyFBg8ZdB2cYWuRTH7yMgyQPtnEhAmB9zK+BeRypxyEZQoKePGjcOQIUMwePBgPP7445AkCTt37sTSpUsRGRmJH3/8scS2rdFoEBUVhVGjRpmmyWQytG7dGseOHStQGhMmTMCECRMAAGvWrMHly5eLHJBQKGTw9S340El58fYu/PjSjwqWTQ6lUm5xzrF8bGPZ2Mayse1hKBtH3ouNCnJPDgsLw9mzZxEfHw+5XI7jx4/js88+K/I2i/1DgPFHUVVOUAJOskKlK1npDFCSl+1glpSrw0db+XyYgnJ5y39fiyJ3+Riccg3n6Wx+/ri7u+H5F15E47+rYO3ljTgUdwIX7l7B0zW6o4F3ECRJMltecresZiNcJJt5NzR1hv68Bro2LmbLaHt5QNfBFVBIcJ6eXVPJEOxkVusB/gpo+7rBsC8DynX3oG/jarEdQ2NnGHamQ4rXm2oWWVVZmb1uoAqi9v1+MWqooK+ngvysBk6rzAMbikOZEDWVcF6SHVjI+MQPcLFexUgepYGUKaD6NwP413YzGEkLU+edAOD0eyoUR7Mgv6zN2e7RLOgbZEG1LhVSigHanu7QdXCF/LQGkgaQR+vg9nGCRdqyFAOUO9JhaOWaRyHkT7krHdrNaVBFO0Pzomex0ioUvYDskhaG2srCd/iaaQCcS6H6lxCQ39JBeItycN0pGQxK5KFp06ZYunQpZsyYgU8//RRCCMyaNQsNGzbEkiVLSnREi6SkJOj1evj5+ZlN9/X1xbVr10psu7bodAakpBSwzaANMpkEb283JCWlwWBge7jcWDaWtFo9EhKyq06yfGxj2djGsrHNXmXj6ekCpbJkf6515L3YqCD3ZKVSibfeegv9+/cHAIwfPx5OTrZ/Ic2LPX4I0KdkIQuAzEUOkZJdrdvZWwXPQqSbpUq16C/T3dMZCjv9SFES9F4yZCF7qMn8yvBhCMrlR/t8do0D1xI4Jt7ebhAuBmQgHgDg5e8Gma9lc2kX7yAEhlbHumuROJYQhRUXVqO+d108U+NxVPWtZVrOoNEgE8lm68rdFXkfp7dtvNxWy/4vMyQDyDLAO9QL0Ahk3E/fLdAt+zzt6Q7Rww9uNkbbEB+6AQLIGH01Oz8t3aHfl2uYYU85fGtY5sHb2w2G/kpkzboNEWc+5KjieBYUuYYxrRAtg6Jlzj7qjqZB92cSZKGuMFzSIa/uMuWNXSEPd4NmcVzOtPt5NAYk5M3cIG/pDs2sWDityNWfxu4MeD7jj6yz96xuQznID5JCgmZxHGRpAu5/pENWyxnKjtn7K7QC2vVJkDd0hby2M/RR6TBcyoLiKS9IkgRDtAa6HSlQ9PSC5CVH5vEkCADyY1nwGeQCyd32vUFoBfRR6ZDXcobhRhZk1VSQKhTstVR3NA26HSlwGlERcJVB80Ms9IfToRzkB2UHjwKlIYSAdk0SdJuSoXzRF8quFQq0XkEJrQAUOYFd3aFUaOYkQj9EBu+2pRiweYgwKJGPJk2a4KeffkJmZibu3r0LT09PuLg4bgggIYTVXy7y07t372Jv214P9QaD4AuCDSwbcw+WBcvHNpaNbSwb2x6Wsilr92KjB+/J3bp1Q7du3Yqdrj1+CJAnaaECoFcKUzcLGZIO9xJS81rNjEqjt2ghkJqRBX0h0ihtslQNjKGgBBv5LFcBy+b3H+XteEzMykdngPGblpyeAZGgsVjeRQBuSlf0r9MLTf0bYu2VjTiddAEXMq+h3dqn0KZNRHbfL1k5aRnphcHmcSqQwdkvoWmJ2X07GNNPkWshCpGuoqcbpBgdsurJ4bQvV/4qyszyZ1Y2LgJ42xvOH8RDyhQwVJTDUFkBxfEss9FvNPPvIP1ECrS9PQBJguqvJMivaWG4pskefvWBvBiqKSCLzg50ZLkJaIMl4CM/KHZnwFBZDkOoM2RqOZyWZwffMisI6B4TcMq1HgCIZD3u/hUH1ZmM7BFHcipVQCiAe1UFhI8MTpUVkN3SQb87FfrdqUgJlQBJgmJbGpSb0qDdehdZb/jAeUZ2LYt7NQBRVQGn2YmQ3dFDt+2B0Ul0AilbEqBrb73mhWL9PYthXg1VFch63dtqUx4pXgdkCsji9NCHOsFlVnaAJv3t62a1YzJ338W96gLSDR0MDVSAHlD+mQp9iAqGICcg1QDl5lQYAhSQn8yC/Ep2gWh/TkBKPcnUEWuRaEV2J6TuMkh3dHD6JhG6zm7QdckOfCpP3st+6VbKinXdKY0fAhyFQYk87N27F+Hh4XBxcYGzszOcnZ1Lbdve3t6Qy+WIj483m56YmGjxSw0REVF55ch7sZEj7snFfVmWae/3I5GrM0SDk1SodAWsjOChKeuBrJy85ZfPhyUo5ygGgzD7hd2gAEQ+5aWuUAtvtBqJrdIBbE/dh8jIjTh69Ah69nwKtarWslwhxWDXY5AxogLkV7TQV5NbdB6ZF0277Bdo6YFaD4YAhdX85T53sl70gNPqe8h6wQOGAAV0YU5QHMuEvrYKym3pkKUYoNiXCW1zZzj9eg+y2JyIhSQAXX0VFKezgz0Zr3nBUEMJxZ4MKP9Jg6aNS3aZu0jQdLn/km8QMISoIAZ6Qrk1DdpmzhAGAW2YE5zuByU0HVyg2pGR3QEmAG2ES06fF4M8oa+jBJxk2Wn5ySC7lbNv4rYOIkAB+YHs5aVMAfn2tJw8R2shtAKyO5ZtXuSt3aHfkwr53gxo2jhDflaT3cloloBqSzpkt3VW15PF6OD8QTyyXvKEoaIc0AsojmRBOEtw2pCzbW3TnOu/MSAhnKXsPF7SQjYtAZIeyHrGHcJNgmJvBhR7M5D2hT+c1t2D4ph5x55Cyj4Giq1pMPjKoa+pzB4O2QrF/gzIz2igr62EPFoHTRfX7D5iZBKcfroL+VkNNL08oFp7D5Iue9hY2cms7D5Q/ssuS1lVJQwGLa87VjAokYehQ4dCLpcjODgYTZs2RZMmTdCkSRN4e3uX+LZVKhVCQkKwZ88edOrUCQBgMBiwd+9evPzyyyW+fSIiorLAkfdio4fynmzsaT/3CA022rUXhpSaV2XzMqCsjw7yEBMFG+gOCncntH/rGQTfaYX169fi6tUrWLJkAerXC0GvzBbwdc757sryGjGiCAx1VDDUKWBGrTB2DmlKr1L+v0rr6zsh/YOcplr6Bk7QN8j+bKiigMucZACwCEgY6Zo6A04SZFe1MFTJfjXTtXaBrnXetcFyb8e4DpQShJsEfX0nKPdnQsoQ0NVVQtfaBcJTDvk5DfRqlVkHpoaKCgA5NWBcZiUhY6w3ZAk5x0a5L2dUEVmMzlQTxOAhMx1DIQOUvX2guZVdC0H5dzpU29JhqCi3CERoI1wgj8qCLMkAXQMVFKc0kLIEnBffNQUKrFEeshzdJP0j3+wOP09rTH2DGEdOMeX5mhayq1qzaZqO2WXitC4VyvtBA4OHDBnv+gAK8xobsmgtnNZkp2nsWNQY4DAGRQBY9C8iv6mD/GZOoEuqpAJSzPNB2RiUyMOePXtw6NAhHD58GAcOHMDy5cthMBhQq1YtNGnSBE2bNsXTTz9d5PTT0tJw/fp10+fo6GicOXMGfn5+8Pf3x5AhQzBx4kSEhIQgLCwMy5YtQ2ZmJnr16mWP3SMiIirzSvpebFTu7sn3n4Nzj7ghXArX/FNfJ/tlQResyunhv6wHJYrQxJUKSFHAsr3/QlmxYkUMHfoKTp06gc2bN+L02ShcOnUE7QJaolOVNnCSO1kM3elwCglpn/pBtSUNit0Z0NdQFis5Qw0lMgd7wnlpitWABADo1Sro698PpBTn/FVKZoGMzFe8AK2A4f4+2Ap0aCNcAEV2cMLppxRIWsBpffYLuMFbBlmS+Xdefkmb3VwBgPYJNyiOZEJfWwlDQ2e4+Sigb+0C+RUtVNvSAcBqQELzlDvQzRXyy1ro66mgSRVw/jYRkh6QMvKvRaAPVEJK1kPb1hWQJGT194TYkArl3szsoWf1MGvaYQwMmaUR4mTWdkZfTQF5tA6KvRkw1FZByADhJYPiRJbZPuhrKAAdII/JvsgaAxIPMlSQQXbXvOwkJa9PtpTLoIQQAt9//z1efPFF+Pn5mf729/cvVDre3t7o2rUrunbtCiB7DPN9+/ZhyZIl+O2337Bq1apiPQidOnUKgwYNMn2eMmUKAGDMmDEYO3YsevTogcTERMycORNxcXEIDg7GwoUL4ePjU+RtEhERPUxK+l5sVO7uyVZqShQ2KKFr4QyDnxyGGkoY/kmDakcGdA2L1nlnqWFNCbvTtnWBdM9Q8JENRM5LmiRJCA1tiKCgYOze/R/2HdiE7Tf34GDicXR+5nE0fK5V2RvFVSVB87gbtBEuEF7FD5roa+UENoQC0DVzhqG6Ek6/3YMu2LzWgj0Za13ky1UGbafsvg8yX/GCyw/JkN8fSlXb3hWqDamQtIBOrYSkEZBf1UEWl/2Srn9MAV0TLwA5o7bow5ygPesE5eEsCBkgPRDHNOXLSQZ9cPb1RHhIyHjHF1AA8gtaOP14F3p1dlA0NyED9A2doOniBuGX69goJWiecYeuiTMMVRSQ4vVw/jEFUpLerC8NXagTNN1dAT0gKikAIZD1lBsM1ZWAAnD+PhlOf6UBSIM1GeO8s/MvRHbNC4UE2W0dpGQDFMezTOWSMbwCRIAcLl8lAVqRHXiKcEHxxjcp38plUMJgMOD7779Hx44d4ePjY/q7sEEJIPuXk6NHj5p+pTlx4gScnJzQoUMHNGnSpFj5bNGiBc6dO5fnMgMGDMCAAQOKtR0iIqKHWUnei43K2z1ZMtYYdipG8w2ZBEPd7F9wtY+7QdvB1S5NQEpUGc/ew0jzZOFG9tDXtKxdoFKp0LFjZ7TeXgtbTv+DIykn8fvNjdj500F07twNISENitSRe4lRSHYJSAAAnGTQNnaC8kgWtO1coe2eHQAwVJLfbzpRdhhqKGDwlEF2f8QefS0lsvp4QH5NC21HVwi5BJc5yZAl6CHkgPCxUkYyCZrnPbJrIiglQABSoh6KE9lDmOoDbdQ+uR9A1QepkP6xHyCToI3RApIEl++SIJwkpL/vazuII0nZwQUAIkCBjDe8AZHddMNlXnanoIaqCgh/hdk6uoicUIGuhTOUeyybiACAUAKGAHnOtgKzr43GbUpJesji9DB4y0zXzfT3fbOXV9oe+payla1vgh2JXFHa3H8XRu/evXHu3Dn4+vqiadOmePzxx/G///0PQUFBZevCSUREVE7xXlxEesuOLgtbU8KMJAHFWb+0PARZLK/0NRXQNXHOszaNl5sn+tZ+Bq3QHH8G7seVK5fw668rUaVKNXTt2h21a9cpl99rTW8PGOqozMrGULV4TUNKhCRlj/5xv+NNUVEOfYAC+kY5HUxmvloBil0ZEP5y27VnJCk7KJGLrrETpDRhPZDxoPsv8MYyyhjrBeEpK1ytEmMaNZXQdHQFIKBtmXdHyYZqSgDZQYmsp90gi9dDflEL2R19dl8cedQW0vR0h6TH/W3dx+YaBVZugxL2cO7cOSgUCoSHh6NRo0Zo3LgxH4KIiIhKEe/FRWSsKZE7KOHMMqOSI5xl0DXPZ6je+6dgdY+qGDp0BC5duoAtWyJx82Y0li1bhJo1a6Fr1+547LEaJZ/h0qSUoGtS+iMHFYXhMSVwWgODr9xqHxeighzanoWrPQMAcJJBFLH1V3awoIhkErSPuxVsO7lG3tCHOEF3v7aMlKyHcMunGpabDFn9PIuczUcdgxJ5OHTokKm66JYtWzBjxgwolUo0btwYTZs2RbNmzRAeHu7obBIREZVbvBcXkbFPidydEzoxKEElqCCn1wMvubVr18XIkXUQFXUK//yzBVevXsaCBT+gVq066NChEwIDrQwjSiVK29YFEAK68IcjiGJPhoo5tThEhZwghN2a8pBNDErkwcXFBa1bt0br1q0BAFqtFnv37sWCBQswY8YMSJKEM2fOODiXRERE5RfvxUUj6e4338j9pMc2zVQC9FUUkN/Umf3KbJPxFHygM8wGDUJRv34Ijh07gp07t+Py5Yu4fPkiatYMRIcOnVCrVvls1lEmKSRTx5ePHIWEjFcrZDfT4PlWqhiUyEdiYiIOHTpk+nfu3DkYDAbUrVvXbp1rERERkW28FxeBcQQ7hYSMVyqwA0gqMVlDPCE/ngVdy3yabuQiWenuTSaToXHjpggPb4yTJ49j587tuHr1CpYuXYRq1aqjQ4fOUKvZdItKlqGWytFZeCQxKJGH7t274/r165DL5QgODkaLFi0wevRoNGnSBF5eXo7OHhERUbnHe3ER3a8pATlgqM2HbCo5wlMOXdsCDnZoqilhexGZTIaGDRshNLQhoqJOYceObYiOvoEff1wKf/+KaN06AuHhjaFQ8DWGqLzgtzkPPXv2NLVVdXEpePSXiIiI7IP34iLKVVOCqMwozOAJMhlCQ8PQoEEozp49g127duL69WtYt24Ntm6NRIsWrdG8eUu4uT2iTQ2IypFyGZSQJAlVqlSBSqUy+7uwXn/99RLIHRERERUU78VFY+pTgv2zUVlSgJoSFqtIEoKD6yM4uD5u3LiO3bv/Q1TUKWzb9jf+/XcHGjVqjFatIuDv718iWSaiklcugxIymQzbtm0zfc79d2HduHEDCxcuxJEjR5CcnAwvLy80adIEw4YNQ/Xq1e2RXSIiIsoD78VFYBwS9BGrKWG430u+KMYIglQKChGUyK169cfQt+9LSExMwJ49u3HkyCEcPLgfBw/uR2BgbbRo0QrBwfUhk7ETFaKHSbkMStjLqVOnMGjQIDg5OaFDhw7w8/NDfHw8tmzZgvXr12P58uUICQlxdDaJiIjKLd6Li8g4JKj80QpKwE2G9Ik+EK6P2H4/JEQRakpY4+PjiyeffBqdOnXBoUMHcODAPly5cglXrlyCh4cnmjZtjmbNmsPDw7PYeSaiksegRB6++OIL1K9fHwsWLDBrx5qRkYFXXnkFX3zxBZYvX+7AHBIREZVvvBcXkammhENz4RDCl21WyizjyBnFDEoYubq6ol27DoiIaIcLF85j//69uHDhPLZv34odO7ahfv0QNGvWnEOKEpVxj+CtquBOnjyJb7/91qJjLRcXFwwdOhRvvPGGg3JGRET0aOC9uIj0xj4l+CJGZZGdohL3yWQyBAXVQ1BQPSQmJuDgwQM4cuQgoqJOIirqJCpU8ELjxk3QqFETeHv72HXbRFR8DErkwcnJCcnJyVbn3b17F05OTqWbISIiokcM78VFY+zokk96VJYYHlNAflMHfa2SG6bWx8cX3bs/gc6du+LUqRM4fPgQrl69jO3b/8H27f8gMLA2mjRpivr1G0CpZOcjRGUBb1V56NChA7766itUq1YNTZs2NU0/dOgQZsyYgY4dOzowd0REROUf78VFZBwSlDUlqAzR9HCHIUABXcOSDyYqFAqEhzdGeHhjJCYm4OjRwzhy5LCp7wknp3UIDQ1DWFg4atYMZPMOIgcqF0GJPXv2oHXr1vkup9Vq8c477+Drr78uULrvvvsuXnvtNQwYMAC+vr7w9fVFYmIiEhIS0KhRI7zzzjvFzToRERHlgffiIro/+IBw5osWlSFOEnStXfJfzs58fHzRuXM3dOzYBZcvX8Lhwwdx5sxpHDp0AIcOHYCHhydCQxsiLKwhqlSpygAFUSkrF0GJUaNGYebMmWjfvr3NZdLT0zF69GgcPHgw3/QyMzOxc+dOxMTEoF+/fhgwYACuXr2KuLg4+Pv7o2HDhoiIiLDnLhAREVEuvBcXj7anO1zaKpDhBcBg3/b7RA8rmUyGOnXqok6dukhPT8fp06dw/PgxXL16BXv2/Ic9e/6Dr68fwsLCERYWDj8/P0dnmeiRUC6CEl26dMGYMWPwzTffoEuXLhbzExMTMWLECFy6dAmzZ8/OM60bN25g8ODBiImJMU1zd3fHN998g7Zt29o970RERGSO9+LiExUVUAS7Awmpjs4KUZnk6uqKpk2bo2nT5khJuYtTp07ixIljiImJxvbtW7F9+1YEBFRG/fohCAlpgIoVAwCwBgVRSZA5OgP28NVXX+Gpp57C+PHjsXHjRrN50dHR6NevH6Kjo7FkyRJ06NAhz7SmT58OmUyGlStX4vjx49iwYQOCg4Px0UcfldwOEBERkQnvxURUmjw9K6B16wiMHDkG48a9hY4du8DfvyJiY29h+/atmD37W3z33QxERm7C9evXIQRrHxHZU7moKSFJEqZOnQonJye8/fbb0Gg0ePbZZ3H27FmMGDECcrkcK1euRJ06dfJN6+jRo3j33XfRpEkTAEDt2rXxySefoEePHrhz5w4qVqxY0rtDRET0SOO9mIgcxc/PD506dUGnTl1w584dnDkThdOno3DzZjT+/XcnDh7cA5XKFfXq1UdwcDBq1qwFuVzu6GwTPdTKRVDC6MMPP4STkxMmTZqEc+fOYdWqVahYsSIWL16MSpUqFSiNuLg4VK9e3WzaY489BiEE4uPj+SBERERUwngvJqKyoGLFiqhYsSLat++IpKREnD17BteuXcDp0+ewf/8e7N+/ByqVE2rXrgO1OghqdRA8PSs4OttED51yFZQAsnvpdnJywvz589GwYUPMmzcPFSrw4kBEREREREXj7e2DNm0i8PTTj+Pq1Vs4fToK58+fw6VLF3HmTBTOnIkCAFSqVAX16tWDWl0PVatWg0xWLlrLE5WochGUaNmypcXQPUIIXLp0CY8//rjF8nv37s0zveHDh1uthjV48GCL6fmlRURERIXHezERlVUeHh5o1qwFmjVrAZ1OhytXLuPcubM4f/4sbt++idu3b2LHjm1wcXFFrVq1UatWHdSuXQe+vr6OzjpRmVQughIvvfSS3cYTHjNmjF3SISIioqLhvZiIHhYKhQJ166pRt64aQjyF+Ph4nD9/FufOncW1a1cRFXUSUVEnAWTXtqhduw5q1aqDWrVqw83NzcG5JyobykVQYuzYsXZLiw9CREREjsV7MRE9jCRJgr+/P/z9/dGmTVtoNBpcv34Nly5dxMWLF3D79k0cOnQAhw4dAJDd1CMwsBZq1gxEjRo1GaSgR1a5CEoQERERERGVJSqVCnXq1EWdOnXRvfsTSE1NxZUrl3H5ck6Q4vbtm9i7dxcAwN8/ADVr1jQFKSpU8HLsDhCVEgYliIiIiIiISpi7uztCQ8MQGhoGAEhMTMDVq1dw7dpVXL16BXFxsYiLi8XBg/sBAF5e3qhRoyYee6wmqlevjoCASuw4k8olBiWIiIiIiIhKmY+PL3x8fNG4cVMAwL17Kbh69aopUBEbexvJyUdx/PhRAIBCoUTVqlVRrdpjqFatOqpXr87aFFQuMChBRERERETkYB4enmY1KdLT03H9+jVER1/HjRs3EBMTjWvXruLatatm61SrVh3VqlVH5cpVULlyFbi7uztoD4iKhkEJIiIiIiKiMsbV1RX16gWjXr1gAIAQAnfu3EFMzA1ER9/AjRs3EBt7G2fOROHMmSjTeh4enqhSpSoqV66MypWz//fy8rbbaIVE9sagBBERERERURknSRICAgIQEBBgavKh0WgQExONW7du4ubNGNy8eRNxcXdw7twZnDt3xrSui4srKlWqjEqVKqNixYoICKgEf/+KcHZ2dtTuEJkwKEFERERkB5cvX8akSZOQmpoKlUqFSZMmoWnTpo7OFhGVYyqVCoGBtRAYWMs0TaPRIDb2Nm7duoVbt2Jw69ZN3L59G1euXMKVK5fM1q9QwQsVKwYgIKASKlasiIoVA+DvXxEqlaq0d4UeYQxKEBEREdmBk5MTpk6dilq1auHSpUt47bXXEBkZ6ehsEdEjRqVSoXr1x1C9+mOmaXq9HvHxcYiNvY3Y2Nu4c+cO7tyJRWJiIu7eTcaFC+dypSDBy8sLvr5+8PPzh6+vL/z8/OHj4wtvb2+OAEJ2x6AEERERkR1UrVrV9HetWrVw7949CCHYjpuIHE4ulyMgoBICAiqZTddoNIiPj8OdO7GIjY29//9tJCcnITk5CZcuXTBbXiaTw8fHB76+fqZ/Pj4+8PHxRoUKbApCRcOgRDl28uRJTJ482fT5woUL+P333xEcHOzAXBERETnGwYMHsWjRIpw6dQpxcXGYO3cuOnbsaLbMypUrsWjRIsTFxSE4OBiTJ09GWFhYobf1zz//IDg4mAEJIirTVCoVqlSpiipVqppN12q1SExMQHx8PBIScv7Fx8eZ/pmT4OKihELhDG9vb1So4AVvb294eXnD29sHXl7e8PLygkLB10+yxLOiHAsNDcW6desAADExMRg4cCADEkRE9MhKT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YN5HI5gOx77vTp0zF//vyS2xkiohKkVCqt1qwAgMzMzFxBingkJyfh7t1kZGWl4datO7h3LwXANavpuri4wsPDE56enqhQoQI8PT3h7p7z2cPDE25ubgzoPmIYlHhEbN68Gd27d3d0NoiIiBymffv2aN++vc35S5YswYsvvog+ffoAAD7++GPs2LEDa9euxbBhwwDAFOy3JTU1Fa+99href/991KhRo8h5lcmK90BuXL+46ZRHLJu8sXxsY9lkc3V1gatrdVSvXt00TSaT4O3thoSEe0hOTkZSUhKSkrKbgGT/nYiUlBTcvZuMO3eym4nYIpfL4ObmDjc3N9P/7u5uZtPc3XP+VqlUZT6IwXMnbwxKOFBpViPdvHkz3n//fXtlnYiIqFzRaDSIiorCqFGjTNNkMhlat26NY8eOFSgNvV6PcePG4YUXXkBERESR86JQyODr617k9XPz9nazSzrlEcsmbywf21g2tvn6esDX1wNAdavzhRDIyMjA3bt38/yXmpqK5OQMJCfH57tNmUwGFxcXs3+urq5WP6tUKjg5OZn9b/xbLpeXeHCD5451DEo4UGlWI01MTCxSMIOIiOhRkJSUBL1eDz8/P7Ppvr6+uHbNejXkB/3777/Yt28f4uPj8dtvvwEAVqxYAU9Pz0LlRaczICUlo1DrPMj4q2VSUhoMBlGstMoblk3eWD62sWxsK2zZqFQe8Pf3gL9/NavzhRBIT09HWloa0tJSzf5PTU1FenrO/xkZmbh7NxXx8cnF3ofsIIUTVCol5HIFFIrsf3K5HDKZHAqF/IHPCigU8vsjkkiQJPN/MpkMkiShYsWK6NChTbHOHU9PFyiV8mLtY1nFoIQDlUY1UgCIjIy0S9MNViUtOSwb6x4sF5aPJZaNbSwb21g2BVeY0TM6duyIqKgou2zXXi88BoPgy5MNLJu8sXxsY9nYZs+ycXFxhYuLK/z8/Au0vE6nQ2ZmBjIyMpGZmYHMzExkZKSbfdZosqDRaKDVapGVlQWtVoOsLA20Wg00mux/2SMnGeyyD0aSJKFVq6Y8d2xgUKKMskc1UiN7NN1gVdLSwbLJoVTKLc45lo9tLBvbWDa2sWxyeHt7Qy6XIz7evKpwYmKiRe0JIiIqexQKBdzdPeDu7lGsdIQQ0Ov10Ol00Ov10Ot19/82QK/XPTAv+28hBAwGA4QQAASEMP/n6+sLJycnpKZq7bOz5QyDEmWUPaqRAsDNmzeRmJiI0NDQYuWHVUlLFsvGklarR0JCKgCWT15YNraxbGyzV9mUp6qkKpUKISEh2LNnDzp16gQAMBgM2Lt3L15++WUH546IiEqLJEmmZhv2wpqJeWNQ4iFTmGqkAFClShVs3brVLttmVdKSx7Ix92BZsHxsY9nYxrKx7VErm7S0NFy/ft30OTo6GmfOnIGfnx/8/f0xZMgQTJw4ESEhIQgLC8OyZcuQmZmJXr16OTDXRERE5RuDEmUUq5ESERHZ16lTpzBo0CDT5ylTpgAAxowZg7Fjx6JHjx5ITEzEzJkzTaNeLVy40NS5NBEREdkfgxJlFKuREhER2VeLFi1w7ty5PJcZMGAABgwYUEo5IiIiIgYlHIjVSImIiIiIiOhRxqCEA7EaKRERERERET3KGJRwIFYjJSIiIiIiokeZzNEZICIiIiIiIqJHE4MSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMoHJ0BKj+EMMBgMEAI6/NlMgkajQY6nQ4Gg42FHlFlsWwkCZDJZJAkxi6JiAoqIyMDPXr0QM+ePfHWW285OjtERERlHoMSVGx6vR4pKYnIykrPd9n4eBkMBkMp5OrhU1bLxsnJFZ6ePpDL5Y7OChFRmTd37lyEhYU5OhtEREQPDQYlqFiEEEhIuAWZTA5v74qQyxUAJJvLKxQSdLqyUROgrCl7ZSOg1+tw714yEhJuwd+/KiTJ9rElInrUXb16FZcvX0bHjh1x+fJlR2eHiIjoocCgBBWLwaCHwaCHj08AFAplvssrFDIAZa82QFlQFstGoVBCLlcgPv4mDAb9/aATEdHD5+DBg1i0aBFOnTqFuLg4zJ07Fx07djRbZuXKlVi0aBHi4uIQHByMyZMnF6rWwxdffIGJEyfi6NGj9s4+ERFRucU3DCqWnP4j+At6+ZV9bG31FUJE9DBIT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YNtm/fjpo1ayIwMJBBCSIiokJgUIKIiIjKvfbt26N9+/Y25y9ZsgQvvvgi+vTpAwD4+OOPsWPHDqxduxbDhg0DAKxbt87m+sePH8fGjRsRGRmJtLQ06HQ6eHp64pVXXilSfmWy4gX7jesXN53yiGWTN5aPbSwb21g2eWP55I1BiXLi9ddfx969exEREYFvvvnGNH3r1q2YPn06AGDcuHHo0aOHo7JIRERUJmk0GkRFRWHUqFGmaTKZDK1bt8axY8cKlMaECRMwYcIEANk1Jy5fvlzkgIRCIYOvr3uR1n2Qt7ebXdIpj1g2eWP52MaysY1lkzeWj3UMSpQTL730Ep599lmsX7/eNE2n02H69OlYuXIl5HI5XnzxRXTp0gUqlcqBOS07PvvsI2za9JfF9L/+2govL6/SzxARETlEUlIS9Ho9/Pz8zKb7+vri2rVrpZ4fnc6AlJSMYqUhk0nw9nZDUlJamRlquqxg2eSN5WMby8Y2lk3e7FE+np4uUCrL52h4DEqUEy1atMD+/fvNph0/fhxBQUGmh6ywsDAcPnwYrVq1ckQWy6TWrdvinXf+ZzatQoUKZp91Oh0UCn5ViIgeNUKIIo061Lt372Jv214P9QaD4AuCDSybvLF8bGPZ2MayyRvLxzqZozPwKDh48CBGjhyJiIgIBAUFYfv27RbLrFy5Ep06dUJoaCheeOEFnDhxotjbvXPnDgICAkyfAwICcOfOnWKnW56oVEr4+vqZ/Xv++aexfPlifPLJ++jatR2++24GAOD48aMYNWooOnVqgz59nsScOd9Bo9GY0kpIiMfEiePRqVMbvPjis9ix4x/07NkZGzdm1145cuQQIiKaIj093bTO7t3/ISKiqVme/v13BwYP7o9OnVrjxRefxcqVy2Aw5IzKERHRFH/99QcmThyPzp3bYODAF3D8+DGzNI4dO4LXXhuOzp3b4IknOuHtt8chKysLy5YtwpAh/S3KoW/fXvj55x+LXZ5ERA8jb29vyOVyxMfHm01PTEy0qD1BRERE9sWgRCkw9vj9wQcfWJ1v7PF79OjRWLt2LYKCgjB8+HAkJiaalnnmmWes/tPr9aW1G4+Un35ajnr1grF06U/o2/clxMRE4623xqFz525YvvwXfPDBp9i7dzfmzp1lWuezzz5CfHwcZs+ehw8/nIKVK5ebBSAK4vjxY5g69SP07fsSVqz4DePHv43Vq3/F6tW/mi23ZMlCPPHEk1i69GfUrl0XH3/8P+h0OgDA9evX8MYboxEUFIz585dh9uz5aNKkGYQQ6NHjKVy+fAkXLpzLtc2juHXrJrp3f6IYJUZE9PBSqVQICQnBnj17TNMMBgP27t2L8PBwx2WMiIjoEcA66aWgpHv8tqVixYqIjY01fY6NjUVERESh0zGy1lvsw96D7H//7UTXrm1Nnzt06AwAaNq0BV54IadGwbRpn+Lxx3viuef6AgCqVauO0aPHY/LkiRg79k3cuHENBw7sw+LFP0KtrgcAmDDhHQwfPqhQ+Vm8eD4GDRqKxx/vCQCoWrUaXn55KFav/hUvvNDPtNyTTz6Djh27AACGDn0F/fv3QUxMNGrUqIkff1yK0NCGGDdugmn52rXrAACcnZ3RvHlLbNiwHuPHBwEANm5cj1at2sDHxzfPvMlkUqkf7wd7Kn7Yz7eSwLKxjWVj26NYNmlpabh+/brpc3R0NM6cOQM/Pz/4+/tjyJAhmDhxIkJCQhAWFoZly5YhMzMTvXr1cmCuiYiIyj8GJRzMHj1+2xIWFoazZ88iPj4ecrkcx48fx2effVaktGz1BK7RaBAfL4NCIUGhKFjFm4IuV9IkSUKzZi0wYcJE0zRXVzcMGzYI9euHmOXz0qULuHjxAjZvzukY02AQyMrKxN27iYiOvg6lUong4GBT++OQkBAolUrIZNllI5dnp6dQyExpy+WSaVr2ds7j1KnjWLJkQa7tGGAwGMzyU7duXdPngICKAICUlCQoFLVw6dIFtG/f0WY5P/XUs/jyy88wbtwb0Ot12L79H3z44Sd5HBcJMpkM3t6updpJqlIptzjn2GOxbSwb21g2tj1KZXPq1CkMGpQTKJ4yZQoAYMyYMRg7dix69OiBxMREzJw5E3FxcQgODsbChQvh4+PjqCwTERE9EhiUcDB79fj9yiuv4MSJE8jIyEC7du0wf/581KtXD2+99Rb698/+xX/8+PFwcnIqUj5t9QSu0+lgMBig0wkABssVH6BQyKDT5b9caRBCwNnZGZUrV7OY5+TkZJbP9PR09O79PHr1et5iWXf3CtDpDJAkyfS/MX0gO3ih0xlw/yN0Or0p7aws7f1p2UGH9PQMjBgxCm3bWtasyZ0fSZKbPuv12QlrtXrTdozbtKZ167YAJPz7705kZGRApVKhRYs2NpfX6QQMBgOSktKhUGisLlMStFo9EhJSAbBH57ywbGxj2dhmr7J5mHoCb9GiBc6dO5fnMgMGDMCAAQNKKUdEREQEMChRZhW2x+/58+dbnd6tWzd069bNLnmy9uD6qDzo160bhCtXLqNatepW59esWRMajQYXLpwzNd84d+4stFqtaRkvL28AQEJCAlxds3+dvHjxvFk6anUQbty4ZnM7BVGnTl0cOXIIgwcPtzpfoVCge/ce2LBhPbKyMtG9+xMFGl3EEb0FP7g99lhsG8vGNpaNbSwbIiIicrSyUY/+EcYevx8OL700CMeOHcW3336FCxfO4/r1a9i5cxu+//47AMBjj9VE06bN8cUXn+HMmSicOROFb775Ekql0pRGtWrVUbFiAJYsWYAbN65j+/at2LDhT7PtvPzyMGzcuB5Lly7ElSuXceXKZWzZsgnLli0qcF4HDBiMkyeP47vvZuDy5Yu4cuUyfvvtZ2RmZpqWefLJZ7B//x4cPXoYPXo8XczSISIiIiIiKhoGJRyMPX4/HOrWDcLMmXNx5cpljBo1FMOHD8KyZYvg71/RtMzkyZ/A29sbo0ePwAcfvIe+fV+Cq6urab5CocAHH3yK8+fP4eWX+2H9+nUYMmSE2XZatWqDzz+fgb17d2PYsIEYNWoo1qxZhcqVqxQ4r489VgMzZszC6dOnMHz4IIwePQKHDx8wq3kTGFgLanU91K0bZOoEk4iIiIiIqLSx+UYpYI/fZdP//veR1emrV6+3Or1Bg1B8990cm+n5+fnhq69mmk376qvPzT6HhzfGjz/+ZjbtqaeeNfvcqlUbtGrVxuZ2du06ZPbZ1dXVYlrjxk0xb94Sm2lk9xGRiP79Czc6CBERERERkT0xKFEK2OM3lSWJiQnYuHE9UlPv4fHHezg6O0RERERE9AhjUKIUsMdvKkuefro7vL198M47k00dbhIRERERETkCgxJEJWjDhn8cnQULDzb1ICIiIiIichR2dElEREREREREDsGaElRi3n//XZw8ecJsmiQBQth/W6GhYfj002n2T5iIiIiIiIhKDIMSVGKsBQkUChl0OoMDckNERERERERlDZtv0CPp999/xeOPd4DBkBMgSUiIR0REU7z33ltmy0ZGbkTHjq2QlZVZ5O3988/fiIhoismTJ1qd/+GHk7B48UIAQEREU3Tq1AZ37sSaLTNmzCuYPfvbIueBiIiIiIiorGFQgh5JjRo1QWpqKs6fzxkV5dixI6hYMQDHjx+FyNXG5NixIwgODoGTk3ORthUbexvff/8twsLCrc7X6XTYv38v2rZtZzZ9yZIFRdoeERERERHRw4JBCXokBQbWhpeXN44ePWyadvToYTz+eE8olUpcvHjBbHrjxk2LtB2DwYApUz7Eyy8PQ9Wq1awuc+zYEbi7u6NuXbVpWp8+L2DjxvW4fv1qkbZLRERERET0MGCfEvRIkiQJ4eGNcfToYfTrNwBAdnBg3LgJiIm5gaNHD6NuXTXi4+MQHX0DjRo1AQAMGPACYmNv2Uw3LKwRZsyYafr800/L4ezsjGee6Y1Tp05YXWfXrn/Rpk1bs2nh4Y1x6dJFzJ//A6ZM+aK4u0tERERERFQmMShBj6xGjZpgwYI5MBgMuHs3GdHRN9CgQUPcuHEDBw/uxwsv9MORI4ehUqnQoEEoAOCrr76DTqezmaaTk5Pp73PnzmL16l+xaNGKPPOxe/d/mDjxPYvpI0eOxvDhg3D27GnUq1e/iHtJRERERERUdjEoQY+sxo2bmvqVuHkzBkFBwXBxcUF4eCMsXDgXQggcO3YY9es3MPUnUalS5QKlrdFo8MknkzF+/Fvw9fWzudylSxeRkpKMRo0sm4eo1fXQsWNnzJ07G99+O6doO0lERERERFSGMShBj6zAwFrw9vbB0aOHcetWDMLDG9+fXhuSBFy8eAHHjh1B587dTOsUtPlGQkI8rl27ig8/nGSaZxzpo337Fli9ej38/Sti166daNGiNRQK61/FESNew0svPYfDhw/aY5eJiIiIiIjKFAYl6JHWqFETU1DitdfGAcjubyIsLBz//LMF169fM/UnARS8+Ya/f0UsX/6L2bwFC35AZmYmxo59A97ePgCy+5N4/vm+NtOrVq06nnzyGcydO6vIo38QERERERGVVQxK0COtUaMmmDPnO2g0GoSFNTRNb9iwERYtmg+VSoWQkFDT9II231AoFKhVq47ZNHd3D8jlctP0hIR4XLhwDi1btskzrSFDXsGLLz4DIcC+JYiIiIiIqFzhkKD0SGvcuCkyMjJQt24Q3NzcTdPDw5sgIyP9fn8STnmkUHS7d/+H0NCG8PT0zHM5Pz8/PPdcX2g0WSWSDyIiIiIiIkdhTQl6pNWoURO7dh2ymF6vXrDV6cXxv/99ZPZ5165/ERHRzmI5a9sdNWosRo0aa9f8EBERERERORprShA5SMOG4ejUqaujs0FEREREROQwrClB5CAvvfSyo7NARERERETkUKwpQUREREREREQOwaAEERERERERETkEgxJULJJk/Es4MhtUorKPbc6xJiIiIiIisg8GJahYZDI5AInDVZZj2cdWun+siYiIiIiI7IcdXVKxSJIENzdPpKQkAgBUKicAef2kLkGnY60K68pa2QhoNFlISUmEm5snJFaVICIiIiIiO2NQgorN3b0CANwPTOT9Ui2TyWAwGEohVw+fslk22UEn4zEmIiIiIiKyJwYlqNgkSYKHhxfc3SvAYNBD2IhLyGQSvL1dkZSUDoOhLNUIcLyyWDaSlN08hzUkiIiIiIiopDAoQXYjSRLkctunlEwmQaVSQaHQlJkX77KCZUNERERERI8idnRJRERERERERA7BoAQREREREREROQSDEkRERERERETkEJIQtrolJMphMAjo9cUfGUKplEOr1dshR+UPy8bc+fNnoVbXM31m+djGsrGNZWObPcpGLpdBJmNnuPbGe27JY9nkjeVjG8vGNpZN3opbPuX5nsugBBERERERERE5BJtvEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKUIGtXLkSnTp1QmhoKF544QWcOHEiz+U3bdqExx9/HKGhoXjqqafw77//ms0XQuC7775DREQEwsLCMHjwYFy7ds1smeTkZEyYMAGNGzdGs2bN8L///Q/p6el23zd7KO3yiY6OxqRJk9CpUyeEhYWhS5cumD17NrRabYnsX3E44twxSk5ORrt27RAUFIS0tDS77ZO9OKpstm3bhj59+iAsLAytWrXCO++8Y9f9sgdHlM3x48cxcOBANGnSBM2bN8err76KS5cu2X3f7MHe5bNlyxYMGzYMLVq0QFBQEM6fP2+RxsN0TX4U2PscKE8KUzYXLlzA2LFj0alTJwQFBeHHH38sxZw6RmHK57fffkP//v3RrFkzNG/eHEOHDsXJkydLMbelqzBls3XrVvTp0wdNmzZFeHg4nnnmGfzxxx+ll9lSVthrjtH8+fMRFBSEL774ooRz6DiFKZs1a9YgKCjI7F9oaGgp5rYMEkQFsGHDBhESEiJWr14tLly4ICZPniyaNWsmEhISrC5/5MgRERwcLBYsWCAuXrwovv32WxESEiIuXrxoWmbevHmiSZMm4u+//xZnzpwRI0eOFF26dBFZWVmmZYYNGyaefvppcezYMXHw4EHRtWtX8fbbb5f4/haWI8pn586d4t133xX//fefuH79uti6dato1aqVmD59eqnsc0E56twxGjt2rBg2bJhQq9UiNTW1xPazKBxVNps3bxbNmjUTv/zyi7h8+bI4f/68iIyMLPH9LQxHlM29e/dEs2bNxKRJk8Tly5fF2bNnxauvvio6d+5cKvtcGCVRPmvXrhWzZs0Sv/32m1Cr1eLcuXMW6Tws1+RHQUmcA+VFYcvm+PHjYtq0aeKvv/4Sbdq0EStWrCjlHJeuwpbPm2++KX788Udx+vRpcfHiRfHuu++Kpk2bitjY2FLOeckrbNkcOHBAREZGiosXL4pr166J5cuXi+DgYLF79+5SznnJK2zZGJ06dUp07NhRPPXUU2LatGmllNvSVdiy+f3330Xz5s3FnTt3TP/i4uJKOddlC4MSVCDPPfec+OSTT0yf9Xq9iIiIEAsXLrS6/Lhx48Srr75qNu35558XH3/8sRBCCIPBINq0aSMWLVpkmp+SkiIaNGggNm3aJIQQ4uLFi0KtVouTJ0+altm5c6eoV69emfviOqJ8rFmwYIHo1q1bcXbF7hxZNqtWrRJ9+/YVe/bsKZNBCUeUjVarFW3bthW//fabvXfHrhxRNidOnBBqtdrsQfvIkSNCrVbn+9BV2uxdPrnduHHDalDiYbomPwpK8hx42BW2bHLr2LFjuQ9KFKd8hBBCp9OJRo0aiT///LOksugwxS0bIYR49tlnxaxZs0oiew5VlLJJT08XTzzxhPj333/FgAEDym1QorBlYwxKUA4236B8aTQaREVFoU2bNqZpMpkMrVu3xrFjx6yuc+zYMbPlASAiIsK0fHR0NOLi4syW8fDwQMOGDU3LHD16FF5eXmjQoIFpmdatW0OSpAJXFysNjiofa+7du4cKFSoUeV/szZFlc/36dXz77bf48ssvIZOVvUudo8rm9OnTiI2NhSRJePrppxEREYGRI0fabP7iCI4qm8DAQHh5eWHVqlXQarXIyMjA2rVrERoaCh8fH7vuY3GURPkUxMNyTX4UOOoceBgUpWweJfYon4yMDOh0ujL1vGEPxS0bIQT27t2LK1euoEmTJiWY09JX1LKZNm0aWrRogbZt25ZCLh2jqGWTmpqKDh06oH379njttddw8eLFUsht2VX2ntSpzElKSoJer4efn5/ZdF9fX8TFxVldJz4+Hr6+vjaXN/6fV5rW0lAoFKhQoQLi4+OLvkN25qjyedD169fx448/om/fvkXaj5LgqLLR6XR4++23MW7cOFSvXt0u+2JvjiqbGzduAADmzJmDsWPHYs6cOVAqlRg0aFCZ6RvAUWXj7u6OZcuWYc2aNWjYsCEaNWqEY8eOYc6cOXbZL3spifIpiIflmvwocNQ58DAoStk8SuxRPjNmzEDlypXRsmXLksiiwxS1bO7du4dGjRqhQYMGeOWVV/DBBx+gVatWJZ3dUlWUstm+fTv27duHiRMnlkYWHaYoZVOrVi18/vnnmDt3LqZPnw6DwYB+/fohNja2NLJcJjEoQUUmhIAkSTbnW5v34LQHPz+YprU08ttuWVEa5WMUGxuL4cOHo2fPnujdu3cRc1x6Srps5s6dC29vbzz//PN2yG3pKumyMRgMAIBRo0aha9euCAsLwxdffIGUlBTs2LGjmLkvWSVdNpmZmZg8eTJatmyJ3377DT/99BMqV66M0aNHQ6fT2WEPSpY9yic/D/M1+VFQGufAw4rnad4KWj4LFizAxo0bMWvWLKhUqlLImePlVzZubm74448/sHr1arzxxhuYOnUqDh06VIo5dBxbZZOYmIj3338fX375JVxcXByQM8fL67wJDw/H008/jXr16qF58+aYNWuWqabmo0rh6AxQ2eft7Q25XG7xS1hiYqJFVNDIz8/PYvmEhATT8v7+/gCyf73MXS06MTHRVDXYWho6nQ4pKSkWv/Y4kqPKxyg2NhaDBg1CeHg4Pvroo+Lujl05qmz279+PQ4cOoX79+gCybwwA0KxZM7z++usYOXKkHfaueBz5vQKymyoYubq6okqVKrh582Yx98o+HFU269evR2xsLFatWmV6kPj666/RrFkz7NmzB+3atbPPDhZTSZRPQTws1+RHgaPOgYdBUcrmUVKc8lm0aBHmzZuHJUuWQK1Wl2Q2HaKoZSOTyVCjRg0AQHBwMC5duoT58+ejadOmJZrf0lTYsrlw4QLi4uLQr18/0zS9Xo+DBw/ixx9/LFejt9jjmqNUKhEcHFymmtKWNtaUoHypVCqEhIRgz549pmkGgwF79+5FeHi41XXCw8Oxe/dus2l79uwxLV+tWjX4+/ubpZmamorjx4+blmnUqBGSk5MRFRVlWmbfvn0QQiAsLMw+O2cHjiofICcgERISgs8//7zM9Z3gqLKZOnUq1q1bhz/++AN//PEHpkyZAgD45Zdf8MILL9hvB4vBUWUTGhoKpVJpduPLzMzE7du3UaVKFfvsXDE5qmwyMzMhk8nMftkwfjYGtsqCkiifgnhYrsmPAkedAw+DopTNo6So5bNw4ULMmTMHCxcuLLdDF9rr3BFCQKPRlEAOHaewZRMaGor169ebnsP++OMPNGjQAL169cKaNWtKMeclzx7njV6vx4ULF0w/oDySSq1LTXqoGYe6WbNmjbh48aJ4//33zYa6efvtt8VXX31lWv7w4cMiODhYLFq0SFy8eFHMnDnT6vB8TZs2FVu3bhVnz54Vo0aNsjok6LPPPiuOHz8uDh06JLp16ybeeuut0tvxAnJE+dy+fVt07dpVDBo0SNy+fdtsWKGyxFHnTm779u0rk6NvOKpsPvnkE9G+fXuxe/ducfHiRTFhwgTRvn17kZaWVno7nw9HlM3FixdFgwYNxKeffiouXbokzp49K8aOHStatWolkpOTS7cA8lES5ZOUlCROnz4tduzYIdRqtdi8ebM4ffq0SEpKMi3zsFyTHwUlcQ6UF4Utm6ysLHH69Glx+vRp0aZNG/HVV1+J06dPi5iYGEftQokqbPnMnz9fhISEiM2bN5s9a5S1e6o9FLZs5s2bZxqa/eLFi2LJkiWifv36YvXq1Y7ahRJT2LJ5UHkefaOwZTNr1izTeXPq1CnxxhtviLCwMHHp0iVH7YLDsfkGFUiPHj2QmJiImTNnIi4uDsHBwVi4cKGpGvStW7fMfqVv3LgxZsyYgW+//RZff/01atasie+//x61a9c2LTNixAhkZGTggw8+QEpKCpo0aYIFCxaYtVH86quv8Omnn+Lll1+GTCZD9+7dMXny5NLb8QJyRPns3r0b165dw7Vr1yyqlZ87d64U9rpgHHXuPAwcVTbvvPMO5HI53nzzTWi1WjRq1AhLliyBq6tr6e18PhxRNrVr18bcuXMxa9YsPP/881AoFGjQoAEWLlxY5nqZL4ny2bZtG9577z3T59dffx0A8Pnnn5v6qnlYrsmPgpI4B8qLwpbNnTt38Oyzz5o+z58/H/Pnz0evXr0wbdq00s5+iSts+fz888/QarWma4LRmDFjMHbs2FLNe0krbNlkZmbik08+we3bt+Hs7IxatWph+vTp6NGjh6N2ocQUtmweJYUtm5SUFLz//vuIi4tDhQoV0KBBA/z666+oVauWo3bB4SQhylCdVCIiIiIiIiJ6ZDya4SwiIiIiIiIicjgGJYiIiIiIiIjIIRiUICIiIiIiIiKHYFCCiIiIiIiIiByCQQkiIiIiIiIicggGJYiIiIiIiIjIIRiUICIiIiIiIiKHUDg6A0REeZk1axZmz55tMb1Vq1ZYunRp6WeIiIionOI9l4gcgUEJIirzPDw8sHDhQotpREREZF+85xJRaWNQgojKPLlcjvDw8HyXy8zMhLOzc8lniIiIqJziPZeIShv7lCCih1J0dDSCgoLw559/YuLEiWjatClGjhwJAEhOTsYHH3yA1q1bIzQ0FH379sXx48fN1k9JScGECRMQHh6OiIgI/PDDD/jiiy/QqVMn0zKzZs1CixYtLLYdFBSEH3/80WzaqlWr0LNnTzRo0AAdO3bEggULzOa/++676N27N3bv3o2nnnoK4eHh6NevHy5cuGC2nF6vx7x589C9e3c0aNAA7dq1w7vvvgsAWLlyJRo1aoS0tDSzdfbt24egoCCcPXu2kKVIRESUP95zc/CeS2R/rClBRA8FnU5n9lkIAQD48ssv0bVrV3z33XeQyWTQaDQYMmQIUlJSMHHiRPj4+ODnn3/G4MGDsWXLFvj7+wMA3nvvPRw4cACTJk2Cn58fFi9ejOvXr0OhKPxlceHChfjmm28wfPhwNG/eHFFRUfjuu+/g4uKCAQMGmJa7desWvvzyS4waNQpOTk748ssvMX78ePz111+QJAkA8MEHH2DdunUYNmwYmjdvjrt372Lz5s0AgKeeegpffPEFIiMj0bt3b1O6a9euRUhICOrVq1fovBMRET2I91zec4lKE4MSRFTmJScnIyQkxGzalClTAAANGzbEhx9+aJq+atUqXLhwAX/99Rdq1qwJAGjdujUef/xxLF68GO+88w4uXLiArVu34ptvvkGPHj0AAC1atEDHjh3h7u5eqLylpqbi+++/x6hRozBmzBgAQJs2bZCRkYEffvgB/fr1g1wuBwDcvXsXP//8sylfQgiMHj0aly9fRu3atXHp0iWsXr0a//vf/zBo0CDTNox59PT0RLdu3bBmzRrTA1JaWhq2bNmCCRMmFCrfRERE1vCey3suUWljUIKIyjwPDw8sWbLEbJpKpQIAdOjQwWz63r17ERISgmrVqpn90tOsWTOcOnUKAHDy5EkAMKs26ubmhtatW+PEiROFytvRo0eRnp6Oxx9/3Gx7LVu2xJw5c3D79m1UrVoVAFC1alXTwxEA1K5dGwAQGxuL2rVrY//+/QBg9ovMg5577jkMHjwYN27cQPXq1bFp0ybodDo8+eSThco3ERGRNbzn5uA9l6h0MChBRGWeXC5HaGio2bTo6GgAgK+vr9n0pKQkHDt2zOJXHgB47LHHAADx8fFwc3Oz6KDrwbQKIikpCQDQs2dPq/Nv3bplekB6sPdypVIJAMjKygKQ/euUq6trnr8ctWjRAtWrV8eaNWswbtw4rFmzBp07d4aXl1eh805ERPQg3nNz8J5LVDoYlCCih5qxXahRhQoV0KBBA3z00UcWyxp/6fHz80NaWppFz+EJCQlmyzs5OUGr1ZpNu3v3rsX2AGDevHlWH7ACAwMLvC9eXl5IT09HamqqzYckSZLQp08f/Pbbb3jmmWdw+PBhiw6+iIiISgLvubznEpUEBiWIqFxp1aoVdu/ejSpVqtj8Fcb4C9C2bdtMbUfT0tKwZ88esweTgIAApKWlITY2FgEBAQCA3bt3m6XVqFEjODs7486dOxbVWgurZcuWAIA//vjDrLOuB/Xq1QszZ87EpEmTEBAQgDZt2hRru0REREXBey4R2QODEkRUrjz77LP45ZdfMHDgQAwdOhTVq1dHcnIyTpw4AX9/fwwePBh169ZFp06d8NFHHyE1NRX+/v5YtGiRRdXStm3bwtnZGZMmTcKQIUMQHR2NX375xWwZT09PjBkzBp999hliYmLQrFkzGAwGXL16Ffv378f3339f4LzXqlULL774IqZNm4aEhAQ0a9YMKSkpiIyMxDfffGNaLiAgAG3btsWOHTvw6quvmjr1IiIiKk285xKRPTAoQUTlipOTE5YvX47vvvsOs2bNQkJCAnx8fBAWFmbWyda0adPw0UcfYerUqXB1dUX//v0RGhqKyMhI0zI+Pj6YOXMmvvzyS4wePRohISGYMWOG6ZceoxEjRqBixYpYtmwZlixZAicnJ9SsWdNiuYL48MMPUaVKFaxatQoLFiyAj4+P1V9lunTpgh07duTZQRcREVFJ4j2XiOxBEsaBh4mIHnHG8ci3bdvm6Kzka9y4cYiLi8NPP/3k6KwQEREVGu+5RGTEmhJERA+Rc+fO4dSpU/j777/x9ddfOzo7RERE5RbvuUSlg0EJIqKHyKhRo5CUlIT+/fvj8ccfd3R2iIiIyi3ec4lKB5tvEBEREREREZFDyBydASIiIiIiIiJ6NDEoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJEdtapUycEBQUhOjra0Vl5KJWV8ps1axaCgoIwa9asAq+zf/9+BAUFYeDAgSWYMyqsNWvWICgoCO+++26pbC8oKAhBQUGFXu/dd99FUFAQ1qxZUwK5Kp6BAwciKCgI+/fvd3RWAJTtsiqoolxjiMob3jeJCGBQgorJ+KAaFBSEefPm2VzO+PBlr5eC6OhozJo1q9QfSPfv349Zs2aVmQdzIqLyxlHXd6I1a9Zg1qxZDg+Kl0XR0dGm5z1b5XPt2jV06NABQUFB6Nu3L1JTU0s5l0T0sGJQguxm8eLFpXYDiomJwezZs7F27dpS2Z7RgQMHMHv2bBw4cKBUt0sPBxcXFwQGBqJy5cqOzgrl4uHhgcDAQPj7+zs6K3ny9/dHYGAgPDw8HJ0VC5UrV0ZgYCBcXFxKfFuOur6XNm9vbwQGBsLb29vRWaH71q5di9mzZyMmJsbRWXnoXL58GQMGDMCtW7fQvHlzLFq0CO7u7vmux/smEQGAwtEZoPJBLpcjOTkZS5cuxZgxYxydHSKHCAsLw+bNmx2dDXpA165d0bVrV0dnI18TJkzAhAkTHJ0Nq7788ktHZ6HcGTBgAAYMGODobBAV24ULFzB48GDEx8ejdevWmDNnToEDmLxvEhHAmhJkJ08++SQAYOnSpbh7966Dc0NEREREJe3s2bMYNGgQ4uPj0a5dO8ydO7dUalQRUfnCmhJkFy1btsTt27exf/9+LF68GG+88Uah1o+NjcW8efPw77//IjY2Fi4uLggODsaLL76IHj16mC07cOBAU/OJAwcOmHUoV7VqVWzbts1s+VOnTmHJkiU4dOgQEhIS4ObmhkaNGmH48OFo2rRpgfOYezuzZ8/G7NmzTZ979eqFadOmWaxz4sQJzJkzB0eOHEFWVhbq1q2LV199Nc9fbffu3Ysff/wRx44dw927d+Hl5YXmzZvj1VdfLXTnecayWr58OXx8fDBr1iwcOHAAWVlZCA4Oxrhx49CiRQsAwMWLF/H999/jwIEDuHfvHoKCgvD666+jbdu2FuneuHEDmzdvxn///Yfr168jPj4erq6uNo8ZkN0etXPnzqZjtGrVKvz222+4dOkS0tLScPDgQXh6eua5P6tWrcIHH3wAFxcX/PDDD6a8A0U7zllZWZg/fz7+/PNP3L59G97e3ujQoQPGjx9fiFLOsX//fgwaNAjNmzfHihUrbO77hg0bsHTpUly8eBFyuRxNmjTBG2+8gXr16llNV6/X488//8Sff/6J06dPIy0tDf7+/qhbty6eeOIJ9OrVy7Tsu+++i7Vr1+Lzzz9H8+bN8f3332P37t2Ij4/HSy+9hP/973+mZTdv3oxVq1YhKioKqamp8PPzQ9u2bfHqq6+iWrVqFvk4f/48IiMjsXv3bsTExCApKQkeHh4ICwvDoEGD0KZNG6v5P3r0KJYsWYIjR44gKSkJrq6u8PHxQYMGDfD000+jffv2FutcvXoVixYtwp49e3Dnzh04OzsjJCQEAwcOROfOnQt8TIDsduLvvfeexfc09/Favnw5fvrpJ/z666+4evUqXF1d0bp1a0yYMAFVq1Yt1PZy27hxI5YtW4bz589DLpcjPDwcY8eORcOGDS2WzX3sevfubZqemZmJrVu3Yvv27Th9+jRu374NIQSqVauGzp07Y+jQoahQoYJFehkZGVi6dCkiIyNx7do1aLVaeHt7o2rVqmjVqhUGDx5sdT1rcl9Lcn/vcue5bdu2mDlzJnbs2IGkpCRUrVoVvXv3xvDhwyGXywu1HaBg13cAiIuLK/R27Xl+FTXNWbNmYfbs2RgzZgzGjh1rMX/r1q1YvHgxzpw5A4VCgQYNGmDkyJGoWrWq2fXkQZmZmfjpp5+wceNGXLlyBVqtFtWrV8cTTzyBIUOGwM3NzWz54nwPLl68iPnz5+PgwYOIi4uDSqWCj48P6tWrh+7du+Opp54yLZv7e/jBBx9g9uzZiIyMxJ07d+Dr64tu3bphzJgxNu8Dhd0vo3v37mHFihXYunUrrl27Bp1Oh0qVKqFhw4Z47rnn0Lx5c1MZGOX+G4DpO1nQ+1hR7pH5Kc3rb0FFRUVh6NChSE5ORqdOnfDdd99BpVIVKg3eNx1339TpdPjll1+wfv16XLx4EVlZWahQoQICAgLQokULDBw4EFWqVLF98IjsiEEJsptx48ahf//+WL58OV5++WX4+PgUaL2TJ09i+PDhSE5OhpOTE+rWrYvk5GTs27cP+/btw65duzB16lTT8mq1GsnJyTh//jzc3d2hVqtN8x5sM75ixQpMnToVBoMBHh4eqFOnDu7cuYPt27djx44d+Oijj9C3b98C5bNx48a4desWbt26hcqVK5u1f6xZs6bF8jt37sTnn38OFxcXVK9eHTExMTh58iTGjBmDr7/+Gj179rRY54svvsDixYsBZLc3rlu3LmJiYrBhwwb8/fffmDlzJjp27Fig/OZ28uRJzJ49G3K5HDVq1EBMTAwOHz6MYcOGYfHixZDL5RgxYgQkSUKNGjWg0+lw4sQJjBw5EosWLULLli3N0ps7dy5Wr14NV1dXVKxYEUFBQUhISDAds2PHjmHSpEk28/PRRx/h559/RkBAAGrVqoUbN27kuw8LFy7E9OnT4eXlhYULFyI0NNQ0ryjHOTMzE0OHDsXhw4cBALVr14ZCocCqVauwa9cudOrUqTBFXGDffPMN5s6di0qVKqFmzZq4cuUKduzYgUOHDmH16tUIDAw0Wz41NRWvvfaaqXPVSpUqoVq1aoiNjcW///6LnTt3mj1cGV25cgWff/45MjIyULduXXh4eEAmy64cp9PpMHHiRGzYsAEATA9q165dw2+//YbNmzdj0aJFCAsLM0tz6tSp2Lt3Lzw8PODv7w9/f3/cuXMHO3bswI4dO/Dee+9h8ODBZuts27YNY8aMgV6vh7u7O+rUqQODwYDbt2/jr7/+QmpqqsXDVWRkJN566y1oNBq4uroiMDAQycnJ2Lt3L/bu3YuRI0cWOvCZn7fffhvr16/HY489hpo1a+Ly5cvYsGEDDh06hHXr1hWp3f/ixYvxxRdfwNfXF7Vq1cL169fx33//Ye/evfjuu+/QpUuXAqVz6tQpTJgwAXK5HH5+fggMDER6ejquXbuGuXPnYtOmTfjll1/Mrrk6nQ5DhgzB0aNHAQCPPfYYKlSogISEBJw8eRJHjx5Fp06dzL5HxXHz5k306tULycnJqFu3LhQKBa5evYqvv/4aMTEx+OSTTwqUTmGu70XdbkmcX/ZOc9GiRaYmM35+fqhcuTKioqIwZMgQvP322zbXu3PnDoYNG2YKglWuXBmurq64cuUKZs2ahcjISCxfvtzm+VyY78HJkycxcOBAZGRkmPoFkMvluHXrFv7++29cvXrVLChhpNFoMHDgQJw6dQq1a9dGYGAgLly4gGXLluG///7DypUrLZ4firpfFy9exIgRI3Dz5k1IkoSaNWvC1dUV0dHRWLduHW7duoUVK1bAw8MDjRs3xvnz55Gamgq1Wm3WH4Kvr6/FfuR1HyvuPdKa0rr+FtSJEycwbNgwpKSkoHv37pgxYwaUSmWR0soP75slc9+cMGGCqelMlSpV4Ovra7r+RkVFoWHDhgxKUOkRRMUwYMAAoVarxe+//y6EEGLo0KFCrVaLadOmmS03c+ZMoVarxTvvvGM2PT09XXTs2FGo1WoxatQokZycbJq3bds20bBhQ6FWq8Uvv/xitt6+ffuEWq0WAwYMsJm3Xbt2iaCgINGkSRPx559/CoPBYJq3ZcsW0ahRIxESEiLOnTtX4P017sfMmTNtLmPcn5CQEDF79myh0WiEEELo9Xoxbdo0oVarRbt27YRerzdb77fffjPN27lzp9m8n3/+WQQHB4smTZqI+Pj4AufXeHxCQkLEp59+KjIzM4UQQuh0OjF58mShVqtFr169RMeOHS3mT5o0SajVavH8889bpLtjxw5x9OhRszIVQojTp0+Lxx9/XKjVanHo0CGzeTdu3BBqtVoEBweLsLAwERkZaZqXlZVlKg9j+d24ccM0/6uvvhJqtVq0bdtWXLx40Szdoh7nL7/8UqjVatGmTRtx6tQp0/SrV6+KJ554QoSEhOR7rB9k67w07ntISIgIDw8XW7duNc1LSUkxHac333zTIs2xY8cKtVotOnToIA4ePGg27/bt2xb5e+edd0zl/Morr4iEhATTvIyMDCGEEF9//bVQq9WiZ8+e4tixY6b5Wq1WzJo1S6jVatGxY0eRlZVllvamTZvEmTNnLPK4f/9+0aZNG1G/fn2z4yaEEE8++aRQq9Xi66+/tkjv5MmT4o8//jCbdu7cOREaGipCQkLEihUrhFarNc07cOCAaNOmjVCr1eLff/+1yIctv//+u9Xrj/F4hYSEiDZt2ojDhw+b5t2+fduU9xkzZhR4W0IIoVarTekuXLjQdG5nZWWJTz/9VKjVatGkSRNx584ds/WMx854PTWKjo4WGzZsEPfu3TObnpSUJD788EOhVqvF//73P7N5kZGRQq1Wi/bt21t8Z+7duydWrVoloqOjC7xPxnN03759VvMcEhIiXnvtNZGYmGiat2XLFlGvXj2hVqvFpUuXCrytglzfi7rdkji/ipqmrfvJqVOnRHBwsFCr1WLJkiWm80ej0Yhp06aZrk0dO3Y0W89gMIj+/fsLtVotXnvtNXHr1i3TvMTERDFq1CihVqvFG2+8YbZeUb8Hr776qul7lZqaajbv0qVL4ueffzabZvwehoSEiLZt24qoqCjTvGvXrokePXoItVotxo8fb5f9Sk1NFZ06dRJqtVoMGjRIXL9+3Wx+VFSUWLlypdk0W+e5UUHvY0W5R+anNK6/eTHuu1qtFn/++ado3Lix6b6l0+kKtS+58b7pmPvmqVOnTPeiB8/FzMxMsWHDBnH69GmLfBOVFAYlqFgeDEocP35cqNVqERYWZvbAbSsosWrVKqFWq0Xz5s1FWlqaRfpz5841Xehz39wL8tDaq1cvoVarxcaNG63OX7ZsmVCr1WLy5MkF3t/CBCVGjBhhMS8rK0u0bt1aqNVqs4u9RqMRbdq0EUFBQWY3u9ymTp0q1Gq1+OGHHwqcX+Pxefrppy2CIHfv3hWhoaE25ycnJ5vm5w4W5WfPnj1CrVaL999/32x67geahQsX2lw/d1BCr9eL999/X6jVatG1a1erL1FFOc6pqakiPDxcqNVqsWnTJot1jOexvYMSarVaLFiwwGK9M2fOmB4OcjM+NISEhFi8WNpifLhq3bq1xYuCEEIkJCSI0NBQER4ebvGQbjR69GjTg2dBGYNq8+bNM5veoEEDoVarLV6obTE+TForJyGE2Lp1q1Cr1WLIkCEFzlt+QQlb58/ff/9t+n4UhjHNkSNHWswzGAymB05bD8YPBiXy065dOxEeHm72IDpv3jyhVqvF1KlTC5WWLfkFJWydb6+99prp5bqgChOUKOx2S+L8Kmqatu4nEyZMEGq1Wrz99ttW0zO+oD8YlNi2bZtQq9XimWeesXiREUKItLQ00a5dO1GvXj1x8+ZN0/Sifg+6d+8u1Gq11Rcua4zfQ7VaLbZs2WIx33jdDQoKMrs2FXW/Fi9eLNRqtejWrZvpxTI/BQ1K5Hcfy4ute2Rx2Ov6m5fc+16/fn2hVqvFxIkTLZ4dCov3TcfcN//66y+hVqvF6NGjC5xfopLEji7JrsLCwtCpUydkZmZi3rx5+S7/33//AQCef/55uLq6Wszv378/lEolYmJicPny5QLn49atW4iKioKXlxe6d+9udRlj1Wlj9T57e+GFFyymqVQqU/vH69evm6YfO3YMcXFxqFevntW25kDx8tunTx9TFUQjT09PU/tHa/MrVKhgakNsrXlFcnIyVq5cibfffhtDhgxB//790a9fP3z11VcAsju/ssVatckH6XQ6vPnmm/j1118RFBSEn376yaJNc1GP86FDh5Ceno6KFSuiW7duFuuEhYXZPA7F9eKLL1pMq1evHpycnHDv3j0kJSWZpv/9998AgE6dOqF27dqF2k737t2ttrH+999/kZWVhdatW6N69epW183rXIuNjcWiRYvwxhtv4OWXX0a/fv3Qr18/LF++HABw5swZs+WNzZw2bdqUb541Gg127NgBmUyG559/3uoy7du3h1KpxKFDh6DT6fJNsyAqVKiAJ554wmK68RzI/V0tjJdeeslimiRJ6N+/PwBg165dBU5LCIGdO3diypQpeOWVV/DSSy+Zyj41NdXUnMOoUqVKALL7qElOTi5S/gujZ8+eVs83YxkWpIlWSW+3JM6vkkhz9+7dAIDnnnvO6vw+ffpYnb5lyxYA2ddXa+36jf1DGAwGHDx40GJ+Yb8Hxu92ZGQkhBC2dsdCQECA1fbtxuuuEMJUBsXZL+P1c+DAgXB2di5w/goqv/tYce6RtpTk9bco4uLi7HYdzgvvm7YV9RpkvEccP34cN2/ezHc7RCWNfUqQ3Y0bNw7bt2/Hr7/+iuHDh5sufNZcvXoVAFCnTh2r8z08PFCxYkXExMTg6tWrBb7BnDt3DgCg1WqtvhgAMD1E3b59u0BpFlaNGjWsTje2TU1PTzdNO3/+vCkv/fr1s7peVlaWaZnCeuyxx6xO9/HxwaVLl2zO9/X1xeXLl83yCmS/6IwfPz7Plx1b87y9vQvU38ibb76JqKgoNGrUCPPnz7fa+VlRj/OVK1cAALVq1bIIxhjVrl0bx48fzzefheHt7Q0PDw+r83x8fHDr1i2kp6eb2kVfunQJABAeHl7obdn6rhjL7NSpUzbPtXv37gGwPNf++usvTJ48GRkZGTa3++BxHzJkCD766CNMnjwZixcvRkREBBo3bowWLVpYnAfXrl1DVlYWlEolRo4cmef+ZWVlITk5GX5+fnkuVxC2HjKtfVcLw9YxMF7vjOdhflJTUzFq1ChTB5C25C77rl27onr16jh37hw6dOiA1q1bo2nTpmjWrBkaNGgASZIKthMFZOt6ZzzGRS1De263JM4ve6eZkpKCxMREALDZgZ+t6cb7yKpVq2wOsWh8+bB2Hyns92Dw4MHYu3cv5syZg3Xr1iEiIgJNmjRBy5YtERAQYDUtAAgMDMz3upv7u1HU/SrO9TM/+d3HinOPtKWkr7+F8emnn+Ljjz/G7t278frrr2PWrFkl1p8E75slc99s1KgRGjVqhKNHj6Jbt25o0aIFmjVrhqZNmyI8PBwKBV8RqXTxjCO7M/a6vXnzZsyZMyfPDs6MDznWOpEy8vPzQ0xMDNLS0gqch5SUFABAWloajhw5kueyxpd9e7M1JJbxYSz3L0vG/CYlJZlF/K0pSn5t5cX4YpLf/Nx5TU1NNT1sPfXUU3jppZdQq1YtuLu7Qy6X48aNG+jSpYvNX0+s1Yixxvirb40aNWw+kBT1OBf0vLO3vPbd2nmRmpoKADb3Py+2jmnuB6f8Aly5y+zGjRt49913odVq8fLLL+OZZ57BY489Bjc3N8hkMuzduxeDBw+2OO79+vWDh4cHFi9ejKioKFy+fBnLly+HQqFA586dMWnSJFPg0ng8tVptvscTyO6s1B5sHRdbL04FZev8Mk4v6DVt2rRpOHDgAGrWrIk33ngD4eHh8PHxMf1q/NJLL1n8Cu/i4oKffvoJM2fOxObNm/HPP//gn3/+AZD9K9zo0aNt/qpWFIW53tlTUa6z9jy/7J1m7hd/W6NJ5DXKBABcuHAh33xYu48U9nvQvn17LFy4ED/88AOOHDmCX3/9Fb/++iskSUKrVq0wadIk1K1b12K9glx3c383irpfxutnfqM6FUVe1/Li3iOtKY3rb2E0b94cs2fPxqhRo7B9+3a8/fbbmDFjRoFH2SkM3jdL5r4pk8mwYMECU1Bx165dptp73t7eGDp0KIYPH17s+yBRQTEoQSXi9ddfx5YtW7BmzRq88sorNpcz3mwSEhJsLhMfHw/A9oNYXuk2bNgQv/32W4HXcxRjfnv06IFvvvnGwbnJ286dO5GcnIzw8HBMnz7d4hdXe1UVnzlzJt555x388ccfUCqV+PTTTy22VdTjXJjzzpGMvb8bH4jswbjvI0aMwFtvvVXg9TZt2gStVosnnnjCaq/xd+/etbnuk08+iSeffBKJiYk4ePAg9u/fjw0bNiAyMhJXr17F6tWroVKpTN9xPz8/s+rbD6vExESrD/zG864g1zSdTmfq7X3OnDlWf8mzVfYVK1bElClT8PHHH+P06dM4fPgwtm7dioMHD2Ly5MlwdXW1OgpQeVUS55e908z9ApaWlmb1hdpWMMu47oIFC9CuXbti56UgIiIiEBERgXv37uHw4cOm7/aePXswZMgQbNiwwWLYWWNNEGus3e+Lul/u7u5ITk42vbSVlpK4R5bG9bew2rZti2+//Rbjxo3Dpk2b4OTkhGnTptm9FlZh8b5ZcB4eHnjnnXcwceJEXLhwAYcOHcLOnTuxc+dOzJgxAwDyfIYnsieGv6hE1K5dG08++SS0Wi2+//57m8sZh9K09QvIvXv3cOfOHbNlAeR70zP+OnP58mW7tncsqZutMb8F+SXI0aKjowEAjRo1sloeJ06csMt2atSogeXLl8Pf3x+rVq3CRx99ZLFMUY+zcfiwK1euwGAwWF2mMH2YlBRjNf9jx47ZLc2inmvG496kSROr8wvS1MXHxwfdu3fHBx98gPXr18PDwwPnzp0znTM1atSAUqlEQkJCngGjh4WxGrGt6daGEn5QYmIi0tPT4eXlZTUgkZKSkm8zELlcjtDQUAwePBg//vgjhg0bBgBlNmBbUtfZkji/7J2mp6enqSaBscr4g2xNN14vHHEf8fDwQIcOHfDOO+9g06ZNqF69OuLi4rB9+3aLZQty3c393SjqfpXE9bMgSuIeWRrX36Lo0qULpk+fDrlcjj/++AMffvhhkdOyF943C0+SJKjVavTv3x/z5s3D+++/D6Ds3iOofGJQgkrMmDFjoFAosG7dOlPfEQ9q27YtAGD16tVW2xz//PPP0Gq1qFatGmrVqmWabuy0ylZV2Bo1aiAoKAj37t3D77//Xsw9yeHk5JTndouqSZMm8PX1xYULFwrV+Z0jGMsgLi7OYp5Wq8XKlSvttq1atWph2bJl8PX1xS+//IJPP/3UbH5Rj3OTJk3g6uqK2NhYbN261WL+qVOnSv1B1hpjJ5zbtm2z+YJbWB06dIBKpcKuXbtw8eLFAq9nPO7WapDcvXsXa9euLVQ+KlasaOpo1Rh4dHFxQdu2bSGEwLJlywqVXln0008/WZ1u/I4Yr395MV7rUlNTrbZJ/vHHHwsdeG3cuDGAnHIva/K7vhdVSZxfJZFmmzZtAMDmNW3NmjVWpxs7+/3111/zbL9e0tzc3BAUFATA+jl2+/ZtbNu2zWK68borSRIiIiJM04u6X127dgUArFixosDNHu1x7pXEPbI0rr9F1aNHD3z22WeQJAm//vorPv/882KlV1y8bxafMYhSVu8RVD4xKEElpkaNGnjmmWeg1+tt9iD85JNPomrVqkhOTsbbb79tVs1y586d+OGHHwBkVx/L/YuD8aJ88eJFm1VB3377bchkMnz22WdYuXIlNBqN2fzY2FgsW7YMP//8c4H3ydgR2NGjR+1aA8PJyQlvvPEGgOwOHjds2GDxS9L169cxZ84cU0/kjtK0aVMA2T2uG0dPAbKrpL7xxhumXwbspXbt2li2bBl8fHzw448/WjzwFOU4u7u7o2/fvgCAKVOm4PTp06Z5xjagJdVpV2EEBwfjiSeegFarxYgRI3D48GGz+bGxsZg9e3ah0vT398fQoUOh0+kwfPhwq0Gwc+fOYfr06WbbMx73n376CVFRUabpt27dwqhRo6wGFY1tq/fu3Qu9Xm+aLoTAxo0bcf78eUiShPr165vmjRs3Ds7OzliwYAFmz55tUVU9KSkJq1atwpw5cwq1346wc+dOLF261PRd1mg0mDp1Ks6fPw93d3erPco/yNPTE2q1GjqdDp999pnp/BZCYNWqVfj+++9ND765LVmyBEuWLEFsbKzZ9MTERFOP7yEhIcXdxRJRkOt7UZXE+WXvNIcMGWL65XnFihWm9vJarRbTp0/H0aNHra7XpUsXNGnSBNeuXcOIESMsXsh0Oh327duHCRMmWFwni2L8+PH4559/LNLat28f9uzZAwBo0KCBxXpKpRJTpkwxG33ixo0beO+99wBkByFyd7pZ1P16/vnnUb16dVy9ehWjRo1CTEyM2XpnzpyxCBwat2ttdJKCKol7ZGldf4uqV69eploSS5cudWgzVN43C3YN+vPPPzF79myLUXVSU1OxYMECAJb3iKVLl6JTp042O/skKg72KUElavTo0fjzzz+h1Wqtznd2dsa3336L4cOHY+vWrdi1axfq1KmD5ORk0427T58+Fg/vPj4+aNmyJfbt24cuXbqgTp06cHJygp+fn+lm2LZtW3zyySf4+OOP8cknn+Crr75CzZo1IZfLcefOHdPD+ogRIwq8PxEREahQoQIOHz6MDh06oHr16lAoFGjbtm2x2909//zzppvlm2++iY8++giPPfYYhBC4ffu2qVqetWYMpalBgwbo0aMHNm7ciOHDh6N69erw9PTEhQsXIITA5MmT7V6Fs27duliyZAlefvllLF26FHK5HBMnTgRQ9OP8+uuv4+jRozh69Ch69eqFOnXqQKFQ4MKFC6hUqRL69u2LFStW2HU/imLKlClISEjAgQMH0L9/f1SuXBl+fn6IjY1FXFwchBAYM2ZModIcN24cEhISsGrVKgwbNgw+Pj6oVq0adDodYmJiTO1cW7RoYVqnS5cupp66n3vuOdSsWRMqlQoXLlyAi4sL3nrrLXz22Wdm2zEYDNi0aRM2bdoEZ2dn1KhRAyqVCrdv3zb9ijhy5Eizqtr16tXDd999hzfffBOzZs3CvHnzEBgYCCcnJyQkJODmzZsQQqBHjx5FLNHS8+abb+Lzzz/HggULULlyZVy/fh13796FXC7H1KlTUbFixQKlM2HCBIwaNQqrVq3Cli1bUL16ddy+fRvx8fHo1asXYmJiLEbmuHnzJpYvX45p06ahSpUq8PPzMw0bqtVqERAQgPHjx5fAXhdfQa7vRVUS55e906xfvz7efPNNTJ8+HVOmTMG8efNM509KSgreeustfPnllxYd0EmShFmzZmHUqFE4ePAgevTogWrVqpkde2ONgalTpxa80GzYtWsXNm3aBKVSiZo1a8LFxQVxcXG4desWAOCpp55C69atLdbr1q0brl27hmeffRa1a9c2XXf1ej1q1qyJDz74wC775ebmhh9++AHDhw/H7t270blzZ9SqVQvOzs6IiYlBcnIymjdvbhqiF8j+1X/lypVYsGAB/v77b/j7+0OSJIwYMaLA/VmUxD2ytK6/xdGvXz9kZWXh888/x9y5c+Hs7IxRo0bZJe3C4n0z/2tQYmIiZs2ahVmzZsHf3x+VKlVCVlYWrl+/jszMTHh4eOB///ufWd7u3btnEdwjshcGJahEVa1aFc8991yetRHCwsLw559/Yv78+di5cyfOnTsHFxcXNG/eHP369bP5IDdjxgzMmDEDu3fvRlRUFHQ6HapWrWq2zPPPP48mTZpg2bJl2LdvHy5fvgy5XI6AgAB069YNnTt3RqdOnQq8P+7u7li0aBFmzpyJEydO4NixYzAYDBbbLaoxY8agXbt2WLlyJQ4ePIjz58/D2dkZlSpVQqtWrdCtW7dS68AsL19++SVq166NP/74A7dv30Z6ejratWuHkSNHmoblsrd69eph6dKlGDx4MBYtWgSlUmmqXVKU4+zi4oKlS5di3rx5WL9+Pa5duwYfHx8899xzGD9+vF2boRSHu7s7lixZgrVr12LdunU4d+4cEhIS4O/vj/bt2+OJJ54odJoymQxTpkxBjx498Msvv+Do0aM4c+YM3NzcULlyZXTr1g1du3ZFq1atTOvI5XLTub9582bcuHEDXl5e6NGjB8aOHWu1R3I3NzdMnz4de/bswYkTJ3D79m2kpaXBy8sLHTt2RN++fdGhQweL9Tp06ICNGzdi2bJl+O+//3Djxg0IIRAQEIB27dqhY8eOpqrZZdnQoUNRqVIlLFu2zPTrVkREBMaMGYNGjRoVOJ0OHTpg0aJF+P777009sQcGBmL06NHo168fBg0aZLFO37594eXlhX379uH69es4c+YMFAoFAgMD0aFDBwwdOrTEvqv2UJDre1GVxPll7zSHDx+OmjVrYuHChTh79iyuXLmCkJAQjBw5En5+fvjyyy9NHfrl5uvri5UrV+KPP/7Ahg0bcObMGcTGxsLb2xvBwcFo3rw5unXrZrV2TWFNmzYN//33H44ePYo7d+7g3r17cHd3R6tWrdCrVy88/fTTVtdTqVRYsWIFZs2ahcjISNy5cwf+/v7o2rUrxo4da9ExZnH2q27duli/fj2WLl2KrVu34saNGwCyq8F36tQJffr0MVu+adOmmDFjBpYtW4aLFy+amp726tWrUGVj73tkaV5/i2Pw4MHIyMjAt99+i2+//RYuLi4YPHiwXbdRELxv5n8N6t69O3Q6Hfbu3YsrV67g/PnzEEKgSpUqiIiIwLBhw1ClSpVClxNRUUmipMbpIiIiIiK7ioyMxOuvv44uXbrk2ZF0WbNmzRq899576NWrF6ZNm+bo7BARURnCPiWIiIiIHhLGji5t9ehPRET0sGFQgoiIiKgM+f3337Fv3z7krsyanp6OL774Ajt27ICbm5vN5hFEREQPG/YpQURERFSGHDlyBJMmTYKLi4upQ+VLly4hKysLCoUCn376Kfz8/BydTSIiIrtgUIKIiIioDHn22Weh0Whw7NgxxMTEQKPRwNfXF02bNsXQoUPL7HCuRERERcGOLomIiIiIiIjIIdinBBERERERERE5BIMSREREREREROQQDEoQERERERERkUOUeFAiOjoaQUFB6NSpU0lvqkA6deqEoKAgREdH2y3NxMRETJo0CREREQgODkZQUBCWLl1ql7RnzZqFoKAgzJo1yy7pOcr+/fsRFBSEgQMHlsr2Bg4ciKCgIOzfv79UtudI5eUcKaw1a9YgKCgI7777rqOzUuauc4WRnp6Ozz//HJ06dUJISAiCgoLw2WefOTpb9Agrift0WXLjxg2MGzcOLVu2RL169RAUFIStW7cWO93Svs9S6QoKCkJQUJBDtu2Ic+tReo7T6XTo3r07OnbsCI1GY7d09+7di4EDB6JRo0am8yclJcVu6dOjbfz48QgJCcGVK1fskl6BRt8oykWwatWq2LZtW6HXexiNGjUKx44dg6enJ0JDQyGXyxEQEIDo6GisXbsWVatWRe/evR2dTSqGNWvWICYmBr169UK1atUcnZ1HgjHIMnbsWAfnpHybPHkyNmzYAFdXV9SrVw8qlQrVq1d3dLaonNq6dSvOnDmDLl26IDg42NHZKXUajQYvv/wyYmJi4Ovri/DwcEiSBC8vr3zXXbp0Ke7du4eXX34Znp6eJZ9ZMsPnACopv/zyC65evYqPPvoIKpXKLmmeO3cOI0aMgFarRfXq1VGvXj0AgFwuz3fdB9/7JEmCm5sbPD09UatWLTRs2BBPP/00atasaTONd999F2vXrjWbJpPJ4OnpiaCgIDz11FPo06cPZDLL38dPnjyJlStX4tChQ7hz5w5kMhl8fHxQuXJlNGnSBG3atEGLFi0s1rt79y5WrFiBHTt24MqVK8jKyoKXlxd8fHwQEhKCFi1aoGvXrnBzc8u3DADwPS4fo0ePRmRkJGbMmIHZs2cXO70CBSUaN25sMS01NRXnz5+3Od/f37+YWXs4nD17FseOHUPlypXx119/wd3d3TRv//79mD17Npo3b86T+SG3du1aHDhwAM2bN+fDSCkxXuAYlCg5d+/exaZNm+Dq6orNmzcjICDA0Vmicm7r1q2mhzxbQYnq1atDpVJBqVSWcu5K3r///ouYmBiEhYVh5cqVhXoBWb58uemlmEGJ0vcoPwe4uLggMDAQlStXdnRWyp309HR8//33qFixIvr06WO3dH///XdotVoMGjQI//vf/4qUhlqtNr3XZGZmIiEhAbt27cKuXbswZ84c9OzZEx9++GGe1yNfX1/UqFEDQHZQ9vr169i/fz/279+PzZs344cffjC7Di5atAhfffUVDAYDVCoVKleujAoVKiAhIQGHDh3CoUOHsGnTJvz9999m27lw4QKGDBmCuLg4AEBAQABq1qyJrKwsXLlyBefOncOaNWtQrVo1NG3atED7HxMTw/e4PNStWxddu3ZFZGQkjh8/joYNGxYrvQIFJX7++WeLafv378egQYNszn9UXL58GQAQHh5uFpAgIirrrl27BoPBgDp16jAgQWXGsmXLHJ2FEmOs5tq8eXO7/SJKVNLCwsKwefNmR2ejXNqwYQMSExMxdOhQu14TjNeaiIiIIqcxefJkixoJsbGx+P333zF//nz89ddfOH/+PH7++Web70Dt2rXDtGnTTJ/1ej2WLFmC6dOnY9euXVi2bBlGjBgBADh27BimT58OIQSGDh2KUaNGmQU8EhIS8Pfff2PPnj1m2zAYDBg/fjzi4uIQEhKCzz77zCzordFocODAAaxZs6ZcBrsdqVevXoiMjMSKFSuKHZRgR5fFlJWVBQBwdnZ2cE6IiAonM/P/7J13WFTH18e/CyxNUAQpBkEQuStNQMQKFuxYIkYU7IpdVGxRYyMxdsGoBDuKiopdEZWiYgNEFFQQKUoTaaJIhwXu+wfvvb9ddhd2FxCT7Od5eBLv3Zl77tyZM2dmzpypACDRXxIkfC8kNoMECRI48ff3BwCMGzeuWfNtqf5dU1MTixcvxrlz56CoqIikpCTs2LFD6PTS0tKYO3cuBg8eDAC4desWfe/q1asgSRJ9+vTB2rVreTww1NTU4OTkhAMHDnBdf/36NVJSUgDUednW98KTlZWFjY0NPD09mzxwlsCNjY0NVFRUEBwcjG/fvjUpr+8+KREYGAhHR0dYWlqiZ8+eWLBgAd69eyfw9zU1Nbh06RKmTZsGa2trmJmZYdiwYdixYwe+fPnS7PJFRERgyZIl6N+/P0xNTWFjY4OVK1ciMTGR63f1g+xdu3aNDiJjZ2eH6dOn054kUVFR9L2mBMMrKSnBrl27YGdnB1NTUwwePBi7d+9GeXk5z29ramoQGhqK3377DWPGjIG1tTW6d++O4cOHY+vWrcjNzeX7jHXr1oHFYuHq1avIz8/Hpk2bYGtrC1NTU4wYMQJHjhxBTU2NQBmvX7+OX375Bebm5ujduzcWLVqEt2/fivW+9YMHnjt3Dj///DOd97Jly/D+/XuR8yVJErdu3cKMGTPoOjV06FC+5UIFd4qKigIAzJgxg+tbXr16lf5tSkoKfv31VwwePBimpqbo0aMHhg4dCldXVwQEBIgkY0xMDJYtWwYbGxuYmJjA2toaI0aMwKpVq/Dw4UOB6USpIxSvX7+mn0XV+eXLl+PNmzc8v925cydYLBaOHj3Kc2/WrFlgsVgYOHAgz73Q0FCwWCwsXLiw0XenAndScJa3oOB3VVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FficoqIiHDhwAOPGjYOlpSUsLCwwYcIEnDp1Cmw2u1E5ReHbt2/w9PSEvb09unfvDisrKzg5OeHChQs87SkxMREsFgujRo3iyefGjRt0OURERHDdI0kSvXr1Qrdu3RrVjfWDltXXURScAQejoqIwf/58OjgfZ2C+iooK+Pj4YOLEibCyskL37t0xevRoeHl5obS0VKAcsbGxmDt3Lnr27AlLS0s4OTnRq3H8groJE1C0sSCJd+/ehYuLC/r06QNTU1MMGjQImzZtEvh7TjmePHmC6dOnw8rKCpaWlpg+fTqeP38uUBagru4vXLiQ7lNsbW0xY8YM+Pn50QHNli1bJrBdUcTExIDFYsHGxqZBHSxI9tu3b2Py5Ml03zt37ly8evVKYNrq6mqcO3cOkydPpr+pvb099u3bJzBQGufzQkJCMH36dPTq1QssFgsJCQlgsVj0HuP169dz1TnOQL0NfcOmyiXON2yOMqofkNjLy4uWq7HggZS9kZWVBQAYMmQIV9nxCwRIkiT8/Pwwbtw4dO/eHX369MHKlSvpPPghbjsWhCh9IqdNVVZWht27d2PIkCEwMzPDoEGDsH379gYD9Ikre3FxMby9vTFhwgRYWVnB3NwcI0aMwK+//kr3+8LaAfX106VLl+Do6IgePXpwBRjMzMzEsWPHMGPGDAwaNAimpqbo1asXZs6cidu3b4tczoJYunQpWCwW3zyHDRsGFouFKVOm8Nw7deoUWCwWtm7dSl8TFOiy/juLauPn5uZi/fr16N+/P7p3745Ro0bhyJEjqK6ubvDdRGl71CCXxWLh8+fPXPdycnLo7/jXX3/xPGfx4sVgsVgICgrievbZs2fpZ5uamqJ///6YMGECdu3ahU+fPjUoOyeZmZl48+YNtLS0GoyxI4oNQQUI5VdfmzMgurGxMZYvXw6gzjYRNK4QRK9evQAAaWlp9DVK5xsbG4uUV2ZmJgCgffv2+Omnn0RKKwhhx3FFRUW4fPkylixZguHDh8Pc3ByWlpaYMGECjh49Sk9E14ezn4uIiMCsWbNgbW0NS0tLTJ06tUFbHwDi4uKwatUqDBw4EKampujduzcWLlyI6Ohoge9D9Rfv3r3D8uXL0b9/fxgZGXEdznDz5k267zYxMUHfvn0xduxY/PHHH0hOTubJl8lkwtbWFpWVlTxbakRFqO0bzcW+fftw+PBhaGlpQU9PD6mpqQgLC0N0dDQuX74MfX19rt+XlJRg8eLFePbsGRgMBrS0tNCxY0ekp6fj1KlTtLtIcwVl27VrF3x8fADUVWxDQ0NkZWUhMDAQISEhOHDgAD2zp6amhh49euDLly9IS0vj2jOlrq4OdXV1FBYWIikpCUpKSiAIgn6OOPE2iouLMXnyZKSmpsLAwADa2tpIT0/HiRMnkJSUhOPHj3P9Pj8/H0uWLIGUlBTU1NTQqVMnVFVVISsrC2fPnsWdO3dw7tw5gUFqPn36BAcHBxQWFsLQ0BAyMjJIS0uDp6cnsrKy8Mcff/Ck2blzJ06ePAkA0NLSgpqaGiIjI/H06VMsXrxY5HfmZOvWrTh79iy0tLRgYGCA1NRUBAUF4fHjxzh58iQsLCyEyockSaxbtw7Xr18HUBeQVUdHB+/fv8fZs2cRGBiIEydOwMTEBACgrKyMHj16ICkpCSUlJVz764C6egDUBeWZPn06ysvL6b2X0tLSyM7ORkhICNLS0jB27FihZLx//z5cXV1RU1MDJSUldO3aFbW1tcjJycGtW7dQUlLCd+Avah0B6oymzZs3o7a2FioqKrThe/fuXYSEhGDr1q1cexx79eqFkydP0gNUCjabjdjYWAB1nXxGRgZ0dXXp+5TRbG1t3ej7d+zYET169MDLly8B8MaskZOT4/o3m82Gi4sLnj9/Dn19fejq6iI1NRX+/v6IjY3F5cuXeVwi379/DxcXF2RnZ4PJZEJbWxsMBgPv3r1DfHw8Hjx4gGPHjjWLK2VmZiYd2E5GRgaGhoYoLy9HTEwMYmJiEBoaCm9vb/pZBEGgffv2+PDhAz5//owOHTrQeVFGBlBXpn379qX//e7dO3z79g2GhoZQVVVtUCaqXlOxgerrqPrcvn0b+/btg5KSEnR1daGgoEDfy8vLg4uLC5KSkiAtLY2OHTtCUVERqampOHjwIIKCgnD69Gm0b9+eK8+QkBAsX74cNTU1dPCsjIwMLF++vEVOVKmursavv/6KwMBAAHV62NDQEOnp6bh48SLu3r2LEydOoHv37nzT+/v7Y8uWLVBVVUXnzp2Rnp6OqKgozJ49G6dOneLZo8pms/Hrr7/SAwI1NTV069YNBQUFeP78OZ49e4aBAweiU6dOcHR0RFBQEK5du8bVrjihBvPjxo0TKlAZJz4+Pti1axfU1NTocn78+DEiIiKwf/9+DB06lOv3lZWVWLRoEZ4+fQoA0NPTg6KiIpKTk3H48GHcunULvr6+AvfVHzt2DHv37oWqqip0dXWRk5ODyspK9OjRA+np6SgoKICenh5XPRVmr3pT5RL1GzanLJRey87ORnZ2Njp27Ei/c0NtD/ifvREXF4eqqiqYmppy6SZlZWWeNGvWrEFAQAB0dXWhp6eHDx8+IDAwENHR0bhx4wZPexS3HQtC3D6xqqoK06dPR1xcHAwMDKCvr4/k5GT4+vri8ePH8PPz49Fv4sqekpKCefPm4dOnT2AwGPQ3/PjxI27cuIHs7GycOXNGaDuAE3d3d5w/fx6ampro0qULPWgCgMOHD+Py5ctQVFSEhoYGWCwWCgoKEBkZicjISMTGxuK3334TqpwbolevXggODsazZ89gb29PX8/NzUVGRgaAukWJiooKrtV0qp8Rpr/mRFQbPz09HVOmTMHnz5/BZDJBEASKiorg6emJV69egSRJvs8Rte0xGAxYW1sjODgYUVFRXGXBOaHH2b8CdfbiixcveMpi1apV9OT5Tz/9BDU1Ndrej4+Ph7m5udADY+qZgvodQDwborq6mm99be6YIBMnTsTevXvBZrPx5MkTkWJiUN+XwWDQ1yg5X79+LZIcVLqvX78iPT2dHo81BYIghBrHPXjwABs2bACTyYSGhgYMDQ1RVFSExMRExMfH4969ezhz5oxAe/Lu3bvw8PCg7avs7Gw6dsbGjRv5TlqfOXMG27dvR21tLZSVldG1a1fk5eXhwYMHCAsLg7u7O5ycnPg+7/nz5zhy5AikpaXRpUsXtGnThv4Gu3fvxokTJ+h31NHRQUlJCTIyMpCUlARtbW0YGhry5Nm9e3cEBAQgOjoaEydOFL6Q60OKSWRkJEkQBEkQRIO/y8zMJAmCIE1MTEgLCwsyNDSUvldUVEROmzaNJAiCXLlyJU/aVatWkQRBkM7OzmRKSgp9vaysjNy0aRNJEAQ5adIkkeQePHgwSRAEmZmZyXX94sWLJEEQ5IABA8iHDx9y3Tt//jxpZGREWllZkZ8/f+a6d+XKFZIgCHLt2rU8z6LKaNq0aSLJyMmBAwfo8ps8eTL56dMn+t7z589JCwsLkiAI8vHjx1zpioqKyCtXrpAFBQVc10tLS0kvLy+SIAhy1qxZPM9bu3Yt/bzFixeTX758oe8FBweT3bp1IwmCIN+/f8+VLiwsjCQIgjQ2NiavXbtGXy8uLiaXLl1KmpiYiFwWVN0xNjYmTUxMyJs3b/LkSxAEOXjwYLK8vJwrLVWvIiMjua6fPXuWJAiCNDc3J+/fv09f//btG7lgwQKSIAhyyJAhZEVFhVD5UVBp165dS5aUlHDde//+PXn+/Hmh33vMmDEkQRCkp6cnWVlZyXXvzZs35PXr17muiVtHEhIS6O/i5eVFstlskiRJsrq6mjx48CCdZ2JiIp3m27dvZLdu3UgLCwv69yRJktHR0SRBEKStrS1JEAR58eJFrmf9/PPPJEEQ5KtXr4Quh8b0C9X2TExMyBEjRpDJycn0veTkZNLGxoYkCIK8cOECV7qysjJy+PDhJEEQ5KZNm8ivX7/S9z5+/EhOnjyZJAiC3Lt3r9CyUnV18ODBXNdra2vJiRMnkgRBkJMnTyZzcnLoezExMWSfPn1IgiBIDw8PrnRLliwhCYIgAwMDua4PGzaM7N27N2liYkI6Oztz3Tt16hRJEATp7u4utNyN6ShKXxoZGZH79u0jq6qq6HsVFRVkbW0tOWXKFJIgCHLx4sVkdnY2ff/Lly/kokWLSIIgyBUrVnDlm5eXR1pZWZEEQZBbt26l63lNTQ155MgRul7W//6CypmfzPV1vKenJ0kQBDl69GgyNjaWvs5ms+n6PnjwYJ42R8nRvXt30t/fn6ytrSVJkiQrKyvJFStW0N+2Pjt37iQJgiCtra3JkJAQOh1JkuTXr1/JEydO0Pq5pqaGHDRoEEkQBBkTE8OTV0VFBV1enPW8MSjZTUxMyOPHj5M1NTW07Fu3biUJgiCtrKzIvLw8rnS7du0iCYIg+/btyyVPTk4OOWnSJIHvzPm8s2fP0s+rqamhy5XqY65cuSJQbkHfsKlyifoNG0JcWSh9feDAAZGeR5KCy4WCas8mJiZk//79yRcvXnDJRfUt9fWNuO24IUTtEzn1ua2tLRkfH0/fS09PJ+3t7UmCIEg3N7dmkb2kpIS0s7MjCYIgZ8yYQWZkZHDdj4+PJ/38/LiuNWYHUPrJyMiI7N69OxkUFETfq6yspNtDWFgYGRMTw6UTSJIk3759S44cOZIkCIKMjo7myV8Ym5uThIQEkiAIcuTIkVzXb9y4wdVfh4eH0/dqa2vJXr16kQRBcNm7gvoKcW382tpa0tHRkSQIgpw6dSqZn59P33v8+DFpYWFB9wP1y1uctufr60sSBEFu3ryZ6/qGDRvosjAxMeGyJanys7e3p6/FxcXRerP+N6qoqCADAwPJt2/fksKyfv16kiAI8vDhw3zvi2tDkGTj9bUhqLomTFoHBwfanuKE0vX8xkck+T8dMW7cOPoaNRYjCIJ0dXUlw8PDeex7fhQVFdG27pAhQ8iLFy+Subm5jaZrDGHGcQkJCeT9+/d5xg05OTmkq6srSRAE6e3tzZOO0ucmJibktm3buOygo0eP0uOfd+/ecaV78uQJyWKxSCsrK/LmzZtceiQ4OJi0tLTksd1J8n/1wcjIiFy/fj1ZWlpK3ysvLycLCgpIIyMj0tjYmAwJCeFKW11dTYaFhQmsDy9fviQJgiCHDh0qsJyE4btt32Cz2ViyZAmGDBlCX1NWVqYjwtZ3U0lKSkJAQAA0NTVx6NAhGBgY0PcUFBTg7u4OU1NTxMbG0iuqTZFt//79YDAYOHDgAAYMGMB138nJCdOnT0dxcTEuXbrUpGeJi5SUFDw9PblmOXv27AlHR0cAvOWnrKyMCRMm8KwoKCoqYsmSJbCyskJ4eDjy8vL4Pq9du3bYvXs318rCsGHDaJelR48ecf2eWoWfPHkyxo8fT19XUlLC7t27mxQEtLq6Gk5OTlyrKlS+7du3R1ZWllAujyRJ0jOAixcvpr1eAKBt27bw8PCAiooKMjMz6dVUYaHcz2bNmsVz1FCXLl0Ezlg2lNe8efN4ZlZNTU3x888/800nah3x8fEBm82Gra0tlixZAhmZOscpaWlpuLq6wsbGBmw2m/YeAurKqVu3bigrK0N8fDx9nZrtp4IVca44UDPGbdq0oT1QmpPq6mrs3r0bXbt2pa917doVc+fOBcD73leuXEFaWhoGDhyIP/74g+soPm1tbezfvx+Kiorw8/MT6HYnLJGRkXj9+jWYTCb27dvHFUzSwsKC1n9nzpxBSUkJfY9ya+RcxcnNzUV6ejp69+6N7t270ytcFFSZU2mbE1tbW7i5uXEFiJKTk6NXwYyMjLBv3z5oaWnR99u3b4+9e/dCS0sLd+7cQXZ2Nn3vwoULKC4uBkEQ2LBhA13PpaSkMH/+fPTv379Z5f/y5QtOnjwJRUVFHDp0iGtPqYyMDFxdXTFs2DBkZWVxuelyMmHCBEyaNIleUZCVlaVXR2JiYrj2Uubl5eHMmTMAgL/++gtDhw7lWg1SUVHBnDlzaP0sJSUFBwcHAODaEkYREhKC4uJimJubc9VzYbG1tYWLiwt99BolO0EQKC4uxoULF+jflpSU0MGrN27cyOWFpqmpiX379kFGRgYxMTF8tw0AwKRJkzB16lT6eVJSUk32OmoOuUT5hi0tS0vCZrOxYcMGLi8zTU1N2tW6vk4Utx03hLh9IpvNxqZNm7jct3V1dek963fu3OHyOhBX9osXL+Ljx4/Q09PDkSNHeDxujY2N+W5tEIaamhosW7YMw4cPp6/JysrS7WHgwIH0UbCcGBkZYfPmzQDq3OGbCovFgoqKCu11R1G/v+aso4mJiSgsLETXrl35eoAIQlQbPyoqCq9evQKTyYSHhweXR6CNjQ1cXV35bqMUt+1R/WJ9b4ioqCioqalhwoQJYLPZiImJoe9R6Tn7VKpe9+nTB1ZWVlx5ycnJwd7eXqSjjqmtHhoaGnzvi2tDfE8om1PYLfU1NTU4fvw4Hjx4AAAYPXo0fc/BwYG2zYODgzFr1ixYWVnh559/xubNmxEaGsq3XigrK+P333+HjIwMMjMzsXHjRtja2mLgwIFYsmQJTp8+TZ/K0dx069YNgwcP5vHi1dTUxJ49e8BkMhtszwYGBvjtt9+47KB58+Zh0KBBqK6upj3QKTw8PECSJLZu3YqxY8dy6ZFhw4bBzc0NbDabtkHq07VrV2zduhWKior0NXl5eWRkZKCmpgYEQfB4T0pLS2PgwIF8j2EF/uc5Imz/IIjvGlNi8uTJPNe6desGOTk5FBcXc+3/Dg4OBgCMHDkS7dq140knJSVFV9ymdvqxsbHIz89Ht27dBAZAoT5QaxgYQJ1Ryc8djJKXs5PmJDo6Grt27cLChQsxbdo0ODs7w9nZmVasgvb6jR49mu85vvyeV1ZWRru4TZs2jSeNvLx809x5AEydOrXBfJ88edJoHu/fv0dWVhaYTCZfY6NNmza069njx49Fko9SykFBQQJdDkXN686dOyKlE7WOUGVG7ZmrD3W9fllQboycbeH58+eQlpaGg4MDOnbsyNXxP3/+HLW1tbCyshLZ7VwYunXrxtf1UdB7U7pl0qRJfPPT1NSEmZkZSktLERcX1yTZqLIbNmwYX7fJUaNGQV1dHWVlZVyTq/wMKM5Jh169enEZUCRJ0vsIRXW5FQZqwFwfqiwdHBz4DjoVFRXRr18/1NbWcu3bpyY1p06dymOYU9ebk0ePHqGyshL9+vUTuN2vMR3Pr/+itsYB3PXs4cOHYLPZMDExQb9+/YSSccKECWAwGLh9+zbPZBg1USHukWT8ypPBYNB6kFN/vnjxAmVlZdDQ0MCIESN40v300090WQnSk4LqS1NoDrlE+YYtLUtL0q5dO74xaSidSLnuU4jbjhtC3D5RU1OTa2BL0b17d5ibm4MkSdptvymyU3ufp0+f3iJBRxtrA4WFhfDz88OaNWswe/ZsTJkyBc7Ozti7dy8AwbaZKDAYDHpLUv0+WU1NDRMnTgSTyeTbz4jTj4hi41N9wPDhw/me/DR58mS+pySI2/b4TdBQE/3W1tb0YKu+XQNwlwU16fXq1SuRYkcIghrI8xvncL6DqDbE94TazikodsujR4/oscfEiRPRp08f7NmzBwDQt29fzJo1i/6tjIwMvL29sWvXLlhYWEBKSgrV1dV49+4d/P39sWTJEtjb2/N913HjxuHKlSsYO3YsPeDOyclBaGgotm3bhiFDhsDb27vJNjo/2Gw2bt++jc2bN8PFxYVuz7NnzwaDwUBaWhrXIhIngiY/qX6bs3/Ozs5GfHw8VFRU+NZ/oHFb5ueff+Zri1P1Ky0tTWT9Qy3usdnsBmP/NMZ3iynRvn17vvseAUBVVRXZ2dkoKyujV+aTkpIA1O3V4RdwD6g7Ggaoq3RNgXpWTk4OnJ2d+f6GMhKb+ixx4dyfzwm10lZfGbDZbKxZs6bRgW1hYSHf64L2Y1HPKysro6+lp6ejpqYGTCZTYIwKcVb3KJhMpkB5qHypo48agpqI0dTUFOi5Qe2V4gy8IwyzZs1CREQEvL29cePGDdjY2MDKygp9+vQR+ajF2bNnw93dHRs3boSPjw9sbGzQo0cP9O7du8FYAaLUkaKiIrr9CPo21PXPnz+jpKSELrNevXrB19eXjitBDY6NjY2hpKQEa2tr3Lx5k44r0RQjRxgEvTe1ylO/bVDt3dvbm/acqQ/1/UUN3CQoH05PL06kpaWhr6+P/Px8pKWl0V5a9Q2oDh060OXYu3dv5Ofn49ChQ3RcCWp1q0uXLlwrTs2FIPmpsrx06ZLA4+Iow41Td1LttbG611xQgYrj4uIE6vji4mIAgnV8Q/UsNTWVSydSAXgtLS2FlrFTp07o168fnj59ipCQEIwZM4aWJyIiAnJyclwrSqIg6Pvx05/U/1MxAPhhaGiIu3fvCtSTgp7XFJpDLlG+YUvL0pIImnijdGL99xS3HTeEuH2ivr4+7VFQHwMDA7x69YqrvoorO9VGhY1HJQrt27dvsK+OiIiAm5ubQPsLEGybiYq1tTVCQ0PpuBJ5eXlIS0vDyJEjoaCgwOV1Jy8vL7bHnag2PvUNBekKJSUlaGpq8gS7FbftMRgMWFlZ4d69e3RcCc53tbS05JqgIUmSnpTgLAtLS0tYWloiJiYGw4cPR+/evWFtbY2ePXvCwsKC9jgVFmpsUX+VnUJcG+J7QukTQXZ1QUEBbW9KSUlBWVkZvXr1wujRo+Ho6MjzHaWkpDB+/HiMHz8e3759w+vXr/Hq1Ss8ePAAcXFxyMjIgIuLC65du8Yz5ujWrRv27t1LT2S8efMG4eHhePToESoqKrB//35IS0tjwYIFzfb+ubm5mDt3Lq2LBPHt2ze+E6CN9c/5+fm0DU7ZMmw2W+DiDTXpIkhXC3qepqYm7O3tcfv2bTg4ONDjDisrK1hZWTU4ectZfysqKnhOTRGW7zYpwekmUh+qA+KcvaIMxIyMDJ5Z/fo01cWamtX5+vVrg9H6m+NZnFy+fBlXrlzhub5w4UKeQIaCyk9Q5338+HHcuXMHHTp0wOrVq9GzZ09oaGjQFefXX3/FjRs3BEY45gxkx+95nN+KGvSpqKgIlEcUN8D6CJOvMJHBqd80NGgTJT9OBg4ciOPHj+PQoUN4+fIl/P394e/vDwaDgb59++K3337jGxyGH87OzlBWVoaPjw/i4+Px4cMHnD59GjIyMhgyZAh+++03LhdVClHqCKdRKqg8OK+XlpbSHU7Pnj3BYDDw8uVLVFdXIy4uDmVlZXTH3atXL9y8eRPPnj2Drq4u3bELcvtqKoLem98KPPA/3cK5/UQQgma2hYUq54bqHHWPs84JMqDU1NTQtWtXdOrUicuA4mc8NSeC9AFVlvwiMteHU3dS5SLIcG/uiRXOCYfGBlWCdHxj7YtTJ1JutIKMdEFMnDgRT58+xbVr1+hJievXr6O2thbDhg0TOT8KQfqXn74Tps42picb6u/FpSXl4vcNW1qWlkRUe0HcdtwQ4vaJDdkK/HSluLJTbVRc47khGqr/JSUl9ITE2LFjMXXqVHTp0gVKSkqQlpZGZmYmhg4d2ujpE8JC9btUX1F/0qFXr1548eIFYmJi0KdPH7E97kS18ak21Nj3rj8p0ZS216tXL9y7d4+eoOG0TeTl5bkmaNLT0/lO9EtJSeHYsWP0ZNuTJ0/olez27dtjzpw5mDt3rsC2Vp/27dsjLS1N4NYxcW2I7wnlsi+oP3dwcMDOnTvFyrtdu3awtbWFra0tXF1dcfv2baxatQplZWU4ceIE1wkxnMjIyMDU1BSmpqZwdnbGx48fsXDhQiQnJ+PIkSOYPXt2swQyB+pOLUxKSoKZmRmWLl0KY2NjqKio0J4+gwYNQnZ2tsBT3YSxgygbnBqvlpaWNuoZI0hXC7LngLoDH7p27YrLly/TwTaBOk9yJycnLF++nO8EGmf95dwSLSrf9fQNUaAUnLu7u8CVreZ+FnWc0PciOzubb6WiZhSbArV/afv27XxPamjqWbKcUNs8CgsLUVtby1cZN+WdhMmX31YTQXLWPxJK3PzqY2NjAxsbGxQXF+PFixd49uwZAgMDER4ejtmzZyMwMFCgi159xowZgzFjxuDLly90pP7AwEAEBQUhLS2N74kSosBpQHz+/Jnvtg/OcuIsDxUVFRAEQUcW5lzB5/xvVFQURo4ciYSEBCgqKrZIPAlxUFRURFFREW7fvt0iK7r1nwU0XOeoe/XrHKcB1bNnT3p1CwCPAdWS8SQagnq/Y8eOibRCo6ioiOLiYnz58gVdunThuS+ovKiJpoYGj/xWuyk5582bh9WrVwstp7hQE3jUgElYhg4dChUVFYSHhyMnJwdaWlr0qRvibt0A6lyE+U1k8tN3wtTZpuhJcfmR5PqRZGkOxG3HjSFOn9jQvnR+ulJc2ZWUlFBYWNgkV2NxePjwIQoLC2FhYYE9e/bwTJ43l4cEBYvFQrt27WivO379NeV1p6qqiq9fv0JfX1+sU+JEgfpuDdmG/NpXU9pe/W2R1DtTK9KcEzQpKSkA+E/OKCsrY+3atfj111+RnJyM6OhoPHz4EA8fPoSHhwcACDxFqT7UgFSQTd4UG+J7UFxcTHsICNr+3pzY29vj7t27CAoKavBI6/p06tQJq1evxoIFC1BaWoqUlBSRjx3lR15eHsLDwyEvL49jx47xPZ2osfGWMHYQ9W2p+mBubo6LFy82RXS+yMrKYsmSJViyZAnS0tLw4sULPH78GKGhoThx4gRKSkr4nr5IvaOysnKTxibfNaaEKFBKQpjZ76ZCzdY397MErdRSLF26FImJiTx/TTE+KajZ5fqBeIC6IDNN3SvPia6uLqSlpcFmswW6qlKukuLAZrMFestQ+QraNsIJ9Zvc3FyBAYGoOiBMfoJQVlbGoEGDsHbtWty5cwc6OjrIz8+ng/qIgqqqKkaMGIHNmzcjICAAysrKSExMFPm4pPq0bduWXk0QVO+pTrlDhw48bnmcgRijoqIgLS1N1zVdXV1oaWnh+fPniI6ORm1tLXr06CGyW2NL8T11C1WPqLKsT01NDe2OWr/OcRpQ/DwhrK2twWaz8fLlS757X78H4pYldTScoHIRpC+oGX5Bhmz9fcsULaXjBUGVC2fQNGGQlZXF2LFjUVtbi+vXr+PFixdIS0tDx44duY5/FRVB5clPf1Lf5sOHD6ipqeGbril6srF+URAtLdc/VZbmoKV1oih9YmpqKmpra/nm8+HDBwDcZSqu7FQ66ijr7wVlm1laWvJtC03t2+sjJSVF981RUVGIioriGohzbltoaY87Tqg2JEg3lZSU8N0+2ZS2161bN7Rt2xYfPnxAQkIC0tLSuPpMTrtGGA9PBoMBgiAwZcoUHDlyBJs2bQIAkQaL1MBYUDk0xYb4Hly+fBnV1dVgMpnNHqBaENQ2PEGeB4Lg3NYmbNrG+qusrCwAdVsi+E1IJCcnN7otkNJr9aHqhLq6Om2DU7bMhw8fms2bShB6enr45Zdf8Ndff+Hvv/8GUBffit9zqfrZ1ImeH3ZSggrgERAQ0CyeAw1hZWUFNTU1JCcnCxUwUVio/TdNdQFvyrP5za7eunWrwVlXUWnTpg0d5fvcuXM89ysrK3H58uUmPaOxfG1tbRvNw8DAANra2mCz2XzzKysro7fT1M9P3G/Zpk0bsFgsABB40omwaGho0AHZmpoXULeKBUBghN7Tp08D4F+2VOcdERGBly9fwsjIiGviwtraGtnZ2fT3EcfIaan2Q+mW06dPCzR+mwuq7EJDQ/lGJb579y7y8/OhqKjIFSkf4DagqNNlOMuRMpb8/Pzw9etX6OnpCYzg3VJQZenv74/y8nKh01Hl4ufnx/e+oOvUvuXKykp6byUnnKdIcDJo0CDIysriyZMnAo275oR6Xnx8PCIiIkRKS52Wc+3aNdpLYvz48UK7A/ODn74D/lfOnG3cysoKioqKyM/P53sSSXZ2Nu7du8eTTlgo109R23VLy/VPkIXSic25jRQQvx2LQ2N9Yk5ODu7fv89zPS4uDrGxsWAwGHTfBYgv+7BhwwDU9X/Clmdz9ElU/ed3EgCbzRao+5oC1W8EBgYiNTWVayAuLy8PMzMzvH79mg4++T0mJah2ERwczLceXLx4ke/AsSltj3OCxsvLCwD3pEOPHj3AZDK5JiVEmein8hbFPqPSCJqMaooN0dK8ffsWBw4cAFC3RUPU+Gn8EGa8R032c07CfPv2rdFBOpVOSkpKYNyd+jTW5jnHWvw8OE+dOtXoMxrrnzn1XefOncFisVBcXMx3+39LQdUtNpvN15uLqr9UYF1x+WEnJYyNjTF27FgUFRVh1qxZPA2WJEm8evUKW7ZsETpitiDk5OSwYsUKAMDKlSsRGBjIM1jJyMiAt7c3HelZGKgBZEpKitBH5TQXVMXYuXMnl1fA/fv34e7uLjCojrhQxy9euHABAQEB9PWSkhKsXbtWZDdmTmRkZHDu3DmuYzpLS0uxdu1afPnyBdra2rC3t280HwaDQct56NAhhIWF0feKi4uxZs0aFBYWQkdHhyegHKXABEUed3Nzw71791BVVcV1PTIyEuHh4QDqjvNsDGq/aUREBNcqAEmSuH37NpKSksBgMJrF7WzOnDlgMpl4/PgxvL296efV1NTg0KFDePLkCZhMJubMmcOTloorERERwRVPgoLq6CnjQJwVfKrM6x/h1VQmT54MPT09vHjxAm5ubjwdfVVVFcLCwrB+/fomP6tPnz4wNzcHm83GihUruFZ+Xr9+je3btwOoiwBf3xuF04C6d+8eVFVVufZgUytcVBl/760bQN12AysrK6Snp2PevHk8qz3V1dWIjIzEqlWruNqGk5MTlJSUkJSUhO3bt9P3amtrceLECYGTwwwGg3bR3rFjB49u8/b25uuRo66ujjlz5qC6uhpz587lm39iYiL27NlDnyTUFDp06ECfXuPm5sYzyCosLMTJkyf59gssFgtmZmZIS0trlq0bQJ3L+KlTp+h+raqqCtu3b0dSUhKUlJS4ouYrKSnR0cC3bdvG5SKbm5uLFStWgM1mw9LSUqw4MVS7jo6OFikKekvLJQqtJUtL6URx23FDiNsnMplM/Pnnn1zR3zMzM2l9PGLECK4BhbiyOzo6QkdHB2lpaVi0aBG94kmRkJDAM1hozA4QBso2CwoK4jodorCwECtWrOCJodAcUP0v1VfUr5PUaU7UpMT38Ljr3bs3zMzMwGazsWrVKq7BaHh4OLy8vPievtHUtkf1k/z6TWqCJiYmBl++fOE70X/z5k14eXnxeO+WlJTg2LFjACDSVlVLS0soKSkhISGBb0yIptgQLUVubi68vb0xZcoUlJWVgSAIrF27tlny3rx5M+bPn4/Q0FCeScbc3Fxs3ryZjnNAnZYH1LXJESNGwMfHh8emY7PZuH79Oh3Xws7OrsFAtJw0No7r2rUrVFRUkJubi7///pvuY9lsNry9vXH16lW+9ZiTlJQU7Nq1i8sO8vHxwYMHDyAjI8N1OgkArFmzBlJSUti2bRv8/Px4dGxubi58fX3po3OFJSIiAjt37uRZ8KmsrIS3tzeAuhM6+MWBoewmzgkUcfgx/KkFsHXrVhQXFyMsLAyOjo7Q1NSElpYWKisrkZGRQbvECDrSUBQcHR2Rm5sLLy8vrFy5Eu7u7tDV1QVJksjJyaEVpru7u9B5qqqqok+fPoiMjMTQoUPRtWtXyMnJoUOHDi0eu2LZsmUIDw/HgwcPYGtrC319fXz58gXZ2dno06cPNDQ0cPPmzWZ73qBBgzBjxgycPn0aq1evhoeHB9TU1GgXO1dXV7HfWVNTE4MHD8bKlSuxZ88eOt+ysjIoKChgz549Qh/p5ezsjFevXuH69etYsGABOnXqBBUVFbx//x7l5eVQUVHB/v37eSZt7O3t4efnh2PHjiEkJATq6upgMBiYN28eBgwYgCdPnuDOnTv0CSQKCgrIz8+nlePYsWOFOhqwtrYWd+7cwZ07dyAvL4/OnTtDVlYWOTk59MrKwoULm8VNr1u3bti8eTO2bNmC/fv34/Tp0+jUqROysrLw5csXSElJwd3dHQRB8KSlBsjUXkJ+Rg5QN5mioKAAMzMzkeUbNWoUkpOTsXDhQrBYLLrD9fT0bNJ+VwUFBRw9ehTz589HUFAQgoOD0blzZ6ioqKC4uBgZGRlgs9nNEmyRwWDAw8MDM2fORExMDIYMGQJDQ0NUVFTQLnvUmez86NWrFx48eACSJHkMRapcqbg0rTEpwWAwcPDgQSxatAjPnz+Hvb09OnXqhA4dOqCsrAzp6en0KiRlPAF1Xj/btm3DypUr4evri+vXr0NXVxefPn1CQUEB1q1bJzAw1tKlSxEWFoaIiAjY2NigS5cutG5buHAhAgICeAYYALB8+XIUFBTg0qVLcHFxgaqqKjp16oTq6mpkZWXReyKbaxDp5uaGrKws3LlzB4sWLUKHDh3QsWNHWlYqeCU/42jixIl48+YNqqurYW1tLfDUCGFZuXIlduzYgWPHjqFjx47IyMjAt2/fIC0tje3bt/MY3suWLcPbt28RHh6OSZMmQV9fHwoKCkhOTgabzUanTp3oowtFZdiwYdi3bx8CAwMRGxuLjh07QkpKCg4ODo1OvrSkXKLSGrKMGjUKYWFhcHd3x7lz5+iAYr/99huMjIzEzlfcdtwQ4vaJw4cPR3p6OsaPHw8DAwPIyMggOTkZNTU10NPTw+bNm5tF9jZt2uDQoUOYO3cunj59iiFDhqBLly6Ql5dHVlYWCgsL0atXL67j+hqzA4TB1NSUjnA/d+5c6OjooG3btkhOTgZJkti4cSO2bNkiVF7CYmxsDGVlZXpxiN8iwuHDh0GSJPT09JplxbsxGAwGdu/ejWnTpiEqKgqDBg2CoaEhSkpKkJ6eDjs7OxQXF/OdAGpK2+O0TTi3sXDeb6hP/fLlCw4ePIiDBw9CXV2da0xSUVEBZWVlbNiwQehykJeXx5gxY3DhwgWEhIRg/PjxPOXUFBuiqfz555+07VVZWYnPnz/TEyMMBgNjxozBli1bmnVChIrPISMjAx0dHSgrK6OgoAA5OTmoqakBg8HA/Pnz6aMvKT5+/Ihdu3Zh165d0NDQgIaGBiorK5GVlUWPF42NjfnGRBBEY+M4JpMJNzc3uLu74+DBgzh37hw6duyIzMxMfPv2Da6urrh27Rpfm4TCzc0NHh4euHLlCnR1dZGdnU17s69ZswbdunXj+r2trS3++OMP/P777/jjjz+wd+9e6OnpQVpaGnl5efT3mTdvntDvCdQt9p48eRInT56EiooKtLW1UVtbi8zMTJSUlIDJZMLd3Z1nS8unT58QGxsLAwODJnvr/NCTEgoKCjh8+DCCgoJw7do1vHnzBm/fvkW7du2gr6+PHj16YMSIEfQes6bi6uqKAQMGwM/PD8+fP0dSUhLk5eWhpaWFvn37Yvjw4SIHgfLw8ICHhweePn2K+Ph4VFdXQ1tbu1nkbQhjY2OcO3cO+/fvx4sXL/D+/Xvo6OhgxYoVcHFxofe+NScbNmyAsbExzpw5g5SUFJSXl6NPnz5YunRpkzwlAGDTpk0wMDCAv78/UlJSICcnh+HDh2P58uUiHR/IYDCwc+dO2Nrawt/fHwkJCcjNzYWmpiYGDRqE+fPn8+2Qe/bsCQ8PD/j6+iIlJYWOnUGdRb5z5048fvwYMTExyMvLQ3FxMZSUlNC3b184ODhg3LhxQsnXpk0b7NmzB+Hh4Xj9+jVycnJQWloKFRUVDB48GE5OThg0aJDQ79sYkyZNAovFwokTJxAdHY2EhAT6/OO5c+eie/fuAtNaW1sjKSkJ0tLSPC5bnTt3hpaWFnJycugVfVGZP38+amtrERgYiJSUFHo2uDlclzt37ozr16/D398fd+/exfv375GVlQV1dXWYm5ujX79+dFDJpqKjo4OrV6/ixIkTCAkJQUpKCmRkZGBubg4HBwc4OjoKjLfBOREhaNWnNSclgLpI535+frh+/ToCAwPpNtW+fXsYGRmhV69eGD58OM9E38iRI6GhoYG///4bMTExeP/+PVgsFjZv3oyRI0cKnJTQ19fHuXPn8Ndff+H58+f48OEDDAwMsGLFCvz8889cnlqcSElJ4c8//4S9vT0uXLiAmJgYJCQkoE2bNujYsSOGDx+OYcOGNSl2AydMJhP79u3DyJEjcenSJcTHx+Pdu3dQVVVF7969MWLECIHbbcaMGYPt27ejsrKS1jFNYc6cOdDS0oKvry/tbUUZsvyOLZWTk8OxY8fg7++PGzdu0INCHR0dDBs2DC4uLkIH7a2Prq4uDh8+jCNHjuDt27f49OkTSJIUqv62pFyi0hqyjB8/HkVFRbh8+TLS09PpSeHmCNYobjsWhLh9oqysLM6cOYODBw8iKCgIeXl5UFdXx7Bhw7B06VK+ZSqu7IaGhggICMCpU6cQGhpKe91qaGjAzs6OayUWaNwOEJbdu3fDwMAA169fR05ODsrKyjBgwAAsXLiQ7770pkJ53YWFhfEdiFN9NJvN/q5xibp06YIrV65g//79ePToEZKTk9GpUyesXLkSLi4umD17Nt90TWl7RkZG9ASNtbU1zwCLmqAB+HuMjBgxAtXV1YiIiEBqaiqSkpJAkiR++ukn2NjYwMXFhW/g8IZwcnKivYzrT0oATbMhmgqlYxgMBhQVFdG2bVvY2NjA3Nwc48aNa/Y4Frt27UJERAQeP36M+Ph45ObmIjMzE7KystDT00OPHj3g6OjIE1TTzs4OFy9exOPHjxEVFYXs7Gy8f/8eNTU1UFFRgbW1NYYPH46ff/5ZZHu0sXGcs7Mz2rVrh+PHjyM5ORlVVVUgCALTpk2Dvb097fEoiJEjR8LExASHDx9GfHw8ampqYGVlhfnz5wu09x0dHWFlZQVfX19ERkbiw4cPkJaWhqamJoYPH44hQ4bAzs5OpPe0srLCpk2b8PTpUyQnJyM1NRVsNhsaGhoYPnw45syZw/fEpFu3boEkSUyaNEmk5/GDQYriPylBwnfk48ePGDJkCLS1tfnuMZUgQcK/F2rfOb/YEf92Pn78iKFDh0JBQQFPnjwRO6r6f7kMJfyzuHr1KtavX9+k4wMlSPinsnDhQjx8+BABAQEiLbRJ+OdiZ2eHrKws3Lt3j94m8k+jqqoKI0aMQFVVFYKDg5t8AswPG1NCggQJEiRI+C9y9epVkCSJUaNG/SOOlJQgQYIECeKzZs0aMBgM+pQDCRL+CVy5cgWfPn2Cq6trs9gqP/T2DQkSJEiQIOG/RHZ2Nh11e+rUqa0sjQQJEiRIaGkMDAywfft2ZGVloaqqCrKysq0tkgQJjSIjIwM3Nzf61LAm59csuUiQIEGCBAkSxGbbtm148+YNEhMTUVZWRu8zlSBBggQJ/374xZOQIOFHprkmIygkkxISJEiQIEFCK/Pu3TvExMRATU0NY8eOxa+//traIkmQIEGCBAkSJHwXJIEuJUiQIEGCBAkSJEiQIEGCBAmtgiTQpQQJEiRIkCBBggQJEiRIkCChVZBMSkiQIEGCBAkSJEiQIEGCBAkSWgXJpIQECUJw9epVsFgsrFu3rrVFEYqDBw+CxWLh4MGDIqV79uwZWCwWpk+f3kKS/fMRt2ybi48fP4LFYsHOzk6kdNOnTweLxcKzZ8+4rrf2+wiDuO/8b0XQt2wNfrRv0xo6TND3WLduHVgsFq5evfrdZPk38qPVMTs7O7BYLHz8+LG1RWl2WCwWWCxWa4vRYrx9+xbz5s2DtbU1/a4JCQlNzvdHtBEjIiIwffp0WFpa0u9aVFTU2mJJkCCQ/2Sgy+nTpyMqKgqurq5YunQpz/2amhqsXbsWAQEBUFRUxOHDh9G7d+9WkLRhnjx5gpMnTyIuLg4VFRXQ1dXFmDFjMHv2bJGPE0pISEBoaCiMjIwwdOjQFpKYF2E7v6VLl8LV1VXs5zx79gwzZswQOZ2DgwN27twp9nNbgqKiIvj6+kJZWRmzZs1qbXH+VXz8+BHXrl2DtrY2JkyY0NriSJDwn0Oi35qPf4o+u3r1KrKysuDg4IBOnTq1tjj/Wv7r5fz582fMnDkTRUVF0NLSgoGBARgMBhQVFRtNS03a8xsz/IgkJiZi3rx5YLPZ0NHRQbdu3QAA0tLSrSyZBAmC+U9OSjREdXU1Vq9ejTt37kBJSQlHjx6FlZVVa4vFg4+PD3bt2gUA0NbWRseOHZGcnAxPT088ePAAp06dgry8vND5JSQkwMvLCw4ODt91UqJHjx4C75WXl9Mz2BYWFk16jrKyMt9nZWdnIzs7G0pKSiAIgue+np5ek57bEhQVFcHLywva2trNbrQrKChAX18fHTt2bNZ8/ylkZWXBy8sLvXr1EmjEt2/fHvr6+mjfvv13lq5l+Ce8D5PJhL6+PjQ1NVtbFAktTFP124+kw9TV1aGvrw9lZeVWeb4w+uxH4Nq1a4iKikKvXr3+k4Pl74Uw5ayvr/+dpfp+BAYGoqioCMOGDcOBAwcgJSW8s7iXlxeAf86kxJUrV8BmszFjxgxs2LChtcWRIEEoJJMSHLDZbKxcuRLBwcFo27YtTpw4ge7du7e2WDy8fv0au3fvBoPBwPbt22ljIyMjA3PnzkVMTAw8PDz+EYro/PnzAu+dOXMGf/75JzQ0NNCvX78mPcfY2Jjvsw4ePAgvLy8YGxvjzJkzTXrGv4Hu3bvj7t27rS3GD820adMwbdq01haj2fgnvI+mpqakXkoQih9Jh61atQqrVq1qbTEkSBCaH6XttASpqakAgH79+ok0IfFPhHpXGxubVpZEggTh+Xe3ShGoqqrC0qVLERwcDBUVFZw6deqHnJAAAG9vb5AkiQkTJnCtfujq6mLbtm0A6gb7BQUFrSVis3D9+nUAwNixY//1HYgECRIkSJAgQYKElqGyshIARPIi/qdSUVEB4L/xrhL+PUhGeqhTVIsXL8aDBw+gqqoKX19fmJiYtLZYfCkpKcGTJ08AAJMmTeK5b21tDT09PbDZbNy/f1+oPO3s7LB+/XoAde59VEAcfsHCqqurce7cOUyePBlWVlbo3r077O3tsW/fvmYNoPP+/XvExcUBAMaPH99s+TYHVVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FZimqKgIBw4cwLhx42BpaQkLCwtMmDABp06dApvNFvrZ69atw5AhQwDUueZyfitB8TlKSkqwa9cu2NnZwdTUFIMHD8bu3btRXl7O81tBQeLqBxoLDAyEo6MjLC0t0bNnTyxYsADv3r0T+j2Ki4vRvXt3dOvWDZ8+fRL4ux07doDFYsHd3Z3nXlpaGjZt2oQhQ4bAzMwM1tbWmDVrFu7du8c3L86gcx8/fsT69esxYMAAGBsbY9u2bZg+fToddyQqKoqrXDkDrDUWGDI/Px979uzB2LFjYWlpCUtLS9jb22PLli14+/Yt12+TkpJw8OBBODk5wdbWFqampujbty8WLFiAp0+fNlaMzYKg9+EM3NWadR5oONAdZ91/8uQJpk+fDisrK1haWmL69Ol4/vy5SM/iJCIiAkuWLEH//v1hamoKGxsbrFy5EomJiXx/n5mZiWPHjmHGjBkYNGgQTE1N0atXL8ycORO3b99u8FmVlZU4ffo0nJ2d0atXL5iZmWHIkCFYtmwZQkNDBaZLS0vDypUr0bdvX5iZmWHs2LHw9/cX+V0560FBQQE2b96MAQMGwMzMDMOHD8fBgwdpo14Uvn37Bk9PT9jb26N79+6wsrKCk5MTLly4gJqaGq7fiqPf6tNSOiw3Nxfr169H//790b17d4waNQpHjhxBdXW1wDSNBbrMyMjA77//jhEjRsDc3Bw9e/bE2LFjsWvXLqSlpXH99tWrV9izZw9++eUXuj7a2tpi+fLleP36NU/ewuoziri4OKxatQoDBw6EqakpevfujYULFyI6Opqv7OXl5Th06BDGjx8PS0tLWh4nJyfs378f3759E1guFNS3ioqKAgDMmDGDS05B5Sbqt6upqcGlS5cwbdo0WFtbw8zMDMOGDcOOHTvw5cuXRuUUBXFtpJqaGly7dg2zZ89G79696b56/vz5uHbtGtdvi4qKcPnyZSxZsgTDhw+Hubk5LC0tMWHCBBw9epSnnYpSzg21tYqKChw9epT+5paWlhg/fjyOHj1KD4I5aW67QVxZ6rfD9evX0+/ZWGBKSi9S1NdJ/IKdtmZ/SQXd5fetqT6es28vLy/Hvn37MHLkSHTv3h0///wzV36i6gWgri87ePAghg0bBjMzMwwYMACbN2/Gly9fBNobjenKxgKJ5uXlYceOHRg5ciTMzc3Ro0cPODk54erVqyBJkuf3nHKIYiNTCGPnJScng8ViwdrausG+08XFBSwWC35+fgJ/81/hP799o7y8HIsXL0Z4eDjU1dXh6+sLAwOD1hZLIAkJCWCz2ZCVlYWpqSnf31hZWSEtLQ2xsbFwdHRsNE9TU1MwmUykpaVBTU0NnTt3pu9xxlmorKzEokWL6MGSnp4eFBUVkZycjMOHD+PWrVvw9fVtlj2hN27cAFC37YJfrIfWgs1mw8XFBc+fP4e+vj50dXWRmpoKf39/xMbG4vLlyzxBRt+/fw8XFxdkZ2eDyWRCW1sbDAYD7969Q3x8PB48eIBjx44JFZxUT08PpqamiIuLa7AOUBQXF2Py5MlITU2FgYEBtLW1kZ6ejhMnTiApKQnHjx8XuQz27duHw4cPQ0tLC3p6ekhNTUVYWBiio6Nx+fJlofakKisrY9CgQQgKCsKtW7cwf/58nt/U1tbSA7mxY8dy3QsKCsLq1atRVVUFRUVF6Ovro7CwEBEREYiIiMDChQuxYsUKvs9OTU3Fjh07UF5eDkNDQygrK0NKSgoEQaCwsBBJSUk8MUbU1dWFKpvnz59jyZIl+PbtG6SlpWFgYAApKSl8/PgRFy5cQGVlJVfg1O3btyMiIgLKyspQV1eHuro68vLyEBYWhrCwMKxfv77Vg/21dp0XFn9/f2zZsgWqqqro3Lkz0tPTERUVhdmzZ+PUqVPo2bOnSPnt2rULPj4+AOribhgaGiIrKwuBgYEICQnBgQMHMHjwYK40hw8fxuXLl6GoqAgNDQ2wWCwUFBQgMjISkZGRiI2NxW+//cbzrNzcXMydOxdJSUkAAB0dHXTq1AnZ2dkICgpCXFwc31g/b9++xaJFi0CSJPT19ZGXl4ekpCRs3rwZ375949uuGqOwsBCOjo7IyclB165doaSkhPfv38PLywsRERHw8fERevUtMzMTM2fORFZWFmRkZGBoaIjy8nLExMQgJiYGoaGh8Pb2puuBqPpNXETVYenp6ZgyZQo+f/4MJpMJgiBQVFQET09PvHr1iq/R2xh37tzB2rVrUVlZCVlZWRgYGKC6uhqZmZnw8fGBoqIi1/711atXIyMjAyoqKlBXV4eGhgY+ffqEu3fvIjQ0FJ6enhgxYgT9e1H02ZkzZ7B9+3bU1tZCWVkZXbt2RV5eHh48eICwsDC4u7vDycmJ/n11dTVmz56NmJgYAHVemu3atUNBQQHevHmDmJgY2NnZwczMrMEyoGI9JSUloaSkBARBQElJib6vpqbGk0bUb1dSUoLFixfj2bNnYDAY0NLSQseOHZGeno5Tp04hKCgIZ86cgY6OToOyCoO4NhKnjACgpaWFTp06ITc3F48ePcLDhw/h4OBA//7BgwfYsGEDmEwmNDQ0YGhoiKKiIiQmJiI+Ph737t3DmTNn6HYlTjnX5+vXr5g9ezYSEhLAYDDQtWtXMBgMJCYmIiEhAXfv3sXJkyfRrl07vumbw24QVxY9PT306NED6enpKCgogJ6eHlRVVel7DdGxY0f06NEDL1++BMAbB01OTo7r363dXxIEgerqar7fun6cnYqKCkydOhXx8fHQ19dH165dwWQy6fui6gUqzzlz5uDFixcAAAMDA8jIyODSpUt48uRJi5ygEx0djcWLF+Pbt2+Qk5ODrq4uysvLERsbi5iYGISHh2PPnj1gMBg8acWxkYW18wwNDWFhYYHY2FiEhoZi9OjRPHnl5uYiPDwcsrKyfO//5yD/g0ybNo0kCILcuXMn/f8DBgwgP3z40KR8Dx06RDo5OYn8d+nSJaGfcfHiRZIgCHL48OENykEQBDllyhSh871y5QpJEAS5du1agb/ZtWsXSRAE2bdvXzImJoa+npOTQ06aNIkkCIKcPHmy0M8URG1tLTlo0CCSIAjy5MmTTc6vIQ4cOEASBEFOmzatwd9R5WNiYkKOGDGCTE5Opu8lJyeTNjY2JEEQ5IULF7jSlZWVkcOHDycJgiA3bdpEfv36lb738eNHcvLkySRBEOTevXuFljkzM5MkCIIcPHhwo+9lYmJCTp48mfz06RN97/nz56SFhQVJEAT5+PFjrnSRkZF8y4N6pomJCWlhYUGGhobS94qKiuh2tHLlSqHfIzg4mCQIghw7dizf++Hh4fR71tbW0tcTExNJMzMz0sTEhDxz5gzJZrPpe1FRUWT//v1JgiDIR48eceW3du1akiAI0sjIiJw/fz5ZUFBA3ysvL2/w/TmhyvbAgQNc17Ozs0lra2uSIAjSzc2N/Pz5M9f9qKgo8vr161zX7ty5QyYkJPA849mzZ2T//v1JY2NjMjMzk+ueMN+fH9Q3ioyMFOp9/il1niAIkiAIsnv37qS/vz9dVyorK8kVK1aIpZcoPTtgwADy4cOHXPfOnz9PGhkZkVZWVjzfOCwsjIyJieGqryRJkm/fviVHjhxJEgRBRkdHc92rqakhHR0dSYIgyHHjxvHUh9TUVPLYsWNc16hvaWJiQm7evJksKyuj7506dYouj6KiIqHfmVNnjBkzhszIyKDvxcXF0e1qz549XOkEfZva2lpy4sSJdPnn5OTQ92JiYsg+ffqQBEGQHh4eQuUnLM2tw2pra+nvM3XqVDI/P5++9/jxY9LCwoI0MTHh27YonXPlyhWu6/Hx8XSarVu3ksXFxfS9mpoa8sGDB+S9e/e40ly7do1MS0vjulZTU0MGBweTFhYWZM+ePcmSkhKhyoKTJ0+ekCwWi7SysiJv3rzJVXeDg4NJS0tL0sTEhExMTKSvBwUFkQRBkAMHDiRTUlK48isuLiYvXbpEfvz4UeAz6yNIN1E0pf9ZtWoVSRAE6ezszCVrWVkZuWnTJpIgCHLSpElCy0qSJDl48GCSIAge3SyujbR06VKSIAhy0KBB5PPnz7nu5eTk8OjmhIQE8v79+2RFRQXPb11dXUmCIEhvb2+e5zRWziT5P31an2XLltG2J2c5pqSk0Pq+fvm3hN0griwkKbg9CoOgcqH4kfpLkmz4W1OyGhkZkUOHDuVq25QtJI5eIEmS3L17N0kQBNm/f38yLi6Ovp6WlkaOGjWK1nv163Rj30bQGCUvL4/s3bs3SRAE+ddff3H1he/evaP73fPnz3OlE9dGFtXOo2yJOXPm8H2vw4cPkwRBkMuXL+d7/7/Gf3r7xunTpxEVFYWOHTvi7NmzTY46nJaWhpcvX4r8l52dLfQzKJdIQbPRANC2bVsAaNbtFCUlJXSgyI0bN3KdhqGpqYl9+/ZBRkYGMTExPGe1i0pkZCQ+ffoEGRkZnhXy1qa6uhq7d+9G165d6Wtdu3bF3LlzAQAPHz7k+v2VK1eQlpaGgQMH4o8//oCKigp9T1tbG/v374eioiL8/PzEco1uDCkpKXh6enLNkPfs2ZP2oKkvb2Ow2WwsWbKEdrEG6lZhqKCqouQ3cOBAtG3bFomJiUhOTua5f+vWLQB1XhKcM9xeXl6orKyEm5sbpk2bBhmZ/zl8WVtb4/fffwcAnDx5ku9z27dvD09PT3qlBGiefZfHjx/Ht2/f0LNnT3h4ePCsPllbW/O4Ro4cOZI+qouTXr16Yfny5aiurm7U7b+l+afU+QkTJmDSpEl0XZGVlaVXE2NiYoRyJwfq6vj+/fvBYDBw4MABDBgwgOu+k5MTpk+fjuLiYly6dInr3sCBA2FhYcGzImNkZITNmzcD+J8XGEVoaChevXoFFRUVnDhxgqc+6Onp0WVdH319fWzZsgUKCgr0tZkzZ8LY2BgVFRVi6WI2m42dO3dyrRybmJhg48aNAAA/Pz+UlpY2mk9kZCRev34NJpOJffv2cZ2cYmFhQeuMM2fOoKSkRGQ5xUVUHRYVFYVXr16ByWTCw8MDHTp0oO/Z2NjA1dVV5O1IBw4cAJvNxtixY7Fx40auVWspKSkMGjSIZ0Vx/PjxXF6M1G+HDRtGH3MYFhYmkhwA4OHhAZIksXXrVh5dO2zYMLi5uYHNZnMFgqa2lowYMYLHs1RJSQkTJ06Etra2yLI0hqjfLikpCQEBAdDU1MShQ4e4ZFVQUIC7uztMTU0RGxtLr4SLi7g2Unx8PIKCgsBkMnH8+HEejy5NTU2eEx+6deuGwYMH86zSa2pqYs+ePWAymTx6pimkp6cjKCgIALB7926ucjQwMKC9/wIDA5GZmcmTvjnthqbK0tL8U/pLoG7LkKenJ5cXFWULiaMXSktLce7cOQB1bYBzG3znzp2xc+dOkXVlY/j4+ODr16+YMmUKli9fztUXslgseHp6gsFgCLQHRbWRRbXz7O3toaioiPDwcOTm5vI8n9qa9SOfjvQ9+U9PSlCUlpaiuLi4yfns3LkTiYmJIv+JcsQQpZQ4XazqQ7l48dvjJy4vXrxAWVkZNDQ0uFxEKX766Sfavfjx48dNehbVmdra2grlVvg96datG98AqObm5gDA0wkGBwcD4B//A6gzIszMzFBaWkrH0GhObG1t8dNPP/FcFySvMEyePJnnWrdu3SAnJ4fi4uIG901yIisri+HDhwP43wQERVVVFV12Y8aM4boeFhYGKSkpgVuTBg4cCCaTiejoaL77vUeMGIE2bdoIJaMoUPv+586dK1Jg1tzcXJw4cQIrVqzAzJkz4ezsDGdnZ5w+fRoA6GNxW4t/Sp3nVy/V1NRoV2lh63psbCzy8/PRrVs3+h3rQ+k6foP+wsJC+Pn5Yc2aNZg9ezamTJkCZ2dn7N27FwB49lCHhIQAqDNKOAe8wjBx4kS+dY1ym8/IyBApPwCwtLTkG1Np+PDh0NDQQFlZmVADOKofGDZsGN/jOUeNGgV1dXWh82tORNFhjx49AlD3/vyOpJ08eXKD/XF9Kioq6LhQom6vSU9Px99//41ly5Zh+vTptK64c+cOANF1RXZ2NuLj46GiosK3Xwf413UtLS0AdTFXCgsLRXpmUxHl21G6aOTIkXwXcqSkpOgtWE1dTBHXRqLav52dnUhbh9lsNm7fvo3NmzfDxcWF1jOzZ88Gg8FAWlpas9mAT548AUmSMDc356sTLS0tYWZmBpIk6bpdn+ayG5pDlpbkn9JfAoChoSHfLVbi6oXo6Gi6DVC2HSfdu3cX2KeKC1V+/OoXULcgoK2tjbS0NL6TAqLayKLaeW3atMHIkSNRW1tLB++nePnyJVJTU6GpqYn+/fs3mtd/gf90TInp06fjxYsXeP36NebMmYMzZ87A0NCwtcVqEGpmvKHZxqqqKgDNG3WXOl5IX18f0tLSfH9jaGiIu3fv8gToEoXy8nJaydRfVf4R0NXV5Xudmjypv4JI7RH39vbGiRMn+KalyoufwmwqguSlvASEWfHkpH379lBWVhaYZ3Z2NsrKytC+fXuh8hs7diwuX76MgIAArhgQDx8+RFFREbp168bVJtPT01FZWQkmk4mFCxc2mHdlZSUKCwt5BnotETOmpKSE9njiXCFrjFu3bmHjxo0NBlT63kZ/ff4pdb4hOVNTU1FWViZUPpT8OTk5cHZ25vsbanI4JyeH63pERATc3Nwa/Gb1771//x6AaPWGov7KOQX1bYR9Z066dOnC97qUlBQdtyI1NRW2trYN5kN9Y0HtTVpaGvr6+sjPz0daWhqPR0pLIaoOo/o+Qe+hpKQETU1NvgHv+JGeng42mw1FRUWR4iX5+PjAw8OjwcCaouoKKmArm83G1KlT+f6G/P94GZx1fdiwYdDR0UFiYiIGDRqEfv36oWfPnrC2toapqSnfvdvNgajfjmrLDx48wJs3b/imo04pq9+WRUVcG0mc9l8/Bo0gvn371ix2YGNtGah7tzdv3vC1/5rTbmiqLC3NP6W/BATrenH1AtUGunTpInDAbmBggFevXoktMydlZWW03nV3dxeod6gJr5ycHJ6JZVFsZHHtPEdHR1y9ehXXrl3DggUL6OuUl8T48eMF6oz/Gv/pSYk2bdrg+PHjmDlzJhISEjB79mycPXu20cA3rQk129+QKzK1bYPaxtEcUMZtQyt5gpSuKISEhKC0tBRt27blcvX7UVBUVOR7XZAypDxw4uPjG827OT1bKATJK+4Rq4Ly48yTFCHoW69evaCpqYmsrCy8fPmSDiIVEBAAgDfAJVW32Wy2UKur/MqU072vueCsf/JqHwAAqVdJREFU88K2u8zMTKxbtw5sNhszZ87Ezz//DF1dXbRp0wZSUlKIiIjArFmzGhyEfA/+KXW+sboubL2k6tjXr18bXb3jdKctKSmhJyTGjh2LqVOnokuXLlBSUoK0tDQyMzMxdOhQnu9JbV0QR18LqsvitEWKhrzTKP0vjI4Xps8QJb/mQlQdRr1HY+Ui7KSEON/7xYsX2LVrF6SlpeHm5oYhQ4ZAW1sbioqKYDAYuHz5MjZs2CCyrqDqemlpaaP6lLOuKygo4Ny5czhw4ADu3r2Le/fu0acedezYEUuWLBEqyLaoiPrtKF2UkZHRqNdQU13jxbWRqPogaNDOj3Xr1iEpKQlmZmZYunQpjI2NoaKiQnvsDBo0CNnZ2c3mKt9U+6857YbvZYuKyz+lvwQEyyquXhBWVzYXnB7uVNDdhuBXfqLYyOLYeUBdcNQuXbrgw4cPiImJgaWlJSoqKmgPN84gtv91/tOTEkDdIN/HxwfTp09HSkoKZs2ahbNnz4p1gsThw4dF3qMPAL/88gsmTpwo1G+pCZNPnz6hurqaaz89BdX5NufkCtVwP3/+LPA31IpDU1zjqa0bo0aNatbI/K2FoqIiioqKcPv27R/6VJfWQkpKCqNHj4aPjw9u3bqFHj16oKSkBGFhYWAwGFxbN4D/1a0OHTp8tyMzhYGzzhcVFQm14nPnzh2w2WyMGjWK74kMwsZA+NH4p9d5StdRx/gJy8OHD1FYWAgLCwu+kb4FrWJT8QSaMwZQU2joiERK/wuj44XpM0TJr7Wg3oPq3/jR0DvWh/reomwZpfrF2bNnY9GiRTz3xdUV1LuZm5vj4sWLIqXV0NDAn3/+id9//x1v377FixcvEBoaiufPn2Pjxo1QVFRs9Wjy1Pu5u7sL9Hpq7meJaiOJWh/y8vIQHh4OeXl5HDt2jG9f09x9x/ey//5psjQHP2J/Ka5eaIqupPpLQZNT/LxJOScUXr161aze4fwQx86jmDhxInbv3o2rV6/C0tISwcHBKC4uhqWlZZPjGf6bkMSUQJ2bzsmTJ9G5c2dkZ2dj1qxZYrlJfY9Al0ZGRmAymaiqqhK4v4w6ikeUvVuNuVtSjebDhw88Z8tTUMEKxZ0MycvLQ0REBIAfc+uGOFDBjvgFchSXlnKNbS0ob4g7d+6guroaISEhqKyshLW1Nb13maJz585gMpkoKChosOMTF3HLVklJid6XGBsbK1QaamXVysqK7/3mcnH83rREnf+eUNuFRJWf+p6WlpZ869Hr16/5pqPKS9h609JQ7uT1qa2tpd1zhdHx1G9SUlL43q+pqeGb34+m36i+T1C5lJSUiGQv6OnpgclkorS0tFH3e4qsrCwAouuKxsqSqusfPnwQ2yNLWloaZmZm9IKOi4sLAIg8ydESfE9dJK6NJGr7p+qCgYEB30FRcnKyWNu2GqKxtkw9l/O3LcWPJEtz8CP2l+LqBaoNpKamora2lu9vPnz4wPc65fUnyK5LT0/nuaasrExvx/ge5SeOnUcxfvx4MJlM3LlzBxUVFfTWjV9++aW5xfxHI5mU+H80NDTg6+sLbW1t+mx1UQc93yPQpZKSEh0QhV+n//z5c6SlpYHJZIq0/YGKVSHIPczKygqKiorIz8+nIx9zkp2dTbtvNrbXWBABAQGoqamBrq6uQOPrnwYVJOj06dMClbSoULPBLbHdozUwNjaGgYEBvnz5gqdPnwrcugHUdVy2trYgSRK+vr7NLktTypYK/OTj4yOUKyrV5vitHHz79o3utP5ptESd/55YWVlBTU0NycnJIgVKo75nfn4+zz02mw0/Pz++6aiAYFevXm3QS+F7ERMTwzdgYkhICPLy8qCoqCiUfqb6gdDQUL4T73fv3kV+fj4UFRXpbVvAj6ffqPcIDg5GXl4ez/2LFy+K5CYvJydHx88QtIecXxqAv67IyMjAgwcP+KZrrCw7d+4MFouF4uJiXLlyRShZGoP6lvzKShAt9c0pXRQQENAik9iciGsjUe3//v37Aie+OKHK6vPnz3z7mVOnTjWaVtRytrW1BYPBwOvXr/lOgMXGxuLNmzdgMBiwsbERKW9RaS1ZWrqO/kj9pbh6gWoDubm5dEBITuLi4gQO5qnYDvxiv5SUlCAwMJBvOqr9NFTvmxNR7TwKNTU1DB48GMXFxTh9+jQiIyOhoKCAUaNGtZSo/0gkkxIcdOzYEb6+vtDQ0EBqaipmzZrV6kHm+LFo0SIwGAw6cApFRkYGfcSSk5OTSCdXUMe/vXnzhq+blJKSEqZMmQIA2LZtG1dnkJubixUrVoDNZsPS0hK9e/cW670oF1VhvCRycnJgZ2cHOzu7H2aFkR+TJ0+Gnp4eXrx4ATc3Nx7jnDpNYv369ULnqaqqijZt2qCgoEAoI+afADUBQSlrJpMpMOrz8uXLaddVLy8vnn2jX79+xaVLl+Dt7S2yHNS2rZSUFJEHiHPnzkW7du0QFRWF1atX86SPjo7GzZs36X9TR7+dO3eOaz9pdnY2Fi1a1OyrXd+Llqjz3xM5OTk66OrKlSsRGBjIYyxmZGTA29ubDsoL/O97BgUFcUXXLywsxIoVKwTGHLCzs4OFhQUKCwvh4uLCs3qelpaG48ePN8u7CQOTycTatWu5oo4nJCTgzz//BAA4OzsL5Rbdp08fmJubg81mY8WKFVzeBK9fv8b27dsB1AWc5jwS80fTb71794aZmRnYbDZWrVrFNbgNDw+Hl5eXSKdvAMDSpUvBZDJx/fp17Ny5k+tI1NraWjx8+JBrooGqW0eOHOGKjZCSkoKFCxcK9IgQRp+tWbMGUlJS2LZtG/z8/OhA2RS5ubnw9fWlj7sE6o5bPnnyJI+HyJcvX+hTg/id4CIIyv54/vy50GmEwdjYGGPHjkVRURFmzZrF461EkiRevXqFLVu2NPn4SHFtJCMjI4waNQpsNhvz5s2jPV0503p5edH/7tq1K1RUVJCbm4u///6b1k1sNhve3t64evWqwPoobjnr6upi5MiRAIC1a9dyrXanpqZi3bp1AIDRo0dzHSXcErSWLFReUVFRzZYn8OP2l+LoBSUlJTg5OQEA/vzzT7x9+5a+R8XQElQ3qYm6e/fucU1oFBYWYu3atQK3JM2fPx+qqqq4desWfv/9d544UCUlJbh9+zZ27NghwtsLRlQ7jxNqm/7+/ftRW1uL4cOHc/V9EiQxJXjQ0dHBqVOnMH36dCQlJcHFxQW+vr4/VMWxsLDAqlWrsHfvXqxbtw4HDx5E27ZtkZycjOrqapibm2PVqlUi5WliYgI9PT2kpaVh0KBB0NfXB5PJRLdu3eiJjmXLluHt27cIDw/HpEmToK+vDwUFBSQnJ4PNZqNTp070sXeikpCQgMTERDAYDKEmJaqrq2k3xuY+u7k5UVBQwNGjRzF//nwEBQUhODgYnTt3hoqKCoqLi5GRkQE2my1S8B8Gg4GRI0fiypUrcHBwgKGhIb23jvPM6H8SY8aMwV9//UWvTA8ePJjvEW5A3ZFb+/fvx8qVK3Hw4EEcOXIE+vr6kJOTQ0FBAT59+gSSJGFvby+yHKqqqujTpw8iIyMxdOhQdO3aFXJycujQoUOj8QU0NTXh5eWFJUuW4NatW7h79y4dhfrjx48oKSmBg4MDxo0bB6Buxt3S0hIxMTGYOHEi9PT0ICsri+TkZCgoKGD16tXYtm2byO/Q2rREnf/eODo60oOBlStXwt3dHbq6uiBJEjk5OfTA1N3dnU5jamoKe3t73L59G3PnzoWOjg6tl0mSxMaNG7FlyxaeZ0lJSeHAgQOYO3cu3r59i7Fjx0JXVxdt27ZFdnY2CgoKoK2tTZ9z39JMnjwZDx48wIgRI2BoaIjq6mraVdrS0lJozz4GgwEPDw/MnDkTMTExGDJkCAwNDVFRUUEPJGxsbODq6sqT7kfSbwwGA7t378a0adMQFRWFQYMGwdDQECUlJUhPT4ednR2Ki4tFGugZGRlh9+7dWLt2LU6ePAk/Pz907doV1dXVyMzMRHl5OVxdXenjKidNmoQLFy4gPT0d9vb20NfXR21tLd6/fw91dXUsWrQIf/31F89zhNFntra2+OOPP/D777/jjz/+wN69e6GnpwdpaWnk5eXREw/z5s2j8/306RNOnz6NnTt34qeffkKHDh1QVlZGnyyiqakJNzc3ocvD3t4efn5+OHbsGEJCQqCurg4Gg4F58+Y1+VSWrVu3ori4GGFhYXB0dISmpia0tLRQWVmJjIwMevJ3xowZTXoOIL6N9Oeff6KgoABRUVGYMmUKOnbsiA4dOiA3Nxf5+fkgSZJuJ0wmE25ubnB3d8fBgwdx7tw5dOzYEZmZmfj27RtcXV1x7do12j7ipCnlvGXLFqSlpSEhIQGjR4+mtx2kpKSgtrYWJiYm2Lx5c5PLUBhaQ5ZRo0YhOTkZCxcuBIvFoscEnp6eUFdXFzvfH7W/FEcvAHVtICYmBjExMXBwcEDXrl0hIyOD5ORkaGlpwcnJia8eNzAwwOTJk+Hv748lS5ZAW1sbKioqSE5ORrt27bBw4UIcPHiQJ52GhgaOHDmCxYsX49y5c/D390eXLl2gqKiIb9++ISMjA7W1tc12FKmodh4nNjY20NTUpMtuwoQJzSLTvwnJpAQfDAwM4OPjg5kzZyIuLg5z586Fj49PgxGEvzfz5s1Dt27dcPLkSbx58wafP3+Gnp4exo4dizlz5ogcJFJKSgpHjhyBp6cnoqOj8fr1a559kXJycjh27Bj8/f1x48YNJCcno6amBjo6Ohg2bBhcXFwEDiQbg/KS6NGjR4vPtH9vOnfujOvXr8Pf3x93797F+/fvkZWVBXV1dZibm6Nfv370zL+wbNiwAW3atMG9e/eQmJjYbFG2WwsdHR16gA6AJ8BlfQYNGoTbt2/D19cXjx8/RmZmJkiShKamJgYMGIDBgwdj2LBhYsni4eEBDw8PPH36FPHx8aiuroa2trZQaXv16oVbt27Bx8cHDx8+RHp6OphMJrS0tNC7d2+us8ilpaVx4sQJOoJ9ZmYmVFRUYG9vj6VLlzb5iLrWpCXq/PfG1dUVAwYMgJ+fH54/f46kpCTIy8tDS0sLffv2xfDhw3kM+d27d8PAwADXr19HTk4OysrKMGDAACxcuLDBoFiampq4dOkSzp07hzt37uD9+/fIzc2FhoYGrK2tMX78+BZ+2/+hoqKCS5cuYf/+/QgLC8OXL1+go6ODcePGYf78+SIFE9PR0cHVq1dx4sQJhISEICUlBTIyMjA3N4eDgwMcHR35Bmv+0fRbly5dcOXKFezfvx+PHj1CcnIyOnXqhJUrV8LFxQWzZ88WOU97e3sYGRnBx8cH4eHhSElJgYKCAnR1dWFra8s1Oa+kpIRz587B09MTYWFhSE1Nhbq6OiZPnoylS5fi0aNHAp8jjD5zdHSElZUVfH19ERkZiQ8fPkBaWhqampoYPnw4hgwZAjs7O/r3Tk5OUFFRQWRkJDIyMpCQkAAZGRno6+tj0KBBmDNnjkhB4Hr27AkPDw/4+voiJSWFPgKxOaLSKygo4PDhwwgKCsK1a9fw5s0bvH37Fu3atYO+vj569OiBESNGNEuwOXFtJCUlJZw8eRLXrl3DjRs3kJiYiIKCAqirq2PgwIE8Lt7Ozs5o164djh8/juTkZFRVVYEgCEybNg329vYCt/41pZzbt2+P8+fP4/Tp07h9+za9x58gCIwePRozZsxo8UCDrSnL/PnzUVtbi8DAQKSkpNCeA82xKPaj9pei6gWgrr2dOnUKR44cQUBAANLT06GqqoqJEyfCzc1N4DZGoG6ySVtbG1evXkVWVhaqqqowZswYrFixosGtlN27d8etW7dw9uxZ3L9/H2lpaWCz2dDQ0EDv3r0xcOBAeptHcyCKnceJtLQ0HBwccPjwYWhra4vtVf5vhkGKc2aYBAkSJEiQIOFfw8GDB+Hl5QVXV1eR4hxJkCBBggQJwvBf72fWr1+Pq1ev/mffvzEkMSUkSJAgQYIECRIkSJAgQYKEFqCkpAR3796FlJRUs3iB/RuRTEpIkCBBggQJEiRIkCBBggQJLYC3tzfKysowcOBAOgixBG4kMSUkSJAgQYIECRIkSJAgQYKEZiIhIQHbt29HXl4e0tLS6EC1EvgjmZSQIEGCBAkSJEiQIEGCBAkSmomioiJERUVBVlYWJiYmcHNzQ7du3VpbrB8WSaBLCRIkSJAgQYIECRIkSJAgQUKrIIkpIUGCBAkSJEiQIEGCBAkSJEhoFSSTEhIkSJAgQYIECRIkSJAgQYKEVkEyKSFBggQJEiRIkCBBggQJEiRIaBUkkxISJEiQIEFCM/Hs2TOwWCxMnz69tUWR0AAHDx4Ei8XCwYMHW1sUCa0Ii8UCi8VqbTEAANOnTweLxcKzZ89aWxSRuXr1KlgsFtatW/fdnnnnzh1MnDgRFhYWYLFY6NmzZ7Pku27dOrBYLFy9erVZ8vueiCt7c/dbzZ1fa9SvH4Hq6mp4e3tj+PDhMDU1BYvFwuLFi1tbrBbjX3X6RmZmJoYOHQoAePToETQ1NXl+ExUVRTeSpUuXwtXVlW9ew4cPR3p6Ov788084Ojq2nNAiUlFRgcePH+P169d4/fo14uLiUFJSAm1tbdy/f1/ofJYsWYLQ0FDcvHkTLBYLOTk5CA4ORnh4ON69e4fPnz9DVlYWenp6GDp0KGbMmAElJSW+ednZ2SErK0vgs8zNzXHx4sUG5YmKisK5c+fw8uVLfPnyBW3btoWuri569+6NpUuXQkbmx6yqVVVVOHnyJAICApCZmQl5eXmYmppizpw56N+/v9j5vn79GseOHcOLFy9QXFyMn376CcOGDcPChQsFfgcAKCkpweHDhxEcHIzs7GwoKyvDysoK8+fPh5mZGd80/v7+ePnyJd6+fYvPnz+jqKgIbdq0QdeuXTFq1ChMnjwZsrKyAt///PnzCAgIwPv37wEAurq6GDt2LGbMmCEwHZW2KWUXGhqKy5cvIy4uDoWFhVBRUYG+vj4GDhyIuXPnNpr+R6CyshJjxoxBRkYGAODevXuNnl+9fft2+Pr64tChQ7Czs8OzZ88wY8YMAED79u0RGhoqsI5QxrcwzxGGjx8/YsiQIQAAJpOJoKAgaGtr8/0tpSdOnz6N3r17N/nZoaGhSEhIwNChQ2FkZNTk/ITl1KlTKC4uxsyZM9G2bdvv9lxBfPz4EdeuXYO2tjYmTJjQ2uI0O1evXsX69esb7OPu3buH5cuXg81mY9q0adi4cSMYDMZ3llTCj0Zr6QgJLc/jx4/poxUNDAzQrl07tGnTptF0/3Z9KeHfxf79+3H06FHIysrC0NAQ8vLy6Nq1a2uL1WL8mCM9MdHR0YGWlhZycnLw4sUL2Nvb8/wmOjqa/v8XL17wzSc/Px/p6ekA0Gwzr81FamqqwIkUYamqqkJ4eDi0tbXpQcrkyZORk5MDoG5gQxAEvn79irdv3yI+Ph5XrlyBr69vgwMZU1NTvoNQQ0NDgWlIksT27dtx+vRpAICGhga6deuGb9++IT4+HjExMZg/f/4POSlRXl6OmTNn4tWrV5CRkYGhoSGKiorw5MkTPH36FOvWrcOsWbNEzvf27dtYs2YNqquroa6uDkNDQ6SkpODYsWMICQnB+fPnoaqqypOuoKAAzs7OSE9Ph5ycHAwNDZGXl4fg4GDcv38fnp6eGDFiBE+6PXv2oLi4GIqKitDQ0EDHjh3pNvTixQtcu3YNJ0+eRLt27bjSlZaWwsXFBTExMWAwGOjSpQtkZWWRnJyMPXv2ICQkBKdOnYKCgkKzll1VVRVWr16NoKAgAIC2tja6deuGL1++4OXLl0hKSvrHTEr8/fff9ISEsISFhUFeXh79+vXjuff161ecPn26VWbS2Ww2vL29sW3btu/yvNDQUNq4/J4DjtOnTyMrKwsODg4/xKREVlYWvLy80KtXr/+kkR0cHIyVK1eCzWZjzpw5WLt2rVDp2rdvD319fbRv376FJZTQWrSWjpDQ8ly4cAEAsH79epHsrH+7vlRXV4e+vj6UlZVbWxQJTYQkSfj7+4PBYMDf3x/GxsatLVKL8+ON9JpIz549cevWLTx//pzvpAQ1EdGpUyfExsaiurqaZ8BLTVx06NAB+vr6LS+0CMjIyMDCwgJmZmYwMzNDdXU1fvvtN5HyiIiIQFlZGZdClpOTw9SpU+Ho6MjVeb9+/RqrVq1CRkYGVqxYgUuXLgnMd//+/SKvvh44cACnT5+Gvr4+tm3bBisrK/peRUUFnj592uBqe2uyZ88evHr1Cp07d8bx48ehq6sLoG5l77fffsOuXbvQs2dPmJqaCp1ndnY21q9fj+rqari5uWHBggWQkpJCQUEBFi1ahFevXmHjxo3w9vbmSfvbb78hPT0d5ubmOHToENTU1FBbW4vDhw9j//79WLt2LSwsLHg8iFxdXWFlZQVTU1Ou1cWHDx9i5cqViI+Ph4eHB/744w+udNu3b0dMTAw0NDRw9OhRut7k5ORg8eLFiI2NxY4dO3jSNbXsNm7ciKCgIFhaWuKPP/4AQRD0vZKSEkRFRQld3q1JUlISfHx8MGTIENy7d0+oNO/fv0d6ejoGDx4MeXl5rnvS0tKoqanByZMnMW3atO8+YJaWlsb169exYMEC+ntKkNCScE7gLly4ECtWrBA67bRp0zBt2rQWlE6CBAktRWpqKgDA1ta2lSX5sVi1ahVWrVrV2mJIaAa+fPmCb9++QU1N7T8xIQH8C2NKUJ4NnB4RFDU1NYiJiUGXLl0wePBglJWV4e3btzy/oyYufjQvCaDO68Df3x8bN27Ezz//LJYL9oMHDwAAgwcPpq/5+/tj8+bNPKsJ3bt3x549ewDUTVAkJCQ0QXpukpOTcfToUbRr1w6+vr5cExIAIC8vjyFDhoDJZDbbM5uL/Px8ekvK9u3buQZhEyZMgIODA2pra3Ho0CGR8j1+/DgqKirQp08fLFq0CFJSdU1UTU0NHh4ekJaWxr1793i+Q1xcHMLCwiAtLQ0PDw+oqakBAKSkpLB48WL07t0b5eXlOHHiBM8zZ82aBTMzMx5354EDB9Ir7qGhoVz3vn79iuvXrwOoW6ngrDdaWlrYuXMnpKSkcPnyZZ6tPU0puydPnuDGjRvQ0dGBj48P14QEACgpKcHOzo4n3Y9GbW0tNm3aBBkZGWzYsEHodJT7OmfbpdDS0oK1tTWKiopw8uTJZpNVWMaMGYPq6mp4eXl992dL+O9x48YNrF69GtXV1Vi6dKlIExISJEj4Z1NRUQGgbkFNgoR/I1Qdr78A9W/mX+cpYW1tDaBuwEvtM6d4+/YtSktL0bNnT1hZWeHMmTN4/vw5unfvzpXH8+fPufL6txEWFgZFRUX06tWLvtaQC6uFhQWUlZVRXFyM1NTUZnODPHv2LKqrqzFlyhS+8T9+ZO7fvw82mw19fX2+k1eTJk3C1atX8ejRI5SWlgq115EkSQQHB9Pp66Ojo4O+ffviyZMnuHv3Ltd3oNL17dsXOjo6fOV59uwZgoKCRPKsoTyFysvLua6/fv0a1dXVkJKSouO4cEIQBLp06YKUlBQEBwdj9uzZ9L2mlN2pU6cAAAsWLICioqLQ7/Gjcf78ecTGxmL16tUCYzDw48GDB2AwGBg0aBDf+8uXL8e0adPg6+uLGTNmfFfXdFdXVwQGBiIgIAALFiyAgYGBSOkfP36MM2fO4PXr1ygpKUGHDh3Qt29fzJ8/n8tjjTOOBVA3KbZ+/XouOZYuXUr/u6amBlevXsWNGzeQmJiIiooKaGlpwc7ODgsWLOC7FYofVGwDCk4ZAPCNlUGSJM6dOwd/f3+kpaVBUVER/fr1w6pVq/h+91evXiE4OBiRkZHIycnBt2/f0L59e/To0QMuLi48fdX06dNpz6CoqCiugH2ixhkSRHh4OO7du4cXL14gOzsbpaWlUFdXR58+fTBv3jx06dKFb7qbN2/i0qVLSExMRGlpKdq2bYsOHTrA2toazs7ODW7ra4wrV65g48aNqK2txapVqzB//nyR8zh48CC8vLx46gv1nR0cHPDHH3/g+PHjuHHjBj59+oR27drBzs4OK1asENi2iouLcebMGYSGhiI9PR3V1dXQ0tKCubk5Jk6cyNXvUnFW7t27h0+fPuH48eN4/fo1CgsL4eXlRevWiooKnDt3Drdv30ZqairYbDZ0dHQwatQozJ49m2//8j2/W0REBM6ePYvY2Fh8+/YNKioq6NWrFxYsWMA3iGRhYSGOHTuGBw8e4OPHjwAAVVVV6OjowMbGBrNnz26Sh6SoOoLiyZMnOHLkCN6+fYva2lqYmppi2bJlDdqCd+/exaVLlxAfH0/rLVtbWyxYsKBZ4vZwEhcXh5MnTyI6OhoFBQVo06YNLC0tMXfuXK6+tLa2FoMGDUJubi78/PwELrCdPn0a27Ztw4ABA3Ds2DGue3l5eThx4gQePnyI7OxsSEtLgyAITJo0CQ4ODs0asyU3NxdHjhzBo0ePkJubCwUFBRgZGWHy5Mk8Hs/1Y5hxfucdO3Y0uCVDHH2Zn5+PAwcOICwsDF+/fqVjUcydOxfS0tJ8n5OWloYTJ04gPDwceXl5kJeXh4mJCaZPn87TbwiDKG1y3bp1uHbtmsCyuH79Os6cOYOUlBTIy8ujR48efNtCfYqKinDq1CmEhoYiMzMTJEmiS5cuGDduHKZOnSry4qEo37w+ZWVl8PLyQlBQEPLy8qCmpobhw4fD1dVVoIeoODo0JiYGJ0+exMuXL/H161coKipCVVUVpqamGDduHAYOHCjSO79+/RrHjx/Hy5cv6fGplZUV5s6dyxXzrb7+ysrK4qqrzRUT7EfkXzcp0bVrV6iqqtL7yzlXTSkPCCsrKy6PChcXF/o3xcXFSEpKAvBjeko0lYSEBGRnZ2PEiBFCd/o1NTWorq4G0PCMnbe3N/Ly8lBTU4OOHTvCxsYGI0aMEKi4OT02EhMTcenSJXz48AGysrIwNjbGL7/8ItKA7XsSGxsLADzeHRRmZmaQlZVFVVUVEhIShKpL2dnZyMvLazDfHj164MmTJ3j16pVI8lDXc3JykJOTAy0trUblAYCXL18CAExMTLiuf/v2DUCdISmoHmlpaSElJQUxMTFckxLill1FRQUiIiIA1NWZly9f4tq1a8jMzISioiIsLCwwceJEoQeZrUVubi48PT1haGgo0l7Yr1+/IjY2FsbGxgIn8aytrdGvXz+Eh4fjxIkTWL16dTNJ3Ti6urpwcHDApUuX4OXlhX379gmddv/+/fSWJHV1dbBYLKSlpeHq1au4ffs2Dh48iAEDBgCoWxnr0aMH0tPTUVBQAD09Pa5v3rFjR/r/S0pKsHjxYjx79gwMBgNaWlro2LEj0tPTcerUKQQFBeHMmTN8J/Lqo6amhh49eiAuLg5VVVU8MXT47eFds2YNAgICoKurCz09PXz48AGBgYGIjo7GjRs3eAa2q1evRkZGBlRUVKCurg4NDQ18+vQJd+/eRWhoKE9cGIIgUFhYiKSkJCgpKXF5Dqmrqzf6TsIwd+5c1NTUQFVVla53WVlZuHr1Ku7evYvjx4/ztOXdu3fTXlnq6urQ0dFBSUkJMjIykJSUBG1tbbEnJS5cuAB3d3eQJCnyfnJRYLPZcHFxwfPnz6Gvrw9dXV2kpqbC398fsbGxuHz5Mo/uS0lJwbx58/Dp0ycwGAzo6elBUVERHz9+xI0bN5CdnY0zZ87wPOv27dvYt28flJSUoKuryxWHJy8vDy4uLkhKSoK0tDQ6duwIRUVFpKam4uDBgwgKCsLp06d56tL3+m67du2Cj48PgLrFDUNDQ2RlZSEwMBAhISE4cOAAl2dXSUkJJk2ahPT0dEhJSaFz585o06YN8vLyEB0djaioKDg6OjZJj4uiIyj8/f2xZcsWqKqqonPnzkhPT0dUVBRmz56NU6dO8fTh1dXV+PXXXxEYGEiXl6GhIdLT03Hx4kXcvXsXJ06c4JlIFJczZ85g+/btqK2thbKyMrp27Yq8vDw8ePAAYWFhcHd3h5OTE4A6D8nRo0fDx8cHAQEBAu2PW7duAQDGjh3LdT06OhqLFy/Gt2/fICcnB11dXZSXlyM2NhYxMTEIDw/Hnj17mmVi4s2bN5g7dy4KCwvpWFiFhYWIjIxEZGQknjx5gu3bt9O/NzU1haamJl89THmICkJUffnp0yc4ODigsLAQhoaGkJGRQVpaGjw9PZGVlcV3a2pQUBBWr16NqqoqKCoqQl9fH4WFhYiIiEBERITI28yaU5fu3LmT9qLU0tKCmpoaIiMj8fTp0wbjUL1//x4uLi7Izs4Gk8mEtrY2GAwG3r17h/j4eDx48ADHjh0Tekwh6jfnpKqqCtOnT0dcXBwMDAygr6+P5ORk+Pr64vHjx/Dz8+PRHeLo0Pv378PV1RU1NTVQUlJC165dUVtbi5ycHNy6dQslJSUiTUpcunQJmzdvRm1tLVRUVMBisZCVlYW7d+8iJCQEW7duxS+//ALgf/qrqqoKcXFxkJWV5drK/K/2DiL/hSxZsoQkCILcuXMn3+sZGRkkSZLkkCFDyF69epG1tbX0b8LCwkiCIEhra2uu640RHx9POjk5ify3dOnSJr1rZGQkSRAEOXjwYKF+7+XlRRIEQV65ckXoZ4SEhJAEQZDGxsZkQUEBz/3BgweTBEHw/RszZgyZnp7OkyYvL4/+zalTp0gTExOetKampmRAQIDQclKI8x2cnJzIvLw8kZ5BEAR5+PBhgb8ZPnw4SRAEeenSJaHyfPr0Kf3egurezZs3SYIgyIEDB3Jdt7W1JQmCEFhetbW1dBmHh4c3KEdVVRWZkZFB/v3336SRkRFpYWFBvnz5kus39+/fJwmCII2MjMjKykq++djb29N1gBNxyy4mJoYkCILs1asXefDgQZLFYvHUmZ49e5IRERENvl998vLyxK4z4uDq6koSBEFGRUXR1yj5MzMzBaa7du0aSRAEeeDAAa7r9XUAVU4WFhbk58+fuX4rzHNEITMzk86TJEkyKyuLNDExIVksFvnu3Tuu31J6IjIykus6pXONjIzIixcv0nW/oqKC3LRpE62P8/PzudKtXbu2UV22atUqkiAI0tnZmUxJSaGvl5WV0XlPmjRJpHem3kNQGVLfw8TEhOzfvz/54sUL+l5OTg45ZswYkiAI0sPDgyfttWvXyLS0NK5rNTU1ZHBwMGlhYUH27NmTLCkp4fu8adOmifQewnL+/HkyOzub61pVVRV54cIF0tjYmBw+fDiXviooKCCNjIxIY2NjMiQkhCtddXU1GRYWxlMHGuLKlSt0/T5z5gzJYrFIFotFnj17tknvdeDAAb7tiXqeiYkJOWLECDI5OZm+l5ycTNrY2JAEQZAXLlzgSldSUkLa2dmRBEGQM2bMoO0Mivj4eNLPz4/rGlWXjIyMyH379pFVVVX0vYqKCrK2tpacMmUKSRAEuXjxYq7v8OXLF3LRokUkQRDkihUreN7ve3y3ixcvkgRBkAMGDCAfPnzI83wjIyPSysqKSw/5+PiQBEGQ48aN45GvoKCA9PX15anj4iKMjqD0V/fu3Ul/f3+6TCorK8kVK1aQBEGQkydP5knn6elJEgRBjh49moyNjaWvs9ls8uDBg3SdFdQ/8mPatGl8deSTJ09IFotFWllZkTdv3uT6bsHBwaSlpSVpYmJCJiYm0tfj4+Pp/pKzXlFkZGSQBEGQ5ubmZGlpKX09Ly+P7N27N0kQBPnXX3+RZWVl9L13796RI0eOJAmCIM+fP8+VH9Vu1q5dK/T7lpWV0W1g0aJFZGFhIX3v/v37pLm5Od+2RpKN62FBCKMvqXpjYmJCLl68mPzy5Qt9Lzg4mOzWrRtJEAT5/v17rnSJiYmkmZkZaWJiQp45c4Zks9n0vaioKLJ///4kQRDko0ePhJJVnDYpqM5T/ayxsTF57do1+npxcTG5dOlS2j6sXy5lZWW0PbZp0yby69ev9L2PHz+SkydPJgmCIPfu3cuVTlA5i/vNOfWyra0tGR8fT99LT0+n7U03NzeudOLqUKqf9vT05GnDb968Ia9fv04KS0JCAl2+Xl5edL2orq6mdUX99kuS/7OvhB3f/Rv418WUAP7n4VD/dI0XL15AU1OTXhXr2bMnCgsLkZycTP+GikXRo0cPkWaBi4uL8fLlS5H/4uLimvq6IvHgwQNISUkJdP+uT0lJCXbt2gUA+OWXX/iuXlhaWmL79u24e/cuXr9+jYiICOzatQsaGhpISkrCnDlzUFxczJUmPz8fAMBgMLB79246VsabN28QEhKCMWPGoKqqCuvWreMb96MhxPkOL1++RGVlpdDPKCoqAoAGgwlS96jfNgblfdC2bVuBdY/Kk/qtsPIwGIxG5dmwYQNYLBZMTU0xdOhQ7N+/H0OGDMGFCxdgaWnJ9VsqKGZNTQ3fII3Jycl0IKr6zxO37Kg6U1JSgoMHD6Jv374ICAjAmzdvEBAQgH79+qGoqAhLly6lT5IRhsrKSrHrjKjcu3cPwcHBmDBhgsjbw/jFguGHhYUFBg0ahLKyMhw9elRkGZvCTz/9hEmTJoEkSRw8eFCoNJSMjo6OcHR0pOu+nJwc3N3d0aVLF3z79g3nz58XSZakpCQEBARAU1MThw4d4tpOoqCgAHd3d5iamiI2Nlasb9kYbDYbGzZsQI8ePehrmpqaWL58OYC6QLL1GT9+PDp37sx1TUpKCsOGDcPMmTNRVFSEsLCwZpe1IZycnHg8q5hMJu1mm5aWxuW5lZGRgZqaGhAEwbO1S1paGgMHDhTrSNjc3Fxs3boVJEnijz/+wNSpU8V7ISGprq7G7t27uY5f69q1K32yT/3vd/HiRXz8+BF6eno4cuQIj/eNsbExpkyZwvdZtra2cHNz43KBlpOTQ1hYGKKjo2FkZIR9+/ZxfYf27dtj79690NLSwp07d5Cdnc2VZ0t/Nzabjf3794PBYODAgQO0JxPn86dPn47i4mKuANlUv/DLL7/wyKeqqooZM2YItd2xuZkwYQImTZpE6x9ZWVls2LABTCYTMTExXH3uly9fcPLkSSgqKuLQoUMwNzen78nIyMDV1RXDhg1DVlYWfUpUU/Dw8ABJkti6dSvGjh3LZR8MGzYMbm5uYLPZXF44xsbGMDAwQGFhIZ4+fcqTZ0BAAIC67Q+cWyF9fHzw9etXTJkyBcuXL+fy2mGxWPD09ASDwWiWuEWBgYHIysqCiooK9u7dy3XC1+DBg7Fo0SIAwJEjR0CSZJOfJyrt2rXD7t27uVbQhw0bRntgP3r0iOv3Xl5eqKyshJubG6ZNm8YVRN/a2hq///47AAhdds2pS48fPw6g7qS98ePH09eVlJSwe/dugceIX7lyBWlpaRg4cCD++OMPri3x2tra2L9/PxQVFeHn5yeUDd3Ub85ms7Fp0yauwI+6urrYsWMHAODOnTvIzMyk74mrQ9PS0gAA8+bN4/EAMTU1xc8//9zou1L4+PiAzWbD1tYWS5YsoeuFtLQ0XF1dYWNjAzabTXuc/Zf5V05KUMZ+fHw8ysrKANS5H3358oXLjY1yXaRiSAD/m5Tg3PcpDL1790ZiYqLIf82x51dY8vPzERcXB3Nzc6FcI0mSxNq1a5GRkYGffvpJoCu4h4cHfvnlF+jr60NOTg6qqqoYP348zp8/j7Zt2yIzM5M+8pOC+i4kSYLJZOLo0aOwsLCArKwsdHV1sXfvXpiYmIDNZuPw4cMivac43yExMVGkPVqU8m1oHx2lyKhgNc2ZZ33l3xzydO7cGT169ICJiQnd8URGRuL27duora3l+q26ujqGDx8O4H+ncFBkZmZizZo1qKmp4fs8cWWl6kx1dTU0NDRw+PBhEAQBWVlZEASBQ4cOQUNDA0VFRfD19RWYd306deokdp0RhdLSUrpTX7NmjUhp2Ww2njx5Ag0NDZ6tNPxYtmwZGAwGzp8/j9zcXJGe1VQWLFgAOTk5hISEID4+vsHflpaW0hMCM2bM4LkvJSVFn5Dw+PFjkeSg4qyMHDmS5zhbKm9qgufZs2ci5S0M7dq1w6hRo3iuUwMYQUfBpqen4++//8ayZcswffp0ODs7w9nZGXfu3AGAZg02LCwJCQnYt28fFi9ezCUT1XdyykS5xqelpeHdu3fNJgOngVp/AN4SdOvWja/rPfX9OA1fAAgJCQFQt29d1MBkDg4OfK9TddjBwYGvazQVo6S2tpbLjqFoye8WGxuL/Px8dOvWjWtQzgk1kOJsX9RzHj58yBOrqDWZPHkyzzU1NTXaLuD83o8ePUJlZSX69esncOsXv3cXh+zsbMTHx0NFRYXvkd4NPWvMmDEA/jcBwQm17aT+1g2qzvErDwAwMjKCtrY20tLSmty3UDrd0dGRb4yoKVOmgMlkIisrCx8+fGjSs8Rh9OjRfCfI+OmAqqoqhIWFQUpKCo6OjnzzGzhwIJhMJqKjo+kt0Q3RXLq0rKyMXqTld+KQvLw8Jk6cyDdtQ3HOgLqJdjMzM5SWlgq1yNrUb66pqck3Lkf37t1hbm4OkiS5JuHE1aFU2VP9blN48uQJAP42Dud1UW2cfyP/upgSQJ0xoaSkhJKSErx69Qp9+/alJxs491BSK1gvXrzA1KlTUVlZiTdv3gD4d8aTCAsLA0mSja60Uvz5558IDQ1F27ZtcejQIZGPGOzUqROcnZ1x5MgRhISEYMmSJfQ9zj1Ro0eP5tnPx2AwMGPGDKxduxZPnjxBbW0tfRLFjwAlP5vNFvibqqoqAMJHzhUlz/p7yuTk5FBeXt4keebPn88VMO7hw4dwd3fH4cOHUVhYSM/yU2zZsgVJSUlITU2Fk5MTtLW1IScnh7S0NDAYDIwdOxYBAQE8nbq4Zcf5zs7OzjxlIC8vDycnJxw4cACPHz/G2rVrBebfGuzbtw85OTnYunWryPulnz9/jpKSEowePVooDy4TExMMHToUISEhOHLkCDZv3iyu2CKjqakJZ2dnnDp1CgcOHMCRI0cE/jYjIwO1tbWQkZERePwytV+WWrkQFio20IMHD2i9Xp+CggIAEMmzRlgEDVaofc/UJBsnPj4+8PDwaNBgLSwsbBb5hGX79u2NTvJxyqSpqQl7e3vcvn0bDg4O6NGjB3r37g0rKytYWVmJHUlcS0sLTk5O8PDwgLe3NxQUFMQKcCksgo61pb5faWkp1/X3798DqPNUEhVBQWGpOnzp0iXcvXuX728+ffoEgLcOt/R3o2TLycmBs7Mz3/ypCWhO2X755RecPHkST548ga2tLWxtbdGzZ09YW1vznKb0PWnoe6empnK1V2pCOi4uTuC7U96hTdUt1LPYbLZA7yBqwq7+s8aOHYv9+/fj/v37KCsroweBb9++RUpKCtq3b4/+/fvTvy8rK6MDj7q7uwvsa75+/Uo/rylByimdzumNxImysjI0NDSQlZWFtLQ0kYMnN5X6XmsUVP/NWSfS09NRWVkJJpOJhQsXNphvZWUlCgsL0aFDhwZ/11y6ND09HTU1NWAymdDT0+P7G0HfgGrn3t7efE9vA/73HYWZpGrqN9fX1xc4FjAwMMCrV69obyxO+UXVobNnz4a7uzs2btwIHx8f2NjY0OUviv1WVFRE2xmC3pm6/vnzZ5SUlAj0Wvkv8K+clJCWloalpSUeP36M58+fC5yUMDAwQPv27enZsVevXoHNZkNRUfFfeSZsQ8cJ1mffvn04e/YsFBUVceTIEXTr1k2sZ1IGWnp6Otd1zpVLQR0Ndb20tBSFhYU/VABDYbZmCLNNgROqTIqKikCSJF+DgMqz/spv27ZtUV5eLlAekiRFlmfgwIH466+/MGnSJFy8eBHz58/nCjyqpqaGy5cvw8fHB0FBQcjMzISsrCztovby5UsEBARAQ0ODR1bOd+EHP1lFqTOUYfWj8PbtW/j5+cHCwkLgKkpDiNJ2KZYtW4Z79+7h4sWLmDt3Ln766SeRnysuCxYswMWLFxEWFobY2FiBAzVqYNe+fXuBhoagQWBjUIOCjIwMgV4JFKJs3RIWQafDCHrPFy9eYNeuXZCWloabmxuGDBkCbW1tKCoqgsFg4PLly9iwYYNQK2zNxc2bN+Hr6wsFBQWsXr0a/fv3h5aWFuTl5cFgMOgApfVl2rVrF7p27YrLly8jOjqa7n/btGkDJycnLF++XKxgXfPnz0dFRQX+/vtveHh4QEFBAdOnT2+Wd62PoO8naKBWUlICQHj9ygmnizwnVB3m3GIqCM46/D2+G6Wjv379Sg9ShZFNQ0MD/v7+2L9/Px48eIDbt2/j9u3bAOr096pVq8Q6oaCpNNZeOT11OCccGpt0aKpuocqZ06tM2Gfp6OjA0tISMTExuHfvHu0VQXlOjBo1istjkXObLaf3oyCE9QIVBDWobyhAZYcOHZCVlSWy/m8OBLVLfnWC+k5sNluo7YDCll1z6FKq7FRUVBrtZ+tD1YnGvB4B4d6pqd+8sXQAt60grg51dnaGsrIyfHx8EB8fjw8fPuD06dOQkZHBkCFD8NtvvwkVMJ5z4krQJBTn9dLSUsmkxL8Ra2trPH78mG7AL168QNu2bXlm4nv06IF79+4hMzOTK54E514wYXj79i22bt0qspzq6uo4cOCAyOlEpbKyEhEREdDW1m50NeLo0aM4fPgwZGVl8ffff3PtiRYVqhwpV34KalWdmlnmB6erVf30DSFo5aIxDhw4IHTEej09Pbx8+VLgYIfNZtOzr4JmpvnlCdR5CeTm5vJVeNTz6uepp6eH3NxcgfLk5OTQngmCVqT5YW5uDhUVFRQWFiIhIYHnNBQlJSUsW7YMy5Yt40lLrdLV324gbtlxHmHXWJ0Rpb7k5+fzlV8YhI1z8O7dO9TW1iI5ORk2NjYCfzdx4kRIS0tj0qRJdOwBoG61X15eHn379hVaNoIgMGrUKAQGBsLb2xt//vmn0GmbiqqqKqZNm4ajR49i//79AvfQUl40X79+FegNRa0yiLrPnBpkuLu7i60Tvic3btwAULdCQ+2r5aR+HJnvASXTr7/+yjcegiCZZGVlsWTJEixZsgRpaWl48eIFHj9+jNDQUJw4cQIlJSV8I9cLw7Jly1BRUYETJ05g27ZtkJeXF2uir7lRUlJCYWGh0DGEhIGqw8eOHeOJ2dAQ3+O7UbLZ29uLdNIOUNcH/fXXX6iqqsLr168RHR2NoKAgvH37Fq6urvDz82uS3dHSUO8+b968Fj/hiHqWubk5Ll68KHL6sWPHIiYmBrdu3cLYsWNBkiQ9CVR/6wbnxMyrV6/E9moSFup5lI7nx+fPnwGIrv+/N5R8HTp04BvDQ1yaQ5dSshUWFjbaz9ZHUVERRUVFuH37drN4qjT1m3/58kWkdOLqUKBu+9OYMWPw5csXPH/+HM+ePUNgYCCCgoKQlpbG9wSm+nC2qc+fP/NdHKLkri/7f5Efxx++maG2X7x69QoZGRnIyspCjx49eBoj9bvnz5/Te67E2brxowe6jIiIQHl5eaMrrWfOnIGHhwdkZGTw119/oV+/fk16bkpKCgDwDLClpaXp/br19+ZSUNdlZWUFngnPj+8R6JLaU1g/mCoFdVyVrKwsjIyMhMqzY8eO9KSIoHypGfj6e3gbk4e6rqmpKfRxoBRUPIn6cSUaory8nA4Ex3ksrzCyCio7TU1NWqE3VmdEecfvGeiytLQUnz9/5vmj+Pr1K+3CR5GcnIyPHz+ib9++IhuJS5cuhbS0NK5du9aot0Bz4+LiAiUlJYSHh/Pd7w7UuUxLSUmhurqay+WSE2qFo/5EXGPbWCiXSGFWSH4EsrKyAAg+Krf+McAUzXEsnyAojyNRZeJET08Pv/zyC/766y/8/fffAICrV682yePj119/xbRp00CSJDZv3oybN2+KnVdzQdU36sjj5sxT1Dr8Pb4bta2qKe1LVlYWPXv2xMKFC3Ht2jWMGjUKtbW1uHz5sth5ctJSbaM53l3UZ3348EGsNjNq1CjIyMjg6dOn+Pr1K54/f46cnBxoa2vzBLBWVlamt2N8j3ejdLqgZxUXF9PHpAu7uNMYLVUnOnfuDCaTiYKCggYH3E1BXF2qq6sLaWlpsNlsgdsgqe1n9WnufrSp3zw1NVWgLUrFoOBM1xzyq6qqYsSIEdi8eTMCAgKgrKyMxMREvH79utG0bdu2pb07BMlAjZM6dOjwn/aSAP7FkxJmZmaQl5dHRUUFTp06BYB/B01de/bsGe2uJmpUfODHD3QpjPv3lStXsG3bNkhJSWH37t1NdqEsLy/HhQsXAIDvCi8VBO727dt8JwSuXr0KoO57iOK58j0CXdrZ2UFGRgapqam0hw0n1IqGra2t0DOfDAaDDh7Jb0UkMzMTERERAMAT8IpKFxkZyXfATkU/FxQoSxCRkZH0yp+wkysAcPjwYZSUlIAgCJ6JraaU3ciRIwEA169f5/tc6nqfPn2ElvV7BLqcMGGCUPncu3cPiYmJ2LBhA31N2FM3+KGvr49x48ahurqaNmK+FyoqKpg1axYAYP/+/Xx/06ZNG3pFtH4wXKDOPdbPzw9AXX3ghHJZFeQyStX1gICAZjUSqYmh5t7yQb0P5yQVRUZGBl0PBMnTVFfqhvLmJ1N0dLTIk+rUt2az2U2OjbFx40ZMnDgRtbW1WLduHR3QrLUYNmwYgLqJ/eaqG1Qd9vf3Fyko5Pf4blZWVlBTU0NycjIdyK2pUINkalDSVBrTEeIyaNAgyMrK4smTJ/SAoqXo3LkzWCwWiouLceXKFZHTq6qqol+/fmCz2bhz5w69daP+KR4UlC1B2c0tCaXTL1++zDfGzvnz58Fms9GpUycuT8mm0FL6UkFBAba2tiBJUqRA2+Iiii7l7GfPnTvHc7+yslLgRCClg06fPi3SwpQgmvrNc3Jy+I6b4uLiEBsbCwaDweWNKq4OFYSGhgY9VhBWT1HycJ6Owwll+9S3cf6L/GsnJWRlZemVeKqx8ZuUMDY2hoKCAu7cuYPS0lLIycnxjbj9TycsLAxt2rQReKpIUFAQNm3aBKAuwOXo0aOFytfHxwfnzp3jcVnNzMzE/PnzkZ6eDgUFBbi4uPCknThxIrS1tZGfn48tW7bQnQQ1ELl37x4YDAbmzZsnyqt+FzQ0NOhoxb/99hvXKvTVq1dx7do1MBgMvm7Yu3btgp2dHVasWMFzz8XFBXJycoiMjMShQ4foTqCgoACrVq1CTU0NBg8ezBPzxMzMDLa2tqiursbq1avpQVhtbS28vb0RGRkJeXl5nu9w584dnD17lmfQVltbi3v37mHlypUA6gbE9QP3JSYmIjQ0lCtgZXl5Of7++28cOXIETCYTW7du5TF8mlJ2c+fOhZKSEt6+fQtPT096haC6uhqenp54+/YtZGVl6cHwv4H79++DwWAIfYxvfZYsWQImk8k3AjtFbGws7OzsYGdn16xBH2fNmgUVFRV6dY4fVLDCS5cu4fLly/Q+3crKSri7u+P9+/do164dzxYMqj5GR0fzPTrM2NgYY8eORVFREWbNmsWzqkGSJF69eoUtW7YI9LzhB/XcqKgoodMIA+Whd+TIEa42kZKSgoULFwpc4aMMpJSUlAZdW1ksFlgsFj3ZK4pM+/bt4xrgvnz5Em5ubnz3MkdERGDnzp08k3aVlZXw9vYGUOcV1tDeYGFgMBjYunUrxowZg5qaGqxcufK7H5fKiaOjI3R0dJCWloZFixbRni8UCQkJfAcEDTF06FBYWVkhPT0d8+bN41nNrK6uRmRkJFatWkUHBwa+z3eTk5Oj+7CVK1ciMDCQZ9CSkZEBb29vrgkjT09P+Pv78wykPn78SE+e19/yd/DgQbBYLB6vu8ZoTEeIi7q6OubMmYPq6mrMnTuX76RMYmIi9uzZI9AjUBTWrFkDKSkpbNu2DX5+flzfGqgLMOjr6ytwOyG1TeP69ev0t6i/dYNi/vz5UFVVxa1bt/D777/zxAspKSnB7du36SMYm8KYMWOgra2NwsJCrFmzhsuOfPjwIQ4dOkTL1FweDsLqS3FYvnw55OXlcezYMXh5efHERPj69SsuXbpEt6fGaE5dSh1lfOHCBS5boKSkBGvXruWKJ8LJ5MmToaenhxcvXsDNzY3n5CPq1JH169cL9U5N/eZMJhN//vkn12kkmZmZ9PNHjBjBZauKo0NLSkrg5uaGiIgIrq3A1NanpKQkMBgMoWMPzpkzB0wmE48fP4a3tzedZ01NDQ4dOoQnT56AyWRizpw5QuX3b+ZfG1MCqFthj4qKQmVlJeTk5GBmZsbzGyaTCTMzM9rA7N69e6N7hFobBwcHes89NSjLzs7mOq94zJgx9CRDfHw8cnNzMWLECIHvRg1427Rpg8uXLwucNV24cCEGDhxI/zs7OxunT5/G1q1boaOjAxUVFRQVFSEtLQ0kSUJRURGenp58I1vLycnBy8sLM2fOxLVr1xASEoIuXbogJyeHnoFcuXKlSPvovydr165FfHw83rx5g1GjRsHQ0BBFRUW0Mbp27Vq+de7r16/Iysriic8A1MXa2L59O3799Vf89ddf8PPzg4aGBlJSUlBZWQldXV1s27aNrzw7duyAs7MzPcA0MDBAXl4e8vPzISMjgx07dvBsa8jNzcWOHTuwdetWaGtrQ01NDTU1NcjMzKQ7C0tLS+zatYvneZmZmViyZAnk5eXpGCGpqakoLy+HoqIi9uzZIzDAobhlp6amBk9PT7i6uuLIkSO4ePEidHR0kJmZia9fv0JGRgZ//vnnd4/S3VJ8+fIFr169grGxsdhRznV0dDBhwgT4+/sL/E1lZSVd9s0ZSFFZWRlz5syBp6enwDgfAwcOxKJFi3Do0CFs2LAB+/fvh6amJtLS0lBcXAx5eXns3buXJ0jUsGHDsG/fPgQGBiI2NhYdO3aElJQUHBwcMGHCBADA1q1bUVxcjLCwMDg6OtLblyorK5GRkUGv1Ag6qosfo0aNQlhYGNzd3XHu3Dn6+NzffvtNJG+i+kyaNAkXLlxAeno67O3toa+vj9raWrx//x7q6upYtGgR/vrrL550qqqq6NOnDyIjIzF06FB07doVcnJy6NChg8h7/eszd+5cBAYG4s2bN7Czs4O+vv7/tXfeYVEd3/9/LwgIgiAoJXSFu1QVEIhGVIyiYokl9hIrxm40+dqVmKKxRkEsxAKIhmBXUKzYACmiiCC9iRQFaSJ17+8Pfvdml92FZUHRfOb1PD7qnZ07c6fPmXPO4P3798jKyoKpqSlGjx4tdLf6u3fvcPz4cRw/fhxqamrQ1dUFj8dDTk4OKioqICcn16Rn/5YgIyODP/74AzU1Nbh+/TqWL1+Ow4cPt8uc0alTJxw8eBDz58/Hw4cP8fXXX6N79+7o2LEjcnNzUVJSAgcHB5E+HsTB4XDg4eGBRYsWISoqCq6urtDT00PXrl1RWVnJevwHGm7bYPhY9TZx4kQUFBTA09MTq1atgru7OwwMDEDTNPLz81lht7u7OxsnNTUVhw8fxpYtW6Cnpwd1dXWUlZUhKysLPB4PpqamIg8xpEGSMUJaVqxYgaKiIgQGBmLevHlQV1eHnp4e6urqkJuby/rt4F+XSYuTkxO2bt2Kn3/+GVu3bsWuXbtgZGQEWVlZFBYWsrceiDvAGTJkCJSUlFizHXNzc7E3AWhqauLw4cNYvHgxTp06hYCAAHTv3h1KSkooLS1lb0wSdw1sS+jYsSP+/PNPzJ8/Hzdv3sSDBw9gYmKCkpIS1gRpwoQJYq8nlYYPOV6amZlh3759WLVqFTw8PHD48GEYGxtDQUEBRUVFePXqFWiahqurq0Tva8uxdNCgQZg1axZ8fX3x448/Yvfu3dDQ0EB6ejrq6+uxdOlSkd+vqKiII0eOwM3NDSEhIbh+/ToMDQ2hpqaG8vJyZGdno7a2ttmbRBhaW+cuLi7IysrC2LFj0aNHD3To0AEpKSmor6+HkZGR0E1j0oyhPB4PV69exdWrV9GxY0cYGhpCXl4e+fn5eP36NYCGvZCkJkVmZmbYvHkztmzZgn379sHX1xd6enrIzc1FcXExZGRk4O7u3q63D30q/OeFEgzW1tZiN+R9+vRhhRKfw1WgpaWlQqcMPB5P4Bm/hFYS9W/mtLs5D8+NT9RHjhzJnjjm5eXh1atXkJOTg6mpKfr374+ZM2c26fXfwsICV65cgZeXF+7du4fExER06tQJgwYNwuzZsz9ZgQTQ4MDm1KlTOHr0KK5cuYL09HR07NgRX331FebOndukQ8OmGDVqFAwMDHD48GE8fvwYKSkp0NbWhouLCxYtWiTW5qxbt244f/48Dh48iBs3biAlJQXKysoYMmQIFi5cKFIDaMiQIaiurkZkZCQyMjLYwV1dXR12dnYYOXIkRo4cKdIxEpfLxZQpUxATE4O8vDzU1dVBW1sbTk5OmDt3bpP13pqyGzhwIC5cuIBDhw4hPDwciYmJUFVVxYgRI7BgwQKhU7bPmbt374LH47X4hLAxixYtwvnz54VO2D4GM2fOxIkTJ5o8lVq5ciVsbW3h5+eHuLg4vHjxAhoaGhgyZAjc3NxEqnEaGBjg0KFDOHz4MBISEtgFH782mKKiIg4dOoSQkBCcP38ez549Q0JCAlRVVWFsbAxbW1sMGzasRc5fx44di7KyMpw5cwZZWVnslWOtdXCorKyMU6dOYc+ePQgNDUVGRga6deuGyZMnY9myZbh3757YuLt378bu3bvx8OFDPH/+HHV1dQJCT2YhBaBFN0vp6OggICAAe/bsQUREBNLT06Gjo4P58+dj0aJFIh2Y2tnZYdOmTXj48CFSUlKQkZGB2tpaaGpqwsXFBXPnzmXt5NuCDh06YPfu3Vi6dCnu3r2LxYsXw9vbu13mclNTU1y+fBknTpzAzZs3WQ0cTU1NDB48GBMmTGjxOzU0NODv748LFy4gKCgIiYmJKCgoQJcuXWBubg4HBwe4uLgIaD98zHpbunQpBgwYAH9/f0RFRSE5ORkdO3aEtrY2+vbtCxcXFwEHc4sWLYKJiQkiIyPx8uVLVrvN3Nwcw4YNw8yZM4VuwmDab0tvRZNkjJAWGRkZ/Prrr3B1dcXff/+N2NhYdv2io6MDFxcXDB06tM3WMBMnToSdnR18fHzYOpWVlYWWlhZcXFzw9ddfi50nlJSUMHjwYFy5cgVAwxqjKXr27IkrV67g5MmTuH37NjIzM9m24OjoiIEDB7JmHq2lZ8+euHTpEo4cOYK7d+8iKSkJioqKcHBwwNSpUyXewLeE5sbL1jBo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2fW1Ks52nos3bBhAywsLODn54fU1FS8f/8eX375JZYtWyZWUwJoMCG6cOECAgICcO3aNaSlpSE3NxfdunVDr1690K9fP9a0VhJaU+fy8vLw8/ODh4cHQkJCUFhYiG7dumHo0KFYtmyZ0M10QMvH0E6dOmHnzp0ICwtDXFwc8vPz8e7dO6ipqcHZ2RlTpkxpsebqpEmTwOVycfToUURHRyMxMRFqamoYNmwY5s+f/5/U0JcGDt2WOm2ET5Lx48cjMTERDx8+/KSu1SQQCE2zfPlyhISE4Ny5c/8pYQvh43Lt2jWsWLECAwcOxJEjR9o7OwRCixg1ahRSUlIQGBhIFu8EAoHwH+U/61OC0EBBQQESEhLQq1cvIpAgED4jampq8ODBA2hqarb4hJBA4IfRfmP8dxAInwtlZWVITU1F3759iUCCQCAQ/sP8p803CA3XKPI7hCEQCJ8H8vLyUl07SiA05vHjx7C1tf0szBMJBH5iY2NB0zQRqBEIBMJ/HGK+QSAQCAQCgUAgEAgEAqFdIOYbBAKBQCAQCAQCgUAgENoFIpQgEAgEAoFAIBAIBAKB0C4QoQSBQCAQCAQCgUAgEAiEdoEIJQgEAoFAIBAIBAKBQCC0C0Qo8T/K4MGDweVy8fLly4+e9suXL8HlcjF48OCPlubatWvB5XJx7ty5j5ZmezJr1izY2NiguLi4zd6ZkJCABQsWwN7eHlwuF1wuF4mJiW32fsL/Njt37gSXy0VERMRHTXfmzJngcrl49OjRR01XEtpznCb8d3n06BG4XC5mzpwpFMaM7YT/LmRcEc+n3P6lnavOnTsHLpeLtWvXtkk+2vp9Hh4e4HK58PDwaJP3tYb22J+0JZ/yekYSyJWg7cTNmzeRmJiIIUOGwNzcvL2zQ/gPcefOHTx69AgLFiyAurp6m7zzzZs3+O6771BWVgZtbW306NEDHA4HSkpKzcYdPHgwcnNzBZ4pKSlBRUUFhoaG6NmzJ0aOHAkLCwux7/Dw8ICnp6fAMw6HAxUVFfTo0QMuLi6YPn06FBQUhOKmp6fDz88PERERyMvLA4/Hg7q6OrS0tNC7d284OjqKnICqqqrw999/4/r160hNTcW7d+/QuXNnaGhogMvlwsHBAUOHDpW4jMvKyuDj4wMVFRXMnj1bojj/S8ybNw+nTp3Cjh07cPbsWXA4nPbOEoHwWcIs7pctW9bOOWmaEydOoLy8HN999x06d+7c4vjM3LJt2zaMHz9eKPz9+/dYtGgRwsPD0bVrV5w4cQKmpqZtkfVW8+jRI8yaNUui3/r5+cHBwUHi90ZGRsLBwQGOjo6tySKBQCB8VIhQop24efMmzp8/D11d3f85oYScnByMjY2hpaXV3ln5z0HTNHbt2gUFBQXMnTu3zd4bFBSEsrIyDB06FPv374eMTMuVrIyMjNgNfHV1NUpKShAZGYnIyEj89ddf6N+/P37//fcm24WysjIoigIA1NfXIycnB7GxsYiNjcWlS5fg6+srsLi9cuUK1q1bh5qaGnTo0AHa2tpQV1dHaWkpnj59iidPnsDPzw8JCQkC6RQUFGD27NlIT08HAFYQUVdXh+zsbKSkpODKlSvo2LEjvvnmG4m+v6ysDJ6entDV1SVCCRGoq6tjypQpOHbsGK5evQpXV9f2zlK7o6+vD3l5ecjJybV3VgifEYwAV5xQQlFREcbGxtDR0fmY2RLC19cXubm5GDdunFRCiaZ49+4dFi5ciKioKGhqasLHxwfdu3dv0zRag4qKCmxtbcWGFxYW4uXLl1BQUGjRGjEyMhKenp5YunQpEUpIgbGxcXtnQSw6OjowNjaGoqJie2eFQPggEKEE4aOjpaWFa9eutXc2/pOEh4cjNTUVw4YNazMtCQDIyMgAAPTr108qgQQALFy4UOg06+3bt7h8+TK8vLzw4MEDfPvttzhz5oxYwYSFhQX8/PwEnl28eBHr169HYmIi9uzZA3d3dwBAbm4u1q9fj5qaGnzzzTf48ccfoampycYrLy/H7du3cfbsWaF01q9fj/T0dOjp6WH79u2wt7dnw+rr61khCFkctC3jx4/HsWPH4OfnR4QSAHx8fNo7C4T/ID179vxPz8EVFRWYP38+YmNjoaOjAx8fHxgaGrZ3tgSwsLDA6dOnxYYvW7YML1++xNdffw0VFZWPmLP/bT7lfrFjx472zgKB8EEhPiUIhP8QAQEBAIAxY8a06Xurq6sBAB07dmzT93bp0gWzZs3C2bNn0a1bNxQWFmLNmjUtesc333yDqVOnAgCCg4PB4/EANGh3VFdXw8jICNu2bRMQSAANJ1XffPMNfH19BZ4XFhbiwYMHAIA//vhDQCABALKysujTpw+2bt0KFxeXFuWV0DSmpqbgcrl4/PgxUlNT2zs7BALhM6OsrAxz5sxBbGws9PT0cPLkyU9OINEcpaWlCA0NBQCMHTu2XfNCIBAIH4vPRlMiLy8Phw8fxsOHD5Gfnw9ZWVmoq6uje/fuGDRoEGbMmMH+lrHVc3BwwPHjx/HXX3/h4sWLyM3NhYqKCgYMGICVK1eKPY2tr6/HuXPncPHiRSQlJaGqqgra2toYPHgwFi5cKPYEurq6GgEBAbh69SrS0tLw/v17aGpqwtLSEmPGjMGQIUNYyTfDunXrsG7dOvb/S5cuZVUuGWc7SUlJuHHjBnx9fZGUlITS0lJcuHAB5ubmeP36NUJCQhAaGoqMjAwUFhZCQUEBJiYm+OabbzB58mSpT7b52b59O44fP47Vq1fDzc1NIGz27NkIDw+HtrY27t69KxB28+ZNLFmyBM7Ozjh06BAAsGWgq6uL27dvC/ye/5sfPHiAw4cPIyEhATweD1ZWVli+fLnQJpGhrKwMHh4euHHjBoqKiqCpqYnhw4dj6dKlTX4bTdMICgrCP//8g8TERFRVVUFLSwsDBw6Em5ubUDsZP348nj9/jn/++Qe9evVin9fU1MDe3h5VVVUYM2YMdu7cKRDvt99+g6+vL9asWSNgWnHp0iUEBgYiKSmJ9VvQtWtX2NvbY+rUqRLbwFZVVeHWrVuQk5ND//79m/ydr68vgoODkZWVBQAwNDSEq6srZs2aJSB4WLt2Lc6fP8/+n7+9jhs3Dtu3b5cob82hq6sLd3d3LFmyBOHh4YiLi0PPnj0ljm9vbw8/Pz+Ulpbi7du30NDQQE5ODoCGNiUrKyvxu/idfzXl56Il8Jdjbm6ukCOtpKQkAA11c/PmTdy5cwcJCQnIz88HTdPQ09PD119/jblz50JVVVXo/TNnzkRkZCR8fX2hrKwMT09PPH78GFVVVTAxMcHMmTObXNxmZmbi6NGjCAsLQ2FhITp27AhLS0vMnDlTYLxq/D3btm2Dg4MDDhw4gIcPH+LNmzeYPn06NmzYAAC4e/cuTp48ifj4eJSVlUFZWRkaGhqwsbHBhAkTRKovOzs7IykpCUFBQVixYoXEZVxWVobr16/jzp07SElJQUFBAWRkZGBsbIzhw4fju+++E+lzRBx1dXX4+++/cfnyZaSmpqK6uhqqqqrQ0tKCo6MjZs6ciS+++EIgTkv6liQwNvO3bt2Cnp4e+5y/vrW0tLB//36Eh4ejoqICRkZGmDFjBiZPniz2vYmJifDx8UFkZCRev34NJSUl6OrqYtCgQZgyZQorwGs8l/r4+ODixYvIzs5Ghw4dEB0dzb6zpW1I2voqKSmBt7c37ty5w/ZVdXV16Ovro3///pgzZw7k5eUF4lRVVeHUqVMIDg5GRkYGamtroa+vjxEjRmDOnDno1KmTUDqxsbE4fvw4Hj9+jLdv30JJSQnq6uqwsrLCmDFjMHDgwGZqrwHGHw7/3M4Pfxnza4HxP/f19cWpU6cQEBCAzMxMKCkpoV+/fli9ejV0dXWF0mJoPM4w7UhcmtLS0nXIuXPnBNY9jduHr6+vVKYHJSUlmDt3Lp4/fw5DQ0P4+Pi0u4mKNAQFBaGmpgZdu3Ztci5vDH99e3p6CrQFcfN1XFwcvLy88PjxY1RXV8PU1BQLFy7E0KFDxaYTHh6OkydP4smTJygtLYWamhocHBywcOHCFjuJ5B/L1NXV4eHhgcjISFRXV8Pc3BwrVqxg20JqaioOHDiAyMhIlJeXg8vlYvny5XBychJ6b05ODq5du4b79+8jOzsbb968gZKSEszNzTF58mSxmnj8a1B++Mfi4uLiFpeZKFo6x/CXVeP+UV9fj5MnTyIwMBDZ2dlQUVFB3759JZpDCwsLcfToUdy9exd5eXmQlZUFRVGYNGkSxo0b12L/TmlpafD29kZERATevHkDZWVl9OrVC7NmzcJXX33VZNyioiLs27cPoaGhePv2LXR0dDB69Gi4ubmJnb/Lyspw4sQJ3Lx5Ezk5OaBpGt27d8eYMWMwffr0NjV/bMn+8P79+5g/fz4MDAxw48YNse8cN24cEhISsHfvXqF22ZZ97XPgsxBK5Obm4ttvv0VxcTHk5ORgYGCAjh07oqCgAA8ePEBMTIyAUIKBpmksW7YMt2/fhoGBAUxMTJCcnIxz587h/v378Pf3F5KgV1RUYPHixXj06BE4HA60tbWho6ODrKwsnDhxAiEhIfDz84O+vr5AvIKCAsyfPx/JyckAGmyB9fT0kJeXh5CQEMTHx2PIkCFQUFCAra0tsrKyUFRUJGBnD0DkBOrt7Y1du3ZBXV0dBgYGyM/PZ8MCAwOxb98+KCgoQFNTE1wuF2/fvsWTJ08QGxuLsLAw7N+/v9VO45hFaWRkpIBQora2Fk+ePAEA5OfnIzs7GwYGBmw44wFWnCBBHAEBAdiyZQvU1dVhaGiIrKwsREZGYs6cOThx4gT69Okj8Pvi4mJMmzYNGRkZkJGRgampKerq6vDXX3/h0aNHAnnih6ZprF27FhcuXADQsDnW19dHWloaTp48iaCgIBw9ehSWlpYCZfH8+XM8evRIQCgRFxeHqqoqAA12nY1hnvGXxY4dO3D06FEAQLdu3aCvr4+KigpkZ2cjOTkZurq6Egslnjx5gtraWlhaWord/Lx9+xZz5sxBYmIiOBwOTExMwOFwkJSUhMTERFy7dg3Hjx9nN75GRkZi26uRkZFE+ZKUwYMHQ1NTE4WFhQgNDW2RUIKmafbfTFtXVlYG0LABq6mpEdqoiIOJBwBPnz5F3759Jc6HOIyMjGBlZYX4+HjIy8vDyspK5O/i4+OxevVqyMrKomvXrjA2NkZlZSWysrJw6NAhXL16FX///bdYwejjx49x8OBByMrKonv37njz5g3i4+OxZs0aJCUlidRCCQkJwY8//oiamhooKSnB2NgYJSUlCA8PR3h4OL7//nv88MMPItPLyMjAtm3b8P79e5iamkJFRYXdfPj7+2Pr1q0AADU1NXC5XFRVVSEvLw9paWnsWNgYpt75N7yScOfOHWzYsAFycnLQ1NSEqakpysrKkJSUhOfPn+PWrVvw8/OTuB2sXr2aVeX94osvoKGhgZKSEiQnJ+P58+fo1auXwIKxpX2rLUhISMCiRYtA0zSMjY1RWFiI5ORkbN68GaWlpUICZKDBJGT79u3g8XhQUlKCqakp3r17h5SUFDx//hx6enpCZlY0TWPJkiUIDQ2Fnp4eevTogaKiIjZcmjYkTX1VVFRg0qRJyMrKgoyMDAwNDdGpUycUFhYiOjoakZGRmDhxokD/KCwsxLx585CcnAxZWVno6OhASUkJGRkZ8PDwQEhICHx9fdGlSxc2zu3bt7F06VLU19dDWVkZJiYm4PF4yM/Px5UrV1BRUSGxUKIt+Omnn3D58mUYGBjAyMgI6enpCAoKQnR0NC5evMjmXUdHB7a2tnj8+DEACPWvlgjlWkJL1yEaGhqwtbVFfHw8ampqYGVlJVDP0pgrFBcXY86cOXjx4gW6d+8OHx8fIe24z4VLly4BAEaNGtUigbqtrS3y8vKQl5cHHR0dgfWkqPn67t272LZtGxQVFaGvr4/c3Fw8e/YMS5cuxZ49ezBy5EihOH/88QeOHTsGoEHT0dTUFLm5uQgKCsKNGzewf/9+ODs7t/CLgWfPnsHT0xOysrIwNDREbm4uYmJiMG/ePBw7dgyysrJYsGABOBwODA0NUVdXh7i4OHz//fc4evQovvzyS4H3HTp0CGfOnIGSkhLbJouKihAREYGIiAg8efIE69evb3E+pSkzcbR0jhEHTdP44YcfEBISAqBh/9G5c2dcu3YN9+7dw7Rp08TGjY6OxuLFi1FaWgoFBQUYGBjg/fv3An13586dEu8hQkNDsXz5clRXV0NZWRlcLpdd04WGhmLZsmViDwpLSkowceJE5Ofnw8TEBMrKykhLS4OnpyfCw8Nx7NgxobVtWloa5s2bh7y8PMjJyUFXVxccDgcvXrzA8+fPcefOHXh7e0s87zdFS/eH/fr1Q9euXZGdnY2nT58K7BcY0tPTkZCQgE6dOgk5XP9Qfe2Thv4M+OWXX2iKoui5c+fSb9++FQh79eoVffz4cYFnERERNEVRtKWlJW1jY0M/fPiQDXv9+jU9bdo0mqIoetKkSUJprV69mqYoip46dSqdmprKPq+srKQ3bdokMl59fT09ceJEmqIoesyYMXRiYqJAeEZGBu3t7S3wbM2aNTRFUfTZs2fFfjdFUex3nDx5kq6vr2fTq66upmmapqOiouiwsDC6trZWIG5mZiY9depUmqIo+uLFi0LvdnZ2pimKonNycsSmz09paSltZmZG9+7dWyCt6OhomqIo2snJiaYoiv7nn38E4n3zzTc0RVH006dP2Wc5OTk0RVG0s7Oz2G/u2bMnHRAQQPN4PJqmabq6upr+4YcfaIqi6MmTJwvFW7FiBU1RFO3q6kpnZWWxz589e0Z/9dVXtKWlpcjyPnnyJE1RFN2rVy/69u3bAt+7cOFCmqIo+uuvv6arqqrYsJs3b9IURdHz5s0TeJeXl5dAWfDno6SkhDYzM6NtbW3puro6mqZpuqioiDY3N6ctLCzoGzduCLyrrq6ODg0NpSMiIoS+VRyenp40RVH0pk2bxP5m+fLlNEVRtIuLi0D7Tk1NpV1cXGiKouhVq1YJxZOkvYqDaWuSxF22bBnb1/nZv38/TVEUPWPGDJHxtm7dSlMURdvb27P9JCwsjG1PM2bMoG/dukWXl5c3m4f6+no2z3379qVPnDhBZ2dnS/ClTdNUu2d4+fIlHRQUJJTPt2/f0lu2bKEpiqI3bNggFG/GjBnsWLFixQqB+BcuXKAtLCxoiqLou3fvCsRLSkqira2taUtLS9rPz0+gb0dGRtJfffUVTVEUfe/ePYF4THswNzen3dzc6KKiIjbs/fv3dG1tLW1vb09TFEX7+/uzbZ6maZrH49GPHj0SavMMBQUFNEVRtLW1NV1TUyO2rBqTmJhI3759W6Cv0jRN5+fn00uXLqUpiqK9vLyE4jFlx9/X4uPjaYqiaDs7Ozo6Olrg91VVVXRQUBCdkJAg8FzavtUU4sZp/vrevHkzXVlZyYadOHGCHUPLysoE4t25c4emKIo2MzOjDx06xM4jNN0wxl6+fJmOiopinzFzqbm5Oe3o6CgQ9v79e5qmpW9D0tTXsWPH2Hk2Ly9PIKyoqIj28fGhKyoq2Gc8Ho+d7xcvXiwQp7i4mF60aBFNURT9ww8/CLxr1KhRNEVR9J49ewTKiKYb5pQLFy7QksKMXfv37xcZzpRx47GNfx3z1Vdf0TExMWxYfn4+m8fdu3cLvZMZ98QhLk1J4oriY61DxMU/fPgwPXLkSJqiKHrUqFH0mzdvpHofw9atW+kpU6a0+E9oaGir0qXphjJj6qDxGCMJzbU3mv633CwtLWlPT092nK2vr6e3b99OUxRFDxgwgJ1LGf755x82rPFccvr0adrc3Jy2s7NrUfnzj2W//PILOx7U1dXRGzdupCmKoseNG0c7OzsLha9fv56mKIqeOHGi0HtDQ0Pp2NhYdg3JkJCQQA8fPpymKEpobKdp8e1f2jIThzRzjKi5iqZp2t/fn6Yoiu7duzd9//599jmz32HWv2vWrBGIV1hYSDs6OtIURdF//vmnwDzy4sULtpxOnz4tEO/s2bMi31dQUEDb2dmx61BmjuDxePQ///xDm5mZiZwLmDZraWlJjxo1SmC9FR8fz84hO3fuFIhXWVnJzq2bNm0S2B++fPmSnjx5Mk1RFL1r1y5aUppap0mzP2T2r7/88ovI9P7880+RZSltXxPXRj4XPgufEoyTvWnTpkFNTU0gTEdHR6wn+9raWixfvhz9+vVjn3Xt2hV79uyBnJwcnjx5InCXa3JyMi5fvgwtLS0cPHgQPXr0YMMUFRXh7u4OKysrPHnyhD2JABpMFJ4+fQo1NTUcPXoUZmZmAvkwMjLC/Pnzpf18TJo0CdOnT2dPIGVkZFipX58+fdC3b1906CCo9GJoaMiq6l28eFHqtBk6d+4MMzMzVFZW4vnz5+xz5vR/wYIFAv8HwJ56derUSUDTQBLGjx+PSZMmsdJZeXl59lQtNjYWpaWl7G8ZNT0A2LZtm4BWhJWVFTZu3Ija2lqhNGiaZrUUFi9eLCBx7Ny5M3bv3g01NTXk5OQgKCiIDbO3t4eMjAxiYmJQV1cnUBaysrKsaQZ/24qKigKPx4OdnR178pGdnY36+npQFIUhQ4YI5E1WVhYDBw5skQrrq1evAEDs6VBWVhYrSd+xY4dA++7RowfbXoKCgljTh4+NtrY2gIZTL0m5ePEi/v77bwDAiBEj2H7St29f1tdEZGQkFi1aBHt7e4wYMQJr167F5cuX8f79e6H3ycjI4LfffoOSkhKKiorw+++/Y8iQIejbty8WLFiAI0eOfLDy0dXVhaurq4C2BtCgaeDu7g5tbW0EBQUJtDt+OnfujD/++EMgPqM+DTRoXfHj6emJ6upqrFy5EjNmzBAYR+zt7fHzzz8DAI4fPy4yvS5dumDPnj0CJ9MdO3bE27dvUVpaClVVVUybNk3gtI/D4cDBwUGozTN07doVMjIyqK6ublE7MDMzg7Ozs9BpsJaWFnbu3Ak5OTmJx8LMzEwAwJdffgk7OzuBMAUFBbi6ugp4xG+vvmVsbIwtW7YIOFz97rvvYGFhgaqqKqG7ynfv3g0AcHNzw8KFCwVOj+Tl5TFq1CghLTSgQWXV3d1dIIw5sZK2DUlTX8xaYMKECexYwaCuro5Zs2YJmGKEhoYiOjoa5ubm2Lt3r0CcLl26YNeuXdDW1sbVq1eRl5fHhjH1v2DBAqETNisrK4lv3GkLamtrsWHDBgGtBy0tLVYtu7HJZHvwsdYh4ti3bx9SUlJgZmYGX19faGhotOp9ycnJePz4cYv/8GsPSQujtcnlcj/4zWz9+vXDkiVLWPV2GRkZ/PDDD+jatSvy8/MFTBhqa2uxb98+cDgc7N+/HwMGDBB415QpUzBz5kyUl5cjMDCwxXnp0aMH1q9fz44HsrKy+Omnn6CgoIDnz59DRUVFKPz//u//oKCggKdPnwqsCQFg4MCB6N27t9AJv7m5OTZv3gxAujbZkjJripbOMeKgaRp//fUXgAbzb35zH2a/I45jx47h7du3mDZtGlasWCEwj3C5XOzZswccDkfs/N+Y06dPo7y8HCYmJvj555/ZOYLD4WDixImYOHEiAODIkSMi49fW1mL79u0CmuiWlpbYuHEjgAbty3fv3rFhZ8+eRWZmJgYOHIitW7cK7A91dXWxb98+KCkpwd/fn/WLJi3S7g8Z/25Xr15FfX290HuZvcXo0aMFyuFD9rVPmc/CfINRQbt58yYGDhwoNPGJQ05ODt9++63Qcy0tLQwdOhTBwcF48OABu/G7fv06AGD48OEiVWxlZGTg7OyM+Ph4PHr0iF0kMLZC48ePR9euXVv+gc0wbty4JsMrKytx9epVREdHo7CwEO/fvxdQZ3/x4kWb5MPe3h4JCQkCZgtRUVGQlZXFuHHjcPToUQGhhKiNuKSIsofW0NCAnp4eMjIykJOTw9bR/fv3QdM0evfuLVLl38XFhTUL4CctLQ25ubmQk5MTqd7WqVMnTJgwAUePHsX9+/dZlebOnTuDy+UiMTGRVbFjzFgsLCwwePBgbNu2jVUlZsqCKUMGpl1nZmbixYsXQsKslsJs4MSphz948AA0TaNXr14i1chsbGxgbW2NZ8+e4cGDB+yG/mPCTIr8Ew8/CQkJbL6YK0GZ76YoCqtWrRL4vbu7OwYMGABfX19ERUWhrq4O6enpSE9Px/nz59GtWzf8/PPPQjbNffv2xaVLl/DXX3/h2rVrKCkpQXFxMe7du4d79+7hzz//xNSpU7FmzZo2UQvkh6Zp3Lt3j7WFfffuHeu8s6KigjXn4J8UGb799luRKtrTp0+Hv78/YmJiUFlZCSUlJdTU1CA0NBQyMjJsO23MwIEDIScnh+joaNTV1QmNvcOGDRNpj6+urg4FBQWUlZXh4cOHzdqR8iMjIwMVFRWUlpaiuLi4RVcH19bW4saNG4iIiEBubq7AWMjhcJCZmYmqqqpmfTswm9enT5/i1atXzarQtlff+vbbb0X6DLK2tkZCQgKys7PZZ4xJWIcOHTBv3rwWpaOsrCzSXrq1bail9cWMmXfv3sXEiRObvf2GmdPHjRsnsp8yvhnOnTuHqKgodgHJqORevXpV7Hd9LFRVVTFixAih50w746/j9uRjrUOaorS0FJWVlQKmONLQFn42pIGmadZ042M4uJw0aZLQM3l5eZiZmeHBgwfIzs5mN8ZPnjzB69evYW5uLnKMA4AhQ4bgxIkTePToEb7//vsW5WXChAlCY1nnzp2hp6eHtLQ0keGqqqrQ1dVFenq6wJqQoaSkBEFBQXjy5AnevHmD6upq0DSNmpoaANK1yZaUWVO0dI4RR3p6OruOFbVu5t/vNIYZH8X5HzI3N4euri4yMzNRUFDQ7Fx8//59AMCMGTNEmnvMmjULAQEBAusQfmxsbEQeYPKv4R8/fsz6EGHyL6pOgIZvt7a2xqNHjxAfHy8k/GkJ0u4Pe/bsyZqgR0RECKyF4uLikJWVha5duwqYH33ovvYp81kIJWbMmIELFy7g3LlzuHfvHpycnGBnZwdHR0exvgKAhk7f+MSRgVnQMycvAFh/EHfu3MGzZ89ExmMk4fx+HdLS0gAAvXv3lvyjWoCozQdDUlISFi5cKHDK05iSkpI2yYeDgwPrHM3NzQ21tbWIjY2FhYUFlJWVYW9vj0uXLrF+JUT5UJAUcfWqoaGBjIwMVFZWss+YOhRXTozztMZCCUZSraWlJbadMP4cmN8y2NvbIzExkRXQPHv2DJWVlXBwcICBgQF0dHQEBDTMvx0cHNhnWlpacHV1RXBwMMaNGwdbW1s4OjrCzs4OdnZ2LXaKx0y04uyGmW9oqj2Zmpri2bNnQt/7sWDqVVx9VFRUsFJoDofDOlBycXHBjBkzRJbZ4MGDMXjwYLx79w7x8fF4+vQp7t+/zzr5W7ZsGXx9fYVOiPX19fHzzz/D3d0dKSkpiI+PR1hYGEJDQ1FeXo6TJ0+itraW9ZvQFlRUVGDRokUifZLwI65Pd+/eXeRzY2NjdOjQAXV1dcjOzoaZmRmysrJQXV0NOTm5Zie16upqlJSUCAldxbUlWVlZzJo1C97e3pg7dy4sLS3Rr18/2NrawsHBQWz9MjBtmPHRIgmN/fqIo7S0tNm+ZWNjAxsbG8TGxsLFxQWOjo6wt7dHnz590Lt3byHhTHv1LXG3CjAnxfzjJHObSffu3dG5c+cWpWNkZCRSsNyaNiRNfU2YMAHHjx/HgwcP4OTkBCcnJ/Tp0wf29vagKEooLvPuwMBAsVf9MRpm/HP6nDlz4O7ujo0bN+LYsWPo378/Oz635VXLktDYfxWDqDpuLz7mOkQUy5Ytw9mzZ5GdnY3Zs2fj5MmTLRJmfirExMTg5cuXkJWVFTg5/VC0ZPxg+lJ+fr5YoSpzGs3flyRF3JpPXV0daWlpTa4J09PThfpBeHg4Vq5c2WS7k6ZNtqTMmqKlc4w4mPWvJPsdfiorK1lHwe7u7mJ9Rrx9+xZAQ50216eYuc3ExERkuKh1CD/i1i/8a/iMjAxWKMG0SS8vL1brWVyeCgoKmsx7c0i7PwQafMMcOHAAly9fFhBKMAJIV1dXgfn1Q/e1T5nPQihhZmaGU6dOwdPTE2FhYTh//jzryb5nz55Yu3atSAlYUyp8zMKI/0S2vLwcQMPJQ3OnD/yqQBUVFQDQ4oWepDSWJjLU19djxYoVyMvLQ//+/bFgwQJQFIXOnTujQ4cO4PF4MDc3F6vq3VL69OkDDoeDx48fo66uDvHx8exGHGjYcF+6dIl1LMloB0jjRVvcNzOScv4TGGYSkKS++WHqvintFuadjU/uHR0d4evrywpoGn8rv4CmS5cuePHiBZSUlISkwH/88QdMTExw5swZREdHs879OnXqhClTpmDFihUSOydjVNcaqzEyMOUkzfd+LJhFrbiFf2u8xXfq1AmOjo5wdHSEm5sbW3fv37+Hl5cX61CoMRwOBxRFgaIojB8/HsXFxVixYgUiIyMRGBiIxYsXC6mSS8v27dsRGRkJIyMj/PDDD+jduzfU1dXZU97p06ezJ86iENcHZGRk0KVLF7x+/Zqt27KyMgANp9X86obiECUgaOqketWqVdDW1oa/vz+eP3/Omn0pKChg9OjRWLNmjdgxk2nDLTnxXLt2LZKTk2FtbY1ly5bBwsICampqrJrtoEGDkJeXJ9KUqzEyMjLw9vaGl5cXLl68iAcPHrDXxHbp0gVz587F/Pnz2fGovfqWuPIXNU4y85Q0TgTFjcetaUPS1JempiYCAgKwb98+3LlzB8HBwewJYI8ePbB69WoBrSdmTk9JSWk2b/xz+tSpU6GiooJjx47h+fPnSE9Ph6+vLzp06ICvv/4a69evb7M+3xzNzYXtzcdeh4hCU1MTJ06cwIwZMwQEE6014/jYMKYb/fr1Q7du3T54ei0ZP5i+/vbtW3ajKg5pVOXF5YXZLDcX3nisYwQSo0ePxvTp09G9e3coKytDVlYWOTk5GDJkiFRtsiVl1hQtnWPEwcwnLV3/MmMj0HDTUHNIckDQ3FpcVlYWampqePPmjch5UNo9G79JuThacsAhCmn3h0CDacaBAwdw48YN/Pzzz1BQUEB9fT0rKG8sgPzQfe1T5rMQSgANwocjR46wXmEjIyMRHByMuLg4zJ8/HxcvXhSSpDZlj/zmzRsAEFA9ZiZ/d3f3FqnXMtJJpiF9LJ49e4aMjAx88cUX8PLyEtq8tvXJhJqaGiiKYr2jM6e5zEac+TsyMhLDhw9HYmKiyI14W8PUW1P2nEx988PUvagwBuadjVXUGwtoGH8SjHCMX0CjoaEBHo8HW1tbIem3vLw8lixZgiVLliAzMxMxMTG4f/8+bt68iaNHj6KiokLik3hmIy9OKMGUkzTf+zHg8XjsTS7iVNbaEgcHB0ydOhXHjh3D06dPJY6nrq6OzZs3Y9SoUeDxeHj27FmbbFDq6upY+0IvLy+Rpxvi6pZB3JjH4/HYyY2pW+bvrl274uHDh1LnWxwyMjKYMWMGZsyYgby8PERHRyMsLAzXrl3DmTNnUFBQwNrC8lNdXc1OtJKeShcWFiIsLAwdO3aEt7e3SGFGc2XXGBUVFaxZswb/93//h5SUFERHR+Pu3bu4e/eugG8G4NPvW8C/8xT/YrS1SNuGWlNfxsbG+PPPP1FTU4O4uDhER0cjJCQECQkJWLp0Kfz9/VnVWaZevL29hexym2PUqFEYNWoUiouLERUVhUePHiEoKAghISHIzMzEmTNnJDLdErVp4keUX5vPiY+9DhGHrq4uTpw4genTpyM9PR1z5syBn5+fVLfd/PLLL0hISGhxvO+//17qW1mqq6vZTcrHMN1oKUxfcnV1xd69e9s5N01z9+5dlJSUoHfv3iJvjvhYbbI5WjLHiIMZg1u6/uUXdj59+rTFmrmiUFJSQnl5OYqKikRqPdTX17NlL2oelGbPVlZWhuDg4Ca1FNsCafeHQMOcxdy+dufOHQwfPhwRERF4/fo1jIyMhMzOP6e+1tZ8GqL2FqCoqMjevRsUFAQbGxtUVlbi8uXLQr/Ny8sTeyqVnp4OQPCaJEblSJJTFX6YeMyGShJae0UnAFb1ysrKSuRpelxcXKvTaAyjFfHo0SOhjbiBgQG0tbURFRWF6OhosRvxtsbY2BjAv2Y0jeHxeAJmOgxM3RcUFLCniI1h2kLj67QYAc27d+/w9OlTPH78GObm5uzCnymnyMhIiTVGjIyMMGHCBPz55584cOAAgIb73CWV5ltYWAD4V01b1PubCgfEf+/H4ObNm3j9+jUAfLTr9hhBpiSn56LitSRuc32+uLgYlZWVUFNTEznBlpWViWzH/DDjWmMyMzNRV1cHWVlZNu+GhoaQk5NDUVFRmzhoawrmrvFt27bhn3/+AYfDwf3790WqezNtUE9PT2Lts9zcXAANp+WiNrgpKSlSq7kzmjLTpk3D4cOHsWnTJgDAP//8w/7mU+9bwL+maOnp6W0mQJe2DbVFfcnLy6NPnz74/vvvcf78eYwYMQI8Hg9nzpxhfyPtnM6Puro6hg0bhs2bN+Py5ctQUVFBUlKSxPMrc7IqrnyysrKkztunQHusQ8RhaGgIHx8fqKurIykpCfPmzRM7tzdFezi6vHXrFsrLy6GsrCzWCbAktMXaUhTM+NGavvSxYNqkjY2NyPL4mG1SEiSZY8TBrH/z8/PFtnVR6wIVFRXWHKOt6pSZ28S9LyMjQ2gdwo8ka/i22LNJQ2vTYrQhrly5IvD3qFGjhH77OfW1tuazE0rw06FDB1bC1NhfANCwWeBfoDAUFhayTksY2ySgwWkbAFy+fLlFk4uLiwuAhg2kpN7ipbGZbgwj2WQ2co05ceKE1O8WB7PZDg8PF9qIAw1mC3l5eWy58/tQ+FA4OTmBw+HgyZMniI+PFwq/ceOGyPbRo0cP6Orqora2FqdOnRIKr6ysxNmzZ9k0GsN827FjxwTMWICGxREjoGE84LfEtwZz0ldbWyuxVJ/xiSCqDJhv4HA4iIuLE6kZ8OTJEzx79gwcDkfAg/PHIDc3l9UI+eqrr0Q6LG0pkvRhRm2Rf6KrrKxs9vSSX1Vd0k0m01/F9XkmvKKiQmT6J0+ebFZAdebMGda3CD/+/v4AADs7O1YKr6ioCCcnJ9A0DR8fH4m+oS0wNTVlTQhE9UtmwSjqFghxMGX35s0bkSfSbTkWMkJY/rx/yn2LQV9fH2ZmZqirq2uz8pC2DX2I+rKxsQEgWC/MnB4QENAmGgmamprQ09MTSqcpmMW3KDvk+vp6kWuU1tLcWPMh0pJmHcLEbUsV5B49euD48eNQVVXFs2fP4Obm1mKBpJ+fH5KSklr8h3GGLQ3MTRDDhg1r1al1W6wtRWFnZwcNDQ2kpKSwZgafKkwZiGqTtbW17Hz4qSJqjhFH9+7d2XWsqJsY+Pc7jWH2Lm01HzDrZH9/f5Hjuq+vLwDBdQg/sbGxSExMFHrOrOGVlJQETPWZ8d3X15d1Bv6hkHZ/yODq6goZGRncvXsXr1+/ZutElFDic+prbc1nIZTYvHkzrly5IqT18OLFC1y9ehVAg5S+MXJycvDw8EB4eDj7rKioCKtXr0ZtbS169uwpsJG0sLDA6NGjUVZWhtmzZwtJU2maxtOnT7FlyxaBa90GDx6M3r17o6SkBPPmzRNy3JWZmSmkpsw4r4qOjpbYBq0xjDOc2NhYgYXN+/fv4e7uLpGNb0thzBbCw8OFNuLAv9oAt27dAiCdk8uWoq+vzw6u69atE6ibhIQE/Prrr6ydMj8cDoe9qvXgwYMIDQ1lw8rLy/HTTz+hpKQE+vr6GDlypFB85tuYb22sCcEIaBISEqCkpCTURsPDw7F9+3ahK6Sqq6vh5eUFoOGEWVK7WH19fRgZGeH169ciT98MDAwwfPhwAMCaNWsEpOcZGRlYu3YtAGDkyJFinau1NW/fvoWfnx8mTJiA169fQ1NTE9u2bWuTdx86dAhTp07FpUuXhFTWS0tLsW/fPtbR0IQJE9iwrKwsDBkyBJ6enkKaCTRN4/bt22xZWVhYsBoqzaGuro5OnTqhqKhI5IlA586dQVEU6urq8Ntvv7HCBZqmERgYiAMHDjTrX6S0tBTr1q0TGCsvX77MXpna+GriFStWsCr0np6eQmPs27dvERgYyLZHSUlNTcXGjRvx5MkTgfGtvr4eJ06cQFlZGTp27ChSIyQmJgYAWrR5NzExgZqaGgoKCnDgwAF2gVJbWwsvLy+cO3dO5BggjkuXLsHT01PIdrSiooK9VpXfLO1T7FuiYG6nOXjwILy9vQUEWDU1NQgODmb92kiKNG1I2vras2cPAgIChAS1L1++ZBfk/PUyZMgQ2NnZISsrCwsWLBDqd3V1dYiIiMDq1avZsmDs0cPDwwWucKNpGsHBwUhOTgaHw5G43zs6OrLXGvJvht6/f4+tW7c2q/0kDUwba85hblvQmnXIh8qnmZkZ/vrrL3Tq1AkxMTFYvHjxJ217XVRUxG4+Wmu6wZRpbGxsm/rxUFBQwA8//ACgYRwJCgoS2ghmZ2fDy8tL7Cb4Y8EItENCQtgbIYAGs40ffviB1aRoT1o6x4iDw+Gwtyl5eHggLCyMDWP2O+Jwc3ODuro6rly5gp9//lnIf0FFRQWCg4MlXpMxvnhSU1Ph7u4u0OfOnj3Ljg/iTFLk5OSwZs0agTV8YmIifv31V/b9/OYbkydPhpGREWJiYrBy5UohzUvmdqh169ZJlP+mkHZ/yKCpqYkvv/wSNTU1WL9+PSoqKmBtbc1quvDzOfW1tuaz8Cnx9OlTBAQEsCo/nTt3xtu3b9nO7ODgIHIg7927N1RUVDB79mwYGhpCWVkZKSkpqKmpgYaGBnbs2CGk2vXLL7+gvLwcoaGhmDhxIrS0tKCtrY3q6mpkZ2ezEvdZs2axcWRkZLB//37Mnz8fCQkJGD16NJvPvLw8FBUVQVdXV2BDMHToUOzdu5e9rkhHRwcyMjIYN26cxNL2rl27Ys6cOfD29saGDRvg4eGBrl27Ij09He/fv8evv/6KDRs2tLS4m0RdXR2mpqas4KXxRpwRUtA0DUVFRVhbW7dp+uLYsmULkpKSkJycjGHDhsHU1BR1dXVITU2FtbU17O3tWXt9fqZOnYqnT5/iwoULWLhwIfT09KCmpoa0tDS8f/8eampq2Ldvn8jNoL29PTgcDmiahqysrNDJrqOjIy5fvgyapmFjYyO0yH737h2OHz+O48ePQ01NDbq6uuDxeMjJyUFFRQXk5OSa9IosigkTJmD37t24cuUKlixZIrKcMjMzkZiYiJEjR7IqaampqeDxeLC0tGTv8G5rDh8+zG4campq8PbtW1aNG2jQkNi2bVubeU1nfH48fvwYHA4H+vr6UFNTQ2lpKV69esWaXYwdOxYzZswQiPfmzRt4eHjAw8MDXbp0wRdffIG6ujrk5eWxqu+6urotsvfjcDgYPnw4zp49i3HjxsHU1JQ9LWCcd65evRqLFi1CYGAgrl+/Dn19feTn5+PNmzcYN24ccnNzm1zAL1myBF5eXrh9+za6d++OoqIidqKeNWuWkFmMmZkZ9u3bh1WrVsHDwwOHDx+GsbExFBQUUFRUhFevXoGmabi6ukr8nQDYU5vAwEAoKyvDwMAAHA4Hubm5KCkpAYfDwfr164W8hVdVVeH27dtQVVVlBY2SICcnh5UrV8Ld3R0eHh44deoUdHR0kJOTg9LSUixduhTnz58XaG9NUVxczNZ/t27dBOaAqqoqqKioCI2t7dm3JGXgwIFYt24d/vjjD+zatQteXl4wNjZGZWUlcnNzUVNTg23btrVIS0WaNiRtfaWmpuLw4cPYsmUL9PT0oK6ujrKyMmRlZYHH48HU1FTgulMOhwMPDw8sWrQIUVFRcHV1hZ6eHrp27cpercssnH///XcADarCV69exdWrV9GxY0cYGhpCXl4e+fn57Mnr999/L7GGVOfOnbF06VLs3r0bW7duxcGDB6GlpYX09HRwOBz8+OOPbSaIZRgxYgRSUlLw/fffg8vlsv1sz549be5AsTXrkBEjRiA0NBTu7u44deoU66x5/fr1El2r2BSMH7L58+cjPDwcy5Ytw4EDB1oknPxYXL58GXV1ddDV1W31QU7//v2hqqqKmJgYDBo0CPr6+ujQoQOcnJya9U/QHBMnTkRBQQE8PT2xatUquLu7w8DAADRNIz8/nz1Bdnd3b1U6rcXKyoq92Wz+/PnQ19dH586dkZKSApqmsXHjRmzZsqVd8yjNHCOOqVOnIjw8HDdu3MCcOXPY/U5ycjKUlJQwb948HDp0SCiepqYmDh8+jMWLF+PUqVMICAhA9+7doaSkhNLSUmRnZ4PH40ns40tTUxO7du3C8uXL8ffff+PKlSvsrRnM7RfLli0TqXkMNAgZ7ty5I7SGBxo04ZYtWybwe0VFRRw5cgRubm4ICQnB9evXYWhoCDU1NZSXlyM7Oxu1tbVNOqBuCdLsD/kZPXo0wsLCcO/ePfb/4vhc+lpb81kIJdatW4c7d+4gKioK+fn5yMnJgaKiImxtbTFq1ChMmjRJ7Em4h4cHvL29cfHiRaSkpEBFRQUDBgzAypUrRTqnU1RUxKFDhxASEoLz58/j2bNnSEhIgKqqKoyNjWFra4thw4YJSbe0tLQQGBiIU6dO4erVq0hLS0NBQQE0NTVhb28vJDQxMDDAoUOHcPjwYSQkJLALt5aaO/z444/Q0dHBqVOnkJWVhaqqKtjY2GDevHn46quv2lwoATRsxpOTk0VuxBmzhfz8fJEb8Q+FhoYGAgIC4OnpiRs3biAtLQ1aWlqYP38+lixZItZZJIfDwfbt2+Hk5ISAgAAkJiay9zEPGjQIbm5uYjfJ6urqMDExQUpKipAZCyBouiJqoWFnZ4dNmzbh4cOHSElJQUZGBmpra6GpqQkXFxfMnTuXtS2TlAkTJmD//v24fPmySKFEly5dcPr0afj6+iI4OJjVqKAoCiNHjsSsWbPaxOGRKDIzM9nrmZSUlKCiogIHBwf07NkTI0eOlPjkUVJWrVqFr776Cg8ePMDTp09RWFiIxMREdOjQAV988QWsra0xbtw4oRN5MzMz1ht2eHg4Xr58iczMTNTU1KBz58748ssvMXjwYEycOFGsZ3xxbNiwAZ06dcKtW7eQlJQk5I9i0KBBOHr0KA4cOMB6/Tc2NsaSJUswdepUsZMdg62tLf7++294eHggNjYW79+/h6WlJWbOnIlx48aJjDNo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2cMHTq0Rd9pZGSEX3/9FWFhYUhISEB2djaqq6uhrq6OESNGYNasWayJEj+3bt1CZWUlZs6cKfGtMwxTp06Fqqoq/vrrL1b4TFEUZsyYAVdXV/bGJkkYNmwY6urqEB4ejoyMDCQnJ4OmaXzxxRfo378/5s2bJ3SvfHv2rZYwe/Zs9OnTB8ePH0d0dDSSk5OhoqICiqLg7OwsdsHYFNK0IWnqa9GiRTAxMUFkZCRevnyJhIQEyMvLw9zcHMOGDcPMmTOF+qSGhgb8/f1x4cIFBAUFsWN8ly5dYG5uDgcHB7i4uLDtrVOnTti5cyfCwsIQFxeH/Px8vHv3DmpqanB2dsaUKVMwaNCgFpWPm5sbVFVVcfLkSXacd3JywsqVK8WaPbQGNzc38Hg8BAUFITU1ldUC+VDaAtKuQ8aOHYuysjKcOXMGWVlZ7GFHW/k86dOnDw4ePIiFCxfi7t27WL16Nfbu3Svyetv2hNHYGzNmTKt9QigrK+Po0aPYv38/4uLi8OTJE/B4POjq6rZFVrF06VIMGDAA/v7+iIqKQnJyMjp27AhtbW307dsXLi4uLXYq+yHYsWMHevTogQsXLiA/Px+VlZUYMGAAvv/++xbd6vShkGaOEYeMjAz27dsHPz8/BAYGIjs7G507d8awYcOwcuVK1q+ZKHr27IkrV67g5MmTuH37NjIzM9l1qKOjIwYOHNiiA4JBgwbh/Pnz8Pb2RlhYGF68eIFOnTph4MCBmDVrVpMakGpqaggMDMS+ffsQGhqK4uJi6OvrY8yYMXBzcxM5fxoaGuLChQsICAjAtWvXkJaWhtzcXHTr1g29evVCv379WC3G1iLt/pDBxcWF1SCRlZVt9rDnc+lrbQmHltZ24BPm0aNHmDVrVquuDyQQPld++eUXnDx5UiqP84TPk5kzZyIyMhK+vr5SXcH7qTB58mQkJiYiJCQEOjo67Z0dAoFAIBAIBMJH4LPwKUEgECRnyZIlUFZWZm/wIBA+B+7du4cnT55g1qxZRCBBIBAIBAKB8D/EZ2G+QSAQJEddXR07d+7E8+fPUVxcDHV19fbOEoHQLJWVlVi2bBm+++679s4KgUAgEAgEAuEjQoQSBMJ/kMGDB2Pw4MHtnQ0CQWLayu6TQCAQCAQCgfB5Qcw3CAQCgUAgEAgEAoFAILQL/0lHlwQCgUAgEAgEAoFAIBA+fYimBIFAIBAIBAKBQCAQCIR2gQglCAQCgUAgEAgEAoFAILQLRChBIBAIBAKBQCAQCAQCoV0gQgkCgdBiBg8eDC6Xi5cvX36wNGbOnAkul4tHjx59sDQ+JB+jjD4GL1++BJfL/Si3uXh4eIDL5cLDw+ODpwUAjx49ApfLxcyZMz9Keh+Lj1lnkvBf6QvtBZfLBZfLbZN3fWpt42OO88z4wv8nMTHxg6f7OXLu3Dmhsvpc52ICgfB5QIQSBAKBIIKbN2/Cw8ODLFoJnxznzp2Dh4cH2eR/Jpw4cQIeHh4oKytr76wQAOjo6MDW1ha2trZQUlKSKM6+ffvA5XIxd+5csb9Zt24du4F/9eqVyN/ExMSAy+XCysoK79+/lyr/DM7OzuByubh8+bLI8JqaGvTs2RNcLhezZs0S+56NGzeCy+Xixx9/ZJ9paGiwZaSsrNyqfBIIBIIkEKEEgUBoMfr6+jA2NoacnNwHS0NHRwfGxsZQVFT8YGk0xc2bN+Hp6UmEEoRPjvPnz8PT0xO5ubntnRWCBPj6+sLT05MIJUTQHuP8hAkTcPr0aZw+fRqGhoYSxbG3twcAxMbGoq6uTuRvoqOjRf6bn5iYGACAlZVVq7/Zzs6uybTi4uJQXV0NAHj69Clqa2tF/o6Jz3wjAAwcOJAtIwsLi1blk0AgECShQ3tngEAgfH74+Ph88DR27NjxwdMgEAgEQvvxuYzzNjY2kJOTQ2VlJRISEtCzZ0+B8MLCQmRnZ0NfXx85OTmIjo7GmDFjhN7DCAD69OnT6jzZ29vj8uXLzQpAmDzFx8fDxsZG4DfFxcXIyMhoszwRCASCtBBNCQKBQCAQCAQCQQyKioqsxgCz2eeHEQxMnDgRnTt3Fiko4PF4ePz4MQBBrQRpYYQIaWlpePv2rdg8MSYnovLEPNPQ0ECPHj1anScCgUCQFiKUIBAILUac47r379/j4MGDGDt2LGxsbGBlZQUnJydMmTIF+/btQ2lpqcRpiHOA1pxjtKacJV66dAkzZ86Eg4MDLC0t0bdvX4wePRpbt25FSkoKgH8dwZ0/fx6AoJ2wtE4Yw8PDMXv2bNjb28PGxgbTp0/H3bt3Rf62rKwMZ86cwZIlS+Di4oJevXrBxsYG48ePx5EjR1h13Mbw10lkZCTc3Nzw5ZdfwszMDDdv3mR/V1VVhWPHjuHbb7+FnZ0devbsiZEjR8LT0xPv3r2T6HtSUlLA5XJhb28vNj8AMG/ePHC5XPj7+0v0Xn6KioqwefNmDBgwANbW1nBxcYGHh0eT6ZWVlWH//v0YM2YMbGxs0Lt3b4wfPx4nTpwQq7rcFAUFBdi6dSuGDBkCa2trODg44LvvvkNwcLDQb2/fvg0ul4v58+cLhXl5ebHtJzs7WyCstLQUZmZm6NOnD+rr65vMD+OYMzIyEgAwa9YsgbZ57tw5kfGCgoIwceJE2NjYoE+fPli4cCFevHghNp36+noEBgZixowZsLe3h7W1NYYOHYpt27ahuLi4yTy2lLq6Opw6dQqTJ09m26Orqyv27t0rZO5A0zS+/PJLcLlcvHnzRiAsPz+fLYc///xTKJ3FixeDy+UiJCREKCw+Ph6rV6/GwIEDYWVlBUdHR3z//fdiT6AlHecYZ4GMmc3XX3/d5o4Dq6qqcOTIETYvNjY2GDt2LI4cOYKqqqpm4586dQrffPMNevXqBUdHRyxfvhxpaWlNxrl27RrmzZuHL7/8ElZWVhg0aBA2bdoklY8TceP52rVr2Tb9+vVrbNq0CU5OTrCyssKwYcNw+PDhZvtLW8MIAaKiooTC+E0gbGxskJaWJtRXkpKSUF5eDhkZGdja2rY6Pz169ICGhgZomhYSlPB4PMTGxsLIyAjDhw8XyCM/zLcQLQkCgdDeEPMNAoHQJtTV1WHOnDmIjY0FABgYGEBVVRVFRUV49uwZYmNjMXjwYFhbW7dL/nbs2IGjR48CALp16wZ9fX1UVFQgOzsbycnJ0NXVhampKRQUFGBra4usrCwUFRXByMgI6urq7Ht0dHRalO61a9ewe/duKCsrw8DAAHl5eYiOjkZ0dDQ2btwodPPDnTt3sGHDBsjJyUFTUxOmpqYoKytDUlISnj9/jlu3bsHPzw/y8vIi0wsODsbevXvZ9PjtlgsLCzFv3jwkJydDVlYWOjo6UFJSQkZGBjw8PBASEgJfX1906dKlyW8yNTVF79698eTJE9y8eRMjR44U+k1BQQHCwsIgLy8vMrwpSkpKMHHiROTn58PExATKyspIS0uDp6cnwsPDcezYMXTs2FEgTlpaGubNm4e8vDzIyclBV1cXHA4HL168wPPnz3Hnzh14e3uLLbfGPHv2DPPnz0dJSQkUFBRgamqKkpISREREICIiAg8ePMDvv//O/t7e3h4yMjKIiYlBXV0dOnT4d3plhAhAg2DBwMCA/X9UVBRomoadnR1kZWWbzJOKigpsbW2RnJyMiooKUBQl4IROQ0NDKM7evXtx6NAhaGtrw8jICBkZGQgNDUV0dDTOnDkDY2Njgd9XVFRg8eLFePToETgcDrS1taGjo4OsrCycOHECISEh8PPzg76+vkTl2BTV1dVYtGgRHj58CAAwMjKCkpISUlJScOjQIVy5cgU+Pj7Q09MDAHA4HNjb2+P69euIjIyEq6sr+y7+TS1/eQMQ2LQ1PqH28/PD77//Dh6PBxUVFZiYmKCwsBB37txBaGgo3N3dMWXKFPb3LRnnGGeB8fHxqKmpgZWVlUD7U1FRaVX5vX37FnPmzEFiYiI4HA5MTEzA4XCQlJSExMREXLt2DcePH4eqqqrI+L/88gtOnjwJbW1t9OjRAxkZGQgJCcH9+/dx/Phx9O7dW+D3dXV1+L//+z8EBQUBaBhHTU1NkZWVhX/++QfXrl3D0aNHhUwbWsOrV68wbtw4lJSUwNTUFB06dEBmZib27NmD3NxcbN26tc3Sag57e3scPXoUMTExoGkaHA6HDYuOjoaCggKsrKxgZ2eHu3fvIiYmBkOHDhX4DQCYmZm1uu4Z+vTpg5CQEERHR2PIkCHs8xcvXqC8vBxDhw6Furo6jIyM8PjxY/B4PMjI/HseyfQLIpQgEAjtDk0gEAgtxNnZmaYois7JyWGfhYSE0BRF0QMHDqRTU1MFfl9eXk4HBgbSL1++lDiNGTNm0BRF0RERERI9Z9i/fz9NURS9f/9+9llRURFtbm5OW1hY0Ddu3BD4fV1dHR0aGir0vjVr1tAURdFnz56VOM/8MGVkaWlJ//bbb3R1dTVN0zRdX19PHzlyhKYoirawsKBfvHghEC8xMZG+ffs2XVVVJfA8Pz+fXrp0KU1RFO3l5SU2PXNzc3rv3r10TU0NG1ZVVUXzeDx62rRpNEVR9OLFi+m8vDw2vLi4mF60aBFNURT9ww8/CLw3JyeHpiiKdnZ2Fnj+zz//0BRF0XPnzhX5/YcOHaIpiqJXrFjRfGH9f5i6s7S0pEeNGkVnZ2ezYfHx8fRXX31FUxRF79y5UyBeZWUl7eLiQlMURW/atIl++/YtG/by5Ut68uTJNEVR9K5duwTiRURE0BRF0TNmzBB6H1OeixYtoktKStiw27dv07169aIpiqL//vtvgXhjx46lKYqinzx5wj6rqamhe/XqRTs5OdEURdE//vijQJzffvuNpiiK9vb2lricmusDTJ1ZWlrSvXv3pm/evMmGlZWVsfFXrVolFHf16tU0RVH01KlTBfpxZWUlvWnTJpqiKHrSpEkS55WmRY8XNE3Tf/zxB01RFN23b186NjaWfZ6fn09PmjSJpiiKnjx5skAcHx8fmqIoevPmzQLPN2zYQFMURTs5OdGWlpb0+/fv2bDExESaoija1dVVIM6DBw9oLpdL29nZ0ZcuXaJ5PB4bdv36ddrGxoa2tLSkk5KS2OfSjHPivl9SKIqiKYoSer58+XKaoijaxcVFIC+pqalsf2hcx0zbsLCwoC0tLelLly4J5H/ZsmVsf+cvQ5qm6T179tAURdEjR44UaOO1tbW0h4cHG48Z6yRBXFtmxl9LS0t68eLFdHFxMRt2/fp12szMjKYoik5LS5M4LVFzQ0soLS1l001OThZ6Pn36dJqmaToqKoqmKIr+7bffBOIz9fXrr79Klb4omP4wfvx4kc/PnDlD0zRNr1u3jqYoik5MTGR/U15eTpubm9MURdEJCQli02huvCEQCIS2gJhvEAiENiEzMxMAMGzYMCHbVGVlZXz77bfQ1dVth5wB2dnZqK+vB0VRAqdJACArK4uBAwfC0dHxg6Tdo0cPrF+/nj0hlZGRwYIFCzBo0CDU1dXh+PHjAr83MzODs7MzFBQUBJ5raWlh586dkJOTw8WLF8Wm5+TkhJUrVwrcjKKgoMCejpubm2Pv3r3Q1tZmw7t06YJdu3ZBW1sbV69eRV5eXrPf5erqCiUlJYSFhaGgoEAonDF/GT9+fLPvakxtbS22b98ucBpvaWmJjRs3AgD8/f0FTE3Onj2LzMxMDBw4EFu3boWamhobpquri3379kFJSQn+/v5Nmn8wBAUFITc3F2pqati1a5fASbOzszMWLVoEADh8+DBommbDHBwcAAie2sfFxeH9+/cYNWoUdHR0hE7xmf8zcduS2tpaLFmyBF9//TX7TEVFBRs2bAAAIROi5ORkXL58GVpaWjh48KBAP1ZUVIS7uzusrKzw5MkT1jZeWioqKnD69GkADVcS8p/Ka2lpYe/evejQoQNiY2MFypMpJ1HlqKGhgfHjx6O2tpbVZAD+rY/GZbx7927QNI1ffvkFo0ePFjj5Hjp0KFauXIna2lr4+fmxzz+VcS4rK4s1RdmxY4dAXnr06IHt27cDaGjLOTk5QvHr6uowZcoUjB49mn2mrKyMHTt2oEuXLsjNzRUwUyouLsbx48ehpKSEgwcPolevXmxYhw4dsHTpUgwdOhS5ubkiTWSkRVVVlc0Tw9ChQzF48GAAwL1799osrebo3LkzKIoCIGgKwWggMLdh9OzZE/Ly8kLmEuK0dVoD867ExESBMbGxQ03mb/48xcbGor6+Hp07dwaXy22zPBEIBII0EKEEgUBoE5hNbnh4OEpKSto3M41gTC4yMzObtKX/EEybNk3k8+nTpwMAHjx4IBRWW1uL4OBgbN68GfPmzcO0adMwdepUzJkzBxwOB5mZmWLtxceNGyfy+fXr19lwUSYMSkpK6NevH3g8nkib6cZ06tQJw4cPB4/Hw4ULFwTCHj9+jIyMDGhpaeGrr75q9l2NsbGxgaWlpdBzFxcXaGpqorKyUmBTzHzbpEmTRL5PS0sL1tbWePfuHeLj45tN//79+wAanNYpKSkJhU+bNg1ycnLIzc1Feno6+5zZIPBvmJmydHR0hL29PfLz81m/EoxZTqdOnUR+b1swefJkoWdmZmZQUFBAeXm5gIM8phyHDx8uUuVfRkYGzs7OANBqfwgxMTGorKyEpqYmhg0bJhT+xRdfsAJEpj4AgMvlQk1NDenp6axfiYKCAmRlZcHe3p4VLvLnj6kD/s1gXl4enj9/DjU1NZHpA2DT53/XpzLOPXjwADRNo1evXgICAgYbGxtYW1uDpmmRYwzw7xjET8eOHfHtt9+yaTDcu3cP1dXV6Nevn1jTHVHl1VpGjhyJTp06CT1nvlmUwOVDwrQhUdd/Mht/eXl5WFlZ4cWLF6ioqADQIER6/fo1OBxOm5pKcLlcqKiooL6+XkAQFxMTg27durFXnjICE/6xncm3nZ2dgEkHgUAgtAfEpwSBQGgThg4dCn19fSQlJWHQoEHo168f+vTpA3t7e1hZWQmcQn5stLS04OrqiuDgYIwbNw62trZwdHSEnZ0d7OzshPwTtCXiPJqbmJgAAF6/fo2KigrWN0BBQQHmz5+P5OTkJt9bWloqMt/i0mPeFxgYiGvXron8zatXrwA0OA2UhIkTJ+LcuXM4f/48Fi5cyD5ntCTGjh3brJ8EUXTv3l3kcxkZGRgbG6OwsBAZGRlwcnIC8O+3eXl5sX5DGsOccIvS6hD3W6aOGqOiogJNTU3k5uYiMzOTLXPGr8Tjx49ZvxKRkZGQlZWFnZ0dCgsLcenSJdavRFRUFHg8HmxtbaUqp+bo0qWLWNt1dXV15OXlobKykj2FZsrxzp07ePbsmch4RUVFACRvI+JgriE0NjYW++2mpqa4du0aWx9Ag18JOzs73Lp1i/Urwa9twlzdyDyjaZrdiPFrSiQlJQFoEACK2pwzcQHBb/1UxjmmTJq6McHU1BTPnj0TKD8GOTk5dsPaGKbdM3UE/Fte8fHxmDp1qsh45eXlAFrfNvgRl0fGz09lZWWbpSUJdnZ28PPzExJKyMjICFy3aWdnh8ePHyM2NhZOTk5sG+zRo4eAj6LWwjjNvHv3LqKjo9G/f39kZGTgzZs3AsI2Q0NDdOvWTcAhZlteT0ogEAithQglCARCm6CoqIhTp05h//79uHbtGm7duoVbt24BaNBUWLJkCSZOnNhu+fvjjz9gYmKCM2fOsI4mgYYT/ylTpmDFihVCJhNtgbgFaNeuXdl/v3v3jhVKrF27FsnJybC2tsayZctgYWEBNTU11hxj0KBByMvLE3ubBL9jS36YDQNzy0hTSGLiAAC2trbo3r070tPTERsbCxsbG1RVVeHq1asAxGttNIcoh40MTLnxqyoz3/b8+fNm3y3JjQTMRqe5fOTm5grkQ1VVFRRFsc41LS0tERsbCwsLCygrK7On+JGRkZg4caLIzXJbIkrLg4E5GeU3P2HKMTs7W+iWkMZI2kbEwZQxfz9oDFP+jW+FcXBwwK1bt/Do0SO4uroKaKN07NgRPXv2RFxcHKqqqpCVlYWSkhJ0795dIC3mZo937941a4rC/62fyjjXmvIDADU1NbGn46Li8QscmhM6tLZt8CNuPBPVflvLmTNncPbsWaHn33//PQYOHAjgX02J/Px85OTkoFu3boiPj4eZmZmA01k7Ozt4e3sjOjoaTk5OH9ShZJ8+fVihBCBe2GBra4uQkBBkZmbiiy++YAWPbWlOQiAQCNJChBIEAqHN0NTUxK+//oqff/4ZCQkJiImJwc2bNxEVFYWNGzdCSUmpxTcxiEPcYlTcyZm8vDyWLFmCJUuWIDMzEzExMbh//z5u3ryJo0ePoqKi4oN4ci8uLhZ58s9/pSGjnlxYWIiwsDB07NgR3t7eIm/BaMm1qvwwG1Rvb28MGDBAqneI4ttvv8WOHTtw7tw52NjY4Pr16ygvL4eNjY3QzQ6S0tS1k0y58at0KykpoaysDMHBwU2eHEsKU1aMVoCk+QAaFvgvXrzAo0ePwOPxUFlZyQodDAwMoK2tzW6iP6Q/CWlgvtvd3V3saXhbp9X4ak9+mPJvXMaN/Uo8evQI6urq7Am/g4MDYmJiEBsbi9TUVADCGy8m/V69euGff/5pUd4/5jgnjtaUH9Bww03jmxiaisekt2DBAvz444/SZ/wTJi8vT6SAin8c6Nq1K4yMjNg5REdHB7W1tax5BIOtrS04HI6QoOBDCACYd8bFxaGmpkasAIQRSkRHR8PIyAjV1dVQUlL6YKZjBAKB0BKIERmBQGhzZGVlYW1tjdmzZ+PkyZOYN28eALR48S8KZnEsbuPa3Akv0HD14IQJE/Dnn3/iwIEDAIBz586hrq6O/U1bqWHz+xzgJy0tDUDDtXrMCVtubi6ABhVfUQKJlJQUqdWVmQ2bJJoSLWHs2LGQk5PD1atXUVVVxZpuTJgwQep3MmXTGB6Px6qUGxkZsc/b+tuYd4t7X3l5OQoLC4XyAUBAG0KUJoS9vT3rz+DFixdQUlKClZVVm+S7tXyoNiIKRmCVnp6O+vp6kb9h8tG4jM3MzNC5c2ekp6cjMTERmZmZAps9foej/FoU/JiamrLp8/f7lvAhx7nmYMqEEbqIQlz5AQ1mK+LGSqb/8cdjyutjtI32YtmyZUhKShL609hZL9PWoqKixGolqKqqwtTUFHFxccjJyWHL+kMIJaysrKCoqIjq6mrExcUhOjoaysrKQs4r+Z1dMoKL3r17C1xfTCAQCO0FEUoQCIQPjq2tLQCwG7nWwDhZi4uLEwp79eqVgFO8luSttrZWwHEdY8ohibp/U5w6dUrkc39/fwBA//792WeMj4g3b96I1AQ5ceKE1Plg7IsDAgLw/v17qd/TGA0NDTg7O6O8vBy+vr6IiIiAoqIiRowYIfU7Y2NjkZiYKPT8xo0bKCwshJKSksDJJPNtvr6+4PF4UqfLwPiqOHPmjEgh0OnTp1FbWws9PT0hLZg+ffqAw+Hg8ePHCAsLg6ysrMCGhdkce3l5ob6+Hra2ti3eFDDtpLVtszFMOV6+fLlJLZG2wM7ODkpKSnj9+rXI2xry8vJYswimPhhkZGTY+vf09AQgKHSwtbWFnJycgFCi8WbQ0NAQXC4X5eXlIlX2pUHcOMfUV1uaNTg5OYHD4SAuLg5Pnz4VCn/y5AmePXsGDocjMMbwI2psqq6uxpkzZ9g0GAYNGgR5eXk8ePCgSUHI/wL8m3t+Z5GNsbW1RU1NDXvDkr6+PrS0tNo8P3Jycqzjz+DgYOTk5KB3795CvlrMzc2hpKSE6Ohotl8QfxIEAuFTgQglCARCm3D8+HEcP35cyJFgcXExfH19AaBN1EQZ297AwEABb+P5+flYtWqVyE1peHg4tm/fzjprY6iuroaXlxeABntwfh8CjPAjOjq6VXbLqamp+OOPP1BTUwOg4bT/2LFjuHPnDjp06IDZs2ezvzUxMYGamhoKCgpw4MAB9ltqa2vh5eWFc+fOCVz12RKGDBkCOzs7ZGVlYcGCBULaCHV1dYiIiMDq1avZvEoK461/37594PF4cHFxEbCvbilycnJYs2aNgGf9xMRE/PrrrwCAqVOnCqiWT548GUZGRoiJicHKlSuFrjStqalBaGgo1q1bJ1H6o0aNgq6uLkpKSvDTTz+x/geAhms0Dx48CABwc3MT0qjp0qULTE1N8e7dO0RERMDc3FygLJhTfGbDLc3JKdM2JbklpSVYWFhg9OjRKCsrw+zZs4UEfzRN4+nTp9iyZUurbz1QVlZmb6b57bffBDbWBQUF+OGHH1BbWwsbGxuR1/U2Lkd+bZSOHTvC2toasbGxKC4uhpGRETQ1NYXe8dNPP0FGRga//fYb/P39hdp9QUEBfHx82KtLAenGOaa+Gl9j2hoMDAwwfPhwAMCaNWsENLIyMjKwdu1aAA23V4i6LaNDhw44deoUgoKC2Gfv3r3DmjVrUFxcDF1dXbi6urJh3bp1w9y5c1FXV4f58+eLvNEjKSkJO3fuFHCm+F+E6bOMCQfjRLIxjKCCEfI01dc9PDzA5XLZq06lzROTlihhg6ysLHr37o2cnBy2LbZGc+PEiRMYPHjwBzf1IhAI/xsQnS0CgdAmvHr1Cr6+vti+fTu++OILdO3aFZWVlcjKykJtbS20tLSwcuXKVqfj5OQEJycn3L9/H1OnToWhoSEUFBSQmpoKY2NjTJs2DT4+PgJx3r17x24m1NTUoKurCx6Ph5ycHFRUVEBOTg7u7u4CG8yhQ4di7969CAoKwpMnT6CjowMZGRmMGzdOSJ23KVauXIndu3fj7NmzMDAwQF5eHmsH/tNPP8HMzIz9rZycHFauXAl3d3d4eHjg1KlT0NHRQU5ODkpLS7F06VKcP3+eNfNoCRwOBx4eHli0aBGioqLg6uoKPT09gXpiTnJ///33Fr27f//+0NLSYjdqLSkfUUyePBl37tzBsGHDYGpqirq6OvZ01sbGBsuWLRP4vaKiIo4cOQI3NzeEhITg+vXrMDQ0hJqaGsrLy5GdnY3a2tomnQLy07FjR/z555+YP38+bt68iQcPHsDExAQlJSV4+fIlgAbzFFHXbQING+Tk5GTQNC3kL8LQ0BDa2tqss0Bp/Em4urrC398f3t7euHHjBrp16wYOh4MFCxa02l/IL7/8gvLycoSGhmLixInQ0tKCtrY2qqurkZ2dzWqOzJo1q1XpAMDy5cuRkJCAsLAwTJo0CcbGxlBUVERKSgqribJr1y6RcZlyo2lawJ8EfzjjH0BcGTs5OWHr1q34+eefsXXrVuzatQtGRkaQlZVFYWEh254XLFjAxpFmnBsxYgRCQ0Ph7u6OU6dOQU1NDQCwfv16mJubt7jcGLZs2YLMzEwkJiZi5MiRbBmkpqaCx+PB0tISmzdvFhlXS0sLzs7OWLVqFXbu3AkNDQ2kp6ejsrISioqK2Llzp9DtPitWrEBRURECAwMxb948qKurQ09PD3V1dcjNzWX93YgSIv2X0NXVxRdffIFXr16hurpapJYE8K9QghlXP6RWAvPu5tKys7NDWFgYqqurIS8vL/I6WUkpLy+Xai4iEAgEURChBIFAaBOmTJkCNTU1REREIDs7G4mJiejQoQOMjY0xaNAgzJ07V6SfBGnw8PCAp6cngoODkZubi65du2LGjBlYvnw5qyrLj52dHTZt2oSHDx8iJSUFGRkZqK2thaamJlxcXDB37lzWZprBwMAAhw4dwuHDh5GQkIBXr16J3GQ2x/Dhw2FpaYlDhw7h+fPnqK+vh52dHdzc3DBo0CCh30+dOhWqqqr466+/kJKSgpqaGlAUhRkzZsDV1ZX12SANGhoa8Pf3x4ULFxAUFITExEQUFBSgS5cuMDc3h4ODA1xcXFp8C4msrCzGjRuHQ4cOQVdXt9WbEjU1NQQGBmLfvn0IDQ1FcXEx9PX1MWbMGLi5uYm8CtXQ0BAXLlxAQEAArl27hrS0NOTm5qJbt27o1asX+vXrx54sS0LPnj1x6dIlHDlyBHfv3kVSUhIUFRXh4OCAqVOnCpwiN8be3h4nT54EIHqDZm9vj8uXL0NRURHW1tYS54mhT58+2L17N3x8fJCamspe+SjtbSf8KCoq4tChQwgJCcH58+fx7NkzJCQkQFVVFcbGxrC1tcWwYcOkdmLKj4KCAry9vREQEICLFy8iJSUF9fX10NfXx9ChQzFv3jyoqqqKjGtubg4VFRWUl5fD3t5eSGPF0dERhw4dAtD0afDEiRNhZ2cHHx8fREREID09HbKystDS0oKLiwu+/vprgdNraca5sWPHoqysDGfOnEFWVhZ79Sq/Bo40dOnSBadPn4avry+Cg4ORlZUFAKAoCiNHjsSsWbOavO5406ZN6NGjBwICApCamgoFBQW4uLhgxYoVIq/DlZGRwa+//gpXV1f8/fffrJlVp06doKOjAxcXFwwdOhR9+/Zt1Xd9DvTp0weXLl0CINp0A2gQXujo6LCaW021w9evXwNo0FaSht69e0NOTg61tbWQk5NDz549Rf6OP6/W1tYf5MYpAoFAkAYO3Zb3KREIBEIbMX36dERHR8Pf35/YvX4GrFu3DufOncPSpUuFNBkIBAKhvWGE2Z/iGDVq1CikpKQgMDBQrEChvZg5cyYiIyPh6+v7n9eCIRAI7QfRlCAQCJ8kzCmiuJNSwqdDRUUFrl27xpq3EAgEwqfK2bNnERYWBgDYvn07DA0N2zU/ZWVlSE1NRd++fT8ZgcTdu3dZTSNGs4dAIBA+JEQoQSAQPjnS0tKQnp4ORUXFdl8wEprHy8sLlZWVcHZ2hp6eXntnh0AgEMSSl5fHmlRIe8VyWxIbGwuapuHm5tbeWWEpKipifbIQCATCx4CYbxAIhE+GhIQEbNy4Eampqaiursa0adOwZcuW9s4WQQSJiYn4/fffUVhYiMzMTMjJyeHMmTMCjjsJBAKBQCAQCITmIJoSBALhk6G8vByJiYno2rUrXF1dsXr16vbOEkEMZWVliIyMhLy8PCwtLbFy5UoikCAQCAQCgUAgtBiiKUEgEAgEAoFAIBAIBAKhXZBp7wwQCAQCgUAgEAgEAoFA+N+ECCUIBAKBQCAQCAQCgUAgtAtEKEEgEAgEAoFAIBAIBAKhXSBCCQKBQCAQCAQCgUAgEAjtAhFKEAgEAoFAIBAIBAKBQGgXiFCCQCAQCAQCgUAgEAgEQrtAhBIEAoFAIBAIBAKBQCAQ2gUilCAQCAQCgUAgEAgEAoHQLvw/eJh9b9OJAqgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "fig, axes = plt.subplots(8, 2, figsize=(11, 28), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "\n", + "freq = scipy.fft.rfftfreq(lc_ar4.n, d=lc_ar4.dt)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + "\n", + " w, h = signal.freqz(taper, fs=1, worN=np.linspace(0, 0.01, 200))\n", + " h = np.multiply(h, np.conj(h))\n", + " axes_rows[0].plot(w, h, color=palette[idx])\n", + " axes_rows[0].axvline(x=NW/N, color=\"black\", linewidth=0.6, label=\"Frequency\\nW=4/N\")\n", + " axes_rows[0].set(\n", + " ylabel=f\"K = {idx} \\nPower\",\n", + " xlabel=\"Frequency\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[0].legend()\n", + " \n", + " fft_tapered_data = scipy.fft.rfft(tapered_data)\n", + " psd_tapered_data = np.multiply(fft_tapered_data, np.conj(fft_tapered_data))\n", + " axes_rows[1].plot(freq, psd_tapered_data, color=palette[idx], label=f\"K={idx} eigenspectrum\")\n", + " axes_rows[1].plot(freq_analytical, psd_analytical, color=\"black\", alpha=0.56, label=\"True S(f)\")\n", + " axes_rows[1].set(\n", + " xlabel=\"Frequency\",\n", + " ylabel=\"Power\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[1].legend()\n", + " \n", + " idx += 1\n", + "# fig.suptitle(\"Left: DPSS taper spectral windows \\n Right: Eigenspectra for AR(4) time series with given K\", y=1)\n", + "axes[0][0].set_title(\"DPSS taper spectral windows\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Eigenspectra for AR(4) tapered time series\", fontsize=18, pad=15)\n", + "\n", + "text=\"Note the marked increase in bias in the eigenspectra as K increases.\\n\\\n", + "The left-hand plots show the low frequency portion of the spectral windows (of DPSS tapers)\\n\\\n", + "K = 0 to 7. The thin vertical line in each plot indicates the location of the frequency\\n\\\n", + "W = 1/256 = 0.003906 = 4/N. Note that, as K increases, the level of the sidelobes of\\n\\\n", + "spectral windows (of DPSS tapers) also increases until at K = 7 the main sidelobe level\\n\\\n", + "is just barely below the lowest lobe in [-W, W].\"\n", + "fig.text(0.5, -0.06, text, ha=\"center\", fontsize=18)\n", + "fig.tight_layout()\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "1948275f", + "metadata": {}, + "source": [ + "### Summary of Multitaper Spectral Estimation\n", + "We assume that $ X_1, X_2, ..., X_N $ is a sample of length $N$ from a zero\n", + "mean real-valued stationary process $ \\{X_t\\} $ with unknown sdf $ S(\\cdot) $ defined over the interval $[-f_{(N)}, f_{(N)}]$, where $f_{(N)} \\equiv 1/(2\\Delta t)$ is the Nyquist frequency and $\\Delta t$ is the sampling interval between observations. (If $\\{X_t\\}$ has an unknown mean, we need to replace $X_t$ with $X_t' \\equiv X_t - \\bar{X_t}$\n", + "in all computational formulae, where $\\bar{X_t} = \\sum^N_{t=1}X_t/N$ is the sample mean.) \n", + "\n", + "- __Simple multitaper spectral estimator__ $\\hat{S}^{mt}(\\cdot)$ \n", + "\n", + "This estimator is defined as the average of K\n", + "eigenspectra $\\hat{S}^{mt}_k(\\cdot),k = 0, ..., K - 1$, the $k^{th}$ of which is a direct spectral estimator employing a dpss data taper $\\{h_{t,k}\\}$ with\n", + "parameter $W$. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in\n", + "distribution to $S(f)_{\\chi^2_{2K}}/2K$ \n", + "\n", + "- __Adaptive multitaper spectral estimator__ $\\hat{S}^{amt}(\\cdot)$ \n", + "\n", + "This estimator uses the same eigenspectra as $\\hat{S}^{mt}(\\cdot)$, but it now adaptively weights the $\\hat{S}^{mt}(\\cdot)$ terms. The weight for\n", + "the $k^{th}$ eigenspectrum is proportional to $b^2_k(f)\\lambda_k$, where $\\lambda_k$ is the eigenvalue corresponding to the eigenvector with elements $\\{h_{t,k}\\}$, while $b_k(f)$ is given by \n", + "\n", + "\n", + "
\n", + " $\\large{b_k(f) = \\frac {S(f)} {\\lambda_k S(f) + (1-\\lambda_k)\\sigma^2\\Delta t}}$\n", + "
\n", + " \n", + "The $b_k(f)$ term depends on the unknown sdf $S(f)$, but it is estimated using an iterative scheme. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in distribution to $S(f)_{\\chi^2_\\nu}/\\nu$." + ] + }, + { + "cell_type": "markdown", + "id": "83e9db1b", + "metadata": {}, + "source": [ + "This summary, by no means, is an exhaustive explanation of the multitapering concept. Further exploration of the topic is highly encouraged. Use the references as the starting point." + ] + }, + { + "cell_type": "markdown", + "id": "be873c7c-f961-435d-a490-9311a917eb4b", + "metadata": {}, + "source": [ + "## Creating a `Multitaper` object" + ] + }, + { + "cell_type": "markdown", + "id": "be421421", + "metadata": {}, + "source": [ + "Pass the `Lightcurve` object to the `Multitaper` constructor\n", + "### Other (optional) parameters that can be set at instantiation are:\n", + "(Given here for completness, feel free to skip as they are later showcased)\n", + "\n", + "`norm`: {`leahy` | `frac` | `abs` | `none` }, optional, default ``frac`` \n", + " The normaliation of the power spectrum to be used. Options are\n", + " ``leahy``, ``frac``, ``abs`` and ``none``, default is ``frac``. \n", + " \n", + "`NW`: float, optional, default ``4`` \n", + " The normalized half-bandwidth of the data tapers, indicating a\n", + " multiple of the fundamental frequency of the DFT (Fs/N).\n", + " Common choices are n/2, for n >= 4.\n", + " \n", + "`adaptive`: boolean, optional, default ``False`` \n", + " Use an adaptive weighting routine to combine the PSD estimates of\n", + " different tapers. \n", + " \n", + "`jackknife`: boolean, optional, default ``True`` \n", + " Use the jackknife method to make an estimate of the PSD variance\n", + " at each point. \n", + " \n", + "`low_bias`: boolean, optional, default ``True`` \n", + " Rather than use 2NW tapers, only use the tapers that have better than\n", + " 90% spectral concentration within the bandwidth (still using\n", + " a maximum of 2NW tapers) \n", + " \n", + "`lombscargle`: boolean, optional, default ``False`` \n", + " Whether to use the Lomb (1976) Scargle (1982) periodogram when\n", + " calculating the Multitaper spectral estimate. Highly recommended for\n", + " unevenly sampled time-series. Adaptive weighting and jack-knife\n", + " estimated variance are yet not supported. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bf507678", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "print(mtp)" + ] + }, + { + "cell_type": "markdown", + "id": "7e7342a5", + "metadata": {}, + "source": [ + "### The results" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "041fb778", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3hUZdrH8e+cKZlMekLvPfQiTQFFUSxgBRuKFdeOrmUtu+6+uvZ1Lauuupa194K6gtgLKioIiPTeQkvv08/7xyQDMYWUmTR+n+vyksyc85x7wsmQe+7nuR+LaZomIiIiIiIiIg1gNHUAIiIiIiIi0vIpuRQREREREZEGU3IpIiIiIiIiDabkUkRERERERBpMyaWIiIiIiIg0mJJLERERERERaTAllyIiIiIiItJgSi5FRERERESkwZRciohIq2CaJpMmTSI9PZ2tW7dWev6nn34iPT09/N+oUaM444wz+Pzzz6scb8WKFYwePZqioqIqn7/yyitJT0/nlVdeqfD4pZdeyr///e9axZyRkcGf/vQnjjzySIYMGcLEiRO54oorWLRoUa3Oj7TvvvuOF154oUmuLSIiLZ+SSxERaRWWLl1KRkYGAHPnzq32uH/+85+8+eabPPjggyQnJ3P11VdXmcw98sgjnH322cTHx1d67rvvvuPXX3+tcvxLL72UF154gYKCghrjzc/P56yzzmLDhg1cf/31PPPMM1xzzTUYhsHSpUtrPDdavv/+e1566aUmubaIiLR8tqYOQEREJBLmzp2Ly+Wib9++zJ07lyuvvLLK49LT0+nXrx8AY8aM4cgjj+TDDz9k9OjR4WO2bNnCggULuO222yqd7/P5uPvuu/njH/9Y5fOjRo0iOTmZDz74gPPOO6/aeD/55BOysrL44IMPSEtLCz8+ffp0TNOs9etuCoFAgEAggMPhaOpQRESkGVHlUkREWrxAIMD8+fOZNGkS06dPZ8OGDaxZs+aA58XGxtKtWzd27dpV4fE5c+aQnp5Ojx49Kp3z0ksv4XQ6mT59erXjHnvssbz//vs1XrugoAC73U5SUlKl5ywWS/jPt9xyC9OmTePzzz/n+OOPZ8iQIcyYMYMNGzZUOCcYDPL0008zefJkBg8ezHHHHcecOXMqjf3ZZ59x+umnM3ToUMaOHcsf/vAHMjIyeOyxx/jvf/9LRkZGeOrwLbfcUimGqVOnMnToUJYvX85jjz3G2LFjK13j99OFJ02axP3338/TTz/NhAkTGDlyJPfddx+mafLNN98wdepURowYwZVXXkl+fn6N3zcREWm+VLkUEZEW78cffyQrK4spU6YwcuRI7rzzTubOnUv//v1rPC8YDLJ7924GDRpUabwRI0ZUOj4zM5MnnniCp556CsOo/vPZESNG8Nxzz5Gfn19l8ggwaNAgvF4vN910ExdffDEDBw6sdsydO3dy7733cu211+J0OnnssceYNWsWn376KTExMQDceeedvP/++1x55ZUMGjSI77//nj//+c8kJydz1FFHAfD+++9z8803M3XqVK688kpM0+THH38kJyeHM844gy1btvDTTz/x+OOPA5CamhqOISMjgwceeIArr7ySNm3a0KVLlxq+s5XNnTuXoUOHcs8997By5UoeeeQRgsEgixcv5tprr8XtdnPnnXfy4IMP8ve//71OY4uISPOg5FJERFq8jz76iMTERA4//HAcDgfjxo1j7ty5XH/99RWqgBBKKP1+PwUFBTzzzDOUlpZy/vnnh583TZNVq1Zx8sknV7rOAw88wIQJEypMoa1K//79MU2TFStWMH78+CqPOeyww7jwwgt58cUXmTt3LnFxcYwfP54ZM2Ywbty4Csfm5ubyxBNPcMghhwChxHTy5Mm89957zJgxg61bt/L6669z7733ctpppwEwbtw4MjMzefzxxznqqKMIBoM8+OCDTJ48mYceeig89tFHHx3+c7t27XA4HAwfPrxSvHl5ebzwwgsMGDCgxtdenZiYGP71r39htVo54ogj+OKLL3jllVf45JNP6Nq1KwBr1qzh/fffV3IpItJCaVqsiIi0aF6vl88//5xjjjkmvAZw6tSpZGRksGzZskrHn3LKKQwaNIjDDjuMF154gfvuu49evXqFn8/Pz8fr9ZKSklLhvKVLl/LJJ59w0003HTCm8nMzMzNrPO7WW28NjzlmzBgWLFjAxRdfzOuvv17huLS0tHBiCdC5c2cGDRrE8uXLAVi4cCGGYTB58mT8fn/4v8MOO4w1a9YQCATYvHkze/fuZdq0aQeMvyrt27evd2IJofWtVqs1/HX37t3p3LlzOLEsfywnJwev11vv64iISNNR5VJERFq0b7/9loKCAiZOnBju0Dp27FgcDgdz586tNL314YcfpmvXruzatYtHHnmEW2+9lSFDhtC+fXsAPB4PQKVmNffccw9nnXUWCQkJFTrBut1uCgsLSUhICD9Wfm5tkqTu3bsza9YsZs2aRU5ODrNmzeLhhx/m7LPPDldd92/4Uy4tLS2cvObm5hIIBBg5cmSV18jMzCQ3NxeAtm3bHjCmqrRp06Ze55VLTEys8LXdbq/wPSt/zDRNfD6fmgWJiLRASi5FRKRF++ijjwC49tprKz338ccfc+utt1aomPXp04d+/foxZMgQ+vfvz5QpU3jiiSe44447gH1Vx99vJbJ582aWL1/Oiy++WOHxBx54gIceeohVq1aFHyssLASodr1ldVJTU5k2bRp33XUX2dnZ4YQuOzu70rHZ2dn06dMnfB2bzcbrr79eaRpw+bjFxcXAgaupdRETE4PP56vwmBryiIgcvJRciohIi1VcXMzXX3/NiSeeyJlnnlnhudWrV3Pvvffy008/VVrDWK5bt26cccYZvPvuu1xzzTWkpaXhcDjo1KkTO3bsqHDsU089RSAQqPDY+eefz3nnncexxx5b4fHyc6vqNlsuJyenQsOcclu3bsXhcFSo6mVnZ7NkyZLw1NidO3eyatWq8BTXQw89lEAgQGFhYbVrPHv27En79u15//33mTRpUpXH2O32cOW2Ntq3b09xcTF79uwJV36///77Wp8vIiKti5JLERFpsb744otwQ55hw4ZVeO6QQw7hySef5KOPPqo2uQS45JJLePvtt3n55Zf54x//GD535cqVFY4bNWpUlef36NGDMWPGVHhsxYoVJCQk0Ldv32qvO2fOHP73v/9x6qmnkp6ejt/vZ+HChbz22mvMmDEj3AUWQtXUm266Kdwt9tFHHw1XOQF69erF2WefzfXXX8+sWbMYMmQIHo+H9evXs2XLFu6++24Mw+BPf/oTN954IzfccAMnnngiFouFH3/8kalTpzJkyBB69epFVlYW7733Hn379iUlJaXGrrCHH344TqeTP//5z1x00UXs2LGDN954o9rjRUSkdVNyKSIiLdbcuXPp0aNHpcQSQlW4E044gblz53L77bdXO0bnzp056aSTeP3117n00ktxuVxMnjyZW2+9FbfbjdPprHNcCxYsYPLkyTVuVzJx4kR27NjBW2+9xa5du7BarXTr1o3bbrutUhW2U6dOXH755Tz44INkZGQwePBgHnzwwQoJ6P/93//Ro0cP3n77bR599FHi4+Pp06cPp59+eviYk046iZiYGJ566imuueYaXC4Xw4YNC1dQTzjhBH766SceeOABcnJyOO2007jvvvuqfQ2pqak8+uij/OMf/+Cqq65i0KBBPPjgg0yZMqXO3zMREWn5LKZpmk0dhIiISHPi9XqZOHEif/vb3zjhhBPqdG5hYSHjxo3j+eefr7baWRe33HIL69at47333mvwWCIiItGkrUhERER+x+FwMGvWLF566aU6n/v6668zfPjwiCSWIiIiLYmmxYqIiFRh5syZVW4zciDx8fH85S9/iWJkIiIizZOmxYqIiIiIiEiDaVqsiIiIiIiINJiSSxEREREREWkwJZciIiIiIiLSYGroU0vBoEkgEGzqMCqx2Qz8/uYXl7QOur8kmnR/SbTpHpNo0v0l0dQc7y+r1cAwLDUeo+SylgKBIHl5JU0dRgWGYSEtLZ6CglKCQfVlksjS/SXRpPtLok33mEST7i+JpuZ6fyUnuzAMa43HaFqsiIiIiIiINJiSSxEREREREWmwVj8tdtCgQfTp0weAwYMHc/fddzdxRCIiIiIiIq1Pq08uk5OT+eCDD5o6DBERERFpJUzTxOfz4ff7m9WaOGkdDMOC1+tt1PvLYgHDsGKx1Nyw50BafXIpIiIiIhIJpmlSVJRPcXEBe/ZYCAabVzdPaT2ysowmuL8sxMUlEh+fVO8ks1knl4sWLeK5555jxYoVZGZm8tRTT3HUUUdVOObVV1/lueeeIzMzkwEDBnDbbbcxdOjQ8PP5+fmcdtppOJ1OrrvuOsaMGdPYL0NEREREWoHyxDIxMRWXKxa/X1VLiQ6bzdLI95eJ1+uhoCAHgISE5HqN0qyTy5KSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NRWAL774gvbt27NhwwYuvfRSPvzwQ+Lj4+sVz4H2dWls5fE0t7ikddD9JdGk+0uiTfeYRJppmvsllvHYbAagyqVER1PcXzabHYCCghwSE5PrVb1s1snlxIkTmThxYrXPP//885x11llMnz4dgDvuuIOvv/6aOXPmMGvWLADat28PQJ8+fejXrx+bN29myJAhdY7FZjNIS6tfUhptKSlxTR2CtGK6vySadH9JtOkek0jx+Xzs2WPB5Yot+8Wf8P9FoqEp7i+XK5aiIgtJSU7sdnudz2/WyWVNvF4vK1eu5Iorrgg/ZhgG48aNY9myZUBoSmxsbCwOh4M9e/awbt06unbtWq/r+f1BCgpKIxF6xBiGhZSUOHJzi7WYXCJO95dEk+4viTbdYxJpoeYqwbKpikFsNgO/X5VLiY6mur/8fpNgMEhOTjE2W8VUMTExFrvdWuP5LTa5zM3NJRAI0KZNmwqPp6WlsXXrVgA2btzI3/72NwzDwDAM/vznP5OcnFzvazbXf5yCQbPZxiYtn+4viSbdXxJtusckUnQfycGkvu+dLTa5rI5pmuH5wYcccggfffRRE0ckIiIiIiLS+rXYieIpKSlYrVaysrIqPJ6Tk1OpmikiIiIiIg23ZMliJkwYRUlJSY3HnX76Sbz77puNFFXz9dxz/2HWrPOaOoxG02KTS4fDwaBBg/jhhx/CjwWDQRYuXMjw4cObLjARERERkWbi7rtvZ8KEUTz88D8qPXfHHbcxYcIoHn/8kXqPP2/e/5g69ehKjz/zzEtMnXpK+OsJE0bx/fcL6n2dlqCq1zhjxnk89NBjUb/21Vdf2qC/x0hp1sllcXExq1evZvXq1QDs2LGD1atXk5mZCcBFF13EG2+8wZw5c9i4cSO33347breb0047rSnDFhERERFpNtq1a89nn32C1+sNP1ZcXMSCBV/Trl37qFwzJSUFp9MZlbEbyufzNdq1XC4XSUnJjXa9ptas11yuWLGC888/P/z1XXfdBcDVV1/N7NmzmTJlCjk5OTz66KNkZmYyYMAAnn322fAelyIiIiIiB7uBAwexefMmvvvuWyZNOgaAzz//lH79+mMYFWtNEyaM4v77H2b8+MOB0L7zxx57BI8++hSHHDKqwrFLlizmnnvuCJ8HcNFFf2DWrMs4/fSTmDFjJtOnn8Xpp58EwM03XwdAhw4deeed/7F9+zYef/xhVq1aidvtplev3lx55bUMGza8Qjw33ngr33zzJb/+uox27dpx7bU3cNhhE8LHbNq0gccf/xfLly8lLi6Oww6bwNVXXxfe2/7qqy+lT59+gMmnn85n0KDBPPDAv6r8Xn344Rxef/1l9uzZTadOnZkx4zymTj0ZCCWljz76EN988yVFRYWkpbXlrLNmcPrpZ1f7Gp977j/88MN3PPfcy0CoklxaWkLv3n159903CQSCnHfeRZx++ln861//5LPPPiEpKYkbbriJQw8NvUa/388//nE3S5YsJicnh44dO3LWWedy8smnhcdctmwJy5Yt4Y03XgHg7bc/pGPHTgf83kRas04ux44dy9q1a2s8ZubMmcycObORIhIRERER2WfOq7tZ81txo12v/5A4Tju3Q53PmzLlJObN+zCcXM6b9z9OOulU5s+fW+9YhgwZxjXX3MALLzzLyy+H1lfGxroqHffMMy9x0kmT+etf/86oUWMwjNB2FiUlJYwbdziXXXYVNpudDz54j5tuupY33/ygwg4Pzz77FFdeeQ3XXfcnPvzwff7yl5t4/fX3aN++A4WFhVxzzRWceup0/vjHGygpKeWxxx7i7rtv5957/xkeY+7cDzn99LN46qn/Vvt6Pv30Y55//hmuu+4m+vTpy+rVq7j//rtITEzk8MOP5O233+D777/lzjvvp3379uzcmUFBQX6Nr7EqP//8E23atOOJJ55l0aKfefjhf7B48c+MHz+B5557mXfffZM77vgr7747F5fLRSAQoH37Dtx11/0kJiaxdOkvPPjgfXTo0JExYw7l2mtvZPv2bfTp04+LLroEgOTklFp/byKpWSeXIiIiIiLScMcfP5XnnvsPWVmZFBcXs2nTBiZNOqZByaXdbic+Ph6LBdLSqm+omZKSAkB8fEKF49LT+5Oe3j/89ezZ1/HNN1/y008/cNxxU8KPH3PMcUyZEqoMXn31H/n554W8//67XHbZVbz77psMGDCQSy65PHz8TTf9hXPPPZ3c3BxSUkIzGrt378Fll11V4+t57rn/MHv29RxxxJEAdOrUmXXr1vDBB+9x+OFHsnfvbrp27cbQocOwWCx06NDxgK+xKsnJyVxzzfUYhkG3bj149dUXiYlxMH36WQBceOEfeOedN1m/fh3Dhg0nJiaGWbMuC5/fqVNnli1bwpdffsaYMYcSHx+PzWbD6XRWuHZtvzeRpORSRERERKSe6lNFbAppaW0YNWosH388l8LCAiZOnITLFdekMZWUlPDcc/9h4cLvyMnJJhAI4PF42LNnd4XjBg4cXOHrQYOGsGXLZgA2bFjPokU/MXny4ZXGz8jYEU6g+vcfUGMspaWlZGTs4O67/497770j/Ljf7w8nkccfP5U//vEqzjlnOoceOp4JE45g5MjRdX7dvXr1rjAdOTk5hR49eu33dTJWq5W8vJzwY++++xZz537Inj278Hq9+Hw+RowYWeN1avu9iSQllyIiIiIiB4GpU0/iqacep6SkhP/7v7uqPMZisWCaZvhrv98ftXj+/e9H+OWXRVx55bV07tyFmJgYbrzx2koNd8q2sK8UJ4SSwsMPP7LKqmTbtm3Df3Y6Y2uMpbQ0tLXKn//8f6SnV0xEbbZQytS//0DefvtDfvzxexYt+olbbrmBY445lptvvu3AL7aK8fZ/Lb9/DEI7YQB8/vknPPHEv5g9+3oGDhyEyxXH888/zZ49ew7wmmr3vYkkJZciIiIiIgeB8eOP4IEH7iU21lVt1Ss5OYWcnOzw1xs2rKtxTJvNTiAQPOC1bTYbwWCgwmO//fYrU6eeHJ6GWlBQQGZm5YRp5coVTJ58fPjrVatWMG5cqBrXr186CxZ8Q8eOnbBaq1/neCCpqWm0adOWnTszOProY6s9LiEhgcmTj2fy5OMZO/Yw/v73v/KnP/0ZwzCqfI2R8NtvvzJs2AhOPXV6+LHt27fjcDjCX9vt9krXjtT3pi6a9VYkIiIiIiISGTabjTffnMOLL74Wrvz93ogRI3n33bfYsGE9v/32K88880SNY3bs2JHi4iKWLFlMXl4ebre7yuM6dOjE4sU/k52dRUFBAQBdunTj66+/ZP36daxbt4bbb/9LlY1wvvjiUz7++CO2bdvKE0/8i23btnLKKaFEa9q0M8jNzebvf7+NNWtWkZGxg4ULv+P++++uy7cGgAsvnMVLL/2Xd999k23btrJhw3o++OA95sx5B4A333yVL774lG3btrB16xa+/fZrunbtFp7iWtVrjIQuXbqxatUKFi36kW3btvLvf/8rPC24XIcOnVi5cgW7d+8iLy+PYDAY0e9NbalyKSJSZtcON78tKSIny4sZBNOE7r1jGT8ppalDExERiYi4uJq3oLj66j9y9913cPnlF9GpU2dmz76O6667utrjhwwZximnTOOvf72Z/Pz88FYkVY37+OMP8/7779K2bTveeed/zJ59HffcE7pWSkoqF1wwi/z8vErnzpp1KfPnz+OBB+6hbdt23Hnn/XToEFrr2rZtO5544jmeeuox/vjHK/H5fHTs2JnDD59Yt28McOqpp+N0xvL666/w+OOP4HK56NOnH+ecE9oa0emM5eWXXyAjYztWq5WBA4dw113/qPE1RsIpp0xj3bo1/PWvt2AYVo499gSmTj2Z9ev37aoxY8ZM7r77ds4993Q8Hk94K5JIfW9qy2LuP6laquXzBcjLK2nqMCowDAtpafFkZxcRDOqvUSLrYLu/Vi8v4s3/7qryuatu7U7b9o4qn5P6OdjuL2l8usck0vx+P1lZGbRp0xmbzYbNZuD3H3g6qDTM7/fdPFg01f31+/t8f8nJLuz2mqfXqnIpIgc90zT5en5ofcmRx6fSd2AchmFh5dJCvvsil58X5DH19HZNHKWIiIhI86Y1lyJy0Nu0roQ9O7107BrDxONS6dzNSccuMYyblILNbmHZzwWUlkR+gb6IiIhIa6LkUkQOej98lQfA+EkpFRocuOKsDB2VgM9rsurXoiaKTkRE5OD13XeLD7opsS2ZkksROai53QE2rSshLt7KgKGVmxz06B3aFysny1fpORERERHZR8mliESd2x1otk0Ptm4sxQxCr3QXVmvltuyJyaGl6QV50dtEWkRERKQ1UHIpIlGVnenlX3du4dWndzZ1KFXatLYUgF79Yqt8XsmliIiISO0ouRSRqPF5g7z1/C5Ki4NsXl/aLJvibFoX2mKoZz9Xlc8nJIaSy8J8JZciIiIiNVFyKSJRUVoS4LVndrJnpxcsgAlbNpQ2dVgVFOb7ydztJa2tneQUe5XH2B0GsXEGBfl+tC2wiIiISPWUXIpIxG3dVMrTD21n8/pS2ndycOzJbQDYvL6kiSOrqDyeXulVVy3LJSbZ8PtMSkua57pRERERkeZAyaWIRIzXE2Teu3t5/rEd5Gb5GDA0jouv7cqgEaEurJvXN6/KZfmU2F7VTIktp3WXIiIijeOKKy7mm2++DH+9fv06Zs06j6OOOowLLzyHgoJ8Tj75ODIz9zZhlFIdW1MHICKtg2mavPREBju2unG6DE6Y1pahIxOwWCzExBiktbWTudtLYYE/vI6xqePdtK4UiwV69Km6mU+5xKSy5DLfT4fOMY0RnoiISINNmDCqxucvuugPzJp1WaPEsmbNap599knWrFlFaWkpbdq0ZfDgodxyy1+x20NLUxYs+Jri4mKOOOKo8HlPPvkY7dq15+67HyA21kliYhInnHAizz33H2655a+NErvUXtP/hicirUJpSZAdW90kpdi45LqulRLIXukusjPzmfvOXk4/vyM2W+VtPxpT9l4fBXl+OnWLIdZlrfFYVS5FRKQl+uCD+eE/z5v3P+bMeYdnnnkx/Fhs7L6ZO6ZpEggEsNkinx7k5uZw3XVXccQRR/Lww0/gcrnIyNjBV199QTAYAELJ5TvvvMUJJ5yExbLvd4SMjO2cccbZdOjQIfzY1KknceGF53LVVX8kISEh4vFK/WlarIhERG62D4AOnWOqrEwePjmV1DZ21iwv5uN3m34qS22nxIKSSxERaZnS0tqE/3O5XBiGEf5669YtHHvsEfz44w9cdNE5HHnkoaxfv5a7776d2267qcI4t912E3fffXv4a4/Hw2OPPcwppxzP5MmHc8UVF7NixW/VxvHbb8vxeNzcdNNf6Nu3H507d2HMmEO5+ea/EBPjBCA3N5clSxYxfvzh4fMmTBhFRsYOHnnkn0yYMIrnnvsPAN269aBdu3Z89903EfxuSSSocikiEVGeXKakVd11NTHJxoVXd+HRu7ewclkRJ57ZrsInk41t0/raJ5cJSUouRUSkagmzL8fx8dxGu573hKkUPvZUxMb7z38e5+qrr6N9+w4kJSXX6pxHHnmArVu3cOed95GW1obPPpvPddddxWuvvUPbtu0qHZ+amorX6+W7777liCOOrPLf/+XLl+FyuejatVv4sQ8+mM8f/nABp512OlOmnFSh0pqePoBff13KCSecWPcXLVGj5FJEIuJAySWEKoAdOsWwY6ubnCwfaW0djRVeJbszPAB07eE84LHllUvtdSkiIq3NH/5wJSNHjq718bt37y6bYjuP1NQ0AC688BJ++OE7Pv30Y84994JK5wwePJRzzjmfv/3tFhISEhg4cAijR4/l+OOnhqe17tmzi9TUtAqJZ1paGwzDwOVykZbWpsKYbdq0YePGDfV5yRJFSi5FJCLyapFcAnTqFkoud27zhJPLYNDEMBq3iukuDeKIsWB3HHh1QHharJJLERH5nUhWEZtC//4D6nT8pk0bCAQCnHXWqRUe93q99OnTt9rzrrzyGmbMmMnixT+zcuVvvPrqi7z66os8++xLtGnTFo/Hg8NR+6Z5DkcMHo+7TrFL9Cm5FJGIKK9cJqfV/LbSuZsTyCdjm5shIxP46ds8vpyXzUWzuzRaJ9Zg0MRTGgxPdz0Qp9OKI8aiabEiItLqOJ0VO6ZbLBZM06zwmN+/79+/0tISbDYb//3vq5Wmt8bFxdV4rZSUVCZPPp7Jk4/nkkuu4OyzT+P999/lkksuJykpmcLCglrHXVhYQHJySq2Pl8ahhj4iEhG5OaF/eJJTD1S5DE1D3bk99GnjupXFeNxBFnyWE90A9+P1BjFNiHHW/i3QFW/F4w7i95sHPlhERKSFSk5OIScnO/x1MBhk06aN4a/79u2H3+8nPz+PLl26VvgvJSW11teJj48nLS2N0tLQHtj9+qWTlZVJcXFRrc7fsmUzffum1/p60jiUXIpIgwWDJvk5PuITrTgOMM00ra2dGKfBrh0eAgGTzD1eAFb9WsR3X+Qw7929eL3BBscUCJgs/DqX7ExvpefcpaHxnbG1fwuMiwttV1JSHGhwbCIiIs3ViBEjWblyBZ9//gnbtm3l0UcfJD8/L/x8t249OProyfz973/l22+/ZufODFauXMHzzz/D0qW/VDnm998v4M47/8bChd+zY8d2Nm/exJNPPsbmzZvC3WH79k0nMTGJ335bfsAYPR4Pa9euZsyYQyPymiVyNC1WRBqsIM9PMHjg9ZYAhmGhY9cYtqwvJWOrOzzV1DTh8/+FPilt1zGGUeOSGhTTiqWFfPJ+Fgs+y+W8KzrTscu+Kbf1SS5d8WXJZVGAxFpOpxUREWlpDjtsPOeeewGPPPJPTDPIGWfMYPTosRWOue22v/P888/w6KMPkpWVSUpKKoMHD+WYY46rcswePXricDj4178eZO/ePTidTrp378Fdd/2DQw4ZBYDVamXKlBP57LP5HHrouBpj/P77BbRr157Bg4dG5kVLxOg3JBFpsPB6ywNMiS3XpZuTLetL+WVhPgDdejkpyPNjtVrIzvSxYmlhg5PLNctD02pKigO88lQGf/y/HtjtoWTSE04urbUeL64suSwuUuVSRERanunTz2L69LPCXx9yyCi++25xlcdedtlVXHbZVdWOZbfbufTSK7n00itrde3Onbtw8823HfC4M888lwsuOIvMzL3hLU3eeed/lY57++3XueCCS2p1bWlcmhYrIg2WVTa1tTaVS4Ce/ULNA1YsCSWA3XvHcu1fe3DVrd1JSLKyZUNpg7b98HmDbFhTgiPGQuduMRQXBcjL2TeeuzSUINatchn6LK5EyaWIiEhUtGnThptuuo09e3ZXe0xBQT4TJhzB5MlVV0mlaSm5FJEGWb64gPnvZwHQuVvtur127RmL1WohEAg1x2nb3oHFYsEwLAwangBmaA1mfW1cV4LPa9J3QBxtO4Riys/1hZ+v15pLVS5FRESibuLEo2qc7pqYmMS5515QqVOtNA9KLkWk3kzT5KO3MwkGTY47tQ39BtXcgrycw2HQtZcz/HV5Aggw+JDQZsqLf8gPJ591VT4ltv+QeJJSQhXH/Nz9K5d1nxbrUkMfERERkRopuRSRevN6TLyeIG3aOTjsyJQ6fYrYq68LAIsF2rTbN522c7cYuveOJXO3l2U/136/q3Ied5BVvxZhs1voO9AVTi7336OyPtNi4/Zr6CMiIiIilSm5FJF6K6/ilVf16qJ83WVKmh37ftuXWCwWjj2lDQBfzsvG66l5WxKPJ8irT2eEp9EuX1yA12MyeEQ8zljrfpXLhk2LLe8WW6zKpYjIQWnf56fa71has9D9Xd9Zx+oWKyL1Fk4u4+ueXHbu5mT0hCQ6d3NW+dyAYfGs/rWITetK6D8kvtpxtm4sZf2qEtavKuH6O3qy6PtQB9pR45MBSEoOVUUrTIt11yO5jFPlUkTkYGYYVgzDSl5eFgkJyYADv1+JpkSLpZHvL5NAwE9hYV74Xq8PJZciUm/liZYrrnKSZmzfhhkXh5maVuW5hmFh6untqh27T38Xq38tYvsWd43J5f7J3jMPbacw30/HLjHh5kKJ5ZXLvIatuVRDHxGRg5vFYiEtrSMFBTnk5u7FMAyCwZpn14jUV1PdXzExLlJS2tW7YZKSSxGpt+qmxboeuJe4B+4l0LUbuV8swExOqfPYXXuEKprbN5fWeNz+yV5hvp/EZBsnTGsbflN0OAxi4wwK8vyYponFYqnXmktHjAWrzaLKpYjIQcxqtZKS0haLxSQpKZacnGKCQVUvJbIMw0JKiovc3JJGu78sllBCa7E0bNWkkksRqbeqkktLVhauRx8CwLp9G65/3EPxPQ/Ueew27R3EOA12bvcQCJhYrVV/glZUGKpIHnVCKqltHQwYGofNVvGNMSnFzu4dHkqKA8TF2+q15tJisRAXb6Ug308waGIYaoEuInKwslgM7HY7NptNyaVEnGFYcDgc2GzeFnd/qaGPiNRbVWsunW+/gcXjwT3tDEybDeecd8Dvr26IahmGhS49nPh9JrszPNUeV1wYiqFbr1iGHJJQKbEESEquuB1JeXIZ46zbegJXvBVMKC1R9VJERETk95Rciki97VtzuS9Js3/7FQCll1yGd+JRGNnZ2L/7tl7j75sa6672mKKy5DI+ofqJGL/f69JdGsBmt2Cz1a36GBendZciIiIi1VFyKSL1VmlarN+P/acfMV0u/MNG4D1+KgCOb7+u1/hde4aSy28+zeaT9zMJBCpPDSkumxYbl1B9FTIpZV/HWNM08ZQG6zQltpxLe12KiIiIVEvJpYjUW0lxaHppeXJpW7UCo6gQ36ixYLfjm3A4APYfFtRr/O69Y+k70IW7JMjCr/PYvqVyBbOoMIBhhVhX9W9n5dNi83J8+LwmwWDdOsWWU8dYERERkeopuRSRevv9mkvryhUA+EccAkCgVx8C7Ttg+3UZlqLCOo9vsxmce2lnjjw+FYA9OyuuvQwGTUqKQk16amqZ3b5zaFuSjG3uejXzKafKpYiIiEj1lFyKSL2VFAWw2iw4HKHEzrZ6FQD+9P6hAywW/KPHYgkEsC3/td7XadcxlBzu3VUxuSwtCWCaEF/DlFiAtLZ2nK5Q59niotA02vokl6pcioiIiFRPyaWI1EswaFJSEsAVZw1XDW1rVwPgTx8QPs43PFTFtC1bWu9rte/kAGDvLi8Apmmy5Mf8cKOfmtZbQlnn2e5OAn6TLRtC+2bWq3JZNv23vGIrIiIiIvton0sRqRePO4gZBFfcviTNunYNpmEQ6Nsv/Jh/+AgAbMt+qfe1klPt2B0W9u7yYpomO7a4+fCNvcQ4Q9eOiz/w+smuPZxsWF3C+tUlgNZcioiIiESaKpciUi+/X29pKcjHujODQI+e4HSGj/MPGw6AvQGVS8Ow0LaDA487SH6en8w9oQqmxx1aP1nTNiTluvSIBWDT2lBymZJmr/C8ddMG4m+5AeuqldWOoTWXIiIiItVTciki9fL7PS6ta9cAENhvSiyAmZSMv1dvrFs2Y8nNqff12nUoW3e500v2Xl+F5w40LRagc/cYKOv506a9g9ETksLPWXKySZ5yDLH/fYbk06Zg2bOnyjFUuRQRERGpnpJLEamX3+9xaStLLv39+1c61l++7vLXZfW+3r51lx6yM70VnjtQQx8Ap9NKl25OrFYL089rj8Ox7+3P+fqrGDmhxNfIzcX53ttVjxFrYDG05lJERESkKkouRaRefp9cWteEOsUG+g+sdGz5ukv7siX1vl55x9jdOz1kZ/6+clm75eNnX9KRK2/pRscuzgqPO19/GYCCx54CIOaDd6s832Kx4IqzUlIUwDTNOsUvIiIi0topuRSReikpDq13LF+HGK5c9quhctmAdZedusZgscDWjaXkZPpwxVtp2yFUzUxIrF1znvgEG2ltHRUes2RmYlu3Fn/vPnjOnEGgS1fsS37Bkp9X5Rhx8VaCQcL7ZYqIiIhIiJJLEamXSmsuN28GINCrd6VjfYOHYlos2H6tf3IZ67LSqWsMhfkBAgGTtLZ2pkxvy1FT0sJJZn3YF/8cinHMoWCx4Bs9Bqg+EQ439dHUWBEREZEKlFyKSL1UmBbr9WLs2EagU2eIja18cHw8gX7pWDN2YMnMrPc1e6W7wn9Oa+ugZ18XE49NDe+zWR/2RT8B4B89NvT/ESMBsFUzhTcuTk19RERERKqi5FJE6mX/5NK6fSuWYDC0DUk1/EOHA2BfXv/qZa9++yWX7ew1HFl75cmlryy59I0YFXp8SdX7cmo7EhEREZGqKbkUkXrZt8+lgXVL2ZTYnr2qPb68qU9DOsZ27enE7ghVKX+/drJePB5sy5YQTE4m0LcfAIFBgwCwrl1d5SnajkRERESkakouRaRewmsuXVaMzZuAmpNL37CGN/Wx2Qx6p7uwWKBD54Ynl7bffsXi8eAbNQaM0NuhGZ9AoHOXUMLsdlc6R5VLERERkarVrn+/iMjvlBQHsDss2B0G1lokl/7BQzANo0FNfQBOPrs9udk+Uts0PLm0Lwo18ylfb1mufH2odeMGAoMGV3hOlUsRERGRqqlyKSJ1FgiYlJYG9+sUW5Zc9qg+ucTlIpDeH+uunVj27Kn3tV1xVjp3cx74wFqw//wjsG+9Zbny7VRs69ZUeX1Qt1gRERGR3zsoksvS0lKOOuoo/vnPfzZ1KCKtgrs0AOa+KaLlyWWwZ/UNfQD8w0LrLhvS1CdiTBPbop8wrVZ8ZR1iywX6pQNgXb+u0mmqXIqIiIhU7aBILp966imGDh3a1GGItBolRUGgrIoXCGDdtpVgm7aY8Qk1nucbNhxo2LrLSDG2bcW6dw/+wUMhLq7Cc+Vdb8sbFe1Pay5FREREqtbqk8stW7awadMmJk6c2NShiLQa+29DYmTswOLz1bjeslx55dK2fFk0w6uVfVNix1R6rsbkMs4KFlUuRURERH6vWSeXixYt4vLLL2fChAmkp6fz1VdfVTrm1VdfZdKkSQwZMoQzzzyT5cuXV3j+/vvv5/rrr2+skEVahdxsH888tI1N64uqfL7CHpe1aOZTzj9oCKbV2iwql+X7W/rHHFrpuWCnzph2e5XJpWFYcDgseL3BqMcoIiIi0pI0626xJSUlpKenM23aNGbPnl3p+Xnz5nHvvfdyxx13MGzYMF588UUuueQS5s+fT2pqKp9//jk9evSgZ8+eLF3a8F9mDcPS4DEiqTye5haXtHzrVxWzfYubzz/awxkXdqj0fGlJKLmMS7BiK0vAgr16H/hejHMR6D8A28oVWPfsxuzYMeKx15Z9cahTbGDsoZXjNmwEu3XHunEDRnERJFSc7mu3G3jcQf3sNYDevyTadI9JNOn+kmhqyfdXs04uJ06cWON01ueff56zzjqL6dOnA3DHHXfw9ddfM2fOHGbNmsWvv/7KvHnz+OSTTyguLsbv95OYmMill15a51hsNoO0tPh6v5ZoSkmJO/BBInXg9+YDsPq3QuLiemI1LLz76g7Wry4kJsZKatvQNiDt2rmIX7oDANfQgbhq8zMydgysXEHq5jUwuG/UXkONCgpg1Uro0oWUof2rPqZfX9i4gbT8vdCjYhIc47RSXBQgJSWuRb7xNyd6/5Jo0z0m0aT7S6KpJd5fzTq5rInX62XlypVcccUV4ccMw2DcuHEsW7YMgBtuuIEbbrgBgPfee49NmzbVK7EE8PuDFBSUNjjuSDIMCykpceTmFhMMmk0djrQie/eE7nWvJ8jP3+9l2c8FrF6+b4rs5g3FAJj48a5agwPIb9MRf3bV02j3F9N/CPFAyTffUzruqGiEf0D2r78mMRjEM2osRdXE7OrcjVigcNkKvF16V3jOGurpw57dhThimvXqgmZL718SbbrHJJp0f0k0Ndf7KzExFrvdWuMxLTa5zM3NJRAI0KZNmwqPp6WlsXXr1qhcszn95e4vGDSbbWzSMhXk+8N/fvuFXfj9Jqlt7Uw7twPPPrI9/JzTZWCUrbn0de+JWYv70HdIaNsP26Kfm+y+tf60r5lPdTEEunUHwLJpc6VjbI5QtdLjCWCzq3LZEHr/kmjTPSbRpPtLoqkl3l8tNrmsjmmaWCyVf9mbNm1aE0Qj0jIVliWXFgv4/SYdu8Qw4w+dSEyy0aFzDLszPAC4XBasWzYTTErGTEmt1dj+gYMJxsWH1jz6/WBr/LehfZ1ix1Z7TKBHqEFRVU197GUJpc/bst7wRURERKKpxc7nSklJwWq1kpWVVeHxnJycStVMEambogI/doeFk8/qxJgJSVw0uwuJSaEksHd/V/i4hKK9WEpLCfQ6cKfYMJsN/8jRWEqKsa38LdKhH1gggO2XxZguF/5BQ6o/rIbtSOz20Funz6fkUkRERKRci00uHQ4HgwYN4ocffgg/FgwGWbhwIcOHD2+6wERaOJ8vSGlJkIREG8ee1IETz2xfYV1hn/2Tyz1bAAj07P37YWq+xtjQ9h/lFcTGZF2zGqOoEN+IkWC3V3tcoHuP0PFVJZeO8sqltiMRERERKdesk8vi4mJWr17N6tWrAdixYwerV68mMzMTgIsuuog33niDOXPmsHHjRm6//XbcbjennXZaU4Yt0qIVFYS2GUlIqnq6ateesThjDRKSbNi3hhKvQK+6JpeHAWD7qfGTS/tPC0Mx1DAlFoDYWAIdOmJkbA9N391/DIcqlyIiIiK/16zXXK5YsYLzzz8//PVdd90FwNVXX83s2bOZMmUKOTk5PProo2RmZjJgwACeffZZUlNrt/ZLRCorLAglUgmJVXcDs9ksXHh1F7CA9ZmNQD2Sy0NGYVqtoUTPNEOLOxuJfeH3oRgOG3/AY4PdumPdvQsjYwfBskomEG7io8qliIiIyD7NOrkcO3Ysa9eurfGYmTNnMnPmzEaKSKT1KypPLqupXAJ06BwDgHVT/ZJL4uPxDxmKfdlSrJs2EOjdSPtdmib2hd9jWq34R4854OGB7j2w//wj1q1bKiSX5Q19/KpcioiIiIQ162mxItL4CvND02LjEw/82ZN1c1ly2bMODX3K+I4I7XFp/+brOp9bX9bNG7Hu3YN/2HDM+IQDHl++HYl1W8XtjcLTYtUtVkRERCRMyaWIVFA+LTaxhsolAMFgaBuSlJRab0OyP+8RRwLg+OarOp9bX/YfyqbEHnrgKbGwX1OfrVsqjlM+LdanabEiIiIi5ZRcikgF5Xtc1jQtFsDYtROL2133KbFlfGMOxXQ6sX+/oFLDnGgJr7ccV7vksnwqrLFtS8VxVLkUERERqUTJpYhUEO4WW01Dn3Lh9ZZ13IYkzOnEN/YwjIJ8bL8urd8YdWGa2L/7FtMw8I05tFanqHIpIiIiUntKLkUkLBg0yc32AQeuXNa7mc9+vBMnAeD4+st6j1Fb1jWrse7aiX/ESMzklFqdE+zQEdPhqGLNZXm3WFUuRURERMopuRSRsMXf55OT5aN9JwcxzprfHiKSXB49GQDHJ/PqPUZtOb78PHTNScfU/iTDINC1G0ZWFhQVhR+227XPpYiIiMjvKbkUEQDycnx89r8sDANOPac9lgPsPdmQTrHlAv0HEOjRE/uypRg7M+o9Tm3UK7kktNclVOwYu69yqWmxIiIiIuWUXIoIAJvXl+Lzmowcl0THLs4DHm/dvAloWOUSiwXP8VMBcMyPYvWyqAj7Tz8QTE3FP/yQOp1a1bpLW1nlUvtcioiIiOyj5FJEAPC4Q1W45FT7gQ8u34YkLQ0zKblB1/VOORGAmI8/atA4NXEs+AaL14t34lFgrblR0e8FuvUAwLpfx1hVLkVEREQqU3IpIgB4PaFE6UBrLQGMjB1YPJ76d4rdj2/0WIJpadi/X4AlJ7vB41Ul5n/vA+A94cQ6nxvoHpoWa+w/LVZrLkVEREQqUXIpIsC+ymVtkkvrhvUABHr3afiFrVY8J5+Gxe8n5v33Gj7e77ndOObPw3Q68RxzXJ1PD1YxLTZcuVRyKSIiIhKm5FJEgP2Sy5gDvy3Y1q8FwN83PSLXdp85AwDn269HZLz9Ob7+EqOoEO8xx0F8fJ3PD1TV0MeuabEiIiIiv6fkUkQA8NRhWqx1bSi5DPSLTHLpP2QU/l69sf+yGOvG9REZs1zMB6FqqOfkU+t1vpmcQjApOZRcmqFKpd2habEiIiIiv6fkUkSAfZVLRy0ql9b15cllv8hc3GLBU169fP3VyIwJWPLziJn3P0xXXL2mxJYLdOuOpaQES2YmoMqliIiISFWUXIoIULeGPrb1azEdjnAn1Uhwz5iJabPhfOUFKCmJyJgx77yJpbQU9/Qz6jUltty+dZebAbCVJZfaikRERERkHyWXIgLUvqGPJTsbIzs71MzHZovY9YMdO+E56RSMnByc777V8AFNk9iXngfAff5FDRrq9+suLRYLNrsFn1fJpYiIiEg5JZciAuyfXFpqPC7SzXz2V3rplQDEPvMkBBs25dT+00Jsq1fhGzYC/7ARDRorUE3HWJ9P02JFREREyim5FBEg1NDHarVgs9X8tmBdF9lmPvvzjxyNb/RYbGtWE/PhnAaN5XroHwCUXnJZg+Oqbq9Ln9fENFW9FBEREQEllyJSxuMO1q5T7ProJZcAxbf+FQDXfXeB31+vMWyLf8bx9ZcEuvfAM/3MBsdU016Xfr+SSxERERFQcikiQCBg4veZOA4wJRbAtnYNEJ1psQC+CUfgPeIobJs24nz5hboPYJrE3Xc3ACXX/Ski60IDXbphWiy/2+uybDsSrbsUERERAZRcigj7dYqt1TYk6zANI9TQJ0qK/3YHpmEQd9ftGLt21uncmPffxfHtV/j79MV9xtmRCSgmhmDHThgZO8DnA/ZVLrXuUkRERCREyaWI1LpTLEVFWDN2EOzWHZzOqMXjHzqc0suvxigsIP7Ga2vd3MeSm0P8bbeEQn3gEbDbIxZToFt3LMEgxo7twL69LrUdiYiIiEiIkksRqXVyaduwDgB/lNZb7q/4pj/j79WbmM8+wfXAvQc+we8n8Q8XYWTuxX32ufjGHx7ReILl25GUrbu0OzQtVkRERGR/Si5FBE8tp8WGO8VGab1lBS4XBS++TjAhkbgH78f53NPVHxsIEH/z9aHpsAMGUXjPAxEPJ7wdSdm6S1tZ5dLn1bRYEREREVByKSLsq1w6DlS5XL0KAH96/6jHBBBI70/BMy9gOhwk3Hoj8bfeiKWwoMIxxp7dJF54DrEvv0CwTVvyX3od4uMjH8vvK5flDX00LVZEREQEgIa3URSRFq/W02JXrQDAP2hI1GMq55t0DPlvf0DiBTOIfe5pYt5/F89xUwj06oN180acc97BUlKCv09f8l97J7xtSKQFuvcEwAhPi1VDHxEREZH9KbkUkVp3i7WuXIFps0Vtj8vq+A4bT+43PxJ3z9+Jeet1Yl97OfycGRNDyVXXUvLHGzCTkqMWQ6BXbwCsmzYCWnMpIiIi8ntKLkUOIsGgScBvhhOjcrWpXFoyM7Hu3YN/wECIiYlqnFUJduxE4WNPUXT73dgXfo+xZxfB9h3xjZ+AmZIa9eubbdsSjE/AtmkjmGa4W6zWXIqIiIiEKLkUOYi8/9oeViwpZNCIBI4+MY3klNBWHbVJLsNTYgcOjn6gNTDT0vCeeHLjX9hiIdC7D/Zfl4bWeSa7AMjN9jd+LCIiIiLNkJJLkYPI9i1ugkH47ZdC9uz0cOKZ7fj+i1xKigMAOGqYFmtb2TySy6YU6N0b+69LsW7cQNtOowDYu9vTxFGJiIiINA9KLkUOIkUFfmKcBp27O9m0toT//mtHhedrVbkcdBAnl736AGDduIF2h4wDIHOXtylDEhEREWk2tBWJyEHC4wni85okJFqZfl57EpNtYAGr1RI+psbkcmXjd4ptbgK99yWXzlgrick2crJ8WncpIiIigpJLkYNGcWFobWB8oo24eBuX3diVq27pTvrguPAx1XaL9XqxrltDsE0bzHbtGiPcZimcXG4OdYxt18GBaULWXlUvRURERJRcihwkigpD6yrjEqyh/8fbaNveQb9B+yWX1VQurRvWY/H58A8cAhZLlcccDMLbkWzcAEC7jg4A9u5WcikiIiKi5FLkIFFUEEou4xMqLrXuO/DAyaVt5W/Awb3eEsBMTCLYpi3WLZvB76ddx9CWLHu17lJEREREyaXIwaKofFpsWeWyXFy8lWGjE+ja01lDclneKXZQdINsAQK9+2Dx+TC2b9tXudyljrEiIiIi6hYrcpAoLpsWG59orfTcaed2qPFc22/LgYO7mU85f+8+2H9aiG3TBtoc3gMskLlHlUsRERERVS5FDhJFBaHKZVxCHT9TCgax/boUMzaWQP8BUYisZQlvR7JpIw6HQXyClYJcP8Gg2cSRiYiIiDQtJZciB4nyhj6/nxZ7IMbmTRgF+fgHDwWbJjvsvx0JQFKKnWBw35pWERERkYOVkkuRg8S+5LJuCaJt6RIAfMNHRDymlqhychn6fubn+posJhEREZHmQMmlyEGifJ/LuDpWLsuTS//wQyIeU0sU6NET02KpIrn0N2VYIiIiIk1OyaXIQcA0TYoKA8TGGVitddun0vZrWXI5YmQ0Qmt5nE6C3bpj3bEdiopISrYDkKfKpYiIiBzklFyKHAQ8niB+n1nnKbH4/diW/0owIZFAr97RCa4F8pc1NrKtX6vKpYiIiEgZJZciB4HyZjN1bebD6tVYSkrwDxsOht4uygX69QfAunYNyalKLkVERERAyaVIq2eaJhtWFwN1X2/J4sWA1lv+nj89lFza1q4hKSU0LVYNfURERORgp30FRFqxbZtL+erjbDavKwWg/+D4ug2waBEAvhFKLvcXKEsurevWEOsysDss5OepcikiIiIHNyWXIq1U5m4vLzy2g2AQ0traOemsdvTo46rbIGXJpX+YtiHZn79vOqbFgm3tGiwWC0nJNrL2+vC4g8Q4NSFEREREDk5KLkVaqa0bSwkG4ZDDEpl6ers6d4mlpASWLSPYpg3Brt2iE2RL5XIR7Nod67YtoY6xKXay9vrIz/XRrmNMU0cnIiIi0iT0EbtIK7VnlweA3umuuieWlO1v6ffjH3MoWOp+fmvn71+27nLDOnWMFREREUGVS5EWyeMJ8sOXuezd7SXWZTD19Hb4/SbrVxazd7eXIYcksHeXF4D29ayk2X9eCIBvzKERi7s1CaQPgE/nY12zmsTk7gBadykiIiIHNSWXIi1MTpaP15/dSeZub/ixEWMT+enbPFYsKQJgx1Y3e3d5sNospLSx1+s6tp9+BMB/6GEND7oV8vdLB8C2bi2Jx54IQGG+kksRERE5eGlarEgL8+Gbe8jc7aV3uovBI0LdX/Nz/ezZGUo2HTEGm9eVUFoSpG17R72mxBIMYlv0Mzid+IcOj2D0rUeg/wAArGtXk5AU+pxOyaWIiIgczJRcirQge3d52LK+lJQ0O+de1okuPZxAKLnMz/XhiDHoPyQO0wwd366jo17Xsa5bi5GfB6NHg6N+Y7R2/j79gNBel4llyWWBkksRERE5iCm5FGlBFn2fD8Co8UkYhoWklNCU1z07PXg9JsmpNtIHx4WPr29yaf85NCWW8eMbFnBrFhdHoFsPrNu2kmgPNU9S5VJEREQOZkouRVqIrD1efl1UiM1uYcTYRAASk0MVs22bSgFISrHRu78Lwxo6p77bYii5rJ3yjrHxW9ditVkozA80cUQiIiIiTUfJpUgLsG1zKc88vB2vJ8jIw5JwxYWyx/ItMPJyQhWz5FQ7TqeV9MHx2B0WOnVtYHI5blzDg2/F/IOHAGBftYLEJBslxQH8/mATRyUiIiLSNFp1t1iPx8O5556L1+slGAxywQUXcMYZZzR1WCJ19u0nOXjcQcYfncLRU9PCj8fFW7HaLAT8oUWWSWWVzNPOaY/bHSQ+oe4/4pY9e7Bu2Yy/Xzq21FTILorMi2iF/IOGAmBb+RsJnY8hN9tHYX6AlDR9biciIiIHn1adXDocDl588UXi4uIoKSnhpJNO4rjjjiMxMbGpQxOptWDQZPsWN3aHhUlT0jCMfd1fLRYLSck2crJ8ACSlhtZgOmIMHDH1S3AcPywAwD9uQut+g4gA/6DBANhW/EbCwH1NfVLS6rf9i4iIiEhL1qo/XrdYLMTFhZqbeL1eTNMkGNSUNWlZ9u7y4nEH6dzdWeW2IuVTYwGSUxqeDtq/+xYA34QjGjxWaxfs0ZNgXDzWVStJTAi9naqpj4iIiBysmnVyuWjRIi6//HImTJhAeno6X331VaVjXn31VSZNmsSQIUM488wzWb58eYXn3W43J598MkceeSSzZs0iOTm5kaIXiYzyZj3desZW+Xx5Ux/YV7lsiHByOf7wBo/V6hkGgYGDMIqL6ODZCSi5FBERkYNXs04uS0pKSE9P529/+1uVz8+bN497772Xq666ijlz5pCens4ll1xCTk5O+Bin08mHH37Il19+ybx588jKymqs8EUiYtvm8uTSWeXz5duRGFaIT7A26FrGju3YNm/CP2AgZtu2DRrrYFHe1Kf93jWA9roUERGRg1ezXlI1ceJEJk6cWO3zzz//PGeddRbTp08H4I477uDrr79mzpw5zJo1q8Kxqamp9O/fn0WLFnHCCSfUK57917o1B+XxNLe4JLK2b3ZjsUC3XrFV/l2nlFUrk5Lt2GwN+7wopmy9pe/wibq/aikwJNTUp83ONcAoigoC+p7Vgu4viTbdYxJNur8kmlry/dWsk8uaeL1eVq5cyRVXXBF+zDAMxo0bx7JlywDIycnBZrORmJhIUVERP//8c727xdpsBmlp8ZEIPeJSUuKaOgSJkq/m7yU/10/nbrF07pJU5TFdugeBPbRtH9Pwe3TRQgBiTziW2LL7SvfXAYwfC0DajrXQFgpyAyQkuHA4mvXEkGZD95dEm+4xiSbdXxJNLfH+arHJZW5uLoFAgDZt2lR4PC0tja1btwKQnZ3NTTfdRCAQwDRNZsyYQf+yTc/ryu8PUlBQ2uC4I8kwLKSkxJGbW0wwaDZ1OBJhi7/P48M392KzWzjqhBSyq9kSJDHFpGOXGNKHuKo9plZMk+TPv8CwWMgdMhJLbrHur9ro2INUw8C6cjnWo2HrphJuuXw5J89oz5BDEpo6umZL718SbbrHJJp0f0k0Ndf7KzExFru95iVYLTa5rI5pmlgsoRJy3759mTNnTsTGbk5/ufsLBs1mG5vU37pVxQCccUEH+gyIq/bvOMZpcNmN3YCG3aPGpo1YM3bgGzqcQGIyRtlYur8OwBlLoHcfbOvXcd6Zsfy8ysrq5UW8/cIuigr9jD08uakjbNZ0f0m06R6TaNL9JdHUEu+vFjtvKyUlBavVWqlBT05OTqVqpkhLVJAXagzTqVvVjXwizbHgG0BdYuujvKlPX+9GzryoIzP+0AmLAQs+yznAmSIiIiKtR4tNLh0OB4MGDeKHH34IPxYMBlm4cCHDhw9vusBEIqQg349hQFx8wzrA1pbjy88B8E46plGu15r4Bw8DwLb8VwD6DYyjXQcHRQUBbU0iIiIiB41mPS22uLiYbdu2hb/esWMHq1evpk2bNrRt25aLLrqIm266iUGDBjF06FBefPFF3G43p512WhNGLdJwgYBJUWGApGRb43QK83qxL/gG0+XCN/aw6F+vlfEPHwGAbdmS8GMdu8SwZ6eXXTs8JCSF3moDAZM3nttJh84xHD1VMyxERESkdWnWyeWKFSs4//zzw1/fddddAFx99dXMnj2bKVOmkJOTw6OPPkpmZiYDBgzg2WefJTU1talCFomIwgI/mJCY3Dg/ovZFP2EUFeKZfBw4G2cabmviHzYcAHuF5NLJsp8L2bXDTb9BoW5vu3Z4WL+qhPWrSkhKtjNqfNUdgEVERERaomadXI4dO5a1a9fWeMzMmTOZOXNmI0Uk0jjK11smJjXOj6imxDaMmZiEv3cfbBs3YMnJxkxNo2OXGCCUUG5aV0JCko1d293hc+a9t5de6S5S29ibKmwRERGRiGqxay5FWrNwctlIlctwcnmUksv68g8/BADbsqUAdOgcAxbYuLaEl57I4K3nd7FzuweA1DZ2ggHYuc1d7XgiIiIiLY2SS5FmqLwJTEIjVC6N3buwrfwNf89eBHv1jvr1Wiv/iFByaf81lFw6YgzatHPg84ZaiGfu9rJ2ZWh7mYHD4gHIz1OzHxEREWk9lFyKNEONWbm0f/0lAD5NiW0Q3/CRANiWVmzqA2Czh5oylRQFiE+00qVHaF1rXo6vkaMUERERiR4llyLNUGMmlzGffQJovWVD+QcPwbRaK3SMPXRiMkNHJXD6+R3Cj3Xq6iQpJfT3mp+ryqWIiIi0HkouRZqhgvxGaujj8WD/8nNMlwvvhInRvVZr53IRSB+AdfcujN27AOjczcm0mR3oNyiO+MTQfqWdusaQlBJq4pOfq8qliIiItB5KLkWaoYI8P1ggPjG6yaXju28wiovwTpwEsbFRvdbBwDeiYlOfcoZhYcDQ0DrLbr1iiXUZ2B0WVS5FRESkVVFyKdLMBIMmhfl+4hOs2GyWqF7L8fE8ADwnTI3qdQ4W/mEjALAt+6XSc5NPasOFV3emVz8XFouFpBQ77tIgbnegscMUERERiQollyLNTElxgGAQEqJctSQYxPHJPEzDwDv5+Ohe6yDhHzkKAPvixZWec8QY9OjjCn+drHWXIiIi0soouRRpZryeIADO2Oj+eNqWLcG6Zze+MYdipqVF9VoHC/+AQZiuOGy/LIJAzRXJcFOfHCWXIiIi0joouRRpZsr3RSzfviJaHJ+EpsR6j9eU2Iix2fCNHIVRXIR19aoaD01KVVMfERERaV2UXIo0Mz5fKLm0O6L74xkz7yMAPMdPiep1Dja+0WMAsC/6qcbjyiuXeZoWKyIiIq2EkkuRZsbnDU2LtUexcmldsxrb2jX4Bw4m2Kt31K5zMPKPqm1yqcqliIiItC5KLkWamXDl0h69H8+YD+cA4DnltKhd42DlGzkaOHBymZoWSi53bvdgmmbU4xIRERGJNiWXIs2M31dWuXREr3IZ87/3AfCcfGrUrnGwMlNS8fdLx7p1C5Y9e6o9LjHZRufuTnIyfWzb7G7ECEVERESiQ8mlSDMT7YY+4Smxg4YQ6N03Ktc42PlGjwXAvvjnGo8beVgiAEsW5pO5x8ubz+/iyX9spahQ6zBFRESk5VFyKdLMRLuhT8wH7wGqWkaTvzy5PMDU2EEjEnDEWPh1cSH/vncrq38tYs9OLyuXFjVGmCIiIiIRpeRSpJmJakMf09SU2EYQrlz+/GONx8XEGBxyaBKYkNrWHq5krlmh5FJERERaHltTByAiFUWzoY91xW/Y1q3FN3iopsRGUaBPX4Jpadh+XQolJeByVXvs5JPbMG5SCgmJVkwTVv9WzNYNpZSWBIh1WRsxahEREZGGUeVSpJnx+6K35tL51usAeM44O+Jjy34sFnxjx2Hx+Q647tJqtZCYZMNisWAYFvoNjCMYhPWrixspWBEREZHIUHIp0syEp8VGulus34/zvbcxDQPPtNMjO7ZU4hs/AQD7D9/V6bz+Q+IAWLdSyaWIiIi0LEouRZqZ8m6xkW7o4/jmS4zMvfiOnESwfYeIji2VeQ8rSy4Xfl+n83r0jQULbNf2JCIiItLCKLkUaWZ8vug09IkpmxLrPnNGRMeVqgUGDiKYnIx9yWJw1z5RdDqttG3vID/Xry1JREREpEVRcinSzESjoY+lsICYj+cSjE/Ac/zUiI0rNTAMfIeOw+LxhBLMOujczQlAxlZVL0VERKTlUHIp0syEG/pEcM1lzP8+wOJ24znplBo7l0pk+eo5NbZz9xgAMrZ5Kjy+bmUxhQWqZoqIiEjzpORSpJmJxj6XMW+/AYBHU2IblW/ceADsP9QtuezSPVS53LFf5XLHVjevPbOTZx/eztaNpfz4TS652b7IBSsiIiLSQNrnUqSZiXRDH2PzJhzfLyDQpSu+w8ZHZEypHf/goQQTErEv/gm8XnA4anVeu44x2OwWdm5zEwyaGIaFbZtKAcjP9fP8YzuAUNOfMy7sGLX4RUREROpClUuRZibSDX1iX3kRAPc554GhH/lGZbXiO2wcltLSA+53WfE0Cx27xOAuDfLykxns3e1h57ZQFbNLdyeJyTawVKxsioiIiDQ1/aYp0syEG/pEYs2l14vz9VcwrVbc557f8PGkznwTjwLA/s2XdTrv6BPbkJRiY/P6Uj58fW94/eW5l3Xi+tt7qqOsiIiINDtKLkWaGb/PBEuoetVQMR9/hJGViXfy8QQ7dopAdFJX3omTAHB881WdzuvRO5Zr/9qDlDZ2dmx1k5vtI62tnViXFYBOXUNNf3b+rumPiIiISFNRcinSzPi8Qex2CxZLw5NL50vPA+A+/8IGjyX1E+jbj0CHjtiWLcWSl1uncw3DwuAR8eGvO5c1+tn/zxnbNDVWREREmgcllyLNjM9nRqSZj3XTBhwLviHQpSveo46JQGRSLxYLvolHYQkGsX+3oM6nDzkkIfznTl33Sy67KbkUERGR5kXJpUgT83iCrF9VTCBgEgya+H1mRJr5OF8ua+Qz8wKwWhs8ntSft2zdZV2nxkKoc2y7jqEus132q1y27+TAsIamxZqmGZlARURERBpAW5GINCHTNHnr+V1sXFNC/6FxnHJ2eyACnWLdbpxvlDXyOee8CEQqDeE9ojy5rFtTn3KnntOe7ZvddO4eE37MZjPo0DmGnds8ZO/10aZ97bY5EREREYkWJZciTei3JYVsXFMCwJrlxWDuAcDWwGmxMXPewcjOxnPiKQQ7aB/Epma2a4d/4GBsq1ZgbN1CsHuPOp3fqauzwpTYcr3TXezc5mHdqmIllyIiItLkNC1WpImsXFbIvHcyATjjwg4ArF8dSjQbVLk0TVz/eQKAksuualiQEjHhqbHffh2xMdMHhZr9rFtZHLExRUREROpLyaVIE/j+y1zefmE37tIgRxybyqDhCbjirQT85Xtc1v9H0/7dt9hWrcA3fAT+MWMjFbI0kHfikQDY67HusjqdusUQl2Bl66ZSSksCERtXREREpD6UXIo0gsICPyXFoV/+c7N9fPVxNlabhfOu6MSkKWkAJCbvm6XekMpl7NOhqmXpZVdBBLYzkcjwHToe0+HAseBrCEQmETQMC/0GxmEGYUNZ1VtERESkqSi5FImwHVvcPPvwdvbsDG1u7/ebPPWPbTz7yHb8/iDz52Ti95lMODqF3ulx4fOSIpBcWjdtwPHpfAIdOuI56dQGvQ6JMJcL39hxGLm52JYsjtiw/QaF7qFVvxZGbEwRERGR+lByKRJhX36czY6tbr6anw1A5m4vxUUBcjJ9vPb0TtauKCY51caEo1MqnLd/5dJmr9+PpvPZ/2AxTdwX/wEcavDS3HgnHwuA4/NPIjZm34EuYl0Ga1cUU1Toj9i4IiIiInWl5FKkgYoK/eH1bll7vWxaW9b99bdicrJ87Nqxb5P7TetKsVjgtHM7VFpXmZi0X+XSUffKpSU3h9jXXsF0Oik9/6L6vBSJMu+xxwPg+OzTiI1psxkMG51IMAi/LlL1UkRERJqOkkuResrP9fHfR7fzz79u5ukHtxMMmiz+Ph+ApBQbmPDzgjx27QhNj01JswNw+ORUuveOrTRehTWX9WjoE/vsf7CUFOOeMRMzNa0+L0miLNCrD/5evbGvWI6xMyNi4444NBGAJT/mY5pmxMYVERERqQsllyL19M0nOWzb5MZiCTXp2bimhGWLCjCscM6lnbDaLCz9qYCtG0sBmPGHjpx/ZWeOPD61yvEa0tDHUlRI7DNPYlqtlFx1bf1flESdd/JxADg+j1z1sn3HGDp0iSF7r4+8HE2NFRERkaah5FKkHjyeICuWFmKzWzh6aqhK+L+39uIuCTJwWDztO8YwcFg8HneQvbu8OGMN2rZ30KufC8OoOnFsSHLpfOkFjLw8PNPPJNite/1fmESdd3L51Nj5ER23fcfQGtucLF9ExxURERGpLSWXIvWwcmkhXo/JoOHxDB+biMUCBXmhitHoCckAjDwsMXx8xy4xWA6wLcj+ay7r1NDH7Sb2yccwLRZKrrm+9udJk/AdOo5gfAKOBd+A233gE2optU1o2nWukksRERFpIkouReph6U8FABxyaBLxCbbwGsp2HR106+kEoHvvWNLahn7h79jVecAx7Q6D2Dij7M+1r1w633wN657deKecRKBfep1ehzQBhwPfxKOwlJRg/2FBxIZNbVNeufRGbEwRERGRulByKVJHhfl+tm92k5xqo1uvUNI4YmyoSjl+Ukq4QmmxWBhftt1I3wGuWo1dXr2s9bRYnw/XY48AUHKtqpYthaesa2zMp5GbGptSVrnUtFgRERFpKrYDHyIi+1u/uhgIbV5fnkgOG51Iz76uCusmIVTZHDQ8gRhn7T7HSUy2sWent9bdYp1vvIp12xa8Rx2Nf/ghdXgV0pS8kyYDZU19TBMOMGW6NlKVXIqIiEgTU+VSpI7WrdqXXO7v94lludomlgBt2oemNsYnWA98sMeD66F/AFB8y221voY0PbN9e3yHjMS6bSvWlSsiMqYrzorTZZCT5dN2JCIiItIklFyKHEBRoZ/5czLJyfLh9wfZuKYEu8NCjz6V96psqInHpXLBVZ3p0uPAazSdr7yANWMHnuOn4B8xMuKxSHR5ppwEQMy8/0VszNQ0O36fSWFBIGJjioiIiNSWkksRIBg08XiClR43TZOnH9zOj9/kseCzHLZsKMXnNemd7sJmi/yPj9NppWdf1wE7y1JSguvhfwJQfNNfIh6HRJ93allyOTeCyaU6xoqIiEgTUnIpB72svV6euG8rD9+xmV07Km4NsXxxYXiLkeKiALt3eADC3WGbSuwLz2Hduwf3KdMIDB7SpLFI/QR698XffwC21SuxbtoQkTFT26pjrIiIiDQdNfSRg1pBnp9nH96OuzRUtXz5qZ244qwUF/pxxVvJ3ruvAlRcFCA3J/R1eYWoKVgK8nE99hCmYVDyp1ubLA5pOM+Uk7CtWY1j7keUzv5jg8dLSVNTHxEREWk6qlzKQW3z+hLcpUEGDY9n1PgkSooCZO3x4vWaZO/10aadnVPPaY9hQH6uj7zsUBUzObXpkkvXow9jZGfjOXOG9rVs4TxTTwYgZt6HERmvvKlUkdZcioiISBNQ5VIOanlllciefV0cclgi6YPiSGvnIDnVRnFRgPgEKxaLha/nZ5OX48dqDU03TE5rmuTS2LGd2P/8GzM2luJb/9okMUjkBAYPIdCtB/ZfFmPszCDYqXODxot1hT4vLC1VcikiIiKNT5VLOajl5ZRXIm0YhoW+A+NIbWPHMCwkJNrCjXWSUkLJZH6uH1eclZiYpvnRibvn71g8HkqumE2wY6cmiUEiyGLBM+VEABwff9Tg4ZyxoS1s3CWVm1OJiIiIRJuSSzmolVcuDzTNNTl1X5E/Oa1pCv62X5fifOdNgm3aUnr1tU0Sg0ReeGpsBLrGhiuXJapcioiISONTcikHtfLKZVJKzQljeeUSIKUp1luaJnG33wZA8c1/wYxPaPwYJCr8o8cQaNce+w/fYdm7t0FjxTgNsECpKpciIiLSBFp1crlp0ybOPvtsTjzxRKZNm8bixYubOiRpRoJBk/w8H3EJVuyOmn8UKlYuGz+5jPngPRzfL8Cf3h/3uec3+vUligwDz8mnYgkGifnogwYOZcHpNHBrzaWIiIg0gVadXMbExHDPPffw0Ucf8cADD/CXv2iz+YNddqaXFUsK8biDFBb4CQZq1/m1KSuXlqJC4v72ZwCK7nsQbOrD1dp4Tj0dAOecdxo8ltNl4PWYBAJmg8cSERERqYtW/Vtq5877Oi/26tWLwsJCTNMMN2mRxuMuDWAxLE3WCAfANE3een4Xe3Z6sTssjB6fBFSsSlZn/2mzjb3m0vXgP7Du3oX7tOn4xh/eqNeWxuEfPYZA127Yf1qIkbGDYOcu9R4rNtZKHn7cpQHi4lv1W7yIiIg0M826crlo0SIuv/xyJkyYQHp6Ol999VWlY1599VUmTZrEkCFDOPPMM1m+fHmVY33xxRcMGDBAiWUTCARM/vPP7bz07x1NGsfuDA97dnqJdRn4vCY/fJUHQHJKbSqX+35JT2nEabHWdWuJ/c+/CcbFU3z73Y12XWlkFgueU6YBEPPBnAYN5Qw39dG6SxEREWlczfpj7ZKSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NTV8XEZGBg888ABPP/10g+IxjOaVmJbH09zi+r2MbW5ys33kZoPfb+KoZn3jymWFJCTZ6NYzNipxLF9cCMDE49JYvriAnds9QChZPND3MCbGSlKKjaKCACmpBz4+IkyT+D//CYvfT8lfbobOnRv106CWcn+1Ft5pp+N6/BGc77+L5+pr6j2OyxXajsTjDjbrvzvdXxJtusckmnR/STS15PurWSeXEydOZOLEidU+//zzz3PWWWcxffp0AO644w6+/vpr5syZw6xZswAoKiriyiuv5K9//Svdu3evdyw2m0FaWny9z4+mlJS4pg6hRosWFIb/7PfY6NjRFf46Y1sJMU4rFgu8+d9dpLV18PdHBkc8hkDAZMWSIgwDjjimA4mJTt56cTsA3Xok1Orv9uKre+FxB2jfITHi8VXp7bfh26+hf3/i/nwTcQ5H41z3d5r7/dVqHDkO+vXDtmwJaTm7oG/feg2TnBIDFGG3OZrte9b+dH9JtOkek2jS/SXR1BLvr2adXNbE6/WycuVKrrjiivBjhmEwbtw4li1bBkAgEODaa6/lzDPPZMKECQ26nt8fpKCgtEFjRJphWEhJiSM3t5hgsPk27/htaV74zxvW5eFKCE3XK8jz8cjft5CQZGP8pBQg1HBn04bcCg10ImHj2hIKC/z0HejCH/DQq78Dq9VCIGBitfvJzi464BgpbQGstTq2oSx5uSRffTUGkH/PA/gLvYA36tfdX0u5v1qT2FOm43rgXkqef5nSG26q1xgWI/TztXdPMR2yrZEML6J0f0m06R6TaNL9JdHUXO+vxMRY7Paaf7doscllbm4ugUCANm3aVHg8LS2NrVu3AvDtt9/y448/kpWVxVtvvQXAyy+/TGJi/SpPzekvd3/BoNlsY/N6gmzbvC8pz9ztDcf64zd5+P0mudk+vvk0O3zMlo2lDDkksrfm+lWhhDB9UDzBoIkz1mDCMSls31xKcpq92X3/Em67FWPvXtxnn4t3wkRowvia8/3V2rhPmYbrgXtxvPc2xX+8EeqxRjwmNjR5uqQ40CL+3nR/SbTpHpNo0v0l0dQS768Wm1xWZ/9usEcddRQrV65s4ogObls3lhIMQGKyjYI8P1l7QtU3ryfI4oX54eMK8/fty7d9cylDDkmIaBwb1pQA0Lv/vim5R52QFtFrRIr9qy9wvvEqwbbtKLpDTXwOJoF+6fgGD8W+Yjm2FcvxDxlW5zFiY0OfKO7e4eGxu7cw+ZQ29B/c/KfHioiISMvXrLvF1iQlJQWr1UpWVlaFx3NycipVM6XprFtVDMDoCaFtP7L2hpLL5b8U4i4J0n9IHHZH6MOAjl1iANi22R2x62/fUkrmbi97d3lJbWtv1E6v9VJURMKN1wJQeP9DmCmpBzhBWhvPmWcDEPPma/U6v7xb7PJfCsnO9LH61+hP4xYRERGBFpxcOhwOBg0axA8//BB+LBgMsnDhQoYPH950gUlYMGiy5rdisMCIsYnEugyyM31lj4d+4T10YjKDhoeqKqPGJ5GQZGNPhgePu+HbKGzfXMpzj+zgPw9uA6DPflXL5irunjuwbt+G58RT8J54clOHI03APe1MTKsV53tvg89X5/Njy5JLvy80jSY/1x/R+ERERESq06yTy+LiYlavXs3q1asB2LFjB6tXryYzMxOAiy66iDfeeIM5c+awceNGbr/9dtxuN6eddlpThi1ldm7zUJjvp3uvWOITbLRp78DvM8ne62PLhlIcMQZde8Zy7CltOfHMdgwfk0i3nk5MEzauLW7w9Zf/EupSW/5Ldu/05p1c2n/8gdjnniaYnEzhvf9s6nCkiZjt2uGddAxGVhaOrz6v8/nO2IoL7fNy656gioiIiNRHs04uV6xYwamnnsqpp54KwF133cWpp57KG2+8AcCUKVO45ZZbePTRRznllFNYvXo1zz77bIU9LqXprC6rTvYfEmqj3KZ9aCuNxT/k4/eZ9EqPxWq14IqzMmpcElarhaGjQmstv5ibjd9f/wXMwaDJql+LsBgw5vAkevaLpVe/5ptcWgrySbjqUiymSdFd92O2b9/UIUkTcp91DgDON1+v87mxrorJZUGuv8U1AxAREZGWqVk39Bk7dixr166t8ZiZM2cyc+bMRopI6mLN8lByOWBoaNprl+5Olv5YwE8L8gDok155755+g+Lo1S+WTetK+e7zHCYelxpu0FQXWzaUUlwYoFe6iynT29X/RTSS+Fv/hHX7Ntwnn4bnjLObOhxpYt5jTyCYmITjk3lY8nIxk1NqfW75tNhywSAU5vsjvr2PiIiIyO8168qltFyF+X6yM3207eAgOTX0S+3wMYl06+WEsiJK7yrWQFosFo6f1hbDgK/n5/DSkxnk12Na36plocR28Ijm3yUz5v13cb79BoEOHSl64OF6bT8hrYzTieeUaVi8XmLef69Op8Y4DfjdLZSndZciIiLSCJRcSlRs3xLq+Nq1pzP8mNVqYfp5HYiLt9K5u7Pazq3tOsRwwVVdaNvBweZ1pTz1wDa2bCip0/U3rw8dnz64cnW0OTF2ZhD/p+sAKHzsKXWHlbB9U2Pr1jXWMCw4naG39vLOsfk5WncpIiIi0afkUqJi+5ZSALr2iK3weFKKndl/6c6FV3Wu8fzuvWO57MZuHDoxmdKSIB+/l1nraxcXhaqmaW3txMU345nfgQAJsy/HyM+j5PKr8U08qqkjkmbEP3oM/l69sf+yCOua1XU6tzyp7Dsg9OGKKpciIiLSGJRcSkQU5Pl575XdZGeG9rHcvrly5bKcM9aK3XHgW89ms3D8aW1JSrGxZ5cXd2mgVrHsq5rGHuDIpuV6+AEcC77BP2AQxX/+W1OHI82NxYL73AsAcL76Yp1ObdvegdNl0G9QKLlU5VJEREQag5LLVqao0M9LT+xg8ff5jXrdn7/LY/niQua+k4nPF2TXdg+xcQZpbRveRKRrj9A6zR1b3bU6vqbEtrmwf/MVrgfuJRgXT8GzL4Kz+cYqTcd91jmYNhvOt14Hd+3uf4BpMztwxU3daNcx1KG5qsrl7gwPX32czf/e2qPtSkRERCQilFy2IsGgybsv7WbTulK++TQH04zM9gM5WV5efiqDrZtKqz1m09qS8P+//yKXQMCka4/YenV6/b3yCuSOLW62biw9YIOf7ZvLpuQ20+TS2L2LxCtmhbYdefBfBPr2a+qQpJky27XDe8KJGLm5xMz9sNbnxbqsJCXbSS7rEPv7yqXfb/Lykxl880kOv/xQwC8/NO6HUSIiItI6KblsRRZ8nsvm9aHEqjDfz87tngaPGQyavP/aHjauKeGnb/KqPKakOMDOHR4sZXfT1/NzAEKdYSOgS4/QOEt+LOD5x3bw5n93VXus32+Ssc2D02XQpp0jItePKL+fhEsvwsjKovTCWXimndHUEUkzVzqzbGrsK3WbGguhzrFOl0FOto/3X9tN1p7QtPUNq4spLgqQkBTaEzN7ryqXIiIi0nBKLluJkuIA33+Ri9VqYdT4JADW/FZU7/FM02TrxlLmz8lk26bQdLzNG0qq3Ix98/oSMGHoyAS6944lPtHK+KNTwnE0VIfOMdjsFgryQlP7dm73sGtH1VME9+7yEPCbdOnmxDCa35YecXffgePHH/ANG0HRnfc1dTjSAvgmHkWgW3cc3y/AunF9nc/v0t1JMADLfi5k3rt7AVi2qACAIyaHuhPnZCm5FBERkYZTctlKLPw6F68nyCGHJTLuqGQA1vxWXO/xtmwo5fnHdvDzgnwMA5LTbJQWB9m7y1vp2I1lU2L79I/jotlduPHvvZh8UhucTmu9r78/q9VC526h6qUjJpQwLv2poMpjy39JbtO++VUtY959C9e//0UwKTm0zjImpqlDkpbAMHCfez4AzldeqvPpZ8/qxOV/6kZqGzub1pWyenkR61YWE+syGHFoIo4Yg+xMb8Sm0YuIiMjBS8llC7dyWT6P3r0lXLWccHQKqW0ctOvoIHO3lz076zc1tnxK7cDh8Vx6QzeGj04E9u0fub8tZVNxe/aLXnfWQw5NpG0HBzMv74xhheW/FOLzBisdl5sdSi6r20OzqdiWLSHhuqsxDYOCp58n2L1HU4ckLYh7xkxMqxXnm6+Ct/IHPDWx2Sx06BzD4ZNTAHjzv7sIBmDIyARstlDTLZ/XpKiwdt2YRURERKqj5LKFy9rrJXuvF7vDYOJxqSSVNfAYPiaUDH7/ZW69xs3eG/oFdtjoBDp0jqFnXxcAm9ZVTC6DQZO8HB/xiVbiE6K3p+Sw0YlcdUt3uvWMZcCQeNwlQd55aTfffJLNnFd34/WEEs28ZphcGnt2k3jBOVjcbopvvwvfUUc3dUjSwgQ7dMQ7+XiMrCwc8+fWa4yhoxJD3ZstMHRUApOmpAGQWtbROSdTU2NFRESkYZrxDvNSGxOPbcuA4U5+35R15LgkFnyWw29LCjnqhLQ6J1vZZb9oljfF6dzdid1hYevGUgIBE6s1dMHSkgDBICQkNt6tdPxpbdm908PaFcWsXRGa+tujTywjxiY1v8qlx0Pihedi3bUT99nnUnrZVU0dkbRQ7vMuIGb+XGJf/C/ek0+r8/lWq4WLr+2KzxskOXXfz0dqm9CfszO9dO/dvPeGFRERkeZNlctWoDzR219MjMHYI5Ixg/BjNV1ea5K11xtaa1n2S6jNZqFbr1i8HpOd2/c10ynMD02lS0hqvOQyIcnGhVd1oU9/F30GhCqqK5eFmhflZoea/iSnNoPPTYJBEq69Evsvi/CNHE3hA49Q6VMAkVryTpocauyz4Busa9fUa4y4eGuFxBIgrW3oAyQ19REREZGGUnLZig0rWye5fzJYG+7SAMWFAVLa2Cskrj37hqoa5dudQGjLE4CExMg076mthCQbMy/vzIxLOhEbZ7BpbQnFRX7ycn0kJFmxO5r+1o675+8433ubQJeuFLzwqhr4SMNYrZRe9AcAYp/7T8SG1bRYERERiZSm/w1coiYx2YbFgLycuv3SmLW34pTYcuXrLjfvt+6ysKAsuWzEyuX+rFYLA4fGEwzCT9/mYwabx5RY5/PP4nr0IYJJyeS/8R7B9h2aOiRpBdznzMSMjcX51htYCvIjMub+02JFREREGkLJZStmtVpISrZRmB/A76/cWbU65b9kpv0uuezYJQZnrMG2zW58vtB44cplEyWXAINGJADw84I8gErT/hqbY/484m+9EdPhoOCl1wn0S2/SeKT1MFNScZ9+FpaSYpyvvxKRMePirThjDbL2+sJrlkVERETqQ8llK5dcVsXLy/HX+pzsssplWtuKSZphWOjRJ5aA32THltBU2/Cay0Zs6PN7PfrEktbWjrs0lPA2ZeXS9vNPJF52EZZgkMLHnsJ32Pgmi0Vap9KLLwXA+d9nIFj7D42qY7FYGHN4MgG/yXuv7CYQ0H6XIiIiUj9KLlu55JTy5LL2FYmssm1Ifj8tFvZNjd2yIbTuct+02MZdc7k/w7Aw/uiU8NdNlVzafvuVpHNOx1JaStHtd+M57fQmiUNat8CgwXgPG49t8yYcX30ekTEnHpdKp64xbN/sZv6cTExTCaaIiIjUnZLLVq68a2ptK5eBwL6qZJv2lZO0zt2cAOza4QH2TYuNb8LKJYT27SufmpvSpvGTS+v6dSSddRpGQT7F1/+J0itnN3oMcvAoveQyAJzPRqaxj9VqYfr5HXDFW1n0XT4fvbWXkuJARMYWERGRg0cz2K9Boqm8ipdXy7VUq5cXUZDnp3d/F3HxlW+Pdp0cWCywO6MsuSzwYzFC67aaks1mcNq57Vm7opiuPZyNem1j21aSTj8ZIyuLkksuo+Tm2xr1+nLw8Z5wIoFOnYn54jOsmzYQ6NWnwWOmtXVw/pWdefHxHfyysIBfFxeSnGJj8CEJHHl8WgSiFhERkdZOlctWrry5TW2mxZqmycKvcgE47MjkKo9xOAzS2topyPNTXOSnqCBAfIINw2j6/Rt79XNxwrS2jRqLsWM7ydNPwrprJ+6zz6X4rvu1l6VEn81G6UWXABD79JMRG7ZDpxguv6kbYw5Pwmq1kLXXx3df5GqarIiIiNSKkstWLjktVH3MrcW02F07PGRs89C2g4Pe6a5qj+vQObRf48a1JZhm0663bErGtq0knzoF69YtuE+ZRuFDj4GhHylpHO7zL8J0uXC+/gqW7OyIjZuUbGfK9Hbcel9vOnaJwe8zKSrUFFkRERE5sDr9Juz1ennyySdZs2ZNtOKRCEtItGFYa1e5LG/SM3RkApYaqm/lyeX6VSXhaxxsjM2bQonltq24p51O4ZPPgu3g+z5I0zFTUik95zwspaXEvvBsVK6xr9u0tigRERGRA6tTculwOHjqqacoKCiIVjwSYYZhITnFTnFhAJ+35m0LMraGGvl07l7zmsXy5HLD6mKgafe4bArWTRtCieWO7bjPOJvCfz+jxFKaROmlV2IaBrHP/Qfc7oiPn1LeECy79lsZiYiIyMGrznP4hg4dysqVK6MRi0RJeffUd1/ZTVFh9b8kZmxzgwU6dYupcbwOXULPl5aEktWqtixpraxr15B0ypTwGsvCR58E68E5LViaXrBHTzwnnoKRlYXzrdcjPn5d1myLiIiI1Dm5/NOf/sTrr7/OK6+8wvbt2ykpKaG0tLTCf9K8TJqSRlKKjTXLi5k/J7PKY4oK/eTl+Gnb3oHTWXOyFJ9gIzE5VNEYOiqBkeMSIx5zc2T7+SeSTzoW657dlJ53IYWP/FuJpTS50quuASD2yccgWPPshLpScikiIiJ1Uee5fGeeeSYAd911F3fffXeVx6xevbphUUlEde7m5IqbuvGPv2xi8/pSTNOstKYyY1vZlNgDVC3LnXFBB4oKA/QfElfj+szWwvHJxyReeiGW0lJKZl9H8W23qyusNAv+ESPxHjYex8LvcXzyMd4TpkZs7PJ9cmvTEExERESkzsnlPffcc1AkE62NM9ZKh84x7NzuITfbR2qbilNZM7aG9q3s3K12e0R27Rkb8RibK+drLxN/wzVYAgGK7ryX0suuauqQRCoovfIaHAu/x/XEoxFOLlW5FBERkdqrc3I5bdq0aMQhjaBrz1h2bvewfbO7UnK5fUtoOvOBmvkcVEwT18MPEHffXZh2OwX/fhrPtDOaOiqRSryTj8Pftx/2nxZi++lH/GMPjci4jhgDV7yV/Bw/waDZLPazFRERkear3pvybdiwgffff5+nnnqKzMzQOr6tW7dSVFQUseAksrr1CiWO2zZXXBdbkO9ny/pS4hKstO9Uu2mxrZ7bTcKVfyDuvrsIxsWT/+rbSiyl+TIMSmZfB4DrkQciOnRyqo1AwKSoQHtdioiISM3qXLksLi7mz3/+M5988gk2m41AIMDhhx9O27Zteeihh+jUqRM333xzNGKVBiqfyrp9c8UtC5YvKsA0YdioBKxWVSYse/aQdOE52H9ZRKBLV/JfeoPA4CFNHZZIjTzTzyTwwL3EfPEZtl+X4h82IiLjpqTa2bnNQ16OL9zIS0RERKQqda5c3nfffSxdupQXXniBJUuWYJpm+LmJEyeyYMGCiAYokZOYZCM51cbe3V5KS0JVCNM0WfpzaN/S4WMPjq6vNbH+tpyU44/C/ssifKPGkDv/KyWW0jLY7fuqlw//M2LDlq+7zNW6SxERETmAOieXn376KTfeeCOHHnoo1t9tw9CpUycyMjIiFpxEXpfuTjBh145QA59dOzxk7/XRuVsM7Toc3FNiY+a8Q8pJx2LN2IH7jLPJe+8jzHbtmjoskVpzn30ugQ4diZn3P6xrItO1OyWtLLnMUnIpIiIiNatzcunxeEhOTq7yueLi4koJpzQvHbqEEsjdGaHksnwLkj4D4pospibn8RB/640kXnYxlJZSdNvtFD7+H3CquZG0ME4npVfOBsD1SGSql2ntQslldqaSSxEREalZnZPLIUOG8MEHH1T53CeffMKIEZFZ5yPR0bEsuSyvXO7Z6QWgQ+eDs2ppbN9G8inHE/vc0wTT0sh/cw6l11yvPSylxSo97yKCaWnEvP8u1k0bGjxeatvy5NLb4LFERESkdatzcnnttdfy6aefcuGFF/L2229jsVj45ptv+NOf/sT8+fOZPXt2NOKUCOnQOVSNK69c7tkZ+n/7To5qz2mtHF98Ssoxh2Nf8ktofeUX3+E7clJThyXSMHFxlFx+NZZgkNh/PdTg4RISbdgdFrL3+iqssRcRERH5vTonl6NGjeKFF17A6/Vy5513Ypomjz32GNu3b+f5559n6NCh0YhTIiQu3kpiso2sPV68niB7dnqxOyzhph0HhdJS4m+9kaQZp2Pk5lJy6RXkvT+PYKfOTR2ZSES4L/4DwaRknG+9jrFpY4PGMgwLqW3seNxBSoq1HYmIiIhUr1595UeOHMlrr72G2+0mPz+fxMREYmNjIx2bREmHzjEU5PlZt7IYrydIl+7Og2ZzdOtvy0m88hJsa9cQTEmh8KHH8U49qanDEokoMyGR0quuIe6evxP34P0U/vvpBo2X1tbBnp1esvf6iIvXdiQiIiJStTpXLhcuXEhpaSkATqeT9u3bK7FsYcrXXS5bFNqC5KCYEhsIEPvEY6ScMAnb2jV4Jx5F7jc/KrGUVqvkkstDay/feRPrurUNGmvfuks19REREZHq1Tm5vPjiixk9ejRnnHEG999/P59//jm5ubnRiE2ipLx5z8Y1JQC079S6m/lY160l+eTjib/9L2CxUHTnveS/OYdgh45NHZpI9MTHUzL7eiymieuBexs0VFrb0AdQauojIiIiNanz/KYffviBxYsX88svv/Dzzz/z0ksvEQwG6dWrFyNHjmTUqFGcfPLJ0YhVIqR3fxcdOseEm/q02uTS58P173/h+ud9WLxefMNGUPivJwgMHNTUkYk0itILZxH7xKM4P3iPkmtvIDB4SL3GSSurXOaocikiIiI1qHPlMiUlhcmTJ3PLLbfw7rvvsmjRIv7973+TmprKW2+9xc033xyNOCWCHA6Di2Z3YcCweFLb2sPTZFsT269LST7uKOLu+TsYBkV//Tt5H3+hxFIOLi4XJdfdCEDcP+6p9zDle11uXl/Cl/Oy8XiCEQlPREREWpd6dWYoLi5m6dKl4Qrm8uXLiYmJ4cgjj2TkyJGRjlGiIMZpcNZFHTFNE0sr2tPRkptD3D134nzpv1hME++h4yh6+DECvfs2dWgiTcI980Jcj/+LmPlzsS39Bf+Iur9Hu+KsdOoWw85tHr79NIe8HB/TZnao8zgeT5APXttDnwEuRo1LrvP5IiIi0rzVObmcNm0aa9euJS0tjVGjRnH88cfzl7/8hfT09FaVpBwsWs3fWTCI89WXiLv7doycHIIpKRT9+f9wn3chGHUu0Iu0HjExlFx/Ewk3XEPc/XeT/8Z7dR7CYrFwyR+7krnbyyv/yWD54kIGDY8nfXB8ncb5/H9ZrPq1iF07PEouRUREWqE6/9a9du1abDYbw4cPZ8SIERxyyCFKLKVJ2X/8geQTJpFwwzVYcnMpPf9ichYuwX3BxUosRQD32ecS6N4Dx5efY//xh3qNYRgW2neK4aSz2gMw951MfL7aT4/dvL6ERd/lA5Cb7aMg31+vOERERKT5qvNv3osXL+bJJ5+kT58+fPrpp8yYMYMxY8Zw2WWX8cwzz7Bs2bIohClSmXX9OhLPP5vkk4/HvnQJvhGHkPfJVxT98xHM1LSmDk+k+bDbKb75LwDE3XEbmGa9h+o3MI4BQ+MoyPOz+Pv8Wp/3yw+hY5NSQhNmtm4srXcMIiIi0jzVObmMjY1l3LhxXHPNNbz88sssWrSIBx98kJKSEh588EFmzJgRjThFwow9u4m/8Y+kHDGWmPnzCHTtRsETz5D38Zf4hx/S1OGJNEueaWfgGzIM+y+LcXz0QYPGOmpKGlhgwWe5eNy1q15m7Q11mj10YjIAWzeUVHje769/wisiIiLNQ70a+uTk5LB48eLwf2vXriUYDNK3b1819JGoMXbtJPaxh4l9+QUsHg/BpGSKr/sTpRf/AZzOpg5PpHkzDIr/706STz+Z+Dv/j5zjpoDDUa+h2nWIYcghCfz2SyFrVxYxdGRijccHgyZZe704Yw0GDovnk/ez2LppX+UyO9PLMw9v55BDkzj25Db1iklERESaXp2Ty+OOO45t27ZhtVoZMGAAY8eO5aqrrmLkyJEkJydHIUQ52Bm7duJ69CGcr7yIxePBdMVRcvUVlMz+I2ZKalOHJ9Ji+I44Eu+kY3B8+TnOl/6L+5LL6z1Wl+5OfvulkIK8A6+dLMj34/eZtO8UQ1KKnaQUG3t3eSkpDp379fwc3CVBNqwuVnIpIiLSgtU5uZw6dSqjR49m+PDhxMbGRiMmEQCsG9YT+9S/cb7xChavN5RUzr6SkitmY7bRL6Ai9VH0tztJ+eoL4h68H8+ZMzATk+o1TkKSFYDC/MABj83a4wWgTdl+mT37xrLs50KW/pRHajsLvy0pDB/n95vYbGoQJyIi0hLVObm85pprohGHSIhpYv9+AbFPPU7Mp/MBCMbFU3rFbEouvxozTY16RBoiMHAQ7rPPJfb1V3A99gjFf/m/eo0Tnxj656Oo4MCVy+yy9ZZt2oWm4Y4al8yynwv58uO9xMZbwAw1dg4GISfTS7uOMfWKSURERJpWvdZcbt++nWeffZYlS5aQl5dHcnIyI0eOZNasWXTt2jXSMcrBoKSEmA/nEPv0k9hXLAcg0KEjpZdcjvu8CzT9VSSCSm7+C8733yX2P/+m9KJLCHbqXOcxEsqSy8JaJJdZe8sql+1DyWWXHk669nSyfbMbgHYdHXTt4eSXhQXs3aXkUkREpKWqc7fYFStWcMopp/Dpp58yePBgTj31VAYPHsynn37KqaeeysqVK6MRp7RS1hW/EX/LDaQNTSfxmiuwr1iOb+hwCp54hpzFv1F6zXVKLEUiLNipMyWXXYXF7Sbu3jvrNUZ8Ytm02IJaTIstSy7TyqbFAow7KgUAR4yFMy/qSKduoaZce3d76xWPiIiINL06Vy7vv/9+Bg4cyDPPPFNhzWVpaSmXXnop999/Py+99FJEg5TWxZKfR8z/PsD5ygvYl/wCgOlw4D5tOu4LZuE7bDxYtOZKJJpKr76W2FdewPnma5Re/Af8I+rW6dtuN3C6DIoK/JimiaWGn9msPT4sBqS22ZdcDhgazylndSKtvUGbdg5Ki0NJ6t5dnvq9IBEREWlyda5c/vbbb1xyySWVmvnExsZy8cUXs3z58ogFJ61ISQkxH7xH4gXnkDaoDwnXz8a+5Bf8fftRdMc9ZP+6lsL/PI9v3AQlliKNwExMovjPofWW8X++KbTgsY4SEm34vCYeT/Xnut0BCvP9pKTasdn2/ZNjGBaOPbkDPfq4AGjbMTRlVpVLERGRlqvOlcuYmBjy8vKqfC4/P5+YGK2VkTJFRTi++YqYuR/i+HguRnERAMGkZNxnnI3nrHPwjT1MyaRIE3HPmInzheew/7KImHfexHPmjDqdH59oJXN3qGOs02mt8pi1vxUDoXWWNXE6rSSl2MjJ8uHzBrE76vzZp4iIiDSxOieXRx55JP/85z/p0qULo0aNCj++ePFiHnzwQY466qiIBigti7EzA8en83F8Mg/Hd99i8YSmuJmxsbhPm47ntDPwHnU06EMIkaZntVJ01/2knHwccXf+H54pJ0F8fK1PT9ivY2zbsmY9y34u4Iu5WYyflMKYw5NZ9nMBAMNGJx5wvHYdHeTn+tm900PXHtrqSkREpKWpc3J5yy23cOWVVzJz5kzS0tJIS0sjJyeH7OxsRowYwc033xyNOOvtmmuuYeHChUyYMIGHH364qcNpdSwF+dgX/oB9wdc4FnyLbfW+hk7BpGQ8J56C97gT8BxzXJ1+aRWRxuE/9DDc007H+d47xP3rwTptTfL7jrGBgMmX87IpzA8wf04WK5YUsWOrm8RkGz37HjhZ7NozlvWrSti2ya3kUkREpAWqdXLpdrv55ptvyMjIYMaMGcycOZMtW7aQmZlJ27ZtGTZsGBMmTIhmrPVy7rnncuqpp/K///2vqUNpFYzdu7D9shj7L4uwL/wO29IlWPZbq+Xv1Rvv5OPxHj8F35hDwW6vYTQRaQ6K/3YnMfPnEfvkY5Secx7Bnr1qdV64Y2x+qBnPmt+KKMjz07m7k4DfZMfW0FYjw8ckYhgHnv7eo3coodyyoYTxk1Lq81JERESkCdUqudy+fTsXXnghGRkZ4cfi4+N5+OGHOfzww6MWXCSMHTuWn376qanDaHlME2PvHqwrV2BbvQrb0l+w/7IIa8aOCocF2nfAd/hEvEcciW/CEQS7aJ9TkZYm2KkzJbOvI+7+u4m//TYKXnytVuclJO2bFrs7w8N3n+cCcOTxqfTs6+K7z3PYsrGU0eOTajVep25ObHYL2za52b65lB1b3Rw6MbnGTrQiIiLSfNQquXzggQcwDINXX32VwYMHs2PHDm6//XZuv/12vvjii6gFt2jRIp577jlWrFhBZmYmTz31VKU1na+++irPPfccmZmZDBgwgNtuu42hQ4dGLaZWx+3Gum0r1i2bsG7ZjHXzJqxrVmNbvRIjJ6fCoabFgn/AIHyjRuMfORrf6LEE+vRVQx6RVqDkymtwvv4KMR9/hP3Lz/FNOuaA55RPi134dR4Lv84DQusme6e7MAwLRx6fVqcYbDYLXXs42by+lBf+nUHAb9Klh1NTZEVERFqIWiWXS5cu5ZZbbmHkyNA+aL179+bvf/87U6ZMYe/evbRr1y4qwZWUlJCens60adOYPXt2pefnzZvHvffeyx133MGwYcN48cUXueSSS5g/fz6pqakRj6c207oaU3k8hmGBQAB8PvD5sLjdWArysRQUYCkswCjIx5Kbi7FnD8ae3Rh7dmPZsxtj1y6MXTuxmGalsU2HA/+QoQQGDMI/cBD+ocNC++AlJFSMoVFeqTSFCveXtH5xLorvupfE888h4dYbyfv2R4itOalLTN73T4grzsq4o1I45NDECluOVKe6+6tHHxeb15cS8Ifel7ZtctO9l6uur0ZE72ESVbq/JJpa8v1Vq+QyMzOTrl0rTnfs1q0bpmmSlZUVteRy4sSJTJw4sdrnn3/+ec466yymT58OwB133MHXX3/NnDlzmDVrVkRjsdkM0tKaUUManw/GjYPffiPF56vXHnUYBnTrBr17V/xv4EAsfftis9uxAerrenBLSYlr6hCkscw8G956DetHH5H2zONwxx01Hp4Qv+9956qb+9Cjd93vld/fX8NHw1cfZ+N0GrjdQXZt9zav915pcfQeJtGk+0uiqSXeX3XuFttceL1eVq5cyRVXXBF+zDAMxo0bx7JlyyJ+Pb8/SEFBacTHrTe/n0RHDPakJIJWG6bdDray/ztjMRMTCSYmYiYmYiYmYSYlE2zfnmD7DgTbd8Ds0IFgm7bVN9wp8ACeRn1J0rwYhoWUlDhyc4sJBitXt6V1Mv5+H8lffAH33UfelFMJ9ulb4/EXXt0FV5yVhGST7Oyi2l+nmvsrOc1k+nkd6NTNyZP3b2Xj2iIyMwtb5Ke30rT0HibRpPtLoqm53l+JibHY7VXva12u1snlJZdcgtVaebALL7yw0uMLFy6s7bD1lpubSyAQoE2bNhUeT0tLY+vWreGvL730UpYvX05paSlHHHEETz/9NP3796/XNZvTXy6GlYIP55OWFk9udlH9Y2tOr0mapWDQbF73vkRVsEs3im+4mfi7bifuT9eT/84HNa6r7tEnNHW2vvdIVffXkJGh6feduzvZurGUPTs9tO+kORRSP3oPk2jS/SXR1BLvr1oll1dffXW044gY0zQrdBZ8+umnmzAaEZGWp/Tyq3G+/QaOBV8TM+cdPNPOaJI4uvUKJZdbN5VGJLn8/stcSooCHHNSmjrQioiIREGLTS5TUlKwWq1kZWVVeDwnJ6dSNVNEROrA4aDo/odIPnUKcX/7M96jJ2MmJTd6GD36xLLgs1y+mZ9DfIKVTt2cJCXb6pUYlpYE+PyjLMwgpA+Jo1tPdaAVERGJtBbb7NPhcDBo0CB++OGH8GPBYJCFCxcyfPjwpgtMRKQV8I2bgPusc7Du3UPc3TU39omWXv1cjBqfRHFRgLee380jd2zhq49zDnxiFdatKsYs6z9Uvm2KiIiIRFazTi6Li4tZvXo1q1evBmDHjh2sXr2azMxMAC666CLeeOMN5syZw8aNG7n99ttxu92cdtppTRm2iEirUPR/dxFMSSH2heew//jDgU+IMIvFwolntOOsizsyaHg8hhV++jYPr6f23bGXLy5gwWc5rFleVDYmrFleRE6WL1phi4iIHLSadXK5YsUKTj31VE499VQA7rrrLv6/vbsOk6s82wB+nzMuO+u7ycbdDQghQUJSnFLcg9OiKW1pgQ9KkeIUtzZYcU8CheAQNEAgriQhns26jMs55/vjzBnZnd0dXeP+XVcuktmRd3cPydz7PO/znnDCCXj11VcBAMcccwyuu+46PPzwwzj++OOxfv16PPXUUzk545KI6NdGKSmB67a7AQD2P10BeLtmYvaYiXacen5fjJucB79PxprlzqQeFwzK+N/r1fj0vTqsX+WGwShgxuxCKAqwflXyk22JiIgoOd36KJJp06Zh48aN7d5nzpw5mDNnTietiIjo18V/yunwz38Dpk8/hu2+u+H++81dtpapB+Zj9U9O/PB1E6ZMc3S493LrJi+CgeiUvRFjbKgYoA4GcjlDOV0rERHRr1G3rlwSEVEXEwS4/vUQZJsdlscegn7Vii5byoAhZpT2MWLvLj+aGjsOhxtXq9XJaYcUYNAwCw44tAAWq3p0ltct5XStREREv0YMl0RE1C65X3+4/3ErBEmC/U9XAsGu2a8oCAL69FMrj4317YdLWVawca0bggjMPLIIF8ztj4FDLJFw6XEnv2+TiIiIksNwSUREHfKddyEC0w+EYc0qWB97qMvWkV+o7uZoqm8/4O7c6oOrWcLAIRZYbbrI7Vab+s+e18PKJRERUbYxXBIRUcdEEa77H4ZiNsP6r7ug2/RzlyxDC5eNDW1XLv0+Ge+8VgUAmLhfXtzHLDa2xRIREeUKwyURESVFGjYC7r9dDyEQQN5VlwNS5we0gkIDgPYrlx++XYO66iBGjrNhyjRH3McMBgE6vQCPh22xRERE2cZwSURESfNediWCk6fA8OMPsHRBe2x+UceVy5/XuiGKwAlnlUMU4yfKCoIAq02E1yNBUZQ2noGIiIjSwXBJRETJ0+vhfHQeFLMZtrtvh27N6k59+Y4ql8GgDFezBEehPm6vZSyLVQdFVttniYiIKHsYLomIKCXSyFFw//1mCMEgHFf8AfD7O+21jSYRFpuIpsZQwspjc/iIEi2EJqKFTk6MJSIiyi6GSyIiSpn34ksROOgQ6Nevhe2eOzr1tQsKDQgFFbhdrfd8akeUaIN/ErFYOTGWiIgoFxguiYgodaII58NPQM5zwPLog9B/t6TTXjqy7zLBWZdNDWq7bEFR25VLS6RyyXBJRESUTQyXRESUFrn/ALhuvxuCosAx9xLA5eqU143su2xove8ymcql1crjSIiIiHKB4ZKIiNLmP/0s+I/+LXTbt8F+0w2d8pqRsy4zrFx6eRwJERFRVjFcEhFR+gQBzn89BLmkBJYXnoXx/fdy/pL5GVYutT2XbIslIiLKLoZLIiLKiFJaCudDjwMA8v50OcQ9u3P6era8tiuPWuBsty02UrlkuCQiIsomhksiIspY4PCj4Pn9pRAbGpB3xR8AKXfBzWxR/+nyeeNfQ5YVNDeGYHfooNe3/c8bB/oQERHlBsMlERFlhfvGWxEaNwHGb76C9eH7c/Y60XAZX7l0NoUgy+2fcQnEDPThnksiIqKsYrgkIqLsMJvRPO9ZKFYrrPfcAf3S73PzMhY1HLYMl40N4f2WRW23xAKAxRY+55KVSyIioqxiuCQioqyRRoyE6/Z7IEgSHJdeBKGpMeuvYTQKEMXWeyadTWq4dBR0EC7DlUsP91wSERFlFcMlERFlle+sc+A7/iTodu6A/W9/AhQlq88vCALMFl2rymXAr/7ZbG7/nzadToDJLMLjkqFkeW1ERES/ZgyXRESUXYIA178ehDRgIMwL58P8wn+z/hJmi4hQUEEoFA2YWrg0mjr+p62gSI+AX4bbxeolERFRtjBcEhFR1in5BWj+99NQ9HrYb7gG+lUrsvr8iYb6+P1qFTKZcFlabgQA1FYFsrouIiKiXzOGSyIiyonQ1Glw3/RPCH4/HBeem9X9l4nCZSqVy5JwuKzZG0AgIEceS0REROljuCQiopzx/uFy+H97PHQ7tiFv7mVZ23+ZaGJsNFwKHT6+tE84XFYF8OT9OzHvvh2QpMzXtnm9Gy/+ezfcrlDGz0VERNTTMFwSEVHuCAKcDz6K0JChMH3wHiyPP5KVp41WLqN7JiPh0ph8W+y6lS7U7A2gtjqIdStdGa/rpyVN2LzBg+XfN2f8XERERD0NwyUREeWU4shH89MvQDGbYbvtJui/W5Lxc0bCpSe9ttiiUiMEEXA1R8Ppd180ZryuupogAGDdisyDKhERUU/DcElERDknjZ8A1133qedf/uF8CDU1GT2f2ZqoLVZtazUlES71egFFJYbIny02Ebu3+/DzOnfaa5JlJRIu9+z0o6EumPZzERER9UQMl0RE1Cl8Z50D3xlnQ7e3EnkXnQsE0w9fCdtiA8lXLoFoa6wtT4ejTiwFALz69B6s+jG9ltamhhCkUHTfZjbabImIiHoShksiIuo0zrvvR3DiZBi+/Rq4+uq0nyfhUSS+5Af6ANGhPsNHWzFpPwd+e2oZFAVY8HIVdvziTXlNddXqsSZ9+psAAN9+1oDaah51QkREvx4Ml0RE1HksFjT/9yXIJSXAI4/A9PILaT1NwmmxKVYux03OQ1lfI/Y/uAAAsN+B+TjutDIoMvDGc3vhcUvtP0ELWkvsuEl2TD0oH26XhOcf3w2vJ7XnISIi6qkYLomIqFPJ/QfA+fQLgE4H21//BP1PS1N+jsTTYhXoDQJEMbnKZZ9+Jlx+7SD0G2iO3DZlmgMT9s2DsymEVT86U1pTXY1apSwuM+Dok0oxcpwNzY0hbN3kSel5iIiIeiqGSyIi6nShAw8CHnwQQiAAxwVzIFRVpfT4RG2xAb+cdNWyLYIgYMI+eQCAvbv9KT22tlqtXBaXGSGKAkaMtQIAqivZGktERL8ODJdERNQ1rrgCvrPmQLe3EvkXzgECyYcwrS3WGw6XkqQgFFSSmhTbkfJ+6l7MqsrUwmVddQAQgKJidQptWV917yXDJRER/VowXBIRUdcQBLjveQDBffaFYen3sF9/TdIPbdkWGwykNsynPY58PcxWEdWVAUiS0vEDoA4TamoMIb9AD4NRXVtZeGBQdYohlYiIqKdiuCQioq5jNqP52Zcgl5bB8vwzMD/zZFIPMxgE6HRCpC3W709tmE97BEFAnwoTpJCC+prkjktZsrgBUIDBwy2R2yxWHRwFetTVBhEMyu08moiIqHdguCQioi4l961A07MvQTEaYb/hGhg+/7TDxwiCALNFjITLgF+tMGYjXAJAeYXa0rp3T8dVR2dzCN981gCdTsChRxXHfaysjxGKDNRWpX+mJxERUU/BcElERF0utP80OB94FIIkwXHxedBt3NDhY8wWEVJIQTAoI5DFyiUAlFeE910mMdTno7drEQwo2P+QfBSG91tqyvqGW2P3sjWWiIh6P4ZLIiLqFvynngH3X/4G0dmM/LNPg1Bb2+797Q49AKBqTyAaLo2Z77kE1GNKgPihPrKswOUMxd1vzXInVv/khKNAj0MOL2r1PJGhPns41IeIiHo/hksiIuo2PNfcAN/xJ0G3YxvyzzsT8PnavO/YSXYAwMqlzZFwaTJn55+10j5GiDpg22Yvqir9WPFDMx67czv+deNWbNusnlsZDMp4741qAMAJZ5XDYtW1eh6tcrlpvTsydIiIiKi3YrgkIqLuQxThfPgJBPfdD4al3yPvT1cASuKJreP3yYOoA1Yvc8Lj1iqX2flnzWAQccjhRQgGFPznXzuw8OUq1IWH+6xb6QIA1OwNwOuRMWyUFUNHWhM+T59+JgwcakZ1ZQALX66C0sbnQkRE1BswXBIRUfdisaDpuVch9R8A8/w3YL3v7oR3s9l1GDnOBp9HxpplTgDZ23MJAIccUYQxk+yQJTUknnp+HwDA1k1eAGo7LgD07W9q8zlEUcDpF/ZFQbEea1e4sGt725VYIiKino7hkoiIuh2lrAxNL74O2Z4H2z13wPTmawnvN3FfBwBgy0a1VTWb4VIUBZxybh9c+Mf++P1fBmDc5DwUlRpQszcAlzOEqvAkWW2ybFtsdj0m7aeus4p7L4mIqBdjuCQiom5JGjsOziefhaLTIe+qy2H44vNW9+k/2Bz3Z6MpOwN9NDqdgIFDLdDp1OcdEj7Hctsmb2TYjzZZtj2lfdT71OxluCQiot6L4ZKIiLqtwG+OgOtfD0EIBuG4YA50q1fFfTzPoYPVHh2kk83KZSJDRqh7K7du8qBqdwA6nYDiso7DZVkkXPJIEiIi6r0YLomIqFvznX0u3NdcD9HlRP6ZJ0PcsT3yMUEQIseGALkPl4NHqJXLtStc8LgllPYxRqqa7SkqNUIQgepOqFxyaBAREXUVhksiIur2PFdfC+8550NXXYX8M06CUF8X+VhsuDTlOFza8/SYuF8efF51Om0yLbEAoNcLKC4xwNUsweuRcrY+WVbwwhO78e97d0CSGDKJiKhzMVwSEVH3Jwhw3X0//EccBf3mTcg/5wzAq05t7dMvGvCyvecykcN+WwKDUX2djob5xCrtq943l/suf/y2Cb/87MXe3X78vNads9chIiJKhOGSiIh6Br0ezf95NnIGpuPSiwBJQt9+0aE+uW6LBQBHgT4SMIeNTny+ZSKl5eF9l1W5CZcuZwifvhut6P60pCknr0NERNQWhksiIuo5bDY0vfA6QkOHwfT+u7D/9SoUl+qhN6iVxM4IlwAw7ZAC/N9dw1DeN4XKZXioT3VlbsLl+pUu+H0y9jnAAbtDh80bPGhsCObktYiIiBJhuCQioh5FKSlB02sLIJX3geWl55H3z39g+GgLHAV6WKy6jp8gS0QxtRZcLVzW5qhyqQ0LGj7GhinTHIACrFvhyslrERERJcJwSUREPY48aDCa3ngbcmEhrI8/jPOaXsbcGwZBr8/9nst0FZUYAAD1tbmpJmoV0bK+RvQbqLYKN9azcklERJ2H4ZKIiHokafQYNL06H7LNDsdd/0Te80919ZLaZTSKyMvXo7E+iFAou5NcFUVBVaUfeoOAohID7Hl6AICrOXeTaYmIiFpiuCQioh4rNGVfNL/wKhSTCXn/91eY3nytq5fUrqISAxQl+xVFZ7MEn0dGabkRoijA7lDbg13OUFZfh4iIqD0Ml0RE1KMFDzoEzU8+B0WnQ97cS2H88P2uXlKbiktz0xpbXekHoLbEAoAtLxwuWbkkIqJOxHBJREQ9XuCoY+B8+AkIkgTHxefC8OXirl5SQpF9lzXZDpfafkt1eq3BIMJsEVm5JCKiTsVwSUREvYL/1DPgvOs+CH4/8s85HYZvvurqJbVSFKlcZndibCRchifSAoA9T4eAX4HfL2f1tYiIiNrCcElERL2G78Lfw3XrHRC8XuSffRr03y3p6iXFKSpVw18222JrqwP45WcPgGhbLADYHepQHzerl0RE1EkYLomIqFfxXnolXDfeCsHjRv6ZJ0O/9PuuXlJEUXF222J3bvXiP//agebGEIaPscJRoI98zM59l0RE1Ml6fbj85JNPcOSRR+LII4/EokWLuno5RETUCbxz/wT39f+A6HYh//SToF/2Y1cvCQBgNImwO3RorA9CkjI7jsTnlfDm83sRDCg45IginHlxBQQhes6nVrnkvksiIuosvTpchkIh3HvvvXjppZfw6quv4sEHH0QgkN19LkRE1D15/vRXuP/2fxBdTuSfdiL0K5d39ZIAqEN9ZBmoq8ns36OP3qlFU0MI4ybbMevoIuh0QtzHteNInKxcEhFRJ+nV4XLlypUYNWoUSkpKUFhYiIkTJ+Knn37q6mUREVEn8fz1Orj//FeIzU3IP/V46Fav6uolYcgIKwDgiw/qM3qerZu8AIBjTy2Lq1hq7HnhymVzCIqSWZWUiIgoGd06XC5duhSXXnopDjroIIwaNQqff/55q/u89NJLmD17NiZMmIDTTjsNq1ZF3zhUV1ejvLw88ufy8nJUV1d3ytqJiKgbEAR4rrsRnrl/htjYiIJTjoN+1YouXdKM2YVwFOixdoULWza6034en0eCwSjAatMl/LhWuVy51Il//nUz1q5wpv1aREREydB3fJeu4/F4MGrUKJx00kmYO3duq48vWrQId955J2655RZMmjQJzz33HC6++GJ88MEHKCoqyvp6RLH1T4a7krae7rYu6h14fVEude71JcD7j1sgyBIsjz2M/JN/B+fr8xHad2onvHZrFosOR51Qitf/W4mfvm3GiDH2hPdTFCVhRRIAZFmBzysjL1/f5tfQka8OD2puVPdcfvpuHcZOymvVPttb8e8wyiVeX5RLPfn66tbhcubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CGVlZaiqqorcv6qqCgcddFBaa9HrRRQXJ34D0NUKC21dvQTqxXh9US516vX1yINAQR7E229H/inHA4sWAWn+m5Cp8ZMNeB2V8PvQ6t8WRVHw4rzt2LTehb/fPRZGU+smI487BEVRW1/b+rfJqDfF/bm+Nohtm4LY/8Ds//C1O+PfYZRLvL4ol3ri9dWtw2V7AoEA1q5di8suuyxymyiKmDFjBlasWAEAmDhxIjZs2IDa2lrodDqsXLkSt99+e1qvFwrJaG72ZmPpWSOKAgoLbWhocEOWuZ+GsovXF+VSl11ff74OFlmE9c5/QjnySDS/+DpCh7T9Q8xc8QdkAICzOYC6Olfcx378phHffanux/x5Qz369je3enxDnXqUicEotHq8JvbrOmaiHetXufDBwj0YNtqY8P69Df8Oo1zi9UW51F2vL4fDAoMh8VYMTY8Nlw0NDZAkCSUlJXG3FxcXY/v27QAAg8GAv/71rzjrrLMAAH/6059gMplaPVeyutM3N5YsK912bdTz8fqiXOqK68v9579BNhhhv/VGOM46BU3/fRnB2Yd16hr0BkAQAa9Hivv8mxqCWDS/JvLn5sYQyitaf33cLrXV1WIV2/36GU0iAn4ZvzujDLu2+1BVGUAoJPfIVqt08e8wyiVeX5RLPfH66rHhsi0t96gcccQROOKII7pwRURE1N14r7wKitmEvOuvQf65Z6D56RcQOPLoTnt9QRBgserg9chxt69Z7kIoGH0j4WxOfEalz6s+zmxp/yfIl/5tICRJgcWqg92hg7MpBI9bikySJSIiyqZuPS22PYWFhdDpdKitrY27vb6+vlU1k4iIqCXfxZfC+a+HgGAQjgvOhvF/Czv19S0WEaGggmAgGjDXrVRbXPed7gDQ9hmVXo96u8Xa/j/jRSUGlJarbbA2uxpE3S6ee0lERLnRY8Ol0WjEuHHj8O2330Zuk2UZS5YsweTJk7tuYURE1GP4zr0AzoceB2QZjt+fD/ML/+2017ZY1bDnDVchmxqD2L3dh4IiPUaMVYc4uNqoXGoVT+05khEJl06GSyIiyo1u3RfjdruxY8eOyJ937dqF9evXo6SkBKWlpbjgggtwzTXXYNy4cZg4cSKee+45+Hw+nHjiiV24aiIi6kn8Z5wNxWaD47KLkXf1HyE0NMD7xz/n/HXN4aqjzyPBka/HhlXqmZdjJtlhd6j/PLfZFhuuXJo7qFzGsoVbYVm5JCKiXOnW4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp57KyRmXRETUewWOOwFNjnzkn3cW7LfdBLGhHu5/3Aq0cc5kNkQql+Eq5OYN4XA5wY48h/oxV1NbbbHhymUHey5jsXJJRES51q3D5bRp07Bx48Z27zNnzhzMmTOnk1ZERES9VXDmLDS+9Q7yzzoF1scegtDYANe9DwL63PxTqe2X1PZPNtSqx4uUV5ig06uhtq3Kpdeb3J7LWNE9l4mfk4iIKFM9ds8lERFRtoX2nYrGtz+A1KcvLC89D8fvzwd8vpy8VmzlUlEUNDWGYLaIMJlF6PUCrDYdXM0SFKX1GHpfuHJpTmXPZR4H+hARUW4xXBIREcWQRo9B47sfITR0GEzvvYP8s0+F4HJm/XXMlmjl0uuREQwoyC+MVkntDh0kSWl1XIn2GCDNyiXbYomIKEcYLomIiFqQBw5C4zsfIjh+IoxffYH83x0NcW9lVl9Dq1z6vDKaGtRWVUdBNFzmhYf6JJoY603ynMtYrFwSEVGuMVwSEREloJSVoWnhewgcPBOGNatQcMxh0G3ckLXnj91z2dSo7rfMLzREPm4PD/VJdNZlZFqsJZ09lwyXRESUGwyXREREbVAc+Wh65S34Tjkdul07UfDbI2D49uusPHd0z6WE5nDlMj/ZyqVHhsksQqdLfpqtXi/CbBHZFktERDnDcElERNQeoxHOx+bB/ae/QmxqRP5pJ8C04M2Mn9YcqVxG22Jj91zm5UfPuty41oWnH9qJTevckGUFfp+cUtVSY7PrEPDLCAZa7+MkIiLKVLc+ioSIiKhbEAR4rv8H5H79Yb/2L3BcciFcu3fDe8Uf0z4LM7LnsoO22C8/qkfAr06MXbvCiX6DzOrjbcnvt9TY8nSoqwnC7ZZQYOTPl4mIKLv4LwsREVGSfOddiObnX4FitcJ+642wX/83QEqvzdSSoHIZO9Cn3yAzTGYxEiwB9aUik2LTrFwCmU2MdTlDCLDySURECbBySURElILAEUejccF7yD/7VFiengdx9y40P/4UYLen9Dx6vQiDUYDXKyEUUgAhPlwWFBpw7R1DAQBVe/z4z792IuCXI0eTpHLGpcZmV58/maE+2vmaQkxldvUyJxa+VIUhIyyYc2m/lF+fiIh6N1YuiYiIUhSasi8a3vsEoWHDYfpgEQqPOxLi7l0pP4/ZooPXLcPZFEKeQ9dqQI8oChBFAYZwC2swqEQmxaZyxqUmchyJU0IwKGPTOjeCwdZVSFlW8NhdO/DaM9HjV9avcuGt5/dCkhTs3OaLhE8iIiINwyUREVEa5CFD0fj+pwgcPBP6tatReMSh0P+0NKXn0AKiogD5BYY272cwqqEzGJDh96th0GROP1w6m0NYtqQZL83bg3/fswM+b3wls742iNqqAH5e6460wP681h35uN8no7mx9RRbIiL6dWO4JCIiSpNSUIimV+fDe+6FEGuqUXDCMSlNko0NiEWlbYdLo1a5DCgIaOHSlPo/4do02qaGIKoq/QCAupog3vjv3rj7VVcGAACyDFTuUu/ncqphsu8AU9x9iIiINAyXREREmTAY4Lr3AbhuuwsIBuG45EJY775dLUd2YPBwC0QdMOUABw7/XUnbLxEOl4GAHBnwY0wjXBaEp9E21YfiKo/bNnshy9H1VoeDJwDs2uYDADib1erm0BFW9T57GS6JiCgeB/oQERFlShDg/cPlkIYNR97vL4Dtvruh27wJzoefACyWNh/2m2NLMPuY4rihOYnodIAgxlcujWkcJZJfpP6z39gQDZbFpQb1eBKnBFueDooSHxx3b1fDpas5BFEEBg234JvPGlCz1w8iIqJYDJdERERZEvjNEWhc9Any55wO89vzoduxDc3/fRly34o2H9NRsNTuYzSKCAbkyB5Igyn18zXNZh3MFhFNDeq5mmaLiLIKE+pqgmisD+L5J3bDlqeDK1ylhADs2u6DLCtwOyXYHXqU9zUCYOWSiIhaY1ssERFRFkmjx6Dhg88QnDYdhuXLUHD4TOi//y7j5zUYhXDlMtwWm0blElD3XQYDCoIBBQVFBhSE92Hu2OpDzd4Atm3yorYqALtDh/K+RjQ3hrB3tx+KAtgdOjgK9DCZRdTsDcS10uaSoihYu8KJmioGWiKi7ozhkoiIKMuUkhI0vvU/eM+9ELrqKhSceAzMzz6V1D7MthiMIiRJiUx2TWfPJQAUFEUHB+UX6iNDfrZscMfdr6yPEf0GmQEAG9eoH8tz6CEIAkrLjQgGFDQ1dM7E2HUrXXjjv3vx2J3b8dqzlZAkHoNCRNQdMVwSERHlgtEI178ehPO+hwFBQN61f4H9L3MBf3p7FQ0GtQ3W5dTCZeptsUB0YiygBs388JCf7Vt8cfcr62tCnwp1MuwvP3sAAPbwUSZlFca423Ptl43q6xiMAtavdGHp140AgG2bPbjr+i1Yt9LVKesgIqL2MVwSERHlkO+c89G4cBGk8j6wvPQ8Ck44GmLlnpSfR2uDdbsyq1xqYRIACor0KAgP+dGqgVr47NPPhNI+aojUhvrYHerHpkxzAAC+/KgeoZCc1jpSsW2LFwBwxkV9IYjA5+/Xo7kxhEVv1cDnkbH8+6acr4GIiDrGcElERJRjoanT0PjJlwhOnQbDTz+i8LBDoP9uSUrPYTCqlUp3+LzJdPdcamFS/b0hLmwCwKnn98Vxp5dhwr55KAsP75HD+dHuUCuXAwZbMHKcDU0NIXzxYT38/twFTGdzCHXVQRSXGjBslA3TDi6A3yfjsbu2R87a3LrJi2Aw9yGXiIjax3BJRETUCeTyPmhc8B68514IsaYaBScdC/PT85Leh2nIQeUyv1APi1WMtNiKItC3vwn7Ts+HTifAZtfDatNF7m/PiwZT9QgV4KuPG/DQP7ehoS6Y1no6sj1ctRw83BJ53bGT7PD71DBZXGZAKKhgxy/enLw+ERElj+GSiIios7Tch/l/f0XepRdCcDk7fKhWuZQl7anS23PZsnIpCEIkcBaVGKDTxT+v1hoLAHmOaNDs08+E86/sj6EjLfC4JKz4oTmt9XREC5eDwuHSaBJx6vl9cPqFfXHKuX0w/dBCAMDmDZ2z/zMdjQ1BbF7v7viOREQ9HMMlERFRJ/Odcz4a//chpP4DYF7wFgqOOBS6DevbfUxsG6wgAHpDeuHSZtfBZBZhsaq/gOg+y5JyY6v7a62xQHTPpWbQMAuOPbUMALB2RW6G6mgVyUHDLJHbBEHAmIl2jN8nD8NHWwEAm9d333D5zitVePE/e1Bfy6NUiKh3Y7gkIiLqAqF99kPDJ1/Cf9gR0G/ehMKjZsH0+itt3t8QU6k0mkQIQnrhUhAEnH5hX5x2Qd/IcxSEK5eJwmVs5VKbFhuruNSI8gojaqsCqK5MbxJuWyRJQU1VAFa7DvkFhoT3UfeN6lGzN9Apw4VSFQzK2P6LOhCptjo3rcNERN0FwyUREVEXUYqK0fzi63DdcBPg88Fx5SWwX30V4PO1uq8hpnKZ7jEkmqEjrRgywhr5c//B6nmWg2Oqg5rScOA0mcW4NcQaNzkPABIeCeJyhvDh2zV447lKBAOphb/a6gBkCSjv2zr0xtIqqh5X9wmXWzd58NmiOuzc6oMUUvfVNtYzXBJR78ZwSURE1JVEEd6rrkbTW/+DXFoGywvPouDYwyFu/SXubrF7LNOdFNuWifvl4U83DcbwMbZWHyvra4IgxO/VbGn0BPVxWzfFD9VxuyQ8esd2LPm8EWuXu/DLptRaV6v3BCJraI/Nrou8XndQVenHy0/uwZcf1eODBTWR25vqQ124KiKi3GO4JCIi6gaCBx6Mhs++RmDGQTCsXonCww6B6e35kY/HVy6z+8+3KAqR1tiWbHYdTr+oL353Rnmbj88vUh/rcceHu5qqAHxeGWJ4ubu2ta7Itqcq3GZbXtF+5VKbaOtxd314CwZlvPp0JYIBtVqpHZcCqIN9iIh6M4ZLIiKibkIu74OmN9+B549/gehshuP358P+l7mA291qz2VnGj3ejn4DzW1+3GgUIOpah8vmRjVMDR2ltuDuTDFcasGsJ1Uud+/wo6E2iMHDLeg3UF23EP52NbJySUS9HMMlERFRd6LXw/33m9H4+kK1TfbF51B4xEwU7twQuYshzWNIckUQBFhtOng9EpSYczudTWrYGzbKCqNJxO7tPkhScud6AkDVHj8gAGV9OqhchsOlpxuEy7pqNRAPGmbBjNnqMSlDR1ohikATK5dE1MsxXBIREXVDwUNno37xEgRmHwb9pp8x7erjMHPja4CidHrlMhkWqw6yBAT80fDY3KhW6vIL9eg3yIRgQIlrE22PzyehqSGEwmJDh59vd6pc1tWoAbKo1ICxk+w48exyHHtKKRyFeriaJQSD3WfoEBFRtnW/f52IiIgIAKCUlqLp5TfhuuUOQJFx2k/34JIvr0ZesKmrl9aKdmam1xMNeM1Narh05BswYLA6iXbXNm/rBydQuTO837KDSbFA96pc1teo4bm41AhBEDBpqgNFJUYUhPelNjWwNZaIei+GSyIiou5MFOG97Eqsf/I9VNsHYOLuL3DyvcfB8M1XXb2yONGhOtGA5wxXLvMKdJHjTtaudEGWE7fGupwhzLt/B775rAGfvlsHABg+uvUE25YilUt314dLrXJZXBo/IKmgUJ22y9ZYIurNGC6JiIh6gOCEybjr6Jfw/eBjYWusQv5Jv4XttpuBQHJtprlmsaoBr2XlUhAAe54eQ4ZbUFxmwLZNXnz8Tm3C59j6sxd7dvjx8Tu12LXdh4oBJuwz3dHha0eCbRdXLmVZQX1NEFa7LvL10GiVSw71IaLejOGSiIioBzAaRfgNNjw/41b8cNkDUGx2WB++H4VHzoJu/bquXh4s4YDndat7CmVZgbM5BLtDB51OgMEo4uw/VMBiE7FkcSPqa1uH4vq6aFVP1AHHnV4GUex4eFF32XPZ1BCCJCmtqpYAkF+ohUtWLomo92K4JCIi6gFiJ8RWzT4JDYu/RWD6gdCvXY3CI2bC8sSjgNx1w2Ks4T2XnnDl0u2UoMhAXr4+cp+iEiPGTrQDAGqrWoeshnDgPOXcPrjy/wajb/+2jz+JZTSJ0BuELq9capNiE4XLgiKtLZaVSyLqvRguiYiIegCDMfpPttEkQh44CE3z34XrptsARYH9puuRf8rvIO7a2SXri1Yu1YAXHeajj7tftD20dbisr1VvqxhoQlFJ64DWHptdB69HTumok2yrq9X2W7YeQmR3qF8Hl7Pr94USEeUKwyUREVEPYIypXBq1oKnTwXvFH9Hw0RcIjR0P49dfonDmdJhefwVQOjdkRfdcqtVTpxYuC1ILl4IYbSFNhTYxNnbPZ2eLVC7LWq/fnhdu3XWycklEvRfDJRERUQ+gNwhAOF+2PPdRGjsODR9+Ds/cP0NwOeG48hI4Lj4PQl1dp61PO4pEmxarnXGZ17JyWaz+uaHFYJtAQIarWUJBoQE6Xcf7LFuy2bp+32X1Xi1ctq5cmi0iRF3X7wslIsolhksiIqIeQBAEGAxq6DKaEoQvkwnuG29B09vvQxo4CKb/LUTRwfvD+L+FnbI+bWKrVjlMtS22ITzMJ9V22Mjrd/FZl4qioHKnH3qDgJIE4VIQBNjserhdUptHsSSjqtKPR+7YhvWrXJksl4goJxguiYiIeght32XLymWs4AEz0PD5N/Cecz7E2hrkX3Qu8i4+D0JNTU7X1nJarNYW27Jyac/TQW8QWoXL+vD5kIVphsuunhhbXxuE3yejTz9Tm5VXW54OihxtHU7HmmVO1FUHsfDlKk6eJaJuh+GSiIioh9D2XRqN7f/zreQ54LrvYTS+8TakAQNhfmcBig7ZH6aFb+VsL6alxbRYZ7P635bhUhAEFBTq4XXL8PuiIaunVy737PQDACoGmNq8jz28xvraAF6atxs/r3Wn/Dq7tvkAAH6fjLdfqUpjpUREucNwSURE1ENolUtDorbYBIIzZ6HhiyXwnn8RxLo6OP5wARwXngOhujr7azOIMBiFSFusqzlcuXToWt03UWusNim2sDi9cGnPU0Oss7lrBuZU7lRDX8WAto9PsYWH+qz+yYlN6zxYNL86pRZZWVawe4cPBqOA/EI9tm7yRva4dmTFD81Yt5KttESUWwyXREREPURpHyOsdl2kBTQZij0PrnseQOP8dyENHAzTe++g6OCpML31etarmBarDj6PDFlW4GqWoDcIMJlbv9XQwmVDTLhsCIfLogRnRCYjv7Brz5Hcs0utXPZtp3JpCwfgHVvVINpYF8LGNclXL6v3BhDwK+g3yIz+g9UQW7XH3+HjAn61yjn/xb3weiR881kDXntmD956YW/S4ZSIKBkMl0RERD3EKef2wVU3DoZen/o/38GDDkH94m/hufgSiA0NcFx2MRznnJ7VczEtVhGKok6M9bgl2PN0EITWVVZtYmxjXTQIZlq5LCjqunApy+owH4Mx8TAfjfZDgard0UD43ReNSb/OrnAo7T/IjPIKNcRW7Ql0+Lja6gAUBQgFFbz3RjU+fqcW61e5sfonJzavT701l4ioLQyXREREPYQoCjC1M8ynQ3Y73Hfci8a330doyFCYPvoARQftD8t/HgOkzCtY2sTY2io18Ngd+oT3a9kWK0kKGhuCsDt0He4nbYujwAAIic/PzLXKXf4Oh/kA0bMutYKx2SJi+xYv6mraD4h7d/vx6J3b8eXH9QCAAYPNKK9QQ2xVZceVy5q90edfs1xtjdUeH/B37nmoRNS7MVwSERH9ygSnH4iGxUvg/tNfgYAf9hv/DwVHz4Z+9cqMntdiDVfmKrVwmbh911EQ3h8Znijb1BCEIqc/zAcA9HoBeQ4dmptCkKTODUxffKiGvon75bV7v9h2ZkEEpkxzAAC2bPBEbnc2h+L2YSqKgvfn16C2KhA5O7T/YDP6aJXL3amFS0Btr568v/ragUD6k2uJiFpiuCQiIvo1sljguf4faPj0awT3nQrDiuUoOOJQ2G66AXCn1yqp7XvUJppqQ3Za0vZhasFGO4Ykk3Cpvr4Bity5Q3127/Dh57VuOAr0mDItv9372mK+HgWFBowcZwMAbA6Hy+2/eHH/TVuxZHFj5H4/r3Vj+xYvSvsYccTxJTju9DLY7Ho4CvQwW0RU7w10OBSoJlxJnnpQPgQROOJ3JZHjbIIMl0SURQyXREREv2LSmLFofO9jOO+6D4rVBusTj6DokGkwfvpRys9VHN5vuG2zGpa0NtCWtNZXrSWzvk4747Lt/YrJKNCG+tR3XrjUqpaHHF4Evb79Kb62mK9HUakBA4aYYTAK2LbZg1BIwYrvm6EowPYt3sj9vvqkAQBw+HElmDGrEPtOVwOsIAgorzAhFFQi4bwtWuXysN+W4IZ7hmPEWFv0exBgWywRZQ/DJRER0a+dKMJ34e/R8PUP8B/7O+h27kD+macg75ILIFQlf5ZiSbkaDp1Nic+41GhVs4BfrZpFJsVmWrnU9nI2dM6+S61qmV+ox+Rwi2t7Yttii0sN0OtFDB5uQcCvYPsWD9avVvdDanswFUVB1R4/TGYRI8ZaWz2ftm9ybzsTY4MBGQ11QeQX6mEyi5EArB1nw8olEWUTwyUREREBAOS+FWh+9kU0PfcKpL4VMC94C0Uz9oXlySeAUMfVwJKy+HDYduVSDTaRttgshcvOrlwu/qAOAHBwElVLANDpBFis6lsv7XMdPlptjX1/fi18nmjYliQFbpeEYEBBYYkh4dTdvv3V40g2r/e0+pimriYIRQFKy+Orwi2rx0RE2cBwSURERHECRx+Lhm+WwnPJ5RA8bthvuBaFhx0C/XdL2n2cza6D2RJ9a9HWtFi9QYAgxLTFZngMiaajyqUsK6iq9Gdl4E9jQxCb1nnUquX+HVctNdq+y6JSNeyNm2KHo0AfmbAriIAsq1NvGzr4uoyZZIPRJGDNcmeb51VqLbGlfeLDpcHYvSqXWzd5sGRxA5qbuuacUiLKDoZLIiIiakWx58H9z7vQ8OnXCBwwA/p1a1D4uyORN/dSCNXVCR8jCPHnPLY1LVYQBBhNIgJ+GYqioKEuCLNVjBxlkq72KpeSpGD+i3vxxN078MAtW/HjN00pPfeenT6892Y1vB41xNWGQ9uQEZakqpaawmI9BAEoC4c9e54eF/9pAPr0N8Fq12HsRDsAoK46iIa69sOl2azDpKkOhIIKln/fnPA+WottcVnLcBk/VKkruV0SXnmqEh8urMUDt2zFpnU8e5Oop2K4JCIiojZJY8eh6e330fzYPMilZTC/9jKKZuwL81P/TtgqW1IeDUI2e+LKJaBWzoIBGc4mCaGggqIMq5ZA+5XL996oxpplLpgtIlxOCR+9UwtFSb6CuWRxI5Z+3YRP3q0FANRprbylqQ0hOubkMpxzWb/IWZ+AejTLH/4yAH/+x2BUDFRbXetqApFw2d7XZupB6oCfLz6sw4KX9raalOtqVsOwo8X+V2Okctn1bbFffVyPgF9GSbkRigz89F1qwZ+Iug+GSyIiImqfIMB/6hmoX/ITPH+4DILLibzrr0Hh4TOh//67uLtqFTKLTWy3omc0iZBloLZaraxl2hILACaTCItNRGN9CKFQNDTJsoIVPzTDZBZx6d8GomKACQG/jKbG5FswtQrgT0uasXuHLzKhtbg0tXUXFhswdGTr4TyiKMBgFFEc3rcaV7ksaTukl/Ux4cDZhZBCwMqlTiz9Oj6YuZzq59iyiqxVLru6LbapIYilXzfBaBJw9h8qIIjqUTapBH8i6j4YLomIiCgpiiMf7tvuVs/GnDYd+rWrUXjcEci7/PcQK/cAQKQtNq+N/ZYabWJsU7jKaGtj+E+q+g8yQwop2LPDF7nN55Uhy0BBkR4FRYZIS2pNZSCp51QUBXXV4WqoAny2qA71tepjizI8PqWlknAltLYmkPRe1MN/V4KL/zwAQPwxJkC0ctnyzNHuchTJLz97IUkKpkzLR2GxAX0qTHA1S2jsxONkiCh7GC6JiIgoJdK48Wh85wM0P/oftVX2zddQNH0fWP91F/oWSRAE9RzH9mhtmc3hY0tM5uy8JRk0zAIA2LY5GrI8LvU1tKNAyvqaAADVe5MLlx63BL9PRllfI0xmEdu3eFFdqYXLzCuusQqKDRBErXIZgiAC+YUdv0Z5hRFmq4hd230IhaLVSK1y2TK8d5eBPlpI79NPDdUDhqhtwbu2+dp8DBF1XwyXRERElDpBgP+0M1H//XJ4/vgXIBSC7Z47MPS46fjLqB9wzEml7T5cq5w5w62pZkt2KpeDh6stp1s3R4/ncIcnqVrD4VKbnFpd2fb5kLG0qmVJuREDh5oRCipoagjB7tBlLRRr9HoBhcUGOJtCcDaFkF+oh07X8cAgURQwcIgFUkjB7h3q56UoClxOCVabrtVziKIAvUHo8splXU383tX+g9VwuXObt83HEFH31evD5R//+EdMnToVf/7zn7t6KURERL2OYs+D++83o/6bH+H/7fHQ7d6Fof+4DAPPOhr6ZT+2+TitLVY7eiL2CJNM9O1vgtEkYOcvXkjhfZda5VKbRhtpi02yclkXs79Sq4wC2a9aavabkR/5fSp7UbW1aa2xfp+MUFBpc2qvNlSpK7XcuzpgsPo5sHJJ1DP1+nB59tln4+677+7qZRAREfVq8qDBaH7mBTQuXITg+Ikw/PgDCo+ajbwr/hDZjxnLaNLaYrMbLnU6tYIXCCjYsVWtXrpbtMU6CvQwmUXUVAUgyx1X7iLHeZQa48JlcYqTYpN1wMyCyOukFC6Hqo/ZEQ6X0f2WicOl0SgiGFCS+hrkgqIoqKsJwGgSI9+bgiI97A4d9u72w+/PbfBVFAWL3qrG689W4oevG7Ny/inRr12vD5fTpk2DzWbr6mUQERH9KgRnHITGj7+A84FHIZeUwvzGq+p+zLtvh+ByRu5naNUWm723JINHqCHr3Tf3IBiUo5XLcIARBAGlfYwIBpSkBsdEWzcN6NvfHNmv2NG+0nSJooCT5pRj3BQ79p2e3/EDwvoOMMFgFLAzPG1VO5bE3sZwJYNB/TxCwa4JVa5mCcGAguJSAwRBXYsgCBg8zAJZbj2cKNuaGkP44asmrFvpwqI3a7B5A8/XJMpUl4bLpUuX4tJLL8VBBx2EUaNG4fPPP291n5deegmzZ8/GhAkTcNppp2HVqlVdsFIiIiJKmk4H39nnqvsx5/5Z3Y95390o2n8yzM88CQSDkbZYraqYrT2XALDv9HyUVxixYY0TC16qalW5BICyvmrVMXaqbFvqYyqXer2A/oPM4T/nJlwC6hCfU8/ri37hcy+TodMJKC03wu+T0dwUgsvZfuXSYNImxnZNa6x2VmjLr+PQUeq+2V82elo9JpucLY6i2bMjuT24RNS29ueE55jH48GoUaNw0kknYe7cua0+vmjRItx555245ZZbMGnSJDz33HO4+OKL8cEHH6CoqAgAcPzxxyd87vnz50Ony94/VID6k8TuRFtPd1sX9Q68viiXeH39SuTnw3vTrfBfcBGsd94G45uvIe+6q2Gd9ziGHPdXfKNMBcIVK4tVl7XrwWbX44K5A/DI7duwdrkTYyfZAajHcWivMWKMDcuWNOPDhTUYMsKKvPzEb4lkWUF9TRBmiwh7ng6CIOCQI4pgsTZhxBh7t7uGS/sYsWenH3XVQbjD4TIv35BwndpQJSnUNf8vNmjhsswY9/rDR6sdZ7/87MnpupzhtuEBQ8zYudWHyl3+pF+vq/8OW7akCSaziHFT8lJ6nKIokSoxdV9dfX1lokvD5cyZMzFz5sw2P/7ss8/i9NNPx8knnwwAuOWWW7B48WIsWLAAF110EQDg7bff7pS16vUiiovtnfJaqSosZNsv5Q6vL8olXl+/EsXjgNdfAVZcC1x7LXQffYTpD12G8uIJWDjlKmwpm4KKijzk5WevElhcDPQbaMHP61zYu1utPPbrn4fiYrVl9pDf2LHzlwC+XVyH9+fX4rK/Dk/4PA11AQSDCioGWlBSor6RL55hx/4zyrO21mwaPDQPK5c64XEKkEJqeOxbYUv4HsZmNwDwwmoxR74unaWxIYDmBrUdd9CQvLj1FRcDZX32oLrSD71oSuoolnRIQbUyOmnfQuzeXomqPYGU3+t1xd9hH72zF2+/VgWjScSBs/okNU0YAL7/qg7zX96NC68cglHjUgul1DV64r+RXRou2xMIBLB27VpcdtllkdtEUcSMGTOwYsWKTl9PKCSjubl7jcUWRQGFhTY0NLi7bDM+9V68viiXeH39Sg0YDrz8FgyLPwP+dj2Gbl2Nv3xyMVb1mwn/ynsRGDcmay8ligJKy034eZ0rMpAnEPSjrk6K3Oc3xxVi6Tf12LLRhbo6V8Ln+eVnNYDkF+ravE93YnOo/922xYlQeFouxFDCtQuC2g5bU+OCySq1+niuVO3x4/G7t0MJL89kkVutb/BwM6r3+vHjdzWYvL8jJ+vYu0fdY2mxKSjtY0TVngC2bW1EXht7VGN11d9ha5Y78fZrlQCAgF/GhrX16NPPlNRjf/quDq7mEJ58cAsu+etAFJVkdyCV26m2YpdXJLcealt3/TfS4bDAYGi/M7TbhsuGhgZIkoSSkpK424uLi7F9+/akn+cPf/gDVq1aBa/Xi0MOOQTz5s3D6NGj01pTd/rmxpLlrpv0Rr0fry/KJV5fv07+Q2Zh9aMfYMdt/8Vxqx7HxN1fQJl1AHxnnQPP1ddC7tc/K69T2idmv6IAmCxi3PWm0wmw5+vRUBuE3y/BYGg9iqK2Sg2mRSWGHnGtFpepVb7qvf7I0CSrXUy4dn14oI/fJ3fq51a5yxcJlnqDgKLS1l/bAUMt+OHrJuzZ6cPE/XJTZWtqVNty7Q49+vQzoWpPAGtXOCEKAvaZ7kiqJbEz/w4LBGR8sKAGADBwqBk7fvFh5zZvZP9wR2qr1WvZ65Hx7uvVmHNpv6ytTZIUPPvoLtTsDeCCuf0xcGjnVsJ7q574b2S3DZdtSbVXfN68eTlcDREREaXDaNFh6ZBjsHzgb3D4jrdwzPqnYXnxOZhffwXe8y6E549XQynPrPW0rE+0gmJtY09nnkOHhtogXM0SCotbh8vYY0h6goIiA3R6ATV7A3AUqG/z7HmJ3+4Zu2igjzZgaZ/pDkw7uAAWa+tKSGGRGpIbG4I5W0dzeKCPo0CPvv3NWLnUiUVvquHNbBUxPsX9jLn27WcNaG4MYewkO8bvk4cdv1Rizw5fUhOFFUVBfa06SEtRlMhE4Wztv1z+fTOqK9X/Vxa+UoXL/jYw8sMN+nXptt/1wsJC6HQ61NbWxt1eX1/fqppJREREPYv2xjOkM2HptPNQv3QV3H/5GxSDEdYn/43iaZNg++dNEOrr0n6N0thwaU/cyqW1QLqaEx9Joh1DolUEuzudTkBJmQFej4zaqiBEHWCxJn67p30Pgv72KyPfft6An9dl75gOj1sNlwOHWNpsocwvUr8vTUkcFZMuZ5M28EiHvgPi17F+ZfdqgVYUBd992QhRBxz+uxL0G6iud/fO5CbcOmOOfSnto04UbmrMztfW75fx+SL1/9O+/U2orwliyeLGrDx3b7T9Fy8evm0bfl7bO4++6bbh0mg0Yty4cfj2228jt8myjCVLlmDy5MldtzAiIiLKmFY1AwCTRQclvwCe625E/dJV8Fw2F5BlWB95AEVTJ8F6750QnM0pv0ZpmUkbRht3DEks7QxIbXJoS1rlMldnWuZCSblaZZUkBX37m9usTmnnXLZXuWyoC+Kjt2vx8rw9+PbzhqysTwuXbQV+QP1+6fRCziqXiqKguSkEq00HvV5E3/4mFBYbMHKcDQajgJ/XuRHsoiNaEmlqCMHnkdGnn7pOR4Eetjwdqvf4k1pn9DgdQ6Sir1UaA34ZO37xIhRK7/Pd8YsXbpeEMRNtOO70MgC5P6O0p/J6JLz1/F7U1wbxv9er4Pd1n2ssW7o0XLrdbqxfvx7r168HAOzatQvr169HTY3aknDBBRfg1VdfxYIFC7BlyxbcfPPN8Pl8OPHEE7ty2URERJQhoykaeMyW6NsRpaQE7ltuR/0PK+G94GIIPi9s996Jov0mwPLwA4A7+Z/2G4xipDW07cqlenuiyqUkKWioDcKWp4PZnN3jzXKprK8aHgpLDDj1/D5t3k8L+MFA25XLpphw99Hbtdi6KfOzJz3htlirre2vqSgKyC/Uw+uWEfBn/w24xy1DCimR68NoFDH3hkE48+K+GDHGhmBAwZYcn7OZiqpKtUJZHv7eCoKAfgPNkGVg7+6Oq5daBb6o1IjyCvWHD9V71Me992Y1nnl4F/5141Ys+64p5bU5m9T/d8r6mlDW1whBjK43m3Zt82HPzo7Ppe3OPlxYg+bGEAxGAc4mCYveqsaenWqLcm/RpeFyzZo1OOGEE3DCCScAAG677TaccMIJePXVVwEAxxxzDK677jo8/PDDOP7447F+/Xo89dRTkTMuiYiIqGcyxuzHig2XGrlPX7juvh/1S5bBe9Y5EJqaYL/tJhTvPwmW/zwGeJJ746/tlbTaEr/liVYuW4fLpoYgZFmt9vQk+0534NCjinDB3P4oaOcYD4Ox48plczg4aEFw+fepV5Bb8rjV12urmqwpKAy3xjZkvzVWC0R5+dE1iKIAQRAwJnwu6rpu1BpbvUetMsYO76kIt/ImEy7rtfbuUkPkhw9VlQG4XRLWLHNBpxfg88r47ovGlNemVf3zHHro9SJKyoxwNUtwu7L3ffP5JPz3sV147ZnKrD1nZ/P7Zaz6yQmzVcTv/zwARpOAlUudmHffTiz7LvP/r7qLLg2X06ZNw8aNG1v9mjt3buQ+c+bMweeff441a9bgjTfewMSJE7twxURERJQNsW2xZnPbb0fkgYPgevAxNHyzFL6TToFQWwP7jf+H4v0mwPLYw4Cr/QCgBUObPfFQm7z8cLhsim+LlSQFddXaG/KeMcxHY8/T49CjiuHIb39uoxbw26tcal+XAw4tgNEkYN1KF3y+zI4tibTFtlO5BBA53zJRa2xzUygykCcdWmhO9DUaMdYKQQS2bPR0m4pS9V41XMbuUS0qCX99ktiXWlcbbe+OVC4r/Vi5tBmSpGDf6Q7Y8nSorQpEj7BJklb1t4eDenk4AG/b7MVbL+zF7h2ZVxs3rnEjFFTQ1BCCJHWP70mqtv7sgSwBI8bYUNbXhAuvGoCpB6nDmFYvc3bx6rKn2+65JCIiot4rvi2245ZTadgIOP/9DBoWL4HvhJMg1NXCfsvfUTx1AiwP3w/BlfjNWcUA9TiStqqPidpi9+7x48Fbt+LVcJWkp1UukxWpXLbTdqoFuOJSA8ZOykMoqGDdiswqem6XBJ1eiLsGEskvTDzUR5YVPP3gTjzzyM601xA7KbYls1mHfgPMcDsl1FblblptR2RZweIP6rD4gzpUhVtYYyuX+SlM1I1WLo2w5+lhtetQUxXAj9+obbD7zshHeYUJshw9siRZkSpwuAtAC8Bv/HcvVv/kxIKXqlo9RvsBQ7LWLo9ecy5n7oY85dKm8FCsEWOsAIA+FSYcfVIpbHk6bN/iTflr0l0xXBIREVGn0+kEiOF3IYnaYtsijRkL57z/ouGrH+A75XQIDQ2w33YzivYZB+t9d0Noaoy7/5QDHDjvin6YsG/iYyVatsXu3ePHfx/dBWeTBClcwSnrpYfCRyuXbYdL7eviyNdj8jQHAOCrTxrg86b3RliWFXjdEqw2XYfHYBS0EZ52b/ehqSGExrpQ2seoRNtiE1d3h4xUz2nU9ph+90UDHr97O7yezgkAkqTgrRf2YvEH9Vj8QT2qKwOw2XVxx8oUtBG+W5Jl9RgSs1WMVIvL+hohS0B9bRCDh1tQ3tcUqThqezGTFdsWCwBlFW1X+r0eCQte2ot7bvgFi96qTqoy7PNK2LIh2gbvamP4VnemKAo2rfcAAjBstC1yuygKGD3eBkVGr5key3BJREREnU4QhMhRGKYUwqVGGjkKzsefRMO3P8J3xtkQnE7Y7r4dRftOgPWu2yA01ANQ37wNGWFNeMYloB7TodMLkTfIHy6ogc8jY8bsQlx27UCccl6fSKWhtzFoA32C7bXFhkNYgR6DhpoxarwNDbVBLHylKq2WUZ9XhqK0vQc2Vn4bey43rY8GDbczvaDRWB+Me42WhoxQv+dbN3lQszeADxbUoroy0Ob+RkVR0FgfjEwXztSa5U6sXe6CKaZlvGVoy8vXQxQ7rlxuXu9BKKigb7/oD0mGj1Y/v0lT83DaBX0BRCuOVXvSqFwKgC1Pa4uN/2FM7A+PFrxUhZVL1S6DH75qwgcLarF6mTPhDwkURcEbz1Xivpu2xrXCtnVsUHdWvTeA5sYQ+g00t9prPGqCusd3w5rus8c3EwyXRERE1CW0fZepVC5bkoYOh/PhJ9TBP+ecD8Hjhu3+e1A4eRxwzTUQKtsfACIIAux5OnhcEnZu9WLrJi+KSgw47LfFKO9rwvgpeVk7aL67MSYz0Kcx2vIoCAJOOKscBcV6bFjlxt7dqQcpbVJsR8N8gGjlsqlFeIo9czPdoNFQpz5nYXHiKtuAwWbodAK2bvbindeibZ3+BC3EHreER+7Yjgdv3YZH79iO9asyDwmV4fMrjz2lFH3CobBlaBNFAY4CPVzNUrvHiHz9qfqDlv0PLojcNmNWIa69YyhOPLtPXDUTSG3Sq6IocDlD6tExOvV6yi/Ux4Vi7XsOAHt2+iCKwJxLKqA3CPj+y0a89fxeLP269ZTa7b/4sHa5C4qirm3MRLXi50rzBwpdaU943+mQEZZWHxsywgKjScDm9Z6E11dPw3BJREREXULbc5fMnsuOyIOHwHXfw6j/fgW8518EBAPAvfeicN/xsP9lLnRbNrX5WK018sOFtQDUN95tVTp7E4MhXLn0J65AyrICZ3N8cLBYdZGqnsederBLdpgPoO6HFIT4gTXNTSHs3RUNP+kGjfraIESx7cqlwSii/2AzfB4ZO7dGB9L4va3f/O/c6kV9TRB5+TooAN58fi92bs3snMfaKjW4l/ZR9+UVlRgwNjzFNpY29Kitibo7t3qx4xcfissMGDU+vh3TYo3/HpT2MUIQUqtcetwyZCm+vVgQBAwdaYElXJ12h8OloijwuCVY7ToMH2PDxX8egP0OVAfaVCcItEvC56r+9tQyXH7tIAwfo65fq6b3JNrXIFEbtsEgYtR4O0JBBRt7QfWS4ZKIiIi6hLbnr71psamSBwyE654H0LBsLXDNNVCMJlhefA6FM/aD48JzoF/+U6vHaEN9dm33wZanw6T9E+/P7G0MpvYrlx63pAaHFkNvtO9boI1Q2h7tTXZb547G0unUylxzUyjS+rl5vTvyMSC9ymUgIMPVLCG/yBB5nkRmHlmEMRNtOOy3xZgxuxAA4Etw6L12huQBMwtx5PElkEIKlixuTHldsWqrA4AAlJQZMGiYBX/8+2AMHNq66lVQ1P5xLSt/VFtQpx/a8Q9MDAYRxaUGOJtCSQ+X0fbkav8PaU4+tw/+eMNgFJYY4PfJCIVk+P1qENV+sNCnwoQZs9Sva8uJt3U1AWxc64bdocP4fdT/H+3a8K0WP1DwuKW09wAn4nFLuO+mrfjyo/osPqd63bT1QxVtT/iaZQyXRERERGnR2mLT2XPZEaVPH+Duu9G4ch1cf78ZSkkpTO++jcIjZyH/5N/BsPgzILxnMPZYlJPm9IlU9Hq7jo4icbZxXIdWcW5vymxbUqlcAsCkqQ5AAb75VK1ibdusVgRHjlOrp+lULhsjLbHtTwEeOtKK0y+swEGHFUWO/UhUuayvjZ4hOWmqOvSopir9vZeBgIzGhhAKivSRfcltiRzXUp9436VWQU1233B5uAV3z87kjg9xtZgUq9HrRVisukj7s9slweNqHbDyC9XqtNamrNm0zgMowD4H5EOvV683bZhR7A8UJEnBv+/dgftv3oovP67PysTV3dt9cDaFsHlD9gbsaK3BbV33w0ZZYbGJ2Lze3eOnxv46/vYkIiKibmfy/nkYNd6GkrLcnSOp5BfA+8e/oO6nNXDe+yCkwUNg/GoxCk47AQWHz4Rp4VsYO8EMR4EeZ17cF8NG9c7hPYloIbGtfV7aGZd5+fFviLUwns6k1ki4TKJyCQAHzFTP11z2XTOam0LYuskLQQDGTlIrPelULuvDQaaog3AZS6uuJ6pc1oeH+BSVGGC16WB36FBXHUj7PMa66gCgIKn/L9qrXPp9MqorA8jL10dCaEcGD1ero79s9HRwT5VWubQ7ErcXR8KlU0r4g4XY6nTsvlGtEql9fkA0wMZOi22sD6K5MYSAX8Fn79Xhvn9sxfvzazI6C1O7Ppqz2H6rTRluK1zqdALGTcqD3AumxjJcEhERUZeYMi0fZ15c0W5rYtaYzfCddyHqlyxD85P/RXDiZBhWrYDjDxdg+gUH4Yby9zB6YM+uGKRKr1cn5foTBCYg+ua6deUy/bbYVAb6AOqb8akHFkAKKXjvjWo4m0Lo09+EknI1LKVTuWwIVxoLS5IPl1p13Z+g/bKuJggI0ecrLTdClqNnS6ZKq3qWlnccLturXO7e4YOiAAOGmJN+7eHhYzI2b0g2XCb+AYQmrnIZDpeWFpOCC0sMgBLfGqv9wCN2MJAtTwcI0UALRFuSh4+xYt8ZjsiQoFef3oNQKL2AqV0fzkYprYnIiUR/qNJ29NIGKrldPfvvIYZLIiIi+vXQ6eA//iQ0fvwFGl9fiMCs30C3cwfsN12PosljYbvxOojbt3X1KjuN2SwmbPUE2j4LMrrnMvdtsQAwfVYB9AYBG9eoFZ0hwy0JWySTpbWxFqUQLtuqXIaCMpoaQ3Dk6yPt1KV91JBQU5XaeZGa2ip1fSVJhMv2Kpc7t6mtrQMGJx8uC4sNKCo1oLoykFTlztlGW6xGO57E45LgbeN7X6idZxrTGqv9wMMU07Ku0wmw2nRwOaOhr65aDeKDh1tw3GnluOzagSgpM2DTOk/Sw3H27vHjy4/qIcvqc2otupKkZK1FNdIWa237uteF23+lNENxd8FwSURERL8+goDgobPR9NoC1H/5PbxzzoMQDMD6n8dRNG2yOvzn++8i+zJ7K5NFhCQpCAbb3kvYcqKqsYNBQO1JJ1za8/TYb0Z+5M+Dh1vVtlqhKyqX8Z9zQ10QUNT9lhqt4lhdmd6+y9oUKpeO8LClRJXLXdvU/Zb9UwiXACKt4VuSqF5q4T7RFFQg+n2OrVy2Cpfh9uTYfZeBcLg0thj2Zc/TQQop8IW/D1rlsrhU/VoVFBow7ZACAEBtdXKV40VvVuOzRXWRVmDtugeA5sYshUu3BINRaHcPrdbBkW7FtbtguCQiIqJfNWn0GLjufwR1y9bBfc31UIqK1eE/xx2BgqNnw7TgTSCYXotjd6e1HbZsjVUUBVs3eSCIQL9B8eEk2habTrhUH2NJIVwC6vEwOp0AUQQGDlPPoLTZdHA1p966qO2p0ypmyTCb1fW2rFxq4Sa2ChqtXLYOl36/HDk7tC3Ve9XHJVO5NBhE2B06NDeGIpU3QP3+7drmg04noG9/UzvP0Nrw0Wq4TGagTVs/gNBolcu4PZctWqILitXHNnTQFgu03nep7XctLot+/YvCQV/7WHucTSHsCB81s2enH4qixIXcbBx7IkkKvF65wx+oaOEyk/2i3QHDJREREREApbQUnr9eh7pla9H80OMIjRkHw7Kf4LjkQhTtPwmWh++HUFvb1cvMqki7Z4uKXPXeAFzNEvoPMkeClSaTPZdaiE31+BlHgR6nX9QXp57fN7Ieu0MHSVJarb09kqSgsT4Im13XKri0J1K5bCtclkaDoBYu9+zw4+N3alG1R22PbWoM4v6btuKxu7a3WfWtrvSjtiqA4jJD0tXd/EIDZDk+CHncErweGSXlBuj1qX2th4ywQm8QsHm9p90qWjAoo3pvAHaHLtKm3JLNrt6uTotNvnIZaYttWbkMH0ei7buM7HeNGc5UVKJ+/WMrkG1Zv9oFhD/FPbt8cDVLCAWjn3M2hvr4vBKgdFytZ1ssERERUW9kNsN/5hw0LP4WjW+8Df9hR0C3exfst92M4iljkHflJdAv+7GrV5kVbYUmrUVw6MjW03ONxvSPIvH7ZAgCYDCmPsRp5Fgbxky0R/4c3XeZfOvizm0+yBLQp19q1TyjUYAgtg7h9bXhyllMW6zNrofVpkNDXRDffNaAbz5rgM8n4fnHd8Pvk+H3tV29XP5DMwBgyv6OpNdWEK4aNsbsu9Qm/ToKEoe+9hhNIoaNssLvk7FtU9utsdWVASgy2q2MRgf6hDpsi+1ozyUQnUrrag4hGFD3uxYU6uOOD8ov1EOnEyLBvz3rVkb3Ze7Z4Y9UtYXw5dlRlTkZiY5gSUQX/laxcklERETUGwkCgjNnofnlN1H/7U/w/OEyKEYTzK+/gsKjZqPgiJkwvfoS4EvuTMDuyNxGW+wvP7cTLjM4isTvk2EyixCEzCcEa1UslzP5ALA+HCZGT7Sl9FqCIMBkFuH3xQfZmnALa1FpfIttxcBo4KqrDmDTWg/qYvYAthxEtG6lEx8urMGqpU4IIiLnZSYjP9ze2xSz77KtSb/JGj1BDfE/fN2E5x7bhRXh0Burcqdake3bv+09nfHTYhOHLJtdB4NRSKpyGft89ZH9rvHtw6IooLBYD49LihxpkkhNVQDbN3thd+hQUmZAc2MIu7er/y9rP3zYvcOHB27Ziu++aGjzeTri8SR3/A7bYomIiIh+JaThI+C+7W7UrdwA570PIjRmLAwrlsPxx8tQPHk0bP+8CeKO7V29zJSZtL2EMRW5UEjB9i1eGIxCq/2WQOy02NTeBMuygoBfTqkdtT2pVi4VRcH6VS5AiIanVJjNIgJ+JbK3UZYV7Nnhg9EktDqT8sSz++APVw+A3iCgvjaI2vBUU3O4UuxsseaP/1eHJYsb4XZJGDHG1uaAnEQSVy7bH7TTkVHjbRBE9czFrZu8+PrT1uGqcpcaxNqrXGqBytPOQB9BUKfA+rxyZP+s3y/DYBQgivE/hNAe6/XIkbDeMtirt7XfGhsMyHjjv5VQFGDaIQWoGKhe52tXqD98GDRMPe9zywYPmhpC+GBB+u3wbbUDtxQJl2yLJSIiIvqVsNvhO+9CNCxegsa334fvdydCaGqC9ZEHUDR1IhznnA7DZx8DcupVva5gjrTFRsPOhtUuBPwKho2yQq9vXWFMd6BPMKDEPT5TqVYu9+z0o7kxhIFDzG0endGelsOPKnd5EQgoqBhobhWCbHYdKgaYUVhsgNcjY+dWdXLr4OFqaGlZuXSHp96OGm/DrKOLU1pXvnYcSX3rQTTphkurTYch4bUC0QnBsSp3hSuXA9oOlzqdALNVjEyL1emEhM+lN0QnpSqKEqlwt2Sxqrd5PVJ0mE+icBkesJSoNVaSFCx8uQrVlQEMGWnBgbMLURH+HLTK5cChlrjHZHIWbzRUt3/dc88lERER0a+VICA4/UA4n3oO9cvWwn31tZBLy2D68H0UnHEyivafBOv990DcW9nVK22XKcFAnx+/aQIA7Ds9P+FjDGnuuWyr1TFdqVYuN61Tp5+mU7UEWn+ttm1WW4f7D2y7LVQLOdu2aOFSbTNuWbkEFJitIs68uCLl6a4FheE9izGVy+YMwyUAHHtqGY48oQRA9AcDGklSULUnAItNRH4H+zptdh2CAQVupwSrPXFLtLZnMhRUEAopkKXW+y2B6JRhj1uKfA3zC1uHSy1wtqxcKoqCBS/txdoVLhQU6XHSnD4QRQEVA6LfwwFDzBg5zhq3L7ikPPnJwi0le/yO9oMctsUSERER/YrJfSvgufYG1C9bi+b/PIPAQYdAt2M7bHfdhqIpY+E490wYP/4AkLJzZl42tazG1VQFsG2zFwXFegwb3Xq/JaDuaTMYhZT3XGY9XLZTuYw9lkOj7elLdZiPxmxRX0/7PLZuVsNqe+dIaiFHltSqW3mF2q4ZW7lUFAXBgBI3lCYV7VUu091zCah7GQ+YWQAIrffk1lQFIEkK+vYzdbh/NrYK2FbA0oJVKKi0e51YreG2WLcEt0v9HBPtZWzrOJLtW7xYs8yF/EI9zr+yf6SC3X+wGYceVYTfnVGGC+b2h14vxgXzQCD9wNfWESwtRfdcpv1S3QLDJREREVE2GI3wn3gKmua/i/rvlsFz5Z+gFBbC9MF7yD/7NBTtNwHWe++EuHtXV680wtxiWuzK8OCW/abnt2r1jGU0iq2qWR3JdrjUzlBsWblct9KFO67dEjcJFIhO/kxngioQU7kMfx7btqjhMtG+VI12LAagnluphRlnTLiUJAWKkt4EXUA9g9NsFdHYEIrsWdSmxWZSuQTCg4xMYqtwqX0tY48AacuEffIiv28zXMa0xWqvZUzUFqtVLj0y3OG9jLZE4bKN40iWf69e3zOPLEJBzDmnoijg0KOKsc8B0es+9jpp+fmngnsuiYiIiCgj0tDhcP/jVtSt2ICmp55DYOYs6Hbvgu3eO1G073g4zj4VxvffA4IdH5eQSy0D057wPrrhY9ufpmo0iQgFlbgWvpVLm/HCv3dj947E03P9/sTHS6Qr0hbbonK5boUToaCCd16tQlNj9iaoRoK4V51Cune3DwVF+nb3b8YOmykpM8Ke3zoQayHdYEh/X19BoQGhoBKpkjU3haDTCR3u80uGySzC75fjqsGRwNRBNQ6I7jMF2m75TFi5THCdaN8Dr1uK7FNNFC6127yeaCj0+SSsW+mCwShg3OS8Vo9pacasQuw7wxGeEpxBuEyyLVbbc9ne2aI9AcMlERERUa4YjQj87kQ0vfE26n5YCc9VV0MuKYXp4w+Rf96ZKJ40GrZ/XA/durVdsjxzeFqsP7yPsLrSD0EESsrar0hpQ1mC4dZYSVLw0Tu12LLBg6cf3IkNq12tHpPtyqXFKkLUta5c7tymhlufV8Z7b9QAUFtPmxtDMJnFtAcKxQbxmqoAFKX9YziAFuGy3AiTSYTBKMRVLiPh0pj+1yVfmxhbH0IopMDjkpCXr8vKkS8mswgo8fsukw1MgFoVjLYDJ+75jFYu5che3kTXiU4nwGwR4fWoA4JEXTRwJnq+YEzr9trlLgQDCsZNzkvqGhw51objTiuHza6DFFLSDn3aESyWZCuX3HNJRERERB2RBw+B+4abUL98HZqefQn+w46AUF8H678fRdGh01Fw2CEwP/VvCHV1nbYmkyUamDxuCa5mCcWlRuj17b9FjE6MVd8Ib97ghtspwZangyxH2w9jZTtcCoIAe54ebrcUeUPe3BhCU0MIxWUGWGwiNm9wIxSS4ffJCAaUtFtigZgzQb1ypGqW52g/MDjy9ZGKVEmZQV2zQw+fR0YwqH49tP+m2xYLINLi2dQQjOznzLQlVtNyXy6Q/D5CzekX9kXfASYcc0ppwo8nu+cSUENawK8OCLLZEwdoURSgNwgIBqNBbVd4EuyYSamdcaqtI5kBVoqiYMtGT2Q/cjAgo646AFFMvnLJcElEREREyTMYEDj2ODS//CbqV26A66bbEBo1GoZVK5B3/TUonjgSjgvPgfGj93PeNhsJDl4J1XvV4SdlfY3tPQRA7FmX6pvoFT84AaithED89FlNtsMlEB7qo0TbNHduix750W+gGbIEVO0JZNwSC8QH8ch+v7z2n08UhcjE2JJy9etqb7FXVAvoxgwql9pwI7dTyvgYkpbMicJlkvsINUUlRlxy9UAMH5042Om1abGhJMJl+DgSRQFs9rY/R4NBiKtchsJBU6vWJytRuG7Lts1evPDEbiz+oB4AsHqZEz6vjDGT7AmP9YmlC38q3HNJRERERGmRy/vAe8Uf0fDl92j4aDG8F/4eis0G07tvI3/O6SiePAa2m27IWdusOabVs7pS3W9Z1ieJcBluiw0E1IrnxjUumK0iJk1V97J5Pa3bH7Ugmq1zLoHW+y53blWrUwMGq+ESAHbv8GUlcMW2ELe336+lw44rxuxjiiMhU9ujqVUYI5XLDPZcxgagyDEkaZzl2d5z+2LOQtUql8l8/smItLF2sOcSiE6M7ej19QYRwaASGXKkhTZdByGvpVTCpTaReOsmDxRFwQ9fqcf6TDu4oMPHcqAPEREREWWHICA0eR+47roPdas3oenp5+E//EgIdbWwPvEIig6djsJZB8LyyINZnTZrMAoQRPWNc3WlVrns+KiOaFusuv9QloBhI62w2nQQhE6uXEKtAoZCcuQ8yQFDzKgYqH4ee3b4Mp4UC8RWLqPHYGgTa9szapwdhxxRFGnf1NasndOYjT2XsT8kiBxDksHnGqvdttgkK5cdSbUtVtPe199gFAAl2maq7ZnsqILYUqLP3+UM4T/37cDqn5xx99UGCFXt9uOXn73Yu9uPPv1NGDCk/b25QO/Zc5mdq46IiIiIssNkQuC4ExA47gSIVXthevN1mF97Cfq1q2Ffuxr2f/4DgekHwn/yafAfdzyUwqK0X0oQBJjD0zBrUmmLjdlzGQqpQcPu0EMUBZjCA1daykm4DFcut2z0YOHLVXC7JDgK9CgqMUReZ/cOPwrDR1Nk0hYbu+cyGG5lTSZcthSpXDpbVC4z2HMZF4DC2cTewX7QtJ47LNW22I7EDvTxtzPQB4i2xXb0+obIUB8Fen00XGajcrl5vQeVO/1Y/EEdxu9jj/zgQAvdsgx89LY6TGrf6Y6kBiuJogBR7PnhkpVLIiIiom4qtm22/vNv4Zn7Z0j9+sO45Bvk/fUqFI8fAcc5p8O08C3A40nrNUwW9czKvbv90OmjewTbY4jZc6m1iGp7CS0WHYIBpdWb5I5CQzq0APX9l41wuyQMH23FWX+oiAz7cRToUVsVQF21GpzzCtIPQ5ZwO6bHLUX2XNrb2fPX9prDZ12GK4zRo0jS/7qYLOGWXZ8Mr1eKW2+mElcuZegNQtZanFOpXFqTrlyqj9e+vlK6lUtT68+/KtxCXlcTxJ6d/sjtsT9UqdqjDvJJ5tgTjU4vQAp1fL/ujOGSiIiIqAeQxo2H+8ZbUP/TGjS+8wG8510ExW6H6cP34fjDBSgeNxx5V/wBhs8+BkLJv0ON7CX0ySjra4wcIt8eozG659Kl7T8Mv9E3hytLLauXHe2lS4dWuVQUQBCAk87pgz4V0bbefgNNUBRgw2o3AMCR33FwbkvscR/RgT5pVC7DZ106m7S22CxULmMCkC/cmmlJcERHWs/dIlzKsgKPR8pa1RKIrVym2Bbbzp5L7eupVYaz2RZbtScQ+f3KpdHJyF53/DU/bLQ1pa+TTiewcklEREREnUgUETxgBlz3PqDuz3zxNfhOOgWCLMH8xqsoOONkFI8fDvtf5sLw+acdTpyNfRM/alxyxzTE7rl0twiXWqjxeeL3XeZyzyUA9BtkbvVGfsgIa2SdAODIoHJpNImw5enQWB+EsznU5hmLHdH2QkYql8Es7LnUvuZeObLf1WzJTeXS61Fbb5M9hiQZ2tE3oaASqXC3VRWNG+jTXuXSkLhymXZbrD82XPohioAgAmuWuSJ7cL0trvnxU5KvWgJquEz3PM3uguGSiIiIqKcyGhE44mg4//0MatduQfPjT6rnZzqdsLz4HApOP1ENmn++EobPPkkYNGPD3tjJ9uReVguXASXyxlqrIprDb/619kxNTtpiY44CGT7a2urj+0x3oLgsWq3MtNpWWGyALKtHfuQ5DEntpWtJC5fNkbbYLE6L9UfbYs3WLFcuw9+/bA/zAaJVxqQG+sR8XjZb+0eRANGvb7Yqly5nCG6nhNI+RoydZIfHLeGpB3ehsT4Y+dr0H2yGLU+HURNSO1NTp1crl9qE256IA32IiIiIegO7Hf5TTof/lNMhNDbA+MEimN5ZAOMXn8Py0vOwvPQ85MJC+I/+Lfy/OxHBg2cCBkNksAwAlPXpeFIsEHMUib91W2xHlcvsHkUSDTiJzlDU60X89tQyPPfYbuh0QlphMFZhsQG7tqnHnaR71IfZrIPRJEYm2GZjWmxsANI+w3Sqqgmfu8Wew2wfQwLE7LkMKQhkc1osopXhbB1FUrVH3WNZXmHCcaeVQZIUbFjlxjefNcDrkSGIwHmX94MkKymfqanTqxNu5Y5PPem2GC6JiIiIehmloBD+M86G/4yzo0HzfwthXPwZLC+/AMvLL0SC5mDPAag27YOBY/KTfv6EbbF2bc9lG5VLnwydXki5ctTROvIL9VAURI4eaWnICCtOu6BvVqanFhZHq6CxVdNUOfJ1qK0Owu+Ts7LnUqcToDcI8IdbYvUGIaMBQbFMMVNygexPigVi9lwG5dQG+rS75zLcFhvZcylDEKJHfiQrGi7Vz1vbb1leYYLBKGLW0cXYsMqN+togvB4JFqsOBqOIdHb39objSBguiYiIiHqxuKDZ1NgqaJ6NF3Cq0YqA8wjI5b9F4LAjoOQXtPucxsi0WAVulwSTWYyEmbYqlwG/nNWWWM0Fc/sDAtodRDR2UnLtvh0pLI6+dc7L4FgTR4EetdVBNDeFYvZcZha6TebwETBZ3g/ZsnIXbYvN3vcytnLp96shsK02Ya0t1mBsf1pt7FEk2nPr02g9brtyqR5vow16qqsOIBRUkF+Y/tdFF/62ST143yXDJREREdGvhJJfAP/pZ8F/+lkQmpvUoLnoXRg//wTGRQuBRQuh6PUIHngw/Ef/FoGjj4Xct6LV82hv6j1uCX6fjKLSaJ0mWrmMhstQSEEoqCAvP/vhsqAo/QmwmbxWniP9143su2wMxey5zOxrYzaLkSpyto4hARLsudQql9lsizXE77k0mcU2W5hNZnWwUkfhPtFRJKm2xGqvB6jhUpYVbN3kBQSgTz+1Um4262Ayi2isV9ucM6noautjuCQiIiKiHkVx5MN/2pnwn3Ym4PHA+OViGN9/F6YPF8H4xecwfvE5cN3VCO6zbzho/hbSiJGAIMAcfsNdvVet4sTufdQqS76Yo0gCORjm0xUKS2LDZSaVS/V51HCZvcqlJlv7LQH1HFQgUeUy+9Nig0EFAb+C/MK2n1sQBFxy9cAOg2KkchlzFIk1jf2+seFy5zYfmhtDGDTMEtcWXVCkj7TLZhLs2RZLRERERD2f1YrAUccgcNQxcIVCMCz9HsZF78L0/nswLPsJhmU/AbffgtCQoQgcfiT0vzkCFn0FGuvUh8fufdOOwIg9liEXZ1x2BUe+HqIOkCXAnkm4zI9OjM3GUSRANAQC2Q2XWgu09j1053DPpVYV7eiHEFrlt/3njB5vIssKZCn1/ZZA/ECjNcucAIDx+8S3WecXGmLCZfpfez0rl0RERETUq+j1CE4/EMHpB8J96x3QrVsL0/vvwvj+ezCsXgn9vCdgnfcE7jBasa5sf6ytOAj6cUcBUNtnI5XL8EAfWVbQWK8egdLTK5eiKKCg0ID62mBGbbF54fM2nXFtsdmsXGYv+ImiurdRC5f1Ner3sr1JranSwqU2uTgb10lkWmxAjlQC0xkmpTcIEEX1hyXrVrggiMDYSfHnV2r7LgFWLhkuiYiIiCgxQYA0bjw848bD89frIO7ZDeOnH8P48YfQff45Ju9ajMm7FgM/3IbgKxMROPwIFEw9DIJcFKlcLny5Cqt+VCs+PT1cAmprbH1tMFw9Sy8EOPLDbbFNoawcRQIg0qoMZFY9S8RkFuFqDmHvbj92bfehqMSAkjJj1p5fC31aVTQbx9VEw6WS9jEkgNqGazKLkbUNH21tNaU2P6aSmpU9l1IHd+zGGC6JiIiIKClyRT/4zjkfvnPOx7a1Dfju1v9h/O6vsX/zEtjWrIJhzSrY8C/caSrA1mEHQd/nBOz4YQgEfQEMBhFDRli6+lPI2OxjijFomAUDh1hRX+9O6zliB/rIcjhcZly5bN2anC0mswhnE/D1p/UAgP0Pzm93Om+qUm2LTYY2ICkYVBAKh8t0psVq69F+WDLlAEerj+cXRqvYmQR7rXIZCvXcgy4ZLomIiIgoZRUj8vFz/+nY0Hc6xPP7YELeXhg//hCGjz+E5ZtvMHHdu8AV7+J2ANUVY2E/+UgEgrMR9B8AmBKfSdkT9BtoxoDBljanmSbDahOh0wtobgxF9kpmWq3L1UCf2Odes8wFo0nA5P1bB6xMaAN9ZDn+9TIR2xYbCZdpnrHqcUfPIh09ofWxNnFtsVmZFpv2U3Q5hksiIiIiSpnRKKKivxm7tvtgd+ghDR0B77AR8F56Je7/y0qM2P0dDpaXofDHL1C2Zx3wyDpYH3kAisWC4PQDETh0NgKH/gbSqNFABkGtJxIEAY4CPRpqg5AVBaKY3rCZWKYctsWKMU837ZCCrFdGW1YUszH4KXIUSTCztlggOu14/D55Cb9P3HMZxXBJRERERGmZdUwR1q10od8gc9ztYoEDP8mzsbPvUaiuuBp/OUdG2aqvYFz8GQxffwnjZ5/A+NknAACpT18EZ85Sw+bBh0IpK+uKT6XTFRSp4dLnkbNSqTNbcjPQBwDGTLTD2RTC7GOKMWHfvI4fkKKWFcXstMVGjyLJtHJ54G8KseL7Zhx6VFHCj+fl6yGIgCKrVel06cLJjNNiiYiIiOhXZ9goG4aNsrW63WzVAfUhVFcGUFBiQN6+g+HbbzR8F/4eCAahX/YTjIs/hXHxZ9Av/wnm116G+bWXAQChkaMQPPBgBA46BMEZB0MpLu7sT6tTFBYbsBVeAJmfcQnEV/uy3RY7Y1YhZswqzOpzxtLp1ImsWW2L1fZcZjjQBwAOP64Evzm2uM19pqIowJGvR1NDiJXLrl4AEREREfUu9phjKsZOtMfvTzQYEJp2AELTDoDn2hsgNDbA8NWXalXzmy+h/3kj9D9vhOXZpwAAoTHjEDjoYAQPPATBGQdCKchdyOlMhcXRITBaEMpE7DmXmQScrqI3CAj41VCVsz2XGbQedzTAaNR4G7Zu8iIvP/14pYXfECuXRERERESqw48rwZARHvQfbMaAweZ276sUFCJw3PEIHHc8AEDcsxuGb76C4ZuvYPz6K+jXr4V+/VrgyX9DEQSExk9E8MCDETzoYASnTYeSX9AJn1H2xYXLbFQuYwf6ZHnPZWfQ60UE/OFpsdk8iiRmz2W602KTcczJZVAUJaNBT5HKJcMlEREREZGqvMKE8or0JsLKFf3gP/UM+E89AwAg7tyhBs1w4DSsXgnD6pXAvx+FIgiQxoxDcNoBCE6bjuC06ZD79c/mp5Iz8ZXLzEOPOYfTYjtDbPDLdltsKJhZW2yyMgmWQHRPKNtiiYiIiIhyQB4wEP4zzob/jLMBRYG4fZsaNL/+EoYfvoN+3Rro162JtNFKAwYiuH80bEqjRsePO+0m4iuXWWiLDQcyQcxO5a+zxQ7bMWYhXGphNRQ30Kd7f12455KIiIiIqLMIAuTBQ+AbPAS+s88FAIi7d8Hww3cwfPctDN9/B936tTDv3AHzW68DAOT8AgT3n4bgtOkI7bc/gpOmALbWQ4g6m8UqwmQW4ffJ2WmLDVcrzRYx4wpaV8h25VIUBegNQlYG+nSW6DmXDJdERERERJ1O7tcf/hNPgf/EUwAAQlMjDD/+AMN3S6D/fgkMy3+C6eMPYfr4QwCAotNBGj0WwX2nIrjvfgjtOxXS8BGdXt0UBAGFJQbs3eXPSuXSaBRhteviKqI9SVy4zFLlVW8QsnIUSWfRKpcc6ENERERE1A0o+QUI/OYIBH5zhHqD3w/9yhUwfL8Ehp+WQv/TUujXroZ+7WpYnn8GACA78hGasg+C+05FaN/9ENxnaqccgVJYHA6XWdhzKYoCLvvbwJwOrcml2OCXjcoloO67dHlDkTbTbl+5ZFssEREREVE3ZjIhtP80hPafpp4qqSgQ9+yGftmPMPy4FIZlP0K/cjmMX3wO4xefRx4mDR6C4D77ITRpCkKTJiM0YSKUPEdWl6ZVGbNRuQSQ0TEYXU0fcxxL1sKlUYCiAH6feoBmt69csi2WiIiIiKgHEQTI/foj0K8/AsedoN4WDKpHnvz0o1rdXPYj9Js3QbdtKzD/jchDQ8OGIzRxEqRJU4BDZkAYPBKwpx84C4vVt+LZ2HPZ02nBT28QIhW8TGkVYZ+3p4RL9b+S1LXryATDJRERERH9uhkMCE2cjNDEyfBdcDEAQGhsgH75MuhXr4Rh5QroV66Afstm6LdsBha8BQAoQrjCOWmK+nitwllYlNTLjhxrw7oRLoyZaM/VZ9ZjaO282Zx0q1WEvR41rfWYtlhWLomIiIiIeg+loBDBWb9BcNZv1HZahAPnqpUwrFoB24Y1kJb+BN3WLWqF8+35kcdKfSsQGjsO0tjxCI0dh9DY8erQIEP8sJ38QgPOu6JnnMuZa1pVMVstsUC0IqyFy+5fueSeSyIiIiKiXwWloBDBQw6FdOgs2IrtaKxzQWlogH71KuhXrYR+1XLo166BbvMmmCr3AJ9+HH2s0YjQyNGQwmFTC51KWVkXfkbdh9bCmtVwGd7H6fOobbGsXOZerw6Xv/zyC66//nq4XC4YjUZcf/312G+//bp6WURERETUSyj5BQgedAiCBx0SvdHng37TRujWroF+7Rro162Fft1qGNasgmHNqrjHyyWlCI0eA2nESDV8jhqN0IhRaujsgedVpksb6JPdcNmz9lzqWbns3kwmE+644w4MHToUW7ZsweWXX44PP/ywq5dFRERERL2Z2YzQhEkITZgEv3abokCoroZ+nRY21eCp27QRxq+/BL7+Mu4p5IICSCNHIzRyFKSRo9TgOXIU5H79e2Xo1IKVMat7LsNtsd4e0hbLymX31q9fv8jvhw4dCqfTCUVRIPTC/yGJiIiIqBsTBCjl5QiWlyM46zfR24NB6LZthW7jBuh/3gDdzxuh+3kj9Jt/huGH72D44bu4p5FtdkgjRkAaOgzSkGGQhg1Xfz90GJSCwk7+pLJHn4u2WG2gj7uHtMWG1xdiuEzP0qVL8fTTT2PNmjWoqanBv//9b8yaNSvuPi+99BKefvpp1NTUYMyYMfj73/+OiRMnpvxan376KcaMGcNgSURERETdh8EAacRISCNGIoDfRW+XJIg7tqvttRs3qsEz/HvDiuUwrFje6qnk4mI1cIbDphY8Q0OGAfbuPZE2FwN9rDYdAMDj7mGVS7bFpsfj8WDUqFE46aSTMHfu3FYfX7RoEe68807ccsstmDRpEp577jlcfPHF+OCDD1BUpI54Pv744xM+9/z586HTqRfU7t27ce+992LevHm5+2SIiIiIiLJFp4M8ZCgCQ4YCRxwdvV1RIO6thO6XLeqvLZvV/4an1hp+/AGGH39o9XRySSmkQYMgDRwEeeBgSAMHQRowUP1z/wGA0diJn1xruahc2vJ0cX/u9pVLtsVmZubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CADw9ttvt/saLpcLl19+OW688UYMGjQoo/WKYve6ILX1dLd1Ue/A64tyidcX5RqvMcqlrr2+BKBfP0j9+kE6+JD4D0kSxN27oPtlC8RftkC3ZQt0v2yGbstmiDt3wPBTDQw//djqGRVRhNy3AvLAQZAGDoQ8cDDkQYMgDRgEuV8/yH0rAJMpp5+VxaoGQZtdl7Wva54jPuoYjWK3/jtB2yMqqV283Xqtbem2ey4DgQDWrl2Lyy67LHKbKIqYMWMGVqxYkdRzSJKEq666CqeddhoOOuigjNaj14soLu6e7QSFhbauXgL1Yry+KJd4fVGu8RqjXOqW11dZPjBlXOvbZRnYswfYujX+17ZtELZuhW7XLuh274JhyTdtPG8Z0L+/+mvAgNa/79cPMJvTXvbBsy0wGAyYOqMINnt2IkpFPwCojPy5uMSG4uL015hrIgIAAAFqqOyW11cHum24bGhogCRJKCkpibu9uLgY27dvT+o5vvzyS3z33Xeora3F66+/DgB44YUX4HA4Ul5PKCSjudnb8R07kSgKKCy0oaHBDVnuueVz6p54fVEu8fqiXOM1RrnUY68vSwEwdor6q6VAQK167tgOMfxLt2MHxD27IVbugbhnN4TqamDZsjafXi4pgdy3H+TycvVXWTmUMvW/cllZ+L/l6v7PBHNQJuxrhc/vg8+f4MnTICmBuD+7XF7o60LZefIccDnVtfl96h7R7nZ9ORwWGAy6du/TbcNlW1KZ9jpr1iysXbs2a6/dnb65sWRZ6bZro56P1xflEq8vyjVeY5RLver60hsgDxqC0KAhiT+uKBBqa6Gr3A1x926Ie3ZDV7kH4u5dECv3QBcOofralcDq9l9KsVohl0bDplxaqv65qAhKUTHkwiIoxcWQw7+H1ZrWp2Sxxu/fFHXd9/08EM3boZDaF9sTr69uGy4LCwuh0+lQW1sbd3t9fX2raiYREREREeWQIEApLUWotBSYODnxfRQFQl0dxOqqmF/V0d/XRH+v274Nuu3bknppxWKBXFgEuahYDZ9FhdEQmp8PxZEPOc8R/r0DisMB2VEAc14edDohMn1VG5jTXWnTbCWpixeSgW4bLo1GI8aNG4dvv/0Ws2fPBgDIsowlS5bgvPPO6+LVERERERFRHEGAUlICqaQE0tgE+z5jBQIQa2vUsFlVBbGuVg2mDfUQ6usg1tdBrI/5fbg6mqr7dCZ4DXZ4jHYUrSsB8h1Q7HlQrFYoVlv4vzG/t6n/RdzHbVAsFihGE2A0qP81mQB9dqOUNs2W02LT5Ha7sWPHjsifd+3ahfXr16OkpASlpaW44IILcM0112DcuHGYOHEinnvuOfh8Ppx44olduGoiIiIiIsqI0Qi5oh9kdepOxyQJQlOjGj7r6iHW10FoqIfY3AShuRlC+L9izO+F5iYEqhph9TXB4asDViQ3tyVZiigCJhMUgxEwGqGYTFCMxrjboNer99PpAEEEdCIUnQ6Iu00Xvk3Aecs9EM0G4McbgSGjs7reztCl4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp56KnHFJRERERES/AjodlKJiSEXFwLDkH/bSvN3YtNYNk+LH9TeUqWHU7YLg8UDwuAGPR/292x25TdBu80Rvg9cLIeCH4A8AwQAEvx8IBCAE/IA/AMHZDLE280lE+2u/eWU4cP0tGT9fZ+vScDlt2jRs3Lix3fvMmTMHc+bM6aQVERERERFRb2Gz69V2XbMFSnk5pPLy3L2YogDBYDRwBvzqETCSBMgyBFlSD7FsdZsUvk3Glx9UQ9TpcNydJwLOQMev2c102z2XREREREREmbDlqUdnaPsZc0oQ1PZYoxGwA+nsnJyxv3rUDYxGAD0vXIod34WIiIiIiKjnsYfDpb4zwiUxXBIRERERUe9ks3di5ZIYLomIiIiIqHey5am7APXd/IzL3oLhkoiIiIiIeiV7Z+65JIZLIiIiIiLqnRwFeog6wJ7HOaadgV9lIiIiIiLqlSxWHS7+0wDkORh7OgO/ykRERERE1GtVDDB39RJ+NdgWS0RERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZYzhkoiIiIiIiDLGcElEREREREQZY7gkIiIiIiKijDFcEhERERERUcYYLomIiIiIiChjDJdERERERESUMYZLIiIiIiIiyhjDJREREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDFBURSlqxfRE8iyAkmSu3oZrRgMOgSDUlcvg3opXl+US7y+KNd4jVEu8fqiXOqO15dOJ0IUhXbvw3BJREREREREGWNbLBEREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBljuCQiIiIiIqKMMVwSERERERFRxhguu7mXXnoJs2fPxoQJE3Daaadh1apV7d7//fffx1FHHYUJEybguOOOw5dfftlJK6WeKJXra9OmTZg7dy5mz56NUaNG4cUXX+zElVJPlMr19frrr+Oss87C1KlTsf/+++PCCy/E6tWrO3G11BOlco198sknOPnkk7Hffvth8uTJOP7447Fw4cLOWyz1OKm+B9PMmzcPo0aNwt13353jFVJPlsr1NX/+fIwaNSru14QJEzpxtcljuOzGFi1ahDvvvBNXXHEFFixYgFGjRuHiiy9GfX19wvsvX74cV199NU455RQsXLgQhx12GC6//HJs2bKlk1dOPUGq15fX60X//v1x9dVXo7S0tJNXSz1NqtfX999/j2OPPRbPP/88XnnlFZSXl+PCCy9EdXV1J6+ceopUr7H8/HxccskleO211/DOO+/glFNOwfXXX49vv/22k1dOPUGq15dm7dq1ePXVVzFq1KhOWin1ROlcXwUFBfj6668jvz7//PNOXHEKFOq2TjnlFOXWW2+N/FmSJOWggw5SnnrqqYT3v+qqq5RLLrkk7rZTTz1VueWWW3K6TuqZUr2+Ys2aNUt54YUXcrk86uEyub4URVFCoZAyZcoU5Z133snVEqmHy/QaUxRFOeGEE5RHHnkkF8ujHi6d68vj8ShHH3208uWXXypz5sxR7rrrrs5YKvVAqV5fb731lrL//vt31vIywsplNxUIBLB27VoceOCBkdtEUcSMGTOwYsWKhI9ZsWJF3P0B4KCDDmrz/vTrlc71RZSsbFxfXq8XoVAI+fn5OVol9WSZXmOKomDJkiXYunUr9t133xyulHqidK+vu+66C9OmTcPBBx/cCauknird68vlcuHQQw/FzJkzcfnll2Pz5s2dsNrU6bt6AZRYQ0MDJElCSUlJ3O3FxcXYvn17wsfU1taiuLi41f1rampytk7qmdK5voiSlY3r67777kPfvn1xwAEH5GKJ1MOle405nU4ccsghCAQCEEURt9xyC6ZPn57r5VIPk8719fnnn+O7777jPl7qUDrX19ChQ3HnnXdi5MiRaG5uxjPPPIMzzzwT7777LsrLyztj2UljuOxhFEWBIAhtfjzRx9q7P1Gsjq4vokwke309+eSTWLRoEV544QUYjcZOWBn1Fh1dYzabDQsXLoTH48GSJUtwxx13YODAgdhvv/06cZXUU7V1fdXX1+PGG2/EY489BovF0gUro96gvb+/Jk+ejMmTJ0f+PGXKFBxzzDF44403cOWVV3bSCpPDcNlNFRYWQqfToba2Nu72+vr6Vj/p0JSUlLS6f11dXZv3p1+vdK4vomRlcn09/fTT+M9//oNnn30WI0eOzOUyqQdL9xoTRRGDBg0CAIwZMwZbtmzBvHnzGC4pTqrX16ZNm1BTU4MzzzwzcpskSVi6dClefPFFTr6mONl4D2YwGDBmzJhu2W3GPZfdlNFoxLhx4+Km2MmyjCVLlsT95CLW5MmT8c0338Td9u2337Z5f/r1Suf6IkpWutfXU089hccffxxPPfVUtx2xTt1Dtv4OUxQFgUAgByuknizV62vChAn43//+h4ULF0Z+jR8/HieeeCLmz5/fiSunniAbf39JkoRNmzZ1y+n9rFx2YxdccAGuueYajBs3DhMnTsRzzz0Hn8+HE088EQBwzTXXoLy8HFdffTUA4Nxzz8WcOXPwzDPPYObMmVi0aBHWrFmD22+/vSs/DeqmUr2+AoFA5FibQCCAqqoqrF+/Hvn5+aioqOiyz4O6p1SvryeffBIPPfQQyXhSuQAACHJJREFU7rvvPvTr1y+yV9xqtcJms3XZ50HdV6rX2Lx58zB27FgMGjQIgUAAX331Fd5++23ceuutXflpUDeVyvVltVpbdVpYrVYUFBRgxIgRXbF86uZS/fvr0UcfxeTJkzFo0CA0Nzfj6aefxp49e3DKKad05aeREMNlN3bMMcegvr4eDz/8MGpqajBmzBg89dRTKCoqAgBUVlZCFKPF53322Qf33XcfHnzwQdx///0YPHgwHnvsMQwbNqyrPgXqxlK9vqqrq3HCCSdE/jxv3jzMmzcPJ554Iu66667OXj51c6leX6+88gqCwSD++Mc/xj3PlVdeiblz53bq2qlnSPUa8/l8uPXWW7F3716YzWYMHToU9957L4455piu+hSoG0v1+iJKRarXV3NzM2688UbU1NQgPz8f48ePx2uvvYahQ4d21afQJkFRFKWrF0FEREREREQ9G3/kQkRERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZUzf1QsgIiLqbh555BE8+uijrW6fPn06/vvf/3b+goiIiHoAhksiIqIE8vLy8NRTT7W6jYiIiBJjuCQiIkpAp9Nh8uTJHd7P5/PBbDbnfkFERETdHPdcEhERJWnXrl0YNWoU3nnnHVxzzTXYb7/9cOmllwIAGhsb8Y9//AMzZszAhAkTcMYZZ2DlypVxj29ubsbVV1+NyZMn46CDDsITTzyBu+++G7Nnz47c55FHHsG0adNavfaoUaPw4osvxt32xhtv4Nhjj8X48eMxa9YsPPnkk3Efv+6663DSSSfhm2++wXHHHYfJkyfjzDPPxKZNm+LuJ0kS/vOf/+DII4/E+PHjccghh+C6664DALz00kuYMmUK3G533GO+++47jBo1Chs2bEjxq0hERL0VK5dERERtCIVCcX9WFAUAcM899+Dwww/HQw89BFEUEQgEcMEFF6C5uRnXXHMNioqK8Morr+D888/HRx99hNLSUgDA//3f/+GHH37A9ddfj5KSEjzzzDPYsWMH9PrU/zl+6qmn8MADD+Diiy/G/vvvj7Vr1+Khhx6CxWLBnDlzIverrKzEPffcg8suuwwmkwn33HMP/vSnP+Hdd9+FIAgAgH/84x94++23cdFFF2H//fdHU1MTPvjgAwDAcccdh7vvvhsffvghTjrppMjzLliwAOPGjcPo0aNTXjsREfVODJdEREQJNDY2Yty4cXG33XbbbQCASZMm4aabborc/sYbb2DTpk149913MXjwYADAjBkzcNRRR+GZZ57Btddei02bNuGTTz7BAw88gGOOOQYAMG3aNMyaNQt2uz2ltblcLjz22GO47LLLcOWVVwIADjzwQHi9XjzxxBM488wzodPpAABNTU145ZVXIutSFAVXXHEFfvnlFwwbNgxbtmzBm2++iRtuuAHnnntu5DW0NTocDhxxxBGYP39+JFy63W589NFHuPrqq1NaNxER9W4Ml0RERAnk5eXh2WefjbvNaDQCAA499NC425csWYJx48ahf//+cdXOqVOnYs2aNQCA1atXA0BcC6zNZsOMGTOwatWqlNa2fPlyeDweHHXUUXGvd8ABB+Dxxx/H3r170a9fPwBAv379IsESAIYNGwYAqKqqwrBhw/D9998DQFxVsqVTTjkF559/Pnbu3IkBAwbg/fffRygUwm9/+9uU1k1ERL0bwyUREVECOp0OEyZMiLtt165dAIDi4uK42xsaGrBixYpWlU4AGDhwIACgtrYWNput1fCfls+VjIaGBgDAsccem/DjlZWVkXDZcsKtwWAAAPj9fgBqhdZqtbZbPZ02bRoGDBiA+fPn46qrrsL8+fPxm9/8BgUFBSmvnYiIei+GSyIiohRpexU1+fn5GD9+PG6++eZW99WqnSUlJXC73a2my9bV1cXd32QyIRgMxt3W1NTU6vUA4D//+U/CcDpkyJCkP5eCggJ4PB64XK42A6YgCDj55JPx+uuv4/jjj8dPP/3UangQERERwyUREVGGpk+fjm+++QYVFRVtViK1Kuhnn30W2c/odrvx7bffxoW68vJyuN1uVFVVoby8HADwzTffxD3XlClTYDabUV1d3apFN1UHHHAAAGDhwoVxg4BaOvHEE/Hwww/j+uuvR3l5OQ488MCMXpeIiHofhksiIqIMnXDCCXj11Vdxzjnn4MILL8SAAQPQ2NiIVatWobS0FOeffz5GjBiB2bNn4+abb4bL5UJpaSmefvrpVm2yBx98MMxmM66//npccMEF2LVrF1599dW4+zgcDlx55ZW4/fbbsXv3bkydOhWyLGPbtm34/vvv8dhjjyW99qFDh+L000/HXXfdhbq6OkydOhXNzc348MMP8cADD0TuV15ejoMPPhiLFy/GJZdcEhkYREREpGG4JCIiypDJZMLzzz+Phx56CI888gjq6upQVFSEiRMnxg3wueuuu3DzzTfjjjvugNVqxVlnnYUJEybgww8/jNynqKgIDz/8MO655x5cccUVGDduHO67775ItVPz+9//HmVlZXjuuefw7LPPwmQyYfDgwa3ul4ybbroJFRUVeOONN/Dkk0+iqKgoYWXysMMOw+LFi9sd/kNERL9egqId2kVERESdTjtD8rPPPuvqpXToqquuQk1NDV5++eWuXgoREXVDrFwSERFRuzZu3Ig1a9bg448/xv3339/VyyEiom6K4ZKIiIjaddlll6GhoQFnnXUWjjrqqK5eDhERdVNsiyUiIiIiIqKMiV29ACIiIiIiIur5GC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBn7f5iPJ8tskQoMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "0c42f301", + "metadata": {}, + "source": [ + "### While it seems decent, lets compare with `Powerspectrum`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d754bfc9", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "ps = Powerspectrum(lc_ar4, norm=\"abs\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e44b8444", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'AR(4) Spectrum')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc5dX38e/MbFOv7r3KnWJjwBgMBtNMCb0TwITQIZDQk4deQkgIJIS8QCgJAULAQDC9N2MbcO9VtmVLVm+rLVPeP2ZndlfNtixbkn0+z/VckXZnZ2eltdBP59znVizLshBCCCGEEEIIIXaB2tEXIIQQQgghhBCi65NwKYQQQgghhBBil0m4FEIIIYQQQgixyyRcCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mYRLIYQQQgghhBC7TMKlEEIIIYQQQohdJuFSCCHEXsGyLKZOnUpBQQGFhYVN7p8zZw4FBQXu/0+YMIGzzjqLTz75pNnzLVmyhIMOOoi6urpm77/66qspKCjgX//6V9LtV1xxBX/961936JqLior4zW9+w5FHHsnYsWOZMmUKV111FfPmzduhx7e3b775hhdeeKFDnlsIIUTXJ+FSCCHEXmH+/PkUFRUBMGvWrBaP+8Mf/sBrr73GY489RnZ2Ntdee22zYe7xxx/n3HPPJT09vcl933zzDQsXLmz2/FdccQUvvPACNTU1rV5vdXU155xzDmvWrOGmm27imWee4frrr0dVVebPn9/qY3eXb7/9lpdeeqlDnlsIIUTX5+noCxBCCCHaw6xZs0hNTWXYsGHMmjWLq6++utnjCgoKGD58OAATJ07kyCOP5J133uGggw5yj9mwYQNff/01d911V5PHR6NRHnjgAW688cZm758wYQLZ2dm8/fbbXHTRRS1e74cffkhZWRlvv/02eXl57u1nnHEGlmXt8OvuCIZhYBgGPp+voy9FCCFEJyKVSyGEEF2eYRh88MEHTJ06lTPOOIM1a9awYsWK7T4uJSWF/v37s3Xr1qTbZ86cSUFBAQMHDmzymJdeeolAIMAZZ5zR4nmPPfZY3nrrrVafu6amBq/XS1ZWVpP7FEVxP77ttts4/fTT+eSTTzj++OMZO3Ys5513HmvWrEl6jGma/L//9/+YNm0aY8aM4bjjjmPmzJlNzv3xxx9z5plnMm7cOA4++GB+8YtfUFRUxJNPPsk//vEPioqK3Nbh2267rck1TJ8+nXHjxrFo0SKefPJJDj744CbP0bhdeOrUqTzyyCP8v//3/5g8eTLjx4/n4YcfxrIsvvzyS6ZPn84BBxzA1VdfTXV1datfNyGEEJ2XVC6FEEJ0ed9//z1lZWWceOKJjB8/nvvuu49Zs2YxYsSIVh9nmibFxcWMHj26yfkOOOCAJseXlpby1FNP8fTTT6OqLf999oADDuC5556jurq62fAIMHr0aCKRCLfccguXXXYZo0aNavGcW7Zs4aGHHuKGG24gEAjw5JNPMmPGDD766CP8fj8A9913H2+99RZXX301o0eP5ttvv+WOO+4gOzubo446CoC33nqLW2+9lenTp3P11VdjWRbff/89FRUVnHXWWWzYsIE5c+bwl7/8BYDc3Fz3GoqKinj00Ue5+uqryc/Pp2/fvq18ZZuaNWsW48aN48EHH2Tp0qU8/vjjmKbJDz/8wA033EAoFOK+++7jscce4957792pcwshhOgcJFwKIYTo8t59910yMzM5/PDD8fl8TJo0iVmzZnHTTTclVQHBDpS6rlNTU8MzzzxDQ0MDF198sXu/ZVksW7aMU045pcnzPProo0yePDmphbY5I0aMwLIslixZwmGHHdbsMYceeiiXXHIJL774IrNmzSItLY3DDjuM8847j0mTJiUdW1lZyVNPPcWBBx4I2MF02rRpvPnmm5x33nkUFhbyyiuv8NBDD3HaaacBMGnSJEpLS/nLX/7CUUcdhWmaPPbYY0ybNo0//vGP7rmPPvpo9+Pu3bvj8/nYf//9m1xvVVUVL7zwAiNHjmz1tbfE7/fz5z//GU3TOOKII/j000/517/+xYcffki/fv0AWLFiBW+99ZaESyGE6KKkLVYIIUSXFolE+OSTTzjmmGPcNYDTp0+nqKiIBQsWNDn+1FNPZfTo0Rx66KG88MILPPzwwwwePNi9v7q6mkgkQk5OTtLj5s+fz4cffsgtt9yy3WtyHltaWtrqcbfffrt7zokTJ/L1119z2WWX8corryQdl5eX5wZLgD59+jB69GgWLVoEwOzZs1FVlWnTpqHruvv/hx56KCtWrMAwDNavX8+2bds4/fTTt3v9zenRo0ebgyXY61s1TXM/HzBgAH369HGDpXNbRUUFkUikzc8jhBCi40jlUgghRJf21VdfUVNTw5QpU9wJrQcffDA+n49Zs2Y1aW/905/+RL9+/di6dSuPP/44t99+O2PHjqVHjx4AhMNhgCbDah588EHOOeccMjIykibBhkIhamtrycjIcG9zHrsjIWnAgAHMmDGDGTNmUFFRwYwZM/jTn/7Eueee61ZdEwf+OPLy8tzwWllZiWEYjB8/vtnnKC0tpbKyEoBu3bpt95qak5+f36bHOTIzM5M+93q9SV8z5zbLsohGozIsSAghuiAJl0IIIbq0d999F4AbbrihyX3vv/8+t99+e1LFbOjQoQwfPpyxY8cyYsQITjzxRJ566inuueceIF51bLyVyPr161m0aBEvvvhi0u2PPvoof/zjH1m2bJl7W21tLUCL6y1bkpuby+mnn879999PeXm5G+jKy8ubHFteXs7QoUPd5/F4PLzyyitN2oCd89bX1wPbr6buDL/fTzQaTbpNBvIIIcS+S8KlEEKILqu+vp4vvviCk046ibPPPjvpvuXLl/PQQw8xZ86cJmsYHf379+ess87ijTfe4PrrrycvLw+fz0fv3r3ZvHlz0rFPP/00hmEk3XbxxRdz0UUXceyxxybd7jy2uWmzjoqKiqSBOY7CwkJ8Pl9SVa+8vJyffvrJbY3dsmULy5Ytc1tcDznkEAzDoLa2tsU1noMGDaJHjx689dZbTJ06tdljvF6vW7ndET169KC+vp6SkhK38vvtt9/u8OOFEELsXSRcCiGE6LI+/fRTdyDPfvvtl3TfgQceyN/+9jfefffdFsMlwOWXX87rr7/OP//5T2688Ub3sUuXLk06bsKECc0+fuDAgUycODHptiVLlpCRkcGwYcNafN6ZM2fyv//9j5/97GcUFBSg6zqzZ8/m3//+N+edd547BRbsauott9ziTot94okn3ConwODBgzn33HO56aabmDFjBmPHjiUcDrN69Wo2bNjAAw88gKqq/OY3v+HXv/41N998MyeddBKKovD9998zffp0xo4dy+DBgykrK+PNN99k2LBh5OTktDoV9vDDDycQCHDHHXdw6aWXsnnzZl599dUWjxdCCLF3k3AphBCiy5o1axYDBw5sEizBrsKdcMIJzJo1i7vvvrvFc/Tp04eTTz6ZV155hSuuuILU1FSmTZvG7bffTigUIhAI7PR1ff3110ybNq3V7UqmTJnC5s2b+c9//sPWrVvRNI3+/ftz1113NanC9u7dmyuvvJLHHnuMoqIixowZw2OPPZYUQP/v//6PgQMH8vrrr/PEE0+Qnp7O0KFDOfPMM91jTj75ZPx+P08//TTXX389qamp7Lfffm4F9YQTTmDOnDk8+uijVFRUcNppp/Hwww+3+Bpyc3N54okn+P3vf88111zD6NGjeeyxxzjxxBN3+msmhBCi61Msy7I6+iKEEEKIziQSiTBlyhR+97vfccIJJ+zUY2tra5k0aRLPP/98i9XOnXHbbbexatUq3nzzzV0+lxBCCLE7yVYkQgghRCM+n48ZM2bw0ksv7fRjX3nlFfbff/92CZZCCCFEVyJtsUIIIUQzLrzwwma3Gdme9PR07rzzzt14ZUIIIUTnJG2xQgghhBBCCCF2mbTFCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mQz02UGmaWEYZkdfRhMej4qud77rEnsHeX+J3UneX2J3k/eY2J3k/SV2p874/tI0FVVVWj1GwuUOMgyTqqpgR19GElVVyMtLp6amAdOUuUyifcn7S+xO8v4Su5u8x8TuJO8vsTt11vdXdnYqqqq1eoy0xQohhBBCCCGE2GUSLoUQQgghhBBC7DIJl0IIIYQQQgghdpmsuRRCCCGEEPsMy7IwTQNrF5ayqapCJBJB1/VOtSZO7B064v2lKKCqGorS+sCe7dnrw+Xo0aMZOnQoAGPGjOGBBx7o4CsSQgghhBB7mmVZ1NVVU19fA+z6L+xlZSqm2bmmeYq9R8e8vxTS0jJJT89qc8jc68NldnY2b7/9dkdfhhBCCCGE6EBOsMzMzMXn8wO7WKHxKOi6VC3F7rHn318WkUiYmpoKADIystt0lr0+XAohhBBCiH2bZVlusExNTW+Xc3o8KiCVS7F7dMT7y+PxAlBTU9Hm6mWnHugzb948rrzySiZPnkxBQQGff/55k2Nefvllpk6dytixYzn77LNZtGhR0v3V1dWcdtppnHfeecydO3dPXboQQgghhOgkTNMArFjFUgjREvvfiBX7N7PzOnXlMhgMUlBQwOmnn851113X5P733nuPhx56iHvuuYf99tuPF198kcsvv5wPPviA3NxcAD799FN69OjBmjVruOKKK3jnnXdIT2/bX6xUddfaJ9qbcz2d7brE3kHeX2J3kveX2N3kPSYSmabzPpD3gxCts/+NKIrSpp+fnTpcTpkyhSlTprR4//PPP88555zDGWecAcA999zDF198wcyZM5kxYwYAPXr0AGDo0KEMHz6c9evXM3bs2J2+Fo9HJS+vfdoo2ltOTlpHX4LYi8n7S+xO8v4Su5u8xwRAJBKhrEzF41Fi7Ybtoz3PJURjHfP+UlBVlZycVHw+304/ulOHy9ZEIhGWLl3KVVdd5d6mqiqTJk1iwYIFgN0Sm5KSgs/no6SkhFWrVtGvX782PZ+um9TUNLTHpbcbVVXIyUmjsrJexmCLdifvL7E7yftL7G7yHhOJ7C0dzNiAlPZZx+bxqOi6rLkUu0dHvb903cI0TSorg3g8kaT7MjNT8Hq1Vh/fZcNlZWUlhmGQn5+fdHteXh6FhYUArF27lt/97neoqoqqqtxxxx1kZ2e3+Tk763+cTNPqtNcmuj55f4ndSd5fYneT95iAzvs73J72008/cP31V/LRR1+Rmpra4nFnnnky5513IWeccc4evLrO57nn/s53333Dc8/9s6MvZY9r68/Ova6Wb1mWO9nowAMP5N133+Wdd97hrbfe4phjjungqxNCCCGEEGLHPPDA3UyePIE//en3Te675567mDx5An/5y+NtPv977/2P6dOPbnL7M8+8xPTpp7qfT548gW+//brNz9MVNPcazzvvIv74xyd3+3Nfe+0Vu/R97Ey6bLjMyclB0zTKysqSbq+oqGhSzRRCCCGEEKIr6t69Bx9//CGRSLxFsb6+jq+//oLu3XvslufMyckhEAjslnPvqmg0useeKzU1lays7D32fHuDLhsufT4fo0eP5rvvvnNvM02T2bNns//++3fchQkhhBBCCNFORo0aTU5ODt9885V72yeffMTw4SPo3btP0rGNq2/BYJDJkyfw008/NDnvTz/9wIMP3kN1dTWTJ09g8uQJPPfc3wG7LfaNN15zPwa49dZfMXnyBPfzTZs2cuutv+Lkk49l2rQj+OUvL2XhwgVNruett97gV7+6hqlTD+Pcc09j9uxvko5Zt24NN910HcccM5lTTz2Ohx++j7q6Ovf+a6+9gscf/wOPP/4oJ554NHfc8esWv1bvvDOT8847nalTJ3HhhWcxa9Y77n3RaJTHHnuEU045jqlTJ3HWWafy3/++2uprfO65vzNjxkXuOR544G7uuusWnn/+GU466RhOOGEq//73P4lEIjz66IMce+wUzjrrlKTvga7rPPjgPZx55slMnXoYF1xwJu+8MzPpnAsW/MSrr/7L/T5s3bplh742nVGnXnNZX1/Pxo0b3c83b97M8uXLyc/Pp1u3blx66aXccsstjB49mnHjxvHiiy8SCoU47bTTOvCqhRBCCCFEVzDz5WJWLK5v02MVBaydXJI2Ymwap13Qc6ef68QTT+a9995h6lR7idd77/2Pk0/+GR98MGunz+UYO3Y/rr/+Zl544Vn++U87SKakNF2H+cwzL3HyydP47W/vZcKEiaiqPdAlGAwyadLh/PKX1+DxeHn77Te55ZYbeO21t5NmnDz77NNcffX1/OpXv+Gdd97izjtv4ZVX3qRHj57U1tZy/fVX8bOfncGNN95MMNjAk0/+kQceuJuHHvqDe45Zs97hzDPP4emn/9Hi6/noo/d5/vln+NWvbmHo0GEsX76MRx65n8zMTA4//Ehef/1Vvv32K+677xF69OjBli1F1NRUt/oamzN37hzy87vz1FPPMm/eXP70p9/zww9zOeywyTz33D95443XuO++3/Hmm7NITU3FMAx69OjJ/fc/QmZmFvPn/8hjjz1Mz569mDjxEG644dds2rSRoUOHc+mllwOQnZ2zw1+bzqZTh8slS5Zw8cUXu5/ff//9AFx77bVcd911nHjiiVRUVPDEE09QWlrKyJEjefbZZ909LoUQQgghhOjqjj9+Os8993fKykqpr69n3bo1TJ16zC6FS6/XS3p6OooCeXktLynLyckBID09I+m4goIRFBSMcD+/7rpf8eWXnzFnznccd9yJ7u3HHHMcJ55oVwKvvfZG5s6dzVtvvcEvf3kNb7zxGiNHjuLyy690j7/llju54IIzqaysICfH/p1+wICB/PKX17T6ep577u9cd91NHHHEkQD07t2HVatW8Pbbb3L44UeybVsx/fr1Z9y4/VAUhZ49e233NTYnOzub66+/CVVV6d9/IC+//CJ+v88dfnTJJb/gv/99jdWrV7Hffvvj9/uZMeOX7uN79+7DggU/8dlnHzNx4iGkp6fj8XgIBAJJz/366zv2telsOnW4PPjgg1m5cmWrx1x44YVceOGFe+iKhBBCCCHE3qItVUTHntwqIi8vnwkTDub992dRW1vDlClTSU3t2D1cg8Egzz33d2bP/oaKinIMwyAcDlNSUpx03KhRY5I+Hz16LBs2rAdgzZrVzJs3h2nTDm9y/qKizW6AGjFiZKvX0tDQQFHRZh544P946KF73Nt1XXdD5PHHT+fGG6/h/PPP4JBDDmPy5CMYP/6gnX7dgwcPQVXjKwuzs3MYOHBwwufZaJpGVVWFe9sbb/yHWbPeoaRkK5FIhGg0ygEHjG/1edasWbVDX5vOplOHSyGEEEIIIQRMn34yTz/9F4LBIP/3f/c3e4yiKFgJvbq6ru+26/nrXx/nxx/ncfXVN9CnT1/8fj+//vUNTQbuxDZxaHKdYIfCww8/stmqZLdu3dyPA4GUVq+loSEIwB13/B8FBclB1OOx486IEaN4/fV3+P77b5k3bw633XYzxxxzLLfeetf2X2wz50t8LY1vA3sWDMAnn3zIU0/9meuuu4lRo0aTmprG88//P0pKSlp9nmAwuENfm85GwqUQQgghhBCd3GGHHcGjjz5ESkpqi1Wv7OwcKirK3c/XrFnV6jk9Hi+Gsf3qq8fjwTSNpNsWL17I9OmnuG2oNTU1lJY2DUxLly5h2rTj3c+XLVvCpEl2NW748AK+/vpLevXqjaa1vM5xe3Jz88jP78aWLUUcffSxLR6XkZHBtGnHM23a8Rx88KHce+9v+c1v7kBV1WZfY3tYvHgh++13AD/72RnubZs2bcLn87mfe73eJs9dUFDAl1/u+tdmT+uy02KFEEIIIYTYV3g8Hl57bSYvvvhvt/LX2AEHjOeNN/7DmjWrWbx4Ic8881Sr5+zVqxf19XX89NMPVFVVEQqFmj2uZ8/e/PDDXMrLy6ipqQGgb9/+fPHFZ6xevYpVq1Zw9913NjsI59NPP+L9999l48ZCnnrqz2zcWMipp9pB6/TTz6Kyspx7772LFSuWUVS0mdmzv+GRRx7YmS8NAJdcMoOXXvoHb7zxGhs3FrJmzWrefvtNZs78LwCvvfYyn376ERs3bqCwcANfffUF/fr1d1tcm3uN7aFv3/4sW7aEefO+Z+PGQv761z+7bcGOnj17s3TpEoqLt1JVVYVpmpxxxjnt9rXZkyRcCiHaVU24mtlbvqVBb+joSxFCCCH2Kmlp6a2utbz22hvJzs7hyisv5dFHH+Syy65o9Xxjx+7Hqaeezm9/eysnnXQML7/8YovnnTNnNqefPp3LLrsAsAf4pKamcuWVl3LHHb/hqKOOpn//AU0eO2PGFXzwwXtccsl5fPnl59x33yP07Gmvde3WrTtPPfUckUiEG2+8mosvPoe//vWJpGmzO+pnPzuTm2++jXfeeYuf//xcbrjhSj777GN3u5ZAIIV//vMFZsy4iF/+8hJqa2u5//7ft/oa28Opp57O4YcfyW9/extXXnkZ0WiU6dNPSTrmvPPs+TEXXHAmJ510DCUlxXTv3n5fmz1JsaydHaK8b4pGDaqqgh19GUlUVSEvL53y8jpMU76Non219f21cNt8FpYu4LA+kxmSPWw3XqHoyuTnl9jd5D0mEum6TllZEfn5fZpdH9cWe3KgT1c1efIEHnnkTxx2WNOhNKJ1HfX+au3fSnZ2Kl5v6y26suZSCNGudMseHmBaFiXBEhZu+4lJfQ4n3ZvewVe2fRvXNbD4p1oqSqOYloVlwcAhKRx5fF5HX5oQQgghRKcn4VII0a6M2HQ0y7LYXLuR4vpittUXk549tIOvrHWLf6rljZeKm9y+YXUDI/dLp0cvfwdclRBCCCFE1yHhUgjRrkzLnnZmYbnj0M1O3n1vmhZffVRBg1rJKScNZdioNDRNYfGPtXzxQQVzvqrilHN6dPRlCiGEEF3KN9/80NGXIPYwGegjhGhXRixcmpbphkrT6txrUlYvr2dt2XqqBn6NOmI53Xv6yevm4+AjsvH6FBb9UEuwvv3HkwshhBBC7E0kXAoh2pWRWLkkFi7p3OFy9hdV1HvKGDwijdWV8T3BUlI19p+YiR61WLqgtgOvUAghhBCi85NwKYRoV0ZsE2DLSgiXnbhy2RA0KFzTQE5qJj172xsa14Sr3fv7D0oBoLJc75DrE0IIIYToKiRcCiHalbPm0sTEioXKuroooYbO2Va6YU0DlgW9B3rdTakLawvd9aKZ2fbS9JqqaIddoxBCCCFEVyDhUgjRrpy2WCx7oE9Ntc7Lz2zi5f+3pWMvrAXrVtn71/YZEJ8Gu3DbfF5e/hKbaze54bK2unOGYyGEEEKIzkLCpRCiXTlDfCwswhGDH76tJho12bQ+RH1d52stdcJlz35e9zZ7GJHJ5rrNZGTZmwXXVHW+axdCCCGE6EwkXAoh2pVTuaytjfLBW6XU1xkoqt0eu2FNQ0deWhPVlVHKt0Xp1tNHSprdEntYn8mcOPhkAKpClXg8KqnpGjVVutsqK4QQQnRlDzxwN3fddcsuneONN17jzDNPbqcr2nu9997/mD796I6+jD1G9rkUQrQr0zLYWhRmwfdbqWkIk9vbwyEFWax9z64Sjt4/o6Mv0eVULQcPT3WHDnlUL3mBPDyqh6pwJWCvuyyuCxOsN0hLlx+bQggh9owHHrib999/FwCPx0OPHj054YSTuPDCS/B42v7foxtu+LX8wXQ3OPPMkznvvAs544xz3NuOPnoahx562G5/7gceuJuGhiD33//73f5crZHfkoQQ7aa+TufbL8pZu7Ga/HAPho1Oocf+OfRP9bMWWL+qc1Uu18WuZ3BBClWxcKkqKoqikOXPpryhjLpoHZlZHoo3h6mp0iVcCiGE2KMmTTqcW2+9k2hUZ+HCn3jkkQfQNI2LLrp0p8+l6zqappGenr4brrT9RaNRvF7v9g/sxPz+AH5/oKMvY4+RtlghRLuwLIsX/lLExg31pKSoHP+zfA4+MhtVVfCnqnTv5aOiLEpVZeeYumpZFutWBlFUGDgk1Z1sqyn2Gsscfw5gt8bGJ8bKukshhBB7ls/nJS8vn549e3LccSdy3HEn8M03XwEQDod58sk/ceqpxzNt2uFcddVlLFmy2H2s05L51VdfcP75ZzB16iSqqqqatMWGwyH++MdHOOmkY5g6dRLXXfdL1q5dk3Qd7777FqefPp1jjpnM7353O3V1dUn3m6bJc8/9nZ/97ASOOupQZsy4iPnzf0w65uuvv+Ccc37G1KmHcdNN1/L2228yefIE9/7nnvs7M2ZcxFtvvcGZZ57MiSdOBeC7777hqqsu4/jjj2T69KO5/fZfU1JS7D7up59+YPLkCcyZM5uf//xcpk49jJtvvp6amho+/fRjzj77VI4//kj+8IeHMYzWB/R99dUXXHLJ+UydOolzzvkZL7/8IqYZ31Ltuef+zumnT+eoow7ltNNO5O9//ysA1157BcXFW/nTnx5l8uQJ7utq3Bab+BpPO+1Epk07gief/COGYfDMM39j+vSj+dnPTuCtt95Muq6//OVxzj33NKZOPYyzzz6VF198zr2u5577O++//y5ffPGZ+9w//fQDACUlxdx1160cd9wUpk8/mrvuuoWystJWvwa7Qv4EL4RoF/V1BqXFEVJ7Kxx6bC69e/qoi0QAsCyTIQWpbNsaYea/Srjgit74/Lvvb1shPUTYCJHlz27xmG1bI9TXGfQbFMAfUN21oqpiX1d2wA6XleFKMrP7AhIuhRBib/Nt0ddsqt3YpseqqoJp7lxrab+M/hzW5/A2PZ/D7/cTjdp/qH388UcpLNzAffc9TF5ePh9//AG/+tU1/Pvf/6Vbt+4ABINBXn31X9x55z2kpaWRlpbW5JxPPfUE33zzFb/73f3k5+fzwgvPcfPN1/HqqzMJBAIsXryQ3//+Qa666noOO+xwvvnmK1588VkyMjLdc7z22r95/fVXuOWWuxgyZCgzZ/6X3/zmBl555U26devO1q1b+O1vb+Pccy/kxBNPYunSJfztb082uZaNGzfw3Xdf89BDj6Gq9n+TQ6EQ5557EUOGDKW+vp6nn36Su+++g7/97R9Jj33hhWf4zW/uQNM07rzzFn7721tJTU3l4Ycfo6SkhDvvvIVx4/bj2GNPaPZru3DhAh588G5uvPE3jB27Hxs3FvL73z+A1+vj7LPP4/PPP+E///k3d9/9IIMGDaGsbBubNtnvnwcffJRLLjmf0047kxNPbH0t6saNhcyf/wN//ONfKCxcz//93x2sW7eWUaPG8PTTz/PFF5/x6KMPM378RHr16g1Aeno6d911D3l5+axatYJHHnmA7OwcTj31dM477yIKCzcQCoW49dY7AcjMzELXdW6++TrGjdufv/3tOUDhueee5tZbb+KZZ150v77tSSqXQoh2UVlu/4cuI0fF61WxLLCw/6JmWAaHT8ulV18/hWsbeOfVkt16LW+s+g9vr5lJSA+1eEziekvAXXOpxMJlUuUyK1a5rJZwKYQQouMsXbqEDz98n/HjD6K4uJj33vsf99//COPG7U+fPn255JLLGTRoMB999L77mGg0yq9/fTujR49h4MBB+Hy+pHMGg0HefvtNrrnmRiZOPITBg4dyxx3/RzQacc/z3/++xqRJkznvvAvp338A559/Efvtd0DSeV599V9cdNGlTJ16DAMGDOSGG26mZ8/evPnm6wC89dYbDBw4mCuvvJb+/QdywgkncfTRxzZ5jYZhcNdd9zBs2HCGDBkKwNSpxzBlylH07duPgoIR3HLLnSxevIht25J/n7jiimsYM2YcI0eO5vjjpzN//o/cdttvGTx4KIceehgTJhzkVvSa849//D8uvvgyjj9+On369OXQQw/j5z+/jHfesauIJSXF5ObmcdBBB9OzZ0/GjBnHCSecBNhhTlVVUlNTycvLJy8vv9Xv5W23/Y5BgwZz5JFHM2rUGCorK/nFL66iX7/+XHDBxQQCARYtWuAef8kllzNmzDh69erNlClTOeOMs/nss08ASE1Nxe/3u1XuvLx8vF4vn376EYqicMstdzJ48FAGDx7CnXfew5o1q1ixYlmr19dWUrkUQrQLJ1ymxJZxWFjusADTMklN07j46j788e71rFpWj2laqKqyW67FqUJGzQgBml/n4IbLguRw6bTFOpXLqnAlfaQtVggh9kq7UkX0eFR03dz+gbvo66+/ZNq0wzEMA8MwOOaY47jssiuYP/9HDMPgnHN+lnR8JBJh6NBh7ud+v5/Bg4e0eP6ios3ous64cfu5twUCAYYNK6CwcD1gVxOPOuqYpMeNHj2WdevWAlBfX0d5eRljx8bPoSgKY8eOo7BwQ+wchYwcOTrpHI0/B+jVqzeZmVlJt23atJFnn/0by5YtpaqqCrB/vygpKaZ79x7ucUOGxF93bm4uubl5ZGVlu7fl5ORSWVnR4tdi7dpVLF68kOeff8a9zTBMd+nMkUcew2uv/Zuzzz6VQw6ZxKRJk5k06fCdrgD27t2HlJSUpGv1+eL7bauqSnZ2dtK1fvrpR7z++qsUFW0mFGpA13V69OjV6vOsWbOajRsLmTYt+X1uGAZFRZsZNWrMTl33jpBwKYRoF1XldvAK2FnNDpfEwyVASqpG734BCtc2ULYtQvee/mbPtSds22q37Pbpb4fPeFusHXhTPCn4NB+1kVoyc6VyKYQQomNMmHAwv/rVb/B4vOTn57tTYhsagng8Hv7xj5dRlOQ/1ia2vgYCOzZMpvE57L8PK+7Hje9vemxz57CI35T4cfy2xgKBlCa33Xrrr+jduw+33/478vLyCQbr+cUvfu62BzsSJ+gqitJkoq6iKK1OyQ0GG/jFL67i8MOnNHt/z549eeWVN5k793vmzZvDww/fx/DhI3jssSdb/fo01tx1Nb0Nt+16yZJF3Hvvb7n88qs46KCDSUtL49133+bTTz9q9XkaGoKMGjWaO++8p8l9ubm5O3y9O0PCpRCiXVSWR7EwSU23K3+WZbqh0vlfgN797dbYLRvDdO/pxzQtGoLtt8VHxIi4Hyc+b2OhBhOfX8Xjcf7DmVy5BPBpPuoidaRn2bdJ5VIIIcSelpISoG/ffk1uHzZsOLquU11dxZgx49p8/j59+uLxeFi4cAFHHz0NsAf8rFmzkmOOsdtWBwwYyNKli5Met3TpEvfj9PR08vLyWbRogVu9tCyLJUsWc8QRRwLQv/9A5s6dnXSOHWnNrK6uYuPGQu644//c1/n999+17cVux/DhBWzaVNjs19sRCAQ44ogjOeKIIzn++On88peXUFJSQs+ePfF4vBhG+1ezFy9eRO/efbjookvc24qLtyQd09xzDxtWwBdffEpubi6pqU3X2u4OsuZSCNEuKsujmBikpjnh0nL/Hmla8clsffrZf0Et2mivh/z6k0oe+916Nq5rn21KgtF69+OWwqVpWoTDJoGU+I/AxgN9ALyqPf5c9Rr4Ayq11a1PmBNCCCH2lP79B3L00dO4997f8tVXX7BlSxFLly7h+eefaTKltTWpqamceurp/PWvjzN37vesW7eWBx64B4/Hy7RpxwNwxhln89133/Daay+zcWMhr776LxYu/CnpPOeeeyH//OfzfP75J2zcuIE///kxiou3cPrpZwFw6qmns379Ov7+97+ycWMhH3743nYrbwAZGZlkZWXx9ttvUlS0mXnzvufpp/+yE1+pHffzn8/gvff+xwsvPMv69etYv34dH330Pi+++BwA77//LrNmvcO6dWspKtrMp59+SHp6hlsF7NWrFwsW/ERp6bZY+2776NevH1u3buHTTz+mqGgz//73P5kzJzmo9+rVy22DraqqQtd1jj32BNLS0rn99t+wcOECtmwp4scf5/GHPzxEbW1tu11fIgmXQoh2UVkexVLNeLhstObS0TvWhrolFi43rA5imvDVxy2vgdgZDXo8pJottL6EQyZYJIVL51glIVx6YuEyakZJS9eIhM09sr5GCCGE2BF33XUvxxxzHE888Rjnn38Gd911C+vWrSU/v9tOnefqq69n8uQjuPfeu7j88ouoqCjnsceedFtqx43bn1//+nZeeeVfXHrp+SxZsojzz7846RznnHM+Z511Ho8//gd+/vPzWLx4IY8++mf3Wnr37sO99z7MZ599zCWXnMeHH77HBRdckrTWsDmqqnL33Q+yfPlSLrrobP72tye55prrd+r17ahDDz2Mhx56jNmzv2XGjIu46qrLePPN192JrWlp6bz11htceeVlXHLJ+axYsZxHH33cHZI0Y8aVFBVt5pxzfsZJJx3T2lPtlMmTp3D22efxxz8+zKWXXsDatau44IKfJx1z8smn0bdvX2bMuIiTTjqGRYsWkJKSwl//+gz5+XncccfNXHjhWTz66IMoitpksFN7UazWGo+FKxo1qKoKdvRlJFFVhby8dMrL63Z6FLYQ27Mz7y9dt3jgN2vwZ0XofdZcAAZlDaY2UktZQyndU3tw/KATAbui+fu71hEJWdz+yBD+dM966mvtiuBBk7OortT52fk93JC6s9ZVreGboq/RdYv01Ydy6PiB9BuUvH6jsjzKn+/bQP/BAS673m59eW/du5Q1lHJWwbmkeOzjPyn8kC11Wzh16Gm8/rdaNm8I8au7B5KV3bU3dO4M5OeX2N3kPSYS6bpOWVkR+fl9mqxta6s9NdBnb/b003/hu+++5qWXXuvoS+l0Our91dq/lezsVLze1n8/k8qlEGKXVVdGsSzIyov/wGluoA/Yi9Z79wtgGBYb1gTdYAkw75tqVi2tZ+G8mjZfSzBWuSwqDPHD7CpefKqINSvqk44Jh+zrCaTEr7e5tth45VInLbaWNFgnrbFCCCFEW7zxxmusWLGMoqLNvPvuW7zxxmscf/xJHX1Zoh3JQB8hxC6rqrCntWXlqDgjbyyr+bZYgH4DA6xdEeSH76oBGDoyFT1qoWoK61YGWfJTLYcemdOma2nQ7Q6DrUVh0rDQoxb/eX4rv753MD5/bDPmBjsgJrbFNjfQx1lzqZtRd1BRvYRLIYQQok02bdrISy89T21tDT179uLSS6/g3HMv6OjLEu1IwqUQYpcVbQwDkJGjUhm7zbRMLOzA5vyvY9DwVL74oIKVi+2KYp/+AY46IQ/LsnjywUKKNoapKIuSm7/z7acNegPRqElZSYTcVBjUM4X1qxuorIjSo5e9riPU4FQuWx/ok7TmMs3eY0Uql0IIIUTb3Hjjb7jxxt909GWI3UjaYoUQu+SbTyr4bFY5AH0GxsNgSwN9APoOCODzK+7t3XvZi8oVRWHMARkALJnftilmDXoDJVvDWBYMKkghJxZQqyvj24jEw2W8SulcS/K0WPvvb1GpXAohhBBCbJeESyFEm1mWxefvV+DxKpx7eS/6DEyc+BZfc2lYyYFM0xT6DfaxOuNDtqTMp1tPH8vLl1ESLGHsgXa4/OHbaqKRnV/I3hANUrzZ3uty8IgAWTlOuIxvtNxcW6xpmUnBEhLaYo2ENZf1Ei6FEEIIIZoj4VII0WahBhPDsMjr5mXEmPSkEGlZllsNbG6/yT7DVKJqAyFPBYGsKPOK57Bw20906+lj5H7p1FTpfP9l1U5fU2VdHcVFYbxehX4D/WRl29XH5iuXyW2xiestIbktViqXQgghhBCtk3AphGgzp4rnbBuSFC5bmBbr6DvYDm7pWQqWage/qGn/7zEn5aGq8PUnldutFNbX6TzxwAZmf1FJ1Iiybm0tlgX9BgVQvRZZOXa4rKlqvS3WsiwURUk6d+JAH5kWK4QQQgjROgmXQog2axIuzXjwMi2zxTWXADndVUbvn87YiWnosceZsXCa183HuAmZRMIm61a2vr/s5g0hKkqjfPhWGYWbqyhca29FMmBwCpZlJrTFJobLpm2xzVcuZc2lEEIIIcSOknAphGgzp4rnBC8nHCqGSc/ZC8hatzl2e9NwaVg6g4enkttdRbfs4JcYTgcNTwFg04ZQq9eQGPae+etqGoIm+d29pGd6MC2LzGz72pLXXDZti21uzaVPswcN6aZOWpqESyGEEEKI1ki4FEK0WdO2WDu0HfvoKxx9w0OcftXDZG4tbzZc6rEWWMMyMBI+dvQbGAuX6xtavYb62vhjdFMnr5uXcRPsoUCmZeLxqKRnatRU65imXUltHC7NZva4BNASKpden4rXp0hbrBBCCNGCq666jC+//Mz9fPXqVcyYcRFHHXUol1xyPjU11ZxyynGUlm7rwKsUu5PscymEaLNgvR3KnHBpWiZZW8oY/dE8APz1IQ77xyzev/PiJo+NmnYl0bAMN1QmhsucPA9pGRrFRWEiEROfr/m/hdXFwuXJ53THyjNZGs1GQXGvByAr20NdjUFdrUFmlqfJmkunYtqkcpkw0AcgLV2jqkLHMCw0LXl9phBCCNGeJk+e0Or9l176C2bM+OUeuZYVK5bz7LN/Y8WKZTQ0NJCf340xY8Zx222/xeu1/1v59ddfUF9fzxFHHOU+7m9/e5Lu3XvwwAOPkpISIDMzixNOOInnnvs7t9322z1y7WLPknAphGgzty02YaDPqI/moVgWiy+Yzog3PmboN4vxhCJN2k6dyqVlWUQNe+uQxAqnoij0GxRgxaJ6tmwKM3BISrPXUF9rnye/hw8jV0MpUvBpPiJGJB4uc7wUbQxTXRm1w2XIvm5/IFa5xNnjsvk1l3osXKbGwmWwziAjS358CiGE2H3efvsD9+P33vsfM2f+l2eeedG9LSUl1f3YsiwMw8Djaf//NlVWVvCrX13DEUccyZ/+9BSpqakUFW3m888/xTQNwA6X//3vfzjhhJOThuMVFW3irLPOpWfPnu5t06efzCWXXMA119xIRkZGu1+v6FjSFiuEaDO3LTY9Hi77zV8NwNrjD2PdpHH4QhEGzl3epDXWCZcAISMMNF2b6bTGblzXcmtsXSzgpmdo7mAgZ8qrExozG21HEmow8fkVt/rYUuXSq9prLiNGvHIJUC97XQohhNjN8vLy3f9PTU1FVVX388LCDRx77BF8//13XHrp+Rx55CGsXr2SBx64m7vuuiXpPHfddQsPPHC3+3k4HObJJ//Eqacez7Rph3PVVZexZMniFq9j8eJFhMMhbrnlToYNG06fPn2ZOPEQbr31Tvz+AACVlZX89NM8DjvscPdxkydPoKhoM48//gcmT57Ac8/9HYD+/QfSvXt3vvnmy3b8aonOQv70LoRos8ZrLmkI0mt5IQ2ZqVQM7s36SaMp+OwH+s9f7QbHxWWLyPJludVAgEgsXCa2xYK9nQjAZ++Vs2F1kHNn9MbnTw6AzprLtAyNkno7PDrh0nIrl/HtSEzTItxgJlUe45XLxuHSG7suPel1yrpLIYTYO2RcdyW+92ftseeLnDCd2iefbrfz/f3vf+Haa39Fjx49ycrK3qHHPP74oxQWbuC++x4mLy+fjz/+gF/96hr+/e//0q1b9ybH5+bmEolE+OabrzjiiCObbNsFsGjRAlJTU+nXr79729tvf8AvfvFzTjvtTE488eSkSmtBwUgWLpzPCSectPMvWnRqEi6FEG0Wr1zaoSxtyXI8UZ0NE0diKQqbxw0FoN+C1TRYJhEjwvySH8kJ5NA3vZ97nnCsLdayrKT22b4DAkw+Jof539ewblUDG9c1MHRkWtI11NXqeLwKfr+KEQt93tiUVyfQZufaIbG8NEIkYmJZyZNiLXegT3K41FQNRVGIxK4vTbYjEUII0Yn84hdXM378QTt8fHFxcazF9j1yc/MAuOSSy/nuu2/46KP3ueCCnzd5zJgx4zj//Iv53e9uIyMjg1GjxnLQQQdz/PHT3bbWkpKt5ObmJQXPvLx8VFUlNTWVvLz8pHPm5+ezdu2atrxk0clJuBRCtJm75jLVDl1pq9YCUDKsLxYWNd2zqOyTT/6GYjaVl6LH/kMWNsJEE9pincol2O2y32/9jj7pfRiSPYxjTsonJVXj43fKKNkaSQqXhmHRUG+SleNBURR36qwziMcJl736+QEoLKyjstauhibtcdlCWyzY1Uunhddp/5XKpRBC7B12pYro8ajoetNp6HvSiBEjd+r4devWYBgG55zzs6TbI5EIQ4cOa/FxV199PeeddyE//DCXpUsX8/LLL/Lyyy/y7LMvkZ/fjXA4jM/n3+Hr8Pn8hMOtbzUmuiYJl0KINgvWG3h9Ct7YJNe0NesBKB/YE8uysCyLLaMGkVNUhnfBfBqmTgUgakTdVlOAsBH/D0x5QxkbqtezoXo9Q7Lt/9B172VXIrdtjYdQiFcQ0zPs0OeEQE+jcJmV7SEjS+PrujfQl2ViMsWdFAstD/Sxz+UhGA3ar08ql0IIITqRQCB52J2iKFiWlXSbrsf/e9vQEMTj8fCPf7zcpL01LS25M6ixnJxcpk07nmnTjufyy6/i3HNP46233uDyy68kKyub2tqaHb7u2toasrNzdvh40XXIQB8hRJsYhkVDgxlfbwlkrNkAQPmgXm5gKxlhr7/wLZjvtp9GzajbagoQ0uOhMXHdpRMWe/Sy/xpasjXiPves/25j6fxaANIyPLHH2uf3xdpinc8VRaHfwBRMTMpKIliK0ahy2fyaS4ivu9RNXSqXQgghOrXs7BwqKsrdz03TZN26te7nw4YNR9d1qqur6Nu3X9L/5+Tk7vDzpKenk5eXR0ODPXBv+PACyspKqa+v26HHb9iwnmHDCnb4+UTXIeFSCNEmoQYDrHirKJZFxtoN6F6Nyj75bqtpcYG9ttK3cGHSNNigHnQ/jpjhhI/jobMqXAVARpZGIFWltDiCaVpsWBNk3jfVfPxOGRCvXDptsY0H+gD0HWi3wxYXRbCwksJlSwN97HPZQTVqRklLs0OsTIsVQgjRGR1wwHiWLl3CJ598yMaNhTzxxGNUV1e59/fvP5Cjj57Gvff+lq+++oItW4pYunQJzz//DPPn/9jsOb/99mvuu+93zJ79LZs3b2L9+nX87W9Psn79Onc67LBhBWRmZrF48aLtXmM4HGblyuVMnHhIu7xm0blIW6wQok2CdXYgcyqXSmkp/qpatg3ujaVpbpAsHdoHQ1MJLFwY2w8r9vhovftxYhUzasSnyFaGKshPyUdRFHr08lO4toGK0ijl2+xjYgVH0jLiW6FAvHKZGGZ7D7ADZ3WVTg9MevUNuPdZlsnAOcs48uWn0H71WyInneLe51Gdltsoqekpsdcu4VIIIUTnc+ihh3HBBT/n8cf/gGWZnHXWeRx00MFJx9x11708//wzPPHEY5SVlZKTk8uYMeM45pjjmj3nwIGD8Pl8/PnPj7FtWwmBQIABAwZy//2/58ADJwCgaRonnngSH3/8AYccMqnVa/z226/p3r0HY8aMa58XLToVCZdCiDZpvA2JZ+VywF5vCfFgp/t9lA/qRfc1RShbt7iPb9Dje1cmhsvEymVFqAKAzbWbKMv7EXPtCEq2hikvjQdQgPRYW2yTNZfEw2Vub1AVMC0YOCzAfgfFN27WCgs57Y5nUE0TLruQim9/wBg2HEje6zI9PR2QNZdCCCH2rDPOOIczzjjH/fzAAyfwzTc/NHvsL395Db/85TUtnsvr9XLFFVdzxRVX79Bz9+nTl1tvvWu7x5199gX8/OfnUFq6zd3S5L///V+T415//RV+/vPLd+i5RdcjbbFCiBYFo0FqI80v0HcClhMuNSdcDuoFJFcNiwvsdZf+BQvd2xLvT5Q4ObYyFi5XV64ilL6FkFbJtq0RyrdFkh4Tr1w602KbVi5NovTo7SMlReXEs/NR1fggg9x/v2oHyxj/f191P/aoseBq6fj8CppHkcqlEEII0Uh+fj633HIXJSXFLR5TU1PN5MlHMG1a81VS0fVJuBRCtOi91e/x/rrmN5eO73EZq1wut8Nl2UA7XCYO5nHCZcqihWxP47ZYy7IwLJ2MLA1dibB1c7xy6Qy6i0+LtZ/TCYSJ4TJsRhh/WBZTp+eRnpHwo8+yyH37XUxVYfaLjwPgf3ume7ezZ2bUiKAoCmnpGsGggWkmT+MTQggh9nVTphzVartrZmYWF1zw8yaTasXeQ8KlEKJFwWgwqX016T63Ldb+MaKtXglA+cAeTY51JsYGFi/Z7nOGEyqXUTNKXbQW0zLJyvGCL0Lh2gaqKqJk5XjoPzgFFOz7aH3NZVgPoaCgqkrS7eqmjfhKtrFtaF9qDhyHPnIUnnVrUYu3AuBVk1tuU9M1sKAhKNVLIYQQQohEEi6FEC1yJr4218IabNwWu34dpqZR3SuvybFlA3ti+rykLF4CVusVv6iZ3PIa1BswLBNNU+jWVyEcMrEsyOvm5bQLenDhFb3JyYuFS3darB0uE6fFJq7rtIhfg3fu9wBsGT0ITdGIjj8IAM/8n2Ln8sauy66WpqXJXpdCCNHVxAtl0nUiROvsfyNtLS5LuBRCtMipBDYbLmOVy7R0Derr0UqKqe2Vj6VpbiBzmF4PDSMK8FRVk1lc0epzRozkYT2mabght8eA+E+6vO4+snO9DB0Z3/TZuV5vc22xCRVR02omXI4ZhKqo6AeMB8ATG8nuaRQuZa9LIYToelRVAxQikfB2jxViX2b/G1Fi/2Z2nkyLFUI0y7IsN5wZloGn0Y+LxGmx2obVAFT37QaApmpuGHPUjxlF2qIl9Fy5kZpmqpsOZ6CPR/WgmzqGZWDGQmN+H9gYOy6vm7fJY3VTR1XU+JrLhL9QR5LCZTx0eufNBexwOVzRiMbCpTcWLp2grDuVy3SpXAohRFejKAppaZnU1Nh/4PT5/MCurvtT0HWphIrdZU+/vywikTA1NRWkpWW2eV2shEshRLMSB/K0VrlMTdfQflwHQFXvbiiKgqo0bYqoGzOS7kCPVZtYdeQBLT6vsxWJV/Wim7obMAHSckxS0zWCdQZ53XzNXrOmaCix52880MfhtMsqtTVoy5cS6tmD2u45qIqKMWwIlqahrVrpXgfE22qlcimEEF1TenoWQCxg7vov7aqqYprNTz4XYld1zPvL/iOM82+lLSRcCiGataPhMiVVQ1sfC5d98tEUrcVwCdBj5Sb3NlVRm5zbCXF+zU+D3oCJ6V5LxIwwbnwG8+fU0Lu/v+k1mwZezes+f+OBPg5nzaXnxx9QTJPqA8a414PfjzFoMJ41q1Fqqt3hQM5AH6lcCiFE16QoChkZ2aSnZ2GaxvZGALRKVRVyclKprAzK9HDR7jri/aUodvv4rk7ylXAphGiWs84RkgfjOIJ1JoEUFU1T0DY4lct8VEVFaabVqHbwAAy/3w6XlgWK4gbIRE4g9Gl+9zqcawnrIU45NZ9pp+SjacnPYW9ZYhBQAk3CpWVZzbbFOustq2LhUlNi+2UOH4FnzWq0VSvxjBoIxCuqzgAjJ1wLIYToWhRFQdN27VdgVVXw+Xx4PBEJl6LddeX31z4x0KehoYGjjjqKP/zhDx19KUJ0GYalux83ri7qukkkbMYnxW5YD0BF71y7LbWZcGl6VOpGDidQ30D2ljIAAp5Ai8/v0+LbizjPHzJCqKrSJFg6x4G9VlON/WizLJNvi77mlRX/oj5a3+T1eOfOsa97nF1VVWN/rdMLCuxzrVyBT9ZcCiGEEELskH0iXD799NOMG9fyhq5CiKYSA2XjcBmstz9P3IbEUhSqeubiUT3NtlSYlkntaDu0Oa2xfq1pa6sjqXLptMUakWZbdCHetqopnqTK5dqqNeimTk2kJvn1GAaeH+dhpaZRUzAYANWpXA4dbp9r7Ro8mrPmUqbFCiGEEEK0Zq8Plxs2bGDdunVMmTKloy9FiC7FCWsARpNwGR/mQyiEWrQZo08fDJ8HvxZods2laZnUxMJlz5X2zFe/1krlUvXHHme0uKVI0vXGKq2aGl/zadJ8EDUtE23ZUtT6OqLjJ6Crdhh2HmcMHGSfa8N6fLE9M539N6VyKYQQQgjRvE4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6/5FHHuGmm27aU5csxF4jFG65Ldap2qWmqWgbC1Esi/CAAQAEPM2Pdzctg5rRdkWw+6pNsWNTWnx+py02kjDlFZIH8ySdP7Yu06PYi9EVRWmxymli4p1nt8RGD5rohlB3zeXAWCVzw3p3WqyztUogRUVRZc2lEEIIIURjnTpcBoNBCgoK+N3vftfs/e+99x4PPfQQ11xzDTNnzqSgoIDLL7+cigp7D6NPPvmEgQMHMmjQoD152UJ0eRvXNfDHe9ayfnUd0LQCGA+X8UmxoQF9Absa2eyaS8ukdmBfogEfPVZtAtMksANtsVEjeb/M7Vcu7SENKk0n0bosyx3mE514iDuwyKlcWvn5mGnpaBvWo2Cv43Sm2CqKgs+nEo10rQX2QgghhBC7W6eeFjtlypRW21mff/55zjnnHM444wwA7rnnHr744gtmzpzJjBkzWLhwIe+99x4ffvgh9fX16LpOZmYmV1xxRZuuR1V3dbPd9uVcT2e7LtH1bS4MYSoGa1bW071PNs5+YME6A49XoSFoh7G0dA+eNXa4bOjfB0WBFG+A2qhKk2WXioWlKZQM60vfxevILSol0DfgHudVvW51EOwKqKKAbkWTzhWxwknvecuyWFGxHJ/mQ1HAq3nsoT+qClioqoLVaN68pVh4583BUhTMgyZi1i5CUcATeywomIMG4VmyGK2yHJ/HR1gPuc/r9Sk01Bvyb28XyM8vsbvJe0zsTvL+ErtTV35/depw2ZpIJMLSpUu56qqr3NtUVWXSpEksWLAAgJtvvpmbb74ZgDfffJN169a1OVh6PCp5eem7fN27Q05OWkdfgtjL6JEqLEzKSsJoigfQePrRTRQXhVAU6DvAbmft3jOVtK/tFldrxEDS0/10z80hpNXSoNrrKT2qB93UycgMYFkWlWMG0XfxOgYUFtPthCyy69PRTZ10Xzp1kTr3Gnrk55BeHSCQppFuxNdmpqRrSf8W11euZ1ntAgDS0wPkZmeQl5dOZkYquqnjtZr+YM4L1qBt2ghjxpA7uC8Z61aSrgfIz8sgLy127uHDYMlicitLyMvKpCpkkp2TgqZqBAIadTUG2VlpaJ6u94O/M5GfX2J3k/eY2J3k/SV2p674/uqy4bKyshLDMMjPz0+6PS8vj8LCwnZ/Pl03qalp2P6Be5C9wWoalZX1XW4PHNG5lZY0YCkGFrB0YRWr/7sGszSfzCwPNdU6mzbY/xYsdCLLV+IDtuRkUVdXRajOoLYuRF29vTbSr/kJG2Eq/XVYWFQO7s1YIHvBGupqIoSCOiE9hDeQSl0ovp6yrjpKXV2IcqvGPRdAcXkF3dV4CC2uKKeuLn5/vS9CeXkdwfpIkz00HcaC2QCEDjyI+vI6KqvrqKsLUVUZRAvZ507t3Y8UoHbBUkIHplDXEGJraQUpnhRULfbcxTUEUrRd/Grvm+Tnl9jd5D0mdid5f4ndqbO+vzIzU/B6W/+9p8uGy5ZYltXsNginn376Lp+7M31zE5mm1WmvTXRNNdU6Vmyd5cql9fSrj3DIfumccm53Hv3tegzdfr8FUlW0dWsBqOyZixWswqv6USwFpxNVVTQsC3TTxLJMto0aCEDvxesp11JRULEs8Che9zGaoqFiPy6iR0jsam2INiS9372qP+l+BTV2f/wacgI5dEvtgWkarKlaTfpP9uCvyEEHY5oWhmlgWaBYqntufYC9Vltdvw7P+P3da/GrATxe+2dMOGzi83fqpeudnvz8ErubvMfE7iTvL7E7dcX3V5f9rSgnJwdN0ygrK0u6vaKiokk1Uwixc2qrdUzFxOezQ9R+E9M54+KeBFI0BgyOt6im+kzUzZswevWmIXasX/MnDfRxJrBalolpmVT3yiPavRs91m6hu5mKR7H/xuXTfPHHJGwn4gzSce53Pm+Jc77E7VACWoBDeh1KTiAXgMz5CwGIHnQwEJ+Gm/gYdzuS9evwqMl7XXq99nF6tGv9wBdCCCGE2J26bLj0+XyMHj2a7777zr3NNE1mz57N/vvv33EXJkQXZ1kWtTU6/oDFEdO6MXFyFocfl42mKRimQeaQKkzsabGZFZtRDANj8BB3ixC/5k/qHvDEprcazn6VikLwoAkohoH3px/QYj2m/oTJsZqi4Ynd7oTJdG8GALWR2qTrbTwR1pMwLdY9nxoPnJ5QhPTlqzDzu2EOGhy7tli4VOOtHkl7XWrJe116Y0E6GmlhGq0QQgghxD6oU4fL+vp6li9fzvLlywHYvHkzy5cvp7S0FIBLL72UV199lZkzZ7J27VruvvtuQqEQp512WkdethBdWjhsEo1YBDKge88APfv4MU07RK2vXsfmjNlU+QpRFEjdsh7ADpexENh4KxI1Vrk0Y5VLgIaDDgLAO2d2bGAQeNV45dKjetyKpzNBNieQg1f1UhmqSJr+alrJ+006z5dYhfQkhMueKzai6oZdtYyFYLdymfAj0ezTF8vjQduw3r0251q8Pvu4qFQuhRBCCCFcnXrN5ZIlS7j44ovdz++//34Arr32Wq677jpOPPFEKioqeOKJJygtLWXkyJE8++yz5ObmdtQlC9Hl1VbbYS0lLR4QnfAV1OvJyNLI6BmmjxLAu8Feb2kMGkLYsCuXAU8ApZlglxguQ264/B7PWfsD4NO8SY9xQqJDUzRyArlsC5ZQE6kmy58dO29ywHOeL+ka3FZZhb6L7GuOHnyoe79hGrH7E/7e5vFg9OuPZ/06AiE7VEZjAdrrlcqlEEIIIURjnTpcHnzwwaxcubLVYy688EIuvPDCPXRFQuz96mp0AFISdt4xY8N9IkYEBYWjT0/nyP590W6PhcvBQwgb1XhVL6qiNlpzaQc207IH+gBER47CTEvH+8NcPMYvAfAltMWqiua2yybelhvIY1uwhPJQuRsujUaVS6edNjEoagmBs++iNfY1TDrMvd8ZXqQ1CrRm/wGwfh3pxWWQCVHT/tq44VIql0IIIYQQrk7dFiuE2PNqq+0AFUjYWsmpOOqxcBW2GlBVxZ0UGx00iIgRcdcmJq65dNperYTKpebzox98CEqwnm7L7NZav9Z8W6x7HlUlPyUPgIqGcvd2p+roaL4t1r5Nixr0XroBPS0Vfcy4Jq8vqXIJGLGJsRlFdit+xF1zGWuLjUi4FEIIIYRwSLgUQiSprbHDWnPh0glXwWg9YE9StRSFYL/egL3eEkiuXMaCnWEZ7uAcRVGJHHEUAL3mLQaS11xqito0XMYqlwAVoXi4dKqqjsT1le5tsYCbtnQ53lCEiv1Hg8e+bXn5MuoidU0eA2AMGAhA6pZiIKEt1hnoE5W2WCGEEEIIh4RLIUQSt3KZGg+IbjtrLFw16A1YoRDq5k2YffoSibWJBjx2a2tzwc60rKTBOZEpdrjsOcfeczLVm+Y+TlM8KIqS3NqqaGT5s/GoHioShvqYjSqXTihVkwKufQ2Z834CoHz8WACKajczr3gOJibjuu3XZI9cY8AA+9o2b7Vfv9sWK5VLIYQQQojGOvWaSyHEnlcbW3PpS43f5qxrjMSmpZqWSXTdChTTxBg0hJARBhIqlwkhzdneI3Ggj6qoGKNGY3brTvai5ZyYfwT5KfloioZpmW610/ncfoyGoijkBHIpDW6jLlpLhi+zyVYkWnOVy9htGXN+AKB8/BjygepINQD7dz+QsfnjaMyMVS4Dm7YAsLFmA5tqC8lQJwAy0EcIIYQQIpFULoUQSeqcttiEcGk2qlwCWGtWAGAMGuzucekM5Ulsi/UkbEXiDM5RFRUUhcgRR6IYBr0XrIrfTuJ01/iPKOfjVI99YSHdDrRNBvooLUyLDYdJm/cjkRQ/laOGxs7RAECaJ5XmGP3tyqVvcxFgV2yD0SCbDHvQmC4DfYQQQgghXBIuhRCuhqDBtuIwKOBLid/uhstY5RLAWmMHQntSrB30AlrTtlinTdUiYaBP7DanNdb36UdJj3OqnYkTY53qo1f1xq4lEru2xluRNDctVrP31AwG2XjgcAyPfUy4UcW1MSs7BzMzC9/GjZDwPDn+HPsaJFwKIYQQQrgkXAohXO+9UUpDvcm48RkoWrzl0wlwieHSsz5xG5JYSPM0Hejjie1fqZu6W2V0gl/kmOOwVBXfh++DGW+HdaqdiUN91FirrVdzwqXToptcufQ1E3A9qgffZ58AsH7iCDfkNsQqlwFPCs1SFIwBA1EbGkipqnNvjq+5lLZYIYQQQgiHhEshBACF6xpY/GMtGVkeTji9W1K7qYmJZVlEEtpifRs2AE64dNpiYxNfk7Yi0VAVFd3UMS0TRVHcNZlWfj7RiYegbd2CZ+F8N0w6VcrkcGl/7FQu9Vi4dK7zsD6TmTbgOFJiQbHxUCHfZx8DsGHiSDdcxkNxfI/NxsxYa2z21viEWi22Wl0G+gghhBBCxEm4FEIAUFZiB8fxh2aSkqolTWG1LDOpagmQUrgZS1UxBgwkrDttsXblUk340aKg4FE9brhUG/3YiZxwEgC+92e5AdKd+JoQLuPB0w6XESM+XAgg3ZdJr/Te7vGJz+Mv3oZnxXLCQ4ZQ0zPPfYyz5jJFa6FySXw7kqwtZfFrccKlbEUihBBCCOGScCmEACAcsoNSIMX+sWBYiW2x8XDp1/x4whFSi0sx+/YDv7/J2sXEHT1URcWreoma0aRJsO7zHn+i/dj3/tckVCYe69zni+2H2bhy2XhfzMTKZfannwMQPOpIAHewUNgI41W9Ta4pkTPUZ1i1x63Mah5nn0upXAohhBBCOCRcCiGAeLj0B+wfC3psT0eIhctYS2x2IMet4hmDBtuPbdRemrjm0qlcAkSMSNJ9AOagweijxuBZtZLctZuBxLbY5KE8AJ5Y2TBqJlcuE4+F5GmxmbPeB6B++nQArNiemxEjQsDT/DAfhzFwIAD9KnQO6jnRfi5PbA2qrLkUQgghhHBJuBRCAPFw6fM7lct4W6xhGe4elymeFLpvstcf6sOG24+Nrbn0q7FwmVC6VBTFbWWF5IqiI3TmOQAM/eAbID7xtbk1l07lMtJooE/j8zoDgNLKqwnMmYPRuw/hA8fHHmO6w3xamhTrMPsPtK9lY6EbWFUnXErlUgghhBDCJeFSCAFAJJxcuUycwppYufSqXvIKSwAwhhUAENJDaIrmTnJNXO+oKgreWCXS/rzpj53wmWdjqSoD3/8axTDdINncmsvGA30ab2/S+HmGfbUQxbIIn3wqaqzqaWK5gTjQyjAfAKNvPyxFQSvc4FZdZaCPEEIIIURTEi6FEEDTtlijhYE+XtVLrhMuC0YAEDEj8UmxNKpcsv3KpdmzF9EjjiSlrJL+P65022I9CaHUaXt1zhU1nDWXZuw5G1UuYz/eRnz6k/36TjnNPca0TEJ6LFy2MszHPiCA2as3atFmND1WJY3lWF0G+gghhBBCuCRcCiGAhHDZTFts4kAfn+Yjt3ArAJEhQ4kYESzLSlq7mLSuUlHcaiM0rTA6QuecD8B+736XMNin6ZpLn7vPpV1JdUJwc5XLvPVb6bN0PcbAQejjD3LPZ1kWIaeVdzuVS7CH+iimiW+LHapVqVwKIYQQQjQh4VIIAUA4oS3WGXjjMInvcem1NLI2FtOQmUo0Lye+3lKLh7TEyqWKmhQuG1cY3ec/6VQi+bkM+XYx+SU1AGgJlUulceUyNnDImfzadM2lyrh3vwOg4eLLQFXd0GtaZsL2KdupXAJmbDuSlM1F9rWoJooqW5EIIYQQQiSScCmEAJLbYp2qpRMK7cqlHS4zikvxRKJU9O+BgUlIT96GBJIDpD3Qp/U1l/YJ/EQv/SWqaZHz4j+BRtNiW1hz2VLl0hPWGfXRPAyvh9C5FyQ9t4Xp7nG5vTWXEN+OxL+pyL3N61WlcimEEEIIkUDCpRACSJ4W64RLZx2lYRpEYmscM9bZ24WUD+iJYRnNVy5b2IoEWm6LBWj4+Qwsn4/Av15EqaxIOtb52KN6UBTFraQaLUyL7fXWewTqGlh3xIFY+flJx5iW6W6fsiOVSyNWuXTCpYWF16fItFghhBBCiAQSLoUQgD0t1utTUFXFrQY6018t4pXLtHWFAJQP6IFpGkScPS5bCJeqojYa6JO8z2Uiq3t3QudfhFpXS+pf/txsuAS7eunsw2laJqqiJrXiEg7T75mXAFhy4YlJ1+I8xt2KZDv7XAIYAwYB4Nu0yX2816tg6BamKQFTCCGEEAIkXAohsAfchENmk21IEttinUphytp1AFTEKpchJ1wmhLTEKqJC8kCfFttiY4I33YKVkkLKs08TKK90b3cG+jjXFTWj7trQxucMvPoyga0lrJ00hqoRQ5s8d1LlcgfCpTnAbov1xdZcmpaJ12efS6qXQgghhBA2CZdCCPSohWk2nRTrVC5Ny3TXOAbW2OGyvH8PDMskrDttsS1sRbID+1wmMnv2omHGL1EaGhj26FPNPsZp142a0SbhUqmpJvUPDwMw++Ljklpyneuxw6WzFckOhMvuPbACAXwb7cqlhYXXa7/GaESG+gghhBBCgIRLIQTJk2KBZgf6RMwoWBa+NWvQUwLUds+211zG2mWTBvq00har7MCPneCNN2P06k2Pdz9i8OwlTYf1uBNjoxiWkXR/2oP3opUUU3raSZQU9MejNtqiBBULi6gZbTJsqEWqitGvP56qKnx1DViW5VYudalcCiGEEEIAEi6FECRPigUwTPtzTdVQFdWeFmtESC+rRq2tpW5gX1BVTNNIqFy23BabNNBHbXmgj8PKzKLu0T8BMO0Pr5FRVp10v1MJjRqRpMql9+svCTz/LGZODptvvdl+PiU5PDqvRzd1PMoOBMsYZ6hPVnG5u+YSZK9LIYQQQgiHhEshRNKkWIivufSoHjeMRcwI+Ru3AVA32F6DmDgtNnFLj8TKJYqCV423zG6vLdYROfYEtp19GukVNUy/42mor3fvc87nVE01RUNdv47Myy9GsSzqHnwUMzYhtrm2WMuyMExjh4Kuw9nrMmtLORYWHl8sXMpel0IIIYQQgIRLIfZplmVRUl9MfTDW2tqoLVZT7MqlhYVu6nTbWApAfVK4tAfj+BKnxSZkSxU1qTVV3YkfO5vuvovN44bQfWUh2WedilJWBsTbdZ2qae6GrWSfeQpqZSXBq64jfMbZbohtEi5RMCwDwzJ2rCU2xug/ELArl5Zl4vXGBvpI5VIIIYQQApBwKcQ+bW3VGj7c8D6zS74E4uHS2ebDaYvVTR3d1Om+bisA9QVDgHi4VBQFX0J1MmmfS6XRtNidqBaq/gBv3zuDbaOH4P1hLjlHT8b/6sv4wnb4jdZWMeHVTzn5ivvQNm0kdMbZ1P/uXgC6pXanb0ZfBmUNTj5nrBILJF3X9jhtsdmxyqXXJwN9hBBCCCES7fif7YUQe53ioB0WN9dtAka402Kd8KUpGkpCGMtbuxmA4IjhwBZM096ixKf6Gk2IbbzmMiFc7sTftDyqh1BWGh/85U7OfuojAq+/Sub1V3Gcx8Ok/EwyymtRo1FMVaH+plsI3nqnWzb1a36m9p/W5JyJbbmN12O2xg2XRWWxNZeyFYkQQgghRCKpXAqxD3OmrDoTT+NtsQmVy9iPCcUwyFm3GTMrm0ivnvbjLLui6WxZ4kieFtt4n0uFHeWG1NQUav/6/6h892PCJ/8MPTOdrOIKoulpLJ12EO+++hjB2+5K7sdtQWK4bDxJtjXGILsCml1UigXxyqWsuRRCCCGEAKRyKcQ+pWhjiM0bQow+IJ30DA+qEy51C5V4uIwY9p6WPs3nhrGczaV4wlEi48e4lchIbL1l46mrSVVMFDRVcwfp7OhAn8TzarHH6BMPpmbiwawsX87com8ZnFfA2qo19E7vvcPnTA6XO/EjMDUVvXdvsrZuhXDYrfKGghIuhRBCCCFAwqUQ+5T3/ruNoo1hPnq7jOlndcMzSCMSMdGjFj7i02LjE2AD7kTVbmu3AKCPHuNWPEN6LFyqLVcunaDpVb1EjEiTPStb41QWG4dAr8eHpWnude5MYE28tp1piwWIDh6CZ8sW0jcXk9Pdfs2lJZGdOocQQgghxN5KwqUQ+5DqKh1FAQuLd1/fRvrYKmavtyewjiZeuQzFKpIBT8Bti+22tggAY/RYNDVW4TSdcJkcGBvvc2kf4yFiRHYqCGb5s9m/+wH0TEuuTDpttk64VXcisCptrVwCxpAh8M3XZBRuofsYezrutq0SLoUQQgghQNZcCrHPME2L+jqD9EwPx5/WDdOAtctDScc44dLZ4iPgCbhrJBMrl06Yc45rbrsPhxMmnUCo7ES4BBjXbX+6p3ZPus3diqQNlcukgT47GS71wfaU3MxNW8nJ96JpCtuKw1iWDPURQgghhJBwKcQ+oiFoYJmQnqFx0GFZHHpUNv0GpJGaFv8x4IbLhLZYJwx2W1uEparoBSPd1tawYVftmrTFJg7WiX2suesnd7zK2BKfZm97EoqF2505Z2K49O505XIYAJkbt6JpCvk9vDTUm9TVGjt1HiGEEEKIvZGESyH2EXU1dgBKz7SH6xx3ajd+dm4vevUNuMf43TWXCW2xikqgup6MsmoaBg2AQCAhXMYql43WLjbXFuuLTZTdmSpjS3ya3ZIaNaM7fc6kgT47uebSGDIUgMyNxQB072VfR2mxtMYKIYQQQki4FGIfUVdrby+Slh4PVJqi0aOPz/3cqVw26A2oiupOi3XWW9r7W+IO+XFCaOP20qSBPglrLqF9wmVACyR9vlNrLhM+3tm2WKv/QAxNJWuTEy7tr922reGdOo8QQgghxN5IwqUQ+windTM9Mx7ELMsiNy/e0upPiVcu/R47wGmKRrd19nrLyKiRQDzMRWJtsU3aS5Wmay6d1tmd2eeyJR7Vk7TOU2tr5XInw6Xi8VLdO5/UihqU2pqEcCmVSyGEEEIICZdC7CPcttiMeKCysFAUhUOPzOaMi3ri86lEjAiWZbnVwcTKZWTUGKDpGsfGIU1N+NGSuBWJ/Xn7/Njxx1pjnWvcUbvSFqsoCpX97OFC2rq1dO8pE2OFEEIIIRwSLoXYRzhtsekZTVtI87v7GDs+A4ivo3TCm6qo9Fi5CQB93DigaaWw8X6RiQN9nLZY53w+1Ud78Ce0xu7MQB+FtlcuASr7xsLl2jVk5XjweBXKSyVcCiGEEELIPpdC7CPqm2uLJb6Fhm7qeFQPDQnbkAB4QhHyCoup6Z6N1qMPEF9z6fA2nhbbzFYkI3JHkeZNp1ejPSvbKuBph8plG8JlVb94uFRVhaxsD+WlUSJhE59f/l4nhBBCiH2X/CYkxD6iriY20CexLTZhf0bDssNn48plzvJ1qKZFcUF/vLEtQBoP0PE0CptJO5HEgmaqN5WC3BFNgmlb+ZLaYtu2FUlbwmV1v56AHS4BsnLsc1RX6jt9LiGEEEKIvYmESyH2Ee5An2baYsGuXAKEdXvyqdN2mrt0NQAlBf3dCmXTNZfJlcvm1ly2t8S22J2pXCZeT+N23h1R3b+H/dh1sXCZa7/26sroTp9LCCGEEGJvIuFSiH1EXa2BpikEUuL/7BPbYo1YuAzFKpcpnhQAsmPhsnTkIDfEbW+gj9LMtNj2FkioXO7Mmks1ac3lzldRg3nZRFL8aKtXg2WRlR2rXFZJ5VIIIYQQ+zYJl0LsAwzDIlhvkJ6pJQW/xLZY3YpVLp222NiaxuylqwCoGDnEPbZxa2tL+1zurqqlfX0JA33UPbfmUlFVygf2RK2vQy3aTFaOXbmsqpDKpRBCCCH2bRIuhdgHBOsMsCCcuZX5JT82e4xuGoSNsNsWG9ACUFFB2qYtVPTtBtnZ7rGqoiYFx8b7XDr3JQ72aW+JW5HszPYmice2pS1WVVTKB9jrLj0rl8uaSyGEEEKIGAmXQnQRpmXyaeFHrKlcvdOPdbYhqUpdzeKyRQSjQSC5Lba4fguvrfg3a6rs8/s1P/zwA+Cst0zeQiSxFbXxfpFOgNud4TLQ5q1I4tfUpsolCuUDY0N9VqwgO1fCpRBCCCEESLgUosuoCldSVFfE+uq1O/W4TRsaePuVbQAE0k0Aoqa9L2NiuCypL056nN8TgHnzACge0R+f1mhoT1J7afNbkezOtlhfW9dcKrsWLlVFpcwJl6tWkOmsuZSBPkIIIYTYx8k+l0J0ERHDDoSGZe7Q8dGoyV9f+I7SZRl4rVT6Dw7gH5OKQZBw7FyJnEE+joCWEC4L+jcJkEmVyxbWXO6uYT4QXxO6s8/jHKsqapuuL7Fy6Vm5HI9HJT1To6ZKxzQtVHX3BWohhBBCiM5MKpdCdBFhw14L6exHuT1zFxby7eZvCeav4ZRzu3PJtX3xBmKVSydcJgz0qY/WA9Avoz8H9zoUTVFh7lwsTWPbsL74GrfFqi2Hy90ZKh2BNm5F4hzblqql8/ja7jmYaWloK1faE2NzvJgm1NXs2PdGCCGEEGJvJOFSiC7CqVyaOxgutxbXAlBwgJcDD8lCVRXMWNUz0kxbrHP+kXmjKMgdgbqxELZupa5gKHrAh1drvnLZXAVwTwz08ageNyCqO9UWu2vhUlEUUBT04QX2xNjNmxKG+khrrBBCCCH2XRIuhegi3LZY0w6X4bDJtq1hqhoFGsOwA+O2bXaba1pOwnYjsb0snXMlbkXicKaweuZ8D0Dd+P0BmlQunUDXXEjbE22xEL/WnRro44TLNkyKBVBiPzYjwwvs86xa4YbLKhnqI4QQQoh9mKy5FKKLiCS0xS6YW8Os/24jGrFQVbjhdwPZvCHE5++VU1Ya5agT8iiLhcvULLtaaVlWk8plc5xBOd65drhUJh1BXko2vdP7Jh2ntRIunVC5Owf6APi1APXR+qQhPdvjBN/Ge3Pu8ONjzxUtsMOltmIFmaMPAqC2WsKlEEIIIfZdEi6F6CLCsUC4Ymkti78sQVEhI0ujttqgdGuE77+somybXcX84dtqKkJhAjkKitcOPIlrNZ01l4ltsQ5nLaNnzmwA/JOPYXqPXk2Oc9ZcNlcBdKfF7sa2WIA0bxoVofKkybHb0x5rLgEiw4bZ51m5nMChBlXeQqoqM9p0TiGEEEKIvYG0xQrRRUSMMIZhsWJpDaoKP7+6D+MPzQKgukqnulJHUaBXPz+11TqmZZKR5XVbYJ2WWICIaYfQxm2xHtWDpmoo1VVoK5bDgAGYvXo3ez2aG9K8Te5zqns7067aFgf1Opij+08jzZu2w49xwqG3rZXLWGAOF9jhUlu5nDJ1PUWpP1JYtbFN5xRCCCGE2BtI5VKILiJihNmyMUQkYjByv3QGDk2lstwOjBVlUWqrdTKyPIwcl87WTWFMDDKyNKKxILkjlUtnDaP3h7kolgWTJ7d4Pa2tuVQVlQN6jCfNk7oLr3j70r3ppHvTd+oxauxvalob11w6Lbh6r16Yael4Vq7El2J/batqG9p0TiGEEEKIvYFULoXoIsJGhPVrGjAVg4MmZwO4g2Q2rW/AsiA710PBaLuKZykGmVkeLMsiakSTpsw66zcbc9pLPbH1lhx2WIvXE19z2Xx1cmz+OAZnD93xF7iHOFXVNk+LjVUuLcAoKEAJ1pNXUwZAXb1MixVCCCHEvkvCpRBdgK6bzP66lOpKnYwsjX6D7MmtTrgs2hiOfe6ley8f2bkeLEwysuz7I2ak+bbYJpVL+7ze2KTY1iqX7prLZtpiOzN1V8Ol4oRLC330WACy1qzB51eor9WbncArhBBCCLEvkHApRBfw6axy1qypxh9Q2H9ipjv1NTPbDkiGbgearBwPiqJwwhndGDshjazY/VEjgm420xZrNQ6XAYhG8c7/ETMzC0aPbvGaWpsW25k5W5G0vS3WfrxpmW64zFixhpQUDd0wCdab7XOhQgghhBBdzF4dLsPhMGeeeSannHIKJ510Eq+//npHX5IQbbJ6aT2mGuGwqblk53jd9ZNer0paerwtNTvHriIWjE5n/OQMt8oWMRu1xbawFYnfE8Cz4CeUhgb0iQeD2vKPiPiay65Vucz2Z+NRPeSn5LXp8c4+l6YVr1xmrFqLP0UFxZTtSIQQQgixz+paJYed5PP5ePHFF0lLSyMYDHLyySdz3HHHkZmZ2dGXJsQOq6/TKdkWJLWP5gbJxOE8WTke6uvsz7Ny4/+kzUYDfBL3nIy0NNBH9eH75jP7MZOPwNfKdbnTYnfzRNj2lhvI49wRF7gVyJ3lfB2Dej0Le5gcCWSuWEvgeJUQJjXVOj377PjWKEIIIYQQe4u9unKpKAppafZwk0gkYm8ib0rLmuhaNq0PYSpRcvObD47OukuIVy4hOYA2XnOpm/ZWJY2XB/o0P95vvgIgeviUVq+rq7bFAm0OlhAf6LO6chU/1q+kYUA/UouKybXCmEjlUgghhBD7rk4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6PxQKccopp3DkkUcyY8YMsrOz99DVC9E+Nq5rwFAi5HaL1xGNhPWTmdnxQJkYNJMG+BgRdCs59DjVy0QpBnjnfo+ZlY0xZmyr1+UM9NG6YLjcFU4wdb5+9SOGAzCobJu0xQohhBBin9apfysMBoMUFBRw+umnc9111zW5/7333uOhhx7innvuYb/99uPFF1/k8ssv54MPPiA3NxeAQCDAO++8Q0VFBddddx3HHXcc+fn5bboeVVW2f9Ae5FxPZ7su0b42rQ9hKFHyuvlwOlstxXS/79m5drhMTdMIpMRbVC1M93jdiuJBI6EzFoMoimol3Za3eCVKOEz06GmoXvvHQ0vvrzRfKooCad7Ufeo9qKn219FER1GgftRw8j/8lIElJXylWdTWGPvU16Ot5OeX2N3kPSZ2J3l/id2pK7+/OnW4nDJlClOmtNya9/zzz3POOedwxhlnAHDPPffwxRdfMHPmTGbMmJF0bG5uLiNGjGDevHmccMIJO30tHo9KXt7Obda+p+TkpHX0JYjdpKoywpZNYQIZJj16prrr/bKyU8hLt9+PfftHgVLyu/uT3qNpFT7SrQAAqRke0n0B0qsD7v3pWT4yoymkh+O39VxoV/59xx+LL/a+aun9lZ2zP32796B3Ru9dajPtarJrU0nXAwT8HtK1ABxoT9QdVFyC1cckFLQ67c+Kzkh+fondTd5jYneS95fYnbri+6tTh8vWRCIRli5dylVXXeXepqoqkyZNYsGCBQBUVFTg8XjIzMykrq6OuXPnctZZZ7Xp+XTdpKamoT0uvd2oqkJOThqVlfWYpuytt7cpK4nwwl83YxgW/Yd7qK8Pu/eVltfgCds/cAKp9jrinHyN8vI695jK6jrq6kP28RVVhHwmdXUh9/7i0kqqa4JJt3k++waAqgMPwaqs3+77K4VsKiuC7fSKu4aamgbq6kIYYZWGaIiS/oMYAHRfuxmrr8maFXW88vx6jpiWm1RJFsnk55fY3eQ9JnYneX+J3amzvr8yM1Pwelv/3abLhsvKykoMw2jS4pqXl0dhYSEA5eXl3HLLLRiGgWVZnHfeeYwYMaLNz9mZvrmJTNPqtNcm2u6rjyuoqdIZOz6DYUc3sKAsfp9hGu73vFtPHxdf3YfuvXxJ7wPdMNyBPWE9QoqmY1n2AB7d1AnrYUzTco/xNoTxz5+Pmd+N6LAC1Ni55P3VmIplgW7YX8+G7vmEszPJL9xKv74q4dUm33xSycol9Zx3eW9y87vWVi17mry/xO4m7zGxO8n7S+xOXfH91WXDZUssy3JbB4cNG8bMmTM7+IqEaJuqiigARx6fyyZrCwA+zWcP5zGTh8YMHp7a5PFGwgCfaMK02BRPCrWRWiJGxN2KJMOXweAFW1B0nfDhR5C0EFMkUWNz0KKm/f2xgOrhg+g+dyGnjG5gwHkDeff1baxZHmTmy8XMuKFfB16tEEIIIcSe02UXSuXk5KBpGmVlZUm3V1RUtHlgjxCdSU2VHQYzszyEY5NJUzwpAJiW3Qq7pa6I77d8536eKPG2iBF1tyYJxM4RMePTYg/pNYlJy2sAiB5+ZDu/kr2LO1QpVvK1sKgqGARA5vLVZOd6Of8XvUnL0CgqDBGO6Ly79h1eXfEynxZ+RNgIt3RqIYQQQogurcuGS5/Px+jRo/nuu+/c20zTZPbs2ey///4dd2FCtAPLsqip1klJVfH6VCKxQBJww6UdFD8p/IhVlSsprt/a5ByJ1c2oGUGPPcYJqFEj4gYkRVHwffYJAJGpx+ymV7V3cPa5dFhYVI4cAkDOsjWAvVaidz8/pglFRXVUhMqJGBGK6or4fsF6SoubbgMjhBBCCNHVdepwWV9fz/Lly1m+fDkAmzdvZvny5ZSWlgJw6aWX8uqrrzJz5kzWrl3L3XffTSgU4rTTTuvIyxZilzUETfSoRWa23bnuBEWfau91aTSqVDa316RhGUl7MpqmEy7tFtqIGW+L9W7ahGfNavSRozB799kNr2jv0WQyrmVRMWoYADnLVrs39+prT+Et2hwfBNYQNJj52maee2ITFWXR3X+xQgghhBB7UKdec7lkyRIuvvhi9/P7778fgGuvvZbrrruOE088kYqKCp544glKS0sZOXIkzz77rLvHpRBdVU11rCU2Fi6dSqVf8wN2cGy87rIx0zLxxEJnxIigx9ZgelXnnJYbLjO/tKfERqZOa8+XsVdqrnJZ17cHofQUsletpzIaBa+XXn3t79XWogaI/UiqqohiECUUNHn1uS384qZ+eL2d+m98QgghhBA7rFOHy4MPPpiVK1e2esyFF17IhRdeuIeuSIg9I3G9JeC2tHo1e/KoYRrURmrc461m1lwapoFX86IpGvXRejeMelX7HE6wBEj/8itAWmJ3ROPKpWXZX8mSgn4M+HEVnhXL0MfuR69+drjcuLaBpZvLyevuxetVMZUoHq/Ctq0RNqxuYNiorreHlRBCCCFEc+RP5kJ0Qm64jFUuDTO5cmlaBrWRWvf45gb6GJaBpmj4NLuVNqTb+1m6LbSWhWVZaBGdtO++x0pNIzrxkN3zgvYiitK0cmlhUVzQHwDP/J8AyMr2kJKmUl4epq7WYNO6EOXbIhiKzvDRdqB0JgILIYQQQuwNJFwK0Qk1CZduS6uz5rL1cOmEUTtc2oE0qNcD4FHsczqhqM/itWjBIJEjpoDfv7te0l5DaaZyCRbFI2LhcuH82HEKvWPrLu3joLJCB0+UYSPtda/Vla23NgshhBBCdCUSLoXohGpjay4zspIrlz6nLdZKbos1LZNVFSv5YP17GKbhbjuiqZo7HTYYDQLg0eLd8JZlMWiuPTArcpS0xO6I5tZcWpZF8YgBQLxyCTBkRCqoJn0H+NFMO7hn5Svk5Nt/JKiqlMqlEEIIIfYenXrNpRD7qsaVS71x5dI0qYlUu8eblsnG2g1sC5ZQE6nGr9kVM03xENBSks7tVC5NywTLYvB3SwCIHHPsbnxFe48may5j/1eXn0UwL4uU5UuhoQFSUjj0yGwG7NefDzZmULYhhE6YrG6QnWN/D6RyKYQQQoi9iVQuheiEGk+LNUwDj+pBUzSgmTWXmO72JKZludNlNVUjxdsoXCZsW5K+YRO5m0sJjR6N2a//7ntBe5EmlcvY2lUUhdIRg1AMA8+SRfaxioIvoOD1qvTumQFAVr5FRpYHRZFwKYQQQoi9i4RLITqhmiodn18lELDDpDOcR1PtzyNmhPpovXu8ZZnuukvDSmiLVVRSPcnh0hnoY2HR+4s5ANQeK1uQ7KiWKpcAJSPt1ljvgp+S7gcYP6Ebffr76d5PQ9MUMrI81FbrFNeW8P3W2W7rsxBCCCFEVyXhUohOJhwyCYdMt2oJsXCpaqixymV1uDrpMaZlueHEskw3XKqKltQW61E9buXNsiz6fDEXgHoJlzusaeUy/nHJiIEAeH78IeF+O/T37pPGhENzQLOrldm5HiwLftq0mFUVKygLle3eCxdCCCGE2M0kXArRyTQE7WCYmmb/8zQt094yRNHcttj6aF3SY0zLxCKhcmnaH2tKclusqqhuOPKXlpO3ZBXVPXIJjxq5e1/UXqS5yqUZS5hbRtqtxd4f5ibdD6Ci4lW9RE17iE9Wjj2cqaLarkAbprTICiGEEKJrk3ApRCcTjdhhxOuz/3nqsdBhr7m0b4sYkaTHmI3aYhPXXDauXDp6fmUHoLWTxjTZXkO0rNE2l254BAinp6CPGIm2sRC1eCsQ3yZGURR8mg/d1DEtk6zYUJ/KmmDScTtjcdki3lv3bpseK4QQQgjR3uQ3SiE6mWjUDgpen51inHCpKR53zaUj4LGnwiaGSzOhLVZT7K1IlFgi0hTN/dhZb7lm8tgmrZ6iZU2CuGUlfe2jBx0MgGfeXPc253HOtN+IEXHDZXVdKOm4nbGpZiNlDaUEE9bfCiGEEEJ0FAmXQnQy0Wiscul12mLjVcjGwSbFk2ofQ3LlMjGQKoqCX7P3WHTWXPrrgnSfs5BwVjpF44a4gVNsX3P7XDpM4uHSO29O0v0qqrtPadSMkB1ri62ps4NhW8KlEduixvljghBCCCFER5JwKUQnE43EKpdeO8Q4wcGjaO4elQ5nEmziEJ/EjzXV/ifuhFBV0VAUGPLNEjRdZ9ORB2N6kquhonVN1lwmVC4ty2oSLuOVSxIql1GycjyYGNTURmLH7XxAdP6IIG2xQgghhOgMJFwK0ck0XXMZn/zaONi4lcvENZemGa92xgYApcTaZ53KZcEX8wHYNO1QoGk1TrSstcolQHTgQMy8PDyLFkBDg70HJnYo9Wl2uIyaEfK6+/BnGlSURgk1GO5QoJ3hDAdqy2OFEEIIIdqbhEshOhndbYuNrbm0Egf6JFcZU2KVy8YDfRKnxdrHpcY+V9GqahjwwwrCWRkUHzgaQNpid0Jr+1wCGLHWWCUaxbNwAWZsiq89LTa+5lLTFEYd6McCNq4PYVgGKxbX8e1nlZjmjoVFZ/sZaYsVQgghRGfg2f4hQog9yRno44mFS9OMVyEbD/RJ8TatXCa2SKpuuEyJncND+kcfoRkm66cegulRIbwbX8xeqOk+lxYkrru0TKITDsb/wXt4583BGjHdfpyiJK25BBhxoBfmw4Y1Qf6zqQhjo/39ys33MnJc+navxfnDgyVtsUIIIYToBKRyKUQn07gtNr5+0v5bUGL1MqA502ITJ5YaSdVOgIATLlWN9HffBWDjMYe655G22B3XuMprYbmtr2CHS31ifN2lmdAWm7jmEiAlyySvm5dwyKKkOExahv29XbkkeR/T5him4T6vVC6FEEII0RlIuBSik3G3IvE23orE/ufqVC99mg+valfCnKmh9seGW8nSGlUuU6rqSP3mG4LZ6ZQcMDJeb5O22B3W3ECfJhNj9zsAy+vFO3c2lmEHP6XRmkuw22P3OyiDkePSOO3Cblx7+wBUDVYurccwWm+N1RO+5zLQRwghhBCdgYRLITqZeOXSmRabXIV0wo1f87sfOwEUYpWz2OdqbFpsXiAPTdEY/tmPKLrOiqMOxPSoSRU3sWMabwfTuHJpWSakpKAfMB61ooLAmrX241DcPwZEDDtcho0Qaekeho5Io1svLympGoOGptJQb7JpQ6jV60j8nkvlUgghhBCdgYRLITqZxvtcNh7O4/yvXwu44dKZGgqxgT6NpsVm+rM4d8QFDJj1OQDLjjsIe6Wg/VzSFrvjmltzmTTQJ7ZGNnLYZACy5v4IJE+LjYfLcJPHFYxNA2Dl4tZbYw1TKpdCCCGE6FwkXArRyejOQB9f8rRYrVHlMuDxu1U0PSFcmpaF0agtFsC3Zg3e+T8RGTqUkuH9kqptEi53XHNbkTRuiwWIHmqHy8y5P7mPc9dcmk3DpfO44aPscLlhTUOr15HcFiuVSyGEEEJ0PAmXQnSADdXr+c/KV6gOVzW5z22L9TYa6BMLik57bGLl0tkLE+ygkThh1hF4/VUA6s88y11jKW2xO6/xmkuaDPSxP44edDCWx0P2jwvAsmKVy9i02IS22Pjj7HCZleMhPVOjZEuYaKTlimQ0qXIp30chhBBCdDwJl0J0gG3BbYT0EBWhiib3uQN9nDWXprPm0g6KColrLpPXZYIdUpxAqjpbl5gm/tdfxVIU6k8/A0iuuMk+lztObTwttvFAH6dFNS0Nff8D8ZVXkruxJGlarBMMw7GQCbjVZkVR6NM/gGnC1s0t7xMjbbFCCCGE6GwkXArRAZw2xubaGeOVSyc4OlXI2FYkscDo9wRQaTrQx7AM93NP7DHeb79G21JEdPIRmH37AbFQZMmay53VbFtsUuUy/j2NTrJbY/stWIOC4lY9nTAY1uOVy8S9KvsMsLeY2VyYPNQncYKsDPQRQgghRGcj4VKIDuCsl2uunbHxQB+n5dUJlc6WJIGkttiEoGEabsBxj33t3wCEzjrXDUeJ1Tax45rsc9lS5RKITDoMgL4L16Aq8XBpxdZXJq25THhc31i4LNoYD5fVlVEeuWMtb/yzGMOwqKoOYZqyz6UQQgghOg9PR1+AEPsiZzJoc+2MeqO2WLPRmsv4tNjmtyKxiLfFaqqGUleL/913sFJTiZx0Svw4S9pi26LJPpdNKpfx76k+8RBMTaXvwrVUJzzWqRo7g30aP653Pz8oUJRQuVy3KkgkbLH4x1rWrw6yqaGQ1APrGTkuPanqKYQQQgjRUaRyKUQHcNZINldxctpiPd7k4BifFhsPl+60WCu5culWOxUP/jdeRwnWEz7lNKz0DDdIWrHNSEDaYndG07ZYWqxcWukZ1IwaTnpFDalrC93HmpZJxIy0GEoDKRr53X1UVejM+aqKaMSkaKNd5dQ8CnU1BqZisG1ruMljhRBCCCE6ioRLITpAa5VLZ0KoO9AnFkCd9ZPDcobTP3MA+Sndkiph7rkt0w2vHkUj8NLzADRcfCmQGI5kK5K2UBpXLhu1NtdH61lZscL9HpceciAAWd/Nia+5xHQnxjp7Xzb+Q8P+EzMAeP/NUt59fZvbInv5jX35xU39SMmwqK0x0A1L2mKFEEII0SlIuBSiAziTQZsd6BNbc+nxJE+LddZP9s3ox5H9pqKpWjPbYtiB1al2BhYtxrt4IfqoMejjDwKSg6RsRbLztjfQZ3nFUuZsnU1R3WYgIVx+O9utGpuW6f5hwWlzbtzaetjUHH5xUz/8AZWlC+ooKQqTlq7Rs4+fPv0D5PXQsCyoqYxK5VIIIYQQnYKESyE6gBP+mq1cRi08XgVVbTQtVtWaHJu4j6XDmRarKiqp/3wBiFUtY8EmMeDImsud12TNZaOBPsFoEIgP66kYV0Ak4CN9zjyIRlEVNSlcelV778vG7wVnS5IRY9PQoxamCb37+93vVW5P+zqqKnT3jxVCCCGEEB1JwqUQHSC+FUnzbbHONiRA0vrJxpqrXFqxfS5Tg1ECM/+LlZpG+Kxz3Puba4GVttgd12RabAsDfaJm1P7c62HzfkPR6oN4f5yHqqhYloUZmxjrrKVtKSCOPTDD/bhP/4D7cW53J1xGZaCPEEIIIToFCZdCdAC90UAfXbfDiWVZ6FHLHeZjHxNbP6nuWLh0KpcjP56HEgwSOv1MrIxM9353oE/iPpdSudxhKq1XLh1GQnW6cEIBAN4vPrPDJZa7DY3zfW2ptXXQ8FRS0+0KtbP/JUB2N/s2u3Ipay6FEEII0fEkXArRAeIDfSy+/LCch25byw/fVmMYFpYVH+aTeGxzLbDQNBhGzSimaTD6na8BCMUG+TRm0XwoEq1rtnLZzNfRrVxaJoXj7XDp+/IzFJSktlhP7PvaUrjUNIWpJ+QxpCCVAUNS4rf7TNLSNerrDIJBvdnHCiGEEELsSbLPpRAdwKk0lW5r4McPK7BMePf1bTQE7dsT22JbW3MJdiXNIF65ihgR+i5cQ97azUT3OwB9/wOTj3cmzGK57bDSFrvjmlaLrWYHI0VjlUsLi/KBPYn26IFn/k+k1DVQk+pxW1mdtliLlltbJxyWxYTDspJuM0ydvO5e6usMNm2sh2G78KKEEEIIIdqBVC6F6ACGadDQYPDVJ+VYJuw/0W5b/fazSgC8CW2xuqk32xLraBx2TMtk/OtfANBwxVUtPi6xnVPaYndc4yDeUsVRT6hcoijUHz4ZxTTpO39VswN9nAr1jk7wjZo6PXv7Adi0IbjzL0QIIYQQop1JuBSiA5SUNPDF+xVUlIXpPzjAKed2x+dXCTUk73EJduWyubWVjsbBMLuolCGzlxLMzyF86uktPqbxIBqxY5yvt7tnZYvhMla5jH2Ng4dPBqDfvOVAwv6lzppLTBaVLuCfy16gNlKz3evQTZ28Hj40DbZsanDX7QohhBBCdBQJl0I0sqpiJfOK5+y28wdDERbMrUHXLUbsn8pFV/ZBVRUys+PVyaCnjLpoHWCHkNYql43XYh7wxlcolsWas08An6/ZxygoEix3gUf1tLiFiMOpXDrtrg2T7XDZZ96y2P12+FQVDUWx12Eu2DYfgOXly7d7DYal49EU8nv4iEQNvl2yjDlbv9+FVyWEEEIIsWskXArRyPKKpSwvX0bUiLbp8XW1Op+9V+6un7Qsi5f+VsR/X9qKZVl89UkpDUGTXn39HHhoBl6f/c8wKxYuDSXCCu1L5mz5zt6L0rJaHOYDyW2x/rogY97/nqjPS+EZJ273Wi0saYltg4N6HsxBvQ4GWg6X0UZ7mVrde6CPHktW0Tayi0rdKcCqotjrZs34utnqcGXSudZXr+PLTZ8nPZcTTnv08mNh8sWSn1hZsdzdZ1MIIYQQYk+TcClEI84v8GYrA1Za88n/yvnqowq++KACgMpynXUrgyz5qY6vPqrg2y/K0TQYvX+6u98l4FYudSWMqlk06CE3QOzomsuxs77HF4qw7NiDMHNzW3yMQrwtVob57LxhOcMZnDUE2H5brHO/qqiEpx0HwKDZSzHM+O2aqmFhkeZNA6CyUbhcWbGCwpoNVCXc7py/Z18faCYb1tfZ04ZlArAQQgghOoiESyEaccNlGzamD9YbLJlfC8D8OdWEGgy2bg6593/+fgWGaTByv3RSUrWk58h0K5dRNE3FtIz4pFhl++FS1Q0OmPkVAD+dOQVPrG2zOYqiuAN9JFzumpbCXLwt1qYoKpFj7HA55Pul7l6nKqq7PYlfs/exDOmhpEpmfaxFOrGa7qzF9fs1evf3EY5E2FoUcqfQCiGEEELsaRIuhWhkR8Olrlt88UE5Tz1SyH9e2Apgr6WMWmgehUjY4qfva9iyKQyAJ7a9yOARAQYOTYk9RzyYOOHSVHQ0zQ4PRqw61dI2JBAPlyM++ZHMkkrWHTyKigE98bTyGKdyCTIpdlc4Ib05iftcgv0118dPIJSVTt+Fa6Gm2j2HqqiYlum2ygJUhOzKt2VZBPVg0jkty0I3dXyavaZ2wDA/pmKwcV1IKpdCCCGE6DASLoVoJB4ujVaP+/pju/V129YIyxbUsW1rmB++tQPDaef3AGDu11Vs2WhXLs+8uCeTj8nh+DPy3Gphc5VLEx3No6CbekLlspVpsagohsnB//4YgDkXTANab6V1AqUM9dk1TsWxOc73zvkaq4oKmkbRpAPQdIOsb793b3fCpdPqClDWUApAUA+654iYkaRz+zV7K5JuPb340yzKt0Wpq4ufQwghhBBiT5JwKUQjTuWntcqlaVrMn2NvFzFuQgYAs/5bSkVZlP6DA4w5MINBw1KoqtBZv7oBzaMwbFQax5yUjzclHuiMZtZcmkoUTVMwLAPd3LG22KHfLCJ30zY27TeULWMHb/cxgLTFtgMFpcW1uc1VLgG2Tj4QgLyvZtu3K6o7sMl5DMTDZX20Pn7OWFusE0I1xYOqqBjoZOXZ5ygvDbfDKxNCCCGE2HkSLoVoZEfaYteuCFJTpTN4eAqHT7MH5xSubQBg4uRsAMYfmuUe37O3D02LVSsT1tIlro/LSmqLVWJtksl7ITZHReHgl5Orltt7jLTFto/EttjGX0enddXZisRpXy4+9ABMVaX7V3PANFFR3fsiRsR9fEOsFdZZbwnxyqWzXtOj2uEyYkRIS7fDZUV5/BxCCCGEEHuShEshGomHy5ZbRn/63m5/PfDQLLr18NG9l732LS1DY8S4dABGjEsjJc3+J9arX8B9rJ6wri6xcukPqPj8ihsudVOPr7lsZSuSvt8vpMfqzRQX9GPLxDHu7a2uuWxlraDYcYlV3+a+R7qpJ7fFAkZmBpvHDcZfUUXPlZtQFRUloe3Z2T8zHAuaiZVL3alcxv7XGwuXpmVKuBRCCCFEh5NwKUQj26tchsMmq5YGCaSqjBhrbx0x+gC7NXbCpCw8HjtweDwqBx5sVy/7D4qHy8QpoInPoSgKmVme2LRY+zanUqW2FBQtizHPzwTsqqVHi0+Iba0tNnErEtF2idXKxC1hnNt1M9qkLVZBZf0howEY/P1SeyuShGCa4rGHPUUMu701MVxGYm2zurMWNxYuATdcVlZIuBRCCCFEx2h9UZYQ+5jEsNfSWrp1K4MYhsWokel4PPYv9odNzSY3z8vI/dKTjj3qxDwGDE1h6IhU97bEiaCNA2xmjhezxh7oA/E2SU8LlUvvl5+TvXAlZQN6suawsWSqXhqw23Nba4t1WFio8jemdpEYEFM9qdRH64maUbf92N0yRlFZd+hopjz9NoNnL2WtoiYFU4/qxaf53PWXiW2xUWegj5ncFgsJ4VIql0IIIYToIPJbpRAJEsNeS/sFrlpqV5KGj05zb/N4VMaOz3CrlvHbFYaPSkNV47cbZvy8RqOJtNk5Hkwl6m5bEo5Vr5oNipZF2kP3AvDdpSeAqibtbend3j6XsmXFLktsi038HqV67feGbhrxymWsmqkqKhX9ulPbtwc9Vm8msLUYVUk+j1f1EjEiWJbV7ECf+BRhzQ21/oCKpkGVVC6FEEII0UEkXAqRIKlyGfvYMCyWLqglFDIwTYtVy+pRVJKqkTsjMVA2bkudNDWHsRNTyOtmr+GMxiqXza3n8334Pt75P1FZMJjVR+wHgDexLXZ7A30suy1WBvq0XeLXrnHlEuJtsU1aZhWFjVMOAiD3ky8bVS41fLEtRiJmpNnKZTywxqueiqKQmq7R0GAQrG99Gx0hhBBCiN1BwqUQCZoLl2+8VMzrLxTz/RdVbN0cpr7WoP+gFFJSWx6Y05qWBvoA5Hf3MeKAgFvpDMfCRJOgaJqkPXw/AMuuuQhiIcebcFxLrbSQsM+lbEWySxK/dmrs660oCimxcBmNhcuk42I/dtcdOR6A3I8+TwqXmuLBp9l/XAhG64kYEffzSJPKpeo+LyS2xsa3NBFCCCGE2FMkXIp9Xjhs8ua/inn+yc3U1sZbCk3LpGhjiGUL7cpR4boGNq231zMOKWhb1RKStyJpbmhQ1IyHT2eoS+PKpf9/b+FZtoTohImUTj7IvT1xiM/2tiJp6fnFjkuqXMaGLvlUnzupV7d0e11rQnh0tyQZ0Z/a/CwyfviJlMpa936P6sGn2mGyMlwJQLY/B2haudQULencaekalmJSUSrhUgghhBB7ngz0EXu9iBEhGK0nO5DT5L5w2OQff95EyRb7l/Z/P1dHYV414bBFKK2E8qUJw3cMqCy3P8/r3vJ6xu1JrFwCTdomdTMeDCLumsuEcBmNkvrIAwDU3/7bpEmyiesst9cW634sbbFtlrTmMrb+MdWb6n4fdENv0nrsbDuiKyZrJo/jgLe+ps9XP7B66jD7PAlDeqpDVQBk+DIobyhzh/yYscpl40mzqeka1VhUlLW87rLx+00IIYQQor3Ibxhirzd7y7f8b93bhPRQk/tWL6unZEuEvgMDDBiSQsmWBjZtCLNta4Tli+qIRk3GH5oJQFVFlKoK+5f77Ny2h8vEgT4Qr0J9v3U2a6tWuxNiIb7XYWLrY+BfL+JZs5rI4UcSPXxK0h6JOzPQx/1Y2mLbrHHl8pgBxzK5zxHu98GZFpvcPutsU6Kz+vBxAPT9dHb8PAltsVXhKsDensSred2BPmbC3pmJw4BSUzXAoroq+Q8Yji82fca7a9/elZcshBBCCNEiqVyKvV5dtA7LsmjQgwQ8gaT7qmJr08YckMH+EzP45NMoGVomaRkaI7x5TBo1iPQMD6uW1VNTraP6DMp8q0nJ6tXm6zEaVS4NyyAUDbGqYgWrSA6FzkAfp8VVqa0h7dEHsRSFurvtNZeJW4kkrrlsbgiQaF/JwVyhR1pPAMoayoD4QJ/E72liS/Lm/Yag52TTbe5C/HVBwumpeFTN/X5Xu+EyFZ/qI6SHMEzDXXOpNmqL9fpULCxCwebbnStC5dRF6jBMw23jFUIIIYRoL1K5FHs9J6DpZtMJmlWVdtDLzvMQSNGYfEw2ffoHyM7xMmh4CukZ9i/5WTleLBPWV2ygPGMJm8Kr3XOU1BeztW4LYAeG7a1jbDzEp/Hx0YS22HCjNZepT/wJtayM8NnnYYy1q15J21jEpsVqitZqu6u0xbaPpK9jM9uS6JbepA3V+Vg3dSxNo3baMai6zqDZy9zHemNrLmuj9lrMFE9KUjXUMONbkSRWtX1+BbBoaGh+Wqw7AdmSabJCCCGEaH8SLkW7Kw2W8ubq19kW3NbRlwLEA1rjiiHQpM3VpOm0WLD3nwQwlCipaSpBPeje98Wmz/i48EN+KJ7LG6v+wwfr30t6jsbtuE4wcEKGYRkYZvNtjJGEabHq5k2k/P2vWCkp1N/+W/eYxAqlUyFrbZgPSFtse2kpmDvfB6eNNfG4xusda48/HoBhXy8E7LZYf6wt1tmqJsWbik9zwmXEfZ82XnPp8apYSsuVS+c9LYOchBBCCLE7SLgU7W5bsIS6SB0lweKOvhQgXgnUmwlwVRWxymUsPJoJ+04m/gKeFQufFiap6RrBhI3tnfC6rHwpDXoDZQ2l7rrJNZWr+c/KV1hXvdY93gm5TgCxWql2OuFCUzTSHroPJRQieNW1mL37uMck7ZEYmxa7vXBJCxU3sXOS11Imtifb31vnjwOJrcuNw2XD5MnoaakMmrscb0PYnhYb2+fSkepJcauZESOK1cK0WK93xyqXEi6FEEIIsTvs1eFy3bp1nHvuuZx00kmcfvrp/PDDDx19SfsECzsQ6UbHb4egm7r7i3TjcGlZFlUVUQKpKoEUu/qT+Et3YuugEz4txSA1TUuqXDpBrntqD7L8WQBUhioAWFK2CIDvt3wXP2+scukMbTEts9mW3UTpPy0g8PqrmN2603DtjUn3OeFCVVRUVU26ppZIoGwfLVUunUm9zrTf5qbFup8HAmw76jC84ShDvluCR9Xwxt4bjhRPqvt+0RPaYlVF+f/snXecJGWd/z9PpY7Tk3c2R5ZlWdhdYEkLSA4CpwQFRUQQ9czhTn96ZzhzOPTEdIcBwYAiqCQBQZKkJe4usMuyOYfJMz2dKzy/P6qfSt090z07w/bsft++fNHTVfXUU9XVvfWpzzf4Q24lBkVDRedSPKzwOvQEQRAEQRBjxUEtLkOhEL797W/jb3/7G2644QZ88YtfPNBTOiQQropeIdTzzcRbedXkBnI5Ez2dBXDOkU6ZMHTuq/zKPeKSl3EuLViIxmSkPc4lAITkEC6YcyHmNs4DAPQVxWV7dBIAv7A1i+MKJ8rk5rA3+8y0MOnLXwEApL7ydfB4g395UVzITHYcMm+/y7JjMsq5HBsqOZdCXOoly6TAz67EJHReeA4A4IjHVtphsZIrLjVZgyIpTs5lwSr4CvqU9ECNMORyFiyLI4h4eMLJuSQIgiAIYhw4qKvFTpvmhg7OnTsXQ0NDJT3niLHHcsSlv9ce5xwD+X40h1vetLkI58iej4E7b9mHzeszmDRFw/Gn2i5jU4v7NfA6l+VyLjmzxWXBLMCwDCiSAotbjlMojk04l97qtDkjh7ASdoSmyKGzOK+YcwkAi//2LEJr1kA//kTk3/mukuVCuDDGnAqgtTiX5GKOnkrnzi2+UyiuVzksVmISBpafgGwiitkvrEN6KA21+FACsIv5AIDm5HEWfK1Igk6oFgIsDuSy9rXqRTzEoLBYgiAIgiDGg7p2Ll988UV8+MMfxqmnnooFCxbg8ccfL1nntttuw1lnnYWjjz4aV1xxBV599dWyYz366KNYuHAhCcs3AREWK3IdOef4zc924ae3PIP7Nt+DnUM73rS5FDyVV/v7cti8PgPGgK69BTz4124AQFOz61xWEpduzqXp3LBnPaGxQmQIcSmcS+8YXZlOAG7OpRAgJjdLqneKEMjIYAqn3Hw/uCQh9d3vA1LpV9YbFitcLGWENhPkXI4Nlc6jyLnMlw2L9Z9vxiQwLYQNb1kK2TDR8vBjCHlyLoW4FKGyumXA4m61WDkgLkMR++9cIO+Sc+6GxZK4JAiCIAhiHKhrcZnJZLBgwQJ85StfKbv8gQcewHe+8x187GMfw1133YUFCxbgAx/4APr6+nzr7d69GzfccEPFcYixxc1xtIVd974Ctm7M4o2NvbAsXhJSKti3J4+B/rHN09Q9YbHrXh8EAJx2bguaW1WINEefc+mtFut5HQpJiMQkcGYhUhSX4jgsbjmCIabGoMkaBvMDxbYkbmiiKHAkhKTmVAS1nBw6QVi2Hc9Tf/k3RIYyyFxzHYyjl5Q9RjcU1i3uMmJYLLmVY8JIrUj0asJiIUFiEtafdSwAoOm+B6BIirNNRIkC8BcJEt8xWZJLnFAtbM8jG8i79OcTk7gkCIIgCGLsqeuw2NNPPx2nn356xeW33HILrrzySlx++eUAgK997Wt44okncNddd+H6668HAKRSKXz0ox/Fl7/8ZcyaNWu/5iNJ9XVDLuZTb/MC42DM7vEnSQxbNmQB2De32bQJDsuZczZjQpYZ9IKFX/1wJ9o7NHzk/+3f5+RF5wUIo2j960lEMA3HnJCAojA89kAvAKC5VXPPYXHuNtx3bi+4pB3PdzdAVW3HMmdmIUkMjIliOva6rZFW7EvvRUpPgnnG6852QpIYLFiQJQmKJNvLGAdnFryGVlgNI/HSSiy+fwUyjTHkv/iVip+zLEtgzBYaMS0KxoCGUHzY64JJcPbnnbuXur2+6gjx+duv3fMoQYYiyzAt074+JOYsE5+XQJHtdXcvmYdUawKxFc+h0N2FsBJC1sgirsUgSQwhRQNjgMl1WMXrRZZkKLLiv3bCDIMA8jnL99mZ3HNtM37AP1e6vojxhq4xYjyh64sYTyby9VXX4nI4CoUC1q5di4985CPOe5IkYfny5Vi9ejUAwDRNfOpTn8IVV1yBU089db/2pygSWlvj+zXGeNHcHDvQU/CRyEQQz4URiShobY1j11bbsePg0AsM8YSG1tY4shkTN3xpLVrbNZx+XjsMnWPvrjxCWhjxhrG5NDstFfF4GD3deQwM5HHk/BgOX9iCtvY4Hn+wF5wDs+cm0Npqu0MDLIJ43HYNGxJh32d+zoVxYEsrtvTbDqga42hpiSEeD6NBizjrzslMR6qrHzySR0MijHihmHcpG2htjSMSVRBBHC1NDYjrYSQaw1ANjviAm585JRLHsh/cAQB44XNX4YzDZlY8xj40ID4YRmM4irlTp+N9Te9BY7hx2LzLxp4oMszeXyIaGfbarrfrq55o7IkiK9nnsakx6juPzYkGp8dpU0PMWSY+L0F7WwJDchyxZBRbz1uGo//4GFoefQAtZ07CYJ5jSlsbWlvjSCvNiA+EEYkrYEYIcSOMttYG5NU44hl3PNaoohOAImu++eSNvHNtNzVF0NpQH79ndH0R4w1dY8R4QtcXMZ5MxOtrworL/v5+mKaJtrY23/utra3Yvn07AODJJ5/Ec889h56eHtxxh32j/rvf/Q6JRKLm/RmGhWQyu/8TH0MkiaG5OYb+/nTZypAHiv7BFFKpHHg+ic7OIWx4fQiAna/Y3ZVDb/8QerUUnnmsD0NJA0NJA5m79zrbv/JyD444emxufLt6B5BK5bB9SxoWC+PwRRH09qYABhx9bAO2bcpC1gz7PQC9A0NIpWxB0K+lnPedYxtIOcv39vRgmmKvzzTNWbeQAVKpHDp7+tGfTTvrp5BDd08Sg0NpaJKGISWHVMo+H1k966wHALNuug1NOzqx9cSFWPuWY3F0YB5eBgftbVWjUJxDCIPZXMX1AWBoKIdU2l4nZGZLjhOo3+urnvCex6TmP4/5jIVUQXz2eWeZ+LwE/X0ZJJP2tfDaaUtw9B8fg/6736Nw0qeRyuSQT3P09qaQSutIpXLoVgZhmPbrwf4shtJ533iQ7BDr7q40envdfOKs4e63t28IWsFfdfjNhq4vYryha4wYT+j6IsaTer2+EokIVHX4uh4TVlxWwlsN9swzz8TatWvHbOx6+nC9WBZ/U+bGOQcHL8nxCmKaFji324Ds2JpFocARjkrgnCOVNKCbOnTdwoonBpxtuva6uZHbN2dx+KKxeVKTM3LgHOjak4fFDMxdEHXO1SXv6QBgf4HFe2Lu4nXwvBqW4SxPFdLu+txzfXAGzgHTsnMpPWmXyBSyMEwTIUkCgwTOAd00oJvuuO2bdmPerXeiENbwj09fAUlShv98i/tjkKq/Djic/XHOht3uzbq+JiTDnEeZKc4yBncZt+C7JsCZ8xnuPWIWjFmzob74App296KrCQhLEVgWhwTZvl4MHRY3nc9cbCvQil1MersKuO0Xu3HaOS2YPjsMw3SvRcM06+YzpeuLGG/oGiPGE7q+iPFkIl5fdV3QZziam5shyzJ6enp87/f19ZW4mcTY8MTOx3DvprucipOVENViDcvAptftojfHnpgAh4VU0oTJLax7NYXkgIHps8MQhU1FYZ0dW8fOIU6mcigULAz0GQjHgEmT3f6B3jw4ga9abJnek95CKBk94xyrtwKoEN8Wt5zlovrnkG67uN6CLZxbTvXP2fGZuPiHf4FkmHj6AxdjaHJLSR/DIN5qsdXiq15KxX1GzXAtXUQBHrFUEPycGJj7HmPIvfNKAMDSR15Fa6QNLeFWAHCqwlqe6sISk8oU9LH/XvlcEuvXpLHyOTuMm/sK+vgLSBEEQRAEQYwFE1ZcapqGRYsW4dlnn3XesywLK1aswNKlSw/cxA5i+nK9SBaSI96YCoFmchNrX7VvbI8/tQmKZiE1ZMAwdTy7ajM2xx/B0jMkHH6k7VKecFoTIjEJe3bkoev7X82ya18ef/j1dvzzoV5wAB3T5RHbbngFZbCCa/C9jJF2hHY5kWHBcs5FVLVzOkX/y6gS9YhQ7pzTZX9+Ai2vb0bu2GOx+pLTAIzcs1KIz5rEJQnKMWE4ka56PjdftVjPa8aY3Z+0+BkyxpC/4ioAwNT7HsZFsy+CWuyHKq4Dg5uePpdyycOHULGLSS5rX3sD/Xbrm0ptdgiCIAiCIMaKuhaX6XQa69atw7p16wAAu3btwrp169DdbfcnvO6663D77bfjrrvuwubNm/HVr34VuVwOl1566YGc9kGLYZXepJZDLE8lTXT3ZDF5egjNrSoammQYBpBMFrB2+3YU1CRiU1M4921tOPmMJhx3ciNmzI7ANDl2bh0+Z7AaXn1xCAZ05LL2jXj7tJGjwEe6Afc6RnkjP6xzaTuSRXFZbCfRl7Ur1EbVGKSiKBB9Llu37sGM//lfcE1Dz/d/AC4LR7I65zLY73A4qM/l2OB7qBA4jYrHuWQVnEvRlkS8pzAF1uw50E88GfKO7VCfX+HZrni9WEHnMiBqQ/6/B/qK/WbhRhyUc+UJgiAIgiD2l7rOuVyzZg2uueYa5+9vfvObAICPf/zj+MQnPoELL7wQfX19+PGPf4zu7m4sXLgQv/rVr9DS0nKgpnxQI4SS9yZ1uPX27srDgoGFi+3iPIlmGRgANryRRC5vonWmBknhaG3RcP4l7QCAhYvj2LA2jcce6MWc+ZFRCx/OOdasHoIJHe2TNaQGDbRPHV6keeduH2fpDbgIX1Ukxc6/dM6FVzwwz1j2ctGrsDdXFJc+59ICz+Vw4bd+D0nXkfrqt8CPWASsf9XZ13CwUYTF+rYnF3PUDO9cuuKyknMZDGmWizHiuSuvgvr8CoT+9AfoJ58CwL0OTG5AXG92b1P/da2FfX9isN+wcza81zY5lwRBEARBjAN1LS5PPPFErF+/fth1rr76alx99dVv0owObQxenXMpBNe+XXm0MQMLF9thr02tMrAVWLM6CcbCmDJFc9xQwZLjG/D8UwPYtS2H1S8M4ZgTa6/sCwB7duYx0GugaS6w7C1N4OCQ1ZFvqHmVzqXMZBR4oXxYrEc0BsNiB/MDxb/dgkUWt3DY//4GkzbvxtCJJyD34Y9B9oQej+RICveL1RSIQIJyLPCe8+CDEKWCuGSsdBvxnhCQ+bddgvh/fg6he+9G6ts3ANGoGxZrGT5RGnyooIb8f5sGRzplwlI9zuUIedMEQRAEQRCjoa7DYon6weKWI6RGKuhjcQuFgoXBAQPxFo72DruIzrwjwog3yHZlVJhon6wVXRgXSWJ462W2i3nP7Z24745O5HO1uyxrVtmFc6bMsnPSZCaXCNlKcy/3WmBapu+GvmxYLErFpXAuvWJTjJF4aSUOu/VO5GNh7P7+dwFJchwswK46OhyJUAJRNYpJ0Y4Rj0/gF8MkNMeCoHOpyRXCYlHqXIq8SaX4WfNEI/IXXgwpNYTQA/c56zLGYFiGcx3JnpxLIT5Vt2aVw2CfQTmXBEEQBEGMOyQuiarwCrOR87U4+nvsPK8psxRHvEgqcNzyRkiKhXgTEE/IZYvmzJobwaXv6UAkKuHlZ5P4+Q92oGtvvqb5bn4jAwBomyZBlVUoklJVhUz/Dbhb9XZj/wbkjBxMbjo3+d71y+XUWZw7YwjnUhBVYpAYg5bO4cj/+BYY53j0U++AOWOmM4bYh1doliMkh/COw6/EorajRjw+gT+ckxgtPkcS1TqXpdeK5HzW7oOE3BXvBgCE//QHd0ymODm6ohhQU7gZUTWKybEp9vgSh1Z0L1XNHnegX/d9b0lcEgRBEAQxHpC4JKrCKy5HyteyuIX+XltcTpom+95PNCo45+3NOPPiZjAwJ9Q2yJLjE/j4f8zG4Yti6OvWce+fuqqeay5romtfAQ3NDKGILb6qdi7L3IDvGtqJFXuewcb+9bC4BZnJjpAQ56JsQZ/i/wDXuRTE1BgkSDj3B7cjsnsfdp59Mtads8xX+TPoZo0llGc59gQdYF8rElaak2u/LopL+MNiAUA//SyYk6dAffIJSDt3OOublgnTMp3rI6bG8I7Dr8RhTfMB2D00I1F7vHkL7OtuoE+nViQEQRAEQYw7JC6JqvCGr5ZzPbIZE4890IuhpB1+11d0Lts94lK4lNEGBjUi2pVUFqqxuIx3f2AK4gkZe3bY/SqrYde2HMCBKbOL7o2kQZEUX5hqJcqFDuqWfSw503UuvcV4gPLOJfeFxUZ8y8NKGB1//DOOeHwVMlMn44X//FeAMShSqbiURnAuRwP1uRwbhnMufa1IvKGwKN0mqsagyRqaQ55iZLKM3FVXg3GO8G2/BQDHgefgJbmWzjUJC00tKhSVYcFRdm7vYL8/LJYK+hAEQRAEMR6QuDzIyOct3HN7J9a9mhrTcb3hq+VyLl94agBPPtyHB//aDcO0MNCnQ1EYGlrddUT1VcMyHLFqjuAmMsYwY3YYlmUX6amGndvsNiaTZ9miTCuGxYp9lyOlp9CX6/UVOhHzdUSmqYNz7nOXrDLOpdPn0pOnqkgKNNlOhoupMSivvYIZ3/pvmIqMlf/9n8g12OLTKxhEOKwyQiuS0UA5l2PP8AV9KrQiKb7WZA3vPPxdOGHKib4xclddA84Ywn/4HWAYzrVXMAslYtb5m3NcclUH3v/J6Zg8zS4dO9Cnlzw4SQ4YWPV8Ek/9ow+ZNDmZBEEQBEHsP3VdLZaoDc457r29E2tXpbB9UxZHHB0bE+GQGjJw/9/2IjnLQKJRKZtzuXm9neP4+uoU2jrSME2gvUOFyXVnHXFza3LTEXnVhOdNnx3BulfT2Lk1i4aEjEHsw87cZpwy7bSybTp2bM0CACbNkLArZzuXBWbPw7AMR+R5+euGOwEAcxrnlp0vAORNW9z6nEsI59LFu4zDdTYjSgQFs4BEDkhcfw2kgo7HPnYpUkfNh1msIust3hMs1DKWkHM5NgznXHqvs3Jh08HX5XJrrZmzoJ9xFrTHH4X2yMOQ5ssV1xf74OBoblXR3Koim7GvXdu5dNc1LBO3/GSXE75umhxnXGA/CUrmBwEAiVDjcIdOEARBEARRAjmXBxEvPTOItatsx7KvR0fXvsJ+j2kL1i6sfmkAm99IF9/zr5PPWXYoapEXnukHALS0KU5IKeCKNYtbjrisJg9yxhzbfXnlhSR+9p3tuOXOF7A9uQ092e6SdU2TY/f2HLQQQ0u7LcpkSXZCFIPVaQG/K1swXXfUO1/AFZe2ABTuZHWtSOxQ2AjAOU797s2Qt23F4HnnYNXlp8PiljMHr9gQolIeZ+eSGCOGcy69P7U+YT/yT3D2vdcBAMK/v9X3oCF4XQRDtQEgHJEQCkvo69HxzON9yGXt62z3ziz6e3WEi7mZPV3ub8Xdm/6Kuzf9dcSq0ARBEARBEEFIXB4k5PMWHn+wD4wBRy6JAwDeeC29X2P29RTw9KP92LA2Dc4sdHcWwMFL8ha3bcrAsuz9tk/WwGRg2swQZs2LQPeIR+EA2mGx9mvL41ym9TRyRg5BpkwPQZYZerp0WBawe1cGqSGjbP5kT2cBhTzHtJlhCGNHguRU4RRid196LwqmfUM9UHQNAaBQRgxzR1zac5OY5At9BSoU9OHcLy7lMI6//TFM/8czMGfOwp4bvgcwZovLouj1igdJ5FyOg7j0QmGxo6fqnEtWPucymDdZjsL5b4XVPgnaIw+joauv4rZOkSm4opAxho6pGgyd44Wn+/HaSrtFz/q19n9POasZANDXrSPIQL5/xLkRBEEQBEF4IXF5kPDi0wPozu1DeMkbeMv5TQCAN/Yj73LXthx+/M3tePRvvQCAcJwjn+NIJc2SsFgREjv/yBg+9G8z8PZ3T8KxJzUiFJZhlBFrABxhZxQdO9My8bfN9+DJXY+XzEVVJUyZHgIASDLAmYmdW3NlQ2p7izfJ7ZM1n7Bzcy5N7B7ahYe3/R3/2P4QAKAv1+tsr5uugxN0LoXwVSTZ04rEnoO/oI8n5xKusznjuddw2i/vgxkOYfCW24Am+8be5KZvroJxDYv1CSESl2PBcK1IqgmLrYiqInfVe8EsC/Pve9KzbTAs1n2o4eVd10/Fuz84BdEGhn27C+jrKWDrpjS0EMMJpzVB1Rh6u/WS7bozpZEBBEEQBEEQw0HicoKzZUMKt/50F/75UB/6wpvQcMQ+IDGAljYVe3fl0dczutDYndvsvMW5h0dw9b9OxRFL7IIzvV2FkkqTWzfa685bEIWqSZAV9yZVN8uLS4EIi82ZOeTNPLoz3WXD8Y46No5wRMIV104BZxZ2bstCN0pDXEUOWXOr6nEVJaedh2kZjlPZm+2x/+sRlwWrsrgUy7zOpZhruRxGDjssljEGZcsmHPeF74Jxjr0/+D7Moxf7RKhhGWCMBcSlaE9B1WLrFeZ1LodpRcIqCEqpStc4+55rAABz73kUzCx9EAH4C0n1ZnuxPbkNABCNyViwKI5jTmoAADz7+AAM08KRS+IIhSS0tKnI5yxk0qbvu9edrb79D0EQBEEQBEDicsKzcV0KWzZkoBc4Zh8pI96gIGfmsOR490ZyNPR22SLthNOacNjCGKbOtm+UezoL4JxjQ996vNq9Gpxz9HXriMZkJJpsAecVkXoZseZFOH/CMTS5ibRe6riedHoz/t+35uKIo+OYPF1BPsfx6AM9eHnFIB65rweGYd8UO+KyTfW4gcwJizW4gYga8Y3dl/U6l64YFq6jcEjFjbfEvM6lOKZSZ0rkXIbSOSSueTeUoRTSn/w3hN75PgCuM2kVnctgDp0o2DIeYbEkKMee0rDY8jmXNTuXAKzZc1B4y5mIdvZg9ovrAJTmXHoL+jy/dwWe3PWE73peuCSKcISBc2DydBVnX9QGAGhptwsP9Xb7K8p2Z0hcEgRBEARRG1QtdoJz3ts6cPhRIWghCfdtX4W0XkDezOP4U5vwzGP9WPV8Eqef14KGxto+6p5uW+y1TrJvPNunyJAkoKdbh2GZeK3nFaT1NOZFjoJpcjQ0uje63pwvb85lOXEphJs313EwP4i41lCyriTZN8+LT4xh90MMa1YPYveL9g1wx7QQjj62wedcZj2hpsVNYViG70bf4pYvt6x8ASK/kyoz2RESZtmwWE9hFd3Ahd/8LZSNG5A/93xk/uPLZdcT/TP9+xm/gj6+ojKUczlqfD0rA+eRMQZFUhxX2tlmFOISALLXXAvtycex5N5nsPWkRSWup/ibcw7dsh8CmdyEClvkSgqw/MwWFPIWjpnj/ia0ttnL+7p1TJ7pXmvJQhI5I4ewEq56jgRBEARBHNqQcznBYYwh0aRCC0nIGnZ4as7IIhqTseyUJpgGx/NPDtQ8bm9XAUyyRRoAMIWjuU2FXuDo2pt3hNfgoC1CveLVKyIr5Vy6y23x6c11HCwMDju3SBxYfmYzWibJmDrDzsVcu3oIOSOHnX17AQDNLaqnTQjzhMX6c0b3pfdWrFjrFB0K5JjKUqlz6QszFaLRsnDaj/+EOSvWwJh/OIb+71eALJeuVxQBlZzL8c65JBdzbCh3HsVnV0lQVlMtVlB468XItbdg7nOvo3FPT6lzGQjHtl+7D0YsbiEWl9Hcqvreb2kvisseveQ7SqGxBEEQBEHUAonLg4SckXMLzxRbZhx7UgIAsHNbaQXW4cjnLQwNmmhuUaEoRYfOMtBWdDF3bM04+0oOlBeXEpPAGHOcwHLCEvA6l664FH32erO9WLHnGV9on9gmFldwxfsn4/2fmo5QWMLG1zN4dvvzWF14FEoiCy0kObmhdkEf+wba4IYvZ1TkpZVDhMEGc0xt57J4rB4BKxBu1sLf34vFdz+JTHMDBv/4F/BEY8k4gC2wOeclfQtnJ+Zganwq2iLtFec4WkhQjg0j5UyK0Njg+RYPI2pxLqGq2PXOt4FxjqV3P1Va0MeTBxzMFwb8D0m877thsYWS7+lQYaj6+REEQRAEcchD4vIgIWtknNeiZUZTiwpTyqOvt7aiPr1dIiTWzRkzuIH24t87tmYc52MwWRSXCVdccs4hMQmqpDquYEVxaYmcS09YbNG53Ni/Hhv7N2B3alfZbUxuYlNyPZILHkfezOHV13rAORBv8YezeqvF6pYO0yoVly3hVt8+3HxIq2TukicslpdxLiUm4fAnVmHZT/8IPazh/u99HNbMWSXHLoSFyEsNOlHTG2bgnFnnQ5O1km3HEgqLHRvKCUVV0souEw8gahKXAPZe8XaYioyjHnweas7/vQ7m+gJ+59L7kMTbAsgbFmsFKjB7Iw8IgiAIgiBGgsTlQYIIiQXssFgAKPAsdkx6CBvyK52CN9UgivkIpxIATMtCY4sKRQF27cxAN+yb0OSgLR6DOZcSkyAzeWRxye0KlXkr77w3WKzmmi86sEP6UMk29pgm9qX3omWGgbyUxOtr7O0Szf5m8oxJTsVV0zJ8Do5oiTI5Ntm3D+EilhOXctGVtZe7rUYE4RdewFu//XtYEsP9X34feo6cW/bYhaslWpyMdz9LL149SS7m6BlJHKpyMd+xJD9ydOLSnNSB9Wceg3Aqi9kP/NO3zFvQx7lmuT8sttzreEKGFmLo7ixgYNAvWCuFjBMEQRAEQZSDxOVBgt+5tEVZWk8jEmfQWRrJgeodiJ4ufzEfADC5AUliaGnXoOscfb32PpJJ+7/BsFgGu5iJEGflelK6Y5u+nMucYbclEY7eUD7pW98rWC1uor1DQ7yJIZuzj7EhIC4lSE5xHMMySsRiSA6hKdTse084neXm7i3oE8y5VF57Ba3vfTcU3cBzn34PNi8/qqKAkJiEkBxyQofHpXBPBUhQjg3l+pt6UYvX0ZiExcJ+6LHq0rcAAOb96X6feHT6XMJ1LIM5l85reLdjOObERhg6x/137vO1IxF9aAmCIAiCIKqBxOVBQkZ3xaVwwixuIhKTwJmF/t7qHQgnLLZdxYo9z+C+zXc7AqhtkgYOC91d9j6SSfv9RJmcSyHQTMus6FwCtuAT1WLFNoP5QRSKobJe59L03Oya3LSrv0oMS5dHYcFe1tAUEJeeuRi8dC7t0Ukl+Y5OAaAy65ct6AMGedNGNF55KaShIax47/l47fIznWWViChuW5Tx6GdZCUbVYseEkc6dyPVlAREprong+yOhMAX7Fs7C3iNmIbF5O9SnnywZ0+KW8z2p5FYGr+lzLm5F+2QNWzalsX5N2nHVTU7OJUEQBEEQ1UPi8iAh4wmLFc6lyU1EozI4LAz0VedcWhbHrh22cGzr0NCV6UR/rh+pgt17srlVAWcWBvvtm86hcjmX4GCMuW5hoIhOEK9zKRzElD7kOpeFpG9d57VlwSyOu2BxBGrEft3QVLzJRqm4NK3SubRH2ksqssoe5zK4vp1z6Rew0b3daHzn2yH19CBz/b/i2eve6tzgD+dOhTxtHmp1sfYHqhY7Nox0HisV9HHCYmv8CRYPQVZeZruXkV/9vGT/nHPn2ue+sFj3tRlwJFVNwjuumQw1DGxcl8H6V/IwDE5hsQRBEARB1ASJy4MEb1isxS3kzbwtLuO1icsNa9MY6DUwa14EDQnFEXNp3RaXiUYVFjORFOJyyABjQKzBvunlnDsFfbx5jsOFxVrcdIRkQ7G/pW7qTj5kRs84N7nem10LrkPDZAuLT4hi+qwQJk1Ti3Px9rmsnEPZFml3nEqBEJu8bM6l6zBasBDrHcTyj3wR8u5dyF3xbqS/9T2AMeeYhxONYdkVlzJ789rOkqAcG3zOZRkXsynUDMYYGrSE730357K2z0FcexvOWIp8azO0hx6AtGO7b0z7gUiZsFhPrjFH6cOejqkhXHZNOxQF2LymgEfu68Hf/rwXK57oL1mXIAiCIAiiHCQuDxJEQZ9E8SY2b+RgWiaiMRmcWRjoq86BWPHEAABg+ZlNAFyHQ4yvqAwNzUAmY6FQsDA0VEA8IUOS3GIigO3IOKGoZfIcvRiW4YTAxtW4PX8z54hLwHUvvdUsLct0/tYtHZOmKTjmxEYwiRfXFeKSOTfeJjcd0ccYQ0SJoC3S7jiVAsUjRs0y4lKMp3Z24YrP/BTx7buRv+AiDN34M0CSIDHJEcLD9TIMe8Ji31TnkpFzORaM5FwubD0SVy64Cq0RfzXi0Rb0cXKBVQW7rngbmGUh8sub7P0XP1NvKKvXreTDhMUKJk/XcNq5LZg3rxGGwdHVncWj9/f6HFCCIAiCIIhK1HRnUygU8H//93944403xms+xCgRzmVjqAmA3evSzrmUwcHR3zuyc7lvdx7bN2fR2q5i/pExACjrODa328KrZ18BFue+kFhvgRs3LNb03eQGMSzXuYwXncuskfPtW/Tb8zqXXqFYMPPOvt1qsm61WNlxddwcylOmnYZL578Dqqz68h1tp7O0rYNAluxqsfHuARx77SfRsrML+844Cclf3gooijNGsNhPOSKesNhgaO6bBeVc7gdViPRyrWRGKy69D0H2vOtS8FAI4d//BmxwwNm/93tTsaBPBXFpcQvxBgWnn92BCy9vR6IFMHSOdIoK+xAEQRAEMTI13dlomoabbroJyWRy5JWJN5WsnkVIDiGq2qIwZ2RhcguRiARIZlVhsVs32gJ18bIGx4ksdxPa0m5fNp378gCskkqxgH3TLHvbf5QZx63IajoupXAu04H2I0JcmoEbZCE2RZ6pvY5fXEoIikX7hlthijMHb1isxCSn0IqF8n0uo529uOIzP0Fs+y5sOuVovPz9LwOhkG+Mcq+DhOQDk3Pp3Rc5l6PH51zWINJHLS49Idl6extyV1wFKZ1C+De/dt15Tz4lr6IViRfx3dFkDZLEEClG8w7UUBCMIAiCIIhDl5rvZhcvXoy1a9eOx1yIUeLkV6pRxwkT7zHGEIlJSCVN6IXKoakAsHu7Xchn+mxX8JRzLhvb7Muma08BFrNKivkAdiio4mv/UZp/GJJDznLd0qHJGkKK/Z4QkwJRMdbg5Z1LUSHXO2chIkXPTfs9y1foR+B1hPzOJS/JTwvv7cZpH/pPNO/uwb6zT8V9/3UtoPrdqWoL5oSVA5NzSYwNoy+MNNpqsa64lJmM7Ec/Ds4YIr+8CSxvP6DZX+cScN3WiP2sp+qcbYIgCIIgDm1qFpef+9zn8Mc//hG///3vsXPnTmQyGWSzWd//iTeXjJ4GAESVqOOE5cyc42BEG+wb2Xv/1IVMunJ42+4dtvs3dYY9hijOE6Sx1b5sCgVbeLW0q84yX1hs0bk0uOtciuqZAKAJcckNFMwCVEl13hPVaRtDjcW/izmXHlfGG+KaM11xKXLLvCKSOTmXlq/Qj8AbksrAKobFNu/oxBHvugbxnXux4S1LsPJ7X4SllopCv3M5nLh0cy5l6cBUiy1XiIaojtG2dNnfarFiDHPefBQuuAhy5z5E7vozAH/oeO3i0v5+qZIKxhjCdiAE+klcEgRBEARRBTVbJVdccQUA4Jvf/Ca+9a1vlV1n3bp1+zcroiaEyxfTGhw3MGdknUqkCxbHkNor47WXh8AYcNnVk0vGSKcM9PfqaJ2kIhIthrNWqPAaigKhMEM+xzF/YQTLljc6y7jHLXR6RVoGrOJrTdacENawM9ecs0zMWey7QWvAYH4Q+WLYrOErVmJ5nEv3oYYQ1V4RKZxLb89Nn7hk5Z1Lb7XYjje247Iv/BzaYBo7LzwT93/mX3CYWr7qZ7VhseIcAP6Qx3GHCvqMCaN1LkcfFqt4XtvXS+Zjn0Lowb8h9n8/Bf73X2F5hvQW8eG+arHlc6CtwPdXi+WRxfg5l+lCGqZlDlv0iiAIgiCIiUPN4vLb3/42FQCpM4TL16A2OGGWeTPvuIQtbTLe94VZuOHLW7BlQwac85LPULiW02cNHxJrv2/g2JMakcuZuGB5K7SQe2NYrrekYZlQJHssxeNcih6PQhiqkgZFUnzFcMKy7ewJR8WbT6ZbhiNmy4XFeoWuIxY9OZTMFxYrgzHmtFGR4HcuZ730Bt725Zuh5Qroff+1WPXxd8Ia3FSxf6f3/A4rLr3O5ZsoLqnP5dgw2qq7+1st1t7W3p9xwonQjz8R6ovPY87z67D15EXOOpVyLoN9Lp33nfB1GYqkIBS1v1fjkXOZM3K4a83dmKRMx8lTThnz8QmCIAiCePOpWVxedtll4zEPYj9IFfMR41rccS7zRg4RRQgzC9GYjMlTQ9i7K4+BPgPNrapvDJFvOW2mR1xWuAE1LANtk+ycrKADIsQWg5vH6A2L9VbOFCGwos2JJttzCskh5z0hlsVcvG0WdE+rEt1ynRUzEBbLgjmXnkI/XhSmQOe6T4ya3MScR57DOd+8BbJh4qkPXoz2L34FbGCDMx5QKhL8Y1cWHZqkOWJaOkDikhg9oy7oU9xu/8Sle71kPvpJNF73Hhz/p8f84rJSWGyZPpfedeSiuAxHpZr65NZC1sjA4hZSgfxqgiAIgiAmLqOORdq0aRPuvvtu3HTTTeju7gYAbN++HalUaswmR1SHCIuNqw2OW2lwE6ZVFFnFG8YZc2yhtmNraV7szm1FcelxLivdgPortvoFqFds+cJiUZpzKUJCM8U2KqpkC8+QJ1RU5JCK7cUxAUDBcsWlfw6Vq8WanjzNYI6jyGdzcjQ5R/v//QLnf/VXYJaFhz77Lrxw1bn2eqxyNV0xRrnXQRhjzvF68+nGG3+u4Ju224OO0TrA4vwPl49bDvvatLfxOt2FCy6EMXceZryyCVNe3+a878+z5M6+K+VTm57CW4qkQFHsvMuBfgOWNba9LsX+K/3OEARBEAQx8ahZXKbTaXzqU5/CxRdfjC996Uv40Y9+hK6uLgDA//zP/+BnP/vZmE+SGJ6UXgyL1Rpct9BToVXcvM2cYzuZO7fmfNsPJQ1s3ZhBNC5j8jRX2JlW+VA4b8GQYP9KX86l5OZu8jLOpVN8qBjSqhaXaT5xGbILlxSdS2/OpVFhfuKG2it0GWNgjBVzLos30EHnUnJ7VKq6gQu+exumf/9H0MMa7v369Vhz0ckAiiG0YCX78MKqFJeAGxpLYbETj/0t6DOacy+uE991JcvIfvLfAAAn/v5h5+1yzqV46FPuwYg/T9ler6EFMA2O1NDY9roUv0uVQssJgiAIgph41Cwuv/vd72LVqlW49dZbsXLlSt/T79NPPx1PPfXUmE6QGJmhQhKarEGTNZ9b6M095JxjxlxbzO0MOJevvjQEbgFLljVAlt2b3Yq98Cyj4jquC8F8Qlc4jr6cy6KYzBadS01yw2IFqqza4lLkXHqc0kriMtjnUtzzy0z2h8Wy0rBYAAgPpHHChz6PRQ+/iPzkDtzxk89g66lLnPUkVioug9TSR1I4uPKb2OeSGBtG7VwWf3prbUUCuOIy+DAi944rkexowbwVazFp4y4A5XMu3f6ypdeueIgjex4ONbTYcxzr0FjxYMobjUAQBEEQxMSm5jubhx9+GJ/97Gdx0kknQZb9NzdTp07F7t27x2xyxMhk9AxMy0RcbQAAX/sPrxAzuYnGJhWNzQo69xaQy7rCc9XzdpuPpSfaHdN3De3Eaz2v+sJfAdeZCVZs9RKsNmmvbzqiUwhIRVIc8enmXNoiyysuvTmJQGU31UtJtVi4xVPs5inuHL3IkoLWrXvxLx/4LzSvfA17j5iJNX/+DfYdNtXnuMpMdgQrL9MzE/ALjWqdyzc153KUjhvhx3fqRtOKZBTi0uuw+9A0rLzqPACue+l1LsW16ojLMuGobkEu2Vmvodk+roHesRaXxe90hcJhBEEQBEFMPGq+s8nn82hqaiq7LJ1OlwhOYnwZytv5lg2aLS5FMRrTMn0FecSN3PTZYYADe3fZ1WH37sqjp7OAqTND6Jhii7pXuldjVefLTv9MgciXLDeuwB8W68m5FH0uiyJNZnJJeJ4mibBYf9Ef4TgC1d2IluRcem7kva1Igq7RYf94Hu/56P+gYXcXOi84E3fc+Ank2loBwKliK+YuxGOlokfV5lwCbi/PiBod8djGCgqLHRve7FYkgDcstvS39o2LTkWqJYHDn3wFrVv3lu1tObxzWRoWm2iyj6uvZ2zFJQ+ErxMEQRAEMfGp+c7m6KOPxj333FN22UMPPYRjjjlmvydFVE8yb7uOcS3uvKdISrFwTakInFLMqRTicvcOO99x/sKYs65RrLxaMP0Fcxxx6R034H44FVrBnJtfwxOiq0qqXYVSCZcUsBGi0udcyipkyRaXnHMYFcScFycsNuBQivDakrDYQgHx//gsTv3yjyEXdKz+yLuw9vtfgxHSHJdW9jg5siQ724p9BIWF5HMGh/+aLWo9GhfPexs6oh0jHttYQYJyjNjfViSjqKkmV3IuAVghDS9deRYA4IQ//KNszqUQjeUe1HhbCYnve6LVPq7ebnIuCYIgCIIYnppbkXzqU5/Cddddh2uvvRYXXHABGGP45z//iVtvvRUPPfQQfv/734/HPIkKiEqxDWrCeU9mMvJm3i8Cizdyk6fbwm3fbltcdu6xBWTH1FDJunkz79uXU4nWE5oaLMbhLQjiFvQxnPdlJuOsmedAlbQSx6I1YruE3oI+qqQF2ohU41xy33Ewj+MIuKG1MpMh7dmNxPXXQH35ReSbErj3S1fDOP1MTPG4ruJ4okrUee3uq3gMLCguq8+5lCUZLeHWEY9rLBltf0bCz2hbkYhrKToKt9rNuSwVl4wxvPIvy3HCH/6BIx5biVe3bQeWzAPgdS7t7csV0rGcnEvZEbHxFntZb3f56syjRcyHCvoQBEEQxMFDzY/Nly1bhltvvRWFQgHf+MY3wDnHT37yE+zcuRO33HILFi9ePB7zJCogKq0mQq64VCQFFregewvvFB2JKdP9zmXnHvu/k6e5oahClOrFVh9CKHmL8TjrBpzEcmGxhicsVmIMk2NT0Bpp9bUCCSthNGj2MfidS83XRqRSER/fnIYJi7WPy3ZgIv94GM1nnwr15RehH7cMj//xR9hx3AJfn0uxLoOEM2achfNmX+AbyxGwJc6lNyy2/sTbaEUR4We0YbFLJh2DSw67DM3hlpr3KfrBenteCiQmwYiE8PI7z4RkcUz9+S3OMruXqlRy7XpxnEtJdkRoOMqhagy9XXrZ9iWjRbiq5FwSBEEQxMFDzc4lABx33HH4wx/+gFwuh8HBQSQSCUQikbGeG1EFR006ClZWQUd0svOeuOkseJxH4UjE4goSTQp6Ogso5C107ilA1RiaWlzhKARjvhgW26A1YDA/iIhS+hmXhMV63EIRfmdUyHMUOZcA0B6Z5LwW4lLkOYrwWpOb+5lzWQzDzWRw9k/vQMu9zwAAstd/CKmvfRt6z0tAfxLM0xdThOFKTEKimBsJuEKikrhkqN65PBCQnhwbRtsvNHg91cLSScdhWnwG4sU8a998itfa6ktOw/G3P4r2u/6Gvs9uhjV3HixuFcPVK4tL8d2X4BbksmChpU1D554CMmkTsfio/tkoIdgyiCAIgiCIiU/NzuWKFSuQzdrVPcPhMDo6OkhYHkASoQQWth7pu8kVos4b1uq9gZs8LQTOgQ1r0yjkLXRMCUGSSluQCHE6o2Em3jL9DBzZdlTJ/iu1ImFgbkEfT+Vab/sEyZNzOcmTbyjCYkUYruwVl0Xncji3bbhqse2bduOdH/w2lt77DKzWVgz+/k9Ifef7gKY5OaCMMY9b6obFehH7545oHs65rO8WI/UoficKB6IwUlukDQtbjyy7TFxrhVgYL155FphpIvb97wKwnUKJSc6Dj2CPWvs9T0EfEXnADbROsiMbervGLu+Sci4JgiAI4uCj5kfQ73//+yHLMhYuXIhly5bhuOOOw3HHHYfm5ubxmB8xCkQ4mwjpBPwO45TpIWxYm8bqF+xiQB1TNd/24mZPiEtVUjG7cQ4G8wMl+wreoLphsSwQFlva/sPnXEY9zqVii0tR4EfyCDlvYaBgwaHg/H3OpWHg6N/fjyU//xMU3cS24xci/ut7wTtcUSvmY7ulzJm7dw6CEZ1Lz/r1KC69DjKFxY6eestd9c5h1eWn48S7nkXoL3cg86l/d8JixUOUsmGxzkMgt6CPbulobbdf93YXMHPu2DxMdHMu7T68dB0SBEEQxMSnZnH57LPP4qWXXsLLL7+MF154Ab/97W9hWRbmzp2L4447DsuWLcPb3va28ZgrUSVC1Hnzo7yNykXe5eb1GQD+Yj6At6CPyLkUrQ/KVKcMuA5esSXyuwzLX9AnOE8AaPUUtIkqUTRoDY6b6RbiMZ0w1ZAcqigunZvWYk6Xum4dEp/5GNpXr4KhKnj8Y5fi1Xechas6/NVZvf0DhfgSAr3k2Is3wo5TO4GdS2L01FvuqncOeiSEnR+8BvO+9yPE/vvbsP79bF9LnbJ9LsX31JNzaVoGWtuLzmWZirE5IwdFUsrmgA4H9+zf4pbvt4EgCIIgiIlJzeKyubkZ5557Ls4991wAQCaTwXPPPYdbbrkFd9xxB+68804SlwcYmZV+rN4byXkLopgyI4S9O21n0isuvQV6REEfN1y0nLgsHxbrFgFSfLmSPudSUjAtPg0xrcHXlkRiEi457HLnRtnNubScMFVV0nzre+fhhNnpBZz0m7+j5bbPguk6uo8+HH/798vRN2syNLn0HDktHuC6NoWAwBaM5FxK9Z5zSX0ux4R6O48skOmw512XYPZv7kDovrvR9i/zkTrycOfatMq09THL5kwb6HCcS7+45Jzj3s13oTnUjHOLxa6qxRv1YHITMkhcEgRBEMREZ1SVGdLpNFatWuU4mK+++ipCoRDOOOMMHHfccWM9R6JGyjkI3nL/qibhuo9Px723d6JzbwFTZnjEpceJFDmbwlEod/McFJc8UERHtEUpV9AHAM6edV7ZYygXVmpxyxG/omImYLuYWcPOA1YlFRa3oDy3Apd/+hto3bIbPBJB6itfx+PnHYa+zJ6Kx+INi3VDAv0Vc535jSQufWGn9edc+uZbB47bRMVf0OfAn8fgHMxQCJnPfA4Nn/83LL/lATzy/SOGrxbryVN2wtq56eRcbt2YwcP39uAt5zYjHJGhWzpyRg4pKVXzXL37p6I+BEEQBHFwULO4vOyyy7B+/Xq0trZi2bJluOCCC/DFL34RCxYsqIubK8J14LwEb960kIR3vG+K83dXpguD+QHMaJjpvOe6dsJBLO9cenMbhRnhdS6zRtbNXRxV03iRI2Z6ci5d51KIS8YYGgYyOOF/70DzQy8AAHYtnY/ITXfAmjsP0s7HnW3KHYvicWiDRZEqFfRxRXMw57K+w2LrLVdwolJv5y44Hw6O3HuuQfQnP8S8FWuxZs1WSCfZ3/FyYbFO4S1JdgtyWQaiMRkz5oSxc2sOzz7Wj2S/jne8b0rNRXlyORN3/b4T8xfGEFtYJtpgnLC4hV1DOzElNhWqXNpSiSAIgiCIsaHmu97169dDURQsXboUxxxzDI499lgSlnWGUiZ3aSRn4OXOF7FizzNI6+mSbYbPubTwyPaHcP+We33biJtccYNayQGsBm+1WMMyIDPZN05ICYOZJo69+xlc9Z4vY9FDL8Bsn4SHv3Qt7vrRZ2DNnVey73LzCMnh4n81qE47l+GdS5HXWtqKpL7FWz3OaSLidy4P/EOE4HXKwQFNQ/LfPwcAWPbLvzoPi8r9Jnhzo71hsQDw/k9Ox8f/YxYSTQrWrErh9VeGHFEY7HdbiYfv6cH6NWk8/WhfwLkcX3G5I7kdT+x8DBv614/rfgiCIAjiUKdm5/Kll15yQmIffvhh/OAHP4Cqqjj22GOxbNkyHH/88Vi6dOk4TJWolnKFMUZyBnLFsNK8mas4XjlBwmGhL9eHglmwqz4Wi+iIG20hTAumXhyr9htw5g2L5SZkSXZzNDnHrGdfxQU33oy2bftgSQwrL3sLpn7nN1i37wHf/kYSl1PiU/GW6WdgSnyqU8hH3FgHz2mpc+kfS6r7arH1LX4nCvV27oIP+YRYTL/jneA/+AamvfQ69jy/GjhMLd/n0pMb7RT04W77n7YODW971yT8/qY9eOAv3bhuXou9H5S2NfGyqX8jBnZpWLnCflgz0GcgmSxApFmOd1isiEDIGplx3Q9BEARBHOrULC4jkQiWL1+O5cuXAwB0XceKFSvwy1/+Ej/4wQ/AGMO6devGfKJE9ZTLuRzp5k04dOUqsMojOJfCtTC5OU7Opeg5aYfFqpIKmcmYtH4nTv/5PZi5aiMAYM/Sw/HCZ96LzTMTuDIRh7XXcnInvcdRaR4SkzC7cQ4Af6VdoNSVcnIuMXLOZV2Kyzqrcjph8T5EGEXI91gT/CTFdWzJEp55/0X4l6/figU//AWe/MlHyrqF3hB3N+/Y8K1z2BExLFoax9rVKbz0TD8wfXjncjA/gGf3PI2Xnx9EMy5Cc5uK/h4de3ZmIc3273e8EOMbgWMhCIIgCGJsGVVBn76+Prz00kvO/9evXw/LsjB//nwq6FMHlMu55J6bq5yZQ1yN+5YXrGHEpVRZXBqWmwdp97MMVIt1nMuiuJRqrwgpRKFh6eCco3lvH479zu2Y/sBjAIDUnJn4xwfOR/+Zp0KSFCDbA9Mynb5+AsknLoefh1eUAqXCQYzriNBhW5HUt3irN/dtIlFv565sWCxscbXhjKXo/ss8tK/dgCMeXQnrfaeVbG9y0y3GJfnDYr2ceWErXn81hWef6sPMyy1AK1nFQRTbSiUNNAM46fQmPPiXbuzZlcP02WK/FvI5C6rGIEljf07F75K39y9BEARBEGNPzeLy/PPPx44dOyDLMhYuXIgTTzwRH/vYx3DcccehqalpHKZI1IpSphWJaDHw/N4V2DywCcunnorDmucDgBPSCrgi04s0TFis7lnf4EZJKxLZcS6L/SJHU9BHOKdbtuD8G/+AI//xIiTTQrq5Ac9e+1ao130MW3pXo13WnDmKUL5KIm8kN1GWZDDGnPMykkActlpsnQkQoD7nNBGpNwc4+Lk6PV+5BTCGlZ98L87/16/itJv/hteu/FDJ9t5+k+J3RDcL6M50oy3S5hxj2yQNi49rwIqVfejcm8f0WZGShzkC0zLBOUc6ZSISlbBwcdwWl7uzmF5cp6szi1/83xYcc2Ij3npZ+1idDs9x2Q/ASFwSBEEQxPhSs7i86KKLnLzKSCQyHnMi9hOljDsobjJ3p3YBAJ7d8zRiagxT4lN9glIfJiyWMeYTXIDf6TQtA3DEmFst1rv/0YSIxnbsxgU3/h4LH10JyTSRT8Sw471X4MGLFkKPhLA8ZLuw3kJGTnXaGnIug6iSWrGgT1BslhT0qfdWJHXWQmOiUm+5qyU5lx7nEgB6jzkSPWedhrbHnsKU3/0J/Z+cgSd3PYGTpixHR2yyX1wWv7vJQhIPbv0bOmKTceq0tyCmxgAA02aGgZUWchnL2UdZcclNZDMWTBNonaQh0aiguU3Fut4Ccjlb9D39WC8K+Ri2bBifnEg3uoLEJUEQBEGMJzXf9X7yk5/EySefTMKyjhmuFUlcbXDeW9e3FgBQKBa7AIB8Weey8g201wkom3MZcFFrEZfK6pVo+PD7cdLFV2PRwy/CiEfx1PUX4a67foJtH3kf9IjdnzMRaoQqqWgKNzshvHoZcTlSzmWQ4dYvFZMB5xITKOeyDkTRRKX+nMtAWCz3i0uJSdj22Y/DkiTM/Pmt6Nu9AYP5Qeehk1cgMsac15qsoTO9D0/t+qczdjyhwGIWcrnh25EY3EBqyP4+thX7Zc6ZHwGHhR1bMhjsN7D+9SEAQG9XAYYx9vmXblgs5VwSBEEQxHgyqpzLnTt34le/+hVWrlyJgYEBNDU14bjjjsP111+PGTNmjPUciRopFxZbrh9df64fgN99HM65BOybU2/xDe+2hmV6bmLtG2054KKOKLRME9rfH0D0pp9CfX6FPafmJjz3jlMx+L73Yb2+B9PiCd+comoU71zwLiiSgsd3PFqciy16vTfb3nxPqQpBpUoqssiWn/cIzmXdh8XWgRA6GPCexnr4nCs6l6LwFJOQnzsLr158Mpbe+wym3/Rr4NqTkTfz4JyXuI/Lp50Ky7Iwu3EO7lj/Rwzk+51lDQkZHKYrLi3Tqf7qxbIspJL2705bh53LfPwpjfjbao431gxB04A4OGSFwTQ4ert0dEwNjd1JgbegDzmXBEEQBDGe1Cwu16xZg2uuuQahUAhnnHEG2tra0NPTg4cffhj33Xcffvvb32LRokXjMVeiSspWi4UIXbNv8qJqFGk9jYJZ8IvLcs6lVJ3jZ1qG25KAlXcuy7VJAQDW34fwHX9E5Fc/h7x9GwDAOGw+sh/6KNaedzxe6H8Z08MSoAOKpPoK8sjMbfjuOpd6yXy9bmJQ9JZD8RT1CRYAGsm5ZDXkdx4IyLkcG+rtPJbmXHLffyUmQWISVrzvAhz1yEpMve3PaDxvPrINMxwB5v2Ozm2c57xWJMX3W9HQqICDI5+xf1PEb0wQk5tIDRXFZdG5nDI9jMnTVazrsp3EudNkHDUjgRefHkTX3sKYi0uTCvoQBEEQxJtCzeLye9/7Ho488kj88pe/9IXGZrNZfOhDH8L3vvc9/Pa3vx3TSRK14Q2LFTmSlqddCAC0htuQ0XegP9/vu2EU/Sh943luNoe7gTa4p1os/DmXYi4+EcY51GefRvh3tyJ0/71geTs8t3DaGch++KMonH0eIEnAwEagH8gX56lKasVwV29lWaBynmUwfLAc3rmPGBYbdC7rPCwWlHM5JtRbWOxw1WLFckmSkGlJYNt178JhP7sFp/3iPjz3vYWuuKzw4EWRFOSMnONuxhMyODORyxX3UaEdiclNpJL+sFgAOHJpDOseBjSN4YLL2mDutQVl5948jkZD2bFGi+WpaE0QBEEQxPhRs7h87bXXcOONN5bkXEYiEbz//e/HZz7zmTGbHDE6ZM8NpihK44TFWnargZZwC3YO7cBArt93w+XNv3TH84jLYW6g7fYf/oI+zeEWZ7kQXNLuXQj95U6E//BbKFs2AwCshgRy774a2fddD3PRUb5xhWuYN3IAbEfROyevCHTFpWgGz0qWeec3HOpw4rKGsNi6FJfEmFDvBX1EgS3uFZfF7+GW916G6XfehwX/XI31L62GOfMce4wKD15Eex7DMqDJGhRFghYF8jkTHLxizqXtXBpgDGhuc6MBps8O4fhTmhGNMcQSEsKwxWXX3tLoif2FWpEQBEEQxJtDzeIyFAphYGCg7LLBwUGEQmMbzkTUjldsiVA2EbJmchOKpDiirz/fj5DkugnlW5FUJ5RM7obFivWmxaejQWuA0bUXhz+xCk2fv83JpQQA/YSTkL36fcj/yyVALFZ2XCEK80Xhq0oKZKlSFVh/WKz3hr/SNpXwhcViBOeypM9lfYmOIN7jqcf5TRTqzbkMfpYlziUkx5ksREJ4498+hKVf+DZOvvEPyLztU/Y6Fb4bMnPbCmmy/ZsRjTOYKcAocOfBUpB0uoB8jiPeIEOW3flxcMw/ogGplO2GTppsj9m1r/QB1/4ihC/nHKZlVhUWTxAEQRBE7dQsLs844wx8//vfx/Tp07Fs2TLn/Zdeegk/+MEPcOaZZ47pBInakT15jpqkIYMMTMttFyAzGc3hZgDAQK4fTcXXAKDvT1isZToOCQODtG8vtIf/jnfc/Qc0PfsipOIczBkzkb/kcuSueDfMBUeMeDziZlcIX0VWnfYewfxSIerKhcWyGt1EnyMq1eZc1nsrEi91oIkmLPXmXAavayEqvWGx4vtscRO7LzgDbbfdjumvbUHX724FlscrCi/h5JueSIdIjAEpIJezfM6lZXFIkn0+Nm9MAQBaPK6ld06ALf60kITmVhX9vTryeQuh0Nh9b7z70i2dxCVBEARBjBM1i8svfOEL+OhHP4qrr74ara2taG1tRV9fH3p7e3HMMcfg85///HjMk6gBv3Np39AJ59KwDITUEOJqAxRJwUC+3+lbB5SGjUlMqro4jWHqiL+xESf9/e84/OVfIvraGmdZujmOzWcuw4z3fxHGsuPtXMoqETfDoq2CwhTnveB83LBY+wbYJyhrzIP0OpdBgThiQZ86K/QSpB5ctoOBCeNceqrFuuLSAmMMj3/iclz9r99Hyw3/jfBvPg85XsG5lIRz6RGXcQCdQD5rOXmNzz81gIfv7sHys5pw+vkteGNtEgAwfU7YN55X8InXk6Zo6O/VsW9XHrPmjV27K8sjfO0HT+HKKxMEQRAEMWqqFpe5XA7//Oc/sXv3brz73e/G1VdfjW3btqG7uxvt7e1YsmQJTj311PGc66j45Cc/iRUrVuDUU0/FD3/4wwM9nTcFr7gUbgPnlq8aJGMMTaFm9GS70Z/rqzhWsLqr3wlkaNjTg1krN2DGyg2Y+8rXEOp1xzJnzUb+/LeicN5b0bdsMRpUDYYar/l4pIDLoHpyLoPzE46EUa7PpeTNHa0x53KksNgJlnNZ7+J3wlAUlPUgLAGU2NClfS6ZEzpuWAYgAV3zp+O1C0/C4vtXYPmtD2LDFxeUHdrJueQB5xJALme3ITIMC08+1AfT5HjqH/14fXUKnakcYi3ysM6lEH8z50awfk0a2zdnx1hc+p1LgiAIgiDGh6rE5c6dO3Httddi9+7dznvxeBw//OEPcdppp43b5MaC97znPbjkkktw3333HeipvGmIdgMWt1znklt2Hzq4Iqs5bIvLgfzAsGM56DraN+zA7NWvYfK67ZjxymY07ut1FluyhN4lC/H6CfMw+YqPomnxKc7N7v7UfgwKO0VyncvSPprVtSIJjlmOYavFBsVESc6lV1zWifDw4JtSHc5voiCEeb0I9OB1XS4sVlyblueB09MfuBgLn3wNS+55Bp1XXg7MLB1bKRMWGy4+K8pl7bDYNStTSKdMzDk8AnBg68YseMTAjNnhMm1SLIi3LG6hN9uLaXPt36ttm7N4y36chyCmT1xSxViCIAiCGC+qEpc33HADJEnCbbfdhqOOOgq7du3CV7/6VXz1q1/Fo48+Ot5z3C9OPPFEPP/88wd6Gm86opCPKLxhcTcnSgiwplBz5e3zBbRs68TU7T2I/WENlNUrob6yCm/PZn3rdR02DTuOPRw7jpmP2BkXYUgDtie34a1zFoyZaAnmO3pbkZQ4l8OIS9nXr3Pkufn7XJJzSZRSb+eupFgsAtViITnVpC1uwuT2BtmmON748Htw9A0/x7E/+DVw5nUlgymSW9BHEI4Wncushc0bUnjtEXs/p5/fiplzwnh5xSD+vl7DlMNKXUhvX8xkIYn7t9yLOYl50ELTsHNrFuvXpLBjSw5nX9zq5G+OFq9zaZBzSRAEQRDjRlXictWqVfjCF76A4447DgAwb948fP3rX8eFF16Irq4uTJo0aVwm9+KLL+Lmm2/GmjVr0N3djZtuuqmkYNBtt92Gm2++Gd3d3Vi4cCG+9KUvYfHixeMyn4mEEFlCIJncdMLZxLIWtRGJfb1o2t2Dxj29aNrTg6bd3Wjbtg9Nu7shWf7qj1aiEXuOnocdC6Zi78LZGFp6FHoi7jqHR0KwDFt8jqWgCgpIRVbdtiYVwnaFu+KrilqhN2Yl1OHEZQ2tSOpNgAD1OaeJiLgO6uUBQknOZTEsVjh3siQ7D1lMboJxd/11l5+FKXfcg0kvvorkPX9F/pLLfWMprIxzGbX/u3VjFve8sg+N+gzMmBPGrLlhMMZw/ClNSE5PYHdqqGSu3ONcDhXs5QUrh5lzwtj0Rga337wXnAPzj4xi9mHR0Z6S4pzdnEsKiyUIgiCI8aMqcdnd3Y0ZM2b43ps5cyY45+jp6Rk3cZnJZLBgwQJcdtll+MQnPlGy/IEHHsB3vvMdfO1rX8OSJUvwm9/8Bh/4wAfw97//HS0tLWVG3D/29+n5WCOZBtDTA7l7EFKhAOg6YOhg2Rxmvr4Z5kAvZkt7Ed23ER15FW2ZP+PtW1ajaSCH5oHPoq2rE0fp5W+0htqb0DN3CpKHz8Xc5ZfCXLwE5vzD8di2+9Gd6QZgh9UyT76mCROM2YaHLLExO1+KrPhMFE1WwMDAGKDKsm8/iiyDMcCE3VdPliVnuVpcBgByYLtyqJ79ypJ/fVmSfXOSZVZxeTX7erORZclzbFLZ+Yn36m3u9YQsSc41Xw/nSZH916UzL8aL30vZ+T5ZsMDBnfXTKODxT78D7/zMTxH/8n/AOOdc8ESjM5amaMXvlukca6TBFdXxJoZLz+vAkUsaIMvu++J3AfCfI+GqMomhYOWdOc2eH8WmNzKiRSd2bM1h7uHl2xRVDXOP0+RGXXxWxPhDv2HEeELXFzGeTOTrq+ZqsW8mp59+Ok4//fSKy2+55RZceeWVuPxy+wn71772NTzxxBO46667cP3114/pXBRFQmtr7cVoxo18Hph/JLBzJ5rKLL64wmZO7iNjwKRJ6J6cwMDUFqRmdGBgWiuS09vRP2cy5JY2ZI0sWiOtWHKk62A09sWQlWyXoSkag65knGWxuArDYojzMNpaE2iOjM35ChcY4nG3uuPk9haYlol4ZxjNDQ2+z6WfJRAfDCMcVhCXwmhujLvLM3nEO+1xWpriI36eKbkJ8QF7/fbWBFrj7vp6KIV4tzun1pYGtEbd5WY44yxvb00gpu3nzfEYI+cM55y2NMfR2lz5XDQ319fc64m8oSIeD0OTtbr4fWjKxRDPutdlQyKM1tY4EmYY8WQYrc0NmNTaiPjuMGJRDaqkIl6snCrJJvpPOxpdl52PSX99CC0//B7w4x87Y7WZCcTTYcQT7rFOmhyBojAYBsdVH5yBtyyaVjKnSJeCOLP34T1H0U4NuSwQi4agykBcCyMeD2HpiW145L4eJJoUJAcM7N1R2O9zG92rQlfsOXjnTxwa0G8YMZ7Q9UWMJxPx+qpaXH7gAx+ALJeGEl577bUl769YsWL/ZzYChUIBa9euxUc+8hHnPUmSsHz5cqxevXrM92cYFpLJ7MgrvllYFuInnoxQezsMJoOrCqCo4KoKhMPYyZJIhhnaOg7DVt6DUOsUTJt/PJ7Iv4Hm2UfipCWXAoqCx7Y/jN1Du9CgJTBUSDrDN2Y5UvkcIlYBvb0p5/3UUB6pdA4Sk5Cy8khlcs6yfpaCxS2kUjkM9GdgZfzVIUdLzsghlXL3M9ifgyZrkPUwYlazb37JpL0uzw8hrecwFMo5ywfzWWecZDKHXi2F4RhKFZz1BwYyUPLu+gOZrG9O/X1pMM9NfX827Szv60sjp5ZvMH+gSObTvmPrtUrPhSQxNDfH0N+fhmXV1/zrhYJpXyOabPmuwwPF4KD/uhxAGr29KfT2DyGVyiE5mEM/yyCVykE1MlAk2fkOp2D/d80nP4AzHn0e7Gc/w+Db3wlz6TH28qR9rN19g+hV7GNNpjI49ZxmqCqDpOplz0H/YAqpfA6KpPi/q0MZQAHSmTxSVvFaNFOIzbNw7cenY9JkDTd+fSs2b0ihq2sIsjz6p7eDQxmkCvY+uvsG0Ssf+M+KGH/oN4wYT+j6IsaTer2+EokIVHX41LKqxOXHP/7xMZnQWNLf3w/TNNHW1uZ7v7W1Fdu3b3f+/tCHPoRXX30V2WwWb3nLW/CLX/wCRxxxxKj2WU8fLsCQuulmhFrjGOxNlcxtxbYH0Zneh1OmnYoXdz+NSdEOxDqOQ+fWNKKN7bAkGbA4GrUm7OK7EJYjSHJXXCpMtcPSuOQbm4GBczt/kUFyQtcAQDftEFvO7f+P1fli3L8fGQokyHjbvEsB+Pcj1tVNvbgNc5dz5o7D2YjzkyBXXF8co/dv33g17uvNxjt/y+LDzm+k5Ycy3Cqexzr5jMX3U2BZFiyLwzRN+3trl/QB54BhGv7rtIje1or0l76Khs99GrHPfgoDDz4GyLKznW7qzrEapoGGRLHQj2lgdecqxLUGzG2c545X/C4y+H9LrOKOucWdORjF+c4uFgCaPieCLesz2LMzh2kzR9+b0jANZx8Fo1AXnxXx5kG/YcR4QtcXMZ5MxOtrworLSnDOfcVWfvGLXxzA2Rw4lEBBH4tbsEQrEk8xm+awnZsaUfzVHEPFKrNyhSqpEpMgBYqHGJbpFDappo9ktQTbjXhbhAQR+zfKFPTxFv+ppgDLfvW5xASqFkutSEZNvZ27koI+EAV9RKVo5ha94iYkXnptSkxC7r3XInz7bVBffhHhW29G7voPOQWuvK08vFVYc0YWr/euBQDMTswp+S4G8W7rvmf6/p41N4wt6zPYtim7X+JS7GvNyiHs1fdh6XW87j47giAIgjgYqL+73ippbm6GLMvo6enxvd/X11fiZh6KxDQ7uzKu2v/1tSLxiLVp8emYGp+Kw5rm+262NDkEoFTYCdHIwEqWmdxw++mN4aXlFWeKpAx7UyiEszhW77pSjdViFdkN6y09Dwj8PbFakXgPgCrHjh6nz2WdCBUWaNEj3EHxvfQuN7npfE9iqpvTITEJkCQM3XAjuCwj9u2vQ+rcV7bPpVcM5s2887on6/4ui33wgEVaXlz635tzuF0l9vEHe/Hs4/3YtikDw6j9Ca7FLeSyJrZuymLTxiFseiMz8kYEQRAEQdRMHd71VoemaVi0aBGeffZZ5z3LsrBixQosXbr0wE2sTljWcTwuOewyNBRFJocrLr1uZEgO4ZxZ52Naw3Sn1QAAqEXnMtjqw+tcssDlY1iG45SMtaAS4w3nWtrrlW9NAvgFZVV9Lj3nI+jE1tLnsh7FWz3OaSIiRGW9nE8xD/EwJOhciu+ALMl2NENRzJ02/QxnDFWyv/vmUUcj+8GPQBpKIvbFz0NmpX0uTZ+4dHM996R2Oa+FcynmIuBlxKUZcC5nzongnItbYZocD9/Tg1t/uht//2v38CehDBa30LmnYL9mBlY83l/zGARBEARBjExdi8t0Oo1169Zh3bp1AIBdu3Zh3bp16O62by6uu+463H777bjrrruwefNmfPWrX0Uul8Oll156IKddFyiSgkSo0XXyLLPkBjOIVxCFJK3sumIdiUl+AcUYDMvwOCRje7Mt5uHtPVkOTfYvZxUcxGrCdn19LkcKiy21Msvut17whcXWiTCaiNSfc1kUl8XvC3ecS+57n4E5vwkykzEpOgnvOPxKHNdxPOY0znXGS/+//4Q5fQbC996Fpn88CiDoXLqCsWC6onN3ajeAyiGx9rYjO5cAcOo5Lbj+UzNwylnNUDWG1S8mkc2YJetV4ulH+rDyhX7s2WWLX6aY2LIhi3278yNsSRAEQRBErdR1K5I1a9bgmmuucf7+5je/CcDOAf3EJz6BCy+8EH19ffjxj3+M7u5uLFy4EL/61a/GpcflREUIGwsWLMu+cavk/imS4oS2OWGxVYhLmcmQmFQUr0XncoyfW7jO5fDiMhzIHfXOw+dcVjE/u1clA+e8RCAGxcRwOZf1IjwqUe/zq2cYYwjJIYTlyMgrvwk438mAc2k5OZfu8ryZh8xlZ92oGsWitqP8A8bjGPr+j9D0rssw6YtfQuhXn4EedQVjJeeyN9uDnJHzDRUUjvbf8rDrCKbPCmP6rDDyOQsvPTuIVc8nsfzM5sonokguZ+LRB7uxI54D4wxaiGHhkWEM/RPY8Hoak6eFRhyDIAiCIIjqqWtxeeKJJ2L9+vXDrnP11Vfj6quvfpNmNPFgjIEx5su5rOTaecWXJsJipSrEpWSLS93Ux8+5lGTAHNm5DMkhSExycz8D7molsVgJVVJRMAul4jLo9lXIuaxH1xKo33lNRC6ce7ETMnqgccJiS5xL//dBLDcsY8TvlH7WOchdeRXCf/oDzvjfu/Hif33CWVYp5xIAurNdTsGwclioXlwKjj+1ES89O4iXnhnESac3jdhcetO6DEzTHlPmIUyayhFNcAwByKSqdz8JgiAIgqgOusM8BJAgwbRMJ0RNqXAjLHscTVHgIyz7n+z7qsV68iCDBULGK+dSHSHnEvBXvg3OQziK1c5P3ITX7FzWubj0QmGx+0eDlkBUjR7oaQDwikv7e8JhCyv3e1nMuXQK/lglxarKkfr6t2G2T8JRf38ek59b7bzvFYMFs+DbRrd0Xwhtac4lLxG2wZzLIB1TQ5g6M4S+Hh39vfqw6wLA+jVpcGbhyCVxHHZYIw47IgZJs+ecSZO4JAiCIIixpv7vfIn9RmISOHjRKaicc+kVUlNiU3HWzHNwZKs/TM5pNQLJcUAVpjihtqLX5ViLKjnQWmU4wsOIS3EjXe38EqFGRJRIyTmrtqBPvQo3rzimsNiDh2Dhq0rOpbfwVTWVk3lzC1Lf+x8AwCnfuwUsNQTALwaD+zBMA4blLi9XLTYYos85961nWiae2PkYdg3tdN5r77CjKgb7K+dzAoBpcmx8PQ1J4Zg1L4KTT2tDU2MIsmrPqZa8TYIgCIIgqoPE5SGACBMVLoIslf/YFY/wYoxhesMMJzxWwDyOnOzcyKqOU2JYxriIFckRl9U4l24/vGBVWK/zWg1nzzwXbzvs0mEL9th/VhCXdSrc6lX0EvuHuNzEdzOYcymXcdSr/S4ULn4bNp5+DBL7ehH75lcB2OIviIgc0C0dBh++x2W577PXDe3KdGJHcjse2/GIs6/GZvsB00Df8M7lxtfTyGUtzDpMg6LY/T0VSQHTiuIyPXwILkEQBEEQtUPi8hDAEZeB0LgglUJAvVQKi3V64HFzzIv5eOdWjXMZUdwQxWB+qXAuq6kWa+9PQUguLfpRrXNZr2GxVC324MTpYym5Ya/e/wYL/tjvjexcCp7+t/cgm4gi8utfQn3u2bI5kiHZfrhjcsMXFguUOqkiX9tLOTcUALYMbgYANLXYvzXDOZdDgwbu+1MXAGDJCXY7JonZvXklpRgWS84lQRAEQYw59XnnS4wprnM5QlhsUSAOFyYnnECJMUdEKpLsuJ5if2PNqHMuA5d4sKDJaKlGkHlFd73hc1Tr1F0laqc05zIg5pycy/JVlEdCb2vB4x+7DAAQ/9RHIWWyJetEVY9zGRSXKA3TDf5eeAWl1/lc0/MqOOdVOZf3/7kL6ZSJZac0Yt5CW+yKqtayzKBoQJZyLgmCIAhizCFxeQjg5EAVm5+PlHM5XIGP8q1IFF+1zAYtsf+TLpmbEJf7mXPpuLP7J6hKCgWVEdTLp56Kk6Ys36/9jBfkVh6cOOJStCIpOoWmU8W5NOeylodBiqRg3bnLkD33PChbt2D5TX8tWUe0ZTEssyQstlwO6HDOpdf5HCoMoSvbVZVzuX1LFrLCcNQ5WeStQnFfsvOwKRxlyGYtWBavOAZBEARBELVD4vIQQAiqQvEmq5J4VKpwLitWi/WM2TJM+4HRIsavqqCP7M25LC8CxyN0N8jsxjmYGp827vsZDb6CPiQ0Dxq817doQQS4uZFyoFqs/boWcakCjKHnv2+A1dKCpXc/hbkvbfCtEy7mPBuWDsMc2bkM/t5wr3NZnLcYc8/QLiSa7N+pgf7yzmUhbyGbtpBt24An9zyGF/c+7+xLnJ9IjAEcyGUp75IgCIIgxhISl4cALOBcVsqxkqrIufRWi/UW2fG2N2kKj9zcvFYYqncuI562EKXisrZqsZWoxrmcKJC4PHgQDw0kSQYDc8ScaElSLueymlYkAkU8qGprweB//xAAcO73bkM4mXbWEZEDhmVUdi7hdS79+/c6l2L7mYnZAIDdqd1QVQnxhIxkv1HWeRSiM5nYBADoy/U6+xK/heEYQ4+2AS/tfrnqYycIgiAIYmQm7h0xUTXihlIX1WIriEu3WuwowmI9uYXNobEXl65zWUXO5TDOpRMWW8MNdTkmuiDzFfShnMuDhkatEZqsoTXcarcgqtCKxPsbwGr4Z0BEDuiWgcxFF2Htuccj3jOAs3/0Z2cdr3NZUtBH9LoszouBDZtzKbZvCbWgQWtAX64XGT2DxmYVlgUMJUtDYwf7DHBwhKL2PkTFa5nJznUfiUjoCW3A6s5XAACv9byKNT2vVX0eqiWZH8TrvWtL2rAQBEEQxMEKictDAHEjqRebnFcKgysXMlcCKxcW6y/o0zweYbE1tCLx5lwGq8Ie3nw45jUdhpgS26/5VGo9MlEgQXlwkgg14soFV2F+8+E+59Lk/rBY7/eiJuey+P0zuAGLW3jsk5cj1dGKIx5biQWPrQQARIvVmg1ulhT0EQxf0McVYmJ7RVYwpRhivje9G03NxbzLvtLxB/p15KVBRGOybwzJU5k2FGUAs5DPmdBNHas6X8bKzpeqPg/VsqbnNby07wV0Z7vHfGyCIAiCqEcm1h0xMSpE8RpdFPSpcDPpVosdJiwWrnOpyraLockhnxMW9vSZHCumxqehKdSE1kjbiOt6e3MGcyvnNh2GU6adtt/iaqI7l4ArMA+GYyFcnM/Vc41b3AJjzHlvtNViRVi6YeowuYlCPIJnv/JhAMDZN96JePeAk/Osm6V9LqvJuSwXFqswBVNjUwEAXZkuNLYUK8aWybsc7DOQUroQiUn+fcEVsuGoPZdCwULGSJeMMVbkzTwA98EeQRAEQRzskLg8BHDDYkW12PLun8ibrLZa7MyGWThpynLMbz4caX38btAAYE7jXLztsEt9bUYOJBPduQRcUUkm5sGLt6CPv4jP6KrFit8G27m0RWD38Yux6p1nIjKUwXk3/BFhye4La3KjtBVJmZxLWQo6l95qsfZrRVIQcsJtDce5HCjnXPbpSKtdiET9v2MSY86DtnCUgcOCXuBIFVJVH3+tiDx3r2AmCIIgiIOZiXdHTNSMyKHUnYI+w4fFDpeD5RT0YRIUScHhLQsQkkPOzZPXNawHCkXnYKw5mNy+g+lYCBcG5og5Du773vvF5SicS0v3uY8rPnQJemd1YM6Lb6Dp5l8DsH9v8oHvHweHYRlO6Ku3yI6gXJ9LWVKcOZvcRGOxHUmyTDuS3v4s0nI3GuIh3/uizyUAhCIMnHEU8haG9KGqj79WRJ47iUuCIAjiUIHE5SFAVLXzC8WNZqW8ReEgDOdcOq1IApfOssknYGp8Kt4656L9nu9YMKNhJgCgJdI6LuP7WnlMUOuPROXBjcQkN+fSMn2ft7egVc2tSGCLJiGYJCYD4Qju/9L7YKgK4t/8L0zdtBeGZTgPd0KyLfQKZh5/WPc7PLL9IWeO4rdEPJjyiUvLDYsV87S4iWjRlcxmS0Xb7sHdgMQxf9Jsv1vry7m03ysUOIYKSWedsS68I5xLi8QlQRAEcYhA4vIQIKZEfX9Xdi5H7nPptjLwjxFX4zhn1vloDDXtx0zHjjNnno2rFr53XMNoJ3rO4kSfPzE83j6XFizfQyPvw6FawmJVR1zqMC17bOEIdh82Dc9+9HIwXcdbv/ZrsFQK+WKuocjD7s/1AwAKxfftsFh7XkKAmr6w2KK49AhD0zIRjtjbBPtUGgbHvtwehCMSZjTO8D1Isx1S+1pXw/Z2esHCUMF1Lp1qtmOEiBYR54ogCIIgDnZIXB4CRD19HxkrLf0vEDeO8jAVWSWnIMj+tfJ4M6imsuz+4OQsTlBx5uZcTsz5E8MjPl+LW+Ccl7h4zutawmKLRbx0s+DPmyyO8cY7z0P+/LeiaVcXzrzxDuSMLAC76BdQ+p1kjDnbhoqFgPwFfYpVbj1hsRY4wlH7NyyX8TuCg/0FDCn7EI0pmBafXlLcS/z2qcVnToWChbTu5lx6XdOxQKecS4IgCOIQg8TlIUDU03ZjuBvJjthkLGo7Ckc0H1Fxnanx6ZjffDjmNM4d0zlORCa6OJuo8yaqw+v0ef8GAjmXNbQi0SRbrOmWActy25s4fWhlFUM3/i/Sbc1Y9PCLmP3gk9Bkzc3VRmkhrISWgMQkNBWjHniFsFiRG2o7l0VxGXAut+zbC0PKYXK8AyE5BFVyxaU3LFYL2w6lnud+53LMw2Ip55IgCII4tCBxeQjgdS6HE5eKpOC4juPRFG6uuE5YCePkqafUTfjrgeRgCSud6PMnyiM+V1EUxy8uPWGxNfwz4IbFFtycS0l2ioApkgre2oqnv/5xcMZwzg/vRPveAecKE26ns28m4bjJx+OdC96FuBa31/EIPDcsVnEErMlNqKoEWWE+cZkzcnh2z1MAgDmJeQAArei02sfsikslZG9XyFu+irbB+VVi88BG7E3tGXYd0zLdsGQSlwRBEMQhAonLQwCfc1mDS0EMz4R3Lif4/InhEZ+rEGhShQqxtfwmOAV9TN3XP9JxLovj9h2/GM9dfS60bB7n/NcvIOu2uAqGnToFduSQ60yW6XMpM9kNiy0uD0ck5LKW4zY+v3cFkvkhJPRpmBOfDwA+51JizBHSFkxoGkOhYPncymqcy7yZxzO7n8Y/ikWJKiFCYgHXPSYIgiCIgx0Sl4cAqqw6uUcTIVdyokCijKhnhHAzrFLnslKI7EgIJ9DrXMqSm8soxKfMFKx43wXYvWgO2t7YimN+/DsAlcWldx7BarEyk3254mJ5OCLBNDkM3W5vsnNoB5ipYmrmWGihYm6lx7lkTHK+s4ZlIhqXYZpANuPur5qcS5FHOhKGV1ySc0kQBEEcIpC4PESIFivGkrgceyZqWGmlPDjiYKHoXHJR1bW8oKylFYnqzbnknpxLR1zaBXtUWQWXZdz/lfch39SABX96EIc/vsqXTwmUF7z+arGm44pKRXFochOGZWBvdBWycj+yWQtdmU5Y3EKCT4IMFVqI+eYr5sk8grshYc81NVRbWKyogDsSPudyjAsFEQRBEES9QuLyEEHkXdbSMJ0YnoMmrHSiz58oy7A5l55QWFaTuPRUiy2GkNq5jLJvuVJsazQ0qRmrvv0FcMZw/g1/hLZ5q2+8cuLSV9CHG74KsxIkmJaJzvQ+DIa2oV/bhlzWxJ7UbgBAwuoAANe59GwrM9kJizW5gYbG4hwHTSQHDQwNGkCZsNihQhLP7V2BnJEDUJ1zyTmH7s3lJOeSIAiCOEQgcXmIIPIuKedy7JjoBX0mvCgmhqXqnMsaHjiJiqu6pTsOI2PesFjF918ASJ62HGs/8E5o2TwO/+TnoGTznnmUFhkS+YmmZYJz7ghVsX8ODoMbUFUGDhO5rIW9abu4Tty0xWXICYv15lxKTisl0zIRb7CPOzmoY8Xj/Xj60X5ksq7bKNg8sAkb+t7A7tROAHbO5XC88NQAvvsfW9C5L+O8R2GxBEEQxKECictDBOFc1hICRwzPRHcuJ3qfTmJ4mBMWO3wrklpD5VVJtcWltxVJcYxy4lKTQ3j9A+/EtmVHILZxC8794R2OQ+h3LkUfS9u5dIr5eJ1LZjuXJjehaBI4LAykUujP9dstTXS7gaVwLjUpKC4lZ2zhXO7dmUehwGEYHKtfTJYcb8G0BadRPN6RnMsNr6eRz1l4ZXWf8x4V9CEIgiAOFUhpHCLEVLvMP+Vcjh0TPWdxojuvxPAEC/pUyrOUanzgpMoqDMuA6ankGizoI/4L2JVgISt44IvvRW7yJBz5j5dw9N9WlOzb7ctp+eatBEJbTW7CtEzbuWQcnUPdAOw+vfmcva2Tc+kp6CN55mlyC5GoBFkGTI/ue+nZAZimPzRWFOYRIj1n5oY9P73d9vpvvD4IDu7bliAIgiAOdkhcHiJEFPuJPuVcjj0T3rmcoPMnhod5QkCByjmXUo2h8iKvMmfki2NJjnB1ci59zqUGxhiyTXGs/Z9vwJQlnPWTP6PjjR1lxaVwLp0el75wXnudglkohsVayBZDWVVJRaEgxGWpcykz2XVzLQOMMcQb3HkmGmUMDhTw1D/6fC1J9KC4NCqLS8OwMNBrrz+YzGGwzz4GyrkkCIIgDhVIXB4itEbaoMka2qLtB3oqBw0T3rmcoPMmqkN8uuUK+rAKIbLVICqwZo1McXvFeWilSEJkuqItJIeca21wyZH454ffDkU38S9fuRlKtxs66rQiKYrhcmGxYh3dKkDVJAAc2awrngs5v7hUJa9zyUrc3HjCHi/eIGPxsgbIKsMTf+/DA3/pdgSmcC5FoaH8MM5lf4/h1ASymIHdO3LFMUhcEgRBEIcGJC4PESJKBFcuuApHty0+0FM5aJjoOYsUFntwIwUK5FQq4lNrHrbodZksDAIAImrUyemOqw3FMf3OpcDiFlZdfjpeP3cZEl0DmPHBfwd03TdfJ+eyOG9ftdjivAumDlVj4MxCLueK50LBVnbl+lzarUzcarEAnLzLSVM0NLdqePcHOxBPyHjx6UGsfM7OvxRVX8V5zHqcy2BfzJ4uu03JgqNigGxg68Ys9u3OV9U/kyAIgiAOBkhcHkJQ+OPY4oizCX5eJ/r8ifK4BX1EbmR5t7LWnEuRTzmYt8VlTIniyNZFePthl6IjNhmA3zHU5JBzjVncAhjDP/79Suw7fAZiK15C7IufL87DnpNbLVaExfoL+gC2c6kUw2JzeY+4zFsAA1RV9Ll05+HNDRXO5cy5Ycw5LIJ5R9jieNLUEK68bgokCXjgL93o3ldw1nXDYt2CPkHR2Ntti8s58yM45dwEOAdefnYQg8nhK8wSBEEQxMECiUuCGCUT3rmc4PMnhkcIOsMq0+dyP6vFAq6wiihRSExCY6jJWUeR/QV9xDXmuJIhDfd+83oY7a0I//qXCP/+N65zyStXixW5ogXTDovl4Mjm3JYo+bwFTWOQJCEuvdVi/QV9ACAUknHUsQ0Ih+1xObcwY04Ep53bAtPgWPdqCrpV8G3jbUVicQsFs+DMubfLdmFb2zXMOlzD7MMisDjQtW/4IkAEQRAEcbBA4pIgRslEdy5VWfO1ZyAONiq3IinXAqRa1EAl2HK9c4XbKDMZiqT4ncsiqUnN6Lzlp+CKgvjn/w2xlauK6xRzLp1qsaUhvLpVKLqTHHnhXMJ2LkVILOAPyZWY5IjcchV0vfObM98ugLZvT95Z1+KmT0iKce7a+Gf8c+fjAFznsnWSBt3S0dxin4f+fhKXBEEQxKEB3VUSxKhhgf9OLE6eshxnzzzXl9NGHDy4lVHdfpTOMk9xm1ofLngFm8i1DCIK+oh1HeeS+9t8FJafiPR3vg+m65jyrx9GrGfQEW9i3v6w2Mo5l9xisEz4xKXE3Eq23gcpIuR2TuNcHNm6CNMbZthjFOfXMTUEAOjcnfeFxQZ7XObMLPJmHil9CADQ06VDlhmaWhQYlo6GRluIDwwUyp6nIBv61uPhbQ9OiL6YBbOAXUM7fZV1CYIgCILEJUGMkokeVtoUbsaU+NQDPQ1inHDyC4vhpSwgIoXoqjUs1tvDMqqUF5cilDUk2yJNfEd4IEdRYhLy174f2fdeC6WrC2/7ys3guZxv3hWrxap2WGwuX8zRtCNSfeIScIv62DmXzDd2TI1h2eQTnD7AImw3EpXR2Kygp6eAbKEYFmuZyAYqxYqiQ5xz9PfqyKRMtLSrkCQG3TIQT8hgDBgYqC7ncsvgZuxL73OKJdUzr/W8gsd2PIKubNeBngpBEARRR5C4JIhRMtHDYomDm2DOZVBECvFZLqx1OLxhsVE1VnadqBLF5NhkzErM9s0lWACHMQYwhtR3vo/csuMxdd12nPTtXwCce8JiSwv6FMwCJIlBVtywWKMoLkMBcdkcakZci0OWZLdabKD3pxCdXheuY2oIFjcwlBRhsRbyRlBcFtuUgOOxB3oBAIuWxp1lsswQjyvIZHVkMyO7kSK/s2BW53QeSDK63YomeE4IgiCIQxsSlwQxSia6c0kc3LihqKU5l4At2kaTc+sVlxElUn7fjOG82W/FkknH+N7n8IdQOvvWNPTdfAuSHc2Y9/enEf2f/y5bLVYI5EJRhCkakM+b4OAwCvbxaiH/9/HsWefhbfMutfcHUdDHLQIEeM+VK347pmqwmIHkgJtzmQsIKb0oLnu683jt5SHEEzJOPrPZt6ylMQbOLHTtG1kwClEpjq+eEccnziVBEARBACQuCWLUkGNJ1DPBthtB53LZ5BNw4pSTax7X51wq5Z3LIOXEm3eOAIBJU3DXtz+EQjSM2Pe+hfb7H7bn7XFWJUlUdbVFqqLZYxo6d8NiNf8/axKTHPczeE7EvII9NgFg8rSQT1ya3EQ+EBZrWgYsi+PlFQMAgDPf2uo4p7qpQ5EUNDeHAQD7dvvzNcshBFvBHF3rEotb2JHcDl2cjBowLANbB7dU3ZNTzNUicUkQBEF4IHFJEKMkeGNKEPWEWxlVOJf+hyGzErMxv/nwmsdVqyjoUzqZ8uLS63zKkoyeuVPx6Nc/DC5JOOrL/42pa7b6w2ID/2TFGu28y54uHYZedC7Dlb+Pwe9qSVGjYFgsDCT7hUNnobM7jZ3bso641S0D619LY6Bfx+zDIjjmxISzvWEZkJnsist9w4tLzrnrXI5CHALArqGdeGLnY3ijfx0sbmHX0E5HSI/E671r8NSuf2JbcmtV6wsBa1rViVGCIAji0IDuiglilJBzSdQz4vo0uehzWVtuZSVUj9iLVCjoUzKXQFuUI1sX4YI5F6E50uysIwTe9pOOQupb/w25oOPtX/4VIrv2OevIkv+frBlzQuCwsGtrFkYxkjToXJabR3Cf5arZtrSpCMeBvl4DWzZk8PSjPbjzd7uw+oUh7N1uH0c6k8fm9RkoKnDJezqc/poWt2ByE5qsobXNFuNrVg06rUrKIZxAYPTOpRCnWT2LHcnteGzHI9jYv6GqbTvT9nlOFYZQMAvYMrh52Eqwbv9Pci4JgiAIFxKXBDFKxG1q0BEiiHqgUvGa/WU0zmWwWmxIDqEj1lGynsQkWNxC7voPYdO7LkZ0IIU51/8r2OAAgNLQ3klTVWgRoHNvAUMD9nGG9sO59OaEShLDeZc1gQFYuzqF7dvSkFR7/n2d9n/3dWbAi/NoanbDhYVQVCQVjYkw5i6IIJM18Idf7EGhUN7p8+ZZ5j0FfXYO7SjJ9ayEEHq6VUBaTxfHGnlbzjl6c3ZBooyRxRt9r+PpXU9iy+CmitsIIUvikiAIgvBC4pIgRgmFwxL1jBMW6ziXYyQuizmXEpMQlsPVzaX4/MURbxUeyMhMdsTKyk+/D1tOPBLhTZuRuP59gK6XiEvGOOYuiIBzYM3LKQCAplV+2FMqLplvPha3kNEzyBb7WU6bo+KoY+NQFIbDj47gkqvbwRjQt88CB0d3ly3cEs3+XrFCXKqSCokxHLk4jpmHaejt1rF9U/nwWN0jKIUr2J3pxuM7HsWr3a9UPCYvIuy4YBacMarJoRzMD3hczwyShSQAoCtTuc2ICLelnEuCIAjCC90dE8R+QiKTqEfcnMvyBX1GiyqpkJmMmBqrOjQ8WNCnUoVlxpizji5Z+NtX3of8EUdAe/JxxD/36ZLtLG5h5jy7l+ZAj71dsM+lf3yp7N8il9PiFv684U+4c/3tAOxzN/uwKC64rA2LjolBDXM0NSsopGWkkia6e+x2HI1NfnHpVLqVZCiSAsYYZi+w59ndWT40tuALixW5l/nisurCZJ1zZxWcvM1ghd5y9GR7nNdZI4tM0fX0vu/FtEznIUC1BYAIgiCIQwO6KyaIUUKikqhnhO4TN/9Sjf0sKyExCWfOPBunTju95m1FTmMlcSkz2eO+6dCjYfT+7o8wp0xF5A+/w9yf3OwfDxaaWmXfmMOKy2DOJSqHxZqW6TiQDAwmN2FaBto6NMhQ0dtVQE+P7UI2NNnbd6b3IVUYgu6IS9XJdW1ps//btbe8uPQ6lyJEVsynWgEnqt0WTL0m57In2+28zhoZJ6R2IN9ftiCQNz+02oJBBEEQxKEB3R0TxKiharFE/RJ0LoOVVveHqfFpaI+2Vz+XQLXYSt8ZkXMJuG6dPHMOBv/4F1iJRsy66RYsvvdpZ33OOWSVIxaXIf45G05cVsq5dIsfuSGeaT0FwyOiLG7B4CbaJmmQuIrufQX09eWgqgyhCEPBLODh7X/Hs3uedrYTLi8ANE2y99W9r7wL6S3iI16LczGSQBQ5mSKn1bB0x/20hinKI+guikuZyUXnMlMcz83F9KJ78kOrGZ8gCII4dKC7YoIYJZXcF4KoByoJqQNBpT6XQZx+k9xCwSwUcxYlmEcuQvI3f4Clqjj7R3/GYU+/6mxjcROJJgWMC+dyuJzL8tVihfA2PS5cSk/5HDrTMmFYBprbVIRVDfv2FKBbOhLFkFjd0sE5R9bIuqHIkuKIy3hCghriWDnwDLYPbiuZW7mwWFdcVs5r3Dm0A3es/yNe63nVWb9/MOuE7PIqcy5DcgiJUKNT6VbQWyY0VveJbsq5JAiCIFxIXBLEKHHzzUhkEvVH8OGHXAfikmN451IIMcMyoFs6VNlTgfWU07D5B98C48CF3/gtpr62xVm3sVkBK/5zFtoP59Ib4pnW0054KwAnLFaWGY47oRUAYMFEolEBL/4PsIWXW9BHccKRTW4i3pFHD9uBlTvXlszNX9BHL44/snP5Stfq4n9X2aK8YOGxhzrx4L12ZdqRci5Ny4TFLYTkECKKW6BJK1YF9obMunP1iG4SlwRBEIQHEpcEMUrEDTM5mEQ9Eiy2c0CdS1ZdQR+Rn1gw8+CcIySHfMsHL7wAj3/sUqgFHZd88Zdo2bYPhlV0LvcjLFY4moZHKA0Vkr6wWMAVfUuPbUYsoeNQpgAAxOxJREFULsNiBhqaFFjc8oSkGo5ItcNiXTe2aZI9Tm9fpmRu3lYkBbMAzrkz5nDicqhY2TWhJWBxC+teSSFXMJA389i1LTeiWyyOSZYUX9/SafHp9lxHcC5JXBIEQRBeSFwSxCgRN8zVVswkiDeTEiE1RgV9RkNJtdgK3xkx52wxh1CVNN9ymclYdfnpeOFdZyMylMHln/8/hDq70NikVFfQp0K1WLcnaNC59IvLvJmHIilQVQXHnpTA9HkKpk63BTDnrnPpVuh1w2INbqCp3X7d11/ajqRg+gv9FKwCRDrjcHmNYo4NWgKdnVns2JqDojAYUhbbN2edPqeVEK1qVElFRIk47zeFmhBTYxgqDJUU7fEK4ZHGJwiCIA4tSFwSxCgh55KoZypVRj0QVO9c2nPMmbb40jxhsd7lT33wYqw993gkugZw/ie/h6Z8BrGYve6wzmXgHIi/g8WPADvnUjiXiqQ485eZDAkSmlpUHLs8DlUrCtOig8c5R94U4tgt6GNZFhJt9ti9w4hL2ePejlTQx/u+JmvYtd0ed/7CKBpbFKSGTOzbm6t4PgB/2xSvcxlVo2gKNQEABvODvm28YbGUczmx0E0dO5LbqYUMQRDjBolLghgl5FwSdU3gupQPoHMpcJ3L8stFCKmofqoFwmKdXp2ShIf/37ux+eRFaN6+F+/4fzfhjJM1LDulEdHYcM5lhYI+wrnkHnHpaSniDc9VJMWzviusvO5i1sgW15V9OZeNrfb+B5Ol4lJUYI1rcQB2O5GRci6THtFncQt9vfYYjS0qZsy28yd37yzdl3+/btsUr3MZU+NodMRlv28bn3NJ4nJCsaF/PZ7Y+Rh2JLcf6KkQBHGQQuKSIEYJOZdEPVNXzmUwLLZSn8uiEMsVxZkm+cWlyMkEAEuR8bf/uha7jjkcHRt34a3/+zFcfFF82Ic9pTmX/u+w17nMGlnky4hcr7islHvoikvXuTS5iVDcAmNAKlUoEYyFohsYV4W4zI9YLXYgP+Dbf3+f3cIk0SgjGrf3m00P34fS685GVI9zqUTRFGou2Q8AGD7n0hbVaT2NTf0bMRhYl6gvRFSAyNUlCIIYa0hcEsQoccQlOZdEHeIVcJqs+SqvvvmTEdViue/vIIpkzzGlpwCUhsXKkv+fLCOk4e5vfRB7j5iJ0AvPo/H9VwMFf+6il5Kw2IBzaQTyB5PFG/CwR1zKzBWX3ONWWmXFpeITlxZMxOIy8nmOZNrvKArnMibEpVVwxq/kXA54HEXDNDHQX4CmMWhhCeGwvd9MdiRx6TqXUY9zGVVjjnMZFJfetimGZWBj/wb8ZcMdeHbP03h2zzPD7o84sIhrPG2UFpUiCIIYC0hcEsQoYYycS6J+8bp0cbXhAM6k1Lms5KJGizl/QsyUK+gTJB/R8Nfvfhj64QugPfYIGj76QcAs7/RVrhZbGhbr3acQvYDtrgb7ZXqPDQCyxRt3xZdzaUI3C4g12H93dflv7gtmARKTEC26hwWz4IbFory47M+54nJwoADDMtFQLG4UCttzzGbcY3q1ezXu23w3/rLhDnRn7BYjwn1VmJtzqckaFEnx5FwO+PbrraLLYaEzs8/5uzfbU1IAaCwwLAPP7V2BgVz/yCsTFREPQbI6iUuCIMYHEpcEMUooLJaoZ7yOeiKUOIAzKRWXlYiqMQBwBESwFUmldiq5xhgG77wH5szZCN97F+Kf/RRQpsJqMMrAqRZbJiy20n4VJpdUnQX8YbE5p9qtAkly8zMNy3YuAaC7239zr1s6VEl1BLXdjsQ+X5Uqsqb0Ied1X18eAEciYRcf0kISGFzncjA/gNVdq9Cf60daT6Mr0+kbW5VUKJKCxe1LsKT9GPs9WS1bMdZb2da0TKfAT0yNweJW2d6Y+8uWgc3Y0PcG7t1895iPfSghPscMOZcEQYwTJC4JYrRQQR+ijvE+9Gg40M5loFpsJZEonEvhpgVDeaUyzqWAT5mKgT/fA7NjMiK3/Rbx//xcicAscS4RDIu1b7xnJmbhiJYjoUgKpsSn+oohyZJS1nn1CkBxnMGwWN0quOKyN+Nb37AMaLKGkCzE5cjVYr0ir7+vAM4sNDTa4pIxBi3MkM0asCyOdX3rAAANmn0tCDfUcS6L7uzSScdiYeuRzrjCvUwW3OJBeqCgj3B8RW9MIVzHEsPjKndlusZ8/EMFR1zq6QM8E4IgDlZIXBLEKAm2MSCIesIrpOrFuXT+rvBARjiXgqBzWS4sFnCP1Zo9B4N/vhdWWxsiN/8CsS9/YViB6bwuzke4j2ElghOmnIh3H3E1zpp5jm+/3oI+XsqFrvoL+tgCUhTa6el1b+6FSFQlDaoQl5buiEonVzWA103s78+Dw0Ki0Z1rOCzD4hYGhjLYMrAJiqTg8OYj7PkWxbAQbaLdSpBEqBEAkMy7BWB0z36FIwsAU+JTAQDdRfGX0lPYNri17Li1Ioo8AcDantfGZMxDEfEgIGfmqB0JQRDjAolLgthfyLkk6hCvoItrB1ZcBqn0QCbqqVYKlOZcVnI8ve+bC47AwF/+Bqu1FdFf/B9i//VFn8D0ritErnhQJMSaaIniLPeKS1ZBXFqlN+pqMOfSKiAWt0VcT58rlgqmXeVVk1VoxWPWrYIjKiuJAMMywMCwcV0au3dmwRhHvNEViaGwBA5gQ+c2GJaBuY3zEFHCvjFF5VelQqsatehoevNRdU9PTotbjvs5KdoBRVLQne0G5xyvdK3Ck7uecPI79wcRagwAO4d2+FxbonpM8cCCc6fwFEEQxFhy0IvLRx55BOeffz7OP/98PPDAAwd6OsRBRLCNAUHUE95nHokDLC6DYqyiuFSiPlezpFrsCM6lwFx4JAbuvBdWczOiN/0UsW/8lyMwfc5lICy2Utiu7PlbruRclhGAMvP3uTQsE5GoBMaAvgH3xj5rui1PhJA1LXPYsFjOOUxuYtsbBt54LQ1IFo47tQGq6s4tFJYAWEgO2eMnQo3O+MJpdZ3L8tWE5aKj6a2kq1s6JCZBkRSYlgmzKMo1SUNbpA0Fs4CBfL8Tetmf6/ONaVhGza0wRAsN8QDCm286Gh7a9iD+ufPx/RpjIuJ1uzNU1IcgiHHgoBaXhmHghhtuwG233Ybbb78dN954IwrDlKkniFqgarFEPeO9LiOeFhP1QKWwWIlJCMth528tGBbrcdd8DmSZ76B51NF2iGxTE6I/vRHR73yjYohscDpBEev9W2ZSWXFpBnpRKpICxlhJzqUkMcRiMtKZHPI5W+DtTe0GALRF2n1C1xqmFYlu6ejv1bH+lTxkGTjzrS2YPd//OYciEjgspNK6c7xOZdyi0yrEhlpJXHrm7923KqmQJbl4XLp9rJKMhGaH0Wb0jNOyJNjK5JHtD+OujX+pqSdmtuhctkcmAQCGCqMXlxa30Jneh73pPaMeY6Lib5lD4pIgiLHnoBaXr7zyChYsWIC2tjY0Nzdj8eLFePnllw/0tIiDBLfP5QGeCEGUIV9HYYMlOZfDPJDx5l2WEzxCHHlzBCuFyxpHL8HgnffASjQiduP3Eb3hO2VzLiv1vxR4Ra0tGkd2LsX8ZEcsmo6QiyVkmMzA1k32zf2O5HYAwKzELCcigsPy5VoGxzcsA+teTUEyVSxa2oBEs+QTDgAQCkngjCOd0p3jdMQr/OJSrpBzqTD7feFOpoqVYzVZc4SnEJuA3cYEAPJW3gn3TRYGfGOKgj9703vL7rMcIueyLdJenEeq6m2DiJBa3dNS5VDB51ySuCQIYhyoa3H54osv4sMf/jBOPfVULFiwAI8/XhrCctttt+Gss87C0UcfjSuuuAKvvvqqs6yrqwsdHR3O3x0dHejqoipzxNhArUiIemZ/wwbHktIWIMOIy2LFWFVSy4pGIWi8wrOSuAQAY8kxGLzjLlgNCcS+/10cf+v9zhxYhYrPQfHIgmGxZf7pDAo7MT/FCSs1HFEzc04EFjPw0N096En1YSA/gOZwMxq0hM+55B5BWSoudWRSJiQomDMvBpObJeuEi87lUFLHru1ZWCZzxhdjO5V5K4hL2dNKZWP/Bvx1458B2K6y+CwMy3BeC7e5YBac4w06l4JaKpbmjBxCcsgpTjW0H9e36NPJOXfaqNTKloFNuGfTX0eVt7ixfwOe2PnYASmo4w+LpYqxBEGMPXUtLjOZDBYsWICvfOUrZZc/8MAD+M53voOPfexjuOuuu7BgwQJ84AMfQF9fX9n1CWIsqXRjShD1wKzEHADAUW1HH+CZlKsWW/mfHuFcCgcsiBBH3uXDiUsAMI5dhsE//RVWvAEn3Hwvlv/6fkjcnVNpjmXlsNhKBX3KhcUCQKgY5pszcs46HdM0TJ0to79Hx/2PrwEAzGyY5ZuLHRbrio/g+AY3oOsWwpodnmpxq6RirV3Qh+O11YNY9fwQVjw2UJJfKoSWcCiDyMwVx725XgDA9IbpWDb5BH+hI+d4hbjMo1BsWZLRM2UL8IwkzDjnWNuzBgO5fpjcRESJOG11UjXmbHopeFqpeF/Xwu7UbgzmB9Gb7al52xV7nsGO5PaawoLHCtMXFksFfQiCGHvK/2tSJ5x++uk4/fTTKy6/5ZZbcOWVV+Lyyy8HAHzta1/DE088gbvuugvXX389Jk2ahM5Ot99WZ2cnTj311FHPR5LqS0SI+dTbvA4VJMkuzCFL0kH5GdD1NbGZHO/AVUdeXVGkvZlIEvOFj0uMVby+4loMjAEhJVT22pNlGcyye2CKMWVJHvE6tU44EUN/vhvhd1yMk3/3MEIFE9JP3wcUcwW981MC46my4izXFAWKLJWGwzPue0+VVUgSQ1gKQZUVZM0MTG6AMVtsLzo+jLXrgA27duOIecCMxhmQJAaluK9UysBgOgvW4I7vnZNuGjAMIBLWoMh2mxMOex2FKdAtHZGI7AuvfX1VBmeeZYfyc1iQJAYLJhgDNEUrew7FsXNmwbLsdRe1HY0p8clQZPe8abK9fVgNgTEgY6QBuOdkSE+iXbVDWsV7OTMLSWJI62ls6t+IWYlZaAo3O/ve2L8BK7texMquF8EYEFEjSIQT9vnRUyN+5pWuMZObzhxMro/qN87gOhgDdF6oafuckXP2zVj1v6/J/CAe3vYQTpp6MqY3zKh5vgLxeQNA1szQ7/t+QP9GEuPJRL6+6lpcDkehUMDatWvxkY98xHlPkiQsX74cq1evBgAsXrwYb7zxBnp6eiDLMl555RV861vfGtX+FEVCa2t8LKY+5jQ3x0ZeiRhzmgsxxDNhNDXG6vbaGAvo+iL2l17EEB90C/W0tTagOWZfV8HraxrasSEdRlu8sez3qqkhBrlgoTWRQFay3avGSLS67+D5Z+HhX38Fb/ngN3Hsnx4F2v4D+PGPETYY4nF3fq0tDb7xWnkD4kl7eVtLI9qjjYjvC/uGjjeEEM96xkgknDEmNbcgmU9CQxghOYS8mUc8bofN5o0C4vEwpk+ahJgWQ1SXoSgq7v7NXqg8irOuURCNKmhujiKmueeqO2u7hrFYCIkGVgwb1aCaQFgJI62nEQ0zgCVtIckA02BY81IW8UVhxBtCaG2NI9KpIi6F0dHeVPZBRE5tRLwvjFhcg24xxI0wJrU1ojUWR3Nv3PkMmmNxtLbGkddaEO8Lg4UN3zllkYJzPloaEyiYBSgRjgHWiUd3PwoAkCIG5k07w9lmrxnyXTeTW1rR0d6ESc0tyBk5NLdEkdEzeGbHMzhu6nFoi7aV/diD11ha6XPmFm/U0Bqv/fc72qsizsOINig1/f7vHOx39t3YHEFrrLptu3t2gYUMdFu7saR1Yc3zFUSiKkJyHHkzDzlsHdT/dr1Z0L+RxHgyEa+vCSsu+/v7YZom2tr8/5i0trZi+3a7OIKqqvjsZz+Lq666CgDw6U9/GqFQqGSsajAMC8lkfYWQSBJDc3MM/f1pWFb5JtvE+DE4mEUqlcPgYBa94dEXl6hX6PoixorBAfu7IujvT0MtpMteX/kUkErlkGMmentLv1eZtI5UPoesZDhjhs1C2XXLsXvmdNzxw4/jHf/+v4j+7GfIDQyh/7+/55vf4EAWvcwdLzmYc5YPDeah5DO+9QGgTxvyvZeRdGdORo4hlbaXqeEoUrkcmGIvS2VzSKUspAZ15KQUckYOK57oAWcRgHP0dGXR0qaiuzeJnOaep117BwAAIUVBOpVFWs9Ak+18uqMmH4ucmcNr3a8UXUsLS45vwMA/Zbz0TD/mzcphgKXR25tC3+AQUoUckv15MFYaIjqYto+9T0lBNwtIpXJIDuQg51JIDeWdY07AQG9vCumsjlQqhz2FbqQK7vnY1rkbbWwaAEDPAqlCDkauD08kn0Eqb6/XyfrQ2+Ce93RS953TQojb57SgIpnuw459nXi9dw3e6F2PoaEczpx5NgCgJ9sN07IwpWFy2Wusc6DfGbezpx9Kvvabt96BQaSyOXT29mOK7M55MD+Afel9OLx5QdmUiQ1d25x9d/UMQs5FS9YpR1fvAFKpHLYUdqK3sfRaX9/3BkzLxJFtiyqOYVj2d0YOhZEpFGDmk1V/b4hS6N9IPwWzUBeRMgcL9Xp9JRIRqGr5tmCCCSsuK8E59/2gn3feeTjvvPPGZOx6+nC9WBav27kdzHBe7GzA6/faGAvo+iL2F4tzXxcQbjHnmgpeX23hdsxsmI25TfPKXncMEjgHFKZ6xpSqv0Y5Q/ecqbj7J5/FlZ+9CeHbfovmbBr46CngsvgHk/nGE/u09yQDnAW7msC0LN97MlOcMcJSxFkWlsPgHDCgQ9UYsoU8GMKQIMOyOLZvzGHv7jxC0MBhIZc1wbkKwzR8cxoqCpRIWIOEPDi3Q2VVScXcxsMAAK91vYqZ80KI51RMmxUGb1KR6mHQDQ7DsscrGAVIkIu/Z6XnUCzTDR26pYNzOHMNnhfL4lAkDZzb1Vw5BxpDjRjMD2IgN+B+5tw+V1k9h6yeg8QkWNxCwdB9x6ibhu+canIYlsURU+LgvBP92X5s7t8MzoGdyZ3I6nbRnyd2PI6CWcBVR15t7y9wjeWNgjNuzsiP6vetYNjnIqf7t39q51PoyXYjq2exuH1pyXY9mW5n38HPdDjyhv0ZD+WHkClkEVbCeGT7QyiYOi6cezFW7nsZhmXgiJYjK44hzieDBJkp0APnmxgd9G8kMFRI4u5Nf8WS9qVlr3ti9EzE66uuC/oMR3NzM2RZRk+PP5m+r6+vxM0kiPHAbUUy8eLhCeLNpLSgT+V1ZUnG6TPOxIyGmeWXF4vIKFVWiw0i1k3OnoaBex6EOX0GYn/9Cy76xm8h6YZvH8F9itfVFfRx5xdRor73NVmDbuqIRGXk9DwU5q677hW7PUQsYRfjyRV7YQYri6aztssYDWu+Ij3BViuLj4/j7ItbwRhDPK6CgaGQc4sFmdz0tXUJ4m+lYhbfE21WSgv6aJLtXAih2hhqAmCLOEHwWKbGi45moLhO8JxGZLuPpyjq83rvGqdQkMUtp6VL3sijYBbKimV7P26F2NFWixVjFKy87/1kYRAAsLprVdlqsN2Zbue1wY2S5ZXwthbqyXaDc449qT3Oa5ObZSsGexGVYhVJgSqpxYcFE+umlahPBvID4JyjP9d/oKdC1AETVlxqmoZFixbh2Wefdd6zLAsrVqzA0qVLD9zEiEMGakVCENVRS5/LkWiPtiOuxRHz9MOUahjP6W3JJFhz5mLgngdhzJ6DBf9cjbd/+WYouUKJeJSCrUiq6XPpEV4RNeK8ViXVubHXonaFV8myxaVlcaxfkwFjwNwFYYBx5LJCXPpFgF9cuvsKikvOOcyiKIzFVDAuoZC3im6y7WAOKy6LPT5t8eKKE+8ycVyAXdjH+8CtQbOFYM5000rEfATT4tMBoKSirGn5xVdYsXMVG4rtSPal9wEAFrUdBQDYOrgZgCvaguJUoJv7Xy1WCDXRy1PQEm5xXm8e2ORbNlRIIu9ZPzi/wfwA9qR2l5+zZ5692R6kdTec1bAMZz6GVVmwivMpM8nXIocg9hfxPQh+H4hDk7oWl+l0GuvWrcO6desAALt27cK6devQ3W0/+bvuuutw++2346677sLmzZvx1a9+FblcDpdeeumBnDZxiMC8Jf8IgqhISR/J/RCXx08+EZce9o6q+1wGkYpzcdy+GTPRd9ff0DurA3Offx3v+Nz/Qh3y9//ztyKRy/a5DAom7/yiiisuhXMJAFKkeCNm2Df6O7flkE5aaGvX0NBk96jMZ+1xg+I1K8RlRCsRlMHXQhTGYioAhnzRufQ6WZVwW5GYJev7HF2P0BTuJQCE5Qg0WUPe41yK6rWCSdFJtptr+V3EoPgKF8/jzIZZWNK+FM3hZkyOTcYxk45DSA6hM9MJ0zIdN66ScNI97+tlWqRUg5hrPrC94bkOdg7t8C3rzvj7bAevmXs23YVHtj+MdJn+k4WAczlUcPt8egXysOKyeD5t51LzHQdB7A/ie1Cg64lAnedcrlmzBtdcc43z9ze/+U0AwMc//nF84hOfwIUXXoi+vj78+Mc/Rnd3NxYuXIhf/epXaGlpqTQkQYwZ4saNnEuCGJ7SsNj9+84wxnwiari+mZXm4hOkU6fj9h99Cpd94eeYtmYrWt51DTJ33gerY3JxXX/4Z3nn0i8UZI9giyquy6p6buxZ1M6b5LotRNe9YrtRU2dEoIVZMSy2mKeI8mGxsejI4lIIjnhchQSz6FxajsPnDeENIoSkyW13TGKSx/0tdS4BOBVxxeuQHMJQYQimZTo9Ob3bNYWaoUoq0nraVzchKJSEc6lICpZMOgZLJh3jW5bP533OYGVx6XUua78Z9o4bdGq8gjh4TXRm7NZobZF2u+hQBWd1qJD0OfP2nN159mR7kPT0+Sz4jrny8XjDmhXJGHF9gqgW8ZCGnEsCqHNxeeKJJ2L9+vXDrnP11Vfj6quvfpNmRBAuU2NTMS0+DdOLIV0EQZQnKCZrcRorIXnGHE3OJYNXnDLkGmO4838+hrd95WbMfmk9tIvPw8Cd98CaPQeyNHJYbFAoqL6cS39YrCbby1jIFpeWbv9TvGu7/XfHlDBUDT7nkhcF2Qt7n0dXphPpnC3sohENxoji0h4jHlcBnkcuZxVzKPXinIZzLothsZZZkp8pB8KFBZrsVmVXZRVhJYKhwhByZg4xKeY7V22RNjDGoMka0nraDhcuOrtGcb2mUBPCShgxpXJVV+Gw5k23uqxZIafR6wIG8zyrwbt9PnAzbfnEpf+BQFdRXE6JTUFPtrui+M0ZOQwVksgZebRH2337TGgJJAtJX/isdz7D5XF6w5otLpzL2sJiTcvE37c9gJmJWTi6bXFN2xIHL45zOcpIAOLgoq7DYgminkmEGnH2rPN8Tb8JgihlPNx9VkFQVbtdubxKPRLC3d/6EJIXXQh5+zY0XXwe5LVrAmGxChhjJYI5mBOpSN6cS39Bn5BsO3BWyA5/tAr2uskBA4wB8bgGReVgslvQR4RQ7hzajr5cLwaKhTPi0ZDfxUXpayEq4g0qGCTXuawmLNaTc2lYhu9cePerMHeMkKcdgXAuAVs08WKuZ0yNYXH7EhzbcTwAOG6uN8TTKh7z8ZNPxHmz3zqs4y2OoWbnchQ3w163L7i9d5/eKyJn5DCYH0RCSyBezEO1uIlkfhC7hnb6xsibeTy160k8vO1Bp+CQcISmFh9m7k7t8q3v7r+8Gwq415DMZKjFBxy1OpdDhSR6sz3YNrilpu2IgxtR2IrCrAmAxCVBEATxJlNLGGslKoWCVrtdcBshgE1Nwd6f/hjZa94PuasTTW9/K6IvvuysJ8RWMO+ypKBPIExUiDJVUh0nU1ftvDmeV2GaHEODBhoaFSiSXSk2HJFQyNtl6C3YgjBj2NVkk3l7W1tcls99DIaX2tViJTvnEpbjWg0XFmsvV6BbOixu+caXK4TF+pxLSUO4KKbzZs45T4qkYOmkY9EaaS1uY2+vl3Hh5GHErztHey45w3UuKwktX87lKG6Gvdt7RToQDIt1rwnhWk6Kdjjn0LAMPL93BR7b8Yhv3lkjg4F8P0xuImOknXmqkoqOWEfJ2Plqw2Kd8yk7n3mtxy/c5MH8IFWaJRzEw4/g94E4NCFxSRAEQYwrY1ktVuATlzX8U+bmXFYO1ZUVDakbfoj0v30OUnIQk696N+Y981og39C/TyEqhMgSgkogKsYqkuK0JtEVO8fSKsgYGrR7EDY2K07fx3DUnqMowJMp5iQCQCZvi8x4rPqcy4YGzW5FkrcryAoh4nUdyyExyXHovOtKUoWCPh5xGZI1J1cyZ+ac8xQ8f2IbrxPoddpGwg2L9VZjreBcmmPnXAL2cQm8os/7ujNjV7btiHW4ocbcdLb1uql9uT7nM8voGXDOUTALUGUV7ZFJJfPxhcVWUdBHZrITCl2ruBQVZy1uYSDfj0e2P4QNfcOnLxEHPwVPS59gqDhx6EHikiAIghhXxrJarMArKMfEuQzmcDKGzBe+jNQ3vgMpl8PbvnIzjrn76bLrA26u3VHti3HKtFMxKdrhWy4Epde5NGTblTJzMgb77Zv2xiY3p1OL2kIyl7NgchMpT/sJXbeXxWOhgNAuzUUVoiIeL7pVORYIix3eufRXhVXKvu8v6OOGxaqy5oQB5428I7hY4PajXFismyM4srh0w2I9OZcVnUvdOTejybkMCjI9IO7EefGKy/5cHwC7mI8Q6KanAq93XW9V2ayRcfanSRqiahRxLe7bv6+gz3A5l5a3WqwIi63NZfIe+/r+9diT2oN1fWthcQsv7nse+9J7axqPqB2LW+hM7xu2p+mbjfcapKI+BIlLgiAIYlwZ62qxgF8c1hJmO1JYbHC87L9+DH0/vxmWLOGMG/+E2Ne/AlhWyfbiRi+mxjCvaX7JMUaL4lKTQ04Ophoqhq3mFQwO2Dftjc2qKy4jtoDMZy1wbvl6GxYKFhgDImG1Yh6kEJpCEESjCiQJKOQ5OLinWuzw4s2bk6lUEJdKhYI+mqQhrIicy6xznuTAPjWpTFiscC6rCIsVYilnjCy0RIipIimjci6D4lI4NZxzWNxyzgX33PyL9iJxtcGXxyrG8obTep2fjJF1BLc4r0H3Mu9tRWJWFotCSNrVYkcZFusRoyLvcjA/iK2Dm7Gu93Ws7XmtpvEORsY7LHTLwGY8tO1Bp69rPeC9ZqkdCUHikiAIghhXxsW59IV/Vj9euWqxwfGCYZj6JZfjrz/4OHINMUR/eiMaPvx+qAW/KybEQaVjO7p9MZa0L0VbpM3pe6lqxbBVr3PZ7HEuw8K5NGFaFrbs6Idp2sJQL3Boml1ltZLQFuddhNIqsoxoXIaeK/atLAoRtQbnUmHlcy7lMgV9NFkDY8x1Ls284/AGxbkqC+fSvTH1hnGOhBBsXuey3E2+cGw1WYMqqaPKuQyOKwSqmK+odiuENOccaT2NsBKGLMme3qGGx7nkZR34rJFxBLfIS50cm+JbJ+/NMx22WqwQ67LHuawxLNYzvleYv9b9KgBbDNcTb3Ze6HN7V+DPG/40rlVTRR6ut9fpgcb7PRpt71ji4IHEJUEQBDGujIdzOdbVYkvCYj1ITMKct74fO+66E+bMWQjf/Vdc/O83Ipx0m92LkMNK4rIl3Iolk44BY8wNkVWLoZkZV1wmmhVH+CpFcdnTpeP2X+/BHX/cgo2vp2GagGUBmiYX80ArOJdljiMWl8EtCYW865qN5Az6QmElb86lO763nYkIcRUCRojLnKegjxyYm1bcRvflXAqnrYqw2HKtSMqExYpjViQVmqyBc+5UZK0WJ0y1KCKFaxMMMxa9SbNFx1b0OxWtbUTvUPu1WTbMMaNnHMEtzuu8psNw6vS3YFHbUQD8YYjmcDmXYn5McdzVWsV1pdYlou9mbhTiknOOPandFT+HgVw/ujPdAOwen6JfaDU8sPVveGLnYzXPabT0Zf8/e+cdJUd1pv2nYufp6cka5ZyQECAhFAgiB2OiCWuc2TUO2Gt7l/U6Ll6vbfCHc8QEYxuDjU02JuckRBDKKMfJuXOoqu+P6ltdVR2me7pbE3h/5+jMTHd11a2qO5r71POGXiSUhKUPaaVhc8ZcBGo0MYd3AxQWS5C4JAiCIKpNtZ3LEv6UsW1zCS9GLjEzwz8TgaVr0f/YM0guOw6tG3fiqut/ipqOXgCAlm48UYzQFXkRsiBDltNhsVEBg/3psNjaTFisM93BpP1QHN1dMST5CKIRBamELkIckpQ+ZuZ6msdudmfZ6x6fCB48orGU4UKV5FyaxaVp/+bXHekCPiyM08UK+qQKFfTRhVNMiWFLz2YEE0PGtoVapdiPHx+m52PGBZRz5nkWA3P7PJIuFu3OJRsLE4uswi/bnglhSwhvHmEVTUWNMTN3l+d4zPLPhlPQHfC4pW/n8NVieZ437nkxfS5VTcVT+x/H1p4tWa4tOydGTImV7BZ2Rjrw9IEnsaVnU873H97zIP6571Gk1BSePfgUnjv4dFH7TSpJ9EZ70BnuKGk85cCEVTR9z6sBu2fmQlKjib2AD4XFEiQuCYIgiKNKKU5j/n3kdxqL+VyhnMtC+9OamjDwwGM4uPpY1B/sxL989sdoeu9Qxrks0pV1i26IUjonMiJgaCATFstCPOsbZcxb5MaseS7MX+JCko9AUYFEQl+8uxwZsZFr7Lm+9/oEQNN7XTJRZHcR7VhyMhUez/yjB9s3hSx5k5bWK2nRxsJjHZZWJPrY7WHJTFzuG9yLtzvfNIQMx3FF3V+hyII+ScMFFI3xvXDoOWzq3jjsMez7YMKKHTPjDApGxV8ARq6sR9IL8fA5QnjzicJoKpLJubQ9BGDXn/UYBIbrc5luA8OJJYXFDsT70R5ux/6hfVnO6JzauZaHE5qm5awWun9wH95oX5/znkTS+ajhVDjrPTMHhvYhloohoSSKymuMKbqLmlATRQveN9rXY//gvqK2zQU792q6iuyejRXn0l4Ui5xLgsQlQRAEUVUq4VTaGWm1WC6PuCypb6bHg2dv+jLevXA1PP1BXPXFn2LW83ovzGLP1SW6wHEcZJlDIh0WK8kcXG7eKMTD8xzmH+PF4mU+LF7uRpKLgE9JEBRdrDllXRzlLeiTI//S4xXAgUM8pg4bFrt9UwgH9kaNsNtEQsWTD/bjpaf68dTDPXkdTb+jFvPqFmBRvR62KQl60aFYKpa3oA9zEdmCmbUtGa5NinF8FhabKtyKxBxiypzAnmg3tvZsKeo4QMY5cqfFYsJWlEfg7eJSF01257JQ2xS35IYsyIimosZDAMlUhde8H0v7loI5lyxs11TQp4iQ4FBCF8cpNWkKK9aP3eKZhEZ3oz4+o6iSNTS2L9aLl4+8iB192/B215tZ+2fXMz6MWNreu934vph2F8wZ1jStqPDfcDKMHX3bsLW3+Llghz0IqKZzyYR1fMw4l/o5s/9vqplvSowPSFwSBEEQVcUuuCrjXI6wWmz6z579M/mqyOaDkyQ8/aUr8MKnPwgxkcIH/+dOrPzTk5ZWIIVgFWNlSYSS4BGLqvDXinmduhQXg8ZpEFMecCldZDgdLCw297XIFeqri0sBibiKjs4QXn2uH4f3ZS8GoxEFf/19O/52V4fx2b3vRdB9RBdQfb1JqKnMuZrFJcdxOGnSKkzxTTVec4gOxJW4IXCyw2KtrlxSSUBRlaLvB3NXzSIipabQG+lFX7TXsl9AF2osz5N9LpIsThCwfRjOZVoUGdVtOdEy7ohNXLLrmbD027SKH6/kg1t0I6WmjM87eIdlG5bzmig2LNaUw8pyZItxLlkLnISSQCotoE9oXoFTppyGZk8LljefiJWTVmFqzTQA1nBNRVXwypGXoGp6heXtvdvQFjqSc1yxHILRnIfaF8u+j4Uwi69ihBjbZzLtjN6/6z681blh2M8xEkrGIa1mYaNynMu9g3vw1/fuQTBPTuibHW/gUPBgSftkTiWb38UIeU3T0BFur3plXWJ0IHFJEARBVJXqV4sdQSuSrD9/+piKKR5j7Ifj8OZVZ+Ch//0UEk4Za2//B6Z96QYgNvyij/W6dEgZgeMP6AIrl1iOaHplSD7lhKjoIoM5l5aCPnkcXfa9r1YEp3GIRlTs3hlEb3cSD/6hB1s3WitPdnckoKlAcDCFWDpaMRxSwEOAw8kDGjDQW3xOJMsPZPmH9uss8VZXLqEmdeeyiH3rY8jOG02pKTy++3E8uf9xQ6QwZ0niRYSS1nMeSgwWdSy2IPYy5zK9uFZNziUHLsu5dDPnMsc52fNDfbLPmCMD8QF9zDYBnsvVNS/WmfiIK3Fs7dlihC8KZueyiMV9xrlMGWGxfocfM/wzAQC1zgDm1y0wxhs1Cau9g3vQH+tHi6cFq1vXAAD2DOy27J+NK5cAzCc+CuX1HRjajyPBwxbxFS9CjLJrkVSTCCdDCCVC6DL1HB0Oc+7uSAobFQsT+Hr15dJ6XbaH2hBLxXDEJvABvXDStt6teLdrY0n7ZOfNfh+iqSje6XwLA7H+vJ85EjqMJ/c/jh192/NuQ4xfSFwSBEEQVaUa1WIx4pxL5lzme724sbHcTY7jsGfNEtzzi3/HUHMAgYcfRe0l54PrLFzRklWM9bqcxmsLlngsYzGTgL5Y5ZMu8OmwWFkSs7Y356LmyiOtDUjgwCMaVhAMx9LbCXj8gW7L8braMwvlvk59ARuPqeA1AbPm6SKivyudw1eMuEz3uowm9fOwC2jZFvLJFufFi8vcQiucDCOuxNGfXuiy9isyL2NO7TxwHIc6Zz0AYCheXIVPJob8Dj+AjLNnbp1SKCw2lzvNCvrUOesxrWY65gUWGGJ0KD5ojHn4c9b3s6NvO/763j04OHQAr7e9irc6N+Bw8LD+Oa60ViRMhCfVpClPN/vY7AGCWdRt790KADiuaTka3Xp/zogtZNQI80xlO5f5XLB8eX2KquClwy/g5SMvWhzUYvIA2X3VzzNp7K9YzMeoZj6kOZS5mPBgM+z3ajCe/SCF3Zd8rmY+2Jzwyj4AwOHgIWzu2YQ3Ol7P+xlWTbea4cPjBUVVcHDowIRycUlcEgRBEFXFrNcqIixhc+hK+VM2TEGfkpxL0/Y9syfj7l99GZHjj4P01psInLsOwubc1S8BvaAPACw7vg6nnF2Hz39tOlasrc07hhTS+WNJATxzLqXCBX1yhcj660Rw4BCJKBgK6QtggecRHFSQSGRckK6OzKK1pyO9+I+q4CBi1jx97L1dxTuXzJlk7pT9nom8NZSUuV98kfcjV96oWcR0pdtXMJdF5CXM8M/Evyz4iNHSYzAxUNSxmMPlFFxwiS6EkiGjfyaQCYs1F/ThOM645+x8c+3TJTpx2tTT0ehuNJxAthC351zmnCdpMfRGu76w39G3LcuRFXihpFYkrCARkAl5lXJcb1YVmAmGttARDMQH0OBqTJ+Pfv4szDcz5oxjaHfi8onffBV+hxKDUDUVcSVuiH7zuAvBrkVKTRlCsVAOa9aYTO6oXTTtGdiFN9rXF72vQpjHVKpDGk2L3qG0G259Tx+z7tzq92hLz2b89b17LG60HXatmLhkdIQ7jAcjdti4lRKcV03T0BXpKln8jnX2D+3F84eexe6BXaM9lIpB4pIgCIKoKmYHrVLFfUYcFstakdj+/JWac2kXlwAQqavB/j//CbHLr4Rw5DACF54N+bFHc36e5Vy2NHtw+vn1aGjKCIdcY0iqCQgCoCZE8OmcS4csZY3BWtzH7Fzqr/tqRHAcj2hEwVA4Co4Dpk7Tw9kG+1PY8k4Qu7aHLc4lE5exmAqnLKJ1mi4iejtYcZzCrUyAjJhKGEWEss/RvJ9MP8zixGWuEFFzDiUTl0yssBxPgRdQI+sOZLGL1sw+ZNQ4/NA0DaFE0FTQhzfuYUpNIZqKwi26C/ZSZfs0PxBwmcQokKtabPY528VQjaMWPrnG+jlOz+2VeKkoccnCYoGMAMn1QMEpWp3LXf07AQAL6xcZn3EIjqzcVvMY7I6fvfotc7jzFSIyO3LmXNtiisyYhSx7MMHuaTGYXUSzGFM1Fa8ceRk7+rYZoq1UUmoKu/t3IaEkLNerZOcyXUF3IIe4NOeJst+FrkgHYqmY8fuTi7gt59LMzv73cn6GXZ9CfVnNdEe6cd/Oe/H4vn/g8X2PDRsOHFfiODC0v6gqwW93vom20BFomoa3OjegI9xueV/TNGzq3ohe03yqJOy6R4vM+R4PkLgkCIIgjhpVEZc5hMpwn8uuFpvb0cwHa6VhX2RzLheCv7wVoa9/G1wkAv/H/wXu//cDQLUuhuqd9Wj1tmJW7Zy8Y7QjCBzUJA8ume4fyVqR8LmFdq7vBYGD1y0hFtUQjiXgdPGor9f319OZwN//2IG/3tmOjiNx8ALgdPPo61SRTKhIpTR4PTIam/Xj9nfqCzfWz7IQTAgxlyOX22wPjQVsbVAKkGu7aA7n0uwuMlh4a65QwVyYK6bWpIXbUGLICKEUTQV97G1IGHbRbFTuNb3uszlB9uucq4VMSk1ZwuskXswbTivyomVbVVPx2N5H8cCuv+HNjjeQUlOIpWIWMcPCmnMJW+a0MgHTG+sBAEz1TTO2cUtuKJpiEZFWsWQXl/p7M/2zsHbKKVjScCyAws4loz/WZ3xfTFisuagSc1dLC4s19VhVU4YANhcwKlZM2dk3uBevtr2MPQO7c+bVFgvb3lyFmMHuLZD5XWC5qkMFHryw/bgElzG3WDXsPQO7cwrBjHNZ3PXdM7gbsVQMIi8imooOW3To3a6NeOHQc9jQ8UbB7Ybig9jSsxmbut9Ff7wPW3u2ZPVb7Yp2YWPXOyW1KxqOlJrCrv6diCtxIyR+IvUHJXFJEARBVBWLc1mpsFizcCrhTxlbvPM2MVJuWKxlPxyH6Be/gsHf/xmqxwvPzd9Dzcc/DC6YWaCJvIgzp5+DWf7ZWfvOV/1WF5civKlmBBIzMcc/Tx+L6fzNnzVfd/M4vT5dbKhIwe0REKjVncg9OyLQVCCZ0BCLqmhsljFlmhNaikdXRzqvyitDdvAI1EsI9Qk4selkLG8+cdjrJaaPn7S1LTDDxJN5jrDFan9vEr+++QD+/scOtB/OXlDnEjvmRXg0FUUwMWS8ZnZJRV6EW3IjlAwVJSZSasr4PAsFHEoMGQtlPt2KBMi4p07RadmH/aEEE1Hm6zLZOwXz6xYaP9vFdy73MKkmjfxS/edUVrEgNhckXoKqqcbiP5qKoifajWAiiG29W9EWOmIJLQUyYiCXW+00CvrEkFSSCCVC8Mk+yziZuxVOhrGpeyOG4oMWx5C5YG2hI9gzsCvTl1SQMcs/G+60459PLJofEJiFSzEO30icy2A8aMwZ+zE6Iu3YO7gH+4cyfTPt96JY2IOSaCpiFZcltCNJKAmL0LM/TImY+owykc5+X/OFt7L9AvrvL5ujU3xTMdk7GXEljs5wR47zYRWWi3Uu9YdDJzSvAKCHGdsJJUPY1L0RSSVpPNjY0bet4DGYeI6loobwtlduNvqwluA67x/cV3DOHRjah9faXsHO/vcMUVlM/vN4gcQlQRAEUVW4PEVmymGkYbFTa6Zhft1CzKyZmXN/xbY1McSl3bk0nV7i/A9g4PFnkZo1G47H/4Hac9ZB2LVz+H3n+dMsiBx4VUIiIqI1ehwavPWWsRT+PjMwny8zZpeHR329Lnx2v2ddPDVNcqB1mhM8BHS16wsln1dfPDa26F89ocmod9UPe072sFi7uAeAKd4pqHc1oN7ZYBq3vt2Wt4PobEtg81tB3Pbjw+jpTBdfSahY/9IAEtHh51VXpDOrTyPDL+vhrcHEkPE1H0k1aXze7FyyRazIiYazne949oI4LOfS3pt05aSTcNrU07Fm8tph9wHoTpu5ZYdiczKBTI9RVjGWiQO7YAslQwglrBV1M8fOvn9OwQmO4xBLRY2wy1pHwLINC/Xd0bcNG7vewba+bZaKtWyB/2bHG3i17RXDyWQPJ5gLW0xYrJliwmLNbmgu5zKUDFlETTAxhL9s/QteOfJS+hj69WP/371w6Dm8fPhF7B3YY3zGHuZbLGz89gqxpeRc2rcdsuUYm0N5mZhk16SQq8+2kQXJuD/NnhZM9uqtiA6HDmWPJe1uq0U4lwklgf5YPzySB3MD8+AUnTgSOpIVXr2r7z1s7HoHh0OHjMq1QCY8OxesiFNMiRnXxy7y2HGKLT50OHgILx5+vqDTyYRqLBU1jjeR+oOSuCQIgiCqStWdyxLEpUt0YeWkk7KKT7Bxlepc2hf8dmGozF+AgSeeQ/zscyHu3oXac9blzcPM7Dt3bp4gcBA0CeFguuKpnD3mYoSmz5dxwNxuAYGA7hgO9FpFSFOLjKZJMjiNR3dazPl9+rYz5ugu1RsvFxdKWkxY7LFNx+GCWRca4ZVA5vru36Mv/OYf44GiaHjs713QNA3PPtaLf/69G68+lV8MsvzWSCqaEYA2582XDo0dSgxhW+9WPLDr7+jMkWeWUlPQNM1waJi4DCWGMq1IuIxzyZwq+/kKNnFt7kFpZ1rNdMyunZv1un0fgC5mzeJSD5PNLcRYaxP2PnNa2DUPJUKGc2me5yIv5vw95jgODsGBaCqKgbjuntY6ai3bsKJGh4O64DAvroHMAjupJqFpmrEIZ04pc7dzuUKapuVtJ1NUn0uTyM3lXD5/8Fm8cuRldEf0ysrdkW6omop9g3sRTAwZY2dzIlc4KAuLDSfDeGTPQzg4dGDYcQGZ+RG2OcnRVBQHhw4U1ZIkyopppeemPe/SXGiJhcEyEV+oTQ8TZS7RDa/sg8AJaHa3YLJvCgBk9TXVP2PtDVuI7nQ7mCZ3M3iOx0z/LGiahiOhw5bt4ip7SGLNSzUXykkoCUtOZebBSgJhU0EjMxnXOFrUdWbXrlCOJnNuk0rSNOdJXBIEQRBEUVRKUNoptQhPIZjTVGpBH9EeFpvjXDV/LYb+cC/C//FV8KGgnof5g+9m5WHa9w1YF/WCCPCaiHBQX5DJjuwx5wuRtYjLmoyw8nglBOqt4Zar19XCWyNg3mIPmlpk8BARj+n5lb60uDxhtR8er4DNbwfR2T58yCEruJMoEBbLMId/CpwARdFwaF8Ukszhso+2oKFJwt6dUTz1SC/eeElf9O7bkX8M3nQoZkpJGgVv7Dma7rSgjStxBNOtN8KJICLJCHb2vWcsKjO5kfr5+Mw5l7kK+qRbn9idWnu+ZK6CPsNhL2LErpu5+IqipfIu4FnF16RNXAacdQCQ7vWoXwu/SSQWegDjEl1QNdUYQ63T6lyy9irsWAklnjPnkl1v5hqJhrhk/TmzF+LhZAgpNQWHKTeV/f4U0+fSLHLNIZCKquBI8LAh2gfToowJaADY1rvNOCdWIAoAljYei5WTVmFazXT9GOn5dyR4GP2xPjx/6NmiQrGZO8iuB5tfu/p34vlDz2b1Ds0FE4H1rob0eVgFYzQVhVN0GiHiKTVl3JuEkshbMTaaikLiJYi8iFWta3D+rA/AI3nglbwIOAMYjA9aIgHM7msxOZedET2sttndAiBzfe0hwez+JdWk7V5mBPk7XW/jyf2P40i6LY957rG+nNniMnPe9jY6uWAFsMzzww67Fwk1YXIuKSyWIAiCIIqiGtVigcqKy8y+ihsfZ4TFWhfaecfC84jc8DUM/uFeqF4fPD+6GTUfuRLc4EDesQDWhbwo8hA0CSG7uDSNwVyF1dKuxVwoxpcRlz6vjJpaEebbsvbMOvzHd2ahudWBukbZIoRqavSFu8PBY+2ZAUAD/nxrG15+pq9gZUZ764tCAsXsKgqciPbDcSTiGqbNdEGWeXzgiibwPPDqs/1QFP2Yvd1JxMOZkzALVFZMJ6mmDHfK7lyyn5Nq0sgzUzQV2/u24vX2V9EeagMAtKXdklpnrXFebsmNcDJsLA5ZNVYgv3OZ3YqEfbaE/GHb3GOiyiwakmoqbzuNzDnr7zPhnxGXYQymHSsmSHKN3QxznZlblc+5ZMSVeM4cQiY6mDBgziVraWNfiD994An8Y+8jAIBW72TjdSZEiivok8j5fUpLYVPPu8bPzMUz57buGdhluLysQBQAzAnMw/y6BUZxJnau5odQuwaywzZfb3sVzx58yviZzUkmbuyVWQsJGQZzCxvS99IcVhpLxaBqKlyiGzVyDTRNQ5+pIJJ+3tnRAYqqIKEkjJxil+gy5g+g5w0DMHqs6seKmj4/fM5ll+Fc6n1SmeOetD0wYC5rSk0ac9ohOJBQEobwZw89DgztB2C9z+wa5nMuAWvRo3ywOZtQEnnzNNk8TyqJnDmXewf3WMKpxxskLgmCIIjqUqAFQzmUmidZiJLDYsEK+thyLocRz4lzz8fAE88hNXceHE89gcCZp0Dc/K5lG4ugNDuXAsBrEuIx/am/7OAsY9HPY/iw2JqajPDyeR0QBA6+Gv04bo8At8csaDnU1WfCVGv9mc8uX+PH7PluDPan8PQjvdi60RqyZzmntBBK5cgttCNbiu0I2L9bX9xNT4fizpjjxr9+eSpaJjvQ2CJjxVp9Md/byYSjaLmGbCGeMjka9oI07Gd9YWrud6gvPpl7wRyi2f5MlV+2GB9ML04FXgCfngfsePbWK/Z5U8x1yYV5fjiETNEgJurM1WMvnH0RLp17ec5zBjJuol/2Q+AEhJMhDMT6wXM86hx1WZ/LxZR0ZdhoKgqe4y2OJwCjIA8jnuVc6mMwnEvW+kTQz9NoRWJyLpNKEm2hNuOzdc56Q+x4JA8ETkAsFYOiKgXDGvOFDw/Fh9Ad6TKuNRNZTFxOq5mOlJpCb1QvIsOufYOr0cj9Yy4zcynNomZLz6asBzP7h/bhcPCwIQATJgcRgCWnECjuoR1zhZnbbj7fqCFa3cb7g7aw2VxFfaJKJiQ2F5N9et7lEVPepbnCbTHOZV+sF7IgG3PJwesPUew5irmcy0DaOQ8ldCeWCchDwYPQNM0yj9hDGU3TLA88zCLcXPQoH2ZBORDLLfozzmVmrMyd1jQNrx15BW93vjXsscYqJC4JgiCIo0YlQ2TZgqqUarH5KFWoTvHpxWea3M22QQ1/fsrceRh4/FnEL/gghAP7UXv+mXD+4U4gvcDk8obFcuCR+VmWhwuLzS3qmbjkAHg8+ve1dfp+G5qzhUNDYybM0F+TETCSxOMjn5mMyz+qh6sVEpf2EM5C7WMkW1jsgXS+JcvzBIBJU5y47j+n4TM3TMPCpfpCu7stXa2V420VSplzmTTlXFrHI5mK27DFnqIpxvZxJY5gYggd4Q54JA9aPJOMz3qlTMVYdq7mPpcAsOWtMH7340NIxNP9O22uIxNYpYrLzLzljJBRIOM0ptLnzHM8As46S66x3U1m7p5DdMAtuRFX4ogrcfgdfmuocgHncl5gvuHc1cg1WefjtjlusVTMIqziKWtYLFuos/kj8vq1NedcBpP6dQ84A1jccAzmBuYZ99wpOiELMuJKHA/u/rvFDbSTLyyRCa86p164iuVXhpMh+B1+i1MKANNqZmBe3QKsaFlpvMauGXOyLZVpkxGEkpnCSbro0d833DSbkHLZRHoxxWBYnp9H8oDjOEvl2qgpb5I54PaiVnaxCWScPHs1ZEajqxGyIKMj3GE4i+Yw03yVXGOpmPEvpaaMMQP5826ZW2l+oOJPF5QKJ0Poj/Ubcy2uxNEV7bLcc/ODB0v7HXNYbJ5elKqmoiPcjpSasoTh5uonys4P0H/n2L0z8mpTYSiakvUgZjxB4pIgCIKoKuMhLLbUViSt3sm4YNaF8MpWB6FYoav5ajB0xx8R+t/vA4oC3398Eb7P/RsQDtvCYk1iUpSMcYoSB55nY87jVsK8n8x5yZKAllYZLZNlOER9//4AE5fZvSabmzOizu/PXkTOX+KB7OCxa1sY8XhuZ2i4wkdmzH0ZeV5A26E4eB5onZrdT5PnOUyb5YQkc+jtUKBBg8iLOdtfJFW90AfP8VlzJuPiZUJnVU0xnJWEEse+wb0AgDm1cy3CnS2smcvG84LxgIDlO257J4IjB2LoOKIviPPNs5E6lwInWEJ9M+JSX2jnCmVlopgVTGGLXAfvsDhjNbJVXEoFxCXP8Ua7iMZ0GKMZh+CwjIUt6NlCOq4koGma8Tobk9ktlXjJUi12KK6LoGb3JJzQvAKyIBv33Ck4jfsTTobRFmrL2xsyn3PJRIxH8kAWZAzFh9CfFn0BV8AIMwVgzL2TJq1Co7vR8rp+DH1uMfHCris7B/YeE0FMnNj7eoqciHNmnGcI2GJarTC3zCm4IHJiTnfOJboMB5w9LGEPC3rSzqxlnwoTl66s9wB9Pkz2ToGqqWgP66HlZrGWy7nUNA1P7H8M/9z3qOEUmsOA2UOUhBLH4eAh3PfeveiL9Vqcy6SahMRLxjwOJUNGexK2r0NDB/IW0TH2pSQtQjOXc9kRbsfDux/Ak/sfx5sdb1juxUC8H4PxAbxy5CW80b4egD7nMznHCeM+pNQUVE1FMD0XmIM8HiFxSRAEQVSValSLBUrPkyxuX6X9WbSL5ZLOj+MQ/fTnMPDQP6G0Tobzb39B4Nx18O7Zb2xiLjzjEDPiirmW9jHn+94eLrtibS2Wr6k1cjFr6/QFW0NTtrhsbHKmP8fB48kWFpLEY/4xHqSSGnZtzR02Fg1pGOzPLNIKXWfJ5MAlIkA4qKChWYYo5v6MKOp9N5WkgFRCg8iJFlGeEZcpKKqSU2iJQibnMmUKi2U5YXE1YYTNmV1LILOwZoKAOZeapiEUiSMSVhAe0sXSQL+1IJAdvsiHGwwmUnVxmdlnraMWIq8LiJSWyluFFsjkn7EFryw4DOeP7UsyCf5COZeA3uPwA7M/aIhMOyzv0jwH2PHiSixn6KpZODsEBxRN0XtIDu4zCjD5TK4su+cO0Wk4XQxztVAz9lw7BsuPE3kRNbIfiqagLZ1DWOeqQ8BZZ1xfey9SBhPkiklIAEBdOj9x0FSN1ZwfytxCe+sVkRfR7GnBlHRFVrv4LHQeLtFpzA0Gc2ddohuutBgPpos5Nbtb4JN96Ip0ZrmXTKi784hLAEbVWFbd1ZpzmRGXm3s2YUPHevTGetNFgILoT+d9uk3zMeNcJtAebkM0FUV3pNsUzp40HqiweRBKhIyw5cUNSwDouZz5HF/maDIxyeZ8Lufyna63DSHOHkCx0OiDQwfw8J4HsWdgN3b0bUPU1E8TyAhh88/suvtsFc3HEyQuCYIgiKpSjT6XQIWdyxHuy779SM4vtWIl+p95GYnTz4T43g4s+9AnsOCpNwFYF/JOKbNwZfmWgLWgT77elpbiPnx2Tufy1X4cv6oGy07Mflre3KyLAZdTNtxSO4uX6Yu/7ZusobGqquHJh3tw+4/a8dJT/QgO5W+5YZybScgM9uqCrbk127U04/EKEDQR8bgKgRctopwJl5TJ0bBjrpyaNIXFMmclnsr0wbOHANp/FjgeUDm88dIg/vL7Qzi4NwpOS7d/6MtdrZYxUudSd8wy51XrCEDgBCRU3QnMdc4eyYMmdzPCyTC6Il1GTp5TdFicIr+j1uJW5hPGZuqc9XmF1mTfFPgdfouz6RBkSLyEuBLP6WaZrxcLm3758It4+ciLhgCpMTk9rZ7JcIkuNLmbLfMJKF1cMrEn8iJqHPoxDgb1FiJ1rjrwHG84xQ4h9zxl14yForJjsVDbIUs1VXORmQFLmCyD3XfmMuYqWDQYH8Bjex81HLPM/HVB5EWommoIeVaMyC25jX2ysFhZkDE3MB8A8F7fe5ZjMFHqFPKLy1bPZHAclxGXSnbOZUpN4d2ud7C9dxve7XrbeL8jrFeK9ZhyOtk1TqqJTHipmmk/Ekvp1WglXjLCwMPJjLicms4LjinRvG41e525rOw+5aoWy0KWHYLDGENDOhw4qSYhcIIhFEOJkOH2AtntapJKwgjzJnFJEARBEHmYiGGx9s/Zx1QqWn09Bv/8N4T/+5vg4wlc8L0/4sxb/gIpnlloOyziMl9VWNPxLTmXuYUmW7TX1kn44JXNlmI+jMYmJ+rqRUyZkj8HaMoMfUHa12tdrHW1J/Dqs/1QUzw0AL1dw7ciMedc9nfp5980KbdQYbi9AjhNQCKuWsJiRV40FqNsoZjLeTMXt2GOjqKpRlhrUk0gxnISBauYtFdAFXgB76wPoqsjgaSSwu7tEaPVzWBf4Wq5pc4/3uxcpr93CA440+4Uc1Pz5UnO8M8EAOwf3GeIGllwWMK9/Q6/5Z4M51wOx4qWlbhozqWW6ybyEhyiwxImaEayOJeZsaiaavTMZMIP0AXsh+ZfhQZXQ1bIKAvPTKkpQ2jai7iYiafS4pITDQE7GB8Ex3Fo8ugCmYXG2l3SzPmxsFg2n/R5wETpkMkRtBaZGcgpekWjeq7+1X6O3ZFu/GPvI+iJdmNH3zYA+vxnvxvmMN2EksCBof164SZnveHEs+shCTLm1M4Fz/HYO7jb5niyBxK5cy7Zew2uRkSSEfTFerNamiiqgq5IpyG0jpj6YrI2JOb8Q5ZTHVfimcI4pqrDTPCKprDYgXg/BhOD8EgeI7w5looZhZLssGseseXbRnJUf2UPDMy5t17Zi3mB+WhyN+OCWRcaUQLB5FDesGxAF8kZ55LCYgmCIAgiJxbnsgphsZWoFsvEV6n7sp9PWeKZ5xH50n9ix12/QTjgw7GPvoozP/qfqN+nL4YtzmXesFiTi5kn5zJfTmc+ZFHCmjPqcMLKurzbuNz6/qNhq+vEQmEDAX3R3Z8Wn/a+j5bjmYREf5e+4GyeNLxzyUNAPK5B4HjjvByCAxzHQeRFY1GX65xFo6CPybk0tfGIpfSFLMdxWe6U0yY2B3tVbHsnAknmwMsqNCDLucx3/iPOuTQJBtZbUrJU3c19n6fXzACgt1hh7pfMy4bby3EcamS/bV/5q8WWglmISbxkajOS7cKJlpxL64OGlJoCx3GWUF4zzB1rcDUi4AwgmAgilAhia89mPLn/cbSH2ox7nus6mcNizQv+hXWLDBHe4NLzK+0uaWb89rBY5lzWgeM4m3OZOf+EkshZFIbdD72Qk5wV3rmjb5tFBCaUhKVlCPsdSKpJvNe/AwklgVn+2fBIHkv4PTsnp+jEFN9UJJQEeqLdhhiPmQoBFWJKuiXJkeBh4/eQ/R6ltFReN5n1jLTfW3bO7N6wViqA9SESe8gSTAShaZohAF2iCyk1lVMsAtl9RX2yD7Ig5+z1mVR0d5L14dTH68Hxzctx7szz4XfUGvnNoUTQEhactS81RWGxBEEQBDEc1XIumRtUiWqxGefyKOZc5iF00kr84bYbsH/5fNTsOYAPX/cjHPvQy3CImQW2OSw2n3As5nt71dJcSLwEgRPyFu0AAEHg4HDyiIStYV5Dg/oCd9ESvShIX2/uvo+W45mcqb7utHPZOoxz6RHAm5xLdl5soWwWDeacTuO19GI9pkQNt0/RlEzrCFWvnMrEqhn7denpUMCBx+RpTsxcoI/b59f3z3IuzdVPzZSaP8zmq8AJhjvJWjaY3cp8RXhcogtuyY1gMohYKgZZkNNCTQ+L9Uk+CLxgE5eluav5cNjcUDaPc7lJ5uuUK9zWK3nzCvNVrasxxTcVp05dh2a3ni/bE+0xKtEOmNxBuwsNZIoKibxk5NJ5JA+WNR1vbDPZOwXTa2ZgbmBezjHYw2JZTp9DcMIreRFJRoy8SrtQZAWXzFhysQWHUQwG0F3YttAR8BxvhB6z/o5uUb+vRhi4ksD23q0AgGPSuYj2hyXs94W5rL3RXrzRsR5/2/kXIyTZVcC5BDJ5l3sH9xitRVjIqqIqaE+Ly1ZvKwBrr1B93Nb7kqloqwsxc4VWdh3YOZqLU80LLEiPV/+dZS1z7L/TKcXqgrolNzySByk1leUSK5qex91kCvO2i2EmFIOJoOH25iKpJBBKBCHxkjHG8QiJS4IgCOKoUUnnssHVAK/sLRiSVSwjDrHlKhMWa99HpK4Gf7/pOmz98rXgFQVn/uQ+fOhnP4Un7WJYwmLz5VmaX8+Tl2lvEZILgRdw9ozzcPLkUwpu5/bo4k5RMq0lhgb0RdqkFje8PgGRkIJ4TCkcFpsWMpqmoa9LhcPJw19beJwerwAOIhJxFQInGufFhIi12mgu51IEx3GWkLWUmjJcr0gykm4yn73gswvOgR4VnMbB6xMwe5EDvhoBJ6wMwOXhMdifgqZpppw5q0tUekEfJlIFBNJtF1o9rcY52bfLBevTqWiKMR6fXIPFDcfg2KbjAOi/t+waFjNnisEcXizxkqkXqlVcMufZvC2gnx+7v4VcnjpnPU6fdiY8kscQQQklk6MXSgaNY9pbfACZ/pAiLyLgrMPq1rU4Y9pZlocUkiDh1KnrMCXd19GOaOvzau63yoQUcy/N1WkBoDuaS1yaHjSZWofs6t+J7mg34kocje4mQwy3hfToBxbWyx48DCYGEUvF0ORuRk16HPZqy8yNrU+HhvbH+3BgaB8SSsIYc6EHT4B+D9ySG4PxQaiaigV1C43fw2gqir5YL9ySG2snn4pF9Ytx0qTVls/bW9iwc2bXM1ehHXaN2HVscDWi3lWfNV5ZkI15z/6WGGGxRhVdN2pk/fps69lifJY5uCIvwu+oNeajxzZeI+cymcm5zJUHHUwEkVSTlpZB4xESlwRBEERVsTqXlfuzc1Lralw857KKCTrz16I/ZzufSjizxhh4Hvs/diXu++V/oL+1AXM2vIH/fuxqzOl8K7+4zJN/aQ2RzS06C9Hobhx2wePy6PuNRjKhscG0c1lb60SgXl9M9femCjrEbNEVCStQkzyaW+VhH0q4vXmcy/Si0RxKmU9oSbxkKbChmvpcstdzFWzhOM7i9gx0qwA4eHwCJKeK086txwkrA6gNSEglNYRDinH+9hy9clqRTPFNxYfmX2Xkd5lFdKE8yZq0ALGP54TmFZjpn2X8zMRUpcJirc6lZFwTu3NnF7PsHjSY+sz6ZKvTlQ/miuuFm/TjhBIhw0l0Cs6se2CEU6fn1JzAXCP0uFjsYbFJNQmO4yDwgiFahtIVY1lYMAu17Yv1Zu/PdE3YddzU/S5ea3sFzx18GoD+kIG5du1hPY/Rl85LZb9jLMzTPq/NP7NrFkhXtj0cPGR5CCPxUlF5uFO8U41rsaBukfGZtvARaJqGFs8kOEUnlreciEZ3k/E7b29fA2SHH4dzhLeyc2RO/vy6+cZ75gJEZpeQ3Qs2N9i9cAoOHN98AmRBxuaeTWgPZfJ22T44jsMxDUsxvWaGEQbL8EhecByHYCKTc5krp5Ld6/EcEguQuCQIgiCqTLVyLoHKOIVAGQV97DmXFWyLon/PoXvRTPzxd/+JPaefiUC0C1985tNY+eTPgFTKOGYucVxMWxKxxPMtBMu7jJjyLocG9e/9AQkNjemiPz3JvPdN0zRs3RiCEhdweH8MvMajZXLhfEsg7VxqAuKxdLVYlnOZDou1uEx5xJH99ZSqZFUutRfzYWRy2QT0difAgYfXl2n3wHM8auv0MQ30pgyH0mEL8Sx1/hmtSNKLb7OzahbRhRb/fpMws4/HjNkxrAT2nEt2TfJVRmWw/L4WzyRMTufysZYew5GpCpww+pmGkiGLk2g/Hsu/K8exzYTFZqqjsuvJBM2g0dMynY+ZdtlY3qH53opCtnPJHE7mfLZ4WuFJ54SyNjrsXrNzjKadOXuouMXZS4/TJbrgEl1Z4r/YyBFWPGph3SI4Radxv1lfR7/pIQfP8Yb7Z3ct9XO2ztPcFYb1cS9pPBbrpp2B2bVzjffMYbwSL5sce13UsTnI7oUkyPDJNThx0kkAgO19Wy3bsWMd07AEp05dl/V3gOd4uEU3IsmIEcJrLkDFjk/ikiAIgiCKoFo5l5VkpMWBzOdTKaFrF4U8xyPpduKtr38Dv1/1v0iILix7/Beoveg88Pv3WT5TqLdlru8rJRQAGJVmo5GM+8fCYmv8Ippb9AXr/t0RdBzOXaVx/+4o/nZXB1785xB2bY9AkkSsOm14l8jjFSFARCKuQTT1fMyExZqFVnHi0tyKhJEv/I8t/AVeQG93EgLPw+Xmjc/zHA9/IJN3mRlfec6lYHIu7YjFOpeyeZGbXygw97dSOZdWcZnJubSLS/t9memfhZMmrcai+mMwLzAfZ00/B7Nr5xR1zEzRoKTRQiKcDBnHlATJOB4bD8vBzfdQohgy1Vn145hb4jBHkAkL5paxMFSGOY/PLHTZdWQiVH9NRoOrISv3zwiL5TIhqfq5WcWaM4dzCcAIKwUyonK4Yj6MFs8kXDr3ciNXlV1fltfo4K2/C760+2cPMWXnNxyiKXqBtR/JjN0cFisZLiK7F+yhEJsjzCmd7psBnuPRHekGAKPgVzG/E0ww9qRboph/75iAZsWbaop04scqJC4JgiCIqlJN57JicCN1Lk3fV0g420UhG5NTdmDDzPPxg/P+jN6ZSyFtWI/AujVw3v0H8Oljm3P2zOMxn1e+78vF5U6HxYatYbGyg4fDyaPGJ2PxMi8UBfj7XZ2Ix9WsfXR16Iu5VFSApgGnntVohNMWwt6KhOesYbFmQZlvIWgXnSk1aQgLhjNHWCyQWawqSQ6RkILaWj2Uly1SBU5AbV1aXPYlje1dojuv8C8GFkqaSzyaC/oUct3MxVPytdLQ36tyWGyenEv78QRewLy6+Uae7CRva9HXjYkS1vMU0MNwWVilxEvGNln9S8t4EGNu/cEK9zBxWeesswiWhCnn0iyizO1hzA9LHJaQbwFrJq/FKVNOA8dxlmI2HMcZIop9PpLSz1vmCzmXmf0HHBmHeGnjMgAoqfCMV/YZfwNEYwxpgWtzT9lYczmX+fqJmin0MMA8ZomXcXzzcpwz4zw0uvSiPMydTagJ/f9gnkUICKhz1iOuxDEUH8xyLgvBzielpiALssWd9KRzfdn/N4EinfixColLgiAIoqqMB+ey0dUIl+gyKiIWizmXsVLCWbAJRLZw9jj0RV63bype/t+/I/zl/wQXjcD3pc/jA1/7Ddx9QwXCYnM7rOUsmO3Yw2LjMRXxmIqa2kxl1JnzXGhqkREOaug4kt1yor9HX6wtmjEVi+c34tTTJhV5bB6y5kI8rsIlutHg1puYN3v1nLxi2nLYC/3Yq0IC+Z1LlnMZC+nX2V9rXWzynIDa+nRYbF8KDa4GrJt2Bo5tXJa3lUwxZHIuc/XuLM659EheY84VCotlC+iqFfRh1WLtOZcVnKNGyxk1YXFIB+L9xvtsG/u9LsexZRVJU2oqS5AIvICAsw5xJY5QImjtN2rK3TMLxVwFfQBdgM6unWu03HCbHl54Ja8hkoywWEPYWe+7wxayzGCiJ+AMYG7tPCyqX4xF9ceUfkFgdk8jWccEMmLMm6PFTKGHIIxCgi9XQZ9mT4vxO2M4zEoyS6SyqrDd0S4jtLoYV9tc8XZFy4mWc3DbzrHWFCI8HqncbyxBEARB5GA8OJctnkn40PyrSv4cl0e0lYNdCLL9uhwOALrgkTwORL76TSTOPAe+z/0bZr6yCR/bsgfRH02DeuElWfvJFyJbSefSHhbL2pDU+DMLWg4campFcBqPgd4kps+yLuD70uLyY+eciUlTstt+5IPnOTQ5psLR68Gc2rkQeAFXL7wG9TVe9PaGiurTaH/dLnKA/I4JW6yGg2nnoS473LXGry+5WJEjFqpXlnNp9LnM/pxoybnMv/jlOA41jhr0x/oLLtpZvl6l8sFkm3OZL+cyXxuVER0zfR2SilVc9sf60+/LxvHs7TXKCYsF9PuhaIopvzNzXg2uRvRGe9Ad7TacS4fggE/2GeGylrBYs3Npumf2e8PaygQTQUsYJpsPrBqq/dwc6XNnrWkYk7yturAMzIfAC1jecmKpl8GAzVlW4MYemjs3MA9JNZGzvUsxYbGF7pfTlnPJYLmsyXRrF0VT4BasYb+s0FJ3pNsICS7mAQgrPjW7dg5m185FZ7jDeM9jEp41ck1FH6iMBuRcEgRBEEeNsSktR041nFirG5oRl25nZhHJqsWmlp+I/mdfwdZL1sE9GEb9pz4G3/XXgRsatFWIFSz7ZFQqfw4wVYtNO5dMRDHnkjkVbo8ADjwG+rLzLpm4rGuQSn4Q4fWKkJO1SGZrQlsrktyLTvuC1Vw5lpGveAkTIpEhJi6t++I5Dl6ffv7hoGJ7L3cl32IwCvrkzLkc3q1lsByvQs7lsqbjcfm8K42WFeXCc7wlJ5ade3ZBn8qE4Zr3FVNilpBnw7kURENs2PNPC7VzKe7YYtq5ZHl6mfNqTEdM9KTbiOih3bwlFNace5iv76dXyq5Aypw/c0Vd9nnmzttDUl3paqpZolNw4MLZF2NB3cJhz3c47HNWto1BFmQsazo+5wMdc6juSPLJXYI159K+36SaMB4u2UVvo8W5ZC708HNjkrcVl877ENZMPlnfr+m4blMLnPEeEguQuCQIgiCOAkwojNWw2JFicWUrdG6Wojx6YCwAwOXILHJk2fTn2+PBnm/fgKd+/F9Qmlvg/MufEThtNdyvv55zn9acyyqExaZbkbBiPj5/phcjoItQDjz6e1OWz6uqhv7eJNweAU5X6aKXOaeRUP7KkUCmpUShbfJhbzCfeT3tXA7kFpcCJ8Dt1Y8bto3PfD9KdS6ZcLAXbgFsfS6HeYgwxTcFPMcbrkwuOI6zLIIrARNGopAJi01WMSyWHc/euoLlxjp4h3GONbZWEeWOQ+RFqJpqtLkwiwuzG5ZUk8Y4zWGxLD9X4ATLPCnkXAKZuWHOrbXPB3trD1ZluRiHcKTYQ/LtIq4Qcp5ztlTULXC/BF4wPdjIHJeJaXOrGrvo9UgeeCQP+mP9hutabKi4OcTXfM3dYubBQaDENjdjERKXBEEQRNVhwmushsWOlHzhpuVgfxLvEvXee16HB4KgXz9zn0sAWNW6Bss+/HX0v/AaYhddCuHwIbReeRVO+8X9EKPxvPmXw4mOUsgbFmvKuQQAr1cCBw4D/VaHKjiYgpLSEGgYmVPlySPegOKcy2LCLx15nEsWFjvQq597Q5MtLJYXIIocnG4eoaBVVJcaFptMqnjjpQGEQwqm1UzHB2dfjDmmNgsMsys93OJ3du1cXLPoY5Z2EEcDr+QFz/Fw8A5jLmacPTZvKulc6kWAMq5UZt9+hx/NnhYc23gczpx+Npo8LVmfLffYABBJ5xiaz6vG4YcsyOiJdkPTNEMwWsSIIGGSZxKaPc2W/ZoFYC5xOdM/C3XOekz2TcmMxTYf7DmXTsO5rJ64zNe/tBgclnPOPAQwV661n5Md9qDIfP04joPIi0gqSaP3aa5rwHIiWXVXUSh9jprHR84lQRAEQZQIZ1QznVh/dizFiioknO2CdVXrWpw78wLIggzJwcRl7mNpdfUI3nonhn59G9SaGpzw9xfwsWtvQs36NzP7NP3pr1RxFiDjXLKwWHMbEiDjkno8rN+jVVyaQ2JHAnMGczqXQuY8i+1zyTCHwuZzLgPOAFqdMyD2TEVdgwS3y1bQJ33NPV4ByYSGhKlSbr6Q5XxsXD+Ex/7ejb/e2Q5V1VDrDOSce2ZXutx8wWqxZvIpOHfmBZAEc86lLvzYda9k6DaQu0ANAJw29XSIvAhZkNHqnZzlKJf7fxe7H5kcQ+vv3iRPq2mMuvAwi0WJl3HG9LNx5vRzLJ/L5+IZ+/W24gOzP2gRqvb5YK8WW+OogSzIqLO1Q6kk9utbyoMus+CztvTIiLTh/m9jD4Ts10LkRYtzaQ8ZBjLXnPWsHMn/o2bn0iE4jfkVcJBzSRAEQRDDkln8TjDnsgp9Lu2LLrfkRkM6J0uS9GPYnUvroDjEL7sC7c+9iN1rlqC2rRczr/4IvP/1ZXChoGURx1cy5zLdiiRiy7nMhMXqXyVRhM8vYHAgBUXJ5L2VKy4LOZeypV1D7oVgPoeMhaw5hPwFhniOxyxlJfzJKZg01WFxh4GMQ2zkXYYU7NoWRjSiWARlMQWWDu7TxcmBPVG88kx/3u0kSyjw2CwQ4pE8xty297mc7J2KFk8LpvqmV/SY5uvik304berpOH/WhVmurWi6F5UIzWUiOWb0lrTOt+k1M4zvmZvmsTiXuZ04s+NnDqMtRFZIao5qsZfPuxInTlpZ1P5GgrkIVanht+ycZUG2VH61OJfD3DMWQms/tszLUDU1b6Eh/fj6gw8mLkfy8IbjOONzrDWJR/LAW6GCWaPJ2PzfhiAIgpiQUM7l8OQLYQUAWU47l/LwQlZrmYSH/vdTWPDs2zjnl4/AdedtkJ9+EsmbbwbSEX+VdC6dLh4cnwmLDaUL13hrWEVT/SvP8aitkxAcVDA0kDL6WLI2JMX0tcyFIS6DhcNi8zlh5twqnuONgj5uyY2+WG/eYj6MtkP6YrR1qhMcF7G8ZziXPv3YOzaH8MSDPZh/jAf+00vLuTy8P53nJXF44ck+rD49YIRLmzELIpEXdCHLA05nZZ3ASmFvRVIj12DlpJMqfhxZkI2cS5GXMK0mt3g1P4SpjLi0O5dW0TLFNzVrW71NSQAJJZF3boi8CK/shWwKLR4Ou/Cy51yax1AtzA95ch2/4Gd5ATP9s+ASXbbcRXPOZeH/R2bVzkZCiWflGRuVdNPhy3ZXFwCcInMu2Twa2bXSW9DEwHM8zpx+DjRow39oHEDikiAIgqg6Ezbnsgo9PO0Ffcw4Xbzl67D74TjsOOMELLj0C5j8P/8H58MPYNLVV+GsC1bhhesuqmjIIcdxcLl1EQMAoaEUwGVEH3OCmLg8tC+Ggb6kISYN57JxZOKS5XYODqSy3hOLyLk0b+MUnUabBp/swxTfFDS6m3N+jtF+SK+82TrVYRRhYrBFP7sWe97T9/3e1jAWr1CM1dhwzmUomEJ/bxINzTJq/AL27oyipzOB5tbsfDWzOyVAxG9+eBBOF49P/8c0BIdS6OlMQJR4TJ3hBM+P/u8lc7JYcZ1KtskxYxZ1uYQDw9xztBIPYYywWCW3c2kWKL3RHuP7s2ecZ6lsm4vzZn6gpP9/7GJoNMKmzUK4mL6Vdk6ecioAYP/gPuM1q3NZ+Jym+qYZ7YDMsDDYSFo45srdZM4lexAyUnF5lklQmqsBj3dIXBIEQRBVZ6JWiy2nR2Ex+7Tn4J1zcSN6uxNGfmOx+9EamxC87S7EH7kU3v/6Epb+4zXMfGM7wv9vEnDeJRUZN6CHxkZCChJxFaEhBR6PYLhqhhvDCaipS+ddmtqR9PWWFxbrD+ifG+zPbnEiWVy84XMunYLL0gPw9GlnDXv8trS4nDTFga6k9b4ZjezTzuWhdGgrNGDXlhimLLNulw/mWk6d4YTTzWPvzig62+I5xaX5nEMDwGB/CoP9wLaNITzy1y7EY7oz+5HPtGL2/NFf2DIxxxzjauVnmx3qQoVYLFWVK+hcRlmF0Rz7PGXKaXjx8PNY2nis8VoxhW7MVVKLwZ6POxoP/cyC3V6RtRTMYa3FVostBPt/gLmSuUSq/Z6MVJxXsqDaWIJyLgmCIIijxoR2Lit0boUE67RZLhy3srg+g7nyQRMXXoSu51/B9jNOgK97AC0f+xh8134MfGdHvt2UBKsY29ebhKJo8NZkL9B5jjfcyoE+3aXSNA193UnIDs5w90ql1hCshZ3LfItOq3OZWTwW46CFQwr6e5Ooa5TgdAl576HHm+4vGMsU9Nm3M4ZUUsva1kwyoeL1F/qx6a0gAGDKDCeaJ+lj7GzL0dgTVkHU350JFX7wnk7EYyqkdIj1YH/29RoN7NeZ56uzRDXf50LhmOZ5UglnTzDCYnM7lwAwwz8TV8y/GrNzVP+tJFIRvw/VxpzvXU5VWrPr6ZJ0ccmqAo8EJlCHEoP62HIIX7u4HKs5zaMFiUuCIAii6hhhsRPMubTmXFbuTyoTGeVcr3wOKNfQhMe+8VHc/71/Q2ryFDgffgCBNSvg/P3tgKrm2lXRMEe1u10XPCzfEsg4FSwsFsg4l5Gw7nYG6kfuojhdPGQHj8H+ZFYYodndyLeYZk4fx3GWBStfhLjc8PIAAGDWXD0sz3zfzKKJ5Vwy5i5yQ0ly6OnKn1MHAM893ofHH+jBto16AZGpM5yGW9nRFs/5GbMz1NeZua+ppAZJ5rBibS0AIBEfG3leWeKySktU2dLXsEAvREtBn/IdJhYWbvRGzOPWDZfbWwnMvwPV7GVZcAxcZcbAQpv1Sr8O4/uRwsJTB+OD6f3nCIsV7c4liUszJC4JgiCIqmOExU4w59Iq4Cp3bmy/5YQGmsdjr0ALAPtWLUbfS68jct3nwYWC8N3wJdR+4GwI27eN+JhMPLUd1hfQXp95gc7EpWCI0FhUFz193eWFxAL6+dbWiUjENaOokPnY5uqMuZCMpuqSTVgUXjhGIwpee34APA+sOUNvI5BvXpjFpdsr4JjjfODAo6sjAYETEA6lcO/tbTiwN2psN9CfxPoXByDJHOoaJUye5kBDs4zGFgk8D3TmE5cmp7i3U3cn69P5rCtPqUWgXn8/mSjvgUKlsIcIVitk0OJIFhA1HMcZ9zFfheGRHFfRdBd5NAUJx3HGHK9mL8tCCKbfkbLEpUlQMsFajtPMWraw8OxCOZcMci6tkLgkCIIgqs6EdS6rUNAHqIy4zLcfjuMy/7w1CH/nexh48nkkjz0O0ptvIHDGWnj+70YgGs2327w0NOkLsf279c/6TM4lEws8xxt9OhNpYZPJtyxvocsc0Vx5l42uJjS6G7NeZ7AFqcRLlsXicK7V6y8MIB5TsWxljRHua77eZqFqFtt1DRJmL3CD13h0dyTAcRzeenUIOzaH8darg8Z2z/+zF0pKw6rTAvjC12fgX788DTzPQRR5NDTLCA0pCIdyhQJnWsB0d+hO8hWfnIQPfKgJp55TZ1QcTowRcWl3iKvmXApm57KwCDFfw3LJav8xyr1H2e9jOfmO5WBxT8sKi5UhcAKcghMOwYEGVyMmeSePeH/m9i/62KqXczlRIXFJEARBHDWqVaRjtDC7UpU8NyZUKyYubX/uefCWsLTU0mUY+OczCP3v9wHZAfdPb0HdqSdBeuG5ko7X0KQvsjoO626aOeeSHU/g+IywSYdkGm1IynAuAcAfyJ93ec6M87Ia0JuReRluyY1aR63FVSkUFhuNKHj9hQHwAnDKWXXG61y+nEtf5prXN0rw+kTUNzgRCSuIhjRs3ajnVPZ0ZfIod++I6K7o6dnN1VlobL68y+k1MzDFOw3dnQnIDh5NLTKWr/FDknhI6XuQTIzNsNhqOZeSJSy2sKhh964S4sFecXa4VhnVJvMwZXScS/PvVSEHefj98Dh92plYM/kUcByH82d9ACdNWjXi/Xlkq7jMNTaRFyuekzuRmFh/5QmCIIgxyUStFgtUJ+TXyLmskLi0L9QneSehxTPJurEoIvrpz6Hv5TcQP+c8CPv3ofZDF8F33SfBd7QXdbz6tHPJUh4tOZemME3ZwcRl2rnsKT8sFijsXA53fziOw0WzL8W6aWcWHRb72vO6a3n8Sr9xbCC/cynLHERJH0ddo36tpkzXC4js3hY1RGJvl543mkjoVXf9dRIczuy50Nyq74NVkbVz6tR1OMZ9EpIJDY0tsuUasII+Y8W5FGxzvdy5nw+zEBguNJXdu0oIXfM88jv8JVd4rTRsPKOWc1nBvM9J3lbUu+rLHRIAwC26Lb8n+VxV5l7yHD/hHpqWC10NgiAIouoYonKC5VwC5pDfylGJgj7mz9sXP6dPOwvrpp2R8zPqlKkY+sO9GLz9j1BaJsF5/98QWHUCXL/6OZDMFm1mAvUSzOtwryUsNiMumbBh+X6VEpeFnMtikAQJPMdbFr75qsXG4ypef2EAgsDh5LOsriJvznc1XRCO44zQWHauM+foTsn+XZncyXhMNSrQAkBdfe7rMm+xXnzknfVDUNXcDiQLiW1qsS6S5THmXKopziJ0q9bn0tyKZBjHiY2hIn0uTfNgScPSsvdXLkIF8hPLO77pocsouae54Dke7iL6ZVaieNBEhcQlQRAEUXUmtHNZoRBWM2zhVe4+JUEa2eKR45C48CL0v/omIp/7Irh4DN7/+ToCp6+B9PKLeT8mCJwlb9KcY+hML8YcglPPGZQ4Iyy2rycJXgBqastbqBVyLgHgvS0h/PaWg3jy4R5DuOWCz9HjMBFXceRgxiHsaosjEVcxZ6Hb6LFpfN60vLJXEWatVlhxnZZJTixb4TMEactk/Tr1diWNMQbyiMumFgdmznWhvzeJ3dsjObfp7tTFZUOzdQFvOJfx0XcuVVXDPb/rxBMP9mD9SwOIxZQsJ7NSmH8fhnPM2L0v1A+zaEwVjGf4Z5W/vzJhInvUxCVfmbDYauCVfQAK9wB1krjMC4lLgiAIoupM1II+QOVcxlz75Mt0ete0noyTp5w64s9rXh/C3/5f9D//GhInnwbxvR2ovfQD8P3bx8G3t+X8TENzZrFqLujjd9TijGln4bimEwAAsoNHIqEiFlMQCSm668mXd76Fel1u3xTCX+5oR/uhOF59th9//M2RvPvJ5Vy+8EQffvejQ9j4xhAAoDdd4dYu2oDCvUpXnlKLY1f4jHxJgRMwdaYLZ3+gCdd8utVwI3u7E0Xlop54ci0A4LnHe7F3ZySrDcvQgH4t2LVhGM5lcvSdy81vB9F+UD/XrvYEdm4NVy3UkOUYchw3rDCopHM52TcVLZ4WnDn97DERRslao4ymsDNCc8dYziJrR1JofjjSLWMo3zKb0Z/dBEEQxITHEJcTT1tWJeeSq5Bgbfa0YIpvatnjUebNx+DfHsLgbXdBmdQK54P3o27VCXD9/CdAwlpMhlWMlWTOqArLmOybArekh5zJDg6ppIbersqExAK6KyhKHAb6sntdPvKXLqgacN6ljfAHRPR1JxGLKjn3Y8m55KztVZ58uAfRiGKE8jIH0owl59KWr7d0eQ0u+XALBMHqeNc1ODFnoQf16aJIPUU4l4AeGtvQLKP9UBx/+NURvLN+yPJ+KKiLS3OIMgBIDmto8miRSql49h+94DQeJ6yqAZB2sqskwOQSHDt27yrhTjkEB86ecR5ay6hkWklYSPBohqSy3zPZVn11tGHtSAo522zMlWhTM9EgcUkQBEFUnYkcFsuwhz+WQ6VakVQUjkPig5eg75U3Ebn+S0AyAe//fguBdashPfeMsRkTl94asaDgZs4ZE1A+f/mLNI7j0NgiIxpRLWGvibiKSFhBfaOElafUYtIUfWHY1ZG7yqqQQxwyERwJKXjhiT70duufZYV5rOMwF/QpfA9ZCC5baNen99fblcjkXBYQ3oLA4VNfnILTztWr1e7eYQ2PDQV1AW0OUQZgqtg7uuJy9/YIBvtTmLfQh9apTrjcPIKDCpK523eWDXMuixGXYgUL+ow1mGCWRqkVCWBqhzKGci6BTDuSQpV0WVjsaF6/scoY+qtFEARBTHQq6e6NFTKu7Njrc1kVvF6Ev3mjHip7yjqIu3ai9spLUPPhD0HYtdMIE7WLGTtM3LCwTZerMgv4GXP0Kpz7d2X6dIZDusBi+Y5Nk/SFYXc+cWkJixWRSKgYGkjB4xPA8cCWd4LoS4fF1ucQfuaHKMPdQ3sINHNCe7uThjtayLkEAJdbwOp1AfA8cGBP1OLahobS4tLuXI6Rgj4sJ3TuAh84jjPOteNQ4eJRI0UWZIi8CHc69LEQTPhPxNDHGocfAOCX/aM2hgZXIwLOujEn0FhYbKEeoA5BD4sVq1R4ajwzBv9qEQRBEBONauQljhWqIQRrHbWQBRlOYXTbFRRCmTsPg/c9iME774YyYyYcTz2BwKknYd6t38ba4zWsOSO7L6MZFjIbHNTFpcNVmes3Y7Z+zfbtzjh4kbAusNxMXKYrp3a153Mura1IWO5jy2QHJk1xIDSkoONIHLKDs/TyZJjnwnCOtr14k8stwOMV0NeTwEBvCm6vkLMNiR3ZwWPSVCfCQcXIBwX0sFjZwcHhsO5DFDnw/Oi3IjFEeqMEgRMMcdl2IPe9KReRF3HOjPOLykU2wmInYOjjkoaluHLBv6DWWfj3tJqcNvV0fGDWB0ft+PmodzXAJbrQbG/XZMIhsoI+Y0sYjwUmvLj8whe+gBUrVuBLX/rSaA+FIAjifc+YdOLKpBohv6ta1+DyeVeOuSf6WXAcEhdciL6X3kDo29+F5nLD87tf48r/OwvLXv9TwdYlrNflUFpcOiskLqfNcgEcsH93xsGLMOfSo4uFxklpcdmRO/bSXtCHhcDWN0qYnhavmgbUNcg5HetCOZf5tjVXqJ05zwVVARRFG9a1NMPGdmCP7tomkypiERVeX25xJMn8qDuXmfBivQ0MCwFu218d5xIA6l31Rl5dIab6pqHe1YC6CvVQHGs4xkCu41iMZnEIDnxo/lUFW8a40g/+RqtP6Fhm4v2Vt/HhD38YN91002gPgyAI4n3OxM25rEZYLDDOStw7HIh+7gvoe/0dRD/6SXCDg/B97QYETlsF+Zknc37EEJcDlRWXLreASZMdGOxPGcKFhcW6vZm8Rp7PHxZrbUUiGPmW9U2yIeAAXRDl/rw557KwuBRyON/nXtIIt8faD7MYps/WQ/WYuAyzfMsc7iqgu8eJhJpV/Oho0teTBM/rbWQETkBNrQhBAA4fSOTt3VlJ9u2KYNu7IQSHsisMz/TPwgWzLhwTIowYWzR7WnBc8wlYVL94tIcy5pjw4nLlypXweIaPqycIgiCqR7UE2FiAnRM/8f+kDovW2IjQ//sJ+p95WW9dsmsn/FdfDv9Vl0LYttWyLeuzmBGXlctdYnmX61/qA5AJi2U5l6LIob5JRmhIMd4zY7SgSAt8w7lskDBtZkZc5qoUCxRuRZK9rbWgDwB4fSIuuroJgsBZxOxwTJupu7ZMXBr5lgWcS03VHdLRIBZTEBrS29AIAgeBF8DzHAJ1MhIxDR1HqlTVJ000ouCPvz6Cv97Zjh//zz50tFX3eMTEged4LGlYCr+jdrSHMuYY1b+EGzZswHXXXYe1a9di/vz5eO6557K2ufvuu3H66adjyZIluOKKK7Bp06ZRGClBEARRDhO5WiwTlRNROI8UZfExeuuSP9yL1MxZkJ99GoF1q+H7wmfAHzkMIONcMsfIWUReYbEsXV4DUeLw2P3tePPVgSznEjDnXWYLCpG35kGyHMb6Jhluj4CmdFhtfY5KsebP6d8XGxZrPf/5x3jx1e/PwvLVxRdccbkF1DdIGOxP6cLNaEOSx7k0KsaOjrhk+ZbMAWYCu6lFF9R734vk/mCFGOhLQU2nnKoqsG9ndY9HEO8HRjXmJhKJYP78+bj00ktx/fXXZ73/2GOP4fvf/z5uvPFGHHvssbjrrrtw7bXX4vHHH0ddnV5y+6KLLsq57/vvvx+CUNkKTuU2d640bDxjbVzExIDmF1FJBJ4DxwE8z4PnuQk1v3ieB8cBQvrcCAaH1PkXYPDMs+C88za4brkJznvvhuPBvyP2r9fBu+jjAAA1bRy6PULFrt/kaU58+F8n40+/PYInHuzBomP1/DqvTzSO0TrNia0bQ3jp6X7MmOO2HFsURHCc3maA5zn0dSchCHolU57ncMzxPrzweB+mz3blHbPA81A1FeIw80JKH0sUss/f4Sx9HdM0SUZvdxK9XUlDVPtqxJxjYO6xktJGZe729+rit6FJBs9zEHn9WrS0OtEJYO/OKE45u3rjYuK7tk7EQF8KHYfjRV+H0f4/bGgwBY7T7y0x8Rjt+VUOozojTz31VJx6av5qXXfeeSeuvPJKXHbZZQCAG2+8Ec8//zweeOABfOpTnwIAPPTQQ0dlrKLIo75++OTv0SAQoLBfonrQ/CIqga/bhSjvRKDWY/m/dCLMr5oOFxQphlq/Z8z+nRh1vnYD8LlPAz/8Ibgf/Qiun/8EF3h/D3Xux/HCvCuQEhyY1OpDbV3limPUr/Hiucf7cHBvBL1duohonexDfb0bAHDuRS5seTuEPTsiWP9CEB+4vNX4rCvJw9vmRI3DA5fTiXBIQUurE42NPgDAJVd58IFLpxQUfzU+N1JqCnUBX8F54Q/MwSDXjQUNC1DvKX/+TJ3hxfZNYURDPJSkPr6W1txz0+ORAMTgdrtQX+8s+9ilEg0FAQDTZujXqLbbg4QYRr3fiaBHwMF9Ufh8bsNhrTRKUg8fPnZ5AC882Y3O9mTJv8Oj8X/Y/j1h/Px7+1Hjl/DtWxYVHTVx5GAELz3TgwsunQSff4wXCyMAjM+/kWP2cUcikcDWrVvxmc98xniN53msXr0aGzduPOrjSaVUDA1Fh9/wKMLzHAIBD/r7w0cl6Z14f0Hzi6gkoVAcoXAMg4NR9EqhCTW/QqE4QrEYhhxR9PaGRns4YxgB+NJXwV31Mbhv/h4cd/8Bl77zE5z23r14ZOlnEAnPhKJVrv0Ez3Noanbg4N4IDh/Qwx2TqTh6ezOtN674eAt+/r39eOXZHqxaV2O8nlJTiIQTcKkadr83AACorRey7m8onP/4kXACCSWBocEYep2F58Ui73FADOiNlT9/fH5daOzbPYREXD9Xjk/lnJscr7/f3RmC5MguaFMtImEFf/5dGwb69LBYp0dFb28I4VACoXAMmiRixhwXtr0bwjtvdGPOwuossNuP6Dcw0MDDHxDR2RZDe9uQEbJdiNH6P6ynM4Hf/fgg4jEV3bE49u0ZgD9QnFD854MdeGf9EA7sDeHjn58KURx/rtj7hbH6N7KmxgVJKhxRMWbFZX9/PxRFQUNDg+X1+vp6HDhwoOj9/Nu//Rs2bdqEaDSKU045BbfeeisWLFgwojGNpZtrRlW1MTs2YvxD84uoBJqqt27QNOv/pRNifmkcNE3/Ou7P5WjQ3ILgLT/D26s/Bvf/3Yhlh5/Hx17/NpLn3ofwt25Ect2ZQIXyVxtb9CqfLK/O5eEt9yjQIMHjExEMppBKqZlQNAhYN/VMuEQXDm3RczLrGuXS7m96XvDgj+q8qG/ShUZXRybE0+0Vco5BlHQRFYurR3WMe94L4+DezAP7QL0EVdXAg4em6bnZM+fq4nL/nihmzXdXZRyD/Zmc1JZ0heG2QzEE6iX4/MUtkY/m/2GapuHhv3YiGlHh8vCIhlUc2h8reqw9XfrDm4N7Y3jyoW6ce0ljRcf3j791Yd+uKD7++cl5i0gRpTEe/0aOu9J2mqaVVDTh1ltvxeuvv453330XL7744oiFJUEQBDFyJnJBH+PcqKBPSaTmzsfvTrkFt5x1O/Y1Hwtp2xbUXnUZaj94LqRXX67IMZpaMi0kZAcPUcxe9vhqBGhqpl0Jo9U7GQFnXaaYT57KsPlgBXq4o9zbtaFZBji9zUrIaEWSe6Evp3Muk3E15/vVgvUddTh5nPXBBtTW6deWFT/iOV4/DwD9vdXrdxlM91itqRUxaYo+V/5yRzt+9D/70HYoVrXjjpQdm8PYvyuKhmYZp5+v9948crD4cfZ1621fOA7Y9m5loywO7Ytiw8uD6OlM4LG/dVd038T4YsyKy0AgAEEQ0NPTY3m9r68vy80kCIIgxjZMdg3XlmE8wk3gHp7VRHbo12tv4zLcfsUfMPj7PyO1YCGk9a+h9uLz4b/sgxDffKOsYzS2ZPIIPd7coVzM9Qnl6HMImNqQlCgu2cOG4fpcVhpZ5o0CNf09SYDLf+4SqxabKCwuuzriOVu2jBQm5M++qAFrTg8YrwuGuBSMUM/B/uqJyyEmLv0iJk11GGPTNGDTm8GqHXekPPtYLwDgnIsbMDXdEqetSHEZiykIhxQEGiTUNUgYGkghGqnMPdU0DY8/qK/XJZnDtndDFRevE4lQMIUnH+o2wsInGmP2r7wsy1i8eDFeffVV4zVVVfHaa69h2bJlozcwgiAIomQmsgAz+lxOQOFcTSRTkRanS0Di/A+g/7lXMfSb25GaNRvyS88jcP6ZqPnwhyBufndExzA7l+48Aou16QgO5V5oZ5zL0ooN5WsxcjRoTLt+kbCCGr8IQcj9e8dyC5OJ/GF3kbCC3/zwIH74zb1oP1wZN48JVbfHek8EPtPzs6ZWBDi9XUi1GBpIQXZwcDh5TJ7mBC+khTgHbN8UgqaNnXDEaERBd0cCdY0S5i70oLFZhiRzaDsULypsss80j5ta9d+Lro7K5Dgf3h/DkQMxtExx4NJrWgAAm98ee+J8LKCqGu7/UydefW4AD9zdOabmWKUY1b+E4XAY27dvx/bt2wEAhw8fxvbt29Hdrdvpn/jEJ3DvvffigQcewJ49e/A///M/iMViuOSSS0Zz2ARBEESJTOTQ0YksnKuJuWiK05X+XhAQv/RD6H95A4Z+9mso06bD8dQTCJxxMmo++REIO7aXdAyPV4Tbw6e/z+NcpkNGWYikGU3T0NuVhOzg8vaKzAfrf3q0nUsgk2vKC8D5l+XPq2OtSAo5l33dSaiKnjd9588PVyRM1RCXtnsimMJiRZGDr0ZEcDAFRan8AjweVxGPqfD5RXAcB69PxKe+OBXX/ec0TJ3hTOdfZvdAHS0623Uh2JIWhoLAYdIUB+Ix1XgAUgi2TV2DhOZ0n9auNv381r80gJu+vgd/u6sdHW2ln3N/2oGbPc+NGXNcln1XkmRCrcpcOJq88dKg0b/1wJ7omHTIy2VUxeWWLVtw8cUX4+KLLwYAfPe738XFF1+Me++9FwBw/vnn46tf/Sp+9rOf4aKLLsL27dtx2223GT0uCYIgiPHBRBZg/AQWztVElnOIS4YoIn7Vh9H36lsI3vxjKJNa4Xj0IQROPQm+6z4FYc+uoo9Tl3Yc7S4Zo1BYbCioIBFXUdcol3x/M87l0Z8Xi5d5MWmqA1d9shULluRvrcHuQSHncsgkuhNxDW+9Nlj2+FjOpcd2T1jOpZC+drV1IjRNdxgrTXAgk2/JmDzNCZ9fxMKl+jUbS6GdTKw1Tco46JOn6WHfxYTG9pnCu5sm6QK1sz0BRdHw4pN9iIZVbHknhMf+1lXy2IKD6X6qfgEut+469/Ukhw23LgVF0fDbWw7h9784XLF9Hm1UVcMLT/aC54HzLtUf+jxwdydu+fZeHNg7tjpSlMOolnJauXIl3nvvvYLbXHPNNbjmmmuO0ogIgiCIapBxLkd5IFXAEM4UFlsSLOcS0MNic28kI/bxTyF21Yfh+sMdcP/kFjjvvw+OB/+O+MWXIfKl/4Qyv3ChvvpGCYf3x/I6l4XCYvtGWMwHyMwHfhScy8nTnPj0V6YNux1zLpMFRABzdFes9WPDK4N4d0MQp59fX1Zz90hYP162c2kNJfYHRBzap+ddBuor25fRnG9pZ+FSL558qAc7t4Zx1oVjo85HZ7suLptbM6HerOhRX0/xzmV9kwx/QD/nrvY4dmwOIRxUMGeBGwf2RtFxJFFy8Uz2YIYVjmpulTE0kEJ3RwL9PUnMnOeCx1ue5DiwJ4qezgR4Xhdp5cy/0eLIgRiiYRWz5rmw8pRaqKqGN18ZRG93EhteHsD0Wa7RHmJFoL+EBEEQxFFjIjqXE7kSbjUxO5cO5zDLEacT0X/7LHo3bELom9+BVlcH5/33IXDKStR86qMQtmzO+9GGJn0B7vEVHxYbj6t48M+deOoRvUhJqfmWwOjmXBaLbBT0Gd65nDLDiVnz3AgOpoywvpESDinguGzH2lzQBwBq00V9cuVd3nt7G+69vW3EYzBXirUTqNeL3ugVd49e/89cHN4fw6F9UXSlw2LNzmVtnT72YooeGWGxjRIC9RJEiUNnWwJvvqo70SeeXIumSQ4k4mrJea7sWrIogOa0M3rf79vxtz90VKR67NaNevioqgLRyNGtblwpdm3Xf2/mLtL7tq46LYBP/8c0iBKHXdsiSKXGd8gvY+z+j0cQBEFMINLCawJal+NBRIxFRIkzpkVWWGw+PB5Er/939G7YjNCN34Pa2ATHIw+i7vQ1qPnoVRA3vp31keVrarHqtFosO7Em5y6ZuGTuSyyq4I+/PoKNbwzh8H493HAkziWbD6ORc1kskqN457LGL2LZiT4AwGsvDIy4EImmaYiEFbg8Qpb7xAr6GM5lHvHU15PAjs1h7NgSHnEOHgu1zdcjcuZc3UXat0sPVzy0L4qnHuk5qj0H3359ELf/9BDu/MVhtB+OQ5I5i4PLKuoO9A8vBvu6ExAlDjV+ETzPoalFRjymYt/OKPwBEXMWutHcqgtX5pIWC3P9fYZzqYtLJlLZNWRs3RjEbT8+hO2bigs7VhQN298NGz/nq+w81tm1TT+HuQs9xmuyg8fs+W7EYyr27y7voc1Ygf4SEgRBEFVnIudcYkKfW/Xgec7os5g3LDYfHg+in/k8+jZsQvB7N+s5mY8/hsDZp6Hm6ssgblif2dQr4JyLG/PmXHp8Ajgus0B+6uEeHN4fw5TpTpz5gXocu8JXMG8x7/mNg4cOkpR2Lgv0uRwyuVILl3hR1yBhz44IXnm2f0THTMQ1KCkt5/0wci55m3NpE087t6YX4RoQDo6sncZgjpxLMzPnuQEA+3ZFEIsquP2nh/HKM/04fODo9L/cvyeKh+/tgqYBqgKkkhoaW2SLIGfhrYPDOI1d7XFEIyrqGyXj861TncY+Lr2mBTzPGY5jZ1tpVWSDabHnS4eYN7Vanf6G5owgfvaxXtz3+w4cPhDD3/7QgV3bwwVborz9+iDu+V2bpRVOcByKy+BgCu2H4wjUS6hvsj6sWrBEF5s7NodzfXTcMXb/xyMIgiAmDBM5dDSTcznxzq3asIqxRTuXdlwuxK69Dn1vvIvgD38CZeo0OJ55CoELzoLv0guBZ58FhnHYeJ6DxycgNJTC0EAKG98IwuHk8eFPt2LtmXW45MMtw4ft5tpvel7w/Nh1Losp6GMUvvGLkGQeV3xyEkSJwzOP9o6ociwTCblyYI2wWNicS1s/QOYAARhx2Gp/Ok8xXy4nq3q6b2cUTz/aa7wei2YLcUXR8Njfu/CL7x/Az7+3H3095bf4YKHHp51bZwhxc74loD8c8PgEDA4kCzqq7EHAsSsy7v268+tx6Uea8dmvTsf02a70/q1VZIslOJiC08Ub7YUammSYp705jPXdDUMAB6w8pRZKSsPdv23DTV/fiy05Wpf09STxyF+6sHuHfi0aW/TxhfK0DRrLHNiju7ezF7iz/lbMW+wBxwE7NoeOqjNeLUhcEgRBEFWHCbCx7OKMFKPPJf1JLRm2GB2xuGQ4HIh97JPoe/0dBH/ySygzZkJ+8XngjDPgP3sd5EceApT8C1JfjQhV1V0VRdGwfI0fLnd5otBwLsfwvGBhsYWqegaHUnA4eeNBQEurA4uXeaFpGFET+EyPy+zrYojLAs5lPK5i/+5MmOVIhUZfb2Fx6fWJaJoko783iTdfyVTIjecQlwf2RPHGS4Po6UygtyuJP/66rWx3radTF6gz57lx2nl6l4RcBV9qAyJUJb+bN9ifxOa3gnC6eJywym+87vEKWHpCDRymlkBGFdkSxGU8piKZ0CzhxYLAGS1TAKu7HAkrcLl5nHdpI867tBEtkx2ABss9Zax/cQCaBpx0ai3+/dszsHyNPv7xGBbL7k9dQ/Z883hFzJjjQmhIMUToeGbs/o9HEARBTBjeF30uJ+C5VZtMWGyFliOShNi/fERvYfKb24GlSyG+8xb8n/oIAmuWw/nH3wOx7LBGVjF24xtDEAQOJ51SW/ZQBF5fbEv8qBbmL8hwzmUspiAR17JCR5mTWyicNh/hUO4elwAg8FZBLjt4uDw8BvtSxrH27YpY8ixH4lwqiobBviS8NYKlsJSd41bWQJI5zJjjwuz5ephsLJYtZnvTbT5OPiuARcd60d+bxPOP92ZtVwrdaXHZ2CzjxLW1+MI3pmPpcl/Wdv46XazkC41967UhqKpe7Xc4B97t0duI9HYnC+bhmmE5ufY+sJd8uAXXXNeKmloRkYgCVdWQTOhC1J1+cLPylFpcck0zgEyvTEY0ouCd9YMQJQ4nnxVAbUAywm5DIwyFLpZUSsODf+7Ezq2VC1PNPFTJ/dBqyQn6vd2cw8Edb5C4JAiCIKrORM65HM1+huOdTFhshUNHRRGJy68ANm7E0F/uR2LNyRD37oHvK19A3fIlcP3sx+CGMm6U2b059dy6vEVeSuHYxmVY0bIStc5A2fuqFqwVST7nMjjA+hdar4dRZTZeeggf63GZa5HtFHRnzilmXK85CzxQFM2oasrCRadM13MGR+JcDvanoKq5XSQzq04L4Os3z8HHPz8F89N5cbmcS9ayprFFxjkX661L2g+XFlpqRlE09HYn4PYKxnWqa5Bztt+orWPubm4XmTlhxxyfLUxz0TRJhqbpPTCLIZNvaZ0jjS0y5izw6FWaNV1cRSLZDxYC6fHbQ6y3bwohEdewdLnPaGPi9YmWYwJ6gah7b2/DXb86XLF82EP7otj4xhBee2FkecW5MMRlnpZIC5d6IQgctr0bGvdVY0lcEgRBEEeNiSguJ3I+abWZNMUBp5s3WipUHI5D8oyzMPjAP9D/z2cQv+CD4Lu74P3ut1F33GJ4vvMt8J0dmDJDFyrHr6rByWdWRgwGnHVYWL+oIvuqFkzc53MgM70grQti43NFultmCuVctnon4/RpZ2Jh3WLjtZPPCgCcnjeYTGRCYplYGolz2d+rC6dSemc6065fLJZDXPawfqgyampFyA4e3R2JEVfU7e9NQlV013I4agsU9VEUDUcOxuBw8kXtCwCmzWRVcourXJpPXDLYfQ6HFERC6f6mpgcLsoOHxytgsC9lyTdk7mTrFKfxmteo7Gwq7jOoYMfmMPbtjOK2Hx/CbT85hB2bi6tCmw8mdFm+cSUwervmcS5dbgFzF7kRi6jY8974LuxD4pIgCIKoOu+HsNiJ2Gal2px3aSO+cuPMyjuXOUidsAJDd/4J/a+8ieg1HwMXj8H9i5+g7oRjcOZ9/42vXBrEhVc0Tcg5mg9J4sDxet5cLuz9Cxkyy9UcQVhsIeeS4zhM8U2FJGREX1OLA4uO9SIcVPDyM/3oak8gUC+V5VwyMTicc2nGkQ7dznWtjB6SDRI4jkNji4xkQjMq0pYKy7c0V1nNByt6lMu57GyLI5XUMHm6M6frmYvZC/Tw3z07ihSXg8zdzlONmYnLoJI3NDRQL0FRNGuv2fR1NofystBbc84lC0lubJFR1yDh8P4Y7r29Ha8821+WuAeAocHKhd8WmvcMVkSqp7P0XOaxBIlLgiAIouq8L8Ji6U9qyXAcZ7TDOFooc+Yi9KOfo+/NzYh8/t+hOV1w/fXPmHX5aai97ELIT/xT79T+PoDjODidfF5xOWTqcWlmOMezEOFhwgNzccrZekGbF57sAwDMmOvKCI2ROJesUmwJ4tLp1I9nrxarqhr6e5JwewSjCBRzCbuLDC21Y863HA5W9CiXc3lonx4mOnWGM+u9fEya4oDbI+DgvmjeeWGGCb18oeQW5zKfuGzIDo3NJS5lmYfDyRttg4CMsF90rBfXf306rvzkJEgyh6ce7im6OE40ouDgvsy27OFDIq7mzLEdCZmw2Pz/34mi/t5Ie7eOFegvIUEQBFF1Jnkmwe/wj+n8s5FCBX3GJ2rLJIS/9R30bdym98qcMRPyyy/C/5ErEVh9Apy33wqEyguvGw84XDySCS3ngpa1APHVHp2cy3y0tDr0XoDpw82c49Jz+TBC53KYSrG5yOdcDg2koCiaxQVlLTOYSCyVjHM5vLjMOJc5xOV+XTCVIi55nsOs+S6oCrBv9/DuZaagTx5xmc6TjJjFpe3BAguL7+8t7FzqxxGQiKvGgw3mXNY36a7xwqVenHqO/jCi7VBxea//uK8Ld/z0MNoO6WKcPXwAMnnH5RIJK+AFa363HUHU/4YolHNJEARBEIWZVTsHF825FC4xu5T+uIdyLsc1mten98p87W0M3nUPEqvX6sV//vs/UH/cIj0v88jh0R5m1WCOXC6X6sBefbFtznsDKpNzWYpzCWTcSwCYMccNSeLhdPFlOZelhMUaOZdRq9hg4qauMYe47Ki+c+l0CnC6eAz0JbPCQA/v1+/f5OnFi0tAL6IEFBcay0St3d1mWHMuc7ehYSJ/OOcSyOR2svve25XJd2UwUc7uTSHicRU7tug5jgfT873PNI6hwfLzLjVNQySswO0RCj6EFNKXkJxLgiAIgngfU++sh8iL8Dv8w29MjF0EAYnzLsDgg4+h/+kXEfvQVeAiYT0vc/kS+D79CYgb1gMjzOMaqzgM0ZTtyPV0JtDQLGe1Iikn55KJhlLbz7ROdeKUs+uw6rRaYzxen4BEXEO8hHFomoa+niRkB1+Se5rvOmXEjUlcpsVNZ3scO7eFEU1XSU2lVPz1znb89paDeQVEcCiF9sNxuL1C1nXPR22dhFRSM4Q7oLdMGehLob5RKrln6+wFboAD3tsSLpi3qKoaOtvicDh5+AO5x+o2ci5TBXMuAWvf1LzOZdqxZqGxfcy5NF3/+gb9+vf1DJ+7uGtbGKmkfo7th2OIRhTEIpl7HKyAuIxFVWjq8G69IJBzSRAEQRDve+YG5uGqBR+G31E72kMhKkRq6TIEf3kr+t7agvC//we0mho4H/g7AhechdozT4HzT3cBkeIKnox12OI9bsst27tTP79Z87KjDcrJuWSioVB/yXycfn49zrm40fiZhWKGS3AvuzsSSCY0NDZLJYWyZ66T9ZwzxYEyzpk/IEKSObQdjOPPt7bhuX/2QlU1/O2uDmx7N4T2Q3EM5Sn2s+nNIDQVWHqCr+jxMWE3YMq7ZOGc+URfIXw1IqbOcGJoIFUwtLS3K4lkQkPLZEfegkFF5VzmcC7Z3JId9rBYVjFWD0fu603C4xMsRcFq60WAy7SIKcS2dzOh722H4lktUfLdp1Io1q03wmLJuSQIgiCI9zesqA8xsVBbJiHytW+h953tCN7yM6QWL4G0+V34vnw96o9dAM83/xv83j2jPcyyYA6i3ZEzxOV8d9Znysm5jMdUyA6+6OqlhfCOIO9y+yZdTMw/xlvSsXieg+zgs65TT1d2WCzPc2hqyYjNrvYEdu+IYMfmTIsJc8VTAOjqiGP7phDeWT8EADjupJqix8Z6XQ72Z4dzjrRn68Kl+vXZ/FYQz/2z1wixNdN+WH9t0hRH1nsMlhsbLpBzWVMrgufzhcVa5wm75+GggsF+vWWL2bUEAEni4a8VMTiQQjKZ/wFINKJg17YwJJmDt0ZAT2cCnW26mGZFhnq7E7j/Tx3YvX3k7UHyiWo7IjmXBEEQBEEQ7wPcbsQ+8nH0P/sy+h95ErFLL9dDZn/7S9SfdBz8V12qV5lVKte64GiRy5HTNA17d0bA8Zn2CGYkFhZbYs6lpukhrHbBMFKYixUcKt5d2r5JFwlMPJWC08UjHleNfoyapveR5HlYxCQAnHdpE865uAEcr1c07WqzOoBBmyC+/4+d+Msd7ejpTKB1mgPNk/ILNjs5nUtW6bfI0Fo7C5bo1+f1FwbwwhN9ePofPVnbtB/Wz2nS1ALi0pMr59Iqsnieg7dGRCioGGG48ZgKQeSMCqoMV/qzkbCSM9+SUd8oARqynEiGpml4+N5OJBMalhzvw5QZTmhaxsmcPkuf9+9uCGLTm0H86bdtec9xOIoVl+RcEgRBEARBvJ/gOKRWnoTgb+5A7zvbEf7qN6C0Tob87NPwf+RK1K1cBtfPfgyut3e0R1o0zhxVUA/ujSE0pGDqDKdR8MdMxrksTVwmkxo0tXDFzFIwnMtgcaK+ryeJjiNxNDTLRtGdUnA4eUDLiOre7gTCQQUtkx2QbGG+U2Y4seq0AGoDEoKDKbSlhRgT63bnkokgp5vHyWfWoRRYtdXB/mxx6ctTxXU46hokNLdmrlEoR+6hIS4LOJeSzEN2cOk+lyo4PjuPEtB7rkLLCCv9IUT2dkygRSOq0YbE7lzq40/nXeYJjX3lmX5s3xRGoF7C2Rc1GEWrWBGj6bMrV3wuElItY8+HkXM5/p5RWSBxSRAEQRAEUSJaUxMiX74BfW9uxuCddyNx8mkQDh6A97vfRv2x8+H79CcgvfTCmO+ZaRSqMYnLDa8MAACOW5k7NDOTc1maw5KvSMtIMeffFcOOzbortXCpZ0THM4R4OjR2/27dBZ1SoNUHC5dlomXmXF205HJbHU4eX/3e7JJdVX8guyBOuWGxAHDmhQ2Yf4x+rZirxlBVDe2H4xAlDg1NhYW6xysiHlMRHEzB5RZyhkSLkv5aKqkhldKQSmo554nZuRwc0M+XhQWbYde9N4e4fPW5fjz9aC9EicOHPt4Cp0tAa9p9VVU9T3TeYg94kxZsmlT6wwgGK+hUrHOZorBYgiAIgiCI9ymiiMQFF2Lw7w+j75U3Ebn209CcLjgf+DtqL7sQgVXH625mV9dojzQnRiuStGAKBVPY9m4IThePxcf5cn5GEDgIIleyc1lxcVmic8n6R06bOTJXyi7E9+/RxWWhVh+s3Uk8pkKSOUyepm9rzxNNJlSjCm+pMOfSLC6ZeB1pWCwAzF3owZWfnAQgOye3vzeJeEwtWMyHYRZm+QSWaBJWbF7ldC7d+mvRcCbMluV1mmFuZl+PtR1Jd0cCTz7UA1Hi8C//2orWqfr9mDbbhdkL3DjupBpcd8M0eLyCxfUtJ1TVCAf2Fp73VC2WIAiCIAiCMFDmzkP4ez9E76b3MPTz3yC5chXEfXt1N3PZAtR84hpIzz49ptxMh8sqmDa+MQRVAZadWFOwoqvs4ErOuTxazuWRgzHc+fPDRtgmg7l5NSOooApkel0yIb5vV9q5LCAuLS0ymmTDSTQ7l4qiQVX1QjQjwe0RIMmcNSx2oHznEmCFjLisdi9MyA7nWgLAkuMzDynsPS4ZYvrcU0ktM09yhE+ztiqRiIJw+qGCJ0cV1nxhse+sHwQAnHp2HWbNyxSrkmUeH7luMi66qtkQlWZhnqsPbLFQziVBEARBEAQxctxuxK/8Fww88gT6Xt6AyKc/B62mBo5/PIzaqy5F3YqlcN9yE/j2kRcJqRQZwaQvgA/t0yuALl5WODRTlnkkE5pR3AYADu+P4bl/9lr6LZrJ115ipHhrcjuXb702iAN7ovjbXe0Wd5W1lagZoeAyC/FUUsXhA1G4PbzhTuaizlRspqFJMgnizJiTaZEuySNzLjmOgz8gIRZVEUu3lBkaVMBxuYVXqTicPOIx1dLzkuURFrP/ecdkwpDFPALacC6Tmb6lhcJioxEV4QLOpa82e24oioZ3NwTB8frDk+FYuNSr551yR0lcCiQuCYIgCIIgiAIo8+Yj/L/fR++772Hot3cgsfYUCIcOwnPT/6HuuEWoufoyOB78OxDLbvVwNLA7l10dehhh0zDVSplATCYylVMf+HMHXniiD7+66YDRpsJMpZ1Lt0cAx2WHmDKB3NudxNOPZqqcBgdTkGTOyJ0sFXMIcXdHAqmUhtZpzoL9KM3Cs6FJhtvDgxesziW7hiN1LgGgNu3GDvaloKoaQsEUvDWCIVjKweHgoal6QSZGOJS7rUguZJk3RGjH4dx9M42cy5RWcJ6Iou6kRsMKwiFdQDM30wy7luZWJLu2hREOKZi70FOUo7t6XQCfuWE6autEJBPaiEVf8X0u9a8UFksQBEEQBEEUxuFA/JLLMXj/o+h7/W1Erv8StPoGOJ55CjX/9gnUL5kH739+CeKbbwDa0VtcOkyhnom4iv7eJGrrxGEFYKaoj754P3wght6uJESJQ2hIwcvP9Gd9ptLikuc5eHwCwsGU4aBGIwq6OxLw+fVQ0XfWD0FVNSQTKqIRFT6/WFAMFiIjxBUE045YbSC/awnoxWZYG9yGZhkcx8HrExEOKYZYYQJopM4lAPhZ3mV/EuGgAk0tPySWkatdTbFuHOOyj7YAAM74QH3O95m4TCbVgmGxgC4mY1EV4aACtyd3gSBB4CAInCHcAWD3dr2o0pITcucS58Nhm+vDEQkrxnxUVQ39vfqDhKKdSxKXBEEQBEEQRLEos+Yg/M0b0fvuDgze/VfEPngJuGgErrtuR+D8MxFYsxyun94Cvu1I1cfiNBWp6e5MANrwriUAo/gMy7vcuH4IALBirR9AxtkyU2lxCQBenwhV1cMkAV3kAsCMOW60TnUimdDQ05nI5FuWIbjMOZfhoL6/XCGZZkSRMwRoY7MeIuurEQANRs6g4VwWyHEdjppa/RjBQSVTKXaEbUjsOFxpxzaXuBymSA1j1jw3vn7zbJywyp/zfUtY7DDzhIXGKopW8PpLslVcsrnqqyktVDiXuM5HR1scN39jL9a/OAAA2LU9jOBgCjPmuArmMAOZa0BhsQRBEARBEETpiCISZ52L4G13oXfzTgRv+hGSx58AcfcueP/vRtQdtwj+Ky6G4+9/BSKRqgzBYepz2dWuhyw2FdED0tzrMplQseWdEASRw4o1uniIRbIX4tURlyy3ThdULCR26kwnJk/TRfKRg/FMvmUZ1VPNIcRGvl8RYaEr1vqxYIkHDWlxyfIuWWgsEz2SNHLn0mkSQKzHZTnnaianc8nO31P8MQqJ52LDYoFMxVigcKipKHGWsFjW4kMUS5t/JYnLw3FAA3Zs1os9vfGiXkDoxJNrh/0sOZcEQRAEQRBERdACdYh94loMPP6cXgTo+i9BbW6B/PyzqPnMtXrY7Bc/C+mF5yraZV2WeYDTW010tafzLVuLEJemXpedbQnEYypmz3cbPQdZbz8zw4U7jgR7gZxD+6MAgKkzXGhNt/1oOxQzBFc5oaJmAZcpJlNc7t5Vn2o1xIPPVuW2Es6lWQBVoselZd+OAmGxRTqXw8EEn9m5zFf4yWUKLy0k7iVZzxVlTiATbfaencORS1wmEyoe/ksnDu2LWrZl8/7IwRi62uPY814E/oBo9AsthNHnkpxLgiAIgiAIolIo8+Yj/M0b0ffONgzcez9il1wGLpmA654/ofZDF6Hu2AXwfOO/IL79Ztn5mTzPweHg085lccV8AFNYbFxFKKSLGX9A1Pfn5LP6IgIoWAV0pLCKsR1H4vj9Lw9j384oZAePpkmy0VPyyMFYhZxL/Vgs3w8YWTVWNuZgWhBXIufSLICY0C41/LOYfTNKzbkcjpKcy2LFJcvjTDvDGeeyfHG5c1sYb782hCce7LFsy65LKqnhyYf0905Y7S+qsBLPc+A4QEkNu+mYhsQlQRAEQRDEWEQQkDz9TAR/eyd6t+7G0M9+jcRpp4Pv6Yb71l8jcO7pqFu5DO4ffBfCrp0jPozTxSMRV9HRFgfH6y0zhsNwLhMZocVCVJ0uXaya25QA1cu5BIDn/tmL/buiqK0XccmHmyEIHGrrRLg8PDqPJNCf7stYVs5lOiw2GlEQTgtq7zA5l7lgjmIlnUs2tlhUMdyzSgm/XOIqHFLAC5W7l0wIppKqUTgnb86lqTpsIeeYXU92fUfuXGbnnHa26Q9iDh+Iobc7YbweDWe22b0jXUDo+OILCAkiRzmXBEEQBEEQRHXRfDWIX/VhDP71QfRu2ong925G8oTlEPbvg+dHN6NuzXLUnnEyXL/6ecmFgNgiPhxUUN8oF5WTlsm51Ixegh6vvtBni3+7e1kVcZl251LpNhmfuH4KFi7Ve3RyHIfJU51QFM2oFFqOc+lPf3awP1WWc8nCYlmobqYVSQWcy7hqiEtnjhYdZe07ff80TUMkrKRbwZTf6gQosaCPKeeycFhspgIt27f5WMVivraMjiOZliqb3gwa39vDwafMcCJQP/zDGoYgcJRzSRAEQRAEQRw9tKYmxK69DgP/fBa96zci/NVvIDV3HqTN78L7P1/XCwF98Fw4b/sN+I72Yfdn7vs4Z4G7qDFYnUtr5VSnO+PwmalOWGxGLDZNkuGvtS7kp85yAdAFIVBeHqLLLcDp5tHfm0QomO6xOAJ3kAlclhtZ0bDYqGqI+pH288y3b9YLNRZVoamVc0aBaofF6mKN5TKKJYr4XDmnnW1WcclCbiO2OV+KawmQc0kQBEEQBEGMIurMWYh8+Qb0v7wBfc+8jMjnvgh1Uivk11+F72s3oO7YBaj9wNlw3fqrvI6meRG/+DhvUcc151zaw2JdRohmbucyX6GWkWAOS80ljFes8Vsqio4kjNVMoF5CKqlhaCAFr0/M2WNxOAxxOVCdgj6sUq/LVRnx57Q5lyyvcCSubT5yFfQZrhUJULgVTOXCYq3nH40oGOxPob5RwvTZLvT3JnH3b4+kQ5L1bQL1EkSJw6Jlxf0+Mci5JAiCIAiCIEYfjoOyZCnC3/5f9L29Ff3/eAqRT38OautkSG+8Du83vor6ZQtRe8FZcP32l+CPHDY+mohnFrNTpjuLOpxsaixvhMWm899YOKbduUxUMSwWAOYszK7I6fYIOOfiBuPnkYhBM4G6jDM60j6SLjcPUeIyzmUlWpGY2qREoywstrLOZTym75e1IRk159JdonOZrGxBH1b4qrnVgcs+0oLmVhn7dkXx8tP9iIYVgAM+9rnJ+NcvTy15jgiiXqPLnq88nqhMjWKCIAiCIAhibMDzSK1YidSKlQh/53sQ334TjocfhOPRhyBtWA9pw3p4v/nfSJ6wAvEPXgJt/3EAmtDQLBedQ2fOuWRhsVnOpa3XZTyughdKX9wXwuHg4XTzUBVg2qzcwnjpCT709yRR11h87ls+zPlzXv/I9sdxHGr8Ivp6kkgm1Io4l6LIQxA4xKMqwAG8UJ5YNWMXV5k2JFUQl0ktEz6dtxVJkTmXUtq5TJqcSw7gS7zM9vNnIbHNrTJqakVcdHUzbr3lELo6EoiEFThdvNGSp1TECdDrksQlQRAEQRDERIXjkDphBVInrED4f74L8Z234HjkITgeeRDSWxsgvbUB/wWgvXEBxA99EMLmD0I5ZgkwjMg051yGQgokmTNeM5zLqC3nMqbC4eQrVgRGPz0OV1/bCo5D3kJEHMfhtHPrK3I8s7gcqXMJ6KGxfT1JDA2mDGdNLiPnEgAcLl7Pi9T0kNhKXWe7uApX0blMJlX9OFz+HFRWMEoQuIIuuFHQx9SKRBS5kq8Lc4XZ+XcwcTlZb9nDhGRvdwLJhFbWvGAhu+M575LEJUEQBEEQxPsBjkPq+OVIHb8c4W99B+K778DxyEOQH3sEk/bsAH61A/jVzVCmTkP83POROO8DSJ60GhCzl4ss5zIaURCLqKitz2yTy7lUFA3JhFYwR26kTE8X7TkaBBoy51muuAT0vMtKOJeAnhvJQlYrFRILHCXnUrSGxTocfN4QZqeLh+zg4K0RCwpFe85lKqmNyDU3F/TRNA0H98YAAC1pcely85BkDr3derubkRR5YrB+mClyLgmCIAiCIIhxA8chtex4pJYdj/A3b4Swayfkfz4Kxz//AemtDXD/7jdw/+43UAMBJM48B/HzPoDEujMAj57XyBbcvV36gtrrzSwpM85lRlwmhgl1HC/UViDnEsj02wwOpiqScwlYcxSdFSrmY95vRlzqXz0VdS5NBX3iasF+pDzP4SPXTYY0zFyy51wqKQ3SCES3+fw72xPo6UygZbIDtQF9LnAcB39AQk+nnovpKkPYG84liUuCIAiCIAhivKLMnYfo3C8j+oUvg+/sgPz4Y5Af/wfkl16A87574bzvXmgOBxKnnIbEmeegcd2ZEEQO3R36gtrsSGacy0xYbDXakIwG/oAEjtOLrvhqRp7D6TM5l4kKOZcOU+sRV4XakACZEGhDXIb0HNtqOJeRsAJow8+TqTOHd6szYbEaNE2DoozQuTT1udzylt7T8pjjrVVg/QHREJflhAtTWCxBEARBEAQxoVCbWxD72CcR+9gnwQWHID/7NOR//gPy00/C8dQTcDz1BHwAvtk4BxsbVmNL61r4TlxrfD6XczlcBdDxgihyqKkVMdifsvTYLBXmzJlzLsvpcwlYXeFKhsUKAgdJ5ox7yHqGViPnkuVzVsLhNsJik5oh1kptQ6LvhwPH6a11trzDxKW1f6U/YAoLd5cfFqsow2w4hiFxSRAEQRAEQeRE89UgftGliF90KZBIQHrjdchPPQH5mSfRuPM9nNW9G2dt/wMSr/qgPnsmEmeeDe+xpwLIOJdPP9KD9S8NABj/YbEAEGiQMNifqnzOpVRmzqXZuSxD4OTCkc7n7O9NYv/uKDw+AQ3NcsX2z0JYWc9UuQIPIYyw2IQ64jYkgB726nDyCKZbx0yd6TRCYhl+089lhcVStViCIAiCIAjifYEsI7n2FCTXnoLwjf+Hg89ux+7/dz+OOfIyFvS+CfnhB+B8+AHUAPjPusU4sP8U8Csvx1sv+5FM6IvmplbH6J5DBVh1Wi1qAxKmz/JgYDA8on2YxSVz1cp2Li05l5UV8Q4nj9CQglef64emASvW+CvaUobti4nLSjjczLlMJTWkkiN3Ltl4YmknftmJNVnv15qcy4qExZK4JAiCIAiCIN5PNK2ahzvmX4EX512BK6/y49jg25CffhLyU09ixuGtmPHqVuD8X+NGuQZHZp+Eug+fC8w9AxrqRnvoZTF/sRcLl/hGLFQAvT8jz+thsSynseycyyoV9DHve8PLg+AF4ITV/orun4XFMqFdCYdbNDmXShnOJZDplcnxwJITfFnvVyos1qiaSzmXBEEQBEEQxPsJp0tAS6sDHUficDX6kDjpXCTOOhf4gYbbr3sKiw+/jBMjG1C3fQPmbX8S+MaTwDeA1MxZSJ66DonTzkBy7cnQaiorVMYDPM/B5xcxOJCCW9VFi1CmHjSLy3JCM3NhbguybEVNWSHBubD3KK2kc5lMamWFxQIwWrwsWuqFnOMhgCUs1lNOWKz+lZxLgiAIgiAI4n3H6nW12LghiNappnBXjsNQ61w87pqJLdP/FZ2L+/HF09rQvPklyM8/C3H7Voj79sL1+9uhCQJSxy9HIi02U8efkLOv5kSktk7P3YyEFMgOvmDPxmJwOjPqtNJhsdNmudB+OI61ZwRw8lmVd55FWxuWiojLHM7lSN3m406qwTuvD+HUc3Kfe02tCHAAtEoV9CFxSRAEQRAEQbzPWLq8BkuXZ+egOV08BvuBwwdi8NZ54bnsHIQvPxdhAHxnB6QXnoP8wnOQn38W0ob1kDash+f//QCqx4vkSauQXHMKkmtPRmrJseVbemOUQL2IA3v078vNtwSqGxZ71oX1WHduXdmhu/kQBA4cD2jpAsOVcS4zrUjKdS4vuLwRZ1xQD68vt3QSBA6+GhHBwRTlXI72AAiCIAiCIIiJhbkH4rzFHosrpza3IH7F1YhfcTWgaRC2b4P8/LOQX3gW0vrX4HjmKTieeUrf1leD5KrVuthcsxapxUsmjNgMNGSqrVZEXLqqFxbLcVxFxlgIUeSMyrkVaUUimVqRlOlciiIPr2+Y3psznDiwJwpvTQWcSxKXBEEQBEEQBKFz6jn1aGgKYuoMJxYs9ebfkOOgLFqM6KLFiH72eiCRgLjxHcivvAjp5ZcgbXgdjicfh+PJxwEAqr8WyVVrkFyzFok1p0BZtBjgx2d7k0B9ZhlebhsSoLrO5dFAlEzisqLOZXmtSIrl8o+1IJXUyrqXhnNJYbEEQRAEQRAEoTNjtgszZrtK/6AsI3XiSqROXAl86T+BeBzSO29BevlFSK++DGnDejge/wccj/8DQFpsnrgSyZWrkDxxFVLLjgOczgqfTXUI1GeKwFTCFXRWsRXJ0UAv6qPHxY61gj7FwPMcZEd5+6ecS4IgCIIgCIKoFg4HkietRvKk1frPsRikt9/MiM2334TjqSfgeOoJAIAmy0gtO14XmytPQnLFSmiBsdn6xCIuK+FcMkHJVUacHW3MRX0qWtAnWX5Bn6MFG1+KwmIJgiAIgiAIoso4nUiuXovk6rX6z4kExE0bIa1/HdL6VyG98brxDz/XN0ktWIjkiWmxecIKqDNnAWVWZq0EHq8ASdZDQct1vIBMnqLTxVtah4wXpAqLS57nIAhcRQr6HC0o55IgCIIgCIIgRgtZRmr5iUgtPxHRz30BUFUIu3fpAnP9a5DWvwZxx3aIO7bD9Yc7AABqXR2Sxy9H6vjl6a8nQKsNHPWhcxyHQL2ErvZExXIuHU4e/trxubw3C79KOa9MvI8X51KknEuCIAiCIAiCGCPwPJR586HMm4/YNR/TX+rsgMjE5lsbIG7eBMfTT8Lx9JPGx1Kz5yB1wgpdbJ6wHKlFxwCSlO8oFcMQlxXIueR5Dp/8whTIFai0OhpUOiwW0MVlKKhknMsKiPhqknEuR3kgZUDikiAIgiAIgpiwqM0tSFx4MRIXXqy/EI9D3LoZ4ttvQnpzA6S334S4ZzfEPbvh/Os9AADN6URqybG62Dx2GVLHHgdl1uyKt0FheZeVcC4BoLnVUZH9jAZm57JSAlmSeGiqgkRczTrGWERIK7NUSh3dgZQBiUuCIAiCIAji/YPDgVQ6LDZ27XUAAK63F9I7b0JkYvOdtyFtWA9pw3rjY5rbg9SSpUguPRbKsuOAU1YDjVMAfuSCs64hLS6r3ENyPMBcRUHkKiYC2XWNRnSxxpzBsUqmWuwoD6QMSFwSBEEQBEEQ72u0+nokzjwHiTPP0V9QVQh790B8+02Im9+F+O5GiJs3GXmcjDqXC6lFx+ju5tJlSC5dBmX+gqJDamcvcKOxRcbs+e5qnNa4goXFVrLSLXOEY1FdrY1955JyLgmCIAiCIAhiYsHzUObMhTJnLuJXXK2/xgTnpo2QNm2Ea/sWaG+9DemtDZDe2mB8VJMkKPMWILVosS4801+1pqasKrX1jTI+99XpR/PMxixM+FVUXNqdy/EiLqlaLEEQBEEQBEFMYEyCM3n5FXDVe9HfPQTs2wdp00aIm9IO59ZNek7n1s2Wj6sNDUgtTIvNxcdAWbQYqXkLAKdzlE5obFEV51K2OZfSGBeXAjmXY5q9e/fia1/7GkKhEGRZxte+9jUsX758tIdFEARBEARBTAR4HurMWYjPnIX4RZfqr2kauK4uiNu2QNy21fgq7NwB+aXnIb/0vPFxTRCgzJ6jO53pKrepeQugzJ4DuFyjcUajhuFcVrDaLeudGQ2Pk4I+1OdybONwOPC9730Ps2bNwp49e/DZz34WTzzxxGgPiyAIgiAIgpiocBy05mYkm5uRXHdG5vVkEsLuXRmxycTnzvcg7nwP5jqvGsdBnT4jLTgzwlOZNx+a13fUT+lowAr6VNK5ZE5lNO1cUlhs9ZnQ4nLy5MnG97NmzUIwGISmaeC4sT2xCIIgCIIgiAmGJEFZuAjKwkWIX5Z5mevvg7BzJ8Rd70F4b4f+ded7EPbvg7B/H/Dk45bdKK2TocydB2XWbOu/aTOOSm/OalGdnEt9Xyzncqw7lyIV9CmPDRs24Pbbb8eWLVvQ3d2N3/zmN1i3bp1lm7vvvhu33347uru7sXDhQnzjG9/A0qVLSz7WM888g4ULF5KwJAiCIAiCIMYMWqAOqZUnIbXyJOsboRDE3TshpJ1NYed7EHbu0EVn2xHghees+xEEqFOnQZk1Gymz6Jw5G+rUaYA4tj0lFsJaybBYt0dvExMJjRPnksJiyyMSiWD+/Pm49NJLcf3112e9/9hjj+H73/8+brzxRhx77LG46667cO211+Lxxx9HXV0dAOCiiy7Kue/7778fQrrR7ZEjR/DDH/4Qt956a/VOhiAIgiAIgiAqhdeL1LLjkVp2POLm1+NxCPv2Qti7R/+3bw+EPbv179Nup/zs05ZdaZIEZcpUqNOmQ5k2A8r06boQTf+sNTRkVbI92lSjoI/XZ+1BOtadSyYuUyQuR8app56KU089Ne/7d955J6688kpcdpkeO3DjjTfi+eefxwMPPIBPfepTAICHHnqo4DFCoRA++9nP4pvf/CamTy+v1DPPj60JycYz1sZFTAxofhHVhOYXUW1ojhHVZFTnl8sJbdEipBYtQsr+XjhsCE9+7+6MAN2zG+K+vcC+vTl3qbndUKZO08Xn9BlQp06DOn06lKnToU6eDK2++uLT6dKFoNsjVOy6emusUkeW+TH9fwJzbxU9indMjzUfY9YfTyQS2Lp1Kz7zmc8Yr/E8j9WrV2Pjxo1F7UNRFHzxi1/EFVdcgbVr15Y1HlHkUV/vLWsf1SIQ8Iz2EIgJDM0voprQ/CKqDc0xopqMuflV7wWmNQOnrsp+LxwG9u8H9u3LfE1/z+3bB/G9HcB7O3Lv1+EAJk8Gpk4Fpkyx/mOvNTYC/Mhdx7XrnFAVAatPq0eNvzK5o62TrQ5gfYMH9fVjt/ULjwQAgIMuKsfc/CqCMSsu+/v7oSgKGhoaLK/X19fjwIEDRe3jxRdfxOuvv46enh789a9/BQD88Y9/RE1NTcnjSaVUDA1FS/5cNeF5DoGAB/39Yajq+LXPibEJzS+imtD8IqoNzTGimozb+dUyXf+XQ3tygwPgDx6EcHA/+AMHwB86COHgAfBtbeDbj4DfuxfYm9v5BPTQW3VSK9TWVqjNLVCbmqE1NUFtajb+aU1NUBsa8xYeWrHWi2Qqjt7eeM73S0XVkpafQ6EoxN4sv3fMEArqY4vH9RzRsTa/ampckCSh4DZjVlzmo5Rqr+vWrcPWrVsrduyxdHPNqKo2ZsdGjH9ofhHVhOYXUW1ojhHVZELNL58fyuIlSC5ekvv9WAx8RzuEtiPg246Ab2uD0HY4LT7bILQdgXDwAISDw5tAan29Ljgbm6EyAdrQCK2uDmpdPdRAHbT69NfaWkAoLGjy4fJYnVSOH7vreSATeZxK6nGx43F+jVlxGQgEIAgCenp6LK/39fVluZkEQRAEQRAEQVQRpxPqjJlQZ8zMv008Dr6jHXxXJ/iurvTXTvDd3emvmdfF3l5g+7ZhD6txHLTaWqh19dACdVDr01/r6qHW1UHz1UDz+6HV1ED16V/Zz063B4LAGa09xnxBH6MVySgPpAzGrLiUZRmLFy/Gq6++itNPPx0AoKoqXnvtNXzsYx8b5dERBEEQBEEQBGHB4YA6fQbU6TMKb6dp4IYGLQKU6+0B39sLvr8PXF8v+L5+/Wt/H/j+Poh7dpc8HI3ncZPkQVj0ISZ50binAaj1Q/N4oXk80Nzu9D8PkP6qWb6avne5AYcMTZL1HNQRuqmFoFYkZRIOh3Hw4EHj58OHD2P79u1oaGhAY2MjPvGJT+CGG27A4sWLsXTpUtx1112IxWK45JJLRnHUBEEQBEEQBEGMGI6D5q+F4q+FMndecZ+JRnXhmRagfF8vuL4+cMEh8END4AYHwQUHwQ2lfw7qr/G9A2gIt+n7WL+zYqegCQLgcECTZUCSobHvHQ5osgOQJGgOB8ALgMDr2/O8Lko5/avG84DAGz+D5/HhN8MQHBKw8evA1DkVG+/RYlTF5ZYtW/DRj37U+Pm73/0uAODzn/88rr/+epx//vno6+vDz372M3R3d2PhwoW47bbbjB6XBEEQBEEQBEG8D3C5oLomA62TUUrU6J9+ewR7tgbhVsL4r/9q0EVoOAwuEgYXiZi+RrJeg/m1aARcPAEk4uASyfTXOBBPgAuHwSeTww+mCFazb+6aAnzjfyuyz6PJqIrLlStX4r333iu4zTXXXINrrrnmKI2IIAiCIAiCIIiJgtcnQOMFJJx+qNPK63lfEE0DEomM4EzEgXgcnKbqjStVVU+mVFVwqmL5GYqa3k7Bi//sBifyuPD7VwDhsVvZNh9jNueSIAiCIAiCIAiiHDw+Xe6IUpWL+XCcHhLrcAA+YKRZk6vW6q1u4HQC4VBFh3g0GHmnU4IgCIIgCIIgiDGMx6sX3hnrlWInCiQuCYIgCIIgCIKYkHh9urgUSFweFUhcEgRBEARBEAQxITHCYgUSl0cDEpcEQRAEQRAEQUxIPORcHlVIXBIEQRAEQRAEMSHx14rgBcDrozqmRwO6ygRBEARBEARBTEhcbgHX/vtU+GpI9hwN6CoTBEEQBEEQBDFhaZ3qHO0hvG+gsFiCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpcEQRAEQRAEQRBE2ZC4JAiCIAiCIAiCIMqGxCVBEARBEARBEARRNiQuCYIgCIIgCIIgiLIhcUkQBEEQBEEQBEGUDYlLgiAIgiAIgiAIomxIXBIEQRAEQRAEQRBlQ+KSIAiCIAiCIAiCKBsSlwRBEARBEARBEETZkLgkCIIgCIIgCIIgyobTNE0b7UGMB1RVg6Kooz2MLCRJQDKpjPYwiAkKzS+imtD8IqoNzTGimtD8IqrJWJxfgsCD57mC25C4JAiCIAiCIAiCIMqGwmIJgiAIgiAIgiCIsiFxSRAEQRAEQRAEQZQNiUuCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpdjnLvvvhunn346lixZgiuuuAKbNm0quP0///lPnHvuuViyZAkuvPBCvPjii0dppMR4pJT5tWvXLlx//fU4/fTTMX/+fPzpT386iiMlxiOlzK+//vWv+Jd/+ResWLECJ554Ij75yU9i8+bNR3G0xHiklDn29NNP47LLLsPy5cuxbNkyXHTRRXjwwQeP3mCJcUepazDGrbfeivnz5+Omm26q8giJ8Uwp8+v+++/H/PnzLf+WLFlyFEdbPCQuxzCPPfYYvv/97+Nzn/scHnjgAcyfPx/XXnst+vr6cm7/zjvv4Ctf+Qouv/xyPPjggzjzzDPx2c9+Fnv27DnKIyfGA6XOr2g0iilTpuArX/kKGhsbj/JoifFGqfNr/fr1uOCCC/CHP/wB99xzD5qbm/HJT34SXV1dR3nkxHih1Dnm9/vx6U9/Gn/5y1/w8MMP4/LLL8fXvvY1vPrqq0d55MR4oNT5xdi6dSvuvfdezJ8//yiNlBiPjGR+1dbW4uWXXzb+Pffcc0dxxCWgEWOWyy+/XPvOd75j/KwoirZ27Vrttttuy7n9F7/4Re3Tn/605bUPfehD2o033ljVcRLjk1Lnl5l169Zpf/zjH6s5PGKcU8780jRNS6VS2nHHHac9/PDD1RoiMc4pd45pmqZdfPHF2s9//vNqDI8Y54xkfkUiEe28887TXnzxRe2aa67RfvCDHxyNoRLjkFLn19///nftxBNPPFrDKwtyLscoiUQCW7duxZo1a4zXeJ7H6tWrsXHjxpyf2bhxo2V7AFi7dm3e7Yn3LyOZXwRRLJWYX9FoFKlUCn6/v0qjJMYz5c4xTdPw2muvYd++fTjhhBOqOFJiPDLS+fWDH/wAK1euxMknn3wURkmMV0Y6v0KhEE477TSceuqp+OxnP4vdu3cfhdGWjjjaAyBy09/fD0VR0NDQYHm9vr4eBw4cyPmZnp4e1NfXZ23f3d1dtXES45ORzC+CKJZKzK9bbrkFkyZNwkknnVSNIRLjnJHOsWAwiFNOOQWJRAI8z+PGG2/EqlWrqj1cYpwxkvn13HPP4fXXX6c8XmJYRjK/Zs2ahe9///uYN28ehoaGcMcdd+Dqq6/Go48+iubm5qMx7KIhcTnO0DQNHMflfT/Xe4W2Jwgzw80vgiiHYufX7373Ozz22GP44x//CFmWj8LIiInCcHPM4/HgwQcfRCQSwWuvvYbvfe97mDZtGpYvX34UR0mMV/LNr76+Pnzzm9/EL3/5S7hcrlEYGTERKPT/17Jly7Bs2TLj5+OOOw7nn38+7rvvPnz+858/SiMsDhKXY5RAIABBENDT02N5va+vL+tJB6OhoSFr+97e3rzbE+9fRjK/CKJYyplft99+O37729/izjvvxLx586o5TGIcM9I5xvM8pk+fDgBYuHAh9uzZg1tvvZXEJWGh1Pm1a9cudHd34+qrrzZeUxQFGzZswJ/+9CeqfE1YqMQaTJIkLFy4cExGm1HO5RhFlmUsXrzYUsVOVVW89tprlicXZpYtW4ZXXnnF8tqrr76ad3vi/ctI5hdBFMtI59dtt92GX/3qV7jtttvGbIl1YmxQqf/DNE1DIpGowgiJ8Uyp82vJkiV45JFH8OCDDxr/jjnmGFxyySW4//77j+LIifFAJf7/UhQFu3btGpPV+8m5HMN84hOfwA033IDFixdj6dKluOuuuxCLxXDJJZcAAG644QY0NzfjK1/5CgDgox/9KK655hrccccdOPXUU/HYY49hy5Yt+L//+7/RPA1ijFLq/EokEkZbm0Qigc7OTmzfvh1+vx+tra2jdh7E2KTU+fW73/0OP/3pT3HLLbdg8uTJRq642+2Gx+MZtfMgxi6lzrFbb70VixYtwvTp05FIJPDSSy/hoYcewne+853RPA1ijFLK/HK73VmRFm63G7W1tZg7d+5oDJ8Y45T6/9cvfvELLFu2DNOnT8fQ0BBuv/12tLW14fLLLx/N08gJicsxzPnnn4++vj787Gc/Q3d3NxYuXIjbbrsNdXV1AID29nbwfMZ8Pv7443HLLbfgJz/5CX70ox9hxowZ+OUvf4nZs2eP1ikQY5hS51dXVxcuvvhi4+dbb70Vt956Ky655BL84Ac/ONrDJ8Y4pc6ve+65B8lkEl/4whcs+/n85z+P66+//qiOnRgflDrHYrEYvvOd76CjowNOpxOzZs3CD3/4Q5x//vmjdQrEGKbU+UUQpVDq/BoaGsI3v/lNdHd3w+/345hjjsFf/vIXzJo1a7ROIS+cpmnaaA+CIAiCIAiCIAiCGN/QIxeCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyEUd7AARBEAQx1vj5z3+OX/ziF1mvr1q1Cr///e+P/oAIgiAIYhxA4pIgCIIgcuDz+XDbbbdlvUYQBEEQRG5IXBIEQRBEDgRBwLJly4bdLhaLwel0Vn9ABEEQBDHGoZxLgiAIgiiSw4cPY/78+Xj44Ydxww03YPny5bjuuusAAAMDA/jWt76F1atXY8mSJbjqqqvw7rvvWj4/NDSEr3zlK1i2bBnWrl2LX//617jppptw+umnG9v8/Oc/x8qVK7OOPX/+fPzpT3+yvHbffffhggsuwDHHHIN169bhd7/7neX9r371q7j00kvxyiuv4MILL8SyZctw9dVXY9euXZbtFEXBb3/7W5xzzjk45phjcMopp+CrX/0qAODuu+/Gcccdh3A4bPnM66+/jvnz52PHjh0lXkWCIAhiokLOJUEQBEHkIZVKWX7WNA0AcPPNN+Oss87CT3/6U/A8j0QigU984hMYGhrCDTfcgLq6Otxzzz34+Mc/jieffBKNjY0AgP/+7//GG2+8ga997WtoaGjAHXfcgYMHD0IUS/9zfNttt+HHP/4xrr32Wpx44onYunUrfvrTn8LlcuGaa64xtmtvb8fNN9+Mz3zmM3A4HLj55pvx7//+73j00UfBcRwA4Fvf+hYeeughfOpTn8KJJ56IwcFBPP744wCACy+8EDfddBOeeOIJXHrppcZ+H3jgASxevBgLFiwoeewEQRDExITEJUEQBEHkYGBgAIsXL7a89t3vfhcAcOyxx+Lb3/628fp9992HXbt24dFHH8WMGTMAAKtXr8a5556LO+64A//1X/+FXbt24emnn8aPf/xjnH/++QCAlStXYt26dfB6vSWNLRQK4Ze//CU+85nP4POf/zwAYM2aNYhGo/j1r3+Nq6++GoIgAAAGBwdxzz33GOPSNA2f+9znsHfvXsyePRt79uzB3/72N3z961/HRz/6UeMYbIw1NTU4++yzcf/99xviMhwO48knn8RXvvKVksZNEARBTGxIXBIEQRBEDnw+H+68807La7IsAwBOO+00y+uvvfYaFi9ejClTpljczhUrVmDLli0A8P/bu5tQeNcwjuM/RxpRaPyZmmnkJSsvZSFvzQYLRSFKTamhJFH2NmZDUsiIkiQWmijZSUo2lIUIGzuFGEyDjBI5Z3GaqTH+Dk0djvP9LO+5e+5rlr+u+7keHRwcSFLIFdj4+HiVlpZqf3//U7Xt7u7q4eFBVVVVIecVFxdrYmJCFxcXslgskiSLxRIMlpKUlZUlSfJ4PMrKytL29rYkhXQlX2tsbJTD4dDJyYmsVqtWVlb0/PysmpqaT9UNAPjZCJcAALwhOjpaeXl5IWunp6eSpOTk5JB1n8+nvb29sE6nJKWlpUmSrq+vFR8fHzb85/WzPsLn80mSqqur3/z9/Pw8GC5fT7iNiYmRJD0+Pkr6u0MbFxf3bve0qKhIVqtVS0tL6u7u1tLSkioqKpSUlPTp2gEAPxfhEgCATwq8qxiQmJio3NxcOZ3OsL2BbuevX7/k9/vDpst6vd6Q/QaDQU9PTyFrt7e3YedJ0uTk5JvhNCMj48P/JSkpSQ8PD7q/v/9twIyKilJDQ4MWFhZUW1urnZ2dsOFBAAAQLgEAiFBJSYk2NzdlNpt/24kMdEHX19eD7zP6/X5tbW2FhDqTySS/3y+PxyOTySRJ2tzcDHlWQUGBYmNjdXl5GXZF97OKi4slScvLyyGDgF6rr6+Xy+VST0+PTCaTysrKIjoXAPDzEC4BAIhQXV2d3G63mpub1draKqvVqpubG+3v7yslJUUOh0PZ2dkqLy+X0+nU/f29UlJSND09HXZN1mazKTY2Vj09PWppadHp6ancbnfInoSEBHV1damvr09nZ2cqLCzUy8uLjo+Ptb29rfHx8Q/XnpmZqaamJg0MDMjr9aqwsFB3d3daXV3VyMhIcJ/JZJLNZtPGxoba29uDA4MAAAggXAIAECGDwaC5uTmNjo5qbGxMXq9XRqNR+fn5IQN8BgYG5HQ61d/fr7i4ONntduXl5Wl1dTW4x2g0yuVyaXBwUJ2dncrJydHQ0FCw2xnQ1tam1NRUzc7OamZmRgaDQenp6WH7PqK3t1dms1mLi4uampqS0Wh8szNZWVmpjY2Nd4f/AAD+v6L+DHy0CwAA/OsC35BcX1//6lL+UXd3t66urjQ/P//VpQAAviE6lwAA4F1HR0c6PDzU2tqahoeHv7ocAMA3RbgEAADv6ujokM/nk91uV1VV1VeXAwD4prgWCwAAAACI2B9fXQAAAAAA4L+PcAkAAAAAiBjhEgAAAAAQMcIlAAAAACBihEsAAAAAQMQIlwAAAACAiBEuAQAAAAAR+wu14s+YjPwwEQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")" + ] + }, + { + "cell_type": "markdown", + "id": "082abc72", + "metadata": {}, + "source": [ + "##### As can be seen, there is improvement in both the variance and the bias." + ] + }, + { + "cell_type": "markdown", + "id": "8d01ad42", + "metadata": {}, + "source": [ + "### Attributes of the Multitaper object\n", + "``norm``: {``leahy`` | ``frac`` | ``abs`` | ``none`` }\n", + " the normalization of the power spectrun\n", + "\n", + "``freq``: The array of mid-bin frequencies that the Fourier transform samples\n", + "\n", + "``power``: The array of normalized squared absolute values of Fourier\n", + "amplitudes\n", + "\n", + "``unnorm_power``: The array of unnormalized values of Fourier amplitudes\n", + "\n", + "``multitaper_norm_power``:The array of normalized values of Fourier amplitudes, normalized\n", + " according to the scheme followed in nitime, that is, by the length and\n", + " the sampling frequency.\n", + "\n", + "``power_err``: The uncertainties of ``power``.\n", + " An approximation for each bin given by ``power_err = power/sqrt(m)``.\n", + " Where ``m`` is the number of power averaged in each bin (by frequency\n", + " binning, or averaging power spectrum). Note that for a single\n", + " realization (``m=1``) the error is equal to the power.\n", + "\n", + "``df``: The frequency resolution\n", + "\n", + "``m``: The number of averaged powers in each bin\n", + "\n", + "``n``: The number of data points in the light curve\n", + "\n", + "``nphots``: The total number of photons in the light curve\n", + "\n", + "``jk_var_deg_freedom``: Array differs depending on whether\n", + "the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a chi2 model of how the estimated\n", + " PSD is distributed about the true log-PSD (this is either\n", + " 2\\*floor(2\\*NW), or calculated from adaptive weights)" + ] + }, + { + "cell_type": "markdown", + "id": "88ba3894", + "metadata": {}, + "source": [ + "### A look at the values contained in these attributes." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e4acf993", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "norm: abs \n", + "power.shape: (511,) \n", + "unnorm_power.shape: (511,) \n", + "multitaper_norm_power.shape: (511,) \n", + "power_err.shape: (511,) \n", + "df: 0.0009765625 \n", + "m: 1 \n", + "n: 1024 \n", + "nphots: -73.38213649959974 \n", + "jk_var_deg_freedom.shape: (511,) \n" + ] + } + ], + "source": [ + "print(mtp)\n", + "print(\"norm: \", mtp.norm, type(mtp.norm))\n", + "print(\"power.shape: \", mtp.power.shape, type(mtp.power))\n", + "print(\"unnorm_power.shape: \", mtp.unnorm_power.shape, type(mtp.unnorm_power))\n", + "print(\"multitaper_norm_power.shape: \", mtp.multitaper_norm_power.shape, type(mtp.multitaper_norm_power))\n", + "print(\"power_err.shape: \", mtp.power_err.shape, type(mtp.power_err))\n", + "print(\"df: \", mtp.df, type(mtp.df))\n", + "print(\"m: \", mtp.m, type(mtp.m))\n", + "print(\"n: \", mtp.n, type(mtp.n)) # Notice the length of PSDs is half that of the number of data points in the light curve, as the imaginary (complex) part is discarded.\n", + "print(\"nphots: \", mtp.nphots, type(mtp.nphots))\n", + "print(\"jk_var_deg_freedom.shape: \", mtp.jk_var_deg_freedom.shape, type(mtp.jk_var_deg_freedom))" + ] + }, + { + "cell_type": "markdown", + "id": "f5b3a490", + "metadata": {}, + "source": [ + "### A look at the different normalizations\n", + "The normalized S(f) estimates are stored in the `power` attribute can be accessed like `mtp.power` if the object name is `mtp`" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f305d250", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc1dXA4d/MVq16sSVXjJswrtgGUwwGgyk2vdcEML2ThBZIvkBCaCEQAwkECJCEEEIPvYVmeje2ce9qVq/bpnx/zM7s7GolSy64cN48PJFmp9xdjeQ9e849VzFN00QIIYQQQgghhNgE6tYegBBCCCGEEEKI7Z8El0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIsR0wTZPp06dTXl7O6tWrOz3+6aefUl5e7vw3efJkTjjhBN56662M55s/fz677747bW1tGR+/6KKLKC8v55///GfK9vPOO4/77ruvR2OuqKjgqquuYv/992fs2LFMmzaNCy+8kM8//7xHx29uc+fO5dFHH90q194U1157Lccee+wWv866desoLy/nnXfe2SLnP+OMMygvL+eBBx7o9NiUKVO45557tsh1N7d77rmHKVOmON/bv3tLlizZ4tf+5z//SXl5+Ra/jhBCbCwJLoUQYjvw9ddfU1FRAcDLL7/c5X5/+MMfePLJJ7nzzjspKCjgkksuyRjM3X333Zx88snk5OR0emzu3Ll8++23Gc9/3nnn8eijj9LS0tLteJubmznppJNYtmwZP/vZz3jwwQe57LLLUFWVr7/+uttjt5QPP/yQv//971vl2iLp0UcfJRwOb+1hbDajR4/mySefZPDgwVt7KEIIsdVJcCmEENuBl19+mVAoxPjx47sNLsvLy5kwYQLTpk1jzpw55Ofn89///jdln1WrVvHBBx9w3HHHdTo+Ho9z8803c8UVV2Q8/+TJkykoKOCFF17odryvv/46dXV1PPTQQxx55JHsueeeHHfccdx3332ce+65G37CW5Gu68Risa09jB3SbrvtRltbG08++eQWOX80Gt0i5+1OTk4OEyZMIBgM/uDXFkKIbY0El0IIsY3TdZ3XXnuN6dOnc9xxx7Fs2TIWLVq0weOysrIYPHgwVVVVKdufe+45ysvLGTJkSKdj/v73vxMMBjMGnraDDz6Y559/vttrt7S04PP5yM/P7/SYoijO13bJ51tvvcWhhx7K2LFjOeWUU1i2bFnKMYZh8Ne//pUZM2YwZswYDjnkEJ577rlO537zzTc5/vjjGTduHFOmTOHcc8+loqKCe+65h7/97W9UVFQ4pcPXXnttpzHMmjWLcePGMW/evE7lj7b0cuHp06dz22238de//pWpU6cyadIkbr31VkzT5L333mPWrFnstttuXHTRRTQ3N3f7um2sL774gtNPP53x48czZcoUbrjhhpSS5/Xr13Pddddx4IEHMm7cOA455BDuuuuujEF0OBzm17/+NZMmTWK//fZjzpw5GIYBwNKlSykvL+ezzz5LOaa9vZ3ddtttg5nhvn37cuyxx/K3v/1tgwH8K6+8whFHHMGYMWOYNm0ad911F5qmOY8/++yzlJeXM2/ePM444wzGjRvHQw895GxfsGABZ5xxBuPHj+eoo45iwYIFdHR0cN111zFp0iQOPPBAXnrppZRrvvvuu5x11lnstddeTJw4kRNPPJG5c+d2O870sth77rknpUTd/m/69OnOMdFolNtvv51p06YxZswYjjzySN57772U88ZiMW666SYmT57MHnvswe9///uU5y+EENsi79YegBBCiO598skn1NXVMXPmTCZNmsRvf/tbXn75ZXbZZZdujzMMg+rqakaPHt3pfLvttlun/Wtra/nzn//M/fffj6p2/dnjbrvtxsMPP0xzc3PG4BGsUsFYLMbVV1/N2Wefza677trlOSsrK7nlllu4/PLLCQaD3HPPPcyePZs33niDQCAAwG9/+1uef/55LrroIkaPHs2HH37IL3/5SwoKCjjggAMAeP7557nmmmuYNWsWF110EaZp8sknn9DQ0MAJJ5zAqlWr+PTTT7n33nsBKCoqcsZQUVHBHXfcwUUXXURJSQkDBw7s5pXt7OWXX2bcuHH8/ve/Z8GCBdx9990YhsEXX3zB5ZdfTiQS4be//S133nknN910U6/OvSFffvklZ555JgcddBBz5syhsbGRO++8k5aWFubMmQNAY2MjBQUFXHfddeTl5bFq1SruueceGhsbO43nD3/4AwcffDBz5szh448/5r777mP48OHMnDmTESNGMGHCBJ599ln22GMP55jXXnuNeDzO4YcfvsHxnnvuuTz99NM888wznHLKKRn3mTt3LldeeSVHH300V111FYsXL+ZPf/pTxvH+7Gc/45RTTuHiiy8mLy/P+eDl2muv5bTTTuOcc87hzjvv5LLLLmPcuHEMHjyYOXPm8Mwzz3DNNdcwefJkysrKAGve6QEHHMDZZ5+Nqqq8//77nHvuufzzn/9k0qRJPfp5nHDCCey7777O9+FwmCuvvDLlw5zLLruMefPmcemllzJ48GBeffVVLrzwQp555hlGjRrl/ByeeuoprrzySoYNG8ZTTz3Fa6+91qMxCCHEVmMKIYTYpl177bXm5MmTzWg0apqmaZ577rnmAQccYBqG4ezzySefmCNHjjS///57Mx6Pm/X19eatt95qTpo0yVy+fLmzn2EY5pgxY8x//vOfna5z1VVXmZdddpnz/ciRI81//OMfnfZbu3atOXLkSHPu3Lndjvv3v/+9WV5ebo4cOdLcbbfdzEsuucT88MMPU/a55pprzJEjR5pffvmls23dunXmqFGjzH/961+maZrmqlWrzPLycvPZZ5/tNN5jjz3WNE3T1HXdnDp1qnnxxRd3OZ5bb73VPOCAAzptt8ewcOHClO1z5swx99hjj077p78uBxxwgHnQQQeZmqY524477jhz1KhR5po1a5xtt912m7nXXnt1Ob6uXHPNNeYxxxzT5eOnnHKKefrpp6ds++ijj8yRI0eaixcvznhMPB43//vf/5pjxoxx7iv753rVVVel7HvkkUeaV1xxhfP9f/7zH3PChAlmW1ubs+3UU081L7300m6fx+mnn+7sc80115gHHHCAGY/HTdM0zT322MOcM2eOs+8JJ5zQ6Tn99a9/NXfZZRezqqrKNE3TfOaZZ8yRI0eajz76aMp+9nb3/fLuu++aI0eONK+99lpnW0tLi7nrrruajz/+eMbx6rpuxuNx8+yzz045Lv2+sH/3unqtL7/8cnOfffYxa2pqTNNM/mw+/fTTlP3cr2FDQ4M5duxY84EHHkgZzyGHHGKOHDky43WEEGJbIGWxQgixDYvFYrz11lscdNBB+P1+AGbNmkVFRQXffPNNp/2POuooRo8ezV577cWjjz7KrbfeytChQ53Hm5ubicViFBYWphz39ddf8/rrr3P11VdvcEz2sbW1td3ud9111znn3GOPPfjggw84++yzeeKJJ1L2Ky4uZuLEic73AwYMYPTo0cybNw+Ajz/+GFVVmTFjBpqmOf/ttddeLFq0CF3XWblyJevXr9/orqqlpaVOxmhj7LHHHng8Huf7nXbaiQEDBjBo0KCUbQ0NDZt1Pmc4HOabb77hsMMOS3ltJk2ahM/nY8GCBYDVbfjRRx9l5syZjBs3jtGjR/OLX/yCWCzWqWx6n332Sfl++PDhVFdXO9/PnDkTwMmirVmzhi+//LJXr/35559PVVUVL774YqfHdF1n4cKFHHrooSnbZ86ciWEYnRpC7b///hmvsddeezlf28129txzT2dbbm4uhYWF1NTUONuqq6u55ppr2Hfffdl1110ZPXo0c+fOZdWqVT1+bm5//etfeeutt5gzZw59+/YF4KOPPqJPnz5MnDix0/08f/58AJYsWUI0GuXAAw90zqWqasr3QgixLZKyWCGE2Ia9//77tLS0MG3aNKdD65QpU/D7/bz88sudylvvuusuBg0aRFVVFXfffTfXXXcdY8eOpbS0FEg2PLEDVdvvf/97TjrpJHJzc1M6wUYiEVpbW8nNzXW22cf2JEjaaaedmD17NrNnz6ahoYHZs2dz1113cfLJJztzL4uLizsdV1xc7ASvjY2N6LreZVlibW0tjY2NAPTp02eDY8qkpKRko46z5eXlpXzv8/lSXjN7m2maxOPxTq//xmppaUHXdW688UZuvPHGTo/bgeNjjz3Gbbfdxnnnncfuu+9OXl4e3333HTfddFOnJjiZnot7n+zsbA499FCeffZZjjvuOJ599llKSkpSSkE3ZOedd+aQQw7hgQce4Kijjkp5rLGxkXg83ulnYn+fPm810/0DpLz+Pp8v43Pz+/3OfWwYBhdeeCHt7e1cdtll7LTTTmRlZTFnzhzq6+t7/Nxsc+fO5a677uKGG25I+fCksbGR2traTuXqgPMBRV1dXcbn1tVzFUKIbYUEl0IIsQ2zG45cfvnlnR579dVXue6661IyZsOHD2fkyJGMHTuWXXbZhZkzZ/LnP//ZCTzsrGP6UiIrV65k3rx5PPbYYynb77jjDv74xz+ycOFCZ1traytAl/Mtu1JUVMSxxx7L7373O+rr651gIdMb9/r6eoYPH+5cx+v18sQTT6Q0A3Kft729HdhwNrU3AoEA8Xg8ZduWasizsXJzc1EUhUsuuYRp06Z1etzOlr322msceuihXHnllc5jy5cv3+jrnnDCCZxyyimsWrWKF154gaOPPjrlPuyJCy64gKOPPrrTPMLCwkJ8Pl+n+8IOuNLvu0z3xMZYvXo1Cxcu5MEHH2S//fZztkcikV6fa+3atfz85z/nyCOP5LTTTkt5LD8/n9LS0m7Xi3X/bhQUFDjbNybIFUKIH5IEl0IIsY1qb2/n3Xff5fDDD+fEE09Meez777/nlltu4dNPP2XvvffOePzgwYM54YQTeOaZZ7jssssoLi7G7/fTv39/1q1bl7Lv/fffj67rKdt+8pOfcMYZZ3DwwQenbLePzdRt1tbQ0JDSMMe2evVq/H5/Slapvr6er776ysnuVFZWsnDhQqfMcs8990TXdVpbWzuVbNp23nlnSktLef7551O6crqlZ+A2pLS0lPb2dmpqapzM74cfftjj438IoVCICRMmsHLlSi655JIu94tEIp2ypZlKUntq4sSJDB06lF/+8pdUVlZyzDHH9Pocu+yyCwcccAAPPPBAynaPx8Po0aN57bXXOPXUU53tr776KqqqZmxGtTlkyupXVFTw9ddfM3LkyB6fp6Ojg4svvpj+/ftnzCbvtddePPLII4RCIYYNG5bxHCNHjiQQCPD22287+xiGwdtvv92bpySEED84CS6FEGIb9fbbbxMOh/nJT37C+PHjUx6bOHEif/nLX3jppZe6DC4BzjnnHJ566in+8Y9/OGtXTpw40ZmLZ5s8eXLG44cMGZLSFRRg/vz55ObmMmLEiC6v+9xzz/Hiiy9y9NFHU15ejqZpfPzxx/zrX//ilFNOcbrAgpWpuvrqq51usXPmzHGynABDhw7l5JNP5mc/+xmzZ89m7NixRKNRli5dyqpVq7j55ptRVZWrrrqKX/ziF/z85z/n8MMPR1EUPvnkE2bNmsXYsWMZOnQodXV1PPvss4wYMYLCwsJuu8Luu+++BINBfvnLX3LWWWexbt06/v3vf3e5/8aYPn06e+yxB7feemu3+7W0tGTsFDpt2jR+8YtfcOaZZ6KqKocccgjZ2dlUVVXx7rvvcuWVV7Lzzjuz9957849//MPplvriiy+yevXqTRr78ccfz+23385uu+3WZZC0IRdeeCEnnHBCp+2XXnops2fP5rrrrmPmzJksWbKEP/3pT5xwwglOZ9fNbejQoZSVlXHbbbdx+eWX097enjJXsqduueUWli9fzu23356yZJDf72fXXXdln332YerUqZx99tmce+65DB8+nLa2NhYtWkQ0GuXnP/85hYWFnHjiidxzzz14vV6GDx/OU089RUdHx+Z+2kIIsVlJcCmEENuol19+mSFDhnQKLMHKwh122GG8/PLL/OY3v+nyHAMGDOCII47giSee4LzzziMUCjFjxgyuu+46IpHIRi38/sEHHzBjxoxulyuZNm0a69at4z//+Q9VVVV4PB4GDx7MDTfc0CkL279/fy644ALuvPNOKioqGDNmDHfeeWdKAPp///d/DBkyhKeeeoo5c+aQk5PD8OHDOf744519jjjiCAKBAPfffz+XXXYZoVCI8ePHOxnUww47jE8//ZQ77riDhoYGjjnmmG6DuqKiIubMmcPtt9/OxRdfzOjRo7nzzjudhjabQzgczpjhTbd27dqMpdFvv/02kydP5vHHH2fOnDlcffXVGIZB//792XfffZ3yyosvvpjGxkb+9Kc/ATBjxgxuuOEGLrjggo0e+0EHHcTtt9/e7ZqoGzJu3Dj22WefThnhqVOnctddd/GXv/yFF198kaKiIs4++2wuvfTSjb7Whvj9fu655x5uuukmLrvsMsrKyrjgggv47LPPnDUse2LVqlVomsbPfvazlO0DBgzgf//7H4qicO+993L//ffz2GOPUVVVRX5+PrvssgtnnHGGs//VV1+Npmncd999qKrKkUceyVlnnbXBDyKEEGJrUkzTNLf2IIQQQvxwYrEY06ZN49e//jWHHXZYr45tbW1l77335pFHHuky29kb1157LUuWLOHZZ5/d5HNtb9auXcvBBx/MG2+8kdJVdnvx+OOP84c//IEPPviAnJycrT0cIYQQ2wBZikQIIX5k/H4/s2fP5u9//3uvj33iiSeYMGHCZgksf+y+/vprDjrooO0usFy3bh1z587lgQce4JhjjpHAUgghhEPKYoUQ4kfo9NNPz7jMyIbk5ORw/fXXb8GR/XgceeSRHHnkkVt7GL1277338tJLL7H77rtnLNUVQgjx4yVlsUIIIYQQQgghNpmUxQohhBBCCCGE2GQSXAohhBBCCCGE2GQSXAohhBBCCCGE2GTS0KeHDMNE142tPYxOvF4VTdv2xiV2DHJ/iS1J7i+xpck9JrYkub/ElrQt3l8ej4qqKt3uI8FlD+m6QVNTx9YeRgpVVSguzqGlJYxhSF8msXnJ/SW2JLm/xJYm95jYkuT+ElvStnp/FRSEUFVPt/tIWawQQgghhBBCiE0mwaUQQgghhBBCiE0mwaUQQgghhBBCiE0mcy6FEEIIIcSPhmmaGIaOuQlT2VRVIRaLoWnaNjUnTuwYtsb9pSigqh4UpfuGPRsiwaUQQgghhNjhmaZJW1sz7e0twKa/Ya+rUzGMbaubp9hxbJ37SyE7O4+cnPyNDjIluBRCCCGEEDs8O7DMyyvC7w8Am5ih8SpommQtxZbxw99fJrFYlJaWBgBycws26iwSXAohhBBCiB2aaZpOYBkK5WyWc3q9KiCZS7FlbI37y+v1AdDS0rDR2Utp6COEEEIIIXZohqEDZiJjKYToivU7YiZ+Z3pPgkshhBBCCLFDSzbv2bRSWCF2fNbvyMY2vJLgUgghhBBCCCHEJpPgUgghhBBCCCHEJpPgUgghhBBCiB+Br776gqlTJ9PR0dHtfscffwTPPPPkDzSqbdfDDz/A7NlnbO1hbFckuBRCCCGEEGIbdPPNv2Hq1MncddftnR678cYbmDp1Mvfee/dGn/+VV15k1qwDO21/8MG/M2vWUc73U6dO5sMPP9jo62wPMj3HU045gz/+8Z4tfu1LLjlvk36O2xIJLoUQQgghhNhG9e1byptvvk4sFnO2tbe38cEH79K3b+kWuWZhYSHBYHCLnHtTxePxH+xaoVCI/PyCH+x6OwJZ51IIIYQQQoht1K67jmblyhXMnfs+06cfBMBbb73ByJG7oKqpeaKpUydz2213sc8++wLQ0dHBwQfvx5w59zNx4uSUfb/66gt+//sbneMAzjrrXGbPPp/jjz+CU045neOOO4njjz8CgGuuuRKAsrJ+PP30i6xdu4Z7772LhQsXEIlEGDp0GBdddDnjx09IGc8vfnEd7733P7799hv69u3L5Zf/nL32murss2LFMu6990/Mm/c12dnZ7LXXVC655Epycqz1SC+55DyGDx8JmLzxxmuMHj2GO+74U8bX6r//fY4nnvgHNTXV9O8/gFNOOYNZs44ErKB0zpw/8t57/6OtrZXi4j6cdNIpHH/8yV0+x4cffoCPPprLww//A7AyyeFwB8OGjeCZZ55E1w3OOOMsjj/+JP70pz/w5puvk5+fzxVXXOX8DDRN4/bbb+arr76goaGBfv36cdJJp3Hkkcc45/zmm6/45puv+Pe//wnAU0/9l0GDBm7wtdkWSXAphBBCCCF+lJ57vJpF37Vv1LGK0vvlGnYZm80xp5X1+lozZx7BK6/81wkuX3nlRY444mhee+3lXp/LNnbseC677Oc8+uhD/OMf1vzKrKxQp/0efPDvHHHEDH71q5uYPHkPVNUDWIHr3nvvy/nnX4zX6+OFF57l6qsv58knX6CgoMA5/qGH7ueiiy7jyiuv4r//fZ7rr7+aJ554ltLSMlpbW7nssgs5+ujjuOKKn9PREeaee/7IzTf/hltu+YNzjpdf/i/HH38S99//ty6fzxtvvMojjzzIlVdezfDhI/j++4XcdtvvyMvLY9999+epp/7Nhx++z29/exulpaVUVlbQ0tLc7XPM5LPPPqWkpC9//vNDfP75Z9x11+188cVn7LPPVB5++B8888yT/Pa3v+bZZ18mFAqh6zqlpWX87ne3kZeXz9dff8mdd95KWVk/9thjTy6//BesXbuG4cNHctZZ5wBQUFDY49dmWyPBpRBCCCGEENuwQw+dxcMPP0BdXS3t7e2sWLGM6dMP2qTg0ufzkZOTg6JAcXFJl/sVFhYCkJOTm7JfefkulJfv4nx/6aVX8t57/+PTTz/ikENmOtsPOugQZs60MoOXXHIFn332Mc8//wznn38xzzzzJKNG7co551zg7H/11ddz2mnH09jYQGFhEQA77TSE88+/uNvn8/DDD3DppT9jv/32B6B//wEsWbKIF154ln333Z/166sZNGgw48aNR1EUysr6bfA5ZlJQUMBll/0MVVUZPHgIjz/+GIGAn+OOOwmAM888l6effpKlS5cwfvwEAoEAs2ef7xzfv/8AvvnmK/73vzfZY489ycnJwev1EgwGU6791FM9e222NRJcCiGEEEKIH6WNySLavF4VTTM242i6VlxcwuTJU3j11ZdpbW1h2rTphELZP8i1u9LR0cHDDz/Axx/PpaGhHl3XiUaj1NRUp+y3665jUr4fPXosq1atBGDZsqV8/vmnzJixb6fzV1SscwKoXXYZ1e1YwuEwFRXruPnm/+OWW250tmua5gSRhx46iyuuuJhTTz2OPffch6lT92PSpN17/byHDh2WUo5cUFDIkCFDXd8X4PF4aGpqcLY988x/ePnl/1JTU0UsFiMej7PbbpO6vc6yZUt69NpsayS4FEIIIYQQYhs3a9YR3H//vXR0dPB///e7jPsoioLpqtXVNG2Ljee+++7myy8/56KLLmfAgIEEAgF+8YvLOzXcUZTM4wQrKNx33/0zZiX79OnjfB0MZnU7lnDYWlrll7/8P8rLUwNRr9cKd3bZZVeeeuq/fPLJh3z++adce+3POeigg7nmmhs2/GQznM/9XNK3ARiG9cHDW2+9zp///CcuvfRn7LrraEKhbB555K/U1NR0e52Ojo4evTbbGgkuhRBCCCGE2Mbts89+3HHHLWRlhbrMehUUFNLQUO98v2zZkm7P6fX60PUNZ1+9Xi+Goads++67b5k160inDLWlpYXa2s4B04IF85kx41Dn+4UL57P33lY2buTIcj744D369euPx9P1PMcNKSoqpqSkD5WVFRx44MFd7pebm8uMGYcyY8ahTJmyFzfd9CuuuuqXqKqa8TluDt999y3jx+/G0Ucf52xbu3Ytfr/f+d7n83W6dnl5Oe+9t+mvzQ9NliIRQgghhBBiG+f1ennyyed47LF/OZm/dLvtNolnnvkPy5Yt5bvvvuXBB//c7Tn79etHe3sbX331BU1NTUQikYz7lZX154svPqO+vo6WlhYABg4czLvv/o+lS5ewZMkifvOb6zM2wnn77Td49dWXWLNmNX/+859Ys2Y1Rx1lBVrHHnsCjY313HTTDSxatJCKinV8/PFcbrvt5t68NACceeZs/v73v/HMM0+yZs1qli1bygsvPMtzzz0NwJNPPs7bb7/BmjWrWL16Fe+//y6DBg12SlwzPcfNYeDAwSxcOJ/PP/+ENWtWc999f3LKgm1lZf1ZsGA+1dVVNDU1YRgGxx130mZ7bX5IElwKITarlmgzH1d+SFgLb+2hCCGEEDuU7OycbudaXnLJFRQUFHLBBWdxxx2/5+yzz+v2fGPHjueoo47lV7+6hsMPP4jHH3+sy/N++unHHHvsLM4++zTAauATCoW44IKz+OUvr+KAAw5k8OCdOh07e/Z5vPbaK5x55im89947/Pa3t1FWZs117dOnL3/+88PEYjGuuOIifvKTk7jvvjkp3WZ76uijj+fnP7+W//73eX7605O5/PIL+N//3qR//wGAVVr7j388yuzZZ3D++WfS2trK7353e7fPcXM46qhj2Xff/fnVr67lggvOJh6PO8uj2E455XQATjvteA4//CBqaqrp23fzvTY/JMU0e9tE+ccpHtdpaurY2sNIoaoKxcU51Ne3YRjyYxSb18beX9+s/4p5td+yz4Cp9MsewMrmFZQX7YJX3bar8OMxg08/aGLl0jBtLRqqqqCoMGR4iIOP7L5znOg9+fsltjS5x4SbpmnU1VVQUjIg4/y4jfFDNvTZXqWvuyl6bmvdX939rhQUhPD5ui/R3bbf7Qkhtjsx3ZrIrxsGSxoXMa/2W7J92QzJ33krj6x7rzxby9efdC6DqVwTZcjwLEbuunW78gkhhBBCbOskuBRCbFa6aXWmMzCIG1agaf//tmrx/DY+/mwt6/t+ygXHHMzYnYZimrBiSQdPP1bN68/XMqw8hMeTeY6LEEIIIYSQOZdCiM3MDiQN08BIVN3r5ubvvra5GIbJK8/U0uKrZNTuHhYZcwlkKYSyPYyekMPQ8hD16+N892Xr1h6qEEIIsV2ZO/cLKYn9kdnhg8uHHnqIww8/nMMPP5y33357aw9HiB2e5gouTdNA100+/7iexfPbtvLIMlv2fQfNjRqDd8qhtH8AgG/Xf01F6zpMTCbvnQfAutWZO+gJIYQQQgjLDl0Wu3jxYl5//XWeffZZYrEYZ511Fvvttx8+n29rD02IHZZmWGWxpmlQVx/hw7cbCVQ3sJYafn5TiEBg2/pM68uPmwHYZXwQe8bld3XzAJhUujul/UYCsL4qujWGJ4QQQgix3di23uVtZsuXL2fChAn4/X5ycnIYMGAAX3311dYelhA7tLgep7E+xluv1PLCE9U0N2koXoNY1GD+V9tWaWlLk8aSBe1k53gYsLO1mHFRsJj+Of0BWNu6hqISH16fQk1lDGmuLYQQQgjRtW06uPz888+54IILmDp1KuXl5bzzzjud9nn88ceZPn06Y8eO5cQTT2TevHnOYyNGjODTTz+lra2N+vp6vvrqK6qrq3/IpyDEj0rFmghvvlrD3LebWLKwDX9QYfSEHA4+pghIZgm3FV9/2oxpwoQpeZiKNS90XJ/xHDj4YILeILXh9WhmnD5lfqIRg5ZmbSuPWAghhBBi27VNl8V2dHRQXl7Osccey6WXXtrp8VdeeYVbbrmFG2+8kfHjx/PYY49xzjnn8Nprr1FUVMSIESM46aSTOP300ykqKmLChAmbtLaRqm5bnSLt8Wxr4xI7ht7eX1rc4J/3V7DeEyY338M+++bTb2gulZEIfQu99CnzU7kmykfvNLLntEK83i133xqmgWZo+D3+rvcxTL7+1CqEnbx3PotjGooCfq8Pj0dlYO4gljctpSZcRWm/IFVro9RWxyks6vqcoufk75fY0uQeE25yHwjRO6qqbNTvzTYdXE6bNo1p06Z1+fgjjzzCSSedxHHHHQfAjTfeyLvvvstzzz3H7NmzATjttNM47bTTALjooosYPHjwRo3F61UpLs7ZqGO3tMJCWX9PbDk9vb9WL28n3GHQp9zLfjNLGFdaQku0hZbmILl5AY44vj+P3LeKN16oo7Za45zLhm6xMT+/6HnWt6/nrAln4fNknmO94Ntmmho0ykfnMnKXItat9JMTD9KnOJ/inBzGKCOp0dbSpjaw8/ByvvmshbYmc5v9O7C9kr9fYkuTe0wAxGIx6upUvF4Fr3fzFe5tznMJkW7r3F8KqqpSWBjC7+/9B+rbdHDZnVgsxoIFC7jwwgudbaqqsvfee/PNN9842xoaGigqKmLhwoXU1tYyduzYjbqephm0tIQ3ddiblaoqFBZm09jYjmHIXDCxefX2/lowrxGAvGKTjvYojU1ttMbaaWuL0OBpZexIPxddsxOP3ruObz5rYu2aZkLZni0y9hU1awBYV7OevEB+xn3efb0GgPG751Bf30ZjUxttbRGam8L4om0EtXza26N8H13GhPxyAFYua6W+XoLLzUH+foktTe4x4aZpGoZhoGkmYGyWc3q9Kpq2ec71Q7v55t8QDnfwu9/dvtHneOaZJ3niiX/y9NMvbsaR7XheeeVF7rvvbl5+uXerVmyt+0vTTAzDoLGxA683lvJYXl4WPl/379222+CysbERXdcpKSlJ2V5cXMzq1aud7y+88EJaW1vJzc3l1ltv3aRrbqv/OBmGuc2OTWz/enp/rV0VwcQgv8iDaYJuGOiGjmlCXNcwDJM+ZX52GZfNlx+18P28NnabkodpmsSiJoHg5vl0LqbHsPvu6IbR5djXrgqjqDByTAjDMInrcUwTVNODYZj41QBZnhBtsTaKB1h/Kqsro/K7tpnJ3y+xpck9JmDbfQ+3ITff/BteffUlALxeL6WlZRx22OGcfvqZmzTV6/LLfyFN6raA448/glNOOZ3jjjvJ2XbggTPYa699tvi1N8cHBm4b+7dzuw0uu2KaJoqSrA9+8sknt+JohPjxqFgdwUCnoNgqQzVMAyPxD5duJBvh7DI2hy8/amHRd1Zw+f4bDbz3egNHnlzKuMm56JqJz7/xgWZzNNk0SDf1jPsYhklbi05uvtcpOdES+3rV5J/FgCdIe7wdX7ZGMKRStz6OYZgyd0cIIcQPZu+99+Waa64nHtf49tuvuO22m/F4PJxxxlm9PpemaXg8HnJyto8qnHg8vt0vIRgIBAkEglt7GD+Y7bZQvLCwEI/HQ11dXcr2hoaGTtlMIcSWFe7Qqa+Nk1cC/kRgaAWXVjmHbibLOnYeESIQVFm+uINY1GDeF60YBjz/RA133biS265fQeXayEaPpTnaBEB7m8Yj967h9edriUVTy0raWq2Mam5esrTDXp/T4woug94AADE9SnGJD10zaZWOsUIIIX5Afr+P4uISysrKOOSQmRxyyGHMnfs+ANFolHvuuYujjjqUGTP25cILz2b+/O+cY1955UVmzTqQ999/l1NPPY7p0/emqamJm2/+DTfccLWzXzQa4Y9/vI3DDz+I6dP35tJLz2f58mUp43jppec59thZHHTQVH796+toa2tLedwwDB5++AGOPvowDjhgL2bPPoOvv/4yZZ8PPniXk046munT9+FnP7uEF154lqlTJzuPP/zwA8yefQbPP/8Mxx9/BDNnTgfgo4/mcuGFZ3Poofsza9aBXHfdL6ipSa4A8dVXXzB16mQ+/fRjfvrTk5k+fR9+/vPLaGlp4e233+TEE4/i0EP35w9/uBVdz/zBs+3999/lzDNPZfr0vTnppKN5/PHHMIzk+4iHH36AY4+dxQEH7MUxx8zkgQfuA+CSS86jurqKu+66g6lTJzvPy/4ZZHqOxxwzkxkz9uOee/6Irus8+OBfmDXrQI4++jCef/7ZlHHde+/dnHzyMUyfvg8nnngUjz32sDOuhx9+gFdffYl33/2fc+2vvvoCgJqaam644RoOOWQas2YdyA03XE1dXW23r8Gm2G4zl36/n9GjR/PRRx8xfbp14xmGwccff8xPf/rTrTw6IX5c1q60gsGywV7sAgp3cKm5Mpder8KIXUPM/6qND//XSH1tnFCOh0iHTmuz9Qf/rRfr+MlFAzdqLM2xJgAWftNGsCpM67omli/u4PxfDMbjsTKOdoCYm5/8E2hnV71KauYSIKpHKerjp2JNlIa6OPmF2/enqEIIISwfVnzA2tY1G3Wsqiq9LhsclDuYfQbsu1HXswUCAeLxOAB3330Hq1ev4re/vZXi4hLefPM1rrzyYv71r6fp06cvYK2+8O9//5Prr7+R7OxssrM7N7n685/nMHfu+/z617+jpKSERx99mJ///FL+/e/nCAaDfPfdt9x++++58MLL2GeffZk7930ee+whcnPznHM8+eS/eOqpJ7j66hsYNmw4zz33NFdddTlPPPEsffr0paqqkl/96lpOPvl0Zs48nAUL5vOXv9zTaSxr1qzio48+4JZb7kRVrQ+sI5EIJ598BsOGDae9vZ3777+H3/zml/zlL39LOfbRRx/kqqt+icfj4frrr+ZXv7qGUCjErbfeSU1NDddffzXjxo3n4IMPy/jafvvtN/z+97/hiiuuYuzY8axZs5rbb78Zn8/PiSeewjvvvMV//vMvfvOb37PzzsOoq1vP2rXW/fP739/BmWeeyjHHHM/MmUd0+zNcs2Y1X3/9BX/8472sXr2S//u/X7JixXJ23XUM99//CO+++z/uuONWJk3ag379rLW3c3JyuOGGGykuLmHJkkXcdtvNFBQUctRRx3LKKWewevUqIpEI11xzPQB5eflomsbPf34p48ZN4C9/eRhQePjh+7nmmp/x4IOPOa/v5rRNB5ft7e2sWZP8hV+3bh3ff/89JSUl9OnTh7POOourr76a0aNHM27cOB577DEikQjHHHPMVhy1ED8urz9fy6fvNwFWcFmV2G6YBmaiaYKRVp46aa985n/VxttvVqHiZdJehUzcMx+PV+HRe9exYkmY5Ys7GFYe6vV4mqPN1NfGqK6MMaZAoY/fz/qqGDWVUfoPsoLF1pbOwaVm2pnLZDYz6LX2j+gRikpyAWioi7PziF4PSwghhNhkCxbM5/XXX+Xww4+iurqaV155keeee4WiomIAzjzzHD76aC5vvPEqp51mJVvi8Ti/+MV1DB06LOM5Ozo6eOGFZ/nVr37LHnvsCcAvf/l/HHfcLN5441WOPPIYnn76SfbeeyqnnHI6AKeeegbffPMlK1Ysd87z73//kzPOOIvp0w8C4PLLf84XX3zGs88+xfnnX8zzzz/DkCFDueCCSwAYPHgIS5Ys5qmnnkgZj67r3HDDjeTlJRvy2ee0XX319ZxwwpGsX19D376lzvbzzruYMWPGAXDoobP45z8f5cUX3yA/v4ChQ4czefLufPXVF10Gl3/721/5yU/O5tBDZwEwYMBAfvrTs3n66Sc58cRTqKmppqiomN13n4LX66WsrMy5Xl5ePqqqEgqFKC7ecBXltdf+mqysLHbeeSi77jqGxsZGzj3XalR62mk/4Z//fJR5875xgsszzzzHObZfv/4sW7aU//3vLY466lhCoRCBQADD0FOu/frrr6AoCldffb2z7frrb+Swww5g0aKF7LrrmA2Os7e26eBy/vz5/OQnP3G+/93vfgfAJZdcwqWXXsrMmTNpaGhgzpw51NbWMmrUKB566CGKioq21pCF+FHRNIOP32vC61XYc/8CRk+MU7XWeszElbk0U0tJhwzPou8gD+83v0621pdho47li9a3GZA7iANnDeapR6t54YkazrxkAEUlG26Dreumk5Vs6Gjku69aAdj7wHyUhmzWV8WornAFl3bmMs8VXBoaqqKiKslP8YJ25lKLUlRi/V1pqI33+nUSQgixbdqULOIP1c3zgw/eY8aMfdF1HV3XOeigQzj77PP4+usv0XWdk046OmX/WCzG8OHJT0EDgUCXgSVARcU6NE1j3LjxzrZgMMiIEeWsXr0SsLKJBxyQGuCNHj3WCS7b29uor69j7NjkORRFYezYcaxevSpxjtWMGjU65Rzp34MVOLkDS4C1a9fw0EN/YeHCBTQ1NUGiTqqmpjoluBw2LPm8i4qKKCoqJj+/wNlWWFhEY2NDl6/F8uVL+O67b3nkkQedbbpuYCbez+y//0E8+eS/OPHEo9hzz73Ze++p7L33vr3OAPbvP4CsrKyUsfr9Aed7VVUpKChIGevbb7/BU0/9m4qKdUQiYTRNo7S0X7fXWbZsKWvWrGbGjNT7XNd1KirW/fiCyylTprB48eJu9zn99NM5/fTTf6ARCSHcmhs1MGHA4CAHH1nCuta1zmMpcy6N1Myloijstm+Ad17WMLPaKegXp2pFFXFD47DxuzJ+91y+/byVR+6p4MKrB3e7ZElTY5w/37qa8jE5HHFyCZ99XkVrs05JXx9DR/mJrLb+WFetizrH2OW3ufnJ8xqmkdLMB5JlsRE9TFGJVQrbUC/BpRBCiB/O5MlTuPLKq/B6fZSUlDhdYsPhDrxeL3/72+MpzSyBlNLXYLBnzWTSz2H15FOcr9Mf77xvpnOYJDe5v05uSxcMZnXads01V9K//wCuu+7XFBeX0NHRzrnn/tQpD7a5O+gqitKpo66iKN12ye3oCHPuuRey777TMj5eVlbGE088y2effcLnn3/Krbf+lpEjd+HOO+/p9vVJl2lcnbcluxzPnz+Pm276FeeccyG77z6F7OxsXnrpBd5++41urxMOd7DrrqO5/vobOz22pZJx23RwKYTYtjU1WH/UC4utPyXuuZWpDX06T54fuquPnRYFKSsJoqEljo+jKApHnVJKPGay8Ns2vvmshb0PKOxyDGtXRohFTb77spX5i6tY6Qnj9yvWMieY9BuYCC7XuoLLTGWxhkbAE0g5dyDR0CeiRSnqkwgua1PXfBJCCCG2pKysIAMHDuq0fcSIkWiaRnNzk1OauTEGDBiI1+vl22+/4cADZwBWg59lyxZz0EEHA7DTTkNYsOC7lOMWLJjvfJ2Tk0NxcQnz5n3jZC9N02T+/O/Yb7/9AasM9rPPPk45x6JFCzc4vubmJtasWc0vf/l/zvP85JOPNu7JbsDIkeWsXbs64+ttCwaD7Lff/uy33/4ceugszj//TGpqaigrK8Pr9aHrmz+b/d138+jffwBnnHGms626ujJln0zXHjGinHfffZuioiJCoc5zbbeE7bZbrBBi62ust4K0giIr8EoNLs0uM5cAcTPKuEl5DNjZS1y3Aja7fFZVFfY7xPpE7ZvPWrr9lNEO9lQPtERaycv3MHmffIJZHnRTp7DYRyCopqxRmd7Qxw6E0zOXTlmsHiGU7SEQVGmoi8vaYEIIIba6wYOHcOCBM7jppl/x/vvvUllZwYIF83nkkQc7dWntTigU4qijjuW+++7ms88+YcWK5dx88414vT5mzDgUgOOOO5GPPprLk08+zpo1q/n3v//Jt99+lXKek08+nX/84xHeeect1qxZxZ/+dCfV1ZUce+wJABx11LGsXLmCBx64jzVrVvP6669sMPMGkJubR35+Pi+88CwVFev4/PNPuP/+e3vxSvXcT386m1deeZFHH32IlStXsHLlCt5441Uee+xhAF599SVefvm/rFixnIqKdbz99uvk5OQ6WcB+/frxzTdfUVu7PlG+u3kMGjSIqqpK3n77TSoq1vGvf/2DTz9NDdT79evnlME2NTWhaRoHH3wY2dk5XHfdVXz77TdUVlbw5Zef84c/3EJra+tmG5+bZC6FEBvNzlzawWXcSJanGKbhZCx1U++0Bm1MjzrHRO2v9eTxZf0DlA0MUL0uSuXaKAMGZy7rqU/MgTzxzH5Ecg3mtRejKqpzfUVR6DcwwKplYerWx+hbFug059IOijuXxVqZy6geQVEUikp8VK2L0taqp8zXFEIIIbaGG264iUceeZA5c+6krq6WwsIixowZx0EHHdKr81x00WWYpslNN91AR0cHu+46hjvvvMcpqR03bgK/+MV1/O1vf+Wvf/0ze+21D6ee+hNefPF55xwnnXQqHR3t3H33H2hpaWbo0OHcccefKCnpA1jzDG+66Vbuu+9unnzycSZMmMhpp525wUBRVVV+85vf86c//YEzzjiRIUN25uKLL+PKKy/p3YvVA3vttQ+33HInjz76EH//+yP4/T6GDBnqBMjZ2Tn84x+P8Kc/3YlpmowYMZI77rgbv9/qDzF79gXcccfvOemko4nFYsyd+8VmGdfUqdM48cRT+OMfbyUe19h33/047bSf8sILyeVKjjjiGL7++ktmzz6DcLiDOXPuZ+LEydx334P85S9z+OUvf044HKZv31J2331PZ8ybm2LKR/A9Eo/rNDV1bO1hpFBVheLiHOrr23rdCluIDenJ/fX036uY/1UbZ146kCHDsviubh5f11iflhYFi2mNtTgB56mjzsCreqkL1xH0BlnbsobPqz8FYHLZHnxR/Rle1cupo85wzv/p+028+mwtpf397LFvARP3zOs0p+Ghu9aybnWEK349hPWs4JOqj8j2ZdMeb2e30kmMLRnHa8/V8sl7TRx7einjJudx+w0riEYMbrhjGIqi0BHv4OklT1KS1YeZQw93zh3RIvxn8RMUBYs5fNiRPPVoFQu+aeOsyway09DOc0JEz8nfL7GlyT0m3DRNo66ugpKSAZ3mtm2sH6qhz47s/vvv5aOPPuDvf39yaw9lm7O17q/uflcKCkL4fF33wQApixVCbIImpyw2kQF0ZR7d3WLByg5qhsbrK19h7rr3ieoR57H2eJuzj2madMQ70AyNcZNz6VPmp6YyxotPrmftquQxtvq6GB6vQl6Bl5hhlcgGvVbgZ69d2W+QlYFcuyqCphl0tOnk5nucQFU37cxl6h9Mv8f6VM8ea3LepTT1EUIIIXrrmWeeZNGihVRUrOOll57nmWee5NBDD9/wgWK7IXVdQoiN1tQYR1UhLzF3MZ7e0IdkcKmbOoZulaq2xJopDCa7lLXH211ft/Hs0qcpDBZyxLCjufDqwbz7WgPvv9HAisUdDN45mTEMd+iE2w36lPlRVcWZu5mVWJ/SLssdVh5CUeGd+V/AKD+wU6dlSKBzWayqqPg9fqds1y7/tcuBhRBCCNFza9eu4e9/f4TW1hbKyvpx1lnncfLJp23tYYnNSIJLIcRGiccM2lqshjmqmpoBtL7WUxrfGK6OsREtQkQLO9+7g8umaBMAjZFG4nocn8fHrhNyrOBySQf7H2otFB0J69Svt4I8e5mQWKIEN+ixM5dWcJuT62VYeYgXKr/jo/khFKWM3Pwc11it/TxK5z+JWd4smqPNaIbmZGibGyW4FEIIIXrriiuu4oorrtrawxBbkJTFCiE2SlNjoiS2OBmQuRv6uDvH2t+7tzUngkhIlsWCFXjaKtsrAOhb5ieYA+tWRYhGDRrq4tzxq5U89VgVAMV97IZCdlmsnblMXm/sRCuYXL64AzDJL0iOW+8icwnutS4j5Bf6Up67EEIIIYRIkuBSCNElzdBSOri6pXeKtfZP7pu+/Ihm6E6GEKAl1uJ87Q4oO7RkFnNd61oA5tV9Te2Q14maYdYsD7NkQTu6ZtKcCPKK+lhzI2NOWWzIGoMrW7rTKBWPB3Qd8gpVdp+an/I8ATxK50nqTsdYLUp+YSJz2SDBpRBCCCFEOimLFUJ06eUlL1PT2MAxw4/v9FhTvRVIFqYEl8mgSzNTAzDD1MF0f5+5A1qHq1x2XetaTNOkPlxHQalK06ImVizpoKEuNeC1M5d2cBvwWgGhO8CNqWHGTsqluVHjp4f3o6gg2YLbHqtH7Rxc2lnQqB7Bl6WSneuhuSmOYZhOObAQQgghhJDMpRCiG02RJtpirWRasaipIbVTLKQ29Ek/Rjf1lExiV8Lx5JI/UT1KQ6QBzdTpW+ZH84SZ92Urq5aF8foUxkzMIZTjoWyAFUzGElnWUIbMZUe8nUFDshizWy7+tCUznbLYDHMu7cxlJNExtqDQi6FDW8uGn4sQQgghxI+JZC6FEF2y51Dqpt4p8GrspizWq3ozzrnsibArcwkQ06PE9ThZIQ/9Rhi0z7eCuqEjszjujDIMAzweJTHexJzLxDxJdxMhd9MgPS1rqiUynN3OuUyU7uYX+ahYE6WpMU5egfwJFUIIIYSwSeZSCJGRbuhO6WqmwNCZc1ncuSzWp/o67a+ZWqdS2UzCmpW5tDOGcSPuBK1DxyXLUHceEUJRFCewBGvOpVf14vXYZbJdBZdp80GdsthM3WLt4NIKemXepRBCCCFEZhJcCiEycnd+zVTO2lSv4fEq5OR6Uo7xqt6McxcNw+jU5CdTAx07cxnyWaWtmhF3gr/s4hj9BllB57BdQhnH7FW9TpbVHrdpmimNgoy0cdj7ZSqLDXqtZU3szGWB0zFWliMRQggh3C688Gzee+9/zvdLly5h9uwzOOCAvTjzzFNpaWnmyCMPobZ2/VYcpdiSpKZLCJFRSnCZlrmMRg062nWK+/hSmtpohobf40fN8LmVbuqYpM7DzPHn0BxtTtlmZ0tD3hCNNBJ3LWHSFm/jpLP6UV0Zpf+g1ImTmqFhmAZ+1e8ErYap81HFXNa1rXUyofZYUsbmLEXSdUOfiJ7IXBZJ5lIIIcSWN3Xq5G4fP+usc5k9+/wfZCyLFn3PQw/9hUWLFhIOhykp6cOYMeO49tpf4fNZH7p+8MG7tLe3s99+BzjH/eUv99C3byk333wHWVlB8vLyOeyww3n44Qe49tpf/SBjFz8sCS6FEBlp3WQumzPMt4zqUQzTIMublbEBkGZonYNLX+fg0hbyZQNWkGsHulE9SnY+7FKU02l/exkSn8fvZE41Q2NZ01IgdbmTTmWxRtdlsUGPnbmMWs9ZMpdCCCF+AC+88Jrz9SuvvMhzzz3Ngw8+5mzLykpW8Jimia7reL2b/619Y2MDV155Mfvttz933fVnQqEQFRXreOedtxOVQNa/i08//R8OO+wIFCX5oXNFxVpOOOFkysrKnG2zZh3BmWeexsUXX0Fubu5mH6/YuqQsVgiRkbvzq5ZWRuo08ylO/iPWFmsDINuXjaJkylxqKQ12ALL9Xf+jkpUoR43qkZRgtT3elnF/Oxj2qz5URUVRlC6703aec2l9n6lM185c2nNBnTmXjZK5FEIIseUUF5c4/4VCIVRVdb5fvXoVBx+8H5988hFnnXUq+++/J0uXLubmm3/DDTdcnXKeG264mptv/o3zfTQa5Z577uKoow5lxox9ufDCs5k//7sux/Hdd/OIRiNcffX1jBgxkgEDBrLHHntyzTXXEwhY/0Y2Njby1Vefs88++zrHTZ06mYqKddx99x+YOnUyDz/8AACDBw+hb9++zJ373mZ8tcS2QjKXQohOdN1k4fxG4oVWiaph6tStj7FicQfNjdZcS0jNXNpBX8iXQ9iVJXTOaWQoi/UlM5CqoqasfRnyWpnLSNq52uJtFAQLne9N0+Tb2q/J8VmBqs9jrV/pUTyd5ngmj0ntFpssi+38J1FVVAKeAFHdylxmhTz4/AptLRJcCiHE9i730gvwv/ryD3a92GGzaL3n/s12vgceuJdLLrmS0tIy8vMLenTM3XffwerVq/jtb2+luLiEN998jSuvvJh//etp+vTp22n/oqIiYrEYc+e+z3777Z+SmbTNm/cNoVCIQYMGO9teeOE1zj33pxxzzPHMnHlESqa1vHwU3377NYcddnjvn7TYpklwKYToZP5XrTz/ZCWRoesZvVsOLz1TzdqvW7FjQ/vfldTg0mqYk+PLoTHS4Gz3qT6r46upYTrHK5imSZY36Dwe8oWc7CdAls/KXNoZQ1tbWuZydcsq5tV+63zvV63gUlXUlHmjbrqRvhRJoiw2Q0MfsLKXzdFm4nocn8dHMMtDW4uGaZoZ/5EVQgghfgjnnnsRkybt3uP9q6urEyW2r1BUVAzAmWeew0cfzeWNN17ltNN+2umYMWPGceqpP+HXv76W3Nxcdt11LLvvPoVDD53llLXW1FRRVFSc8m9icXEJqqoSCoUoLi5JOWdJSQnLly/bmKcstnESXAohOlm3OoKhaNTWxHj3tQYGtTdTlp3HpL3y+PT9ZmJRKzgrdAWXbfFWwCqLVV1lsV7VS9yIo5uGkzHM9+fTFG0i5M12Hg95s53g0qN4nPUl09e9bIu1djt2X2IZEq/qdeZhqoqKqqjk+HJoijZ1buhjdt3QB6yOsc3RZiJ6OBFcqrQ2QyxqEghKcCmEENurTckier0qmmZseMctaJddRvVq/xUrlqHrOieddHTK9lgsxvDhI7o87qKLLuOUU07niy8+Y8GC73j88cd4/PHHeOihv1NS0odoNIrfH+jy+HR+f4BotHOVk9j+SXAphOikpjKKoWiEsj3EYwZTDsjl6IOG4PNDRXgVy+fmoqCmzLlMZi5zUUkGXH6Pn7AWRnc19BnfdzdM06Qsu5/zuD3HEqwA0ZcoUe2IW5nLbF827fF2WmKZGwA5xybW2HTPnyzLLuPAwQezuHERn1V90mVDn0xlsQBBJ9CNkOvPI5hlBc+RsE4gKFPXhRBCbB3BYFbK93ZlkJumJadxhMMdeL1e/va3xztV3mRnZ3d7rcLCImbMOJQZMw7lnHMu5OSTj+H555/hnHMuID+/gNbWlh6Pu7W1hYKCwg3vKLY7ElwKIVKYpklNZQzVr3PECf1ob48xaUAugYDK0sYldOz0DY1f9KfMHEl2TjKAczf0ca9z6U0Ee7qpO3Mqs305lGRZJTK+RBlrljc5F8On+pwg0Z7r2CfUl1jrOqrbq9EMzQkE7axj8tjknEub3xNAUZSUJUrc7IZFXZfF2h1jrSxqMrg0yJd/G4UQQmwjCgoKWbt2tfO9YRisWLGc8eN3A2DEiJFomkZzcxNjxozb6Ovk5ORQXFxMOGz9uzhyZDl1dbW0t7eRnd25o3u6VatWMnFi90utiO2TfOQuhEjR1KARjRgUlCh4PCqqmuyu2hprIRTyMGWmh+N+UpbyqWd7vA1VUcnyZqG4/rT4E0GitQ6lHcS5Hk+UsYZ87uDS7wSltoAnyIDcgWiGRmVbhbM9vZOt32PPuXQFl07AaV03vdFPsiw2c3CZZa91mWgulBWyzh0Ob91yKCGEEMJtt90msWDBfN5663XWrFnNnDl30tzc5Dw+ePAQDjxwBjfd9Cvef/9dKisrWLBgPo888iBff/1lxnN++OEH/Pa3v+bjjz9k3bq1rFy5gr/85R5WrlzhdIcdMaKcvLx8vvtu3gbHGI1GWbz4e/bYY8/N8pzFtkUyl0KIFNUVifUc+yQDQLts1A6u8gZEKB+Wk/J4VI+S689FUZSUOZd291bDlbl0B3F2pjHkKov1e5KZy+R+XkpDO7GqeSVrWlczOG+nlLEl90vOuUyeLzXgtINl0zRZ3bLKKentuiw2kbnU0zOXmbvRCiGEEFvDXnvtw2mn/ZS77/4DpmlwwgmnsPvuU1L2ueGGm3jkkQeZM+dO6upqKSwsYsyYcRx00CEZzzlkyM74/X7+9Kc7Wb++hmAwyE47DeF3v7vdyT56PB5mzjycN998jT333LvbMX744Qf07Vu6SZlTse2S4FIIkaKm0gou812N3eyMo925tTnahGEaThBpL0NiLy2SElw6mctkcOkuP7XLYbP9uc5yJD7Vj0f1pMwd8apeBuQMxKN4WNe61rl+elms35OapQTX8iSqHVxa41jbuob3170LQFGwOGXcbvZal22xNpY2LsEXzAcg0iGZSyGEEFveccedxHHHneR8P3HiZObO/SLjvueffzHnn39xl+fy+Xycd95FnHfeRT269oABA7nmmhs2uN+JJ57GT396ErW1650lTZ5++sVO+z311BP89Kfn9OjaYvsjZbFCiBTVieAytzhZ8mpnB+31Kw3ToDWWnLhvz7fM8VstyVODSyuw003dyRi652SO6zOe/QdNpzRU6mQO7Y6v7uylV/Xh8/gozS4lpsdojDSmjC39eu5rBFSrg136nMumqHWOsSXjmDm067W27DmXy5qW8nHlh9SpKwFrzqUQQgghrOVFrr76Bmpqqrvcp6WlmalT92PGjMxZUrH9k8ylEMKxeEEbyxd1oCiQUwD2IiB6WuYSoDHSSH6gAEh2is32WZ3m1AxzKnVDS5bFujKXQW/QKXG1lw+xA0T3ciJ2oJmdyI5GdSvQjRvpmUu7W6yr9NaT2kE2OYfUWtakNLusy6wlJOdc2hS/NSYpixVCCCGSpk07oNvH8/LyM66lKXYckrkUQgBQtS7Cvx+qIh4zmXFkCYovGThppo5pmk7nVkhm/SB1jUsAJS1zqSgKUT2Klihh9XSxnqQddNpNgNyZS/uYgMfKQtqdW/VEcNk/pz9l2WXk+vM6XcM+xplzmWjo05Yo581NZFy7Ys+5tIWyrOBXMpdCCCGEEEmSuRRCALBuVQTThH2mF7L3AYW8vEJz/kIYhk5Uj2KYhjMP0i5LhdQ1LgFU1+dWHtWDX/UT02N4VW+XTXMguWyJ1+NL+R6SgaZdomqX6NoB67g+u9E31Dd5XVe3WDsTamcn7Qxqa6wFRVGcbGhX7MynM07rdJK5FEKI7USyubnZ3W5CiMTvSNoyqD0mmUshBABtrVagVNzXCqTiRtx5TDd1J1NYktUHSM9cJte4BFBdf5FUVILeILqpEzNiKUFfOjvwtJcO8aV0lbWDS6tE1S6Ltedc+tKC1pSlSJyy2MRSJKaGbuh0xDvI9mV3WxJrO3TnWYws2sW6lpUIlcylEEJsJ1TVAyjEYtEN7ivEj5n1O6Ikfmd6TzKXQggA2tus4DI71/pjohlx7D8rmqERSQRzef48WqLNhLVw8th4G4qiEMow51JVVAKeINCMaZpdlsRCMkD0Zchc2nMog57UNSe1RBCcnhFNXUsz0dBHtRv6GE4pb84Gspa2vqG+tMfbWNKwCJ+TuZTgUgghtgeKopCdnUdLSwMAfn8A2MjUTPKsaJpkQsWW8kPfXyaxWJSWlgays/NS1jLvDQkuhRBAMrjMybX+LMSNOJ7Enwjd1OhINPPJ8mbh8/iIxqKYpomJ2SkDmBpcKs6cR0ht5pPODiaTmUt3WWwiuExkLu01J7XE/ElP2nlT1rlU09e5NJxmPvYczZ6wn5fHb/2xD3dIWawQQmwvcnKsZaSsAHPT37SrqophyIeMYsvYOveX9SGM/buyMSS4FEIA0N5qlZdm53gwTTNRbmoHl4aTKQx6s1xrV2pOkOeet5gaXHqcgBC6buZjnSM75f9TliJJZDPt5joRLZoYmzXuzplLj7PdvqbH1dDHLuXN2UAzn4znlMylEEJsdxRFITe3gJycfAxDx9yE+FJVFQoLQzQ2dmAYkr0Um9fWuL8UxSof39iMpU2CSyEEAO2JOZehHI8zjzHoDdJGBN3QnWVIgt6gkyWMG/FOy5BAardYqyw2mblMzzC67dZ3EsMKhlMYLAJSA0Y749k5c5k5uLSzlCkdZ13rXNrrdOb6eh5cOkGzYuAPqBJcCiHEdkhRFDyeTXsLrKoKfr8frzcmwaXY7Lbn+0sa+gghAKss1h9Q8PtVp5mPHcjppuZkLkPekNMgRzPitNsZQHfmktTg0u8ui+0mc+lRPU5gCellsT7X+fyuOZcaqqJ2asrjNAfy+FPObz0fnbZY7zOX7m6zWSGVaNTY7v7oCyGEEEJsKRJcCiHQNJNI2CA7Md9SSw8u3ZlLjztzqWUM0tIb+thNeIBuu8Wm87oCSnc5bZY3C83Q0AwN3dQzLm9iX8cd2KpOt1i91w19rOOTDYGCWSqYEI1I9lIIIYQQAiS4FEIAHXan2BwreIq7ymLBWksy7J5zmZK57FwW26lbrNdVFtvNOpfp7GxlevAYsDvG6hE0Q8sYsKqqNQa/mrpGpUfxoBs6ES1iBb6u+aAb4g5Og1nWNaU0VgghhBDCInMuhfiRM0yDNlczH0hmLn2qD6/qtYIxM+zMn7QzinEj7mQA3cGlO9hTnKVILJmyjF3xJubEpB9jB4Qd8Q4M08h4TnuOpjtzCVZprGEaaIaWUnbbE/b6nU7mEoiEdaB35xFCCCGE2BFJcCnEj1hduI5XVrxIacc4IM9Z49Kec+nz+PAoHjRDJ2bEyPJmoSiKsyxIakMfd7fYZKcxFdWZowm9K4u1g7/0IDDotTrG2oFtpuDS3scd9FpjU501O7M92Z2O6467IVAyuJTMpRBCCCEESFmsED9qixu+B+CL9Z8CqWtcghXUqarVPdY0TWcZEPdSJB3xjkQ2Mxngde4W655z2fuy2PRjgolsZHtivqc3Qwayb6gvBw85lLEl41O2u4Pb9Kzmhrgb+khZrBBCCCFEKslcCvEjsnpFmJVLOhg8NIudhmU58x9jUROFZFlsVLfWkPR7/E55KUDIZwWXdjAX0cLopk6ON7UpTuqcS4WAJ4CiKJim2W232HR2UOnzdJW5TASXXWRDy7L7ZTinO7jsXTmr4gSXJlkh6+u2Fq1X5xBCCCGE2FFJcCnEj8grT6+npjIGQL9BAfRB7Xy8og4FGEoyuGyLWeWmuYHclC6t6ZlLuyQ2PQOY3tBHURT8qp+oHu1VWWzIF7L+3xtK2W53n7WXQelNkyD38+lt5tIeu27q9B9sjWHVsjC7Ty3o1XmEEEIIIXZEElwK8SNhGCZ16+P4Ayp9Sn1UrIlSuz5MJJgs67TnXNoZwVx/bkpW0G6kY5fA2sFdwLWWJHRe59I+NqpHexUIZvuyOWznw8lNW4vSHkdrrOs5l11RN1NZ7JBhWXi8CsuXdKDrJh6PsoGjhRBCCCF2bDLnUogfieZGDV0zKe3vZ/YVg5h1fB8m7VFEn7JkYOgEl4m5jLmBXNSU9SWtDGLvMpep6032JnMJ0CfUp9NyIXYmM1kW24vMpev6AdXfzZ5dH2uYOv6Ayk7Dsoh0GFSuifTqPEIIIYQQOyIJLoX4kahbb5XDFvfxo6oKu08tYOoBJYwam+yYmp1jBWlt8VY8qoeQL5QSuHXOXCaCS7X7sliAQCK47E2WsSt2Z1rTNBPn7PncSY9rbJuSuQQYvosV5C5b1NGr8wghhBBC7IgkuBTiR6J+vdUBtrhvMhAzMckv9DF0ZBajxucQylaJ6TFieowcn1WK6s70ZXntOZdWxs/uKpteFpveLRaS8yQ9vWjo0xWP6nHGAvSuSVDKnMveZS7Tg8sRo6zAfNn37b06jxBCCCHEjkjmXArxI1Ffa2UuS/omAyoTK/M3ekIuJ+xaiqIozjzKHL+VHXRnGu2ALj2Y67YsNvEZVl4g3zqvL3X+5MbK9uUQ1sKdxrghCu7MZe+CS7Cem27qAJSU+gjleKiqiKJpJl6vzLsUQgghxI+XZC6F+JFwymLdmctEWSlATLcet5vk5CRKT9WUhj6pS5HYOjX0URTX19afmdHFYzh2xPH0DfXdtCeSYAe/0Lu1M92Zy0Avy2Kta3mczKWiKPQbEMDQobY61utzCSGEEELsSCS4FOJHon59HEWBopLUslhb3LCCozYnc2llGO0spaqoTjDmSwsu0zOX7lJaO7hUFMU55+ZgB7/WGDeuoY+vlw19wHoednAJUDbAeu7VFdFen0sIIYQQYkciwaUQPwKxqEFLk4a/uI217auc7amZyzgd8Q6nU6wdvNnBmLtj64aCS3dAqShbplQ0OyW47MWcS3e32I0oi3VnLkGCSyGEEEIIm8y5FGI7EdfjvLzivwwrGM7YPuN7fJymGXzzeQsAzSXf8cE6nX7Z/Ql6gymZy7Wtq5lX+63zvV12apeR2suQgBU0elUvmqEBXTf0Ubfg51fuzGVvymI3ZZ1L63g1NbgcKMGlEEIIIQRIcCnEdqMx2khLrIWq9soeBZfRqM5DT35E3ff5mGFrrmR+HyuYbI+3dwouq9qrUo5Pdou1/kxkpa016VE8aNjBZepjdlDpbuyzubnnXPaqLFZNjik9A9sT7o6xqqJS3MeH16dQXRHFNM0tlqkVQgghhNjWSVmsENuJjsSakvFEtnBDPv5yJe8u/4gq7/eMGpfN6ef3Z+hoK8MY1hLrMrrKYpujTYAVNA7O28kpg82UuYTUTqvpXVfdZbFbirsstjdBol0W6/f4N2p89vG6YXWMVVWF0v4BohGDpoae/WyEEEIIIXZEkrkUYjthL7uhGXE0zWTx/DaaGjRC2R4m7JGLrpusXRmhpVljWHmIJcuaANjjwAAn7d8fgM++11LO5c5c2t1iD9l5JiVZJc52byJzGUzLTtrZQp/q65ShtL/fkplLr+ol6A0S0SJ4NqKhz8Z0ioVkya+Be96ln4rVEarWRSks7n02VAghhBBiRyDBpRDbCXv9yXXr2pnzz1W0NCWzZKX9/XzyXhPzvrCWEdl5RBYr17eiKJBXamXYDNNw5kjamUv33EGbey4jQGl2KUXBYgbkDkrZbi9HkmmtSDuodDfP2RKyfTlEtAjeXlzHnnO5MZ1iIS1zmbhscT+VFm8lNVUF7Do+p5ujhRBCCCF2XFIWK8R2IqyFiYR1PvmgjpYmjfIx2YzY1SpVrVoXZdWysBVMFnhZuTRMezhGUYkPTYkAEDfizrk67MylqywWrMApmDa3sjBYxOHDjuy0PqUvkS3M1BRHVVQURdniweXIwnIG5g4kL5Df42PsMt+N6RQLrjmXrsxla/Yq1mZ/wuKqVRt1TiGEEEKIHYEEl0JsJ5rDrcz7spVoPM6U/Qo45Zz+7DYlD4DliztoadIoKfVzwGHFABhKnD5lfmJ6DN3QiSfKXgHCcStz6S6LBcj2Zfd4PHbmMlOQpioqu5dNYbfSSb17kr00onAk0wfP6FX5bXLO5caVxaqJeZqmK+ubU2R9XVPXtlHnFEIIIYTYEUhwKcR2YOnCdp7592pqKmNk5agcMLMQgNL+VoC0+Dur2U+/gQHGTc6loMiLgU5pP+vxsB5OyVxmmnMJvQsufU5ZbOYgbZeiUeyUN6TH5/uh2MHhxs65TG/oAxDMUvEHFBoboui62dWhQgghhBA7NAkuhdgOvPliHe3xDgYMDrDntHwUnxXYFBb78AcUJ6ApGxDA41E45dz+7Dczl7wCq3Q1HA8TSwkuE5nLtLLYHH9uj8eUzFxuXJC2tdhdb3sTSLu5G/rYTZAM0yA3z1r3s7Eu3t3hQgghhBA7LAkuhdjGVVdGqaxuJa9QZeKe+WTneJ0spL0Mhq3fQOvr0n4BBg9PlquGtY7UstjNkrm051xu3NzFraVfdn8OHnIoo4pHb9TxduZyedMy/r3ocarbqzBNyM23ssXrq2MbOIMQQgghxI5JgkshtnHzvmhFU8IM2CnZaEd3rXVZNiCQ8ev0Mlj394ZpENEipCUuN2tZ7LZKURTKsvs5S6n0lj2/sz5cD0BLtAUDg9w8D6aiU1sjwaUQQgghfpwkuBRiG9barPHdl63EPWEGDHYHjp2Dy8JiH1mhZHdWLa0MNq6nlmuGtY6UjqdgLe3RUyVZfQh4AvQNlfb4mB2BHVzG9ChgZX9N0yAnz8pcrlrawdKF7TL3UgghhBA/OrLOpRDbqCUL2vnPo1VocZP+u0AwK3PgOGhIEBQYPDR1CRF3ABrWwp3WdQxrYdJTl73JXPbL6c9Ju5za4/13FHZZbES3lngxTAPTNMnN92AqBiuXhlm5NEyfMj9Hn1rKgMHB7k4nhBBCCLHDkMylENuoT99vQoubTNmvgKkzrSY0dimnXeKqGRqh4hjn/WwQhx7TJ+X4zmWxVrmmHUCGtY6UOZd+j5+Qd+Oa3PyYKE7mMtnMx8AgEPAwfko2YyflstOwLGqrYzz1WBWmaVLZVsHSxiXUdNRszaELIYQQQmxRkrkUYhtkmiaVayN4vAoHH1XCp9WLAcjz59MQqXcCx9dWvkJDpJ5jR55Ali81Q6alBZexRFlsnj+P9ng7HVrY6Ra738D9KQn1waN6EN3z2N1iE+tcGhjO6zh6Uoj9B5VhmiYP3b2OitUR1q5t5/22t6wMJyaFq/dhQGEZE/fMQ0ksiyKEEEIIsSOQzKUQ26DGeo1wh+EsLRJNzO+zs472GosNEaupTFustdM54kYcVVFRFIWw1uEEm7mBfAAiWtjJXAa9QXJ6Md/yx8yec+kwTSfQtBstKYrCqLHWz2rhd000NsSIhHWa6uP87521vPjkep54qErmZQohhBBihyLBpRDboMo11ny+/oOsZj12SWsoEVzGjTitsRZnf4XOGTDN0PCpPoKeIBEt4gSoWR4rw6knMmldHS8ySw8uDdNIBpem7mzfZawVrH/xcSPvv9nAJ+83UVMZQ1MjeDwKSxa0s3Rh+w83cCGEEEKILUyCSyG2QRVrreDSbgZjN+cJebMAq+R1vWv+njuoAausVjM0fB4fWd4QhmnQFreym87SIabplHMi5Zk9Zjf0sZmJ/wFoRvLnUFLqp6Svj/YOK2Pc2qyzcmmYuBJh96lW9ri6IvoDjVoIIYQQYsuT4FKIbVDlGivocDKXup25tBr7aIZGbUets79maHyz/iueXvIkcT3uzMn0qT5y/FYGrTnaDEDAY3WNNUmWc6ryp6DHlAyZSxLBpW5qKY+N2z0PE4O+/fx4DD+aZhIq0th1vPUzqamU4FIIIYQQOw5p6CPENsYwTKrWRfD5FUpKrUAwZsRQFdXJOsYNjdrweucY3dRZ31FDR7yD1ngLgUTpq1f1kefPs86bCCTtcxjusljJXPZYeuYypSzWSM0gTz2wkMHjB/JOdT4fPq/RrMfoO9ikb3/r51pdaX1oYJqm/AyEEEIIsd2TdIUQ25jWZo1Y1KRvvwCqagUc9vxJn+oDoCPeTmOk0TnGMHWnJFMzdKd5j0/1kp9o4ANWEOlzZS7tsliZc9lz6XMu3RlgLS1zqaoKWTkKHo/CuLF9UBQoG6IQDHooKPbSWBfnm8p5PLn4X7THZf6lEEIIIbZvkrkUYhsTCVuBSig7ueSFZmhk+bPwJoLLunBtyjGaoTvzLnVDI54IgLyqj1x/Mrj0qT4nkEzNXG7BJ7SD6dzQJ7laaHrmEsBMBJ4Tdy+mcFh/vD4rAC3rH6CpXmPRujXEsmO0RJudbsA9FdbCtMfbKckq6f0TEUIIIYTYzCRzKcQ2JhKxgpFgllV+ac+f9Ko+fKr1eVBYCwPJQEc3dWcZDM3UXJlLX0rm0qf6nGOsrKVkLnvL003mMr2xEiQDTq/qJS+UTdyIE9fjlPa3ypMra60MdHrWsyc+rpzLqytfIqJFen2sEEIIIcTmJsGlENuYaCJzGQhav552Mx+/x+9kLm124KibuhOcxI04scQxXtVHwBMgkJhn6ff4UzOXUhbba+kNfUzX66gZnQNEg0TTJMVDVqLbb0QPO8FlTb21pEymrOeGtMfbMU2TqC7BpRBCCCG2vh06uPzuu+846qijnP923XVXvv/++609LCG6FYlYQUYwEVzGEmtc+lQvXjW1kj0vUfJqGLoTnOhGMtC0M515iSDUp/pREzWw7iU0pJlMz3XX0Mf+3s3+uaiKQpbX6vbboYXpNzCApkSpqGgnHjM6dZrtCXvtUm0jAlMhhBBCiM1th55zOXbsWF544QUAKioqOOOMMxg1atRWHpUQ3euUuTTsQNHvNPSx2ZlLzdSckkzN0JwAx27ek+/Pp7ZjPT7V68pSupYiUXboz5k2q0wNfUySAaVmaPgTrztYzZbACkqDXquLbzjeQWlxKeUTVRYvM/ny4xbavq4m1BTAH1A54cx+hLJTg9hM7Az1xpTUCiGEEEJsbj+ad5SvvfYahxxyyNYehhAbZM+5DGSllsX6PH5URU0JbuyMpG4YTkmmZmop61wC5AbynHPYWUp3hk3KYnuuc0OfZFksdC6NNRKPqYrqZC7tObNTDs4imKVQWxNj6aJWKtZEWbk0zIf/a2RD7EZPgDPfVgghhBBia9qmg8vPP/+cCy64gKlTp1JeXs4777zTaZ/HH3+c6dOnM3bsWE488UTmzZuX8VyvvfYahx122JYeshCbzM5cppfF+hOBol0aG/QGCSbWs4wn9gEr0HAvRQJQECiwzuEJpDT0sQMfaRfbc+llsdbr6C6LTS1RtTPKquohZM+5TASXujfM7vsUMHRkFoceW8SFVw/G61P47IMm2lq7DxjtrKX7GkIIIYQQW9M2XRbb0dFBeXk5xx57LJdeemmnx1955RVuueUWbrzxRsaPH89jjz3GOeecw2uvvUZRUZGzX0VFBQ0NDYwbN26TxmOvObitsMezrY1LbJpo1ApUskIeVFXBMDUUBfxeP6qq4Pf4iRsx8gK5eD1eFMUKLu340J675z5mcN5gdu+3B4PzdnIeMxWrW6yigEdVO91Hcn9l5vF4UmNxxQQlGZ8b6KmvmWK9xj7VS8gfQlEgYkRQVYUOrY3CYh+FxT4G9vHTrzTI7vvk8/G7TXzybhMHH9Wny3FoZqzra24H5P4SW5rcY2JLkvtLbEnb8/21TQeX06ZNY9q0aV0+/sgjj3DSSSdx3HHHAXDjjTfy7rvv8txzzzF79mxnv9dff32TS2K9XpXi4pxNOseWUljYu7XxxNa3pnkNH6/9mMNGHEZeomTVZhrWGpZ9S3MoLs4hFPeRkxOkb1EBxcU5FOXnokQ0+hf2pU9xHjm1QQLZKjmmlcXMzvVjYpITDdK3uIDiPOu+3a9kTwDaYm3k5ATJzQlimAZhNUhJcS4hXyjjWOX+SmVmRchZH3S+z8kNEPP6MWPWtvzCLIpDyb8VufEAOa1Bigpz6Jfbh5y6IL4sk+LiHDxNBjk51nG5eQGKi3M4/Hg/n7zXxPyv2zj5rCFdNlvS2zs6Hbs9kvtLbGlyj4ktSe4vsSVtj/fXNh1cdicWi7FgwQIuvPBCZ5uqquy999588803Kfu+9tpr/OpXv9qk62maQUtLeJPOsbmpqkJhYTaNje0YhrnhA8Q2Y37VYirqa1ictZKhBcNSHmtptsodo7Eo9fWwvqGJtrYI7a1x6j1tRDo02joiGFkeWpoitLVFqNOaaYtYy1HUe1sxTYO2tgitzTHq420p5++Id9DWFqHZsJaxaAtHaGhoJ+xN7XIq91dmTRHr9bM1Kx20RMJ0xK1t6+uaUbKTwWd9Y6v1s2iJkGdotLVFqNUbqa9vo7J+PW3hxM/N30J9lvWzGjgkyNqVERZ8W0+/QUHSxeMGL725guqCNnLyvNQ1tFCitHXab1sm95fY0uQeE1uS3F9iS9pW76+8vCx8vu4bDm63wWVjYyO6rlNSUpKyvbi4mNWrVzvfV1ZW0tDQwNixYzf5mtvSD9fNMMxtdmwis5gWxzQhrmudfnaRsDV/zh9QMAzT2deDF8MwUfFgmpDlyUYxVUwTIvEI9vTJuB7HMPXEMZ5O5zdN6z/dMDFN0/re6Pr+lvsrjang6t+DrlvLwKS8/q7Xy3nMVJyfnWboGIZJa7TNdVzyXhg5Opu1KyN8/10bpQOs9TA1zeCdVxsYNCTIyqVh3v24hsiQVvbav5BY2jW3J3J/iS1N7jGxJcn9Jbak7fH+2m6Dy66YpplSRta/f3/eeuutrTgiITpzlpDI0OUz0mkpkkRDn8TyFt5EY58cXw6q6kk5n3XOuLPuYfrSJUBKQx97nUtZiqTnOq1ziZnSLTa9uY7T0EfxOK+z3enVXqcSUu+F8jHZvP1SPYsXtLP/ocUAzP+qjQ/fTnaR1f1x6tbHiYR16RYrhBBCiG3CdvuOsrCwEI/HQ11dXcr2hoaGTtlMIbY1dsCYaX3CaCQ1uLQDR59qBZf9cwaQ68+lOKsEr2J9PuQOaDRDdwWkgU7nt5cdsdZmNFO2iQ1T0te5dAXpAGtb1vDi8udpjbUA1jIxYAWldmCqm7rTMdb+0MD9M+xT6qew2EfV2ih/vm01389rY94X1vk8XutnVdzP2rdiTVTWuRRCCCHENmG7DS79fj+jR4/mo48+crYZhsHHH3/MhAkTtt7AhOiBeCLTZBidl5CIhA38gWT31mSgaGUhdykaxTEjjifoDXbKogFORkxRlA1mLu0lNLpqGiM665S5NI2UpUhWNq+gMdJITXuN9TjWY6qioigKqqKiG7oTTAYSHwC4s4+KojD1oEKyslXWV8V45h/VrFgaJifPw6XX78Tsywey50FWA591q8JougSXQgghhNj6tumy2Pb2dtasWeN8v27dOr7//ntKSkro06cPZ511FldffTWjR49m3LhxPPbYY0QiEY455pitOGohNsxeh9LOOBmGaS07YphEowZ5+clfTTsQ9WYIFD1q5+BSNzViegyf6ssYNNpZSndAJJnLnksvITZMI2NZrF3yan+AYAelHsWDbuqu0mU7c5naUGnSXvlM2iufd16t573XGwAYOymXgkIfBYU+1laY5OZ7aGnWeePlGsaeqhPK7n6SvRBCCCHElrRNB5fz58/nJz/5ifP97373OwAuueQSLr30UmbOnElDQwNz5syhtraWUaNG8dBDD6WscSnEtiimxzBNk8bGKE++XMnyxR0ce0YZQ4ZngZksiQWIJ8pi/YkgxM3OhrmDm5geQzM0cv25Ga9tB5zuUk7JXPZcenBpYjrZSbeobnWBdeZcJj4IUBUV3XRnLq2fa6b5twD7zihi8fx2qiujjN89uWxNzIgxcUo+n3/UzOoV7fzl9tUcc1oZQ0dmXlJGCCGEEGJL26aDyylTprB48eJu9zn99NM5/fTTf6ARCdF7pmny3yfXk5Pr4cBZJRiGybxvGlm6uIXccIgB4VIAnnq0mqNO6QtAMMsVXBpxVEXNmKUEKxPmnnMXTszl82UIRoGUpjJ2UCmZy55LL4s10zKXNidzmchIqolZCB7VQ0yLYSSCS3terJ1xbou3UhQsds7j9Sr85KIBNNbHKeufnEMb06PkFXiZNqOIqm/9tH6t868HK/nZb3aWDKYQQgghtortds6lEFtKXbiONS2rN7xjDzU3aXz9SQsfvNVIY32cfz9cyaKFVnOWgj4qUw8qZMaRJeiayUv/qQXADHQQ163S2bgRzzh30pZp3iUkM2KZKIqC6epyKpnLnrNfK3dznkzs4NJ+3KOqznGmaRJPlEb7XZnLjys/5KXl/6WidV3KuULZHgYMTl3vMpa4P7w+hT2m5bLTOI0Gcx1V66IIIYQQQmwNElwKkeaTyo94f927XZYp9lbV2sSbfROe/FsV3y9oJjvHw34HFzHz+GIOOryEfaYXkpPnIRY10ImzwPs6cyved5as8HcTKHaV0czUKdamoDhdTiWw7L3irBL6hqws84aCSztD6Z5zCclyZ4/ideZhrm5ZBcDC+vkp51rauIS3Vr+O7moAFTNcy5iYOo3F81ib/Slr17Zs6tMTQgghhNgoElwKkSZmRJ2gbmPM/6qVP/x6BSuXdgBQuTbiPFZdEcVQ4ozfI5ecXC+6q5y1/yArMxVXO/D4TdribU52K1MzH1vXmcuug0tVUZ1GNFIS23uH7TyLg3Y6BCAl4HOLpZfFJsqR1cTPK+b8bD14VA+6oZPjtzrAVrVXpZTaLmr4nsq2ShoiDa7zu9c21cgqsO6lyqr2TX+CQgghhBAbQYJLIdLYwUJXGSlbXU2Mfz5QwZv/raNuvfVGv6YqyvNP1NDWovPKM7XouknlGivIKCiypjiPGBuguMQuhUxeY8BgKxjU1Cg+r0rciCWb+XSTufSqmadO+zxdB6QKVlmsYRoSXG4E97Iihtm5mQ9ARLMb+tjBZSJzqaZnLj1O5tL9QUFNRzVgBafN0SbrnLo1n9Y0TWJ6jKDX+kBCNzRC+dZ1qiuTH2YIIYQQQvyQJLgUIo0dVOobyFy++WIdy77v4MP/NfLQ3WvpaNd5+rFqtLhJMKRSWx3jm89aqFwbweNVOOHMfoydlMt+hyU7frqzo3bmUleieP0KcT3uZC59XQSQkAxa0nVbFuvqGCtlsRtPQdnwnMtOS5FYf3ZjifVLVdWDV/VimIbTjAlgVaJEtjHS6ASwdsBqH5vlzQKsebmKTyMQVKivjRKPZw54hRBCCCG2JAkuhUhjv5HvLnNZXRFl8fx28gq8lI/JJtJh8K8HK6mtjrHTsCzOuGAAAK8/X0u4w6Csv58Bg4Mcd0YZwVz3mojJ4LLfoETmUoni8ylohuaUTnbV+RVSy2Ldy2QE1O7nXKaXa4rec2cuM61/GdfjmKQ+npxzGXe+t7PP7lLXpkgjAI2uUtiw1pE41s5oB/CqXiKJZU/yC3zohkFtdfI8QgghhBA/FHlXKUQaO5uYvqi92wdvWm/49zmwkIMOLwFg3SrrDf6Bs4oZMDjI3gcUEItagWR/V6fP9LlytpxcL/mFXjQlitdnZcSiiUyVr9uy2GRw6S6f7a6UVlEUZ86l2HjurK+7PNneHjWinTKXyTmXybJYd/Y525cNQIdmzZ1sSAkurfsh6lr71O4+C5BX4MXEoKZSOsYKIYQQ4ocnwaUQLu75c12VxbY0aSz8to1QjoeJU/LoU+Zn5GgrIBhWHmLwUKtU8aAjSigfY23fKbENUgPK9KZB/QcF0NUoPp/1q9mRyFT5u2no4w5Mgp5kENtdcKkqqrUUCdLQZ1O4Xzv3cjF5fqv0OapFMdIzl4kPA+yGP+7MJUCWN0TAEyAct0pkG6PJ4DKSKJuNG8m5uO5j8wq8mIpBTaVkLoUQQgjxw+t6IpcQP0LuYM8ui21p1vj0/SYm751PYbGPrz9rwTRhtz3y8PmtgOGgI4oxTZODj+zjHK+qCiee1Y+K1REGDnFlLo1Yp2vY9ju4iBU+DyWlVmDYEbeyVz1d5zLgDUIiadXjpUhUCS43lrsU1v0zKggU0hxtJqpH0A3daQAEyZ+XvU6lqqrOPEwAv8dHyBeiMdJIRIuklMXa5a/2fepRvSnBZSik0oBBa/PmWUZHCCGEEKI3JLgUwkU3dUzTpLVFZ/H3LbRk5fPac7U01WtEwwYzj+/D1580AzBxr2Rjnr5lAU47b0Cn83k8ipPJtGmJeZT29dz6DQwyYWoWtR2tQDJz2X1ZbPLX2L38SGADmUv7+n663k90L7Us1gou/R6/s6RIVI+im3pKEGp/bWcfvYoXj5L8GfpUP4pXoZFGasPriekxCoOFiWDTylzawaVX8aQcG8jyYComba3ddzoWQgghhNgSJLgUO7zv6xeyumUVM3Y6xClJdNN1k88+aKKtVWe3/Xx89L9GGuo1lndUkR9P/oosX9zBiiUdNDVoDBmeRXGfjQvK3HMuTdNEN3Q8qocVTcvI9ec7AQQkM5fdlcV6uiiL7a4JkLucU7rFbjw1LeMY8ATIC+Q7WeOoHsU0zZT97GAw5lqKJP0DArukubKtEoCSrD60xlqdbrJ2Iyif6ks51h9UMTFoa8mcuVzU8D1tsVYml+2xaU9cCCGEECIDCS7FDm9l8wrqwrW0xJopDBalPBbu0Pn7nyuoWmfVkn78STsNXo2cXA+jd8mmD3mUlPqZ90ULNZUxXnt5LatDnzBj9+nOOeyun92tK+kWd2UuwcoexrQYcys+AFLnSnbErcylt4dzLt2Zyw019HG+ljmXG8392qmKyuHDjsKrelnTshqw5lXqpp7SuVdNvPb2feBRU4NLn8fnfGBQ3W4Fl3n+fLK8WbTGWtEN3Vkf1SqLTf78vR4FX4AuM5cL6+fTFmtjt76TMn7QIoQQQgixKSS4FJtdU6SRT6s/YY+yKZ2Cua3B7roZSwvqAOZ90UrVuij9BwfQ4iZraprJKlXZ+4AC9t05n/KiUusc7To1lTGW1Kwilr8eZUAFMBiA11a9QlO0kdHFY6jpqCHfn8/eA6YC1hqHdeFaSrPLnGumB5eaoaUsSeLObDoNfXrcLdYKYnyqr9slRjKVaYrec792CqrT6dUO8iNaFMM0UvazA0m7tFVN6xbr9wScYLQ5apVgFwQKCCaCy7AeTpbFqqkltQChXIVotUEsZuD3p/5s7c61mqnhQYJLIYQQQmxe8q5SbHYVbRXUtFezrnXt1h4KpmkmF57XOy/PsHiBFXgecnQfzrxkIHsfmMue0woIBD0p8yGHlYcAMBSNgUOCtGvNzmONkQZM02R+3XfUdqxnWdNS2hPlrAsbFvD6qlf5ovozZ397zmXQa5Ww6qbWKeBM7muXP/ZsnUs7qOkuGLVI5nJz6CpIt38O9rqUXa1Faj+W8gGB6ifkC6Xskx/Id0qeI1rEuYe8SmpDH4CsbOvn2Z4he2nf03aQKYQQQgixOUlwKTY7I/EG1u5suTVF9IizvEhMj1JbE+P7eW3WYxGdVcs6yMpWGTQkSCjbw5T988nJtd6su4PLwUOD+PwKBjqDh2bRGG10HrPf3I/rM56BuYMAnMC6pr0KgIX1C5z97S6hWV6r0Y9maMS7WPbE5lO7LjJQE4GJ19U5dEPBpcy53Fwyv47J4NKaI+kuQXVnKQE8ipoSfPo8PrK8yeDSq3rJ9uU490tEC6OZdrdYT+fgMscaR6Z5l/bvgjtTLoQQQgixuUhwKTY7+w2snTEEK5Bb21jJC8ueTVlaYUuzM0fWeGI88WAlT/6tim8+a2H5og4MHUaMykZNLMfhDijd61x6vSqHn9iX3adlk5vnJaJFnOdnmAZZ3iwm9J3IrsWjAahos4LLgkChc466cB2Q7BKaDC51ND01c5me3eq2W2yiLNLdGKa7ZUjSzy+Zy43XVebSfv3tkmwFd0OftOBS9eBxN/RRAymZy1x/HoqiOJluK3Np3aeZymKzsq1rZZp3aWfCJXMphBBCiC1B5lyKzc4O0KKJzGVrs8YDd66hKW8RIw5roqajJuNczIa6GP6A6mQONwe7IQ7A4kVNNNRZQdrLT6+nqMRqkjNydHansad/DTB+ch4dlVksTSQtm6KNlHn7WWtFJrJWfUOl+D1+qtqqEnMpDef4ZY1LKMkqcUpgA56uy2Kzfdm0xlqd7/09KIt1Z7G62x/SGvpI5nKjdRWk24FgON45c9kpuFS8zgcEYH2QEPQEURUVwzQoCBQAONnMsB52PviwymJTz2eXxbamZS4N172omRJcCiGEEGLzk8yl2OzsoCyiRTEMk+cer6atRaeuLkJrs+4EUppm8OqztXw2t4mOdp3771jDEw9WbtaxhLUw0ahBTWWULz+zMofDR4WIx0xqKmOEcjwMH5XMErkzOrphdDqfOwhsijZhmmbKUhOqotI/ZwC6qVPdXuWUCAOsS2Qz43ocr+p1spGaoTkZJVuuP9f5WlXUbjt7elTr2l7FS0GgkBx/Dv1zOq+56ZaaGZXgcmOld4t1f+33+J3fhZSlSNS0OZdq+lIkfhRFcTLb+YF8IDVgTZbFdj3nsq0lNYB032PpH5wIIYQQQmwOkrkUPWaaJoZpbHAJAztbF9HDfPt5CyuWhFEUMNGprogSHxYjHjN48m9VLFvUgceroGsmsahJxZooLc0aefmb59YMax188WETDXUaBbF8Jvb3c+q5/fl+XhtZIQ8DBgcJBJNv9o2UzGXneWmaO7iMNGJiAqlBRlGwmFXNK2mLt6VkizriHYn5lXECngDeRAbL3uaW488DrEDb180yJJBcN9Gjegl6gxw74oRu97fG6/5agsuNpaZkgFODxoAn4FrL0h14pmcuPSmP282bQr5s2uPt5Pnt4NIKNqN6xNXoqXNZbCCRiG9rTb1/uyr5FkIIIYTYXCRzKXrsnbVv89/lz2GaZrf7mYmAKqpF+fZzq7TzsOP6YCg6NRVRYkac99+u5etlKzAVA10z+d8r9c7xyxd1ZDzvxli1xgoss7JUhozyceTJpaiqwugJuQwdGUoJLIGUMtZM2R139qcx2ugEjymZqUTwoBu6cw47QGyMWMf4VJ+TcTJM3clE5fnzUBWV0lCpc74NNeexg/30csvuyFIkm0d3c1ftYDB9v85lsalzLu2fd3GwBI/ioSTUx9qeuIdiejRZFpshcxkMJTOXlWsjxON2E5+uS76FEEIIITYHyVyKHqsP1xHWrDX2fJ6us2n2G9f2jhhrl7dQkJ/F5L3z+ddcqGjUaG4J8+H8b1mT/TVnHTCLz54PEI8lA9bli9vZbUreRo9z8YI2li/qIB43+bSuBoCRY7KZNDrEgMHBbo9NKR3M0PTE3dW1OVEWC5mDB8PUnXPkBwqoC9eyrnUNAHmBPGc/d0OfcX3GMyh3JyJ62Dmfd4OZS7tbbM+DS8lWbh6pZbGpr2nA1VTJna1MX5ZEURRnm6qoTrA4qXQyY0rGOs197DLquKE5GXNPhjmXdnC5ZEE7Sxa0M+2QIg44rBjDdT+nl2ELIYQQQmwOkrIQPWaXbhp0novoZgdUVRVRdCXK6Ak5qKrCwJ2tN8dffNpATX0zObkehoxRKSi23kyPGpeN6oEVi8MYRjLYrFwboaW5Z2+G11dFeeLBKj77oJmvP2lhXXUTgYDCwJ2CTpfWbsfew7JYv8ePZmiu1yIZWNhz6nRTx0w8bjdlWZsILgsChU62SjOTS5F4VR8+jy8loNxw5tKbOLbnnxW5m/hI5nLjKd1kLrNcmUt3QJmpuU+mJWQ8qiela6zdpCluxJLrXGYqi81K+ZZVy6wPKtz3tiGZSyGEEEJsAfKuUvSIYRo9XsbALhWtXBNBU2KM3i0HgKGjAigKLF3cjK7EKBsQQEdjj6kFAOw+tYDBO2fR0a7z2QdNGIZJ5doID/5xLf9+qGeNfurWWwHkLuOyOfzEvuSXGozZLQ+PRyWqR3vwPN3z0jJlLq039T7Vh2EaGcti7SyVnpa5BKsJEEBBsNDpEKobmhMs2OWz7m6v3a1xCRBMZMjs7rM94V4aQ7rFbryuGvpAeuYy85xLe7sdIHbX5dfnlMXGnN9Fd1mscw0ltWy9ap3VWEtLyVxKcCmEEEKIzU/KYkWPuBvObCjrYZg68ZhBQ51GWZ7OwJ2soCeUqzBoSJD1yzRURaNsgJ+4HmOv/QsYNzmXnFwv7W06q5aFee25Or6f157oxgqVa6PUVEYp7d/9+o2N9dab7p2GZjFprzy+L8gi6Amim7rTXKU7Kd1iE4Fjfbiet1a/zt4DplolwarPeSNvZ4PcQUZyzqXhnMPOXNoKA4XOep/uhj52xtKjepylKHwbWFYkP1DAQTsdnHF5l66kLEXS46NEuu7mXLqDfU8XZbF2FtMube1ufVJFUfB7/MSNOB7Fuj9URaUgWEiWN4virBLWta5FNwxKSv3U1cTIyfPQ1qLTUBvHyJE5l0IIIYTYsiRzKXok7grMNvTGVDd1GuqsYKl0SDKQ0U2dEbtmg0fDn6NTUOQjZsRRFMVZ23LsxFzO/dkgygYGWL08zJoVEew4aN4XrZkul6KpwbpuQZGPiB7BNE1CvmwCnoBVxmpmLum15066n5udHWqI1BPVo9S0V6MZGl7V6wQS9jy2LudcmnbmMt95XFVU8gMFTjmrbuquzGXy8x47I+XbQFksQP+cASllmBvSXVAkeq67xkhZ3qDrMXdw2fleCXqzrN8Df0631/OqXmJ6DN3Unfsjx5fDCeUnM7KwHLDK1k87rz/nXDGI0ROsJW0q10UydottbdF49dlamhrjCCGEEEJsKgkuRY/UNXY4TUS6CtCiESPxuOmUp/YdlAxcdEMjlO1h30Ny2eeQHBRFSQlabQMGBznr0oEM2yWEqsIRJ/UFBeZ92YphmNR01PBx5Yfoho5pmk43TEgGl4XFPjriVtfZLG+Wk/3rKnv53rp3eH7pMxkztHaQ2aF1OJ1e0zOX7mYudjZKN3XnHD6P35k/lx/It9autBv6mHpyzqWrUVKyRLb7hj4bwx1QSlnsxkvJAHdq6OMOLjvfH5D8ACHLm8XhQ49kSr+9ur2e33Ufp3edte9J0zQoLPYxcEiQ/oOsTGjV2mjGbrGvPVfLp+838fkHzc5jdeE6ajtqux2HEEIIIUQmUha7gzEMk+++bKWlWaOg0MeYiTkbHTyYpomiKMz7ooV/PLEcbXQLE6bkpSzXYfvuy1ae+Wc1R57UF72vTv16K0grGpCc/2Uvt5FdAD6PTkRLLbfVDA0FBY/qIRBQOf38/nS0G2TnePjuq1ZWLglz7y2rKd53EXpxFTvnD+WbN7x88l4Tfcr8TJ9Z7JTFFhR5aXY137EzNTE9StAbJKyFCXgCqIo1F3NNy2qAlMyR/Qbc6X4bbwes0lU70LbnrqXOvXMHl9Zr5VE85Pnz6Ih3UBAoTJwnOecynjbn0h53e7x9g+tcbgzJXG4easrc1bQ5l97MZbFqF1/3pKzZncVOb+Bk/0zdH/70SwSXlWujlKd1i123OsKCr9sAqKlMzkd+ZcWLAJy8y2kbbCYlhBBCCOEmweV27sN36njl2UpOOLMfWl4t/3j2c2LzRqEmfrTZuQMYOjK0gbN0tr4qyiP3rGPMxFwWfNOGrsRZtzqKrrfQ+t46jjk8x1nWIxLRee35WjDhf6/UM/iEGM1N1tqS/uzOS3vopo6pW8GZ04HWNHh+2TMUBYuYPngGYGWCsnOsN98zj+3Li/+pYc2KCN+8XsPwfcLU5YT57AMdFKitjvHe6w00NcQJhlSCWR4a2qzreRSPM5ctqsdojDTw4vIXGFYwnH0G7EtF61pnjGEtuQRIsoGR9f9tMass16t6nccMs+uyWPc6lx7FQ64/j+r2agqChYltXuc66Q19rOtYX/ekLLa3JHO5eaR03U0rBAm6g8sMHWLTv+4Jf8r9kfrnW0kLLk3TpKSvH59foWJNhPnftmEWWR8Y6YbOGy8ks5PVlZ2bXa1tXc2wghG9Gp8QQgghftykLHY75/UqNDVo/PvhSuY88h7frl6Kp7iJSXtb60T2ZJ5iJt9+3kq4w+Dzuc10tOkMGOpBVa3Ok6uXd/Dqu9+zonk5AB+80Uh7q47Ho9DWojP3f/UAFJf6iBnJN62pSyFYb4DtMtWOeDsd8Q4q2ioylq72KfNz9mWDOP6nZRhKnK8/beXpxyswDDjgsGLyCrxUV0TR4iaFRb6U66mKx8nAxI0Y1e3VACxvWgbAmsTyIJAaXKZnLu3HfKq3c0Mfd9mj8ybf6harKAqKojAodzAhX4hBOYOAZBMX3bQyl3aDFps9/3KLlMWmNPSRPwMbK2UpkrQgPegqi1UyfPhgfd271979QUP6EiR2cGuYBh9Xfsjzy54BxWS3KXlocZM3XlrP4gVW9n3l8jbWrIjQt5+fkr4+2lp02ttS5ySvaFreq7EJIYQQQsi7yu3cHlOL2G1KHq3NOlUNDRQWeTn8J7nMOLIEr09h4bdtxGPdr0uZyaL5VrlcnzI/+YVeDjgijz2nFTB6Qg6mqvPxuo/5cN0HaJrB5x824/UpnHpeP1Cgvs4KKAcMDhLWIs45My3cbmfsOhKBm2marO+o6XJcY3bLZc/pOfh8Co2NEbKyVfbcr4Ahw61mNgYaBcWJ4NKws4aqE1xG9WhK45uYHqOyrcL5PuIar/1GO33ZBm/GbrGu4EFNLYu1g4mBuYM4fuRJTubSzjxZmUutUybKzlx6t0hwKUuRbA7ubGV6Qx/3MiFdrnOp9jZz6S6LzTzn0jANajvW0xprJabHOOzYPvz04gGoHoOVS8LEYgaffWx1Kp5xRAllA62sfk1lLKVbclV7lVMKLoQQQgjRExJcbucUReGIE/sy5YAcRu3hZZ8DCzEDHQSDHsrHZBOLGk62oqfqamLUr49T2t/PRdcM5tLrh+ANGhT38TN0ZIi+/b10hGO0tsRZs7qdWNRgyLAshpVnc+RJfRkxJosDDi2mb1mAiCtozNQIyM5ShrUOZ1t1exUAjZEGPq36pFNQ2megyv6HFTF+SohjzuhDVGllyPAsaoLzWZz3MqHC1JJVr+p1ymKtTpvJ831fvyBj0At0Kn21WQ19lJR9Mq9zaa2DmR502JJlsbqzxIlbti878f/ddxDdGCllsTLncqOpSvevo73WpSfD2pbW170LLn2ersti3Rlze36zYRooisLOI0IMHx1E00w+eLORpqYoO4/MYviokLO8T01l1DnOVtG6rlfjE0IIIcSPmwSXOwCvT2X3g33sNNRazqAtbmUdx0zMpiLrC15/f6Gz1EZP2MFo+RirGZDXq6SUqg4YEsBUdOrWx1i+xCq7HVpuzeucuGc+u4zPorAgiN/jd47rKoCz51y6M4Z22eqihu9Z3PA9q5pXdjomGPSw+/65NOYv5Pllz1I8WCPsacRQdPx51rl0VzMdp8umEUM3kkHugvr5ABRnlaRcI9lsR+/0htur+pJLkWQsi02dc9lVcGlfww6s04PLCX0mcsjOMynOKs54/KaQOZebR8qcyww/52AiS57+mH2P9HbOpfse6VQW68pc2hlIg+S9Pm6y9WFFR7tOdp7C4Sf0RVEUyvonM5d2JYFhmNRURqmua+nV3w4hhBBC/LhJcLmDaIk2OV+3JhrPFO0cxehTwYKaRcz7smdzL03TZP7X1r67jM2mOdpEdXtVSlfXAUN8GOjUrY+zYpkVyO48Itk0yM6W2Au+G6bR5dqY9hthd+ayIVJPTI/RkSjJqw2vTznGHotuaLTHE012csP4s61r5BSmZxWTcy5jerTTWpZe1cvQ/GEp17DfxOuJeZNuXtWTLItNBKruYM29zqW7LDad3+PHp/pSutCmjMHjozRUmvHYTbWhjJvomZRusRlex6CTuUwLLhMlrenZxw3xqT3oFovp3OOmq1ogp1ChfHSIAYMDHHRUIcV9rHOlZC4TvzMLv2njs7nN/Otva/jrnWtZX9W54Y8QQgghRDoJLncQzdHkOnXticylqWiMmZSLoei88UIdseiG514uX9RB1doopf399BsY4MOKuby1+g0n0APo098LqkltdYy1q9sJZXso7Z9802sHVPYb4bgR75T9c4sZMadZjj0fcn1HjTMPsy6c7GqpGZqTSdEMzVkfMmpE6T9ExeuFotLU+ZAe1eOUJ8b0WKexDModnDIPE3CCUc3QUspowQo87TmL9rlSusUmAgc7CO4uO5Xjz3Wd94dr3tzd+oyi51IzlxnKYhMdY9PLX+37pbdlsX5XWaynm26xyZLu5O+8buqMHJ3DxD3z8QWSx+Xme8jJ81C1Lso7b6xnfVWUNUt1vF6F3BKTqnVRHrhzLdUVEmAKIYQQonsSXO4gmhKZS0WxSlijepS4Eae4xE//nXy0t+qsWRHu9hymafLu61ajj2mHFKEoCmGtA8M0aIg0JHf06AwZloWmmWiGzs4jslBVxTmHYRqJgM6VLeyiLBYgrseczGVpdhkAbfE2Z1tjpNEpr3WX52qGRlyPO9tHTggw46g+BLKt4NNwLQNiZwXjRhwjLRO5c/5QJ/i02XM0jYyZy2RZrJ5hKRL7aye47KZpS64ruNwSjXu6sqGMm+iZlHLXDMFlfqAAgFBi/qwtWRbby26x7sxlWmDqLse2g8rU4NL9dfL3UVEUjj6llEBQ5eP3Gvj0g2Z8RpDRu+Vw6An57D41H10zWdLLudtCCCGE+PGR4HIH0RKzMpd9E2WUbbE2J7jp09/KcKxbHcl8cMKaFRHWrbKWJ9hlrNVExs6AuJfoiBsxRk/MYezEHPJLFHafmu88ZrjmOdpvhGN6vFPHVbe4odERt85fktUnMf7WlHmYdvYybriCSzO5PmRUi6CZcbweBU2316dMdou1O2tqhuZkG0uy+jA4byf65wxwgkmw3mzbWUTd1NEyNvRJZIkMu1tsamDhUTxOINzdUh/u4NLdrGVL29BcQdEz7q676etcAowuHsNRw4+hb6hvyvaNnXPpdy1Fkj5HN/mhRvJ3xHDNl3R/qJL+gcnwUdmce+UgyscHKSj0Uj6ymEE7B4kbcUbuagXGjQ1xhBBCCCG688PV4YktxjANWmOtZHmzKAwUUdNeTWusxXkDWVCi0gysW9V9cDnvyxYApuxX4GQiMzXiielxFBSGDA9xyEEDKM1Ozrd0Z/Lca0tmKv+zG/7EDStzqSoqRcEiwJp36VbbsZ7+OQOcMlh7bHYAbTcxgmSpqnudS69iN+jRnHmSY0rGMjhvp8RY3I1SPCmdXDtnLjOtc9l5Tp2uJ8tyu5LnTwbmP2jmUpHM5ebgfu0yBemqojrZSzf7nujtUiTuzGV6Wax9fXd2P70s1papTL2k1M9BRxXiX1fEiMIBLG1cQtyIOUv7NNVLcCmEEEKI7knKYgfQHG3CMA3yA/lOJqwt3ua8ycwuUPD6FNatjrB4fhtvvFCLYaR2gNR1k++/bUdVYdQ4K2tpmmbGRjwp2cO04NMd0CUzlzGnLNadebGX2ojqUSJ6hKA3SE5i2Y36sBVchnxW4OpkLlPKYuNOcGk3MbK3W2Ox3lh7Va/zRlwzdack0N0QJeVNu+JJWasy05xL+4281kXmMmUOZjeZwZSy2F5msTZFynhlzuVGSwnSe/E62h+2bMqcy64a+rh/J93dYt3b0z8wcbYn7vWgx5orGtWjFBRZ15HMpRBCCCE2RILLHUBduA6wltPI8VvBWVus1XmjaKLRb2CASNjgP49U89E7Taxenjr/cuXSDjradYbtEiKUnSwhzcSdGUkPPt1lsck5lzFnP3fjHDu4bI21YpomQU+WMzfNKenNssoJw4kSWXfX2rihOWNsjbU429PXp7TmXHqdx3TXdps76PWonpSOr+mvg9fjKot1gunOZbG27spOUxv6/HCZS6Rb7GaRkrnsxZ/TjV+KxD3nMnNw6f6ddHeLda/X2lX3ZvvDEq/H51QW+HwqOXkemhs1dH3zLUuiGRpPL3ya+XXfbbZzCiGEEGLrkuByB2Bn9YqDJU7mrz2enHNpmAYDh1iZCPvN4YolyaU/TNPky4+t4Gz0hGSw4w7k3NLnPbq5gy2fJ7m2pB2gpQaX1rXswDDky0JV1JR97MyenY10XzvimgeaOidUSxyT6OSqppbFupcosamK6gR3VuayczBq8yrebhv62OdInrvrACLbm+0cKw19tj8bm7n0OD/z3s1MSP8QpLvxQNdlsV0Hl4msvuIl4AmgGRqGaVBY7MM0oKWp68ZcvdUaa6Eh3EBF67rNdk4hhBBCbF0SXO4A6hOZy5JQHwJOOVssGWSZGgN3srZ7vNYb4BWLreBS102e/1cN33/bRijHwy5jk10t08tBbTE9GXQaRuryJskmOmndYu1yO1fgaAfC9jIqWV6rBDY7sd3aJxdFUZwg1n1td8Of1DGkLsNgl7na57EDYG/am3P7jbs15zKZBXK/QQdryRAlrQSxU0Mf17m7y04piuK8Dj9k5jJ1KZIf7LI7nExdgnvCmXPZy2ZKqqI691OmwLT74DJZJm53dU7nLhm3s6RWaWxi3uVmLI21A9yu/s4IIYQQYvsjweV2TjM0GiINZHmzyPHlpDTRsbN9pmkytDyL4buEOOqUvuTme6lcG6WlSePfD1fy7eet5BV4OfOSAQSzPNSF61jZvGKjMpf2G1i1i26xQY8VXCqKQpbP+ro5sYyKnbG051kCZPmy8CpeJ4hzX7vr8dlzLq1jnCxR4jxOdibtzbn92qlKsixWT5TFuvf1qj6nDLarzKU7W7mhpi12dtbr+eH6a0lDn83D/dr15nXc2DmXkOwqnF4Wa52vm+Ay8TvoXsM1nb0tfSmhwkRTn8bN2NTHbqzVXSdpIYQQQmxfJLjcztV31GOaJsVZJUCyk2lMjzlrQAJ4/AanXzCAcZPyGDoyC9OE+/+whqULOygp9TP78oH0LbOW4/is6hM+WPceHfGOlGv5XXMobemNQQwnuEztFpucc2llUH2qD78rM2I9Zmcuk9nTLG8Ir+oOLjf85tYOKt1ZVEh0cDX0lADYzQ6Gvao3OUdTt8oCg96g88bd51rn0nC6xXY953JD8+oKgoUAhLyhbvfbnDbU5VT0jJqSAd6IOZe97BYLOL836d1ioXOAa2RY29I+PlNprDPnUvE6y/PE9LjT1KepYfNlGe3fna7mdgshhBBi+yPvKrdz69vXA9AnsT4kWMFP3IinlJu530gOLbeCmI42nSEjsjj7soHkFyZLMmOJYM+9vAdAIPFm0x3gpZe0OU10VI8TXEb1qFOqGvAEyfPnURwsduZk2vL8eQCEvMngMugN4lW9GKaBYRopAXNX7HJgJ4hUk2WEuqtBT3rQlyyLVZ3AM2pEnX3t5+9eisTpFttpzqV7Ll73v2ZjS8YzffBBlIbKNvjcNhfJXG4mG9kYyf7wYmNKoe3fG1+G4DI9WHV3i7X/BthBo54hqHOXxQac4HILZS7t4FLKYoUQQogdhqxzuZ1rj7cD0DdU6mzze/y0xlqJaFFnm/uN5KhxOazeK0z/gUEm7pXnrGlps4PHjsS5PYoH3dQJerNojbVmLLVzvnd1YrUzJHEj7ipF9XDEsKNRFMUphwWrJLY02wqu3JnLUCJzCanrWnbHDkDTu8LaZYR28NxVWay7W6y99IlH8bJb37FE9SiKonTqzJneKTR1zmX3waXf42dg7qANPq/NKaWcUyZdbjT3z703GeBRRbuS5c1K+b3tKTv7bweJKeNJL4s1Un9XVUV15hpnzlzaZbFep/w2akQp3JJzLiVzKYQQQuwwJLjczk0om0AwnucEZmC/6WylQ2t3trnfSPr9Kkee1PWbWntfuwPrwNxB1EfqGJgzkNqO9Sn7du4Wa72ZVRQ12S3WtRSJ6lpD0p253Dl/qPPG2G7oE/AEEg1MrNs0bsSdOZeKomCamZdFsLMvhpleFmudxy7D7ZS5VAPOGO3A0y4B9qpehheOcPZNX4okPUBTe1EWuzW4hyuZy42X2tCn569jQbCQCYly6N7ao2xPRhY2pXwI44yB7rvFWs2q7A9rug4u3WWxcT1OXoGX/2fvP8Mjue4zb/iu3Dkg58k5cBLDDEkxU8wSqWxrbclB9jqs/Oxrr9dhvfbK9nqfx3K2pbVkK1tZYhJzTkNyIidjIoBBDt3o3JXfD1WnuqoD0MBgZjDD87suXsQ0qqtOVVc1zn3uf+A4BhOjCnTdBMdd+D1DFqZoWCyFQqFQKFcPNCz2CsfH+9Ad6fG8Jtqhdu5qqnMpmlHuXDb4G/HIqo9hSWRpxbZ6WcXJklvIOs6losvQnAqtpfUMd0jg8tgK52fSq5P0vCThf7qhOdViSZP3apDJKpm8kmO6HVCWYSsEIWlQ764WWxKi3keFCLJSW5OZWpEsvseM8YTtUnE5Xy5HeHFIDNd0uiucS7j7XBq2c2k/T1Wcy1JYLAeJLYXFchyD5Wv8KBYMTxsjwOqpW6ty80yQ45OQdwqFQqFQKFc+i2/WS7lgqoXL1ZvXpBu64wjmNWsSScJJ2SrFR8pD2tyhqAzDQOREK/+zSoVWkRUREAKIiBE0+Bqd1/28Hzd13ozr2m+w9sUS51JznEu/q/hN+YS6VC3WW8mVdwm+am0cyHXjGM7pOUnc2/JcNqYsLLaiFclidy7nWeWU4mWxFUYqL1LlFm2aoXlCvquFo5JFKI7lPTnTALBxm1XV+Mj+jGf/T559HK+cf2nOYy0fG4VCoVAolCufyz8boiw4YlmhHAAwZnEuh7NDODx5yCNCSbVY4jCWh9wBlrhKyykkiwkAgOnqLUneq+iKy+ErTX4ZhsGHV34ED674cMV+l8dWotXORyPH18xSziXJOwO8OZqk8TuAihYi7uqa1YQAcVpZloNk75+EFnNlbR+cnEujRisS1u1cLm5xSRtdzh92kTnAtVqRuHu+snXkXFphsd7q0Gs3hsALDI4fykFVDed3iq4gV1b8qx7c+doXW1yquoqjk0ecxSIKhUKhUCgXByour0KqVaCczbncP7YPB8b2IS2nndeIkCMCrVrbBM3Q8PL5F/Fc3zMASr3ryCSXTFDJpI4v2wfP8rO2Y+A9YbGK1eDdJaCJuBQ5ESInOmF2JAywfD/lPxNIOG6QD8Bnu5gFtVB1eyLOSu5ouXNZOu582k1cbDy5gvRrYN4w82xFcrEoF5dkscfd25U4+NUEnbtaLHHyiXMp+VisXh+EIhs4fdxaeCLfK7OJw7H8mKf69NGDGTz+wxEoiuE57sXifKYf+8b24FSy96Ieh0KhUCiU9zu0oM9VSDXncrbJH3Ho3EWACI64rOLAGaaOnJqDZmjQDM1TuMcaiy3SykJs54K7oI9maJA4ybMfUgBI5ERPXqVu6k7eWPmxq51LW7Ad9y1/EHEpDsUOvy2vOEsorxY7U1jsYhRvi8FluxpgLkPO5UyUL3IQx9L9XJJnxJipWizDQXL1qSVs3BbCsfeyOLw/g3WbQ05orfv7RVEMDPUXsWyVFbqeVbN49txTGD5fRHPvA7jzgSY8/r1xnDdz4Fbm0dLOX3TnUiF55NS5pFAoFArlorL4Zr2UC6ZaziWZSB6ePIRHT/0YA+l+53e6oTsFOUgorBsnLLaKM6PopTYj7qqwTkXYstzFanmbs0EK+siaDMM0bBFZcmcd55KVHCGqGAoM0/C2BPG0B6kucpv8TeDYUk/Lau8FSteC5KdW9rl0H3fxPWbzbaFB8bLYrmOtsFj3IgnnOJfWayTs1XrNCiW38qWtZyCtpDGYOQ9FV7BqXRCixOLk0RzkouHsQzdLudov/WwK3/jnIZw7ZX2XZOxoiIGzRZw/V8TX/mkQctGAyegYGSp6xpLP6eg/s/ACkHxHyfMoPEShUCgUCqV+Lv9siLLgiNXCYu3JW1/qHNJKGq+cfwnHpo4CKLmK5T8TeJe4LHe83NurhlKRc0lcVHcu11whTovjfrKCJ7w2JFiFRiROdISoUqXdiMe5nEXksgzrcYArnUvvdSh3rRZ9ziVD+1wuBJ7ruCicy+rVYknONcewzv2omzpGssP43onv4Oz0aec159m1c5Dzah4vDbyAH5/8AU5nTmDtpiA01UTvkSw0V99Z8oz3HrWiH0aHrGdQNVSYMDGdtLc1AV+ABVgDY0NFmKYVFmuaJv7jX4fxtX8cxORYSfAuBGScsk7FJYVCoVAoFxMqLq9CqlaLtSd+7gkwyT/KecRlpWvgFnLlIZ7u7RVdrchBFFnvWKrlOs4GEbekeq3kCn8FgOZAM7rCXVgRX+VsS9wYtkaF2PLWItVwi8taOZeEmVqRLMZqsZejhcbViHuRYTE4l0yNPpfuiAIndNzUMC1PAwDGCxPWa64iWAzDoNHfBJ7l0RXugmqoODz5HjbZVWMPvJN2WgOR/SUmFSQnrdcS9v9VQ0E+a0BVTLR3S7jzgUZ86lc60NzOo1g0kE5pUDQVJw7nMNhvib/RYXlBr4vjXOoLu18KhUKhUCheaM7lVYhQrVqsSRqWWxO+sBhGSk4hq2RQUOtzLgFrcqrrpVwtdzsB1VCq5Fx6XdT5CC0y2SUVKSXO5wlrlTgfbu+5CwAwlBkEUOrx6Q1PnbmgTzmWMLaOWe4+lofBlrt/i77PJW1FsiAstlYk5Y68YYeqOi1GGN5ZLNINzVlezCppT9Efwn3LHoAJEyzD4oe934Osy1i+JoBonMe5UwU8/VgSw6E8GpoF6IaGM70l8VYSlxpStmvZvdSHm+5sAAC09wg4PgnsfjmJc4+eQRNbEqpTE6WfFwLSZ3c+/TgpFAqFQqHUz+WfDVEWHHdYrNPGw544qoYKlmHRHe4BAAxlh5BTS0V8qjuXM7fwICi64lSLJeIqIkac3zMMM68QTDJhJuMUOclTEdf9MxkrcSjck213WGw9oao+3lUMqEyMVrQewZXlXIKGxS4Ii80BrlUt1nA5l2RhRjM0aLbzmFEyrmI+pXudYRhnnz7eB8M0oEPFf/r1ToQiHI4dSuPowSz2vpmCois421tanCqJSxXTCWvfHd2lFkLtPXaUgWICnAG5aCAQsp6VqfGFDYvVqXNJoVAoFMolgTqXVyFu59LH+6AqpXBVEvbWFe7GsamjGMqeR0SMOtvPVNAHmFkoqYbq5HiRCemy6AqcTJ7EeH7MKfgx5/Oxj0/EpY+THPeFZVivgKzIuXS3IqkeIlsLiStNhMvPu1xIlAs01lXEZz5FjC42bjG8GETRlYqnpcsicC7LFzmqFfQphcXqMGE9k1k161SFrfVskHB7RZfR1BrGL/2XLjzx+hiSp1jkcwbGxgo4e1IGLzAQRRbTCRW6bkLVFSffsqO7tGATb+aw85ZGADru2dyBUKYLko/Fl/7PACYXWFwS4WyYBhRdqVpRm0KhUCgUyoVz+WdDlAXH3X6DCCTNruaoGioEVkBLoBUCK2A0N4qMknG2L1/ZZxm27gm0oiuuwiGWoGIYBjd23gQAiPvi8zof3uW0AIDE+5xQ3fKJMBGiRZ2ExbqL+MzciqQcd+5qrWqxNf/triK6CB8zb0GfyziQKxxPePEiuJC1Cvq4w9VL0QwqdPt5NU0TKTkFoLIXLYEU+JHtfOaGJhE7bg6jo8v6jnn1+QnIRQPLVvnR1CrANIBUUsX4ZB6phAaOA5paS6LOMA0sWxlEc5sIAxp6lvnR0iZCEBlMjavzXoyqhruPJi3qQ6FQKBTKxWPxzXopF4zACc5E18dbEz/d7kMJWAKMZVi0BduhGRqGs0M191Uu3rgaBXIAy9FwJrGuCWpYjOCR1R/DHT13z+t8+LLqtxInOccWyn7H1RkWW6sVifc4M1WLLc+59P7bUzxoMbYi8YjLxTe+KwVy7RaDsAQqw70d59JVLZY8T6quQnVVe03KSXub6s+G5HIuCZqhorHV2t+pXmuRavP2CBqarGfn6Z9M4MffHoKmmYg3CmBZxvXekuDTDQ3Hpo4iKSfQ2CxCLhrIZSv7cM4X97GKGg2NpVAoFArlYkFnlVcpRHT5bOdSN3VnIkkml13hbud3tajMNSxNXstDyxRDdSaz5W5dSAghIATmfB7WGLwTZomTHBFZLi4Fp1pslVYkcxR87rDY8hYqFeJyhuqxizHnkhb0WRjItVss7nR5i5xSWGypWI9T0MfUPKJruph0tqkGed7d0Q2aqaGhSQTDAAajQRAZrNkYREOTLTiP5WFwCtZsDGDr9RHP/oirCgCThQnsHX0X740fRGOL9d7J8YUr6kMKGlnjp84lhUKhUCgXi8UxI6IsOMRlIM6lZmhOpVjSC7Ij1Fnz/UQclYs3t2giYXIEd7XYhXTryie7EudzxF65q0leJ+5EzWqx9TiXfO2w2HK3r6IVyRxDcC81i60QzZUKu+icy+o5l061WJYvOZeG5gkXnZZnFpeS/V3iFpeqoYHnGTQ0CTCgY93mEESJdcQlAHQs5bF6fQg+v/c50F3CNq2k7f0paGy2vlcWsqgPDYulUCgUCuXSQMXlVYpgCz/ivhmmDtVpNWBN/IJC0MmDJCKUQFzG8hA5zlVIp1zYKbpSqkq5gIKqIiyWl5zx+nl/2bbegj6ePpfu9iB1FNlx566WX4eKgj7lzqU753IRisvFlit4pULE3GIo5gPUrhbrtBlh+FJBH0PzOHrJ4ixhsWxlWCwRiB09EsDp2L4rAsM0EHeJy2Xrhapj011tjEixLs3Q0WQ7lwspLmlYLIVCoVAol4bFMSOiLDikv6TfcS51aPbqveDqPdkZ6gIARKWY5/0BPlixLVCqvmpVnfSKJtUdFruAk+1yl9HH+RAUgrij5y5c2369d1t74uwU9HE5qPycnUtXtVh2ZqeyPBzRfW0Wi/Bw4ynoQ53LeeM4l4vkGtZyLt1hse6CPu6cS0LNgj7VwmJt0bZkhR+/+F9asU//GV4aeB5NLSJ8fhY9y32INJL9ep853ajsl6ubGlo7LBG7/500RgYXRgi6xSV1LikUCoVCuXgsvlkvZUHw85bzGBRCAKzJlaqTVgMlwbgksswq7hNo87yfOJdCjf6OLMNWuJOKrjhuxEK6dR5RyJacl85wF0L2+RFKOZfWudYKi63HWXUX9CkXozPlWJb/ezGGxbrDeqlzOX/IfbBYriFT5qQadqsRp4clyzkVoDVDc5xHd/50zbBYp6BPyVEkopUBg6KZQ1bJYjg7jLQxhd/6wyX4+V/rdFqclFd/rZbrrRmWuLzx9jiKeQPf/NIgMmmtYru5kkwW8frzCYyPyrTXJYVCoVAoFxEqLq9StrZuxwe6bkWDz7IN3MU73IKx0d+IR1Z9DJuar/FMMEm4aXmIHBGN1iS1XFzKrqqUCyeoGIZxJryz9acrD6H1FPRh5l/QpzyMttypLBebXlG7CMUlLeizICy6sFj7K508L+U5l6VcZd5acDJUMAyDXR03OeIxKASr7pu05inPuSTktZzz89GpwwiFeQgiHHeU9NQkGDXEJQDc+WAjtt0QQSFn4LXnEnWdezmpaRXf//dhnO8r4OihFKaTGg6+k8apU0l879+H8fRPJjDYT11MCoVCoVAWktljAylXJCEhhFA05LgF7mqx5UV6Si6l4LgSTlhsDbHmzt3iGMsNUQ3VEX8L7dZxDAcNmkfwVSMkep1MtobIq6cViciJYBgGpmnOWi228t+LPCzWJSgX4/iuFBiGgciJs96Xlwpyj4ucaOdAV4bFkv/n1by1cMPw6IksQVe4Gyl5GnFfQ9V9kwJX1cJigVLeJAAMpPuRUdJO7jdQEroE3dDBo6zIjy04GYbBnQ824ejBLPa9lcLOW+OeIkH18NLPpnD8UA795/IYZotgTAaybOLF50awLGeN9dDeNH7/L1fMab8UCoVCoVBqQ2eVVzkMwzghcE5oXA1h5XYFiXtR7gQSIcKxnMdNFDgBqqE6x1howUKO5eOkGbeTOMlxYNzvI2Nyj78eSEXcypYsZedX5mSS/S/GkFiAVotdSO5Zeh9u6779cg8DQMm5JItCxB0shcV6W/gouuLc2yzD1hSWQPWCPporZ9MtLgFgsjDp2bbcudRNveL5cIvVQJDDrtvjUMwivvr3A3jzpWRFaG0tpiYUHNpn9d3MZKwFs40bmhEIcoCg4IGPtyAa51HIG1BkY6ZdUSgUCoVCmQNUXL4P4Fkehmk4uU+1QkuJkGQZFl3hbmxo2og1DWs825DJIMuUwmJFToTIijBN03E1FjoUlEyAJX52hygiRSvGW76fegr6AFbYcEgMVeynohVJ2aPEucKHFyOegj6LJF/wSiXmiyMkhi/3MAC4WwhZz7hRpVos4F1gqpVjWY7ACWAZtqZz6RzDqdisQHGJT7cwNE0Thml42v2Q8bodzk27OGQ3vIRj5it47vEJvP58sq6xvv58AqYB3Hh7HOE4IAgMNm1uxO33NOPOR6LYsSuKaNwaZy5bu88vhUKhUCiUuUHDYt8HcAwHWZc9RT2qIdrikhTN2d56bcU2Ts4lwzmVY0WXU6joykUJsyTCV5zFuQSAiBjBRH4cAMCy1UVfPa1IAOD2nrtgmEaFAJutoA85zmJ1Bd1ieLGOkTJ3SC4wqRZdGRZr3ZfuKtD1iktrv6KnoI9bXBLCYgTJYgKKLnucS8ASlQzDOOGv7tBzgm7oYDnr/iyYGWzbGcH0WhVnnzmFl55i0NwmYt1mb/h7OSeP5cFywAfubsCmmzjEzjYg6Begcz7k1TwAIBguict449xCbikUCoVCoVSHOpfvAziWg2EazqRQZGd2LsvzLL37IgVDXGGxrOAIUwCesNSFot6wWMASl4QLdS6tfp6V25aLyQrxyTAICsFF42iV4xkvdS6vGoijzrNecUkK+pTCYt3OZf3CSuIk6KbuiMpq4pI8f7JeWZm1JHZLhb/Kn0XSMgkAFDvaIhYX0HnLIGQug598e3TGFiW5rIZ8VkdDC4+h4lkwkgyf3/q+It8HhmkgGOSc7SkUCoVCoSwMVFy+DyCTN9L7sZZTQcJlZ3IyiOPFMpwzURM5CYIr1LYj1Hnhgy6DTIbrKZwSrkNcchforlYU8KnyKN2//CHcteSDF3SciwXNubw6cRfcYhimvrDYOeQFk+dP1mWYpgnd1Cu+L8L2goqsy1B1bx9NknfpVJV2LVIRdJdgJQtiAiugtUPEklvGoCom/uMrwzh7Ml91jBOj1nsyzUfwxtDr2Du2xzlncn10Q4cWSCLPTSJPw2IpFAqFQlkwqLh8H0BCWYuaJS6FGs6l4ITFzuRcusJiiQvCiZ5w1YshLslkuDxHqxrRGXIuyX4uNBeyXJBVy1v08b5ZW6dcLmgrkqsTkpPs431gwdasFuuOTuDmGBYLWEV9iGD1leVBR0Tr+ZN1GbJR3bk0XM5l+fHdbihxLjc2b4bACgitHMeG60VkUhq++S9DOPhuumKM46MKTBjIhfoAAFOFSQDWuZPvQt3UcdLcjYHgW8hldewf24v9Y3vrvg71MpGfwNsjux0xTaFQKBTK1Q4Vl+8DyIRSdpzLGjmX9TiXrkI1RLhJrOgJs7sY4pKE2gb4wKzbup3L8tzKlbFV6A73ICRcWLjqbK1IFjtuMXyljZ1SmxZ/C+7ouQsbmzaDZVjHKSxViibPb+l5nSkMvhzJ1euShK+WRxOEJev5U3SlMucSpdZI1ji4iuNrrv6Xqu1cBoUgVsVXwzANrL4jgYc+2QIAeG9vpbicGFWQ4UcQjlrnSO51juWdRSXd1MGIGnRGQzKTx5HJwzgyebju61AvJxLHcDJxAhOF8QXfN4VCoVAoi5GrvqDPhg0bsHLlSgDAxo0b8Rd/8ReXeUSXHiImC1rB/nf1yWQp57L2bcG5Cvq0BloR9zWgI9yFE1PHnG0uRs7lhqaNCIsRtARaZ93WLY7LXbnVDWuwuqwC7nyoyLm8At0/UkiFplxePTAMg85wl/OzOyyWYzhHaHlzLufuXFoFwkjfXKsAGBGwpZzLoqf4DwBP313AzrksWwCqFhYrsRK6I0twbOoo0koau66N4KkfT2B4QIZhmGDZ0k08MapgSjqNFRHec0zeVYTMMHUIovX6eGYCF6ucT9H+zi2/DhQKhUKhXK1c9eIyFovhscceu9zDuKwQZ8Gdv1QNUuinVh9MwNXnkuER88Xx4IoPAQBSxWn0p/uwOn7hwq0aYTGCDU0b5/y+i+XKecJKGeaKbOfBgoUO/YoUxpTZIf1tAbunpEvEuQXlTM97OY5zqcme1iMcw0GDBpZh4ef9TsuSvN37kohPzdTws7NPOBEIVgQEyQPlPMWCADgFgUROcp5l1VDBcQw6uiUMnC1iakJFc6uIM705TIyqODc+jIIwhfaGFchqGc85k31ohgbBXgMbz05g4WMtLIr2+N39QCkUCoVCuZq56sUlBYhJMc+/a4nLavlY5ZTC6ryibVV8NaJStC5n8VLw4IoPYSI/gSZ/00XZPxGUpmleseKMYRjAvDJdV8rssAzrcS4DQimk3B29MFOkQjk+zg8AKOqFUgVaxnIuZV12xKfESZB1GTlbXAaFIFJyClOFSes/WEWKLefSOn5IDCElpzzVYku9eQXnPiXOZmePDwNnixjqL6K5VcTTP57A5LiKgcAxhJo4XNN6DfaN7XVyzTmWd4SsYqgQfdb+Jovjjrg0TGNBF6RIKoJapaouhUKhUChXI4s62WrPnj349V//ddx0001Ys2YNXn755YptvvOd7+D222/Hpk2b8PGPfxyHDh3y/D6VSuHhhx/Gpz71Kbz77ruXauiLipgv7vzMs3xNly3ui4NjODT4G2vuKyJFwTBMhWBlGAatwbZF4+DFfQ0LEv46E6XKuYv6MaoJGfdi+cwoC4vbpQO87XfcC0hzCYslxXuKWikslmd5Z39ucWmYBtJKGjzLO9ET5W1HOJZzfkcKAXnDYknorejkiRKh1rnEet/QQBG6biIxpSIlnEdWGENzNIpl0RXw8/7SeTIl51LVFYii9fOUPOlsQ8T4bGiGVte2skacSyouKRQKhfL+YFE7l/l8HmvWrMEjjzyC3/7t3674/VNPPYX//b//N/7sz/4M11xzDb7xjW/gV37lV/DMM8+goaEBAPDiiy+itbUVp0+fxuc+9zk8/vjjCIVmbsBdC3dez2KAjGe2cTX4G5y8OpETam4f98fxc+s/PWMl1bZQK35u3ac9Tdjfr7AsA8OwGtcvtnujHliGsdwjlq06/nrvL8rihGM5MAygmSoYBhBcz77A8aXvBF6s+zMOiAEwDKAYRRjQwTCAyAvO/iRBAssykAQJjAKYMBASI+BYFgwDmIzhHJdhGXAMhx3tO7A0uhTJYhKD2QEY0J3xqKYChgH8gs8qwsPA+X33Uks4Dg0UkU3rGOd7MR09BtFkcPu6G8BzHAJCANNy0j5PAbw9Ts1UrXFKDIqK7IzJZIxZr4Vu6PjuiW+hOdCC+5Y/UHM7VVeda0SOR7m00O8wysWE3l+Ui8mVfH8tanF5yy234JZbbqn5+6997Wv4xCc+gY985CMAgD/7sz/DK6+8gp/+9Kf45V/+ZQBAa6sVprly5UqsXr0a586dw6ZNm+Y8Fp5n0dg4P1F6sYnHgzP+vsEMIj4ahmqoiEjhRXseVxqRcACKrkDipCvymobDfggag8bGMCJS7fHPdn9RFifR0QAMQUYoKiAU8iEeDDn3aZaLITRtOX9NDZG6718hZCA07oMQAMJRCaGQD42xCHShiCKXRUssjsbGEFqm48gzKQBAW9iKhMgyPkSiPoRCpeqyHMuhs6UZnWjGkfEjCOV8CEVKz5M0yCIqBtHSHIVhGgid98Ev8WhsDKEoDCEQMTE2pCCZKmJcOoYVPWH8yWc/iZ5YDwCgNd2ANKYAAM0NUShCFuOaD8GIdU18fg6paQ2SKMIE8N6eDHbuCiMWr91CKFlIIhTyoYD0jNctI2eccw1FxCvyO+JqgX6HUS4m9P6iXEyuxPtrUYvLmVAUBUePHsV//s//2XmNZVns2rULBw8eBGCFxPr9foiiiLGxMZw8eRLd3d3zOp6mGUinCwsx9AWDZRnE40EkkzkYhjnjtrzmQzKfgagFMTWVvUQjvLrJ5xQUtSI0HlfkNc3lFBTUIpKJPFSxMrR3LvcXZfGRzynIFooYm5xGNltEGKpzn2ayMrJZKx8wk5IxxdR3/6q6jmy2iHEtiSbW2m8uoKJQ0JDNFlEUDExNZVHMGc7+NZ5FUS8gmy1iMpF2XifOJbm/smlrTJPJNKZ4azxTqRQkTnLGnc8p0IsZHD9/Fk+ffRJaZxv04yvx2GvvwGRMrIisQlBvcLZX8qbnPLM56xjjU9bYecFaEU4kCjh9Io9DBwbx0mPT+OgvtGPlOusPekqexuGJw9jetgN+3o+hzJizz5me+8nCpLPdpJjClP/K+4640qHfYZSLCb2/KBeTxXp/RSJ+CMLMveKvWHGZTCah6zqamrwFWxobG9Hf3w8AOHPmDP7kT/4ELMuCZVn84R/+IWKx2LyPuZg+XDeGYc46tqgYx3huAhzDL9rzuOIwGZim9f8r8pqagGkChjnz/VPP/UVZhJgsTNPK+zNNgAXnfI4seNgdOjyvzwbH8GDBIa/koWias18WHEzTqjhtGCYERnD2H+ADKGoFmCag6brzOgwTHMs59xdj70PVVBiGCc3QoBsGBEF0xscxPFRdQ1bOwjSBWKuB0eM69vYdAQNgU/sGz7mIrM9znkzZNRF91qJKalrD+bMFrOR15HMGfvTNUfzuF5aBZRmcSpzC6eQptPhbsTK+Cik57exzpuuWVwrOdop9TpTLA/0Oo1xM6P1FuZhciffXFSsua2H17bNWo7dt24Ynn3zyMo9ocRCTrKI+c6kMSZkZcp9d6QV92MVd14syT8jnS1oQ8Z7elqVVx5mqQ1fDx/uQU3NOJVfe7nMJWC1DAEDiS6GvAT6IJKy8R9LfkkCqTwOlYj+kWmypdVIpRJVneeTVPFS7mFBDC4ez/CSKehFhtR1draXiZQDg590huLxzPMV+vyRZ16j3SBaGCWy/MYJkv4Tz54pITKhoahWddijkmFklg3oglWI13cTrL02gYXMGG7aE63ovhUKhUChXKlfsrDIej4PjOExOTnpeTyQSFW4mBU4FWPekj3JhXOnVVklrhyt1/JSZYe3PlYiiWtViuTkuOPnsCqxZJWvvi3f24bMrv0qs5GwfFILOPeZuM2Idu7L3pm63OFFsUSdxLnFpn0PRFm7xZg46YwtFI4SGJq9Q9vPu9iucczzVFq6SZI0rk9LBMsC2nWF02VVoB/utY5BWJqQ6bqZOcVm0K8UeO5jFyd4UXnhiCqZ5Za0+UygUCoUyV65YcSmKIjZs2IC33nrLec0wDOzevRtbtmy5fANbpLQGWrGr4yZc07zlcg/lqsFpRXKFPkaOOKZ9Lq9Kyp1LzuNczq/PJVByAycK4wCAoBhGULDyE8Oi5cyJLkEYEALOPWYYtZ1LMj7HubTFnOAWl/a4C6qV/86JBqIN1r59Eg9/wJsH4nMtplmtSGxxabuu0QZrf+EIhx03RhEIM+haaovLPktUEueStBPJqiVxWa0dSS6r4cSRLApqEYMDBfSfKcBgNCSnVEyNqxXbUygUCoVyNbGoYyRzuRwGBgacfw8ODuL48eNoampCc3MzPvvZz+K//bf/hg0bNmDz5s34xje+gWKxiIcffvgyjnrxsjK+6nIP4aqCuDFXqvNHncurG6enoxO+WukSlv9cD6QvZUq2qsHGpBia/c3oCHai0Y6QcIu6oBByxlIRFstWCYs1SFisJepIqK17rAUtb+/PQHMHD5wFYrHSdgQfV+pz6QmLtftntrSLuPuhRogSC4ZhYJqG0z9zcMASl6lsDqd6c1h5nYLklIq3dg9DMzWkkyrGfngad/8nEUu7YohKMYwOyfiPrwwjPa0h39mPvqwlRBvaWOA0cOp4Dk2ttSvRUigUCoVypbOoxeWRI0fwC7/wC86///zP/xwA8Fu/9Vv47d/+bdx3331IJBL4h3/4B0xMTGDdunX46le/6vS4pFAuJk7O4hWacxkQAsipuYrG9pSrAwbEuawMi3ULSm6On79bOPp5PyRb/BFhCZScS57lIXKis4BRLi55lgcM8rMl/HQiLm1RLLpcVrJNQSvY2+pobhcscRmvIi7dzqVLXBLBHeADYHylKuC6qSMa4xGKcBgblqEoBg4fSqD3ZA5tbBLnUudxuq/kXCYzOXz1+adw/wdX46amu/G1fxyEXDQQinAYSObAiMC2GyJoCPsxfBo4dSyHnbd680LdjOVGMZobwTUtW2tus1hQdRUJOYHWQOvlHgqFQqFQFhGLelZ5/fXXo7e3d8ZtPv3pT+PTn/70JRoRhVKCTN6ZKzQs9gNdt0ExFI97RLl6KHcuy3MrBVaAaqhzdi7dbmBMilXdhriNJFyWuOR6WRipe2GmFBZLci7tgj7VwmId51LHklUiGk7wWLcxUjEOlmEhcRJkXQbP8OBYb6jwqvhqNPtbcD4zgJPJXhimAYZh0LXEhxOHcxgeKGJ8MgcAOH40hWBmDEKUwZbrIvD5WaRf1nFqRMbIaBZvH52GXDSw9YYIHvhYC/71xf1QA3HE4gJ4BvAHWPSfKUIuGpB81b8z3ps4gNHcKJZEliLmqy1CFwOHJ9/DkcnDuGfZ/WgJtFzu4VAoFAplkXBlzooplEXAlV7QR+REhATa2P1qZaZqse5/z1VcuiuwRqXqAigkhLA8tgJrG9Z7xkJcyfIxAJVhsU7RHVdxIMERl5bbaJg6fEHgxjsasHxF9UqsS6PL0RXuAsdyrpxLy83lWB6d4a5SMSFb2HYvswT00WNJTCetbfMFBbKZR9cSH9o6JMTiAnbcYhUM2vNWEnveSIHlgNvuaQTHMehYziIWFyByIgzoWL0hCF038eLPvEXo3ORVSzTnbfG8mEkraQBAXs1d5pFQKBQKZTFBxSWFMk+u9FYklKubipzLsvDXVfHVWBVfPef7l1SLBYD4DO7aTZ0fwJqGtQDczqU3LNZ97FK1WEtckkI6AldZ2ZYIUN3UnX2ybPXzuL79Btzec5f1fifnUvH8uzwndM0Gy3F9581xmCYgiAwMRoPC5rBkeen8l28Q0NgsIDWtQC4a2HJdBJEYyQstgGd5+DgfDNPALffG4A+yePf1FI4fylYdKxHNRGTOlYySxlNnn8RYbhQAkLbzYuthLD+GJ888Xvd7SBVdvawCMIVCoVDe39BZMYUyT2i1VcpihtyfslMt1hv+vKVlG3Z23Djn/ZKCPgAQrREWWw7jOJeWeAuLYTT4Gj15mkTokWqxxF2U3AV9GO856EZJXNaTO8yVvb9cXJp22G5Tq4imVtFpJ7J8tR+xJgbdq1iEo6XcTQ0Kdt4aw/qtQSxb5cctd1v5/oZpQNEVSJzkhPIGIsBDn7DyE/e+WSngNENzzjmvzc8NHMuNYbIwgYFMPwYz5/Ho6Z/gVPJkXe89OnkIieIU+jP9yCoZ7Bl9xxHh1SjaQlg1qLikUCgUSgkqLimUecKCOJdUXFIWH0xFtdiFSbF3F8mplXNZMRbSisQWgivjq/Hgyg9B4kvCkWEYcAznqhZr51yypZxLd39OwHYubcFaLhyrUS6wyXvI/3XDQE7NIa/msW5zEDpjjaGxWcRtD8Zw871WXie5Booug2EYrNrgxy/+ZheiccEzdonzOdddM1QsWWH3CM1UCrKCKxQ2bwu3nJrDD3q/W7dAJEK7qBWRlJP2Pqq7pG6KWhHD2WEAltt5bOoYjk8dw/Gpo7XfY/caJYKYQqFQKBSAiksKZd7QsFjKYoZFWc7lAlUF9vN+8CyPkBjy9LOccSxl1WJruf0cyzliUbbFi+Q6RnlRIrdzWU9hKqbsWSWhtCQXUzd1/PjkD/Cjk9/Hus0haIwMhrH6YWqG5lxLP2/lWhbt0F3S71LVVZim6Yzdx0sQ7bBe1VDh87NgWCCX9YYHAyVBCQAFOyx2uphEUStiLD8667kBpXDhgpZ3eoGWhyJXYyDd75xDSk5hWk4AAPrS56purxu6cy3K82gpFAqF8v5mUVeLpVAWMzQslrKYIYLOXbxmYfbL4o6eu5xwz3ogCzGaLRxrLcjwLO/kHZL/EyEHVHcuiaCqp6VKucCulXMJANFWHUvW8pBEP3iOgWqoLnFpOZCkF6dpmtANHT859UO0hzqwpmEdAMu5JKJNM3SwLANfyEA+Z72HYRicO5XH2ZN5LL+xFAqbd1XDBUrhxLUYyQ6jyd/sOMNFrYgCZ+/DMGZ6KwDgXPqs83NaKYXspuQUksUE4j5ve6+CXhLC1LmkUCgUihsqLimUeeK0IqHOJWURUsojNAGUekQuBK3BtjltX17Qp6a4ZHhHqOXVPERO9BT0qXYOmiOeZ38Oy0PYy8NiVVeOYUKewi0PhHB00qpCqxu6E2JcLi4N00BRL0LWZSQKU87rIic5zp5mqChqRZyKPg1O6USxsBySj8Vj3x3DdEKD1pIGbB1NKrASYTpT0Zwjk4exf2wvVjeshWSHEBe0AiQ7dNeYxbk0TRPj+TFInISAEESymPD8vi91rkJckmI+1nlR55JCoVAoJeismEKZJ9S5pCxmygXcQoXFzgcyFiJ02Bp/eoi7WtALUA3VEXHO76ucg1xW+XUmyrch+ZBO/0uXCzdVmIRsF/QBLGFMRBXJuSQFfwwYTjGgol503idxouPwqoaKtJKG4DNQ4JLIZXWcOp7DdMISZ6fOlERdUS/CNE3nes0k4I5MHgIADGXOO+Jd1mUn13K2sFjVsEJ5A0LAk0NLFhAGMv0V7ym6QnipuKRQKBSKGyouKZR5QibMNOeSshgpvy8XKix2PpQ7l7V6wxKxl1UyAFAhLsvDYoFSwaJ6zo8tcz5JriXj9AQticlEccopWkPGW9SLEDnROZZiuMJi7XNTdMUJG5U4HwRXQR9ZL0KSWOisjHxWx543SiGoZ84lYcJ09lfQCtAd57J6aKtpmk6obpO/GZpLSGYVS1z2nc3i6MFMzWtSym2VEBEjOLQvg94jWXSHexCTYkjJKWTLigK5nUsaFntloRkaBtL9TkQDhUKhLDR0VkyhzBNa0IeymCkP116oarHzgTwrupNzWUNc2mIv44jLgPf3Vc6hvGflTNRqReKExRqlsNjJwqTTazNgj8M0TQis4LjA7lYdmuEWdtb4JU4E7xT00SBrMkSJhcoUMTIk4/SJPMJRDq0dIqazOWTTOiKiVZE2r+UdwVrLHUy4QlgZhoFRlpspF3W88uwkfvytUeh6dTFBnF+Rk4B8CP1nCjh1LA9RC6M91AEAGM2OeN7jzrkkYcmGaSBZTEDVqdhczPQmTuCV8y958mwpFAplIaGzYgplnrBOziUNi6UsPtyhpyzDVnX9LhVMWcGcWnnKJIQ0WbTaaASEcnFZeQ4XJi690QeKSxgVtaKTfxgUQs7rIic6+/GIS1deZEq2HEnLuSyFxRb1IkQfC5MxcPLENGACq9YFsWZjCBpTxPiIgkZ/EwCr4isR47XyJodzQ87PQ+fzeO9AErJc2rb/TAGaocPQgVRSg2ZomMhPYDw/7jhXxK2VOAnTg9ZYTQAjJ0S0By1xOZIb9hzXGxar42zqDL57/Nt44sxjeG3w5apjXQhoCO6Fk7PzeacKk5d5JBQK5WqFFvShUOYJEZU055KyGHE76g2+xsvqsDthscbMOZdRKYrzGWDUFjOVzmWlgHRakcxHXLJe59IdFgtYYoZneUhcqR+nwIpViwe5W3Kk5GkAlhso2C6fZqjQTR2SZL33XP80gCAaW0QsXemHuruIwbMmwjdGAQB5NT9rzuVI1hKXJky89uIE5DyDnDSFcIRHJMZjfEQGz1jXcGwii1eTLzqu8E1dH8Dy6Aon9FfiJAydE8CYLHhTRO8BFTfc1AaWYTGcHXKq2wLlBX1UDGUGnc9hKDuErJJBSAxXHfN8mSpM4alzT2BD40Zsa92xoPt+P0HceXKPUigUykJDnUsKZZ4wNOeSsohx35ctgZbLOJLKVh+1npmYLw4AmLYnvoEycTlTXmU9fS7Lt2HLWpGQMNiQGHIcx4gY9VSsFTmhamEhd+4h2Y+PlzwFfWRNhuizjpUpWK1CGpoEtHUJiLWaKKYEDPZa+yjUCIvNpDVMjFoCgeRCZtM68gUVot8EyzJITWs431eELJswGStf882BN5FRMk5vUuJgEfdVZEUMnFGwJL8La7kbMdhXRHbayuWUdRlJ2VVwSPO2IiGivCeyBABwNnUGgBVGvFBu43h+DKZp4sjkYZzPDCzIPt+PkM97mopLCoVykaCzYgplnrC0FQllEeMWcM2XWVyWu/u1QsnjUtzzb39ZWGyt0N655JO6r0upzyXJubQEYmeoG59Y+3O4b/mDuL3nTk+lXZGTqgpZvYqIEjnJGbNmaFZYrGT3/GQtQdbYIqCgF7B2UxC84cP+14swDNN2Li1haLgK+vzk26P4178ZQD6nO0IhMaHCYHQsW+PDPY804a6HGrH1ujCWLPdh3ZYAsvwYziTPISgEcU3zVs94iTAsZjikpzWsbO/Grh1LAQC9R7JoDjQDAKbtUGUAjttJzovkba5r3AAAODN9GgDw3sQB/KD3u8go6YprM1fSrn28NfTGrL0/Z6OoFT1hze8XSI5sXs2/L8+fQqFcfOismEKZJywNi6UsYtxFc5r9i8O5dP5dMyw25tk2UFYttlY7lblED7iFqNOKxBaXxGXjWQ4sw6LJ34SAEPC8R2DFqiG4WpnYYRgGIluqLGuJMNkJi9WYIsAA8UYBicIUGppELOmOIZtgMHDOasXiOJeufM7RQRmqYmKw3xIHPt6HqQkFJjQ0tXFgwMDn49C11I/NOyJobhcgs2kUsjrWNqx3KvCSfZN2KuPnrRzMpSv9WLkuCAA405u3Cv3AKkhEyKt5sAwLiZPs87LEZpOvCS2BVmSUDKYKUxjPj0EzNJzPnPdcm6HMIN4deccjmmcja4vLoBC0+omW9eOcK0+efQzP9T1zQfu4EnG326HuJYVCuRhQcUmhzJNSKxIqLimLD7fYKS+Mc6kpX4CpJQZZhnWqpQKVOZccyzmup9vFrCffstpYaj3D5SLWLS5FVqganusWgNZ2IhiGcVqRWGGxxZK4ZIuIxnjwPINDE+8BAB66bQtYk8WpYzkoqua0ILF6XhooFnUU8tZr/QNW7mSAD2BqQoXJ6og1V15XX9AKjc3ldPAs77iu5P4g7VT6TliiY8XqALqW+CCIDPpOF8CZgr2dAlmXcSJxHLIuw8/7IXACdFOHrMvOvpvsgkQZJY2CHT47WlYQ6MWB53EicQzn7PDZeiDO5dLoMgDAZGGi7veWo+gK8moe03Jy9o1roOoqxvPj8z7+Qri580F1uZVuN5pCoVAWCiouKZR5Qiap1LmkLEYWU2XN8jDYmZxGkncpcmLVcFciKn28z3mtnnzL8m1ZhnXGUVnop1xcloSswNVyLr0tOEgRIOL8FbUiinoRvMiAYQCNkdHYLGAg049EcQpN/mbsWLMKazdGUSyYOHE05Wktohs6UonSZ3p+0BInhRQHJc8g3MCA5SudQMnPAJyBQk4Hz3KOcHaHxSqKgcFTOvxBFstWB8DzjFVkSDExOWLtU9NVHJ08jHdH3gYAhMWw81kouuLkcgYEy/XMqTnkVSuvdCw3VtWlnCrM7j6enT6NglZAVs3Cz/udCrYXIi5JzqhhGk5+7Fw5OLEfz5z7GSbnUXX18TM/xU9P/dhTGKkeLjQUGLAWCQjUuaRQKBcDKi4plHnC0oI+M2PUH/JGWXjWNKzFusb1eHjVRy73UCrd/Rnc/pgUA1BZzIdAhJ3ElcRlrXDZmd7vfm7Ln+FyUet2SSVOclqYuCkX80RUBvkgOIZDWklB0RUwYCBKDHRGRkOziDPTpwAA1zRvAQDcencjAODo4TQUrbRPzdSQTJQE7OBwBiePZfHcj1NgwKKpjYNu6mAYxjN+AzoCEROybEJXObC2uHaHxY4OyWB0EeuvCYHjrM9mxRrr+o/02SLUUB0n8prmLbi561awDIezJ/OYHFccMU0+t7SScnJYVUOtKsLSyjSKWhEHxvbhmXNPVRTq6U/34Y2h1/HD3u/BNE1EpKjTqoWIS9M0rWq1cxBeBVfOaMEWwHOFVN1Nz1Gg5dW8I7rzWq7u900VpvCd49/E6eSpOR2vHHcf0tQFOLcUCoVSCzorplDmCRWXtQn87f+HpqVtiN19C9ihwcs9nPclPMvj2rbrEXaFmV4uKsJiZ/jTE7OL+tQK5a3mXLJzCIsl4tLtPpa/v9yZdLdAEVihqqNannPp4y2xxTAMIlLUKZ4SFIKQJBYqW0Rjs4CcLTSa7MI5bW1BtHWIyOVVnDlZEh+6qWN6ytXuJF1A75E8JE7C2g0RrFjvg2Zo4BgOETEKyS4mZJgGghHr+ufTpiPENZdzOTxQBGcK2Li11D5kuS0uh85q9vaqcw5d4R74eT/GBnQcPZjF/rdT4OF1LsvFpDs0lnx20/I0Xht8GYcnD2E8P+YUAiKUO3sRMQKJkxCVosgoGRS1Ig5NHMSLA8/j3dG3ne2Gs0MzVpR1C0p3caK5QBzPnOYVp4niFA5PvFdT7Pan+5yf1TlEF4znxwAAJxLHndcKWsERqr2JEzg+dWzGfRimAd3UEbQ/o/RlCs2lXJ1MFiZpkSgKACouKZT5Qwv6VEV44zUE//cXwBSLEA4eQPi3fx2wG7ZT3qfMISy2LdiO5kALlkaWV/09CVn1cfMLiyVC0v2e8vGU788dFityYlUxWx4WK7p6Y0alqOdnycdBY4poaBaQV3PgGM5x/jiGw/K1AZjQceRgCoZhPTu6oWHadi59fhY6Y03irt/VjC3b4uA4BqqhgmM43Lnkbjyw4kPgWA66oSNgry/kpk1HKOt2jujQSBZTowYiEQlLVpQKKDW3ivD5WUyNGDBNE4quOCGVIidA100c3mM5mXLRxOSQFalAFgVIPiNxook4IucIWC7eaG7UCaktuFqcVIP0zmzyW0L89PQpHJ48BAA4lTyJRHEKAPDm0Ot4ffDVmvtxC8q8Nj/nUraFL2npQtg3ugcHxvfjpYHnq76vL33O+Vmdw0S8YI8zUZxCWk4BAF7ofxZPn3sSAHBgfB/2je2ZcR9k4i9xPoicOO+QYAqlnKnCFJ46+wQOTRy83EOhLAKouKRQ5glxX6hz6SXwT38HAEj/w5egrV4D8Y3XILz84uUdFOWyUu5UzlQES+RE3LvsfqyMr6r6+6AQAMuwCIkh57VqYaq1IMLR7U5WOJVM7bDYmtViywr6SC5xSQQWAPh4P7o7I/BFVHT0WBN8v1ASdRzLoaFJQLyFxfS0jPf2pu1+kTqmk5a4XLMxCI1R4A+w2LKtwRHcpmmCYzn4eB+CghWOq5slcXloTw5Kwbr2r70wia/87QDefXsCnCng7oeawLKlz4VhGDS3iTBVHvmcjrffnMTxo5ZgFDkJB95JI5MwIIrWe3oPqvj+10bQu08DwzAw7QWl1mA7ACCrZJ19k5Bcwpr4WgAlAUVw5wcCcIo9EXG5f2wvDNNwQmX3jVriStZlaIZWM+/Y3aezoM4saGtBBGq+TFwSgTySG8Gp5EnP77JKBhOuIkDl5zecHcLRySNVj+cW3n3pc8ipOSSLSeTUHDRDg2qoMEzDE/ZajupaHPBxvhmvEYUyF0iI9YUUyaJcPdBZMYUyTxxRSavFOrDnByC8/CL0tnbIH/0E8r/3BwAA/9e+cplHRrmczKWgz2zs7LgJ9y57wFNJdi59LrkqRXwqnUrv/twFfkSuVlhsbXEZEaOe1zdtbMZt9zVC4UnF16Dze5ZhwTEctt8Yhi8IDPbJOH0i74TFGtBx7a0htC1lcM21YQRFv7e9iksYk3PsXinAH2DRf1LBd748ikxKQ9+5LAb6s8jndHR2hrFpeykkltDSJoI1eYwOKTh+dBr79yZgGCYmhnQ889MJcBCw46YoJInB1LCJ4+9l8eozSY+rHBEj8PE+ZNWsIzjLQ0ZXxldB4qQKoVfu7BFxuSy6HKvjaxD3NaAr3IUPLr0XPt6HkdwIFF1xigfVCtFzh9uWC9p6MEzD2Xe+LGfT7XKfz/R7fne2rDqupnvvmRf6n8O+sT2OA+vGPc7+dJ9HpBa0vHNtZaO2G6nYwlNgRUh2aPJ8woIN03COR6EApfDw2aIPKO8PqLikUOZJg68BAiug0dd4uYeyaJCe+RkY04T8sU8CPA/53gdgNLdAfP5ZsGOjl3t4lMtEva1I6sHP+9Hob/S4lfPJuWSZmcJiy51Lt7iUqjqXeoW4LAksd1isj/MhYDuVU3Zeor+snyfHcPAFgZs/GAMAnD9XhKarmE6oGI3sxVuZJ3Dbh0JobpUgchL4GkKZ/Mz7dNzywQZ0dgUwNarj8IEMDOhYvUXAyrUB3HRLa8UCAAA0t0lgTQH9ZwrQoUHRZSTGDfzwa2PQVBM33NyIxiYRK9YGIXIS/EEW6WkNRqF07gEhgJAQhmEayNkFbNwub3OgBWExgoAQgG7qHkFIejIyDAM/70dYjGCwr4jzp1Xc0LELD674EG7vuQs8yzsCPaeWHFLVqC4u3RPg+YgrtzgtL8rjPqZbRJumidN28aZ1jevt81OgG3pFbmlKTuFkohfvjrxTMeagEESymMTJ5Annd+7QXGWGUNeScyk6CwCyNrfQWEVX8MPe7+EdV44rheIUqZpngSzK1QUVlxTKPGkNtuGTa38eHaHOyz2URYP4nNWUXL77XvsFEcWHPwLGMCA++fhlHBnlclIu3hYiT5mdIay1nveVu5XuMc4UFkv6V5afU3lxFpJHCFjOJRFvEudDULBcwrG8teBSrZ+nbugIx1hE4zxyWR3nB/IoFHQY0UkU9aKTwyhxPo8Y5lxjZ+w/8YouQxBYXH9TI1hwmBpXYTIGtt8SwLrNIURDXnFLaGkXwYJDPmPAYFTojIaj78pIJTWs2RjElu0xAFZl2f/8X1dg2/WWiE6Nlq6tnw8gbOdK5pSs43qFxTB2tF2HXR032ttZY3A7dMS5vLPnbnx45Ufw+rMpfPXvz+NbXxrG+IhXFImc9RllXeJSqREiWrzAarGy6/1FregRkW5xrLvar4zmRpBVsmgNtjkLkpqh4o2h1/CTUz/0hLNmlQwOjO/DicQxZO2qtAWtAJZhsaZhnb2/0mJd3iMua+dxkt8JrOgUVZLnKK4zSgayLqMvdRamaTphuZT3N+QelHV5QVrmUK5sqLikUC6Aaqv971sKBQi734QRj0Pbca3zsvzQIwAA6fGfXq6R1QXbdw6Bv/trcKcvrNQ/pZJyMcksQJ6yJxR0LmGxTs5lmVvpEqh8mfAkgo1juKo5m0CpQA4Jhw0JpTBTjuUQEqwcUYmXHCdzxK6gWl4Zl+RKGqaO9i5rf+++lYDMZiAFrXBE0gpDKuu7Wc25JLl96zZG4PfzYEwG/hAQbTI9Yy6npd0SyKwpQGMtMafkrOt2ywcbILgEtI+XsGyVJRCTQ6VrazmX1rln1YwjRHiWx/rGDYja+ahEYLtdRdLKROIl9L5XxKvPlvpivvmSN7eLFFBy53bWcvE8OZfzCOMrL4Tjdi/dQsv9MwmJXRVb5YTOKrqKlDwNzdBQ1EvjGMoOOceYlqdhmAaKWhF+3o/l0RUVf3fcFWtnKtJDnEuB5Z3PfK7OLdmHoivoT/fh0VM/xptDrzvnmKEVaC86pmliuri4chsLnmeKupfvd6i4pFAoC4JwcD8YRYF6w40AV5rgajuuhd7eAeHttxZtaCx3shcNt+5C8C//F+J33ATu+Mwl/Slzo9zlW4giWDO1EqnnfeWC1D2myrBYSwwInODaxntMIiS2tmzHvcseQLPdWoRARJSP9zsFfkg4ZKAsLJaMTdEVtHdaIuDMyQyK3DQiUe/YRE4qy7l0O7qssx8A8PtEbNoeBgsOrd2ck5/ndlndBEMc/EEWHHgEghwiUQ6sKWDZKj86un0V/T97lvvBssBYH4PXn0/g3Kk8AnzAqfKaUUrikitzh4lz6a7eSsSlyIo4+K4lWj7y6Tb4/CwO78sgNV1y+4hYyqoZ57XygjmEglaAaIvy+YjL8jBWEgpomiZUQ3Wup+EqXERyJLvCPc7vVUNxxKBbiLor66bklDNGPx9AQAigI9jhOX6uTueSuOsCJzph23MNi3Wf+57Rd6CbOs5nBnAqeRJvDL6GPaPvzml/VxspeRp9qXOzb3gB9KXP4fEzj17048wF9wJLnuZdvu+h4pJCoSwI/LtWDo563Q3eX7As5Ac/BMY0F2dorGki9LufB5PPwQiGwBQKCP6v/3G5R3VVsZAFfZx9sJUiqh6q5VyWj6k8LJZnefh4n6cwT7lzScSByIkVwhIAtrRsxZaWrWjxt3j2A5R6Q5bGYu1bNVSEIjwiUQ4GY6BtjYxV67zbSpzkEcPVwoVJgRuO4XDLBxuwel0EK9b5PK0pqsEwDFrsvMuGJh5dS/3gGQEfuLvBvi6lY4mcBFFi0bXUB7Pow3RSw9AZAyzDOmGxWTXrOLzl7rDjXLqK+pDxyXkWZ3rzCIY4rN8SwrU3RWEYwCvPlJxMInTdQqtaqw9SIdXP++EX/JB12bk+9UIEIblnSC4pEcNEKJOquKquIq2kERJDEDkRAis650f2pRpa1UiYlDztEpfWfkloLKmY7A6LndG5tK+HyIpOH9Z6w2J1Q3fEM4GMyzANvDOy2xnvXDFNE32pcxWinTBVmMKYHQY8nh/HaG6k7n2/O/KO067mUrBn9B28NviK0y7mYkCu8WRh4qIdYy6YpulZpCmvoEx5/0HFJYVCWRAER1xeX/E7+cGHAQDSk49d0jHVg/DObohvvwVt7TpMHTsDvbsH0ovPg+3vu9xDu2ooD4NdiJxLbxhr/WGxTs5lmTh0O5Hl+2MYBg+u+DDu6Lmr5jZESNQSzg2+Rmxu3gKGYRAQAh63sFpBH6AkWHfcGMP9H2vEljsAXihdO5Gz8j/5GteiXGgyDINQmMeWHTHwYilsVGSrO5eAnXdp8og3Cli+2o9PfWYJlq0K2MdyO5fWPm75YAPWrW0EzzOQUyJ03SyFxSpZT1isG3INpoqTeOLMoziXOuv0Du09WIRpAhu3hcFxDHbeGkcgxOHA22nsfiWJn/1oHNkk4xyDoBiVOZckJNbH+x1Bezp5ChP5+ifqRJCR8GbiXDpOKyeBYRjnnkja7RnikiXKSYGoglZwhK2qK1UrsKaUlBNm6LfDp7vC3fj4mk9hTdwSmfUW9CFOrsAJzoJCsY5el4qu4MenfoC3R96qCKMN2gsj5DyyaraqWM8oaQxlBqvufzg7hNcGX8GRGiLwZ2cfx7N9TyOrZvHSwPN4aeCFuqrVyrqME4ljODp5eNZtCSPZ4QsK7SXh6tPzENn1Qj4zcqzLTUEreD4PWjGWQsUlhUK5cAwDwrvvwJQkaJu3VPxau/Y66G3tEHa/CWZicay2Enz/9q8AgPxv/BfA70fxox8HAEiPLe4c0SuJhawWS3C7lXMp6MOxla1IAG8vzmr78/N+T1hsufNJhEW95xZ19b4sL+hT7uoFQxw6lglIFhPgWd5x6UgoKM9Wth8Bqudfurch4Wvu8ypn121xbN4SR9cyPxiGQThYcjk9hY7ssaxYE8Qv/OIaNMT9kNQ4kpMqAkIQDMMgo6Sh2cU+aoXF9qXOIVlM4nxmAIquIJc28dZLlgt0zbWWAxoIcrj3EcsdfvbRSex5I4Wnvz+NbEbzhsVWcS4Ltjvm43zOMd8eeQuvnK+/Fy/ZR4NdmMcRl44zKFh5s/a5JouWwxr3xa3rZgtxt4gpdxBFTgTP8pZzabu57vBpH+9zFijqLehDigaJrDssdnbnciI/jqJWxER+vMIN3tKy1RHZpL9ptkz0jGSH8eSZx/HiwPN4e/itCvFJQqHTs4i6t4ffhKIrdo7q7OMmCw2KrszY/5NQ1Ip4YeA57B5+EwAwkZ+Yc/VTsn1KuXjOJVlAcN/r9aLqquMCV9+3MueCPOTzI847zbmkUHFJoVAuGO5kL9jUNNSt2wGpSnEQloVy/4NgDAPS009e+gHWgMmkIT37FIxQGPKHrMJDTgGiZ352OYd2VXFxxOWF5Vyy5UV7XIV66inUVS5Aycp93eLSDo3lWb4i57GaEztdTEI1VMR9DYjYk3ki6DxhsVVEZOXP1vbExZvJuYw3CrhuZxN4jlS7LW1LjsswjOccfLwPd7U8jLbCZkyMKWAZFkEhiIJWcCbGtZxLQkErIJUpYvfzWWTTOrbtjDjFjQBg49YQtu+KoGupD+uuCUHJcXj39ZQnh1DRZbxw9gW82P+8a795e4x+z2dV0Ap1h3QSIRj3WU4kaX+iOq6sAJZhHRFFxCURo+R6u0NYyx3ERl8jwmIEiq4gISfsa1S+CMFX7Mf9M6mcq+oqzqXOOr8TuFJYbD0ibapotcyxPj9LXG5p2YqNTZuwNLIc17Zdj9UNa7E0sgyAVyRO5Cfw4sDzTi7qyWQvDk+859k/GYO7jQzBLXSGs8POzzMJmLH8GKYKUx7xXt4yphp5LedUwC1oBTzT9zO8PfLmrO8jFLWi41Zn5ItX2MgRl0rl9ZqNI5OH8Gzf0xjMnK/4nazL+MmpH+LtkbfmtE+yuEG+03JqDqeSJz2OejkpeRqPnvpxTTebcmVDxSWFQrlgSEisVp5v6UJ+4EMAAOmJRy/FkOpC/NkTYIpFKA88BPjtPKn1G2A0NYM/uB/I0dyRheBiFPRhZwhjrWcs5XmapG1HeaGeWhB3cb75pMS5DJQJBmsflWNIFKcAWIImIkYAAD7iXDK1CvpUv0a8KywTgKfqazXcDqXgEqIkvLOaOG1vD4EFh4lRS4yE7eq5JFyQCNN3Xp/G1/9pEJkp7znn1CxGhwvQFQ5brovgwY+3eK41wzB48OOt+JXf6cbHfrENXV0h5LI6pqdKDpWiKziXPIfBzHkn7JXk9fl5H1oCrQBKn9noDI6OG+L2Nftb7HOywl7dfSRJxV8AOD04ClUxHOeSY7mK+0R2xmWJ3p7IUqfw05idY1guwKtddyI8jkwexk9O/hAD6X68N3EArw++iv50HwBSLbZ+53LS7scq67Jzz7QHO7GtdQc4lkNHqBM3tO9EzD4/Eq6p6ireGHoVhmlgR9t1uGvJPdb55L3XmYyhmhipJX7dubluNEPDi/3P4aWB5z1taWYSOs6x7HEUtSKyShamaSJf4zjVcAvYche2oBWcZ/hCKWokT1etmadaCzKGoexQ5e8KU1B0BQPpfmdhJKOkcWZ65grqxLls9DcBAPrTfdg9/CZeHnixZj7zUHYIaSXtVMyuF9LK6Goiq2bx+uCrFzVP91JDxSWFQrlghHesYg7V8i0J6g27YDQ1QXjjNTCJhfkje6H4fvQDAEDxIx8vvcgwUHfeCEbTIOx9f1c+XCjc+muh2ve4BdWcwmJdbUU8r9doMVJ7P9Z2buEF1N9mhYQS+oVKcVltDMSlCPB+571ilbDYWjmX3m2s10vOZe2wWMAbNut2KMlnUK2VSUubtd34qDUR9jnVYK0JOMewUBQDLz45hb7TBXzzH8aQSZQmjVkli1RSAwce6zYHZ7xvWJbBho2WsBkdLoVtppUUTFj7JBNk0vLDx/mxOr4G9y9/CLd132GN1VWldSaIyxiRIohKUWSUDPJq3tVHUgDHcjBMA6PDBTzxs7M4fkD2tKcRWAFTkwpU1Zp8E1ex0d+In1/3C1jTsNb5nFP2pLPcuay2KCDbY9g/thcAcHr6lCMO3e8TOREsw1aIt7yaR0qe9kzgp1zvJ6GYUpVjk0UPIqwOjO9HRsmgO9yD9Y0bEPfFwTIskmVtNMi5K7pSEdZbK4c0X8O5HM+PQTM0FLQCxl0iti5xaV8L1VBdbnTtMOOKMblCaN0uuGEa+GHv9/DkmcdnDFueCUVXcHTyCIpaEYpRuiZzzbsk249VKYpEFn5UQ3U+owPj+/Hm0BszFlEizmWT3wpVJ4IyUZzC8anqldfJPaJWyYuuRrKYwJNnHsd/HP8Wfnb2iVmLcOXVPHoTJ+rqwXp48pATKnx44j2M25WdCaZp4tDEQUwVLs68ZSDdj3Ops+hLL57qvxcKFZcUCuWCcYr5XFtbXILjIN/7IBhdh/js05doZLVhx0YhvPEq9NY2qDd9wPM7ZZfV2F3Y/cblGNpVhzssll2gPzuesFi2/n0Sx6jc7eRqvF57P9XFZb3itCXQirgvjp7wkorfVRsDccH8fAAxKW7/bAm2avmU1uvuPNJK0Tkf59ItLiXe5xQoKqfZFpfEuRSc/EBrAs4zPI6/l4UiGwhFOMhFA/0nvBPGVFIDawpo765ezdbN2nXWNRkblpHLasimNU9Rlb70OWiG5ggZiZfAMiwa/Y1oCbSCYZi6q5DKetEKBWZFx/2cKIw7E1nBzrkEgGOnx2BAx/R5CYbr9MaHdLz10jSOHrBEDBE2HMM7Qpo4o4A1we0/rkNRrJ3kczqSowbkojc/TjFkj5sVESNOtV4CcTwlToKsy46Q1AwNj5/5KR47/VN8v/c/kFHSTogoIW2He4pVFhSIuMwoKZimiXOpM2AZFjs7rO9TlmERlWKQdRl5NY+R7LBdMbc0XiJes0oGU4Up5/NqC7ZhaXQZ1jasB1A7LNb9GbrDaKuF3Jbjvm4lN3pm8SNrpevnFpeyLiMtpzBZmMSp5Enn9fnmI55LncW+sT04M33aI1Azav3ht4ZpOG7utDxdkU/qzhMl7jJZ1JpRXNrnFJWizncFceDfmzhQNW81Yy+Y1Cu2D08eclzXRHEKR6eOVGyjGRqGs0MwTRPHpo7gnZHdeLZv5rlGSp7GgbF92D++D1OFKRwY349DEwc824zlR3Fw/AAOju+ra6yAJYZnEsBpOYUnzjyGifyEs8h3NbVwoeKSQqFcEMzYGLj+Pmhr1sKMN8y4rfzg4gmNlX76IzCGAfnhj3r6cgKAuvMmAIDwVv35NpTauEMAFyIkFqgtqGYjJsXAMIynoI57XPWKS7Jdeb4kW6czK3IiHlzxYaxrXF/xu/JiN258vA/d4R7s7LgRG5o2WWOpIhyt/VQv6EPG7hZDM+EOhXWHYkqchLuWfNARD26CIQ7+AIvJcRWGYUKy30eECs/yOPCONTG+7yOW4yEnAmAZFiExBF03kU5pCPhEhCOzf76tLUGEoxwyaR2vPJ3Amy8loekl4aXoCgYz513tV0riSOAENPgaUdAKyChp5NU8jk8dq1nYpKgVIdkVYVsCLcjndLy175yT7ylwovM59A/Z7VKKPoyct35vmiZOHbLGMToswzDMqrmo7aEO3Nh5E8JiGLnRIB775jRe+tkUzvTm8P/98Vl88x/H8NrzCY/LqOgKzmcGPP/O5Io4eTSLdKr0eRfyOjhIME3TqSKbVTLO9VF0BUPZIY9rCZQWOar1Rg27nMtEMQFZl9Hkb4aPLy0OkNDgI5OH8Xz/szg8+Z4T5mmNwRIzrw6+gmf7nnKES9zXgA903Yr2UDuA2hNxd2ize3JfT2GeomufxLlzO18j2WG8M/K2K2Q0g28f+jZePf+yPSavO/rUuSfx1Nkn8O7o285riquw0Fh+rO7iOUQcZ5S0R5CVF0+aibya81yT0bxXMLrdVuLkETE8NoOrT5xLP+93FrzWNq7H2oZ10AwNxxNHK96TsRcRtDqcS1mXcT49AJETcd/yB8AyLA5PvOcJewaA41NH8UL/cxjMnnfOZaowiWNTlccnkO+jtJxC2hbX5dVuyb1QbwXgsdwonjjzGA5NHKy5TX+mH8liAgOZPlc49tUjLutPVKFQKJQqCLX6W1ZBvfFmGPE4xFdfBpNOwYxEZ33PxUKyQ2Llj3684nf62nUw4nEI+/cChYKTj0mZH27ncqHCYlmGdapTlvelnIn2UAc+tfbTFSKy1KKkvn2VwmLLxOUCrNl6HcdS7h5ghXMyDINV8dUVYwFqV46tlYsJzC4uRU9YrNexagu2V30PwzBobhMxcLaIyXEFAl+qbNp7JIvDx0YRTAUQjfNYuymESIyHPrYZ9/R04GjyPQyOJmGaQGvzzCGxBImT0NYhIZPKwzABRTFRLOgIhy3Rk5bTSCspxyUrD+VtCbRgqjCJicIEpotJHJk8jKAQREugFcO5ISyLLAfDMFB0BYZpwGfnLLYEWnHsYAbTAydhyBzQ7XUuR0etCTALHqdP5DA+KiM9rSE1aQI8oComklMqGgOWwOLK7ssVsVVYEVuFpw6NYxwpHDmQQWJShWkCoiCiWDCRy+oIhXmwDAtFV9DvCq+TdRmHDyXQezSP3qN5NLcK8O0ZxYnDWUy0pLH5Th2yLZbzTrEjH4paEYnCFAp83rlexEUkIbXl8CyPgBBATs1h0Ba4naFOzzZkUedUsheAJWjcziUJXy1oeWiGhml7Yk8+r1I/VK9YJBVkSfGhcupxLt3FkIhzqRkaDNNAWk7h5fMvQjM0dIQ60B3uwfn0AHRTR3+mD72JE46AbfA1IlG08hfdhZ2AUpjtaG4Ez/U9g7AYxodWPlJxPU3ThGEazqIQETzlAufg+AEcnzqG23ruREugBTNBQlFFToSiKxjLjWJ5dEXpnItJZxxj+VGYpukIn8n8BHRDr5qTnlEyVpsjIYzmQAtkXcbK2CqYpokTieM4mejFxqbNzmeoG7rzOVdrF1ROX+ocdFPHishKNPgasbZhHY5NHcX59IBncY6IzfJCR8enjmJ94wYAwKnkSbw3cQB3LfkgolLMuedlXXYWUsrzWImjm1NzUHSl6sKKG+Ly9qf7sKVlW9VtyKKAu8jZXPNnFzNz+iuoKAq+9KUv4cSJExdrPBQK5QpDeNfOt5wpJNbZWIB8z/1gVPWyhsZyvScgHDoIbfUaaJuuqdyAZaHecCMYRYFwcP+lH+BVhnvitBA9LglkAl9vER5CNXeS7Ku8DUgtSEEhsayNx1zHUg23+CufyPiFyoWOWoKSrfGzW8CQXpkzwXvCYmcWom6Wr7aEwCvPJCBxEkyY2PPuBE4ey0OVGcQaedxxfyNY1hKinCFBnQ7Cx/uRSlqOUUtLsK5jsQyLVWvCWLLCj1gDD87kkc1YorzBrupa1GQnJ7FcJAftXpwFteCZcB6dOow3Bl/DsF0AhYQ4koq9QT6M6XEORW4ab701hmJBh8AK4FkOhmFibCIHBgBjcnjt+QQe/944XnkmAc4U0NRqXcvR4VIoK18m/MdHZOi6ieEBu0JoWsfJozn4Ayy27rBcwPS0Zp+Dda1GXCGMiqFgMmFN5HkemBhTcexgFqYJ5FMc3nxpGl/5xzN49bmEM+HvDvcAABLFhONYkdeAmRcjomLUERUA0F4mLuN2SDdZMMmpubIKt8TRss6JiDxSgIgUwCp3l546+wR+cvKHME0TXeHu0vFsp7RWjqYb9z7duYyKruDVwZedMZHc3KFsqdLp3tF3MVmYsM+5tODywaX34f7lDznhvORcSR5tRslg39ieirG80P8snjz7mCNMi464tK5HSAw528q6jGHXWGpBzmlpdDkAeHIIi1oRsi4jKkXR5G+GoisYL4w7n5Nu6pgojFfsUzM05NQcgkIQHMthZ8eNeGTVx+Dn/QgIAayMrYJqqDiZKOmGrJpxhWLPLi7PTJ8GYC20AECD324BVOYUk2dI1otOXrTIicipOed3x6aOIK/mcWDc+rvuLgxFigsV9aInGsDt6NbjXibs6tApOVXTWSZCv6DmndZGbufyraE3nJY4VyJzEpeiKOLLX/4y0umLV2KZQqFcWczFuQQA5aEPAwB8P/7BxRrSrPh++D0AQPFjn/RWm3Gh7rgOAMDv23vJxnXV4rrGCxUW697XXFqRzLavesNiSc/BgBDyvF5vQZ+ZKBd/bvxcpbh0b+8Wt+5r7Sno47pes7mWgDcUttypnYldt8URifE4djCL4XMapsZVnD6VgSgx+NQvdeF3/scybN5hhVK2ODmaMgK8H9NJa9LZ1lqfuASAUMCHzdvD6OoMgTUFZNOWGCAtQ4p6ySVwO5eTYwqUnHVNZL3oTPIUXXEmpWkljayaxXsTB8AyLLY0bwUAjA0rEPKWgEkZ4zhxOAvBbkWSzehQdAUNzQICPgGGboUL77wthq07GnCNfe7jQ4ojOtyLA2d68/iX/zOAl5+awuiwt7DNxm1hdC3xgzN5pMrEpWmaaLcdZUWXkUgWwAD469/8LL7wi5/BJ3+lHb/3heXo6ggjl9UxNJrB/t0px91r8jdD4iRMy0lMFibg431ocwkmIvSqsb5xIxiGgazLkDgJjXb7FQKpKEvIKtmyME9rDCRclEzUyedFQmzduYtpOeWZ9K+IrXTyP2NS3BEYT519Em8MvVZz7LWco8nCBFJyyrm+43krv3YsPwqRE7GucT10U3fG0BNeCgBYFl2O5kAzGv2N8NvjLoUdlz7P41PHKsTyeH4cKTnlCEAiQMj745I3BaW8lU01SGuWFrvwjtsxJgIqIkadljnlRX+q9cck+yTXm2VYTwGwDU3W/XBs6qgjzt2VdGvlXE4VpjCRn4Cqq5gsTCAgBNAcsMZNFhjyah6maTruNnmGirrsnFuHvbiRKE5huph0RP1Auh+J4pRT4Asohb+6Q8UBOPt3X6dyksUEjk8dQ07NeaoCk7zf8l6r5LoVtILzfUPyrgtaAaenT2EsV1+BscXInP8Kbt68GUeP1o5fplAo7yPyefCHD8FoboGxbHldb1FuuR16SyuEV14COzK3MuQLgmFAsoWt/JHKkFiCtuNaALBCYykXhDtUdCHFpeNcLoC45OYYFru+cSPuXnoPOoIdntcXJCzWI/5c+Y6cWNUZnUv7kfKfZwvxsravXtBnNkSJxb2PWBPCt17I4HyfNYlavzmE1lavSG52qssqkDgfEhPWRKyjo35xSQRILOoHZ4qOc9loOx2yVkRRK4JjOOca5HM6/vVvBvDEt6wKqbIuOzmAmqE6k9+8lsNxe4K8vnGDI5L6Tuch6REsX+OHymcxNqyAZwRwDI90UoXOKIjGeaxZH4E/wOLnPteBD36oGdfubEIgyCEa45HN6piarMy5PHXMcmZ2vzoNTTXR3i2BRExvuS6Ctk4JrMkjndQgsIJH9PVElgIAcsUi0rkCQkEfOhtasHZ5K9ZuDCEQ5PCxj63CdTdHUYgMIJsuhSoGhSAa/Y0wTAOGaaAt2O5Z1JjJve4Md2Fn+432GJZUuOIhIeRZ0CAFc4hwy6lWr0nimJFQU/LZsgwLH+9DQStgqjBliRDbUVvbsB6PrPoolkSWOgsKYTGMoBCEZmiYLEzg7PQZp+9oOXKNtifkurQEWiFxEqYKkxjODkE3dHRFurDSdtSsayOiOdCMh1d9BDd23ux63Ro/ES3FsvBst3CTddk5/5Gc5ZiXFwLyCwFsa92BJfbnnK+jGi5xLiNSzAmNJRBhHJNiTgEo4sSSa3lq+mSFGEw74jJW9ZhhMYIlkaWQddlx/dOuHqDugknD2SH0pc5B1mU81/c0Xhx4zunx2uBapCD3Sl7L42SyF4+feRTD2SHn85O1ohO+SirYThWnMJDpB1Cq1H1k8nCFqCc4gs92dAnllY4B4N2Rd/DEmcewZ/QdvDH0GnJqzrnvTyZ78XzfM/hB73fx2JmfwDANaIbm3Nd5Le+plqwbunPdydivROb8V/D3fu/38N3vfhff/va3cf78eeTzeRQKBc9/FArl/YFwYB8YTbNcy3pz6Xge8sc+CcYwINkO4qVEeOsNcEODUG68GUZXd83t1M1bYHIc+H2VIUuUucFcJOeSCK16Q1lnYj4FfdqC7RXCdiHOz51D6m754KvhGNVuRVK67lyN1i18Pc6lLSaIIzcX1m4KonOJD8kxYLBPBscB7V2+iuvc0m5NssdHFOQSVkhrNMYjHq0/35lM4BtifnCmgGzamqDHfQ3QVBNFvQjFsCadqmJA00wc3peBIpvITrGYTmj2ZNJ2iQzFyZEjLToAy5Ei9J0uQDSCaO2Q0NAsQFFMTI4YgMlifFRxxOXNtzfjd7+wHJ09PvtaWue/dJV1fqeO2y1aXNdl4Jw1n9I1K0RvxeoAbr+/Edd/IIaObgnNbSJ4CEhNqxA4wSP8O0IdEDkRk8kcDEZHQ7Syou+65jVY3tMAJTSGNMaRzFriIygEPZP59mCHpyjPTM4lAKyMr8LDqz6Ca9uqp0o0B5rBMZwzyQcsUcOzPLJqpmr7CA4SzvTmoKoGAnwQhmng2b6n8GzfU07PxpZAC0K2MCK5wI3+JkeMEHpdIZpuajmXxNGVOKs3qmEaeM+uKNod6UaDv9E5F+KqhcWI51khbp5qizNyLCIO3QVz3EJxODts5T6WCV+JFbGxaROub99pv8crPg3TwLGpo/jpqR854ZXELQuLYesZMFQn7JaE+kalmBNyS1pydIQ6sCy6HHk177S4IaRd+6zFRrvw2LGpIzBMwxkHUBKXiq7glfMv4bXBV/Dm0GtQ7YWdc9NnAJRC24FS3m1ezTkLC4liwhGKec1qC+R2zqcKk06f1xs7P+C8VquITtEJX54GUAqvnpYrFybG7MJIPMs7iwTd4R7wLI9EcQojuREYpoG8mkeimPCcv6Irnvu9oBcwYV/3lsD7SFx+/OMfx8DAAP78z/8cd999N7Zv345t27Z5/qNQKO8PSv0t6wuJJRQ/9WkAgO+73wYucUNkImjlj31y5g2DQWjrNoAbGQY7XNlwmlI/nlYki9S5dAr61CkuS+9jZ/z3fHAX9HG3CanWE9PafvacS7cA94Td1iEuiXsqzCHfksAwDD5wVxycab23rVMCLzAV4tLduuTsEWuy1bnEN6djEhHcEPODBY9sRoPIiRg4buCZn07gdN8UTNOEVhDwD3/Rj3/5q37seWMaAMCbEkYGiyjqJadCMzSo9sQvp+ackE1GCUBVDRiGif4zBQTYMGINgnMOx/YX8Nh3JjA0IAOCioYmETzLg+NKzwEJNe5a4oPfz2JsWEF6WnMWFhTZwMigN9Sxo0fCTXc04N5HmsEwDASBRSzmh1w0YSic44KFxBDCYgQSJyE1bffPjFfpp8py2Nq6HZKPw4TvOJIZ0ku1XFy2O31Kres8u3sdFiM1F2pu6rwFD6x4yOPMSLwPQSFY0ZoEAKYTKr7zT+P41peG8e7rKQTsvGPN0KAZGvpSVgEj0hYGAFbH1+DBFR9Cd7jHCV1v8jeDZ3mcTZ2BrMvoS53Dj05+H2k5Bd3Qa7YdIc6lyAloDbYBsBwskRPRE7VyUcmCQ7W2PAAgsbZzaYtLco49EasVUa2enJOFCU+Oovt6AVaYMMdwFQWLDo7vx97Rd5FRMjg7fcZpQyJyIiROgugaT1/qHM6lzlpFsYLtCNv9WMlY/XwA17ZdD4mTcDLZi5Q8DVVXkVHSSNthpu6FgnIafI3oCnchp+ZwLnXGqcrKMixM04SqqzgzfdoRWYOZUv7oudRZAHDaLwGWiBM5EQWt4LigpNgOUBKEEudz7uPh7BCSxSRiUgxN/ib4eT+yarZm/9NiWQGl7nAPWIatmnNZ1KzWRCtcDnaTvxmbmq9BZ6gTt/Xcgc3NVm2HycLEjL1Ji1rRcS6bZynQtJiZc7XYv/zLv1ywan8UCuXKppRvWUcxHxf66jVQd1wHYe+7EF5/FeoHbr0Io6tCLgfpicdg+nxOW5SZ0LbtgHDkEPh9e6F0dM66PaU6F6+gD2/vfyHEpTWu8oIqs7/vIohLl8voDiGs6Vy6XckaQrPWz7P1uATscFyGQ4CvP0TVzeoNQbS3BXE6B3Qt9dlj8E4/JIlFNM4jmVCRO2BNMtu7JU++5+zjtCuKShIiIR+G8gYkxo+Tx/LgDAkjwzlEGoPY90IW8VTJLYg18EgkRAyel5HdnnUmuVaelDVhzalZFLQCTFnAl/5yCCvWBnDLBxtQLBhYuqIJHMeguVXCceRw6O0C8j6guVvEzu1hmMF0hbtOHGORF7BibQBHDmTRf7YAboN1/wz2F2EawPI1AQycLUBTTXT0VH7+TQ0BjKSBTBIQbHHbbodqi5zktB9paqguepZFliPsC2CSn0Qia6I15IfACU4ocUgMISSGYZqmU52Z0QUMnC1A100sW1V9vzPh433w2WKSIHGSs4jhbjNiGCbefX0ay8ctN2RksIjOtZXHDIkhj7BjGMYJ5+wIdqA/dQ472q7DmelTOJU8ieHsEEayw8ireZzPnMeS6FIAlgNXPvnPljmXgPVM3LX0g/ALfuSRxfLYSpxM9qIj1FX1nMm96eQF2qHXDb5GhMQQksWkk6fqDtU0TMMRz27cEQ0BIYCMkrGL62QR4IM4mey1+4pGkSwmMZDuh2ZojmAh78+pObw98hYA4OauW+DjK6MKyOe1rnE9Do4fwEC6H5OFSQxlB50FjZmcSwDY0LQZg5lB7B/bh6JehMAKCIsRq6quoeBk0nKTm/zNmCxMOJ8DEfzxslzdoBBEsph0Chyl5FK4aqndkAiBExCVok6u5bbWHQCsglyFXAEpOWWJXJgeAU+cZfK+mBR3ruVEfsLJ/yTHE1kRK2Or0GsXsmr0NaI91AE0bQZQSpeYLEx4hHI5eTWHycIkBFaYcbvFzpzF5SOPPHIxxkGhUK40DAP83j0w/f7qFVdnofDLn4Ow9134v/KlSyYufT/5IdhsBsWPfBxmODLr9uqOa+H/5r9D2LcHSh1ilFIdbyuShXMuV8fXYKIwXtMtmAvzdUHLz2dB8j89PTx58CwPzdA87lHt7b1tTErbuENnXdVo6xBvPMvj7qX3wsdLs25bDYZh8MnP9CC7J+y4e9VCmTduC+PNF5OQUzwaVvAIBDjwc3EubTdGYEU0xgIYGgXUrICRwSJ4U0I6VUD/6QIyiQi2rwnANEycO1XArtvjOLQng94kg5GJFGJx65iaoTo5csThGD4pQC4aONubx9qNljjq6YpgmhMRiZmQJAasySMWFbHupihCfhMZpVJME5c1KATR0l4EDgCppOpsN3DWEhir1wew/poQUkkV0VjllK25OQD0AVPDBnqus9pjrGlYC8CaXGfs0ODmplDFewHrs2kNteEsppEvqAgKTQAs5/H69p2OI8UwDCROwmQiix/9cBKhactd+sQvtaO9S8LQQBEbtswsMMoJuoph+TifEyrsDlUcHixCKTJYsiyE8+eKmBxTsdJ+DsJiGDzLI1lMotlf2+XpiSxxHEIScljQCk4xl6nipBNGG5WiFeKSuIKiLbpv7roFjb5GxPwxZ5uQEMJHV3+i5hjI503CrN0tcVoDbcgqpzGWG0VPZIlzvJZAK8bzY+hLV4pLd7XjgBBERslg/9g+nEgcQ0yKQdEVrIithI/3IVlM4njimL3PFs/7ScuUjlCHU/yGZ3mnHQ1QCvXtDvfg4PgBnJ4+5VyjglawetPabmdySsWBd9IY7Ctg521xrFpnPSOtgVbnfADg+s6dOGtXgR3KDCIlp9AcaMEdPXehN3kCS8JL8OjpnzjjiYheZzTAB5BE0lkISlTJoyXubqO/CSk5hRWxlU4l4YgYcUJY/bwfLMMio2QQ98VtoW+de0YpObNLI8uQLCbxfP8zuLX7dnSEOqEZGnRTR4gPodHfiAZfI9JKyqloS2j0W8/VZH7C+V4OiaGKtikjuRFohob2YPsVbeTN+6/86dOn8eijj+LLX/4yJiYsC7e/vx/Z7Oy9hCgUypUPd+I42HQK6tbtgFi/u0CQH/ww9NY2iM89A/bc2YswwjJME/6v/l8AQOFXfq2ut2jb7aI+NO/ygrhYOZerG9Z4imZcCKX8zQsLi12ICYHbiWQZxpmMBGqIS5Zhq+aMukWnt12JyxmtU7w1B5oRFmdfkKlFS4sfS5eHnYWGatf5zgca8elf78A1O6LYstWajNUTtktwckM5EY22U5dPChgbUsCZIjIpDVOTKnhTwm33NuBTv9qBT/1qO3bsimLF2gB4U3JaoACAaoddEjTVxMBxa/zFgoGTRy3B2dohISSEwTAMunqC4DkOt9xtuZnEqSo/X+LSBYUgAkEOHAdkUjo4hoNpmjjTa+XQ9Sz3Y8euKO64v6nqvbVqdRQcB5w+ooIthnDf8gecUECRk5BJaWAYoLmx9gJMZ8QK9ZSLhsdNXNOw1tPHVIAP+3anoOR5dC6xJu7PPzGJf/+HQfzw66NOwaZ68TqXPsfNdec+9p8qgDdF3HpPI3x+FpPjCqJ28ZhV8TVOi4/OcHXHsBzSyqeoFZwKrInClCNo/XygogcqyWckgmxZdLnTiqZeyOet2BVDiUvJMAza7FDbYbsVBnEuiSAmRWTKrxeBiL+zKUuskdDNtQ3r0eizniMiqlsDbfb7rXMhIaQkj5Hgftb99vdO3NeAkBiqEN9h0br3x0Zk/OvfDOC15xI4e7KAJ74/DlUt9fi8pnkLGIbBusb1WB5d4VyTsXwpT1HkRGxq2oyIFHUq0EalWMW9HyjLo61WdZac48bGTdjQtNGTA+w9v4DjvJJFCnJv5F33xabma7CtdQc0Q3NamZR6v1rHumPJXbh/+YMV95CP9yEshpFW0pi0+2mSz8J9jc/bRYeu5JBYYB7iMpfL4fOf/zweeOAB/PEf/zH+/u//HuPj1k37N3/zN/jnf/7nBR8khUJZfMw339JBFFH87K+AMU0EvvxPCziy6ghvvwX++FGoW7ZC27ajrvfoK1bCiETBHzoIqLP346JUxy3AFlJcLiTEgZx7zqW7aM6Fu5ZAqYcm2ScRibWcS6AkXmr2tqxRRbaeViQLhftY1aryMgyDlWuDeOTTbehssyZ/9YTtEsgET2JFtDRbk8+TBxTougnOlKAoJqbGFQiMiPYuCaLIYs2GEFiWQTjKgzNFyMXSZFjWi464NAwTxw9nwRQDIEb8iSNEXIqISNZ4t25vxH/9s2Xo7LIm62TSWy4uiasSFEJgWRbhKA9NM5HPAPveSuP8uSIamgW0dszsFsciPixbGQA0Hq8+53Vv9AKPYsFAKMzBL9beT1fMEpBy0Zgx9PnMYQ3plI4lS8L45c93YekqPxITqtNns+/U3MRlwCVoJF5yFjqKegH9Zwp486UEElMaomE/lq3yo6lVhKaaiGpduHfZA9jQuBGr4qvx8KqPYHl0RV3HJKHlRa3UciatpJ3CND7O50z0/WXPW3lv1LlAxIaiy06uKCmS1BnqBsMwGEj3wTANx7lsD7Z7nhl3Hqw7LJaITkVXwDIsWgKtWBFbiUZ/oxPeTHCH9QJucek915DLVXYLz65Qqd/p6vga64diEM89NoGv/9MgCjkD23dGsGJtAOlpDXvfTDnbt4c68PE1n3JEXmkM1jblEShEYLmL+RAC/OzRKuSzjvni2N56rSdXOFImntc0rENXuNsR9MS5LNrOrCNUmzYhKkUxVZhESp52tTYSnX1FpVjV8ZAc42QxAZ7lPW6704/VXshwL+pcicz5r/xf/dVf4cCBA/j617+O/fv3e2KUb7nlFrz++usLOkAKhbI4EXa/AQBQb9g5730UPvPLMEJh+L7zTbBDszeBvhD8//z31jF/6XP1V7ZlWWjbtoMpFMAfpy2Y5osnLHYBcy4Xko5gJ5oDLRWtRWbjYrRZ8eZQcs6/3RU7yyHika+Vc8lWF5pz6Vt5obgnd9VaqrhZHluJzlAngnPI82zyN0NgBTQFmnHD5hUIGDFMn4oBAHjDOrauA22tIfC897MKhTnwhg+KS1ySiZ5pWnl/facLCPIhXH+ztU9NNcGwVjEiMlmVeAHBEFex0FAuplv8LdjZcSM2NV8DnuERiVq/P3dCwTOPToBlgY/8pzZPEaBqiJyIFesCkAQB+3enkJouLYIl7Z738UZhRmHU3tAEzhAhF/WKyqoEwzAxcMIAA+CBD3eCZRnc9WATGBYI22PvO1O/uDRNE4lhDppdCdfnci7zSgHH3ssiMWmJ1s3XNIJlGSekenJMRXOg2XGz5uKoExFV1AueFhOk5YeP9zvPWbk7Kc3hWSkWdc/8mGOte0LWZVcbklJRnvZgO4paEWO5Uce5DAohjzhsskMr3e8FvC5eg68R9yy7z4noCIsR57mL+xqcn8n9kLLDPssXroiTxzGc57ntiVjisjXYhh1t12FD00YMvNyGt16eRiFn4IZbYnjg4y24+0NNAAO8/nzS+YytcZfuQ/JdRQr8lAtGEqZLiii5KXcuqzHTPe/OEfXzfnSHe3B7z53O60Wt4FTp9fE+j3NKFjLOTp9x7qHZKigDJbHMszx2ddzkedbiLgEtsIKnONWVyJz/Ej733HP43d/9Xdxwww3gOO+XZ0dHB4aGaFVFCuWqxzQhvvkGTI6Det38xaXZ0IjCr/4aGEVB4O+/uIAD9MK/dwDSc89A7+qG/MjH5vRe1XY5+X203+V88YbFLk5x2ehvxL3L7q9o8j4bnmJFC3RunMfpLTmX5aFrbshEzVu4p7SfWkV/ZupZuNC4J3v8LP1ENzZtwh1L7p7TNW0JtOCTa38e3eEedDU14+7uB+DXrc+ztaU0mezqqMwNDIUt57LoEpekmEg+Z2BiTIU/wOKXfm0VNm4ruTpNLSIEgXUmpUQglReZKs8xZRgGq+KrERJC4FneEWi7X0pDU03ceEfcaVsyEwIrQhRZbN4Sh2EAb7867fwuMWJN6uNNQkWYnvfcOQT1ZshFs2b+ct/pAgKJFdjSugWrOqwQ1M4eH37rD5bgN/97DwSRwflzVpGfWqiqgbdfTWJkUMbrcih2PQAAcPFJREFULyTxzX8Yw5mjZHIuOcW0RsYz0DQTDU087vlwE9avtybeza12ReGxyhBIADh3Ko+/+dNzTkhxNYiIIgVwCKN2/p3ES45QiJSJ1nqdy9EhGX/9P87hG/8yhEJed73fav9Bwn7dnwmpNtuXPoecmnMqoja6BKXbuXQLPrcoq9YbkbTjcIdhkmOTnL9y55Lcz+ULWm3Bdnyg61bc2HkzeJbHhug2JM4FEAxx+J3/uRT3PGyJ/tZ2CUuW+5HP6Zieqh71Q/K9yedQPoZl0eX48MpHqrrS7nOuFZUx0z3vXpCo1maHLAKYpgkfVzkuADiXPut8lvVUUF4eXYGNTZtwz7L7sDS6zAnRBoC4q3hPe6hj0Ub41MucRy/LMmKxWNXf5XK5CsFJoVCuPrjTp8BOjEPbsg0IVS8UUS+FX/8tGOEIfN/5JrgzpxZohF4CX/w/AID8f/mvc84P1XbQvMuFgPyxvNL/aJbD1iigcyGUu4zEXZwpFGxT0zXY3HxNnTmXl8m5tIUXwzCzOpfzxS1Gr9lRmkBu3FhyBrq7K8VlMMyBMyXIRb3id8WC9VpDk4Ce9ka0tktOaGxrh3X9wnbBESLWK3Msa4t4ni05l2qBARhgx4315fS1B9vR6G/CXTetBccz2PdWyhE0U8O2uGwUZpz8hiI8muTV8Ofb0RXu8fwuMang1Wen8M5r0/AZUdy7fafnnm9sFuHzc+he5ocimxgdkqsKTF038aNvjOKZn07iK38zgJd+NgUASI9Y18XH+51rNDhkOVnNrT4IYikksamVOJfVxWXvkRzS0xqe+MEYVMXA2ZN5fOvLQ3jmpxPONiRUkoTBknPRDA0Mw6DJ14TucDfCYrgiNHEmseJmzxvT0FQTfacK+No/DkLTrAULkRM9Ya9uUdMdXgKWYXFm+jQUXXGedZIzOZ1U8dN/S+PgGwomzzOez8Dt4jVX6Y1IzqPLlZcqciJM03Tu98qw2LD9euV3ztLoMidstv9MwalqTAphEeKN1j3tdtPdlPfYrXasiBRFYlJFYtLOVZUNqIrhWQRxn3Mt0Vh5bN5xDt3HFTkRLMNaBZ9sBzkglF0bMYwmfzOyStZpG1LPvSFyIra17nAWCdzHjbrEZVeodv/tK4U5/5XftGkTHnvssaq/e/bZZ7F169YLHhSFQlncCG9a4e/qjRdeTMWMNyD/+f8fGFVF6I9+f8H7XvJv74b0zFPQOzqd/ppzQd1KnEsqLi8EEg57tYlL5iLkk3Kegj4strdei50dN85YFXdlfBW2tHj7TNfOuXRVi51DTuOFQpyfhRLhs7F2Uwg+Pwt/gMW69SVxuXRJpXCzwmIlyMUq3z9Fa5IaCAgI8AGIEoumZmtiTHIim/xN6A73YKXd664iLHaGXF6e5RGOWdszJoflqwOIxupzlGO+OO5f/iCWtrRjy3VhKLKJvW+loOsmpkYAnmcQCnMzTn59fhZBM4621HUV2732XBIvP51A75EcOJ7Bus3VwxGXrrAm4N/68hD+3z86i0N703j9+QSe/skEdN3ES09NofdIDpEYD463vgsEkYF/ZAO2N+60W2BY5zw0agm/JW2WsCL3PXEuRwZlDA0UYRjez4qIzukpDX/3hT5881+GcOZEHm+/Ou0UXyJVb0nIaluwDTzLQ85yUPZsxaP/nkXmVAseXvVRT4VSnuXRe7iA7/zrEE4dz1X0nSQosoHD+7PgeAYdPRLGRxScs3NRyUKOO7+TIHIilkWXwzANzzk3BZqhqSb27U5jrA+Qeq/F+HObPCHI7kWnaoVgNjRtwgMrHnLCTAFLDJ06nsfzT0xhYkyuEJcNvkZEpahHkFbjbK81juWrqwhD+x52F8ly4/7uIU5tOYpi4Kt/ex7/968HcL6vgH/8iz7881/1w5QlFAs6VMXr1sZc+Y6zCT7izpafu4/3QdZlJzy53LkESn09E8Up+1izRxmU4+N8rtDusLMg5f6crlTm3Irk85//PD772c/iM5/5DO655x4wDINXX30VX//61/Hss8/i29/+9sUYJ4VCWUQIb1niUtl104Lsr/BrvwHff3wT4ksvQHzqSSj3P7gg+4WuI/wHvwsAyP3R/wSkuRdkMBsboS1bDv7MaTDJBMx4ZXEByuwwDAOYADP/IuWLkotRrKjcZWwONFd1JGajVisSzlPQ59KJS1Kc51KJS1Fi8Tt/vBqp6TyM6BTCUQ4cx6AxXjkRFkQWftGHKTsslmVYZ6LPyWEAo2gIRZzJYEePD5PjKjq6JWf723rucPbHst57YaYwYI7hIUmc1cYEHLZcO7eWHoRdt8Wxb3cab786jSXL/TAVHvFuAQzDzLiIwLIMgmEe2YwGwzDBsiX3N2mHNAZCHDZvD8Pnr/7ZLV1l5zLmrWv2k2+POb9btzmIw/syYBjgs7/dBZYDchkdb7yYxLGDJvzpTqDNcndNmBgdt7bdsXItQn4rHw4AonEevMBgdEjGV/7mPB78RAu27ywJwMkJu3iSwCCX0dHWKWHl2gDeeDGJp386gWWr/RAEFgEh4OTKhcUorm/fiae+n8TxAwqAPCbHFGzeEfaEjHPg8dSPx5FN6zh1LI9wlENLu4Qly0JYvkZy+rceOZCBIhvYtD2M5av9eGxgHCeP5rBqXdAp+pKRLXEplTlr1zRvwRm7PYfTrkII4exhE0pawPqNMaxYG8BTP5rAE98bw/otIbR1Slh/TQgSJ0HkRE8hHufzZVhPSC1gCbvEhALTBI4ezEK8uTSWvtN5HN6fwb0f+jBEaebvtLMnrRDk5aurCLC47VwmrcI+o0My7vtos3N/ud38coFHOHYwi3zOclf//R8GYT+S+P7/ncTurIrGqISbPls656grT3Y2wdcZ6sZkYbKibYjE+ZBX806hoWoOKLnOpAXKfBbpGIZBRIxA1mWInIhrmrdCN7UFaa11uZmzuNyxYwe+/vWv44tf/CK+8IUvwDRN/OM//iOuueYafO1rX8PmzZsvxjgpFMpiwZNvOc9KseVIErJ/+f8h9slHEP69zyNx7fUwWy68FLf/3/4v+KOHoV6/E/JHa/cgmw1t+7Xgz50Ff2Af1NvvuuBxvR95P4TFLpxz6ar4ys5/n6wn59LlXDKXKeeSrR4yejHpXhpAYMrAVN6Hm++0FoZqTTqjgQD6ZBO6biLiDzkOE5MPo0lejS0tq5xt73igEctXB6o6NkA157K2oCZOcvdSP7p8AazdPL9Ug8ZmEes2h3D8vSx++p0xcKbohCbOli8YinDIpDTkczpC4dLnM51QAQb4r3+6DDxfO/+1e6kPD/98K8JRHrpm4skfjoNlGSSnVBw9mEV6WkNrh4h4o3UPRGMCupf6cOxgFuf7ili+OgCe45HP6sjJMmJxHiG/H6viq51jsCyD2+9rxOH9GYyclzHYV3TEpaoYmE5oiMZ5/PznOqCqJjq6JadFxqljeRw9kMWW6yIex9DP+xAWI5gcstp9ROM8UkkN0wkNvqiA5JSCoX4ZjUEBhbSOzh4JhmHlVWZSeZw5kcdLTwPt3RIM3cTYsCVwt14fcQoQnTpmOZ3kM8ioVisPX9lnEhLD6Ah1YDg7jKDtqpmmCf7oDqwyTTz0yVYEgixOHsnh9Ik8Xn8+CY5jsGJNAPcsu29O3z8iJzk9ULPTBk7sV7D1euu6vPTUFAbOFtHcKuKGW2rnoJ87lcfEqILGFgHReOX3COnLmp7WsP/tFDIpHWs3B7FyreV+u8VlrQI9+3bbxX5CHPJZHS3tInTNus7LcDuQAUSzdB3dbvNszuWGpo3Y0LSx4nU/70MSVlVX69+Vz3hItJ5RUg3aNw/nEgDuXPJBmLZi9ieWw9BNmE0mvvkvQ/D5WfzW76+Z134vN/P6ht++fTv+4z/+A8ViEalUCpFIBH5/7RLpFArl6oHkW6rbr73gfEs36u13ovCLvwz/N/4N4d/5DaS//QPgAibW3PFjCH7hf8IUBGT+91/XXyG22ti274DvR9+HsHcPFZcXyJXcGLoaF6NabK3KrnOlVv6lN0T2ErYisVf3L6W4JPh4v1N5tZbLEAn5AdlqyRGOhh1xWcywaC1uxPqOUi5UNCZgy3W1r51ngcDVh7Qa5HqsuyaEX/i5ZfWfVBVuuiOO4+9lkZxS0dgYQMQOVxVncahDYWu8uUxJXOq6iXRKQzjCzygsAeu5vubaUr7b//M/l+H8uQL+7e8HceAd6zoSd4/QvdTu7XeOhI0KmBy3nNKGZqGqIN91WxzrNofw91/o8xT2SUyqgGkVWGpp94qKHbuiOHUsjzO9eUtculwyifNBVQxMjisIRzms2xzC269Oo/9MAWu3+LF/dxr5vIExrYhlAD74cDN6lvmhqgaSkxoS4waefXwUI+ctJzTWwOO6m2NYtsoPhrFCY4cHZEyMKs79n3Ycscp58y1dt+NkshfLY1YRm0LeAIoBtLWLCIas6/Hhn2/F269M43xfEf1nCjhxOIct18VqfjaGYSKX0Z2iUQBgqlabGp4HGEXCu29MY+v1EchFA4N9VpGad99I4bqbYx4nm7D7lSSefdTq17h5e3WnnQjO0WEZmZQlZPfvTpfEpes5rOZcjo/KVkueJgGf+tUO7H4liRtvtwpX7X4liaH+IsaGFRSmS/shzqXAlu6fQl5HYlKtq0AWUMo3Jf03qzmXwTKH2L14k81oeOL749h5awxLV1rC1DBMmCYqqj87bWRkA9/96jB0zcSHf64V504VsGTFlaur5vwNv3v3bmzZsgV+vx8+nw8+3/zUOoVCuTJZyHzLcrJ/+ucQ3nwN0gvPIfjnf4rcn/yvee2HyaQR+bXPgpFlZP/nn0PfuOmCxqVtt4v67KcVY+fL1Zpz6akWu4AhvzzLQzO0CxKX3mJDpT/3bnE3m+hYSCSW5FxeenFJXAye5WuK22g4CEwBusx6QhYLWevejcTqH3etCpbVt+Xr2q4eOnt8uPmuOAp5A7feF8VP+t6ZNSwWgCMosxkNrbCuVXpag2lYgmk+tHdL4HgGmmrlJxIxSWjrsn4/2G/lTwqsgIkRS6Q1t4k1Q4mjcR6CyGBiVIFpmmAYBpPjltBsbKkU/EtW+sGwltNmmqZHLPh4H8ZHFZgG0NYpYckKvyMuFdlAIW9A8jHgMgKWrPCjZ5l1DoLAoq1TwobNIazZ7MN0QrXyWyOcZwFt9foghgdknDyaQ3CT9RmQXL5qDrrACR43LZW0xHasoXReoTCPOx9swpneHL71pQIO78/ANE0EQzxWb6h0AN96OYkXnpjCXQ814cbbLScyNQ4wJoOmFgHFiSDGhmSoioG+03kYduhpYkLFmy8m0dwmYs3GoOe89tj9Kx/+dGtNcRmxw2KJ8AaAE0eyyGY0hMI8BNf9Xk1c7t9tLUpsuyGC5lYRD32i1J7joU+04pmfTmBsWEFuigeC1qIREezkfj/4bhrPPjqBQt7Axz/bhvXXeMeqaWbFwgkJIc4omZpjK2/ZI/ElcXngnTR6j+QwOiTjN/9gCVTFwLe+PIxiQcdv/cHSqgs1p47noCrWc/L498ed875SmfM3xi/90i+B4zisW7cOO3bswPbt27F9+3bE43Mr306hUK5MiLhUdt248DsPBpH+5vcQu/cOBP7p72C0tqLwa785t33IMiKf+TT4E8eh3HYHCv/5ty54WNr6jTAlCfz+vVbBoavMfbsUOGGxV3HO5UJWQF2oMGKO4aCbuke4MIxVbZLBxavaWg2hRiXVSwHLsOiJLJlRrMfDdvibInpyUYspBn6OQSBY/7Via1TqrUa1NjIXwh33l9pXCKxQ1/UORaxjZ9OlarnTiUphMxd4nkVnj4SBs5YT1r3MV/Z7BkuW+3D2pCWQWtdwmBhTwXFWiG+tcbMsg6YWESODMhKTKs6ezCM5ZRWNIRVl3fh8HDq6fRjqL2JyTHUEyOSYgsdfTmL9MsuFauuU0LPc+t3pE3mcPJYDywi44QNhLA13485V1RvbcxzjhPuWs2JNAK88k8DAuSI2b/GOzS1IajGdsM6L5C+6WboygECIw5kTVniuL8Di9/9ieUV0yOF9lkh6/vFJSD4WO3ZFMTGmgDNFhCIc4kwYxqRVKIm0cVm5LoDTx/N40a7qe/9Hm3HtTTEAQC6rIzGhoqFZ8FRkLkeSWPgCrJOHK4gMVMXEob0Z7LotXuZcekNPVdXAe3vTYFlgy/XVj0HCjtMTLHxRHyJiFH7ej85QJ+K+BqSnNTz63THArr30+gtJrNsccq7P6y8k8MozCdzywQbceHvccRXLczCri0uvc0kWzgCg97BVPCqV1PD4d8cwNqJgYtRa/Og/U8CKNZVhtscOZp2fNdWE5GOxYcv8cq8XA3P+q/XWW2/hb//2b7F9+3a8++67+PznP49du3bh/vvvx5/8yZ/g8ccfvxjjpFAoiwFdh/jqSzBFEer1uy7OIVauQvrr34Hp8yH0P/4Agb/+KzhLqbPAZDOI/sInIb7+CtSNm5H+6jcuKLTWQRShbd4Cdnoa3NnTF76/9yHkD/rV5lwyDHNRzo0IjQsVHEQ8lk/Uo1IUUVdlxUtByT28PC3Lbu2+HTd33VLz97GIH22FzVjKbnFcFcMwIec4hGNc1fDAWnA1clyrbssunHNZzge6bp3xnAnBEHEuS+KSVPmcr3MJlNzKQJBDQ1OlALvlHmsi/9LPpjB4VoWmmWhqFcFxzIwVdomwePQ/xvCzH07grZesnMmmluoOLSk4c+5UHn67+ufRgxkMnzXx+vPWe9s6JQRDHJrbRGRSGnIZHctXhBGJ8WhtCdYsZjQTrZ0SGMbK0XTnAAaEwIythQjVnEsCxzHYsKUkcop5wynARJhOqBgbVhAIWcWsnn10AumUhskxBZwpIBTh0NFmibfB/iLO2uLygY+1YNdtMWzbGQHLAs88OomxYdneznJeu5fOHrkYdbn9pL1O32nr/e6oiUCZgDtxKIdCzsCaTSFPDrAbspAwNaHioRUP444eK2XljiV3Y1vrDvSdyQOmddy2Tgkj52Xn2ABw+ngeumbipZ9N4ckfjDuvx6W457u8Wvgyy7BO4R2WYZ2Fs0xKw2B/EcEwB15gcORAFhOjirN403skW7EvRTFw8lgOgshgw1br89y0LTxrMaXFzJxHHo/Hcdddd+G///f/jh//+MfYs2cP/vmf/xkNDQ34wQ9+gN///d+/GOOkUCiLAH7/XrDT01BvuBEIVk/AXwjUG29G6rs/hhEMIfj//iUin/442JHhmcd2cD9i990J8eUXoa1dh/R3fwQzvHBhJaodGsvvpS1J5oPzx/oqdH2JG8ti4c6NCA32QsUlw1XN+bt32QO4Z9l9F7TvuVJqRXLpnct6CIY5NCorEZTbHVelkDfAmqU+lPXCeRztWZxLpvoCwELQGe6q6NdYDce5zJTaRhDnslqxlnrpWW4JkK6lvqr51kuW+7F2UxCppIanf2AVUGlpt3NzZ7hPSFuS8+eKntdrictlqywh0Hs0B9F2mXiBAW+UBFJbp/X6qvXW37Zdt8dx3S5L/Nbb47IcUWTR2CIiPa0hO23iwDspJCYV3Nx1a8UzOXy+6FRfJczkXALAbfc24vb7GrHWbhEz7ApBBeC0YLnm2jBuuDUGVTHx8tNTjnMZjvDoarf+Tr63J43JcRVNrSJiDQLu/lAzHvpEK+54oAm6ZjouJsnJLA9zrob73rnm2gg4jsFgXxGmac5Y0Gf/21bY7fYZQkPJZz05psDH+xyBR+i327UsXenHrttiAKwQYcAqlDQ2IoPjGfiDLN7bk0Y6ZV3rsSEVI708TNNELmPg+D7Z03pmsK+Ik0dz0LPWveMOOe+1r/fGrWF89BfasOv2OD7xS+341f/HytfuPZLD849P4ltfGsJLT01Blg2cPp6HqphYvSGIex5uxs5bY7jlniu7Kv28vslyuRwOHDiAvXv3Yt++fTh06BAkScKtt96K7du3L/QYKRTKIkF86QUAgHLHxS9qo954M6affA6RX/1FSC88B/H6LSj8p89AfuRj0DZuttqK5PMQ9u2B7zvfhPToj8EYBpRbb0f6q9+AGamvCXm9aNutfpfCvj2QP/FzC7rv9wNOzuVVFhYLWMJZN/UFDTF1nMsLdN43N2+BYlQ2nb8coamNvkZsbNqELru1xGKDFLXJZnS02RPfYkEHa/JzFlhzyblcqIWECyEUsZ3LqmGx879XVq0P4q6HmrB6fe3FyLs/1IzRYRlTCRaIAC1tszvcxLkErFzYTEqD5GMRjlZ/T/cyHwJBK4Q0/70ipF0mDI0BB+tzFaVSaOsd9zfi2hujiDcKePqcBCizV9udifYuCZNjCg4+x2HyvITQ6Go03uithq5pBr795WHIRQP/7S+XQ7JdK8e5rHH/BYIcPnB3A/a/ncKJQzmMDMrYuLUUTknEzpoNQbR1Stj/dgoH30lD8rHgGBGhsI7u1gj2MnAq3e7Y5RV0138ghleemULf6Tx03XQEfdeyOpxLWxRzHIPmVhFtXRKG+otITKpobBatPNvJPP7th2P4yEfCWLspBE0z0X+mgECQw/IqIaSEYIhDIMhhalyFrptOWOv4iAx/gEP/GWucS5b7EQhxeOHJKZw6lsf4iAxfgEMxb6CtS8KK1QG8+VIS+3encPNdDfjRN0ZxMscBYQUDx0yMnR2DP8BizcYQBvuK+OrfnQcADIeyuPZhHbFo6TqcOGw5k2s3BbFsVQBrN5Wc5c4lVmj2m7bLfqY3j0zacsgBS5CGIzw++OG5t51abMz5G+ORRx5Bb28vGhsbsWPHDtxzzz34oz/6I6xZs+aqqwJIoVC8iC/b4vL2Oy/J8fQNG5F87lUE/+6v4f/KlxD4ypcR+MqXYbIszEAQTC4Lxl5RNGIxZP/oT1H8T59ZmFDYMhzncv++Bd/3+4FSDuHV93eC/O1byII+3ALl4a1pWLsQw1kQGIbBttYdl3sYNSECK5fRnLYphbwODsKcnUtPzuUsn+HFDIutl5KwdjmXTljs/J1LlmWcIjK1aGgS8Nt/uBTHDqXx1ETUyW2tJywWAG64JYbmVhEcz9SchwoCi1/8zU784GsjGDiRR6hHhlawzisY4rBkhd8Je3bnUJLw6Pn0MSS0dUo4vC+D/uMmVuBOIAvsfXPa0+aj90jO6ec4OaY4lU3JZxCdReB3dFvbj5wvObmaZqDvVAG+AIvuZVa15A9+qBmPfncMxYKBcLMPvJBHNBBCcyuLiVEFDc0CdtwY8+zbyo314/SJPAb7ihgaKEKUWLS0zX5NSFhsU6sAjmPQvdQSWIN9RSev9uzJPMLTIp57fBKrNwSRmFBgGEBrpzhrKHpTq4CBs0VMJyyxuv/tFJ74/jj8AQ75nI6GZsGpknvDLTE899gk3no56Qjw1nYRO26M4s2Xk9j7VgrBMIfEpAq/GMP5c6NIjfvRCODtV6exZmMIx96z8lc5ngGnBZBJZdHdYC08yEUD505a15vk7rpZszGIof4i/EEWH/65Vvz4m2M4tCcDwzARDHNVizFdqcz5m6y3txc8z2PLli3YunUrtm3bRoUlhfI+gJmcBH9gP/TOLuirL2HvpVAIuT/+U+Q/9xvwPfojiM8/C+7USTC5HIzOLmibt0C54y4UP/JxIHDxmg8bnV3QW1rBHz0M5PMX9VhXI1drtVjg4vTwFBzBcelahbzfCbqcS3Ldi3kDrCk4lS/rxR3SOXtYrP1ZX07n0tWKpPdoFq8+m8DwgBViWSskcyHhOAabtkbx3jE/DLvvnzDDvR9rEMDxDHTNxIatIURjsz8nrR0Sdt4axxM/lKHnJHC5ECIxHr/1h0tqtloh94G7YMtcae8qvdcXYCEXDLz6bAJbr49C8lnfGQfeTjvbTIwqGBuWkc/qSCU0cDzjtCGpRXObJa6HB+VSBd0xy9Fb2lNqw7PluggamgU889MJrFqxAj7hLJoCzVixpoCJUQUf/FBT1WuxbHUAp0/k8eqzU1AVE8tW++rKQSaOP2kP07XUB7xq9a98940UQltaketXEYOAxISKY+9lnQI8xMGe8bxbRQycLWL4vNW25PHvWbmTRKgvdbXz2L4zilefTeDQvgz8Ac4ZV7xRwOr1QZw8msPPfjgBAPDrDTg7KCNiWGHR504VMDokO07wlmvDmNgXRDajOSHTp0/koOsmNqwPVbQcAayWOOmk5uSAbt9ZwO5XpgEAW6+LVH3PlcqcvzH27t3rhMQ+99xz+OIXvwhBELBt2zbs2LED1157LbZs2XIRhkqhUC4n4qsvgTFNKLffdVny5syWFhQ+9xsofO43LvmxAQAMA237tZCefhL8ofeg3bDz8ozjCuVqLegDXBxxubVlByYLExUl7ykXj1CYA8NYeW6i3SYinzcQmFfO5TyqxV5G51LyseAFBtm0jkN7M46wBCzX71LBs7zTmH6mnEuOY3DvI83QVLMuYUmINfBgwGLJ1J1Qc0WEejiIYu3za/a3YDQ3gphv/h0RSC4nYBVqkYsGDu3N4OCeNK6/OYZUUsXp3lKu5eiQjH27U05rioZmYVYhx3EMWjtEDA/ImE5oiDcKGLfbupAcVkLPMj8+9197APQAsCIJbr8/gG07IzUF3bJVlkg7e9LKY9x2fX1pJ6s3BLF5Rxg33BIDUOp1SioIo78LnehCc5uIiVEFb7yQxKr1garjrsbKdUHs2221GykWDDAs8LFfbMdrzyUwOiRj6UpXT1Mfa7mULybxzmvTnmM89MkWPPXjCRw7mMXyNQEosg/K0LXw63Gncu4T3x/D1LiK1g4Ry9cEIL0bQjatw28X9jlhV4ldu6n6d3YgyOGBj5fCoa+/JYa3X5uGaQBbr+C2I9WY8zeZ3+/Hrl27sGuXVSlSVVXs3r0bX/nKV/DFL34RDMPg+PHjCz5QCoVyeRFffB7ApQuJXYyo23dAevpJCPv2UHE5R0jIKBWX9dEcaEZz4MrPvbmS4HkWTa3WJFcpWJ9lPmsgBK5q/8SZ4DxhsfWJy8sZFsswDEJhDtMJzWmbAJSqrF4qBFZwxOVsOcw7ds09r56E+A71q2DAIByZ+ZpvaNqI9Y0bLig6LxDkEI3zSCU1rNscgj/A4tDeDN55dRrX3hjFwT0ZwARWrA3gzIk8Du/POMLSPebZ6OjyYXhAxlf/7jyuuykK1e4vWo8DKIrsjNu1dUrw+VkUCwY6eyRs3Baqua0bycfikU+3Of+OxniEo1aObEeP5Cxi3PtIM5756QRGh2RoqmGPe3ZxuW5zCNdcG8Z7e6xw1TseaMT6a0LoXubDicNZbNjqbedx/Qdi2P1KEoadWkzEZSjM4+OfacfEmIJIjMc7r01jsK8bgsjgkU+34d/+7jyG7LGu3hBEU4uIgN6ESGYbNjVthq6bOHUsB45nsGJtfQuCsbiAhz7RClU10Nh86foNXwrm9U2WSCSwd+9e57/e3l4YhoFVq1bRgj4UytWIrkN85UWYPA/1A7OXtb9a0ey8S2HfHhRm2ZbipZSXePWE/hDYq1g4v99o65QwMaogOWZNzAspFgyDqm00ZoKdS7XYBe5zOV+CYR7TCQ3jowpEicEv/063Ey57qSChsBdLaJMQX9J7kVTJnYmFSPv6wN0NOH+ugCUrrBDVJSv86D9TQO+RHA68Y1VGvevBJpzpHXAKvBBidYYlb7k+gv6zBUyOKXjtuaRTqbceB3A2WJbBqvVBHNmfwd0fbp73NWEYBg//fCuSUyq2Xh/BT78zhnxOx9KVfqy/JoTxkQQmx60iRs11jvu+j7Ygm9YRjvJOfm84wuPastxRAIhEeWzeHsHBd9Pw+dmKiARShXjd5v9/e/cdHlWZsHH4OVPTK0jvYuhFRKq0FUWKCoIVEYS1grrrrqvuuoqfih2FtVFFRVlZaSJ2ERUQUTqCIlaqkN6nne+PgWAEhJBMzkzyu69rrmTOnGSegTflyXvOe+L08TvpatkuTjGxdl15XV1Nn/yLigoCSmsTp5QazuD1gg/UU6wzVms+zVJRYUDNW8WULMZ0Mjoe5xqeka7MX73nn3++fv75Z9ntdrVs2VJdunTRzTffrE6dOikpKSkEEQFYzfnF57IdPChP774VenmPSONt31GmzSbHui+tjhJxDpdKowoWsCMzl9aWA5Tf4cVX0vcG5KthylNgU3KqUw5H2cetw+aQL+A74XU9k93JctldOi2m1qnGrhAlRdKUUmu6VKvOqZ9neKocIS6XTpdNcQn2klVxTzRzWVE6dUtUp25HZlq7903STzsLtXDuPnmKTTVsGqXa9dxKTnGWXKuyeasY7fi6oOR6jidSv1GUbr6zkebP2aut6/P0w47gn0BrnuTHn8jgEaep93kpJ53neJqecWS9gkuuPjKrGSx0wcvRJCY7FBV1ct9P3W6brr6x3kk/f/e+Sdr0ZY7qNzr25XGk4L/Z+Lsal/zxIbWmS2PG19e+PcWq3yhY2pOSHcrK9GnL+ly9s+CA7HZD5/SP7EuIVJQyf1UNGjSo5LzK6OjKPVwCgDVcSxdLkooHXWhxEovFxcnfopUcX2+Rbc9uBeqe/A+06i4Uh46GC6MKr4Rb3dSud+jC7Hskf6xLUX5nmQ+JPezwWD/RYbFxrnhdlnal5Qsj/nYWL7WmNQtJOSvhEOGkZOeRclnGc2kryhmtY9Xh7Hht+CJ4OOeZXYPFs2ZtlzLTvXI4DY0YXUffbcvX6Sd5mOVhp7eI1db1wUtiJKc65SrDTNofcUfZ5I4K3eGbp9VxKbmGU5kHvRUy23r853Hr+r83POEiSb8/WqFWXbdq1T3yB5fU01zKyvBp4dz9Mk1p6MhaatiEXiSp7Oum33LLLerWrRvFEqguTFPut96UaRjyXDDI6jSW8x4619K58lOLk0SWKn1YbBUuztXN4V8ef93j1VnOgapf0OWUZ2oOH+Z6Miv+Wl0speB5Z4elWHQOWMnM5QkKeXn89rqdJ3NYbCgYhqFBw09TvYZuxSc61Kp98BzGw+cZ1m8cJZfLplbt48tcDk9vcWRmsOZJnLcYLgzDUMtDi+HUPInzRMujVh13qfF+KmqcFvy39ftMteoQV+r6otXdKf3L/vLLL5oxY4bWrVunrKwsJSUlqVOnTho7dqwaNGhQ0RkBWMi+fp3se3bLe3ZXBWrVPvEHVHGenr0VPWu6nJ99ouIRl1sdJ2Ic/tW5KhawknJZgde5hDXi4h2KT7Tr4K8eHdgTkCGj5JfIsjq8II2VC/WUxW/PrzzV2dryqoyVc3+7QE5lHRZ7LE6XTdfe2kCmaZYcdt2gaZT0oXRGq1NfJTo+0aFadV3av8cT0hnAUOjaJ1n5eX517lH2xZoq22+/Rnqdx+Gwv1Xmr6otW7Zo1KhRcrvd6tOnj2rUqKGDBw/qvffe05tvvqmXXnpJrVu3DkVWABZwv7VEEofEHubt3kOmYcj16QrJNC25LEskqsqze4df04lWt0RkqF3PrR1fF2jbxuChhadcLktmLiNjXMT9pmil1rCmlIR6QR9JSko9UgriLCyXkg5d2/DIz5AzWsXq+r81KHX45alo2S5O+/dkqMGhS39EioREh4ZeFRl/xK5bP/hv27J9nGqX8/+rqinzV9UjjzyiVq1aafr06aUOjS0sLNR1112nRx55RC+99FKFhgRgEdOU681D51sOHGxxmPBgpqTK16adnJs3yvbjDwo0aWp1pIhw+HDYqnheoq0KL1ZUHTVsGq0dXxeULKxy6udcBkulPYSHeFak385cplh0zmXJZVlCuDhWyWGxhk543l1lMwxDdeqXvxCe0z9FTc+IUYMmkVUuI0n9xlEaM6G+6tSnWP5emX8Sbt68WePGjTvqnMvo6Ghde+212rRpU4WFA2CxzZtl/36nvG3aKdCosdVpwob3nODlWFyffWJxkshxuHhVxQLGYbFVS9feSarTIPgLY1S07ZQLyJGZy8gol7GHzkGLibUrJtaa0nV45rIyDouNjbMfmjmseux2Qw2bRofFubxVWaNm0RW2YFJVUuZ/EbfbraysrGM+lp2dLbebBg9UGXPnSpKKhw63OEh48Z7TS5Lk/GyFxUkiR8nMZRUsYEYVPuS3OnI6bbp0dB3FJ9rVLC3mlH9Bj7RzLhOSHEpKdajZbxaEqWyhvhSJFJy5TEhyRNwho0CkKPNXb58+ffT444+rfv36Ouuss0q2f/nll3riiSfUt2/fCg0IwCKBgDR3rkzDUPElI6xOE1Y8XbrLdDjk+vQTzrs8SbaSmcuq929Vlc8nra6SU5269Z4mspdjAs9++FzcCDks1uEwdMs/G1uawVkJq8U6HDbdfFejcv3fAji+Mn/13nnnnbrppps0cuRIpaamKjU1VRkZGUpPT1fHjh31j3/8IxQ5AVQyx8rPpN275TunN9dz/L24OPnOPEvOLz6Xffs2+Vu2sjpR2DtcKqtiAStZ0CeE54mh8jkc5ftDSKwzToZhKMZp3UxgWdls1v7xx2EP/XUuJcnNoYxAyJz0V29RUZFWrFih3bt364orrtDIkSP1448/6sCBA6pZs6bat2+vnj17hjIrgErknv+aJKl4xGUWJwlPnp695Pzic7lWfKRCyuUJVeXDYo/MXFa9WVmcurNrd1WbGm0V6zz1y0pUN3Vi66pRQmM1SWxmdRQAp+ikyuUvv/yi0aNHa/fu3SXb4uLiNHnyZJ1zzjkhCwfAIoWFci1ZLEVFyTOYS5Aci+dP/RX75KNyffC+Cm8Yb3WcsFeVDx09XJir4mJFOHV2m13xrgSrY0SUaEe0ejfg9Cogkp3UT8LHHntMNptNc+fO1caNG/XWW2+pZcuWuu+++0Icr3yKi4s1fPhwXXjhhRo8eLDmz59vdSQgIrjfeUu2vFzpwgtlJoT/xYyt4DvzLAWSk+Vc/ZmUl2d1nLBXO7a24l3xSnQnWR2lwlXl4gwAQFmc1E/C9evX67bbblOnTp3kdrvVrFkz3X///dqzZ49+/fXXUGc8ZS6XS3PmzNGSJUv0+uuv6/nnn1dOTo7VsYCwF/XKnOA7o0dbmiOs2e3y9D1Xhtcr1ycfW50m7DVLaq6hzYdH1PlnJ+vwa4pxcPgjAKB6O6lyeeDAATVo0KDUtoYNG8o0TR08eDAkwSqCYRiKjQ3+sPd4PDJNU4FAwOJUQHizf/+dXJ+ukL9BQ+m886yOE9Y8/c+XJLk+fM/iJLBS69S2GtzsQtWMqWl1FAAALBXWx/CsXbtWN9xwg3r27Km0tDQtX778qH3mzp2rfv36qW3btrr00ku1adOmUo8XFRXpwgsvVJ8+fTR27FglJSVVUnogMkW9HJy1LL56tFir/Y95+v5Jps0m1wfvBS9JgmrJbrMrJSrV6hgAAFjupFeLHTdunOzH+EVz9OjRR21fvXp1+ZNJKigoUFpamoYNG6YJEyYc9fiyZcs0adIkTZw4Ue3bt9ecOXM0btw4vfPOO0pJSZEkRUVFacmSJcrIyNCECRN0/vnnq0aNGhWSD6hyiosVNe8VmXa7iq4Yqap3AGPFMlNS5evUWc61a2TfukX+Nm2tjgQAAGCZkyqX48dbsxJi79691bt37+M+Pnv2bF122WW65JJLJEkTJ07Uxx9/rIULF2rs2LGl9k1JSVGLFi20du1aXXDBBaeUx+rrP/3e4TzhlguRy/X2UtnS01U8aIiMenUlMb5OxNv/fDnXrlHUh++qsF07q+NEDL5/IdQYYwglxhdCKZLHV1iXyz/i8Xi0detW3XjjjSXbbDabunfvrg0bNkiSMjIy5HA4lJCQoLy8PH3xxRcaMWLEKT2fw2FTampcRUSvcMnJLCKBCjJnhiTJPeFmuQ+NK8bXCVw6THrofsW8/45iHphodZqIw/hCqDHGEEqML4RSJI6vkz4sNtxkZmbK7/cfdYhramqqfvrpJ0lSenq67rjjDvn9fpmmqSuuuEItWrQ4pefz+QLKySksd+6KZLMZSk6OVWZmvgIBzvdC+djXfaWklSvla36Gss/sJltmPuPrZNRrqqTGTWT/4gtlbtquQL36VieKCHz/QqgxxhBKjC+EUriOr4SEaDmdf7weR8SWy+MxTVOGEZxCbt68uRYuXFhhnzuc/nN/KxAwwzYbIkfs8/+RJBVed5MCMqRDY4rxdWLFA4co5tkpcr65WIXX3WR1nIjC+EKoMcYQSowvhFIkjq+wXi32jyQnJ8tutx91KZSMjAwW7AHKyLZ7l9yLFyqQnKyiEZdbHSfiFA++UJLkeutNi5MAAABYJ2LLpcvlUuvWrbVq1aqSbYFAQKtXr1aHDh2sCwZEoOiZ02T4/Sq8ZqwUwxqxZeU78yz569SV8/NVMn791eo4AAAAlgjrcpmfn69t27Zp27ZtkqRdu3Zp27ZtOnDggCRpzJgxmjdvnhYuXKidO3fqvvvuU1FRkYYOHWplbCCiGNlZipozS6bTqaJr/2x1nMhks8kzcLAM05T77aVWpwEAALBEWJ9zuWXLFo0aNark/gMPPCApuHrthAkTNHDgQGVkZGjKlCk6cOCAWrZsqRkzZpRc4xLAiUXPnCZbbo4Krx6tQO06VseJWMWDL1L0zGlyL12somuutToOAABApTNM04yss0Qt4vX6lZVVYHWMUmw2Q6mpcUpPz4u4k30RJvLylNqptYycHGWsXqdA4yYlDzG+ysjnU2q7NBmZGUrf9K3MmjWtThTWGF8INcYYQonxhVAK1/GVlBRzwtViw/qwWAChFT1nlmyZmSoeNqJUscQpcDhUNPQSGX6/3IvfsDoNAABApaNcAtVVQYFinp0i0zBUcOvtVqepEoovuVSSFPXG6xYnAQAAqHyUS6Caip7xvGwHflXxRUPlPyPN6jhVgq9jJ/maNJXzqy9l+36n1XEAAAAqFeUSqIaMzAzFTJks0+FQwZ3/sjpO1WEYR2YvF8y3OAwAAEDlolwC1VDMlMmy5WSr6Kpr5G96utVxqpTi4cFy6X7jdYn10gAAQDVCuQSqGdue3Yqe+YLM6GgV/O0fVsepcvxNT5f3zE5y7PxOjq/WWh0HAACg0lAugWom5rFJMoqKVHjdTQrUqm11nCqp6PKRkqSoV1+2OAkAAEDloVwC1Yh96xZFvfaKAklJKhh/q9VxqqziYcNlRkfLvfANKS/P6jgAAACVgnIJVBemqbi7/iYjEFD+HXfLTEyyOlGVZSYkqnjwRbLl5ylqyUKr4wAAAFQKyiVQTbgX/k+uz1fJ17K1ikaPszpOlVd01ShJUtTclyxOAgAAUDkol0A1YOTlKva+4CVH8h5+XHI4LE5U9Xm79Qhe83LtGtm//cbqOAAAACFHuQSqgZgnH5N9314VDRsub7ceVsepHgxDRVddI0mKnj3d4jAAAAChR7kEqjj7tq8V/cIzMmNilX/vA1bHqVaKrhol0+2We96rMnJzrI4DAAAQUpRLoCrz+RR/200yvF7l3/lPBerUtTpRtWKmpqpo2AjZ8vPkfv01q+MAAACEFOUSqMKiX3hWzvXr5O3UWYV/vtHqONVS0djrJEnRM6dJgYDFaQAAAEKHcglUUbbvdyr2kQdkulzKfeoZyW63OlK15GvXQd7OXeT4boecK5ZbHQcAACBkKJdAVRQIKP6vE2QUFangL3+XP62F1YmqtcJx10uSome+YHESAACA0KFcAlVQ9HP/kWvVZ/K1aqOCCX+xOk61Vzz4Ivlr1Zbr/Xdl++F7q+MAAACEBOUSqGIcmzcq9qGJMt1u5Tw3Q3K5rI4Ep1NFo8fKME3FPP8fq9MAAACEBOUSqEoKChR/w1gZXq/y7v0/+Vu2sjoRDikcM05mTIyiXntFxoEDVscBAACocJRLoAqJu/efcuz4Vp5+56po7PVWx8FvmCmpKrx6tIyiIkXPeM7qOAAAABWOcglUEe6F/1P0nJkKpKYq5+nnJMOwOhJ+p/CG8TIdDkXPmiEjL9fqOAAAABWKcglUAfZvtiv+LxNkGoZynpsps1YtqyPhGAL16qv4kktly85S1EsvWh0HAACgQlEugQhn5OUq4dqRMgryVXDH3fL26Wd1JPyBgvG3SZKiX3hG8nisDQMAAFCBKJdAJDNNxf11ghw7vlXxn/qr4C9/tzoRTsCf1kLFAwbKvnePol57xeo4AAAAFYZyCUSwmCcfVdSiBfI3aKjcZ6dLNr6kI0HBX++QJMU89bhUXGxxGgAAgIrBb6JAhHIvXqDYRx5UIDZO2S//V2ZyitWRcJJ8Hc4Mzl7u3qWouS9ZHQcAAKBCUC6BCORY/5XiJ9wg0zCU+8JM+Vu1tjoSyij/73dLOjR7WVRkcRoAAIDyo1wCEca2Z7cSRl0ho6hI+fc9KM95F1gdCafA37adigdfJPu+vYp+ebbVcQAAAMqNcglEECMrU4lXDJd9/z4VjrxGhTfcbHUklEP+3++SaRiKfvpJqaDA6jgAAADlQrkEIkVBgRKvulSObVvl6d1XeQ8/IRmG1alQDv6WrVR80VDZf92v6BnPWx0HAACgXCiXQCTwepUw9mo5166Rt9NZyp49V3K5rE6FClBw579kOhyKefpJGQcPWh0HAADglFEugXAXCCj+lhvl/vB9+dJaKHvufCkuzupUqCD+pqercPRY2XJzFDP5UavjAAAAnDLKJRDOAgHF/f02Rb3xuvwNGir79UUyU1KtToUKVvDXfygQF6/o2TNk+36n1XEAAABOCeUSCFeBgOL+dquiX35R/lq1lf36QgXq1LU6FULArFFDhbf8RYbPp9hJ/2d1HAAAgFNCuQTC0eFi+cqcYLFc9Jb8zZpbnQohVHDdTfLXqauoxQvk+GKN1XEAAADKjHIJhBu//0ixrF2HYlldxMQo/+5/S5Li7vqb5PdbHAgAAKBsKJdAOPF4FH/D2CPFcuFSimU1Ujzicnk7d5Fz80ZFvfyi1XEAAADKhHIJhIu8PCVeNUJRixfI36ixsha/TbGsbmw25U16TKZhKHbS/TIy0q1OBAAAcNIol0AYMDLSlTR8iFwrlsvXqo2ylr6nQJOmVseCBXztOqho1LWyZWYqdtIDVscBAAA4aZRLwGK273cqafB5cq77St4u3ZS1eJkCtWpbHQsWyr/rXwokJyvqpVlybNpgdRwAAICTQrkELOT8fJWSB/5Jju92qHjAQGX9d6HMxCSrY8FiZkqq8u/6twzTVNw/bpcCAasjAQAAnBDlErCI+/XXlDj8QtkyMlRww3jlzJ4rxcRYHQthoujq0fK27yjnV2sVNXuG1XEAAABOiHIJVDafT7H/d68Sxl8v+f3KfXSy8u9/SLLbrU6GcGK3K+/JKTLtdsU+cJ9su3dZnQgAAOAPUS6BSmQcPKjEy4YqZupkBRISlf3q/1Q0eqzVsRCmfG3bq/CmW2TLz1PcP/4qmabVkQAAAI6LcglUEse6L5Xcv5dcn66Qr1UbZb73sbx9/2R1LIS5/L/dKV+TpnK/947cixdYHQcAAOC4KJdAqJmmoubMUtKFA2TfvUtFl1yqzGUfKNC0mdXJEAmio5X3xBRJUtzdf+falwAAIGxRLoEQMjIzlDB2lOL/fpsUCCh30mPKfXY6C/egTLw9e6lw5DWyHTyouHvusjoOAADAMVEugRBxrvxUyX17yL10sfwNGylr8dsqGnu9ZBhWR0MEyv/3/fLXqauo+fPkWrrE6jgAAABHoVwCFc3rVcxD9ytx2GDZ9+wOHgb70Wfyde5idTJEMDMpWblPPSNJiv/bLTL277c4EQAAQGmUS6ACOTZvVNL5fRX71OMyY+OU88w05T43Q2ZCotXRUAV4+/5JhWPGyZaRofi/3cLqsQAAIKxQLoGKUFysmIf/T0nn95VzyyZ5unZX5kefqXjE5VYnQxWT9+//k69pM7nffVtRr75sdRwAAIASlEugnBzrv1Jy/16KffIxyeVW7qTHlL1omQKNm1gdDVVRbKxy//OCTJtNsf+6U7Yff7A6EQAAgCTKJXDKjMwMxf39L0oa0E+O7dvkOae3MlasDi7aY+NLC6HjO+tsFdz6V9ny85Rww7WS12t1JAAAAMolUGaBgKLmvqSUbmcqes5MmUlJyn1iirL/t0SBRo2tTodqouBvd8nbqbOc675S7EP3Wx0HAACAcgmUhWPTBiUN6q/4v4yXkZmpwqvHKGP1OhVdPZpLjKByOZ3KeWGWAolJinnmaTk/et/qRAAAoJqjXAInwbZ7l+In3KCk/r3l/GqtvB06KuvtD5X3xNMyU1KtjodqKtCwkXKfnCpJShh/vWz79lqcCAAAVGeUS+APGNlZiv2/e5XStaOi/vuqzNRU5T46WVlvfyTfmWdZHQ+QZ8hFKhw9VraDBxV/058lv9/qSAAAoJqiXALHUlSk6BeeUcrZ7RUzdbJksyn/r39XxpoNKho9VrLbrU4IlMi7f5J8rdrI9dknin34AavjAACAasphdQAgrBQWKvqVFxU99SnZ9+2VabOpcOQ1KrjjbgVq17E6HXBsUVHKmfWSks7rq5inn5C3Yyd5Bg62OhUAAKhmmLkEpGCpnPasUs5ur7h//kP2fXtVPOhCZX68WnlPTqVYIuz5m56u3GenSZLix18v+3c7LE4EAACqG8olqjUjO0vRU59SSud2ivvXnbLv36fiIRcrY/kq5cx+Rf4WLa2OCJw0z3kXKP+vd8iWl6uE0VfKyMu1OhIAAKhGOCwW1ZLtl58VPe05Rb0yR7b8PElS0YVDVfDXO+Rv1dridMCpK/j7XXJsXC/3h+8r/tablTNjDpfJAQAAlYKZS1QfpinHV2sVf/2Y4EI9Lzwjw+dV4dWjlbHyS+XOmEOxROSz25X77HT5GzaW+81Fip462epEAACgmmDmElVfXp6iFsxX1JxZcm7eKEkKpKSoYMyfVXjtdTJr1rQ4IFCxzOQUZb84V8mD+yv2wYnyn34GC/wAAICQo1yiyrJv3aLoOTPl/t/rsh0698zXqo0KR49V0aVXSDExFicEQsffpq1ynpmuxDFXKeGmccp681352ra3OhYAAKjCKJeoUoz0dLkX/U9R8+fJue4rSZLpdqvo0itUOHqsfJ06c/4Zqg3PoCHK+9dExT1wrxJGXqasd5ez8jEAAAgZyiUiX1GRXO+9raj58+T68H0ZPp8kyXd6cxWNGqOiy66UmZxicUjAGoUTbpNjxzeK+u+rShh1ubIWvc2sPQAACAnKJSJTcbFcKz6Se+kSuZYtlS0nW1LwXMqiocNVNOJy+Tp2YpYSMAzlPv60bD/9KNfnq5Qw4QblTH9RsrGeGwAAqFiUS0SO/Hy5Pnpf7qWL5Xr/vZLzKE2XS8VDLlbRiMvl6Xeu5HJZHBQIM263cmbPVfKAvnK/uUix996t/Psn8ccXAABQoSiXCGu2n36U68P35frofbk+XSGjsFCSZEZHq3jQhSoefKE8/c+XmZBocVIgvJmpqcqe94aSBp+nmBeeVaB2XRXefIvVsQAAQBVCuUR4KSyUc83qkkLp2PFtyUOBuHgVDxuu4kEXBWcoY2MtDApEHn+z5sp+5XUlXTJEcRP/pcBpp6l4xOVWxwIAAFUE5RLWKiiQ88sv5Fz1WfC27ksZHk/Jw76WreTp11+eP/WX9+yuHPIKlJOvU2flzJijhKsvV/ytNylQ8zR5+/SzOhYAAKgCKJeoVMavv8q5/is5vlor1+qVcqz7UobXW/J4ICVFnm495el3rjz9zlWgXn0L0wJVk+fc85X75FQl3HqTEsaMVPbCpfJ1ONPqWAAAIMJV+XJ5yy23aPXq1erZs6cmT55sdZxqxcjLlWPTRjnWfRUslOu/kn3XL6X2CaSkyNP9HHm695C3+znyt2jJKpZAJSi+YqTy9+1V7KT/U+JlQ5W16G35W7ayOhYAAIhgVb5cXnXVVbr44ov15ptvWh2l6vJ6Zd/5nRzbtsq+7Ws5tm2VY9vXsv/8U6ndTMOQr0VLeTt2kq/DmfJ27S5/WgvKJGCRgtv+JiMrSzHPTVXS8AuV9eY78jc93epYAAAgQlX5ctmlSxetWbPG6hiRz++Xbfcu2X/4Xvbvdwbf/nDo7Y8/lDpPsuRDGjWWr007ec88S74zO8nXvoPMuHgLwgM4JsNQ/n0PyCgoUPScmUq85EJlLXlHgQYNrU4GAAAiUFiXy7Vr12rmzJnasmWLDhw4oOeff159+/Yttc/cuXM1c+ZMHThwQC1bttS//vUvtWvXzqLEESgQkJGVKVtmhoz0DNn275V97x7Z9uyRbe9u2ffskW1v8PbbcyNLfYoaNeRt2Vq+Fi3lb9lavpat5EtrKcXFVfKLAVBmhqG8R56QUZCvqPnzlHTJEGW9+a4CtWpbnQwAAESYsC6XBQUFSktL07BhwzRhwoSjHl+2bJkmTZqkiRMnqn379pozZ47GjRund955RykpKRWex2YLrwuOO7/eIu39We7sfJlerwyfT/L5JL9fhtcroyBfKiiQkZ8vIz9PRt6ht7k5MjIyZMtIl5GZKSMQOOFzBU47Tb7GTeRv0lSBpqfL36Sp/E2bKdCkiczEpKP250DXyHd4vIfbuEcI2OzKn/qcjKJCud9crMThFypn8TKZNWqG7ikZXwgxxhhCifGFUIrk8WWYpmlaHeJkpKWlHTVzOWLECLVr10733HOPJCkQCKh3794aPXq0xo4dW7LfmjVrNG/evHIt6GOapgwjjP6Di4qkhATpOLOJJyUqSqpR48gtNVWqU0eqXz94q1cv+LZuXS4BAlQHHo80dKi0bJnUrp30wQdSzdAVTAAAULWE9czlH/F4PNq6datuvPHGkm02m03du3fXhg0bKvz5fL6AcnIKK/zzlkfU408pdtePKvSZMm12yeGQHHaZdrtkd8iMjZMZGyszNlY69NaMjZMZH69ASqoUE3NyT5TrkXT0OZWo2mw2Q8nJscrMzFcgEBF/g0JFeOFFxY+8TK4Vy+Xr1Vs5C5bKPO20Cn8axhdCjTGGUGJ8IZTCdXwlJETL6bT/4T4RWy4zMzPl9/tVo0aNUttTU1P1009HVim97rrrtGnTJhUWFqpXr16aNm2aWrRocUrPGU7/uZJUdNUoxabGqSA979SyhdnrQXgKBMywG/sIIXeUsl+ap8QxV8n10QdKuHigst5YKrNWrZA8HeMLocYYQygxvhBKkTi+IrZcHs/vD1+dNm2ahWkAIAJFRyv7xVeVMPZqud9/V0lDByp7wVIFatexOhkAAAhjEbvuSnJysux2uw4ePFhqe0ZGxlGzmQCAMoqKUs6sV1Q8YKAc3+1Q4kUXyLZnt9WpAABAGIvYculyudS6dWutWrWqZFsgENDq1avVoUMH64IBQFXhditnxksqHjhEjh++V9KFF8j2w/dWpwIAAGEqrMtlfn6+tm3bpm3btkmSdu3apW3btunAgQOSpDFjxmjevHlauHChdu7cqfvuu09FRUUaOnSolbEBoOpwuZQz/UUVXTxM9p9/VNKQ82XfusXqVAAAIAyF9TmXW7Zs0ahRo0ruP/DAA5Kk8ePHa8KECRo4cKAyMjI0ZcoUHThwQC1bttSMGTNCco1LAKi2nE7lPjdTZkKSol+apaSLByp77nz5zu5idTIAABBGIuY6l1bzev3KyiqwOkYpNpuh1NQ4pZ/qarHAH2B84SimqZhJ/6fYpx6XGR2t7NmvyNuv/yl9KsYXQo0xhlBifCGUwnV8JSXFnPBSJGF9WCwAIIwYhgru/rfy7ntQRmGhEq++XO5Fb1idCgAAhAnKJQCgTApvmqDcp56R/H7FX3+tol94xupIAAAgDFAuAQBlVnTl1cqZ9YrkdivunrsU+887JL/f6lgAAMBClEsAwCnxDBysrAVLFUhNVcz055Vw7dVSQXidmw4AACoP5RIAcMp8Z52tzLc+kK9pM7nfXqqkSwbLOHS5KAAAUL1QLgEA5RJo2kxZb30gb+cucn71pZIH/kn2nTusjgUAACoZ5RIAUG5maqqy/rdExUMulv2nH5U08Fw5P11hdSwAAFCJKJcAgIoRHa2c6S+q4OZbZcvMVOKlFytq1nSrUwEAgEpCuQQAVBybTfn3/p9ypjwn2e2Kv/N2xf39L5LXa3UyAAAQYpRLAECFK778KmUtfEuBmqcpes5MJY64SEZ6utWxAABACFEuAQAh4evcRZnvfSxv2/ZyrfpMyef3lX3b11bHAgAAIUK5BACETKBefWUteUdFFw6V/ecflXzBn+RevMDqWAAAIAQolwCA0IqNVe70F5V/57+kwgIl/Hm0Yv55J+dhAgBQxVAuAQChZxgq+Osdyn7tDQWSkxX9wjNSv34y9u2zOhkAAKgglEsAQKXx9jtXmR98Kl+HM6XPPlNSvx5yrl5pdSwAAFABKJcAgEoVaNBQ2Uvfla67TrZff1XisMGKfmaKFAhYHQ0AAJQD5RIAUPmioqQXXlDelGclp1NxE/+lhJGXyjh40OpkAADgFFEuAQCWKb7yamUu+1C+05vL/cF7Su7XQ86Vn1odCwAAnALKJQDAUv42bZX53goVXX6V7Pv2KvGSIYp59CHJ77c6GgAAKAPKJQDAenFxyp3ynHKemSZFRSv28YeVOGywbHt2W50MAACcJMolACBsFI+4XJkffiJv2/ZyrV6p5H495HpnmdWxAADASaBcAgDCir9Zc2Ut+0AFf75BtowMJY66XHF/GS8jL9fqaAAA4A9QLgEA4cftVv6Djyp77usK1DxN0XNfUnLfHnKs+dzqZAAA4DgolwCAsOXpP0AZKz5X8cAhsv/0o5IuGqCYh+6XPB6rowEAgN+hXAIAwppZo4ZyZr+inCnPyYyJVexTjyvpgj/Jvn2b1dEAAMBvUC4BAOHPMFR8+VXKXL5Snq7d5dy8Ucn9eyl66lOSz2d1OgAAIMolACCCBBo1VvbCt5R3z/2SaSru//6tpEHnyr7ta6ujAQBQ7VEuAQCRxW5X4YTblPnRSnk7dZZz/Toln3uOYp54RPJ6rU4HAEC1RbkEAEQk/xlpylr6nvImPiTZ7Yp95EEln9dHjs0brY4GAEC1RLkEAEQuu12FN45X5ser5OnWQ46tm5V0Xh/FTLpfKi62Oh0AANUK5RIAEPH8TU9X9sK3lPvwE5I7SrGTH1dyvx5yrvzU6mgAAFQblEsAQNVgs6no2j8r45PP5enTT44d3ypp6CDFT7hBxsGDVqcDAKDKo1wCAKqUQMNGyv7vQuW8MEuBmqcp6r+vKqVHJ0XNfUkKBKyOBwBAlUW5BABUPYah4qHDlbHqSxWOHisjK0vxfxmvxIsHyr59m9XpAACokiiXAIAqy0xMUt6jk5W17AP5WreV6/NVSu7XQ7EPTpTy862OBwBAlUK5BABUeb5OnZX5/orgZUtcbsU8/YRSepwl96I3JNO0Oh4AAFUC5RIAUD04HCq8cbwyVq5V0UXDZN+zWwnXjQkeKrtls9XpAACIeJRLAEC1EqhXX7nTX1TWwrfka9lartUrlXzuOYr7x19lZKRbHQ8AgIhFuQQAVEveHuco88NPlTvpcZkJCYqePUMp3c5U1OwZkt9vdTwAACIO5RIAUH05HCoae50yVq9X4TWHVpX9x1+VfG4vOT9dYXU6AAAiCuUSAFDtmampyntssrI++ETeLt3k2LpZSZcMUcJVI2T/ZrvV8QAAiAiUSwAADvG1ba+sJe8oe8Yc+Rs2lvv9d5Xcu6vi/nabjP37rY4HAEBYo1wCAPBbhiHPhUOVsXKt8u5/KHg+5kuzlNqlg2KeeITrYwIAcByUSwAAjsXtVuEN45XxxUYV3DhB8nkV+8iDwUV/Xn2ZRX8AAPgdyiUAAH/ATEpW/sQHlfHZWhVdPEz2fXsVf9vNSu7TTa633pRM0+qIAACEBcolAAAnIdC4iXKnvajMtz+Up2t3Ob7ZrsQxVylpQF85VyynZAIAqj3KJQAAZeDr1FnZi99W1rwF8rbrIOf6dUoacZESLxkix9o1VscDAMAylEsAAMrKMOTtd66y3l+h7Jkvydf8DLk++0TJg/or4erLZN+6xeqEAABUOsolAACnyjDkGXKxMld8rpwpz8nfoKHc776t5H49FH/daNm3b7M6IQAAlYZyCQBAeTkcKr78KmWs+kq5kx6TWaOmohYtUHLvroofd43s2762OiEAACFHuQQAoKK43Soae73S125S3v0PKVDzNEUtWaiU3l2VcO3VHC4LAKjSKJcAAFS0mJjgNTLXblLeAw/LX6u23EsXK6VvdyWMGSn7ls1WJwQAoMJRLgEACJXoaBVed5Myvtio3Icelb92HbnfWqKUfj2UcM2Vcmxcb3VCAAAqDOUSAIBQi45W0bgbgiVz0uPy16kr99tLldy/txJHXCTnpyu4TiYAIOJRLgEAqCxRUSoae12wZD46Wf5GjeVasVxJlwxR0oC+ci1dIgUCVqcEAOCUUC4BAKhsbreKRo9Vxup1ynlhlnyt28q5fp0Srx2p5J6dFfXqy5LHY3VKAADKhHIJAIBVHA4VDx2uzI8+U9a8N+Tp1kOO73Yo/rabldK5naKf+4+MvFyrUwIAcFIolwAAWM0w5O3XX9mL31bm0vdVPGCg7Hv3KO7eu5XSoZVi7/uXbLt+sTolAAB/iHIJAEAY8Z3dRTkvzVPGJ2tUdNmVMgoLFPPsFKV0bqf468fIse5LqyMCAHBMlEsAAMKQv0VL5U59Xhnrtir/L3+TmZioqIVvKHlAPyUNPi+4+I/fb3VMAABKUC4BAAhjgVq1VXDXv5W+7mvlPvaUfKc3l/OLz5V47UildOmo6GnPcl4mACAsUC4BAIgEMTEquuZaZX62VtmvzpfnnD6y//yj4v51p1Lat1TsP++Q/bsdVqcEAFRjlEsAACKJzSbPuecr+40lyvhoZfC8zOIixUx/XindOylxxEVyvbOMQ2YBAJWOcgkAQITyt2mr3KnPK339NuX981756zeQa8VyJY66XClnt1f0lCdlHDxodUwAQDVBuQQAIMKZNWuq8NbblfHFRmW/+Ko8vfrK/svPinvgPqV2bKn48dezyiwAIOQolwAAVBUOhzwDByv7f4uVsfJLFYy7XqbTpajXXwuuMtu/t6Jems0CQACAkKBcAgBQBfmbn6H8hx5Txqbtyn3kSflatJRz43rF/+1WpbY5Q3F/nSDH+q8k07Q6KgCgiqBcAgBQhZlx8SoaM06ZKz5X5tL3VXT5VZIZUPQrc5R8fl8l9+upqFnTZeRkWx0VABDhKJcAAFQHhiHf2V2UO+U5pW/6RrkPPyFf67ZybN2s+DtvV2rbMxR/y41yfLGG2UwAwCmhXAIAUM2YiUkquvbPyvzoM2W+u1yFI6+RDJui5s1V8uD+Su7dVdHPTpWxf7/VUQEAEYRyCQBAdWUY8nXspLwnpyp9y7fKffxpeTt0lGP7NsXd90+ldmihhKtGyPXmIqm42Oq0AIAwR7kEAADBczNHjVHWeyuU8dFKFVx/s8zkFLnff1eJY0cptW1zxf3jrywCBAA4LsolAAAoxd+mrfL/b5LSN25X9sv/VfGgC2Xk5yt69ozgIkC9uij6P0/Ltn+f1VEBAGGkypfLW265RZ07d9Zf/vIXq6MAABBZnE55zr9AObNfUfrmb5U76TF523eU45vtirv/HqW0b6HEy4bK/d9XuXYmAKDql8urrrpKjzzyiNUxAACIaGZKqorGXq+s91coY8XnKrjpFpmpNeRa/qESJtyg1FbNFP/n0XK9/RbnZwJANVXly2WXLl0UGxtrdQwAAKoMf8tWyr/vAaVv3K6s1xep6LIrZTqcilq8QInXXBE8P/P2W+Rc+akUCFgdFwBQSSwtl2vXrtUNN9ygnj17Ki0tTcuXLz9qn7lz56pfv35q27atLr30Um3atMmCpAAA4CgOh7x9+il36vNK3/qdsme+pOILBssoKFD0yy8qaeggpXRspdh7/ynHpg0sBAQAVZzDyicvKChQWlqahg0bpgkTJhz1+LJlyzRp0iRNnDhR7du315w5czRu3Di98847SklJkSRddNFFx/zcCxYskN1uD2l+AABwSHS0PEMulmfIxTKyMuV+6025F8yX87NPFPPcVMU8N1W+Zqer+MKLVXzhMPlbtZYMw+rUAIAKZGm57N27t3r37n3cx2fPnq3LLrtMl1xyiSRp4sSJ+vjjj7Vw4UKNHTtWkrR48eJKySpJNlt4/RA8nCfccqFqYHwhlBhfVVxKijxXXyPP1dfItnePXAvfkPt/r8uxaYMckx9X7OTH5W92uoovGirPhUPlb92mwosmYwyhxPhCKEXy+LK0XP4Rj8ejrVu36sYbbyzZZrPZ1L17d23YsKHS8zgcNqWmxlX6856M5GTOKUXoML4QSoyvaiD1DKnNXdI9d0k7d0rz50vz58u+bp1innxMMU8+JjVvLo0YEby1b1+hRZMxhlBifCGUInF8hW25zMzMlN/vV40aNUptT01N1U8//XTSn+e6667Tpk2bVFhYqF69emnatGlq0aJFmfP4fAHl5BSW+eNCyWYzlJwcq8zMfAUCnMeCisX4QigxvqqppFrSn8dLfx4v248/yLVkkdxLFsmxYZ300EPSQw/J36SZii8KHl7rb3fqRZMxhlBifCGUwnV8JSREy+n849MOw7ZcHo9pmjLK8INm2rRpFfbc4fSf+1uBgBm22RD5GF8IJcZX9RVo2Fi+8bepYPxtsv30o9xvLpb7zYVyrl+nmKeeUMxTT8hfv4GKLxgkzwWD5e3aXXKU/dcWxhhCifGFUIrE8RW2lyJJTk6W3W7XwYMHS23PyMg4ajYTAABErkCjxiocf6uy3v1Y6V9uVt69D8jbuYtsu3cpZvrzSho2WKmtmyl+/PVyvfWmlJ9vdWQAwDGEbbl0uVxq3bq1Vq1aVbItEAho9erV6tChg3XBAABAyAQaNlLhzbco6633lb7pW+U+MUXF554nIz9fUa+/psQxV6lGyyZKGHW53K+9IuN3f4QGAFjH0sNi8/Pz9fPPP5fc37Vrl7Zt26YaNWqoZs2aGjNmjO644w61bt1a7dq105w5c1RUVKShQ4damBoAAFQGs1YtFV09WkVXj5aRlyvnRx/IvWypXO+/K/c7y+R+Z5lMm03es7vKM2CQPP3Pl//05lziBAAsYpimdVc0XrNmjUaNGnXU9vHjx5dc9/KVV17RzJkzdeDAAbVs2VL33HOP2rVrV9lR5fX6lZVVUOnP+0dsNkOpqXFKT8+LuOOxEf4YXwglxhfKxeORc+Wncr+9VK53lsm+b2/JQ/5GjVXc/3z5zr9ACUMGKD3PyxhDheN7GEIpXMdXUlLMCRf0sbRcRhLKJaobxhdCifGFChMIyLFhnVzvvS3X++/JuXnjkcdiY+Xp1UfF554vz7nnKVCnrnU5UaXwPQyhFK7ji3JZgSiXqG4YXwglxhdCxbZvr1wfvCf3B+/KtWJ5qcV/vG3aydP/PHnOPV++M8+S7H/8SxJwPHwPQyiF6/iiXFYgyiWqG8YXQonxhVCz2QylxjmV8+Y7crz3jtzvvyv7jz+UPB5ISZGnVx95+/xJnj79FKhbz8K0iDR8D0Mohev4olxWIMolqhvGF0KJ8YVQO2qMmabsO7+T6/135frgXTk/XyXD6y3Z35fWQp4+f5Knbz95u/aQYmIsTI9wx/cwhFK4jq+TKZeWrhYLAABQKQxD/tObq/D05iq8cbyUlyfX6s/k/PgjuZZ/KMc32+X4ZrtiXnhGptstb5fu8vQNzmr6W7VmBVoAOAmUSwAAUP3ExcnTf4A8/QcoX5Ltl5/lWrFcruUfyvnJx3J9slyuT5ZLEyX/abXk7dMveBhtz14cQgsAx8FhsSeJw2JR3TC+EEqML4RaucaY3y/H+q/kOjyrue5LGX5/ycO+ZqfL27O3POf0krf7OTJr1Kjg9Ah3fA9DKIXr+OKwWAAAgLKy2+U762z5zjpbBX+7U0Z2lpyffSrXZyvk/OyT4CG0O79T9JyZkiRfqzbBotmzt7zdustMSLT4BQCANSiXAAAAf8BMTJJn0BB5Bg2RJBn798u16lM5P/tErk9XyPH1Fjm+3iK98KxMm02+9h2CM5s9zpHv7C4y4+ItfgUAUDk4LPYkcVgsqhvGF0KJ8YVQq8wxZvvlZzlXfirXp8GZTfvePSWPmXa7fG3bydu1h7xdu8vbpZvM1NSQ5kHo8T0MoRSu44tLkVQgyiWqG8YXQonxhVCzbIyZpuzffyfnZ5/KufITOT9fLfu+vaV28aW1OFQ2u8nbrQcLBEUgvochlMJ1fHHOJQAAQGUyDPmbNZe/WXMVXXOtZJqy/fiDnGtWy7l6pVyrV5Zc9uTwOZv+ho2Cs5pdu8vbrbv8TU/n0icAIhLlEgAAIFQMQ4EmTVXcpKmKL79KkmTbt1fOz1fJuXqlnJ+vlmPbVtl//klRr78mSQqkpsp71tnyHlpUyNvhTCk21spXAQAnhXIJAABQiQK166j44ktUfPElkiQjM0POL9YcKpsr5di8Se5335b73bclHTpvs3Vb+c7qHCydnbso0LARs5sAwg7lEgAAwEJmcoo8518gz/kXBDcUFcmxcYOcX34h59o1cnz5hZybNsi5aYOiZ02XJAVqnlYyu+nt3EW+9h2k6GjrXgQAiHIJAAAQXqKi5OvSVb4uXVUoBc/b/OVnOdeukfPLL+T4cq0cWzbJ/fZSud9eKkkyHQ75WrSSr+OZ8nXsJG+HM+Vv0VJy8KsegMrDdxwAAIBwZhgKNGyk4oaNVHzJpcFt+flyblwfnNVcu0bOdV/JuWWTnFs2SS+/KEkyo6Pla9NO3kOF09fxTPmbNONwWgAhQ7kEAACINLGx8nbvKW/3nkdmN/fslmP9Ojk3rJNj/VdybFgfLJ5r15R8WCAxSb72HeXreKa8Hc6Ur+OZCtSpS+EEUCEolwAAAJHOMBSoV1+eevXlGXxhcFsgIPv3Ow8VzXVyrl8nx5ZNcn2yXK5Plpd8aCA1Vb427eRr10G+tu3ka9suOMNps1n0YgBEKsolAABAVWSzyX96c/lPb67iEZcHt3m9cmz/Wo716+TYsE6OjRvk2P61XCuWy7XiN4UzNk7+Nm3lbdtOvrbt5WvTTv60FpLLZdGLARAJKJcAAADVhdMZLItt20ujxgS3eTyyf7Ndzs0b5di8UY7Nm+TYslnONavlXLO65ENNlyu4aFDbdsGy2aq1fC1byUxKtujFAAg3lEsAAIDqzOWSv207+du2k3R1cFsgIPsPO+XYdKhsbt4ox5ZNJZdE+S1/3XrytWwlf8tg2fS1aiN/8zOY5QSqIcolAAAASrPZ5G/WXP5mzVU8dHhwm2nKtndPsHBu3Sz7tq/l+HqL7N/vlHvPbunD90s+3HQ45D+9+ZHS2aq1fC1bK1C/AYsHAVUY5RIAAAAnZhgK1K0nT9168gwYeGR7YaEcO76R/eutchwunNu+lmP7Njm2b5MWvlGyayA+Qf4WLeU7I03+5mnyp6XJ1zwtWDpZQAiIeJRLAAAAnLro6OBKs+06qPg3m430dDm2bZVj29ZDxXOrHNu3HXV5FEkyY2LkO/0M+ZufIX9aC/map8l/Rpr8jZtITmflvh4Ap4xyCQAAgApnpqbK27OXvD17HdkYCMj280/Bmc5vv5X92+1yfPuN7Du+Peb5nKbTKX/TZvKf0UK+5ofKZ7PT5W/aTGZCYuW+IAAnRLkEAABA5bDZFGjcRJ7GTaT+A45sN03Z9u+T/dtvjhTOb7+R49tv5PhmuxzfbJf7d58qUKOm/M1Ol69ps0OFM1g6/U2aStHRlfqyAARRLgEAAGAtw1Cgdh0FateRt1ef0g9lpMv+7bdyfLtd9p3fyf79d8G3P/141OVSDvPXqx8sm82aBQvnodlOf4NGrGILhBDlEgAAAGHLTEmVr2s3+bp2K/2AzyfbLz8HL5my81Dh/H6n7N/vDG7fvUv69OPSn8tmU6BeffkbNpK/UWMFGjWWv+TWRGZqKqvZAuVAuQQAAEDkcTgUaNJUgSZN5e3Xv/RjRUWy//TjbwrnofL580+y7fpF9l9+llZ+etSnDMTGHSmcDRvJ3/hwAW0if4OGUlRUJb04IDJRLgEAAFC1REXJn9ZC/rQWRz9WXCz7rp9l++lH2X/8MVhCD91sP/0ox9db5Ph6yzE/baDmafLXr69Ag4bS6U0VlVpLvnoNFKhfX/56DWSmpDDziWqNcgkAAIDqw+2Wv1lz+Zs1l/f3j5mmjIwM2X8+UjaPlM+fZNuzS84Dv0rr10mSYn//4TEx8terr0D9BvLXbxA8BLd+g+D9OnUVqFOX2U9UaZRLAAAAQJIMQ2ZqqnypqfJ17HT0436/bL/ul2PPLiVmH1T+19/KtusX2Xbvkv2X4FvHjm+lHd8e9ykCyckK1K6rQO3awcJZu44CJW/ryF+7rswaNSSbLYQvFAgNyiUAAABwMux2BerUla9ePSk1TkXpeQoEzFK7GLk5su3eHTz0dtcu2Xfvku2Xn2Xbu0e2fXtl37dXjm1bpW1bj/s0psOhQK3aJcXTX/vQ+6fVklmzpgI1T1PgtFoKpNaQnM5Qv2rgpFEuAQAAgApixifI3yJB/hYtj7ODKSM7S7a9e4OFc/8+2ffuCd7ft0e2ffuC2/fsDq54ewKBlJQjZfNw8Tx0M0878n6gRk2KKEKOcgkAAABUFsOQmZQsf1Ky/C1bHX8/r1e2A78Gi+bevbLt3xu8f+BA8O2v+0ved3yzXfpm+wmfOpCYpEBKisyUVAVSU2Umpyhw+P2U1OD7KakyU4LbzeRkyW6vwBePqo5yCQAAAIQbp1OBuvUUqFvvj/czTRl5uSVl0zjwq2y//irbgf1HFVEjI0OOH76Xfvj+pCKYhiEzKelQ0UwJFtOERAWSkmQmJMpMTDryflKSAofemomJMuPiOW+0GqJcAgAAAJHKMIKH4sYnyN+s+Yn3LyqSLTNDRnq6bBnppd43Mg5ty8iQkZFx6P10OXZ+V+ZYps0mMyFBZsKhApqYGCyhcXGHbvEK/Ob94O239w+9HxsnOagskYL/KQAAAKC6iIoKXhKlTl35T/ZjCguD5TMrS7bsLBnZ2cHzRku9H3xrZGeXet/+84+y/1y+yGZ0tMzYYNkMxMVL0dEyo2NkRkcFH4uOCW6Liv7N/ahD+xzaNypKijl0PypapssluVwyXW7J5ZTpDN6nyJYP/3oAAAAAji86WoF69aV69U++kB7m9crIyZEtOzNYRPPyDt1yj7yf/5v38/Jky8uVkXtoW/6hfXOyZTt4QKE+A9S02YKl0+kKlk6XW3K6ZLqcwbdu16H7Lslml+w2mXZ78NxUW/Bt8L7td/ftx97/8KHDhhG8SZLLKV0/TkqpE+JXW/EolwAAAABCw+mUmZoqf2pq+T+XxxMsmkVFMgoLpMLgW6OwUEZRoYzCQqkw+Lb0tgIZv9lXRYUyPB4ZHo/k9cgoPvTW4wk+h8cTLMUFBTKysmT4y1ypy89bJP37wcp/3nKiXAIAAAAIfy6XzJRUmSfes2L5/cGy6SmWPF4ZXo9UXCwj4Jf8geDjfv+h+4dvgd/d/+3jhz4m4JdhmtLhmxRcoMnhUPywIVKgsl9o+VEuAQAAAOB4Dh3GakZFSVLIy63NZkjJcVJ6XoifqeKxPjAAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwM0zRNq0NEgkDAlN8fsDrGUZxOu7xev9UxUEUxvhBKjC+EGmMMocT4QiiF4/iy222y2Yw/3IdyCQAAAAAoNw6LBQAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+UyzM2dO1f9+vVT27Ztdemll2rTpk1/uP/bb7+tAQMGqG3bthoyZIg++eSTSkqKSFSW8bVjxw5NmDBB/fr1U1paml555ZVKTIpIVJbx9frrr+vKK69U586ddfbZZ+vaa6/V5s2bKzEtIlFZxtgHH3ygSy65RGeddZY6dOigiy66SIsWLaq8sIg4Zf0d7LBp06YpLS1NjzzySIgTIpKVZXwtWLBAaWlppW5t27atxLQnj3IZxpYtW6ZJkybp5ptv1sKFC5WWlqZx48YpIyPjmPuvX79et99+u4YPH65Fixbp3HPP1U033aSdO3dWcnJEgrKOr8LCQtWvX1+33367atasWclpEWnKOr7WrFmjQYMG6aWXXtJrr72mWrVq6dprr9Wvv/5ayckRKco6xhITE3X99dfrv//9r5YsWaLhw4fr7rvv1qpVqyo5OSJBWcfXYVu3btW8efOUlpZWSUkRiU5lfCUlJemzzz4ruS1fvrwSE5eBibA1fPhw8/777y+57/f7zZ49e5ozZsw45v633nqref3115faNmLECHPixIkhzYnIVNbx9Vt9+/Y1X3755VDGQ4Qrz/gyTdP0+Xxmx44dzSVLloQqIiJceceYaZrmxRdfbE6dOjUU8RDhTmV8FRQUmBdccIH5ySefmCNHjjQffvjhyoiKCFTW8fXGG2+YZ599dmXFKxdmLsOUx+PR1q1b1aNHj5JtNptN3bt314YNG475MRs2bCi1vyT17NnzuPuj+jqV8QWcrIoYX4WFhfL5fEpMTAxRSkSy8o4x0zS1evVq/fDDD+rUqVMIkyISner4evjhh9WlSxedc845lZASkepUx1deXp769Omj3r1766abbtJ3331XCWnLzmF1ABxbZmam/H6/atSoUWp7amqqfvrpp2N+zMGDB5WamnrU/gcOHAhZTkSmUxlfwMmqiPH1xBNPqE6dOuratWsoIiLCneoYy83NVa9eveTxeGSz2TRx4kR169Yt1HERYU5lfC1fvlyff/455/HihE5lfDVt2lSTJk3SGWecoZycHM2aNUtXXHGFli5dqlq1alVG7JNGuYwwpmnKMIzjPn6sx/5of+C3TjS+gPI42fE1ffp0LVu2TC+//LJcLlclJENVcaIxFhsbq0WLFqmgoECrV6/WQw89pIYNG+qss86qxJSIVMcbXxkZGbrnnnv0zDPPKDo62oJkqAr+6PtXhw4d1KFDh5L7HTt21MCBAzV//nyNHz++khKeHMplmEpOTpbdbtfBgwdLbc/IyDjqLx2H1ahR46j909PTj7s/qq9TGV/AySrP+Jo5c6ZeeOEFzZ49W2eccUYoYyKCneoYs9lsatSokSSpZcuW2rlzp6ZNm0a5RCllHV87duzQgQMHdMUVV5Rs8/v9Wrt2rV555RVWvkYpFfE7mNPpVMuWLcPyaDPOuQxTLpdLrVu3LrWKXSAQ0OrVq0v95eK3OnTooJUrV5batmrVquPuj+rrVMYXcLJOdXzNmDFDzz77rGbMmBG2S6wjPFTU9zDTNOXxeEKQEJGsrOOrbdu2evPNN7Vo0aKSW5s2bTR06FAtWLCgEpMjElTE9y+/368dO3aE5er9zFyGsTFjxuiOO+5Q69at1a5dO82ZM0dFRUUaOnSoJOmOO+5QrVq1dPvtt0uSRo0apZEjR2rWrFnq3bu3li1bpi1btujBBx+08mUgTJV1fHk8npLL2ng8Hu3fv1/btm1TYmKi6tata9nrQHgq6/iaPn26nn76aT3xxBOqV69eybniMTExio2Ntex1IHyVdYxNmzZNrVq1UqNGjeTxePTpp59q8eLFuv/++618GQhTZRlfMTExRx1pERMTo6SkJDVv3tyK+AhzZf3+9Z///EcdOnRQo0aNlJOTo5kzZ2rPnj0aPny4lS/jmCiXYWzgwIHKyMjQlClTdODAAbVs2VIzZsxQSkqKJGnv3r2y2Y5MPp955pl64okn9NRTT+nJJ59U48aN9cwzz6hZs2ZWvQSEsbKOr19//VUXX3xxyf1p06Zp2rRpGjp0qB5++OHKjo8wV9bx9dprr8nr9eqWW24p9XnGjx+vCRMmVGp2RIayjrGioiLdf//92rdvn6KiotS0aVM99thjGjhwoFUvAWGsrOMLKIuyjq+cnBzdc889OnDggBITE9WmTRv997//VdOmTa16CcdlmKZpWh0CAAAAABDZ+JMLAAAAAKDcKJcAAAAAgHKjXAIAAAAAyo1yCQAAAAAoN8olAAAAAKDcKJcAAAAAgHKjXAIAAAAAys1hdQAAAMLN1KlT9Z///Oeo7d26ddOLL75Y+YEAAIgAlEsAAI4hPj5eM2bMOGobAAA4NsolAADHYLfb1aFDhxPuV1RUpKioqNAHAgAgzHHOJQAAJ2nXrl1KS0vTkiVLdMcdd+iss87SDTfcIEnKysrSv//9b3Xv3l1t27bV5Zdfro0bN5b6+JycHN1+++3q0KGDevbsqeeee06PPPKI+vXrV7LP1KlT1aVLl6OeOy0tTa+88kqpbfPnz9egQYPUpk0b9e3bV9OnTy/1+J133qlhw4Zp5cqVGjJkiDp06KArrrhCO3bsKLWf3+/XCy+8oPPPP19t2rRRr169dOedd0qS5s6dq44dOyo/P7/Ux3z++edKS0vT9u3by/ivCACoqpi5BADgOHw+X6n7pmlKkh599FH1799fTz/9tGw2mzwej8aMGaOcnBzdcccdSklJ0WuvvabRo0frvffeU82aNSVJd911l7744gvdfffdqlGjhmbNmqWff/5ZDkfZfxzPmDFDkydP1rhx43T22Wdr69atevrppxUdHa2RI0eW7Ld37149+uijuvHGG+V2u/Xoo4/qtttu09KlS2UYhiTp3//+txYvXqyxY8fq7LPPVnZ2tt555x1J0pAhQ/TII4/o3Xff1bBhw0o+78KFC9W6dWu1aNGizNkBAFUT5RIAgGPIyspS69atS2174IEHJEnt27fXvffeW7J9/vz52rFjh5YuXarGjRtLkrp3764BAwZo1qxZ+sc//qEdO3bogw8+0OTJkzVw4EBJUpcuXdS3b1/FxcWVKVteXp6eeeYZ3XjjjRo/frwkqUePHiosLNRzzz2nK664Qna7XZKUnZ2t1157rSSXaZq6+eab9f3336tZs2bauXOn/ve//+mf//ynRo0aVfIchzMmJCTovPPO04IFC0rKZX5+vt577z3dfvvtZcoNAKjaKJcAABxDfHy8Zs+eXWqby+WSJPXp06fU9tWrV6t169aqX79+qdnOzp07a8uWLZKkzZs3S1KpQ2BjY2PVvXt3bdq0qUzZ1q9fr4KCAg0YMKDU83Xt2lXPPvus9u3bp3r16kmS6tWrV1IsJalZs2aSpP3796tZs2Zas2aNJJWalfy94cOHa/To0frll1/UoEEDvf322/L5fBo8eHCZcgMAqjbKJQAAx2C329W2bdtS23bt2iVJSk1NLbU9MzNTGzZsOGqmU5IaNmwoSTp48KBiY2OPWvzn95/rZGRmZkqSBg0adMzH9+7dW1Iuf7/CrdPplCQVFxdLCs7QxsTE/OHsaZcuXdSgQQMtWLBAt956qxYsWKA//elPSkpKKnN2AEDVRbkEAKCMDp+reFhiYqLatGmj++6776h9D8921qhRQ/n5+UetLpuenl5qf7fbLa/XW2pbdnb2Uc8nSS+88MIxy2mTJk1O+rUkJSWpoKBAeXl5xy2YhmHokksu0euvv66LLrpIX3311VGLBwEAQLkEAKCcunXrppUrV6pu3brHnYk8PAv60UcflZzPmJ+fr1WrVpUqdbVq1VJ+fr7279+vWrVqSZJWrlxZ6nN17NhRUVFR+vXXX486RLesunbtKklatGhRqYWAfm/o0KGaMmWK7r77btWqVUs9evQo1/MCAKoeyiUAAOV08cUXa968ebr66qt17bXXqkGDBsrKytKmTZtUs2ZNjR49Ws2bN1e/fv103333KS8vTzVr1tTMmTOPOkz2nHPOUVRUlO6++26NGTNGu3bt0rx580rtk5CQoPHjx+vBBx/U7t271blzZwUCAf34449as2aNnnnmmZPO3rRpU1122WV6+OGHlZ6ers6dOysnJ0fvvvuuJk+eXLJfrVq1dM455+jjjz/W9ddfX7JgEAAAh1EuAQAoJ7fbrZdeeklPP/20pk6dqvT0dKWkpKhdu3alFvB5+OGHdd999+mhhx5STEyMrrzySrVt21bvvvtuyT4pKSmaMmWKHn30Ud18881q3bq1nnjiiZLZzsP+/Oc/67TTTtOcOXM0e/Zsud1uNW7c+Kj9Tsa9996runXrav78+Zo+fbpSUlKOOTN57rnn6uOPP/7DxX8AANWXYR6+aBcAAKh0h68h+dFHH1kd5YRuvfVWHThwQK+++qrVUQAAYYiZSwAA8Ie++eYbbdmyRe+//76efPJJq+MAAMIU5RIAAPyhG2+8UZmZmbryyis1YMAAq+MAAMIUh8UCAAAAAMrNZnUAAAAAAEDko1wCAAAAAMqNcgkAAAAAKDfKJQAAAACg3CiXAAAAAIByo1wCAAAAAMqNcgkAAAAAKLf/Bwz5f80svhilAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wb9f3H8dfdSbIs75m9ExLIYIUVwmggrDDKKoRRZtlltGVDC20ppfxoKbtll1KglE3Ye4UZsglkO8uO99a48fvjdKfTsGMnTuKEz7OPPrCl0+ksK4nf/ny+n69iWZaFEEIIIYQQQgixCdStfQFCCCGEEEIIIbZ9Ei6FEEIIIYQQQmwyCZdCCCGEEEIIITaZhEshhBBCCCGEEJtMwqUQQgghhBBCiE0m4VIIIYQQQgghxCaTcCmEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohxDbOsiymTJnC6NGjWblyZdr9X3zxBaNHj3b/P3HiRE488UTeeeedjOebP38+e+yxBy0tLRnvv+iiixg9ejT//ve/k24/77zzuPfee7t0zWvWrOHKK6/kwAMPZPz48RxwwAFceOGFfPXVV116fE/75JNPeOyxx7bKc2+Ka665Jul76/z/+uuv36rX89vf/jbtvuOOO45rrrlmK1xV9z3//POMHj2a1tZWAFavXs3o0aN5//33N/tzv//++4wePZrVq1dv9ucSQoieJuFSCCG2cd9++y1r1qwBYMaMGR0e93//938888wz3HHHHRQWFnLJJZdkDHN33nknJ598Mrm5uWn3ffLJJ8yZMyfj+c877zwee+wxmpqaOr3exsZGTjrpJJYsWcKvfvUrHnzwQS699FJUVeXbb7/t9LGby6effsq//vWvrfLcm2r48OE888wzSf+/4IILtuo1Pf/881RVVW3Va+hJ5eXlPPPMM+y+++5b+1KEEKJX823tCxBCCLFpZsyYQSgUYtSoUcyYMYOLLroo43GjR49mhx12AGDPPffkwAMP5OWXX2aPPfZwj1mxYgUff/wxN9xwQ9rjY7EYt9xyC5dffnnG+ydOnEhhYSEvvfQSp59+eofX++abb1JTU8NLL71ESUmJe/vxxx+PZVld/rq3BsMwMAyDQCCwtS/FlZ2dzS677NKlY8PhMMFgcLNez8iRI6mvr+ehhx7aLBXULfE1pAoEAl1+jYUQ4sdMKpdCCLENMwyDN954gylTpnD88cezZMkSFi1atMHHZWdnM3jwYNatW5d0+wsvvMDo0aMZOnRo2mP+9a9/EQwGOf744zs87yGHHMKLL77Y6XM3NTXh9/spKChIu09RFPfja665huOOO4533nmHww47jPHjxzN9+nSWLFmS9BjTNPnnP//J1KlTGTduHIceeigvvPBC2rnffvttTjjhBCZMmMBee+3FL37xC9asWcPdd9/NI488wpo1a9y2Uqd903sN06ZNY8KECcydO5e7776bvfbaK+05UtuFp0yZwm233cY///lPJk+ezO67786f//xnLMviww8/ZNq0aey6665cdNFFNDY2dvq6dZfTDv3xxx9zwQUXsOuuu/L73/8egEceeYTjjz+e3XffnUmTJnHBBRdkbKnu6DXrTFZWFmeeeSb//e9/qa2t7fTYmTNncuKJJzJ+/HgmTZrETTfd5LaidvY1OLfPnDmTCy+8kF122YVDDjmETz75BMMwuO2229hrr73Yb7/9ePTRR5Oe89tvv+WCCy5g8uTJ7LLLLhxzzDG8/PLLnV5nalus0zab6f+OrrwvLcvi7rvvZp999mHXXXflqquu6rAdXQghtgVSuRRCiG3Y559/Tk1NDUcccQS77747f/jDH5gxYwZjxozp9HGmaVJZWcnYsWPTzrfrrrumHV9dXc19993HAw88gKp2/HvJXXfdlYcffpjGxsaM4RFg7NixRKNRrrrqKs4++2x22mmnDs+5du1abr31Vi677DKCwSB3330355xzDm+99RZZWVkA/OEPf+DFF1/koosuYuzYsXz66adcd911FBYW8pOf/ASAF198kauvvppp06Zx0UUXYVkWn3/+OXV1dZx44omsWLGCL774gnvuuQeA4uJi9xrWrFnD7bffzkUXXURpaSkDBw7s5JVNN2PGDCZMmMCf/vQnFixYwJ133olpmnz99ddcdtllhMNh/vCHP3DHHXe44a+7dF1P+tznS/zzfv3113PcccdxxhlnuK9ZZWUlp512Gv3796elpYWnn36a6dOn8+abb5KXl7fB12zAgAGdXs8pp5zCQw89xKOPPspvfvObjMcsWbKEX/ziF0yaNIm7776bdevWcccdd7Bq1SoefvjhpGNTv4ZYLAbAb3/7W0466SROPfVUHnroIS699FKOOuooLMvijjvu4IMPPuDPf/4zu+66q1t5XLt2LbvtthvTp08nEAgwa9YsrrvuOlRV5cgjj+zS633ggQfyzDPPuJ8bhsF1112XdExX3pf/+te/uPfeezn//POZOHEib7/9NrfffnuXrkEIIXojCZdCCLENe/XVV8nPz2e//fYjEAgwadIkZsyYwa9+9aukKiDYgVLXdZqamnjwwQdpb2/n5z//uXu/ZVksXLiQo48+Ou15br/9diZPnpzUQpvJmDFjsCyL+fPns++++2Y8Zp999uHMM8/k8ccfZ8aMGeTk5LDvvvsyffp0Jk2alHRsfX099913H7vtthtgB9OpU6fy/PPPM336dFauXMlTTz3FrbfeyrHHHgvApEmTqK6u5p577uEnP/kJpmlyxx13MHXqVP7617+65z7ooIPcj8vLyztsfWxoaOCxxx5jxx137PRr70hWVhZ///vf0TSN/fffn3fffZd///vfvPnmmwwaNAiARYsW8eKLL25UuFywYEHaLwneeust9+PDDjuMyy+/POl+bxAyDIN9992XffbZh3fffZef/vSnXXrNOpObm8vpp5/Oo48+yi9+8YuMv2i499576d+/P/fffz+apgFQUFDAFVdcwbfffpv0S47Ur+GLL74A4JhjjuHcc88FoG/fvkybNo3ly5e762cnTZrE66+/zttvv+1+b6dNm+aex7Is9thjD6qqqvjvf//b5XBZXFyc9AuIv/zlL6xfv57//ve/AF16XxqGwYMPPshJJ53EFVdcAcB+++3HWWedtV2tVxVC/LhIuBRCiG1UNBrlnXfe4eCDD3bXAE6bNo2rrrqK2bNnp1UgjznmGPdjVVW5++67GT58uHtbY2Mj0WiUoqKipMd9++23vPnmm7z22msbvCbnsdXV1Z0ed+2113LKKafwzjvv8NVXX/Hxxx/z9ttv87vf/Y7p06e7x5WUlLjBEmDAgAGMHTuWuXPnMn36dGbOnImqqkydOjWperfPPvswY8YMDMNgxYoVrF+/nuOOO26D159Jnz59NjpYgr2+1QlPAEOGDKGxsdENls5tdXV1RKPRbq/nHDFiBLfddlvSbf369aOyshKwq2ypZs+ezd///ncWLlxIQ0ODe/vy5cvd/27Kawbw85//nEcffZQnnniCSy65JO3+uXPncuihhya9Noceeig+n49vvvkm6f2b6WsA2Hvvvd2PBw8enHabqqoMGjQoKaw1NjZy99138+6771JVVYVhGID9fd4Yr732Go888gh//etfGTVqFECX3pfr1q2juro6LbBPnTqVzz77bKOuRQghtjYJl0IIsY366KOPaGpq4oADDnAntO61114EAgFmzJiRFi7/9re/MWjQINatW8edd97Jtddey/jx490fqiORCEBauPnTn/7ESSedRF5eXtIk2HA4THNzs9tG6X1sNBrd4PUPGTKEc845h3POOYe6ujrOOecc/va3v3HyySe7VVfvwB9HSUmJG17r6+sxDKPDKZ7V1dXU19cDUFZWtsFryqS0tHSjHufIz89P+tzv9ye9Zs5tlmURi8W6HS6DwSDjx4/v8P7U13Dt2rWcffbZTJgwgZtvvpny8nL8fj/nn3+++33b1NcM7Crk9OnTeeKJJzjrrLPS7q+urk57bTVNo7CwMG39aab3ASS/ts7rlun19r4fr7nmGubMmcNFF13EiBEjyM3N5amnnuLdd9/t3heIXXG+7rrrOOusszjiiCPc27vyvqypqcn4tXX0tQohxLZAwqUQQmyjXn31VQAuu+yytPtef/11rr322qSq0MiRI9lhhx0YP348Y8aM4YgjjuC+++7j5ptvBhJVx9StRJYvX87cuXN5/PHHk26//fbb+etf/8rChQvd25qbmwE6XG/ZkeLiYo477jj++Mc/Ultb64aOTANhamtrGTlypPs8Pp+Pp556Kq0N2DmvMyBmQ9XU7vCu+3P09ECenpL6unz88ceEw2Huu+8+QqEQYK/Z9F5/VyvQG3L22Wfz73//m//85z9p95WVlaV9fw3DoKGhIe39k+l7uzEikQgffvghN954Y1KFPNP1bUhDQwOXXHIJO++8c9q60q68L52KZuprsKEhSEII0ZtJuBRCiG1Qa2srH3zwAUceeSQ/+9nPku777rvvuPXWW/niiy/S1jA6Bg8ezIknnshzzz3HpZdeSklJCYFAgP79+6dt3v7AAw+4rYOOn//855x++ukccsghSbc7j800bdZRV1eXtF7NsXLlSgKBQFJVr7a2llmzZrmtsWvXrmXhwoVuu+bee++NYRg0Nzd3uMZz2LBh9OnThxdffJEpU6ZkPMbv97uV267o06cPra2tVFVVuZXfTz/9tMuP35rC4TCqqiYN/Xn99deT2je78pp1RUlJCSeeeCKPPfYYhYWFSfftvPPOvPPOO/zqV79yfwny1ltvoev6ZttPMhqNpm0l09LSwnvvvdet8xiGwa9+9SsMw+Bvf/tb0i9xoGvvy379+lFWVsa7777L/vvv797+9ttvd+tahBCiN5FwKYQQ26B3333XHciz8847J9232267cf/99/Pqq692GC4Bzj33XJ599lmeeOIJd1jKbrvtxoIFC5KOmzhxYsbHDx06lD333DPptvnz55OXl+euPcvkhRde4JVXXuGnP/0po0ePRtd1Zs6cyX/+8x+mT5/uTjQFu4J21VVXudNi77rrLrfKCTB8+HBOPvlkfvWrX3HOOecwfvx4IpEIixcvZsWKFdxyyy2oqsqVV17Jb37zG379619z5JFHoigKn3/+OdOmTWP8+PEMHz6cmpoann/+eUaNGkVRUVGnU2H3228/gsGg2xK5evVqnn766Q6P3xhTpkxhzz335M9//nOPntcJPtdeey0nnHACixcv5pFHHklqJ+3Ka9ZV5557Lk8//TQ1NTVJj7vwwgs59thjufjii5k+fTqVlZX83//9H5MnT844sbgn5OXlMX78eO69915yc3NRVZV//vOf5ObmdmsLkAcffJBPP/2UG2+8kYqKCioqKtz7dtllly69LzVN49xzz+W2226jqKiIiRMn8tZbb7F06dLN8aULIcQWIeFSCCG2QTNmzGDo0KFpwRLsKtzhhx/OjBkzuOmmmzo8x4ABAzjqqKN46qmnOO+88wiFQkydOpVrr712ozeq//jjj5k6dWqn25UccMABrF69mv/+97+sW7cOTdMYPHgwN9xwQ1oVtn///lxwwQXccccdrFmzhnHjxnHHHXckBdDf/e53DB06lGeffZa77rqL3NxcRo4cyQknnOAec9RRR5GVlcUDDzzApZdeSigUYuedd3YrqIcffjhffPEFt99+O3V1dRx77LGdhrri4mLuuusu/vKXv3DxxRczduxY7rjjjqR1d5uqvb09Y4V3U40ePZpbb72Ve+65h7fffpsxY8bw97//3Z1Y6tjQa9ZVffv25dhjj3UnqTpGjRrFgw8+yF//+lcuueQScnNzmTZtGldeeeUmf42dueOOO7jxxhu5+uqrKSws5NRTTyUcDiftT7ohK1asAOztRlJ9//33QNfel2eccQYNDQ08/fTTPP7440yZMsUN9UIIsS1SLMuytvZFCCGE6B2i0SgHHHAAv/3tbzn88MO79djm5mYmTZrEo48+2mG1szuuueYafvjhB55//vlNPte2ZtWqVRxyyCG89dZbSVNlhRBCiN6s418tCyGE+NEJBAKcc8457j6B3fHUU0+xyy679Eiw/LH79ttvOfjggyVYCiGE2KZIW6wQQogkp512WsZtRjYkNzeX66+/fjNe2Y/H0UcfzdFHH721L0MIIYToFmmLFUIIIYQQQgixyaQtVgghhBBCCCHEJpNwKYQQQgghhBBik0m4FEIIIYQQQgixyWSgTxeZpoVhmFv7MtL4fCq63vuuS2wf5P0lNid5f4nNTd5jYnOS95fYnHrj+0vTVFRV6fQYCZddZBgmDQ1tW/sykqiqQklJLk1N7ZimzGUSPUveX2JzkveX2NzkPSY2J3l/ic2pt76/CgtDqKrW6THSFiuEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohhBBCCCGE2GSy5lIIIYQQQvxoWJaFaRpYm7CUTVUVotEouq73qjVxYvuwNd5figKqqqEonQ/s2RAJl0IIIYQQYrtnWRYtLY20tjYBm/4De02Nimn2rmmeYvuxdd5fCjk5+eTmFmx0yJRwKYQQQgghtntOsMzPLyYQyAI2sULjU9B1qVqKzWPLv78sotEITU11AOTlFW7UWSRcCiGEEEKI7ZplWW6wDIVye+ScPp8KSOVSbB5b4/3l8/kBaGqq2+jqpQz0EUIIIYQQ2zXTNAArXrEUQnTE/jNixf/MdJ+ESyGEEEIIsV1LDO/ZtFZYIbZ/9p+RjR14JeFSCCGEEEIIIcQmk3AphBBCCCGEEGKTSbgUQgghhBDiR2DWrK+ZPHkibW1tnR53wglH8dxzz2yhq+q9Hn74H5xzzulb+zK2KRIuhRBCCCGE6IVuueUmJk+eyN/+9pe0+26++QYmT57IPffcudHnf+21V5g27aC02x988F9Mm3aM+/nkyRP59NOPN/p5tgWZvsbp00/nr3+9e7M/9yWXnLdJ38feRMKlEEIIIYQQvVR5eR/efvtNotGoe1trawsff/wB5eV9NstzFhUVEQwGN8u5N1UsFttizxUKhSgoKNxiz7c9kH0uhRBCCCGE6KV22mksy5cv45NPPmLKlIMBeOedt9hhhzGoanKdaPLkidx229/Yd9/9AGhra+OQQ/bnrrseYLfdJiYdO2vW1/zpTze7jwM466xfcM4553PCCUcxffppHH/8SZxwwlEAXH31FQD07duP//3vFVatquCee/7GwoULCIfDDB8+gosuuoydd94l6Xp+85tr+fDD95gzZzbl5eVcdtmv2Wefye4xy5Yt4Z57/s7cud+Sk5PDPvtM5pJLriA3196P9JJLzmPkyB0Ai7feeoOxY8dx++1/z/havfzyCzz11BNUVVXSv/8Apk8/nWnTjgbsUHrXXX/lww/fo6WlmZKSMk46aTonnHByh1/jww//g88++4SHH34CsCvJ7e1tjBgxiueeewbDMDn99LM44YST+Pvf/4+3336TgoICLr/8Svd7oOs6f/nLLcya9TV1dXX069ePk046laOPPtY95+zZs5g9exZPP/1vAJ599mUGDRq4wdemN5JwKYQQQgghfpReeLKSRfNaN+qxitL97RrGjM/h2FP7dvu5jjjiKF577WU3XL722iscddRPeeONGd0+l2P8+J259NJf89hjD/HEE/b6yuzsUNpxDz74L446aio33vh7Jk7cE1XVADu4Tpq0H+effzE+n5+XXnqeq666jGeeeYnCwkL38Q899AAXXXQpV1xxJS+//CLXX38VTz31PH369KW5uZlLL72Qn/70eC6//Ne0tbVz991/5ZZbbuLWW//PPceMGS9zwgkn8cADj3T49bz11us8+uiDXHHFVYwcOYrvvlvIbbf9kfz8fPbb70CeffZpPv30I/7wh9vo06cPa9euoampsdOvMZMvv/yC0tJy7rvvIb766kv+9re/8PXXX7LvvpN5+OEneO65Z/jDH37L88/PIBQKYRgGffr05Y9/vI38/AK+/fYb7rjjz/Tt248999ybyy77DatWVTBy5A6cdda5ABQWFnX5teltJFwKIYQQQgjRix122DQefvgf1NRU09rayrJlS5gy5eBNCpd+v5/c3FwUBUpKSjs8rqioCIDc3Lyk40aPHsPo0WPcz3/5yyv48MP3+OKLzzj00CPc2w8++FCOOMKuDF5yyeV8+eVMXnzxOc4//2Kee+4ZdtxxJ8499wL3+Kuuup5TTz2B+vo6ioqKARgyZCjnn39xp1/Pww//g1/+8lfsv/+BAPTvP4AffljESy89z377Hcj69ZUMGjSYCRN2RlEU+vbtt8GvMZPCwkIuvfRXqKrK4MFDefLJx8nKCnD88ScBcOaZv+B//3uGxYt/YOeddyErK4tzzjnffXz//gOYPXsW7733NnvuuTe5ubn4fD6CwWDScz/7bNdem95GwqUQQgghhPhR2pgqosPnU9F1swevpmMlJaVMnLgXr78+g+bmJg44YAqhUM4Wee6OtLW18fDD/2DmzE+oq6vFMAwikQhVVZVJx+2007ikz8eOHc+KFcsBWLJkMV999QVTp+6Xdv41a1a7AWrMmB07vZb29nbWrFnNLbf8jltvvdm9Xdd1N0Qedtg0Lr/8Yk455Xj23ntfJk/en91336PbX/fw4SOS2pELC4sYOnS45/NCNE2joaHOve255/7LjBkvU1W1jmg0SiwWY9ddd+/0eZYs+aFLr01vI+FSCCGEEEKIXm7atKN44IF7aGtr43e/+2PGYxRFwfL06uq6vtmu59577+Sbb77ioosuY8CAgWRlZfGb31yWNnBHUTJfJ9ihcL/9DsxYlSwrK3M/DgazO72W9nZ7a5Xrrvsdo0cnB1Gfz447Y8bsxLPPvsznn3/KV199wTXX/JqDDz6Eq6++YcNfbIbzeb+W1NsATNP+xcM777zJfff9nV/+8lfstNNYQqEcHn30n1RVVXX6PG1tbV16bXobCZdCCCGEEEL0cvvuuz+3334r2dmhDqtehYVF1NXVup8vWfJDp+f0+fwYxoarrz6fD9M0km6bN28O06Yd7bahNjU1UV2dHpgWLJjP1KmHuZ8vXDifSZPsatwOO4zm448/pF+//mhax+scN6S4uITS0jLWrl3DQQcd0uFxeXl5TJ16GFOnHsZee+3D739/I1deeR2qqmb8GnvCvHlz2HnnXfnpT493b1u1ahWBQMD93O/3pz336NGj+fDDTX9ttjTZikQIIYQQQohezufz8cwzL/D44/9xK3+pdt11d5577r8sWbKYefPm8OCD93V6zn79+tHa2sKsWV/T0NBAOBzOeFzfvv35+usvqa2toampCYCBAwfzwQfvsXjxD/zwwyJuuun6jINw3n33LV5//VUqKlZy331/p6JiJcccYwet4447kfr6Wn7/+xtYtGgha9asZubMT7jttlu689IAcOaZ5/Cvfz3Cc889Q0XFSpYsWcxLLz3PCy/8D4BnnnmSd999i4qKFaxcuYKPPvqAQYMGuy2umb7GnjBw4GAWLpzPV199TkXFSu699+9uW7Cjb9/+LFgwn8rKdTQ0NGCaJscff1KPvTZbkoRLIUSPaoo0MnPtp7Tr7Vv7UoQQQojtSk5ObqdrLS+55HIKC4u44IKzuP32P3H22ed1er7x43fmmGOO48Ybr+bIIw/myScf7/C8X3wxk+OOm8bZZ58K2AN8QqEQF1xwFtdddyU/+clBDB48JO2x55xzHm+88RpnnjmdDz98nz/84Tb69rXXupaVlXPffQ8TjUa5/PKL+PnPT+Lee+9KmjbbVT/96Qn8+tfX8PLLL3LGGSdz2WUX8N57b9O//wDAbq194onHOOec0zn//DNpbm7mj3/8S6dfY0845pjj2G+/A7nxxmu44IKzicVi7vYojunTTwPg1FNP4MgjD6aqqpLy8p57bbYkxbK6O0R52zFv3jxuuCHRR7148WKee+45dtyx80XBmcRiBg0NbT15eZtMVRVKSnKprW3BNLfbb6PYSjb2/TV7/SzmVs9h3wGTGVYwgvpwPSXZJZvxSnvO2lVhfljQSmO9jqrZr8GQEdmM2zVva1/adkf+/hKbm7zHhJeu69TUrKG0dEDG9XEbY0sO9NlWpe67Kbpua72/OvuzUlgYwu/vvEV3u15zOX78eF566SUA1qxZw+mnn75RwVII0XW6aQ8PMC2L72oX8k3VV0wdcij9cvtv5Svr3Jyvm3jh3+lrRb7+rJEBg4MUlfi3wlUJIYQQQmw7tutw6fXGG29w6KGHbu3LEGK7p1v2gnTTMmnX7Wp/m75xG1RvKZGIyVsvV9OqVXPkIaMZMCSIZcKieS18M7OJmR/Uc8Tx5Vv7MoUQQggherVevebyq6++4oILLmDy5MmMHj2a999/P+2YJ598kilTpjB+/Hh+9rOfMXfu3IzneuONNzj88MM39yUL8aNnuJVLEzPedW+Yvbtt6LP36lnbXkFspy8xd5zNyDE5jNoph4OOLMUfUJj1eROtLZtvnLsQQgixPfrkk6+lJfZHpleHy7a2NkaPHs1vf/vbjPe/9tpr3HrrrVx88cW88MILjB49mnPPPZe6urqk49asWUNdXR0TJkzYEpctxI+a7gmXFvFwafX8aO+eousWX3zUQMzfxJjxuaxqrnC/hlCOxq575aPHLOZ/27KVr1QIIYQQonfr1W2xBxxwAAcccECH9z/66KOcdNJJHH+8Pc745ptv5oMPPuCFF17gnHPOcY978803e6QlVlUzj33eWpzr6W3XJbYPG/v+MjFQFFBUQDFRFFj6QzOFgyIMGBzcDFe6aVYubSPcbjJ0p3xycu1fTK1sXsbQ/OH4NT8jRufw5ceN1FZF5c9aD5K/v8TmJu8x4SXvAyG6R1WVjfpz06vDZWei0SgLFizgwgsvdG9TVZVJkyYxe/bspGPfeOMNbrzxxk16Pp9PpaQkd5POsbkUFXU8klqITdXd91dObYBcK0h+fhArHGHJJ+3UfFXFktA6/nDXuF73D/ybi+zNpnfaJY9Irh1+5zZ+w9zGbzh4+MEMH9kPWEtzo9lr/w7YlsnfX2Jzk/eYAPvnxpoaFZ9Pwefruca9njyXEKm2zvtLQVVViopCBAKBbj96mw2X9fX1GIZBaWlp0u0lJSWsXLnS/Xzt2rXU1dUxfvz4TXo+XTdpaupd+/apqkJRUQ719a0yZl30uI19f9U1NtPSFmbN6ibeequChWuaKcOioT7GnFk1DB6WvRmvuntM02L2Vw2oKpT2V/i+yd482qf60E2dORXfsU+5/XdM5dowtbXSGttT5O8vsbnJe0x46bqOaZrougX0zBwA2YpEbE5bbysSC9M0qa9vw+eLJt2Xn5/949uKxLIsFCVRGenfvz/vvPNOj5y7t/7jZJpWr702se3r7vurtS3Kd3Nb+HrBalr1NkLFGmPGZFP3BSyY3czAIb2nNXb54jZaWwxGjA6h+uqxLNh/4IH0zx3A04uepKqlEq2/Qn6hj4a6GNGoic/Xuyqv2zr5+0tsbvIeE9B7f4YTorfa2L87t9laflFREZqmUVNTk3R7XV1dWjVTCLFlLF7YymsvVrL4uzZ0w2THXXI44NBiJky029IWzm7BsnrPP/DfzbUrkTtOyMWw7N8OaqpGQAtQFCyiNdZKa6yV4lI/lgUNtbGteblCCCGEEL3aNhsuA4EAY8eO5bPPPnNvM02TmTNnsssuu2y9CxPiR0rXTf772Dra22MMHJLFiWeXs9s+efg0hWCOwsChQRrrdWZ/2by1LxWwfyP33dwWUGDMhBzM+ERbTbHbPcpCfQCobltPcZkfgLoaCZdCCCG2fbfcchM33HDVJp3jueee4YQTjuqhK9p+vfbaK0ybdtDWvowtple3xba2tlJRUeF+vnr1ar777jtKS0spKyvjrLPO4qqrrmLs2LFMmDCBxx9/nHA4zLHHHrsVr1qIH6ea9TFiUYvSoRq77pVHTq5GczSxFcle+xWyekUlLz1VRV1NlIOmbb4Og9nrZ7G6eTVHDD8SVcn8O7Q1K8M0NxoMGZFNbp4Poyk5XJZnl/EDi1jftp7i0lEA1FZHARkOIoQQYsu45ZabeP31VwHw+Xz06dOXww8/ktNOOxOfb+N/jL/sst/0qk6i7cUJJxzF9OmncfzxJ7m3HXTQVPbZZ9/N/ty33HIT7e1t/PGPf9nsz9WZXh0u58+fz89//nP38z/+8Y8AXHLJJfzyl7/kiCOOoK6ujrvuuovq6mp23HFHHnroIYqLi7fWJQvxo7V+bQSA3EJ7TaJpWVjxVlPDMhi/ex45eRr/eXAtX37cyIGHlaBpm2f94tzqOQC0RJvJzyrIeMxCT0ssgGHa4VJ1wmW8crm+rYoRZWMBqVwKIYTY8iZN2o+rr76eWExnzpxZ3HbbLWiaxumnn9Xtc+m6jqZp5OZuG9PPY7EYfr9/a1/GJsnKCpKV1XvmTWxuvTpc7rXXXnz//fedHnPaaadx2mmnbaErEkJ0ZP06e6JYTr79uRX/HySC2/AdQgwens2y79uoXLN59r30/ibWO9wr1dJFbQDsOMGuRBrxtlifaofL3EAeAS1AY6SB4lJpixVCCLF1BAJ+Skrsbp++fY9g9uxZfPLJR5x++llEIhH++c/7eOedN2lra2XkyFFcfPEVjBtn75Lw2muvcO+9d3L11TfywAN3s3r1Kl566U3uu+/vSVWuSCTMvff+nffee5u2tjbGjh3P5ZdfyYgRI93rePXVF3nkkQdpampk0qT9ku4De3nao48+yCuvvEhjYwPDh4/kkksuZ9ddd3eP+fjjD7jnnjuprq5ml1125YADpnD77X/ik0++BuDhh//BZ599wlFH/ZR///sxGhsbePvtj/nss0944olHWL58GZqmMWHCrlx++W/o06cvALNmfc2ll17AHXfczX33/Z1Vq1ax666787vf/ZGvvvqCf/zjHpqaGjn44MO44oor0bSOJ55+9NEHPPLIP6moWEFZWTlHH30s06efjqqq7jXOmPEy9fV1FBYWcdhh0zj//Iu55JLzqKxcx9/+djt/+9vtAHzyydfu92DGjHfTvsbHH3+YlpYWjj76p1x00WU88sg/efHF/+H3Bzj33PM58sifutd1zz138sknH7J+/XpKS0uZNu1oTj/9LFRV5eGH/+FWuCdPngjAXXc9wG67TaSqqpK77/4bX331OT6fj1133Z3LL7+S0tKyrr8Ju6FXh0shxLajal0EE4O8AvuvFcsyMeOVS8sz9n3YSDtcLv+hjQGDg+i6SWO9TklZ9/dSyqRVb3U/dkJtJk2NOv6AQkGRHRxT11wCBLUgTUYT+cX2Pyh11RIuhRBie/Lpmo9Z1Vyx4QMzUFWl29M0B+UNZt8B+23U8zmysrKIxex/j+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWTkAbW1tPP30v7n++pvJyckhJyd9ecd9993FJ598xG9/+0dKS0t57LGH+fWvf8nTT79AMBhk3rw5/OUvf+LCCy9l333345NPPuLxxx8iLy/fPcczz/yHZ599iquuuoERI0bywgv/48orL+Opp56nrKycdevWcuON13DyyadxxBFHsmDBfO6//+60a6moWMFnn33Mrbfe4Qa6cDjMySefzogRI2ltbeWBB+7mppuu4/77H0l67GOPPciVV16Hpmlcf/1V3Hjj1YRCIf785zuoqqri+uuvYsKEnTnkkMMzvrZz5szmT3+6icsvv5Lx43emomIlf/nLLfj9AX72s+m8//47/Pe//+Gmm/7EsGEjqKlZz6pV9vvnT3+6nTPPPIVjjz2BI47ofC1qRcVKvv32a/7613tYuXI5v/vddSxbtpSddhrHAw88ygcfvMftt/+Z3Xffk379+gOQm5vLDTfcTElJKT/8sIjbbruFwsIijjnmOKZPP52VK1cQDoe5+urrAcjPL0DXdX79618yYcIu3H//w4DCww8/wNVX/4oHH3zcfX170jY70EcI0busXxfFUg1y4+HStExMK7lyCTBsVAiA5UvsfWPff62Ou29ZyTczG3vkOlqjib0onQmwqQzDItxmkpObCJK60xarJm4LaFkAWFqM3HyNxvqYjLMXQgix1SxYMJ8333yd3Xffg8rKSl577RX++MfbmDBhFwYMGMiZZ57LsGHDeeut193HxGIxfvObaxk7dhxDhw4jEEj+ZW5bWxsvvfQ8F198OXvuuTfDh4/kuut+RywWdc/zv/89w6RJk5k+/TQGDx7CKaeczs4775p0nqef/jenn34WU6YczJAhQ7nssl/Tt29/nn/+WQBefPE5hg4dzgUXXMLgwUM5/PAjOeigQ9K+RsMwuOGGmxk1age3OjplysEccMBPGDhwEKNHj+Gqq65n3ry5rF9flfTY8867mHHjJrDjjmM57LBpfPvtN1xzzY0MHz6SffbZl4kT92DWrK87fH0feeSf/PznZ3PYYdMYMGAg++yzL2eccTYvv/w8AFVVlRQXl7DHHnvRt29fxo2bwOGHHwnYYU5VVUKhECUlpW61uSPXXPNbhg0bzoEHHsROO42jvr6eX/ziQgYNGsypp/6cYDDI3Lmz3ePPPPNcxo2bQL9+/TnggCkcf/zPeO89e7vFUChEVlaWW+UuKSnF7/fz7rtvoSgKV111PcOHj2T48BFcf/3NLFnyA4sWLez0+jaWVC6FEJssHDZorNcpKFXwac6ay0Tl0hvy+g3KIpClUrGsHV23WPydXWmc8b/1zP26mcaGGGdcNJCiko1bY9ESs6fRRqMmr/6vkt3HBRi3a17SMW2tdpAMecKlkaFyGdDsa4iZUQoKfbQ0GbQ0G+QXyF+dQgixPdiUKuKW2uT+448/ZOrU/TAMA8MwOPjgQzn77PP49ttvMAyDk076adLx0WiUkSNHuZ9nZWUxfPiIDs+/Zs1qdF1nwoSd3duCwSCjRo1m5crlgF1N/MlPDk563Nix41m2bCkAra0t1NbWMH584hyKojB+/ARWrlwRP8dKdtxxbNI5Uj8H6NevP/n5yfMSVq2q4KGH7mfhwgU0NDRAfNlNVVUl5eV93ONGjEh83cXFxRQXl1BQUOjeVlRUTH19XYevxdKlPzBv3hweffRB9zbDMN0ZEgceeDDPPPMffvazY9h770lMmjSZSZP263YFsH//AWRnZyddayCQ5X6uqiqFhYVJ1/ruu2/x7LNPs2bNasLhdnRdp0+ffp0+z5Ili6moWMnUqcnvc8MwWLNmNTvtNK5b190V8hOSEGKTVcfXW5b0TQQzC8sTLhOVS01TGDIiyOKFbSxe2Mr6dVE0TcEwLFYutauZMz+o54jjyzfqWlrilcul37ehz25k+TeVrFsdYepRid8gtrbY1+OtXGZqi3UqlxEjSn6RnzUVERrrYxIuhRBCbDETJ+7FFVdcic/np7S01J0S297ehs/n45FHnkybMeBtfQ0GuzbfIPUcdvOR4n7c2RwDZ9xB+jksEjd5P07clioYzE677eqrr6B//wFce+1vKSkppa2tlV/84gy3PdjhnaCrKEraRF1FUTqdktvW1s4vfnEh++13QMb7+/bty1NPPc+XX37OV199wZ///Ad22GEMd9xxd6evT6pM15V+G2631Pz5c/n972/k3HMvZI899iInJ4dXX32Jd999q9PnaW9vY6edxnL99Ten3be5BqDKT0hCiE3S3mbwzcwmAEr6+GiI325apjvQx7SS1z6OHpvL4oVtvPVSDQDjdstl9Dh7ct3z/65k9pdNTDmihGB2xwvuO9ISa0HXLVYuaWegahIMqHz6bj177ldAQaFdiWzLEC6d1t1M4TJqRCgotP9xbmrQu31NQgghxMbKzg4ycOCgtNtHjdoBXddpbGxg3LgJG33+AQMG4vP5mDNnNgcdNBWwB/wsWfI9Bx9st60OGTKUBQvmJT1uwYL57se5ubmUlJQyd+5st3ppWRbz589j//0PBGDw4KF8+eXMpHN0pTWzsbGBioqVXHfd79yv8/PPP9vAozbODjuMZtWqlRlfb0cwGGT//Q9k//0PjA/zOZOqqir69u2Lz+fHMHq+mj1v3lz69x/A6aef6d5WWbk26ZhMzz1q1Gg++OBdiouLCYW2zFZqsuZSCLFJHr5zFbO/bELTFIbvlFjHYXm3IkkZrDN211w0TWF1w1qiagtDRmSz44Qcdto5lwm75xGNWMz6vGmjrqc52kzFsnZiMYsdxofYYaz9l2lNVdQ9xqlchnITv19z22K9ay5VO4xGzSgFRfaxjfUSLoUQQmx9gwcP5aCDpvL739/IRx99wNq1a1iwYD6PPvog3377TZfPEwqFOOaY47j33jv58svPWbZsKbfccjM+n5+pUw8D4Pjjf8Znn33CM888SUXFSp5++t/MmTMr6Twnn3waTzzxKO+//w4VFSv4+9/voLJyLccddyIAxxxzHMuXL+Mf/7iXioqVvPnmaxusvAHk5eVTUFDASy89z5o1q/nqq8954IF7uvFKdd0ZZ5zDa6+9wmOPPcTy5ctYvnwZb731Oo8//jAAr7/+KjNmvMyyZUtZs2Y17777Jrm5eW4VsF+/fsyePYvq6vXx9t2eMWjQINatW8u7777NmjWr+c9/nuCLL5KDer9+/dw22IaGBnRd55BDDicnJ5drr72SOXNms3btGr755iv+7/9upbm5uceuz0vCpRBio0UiJjXrY+QV+Pjl9UMo7ZsIaxaJyqWRUrnMDmmMGOtnZe7HrM2exYBhfl5Y8j++qvyCvQ4oBAU+eKOWqvjemRvibXFpaGti6ff2Os6d98qlrI8deGuqEq0zrc3plUvd1JOqluCtXEbJL5RwKYQQone54Ybfc/DBh3LXXXdwyinHc8MNV7Fs2dJubzNx0UWXMnny/vz+9zdw7rmnU1dXyx133O221E6YsAu/+c21PPXUvznrrFOYP38up5zy86RznHTSKZx44nTuvPP/OOOM6cybN4fbb/+7ey39+w/g97//M++99zZnnjmdN998jVNPPTNprWEmqqpy001/4rvvFnD66T/j/vvv5uKLL+3W19dV++yzL7feegczZ37KOeeczoUXns3zzz/rTmzNycnlxRef44ILzubMM09h0aLvuP32O90hSeeccwFr1qzmpJN+ypFHHtzZU3XL5MkH8LOfTeevf/0zZ511KkuX/sCpp56RdMxRRx3LwIEDOeec0znyyIOZO3c22dnZ3Hvvg5SWlnDddb/mtNNO5Pbb/4SiqGmDnXqKYnXWeCxcsZhBQ0Pb1r6MJKqqUFKSS21ti0ywFD2uK++vmvVR7vnTSoaNyuaMiweyunkV71XYk8v65/anOdpMc7SZbF82J44+Oemx38xZy5+ff4KCQAF3/PpkXlr6AqXZZRwx/Eg+fLOW91+vo7DYxwVXDSYY7Lg9tqlR54G/VLDzHnkcdFQRN/73fpYsamPA4CwuPeEoIiv78Mwj65i4bwFHnmiv43zvtVo+equOY6b3Yde97DHqT333bxRF4eQxp7rnXlz/AzPXfsou5btS3DqGh+5cxY4Tcjjp7P6b9NoK+ftLbH7yHhNeuq5TU7OG0tIBaWvbNtaWGuizPXvggXv47LOP+de/ntnal9LrbK33V2d/VgoLQ/j9nS9ZkjWXQoiN1txoV/GcvS11M1HVS54Wm77f5MARfgYNzaJfWRA9fr9h2Y/f/5Bi1lRE+GFBK4vmtrLLnvlpj3esXhGmrdVg5gcNVNbVs6yiDU2DHXfOxbJMSsvjlcv13rZY+3ly8pKnxWapyb899TttsYanLVbWXAohhBAb5bnnnmHs2PHk5eXz7bdf89xzz3DWWedt7csSPUjCpRBiozU3JYdLJxyCPf/NCZdmhv0mTWLssmcBAc2Pbtotq044VRSFifsW8MOCVr6f39JpuGxqSLS7zl9Qg5ULY3fJJTtbwzBNisv8qGrymsvUgT6WZU+29a63BMjytMXm5GmomrTFCiGEEBtr1aoK/vWvR2lubqJv336cddZ5nHzyqRt+oNhmSLgUQmy05kY7pOXlx8OlmQiRG6pcRk077OmmTiwlXAIMG5WNP6CwZFEbsZiJ3595ibgT9naflE841MaI8hJCOZr7vJqmUFTqp3Z9jHC7QTBbSwz08RwHpK259Gt21TNiRFBVhfwCHw11Orpu4vPJknUhhBCiOy6//Eouv/zKrX0ZYjOSn46EEBst0RZrhzLdSm6LdQb6OJVBr5gRc4+LGvbgHm8I9ftVRo4JEYtaLF/c3uE1OOFylz3z2X1yDqEcjUA8FDrP6bbGxof6pO5z6TyvqqRWLu3HxeJBuKDIbpNtakgPy0IIIYQQP3YSLoUQG60pHi7znbZYT+XR3ookMUTDCXqtsVZiRsytXAK06+H441P2w4zvffnejFoWzWvJeA0N9XZgLCjyo8cfnwiX9ufuxNj4usu2FgN/QCGQpSY9b1rlUnUql/bjEhNjkzdtFkIIIYQQEi6FEJugs4E+3q1IwK4OGqbBy0te4MPV7xEzvOGyzT3GG0jHjM+hrG+AyjURnn54HZVr0rcmaazXUTXIzdPc9tpAfDCPU5EsjYfL9esiGIZFe5vptsRCIoT61NStSFIql/Fw2SRDfYQQQggh0ki4FEJsNGegT66z5tLT1updcwl2dTBqRomZMRojjUmVy7ARdj/WTZ0PV73P4vofCGZrXHDlYPaYXABAxbLk9thYzKS12SC/0IeqKu5goKAvy70GgEHD7H26Fv5QTUXNOiB5j8uO1lyqiopf9RNNqVw6FVshhBBCCJEg4VIIsVEsy6K50SCUq+HzKQDuliKQHi5Ny3BDXMSIuGsuAdpjiT1ka9qrWdm0gplrPwVA0xRG7ZQDwJqKRAiFRAWxoNBeC+lWLrXkymVJWYDiUj+ftrzCc/NfxkRP2obEaadNXXNpnytA1IhiWZYboluaZM2lEEIIIUQqCZdCiI3S3mZi6BZ5+Z4KYMo+l16GZWDGQ5xu6m4rLEC7nqhIOgERoCVmr7McMNiuPK5emQiXVesi7hpKZw9KJ9wmwmXiGpyAunpFGFMxktpi3cqlmjlcgj3d1vlanYqtEEIIIYRIkHAphNgo7jCfwsSORt41l96PwQ6b3rbZ5miz+3GbJ2iG9USAXN9aCdgtrEUl9nYi7W0G6ysj3P+XCp5/ogrwhEunLTYeLi1PuByxox1Q166KYGG6k1/ta8vcFguJoBozop7KpYRLIYQQItWFF57Nhx++536+ePEPnHPO6fzkJ/tw5pmn0NTUyNFHH0p19fqteJVic5J9LoUQG8Ud5pOf+GvEsDqrXCZ/7lQlAXdNI0DEs/6yqq2K4YUjWVi7gLX9PyVQty9rV4WprY6BBZGwfU4nKDqttqltsQB9h4KmgWFAaV8/e+5XkLi2DqbFAgQ8E2Pz8+3qZ7O0xQohhNjMJk+e2On9Z531C8455/wtci2LFn3HQw/dz6JFC2lvb6e0tIxx4yZwzTU34vfb/wZ//PEHtLa2sv/+P3Efd//9d1Ne3odbbrmd7Owg+fkFHH74kTz88D+45pobt8i1iy1LwqUQokNfrvmSqto69u63b9p9qZNiIXkrEW+wy/R5avh0tHsql1XxymVl61qyi2O0aA2sXhmhrjqa9JjCDiqX3uuJEWXUTjk01sU45cS+5OZ5Q3Hnay4BokYEf7ZKdkilpUnHsiwURcn4NQghhBCb6qWX3nA/fu21V3jhhf/x4IOPu7dlZ4fcjy3LwjAMfL6e/9G+vr6OK664mP33P5C//e0+QqEQa9as5v33340vd7HD5f/+918OP/yopH8b16xZxYknnkzfvn3d26ZNO4ozzzyViy++nLy8vB6/XrF1SVusEKJD39d8z+L6HzLelylcpg708TLNxJrLzngrl03RJtpibeimTlGJD10Js2JxG2sq7C1JnJbc4jJnoI99TU7l0nsN7Xobo3bMYeK+hWRlJz+nHq+4pm5FYp8rseYS7Mm4sahFJJI5HAshhBA9oaSk1P1/KBRCVVX385UrV3DIIfvz+eefcdZZp3DggXuzePH33HLLTdxww1VJ57nhhqu45Zab3M8jkQh33/03jjnmMKZO3Y8LLzyb+fPndXgd8+bNJRIJc9VV1zNq1A4MGDCQPffcm6uvvp6sLHvJSX19PbNmfcW+++7nPm7y5ImsWbOaO+/8PyZPnsjDD/8DgMGDh1JeXs4nn3zYg6+W6C2kcimE6JCzbtK0TFQl+XdRzY12UMwr0NKOVxQlab9KSK9cdsQbLgGaY80YlklhsR9/XoQVS9qxgMJiH6dfOICqtVGKSwPx57CfP0sLxq878ZzetZwmycHQWZuZqS02Kx5UndbdvHyN6kpoaTQIBtOPF0IIse3I++UFBF6fscWeL3r4NJrvfqDHzvePf9zDJZdcQZ8+fSkoKOzSY+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWXna8cXFxUSjUT755CP23//AjF07c+fOJhQKMWjQYPe2l156g1/84gyOPfYEjjjiqKRK6+jROzJnzrccfviR3f+iRa8m4VII0SFncqthGqhaSrhsyrDmMh4uvXtDuvd1MVx622Kdc+qmjqIoDB6jUvuZffuAwUFKygKUlAXSrjcrXm1MrVwmzpkcLt2tSDJULv3umku7WuoM9Wlu0intE0g7XgghhNhSfvGLi9h99z26fHxlZWW8xfY1iotLADjzzHP57LNPeOut1zn11DPSHjNu3AROOeXn/Pa315CXl8dOO41njz324rDDprltrVVV6yguLkkKniUlpaiqSigUoqSkNOmcpaWlLF26ZGO+ZNHLSbgUQmSUun7Sjz/p/kzTYp0A6VN9Gx0uncpllpZFxIigm7obWgeMVBLhckgw7bExI4ZP9bkh0UgKlx1XLo1OpsVm+ZzKpR0u8zzhUgghxLZtU6qIPp+Krm/dJRJjxuzYreOXLVuCYRicdNJPk26PRqOMHDmqw8dddNGlTJ9+Gl9//SULFszjyScf58knH+ehh/5FaWkZkUiEQCCry9cRCGQRiYQ3fKDY5ki4FEJkpHsmv2YKhs2NOqpK0n6Ruqnb4U5JX85tWSYpnbKoipq2NjOi2yEu25dth0tLd68lWBijrG+A6sqou/dl0jWbOn7N74ZE73V7K5dWhj04oYNwqSa3xebG97pskYmxQgghtrJgMHmIQKZlKbqe+Pe8vb0Nn8/HI488mdbempOT0+lzFRUVM3XqYUydehjnnnshJ598LC+++BznnnsBBQWFNDc3dfm6m5ubKCws6vLxYtsh4VIIkZF3n0ozdfKrYdHabJBX4ENVE/84GZaBpmgopK/HMEwTi+R/8LJ92bTGWpOPiz9X0BeEiF1Bdaqo7XobR59czorF7QwenhwunX00Q2rIDYmmZVLZuo7GSCNhz1pOI2WwkDNoKPNAHztcRqRyKYQQopcrLCxi1aqV7uemabJs2VJ23nlXAEaN2gFd12lsbGDcuAkb/Ty5ubmUlJTQ3t4OwA47jKampprW1hZycnI3+PgVK5az226db7Uitk0yLVYIkZFhdrxnZWuzgWUlT4o1LbPTyqVhGWkV0GxfKO04hzOURzd193HtejuDhmaz39TitN+4OmHY+/ymZfDWijf4Yt1Md1sT6LgtNtNWJEGfEy7tcOp8zVK5FEII0dvsuuvuLFgwn3feeZOKipXcddcdNDY2uPcPHjyUgw6ayu9/fyMfffQBa9euYcGC+Tz66IN8++03Gc/56acf84c//JaZMz9l9epVLF++jPvvv5vly5e502FHjRpNfn4B8+bN3eA1RiIRvv/+O/bcc+8e+ZpF7yKVSyFERt7KZWoodIf5eCbFOtNYs30hd2qrl2EZaZXLkD8E7ZmfP+jLjl9HLGlqbVgP21XNFM4wH5+auS026VpSKpfOQJ9MbbGJymVyW6xULoUQQvQ2++yzL6eeegZ33vl/WJbJiSdOZ4899ko65oYbfs+jjz7IXXfdQU1NNUVFxYwbN4GDDz404zmHDh1GIBDg73+/g/XrqwgGgwwZMpQ//vEvbvVR0zSOOOJI3n77Dfbee1Kn1/jppx9TXt5nkyqnoveScCmEyMi7Z2XqdNWmhvgwH0/lsl23U2KmVlewq4ip60BCvo7Xd2THA6TTjupo01szhks9Hi79qg9FUVAUJa3i6l5LSuXS7GTNZSA+LTZ1oE9Lo4RLIYQQW8bxx5/E8cef5H6+224T+eSTrzMee/75F3P++Rd3eC6/3895513Eeedd1KXnHjBgIFdffcMGj/vZz07ljDNOorp6vbulyf/+90racc8++xRnnHFul55bbHukLVYIkVEklpj26oSvpgad5Yvb3HDp3YakTbcDZbY/lHEPLMNMb4sN+RNtsamttE5bbGq4bI+llzrXtqxxA61Ptafaaopmb6HSwXChpGtzwmWGNZeKohDQAu51BLJU/AGF1lZpixVCCCEcpaWlXHXVDVRVVXZ4TFNTI5Mn78/UqZmrpGLbJ5VLIUSaiuXt3P3AEooPaGLg0ADr1rXzyiurWL3Sbn3NybVDmHfNpRP6Qr5s6j2BTlM0d71laltslpbl3p+lZbnVT8CtTkaM5FHlbZ6prwCVret4Z+Vb7uf+eLhUFRXDMjJWL82UCmpnay6d62yONmOYBpqqEchSCbdt3fHzQgghRG9zwAE/6fT+/PyCjHtpiu2HhEshRJrlP7ShmwbfftlAzfogcxauIjfaj6JSP/U1MVpb7DCWFC7joS/bF0qaFutTfRiGgWlZbjuqs4elX/W79wd92UnhMiu+1jGsp1QuU8Jlc7Q56XNNta9JVdS0vTYdqRVUo5M1l/a1BGmmmYgRIaSGyMpSaW020HULny+9SiuEEEII8WMkbbFCiDQ162OY6FgWVCwPo/nhiOPL+OV1Q+g3MLFJsnegj3fNpaokh0uwW2udLT8G5Q0mx59DaXYpfs2uNAa1xHnt0Gnf7qx1dNpb2/TkttgsLXnTZn/8+bxBsSxUzl799mFs6bj4taS2xTqTZjsKl8nrLgNB+1qiEaleCiHEtiDxz5LV2WFCiPifkQwrnLpEKpdCiDS11VFMxWDEDjlEowanHtyHCYMKMS2Tsgm1rFmdjYqWNNCnzVO59K5zdNpUvS2qI4pGMWnA5KT7nemwYAdSXzwcOvtT5gXyaIw00hxpTLrW1Cqkty3WkaUFGF08hu/rFmV8jHNdHVUu3Ymxpl0Jzcqyzx0Jm4RyMj9GCCFE76GqGqAQjUbw+fxb+3KE6LWi0QigxP/MdJ+ESyFEEsuyqF0fQwuY7DG5mLbWCKFcO0wtbVhCbck3NAQH0NfagaxgIsAlVy49ay7jlURvuPSGOKdC6QzwsW/zuRVPp7W1JLuUdr2d6vZqd+0jJIYNpZ4v03M415U60MfZiqTjNZfx9Z/x7VYCWfav86RyKYQQ2wZFUcjJyaepqQ6AQCAL2NRlDQq6LpVQsbls6feXRTQaoampjpyc/IzDGbtCwqUQIklri0EkbJI3SHHbW51KX2ushaygxt6H+9mlsE/SXzztehuKopDty8b7D7bTpmqYBhZOuFTT7s/2ecOl3w2l3tvKQ31Y3byKmvZq+uT0BRLBMHE+J0hqabc5z5veFtvxtFjwtsXGK5fBROVSCCHEtiE3twAgHjA3/Yd2VVUxTfl3QGweW+f9Zf8SxvmzsjEkXAohktSut/eLzC9KBEQnjIXjaw5Lh8TYaWiue79lWbTr7QS1IIqiJFUunaqh6ZkW660qaor915C3Ldav+vEpKeFS0eiX05/VzatY17rWDZepLa5OQEy+BvtcSvy29LbYzgf6uG2x8a/fbYuVyqUQQmwzFEUhL6+Q3NwCTNPA2oR8qaoKRUUh6uvbME2pXoqetTXeX4pit49vbMXSIeFSCJGkttquzuV6wqUTxpy20NQJrWEjjGVZZPvsfSszBTu7Ldb+C9Lbx+8M9PEO5vGpmvs473n6xgNlZWtiD62O1lx6q5ABNZB0XU5YjhpRPl/3GU3RJhRF6XharM8Jl/G2WBnoI4QQ2yxFUdC0TfsRWFUVAoEAPl9UwqXocdvy+0umxQohktTEK5c5Bd7KpR3gnGmprbFWdFN373e2Bwn57eqjktQW61QurYxrLouDJWiKRmFWoXu7T/WnhT1N9VGYVUSWlkVNezUxw75Ow3Md3ufTMlRPnfMZ8euoaFrJisblBNQAe/Tdq8Pf1mWpdrhsjjYzr3oOWsB+TmmLFUIIIYRIkMqlECJJ7fp45bIwcZuzD6TTFgvQEm2mMFgEQHvMGeaTXrl02l7tymV6++lOJWMZXTQGTdXQVA3DMJKqj4ZhP8an+FAUhbJQOaubV9EUbaIkuyStcpk6vAfSJ8g6A31aYy0A7NZnIqOKdujwNXHaYlc2rWBl0woUawTQTyqXQgghhBAeUrkUQriaGnVWr7BbP0P56W2xUU+4bI4lWmOdbUhCGcKl37vPZTzUee+HRAurEzqdYT7e1ljnvmB8cqtzLUbKYnfn+bwDfXyac1tyW2zqdXck6EveS9P5VCqXQgghhBAJEi6FEACE2w3+dd8aWlsMJkzMQ/MngpOzVjLiCZdNkSb343bPHpeQ0hYbn7QaM2NuK21HaxudMOkERO9QH188gAbi53OuxbB093ZN0dxr8D5HYs2ls31JPFzGWgEI+TsPlwEtOVyGAvFriGxb6yCEEEIIITYnaYsVQgDw/YJWaqqiDNshm6NP7sM7q3V3RxHTMjBMI2mdZXLlMt4W66y5TGqL1fCrfqJGFE3RUBW1w7WNiXDptMV6Kpfxj53BP862IE5Vdf+BB1KYVeSGz87aYp3HuJVLf06nr40TTt3rDMT3uZTKpRBCCCGESyqXQggA2lrswLXDTjn4fErS/pGGZRB2JqXGw1tzpNG9vz2WXLlUPeFRVVT8mp+YGcOwjA6rlpBYn+n819sW61Qx3W1BTKct1nBv91Ygvc/j62Cfy9ZYKz7VlzSpNhNFUSgP9UmcL541ZSsSIYQQQogECZdCCADa2+yglB2yQ5m3SmlYhrvGsThYDEBT1NsW6wz0SZ8WqyoqATWAZVlEjWjaeksvZ+2lU2n0JU2LTW6Ljaa0xWop5/WuuQxoyZVL07KrsFEjusH1lo7Dhh3BvgMm289ln04G+gghhBBCeEi4FEIA0N5mVwCzQ/ZfC7rlCZem4a5xzPHnEtACSesvE2su7XDpDZAKStKaRe/+k6mcMOkM4Elqi1U6aIuNVy5T98X0Vk9TJ8ialtnl9ZZeTruvzx9fgyptsUIIIYQQLgmXQggA2lvj4TInvhekp3JpWgZhPdEW61f9KftcthP0Bd3w5g2XqqK4lUPoeJiPfWw8XGZqi3Url3a4dK5Hj6+fVFPO632exJpLZ6CP1eX1lknXF/8rU3PCpVQuhRBCCCFcEi6FEEBX2mLtSmFQC7qhzzDt0GlaprveElIql4qK3zMQp7Nw6Y+H0ERbrDdcOpVLZ/pscuUy9bxOhVRRFPex3oE+buWyi22x3se7bbFSuRRCCCGEcMm0WCEEkNwWa1ompmV62kgtIu5Anyy3RVW3dLclNhRviYXkNZepbbGpFUavkYWjMC2TslA50FFbrL3PZepWJKltsU4LqxNU7XMktiJpjV93jj+3w+tJ5VZmNQtVlcqlEEIIIYSXhEshBJBcudTNGOCsb2xLmhabpWW5QU43dc8wn0QFUElqi1UJeANeJ2su++b0o29OP/dzn+qd+Jq8TUkiXHZQuXRabD2h0zvQp3Uj1lw6j7ewCARVWXMphBBCCOEhbbFCCMCuXAayVDRNcVtis3x2xdH0tsX6gm7oM0w9bZgPZJgW6x3o08m02FTetlgnLCqKQkALJA30ybR3pnO8t3KZcaCPrxtrLj2Pz8pSiUUtTNPq8uOFEEIIIbZnEi6FEJimRbjddCfFOq2mzmRWe1psYqCPty22zalc+jOvubTDZdfWXKZy2mIVRUmqeGZpWeimjmmZHe6dqbptsYG02+xw6Qz06f60WNMyCWTZH0ejUr0UQgghhAAJl0IIINweb4nNSR7m41QuDcsgrNttqFmegT66adAes8NlqKOBPigp1cOuh0vneVLDo1MJjRgRDNPI2GqrueEydYsSFcNKhOVgfA1nVzjTYp3KJUA0LJVLIYQQQgiQcCmEIMMel569I1XFHvATNZxwmeWZFutti+1i5bKTNZepnLbY1HDpTIyN6OFOKpfOmkt/0u2aomFaJjEzhl/1p7XTdsZb+QwE7Y9lqI8QQgghhE0G+gjxI2daJm3xPS5D8W1InLZYv+p3K32GYeBTffhUX0pbbDxc+juYFquoBNT0tZNd4QTR1EmwzsRYZ5hQ6v2QCILeYGtfj+K203anammf0/66LEyynHApQ32EEEIIIQAJl0L8qFW3VfP68lcpaR0LFKXtcWkHSY2YoWNYBjn+nPjtiePcyqWWCJeqkrIVSYbtQLrCCY2p4dEfD4zOc2dqtXW2GMkL5CXdrimaOwwoNXhuSPJAH/trjErlUgghhBACkHApxI/a9/XfATCn5mtgKtk5TltsIlyqqoYRX2/prHVMtMUahPWwPeTH0+6athVJF/e5TJVoi03+qyoYP5+zV2WmwFqSXcJxo04g5E+eButt2U1tmd0QNcNAH6lcCiGEEELYZM2lED9iTniLRuyhNB1VLh1OqHPCXsSIoJu6O1XWkbwViZKy5rLrf+1oHVUu4xNgnWFCvg7WceYG8pLCpH09ic8D3QyXiWmxlrTFCiGEEEKkkMqlED8irz9fzZyvmxg5JsT+hxSjotFYrxONmgRIDPRp96yj9IbL1Mpl2LDDnXe7D0gf6KMqKj7Vh27q3WyLtY9N3RszGJ9i295J5bIj3mO7Xbn0TIvNL7Rfg9rqaLfOIYQQQgixvZJwKcSPyKJ5LYTbTObPauH7+a1E+9WwsKEOgLEkKpdOu2mOPycpKGb57AE4TuhzBur4teSQlroVCdjDgXRTT6skdqYgUEhZqJzB+UOTbndCblsnay474m3Z3ZQ1l4OG2mtMVy0Pd+scQgghhBDbK2mLFeJHwjAsmhp1cvM1fnJ4MbGYRW1l8h6NTrhsj8XDZSAnqWqY2hYbdsKl2nG4TJ3amrp+sjOaqnH4sGmMLh6TdLsbLmOtQOZpsR2ec1Mql/GvxcKkvF+ArKDKmoowhiF7XQohhBBCSLgU4keiuVHHMqGoxM8Bh5ZwxkUDmHJYGf0GJKp3TlusUxEM+UOoasdtsU7lMm27j5StSLyP7U7lsiPZ8S1E2jaiLdb7/P5uhFLvY03LRFUVBg4JEotaVK6JdOs8QgghhBDbIwmXQvxINNTFACgosgPVsFEhxu1cyNCRIfeY7Bw7pLXFWlEUhWxfdsaBPk64bItXOFMrgJnaYp3hOd2pMnYk22dfs2XZFUO1g4E+mXi3SfFvQlsswKBhdshdtby9W+cRQgghhNgeSbgU4keioc6eAFtYnBwES8oTn2eHNCzLImyEyfaFUBQl40Af77RYyDB1VfFOi02tXCpsKr/mT2rF9W1k5TKgdi9cOkE5ES5l3aUQQgghhEMG+gjxI9FYb1cuC4sSoczCQlEUDjmmhBOGDMXnU2iLtWFZFjl+uzqYNNBHSx7o40itAKqkr7l0junO8J3OZPuyiUXtr6l7bbGJY7vbFqsoCoqiuOFy4JAgKLB6pYRLIYQQQgipXArxI+FULguKE4HKwm4rzcrSyC9KXm/ptJ4mtcX6kttiHakVwEwDfQblDqIoWExZqHzTvxjs9aCO7rTaeq+tuwN9wA7OTrjMCqoUFvvs7Vwist+lEEIIIX7cpHIpxI9Eg1O59LTFOmsWAWJmDE3V3AmsIbdymQiXTuUydeJr+lYknoE+8VbSAXkDGZA3cJO/DocTflOvcUOS23y71xZrP5fqhnKA0vIADbU6tdUx+g3M6vb5hBBCCCG2F1K5FOJHwq1cFmX+nZJu2uHTmQAb8uUAoKn2XxOKorhhLLVSmLoViXdabE9Mh80k25ftfrwlK5eKoiSF8tJy+zWpXR/t9rmEEEIIIbYnEi6F+BEwTYvG+hg5uRqBQOKPvdPeCXblEhJ7Rzrhzan0eVtfu9MWq/TAAJ9MQv4c9+ON3YokbRBRFx/vfd2cgUg1Ei6FEEII8SMn4VKIbUhLrAXDNLr/uCYD04C2kiW8V/F2UuXNETEiLKlfTH2kDoCceHhzwljQF3SPVRU1KTSmt8WqSf/dHLyVS1Xt+vN4W2g3as2lomKSCJdO5VLCpRBCCCF+7GTNpRDbiHa9nRcXP8ewguHsO2C/Lj8uEjH58pMGAMJ5a1ndbNGqt5Lrz01aO7i8cRmL639wP3fCmxPGnPWWDp/iI2bZ1c7UtlhnK5LNGS5DnjWXPqU7bbGJULzRay4tC8uyJ+0m2mJj3T6XEEIIIcT2RMKlENuIpmgTpmXSEmvp0vGxmMkT//uGVXOCWOEgigLlAzVAJ6yH08JlXbgu6fFO26nbFpsSxDRVc1tp/altsWz+yqV3Wmx32mKdYxVF6dZaTYd3r0tN0cjN1whkqdSsj7qBUwghhBDix0jaYoXYRoTjg3a62hb75ewKXl/0HlW+Rey8Rx4XXzOEgcPsCmNEj+/L6GmPbY42AXaIHFYw3A2TWnxPy2Bq5dITzFKD5+YMlQ7vtFhN7f6ay7Rqazcf76y7tKuXfmJRi6ZGfaPOKYQQQgixPZDKpRDbiHA8EBpW1wLMiooGAHbZ38+xh/QFQI9PjI0Y9rm8lcuoYa8Z/Mngg+kT6uPe3lHl0mlF1RQtLUwqW6At1qf6CGgBokY0bWuUzvRYuPSuu+wTYO2qCLXrYxQUbtx5hRBCCCG2dRIuhdhGOIFQN3WWL27j/ddrqauJEcrROPuygVRXRvniwwYa6nT2+Ukhqyvsqa/5ZYlzOG2sYSMCkHGwT8gzKAcSg3zyAvlJt2vxymXqMB9ItMV6tyTZHLJ92Xa47MZAH2UTw6US/9q8r11JmX2u2vVRhu8Qyvg4IYQQQojtnYRLIbYR7fHK5YK5jcz5eI17e0uTwZqVYT5+u54VS+zW2bdeqqGyvY1AnkIgxw6UupmoeDottt7KpcPbbgowJH8ohw49nNLssqTbnbbY1G1IYMtMiwXI9efSGGnMeA0dcSqx/o0Y5gPpbbEAwaIo67MWUl0zESjcqPMKIYQQQmzrZM2lENuIsN5Oe5vBwnmN+AMKJ/y8L1OOKAGgZn2M6sooqgaDhgVprNcxTIPiUj9R02539YbLSAeVS7/qTxtyoyoqfXL6pq1r9MVDWqbtPFRFRVO0jZrG2h2799mDfQdMJjeQ1+XHJNpiN+53a5naYpuyVlEdXMTSmoqNOqcQQgghxPZAKpdCbCPCRpjv57eimzp7H1DIuN3yWDinGYDVK8K0thiU9Q2wx+QCVi0PY2JQXOInakQxLRPdTGyV4azfTK1cZqe0xHbGaYsNZGiLVRSFAwdNIcsXTLuvJxUGiygMFnXrMW7lshvVTi9nKxPLU7kMFdivY319eKPOKYQQQgixPZBwKcQ2oLXF4KP317FqRZhAlsI+PykAoCS+x+Lihfb6ytI+AXackEt2qBrTMCiKrwUM6+HMlcvUcOnv+npBp8LZUUgbkDewy+fakpxw2FPTYgGygio+n0JDY0S2IxFCCCHEj5a0xQqxDXjjhWqWLm8gkKWwy575+LPs24tL/aBAuN0OOqXlfvx+lcOPK2PU+ABFxfGtR4wwsaRwGa9cWhtfuXSmxW7u1tee5gz0ydTO2xWZwiVY5ORqRKMmba1d2ypGCCGEEGJ7I+FSiF7OMCy+X9AMvhhTDi+hT/8s9Ph2JH6/SmFxogGhtI8d9CZMzGefgwpQVbuCFjEiSVuYOG2xqYJad9piO15z2Zv1DfVjQO4AhhYM26jHO9Nio2aMdS1rMS0T07II5WpYikFdTWwDZxBCCCGE2D5JuBSil1u1vJ3WSDsl5QH8AfuPrOGpQpaUJSqHZX0SHxtmcpiMedZcRgy7fdNMrVz6N6JyuY2Fy5A/xEFDDqE8VL5Rj3cqlz/ULeLtlW9S0bQSC4tQjoaFSb2ESyGEEEL8SEm4FKKXW7ywDUOJ0KdfIjh610+WliduLynPfEzEiCSFS+e2VKl7XHbGXXO5jbXFbionXLbG7HWuUSOKFW+LtRSD+loJl0IIIYT4cZKBPkL0cou/a0VXI5T3y3Jv063Eur6ScrtymF/oIysr8fsibxtsxAin7TkZMcIZpsV2faBPUbAYVVEpDhZ3+THbA+d1jMW3eLGwsCyTUK6GiSltsUIIIYT40ZJwKUQvFQ4bvPVSDevXRcnrZxLKSewzaWSoXJb2Sa4g6kltsZG0tZFhPVO47HrlcmDeIKaPOS1t/8vtnRMuo4YdLk3LxLLibbGKyYLZLaxasYIDDytmwu75W/NShRBCCCG2KGmLFaKX+uD1OmbNbCKUo7H3QckVRcNTuRwyIpu99i9k/0OSK4i6mTgmYoTdQOq0s4aNMKRNi+165RL40QVLSEybddqMrfj/skMq2bmgxyzqqmM8/0QV779euzUvVQghhBBii5LKpRC91KoV9kTXsy8dyEpqqaqBoC+YtGdlWA/THG3m8OPK0h6f2hbrhKEcfw6NkUYiesStXPbN6UvIn0PQF9zcX9Y2TyW5cmlZdrhUVYVjTiljz9JhVFdGefKfa5n5QQP7H1LM0sYfaIk1UxgsYlj+cNkHUwghhBDbJQmXQvRClmVRXRnFH1AoLvPz/To7aOb4c+1wGQ+OLy15nogR4ZiRx1KQVZh0jtS2WKeSmevPtcOlEXb3uRxfujP9cvtvga9s26emBEMT093zUtFMcvN85Ob5GDw8m2Xft1FR0cznbZ8BdpXz22URdug/iPG7523xaxdCCCGE2JykLVaIXqixQScaMSnrG0BVFbdKFoq3rRrxoOhMfM20b2XMjLnrAyNGGN2pXAbsUBP2DPSRSlrXpQ5GwrLckG5hujcPG2mvX122uNm9rbnB4OOP1vLcE5W891qt+zghhBBCiO2BVC6F6IWq19lhsryvPaTHaXF12lZ1U08OlBnCoWEa+FQfCgoRI+JWO7NU55xmIlwi4bKrUsOls+YSkqvFQ0fZ4fK7+c3MmldLcVmAvHwNXbG/tx+9VceoHUMMGtb1IUpCCCGEEL2ZVC6F6IWqq+wAUtbX3n4kFg8tQS0eLi2dhki9e7zpGd7j0C0dn+oj6AvGw2g7kLwvpVs5k8pll6WGS2darP1xohLZf1CQQJbC2tXtNDcZVCxrp3JtBEONMGSEHSgr16TvNSqEEEIIsa2ScClEL7R+nRMu7SDoVMSy4pVLw9SpbU9MIjUsA8uy3DZZw7Q/9yk+suKBtDlqt2cG4pVLSyqXG0VJrVxaltsO653iq2kKg4dnu6+xZUFNVQxTjbLLnnZrcm217IkphBBCiO2HhEsheqHqSjsklrvh0g4h3rbYpMqlZfLFupn87/tnkgb+aKqPHH8OAK2xVgB8mt0Nb3nWCkq47DqVDG2xbuUyuYK8x+QC+gzwMXaXXHym/b0rLLfoO8D+uLY6ugWuWAghhBBiy5A1l0L0MpZlUV0VJZClUFBk/xHVTR1VUd2qo24Z1IWTK5dN0UYMy6BNb3WrlT7VR64/N+n8buWSRAunDPTputTXyvRUgI2U9uTRY3MpGd6fV5dks3q+QaMepri/PQEYoHa9VC6FEEIIsf3Y7sPl2LFjGTlyJADjxo3jlltu2cpXJETnWpoMohGLfoOy3CCjm/b6SZ9q/5GNGVEaI43uY0zLwIhvh2GYJoZiVy59ikZOSrj0q3awsbASW2hI5bLLMg30cV5Hw0pf+2paJqqqMGpkEV8vqqOkv0VWlkpegY/6uhhrmtaxonkJe/Xbx/3+CiGEEEJsi7b7n2QKCwt56aWXtvZlCNFl4bAdVEIhzb0tZsbI8eegKvZt9eE6N9CAPUjGqZoZlo5u2QFIU33kBhLh0qf63DWD3m0wpHDZdWltsRZuDThTuLTi36e9JpWSO7iR/FL76JJyP82NOt+smE+DtpqRhaPok9N3s167EEIIIcTmJGsuhehlohE7jASyElVLIF65tMOlM5zHYViGu97PMA30eND0q353zaVzDqdKacpAn42SNi0W77RYM+1457Ysv5/y0hwiRgTLsiiJt8aur7Mr0N5tTLqqsnUd82rmdvtxQgghhBCbQ68Ol1999RUXXHABkydPZvTo0bz//vtpxzz55JNMmTKF8ePH87Of/Yy5c5N/0GpsbOTYY49l+vTpfPnll1vq0oXYaIlwaf/xjMWH+fhUPz7FbjZwKmSB+LYihmm4t+mW7g4A8qm+pLZYu3JpB0k7WCaql6Jr1NQyr2V1uOYSEuFSUVSCviCWZRE1o5SU2d+7moYW+7EZqp4bMnv9t3xb9Y07rEkIIYQQYmvq1W2xbW1tjB49muOOO45f/vKXafe/9tpr3Hrrrdx8883svPPOPP7445x77rm88cYbFBcXA/Duu+/Sp08flixZwnnnncfLL79Mbm5u2rm6QlV7V3XHuZ7edl1i0+gxO6hkBVVUVcHEQFHAr/nw+/xJLaz5WXn2liSKhYmJooD9UeIxAZ+fkD+bdr2dgBZAUxUUJdEKqyjg07S095G8vzLTNC25jVixIP7amxhpr5el2Pf5VDtcKgrEzAhlfexwWdfUwgAlB0sxu/1ax6xo/Hn1be77JO8vsbnJe0xsTvL+EpvTtvz+6tXh8oADDuCAAw7o8P5HH32Uk046ieOPPx6Am2++mQ8++IAXXniBc845B4A+ffoAMHLkSHbYYQeWL1/O+PHju30tPp9KScnGhdLNragoZ8MHiW1GIGBvT1FQGKSkJBelPUpubpCSgnz6lBaSuyboHtu/sJxIQyt5+VmEIn5UPUheQZY9JTY3SElRPiUlufQrKWN963qKcnIpKc4jtypIXl4QwzLItYIUF+dSGMz8/pb3V7ImNY/c+sT3IC8/SMwfJByf0FtUHEpqnW1Us8mtC1JUmIs/Ci1KPaF8HyNHF2CwkrraCKGcYvILgt3+Oya4ViPXF6SgMJuSUO/8+2lD5P0lNjd5j4nNSd5fYnPaFt9fvTpcdiYajbJgwQIuvPBC9zZVVZk0aRKzZ88G7JbY7OxsAoEAVVVV/PDDDwwaNGijnk/XTZqa2nvi0nuMqioUFeVQX9+KaUp74/aitqYNAMPUqa1tobqtkZaWMG1ajMb6MC0tYfdYM6jR0hKmrqGZxqZWYmaM2rpmNFWlpSVMS1OU2mALZtg+Lg+d+vpWWlrCNCptGJZBS0uY+rpWjKzkvw7k/ZVZY1N70vegwddGU7idlrB92/rqRvya372/tqGZlpYwzdlhooZJS0uYypo6BuSG6DPUYlG9zvcLGhlGHY0/rMfvVxg0LLtL11LX2ETUiFJd2wTtWT37hW5m8v4Sm5u8x8TmJO8vsTn11vdXfn42fr/W6THbbLisr6/HMAxKS0uTbi8pKWHlypUALF26lN/+9reoqoqqqlx33XUUFhZu9HP2pm+ul2lavfbaRPdF4tNi/X4F07SI6lEsCzR8KKh4hrwS8uViWaAb9hAfy4KYoWOY9nEqGqZpEfLluOfAUrAsME3THupjEf8883tI3l8p4q+fw/s6gv36a0rir1Yj/n3BUgioWVgWtMfasSzY+5AQHz4Dc79uYt0HFZRE7VbZsy4dyJDhGw6YUSMW/57Httnvkby/xOYm7zGxOcn7S2xO2+L7a5sNlx2xLMsdWLLbbrvx6quvbuUrEqJ7OhvoY//Xh27qKIpCyBcCQLcMz16LOmZ8Vpezb2KuP8/93JkMmxhDI9NiuyNtWqxlJk2JTR3MY8ZTp6qo+FU7PIb1CADFA0z6Dcxi3eoIeQUqw4tDLPu+jS8/bthguNRN3Z1Sm2mQkBBCCCHEltarp8V2pqioCE3TqKmpSbq9rq4urZopxLYkGrEDgxMudcvZisRuQ9Die11m+7Ld8OhMh4X45Fgz+TH5gXwAsrSg+8sXu9oWj5ey0WWXpYZLCytpz1AzLVwmpsVm+ezW1Yhht9C2x9rZda989ptaxM/OLWf6Of0IhlS+m9tCc1PnW5NEjaj78cZMmhVCCCGE6GnbbLgMBAKMHTuWzz77zL3NNE1mzpzJLrvssvUuTIhNFI2m7HNp2CHD76lcAmT7Qm7QTA0aib0x7cf0zenH5IH7M75sgqdyiexzuRGU1HBpeWvA6XtdOp+rqATjQ38ihl25bNfb0DSFwiI/KBb+gMque+VjGvDt502dXkfSLxQkXAohhBCiF+jV4bK1tZXvvvuO7777DoDVq1fz3XffUV1dDcBZZ53F008/zQsvvMDSpUu56aabCIfDHHvssVvzsoXYoNZYKwtq5rsh0Mtpi83qpC0WIOQLuUHHGzR0b7iMr/1TFIXhBSPI9mW7VUrLSlTcJFx2XXrlMrktVjczVy41VSMrHi7Derxyqbd7Hmd/z3bfuwCA7+a2dHodMc97J7VaKoQQQgixNfTqNZfz58/n5z//ufv5H//4RwAuueQSfvnLX3LEEUdQV1fHXXfdRXV1NTvuuCMPPfSQu8elEL3V93XfMb9mHnmBPAbnD0m6L3XNpeG2xdp/XJ1hMdl+b+UyES5N08DETHqMl3fNpXubtMV2mZryWm24cmkHPxVvW2yicpk4zj5HSbmf/EIflWsihNsNgtmZp7LFzES1OjXQCiGEEEJsDb06XO611158//33nR5z2mmncdppp22hKxKiZzhtrN6KoyPirLkMpFYu4+Eyvo4yxxdCU5xjPEHD0j3Vsk7CpScUSeWy61Q2bs2lqqhuJdmpUnorl84vERRFYciIbOZ900zFsjA7jE3f46q5UeepJyuIDA/Tf1BQ2mKFEEII0Sv06rZYIbZXTmA0UqpckGlabMqaS3egT8gNmrGOBvoo6VUvp63TG4qkctl1qa+VaZlJlcv0abFOuFQ8r719mzdceiueQ0fak2JXLE3cH42YPPvYOuZ+08RbL9ewcnkLSxe1ZXxOIYQQQoitoVdXLoXYXjmVq87WXDoDfRKTX53KZXzNpT+x5jJmeIe76G6bpE/zp51fUaRyuSnS11zS+VYkJKbFOm3MpmWim3rSICbve8ENl0sSbbPfzWthwWz7/wBmQKehXicSNjClLVYIIYQQvYBULoXYCpwWyEwVJ2darD+tLdYOiqXZpfhVP4VZRW5Y8Z7HsEz3MU610yux5tIEtq2NeXuDTNNivZoiTcxZ/60b+L1tsU4wNSyDcHw7Eud75A2oxaV+cvM11q2O8NHbdbS2GCxe2Jr0PDmF9vHrK6NSuRRCCCFEryCVSyG2AqfVNdOUz2jEwudX0LTkyqU/XrGcULYL40onoCpqUuXLYZiGu5az03DpCUWp1TjRsdQ1l0n7hQILa+fTrrdTkFXI0IJhbuuzpmgoioKiKJiWmfi+an5iZsz9hQPY1eUdxuYwa2YT782oZdHcFupqY2g+hVN+0Z/62hirlSqWvAHr10VloI8QQgghegUJl0JsBU74MzKEgmjEdNdbQiKIeofzOGEwUyg0LLvd0qf6Mt7vtsVK1XKjpLfFJk+LddZROhNhLU/lEuyQaZiGW6kMqAHaaEubMjvthHIm7J7HGy/UsHaVfa4RY0KMGB2yz1+homl2uGwPp/+SQQghhBBiS5NyhRBbgbO+zmlnNE3L/a8es9z1lt5jM1UhtQwDewzTIGbGMm5DAinTYmWfy25LC5eWlRYMAaLxCb5mSrhUFRULy61oOu3OqdVHTVMYOjLEIceUureN2tEzOVYz6NM/C123ePV/VTTUp08eFkIIIYTYkiRcCrEVOIExEtV5/t+V/PnaZSz9vs1db+lsQ2IfG19zqWTYViTeZukVNaOYlklADWR8bm/l0h3oI9Niu2xDlUtHzEgOl85aTQW7LdatXGrpay69hu8QYvS4HHx+hTHjE+EyakTZeWI+5X0D1NdFePjOVaxbHdnEr04IIYQQYuNJuBRiC5j7dRM/eAayrFvXymcf1PPMY2uY+3Uz0YjJc09UUrveDpLJbbExVEV1tx1JlVq9dNoxfRkqnZAIR94tNKRy2XXplUszbagPJPYydSuX8b9uNVXDsAx3va0//ksA75rLVCee2ZfLbhxKYXHie6qbMXx+hT0mFzB8pyyaGw3+df9qd9qwEEIIIcSWJuFSiM0sHDZ4/skq/vd4JbGYyeLvWvn0wxpq18doC0fZYWwOO++RR1uLwUtPVQHJ4dKwjA5bXCFzmyYkKmKdkX0uu895vZ3XrKOKY6dtsZblrrf1TotdUr+YV5e+TFgPJ53L51PJy09+DzhrcVVVYY/98hi2QzbtrSbVVbL+UgghhBBbh4RLIVLMqvqad1a+2WPnq6mMgWUP6pn3TTNPP7oK04Sxu+Qy/by+nPKL/hx5YjlqfDgLQLV/Eeta1gJ0un4SMq+7hI4rl2AHnI5Ckdgwn+pz24472gbEaYu1cMKlHUad75ezXYym+lAUBcMy+GztJ9SFa5lTPTvpXKZluhVp9/xmIkSamETKlrAi5yNqqqQ1VgghhBBbh4RLIVJUNK1kbcvajNt8dJUzoAdgfWXih/3Xn68mEtMZNjKb4TuEUNTEnpal5XZYiSltrNbmMbv6WwzTwLKsjMN8HB1tI9LZYxQULOxBNLINSfft039f9um/L9BZ5TJ9n0vvf511t6qiuBNkHevbqpLO9VXllzz/w7NJFU3v+9MwDdpz19Hqq2FtVfMmfW1CCCGEEBtLfqoUIoU7wXUjK3uzv2ziliuXsuQ7e42lt00xFrWwVIPhY+ztJLyBoqyPHS51JYLPp6KbsUR1K8MwH0dHlUu/lnmgD9gtnZnWCYquGVYwnMH5Q4COK5fReKXR9OxzCaDE/9pNfG81t5JcFCwCoD5cl/T+q2xdS8yM0RRtcm/TTd1tzTUsg2CefXxNdXJLrRBCCCHEliLhUogUzg/1HYUGR3ubwXuv1fL9ghYMww5qzU06rz9fjWFYvP9GHZZlUV1ph8uCIjsgjt45SCikxZ8jESDK+sbbLNUYPk1BN3X0+JAXfyfrJzsa9OPvpJXWqVxaWDLMZxMoitJx5TJeWTRSpsU63y9nCrCqqHbl0jKSzlXTXgPY78fmaHP8nM7emRYxM0aWlhU/xiCYaz+2tkbWXAohhBBi65BwKUSKROWy83D50Vt1fPRWHU89uI7H712NZVm89VINkbAJCqxZGWbV8rAdLhU4+uQ+DBmRzd4/yU17LoDyfvFwqUTR/HZlSzecbUgyB0hIVMJSdbQVCXi2I7EsGeazCVQ6Xrsa20BbrLdyqakapmUmtbqua1kDQEu02T1HxLCrkk5LbVALup+rfgOfT6GuNpLUli2EEEIIsaVIuBQihdMuapgdh0tdN5n9VROqCkWlfiqWhZnzVTPzvmkmN1/jsJ/aG9+//0YtjfU6RSV+RowOcdYvB5JfnPhj5w2wZX3sKpShxPD5VAzTcCeCdjacp6PKZWePsZ/blMrlJuqscqmbetJ+lk6o1Nxw6ay51NyWWe/Qnpr2aoCkVtiwbt/vTKL1awE0RSNqRLGwyM3XiEYNmps63tZECCGEEGJzkXApRAqnmmh0suZy0dxW2ltNRo/LYd8p9jq5V59dD8DESQVM3LeA/EIfy39oBxLrKSFRdUr9uLjMj6qBqUTRfIpduYxXtzqfFpv4Y+w9rrOtSBQU2YakB3iDeabvUdSIYqXsc5kY6JNoi1Xj4dK0TDdotseH9zRGGj3niyQ91q/60FTNrYLm5mmA5e6XKoQQQgixJUm4FCKFU2nqbKDPN5/bP/Dvtk8BY3fJRfMp6DELVbVv8/lUjj6p3D3eWU8JiXZISG6L1TSFkrIAhhLF57NDi1PJ2tC2Io6AZ4jPhh5jYclQn03kDebewUqJ7UaiaZXLTAN9vI/NDeSiKAphw/7FRFM0ES4j8Ypl1HDCZSDp+5+T58NSLGrWy7pLIYQQQmx5Ei6F8PAGyo7WXLY06yxf3E5egY8Ro0NkhzR2HJ8DwJgJueQX2BWskTvmsNf+hQAMGhZ0H++tVqa23pb3DcTbYu3QEo6vsetsOI/qCSbedZadbkWiyECfntBR5TIvkAfYIdD5BYLa2UAfT2uzXw2QpWURibfAettiI/FqpmE57dK+5GCap2FhUlctlUshhBBCbHkd/8QqxI+QN+x5q4o166MUl/pRVYVF81rBgh0n5KCqdrjY75BiWlsMDjy0OOl8hx1bysRJBZT2SQQ9b7hMrY5OmlLEYsVHabyNNqzb1avO22I94TI+PRTskNIRpy3WwkJRJVxuLG/lMjlc5tMQaXArl4qiuMeqqWsuVTWptdmv+ghqQcJ6mKgRpTHS4N6XOtBHU31Jz5sVVAGL1pbOh1EJIYQQQmwOUrkUwsMbKJ3g9/7rtdzzp5V8+XEDAN/NaQFgxwmJqa99+mVxxsUDKe+XCHdgh4+yvoGkEOJsL5L6fAADBgeZeEAITYtXLuOVqq63xfozfpzKnRYrlctN4n3tnL1IVUUlx2+/N6KGHS5Vz1+1zi8D3MolalL12af6CfrsSndztJmwHnY/j7jbmxjxcyU/NpBltzu3SbgUQgghxFYglUux3bMsC93UO90r0mFaJm2tBmsqwoS/qaRE8TPvG3uPwaXft7HzHvksX9xGKEdj8PDsjboeZ3sR5/lStwOJeLajaI9XLjtrcfVWLr3Vys4CqROKnKqa2DhqhmFKWVqWG+ydKa7etlcldSsSVUupPgfc49e3VQFQml3K6ubV7kCfRLhMeWyWgqWYtLVJuBRCCCHElifhUmz3vlg3k+WNyzh+h58lDbxxRKMmb79cQ2O9zn5HBfnknToiEYuWtmYKYs2oKqDA6hVhvp/fimnCmPE5bnWxu2Jm8jYRhmXgU3x8VfkFJdmlboCAxJrLjrYbAVDVjtpiNxwuUz8W3eMN5n7Vx/DCEeQH8t1gH423xXoDoFPFjBnJ+1w6fKofH/bjne1I8gL5BLSAO+DJad/2qT583vWafhULs8PK5efrZtIUaeCQoYdv2hcuhBBCCJGBhEux3atpryFmxmiNtRDQktdEhsMGj92zhsrV9g/ti5ZWEcmy6DsgwNF7lNHf34+S8gAvPVXFquVh3ntvFStDX3Hkjgdt9PUYVnq4jMQifFe7EEheuxfuUuXS0xbrOW5DA33EpksK6YrK5AH7A7CkfjEAsXhbrPd7oanOViTOPpdqSvU5sY7SCZe5/jyCWpCmaBOGaXiGBCVXLlVVIZCt0NaaOVyubVlNS7QF3dQ7XccrhBBCCLExZM2l6HHtejuz189yWzq3NmcIStRMn6C5cHYLlasjDBwapKxvgGjUIDtbZZc98xkwJMDocbmUlgcYONRe87aibjXh7PUYpWvdc7xf8S6vLn2ZqrYqZlV9zeL6Hzq9Hj21cmkaSZNpvfc7ay47C4rJay6z3OM7C5Dex3g/Ft3jfe28QdNpwY44ay69r3f8r11vQFSTwqWfLC2x5hLs6bPO9zZiRNzKpZbyWIBgtkIsahGLpW+l4zyus212hBBCCCE2lvxUKXrcyqYVzK2ew/LGZVv7UoDEXpHetY6OFUvsALzfwUWcen5/xu4WYvdJBfj9atKwnUHxcGli0Kd/gDajxb1vVXMFdeFa3lz+GvNr5vHFupluQFzbsoZnv3+a6rZq93hnrZ3TomtaRlrgTD3WGRaTSep6Peh8uqxt81Yu/Z9/RsEJx5Bzw9Vgbr9BJrlymfjY2RLG+cWGN1ymtjjblUvv2s3EQB9Hrj+XoM8Jl+HkrUjU9HAJ0N6a/ro7oTJ1kJQQQgghRE+QcCl6nBOUnD35tibd1N3riZrpG8uvXNoOCgwenk1hkZ9DjyulqMSuOnl/AB841B7eYyk6/QYGaYk1u/d5B7lk+7IxLdNtZ5y9/lva9XbeXPGae7wRv56seCXKsAx0s/Mf9jvb59IJl979EjOtLfXanGsulcYG8s88hcBH7xP65/2E/vqXHj1/b+INlN7XMVFlTA+XSkqlWEtpiw1ofoK+5GFRuR1WLpMfCxDMsa8jU2ushEshhBBCbE4SLkWPc1o8IxnC3JYW9rTm6qbODwtaee+1WkzToqEuRmO9Tp9+AbJD9g/oZtJWJImP8wt8lPUN4A9alPUN0BxtxrIswJ5Gm6VlcdKYUxhXOgGAqtZKAIqDxfFzme7xMTdcBuPXZaStw0zl62TSrdMW6VN9btDobFIspISiHl5/mf3wP1Hr6ohN2AVL08j+x33Q0rLhB26DFDK3FzvTYsN6JO0+NeWvXe8vBSBeufQMZgr6gvhUn/vLiIgRSV5zmfKLh0C86JkpXDqPMzfwywwhhBBCiI0h4VL0OKc64p16ahgWFY0VPL3oyaQW0c0t7J28Govw8jNVfPRWHV9/2mhXLYEhIxJVIu9atNR1aT+/cABHn1qKz6egmzptehtg7xXphIc+OX0AqGqzw6W3PdXZVsIJklnx6qKRoS02tRrl66Qt1nluBcV9XGeVTufYTB/3hKyXXwSg+f6HiBx3ImpjA8EXn+vR5+gtOgrpzpYwYcN+j3lDaGoba+q6Sb+aXLnM9ecBiUp31IiiW4lpsVpKJTQYsj+XyqUQQgghtjQJl6LHpYbLaMTk/r9U8Pi/FhI1otSGa7bYtXhbc5cvb6alyf6h+t0Ztcz+sgmAoSMTP8h7f+hO/QE8r8BHdm7i85b4sBXvXpFFWcUEtAA17TWYlonhCagrm1YCiXWUWfF1dZnWXIb8oaTPu7LPpaZqbpj17neZyeaqXKrLl+FbOB999BiMUTsQPvlUALJeebHHnqM36SikO23JkXjl0hso0yuXyRNffaqfLC3L/aVBXsAJl/b7JWyE3cpj6j6XAFnumsvk96/3lyWGDPQRQgghxGYg4VL0uES4tEPUx+/UUVMVZe2aNsLtyUGqujJKY0MMw7D4518reOWZqh69FqdyBPDd/EYAyvoGiIRNli9uR9OUpMql4WkXNDIMovFee1O0yf3YCRaKolAeKkc3dWraa7A8P8SvbVntnkNTNLcaaWRoi83x5yTOrSid7nPpbG2hKRq5gTxURaUoWNTh8d7rdT7rKYHPPgEgetAhAMT22ReztBT/xx+iNNT32PP0Fh1N3VUVFb/q97SveiuXGdpiU7YigUSlMtdv/0YjEVjDifOqmcKl/d/UymXSe1sql0IIIYTYDCRcih5nxtcWRowwdTVRPnuvwb4dk5rqKHq8crdiSRv3376SJ+5fy+oVYdZWRJjzdTOGYfXYtYT1CBXL2/n4nTqWLWsiK6hy5iUD2HO/AqYcUcJ5vxlETm6ihdTEzPixwxsum6NNbpD2hofS7DIA6sN1SdWillgLlmXZ4VJNtEJmGugT8oTLzqqWkBgQoykauf5cfjZ6OruU79bpY9QOBtFsKt/XXwIQ22Ov+A0+ogcdgqLr+D/5uMeep7foaKAPJA9VUlP2w/TSFC0pcPrjj3NaY3PjlctgvHIZNaLu+9Cn+FDVzJXLtpRpsd5AaUnlUgghhBCbgYRL0WWtsVYaIw0bPM4JZVEjyjefNWEYFv0GZWEpJrXrY+imTl1NjGceWYdpQE1VlC8/sc+rxywq10Q6OXv3tMfCfDenhYY6HcPU2W3vfHJyfRxxfDn7H1JMn35ZScebnmplpqEn3gqjd6iPN1g4w3RMy0wOq5ZJu96Obur4Vb8bKDKtuQz5Em2xqZWpVIlpsV2bFJt6vT3ZFut3wuXEPd3bogf8xL6uD9/vsefpLZJeOaWTcLmBgT6pay4BsuNt005brBM6o2bUHTalKWraetxAMPO02KS2WBnoI4QQQojNQMKl6LIPV73P68tnbHADdieURc0oS7+3h94ccVwZFoYbLj/9cD2VsQpyC+wfhBd869k3cnnPbWGyZGk90ag94fWoU0qYenRp59eetC4t/Qdwb4WxKdqERTxceoKFEyQMy3B/iM+OV6EaInZraEALuKHQtBJtsSMKRzI4fwgD8wa759tQ5dK75rKrOqu4bSylsQHf94swBg/B6tPHvT26vxMu3+uR59lcAm+/QcEJxxB45aUuPyZpi5G0ymXiFxfKBve5TA+XwwtH0j+3v1sJd9pldTPmvje1DbTFVixvJxq139NmJ+uJhRBCCCF6goRL0WWtsRaiRnSDVQ+nWhdu11mzpoWiUj+DhmWTX6zS2mLQ2BTmy2XzWR36kt2mpW9XsnpFe9pt3VFbHWXmB/V8+FYd8+fXATB4WJCsXBNV7TxIGUlbkXTeFtsaa8nYFuv8sG9Zpnu/09pY2brO/tyf524hoZuJymW/3P4cOGiKW7WCDW8rorptsV3/47w5Kpe+b74GIDZxj6TbrfJy9LHj0VYsR12xvEeeq6f5Zs8i/7STCHz0PgXnnO62925IZ1N3A+qGK5eqotprap1fECiae+zwghEcPORQd0iT8z6Imbr7Sw5N8aWt4XQql0sXtfHI31fz6bv2LzQ6G1YlhBBCCNETJFyKLnP3yMuwFtHLCVTVVVFMJcaI0XaLZ3l/+4fkxT80sb62mVCORr/hCrn59g/WI3cMgQKrVmx85bKhLsY9t67kzRdreP+1WipWNeLzKfTpn+VOae3KtUPmH8Cd6k9AC6Cbulu59DZIOusZDcvAir9WeW64rHQ/1zKsuXRaHL2B0reBbUW8waSrNkfl0v/NV0ByS6yjt7fG5txyM4plYQwcBEDovru79LjkinXHbbHe703S5FjnFwNqYq/SjjgVzdTKpZryfQ8kd3qzZqX95yl5mx0Jl0IIIYToeRIuRZc54WxDbbFOZbO6MoqhRN1wOXC4/cP2t1/XYyoxSsv9mBiMHmsPr9lp51zK+wZorNdparQredGIyaN3r+b912u7dI3VlVEsEwYPD7LnfgWYWpShI7PRNIWYmV4lTWUmVS4ztMXG21c1RcO0zIxrLp0WSNNTucyL71XobMOSHyhICpdOW6xbpfKso9vQnpVqyprLrunZvS0hES713fdIu683h0t1xXICH76PMWgwdR9/iVlaSuD1V1EaGzb4WO/+lakV4I7WXCoZJsw63zu/1nGV2udWunXPmsv0ttjUAnZ1lf2+N5LCZc8NzRJCCCGEcEi4FF2im7obpDYULi1MLCy7cqnFGLaDvQistK+PvHwN3dAxFZ2Scj+6GWPKtFKOOKGMnffIZ/Aw+9j/PrKOupoYs79sYuXSdmZ+0ICub/gH4uYmO6QNGxXiiOPLOfykQsbtXIhP9REzNly5TG4dTHydte21mJbpbiPiVJqc18IbLBJrKT3hMl65dF7D/Kz8xHGetljNbYFMBEptA+GyOFjM0IJhjCraYYNfn0PJUGndVNr8eVg+H/pO49Lui+09CSsrC/+nH4HRu6pmwf89A0D4xJMhJ8eebmsY+D/6cIOP7awCnOVZc9lRW2xq1bmz9bXO2syYGUtMi1V97vM4/03989lYrxOJmEm3pw6QEkIIIYToCRIuRZd4W0o31FJnWibtbSaRsEVxPwgG4yEKk6EjszGVeLgsCxAzY+Tkauw5uRBNU9j/0GL6D85i9cowj9y1ik/fs9eLRSMmFcs2vBazqcH+oTmvwIdpmRjECPmz7XDZzbZY5+PVzauYsexlvq9bhGEaaKrmBgkzwz6GiYE+phtQcwP5Sc+TG8hDzTAt1qlYetfhbXCgj6qx/8ADGZg3aINfX+o19hRl/Xq09VUYo3aArKz0A7Kzie25N2p9Pb75c3v0uTdV4I3XAIgcdyIA0Z8cZN/+wbsbfGxySE9Z+9jhQJ/094qzXtavdj7p16f60E0dwzLc90dZqJw9++3NhLJdALsqudf+hfTpH2DYKPuXNTVV0ZSqvGxFIoQQQoieJ+FSdImeFC43vOaysc4OS8V9E7cbpsGAIUH8QYv8EsgOaegpQTW/wMc5lw1ilz3zaWkyaKzX8fntH+B/WNC6wet0Kpf5BT7Cur3WLEsL4lf9dtjcwDCipMpl/Nh23Q61LbFmdEvHp/rcUOBWLkmvXHoH+uR49q3UFI0cX04HbbGJFkenermhyuXG6Ok1l74F8wDQx47v8Jjo/gcC4P/wg01+vp6iVlXinzsbY8hQOxgD0f0OBMD/+Wcbfnyn02K9+1x2XrkM+XPwq34Kg0WdPp8bLuO/5HCuYUzxjm513MTk8OPKuPCqIfQfZA+Gqq6MZlxz2dZq8M4rNW4buhBCCCHEppBwKbok1q1wadFQbx9f3Ff13G7g96sceGQBkw+1K3l6hmqipikcdVI5o8fZgezIE8sB+GGhHS5bY60sa1ya8bmbG+0fmvMKNMKGHQqDviy3ItRR9XJu9Wzer3g3ZV2afS4ncIb1MJZloSmJyqVzX0dbkTivlU/1uduR5AXykiqThmUmpn96gqQTLje05nJj9PS0WN+C+UDn4TIWD5eBjz7Y5OfrKYF33wYgMvVQd59Kq6wMY/AQfIt/2OC6y6SQnrrmMmlarOeXDxkG+gS0ACfscBJ799un0+fzuxNjY2lrLZ1zWZ73cFlf+xqqq6IZp8V++GYdn7xbz1fxfWaBLv0SRgghhBAik57/qVVsd2qrozz+xEqM8RH69M/KOAykoS7GO6/WcOBhJUmVy/yyxLHOD7S+LBNF0yFGh+sgNU3hpLP70VCnU1zq5/MPG6hcE2HmB/UYI+azrGkJ+YECWtaEmP1lM0NGBNlplzy3ApNX4KM13mrqVwP4NftjO8wGk57LtExmr/8WgIF5A9OuN1HBtPfs9K6HNN2BPgnJA30Sg1dy/Lm06+3kxVtk3XBp6mltsd7n2VBb7MbYfJXL9PWWDn3CLpgFhfi/+Aza2yE7e5Ofd1MF3nkLgOjBhyTdHtt9IlrFSnzfziJ24JQOH59pkJN77g7WXCYP9PHsb9nJMB+Hd4pwpv0yIbGuFxLhsqYqeQshwzIIhw2+/aIJgNr1iT+Hry17lZZYMyePOXWD1yOEEEII4SWVy21cW6uetBaxpjrMA7dX8Odrl/LA/1XQ3rZxFQjLsli8sJVw2OC912pZu7aN2V82EYkYxPT0Frp3Xqlh/qwW3ptRi2HqNNTHUFXILUoPl7qpu6HSaQcFWNm0gvVt693PVVWhuNT+YXqv/QsAePPFGma8uBbTtIjoYV7573pmf9nES0+t55Wnq2hu1FE1COVobgVHUzQ3oEVN+4fs2etn0RC213PWticm0UaMxERZp+roBESnPVZTfO6UUCPDmstMA31URXVbY532RdUzFCh1WqzzPN7/9qQer1wu3HDlEk0jNnl/lEgE/1dfbPJzbrJYDP8H72FlZxPbZ3LSXfpuEwHwz57V6Sk6a4vN6mBabOo+l93hT3p/pEyJddYBe7YKKi2PVy4ro0m3G6bJnC+biUbs22qrE+/7unAtUSOa9OdCCCGEEKIrJFxu495+tYqH7lzFrM8b+WLlN1z16P2sWttANGJSuTrConkbXqeYyfcLWnnyn2t56K+rWDC7BUOJEY1afPB6HX+9aRlzvmpyj62ribJgdgsA381rYf36CLGoRX6hD53ED63eyonTnhqLV+yiRpSPVn/Ap2s+yng9u+5VwAVXDabvwCzWVbYyb1Yzy5e2ULs+Rp/+ARQFVixtp7XFIC/fh6oq7vOpquZpJ9RZ0bSMudVzeHnpiwBUtq1znyeiJ/bYNFLaYp1w6VM1N5A5wTPT9FVvW6w3XOYH7KDsVCmdAS2QHBicStZmqVwm11o37WThMNoP32OU98EqK+v00Ggvao31f/k5aksz0cn7p1VR9XETANDiobkjSSE9bc1lonLZ0T6XqdXHDUmqXKb80sFbMTdMg7AeJiuoUlDko64mxjsz1hOL2e9HwzT44qMGAFQV6mpimGZyR8KallXdujYhhBBCCAmX27gJuxeiKPDGCzX86+l5NLdGGTguwknn9ANg8cKNC5dLF9ktoDXrY2DBxP1yyc5WiUYtTMXks7nfs6R+MQCfvlePZUFuvoZlwlef2hXBwmI/USPinjPTWk1nzWXEsNczNkeb3UE8qfr2z+KUc/uTFbKoWBbmlefsULjvQUWU9Q3Q0mSAZbfEgqeqiIo/XkWKGdG0tt71rZXux2Ej8dzO9Trnicarmj7V55kW2/FWJM5AH6c6NaZ4R8YU78SwguHx45wwYLhbnHjP44ufx6f17oE+vh8WoRgGxrhOqpZxsf0PAMD/0dbf7zLw9psARA8+NO0+fcedAPAtXND5STpZc5nV0bRYb9DsZuUyeYuazG2xpmXy4er3eHHJcximwaE/LSMYUpk/u8n9ZdOyJS3U1cQYOiqbvgOziEUtmpv0pD+jq5tXd+vahBBCCCEkXG7jho3MYd8pRUQjJvUtTfQdEGD/I3MYPiqEz6+w9Ps2DKP7G6avWGJX6YbFf/icsGeIyQcXMXlKISgm36z/ipnrPsUwTObPasHnVzj1vP6gQHNTDEWB/oOzktpMjQxbmDhrDcN6IoTWttd0eF35hT72nZpPdrZKOKyTk6ux08659BuY+EHeCZeJqqHithPGzFhSJdAwDaraqtzPoxnaYg0zORRrii9paA/gtsnaz5c80Mf5PDeQx5799nIrkk44MCwjafqnw6lS+TZHW2zSGsBNC5daF4b5OIzhIzEGDMQ3ZzZKfd0mPe+mCrwbX2950NS0+6ziEox+/dGWLIZw5l92QHKLa2pIVxXVDYOZtqpJ/bgr/EmVy+THOhVz55c0USNKzIyx0865XHLtEFTNYvWKMIZhMXdWIwCTDyqipMz+xUtddSypu6Cmvdqt1gshhBBCdIWEy+3AT44oYfd989hxoo+J+xYQpR1/QGXYqGwi4a7tD+nV0qxTXRmluNTPGRcP5PxfDwKfQTBbo6g0QHGZj9a2KO1tOlWV7UTCJgMGB+k3MMjhx5UxYqcgPzm8hJLSgFu5tCwrY+Uy5qlcOmrDdrjUTZ36cHoAyStS2G9qEWN3D3H0yeX4fCr9Bwdp8q2hIjST3PzkllXvmkvd1JP2+1vRtKzDDeWd4OhdqwbxyqXT+mqmT4tNtCdaWFgdBghnmItuGu4WJ17OVhbeClhP6ayds7u6Mswn8WQK0f0PRLEs/J98vEnPuynUlSvwfb8IfcyOmIOHZDxG32ksimni+2FRh+fx5vJM32fne9hxuOxuW2z6wCf3WuLfRwvTs144vs9qno/Bo7LQdYvZXzZRUx2m78AsRowOUVJm/9moXR9L+wXQupY13bo+IYQQQvy4SbjcDvj9KgceE2LIyGwUFNriU01H7ZSDQczdwqOrVi61w+jQkfY6NEVR0D1TXcv7+7EUk4Z6nVUr7ecaMMSewLrXfoWM3TWHgvwsfKrPrQR2tH2JE+y84bImXrlcUDOPV5a+lDTkB+xAmhXU2PfgAvKGNvLx6g/pM8BHQ2Alzf51kNMcf067YqupmrsVSdSIJm03srDWbnv07knofM1OIDZSwqem+lDpeM2ld6CPYRodhjfNDZcxLMtKq1COKx3PxL57Uh7qk/Hxm6InB/p0ZRsSL3dLkvff2aTn3RSBd+ItsVMP6/AYYyc7LGudtMZuKKQ725GopFYZ1aT/dpU3UKYGU29brBMSLRJdCzuMtf88r10VwVJMDjqiBEVR3MplbU0U3Up+r7fG/y4RQgghhOgKCZfbieZos/txW8wOk0PGqPxQMIPXvv2ESLjzvSm9UsMlJAbvAJT192Fh0lAXY/Uq+4fPgUMS1TWnWudTfW5lMlNLLNjh0rKsjG2xDZEGAKraKtMeY59T54f671neuAxfcTOmaj9Xtr3Th2cPStVTuYwlBd36+MTYofnDkp7DOd478dXhU7wDfewf3jNVpgzLwMTscGiLE2idXwZoKZWovEA+O5WM7ZFprqm8p9ykyqVl4VswDysrC2PEyC49JDrlYCxNI+vN18Hs+vuyJ2W99YZ9LVPT11s69J3GAonwnIm6gfZiZ6hPaoh0frGQOvF1Q5IH+nQSLuMVde+el/2G+Alm28fsdUA+o3ayB0yVlCcql6az7U67wbxZzcybXU9bq+x5KYQQQoiukXC5nWiJtrgfO2FFDUXoP9RPc7SJrz5t6NJ5TNNyK51DRmZT015DRdNKd/AOQHk/P5Zi0FCrs7rCDqIDBif2jjQtEwUFv+p3w1lH4RLsEOatXLbr7bTGWt3bnC1DwG6vdcOlaSSqippOTnzbk1Bu8rAdTdHcik/UjKZdS8gfoiyUPOXUCZeGZaQd71MzrLnMMNDHtAwsq7O2WJWgL5g0KGhL6Ym9LQHU1atQGxrsIObr2vVbRcXE9p6EWr0e36yve+Q6uqWlBf+nH2MWFhKbuGeHh+nxymVnQ30yTQn2ctti1eT3gPN+2ZQ1l2ltsZ52bOe9761cKorF3gcUsu+UQoaMSvwyqNhpi61O/NlYMKuZFUva+fCd9dz9pxVULJe1l0IIIYTYMAmX24mWmLdyaYdLw9IZOSYHU9X57P0GYtENV4mW/dBGQ63OkBHZFBT6+XztZ3y4+n3a9ERrbWGZhqJCfW2Mqqo2cvM18gsTP+g6Q2ySW1E7DpcxM0YkvjbT2a6jPlzn3uZdd+k9j2EZ6M4kVzPKoBF+cvM0ivtoSceqiur+kO/d9sMxIHdgUkUIPOHSNJLWaIJTYUxsNwKpIUN1vy5Ib4n0Cvly3I993axibQpvGO5uwPHyzY+vt4xv3dFV0cOOACDrjdc2+rk3VuDjD1GiUaJTpnYaiI2Ro7ACAXwL53V4zIam7jrrZVPfA84vILq75tLfWVts/DksrMR6YU/l0rDsbXqKSwNJtweDGgVFPmrXx/j8k1oa6mOsXwXBbIWhYwK0t5o8fu8aKtdEEEIIIYTojITL7URLLFG5jJkxokYU3dTJy/fRf1AWbS0Gayo6nnrp+OYze4rkxEn2XoxRM4JlWTRGGt1jTHQGDg2i6xamaTJwSDDph2w3XGqeVlSz43CpmzF3KmVJdilgB2RnS5LGaKPb5hfzVFB1yyAWXwsaM2IMHePnJ4eX4As6w0wSA32cllPd1NOupX/ugLS9JJ2waWImTdAEe3qrkhIuM7XFOhXWzsKbE6YhvS12c+qpyqVv3hyg++EycqgdLgNvzOiR6+iOwNsbbokFwO/HGLkDam0tSnV1xkOSvrcZKpfO9zfoCybd7jyu+1uRdDwt1jtkKnWgD5C01jj1FyzHTO+Dz6/w3uvVfPZePT4rix12ymXvKbnsfUAhhm6xZNHGbWskhBBCiB8PCZfbCWfNZUGWHQrb9TY33BSW2d/mqnXRzA92ztGo/z977x0myVmee98VO4fJs7M5J+XVapUTCAWQEIroIGMM2BhjDD4mHfuzwRgbY4x9bB/bOGCCCbKEQAEJaUE5rKRN2iBt3p3dndnJoXN3xe+Pqvet0GG6Z2d2Zlbv77p0qWemuurp6ure9677Cdi/N4dwRMDa861FMRFWOdVZWOqmhvM2xLBoaRAmDCxbFaZ/c6eiusd/1HIuNUOjLmVToInGX3J1miX1l+70XN3QoNsNSBRD8aTLumPhOY42y3E7lxzHISyFMS/SRV1WAondMHTPohzwpsWSmrZKYygccVndnYpIUc9+zxSeWsHTEJqOc1lfMx+CsWQptLXrIR48AGH/vkkfv2FME/KvnobJ81Cuf/eEm2tr1gIAxH2VU2MnauizvuVc3LD4RnSEOz2/n4qGPv7rxUnVduqj3TNd3fWXfjd+2aowPvQ7XWhuF6DrQEsyioVLg9AMFYuWWcI4k2K1lwwGg8FgMGrDxOVZQlbJQOAEtIas2sG8mqeLzHiTLS5P1U5r278nC9MAzrs4BlH01hS6UQ0VHMfhvI0x/NZnu3DxFQn6NyLsrIY+kr29VibQvPvTULJdykQgCQDIqBmP6zJeslJj3WNDdFN3zcksOHMpTb+4FKjLY7hqKK+afw3uWHk3ZEH2pBtaTqdrBmVZWqxQNorE71oJnOA6fo20WMkR5tMxz7IaU9UtVnxrD0yOo/WJjVC84y4AQODnD036+I0ibnsDwkA/1EsuhdnUPOH22tp11vP2v115gwnSiyVBwrxoV9k5npaGPvA65oC35tKfUu5n6cowPvTJTtx8Zxtuv3sBeJ6DYqh0bmw6VXlkD4PBYDAYDAaBicuzAFW3ahYjUgRh0RIreS0HzRY+sSQRl7Wdy8P7rVrNVeudVM1KMyBJ51gOHJItAnjelRJrz4T0d2it1PgmJIbo34t6ESIvIirHADhdXAmjdt2lu2utZmg0PlJn6o7ZnbLqFYu2u8oLVBCIgmvRzgvgQMS1UebyVEqL9btW9dY0usXlGU2LnaBWsK59jI1COHnC6hIbiUz8BB+l2+8EAAQf/ingctimk8AjD1vHfv8ddW2vr7HEZTV31V1L2ch55CbpXNaquSTvqTt13JMW60rv9qd609+bOkSBQ1i2rkvNUBG3xWVmnIlLBoPBYDAYtWHi8iwgrVj1kDE5hrBd45VXnbTYQBiQAzwG+0o4+HYOv3p8GIbhXczruoljhwqQZI6mwVUawwH4U1O9i1S3W0c7tOoKrXOUXemnIVsIK7oCRVcQEAJUcKbtGk+S5ks6xmqehbPjKrrTdokY1F0pumQhrpsGTQ90Oz/umksOHBWjlc6BtT+nMyd5jn8bQqUuogRvWuwZbOjjjneSziWdb3luY/WWBGPxEqgbN0E40Q1x+9ZJ7aMhdB2BR38Ok+dRuvX2up5Cnct9lZ1Lj0hv4DxOvqFP9W6x/lpfwOtc+pv7VIJ8dgKCDI7joOgKonER4JhzyWAwGAwGY2KYuDwLIPWIyWATdcJympMWa0BHR5cMVTHx0Pf68MozY+jp9jb36ekuQikZWLIi5KTEVnE3SBMdoHyR6q25JOM8nDpHd2OTsGQJSSIMA0KQikuyPUmTLdnjOjSPc+mkxeZcDY3I70yX0CWLed1wBGk1cene3qiQFivyjnNpUHe0vOay0mM/EXFm0mIxBc6luGc3AEBbPzlxCQDFO+8BAAQf+PGk91Ev0pZXIAwOQL3yGpjt7XU9x1iwEEYkajmXFdzViWouqzH5msv65lwSqtVZVrppBAC6QVx9ERIvQTM0CAKHaExANq2V3ZQ6HQzTwLPHnkV36tiU7ZPBYDAYDMbMwsTlWQBx9ZKBJB1tkVdzVGQZpoH2eZZjqCrW4rDnuFdckk6Qy1e7UmLNyk6Fx7ksE5eO2HJGkThpsWSoPOA4l0RcBsWAZ2wI4IzqIELZfWxFd2pIi645mSQd2C0iicujm5qrLtTtLjpOq8ALXjHqE9nCBHMuyTGdfVd3p8Iz1C12sumcbsS9tricpHMJAKU77oIZCiHw8IPgspmJn3AaBB56wDrmB+6s/0k8D33NGvC5LPiek+V/rvMmQvnzrHPeeM2lKy2WLz+ePwbDIy4rP3ZDPvPk5pBqqDBNE7G4CMMA8rmpa+qTUdI4PHoYB8cOTNk+GQwGg8FgzCxMXJ4FUOcy0IyALcxUQ3VElqGjoyvgeU6vS1yODqvYsSUNAFixxnHSqqXOuese/fWI7rTYSjWXAY+4tFxKMqMzIFiuZtjl5pFRDkQoay6h5xaUpuluXOKIaisWl1h0OZH+hTgVl5xAa+IqNfQROYE6f0aNbrGVHvvhOZ6ehzPZLdbNZPv5UHHZ4BgSN2ayCcXb7wSfyyLw0P9Mej8TwaXGEXzkYZjhCEq33d7Qc7U11Zv6TNa5pA19KgjEWoi8SG9kVHK6/TFUGkXCcRwM0/B8ZpxtnBsysuu7hDb1mcK6S913E4jBYDAYDMbch4nLswDS/CYRSDgdWnWViizd1NG10BJu8xYEAM5xLnNZDT/8t17ksjo2XplAa4fjGuoVmvlY+6s86sD62VVzKTijSAw73S5Q0bnM2n+zYnSnzobEIHiOpwtQ1eNcVm5QRLZ1d67lOM7aj6G75l96L38ihq20WCfF0O/yiLxInb9qQtXvitaCuJdnMi32tEeRFIsQDh6A3jkPZlvbacVS/M2PAgBC3/vOtDX2Cfz0f8AVCijecRfMWLyh5+r2OBJhX3lTn8nWXJKbF1yDabGAc51Wcj3911qlmksnXb1c1JHaaMvtJ92eXU19prDukojdWjNwGQwGg8FgzC2YuJzjKLqCnJpFXI5DtOukAEB1zX0EgK5FMu75rU7c99tdaO+UkRrTMDqs4Mf/fgqjQyrWnBfBzXdYImEwP4gj44c8LqEbtWZaLGlww7ti0cqcS57j6WOSFhuyRWXI5VwGhCBEXnSNGXEL2yqpfaTmEqT+kwysF6CbzoB5wddAR6TiUiiruXSn6gq8SN0+IlRrOZcTpT4Sp9Yfz3QyWVFEEPe9BU7XG55vWQntwg1QL7gQ4r63ID33zGnvrwzTROj7/wXAEbKNUMu55D3nsf6v08mOIvE8t8L14n8vKzXxIZ/LSp8ferOE5yHTG1UKYsmpH0dCjq8x55LBYDAYjLMGJi7nOGMF4lomATjjNdxjOgBLcK07P4Z4QsT8xZaI+97/60XviRIWLg3izvs76UiRbf1v4JXel1HQ8p5j0TQ5vb5usbXSYiVe8nSTtf5GxGWI7i8gBiFwAn0tbmFbDaOCc0n+bzX0cdJl3bgdIbJw1wwdpmlCFmRnbAnnbujjpBq6aaQWj3TEdb/u6Way6ZwEcecOAIB2wUVTEAyH/Kf/NwAg8vffPP39+ZCeewbi/n1QL7gQ2vkXNvx8Ki4rdIw90w19APd1Wu50lzmXptu5JHXP1ue4knNJbiiJnOiZUxtPWJ+HTGrqhKD/c8pgMBgMBmPuw8TlHGe0YM1/bAo20d+JvAjVUKu6fAtscZke19C5IID7Pt4FSXYuBdWwxJ57diTgLEq1WjWXcFxBp6GP4mnoExSDiMoxT4dWwJn5GHSJrKAQgMALtEZMrZKq64Y2MrJTAnlbKIq8aNVQulL/vK+POJccdaGImHV3v3XPx3Tq2LwfJXfK7USO1jmt5+Hdi9+DjnDnhK9tqphsEx+CtHM7AEC7aMNUhAPlvbdCW7Ua0utbIL368pTsk0AEKxGwjWK2t8NoboZw6ACg+a6/SXbd5V1ueqOI9Dosv67Kai5R3sRHrJUWW7HmUpmWmksnG4GJSwaDwWAwzhaYuJzjjBfHAQDJgCMuyQgBd1qru/PrijVhBMM8zt0Qw0c/vQDhiHeBS8RZUS94fi/zluvoXgyWpcUStxA8HfiuGaqnluu9y27Duxbd4BmrwHM8FVchV81lQAjSWkTN0KrWgXrj9zmX8C7kiXgub+jjci7LthWwKL4Y86PzrRpOexFPjlGzoc8EHzNZkNEVnT+p9NTJ4j7WZNwz0RaX6gVTIy7B88h/9nMAgMhf/BlgVE55bhRpyyuQXt8CbdVqKO+9dXI74Thoa9eDUxQIx456/uTputvA+7covhjt4Q60hFobDkcSGqi59KXFchxnNaRC5VpH2tCHdzosT1/NJfmcsvmZDAaDwWCcLcxMe0rGlNEV60JnZB66ovPp74jDVtQcceheZCaaJHzha8toGqwfKi41a9RHVI4iq2QRlkIY9U4wqTrn0hrtUV5zyfM87QBbcnV77Yx00kUzqbkUOAGSINH0Vd3U60qL9XeLJSmu5P8kDde/OCfnjXPNuVR0x7m8rOsKuq1/pmC5uHQ39DlzorFeTicmLp2CcOgg9EVLYLY2Lo6qUbrjbqjf/mdI27ch8PCDKN39wdPboWEg8tU/BQDkP/NHQIOdWd3oa9YCr7wEYf/b0Feuor/nJulcLowtwsLYoknFsiS+FDw4xOTyxkTl4tJ5rBs6ePD0c1A5LZaMIhEh8yRTwdUtdhpqLplzyWAwGAzG2QNzLuc4i5OLcePSmz0NZ4ioc4/q8Nc1VROWgLPoI87lkvhSbOzchLXN68u21X0OE0nD46rUXLoFndu5nB9dSB+T2sOAGLC3s51LU6NzLmu5beS10pmb1Ll0nBigvCGKu+aS7L/a8Tg6iqRat9jJzT+cCRpNkRXf3AnONKFeNAX1lm54Hrmv/TUAIPIXXwaXGj+t3QUeegDS9m1Qz78QpTvuPq19Vau7dJ+7M3UTYXXzGtyw5KaK11WtOZcmTDulm4jL6g19BN65OaToKoIhHqEwj9EhFUppalxl6lwycclgMBgMxlnD7F71MiYFqR10j+qotJCsBkmhJc6nJMhY27KOOo5u3DVdgMst5HhPWp1Of+8IOnfN5YLYAvqYOJfk/yJxWlypvu6RJtXid6f4uf9vmEbFhXmlUSSKQVxOv7j0jiKp1dBnMnV10w3HTS6dE3BSYrWLLp7SmABAvfRyFO+6F0J/H6Jf+tyk98ONjCD61T8DAGT/8m8A4fTeA6djrHccyWmPdJliysSl6/OpGzo4cJ6Zr36q1VxyHIdlq8PQdRPdh73p8rrd9KpRyHeFaZpVOz8zGAwGg8GYWzBxeRYi+hrlAPW7A+7h6kXNcj5JzWMlQeav23LPfeQ4DhIv2XMuy51LIuZEXvSk+AXFIK5ccDUu6bzU3ld5Wqy76Y9fHDnOpZOiax27tuBz11w6ro2VGux3OWnNZZVRJIInLXb2fcxOp1ustMOut7xw6sUlAGT/6m+gz+tC8OEHEXjogcZ3YJqIffb3wA8NovChD0O7ZNNpx6SvWQMAEPZXdy7PZM1sdbwxeLrFwvA0ozIrOpcklVz03BwCgBVrrJtLh/fnPPt/9MjP8PzJZxuO1C0oNVZ3yWAwGAzGWQGruTwL8XdhBcq7ulbCGtPhbFewnUuyyPSP7gDKRavpE3QiL6Kkl1w1l84+OI7DPavvqyi+liWW08dEqGmGTpt/BF3OZVAI0lhlQfak23nTU2sLPuLU8Lzj2hCB7X/tZaNIajT0aWT+4ZnCE+8knEtTEKCde94UR2VhJpuQ+advI3HP7Yj9709DX7y0IYEY+qe/R+DpX0JbthzZv/jrqYkpkYTeNR/C0SNAsQgEraZTp9sYaaqplhZLbhpZY3asz3OlESBOzaVAay5Jh+YVa6xMgsP7nC7SqqEiq2QnFWulGZwMBoPBYDDmNjO/GmJMORWdywlmyb3a+zIePvQgdeoAoORz7SotnnVTx9sjb2HX4E4AgGE7JWRbiZdgmAbtuup3DINi0FMvWvn1iPa+LeeS4zhIrue4GwCJvOiMIjENz/E8jysMoKciGjwdo0JEqz/usoY+ZWmxlY87W5hsIxq+7xSE/j5oa9cD4fB0hAYAUK++Ftm//BtwpRIS998NcevrdT0v+IPvIvq1r8AMh5H59+8C0eiUxaSvWQvOMCAcOkh/d7rzQqeaammxbhef1CBPlBYr2un1qp1eH0uI6OiSMTqsYnTY+h35rDU6q9I0Tah69a7TU81ocQQPH3wQp7K903ocBoPBYDDe6TBxeRZCRoC4mWjxNlQYRFErIqNkyv5GxFHFtFhTx56hXdg9vMv+2Tv3kTYXsjvP+msX60HgnVEkmqFB4iWPYAtLVoqsJEg0hVc39LLaStF1XioJvvZwB9rDHVgUX0TrVqnA9juXnNe59Ddz4WeZo+VnsqJI3L4NAKBdOEUjSGpQ/NjvIPfZz4EfH0fyrtsQ+MkPve1P3WgaIn/xZcQ+9xmYkoTU934M7bwLpjQep+7SSY31vLezIC227L20z5eTri7Q+ZiVvhPcM2Bl2u3Zqd1esZakxlrupVFnU55DYwcxlB+iPz/zxAj+4/92I5uxUm4rjUWZSkYKI8ipOfTlTk3rcRgMBoPBeKcz+1a9jNNGquAETrT4I+mf7g6zhFo1l7phuYmmaUIzNEds2ZcWEWmk8+xkXDwiSDVDg2Zq1KEkEOdS4iVHiJpambicqA4yIkVw09Jb0BmZR51Lun2DNZezvVusN223flEk2Q6itmF66i395P/4z5D9yl8CxSLin/k9JO54H+RfPgEukwYAcGOjCDz0AJquvQzhf/p7GPEEUv/9ANRrr5/yWLS1FTrGum8izIKvU/9NDndarPV3Z8xOpVR5dxMsyTVKiOBPja3kXGqaif5eJwMiVRrHllOv4D+efwj/+jfHcexQHlueH4eq6ujrtb5v3HN4pwMSp6pPPMqIwWAwGAzG5GE1l2chRAy6IQvJo6kjOJ7qxsbOSxCVY/bfDOrQlVxpsXR/fHVxqboEpeoeOWKLMeJclmzn0i/SGnk9RMRazqVbXNrOJS+7RohYcbnTX72pqrUvfX+qrl84OE1RbCeNq9XQZ+YdLT+TdS6l114BACiXXj7lMVWj8HufhnrxJYj94acgv/IS5FdeAgCYgQC4knO9Kpdficzf/ROMZcur7eq00Im4fHsv/d1sa+hTrebSPQqIdos1yhv6aIZGP+/kJpWqq9ANHQIvYOHSEOQAh2OH8tA0gzYA0k2rYyzHcXhx8yhe3DyKj35mARYtDSGvWkK093gJyikF//2vvTAMwBQNjAyWMG+BRGMxTROmWXtU0mQgr7/S9xuDwWAwGIypY+ZvtTOmHOIWuiGLt7eG9+Bk5gR+duinGC4MA3BcS+txoey5fI202JLL6dQM1WnoA6fmEnDNlpyMc2kLxCJtMCTR1D7AcS5lQaJjS0idmFsUinxt59IN7xql4n8uUMGprCI+gVna0IebhCjKZiHu3gW9vQPG0mXTFFlltEs2YeyF15D63o9RvO0D0JcshRmLQVu+AoUPfRjjDz2K1M+fmDZhCQDa6rUwRRHi7l003XS2jyIxYcVputK33d2XM0oazxzfjNHiCADvmB7y2R0tjuBH+36Al3peQNHMYenKMFTFxImjRY/jSAQc6SY7YLuXZJtM2q6FNgCet2IbHlTs41rPffqRYfzN/3cUuezUpsmS/btTfBkMBoPBYEw9zLk8C6k1ioRziaDdQztx/aIbaMoqABQrOpdeUebu8uh2AlRDLRv/4e9cO7m0WNGOzR6Nwoue/SSDTeA5HnE5gbxmLWwVImb5yo11KjX08SPxEk2n8y/a/W5krYY+syFd0s9knEtp2xvgdB3qZVfMTH2hKEK55X1QbnnfmT82AAQC0Nasg7R3N/iBfhid82adc8mhinPpqqV0N6M6lT2F3mwvmoLNaA62QDd1BHirEzPP8XSUEMdxOJY6ivHSGFasvRYH9uZweH8e53Z5m/KYCo/+Hus7ITVufXY0Q4OmmijkDUTjAmIJEavWRfDkLg7dKQ2KYqXUZzMatr6cgq6b6O8tYvnq8rm6k4V8jks6E5cMBoPBYEwns2/VyzhtKo0iIeLSdA1VH8wPwjRNj3NZ0irUXLocPL/IUlyLNXeKLBFfoq+50GTEJdkHiVMWZFpbCQBRKYo7V92DS+ZdSkUdcS7di23eIzQnvvTdqbFlcfvFZY2ay3qE7JlmMkJIeu1VAIB66WVTHc6cQTvvfACAuPtNAN7LYDY6lwZt6EM+l4Kn+zIRXTk1B8M0ylLJL59/JS7vuhL3rL4PEi8hq2TpvMu3dmaQKzo3lzRDw6meEki2bdolLjMZ6/H8RUF84o8W4bqbW9DaacUxPKBgeKiI7a9awhIAxkentgaTfP8pLC2WwWAwGIxphYnLs5BKziVJCyOLybZwOxRdwXhpzNPEp1ShoY+7PrFWOqmmq56ulEB57eJkhBYRdgUtT/fprisVeREhMeRJZS0Z3jEqgLcWtdLMTj/upj7+7Wulwfp/nu3OZb0NhxxxecW0xDQX0M4l4tLqjux+b2dD4yb/TQOSFusZRcI5zajI90Jey9Nt3DdSFseXYEXTSgSEAGRBhmqoSDaLWH1OBKkxDb94aACH9uUwOqzAMHX0dDvfH6kxR1xmU/b3TqfzmWrttL6ntr2awvf+9QSee2qU/m18dGob7xBxrTDnksFgMBiMaWXmV0OMKcc9ioSIO5IWpxkaeI5HZ7gTgOVeepzLGg19gNoLaCst1luLFpcTdT23FkQgkpmTEi97FsAeoUma/9hdIat1i63HQXXXrvpFsX8R73etJupMO+M06lyWSpB2bIORSNLGNu9EHOfSEpeTnRc6XZTVXNJusU6jLXKziIz2AYC8mqOPqzW7It8lqqHiAx/qQEu7hO6jWezfk8OO19LQDA093U6KPXUuTY3WW7rFZXuXc5x4Mw+YQKLJ+h0RplOFTrrFGqxbLIPBYDAY0wmruTwLcY8ikXgJiq5QR1E3dYi8iPZwBwBgMD+AiOTUNhUqNPSpVyhphkaHtpPtFseXoCnYjLHiqKdWsxEc59KKLSDItKEPx3EVO8IqduMOwZOe2pjL5HYuy+ZcYqKaS5czOAvTYt2OWz2iSHxzJ7hiEcrV11rdWN6haOvOgclxEPfuBjALu8X67hcS59LdLVak43qcesmcmqONd6plF5DPg2IoiIaiuP8T8/HI830YPcSjkDeQSik42V0ExwOyzCM9rsEwTOiGhkzaOlZbh/OZSjQLuPL6FoAzcOP6DrQZi6FrJv7lGyemwbm0jm+YBlRdhVSh6RmDwWAwGIzT5527SjyLcddcBoQgACctTDOsOZFt4XYAlricyLkU6uyyqrq7xXKO+Lu4Y+NkXwoAxzklKW2Wc2n9zj92paxbrGfeZGPOZUAIuJ5bvaay8s+zvKGPp1vsxNtLr9spsZvO3AiSWUkkAn3lKgg9J8GNjMy6eaZ+geufc8m5UscNQ6cC0zAN5FSrGVa1emSSEUE+W00tEjZdG6du5J5d48imdXR2BdDUKkHXTeRz1hxckhbb6hKXhmlg0dIImlslGDDQ0iajpV0Gx01DzaVrDqfCOsYyGAwGgzFtzPxqiDHluMUlSe00TJ027BB5EbIgoynYhJyaw4g9hgBwzW20qdWQx7+Q1Sp0iwWAedEubOjYiCvmXzmp1+MXgrIg07j88VEhapC02MqCsh430e1u+FMFy5zLGg19ZoPo8NNot1j55RcBAOpl73BxCVfd5Z5dM9M1twb+sTflcy55+pnQTA2GS3RllTSA8s8UgWREKK7UUt3UkWy2PidbXx4DAKxYG0Yiae1jZEjFzjfGkM8bCEd4yDLvea7/sSBwiCVEZFIabe4zFeiukSmsqQ+DwWAwGNPH7Fv1Mk4bq2mH9dbKtvtmmAatqSKLxzY7NXasOFphLxZ+YecWSv6utO5RJP5F7vrWc7A8ubLh1wLA0xkWsLvF2nH5F8L+brGe2kzXtnV1i/U09PFuX5YCWcPZ9LueswFPSBPFVyxCeu1VGLE4tAsumta45gLaeRcAsOouiTCfLTcQ/C6537m0ml7Z4tLQPHMq06W0vU3lGy/k86DpLnFpaFRcZvPWZ27l2gjitrj8+Q/78cYW6+ZV18JgxdjIPl879SpOZXuRbBZhmk7N5lSgu46lsLpLBoPBYDCmjdmxImJMOUT4kdROd/MO4sK126mxtfCLN/doD//fVEPz1HZNFX4hKPMydR6rOpe2O3E6DX2kGqNIysTmHGvo04hzKb7xGrhiEeqVVwMiK9OmTX32OOJyNjTzAcpvZDjdYl01l5wzisSdLppRM3SbShAn351WqhkaYgkBggCYnI5QmMeCJUHqXI6PaoCo45obm7H2vKhnf27ncqgwiINjB7B/9G0kmiT7uVMnAj1pscy5ZDAYDAZj2ph9q17GlEAWgqTDo2EaNDWMOBekqU8liCAqdwadS8bt7AH+tNipW2z7Y5CFAF0g+9NVye+JO+EVeY0JPpmv0S32HZQWKz//LABAufb6aY1prqCdcy4AQNq101NbPBson3NJaq1Jt1iR3pjRDN2TLkqcy2ppseTzrrqdS9MAz3NIJEWYMLB8TRg8zyHe5Oxj3mIR8UT5Pk2Xm0iademGjmSzS5hOESwtlsFgMBiMM8PsW/UypgTiXDppsXpZWmxUitJOsf4UV+J4ls13dC2m/emqnoY+U3hp+QWkLEhUIIs+0cfbnUxJWqw7Pde9baPOpf88+NN+azb0mUIXd6rwNvSpLYyk52xxec110xrTXMFMJKEtWw6h+xiEMavOcLbcQCi/UVChW6xrFIk7XTSj1E6LdWouHeeSjPhobpNhcDrWnGO5k4mk830yf1llseo+dl7N09+RNNvU2HQ5lywtlsFgMBiM6WJ2rIgYU45I0mJ5SyTqpu64Fy6xRtzLqOxNWQuKIXs/fufSrjEDXybQqjX0OV38rqHEy4jLCaxIrsTq5rWevznOZYVRJA0KPrmhUSTe585259IdU03ncmgI4p5d0BctgbF02RmIbG6gbbA6IMs7d8xwJF6qOZeVRpHoppMqDzgzIOvtFuve78p1EdxydzNaVmUwXhyjNZeBII/WLt5+vvcGlrvmkhxbMzQ663Kgb+q6urpTcJlzyWAwGAzG9DH7Vr2MKYEsBElarO5Ji60gLqWY5/kh0Wq+IfpEFRFZ1jB27+WjupyQqZzt6B83IgsyOI7D5fOvxOL4Eu+2vrElHpHndi7riE/21FzWdirLay5nt7isez7jr38NwHYtZ0nq52xAtcVlYPt2ALOp5rJKQx/7xpLIC/QzrBkarcV0U7Xmki/vFkuzIUQO7Ys4/Or403jsyCNINAm4/Pom3HJnGwzO2t5/nekVjm2YOuYvCiIY5rFvVxa7t6cnftF14BbRbBQJg8FgMBjTx+xb9TKmhKgcBwDE7P/rhpMW605nXRhbhKZgExYnlngWf8S5LKs1JGmx4Mr+5nEupzIt1nUckRdrijX3wtn9c63H1fA09Ck7D95ta829nMrmRlMGV2fN5a9+BQBQrmUpsW60jZcAAOQdtricJcKbfD7J9WeY3rRYnhOslHZOsLMZrM9JTHZuLlWtubQ/D5pLXLrFKambBICBfD/ec1srzt8Yp8fwjzlyO5cE3dQRCgu4+zc7wXHAYw8MIjV++mmso6MlPPPECAZOleiNJwaDwWAwGFMPE5dnKRd3bMTtK+5A3BaXnppLl9gJS2Hcuvx2LEss96StkZpLf70jWbQKvODpHAt4R5FMtVsn+pzY6tt5U+/ccbgd0HoaDrnTYv01lhM29OHdKbiz72NWl9NmmsDmzTB53uoUy6Boa9fDDIUg7dgOGMascS5JHOTzQrrFOinxTuYBueHEcRyuXXg9/a4IS+GK+6bOpUucaR5xmaePj6QOA/COQCKxECq5pmTb5asjuOy6Jmiqia0vpSZ+4RVQSgaef2oEqTEVh/ZnkM/p2LM9g5GxAn79+DD27MigVCwXuAwGg8FgMCYPmytwliLyIuKBhKfmqlJarBu3w1a95pKn2xI3j8zVVHWVCtSpFlR0bidfW1yG7Lid51VOha2n5tItticcReKfc4m5kxZbLT5h9y6gtxfapkthNjWfqdDmBqII9YKLIG95Ba0nh1BamZjpiAA476XES1B0xTXn0icuOQFFowjOtFzMpmAz3r/iDqSVFBKBZMV9y3YHatXT0Keyc3kifRxKp9chrOxceq89d6rspVcnseX5MWzfksI1NzZDkhv7HG15fgzPPzWKwwdyOJUqgANQKBh45MGTWJReCgBo65TxqS8tbmi/DAaDwWAwqjP7Vr2MKYXneHAc523oU0VcusVUSAhV3JYsTnnOaegj8iJEXrRruKbHuSTHIt1vqxESQ1Wb6ZBz4d5fLTiOo07pxA19KqfFzkZhCdSXxik/9SQAQLnxlukOZ05CmvpcdUrCJZ2XznA0Fv4RQqYvLVZwzYc1TROaodFrm+O4qsIScDuX7lEkTi2jW1xqhobB/ICnvtHvXFauuXScxHhSxLrzoyjkDbz63BgMwyzbvhq6bmL7Fqte88SxHHQd6GiLgeMscbz2vAhCYR5D/Qp0vf79MhgMBoPBqM3sXPkyphSBEzw1l/4GOQR3SmlT0HKqSKocwRFNTmMQiZcg8ZKnhmv60mKlmttxHEfHqwDlotDt3NQDEdxl4pKrnRbrFuGzkXrmXFJxeTMTl5UgTX3m7TuO+bEFMxyNhSMurevWhL9brGj/3fq/YRpVMxn8kBst1ZzLolb0bF/Si9B0d32mNwXVMI2yNHe/4Lz8uiZkpD786qk+fPefeupOYz28L4f0uIZ4UoTBWfu84IJWXHRpHOdsCuHuj8yjI0+KBZYay2AwGAzGVMHSYt8B8BwPw9Ut1j8SgEAWmSIvoiXUgntW34eg3TWWwLnSYnnqJjoLxJLd5n+6xKU0QVosAESkCDJKxoqTr+wo1tMtFgDWtZyDrJqp2tiI/uyvuZzlzqVnFEkFF5Pv7YG4ZxewciWMFasAZu6UoW24GAAgbds6w5E4kFpiySUeAUcEks8D32BzK+s5VraCt+ZSK9suIARQ0ktQdNXTWdaNaZowTbNMXJqmCcM06PUZas9hwXv34a2dWQjHbsWvHhvG++5pnzBW4lre9IE2vLUPGE/JmDcvjIhqxcPzHIJh6xjFgo5IdBY23WIwGAwGYw4yO1e+jCnF3xmymrAiC1KysPMLS8CpJbTqLEnzEImKPs3QpkVQ8XWmxQLesSp+EeikANYX49qWddjYuans99XEpP/n2dLoxc9EzqX89C+tB7fdxkaQVMHonAd9wUII+98Gl5makRmni7+hj1Nz7e2e7HYrq6XJV0ISJDqTEvA6l4SIZM3MVQ3F01nWGw8ZjSKW3dxwjw3Jq3m0tMnYdHUC+UQ3tr2awpEDuQnj7OkuQhA4rD4ngpvuaMElVyYhCtaMTyKOQ2HrXBRyzLlkMBgMBmOqOKvFZalUwl133YXbbrsN73vf+/DQQw/NdEgzgsALMEyDugjV0uBIKl2tNDme1izyrrRYEaJLsFZzRk8HmhZbx77dabH+kShkP6c7HmSihj4cxyEgBMoaDM0WPPFWEI+Bp62UWNx66xmKaG6ibrwEnGlC3Pr6TIcCwJ1Z4O0WS+bPUnE5CecSsBpqGaZBRWWlukny+VN0perYD3dttv/47n0SoRkICui4/AQ0roRHfzKIYrH8uIRiUUc+pyPZIoLnXbM4eZEeyzANhELWuSoUqu+LwWAwGAxGY5zV4lKWZXz/+9/HY489hgcffBDf/va3kU7PDofhTEIWVKq90Kteczmx8HKnlRIHVOJlT7pqW7jt9IP2IZBusfU4l3LUeR5freby9C79iUaRAMBNS2/B9YvefVrHmS5qOZdcJg3plZdgJJuAK64406HNKdRLrfMjb3l1hiOx8Df08afF8rQW2D07tn5xSWa/kkY9ZJSJG8e5VD0upCceV/da/80st7h0u6TtCwS0nzeK9LiGp38+XNZ9ljA2bLu0LWP4yf4f4si4NRaF5wTX/E8DQeJc5pm4ZDAYDAZjqjirxSXHcYhE7LvoimLV8xjvvBQospBU7HrIamlw9TiXNK0UPN2vxEue57SFO04/6LLj1jfnEnAWt9bz/CNEGmvoU40y57KCuEwEkoi6htPPJtyCwB+7/PQvwSkKlBtvAkRWll0L9fIrAQDSqy/PcCQWvKcmmnd1i/WOIfKkxTbkXNrjSFxjTvzjgdzOpepLiyXxuJ1L/1ggwygXl0sS1uiQBZvGEIkJ2Pl6Go/8eACqUv59PjZiCd8TkVehGRreHnmLvk63uOzl96I/uAfFvOGJjcFgMBgMxuSZ1eJy69at+N3f/V1ceeWVWL16NZ577rmybX70ox/h+uuvx7nnnot77rkHu3fv9vy9WCzitttuw7XXXouPfexjSCaTZyj62QNZPJaIczlBzaVQxdkEfM4lrd+SPM5le2jihhuN4jT0aTAt1icCSbdZ8TRTdyequZzteJxLn/MUeOznAADl/Xec0ZjmIvqq1TBaWiC+uQPI52c6HDQFmhASQ2gPt9NGXoCroc9p1lySz43iciUDvmwC8vlTDcXTWRZw0nQN12iU2mmxlricF+lCIpBA1hzFe38zjFhCwK6tGbz4q9GyGMdGNBjQEIyQmB1BTYSsburoNw9jNHAI+ZyGx488gl8ee6Lu81Av3aljePLoL2ijMwaDwWAwznZm9Yo4n89j9erV+LM/+7OKf3/yySfx9a9/HZ/61Kfw85//HKtXr8bHP/5xjI46C45gMIjHHnsMzz77LJ588kkMDw+fqfBnDUT4EOdyorTYWmly7m6x1WouW0Ktpx+0j4BgNRcKSeEJt3U7l35X5ML2i7Fp3mUI17GfWlSqsZxLVHMuuXQK8rO/hpFIQr32+pkIbW7BcVAvvQKcqkLa9sZMR4OoHMPdqz+IZckVlnOJynMu3TeQGnIuyTgSXaHi0p+qTj5/iq6WO5cody79mRJaBedS5EUsS64AAJRivfjQJ+YDAE4e844/AYDRYQUZqY92gHXGI3mdS1G2oknl8xgrjmG4MFT3eaiX4+luDBeGMFJ45/27w2AwGIx3JrM65+2aa67BNddcU/Xv3/3ud3HvvffizjvvBAD8+Z//OZ5//nn8/Oc/x8c+9jHPts3NzVizZg22bt2Km2++eVLx8PzsEhAknonikgTRGh5uKuA4QBKlis+RBRkcB4iCWHWfIi+A46yRBl2xeWhPt2NRYjEOjO6nfWFkceob+pzfcT46ou2YF+2ccFseAo1F4HnPa+mItqMjevrOqsgJnj44As/POYHJ8xxM04TAc/QcyZutlNjSXfeADwbodozqaFdcicATj0F+7VXo11430+FQeI6zxnrwHEwYEAWBvpeS4Fy/Uo3Pu5+AaH1H6NBgcob9fSFAEkQq4mKBKDgO0EwVmqnC3zuK5zmAM8HxnFVzKXg/SyZn0Hh0UwPHWceNyp3gOCCn59AxLwBR5DDYVwLHeW+WjI1oSEknsTLq3a8kCPT7C5wB0U62GM2PQbS3m+prnbx+Ewb7HM0A9f4byWBMBnZ9MaaTuXx9zWpxWQtFUfDWW2/hk5/8JP0dz/O4/PLL8eabbwIARkdHIYoi4vE4stks3njjDdx9992TOp4o8mhpiU684QzQ1BSp+ffm8RjSCIIDBxFBdLQmERDLG+O0mQlEs0E0J2JVX2uLEbO2ScawtGs+lnZ9EAAwbPZiQAuiKdg0TecpigWov1FQNGo5ndGEhJb41MdjmiY9BgC0ts7O2spaxKIhGKaBlpYYmkP2OXriUQBA8MP3I2hfVxNdX+94bnkP8MdfQHjrFoRn0XdEPBaGoitoaYkiFJEQgkQ/my2lOKJF6/ptTlb/vPtpKyVxshREJC4hEQ4iGg2iOR6DJhZo6ueCjjbEekMISDzkMIeoYn33mDDR3BxBT7oHRsBAJBwAz/FIxCIocBl6jEQySD+zobSIqBJER2sTRF5EdCiISFRCe3sMnfOD6DlegCQGkUhKME0Tum5iZCyDrNSP+V3LYHBOQ6GWpjh0uYgsF0SyKYxYwlKXGTWNhfZneaq/uwKDPKIIIpYIoKV59lwb7zTYdxhjOmHXF2M6mYvX15wVl2NjY9B1Ha2t3hTMlpYWHD9+HAAwMjKCL3zhC9B1HaZp4r777sOaNWsmdTxNM5BOF0477qmE5zk0NUUwNpaDYVRvRmEWRWSzTvpYaqwIgS8fbp5JlZDNFpEVFYyMZCvuK50qWNsES55tlgfXIR9Usb713KrPPZOcl9iAY6ljkEuxaYuHnFOO42bFa26UfM5KbRwdzcIMyuDGx9C0eTPM5maMnX8J+LFcXdfXO56upWhKJMG99hpGe4eBYPl82JkgmyuhqBUwMpLFeDqLgBik12k2o9DrNxes/nn3U8joyGaLGBgeAyIystkicryCfEFFQS1CFmSMjuagFAwU8mmYJRHZfBFhKYK8msORUz3Y3G3NUOV4DkKzgGJeQzZbREgKo6DmMTSSQkhNAgBGxtLIZovIjJfAcyqy2SLGuCxGRrJoaRPRcxw48PYolq+O4KHv9aH7SB7HiocRaOKwMLQEB0cP0NTaTLqEbL5E49d16/eDmWE02edieDgzpRkIw+MpZJUihkZTSJpz7ztirlPvv5EMxmRg1xdjOpmt11c8HoIk1S6nmbPishqmadLFwcqVK/Hzn/98yvY9m95cN4Zh1owtIsbgboTIga+4vcCJME1AgFB9fyZn7cvkPNuInIQL2y+m8cw0yxOrsDyxCsD0xcPBapjCVzmfsx7fexl8/DFwqoriLbfCEETAfk0TXV8MDuqllyHw9C8hbN8G9bLZMb6Fs99XXTegG97rlDN5+p1Q7fugEhIvwTSBolaEomswTSsNXYAA07S+BwzDhMCJKGol5JQcTBMICiHklBwUXXG+iwwTPMfTWIJ8CHkzD1XXaDxke4ETLffTBP17W6flPPb3lrB0ZRh7dlju51isG9GIgOWJlTg2fgyKLSI5kwcH61iKpkIUrfrLcWUUpmk91nS9bHzR6VDSSp6YGTMD+w5jTCfs+mJMJ3Px+prVDX1q0dTUBEEQyhr0jI6OlrmZ73Ticpw+rtVttT3cgYWxRViWWF51m47IPHRGOrEwtnhKY5yLkEY4c63WklDWJfZ/fgwAKN1170yEM6dRr7gKACC99MIMR+JAmteQWkjBM9tyct1iSWOtol6iI0PcsypJwx/y/5yagyzI9O+8758cgRMQD8TBczyag80AnE6yAKgwlHjZ6fRqH7d9npXaP9ivQNOsf3jHpG4ofA6dsQ4kAkkar/U6nYY+qqFCkKwa0LSaotuQRkMTUe/YEvc8UAaDwWAw3gnMWXEpyzLWr1+PV191hpcbhoEtW7bgggsumLnAZiGxgCMua92VDwgBXLfoXeiIVG+aE5WieM+Sm9EWrr/+8WyFiLNKMy7nEhw48N3HrIY0ixZDvfTymQ5pzqFcY3XWlZ9/doYjcXALKetn57Pv/h6o1j26EqQzrKKXoNmzMwXXiA8yksg9migkhugnxD1mhMS4oWMj7lp1L/2e0l2ziMkoEvcsXTKzs73LOsbgqRIyKQ3j0nEMxHYgnhDx7nMvAQAEXbXlIidSga0aKjhwkGQOiuqUCBiYWFwapoEHD/wEz5+s/V6ruurMGWXiksFgMBjvEGZ1Wmwul8OJEyfozz09Pdi3bx9aW1vR1taG3/qt38IXvvAFrF+/Hueddx6+//3vo1gs4gMf+MAMRj37iIgROvPO3/afMXnI4n3OOpcu5zX44E8AAMW7Pwjwc/ae04yhr1kLvaMT4s7t4FLjMBPJmQ6Jvr9EoHmcy0mOIgnYjqSil1yzM3m6DzJHlvwfAIJiiMbidwYFXrCuPzFI9+EWoKqhgud4azuTvB5LqCWSIuQAj8F+BWOjJfSHdqNzfhD/++7bsSi+2I7DEZc8zzturm6PUZF4ZEs6dN2EIHBQNR2BCU5HTs2ipJdwIn285nYlw5ltSYQ4g8FgMBhnO7Naaezduxcf/vCH6c9f+9rXAAC///u/j09/+tO45ZZbMDo6in/8x3/E0NAQ1q5di//8z/9Ec3PzTIU8K+E4DjE5hlQp1ZBLwaiPuepcUufVMBF88AEAQPGe+2YypLkLx0G95joEH/wJpJdfgvLeW2c6IjqTVrXFmHsWreBxMeu/mUDEWklXqIMouubcVnIug0IQqp0ealRwLv0xuYWYZmhOSi1njfvRTR1FrYjnTj4DeV4rst3N2HHwKHROxcLYEios3fGS/ZNzQo4hytZnQFUMDI1q+Ob3j+Caa7tw3c3NnptGhmnQWAta+WzNSqi64nodeo0tGQwGg8E4e2hIaSiKgu985zu47rrrJt11tRE2bdqEAwcO1Nzm/vvvx/333z/tscx1YnIcqVKqofoqRm3mfM2lHX9w61YIJ7qhXHo5jKXLZjiquYtii0v5hWdnh7is5Vy6ay4buOEUcKfFEufSnRZrO5vk/wAQEsPQFCsG3edcVhKXpJbTNE2ohoqIFPFsoxkahgqDGMoPAq0G0N2MbYf3AwBWtHjrxYM+cSnQOlQrHlm2flYUE0f259CiaXhx8yiUkoGbPmCl/h9LHcUrvS/hPUtuRnu4HXk1V9e5UlzikqXFMhgMBuOdQkP5b7Is49vf/jbS6fR0xcOYJkhTH5YWO3XQtNg56lyS+GMPWK5l6d7/NZPhzHmUq68DMHvqLmvXXDrfA418J/AcD4mXUNJLNH3V09DHbhgmuxqHhcQgvQFTlhbriom3HVSyX9VVb+ne3jANJzW2WYAOFcdGj0MwRSxv8zYaczf0EXmx7JxItnM5NqJidERDNMFDDnDY+nIKum7VS44UhmGYBsaLYwCsJkX1QOZ+AiwtlsFgMBjvHBourjrvvPPw1ltvTUcsjGkkRsRlA/VVjNqQBbPbfZlLcByHQCaP8OOPwYhEUXo/q1U+HcyODmjrzoHQfQx897GZDqdMSAmetNhyx7BeZEGGoiseR1So4VxaNZde4UiPXaGxEHFEqQB07UvkRWiGRsVlvJlHXhyGAQNRtRPNTd4ZowHXc3lXnCRVmDiXRw/kAQDnb4qha2EQum5iZEjxxEEEYl6rT1zSVGDDxLbXRnHkQH3PYzAYDAZjLtPwqvjzn/88fvKTn+CHP/whTp48iXw+j0Kh4PmPMfsgziVLi506zoaGPuuefgN8sYjSXffCjMZmOqQ5j3Kt3TX2hedmOBKA57wNcNz11pMdRQI4bmBeK9j7Eug+ZLvWUnbXXLqcy0rdYmkcJC3W3sbpFFvefIi4gvFmHgZnbS+aISSavK/FX3PJ+9JiSc1lNqODA7DugjDa55EutIrnWCT2vJqvem7clOy02O7DBezeOY7Njw5P8AwGg8FgMOY+DSuNe+65B4DVXOcv//IvK26zb9++04uKMeV0RDqxsmkVliZYTd1UQWsu52haLGcC5z9ujfIp/OZHZziaswPl2usR/pd/hPzMr1Cc4XPq1Fxa4pL3OJeT6xYLOG4gSRMNCiEqAElNpuTuFis43WLNWjWXvLdbrNOIyJUWax+npFtNdQJBDqEIABOQBAHhiPe1eNNinYY+qj0/Mxh0jr/mvAiicQEd9oiTgb4SzkEMChGXdjzutFjTNKveXFJ1BaWijgN7c5AhY6BPQSGvIxRm2SMMBoPBOHtpWFz+1V/91Zx1at7J8ByPy7qumOkwzirIwniupsXO23UQLScGUNpwMfRzzp3pcM4K1MuugBmOQH7xeaBYBILBCZ8zXfhdOncqrOipuWw0LdYSkKPFEQBATI4hJsdgmibmRxdY27jnXEqhumouieDVy5xLqWz7kkYEn46m9iAwAERjUtm/Te45l+70XbLv+YuDMAygoyuASFSAAcNxLvss51GxhSgR6SQtVlNN9PXl0dXlNBwCgP17sti1LYPkRuv/mmZCEnTABHq6i1i5zrs9g8FgMBhnEw2LyzvuuGM64mAw5hxz3blc9zMrdTP/4Y/MbCBnE4EAlGuvR+DJxyG9+hLU62+YsVCI0FIrdIut9rgeiDupGRo4jkNUjoHneFzceQndxtMt1uVcVqy5NMljuy7Trrkk3VbdY02IEC7azqVuGmhqFYABIBZzRCjBM+fSlRZLXFFJ4rFsVZhuY5oG2udZzxnoswTs8GgeO3alsOAaBcfzOfz66V4Yhol0SsOxsW5c8cESzl/fiXnRLuzbncWD3+uDaQC9h05iXFIQjQlYvTyE4gvAiWMFJi4ZDAaDcVYzacvl8OHDeOSRR/Dtb38bQ0NDAIDjx48jm81OWXAMxmyGzomcg04+39uDJS9sQzEegfL+O2c6nLOK0o03AwACm5+a0ThIEx0nvdRdZynQ67bRmkvZJRwjUqSic0+7xgqy51i6MfEoEjI/s56aS8M0kGy19hGPOXE5ccj02CIvljmXMTlG/0b2FwjwaGqRMD6ioVQ0cGD/OPpOlrD3zRSee6YPI8MqxkbtGLkSHt32PLYPbEMmreHh/+6HaVoptjpUBEMcNl2dRNt8a//Hj9TuSTCQH8DuoTdrbjNbMEwD6VJqpsNgMBgMxiyjYecyl8vhj//4j/H0009DFEXouo6rrroKbW1t+Lu/+zt0dXXhi1/84nTEymDMKjh6b2buicvQf/4beE2H/tFPgg8zJ2UqUd71HgCA/Kunga//LTBDNx/8abG8z6EUOAGaqU3CuXRSfWNS5SZQxLkM2tsS59JAPeLS2oaKYqFCzaVGnEsdi1cE0X5Axrrz4mVxcBwHmZdR0kt2Qx+vm7s0sQwrkiuxd2QvDo7up2m77fNkjI2oGOwrYWzcauBz5FAG4fFRiDEO19zYjECQx6lHDRweVDE+XsKuY2loqolNVydx8x1t0N9IIC+oCAQFSDwQDPHoPVGCphkQxcr3dXcP7kRfrg+L40uQCCQrbjNb2DO0C7uG3sQty25Fa6h1psNhMBgMxiyhYefyr//6r7Fz505873vfw44dO2CaJv3bNddcg5deemlKA2QwZitzdRQJl80g+N/fgylJKH7sd2Y6nLMOs70d6kUbIJw8AWH/zDU3q5UW6/650dm3AVeqKRlx5CcshtEaasOiuDV3knxGDMOXFuuec0nEJUmLNUhabHnNJUmLNU0DgRCw6eokFi6ufJOkJdSCmByzHVTfeBZOQFSO0XpUIi47uqzXePJkFqlxS+RmsiUUzRw658sIRwQIAof1F4cAAAffzmLn69b85w2XW+ck3gIEgoI9m1PHomUh6JqJA3urjyQhr6ugzf6u62nFer05lWUrMRgMBsOh4VXx5s2b8bnPfQ6XXnopBMG7WOnq6kJvb++UBcdgzGbmas1l8Cc/BJ9OoXTH3TA6Omc6nLMS5T1Waqy8+ZczFkN5Qx/v93VUjiEkhhq+OeJOi43KlZ1LnuNxy7L34aKOiwHU51wSkUvTYu1GOrJLXJJtSD2mbupUjApVXsf1i27Abcs/YG9D0mLtDrr2zyQOUhO6aJnluG7fOgJNs26gmpwBjSugc4Hj3K48X4YgAEcO5jAypGLBkiDaOy1hWtJL4DgOQTEI3dRxyVWW6Hz6kWEoJe95IBRtR5b8fzJk1aznpm8jNJLmWtId95jBYDAYDELD4rJUKiGZTFb8Wy6XKxOcDMbZypycc6nrCP3bvwIA8p/41AwHc/ZSuuEmAEDg6RkUlyDi0hZfvPfr/t2L34P3Lrut4f16ncs6Z6PSmkuvEHGPLBF8zmXFUSSc12U1TIMKVn/aL4HneDrmhPc5lLTjs32uyKiURUtD4AWgt9dy5VraJRjQAVlBW6cjrqWggU3XJCHbp+SiSx0nV9EVSLxEndclq4JYd0EU6XENLz8zVjFWUktKHMxG6c/14WcHH8KBsf3QDR3HUkfp2JWJODC6H48c/hl6Mifr2p7M8fS/pwwGg8F4Z9OwuDz33HPx6KOPVvzb008/jQsvvPC0g2Iw5gK0oc8cci7lJ38B4UQ3lKuvY+NHphH9nHOhL1wEadsb4PtOzUgMTlqsJQL8wiwgBBCWwmXPmwi3c1mvuKTOpS3eliaW4eLOS9AWbqPb+OdcVhxF4hPIlnPpFYq14H3/5AmcX3Rajp8c4LFwSQg6Z527rgUBnHdJGJe+OwpR4GhMqqGipVXGdbc04c4Pd+KCS+L0dWqGhoAQoHWimqHhmhubAQAnjpanvSq6Qs9PcZJpsRklAwBIlVI4nunGSz0v4ODYgbqeeyx1FAAwUhhGqjSOV3pfqumgEueSuMAMBoPBYACTEJef+cxnsHnzZnzkIx/BQw89BI7j8MILL+Dzn/88nnrqKXz605+ejjgZjFkHD1JzOUfEpWki/C//AAAofJK5ltMKx6H0XssVlJ94bIZCIM6ltfgXGpxnWQ1vQ5/KNZdlsVBxaQnHZLAJ61vPKXP9BU6g4pLUXLqdS7GSc2nq9LkT4T8H/lm1hmnQlNKlK0MwOOvcxZIiVqwPYvFKS1gH7PmZRLgHIzzOvSgGnrdej3uMCknl1UwNsbj1uJAvd/tKLreyaDuYBa2Ax488gqOpIxO+NhK/dfwScmrOE2MtFF3BUGEQgJVWe2D0AI6MH8bBsf01nwNYr4vBYDAYDELD4vLiiy/G9773PSiKgr/4i7+AaZr4p3/6J5w8eRLf/e53cd55501HnAzGrGOuOZfSC89B2r4N2tr1UK5790yHc9ZTuvX9AIDA45UzPaYbHuXNa6YCkhYbEAKetNZaEA1JhGO1z4zAC1QgEedSdh2D94lDwzToPusRz5zP3eR53vN7AwZ+eewJPHH0cSxdFabOZTwhQjM0mmIq89Y5UOyfScwExRaHsiBBpOm+GoIhHuCAYqG85rKolVyPLedyrDiKseIY+rL1ud/kXJT0oqej7kT05U5RUZ1Vs8goVu3lqSrHNUzDqXtlziWDwWAwXDQ8igQANmzYgB//+McoFotIpVKIx+MIhUJTHRuDMauZUzWXponI3/41ACD3uS8CfMP3lRgNom3YCL1rPqTXXgU3MACzo+OMHp9clo5zOamv+zIEXsDGzk3UvasrFupcmp6fy/bNCU7doS223E6p37nUTZ0KO79wrIQ/LZb87HYuhwvW3OaOlSICMQOJmAhJ4qGbOhW8QZ9zSdgzvBstwRbItgCXXfWpmqGD5zkEg3xF57KoO6mw7jme5HXWA9muqJVQEr37qMWprNOIL6tk6PkYKgxC0RVPKjTguJbW62LiksFgMBgODa8wt2zZgkLB+kcwGAyio6ODCUvGO5S5M4pEevlFSG+8Bm3NWijvbbyJC2MS8DxK77sNnGki8OTjZ/7w/rTYKXIuAWBtyzosSyxvOBYifqp9ZohzaZominoBHMd5Ggj5x6aYptnQ6/PXbBK3U3C5i4ScnsYHPtyCS69N2n/TaZMhInjdIrCoFbFzYDt2Du6Aaosv2ZcWCwBqdBg5JQ9dt4T2M08M41tfPoqxdJ4emziX5HzVapqj6ipe73sNqdI4HfWiGCWaZmvU0Tm2N9tjzQQVZOS1PLL2eBHTNNGf6yvb3p3Cq9chXhkMBoPxzqHhVfFHP/pRbNy4EXfffTe+8Y1v4Ne//jXGxip3vmMwzmYc92X2O5fhb30DAJD/319gruUZpPS+2wEAgV+c+dTY8uY1M/++k/rIam4/FXmmjpJWgszLnm0rvQZn1MrpO5ckhRgAUso4hKAGWbZFuqnRYxFxSX42TIOKx5JedGZ0ChJ1W3VDQ1bN4njkZfSHdqGQ16FpBt54KYVMSsfRI+P02KSRDnEdjRrO5Za+V3BgdB9e6nnRSYvVStT5rfVccoy8mkdEiiAZaIJpmjBNk573U7ny1NiSy7lkabEMBoPBcNNwntSrr76Kbdu2Yfv27XjjjTfwgx/8AIZhYNmyZdiwYQMuvvhi3HYbc0YYZz80LXaWi0vp1Zchv/oytJWrULr19pkO5x2Fdskm6B2dkF55CdzwMMzW1jN27ErNcmaKshEgVe5rko62Ra0A3dQRE73daCul9qp0ZuXE4tJfl+mMKLEb8bjFZXHck/5pmiZ1KgN2miipuTRh0jEmiq64ajNlKLAb3xga8moesswjy+dRzBvoPV5EqWg970RvGskW61glvQTTNKkwrJUW25vpsfev0vOrGioKmuWETpQWq9KuvDJicgyD+QEAwILoQpzMnEBftnx2NakpBVhDHwaDwWB4afhWdlNTE2644QZ86UtfwsMPP4ytW7fin//5n9Hc3IwHH3wQX/ziF6cjTgZj1kEW77M6LdY0Ef7m1wEA+T/8PMDm0J5ZeB7Ke28FZxgI/PIXZ/bQZc1rZu69Jzdg9ImcSzvGnC2MAmLQ+/cKAllroGGRvy6To3XTJIXYEZfjJa+4BCzRJ/ESPZek5tISgo64JCJUEmTqXGqmBkUvQZI56JyKQkHHW29m6b57etOeYxX1Ik1prZV6SsRhU7DZsx3pFpvPq8ikqwtAmsIryIhIEZw6WcRgfwlt4XbE5TgySqZsJIknLZbNuZxzmHWkSjMYDMZkmVSHh1wuh507d1IHc/fu3QgEArj22muxYcOGqY6RwZiVzIWGPvKzv4L8ykvQVq1G6QN3zXQ470hKt96O0H/9BwKP/hzF3/jIGTuuX0j5m+GcSchnhAiRauN7SGprzq75CwpecemvuQSckSV8HeKy6pxL0llXdzmXpXE6BzQgBFDSSzBMw5pdaT/PLT7d7mJes4SdzMvQeUvY6YYOBQokmYfOlZBJ6di/JwdR4hAK8zgxloOqGIiHIyhoBRS1gtPQp4qAy6tOnSbP8WUpsKZp4omfDWBP4ST+8MtLKn5X0RReXoJsRrBjSxqCyOGuDTG0hduRVtIYLgxhQWwhfY4nLZY5l3OK7tQxvHrqZdyw+CbPnFkGg8GYKhpebdxxxx04cOAAWlpacPHFF+Omm27Cn/zJn2D16tWzepHNYEw1xI2ZtWmxuo7IV78MAMj9f3/OXMsZQr30cis19uUXwA/0w+joPCPH9V+XM5kW63SLNTw/+yExEtet3Lks/ydLO520WM5fc+mIpoyaof+mhaWw40byUsUaTd1wXMOsYoljSZCgGCKNUzd127nUcPRQFkrJwKr1EQRDPHbvUzA6rGPhygQKWoGKWQAwUdm5JLMpAe9YFsLIoIp0SkA6r6GQNxCOlF8DNIVXkJEdlGAC0DQTmf4AWtvbcGT8cLm4dDmZmmF17O3N9mAoP4j5sYXoCJ/ZzsiM+hkpDkMzNPTn+5i4ZDAY00LD+XwHDhyAKIq44IILcOGFF+Kiiy5iwpLxjmS2O5eBhx6AuO8tqJdcCuXGm2c6nHcugoDSB+6yUmMffuiMHdYtthqZSTkt2J8RE/YokipCkIjJ8aLVJC4oeMed+Lu9Ao3N8Sxr6FMmLh0XzjRNpErWvMeQ6HREF3mJHstdz+h28Ei3VZmX6bYkLZY0COrpzQAAWtolLFoWgsYpGB1SkQg0AbCa+hCxWG3cx1DeEZdv7Unh+c1DSKecbXtPFGFyVoyZlIaCVsCx1FEcGT9E9+k4lzLSA87Ikf7DPFpDlvgg41kIJcM7imTX4E48d+IZ7B3egy29L1eMdSrIKGmW0nmakGs8q2RmOBIGg3G20rBzuW3bNpoSu3nzZnzrW9+CJEm46KKLcPHFF2Pjxo244IILpiFUBmN2QdyXas1JZpRiEZFv/CUAIPtnf+EMPWTMCMW7P4jwt/8fgg89gMLvffqMHNPtDjYHm8/IMatBay7t9M5qzmVMshr4EDETFL1jriql9hKx4XclK1HuXJKGPuU1lwRZkCHyjjCXBKlK11rXGBOVOJcyRN4Zc6IZGiTZ7sLanwWPKBJJCctWhaA/VUL/CQ5hwUrFLepF2iSoWlOe4cIwAOsc7HxjHLrCIdM9imhMQFOLhL6eEgK26zk8lsOLmc0o2GNODNPEyqZVrrEpEkZOchAMGZIZxJH9JbzrvW0QeRHDhWFPB1m3c6mbGjJqhp7HtJJGqjSORCBZMebJMpgfxFPHnsCSxFJcveDaKd33OwnS3TejpCfYksFgMCZHw+IyFArh8ssvx+WXXw4AUFUVW7ZswX/8x3/gW9/6FjiOw759+6Y8UAZj1mEvtGajcxn6zr9D6O1B6ZZboV2yaabDecejn3MutLXrIL61B8Lbb0Fft37aj+l2Lptmi7icYM5lLBAHAGRsV8Vfc1mrKVE9abH+bbgy59ISl4lAAiW9hKJWRFSKeWo9JV6sWN/pTklVXIKNpPJqhgZFVyBJ1rEKSgERRJFoEpFsEdHcySHVJ6LvmAFErY65/vPmh9R25nM6FNVAOCxBk3hkMzqyGes5su0W7+x7E8a8AmRBhqIrKNpNeUiHXFGQ0NejYFnuWsTiEvp7SshlDDQHWzCYH0CqNI5ksMl+fa5usYZGBeqC2EKcSB9HT6ZnGsSl1cW2O3UM61rOQWvozHVePpsg13iGOZcMBmOamJTlMjo6is2bN+Ov/uqvcO+99+KTn/wktm3bhpUrV+Lee++d6hgZjFkJcSxnW80lNziI8N/9DUxBQO5PvjzT4TAAgONQvOuDAIDgT//njBzSLaRm2rksF3XVnMu45+egr+ayWlOiRupJ3bGQ5zndYi1XpyMyD3ev+iBuWXYrrlv0Ls/+RVfNpZtKAtByLkm3WB2KoVDnUudsIdskoqSXsGRlCIIpY992S6gV9RLdp9u5fPLhQfzr3xyHphlUxKZGNZicjoXLAnj3+1px0+2tOHdDFJ1dMlasC6LEZ3BgdB9kQcb61nOtfdouMhGGRknA+IiGeS1NOO+cdgDA0YN5tISs+ShjJWeedcnXyIgI1GWJ5QCAk5kTAKwxKS/1vFA1rbcR3B1qX+/bctr7e6dC3PmcmmOdfhkMxrTQsHN544034sSJExAEAWvXrsWmTZvwqU99Chs2bEAymZyGEBmM2QldH88y5zLyl18Bn0kj/zufhL5y1UyHw7Ap3Xk3Il/7MgIPP2iJ/mlusOTuyDrjzqXvM1Lthkw84BWXAV/NZaVusUBj44CsrqqG53m0Wyxx8TgBHMdRd8zdSEhy1Vy6qbRQl3lHXOqGt+ZS5yz3L9ksoail0DFPxomIhN4jOsQLNagJBSInlO374Ns5jI9oGOpXoRoqJF7C+FgWJkQkWqztJZnHkuVhLFkeRnFIwt5dg5ALGlY1rUZEilj7tIUrqbkcG7Aczq5FQSxeHsLWl1Po6S5i4WLrPXALRCL0JF6CbuhUsHRG5iEkhjBUGERRK+LA2H70ZE5icXwJFsUXl52velKZCaTJEwCMFIaRVbOIStG6n+9n38jbkAUJy5MrJ72PuYjmupayambKHWYGg8FoWFy+973vpXWVoVBo4icwGGcps7HmUty+FaGf/BBGayvyn/8/Mx0Ow4XRNR/qlVdDfukFSK+8BPXqa6f1eG4BN9MLSL+YrCYGA0KApm0C5TWX1RzKRsWlf3/kd7R+03cckXc7l2JFUeR3LgVOgMALvrRY1XEuecvFDIV5HB3pBcdxuPDcThx8TsDxwwWsX6C75lzqNL5Mynrc35+DGTIRlIJIjakwOA7JFh5+iSuHAAMGCgUDITFMXxvZJ+kWO3zKEtxdCwNYsMRyjHuOF7HEFT9B0RXIgtWsqKgX6fsl8RLmRbtwdPwIRosjdD7mcGHIIy7f6Hsd+0ffxl2r7qXjXiaCiMt5kXnoy/VhvDg2aXFpmia2DbyBgBB4x4lLd4fjjMLEJYPBmHoaXhX/wR/8AS677DImLBnveJxusTMcCMEwEP3jzwOwRo+YieTMxsMoo3i3nRr74E+m/VgFV9OVRsTXdOAXl7VSyWOy4176nUuO4+hrkQWns2kjDpj7XJDH/gY9/v15ay6lit1u/amfpDsvbehjalCMEiTbudQ4BYmktd+DY/sBALdcsQGSKOBkdwHFkgrDNYLEMA0U8gZ0zRKcfX32LE0hgNSYBk4wEImXn9dgGDA5HaWCYQleKi6tfRPnsveoFf+SFWEkkiKicQEDvSVAt7vdGiqKWhF7h/dANVQEhABEXoRpmijpJciCDI7jEBbthkRagTqc/m6z+0ffBgAcT3eXxVuNnJoFx3GYF50PwJum2yglvUTjnmz3WUVXMGDXgU7muTPVrVXziUsGg8GYaia14jh58iS+/OUv49Zbb8VVV12FW2+9FV/5yldw8uTJqY6PwZi1zLY5l8Gf/BDSzh1QL9qA4gc/NNPhMCqgvO82mOEwAr94FFw6Na3HMqrMRpwJ/GmxtcRu3BaXsiBX3I4IPbfwbEQ8u91KEpf/+f6GPe6fJdd4ETeGz7mUeUv8SrYILukKFF2BIFo3pHSuhESThJ7sSWSVLOZF5mFeUzPWnZeApgFHDmRpXSRgpZFmXGNG+gcscankeOgKj3gTT8eOuBFlDpxgolDQIfC8M0bFIGNOVKiqgf4TBiIxAR1dlkhcsDgIwwBGB619qoaKt0f2YsfANgBATHYaHWmGBsnuqEvc5oJWpM7lSGGkooirR9yMFUehGdYYlZAYQkvQqgEl42omA2lIZJomFdeNsmtoJ54+9iRGCiMNP/fxI4/gZ4d+Ss/PmcTvXDIYDMZU07C43Lt3L97//vdj8+bNOOecc3D77bfjnHPOwebNm3H77bfjrbfemo44GYxZh39G3kzCDQ0h8tU/hclxyP7VN4EK8wAZM48ZjaF4+53g8vlpn3m5umkNVjWtxq3L3z+tx6mHshswNez+mGyNIwmJlbNjiDiSXeJyMg19KjmY1fbndi5FXpxwFAngiMqIGAHP8cgoaSi6Ag4cZJmDzilINIk4On4EALC6eS0AYONlSQDAoQNZzw0C3fSKy4HBHEaHFbz8VAYceCRanFpSd/wGdISiJpSSCRgC7bhLay51FcODKnhdwvLVYfC89d4sWGylxg73EhGqUzF0YccGXLPgegiciGJRh6aZLnFpPS+n5qiQUQ0V4xWcxqw9wiSjpLFv5O0yN28gP4DHjzyKp449CdM0EZGitGNtpf3Vi7shUWmSAi+rWONm0kpjN4lUXaUpvgUtX/fz8moem7t/iaH80MQb18B9nWZVNo6EwWBMPQ2vQL/xjW9g3bp1ePbZZ/H1r38df/RHf4Svf/3reOaZZ7Bu3Tp84xvfmI44GYxZB3E9ZoNzGf3TL4IfG0Pxo78N7aKLZzocRg2Kv/ERAEDwh9+f1uPIgoxLuy6f8WY+QLmWrFWnTJzLgG8MCYGkrAZcabGVRoNUo5K49Ke5lolLd0Mfob5usbIttjiOQ0SKUGEmCzIkmbfEZbNEhUaL3Tyoa0EIsYSA0ZEShgeLnv2nXeJydKyAba+kkBnl0NYWxLK1QeimDoETEBAD4DgOAifAMA2EotYbkM+a5TWXhoKh/hJ4U8KKNU79I6m7HDjlcjhJ457wPEiChFIBeO7JEWx/NUXFNEmLHS+Nes4HmckJgArRrJLBW8N78fNDD2Nr/+vYPbTL+xxbSI0WLXcwIkUQEkMIikGkSikYpoGRwggePfwz9GZ6yt6Targ7zxZdY1UaQbUdz0bdx4F8P32sNdCttTfbg/5cP94a2VPx74ZpVJ2HSjBNE5qh0ZRy5lwyGIzpoGFxuWfPHnz84x8vq7kMhUL46Ec/it27d09ZcAzGbIajNZczKy7lXz2F4M9+Cr1rPhs9MgfQLroY2tr1kPbsgrhr50yHc0bwi7dan5lEwHKmSFdTP0ToyZNMi+V9TXwqPV/wOf+86+eq3WJ9C3vJJX7djWdichySzNGaSyJ0yExPSZCwcEkIJmfg0IEsfZ5h6sikHTGiQUWpZGLpshiuvbENgSBHO7Be3HEJLum8FAJvi8uIdb6LWae+lKTxljQFg30KeIhYttoRl10LgwDnci5NjdbrSbaTe+TtIjQNGOxXoJes/ZJ05fHSuHUu7XPlrrsk7mZWzWLvsLNmIHM7Cf6aW3JNNAWaYJgGUqVx7BjYilQphe0DW+l2r/Vtwcu9L6IabnHpftwIxP30u4/7R/fh54d+inSpsqPZm+2lj931jxNB5pL25/qoiDyV7aV1q5u7n8KTR39Rcx/EtQzbjZ1KkxTWDIYf3dDxet9rnptIjHcuDYvLQCCA8fHxin9LpVIIBAIV/8ZgnG3QbrEzmBbLZTOIfuF/AwCyf/N3MKOxGYuFUScch8KHPwIACP7gezMaypmivFtsdXHZEmrBtQuvx4UdGyr+nZ+itFj3c8rTYr2N1EXfKJJKTqnuS4slNZcAEJWdz2VIDCEoSzQtljTDIY4sz/FYsDgAk9dx9FAOum53jHXVXDa3STBgCZMLL26hTYNUQwXP8ViSWIrVzWuocxm0dXouYzjOpe2aHTuahpKzRpdEY87rlAM84gkRuXHAMEzbubSOLwoSVMXAkX2OOOk/rtuvjzT0scRQe9iamZlWnBRMIo40Q0NJL6HJTnUtal6xo/rEV8QW6SQ1dv/oPvTl+gBYYrYnY/V96E4dpenGlfCmxU5OYJG6Tb9A2zW4ExklgyeP/aJinemprOOwamb98z9J+q6iK3QB/+vjm/HCyecAWLWpo8XKta0EOmqHlzxdmRmM02Ug348Do/uwb4SVxjEmIS6vvfZa/O3f/i22bdvm+f22bdvwrW99C9ddd92UBcdgzGZmQ0OfyNe+AqG3B8Xb74DynptnLA5GY5TuvAdmMIjAzx4CstmJnzDHaaRbLAAsii+uOmYiHohD4iWPs1mpBrIa/vEjQHmabq1usSIvVexO66+5dHezdYvLgBDAihVJtC/k0LlQhKIrHodO4AQEggLmLZRRLGrYsz0DEyZ006DicvnqMHROQyIpYtHCqEcM+0WzYRoI2qfy0J4iDN069y89O4zv/OMJ7Nk9Bt6UcP0tLWWvqblVAmcKyOd0bH99FAcPjFuvjZexe3sGWoFDOGIdr/uAiv/5r1N4a2vR40yTtOy8a06l/1wtTSwHUO4i+sUXec+b7X0eGjsIAFgcXwIAeGtkLwBHRPmPQ1BcgnCy7h05ht+5JKM9FF3BwbEDnr9llLQnFdUvnvuyp/B2lcW5O86+bK+nPlUzNE99azV0+3yKvABZkGGYRtVzxGA0AvkcTDYTgHF20bC4/NKXvoSFCxfi/vvvxxVXXIHbbrsNV155JX7jN34DCxcuxBe/+MXpiJPBmHXQxekMpcVKzz+L0H/9B4ymJmS/9jczEgNjcpjJJpRu+wD4XBbBRx6e6XCmnUa6xU7ElfOvxgdW3kXTSBvdH3FN3SLMLxb9TqjgGUUiVkmL9dVcVkmLlXgZS5cmcPEVCRRh3Vhwz/Mk41bOvySCQBg42V1Eb3fR09Bn45UJLFguYP2FUQREuWqKL3m8YJmIUJjH4bcL+Nn3h5DP6+g+kkf30SwKeQPz50exeHl5A6WmVgm8KWJ4UMGeXePYsXXUGuGRB575xQg4CLhwUwySzGH4lIl9u3N45dlxz3sTliIICAHkVUeE+WsDF8UWQRbkMqGn6V6hFBYtcbk4vhTntJ6L1lAbFsYW4aoF1yAoBjGQ64eqq9S9q+bMFT3isvHFsGmadN8FX82l+7X1Zr0d9E9mvD/rvprLXx1/Gtv630DKTil2447zVO4URotOTWtRK9DHtcSl17kM2PtlqbGM04dkHfg/D4x3JuLEm1gUi0W88MIL6O3txX333Yf7778f3d3dGBoaQltbG84//3xceeWV0xkrgzGrIHVDIeHMz3zlxscQ+8zvAQAyf/sPMNvbz3gMjNOjcP9HEHzwJwh+/79Q/NCHZ9HA1KmnUeeyFjzHIygGPam1k2nowzXSLZbzOpeVxKx/FInkTouV3M6ljKC9sE/ZdXn+2kKe48EHTGy6JoEnfzWIE8eKMK7VkUlrSAWOo9sYxfW3JbF/VIbEyzQt1h87eSyFTFz57iaM/TKIYwdK0JoKMDkRXct4pEIBXHJJuWsJAM0tlnPZ31OCAUBRVBQywFM/G0E+p2PdxgSaW/OYNz+A4j4R4IDRIRXz9QAAS/AExSDCUgRjxVEUtSKCYtAjxONyHPFAAkEhiLSShmZo1ClWXa4az/G0k7DIi7iow9u4LCSGUNSKKOqO0NKrpJ2ernPpHl/iFnb+Y/pF9MnMCQDAksRSdKeOVRWCaSUNWQhAM1Q695Us3iVewnBhCP05pzGQe0Gv6gpQpV6ZnE+roZI54fbV2DmwHR2RTnTZM0cZDPK5Y84lA6hTXJ48eRIf+chH0NvrFKJHo1H8/d//Pa666qppC47BmM0siS9FbFmcpmidSaJf+hyEvlMo3nUvlFtvP+PHZ5w+2qZLoa07B9KunRC3vQFt46aZDmna8DuXU9EEi6/hPNbzPL+A5DiOOl5+sepOu5WqiEt/509ZkOjjqBx1/T5Ancox233yj10h6axt80TIMoexYRXFooZsWkem/SD2j4XQHu6w9yf7UmGdx0RAq4aCYFDAuRcm8NqvCjh6IA8JUWy4MoJIIIGWWBiVaGqVwEPE8KAKkRNhcBpOHlHRvzOLeFLEpVe34GC6D+suiGLJ+fMxtieKvTuyyI0KgFUWiaAQREQKY6w4ioKWR0AIwDANyIKMqBTD6uY1AICAGASUNIp6EVE+ap9TS3xtmncZksEmcIaIh3/cj2xGw/2fmA9BcK4jIubdDmk159I9fmQysybd4tT/fLdgdDd5KmpFDOYHEBJD6AzPQ3fqGDRDxWB+EGPFUXoeyGt4ceR5jBVHcefKeyAJEl28L4ovxpHxwzg8ftDZt0tQKzWcS+IEk269AFBqcM5nupTCnuHd6Mn2MHHJoJDPwUzMbmXMPurKJfrmN78Jnufxox/9CLt27cITTzyBtWvX4itf+co0h8dgzF44jkNrqPWMN/QJPPIwgj97CHrXfGS//s0zemzGFMJxKPz27wIAQv/57RkOZnopcy6n4DNTqyFPLarNp3XXXYo1ai7JwtwvTv1psW7nMiSG6D5kQaJpsqSDqt+5JI14TBhoaZdhmMC+t9LQTQ1c2BISZM6jxMtVhTaJkQieNetj4MDDMACT19GxSLBfnyM23DS3SuDAgTME6JwKkzNw/IC1r0uuSiActJ4nSTwWL4nT2ZjZYedcBsUgbfKTV/P0PIXEEN63/DasbFplbWen0rob7JCay+ZgC5qlNvzo309hz/YMjh0s4Mh+b60j6WCbd9VAVhv14WnoMxnnUncLSN0jYlX331zH782ehGmaWBhfDFEQ7fg07BjYhtf7tnhEcVbNYCg/CEVX6CzQkmY1floUX0yfSyiojris1YGWnE+BF2harNpgUx9y7sZLY9AMDQP5AU/sjHcmxME3TIM1imLUJy537tyJz372s9iwYQMCgQCWL1+Or371qzh16hQGBwenO0YGg2HDdx9D9I8+AwDI/OO/wkwkZzYgxmlRvONuGE1NCDz+KPi+UzMdzrRRS8hNxT4b6RYrUOeyehOf8tEklhgQeZG6rn63lKTFNgWbIXAC7YBKIIJS4mXa4GfEnt/on+lJRojoho7WDkvA7duThsJnEQxZsZEFnCxIPkFZnu5LBE/XgjCSTRI4k0OiWYAQsGJ2d7Z109Riz+o0BRicZj8WwXHAeRfHPY2EJEHC/EXW60gNusSlEKKzL/OaIy797jApM3Cn1Wm0RlDAnu0ZdB8q0AZCb76R9jyfCGS30FGruHKnO4pE8QlSd2qs+yaDOy22x57DuTC6kN6gUA2NHt8tCk9le+lzM0oGuqFDNVQEhADmRbrKrnePc1ljYe+MkpHoHFb/a5kIck5N08TR8SN4+tiTePXUSwCAY6mjyCjpWk9nTBFZdXY1gnOnZrPUWEZd/8IPDQ1h4cKFnt8tWrQIpmlieJjNtGEwzgilEuK//RHwmTTyn/kjqFdfO9MRMU6XUAjF+z8CTtMQ/P53ZjqaaaPcuZyKtFi3iJrEKBKfOHTH6G7gAziC1O1g+gUocZLWt6zHB9d8iNbKEYigDAgBWjtIhEBI9IlLl+PY1mEJvxPdeZSEjGdcCGCJ1WouLqlLdRq5iFhzbhQcBDR3CLR2UBIqO5ehsIBQmIcAEeGIgERSBG+KWLYqjHhC9JxDmZfROT8AngdGejlsezWFnhMFWnMJWB1jiZvnF0jEvS26FqbuGsGDb1ndZt9/XzuCIR4H9uaQzzlCjjRQKnicy2o1lwpNJ55MGp/f7SzYMZumCc3QaCwmHHFJnOa2cDsVl5qh0mvALUrHimP0cVbN0uMFhCBEXsS86Dzv8d01lzUb+pBuse6GPo25TO797x5+EwDQn+vH8XQ3Xup5AdsHtlV55jsDRVc8nXyng2Opo/jZwYfQnTo2rcdpBLegZE19GDM3oI/BYDRE5Kt/CmnXTqibLkPui38y0+EwpojCb30cJs8j9IPvAsWz8x/lsprLKRjf4xVU9e+PNvTx/fNXywkVeREiL3pqI/3ikogDjuMr1oCua1mPFcmVaA21lY1ZCVaouQQscRSOWgLPhI7kwhJWrPHWR1ozMt2itzwtlrhgPMfjiuubsHR5BEtXBaHpltio5lwCTsfYRFJAW4cMwZRw0WWWcPbM/xRkSDKP9q4AtLyEvp4SThzUwHO8x7kkDq//HAUqpcUScWgIOHIgD0nmsHxNGOduiEHXTeza6rhkRPgXPJ1Ty4WTYRrUBQyIASiGUnM2ZCX8Aq5gu6UkXiKUiZA2TAMZJYOQGLJFrZMWS8SlZugVb7pklAxduAdFa79k9Aq5TtyCupZzqbqdS1sAV3N3q+7DlfZLXGLDNPBG32t2vLPLuezP9dG5oGeCN/pfw2NHHvFch1MNOcdjro7BM02ROZcMF3V3i/34xz8OQSj/B/MjH/lI2e+3bNly+pExGAyK/IvHEP6Pb8Nobkb63/4LEOv+6DJmOcaChVBuuRWBXzyKwCMPo/TBD810SFOOX0xORZ1yJRHVyPP84qaWuOQ5Hu9adINnvIh/GyIsqr22zsg8dEYsxyksRTwNhPxpsbzLueTAYd35UbSkIli2sYTegrs2VATP8Z5UWKFCQx/rsTXiJJ7kcfFlTcireZdzWV1cNrdK4EYExJMilq2O4MIVHVh3viWO3eeQ1DyuXBvGkYEgOABKRrJfL6m5zFER7k9LJsKppBcxmB9EMpCkaZw9R1Woiok150Ygijw2XJ7A1pdTeOXZMWy4PAFZ5qlAdtdcqnq5c0kWwbLdWCiv5lHSSzQttx6IkxiWwsireeq2kppGyxXM0NeaVTIwTAPxQMJzrhS9RLfRTa2iyM2pGRozuU6WJ1ciLEYwmB/ArqE3PQv7WjWXuuHMuSRpxPXWnB4ZP4REoKmqM0rEVM41z7ReskoGvz6+GRd2bKDC2c2WU68go6Rxw+Kb8PzJZ6EZKm5YctOE+zVMA8+e+DVCYggfWHlXw3FNhrHiKDRDQ6o0Xtaoa6ogNxDy2uyodVV0xeO8s6Y+jLpWqL//+78/3XEwGIwq8N3HEPvspwAAmX/+dxhdrEPf2Ubht38XgV88ivC//QtK9/6vs28syTQ4l5OtuSQuZ1kd6AT764h0en72b+N2ByeOgUdUiiJjp88FxPKGPm66Fgax4eIEjowf8vy+UnOhSg19qj0m9XYSX30psGRFGPwBEW2dJkSRw8K2mFN3yrnFpSXurr+lBWsvX4U/+c5r0MdEFIu6kxbrqrl012sCjnA6kT6O3UO7sL71HCpkju23FtMr11n76ewKYP0FUbz1ZhY//vdTGBpQsOz6EtBuCVhCJSFEXnPQFpcA8HLvC5gXmY/1redUPQ+V9pGQE5a4tIWVU9Mo0o6/gDVaBLDGrgCAaKch5+twHDNKhopXd+OnedEujNvzMD3OZQ0n0j3nkuyrnuYr6VIKr/S+jI5IJ+ZFvCm5y5MrcCx1lL5WRVdo2rGb7tQxDBeGcEH7RZ70cgAYLAwiraTRm+mpKC4PjVmdcXuzPXSci27oE3aJzmt5aIbWkODdMbANraE22jipUYiwyk1jTSR5H6fzGI3gdyqLzLl8x8PEJYMxi+GyGSR+8z7w6RTyn/5DKO96z0yHxJgG1Esvh3rBhZDe3AnpuWegXv/umQ5pSpkO57JS45r6nld5FIlHXNYx2sRf50mcy3qFs1tc+mfl+l09wHK20koaASEAnuNR0Ap0AV9NRFYTzOQxca2qdYsFgA2XxfHBtgUYVHrtbd0zP53HJBaO49CZbMX86HxkBlowNqxh3oIARF60usUalgiplhZLBFNGyUAzNKRHTJzYkgLHOeISAK67uQVv78qi+7Al7F5+OoOl71MhttTunEpGb8hCAKY96/FU9hQG84NY17K+rnpgMu4jHkiiL9dHBYVGnUFLXBIhTeaZxmXLuSTpxLXGpoSlMDRDQ1Zxai796dPk5kLRM+eyRrdYVw0ruRlQj7gcs+tFi1qBbi/xElRDxfLkCuTVHPpyfZAFGYquIKdmIQvOiK7u1DG82PO8fS7Gcd2id3uuTRJzXqstArcPbKWPi3oREb72fE532m5JL5V1ZfaTVbPYO7wHzcEWLIovRn+uD1E5VpbGXg3TNKmwyirTJ/zIezCZ1FtFVzCUH8T82IKqfyfXb72QGktyQ6XEnMt3PKzmksGYrRgGYr//uxD3vQ3lmuuQ+z9/OtMRMaYLjkP+9z8LAAj/8z/MbCzTwHQ09PF2d228oY9/HApt9FPnvqotvupdlJEGPxIvlQmtSuJ2vDQOwzSQDDYh4uo8CwB8lXPBVxHgZBsiSqQa4pLjOERCzqLcvS2p9eQ5vqzZ0eVt70KTuhRjI5ZwCIkhlPQSdf385znoc29LegmZbAlvPJ+Fppq44bZWxBPOMVo7ZNxyZxs2XpnANTc2A7qAnVvSHrdSNVS8ePxFvNjzgrNfV4qpu5urZmhIK6mq58ENdS7tNFeyyHc3zOE5nqa5khq5eMByLp1usU6sfsexKdCEqBSDbuoYtxv8BH3p0+Sc+1+zH8M0MFYc9TmXcsXjViJlC/6iVqT7uGTeJly/6N3ojMzDpV2X48oFV1PX0e0UjhVH8XLvi9Z1JEXQm+3FnqFdnv2TGCqJJfc4FyLSgdp1fVk1i7ya97jYhTrGpZD3VTFKKGgFbO5+Cm/01V/mVdJL9D2fzm6upE52MinIe4d345kTv0JP5mTZ30p6CT879BBeO/VqQ/skzj35PBT1IgbyA1UbagHWZ+KJo4+jP9fX0LEYcwMmLhmMWUr4b/8agScfh7Z0GdL/8T1WZ3mWo7z3NuhLlkJ+6QWIb+6Y6XCmFL/gmoq0WK5Bp9Efi98dJA1+6t1Xte0aFZeVav38zYYAZ4Efl+OIypa4lIUKabFV3Eq3+COxE0fM3x3Xj9etdMQlceD8aY6AM8aEiEuSGpux5zaS2I4fLeClX41ChFdcFtQ8BvuL0FUeF1wSx+XXeUe7AMDGK5N4713tuPamZsybF0E2qyObcsSIamg4OHIQx8aPIG0LE+L6BAQZLcEWz/5G6mz8QkRIU8CKicyipDWNnAiBE6hzSUQrSYsVeKHsBgvZJ3GAOyNdtKswaUjjT5+udN6J8BjI9eOnB/8Hw4Vh7Bt5G48feZR2F5V4kdbZ1uVc2uJWMRS6fUxOYEFsof04jmWJ5dThc4uerf2vwzANXNR+Ma5d+C4AwFDBO8KOvPZK8zKr1YRWq+szTAO/PPoL/Pr4056043pSNclrU3SFxpJX63cH3SNppjNllcxZdTeEqhci0AfzA2V/Gy+NQ9EV9GQd4Uk6INeCvBdJ+/PQkzlpj6h5uepzTmVPYaQwXFHkvtPQDR0nMycmPM9zCSYuGYxZiPz4o4j87V/DiMaQ/sEDMJPlCyvGWYYgIP97fwAACP2/s8+9JHAcNzWjSFz/fDUyN5O4dtVqLut1LomI8y/w/Y5oNchC3N/MB6gsXMmCPSSGELGFGnEuq6XCclWcSxJ7PTWXgPc1up1L0Y7TX18HWF1mAWBs2FoIE9eNuEnkffjFg4N45okRPP7jUcB0roucmkMmrYM3RSxdVbsxCsdxWL7CEm4jQ85iO6/mqDt50l7ElqiIC2B181pcteAaXDH/SgDAcGGk5nEIZHEfk+MIikGkSik6ixJwnEvDNFAs6nj88WM4eazoGU/jd4vJPttCbbh79QexrmU9vYkwWmUeaiXHmezn6e5fIq/msXtoZ1mtrsiLtAFSPXMuyY0N0zSpYJMrHJtcl0RYHU93oz/Xj2QgibUt66izlfGN6iACqaSXPE4lUL2bbTWxmCqNo6AVMF4apzcUgPqa35BrQ9EVKhR1s/4Fvzsmv6v45uAO/Pr40x63fLK4z0mjIpbENVwYKvtb1nbYi1qRbvfm4A48dOCBmk4smbOaDCQBOO9nd+oYRqp8pkjcmqlX/Lsf0zTRn+vDrsGdOJ7urus59eJ+T6bi/WmU7vRRPHfiGRz2fU7nMkxcMhizDPHNHYh/+hMwOQ6ZZzDmAQAAioZJREFUf/1P6KvXzHRIjDNE8d7/BaO1DYFfPAr+6JGZDmfKcI8KmQrXEvA1ruEbEZeVRST5fb3OI9nOv8CvV+iShTZZkLupJHDJgk0WAohKMfuxJRDEqk183IJSLNuGLIZrpcUC/pEjrrRYez9ShVEmzT7nUvJ1JxV4HsODCob6rdf19ptZHD/gLDR1U0cmrYE3RTrrsxZLllpCbGTISQt1ixjSCEahMyNlyIKMpYllaA21AXBE3EQ4+wigJdgCwzQwXhqn3WJFXqDXx6FD4+gfzqDvMO+5tkydx54dGXp+FMPaJ88JCIkhcBxH32dCUPA7l+Xvm1+MRaU4moLNnt+JvASO4yALclka7dHxw9g7vIe6pYZp0IZEAOgMR7HCbNSIz7ncN/I2AODizkto6nRIDCGrZj2LeLf7VtC9TiERy+TcEffXPbLGjXvsiDvlsp4Opu44iMPeiJtU8DiXOZoim1Nz2D20C6eypybd4XWkMIJHD/8Mg/lBT5yV3N5aEFE3Uhgp607s/rwQF3+kOAzVUDFQI321aL8XpBuym11DlbNwyDVSq7uxm4NjB7C5+ynsGnoTL/W8MOEs0VPZXjxx9HGaUl4NRVfw0IEH8Ebf6yjpJTx44Cee2l7Ael8fPPAT7BneXVes9UKuSfIezpYGTVMBE5cMxiyC7z6GxP+6G1w+j9yffAXKjTfPdEiMM0kohMJv/y44w0D4X/5ppqOZMtyCciqa+QB+t67+tFihqnNpxVgp1bAS5Jj+7et9fc3BFly54Gpc1LGhaoyVCAoBtIRaAQAJ2ynw1FnylV3MSjWXZJFaq6EP4BUSbiEaEsOIyTF0hDvLnpP0iUvR13xG4AQc2GstMFeus0aVjA94bzxk0zp4CGhtn1hcLl4SA8cBI4MKxkYUjA4rnsXaUGEQRa1Im/G4x6/E5QQkXsJosXzBXYmSXoLACRB4gQq30eIInRsq8RJ9D0/0W4v0wnAQquIIqp4jKroPF3DwLesckPfCfdNkfmwBvYFgGCZ2vFRALmsdY2xExYlDJWQzXvGjGqrHsQPKa5zJe0ga8JDXXNSKeLn3JewY2IYnjz6OgfwA0qWURwgSAVVpNqrjXFqO8UhhGLIgY16ki24TDyRgmiaySgaHxg4ir+Y9gpgstIftlEnyt+XJFbhj5V04t+08+z2oLBbdqc1uUVxowLkEgHTJeu5E4jKrOELZLWAN08BgYRAnMyewf/Rt+nutRsOlWvTlTiFVSqEv2+u5IdCIWNUMjb5G1VDLaozd7iS50UKEYy1XnziXITFMmyZ1RjoRk2PoyfRUnMdJxGWtBlRujqeP0f0aplFR6BW1Ig6OHoBu6Hh7ZC9GCsN47MgjNd1Ia45sCQP5PowXx+yGR15Xd7gwhKJWRG+mp65YAUvc1nptp7K9ePDAT3Bk/JDHMT9bYOKSwZglcCMjSNx3J/jhIRQ+8jEUPv3ZmQ6JMQMUfuvjMKIxBB/4Ifje+v8xm81w0+BcVhNOE9EebkdTsAmdrgWvex/1ClWBikuvMGsk43dZYrknVdKJpXoMshBAa6gV96y+D+ta1nti8T92nxePu2k/JouuhpxLT0MfAbevuBOXzNtUHqfMIxoXMD6qQtdNWh9K3FKBF7F/j7WYvfLdlkAzU3EEhACagk3QdRP5nI5YJAA5MPH7Gw0FkWwSUSqZePmZcbz2wjjcOtE0TZzK9lCx4hZHHMehOdRC5xMWtSKOjB+quihVDZWKvuZgC0pFHXv2O4t+gRfpezgwaL1GThfR11OisZw4ZMUxOqzAMEznua73LypFcdvyD2Bl0ypgoAvP/yKD554cxaG3c/iHv+jGT787jFeeGfMIYlVX0edymVRDQTpbwOF9ORTyljNMbohInPWeOA11vEJlpDBMu/f6qXTNhF1psSOFEeimjrZQm+fzH7Pd2LdG9mLLqVewZ3g3Sm7n0o5hy6mX8fzJZ+nPEi8hKsdoanA1J3K4St1sfc6lIy6zarm4HMgPYPvAVnpdZJQ0Htj7AJ4/8awndvJ6nzm+Gc+deAZvDe91juESho00/SFimoxXIeQbaOrj39afGut2Lom4JMet5eqTGw4hMUhryJfEl2FVk5V1VSndk9z4qSft2BJ/AwiJIVyz8HrIgowj44fL3Mv9o2/jtb5XcTJzwp41a/H2yFs19k1Gx+RoTP5UcXJeMq6bFbU4le3Fr49vxq6hnVW3ITdBxopjVFyeTfNBmbhkMGYD+TwSv3EvxCOHUbrpvch+/W/PvlmHjLowk00o/PYnwCkKwv/4dzMdzpTgFpRTUW8JTH7OZVOwGbcuvx3t4Xbf/iqPKJno+JNNi62FO83XHw9ZXLsbAU12FEm1n/146yz9Yrr6+9nUIsEwgPS4Rp9X0ooY7C/hlz8dwcnuIuJJEYuWBhFLCIgPnYv3L7sLMTmOXMYSQk1N9Q2il3gJLS6HU9eBUtESAe50TTpKw5fW2Ww7kGOlMewbeQuv9L6MU1lr/IrbgVB1FYZpuMRlM97encWjvziCg/vTNBZy7odHrIU3DxE9x4vIZjQcP1pE2jZzNM06P9W66IalMC7rugKdGcvhPrw/hz077NRUToSimCjkrdfJcRxUQ0Vf7pQTr6Fi394U9u3J4fmnRnHwrSzeeGkc//erx/Dqr7IwDJMeu0g76VoL83QpRest3XW1kp1W64fneISlMPJanjaMafN9zmJ2x9xjqaP2e5KF6hGX1vkq6SUrJdd2EMnxqbis4Fzqho7xUuU0yMk6l7qpWyNGtCKet4UiSbc9lT0FwzRwMnMCPZmT9PmksY1maGU3vkga6FB+CD87+BBeOPnchHEBjquV9gmcE5nj+FX3U3UJn7xLqAPlbmRWyYDnrPRtUitJXtNYcbTqzRYiysJiBC2hVsiCjIXxRViWXA6e43F0/EhZXSOJRa0j7bg3cxKmaWJBbCECQgArm1bBMA302p9PArl+i3rRk2572J6TCljC79kTv/ZsC1jnlzQ78jeRIuKyoBXqSpMmwrGvRioxcW5LeslxLuvo3DxXYOKSwZhpVBXx3/0opG1vQN2wEelvfwcQ6l8sM84+Cp/4FIxIFMEf/QD8qd6JnzDLmQ7nEqg+s3Iy0FrMervF0nrDyaXF1rNvoDzt1j+yA/CPZSlPf/U/9u9/IsHvbehTf9fqji4r1rd3ZemCtncgja0vpdBzVAFM4OIrEuA4zuoua/DIpSxxk0lbi7iW5vKGR5UQeAGLloTR1CKC4wDO5JG3nTpS31rSS9Qh9Kd1hsQw3YYInKJWxL6Rt/HAgR9R54b8P2TPnIzJcaSGgKKQwhtbrLRagRfoezI0YrtZJo/tr6bwd18+hu/9Uw94CAhHrG1GhlQqHqq51kMD1t/HRzW8vSsLQeCw9hzrdWXtc0ViOuVadKu6grGU9Xo0zcSBt/J48uEhjI9qGDhpYN/uLHbvHMNQv0IFWEfESnNOKSmM2K+3PdxB91krdTwiRWGaJhWPbSGfuLSdS7JIL2pFz2KeuGuksQ8RU6SuN2TfVPELgN1Db+K5k7+GYRq0htaKx3JTCw3WXLpdRc3QsH1gKz0mOSeDeafr7db+16nIarXT1gHg6gXX4salt2BVs+XikeuPpIoeT3ejL+vcDCAcGjvoGdlCxBBJeSY3AMaKY+jL9eHI+OEJXx+Jj8y4dLuRmqGhoBUQkSJIBJIoaAVklDR9n4ir78c0TeTVPEJiCAIv4PKuK/GBlXchJIYQEkOYH12Akl6iNc+AJXKJ216PWDthP3dhbBEAICEnAZTfMHDSS0seNzyjZuj1tHd4N3oyJ2mqsvs9J12M/empOdVxSOsR8Sk73Xi8NFY1NZa8FyW96DS0cl2jA/kBDOTKO/rOFZi4ZDBmEl1H7NOfQOCpJ6EtW47Uf/8PEA7PdFSMGcZsbrFqL88S93I6ai4BR1RNxT6rjSipvn3ltNipjAUod9jkCoPgvc16qnSIrTILs54aU6+4nLj+kbDp6iTAAa88OwZTE6AqBra8OATDBK68rgVf+voyXH2D5Rg2u7rLesRlS33OJQA0N4Vw5buasWJVFIIpo5DziktFV1zOpfd1kMW64nISNFPDeMlKOyViYPfQmwCAFcmVAIBC3oCeisLgNPSPD6PvZMlyLsGhVDKQL5YQjvDgOQEjQyoMA4jGBSRiQZxzIWlCpLjqX533plQy8MRPBzE04DQ+AgBNNbFkRQgLFofAmTyytstLBLJmaLTTrGpoSKUtcflbt16Duy69HhdfnsDdH+lESArg6MECfv5QD372o34qwNpC7eA5HqnSOIYLQ+A4zlM3Wak7MKHDFqGjxRFwHOcRegDK0sALWt5TQ0iEvZN6mrGPKdnvE0mLdZrnaIaGNwd34pQt0ha4alWbgk3gOR4FLY9UabxmKqq7jtPttKWVNI6MH6afp1Hb1RuyxWVbuA0ZJYP+XD8A0Ncck2NYGFuEjnAHbcZEHDXNlQ66pe+VslrfHQPbsHNwh8fJdZ+fZNDbQV6vo+sqcctIfJ40YPs8x+QYdfH94qZS59e8lodhGjQ7gOd4+lkCgBVN1ufE3bHY3Um3noY+/bk+iLxIr0GStVH03WBQXLWLxA1vC7fDNE2klRQ0Q6M3BA6NHYRhGh5BR1KqdVP3iF53urC/03EliANqmmbFrryA4yIXtRK97sh7bJomnjvxa7zS+9KEx5qtMHHJYMwUhoHo5z6D4M9+Cn3hIqQefhxma+vEz2O8Iyj8ru1e/vD74PvK72zPKbipT4sFHNHaSEOfajjisj5nbkFsAVpDbR5HxwpqCsasuF6POyWV47iKjVTcabTVHErPY9f2E9Vb+repZ3tCW4eMcy+KIZ/VsW9nAf2nSiiVTHQtDODiy5IIhpyYmlqt1zU6oiIgBJFNW4vl1gbEJRHisWgAvCkin7UEAml8ZDmXStnr2L83i8EevWwb1VDpIjOvFTCQH0Bfrg9xOY4liWUAgL6eIgJGDOGIgCKfQveRgjXnkheQzWgwOBWJZgktLdaC+IJL4vjcV5fh7t9YgLZOGYIAjAy6nUvnvdm7I4OtL6fw9CNDSI9rcN+3WHVOBK3tMnhTRDajg+d4TzfZrsh8+zUoSGdLEHgBN120CffevBHvu6cd6y+I4V03diKRFKELRaTGNOoEhSWrUVNRK6KoFdEUaEZYcm561rrBcF7bBWiyhU8y0FR2cyTuE5dEnJDXTWIg4os0nSE3VSTBapbkrk8jcziTgSRWJFdiZdNqxGXrhkJYjCAkhlDSS3ji6OP4dffTVWNXqrhMxK0iqfRjxVHk1TwyShrJYNKqiYUjSJfEl2J5cgUu67qCft9JdPSL3R3YI+yyHlfQMA0qNIiA9TcwikgRj4irp16PNEuKy3HwHF/RqY1KMYTtmxSj9g0VmuJdLK9nJUKxUtdrAJgfXYCQGEJvtpdum/O5wpU4Mn4Ih8cOIa/moegK4nKC3iAL2g59USugpJdweOwQdEOn9ayKrqCkl8BxHFqC1ppqvDSOwfwAfY8KWgEnMyc8AtUdCzk3VvMpJ95K4tIwDRxNHcGLPc9jMD/ocTdJevhYcdTzHjtpsY5zT/6fVlJQdMXzmZtrMHHJYMwEponIn34JoR/9AHrnPIw//DiM+QtmOirGLMJsbkHxY79zVriX7jrEKU2LtRcbjYwiqQaJsd602K7ofNyy7H100L1/P6eD4BGXzkJe5uWK4twrHBuruZyoU6y1T0dw19tNl0Ccyb1b8xjotRZPC5YEPfsEXKNLbOdyfNRaKLa3NyAu7dcSjwXBQ6RpsUTQqIblEIq8SM9NJq3hf77Th6ceHIdpmvbC1FpY6oZGXbWiVsCxcWs80Dmt59Hn954oQTJCWLIiBMgKxkdV8BDBgUc2rcOAhmhMwMbLmnD+xhhuvtNyjQReBM9zaG6VoWkmhgedZkCEvpPW+Tq8zxIFK9aEIQes93/1+gha2mXwsESsyIseN7Yj0gme45EtFFFQFMSjAfC899rZeO5SXP2eZhTjJ1HI667GLCEqzgArzTPomrEpVxhDQhB5EVcvuBZxOU7dXc97JEieemHi2JH3qKAVYJhGWdqk+6ZKQAxAMRSMFkcwWhyhrvKi+GJcPv9KhMQQdavDUhhBMQTTNKEZGtJK2pPO6qZaB1pyXiJSFDE5hrSSRl/OSj3ujHaiK+r82x0QApAECVfMvwqdkXnO67avTY0KIDIr1fr+GHEJN3fKL3G+/OJR4mXcvPS9uG7Ru+y/e0e4VIKIuogUgcRLHseYiKaoHKONmcZL1nntjHSC4zh0p46WpSNn7ZTRauKS53gsT66AaZo4aqfuep1LR9CdyvaiO3UMeTWPV0+9gi19r9Aa2njAuSlBnUutiAOj+/DqqZdxPNNNBTtJf5d4ic7eTJXGaS3yAjst+Mj4oapzXsnv81re4wpXSot9pfclvNzzIrpTx/B636v0OwYAutPH8Isjj+HxI4/il8eegGZongyKouakxRqmAVVX6c2SJp87PZdg4pLBONOYJiJ//qcI/8e3YbS2IvXw4zCWLJ3pqBizkPwnPw0zHJnz7qVbEE1lWizt8DoF/5RVm385EX6xPNU1l+4aR/eivNr23oY+7vNeeZv6nEsrhnrqM/20dcpYsiKEzBiHvl4FggC0tstl57m5zYpjdFhFbkxAIW8g2SwiEipPA64epyVAErEABFOkabFxWnOp0EUn4cDeHEwTUHICUuNk4eeMa9CouCzSxXlLqIU+/9TJIiQjjGSLiKYWCboOjA7olnOZ1qBzKqJxAStWx/CBD3UiECCNoKxzumCJ9fpOHLXEgfu89PV6F76d8wN4/30duOXONiSbJTS1SBAgImeLS7cAawu1QeRFjKbyMDkDiWj5tbMguhAxOYZSaBh5jCGdt0SsW5wBVhqlOxV2ohsSiUASt6+8E2tb1lX8e2uoFSIvehbPESkCkReRU3O0Ps6NJEjQNMt1CgqWWHzq2JPY3P0UrZVzz/MkGQUtwVZai0roTh2rGFe1URBOx1qZHmP/6H4AlriMSBH6WvzHIoiC9X4TQUfmms6LWg7zSMEZ1+EWikOFIeumh6/Zi8xLiAcStKa1Uk3pQH4Am7t/iTcHrVmTeepMR6zzaWjUySN1glEpSh0z4lw2BZuxMrkKiq7greE9nmMQoRj13WRzszy5AoDTNdYtLsn50AwNL5x8Di/2PI/tA1thmiZM08TJzEkAXsc76EqNJqKYOJyAJS41Q0NACCARTFqvr5RCX9ZqsHNh+wb6u2o3FEr2+SaOLnnfK4lLIoBFXqTCcH50AUReRKqUwmhxhDrFqVLK49yqhupJwS4ZJbq/Zt982rkEE5cMxpnEMBD9488j/C//CKOpCeMPPgp95aqZjooxSzFbWlD4+CfAlUoI/903ZzqcSePpFjsdDX3qdBtrwU1SXJbPy5zabrHuhXylekvrmBM39KmWOivWce6Im9ZISqybCy+NQzCt57Z1yBAErswBbWpxxGXvEcvNaOuU6aK8HoijFo8HrbTYnG4JlmEBrz43hsHRNEzThMhJeOx/BrD50SHs220t9ARTxvCAAsVwXAXd0KHZQqeg5eninNSXAcCpEyXIZhiJpISmFivWU90a3ngxhWMHCzA4DYmkVPZ6ybmctyAISeLQ11NCqWTQ688wTAyc8orLtg4Z6y+I4ZKrkgAAUeQQjwVRLJiAJtJjBMUgonIMsiAjl7EW74l4uejhOA5rW9ZDDvAYDRxGKpezn+8Xl6201hGoPOOyEa6YfzVuXf5+jxiUhQBCYsgS9z4hZRgmXn46g7/6whHs3ZGhTa2IC0SaB7kX4yuSK3H7ijswP7aACr64HAfHcTiePgbTNJEqjWNr/+tUZKlV6v+IcynxIlqC1o2FkcIweI5HV8yqA+yyRWK1G0DknDmpm9Z722nPiHU313G7lCOFYZT0UllNpkS75wbAcRydNUk4mjqCp489if5cP/aP7gNgiTqRFy131Y5HNVRklDSOjB2CwAloC7cjLEbsGBX7GEGc13YBRF7EvpG3PfFNlBYLWDcb2sMdyCgZDOT6kffVvWqGht5sDz3/5P0EgBPpbgBecSnyIiReQlF3bvgUtQK9bjKuJlAJ24EfzA9gtDhi3whoRkAIIK/mqzZ6Iu9P1t7XPNuFzria+zjbWsddFF9Mf9cUbMLq5jVoDrbgukXvojdaxkujND25EiWtREV9MsDEJYPBmAjDQPTzn0XoO/8Oo7UV4z9/Evo55850VIxZTv5TfwAjnkDwh9+DcHTijoCzkWl3Lqek5nJy9Zt+J28qXh/nbujjEnSBKuLSLa7dNaNV02L5xtJiSQyTFZfrzosiFLAWs+12B1n/eQ5HBARDPMZGVJw8ZAm6jk65oWOS1xIOyAgGJRTyOoJiELu2ZTE+aOLo0XEAwNG3FezYksarz43jyP48OJ6ISxVFrUAXueXOZQ48J+DVX2Vw6O0cshkN6XENna0JiCKHJrsp0ZZn0ji4pwhJ5nDRVWHE4mKF8S+2GyzyWLA4CNMEeo8X6XbDgwo01USyxXk/2zrLRV0yYZ3PQtak7iJp2CLxMnJZu6lRovK1syK5EkFZREbqRzqXow1Z4nZHTomXkAgkG3IuJyIgBBCT455UW0mQqeDxp4C++UYaW5/PwTCAY4fzHqELWOmEEi8hKjnuGcdx1LEmTYTWtqzHvMg8FLQCBvL92D+6H/tG3sbx9DGXkCo/T9S5FGSPIN4071LaOGmB3cm00txaoDwtlqRet4bbIPESRosjVEAWdG+zov4KIy2IWOU4DkEhWHbO9o1Y3VBlQbYds3EoukJFIIlH1RW83rcFuqnjvLbzEZEiZbV+QSGIsBTGssRy6KaOU7leHE93Y8upV5Cxm9fUEpeA0wDrwNh+Kp5ISrBmaNRNJte/U4NbsLdNePYXFINQdIV2E84oGef82c+R7RTsoBikvyP1sREpCt3Uq3Z/JeKSOKOJQBIRKYKcmisbyUKyIUg3WwCIywls6NiI9y2/DQtji9Bkj6cZK455nNtKxx2jjjFLi2UwGLXQNMT+4JMI/ff3oHd0YvyRX0Jft36mo2LMAcymZuT/4A/B6TrCX//aTIczKaZjziVgpaDxHH/aTgrgdkEb+2eRmw7n0u1E8gLdZ1Vx2eBsy0bTYgNCAMuTK7CyaXUd0ZcjyTyuur4V0ZiAzvmBshgILW0SNNVEz2EDkswh2SJBrLPBEuC8FpGXkIgFoeuAqViOpGBaQiuT0vDW9iJEiQPR2OdeFEM4JGN0WEG66DgTmqvmMqtmoegKcsMinn9qFL/+xTCG7fEgCzqthW9Ts3V8Jc+DMzlsuiaJxaus3/G+64rEGhACmLfQOiejwyrdrr/HWtyuOSeKzgUBBMM8WtsriMukJbTyKY46Th22GybxEnJZywVuSlRJ17TTU3VORaZYoC5fU7AJYSmMhfFF4DjLaSbOaHrExPNPjeBXjw3TVNXJQLrbAkCAl+n+3XVwxYKO3hMl8LbznRrTqDvIcRy93puCzVW/W9Y0r8W7Ft2A1c1raBppRsnQlMhUKUWPWUkcOs6lhI5wJ5qCzTi39Tw6XgSwuuTesPhGXNB+UcUYRCrmvM5lgA+gOdRi14NaQo0IRSLoe7M9ZftzN0oKiiF7JmgK+0f3YaQwgpHCMOJyHPPtelDiBpIZnMTlT5VSOJU9hZgcw/pW62Z3UAh6vkdIHGREzWBuANsHtuLQ2EE6y9Ht5ldicXwJRF6kNZULYgtobWdRK6A32wOJl3DVgmsg8RLOazvf83x3zSV5zYDTpChbwVEkNytI3WVQDGJdyzl2vNaxNUODLMj0NZL/E/FP0mJjcgyJQAKmaeKtkb30GKROWxIkdEXm0+81t/MPON19x0tj1G2t9G9FVs0ip+YQl+MN17fPJuZu5AzGXCGfR/wTv4XA07+EPn+B1bxn2fKZjooxhyh8/HcR+s9/Q/DRn6HwqT+AdkHlBcxsxZsWO3X3NC/ruhIFrVDWkXIyTLbm0l/vORVpvx6xCB4CJ8AwjbrEZbVRJHyVbfyNdapxxfyr6tquGte+uwMnu5xaxUojX959ayt++oN+ZDMS2jsDtqip/711O6yJWBAYB7SchOEBBbwpI5fNoud4EZzehKvf04xQiMfTjw5jw+UJqIqBXd0ShgaLaO2wFpi6qXnm/AFA/1Hr/R0ZUjE8YAmFto4QhsUQgAJicQFcSsCylVEkm3LOiBGfSCbpyCExjGjMcjLyWZ2+l6TesnN+AFe+uwmqYkKSy89Za4sl0IZO6ViaWAae57EkbtXwy4JEncvmZPXGSK3hVgCnoJYMumgXeRF3rLzbcz3LgoyhwTy2PjmKFrvZS7JFxJLlYXQfztOZpfUSEr3OJTkn7qYxp06WwJsiNlyWwI4taYyNqNTxbA93QOJF9GR6ykZzuBF5kc52DLjmZBKBN14ap2IiIkUwWhzxuFNEwEiCBEmQcOvy91c8zrxoV8XfA46YI52IFV0Bx3GQBAnNwWYM5PoxUhhGIpCkNZfzIl3WHMxceb29+4ZaSAxiDMDOwR04nu6mn4OliWX0O+BoympG1WzXCxPhRZy/ZKCJbstxHMJSmHZJJeeM3LTodjm91r4k+t002FfCq8+N49ihPK67uQUXXBKn525JfCkOjx+CyIu4pPNSvNH/GgDgROY4NEPD0sQyLIovxqL4YuiGjt1Du+j3nv+7L+hzr9OlcgeSPKc52IL+XD/Ob7uQCja3GA4KQQi8AEVXkAw0YTA/4DT0sV3GsBjGeW0XYjA/iJ0D2xEWQ1ieXOmZmysJElY3r8Gw/T66SchJcByHseIY/YwlA02edGgA1KWudT3PBZhzyWBMI9zICJJ33orA07+EtmIlxh/9JROWjMYJh5H//P8BAET+4suAr/5mtsNN0yiSiBTxDCw/Hai4bPBusVvAcRw3Ja/PPzaEOpdV6rncDk7VbrFV5lxKZ+juOHG/KsVDWLoyjE//yWLcfl8HLtpAFsGTdC7j1sKymOIxOqxAMEXksjrS4xoEU8KKNWFsvDKJP/7GcixeFkLngiB1NwmqoXm6WWq6ScWlppo4etASHS1tEl2sLlwcRTQmYuMVTfY+7C6wvpsWRDSHxCDkIA9R5JDNaPRmRe9xy72atyCAaEykNal+lq2IQhQ5HD+sopg3sSyxnL7vJC2W44BkFecSANqj1mdIUUyP4OM53nM9S5yMPTuy4A0R52+0Uhq3PD+OH/5bL5746RBOHpt4HIYbj3MpBGiqsFtc9p0sQjAlXLQpgXBEwPiIhoRsndvliRVY1WS5hwujC+s6JnGmrHmmlkCyUkZLNA7/HE8Sz+lkSFDn0r6eFF2h+2uxv8MGfZ1hSbdZIm7dnandnYGJWCEilFxzy5LLqcghQpHUjJLnE8fPL96ICw6AjrgJS2EkAomyxkckNXh8VMV3/18P3nwjjdSYhmefHIGuO/9WrW1Zh6AYxMbOTYjKMfp+j9sjOlpc3+UCL9A6y7jPBQTKGydVmvNJbjqe13YB3r34PVjtcppJzIBV70vGrxBRV3I1BwKs7972cDuuXXg9AGDfiFXHSuo8yfm8uPMS3LT0ljJXkryeglagaa/uxmDESSXici438wGYuGQwpg3+xHEk33cDpO1boW7YiPFfbIaxaPHET2QwKlC8735oK1ZCfukFSM8/O9PhNIRHgE1hQ5+pZLINfdxacqpeG8/7nEv75wBfvXMqEW7e5j7V5lw2lhY7VbjFZbXa1mBQwIWbEkhErcWe2IArLVLnUkST7dT1HNah61ZNpaqYGB1WIUCi9YtkPEc4zIM3JSiK41ipuuJZtPadLAKK8x4c3m+Ly3aZLg7Xn5vA5766FM3N1nZUXPrENBEwQTu1OxIVoOtAKcfh2KE8ThwtIp4UqYtajUgwgIVLg4AmYPurXvfGUHmUiiYiUQFBqfp+OmJWqqhSMjyCz0/PYR2pcQ3zF0Tw/vs6sHBpEKNDKlJjlmDqPdGYuHQ3v5F4yZMWm0lpOLwvh9ERDbFwEPMXB5BsEaHrJpJmF+5cdQ9WNK3EgthC3L/uN6kzOeExhXLnMqtmabMmWZCp0PILLkmYvLh011zqhg7d1On+O8OWiOzLWuNNSHOe1lCb53PrTrWUXZ9b8pqIG5oIJLAwtggxOV6Wntlsi0vyfMed9IlLyS38nfepwzVeZak96zUsRnDqZBEP/FcfCjkDGy6LY9mqENLjGvbvcZr3NAWbcc/q+2jdo+SLIeg730To+WejAtUbJ7kh51cWZNpwieCuEQ2KAaxsWo0FsQVYZNdNuseauOcLd0XnIybHMFocQV7NQ7VFqFzH92jSVXfJcZynfpfcOCAp2KRueq7CxCWDMQ2Ie3Yhecu7IR45jNKNN2P84cdhNrdM/EQGoxqiiNwffxkAEPnaVwBj8rVOZxq36JrKhj5TSTJgpS0lfelME+FOi52q1+bfJ1lg+heAnudUEMfe+svKtZin25ylEdxCdiIRTzo6+tPfakEWjGEpgrUrrBS+E7vtWlrTWhxqmomWphAkyftehSICBFOCUnI+VwXXSIi+nhL2bM9AMsJYttpaeJNtm1slemwyroWce9JkxC+m20LtWNuyDmub10PgBERi1t/HR3T88meWg3XDba0QhNo3LERexNKVIfAQsfWVcY9TlBm1nhtLijVvIrTHm8GZPBTFrHm+TxywhPb17+kEz3O47NokAOcGS19P5ZmB1fA7l0RclvQStr2awr49Vkri0uVWl1fi3o6NqB5x0MjnjnRcLukl6kqZpknnScpCgG7jryM8HZefXBfWHNWSJ5awFEZTsBkZJYOMkqYdTK2RMEm6D/fjSs4lYAmx96+4g86/jMlxen4iUoSKMirsbOfS34k67HtvCB32iJe4HMfGzk3ojHSi941m/Pu3TqK/p4TFy0O45a52XHadJaRef3G86jkhWSKOe+q99oj4quRcBquMfHEj1XCa3e9tQAhiUXwxrl90A33dVFxqpbL5wvNtl7w320O7/9Zz48HdoOeclnM959g9V5bjOCYuGQyGF/nxR5G89UYIgwMo/MZHkP7uj4Bw9bvBDEa9KO+9FeqGjZD27ELgoQdmOpy68XaLnZ3O5cLYIty35v6yO9wTMR2dcD1jQ+po6AOUd1m0flet5nJmnEv3Ym+iZhVXzb8Gd6y8u6GmFovii/GeJTdhZXIVzlu6FJcKH0BUsd5PtzBvbyv/Pg5HBAim7HEuiQjQVBM7X09B14F3vbsLl1zpLATDUQGhsEAXq+R8+sWkf+SLwAvY2LkJLaEWS1xGrb/veDWHwT4Fi5YFcc6FtZukWPuVEImKWLQogkxKx9EDzpiDtF3OFU+INRe/0aiEoJ6wnEup8r9VuayOQl8C0VAIa5ZbAmPNuVHccFsr7v2Y7bw1IC7zOR3PPJJCetxyPSVBpmmSmXwR2YyOYIjDhZtiuHCDJTJIw6SxkcojQwzDxGBf+dgONwHB6UjrTu8czA/Yfw/QbfwdUOtNizUMEzteS5XFKfGS3STKdrtcrvx8+3unN9tLay6DYhBJe04jAM+NL3/NpbONt1aP53jq/BHXEnClxVLX0CvsSLMdMuqEsCC6EPOj83Fe+wUIikG8Z8nNGNrbDI4DbvpAGz70O10QBA7LV4fR1CLhxNEishkNlSBinaQB+wXjmqa1uLD9IqxuWlP23HpuOsk1sh7c7637e9W5+aBAMzTopl7mki6wXfLebI/LuZz42uiKLoDESzi/7QJc2LHBU+bgbiTVFGguS82eazBxyWBMFYaB8De/jsTHfgMoFJD9ky8j+7f/AIisbxZjiuA4ZL/6VwBs9zKbrb39LGS2psUCEwueSkxHym95Qx8rrlriMiAEPR09/bFVq7mcihmh9eJuvDSRECfNThqB53h0RuZB4AVrhuP6JP3b0iXO4q2jo3xsAhGXqlIuTAoFK7W2rUPGlVd1ebq2trRZMZLFKnmvymquaji1Au84l0f3WwvtTVcn66rfJYvadeckAVhjOwipIeu1xJNiTdctFOER1lugKAaiVbp+HjmQQ3NpOT6w9F5ar8bzHK64vglrzokinhStOaGl6hkV+ZyOx/5nAPv3ZvHkTwex9eU0ju+33NCAq6FP/6D1vdbcKmPB4hDCAeu6J6NeqonLXVsz+JdvnMDWl1NVYyDumH8ERcoeqWGlxVrbuOvygPpd/oNv5fDYA4P4zj+cxOiwE6vES1ANFUWfcwmAdnU9le1BUSsiIATAc7zHrSTjOPyfDbcDXGl8BdmHuz6dXA8kbbu85tLap19YSYKEdy1+D5YlrN4R6XENmZSG9nkyLr0mCTlgj4fiOZp6nkmV10MC5d+3/swMSZBwbtv5FYWWOy73Y/frqOVcBoWgKyOk/PmKXkJRJ117vXF1hDsh8iL6sqdox+F6vqtaQ6344JoP4fz2C+0YnP2662nbbXd4LsPEJYMxFeRyiH/8NxH55tdhRKJI/+ABFD7zR96CLAZjCtA2bkLxjrshDPQj/I9/N9Ph1I27E+HZBMdNfVqsP7U1IFhpWbXq4a5acDXevfhGX4fYanMuK8/RnG7IgtadNjqdrFrniMgVKxy3sbOjXECFInxZWiyhVLR+FwhZXTSbWiWQU9jSRlwu4lxar7F8ruX/3959h0dR538Af8/M9k2y2VQIaYQSMJTQOwhYEGwIds9D8ayg3nk/705PTz0rp6JiBdTz1FMPBVTELooiICq9SYdAgJCezfaZ3x+T3WQhIXWzJe/X8+Qh2Z3sfmb3y2bf+22nCZd1ei5FiBAloFuvpo12ybJko19yf0wc1Bd6g4gdm22wV6tv5svUkZ5qz+Vp3mibzBKSHb2RXj3YH3J8iotc+O6LEmz5VQ18PXrXv59hWoYeigIcPVx/76UsK1jy9lH8uroC7y4sxJb16u05StWeMd+HIwBwrCZcxlvVN9++Xrb4mp7LspL6w2VhgfpGf+WXJXC7ZRw55MCbLx3G8g+O+4/R1fxf8g15rhtw9JIeKaZU5Cb0Rs+EXqc8Fk3tTdq+Sa2/qsKLt14+7N+uxfd/zbcCad3QkmxKgVbUoqCyAF7FW7slTE1PZHmpG+++fAJbVymoLDxp5dQ64chaz0Iw6bHpEAUxYF6qrz34enlPCZf+nsvT9xAW1Cw8lZ516nExNR+YNNRzeXJYb6g3strm9S+0JcsKZDlw+Hbd0Fy3B/B0H8b5VsQ9+X4lUYJG1ATMyT35diRRQrIxGW7ZjWK7ujhPU3u16/79O3k4s0+KKaVJtxXOGC6JWknctxfxF5wL/bIP4c3KRtmnX8N17nmhLouimO3+h6CYTDC9NA/igf2hLqdJfL164TrnsqWCMZ9UPClcDk8biYmZZ592EQuLPv6UNyUNLugTomGxvjeTzV00qaW69jBBpxehN4jomlP75i2tcz09lyZ1zqXbeWrPpehS3wQaDFq1x0MS/L1oiSnqv1aDFd3jeyA3obf6O6fsf9rwOWtEjT9cCoqErt1NMBia9hjpJT3yUwYizhSDvgNj4fUq2PxrJWRZQdlxBRqNAKNZPG0w0htEaAQtjFXpp3z488PXpVixvBi/bbVBlICcnvWH3s4Zattctug4Fjx9ECeOu3Bonx2/rlF7BNeuLMOubdWIT9BAq1PvQ6MVEHu0P8Z2nghdnWGxx0+o4atLshqsfD08dedc1qesRA0xVRVevPH8YSx4+hD27KzGT9+X+0MQEBgEUkwp0IgaSLIOqUUjsfarajiLYjC884iAYCUJEk4cdWPllyWottXfEwcAXq/if6zSswwoOeH2r6Lra/82X7gUA3vys+Ky/T/7/q/H6+OhKAo2/lyJooOAftsIHF3W37/Hqvr41IYUq/7Unstu8T1wde9rA4bF6iQd9u+uxmdLTqC81HNKgLLqrYjRxaBznQV86uN7XLvUFy7jauZUVtT/eNV97Tl51IWPLCuY/9RBvPyvg6iq9OClOQex8JlD0Aq1e53WHQpct7e5sd5E32iDk/9vaEUtXLILTk/94RKoDd8VrrKa+2r+MNa6czlNWrP/dZE9l0QdnG7ZR7CeNRbaLZvgGjMOpZ+vgLdX71CXRVFOTuuC6ll3QnA6EfPgfaEup0lq37RGV8/lyVuRtPVtSoKEWF1cs+eCnnw7DQfN9hu2r23ncKnVibjt7u64+sY0JMQbodcLMBpF/0qyJx+rkwLnXPqILjVQxRlN/ufYNzTWNyxWFESM7DIamXHqiuAn7+N5uiHXoiD5tyMRIKJnn/p7Bxvj21Nww0/qfpBel4Q4iwQBp98vVBQFGM0Sqm3yKfMVy+oEudw8M/SG+t82dk737XPowuGDTiycewivPleAj949jmOFTqxfqw5DvWJmGm79SxZm3pGO7O5G6Dyx0Fapi5f4HqPiUjV89c/qgQEpA9HDmgsAsFg1EASgYL8Dz/xzHw7uswfUULdHs+CAAwajiLx8NWx8/2WJ/7q6H9LEaGMxuev5iPltLL79wI1vPyvBx+8dr6mnzocwkhYfvnMM33xSjBefOICVX5Zgz04bqm2BvXIH99phr5aR08OEvJo5swf2qHX65gDa6um5BIBeibXvHXzB1qyNQeEBLypKZGRmxuDMc1IgKlqs+LQYbpes9uJpDBAFtf3G1BleWdfJr01aUYeioy54PAp277AFDA11u2RUlCi4pMel/iGcDfFtmZOeffqey/IyN44VBvZq1x2S31Av48G9dpSVqENvX32mAEVHXThy0IkfP6/Cuu9s2LNeCRjRUXdY98mP78ni9Wovb+xJj5lBY4CiKKhyVzVYm69n2T+cugUf0gmC4B+eqxW16G7tiW7x3QNW6o1UnAxG1BIuF8wP3QfT/JcAANV33AXbX+7l/EpqN9W33g7D2/+BftmH0K76Hu5RrdvkPtg6RM9lG31eGzgstuWBtaGhsKHY51K9r5pw2Y7zPLv3ikFxMXDcZsOI8VYIAPSa+nsZYgxGFLgUKIoCk9bkHzopOs3QyHp0iq3tURg6xgJBALrl1h8ET+6pbGxYrAABcfESpFIRuXktC5ddsvRIStHiyEF1ZVtJ0SI2Xn3MG3vzazKJqK7ywu1SoNPXtjnfcMTZ92Yh1tJwW+na3Ygz8mNgTdDC4fAGbItSsN+BE8dciImT0KlLbS9kpzQ9dm+vxtHDTqRlGKARJXi8CsoqqmE0ioiPNQfsTShJAtKzDTi0z4GyYg92brYhs6v6Jl9RFJSVuKE3iDj7wiQ4HTIGjYyDRiPg0H4Hdm6x4dgRJ1LT9AGhQyfpEG+worRQDXwQgGOFTrhdckAgd1SKOHzQCa1OQFWFF998UrNaEg7jjP4xOOuCRMgy8OOKUgBAr34xSMtQ7+fgXt8Q3MBhsSeHlro9i75gIwgCXJvOQBe7E5OuT0anND1+XVOOrRuqsH1TFTqn6/GHP2ViRNrIZq38rJO0sNX0wBYWOGGvEGGsGVH75ccnsO6Hctzwxwx0yWx4tITXq+DIIQf0BjFgHrJPTFxNuKzw4oP/HMWRQ07ccV82Ymt6NOv2XDY0/Hbbxtp1BUqL3ZA0AhRZwapvymAWh8EJCfoptfddd1hsY0NVB6QMRLala8DjrtZVM1e0Zl5uffsL+wKt74OClm5TMzJtNNyyG4IgYFjn4f7Ljx1xQpIEJCY2vqhXOOI7YaJmEg8eQNyNM6D99RfICQmofGE+XBPPCXVZ1NGYTLDd/xDibroeMffcjdKvvw/rDzd8n5yH84I+LdHQHMfWqBu+hFbcZsNzLutsRdLMRXNaQ9PAfMT2oJd0dd7U1v9G0GzUQ6kC3G4FJpPZHy491Vr0qDwXY7pk+o/tlmtuMFgC9Szoc5pA7evlHDDMgvPOz/LPLWwuQRCQPzQOXy0rxreflUAUNYhLVM+5seBhNEsA3Kiu9voXZQGAygoPNFoBCUna0/bMa3UiLpuhDqFUFAW9+sTg2BEnvlpWXDNMF0jtfNLCKDVB89gRdYinJGhQWeaGDAVxVu0pK+wCwIxZ6dizoxr/XXAkYHisvVqGy6kgNU2LwSMDt64YMsqCrz8pxq5tNqSm1a4GC9T2bp047oIgAjk9TNizsxrHCl1ITtdg/55q7N1pR0osYAIw5uwEdO9lwv7ddhQecuLAXju2bawKCEEms4Refc0wmiTo9Gq49XqVOtt/qMfWNyR9QuZZWHHoa5yRmAdAHRaqHE9BepwGGdlqkJ44JREfvnMcsgwcPuhEcZEL3ZJ7NPjc1EcSNLDXhEtR1uDn7ytwzkVqD/LuHdVQFGDjuooGw6UsK/jhqxK4XQq69jT494utq3ZYrAeFBU543Ap2brZh8CjLKedvrCfAybKC7ZtsgAAMHBaHX9dUYPREK7weBT98XQqDHK8e56x9Puv2XDY25F8raeud3+gL/b5eyfrmgp7cu9jUOZcnqzsPduUXJfB4FIw5y4rXnitAbJyEB+dG5hZ20fURMlEwKQr07/0X1jNHQvvrL3APGYbSr39gsKSQcV48Da4Ro6DZvhXGBS+Hupwmibaey8BhsW0151L0v5FvTRBrMFyGeCuSUITLk3ur6hNrUt+8u12yf9gbALjsAkRo/OG0Keo+9o2tQuzb788co0FW15b1Wvr0GxLnX0duwJAEfzhobDEak1l9TqqraufHeTwy7DYZsXGaZg35FgQBPc4wo2dND+z+XWpI94VJn9Q0taZjR9ThkhpRg9JidZhpvFVT7zxVSRKQlqneTt1w6fu+vmCemaM+lwUH1SGcdXvJ9JIeDocXVRVeWBO1/uGdhYccgEfCzs022Kq8OH5IBgSg/+BYpGUYMHK8FZfO6IwHnsrD6LOsSE3TIT3bgLHnJODmuzMRE6uBJAnI6GqE26Wg8JDT3/5tpxlumR6bgat6/Q5dLTnqsVVeKAoQG1f7WAwYZsH/PZyDURPVuYa7d1Sfcjt1KYoChz1w3qPHLsHjAQxGAZKiw2/b1NuotnlRUqQ+lts2VkGW69/W5etPirHi0xJotAJGjj91nicAxMSq7froEad/FWbfYkdA4JD8+noHjxx0orLcg8yuBpx/WQqum52OcecmYOL5ibjlL5no1VdtX47y2oXCfKHPt3ATADidMo4eafo2Ob55m0X24/7bOtnJi6vVnd9ZUebBwrmH8NtWm/8yRVFOu0WOvdqLFZ8WY+UXJVi3qhxOh4zUtNMP6w1n0fVXnihIhOJixM28FnGzb4ZQbUP1HXehbOlyyF3SG/9lomARBFQ98TQUjQamOY9CPHI41BU1yNdjGW2rxQZjKxKg/n0rm6spcy7bN1zWvwdke/D1LGhETYOPqdmkvsGVXVLAG3+nrWYT+tim133yir9NObYtQnecRYOpV6fi/MtSMPWyLhBFAYIgNBpwfeHSt9IsULuFRKylZXUlpuggaWr/T3RKC3yTnpisXn/0iLo3pUbU+LfuSEjSNfh4mGMkaHVCQLj0zbesL1x2TtdDEIHDB3xbgNTWoZf0KD6u/m5Sis4/d7SwwImt621wO9X7ExUtuvcywWINvH29QcI5FybjlruzcMOdGZgwORFxdYYPZ9UE2wN77f4h6L79NRuaE1i3l7uqQg3bMSd9sGGOkdCjtxpwdm+34cghB4qOulCfn74vxxP37sWmX2qHKleUKhAUAfEJWsQYjSgucsHjkVGwv3bho6oKL3ZusaGi/NTVXnduVkPiDXdmNLiCsG/Ope/xBYB9u6r9bUx70kq9J/MF0d79YiCKArK6Gf3tObWz3r+olr0mXOrE2m1kfK81+/fY8eLjB/DynIP4bZvtlPuoj2+BIP/+m/X1XJ60J2fdnsvNv1ai4IADny4ugterwOOR8dbLR/DKk4fg9dYfMPftssOXPb+uGXJ9Rv/IHBILMFwSNUr31eewjhteuxrsh5/Bdu8/AG37vSkjaoi3V2/Yb5kN0VaFmL//NdTlNMi/FUmUDYsNxmqxdW+rtbfp+/3AobbqViC+r/aikTSn1NJeBEFAsikFycbkBo+JM6tvIhW3xt+bCACOKnVXKV8AawpRrD/M18f3eLTVc9FvcBwGj7RAK2khCmKTPkAw+noubbULGvmCTXN6bOuSJAGpnWvfdJ/cEyNJAjp30cNRrYYaERJKTrggCEB8orbBQCwIAqyJWjjsMuzV3pr5ljU9ngmn/o5OLyKlkw6V5R5UlNWujOpweLFjvdMfypJStOhcM0/yyCEnfvq+HCIk5A+NxSVXdsH0azs1+zHI6Kq2qSMHHacMQdc3YZ5eZc1Kq3V7Ln3Ss43Q6QXs3WnHgrmH8PaC+j9c3L6pCooMdXGlmh68smI3REULk1lCotUERQaKjrr9q7/65ou+91ohnnlwHw7tr108ye2SUVzkRly8xj+Htj46vRgwxFoQAFkGdm5RQ17d5/fkAKcoCrb5wmUDIcta80GCrVRt4yatGXpJjwRDIjqb0+Cwe/H2K4dRXqq2jV9+DNz/dPcOG9599QhOHA8M5XH6wGHVTeu5rD1m/261F7i02I0tv1bik/eLsGenOre4oa169v5W2/vs9SiQJLX3P1IxXBI1QCguRuxtN8Jy1aWQjh+D/Zrfo3TFKniGDW/8l4nake1Pd8ObkQn9sg+h+/qLUJdTL1+PZbQNi63bExuO4bKhXjGNqGnyvn1tpXa12NC0gUnZk3FW1rkNXm+JMSHW3RnJQjY0NY+XAgVOmwBTjFTvvLKG1F3cqbEwrRGCNxe1f3I++ieffsVPQF3QB0DANhuVvnB5moV8GuMLH5IkICn11PY2cIS6AMvqb8tQVabA6VBgsWqg0QinfTx825KsW1WOR+7e49/ypKH5qr6tMg4fdPh7t7b8WoVvPqzA0v8eA6D2tMZZ1G1hfEHAajXAmqRFcpIZBmPzn5/kTuo5nzjuCgj5vr09G1NZ3vBzoNEI6NrDBK9XgSIDZcWegJ5nQB3a7AuMHreCJf89BkVR1MVxoIUpRkJyohpijhc6UVATIs++MAmd0vWIT9BAloHlHxT5h8geP+qCotQOaz6dmDqh2DdM2rd6bt15wIaTegKPFbpQesKNtAw94q31P6fxNW2gosSLc7LPw5kZ4yEIAs7vdiFGdhmNwgJ1OG6PM0wwmkTs2maDraq2F3bdD+XYsdmGhXMP+WsCAIsuMFzW9zxJohTw+unrufR6FRzY4/APTV/y9jGsX1PbY1z3furyhUtfe8nJNbaovYWL6PorT9QWFAX6D/6HhNGDYVj0LrypnVD+n3dR9fQ8KDH1L/NNFFJmM6oemQMAiPnrnwF7/X/AQql2WGz0/dmpDYLBGBbbujcYDc3dHNVlDEamjW7VbTeX7811Y0M0g0UQhNMOyzaaRGRWj0AG+vprdbsUKF7JP8SvqQLmXDay3YvvOQ7G49I3uT96J57R6HGmmn027bZTh8XG1NNr1lS+eZbJnXSQpFMf+76DYmGOkbB9UxW2rVdftxKSGh8+7QuXq74uhcet+IdeNhQu033h8oCjdsGWMg8kpTYgJKWo8/R8vZfmWAnDRidCgNDiVZXNMRIMRhHFRW5IddbQ7JXQu9F9GIGGh8X69BscC1GqHbJdd/9LQF3wx+NW0DPPjLQMPY4WOLH3NztKS9wQFQ1MJgkpSer7mqNHnCg4oK6Im5ljxM1/zsTtf89GlywDCg/Vbifj6/08Xa+lT93/N75tYXxbkmhOMyx2+8bT91oCtT2XpSVuJBoTA1aKBdTeZwDI6mZEn4GxkGX1AwUf3xBsh13GskXH/ZcbNIaAehraX9hU03upFWsXuyo85ITLKSOnpwndck0QRaBrDyPOu0QdMbF/96l/m8tK3CgpciOlsw7jz1OX7B043HLKcZEk+v7KE7WCePAA4q6ajrhbboBYXAz7tdej9Ief4Jo0OdSlEZ2Wa9JkOCdNgXRgP8xPzwl1OaeI1tVigbbrZayrLeZcAuqbtrqLW/hkxGYiPTajVbfdXL43Y03psQmFuvMOfcNinQ4ZkqLxL07SVFID813rPbZmm5hQLHTkYzT5hsW2bc9lVo4REIDMnPqfc61WxJDRFigKsPobNbwkJPvmxzYeLp2OwH1J6xsWC8C/sNG+XdXQCOrtm80iJKU24CWmqN8PGWVBdg8jfn9bFyQmqD1qLd1qQhAEJKXo4HErKDriwcovSlBY4ER+8sBTjt29wxYwLxI4/bBYAMjLj8W9c7pj4HA1WBWdFC4P1ISZ7O5GjKhZeGf1ilK151JRey47pag9ipvWVcLllNEly+D/IEAUBUy6OAmAun8qAP/QzqYsOFM3FGd3N8FgFHG80AVZVgLD5UkBbsfm2vmWDfE912XFp84JBWoWZQKQlmGo3QN2nXoOsqz23hpNIlLT1D0/j9eE3t07bPhtnXpMZYmCH74sC1jYaPd2Gzb+XAFbSc3q03U+JNhXMyQ2u4cRV9+Uhr893g2/vy1d3RZHK+DgXjveWXgETz+wD4vfOgpblQd7dqq/k9PThDP6x+JvT3Q77XlHgvBdt56oPVVXwzRvLkwvPAvB4YAnpxuqnp4H98j2/WSfqDWqHp0D7fffwfj8M3BeeDE8ffuHuiQ/f89lFIbLYOzh6RtK2dohpKO7jIOseBs/sB3E6S04J3sSLPr4UJdSr9p5h15/z6XTIUNUNM1azAcIHArb1GGxoVjoyMdkridclrduziWg9m7dcnemv5epPiPOtKKwwIltW9wQBCAhsfFhwr5wCai9oiUn3DAYRX9IPllyJx2siVocPujEZ/9zQTNMgduprgIMAAaTCHNN721unxjk9lHf3Gv21S4W01JJqVoUHHBg50oTxOPp8FR1g3hW4GPq9Sp4/42jcDpk9Mwzw2Dw7RF5+p5LIHDI8ck9l/trhmFmdTOiUxc9vrJq/KvLiiYNTGYvUpNjIIi1e5oOGhHYa9YlywC9QURhgRNer+LfOqZJ4bLm/41GKyDWIiE1TY8De+woOeFGUooOWlGLE8XVePX9o5h+aQx6nmGGx6PgeKELsRap3v0zfbQ6ETFxEspL3fB6FX8gdjpkSBp1USZAbYNGk4ikVB0KDzlxvNAJvUGEx60gNU2P3D5mHDtSjK0bqpCUqsMni4pwqFoDQycXDm4DivYVIyVNh159YnBwrx1vvXIEAHDYXIkhl3gRr68z37JmZeSu3U0QRQGiTq1JoxGRnm3A/l12/5zTTT9XQpIEVFWqz7Fv2LBeH/n9fpF/BkStoSjQfbwUCaOHwPzUEwAA211/Qem3qxksKeLI6Rmw3fcgBK8XsbffCrjdjf9SO6kNYFEYLv29sm33J9V3W60NrMmmZKSam78QSbB0MncO2OYjnJhMvqGhsr/XzOWQIaD5w2LrDv9u7AMC3+I/oVjoyMffa1tnQZ/aXrPW9UOkdtYHLOxyMr1BxJU3pGHm7VkYcWY89DXBSmxCzyUA9B8Si+tmp+PqG9MaPF4UBVx7axckJGmxb6sHxwpd8Dpqg2VWjrHeIdO+4bBNGcLaEF9AOvCbC2n2gXAXW/w9cz77d9vhsMtQlMCeuKY+B8k14bJuz6UsKzi0zw6dXkSnLnpIkoAzJyX4rxcVdbsUk8GAxJqhyPEJmlNWKRVFdfsXj1sNfceOOKHRCkhMbvwx8YVi3z6p9W0/c3CfA/YyDVZ+UQIAKC91Q1HUFYMbY03UQpbV7T8AtVd17oP7sODpQyguciM+UQOTWVL3gB2iDv/dsK6yzqrEWv9w3S3rK7F3ZzVKi93Qe2NwrNCF8hNqm9j0cyUA+HsZAUDjNcJW6fX3anu9Cg7us0Onrx1aXVd2N/V1T28QMfPOdGi0ArZuqMLenXYYTSKyuoXn62JLMFxShyVt2wrL9AthmXktpIJDcE65ECU/rEP1X+4FDOE5bIuoMY4ZM9W9L7duhmne3FCX4+cPYNEYLoOwzUpbryBKjTOaaxa1qfb69+Bz+HsumzsstjYYNbrPpdA2vdStUffc7dVe/LbN5n/D3tKtSJorO8eMpJTaN+Wnm6tad/hr915mpGcZkJZx+r/b1kQthoy2QFJ0cNgUyHYDzDESbr83G9N/X/8HML520JotewIWMqp5ifjxm9KAfQ/rhs2SE264XHLN/pseQGh8GxxfgD1xrPYDxfJSD9wuBalptfNdBwyzYNrvOkHSCOiZo84DtOji/XNjh4+z1js31jeseNvGSjjsMlI665q0wJXvQxnfhwG+3s7CAid2bbfBLMWhpEDd6qVgvwPHjzr9+2z65t6ejm+ObVmJGxXlHrw9/wgcdtnfu9o5vbZN9Bus7gG76ecKfw9vQpIWicnqFjTFx934+H/q3Eu9HIeC/XZIsvq4/rbVBofdiwN71Z7J7r1N0MgGVNu80NW0jcMHHXC7FGTmGOt9DPsNjkN6tgHTr+2EjGwjevUxw+WU4fUqyO1jrvd3IhWHxVKHIx48APMTj0D//nsQFAWe3F6oevgJuMeND3VpRK0niqiaOw/WM0fC9PQcOCdfAG+v3qGuqnZeYhR+phmMOZddYrrAI7th0kTucvSRxj80tKrOsFinDI2iadWCPo0Ndw3marFNZfT32nrx/Zcl+HFFGQB1OKPe0I7b1QgauBU1XJzu8dDq1GGGbpfcpFVLfWItGojQIMcxFs4qF0wp0mm3mPGtCNrQnpRNUXdoZ/dcE8rLPDh80IljR1zo1EUPWVawY3PtHoylxW68+dJhVJR5UFnhgTlGajR46PQiLFYNSkvccLtkaHViQO9cXX0HxarhSNcVDtmGWF0cxp3rRGpnPQaPiqvv5v3hcvW3ZQCAzK5N62VLyzAAAvy9cqmd1cfxx29K8cNXpUjN6I20Y9n+D+jWr6nwB8amhEtf7+lv22wo/rYMleUe9MwzY/cOG2QvkJZe+7zFxWuQ09OEPTur8XPNtiQJNb8/cUoi3nu9EOWlHhjNIoxiCoqdKbC4MqE3iHA6ZGz5tQoF+x3QG0Tk5pnxy24D7Lbankv/kNgegduU+CQkaXHDnbXz3PsPicOW9Y3PLY1E0fdXnqgBQlERzPfejYQRA2FY9C6UxERUPfIESr9ZxWBJUcWb0x22v94HweVC7J23At5wmHMXvT2XwQiX/ZLzcUG3i0M6VLKjMRhF6PQCykrc/t5Gh90LEZpmL2pTNxg1vs+lr/2E7rmWJDVEVtu8OLDX4b/c41ba9f9sc+aqXjc7HX/4U2az6vM9j46jcdDJMY3uXdonqS8Gpg5GijGlyfdxMmuSFjVPMbr2NPkXl9n0izrUsrDAicpyjz9AFhY4cGifA+WlHsjepg9LTk7VAQpQXNPzV3KipncuuZ59Gk0StBrJv8JqSic9xp6TAI2m/tcwX7hU2wMwdEx8k2rq1EWP//tnVwwfpx6f3FkH1Ox3CQDHDnkgQYuhYywQRGDjz5UoLvLV3Xi4HDjcAp1ewOpvy/DbVhusSVpcOqMTxk9KhCCqPYx19R+qDo319Wz6Amz33mb84U8ZyO1jxqSLk5HTLRZZttGId2di4pREAMCXH5+Ax60gM0fdnsbojYfDJiCpZu9c/2I+3ZsWvHNyTbBYNTCaReT0rD+QRiqGS4p6QmkJTE88goSh/WFa8DIUnR62//sbSn7aCPsfbgG0LR/uQhSu7DfdCvfAQdD++guMr7wY6nKCsuhNuIjmXtmORBAEJKbo4HIqsFfVLA5iEyBAaHCLi4YEbEXSyLBYX6gM9QcJphgJLqcCh73mwyhBnc/YnnyPlSAIjb5WSJIAjaZ5wdcX1Hwrg/q2YGmIRR+PPkl9WxWwJUnwh5iuPYzoOzAWEIDNv1TW9FqqvVf9BquP9W9bqwN+v6lbwfj2SHztuQJ8/cmJ2p7LxNa/x4mL1/iHR/fuH9OkXkUfc4zGP4RWrxfVECzAHzgBNSRmdTOiusrr78Vtyn3ExWtw5qREoGaE8eRLkqHVihhzdgLundMtYFgsAPTqGxMw/zexTvBO6aTHlTekof+QOH9Pq8ksYfAoC3rmmf0rE2d3NyE+QQudHIO86gtxRmIePB4Zh/apvZpN2aIFUNvFzDsycOOfMqHVRdffDg6LpaglHD8O0ysvwPDaAoi2Kig6HapvvAXVd/4flKSkUJdHFFyShMpnXoR14miYH/8nXGedA2/P3JCVE81bkQRjziWFRlKKuqJkRbH6RtJRJUAQ1DexzdGcYbG1cy5DHC5NIkqh9nxpdQL+8mhOu88DC/YQYd+WHm6XmkZM5vZ5Uz9hShIKCxzo1EUPURTQtbsR+3bZcWCP3R+mRpwZj/VrK+ByBm6v0tRe8wHD41B42ImDe+xY/W0ZuvZQA1JTegCbomsPEzb/UolRE6ytup3LZnRGtc3rD3C2Ki9S03To2sOE/bvs/rm+1iYG2GFj43Fonx1x8Vr0OKN2GkF9vbA6nYi8ATFYv6aiZnXh+p//br1MECWgZ5666usFl6fgxccPwF4tI7u7ERar+pxUlKjP1a5t1fC4FeT0NDXr/0xzX1ciRXSeFXVo4pHDML7wLIxv/huCwwFFr4d9xkxUz/4j5IzMUJdH1G68vXrDdvc9iHnkQcTe+geULf8K0LV8Sf3WqA1g0fUJLVAbJKLx3Doa3xyu8hMKZKsCp01ArEXT7B4yQA1IXsXb6EI9sTq1xypGG9p5V76tWKCoC6U0NEQymHz7iwYrXGp1IgwmEY5qNRSYY9rnbfAZ/WMCVmHtNzgW+3bZ8fnSEyg66kJKZx1SOusRa5FQWa72HKd01qlbcjRxWGxKJz1m3JaOt145jN3bq7F3pzoH0NoGPZcAMHl6MsacleDvIW2pur8/aWqy//uu3Y1YUfO9KUbyb8fSGEkScPn1Da8UfLL8IXFYv6YCicnaBj8QTEzWYdbfsv1zrWPjNLj6pi44fNCBtAw9BEHwb4NSUe7BspqFgAaOqH/OakfDv4QUNTQb1yP21j8gYUg/mBa8DIgiqm+ehZJ1m1A1Zy6DJXVI9ll3wj1sBLSbNsD05OMhqyOqey5rzo3DYiOfb/GV8hOAwy5DVHQBK5M2h+9Dh8aGxVoNCbik56Xol5zfovtpK3XnH/p6Ztqb77EK5hDhuDo9ge3Vc3myvoNikZSixdHD6vDcXn3V4Fk3CE6/thMGjYjDgGHNCyy+xXa8XgUGk9jovNKmMhikVgfL00nLNEBbsy9kc4bdNldmjgHnX5qCSZckn/a4hCRtwBDa9CwDho2J97/ex1vVbVD+91ohbFVeDBoRh159omthnpbiX0KKbB4PdB9/iPgLzoX17HEwvP8eFLMZtjv/jOJftsL20KOQO3UOdZVEoSNJqHj+FcgxsTA99zQ0a9eEpIxonnNZuydl9AXnjiaxJlyWFSnorRuGTva+zZ5v6eNr603phYvRxoR8WHVYhMt2GCJctyewsTmXwaLRiLjgilT/z736qsM5feHSYtUgpbMeF1ye2uyex4yutfMM22K+ZXvRaARk5dQM5Q1iuBQEAYNHWZCR3bp9JS01HzoVHHDAHCvh3KmnD6sdCYfFUkQSjxbC8M5bMLz1BqRDBwEAnu49YP/DLXBcdiVg5vL9RD5yVjaqHp2DuNtvQdxtN6J0xQ9QYtt3+I4YxftcBmO1WAoN37DYE8ddyHNmwuw93upwGcpVYJvDWCdcxltDE0p8w2Ib6+1tjbr7drZVr15LZOUYcc5FSSgrcaNzzZYZvlDVOaPlW590yTJAFNUVWYMZ0oIhJ9eE3TuqA/cGDVN1XxcGDIuDLsoW5WkNhkuKHF4vdF9/AcNbb0D35ecQarZXcI0bD/vNt8E1/iz41/smogDOy6+C8/NPof/kI5j//ldUPRuaFWSjelgsw2XE0+lFxMVrUFbi8W9I39Jhsb6hncEMSm3JVGdxk1D1XPp6LIMZyGMDhsWGNviPHB+4OE5GzZDW7rkt/4BcpxPRKV2PIwedTV4UJ1wMGW2BJAntvkpxS9R9XRg43BLCSsJPZLziUYcmbd8Gw+JF0C96F9KRwwAAOSkJ9suvhuOaa+Ht1iPEFRJFAEFA5ZPPQvPzTzC+8xZcZ50L1wUXtdvdR3Pvnn9BnygMzh1RUooWFWUe7P1N3RKipT2X4bIKbFPVHSJqaeE5t5YmyAv6AIHDYs0hGhbbkJyeJtxxX3aLP9DwyepmxJGDzqDOkQwGrVbEsLHxoS6jSXzbmHTLNUVcD3GwMVxSWBIPHoB+6QcwfLAImu1b/Ze7xo2H/drr4Dp3cshWvSSKVEpiIiqffRHxV1yC2D/OQmm//pCzstvlvv2rxUZhAPOdUTQG544oKVWHvb/ZUVigLrbS6mGxETKixmiqOyw2VD2XvmGxHaPnsj5tsbrr2LMTkJisQ15++PcARqrs7kZMmZ6MnnmchnUyhksKG+L+fdB/9gn0yz6C9qfaRUc8Z/SB45JL4Zw6jSu+ErWSe8JZqJ51J0zPP4O4m65D2Ueft8sHNbVDR6MvXHIrkugycIQF61aVQ5HRoj0ufXwLPfn2bgx3vqAliEBME7e/aGu+UBnUYbE156bVCVG3eb2P0SRh8EgO1QwmURQwZHR8qMsIS5HxikfRSZah2bgeus8+gf6z5dBs3+a/ypuZVRMop8Pb+4wQFkkUfWx/uw/aNT9C+/NPMD/yIGwPPtIO91oTKqM4XLLnMjp0StNj5HgrVn1d2uI9LoHaOZeRMizWWLMtR5xF06yN4NtSuwyLrVnQJxx7LYmiAcMltSuhqAi6lSugXfktdCu+hnS00H+dJ7cXXJOmwDlpMjwDB0flm1CisKDVouKV12CdOBqml+bBPWo0XOecF9S79G9FEpU7YEXvkN+O6sxzE3DsiBPpWYbGD26A5NuKJIhDPNtSbJwGObmmVp1za9UOiw3marEadE7Xo0tm6M6TKJoxXFJQCZUV0KxbC91330L33Qpotm3xX6eIIlzDR/oDpZzTLYSVEnUsckYmKp99CZbfX4nY2Tej9JtVkLukB+3+BG5FQhFEqxNxzU1dWnUbtftcRsZbLVEUcO0trTvn1mqPnktRFHDjXRlR+VpEFA4i4xWvFW6//XasXr0ao0ePxty5c0NdTnRTFIgH9kO7bq369dNaSNu3QlAU/yHe7K5wjZsA19gz4R49Boo1IYQFE3VsrvOmoPrGW2Ca/xLibrwOZUuXA9rgrHrn77mMwgDGcEn10Yjq/yVthGxFEg7aY84lEJ0fchGFi6h/xbv66qtx8cUX4+OPPw51KdFFUSDu3wfNls3QbNkIzeZN0G7cALHoeMBh3i7pcA8ZCveYM+Eae2a7rUxJRE1ju+8haH9aA+26tTA/cC9sj8wJyv1E83YdtcE5+s6NWq5/cj46mTsj3mBt/GACAMTq1EVo4vRxIa6EiFoq6sPlsGHDsHbt2lCXEbm8XoiHDkKzZxekXb9B2r0b0m87oNm6BWJlRcChiiTBnT8A7iHD4Bk6HO7BQ4M6zI6I2oBej4pX34T17LEwLXgZngGD4Jx+eZvfTe1qsdHXu8fVYqk+VkMCrAaOzmmOFFMKLs29AkaNMdSlEFELhXW4XLduHV599VVs2bIFRUVFePnllzF+/PiAY95++228+uqrKCoqQu/evfH3v/8d/fr1C1HFEcjhgHiiCOLhw5AOH4JYUACp4CDEwwWQDh2EtG8vBKfzlF9TTCa4Bw2Bp28/ePr2V//N7Q0Y+QeBKNLIGZmoeOV1WC6fiti7boen1xnw9unbpvcRzftc+ofFRuViRUTti8GSKLKFdbisrq5Gbm4uLrnkEsyePfuU65cvX47HHnsMDz74IPr374833ngDN9xwAz777DMkJLT9p4WiGF5viqTjx4DtG6ArrYTi9gBuN+DxQPC4gepqCFU2CFWVEGxVEKqqIFRVQiwuhlB8AuKJExCKiiBWVZ72PuTERHjyB8DbvSe83XvA20P9V+6aA0iBcyL4tiq6+Np7uLV7Cg7v+Amo/vsDMD90PyzXX4Pyr76DEt92w/kyLZmodJcj0ZQIURSiqn2JogBBACRJjIrziRbR1MYo/LB9UTBFcvsK63A5btw4jBs3rsHrX3/9dVx++eWYNm0aAODBBx/Et99+iyVLlmDmzJltWotGIyIxMaZNb7NVHA5gcD+guhqxLb0NiwXo0QNITgYyMoDMTPUrK8v/vWi1QgQQnCU+KBJYreZQl0Dt5YG/A1s3QvrgAyTcfjPw8ceA2DYfGyUm9sHArn1OuTwa2leS3YIjLgNSEuORGBdGfycIQHS0MQpfbF8UTJHYvsI6XJ6Oy+XC1q1bccstt/gvE0URI0eOxIYNG9r8/jweGRUV9ja/3dYw3fEnGA/shVMRoIgSoNFA0WoBSQPFZIQSEwMlJhZKTAxgNkOJiYWckAglORlyQiKg15/+DmQAxVXtci4UfkRRgNVqRmmpDbKsNP4LFB2enAfLps3QLF+O6j//BfZ7/xGUu4mm9pWm6Qo5TgO9Kw7FfM0MG9HUxij8sH1RMIVr+4qLM0KrPf1qzhEbLktLS+H1epGUlBRweWJiIg4cOOD/+cYbb8SmTZtgt9sxduxYzJ8/H7169WrRfYbTkwsA1Xf9BcbEGFQVV7WstjA7HwpPsqyEXdunIDLHoOKNdxA/aQJMc5+Ep0duUBb48YmG9mWUTOgRnwsogKxE9rlEo2hoYxS+2L4omCKxfUVsuGyIoigB+xfNnz8/hNUQEUUeb/ceqFjwb1iumo7YP86CN7srPIOHhrosIiIiCnMRuwaL1WqFJEk4ceJEwOUlJSWn9GYSEVHzuMdPRNXDj0NwOmH5/VUQCw6FuiQiIiIKcxEbLnU6HfLy8vDjjz/6L5NlGatXr0Z+fn7oCiMiihKO62+E/fczIRYdh+V3VwBVnE9IREREDQvrYbE2mw0HDx70/1xQUIDt27cjKSkJycnJuO6663D33XcjLy8P/fr1wxtvvAGHw4GpU6eGsGoioighCKh6dA6kvbuh+/47xN12Iypef6vNVpAlIiKi6BLW4XLLli249tpr/T8//PDDAIBZs2Zh9uzZmDx5MkpKSvDcc8+hqKgIvXv3xsKFC4OyxyURUYek1aJi4RuInzQB+k+XwfzwA7Dd/1CoqyIiIqIwJCgKl7ZrCrfbi7Ky6lCXEUAUBSQmxqC4pavFEp0G2xfVJe3ehfjJEyGWlaHysSfhmHljq26P7YuCjW2Mgonti4IpXNtXfLyp0a1IOLaJiIga5e3eAxX/eReKXo+Ye/4PuuXLQl0SERERhRmGSyIiahL38JGoeHEBACDu5uuhWbc2xBURERFROGG4JCKiJnNdcDFsDz0KweGA5XeXQ9qzK9QlERERUZhguCQiomax33Qbqm+eBbGkBJbLp0E4fjzUJREREVEYYLgkIqJmsz3wMBwXXQLp4H5YrpoOoaI81CURERFRiDFcEhFR84kiKue9DNeoMdBu2oC4310B2O2hroqIiIhCiOGSiIhaxmBAxX/egTt/AHSrVyHuhmsBtzvUVREREVGIMFwSEVGLKbFxKH9nMTw9c6H/8nPEzr4J8HpDXRYRERGFAMMlERG1ipKYiPJFH8KbmQXD4vcR89c/A0r4bPpMRERE7YPhkoiIWk3unIay/y2FnJwC4xuvwvzwAwyYREREHQzDJRERtQk5pxvKFn0IOT4epnlzYfrXY6EuiYiIiNoRwyUREbUZ7xl5KH9vCeTYOJiffBymp54IdUlERETUThguiYioTXkGDEL5e4shx8TC/MQjMD3zZKhLIiIionbAcElERG3OM3goyt9dDNkcA/OjD8H43NOhLomIiIiCjOGSiIiCwjN0GMrf+QCKyYyYhx+A8flnQ10SERERBRHDJRERBY1n+AiUv/M+FJMJMQ/dB+OL80JdEhEREQUJwyUREQWVe8QolL+9CIrRiJgH7uUcTCIioijFcElEREHnHjUG5f99H4rJrM7BfORB7oNJREQUZRguiYioXbhHjUHZ+x9CjrPANPdJ4I9/ZMAkIiKKIgyXRETUbjyDh6J8yTLIiYnAs8/C/KfbAa831GURERFRG2C4JCKiduXp2x8VH30GdO4Mw5v/RuysmwCPJ9RlERERUSsxXBIRUbvz5vYCVq6ENz0Dhg/+h7gbfg84HKEui4iIiFqB4ZKIiEKje3dULPscnq450C//GJYrp0GoKA91VURERNRCDJdERBQycnoGyj7+Au5++dCt+h7xF02GeOxoqMsiIiKiFmC4JCKikFJSUlC+ZBlcY86EZutmxE85B+LePaEui4iIiJqJ4ZKIiEJOiY1D+X8XwXHRJZAO7of1/LOh2bg+1GURERFRMzBcEhFReNDrUfnKa6i+4SaIJ07AcvEUaL9bEeqqiIiIqIkYLomIKHyIImyPzIHtnvsh2qpguXIa9O+8FeqqiIiIqAkYLomIKLwIAqrv/DMqnn0RABB3x60wPfYQIMshLoyIiIhOh+GSiIjCkvPKa1D+7mLIcRaY5z6J2Ftmci9MIiKiMMZwSUREYcs99kyUffIlvJlZMCz5APHTLoBQXBzqsoiIiKgeDJdERBTWvLm9ULr8a7gHDoJ23VpYz5sAac+uUJdFREREJ2G4JCKisKekpKBs8Sdwnn8RpP37EH/eRGhXfR/qsoiIiKgOhksiIooMJhMqFr6B6ll3Qiwrg+XSi2B4bQGgKKGujIiIiMBwSUREkUQUYbv/IXUlWVFE7F/vQsyf7wBcrlBXRkRE1OExXBIRUcRxXnkNypZ8Am9KKoxv/hvxl5wP4fjxUJdFRETUoTFcEhFRRPIMGYayL7+De8BAaH9aA+s546DZuD7UZREREXVYDJdERBSx5M5pKPvwMzguvQLSkcOIv+Bc6BcvCnVZREREHRLDJRERRTaDAZXPv4KqBx4BXC7E3TwT5vv+Brjdoa6MiIioQ2G4JCKiyCcIsN86G+X/fR+y1QrTKy8gfuoUiEcLQ10ZERFRh8FwSUREUcM94SyUfvU93PkD1HmYE0ZzP0wiIqJ2wnBJRERRRc7IRNnHX8D++5kQTxTBMv1CGJ9/lvthEhERBRnDJRERRR+9HlX/mouKeS8DOh1iHroPcTOuhlBRHurKiIiIohbDJRERRS3n5VehdPnX8HTNgf7TZbCeNRaaDb+GuiwiIqKoxHBJRERRzZvXB2Vffgfn5Asg7d+H+Clnw/jy8xwmS0RE1MYYLomIKOopcRZUvP4WKh97EhAExNx/D+KuuQxCcXGoSyMiIooaDJdERNQxCAIcM29E6affwNO9B/Rffg7r+JFcTZaIiKiNMFwSEVGH4u3bD6VffAfHFVdDOloIyyXnw/TEI4DHE+rSiIiIIhrDJRERdTwxMah87iVUvDAfiskM81NPwHLJ+RALDoW6MiIioojFcElERB2W89IrUPb1Srj75UO35kdYzxwJ/fvvcbEfIiKiFmC4JCKiDs2b0x1ln3yJ6ll3QqisQNytf0DsjddBKC0JdWlEREQRheGSiIhIr4ft/odQvuQTeNMzYPhwMazjRkD77TehroyIiChiMFwSERHVcI8cjdJvf4Tj8qsgHS1E/GUXw3zP/wHV1aEujYiIKOwxXBIREdWhxFlQOe9llL/6JuSEBJgWvgLr2WOh2bg+1KURERGFNYZLIiKierguuAil362Bc+LZ0Oz6DfGTJsD02EOA0xnq0oiIiMISwyUREVED5NROqPjv+6icMxeKwQjz3CfVXsz1v4S6NCIiorDDcElERHQ6ggDHjJkoXbkGrrHjodmxHfHnTYT5n/8AHI5QV0dERBQ2GC6JiIiaQM7IRPmipah86jkoJjNM8+bCOnE0ND//FOrSiIiIwgLDJRERUVMJAhy/m6H2Yo6fqM7FPP8cmP9xL1eUJSKiDo/hkoiIqJnk9AyUv7sYlc+8AMUcA9NL85Awdji033wV6tKIiIhChuGSiIioJQQBjqt+h9Lv18J53vmQDu5H/BWXIPbm6yEcPx7q6oiIiNodwyUREVEryGldUPHGf1H++tvwdk6DYfH7SBg9GIa33gBkOdTlERERtRuGSyIiojbgmnIBSn/4CfaZN0IoL0fsn2bDcvFkSL/tDHVpRERE7YLhkoiIqI0osXGoeuxJlH36NTx5faFb8yOs40fC9MQj3LaEiIiiHsMlERFRG/MMHIzSL75F1f3/BDQamJ96Agljh0H35WehLo2IiChoGC6JiIiCQauFfdYdKFm5Fs6zz4W0fx8sV1+GuN9dDnH/vlBXR0RE1OYYLomIiIJIzspGxduLUP7We/BmZUP/+adIGDMUpjmPAnZ7qMsjIiJqMwyXRERE7cB1znko+f4n2O6+BxAEmJ98HAljhkH32XJAUUJdHhERUasxXBIREbUXgwHVf/4rSr7/Cc5JUyAd3A/LtVcg7upLIe3dHerqiIiIWoXhkoiIqJ3JWdmo+M87KH/nfXi65kD/1RewjhkG8/33QCgvC3V5RERELcJwSUREFCKuieeg9Ls1qLr3H1B0ephefh4Jw/JheHU+4PGEujwiIqJmYbgkIiIKJYMB9jvuQsma9bBf83sIpaWI/dufYT1zBHRffxHq6oiIiJqM4ZKIiCgMKKmpqHp6Hkq//gGuMeOg+W0nLFdOh+XyqZB2bA91eURERI1iuCQiIgoj3j59Uf7+Ryj/z7vw5HSDbsXXsJ45AjH/90cIRUWhLo+IiKhBDJdEREThRhDgmjQZpSvXouqfj0GJjYPxjVeRMLQ/TP96DEJVZagrJCIiOgXDJRERUbjS6WC/6TaUrF2P6htvgeBywvyvx5AwNB+GV18BXK5QV0hEROTHcElERBTmlIRE2B5+AiWrf4Xj0isgFJ9A7N/+DwmjBkO/5H1AlkNdIhEREcMlERFRpJAzs1D5wnyUfrMKzrPOgXRgP+Juuh7xZ4+D9ttvQl0eERF1cAyXREREEcab1wcV/30fZUs+gXvgIGg3b0T8ZRfDMu1CaH79OdTlERFRB8VwSUREFKHco8ag7NNvUP7aW/B06w7d99/COmkC4q65DJpNG0JdHhERdTAMl0RERJFMEOA6/0KUfv8TKuc+D29GJvRffAbrWWMRN+NqSFu3hLpCIiLqIBguiYiIooFGA8fV16Jk9a+onDMX3s5p0C//GAnjRyL2DzMg/bYz1BUSEVGUY7gkIiKKJjodHDNmomTtBlQ+OgfelFQYPlwM69hhiL31D5D27g51hUREFKUYLomIiKKRwQDHDTej5KeNqHrgESgJCTC8/x6so4Yg9rYb2ZNJRERtjuGSiIgomplMsN86G8U/bULV3x+EYrHAsOhdWMcMRewNv4e0eVOoKyQioijBcElERNQRxMTAfvsfUfzzFlQ98Ajk5BQYPlqChImj1dVlf1kX6gqJiCjCMVwSERF1JDExsN86GyXrNqHysSfh7ZKuri573kRYpl8E7Y8/AIoS6iqJiCgCMVwSERF1REYjHDNvVBf+eeYFeLO7QrdyBeIvnoz4CydB+82XDJlERNQsDJdEREQdmU4Hx1W/Q8mPv6DipYXw5PaCdu1qxF8xDdbxo6Bf9C7gdoe6SiIiigAMl0RERARoNHBOuwyl361B+WtvwT1gIDTbtiDuthuRMLQ/jC8/D6GqMtRVEhFRGGO4JCIiolqiCNf5F6LssxUoW7oczrPOgXS4ADH334OEAXkwP/wAxGNHQ10lERGFIYZLIiIiOpUgwD1yNCr++z5KVq6F44qrIVTbYHruaSQM6oOYP86CtOu3UFdJRERhhOGSiIiITsvbqzcqn3sJJT9vRvVtd0DR6WF8+z9IGDUYcddcBu13K7j4DxERRX+4vP322zFkyBD88Y9/DHUpREREEU3unAbbP/6Jkg3bUHXfQ/B26gz9F58h/tKLYB03HIY3/w1UV4e6TCIiCpGoD5dXX301nnjiiVCXQUREFDWUOAvss+9Eyc+bUfHSQrgHDoJmx3bE3nU7Egf0VudlHjkc6jKJiKidRX24HDZsGMxmc6jLICIiij46HZzTLkPZZytQuvwrOKZOg1BR4Z+XGfuHGdCsW8shs0REHURIw+W6detw8803Y/To0cjNzcWKFStOOebtt9/GhAkT0LdvX1x22WXYtGlTCColIiKi0/EMHorKV15HyS9bUH3HXVAsFhg+XAzrlLMRP2m8ul+m0xnqMomIKIhCGi6rq6uRm5uL+++/v97rly9fjsceewy33XYblixZgtzcXNxwww0oKSnxH3PRRRfV++X1etvrNIiIiKiGnNYFtnv/geL121H59Dx4ep8B7fpfEXfbjeqQ2X/+A+KB/aEuk4iIgkATyjsfN24cxo0b1+D1r7/+Oi6//HJMmzYNAPDggw/i22+/xZIlSzBz5kwAwIcfftgutQKAKArtdl9N4asn3Oqi6MD2RcHE9tUBmE1wXTsDrt/9HprvV8Lw2nzoPv0EpnlzYXz+Gbgnng3HjJlwn30uIEltfvdsYxRMbF8UTJHcvkIaLk/H5XJh69atuOWWW/yXiaKIkSNHYsOGDe1ej0YjIjExpt3vtymsVs4ppeBh+6JgYvvqIKZOUb8OHwYWLICwYAF0X30B3VdfAFlZwI03AjNnAqmpbX7XbGMUTGxfFEyR2L7CNlyWlpbC6/UiKSkp4PLExEQcOHCgybdz4403YtOmTbDb7Rg7dizmz5+PXr16Nbsej0dGRYW92b8XTKIowGo1o7TUBlnmYgnUtti+KJjYvjoogwWY/Wfg5jug+3w59K+/Ct13K4B774XywANwTbkQjutugGfkKEBo3Sf2bGMUTGxfFEzh2r7i4ozQak8/0iRsw2VDFEWB0Iw/OPPnz2+z+w6nJ7cuWVbCtjaKfGxfFExsXx2UpIFj8oVwTL4Q0p5dMPz7NRjeexv6pR9Av/QDeLr3gOOqa+G47EooKSmtuiu2MQomti8KpkhsX2G7FYnVaoUkSThx4kTA5SUlJaf0ZhIREVFk8nbrAds/H0Pxxp2oeO4luAcNhmb3LsQ8dB8S83shbsbV0H35GeDxhLpUIiJqRNiGS51Oh7y8PPz444/+y2RZxurVq5Gfnx+6woiIiKjtGY1wXnE1yj79BiXfrUH1TbdCiYuDfvnHsFx9GRIG9YHpsYcg7t8X6kqJiKgBIQ2XNpsN27dvx/bt2wEABQUF2L59O4qKigAA1113Hd59910sWbIEe/bswQMPPACHw4GpU6eGsmwiIiIKIm/vM2D75+Nqb+aCf8N15gSIRwthnvskEof2h2XaBdAvXgQ4HKEulYiI6gjpnMstW7bg2muv9f/88MMPAwBmzZqF2bNnY/LkySgpKcFzzz2HoqIi9O7dGwsXLkRCQkKoSiYiIqL2otfDedElcF50CcRDB2F45y0Y3n0buu+/g+777yBb4uG86BI4LrsSniFDW70IEBERtY6gKEpkzRINEbfbi7Ky6lCXEUAUBSQmxqC4uCriJvtS+GP7omBi+6IW83qh/W4FDP99E/rPPoHgcqkXZ3eF47Ir4Zh+OeTsrmxjFFRsXxRM4dq+4uNNja4WG7ZzLomIiIhOIUlwTzgLlQvfQPGWXaj81zNwDxkGaf8+mOc8qg6bvXAS9G/+GygvD3W1REQdCsMlERERRSQl3grH769H2SdfomTNr7Dd9Rd4M7OgW/MjYv44G0hNRcwNM6D76nOuNktE1A4YLomIiCjieXO6o/ov96Lkp40o++gzOK75PaDXQ7/0A1iuuhSJ/XIR89e7oFm7BpDlUJdLRBSVGC6JiIgoeogi3MNHwvbM88DRo6hc8G84J54NobQExtcWwHrBOUgY3BfmB++DZvNGgEtPEBG1GYZLIiIiik5GI1xTp6HinQ9QvHkXKp94Gq4RoyAVHILphWdhnTgG1lGDYZrzKKTdu0JdLRFRxONqsU3E1WKpo2H7omBi+6JgO10bE48chn7pYuiXvA/txvX+y919+8N58TQ4p06DnJ7R3iVTBOFrGAVTuLavpqwWy3DZRAyX1NGwfVEwsX1RsDW1jUl7d0O/5APol7wPzW87/Ze7Bw2Gc8pFcJ5/IeTsru1RMkUQvoZRMIVr+2K4bEMMl9TRsH1RMLF9UbA1u40pCqRtW2FY8j70SxdDOrjff5W7b3+4LrgIzvMvgrd7j+AVTRGDr2EUTOHavhgu2xDDJXU0bF8UTGxfFGytamOKAs2WTdAt+xD6jz+Eps58TE/vM+CcciGcF1wMb6/egCC0ceUUCfgaRsEUru2L4bINMVxSR8P2RcHE9kXB1mZtTFEg7dwB/cdLoV/2ETTbt/qv8nTrDtf56tBZT798Bs0OhK9hFEzh2r4YLtsQwyV1NGxfFExsXxRswWpj0p5d0C37CPplHwUsBuRN6wLXuefBee5kuEeNAfT6NrtPCj98DaNgCtf2xXDZhhguqaNh+6JgYvuiYGuPNiYe2A/9Jx9D/8lH0Pz8E4Sat1RyTCxcE86C69zz4DrrHCjWhKDcP4UOX8MomMK1fTFctiGGS+po2L4omNi+KNjau40JRUXQffU59J8th+67byBUq+8ZFEmCe/hItVdz0hSuPBsl+BpGwRSu7Yvhsg0xXFJHw/ZFwcT2RcEW0jZmt0P3/bfQff4p9J8th1h03H+Vp1dvuM45D86zzoVn8BBAo2nf2qhN8DWMgilc2xfDZRtiuKSOhu2Lgonti4ItbNqYLEOz/he1R/Pz5dDs2F57lSUerjMnwDXxbLgmnA0lJSV0dVKzhE37oqgUru2L4bINMVxSR8P2RcHE9kXBFq5tTNy3F/qvPofu6y+hXfU9BKfTf527/wA1aE48G56BgwHp9G/iKHTCtX1RdAjX9sVw2YYYLqmjYfuiYGL7omCLiDZWXQ3dqpXQffUFdF9/CengAf9VstUK1/iJcE08B67xZ0FJSgphoXSyiGhfFLHCtX01JVxyoD8RERFRKJhMcJ09Ca6zJ6n7ae7e5Q+a2tU/wLD4fRgWvw8AcPftD/fYM+EaNx7uYSMAozHExRMRnYrhkoiIiCjUBAHeHj1h79ET9ltmAVVV0P2wErovP4fuu2+g3bwR2s0bYXrhWSgGA9xDR6hB88zx8OT1BUQx1GdARMRwSURERBR2YmLgmjQZrkmTAUWBuG8vdN+tgO67FdD+sBK6lSugW7kC+CcgJyXBNWYc3OMmwDVuPOQu6aGunog6KIZLIiIionAmCJBzusGR0w2O624APB5oNq5Xg+Z3K6BdtxaGJR/AsOQDAICnW3e4x4yDe9QYuEaOgZKcHOITIKKOguGSiIiIKJJoNPAMGgLPoCHAn+5Wh9Cu/gHamp5Nzc4d0OzZDeO/XwUAeHJ7qUFz1Bi4R4zm4kBEFDQMl0RERESRLCbGvzCQDYB4tBDaVd9D++MP0K76Xg2bO3fA+NoCAICn9xlwjxwN18gxcI8cDSUxMbT1E1HUYLgkIiIiiiJyp85wTrsMzmmXAQDEI4fVoOkLm9u3QbN9G4yvzgcAeHrnwTVqNNzDR8IzdDjkTp1DWT4RRTCGSyIiIqIoJqd1gXP65XBOvxwAIB4u8IdN3Q8rodm+FZrtW4GFrwAAvJnZcA8bDvewEXAPGwFvj55cjZaImoThkoiIiKgDkbukw3npFXBeegUAQCw4BO3qVdCuXQPtujXQbN8G6eB+GBa9qx4fHw/30OFwD1XDpqd/PmAwhPAMiChcMVwSERERdWByekZA2BRKS6D9+Sc1bK5dDc36X6D/4jPov/gMAKDodPDkD1R7NgcPhXvgYCipqaE8BSIKEwyXREREROSnWBP8CwQBAJxOaDZugHbtamh/Wg3tT2v8Xz7ejEy4Bw6GZ9BguAcOgadff/ZuEnVADJdERERE1DC9Hp6hw+AZOgx23AnIMqRdv0H70xpoflkH7S/rIP22E4ZDB4EPFwMAFI0Gnj594Rk4GO5BQ+AZNBjert0AQQjtuRBRUDFcEhEREVHTiSK8ub3gze0F/G4GAECoKIdm/a/Q/vozNL/+DO0v66DdsB7aDev9W6DIVqvauzlgEDz5A+DpPwByaqcQnggRtTWGSyIiIiJqFSXOAve48XCPG19zgQLx4AE1bP6yDtpffoZm80bov/4S+q+/9P+eN7UTPP3z4emXD0//AfD0z+dWKEQRjOGSiIiIiNqWIEDOyoYzKxvOqdPVy5xOaLZuhmb9r9Bs2gDtxg2Qdm4PWCwIALwpqYGBM38AAydRhGC4JCIiIqLg0+vhGTgYnoGDay+z26HZtgWaDesDA+eXn0P/5ef+w7wpqfDm9YEnry88Nf96u/cANHwrSxRO+D+SiIiIiELDaIRn0BB4Bg2pvcwXODduqA2cO7ZBWvE1dCu+9h+m6PXw5PaGJ69PQPBU4q0hOBEiAhguiYiIiCic1Bc4HQ5oftsBaesWdWjttq3QbN0M7aYN0G7aEPDr3i7pNb2bNT2cvc6At2sOoNW273kQdUAMl0REREQU3gwGdQ5mv3w4fZcpCsTCI2rY3LpFDZ7btkDasxv6wwUB8zgVrRbe7j3g6amucuvJ7a2ueMvQSdSmGC6JiIiIKPIIAuS0LnCldYHr7Em1l1dXQ7NzOzQ1vZzSzh3Q7NwBzfZt0GzfFnAT/tCZ2wvenjWhs1dveLO7MnQStQDDJRERERFFD5NJ3UtzwKCAi4XiYnVo7Y7t0OzcDum3ndDs2F5/6NTp4O2aA2+3HvB26w5P9x7q9927Q0lIbM+zIYooDJdEREREFPWUxES4R4yCe8SogMuF4mI1bO7cEfCvpqbH82Sy1aquVJt3BgwZ2fB07Q5v9x7qEFu9vr1OhygsMVwSERERUYelJCbCPXI03CNHB1wulJZA2rMb0u5dkPbugWb3Lkh71O+1634C1v0Ec93bEUXIGZnw5nSDNysb3uwceLO7ql9Z2YDZDKJox3BJRERERHQSxZoAz+Ch8AweGniF1wtN4WFYjxfA9usmiLt3Qdq9Ww2eB/ZDOrC/3tuTk1P8QdMfOrNz4M3KhpKSAghC8E+KKMgYLomIiIiImkqSIGdmAQPy4Bg8CrKs1F5ns/kDprR/H6T9eyHt3wfxwH5Ihw5Cu+44tOvWnnKTismshs7MTMjpGfCmZ0JOT4e35nslORkQxXY8SaKWYbgkIiIiImoLZjO8Z+TBe0beqdd5vRAPF9QJnvtqg+f+fdBs3wrN9q313qyi18Ob1gVyeia86elqAM2oCaJd0iF3SQd0uiCfHFHjGC6JiIiIiIKtpsdTzsyCe8y4wOsURZ3jWXAI4qFDkAoOQiwoUH8uOATp8CFo9u0F9u2t96YVQYCSlAxv5zTInTpB7pQGuXNnyJ3T4O2k/it37gzFEs/htxRUDJdERERERKEkCFASEuFJSAT65dd/THU1pMMFatgsOASx4CCkgjo/Hy2Etug4sKnhu1GMRsipndQQ2rlzbQhNTgn4UqxWDsOlFmG4JCIiIiIKdyYTvD16wtujJ9z1XS/LEIqLIR09ArHwCMTCQvXfY0ch+X4+esQ/HPd0FI0GcmKSGjSTk08Kn4E/KwkJgIaRglRsCUREREREkU4UoSQnw5OcDPTt3/BxdjvEo4WQjhZCPFqohs6i4/4voahI/f5EEaRjR5t013KcBUpCAuSEBMjWBCjWBMiJieq/J32vJCZCtiYABkMbnTiFE4ZLIiIiIqKOwmiE3DUHctec0x8nyxBKSwOCp/pVBKHO92JpCYSSkib1iNalmExqKI2Lg1Lzr2yxQImLr/0+Ng6KxQLFYoEca6n9PiYWMJk4dDcMMVwSEREREVEgUYSSmAhvYiK8vXo3frzL5Q+aYmkJhOJi9d/SEognfS+UqseIRcchHC1scYmKyQzF7PuKgWIy1X5f93KzOfBYowmKQQ/oDVD0eih6A2Co+d5gBAw1l+l0XACpmRguiYiIiIiodXQ6yKmdgNRO8Db1dxQFsNkgVlZAKC+HUFEBsaIMQoXv53KIvu8ryyHWHCNUVkCw2SBU29Rjio4H7bQUgwFKTQiFwQhFrwM0WigaDaDVAJJG/V6jBTRSne81UDRS7bE1X4okqYHV/yUG/iyKgE4L3HQDkNA5aOcVLAyXRERERETU/gQBiImBHBMDdE5r+e243WrQtPm+qgL/ra6u/b6qCnA6IDicEJyOmu/VLzjVywSHU73c6fRfLpaVQnAda7tzb/ScHMD9j7Tf/bURhksiIiIiIopcWi0US7y6j2cwybIaQL0ewO0GPF4IHjfgUX8WvF7A46lzmUc91n+9B/B41R7bgC8ZQp2fBUlC7CUXAHJwTycYGC6JiIiIiIgaI4qA0QilzkVKgwe35m4EwBoDFFcF4daDi0ssERERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqwmKoiihLiISyLICr1cOdRmn0GoluN3eUJdBUYrti4KJ7YuCjW2Mgonti4IpHNuXJIkQReG0xzBcEhERERERUatxWCwRERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsNlmHv77bcxYcIE9O3bF5dddhk2bdp02uM//fRTTJo0CX379sUFF1yAlStXtlOlFIma07527dqF2bNnY8KECcjNzcVbb73VjpVSJGpO+/rf//6Hq666CkOGDMHQoUNx/fXXY/Pmze1YLUWi5rSxr776CtOmTcPgwYORn5+Piy66CEuXLm2/YiniNPc9mM/8+fORm5uLJ554IsgVUiRrTvtavHgxcnNzA7769u3bjtU2HcNlGFu+fDkee+wx3HbbbViyZAlyc3Nxww03oKSkpN7j169fj7vuugvTp0/H0qVLcdZZZ+HWW2/Fnj172rlyigTNbV92ux3p6em46667kJyc3M7VUqRpbvtau3YtpkyZgv/85z945513kJqaiuuvvx7Hjx9v58opUjS3jVksFtx0001477338NFHH2H69Om455578OOPP7Zz5RQJmtu+fLZu3Yp3330Xubm57VQpRaKWtK/4+Hj88MMP/q8VK1a0Y8XNoFDYmj59uvLQQw/5f/Z6vcro0aOVhQsX1nv8HXfcodx0000Bl1166aXKgw8+GNQ6KTI1t33VNX78eOXNN98MZnkU4VrTvhRFUTwejzJgwADlo48+ClaJFOFa28YURVEuvvhiZd68ecEojyJcS9pXdXW1ct555ykrV65UrrnmGuXxxx9vj1IpAjW3fX3wwQfK0KFD26u8VmHPZZhyuVzYunUrRo0a5b9MFEWMHDkSGzZsqPd3NmzYEHA8AIwePbrB46njakn7ImqqtmhfdrsdHo8HFoslSFVSJGttG1MUBatXr8a+ffswaNCgIFZKkail7evxxx/HsGHDMGbMmHaokiJVS9tXVVUVzjzzTIwbNw633nordu/e3Q7VNp8m1AVQ/UpLS+H1epGUlBRweWJiIg4cOFDv75w4cQKJiYmnHF9UVBS0OikytaR9ETVVW7Svp556Cp07d8bw4cODUSJFuJa2scrKSowdOxYulwuiKOLBBx/EiBEjgl0uRZiWtK8VK1ZgzZo1nMdLjWpJ+8rJycFjjz2Gnj17oqKiAq+99hquvPJKLFu2DKmpqe1RdpMxXEYYRVEgCEKD19d33emOJ6qrsfZF1BpNbV8LFizA8uXL8eabb0Kn07VDZRQtGmtjZrMZS5cuRXV1NVavXo1HH30UmZmZGDx4cDtWSZGqofZVUlKC++67Dy+88AKMRmMIKqNocLrXr/z8fOTn5/t/HjBgACZPnoxFixZh1qxZ7VRh0zBchimr1QpJknDixImAy0tKSk75pMMnKSnplOOLi4sbPJ46rpa0L6Kmak37evXVV/HKK6/g9ddfR8+ePYNZJkWwlrYxURSRlZUFAOjduzf27NmD+fPnM1xSgOa2r127dqGoqAhXXnml/zKv14t169bhrbfe4srXFKAt3oNptVr07t07LEebcc5lmNLpdMjLywtYxU6WZaxevTrgk4u68vPzsWrVqoDLfvzxxwaPp46rJe2LqKla2r4WLlyIF198EQsXLgzbJdYpPLTVa5iiKHC5XEGokCJZc9tX37598fHHH2Pp0qX+rz59+mDq1KlYvHhxO1ZOkaAtXr+8Xi927doVlqv3s+cyjF133XW4++67kZeXh379+uGNN96Aw+HA1KlTAQB33303UlNTcddddwEArr32WlxzzTV47bXXMG7cOCxfvhxbtmzBI488EsrToDDV3Pblcrn829q4XC4cO3YM27dvh8ViQVpaWsjOg8JTc9vXggUL8Oyzz+Kpp55Cly5d/HPFTSYTzGZzyM6Dwldz29j8+fNxxhlnICsrCy6XC99//z0+/PBDPPTQQ6E8DQpTzWlfJpPplJEWJpMJ8fHx6NGjRyjKpzDX3Nev559/Hvn5+cjKykJFRQVeffVVHDlyBNOnTw/ladSL4TKMTZ48GSUlJXjuuedQVFSE3r17Y+HChUhISAAAFBYWQhRrO58HDhyIp556Cs888wyefvppZGdn44UXXkC3bt1CdQoUxprbvo4fP46LL77Y//P8+fMxf/58TJ06FY8//nh7l09hrrnt65133oHb7cbtt98ecDuzZs3C7Nmz27V2igzNbWMOhwMPPfQQjh49CoPBgJycHPzrX//C5MmTQ3UKFMaa276ImqO57auiogL33XcfioqKYLFY0KdPH7z33nvIyckJ1Sk0SFAURQl1EURERERERBTZ+JELERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtZom1AUQERGFm3nz5uH5558/5fIRI0bg3//+d/sXREREFAEYLomIiOoRGxuLhQsXnnIZERER1Y/hkoiIqB6SJCE/P7/R4xwOBwwGQ/ALIiIiCnOcc0lERNREBQUFyM3NxUcffYS7774bgwcPxs033wwAKCsrw/3334+RI0eib9++uOKKK7Bx48aA36+oqMBdd92F/Px8jB49Gi+99BKeeOIJTJgwwX/MvHnzMGzYsFPuOzc3F2+99VbAZYsWLcKUKVPQp08fjB8/HgsWLAi4/q9//SsuueQSrFq1ChdccAHy8/Nx5ZVXYteuXQHHeb1evPLKKzj33HPRp08fjB07Fn/9618BAG+//TYGDBgAm80W8Dtr1qxBbm4uduzY0cxHkYiIohV7LomIiBrg8XgCflYUBQAwZ84cnH322Xj22WchiiJcLheuu+46VFRU4O6770ZCQgLeeecdzJgxA1988QWSk5MBAH/729/w008/4Z577kFSUhJee+01HDx4EBpN8/8cL1y4EHPnzsUNN9yAoUOHYuvWrXj22WdhNBpxzTXX+I8rLCzEnDlzcMstt0Cv12POnDm48847sWzZMgiCAAC4//778eGHH2LmzJkYOnQoysvL8dlnnwEALrjgAjzxxBP4/PPPcckll/hvd8mSJcjLy0OvXr2aXTsREUUnhksiIqJ6lJWVIS8vL+Cyhx9+GADQv39//OMf//BfvmjRIuzatQvLli1DdnY2AGDkyJGYNGkSXnvtNfzlL3/Brl278NVXX2Hu3LmYPHkyAGDYsGEYP348YmJimlVbVVUVXnjhBdxyyy2YNWsWAGDUqFGw2+146aWXcOWVV0KSJABAeXk53nnnHX9diqLgtttuw969e9GtWzfs2bMH77//Pu69915ce+21/vvw1RgXF4dzzjkHixcv9odLm82GL774AnfddVez6iYioujGcElERFSP2NhYvP766wGX6XQ6AMCZZ54ZcPnq1auRl5eH9PT0gN7OIUOGYMuWLQCAzZs3A0DAEFiz2YyRI0di06ZNzapt/fr1qK6uxqRJkwLub/jw4XjxxRdx9OhRdOnSBQDQpUsXf7AEgG7dugEAjh07hm7dumHt2rUAENArebLp06djxowZOHToEDIyMvDpp5/C4/Hg/PPPb1bdREQU3RguiYiI6iFJEvr27RtwWUFBAQAgMTEx4PLS0lJs2LDhlJ5OAMjMzAQAnDhxAmaz+ZTFf06+raYoLS0FAEyZMqXe6wsLC/3h8uQVbrVaLQDA6XQCUHtoTSbTaXtPhw0bhoyMDCxevBh33HEHFi9ejIkTJyI+Pr7ZtRMRUfRiuCQiImom31xFH4vFgj59+uCBBx445Vhfb2dSUhJsNtspq8sWFxcHHK/X6+F2uwMuKy8vP+X+AOCVV16pN5x27dq1yecSHx+P6upqVFVVNRgwBUHAtGnT8L///Q8XXXQRfvnll1MWDyIiImK4JCIiaqURI0Zg1apVSEtLa7An0tcL+s033/jnM9psNvz4448BoS41NRU2mw3Hjh1DamoqAGDVqlUBtzVgwAAYDAYcP378lCG6zTV8+HAAwNKlSwMWAjrZ1KlT8dxzz+Gee+5BamoqRo0a1ar7JSKi6MNwSURE1EoXX3wx3n33Xfzud7/D9ddfj4yMDJSVlWHTpk1ITk7GjBkz0KNHD0yYMAEPPPAAqqqqkJycjFdfffWUYbJjxoyBwWDAPffcg+uuuw4FBQV49913A46Ji4vDrFmz8Mgjj+Dw4cMYMmQIZFnG/v37sXbtWrzwwgtNrj0nJweXX345Hn/8cRQXF2PIkCGoqKjA559/jrlz5/qPS01NxZgxY/Dtt9/ipptu8i8YRERE5MNwSURE1Ep6vR7/+c9/8Oyzz2LevHkoLi5GQkIC+vXrF7CAz+OPP44HHngAjz76KEwmE6666ir07dsXn3/+uf+YhIQEPPfcc5gzZw5uu+025OXl4amnnvL3dvr84Q9/QEpKCt544w28/vrr0Ov1yM7OPuW4pvjHP/6BtLQ0LFq0CAsWLEBCQkK9PZNnnXUWvv3229Mu/kNERB2XoPg27SIiIqJ259tD8ptvvgl1KY264447UFRUhP/+97+hLoWIiMIQey6JiIjotHbu3IktW7bgyy+/xNNPPx3qcoiIKEwxXBIREdFp3XLLLSgtLcVVV12FSZMmhbocIiIKUxwWS0RERERERK0mhroAIiIiIiIiinwMl0RERERERNRqDJdERERERETUagyXRERERERE1GoMl0RERERERNRqDJdERERERETUagyXRERERERE1Gr/D7jJVSLCKlhjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wUdf7H8dfMbEtPSCD0DgHpChZAUQQLWEFFTj0L9np2z3I/eznPs53t1FM8PfUs2LCdXSyA0pv0FiCkt81md2fm98fszO5mk0CAkICf5z3uYbI7OzubLIF3Pp/v56uYpmkihBBCCCGEEELsBrWlL0AIIYQQQgghxL5PwqUQQgghhBBCiN0m4VIIIYQQQgghxG6TcCmEEEIIIYQQYrdJuBRCCCGEEEIIsdskXAohhBBCCCGE2G0SLoUQQgghhBBC7DYJl0IIIYQQQgghdpuESyGE2E+YpsnYsWPJy8tjw4YNCffPnj2bvLw85//Dhw/n9NNP54svvqj3fEuWLGHEiBFUVVXVe//ll19OXl4er776atztF198MU899dROXXN+fj433ngjRx55JIMGDWLMmDFcdtllzJ07d6cev6fNmjWLl19+uUWee0/w+/0MHTqUIUOG1Pt9e/LJJznkkEP2+PNu3ryZvLw8Bg4cyJYtW+Lu+/rrr8nLy2Pz5s17/Hmbw9ixY3nooYecz2+55RYmTZq0V5570qRJ3HLLLXvluYQQojlIuBRCiP3E/Pnzyc/PB2DmzJkNHve3v/2NN998k0ceeYTMzEyuvPLKesPcY489xplnnklqamrCfbNmzWLhwoX1nv/iiy/m5ZdfpqKiotHrLS8vZ8qUKaxevZrrrruO559/nquvvhpVVZk/f36jj20uP/zwA6+88kqLPPee8OWXX1JTU0MgEODLL7/c688fCoV4/vnn9/rzNqfLL7+cBx98sKUvQwgh9gkSLoUQYj8xc+ZMkpOTGTJkSKPhMi8vj6FDhzJmzBieeOIJMjIy+OCDD+KOWb9+Pd9//z2TJ09OeHwoFOK+++7jT3/6U73nHz58OJmZmbz//vuNXu9nn31GUVERL7zwAieddBKHHnookydP5qmnnuKiiy7a8QtuQbquEwwGW/oyEsycOZPOnTvTuXPnRt8DzeXggw/mnXfeobCwcI+fOxQKoev6Hj/vjnTt2pW+ffvu9ecVQoh9kYRLIYTYD+i6zqeffsrYsWOZPHkyq1evZsWKFTt8XFJSEl27dmXr1q1xt8+YMYO8vDy6d++e8JhXXnkFn89Xb/C0HXPMMbz33nuNPndFRQVut5uMjIyE+xRFcT622xK/+OILjjvuOAYNGsTUqVNZvXp13GMMw+Cf//wn48ePZ+DAgRx77LHMmDEj4dz/+9//OO200xg8eDCHHHIIF110Efn5+Tz55JP861//Ij8/32kdtlsUY69h4sSJDB48mEWLFjXYZlq3XdhutfznP//J6NGjOeigg3jwwQcxTZNvv/2WiRMnMmzYMC6//HLKy8sb/bo1pLy8nFmzZjFx4kQmTpzIDz/8QGlpab3H/vrrr5x66qkMGjSIk08+mV9++SXu/i+//JJJkyYxdOhQRowYwemnn86cOXN2eA1Tp04lOTmZf/3rX40eV1NTw7333suoUaMYNGgQkydPZtasWXHHnHPOOVx99dW8+eabjBs3jsGDB7N9+3bn9nfeeYexY8cybNgwbrzxRoLBIIsWLeK0005j2LBhnHPOOQktun/729848cQTGTZsGEcccQTXX3/9DoNw3bZYu/W87v+ffPJJ55iVK1dy8cUXM2zYMIYNG8bVV1+d8DwrV67kzDPPZNCgQRx//PEtUmkWQog9zdXSFyCEEGL3/fzzzxQVFTFhwgQOOugg7rnnHmbOnEm/fv0afZxhGGzbto0BAwYknG/YsGEJxxcWFvL000/z7LPPoqoN/35y2LBhvPjii5SXl9cbHgEGDBhAMBjkpptu4oILLuCAAw5o8JxbtmzhgQce4JprrsHn8/Hkk08ybdo0Pv/8c7xeLwD33HMP7733HpdffjkDBgzghx9+4NZbbyUzM5OjjjoKgPfee4+bb76ZiRMncvnll2OaJj///DMlJSWcfvrprF+/ntmzZ/OPf/wDgDZt2jjXkJ+fz8MPP8zll19OTk4OnTt3buQrm2jmzJkMHjyY+++/n6VLl/LYY49hGAa//PIL11xzDYFAgHvuuYdHHnmEu+++u0nnBqsSHAqFmDBhAoqi8Nxzz/HZZ59x5plnxh0XCAS48cYbueSSS2jbti0vvfQSF110EZ9//jlt27Zl48aNXHPNNZxzzjlOaFuyZMlOhd6kpCTOPfdc/vnPf3LxxReTlZVV73G33347X331Fddddx1du3blrbfe4pJLLmH69OkMHz7cOW7evHls3LiRG264gaSkJNLS0gBYsGABpaWl3HHHHc57w+fzsXDhQi688EKSk5O59957ueOOO3jxxRed8xUXF3PJJZfQrl07SkpKeOmllzj33HP58MMP0TRtp77O//jHP+Kq1rNnz+bvf/+784uYDRs2MHXqVAYOHMjDDz+Mrus8/vjjXHrppbz99tsoikIgEGDatGlkZWXxyCOPEAgEuP/++/H7/VIlFULs0yRcCiHEfuCjjz4iPT2dww8/HI/Hw8iRI5k5cybXXXddXBUQrEAZDoepqKjg+eefp6amhj/+8Y/O/aZpsmzZMk466aSE53n44YcZPXo0I0aMaPR6+vXrh2maLFmyhFGjRtV7zGGHHcZ5553H9OnTmTlzJikpKYwaNYqpU6cycuTIuGNLS0t5+umnOfDAAwErmI4fP553332XqVOnsmHDBl5//XUeeOABTj31VABGjhxJYWEh//jHPzjqqKMwDINHHnmE8ePH8/e//90599FHH+183K5dOzweD0OHDk243rKyMl5++WX69+/f6GtviNfr5fHHH0fTNI444gi+/PJLXn31VT777DO6dOkCwIoVK3jvvfd2KVx+9NFH9OrVy/mFQu/evZk5c2a94fLaa6/lxBNPBOCQQw7hqKOOYvr06dxwww0sW7aMlJQUbr75ZucxY8aM2enrOPvss3nxxReZPn16va3Ta9asYebMmXHfq8MPP5yTTjqJZ555Ji4MVlRUMGPGDNq2bRt3Dr/fz9NPP+2EzTlz5vDf//6XV1991XlvFhQUcPfdd1NTU0NSUhIADzzwgHMOXdedCua8efN2+J62HXDAAc7HW7Zs4aWXXmLSpEnO1/Mf//gHOTk5PP/883g8HsCqZB9//PF8++23HHnkkbzzzjuUlJTw1ltv0b59ewA6derEH/7wh526BiGEaK2kLVYIIfZxwWCQL774gnHjxjn/mJ04cSL5+fksWLAg4fiTTz6ZAQMGcNhhh/Hyyy/z4IMP0rNnT+f+8vJygsFgQtVp/vz5fPbZZ9x00007vCb7sTtqOfzzn//snPPggw/m+++/54ILLuD111+POy47O9sJlmD9Q3zAgAEsWrQIgJ9++glVVRk/fjzhcNj5/2GHHcaKFSvQdZ1169axffv2XZ78mZubu8vBEqz1iLHVsW7dutGpUycnWNq3lZSUNHk95/bt25k7dy4TJkxwbps4cSJz586loKAg4fjx48c7H6ekpDBy5Ejna9m3b18qKyu5+eabmTVrFn6/v0nXkpaWxllnncWrr75KZWVlwv2LFy/GNE2OO+445zZVVTnuuOP49ddf444dMGBAQrAEGDhwoBMswfq6ud1uDjrooLjbwPra2L799lvOPPNMDjroIA444ACOOOIIwFpj3FSBQIArr7ySjh07cueddzq3//TTT4wfPx5VVZ33YefOnenUqRNLlixxvgYDBgxwgiXAQQcdRHZ2dpOvQwghWhMJl0IIsY/77rvvqKioYMyYMVRUVFBRUcEhhxyCx+Opd6jLo48+yttvv82TTz5Jjx49+POf/xwXQGprawGcoGq7//77mTJlCmlpac7zgPWP7Lohwn7szoSkbt26MW3aNJ599lm++uor+vfvz6OPPoppms4x9f2jOzs72wmvpaWl6LrOQQcdxIABA5z/33LLLYTDYQoLC531h/WFlZ2Rk5OzS4+zpaenx33udrvjApJ9m2mahEKhJp37448/xjAMjjjiCOd7c8QRR2CaJh9//HHcscnJyfh8vrjbYr+WPXv25Omnn2bTpk1cfPHFHHrooVx//fWUlJTs9PWce+656LrOa6+9lnDf9u3bSU5OdqqJsddQU1MT955p6Gte39cyJSUlrq3a7XYD0ffzokWLuPzyy8nNzeWvf/0rb775Jv/973/jjmmKO+64w1mra7dmg/VefP755+PehwMGDGDTpk3O2ubCwsK4luvYr4EQQuzLpC1WCCH2cR999BEA11xzTcJ9n3zyCX/+85/jKma9e/emb9++DBo0iH79+jFhwgSefvpp7rrrLiBaday7lci6detYtGgR06dPj7v94Ycf5u9//zvLli1zbrPDZkPrLRvSpk0bJk2axL333ktxcbETLoqLixOOLS4upnfv3s7zuFwuXn/99YQ2YPu81dXVwI6rqU3h9XoTguCuDuTZHfYvEU4//fSE+z766CPOP/9853O/308gEIgLmMXFxXGh+8gjj+TII4+ksrKSb775hvvvv5977rmHRx99dKeup02bNkyZMoWXX36Zv/zlL3H3tWvXDr/fH9eual9DUlJS3C816vte7qovvviCrKwsHnvsMee89tY9TfXyyy8zc+ZMXnjhBTp16hR3X0ZGBuPGjav3e2H/2Wrbti1r165NuL++97kQQuxLJFwKIcQ+rLq6mm+++YYTTjiBM844I+6+5cuX88ADDzB79uyENYy2rl27cvrpp/POO+9w9dVXk52djcfjoWPHjgmb3j/77LMJW0H88Y9/5JxzzuGYY46Ju91+bH3TZm0lJSX1Vm82bNiAx+OJq+oVFxczb948pzV2y5YtLFu2zGlxPfTQQ9F1ncrKygbXePbo0YPc3Fzee+89xo4dW+8xbre7SVWs3NxcqqurKSgoIDc3F7D2ytybNm3axKJFizjvvPMSXtd3333HCy+8wPr16+O+F//73/+cNYLV1dX8+OOPCe8fsFpcTzzxRObOndvkvUcvuOACXnvtNd5444242wcNGoSiKHz22WeccsopgLXO97PPPotra93TAoEAbrc7LrB++OGHTT7Pzz//zMMPP8y1115b75+rww47jFWrVjFw4MAGw/GgQYP48MMP2bZtm9Ma++uvv0q4FELs8yRcCiHEPuzLL790BvIMGTIk7r4DDzyQZ555ho8++qjBcAlw4YUX8tZbb/Hvf//bGcBy4IEHsnTp0rjjYqd4xurevTsHH3xw3G1LliwhLS2NPn36NPi8M2bM4MMPP+SUU04hLy+PcDjMTz/9xH/+8x+mTp0a12qYlZXFTTfd5EyLfeKJJ5wqJ1itnGeeeSbXXXcd06ZNY9CgQdTW1rJq1SrWr1/Pfffdh6qq3Hjjjdxwww1cf/31nHDCCSiKws8//8zEiRMZNGgQPXv2pKioiHfffZc+ffqQlZXV6FTYww8/HJ/Px6233sr555/P5s2bE8LU7ho7diwHH3wwDz74YL33f/TRR6iqygUXXOAEXFvv3r2dKtsVV1wBgM/n49FHH8Xv99OuXTv+9a9/EQqFnKFOb7zxBgsWLODwww+nXbt2rF+/nk8//ZSTTz65Sdfdrl07Jk+enLB+tlevXkycOJG7776bqqoqZ1rs2rVr+b//+78mPUdTjBo1iunTp3PfffcxduxY5s2bl7C/645UVlbypz/9iT59+jBixIi4Nc3t27enffv2XHnllZx++ulcfPHFTJ48maysLAoKCvjxxx859dRTOeSQQ5g0aRLPPPMMF198MVdddRWBQIDHH3+8wem6Qgixr5BwKYQQ+7CZM2fSvXv3hGAJVhXu+OOPZ+bMmXEDR+rq1KkTJ554Iq+//joXX3wxycnJjB8/nj//+c8J7ZM76/vvv3eGmjRkzJgxbN68mf/+979s3boVTdPo2rUrt99+e0IVrWPHjlx66aU88sgj5OfnM3DgQB555JG4APp///d/dO/enbfeeosnnniC1NRUevfuzWmnneYcc+KJJ+L1enn22We5+uqrSU5OZsiQIU4F9fjjj2f27Nk8/PDDlJSUcOqppzYY6sBq/3ziiSf461//yhVXXMGAAQN45JFH4gbr7K6ampp6K7y2mTNncthhhyUES7DW8NmTg2PD5V//+lfuuece1qxZQ8+ePfnnP/9Ju3btAGuy6VdffcUDDzxAeXk5bdu25fTTT6+37XpHLrroIt5+++2E1uF7772Xv/3tbzz99NNUVFTQt29fnn322QZ/gbEnjBkzhhtuuIFXX32Vt956i6FDh/Lcc89x7LHH7vQ5ysvLKS0tpbS0lClTpsTdd+WVV3LVVVfRo0cP3nzzTR5//HH+8pe/EAgEyM3N5bDDDnOGDCUlJfHCCy9w5513cu2119KpUyduueUWnn766T36moUQYm9TzNiJCUIIIQTWIJ4xY8bwl7/8heOPP75Jj62srGTkyJG89NJLeyQs3HLLLaxcuZJ33313t8+1r9m0aRPHHHMMn3/+edxUWSGEEKI1kmmxQgghEng8HqZNm8Yrr7zS5Me+/vrrDB06tFmrUL8X8+fPZ9y4cRIshRBC7BOkLVYIIUS9zj77bGebkbpbZjQmNTWV2267rRmv7PfjpJNO4qSTTmrpyxBCCCF2irTFCiGEEEIIIYTYbdIWK4QQQgghhBBit0m4FEIIIYQQQgix2yRcCiGEEEIIIYTYbTLQZycZhomuGy19GQlcLpVwuPVdl9g/yPtLNCd5f4nmJu8x0Zzk/SWaU2t8f2maiqoqjR4j4XIn6bpBWZm/pS8jjqoqZGenUlFRg2HIXCaxZ8n7SzQneX+J5ibvMdGc5P0lmlNrfX9lZiajqlqjx0hbrBBCCCGEEEKI3SbhUgghhBBCCCHEbpNwKYQQQgghhBBit8maSyGEEEII8bthmiaGoWPuxlI2VVUIBoOEw+FWtSZO7B9a4v2lKKCqGorS+MCeHdnvw+WAAQPo3bs3AAMHDuS+++5r4SsSQgghhBB7m2maVFWVU11dAez+P9iLilQMo3VN8xT7j5Z5fymkpKSTmpqxyyFzvw+XmZmZvP/++y19GUIIIYQQogXZwTI9vQ0ejxfYzQqNSyEclqqlaB57//1lEgzWUlFRAkBaWuYunWW/D5dCCCGEEOL3zTRNJ1gmJ6fukXO6XCoglUvRPFri/eVyuQGoqCjZ5eplqx7oM3fuXC699FJGjx5NXl4eX3/9dcIxr732GmPHjmXQoEGcccYZLFq0KO7+8vJyTj31VKZOncqcOXP21qULIYQQQohWwjB0wIxULIUQDbH+jJiRPzNN16orl36/n7y8PCZNmsRVV12VcP/HH3/MAw88wF133cWQIUOYPn06F154IZ9++ilt2rQB4MsvvyQ3N5fVq1dz8cUX88EHH5Caumu/sVLV3Wuf2NPs62lt1yX2D/L+Es1J3l+iucl7TMQyDPt9IO8HIRpn/RlRFGWXfn626nA5ZswYxowZ0+D9L730ElOmTGHy5MkA3HXXXXzzzTfMmDGDadOmAZCbmwtA79696du3L+vWrWPQoEFNvhaXSyU7e8+0UexpWVkpLX0JYj8m7y/RnOT9JZqbvMcEQDAYpKhIxeVSIu2Ge8aePJcQdbXM+0tBVVWyspLxeDxNfnSrDpeNCQaDLF26lMsuu8y5TVVVRo4cyYIFCwCrJTYpKQmPx0NBQQErV66kS5cuu/R84bBBRUXNnrj0PUZVFbKyUigtrZYx2GKPk/eXaE7y/hLNTd5jIpa1pYMRGZCyZ9axuVwq4bCsuRTNo6XeX+GwiWEYlJb6cbmCcfelpyfhdmuNPn6fDZelpaXouk5OTk7c7dnZ2WzYsAGANWvW8Je//AVVVVFVlVtvvZXMzMxdfs7W+peTYZit9trEvk/eX6I5yftLNDd5jwlovf+G29vmzfuFq6++lM8//47k5OQGjzvttBOZOvVsJk+eshevrvV58cXn+PHHWbz44r9b+lL2ul392bnf1fJN03QmGx144IF89NFHfPDBB7z33nuMGzeuha9OCCGEEEKInXPffXcyevRwHn30rwn33XXX7YwePZx//OOxXT7/xx9/yMSJRyfc/vzzrzBx4snO56NHD+eHH77f5efZF9T3GqdOPYe///3JZn/uK6+8eLe+j63JPhsus7Ky0DSNoqKiuNtLSkoSqplCCCGEEELsi9q1y+V///uMYDDaolhdXcX3339Du3a5zfKcWVlZ+Hy+Zjn37gqFQnvtuZKTk8nIyNxrz7c/2GfDpcfjYcCAAfz444/ObYZh8NNPPzF06NCWuzAhhBBCCCH2kAMOGEBWVhazZn3n3PbFF5/Tt28/OnbsFHds3eqb3+9n9OjhzJv3S8J55837hfvvv4vy8nJGjx7O6NHDefHF5wCrLfadd950Pga4+eZrGT16uPP5pk0bufnmaznxxGMYP/4ILrnkfBYuXJBwPe+99w7XXnsFY8eO4swzT+Wnn2bFHbN27Wquu+4qxo0bzcknH8uDD95DVVWVc/+VV17MY4/9jccee5gJE47m1ltvaPBr9cEHM5g6dRJjx47k7LNPZ+bMD5z7QqEQjzzyECeddCxjx47k9NNP5u2332j0Nb744nNMm3aOc4777ruT22+/iZdeep4TThjH8ceP5T//+TfBYJCHH76fY44Zw+mnnxT3PQiHw9x//12cdtqJjB07irPOOo0PPpgRd84FC+bxxhuvOt+HrVu37NTXpjVq1Wsuq6ur2bhxo/P55s2bWb58OTk5ObRt25bzzz+fm266iQEDBjB48GCmT59OIBDg1FNPbcGrFkIIIYQQ+4IZr21jxeLqXXqsooDZxCVp/QalcOpZ7Zv8XBMmnMjHH3/A2LHWEq+PP/6QE088hU8/ndnkc9kGDRrC1Vdfz8svv8C//20FyaSkxHWYzz//CieeOJ477rib4cMPRlWtgS5+v5+RIw/nkkuuwOVy8/7773LTTdfw5pvvx804eeGFZ7n88qu59tob+eCD97jttpt4/fV3yc1tT2VlJVdffRmnnDKZP/3pevz+Gp588u/cd9+dPPDA35xzzJz5AaedNoVnn/1Xg6/n888/4aWXnufaa2+id+8+LF++jIceupf09HQOP/xI3nrrDX744TvuuechcnNz2bIln4qK8kZfY33mzJlNTk47nn76BebOncOjj/6VX36Zw6hRo3nxxX/zzjtvcs89f+Hdd2eSnJyMruvk5rbn3nsfIj09g/nzf+WRRx6kffsOHHzwoVxzzQ1s2rSR3r37cv75FwKQmZm101+b1qZVh8slS5bwxz/+0fn83nvvBeDKK6/kqquuYsKECZSUlPDEE09QWFhI//79eeGFF5w9LoUQQgghhNjXHXfcRF588TmKigqprq5m7drVjB07brfCpdvtJjU1FUWB7OyGl5RlZWUBkJqaFndcXl4/8vL6OZ9fddW1fPvtV8ye/SPHHjvBuX3cuGOZMMGqBF555Z+YM+cn3nvvHS655AreeedN+vc/gAsvvNQ5/qabbuOss06jtLSErCzr3/TdunXnkkuuaPT1vPjic1x11XUcccSRAHTs2ImVK1fw/vvvcvjhR7J9+za6dOnK4MFDUBSF9u077PA11iczM5Orr74OVVXp2rU7r702Ha/X4ww/Ou+8i3j77TdZtWolQ4YMxev1Mm3aJc7jO3bsxIIF8/jqq/9x8MGHkpqaisvlwufzxT33W2/t3NemtWnV4fKQQw7ht99+a/SYs88+m7PPPnsvXZEQQgghhNhf7EoV0bY3t4rIzs5h+PBD+OSTmVRWVjBmzFiSk1t2D1e/38+LLz7HTz/NoqSkGF3Xqa2tpaBgW9xxBxwwMO7zAQMGsX79OgBWr17F3LmzGT/+8ITz5+dvdgJUv379G72Wmpoa8vM3c999/8cDD9zl3B4Oh50QedxxE/nTn67gD3+YzKGHjmL06CM46KARTX7dPXv2QlWjKwszM7Po3r1nzOeZaJpGWVmJc9s77/yXmTM/oKBgK8FgkFAoxLBhBzX6PKtXr9ypr01r06rDpRBCCCGEEAImTjyRZ5/9B36/n//7v3vrPUZRFMyYXt1wONxs1/PUU4/x669zufzya+jUqTNer5cbbrgmYeBOZBOHhOsEKxQefviR9VYl27Zt63zs8yU1ei01NX4Abr31/8jLiw+iLpcVd/r1O4C33vqAn3/+gblzZ3PLLdczbtwx3Hzz7Tt+sfWcL/a11L0NrFkwAF988RlPP/04V111HQccMIDk5BReeumfFBQUNPo8fr9/p742rY2ESyGEEEIIIVq5UaOO4OGHHyApKbnBqldmZhYlJcXO56tXr2z0nC6XG13fcfXV5XJhGHrcbYsXL2TixJOcNtSKigoKCxMD09KlSxg//jjn82XLljBypFWN69s3j++//5YOHTqiaQ2vc9yRNm2yyclpy5Yt+Rx99DENHpeWlsb48ccxfvxxHHLIYdx99x3ceOOtqKpa72vcExYvXsiQIcM45ZTJzm2bNm3C4/E4n7vd7oTnzsvL49tvd/9rs7fts9NihRBCCCGE+L1wuVy8+eYMpk//j1P5q2vYsIN4553/snr1KhYvXsjzzz/d6Dk7dOhAdXUV8+b9QllZGYFAoN7j2rfvyC+/zKG4uIiKigoAOnfuyjfffMWqVStZuXIFd955W72DcL788nM++eQjNm7cwNNPP87GjRs4+WQraE2adDqlpcXcffftrFixjPz8zfz00yweeui+pnxpADjvvGm88sq/eOedN9m4cQOrV6/i/fffZcaMtwF4883X+PLLz9m4cT0bNqznu+++oUuXrk6La32vcU/o3Lkry5YtYe7cn9m4cQNPPfW40xZsa9++I0uXLmHbtq2UlZVhGAaTJ0/ZY1+bvUnCpRBij6qoLeenLT9QE65p6UsRQggh9ispKamNrrW88so/kZmZxaWXns/DD9/PBRdc3Oj5Bg0awsknT+KOO27mhBPG8dpr0xs87+zZPzFp0kQuuOAswBrgk5yczKWXns+tt97IUUcdTdeu3RIeO23axXz66cecd95Uvv32a+655yHat7fWurZt246nn36RYDDIn/50OX/84xSeeuqJuGmzO+uUU07j+utv4YMP3uPcc8/kmmsu5auv/uds1+LzJfHvf7/MtGnncMkl51FZWcm99/610de4J5x88iQOP/xI7rjjFi699AJCoRATJ54Ud8zUqdb8mLPOOo0TThhHQcE22rXbc1+bvUkxzaYOUf59CoV0ysr8LX0ZcVRVITs7leLiKgxDvo1iz9rV99fC7fNZWLiAUZ1G0yuzTzNeYfMoKw1RURbG51MxTMjMcuFL2nfaUfYV8vNLNDd5j4lY4XCYoqJ8cnI61bs+blfszYE++6rRo4fz0EOPMmpU4lAa0biWen819mclMzMZt7vxfxPJmkshxB4VNq3hAYZpUugvZGHhPA7rOJoUd8tOtduRqsowM14rYM2K+F8iZbZxcdVt3dG0+luQhBBCCCGERdpihRB7lB6ZjmaaJpsqN7ClagsF/m07eFTL++7zEtas8JOe6WLA0FR6908mPdNFWUmY9atbV9eCEEIIIURrJJVLIcQeZZjWtDMTE8O0g2brbhuqDRgsmFOJ7vZzyQ0DSUm1Wj4WzKngvf8UsPjXSnrlte7KqxBCCNHazJr1S0tfgtjLpHIphNij9Ei4NEwDI7Kk265mtlYLf6mgWN9C9QFfs6J6nnN7v8EpuNwKyxdVEwq17tcghBBCCNHSJFwKIfYoPaZyaWKFS4PWHczm/VRBlWsr3Xsns7RoiXO7z6fR94AUagMGq5dLa6wQQgghRGMkXAoh9ig9sgmwacaEy1bcFltdFWZbfi05GVlktnEDUBWqcu7v1S8ZgIIttS1yfUIIIYQQ+woJl0KIPcqMVCkNDIi0xW7e6KdwW7AlL6tBG9ZYG0Z37OxxbttUsdH5OD3TWppeURbeuxcmhBBCCLGPkXAphNij7Molkcrltvxa3n9jG2/8a0vLXlgDNqypASC3i9u5bWHhfGasepvt/u2kZ0TCZbmESyGEEEKIxki4FELsUbo9IRaTosJa5s8ux8SgeHuoVVb/NqyNhMtO0XAZ1INUBivZULHOqVxWSrgUQgghhGiUhEshxB5lD/TJ31TDJzO2Ew6DL7KLh10lbC0CNTrb8mtJz3SRnKYAMLz9wRzR+UgAygKl+JJUXG6lVQZjIYQQYlfcd9+d3H77Tbt1jnfeeZPTTjtxD13R/uvjjz9k4sSjW/oy9hrZ51IIsUeFwmFWLK5i9sLtBNHpMySZIR0yWD7DCpeDDkpr6Ut0bFwXABO69Upy1oomu5Lpmt4NVVEprS1FURTSM1yUFIUIBQ3cHvmdnBBCiL3jvvvu5JNPPgLA5XKRm9ue448/gbPPPg+Xa9f/GX/NNTdgRuYiiD3ntNNOZOrUs5k8eYpz29FHj+eww0Y1+3Pfd9+d1NT4uffevzb7czVGwqUQYo+prgrzzWdF5Bf56eAyOfTwDDydguR63SwH1reyyqVdSe3WK8nZk1NTNVRFJcObQWmglEA4QHqmFS4rysNkt/U0dkohhBBijxo58nBuvvk2QqEwCxfO46GH7kPTNM455/wmnyscDqNpGqmpqc1wpXteKBTC7Xbv+MBWzOv14fX6Wvoy9hr5FbwQYo8wTZN/P7OF7dtryMxyMemcXHr3t7bx8KWotGnrpqggSFVl62kv3bDaCpfdeyVhRNp51ciPxUxvFgBltaWkZci6SyGEEC3D43GTnZ1D+/btOfbYCRx77PHMmvUdALW1tTz55KOcfPJxjB9/OJdddgFLlix2Hmu3ZH733Tf84Q+TGTt2JGVlZQltsbW1Af7+94c44YRxjB07kquuuoQ1a1bHXcdHH73HpEkTGTduNH/5y5+pqqqKu98wDF588TlOOeV4jjrqMKZNO4f583+NO+b7779hypRTGDt2FNdddyXvv/8uo0cPd+5/8cXnmDbtHN577x1OO+1EJkwYC8CPP87isssu4LjjjmTixKP5859voKBgm/O4efN+YfTo4cye/RPnnnsmY8eO4vrrr6aiooIvv/wfZ5xxMscddyR/+9uD6Lre6Nf7u+++4bzz/sDYsSOZMuUUXnttOoYR3VLtxRefY9KkiRx11GGceuoEnnvuKQCuvPJitm3byqOPPszo0cOd11W3LTb2NZ566gTGjz+CJ5/8O7qu8/zzzzBx4tGccsrxvPfeu3HX9Y9/PMaZZ57K2LGjOOOMk5k+/UXnul588Tk++eQjvvnmK+e55837BYCCgm3cfvvNHHvsGCZOPJrbb7+JoqLCRr8Gu0Mql0KIPcJfbbAtv5bkDiqHjc0iNV2jMmhVA03ToHvvJEoKQ3z2XhGn/CEXTVOa9XoM00BVGv79WbDWYMumACmpGtnt3KzcYv2A1lQNgExvJgClgVLSM9sBsh2JEELsb37I/55NlRt3fGA9VFXBMJrWWtolrSujOh2+S89n83q9hEIhAB577GE2bFjPPfc8SHZ2Dv/736dce+0V/Oc/b9O2rfV3l9/v5403XuW22+4iJSWFlJSUhHM+/fQTzJr1HX/5y73k5OTw8ssvcv31V/HGGzPw+XwsXryQv/71fi677GpGjTqcWbO+Y/r0F0hLS3fO8eab/+Gtt17npptup1ev3syY8TY33ngNr7/+Lm3btmPr1i3cccctnHnm2UyYcAJLly7hmWeeTLiWjRvX8+OP3/PAA4+gqtbf44FAgDPPPIdevXpTXV3Ns88+yZ133sozz/wr7rEvv/w8N954K5qmcdttN3HHHTeTnJzMgw8+QkFBAbfddhODBw/hmGOOr/dru3DhAu6//07+9KcbGTRoCBs3buCvf70Pt9vDGWdM5euvv+C///0Pd955Pz169KKoaDubNlnvn/vvf5jzzvsDp556GhMmNL4WdePGDcyf/wt///s/2LBhHf/3f7eydu0aDjhgIM8++xLffPMVDz/8IAcddDAdOnQEIDU1ldtvv4vs7BxWrlzBQw/dR2ZmFiefPImpU89hw4b1BAIBbr75NgDS0zMIh8Ncf/1VDB48lGeeeRFQePHFZ7n55ut4/vnpztd3T5LKpRBijygrsf6iS8tUcGkKhmlG97w0DUYf3Yb0TBeLf63k47e3N+u1fL3xS15f/ipho+EwuHlDAMOwWmIVRXEGESmRQJrpsyqX5bVlsh2JEEKIVmHp0iV89tknHHTQCLZt28bHH3/Ivfc+xODBQ+nUqTPnnXchPXr05PPPP3EeEwqFuOGGPzNgwEC6d++BxxO/vMPv9/P+++9yxRV/4uCDD6Vnz97ceuv/EQoFnfO8/fabjBw5mqlTz6Zr12784Q/nMGTIsLjzvPHGq5xzzvmMHTuObt26c80119O+fUfeffctAN577x26d+/JpZdeSdeu3Tn++BM4+uhjEl6jruvcfvtd9OnTl169egMwduw4xow5is6du5CX14+bbrqNxYsXsX17QdxjL774CgYOHEz//gM47riJzJ//K7fccgc9e/bmsMNGMXz4CKeiV59//euf/PGPF3DccRPp1Kkzhx02inPPvYAPPrCqiAUF22jTJpsRIw6hffv2DBw4mOOPPwGwwpyqqiQnJ5OdnUN2dk6j38tbbvkLPXr05Mgjj+aAAwZSWlrKRRddRpcuXTnrrD/i8/lYtGiBc/x5513IwIGD6dChI2PGjGXy5DP46qsvAEhOTsbr9TpV7uzsHNxuN19++TmKonDTTbfRs2dvevbsxW233cXq1StZsWJZo9e3q6RyKYTYI0qLrHDpS7UqkiamMyzAMA3a5LiZdk1nnrhvA8sWVnHCGe1QlOapXtq/ha4OVZERqUDWFbve0r5GiLbFZkXaYktrS+nubEfSeCuNEEKIfcvuVBFdLpVw2Njxgbvp+++/Zfz4w9F1HV3XGTfuWC644GLmz/8VXdeZMuWUuOODwSC9e/dxPvd6vfTs2avB8+fnbyYcDjN48BDnNp/PR58+eWzYsA6wqolHHTUu7nEDBgxi7do1AFRXV1FcXMSgQdFzKIrCoEGD2bBhfeQcG+jff0DcOep+DtChQ0fS0zPibtu0aSMvvPAMy5YtpaysDLD+fVFQsI127XKd43r1ir7uNm3a0KZNNhkZmc5tWVltKC0tafBrsWbNShYvXshLLz3v3KbrBmbk3whHHjmON9/8D2eccTKHHjqSkSNHM3Lk4U2uAHbs2ImkpKS4a/V4vM7nqqqSmZkZd61ffvk5b731Bvn5mwkEagiHw+Tmdmj0eVavXsXGjRsYPz7+fa7rOvn5mznggIFNuu6dIeFSCLFHlEYql0mRbhsz8j+IBreMLDe5HTxs2VRLeVmYzKzmXaTfWFusEy57x4dLLfIXRIo7FZfqory2zFlzWVEWas7LFUIIIRIMH34I1157Iy6Xm5ycHGdKbE2NH5fLxb/+9VrCL2tjW199vp0bJlP3HNbvhxXn48Z+IWwPnk08h0n0ptiPo7fV5fMlJdx2883X0rFjJ/7857+QnZ2D31/NRRed67QH22In6CqKkjBRV1GURqfk+v01XHTRZRx++Jh672/fvj2vv/4uc+b8zNy5s3nwwXvo27cfjzzyZJN+YV7fdSXehtN2vWTJIu6++w4uvPAyRow4hJSUFD766H2+/PLzRp+npsbPAQcM4Lbb7kq4r02bNjt9vU0h4VIIsUeUFYcwMUlKscKZaRpOYLNbTgHad/ayZVMtWzfVNku4jG2FtZ+/PiVFIVCgXXtP5Nj4gT6KouDVvFSHqknPtNtipXIphBBi70pK8tG5c5eE2/v06Us4HKa8vIyBAwfv8vk7deqMy+Vi4cIFHH30eMAa8LN69W+MG2e1rXbr1p2lSxfHPW7p0iXOx6mpqWRn57Bo0QKnemmaJkuWLOaII44EoGvX7syZ81PcOXamNbO8vIyNGzdw663/57zOn3/+cdde7A707ZvHpk0b6v1623w+H0cccSRHHHEkxx03kUsuOY+CggLat2+Py+VG1/d8NXvx4kV07NiJc845z7lt27YtccfU99x9+uTxzTdf0qZNG5KTE9faNgdZcymE2CNKi0OY6CSnWgNxTNN0fh9pxoS8Dp2tto9t+bXOccHaPfeDuCbsdz5uLFwGagx8PhVVVeKOja12ulUr/PpSTBRVBvoIIYRoPbp27c7RR4/n7rvv4LvvvmHLlnyWLl3CSy89nzCltTHJycmcfPIknnrqMebM+Zm1a9dw33134XK5GT/+OAAmTz6DH3+cxZtvvsbGjRt4441XWbhwXtx5zjzzbP7975f4+usv2LhxPY8//gjbtm1h0qTTATj55EmsW7eW5557io0bN/DZZx/vsPIGkJaWTkZGBu+//y75+ZuZO/dnnn32H034Su28c8+dxscff8jLL7/AunVrWbduLZ9//gnTp78IwCeffMTMmR+wdu0a8vM38+WXn5GamuZUATt06MCCBfMoLNwead/dM7p06cLWrVv48sv/kZ+/mf/859/Mnh0f1Dt06OC0wZaVlREOhznmmONJSUnlz3++kYULF7BlSz6//jqXv/3tASorK/fY9cWSyqUQYo8oLQljKgZJKZFwWWfNpa1DJ6s9Z+tmK1z+8FUpX39SwjmXdaJ7r8RWmKbyh6N7aRoNtL7ouhVoM9tEfwQakSisRqbFArgi4VInTEqqRnVlONLi07yTboUQQoidcfvtd/PSS8/zxBOPUFRUSFZWGwYOHMy4ccc26TyXX341pmly99234/f7OeCAgTzyyJNOS+3gwUO54YY/869//ZN//vNpDjtsFH/4wx/58MP3nHNMmfIH/P5qHnvsb1RUlNOzZ28efvhxcnLaAtY6w7vvfpCnnnqMN998jaFDD+Sss87bYVBUVZU777yfxx//G+eccwbdu/fgiiuu5tprr2zaF2snHHbYKB544BFefvkFXnnlJTweN92793QCckpKKv/+90s8/vgjmKZJnz59efjhx5whSdOmXcrDD9/PlCmnEAwGmTWr4eFBTTF69BjOOGMqf//7g4RCYQ4//AjOOutc3n8/ul3JiSeeyvz5vzJt2jnU1Ph54olnOfDA4Tz11PM888wT3Hrr9dTU1NCuXS4jRhyaMNhpT1HMxhqPhSMU0ikr8+/4wL1IVRWys1MpLq5q8ihsIXakKe8vwzC594bVuFODdJoyB4Cemb2oDFZS6N9Obkp7ju1ujf0OBg0euHkNaRkurruzBy8/tZn1q2rIyfVw+rntKS0OkTcwZZcD3PrydXy3+RsAjmp/PJ3b5Cacy1+t89fb1tK+k5dLb+wKwMdrP6KoppDT+k4h2W3tz/n5+k/YVr2NU/tM5tXHSinYEuTm+3uSlKwhdo/8/BLNTd5jIlY4HKaoKJ+cnE4Ja9t21d4a6LM/e/bZf/Djj9/zyitvtvSltDot9f5q7M9KZmYybnfj/waStlghxG6rKAtjGJDeJvoDxzRNp2IZW7n0eFRycj1UlIWprgpTEGmPLSoI8sxfN/LGi1tZtXzXf5FTE6lclpWEePKBdbzz720J/7AM1FjX40uK/gisvy3W+q1eyAiRkmb9gK2ulHWXQgghxK545503WbFiGfn5m/noo/d45503Oe64E1r6ssQeJG2xQojdVlpsTWtLb6M66ywN03DaYnUjPpB16OylcFuQFYurqfEbpGW4CNToGAboYZOl8yvpe8CuLTy311xuWh8A02TJvCo8nu2cdGZ0VHmgxroery8aJO09OTUlti3W+hEZMqy2WIDqKp2c6KmEEEIIsZM2bdrIK6+8RGVlBe3bd+D88y/mzDPPaunLEnuQhEshxG4r3BYEICNLoyxyW+xWJHZws3XrlcSiXyr5+Vvr6J59kzjm5BxMEx69az2/LakmHDZxuZreGlsTrsEwTLZuCtBBNUhO0pj3cwVHTcgmLd36kVdf5dIOwHGVS82qXIb1ECmp1iCi6ioZ6iOEEELsij/96Ub+9KcbW/oyRDOStlghxG75+dsyPplRCEC7TtHfV1lVy8SBPgC9+llrGu1Q2r6Tl5RUF6lpLnr3SyZQY7Bu1a61xtaE/ZQUhqitNenSw0u3yJCgspLoXljRcBmtUhoktsW6IlVMqy02UrmUtlghhBBCiHpJuBRC7DLTNPnfh0WoisLE09rSI88bvQ+j3jWXAJlZbnLaudnuXUalayu5Hb0EwgEM06D/4FQAlszbtRHZNeEatmwKANB7QBKZWVbgLS+NVhzttti6lUtVUeOG/3jsymWdtlghhBBCCJFIwqUQYpcFagz0sElOrpsRozPjQqRp1r8Via1znkqhbwWF3hW0aa/w7qq3+CH/e/oNSsGXpLLol0onJDZFhb+a/I0BVBV65iWRUW+4rH+gT2zVEkBT7DWXMZVLCZdCCCGEEPWScCmE2GX+aito2Xtb6mY0eMWuuawvXHbrY+0h6Uk2UL1BwkaYymAlviSNcSdY6y8//O/2HW4hUBsweOXpzSz+tRLDNFi5qoxwGDp38+FJgows63nKSxtvizUxE8KlO7LPZdgIkZIi02KFEEIIIRoj4VIIsctqqq2QlhwJl3Urlw21xQJ07O4is42LLr08Tii1/3vgYel06upl66Za1q+uafQaNqytYe3KGt759zbyt5U7azV79E3GNI0GKpcNt8XGcmlSuRRCCCGE2FkSLoUQu8yuXNrhMmxGA1z8tNh6qo8ug8PHteGAYcmEI5NajUi4VFWFQQelAbBxbePh0h8T9p75+2pq/AZtcz2kZ7gwTDOmcrmDtlgS22LtymXcViSVMi1WCCGEEKI+Ei6FELusbrg0IxXKrr/+xoQ/3Mi4//snGEbCPpcAumGFNN3U0c3ox7YuPawpr5vWNb7uMraSGDRryW7nZvBwK5gapkFyiorLrTTaFmuvD43d4xLi22I9XhW3R5HKpRBCCNGAyy67gG+//cr5fNWqlUybdg5HHXUY5533ByoqyjnppGMpLNzeglcpmpPscymE2GV1w6VuGKihMMff/yqpJRVkrd7IkIHdWHTqEQmPDRlW2AsbYcJ20IwJoe07eXF7FDatD2AYJqpa/56XVZFK4nGntoVsg9+UTBSsYw3TQFEUMrJcFG8PUVtr4PWq1AbiK5d2qE1oi3Uql9a1pqRqlJWE0XUTTWv6HpxCCCHEzho9enij959//kVMm3bJXrmWFSuW88ILz7BixTJqamrIyWnLwIGDueWWO3C7rb8rv//+G6qrqzniiKOcxz3zzJO0a5fLffc9TFKSj/T0DI4//gRefPE5brnljr1y7WLvknAphNhldktqcko0pPWetZjUkgpqstJJKq1gyIc/sPCUwzFNM26bj3AksBmm4YTL2LWZmqbQqZuP9atq2L41SPtO0W1OYtkDdnI7ejDbuVi5WUFTNHRTd86XmeWmeHuI8tIQ7dp7E9Zc2scltsW64q7VDpf+ap20dPnxKYQQovm8//6nzscff/whM2a8zfPPT3duS0pKdj42TRNd13G59vzfTaWlJVx77RUcccSRPPro0yQnJ5Ofv5mvv/4Sw9ABK1y+/fZ/Of74E+P+rs/P38Tpp59J+/btndsmTjyR8847iyuu+BNpaWl7/HpFy5K2WCHELkuoXJo6PX9aCsCPN19AUc9OtF27lTbrtyUM9QnHVCmDehBIHPzTNdIau3Fdw+su7XCZmubCMKzHuzXrLzoD6/O6Q30CNQYo4PXVDZfxbbGumDWXAClpkYmx0horhBCimWVn5zj/T05ORlVV5/MNG9ZzzDFH8PPPP3L++X/gyCMPZdWq37jvvju5/fab4s5z++03cd99dzqf19bW8uSTj3LyyccxfvzhXHbZBSxZsrjB61i8eBG1tQFuuuk2+vTpS6dOnTn44EO5+ebb8Hp9AJSWljJv3lxGjTrcedzo0cPJz9/MY4/9jdGjh/Pii88B0LVrd9q1a8esWd/uwa+WaC3kV+9CiF3m90fCZao9LVan86I1mIrC1mH9SBkzjJy1+fSYswzjOAMNjZAewqW6nGolQK1RC8SvuQTo0sP6S2v2t2Vkt/XQKy+Zuuy22JQ0jeJa62O36iZAwFkDWl+49HpVp9W2obbY2DWXQMxQHwmXQgixP0i76lI8n8zca88XPH4ilU8+u8fO99xz/+DKK68lN7c9GRmZO/WYxx57mA0b1nPPPQ+SnZ3D//73KddeewX/+c/btG3bLuH4Nm3aEAwGmTXrO4444si4yqRt0aIFJCcn06VLV+e299//lIsuOpdTTz2NCRNOjKu05uX1Z+HC+Rx//AlNf9GiVZPKpRBil0XbYq3Q5dmylYyCEgp7diSYnszGYX0A6LJgNQYGhmkwY/XbfLv5ayewAQR1K1wapoFpRifL9uiTRLdeSRQXhnjtuXyKC4MJ11BdpaOqVourvWbTrXqc80F0r8uykhCGYVIbMOImxdohVGtwWmydcFklE2OFEEK0vIsuupyDDhpB585ddqrFdNu2bXz88Yfce+9DDB48lE6dOnPeeRfSo0dPPv/8k3ofM3DgYP7whz/yl7/cwoknjuemm67lrbfeoLKy0jmmoGArbdpkxwXP7OwcVFUlOTnZqb7acnJy2LZt6268ctFaSeVSCLHL/HX2uUxdshyALQO6Y5om2/p1IeRx02nRWraHQwQ1k0A4QGmghFR3qnMeuy0WrEDoD1Xj1Xx4XB7Ou7ITH7y5nfk/V7BlYy3ZbT3RYw2T6iqdlFQNVVWcqbMeuy02Ehrbtrcesy2/NmGYT+xxdSuXiqLgUl2EdCtcJkvlUggh9iu7U0V0uVTC4cR9nPemfv36N+n4tWtXo+s6U6acEnd7MBikd+8+DT7u8suvZurUs/nllzksXbqY116bzmuvTeeFF14hJ6cttbW1eDz1z0aoj8fjpba28WnwYt8k4VIIscv81TqaS8HtsX5TmbxqHQDF3TtYg3o8LrYe0I2uC1ajrfyNcOQvwaAeJBzTAhsIR/+CqQpV8v7qGSS5kjg970wURaFzNx/zf66gsCC+clnjNzANa70l4LTa2msl7dCY29GL5lJYunk13fO3AenONiTQcFusda6YcBkJ0TX+lv3HhBBCCAHg8yXFfa4oSlwHEEA4HO22qanx43K5+Ne/Xktob01JSWn0ubKy2jB+/HGMH38cF154GWeeeSrvvfcOF154KRkZmVRWVuz0dVdWVpCZmbXTx4t9h7TFCiF2iWGY1FTrJKdozl9QqWvXA1DUoz0m1t6RBXnW+gvPogUYkRAXMkLOPpcAQSMaGqtD1QDUhKNDfNrmWpXHojrh0m5PtdtV7ZDo0ey2WOsvWJdLoUNnL6vVn5m1Zg66EqxTubSOU+r5kehW3c7k2aTIVFx7kJEQQgjRmmRmZlFSUux8bhgGa9eucT7v06cv4XCY8vIyOnfuEvf/rKw2O/08qampZGdnU1Nj/V3dt28eRUWFVFdX7dTj169fR58+eTv9fGLfIeFSCLFLAjUGphndhgQgdc0GAIq7tXeqhgV9uwDgXrjQuc0wDWr1aLWyNqZyGTvoxx/yA5ATCZd1K5d2e2pKmr3PpvW5U7kkWmHs3M0aDrR9q3WO+tpiNTV+Wqx1rmhVNDnZrlxKuBRCCNH6DBt2EEuXLuGLLz5j48YNPPHEI5SXlzn3d+3anaOPHs/dd9/Bd999w5Yt+SxduoSXXnqe+fN/rfecP/zwPffc8xd++ukHNm/exLp1a3nmmSdZt26tMx22T5880tMzWLx40Q6vsba2lt9+W87BBx+6R16zaF2kLVYIsUtq6kyKJRwmdf1m/Bkp1GSl4YtUEbdFKpfeRQvjthqpjgRHgNrIQB+AUEwVszRQQrI7meQUjZRUjeLCILpuEg6ZvP7iFtzuSMU0rU7lMhIuzZjn69zdBwtg+9ZaumPEtcUapg6mScbaTdBBBy16nz0cKGSESEq2zlsjlUshhBCt0GGHjeKss87lscf+hmkanH76VEaMOCTumNtvv5uXXnqeJ554hKKiQrKy2jBw4GDGjTu23nN2794Dj8fD448/wvbtBfh8Prp168699/6VAw8cDoCmaUyYcAL/+9+nHHroyEav8Ycfvqddu1wGDhy8Z160aFUkXAohdkndSbHaurVooTDF3bsD0WpgecdsAqlJeJcuQw9GQ6Q/0v4K8QN9amM+LqktoVNaZ0zTJDMXqtdAaVGI4qIg61dF22ZT6qy5dGvx02IB2nWxKpW1tSYmJn0HRNeWGHqYCff9m/5f/krthE+pePEVJ2C6ItXMsBEiKcWqfvplzaUQQoi9aPLkKUyePMX5/MADhzNr1i/1HnvJJVdwySVXNHgut9vNxRdfzsUXX75Tz92pU2duvvn2HR53xhlnce65Uygs3O5safL22x8mHPfWW69z7rkX7tRzi32PtMUKIXaJve7QCZe/rQCguFsuEBPsFIWCvC6otbW4V650Hh9brYzd3zIUEy7LAqUA/Fowl1UZMwkpNRQWBCkqiG5jArFrLqP7XMZdA5CUpuP1WZXOUeMy4vbMTP7+e/p/abUDeT/+EM//PnPui1YuwyQlq6BI5VIIIYSoKycnh5tuup2Cgm0NHlNRUc7o0Ucwfnz9VVKx75NwKYRo0OqS1fxWsqLe++qGS9dv1jYkxd07APHBzm6N9e3MWozYymXAGkpQESwnOU0lqFZRVBBMGOxTd82lp55wGTRCDDownbwByYw6OjPu8dn/edO6zrGjAPB+MMO5L7rmMoSqKviSVBnoI4QQQtRjzJijGm13TU/P4Kyzzk2YVCv2HxIuhRANmr15NnO2/lzvfXX3uNQi4bKoR3sgPtjZQ318Cxfu8Dlj11xWBCsIG2EM0yAtQyOs1rJ9WzBhsI99Dfb2JnW3IgEI6rV06Oyl74BUUGLGtFdXk/HN9wRSk1h69w2YSUl4PvsEdOtcsWsuAZKTNUJBs8X3NhNCCCGEaG0kXAohGmQHu7p7ZkE9ay7XWKPOS7rmJhxbkGeFy6TFS3f4nLHrL03TpLy2HN00yMhyo6tBNq6toWh7EJdb4cQp7eg3OIX2nayNm53KZWTNpRkzLTa2DTc2dHp+/gE1FGLDQXnoGZmEDhyOWlmBtvI3ILrm0g6XSZHXa4drIYQQrV+0UJb495kQIlZke7ZdLC5LuBRCNMheCxkbxmx+Z1qsCqaJtm4toSQv/qw0VCX+R0tFbhvCmRn4fvsNNRROOFes2MolWO2ouqHj8ahk5ZqUl4YJ+A2y27o56LAMzrygI5qmRK7XXnMZCZcxoTg2tBoxt7u/+QqA9SP6oaka4aEHAuBaMC9yLqsKGtatc9tbr8i6SyGE2HeoqgYoBGMGywkhEll/RpTIn5mmk2mxQogG2ZVAwzTQiP8hY1cuk5I1lOJi1KpKSnt3AUXBpbriwhyKQvWAA8j44Sdy1m9je5/ODT5nUI8f1qObuhNyc7sqbN9o3d42svdlLGdabGSdZGworjXqr1y6584GYNPQPvRUVELDrHDpnvcrtVPPdlpsncplsl25lHAphBD7CkVRSElJp6KiBACPxwvs7ro/hXBYKqGiuezt95dJMFhLRUUJKSnpu7wuVsKlEKJehmlgRlojDOqpXFZH97nU1qwFoLxTWwA0JfG3XdUD+5Pxw0/krtzUeLiMhECP5iGoB9FN3dqHEsjprLA9clxOPeFSN3VURXV+22bEtD/VhgPOx/brIhDAtXgRwaxMyjtmo6ISHjIMANeSRZHrsMOlFZbtcGnv8ymEEGLfkJqaARAJmLv/j3ZVVTEMWSIhmkfLvL+sX8LYf1Z2hYRLIUS97KolNNAWGzMtVlsXCZcdc6xwpyR23FcP6AdAu5WbYOJhDT6vXfF0q24rXBrRymV6WwOXWyEcMusPl4aOS3WhRjr+Y6/brjwCmJHbXUsWoYRCVA4+ABQFTdUwunTFTE5GW7USTDNxoE+kLVbWXAohxL5FURTS0jJJTc3AMHTqGSew01RVISsrmdJSP4Yh1UuxZ7XE+0tRrPbx3Z3kK+FSCFGv2L0nYz+2+at1XG4Fj0dFW78OgNJOOWhK/T+YKg+wwmXuyk3ObS7V5bSy2uwQ59G8VIeqMUzdCbphgvTKS+a3pdV06Oyt95q9qtcJt7HhMhBTubRvd8+zNqAuH3wAgBVKVZVw7764Fy1ALdiGOzVSudTjB/rImkshhNg3KYqCpu3eP4FVVcHj8eByBSVcij1uX35/SbgUQtQrNlCadSqXhmES8BukZVg/QuzKZVnHbFRFRalnHUtNp/aEMtJpu2YLaljHcGl4NW9CuLSH8HgjE19103DCYNCo5aQz21FSGCK7bXzl0ogcp6laXLisCdcQ1GsJGsG4YwFcv861rnuQFXw11Xqc3jcP96IFaCt/wzV8ABC/FQlEBxoJIYQQQgjL72JabE1NDUcddRR/+9vfWvpShNhnGGbDbbGBGgPTjNmGJFK5LI6Ey/raYnUMqgb0wxUKk71+KwBezdfg89vtqPZ2KAC14VpSUl106ZGUeP5IddOluJznN02Dj9a8z/urZ1AWKHWOtddcun/9FVNRKBuYB4CiRMMlgLbqt8Q1l1K5FEIIIYSo1+8iXD777LMMHjy4pS9DiH1KY2suo3tcWj9CtPXrMN1uKnMy8GieeiuXhmlQcYAV2nJ/s1pjfa7E1labvVelYRpOFTUU2ZakPuHINiSqkli5hMR9LpXCQrSN69H79KU21Qqr9lrNcK/e1utatzZmWmydrUj8suZSCCGEECLWfh8u169fz9q1axkzZkxLX4oQ+xQ9rnIZ3+8fO8xHqapELSok1LUrpqbi1Xz1rrk0MKgY0BeIrrtsrHLpcdpiw/Fbiuj171FmX69LjVYu65tya70ew1lvGT5wuPP6NHvKbLfu1ufr1+GxB/ro8ZVL2YpECCGEECJeqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u5/6KGHuO666/bWJQux39BjAl1C5TJmGxJ1ndUSG+zaFQCvVv/eYaZpUN6/DwC5KzdHjm04XFrnIX6/TKBWD9R3OHqksuiKBERFUeqdcgtW6LTXW4YOGuGEULtyqXfvAYC2YT2uyJ6Zdfe5lLZYIYQQQoh4rXqgj9/vJy8vj0mTJnHVVVcl3P/xxx/zwAMPcNdddzFkyBCmT5/OhRdeyKeffkqbNm344osv6N69Oz169GD+/Pm7fT2qurub7e5Z9vW0tusS+wczErgUVQHFjHuf2S2hKaku3BuscBno1hlFAZ/bR0D3U7d4aWJS0zmXQFoybdfko+k6SW5fwnE2r8uLokDYDMUdEzSC9b7nTQwUJVK5VJXIcB4TTVXrCZmmU7nUh4/ApMJ6rGY9lsxMjKwstA3r0RTwujyEzRCqquDzqWiate5U/uztOvn5JZqbvMdEc5L3l2hO+/L7q1WHyzFjxjTazvrSSy8xZcoUJk+eDMBdd93FN998w4wZM5g2bRoLFy7k448/5rPPPqO6uppwOEx6ejoXX3xxk6/F5VLJzk7d5dfSnLKyUlr6EsR+xjRNftsSxjBNUpK9ZGYlkepOYunCCjati+65lNMuibT5+dZj+nYjNdVHbpssjKoAgUhVUkHBxCQ9w4dpmhT170bnOcvpUlBC7qAs0vxJmJh4NE9clbJddiaplT6SUl2khqIVzuR0jeys6J9F3dD5afNPpHvTSU310SYzjezsVNJTk1EVFU1PHOGdmebFM/9XSE4mc/TBpG36ntSQj5zsNLJTI+fu3RvmziU7VEVWehr+kN/5GeDxaoRDZqv9mbAvkZ9fornJe0w0J3l/iea0L76/WnW4bEwwGGTp0qVcdtllzm2qqjJy5EgWLFgAwPXXX8/1118PwLvvvsvatWt3KVgChMMGFRU1u33de5K1wWoKpaXV+9weOKJ1W7G4imdfWo06qJihh6SxckUxn08vorw0MjTHaagPE1i6Ah9QmJNNVVWAmhSdysoAVX6rfdXey7K0rMoapNO7E53nLCdtwWqqDg5S4w8RNsKkuF1Uh6Itr/6KMFVVAYoop6oqevu2ohIyjHbO56tLVzEnf57zeZUrSHFxFf7qICEjVG9rbM2vi6GyktBho6goD1BaXkVVVYCy0hrctVUApHbuhnfuXMrnLSaQo1NZW0NBYRku1YXLDdWVBkVFlbu92fDvlfz8Es1N3mOiOcn7SzSn1vr+Sk9Pwu3WGj1mnw2XpaWl6LpOTk5O3O3Z2dls2LChWZ6zNX1zYxmG2WqvTeyb1q70Yyo6G9b6ycrRWPbzZjyVuXTvncT61TUYkbzmS9ZQ7T0uO+RgmiV4VC+YCvYMIBUN0wwT1g0MDLb17QJA7oqNBNGc+92qh9i5QZriwjQhqIfibq8J1cS933XDiLtfVbTI/Qq6Uf+ay+QFiwEIHTgcwzAJ67p1DlNxzh3u1h0voKxbh6ttBqYJgVAtyW4Nt1vFMHRCIRPXPvtTtHWQn1+iucl7TDQneX+J5rQvvr9a9UCfXWGaZr2VhEmTJnHDDTe0wBUJse8JBQ1nzeWCOZUEanRGjc3ij5d3IjM7mqaSUzRrGxJFobx9G8AaxKPG/Bl0JrBiYJoGWw/oDkDHJetI96Y7A3Ps6bBgVTs1JTJIp85An0A4flqsPfjHeaxiPV/sXpvZSTkclDuC/tkHAJC6YIl17gOHA9H1pVrMYwx7qM/6dbgj1xiODPVxexTn6ySEEEIIISz7bLjMyspC0zSKioribi8pKUmoZgohmqaiPIyhWNNQNRXGnZTF+JNyUFWFXnnJznEp7iBq/maMzl2o0ayg5dW8cftcuiIh0TB0DNOgqm0mwc6dyFm/jexaDS0SBu0tP8AKhlqk9zZoBJ3zQuK0WJP43+hp9YRLj+pmQM5A0jzpAGTMt6ZKh0ccDET39Ix9jB6zHYk7EnyDdrh0W8eFQvvWbxOFEEIIIZrTPhsuPR4PAwYM4Mcff3RuMwyDn376iaFDh7bchQmxHygvDWOic8JpHRh3Yg79BluBMqSH8Hbbho4VstKKNqOYJnqPXk7o82reuO6B2Mqlvf7RP/wgFNPE/csctAYrl5rznIATDCuDlXHXGrsfp/1YiG4rYl2DdZuCgrfKT8rqdehdu2G07xC5Niskqmp0HUF0O5J1uFU3IJVLIYQQQojGtOpwWV1dzfLly1m+fDkAmzdvZvny5RQWFgJw/vnn88YbbzBjxgzWrFnDnXfeSSAQ4NRTT23JyxZin1dRFkbzmKSlu/D6VIzIosZ15WvZ5P2Fct8GPF4F7yZrGxK9R09qI+2rHs0bVwG021sNMxoua4Zb7aiuOT9HK5cx4VJTohVNe3/JDG8GHs1DWW0pZswiS7POwB61nsqlEzgVlQ7LrDXZoRGHOPc7lcuYH4lG+w6YHk+kLTZSuYy8RpfbCpdhqVwKIYQQQjha9SiKJUuW8Mc//tH5/N577wXgyiuv5KqrrmLChAmUlJTwxBNPUFhYSP/+/XnhhRdo06ZNS12yEPu82lqDQI1BcgfFqUDaoTCg1+B2qxw83sug9HZov3wKWOEyqFtrIX0uH1BP5TImXNaOsMKle85sXFNHAPFtsS7V5YRE5zyKRhtfG7ZVb6O8toxMX5b13HWG9thBUokNl4odLhU6LrEGEMWGS/u6YgMpmobepSuuNavxBayAG61cRtpigxIuhRBCCCFsrTpcHnLIIfz222+NHnP22Wdz9tln76UrEmL/VxHZbiQ5LRoQjcjAG7ty16WvwpAu6Wj/XQOA3rMXtXopbtWNqqhxay7tITmGaThVxlDffhhp6bjn/YInsg+lJ2Ywj6poTiiNva2NL5tt1dsoCRQ74dK+NptLTaxcajGBs8MSq9oaGy6jA33in9Po2g3WrCZtaxFkxK65jLTFhqQtVgghhBDC1qrbYoUQe195mRWg4sKlHQoj4cof9gOgRbYhCXXvTlAP4nVZATFuzaXTFqs759HcHkKHHoZSU0P2UuscHs3tPCZ2zaVzHlWlTVI2AMWBYud2u6XVVn9bbOS2sEGH5RsIJyeh9z8g4RxxlUtA79odgNQt2+Nev1QuhRBCCCESSbgUQsSpKLMql0mp0dsSwmWoGgBt/VpMRcHf2RqM41Ej4bKBtlg9ch5FUQkdPgaADnOtPSfdauyaSzUxXCoa2T4rXJYESqLXllC5jK6vdG6LBNzUZSvwBIKUDe6PvUHlsuKlVIWqEh4DoHftBkByfoH1+iOVW2egj1QuhRBCCCEcEi6FEHHqD5dWZc8OVzXhGsxAAHXzJoxOnQlG2kR9kcplfcHOMM3o2kZUgkccBUD7OVa4THanOI/TFBeKotQZDKSR7snApbooDZQ4Q32MOpVLZyuSuIBrXUP6z3MBKDx4KAD5lZv5ZdscAIa2G5awR67ezQ6XW63Xb1hfG2crEqlcCiGEEEI4WvWaSyHE3lduh8uUmMmpkVBorzk0TIPQut9QDAO9Ry8CkWE+Xs0HxLfFqvUM9FEVFb3/ARg5bclctJyJOWPITspBUzQM03Cqnfbn1mM0FEUhy9eGQv92qkKVpHnSnfttWn2Vy8htaT9ZQbJoxBBygPJgOQBD2g1jUM7ghK+FEalc+jZb4XJz5UY2V27Epx0IyFYkQgghhBCxpHIphIhjD/Spry3WnpYKYK5eAUS2IQlbe1zaQ3li22JdSjRc2oNzVEUFRSF4xJEouk6Hhb9Fbyd2umv0R5T9cbLL2nMzELYCbcI+l0oD02Jra0n9ZR61KT7K+veKnKMGgJTIOeuy22I9mzYDUB2qpjpUzeawdb0h2YpECCGEEMIh4VII4QiHDQoLrNZXb0r0dqdyGWmLBWDtKsDehsS63acltsXabaom0cqlfVtwjNUa6/n6y7jH2dXO2Imx9mPcqjX4J2QEI9cWH/Dqnxar4Z73C2ogwOYhvdE1K/zW1qm41mVmtcFIS8ezaRPEPE9WZFKtVC6FEEIIIaIkXAohHF/NLKaiLEz3Pklo7miYsgNcKKZyqa2NbkMS0BupXEZaUsNG2Kky2sEvOHY8pqLg+ewTME0nTNrVztihPpoaqWo64dJu0Y2vXNqDgeq2xbq/+waADcP6RPftjFRcfa6k+r8gioLRtRuq309SebVzs8eeFiuVSyGEEEIIh4RLIQQAWzYF+PHrMnxJKqf8ITeu3bTuPpcA7vUbALtyGakARgb6oMQP01EVlbARxjANFEVx1mSaubmEDxyOtnkT2pLFTpis+1+IbjFib1lit+ja13loh5Ec1fVokt3JkePjq6ee/30GwIbh/ZxwWVv3uutht8ZmbI1uf2IXVGWgjxBCCCFElIRLIQQA2/KtoDVidAaZWe64KaymaRDSQ3HHJ23chKko6N17OCHNF2kvVWN+tCgouFSXEy7VOj92ao+fCID3s4+dABndTiSxLTZaubTWhtpBMcOXSZe0rs7xsc/jLSjEvWgBwW7dKOmWG1O5rIm77vrUFy61yCg02YpECCGEECJKwqUQAoDagBWUklOsEKfHTGE1TINgZI2jR/OghsIkbd2O0bET+HxOe6nTFhuzo4eqqLhUFyEjZIXLOntJBo+dYD3204+j24goO7PmMjq5Nvb+2Oe1ZX71HQDV48eBomBiVRwDegCX6nLCbH3s7Uh6lEVvc0W2XpHKpRBCCCFElIRLIQQQDZden/VjIa4t1jScNtQMbyYZW4tRDRO9pzV11Q6evnrWXCoocYGwbrjU++YR7tkL96IFpOdvB6KVS63OUB4Ad6Qt1t5zM7qOM36PythpsWlffgVA9bhxgFWJNUyDoB7EqzXcEgvR7Uh6lqmM6jTaei5XZA2qVC6FEEIIIRwSLoUQANTWWkHJ442ESyM+XAYjbbHJrmTabi6yjunZ23psQuUyJlwqitPKappmQrhEUaiddDoAvT79Aah/zaUdFt0JbbF6wrEQDZtuf4CkH37AyMik9uBDnNezw2E+EXrX7tb5N653rkGTNZdCCCGEEAkkXAohgMTKpVGnchmKaYvN3mBVGPW+fa3H6rWoiopHsya1xlYuVUXBHdN2mhAugdrTzgCgx6ffx02NrW/NpR0uw3XaYuue1/6873cLUWtrCR43AdVjhV8Dk9rIhFvfDiqXehdrHae2Yb3zuuxJurIViRBCCCFElIRLIQQAwUbaYk0MZ1KsW3WTvbEAgHDvaLi0gyXEBz17oE9999n0nr0JHTSCtE3b6LB8Q7RyGbfmMn4rkqDTFmuHyzqVy8iPt/7/+wWAwOlnOpVH0zSjQ4h2ULkkJQUjpy1q/mYUPbK+0xnoI5VLIYQQQgibhEshBBBti/VG2mLDkbZTsFpk7c/dqpusjdsACPXpQ0i3BvXETlyNrVwS0xYL9YdLsMIfwKCZP8WsuUysXHoaqFzWN9AntbCMrvNXoXfoSGjU4c51xbbF7mjNJYDerTtKKIR3u9UObGfesIRLIYQQQgiHhEshBFBfW2zMtFhMZ2iPW3WTuX4rQZ+HUPv2TnupJyakxa65VFGdVlZoOFzWnnYG4SQf/b74lfQqKzjG7XOpNrQViT3QJ7Ettv8Xv6CYprWmU9OcYwzTIBC5bq+r4W1IbPbEWN/mfOvczppLaYsVQgghhLBJuBRCANFw6fGqzjAfu4JomIYznTW1qByPP0BJ11x0DGojt3vjwmVMW6xSty02vsJoM9MzCE49B3cwRNv/zkg4NnErkqBzbdaxdcKlbjD0/VkABKaeHXeMieEMIUrSdtAWS3Soj2/TlsiLMnG5FRnoI4QQQggRQ8KlEAKIaYv1qc56S3sdpTXQx6ompqzbBEBJt1x0U48OxnHV3xaroOBSGl9zaQtMuwSApJeeh2AQTY3ZikSpsxVJ5Hr0BqbFtv3ye9ILStl48AD0vnlxz22YBjVO5XLHbbH2diSeSOXSJBIuZSsSIYQQQgiHhEshBADBgBWYNE1xAptdJYwNl6nrNgJQ3DUXw9Sd9tLYgT5x4VJRcGk7bosF0Pv0pfaY49DyN+N77ZX4ttiYx3k0j7MG1DANFEWJa8UF6PzKfwFYeuZxCecwTdOpXPp2qnJphUtvJFwapoHbrRIKmpimVC+FEEIIIUDCpRAiojZgOMN8nHCp2ftTRqfFJq9ZD0Qql4bu3O6NHejTyJpLrZFwCVB98+3W8/z9r7gDoZjHRYOmS3VFK5eGnlC1dH/9JRnzF1HUrT3bDh0avS57oA9GTMV1Jwb62JXLTZsBq3Lp9iiYJui6hEshhBBCCJBwKYQAwmEDXTejw3yM+iqXVoj0rVkLYK25NKNrF2PXXKp11lzuaJ/LWPqgwQROOhWtYBvdItVHVVHjAqtbdWOaJmEjjIkZf05dJ/XuvwDww7QJcVVTu8JpmIazFUlsKG6I0akzpqpGw6Vp4nZb1yPrLoUQQgghLBIuhRDUBqyA5PHVX7nUTZ2gblUKPWvWYLg0yjq1jay5rGegT501l1rMmktlJ37s+G+9A9Prpduz08naWJBQmYzd61I39Lhw6XvjNVxLF1N54BBWjx6MS41/rIIVLmP37dwhtxujU2fcBQVoQWvrFbfHek4Jl0IIIYQQFgmXQojoNiROW6z1uUt1OZW+sBHCU1WDq6CA6i4dMFwaRsxAH29DA30UZae2Ioml9+xN9Q23oAaDHPvw67jqtJ7G7nWpm9G2WHXjBlLu+DOmorDxlutBURKm06qK6lQ97de3M+zW2PRtJZFwGalcylAfIYQQQghAwqUQAgjWxu9xGTuBVVVUq9JnBMneWABAVfeu1nFGTLhUYwb6KLHhUt3pgT6xai6/muoB/ei0ZB2H/+OtuPvsyqVdNVUVFQIB0i+/CLWqkpqrr6PmwKGRY11xj1UVFRMzLpTuDL1bdwAytpVYay7dkcplSCqXQgghhBAg4VIIQUzl0g6XkUmsmqqhYoWxkB6i3aYiAKp7RsJlbFtsTOVSVeLbYmPXXO50oHO7Wf3Uo1RnpTLo3W9IfvgBiExmtdt17WCr6QbpF5+Pe87PhIYMo/rGPzshNnYbFPt6rEpsOCF4NsbejiRjazFEBvoAhIJSuRRCCCGEAAmXQvyulQZKeHXZdFaVrgSibbFGpC1WUzQ0VUM3dEJGiLbrtgHg79UDIG6fy8bWXDa1Ldamd+nCB3dfSDDZR8rDD5B2xcUohYUxlcsA6duKmXj1w3g/nUm4V2/KX3sLPB7SPemoikqmLyvunKqiOtuYNCVc6jHh0t6KBGTNpRBCCCGEbef/ZSWE2O8sKVqMYRrMLfwRGOcM9AnHVC4VRXXaZHPWbgGgul8foBLDtLYi8Wie+NAYuxWJosYP9GlCuNQUjS0De/DxM7dz4s1P4Xv7TTyfzGTEyANp285Lr6L3GP7V97hCYUKDh1Ix/T+Y7doBkOHN5Mx+ZyUEyNiWXU1pSrjsbp13a7E1LVbWXAohhBBCxJHKpRC/Y3aLajiybtDZioRo5VKN+THRZvUmTLebQK+e1uMi+1wmrGskdisS6lQud26ATuz1lef1pPSbH/FffBlKKEj7/33Hoa/9j7affY3h0lh0wSTKPv4Co1PnuMfXV5mMDcFNqlz27AVA5uZCDEyZFiuEEEIIUYdULoX4HVMj23SEwyYK0bbYsB5tG7XDWHJJBUmlFYQHDEJxW8N7gkb923koddZcunZlzSU4k141VcNsk031vQ9R/ee/sPWrt8hfNZvM7gOY081N2+xudPB4dnC2yDmJDZc7fy1mdjZ6ejpZW4owDQOPW9ZcCiGEEELEknApxO/It58Vs3RBFUMPTmf4qAy0SHAMhwzcgNdnBSZ7HaXP5XPCZdtIS2z4gAFOWAzqtUBie2nsmktVUVEUK2CGjXCT1lza4U+LfUxKCv7DR7Gsp0nX9G6EKzY06ZyxxzalLRZFIdyzJ94FC/BtLyYt03psaXF4588hhBBCCLEfk3ApxO/Iol8rKd4e4vP3i1ixuIrUIQG+nG2tIexJtC02UE+4zHHC5UDntmBkUmxj6xrtoLkr4TLVnUaKO4V2yblxt9sDfexwW3cvy8bEXptbczdyZKJwDytcpm3aQrvhVqV0+9baJp1DCCGEEGJ/JeFSiN+Rqgodt0ehba6HjWsDFOaX4/fpzv2eSFtsbSS0WeHSCmNtV0crl1qkohgIWyG0bntp3LTYyOPdqpsAgSYN9HFrbib3PSPxdmdarB0ud/6cSmxbbFMql0TXXaZt3ErbE+1wGWzSOYQQQggh9lcy0EeI34lQyKA2YJCW7uKsSzrRroMHj9uFyxUNgnblsjbcWFvsQGfdor3m0lVnzWVs2IutXEL8msdd5VatYFcTrgFwwu7OiGuLbcLjAMKRcJm+cRs+n0ZGlouS4hBBWXcphBBCCCHhUojfi+pKq0KZmq6RkqpxyQ1dOe+KrnToHN2fMtoWG61cKoqKGtbJ3rCNYJsszHbtEtZcJrTFxlUu1cgxVgBtaqCrj1ezwqVTuWzCj7K4abFNrFwaPXsDkL7J2u+zXQcPmFBUINVLIYQQQggJl0L8TlRVWOEyJc0KVJqmkOR1k9spJlw6bbFW5dLr8qKikrWpAC2s48/rA4riBLRoW2zj02IB3Huwcul1+QAwTWsbELVJlcvotTVlKxIAPSFcWl87aY0VQgghhJBwKcTvRlWVNdU0NS0axBTFWn9pc9ZchmvxaB5URUVVVNqusVpiA/37AaA5lctIW2ydgTqx6yrtoGkH0Kasj2yIR/XEBdimBNbYqqrWxHCpZGbhz0wlfUsh6LpVuUSG+gghhBBCgIRLIX437Mplano0UJmmicul0G9gCgcemo4vSUU3dEJGCK9mVQc1RXPWW4b69weiYU43rXM22hZLdKAPxFcOd5WiKHjUaCjW1L3TFqsoCqWd26KFwqibN9GuvVQuhRBCCCFsEi6F+J2oqkisXJpYbaV9DkjhpDNzURQlZlKsFZxURaXdqnwAQv0HAIlhrm4FsO4+l7HHNGXbkMb4Iq2xYAXgnRVbVa075XZnlHZuZz3nmtXk5LpBgUJZcymEEEIIIeFSiN+L6qpI5TKt/kBlmNbEU2e9ZaRyqaKQu3IjYbcLo/8BQGKYc+/EtNjc5Fx8Lh9ZvqzdfSlx11f3+XYkrnKpNm2fS4DyLpFwuW4NbrdKWrpGRXkYwzCbfC4hhBBCiP2J7HMpxO+EXbm0B/pAtHIJoBs6qqY6lUs7vKVsLSSpws/Wft1w+1KBxHBZt700tvPVXhvZI6MnPTJ67qFXAx4t2hbblGpobFW1qQN9AMpiKpcAGZluKst1KivCZGQ2PawKIYQQQuwvpHIpxO9EVcxWJDZ72ipA2LTCZ8DZ49Jqi81atgaAgrwuTqCrG+bqbi9SX1vsnubbA5XLpg70Aajo0h4A11rr65KeZZ2jvDTc5HMJIYQQQuxPJFwK8TvhhMt61lwC6IYVjupWLrOWrQJgW79uTqWvbpis2xZb30CfPc3rim6h0pQ1l7sz0AegrFNb6zntymUkXFZIuBRCCCHE75yESyF+J6oqwviSVFyu+v/Yh51wGV+5zFy6EoDi/j2cYxPaYusO9Ind53IPTIetj0eLhstdX3PZ9IE+epKPitws1E0boabGaYUtL5NwKYQQQojfNwmXQvwO1NYahIImqWkauqE7t8e2xeqRgT6BcEzl0jDIWLaKkM9DVfcuzrF1w6VWpwJoB7jmCpYQ3xarNSFcKrvZFqsqKsXd2qMYBtqa1U7lsrw01ORzCSGEEELsTyRcCrEPqQpWOhXGpqiutB6zLW0e7656ywmYsW2xtXqAJUWLKQkUA5FwuXo17io/23t3wu1Nco5VFKXRCqDdCttcLbHW9UUrl0pTKpfsXlusoigUd8u1Hv/b8phwKZVLIYQQQvy+SbgUYh9RE67hvdXvMnvrT01+7Ob1VqurnlxOTbiGmrA/4Zi15WuYV/AL2/0FQKQt9pdfANiW1xW36ok7PrZ6WXfNpT0utrmG+QB4d3mfy+jHuzIt1q5cAmgrV5CeGQmX0hYrhBBCiN852YpEiH1EVbAKwzSoDlXt9GNKi0N8+1kJC+ZUAJDT3gWECRpBIL5yWRWMP69X8znh0poU2/BelnXbS+3qYHNWLn17ZM3lLlQuUSju0cF6/G+/kZKqobkUGegjhBBCiN89CZdC7CNCkUBor43cke2F1dz61JtkVPWmXUonJkxux28pXvzhMCE9sj4wZs1lbDXTq3mtttOYymVm3cqlqkFk+WbCtNhIebA511zGDvRp0rTYSPDdlWAJkcplV6stVlu5AkVRyMh0UVIUIhg08HikIUQIIYQQv08SLoXYR9hbhMQO5GnMghWbKDcL6ZqXyTVnj8KXpLFshVVdq69y6Q9Z4XJkx9G0T2mPEg7Dr78STk2htHNb2tYJkLGBrm6429trLtUmTH21A29TAmnc41EIpiahd+iAtm4t1NaSkWWFy4qyMDntPDs+iRBCCCHEfkh+xS7EPiKoW4HQMHcuXBZut9ZZduyp4UvSIo+1qp6hyLli6ZHzpnszSPWkoS1ZDH4/lUMHgqri1uoPly7VlVCh3BuVS1VR8WhWkFOb8KPMbovd1cqlPTwo1CcPRdfR1q6JrruU1lghhBBC/I5JuBRiHxF02mJ1TNNk5bJqZn1Rwi8/lGOaJqZpUlIUZMWSKvzVuhMuUzKj5wib9l6WkcplTFuszRsJbO65swGoOnAoEN+GCqBGwmV9FcC9seYSotXLpqy5VHY3XEZeU6hvX+s8vy0nI8sK3hVlsh2JEEIIIX6/pC1WiH1EMNIWWxvSeeeVbSyZHx3A07mHj0W/VPLjV6UADDwwlcLCAIoCSWlWtdIwDSdMhuppi7V5I/tHumb/DEDy6GMYlptL78w+ccdparRyWZeyF6bFgnWtlVQ2aZ9LO/jW3Ztzpx8fea5gH+vrof22grTRRwNQWbFzVWUhhBBCiP2RVC6F2EfYbbHzfi5hyfwqMrJcdO1pBcHSohDrVlprJhUVfltSTVVlkJRUDR2rmha7VjNYT1uszW41dc2dDaoKIw5jUM5gklxJccdpjVQAnTWXzdgWC5CdlINH85DsTtnpx+x+W6z1moJ9rXDpWvkbZnIlm5PmUFRWuUvnFEIIIYTYH0i4FGIfEdSD1AZ0Nm3040tSufj6rvQ9wApVFWVhykvDaC6FPv1TCAVNTMUgLcPlBEk9Zq1myLACZ922WI/mQVVU1M2b0Lbkw+DBkJZW7/VE11y6E+5TFRWX6krYG3NPO6TDoZzWd4oTiHeGHS7du9kW61QuV66gTMun3LOZzeWbd+mcQgghhBD7A2mLFWIfEdRr2bQ+gG4YDBmRTkqqRnqW9Ue4aHsQf7VOmxw3eQNTWLm0GgODzAyNkBHCNE1nvaV1rvrbYu01jPZ6S0aNavB6VKXxttijux2Dt5nDZUPP3xg7HNbdm3NnqZHKpZ6Zgd4uF23NapK9VnCvqpKBPkIIIYT4/ZLKpRD7iJpQLRvWBjAVg+EjMwCcQTKb1gUin7vo09+qZppKmLQMK0CFjBCGEVu5rL8t1h7a47LD5ciRDV6PveayoQpgbnIumb6snXpte9PutsXajzdNEz2vH0o4TM72LShAVaUM9BFCCCHE75eESyH2AWUlIT77aCv+Kp3stm7atLOCXUZkC4yCLdawn4wsN+mZLjp29WJiOltkBI1gncplpC02oXIZmRQ7Z8eVS82ZFrtvNUDYlUfXLl63Xfk0TIPwAQMASFu5Go9Pobo6hGEkDkkSQgghhPg9kHApxD7giw+LKC710ybHxbBD0531k2kZLlDAXjqZEWmTnXxOe8adkklKaqRyqQfRDcM5nzMt1qwbLn1QVYVr6WKM9h2ga9cGr0lrpC22VVPsttjELVR27uHW401MwgMGAZC+ci2+JA3dMPFXy8RYIYQQQvw+7dfhsra2ltNOO42TTjqJE044gbfeequlL0mIXbJhXQ2GEuKQw7NIStIwTCsoappCWno0JNnhMruth07do/tSBo0QekzlsjayrUldHs2Le87PKLpO6JDDnCBWH2efy30sXLZLziU3pT1d07rt0uOVyI9NwzTRBwwEIO23NfiSVExFp7JcwqUQQgghfp/2rX8VNpHH42H69OmkpKTg9/s58cQTOfbYY0lPT2/pSxNip5WXhSgrC5DWVcPljgyTiZn8mp7pdgJNZpvo5FYjdjqsHnTaOa3PG26L9fzwvXXM6CPw0jBN3b2pqy0l1Z3Ksd2P3+XH25XLstoSliUXcKrLRdrKtfgmqfgxqawI06HRr5wQQgghxP5pv65cKopCSoo13CQYDGKaJkZMa6AQ+4L8DQF0JUhWdv3B0V53CdHKJcQH0KARjPtcN3V0Q6dOVyxezYf7RztcHt7odTltsfvYmsvdZQ/0WV++jnWBfPw9u+ErKqFt2I+JQWW5TIwVQgghxO9Tqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u4PBAKcdNJJHHnkkUybNo3MzMy9dPVC7BmbN9QmhEs9ZvJrbKBMjwmasceE9FDcQB+wAmddSTUhXAvmo+e2x+jdp9Hr0vbRttjdZVeAQ4b19azu1xeAnoXbQZFwKYQQQojfr1b9r0K/309eXh6TJk3iqquuSrj/448/5oEHHuCuu+5iyJAhTJ8+nQsvvJBPP/2UNm3aAODz+fjggw8oKSnhqquu4thjjyUnJ2eXrkdVG15/1hLs62lt1yX2rPwNAQwlTJsct7ME0lQM5/tub0eSmqbh9UbXX5oYzvFhM4QLLW4JpW6GUFQz7racBUtRdJ3wqMNRNet3Tw29v9K8aSgKZPjSf1fvQU21vo66GUZRwN+/D3zwCd22bsPwGVRV6L+rr8eukp9fornJe0w0J3l/iea0L7+/WnW4HDNmDGPGjGnw/pdeeokpU6YwefJkAO666y6++eYbZsyYwbRp0+KObdOmDf369WPu3Lkcf3zT11u5XCrZ2alNftzekJWV0tKXIJpJMGiwZVMAd7JOuw4pzjYaGZlJZKda78fOXUNAIdltvXHv0ZQSD6mmD4DkNBcpbi+p5T7n/tQMD+nhJFJro7e1W7gQAO9x4/FG3lcNvb+ys4fQv0svUj2t889Fc8msTCY17MPn1Uh1+eAga6hP920F0N2gqsLA1N3ktJN1lztDfn6J5ibvMdGc5P0lmtO++P5q1eGyMcFgkKVLl3LZZZc5t6mqysiRI1mwYAEAJSUluFwu0tPTqaqqYs6cOZx++um79HzhsEFFRc2euPQ9RlUVsrJSKC2tlr319kNVlWH+888thIImuX0V/NXRCa+FxRW4aq0fOL5kax1xm7YuiournGNKyiupqg4AsL2klHSPQVVVwLm/oKiU8gp/3G2ur2cBUDr0YCit3qn3Vy1VDd63P6qsDFBVFUCvVakJBSjo3JfuQNu1+Zg9TFYsqeT/rl3KUcdnc9Tx2S19ua2W/PwSzU3eY6I5yftLNKfW+v5KT0/C7W58K7d9NlyWlpai63pCi2t2djYbNmwAoLi4mJtuugld1zFNk6lTp9KvX79dfs7W9M2NZRhmq702seu+/qSYzRsCdOnhY/AxaSyvjN4X1sPO9zwn18P5V3cmp50n7n0Q1qMDe2rDQUJaCNMEt+omZIQIhGsxDNM5xlvlx7NkCXrHToS79UCNnEveX/FMU8E0IRS2vp6BrEwCOVlkbyqgc3tILXURqNH5+pNiXG6FUWOzWvqSWzV5f4nmJu8x0Zzk/SWa0774/tpnw2VDTNN0tgro06cPM2bMaOErEmLXFBZYA3dOnprLJnM7VIJH8xDU4ye/AnTrmZTw+LpbkdgDfpJcSYSCIYJ60NmKJCepLb3mL0ExDEKjDm90f8vfOzUyB80ekGSaJuV9e5D74zxOGVDN4HE92Lw+wItPbOKnb0oZNTYL0zQxMZ1Js0IIIYQQ+6N99l86WVlZaJpGUVFR3O0lJSW7PLBHiNakrNjaizKzjYvayGTXZFcyEN1mZEPFer7d9DWGmbjFTuy02KARch7jc1lBNKhHp8UOa3cgBy3ebt1+eMPrnEU0d5uRkq+JSVnfHgCk/7YGgM7dfbTN9VBVoVNeHmTG6rf5z/J/8/Haj6gJt672eiGEEEKIPWWfDZcej4cBAwbw448/OrcZhsFPP/3E0KFDW+7ChNgDdN2kvCxMWoaGy6USigRBn8savmNXJb/d9DUbKtaztWpL4jnqVC7DZrRyCRAygk5AUhQFz9dfAhA8alwzvar9g70Vic3EpLR/LwAyl612bu/Q2Rros2lTJVXBKgzTYHv1dl6evoRvPy/ZexcshBBCCLGXtOq22OrqajZu3Oh8vnnzZpYvX05OTg5t27bl/PPP56abbmLAgAEMHjyY6dOnEwgEOPXUU1vwqoXYfZXlYUwDMttY24yEI3squlUPAIYZ33/v0tzUpZs6qqJiYhI0ghhG3cplyGmL9azfgLZ+HeEBgzBzc5vnRe0nElpbTZOS/r0BaLNsFXYNuX0nLwvnVrItPwCdrdsqy8OsWVFOweJikpNVRozO3GvXLYQQQgjR3Fp1uFyyZAl//OMfnc/vvfdeAK688kquuuoqJkyYQElJCU888QSFhYX079+fF154wdnjUoh9VVmJ3RJrhUa7UunVrGqYbupO4GyIYRq4VOuPeEgPOWsE3ZHbzMj/ANK+s6bEBsdK1XJH6qtcVndsS016MpmrNlASDILHQ/tO1vdq65Ya1vr9pKZr1NYY6Ir1vf343UJ69E0mp51nr78GIYQQQojm0KrD5SGHHMJvv/3W6DFnn302Z5999l66IiH2jrISKwhmtrH+iNotrR7NCiK6oVMZrHCONxtYc+nW3GiKRnWoOqb6aQVWO1gCpH4fCZdHHb2nX8p+p27l0hrWAwV9u9L9lxW4fltOeNAQJ1yuXFrNipQqkpJVOnT2YighUtM1qip0tm6ulXAphBBCiP3GPrvmUoj9Wd3KpT2cxw6XhqlTGYzuTVLvQB9TR1M05zGBsLWfpRapXGKamKaJGgqT8uPPmMkphA4+tHle0H5EURIrlyYm2/K6AOBaMB+ApGSNzGwX4cj3rsZvsC0/iK6E6XuAtUdpRVnj1WchhBBCiH2JhEshWqFouLSCoG7Gr7nUdxAu7TBqhUurguYPVwPgUuLbYjstWYfm9xM8/AjwSBVtR5R6KpdgUtCvKxANlwAdItVLAAXwV+ughejZ15r6K+FSCCGEEPsTCZdCtELRtti6lcvI56ZOZSg+XK4uXcUXGz7DMA1nUqymas50WHsLDJcW7YY3TZPuc5YDMiV2Z9W35tI0Tbbl2eFynnPf4OHpZLdz0X9QCqphBfe0bMjMtr6P5WWhvXTVQgghhBDNT8KlEK1QaXEIFMjIsiuXVlh0KpeGQWVtuXO8YRqsr1jLlqotlNeWRcOl4sKnWeHS3nbEqVxGPu/10xIAgkePb+6XtV9IWHMZ+V9VTgb+Num4li+FgNWC3H9wKudf04luvZJwEQmXbUzSM63vgVQuhRBCCLE/kXApRCuj6yYV5WHS0l24XNYf0bARxqW60BQNiKy5jK1cYqBHWmMN03TCpaqoJLmT4s7vipkWm7Ixn+wNBQT65WF0697cL22/kFC5tLeFURQK+3VHCYdxLVsSvR8Tt0clp00qAGltIDVNQ1UlXAohhBBi/yLhUohWprpSxzRwqlsQ3bNSU61wGTJCVIeqnftN03DWXRqmgR6ZDOtSNZK0+HCpxYTLDt/OAaBqvFQtd1Z9lUv7a1+Y1w2IX3dp39e7VwaKAm06KKiqQlqGi6pKne1VxSzYPq/eoUxCCCGEEPsSCZdCtDLBoBUyPN5ohUw3dVyqyxkmU15bHq2YYVUro+FSj6lcavhcPuc4l+pyKm+madLxu7kAVI2X9ZY7K7FyGf24IBIu3fN/jd4f2fJl8LAsjju1Lcnp1ufpmS4w4ZeNC1hUuJDCmsJmvnIhhBBCiOYl4VKIViYcssKH22398TRMA9M00RTNWS9ZHaqKe4xhGhiRQKmbOrphBU1N0UhyJTvHqYrqhCN3WTk5C5dTlZ1O7eBBzfui9iP1bUViRBLm1gO6A+D6ZU70/kjod6kayV4vIcMa4mNXpssq/QAYkaFNQgghhBD7KgmXQrQyoZAVRtxuK8SEnRZXF2ok2NTqtXGPMeq0xRox02JjK5f2mk2A3B9+RdUN1hw2EEXVEDtHrSdc2vwZyYR79sK1ZjVKcTEQbYtVFAWP5iFshDFMgww7XFZY4dKuNjfF6tJVfLvp67gqthBCCCFES5FwKUQrEwpGprpGwmVsi2tsOATwRvawjA2XekxbrFW5jK65tFprrfPa6y3XjByY0OopGlZ3n0tM0wmYhmkQHn4wAO5f5zi32Y+zp/0G9aBTuSyv8scd1xQrS39jQ8X6hEq2EEIIIURLkHApRCtTty3WDoou1YVap8KY7LZaXg3qD5eqoqEqqhNCNUVDQcFVG6T9D78SSvKx6cA+zf+i9iMN7XMJ1vchFAmXrl/mOvcDqKh4NCtcho0Q6ZnWXpcV1db+o7sSLnUzvMuPFUIIIYTY0yRcCtHK2G2xTuUy0harKWpC5dKuSsZOizVNA93QncfEHqepLhQFus9ejrsmwJbRBxL2ehLWEYqG1bcViR0gTdMkaFcuf6lbuQS3agXKoGFVLk0MqvxWi7NB0wOi3TK9Ky21QgghhBB7moRLIVoZp3LpiW+L1RRXQrj0RUKjYRrOcdY+l9F1mhATLiOVy7xvFwCw6ehDgcTAJBpW31YksWseQ3l5GKlpuOf9AuGwc5+qRCuXIT1Emxw3ulZLSWEIXTcxjF0Pl4asuRRCCCFEKyDhUohWJhSy11xafzzDRnQ4T0OVS3uiLFhh1A4b9vF2CHWpGmqglp4/LSXs85I/chiQOAFVNKy+abGxQ30MVSE87CAUvx/X8qVORVJBia65NIIkp2j0HuAhGDTZujlgrZs1TMLhnQ+K0V8oSFusEEIIIVqehEshWplwnWmxRsxwnrpVM3ubkbiBPobuVLTUSLi0Q6iqaKR8+x2emlqrJdbnaeZXs/9R6/zYtEJ9TLjEIDRiBACuuXOcrUhURcUTaYsN6UEABoywJvmuWubn9X9t5p4bVvPX29ZSVhLaqWuJVi6lLVYIIYQQLU/CpRCtTMgZ6BO/FYkWmfQaGzCjlUszWsUi2iKrqfGVS03RSJ05E4CNRx/mnEfaYndevZXLmLZU3dAJjzgEAPfc2dh3qYqKW7Mrl1Z4bNcVUtM0qip1irbX4nIpBGsNlsyv3OF11N1+RgghhBCipUm4FKKViW5FUmdabKQKabe6ulSXMyAmtnJlGHpctRMgKbLXpSeok/LFF4S8bvJHDo3W26QtdqclrLk067TFYhA6yKpcuufOjg70QcGj2msurcpl0Agy8MA0OnbxMnFKDudf1RmA35ZU7/A67F86gAz0EUIIIUTr4GrpCxBCxKvbFhudFmsFRTvceDWv83HIiLZR6qaOYiqRx1j3p3kyAOg6awFqVRWrxgwlnOSNq7iJndPYViRgTes1M7MI9x+Aa/lS3Fu3WY9TVNxadFosQK1eS9tcD21zPXRs56FDjpf0TBeb1geoqgyTmtbwj+jYcCmVSyGEEEK0BlK5FKKVcQb6ONNireBgt7ja//VqPidc1g0asftcArRLbsexPSbQ7/PZACw7ZkTcc0pb7M5TdlS5jHy/QoeNBCB97q/W4+Iql9YvA4J6bdzjFEUhb2AKmDuuXtoTgWOfUwghhBCiJUm4FKKVCTe05lJxRf5rr6P0OkEnPmiYCYEUoL1fw/v1l+hZWaw/uD/WGBrruSRc7rx6K5f1hstRAKTPnQ/UXXMZrVzWfVy/QSkArFreeLiM/4WCtMUKIYQQouVJuBSiBZQGSvgxf1ZcuLCFIm2xCWsu1fhw6dV8zuRSe7sSsIJG3TWXAN7330EJh6k++RQMl2ZV3KQttsnqrrmkTlusvQ1M8FArXGb8Eg2XdafFBsKBmMdZ3/cu3ZNAga2bEt8bseK/5/J9FEIIIUTLk3ApRAtYU7aa1WWr2Fq1JeG+upXLxDWX1n89jay5jJ0wa/O9/SYA1ZNPB4irtsk+lzuv7peqobZYMzeXcK/epKzbSHJJBQoKLmfNZaQtNlLBhGj7s8erkp3jprw0TI2/4YpkbLVaBvoIIYQQojWQcClECwjb24bUEwqiW5HEVy5V1frcDpQ+zYuqxAdQ65zRLSrsQKqtWYX7118I9+xFcNgwID4USVvsztvRQJ/Y72lo5GgAOi1ei6qozvfD/v7Errk0Y9ZN5nbyAlCwpf7qpWmaLFlUTqDGfh/JmkshhBBCtDwJl0K0ADsM1tfOGArabbH2mkt7K5JIW6w90McVM9CnThXLrmrZ02K9b1lVy9rTpqBEQmrdUCR2zg63IokJeqFDraE+XRauRlGij7WPqa8tFqB9JFxuy49WNu3nAlgyr4qZ725l2cIqQCqXQgghhGgdZCsSIVqAHQbqCwVOW2xkWmzd9ZNaPVuRJEyLNWIeY5r43v4vAIHTpjiVt7jKpbTF7rQdVy5jwmVkqE+nhWtYp6jOGlm7Shm75jb2vdC+ox0uo/dXlod59m8bGToinXWr/RiEKS0KxZ1PCCGEEKIlSbgUogXY4a++dkZnKxJ7zWWdgT72mkuf5nOmxdadHGqv31NVDfcP36NtXE/okMMwuvdAqWeIkLTF7ryEyiXx61cNot9To3MX/J3a03bdVjaXVqCmRavGIT0U9/2vr3IZ2xa7eoWf6kqdH74qtc7h0anxGwRqdKlcCiGEEKJVkLZYIVqA3bZaX7gM11lzaQdHO1RmeDNQFZV0b4ZTCasbUuzHuFU3vn+/BEDN2ecC0SBpRmKRaKI6Vd66rcW6oceF/eKDh6KYJhmz5zoVYsM0qDWs4Fh3HSZAWoZGUorK9q1BZ3rw5g01cc/jSbKet7QkLGsuhRBCCNEqSLgUogXYlcX6B/oYKCpoml25tIKKK7LW8qDcEZyedyYp7pR6tsWwzm0/xl1chnfmhxgZmdSedCoQW6WMtnNK5XLnqdStXMaHy1Wlv/H6ilcpqikCoOgQa4BS+o+z49Zc2q2s7sgEWTOm4qkoCu07edF1k7/etpYFcyrI32CF0cPHZzFgaCoHjrL2wywrDkm4FEIIIUSrIOFSiBbQWFtsOGQ6VcvYY+P2rNSstsl6w6WhO1uTpLz9X5RgkMDpUyApCYiur4ytuMmay51X92tlmmbc97GwphDTNCmvtdpXtx88BID0H34GrO9Z7ERfu9257nth7PHZ9O6fTDhk8vn7RRRsqSUtw8XRE3M4/bwOtOtkPa60OOT8skIIIYQQoiVJuBSiBTTWFhsKmc4el9axkW1F1MQl0rGB02ZitcW6FA3fqy8DEDj7vHqOMxOqbmLHEtdcxn8N7ZbYUOS/tW0y2N6zI96Nm1A3rE8Ml5EpwHUDYpceSZx9SSf6DkjBX61jmtC5u8+5PzVTweVSKCsJEdZlzaUQQgghWp6ESyFagF2NrDuIxTBM9LDpDPOBaFipL0g2VLnUDZ0ui9bhWr2K0PCD0Q8Y4NwfNy1W2mKbLGFabJ3Kpc3+vpmmycbheQB4vv8WBQUT09mGRmugcmkbMSrD+bhzt2i4NNDJbudG12HOrJLdeEVCCCGEEHuGhEshWkDYjO5z6a/W+W1pFYZhxgzziQYYo8602Fj1tbNa+1zqDProBwBq/nh+vY+JrVxKW+zO21Hl0haOtCYbGGw4yAqX7u++RlGUuEDaUFusrWdeMpnZ1jGxlcuwGWbgsDQ8HoWlCyuYP7t8N16VEEIIIcTuk3ApRAuwK5fV/hAvPr6J15/fyuzvyqLbkHiifzTtIFpf5RISw07ICJFUVkWPb37FSEun9sRT4u6XKuXuSfz61d9ebK97NU2TzYN6YrjdeL7/FtW0gqS9ZYnbCZf1t7aqqsKpZ7XnqAnZdIkNl0aI5BSNg0ZmoKgmH7y5nZVLq/fAKxRCCCGE2DUSLoXYC9at8rNlU8D5vLSsll9+LGfGf7ZQvN0KId9+XkJleWTKa+yaS0NHVdQGq4t1w2VQDzL4wx9wBUMEpp4FKSlx98duh+FULiVw7rT6BvrU3Y4E4oc2hZO81Bx4IGpxMW3XbsEgOi1WUxqvXAJ065nEmGPaoKqJ7dI57TwcclQ6pgFvv7KV2loZ7iOEEEKIliHhUohmFgoZvPbPLbz+whbMSBvsj98Us3VzLTX+MP0GpzD04HQCfoOvPi4G6oRLU6+3JdZWN1yqoTBD35+FqSjUTLuk0Wtz1lxKW+xO29m2WLtyaYdG/+hRAHSZu6LBttjSQAlLi5bUG1brChvRSmePPj569UsmWGtSWhxq4isSQgghhNgzJFwKUUdQD1Id2nPtheWlYcIhk8pynaLtId55dQs1NTqdung548JczrygI0dPzAZg5TLreV11tiKpb3CPrW7Vse+3C0gtrmDL6IMwevSs/zGKIpNid4OiKDtcK+kM9Il8nWsOHw1A51+Wxd0fO9Dnk3Uz+bVgLqtKV+7wGuyJw9bHOmlZEFJqqCgNN/IoIYQQQojmI+FSiDq+2fQlH655b49tTF9WEq0kzZ1VxsrllSSnaAwekY7Lbd2eluEiKUUF0wojq9RZrChZjmma6Kbe4HpLqFNJM00OfOdbAFb/4cQGH6NgDZUxMaVquQsyPBlkerOAxsKlvebSur928BCMtHQ6LFyFFgw5a2lVVGd7EjtwFvi3xZ0rpIcory2rc/5oiDRMk43euaxO+5yS0prdf4FCCCGEELtAwqUQdfhDfoJ6MO4f77ujPKaSNHdWOaZi0K2nD5dLwSQaTDLbWEkzpPgpU7ewtmyNs1XJzrbFdli2ng4rNlLYowMlhxzY4GPs7TBM05T1lrtgQs8TObb78UDD4TJUp3Kpuj2EjjgSV22QzgtWO2syVUVBVVR0M1qhLqstjTvX7G0/8cGa9/CH/M5t8eHSAJ8fQ9EpKvEjhBBCCNESJFwKUYc9xXNXK5fbt9Xy5r+2OBXL2MqlaYKJTseuvoTnsMOloYTRNNXZUgSiQ1/qExsu7arl/ElH4FLdDT7G3g5D7BqX6kJTrWpyQ+8T3dluxrpfURSC448FoOfPy5zvrapYlUvTNMnwWntaltWpUpYGSjBNM65dO3aPVN3U8SZbH1eUy5pLIYQQQrQMCZdC1GGHgV0Nl5+9V8TyRdX89E0ZAGUlkfbHSGdrh25uklOsT/TYcJkVWXunhNA00I1wzLq8HbfFpm8rpu+3C6lJT2b5uOGNPsapXCKVy92144E+9tAkleDR4wHoOXspYd263w6Xse830zTjqpR2qLRbba2Pw3g0T+R4A3ey9fiKMllzKYQQQoiWIeFSiDqccEnj4bKkKMhr/8zn529LCQatY7durmXNCisULF1QiWGYTuWy38BU679DkhOeC6KVS10Jo2kKuqk7ex9qjQz0scPl8P9+jWoYzD/1CMI+D+4dVC7BCjGy5nLX1Q2FsUKR8Oi0xaJi5LanOK8HmVuK8a5d55zDbouNbXUtqil0zhPUgwAEDeu/hmlgmIbzPdZNHY/Puo7y8uCefplCCCGEEDtFwqUQddhhwdxB5fLnb8tYtczPpzOKmP5UPqZp8sOXJQC43ApVFTob1wUoKwmhqDDx9HacdGY7Bo2Ihks9ZjuJzDZ25TIaLu2w0fiaS42k0koGzvyZkM/D/FOPAKJTSEXzargtVo+73w7xW0YNA6DNtz9at6M4vyAIxVQmi2uKAPCHo62wduXSfl/YlUvDNDBVA49HobI8jGFIy7MQQggh9j4Jl0LUYa9FbKwt1jRNZ9uQzDYu8jcE2Lw+wLKFVSQlq4w7wdpaZNHcCiordNIzXKSkahx4aAYoMe2P9Qz0MQihagqGaThtsztac3ngu9/hDoZYdMJhBDJSAHA18hj7NUhb7O5prHIZNsJx+1naAXLLKGvQUs73PwNWu6w9DdiudgKU1lq/qIhdZxnU48OlprhQFZWQEcI0TZKSNcK6gb86+ksLIYQQQoi9RcKlEHXszJrLooIQZcVhOnbxMnh4OgCfzijEMKDfoFQGHZSOqsLCuZVgRoPj/7P33nF21XX+//OUW+dOb+khPSEQSgIIAgEUUMCGCihYsOyqK7r+Vl33q7sra1t72XV1baiIi1gQ6Yj03gkJKZCQnkymz9x+T/n9ce7nlFumZYbcST7PxyOPmbnnc8753HPPuTmv83oXqFDls0hjwLl0xpljyLmMpLIcf+ODmLrGM5e8zn19JLdT5FwCMix2kqjUi9T5rL2wWICBlUtIN9bR8vQLhNJZNywWgkV6csVQWL+4LBTDYkWxIF3V0BTNDZuNxVXADlQolkgkEolEInm1kOJSIinBqxZbPbRQuJZLjq5j8XInzHXPzhwAy46toy6hsWpNA6bpbEOEvEJ5lU9BNKoRi6tuWKy/7+FIfS6X/uluoqkMG1+/huyMdvf1EQv6yGqxk4JfUFb6jApWoSwsFj3E9pNXoBoG85/ajKqoKL6v4qjuVBIuuOIy6S4TItIfLu1/OBCNa9hYsqiPRCKRSCSSQ4IUlxJJCWMJi92ywRGXS1fWMXt+lEjUuZT0kMLCpY7YXHt+i1sh1u9c+gVl6T6aWkJuQR/wCrhUDYvNZFj+f7diKwpPvOt1gSI+I4XF+vtcSiYHv9AUrrHhE5diuYLCttesBGDh4y+iogbWjWpRFEUhZzoPKyr1tjQsr0WNX9TGYiooSOdSIpFIJBLJIUGKS4nEh1/sVasWm89Z7HolQzyhMXNOBE1TWLjMEZSLlsUJh53Lqrk1xEmvbQKgY2bYXd9fxKdcXOpYioGqF8Vl0anS1MqXauyXPyfWO8CWtcfTP68zEAo7YlisIluRTAb+Y+c/3nUhJ+/VsA0v/Lg4VlVUdqxZhqWqLHj8RVS7VJiGCKtht7hPwLksC4vVg8K0TsXGZmhA9rqUSCQSiUTy6iPFpUTiI9hrsLK43L0ji2XBUYtiqKojGI47qR4UOPHUhsDY897Sxns/NpsVqxLuayM5l0uOriMctWhodIRKvuheVXQhUyni//UdbEXhkfe9AYCQ6onYkarFKsiw2MnGL/LiuvOwoWAZWLaFoihu+KqqqGQb6ug+bhmJ3iHq178YaDWjqRphLVzMuTUDOZeG2ztTFHrSAvuNRDTAIp2aWI9WiUQikUgkkoNBikuJxIdf7AmH0bJsXnkpTaHYy3LH1gwA8xbG3LHLj0nwhW8uYtnKBH40zQmTFSIUqhf0ATjxNY287f2txOucUEcRGqlWyJ+M/eKnqD097HrDmfQdNQNwCrwIRqsWK/YvC/pMnEqhsADxonNpFivG+h1Osc6OM1cD0PLX+4LbUTTCWgRwnMq04YXFimqx4gGFv9IsQCjkONK5rKwWK5FIJBKJ5NVHikuJxEelsNj77+zjVz/cw+MPDACwY5sjLucvigXW1fWxXU7WCM4lOKGUAhEaWSoUleQw8R9+D1tV2fz37/bm4M+5HKWgDyDDYicRtSjyNEVz+0+Kgj5+8Sh+37622O/yr/cEPgNN1QkXP8fh/DCGZbhhtm61WDfnUnX3C6AXw6lzWelcSiQSiUQiefWR4lIi8SHEnmna7N2V4eVNKR682+k3uGdXDsOw2b09SySq0jkrPNKmqlIaFlsanurvdSicy9JKpLGf/hi1r4/cOy8jPX+u+7q/oM9oYbHgFC+SzuXEqVQtNqyF3c/BsArY2IFxSvH3gc5mDiyeTfSVHTRt3+su11XddS4Hsv0ANEWaAO9hg3jw4W9jAqCHFWzFIivFpUQikUgkkkPA6HFzEsk0pzfTS0+mm2Uty6uOMU2bfM7CClls2ZDkpY1p1iX30Fjwbty79+XYuyuLUbBZsCQWCHUdD/6wWHAEpl88CncKfDmXPhdS6e8j9j//ha1ppP7pn1GVfe6y8VSLlUwuuqpRF6qjMdLoCnvDMssEvDj2hmXw0umr6Hh5D3PufZz17zzJ2Y6io2nO5z2QGwCcMNuQGnILPNlVci5DIaegTy5TWVwmC0kMs0BTtHkS37lEIpFIJBKJg3QuJYc9zx54isf3PUoyP1xxeXLY4Edf38H3v7SdLS8Os3lDGkWB+YsjHLU4xvEnN5Bo0OjtKbBts5P/VhoSOx7MklBYy7awbIubXv4Tj+592HWnwMux84c+xr/3bdTBAbJXvB/rqAWuEwbB3pajVYt1f5dCc8KUhru+edHbOGfeua7IrxwW6xxv0zZ5+YxVAMy69zF3uSjoAzCUHwAgpsfQVd19MGFannPpLwakaqBqdlXn8v5d93LH9ttkMSeJRCKRSCRTgnQuJYc9WcNx//I+R1CQz1lc+6M99BxwRNwffr0PErD82AQXndXB4uY5APz6f3azbUuGx57Yx874MzTNef2E5+PPuQRHZOQKWQZzgwzmBgOiMG8J59J5Td2xndjP/xc7XkfqM//ivOYTigHncgxhsYAMi500FEKac/xDvj6XpXmtQmialknPgpnk5s+jeePL1Hf1MdzZgq7o7mcnnMuYHieshckYGaeKbPEcUkucSwWFUESp6lxmjQx5M49pm2Mq+CSRSCQSiUQyHqRzKZkSskb2UE/BRQg0wyqvoLl5fYquvXnmL4rRPiOMZVtEIgrzFsUCxXbaZzg5cHuTe0hH95Gp93LkNvVt5IXu57Ftm6HcIMP5oRHnUyksttpyt89l0bms+9qXUPJ50h//JHZHB1DeI9H5ObJwkIJycigVdgKtKNwqOpfFr13TNkFRGDr/XAAWP/QCEMy5TBccpzymx9w2M2KbYv9qST5uJKJgFGxMs9ydFOtVKiQlkUgkEolEcrBIcSmZdHYO7eCGzf/HjqHth3oqgCfQzBJRB7B/jyM8jz+5nrdc1km8XmHFqgS6prhFUwA6Zjo39jYmza0h8nbGXfbEvsd49sAz3LXjDm7aeiN3bb/DXWZYBnuTewL7FK6TEIAWVqDIT6W5a6qO/vyzRP/0e8yOTtIf+bg7RvVdxsK5LC0ANBIyLHZyUCo4yOJBQbCgT/B4J88/H4DFD60DnM9aOKCCmB533dCCmXfPzdKcS4BQ1Nl+toJ7KcWlRCKRSCSSqUSKS8mkM1zMbRzKDR7imTiIHEZ/iw9B115HXHbOijDnqCgf/ed5zF3g5FMGncuiuFQsWttDpH2N7d1tpfZj2zapQsp1nJ7vfpa7d9zFM11PueNEWKwQILZdXVwKNFTqrv5XANKf/X+Q8PppCnGhKIpb+Gc05xJkzuVkUM251IviUDwcqBQWK8iduJpsWwtz1m0l1j+MpmhE1EhgTCwUI1TMw8xbBSzLdLdVur1wcdVKvS5tHDdTikuJRCKRSCRTwWEtLrdt28Zll13GRRddxMUXX8xTTz01+kqSg0a4Kv7CNIeKgllwi5eUhqMC7N+bQ1E98eh3KwPistNb3tIeDjS2F0JuecvRdNbNAGAg57SQ2Jd0Krmu73nBHS/mIcSlaZlugZZqNN5xJ+GHHsBYtpzsu98TWCbEhYrqFvcZNSxW5lxOOv7jKPIZRbXfSq1IBKqmceDctaiWzdIHnkdXNTcsVhDX44SLYbGGVfByLlW1zKUORar3unSdS6S4lEgkEolEMvkc1uIyEonw1a9+lVtuuYVvfvObfP7znz/UUzoyKIq5QgUx92qTK+ZbgiPishmTvh5H9KaSBskhk7aOMKGQcynYPkHp/z0W12hpD6GHLZpaQ64z6YyziWgRTp55CnMSTs/JvqzTG7Mt1lY2J1EtVjhRFlZZkR8/eiZH+398CYDkV74BelA4CrHiVA4VzmUwrLIUKSgnB4XKzqUIYc0XH7D4j7da8rWrKioHLnAKRC275xk0RSfsC4uNaBFURXU/07yZ93IuqeBchkcPi7WlcymRSCQSiWQKOKzF5ezZs1m4cCEACxcuZHh4WJbgfxUQN7BGiXNpWAY7h3a8qiF5BdOrEGvYBn+8dj8//M8d9BzIs3+Ps2zGbM8l8s+tdJ7v/tAsLrykHV1TKFgFCsU2ITa2e4PfEm0BoL8oLv0OYrKQBByRC54AMa2Rw2JP+e3d6Hv3knvTWymceVbZctUnLtWJOJcyLHbSEUKw4IbFBluW+FEVlaETjmW4vYk5L2wj2t3nFu8BiIfiAK7gLFh5rOL3mKZqZQV9QlHn50jOpVmhuJVEIpFIJBLJwVLT4vLJJ5/kIx/5CKeffjrLli3j3nvvLRtz3XXXcc4553DsscdyySWXsG7duorb+tvf/saKFSukY/MqIPK6/GGxuazFxgObuG/XPa9qoZ+8bw7pTI6tm9KYhs1j9w348i29G/mRxGVbZ5jGNu+SSRtO3qV4vwDNRXEpwmL9yw6kuwAwbREW6zmXpeJS9Dls2tPNmt/9DSsaI3n1Vyq+R7WSczlKQZ9An0t5TUyY0j6XAiHucxXCYkvFpaKoqKrO5rNPQLFtWu/4KxFfWGxMd3KAvWqxhut0O85l8PMLVwmL9T9Yk2GxEolEIpFIpoKabnSWTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0t7rg9e/bwzW9+k5/85CcHNR9Vra2bcDGfWpsXio2iOCJKVRUKeYsff3MnffW7WHye47y8WnM27QLi3nvnjhSWVQfAc08OMa9YuGfmnKg3n+Lcxe/l87Tc5VkzQ7PaDNioqoqqKsTDMeLhOEP5QWyswPZ6MgdY3LwYq7iNiB4pLrOxfdsFx60qWHnO+uGN6AWT1Kf/CebNq/g0SFdVFMVxsTRVQ1EgpIVGPMaqqrj7UxSl4tiaPb9qCFWl4nGMKGEUBYzi+aeq3jJdUwOfta5q6JrG5nNOYM0N99J06x1kPvEv6JqGaZnEQ3WoqkJED7nbFOeQrunomhbYXrhYLTafswKfnWlZo5zbry7y/JJMNfIck0wl8vySTCXT+fyqaXG5du1a1q5dW3X5Nddcw6WXXsrb3/52AK6++mruu+8+brzxRj74wQ8CkEwm+djHPsa//uu/Mn/+/AnPRddVWlsTow88BDQ31x3qKQSoz0RJZKJE6zRaWxM8fG8P/b0FDqSyHB0KkWgIlx1L27a59Y/76JgR4eTTWydtLv1KiETCiRPcu8HpvdnWEabnQJ5tW9IoCqw8toX6RifkcEiNk+hzxtc3RMvmmRiKkCg4y8MJaG1NkEhESYRj7tj57bPYPbQbrc6gvj5KIueMz2hDtLYmiMV11EiclqYEXUaUpuYYmQIk+qPuftoTTcy640kWPbqBodltNPzb56mLRqlEi11PYihKQyTO/BkzqO+JMbdjxojna0NPjLTibK8hFhtxbK2dX7VEY08dGdWpjtzcVBc4jk0NCbd4U1PCW9ZjJ0gM+j7rtgaGtQQvrl7qfNZPP0M82UtrYyPpQpqZba20tiboUJpJDEWpqw9hRyIkjChtrfXkQvUkMt72Io2Ow6kqemA+BbPgXgtNTXFaE7XxfSbPL8lUI88xyVQizy/JVDIdz6+aFpcjkc/n2bBhAx/96Efd11RV5bTTTuO5554DwDRNPvnJT3LJJZdw+umnH9T+DMNiaCgz+sBXEVVVaG6uo78/hWXVTi5p/0CSZDKLbgzT0zPM3bfuB8DGYu+eFL3Nw/SGkpimzc2/66K1I8wxJ9Rz+437qW/UWLQiMsoexk5Xbz/Dw1lyWYuXtwzQqMzjkitncvPvumhuDXHiqY3kjRy9vU74Yu/gMMmkI0L7I0l648ngextMusv3dvfQYs90/g6H6O11xur5GMlklq37djGQSrnj85keenuTDA474bTD4SzJZJae3iGyZsYdB2BlM5z2td8CcN9V7+C1KQNSwbkIBgeddbVClHxS4YI5byOiRdz5VGJ4OEsy5ewvYmYrjq3V86uWGBrOuMdxMJQOHMdc2iRjOMuGbe8Yi89L0N+XZmgoSzKVY+NZx3PKdXeTuuZacm+YRzKXJZ+C3t4kyeE8yWSW7r4BcmaOZDLL4ECGoWQ2sD29mAvc1xf8XMU6AD19w+i5Q/sfljy/JFONPMckU4k8vyRTSa2eXw0NMUKhkVOvpq247O/vxzRN2tqC1ThbW1vZsWMHAA888ACPPfYYPT093HDDDQBce+21NDQ0TGiftfTh+rEsu6bmZlo2tg15I8/Lm1Ic2OcUNbGxGOw3KJgFLMvmsfv7eeaxIUJhhcYm51QcHjRJJQ1i8ZFP3LGSM3I898Qgu7bnaMrHWT43QsfMMB/8x7nuGP+xM01TFLvFNK2y41owDXd5Mp/CtCznb9vbTkiNYNuQM/Lecpy/DdPEME1CWgjFVrFtMCyTgm+/AKt+dD2NXX1sXns8O087nlNH+nxtBdt2CvNYlk24uP8Ri1fZblFfLGvkc7vWzq9aQikeewBsJXCcNEV3l4nPRowLfDS24m5n81kncsp1dxO+8Y/ob/wstg0RNYpl2WhKyD2vClbxPLQV9zwS6G61WDMwH8N3jhmmUTOfqTy/JFONPMckU4k8vyRTyXQ8v6atuKyGbdtugZKzzz6bDRs2HOIZHT5YtoVpOcJoJESbg4JVYMuLTsuOlSck2LvJZnDA6dE30F/gntt6nXF5m+efGnLX796fZ97C2KTMOVvIs293HkWB+maF085qHnG85btLr1TB1d8yJF1IuQLOX3FVFGyxbKusKFDGyGDaJlEl6o4zbTNQvXPGi9tZ8NubyCZi3POJt6OpIwttUcSntGroSMg+l1NAyXH0t4MZqaCPqnj9SbsXzaKwZCmhdc/RtqubnjaIFavFit6Zhq+gj6ZoZdvTi8Z/rqQVyUjFqiQSiUQikUgmg5quFjsSzc3NaJpGT09P4PW+vr4yN1MyOdy7825u2vqnUdu5iAqphmWwd5cThnfS6U3YWAz1G5i2xVMPD1LI28TrHEH00kavb+SB/fnyjU6Q3XuGMQyb9hlhLrqslWNOrB9x/Gg34KbvtbSRdt9roI+hInpm2u5yUf0zmXfy80JqyDfO63O5pO4oLvrun1Bsm/s/+lbSLQ2ueKyGv1rsWAlUi5WtSCaM/5iXHsdQoNdo9ePtr/KLopB9x6UAHH/POmYlZtEadXKQ9eJDBtM2vD6X/nXFfovFj7Nl1WKluJRIJBKJRDK1TFtxGQ6HWblyJY888oj7mmVZPProoxx//PGHbmKHMQO5AdKF9Ig9GcHX59I02bM7TSSqMm9BlEgchodM8oU8G3fu4KX6OznmjOKNtk+vdk+iuNy50xFz7Z1ht7jKiHNnFHFpjcG5LF5WFp5zGQ85+W19xf6XMT3mczht95ie8JvbaHx5B+nTT2f9G08BRu9ZOSFxKQXlpFMuLr3PrZpzKUS+eE1RFPLvvAyAGTffxevnnut+/kJEmrblOuxqBecyXAyL7TmQ59of7WHHVidXXDqXEolEIpFIppqaDotNpVLs3LnT/Xv37t1s3LiRtrY22tvbufLKK/nsZz/LypUrWbVqFb/61a/IZrO87W1vO4SzPnwR4my0G1OxPDlkkjcKzD/KaaXQ0qbRtR96e3Js6x6goKWYvTILdzinYSSqkstaHNifO6h5bt2c5pnHBkkOmWxNO+G27TPCGGNoHD+6c1nsL6io5MxcRedS/G77wmLjeox+oC/rhALHQ3VuGKtpm5i2Sesr+5j9o19gx2L0fv0bkH+yuK+xOZfaRJ1LGRY7YYJCMbjMHxZbKWwavAcR4jVd0bHmzCX/2jMIP/wgoUcfpvDaMwDQVC8s1r8tVQ1+7qJF5kCvwUCvQUOzzvxFseC5LftcSiQSiUQimQJqWlyuX7+e9773ve7fX/7ylwH4+Mc/zlVXXcUFF1xAX18fP/jBD+ju7mbFihX87Gc/C/S4lEwe4ubUZuSwWDFuoL+AhcGsecX2B2067IftryRJZ0zqOzSidQptHSF6DhRYfmwdLzw9fFDOpXBrBAN1GWL1KokGDdMeg3PpuwG3K9yAi/BVXdUxLMN3LPziQfFty1nuOZdFcanHg7mZuRwXfPVa1EKB5Oe/CAsWw+Yn3X2NhDIB5zKwvnQxJ4XS4xjWwu7v1ZzLUtdZ5Nfm3nkZ4YcfJHLD/3nisviQwTkHFfc1tSQARdeLi4un5kCfUz3Wf93a0rmUSCQSiUQyBdS0uDzllFPYvHnziGOuuOIKrrjiildpRkc2hj0251LcxA70FdAVg9nzHCtlxpwQrIeNLwxhK1Eamx2BNndBjJ4DBeYcFWXPzhw9XXnSKZN4nYZt2zxy7wAzZodZtGz01gmD/c6N9LJj6phzVJStDxSYuyCKgjKmsNjR8tJMXyGVvJ2vGBar+EVjcRsx3SlQNJgbBDyxKcYt+Z9f0fHyHpInryHz9x9D8wnb0RxJIS6UcUW5S0E5GfiPeakDrCmVw2KVCmGx4jXxICH3preQ+Nw/Ebn5JpJf+xbE4+4ywzICorT0oYLiE5YAg33iuvVetEbJm5ZIJBKJRCKZCNM251Ly6mLZliukRivo4zqXvQaWUnCdy9ZOnVBYIVcwsDFpaAph2gZnnNvMKWc2sWpNAx0zHLdH5Int2p7lr3/p4dY/dI9pnumks++2zjBnvL6FCy5r5uhjGlAVdWw5l6OJS8sM3NBXLOhDJXEZD2wzHvKcy/qnnmXxL39PLh5h97e/AZoWqBDrFymVaIg0ENNjdMQ7R31/AlktdvIpdy6rhMVS7lwKV1JUhLXrG8i98ULU5DCRO251xyqKUqwWa7nruesWxWfpeTvY77QdkTmXEolEIpFIphopLiVjwi/MRs/XcnryDA0ahOtst4clqk3nrDC2YmIpBo3NOqZl0tIW5o0XtxOJqCw7xnH0/vSb/WzdnGbDs04T+L7uAunU6DmTYoyoQmthENbD6Ko+aiEiKBWXjnA0LZNtg1vJm3lM23Rv8v3jK+XU2b5AxHixnYQgrtehKgrhVJaV//JlFMvink+8A3PuPHcbYh+jtSKJaBHeuewyVrYdM+r7EwSrxUomykjVYqu1IqlUWVh1P2vvQULukncBEL3h/7xtKrqbo6soCoqi0BhtIqpHmVE3AwiGv+ohBdO0SQ6boxarkkgkEolEIjlYpLiUjAm/uBwtX8uyLTJpp2F7YxsBITZjdhQbC0sxaWgsF3zHndTAuW9uo5C3+f0v97H+mWF32e7t2VHn6ReXpuXchIfVMJqiTbha7O7kLh7a/QCb+zdh2ZYj/PCK9kBlwWDZdplzKYiH4iiKytn//Sdie/az65xTefG8kwJtJUrdrMlE5llOPqUOcKAViVKekwve5yDcTH9+bX7tOVjtHYTuuwd1397iuiqmZWLZlnt+JEIJLln2LhY3LQXAtuHdH57FuW9uY+nRzsOawb5C4Lody4MWiUQikUgkkvEixaVkTFi+m9GxhMUmh5zxja1K4PX2zjBaxKKhRSEUVjEq3OS+9pxmXrO2iWzGIpU0EabPru2ZUefpisuESt5yCgOFtQi6qgfCVEeae+nvedPZTs7IYtpmoHF9JefSLzxLcy7BEQhRLUr7zXdwzB2Pk21r4cl/+TtQlEB+petqjeJcTgTZ53JyGLnPpS/n0h8KWyEsNh6qQ1d1GsON3gZ0nexll6NYFtH/+43zUtGBFw85Ks3FwmLpyjpee04zTS3OHAb6jcC57ReafT15LEvmYEokEolEIjl4pLiUjIlAWOyoAs0JwwNItPjFpYmuK5x9QTNnnOfcRJtV3MRzLmylpd1xflaf6owdk3OZ9JzLvOm0NAlroUAxlErkzBzJQjJQ6ERUixXvt2AVsG07EKZqjehcenmquqq71UNjegx968vM/9cvYSsKz371n8k0Os6mf9tizvoorUgmgsy5nHxKj2MwLLZKK5Li72EtzDuWXsopM08NbCN7+XsAiP72WrAs95zIm/kyMev+7TuHG1ucOQz0FSo+ONnw3DA/+PIOnn/SixCQSCQSiUQimShSXErGhN9hHC3n0sYmOeyIuPpmf4VKZ71InY0edX6vFp4XDqu860OzWHt+C+e9pY1QWGHPziyWZdOd7uaJfY9XFLn+sNi86VSODalhtyhONXH5h82/409bfo9hFcrmK35mDUfcBpxLhHPp4V9m4zmbwr1sMMM0fPC9aKk0j77vfLpPXoVZ3IdaISxWmwJx6Uc6lxNnJAfYHxZbra+oX2iGtXCZQDUXLiZ/2uloO3cQevD+4PlR4mi7/VV9OZdNzc55P9hnVBSXzz3h9IHdt9t7cJM1smSM0aMEJBKJRCKRSEqR4lIyKr3dea754U669jpOYKWo2KEBgxuv209fj+OQpIrOZV1TMCxW/BQiz7Sq5361d4Y5+42thMMqs+dHyedsnntiiM39G9nU9yLdmW52b89y+5+62bYljWXZAXEphJ+maujFG/FKvS4t23JFbs7MBl531hHLnPfvv8G3RmhFYvtyLlVFJaI5VXNf873foG/cQPK1p/LYFec7+7e8FieC0iqgk4l0KyeHgKAcybkMtCzxh9KO/hWcvdzp9Ru97lcVzw93HyWh2gBNwrnsL3EuschmTLZuTgPO9Sv4/Zbr+f3m60edl0QikUgkEkkpUlweZhiGzR03dvOHX+/jntt6JyWX6vEHBujan2b9c8mylgaCh/7Wx/NPDvPwPX3Ytk1yyEBRIJood0sMy3AFm1/sjZQTecIpDQD85foDPPZQj7OuZXDHjd08/sAAv/6fPdx1Uw/plJOjGYmqbl6ZiloWFpvMD7v7GswNuPsRbqd/vmI7IsxWUzRXFIw1LFZVVKJ6lOV/fYqFN96F2dHJru99B1tTi++7XFwKEavKsNiapVKurcCfc1mpVQ1QljdZidxFb8FqbCJy2y3UDaWqruvm+uIPiy3mXPYZZcWqtryYQjzbGRzwF+xy1vdfFxKJRCKRSCRjQYrLac6zT/Tz8+/vYnjQYCDbz7W3PMSj9/ez/pkkD9zVx/aXJxbeNtBf4Eff2MFzTwzxwjPDWJikkyZbN6V5/KE+UknvZtQ0bbdlyOb1KbI5g1zOpi6hYSm+cb4QWFEkxyje3Vq2xZ9f/iMP7L6v4nyOW9PA+/5hNrG4yobnh+jvyTM0mGf3jiyxuHMav/JSmnTKIh7XUFUlIPy8sFiT7nQ3f3rpDzy4+34A+rK97n4KxSJAYk7+n9miq6mpmheCOEJBH8u2fGGzCh0v7eG8b1+PraoM//jn0NHpjhPHpmLO5VQ4lwEhJMXlRBkpLFbXKrciqfZ7VWIxcu+4BCWfZ9HtD1df1z0nPXEZjWpE4yqD/QWyWf+1aLHx+aT7t9+5FPRkxtZbViKRSCQSiUQgxeU0p3t/jh1bMzzw1z7uffFJbn/uEQrRfk481XH6xlIEpxJb1qfo2pvnz7/tIpOyqC8W5tm0PsX9d/byyL0D7thXtqRJFQvpJIdMtr/suCuJeo1CBSfQjxBVWSNLMp9kX3Jv1TktWBLnvLe0Yysm654eZvMmpwjJqjUNRGMq3V15TMMmntAC+1MUz7k0bYP96X0A7BjaDkBfts/dhxC9/vVLq8ZqvlYklZ1L4SB5Tqza28sp/9+XCOUK7P/sP1E4/Ux3nL9voV8wiMqxU5FzKd3KyWGkfNWwGvbGVRWXY/scMpe/D4CFN/3NjUsvdbRVn5ueLqTdhyZzj4pSyNv89md73FzoXM7gpY1pwhGVRINGatjEMIJRDt1pKS4lEolEIpGMDykupzmvPaeNSETlmUeHuOP2Xdg2vOa8GCecXBSXOyYmLvfvyQX+PvXsBmbMDhMOK9iKzZa9O3hlcBsALxR7Uc6e7+QUblrvOCKJej1QIKdSCxMRDiocw4JVIF1IV53X8SfX0zpDY2jQ5P67nPDY5cfW0doeckP84nVBcamius3pDcugrqTnZL9PXBb88y2GF1olVWNVRQv07nSoHharmzYNH3ov0b37Sb71reif+oI7L+e4ODmXpSJSuJiqOvmX6UjhnJJxUKU4DwQdZ6XC+VFpnWqYxxxL4fgTaNy2i1kbtgPlDx38BX0e2nM/t2+7FcMyeNvlM1ixqo6hwQIvbXQe/OzYmsIo2KxYVUdLm+OwDg8Gi/50S+dSIpFIJBLJOJHicppTl9B5zVlNmKZNMptm3oIoS48LM2NOBFVznMvR+lJWQojLBUtizJwTYe6iECe9tonXXdSGjcW6wSd5eM+D2LbNlhdTaJrCWy7rACCTcfItO2eHKYzSwkTkQPpzHYfyg1XnpSgKJ62tJxZ3msnH6lTmLYzR2uG5RPG6YD6kqihuOw/DMgKOj23bY3YuBU7OZVFcUh4W6xeXlm1x1g//RPiRhygcexyZ7/3YFSSaW2SoWt/CYkEfZfLDYqlSvVQyPkYS5qqiugLwoMJii2SveD8Ax97ySHHdyq1IbNsmW+zJalgG8TqNN1/WCapF9748tm2zdYsjMo9dXU9Do3N+DQ0YgQJbA7n+QOSBRCKRSCQSyWhIcXkYcNrZzcxbGGXuMpVVa+opWDlCIZWZsyOkUyb9veO7QTRNm659eWJxlfd+bDZ//+l5oBb7NeoKiQaN4WSOgmEyPFwgk7Jo6wzRMTPCmtMa6ZgV4szzWmhpCwecy0ptR4S49Oc6Duaqi0uAaAxOPauJtk6d085qRtMU2jrC2NiYFDznEq9Sqz8s1l/YpCfTExCUfrxqsSXiUi13LoOtJoqOJHD0Xx7guBsfwGprY+hXv4V4vGycZduYdgXncgqrxfqRzuXEqeZICsRnV80pHku1WEHu4ndQqIuz/J5niA6mKjyMKA/HFu57LK7ROStELmfTcyDPnt0Z6hIaC5bEaWjyiUvfNWrbNr3ZnjHPTyKRSCQSiUSKy8OAWFzjin/o5OgT4iiK4haemXOU01dxvHmXvQec3MUZsyOuaPJXdW1u0512I0mTrn3Otts6Hefwoks6OO2cJpqanL9FmGm1KrDiZtYv8IS4TBfSvNS/pcx5NW2TuoTOO67s5IxzWwBo7QjRFX2BzQ23osWdbbnVYhXVbQthWKb7OsDO4e1Vj0NptViB41wGxwRERvGymvHwM5z13esxdY2hn1+LNWduYDtinHAuS/sWdsQ7iWgRGiNNVec4UVR56U8Ko5m+Yc25DvxCUFEU97oaj3NpJ+rZ++bz0AsGx972WFnOpd+5FNeV/9qZszACwLOPD2HZFitPSKBpCg1NzrUxVBIWC9Cf7R/z/CQSiUQikUjkHeZhQsbw8hSzhhCXTg7krnGKSxESO2N2xH3N8IW3NrWqoFgkhwy6u5xqtO2dXliqCPEMqaFRxaV43Z/rOJQfAGB9zws8uvdh9ib3BNYRc7Fsi73JPTy4+36a2jVy2hC2YqHEssXlXhsQfysSy3fDLYr6NIQbAvsoDW0NLtN8N/Ll70tRFNpf3s3az38f1bS453PvpXDqa8vGCTFZcAsFBcXCspblXLr83dSF6srWnUxkWOzEGS13VTzUqNY2ZDziEmDPuy4G4LibHkIrOfX8OZduSLfPpZ8z37mec1mbSFTh9Nc7D2b8zqV/PIBRoS+sRCKRSCQSSTWkuDxMyBhey5Fc0bmcdZTO1sTfeHjjunH1u6wsLr1wueY2HRub5LDJgQPO2PYZnri0sZ18M1Vzc7iqiUsv57LcucyaznsaLMnB9HIhTV7q38Irg9tQ6oawcPYVjZeGrKpu3qJhBZvJJ/NO8aHOuhmBfQgxWklcaorqC4v1BKwgtHcfb/uXnxBKZ3n4Axfy0vmnVnzvoaLwEE7zVPSzrIZfT8qw2ImjjJK7Kj7j0mMszpfxisvc4kXsOHEpjV19zHr42YrbDJyzvgcpze0akagzj9ec1ejmWnrisoBVvF5tbAb6CmTzlUPGJRKJRCKRSCohxeVhQjrgXDqCz46lqJuZZn9mDzu2jr3f5b7d5eLS8uViNbbq2BSdywPBsFhwQvEUFHRVx7RNbNuuKi4BTMsM5FymCikMy3AdvaH8UGC8cFOcFh5FZ0U3iSWcG+lITMzZXy1Wc9ctnYuu6rRG2wKvCRexsnNZ3opEoAwO0Paed1PfM8jmN53JY1ecW1VAqIpKWAv7Wpy8iuJSCspJYTTnMlR8SFFafGei4lJTNJ572xkALLrh1opzsfFyLcVPZ4DNSa9t4uTTG5k5z+vBKcTl4IB3bWx/KcODd/fzm5/s5KG7+yZUFEwikUgkEsmRhxSXhwmZQrlzadomc+dHsRWL558cqrZqgHzOYucrWaIxlbbOMC/1b+HJ/Y8HwuOaWzVsxSY5ZNJ9II+iQGu7d7Nq2RaKorhuocgprIZpm261WOH+DOUHyRdDZZM+cSnae4jfhTNqWAZ1Tc66kbg3FkrDYsvn0hprQ9eCRXNGci51VfecS1/RINJpGi+/hNDGF9m+ZjkPfPoKKOldWUpE8wR8ac7lVDKa4yYZGwFxWeEwirDY0oViPWWc4lJXdbaeupKhzmY6H30G7eWXfBv1ci69fGFPFFq2RXNriM5ZkUCRqkS9hqrCYJ/h5CRjs+Nl5wFTLm9w9y29PHb/wLjmKZFIJBKJ5MhkXHc2+XyeH/3oR2zatGmq5iOZIP6cy5zp3BhalllsSWLz4vNJ8vnqAk+wdXMa07BZvCKOpils7N3Axt4XSRVS7phI3KkaOzxkMDyUp6UthK57p5KFVQyL9ec5lleKFRiW4TqXjeFGAIbzw65zOZwfdsf6WyU4zqVV3EaBo0+IcfRxCVpnOCJNuDaqLyzWrDCXtlhbWbsPv7i0S/LQHEGgBOajFAo0Xnk5oSceo3DCav5y9ZUUiodkJHEZ1WPu79o4hcbBIPtcTg4BkV7RuSzmXJZ81YpzYrzHXlM1bE3j+Tc7ObzRa37qbZPysFj/gxGrRGi666kKM+ZESCVNHn+on/6eAplBjaYWnfPe3oweUrjzph52bR979INEIpFIJJIjk3HdzYbDYX784x8zNDQ2F0zy6uHPuTQsA8Ny2gqEQiqdc8Lkczb7i+GuI7F5vSMilx2TALxqrmmfuLSwmHNUFMtyBJw/JBa8sFgR5lkpFNWPaRtuaGh9sbBO3syTLwrOVCHlru93UE3bcudnWCaJJoVFy+Kum+ivFquW9JT00xptK2v3oRXFpoUVELTOMl9BH2wU02LN579F+N6/YSxfweD1f6QQj7pzG0lARLWo+/urmnMpBeWkEDiOFazLqO58vqJqrMALix2nuCyeIy9ccCpmOET0+t9CMlncfXlBH39YrL9YT+k18ObLOtFDCvf/tZt1Tw2j2TrzFsZo6dA489wWsGHXK+MrDCaRSCQSieTIY9xWyapVq9iwYcNUzEVyEAjnUtzMZs2sK27qG52Pub9v5H6XlmWz5cUUqgqLlzuxpWIbfufStAxWHp+gpVXHxqRjZrBSLIhQVM0dP9acy0TYEbU5M+c2cLdsyxW3wT58lutCFqyCWxzILnFtVEWp6OpAsbJrvMN1WQVi7rZtYRHMN9MUr8+lbRqc+53fMfuvD2HOP4rBG/6M3dyCqqieqzmic+mJy1c153IUx00yNkY7jke3HsMZc9Yyo25mxfXGm3MpHPZMU4L9bzgHdXiI6O9+G9i/35n3i0t/ZePSKsczZkW46J0d2NgMD5lE9Aiz50YxLYOmVmef6WT16AOJRCKRSCQSgHF3Z//MZz7Dpz/9aUKhEGvXrqW1tbUsZysWi1VZWzJVCOeyOdLMPmMfWcMTl/GESg7o7xlZXO7dmSOdNFmwJEYsLoRhebVX0zZRVYU1pzfSvrCRk05vcpfZvuqpmuLlOY6EaVtuzmUiVA9A1sgE2pMM54dJhOsxLb9zafpyLgvu+zWtoLhUUNBUX0/JooNzfMcJdMQ7qQvVue1bwLnxH6kVietcWhbLvvgNZt/2GNn2FlK/vwlrxkz3/QuxO2JYbMC5PDQp0DLncuKMFl4c1aMsaFxY9rp42DHefqP+vNzd73kHs/9yJ/H//SHZ93/QPX/8bYP8dXiCIbLlD3uOP7mB2NzZ/HldAwvbZpEJdVGwDOJ1zj7TKSkuJRKJRCKRjMy4xeUll1wCwJe//GW+8pWvVByzcePGg5uVZNxkjAwhNUQiXA+pfeSMLFZRZMXqoR/o7x1ZXIqcqgVL4+5rlW5Cxc1rJKJx6jlNNMT1svGBIjq2UfEmWlVULNvCsI0y59LvlIIjLmcSdC5Ny3T/zppeyK94TYhIRVHd/ds+sdgYaXIdJd13066ijtznUlVRbTjvW9cz+/bHSbY28MTPvsGxRy1wx4w1pzHicy5LQ3OnEulWThITLIw08Wqx3jmSWrmC/OlnEn7oAcJ33EbhDW8AguLSf+5WC5H1E6tTmDknyozGOl4ZdLYlxaVEIpFIJJKxMu672a9+9avS6agxDMvJWWwIN7hOWM4MOpcwurjcs9Nx72bP8wSPWaEQj1ESmurHu4FVXLFkWgZUEE5hLew4rMX566pOVHNcb38RH4DhwlBxW0H3RdxIZ305p6XFTETPTfF+KvWm9IfFOq1GhLgsb6OiWbD66h8w//bHyXa0csO3PkLHUfMCY/zXyMgFfbxjPd7KoQeDDIudHCZaGEmZoLgsfQiS+ejHCT/0APEf/RfpN74RKAkdp3IRn9I84tIx4WIVY9M2iCekuJRIJBKJRDI2xi0uL7744qmYh+QgEPmWsVDcdcL8Tl60TkFRxyIunXVmzfX3tyx3OCzfjWnp8oCgU7xqseIm2t/XMaJF3PDdglUgokWI6s6+U4WkOyZn5lyxadp+V8YrziPar4jXnZ+eiFQUTyy6hX58bqq/WmxpWKxfQCumxYJ/+SKtN/+N4bZGnvrZt+ivH6KzRFj4RcNIRVv8YbH6oSroIx8WTZhgK5JxiMsJtiLx5+Wqikr+dedhLFlK6InHCD/zDMRGcCtHCYt1XneunZCv0rNwLlMy51IikUgkEskoTNgqefnll/nzn//Mj3/8Y7q7uwHYsWMHyWLlQsmrRzLvHPO6UB3RouOQNTKug2Fj0tQcYnjQ5I4bu/nBV7aTzQZvFNMpk/6eAi3tobJ8y1IMu3LYnf9vBcV1WfzVYkVrBoBIUVjlzRyWbRHWwq5jItqpNEebnfkVHAFtlOZcirBYX86k+759IlLclPvDXP35a3qJc+mKS7yKtFre4MIv/YrWP91EurONG753Fcn5s5z3W6Ir/OJyxGqx+iHKuZSCclKYqAM84bBY33mqKRqoKpmPfByAuh//NxC8RqjSfsQuKVIlEK19dFVHV3UMyyAcVgmFFelcSiQSiUQiGZVx382mUik++clPctFFF/GFL3yB73//+xw4cACA73znO/zwhz+c9ElKRiZZcFy9RCjhCracmXMdRqd5unNT+tgDA/R1F9i7M9iWZO8YQ2IhKDrLxCXlOZeW5Qm0oLh0hGS6GNIaUsOE1WDLhpgerFobyLn0CcWsWS4u/S6quIn3C1K/a1TqCInxIkczlM7ytn/5X5bd/xz5eXN55GdfZ2B2uytgS4VF0LkcqaCPV/zqUOVcyrDYiTPR4zjxnEvvPBVFqrLvvAyrrY3ILX+hYV9vYHy1arHVnUsvT1lTNC+0vk4jk7awrMqidCJYtsVdW+9i68DLk7ZNiUQikUgkh5Zxi8v//M//5Nlnn+WXv/wlzzzzjFsdFGDt2rU8+OCDkzpByegMF53L+nA9Ud0RK/5qsTY2za1FUVf8uHq68oFt7NnliM3Z87yQ2KricgTnEjcUVfHCYv3Opa/fX8TnsgKEtRCKogR6AgqxbFUQl4avmmzOX9DHCvb4UxW/c+mF0vrDYhXF68sZcC5ti0jfAJd86r+Z/8wWDiyazY4//J7M3NmB918aEhkMl6zBnEspLicFZcIFfYqtSMb5Fex/AOGeL9EomSs/jGJZrP7j/YHx1UJhRxOXKqrrXIIjLrEhk67eUmi8DOeH2D6wnW0DWydtmxKJRCKRSA4t476bveuuu/j0pz/Na17zGjQtmCM2a9Ys9uzZM2mTk4yNZDE/MRGqJ6w5ItLfmsOyLZrbQoF1ukvE5c6tjsCbNQbn0gg4l8ExwfYfxbBYyx8W690cR3QhLrPFZY6oFKITIKYLcems73dNRe4mEHjIIdxTvwtTqfprqWsk5qvi5Whqu3byto99gxlbdrFr1SJ+972rsGfMcMNKrTE4lyOJN1VRXTHtz/uUTA8OpXPpF6aZKz+MHY1yzK2PEhlOu68Hr4vKIbJ+3BBwVfOqPU9RxVj3mq7yPSORSCQSiWT6MW5xmcvlaGpqqrgslUqVCU7J1JPMO5VU68IJVEXkOZpu/pQTFuuIS2GudO/3hNmm9Um2bk5T36gxc44n7EorwQqCrQ6CYXJ+t1CIJdMyfIVCPFdS5FeKgkRCZIV94jKsRVAUpWJYrL8Pph/Lqh4Wa9kWthu6GxQD4mZaLbYumbFxB0vfcTlNuw/w0unH8sdvfpR8Iub1uWRs4nI0ASGK+ryaOZdBx+1V2+1hx0QL+ojPerzH3u+w+3OG7bY2spdeTjib54QbveiRSgV93HD1Cte3uOY1RQsU5HIrxk5iUR+vqrMUlxKJRCKRHC6M+2722GOP5aabbqq47M477+SEE0446ElJxkcyn0RVVOr0uoDbYPvE5ay5UVQNTjilAVXznMt0yuSWG5yc2Tdd0kko5J0S1dsVjF4tVvG1/3DCYp2bXH/IqxBVGTfn0hHAEd+YkBZCRXXn4he2fufST2nOpRAAIoesmnMpxLCiqMy+6wEu+cf/ItzdwwtvPp2bv3glZtiZn6pWEJdlYbHjEJfFUGZ/m4mpRobFTg4Tbcskzo+JhEKL60orqS6c/vgnsTSVE/94H6GMEyZeKRTWX9yqFHHtqIoS6FM7Nc6lXXUeEolEIpFIpifjvrP55Cc/yV133cX73/9+fv/736MoCvfffz+f+cxnuOOOO7jqqqumYp6SKhiWQcbIUBeqQ1GUgFvoF2KNLRqf+rcFXPCODlrbw6SGTdIpk9v/1E1yyOT4kxtYurIOcG72cmbOdT7L9unPuaRUXDo3jIqvz6VheYJOCEhVUd3fM27OpQiL9UJzw2oYTdVcB2YsLofYV6lDqSrqKGGxOtg2x19zE8d/5ktohsGO//dP3P2pSwiFvcI7mqK5jpPYx4hhsaMIEBEGfMj6XErrcsKMNbe2bL0J5lwCgdxgP9b8o9jy+pOIDaVZdfMjwPidS//DIfGww7Smptel51xOXpEgiUQikUgkh5Zx39msWbOGX/7yl+Tzeb70pS9h2zb/9V//xa5du7jmmmtYtWrVVMxTUoXhnFMptj5cD1DiFgabptc36ui6QnunI+Ie/GsfLzw9TEOTzvlvbXPHPrD7Pm586Q8UrKAzKG5KR6wW6xNuQuj6i+gIQamrujtX4UCKkNlQwLkMoyqVnctqVKoWK3464rIogEtuziN5iwu+ci0n/uQPGPEYf/7yh9n7vndjYQeq3FYMi1VGCIsd5TKLCefyVcy5lG7l5DBRXT7RnEvwrsNKYvbpy88HYM0N96DljUDOpT0GcenmXAbCYk3idc6+piIsVuZcSiQSiURy+DChu9nVq1fz29/+lmw2y+DgIA0NDcRisdFXlEw6w3nRhqTefU1XdUzLDFZ19TmMbUVx+eh9AwC8+dIOt7els80h8maetOEVBhHbNSwjcDNYeoMaqNDqC9EtrRbr3LwGw/pEMaKoL+cyohbFZYWcy2pYI4jLglWoWC1W3f4Kb/zwv9OyZTvJmW1s+J9v8UrTIO3FYyic1oJVQFVUV0xWy7n0i83RBMSipiXkzByddTNGfW+ThQyLnRz8x248LuTBiEs351IpD6MeWDCbLWesYumD61h5x+PYH3udu8wLix3JufSu35AoDmYbxOuc63YynUvh+lcLv5dIJBKJRDL9GPedzaOPPkom44QxRqNROjs7pbA8hAzlvGI+gtLcQgjeSLbP8JzBs9/YwuIVdYFtipu9ghksmCPcu2BBn+CNoe1z8sTNr+Er6KMrOnPq5zC3YX6gITxAXch5D/6CPiEtHMgRqxaqG5h/SbidUuJcenllzuvhu26n+dy1tGzZzs7jF3PnL75CetmSwHv19+0MOpdFZ6jUufQLtlHsrfZ4O2vnnh2okjvVBMJipbicOBO0LoUQnZC4dM/D8nVVReXxy88D4KTr/4ZteNeweMDkOZflos7yOZf+EHuRc5maioI+jH5NSyQSiUQimR6M27n8wAc+gKZprFixgjVr1rB69WpWr15Nc3PzVMxPMgoiLDYR8sSlrurkCrmSliHeDdxRi2M0Nuscu7qeM89rKdumEF95X+9I8MJWR+qX5zqX+HK2fCG6qqJyzrxzAejNeA3fFUWhLdYOBAv6hNUScTmWsNjSarHFG3mxHbEN1bKJf+0/qPvutwDY/P63c+sVr2VmY4t70y96aaqKxsKmRWSNLIqijK9a7ATy6l5NZM7lxJlotdhFzUswbIP2WMe491kt51LM58Cyubxy0nIWPLmJllvvgPcuA/zOpRr424//OhVh6wWrMKU5l9WqUkskEolEIpl+jFtcPvLIIzz11FM8/fTTPPHEE/z617/GsiwWLlzI6tWrWbNmDW9+85unYq6SCtRH6gmpIdrj3k2qcCb8OZN+l6K+QedT/76g6jbFTV+uKC7DWpi8mXfD5CqNLf1bURRfWKy/Qqt3A+53XpojLe68w26BG8WpFitEoW2OKefSKxRSHhYLzs1yonuAtn99J5GHHsCqb2D4v37MpuOasAdeCrQu8TuXqztPcvcxelisv1ps7Yk36VZODhMNL+6Md9IZ75zQPluirQzk+onrdWXLxHn5+OXnsuDJTcz+0S9IXf5x0DQs2ypry1OKd80Encu6KRSXMixWIpFIJJLDh3GLy+bmZs4991zOPddxn9LpNI899hjXXHMNN9xwA7///e+luHwVOabjGGao8/EXXBQ5VTmf8ziecv/CuRR9JGfWzaI328PMupl0pfYHxo7UikT39cnzQlG9PDF/nz6/OBbi0l9ZFijmkY4959KrFivEpbO/+fc/zTnfuJbIUBrj6GMY+sWvMRcuRtv3mDN3VNdtNEpCaAVCSLjVYstakdR2NVb/lKTQnDiHol/oyTNPYXXnmsD1IxDn7Z5Vi9h13GLmPv8yxp//SO7tl7jiUjz4qBSO6g8Z91d7jtUXw2KHJzPn0q46D4lEIpFIJNOTCRX0SaVSPPvss66DuW7dOiKRCGeddRarV6+e7DlKRkFRlEBVSHFT6O8DOR5xWepcNkebWTv3bAay/Tx34NmSsXbFdZ2w2KLz4etz6Rdpmq86anu83f09WiIuxU20U3XWdN9jNRezWrXYcDbPud+6nlW3PgpA+u8+SuoLV0M0WpyP53B6gtYIbEMwmnNZ62GxtS5+pwuHqjBSJWEJvs9SUXjk/W/k0k/9F/Fv/Se5t1yMbdtOuKsbZl7eAsTLufQV5LINNE2hqVVnoM8gmzGJxg6+J6t0LiUSiUQiOfwYt7i8+OKL2bx5M62traxZs4Y3vOENfP7zn2fZsmXyJrVGELmOwcI7Y+8lV5pzqSjVi4+Uug5etdiSgj4lLqIzT5+4jHniUvS5FD/9OWIijzSkhsYlLvWnnuCij36Bxh17STXXc+fnruCMK78eWE/MxxGXijt3KCnQA+U5lyO1InkV+1eOGXmtTgq1VhjJP4fdxy+m/9STaH70SSJ/+B32cbbjyY8x59IfFgswe16Ugd4ke3flWLg0ftBzLc3drsnrRCKRSCQSybgY9//mmzdvRtd1jj/+eE444QROPPFEKSxrDLVCi4KxOpe2bbsuaL5YLXakAiKlxTj8YktUjDUswx1XTVzWhxvc36N6lNWdJ3FCx4mBdUzbC4sN+4r+lCKcEBsbPZun/ov/StNF59G4Yy/bTjmaX/38n9n9mmPL1tMC4lIUM8kXl5Uc03E4l7V4bchWJJNDrTnApb0vd1z1YQDqvv11KBRKci4rVYv1icuSh1Sz5zkPe/bsyAbWeal/C3uGd497rnaJuJRIJBKJRDL9Gbdz+dRTT7khsXfddRff/va3CYVCnHjiiaxZs4aTTjqJ448/fgqmKhkrulr+sY41r8mf05i3HOfS7adX4eZ5pGqx4Igyf1sUf28+VVE5c85ZxPTyVjYr247xjRMFfbxqsaJyrfN7yM0PVRTFnUPns5tY+7VfEt/TjdXQyJP/eAUPnrUEFIVwhfcinBrR0xI8ga2UPIcR729s4rL2HJnAfGtAFE1Xak2kl85h8IRjyZ/zesL33M3yOx7jlbe+fkTn0vQX9CleAwUhLucXxeVOT1yalsmjex+mKdLE7Po545qrP5rCtE30iWVpSCQSiUQiqSHG/b95LBbjtNNO47TTTgOgUCjw6KOP8tOf/pRvf/vbKIrCxo0bJ32ikrGjKxXE5RjzmgLispiz6TqXFYzu0gI7dkmYqK7qZIyMO65UaB3VWL1qrSDY51I4l17l2rAWdsVlWA2jDQyS+MyneOuvfg5A7rw3kPzm99he2AjDO533UkHwCVGu+IqZiNDgaiF71cJilRrPuZRMDsGCPjUgLkvmYNs2qc/+P8L33M1rrr2LXRed4xX0GSEsVlO0QM40wMzZERQ1KC6N4jJx/Y2HkVoaSSQSiUQimZ5M6FFxX18fTz31lPtv8+bNWJbFkiVLZEGfGkCr5FyOcvP2Qvfz7E3t5fTZZ7qvCXGpqiPkXNoW3eluTNtgRt3MssI9uqJj27avX+T4hZY/jM+wDBRFcV0VcHIzU4UUmq1w9O2P8Zr/+T2xwRSZhjoe+MQ7OfGq74OioO7aXLZNPyL01SlG5Gw/V0Vcir+FS1o2Z2o8LLbGcgWnK7XmXJaepxYWxolryJ57Po1/vZPltz7E4BXOA53K4tKrFuu1EnIEZDii0jEjTNfePEMDBg1Nelnbn/Hgv3bGUgX6YEgVUjy1/wlWtR9Hc7S8t69EIpFIJJLJYdzi8vzzz2fnzp1omsaKFSs45ZRT+Id/+AdWr15NU1PTFExRMl70CpUkRwuL3T60nf5sH8lCsmyZEEqVRJJlWzy45z7yZp7Lll8eaEUCntAV4aUT6fkonEvRikRX9EB4bVSP0P7ybl7//T8ya/02ANKXv5ffXHIMueZ6Tizu0583WUlcNkea0VWd1liLewwLVURxabXY0vfl/7MWC5XUmiiargSuiRp4iFD2WRYf9gx9+rNE/3onJ/zyZh665DJg7AV9/IWzZs+P0rU3z56dWRqaEq4oHK847N6f5+ln+4kdbRenObXO5d7kHnYMbacx0ijFpUQikUgkU8i4xeWFF17o5lXGYuW5cpJDT6Ww2NHK/Yvwz4KvfYnA7+iVYtsWeTNP3sxj2VZZzqUIrXML41QoNjQaXs6liWmZ6KruCra6nkFe8/1bmP+Xu1Etm56l87nrkxdz1sVfIL35/whVCU+t9F6aoy1ctvxyVEUlVUgB5e1MBKXVYsvnXNthsbXopk5Hak2kl4XFFq/H3LHH8tIZq1jy4Drm33Az6y9YPmKfSycsVlx3PnE5L8ozjw6xZ0eWFasSbri9PUI1atu2uXfX3cysm83ylhUoisLNN3Tx9J4+jmnKkmhUprwdibhOxUMuiUQikUgkU8O4xeUnPvGJqZiHZBJRJ+BcCocub1UQlyNUi3Xagzg3n6ZlluUgijYibojthMJiPSFn2iZRNUo4k+fUX97OSb+7h1A2T6YhzjMfvpiX3nYevYV+p4gQwfYG6ijOpf/1kC/s1nk/I4vL0uU1HxZbY1VOpy01Fl5c2jLHH7b60AcuZNHDL7DwJ9cRPvP/VXQLLdvyKj27YbGe8Cst6uP2qvQ5l5Zlk06ZJOqd9bsz3ewe3s1Dz24h9mSUt7yrk53bstgRm4H+AonG8JgLjk0Uz2Gt3L5IIpFIJBLJ5DChnMtdu3bxs5/9jGeeeYaBgQGamppYvXo1H/zgB5k7d+5kz1EyTio5l+JGsi/bS3e6m6XNXvsY27Zd8Zev5FwWxWUlEWL4KsEatuE6GG7Opetcimqu4xeXmuKFqGp5g2NuuZ81v7qVaE8fRkhj+5WXccvFx1HXNtfZb8G5mbRtO3DDHxR8I8+jtOJuqfs4miAL9rk89KKjlFpz3KYrtSbSKxX0AefhUt9RM9h60Vks+cu9nPx/d2P+++vL1jct073eKoXFtneGCYUV9uzMYVm2W13W7+A/dv8Ad/2lh498eh4zZkfcCs9d+/K0J01u+OU+Z26KxdBAAQhjWlMrLsX8JlJ4SCKRSCQSydgZ953++vXrectb3sJdd93FMcccw1vf+laOOeYY7rrrLt761reyYcOGqZinZBxUbEVSvMl8ev+TPL7vUe7bdY+7TBStgcphseoIzmXet65pGa4DIW66NUXkXBadywmEiGqqhpY3aLvuej54xZc4/dvXEu3pY+PrVnPNrz/Pzs/+I7lEHF3V3RBecUPrn7Om+n4fJTzX3w+wdF3/+3PHjyA+a7IVSQ0IocOBWhPppXMQYbHi4dILH34nZiTMiX+8H33/foBAnrWNXfZgqC/by/MHniVZSKJpCjPnRMjnLHoPFAKOpQht3bYlDTbs2+18N4gxmbTz0yjY7r4G+x2xJ7439u/N8fgDAyOG2U4EUajIkOJSIpFIJJIpZdzO5de//nWOPvpofvrTnwZyLjOZDH/3d3/H17/+dX79619P6iQl40OrFBZbvLkczA8CsGt4Jy/2buDo1pVuPiRUDosN9mxUAjd+fifAcQuDOYqlQrfS3EYkn2f27/7CST/+GQ0HBgDYeeZq9nz873mkPQNARAsX9+Vtu1BBXAZyLscg+HRVryqKR9Nm06kViRSaE6f2WpEEzzUhLsX1n5vRzp73Xsq8n17L3B/8L7u/sYB7dt7NabNOZ3HzEizb8pxL37X7fPdzbOx7kbVzzmb2/Cg7t2XZszPLzJXBdiIaGt37nWsmlSyGy9smNjaZlCdE22eE6U7aDAwUxWVRmP7l+i727swxf1GMGbMjk3ZcPOdShsVKJBKJRDKVjPuu94UXXuBDH/pQWTGfWCzGBz7wAdatWzdpk5NMjIp9Los3VzE97r62u9jzMedzKwsVCl5oIwgl/3jDMn1hsaJC68jhpdVQBgeI/df3aDlpFcv/41s0HBhg/1mncu3/fpoHv/VZUkcvc8e2RFuZnZjNwsZFrmgU/feC7qM/53J0IeDPu6xW0Mf9W6nuZNaC6Cil1hy36UqtHccy59IOiktVUdn94feRaYgz48ZbsTY639cDuX7AEYL+6ySmO9/zc+rnkDfzPLbvEWbP8/IuA86lbZLLWgz2O9deOulVki3kbQwDOmaGecd7Z/DO982gsUUjn7fJZiws22Kgv8DenY7bOTQwuSJQzLPS95tEIpFIJJLJY9zOZSQSYWBgoOKywcFBIpHJe9osmRiVwmLFzZXluxnszzo3lP5QWH+IrMB/s6koCv7Wjn7n0rANr8BN8SZXLwk/Hc0xVHfuIPaT/yF63bWoKSdcr/ecM7ntkpOpO3ktBwa3MUfVA8V5QlqY180/D4CdRcFsFG8ilSp5lmN1LquOL209UhomO859vdrUouCdjtTaYSz9XC1XXDo/FVTshkYeu+I8zv6fPzP/2z+Ef3snWTOLbdvYth04X9+w4AIA6sMNXL/pOnJmzhWXO7ZmWGUpvn1Z9HV53yUpIS4tk3TRtWxuDXHMifUANLVoMAjDQwambbJpnReemxyeXHHp5oXLsFiJRCKRSKaUcYvLs846i29961vMmTOHNWvWuK8/9dRTfPvb3+bss8+e1AlKxk+pWwhezpXIi2qMNDKYGyRdSAdzLiuGxY5eZdXZti/nskpYbMX1LYvQQw8Q+9UvCN/6FxTLwo5EyLznSjIf+Qc2t8GBvQ8zy8wWtxkKOIP+/El/8Z/S/Y0/LNZzLqtVi/WWVxeXteBolVJrjtt0JVAwqgYeIpTOoTQsVlVUNFXl+becwWv+/Bht9z7E7LedSO7U2YE2JIL6cIP7u6ZoZM0sTS06nbPCdO3Ns+GFHDRR3IdJ935PvKWGPecyk3L239jsfR80turwCmxen+IPL+4lPOTNOzk8ua1JTFnQRyKRSCSSV4Vxi8vPfe5zfOxjH+OKK66gtbWV1tZW+vr66O3t5YQTTuCf//mfp2KeknHgD4tVFRXLtspaBrREWxnMDTKQ6w9UiK3UB85/szmSEDGs8mqxfqErWhy4f3d3E73+OqK/+SX6K9sAsFpbSV/5YTJXfhi7vd3ZxsDLgBe+G1JDATe1krg0RwmLVcYQnusXxqUFgMrE5TRzLqmxXMHpSq0J82oFfcRDH1VRURQVM6zz0sevZNX/+xpn/ugm7ly9pmpPV4Gu6tiGjWVbXPCODq75wW7uu7Ob/rY+OmdFMBebHPCLy1S5c9nU4j2waWx2rqm+ngI702maCt73UHJocp1L23UuZc6lRCKRSCRTyZjFZTab5f7772fPnj28613v4oorrmD79u10d3fT3t7Occcdx+mnnz6Vc5WMEX+OpChK4/V5c1oNNEdbeGVwG/3ZfvcGFKo5l2MTSqZt+sLvnJvcmXWzeJannXVRIZ8nfO/fiPz+eiK334JScG5GC6ecSua9V5K76C1Qks8rnFNRmVZX9aCg9OdSqsK5FOLSu9nWxujACkIjhMWWCrKRxGYtistaE0XTlcDDkho4puWtSKzAT1VR3etg9wVnMf83f2TWi1uYd8f9WB99Q3FM5aJbwsk3bIP5C2Mcf3I99z1r0tdrkBw2sS6y6N7nC4sd9kLxMxXEZXO7hqJALKZy5hlN9L0Qpa0zzHNPDLnrThZuzqV0LiUSiUQimVLGJC537drF+9//fvbs2eO+lkgk+O53v8sZZ5wxZZOTTAy/4xZSQ+TNfKCZuqZqNEeaAaeQhyjaASP3uYSRXS7TMgMOCUBbrI22SCvRxx9n+d+epvWhL6AWc3atpiYyl76b7BXvx1y2vOp2xbZE+G5IDbmiUVGUiqGvFcNilfEJPk0ZQVyOGhZb461IZFjspFBrfS5LC2aJSALb99DHdfcV2PjZj/Ka93+KU370B3rf8y/ONkZwLsG5tiJahAvf2UF8SSv/d59GMmkynCzQ3ZUHBSIRlVTSKfBl2ibptBCX3jUVq1O56B0zMS2DlXPqWPb6ufT3FnjuiaFJD4v19+E0LKNiXrpEIpFIJJKDZ0z/w37zm99EVVWuu+46jjnmGHbv3s0Xv/hFvvjFL/K3v/1tqucoGSf+UNSwFiZVSLmOommZhLQQTVFHXPZn+9Hi3viK4lIdm+Nn2AaIsFjDJHT/vYTvvI3Lbvkzkf1dANihELk3XEju7e8kd94by1zKiu/HdS7z7vsT7kppuKroR1mpz+V4C/oEq8WOLCbLxWZt51z6qQFNNG2peeeyQs6lOPdt26LnhJVsOvsElt/7LLn//j68bXEg8sGPcPLFtRUKqcxdGKH+eZ1k0mTPrjSD/QbNbSF0XaF7f558zsawjIphsZZtUd8QIpk03fnV1TvX82QX9BG55uCIYykuJRKJRCKZGsb0P+yzzz7L5z73OVavXg3AokWL+I//+A8uuOACDhw4QEdHx5ROUjI+/DmXIpRNOIqmbRJVotSF6ghrYQZzA9SH693x/tYCMLpjF1jW18/M++9lyV//ypInv4A2PAyArSjsOmEpu994Fkve/3nspuZxvZ/S3pghNeSKytL5lRb0UaoU/nk1C/rUZFhsjYmi6UqtOZej5VwqvrBY0zZRUHjg79/MoofX0/y/P6H+1M+hLp5VcdvCyTd8Qs2yLerrNfYB658dBOqYNTdCatikG6fXpWk5BX10HWJx71rwh+OL751wWCUcUUkOTa5zaeN3LgvA6A+1JBKJRCKRjJ8xicvu7m7mzp0beG3evHnYtk1PT09Ni8tPfOITPProo5x++ul897vfPdTTeVXwizHhNti25T69FzeXTZFmDqS76M32VN/WCK1EwjmDmS+8zLyntzDvmS10vrQbRbQ+iETInfcG8udfQO68N6K3t7JQUbEnILRKhV1I1b2CQVXmZ1RwLqu5mNXQ/Y4to4jLEQr61KJ4q8U5TUt84dm1QOl5Xd7nUnFdf9MyUVSF4c4WnrrsHE799Z2s/d+/8Ny3VlXctnD7/O08LNsk0eC8/tKmJHHqmDM/yu7tTmXnoQGD514cwDBs6hu1wHHyh6ravt8T9Rp9PQUKBYtQaHIezPj3JfMuJRKJRCKZOg772KDLL7+ct771rdx8882HeiqvGiL0zbItz7m0La/VQFE0NUUdcZnMJ0fclvt7134W3P80Dc9tYOaL25m5aSdawQtfy8zooOvkVTx/0nwWv/0TdLQtcJcdzIlWKiB1n3NZ6mqKG2chLpUqBX2qhf75CYbFjlzQZ6S+l6UhtbVAYEo1OL/pgvica0Wsl87Dn2sNXisSKDqXtjP+ictexwl3Ps2y+55l73ObYN65ZdsW14O/4qppmyTqg47mnPlR+nocAXfbH7t5ZqAPJQILlsTL56Z429k5tIOWWCuJBkdcpoZNmlomR1yaAXEpK8ZKJBKJRDJVjPme/0Mf+hCaVl5F8P3vf3/Z648++ujBz2ySOOWUU3j88ccP9TRedUSVWHFDaNqmKy6FABNFfcqwLBq6+mnfupdZO7pp6LoD/dmn0Xbv4nW+Ydn6OFtPXcnOE5eyY/VSZhy7loyZYcfQdpbEE5P2XkqFYEgNuVVhy3IuR+pzOc5QVX0EcTlauHDNh8XKgj6TQs2Jy5JpiNBT4QxqiuZeI5ZtYtlFpz8WYcMnrmT157/J8d/6OcaFHwOtNJ85eG0527Coa3BetxULVYMZcyJs3ZwG4MC+PFbc5IzXtwR6XIIXqgswkBtgXffzHNW4gLr6ZQAkh8xAjubB4M+5NCq0W5JIJBKJRDI5jElcfvzjH5/qeVTkySef5Oc//znr16+nu7ubH//4x5x99tmBMddddx0///nP6e7uZsWKFXzhC19g1arKYV1HEuIGMqSGgRLnUtHAtmlNWcx8cTuNe3po3ttN455emvd007p9H5F0LrA9W1EwVhzN1qWdbF86g71HH0Vh8SKGjZQ7ph1z1F55E6Esr1LV3TBVf0VX//sWoXv+cFZ/i4XSMNdKjNTnshQpLo9MlBoLiy0910RYrFmhoI/T/9YTXVvOPYmZvz2KWRu2MfybX5F93wcC2/IeVAWdS11TiMdV7LTFzNkRQiHVLcwDUN+slAlLZ26ec5kqON8jeTNHQhT1SU6ewyjDYiUSiUQieXWoaXGZTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0tkz4fVa2NG0iBmkpC92703kHsXAGlkIdCASWTYdnmZ7EG+5jPRlq7ttGWUelI/oh379hEQ3+KeN8Q7fk8KypsNx+LsG/lUXQvnEVy6SJWnnU55jHHYtc38MS2W+hOHwCgORRBMT1xaWGhKI57omvqpB0vXdMDjkxEc25ynf1ogf3omtM7z7QNFAU03zx0TXW3o5WsV4mwHqo6XlO1wJw0Tam6XFUn71hMFprvWKiqUnF+4rVam3stoanOcVSVysfwUM1HoCjFz0+xnetB1dzrycLCxnbHZ6ws93ziHVz+0e9Q95WrKbzpzdht7e62QlrIXU+8V7t4zScadOwei7kLYqiq4obKAnTM1lGUYg607xgJV1VRFfJWDkVxXqsv5nCmh83JO6aK9z5NjJr4rCRTj/wOk0wl8vySTCXT+fyq6ZzLtWvXsnbt2qrLr7nmGi699FLe/va3A3D11Vdz3333ceONN/LBD35wUuei6yqtrZMX6nnQZLOwdCX09dFYYfHrKrwGUCd+6eiAmTPZ2Ramf1YzyXkz6J/dwtCcdpIzWohHEqQLaVpjrZx29Pnu+o09cTJqFICmeB0FPe1tOxHCsBQSdpTWlnqaY5NzvGIFlcTeqPt3Z3szlm2R6IrSXJ8IfC79Sj2JwSixaIiEFqW50VuuZPIkupzttDQlRv08k1ojiX5nfFtLPa0Jb7wRSZHo9ubU2lJPqy8U2Iym3eXtrQ3Uhd0jXxNoWYNEongsmhO0Nlc/Fs3NtTX3WiJnhEgkooS1cE18PzRl60hkvPOyviFKa2uCeiNCYihKa3M9Ha2NJPZEqYuHCakhEjjjVc0kvXoJ+694KzN//Sdavv4l+MUv3G21mQ0kUlHq6kPue61PRknko7R3Rul7xeKY45tpbU0wazbAPgDmLYohLh3/MYp3hclmoC4eIaRCIhwlkYjQOrMO6MUytUk7pvF9IQq68z4TDbXxWUlePeR3mGQqkeeXZCqZjudXTYvLkcjn82zYsIGPfvSj7muqqnLaaafx3HPPTfr+DMNiaCgz6dudMLZN3TsuJbp9K3lU0HXsUAj0EHYsxla7h4GIzcyZK9hi7ifWNpujlp3KnZl1tM0/hrWLzgPgsR1/ZffwLurDDQznh5xtp/NopkUylyVm5ent9Qr+JIdzJFNZVEUlaeVIprPusj5lGNu2SSazDPSnsdKTky+VNbIkk95+hgZyhNUwcbuRZjoD8xsacsbauWFShSzDkay7fDCXdrczNJSlN1y9kBHAcDLvjh8YSKPnvPH96XRgTv19KRTfTf1Axlve15ciG/LaLtQCQ7lU4L31WuXHQlUVmpvr6O9PYVm1Nf9aIW8650hYswLn4aFCnP+CAVL09ibpG0iSTGYZGswyoGRIJrPoRoqQqvuuYefnhr9/L523P4h6zTUMvuNdGKecCkByyHmvPf1D9Iac9yq2O39xhFPntDF3oU5vbxLDcnrSqirEG0xnf6oevFaH06BDKp3DtornopmkVXVczgP705N2TAeH0yTzzj66+wbp1Q79ZyWZeuR3mGQqkeeXZCqp1fOroSFGKDRyqti0FZf9/f2YpklbW1vg9dbWVnbs2OH+/Xd/93esW7eOTCbDmWeeyU9+8hOWL18+oX3W0ocLkPrqN4i2JhjuTZbN7bntt7M/tZ/Xzj6dDXseoiPeSWvnMQy/spO2UNgd3xhuYpe9i6gWY8gectcPqWFsGxS0wLYVFOd1RUVBxfbt1jCdm0Lbdv5N1vFS7OB+NHQUVM6ffwEQ3I8YWzALxXUUb7mteNuxlVHnp6JVHS/eo//vqsvHsK9XG//8LMsecX6jLT+Ssa3icayVz7jkvLQsC8uyMUyjeD17161hGmXXFoDZ0EDy379Mw8f/nrpPf4r+vz0Iuu5eD3kj775XsV1NU5i9MMxT+5+kIdzI/IbFxOIqc46KgmZiF5x9+4+RaTl5kLZlu3MwLIv6Ruc/re1bMxiGNSkhQWKeEJy/5MhAfodJphJ5fkmmkul4fk1bcVkN27YDxTV+8pOfHMLZHDoqFfSxSvpcgtOOBCCmB5uKR7RwcWzlqqiqopYtMyzTLRYylj6SY6W03chIxXW0klYk1Qr6jFagB7weoaXbgTH0uWQaFfSpkWI005FaO3al56HIawz2uaxc0EegKiq5d15G/rpfE370YWI/+zGZj3zca0XiW8dfKCdjpNnY+yIAi45ezMf/33z0kMqfX6lcmEfMzY9lm3TOijB3QZRdr2R56uFBTj6jaaxvvyr+eRpW+XuWSCQSiUQyOdTeXe8YaW5uRtM0enp6Aq/39fWVuZlHInXhegASYSe3yF8tVvWJtTmJucytn8fS5mWBG2UhSsv7OxbFI0rZMtM2vJvYSTy1/PvRVX3EG3ox1mu7chCtSDQvrLdU4Ja3uZxe1WL9b0BWi504biuSGhGZ4vr02o2UikuvhY+/PZH4nnDGqKAoJL/+HWxdJ/71r6Lu2+tWTzZ9fSL94jRv5t3fuzPd1CV0IhHV3YddYpH6BZ//NVVVuPAdHSgK/O3WXjLpgxeDqXSBpx4ZZGjQoGDlR19BIpFIJBLJhKjBu96xEQ6HWblyJY888oj7mmVZPProoxx//PGHbmI1wskzTuHiJe8gEXJEpo2/FYn3sYe1MGfPex0zE7PQfW09wloECLp9zt+q+1Oh1Lk0XDdisgWV2J6/PUjlcaUi0FfB1d+KZAxiwH88Sp3YUZ1L3/haFG+1OKfpiNuKpEaOp5iHeBgirsfShy2aqhWdS0fgnTH7LHcb4sGSuXwFmb//B9RUksQXPue2/fG38jB94jJnerme+5J73N9FFEGpU2lXEJdiezNmRzjupAZyWYtNL6TKxo2XbS+l2Lc7x8Z1SXc+EolEIpFIJp+aFpepVIqNGzeyceNGAHbv3s3GjRvp7u4G4Morr+T666/nxhtvZOvWrXzxi18km83ytre97VBOuyZQFZVEuN4VVKZlBvtcVllHEC6GwJWO9YfFBgSUomBYnnM52U6OF+Y7cpGgsBZcrlRxEMcStuvf16hhseVWZsX91gqyz+XkUHvOpXd9gucWCgdTXEcKivudoCka7fF23rH0UtbMOJmFTYvc7aX+6Z8x58wlcvOfabr7HqDUufQEY970ROeeorgcSchVcy4Fx5zguKkb102s+E53V57//up2tmxI0bXfKcZ2YF+eF9cP8L3/eIU//WY/+/fkRtmKRCKRSCSS8VDTOZfr16/nve99r/v3l7/8ZcDpu3nVVVdxwQUX0NfXxw9+8AO6u7tZsWIFP/vZz6akx+V0xc2vwsIqFtCo5v7pqk7OdG62hHNZKi79zqXqC8FTFRH+VnQuJ/m5hedcjiwuoyW5o/55BJzLMczP6VWpYNt2hfDgsedc1orwqEatz6+WURSFiBYhqsVGH/wqUOrwezmX5c5lzsyh2ZrrcsZDcY5uXRncYCJB8pvfpfFd76DjC/9K+Kf/SCHuCcZqzmVvpoeskQ1sqlRMOn9rVccctSRONKaydVOabNYkGh09T9rPM48O0nOgwO1/7mIgb6DYCrZi89hDvSxIGQz0DfPypjSf/fLCcW1XIpFIJBJJdWpaXJ5yyils3rx5xDFXXHEFV1xxxas0o+mHoigoihLIuazm2vnFV7hY0EdVxyAuVQ2FKXYuVQ3M0Z3LiBZBVVRfjllQ5FUTi9UIqSHyZr5cXJa6fVVyLmvRtYTandd05I0LLkQbJVz71cINiy1ey3ZZzmUwJ9OwjFGvqfzrziP79kuI/vEGzvzJX3jm/33MXWYFxGXQBezJdLsFwyphMbK41HWFZcfU8fyTw7y0Ic2xq+tHnKcf27bZtN4Jp+3tzkEjzJpZz96uISzF4LWva2bdU0MMD5qYpo2myQcsEolEIpFMBvIO8whARQ2ExfpzCf34b5DjehyASDH/SlApLFZXdXRVDxQImbqcy9Hdi6ju9ZssnYdwFMc6P3ETPm7nssbFpR8ZFntwNEQaqQvVRpNjT1wK59IRa5UK+ojXS4tVVSL55a9jtrRy3M2P0P7MBvd1vxj0F/QByFv5QAhtec6lXSZsS93No493QmNvv7GblzaOPfeyp6tAf08BVQNbcba5ZEkjRx+XYMmxEV53YSuxuPO+87ny8FyJRCKRSCQTo/bvfCUHjaqo2NijCj+/kJqZmMUZc9ayoiRMzm01guo6oLqiu2F4hWLe1WQLFjG30cJigUCIYul7FTfSYxV9iXA9ES1SNfe02t/ecapN4eYXxzIs9vDBH00AnnNZeu2Pty2P3dpK6sv/CcDp//kLyGYD24Vyd9QwjUDbj0rVYktD9C3bCoxbtDxG4ymb6c7s57c/3UvX3rHlSG5e7+RpnnpWM9E6BVWBWbPrWLKsnuXHR1FVhUjUmacUlxKJRCKRTB5SXB4BiDBR4SJUc/90n/BSFZUFjQsDLiDghn+qiuq6gJqqu06JYRlu+OnkvoexFfQBiIf84rKyCByruDxn3uu5aNFbRizYUwmv32dtCrdaFb2Sg0OcbqIidGmfS62Coz7WayH39kvYfspKmnZ1Ef/ONwCnUFgp4jvDsA0Mu3JBHzGfSvnffveyO9NF66puoqc+g2VZ3Hdn35jmuuVFx+U85oQE7/q7Tk49u4lYNISu6m6RoXDEed85KS4lEolEIpk0pLg8AhDisjQ0rpRqIaCBbfnCSoVwE2Gx4DgZk13Mxz+n8TqXpfmlnugb2xwjWqRiyONIrUf8y2tVxMlqsYcn4rMU16O45isV9BFU+z4o37jC/Z+5gnw0TPy/v4e2/oWKFV/F9WdYhUBYLJTngIqiWX4quaELl8Yxmvex8fnkmCq89h4ooGkKM2ZHaJ8RoqUtjKooaKrmistIUVzms/ZIm5JIJBKJRDIOpLg8AhDiUoSoVW9Foo243BmjuD/dUFVFC/TOnAq3zmtFMnrhlEDOJVXCYg/y1B9NkCmKgqqoY8pnOxQEPqMadVcl40cpCXstdS69gj7jdy4BcjM7eejDb0IxDOr/8R+gUCgbExPOpWWUtSKpNJ/S7xu/YBXOp6YptK522pvcd2fviHM0TZtU0qS+0RGupu97z9+iRTqXEolEIpFMPlJcHgGIGypT3KhVEY/C7RhJEFWuFqsHigHVh8de1XGsaK5zObq4jBWLEUGFnMsxuLNjoVRAV9remhknc2LH6oPaj0QyHqpVizVLohbGm3Mp0FWd595yOrmTTiG07jlO/M3tZWNEO6CCVR4WK+YjRGZpv1wIiku/i9k8L4fWNMymdSn27a7uXiaHnH3WN+oM5gYwfFWyxUMly7ZkzqVEIpFIJFOAFJdHAOLmTVRzrCYeXXE5ws3mSNViBU2R6u0HJsq4wmJHqhZbwbmZCGMJJV3esoKFTYsPaj9TRaBFiwyLPWxQfDnRiqKM4Fz6xeXYrwVN0bE1le7vfhc7HueUX9/BjJf2BsaI68+0jLKczNL5KCgVnEtvHbF+SA2haQqLX5sG4L47qruXw4POOqnEDm56+UbWdT9XnLsXgmtjE444v+eyUlxKJBKJRDJZSHF5BOBWb7QKxb9HDosdMeeySrVY/w3iSL3tJsp4CvrE9OrVYpVxtiKpPp9R+l5OI6bz3CVB/OJRQfHlOAZD4idS0Ae8sPTc/LkM/9t/oJkWb/jatWh5z6EUOZcFq1AeFluh72Zp/nMgLLa4/ryG+QA0LBigoUln8/oUjz84UHGOw0XnsivqtEzZPbzL3Zd4r5Zt0a/uZiC0UzqXEolEIpFMIlJcHgEIYVawRg6L9SpJjuBcKuXOZWlYbPMUOJfCbR1bWOzktSIZK7VaFbYaUlAensR1p/hUXagOBcVX0Ke6cznmgj54vXALlkHyPe9jx+qltL6yl9Ouuc0dI3IuzQrVYoVzaY+Qc+kPhRXrt8XaiepR+vI9XPSuZvSQwu1/7GbjumTZHIcHi99zEedhmvjOUBXVfbhk2RZbjWfYF3uWXM5ix9B2dgxtH/NxGCs5M8e+5N7RB0okEolEcpggxeURgLihLFjFsNgqwmpMYbEVci51VUOfcufS2ddYnMuoT1yWiqg5iTm0xtqIH2TT++nuXMo+l4cnrbFWLl76To5pW1UxLNZ1Ln2h8eMpOiWuP8M2MBWbOz/zLvJ1MU763T3MWv8K4F1/hmWUVYsV+MVuec6lV71VrB9SdWYn5mDbNtGZg7z50g4A1j87XLbtoUGDvJokGivPt/Y7l4puYSkm6Uye+3fdy/277h3zcRgrzx14lr/uuJPezMhFiCQSiUQiOVyQ4vIIwBOXzpP8ajeTXshcdbHhb0Wi+UJV/YI0EUoc/KRLaIo0oyoqjZHGUcdGtIj7e2nI3bHtx3HhwjcdfEGfEjE5nQXadBPGkpFJhBJutWKBaZuB/rP+asnjuRbclkOWgWVbDHe28MSn3oti27zhP3+Dnsm5OZeFMVaLHamgj1hfU3VmJmYBsC+1j/mLHQE70FterXZ40CCpdxONaYFtqH5xiYWmO3NJZtNjfv/jJWM4286Z2Snbh0QikUgktYQUl0cAwqksmCPnXGpjcC791WLn1M9lafMyFjQuJGNkJnPKZRzTdiyXLb+c+nDDuNabKuFUKiano0AT72Ea62LJKPjDYv2CUlN9v48nLFYRYbEFN49z+5vOZutrj6V5Tw9n/uTmQJ/LajmX/mqxpZEUViAs1vldV3Tqig+t8maO+gYdTVPo7yt3RoeHTFL6ASIlzqWqKO6DM9u2EBH2Q9ly93OyEHnu/lBfiUQikUgOZ6S4PAIocy6r5lyWtykoxRMkKjE9xmtmnUZ9uIFkYepu0ARjybcsRYQCTzaHg3M5HQWxZOwEC/pYgYgF/3dAqbs/EiGfcykEk6Zq3Pfpy8k01HHCnx+k4YGHAMcxzJdcf55zaRf3rQRCdCEoxERYrK7qgTYiqqrQ1KKTTpplfSqHBvOk9ANlYbFOzqXiHY+iczmUm7rvLpHnXlo1VyKRSCSSwxUpLo8AhJNQmndVil68yRuxz6UIiy05dU7oWIOmaJw973UHPd/JIKyFAaewyVRwOOQsihttKTIPT1RFDYSh+j/nibYi0TUn57JQDIsV+8m2NXPXpy8FoPGqj9IwkHbEpen0oxTXo2Vb3L3jTjb1veiuK75LxMOjamGxwm0V4rOp1ZmLCI1NDhv0HMjTlTwAeoF5TXMCIbelOZea7hyP4fzUO5eWdC4lEolEcoQgxeURQDwUD/xdTTwKx3Lkgj6iWmxQkLTH27n86Pcyt37ewUx10njr4rfzhgUX0hhpmvJ9TVdx5rrQ03T+kpEpLegTbD9S2cUcDVHQp2AVMF1xqaEpGi+fcRzr33QGak835/7nbzDMArlib12RB92dPsDe5F62DrxcXNfLuRRj/OLStEWFay/HWwi15hZnLv19joD73S/28d9f3UGPsZdoTGNuw7xAtIO/7YlhmYRCznmfzHsVZ/37ngwKblisbHcikUgkkiMDKS6PAER7AkG1Ah7+kv3VUH2tSGqZqB6lI94xpfvwen5OT3HmOpfT1HmVjIwIi7Vtuyws9mD7XBbMvBcW63MEH/vEZRhLlnLU4xtY9cd73UI2Ec0p8lP6YMtfGEyMCbQi8YXFinFCqDW1OnMRzuWuV5x9JfX9RGMqcxJzXMfU2Zc3T9M20HXn96ThOZe2r1LtZCDy3GXOpUQikUiOFGpbIUgmBb9zOVLeYmu0jeZoC7MTc0YcUxeqoyPeOalznM5MV3E2XectGRvi8xXCJlDQZ8LOpSPWCpZRsVelUpdg+Mc/xwzpnPm/NxHf9JIjDEV/WcrzIMNFx1KEsNuBsFghYHXXdRTuYnMxLLa/13BFYUFJk9WG0PJ1JML1gdZF/pxLwzLQil+FaWPqnEtD5lxKJBKJ5AhDissjAL+4HMmliIfivGnRW5jXML/qmKZoM29feglz6udO6hynI9PduRRM9/lLKuMXUhB0Df3VYkcq4FWKFxabdwWTpmiu8NNUHePY43jmY5ehF0ze+B+/JF6w3TNMhOl6+1Y5ofNEzpp7Dq2xViAYQirCYgPOZXG/nrgskM1Y2Njsiz0HwIpZi4rz9ZxLLeBcOq1ZdB2yvjYhpfOrRrKQJFfMJ62GZVuusJc5lxKJRCI5UpDi8gjAHxY7HpdCMjKHS1jpdJ+/pDJCSBlFgaZQWVCOKyxWE85lwXNEizmX4IXNbnnXhWxfs5y2Hfs5/X/+5K5f6gyqikpdqI55DfPLnEmoHBYrhFpTMedyoK9AatikN7KFyOxezjpzDu+58LUAhLWgc+mKSyG4dQWjYJf13xwJwzL405bf8/vN1484TuRbggyLlUgkEsmRgxSXRwBRPereVI1UCVYyPqa7KJOO5eGN+HyFkCqtnFrp99EQ4tGwCr5qsYq7bRF2r+sRbv+Xy0k3JVjxp3uYe+8TQGVxWTqPUnEpRKH47hJCLRZXiURV+nsLDA8b9IRfIhrVufy1F9BYHyvOxycuVU9cinDbkK5i2yCiVsciLjNGekxjpbiUSCQSyZGIFJdHCCI0VjqXk890FWmyWuzhTWnOZbWCPv4Q2dEQYaZ5s+A6iJqiue1MhJjTVZ10SwO3f+5yAF7zpR/RuKcHi+ri0h+yKjBts6zQmBB1+1P7SLTYFPI2W/fsx1TzdMQ7aIo2u+uHfWGxKl61WPeYFCvGGgWLTMbkzpsO0N/ricJKiAq4o2GYPnFpyWqxEolEIjkykOLyCEGExo4nv0oyMtNdlLnzn+YOrKQyIgxWuHRqlT6XyriqxYaK2/RakWiq5gpXsVz83H7K0Wy58p2Ek2nedPU1kM2UzLF8TlZJtVitJITXtE260938dcedpFpeAmDjzh0AzErMCs7XFxarqZpbUEiECuvFXpeGYbNtc5qnHh7kup/sJZP25mDZFt3pbrdoUM7wcjRHolB0jEvfk0QikUgkhzNSXB4hSOdy8lGmSVuWakz3sF7JyIjP16rkXKoTC4sVLmLBFxarKKorZDVFD/wE2HbVhzhwwgo6X9rNvK99N7C9oHMp5mu5Py3bClS41hQNy7bc0NRovfPeXt63G4C5TbMD2w9Ui0V1n6OIUOGQ61zCgX15bMWipyvPX67vctfb3LeJ21+5hd3JXQBue5XREMWInN+luJRIJBLJkcH0vCuWjJu4XhSXMudy0jhcnMvp/j4klSmtFqtMQisSRVEIa+FAQR9N8ZxLveQnQDgS59Gv/hPppgQzf/t7lt3zjLvMLy5LC/qIqrB+cakqaqAKa12DioXJvuR+NFtnZlN7YL6BarGq5su59Ar6AAwPFkgOmzS3aURjKls2pLEsx6lMFZxWJZmC47pmxuhc5n3hs1JcSiQSieRIQYrLI4R4sYecNk1dtlpkujuXAikuD0/E+VmxFUmFXMexoqt6ubhUKofFAoS1CLn2Vm77/HuwFYXzvnU9zbsOlO3bbTVS3K4IXfW7oCIsVrixdfUqGa0PW7GIG+0k6r39Ovv2/lYU1Q2LFSG9esj5e+9up63I4qPraO0IY5o2w0PO/t1elcV9jtW5NHzOZcEwRhgpkUgkEsnhw/S+K5aMGeFcypzLyWO6i7LpLoolIyPOT8ttGVJZUI43VD6khrBtm0LRmfO3+PAK+vjFpeMe7liznB0fvZJwJsdFX7wGPZevUi3WcQxNtw2Jvz+n5uy7uCxer2AqzjzCVh11CU+Ils5DpbwVici57NrrbGPBkgjNrc42+nudMaLqq3BUR+tvKSgUC/pkMyZ/uHYvt/3xwJjWk0gkEolkOiPvLo8Q6sMNAES0yCGeyeGDW211mucuTvf5Syqjus6l5zAKgkVyxisuHbGYLYaHaorqbsNtReILZY1oEfcc2/bR97HjxKV0bNvL677z+8DjGa8abNG59PW4LJ23ELbxehVbKeZ+olBXH3wv4UBYrOq5uaKgj8/o1HWFmfOjNLc6L/b3FALzEPPKGMGiRNUQ673yUoZMtsCWF1NjWk8ikUgkkumMFJdHCK2xVk6fcybHdZxwqKdy2DDdcxan+/wlI+P2uSyKIiXgXFZuSzIWRK/L4cIwAFE95mtFUizo48+51CLuXGxV4bbPv4fhtkZW3vkErdf8rmwewiE03LBbf1iss9285YhLTbOJJZxt65pGOBw8l/3OpaZoXiuSouAOh733vvq0BlTV9sRlrxCXzk8vLNZzLkUF2UoUrDyGYbNjWwYbi4Feg1xWtiSRSCQSyeGNFJdHEAsbF5EIJQ71NA4bprs4k47l4U2pS6f6C/pUyb8cC0KwDWT7AYjpMRY3LWFp8zJmJ+YAwZzLiBb2Va61SLc08JerP4AR0pjxr19Hf+wRZ35uWKwo6FPuXAoBKkJObWzqG531YnG97Jz251yqgZxLZ9uz50dZeXyCc9/USseMCBZWmbgslORcZn3OpZirH8uyGewvYFgGu7ZnKORtrKK7emDf2EJqJRKJRCKZrkhxKZFMkOkeFuuK42k6f8nIlOYXamqVarHjrCAtciiFgxcP1dEUbeY1s05zl5UW9PHyPx2Rtf/oo7jnH9+JYhjUf+A9qPv2evMtCYutFM4rnEvLtqhvctaLx4P5ls48vLBYxZcbKkKFQyGVhUvjRGPFfdg2zW1VnEvLy7m0sentzvPI/b2Ypude2rbNH369n+9evZ3HH+lh0zonFHbmXGebXfu8CrISiUQikRyOlP9vLJFIxsTh4lxO1/lLRiNYLdbvXFZqATJWSkNNK+Vx+0NZ/XmPfqdv/YWnckq3QuMv/4+GD7yHvut/UxxTUi22gssqci4t2ybROJK4DM61tBVJKZZt0dCoo2qeuNzfleLJp/qYcV6OjX1D3HrzXizLJp+z6RvqZq/5EqeePId5DfN5+tEhXnzOaV3y7JP9GGGbhctizG4P07dROpcSiUQiOfyRzqVEMkGmu3M5t34esxKzAjfgksMHt8+lyF1Ug3mW4rwdb7XYsO98iYViFceICq/hYkisl08ZzFHs/c9/o3DSyYSefpKOL15dHFMSFusTquI95H0VXEd0LkvDYkuKBjVHmwGI6lHACbNVVYWmlhCpYZN8zuKVbUkG+gy2bBzmyccOkM1YFPI28ToNQ8nxwEtPsK77eTJpkzv/3I2qwpnntWCpBvUNGsuPSVDfGKxKW410IU1XumvEMRKJRCKR1DJSXEokE8RrSj89xeXxHSfy+vnnT1txLBkZN8/RKi/oA56oHK+41H2CLa7XVRwjHliIMFmBRTBHUY1EikhcwgAAwMpJREFUGf7FbzA7Omm87rcce8sjXkGf4rz9OZfimssXQ3It22L2URHqGzUWLamcTy7moCmaT3A7wnVu/TzetfwK5jUc5W4P8PIu+woMJ52quHv3pHll+xCKAm+4uJ2z39hCKG7S05Unlzd4eVOaQt5m1ZoGzrmglQsuaeH017WgaQrRegVNVziwLzdiEaAn9j/Gna/cRqpQ+5Vldw/v4rZtt4y5eq5EIpFIjgykuJRIDhIZViqpRUqFlFrydS9cvPFWi/WHucb0ys5luNh+RIhPt1psSQEcVVGxZ85k6OfXYodCnPODP9C8blNg3ppa7lyK3pM2FnUJlbPOb2XR0sriUghdx7ksVtC1vN6fIS3kHptScdnbkyOZdObRtS/LcCZNU4uOrimoqsJRS8NYNuzbk+GlYquRZcc47zlWD3pIfDdYtHeGyaQthofMivMEx7n0/6xldg3vpCfTTU+m+1BPRSKRSCQ1hBSXEskEETfl0vmT1CJqSduN0sI9Yvl4ncuQT+zFQ/GKY8JamHPmvp5TZ50GEKgWW2kOximvof9LX0EvmJz9mW+j7tpZOSzW7XPphcWKbVYTySd2rmHNjJOLocDBokGKK7CL4hfHVWwpFvXZtzdFOmUWl1mYSp7Wdk9cL1ju5JvufCXLyxvTqBosXOocE1EIKKyFMW2TWfOcsZvWJSvOE5z2Jf6ftUy+mPcqzi+JRCKRSECKS4nkoJHOpaQWEYLOrOJcNoQbSYQT43444i/oUy0sFmB2/RwaI03OXKgsLv3XTuZ9H+C5t5xOrH+IxisuxR4eKu6vvCdnwaokLiu/jwWNCzm6dWVg/dIiR6Xid+YcRwhufHEQEcVqKxaGkqW13Xv/sxaECIUV9uzMkE6ZzF8UIxL15qgoCiE1hGVbrD61AYBH7x/AsiqHxooKvEK41TIFt2KvFJcSiUQi8ZDiUiKZINK5lNQyblis61wGv+7PnX8+b1r41nFv159HWa2gT/lkgs6gwO82qorKPVddzO6TVqJv3MCxn/0SimkFwmLVEpfVsi03j3MsVW9LRa4bGlz8r1DMb8ZsR1zu3uWEutY3aI5zqebdViUAmm6x5rRGUJ3tLVnhiW3DMgipITdntHNOiAVLYvT3FNj0QmX3UjiyExWXyUKSu7bfTnd6/KGqPZkebn/lVobzQ2Ma7/X/LO/1KZFIJJIjFykuJZIJIlt5SGqZUpeurKCPqgWqqY6VoHNZOSy2GkLUNYQbaI210hJr8eajaNiaxt1f+ijG4iV0PPAYZ/z05pKwWLVse6OFxfopHVNa8VnkhMbiGs2tISzFOXYz5kSob1GYuzhEKORV2i1YBdo6wpxyZhOLV8RZtabe3XbBKqCruiuITdvk1LOc6rTrnhqueGxEuG5+gmGxXal97E/tZ+fwdpL5Ye7Z+Vf6sr1jWvel/s10pw+wa3jXmMZ77WCkuJRIJBKJhxSXEskEEZJSOpeSWsRz6YrO5ThzK6sRyLkco7gsdQwXNi3iokVvIaJ7PTIVRUFRFDKJCIO/uYF8Yz0n/e4e2n9/ozumVBw64tKuuKwSpWOEY1mpVcqMORFsnGOXqNc4762tnH2BIw5FkSBRdGjmnDBX/P1sEvXOsTEsA9u2Cakh97iblknHLMf1FXmcfvxupaiGO17E/AtmgT3JPewe3s3uMYpFUZgna2ToTndz5/bbSRZGyg91XFZThsVKJBKJxIcUlxLJBBE3zFJaSmoSpaRa7DirwlYjFKgWO15xWbktikBFxbRMrIWLePQb/4ypqcz6wr8TeuQhoFwg29iu21iaU1px+6XiUoS2u9VsPXE5c07EdS7r6jQs23SPpQgNFkWHSsN9hfDS1ZBbSMnCIhJx9pfLlrt9/iI+oo9n3sxzz8672ZfcO+p7A0+8F6yC636OxVksmAUGcgMAZIwMrwxuoyu1n1cGtlZfR4pLiUQikVRAikuJZILIsFhJLSPOS7da7KQ5l14Py7GG1Qpzf6Qej+CE6gqhtn/1Cu7+1CUohkHDlZejbXsZVa2QczmOsNhSUau6YbFezuVL/VvYNrg1IC7jCQ3TNt0QYyGw3ZYoJe/LcMWl7obympZBuCgu87ny45DzOZci5LQn083u4V1sG6wu8vx44jI/rrDVvmyv+x4yRpq0kSruv6fqOsJptWS1WIlEIpH4kOJSIpkgrnMpw2IlNYgrLm2vp+NkENJCNIQbaI+1j3suVlE4VnMZFRRXDOXNAusvPJXBv/t71P5+Gi97O5G+wcB4f0GfMYnLkgdBSolzadkWj+59mId2P8DMORFMxUDXIRx1HFXTFZfFsNgqzqUnQr2cS8u20DQFPaSQy1VwLiuExYpjMda8Rv+xy/sq6o5Gt69XZcbIuH02e7OVxaUoPATSuZRIJBJJECkuJZIJIp1LSS0jXLlqBX0OhjcteivnzDt3zONLW31UeyCjKqorVkSYaPLf/oPchW9G2/4Kx37ss+hZT4T5ncuxvL9qYbFezqUnxMJxi2NPirF4RZ0resXcwlqJuCy6fk/se5xtg1vdSqqaoruOsajaG46o5CuIy3yFsFghWscuLr1j5zmXI7vF4OVbgiMuU8Vcy3Qh7QpNP8KxHc/cJBKJRHJkIMWlRDJhpHMpqV1KBd1khcWCE746nvO+tKBPtQcymqph2za2bZMzc06fyFCUof/5KYWTTqFh3QYu/NKvUExP0Iiw37EV9FFK/i4Vl54LlywMc/LahNtexLItVyCWhcVikzEybOp7kRd7NgQcTn/OJUA4AkbBxjQd0ffoff3877d3ksxk3X2Px7m0bIstfZvJGJlAzqXbh5LRxV9vpgdFUYhoEbJGlqzpzaWSe+nPD5WtSCQSiUTiR4pLiWSCeDfIUlxKao9SAVcqrA4FozmXmi+EtGAWCKkhZ2wsxuC115NZMJ/Fj6znnB/8AYqOnOkWLBr9/ZWG44q/vZ6ghrssmU8GHDrTNt19hUoK+vgdVMMqBAv6uNViDfJmno11t7A/+oJb1OfxBwfYtyvHrp1eZdZ8Sb6kPYJAfP7Aszy27xEe3vOALyw2T16Ero7iXNq2TaqQIqbHqA83uK8JeivkXRZ8x8mSYbESiUQi8SHFpUQyQWRYrKSWKT0vJ9O5HC9eNdaRnUu3N6dtULAKblVWALullc0//x9SzQmO/8vDnHT935yxwrkcw39npaK21LkU1WABUoUUhk84Oc5lsVpsMeey4Mu5tH2uodiOrmqBnMvh/DCECmS1fvI5i4G+AgO9ztiuAyl3X4VxhMXuGNoOOMV3hEsZcC5HcRZFqG9IDRHTY+7r9eH64na7y9bx54fKnEuJRCKR+JHiUiKZILKgj6SWqZZfeCgoy7msIi6V4n9JWSMDQFiNBJab8+Zx49f+nkI0zJk/uZnldz81roJFpWPcB0TF6ZhWMCzW8DmXgBuqqxd7fQon07ZtVwgaloFh+sJihXC1DAyrgB5SMZUCuZzFKy9l3G13d3u5jYZlYFqmK1hHCj0dyg8BUB9u8JxO23ZzJUcLixVCVlN0YiGvtcysxBxURaUv21d1HQgeM4lEIpFIpLiUSCaIdC4ltUzpQ4/JLOgzXrxqsaOExRbzE7PFnMNwSasTTdHoWjaPm//9/Viqyhu+/ls6H38emFgrErdabAXnMplPBqqigiOqdEX3xgfCQ/2uYVGwqV5BHwvLWV9XsBSDfNZi+8ueoOzu8ZxLcAr8iGI8YymaUx+uDxTvyZXkbVbDzQ/VQsS0KKmkQSZtkgglaAg3ODmYRjawTjDnUopLiUQikXhIcSmRTBDpXEpqmZoKix2jcykEonAuReGc0uWvvGYld/9/l6AZJq//3PeZsXHH2KrFVsm5FD/9YjFVSLnOpQjPtW0bTdXc8dWqpuaKBXH8BX1My3TFpYnPuVQgElXpHchgWba7r4KZH7Wgj1/8qopaMf/x8Qf6+fNv91c9JuI9hFSdsBrjobv7efyBAepCdTRGmgAYzAdbwORN//uW4nI6MZwf4ol9j7sPHyQSiWSykeJSIpkg0rmU1DRV8gsPBWXVYqtcMporLh1x5s+5BFBVTyC/cOGpPPihiwhlclz8uR8TfumlUedRLVRYXMumv6BPYdjNqYxoXniurupejqZvvD90NVMUx1pJzqVhGeghBUspcGBfnqEBg5mzI8yaF8Gw8ySHTepCCQByZn7UnMuB3ID7u7+okCCft9i4YZjnnhh2q9OWInJWNUUnPxQin7cZHjKxcxGahLjMDpSsI1uRTFe2DWxlU9+L7BzacainIpFIDlOkuJRIJogUlZJaptSlO5TOJWV9Liv/11PqXJaKy9L38MS7X88zl76O2FCajnddirpr54jTKBeXSuB1fwGfvJknY6SL8/DEpaZoVcSlt65YL+SrFmtYhutc2orN3j1OGGzHzDCdMyOYisHQYIFEUVwWrLwvh7KygBv0iUvTMsuEXk9X3q0Wm05VdhgNt7KtTnrAO74D+zTXufSLWAj25DSLonbH0HYe3fswu4d3VdyPpDYQTnW6kBplpEQikUwMKS4lkglSWmlSIqkl/OHaUT3qFqE5lIgWF9UezES0KOAVqQmrpeKy5FpTFO77yJtZ/4ZT0Pfto/Gdb0HpLq9u6g4va89SvRUJOKGxzry8eWiKXvGatwPOpS8s1pdzKQr6AHT3OgK0LqHROSuMpRQYHvCcy7wvLLZaXuNArt/9ffu2FM8/NRhwKLu78tiKs4100nTfoz+H0qtsGyLV550jPbsUGiONAAzlBwL79bciMS2Tdd3Pcf+ue3mpfwtPdz1Zca6S2kA8QEkb6VFGSiQSycQ49HcbEolEIpl0/EJK9C88VLitSBhZXIpWGMIp8zuGUPlBjg3c9elLWay0Eb39Vhovu5jBG2/BbmgsG1stLFb8NEvEJTiOnqbogb8r9dT0V00VzqWm6Giqt23LttB1Z93e3gwQp65eZ8bsKCYFBnoUYrojsPNjCIv1O5dPPjxANgXqK/0sWBqjrTNMT1cepVhEKZ0yuXfn39g17Li7Z897HXPr5/l6cmoMd2sotoJuR9m3q0BDuBVFUcqcS38rEss2nRYr7pwGyRpZosX3MVmkC2nu23UPx7Ufz+z6OZO67SMJq3ieZqS4lEgkU4S0XCSSCaJI51JSw/idy4YaEZdeWGxlcRkP1QEwlHMKyFSqFlsJW9MY+vEvyJ9+JqEXnqfhPZdBJlM2rrwVSfU+l4H9+nI9dVWrGNbrb/khiqWEVD2Qc5m3Cugh570Pp5wxiXqNGbPDROosBrrByDrj81bedUOrictkIenM27BJpwuAzeCAwXNPDPO3W3pJpyxXoO7u3+cKS3BEIHiiOKSG6DtgMDtzErMyq9mzI4uCSn2onnQhTd4nKAOtSGzTdXybo81A5d6YB8uOoe30ZLr5286/ug64ZPyIczxVkOJSIpFMDfKuWCKZIDLnUlLLBJ3L+kM4k7FXi43rTp9FEQZaXi22et6oEosx9KvfUjjuBMKPPkzj+98NuWBFzFJRK/JSS8NiFzct4bWzT6cj3snylhUBUaspelk+KwSdSyF+dF8rEtM2MS3DdS5NxRFodfUapm3SOTuEaoXYvdWZQ97MjV4ttijyUsMGNhYz5oZYc1ojCxbH0IpT1ov6fGPviwC0xdqLc7QC71lTdHoPFGix5rJ89jxyWYu+7oJXMTbnVYwtrZIr8jZn1s0C4EC6q+J8Dwb/MdidlHmdE0WcpzLnUiKRTBVSXEokE8RtRSJFpqQG8bt0iUMtLkuukdGcS0FkDGGx4Dmadn0Dg9f/CWPF0YTv/RsNH3ov5POBsf5teNViReiqc+OtqhqLmpbwhgUXcGLnmsA6/mqxfvzOpTc25IXc2sU+lyHR87MoLhM6eTPPjNkRNHS2b3Jez1sFr6APnlN31196+Ol3dmKatisMU8MmtmJR36Qxc06EY06s5+wLWlm1up6VJ9ZRUNLsHN5BRIuwqGmxs39XXDr7M3Mq6ZRJS3uIuQuckNY9u7Lug4lkwQt99bdAMSzDzeOblZgNQHfRuezL9vJC9/OT4jRmTc+J3tCz/qC3d6RiFp3LnJkLPBCRSCSSyUKKS4lkgrj3x7LPpaQGCTiXoUMcFltyjYzmXApCYwyL9Ys9u7WVgd//BWPxEiJ33k7DRz4IhlFxbGlBH+GYlhYOUgPOpVZZXFqVxKXuFlKyLBPDKqAVnUtLceaUqNcoWHla2kPEwhF2bzMoFKyqfS43v5Bkz84c/b0FDMtAUzSSSce5TDT6ijhFNeYvihGvVxkOdZHPWSxqWuweU/FehQs53O8IwLaOEB0zHVHfvT9PSC2O9wmRQrFarK7q2NiuQG2JthLWwvSku7Fsixe61/HsgWfoSlfvszlW/EWIDqS7An9PBMMyjkhxZfhzg83y0HGJRCI5WA57cXn33Xdz/vnnc/7553Pbbbcd6ulIDiOkcympZfx6riFSGzmX1f4WxPRYQIiWVYtVK4vLUvFqd3Qw+MebMY9aQOSWm6j/+N+BWXQlK4hL8VOIuFLx6BebWhXnslJFV13VPVfUNilYBqGQLyxWgXhCI2NkUFWF+fPrsU2VA/scYVmpoE867eynr9cJmw1rYce5xKKuoXxe4YiCjUE+ZxEP1bkhvZ5z6WxvqM8Z39oRpn2Gc9y79+fd3qJmSZsWTdHQVR3T8nIuw1qY9lg7pm3Sn+0nZzoCsLQgUMbI0JUan+AU7Wk8JzU5rvVLuWXrTfx1x50HtY3piP9zTMu8S4lEMgUc1uLSMAy++c1vct1113H99dfzve99j3xJiJREMlHEDa0Ul5JaxH9eloaXHmqqhcUqiuJWjIWRq8VW+11gzZzFwJ9uwZw7j+if/kD9pz4OlhU4Ll5YbHDdUofU/7euVnEuS/IiheOnFyvNOoVv/M5lgXhcQ9MUtzfkCcuPQrEV9u1xhKNlB8WlZdlk0s7vvb2OcItoEZLDJrZiU9dQflxDESesNp+3UBXVJ6Tt4rwcYTjQ7YiO9s4w7Z1FcdmVd+fvb9NiWAYhzWmzIgr6iG3XFcVfxkiTL4bPlorL27bdzJ3bb6c301s232qI9i7t8Q4Akr4KtePFtEyG8kOBVi5HCv6KyDLvUiKRTAWHtbh8/vnnWbZsGW1tbTQ3N7Nq1SqefvrpQz0tyWGC61xKbSmpQTIHGTY4mYzVuQSI617epRBofoTQ8/ftrJaLac2Zy8Afb8acNZvo9deR+MynAnsW8ygt0FPmXPqrxSp6xWqxpc6lmJ/qFjMynZxLvehkKgZ19c52dw7vAOC0Y5YSDmt078tRMMxA70zLthxhWUxf7O3LFPcTIjVkoeoWkVgVcalY5HN2IKRX5IiKsNgDe4p5k3OjRKIqDU06/T0FbNObP0B3uhvTNgn58kkLVsF9v5Gi25w3c2747FCJuBT9Q8dT+CdrZlAUhdZoGwDDhYmLS/Ge82b+iKs86z9PM4YMi5VIJJNPTYvLJ598ko985COcfvrpLFu2jHvvvbdszHXXXcc555zDscceyyWXXMK6devcZQcOHKCzs9P9u7OzkwMHDrwqc5cc/siwWEktc7Bhg5NJWc7lCE9k4iEn7zKshSuOE4LGLzxHagdkHbWAwT/djNnRSezaazjjBzeAbaMoihd9UDa/yi1LwCn2U6larFVFXIqfBcugYBbQdFBwnMu6eo2+bC/JfJLWWBuNdfUsXJrAMGDv7kygkI9pmaRT3j76+52HB0ZOxShAXb0KlAslPQQoFrmchaoo7rHyV4u1LJvuvSbhiEprh3Nc22eEsW0YHhAOp8mGnvXc/sotAET1mCv0Re4neG5zzsy7LVlKnUvBeHotZo0sES3ihcUehHMpRK/ze2GEkdXZ3LeJ6zddN6Hr7IWeddzxym1VqwBPJX4HOm1I51IikUw+NS0u0+k0y5Yt49/+7d8qLr/tttv42te+xj/8wz9w4403smzZMj70oQ/R19f3Ks9UciRS7cZUIqkFljUvQ1EUTppxyqGeSoVqsdX/6xHOZSXXEjwhGda8fMxKYs+PuXAxg3+8GautjVV/uIfXff8PqL77+vIcyxHCYhUdTR09LFYvzj+qOWG+WSODYRkoKGi6gqkUSCQ0dg05vSfnNcwHYMVKRzzt3J4ObNPCIuMTl31FcTncZ6OiEm9QKlastbEIxyCfc0KCNV/fTXCqxSaHTay8xqx5EVTV+axEaOxAjydChVu4oHEhr5l5aqDQkfi8xOfiOJeF4nvPukLTz2jOmWVbPHfgGXoyPVi2RUyPTZK49ARl3ppYqkxXej95M09/dvz3G892Pc2BdNchCcuVzqVEIplq9NGHHDrWrl3L2rVrqy6/5ppruPTSS3n7298OwNVXX819993HjTfeyAc/+EE6Ojro6vLCbrq6ujj99NMnPB/xn26tIOZTa/M6UlBVFUUBTVUPy89Anl/Tm5Z4C+9d+f6aePihqkogfNx/zZSeX4lIHYoCUT1a8dzTNZ28lSOkhdxtapo26nlqr1jB0I23EnnzuRx/00Polo368/eBqqKpWmB+uhrcXkjT3eVhXUcvGQ+AYgdeC2k6qqoQUcOEtRAZI42FiaJAKKRgZQskGnR6cz0oCsypn42qKixdUY9yG+zbncXG8lWl9vItAQYGs+T35tj20BDYKs1tTuVWVVXQFd0TUIpNNK5gJcEyVbSoM3cbC1VVsDAZ7Cug2Bpz5nnHvLNYMXao10JpAgsTy3bmv6x1Oa3xVnRNI5+30HWFkBZCVRWioQiKAmkzDXjHZCg/SGedE0kkXsuaTiGj4fwQm/s2saBxIa2xNvc9vtT3Ei/0PM8LPc+jKBALxWiINKAokDSSo37m1c4xwzbcOZh2YULfcWZxGwUrP671M0bG3beqKGNedyDbz23bbuG1c85gfsNR456vQJyDzlzS8vv9IJD/R0qmkul8ftW0uByJfD7Phg0b+OhHP+q+pqoqp512Gs899xwAq1atYtOmTfT09KBpGs8//zxf+cpXJrQ/XVdpbU1MxtQnnebmutEHSSad5nwdiXSUpsa6mj03JgN5fkkOlj4SJAaj7t+tLQma65zzqvT8mq20szkZpTXRUPG6amqoQ82ZtDY0kFGHAGiMxcd2DZ5+Mrf/8t9Z+4GrOebmh+Gf/xF++lOipkIi4Z9ffWB7rXY9iSFneVtLI23xBhL7o4FNJ+ojJDK+bTR4829vbmYoN0QEjageJRzuo4BBe2ecbFwlYUeZ09lBPBQn3qDR2hEmtbdALuvNq7k5zk7Fc5qGhnO89OQwdfkWjjulmeUnRImGQoTMOLFQjFQ+haqo6KpOPKFBEqKhGG0t9SQOREnUR2htTRDdr5McttFtnWUrm9w5L14G0EVyQKEp4YwvWAUSRpT21gZa6xJEdka559ZeOmdGeedbj6K1NUEu3EKiL4oaNQLHVI0X3G23NDY4FWejFr3s5b699wEQjissnXOUu06DGXWPO0BnSwsd7Y10NLeQKWRobomTzCd5cMeDnDT7JDrqOip+7KXnWEoPu3Orb4zQmhj/93esRydhR4nX6+P6/t852Ofuu7E5Rmvd2Nbt7tlNJK7Ra+3jxNZjxj1fANu2icVDRPV6skYWPWof1v93vVrI/yMlU8l0PL+mrbjs7+/HNE3a2toCr7e2trJjh1McIRQK8elPf5p3v/vdAPzjP/4jkcjEqiYahsXQUG2FkKiqQnNzHf39KSzryCpKUAsMDmZIJrMMDmbojdZOfttkIc8vyWQxMJAmmfQKDPX3pwjlUxXPr1wKksksWcWkt7f8ukol8yRzWbKa6W4zauYqjq3E/s4Orv/eVVzy//2QxDXXkEtl6f/udwLzGxzI0Kt42xsazLrLhwdz6Lng+wHoCw8HXkurBXdORlYhmXKWhaJxFM1pRaJqJr0DQyRzWYYH8mRUi5yZo7UjRHKfxeYXB6hf5KzX3TvIgS4vX87GJJezWDY3zrKVCslUkrzmhDweP+tkspEszx14BsvOo4WckNXu/Rnqo1GSySwDSore3iT9Q0m692eZjU5jC+6cwzFnWwf25tGTWfr0JAUzTzKZZWggi5ZNsmn9EIWCzb7dGZJDzvtNZQokk1n25A6QKnjHY/v+PbQrcwAoZCCZz1LI9PHg8GMkc864A0o/vQ3ecU8NFQLHNB+xnfnlQwyn+ti5fz8betazuW8r6WSBc+a/3tlO+gCmZTK7YVbFc6xroN/dbldPP3pu/DdvfYNDJDNZunr7maV7cx7I9rMvtY9lLcsr5gJv6dru7vtAzyBaNl42phIHegdIJrNsy+2it8nbn13MH97Y+yKGZXBs+6qq2zAsg2QyixaJks7nMXNDY75uJOXI/yODZI0sUT06+kDJmKjV86uhIUYoVLktmGDaistqiC9awXnnncd55503KduupQ/Xj2XZNTu3wxnbdv5h1+65MRnI80tysFi2jb8op20p7jlVen61RtpY0LiIBQ0LK553Ciq2DRq6b5vq2M9RW6F/Tgd//q9P865P/y+RG/6P5lwWrjoDWxP/YSqB7Yl9OnvSwFYoLTJqWlbgNU3R3W1E1Zi7LKpF0UOK04okoZIzciioqGjOeEuhfUaY7c8b7N6VZvlCZz3DNEklHcEXCitYxRYii5Y0oJLDtqFgGoTUEPPqjwLguQPPYloW4aiz80zKcucuCvkMJ7MMD1jUN+jUN2runCNRlXBEJTXofHYFo0DBKmDbuHPdvS1ffO8w0G1hLbDRVacQUKqQwrahKdLEQG6Awdyg95nbzrHKGjmyRg5VUbFsi7xRCBz3gmkEjmlYi2JZNgm9ni67i/7MANsGtmHbsHt4N5mCU/Tn/p33UrAKvPvoK5z9lZxjOSPvbjdr5Cb0/ZY3nGORM/KB9R/Y9QB92V4yhQzHd5xYtl5Putvdt2EaY953tpDFtiGZT5LKp4npMe545TYMy+CiRW/mua5nMSyDla3HjjpnBRVN0SmUHG/JxJD/R8JQbpCbtt7IqrbjOK7jhEM9ncOK6Xh+1XRBn5Fobm5G0zR6enoCr/f19ZW5mRLJVOC1Ipl+8fASyatJeUGf6mM1VeP02Wcyu35O5eVuK5KxVYstRYxNzpnBwJ9vw5w3n7qbbuTCL/0a1TAD+yjdp/i90v7KW5F484vp8cDrsXAEUzFoaNTJm/myyrdNzTqhCHTty1HIF3tc2hbporicOSeCpTi/L176/7N33nGSlHX+/1TsnCaHzTknYMksUYISliQIohjO0wM9zzv19FDx9NCf4U7UUxFUDAcoSZIgOe2SWZbNOc9OTh2rK/z+qH6qqzrMdM9MT9rv+/Xa1/Z0V1c/VfX0zPOpzzcEbL0rdcfYOJhFfuRMi5JUAo5tAWDv7ig4XcTSVYG832XBkAAlyUFVDeiGBlVn50dEPKah7XC2ME7HUfM1F29GB7EWH0FXCIAp4hi5xY+a/M0AnFVcC51TT6Y4kl8yQzm3dG6CoinWPg/0mVFLiqYM2GbEXtAnrQ2tWqzVzkR3FiqKZarHbmx/r2A12I5Eds2iGmre68VQbGPuTHTAMAy0xVvRleyEYRjQDA2aoQ1YgZadT5EXIfFS5mbBxFq0EuOTXqUXhmEUrQxNHFtMWHEpyzIWL16MdevWWc/puo7169djxYoVYzcw4piBWpEQRGmU0+dyMGq9tfDLfvikbCgjX8b+mLjiOR76tOnoefgJqDNmYv6LG3DxN38DQUnniUf7zwIvFhSXedVibYLUI3msxxIvYdnyCJYc70FNowDN0OASsukaPMeD4zg0z5Ch6zp2bIll9m9YrUgap7ihQ0V1rYRgwO2o2mofG8/xMAwDciZS7ch+xarU+/rL3fjzb49gz+4oeAhYdVIo75gCIRE8eCQTGnZuj+LIYXMsIi9i+6YYoPMIhszPbjuk4tnHO7B/h+IQqay6a1LLppVoulM0MnHJhGJ2O6f4YiF3AVcQAHA0dhQAsLjGzEHc17sHQFa05YpTRtr2OUOtFstaeig5VXAj7oj1eHfPLsdr/Uqfo2pu7vj6lT4cjbUUHrNtnJ2JDkvEsrGw8ah6ccHKzqeQycUtNAaCGArse5D7fSCOTca1uIzFYti6dSu2bt0KADh06BC2bt2K9vZ2AMCNN96Ie++9Fw899BB2796Nb33rW0gmk1i7du1YDps4RrAWUORcEsSA5PWRHIa4PKHhRKydc2XJfS5z4TNjsRy8KVPR9dBj6JpahznrNuHyr/4KYtSZX+9sRVK4z2WuYGKLdwDwih7b8xKqq7yYPttj9XmUbG1VWP/NBct8ECRg784E+vtU6IaORNz8jOUnBNAwTcS8RT6InJgnKHMfN06XIMkcNr4Zxdvr+pFO69i5LYr33+tBPKahrs6D2obsGBiBkAjOENDXo2Ldix14fV2ndT7efKUHHAQsWOaHIABHD2h4+eluPPt4J2Q+uy+34IEsyEjZnEsjpx9nnbcOsiDn9ZzMFT7uzHmcFpiOZbXLEXaFUe9rwMq64+ASXDgaPwpN1yw3rpjQStueT2tDE5dsrKlcQWy7yXCo/6DjtfZEu3PbnDnz0M4H8Pd9TyKWzu8/aRfenckO9NtasdgF8oDi0uFcspYxQzt+grCjaMzJH1okADG5GNfictOmTbjssstw2WWXAQC+853v4LLLLsO9994LALjooovw1a9+FbfffjsuvfRSbN26FXfeeSeqqqrGcNTEsQI5lwRRGvlhscP7znAc5wz/LENcsrE4BGnTFNx7+xfQOncKpr27E3M++glwXZ3Wy3ZnUCziXBoo3OcScIbFSraFfTTjPrkEp7DjwUN2A4tX+mAYwJ4dcejIhsXW1Mu44MoIaurlvPEUeuzxGzjhtBBEQcALj3ejpysNgzMguQ1wABYtDRc8V6ZzKaCzPQ2D0xGNpqGmDezZlsSRgylU17pQ1ygjXCWBM8xz1NGmWMcHmH0vXYJZaZaJKbvLK/Iiwq4IJF7KC2XNFUrMuRR5ESvqVuGSOWtx/owLwXM83KIbhmE4nMHi4tLuXJa/GLbvN9epsb+m54jjtngbAFjtVoq5hv1KX95zduHdHm93ikuHG1pcXNrDmkVeGHR7gigVci4JO+O6oM+JJ56I7du3D7jN9ddfj+uvv36URkQQWZr8Taj3NaDJ3zTWQyGICUU5TmPxfXC2x+XnXHKwi1MOibAff/7xTVj79V9jysb3IV96IXr//DD0xiYI/OBhsbkulOQQl86wWCnjajKHyi7G2Bh1Q8e02V6sewfo6UzDMHTEYxo6/VvwwpFdCMhmaKjIixAGEZeqrqG6RkZgjhf7txo4sCcJAzJOPNOPqU21aA4WbkcRCJrOZWe7Ah0CDE5DrA948e0uAMCq1WEk0I0ZczxIKV6EoiJ6ulRoKdG6dW2KSzf60Y+kloSP9zlEVY2nBjzHQxZkxNIxpPU05IzYVjPbBeQAXIIbXrF4ZVWBM89pSstWly0mnOxuXW6eZynYhV4qZzFtF5S5odLtcbPvdqOvEZ2Jjrw5w0iqSfNcaArCmTBbNuaAHEC/0o8jscNFjqe4WGZjE3gBkiEPun3hfeh4dv/fMTU4HQuqFpb1XmLywhx8csIJYJw7lwQxngm5wjh/xoWocleP9VAIYlwzEmIyF66IoCr1fYXyKhW/Bw98/x/Rf+YaiNu3IXzx+eD37skr6MNCV+1ouTmXvC3nMqegjyvjwDGHSs5xLjmOg27ocHt5uNwc+vs0JFNpJBI6Ev5DOBo7it5ULwBTrDqL+NiPi8uMzRRZ02b6wIFHy6EUDBioaRIgCJwjhNdOMCyAh4D+Xg0Gp0GHhqMH0ji0P4naBhkzZ5uitGmqG1d/bAqmzzZFdKI3OwaZl+EWzZzSlJaEYRgwDANeyYsFVYuwPFNR1QrTtIk9PSO+Tmo8BRfN+hA4cHjuiU489KejedUT2THYF7fFnEvVJqiGshge6P0O59IW/pvSUuhOdsMv+60bA5qhIpaOWY6mfduXD72Iv+193NofE8GNmfxUe8it060tnkPJ9iVyonW+0gOE0RaiX+lDS6wFO7sHvvFPHFuw+VnuzQpickLikiAIghhVygljLUaxUNBBP7tQWKztedUt48iddyB52eUQDuxH+OLz4dqWXUizRXlu3mVeQR+bc+kW3dbnSbxkOZl2gWhH4ATohg7d0BGKSDAM4OC+OAxDB1ymkGDC1HRSixf0AbKiYtoMb7atCqejqoHPfF5hcRkIms9zBg+dU2FwOg7uNhePC5f5IQnOcOHaelMgJnqzwlsWXHBnqrym1JR1nkROxOrGE1Hvrc9sZ54Dew4kczj5jFB/85VevPT3Lrz3Zj9ajzgdQybmkzbnspjQsofCDmUxbH+PbugOQakVcS7bMwKyzlsPITNWVVfx2pFX8dS+JxwCMakm0J3sQlpPW4V7FE2ByIvW+bLv2y5wc4sg2bHOJydYc04ts1ouE6P9Sj9VmiUs2PzN/T4QxyYkLgmCIIiKMpLVYhkOEVXGn7JstViu4PMAwMtu9P/iLiQ+eiOEtlY0XXUVmjbtBc/xjmqzdtjCnbmcck6oKxOUIi9aTmZvpmy/vVos27fZC1JHKGIKvH2741C5JGSXOe6EahYdkkrIuWSLveZpHoiiWVvX5QXcGUM1V9wyAmEmpAXonClC9LS5zzkLvJboY8dVkxGXsZ7s87IgwZVxLpNaMnueeGe7l6xzmRU7dqetrSWFJx/KFsTZuTXueL8VFutoeVJYXA7Xucx1++zC0C767I/bMiGxdZ56a45ohoa4moBhGI5cte5UtyVg2XVm4cK13rq88dg/fyCxzKroirxgcy7LE5earSptv9KHdYdfwf6+fWXtg5h82L9HFBpLkLgkCIIgKspIVotl2AXlUHIu85xL2xgFXgAEAdEf/g/iN38RQk8PrvzSzzH31c0FtweyQmZxzRKsqj8e9b4Gx+tMUNqdy/60WZRFyi3okxmbZmgIRUzht3dPHGk+bonL7Fid4rJQ/iUTdC5JQvM0FzhDQLBKsISFUCQs1h9gzqUAjgMEwRSaLjeP5uluZxVdXkRNXaZQUZfTuXQJZhhwUk1agovLWX6wc+B0LrNiaMfmGHQdWLDUbEGza6uzoioTSymHc1k855JdP3UoBX1y3D4lp4hQbi9RwGwfApitdLLiUrc+v5DLCQBxNY60ZvajlHkZfskPr+TMPXV8/gAFeliOJ+tzycZbDvbtd3Rvx66endjYvgEAsLVzC7qSnUXeSYwkUVsrmvGAo0gWFfU55iFxSRAEQVSUka4WCzjFYTlhtkXFpW2M1v44DrFbbkXvt74DSUnjolt+Bffdvyn4fiYOgnIQS2qW5r1uOZeCZBWmYWGFuTmXdscxnHEuuzpSSPMJ+AO5jp/kEHnO/EtY+2GvTZvpAQcOwbBgCRGpiLgURQ4+v5l36fULZvVYQ8Ss+V4IApfTokVEpEYCLwD9HRy2vh/NVI6V4M6Iy5SWFZe550fOiB17ziXLYxU4AQf3maLxpDMj8AXMn1lrFiArLh1hsUWEVlpPQ+IliLw4ROcyV1ya+zAMA7qhW8LNsAlGVrwpIAezPSZ11dqXXVwytxIAEumEdU6YAK/1ON3LlP2cDZBzaQ+LZWHb5TqX9u339O4GAPSkenCgbz/ePPo63mvbUNb+iPLZ27sHD+74C/b17h3roVjY3XNqR0KQuCQIgiAqSiWcS85RLbb0/RWqFpu3v5zXkp+9CY/d8jEYgoDAv/0zvN/7DnjkFvTRMvsp/Gd1YfUizA7PQY27xlE9FsgPobU7jm4vD1nmYEBDoF7BrPk+x7a5fS4LFTqyC7oTzwhjxmwfZsx1OZysYpi9Lnl4/QJCEREceMxZ4HXs39yHBEHgUFUjQ4kL2LU1jm0bkuA53hYWm4KeadmSFxZrOZfZhSkbHwceh/YnwfNA81QX5izwwtCBvTuzobEsLNaZf5gvtAzDgKqrkAUZEi8NKecy1+1jC2s2B6RM/qhdMMbVOGSBtY7JhsWyMWqGXtCBT6hxy81lAjw3NDbXOR1s3E7nssywWJtgT6qmkDcMAxvb3wNgHuexzMb2DXhk10MVzTuMZtrQsLD68YAzLJacy2MdEpcEQRDEqDISzmUlqsUycoUPz/HwX/sZ7PjN/0IPBOH78f/DWd//PXg1v3hLMeHc4GvEqc2nQ+AFR/VYID8slglfVVfBgUPTNDd8QR6nf8gLUbQ7rBwEXih6LgodYyAk4riTwpDdnCWsxCI5lwAQCAngIMDnFzB3oQ/Hn1SF5SeY1U4Fh7g0z1ltgwwh0+ZCiZrPZQv6JK0KsLniXC5QLZYJmWgPEOvX0NDsgiTzmLvIFNib382GBrLPd7YiyReX7JglXoIsyEMqQJI9b05Ba4lL5lxmqsUm1SRUXYVP8jnGqtqcS83Q8opCAaaLyZwgNk/mReZjRd1KzKtakPl8u7gsoRUJJ0AUhpZzWaxIEguHTdpc13KIpWNFCwQl1STi6bi1XTkhoS8fehFvt745pDENhcPRw+hJ9VjFuiqBlY9rm+tjSe53SBlCex9ickHikiAIgqgoFSnoY8+5LONPGfvsgdzUQvtbXLMENedfg55Hn4LW0IgFj72CS//jToiJbJVEoDShKwmSo4iOq4hzyfa5dFUA1322EbzHuZhk+yjW55IrkpfKCgZptoI5xTBDYU1x6fEKWLYybAlcPifnEgDWfKAKp5xRC44DoIkwDMPRioQdU75zma0We7j/kCXIAODoAfP/KTPM8Nr5i31wuXlsez+GWNTpvibVgV08K8SUl7NFhMoMjWUCjolF5lyyz2MuKjvWuBpzbM/CiUup8up0Ls3xiryIZbUr4Jf8mc8fvP2KY3x8tlpsqa1I3jz6Og707c/bf25IN3Mzy6Ej0YEHdvwZmzs3FXz9r7sexP077oNu6Hhm/1N4cu/jJe1X1VXs7d2D3T27yh7TUGFCf6giuxSYwE8N4VxXgtzvT7rMCsTE5IPEJUEQBFFZKlHQZ4jOJQuhLce5tKMtWoyeJ55B98wmzHp9C67+l5/B29WXdS5LdGXtobHFCvo4MfIcGyZSBqsWa9/W/jwTWgJf/PzNX+KD3y+hrjErbKx9OqrFmmKlodmFsz9QD39AgJEWkUrpVkGflJay8ihzw5KZcDrYfwDPHngamzo2QjM0cByHw/vNBTsTl5LMY9nxAWiagb/e04r//f5+HNqbznzGwAV9LKEmSFb7k40d75WVv5bOEZesmAlzBkVesAQ8kM239GbEoFCg+FAxB9F0LlnOZX7LGqD0gj5MlIhceWGxvakebO3cgs2dmxxhsQAwOzzHMc80Qyso1ruSndjds7Pg/vuUXutzCsHE++HoIfSmehFPxwfMLWWw/Ntybh7s6t6J9nj74BsWgY01UVFxmT/Xx5LcMFhyLgkSlwRBEERFqUxBH3vO5RAK+qC4uBxsf/qUqXj8F7fg0NJZaNx2ANd97scI7zab2pcqnD22ip/5rUjy96FDRywdgyzI1vZMIAwmIoGcariZbdI5Tlsh5i/244rrmuDzi3nb5hb0YYTkMGo99Qimm9Hfq0EWZPAc76gWm3uOmcBm4YSxdAyqrsLQOOzYYoqzKdOzgvy4k0MAgB2bY2hrUfDyk71QVcNRWCRXCNmPWeQly7nc0bUNbxx9reg5yEWxxKXTObTnNNrFJQvp9GXCodl5swuQXJHnElyQeMkUlznOJSNbIbe0nEtHWGwZBX2iinlTI60peds3+BpR7akBkL2mua5dPB3H3/c9iVcPv4JtXVvz9q9qauY4BhZLO7q2WY9TJeT1MRdVN/SS3LSEmsC6I68MK4yWXauEVkFxmZnXQ3GJK0EqR7xTziVB4pIgCIKoKLmCqxwxWIwhV4vFwNViSx2bGg7i/h9+DlvPOQ7B1m5cc9N/Y8YbW0t+P3MueY7PK6hTsLBLOmHl7bH3MgfMLvK4IoKy0PliLt5ABX3M/WdfF/nC4jXX0TwpdB6qlTno7zUXwi7BhZSWsgROsWqxjLSuQDd0bNuQRE+nirmLvKiqyW7T0OzCvMU+BMMips1yI9EP7N4Wc7hUqq4iraUdz7FjZjmXjKSaLEmwANkQVuZcKlZBHyacTeeS5VzGMo4zayFSKCw2N5cxIAfhET1QNMUSa7kON3OOc4+5GNk+l6JVIbgU55I55oquWONcVrscS2qWotk/BctqlmNuZB6a/VMA5OcCvtbyqjXGt4++iZ5kt+N1JljtIc0Mex7m4ehh23sGd8fsYaMpffBry65jSkvCMAy8dOgF7Oou7LYWQtVV64ZCIl155zI5BOeyNd6K5w48U1SY7uvdm3d9BoNdCza/Sw2LrWTRI2JsIXFJEARBVJSRcCpzGWpYLBtLriAtVuhnoM/XZAlPfP2jWPfxC+CKp7D233+Fmj/cU9L7mUCUChTTsecyMqLpPgCmoHGLbsd7HQV9iuSiFnI02aJQKPB5dpzhr1kRycYpcELeNQ4Eze36+8wFpFt0Qzd0a0Gc+5m5wknR0ujsTGDfjiS8PgGXXFOfN65rPtmIL35zBtZe1wBRkLB7exy6nhUjmqHh0R2P4ok9j1nP2Qv6xHLCjPtSfQOdBtvYzPOWLy6zziAHLi8sljmdhcR8riPol/2Wu92bCRvNzW8sdN0KLdh1Q0d7vN0KJXW2Ihl8gR/N9GNVddUS1vXeBqyqPx48x6M5MAUnN50Kv2wen925PNR/EIf6DyEoB7Gsdjk0Q8PWri2O/TOHuZDjVbxXaXEB05fqRVTpdzihpbhp7Fyk9TT6lT7s692LXUVCeQthvzmRrKRzqTOnN1W0CFIx9vTsylyTg3mvRZV+vHTohbJcfDYOAPBLAevnw/2HBgxHbo+3455tfywaKk1MbEhcEgRBEBWlEs7lUKvFZvtcFs4DLUdcZgaC9R+7EI9/7aPQBR7N3/w2fP/xFUAbOCeMVYzNFQzFxsBCE72S33ovcxGdwrGwW1kodJYt0IVBnEvREQqbHxZbSCwFQuZz0T7zPLBQXhYiysbT05XGrm2xvJDPlJZEb48KzhBx3ClBS6za4XkOHMchUi1h6jQvNA2I9mfPe1pX0RnvRG+qB32ZcFsm4mRBRqOv2bG/PqVnwPPAYGIoIJuhuaz9hlYsLDbzOhOjPMfniXHmRvllPzyiB1MCU60bECxUOC8stkA4MxtbR6IDf931ILqTXXi//T38be9j2N+3LzM+oaycSzb3FFtYbKEKw+7MeO2u2LaMkFxZfxxmBGcCQJ6oTw/gxBUL2y3mXBqGgb/tfRzPHngaCdUuLgd3OtO28GYW+lyOu2YXsJUs6MNEsGEYZec3slDs3gJznd0E6S7TuWTnlt1cOBI9jGcPPI3XW9YXfU9nsgOGYZT9WZOVofTbHc+QuCQIgiAmHEOuFjtIK5KSxWVGjDKBte284/GXH90EtSoC7x2/QPBj14KL9hd9vzezEJdz8i2LjYEtvGVespxLsUDOpeO9RYWm+XypzmWhqrDm+/i85xiBkPkeFhbLjpO5SWyff72nFX/85RFseSfhEFxJNYl4TAMPHpHq4q1SGA31puDu68mKkZSatEJT2+JtALKLOJGXsKBqIc6fcSFObjrVfG/JzmW2oI8syOhX+mEYhuVcsrBYJi63be9APKbBK2Z7lOaecyaignIQV82/BrNCs23isgdA8bBY537M8/23vY+hN9WLt1vfxN7ePc73cYJ1zUrKubSJQXb9xAKf7RGYuDQFTE+yG0eiR+CTfJgWmA5vRlyzGwy5Y1Y0Jc+JK5Q3y7YtRCwdRUpLoTfVi4St52Yp+YnsXCiaYglNvUA7m2LYx5Rb0Kcr2WmJ++Firyxcrohl56FQqxR2EySlpSw38lD/Qbx06IUBRTYTuKx6MTuP+/v2FT3vbNxqGecXQNlO7UTgcP8h3LvtT2UVFRvvkLgkCIIgKordpBkJ1zJ3P2U5lyznskhBn3KdS/sC/8jSWdjz0P1Q586D6+9PInzxBeAPHyr4fsu5LBgWmz8GttiTBNnmXIp52zseD9CKBLALrYHFpegIi80+ZsdeUFyysNhe1bENE2Y8x0FVdRzYay4+n7i/HalYdqKk9TQScQ2cISAUKUFcNjJxmV0E2xf47QlTXDKxIvESBF5Ava8BQZfpQPYppYlL+z4CchCqriKuZiuYCjZn8tCBOF59tQU73lMccyVXXLLFu13Is+vMRGruXClUiEm1uVpsH0FX0Pm+jLMq8mJJ+XFRJXuThJ3TQtec3fRgOZfbus0CPAuqFoHjOMiCDJEXLRGTHbPthkBO+Gqu+GXntZi4tIum7mSX9bgUZ8g+DiZMC/VKLYZ97Lni8rHdj+DFg88PqwgPE+X2c5Iss3gOuznQV0hc2kQ/u9Gyo3s79vXuRVu8teg+lZywWIZu6NjTu7vge6xiSyVU/WVje/nQi7h325/w5N4nSnpPqW7g0ViLdQOlJXrEcnDttMXbSs7JLpeezM2jntTkcXFJXBIEQRAVZSRaj+RSyIkr5315BX04pxM5GMwBzRMJ02eg5/GnoZy+BuLm9xE5bw3E1/LDw8LuCEReRMRdlT/GAn+amViQeRmeHOeyWJ9L+3kp1POSLVIHzbnk7KIoP+eyUIgkC4tlOZcshFPJFFbhOR5HDqagqQZEiYOSMrB3q3MxmIjp4CEgXDVw2C4ANDbli8u4bZHIFsfZsE57dVsmLktrfK/YigIFZVO49St9lugUedG6hi2tfTA4A4kup+uoKTxefa4LLYfMRXZWXGavk9dWURgo5FzmzxNNVx3ujkf0WCLVep8tVzZXPG1s34DXW17D0VgLALM4SyHRVEjYsrDYREaktGfO+azw7OwxiV4omuJwwuwCN7diLHM1m/xNmB2egwVVCwEUb3fRa7uGncnO7H5LKOhjzz+NZcRlOWGx9lBdRVOsmw2dic6C25TDgb79uH/Hfdjbu8cxpnJ7XTJR15/uz2vnYnd6+xVnGHkhp5PBvg8e0ZO96ZaZY7u6dxR8D5tHpYr3Hd3bsLd3D9J6Gm3x1kHbxWzv2oZ7t/0JB/r2D7gdq2T8RstriCr9eHr/U3jr6BuObXpTPXhy7+N4p/WtksZaKtmbBUrm/8nTH5TEJUEQBFFR7OKyEs5lWdViM9vm5rzxQ8y5LFTp1QhH0Hvvg0jc+CnwHe0IX/EhuP/wO8d2HtGDq+dfi+MbVhfddyEkXkSdtx4+yYcGb0PmWAqfi2K9O5nQtMTlIDmXfAG3EjDDQmeFZ2NeZH7ee/xBFharOd7HFqICJ+DAHnOBuWRlphBM1HnciZjpXAbDg4vLujoPeA7o7VGRTutIK7pDFPWmepFUk7ZWJNl9ukW3I7x1MFRdhciL4DgOAdl0a/qVfmi6bh0bO/dHu3sAAKk+CWlFt/ZxZL+Crg4V+3ebi322wLRfsyn+qYi4IwAAAwaO7FGhqtl9cLpghf0y0nraIZJVXcsTSOzYJUFyVDhNqklsaHsX27u24u/7nkRrvDUvP1IZoMIwcy7NqsA6elO9cItuR09XJpjj6Ri6kp1QddXhGDInLqkmEU1HbZV5/Ti1+XRUu6vN4yziStkdObtzVUpBH7tgZdVey3MunWOKq2b14gO2cNihVkjttfUCVR1hsaWLS1VXre+8YRjoz3Hq7W4rc/HZOewd4MaL1SpHcFk55M2BKahyV6Mn1eNwkK1xa86bKoPBbg6x3zWFCgHphm591o6Ma/7CwecG3C875lg6armXua4zE9YDCexcBjuuI9HDuH/Hfdjds9O6JqVW2Z0IkLgkCIIgKgrncNBGxsUcalhsjacWPsmHOq+z+igb43DFpXWokoTo93+M/h/+BAAQ+NLn4f/KvwDp7AKiWAuQQtViGZIgIyAHccW8qzEjZBZIcRT0GSQUFsgKPSakBnMu7YVjcovInNZ8BuZG5uW/R+Th8fHo7zOdtNz2GzzH48Aec4G5eKUp0IyoDyIvIigHYRgGEgkdXq8ISRr8mrhkCYGQCCVl4O8Pd+Clp/NDzNoTbZZYya3SG5RDUHUVMTU/JC6XtJ62rh1zLvuUXkfOJRP53T3mQpXXRXS0Za/90UPmOFiOKFuM2q+FLMi4cOaHMDcyD2J3I/7vF+149dludLYr+NUPD+BH39iPV57pdghMzdAcjp1mqGa/UNs27DOyRX0K95nsTfY48i3tFJq7LOcyocbRl+qFbugIu8KObVje5f6+fXhs9yPY3PG+wzFkIvCFg8/hsd1/zROzzL1Virg8xURQSWGxtsU9E9VMeAPm98V+w0LRFDy09SFs69zqGDvj2f1P48/b78H27mx/ztyWM6XCxHRKUxyCd7DeoHZyCyblniu7c9lrFcAyP7d/QOfSPG5ZkKyiU/XeBkwLTgPgbCFjjSUj4ErJadUNHR2JDsiCjBV1q8BzPPb17c0TcFs7t+DR3X9FS/QIwq6I9fyRAp/PYMeXUBOWUM91EJnYjJfwuwEww7Hv2fZHbLf1Zc2lKyOCe1I9lqgk55IgCIIgSsQuKEeqLclQxWW1pxpXzLsaDb7GgvsbSNgV2j43PDBXPCdvuBE9DzwGvaYWnt/eidCVl4BrHzikyxHOmnO+ciuG2scy4OMB3OPB+1zancvBXURGIChCTRtIJnRbAZnMIt/gcHBvAoLIYeZcD2QXh0jXclw8+1IEXUEkEzoMAwj48wseFULkRATC5jh1A4jHNKhqJpQ4I0j6Un02Eec8jhDLu0z14kj0MB7d/VdHriFDN3Tohm4Js4AcQuuRFB55eB9i8awQYue4t9dceHPg0d5qPlZSOjpazEV1KmUgmdQsgVXo2pzcdCqmJk4EAOzblcD7b/ej5VAK0AT0dKlQlaxwVHUVXY4wzDQO7I/h7w93YO8uUzxwHIeONgVKwulg5zpvdjfHDs/xBb9zAi9AFmQk1aSVRxZ2OcO+vZkQXVZkqFfpdRTtSWV6XTLXj+W/sfPN5n8xJ5IVP8qltII++fm6diH3est6/GX7vdY5aY0dRXu8He+2vZ0JH86GhwKm+6cbukPYsmPVdA3vt79XVLznwsR0PCcfMKEmSy5yk3sOcvMuB3IuB8pHZqLVLXqswl113no0ZfqeHo7m552zsZRS0KczYTrctZ5auEU3pgamQdGUvP2yuRJNRx3Cc0vnpqL7VizRnrKOPzd0mYnuUnuXtsfbYRgGDkfz270wmLhOa+mscznEkOnxCIlLgiAIoqJUos+lfb/lVIstui9W6KdEoZptw+EUo4Xer550MrqffhHpZSsgr38VkfPPhPj+e0X3XahtCKNQfmOx7e1C1x7Oaj9fHMcNeszFCvoMBsu77OtVLTGnaAr2707gD/97FIm4juZpLogij0BIhJYU4TL8kHgZ8bi56AwG8sV04TGKCIWd5yaVNF0n1l9S1dNWCKaUI5JZm5CEGseh/kPoTnahLeGsMAvYczaZuAxg764E9hzswJb3zQW4PSy2p8dcRHPg0X5UQX+fih1bYoCWPed9PdnQ0GIh3j1d5utHDqZwMFMEyec1x5BI6NY5YC4PQ9VVHDoYg6IY2PROFO+81ounHm7Hz27bj+ce6YGqGtZnM8HGhHY0HbUENnNo2ecUwy24kdbT6EyaYyjmXDLxqWgph2PDnEGWD8jcInZTg90oKLQQT2kpJNVkTsh8pgBQCQt3+z7Z5xqGAd3Q0a/0YWfPDvP8ZvL9ssegYFfPzrzzB5i5og2+Bmt+MdGzv38f3m17Bw/u+Mug4zLflxGXOcWQtndvxT3b/ojWAQruMJigYaHc+c5lAhIvZULE+2AYhnVtYulY0VDPhJoAz/FwCS6sqFuJlfXHodpTjWp3NdyiG23xVsd3yB6em5v3WQhWjKvWW+f4n7XIye436wDab1jY253s6NqO+7b9n601kTkuwzCs85EbnspyIzVDK+kmBXO9e4rc6ACy81zRFWsMA/VunWiQuCQIgiBGjZEs7sOXKQgHIlvQp7R9FSvoU+z49OYp6HnkSSQvvwrCoYMIf+gDcD10f8FtBxKXsjCwuCyWi1qooA9QuFdi/v5t4rKE7Rn1jaYQ2L0tbgmSzu443n+nH6mEgdoGGaecZYav2QsASbyERCwjLoOlOZccx2HmbB8WLPWhulYCbwg2cWku7NN6umDOpfmzeV4VLW0t9nRdx9bOLbhv+/+hKxNqyhaMrKiSW3Qj2cdB4WPYurkXBgwIfFZc9vZnnEuDx+YNUfz3t/bi/ruPmlVwM7mkprhkjmoxcZkJXU3q2LMzDlHisGCRKWLYuWK9RDtt4lLTVcQT2YX94QMprH+hBzCAZJTDnh1xdPcmoaR0SxyxIlOxdMxyrOyFpwYUlxnXriVqFgQKucOO1705xYVSmlKwoI/VIzSzsGfOpRUWm7MQ39W90yrEUpcRH0C2PUYpOZd2kWt38TRdw+aOTZZDyHIVu23VPbd1bbE+I2gT1EtrV+ADMy7E9OAMAFlxaRdVrbGjeWM51H8Qe3p2WT8zccacS+aOGoYBVVexv3ffoMfHzi1LCbC33lF1FYqmwCN6rBDxPqXX4YoWKnjFQoVZvm2TvxlLa5YBML+Tzf4pMAwDLbEj1nvs7VOKtZqxw/It2bhdRW4wsOun2r7nPMcjoSas872vbw9SWsqqYmufR8z1zhXR9nDhUkJjWWh9VIkWzaNk+0xrijVWNWf+5eZ+TiRIXBIEQRAVpRJhsUD57UNGcl9M2OaGiQ54fF4v+n9xJ6Lf+E8gmUTwM5+A75avOvIwc8eQu5CXCobF2lzJor0t+SLbD368jt6WZYTFLjvedLs2vNEHgRNgGAbefqMThgGcelYV/umr07Fgqbn4t7cukQQJibgpLoLB0pxLwMy7nLvQh3BEBm+ISOaIS7N4DBOXTpGezT/MhqlphobeVA8Mw7BEJVvwTwvMAACkFR1qvwc6p6Gtuxe9XSoETgAHmCHBqTRcbg4cBHS1p6HrgCRz8LhFzFmQrXDLPjP3evT1qtB1w3IuAcDQgeZpblTVyuAMDokEE5dua9xssZ/WVUTjpuj57FVn44azz8ep50Tw0c82QeBE7NgUw8+/vwd//l2LFdYZyeSrxdJRa8Fd46m1Pn+gGwzhTAEiJsYjttw3AHmVaxUt5ax+mhFoTFxmw2IzziWfLyx0Q8drLeuwO3Ntaj111pwNyAFwHFdSGwn74t4uqhJqHLtsBWSY4O7JOGJhdwT9Sr/lHjK31iN6UOcxhS4bDxNT9mN+r/3dvLG83rIerx55JS8fjwkO5sYzcp34QiQyrhtrvVOo9YpX8lrOZldOIZ5CfWCTmhmW6xY8ea8BptgEzF6OueMASnQu423gOM6ag9meuU5xaXcu2eOwbS4bhmEd08H+g5lts/tgxYA0Q3Pk2sZtIq+U0Fh7K5Ni7mVSZc5ldqx2d/1vex/D0/ueGvSzxiskLgmCIIjKUoGCPuZuucz/IxEWW15BH49kLqaYcMmOaZD3cxwSN30Bvfc8AD0SgfdX/4vw2g+CP9pScB+54lIWBs65LFYttliLksHyLQGne1rK9oyGZhfqm2S0tSjobtPQ05lGV4eKYEjAytVO0RG0hdDKvGy5caFQac6lfWwetwQeApScsFh7uFyeaM84wvaFqaqrVs5dSjVF0L7evRA4wSqm1NmRhqz5wQFI8b04uC9p5VwmEhp0aAiGJPh85jmsa5Tx1dtm48Mfn4LqevMz7c6lPWT54L4EfvzNvXjtxR70djvdlCkz3AiFRfAQLCFud7VrPDUATDETj5vHc/r843DxmhU47+IazJ7vw7IVERgAdE7FkYMpy9nyiF54RA/iahzRdBReyWvNd/PcFe87uqRmqXVuvZI3b77mtldJqklHXqPV/5A5lywsNiNoJcthzi7EY+molQfrFt2YGpxufS/dogcyL0PRFGxoewc7urYXHXu6SNgny51k4a79Sn+mGm4P3KI7z5Vs9DVC4iUsqF6UjYjInBNW0Mcu7I7GjuaFWyYzuZQsVDO3IFHu751UCWG/zDH0274PDOYQe0SvdWMiN+e4kHPJ9smc/Fya/M3gOM6RH5nU7M7lwOJS0zUk1AT8kt+aV8Xybtn1S9vCbsMZ5zyajqJf6bPOY3eyC1Gl33EOCoW/A84819yw5ELYz1ux3pXsHKQ1xfrcbGGtVF7I70SDxCVBEARRUSaSc8mV+GdxcfUSXDL7MtRn2oEwShXP6bPPRfczLyO9YiWkN15D5OzTIL36sjkW2xjshWfsuXx2ivW5dORcFnErSxGLjlYkJRY8YqxYbbqX2zem0NWZ6Vk4zQ1RcB5HIJRtXSIJsiWYQmU4l8xR83lkcAaPZMbRy4bFKgX7XL7+Ug/2bGG95lRrkaob2TYeaV3Bgf79SOtpTAtOt0RTZ5sC0XCjYaoLaT6BrnbFuk6JuAadU+Hx8qipMxff515cA0HgIAkiXC4Bbg+HaL+GtOps2QLAqqb7zmt90FQDXl/2takz3QhFRHCGgGRcg8AJDtFX7TbFZVpLI55U4JakvKq7p5xeizMvqALcCWiqYYUIyoIMn+SHYRgwDANhV9hRSGqgOeOX/FhUvRhAfr4lYLp59t8B7Hqw82nlXGZEB3PqmKjkOA6yIDsW//2Zxfy04HRcPf9a1HhqrGvuElxwCS6ouoqN7e/h7dY3Ha6UnWLtTZjoDrnC4DkefUov+jOCs8pThVqbq8tzPEKuMK5ZcJ0VHgpk52Z2PjmjFewFczRds46/NyNO1JztZUHG/KqFVrhyKWG/SevmgQciLzrcUyaaPKIH7owDzs4ruzaFXDgmit1iYefSJbhQ66lDQk1Y/T7tQrpYHuc7rW/hraNvWDcXvDYxbc+7jaVjeK/tXSia4gyL1dIQOMES0rF0zKqizH7/Hew/WDRsle1LN5wtjXILKrFj2NTxPh7e+QD29u5xCFCW79keb3fkQrNzoNh+JymakmkRY5535iBPREhcEgRBEBXFIS5HMufSEpfD3ycbl1BiwRqe4xF2R/LEXjnHp0+dhp5H/47EDZ8A39GO0JWXwPOznzgqu9oX8lKBfEs2lqE/Hvx4Ha1IynAuAWDpcQGAA/ZsS6K7w1y8V9VIeSLVyrnsVSHzEvp7VXAAIpHCjkghmDvk88rgICKVMkMbvZa4NB1CexuS/j4Vf3uwHc8/1gMDhqPoj2ZkF/lJNWXlxjGnCgA62tIQDRdqaiWILh3Rfg1mbV4eiZgOndPg8fFYc24NrvtME+Yt8jnGGq6SYBhAV+bc2J1n9lxHq/n/9DkeeHzm61NnuBG0OZcCLziOK+KuMgVuMo20psLryRfpzcEpCARFJLwtSKV0y4VyCS6HMxaUw1auIzB4UaclNcswv2ohltjEFYPneEu82GGfp2R6ZDJYeKpom/sSL0HJOD5pLV1wMc7cansFU8AUDfZFvp1irSBY+KXMywjIASTVJNriZpGZiDuCGm9WXNpFsJ3csFh2A4P1Me23uYJ2MWMvGmRH4ESc2HgSzpiyJvN6CeIyc33dghsCJzhcw4TlQHqt8GomeBt9TRA4AYf7D+WJsYTG3ldYXAJmz0sAOJJxL+05l/Zr3ZfqRXeyCwk1gU0d72NL52YrFNeeq2sPi93ZvR3vtW/Awf792bBYLQ3N0CDyIvySOSdi6aiVizwnPNcaT7FCT+xGQ65TWci5XHfkFbzT+hb6lD5sbN8AwzAsAdwaP4qn9z2Jv+19DH/f9zcrt5Udd1pLOwS2qqtWTi+JS4IgCIIoAlckD3C4WOJyBP6UDdUFzRWTZR+fy4XoD/8Hfbf/ApAk+L99CxZ//quQo+YCzL6Qz+3NWOgznX0u7Y5xkYI+JYXFFu7pWQr+gIjmqS5Ee4DWFgUcB4QiUt55sovLZIxHIqHDHxLgdhUPwczFCsf0Zgr65DqXmYWc/TgO7DHPs5oUEI9qmaI/trBYm3PJFuB+OZvv1tmmQNBd8AdEBEIidB3o7zayziXS8HgFhEIuzF2YFWzsnNY1mgvl1iOZ/p+269fV7lzIR6pEXHZtPS69tg4+v4hgWARnmJ9jOpfZ4wq5QhB5Ef2xJAxOh8+bLy7rPHXwiB4kXZ1II4F4kvUrlB3iMuQKOXL6ctu45CLypvDJbffDCLpC4DjOsXj2iB7wHI+klizoLNpvcLCF++N7HsETex+1wjUDtoq27LFP8lkFYBhHbcVl7BQTl0y4Cbxojflg/34AQJWnCi7BZT3vEgqHcbObVmpO8ZYqdzWAbF9J++eZz/cUHBv7vcBysHPzDxl7endbQpjl+bltziUT7yzn0iN5rLBYJnJ8kg/TQzOQ1tPY17fXsX+Wg1jMuQSA5kze5aGMuLTnXKq2gj5P738Kf9v7OPb07LaeY8V87PPRHhbLvpNJNVt1OK0r5k0kQbK+q9F01MoDnhWeYz1XzK1m4p8dH7u+iQLikl07juOsx/XeBvAcj+5kF1piZsqDqquIKv2OfaT1tGO+K7pihdUyYTwRIXFJEARBVJSRdCvtjGS1WFjVYssL+8x1KIYa9pu65jp0P/EstBkzUf3Mi7j+H3+I2l2HHQv5QsV8AKf7aHde7YJSKOJWllIdl+2z3HPDmLvIB94QoOtmbqUo5rc/sQr69KnoPGIutiJVUlmtT8TM+HxeGTwEJJM6OHCW66Hopism8iI0zYCmGVboKW+I6O1SrZA6ANAMHVpm4ZfSklYom8vmvHW0KhANF3xBAf7MMXS3aTB0oLszbTqX3vxwZiYEWUXd1hbFqjTL6MwRl+EqCfOX+LHyRDP3T5J4eNxmCLHACdZc4TkeATkIgRMQzfTe9Pny5w7HcZgenAlJAvqlFkSTzLl0OwrGhF1hx42NYg56qZzUeDLOmXZeTgVaCS7BBUVTCufh6Tw2b+hHKqlbzlW/0o/eVK9VLMYuLudHFmDN1LMwIzgzz50/GmtBIYqFaCYzYk/kBeszjkRNgRrxmM5jbrGZXLJhseaxpXPEpT0sVrEJyZ5UD1RdzRPc7HowMZvrXKq6ihcPPo9XDr2E9UdeyRxHAhzHwSW4bE6qOZ7WmCniAlIQroy4ZMJNFmTMjcwHAOzoduasstxBd5GcS3aMHtGDjkQ7kmrSkXPJWr30JLutdif2AkesSJI9LFYSzJtTiqY4elOy68eeEznREqVRJYquZBdEXkSNpwYCJyCpJh3n2nn+WAElUwiy6xtL54tLtm2tJ1ulOCAHrPm9pGap5ZZG01FrPhX7XAqLJQiCIIgyqIhzORI5l5k/h+UWB8oVzsMR0tqSpeh++kV0nbMGkcMd+Mjnfox59z8FZNyFQm1IgAEK+hRpP1K+cymWvG0h5i32gYe5wK+qkfLGAGRzLvt6VbRnxGW4WiopbNcaZ2Z8/oy4TCV1uEQX9u5I4rH72nHwUMYd0gX8/Hv7cddPDmLfLnOxyBsierpVK3QWcOZcKlrayr1jYZ2GYaCjLQ236IHbwyOYOYbWQ2k8+VAnOtrScHkNhCJi3vEyoe72mC1J4lENsT7NumZpRUdfj1PshKvyr7/PJ8MwgHSKs4R4UA6C53hIvIRkpgdmwFtY9MwIzYQo8eiTDiGWMo8v17kMukKOGxvltKMpRMgVRpO/2eHySRlxqRt6nlDSdQO//8lR/OV3R/HWut48B7+vQBihJEiYHpwBnuMtx0rkRciCjLZ4G1RdxZHoYTy+51FE01FoulY0F5ONR+REBGVT2OuGjoi7CnU+U1Aw8ZHrkjLyq8VmxKXHFJf9dnFpO/6oEi3olrH8WoE3HevcsNnNHe9jf98+AKazZhgGkmoSLsEFjuOs96f1NFpjR9GRaEfEHUGttxbuHIEs8TLqvfUIu8LoTHRYbiqQzR30FKkWy5gSmArDMHAkdtgKi2XfAU3XHH067SK/I2H2FM1tYcNCo9nnJ21Vhy1xyUvWTZKORDsUTUG1p8YMzRbdSGmpouHE7HyyfYVdYQicUDTnkuM4NPiy+fc+yY81U8/CRbMuxqr64xFwmTcl+pV+R1hw/uem0Z8mcUkQBEEQA8JVrFrs0ARhIVgIabkhtrlO5XCFrhEKY9cv/gcvfPYycIaBFd/7JS7+1m/hisaLOpeOYj2wC83y2pIUY7jOZUOzC/6AOfZwDXPXnPsSRR5en4D+Xg3th+zOZelChm0rCgI8LhmphFlBdM+OOHiIaG0zF3X7tivoak/jyIEUWo8oEAQuIy7TULSU5eaYjlGmWqyWREpLQeIlbH4nhiMHk4j2a1BSOupqAuDAWc7l269G0dWqIVwl4tzLwpAkPu/csePnOA51TVn3kl2brk5TfNQ3Za95uCr/XAT8pkhIxTnr+EOZQjoCL2aLGhVwLgGg1lMLWRKRFHoQT6as8Fq2KJcFGR7R4xB0peYlD4bsyOPM3kjI7WH53lt96Gozb7C0taQKVkyWBbloSOr8qoUAgBMaTkSDrxG6oaM93oYD/QfQmejA0WiLlXtXKHfQEpe8hKDNHT2p6RTrejX4GsBxnNXmI5dstVhnzqVf8kMWZPSl+qwQ1VzBUyhH1JGLzUtQdMXRPoWFoLLr1pPqhm7o1vFZYldXsaljIwBgcc1SAE5nHsje1Gr0NwEAOpOdaI23YmP7Bkv4DuRcAs6WJMyZYyGrqqFabjK7tuz7wgR/busVl+CCZmiIpc2qqnbRx4ShlKna7JW81n5mh8yQWNYSpz+nIi4jK1SzLVo8kgepnJxgwHR/JV6y+nCa4/XBL/mtqs2BTIhrNN2fVxnY+blp9Ct94DgOfhKXBEEQBFGYSlWLtcTEEB01O9mWAeWKy6EX9CkGzwt4++qzcO/tX0CsuQHzXnoPH/30D1C3ZU/h7css4lNuaxGX4MLM0CzMicwr6zisz+Y5nHBSBG4Ph9o6OW88jEBIgKYaOLJXgyAA/qBQlqBljprAifB5RegGwGkSertV8IaIVEKHqhrY/l4S9ss0f4kPsiSht0u1WjIA5qKR5YQl1AQUTUEqKuLBP7biiQfa0dtlvlZb5bPGDwBqigNncFi8wg85o1Vyi07Z2yrU1JrnpLc7DT4z/1i+5bRZHrMAksghVMC59PszOXexbNg0q9Iq8mLWufQXFpccxyEoB6FxKmKphLW4D8pByIJsVUMW+Gxor8iJUFUd8djgPQoHQnY4l6IlWu29B1XVwOH9Kcv5Tib0gjdZ7CGxuSyqXoxL56zF3Mg869zE1ZiVbxdLRy0nMbcPJ5DNVRR5EdWeGgTlIJbULEWdNxsGGXFX4ZLZl2Fl3XEFx5BbLZZ9nsRLCLnCplDKVEZl+ZNs7rfH2/P2Zxf4LsEFwzCsUNuUlkJnogM+yWeJOpb3x/L4WAh5NB3F4ehh+CQfZgRnWvvjHO2KzHlXlQnz7Ep04s2W17Gh7V0czRS5KnTe7DT6msBzPPb27kEsHUODryHbl1U3xSXP8Tip8RQAwILqhY7357awYXOHOYvxAuGqbNz2GyWshZBbNN+vGzpkQba+j+ycs3Npb9HiFc3vOat6y0jrZmXaGk+tdd5yxTATilElOqBzmdASiKfj8IreEY3yGW0m7sgJgiCICYFTcI2cuDy+fjVObT6tqGNRDlb+ZrnOZW5Y7AiIZ7aoOLpwOl6+7xfYceZKhI524YxPfBmen98O6HrB7c3HNrcShR1K+zalirfTp6zBkoyzMRTOPr8e511cC5ebuaD553nJSnMBZqiCGUrKc5bjUwqC7WaDLxMGqiUFU7QZIhJxHYf2J6AkOCw7LoAlq8wF4Kx5XjQ2u6GnefT02StZalaTd+aGdGXS9bo70+jrNRegkbDbDOt0CXC5OPAQEKl2IVIjWQWBcp1adt5dgsuqAJtM6NY162zPVtb98Ccacf1nmuBy5Z+zYCCzyI4CM0OzsKBqEeZVLQBgCrbBxCUAq3+jmjYsB0oSJFw653Kc1nyGtZ3ES9B1A+uf68f/+/oe/Ogbe9F+dPD+isVw8c6wWDYn7MVrujsVQOcxbWbGaepTrdBTe15bcABxydqDmJ/DisFkCzdF01HrsVfKdy5ZOLTIC5AFGZfNvQKr6o/P2y7kChe9WcNClpkTnnXXsm5oX6YYDBPX1RnXi4WG2rE7yUxo7evdi/t33Id3294BYAo6Ft7MihgFM+GZTHgx5y+cabMCZNq92AQ8e8zyQ9vibehOdWWOR7fyOBmGYaCjVYGmZZ1UWZAdYnxpzXLrnHQmO5HSUqjx1GJGaCY+svCjjkrDhSoM56YIsJYldti1YO1IZoZmZ3vh2sQw648K2NzUzHxI2qrhMmG67sjL2bxsXYNhGJB4CbIgo9pt5nPmhrSyMUTT/Uhk5lNur1IA6Mm0LpnIIbEAiUuCIAiiwlQqLLbWW4vZmUIJwyXrXJZZ0Ge41WILYBeFetCPp279NJ7+4tUwBAH+W/8DweuuAteRDZUr17l0FvoZvutbCgIvDFo1+LRzI7j4w3VwySKap3oz4yvDucxcO5EX4c+EgabjguVcJhMa+no08IaARcv9+NDVdbjkmjqsODGIpqkus6hPt7MtQG5xmc5ML/hYv2a5i8GwaC1OAyEZHHgsXGqGyjLRkpdzmRmrLLjg9mRdOSssNrPvqloJ9U0uzJxb2BmqqzfFUOuhNNyiG6sbT7RCHwVORDLOxGXxGzBhtyku02nD4Qp6RI+jeI8syDhyMImt7yagKGZBpI1v92HvzjiefKjdISZKITcsNtc1AsxWL7whYvEKs6VNtE+zxljnrbdCEUtdjDNRZm85E0tHrTBViZfzBKJiOYlD/65YYbG2kGuRFy3nGMjmjrJWJEzM9WR6XeaGwjLYedzduwvxdBw7urYBABr8jZZjxhxGljPK9hW35SfasYcHszY0rM9nR6LdEYLrFtzWd3vvzjh++YMD+Nlt+/Hc406Hr8lvtiSp9tSg0d9k3XBhxYSY+BR5ES7BZR2XT/Ll3bTLLZxUKNSUnaMZoZmocldjcab/Khtzdl8y3JmcUTaPsr0n09Y5WFC1EFMCU9Cb6sXGjg2O7dj1PWPqmbhg5gfzQrfdohuyIDtyLu03RKzvfSY/eCAnfiJA4pIgCIKoKJUKix1Jsnfty/uz6BRtI3NsuaKQ43hsvORUvHXfr6HOnQfXs08jcvapkF55ydqOLcyLjadYu5JyqrEOF0duaIHzzHEcjjs5hH//3mwsWBgGkA3fKwV7WCwTl6kYj74eFTxM5zIe1cBDQqRGgtstYNVJIYgih0BQBA8RaSW7aNYM3XIuAUDTDHTaCo0e2m8uaENh0WrFMHeBH0tW+TF/cSCzDy3v2O0/u0UXBIGDLHNIJjTrvLBKsdU1xR1HAGhs8sDl4tB6WMsLUxUzOZcch4KtSBhhTxiA6VwOFAUgciL2bE+ANwRceo0pBDa9G8WDf2zFay/2WG1dSsWepyfyoiU27L0UO9sU8BAwa74HPr+AaJ+KWk89XIILs8NzMC8yz3S8MiGdg8HEsqIrlnCwt6SQBDmvYBATEMMJv88Ni03raWt/LE+TuVZMzFZ7qhzvsTtddqHLrll3ssvxmY2+JssxY/tggoaJIdZqI1cMuWzXRuazRbjCrkjesbG5H4tquO+3LVZbnffe6oOuZ79PcyPzMCs82wp9ZcdvtUHJCa1lIbzeAg5fsaq8dtj+pwam4UOzL3HkMNpbp4h251Iyz49ia2sCZN3b1Q0nAchWC2Zh82zO+CU/qjNFmnLxSX6oumoVRArY8nNZ2C8LuZ3I+ZYAiUuCIAiiwlTKuRxJmKgsv6CP7fEIHZtDICLbtiO9YCG6//4iktdcB+FoC0JXXAzfrbcAqVRBcex0KAsLu6EW6RkKzjEU/1yez4blleMkZyto8vBlCt10thgwDLMarKoa6Os1nbBItVNAuNw8eENEOp0NOc51Lrs6FHDp7CL84F5TXAbDouWENDd7ceUNjXDJzhDPYq1ImAvn8vDQNEBJmLmXB/Ym4PHxiNQM3PZDEkQ0NLvA6Ty2b4o6X9R4pFIGPB4eslh8PxFv2DzetD6guOxqBXp7VNQ3eLFidRCNU13o7kijv9dcYOe2ThkMp3OZzblkxXVU1UBPlwqvW0ZtvWz1EfUZEXx4wUfQ4GtExF2Fi2Z9CGF3vugpBBMBZlXgbF4d+0yJF61tcgVXsT6zpWAvoKMbOnRDt/aXDX81oxGYuAy5Io55YxeX9ptCbJx2Edroa4RH9OSFXjJHjN20YcIu99gclXxt56HK1j5mSsB0Ij0ZYfbsYx1IxnUcd0oQM+Z4EO3TcGhf1lF0CS6c1nyGJb4EawxM4DrHwFzE3EqxQFbwDsRA18udI55nhGai1luHRr/Zm1W1nMts+DJgij6P6EFPqtvRB7eUm3RM6LNemHbnkuVzMtea5QZPVEhcEgRBEKPGeHUumbNQ7gLSLihHqgADnyME2X4lQQJ8PvTf/gv0/eo3MAJBeH/+E0QuOBs1+8ywN0eepSPnsnCeZTk5jcPF7vwMdq6YM5EbrlfK/kVORH2tuSDduyUT0mhkqqomDfi8EmTZ+flMXKrprNNir9ppwOyJKegu+ALm+YtFTeEZDIt5VTjZ8bHwQT5n8RlxVyHkCqHZ3wyBE+DJhMbGozreeKUXhg4cf0oIgjDw90XgBDRMcYE3BGx5zykuE1Hzvd6AMGD7kCpfNiy2UCVWxv4d5rk84aQqcByHxcudRUtYnmipyEJuzmWmIJKWxrZNUTz7WAcMA2hoMMMiA0Hz9f6+oRcSYkIprSmWoNQN3cp3lHjJmnO5lWOH812xjs1QbU5o1u2yCxY2LrfgchSysReJsf+esgtBt+jG2rlX4tzp5xd8D9sfe7+9l6Udu7Nnz79kOa4SL2F57SozH1IL4ZF7W/HO633w+Hic88EaLMzMja0bc2542M9J5nyyMNHcQk0s/zG3mI853lKcy+K/O3LDfmeFZuPCmR+0RB5zz9N6GhIvOf5u1XrrzLzSRLsVTl3K7yl76Hadt94xhtybAJECDvFEgsQlQRAEUVEcYbHj1LmcGZqFVfXHY3poRlnvq8Sx5YbFsoWpfZGXWnslul9YB+XU0yFufh9Xf/q/sPKBFyEUEbtczj4Zo+lc2sXlYJ97XP3xWN14UsHWEMVo9DWizluP5sBUHD9vPupTC8F3mE4Eb2Q/OxLOX5i6PDwEQ3KIS3vu384tMRw5mELQ78WJp4ezb+SAQCibc1koPBnId8Q9ogeXzrkcs8JzzAW6x3y9t1PH2+t7wfPACaeFMRgiL6KmTobLbYasplJZ5zWeaZ3o8wkDCqOAzw1Rdw0aFtt91Dw3c+aZi+QlqwIQJQ61Dea87Gwrz7nML+jDci5V7N9l5nV6PDzmLTA/j7V6YU7pUJAt51Jx9FPsyYQqSrxsOWjunLlXToh2LhzHQeAEqHpWXNoFYrWnBrqhoyvZZd3UkAWX5XYBcDy2ixm70PJLgUwoPZd5TbaEoz2PT8gJSc0VR6zXJc/xjugB1pezzluHak81Lpt7BQ4814x3XuuDy8Xj0mvq4fUJWLjUHOuW96KO/Ew7rIBTMYHLKhXbW3wwSiniNlAYsyPn0l68SMjOD/P/tCPvGABqPWZIeHui3VH1dzDs4b2nTTnD8bkOsctLFBZLEARBEAPhzP0bn+LSLbqxpGZp2ZVnHSG/I5Zzad+nzbnMWcDoU6ai9/5HEL3l2+B0A2f/7EHUXHct+Najeftxupj2nMvRcy7teWKDOZf1vgYsqFo44Da5BF0hXDDzItR4ahAO+LAoshyiYS4i3S6b+xLOF6wuVyYsVs2KMxYSl1Z07NgchyAAV107DQ1TbIv5gABB4Cwhwhbiubm7A7W44TkeHq/5+sY3Y0jGdSxa4UcwNPi14TkBPM9h6jQfNM3Avl3Zlgwx04yD1ycMuPh1uXm49ADUtF7UEYpFVYgdUzHFNx1Tq03BHq6S8MVvzsDHbzLDI8txLlVVx5svRZGMmcLD3ueyP56EohgIBAWce3ENpkw1hUogIy6jfUMXl+w8KFraKS4z+Y525zK3Qmk535UjB5NIK86qzgIvQNM1qKxIjG1/rB9iZ6LDCo2UeMnKOwRyw2Kz77WLskKFjZh7ySrF2t9vCbsc15C1CcmdN/XeepzcdCpOaDgRgCl4jxxIg+eBL9wyAwsyojIYFlHfJKO3W0W0iNOcW8Ap17mcEpiKDy/4CKYGpuW9txQxJw0kLh3OZXZfonXzQYWqq1YlWDs13loAQHu8zZpDpbjaM4IzMTUwDefPvAh+ye8IN7Y7zKWGeI9nSFwSBEEQo8Z4dS6HSm5+5EjvkwdvCZXcO+gAAEFA4uZ/xiO//gY6p9fD/cJziKw5CfLjjzodSpv7wBV5vtKUExY7EkyZnhUHTU3Z0LpIOL/hu8vNg4czLJaRSuowDCBSI2FKcxChSPY4gmHzMRMiTEAP5lw6XuN4uDJhsQf2mDlq8xblFzEpBDun02eai9NdWwuIS78wYE6Yy81D1gNQ1eLO5eH9Kfi0WpzRfKbjOvr8Inx+Af6ggO6O9KAVYzvbzRYV65/vwd//2oG927JCiwnwri7zGFj4sdVSYpCw2L074/jhN/Zg/+7ihYXYgj63dQWr1Craci7tRW3M10oL0T58IIk7fnQQ//frI46CNiIvZsJi80MpazymYOlItEPRFMiCDI7jrNBQwClAHOKSH1hcMsfTnuPHhBcTR7m/W1yZPpCFwqTnRuZZRYgScQ3RPg1VNRK8PuccC2RujsTjha9XrljPzbkEijuU9uftY8ytQFwMey9Pu3i0VxPO5ls6z0G1u9qqmmuFOJfganslL86adg7qM06sSyjsXE70kFiAxCVBEAQxCrA/5OM153KoVKISbm7FV/ZzrrtgZ+YZV2HnIw8g/qnPgO/qQujG61D3L1+CHDUX2nZx48i5HNWw2IGrxY40U2dmF2zNTdmFeVVVvrh0e/JzLhmsyI8k83CLLoe4DIVZ3zync1ms9UghBF6wnEvofN7YB4KFAp+4aA4AYNe2wuJyoDYaLjeP6tQcVKVmYUpgasFtWGXc5un55w4Aqmtl6DrQ01U8NHbbpih++t39+N3PDmHd86ZTmOgzj9feiqS7J9MH0O/Mgx7Mudy9PY5on2btGzBdZ8XmILJ9xdPxvPcDZuhok78Jftnv6MtojrE053L3dnPfe3cm8NqLPdn3cyIMw7D6ZuaGxQJAe8J0w5h4coRHqrLVT9GO3W0uJC6ZYxmyFYnJnQ+57pwn05ojV1jl0t5qCjAWGu3YhzdTsCeu570G5Bf1KiWPstC2rL0K4BRpA10vjuOsG0L2Y2TtYRRNyVaKzRG9Ii8i7IogqSbRn7kpMZRiT/bPtd84iNiKJk1USFwSBEEQFYeJsMnmXKIClXBz8yOb/c2oclcXLMnPaA5MwezGZYj91w/Qe8/90OrqEfzLX/DxT3wP09/YmpPHWbi4T6Up5upViqkzskKoeUr23FVVF3EuDRHpAuJSS2fEvcTBLXjgdgtwuc3ngmFzUclCFpkoyHUqB2pxw4O3el1yBg9/UEC4qjQhE3KFccHMizC9vh4NzWb1Vhae2t9tHovPLwycf5YJi61PrMjb7sCeBO7/fQt2bDGdvilFxWWmOm+RirGqauDvD5vVUA/uTVqCQ+ypQ7WnBm7RnScuw0FnkSQmLos5lyz8cufWGGJRDds3R/GDW/bi7p8fzhZW4niIvAjdMD/fHmo6r2oBqj3VmB2ei8vnXuUISQVK/64csDmnzz7eabWIyRawSWaOy1mUJ+QKIaqYBXCY8GCio+VwCrd/6xDev7cZ2D3f8Xl2B8xfoD/i4uqlOLHxZEe7FnZO2XnJFZHMuXQNUOAJANqPMnGZLwzZDZNErDTnsphA6+1Jo7fHnFe6bkDXDYfgs4f7enJajAwEC43NFY8SL5mFlbTC4bpAdt70K/0lfVYh7DcJPFJ23BQWSxAEQRAlYInLSexcjli12JyKryvqVuFDsy8pef/KOR9A90uvIbp2LQLtPbjyK7/ElK9/E1y0P2+co5lzyT5rtARtTaZ9RSAkoL4+GxZbW10g57JAtVgGr2YW2rJohQ8y95KFxfrlAM6bfr6Vi5Y7zwc6ZoEX4MkU9OHAY+oM95C+J3MWmMe4a2scum4g2mNAljlIEj/gdRYlDjxvhv/m8vpLPdj0ThRHD6UgShzqmwq7S9V15kL5hSc78YdfHka0X0W0X8XBvabQevOVHnR1pDFjjgfVtRIkmYPby8PfsQgfmPLBTFVk8xz19JnOX13EFA3MYfKHMmGxRQr6RPvN53UNuO83R3DPnS1QUjoO70/i8IFs5V/7uYi4q+AW3aj21GCKugxbN0bR15PJo7NdM5EX0dej4v13+h2hrrnouoGD+5IQJQ6LVvihqQaOHk45Pjehseqozmtid42ZqAtIARgwsHNLDLwhwtU3BdueDqGjLZvf6nAupXzn0i26Mb9qgWNOibyIfbviePKhdvT3qnkCK+KqwrzIfCyoXlT0WAGgI+Nc1tTni6usczlwziVgCrpCv9903cBd/3MIv/7xQaSSOn75gwO46yeHIHLm+eE53lHoyN4rc6CcS3PbfOcSMM9NWk/bnMt8ccluIsXSUes95cJcUsAsbsX2QWGxBEEQBFEC2YXN5BWXlQqLHQpGVTW6fv5L/PXWTyAe9qPqnvsQWXMypJdeyKkWO/ricrRuMPA8h3/++lx8/J+mIOh3QxAASeYQ8Oe7b6LIQxIkqOl8gcWr5vZed1aU5opLAGj0N1mORm7hqoFuDHDgIcocBCEjLksMic1lTiZPc9e2GKL9GvQ0D6/fXMAPdJ05joPLwxcUl/bnps5wF22NwpzLIwdS2L0tjnvvbDGFwO2H0NOdxqZ3zBsb519Wi89+ZRo+//UZaMoURurOhNKy0OGeftPZW9g0Byc3nYq5EdOp8wfMY+hsV/DiU51WKxhGtD/784E9ScgyZ7XE2PhWn/Wa3SHziB7Tpdx1Mu780RHc95sWPPQnsyCWPYxb4AQ88UA7Hvj9Ufzldy15xXoYbS0KUkkdU2a40TTVPD5LXGbEFGu9IeYIummBGdZjJhg9oge9nTp6u1U0Nnlx5oVmtdZ3X88eDxM6AieUXF1Z5CV0tKehqsCBvYk8gcVxHE5qOqVgMR07lnNZX8i5HDgs1h4qXjCfHEDbUQV9PWZRoPt/34K2FgWH9yexf3saRw8p6O8QHOI6t+rqQDBXOLcqcLZNC6ukm//dYc5uLB3LbDO0G2Ys1UHkRcwMzcLM0KwB2wFNFEbvrwpBEARxzDJZw2IrXtBnGEKMA4ddZyzH4WWzcf1d6xB87HGEr7wE/Mc+BunDi5H2uAasYjrSMIEzmqG4Dc0eSG4NR6Myjjs5BI4HJKHw0scty1BVFiYoWcU6eMVcfAbcWVdk+iwP9uxIoHlaYScvr1rsIM4lBw5ujwCui3eE85bD1BluuNw89u5MoP1oCrwhwJcpsjKYi+Ny80jEVGia4RCQiYQpDK6+sXHAcTVOdUEQzLYkhmFYOZoA0N6ioKsjDUHkUN8kg+c5BEI8IjUSsCOB7o406hpcEDgBBgz096cgCEA46MbcyDxrP6LIwR8UEO3T8PzfuiAIHE47N5ufFu1TwfHAkpUBKCkdF6ythezisP39KDa9E8X5l9VCELi8HDuRF3H0UNYJZGLQfs04CNizwxQbWzfG8MNv7MWseR4sP64KM+fLVpj0gT2mcJw202O5vK1HMvvLCYvNq0KaybsEAM0whTLHcUjsbERY8eGkCyOYs8CHF/7WiQ1v9KGhyYVItYQpM9yYHpwBl1i64y1yAlIJ8zNaDqYcYzl8IInNG6I4+6JqiOLA+2tvVQAOqKkr4Fz6MmGxcQ1vr+9F65EULlhbC54392k/v8Xyye3FmXZuyebJPv6XdhyNzUe3JMO1zF4YJ/sdHSxUdWntctR4alGbKabEYPOD5eUWGpss5IrL8sNiAWBR9WKktBQ4jsPJTacOaR/jERKXBEEQRMWZtAV9uAqExRbpTznU/STCfhz9358Dl14F/1f+BcG778YNf6/GU1++FuKcUWxFkhGyo5VzaUfiRWuxX6xtgNslQUuZoXhu2Y20YopLTnGjKb4Kq2pmW9uecnYEq08PQ3YVPpbcnMuBjpm9NnWGG7P9PjROHZq4FAQOs+Z5sHVjDO+s7wNviJZzOVjYntstAFCRSuqOqp8sX27uIi8kqfgxhMISvvTtmXB7ePR0qXjgD0ehpnW0HlFw5KCZY1lTL1vCAgCqasxFe1dHxrnkeChJHSk1jWCocJ7oZdfW4903+rD53Sh6e7LhsbpuIBbV4A8IuOKjDY73zFnow47NMezZHsfcRT5HCCgTVb3d5r68PgHxmIZ4TAMvZ89DT7uOtGJg+mwPvD4eO7fGsXVjDFs3xhCuEnHVx832LG+vN6soTZ/ttvIQW1tM4Spa4rJwWCzHcQjKQfQpfZYABQDsXoDpqoGlqwKQZB5zF5nH88AfjsLj5fFv35mFNVPPKnptCiHyIpJJ80ZKMqHj6EEVU2eY5+LFp7qwY3MMzdNcWLyieL/FVMp0VCPVEiQ5f254bWGxmzdE0d2RxnEnh7LfQ7u4LFLMh4lLUeKgpg3UNcpQ0wa6OtIIohlQAQE2J1oqraAPYFbRtd+8YLDrEss4l1IBJ5GFarPc3aEU9AFMgVuI3dtj4DgO1af6C74+3qGwWIIgCGLUmGzOpSMstkKtSEZkPxyP1KWXo+ulN5C48IMIt3Tiw1/8GWq/+u/genuGM9ySEUe5oI+dQu0GcvG6zAWu2ZIjK/DSKQ6R9Aw0hbKihee5osISKNCKZIBjZs3k5y7y4WP/OG1Qt2gg5iw0Q2M3b4iCg4BItXmsg/XhY85bbmhsPKZByuRtDobXZ/bcrKqR8OkvTsUZHzBdRVbBtqrGed7Zz92dGYeYE6xQV19ALOjaz1nowylnmTlp/baqsfGYBkMH/MH845ydyUU9cojlPtrngikcentU8AIwbbZ53TvbFCsv8dnHO7FniykQl6z048OfaMJX/msWPvZPzVh+fAg9XSp+/eOD+PWPD6L1iILGqS5Mm+VBICjA4+PR3mK2X2HzP6nlF/RhnDP9PNT7GqzcXV03kEjo8PkFS8CdcV4VahtkeH0CEnG9aBGlgRA40XIueUPElg1R6zUW6rpvV/GWLgDw/ttmqHOhfEvAFhYb0608WbsT6ezVmb8PwzBwYE8CHA9ccJnpLp7xgSqsOb8K9q+TmsiKVG/GueQ4bsj55Fa7mjQrrjR4i5RS+lwOxluv9uL1l3qQTuu4584WPPaXtmHvc6wgcUkQBEGMGpPNuRyJ/MhK7dOZW2kuwIy6OnTfdTceu+VjiId8CP7pj4icthry448OfcAlwhZgYyEuxRLEpcdlLirTigG3mF08KknzGrDFcikUOveDbctx3LDnECvqAwCrVkdQ15TJ6Rokt7aQuNQ0A8mEnte/sFSYM8lCZJnQZUQy4rKrPZtzyfIm/QGhqGtvVY3tzeZYskqx/kD+WGvrzXGw4jP2nDaJl6CqOmL9GoJhETWZwkSd7Wnw4LF7RwLxmIajB0xxNHuBKd4licfs+T58+p9n4byLa9A41YXpsz24YG0tPvXPUyFJPDjOLICkaQY62xVr/ics5zJ/HgbkIM6fcSFqvaaYSsR1wAA8tmswZYYb//TV6Vh+gukqHraFIJeKluahaYAsc+ANCXszQlJRdCsHdu+Owu1aAGDzhn489pc28Dxw4unhgtuwsNiuzrRVKGv/nqy4tOcBF6rI2tWRRrRPQ9MUF44/NYSv/NcsLFkZwPITgvj6/5uNeYvNa5GKZecJy7kcqpMIAF7R3G9PqqfovvJ6oNqORdcNvL2+Ny8neCBUVccTD7bhbw+1Y9fWuOnS1k/c3EsSlwRBEETFmaw5l07ncuT+pDLBMRwh5iw2ZHMxeQHbz16F3939NcSvugZC61GEbrwOwRuvB3+0ZeiDHgTREpejl3PJYAtEsypp4XPKxKWuOvPyVEtcln4tcl3jgbfN9MYcgfkTikhYfkIAC5f78cG1TdYcGMzFKSQukxlna+ji0jznmcjBPOeSic2uThYWK1iVWoMhsago9wUEgHP2u2SPCzmXNTni0nGjQZCszwyFJVTXMnGpoKNVQzwjEDhDQFWtlHcMHMfh9POq8JkvTcONN0/BSWvCjpzV+kaWd6lYRV+yOZeDiwdWadVbYO41TzMFzpGDA4vL/j4Vb7zSY/VrBYBkvznGYESELMjoyVyDjlYFyBTD7WhLo69IZd7XX+oBDOCKGxostzwXdjOGOaGA6Vyy9if2fO9CoafM5Zw+2+PYH2AW4AoEzZ/TsWw/VHZt7XNnx5YY7r+7pWjV2lxYUS7WFqZgtdica2cPcd72fhSP3teGJx9qt57r7kxbubyFaD2iQNcAGGbFZQCYNntohb3GAyQuCYIgiIrDHJmxcK0qid1pGklX1hKXw/gzbXfCComdRMiP6M9+hZ77HoI2bTpcjz+CyGmr4f79bwG9cIXH4TCWYbECL1g9DovhdWcWjJpT2DDn0l0xcTmyuahrr2vAh29shFvOLrQHm5vuTCuUZDK7AI9HzTngGaK4dLl5UwhmiOQIM5fLfL2nK20WEuIES8wEwsXFpSBw8PkF9PepllCxO565BIJmX9KONsXskZjjYrN8y1BERHWmME1nWxpb34uCM3jMXeTFvIUBnPuhmrx9D0Z9xjluPZzKc49LqTDKcl4LXYOmjLg8vD+J7Zuj2Le7cBjrK89044n72/Hik13Wc/19KnhDgNvNI+h3I5nQkYhrZoEewCrqvfndfqtvqp2ujjR4HliwtHhOIJtTmppt3RLt06wwaGdBn3x3MFdc5sJuJCSi2Rso7CYS+/+d13pxz6+PYNO7UWzMhPEOhi+nn3ChmwB5zqWjIJIpIre9H0UqZZ7XO//7IO76yUEoqcK/V1sOZoVn6xHzfBc77onA5PorTxAEQYxLjg3ncuTF5XAFKxOnjsqXHGc5eBzHIX3WOeh68TXEP3szuGg/Av/6BYTWfhDCrp3D+uxcWOuB0awWa2dx9RIsql5c9HVLXKo8eNvCX0kAHG+KoVLhyhCX7HyMtOhm17iU3DN2bHbnMj6Aa1YqdqevqjpfQNQ1ytA1UyBx4NHfo4LnAJ9fGPB8BEIidA2Ix8zxMucyUMC55DgONXUS0oqBvl7VEh6qaqDtkG6Jy2BYdDiXWzdGwYPHlOlunHF2HRYtL7+4CnNNuzrTeXl5hdy6XKxrUEBcRqpFeHw8jhxK4Z5ft+B3PztUcB8th0xnc/0LPZZQ7O9TwRkC3G4BoYApYro702jPFB+au9AMr37q4Q787L/24/CBrDuqpHRE+zSEq6SirWkAMy+ZCUzzZ/N/Jhrt56Ooc8kB02YVFlnsWqf6ebhFNwJyELIgY0nNUiypWYZEXMNjf2lD5v4Ddm9zhvke2JvAo/e15oWv+iTndS5UaTk359L+HTuaye1NKwa2vR/Fs4+bbXPSioG2lnyhDgBHDjndZ0nm0DTEwl7jARKXBEEQRMWharHlMVJuVjHHOE90+HyI3fpd9Dz5HNRFSyCvfxWRs06B98f/D0gVD+cqh2xY7NjMgZX1x2FZ7Yqir/s8bgTSDajlp1k9CQEgneTg8Qzu/tmxO87CIA7VSDuXdlbVH4+VdccNup0rIwJSiay4ZK4Zqzg7FCxxyQHh6vxF+sJl5kJ+84YoknFAUQwEQiJ4nhtYXGZCIg/tS+D+u1twYK+5OPcHC4/VCo09qlhCZst7Ufz512147gkzDDEUEeHzC/B4ebS1KGhrURAKueAPiEMu2BKOZKvR5or8Yu037CQy4rlQvi/HcWie5rbCjmEgr/+mYRiWE6ZpBp55tAOA6SAKEOHy8AgFM/1GO9OWc3nSmgjqm2QEQiIMA1j3XLe1T+Y85jrRhbCPe+bcTGGlg/mtXly8U6z1dKfR06WivlEumuvsD5nPR/t1XDJ7Lc6Zdh4Ac87Picw1nWrNrHQsuzjs3RmHqmbPzwt/68Tb6/vw89v2OxxFv5wjLgsIX57jHeGy7NoahoEWW/jrs4914q11vdbPxUJjmXPJ+udOGaCn7ESAxCVBEARRcSarcwlURjhnncvh/ZkuJlwWVy/B4uoledurK1ah++kXEf36NwEAvu99B5EzT4b00gvDGgcwtmGxpeB285gWPwUzxeXWwlfTDOhpvqx8S6C8ir98hZxLwOyjN69q/qDbFcq5jLOQzDIKGeVSlXECQ2ERoph/fIuW+8FxZoGYjpaM+xhi56P45zLX6oUnu7Dp3Sh2bDb7DfoDhUUgK+rT3qpYTtShfQnwEB05lwBQXStbbtfSlSEAcNxsKAd/UADPA73daUdYbKOvsWAuXy7Za1B4bkyd6XT1mAvL6Oky28s0NLvg9QnYvimGeEzLOpceHpGQzbnM5EdOme7GZ788HZ//+nR4fQK2bIyiJ1Poh7WOyc0/LYR93DPmZD4n8377+ZByqsUeGCQkFsjOgWifCrfozttHZ5v5OXWNLsyc60VaMXBgT9YhjMfNuR6PaY78SLfgLqkHJ7t+Apd12fv7zDzdukYZ/qCZQyzwHJasMgVrIXGpqjpaW1Lw+gWsWB0EAMyYwCGxAIlLgiAIYjSZZM4lkBXMfAXCYodb5MUaW45wWV63smiPNUgSEl/4ErpefA3KWedA3L0L4SsvQeAfPwG+9eiQx8JCTceioE8pMIGVTOqW25hWdHAQ4C5TYNnd2cGdy/ym8qON/dgZTNgMtaAPkBUgxYSIPyBixhwPon0a3nvdLKASDOcXZcl7X0ZYtBxK5TxfxLlsyDiXbYqVQxeulsAb2XEx16i20Xz95DPDmDrNzL8balsLnucQDIuI9mkw9OycWFKzrKT3JwYIiwWAE88I4ZJr6rB4pSleerqdbUmYmGme5sLC5T7oupkLGO3TwMPMRY1ETCHTflRBV2cawbBozQdJ5nHCaSEYOvDGK6YDZzmXBcKcc7HfmGAFaqwCTnxxATdYviWQvdb9fYUL9bAQ4OpayWpHYw+NZc48AGx9PwpdN+8ocBznyLssdu1ZuyL7cbCQ2KapblzzySZ86Oo6fOnbM3H2RdXm60fyxSUr5tM01YVTzorgA5fW4KQ1kaLHPREgcUkQBEFUHMvdm4TO5UjlRzr2iZEJlfRKXqs8f7nos2aj994H0XvX76E1NsH94P2InHwcPL/+BaAWriI5EH7Jn1m4jc/G4Hb3jrVJUBQDvMHD4ynvOpRTRbhSOZfl4C7gXLKQzOGIy6kz3ZBkDrPme4tus3il2VJj1xbTVco6l8W/T2ybXIo5l6zFSFuLYjlOHMwej4xg2Hx85vlVuOSaOpx7cY11I2Q4fQxDmdDYjqNpvPpsF1pbUmj0N+Vtd/RwKq8oT3yAgj4A4HYLWHVSyHJmc53L1oyYqW92YUnmPG96N5op6CPC7eFRFTZF0rb3Y4ABNE5xhqguP8F005jgG6pzWV0rWQWcdN2wcr6B/NDT/RmHsVi+JZC51jlVg+2w/p/VdbLVomfXNtPh1nUD/b0qfAEB02d7kIjpaMu4tof2JbF7ow7DMJCK8nmFgKL9KjraFPCas3gQkBXzDc0uTJnuxvGnhOD1CQhXSZBdPFqPpPDn37XgJ/+5D0893I54TLOq/TZNdcPl5nHKWRHrd9FEZWKPniAIgpgQTOqw2AocW1awDm8/Z007FxfMvGjoO+A4KBdfhu5X3zQL/iTi8H/9Kwh/4EyIb71R1q58kg+Xz70KJzSsHvp4KoiVd5jrXBpC2RVTHX0uS8y5HG4I9HAYMCzWN/RxhSMSvnrbbJx2TnEnZsXqABYs84GHeZ6CocHDp+2Fe+y5f3KRokuRagn+oICDe5PY8o4pklQF1mfKLt4qPhOKSFh1UgiCwFmu1XD6JjJH9OCbAXBHZsL1/ml52xiGgXvuPII//vKwIy/QEviDOOdMwLLQVQZzyhqazD6cPr+AvTvjOHo4Bd4Q4XILqIqYwotde5YHywhXiZBkDh2tCgzDsMJaS3IuM98bXjBvUkSqJegarFBkkRORTut49al+9PaY+9V1A13tCnwBoWCBJoYgcPD6BNMVNoy81zvbss5lVY2MSI2E1iMK+ntVxGMadN2cayxcd99O09V84sE2bHtLQ2d7GlveSeKhP7biwF5zznS0KfjRN/fiZ/+1H4/+XzfSad3hbLJ8y1yBzvMc6ptkpBUDWzZE0d2ZxvoXevDqc91WqO7UGRO3gE8uJC4JgiCIimMJsMmnLW05lyP3J5UbobBYv+RHQA4OezyGP4DYrd9F97OvIL36JEibNiJy0bnwf+nz4Lo6S96PT/KN25xLl9tcCJvOZUZcpg3wEB1VL0uhnFYk7LPGNiw2e+yMkQiLBUwRMJCrL4o8PnxjIy65ugGLlvvh9gx+PgKh7IJ+/mIf1l5fj6s+3jDgGK68oQE8Dzz7SA/6+1To6ez+w1ViwTEKmWuX20akHJi43L0thYbkUnTtd1mhpYyeLhW93SrUtIH+Xls7mHhpAj9cZX5GnnN52BRY9U0u8DyHJasCMHQgGdch8CJEkYPP7bJCTAWRw4KlzlYcPM+huk5GKqkj2q9ZYa3lhMUGgmaRJuZ2MveT53gc2JPEWy/F8NJTZqsUu/AbjEBQgKYZSMSz8/bt9b3YuTWGro602Q4nU5CKuZe7t8ctcRsIiZg51xSXe3cm0N+r4siBFGTdi74eFb0dpmhl4bT7dyesAkpaQkI8qjnakLCw2Prm/DzNhuas4LxgrdnWZtfWGPbvToDjTJd/sjA+f8MTBEEQk4rJHBbLGMljYwvr8VZdV1u0GD2PPIm+238Bvboanj/8DlUnr4L7rjuGFCo7nrC347Ccy5QOzuDLLmpjv9EgDCIuuQpWiy0VK+fSXi12kHy/kYTjOBx3UgSzbeGzA+Xm2nMrm6e7sfz4IBavCAz4GTPmeHHiGWFAFdHTmYauiBAlDhddWYsL1tYWfI8l/EvoSVkMFm5rF+5b3os6tjmwJxsO228L80yUKPALOZdpRUd3Zxrh6mwO5ZkXVKEm08sTWiavkpctoTh3kdcS93bYe9paUujtSsMfFIq6xHZYWCw7B+xzmLgWeRHdHQoEQ8LOrXEYhhmuCjhvIBTDbyvqA5jn9dH72nDvXS1IKwaq6yTrd6g9NJZ9RjAkYsoMN0SJw75dCWzPFIaSdC/aWhRoSfNc7NlhiksWZuz28BANU3Az5zKZMHt4RmokuN0F+pJONcXlvMU+nLQmYjmpfT0q6ptdBc/7RIXEJUEQBFFxihWWmQxU4tgq2Z5i2PA8Utdch651byPxsU+C6+1F4N//FZFzToP08otjPboh47aHxdqcSw7DrBZbcp/LsbuRYB17Soeum/0g49GB8/1GGnsOHvu5GCzfDjCL1ZRKuFqCaLigpyVwSQ/cHh6rTwtj1rzCOaFM4A61oA+QFX5AttfjpnedeXwOcdmbFZfxmA6Ow6A5eMGweT7szmVfZj9h2+d7vAI+dtMUTJvlxlknz4ZLcKHKXWX192R5mbmwnM7d2+LQ9dJcS/Z5QDaM2RKXHWl0daQxLTADWlutVbW3tUWxxl0sr9ZOwFbUJxHX8MQDbQAATTUdR3ZcADBjrhe8YDqX9t6moshj6gw3UkkdLzxpRmFIuhcdrYpV8OnQ/iSSCc3KqZy9wAshIy5Z9eGjmZYvjc2F5+PS4wK48IpaXHptPYCs2AWA6QPklk5Ehv5tIQiCIIgSGW8O3EhSiYI+Db4GpLQkvKJv8I3HCCNShegP/huJG26E/z++Ann9qwhfcTFSH7wE0W99B/r0GWM9xLKwV0wVrYI+OgRDLNtVcIrL0nIux0O12FRCx7rnuvHMY+YiWxA4yPLofXcFToBqmAv/gcSlIHBobHZBUfSShQ5g5i5y4LFE+wCUaAzuuoFF20jmXAJm9dO+HhUtB1Po7U5bwpP16QSA/l4NTz3cjr5eFYm4Bo9XAM8PfA1EkUMgKKKvV4WmGRAErqgDGAiK+MTnpwKYCsDMfz7zQjemz/Zg0fLCxbZYn9ANb5iiuKGIgMqF5cPWZqr1sp/feb0PrzzbjZUnTkdtRzYfd+fmmCVISwqLzWzT0apg19YYon0aZs33mk6jkXVcATMyYdosD/btzDqU7P2nn1eFA3uOINqnQXbxkIQqtKlVCKabwAuArgH7diXQekSBKHGYNssDYZNsVpbO/K44esi8hg1TCp8bUeRx4ulh6+fZ8714M1OBd/rsyRMSCxwDzuXnP/95nHDCCfjiF7841kMhCII45hmXTtwwqUTI74q6Vbh0zuXDCscbLbSly9D78BPovfNuaFOmwvX4I6g67QR4b/s2EIuN9fBKxuXmwXFAPKrZCvoY4CGUXdTGnitbqnM5lgV9BIGDKHFIJXVstoVsapoxqjeGHIWQBhHbH79pCj79xalljc/rN/cf7xIhQIJrkJsGs8NzMDUwDTWewmGzpWAXl41TXJiz0LxhxEIt4zHN6i8JmI7jm6/2YvO7Uahpo+S5F64SYehZ57PPFvo56HsjElaeGCwqYlm1XZaHW0yE5jJtphv/8KWpOO1cU0BWZW4EMFf83df7AGTzDXdujdmcy8HHPX+xOY7XX+rB2+t7IYgcLr++3sobZaKWMWd+Nu8SAIJh8/rPmufFhz/ZCFHisHilH81NfsyMnYlIeiaWHWfmrL/5ai9SSR31jTICQRGS7kEqqcMlmmO3V4othRlzPZaTPVBV3InI5Psrn8N1112H73//+2M9DIIgiGOcyZtzOZlDfkuG46BcshZdr7yJ2Je/BvA8fP/9Q1Sdchxc998HFKjmON4QBA7+oGjmvOnMydPAgS/a4qIYdsEzmEhi4bBjPX9cbt5cLI9hGwT7uRrsfLjcfNmOMnPFWEEZ9yDH2uRvxlnTzhlWWKzbLVjntHGK28orZQLnYKYSKROhh/cnoaaz35dSc17Z+3syIZ+sMFAp4aWDUVUrWcXY/EFhwP6TdjiOQ9NUNySJt94rSpm+rkL2O3L8qSH4AgIO7kuiq8MU2qWI4ikz3Jg2y42ujjSUlIHlJwTgD4i4+Op6fOiqOixY6hTBsxdkIkEyp9cuYOct8uFf/3MmLr66DvVNWYF4+nkRiBJnFfWpbzYLIHm0akxLH4+lmZ6lrOdqsbDYXNxuAedeXIM151eV/ftlvDPp/xKeeOKJ8PnGb1gRQRDEsUC2WuzkE5dWWOwkFM5l4/Ui/q9fRde6t5FcewWEliMIfu7TCF90DsTXXxvr0Q1KKGy6P8mM4ZpOZhfF5VBOziU/DqrFAqbQ0jTDykebs9CLD141dMduKDDHODf/cqTwZiqH9nSax+gqswrwUGHVXBunmC1BeB7YsyMBXTesVhSs3+ehfUnHe0stJhWuMl3B/7vjCF58qrOswjiDIUk8whnXcdFy/6BhusUwxaYLsovHNZ9qtJ6fNtOD5mluGHpWdAfCpY37lLOyYbUnn2k+9vkFHH9qKG+cDc2y47sczPkMt9sMQW7IVHsNRURU18pYbQtnbWhywR8QwYGDLzoNPskHVdXRfjTTPqWM833KWRGcdWF1ydtPFMZUXL755pv4x3/8R5x22mmYP38+nn/++bxt/vSnP+Hss8/G0qVLcfXVV2Pjxo1jMFKCIAhiOEzmarGTWTgPFb15Cvp/9Vv0PPIk0stWQHr7LUQu/gCCN14PYc+usR5eUZj7E+szrQ0lYV5Tf6DyOZfjwbkEgJ7ONESJw3X/0IQTTg2P6hiyxY0qcy6YC6hp5vUtt8XMUDnvkhp84NIaVNdJcLl5TJnhRjyqoa1FsXooLl7hd4yNUWoxqVUnBTF3kdfsG/lcj9VuoxQHsBSYI7d01cBVeQfj2k814aZ/n465C3047dwIVqwOIlwlWr0hWW/PUsc9b7EPS1b5ceo5EavwUDE4jrOcY9nFFazqCpgViMFle0+eenYEssv8XVDf7LJ+H0T7zXPc1qJA10sPiZ3sjKkPG4/HMX/+fFx++eW4+eab815/4okncNttt+HWW2/F8uXLcffdd+NTn/oUnnzySVRVVQEALr300oL7fvDBByEII3sXcKh3aioFG894GxcxOaD5RYwkAs+B4wCe58Hz3KSaXzxv5uoJmWMjsminnIq+Z16EfP+f4f3urXA9/gjkp55A8hOfRuJLX4ZRXVOxzx7KHAtl3J94nwHOCyhJc3Evy+WvJwSeh27oEAeZF7JohhxKgjim84eFmBqGKaYFYfTFrsiLFf0uud1mWCYLO/V4Bi+WU4xy5te8RX7MW5T9efZ8Hw7sSWL7phiOHEjC6+MxZbrbCk0GAFnmoCgGfP7S5kVNnQsf/ccp+NWPDuDw/iQO7Tcd0FBEGpFzedGVdTjhtBCmzy5cWbdUfP6s9PjAJVlnvGlqtqiNKHHw+oSSbtjxPIerP95U8ufPXejDe2/2Ixgqfl4bmtz41BemorrWPHeBoIhLPlyP3dvjmDbTA0Hg4HLxiPVr4HkOr7/YAwCYOdc7YvN2Iv+NHFNxuWbNGqxZs6bo67/97W/x4Q9/GFdccQUA4NZbb8ULL7yAhx56CJ/85CcBAH/9619HZayiyKO6urQE5tEmEqGwX6Jy0PwiRoJguxcJ3o1I2Of4XToZ5lfwqAealEQ45Bu3fyfGnM9+Cvj4dcBPfgLuttvgueMX8Nz3f8DXvgZ8/vOAu3LVEsuZY03NcQDd0NMyXLIMXeURCstDuq7BgBeqrqIqEhjw/aHIbET5EzC/Zj6qPGM3fwLBbGXNUGRoxzxcwu0+KGIMHtFTsc/3B0SrH2Skyj3szxnK77CTz+Dx/N868cozXdA0YM6CAGpqAghXSVYvxTUfqMPTj7VixqyB508u02b4cHh/0nIup88MQRSHf6OguhqYOWvYuynKwiUSgCMAgHCVjJqa4TmkxTjhFDeeergDcxcGBzyvua+ddb4fZ52f/TkYltDemkJfF4eNb/cjEBRx4aXNI96vciL+jRy3GaSKomDz5s347Gc/az3H8zxOOeUUbNiwYdTHo6o6+voSg284ivA8h0jEh+7uGHR9/BdLICYWNL+IkaQ/mkQ0lkRvbwKdUnRSza9oNIVoMok+VwKdndHB33As8+mbwK39MDw//D7cv7sL3Fe+Au2nP0P869+EcsVV2UaAI8BQ5pgom0VQ2o8o6BFSEHQZHh83pOsajylQNAV9vUl0ugd+/zzvUhhxoDM+dvOHF7LnyO0Z2jEPl1hUQTSWhCGJFft8eyisAXXInzOc32FuHzB3kRc7t5j5hY1TJXR2Rq1qtgCwek0Acxa5UNfoKmuMoarsPnwBAb298bLGNlYYnAGPl0cirsPn5ys6//75GzMgiMOb46yK7x9/vQ+GAaw5vwqxeAKxETrd4/VvZDDogSQNLKDHrbjs7u6GpmmoqXGGzFRXV2P//v0l7+cf/uEfsHHjRiQSCZxxxhm44447sGDBgiGNaTxdXDu6bozbsRETH5pfxEhg6Ga4nWE4f5dOivllcGYxVIOb+McyGlTVIPpfP0Dik/8A339+C64nHkXgs59C+n9/ivjXboFy9nnACOavljPHWDGO/m4DKxeciT2JbvgCwtCua2Ze8OAnxLyQXTZR4h/iMQ8THjwMw8xjrtTn21t7yK7hX5uh/g477ZwqS1xOneGBrhsIBM35FwgJkCTOqlpazv5rG7IOdCAkToi5x2hodmHvzgQCocrOP0E0f78M5zNY3uXRwym4vTxWnhSsyJgn4t/IcSsui2EY5fVcuuOOOyo4GoIgCKIUJnVBH3ZsVNCnLLTZc9H3uz9Bem0dfLf+B6S330Lo2iuhnHQKYl//FtQTTxr1MbGCPn09KrzpWrh1bchtAqwqwhOkRY29BYmvzAJGIwVf4YI+gLO1x2hViy3E9NkezF/iQ2ebgoZMMRsmLqtrBy5MMxB1jdmiMoEyqxyPNY1TTHE5UkWIKom96uzchT5Ha5VjnXH7Gy8SiUAQBHR0dDie7+rqynMzCYIgiPEN+7M71hUxKwE3iXt4jgbpk05BzxPPovfue6AuWAj5tXVmZdmPXAnh/dGtEO/zCxBEDr3dKqJ9ZohsuW1IGOxmw1i3GCkVu7gcq7572WqxlTtndnE50vlx5XLNJxvxT/8+HWLGSWM9KatrpYHeNiD+gGC5sxNBpNlZuMwPSeYwa97wigaNBvbvyLzFEy8vspKM27/ysixj8eLFWLdunfWcrutYv349VqxYMXYDIwiCIMpmMgsvJiImo3AeNTgOyoUfRPfz69D3s19BmzYDrmf+jqpzTkPgMzeOWvsSjuMQCouIxzR0d5pFX4brXE6UeTEenEvW57KSgtwhLt1je204jnNEPMye70MoImLRiqEXGeI4DnUNGSd0gonLqTM9+Pr/m4M5C8e/WGM3nXgemLNg/Ivh0WRMv1WxWAxbt27F1q1bAQCHDh3C1q1b0d7eDgC48cYbce+99+Khhx7C7t278a1vfQvJZBJr164dy2ETBEEQZTKZBRg5lyOIICB19bXoWvcW+r/3I2h19XA/9AAip54A/5e+AP7I4YoPIZgJjT1y0GzlMFTnks8ssSaKc+l2OJdjJC5HOyx2jMVlLrUNMr74zZmYPX944qqu0QyrDYYnlricSPgzIczTZnvg8U6M7/hoMaazbtOmTbjhhhusn7/zne8AAG666SbcfPPNuOiii9DV1YXbb78d7e3tWLhwIe68806rxyVBEAQxsZiMAoynnMuRR5aR/MSnkfzwR+C561fw/vR/4PnDb+H+8/8h8bFPIHHzF6HXN1Tko0OZBfnh/WZLCJYHVy5Z53JizAunczk2y8NszmXlzpm9oI97DHMuK8kpZ0UAAItXVKadBwHMmufBcacEsXJ1aKyHMu4YU3F54oknYvv27QNuc/311+P6668fpRERBEEQlSBb3GSMB1IBLOdyErqyY47Ph8Tn/wXJG26E9+e3w/PrX8J7xy/g+f1vkbjhxoqITLNCZz80zazQOPScSyYuJ4arYS9uM3bOZeXd3vHsXI4UkWoJH7yybqyHMakRRR4XX10/1sMYl0zObxVBEAQxLpmMzuVkroQ7XjDCEcS+/k10vvU+4jf9M8Dz8N7xC1SdsAy+//gK+NajI/ZZK08MOtpyDDXkbaLmXAoCN2aO3mgW9JFdPHievrMEMdJMjN94BEEQxAQns4ibhNal5cqSuKw4Rk0NYt/4Njrf2lQxkenxCjj+1Gyo21AFyEQTlyzn0hcQxizEmxX0GY2cy8kaEksQYw19swiCIIiKM7mL3kzeYkXjlUqLzJPXhAEAcxcNvQokm+sTpaCP1y/A5eZRWz/0HovDZTT6XPr8AiSZs3qaEgQxstA3iyAIgqg4kzl0NJtzOfmObbzDRGb8c5+H939vh+c3d5g5mXf/BqmPfBS45WtAsLbs/QZCIr783VmQpKFfU1aUhucnhriUJB7/9O/T4XKN3U0SJsQrKcglmccnvzAVHi/dDCKISkDfLIIgCKLiTGYBNpmF80Qh18k0RAnu394JzJ0L/2c/DWHb1rL36fUJkOShL5OssNgJtNQKhsQxLXJj5VxWWJA3NLsQikgV/QyCOFaZOL/xCIIgiAnPZBRgHIXFjhuYyOx6ZxPiX/k6EArB9Zd7UXXGiQh+7CMQ33lr1MbCQjwFnuZFqbBzNZEEOUEQTujbSxAEQVQc5u5NRgFGBX3GH0akCol/+yqwfz9i/3kbtIZGuP72GCIXnI3QlZdCeuUlwDAqOoYFVQsxNzIPYVekop8zmRB5002UeMraIoiJyuT7K08QBEGMOyZzQZ+scJ58xzbh8fuR/OxN6HpzI/p//FNoM2ZCful5hC//EMIXnQP58UcBTavIRzf5m3Fy06mT8oZKpWj2T8HKulWYWzV/rIdCEMQQod94BEEQRMWx8hInoQDjJnGblUmDy4Xk9R9D17q30fer30BduBjS228hdON1iJxynJmfGY+P9SiPeURexNLa5fBL/rEeCkEQQ4TEJUEQBFFxJrVzOYmPbdIhikitvRLdL6xD75/+DOW0MyDu3YPAV/4F1asWwfu9/wTX1jbWoyQIgpiwkLgkCIIgKg5zInySb4xHMvJM5nzSSQvHQTnvAvQ++Bi6n3kJycuvAtfbC9+Pf4Dq4xbD/8WbIGzfNtajJAiCmHDQX0KCIAii4iyrXYGr5l+DoCs01kMZcTgq6DOhUZetQP8v70LXmxsR/+zNMCQZnj/9HlWnr0bwI1eOSvEfgiCIyQKJS4IgCKLicBwHj+gZ62FUBLfgAgC4RPcYj4QYDvqUqYjd+l10bdiC6Le+C615ClzP/N0s/nPuGXDd80cgmRzrYRIEQYxrSFwSBEEQxDBYUrMM58+8CPXe+rEeCjECGMEQEp+7GV1vvIe+X9yJ9LIVkN5/D8EvfA7VKxfC991bwR8+NNbDJAiCGJeQuCQIgiCIYSDyIgnLyYgkIXXF1eh5+kV0P/IUkpesBdfTA+9PfoSq45ci+MkbIL22jkJmCYIgbJC4JAiCIAiCKAbHQT3pZPTfeTe63t6E2D//K4xwGK5HH0b4kgsQOfs0uP/0eyCRGOuREgRBjDkkLgmCIAiCIEpAb2pG/GvfQOe7W9F3+y+QXrYC4ub3EfjiTahesQC+//wm+P37xnqYBEEQYwaJS4IgCIIgiHJwu5G65jozZPaxp5G87HJw/f3w/vS/UbV6OULXXA75b48DqjrWIyUIghhVxLEeAEEQBEEQxISE46CuPhH9q09E7GgL3Hf/Bu4//R7yc89Afu4ZaI1NSF53A5LXfwx6U/NYj5YgCKLikHNJEARBEAQxTPSGRsS/8nV0vbMZvXffA+Xsc8EfbYHvh99D1arFCN5wDeRnngI0bayHShAEUTFIXBIEQRAEQYwUogjlwg+i994H0fXGe4h/4UswqqrhevIJhD5yFapWL4f3v38AvvXoWI+UIAhixCFxSRAEQRAEUQH06TMQ+/o30blhK3rvvBvK6WsgHDwA323/iaoVCxH86IchP/EYkE6P9VAJgiBGBBKXBEEQBEEQlUSWoVyyFr0PPIqu9W8j/tmbYUQicD31N4Q+/hFUL58P3ze+BmHb1rEeKUEQxLAgcUkQBEEQBDFKaLPnInbrd9H53nb0/u7/kDr/QnDd3fD+8meoOuNEhC84C+67fwOur3esh0oQBFE2JC4JgiAIgiBGG0mCctGH0PeH+9C5YRui3/hPqHPnQXrnbQT+7Z9RvWQuAp/9FKSXXwR0faxHSxAEURIkLgmCIAiCIMYQo74eiZu+gO5X3kT3408jcf3HYAgi3A/8GeErLkbVCcvgve3bEHbuGOuhEgRBDAiJS4IgCIIgiPEAx0E94UREf/xTdG7aib7bfwHl5FPNIkD//UNUnXo8wuetgedXPwfX2jrWoyUIgsiDxCVBEARBEMR4w+dD6prr0PvXv6HzrfcR+9o3zLDZ996F/5Z/R/Xy+Qh9eC1c998HxGJjPVqCIAgAJC4JgiAIgiDGNfq06Yj/87+aYbPPvIT4Z/4JRnUN5OefRfBzn0bN4jkIfO7TkJ57BlDVsR4uQRDHMCQuCYIgCIIgJgIcB3XZCsT+8zZ0vrcNPfc9hORV1wAA3Pffh/A1l6N62Xz4v/IvkNa/SoWACIIYdUhcEgRBEARBTDREEemzzkH/z+9Ax+Zd6PvFnVDOPhdcdxc8v70T4UsvRNWKhfD9x1cgvvE6CU2CIEYFEpcEQRAEQRATGZ8PqSuuRu+9D6Lz/Z3o/8H/QDl9Dfi2Vnjv+AUiHzoPVcctge+bX4f47tuAYYz1iAmCmKRwhkG/YUohndbQ0xMf62E44HkO1dV+dHZGoet0GYmRheYXUUlofhGVhuYYwLW2wvXYX+H664OQXl8PLrPk06bNQOrStUhddjnUJcsAjhvjkU48aH4RlWS8zq9w2AtJEgbchsRliZC4JI41aH4RlYTmF1FpaI454VuOwPXow3A9/CCkt96wntemTUfqoouRuuhiqCesBoSBF46ECc0vopKM1/lF4nIEIXFJHGvQ/CIqCc0votLQHCsOf+ggXI88DNcjD0J6523reb22DqkLPojUBy9G+rQzAFkew1GOb2h+EZVkvM4vEpcjCIlL4liD5hdRSWh+EZWG5lhp8C1HID/xGFxPPAZp3cvgNA0AoAdDUM47H6mLLoZy9rmAzzfGIx1f0PwiKsl4nV8kLkcQEpfEsQbNL6KS0PwiKg3NsfLhujoh//1JuJ54FPILz4FLJgEAhtsN5cxzoFxwEVLnng+jrm6MRzr20PwiKsl4nV+liEtxlMZCEARBEARBjGOMqmqkrrkOqWuuA6JRyM8/C9fjj0B++im4nnwcricfRwBAetVxUM67AMoHLqCCQARBOCBxSRAEQRAEQTjx+6FcfCmUiy8FFAXSKy/B9fSTkP/+JKR33ob0ztvwff+70BqbMkLzfCinrQG83rEeOUEQYwiFxZYIhcUSxxo0v4hKQvOLqDQ0xyqEYUDYthXy00/C9fcnIb71BjhdN19yu6GcvgbKBy6Ect750Juax3iwlYPmF1FJxuv8orBYgiAIgiAIYuTgOGgLFyGxcBESn/8XcJ2dkJ/9O+Snn4L83DNwPf0UXE8/BQBQFy4yczXPPhfpE08G3O4xHjxBEJWGxCVBEARBEAQxJIzqaqSuvhapq681w2dfXw/5709CfvpJiFu3QNy6Bd5f/BSGxwPllNOQPuscKGedC23OXMrVJIhJCIXFlgiFxRLHGjS/iEpC84uoNDTHxh5+/z7Izz8L+flnIb38Ivhov/WaNmUqlLPOhXLWOUifsQZGMDSGIy0fml9EJRmv84takYwgJC6JYw2aX0QloflFVBqaY+OMdBrS229Ceu4ZU2y+9671kiEIUI87Acrpa5A+fQ3Sx50AuFxjONjBoflFVJLxOr9IXI4gJC6JYw2aX0QloflFVBqaY+MbrqMD8ovPWc4m395mvWZ4PEivPskUm6edAXXZCkAcX5lcNL+ISjJe5xcV9CEIgiAIgiDGHUZNDVJXXI3UFVebFWi3bIb86kuQXn4R0rpXIb/4POQXnwcA6MEQ0qecivRpZ0A5bQ20hYsoX5MgxikkLgmCIAiCIIixg+OgLV6CxOIlSPzD5wBVhbhxA6RXXoL80ouQ3lgP15NPwPXkEwAAvaYGyqlnIH3SKUifdIopNnl+jA+CIAiAwmJLhsJiiWMNml9EJaH5RVQammOTiFTKzNd8+UXIL78I8Z23wKmq9bIeDiO9+iSkTzoV6ZNOhrp8JSBJFR0SzS+ikozX+UU5lyMIiUviWIPmF1FJaH4RlYbm2CQmGoX05uuQXl8Haf06SO+8BS6Vsl42PB6kj1+N9IknI33yqWaBIK93RIdA84uoJON1flHOJUEQBEEQBDG58PuRPuscpM86x/w5lYL47juQXl8Hef2rEN94HXLG5QQAQxShLluO9PGroR6/GunjV0NvnkJ5mwRRAci5LBFyLoljDZpfRCWh+UVUGppjxzCaBnHLJkjrX4X02npIr70KvqPDuUl9gyU008edAHX5CsDjKfkjaH4RlWS8zi9yLgmCIAiCIIhjC0GAunQ51KXLzQJBhgF+7x5Ib70B6a03IL79FsQtm+B6/BG4Hn8EQMbdXLI0624edwL0adPJ3SSIMiFxSRAEQRAEQUxeOA76rNlIzZqN1NXXms/FYpA2vAPx7Tct0SlteBfShneBO38FwKxKm16+Eir7t2Il9IZGEpwEMQAkLgmCIAiCIIhjC58P6VNPR/rU05EATHdz/z5TZL79JsS33jTdzWefhuvZp623aXX1UFeshLZiFXDGKeBmLQRqasfsMAhivEE5lyVCOZfEsQbNL6KS0PwiKg3NMWLYpFIQt26GuOFdiO+9C/G9DRC3bganaY7NtKZmqMtWQF2+AurSZVAXL4Xe1EwOJzFkxuvvL8q5JAiCIAiCIIih4HJBXbEK6opV2ecSCbNY0MYN8G99H+rrb0DYvg2uI4fhevJxazM9HIa6eCnUxUugLl4KbfESqPMXAi7XGBwIQYweJC4JgiAIgiAIohQ8HqjHnQD9hNXwV/vR2xmF3h+FuHkTxI3vmv9veh/iti2QX30Z8qsvW281RBHa3HlQFy3JCs9FS2DU1ZHLSUwaJrW43LNnD772ta8hGo1ClmV87Wtfw/HHHz/WwyIIgiAIgiAmCz4f1NUnQl19YvY5VYWwexfEze+bgnPz+xA2vQ9x6xaIW7cAD/zZ2lSPRKDNWwB1/kKoCxZYj0l0EhORSZ1zefjwYaRSKcyaNQu7d+/G5z73OTz11FND2hflXBLHGjS/iEpC84uoNDTHiEoy1PnFtbc7BKe4dQuEXTvApVJ529pFpzZ/fub/BdDr6kl0TnLG6++vYz7nsrm52Xo8a9Ys9Pf3wzAMcPSFJAiCIAiCIEYZo7YW6TPPRvrMs7NPahqE/XshbNsGccc2CNu2Qty+DcKuHZBeXw/p9fWOfejBELTZs6HNmgNtdvafOmsO4PeP8hERhJMxFZdvvvkm7rrrLmzatAnt7e345S9/ibPOOsuxzZ/+9CfcddddaG9vx8KFC/Ef//EfWLZsWdmf9eyzz2LhwoUkLAmCIAiCIIjxgyCYQnHWHCgXfSj7PBOd27dD3L41Kzr37IL07juQ3n0nb1daQ6MpNnOEpzZ1GhUTIkaFMRWX8Xgc8+fPx+WXX46bb7457/UnnngCt912G2699VYsX74cd999Nz71qU/hySefRFVVFQDg0ksvLbjvBx98EIJg2raHDx/GD37wA9xxxx2VOxiCIAiCIAiCGCnsovPCD2af13XwR1sg7N6V/bdnF4RdOyEc2A/haAtgKyQEAAbHQW9sgjZ9BvTpM6BNnwFt2nRo02dCmz6D8juJEWPc5FzOnz8/z7m86qqrsGzZMtxyyy0AAF3XsWbNGnz84x/HJz/5yZL2G41Gcd111+Hf/u3fcNpppw15fOm0hr6+xJDfXwl4nkMk4kN3d2xcxWMTkwOaX0QloflFVBqaY0QlGbfzS1HA79/nFJ67d4E/sB/84UPgdL3g2wyPxxSe06ZDmzET+tRp0KdMhd7cDK15KozaWoDnR/lgjl3G6/wKBj0TN+dSURRs3rwZn/3sZ63neJ7HKaecgg0bNpS0D03T8IUvfAFXX331sIQlAIgij+rq8RnHHon4xnoIxCSG5hdRSWh+EZWG5hhRScbl/GqsAk5alf+8ogAHDgB79pj/9u61HnO7d0PcthXYtrXwPmUZmDIFmDoVmDat8P+hUGWP6xhkXM6vQRi34rK7uxuapqGmpsbxfHV1Nfbv31/SPl566SW89tpr6OjowJ//bJZ8/sMf/oBgMFj2eFRVJ+eSOKag+UVUEppfRKWhOUZUkgk7vyINwHENwHGn5L3E9XSD378fwr694A8eAH/kMPjDhyAcOgT+yCHwTJQWQfcHYNTXQ69vyPyzPW5ogJF5zgiFKQR3EMbr/JrQzmUxyqn2etZZZ2Hz5s0j9tnj6eLa0XVj3I6NmPjQ/CIqCc0votLQHCMqyaSaX8EwtKVhpJcuL/x6Mgn+yGEIRw6DP3TQ/P/wIQiHD2WE6GErDHcgDJcLel29+a++AXptHfTqKhjVNdCrqqFX18CoNv/Xq6oBt7sCBzsxmIjza9yKy0gkAkEQ0NHR4Xi+q6srz80kCIIgCIIgCKKCuN3QZ82GPmt28W1iMfBtreBbW8G3HYXQetR83Ho0868VfHsrhIMHIBw8UNLH6j6/KTyrq0zhWVUNvaoaRigEPRSCEQqbj4Pm/+bjEODzkUM6BoxbcSnLMhYvXox169bh7LPNXkC6rmP9+vX42Mc+NsajIwiCIAiCIAjCgc8HfeYs6DNnDbxdOg2+vc0UnJ0d4Do6wHd2gu/qBNfZAb6rE3xHB7iuTvCdnRAO7INwYF9ZQzFE0RKaRigEIxiG4ffD8PlgeH3m/z4fDJ+/8GO2jccLuGQYLreZe0qCdUDGVFzGYjEcOJC9a3Ho0CFs3boVNTU1qK2txY033ogvf/nLWLx4MZYtW4a7774byWQSa9euHcNREwRBEARBEAQxZCQJelMz9Kbm0rZPp8F1dZmis7MDXHcX+N5ecL294Pp6so97M4/7zJ/5vl6InZ0jOnTD5bKEpuF2w5BlwOWG4WL/Zx4LAsALgCDAEO2PRdtrvPlz5jWrIq8sAZ/5FFDVOKJjHw3GVFxu2rQJN9xwg/Xzd77zHQDATTfdhJtvvhkXXXQRurq6cPvtt6O9vR0LFy7EnXfeafW4JAiCIAiCIAhikiNJMOrrodXXQyv3vakUuL4+8H094GKxzL8ouFgMiMetx/bnuVgMXDwGLhoFl0yAS6YAJQUuZf5DKgWuvw98R3sljtYknQS+8d3K7b9CjJs+l+OddFpDT098rIfhgOc5VFf70dkZnXDJvsT4h+YXUUlofhGVhuYYUUlofhEAAMMAFAWckgKSKXCppPUYmgZO1wDN/Mdp2cdQ1cxreuY51XzdMADDACeKCFx+MTp1aVzNr3DYO/mqxRIEQRAEQRAEQYw5HAe4XDBcLiAAjJQM5HkOiPiBzugI7XH04Md6AARBEARBEARBEMTEh8QlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhjMMwxjrQUwEdN2ApuljPYw8JElAOq2N9TCISQrNL6KS0PwiKg3NMaKS0PwiKsl4nF+CwIPnuQG3IXFJEARBEARBEARBDBsKiyUIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYnLcc6f/vQnnH322Vi6dCmuvvpqbNy4ccDt//a3v+GCCy7A0qVLcfHFF+Oll14apZESE5Fy5tfOnTtx88034+yzz8b8+fPxxz/+cRRHSkxEyplff/7zn/GRj3wEJ5xwAlavXo1PfOITeP/990dxtMREpJw59swzz+CKK67A8ccfjxUrVuDSSy/Fww8/PHqDJSYc5a7BGHfccQfmz5+P73//+xUeITGRKWd+Pfjgg5g/f77j39KlS0dxtKVD4nIc88QTT+C2227DP/3TP+Ghhx7C/Pnz8alPfQpdXV0Ft3/33XfxpS99CVdeeSUefvhhnHvuufjc5z6H3bt3j/LIiYlAufMrkUhgypQp+NKXvoTa2tpRHi0x0Sh3fr3++uv44Ac/iN///ve45557UF9fj0984hNoa2sb5ZETE4Vy51goFMJnPvMZ3HfffXjkkUdw5ZVX4mtf+xrWrVs3yiMnJgLlzi/G5s2bce+992L+/PmjNFJiIjKU+RUOh/HKK69Y/55//vlRHHEZGMS45corrzS+/e1vWz9rmmacdtppxp133llw+y984QvGZz7zGcdzV111lXHrrbdWdJzExKTc+WXnrLPOMv7whz9UcnjEBGc488swDENVVWPlypXGI488UqkhEhOc4c4xwzCMyy67zPjpT39aieERE5yhzK94PG5ceOGFxksvvWRcf/31xve+973RGCoxASl3fj3wwAPG6tWrR2t4w4Kcy3GKoijYvHkzTj31VOs5nudxyimnYMOGDQXfs2HDBsf2AHDaaacV3Z44dhnK/CKIUhmJ+ZVIJKCqKkKhUIVGSUxkhjvHDMPA+vXrsXfvXhx33HEVHCkxERnq/Pre976HE088EaeffvoojJKYqAx1fkWjUZx55plYs2YNPve5z2HXrl2jMNryEcd6AERhuru7oWkaampqHM9XV1dj//79Bd/T0dGB6urqvO3b29srNk5iYjKU+UUQpTIS8+tHP/oRGhsbcdJJJ1ViiMQEZ6hzrL+/H2eccQYURQHP87j11ltx8sknV3q4xARjKPPr+eefx2uvvUZ5vMSgDGV+zZo1C7fddhvmzZuHvr4+/OY3v8G1116Lxx57DPX19aMx7JIhcTnBMAwDHMcVfb3QawNtTxB2BptfBDEcSp1fv/71r/HEE0/gD3/4A2RZHoWREZOFweaYz+fDww8/jHg8jvXr1+O//uu/MG3aNBx//PGjOEpiolJsfnV1deGWW27Bz3/+c3g8njEYGTEZGOj314oVK7BixQrr55UrV+Kiiy7CX/7yF9x0002jNMLSIHE5TolEIhAEAR0dHY7nu7q68u50MGpqavK27+zsLLo9cewylPlFEKUynPl111134Ve/+hV++9vfYt68eZUcJjGBGeoc43ke06dPBwAsXLgQu3fvxh133EHiknBQ7vzauXMn2tvbce2111rPaZqGN998E3/84x+p8jXhYCTWYJIkYeHCheMy2oxyLscpsixj8eLFjip2uq5j/fr1jjsXdlasWIFXX33V8dy6deuKbk8cuwxlfhFEqQx1ft1555343//9X9x5553jtsQ6MT4Yqd9hhmFAUZQKjJCYyJQ7v5YuXYpHH30UDz/8sPVvyZIlWLt2LR588MFRHDkxERiJ31+apmHnzp3jsno/OZfjmBtvvBFf/vKXsXjxYixbtgx33303kskk1q5dCwD48pe/jPr6enzpS18CANxwww24/vrr8Zvf/AZr1qzBE088gU2bNuG73/3uWB4GMU4pd34pimK1tVEUBa2trdi6dStCoRCamprG7DiI8Um58+vXv/41fvKTn+BHP/oRmpubrVxxr9cLn883ZsdBjF/KnWN33HEHFi1ahOnTp0NRFLz88sv461//im9/+9tjeRjEOKWc+eX1evMiLbxeL8LhMObOnTsWwyfGOeX+/vrZz36GFStWYPr06ejr68Ndd92FI0eO4MorrxzLwygIictxzEUXXYSuri7cfvvtaG9vx8KFC3HnnXeiqqoKANDS0gKez5rPq1atwo9+9CP8z//8D3784x9jxowZ+PnPf47Zs2eP1SEQ45hy51dbWxsuu+wy6+c77rgDd9xxB9auXYvvfe97oz18YpxT7vy65557kE6n8fnPf96xn5tuugk333zzqI6dmBiUO8eSySS+/e1v4+jRo3C73Zg1axZ+8IMf4KKLLhqrQyDGMeXOL4Ioh3LnV19fH2655Ra0t7cjFAphyZIluO+++/D/27u3kCjbNYzjl1lpmiamCZphShiopZD7jLSdZNIWSqnQNpQoGAhmBupBhQolaiaiaUWlZNiGoLSITqwMojKDQooow6zEDY7tLNfBwoFJ60uG9Vmu/+/Me555n3s8kcv7fZ/x9PQcq4/wUxaDg4ODY90EAAAAAODvxr9cAAAAAABmI1wCAAAAAMxGuAQAAAAAmI1wCQAAAAAwG+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2SaOdQMAAPxpiouLdfTo0WH10NBQnThx4t9vCACAvwDhEgCAEdjZ2amiomJYDQAAjIxwCQDACCwtLeXv7/+P6z59+iRra+v/fUMAAPzheOYSAIDf1NbWJm9vb12+fFnp6elasGCBdu/eLUnq7u5WVlaWwsLC5Ofnp02bNunRo0cm7+/t7VVaWpr8/f21cOFClZaWKi8vT1FRUcY1xcXFCg4OHra3t7e3Tp8+bVKrra1VTEyMfH19FRkZqfLycpPXMzIytG7dOjU2Nio2Nlb+/v6Ki4tTa2urybpv376prKxMK1askK+vrxYtWqSMjAxJ0pkzZxQQECCDwWDynrt378rb21tPnz4d5W8RADBeMbkEAOAnBgYGTH4eHByUJOXn52vZsmUqLCzUhAkT9OXLFyUmJqq3t1fp6elydHRUdXW1EhIS1NDQIGdnZ0nSvn37dO/ePWVmZsrJyUmVlZV69eqVJk4c/Z/jiooKFRQUaMeOHQoKCtKTJ09UWFioKVOmaPPmzcZ17e3tys/PV1JSkqysrJSfn689e/boypUrsrCwkCRlZWXp0qVL2r59u4KCgtTT06Nr165JkmJjY5WXl6f6+nqtW7fOeN0LFy7Ix8dHc+fOHXXvAIDxiXAJAMAIuru75ePjY1I7cOCAJGn+/PnKzs421mtra9Xa2qorV67Iw8NDkhQWFqbo6GhVVlZq7969am1t1Y0bN1RQUKCVK1dKkoKDgxUZGampU6eOqre+vj6VlJQoKSlJKSkpkqTw8HB9/PhRpaWliouLk6WlpSSpp6dH1dXVxr4GBweVnJysFy9eyMvLS8+fP9f58+e1f/9+bd261bjHUI/29vZavny56urqjOHSYDCooaFBaWlpo+obADC+ES4BABiBnZ2dqqqqTGqTJ0+WJC1evNikfufOHfn4+GjmzJkm087AwEC1tLRIkh4/fixJJrfA2traKiwsTM3NzaPq7cGDB+rv71d0dLTJfiEhITp27Jjevn0rNzc3SZKbm5sxWEqSl5eXJKmjo0NeXl5qamqSJJOp5I82bNighIQEvX79Wu7u7rp69aoGBga0atWqUfUNABjfCJcAAIzA0tJSfn5+JrW2tjZJ0vTp003qXV1devjw4bBJpyTNmjVLkvThwwfZ2toOO/znx2v9jq6uLklSTEzMiK+3t7cbw+WPJ9xOmjRJkvT582dJ/53Q2tjY/HJ6GhwcLHd3d9XV1Sk1NVV1dXVasmSJHBwcRt07AGD8IlwCADBKQ88qDpk2bZp8fX2Vk5MzbO3QtNPJyUkGg2HY6bKdnZ0m662srPT161eTWk9Pz7D9JKmsrGzEcDp79uzf/iwODg7q7+9XX1/fTwOmhYWF1q9fr3Pnzmn16tW6f//+sMODAAAgXAIAYKbQ0FA1NjbK1dX1p5PIoSnozZs3jc8zGgwG3b592yTUubi4yGAwqKOjQy4uLpKkxsZGk2sFBATI2tpa7969G3aL7miFhIRIki5evGhyENCP1q5dq6KiImVmZsrFxUXh4eFm7QsAGH8IlwAAmGnNmjWqqanRli1btG3bNrm7u6u7u1vNzc1ydnZWQkKC5syZo6ioKOXk5Kivr0/Ozs46fvz4sNtkIyIiZG1trczMTCUmJqqtrU01NTUma+zt7ZWSkqKDBw/qzZs3CgwM1Pfv3/Xy5Us1NTWppKTkt3v39PTUxo0blZubq87OTgUGBqq3t1f19fUqKCgwrnNxcVFERIRu3bqlXbt2GQ8MAgBgCOESAAAzWVlZ6dSpUyosLFRxcbE6Ozvl6OioefPmmRzgk5ubq5ycHB06dEg2NjaKj4+Xn5+f6uvrjWscHR1VVFSk/Px8JScny8fHR4cPHzZOO4fs3LlTM2bM0MmTJ1VVVSUrKyt5eHgMW/c7srOz5erqqtraWpWXl8vR0XHEyeTSpUt169atXx7+AwD4/2UxOPSlXQAA4F839B2SN2/eHOtW/lFqaqrev3+vs2fPjnUrAIA/EJNLAADwS8+ePVNLS4uuX7+uI0eOjHU7AIA/FOESAAD8UlJSkrq6uhQfH6/o6OixbgcA8IfitlgAAAAAgNkmjHUDAAAAAIC/H+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2QiXAAAAAACzES4BAAAAAGYjXAIAAAAAzPYfEC0zLr/JWK8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wU9fnA8c/M1tvrhTu6gBSl2guiKIoNe8cSUdTYjSYx1iQajSaGaDRGE/VnSYyx994VK1aKINLh4I7rbeuU3x+zMzt7u3fcwSEHPu+88vJ2dmb2u7tzxz77PN/nq5imaSKEEEIIIYQQQmwCdUsPQAghhBBCCCHE1k+CSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGE2MqYpsmUKVMYNWoUK1euzLj/s88+Y9SoUc7/d9ttN0488UTeeuutrOebP38+u+++O62trVnvv/DCCxk1ahT/+c9/0rafd9553H333V0ac2VlJb/+9a/Zf//9GTduHJMnT+aCCy5gzpw5XTq+p82ePZuHHnpoizz2prjqqqsYNWoUv/3tbzPuO+6447jqqqu2wKg6dtdddzFq1ChmzpyZcd+ll17KGWecsQVG1X3279TixYudbdl+JzaHxYsXM2rUKD777LPN/lhCCLGpJLgUQoitzNdff01lZSUAL7/8cof7/eUvf+Hxxx9n1qxZFBUVcfHFF2cN5u644w5OOeUU8vLyMu6bPXs23377bdbzn3feeTz00EM0Nzd3Ot6mpiZOPvlklixZwhVXXMF9993HpZdeiqqqfP31150eu7l89NFHPPLII1vksXvCM888Q3V19ZYeRpfNnj2buXPnbulh9KjHH3+cQw89dEsPQwghehUJLoUQYivz8ssvEwqFmDBhQqfB5ahRo9hpp52YPHkyd955J4WFhbzwwgtp+6xYsYIPP/yQ448/PuP4RCLBzTffzC9+8Yus599tt90oKiri+eef73S8r7/+OrW1tdx///0cddRR7LXXXhx//PHcfffdnHvuuRt+wluQruvE4/EtPYw0w4cPp6CggPvvv39LD6VLioqKGDVqFPfee+9mOX80Gt0s592QnXbaibKysi3y2EII0VtJcCmEEFsRXdd57bXXmDJlCscffzxLlixh0aJFGzwuJyeHwYMHs27durTtzz77LKNGjWLIkCEZxzzyyCMEg8Gsgaft4IMP5rnnnuv0sZubm/H5fBQWFmbcpyiK8/NVV13Fcccdx1tvvcWhhx7KuHHjmD59OkuWLEk7xjAM/vWvfzF16lTGjh3LIYccwrPPPptx7jfffJMTTjiB8ePHs+eee3LuuedSWVnJXXfdxf/93/9RWVnplA7b5aTuMUybNo3x48czd+5c7rrrLvbcc8+Mx2hfGjllyhT+9Kc/8a9//YtJkyax6667cuutt2KaJu+//z7Tpk1j55135sILL6SpqanT160jgUCAGTNm8MQTT1BXV9fpvp988gknnngi48aNY+LEifz+97+nra3Nud8u9/zss8+49NJL2XnnnTnwwAN59NFHM871xRdfcPrppzNhwgT23HNPrrvuug5Lqds7//zzeeedd/j+++873W/hwoWceeaZTJgwgd13351f/vKX1NbWOvevWbOGUaNG8cILL3DllVey2267cf755zvbX375Za6++mp22WUX9ttvP+eLj/vuu49Jkyax1157cdttt2EYhnPOpUuXcvnllzN58mQmTJjAtGnTeOihh9L2ycb93rcvRXf/f82aNc4xTz75JNOmTWPs2LEccMAB3HfffRnnffTRR5k8eTI77bQT559/PjU1NRt+gYUQopfwbukBCCGE6LpPP/2U2tpaDj/8cHbddVf+8Ic/8PLLL7PDDjt0epxhGFRVVTFmzJiM8+28884Z+9fU1PCPf/yDe++9F1Xt+HvInXfemQceeICmpqaswSPAmDFjiMfjXHnllZx99tmMHj26w3OuXbuWW265hcsuu4xgMMhdd93FzJkzeeONNwgEAgD84Q9/4LnnnuPCCy9kzJgxfPTRR1xzzTUUFRVxwAEHAPDcc8/xm9/8hmnTpnHhhRdimiaffvop9fX1nHjiiaxYsYLPPvuMv//97wCUlJQ4Y6isrOS2227jwgsvpKysjIEDB3byymZ6+eWXGT9+PH/84x9ZsGABd9xxB4Zh8MUXX3DZZZcRjUb5wx/+wKxZs7jxxhu7dW7bqaeeyv3338+DDz7Ir371q6z7LFmyhHPPPZeJEydy1113sW7dOmbNmsXq1at54IEH0va9/vrrOeaYYzj55JN56aWXuPHGGxk3bhzjx48H4Msvv2TGjBkcdNBB3HnnnTQ0NDBr1iyam5u58847NzjeQw89lDvvvJN7772X22+/Pes+9fX1nHHGGWy//fbMmjWLtrY2Zs2axVlnncXTTz+N3+939v3zn//M1KlT+dvf/pZ2Lf3lL3/hyCOP5K677uLpp5/mqquuYuHChaxduzbt/Rg9ejTTpk0DYP369QwdOpQjjzyS3NxcFi5cyF133UUsFuPnP//5Bp8bWNf4448/nrbtT3/6E8uXL3d+L+6//35uv/12zjnnHPbYYw8WLFjA3/72N3Jycjj99NMBeOutt7jxxhs55ZRTOOigg5gzZw7XXHNNl8YghBC9gQSXQgixFXnppZcoKChg3333xe/3M3HiRF5++WWuuOKKtCwgWAGlpmk0Nzdz3333EYlE+NnPfubcb5om3333HUcddVTG49x2221MmjSJ3XffvdPx7LDDDpimyfz589lnn32y7rP33nszY8YMHn74YV5++WVyc3PZZ599mD59OhMnTkzbt6GhgX/84x/ssssugPWhferUqTzzzDNMnz6dlStX8thjj3HLLbdw7LHHAjBx4kRqamr4+9//zgEHHIBhGMyaNYupU6fy17/+1Tn3gQce6PxcXl6O3+9np512yhhvY2MjDz30EDvuuGOnz70jgUCAv/3tb3g8Hvbbbz/efvtt/vOf//D6668zaNAgABYtWsRzzz230cFlXl4eZ5xxBg8++CDnnntu1sD+7rvvpn///txzzz14PB4ACgsLufzyy/n666/TvlSwg3CAPfbYg3fffZc33njDCS5nzZrFzjvvzB133OEcU1FRwYwZM1i8eDEjR47sdLyqqnLeeedx7bXXcumllzJ06NCMff7v//4PgAceeMCZ/zt06FBOPPFE3njjDY444ghn3wkTJvC73/3OuW1nB/faay+uuOIKZ5/XX3+dd955h1dffTXt/XjzzTed4HLvvfdm7733BqzfiV133ZVoNMoTTzzR5eAyLy8v7Vp69NFH+fbbb3nggQfIz8+ntbWVu+++mwsuuICLL74YgH322YdIJMI999zD9OnT8Xg83Hvvvey7777ccMMNAOy7777U19fz5JNPdmkcQgixpUlZrBBCbCXi8ThvvfUWBx10kJPFmTZtGpWVlXzzzTcZ+x999NGMGTOGvffem4ceeohbb72VYcOGOfc3NTURj8cpLi5OO+7rr7/m9ddf58orr9zgmOxjN1S6d/XVVzvn3GOPPfjwww85++yzeeyxx9L2Ky0tdQJLgAEDBjBmzBinGcwnn3yCqqpMnToVTdOc/++9994sWrQIXddZvnw569ev57jjjtvg+LOpqKjY6MASrODMDuYAtttuOwYMGOAElva2+vr6TZrPaX9R8O9//zvr/XPnzuWggw5KG8shhxyC1+vlyy+/TNvX/cWAz+djyJAhVFVVARCJRPjmm2847LDD0l7zXXfdFZ/Px4IFC7o03qOOOop+/frxr3/9q8Px7rPPPmmNpcaPH8+AAQMyxrv//vtnPcdee+3l/JyXl0dxcTG77757xvvhboYUi8W48847mTp1KuPGjWPMmDHcfvvtrFmzBk3TuvTc3L744gtuueUWrrjiCido/frrrwmHwxx66KFpr+Fee+1FbW0tVVVV6LrOwoUL074EAZg6dWq3xyCEEFuKZC6FEGIr8cEHH9Dc3MzkyZOdDq177rknfr+fl19+OaO89fbbb2fQoEGsW7eOO+64g6uvvppx48ZRUVEBWB+qgbRyQ4A//vGPnHzyyeTn56d1go1Go7S0tJCfn+9ss4/tSpC03XbbMXPmTGbOnEl9fT0zZ87k9ttv55RTTnGyrqWlpRnHlZaWOsFrQ0MDuq6z6667Zn2MmpoaGhoaAOjTp88Gx5TNpjZpKSgoSLvt8/nSXjN7m2maJBKJjNe/qwoLC5k+fTr//ve/OeusszLur6mpyXguHo+HoqKijPme2cZsv6fNzc3ous4NN9zgZNTc2s/j7YjX6+Wcc87h5ptvdrJ37cc7YsSIjO1lZWUZ4812nWR7Hn6/P+tzs699sLL0Tz31FBdddBFjxowhPz+ft99+m3vuuYdYLIbX2/WPStXV1Vx22WUceOCBnHPOOc52+5q0s6XtrVu3Dr/fj6ZpGc+to+cqhBC9kQSXQgixlXjppZcAuOyyyzLue/XVV7n66qvTMjTDhw9n5MiRjBs3jh122IHDDz+cf/zjH06AYGcd2y8lsnz5cubOncvDDz+ctv22227jr3/9K999952zraWlBaDD+ZYdKSkp4bjjjuOmm26irq7OCYKyNaipq6tj+PDhzuN4vV4ee+yxjDJg+7x2w5qebIQSCARIJBJp2za2IU9POvvss/nPf/7Df//734z7+vTpk/F66rpOY2Njt96v/Px8FEXh4osvZvLkyRn3l5eXd/lcJ5xwAvfcc0/WRjbZxgtQW1ubMVc423u/sV577TVOP/30tM7F77//frfPE4/HueSSSygqKuKPf/xj2n326/3Pf/4za7A4dOhQcnJy8Hq9Ga/Bhpo2CSFEbyLBpRBCbAXa2tp47733OOKIIzjppJPS7lu4cCG33HILn332WcYcRtvgwYM58cQTefrpp7n00kspLS3F7/fTv3//tG6WAPfeey+6rqdt+9nPfsYZZ5zBwQcfnLbdPjZbt1lbfX19WsMc28qVK/H7/WlZvbq6Or766iunNHbt2rV89913TonrXnvtha7rtLS0dDjHc+jQoVRUVPDcc88xZcqUrPu0z15tSEVFBW1tbVRXVzuZ348++qjLx28upaWlnHjiiTz00EMUFRWl3TdhwgTeeustrrjiCudLhzfeeMMpae2qUCjETjvtxPLly7NmHLvD7/czc+ZMZs2axZgxY/D5fGnjfeyxx2htbXVKY+fOnUtlZWW3xttdsVgsLXus63qnS/x05Pe//z3Lli3jySefJDc3N+2+nXfemWAwyPr16zss6QVrDvPbb7/N9OnTnW1vvvlmt8cihBBbigSXQgixFXj77bedhjwTJkxIu2+XXXbhnnvu4aWXXuowuAQ455xzePLJJ/n3v//trF25yy67ZMyZ22233bIeP2TIEPbYY4+0bfPnzyc/Pz9rOaPt2Wef5cUXX+SYY45h1KhRaJrGJ598wn//+1+mT5/udIEFK5t65ZVXOt1i77zzTifLCTBs2DBOOeUUrrjiCmbOnMm4ceOIxWL88MMPrFixgptvvhlVVfn1r3/Nr371K375y19yxBFHoCgKn376KdOmTWPcuHEMGzaM2tpannnmGUaMGEFxcXGnXWH33XdfgsEg11xzDWeddRZr1qzhf//7X4f7b4wpU6awxx57cOutt3bruHPOOYf//e9/1NbWMm7cOGf7BRdcwLHHHstFF13E9OnTqaqq4i9/+QuTJk3K2iG4M7/61a+YMWMGqqpyyCGHkJuby7p163jvvfe4/PLLszbo6cjJJ5/Mvffey9dff512PZ111lk89thjnHPOOZxzzjmEw2FmzZrFyJEjM77U6EkTJ07k0UcfZfDgwRQVFfHoo492ey7siy++yNNPP835559PU1NT2hzo0aNHU1BQwMUXX8zNN99MZWUlu+++O4ZhOF2L7777bsBasuXiiy/md7/7HVOnTmXOnDl8+OGHPfl0hRBis5LgUgghtgIvv/wyQ4YMyQgswcrCHXbYYbz88sv8/ve/7/AcAwYM4Mgjj+Sxxx7jvPPOIxQKMXXqVK6++mqi0SjBYLDb4/rwww+ZOnVqp8uVTJ48mTVr1vDEE0+wbt06PB4PgwcP5rrrrsvIwvbv35/zzz+fWbNmUVlZydixY5k1a1ZaAPq73/2OIUOG8OSTT3LnnXeSl5fH8OHDOeGEE5x9jjzySAKBAPfeey+XXnopoVCICRMmOBnUww47jM8++4zbbruN+vp6jj322E6DupKSEu68807+/Oc/O3PzZs2axeGHH97t16wjkUgka4Z3Q/r27cuxxx7LE088kbZ9xIgR3Hffffz1r3/l4osvJi8vj2nTpvHrX/+624+x22678eijj3LnnXdy5ZVXYhgG/fv3Z9999+32HNWcnBxmzJiRsSRJSUkJjzzyCLfeeiu//OUv8fl8TJ48mauvvnqj56V2xfXXX8/vfvc7brzxRoLBIMcccwxTp07l+uuv7/I5VqxYAVhZ/3vvvTftvrfffpuBAwdy7rnnUl5ezsMPP8yDDz5IIBBgyJAhadeQ/bj/+te/eO6559hjjz24+eabmTlzZo88VyGE2NwU0zTNLT0IIYQQW0Y8Hmfy5Mn89re/5bDDDuvWsS0tLUycOJEHH3yww2xnd1x11VUsXryYZ555ZpPPtbVZvXo1Bx98MG+88UZaV1khhBBiayJLkQghxE+YPQfukUce6faxjz32GDvttFOPBJY/dV9//TUHHXSQBJZCCCG2alIWK4QQP3Gnn3561mVGNiQvL49rr712M47sp+Ooo47iqKOO2tLDEEIIITaJlMUKIYQQQgghhNhkUhYrhBBCCCGEEGKTSXAphBBCCCGEEGKTSXAphBBCCCGEEGKTSUOfLjIME103tvQwMni9KprW+8Yltg1yfYnNSa4vsbnJNSY2J7m+xObUG68vj0dFVZVO95Hgsot03aCxMbylh5FGVRVKS/Nobo5gGNKXSfQsub7E5iTXl9jc5BoTm5NcX2Jz6q3XV1FRCFX1dLqPlMUKIYQQQgghhNhkElwKIYQQQgghhNhkElwKIYQQQgghhNhkMudSCCGEEEL8ZJimiWHomJswlU1VFeLxOJqm9ao5cWLbsCWuL0UBVfWgKJ037NkQCS6FEEIIIcQ2zzRNWlubaGtrBjb9A3ttrYph9K5unmLbsWWuL4Xc3ALy8go3OsiU4FIIIYQQQmzz7MCyoKAEvz8AbGKGxqugaZK1FJvHj399mcTjMZqb6wHIzy/aqLNIcCmEEEIIIbZppmk6gWUolNcj5/R6VUAyl2Lz2BLXl9frA6C5uX6js5fS0EcIIYQQQmzTDEMHzGTGUgjREet3xEz+znSfBJdCCCGEEGKblmres2mlsEJs+6zfkY1teCXBpRBCCCGEEEKITSbBpRBCCCGEEEKITSbBpRBCCCGEED8BX331BZMm7UY4HO50vxNOOJKnn378RxpV7/XAA/9k5swztvQwtioSXAohhBBCCNEL3Xzz75k0aTduv/3PGffdcMN1TJq0G3//+x0bff5XXnmRadMOzNh+332PMG3a0c7tSZN246OPPtzox9kaZHuO06efwV//etdmf+yLLz5vk97H3kSCSyGEEEIIIXqp8vIK3nzzdeLxuLOtra2VDz98j/Lyis3ymMXFxQSDwc1y7k2VSCR+tMcKhUIUFhb9aI+3LZB1LoUQQgghhOilRo8ew/Lly5g9+wOmTDkIgLfeeoORI3dAVdPzRJMm7caf/nQ7++yzLwDhcJiDD96PO++8l1122S1t36+++oI//vEG5ziAs846l5kzf84JJxzJ9Omnc/zxJ3PCCUcC8JvfXA5A3779eOqpF1m9ehV///vtfPfdAqLRKMOGbc+FF17GhAk7pY3nV7+6mvfff4dvv/2G8vJyLrvsl+y99yRnn2XLlvD3v/+NuXO/Jjc3l733nsTFF19OXp61HunFF5/H8OEjAZM33niNMWPGctttf8v6Wr3wwrM89ti/qa6uon//AUyffgbTph0FWEHpnXf+lffff4fW1hZKS/tw8snTOeGEUzp8jg888E8+/ng2Dzzwb8DKJEciYbbffgRPP/04um5wxhlnccIJJ/O3v/2FN998ncLCQn7xi18774Gmafz5zzfz1VdfUF9fT79+/Tj55NM46qhjnXN+881XfPPNV/zvf/8B4MknX2DQoIEbfG16IwkuhRBCCCHET9Kzj1axaF7bRh2rKN1frmGHcbkce1rfbj/W4YcfySuvvOAEl6+88iJHHnkMr732crfPZRs3bgKXXvpLHnrofv79b2t+ZU5OKGO/++57hCOPnMr119/Ibrvtgap6ACtwnThxX37+84vwen08//wzXHnlZTz++PMUFRU5x99//71ceOGlXH75r3nhhee49toreeyxZ6io6EtLSwuXXnoBxxxzPL/4xS8JhyPcdddfufnm33PLLX9xzvHyyy9wwgknc++9/9fh83njjVd58MH7uPzyKxk+fAQLF37Hn/50EwUFBey77/48+eT/+OijD/jDH/5ERUUFa9dW0tzc1OlzzObzzz+jrKycf/zjfubM+Zzbb/8zX3zxOfvsM4kHHvg3Tz/9OH/4w2955pmXCYVC6LpORUVfbrrpTxQUFPL1118ya9at9O3bjz322IvLLvsVq1evYvjwkZx11jkAFBUVd/m16W0kuBRCCCGEEKIXO/TQaTzwwD+pra2hra2NZcuWMGXKQZsUXPp8PvLy8lAUKC0t63C/4uJiAPLy8tP2GzVqB0aN2sG5fckll/P+++/w2Wcfc8ghhzvbDzroEA4/3MoMXnzxL/j880947rmn+fnPL+Lppx9nxx1Hc8455zv7X3nltZx22gk0NNRTXFwCwHbbDeHnP7+o0+fzwAP/5JJLrmC//fYHoH//ASxevIjnn3+Gfffdn/Xrqxg0aDDjx09AURT69u23weeYTVFREZdeegWqqjJ48BAeffRhAgE/xx9/MgAzZpzLU089zg8/LGbChJ0IBALMnPlz5/j+/QfwzTdf8c47b7LHHnuRl5eH1+slGAymPfaTT3btteltJLgUQgghhBA/SRuTRbR5vSqaZvTgaDpWWlrGbrvtyauvvkxLSzOTJ08hFMr9UR67I+FwmAce+CeffDKb+vo6dF0nFotRXV2Vtt/o0WPTbo8ZM44VK5YDsGTJD8yZ8xlTp+6bcf7KyjVOALXDDjt2OpZIJEJl5Rpuvvl33HLLDc52TdOcIPLQQ6fxi19cxKmnHs9ee+3DpEn7seuuu3f7eQ8btn1aOXJRUTFDhgxz3S7C4/HQ2FjvbHv66Sd4+eUXqK5eRzweJ5FIsPPOu3b6OEuWLO7Sa9PbSHAphBBCCCFELzdt2pHce+/fCYfD/O53N2XdR1EUTFetrqZpm208d999B19+OYcLL7yMAQMGEggE+NWvLstouKMo2ccJVlC47777Z81K9unTx/k5GMzpdCyRiLW0yjXX/I5Ro9IDUa/XCnd22GE0Tz75Ap9++hFz5nzGVVf9koMOOpjf/Oa6DT/ZLOdzP5f22wAMw/ri4a23Xucf//gbl1xyBaNHjyEUyuXBB/9FdXV1p48TDoe79Nr0NhJcCiGEEEII0cvts89+3HbbLeTkhDrMehUVFVNfX+fcXrJkcafn9Hp96PqGs69erxfD0NO2zZv3LdOmHeWUoTY3N1NTkxkwLVgwn6lTD3Vuf/fdfCZOtLJxI0eO4sMP36dfv/54PB3Pc9yQkpJSysr6sHZtJQceeHCH++Xn5zN16qFMnXooe+65NzfeeD2//vU1qKqa9Tn2hHnzvmXChJ055pjjnW2rV6/G7/c7t30+X8Zjjxo1ivff3/TX5scmS5EIIYQQQgjRy3m9Xh5//Fkefvi/TuavvZ133pWnn36CJUt+YN68b7nvvn90es5+/frR1tbKV199QWNjI9FoNOt+ffv254svPqeurpbm5mYABg4czHvvvcMPPyxm8eJF/P7312ZthPP222/w6qsvsWrVSv7xj7+xatVKjj7aCrSOO+5EGhrquPHG61i06DsqK9fwySez+dOfbu7OSwPAjBkzeeSR/+Pppx9n1aqVLFnyA88//wzPPvsUAI8//ihvv/0Gq1atYOXKFXzwwXsMGjTYKXHN9hx7wsCBg/nuu/nMmfMpq1at5O67/+aUBdv69u3PggXzqapaR2NjI4ZhcPzxJ/fYa/NjkuBSCNGjmmNNfLL2IyJaZEsPRQghhNim5ObmdTrX8uKLf0FRUTHnn38Wt932R84++7xOzzdu3ASOPvo4rr/+NxxxxEE8+ujDHZ73s88+4bjjpnH22acBVgOfUCjE+eefxTXX/JoDDjiQwYO3yzh25szzeO21V5gxYzrvv/8uf/jDn+jb15rr2qdPOf/4xwPE43F+8YsL+dnPTubuu+9M6zbbVccccwK//OVVvPDCc5x55ilcdtn5vPPOm/TvPwCwSmv//e+HmDnzDH7+8xm0tLRw001/7vQ59oSjjz6Offfdn+uvv4rzzz+bRCLhLI9imz79dABOO+0EjjjiIKqrqygv77nX5sekmGZ3myj/NCUSOo2N4S09jDSqqlBamkddXSuGIW+j6Fkbe319s/4r5tZ8yz4DJrFdwVBqIzVUhPp2+C1rb7L8hzCLF7TR3KihehRUFbbbPodd9irc0kPb5sjfL7G5yTUm3DRNo7a2krKyAVnnx22MH7Ohz9aq/bqbouu21PXV2e9KUVEIn6/zEl2ZcymE6FGaYTUPMEyTRfUL+ar6Cw4cPJUB+QO38Mg69/nsRl55qiZj+7dftDBoaA59KvxZjhJCCCGEEDYJLoUQPUozrQnphmkQTZbGRvXeXSLb1qrx5kvrafSv4KQjdmbQoDwME76f18rH7zYy+636TWpXL4QQQgjxUyDBpRCiR+lO5tLASFbd60bvLht65+U6qo3lBMd9T23/NiYOPRaAvgMCfP15M3O/bGHyISWUlEn2UgghhOiq2bO/2NJDED8yaegjhOhRmju4xAoqdbPnW3v3lGhU55s5LaiBBCPH5tIYa3SaEQUCKntMKsI04LtvWrfwSIUQQgghejcJLoUQPUo3k8ElBpgmmmby7uvrmTO7ccsOrAPfz29D10y2H5mL32/9Sfxm/VesaFqOZmgMGhIEoHZ9orPTCCGEEEL85ElZrBCiR9mZS0yTltYEn7zbgH9dMw3f1DJh9wL8gd71ndaCr62M5NCRQeqT235oWMwPDYvZpWI3BpTvAEBdTXwLjVAIIYQQYuvQuz7lCSG2epqhYxgm875u4tlH19HYoIHHIBE3Wfxd25YeXppIWGfJojZyQip9B/sA6BMqZ2Cys21V21oKi714PAp1NZK5FEIIIYTojASXQogeYxgmSxY38/bLdXz4dj3xhM6wkTlMPqQIgAVft2zZAbazaF4bhg47js/DVKx5oaNLx7D/oAPxql5qwjWgmJT08RFu1YmEe+/cUSGEEEKILU2CSyFEj3ny4So++6ieaMRgyPAg004sY8xO+Qzc3k8gqPLDwjDRaO8J0Oxgd8zOeeim1XzIo3hQFZXyUDkJI0F9tJ7SPlZWU7KXQgghhBAdk+BSCNEjWls0Fn7bij/HZNKBRRx4ZAlFpda0bkU12WFcLlrC5KG7KllfFdusY2mMNrCqeWWn+4TbdJYtDhPK8zBkeAjDsIJer2qNuTxUAUB1WxWl5dYSJDLvUgghxLbg5pt/z3XXXblJ53j66cc54YQje2hE265XXnmRadMO3NLD+NFIQx8hRI+oXmsFjKV9PRSX+jFME9O1FMlBR5TRUJdg1bIoTz9SxQVXbrfZxvLC0ucAOGHkyYR8oaz7LJzbimHA6PF5eDwKWrLLrap4AKgI9QVgfbia0j6DAKiTjrFCCCF+RDff/HteffUlALxeLxUVfTnssCM4/fQZeL0b/zH+sst+hZlci1r0nBNOOJLp00/n+ONPdrYdeOBU9t57n83+2Dff/HsikTA33fTnzf5YnZHMpRCiR1SvtbJ6eUXWbQMDI1lqqhs6+YVeZlw8kJI+PqrXxmlu1Db7mOxlUbJZkFy3cszOec4YwSqLBSjL6YOqqFZwaWcu10vmUgghxI9r4sR9ef751/jf/57j7LPP45FHHuSxx/69UefSNA3TNMnLyyM/P7+HR9rzEomt/0vdQCBIcXHJlh7Gj0aCSyFEj6iqjGFikFdo/VkxTVdwaVqBm6oqbD/KyiQuWxzeLOOI66kA0H78bGqqYigqbLd9TnJfO7i0xu9RPeR4c4jpMUrKrG+HZc6lEEKIH5vf76O0tIy+fftyyCGHc8ghhzF79gcAxGIx7rrrdo4++lCmTt2XCy44m/nz5znH2iWZH3zwHqeeejxTpkyksbExoyw2Fovy17/+iSOOOIgpUyZyySU/Z+nSJWnjeOml5zjuuGkcdNAkfvvbq2ltbU273zAMHnjgnxxzzGEccMDezJx5Bl9//WXaPh9++B4nn3wMU6bswxVXXMzzzz/DpEm7Ofc/8MA/mTnzDJ577mlOOOFIDj98CgAffzybCy44m0MP3Z9p0w7k6qt/RXV1lXPcV199waRJu/HZZ59w5pmnMGXKPvzyl5fS3NzM22+/yUknHc2hh+7PX/5yK7reee+HDz54jxkzTmXKlImcfPIxPProwxhG6vPEAw/8k+OOm8YBB+zNsccezj//eTcAF198HlVV67j99tuYNGk353m1L4t1P8djjz2cqVP34667/oqu69x33z1Mm3YgxxxzGM8990zauP7+9zs45ZRjmTJlH0466WgefvgBZ1wPPPBPXn31Jd577x3nsb/66gsAqquruO6633DIIZOZNu1ArrvuSmprazp9DTaFlMUKIXpE9doYBjoFRdafFdM0MZIlN3bgBrD9qBBzZjexbHGYnfYoYN6XLcx+u55jT+tL3wGBTR5HSzzVkVY3s/8DYpombS06uXkeVFUBQDPT51wCBDxB2hJteHM0AkGV+to4pmmiKMomj1MIIcSW91Hlh6xuWbVRx6qqgmF0r7R0UP5g9hmw70Y9ni0QCDgZvTvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpUw5AOBzmf//7D9deewO5ubnk5uZmnPMf/7iT2bM/4Le/vYmysjIeeugBfvnLS/jf/54lGAwyb963/PnPf+SCCy5ln332ZfbsD3j44fvJzy9wzvH44//lyScf48orr2P77Yfz7LNP8etfX8Zjjz1Dnz7lrFu3luuvv4pTTjmdww8/ggUL5nPPPXdljGXVqhV8/PGH3HLLLFTV+sI3Go1yyilnsP32w2lra+Pee+/i97+/hnvu+b+0Yx966D5+/etr8Hg8XHvtlVx//W8IhULceussqqurufbaKxk/fgIHH3xY1tf222+/4Y9//D2/+MWvGTduAqtWreTPf74Zn8/PSSdN59133+KJJ/7L73//R4YO3Z7a2vWsXm1dP3/8423MmHEqxx57Aocf3vlc1FWrVvL111/w17/+nZUrl/O7313DsmVLGT16LPfe+yDvvfcOt912K7vuugf9+vUHIC8vj+uuu4HS0jIWL17En/50M0VFxRx99HFMn34GK1euIBqN8pvfXAtAQUEhmqbxy19ewvjxO3HPPQ8ACg88cC+/+c0V3Hffw87r25MkcymE2GSaZlJTHScn3yQYtMpKDQxMrH90dVcGccjwHBTVylyapsmcjxqpXhvnv/et5f3X63jx8Wpi0Y4zjhvSEm8GrADy2y+bsjbhiYQNDANy8zzONrss1p5zCeD3WF1iNTNBUYmXeMwkEt74sQkhhBCbYsGC+bz++qvsuuvuVFVV8corL3LTTX9i/PidGDBgIDNmnMPQocN4441XnWMSiQS/+tXVjBkzliFDhuL3+9POGQ6Hef75Z7jool+wxx57MWzYcK655nckEnHnPE899TgTJ05i+vTTGTx4O0499QwmTNg57Tz/+99/OOOMs5gy5SC2224Il132S/r27c8zzzwJwHPPPc2QIcM4//yLGTx4CIcddgQHHnhwxnPUdZ3rrruBESNGsv32wwGYMuUgJk8+gIEDBzFq1A5ceeW1zJs3l/Xrq9OOPe+8ixg7djw77jiGQw+dxtdff8lVV13PsGHD2Xvvfdhtt92djF42//d//+JnPzubQw+dxoABA9l7730488yzeeEFK4tYXV1FSUkpu+++J3379mXs2PEcdtgRgBXMqapKKBSitLSM0tKyTt/Lq676LUOHDmP//Q9k9OixNDQ0cO65FzBo0GBOO+1nBINB5s79xtl/xoxzGDt2PP369Wfy5Ckcf/xJvPPOWwCEQiECgYCT5S4tLcPn8/H222+gKApXXnktw4YNZ9iw7bn22htYsmQxixZ91+n4NpZkLoUQm6xufRxDh7J+qcDMMNPnXNqCOR4GDA6yZkWUylUxKldajYCaGzXefbUegKJSH/setHHzE1oSVuZy5dIICz6o5hOvwVGnVDB259TckrZWazy5+ak/gXaW06O6g0srkxrVYhQWW3NFmxo0QrmpfYQQQmy9NiWL6PWqaNrm/8Lxww/fZ+rUfdF1HV3XOeigQzj77PP4+usv0XWdk08+Jm3/eDzO8OEjnNuBQIBhw7bv8PyVlWvQNI3x4yc424LBICNGjGLlyuWAlU084ICD0o4bM2Ycy5YtBaCtrZW6ulrGjUudQ1EUxo0bz8qVK5LnWMmOO45JO0f72wD9+vWnoKAwbdvq1au4//57+O67BTQ2NkLyy+vq6irKyyuc/bbfPvW8S0pKKCkppbCwyNlWXFxCQ0N9h6/F0qWLmTfvWx588D5nm64bmMnPM/vvfxCPP/5fTjrpaPbaayITJ05i4sR9u50B7N9/ADk5OWlj9ftT1VuqqlJUVJQ21rfffoMnn/wflZVriEYjaJpGRUW/Th9nyZIfWLVqJVOnpl/nuq5TWbmG0aPHdmvcXSHBpRBikxiGycK51ryL0n4e2pLbrbLY9DmXtpGjc1mzIsrrz9Wg6yYjRocoKbO+Sf3sw0Y++6CRvfcvwuvtfnFFa7wFwzBZsihMuWIQj5s8858qho0MOUGhHVzm5buD4WRZrOIui7X+0CeMOIXFVhazqSFBv4GbXr4rhBBCdMVuu+3J5Zf/Gq/XR1lZmdMlNhIJ4/V6+b//ezRjuoa79DUYDHbpcdqfw5rZojg/dzYlxG48m3kOk9Qm98+pbe0FgzkZ237zm8vp338AV1/9W0pLywiH2zj33DMzGv64O+gqipLRUVdRlE675IbDEc499wL23Xdy1vv79u3LY489w+eff8qcOZ9x661/YOTIHZg1665uTZnJNq7MbThl1/Pnz+XGG6/nnHMuYPfd9yQ3N5eXXnqet99+o9PHiUTCjB49hmuvvSHjvpKSzdNkSIJLIcQmeeQflaxYEgFg8HA/C5PbDTP1TZ/RLrgcv3s+77xax5KVNXiVAMN36MOe+xUBVvC2aF4b875sYec907+57IrWeAtrV0WJhA22295PRU4e333TyvqqOEOSzXvaWqwusu6yWM2wtqVnLq2AN6bHKCy2jm2s3/xdboUQQghbTk6QgQMHZWwfMWIkmqbR1NTI2LHjN/r8AwYMxOv18u2333DggVMBq8HPkiXfc9BBVtnqdtsNYcGCeWnHLVgw3/k5Ly+P0tIy5s79xslemqbJ/Pnz2G+//QEYPHgIn3/+Sdo5ulKa2dTUyKpVK7nmmt85z/PTTz/euCe7ASNHjmL16pVZX29bMBhkv/32Z7/99ufQQ6fx85/PoLq6mr59++L1+tD1ns9mz5s3l/79B3DGGTOcbVVVa9P2yfbYI0aM4r333qakpIRQKHOu7eYgcy6FEBstkTBYsSRCTkjlZxcOYNCw1DwOM23OZXpwWVTsY+hIH0vz3mZNzhwGbx/glWUvMa/mWyYeUAzAmy/WUV/b/e6sjZFmFn9ndaLdZZ88yvtaY6qpijn7tLUky2Ldcy5N3VmGxGaXxcb1OEV25rJROsYKIYTY8gYPHsKBB07lxhuv54MP3mPt2koWLJjPgw/el9GltTOhUIijjz6Ou+++g88//5Rly5Zy88034PX6mDr1UACOP/4kPv54No8//iirVq3kf//7D99++1XaeU455XT+/e8Heffdt1i1agV/+9ssqqrWctxxJwJw9NHHsXz5Mv75z7tZtWolr7/+ygYzbwD5+QUUFhby/PPPUFm5hjlzPuXee//ejVeq6848cyavvPIiDz10P8uXL2P58mW88carPPzwAwC8+upLvPzyCyxbtpTKyjW8/fbr5OXlO1nAfv368c03X1FTsz5ZvtszBg0axLp1a3n77TeprFzDf//7bz77LD1Q79evn1MG29jYiKZpHHzwYeTm5nH11b/m22+/Ye3aSr78cg5/+csttLS0dPBom0aCSyHERmtpsrJ45f0CDBsZcrJ/0PGcS9sOu/swFQMlJ0pOSYzaSA2rW1YzeFgOe+xbSLhV59F/VRKPdf4NYGuLxh1/WM47r9RhmAbfzltPW6tOeT8//Qb76OMEl6nGPqk5l+lzRN1ZS4CAageXMQqLrUKPJslcCiGE6CWuu+5GDjroEO68cxannno81113JcuWLaWsrE+3znPhhZcyadJ+3HjjdZxzzhnU19cxa9ZdTknt+PE78atfXc1jj/2Hs846lfnz53LqqT9LO8fJJ5/KiSdO5447/sKZZ05n3rxvue22vzlj6d9/ADfeeCvvvPMmM2ZM5/XXX+G002akzTXMRlVVfv/7P7Jw4QLOOOMk7rnnLi666NJuPb+u2nvvfbjllll88slHzJx5BhdccDbPPPOk07E1NzeP5557mvPPP5sZM05l0aKF3HbbHU6TpJkzz6eycg0nn3wMRxxxUGcP1S2TJk3mpJOm89e/3spZZ53G0qWLOe20M9P2OfLIYxk4cCAzZ57BEUccxNy535CTk8Pdd99HWVkp11zzS04//URuu+2PKIqa0dippyhmZ4XHwpFI6DQ2bp51+TaWqiqUluZRV9fa7VbYQmxIV66vFUvCPPT3Ssbtms/xZ/RlRdNyPljzHgB9c/vSEm+hLdGG3+PnlB1OSzu2uqWGmx77D/3LizjvkKN4edkLFAeLOXL7YzAMk0f/uZal34c59rQKJuxekOXRLQvntvL4/60DYOh4eGXVMygq7H9oKVNHTiY/Oph/3LqKoSNyOPOigQC89MR6vvi4iVPP68/I0VaZyH++e5iAJ8CJo05JPb/k8xldOoaRObvw198tp//gAOddMXijX1dhkb9fYnOTa0y4aZpGbW0lZWUDMua2bawfq6HPtuzee//Oxx9/yCOPPL6lh9LrbKnrq7PflaKiED5f500Nt+nM5bx58zj66KOd/48ePZqFCxdu+EAhRJc0JzOXBYXWHx/dTGX1THAyl4aZ+cfRUBLsvk8RQ3fwoxlWqamd+VRVhb0mFwE4zYI60lifKlOdv6AG04TRE/II5XrQDYOSMj+qCjXVqcxla2v6nEu7+VBG5tJVFpuX70H1QFODZC6FEEKIjfH004+zaNF3VFau4aWXnuPppx/n0EOP2NLDEj1om27oM27cOJ5//nkAKisrOeOMM9hxxx238KiE2HY0NyaDyyLrT4nmKn9NK4s1M8tiY3oseYxGol1wCTB0ZA6BoMqSRWHiMQN/IPt3YXawt8e+hURywmzfp5RQyOM8rterUFrup6YqTrhNJ5TrSc25zE/tB3Q45zKmx1BVhcIiHw11CRIJA59vm/5uTgghhOhxq1ev4pFHHqSlpZm+fftx1lnnccopp234QLHV2KaDS7fXXnuNQw45ZEsPQ4htSkuTFZTlO5nL9ODSbuhjZwZVJRWQ2QGlYRrE9GjG8V6vysgxucz7soUfFrYxZqfUOpVuduZy/G4FxAubmV3pwe/xE9fjTnDbp8IKLmuq42w3LCc15zK3fXCZ/ifR77Ga+MQNK+tZWOKloS5BU4NGWfnmmasghBBCbKt+8Ytf84tf/HpLD0NsRr36q/c5c+Zw/vnnM2nSJEaNGsW7776bsc+jjz7KlClTGDduHCeddBJz587Neq7XXnuNww47bHMPWYiflOZk51Q7c6m3a+jjntJtN/VZ21pJU6yRuJ4qUw1r1lIm7swlwI7jrfmQrz5Tw3uv1WWdN9WYzFwWlXhJJI+3y1ntJVDaN/Vpa9HxB1R8fjXtcTPLYq1GBvFklrUw+TylNFYIIYQQIlOvzlyGw2FGjRrFcccdxyWXXJJx/yuvvMItt9zCDTfcwIQJE3j44Yc555xzeO2119IWBq2srKS+vp7x4zd+DSCw5oH1JvZ4etu4xLahK9dXczJzWVTsRVUVdHRngWRFweoGm7xtKga6qfHu6rcozSmlX+4A576YHrH2x0hbYHmHsXmMnpDHd9+28t5r9QwbGWLI8FDaGJrqE/h8CvkFXvQ6DUWBHF+Q1kQLBgaqqlDRzwo2qypj6LpJLGpQ0seXem7JcXpVT9rzDSh+FMXKXKqqQnGplclsbtTk924Tyd8vsbnJNSbc5DoQontUVdmo35teHVxOnjyZyZMnd3j/gw8+yMknn8zxxx8PwA033MB7773Hs88+y8yZM539Xn/99U0uifV6VUpL8zbpHJtLcfGPsyiq+Gnq7Ppqa9ZRVdhuaBGqqpAX9pMXsbJ9uUE/WtTvlMYWFeegKAqhXD+KTyeU73X29YUgL2b9HCr08MSCJxhUMIgDhx3IRVcW8OaLVTz3v7XUVRvsumfq9zAS1omEDSr6Bygryyc37iOvNUifwmIiagv5BQFKS/PYZY8ATz68ji8XL2ZoQx3gpajI7/xOq5EEeXlBigvyMn7PSwsL0U2d0tI8+g+IAvVo8d7792BrI3+/xOYm15gAiMfj1NaqeL0KXm/PFe715LmEaG/LXF8KqqpSXBzaqOVKenVw2Zl4PM6CBQu44IILnG2qqjJx4kS++eabtH1fe+01rr/++k16PE0zaG6ObNI5epqqKhQX59LQ0CZt1kWP29D1pesmTY0J8gu9NDS0AVDX2ExrqzV/UomHaYmnfmdq6poAhdbWKGElTp7Z6OxbZdbR2mb9vKRyFfVNzdQ3LWBCwR4oikJZX6tcddGCJnbdJxXUVa+1ylXzCzzU1bVSW99Ea2uUqNegtTVKfaCFuhyr2+zA7YK81vAR3k/z0dmfQA7U1Vn31UWs48Jqwtlmi0dMWuKt1NQ2o3itctjqqnDGfqJ75O+X2NzkGhNumqZhGAaaZgI9s7yDLEUiNqcttxSJiWEYNDSE8XrjafcVFORscCmSrTa4bGhoQNd1ysrK0raXlpaycuVK5/batWupr69n3Lhxm/yYvfUfJ8Mwe+3YxNavo+urpUnDNK1mPvb9Cd3aZv2cwL2KrqZbJbSmCbpp0BJrce4Px8POz1Et5vxcG66jNKeUigF+VA+sXh5F1w0MA955pQ41+YVeYYk1hnjyMf2qH9MEzTCcsY0cm8trH8LyJRH6KgahXI9zXzw5bgU147n6kueKJKLk5Vt/MpsbNfmd6yHy90tsbnKNCei9n+GE6K029m/nVhtcdsQ0TRTXpK3+/fvz1ltvbcERCbFtar8MCaQ35Gm//Ihm6GnzKZvjTc7PES2V4YxqUefnqrZ1lOaUEidCcGA94ZUl1NcmqKtJ8NHbDc5+RcXWXEi7A20w2YjHcC2NMmy0Hz60mvFUYDBgu6Bzn71f+6VIAAIeqyQkrsfIL7Sypi1N0tBHCCGEEKK9rbZQvLi4GI/HQ21tbdr2+vr6jGymEGLjNMeaaYw2ZL8vGWAVFKaCS3e3WN1IDy4N00A3UuUd7iDSHZRGXYFmVdtaAL5e/yV15Z8RVZtYvTzKmhWpYwGKSnzJ81jBpd3l1R3g5pVo5OVZweOkqYXsvGdBaqz2UiRq5vdtPtUKLmN6nFCuB9UDLc0SXAohhBDtXXDB2bz//jvO7R9+WMzMmWdwwAF7M2PGqTQ3N3HUUYdQU7N+C45SbE5bbebS7/czZswYPv74Y6ZMmQKAYRh88sknnHnmmVt4dEJsG15f8jo1jQ2cOHJ6xn1ZM5euYK595lI3uxaQRfVU4Lg+vB7DNIhqEYpLfaxX21i9IkJDbSLtmMISawz2UiT+ZLbRPYaoHmW3SYXEIgYT9ylMq3BwliJRMr9vC3hTy5GoqtWVtqlRQ9dNPB7pPiiEEGLzmDRpt07vP+usc5k58+c/ylgWLVrI/fffw6JF3xGJRCgr68PYseO56qrr8fmsL3g//PA92tra2G+/A5zj7rnnLsrLK7j55tvIyQlSUFDIYYcdwQMP/JOrrtq0fiiid+rVwWVbWxurVq1ybq9Zs4aFCxdSVlZGnz59OOuss7jyyisZM2YM48eP5+GHHyYajXLsscduwVELse1oS7QR1aIZ5eaQPXPZfp1KN8Ps2qR0d0YzYSRoiDagGTqlfXys9URYNK8NLWHi8yvssW8RP3zXRt/+1lIjCT1ZFpsMCA1XcBnWwuQXeMkvyByLvV+2sli/av2jaa91mV/gpalBo61FTwushRBCiJ70/POvOT+/8sqLPPvsU9x338POtpyc1NJcpmmi6zpeb8//u9TQUM/ll1/Efvvtz+23/4NQKERl5Rreffft5LQS69/Jp556gsMOOzLt80Jl5WpOPPEU+vbt62ybNu1IZsw4jYsu+gX5+fk9Pl6xZfXqT0bz58/nZz/7mXP7pptuAuDiiy/mkksu4fDDD6e+vp4777yTmpoadtxxR+6///60NS6FEBvPDhZ1U8erpP+5sOcd5hdllsV6VW9GoNlZ4OnmzlyCFdTppk4g6KHvMJO2hVYguN32OUw9soypR6bK4FNlsVaw6Q4i3fM6DTN9grqe3M+jZgkuk+eK6VbHtPxCa5/mJk2CSyGEEJtNaWnq37dQKISqqs62r776gksvPZ+//OVO/vnPv7Ns2VLuvff/eOaZJ4lEwtx005+dY6+77kpyckJce+3vAYjFYvzrX//grbdeJxxuY/jwEVx00eWMHZu9+eW8eXOJxaJceeW1eDzWv4EDBgxkjz32cvZpaGjgq6/m8Mtf/sbZZmde77jjL9xxx1+cTOvgwUMoLy9n9uz3OeywI3rmxRK9Rq/+ZLTnnnvy/fffd7rP6aefzumnn/4jjUiInw7DNJzgTDd1vO3+XDhlse7MpdlxcGmYhrPmZWfsOZc+1UfCSKCZmhO0Dt5BYclCa7+BQ4IZxyaMBKqi4ktmG3XTPcczFVxmNhuyy2Iz/yTazYGczGXy+UpTHyGE2PrlX3I+/ldf/tEeL37YNFruurfHzvfPf/6diy++nIqKvhQWFnXpmDvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpU56xf0lJCfF4nNmzP2C//fbPqGQCmDv3G0KhEIMGDXa2Pf/8a5x77pkce+wJHH74kWmZ1lGjduTbb7+W4HIb1KuDSyHElqO1b87TLqlnl8XamTz7GI/iyVpe2tU5l7FkEBf0BknEE2iG5gStJQMMgjkq0YjBoA6CS6/qRU0+vrupUHrmsv18ULuhT7bMpTV/M9o+uJSmPkIIIbawc8+9kF133b3L+1dVVSVLbF+hpKQUgBkzzuHjj2fzxhuvctppmX1Lxo4dz6mn/ozf/vYq8vPzGT16HLvvvieHHjrNKWutrl5HSUlpWuBZWlqGqqqEQqG0LCxAWVkZS5cu2ZinLHo5CS6FEFm5g8v2wZhpmjQ3aoRyPfh8qSY4uqHjUT2oWRrjGKaJ2a4cNeAJOMGkLZ4sPw16c2iJt6AbujOWuBlhv4NLmPdVC0NG5GSMSTM0cn25TpBomAZtiTZiepSIFnaNpetzLt0NfcCacwmSuRRCiG3BpmQRt9Qi92477LBjt/ZftmwJuq5z8snHpG2Px+MMHz6iw+MuvPBSpk8/nS+++JwFC+bx6KMP8+ijD3P//Y9QVtaHWCyG3x/o8jj8/gCxWHTDO4qtjgSXQois3JnG9mWk4TYDXTMpqEj/E6KZGjmenKzBZbY5l7m+vIzg0maXoyaMhJOBDGthJh5QzMQDijs8v0/1OUGiYeq8suxFIlrEyUBa242sx2bLXAadOZfWP4JSFiuEEKK3CAbTv2hVFCXji1xNS/17FYmE8Xq9/N//PZpR3pqbm9vpYxUXlzB16qFMnXoo55xzAaeccizPPfc055xzPoWFRbS0NHd53C0tzRQVZf5bLrZ+W+06l0KIzSutLLZdcNmSpSTW7iob9OSgkDkfwzCNjPOEfKGM/Ww5yfs0M1UWqxmak9lsL5Fs5uNVfU5wq5u6Uw7rPi5zmZROusUmg8uoZgXBBU5wqWfsK4QQQmxJRUXF1NfXObcNw2DZsqXO7REjRqJpGk1NjQwcOCjt/8XFXW+ImZeXR2lpKZGI9W/syJGjqK2toa2ttUvHr1ixnBEjRnX58cTWQ4JLIURWibQ5l+mZvmxrXIa1NgBCvhyULJlL3dQyymtDvo6/JbUzhnE9lvYtbDjRlnV/u1OsT/WiKiqKomQEkamxtA8uk91is5XFZmQurX1kzqUQQojeZuedd2XBgvm89dbrrFq1kjvvnEVTU6Nz/+DBQzjwwKnceOP1fPDBe6xdW8mCBfN58MH7+PrrL7Oe86OPPuQPf/gtn3zyEWvWrGb58mXcc89dLF++jH322ReAESNGUVBQyLx5czc4xlgsxvffL0zrNiu2HVIWK4TISkuuGQlgYAVfkbBOY33CFVz6nH3CCWtOY8ibS0TLnEdhmEZGqU6uK7hsX8qT47UylzEtvWw2rIUpIr2UpiZc45TxepOdYj2KB93Qs5YIme3KYt1LqLSnKip+j9/JfAaCKh6vQmuLZC6FEEL0LnvvvQ+nnXYmd9zxF0zT4MQTp7P77num7XPddTfy4IP3ceeds6itraG4uISxY8dz0EGHZD3nkCFD8fv9/O1vs1i/vppgMMh22w3hppv+zC67WMuNeDweDj/8CN588zX22mtip2P86KMPKS+vYOzY8T3zpEWvIsGlECLDmpVR7v7XUor3a6HfIB9VVWFee20Ny3+IgJnKWBa4ymLt8tMcb/qcS4/iQTf1rHMug56gc3/AEyDqCkrtjGH7dS/tINa2Prye15an2sj7PFZwqSoquqlnBJaQbZ1LPXlMZubSHktLvAXDNFAVlWBQJRbbsk0chBBC/HQcf/zJHH/8yc7tXXbZjdmzv8i6789/fhE///lFHZ7L5/Nx3nkXct55F3bpsQcMGMhvfnPdBvc76aTTOPPMk6mpWe8safLUUy9m7Pfkk49x5pnndOmxxdZHymKFEBmWfh8mGk/wxScNfPN5M/+5dzXLF0fIy7eCr6xlsQm7LDY3bc6lnQ00TBMtGcTZgaNP9Tn353jTmxIEk11a2zf8sctvbU2xxrTbduZSVdSsAS1kKYs1Op5zCe55l1agGwiqaAkTTdvwup1CCCHET0FZWRlXXnkd1dVVHe7T3NzEpEn7MXVq9iyp2PpJcCmEyFBbHcdAwzRh1fIoqs/kkGPKuPx3Q+k3MNVq3O6cCu0zl5nBpW5qGMkgblD+YHJ9uZTllDmZRndwaQWd1vZYMqCzs6HtM5d2oJo61no8d6DYJ1TO7n33ZHTpGCCzW2yqpDZ7cNm+Y2wgaI0lLtlLIYQQwjF58gGdlrsWFBRy2mlnZnSqFdsOKYsVQmSoXR/HUHRGjs4jFtM57YB+jB9UTEJPUDS+kjVrCvHg66ChTyitLNaXDBIN03CCuu2LRzBxwKS0+wPJpUfACki9yeDQLost8BfQGGukKd6UNtb2WUifK3NpC3j87Fg6mu/rF2U9prOGPuBe69Kad+kPWOeORQ1CudmPEUIIIYT4qZHgUgiRxjRNaqvjeP0mu+5VTFtbjFCe9Q3j0qYltPb5jubcfvRnFMFgKrAKJ6zMZcibmxbY2RlI3dSd4NIdxNn322WwkF4uawd0pTllRLQINeH1aIbmKrdNDxTdDX1S57PWuLTHldnQp/M5l341ff6nnbmMRSVzKYQQW4NUokymMwjROet3ZGOTy1IWK4RI09ykkYibFJTilK3Ymb5wog2fX2W/Y/ycMrN/2nFhrc1qduMNouDOXCbLYg3dCQQ9Sub9QVdZrNdVFuve1je3H4ZpUNW2ztmuGR1lLj0Z2+zH1Y32mcuOu8VaY7OXRUl1jAWkqY8QQmwlVNUDKMTjsQ3uK8RPmfU7oiR/Z7pPMpdCiDS11dYSJAWlqQDQDi7t4CpUFmO7oalg0DANolrUWVpESZtzaZfFdp65DLnnXHp8GYGeV/XQP28AK5tXsK5tLQPzB6WNLbVfcs6l6snYZgec9tIq9tgTyTUyOyyLTZbsSuZSCCG2ToqikJtbQHNzPQB+fwDY1Hl/ijR2E5vRj319mcTjMZqb68nNLdjoebESXAoh0tSutwLI/KLUHxU7gLODq+ZY+rzHsJZc4zIZXKaXxdoNfXRnCRD3t2F2VtHvaszjU70ZgZ5X8dIvz8qWrmtdmxpbu46w7bOU1rnTy2J1w3Cex+srXiWiRfCq3rSA1M0+3m4uFAhIcCmEEFubvLxCgGSAuekf2lVVxTDk3wGxeWyZ68v6Esb+XdkYElwKIdLUVlvBZV5xapvd5dVeFiSmx4jpMadTa8SZbxkCyNrQR3c19PEqqT89QwqGEk60UR6qwKt60QwNj+JFURTnNoBH9ZLny6MwUEhjrJFwIkzIF+pSQ5/2cy7tzOXatrVEtAh9QuXsVrFHh69JMJm5rGxdQ9XSKlTfOOt1kOBSCCG2GoqikJ9fRF5eIYahk2UZ5C5TVYXi4hANDWEMQ7KXomdtietLUawv/ze1k68El0KINE5wWQh22GYHcHbmDqA51kyfUB8g1Sk2JxlcZlvnUjd0TDLLYgfkD2RA/kBnu4bmyj5at93nKQoU0xRroi3RRsgXyljL0tvpnMtkWWwyWG5LtAIwqmQH57lkY2dVm5IZW0NZCmwnS5EIIcRWSFEUPJ5N+wisqgp+vx+vNy7BpehxW/P1JQ19hBCOb+c0s3xJBH9AIZif2t6+LBagxbUkiL3GZcjXWeZSc2Uhs5ef2gGkHSC6513a2U57WRB7zUktI3OZuc5las5leubSXjMz15ubdTy2gDd9Lc38YJ41BslcCiGEEEI4JHMphABg7eooz/63GlWBY07ty2p1sXOfbhqYpumUxQI0x5udn8OJ5BqXyaY8iju49PhRFIW4HndKLdzBp5sdBPqcIDP1J8oOSAPJEtd4cix2FnJY0fYYpkG+vyBtf3DPubS26U7m0hq33YioI0HXGpwA3mQjWwkuhRBCCCFSJLgUQgBQuSoKJkw8sJjRE/JYsVyDZHxmGDpxI47pmqDiDi5TmctkQx9XUYSqqPhVPwkjgUfxdLjcB4AnmZ30euzMZWo5Evs4u0Q1mgwuteQyIiOLd6A8VO46V8frXNpzP+2y2NAGgsv2Y/ZZp5PgUgghhBDCRcpihRAARNqsQKmw2Aqk3OtH6qbuzLcsChQB1pxLm525zElmLlXXZHAVFb/Hj2ZYZbEdZS3BnbnsuCw2teakFVzaWcj23WWVLGtp2h1kTaxMbESLkOPN6XRMtsmDDnCWP/FKcCmEEEIIkUGCSyEEAOE2K0gL5VpBmr32IyTXsUwGc4WBIryql9ZES+pYeykSb+Y6l4qiONlG3dQ7XEsSUsGfUxbr2tfTLnMZS665qZt2w5/087qXIrEzoamlSHQiWgTDNDaYtbRtVzCEIYVDrXPbwaU09BFCCCGEcEhwKYQAIBK2gsuckD0vMdWFVTc1p4FOwBvEp/rSurRGtAg+1YfPDuLSymIVAnY0RsfNfKz77AyjN+02pILHVHAZTY7NyNjXOodrzqVdFps8h24aXZ5v6WY/L6/PKg+WzKUQQgghRIoEl0IIACJhK1CyM5f2XEawMpcxzcpcBj0BvKoXI7luZUJPENfjTqdYSG/YoyiqM+cRMstX3dqXxfrccy7tslhPelms04FWaZ+5zFyKxA4ODdNIzbfcQKdYN/t5SUMfIYQQQohMElwKIYBUWWxOroppmuiG7qxXqZuGswxJwBN0gkDN0IgkS2Lt+ZaQHlyqqAQ8Add9HQeXpcEyfKqPwmARkJ6NbF8WG00Gu4aZfc6lnaX0ql6nTNfOmhqm4ZTyditzmXxeqtcERYJLIYQQQgg36RYrhAAgYs+5DHmcbGDAG6CFCLqhO5nCgDfglK1qhpaab+kO0twNfRTVKZeFzjOXY8rGsmPp6FSGMMtalXagGjfSM5ftO7raWUp39jOVudSdzOXGBJcoJoGASlzmXAohhBBCOCRzKYQAIBzW8foUfH7VaeYTcDXisde4DHqCzvxH3XQFl15XWWz7pUhcmcvO5lza+9uydYu1zucnnmzooxkaiqJkdHz1OHM0M+d76qZOOJElKN4A91ImgaBKLGqkLc8ihBBCCPFTJsGlEALDMImGDWe+pd2BNZBc9sMwdaKauyzWygZqhuYEaTneDuZcohBQXcFlF5b9cPZNK4t1NehJBpeGaaCbuhN4ph2r2GWxrsyl4p5z2f2GPorreH9AxTQhEZfgUgghhBACJLgUQgDRiIFpQk7I+pPglMVmyVwGvAEno5hwzbnsqKFPZlls16vx7aCxfcmrX7U7xsbQDT3rOpXtlzVxj8daWiUCpM8V3RB3Q6BA0PpZ5l0KIYQQQlgkuBRCpJYhsTvFGtZtn8eHqqjohu4s/RH0BJ2gT+9C5lJV0hv6bKgs1s2eL9l+nmbQm+oYq5t6RvAJqSyju1OtfS7d1InrcbyqN2tg2pH2ZbEgwaUQQgghhE0a+gjxE5fQE06n2FAovSzWDr70ZFmsV/XiVb1OuapmakQ0KwPozlzaXWYhuRSJKzjsrKFPex5Xx1c3ew6n/djZzmlvc8+5tMajOMuouIPerlCTjYpMXMGlNPURQgghhAAkuBTiJ626rYrXV7xKUctIoJycXCtgshv6+FQfXtVLXEugm7ozP9GnurvFWnMX0xr6uLrFKigEPF1b57I9O6jsKLi0O756smQu8/x5AOT789O2exSP0wyofeC5IWmZy4D1HCVzKYQQQghhkeBSiJ+wHxoXAzC/7ltgqtPQx728h5LMXILVzMfebu8XSUQIeALpTXyUjrvFdrbOZXupstj0P1XB5PnCnWQuS4KlHDfyRHK96Q173ONsXzK7IellsdZjSnAphBBCCGGROZdC/IQk4gbNjZpz2+6kGk92PM0JpQeXPo8vLXCz5zrawV5cj6ObekZ5qbssVlWUdsuBdKNbbEcNfezgMjnf09vBPM48Xx6KK4tqjccdXHbv+7VUt1hT5lwKIYQQQrQjmUshfkKe/k8Vi+a20aevnwMOK0ErVFi5LEJbq04uOJnLcHKZjpAvlBZcts9c2p1ife3KS9s39FEVFZ/qI2EkulkW60n7r83JXCbHma2hT0fcj99+3Bvi7hZbXGoF5tVrY906hxBCCCHEtkqCSyF+QtassDq+1lTFeeLBKhoK1rNWaQFgDDhzLsPJoDHXl9tBcOlJ28/vWksSMoNLsOY3dje4LAoUM7J4FAPzB6VtdzKXycfvTqmte1//JpTFbre99VqsXBrp1jmEEEIIIbZVUhYrxE9EIm7Q2qxTXOrjtJ/3JyekosdU3FWqdrdYOyOY689NK2NtXxZrd2vtLHNpl8japbHdCQQVRWGv/hMzgks7yHUa+nQruEyNzdsuKO7qsSZW5jKvwMO6ypiUxgohhBBCIMGlED8ZjQ3WPMqiUi8jdszl4muGcNo5gxkyIsfZx17n0p25VDsri03YmctOgksncxlIO3ZT5PisMUe1aLfP6R6b37NxwaVhGiiKwnbb52AasHqFZC+FEEIIISS4FOInorHOWl6kuMQKqHLzPJSVBRmyfSq4tOdctiXa8KpeAt5Au7JYK0C0u7imMpfpQVp6Qx817Rh3cLex3MueQGY32c54eqhbLMB2w6zXbtWyaLfOI4QQQgixLZI5l0L8RDTUW8FlUWkqEDRNk9w8L8NG5rBDNJeckIpmaMT1OIXBQoB23WKtzKW9rqS9Hmb7zGX7pUggFZh6Oujs2h2qohL0Bp3MZbc60Loef1PWuQQYnAzMZd6lEEIIIYQEl0L8ZNiZy6KS1K+9ibUEyZid8jl5dD8URSEcT3aKTWYH3cGYHSB6281x7MqcyxyvFYh1t4lOR0Le3FRZbDcylwruOZfd/xOoKqoTXJb39eMPKKxbE8M0zYxlT4QQQgghfkqkLFaIn4iGemvOpV0WC6ngElJrW9rzLUO+XIBO51zaMudcZpbFji4dyz4DJtE/b8CmPZGkkC9Vzqt2IxuaNudyIwJdd3Cpqgpl5X7iMYPmJm0DRwohhBBCbNskuBTiJ8LJXLYri7XZJa5Op1hfMnPpCsaczGW7LqtdmXMZ9AbZvmhEj8y5BCtzaetO5tKdie3uOpdgPR93UF5WYZ2jtjre7XMJIYQQQmxLJLgU4ieioT6B16eQl58KrtxBUsKwgqM2p1NsHpAKxnyqz/l5w5nLzDmXPS3kSzX16dZSJLgb+nS/LFZBcTKXAH2SwWVNVaLb5xJCCCGE2JZIcCnET0A0ohMNG/hKm1nWtMTZnp651IjpMcLJ5UWcOZfJwC2QXOPSvc3WPpNpB5Sbcw5iWuayO2WxPZC5dAeXkrkUQgghhLBIQx8hthKaofHGitcYWjiMHUtHd+vY1cutxjcNRfP5qFJnQN4ggt5gWuZybesavln/tXPbzgymur0GnfsURcGrep15mu3Xi7S7xaqb8fsrd+ZS3cjM5abOuQRX5lKCSyGEEEL8xElwKcRWojHWSG2kBq/q6VJwaZomc75Yz3dz4qxYbAWXucVWMBnRwhnBZVXburTj7YY+9hqSQU8g7X6P4kHDCi7brxdpB3CbqyQWUt1noXtdX93LlvjaZVy7wr0ciaqoFJf5UD2SuRRCCCGEkLJYIbYSUc1aS1Ez9C7tP29hFbe99BCfrfySwmIvhx3Xh1HjA8lzWcEmrrLY5niz83OeP49gMlPpZC69qcwlpAd07deLtMthN2tZrM9dFtv14NIOfH2qb6PG136tS49HobSPn7ZWnXBb194bIYQQQohtkWQuhdhKRJLBpW52bcmL75fWADByD5PLjh2CqiosX2QFPxHdOpc7c2nPtTxou4MpD1U4gZcz57Jd5tIO6FRFzQjunDmXbL7gMuAJOKW53SmLdRoUebqftYTM4BKseZc1VXFqquNsNyyno0OFEEIIIbZpElwKsZVIZS411q+LMfvtBuprEoTyPJx4Zl8aGzS+/qyZpvoEu+1TyKqV1pIiFYMVVNUK8uzlRmJaDEhv6GPL9eVmzUq6G+hAqlw2W2npj1EWC1ZpbEu8pVvdYu35oBtTEgugkBlc9qnwsxCrNFaCSyGEEEL8VElwKcRWIpIsZV28qJm576xyV7SyZmWU2W81sPR7K/tYtTbG2pYw3pBCsNDKdOqG7gSTdqDqzlza2geRQwqHouk62xUOSdtuB6DtS2IhVQ67uYPLXF8uLfGWjIZCnbED0fbzRLsqW+YyVKxR6/+B2pp8oHCjziuEEEIIsbWTOZdCbCUiWphoRGfu142oqsIhx5QxcUoxYHUqrV4XQ1Wh78AAdesTJPQEJWU+4oaVpbSzlgAxPXvm0qt6M8pFvaqXkSWjMspi7TUiswVpHsWDqqgbnR3sqp3Kd2Xnil3J9xd0+Rg7OOxOQJrteINUcNmcs4LqnHn8ULNyo84phBBCCLEtkOBSiK1EVI+yaF4bCU1jr8lF7L1/MQO3swK+1cujtDbrlJb72XtyEQAGOiV9fMT1OIZpoLmCy0gHmUt7bcuu8DiZy8wgTVEUJg3Yjz377d2t59hd5aFyxpWN79Yxm565tLKypitzmVtk/be+PrxR5xRCCCGE2BZIcCnEVqC5UePt19eyekUUXwD2OcgqvSwrtwKkxQus+ZV9KvyM3imPUK4HQ9Eo6WMFflEt6qxJCa7MZbvgMsfX9eDS20nmEqxy2orcvl0+34/FDg43NquarSw2EFTxehUaGmNZ57EKIYQQQvwUSHApxFbglafXs6qykZwclZ33KsAbsAKYkj4+FBViUSvQ6dPXj8+ncsRJ5ey4cw4lpVYAFdOjJFzBpTPn0tz4zKVX6XjOZW9md5btyW6xYJKb5yGRMGhtkeVIhBBCCPHTJMGlEL1cPG6weFELik9n/8NLKe8bcLKQXq9KcWkqSOpTYQV6oyfksfvkfKexjpW5TJXFRnWrOVBG5tLb9U6nzpIeG1leuqX0y+3P9kXDGV40YqOOt7vFRrQIC+u+I6EnMEyT3HwPpqJRX5vYwBmEEEIIIbZN0i1WiF5u+eIwMS1Kn35+vB4rWHSvddmnwk99jRXQ9OmbCvR0V6YyokecTCPgzMNsX8GZ043MpV1WurGNcbaUoDfIPgP23ejj7czl9/WLWN2yioDHj5nMXDZgUF8jy5EIIYQQ4qdJMpdC9HLfL2hDU2P07Z8KHN3zJ8uS2UpFgdLyVKCX1h1Wi6G5AlKwspmZcy67k7nsfM7ltsoOLu3sb8LQnODSVAzJXAohhBDiJ0uCSyF6sXjMYPGCNnQ1Snm/1FIgmpGa12c39Skp8+H1pn6l9bQGPlE0vV1wqUcygsvcdmtcdqZ/7gDKQxUMyBvQ5WO2BXZwGXc1RTJNg1C+BxOddWtirF8njX2EEEII8dMjZbFC9FLr1sR47P61tDbr9B0Jfr8rcHRlIfsNCqT915bewCeakWGMabGMx+zOnMvSnFIOHXp4l/ffVqSCyzhgNUUyTZO8ZOZyycIwSxauYodxuRx5cgW5eZ4tOVwhhBBCiB+NBJdC9FIfvllPc6PGDuNzGXJAHovDVmBjrVmZChz79g9wxgUDKO+XHjy694nqUXIMK3AMeALE9BgRPZK2VqOqqN2ac/lTpSSDS7vs2DANTEz8QZXtRwcprQvS0qSxaF4b0eg6Zlw0cEsOVwghhBDiRyPBpRC9VPVaK7N49CkVzGtaDWHI9eXSEm9xAsfVLatY1bySvUfu42TUbO7sZlSLkvBZwVC+v4BYpCYtc7lz+S4UBYs3enmOnxI1OZvAfg9MTAzTQEFhr/0LmDxoELGowd9vWcmKJRFaWxO8V/0qLfFmioLF7FNxAHnBHFRV2ZJPQwghhBCix8mcSyF6oUTcagxTUOQlJ+QhqlvrUub6rDmRduD47qq3Wdq4hOq2qoxzaO3nXJrWPM08fx5grXVpr9XYJ1TOoPzBm+8JbUNUJT0oNJP/A9CTr3EgqLL9qBCY8MPiBuqjdSSMBGubqrj11i+476+raWqUxj9CCCGE2LZIcClEL1RTHcc0cUpd7TUq7bJVzdCdwBBSnVvdEkYCr+rFo3jS1rkMJc8Rd3WTVZAsWle1zxCbpuE07zHMVKOlYaOsMuSlP7SxZmWEhroEdTUJWqMR1q2Jcf/tawi36QghhBBCbCukLFaIXmj9OqtZTEWyQ6ydhQx6g87tplijs787qLHpho5X9eL1eGlLtDkNaPweK2B1Z9xQJLjsKo+S3qDHNE0n0NddAf+wkVYQP/fLZhbmtJCTo9J3YABdiZGTq9LSpLHs+zBjd8n/8QYvhBBCCLEZSeZSiF6oep01H7I8ubZlwgkurWyYbmrUR+uc/d1ZTLACHt3U8Xl8BDxWQNqWaAVc61Imu5yK7snIXLrLYl1LxOTleynv5yehWdsiEYPVyyNoSpxd9yoEoHZ9/EcatRBCCCHE5ifBpRC9UGbmMlkW68lJ3taoj9Y7++umzrKmpby76u20brJexUvIZ2XQmmPNAPiTTXvcQZEqfwq6TGkXXFqBffqcS9uosbmYGJSUevGYXjQNgoUaw3e03hMJLoUQQgixLZGyWCF6ofXrYigqlFVYgWDCSKAoilPSqhk6DTFXcGnoLG34gXVt62iKNTrZSq/qI89nlV3agY+duTRccwVF12XLXNqZ4/blyZMPKaH/6DgfNRbxwbMxIrRQ2h/KKqz3oHa9NPURQgghxLZD0hVC9DKRsE5Lk05pHz9eb2rZC5/qw5ts3KMZCeoj7rJY3Znvpxm6003Wq3rI96fP6cs257J9wCQ6ltnQJ1Ve3D5z6fWqlFX48PtVBg0oAqCkn0lunodAUKVufZyWWAtLGn6QQF8IIYQQWz3JXArRy9gdRPMLU41jEkaCoCfodIVtjDWScHV71U3DCWwMU0+VxapeZ+kRsJrR2GWdpsy53CjtS4gNM/ucS+d+rKB/n0kVqAsb6DNIQVEUyir8VK6M8snyL6jSV1AYKKJPqM/mfwJCCCGEEJuJpCuE6GXiMSsY8futX0/d0DFN08pcKlZw6e4UC1aJq12SqRma0wDIKotNBZde1esER+mZS+kW21XZy2KzZy4BjGTAWVQUYNy4EhKm1ayprNwqeV5b2whAwuj+/MvGaAMrmpZ3+zghhBBCiM1BgksheplYzApUAkHr19POUHpVH17V026bFWzqpu5kzayfUw197DmXAD6PDyUZSFpZS8lcdlf7QNw0DSdIb9+1171NVVSCniCGaRDX45SVJ+ddNrQA2QPTDZlT9RkfrHmPiBbp9rFCCCGEED1Ngkshepl4NJm5DNjzLa1A0ufxOWWxNns+pW7qTnCimRpacs6lR/UmlyOxus76VB8KVnDkbuhjbxMb1r5brEnHcy4hVRarKh5nndKYHnWa+tQ0JoPLLCW1GxLVowDE9Vi3jxVCCCGE6GkSXArRy9hlsYFAeubSp3rxqb60fe2spGGk5lkahpF2DEBeMgj1KF7sxJu7LFaRstgua18Wa5UkW++ZaZoZ2Us7aFQVxeniG9VilJX70UlQWxNJrkuqdXsscd0qpd2YrKcQQgghRE+T4FKIXiZmz7kMWAGflgxOPIrXmXNpc2cu7aBGMzUnoLHLZu15lz7V68pSmpK53AjZ5lyarvLi9hnIVOZSJZDMXEb1CGUVPsoGGzQ36axZGaW2Js73C1pZtjjc5bHYXyLoRmY5rhBCCCHEj026xQrRyzgNfdqVxfo9fjyqJ21fOyNpuLrF6oaOqVjBjkexM5dWcOlVfU5wZJqSudwY7bvFtp+7qps6Pnyu+91zLq3y5JgWQ1EUJh2Wy+z/wbdzWqh6fxWlcatU9mcXDmDYyNAGx+IElxuR9RRCCCGE6GmSuRSil4kl51y2b+hjB4p2NlJVVHJ9uQBorsylbmqpeZrJMlq7fNbryly6822Suey6zspiIbNE1e4kqyoqQW8OkJorWdxPZ+CQAKYJxX08jBprvZ+fvt+4wXFohpaa67kR8zWFEEIIIXqaZC6F6GXicStgyGjokwwqPYoHDY0cbw4eJdk9Vk8tY6EZmhMs2t1li4MlAIR8ISdL6W7og2QuuyxrWaxrvVAjI7hMNfSxGytFk91d27QwE3YrYNQYg72H9GFsaT/uuHE5i79ro742TkmZv8NxxF3vucy5FEIIIURvIJlLIXqZ9t1inTUrPVYW0s5chny5qeDSSA803N1iAcpD5Rwy9HDGl+3kylySKouVzGWXZXSLNTufc2kHfqqikpPMXMaS3V0jiQiqqhDK9WCYBh6Pwm77FIEJn3/Y1Ok43O+5JmWxQgghhOgFJLgUYguoCdfwzqq3sq5PGGvXLdbuAmuXuDrBpTeEmgwu43rCOV53dY51d5etCFXg8/icLKVpSkOfjZGZuWxfFpveXMe9zqWduYwly2IjWth1nBWE7rJnAQCLF7R1Og73e25IQx8hhBBC9AISXAqxBSxvWsaaltVUta3LuK+jhj6pslg7cxnCo9rZzXaZSyM9c+lmN6SRpUg2jtrutcrIXLYrUXUa+qCmLUUCEE4LLq398gu9lPfzU1+boLEhQUeaWyMYRsfrawohhBBC/NgkuBRiC7C7e7afnwfu4NIKYjpq6BPypspi4+3mXNrBZfulSyAVSErmcuNkdIvdwJxLO/DzqKrT7dfOZrozl+7jho6wOsWu+CE9sx2N6JimyfIfwtwzaxnfz7Oym/b7LYQQQgixJUlwKcQWYAeMWpYun05ZbDB7WaxPTWUu7RJN+3zQvltsluASV0MfyVx22wa7xbZf5zJ5n6KoTmBqB5LhRCq4dAeIQ0daczOX/5C6v64mzm3XLec//1zLy0/VkDASrFkVwcTM+iWFEEIIIcSPTbrFCrEFaM76hFkylxkNfax9Uw19rP+GfLnOnMu04NLQU02AXHMubU7mktT6jJK57LrMOZdklMWappnWlResjKc7cxnVoh0uYbLdsBwUBZYtjjjnWvB1K7pusnSRFXAafo1oxKSpQUPvI8GlEEIIIbY8yVwKsQXYWaqswWXcRFHA50svi7WzkDuUjmbH0tH0yenjlMW6yzI1U3fmYPo9mUtZpAJJM8s2sSHtu8Ua7Rr4LGn8gf8tepT6aF3y/tQ6l3ZgqrveI7vJjzv7mBPy0G9QgJYmjVuvXsZXnzbx/fxWAPr09RPMURk53jquujImZbFCCCGE6BUkcynEFmBnFvUsQUEsauAPqE7mK1XiamUhK0IVVIQqAJzg0s3KXCZQFMWZn+lmBzjuRjRSFtt1GZlL00wLMNe1rkU3deoj9ZQESzEw0o5TFRXDNJzyWb/HT0yPZZTTHnBoKe+9VsfaNTFeeboGLWFSVOLlwt8MJhE3+XBpNR/8ANVr4xkdaoUQQgghtgTJXAqxBXRUFmuaJvGY4ZTEWvta+2QrcbXLLN10UyOhJ9KWIXFzz7lsv01sWLY5l+7Msf2e2mtZGsn3z/4iwKN40E3dCQh9qj95XHqAOGJ0LudeMZhJBxajJazzjxqbh6Io+AMqoSKT3DwPTY0a33xRnzYGIYQQQogtQYJLIbYApyzWMFj6fRuvPL2etlaNRMLENCEQUFz7pmcu3doHOva5E0YnwaVrzmWq2YwEl13VPlvsXtLFzS57bZ+5VBQlLdvpT86l7Wg5kUkHlpBXYD3myDG5rvMnGLtLHh4PzPm4gecfW4+mSYAphBBCiC1HymKF+BE0NSTweBXy8q1fuXA0zorlYaqbamj7ai0A66viHHd6X4C0zGVqKZLMLKW93R2YRLWodY4s8y0hlaU0MZ2fJXPZdZkBvZkx7xIgrlvvm7tbLFjvV8yIOXMs7Yx0Rx1fA0GVk87qx6qlEYaOyHG2J/Q45X0DTJxSzOL3Fb75vJnmxgSnnz8AVZX3UwghhBA/PslcCrGZ6brJP2et5qG/V2KaJs2NGu++Uc28r1pZvLCFQFClpI+PFT9EeOvFWgD8wfTg0qf6Oswuti+NtQNNu9yyvbR1LmXOZbdlK4vNJm5YZbF6u7JYZ86lmZpzae9XF6njm/VfZZxz8NAcJh1UkhY0xpNfOhQV+zjk2GKKy3wsWxyhbn0CIYQQQogtYZvPXI4ZM4bhw4cDMHbsWG6++eYtPCLR261oWk5LooVxZeN75Hx16+OEW3XCrTqrlkV57rF1tCQ0yvv62X1UAcfvuh2JhMGdN61k7hctAET9NbTGC8nz56MZmtNRNJtspbGQKrfMRlEUDNNw1l0U3aMoCl7FS8JIdFjOGtetsljTKYu1AkNPu+Vj7Mylbuq8seLV5JcJfsaUje10DJpr+ZlACIpHNPJ9yypq1/ejT9/sXywIIYQQQmxO23xwWVRUxPPPP7+lhyG2InNrvqEx1sgOxTvi6yRA66rqdXHn52f+U0V9Y4Q+I/zsPqmQwYUB8gutX8OiUi+NdRqaEuN79QM+XbeeKYOnYphG1q6vto7KZbM1ALIpKM5cQcladt/I4h3wqV7m187L6PJqs4NLZ51Luyw2mWnWnHJnFa/qdebKAqxuWZUWXC6onc/ypmUcOvRw51qwz2+dS6c+dxE1wZVUrtuNHcfn9eTTFUIIIYToEklbCNGOZna8BmVXLFsc5p4/r2Ttamvu4/p1Mee+pgYNA40dxueiqkraPLuKflZ2UlOieHwQ0aIZ2a1sOsxcdlAWax9jmiamacp8y42wZ7+92KViN6DjslinoU+74FJJ/tm1l6Ox1780TIMCfwEA68PVaeda1rSU+mgdDdEG1/lTmUvd1AnmW9fS+vWRTXtyQgghhBAbqVcHl3PmzOH8889n0qRJjBo1infffTdjn0cffZQpU6Ywbtw4TjrpJObOnZt2f1NTE8ceeyzTp0/n888//7GGLrZidiZqQ8FlPG4wZ3YjlauizjIQ0YjOs49WU702ztsv1wGwPpm5zMm1ft2GjPRTVGwFi5or61XeLzn3Tonj9SpoRsIJIDrq/AqdZS47znamZS4luNxodnlxNs5SJKY9rzW1ziWkN2qymzK5vyioj1rXj2matMSbAYjrqS8q4nrcKZc2TJ1gvjWO2prUPkIIIYQQP6ZeXRYbDocZNWoUxx13HJdccknG/a+88gq33HILN9xwAxMmTODhhx/mnHPO4bXXXqOkpASAt99+m4qKCpYsWcJ5553HCy+8QF7expWM9bYOjPZ4etu4tnqKiaIAitHpazv7rQY+eKMesJaIOO28/rz1Yh0tTVZGaumiMFWVMSe4nHZ8OW+9VMs+h4T40kpqYqI7j9G3vxUo6EqcgE9FR8cwNRQF/F5fh2Pxejxkq2wNeAMdHmNvVxTr52z7yfW1YaqiYKBnff01I4GqKpjJ+30eL6qqOO+XnnxvvR4vXo+XqB4hbsadc61rW0tZqIyWeKuzb9yMoaoKCT2BokCOL4e4EUM3dbw5Bl6PNcdXUXp/kya5vsTmJteY2Jzk+hKb09Z8ffXq4HLy5MlMnjy5w/sffPBBTj75ZI4//ngAbrjhBt577z2effZZZs6cCUBFRQUAw4cPZ+TIkSxfvpxx48Z1eyxer0ppae+cx1RcnLvhnUSX5YR8eA0oKg5RFMz+nmuawdefNqMoUFjkY/GCNlb8kODLT5rIzfNwwKHlvPTUOj54o5GGugSlffwccEh/DjikP2tb1vL94iAAoRy/c12N3NEDVKErcUIhH8EcD/lFAfLygpQWFXR4/RXV5BHztGVsLy8t6vCY/LwcdFPHo3gwTF+n17ZcXx0ryA85a5ZmU1wSIrc6QNQTpE9pAQFvgOL6PNqUILn5PvIiQUqL86nRcyGaQFXAE7Cujai3mdLSPNqa6snLs7bl5HkoLc0jnAhb10VuAWY4jldVUXQ/BUV+Yo06XjVAUcnW0dRHri+xuck1JjYnub7E5rQ1Xl+9OrjsTDweZ8GCBVxwwQXONlVVmThxIt988w1glcTm5OTg9/uprq5m8eLFDBo0aKMeT9MMmpt711wmVVUoLs6loaENw5DF03tKU0sbhmmwvrYRPSf7r8i8L5tpadbYYVwuI3bM5cUn1vOff67ENGH3SYXsvFcu77/p4btvrXLGsgofdXWtANS0NNHaaqUu1USbs93jN/F4QFfjGKZOY0sr62sbaW2NEvZpzn7ttbXGaW2zzmc3hgFoa05Q5+ngmLYYCSPhlNRmO7dcXxvW1hpzzYv1ZgSa69bX09QSpjUapaE+jM+ToLUlRmtrlBqvdR00N0UJtyZojVrvoUf1oBs61XoddXWtrKhd61wvVXX19Pe20hSzrosCdKIRjbgeBiCUpwAGixc1sv2o0I/3QmwEub7E5ibXmNic5PoSm1Nvvb4KCnLw+bJPx7JttcFlQ0MDuq5TVlaWtr20tJSVK1cCsHTpUn7729+iqiqqqnLNNddQVFS00Y/Zm95cN8Mwe+3Ytka6Yc1d03Sjw9f189lNAOy2TyEDtwvy6rM1JBImqgd23bsQj1fhmFP78u97K8GEPn39zrliWpzkNDwSesLZrqpQWu5nbUMcj0fBMEzCiQimCR68HY5FQXHO51P9JHQrwPEoHR+DaZ1fUaxusZ1dP3J9dSb12qt4MJPNoOxAM6bF0HUd07Qa+RiGCaZ1TFy3rgPFVFFQnfPkevNojjcTTkQwDJPGaKNzXzQRxTBMognrWK/iSzs2L99LXDGpqYoxdETOj/xabBy5vsTmJteY2Jzk+hKb09Z4fW21wWVHTDO1tMIuu+zCSy+9tIVHJLYm7mUljA4a+jQ2JFi5NEJhsZdhI0OoqsKYnfL4dk4LY3bKd5YW2X5UiP2mlvDBG/VpH/Td2a32y1hU9A/wTWMCn9+6hqOanZHs+Fsi1dXQJ+AJEE5YWazOusUqSqqhj6x1ufHczZC8qtdp4pPvz6ch2kBMjzuNoTpcikRVnW1gfUEQ8ASc974x1ujcZ59fczV6cjduys33EMOgribVSVYIIYQQ4sey1QaXxcXFeDweamtr07bX19dnZDOF6Cp3h1j7Z00zWLygje1H5RIIqnz3jVVCOnbnfGei9f6HlmIYMOXw0rTzTTm8lD32LSQvP/Wr5g4u23ca3e/gElYG/ZSUW4FhVLNKsbvaLdaf7B4K4PN0ElyiWEuRYKJshZPFewt3d1d3kFfgL6Qh2kBCj2OYRtp+9vtlL0WiKCoe1/1+j48cM4eoFiWmx2hKCy6tgNMJWFVP2vsfzFExMWht6XgeqBBCCCHE5rLVpiz8fj9jxozh448/drYZhsEnn3zCTjvttOUGJrZq7mBPN3UMw+TpR6p44sEqPnrHWmNwQTK4HLNzqglOcamP48/oS3FpZhDoDiwhlXWyH8OtT4WfMbsHnaA1kgwuO1vnMj3r5XP93MlSJMnsvoEhS5FsAndHVvs98qpeQj5rvmNMj2UEl85SJLrVRdhaisSbdp6gx2rg0xhtIK7HyfPnOeeD1BcU3nbH+gMqpmISbtu4NVqFEEIIITZFr85ctrW1sWrVKuf2mjVrWLhwIWVlZfTp04ezzjqLK6+8kjFjxjB+/HgefvhhotEoxx577BYctehtWhOttMSa6ZfXv8N9dN1E00x0VWddZYyVSyIsqV1JsanT1GB9kF+xJExDXQGVK6MUl/noNzDQ4fk6k3AFl4ZpZAQfsWQ5JEBU717mMuDOXHZWFpsMKN1l5KL73IG5HczneHOc9yFhJKzSY9f7q2Rb59L1BYFf9Tvv6fpwNQClwTLCibBTKmuXbLc/NhBQAZNwa/bgMq7H0QzNCX6FEEIIIXpSrw4u58+fz89+9jPn9k033QTAxRdfzCWXXMLhhx9OfX09d955JzU1Ney4447cf//9zhqXQgB8vu4T1rSs4fiRJ5Hry2zpvG5NlCceqiIS1pl0RIAvP27CNCEQTqAmNIpKvETCBpWrYsz9sgWdBGN2Kt7ooExrN8/Szpa+uPQ5ykMVTnYKIKKlusB2RE0ri/Vn/TnzGFewI5nLjda+LHbPfnuT482hLWEtDRNPlsW6vwDwtAsuVUVNu9+r+vAr1ntXE1kPQIG/AL/H78pc6s5juktqvT4FVKPDzOU7q96iKdbISaOmy5cKQgghhOhxvTq43HPPPfn+++873ef000/n9NNP/5FGJLZG9gf9qBbNCC5rq+M88Lc1aAmrE9fLT63HzIfRE/KYvt9AhuQNw+9X+d8D61i8oI033v+exYUfcMTwowBrbm9TrBHDNCgOdu1LDXdZrHVbQzM1mmJNNMWa0gKWiGY15+ksuHQHF3bGTFGUTo9xB5QSZGy89MBcYVTJDgAsa1wCQFyPoZt6WubZDiTt0larLNb9BYEPT/K9Wx+2gst8fwFBT5CoFiWhJ1xNgjxp77OiKARDCm0tetasdFuilVhyTF6lV//5F0IIIcRWSD5diB63PryeD9a8y74D96ciVLGlh+PMW0wY8Yz7vpvbipYw2WPfQnTN5KPPGulT4WfYqBwU1SAYtD70DxoaZPGCNpoTjeQWeTDy651zvL3qTVrjrWxfNJzK1jUUBYo4eMhhgBVAVLWtY0DeQOeDvjtjZZhGcm6nu0ttat6nXQbZWVmsOxi1S2E72x/SA0rJXG68jl5Hu5lSzIhjmmZa6ar9ftnvs6p40rLPXtVHjteacxlPzsvM8+cR8AYhZjX10VxLnriPBQjmKGiNEIsaBHPS77ODUt3U8cqffyGEEEL0MPl0IXpcTXg94USY9W1VWzy4NE3TKSVMGJnLM6z4wcoMTti9gH4DA/QdHWWeWYiCktZsZ/AwaykRU9HpPyhAS6LZua81bjX4WZrMVlVpVbQmWsnz5TG35hvm185jVMmO7NlvLyCVuQx4AkS0CIapO8FCe3YA0mlDn2RwoSgKfo+134aCS5Dgsidka9QDqa69drdf93IvnnbBoKqoeFT3FwQ+AsmGPrY8f76TlY7qMefLiPZZT4BgrkIrEG7TM4JL+3rSDR06XwNZCCGEEKLbttpusaL3MrA+wLrnDm4pMT2GmVxhPqHH0bTUfDRNM1i1PEogqNJvYABVVRi8fRCvxwq23MFl/0EBPB4FA53+g4M0x1PBpV2WOL7PBAblDwagum0dALWRGgC+r1/o7K8lzxtMZqc0Q3OWpehIZ51f1WRWzOPKgHU23xKkLLbnZH8d/cng3s48Z2voY/O0m3Pp8/jI8aYa7qiKSq431+kgG9NSmUuP6skofw7kWONoy9LUxw4uO1rDVQghhBBiU0hwKXqcmfwAa5f02SJahHm1czO2b0525gggbiR46uEq7rhxOTXVcdasjKElTIYMz3GW/kgrT3X97POp7HdICTvsFCS/0EM4EXbmzBmmQdAbZKfyXdi+aDgAVW1VAJQEU+tehhNWljShW5lLO7ulmwb6BoLLrmQuVUV1Ao3OOsXa+9okc7nxlA4ywPZ7a69LqaY19ElPGXpUjzPHEqxusfYXDwD5/vxkVtrvnFM3DOdcGWWxIWsc2Zr6uMtihRBCCCF6mgSXosfpyaDMnbn89P0GXpn9DV9Xf8nqlpU/2liiempZj/r6CIvmtRGPmbz0xHqWL7aCvSHDc5x93B+6238An3xwCXvsX+AEES3J7KWJ6WyryO0LQFUyc2kks6YAq5LP210Waz+O1i64dAcX0LWlSNwlknZ5bEfS5gpK5nKjdVgWmwzu7fm+He0HVibTXTbrc61zCVZwCTilsjE9ju6ac+lpdz47c9l+ORLDNJwsvgSXQgghhNgcJLgUPa59WewP37Xx2rO1vPNmNbpuEusgc/n57EYWf9fWo2OJutaMnD+vAQBFhZVLI7z/utWUZ+iIVAmiu5mO+2ebO8PYFGsCrHmddsAQ8AQoDpbQlmijNd7ivBYAK5tXANbcT0VRnABET3aLdcv15aXd7nwpEuuxParHyVj6PZ2vwdm+y6nYOB039PGhKqqTpXcHlBmZy3YdX72qD4/qcTKVeb4CAILeVDZUd61z2f7aSGUu069f9/VsZz6FEEIIIXqSBJeix9kfXON6jETc4OWnreUUdN2goTbhZO7aWjX+NWsVzz9WTV1NnFeequGF/1U72ZWeENWjtDRrLFnUxnfzG0GBE8/si8+vUFTiZeIBRVT0T5WQpmcuMz+AuzOMLYkWZ6zuIKNvMnu5PlztlAgDNETrncfwqanlJnRTd7K9NveSKV7V22l20c5ceRQPZTll7N53T8aVje9w//bjlbLYjZc+lzL9dXTPe1Vd96nt9su2FAlAjtfKqOf5rS8a7MxlVI8514uapaFPR3Mu3de2zLkUQgghxOYg3WJFt2RbO689d+byy0+aaazTCARVTDRq1sdJGAnicYP/3reOtatjrFsTo7DYuhRbm3Ua6hKUlHU+Z7CrIokwX37SREuTTlE8xq6jQoyekM8O4/KceZZpY9/AB3DdlWFsjjVhkgwuXQFayJubfP7xtA/0cT1OXLeef9ATdIJC3cgsi7XPAZ1nLSE1n09VPCiKwo6lozvd3xqv6Alp+d/25ameQNaGPu3nSKqKiurqFmvPr7WCyabMslgt6iqLzZxz2VFZrPsLDCmLFUIIIcTmIJlL0WUfrHmPF5c+t8HMoruhz/cLrGU6DjuuD4ZiUFsdJ2FofPJeIytWNaCoYJrw0TsNzvGrlkWznndjVK5roaVJJy/fw4S9Qxx5UjlA1sAS0ssFs30AT8tcxltcaxVmzqkzTMO5385iNcWaME0Tn+pzgkb3UiTFwWI8isfJfsKGlxXxuLrFdlVncwBF13XWGMldmuwOANu/3hmZy2Rpc1lOGV7VS2mwDEh1DNaMhHMdelVvxpcP/uQU4nCbTiKemmfpLtGW4FIIIYQQm4N8qhRdtj5cTWOscYMfTO2AKhbXWL60hZxclfG75ZOTC031GuFwnI8WfsviglfZ9VDrXIm4q/HN8kjW83ZVIm6wbHGYRfNbmTevDoAhI3IYOT5AUUnngVpaWayRLbhMbWuKNabKYl2BhR0oGKSCyzyflX2qCluNfvL8ec5+ummgJTvIji4dw2mjf0ZRoMg534Yyl/Z5vGrXg0sphe0ZHXWLBQiklcVmn3OpKAqKoqR1/LW/LNilYjdOGHkyIZ81J9ibLJdNGJpTsp2tLDaYzFwuXtDGLVcv5YuPrLnB7u7H2a5tIYQQQohNJWWxosvcS290xg7Q7BLYcTsUo6oKFQN9rFsOy5Y1s7o6TiBPYfudTea9oxKLGvQbGGDdmtgmZS7bWjX+fstKIslmJstzG1B9MGBwkHgygOtMWtOTrJlL6xxe1UvCSKTKYrNlLg3dKa0tCBRQH61jXWulddtf5GSzNFdDH7sk0r30SGfLkLgfrzuZSyVtDqB8x7SxlE7mUqZnLrNnit2dfiH9iwRVUdPmbdoZ7ISRcAJZj+JxglGbXRYLYOiwZFGY3ScVyZxLIYQQQmx28qlSdFkiGVh1NXO5fl0MXYkzYrSVeRkw1PqgPOeTOjQzQVmFH0PRnfvH75ZPcZmP2uq4s0afppk89cg6Pv+wsUtjrKqMEWkzKKvwM2R4DroSo/92Afx+lYSx4fU1NzTn0g4CfaoPE9N5ru6slT1/Tjd15/78ZOayJlwDWMGmHRS4G/p4FSu4cAcZvg1mLq3728+965xkLnuCQicNfdQOgks1s0TW3uYOJtuzg0vNSLRbiiT9fVfU9LL1mirruncvi5OtWZUQQgghxKaSzKXoEs3QUnO3NvDB1DANTExq1sWpUOMM38FqTtNvsI9QSCXanMCreCmr8KMZCaYcXkp+oZdd9i6kem2MhtoETz9SxVHTy1m6KMz8r1pZsijMrhML8Xg6D4qaG60P3aMn5HHAYSUk5uQTzDFRFcVZFqIz6dmd1PNsijVS4C9EMzSndNHUXMGlO4NF5pzLfH9B2vkL/AW0JdqS++muzKX1K+nrRuayKFBEWU4fBhcM3uDzs6WVc8o6lxuts6679tIhkJ5Vdq9paQeX9pcKnc2vVRUVVVFJGAnnOvEoHucYv8dPXI9n/H7W11kNtDpbw1UIIYQQoidI5lJ0iZ21BNKW18jGMHWiEYNIxKCkr0Io1/pgbWIwZEQIQ9EwlARl5X4ShtUZ9pCj+xAIqOx3cAll5T6Wfh/mgTvW8OGbVqOfaNhg1bINz8VsbkoGb4VeTEwCuTq5wRA+jy+jI2v2sbvLYq2f17ZW8vySZ/m+YRG6oVtLgyQDCbtJSlqpo5qaS2lni/IDBWmPUxAodPbTDM0Zm708iXse3oYa+vg8Pg4fdgTbF43Y4POzpTeiERsrLWPdrrzYXnMU0sumPWq2slg145hsvKrXuV5URUVRFCpy+zK+zwTGlI0DrAzlTnvkU1DkZdDQIJhQWx1Py8TLnEshhBBCbA4SXIou0VzBZVfKYhvrrP1L+6dK8TRDY/CwIN6gQX6JSSjXg9buXCVlfn7+q8GM2zWf5kaNhroEXp/1AX7RvLYNjrO50XrcgiKvswxE0JODT/VlXU+yvWwNfewMY3OsGc3U8KretHmVkL2hj2mmskV5vry0+3O9ua6GPrrz+rpLYO3s1IYylxtD1rnsGZ11iw24Mpdp2Uoyg8uQLxef6ktr5JSNT7W+JLG/5LDHsFP5LhQHigHrC49jTu3LL347hMFDrdax69elZzTtQLOtVeO1Z2toatjwfGQhhBBCiA2R4FJ0iTtzueGyWJPGOisTV9LX1VzE1PH5VA6YVsQ+h1iZPHfQavP5VY45tYIdJ+SheuDoUyoA+H5+K6Zp0hxrYmHdd1mXRLHLYvMLvUR1K9MZ9AadjFAiy+MBfFH1OW+seDUt+LQ/gNtZxZgexTRNvEoqc2kHj9ka5LjnXPpUn9P1syBQkJaZ1E3D6ULryRJcbmjO5caQstiekRakt3sdA2lzLl1fPmSZc+n3+Dl+5Ens2W/vTh/P3dSn/VxL+1x2ZYGqKvTpa13366viWcti33mljk/fb2ROsqMsWOvT2l/MCCGEEEJ0h8y53AYlEgbxmEEg6MHr3fTAYe3qKPf931K8u0YYNDQnrTGIrXptjJeeXM+hx/ZBN3Ua6q0grrgitY/9gdYbNPB4dEhAooMOrh6Pwkkz+hIJG4RyPXz6fgOVq2K89mwt/vHfURlbRmlOGbU/5DBndhODhuaw68QCJ7gsKPLSaqSa7/idZRziBAmmPZZu6HxXt8B6XNcHdnu8doAY1sLWPqoXkl1inSUh0oI195xL6xyqopLryyOcCDvzL511Lg09tW6hki1zuRmCS8lc9ggly/tu66hbbHpnYdf6lp0087G5s9jtu8S611e1lfezzllTFWOkkR5ctrVqfDunBYDa9an5yM8veYaoFuWM0TPkiwchhBBCdItkLrdytetjzPmoEV03SegJ5n2/jlm/Xc5t1y3nL9cvc4Kt7tI0g4/eaaCuJs6bL9bS3BJj3lctNDdpVK4Ko+vpAeYbz9eyenmUt1+qRTd0GusTeL2QU5S5tIdmaE5zHXfmcl7tXJY3LXNuK0pqvua+U0vw+hQ++6CRF5+uJB43iCZivPpMLct/iPDBG/W8/GQNzU0aHq9CKFd1SlY9isf5UB7XrQXoP1zzPuvD6wGoiax3HjPmavpjj9fuzBlOlsdacy7VtH3cH8Ld5a6GmZqTmeuzGhsVJINLZykSU0vr/mnLtixJT5HMZc/otCzWFSy6v7RI+7kba5NCehY7o0tsluCyrMIPClSvjadl5XXDYM7sJrSE9Xtctz71e2hnLde7fi+EEEIIIbpCgsut3Ox3annx8fW891odb87/hFue+A9NsSbyCz1EIwbffdu6Ueed/1Urb75Qy79mrWb54gh4NHQd3n+9nn//azWfvt/o7Lt6RYSl31tZvWWLI6xaHkbXobDEl7b8h/vDrZ2pSyT/G9WifF39JZ+v+zTreHYYl8dl1w9hxOgQjc1RvvioifnfNNLSpDFkeA4ej8LKpREibQYFRV4URXECP1X1OFkhzUiwtHEJy5uW8drylwFY17rWeZyYnioHtMdrf1iPaFaZrVfxZJQgps+5zOwWqyqqE1QWBYuT+3mcx3Ea+rgCBl+WzrE9Jb35jASXGystSG/3OnZtncvu/QlOy1wq6Rlt+/FNTJpijVS1rcPvV+lT4ae5UeO//7eGttZkiXc8weezm1AU8PkV6mriGV8YrW5e2a2xCSGEEEJIcLmVmzSljEBA5cO3Gnji6e9JaAbjJyucOKMfAN8v2LjgctliK1iMRa3gaP9phZSUeVEUMBWT9xd9zseVswGcjq4DBlsfpr/4xLpdXOIjrsecc2abq2lnLu2gLqbHaI23ZB1TfoGXE8/sR2GZQl1NgjdfstaM3HdqCX0HBpyxFhR60x5PRXXmXMaNON522aJ1beucn91zzcxk6asd+Lk7utrZPjsAVbIED0Yyc2nfHl06lon9JzG0YBiAMw7DtIJLr+u81v2bsSy2k6BIdF22993mLnNN6xarZM657Cqfx71ETfp14S6L/WTtx7y18g00Q+PY0yroPzhATXXM+bJp4fxmwq06Y3bOo9/AAIYOjfWJtC+A1rSs7tbYhBBCCCEkuNzKlZUHmHZiOZgQV1oZPSGP8fv4GLhdkFCeh5VLIkTC3Vt2wDRNli0Ooygw+ZAS9ti3kGE7+pl4QDGHHdcHj9dgUe1ifmhYTCymsWRhG6FcD6eeNwB/QCGe0MnN87Dd9jlZy0zd7AY77qCuJlLT4dj8AZV9phbQp68fA43yfn6GjcxxAludBAVF3rTH86iqkwVMGIm0eW7hRJi6aG3GeMCduUzP6LiXInHKYrN0izWS3WLt236Pn+HFI5wA0l0+694v9ThWILE5Mpd00ohGdF1n5cWqojoBZkcBpap0ryw2PXOZ/ufbbhpkmAYxPYphGmiGRv9BQc6+dCCBHKs8NtymM+9rq4HPflNLKCu3xli3PpH2O9ocb6Yp1tit8QkhhBDip00a+mwDJuyej+rTeK8tj4JCLxEtjKoqjBydyzefN7NkUZhxu+R3+Xy11Qlam3UGbBfkgMNKAZhbs9bqcOqBPv19rKzRaG3RWbM6gmHAoKFBcvM8zLh4IM8sKaSgjwFKKiPpLhF1s7OBUVc5am2khqGFw2iKNbK0cQkT+uycNjfN49fZc99CynYqYeLI/miGxoDBQaqCs2nwL2OvglOSj5mac2l3YU3oibTM5ff1C7N2nYXMOZc2r+J1PsjrroY9NsXpFmtgmmaHwZsz5zJZFhvwBdLut5cvcS9j0lMkc9kz1A00RvJ7/MT1eCdlsZsw57J9Qx9Spdrtm1F5vSojxgZZMR8+frcBb9jPvhPyKO8XsOZlYjX1GTgy/TlUtVVRuIHlUYQQQgghbJK53AYoikL/UYZTDmqvyzhqbC71/mV8/uWabp1v2Q9WSeywkTnONndGr+9APyjWWparlltldoOGWh1Y+w8K0qefD6/Hi9/jd47raPkSzTXn0lYbsTKJC+u+Y37tPFa2rEg7JmEkUBSF7UYEWKHN5YnvH6O4v07M04Sh6Hjz7YDWChpVRcXvKovVjdRYvm9YBEBxsCTtMdzZx/Zj96o+J5AwOmvoY1gZyY5KH+3gwA7A25c57lS+C8eOON6Zo9mTNndDH3XZUnKv+TXBhx7o8XP3JtmWoHHzJ5cjaX+ffY10uyy2kzmX7rJYJ+tO6todNdZaCicSNgjlKxx8dBkApeXWOWvXx53rGcAwzLQ5yEIIIYQQGyKZy21Ei2ueor1kRunQGA0l3/Lx8hoOXzOMfgMDHR2eZnlyvuXQESFnm914B6C8vw/jG4OGugSrE9a+g4akAlF7nqFX9RJO3q8Z2bvW2h1V3R9i6yN1GKbhPI+GaD0Ubu/cb59LNzQaYg3opo63IILq18GAUH7q3GBlCO2Mj6Yn0pb7iOtxFEVhSOFQ63GSfB4fuqY7AaKbV/W4PshbAaw7WHOa/WAFph1lp/yqH4/icb4MyBYs2MuW9LQNZdw2SSRC0YlH41m9ytkUnTGzZx+jl9hQBtjuGKu2C+A9qgddzyyF3hB3WWxHcy5NTOeaNV1fjBSUqPQbGKClSWPKIcUUlVjnsstia6vj6Kb1N2LtqihfftrM93mraNt9O/bcrwhVlQy3EEIIITonmctthDu4bEtY2UTTozFix1wMJcF7r9V16TytLRo/fBcmEFQZNDTI5+s+45VlL5FwzZ0sH+DFVAzq6xKsXhVGVaH/oFTgageXdrYwoSc6zFyClYmMalbjH1VR0U2d+mg9sWQzoPpIauzuTKJmauh211kzTlG5tU9uYXqzHY/iweexM5eJjGCxT065s0yIzc4Q6aae1uQESGu8Ywe62Uods93npigKIV/IeT7uZi2bm7IZ51zmPPQAntWrMEPWlxO5t90CkUiPPkZvkV4OnXm/3TG2/RqYdiCqdnspEnfmst2xzpxL07mm3CXfuqmz28RC9j+shJy81GCLSnyoHli/Lk5jUwxdN1n4rfXFTl19lNefq+WpR6rQtI5/h4UQQgghQILLbYa7w2pEiyRL4zQGD8shmAvfz2+jribeyRksX33ajK6b7LxnAT6fytrWNdRGamiKNTn7BHMhlOehpUmntTVB34EBfP7UpWQ3p7GzLAkjkTFv0S1hJIjqVvBRltMHgOZ4E9Hk0h/1roxiesMdw8moJvQEY3YLstPu+ZRUJLOKpJYBsT+Ua0YirfQPYED+QCcQttndZa3Mavr+HiW1zqWRZSkSO+Cwx9pZ6aM7qPV2M4u1KTbnnMvA008A0PDSm0SPOha1Zj2B55/p0cfoLdLLizPf50AyuFRp33xHzbp9Q9zZyvbNgFTXNdl+zqX1cyrL7v7CxONRGD0hj2jE4NH7VvPtnGYSbT76DfBz+ElFFJV6+e6bVuZ9uXGdp4UQQgjx0yHB5TaiNWEFl36PH9M0iWgRNENDVRUGDLECpbWrY52dAl03+eIjK4jcfVIhYGUHwQr2bAkjwS575uP3K5joaSWxpnueo8cOLuMZ2b+0xzU0Ysk5l/b8wkgi4mQuY3qM1mQ2Ni24NDUnaI0bcYJ5JoOG5jjbDFfm0i451QwtI4s6MG9gRkdWO4tomNnKYlOZy2xzLhVFQVEUV+ay46Ax19Wsx7MZlhzpyOYKLtXly/DN/QZtxEj0MWOJ/uwsAILPPtVjj9GbKBsoLx5SOJS+uX0pD1Wkbbfn23rUjZ9z2X5JHdVpJKU5v4fuOZdp8ynbXdPHnFrBDuNzqW+IUbkqho8gO4zLI78E9j/EaupVX7vhL6eEEEII8dMmcy63EXZZbHmonDUta2hLtDmBYUGJSj1QVRnrtGvs0u/DNDdqDN8hRGkfKyBtv8YjQEKPU1zqZ58Diylckcse+xY697m7p6Yyl9r/s/fe8ZHc9f3/a/p2adV1J+l6L77zueF6btjG2BiDAVMSWkLyDQn5/lJI8s03IQlJIAkkIeELCYSW0IuNwTY2rric7eu9V+nUtdJq2/T5/THzmZ2Z3ZVWutVJuvs8H497nLQ75TOzM6vPa17vMqGA0UzdrRbbINmFdXJaDqonFHdUTiEmxNwwWDImMi5Flz1jJVVenbGwrDuJN6ziOmsb1yEZSiIZakBKLobesgzrtnmwcy6DBX04z0S+tM8lYAvaycJigYBzeTHF5QyFxYovPAcAUO++F2AYaDfcBLO5BcKvXgCTGoHV0Fizfc0FvJ97uWu8LdqOtmh7yeskpHXq1WIrh8UGHXMA8BZC9j4kKXlgwrN41wfbsWB3Br88HcXy5gVgEkPQTN1t7TM+Vjn6gEKhUCgUCgWgzuUlgWmZyGpZhPmwWwAmr+WgG464TNofc//5iZ3LYwftwjIbthQFaDnHkYi3WJzHHfc1uEKUjAUoDUUt1+OS9ADUTQ2yLoNlWNRJtlAdU1K+ZUnepbewkGEZroAjxX/I676xgHWL+Bim4YYHtkRasax+BQD/pN0Wl6RXpllyDuyw2Mp9Lsk2yv0cxOtc8szFE5fsJKJougivvgwAUG+82X6B46DcdQ8Yw4D44vM1289coVw4dDW4YbFTrBbr63NZoaCPZhTFpdeln0hcAgDLMuhaLmLFmihWrrAjCDRTdatQU3FJoVAoFAplMqi4vATIaVlYloW4mECEjzqvFZ3LaB0DlgUGehWkRzWcPJov2YZlWTh+KAcwwLLVEfe1cpNQ3Rea6n+/KC45N29RNYotDoigBIAwb4fTaqYGxVAgcZL7GsmzJDlr5Hffvj3OJSliRF63x2aPhWM5t3CKYZm+/pcEwZNzyTKsr61DMISQZ/mic2mW5lySbRCCze69zJpz6R1vrZxLy4L4ykuweB7aNde5L6u33gEAEJ97pjb7mUNMt6UL67YiuYA+lxWcS+896Q+L9QjNCmHq5Fon951qqNS5pFAoFAqFUjVUXF4CjMqjAOx8RSJW8nquGELKmGhqFZEdN/CNfz+P//7SeQwN+POnhvpVpEd1LOyUEIsT1678BFSbQFx6w2Ld9h+m5k5myaQVACK8LWLzWh6mZSLEhxB2XiMhsc2RZud48iX71i3DFdCknYe9Pyfn0iMieU/OJRmjtwl9MNyQvFcx55L0uXSLBgVaTXgm/nMxLBYz0IqE7ekGOzwEfcNGIFo8Lu2WrbA4zhaX5hytOGpZiHzus2hcvRiRv/trfzzpBEzXASbrzUQrEm8Iu2VVyrks/zmQBzI8y0NgBWimBlFiEYqwGE/rvuqzteDg4EGMOH1tKRQKhUKhzH+ouLwEIK5eUkq6YZY5LVfsB2kZaFtoi7rREVucnT3pbw1x/LAt3lasLYqCSr0pNbMoTIMOiOUJi+W5Ys6l4ToiIXfZiCOsSDEiiZMgcIJP6EWc43FbjnjEpWqo7mTXJy5JQR/PWMgk3isWva4R58mj9C5vlBGXHOMp6GOWFvQh2yj3c5BLqaAPv3cPAEDfuNn3upWog3b1tWCHBsEf3F+TfdUa8eePIfrZvwWbSiH6L/8E8WePVrWe93OfSogrN82wWP9DkNJ1g9dhJbey0oMjcs9zDA+BE9z7LVHHQ1MtyIXaPRzIqON4pfsV7BncXbNtUigUCoVCmV2ouLwEGPM4lyGehLMpPpFFxCWh+3RRXOZzBnZus6vB+sRlhfYhuul1QMqHxXKePpeqqbrbksqExZJiRCHnd/I6UHT2yPreCbLiFAHy7te7jFdEcqxHLJqlYbFAceLOMZwrPMv3ueTcQi7V5FwyE9xmPMu7ocIXM+fSH85Zm23y+/cAAPSNV5S8p93mhMY++8va7KyWWBaif//XAID8Rz8GAIj8+79Utaq3lcjFcS49YbFlHkYEW5v4+1z6Q2TLuZBeV19k7crTmqHNSGgsyQ1VTVqFlkKhUCiUSwUqLi8BvM4lCZtTjWIoqm7qaO+wxWV9oz1J7D5jCzNFNvE//3EeqSENK9ZGsKCzKEKNapzLQHhd2bBYQ4PphENKfBnnUrXzJYmrGRYixWX4MFiGdY/F61wqevkCRWQMXhFJ8ijtViTkdf/lT9qPcCznqxYbDCHkWd6dxHuP10vQFZ0I4l5ezLDYmSjoI7jOZam4VB1xKTz/bE32VUuE114Ff+I4tKuuQe5v/wH6ylUQ9uwGe/rUpOtOt+qum3M5xVYkDMP4HoKUbte/vXI5l+RhRrnQWHLP8wzv61M7E+KSfHeYE7QpolAoFAqFMr+g4nKeoxkaMuo4YmIMIie6bqFuaj4h1rlUwp33N+HhjyxAY7OA1JCG9JiG7/5XL3rPKehaGsJDH2wHwzAYKYzgTPq0z6H07XPCgj6kUTsLgSPOpeYJi3WayjOs+zMJiw07wtPrXEpcCDzLu+tPVEyIQEL7rEA+JMdwvjDXoOgjRX1YphgiS8JovYWI7LBYuO/bxzu9nEug6M5OJkJrSS3bjwAALAv8vj2wBAH66rUlb+vrN8JsaoKw/XUwmfHa7vsCkX7wXQCA/P5fBxgG6l1vAQCIz03usrI+cTmNarHT+AomDyHKPYyYMCzWuVbJeuXuH2/7Hm+fWrdibLp24pKMLfiAikKhUCgUyvyFist5Dinmk3T6Q5LcQc3U/IU9YOKG25JoXSChc4kt4r7+bz04c7yAtg4J7/2NBRBF+3J4o/81/KrnBRR0f1VZ4ph4Wx0EQ0Yna0USctxJgS3mVpLiPa5zGRCX3p6RXmFbCSMQQsu5lTlZX9/KYKVOMh5/zqUJ0zIhcqIrCARWKBb0cbY1Uc7lZKGPCad9TJgLT7hcLZluC41KsP19YIeHbWEpSWUWYKHechsYXYfw8ksXvL+aYRiQnnoCFs9Dufc+AIB6510AqqtuO93cVbfP5TQeKBSv09J1g2Pwhr66FZudhyjlK0E7ApThPdWeZ8a5NK1iZAWFQqFQKJRLAyou5zkjebv/YzKUdF/jWR6aqbkiC/BPJDuX2CJmbERHS7uID/zWAoTCxYmqatjhpnnNLy4lJ5/TOxksyblEsf2HtxUJ2b/ISQjxIcTEuK84CVB08EjFWPvnEDiWc1qCmL4+l5XQA61ISBsS4oBWyrkkTg3HsO46RPhyDFcMR/QU/zFccem/lbwht5M5Whuar8DWztvQFm2f9NhqRS17WwLeYj6lIbEE9dbbAcytliT8rh1gh4ehvekGWHX1AADtyqtgSRKE7a9PXt12mlV3p5tzCRQrxvJlhGk1YbEkoqCcuPRWWCZuvWbOTDsSMp5Kud0UCoVCoVDmHxex9wFlJhiTxwAA9VJRXAqsgJyW8wkx7wRu+ZoIonEOy1dHcO87WyBK/gkpEWey4a8oK7ISgOyEzdhJ/hQLfysS0yPo7l16PziG81V45RgOrZE2AHaeJUHiQm6hG8M0KuaB+sdv78t1UeGfyJOc0dKCPqL7enBZluGwqG4JCloeLMO6QoII1YkK+kwW+ihxEroSiyY9rloy3SqnleD37QEA6Bs3VVxG3eqIy+eftVt91Do0dxpITz0JAFDvuqf4oihC33QlhNe3gTtxHMbKVRXX9xX0mcLxLEosRk7LojHcNOUxu7nBVeRcWoGwWIZhwJPKyWXC3r0h4yR8dqZ6XZJ90ZxLCoVCoVAuHai4nOd01XWhNzGEhbEO9zWRE5HTcpD1ojj0TjLr6gX84V8vqTgZJuKyoNtFfxJiAuPqOKJCFCl5xLdsac6lpxUJW9qKhGVZ16EkDikAtMfa3UkzcS45hoPACW5VTN3SpxYWG8it5IJuZEnOZTHckEzcVScEmGM4XNf+JnfZYMP6UnHpzbmcfREVpNZjKorLys6l1dICbf1GCAf2gTt9EsbS5TUdw3QQn7bFpfLme3yva1ddA+H1bRC2vz6huPSL9OrPaUe8Ex3xzimO1mZF/QqEuBASYl3JeyXOpbdarGmABeurnBzE24qkmL+tu+IyPQPOZaXcaQqFQqFQKPMPGhY7z1mYWIitXbe5wgwohs3JerFVRzCvaSKXhUz2SM7l4roluKnjFqxtWl+6rFmpWqw/rM6byxUcJwB0xovOHcm5DDkFfrw9J0lBn4nCCcmxekP87P95ZzyaM0b/5U+cGm/OpetyBoSo2+eyYrXY6nMuZ4Na97nk9+2FxXHQ15ZeI160OVQ1lj19CvyRw9BXr4G5eInvPe3KLQCKorkSM9EvdDKW1i/HLZ23lr2HS53Lori0YDkh3cV84iDFBzLeglwqQiEO8ToOI4Mq8rnaiEGD5lxSKBQKhXLJQcXlJYjoaSFAmEpFRjcs1hGnPCtgSd1SX7gqoVKfS5ZhwLM8GIaBZmolQg/wN4T3Oq8RIQqO4RAT487+ncmwqbuhviFPS5Mgbridx0UFigLRtMyygo+IYY7l3BYRxZxL/63CuNVkyxf08YrRWoSd1pxpttAou6mBAXD9fTBWrgbCExclcvMu54C4lJ4mIbFvKXlPX78RAMAf2D/hNmaipcuFMFHOpWEagWJVZcJiPa1IiHOpOffA8jVRWBZw8og/F3tUTiGrZac8Vu93R7AwGIVCoVAolPnJHJz1Ui4UPlAoB6g+9Mw7ySNhtcTRK1eYpiQsFn5BJ7ACdE9YrFd0CZyAlkirLVw9vS1FTsTdS+7FjQtvttdhSO5m0bkklWXt9/1CsVjQx+8q8p7lylXp9OZcEuGrOKG7wcqcbs5lpbBYz63FXsQWI9VSS8dN2L8HwMQhsQTt6mthRmMQX34JUNVJl59JxKd/AQBQ3nx3yXvmosUwY3HwBw9MWNSn1lV3LxQGwbBYf86lN5+4fM5lsQgWue/JQ6qVa+1w9mOHirnSpmXiF6efwK+6X5jyWH0huzQ0lkKhUCiUS4LZnw1Rao63JyNhsqIZGXUcfdleX+Ef2XCcS0fclStMY1gGLMtyJ7GWVSouvdVigyLt7iVvwU0dt5RstzHc6OZm8mVyLsMe5zIseAsASa5ANkwj0G9yYjeRCEqGYSE6PThJaHBQwLo5l2aFsFivczkHbzOfoLxA55LftxcAoF2xafKFRRHajTeByecgvPHaBe33QmDGRiG8+jLMpmboV15VugDLwli3Hkw+B+70ycrbqaEDXAsqhcV6XXy2ipxLnuE9Ye32Pbd0ZQQsB5w4nINpWu57mqmVtC2qBu+DrJkOjbUsC0P5IZ/YplAoFAqFUnvm3qyXcsGUa64+mTOwrfcVPHPuaeQ9FVyDhW/KCTLDNPDM2afw+KmfOb87rUgcMeY6gE6I7XTyD90wPlOHZmjgGM7nzkb4qLsvgRNcwUtyzAje81JuHKTVisgKbmgxCQ0uybkM9rmcyLmcA45WkFqGc7ptSDZsqmp5t2rss7+8oP1eCOIzT4MxDCh33QNw5a9Jff0GABOHxs61sNigwCWRBN72O1ygGJVveU/4ureVEABIIRaLl4VRyJvoOWPfF0QUTlUcjqd1HD007hG/M+tc9mS78eTpn+No6siM7odCoVAolMuduTfrpVwwwf6RwOTiMqtlYVmWrz0IgYiycoLMtAyMyCMYlVN2L0r4+z66xYUMIi6nfsmRarGGZcCwDPAs7xOKpACQwAm+fDLDNHwTfu/4yx3LguhCXNV2DVY1rHGLmWgVCgiVVIsN6AqOndvikplmf8Zy8Pv3wmIY6OsmLuZDUJ0wVPGJn9ktSWYB8RdP2GO5+96Ky1STd+kLL54Dn3OlViTeyIEJcy494euk7yspagUAK9f5Q2PNQH5zOUzLxBOnfo7t3btw9lQBlmXhh9/ow9M/G8Rgvx12PtPOJenZm9UyM7ofCoVCoVAud2Z/NkSpOcRx8EImjZqhIa2MlbxPHDrFkEvec8NiK+RcEmdDN3V3kkkmsGSCWskBrAZS0EczNeimDp7lfWKP5GsKrODJz9RhwvQX1vH8XG4cHMthbeM6RIUoJFbyvVcp57JY0CcQFuu5teZ8tdgLCOdkRkbA9XTDWLESiMWqWsfs7IK2aTP406fAHT407X1PG0WB+OwvYUUiUG/eWnExfYMtLrkD+youw8wx55INjIFcn96w2GLOZakg1E3dDp0NtBIirHDyLo874tJ1Lj3h9H09Mh75dj8Uxd7+UGEIw4Uh/OCFl/H1L/TgR9/qR/dpGRYsDPbZ4nIqBcemA/n+I99VFAqFQqFQZgYqLi9ByjmXZCL5Wt+r+OmJR/B632vuhFMztJLell7YCcJiFc9kTTXV0iI6Jc7l1FurksmwotsTUYEVfOKQ9MUUWNFThESFZVk+YcdXyL8sh8AJPtFVWi3WP4kPCgt/tdjZFx1BalXQx+1vuWHyYj5elHvvBwBIP//ptPc9XcSXXwSby9rhuRNUt9VXrobF8+D3TyAuayTSa0Vpn0siLouOpDfn0rIsDOYHfT0n3QdDzkOqofwg9g/txZg8isZmEY3NAgZ6VaRHNbfFkDfv+qVfjmLv9gyOHXAEqNMrdixl/39wt11Z1mIMDA044bWOOO3rUbDthVFfC5VaQKrgKp7euhQKhUKhUGoPFZeXIDxXOecyJY8AAI6mDmPP4C4AgGwU3OVIhVjf9hhSLZYpmUB7l9cNrWxBH6BYWGQ6ziUJiy1WrxV8/TKJcylxoutyqkZpL8vJwmKDeEV6aVjsxOLS62hNJmRng1oVouH328V89I2bprSeSsTl4z+b9r6ni/ikHRKr3F3agsRHKARjxUpwgwNghobKLuI9d3Mh/DnooFuw7zs33DXQiuTs+Bn84vTjODZ61H7NaVcCwNc7d/fgLjx28lHsGdzlupfHDuVgeBxL3dRhWRbOnbbv07FR+x7UTA2WZSGT1t3w8cZmAZxgYWRQhWXZBcdM08KPvtmHpx4dRl9PbUUgdS4pFAqFQrk4zP5siFJzxDJhscSZ9DqH3ZlzAIC8RyCWe7LPs5VFmXd5zRMWS8RXMER3OiGiREgS91Pk/M5lc7gZaxvXYV3TBvf4SJ6YV9j5C/pMfulLXDE0tqSgTzAMNvC7v0rt3LvNalWIRiDFfKqpFOvBWL4C+uo14A8fBHfk8LT3P2VME+JTT8BiWah3lrYgCaKvWQcA4A8fLPs+W8Pc1VoQHMNEYbGGZaDg3PtjTqg8yWkmtEbbEBfjWNu4DgzD4GjqiJt3eXR/zlfx1bAMjI7oyI7br6VHSUsgHfmcAcMAOhaH8PBvtOO9v7kATe08NN3CeNpuVXT8UA4jQ7YgTQ0Ve/TWAvL9p1LnkkKhUCiUGWXuzXopF0zZsFhSNdJxGqJCFGkljYJe8LmP5ZxLzjPZrBR2BwC6qXkmsaRarN9FnZa4dLZB2h0IrOgTyQIr4qq2a9AWbXeXJaK3UiuSahxUrzCulHPp/h5w/+a6uKxZWOze3QCKlVWngvzOdwMAQj/83rT3P1WEN14DN9AP7brrYTU2Trq8vtYuUsQfOlD2/Vr2C60FpfcncS6L96W3zyUJR81rWV9FWcJdi+/B21e8E1e1XQOJk6CZGrqWhhGNczhxJI9d21OOcLRgmDq6Txe/P9KOc6mbBjJpe9st7SJWrYuhsVlEc5t9r+7dPo7vfLUbT/902F2XhNDWCnL8NCyWQqFQKJSZZe7NeikXDF8mnJPkHJHqpwtiCwEAA7l+t9gOUD7n0huCOtEEWjO1kpzLEF/MaWMZdlohmMRlzDkVHyVO8rkr5X4m4W/eybZ3uWCz+XKIXOWw2BJxGWxF4guLnYO3WQ3CYpmREXDnzkJfvgJWom7K6yvvfDcshoH0w+8Bxsy2oiBIjpBV3vGuqpY31jnO5aFKzuXc+pxLqsWWhMVy7oMVu6Ky/b2Q03Ku0OTKtDIC7IgI0zIB1sBDH2wHywHPPjmEZx8fwesvjcGwDJw75RWXxe+cTNr+uaW9GA3Q1G7fX2MpHb29eYwMae5lOVpjcUlyTsn3H4VCoVAolJlh9mdDlJrjFUWkETqZXOqmDoEV0BppBQAM5gd9DdDLVoudwLn0opmq65SQ5ZbULXXHMN0G5lzAuRQ5sWL+JHE03R6dFXIuy/UCDSJ6w2IrtCKp/Hv5FihzhVo4bvxeO2dX33TltNY3FyyEdtNWcP19EF56cVrbmBKyDOmnj8ASRSj3P1DVKsS55CqIy7le0IfkQJseV5Jc+7ppuN8LOS1X1rn0Qu4H1VCxeFkYD7y3FbE6BhwHpAY15GUN507b3x8s6wmLNfWiuGwrRgO0LODRtTiMJSvCePDXm3HLXQ24/z0tAICxkdq2JvH24/SG8lIoFAqFQqktVFxegnidyxAfAgAYZrGZOsdyaIm2AQAG8n0+51Iu41xyVYaT2jmX/glqiA9hU8v0xAfBzbl0xiZwojsOnuX9VV2d/pIk59LfimRqLpM3d9XbtxKYvFqsN4x2LvQ/DOIXRdPbhrDHCYndtHna45Df/TAAIPzf35j2NqpFfOZpsONpqG++B1ZdfVXrmG3tMJNJ8EcPA3qp4Kllv9BaULlabDHnktxPhqW71V5VQ3XzL/kK93iw7+XGLQm877fb0NIuwQJw/Mg4hvpV1DfyaGwRocgm5IIBzdQw7jqXxXuKYS3ceHszNlwZR3O7gFvvacTaTXEAtXcuvX00aWgshUKhUCgzx9yb9VIuGK8oIm6D6bQdIAU7YkIMMTGGUXkUaTXtLh9srB4Ub+wEl4zmy7ksLrcyuQod8U6sbFg9reMJClqJLYbFBl0WMnEmLVK84a/e8N5q3ETiuAKlOZfB8zBRzuVcdC5rUdCHd8SltmnLtMeh3PcAzMZGiE/8DOz5nmlvpxpC3/4mgGKuZ1UwDPS168EoCrhTJ8u87TmPc8C5DD7I8LYYAezrmLQi0T0PgwBg3PkeqHS9khxkUokZsFuIJBtt0fny83bO5PLVUdTV2/faWErH6VNZZDMGJIlBNFa8B0keONkOAEgSi0iMQzqlwzRr147Ee5xEHFMoFAqFQqk9VFxegnAs54oHIjQNy3Cf3pOCP60R270czA9U3tYE4aDBwkGaobqTWSaQi3Zb1x24rv1N0zueQG9Mb1ist10CUAyhJVUhuQqVbqtpD+IVlyU5l0HncoIw2TnZ55Kp9Ev18Ht2wWLZaRXzcQmFUPjAh8AYBsLf+K/pb2cS2FMnIT37SxgLFkJ98+RVYr3oa0neZWlRHyLM50K+JVD60KMk55ItOpe6qfscvYw6bm+jYlisfT94xZlpGkg22tsbGbbvuVXro6hL2q/9/AeDePpn/bAsoLHFXznaV2nW1HFgeD9GCiNINvAwDAuZ8dqFxnofmim0HQmFQqFQKDPG3JgRUWoOcfZIOw3DMtxiFkSsEXE5UcPyoGtYqbUHEGhFUsNLKximJ3KiKyL5gPAkY3LDYiuE9AbDXMvhrRY7Wc7lfCvoc6E5l2x/H7j+Phir1gCRyAWNRf7gR2BxHEL//XUgl7ugbVUi/PWv2vv6tQ8B/OT5tl6MdbZ45g9WFpdzISQWKH2QUQyL9eZckoI+fnGZVmznslI+MnmY5O0VqVs66pICGAYwGR2CyGDx8jDqkvayPWdlmKyOK69LYPO1Cf/YPM7lSGEYuwZ2YN/QHtQ3Fgv91ArdI2RpOxIKhUKhUGaOuTfrpdQEMhF0C/qYhtuGhEwuW6OtFdcnzlxQvHmFktfZA+xWJF6HpFYEJ7siJ7nj4gPuKe8W9NFKxstNMSxW8jqXwT6Xk1SLvdRbkfBOf0tt84Xl0wJ2YR/lgXeATaVcEVhLmMw4Qt/7NixBQOH9H5zy+sS55Mo4l+SznQshsUDlnEuSc21Xi/UW9CkKuHHHuaxc0IeExXrEpWmA4xjUJXlYMLF8dQSCwKKuwdMrs5PFwq4QWDYgfD2CL6tlne1pqG9wxOVI7fIuvc4lFZcUCoVCocwcc2/WS6kJZCIoOQV9TE9YLBFrcTGBsNMqJCjgQpy9XrAtgb+1RyAs1tTc6pS1dC6DYbESJ7oCOehqkqI9ZALp721ZvnJsJYQJci4nCoMNLl9NCO7FhrnAViT87p0AAP2K6Rfz8ZL/g0/CYllEvvgvQDZbk20Swl/9D7DpMSjveBeslpYpr6+vXA2LZcu2IyHnbq48QCh9UGBHJXjbjHjDYg1PBWc3LLZCQR8359IbFuuItsZmASZjYPXGGAC4ziUAdCwv7bsLwLfvvNNmyLBMJB1xOVpLcekr6EPDYikUCoVCmSnmxoyIUnOI8JPYYlis7rYaKIq1tmg7ACAuxn3rhyqIThJ2x3masRN0T0GfiarKTpXgtgRWREKsw5K6pViZ9BcJKhb0cXIuvWLYc9zV5VxWbkVS4lwG5vRzPSz2Qgv68HudSrE1cC4BwFi+AsqDD4EdGUHkP75Yk20CADOeRvhL/waL45D73380vY1EIjCWLgN3vgfM2Kh/+3MkHJZQ0bm0SluRBMNiiSPJV3QunWqxPufSXn/F2ijufCCJ5MpRjBRG3II+UohFS0exsnO5sQHF/pO6qaPeyeHs66mdw0idSwqFQqFQLg5zb9ZLqQliMCzWMj1hsZ6QNSfvMib4xWXYcTyDE00isjiW8wk3wA5FNcoU9LlQgqG5IieCYRjc1HELFtct8S/r5lyWhsWybPn8y0qIHmc2eKyT5VxW6q85V7ig/oyWBWHPLliCAH3NupqNKfdHfwpLFBH5wufBdp+ryTbDX/p3sGNjkN/1MMwlS6e9HdLvkj98yPe6GxY7R0Rm5bDYYkg8uR6D1WIJlXIu3T6XpqdaLCkSJrBYuIzFC93P4fFTjyGRZHHTnUm89aEWmEzpvQiUVqa2x2tgYVcIkRiHowdy2P7y2KTHXA26qbu55dS5pFAoFApl5qDi8hIlIdWBZVjUSXUA7JxLIri84axdiUVoi7ZheXKFb/JHnMtgWCwRjSzDlgg0r3NZ07BYz34EVpjQCSzmkzlhgN4CRFPMuRQmyrmcwKkM/j4XnUtcQH9G7vRJsCMj0DdeAUjS5CtUiblkKfIf/wSYQgGx//unF7w99tRJRP79X2CFQsj/wScvaFtGhbzLuVYtltyf5Po2LX+1WJbhwDAMOIbzVYtNhpLuNirmXLKl1WK9OZs5rViM6Xy2B7ff24QNW+LQnPznYOGwcuJSt3SEIxze8+F2cByDJ34yhOGBCxeDgwMFPPGjIXSfLtBWJBQKhUKhzCBzY0ZEqTlXtV6Dd658N+KiXaHRGwLnzVMM8SG8efE96Ix3+RwLknMZdDFc55LhSkJLK/W5rAVkHMEiQkGEYBhvhVYkQSeyHCSkGCiTczlJQR/vfueK8PByIQV9+DdeBwBoV19X0zEBQP73/gBG1yJIT/wM0g++O/0NWRbif/IHYBQF+f/vj2F2LbqgcbnOZSDvcq4W9CH3S7mCPoD9sMS0TOimDpZhcWvXHeiMdwEA6qT6stsmbX+8BX28eZMFPe/+fGLsuLt/IiJJWxSC5VnX3Z4Tut+1NIytdzfAMoFtL46WLFcN42kdP/h6H86fk3HsSAamBRzcm8Xp02l8+z/P45mfD2Own4bIUigUCoVSS+berJdSExiGQYgPuZNJwzLciVswzJTg7VsZ5iNll2W9zqVHaPIs74jLYm5XLSHbm0xcRviof7yeS5zzCb5qnEvBFQ2TtiIJiAvvfue8uJyiMBJe3wYA0K6pvbhEJILMv/8HLJZF7JN/AO7UiWltJvzlL0J84TnoK1Yi/9u/e8HDqtTrkmEYiJzotvyZbcjnSoRgsc+lPySeZ3nolg7DMsAxHGJCDLd23Y73rvkAuhLlhThxLtUyOZcAIOuy+/P5bA/yWt63rBkQk94+l+5rHjfzqhvqIEoM9m7PIJedeluSl59J4dDeLH74zV4M9ClgLAaaauGXT/bj+KE8Xn5mFN/89/NT3i6FQqFQKJTKzL1ZL6WmMAwDlmF9YbHBUFeC16UkOZfBypGsJ+yOCC6e5SGwgpPDNdPO5cST+BAf8olkLuAguuOvsuAQ2dbk4tL/O9n+XBSWwIWNS3jjNQAzJC4BaNddj/z//iOwuSwSD78TzNDQlNYXtr2C6N/8BSxJwviXv1aT0F2zswtmLG7nXJp+kXTHortwc8fWC95HLSCfK7luyxX0AeyHRpZlQTM1371QKd8SKIaJ+8JiPeIy73EuLcvCUGEQuic/M+hcmjBL8zA9gjMc4XDldXXQNQuPfW8QY6nqq8cqsok9b2QAACMjMiwLWLYkCZ5nYDAqbntLI+J1HHJZA7pe6qBSKBQKhUKZHnNz5kupKRzD2dViHfdCYMu3BiC5mAzDoCXahmQoiY5Yh2+ZonPJucJT5EQIrADTMssW0qnVMQBF92QiYmKsZL3g79U6q2E+XDa/dNKwWPhz3+YaXrdyKp8VkxoBf/wYjMVLptXWo1ryf/gnUO69H/zpU6h7z4NgBgerWo/fuR2J970LjK4j+3f/CGPDxtoMiGFgrF0HJp8Hd+aU762mcFPFUNKLTfHhjy0SLTcstphzCRQfMFmWVfU1Ws659Fdh9ecyaobma1tSknNpGiWRCME8zGu3JpBq3I2dR07h/332bNVhrHu2j0NVTCxeHgbD2edgwxWNuOmOBtz8ljhufnMDEnX2OSjkqLikUCgUCqVWUHF5GcAyrJ37VCbn0gvJV+QZHjEhhvuWPYCOeGdgW0VHjnNdEtEVpoqhgGGYmuegcVXmXAJAVCiKSzYYruoJ662G6xfchFs6by1dvsJ2i+PlnMXmRi5ekOlWNxW2vwFg5lxLF47D+Je+CvWGmyDs34vkW24Hv2fXhKtIP/0J6t75NrDZDHJ//GeQP/DBmg6JhMZyB0v7Xc4VyPVO7uXSsNjStiATuZVeGIaBwAruAyTAHxZLiAp2aLpiKNAC7xOBSRzVcg+6vO6lIqZwxX0ZYOMu5NQ8fvI/A9B1q2SdIHvesHt2vvltTbjvPU3YcGUMDckQGpMRROvt9cMR+1wU8qXhuRQKhUKhUKYHFZeXARzrOJduBdVKYbH2RG8i4eX2ufS0NBA4wc3xMi2zppViCdXmXAL+tirB3Eoyka50DoI0R5rdQidegsdY4lxOUcRebPw5l9WPcaZDYn2EQkh/98eQH3gQ3LmzqL/7NsT+8PfBHToIEBfMMMBvfx2JX3sYid/4IJh8Drk/+4sLrg5bDn3dBgCleZdzCfJZ8sGwWDMYFustblXdvQDY97pqqK5ILFfxlTzc0UzV1xMT8Ihdkv/N8iX3iO6pQKuZGgSBxYYrYzCXHkZ/j4IXnhyZcIymaWGoX0U4wmJBZwgrN4aweHkEPGvnhpMxh6NEXFLnkkKhUCiUWlH9rIIyb+EYzs2vAio7FcRFmMjJKIbdFQv6BCu0EueilhDHpZrCKdWExV6o6As6kuUcys54F0JO7upcY7qO6kUVlwAQCiHz5a9Bu+FmRP/mLxH+1tcQ/tbXYNbXw2xoBDs8DHY8DQAwFixE5p//Hdqtt8/IUNyiPgf3z8j2awF56FFSLZbkQrP+sFjvstUgsiLyyEMzNYicWNa5jIkxDOYHoAbCYgHHuWTsfEvAvg95lofhy+M0AOe2Jd9ZDMNg0bUZnO8bw8vPAcvXRrF4WbjsGDPjOnTNQnM7jyOpw0g4FbNZT564aZkIR+xzRZ1LCoVCoVBqx9y0VSg1hUyoSDXHSpNJbyXJybblzbkUWBGCJxeyNdp24YOuMDahmpxLX1hs+XDValqRTERJX8syt9KtXbfjTQtuuKD9zBTe8VcdIqso4PfsgllfD2PlqhkaWRlYFvKvfxipN/Yg+5efhrZpMxhZBn/qJBhFhnrTLch89vNIvb5nxoQlYDuXFsuC37tnxvZxoXhbkTAM44pLtw0RQ5z7qbXlIZCCWqppu5emZZZ8X0Sdis22c+kvwhN0Lr0REARv70yyfkSIIBLlsPrOMcACfvLf/RjoK59/mRqy10kl9+KNvtfwet8295jJ+TFMA1YoD4XNIJ+j4pJCoVAolFpBxeVlAAkNJS4CX7Ggz+Qho95qsURQCU5BH0JrpPXCBx2AjEmaYs5lqXPpHGOV1WIrUVLQZ47mVlZiOn0u+d27wCgKtKuvBdiL/9VhNTSi8Du/h7GnX8Tw6T4MnRvE8LlBpH/8M8gf+mhNqsJOSCQCY9UacH29YAf6Z3Zf04TchwIrgAXrirlgiyCvIKxUPbocohP+rhmqG14ajCaIiXZYumqovvxMexy22PU6l8H9e3MuyfqrkqvBMRyYtn5suDqM8TEdX/l8N04dyyNIatheJxs5BwDIqBn3mMl3oWEZOGT8CmeiL6GQN3EmfRpn0qerPg/VktfyOJ0+NfmCFAqFQqFcIlBxeRlAhJRq2E/6+QrVIasJi2U8uYRFN5H3rdMyg87lZK1IACAuenIuAyKyNdqKmBgr6Yc5VUpakUyzQM5s4RXD1Qpj8aUXAADajbfMwIimCMcBoVBJYaWZRtu0GQDA7919UfdbLa3RNrxpwQ1Y27jeLeQFFPMYuQsMiyWRA6qpuW5o8J4kYfHqBDmXpicHtNS5LOZAkvWjQhSL6hZDN3VsuCePW+5qgK5Z2P5KumSMqSENBXYU0bi/MrTXuTQtExBU6KyMTE7Gr3pewK96Xqj6PFTLvqE9eKnnRQzlp9ZOh0KhUCiU+QoVl5cBJOxNIeKyYlgsEZeVXT1vi42IEAFgF9AxPW0GvGGptaIrsQgtkVY0hZsnXdZb9CcYrrql9Wo8uOKhmjuXc7Vwz0QQUVmtMBZeehEAoN40B8TlLKFf4YjLPXNTXLIMixXJlYgIETAMUyy8Yxq+Pq/+gj7V3wtur0tD9bU28l7/5P63ncvy1WLdvpssV/J94y/oQ6rcClicWAIAGCoM4E1b6wEAA+dLQ2NTwyrSYjeisaJLSfZF7nsTJjjRHksqO1b18U+VvJ4DACiGPGP7oFAoFAplLjH/ZsSUKUPEpKLbE7FKYXDEuZwoLJZMzliWQ0esE29ddj9WJFcip2VrOeQSOuNduHvJW6ZcIEc3q2+8PhVKnMt5FhYLFEVlVUPP5SDs3A6zsRGGU9jmckQnzuUkbVHmAgwYTysSwycipx0W63xHqKbqa23k3Z63WmxQVFmwkNfyrmi0Ba9fXJq+sFjbuRQ5ERJn3/u6qSMU5lCX5JEa0aAo/mqvQ0MyxoRziMT8x2WH8jPuPjjBPjcj+dGqj3+qKI7zWq7wEYVCoVAolyK0WuxlQMSZ7JEn+OV6y9mvT17Qp+hcsmAYBg2hRgDAFS2bMKqkcMPCm2s27guhNdqGgVw/ElLdjGx/OmGlcw1XXFbhXAqvbwOjaVBuvGVW8i3nCvra9bB4HsKe3XY7lDn82bMM6+YsGqZRUVBWCpMvh1vQx5Nz6a3CyrM8OJaDwNotSwq6nRMpcRIUQ4GsF/Czkz8FYJ86b1isyIm+7QLFnEuBFd02SKTgT9tCCelRHUN9KjoWh/D6S2M4f1bG2fQZMGENy5sWoTfb626PjM3erg5RsreXkkcwM98SxVQEb5EiCoVCoVAuZS7fWeJlBCnFT6gUBse7zmXlySbHlu/f2BBqxIMrHpqRYj7T4c5Fd+GhVe+ZkbYohKmGlc41pjJ+0QmJ1S7jkFgAQCgEfc06sMNDYHvPz/ZoJsSbc2lYfnHJM9PLuSTFexRdhm6WijYSkk76YRb0AgC4IfSkuA6B87ieEd5exuvykZxLb143eb91gT0WUjX2yR8PYd+ODAaZU4jFOaxqWOMPkWc4MM6fPN3UIIj2z2NK0bk0rdr2vFRd55JWpKVQKBTK5QEVl5cBXnFJWhSUIxlKQuIktEwgEOukJHiWdx3LuQrLsAjz5fvg1WwfKC+05wtk3NU4rzTfskgxNHZu5l0SyOdLxFjFsNgpOJeuuDRUXwVaIlZFp+AP+T+jZsCzvFsIKLgvlmHdcNe48z1l+pzLYs4lCdcnQq11gb3N/vMKTNMOcc1xQ8jzI2iM16E9usAXRu8t6KOZGgTBvu7H1JkTlyTPnYbFUigUCuVyYX7OiilTwisuJ5pIxsUE3r36vVieXFFxmaZwE96z+n1YUre0pmOcj8x355Iw2fiZ0RT4/XthdHbBXLzkIo1q7uIW9ZmjFWMJ5HMloaXeIlb+n6fgXDpiTTHkomj1tPggBX9I+KxpmQjzYTeklbQgcffNcNjSdhVu77oTTeEmAH6Xz5tzScZMwlxb2x3nsldBZlxHlh/AueirYBjgmsWbwDCMr02KPyxWA8MwEEQGBbWYF+oNya2EZVl47twvsXtg54TL6abu6TM6M7nfFAqFQqHMNai4vAyIiXFfc/ULZb46dbVmKs7fXKRY0Gfi8QsvvwTGsqDeePOczjG8WBDnUpjjRX2KzqUjLpnyYbFTci4dB9IrLnmmGNoqueKymNcd5iPutWYEwkNJhMHCeIevByWBiECe5d0xk0JCDc0CeIHBQK+KsREN58M70drF488+dg8evP0qZzwe55It5ne6bVREFoYB1/kMjq8cOS2LnkwP9g/vm3A54loC/gq4FAqFQqFcylCVcBnAMqzbHqAW4pLiZ746l9U6r8IzTwEAtK23zfiY5gP66rWwJAn87l2AWdswylpCetKqRqlz6cu/nEJbHtETFkuK1PAs726DhL+S/wEgzIfda80MOIPlxuRrRWJoxSrWzrK6pUMxFDzX/TSk9hQU2cTuY6egszIWxhdgU/tGd30pEBbLeMJiAUAQ7XGpionBfgWf/6vTePmZlNsyheANl807eaSToXrFJc25pFAoFMplAhWXlwkJyQ6NnajNCGVqVOv8zVVcUTnR+E0T4i+fhsVxUG+9/eIMbK4jitCv2Aw2PQbu+LHZHk1FyOdLnMtKvS2n8p1AchhVQ4HhCGs7l9EfFit4CumE+HDRuQzkNHqjIMiYSCsSy7Ls3EhPdWue5WGYBobyg+jN9gLNAwCA148fBgCsbFjpH68nLNZuReJ3c0WnqI+mWjh+MId8TsMzPx/BLx8bdtc7kz6N7x35NobyQwCAvJab/EShWMwHKLqtFAqFQqFc6lBxeZmQEO1i+wJXvg0JZeq4YbHz1Lmsavy7doEdHIB2zXWw6pMXaWRzH+3qawEAwvbXZ3kklWEDLp23n6SvFckUohlYhoXAClAMxXUYOU8lV9IHU/QIwojPuSzNuXS37VSiJmGxZNzeiq8cw8GwDPe9ukYOBjScGjkDzuKxonWxb/vesFg755K4uU4VWse5TA1rSI3oiNUzECUGr/8qDcOw3cvhwhB0U3eryuaqFJc0LJZCoVAolyNUXF4mEHE5lZ52lIkhk/f5moNaVVjs448DANQ7774YQ5o3aNdcBwAQ3nhtlkdSmaC45Cv0tpxKziUASLwE1VA9jijv6VUp+f4HSM6lXzi6+/aGxQaqwRbH7XcudVN3cybrG1nk+WGYMBHX2tHY4K8QLfHFcXj7cXpzLgHgxBFbMG5+UxwLu0IwDAvDg7YALbYTsdepVlySYkSGYeHl54ZwcE9mkjUoFAqFQpn/zM9ZMWXK1EmOuGSpc1krXHE2z8NiJxz/z38OAFDvvOtiDGneQJxLfk6LSxIWO0krkinmYYusLdiIyOJY1t1GsBUJYIfSkmssKC7LhsU6yxDxKpRxWWXDrvCaSHIwGaclihVCXdJ/LBLrrRbLlQhu4lzmcyYYBli3OYq2hU4V2vO28+i2E7GIuMxWPjkeZN1e7/jhHI4dHcdzT4xUtR6FQqFQKPMZKi4vE1oirbiieRPWN22cfGFKVbjibJ6GxU42fmZgANixA8aixTBWrrqYQ5vzWE1N0JctB3/qJJjh4clXmAWCrUjYCu1HplLQBwBCjhuYklMAgAgfdavIkpxMoUK1WGuCsFgiHIkAJYWIvMWBSGivotviUpAsRBP2tkWBQzji/5M2WUGfcLS4/01XxxGOsmhdYB9ff6/jXBIH0hHpeT3vrjNRX0zNVJEZ13HicB4mDIwMasiM0/BYCoVCoVza0OoulwkMw+CKls2zPYxLiksmLLaCcyk6VWLVO++iLUjKoF99LfiTJyBsfx3qPffO9nBKCLYi8YbCTrcVCVAMeR11xGVcSqA+lERMjKMj3gkAvv6S3mqx5VqRFH/2h6x6e1y64w44l4ZloKGFA3qBRFwsuZZ9BX1Y3hMWa5+TjkUhSCEWDU0CBIGFCdN1Lvsd5zIYFpuRMzAMC6MjGraPjeKq6xrAcUQ8W3j+yRT2vDGO5htT2Lk3DcsChJAJ5ICzJwtYvzk+2SmmUCgUCmXeQsUlhTJN5rtzOVlBH/EXTwAANBoSWxbtmusQ+t63Ibzx2pwUl0GXzlchtoKLWQ2kSI5pmeAYDlE+CoZhsCJZrNQqBMNiUT4slmM5wOn6QRzUYEGfcrmixLk0LQsNzba4jCeK+wyOFbCPn5wD4oqyLIPW9qIANU0Dza0iWK4YFnv2bBrbtg2h4d48dp4dxU+e6CZDRmq8D7vHXsWN1y7G+qYNeOZnI3jlObvwz6FnB5ARDbS0i1i+OIr0L6i4pFAoFMqlz/y0XCiUOQCZvM/XnMsVyVVYkVzpc4YITDYD4blngLo6aDfdMgujm/u4RX3maMXYYlgsqerqqczKsO7DBX6K7Ykkz/USE2Nlr3/RCYsN8SHfvsxA/8hyOZck/LSYc1kMsSXHUNA9zmWr/VoyWRSJBIET3H3YLVNIYSF7H23RNsTFOOqlemd8JnieQXOriFzWQGZcx5kzGaiqhQN703j1lT5YACIxDk0tAnRGxmuHjuLk6An09ch45blRhCMs7n57M/iwjuZWEVddX4fGVnu/Z09O3CPz0MhBPH7qZ65LOpfJqOPYP7S3xI2mUCgUyuUNdS4plGlSdC7n5zOa1Q1rKr4n/vIpMIoCvPvdgCgCplVx2csVY/kKmPX14PfuBhQFkErFzWziFq9xwjqD/Sx5lodqqFNqRQL43cC4mCi7DAmdjfBRAMV7xQw6l75WJMS5tPMYy+VckmNQDOJcGli8IoT1wzFs2VRfYbwSCnoBPMu7RY5IqGtrpA1XtGzG632vYUwZgwl7320LJQz0qujrKSA1ZgvC0yezSOTGEG3jcOtbGsCAwajJ4eSwgd4eGTsG0wCArXc34tqb6zG8sAEjigEGDEQRSDYKGOxTkcsaiMbKhyKfHT+DkcIw0koajeHGssvMFQ6OHMSx1BE0hpuwILZwtodDoVAolDnC/JwVV4miKHjnO9+J+++/H29961vxwx/+cLaHRLmEYOe5czkR0mOP2j+8852zOo45DctCu+Y6MIoCYffO2R5NCcHKqFygcA8RdlNuReJxLhMVxGWYD2NL69W4snULAFSsFlu+FcnkOZekgqtpmbBgYsnyCOoS5cX9uqYNWNu4znFQ/XmdRNByrrNqi8v2DltAHzs+juy4E6ar69DYPBZ0Sq5Y3nCN3fpk/65x7NuZAS8w2HiVHfaqW6otLDkRuqlj2eoIAOClX6bKjhMAZL3g+38uQ8ZIhDqFQqFQKMAUxaWqqvjSl76EI0eOzNR4aoooivjmN7+Jxx57DD/4wQ/w5S9/GePj47M9LMolQlV9Iucj2SzEZ5+GGYsDb37zbI9mTqPdcDMAQHjpxVkeSSnBgj5BEbkiuRIrkiun/HCkGucSANY1rXcdrUo5lxO1IimXc0nyQ4k4NCzD3SbLlv9ztrZxHa5qu8a3D7eCLvxFuci2lq60RePO14dgWQDHASbjiMuu4vF3ruDR2CwgPaZCUy1suDKOcMTJCzUUcAwHiZNgWiZuenM9pBCL1381hvPn5LJjJaJZNqYnLmVdxmt92zCupKe8blbNYFvvK5D18mMLQsZKQowpFAqFQgGmKC5FUZxXAo1hGESjdliWqqqwLAumWbl0PIUyFeZ7tdhKiM/9EowsQ7v7LXMu1HOuod7oiMtXXprlkZRSdC5Lcy4BYFPLlXjTghumvF3RU4G1knNZQqBaLMMw4FgOCam4PldS0Mcetzfnkg8IZMMsistqHNjgvUr2SV4nrVKa20TE6zjkFFtALVoWhhi2UN8GxOuK+zGg4bpb6rF4hYRYgsN1W+vd91RThciJrjgOx4A772+CZQEvPztaMjbDNFwXsFClwAvSm+3BsdQRnBg7jlE5hcdOPIKBXH9V6+4f3ofjo8dwOn0KlmVNKlBJUSWd5lxSKBQKxcOUZ8UbN27EwYMHZ2IsJWzfvh2/9Vu/hRtvvBGrVq3C888/X7LMt7/9bdx2223YsGED3vWud2Hfvn2+92VZxv3334+tW7fiIx/5COrr6y/K2CmXPsTvudTCYklIrHL/A7M6jvmAsW49zGQSwo43gMLcCmUkbmEl53K6kD6XgN2GpBqIQ2g5OY2bmjfjPavfh5gYKy7jFP5xw2IdoSVw3pxL/zGYlunmaE5LXDJ+cUkKDjEMg6UrIzAZ+9w1NAm48+1J3PlAPRgwbj9P1VDAsgw2XZvAH/zVErfyrGZosCwLEieBd8SxZmpYudZ+2JkZK3X7SHsVoBhyalkWToweR07LTXpsQFHoybqM/lw/xpQx9Of6Jl3Psiz0ZLrtsakZHB09gkdP/ATdmXMV1yHO5XwoPkShUCiUi8eUxeUf/dEf4bvf/S7+53/+B93d3cjn8ygUCr5/tSKfz2PVqlX4i7/4i7LvP/HEE/j7v/97/M7v/A4eeeQRrFq1Ch/96EeRShVzWkKhEB577DE899xzeOKJJzA8RxueU+YfxVYelw5MZhzSL38BMxqDduvtsz2cuQ/LQrv+JjCqOueqxgZbkUy1KmwlSFgsaUNS3Vjs/93KogxTtpAQx3Ae59IRl95WJIF1TMt03cZqIgiCApR1e70Wcy5PjZ3AmfRpLFsVgcHYY0jUC+BFCwxvjy3EEXGpuut5HzIppi28RE5y3VbD1BGO2PvJ50vdPsUrLp2fBwuDeLX3Zewf3leyfDnIuZMN2d1eMBS5HCPyCAqOoM1q4xjKDwIAzqRPV1yHhsVSKBQKpRxTnm28613vAgB8+tOfxt/+7d+WXebw4cMXNiqHW265BbfcUrkNwte//nW8+93vxjve8Q4AwF/91V/hhRdewCOPPIKPfOQjvmUbGhqwevVqbN++Hffcc8+0xsOyc0tGkPHMtXFdLrAsC4axQ+sulc9AevwxMIUClIffBzZqFyC5VI5tptBuvgXS449BfPUlGFtvne3huPDO9WlYOhgG4Dm+Jp9liJWQDCcRE2LguOqeT3LOWEzGtMfiuWe8Y+I5Drqpg2UZqKYKhgHCQthdRuAEeAMFTBgwYVZ9fDzH+9Yn6/AsZ7/OWHil1w5xfnDVB2AwGgSBQTTGwYABA/a5DAkhMCqgW5q7HssySCtjkLgQDOd1iRfBgLGPHQakEAdBYCDnjZKxqqbijk0xZLAs425Ht7SqPjvLOb+apUIxZd/YJqI31+PuO6fnwDEFMAzQn+8Fw5RGZ6iGCss57yZKj2WuQP9GUmYSen1RZpL5fH1NWVz+3d/93ZwIA1RVFQcPHsRv//Zvu6+xLIvrr78ee/bsAQCkUinwPI9EIoFsNos33ngDDz300LT2x/MsGhtjky84CyST1bkHlNpSNxpB2gqhLhGZs9fGlHnErqgc+o2PIORcV/T6moS33g188g8Q2fYyInPoOqgvRBFTQnbFUoTQ0lSHxmhtxvehhvcDqD4kvL4QRUwOIRaVkGdCaEjG3OvKe33VJ2LIqlk0NsYg9AExNoSFLU1ubmSjGUcsG/JtOxYXEdNDaG5MTHp8VlhGbLC4flNDAo31MTQa9nZjCRGxjP1+w0IOdz3YgJNqA+LxEESORzjMI2aF0FKfRI4ZQzjGI6aFwLM8EvUSHt37FBbEF2BT2ybEYiE0J+thWiZGrRAS9SE0xmIIxxhkxkwkk1GwLIMDe9I4uGccm97CIhaz9y2EgcbGGDJcGLGREGIxccLvmJ7xHrRGWxFXJcSyIYghBlKIRUwNIRaXJv1+Sg8OIRazrxWwGkwwiDnurBkuoCXa4ls+o2TcsUbjE49tLkC/wygzCb2+KDPJfLy+piwuH3zwwZkYx5QZHR2FYRhoamryvd7Y2IizZ88CAEZGRvDHf/zHMAwDlmXh4YcfxurVq6e1P103MT4+t3KqWJZBMhnF6GgOJu1DeNHJZhRkszIyjIyRkexsD+eCYXu6Uf/CCzAXdmBs/Rawozl6fVVDSyeSLS1gtm9H6kwfEI/P9ogAAJlxGdlsMdQyPVoAJ8/OdTo+XkA2K0PUc8jKMtJjBYwKpddXPqchq8gYHEpjaHQUDMNgbLT4vZtJK75jAoARZhzZrFzV8Y3Jef85GStgxMhiPG2PbyiVdt8/1duDBUsZpIY5ZLMyOFaDpfDIyjIU0UQ2K2MYaec9Dn1DKaQzOVjqINr5UWSzMgqSDt007G2PpGHkeRyJ/xxsoQO955chFGbxva+dw+iIBr1tHNmwE8qqjGJkJIuRdAbZrIxRJlvxO2b/0D7sGtiBFcmVCPFhZLMydHkMqmQhm5MxKlZel3B26DxCXAgRIYKR7IjvvX1nj2Bza8T32nBh2D1PI8I4RiJz8/uP/o2kzCT0+qLMJHP1+kokwhCEiWscTDsJ58SJEzhw4AD6+/vxjne8A83NzTh79iwaGxsRi83eU0zLstyn6StWrMAjjzxSs23PpQ/Xi2lac3ZslzQWA8uy/78Uzr/0w++DsSwo73gXTDCAc0z0+poc9YabEHrkx+C3vQL1jrtmezg25Pp0YMDO2udomYBl2TmXlmX/bJa5vliwsCygoMlQDQ0JMeEbMwvOd0wAoOgqLKu642Ms1n9OLGcd53VV19z3U4UUZF1xf9cNA4rzu8hIsCy47xum6TzEBGRNhqzLsCxAYERYsLep6CrGCmmwooECl0Iua2CwX8HoiJ0Te/r0GMJr7H3JmgzTtKAbOiwL0A294rEdGj4IywLOjZ/D0rpl7vkTGNFZ15jwvGiGBtO0IAoSonwcw5YtLhtCjUjJI+ge78YVzZt96xRU2T0v2gRjmyvQ7zDKTEKvL8pMMh+vrykX9MnlcvjEJz6Bt771rfjzP/9z/Ou//isGB+3k/89//vP44he/WPNBliOZTILjuJICPalUqsTNpFBmArfP5RwIE79gLAuhH34PACA/9J5ZHsz8Q7vZzrUUnn92lkdSpLTtRm0K+kwHco+4PSkrFN/hnKJDpDpqiA/73i9XBIhUw62moA8baMfCuq1I7PGRIkIAMKaMuUVrCLIug2d5dxykoq1lWTCdwkKqqUI17DEJrAje2Ydu6VANBaLIQGdUFPIG9u/MuNs+d77Y4su0TCiG4lavJRVxy0EK8TSFm3zLZTXbTZxMXHqLD8XFOMZGNWTGdXQluhDmwxhVUtCc4wmuA9BqsRQKhULxM2Vx+ZnPfAa7d+/GN77xDezatQuW5zHwLbfcgpdeujj93kRRxLp16/Dqq6+6r5mmiW3btmHTpk0XZQyUyxvS6uFS6HPJ79wO/thRaBs3wVg1vdDxyxn1tjsAAOJzz8zySIowgTrGtWpFMh3IPVIUl+UfyJDcypwjjCTO32e1nLgkFVvZalqRBP7kkd/JuqSyLgCMKaNQDSK8RHf8PMu7y3vFp+5UTbUsC3k9565HxmyYBhRTgSCyMFgFuYyBg7uzYFggFGYxMJiBrlvuvmS94J6vShVfvfsXOQmmZznTMmHBwi8eHcR//FPlliJEIIucgBCiePW5Ubz24hjiQgItkVZYloUR2f8QV9GL+6XVYucX/bk+PHbiEYzJpb1WKRQKpRZMeVb89NNP4w//8A9x3XXXgeP8f8wXLFiA8+fP12xwuVwOhw8fdqvP9vT04PDhwxgaGgIAfOhDH8L3vvc9PPLIIzh58iQ+9alPQZZlvP3tb6/ZGCiUShRbkcx/5zL0398AAMjv//XZHcg8xWxfAH3tevAnT4A9U7l9w8WEqdDTcTYg9whpRVLpniFtO4hzGQ44l+UEpDaFPp6lbi7re50ILQBIK2lXvEX4Ys6hwAquCPaKUcMsuoYZNVNc1nFjdVOHZmgQJRYGo+HksSxyWQNLloexdGUEGlSMjqiol5IAbJeUuKFmBXFJWobY+zfc5QljIxoG+gsY6FUhF8pvQzWLLmt+RIJhAHLBRH44hOaIXchnMD/gW8fbNkU37ZoGA/kBHBw+gJTsz9mkzC16s+cxpozhfLZ2czUKhULxMuU4KUVRUF9fX/a9XC5XIjgvhAMHDuDXfu3X3N8//elPAwA+/vGP43d/93fxlre8BalUCl/4whcwNDSENWvW4Ktf/SoaGhpqNgYKpRJkgjzfw2KZ8TRCj/4YViQK5R3Tq6ZMsd1L/tABiM/+EvJHfnO2h+MTUiInuo7YrODcIxYs3+9BRMepHFNsVyXE+yvD8uyFicvgMuR3V1x6QjxNy8So4+6E+TDGlDEAtggj63nFnNfBy6pF55UIVN3SAdOCINrH3t1jC9CWdgkNTQL0kwpGBk3Ur0liMD+Agl5wt+/2Bw0wkO93fz56KI3UoInEch2xhP2nvfuMAouxP/fxMR0QNAzmB2BYBrrii8CxnCuoBU7EWG9xStB3jMMVW21x6RWxACAb/rDY/cN7sWdwNwAgmU7ivmUPlB3vhZLVsogJc7sy7VyHXOMZdXySJSkUCmV6TFlcbtiwAT/96U9x8803l7z31FNPYfPmzWXWmh7XXnstjh49OuEy73//+/H+97+/ZvukUKqFTEiDoXbzDemH3wdTKKDw/l+HFU/M9nDmLertdyLy7/8C8bm5IS697mBDaHYfuAWdy0r3TEK0rz/ilJXkXDKlf7JIagZXRngGCS7j3sOuuFRL1hFYAYJHmAucAK5MKLxXAGY1x7nkijmXhqlDN3UIor3u+d4MGMRQ38Bj6aoIjF8q6DsLRDjbJZUN2XUsK4XFDuXtKB4LFna8NgZdYZE9kUI0zqG+kcfAeRUi7DL2w6kcXhx/2s3RvH7BjVieXAHVOWaRFTDSw4GzBPBmCCcPKbjtng5wDIehwpCvWJ5q+MNiifBmGRaj8ijGlTQSUl3ZMU+XofwQnjz9cyyrX44bFt5U021fTpAc5XE1PcsjoVAolypTnhV/4hOfwNNPP40PfvCD+OEPfwiGYfDiiy/ij/7oj/CLX/wCv/u7vzsT46RQ5h6XQkEfy0L4W18HAMi/9qFZHsz8Rrv6WpixOMRXXgJkefIVZhivc9kQapzFkXjE5SQFfeKSLS5JWGmI8zuXwYI8vveqKegTWIYtcS7tiXedVOe6pnEx4cv1FDw5l150j3NJ8kAlTvSFxaqGClGy95VXbZFXlxTQ0MyjoQ1QswJ6T9pupex1Lj3i0rIsGIbTusXJ7cxnDSiqDiliIRRmkc0Y6DmjQNMs1y3e0bcTBb3gOtgFo+Abq8hJ6DunYnHuFqzlb0Jfj4LsuImmSDNUQ0XaEZAAoOjesFjddT87410AgLOZsyXn50IhDxxOjp3AYMBJpVQPucbJPUahUCi1Zsri8qqrrsI3vvENqKqKv/mbv4FlWfi3f/s3dHd34+tf/zo2btw4E+OkUOYcxH2ZzzmX/M7t4A8fhLbhCuhX1C7q4LJEFKHddAuYfB7Ca69OvvwM4xOX4dkVl0FRV+mBTEL0u10lYbFlnEtgavmk3rGQ9Rg359KeeLdG2/HQyvfgLUvvw21dd/j2K7BiWSFrlKmaKrAiBFYAAOiWAcWpFgsABmMLsvoGAbIuY8nKCDhLxME37NdlXXZFpTf89pFvD+ALnz4DTTVdYTg6osFkDHQtDeGO+5pw9wNN2HhVHAs6JaxcH4LMpnF05AhETsT6JvtvtOk4rUQY6jKLsZSOjqYmbNrQCgA4eSTnut6jSrEAjOxzLg03b3NZ/XIAQPe4XUDoTPo0njn7lDvOC6Gg592fX+971VdMkFI9xLnMaTla6ZdCocwI06pNv2XLFnznO9+BLMtIp9NIJBIIh8OTr0ihXEKQ+XGwcMp8IvzVLwMA5A9+pGIeHKV61NvvhPTkzyE++zS0rbfN6li8FVkbZ9u5DFxbk4XFEoLOZblqsUB1IbHusgznijUiErlAtVie4cAwDJrCTc5yxe3bRXpK91euXYi3WqxuatBM1Q2L1VkiLnnk9Sxa2kQkEyIGzlkQUhrUOtVXaZZw9mQB6VEdg/0qNFODyIkYS2VgAahrts+zILJYtDSMRUvDkIcF9PNDEAsmVjesQUSIOOO1t0nCYlP9tljrWCRh8fII3ngpjXOnZSxZKjnj9zqzxSq6hmm4ArU10oaYGMNwYQg5LYdT6RPozfbifLYHS+qWuuvrpo6CnkdcrD4MnxR5AoBReRRZLTOl9YNs738dEidhY/OmaW9jPuLNK86qGdSHkrM4GgqFciky5Vnxtm3bUCjY4TShUAitra1UWFIuS+Z7tVi29zykxx6FmUxCfse7Zns4lwTqnXcBAKRfPAHMsrPivS6DjuDFJniPVHIuRU70uZXBnEuvqPNuYyr3oHe9YkGfidu2eAsJ8SxfVswGXSC7ZQnr9hfVTT3gXCqQQizCEQ5nx0+DYRhcu7kTjMXi1LG8U/2V9Ll0HEzTQiZt76e3NwvLshDmw0inNFiMiWRjqfiWIoAFE4WCiRAfdl1Ysk3i1g522+J4YVcInUvsz6D7tAzecV69lXEVQ3GFs27pUE0VDMNA4AS0RdoBAGPyKApO+CzJDSU8e+6XeOT4j32htpNB+naS0NuUnKp63SCmZeLwyCEcGjk47W3MV3TP5zhOi/pQKJQZYMri8sMf/jCuvvpqPPTQQ/jsZz+LZ555BqOjtF8S5fKjWC12lgcyTcJf/yoYXYf8ax8GIpHJV6BMitm+ANrmK8GdPQPu8KFZHYvX6ZntvOCg+JsoP5IIYYZhSvpcMgzjCj+RLRbZmapzGRxH0EkNbs+fcylMmnNJlgOK7VUMJ+eSOJcGo6K+gYdu6jg2ehQsw+LeG7YgEhbQ260gm9V8LUgM00Aua4B0PDl/3hZbAiMhPWaAEyyE46XHG44wsBgDct4Ax3Du8ROnlVSz7T5hj3/pqgjiCR7JRgHDAyp0xXFaTQ2jcgrPnXsGuqkjxIXAMzwsy4Ksy+7xEmdUNgqQneJBQwV/juRAzq5y253pLh1wBXJaFizDYkFsIQBg9ALEJTlm1VBL2rdUS1oZw/7hfdNaf0wexZn07LQs0qi4pFAoM8yUxeWrr76Kf/7nf8aWLVvwxhtv4BOf+ASuv/563HvvvfiLv/gLPPbYYzMxTgplzhGsNDmvyOcR+tbXYPE8Ch/66GyP5pJCveetAADpyZ/P6jiigl0lNDnLlWKBUnE7kdNIQmNDXKisKCbCz+twTifnkmVYd/sl/S8DuZ3e3wVOLLs/M9AuhAhjyRlnQZehGio4jgHH2c5lfYOAk2MnoBoqFiUWoy4Sw+Zr62FZwOED6UCrE8NuJ+LQP2A/PEgPWbB0FnVNDCyUCh2Gt8CJFgp5ExzDuufPzbk0VRTyBlJ9QGOzgMZmW7QT93K4115ON3UcHz2OHkcQtsUWuK6saZluoaCw0xM0rxcgO87lqJwqm9+XnaSojGVZODh8AONKGrIuIypE3euZtImZDt6CRIonf3QqHBw+gN0DO12hPBUeO/koftXzwqTHH4S4zBeCdxtT3T+FQqFUw5RnxclkEnfeeSf+5E/+BD/+8Y+xfft2fPGLX0RDQwN+8IMf4JOf/ORMjJNCmXO4zuU8DIsN/ej7YEdHodz/AMwFC2d7OJcUyt33AgDEXzwxq+NYWr8cN3dsxV2L75nVcQClYacT5SmTirHBYj4E4iKKHldzKuKSLOtzMANO5eTOZek9H2wXIrhiKwye5ZFRx13XSBBZ6KyCuiSPnoxd/GZlw2oAwDXXN4ABcPJYDpqh+7ZPQmIBoH8wh+OHc3jusTQYi0NjCw/DMuzwVMdFBADTMhCJAbpuQVMZ13V1cy4NDYN9KliLx4q1UXc9Ii4HeogI1d1WLbd13YHr2t8EjuHQfaaA0ZQGwXGSyeeWUcZ9BYlG5JGSc5ZRx6EZGg4OH8DTZ550hSvhVPoEdg5sx6MnfgLAfmCSlOwcwVGl6Fym5JEpFfjxCkqv0JwKslNtl1TsrRZvRIFapvVNJYbyQ/jukf/B8dFjU9pfEK/Ip+1IKBTKTDCtgj65XA67d+/Gjh07sHPnTuzbtw+SJGHr1q3YsmVLrcdIocxJKrkecx5dR+Tf/wUAUPjY78zuWC5BjFWroS9ZCmHvbrDne2Au7Ji1sSyuWzJr+/ZSknM5wQOZOicsNljMh0BEoeTpPVkuTLUSbq60RyCWhMVOknNZrrCQXuJcFscXF+Ou0xYVohDFEaiMivoGASlH3JDjrq+X0LJARLpbw7kzecCpxRR0LjNZGd0HcmjiWrHhyjp0rGBgmHboa0yMI6fZOZkWLITjDJAH5CwDLs4547W3pZkqBvsUJC3BJy67ltj5roPdBpIr7LBYUvWVuJOpQRN73sggEmWx6iH7Oid5ssGcyKH8IFojrc4yIci6jIyWwcvnf4VuR2BLXAgd8U53HcP0O7ExIQ6BE5AQExhXx6EaKs6On8G23lewoWkjNrfa84+cloMFCwmpTJww/OJSNqYnLlXHASwExKmsy0irafdYg/Rmz7s/a1Oo1joiDwOwW7GsSK4seX8gPwDLMtEWba+4DdMyYVgGIkIEeS3v5rFSKLXAtMz5Nx+izAhTvgoefPBBXHPNNfizP/sznDt3DnfffTe+//3v4/XXX8eXv/xl/MZv/MZMjJNCmXMw87Sgj/TYI+DOnIZ6863QN9OHQTWHYdzQWPEXj8/yYOYIwWqxE0xAmsLNEDkRrdG2su8TYSd5xOdUJjRsOecyGBYbdDIZv3NZznk1SnIui+IyJhRFTlyMQxBZNyxWNgq+/FKWYR1hZ+LYoeLk3zQNjDvOJcsBBqPBsoBNmxuwdn0CDGMLRpZhcVvXHXjLkreCZViYlolwzD7/+YwdGgvAzefM5GQM9euQRAGLlhXPaXObCF5gMDJAnEvNLQYjOJ/B0b2Oe5czkXW0ZMQRl6RYD8nBHC4Ui/oQZzWrZnE+2+MKfWUSoRcM9R7KD2LP4C4AwJHUYVc0PnP2KTx5qnJYuk9cTtO5JGP1tkgBgN2DO/HU6ScqFgvyurPl2tdU3B8pjlQYdMf/yvmX8Ny5ZwAAL/W8gBe6n5twG8Q5lzgJIifWpEUMhQLYIdbfO/JtHBw+MNtDocwBpiwujx49Cp7nsWnTJmzevBlXXnklVq1aNesFIyiUi43b53I+Xfumici/fg4AkP/9P5jlwVy6KCTv8gkqLoFy1WIrLxsRInj3qvdWbBFBhJ7ITa+gj9t+hJ1AXJY4l5PnXFYKiwVsQUmQuBAS0RAMRkVTq93jUuIk93uEZ3m0tIsQI8D57jxGR1R3+8S5XLQ0DJPRwDLApi2NxZYllu1cRoUoElIdOJaDYRkIOYZkZtRyj3toSMHZkwXs25sCdB5XXV8Hni+eB5ZlkGwUoOU5qKqJTE5BTlacMdrFfvrOFMVRzykDQ/0qLFX0nY8Wx8HLqkWh7A3NNC0TXfFFAEqFnrf4DADExBgAIOm0z3i9fxsKegEcw0EzNRwZsYto5bQcCnqhYrEdr1s53ZxLIsyCYz47fgYAsKP/jZKcRsM00JfrdX8PHp9lWb62M14Kzpgty0Jv9jx0U8fJsRPoyXTDtEwoujJpgSI3LNvpv6oaKu0XSqkJI/IIdFPHYH5gtodCmQNMWVzu2LEDX/rSl7B8+XI8/fTTePjhh3HNNdfgYx/7GL7yla9gz549MzBMCmXuQSaD86nPpfj0L8AfPgTtqmug3XDTbA/nkkW/6moYLa0QXvkVmKGhyVe4xCmpFjvJn56JHtisaVyLlQ2rfe1VuCncg0RceccwJXHJ8mXFZbBgjejJe/T2Y5Q4CVde1YRrt8YRazRsZ9HTcoVlWLAsg9VXhGHCxPZX0pALBgzLdHMu114Rg8Fo6FwSQn087AsLDopmy7JQ12ifzxd/MYaTh2WYpoVnHh/Af/3bWZw+mUNIEHHTnaWFnxqbBbAWh/ExHT/7YR9efGbQOQcCnn1iBAw4LF5uj/3EfgVf/MxZ/Ow7I76cz3qpHizDIucJwQwK8SV1S8ExHApOddniOfWLr6hgi8v26EKwDIusmgXDMLi163YwDIMjqcOwLMsT8lu+AI6/oM90nUtblAady3qp2Ddy39Be33sD+X7fdRI8vhd7nse3D3+rbOEe75h7s+d9BY1UQ/Xk0FZ2I3VnuzzLuTnLU8n7pFAqQR6yTPdhDeXSYso5l+FwGNdffz2uv/56AICmadi2bRu+8pWv4HOf+xwYhsHhw4drPlAKZa4x7/pcWhYi//KPABzXcj45rvMNjoNy/wOIfPU/IP3sUcgfvrzTBYLi7ULc/iV1S7GkbilOjB73bH8KzqVzv07kXAZzKoNhsWWdy6C49BQc8jqXIieiLhaFyubc0NFgfinHcFi0TEAhZWH/CQtHD+RgrLWdS40pYNFGE/dE6jEsxCEGnNRyP7cu4rBqfRT6NgY//fYwIneqUDQGJmuLjSs2NyISLT2mhmYRLHj09SgoKBYygwp0LY7Duws4vDeLRIuINRtiGEtpMHrtc3TmRAFrtkqusAvzEUSECLJq1s4JZTmfu8azPBbEFkLiJRT0AizLcq+PoDgkYbHNkWa8Y+W7MJQfhMSH0BppRUJMIK2kfQK1UnVV7wQ4mDNZDbqpu8dQKoiL10FQeBJXs16qx5gyVpJzeW78LAC7QFEwLNwrgnsy3WgKN5fdj2aqCKF8vjLZn8CKMDl7/KqhlLT8mYysmoHohNZSKADctkNy4H6gXJ5Mq6BPKpXCjh073H9Hjx6FaZpYsWIFLehDuWxYGFuIrsQidHoKUMxlhF+9AGHXTujrNkC98+7ZHs4lj/LAO21x+eiPL3txGRSTtSj6wLLFbUypWixxLifIuQyKVW9BH4EVy44/6MaJvpzLWHF9TnTF5Khiu08hj3NJxmjCxMar4jhwAhjsV2AYOsbTOobqd+KZ83uxsLkDqXEGIif6xlfuuAxLx8q1UTD5BI7vNnB4XxYWIth6bwLtkQasaK8vOR6AOJc8+rplWAwLEzqG+0w88ashgAFuvasFKSGNNRtjsCIJhEZEDPWrUDIiiL4J8SFEhRiyahZ5PYe4mPAJsIWxDvAsjxAXRl7LQzEUt+Ks7gmtDfNhxIQ4zp4sQC4YWLU+hq7EIs9nZLulXrEXdAYJinFhzqVfnFZ2W73XhGmZODd+FizDYkndUuwe3AXN1GBaJlRD9VVHzuk57Bvag5Scwi0dt4JhGNcZago3Y7gwhGOjR9zlvaG56gTtSsjYeJaHBck5FhXlyx6VR9Zl/PTEI+iId+KWzlunsCblUoaEbU+3QBbl0mLK4vKuu+7CuXPnwHEc1qxZg2uvvRa/8zu/gy1btqC+vn4GhkihzE3iYgJbO2+b7WFUh2Uh+plPA6Cu5cVCv+pqGB2dEF97FWzv+cu65UtpzmUNxOUEYa0Tj6V8f1pS/AaYLCxWAMMwvuWB0mqxXlcnJsbBMAwsy4LESm54JylyE2y7wjIsNEMDJ1mob+QxOqKj+1weqmrBbE1DN+uQclp72GK3vHNJXtecUMm1G+twYvcYMuMGRMZE5woBvRm+ogPV0CSAAQtVBlhoMBkdR3bL6CqYuOLqODo6M0gNAU0tIq67YiG6t0Ux1K8iO8RBcp65hbgwIqT3pZZ3jz0hJnDdguvd4jwh3hY7sl5wzwcZ9+bWLWiNtOL1l8bw5E+GAAv4+J8uQlNrcdwkDNnbGkStKC6LoaDTaUWiesSlaqiuIwv43VbTk884mB+AYihYEFvgOrCGqeOlnhdxPtuDh1a+x102p2ZxeOQQFENBVssgLibc3NIldUsxXBjyhcUGnctKeHMuyfWvTjGMMaflYFh27qjXZaZc3hQ0+xoM3g+Uy5Mp/4W/99578bWvfQ3bt2/HD3/4Q3zyk5/E7bffToUlhTKHEZ96EsLO7dDXbYBy3wOzPZzLA5aF8rYHAdgVei9nptKKpFq8k5fpOJfBPE3vNvgK1WJZhvWs71+GuFQk3zDsVEkl6xFBIXKiGyY7lLdzGEucS8YuxGNaBpodAbV/Vxoam4MYsQVLxikWI3L+MN1y4b5EVKxcFYcocmAsBlLEQjxpb8vrsnppaLaPhQUPg7VFi5q3t7nl+jpwvkJHAjoW2aIwPVj8fEO85B57Ts+5riXHcmiLtrshmeQceF1BsizP8Dh1LI8nf2wLSwDY9Zq/RyNxLvNa3rP+5DmX03FagnmNBaPoXnrdSu/PZ52Q10WJJe5YNVPDuJqGbupu30ygKEQB+3O2LAuqqULiJXQmukrGk/e4pxPmXDoVje2cS/szn2qOHBGvqqFisDCIHx79HnYObAeACYsoUS5tvPcRdS8pUxaXv/d7v4c3velNCIfDky9MoVBmH8NA9O//GgCQ+z9/AbDzpwDRfEd5+zsAANKjP57lkcwuQXejJuLS69BNp1psQBx6x1jJufQ6mEHnk+RcbmzehJs7tqIl3OJ7n4TGSpzkisucZrts5XIuAVtcNbfZIuDIoXEobAbhiH+/Aiv6xuUVzVxAXIYkwQ6PBYfmdsEt5lLJuYwnePACA9biIYoMwmEWnCWgqVVE5+IQeE8uqsiK6FhsH8fIeQZnTuQxPqY7OZdR93iJ4AqGHhORWS6sVeQEHNxti+lb72kAwwJ73shA14tChhxDXis6l5UK+siGDJ7lfeGmUyEoyAqaJ8/T1NwHDKZHXJIHCQtiC93PSzd1Vwx6q8T25frcnzNqBoqhwLIshLgwYkIMDaFG//6rdS4N4lwKxYI+U2xH4l1+18AOFPQCjo8ew6icwk+O/RA7+rdPaXuUqTOUH8JPT/wEQ/m5UyzOm2s53fY+lEuHac0yu7u78Zd/+Ze47777cNNNN+G+++7Dpz71KXR3d0++MoVCuahIP/6BXSH22jdBvf3Nsz2cywp9wxXQly6DsGsn2DOnZ3s4s0a5ENRabnNK1WIdURMMzfVurzTncvL2J0Q0hYUwFtctKRHUnfFFiAgR1IeSvgI/AHzVYr3b1kwN9Q0CeJ6BphtALIslKyK+ZSVOKhsK6z0mr1t47c31iEQEdCwVXPFVSVyyLIOGJrtibF1SQGOrABY8rrwuAYZhSlq0RGM8kk0C8ike+3dlcXhPHjzL+8JiyXkKCvhyziUpQMNYHI4ezIFhgatvrMeqdVHkcwaO7CsKSdJXNO8VWmXyDy3LgmqokDgJEidNq7plUJAR11E3dViW5Z5Pr4s3rqYhsAKiQtTnXJJt6ZbhXjPe9TLquJsXSkKHuwLuZfU5l8S5FCCxRFxOz7kEioJZNVS82vsKDMvAUGFwStubaQp64aJWMN0zuAuPHv9xxWJStaA/14u0kkZvtmfG9jFVvNcgLepDmfJf+AMHDuBtb3sbnn76aaxfvx4PPPAA1q9fj6effhoPPPAADh4s3ziYQqHMAqqK6D/8PQAg+38+RXMtLzYMA+UBx7386U9meTCzR0krkpqIy8oFeSYcSwXn0idW2dL3trRejU0tVxaXCaxPJu6V2qysaVyLd658t1uYxovEBXMui+KSZRksWRlGUzuP294pIVHnd085lps059I+bjtPtGtpGPc+2Ir6Js4VNkKFsFjAKeoDHnVJHqvWxXDlVQ24+ga7DYz3PJGcx6Urw+At+3jkcfs1kmeZ13KuwxsMPSburWLIbnglcS6HzpvIjhvoWhJGJMrhquvt/b/4dAqm6YT2coK7D0I555IIDYkLIcyH3YI6U6G4Dcdt1YrikmwbKD5wyGpZ6KaOOqkegN3OBrBzSskYDUeYBsmoGXfiTgT4moZ12Nh8BVY1rLH3X3XOJfm8hSmHxQ7kB5DVshXF60hhGAB8LWeqRdZlvNj9fEUn7uDwAWzvfx2ALd529L9R1XYty8Ljpx7Dc+eemfKYpktPpgfj6rhbrGsmIBEH+UA14tlCN3XfveYN8aZcnky5oM9nP/tZrF27Fl/5yld8obGFQgG/+Zu/ic9+9rP41re+VdNBUiiU6RH61tfAnTsD5Y43Q7/uTbM9nMsS5e3vRPTz/4DQj3+Awu/9f5enwJ/hsNgp5VwScVmSV+nJuWRK/zSua1rv+70kLNYN95xc6HIsh4gQcfMDw3z5sFgiNlavj2HL7c04nT4FeCLOiEDg2PLC2O/u+s+X7eDZwsLblzLIgs4Q2JM8GposRKIcll/TCEG0t+s9T4Izljff34xFV6j43E9fh5bmoakmIk7+aTVhsb3ZXuwb2osrmje5E9YTB+2DXr3BDq9dtjqCrqUhnDsl49HvDCA1rGHhDToQCTiXZcVl0QUkDuGuwZ1ojbRiSd3SiufBCzlvdVI9BvMDHufSCTvlBLAM64a6jitpZ3lbFAtu8aHiWCv1m8xqGTdUmJwjgROwqeVKHB45BMAfSjxhzqUr7ItFnKoR1jkth6fPPImFsYVoDoR7L4wtxPnsefd3WZehm3pJO5+B/ABShRGsalhdco/05/pwdvwMRE5Ec6QZQUhO56LEEuwf3gfLsnBl61WT3msFvWBXINardy6Ppo6gPpREa6S16nW8kGshq2XQgpZJlp4e5DObjpCfCYJO5XTa+1AuLab8+Hj//v346Ec/WpJzGQ6H8eEPfxj79u2r2eAoFMr0YVIjiP7D38FiWeT+z6dmeziXLcaq1dA2XAH+yGHwe3fP9nBmhdJqsRcuLtkJciQnXs+pFovKYbHVVDoMiqOpiEvArjZNCBb0YcucH8PSkVbGIHKiKzJIIR6vyKskussJTeJaBYWAl+u21uOet7WjdYHkLFsUot71yFikEIu1K9rRGKtHXG/D6IiGEBcCy7DI6zkYZvmKvOQcDOYHYFomUnIKmqkhPw7s3DYOAFi13haXDMPgzffbImTfjgx6zsh49tE0MuP6pAV9ZOeYRU5yHcZjqSN4vW9bWeewHIojBOsdJ5IU1ClWY+V91YTTjrhMOOKSnMOcx2UNhqdKTh9JknPpPUcEoUz7lUp5pv7xFXMuq3EuU/IILMtCRs24IphcTysbVqM5Yoso8pkGRU9v9jx+eeYX2N7/Ol7tfbnkPJMxeF3ncuzof8Ndt5q8PnJ+DcuoSkTntTxe79uGnU7e6EhhpKTVzERYluWOK6fOnPArisuJz1c5dFOfMFfTtMyq7wMCEZPkmqBhsZQpi0tJkjA2Nlb2vXQ6DUmaWjNeCoUyM0T/4e/Ajo1B/sCHYKxbP/kKlBlDfvh9AIDQd/9nlkcyO8xEWGyl8M9q1wsWAapU6Kea/QNFl7FqcemExvIsXyLuyom9tJKGYRmol5KIOTmbxC30Hgvjyx0t71yS80WqOk7kXAoCiwULou7vJPwUgFstlmEYCJxfdN7e8jY0K2uQGtbAMAyiQhSyLruhmcFjDHH+uYNiyMjmFLz2XBZy3sQNtyfR0FQM3+1YHMItdzVg9cYotlyfgKFy2Lkt7XMAVUPFq92vYlvvK57XimGxXlRDRUYdr3ge/Mva2yBikbRhIO1oOCYgLlXHuRSJuOTdfRaP1y9+GkINiAox6KaOMWXMOUf+MZfbTjkRZVkW0spY0bnkBEjOtTNRGC1hzGl7ohiKm0u4pfVqXNd+PTrjXbim7Tpsbt2CxXVLAABZj7BKK2N4ofs5mJYJiZNwauwkDozs922/GOZZKkq8hY5I6x5g4tDLvJa3XUtPW5pCFSGkZJuKIUPWZTxx+md4rffVSdcjKIbifubZGXQVyWfmfZBSLQeG9+HJ0z9HX7a35D3VUPHDo9/D6/2vTWmb5NwmnAdmiqFgKD/k++yCZLUsnj7zJAbzcytHl1IbpvwXfuvWrfinf/on7Nixw/f6jh078LnPfQ633kqb6lIosw136CBC3/gvmHX1yP3Jn8/2cC57lAcfgiWKkH7yI0C+/EKGZqJaLFsh/HPS9VwR6V+H9L+stj9bpeWqdy5tgRgs5uMdi5cxJ4erTqrzVJ51wmJ9Ib3lz4uvoiwbcC65yuIyuK7PuXQc03LitKHJfi01bIsRUjF23BFwZMxnThbw4tMp8PCLy7yWx0CfDE1msP7KGO54q79CKgDcek8j3vPhBbj3nS1obYsikzaQHS9OaDVTx6GhQziWOuoKRxIiGeIkJENJ3/aG5eEJzwOBiMsGp0dnVrMr2eoeZ5BlWNfNHnfEYZ1UFJfBeyIYotwWW1DSskYKCPByDyGI8BjID+BHx76P4cIwjqQO46cnHrHDqmE7q0XncnJxSfIHFUNxr5nGcBNWNqxyfm7EhqaN7ni9wur1vm3QTR2bWjbjtq47AQCDuf6yx17OuawULlwp1JXkWT5z9imfs1eNA0mEuWIoyGk5WJY1JXfQ69hV+6BiOpC8V29BqGoh/VH7cqXiclQZhWIoODd+xn2tmpxk4tbWO/dTd+Ycnjz9c7zS+1LFdc5netCf6/ft63LFMA2cSZ92H/5cCkxZXP7Jn/wJOjs78f73vx833HAD7r//ftx44434wAc+gM7OTnzyk5+ciXFSKJRqsSzE/vyTYEwT+T/+U1iNpZMyysXFamiEcve9YNNjkH7x+GwP56LjFZMMw9QmLBblXblJ1yPOZYVqsdU7l07eYWCCH6xCWwniPgYdtHLbBIohcGE+jJhoi0tSiKdS+GulQj9k7KTfozBBWGxwPIIvLNbeZrlqs664HHLaoDjHSQQE6+R9/uz7A3j+iRE88s0RWGbxushpOYyP62AtHivWRie8ZliWwYoVtmsyPFicCOe0rOskkT6TxK0VOQmrG9bihoU34voFN9rr5qsTl0SQJcQ6hPmw7Sqbhht2yrN271HTMlHIG3jkkVM4d1L2hUIHBTkRDC2RFjy48iGsa1zvirWUPGKfwwphseW289TpJ5DX8tg3tAfHR4+WrEfCmKupFkucS8uy3DzRctcMeehBwmJPp0+hP9ePeqke65s2umJ+PCC8vKIu6HZVGl+hgnM5poyioBcwKo8i7Yh6oLriN0QkqYbqCkXDqn7C7+3vGBSlOwe24xenn6hJH1Cv2zzVvEsyLq8LTMg6n4usy+4Dgj2Du/CjY99H1umrWw7i+Cadhy3k8zyTPl0xBJeMW7cqu5teTMvEmfRpbO9/HSfHjle1TrWohupGnpC2P0H0CgW3asGZ8VP4Vc8LOD56bEa2PxtULS5lWcZTTz2FRx55BA8//DA+97nP4b3vfS+uvPJKPPzww/jKV76C73znO0gmk5NvjEKhzBjizx+D+PKvoK9ajcIHPzrbw6E4KCQ09jv/Pcsjufh4cwhr4VoCfueQm0Lv1koi0n29SueSLB+c4FeqFhuE5OsF25J4t+2FTNgkLuRWmyWizlt5tVLPS6/QJMsQN2eisNjg+0KZsNhy1WZJCGtq2N9Ls5jnyWGwX8XIoC2Gjh/K4/Sh4kTesAxk0wZYi0dLW+VqtoSlyxxxOVCceHtFzDlHXGrueRQhciKW1a9Ai5MzODJF51LiJDSGG90cUd0RIgLLu9fXsROjGB7Lou8E6/tcDZXBjlfTGOy3t6Wa9v8swyEmxMAyLOJCwrvbktBhvsznFgxzjQlxd9LvXY9hGIicWOJKHRjejzf6Xse58bOwLAuGabhhvUDRkRPKPFCIBpzLI6nDAIBr2q8Dy7B2WxohgqyW9YlI7xiC4auqpzcnAFegVsq59IoZrzvn7UVaCe84yLUzFTfJK2CJ8wnY5+zg8AEM5gcmzSutxEB+AN8/8h30ZXt9ebJTzbskom64MFwidMeV4v1Cqv+OFIahmzr6A26zF5JzWSfWlTwE2jW4o9wq7jVSLi+6HEdSh/GrnhdweOQQXu19xffgoBxnx8/gx8d+MGkvUMVQ8KNj38e23ldQ0Av48bEflIQF57QcfnD0u9g7VNuaCaNyyueOe8O45ztVVYvt7u7GBz/4QZw/X6wIFovF8M///M+46aabZmxwFAplajCZccT+3I4eyP7NZwBh4kkj5eKhbr0dRls7hBefB3u+B+bCjtke0kXDKyhrkW8JXHjOZVBcclN0Lsk+gy5jtceXDDXg9q473VCycmMsh8RLSEpJcAyHpnCzbyzABDmXbOn5Ut38x4m/J7gKzmWEj6A50oIF0QUl69Q38gBTDIsNClqO4XBojz3BXL85hgO7s8gM+89dJq2DB4+mlsnF5eLFMbAsMDKooedsAWCAzkVATLId0+HCEHJazi3G4xVHCakOIiciVRiBaZmTfoaKoYBneXAsh4ZQI3oyPUjJI+51zjsFfQDgbK89SS+MhCDLBkIh+9yfO6Ghr0eBqphoaZNcweq9njrinYgM21WFNc3Es4+O46Zbw2hoEnDySB7n+rMYhoqm1uKxqIaKUTnl/m6h1G0hn6HIiciqWfeYC3oBuwZsMXAkdQh3LroLEi/5HBsi6sQyDxSiTuhzVrVbr4wUhhHiQ2iLthfPtZhAXstjTBnDmfFTWFa33OdO5vQ8YmIc58bPIq/n3Ty+xXVLsLllC3qzPXj5/Euu6x7E68h5cz+ryblUzOI4iLicqEASAJwfPw/oEkRW8glY0zJxevwU8lreJ4Qm214lBvMDUAwFA/l+Xw/NqeRd6qbuClM7l3cUDaFiZFNGK7qTI4VhLEosdgtgDReGsDy5oux2icsb5iOQOAmyLqMj3omsmsFArh+D+UH3AQ6BfDbV9gM9k7b7RHfGu9CdOYc9g7txS6c/DS+jjuNo6gg2Nm/C8dGjyGk5PHn653jvmg9ULFpGrtXhwpCbl0ycesJwYQi6qaMv14dNVYzVtEwcTR3BosRit1J2kJ5MN5479wzetOAGyE6I91SqGs91qvor+I//+I9gWRbf/va3sXfvXjz++ONYs2YNPvWpT83w8CgUylSI/t1fg+vrhfzgQ9C23jbbw6F44Tgo73oYjGUh9IPvzvZoLirMTDiX02xFsjC2EJ3xLnTG/Y3o3SqyUyzoE3TtylV67OTqVAAAiBJJREFUrTiWeIc7Ifdvo/IYQlwIyVADHl7zfqxIrvSNJfizv6BPaRgxEQ1TcS69ooJlWNyz5F5c0bK5dB2BRaKOR3pUh65b7jaIOGFZDof32RPMm+5sAMMA7GgzkqEkmsLN0DQThYKJRCLktj6ZiEgohIYmAZpmYffrGex+LQOnBaZ7/fVmz7vOpRhwAZvCTTAsww2n3N7/esXiOJqpuU5sQ6gR42kdz798GrJWFOvkM+wftI+RMwWcP2sfu2laOHvUXnZ0WINhWK5D5/38IkIEb1v2IDa1bEZocDn2bpPxq6dT2Lcjg2//Zy+e+1kab7w85vb6BGzx0usp1qKbGoZG8ti5Le26ujzLYzytA7r9mZDjDAqwEXmkZKJNKHfNRPkoWIZFTstiuDAE0zLREmjpkXCKGu0b2oODwwdwOHXIl/dJnL3dgzvxRt9rrqsjciJCfMgNDfaGoHoZKpQvEFNNzqVXsGYct9brXJ4cO45nzj7lCqKRwjAeP/44njn7lF0p1ig+OAGAV86/hF0DO3By7IS7Dc3ZnmVZODt+puqcSTI2bzsf+/ds1eGawRDaYBh4xhP6SkQ6EY5DZcJoCcSxDQthN4d8cd0SrG5YCwAlYdnesVQTdpzTchguDCEmxnBTxy0I82GcHT/jhosTjo0exaGRg+jJdvu+l3cP7qy4bdKaKKflXMGrBK4tcl5IS6HJODd+Ftv7X5/Q6STO8Kg86kYtVLqm5yNVicvdu3fj93//97FlyxZIkoRly5bhr//6r9Hb24vBQVrpiUKZC/A7tyP0ta/ArK+3XUvKnMOtGvvt/wbMC8+9mS8Ecy5rsk1P7uZU3NCYGMetXbeXOIZMhRzKSrjiMlAMpyaVcD1hvsHxkBzNisV6KuZZlv+ZYZhJj1moUNBnMhqaBVgWkBpS3cmebBRw7FAO3/hCLwb7VLS0i2hdIKGugUd0eDXu6rwfUSGK7Lg96WxsKM1JLT9GocThlPP2JJwImoKed8NGxcBxEAdnTEnh+OgxHB45hN7seaiGip5MtzuB10wNlmW5xXUaw004sj+LV944hz07R92xkM9naNieeDPgcO6UjMP7snjl2VHIWft907IFJnHvglWMBU7AxuZNqBtbAwA4fjiHA7vtyW5IFGEYQC5LqtRy0E0d57Pd7vqqoeLY0TR6uxVse3EMr704hh99sw///KnTePbRNFTVdCfTxHkjDzzSyphbzMfrwIicWPY+ZhgGESGCgl5wq5EGxSXJO+1xxpjXcu7k2v49746bjMHep32+yfVfTiyqhoq0ki47tmqcS6/QI+1jTMuEaZlIK2N4rXcberO96M3ZUXwkVHSkMIIjqcPug5OGsH0tWZZV4lyRhxt9uV682P08fnL8h1WJQ+I4pgMCZ//wPnzvyLcxkB+YdBvevG2gVIhn1HFwDAee5ZFyQjbJfseU0Yohwjkta3/2fAQdsU4kQw3ojHVhSd1SCKxQIqIN03A/P62KsGMS0t4VXwSe5bGqYTUAlITqKh4H0BseftZTNOho6gh+cPS77nUle9oIpRzHP9iexy0G5iloNRGk+Fp/rq/iMiQsWDFk98FBNdueL1T1V3BoaAidnZ2+17q6umBZFoaHq8tRoFAoM4imIf4HnwBjWcj95adhNZc2oqbMPsayFVBvvBncuTMQn39mtodz0ZgJ5xKoHOI6HSpVka24PEucy0BBnxocn6/6a1Bc8qXtvio7lxV+9giYyVxLewwe53KSyrJeFi21J7FvvJx293PoUApHD+RgqiyaWkXccpedD9jo5GiODmsI8WGMp23B1NRQWk23HCzDYunyGJasCKOungdr8cjn7G2QKq2yrhRz+AI5g0S0KIbqTvI0U8PB4f147twz7kSxO2NPdEnea4SPIDPMQWHT2LF9CJpmuiGzlmVheMQRlxaHV58fxfe/1odnHx8Ba/FobLbPyfBgcZ+Vrj+Sm1nImThxOA8pxOKKzfUA4ArxsGCfK6/Q0EwVY2l7DDwPDA2oOLDbntjKGQ7bXx7Doz84j/07M+6Ev90Jc04raddhafeEPk90zZCiPifTtlsXFJfksyCCKq8XyuZcupV2nYk9ccxDPPmc/BPxp888iR8f+wEAOzqBQHI0q3IuK+QyaqaGV86/7I4pVbAdswGPuNk7tNttGdMcLv793dp5O96z+n1Y27jO3RZQdMNUQ8Xh1KGSsbxy/iU8feZJz9hsATLuOKreiAfN1NCb6Zn0+IgzR6I2Rj2utGIoUA0VcTGOhlAjVEP15WValoWRgFMI2EIxr+URFWzXenPrFty37G0QOAECJ2BJ3VLopu5zb70OajU5l+ece64rsRhA8RoL9tMkn59iyO59LnIi8lrevcaOjx6DrMs4OHzA3obnMx907pugm+yt/OvNS60EuQ4yaqZi2HLOKy6d/XnDw/cP78OB4f1l150P1Cb5hUKhzCrh//cF8IcOQL3+Rsjv/cBsD4cyAYUP2UWWQl//6iyP5OJRKQ/wQnFDWasswjMRUxWqRFQGwytr3cMzmNsW7HVo79MrHMuf60qFfqo5Xn+F2OrF5bU310MKsdi1LY38OJDN6Ni3awwsCzz4vgX4+J8uwrpNtkhraC62LglxkiuYmprK5yyVIxqRsH5zHO0LIuAsHvmsX1xqpupO4ErOqyPaVUNxJ/K6qbuiJKNmYFom9g7tAQCsa9oAABhL6WBzCViMhTF1BKeP5W1xybAo5E0ouor6JA+R56CpFniBwYYtcaxaE8f6zfaxDw+q7oSWtHchr3/uL0/j4J4MBvv8E96V66JoXRgCa3Fu+5UIbwsOy7LQGG5yjkdDetw+5r/5jffi/773fXjHB9rwvz+1BA31EaSGdezbm8LzT464wq4x3ASBFZBWxjBcGIbACmiNtLn7LlcdmLCsfjkA24HkWd5t10IIFrDKaznfZJ6EWBJRQ0IRSYQAcd28wqKgF9Cf63eF28JYp+sYJsQ6CKyAgl7AweEDbjuWclRyjkblFIYLQ+5xj8jDsCwLg/kBcAyHJfXLoBqqK8Rbo/a5aou2oSncBNEpHgUUxaU393L3wM4SV7A7cw79uX6Pw+YUfnLOVbCNjl5VeKktaMi14XX3iNiNiwm32Fiwoiw5vnLbJIIvyIqk3a7GGxrrbVUzWQ6qaZkYyg9C4iRXtLuh0YG8W5JDrhrFSACS6zmmjKGgF9xQ2tPpU5B12RcKPaqk3H16c0G94cIZrbK4dPvaenJsBys4yuThRUGX3e8bcjy6qWPP4C4cS5WGE88Xqov/AfDRj34UHFf6R+iDH/xgyevbtm278JFRKJSq4A7sR/Qf/g5WKITsP/0rUKOwQ8rMoN59L4zWNoi/fArs2TMwFy2e7SHNODNR0Me7rVo6l9XmXK5KrobACoiLCZwaO+m+Xm0rkonH4nUuPdVZnZC1IN5qsZVzLssvM5FQcJevUNBnMiJRDtffWo/nn0xh1yt59EkKLAArVkfQ0eUXjaR1yciQiqaOEDJpe7Lc3FydcwnYglGGjLp4CKxlIuc6l/UAHEfDVMEwjHsclmXhR9/qhxbLAauJc2lPUnVTcye/BT2PE6PHkVWz6Ih3uJPWnrMyJDOOSNsohvvG0dtTDIvNjOswGQ2Jeh6NYgTqMeCeB5ux5U11ePV8C46PjUGSGIyldMiKBkFkfYWXjuzPIpPW8ezPRyAXTERinCuY12yMIhTmwFoCMuM6OIbzfZYLYwsxUhiGaigYz8qQBB7L2zqBokbEfW/vwC92nUd+/zhyWQN5tzBLGHVSvSsu2qJtrmMIlK8OTFhWvwL9uX6cHDuB5nBzyf0eFxNgGMbX+gGAW7mWOD1EbJEiMxJri3+WYSFyok9YECexI96BZfUrnKIvZ5HX8ogIEYT5MMbVcewc2A6e5dER6ywJZwcqtz0heaCtkTacz/ZgpDCCMacnZGe0HYukpTg1etIdX0esEzd3bHVFpvecqWVcKsMyMCKPoNVxeXVTd5cbyg+hTqovyQMM8xG0R9vRn++HZVlVObM5pxppXIyDZ3mfqCfuXFyMuyHfRIiRz6Y/1+s6sAQiFKMVxGVjuBGN4SaMFIYxkB9Aa6TV7wpXKOjz7NmnYcHCNW3XwbRM1IeSbgSM+4DBsMXiroEduH7BTe45td1ABRxTLLg1Jo+6rVZID9rjo0d9DxS84cmKIUPgBBim4RtvpoxzOZQfwt6hXejN9mJz6xafGB3IDyAuJnA6fRISH8KGpo2+CrGyXnAdcdW0W6KMyqOwLMsV+fORqsTlxz/+8ZkeB4VCmQ6KgsTHPwZG05D9y7+Bsbx8NTfKHEIQIH/gg4j+02cQ/tbXkfu/fzXbI5pxZiLnEvC6jbUQdFPLuYyJcWxs3oSeTLfv9drkXHrFX3ESXC4kFqgut5Kt2K5k8uMlLi1pJzEVrr2lHq88N4bj+2UMNNsT5PbOUMkDgcZmp3XJkIZWU0RqWAPPM2hqql5cklDXRFwCa2koZG2hQpxLxVChGRoEpxUHAJw/p+Dg7iwKQgErl5lQDcWdpGqm5obtFQzZbclBCpUAwPmzMgQzjPYuCdlMDpm0CV1hwTK2o2gwGmIJHltvakbT1gVYscYW1TwrgAGD1oUSzp2S0XNOxpLlEd+Dhd5uexyk4u6KNRH09SgYT+tYtjoKRTbBgkN23K5e6xWXrZE28OxBjGUK0EwVzfWlLW+u6FqJM+pB/OrMaST6liGvOoVZ+AjqpDpXXDaHW3z9WCcLjb62/U2IClF0BIpmAfY1FBNiyKgZsAzruj0J0d5fXs/52pS4Rac8xxbiQhhXx7Gj/w0AcMVQW3QBFjmhkwmxHr3oRVSI2WHWntYi3ZmzWOo4rF4qOZc5x00N8XYxrZHCME6lbTHZHmtHm9gOjuFgWAZCfAgMw2Bx3RLfNsjDDHI9EWHXGm3DQK4fw/khV1x6XdnB/ACWJ1eUjE1gBdy5+G5k1HE8cvzHJSGihFE5BZGTEBWirqCJClEIrODbZtbjXJKHVURcdsa70Js9j55MT0nlV7LNSs4lAKxMrsK2wjCOjx5Fa6TV1zPTW5zopZ4XUdDzuKJ5M85n7bxWEuKd8PSIJc5lXivg5NgJ9GZ70Z055xPumqlB4iTUS7bDO6aMuQL9ipbN2D2wE92Z7orVXBVDRQxA1nm4wbM8dFMv6dEK2D1MiUN5YGgfTMtEQkxgXB3H8dGjOOq05AGAZXX2dUeue8VQfKHHiqG41Z6DLYTmE1RcUijzmMjnPmuHw954Mwof/a3ZHg6lSuRf+xAi//yPCH3nW8j90Z8CoeqKlsxXZirnsug2XrigY6bpggb3XeuwWK9zKZUJiQX8wpGrECLrFeBed7WaHEoyMZ6qsASAUIjDxqvieHlbCplxA5Eoi3hdqQNLwmJHhjQMdlswDKC9Q0RImNxZLY7T3mZdXQgsZORzBhgwiPEJpIZVxNrz0EwNMTGG0RFbvB7aY08eGUPE8KCGxcli0Q7dNNyCIwUt777uneiePydDMKOobxTQ0CQgn1PQ162hIFro65FhMhriCQ7J+hBWNkZLxrpoWRjnTsk4e6KAxcvDvs+vr9svKFoXSLjz/iYYugVJYiGKDCReQDaTA88IrjvGMAyaws0QWAH96TQsAHWJ0munTqpHZ7wLTGgP0sI5jGXt/YWFsOv2AkBzpAWSR9xN5FwC9nWyqeXKiu+valiD/lwfLMt0RUSYD0Pi7HYe5UI81RyHX72SwuZrE65YPDRyEECxGFOjp63G8uRyjCkpdCUWYSjvL1xzKn0SS+uXl1T+rSQuSaEjgRXQGGrESGHYbXjfFmsDr/Noj7WjJ9ODEFf+YQhxSokTTva1ILoAA7l+X4/VgseVHSoMwrTMkjxAMmayv6BzKesyXu19GT2ZbjSGm3Dv0vvcENYIH4XIiSjoBeim7Xr3ZO2czYTjLAPF3MGoEMWVrVvwyvmXsXNgO+5Zcq+7HyIUY2Jlcbk4sQQ7+t/A2fQZXN12reugArbYtywLWS3jhiyPKc+7758dP+2Mq859LcTZAl42Cm4eqawX3HOa1/MwLRMiJ7ru35iSwqg8CpZhsSq5GnsHdyOrZSp+X5MHTMSFbIu2oSfTU1ZcEtFaJ9W5BZfaYwthZS1k1AxiYgwCK2JUTmFMGfV9pwd7jaqG4or6xnAj5is055JCmafw219H5AufhxmLI/MvXwSm0EieMruYbe1Q33If2JERSD97dLaHM+PMVFhsTQv6YHr5myXisgZ/Vr1C0BuGGuLKO5fePD3v+L1j8QlWz/LVCEbibk4lJNbLVdfXgXWeZbctlMCAKfnMko0CGBZIDavoOW67Ga3t4pQELRE9dbEQeIZHLmc7SYd2yHj12TSOHrcnbYVxBl/8zFl88TNnsX+XPXnkLAFD/Qpkp7AJYLtMJDyzoBfcybkpS1BVE4Zhoa9HQVyKIhrj0OC4rwd3FPDYd4cwOqIjFDeRbBJKjpd3xEZ9UkB9A4/MuIHUkFbsB5o3MDqi+bIcWtpExOI86pL2ugzDoL4+BMMANJl1K+DWS0kInGD3sczY40/WlRc965s2QpRYpKRTSOecaqJc2BeS1xRuhuQNi60ilHoi1jauw21dd/hCKSVOQkSIwLCMEhdueFDFN7/Qj+ceH8GOV9KuU0kgk3Gv09MQasSbF9+DmBBDmLfdqSV1SxHmw+jL9SGv5XF09Ai+f/Q7GCmMQDf1ij1OSS6qyImeXFYVjeFGLEzYxYMWxuyilxGhgrhk/eKSiJc2p1CSN5/RW9k2raR9OXzF7dmfgcAJbk6pl92DO92oipRsH19eyyPMh8GxnCtwVEPF0dEjGMoPIhlqQGu0DRHnfBHXWOJCWFq3HMlQA4bygxjKDzmVecfcsFhS4KrssXMCltQvg2EZODV20hWE3nPizYX1hjz3OYW0SPQBYF/3pJ8mcU7zer4YSu0IQpGTkJDqwDIs+nP9UAwFbdE2iJyIqBCFrMvIe4SuFyJUiZhsibSBZ3lfcR/vsizDYkndUve1eqkeN3VsxQ0Lb8Tblj2IpXXLnM8iVdISxotsKG7V2vnsXNLZKIUyD2HGRpH4rY+AMU3kPv0ZmF2LZntIlClCCvuEv/ploMo+ZfMV74SttjmXnO//C9uWPYvnp7itoBNbi+Pz51zyrpPgneB7qabPZaV2JdUU6JE4CTzLV8yrmoy2hRK6FtmTz7YOkjvnP88cx6C+QUAmbeDEAXuS2NIuTknQEjdH5AUkYmEosgUBErrPyuAsCaMpFaZpYfsLeeiaBblgIpM20NQigIOIwT4VeS3nugm+sFg9bxeb0SR88e+68eh3BjA8qELXLHQutPPBSN7oif0qDI3FoqUh3Pn2eggC62svAxQFvsAKWLzMFiTnzynugwUSErtqfRSCyDjno/ThQrLeviby6aLoIxVaBVZ025RUEpfNkWYkpBhkLo10PguRE8GxnNuqp06qQ4gPQWSL7UcElkcua4vfC4HkzgH2Z0ceYngreJqmhZ3b0lAy9vUyMqj61iPExXjF/OFFdYvRGG7CxuYr0JVYDMuy0J/vw0jBLszTn+tzewwGCw4BxSJDAiu6RWUiQgS3dt3h3mOLEovREmnFYo/A8BLMuSR5vXExjoSYQEbNuKIqWKimO3OuZHveiIMQH4JqqDBMA4ZpQDd1nEmfBsdwaAo3w7IsdGfOwbRMtxUMeRBR0AvYPbATDMPg+gU3gmVYRAK9d0moLxFP/blevHL+Jfzs5E/dKsrRCZxLAFjp9OQ9MLwPg/kBiJyIhFtoqyguSaVf8nCDCFyvuATs0G3SIgaAz1EkIlPiRLAM61v3imbbUSfVdrNqFhzDlXxvKwHnMi7GERcTUA21pPcrCbXvihfnYfVSPZrCTVhWvwIcy7kFmEbllK+gURBZL2BMGYXIiWWvxfkCFZcUynzDshD//Y+D6z4H+e3vgPzw+2d7RJRpoN1wE/Q16yDs3gX+9ddmezgzil+A1S4sdkVyJZbWL6uYNzMVpuuCBgv41CKn1JtzyTKcO6ZKYbGcLyy2vFvpFXNeoVONeONYDvcuvQ83d2ydfPAVeOh9Hbjqhjq35QhfxiFeudae8CnjHOobeEghznX4qoEIZYEVUZewhZiW4zHYp4CzBGQzBs6dKmB8BFi8PIyupfb5vPJNdVjYEYGSYzCU8uaD6a7TlNNydoXQ04Aimzh7soDhAVsgLGi1C6TEEhxEkQELDvGYgHWb4wBnT3SDua3kvIf5MJKOKM2O6+7n1NdtC4zOJWHc9UAzbroziXhd6TlrSNpCazwFdMQ60BBqxPL6Fc4+eGQzhm+5cjRGbDeuIGuuaxUTYrh+wY24bsENAOzrWmRFaKqJJ743in/881P4wqfPoOeMDNO0UMgbFbdfCeIoAra4JNeEt9jN0IAKTWawoMNeNjWiucWFIkLEFQ4NnpDYIK2RVty79D7USfWuqFD0YvjzmDLq7rOsuHTcMZETUB9K4rauO3D3knt97UBCfAh3L3mL61AFIWHQbs6lWSxkRNxQ4sDKhu1Cktd7yrQZ8VapJufxUOogvnvkf/CrnhegmRo6E11ojthi+JTTCoSEWpIHEWNKCpqpoS3S5r7Hs7zPHSYVqkk7mrPjZ3E+2wPTMlHQC26PS8B+GHD2VAEvPp1CargYytsQsgv7EIf16rZr3FDrwfwA0koajeEm3NJ5G65uuxa3dt3urssybMmDrbBzDZCczYncXRLivaRuqXs+vE6rxEvu3xByPZHrIacVxWVn3Hanf3n2KbeKsWEaMCzDzu8MJVEv1TuCtt43FuJCjimjrtta7u/WUGEQuqnPa9cSoOKSQpl3hL72n5Ce+BmMxUtoddj5DMMg/9t2PnvkS/82y4OZWWYq53JVw2rcuPDmmmzLrTx7oWGxNc655BjW3WalsFiWYd1z7Fu3YhXZyn00K1En1V+QiG9sCmFhR1HglBPxdz3QhPvf04KOzghWr7EnecE+ohMhuuJScHMM1SyPoX4VnGWHiKaGNXCWgJvuTOI9H1mAtz7UgmtuqsOSFRFwloDRVNGN00zd1yLCgoWeY/Z5zmUM9JyxBWBTq4iYEAMDBs0tITBgcc2NSXAc47ZHCF5X5LyHhQgiUQ4MY7dqIcv19jg5eZ0Srrq+Drff21T2wcWiJU5fyUMy4kI93rrsfp+AyDvisrGh8mfXEnVCPRXT5wouT65wi8wAtoA6vC+LofMmwhEWlgW89EwKP/pmP/7pL05jbHRqTmZY8DqXkntOFL0oLs+flcFZAq7fWg9eYDA6rLliqiu+2C3g0+TpLTkRIbefqewRl2OuoyhxoRIHlAgiIlY64p0TFrApBxFzqqegj+g4a2TspIASqdpLXDySj+kVfN5WOuQzOzl6HKZluuGwy+qWIynZIqU31wugKFjJ+sSZCwXcYF/IslNIrCHUAJETkZJHfLmCpMelYVj4zn/24utf6MHzT4zgse/7c11XN6wGUKzqSx64EPezI9YBnuWxpnEt4mLCPa6EmCj5Xg2ON+j2AkUBviq5Gh3xTlzZepX7njdHNMSF3eMloo5cG6QFTIgL44rmzViRXImCXsDOgR0Aiu1PyOd7a9ftePPie3zVlQH7MwrzYaSVNDKOMG0MNXnGaq/fl7XPRbCFz3yDiksKZR7B79uD2F/+H1iiiPGvfhNWPDH5SpQ5i/L2d8JoaYX4i8fBnTox+QrzlJnKuawlxbYmUytaMxPHFgxtdZ3LCmGx3nW8OZdMBRfT+/N08ying3df5XJbWZbBldfV4Tf/oAtLltSVrDPp9jniivJuuOjweUAumOAsAYW8idERDawloG1hCJEoh6tuqAPPs0jUceAsEapSDFHXDM3Xh290WENhtDiew/vt8LamFtGdrG66KomHf6MdK1bH3G0A/jxX73GFuBBYlkE0ykGRLRgqg/SYhuOHcmA5oL2j/AMFQktTFM1tIuQMg8N7/eF2nGXnnUohBtFQ5e20Jezqn6pqlkzavaSHgLOnZERDEn77k4sQS3A4eiCHQ3uzMHQLZ45P3g7DS6lzaZ8TxVBgmhbG0zr6zysQORGrN8SQbLQ/wzZhETa1bMYVLZuwvmkj3rTgBqxyhMtkEKGkGMWep2mnByJgCzgi4ojYJUKqmrY9lfBWiyUFeshrrVFbwJPiRiTntC3aDqAYGlrv6W0p+MJiHffaCQ1lGAYRIYL22ALXQSPbIGG9ZH0iLoNREd4HSeQ9hmF8/U5JYauYEINhWHjyx0M4cSSPxmYBiXoeZ44X0NdTFH3L6lfgtq47cHPHrYExjDv79IfjEoEVF0vnOeX6/QYhzmhrtM3J8S1u3+86S27bHOLOEnFJivWQ0OBr2q6DwAroy/U6LWNI31zBHau3mq6XZCgJ0zIx6BSYagoXxSU5RreYzwRO/Hxgbv6Vp1AoJTDjacR/44NgVBXZT30a+sZNsz0kyoUiSZA/+jEwloXwf/y/2R7NjOF1XOaquCQTqFCFdh+VYGfg2NiguHSE2EST23Jhvb6CPmx5oVlNzmWt8E6IJws/jgoxOxSzgltbDiIKJE5C18J6AMCRHba44yz73OVzJhKxEKIx//4jUSIui46Mt7dgLqtj7/YMBDOCuqQtOsZGbFezqUVExHE+4lEJq9bFXGFCwvaCYjoZakBUiGJBbCE4hkM0Yb8/njLx1CPD0FQL129NIhSe+DwJLI9lqyJgLR6vPu/PBcuNMbAsIFEvTHjttCVswaHKVtl8RsLxffa53HpnKxJ1PK67ud73/vlzpe7RRPhyLlnRFeCKIeONl8bw4lMpGAbQ1RWHKLFINgrucW1s3uTmAq9IrqzagSfXk2LIvqb1ZFIvcZK7TNCdnKxK7kQIngI6XpcUsENGI0IEw4UhyHpxXDEx7gvT9YZaeu+LiOc8hvkw3rLkPrx50d1gGdZXmMnO4yM5l0Hn0n+feYWeV8i1xxa427qx4xZwDIexMxF8/i9PY8eraURjHD7wvxbixjtsIfzq82O+7XbEO93Pinz3kBzEoNtHXMRgvqV9nJNHUUz0efnCYrkQNrVciXesfJfr+hfFpeI6zIAdgbAgthC6qaMv1wvVeXhUzfcUOR7DMtAabfOJ5uAxtnh6pM5H5uZfeQqF4scwEP+tj4A/fQrKW+6D/JGPzfaIKDWi8OsfhhWJIPS9b4NJjcz2cGYEr+iqZZ/LWrK0fhm2dt6GxYnyBTkqMRPFioJCkAixiZ7WEwHKVcitZCuEy86Wcxl08oJc1/4m3NZ5R0ll0InojHdhXdN6LKlfhuvXr8Ey41pIYx3O/jw9IFuiJetGohxYS/CJS+JmmaaFV58fQzZjYMWyBmy9u+gqiBKDeB3nOiHkGIO5uMHjjQgRvGPlu7AiuRIcy7li99CePA7tzaIuyePmuyYPjeM5AU2tAhobw+jtVtDbXRR4404B0rp6fsKHCHWJMCQjDlU1K07aVdVEqlsAzzO4crPttF11Qx2WrAzjWkdk9k5BXBqGhaO7NMgFW3yLnATOER05pYDhQQ08DyzskrDpSvs8kIJJpO9nOUxz4uJoJLRc0WU3pBEABnID7jiI4xUNOGnVtO0h9HbLUNXitcQwDARWgGZqRbfLs72FsQ5YloXe3Hm3WmyYC/ty75JS0bn0hsV63eaGUAMaw41usRyBE1xX3euGEZefuIZB55IcOynwROiId0JgBSyvX4GmcBPesfJdGHi1E7msgeVrIvjAby9EfVLApmsSCEdYHNydgSyXz8clIe8kBzHYxmVZ/XK0RFrL5rGGJ4jiIEz03eEtQCRxIbAMizAfdkWiaqiuwxzcTmfC7t/ak+mG5lxD1bjazWHb0WyNtuHWztt9Ytrb3igmxqYcdj3XoOKSQpkHRD/zaUjPPA195Spk/u1LNM/yEsJKNkB+z/vAFAoIf/Nrsz2cGYetYc5lLeFZHl2JRReUc1mrfFKvQGQY1hWGlQr6ALaoYRimsnPpC4vlPetNvXfldPE6CZOd5zqpHgvjHVPafogPYUvr1YgJMUiCgGtWrQYHewLf0VF0Ktpay4jLGAfeknyCgIRDFvIG5IKJ+gYe73nfErQtLE42G1vsKqpkMkhEXNCZ5SZ48MAxHGJx+3PY/4YtLG66owGiOPkUTWAFMGCwbmM9AGDXtmLVzLEh+3pM1PM+MRIkGuUQNpJQFatiXu3pY3k0Ztfgro770ByzRUoozOHX/1cH7n57E8JRFv3nVeh6ZXGnaSa2vTCK/l4Fzz0xgse+O4TTh4qVPUlBn4HBHCzLPrdXXleH5ib780pOIi6PHczhb//4JI4eqFyNk9xDWS3rhooC/rxGskw0UNynWpf/3OkC/vNz3fj6F3p8hY4EzhaXSsC5BGxxCQDnMz2QddkVdV5B6XW3vA9qvA5wuUIwxL1s9IRhkuuBOHRBAUXEZfD1mBDDu1Y9jC2tVwMATEXAyKCBZJOA939soXtviCKLhV0hmCYwPlrat9R7DORzCLqndVI97l7yFl84MCEUqDQc3Cbgj5QIEuEj7oNO7369ObnEQQ5+7y6MdYBhGHRnzrnnr5qHdF2JRXjL0vtw56K7IHKi72Gh18Vsi7RPuq25DhWXFMocR3r0x4j86+dgJuow/s3v0DzLS5D8x34HFssi/JUvAfn85CvMQ4gIm6vO5XSZiZxLNpAr6a0sWoktrVfjuvbr/UV8WG/4q6cVicfRvKhhsc4YGIa5KOHRqzcUn/6vWlHv/tzeVloRtJxzSZAL9mvRGIeYFENTi+AWPW5qIS4XEZflqw5PFLbJszyicXt5y2ABBli9sVQAl6Mj1oGOeCduu2YNOJ7Bvp0Z9xjGBu1Je6Ken3iiHePQrKxGvbwMnfEu33uZcR173hjHwT1ZsOCxef3CkvUZhsGCzhAMw8Jgn1LyPmALiCd+NISnHh3GVz7fjVees0N4syP2uCQu5Lq7fYN2qGYy6bSWcQROgxMWO1pBXJ46loehW3j6p8MwDAtjoxoe+/6Auy97P/a2SCgmuQ4tywLLsGgMN2JRYjGaIy1Y4OTfESYS6F7277TH39ej4Nv/0QvDsD8HgRVgWZbbW9EritqjC8AyLM6Nn4Vmaq7wIMIql9Xx1A8yOL7bQGGU932Pet3mclVzW5w8yQWx4mcXvB6CIalRnojL0gdaHMu5++8561Q1Xly6XCxhf56Z8fLOZTC/PehcEnTdhKb578twwK119yl6w10rO5csw7oVbr3HyLM8WIaFYiiefEv/diROQnO4BbIuu/1Jq83HbQo3udecN4fe++CA5ODOZ6i4pFDmMNz+fYh/4n/BYlmM/+fXYCxbMdtDoswA5pKlUB54EOzwMML/843ZHs6MQETYXM25nC7MDIT8eiddLMNic+sWXNv+pgmrtXbEO7HC6SVXbmxzoaBPJVdvpli+JgKOY8ALDJavKE7eFi4sHxbLBwr6uKj25DIU5hDhIxBEFskG+1iaWuz/G0INaIm0YlFiCYByVYQrH7PtXNrvMxaHriUh18mcjJgYx21dd6A92YS1V8SgKiYO7snAsiyk+i1wHBD7/9u77/Cm6v0P4O9zcrLbppOy2rILlFEQKHsJynCBuHBccaOo94o/9erVi3qd97pxIbgRFMWFDEFAlK2yRfYqs3Q3zc75/XGatKWDrvQk6fv1PH3apmnySfvteOfzHZGaaoORwShCL0cgvqB7hRC85sccfPPZaWz/rRCCAHTsWnnobZWs/KO8ZGEWPnvvBPJzXTh90oE/tylBa+umAmzZWACDSVSmrsqAIALGk13Qp1l/GCSDf3ycOaOEr+YJyvfMt1nK+TqXvnM3s7NcmD/nBGY+ewR/rC/A8u/P4nRJ6FXW8epKN7gxNVN+br0iWhf2x671XhiLW2Bs2/HldkzVCBoU5HqxeW0eHJU8AeHj9crYvb0IggAkNNch84jdvxbV17kvcirBtmz40Wq0aB2Z5F+jayz5WY/Rx0CGjG2bC7F/uwvuP3rj2Lfdyp0xWjYYVrbLaNe4NFzeYYJ/gyDla6pD5hEbVi7ORlGhu0IQs+ijoRW1iDVWv7HMsUPK1PGkthXDpe/onKKC6juXQMmTaJU8AeL1ypj10jG8+79jsNs9+OCNTHz67nHoxLKPubTGsmtUz7dG1hdEz33seo0eTo+zTFe3kuBcMq3WdwRKbdaG+5TtXJq1Ef7fGWU3TQpVjTcfhohqRTx1EpabroVgs6Ho8afgGjla7ZIogIrvfxCGhV/COPM12P52K6Cv/R+rYCYIAiADDXnOZTAIxJrLczuXiabEckdC1FSV51yqtKGP79n9xnqCwWDUYMq0NigstCMyNg9arQBRBOIrOZZDq1NCR24lwUHjVAKVxRjhfwIhPlGL3GwX4pqV7lA7pu240s85d81lNZ1LUdBAbxSh0QACxHId19q4YEAUdvxeiD82FKBNBxPcDg0imyldLm01nRVRFGA0aVBsrdhhys4qDTHtOinHplSmZbLy++rYISVIHT9ih63YA68XuOefemz4OQ8AcN2tLaGRBOTnuvD7+gIc3JOAGIfSLfV9jc5kK+ErPaUTJKPXf25ndKwWggBkHrbjrReO4LJrE9E6pfQf9LKBa9+fxdBIAtp2MuLQXht+XpqDq6co4cqgMfg31YnSRaFnQjrWL7dh9WoPgCy0TNbjjgeSy53FKokSvp57CkcP2vHrilz0GxKN1ikGmIzlu23HDttRVOBB245GdOhixvLvzuLwPhuS2xorrDE8N5B0jeuGowVH/DUCynTJU0fdyDnjRvfmZqS0S8Bva/Oxakk2Lr2mGTQaAUbJ6J8SX9nOqpWdu6jV6HAy0wFrkQf7/rRCf0Hp19Hl8qI4X4NJna4570ZJxw77OpcVu47+zmW+G4X5bthtXiQ0Lx2Hkqb0ts/tnPpkHrbjzEnlezXn1UxknVLe3vSTHluOWRETFYG+o0t/XiLLdS6rD5cWnQWnrafKdTuVz9PD5rZV+iSAj6/rmecLl3X4PSoIAgySMhZ1og5Jkclwe10V6glFDJdEQUgoLIDluknQHM+EfdI1sE27X+2SKMA8XbrCMfYS6JcsguHzz2C/aYraJTWosO1clp0W20CTgcqHwrqH8XIhtYrNfRpzzaXvH9XG6lwCQK9+McjOLsIZqx39h0UDAqCXKv7TKQgCIgxGZDplyLIMo9boX3Ml2iMgeQ1oYSntKPQZaIHbLaN9auXd5HM39KnuMUuiBAECLNESxFwRXXrULVymtDciNkGLY4fs2P5bATSy1r+z7fn++TWZRRRbPXA6vNDpS2v3dZ1u+3sS4ppVfRttO5rQobOyk67TKfunhgLA0YM2ZJ1ywhyhQXI75UiH1ikGnDjqwME9xTh13I4WrfWQRA3cHhl5hcUwGEXER0eVO2JEkgS0TNLj+FEHzpx0Yve2In+4lGUZeTku6PQihl0cC1uxBxlDomEwinjtP4fx57YinD7pQGILvTId0b+RjR7NzS1QcDwTgA2CAJzKdMDl8vqfeJEhw14k4uhBe0kwdmP5dyW7JSETXXpEYPjYWMhe4JflOQCArj0j0LKkm3t4fzGGXhTrD/hFrkL/fZdV9ggLXwAVBAH2rZ3RwmbH+L8lokUrPXZvL8L23wqx849CtGitx23/SELf5hnQilKNZ0/oRC2Ki5QnE44fdcBeqIGppOm5/Luz2Lw2H7f9PQmtkqv+nns8Mo4fsUOnF9CsRcWfqciSHZALCzxY8NFJnDjmwP2Pt0FkSegs27msaj35rq2l62ezTjmh0QjwyjJ+XpYLnaYfimUN9GNK7ztSWxquz9dNTG/WG60jk8odCVL28wqcynmUlR0B5ZuK7Ps+VffkTXX6Ne8Pt9cNQRAwLGmE//ITx+yQJBFxcaG5sQ/DJVGwcbkQdcuNkHbtgHPIcBS++iY38Gkiiv/xIPRLFsH0+suwX3cDoG28rlKg+f7paahNb4JFYHaLrbzjWOvbqaJbWW4tZi12wKwv39TMmh4b0ZD0Gh2iS6ayVjVdLsJkgFwIuFwy4k0RpUdVFEvoWHgRBrdK8l83tVsEUrtV/Y9fhQ19qtnAyNflTM+IwphxKf4jN2pLEAT07h+FFd9nY9WSHIiiBEvJbZ2vQ22K0ABnXCi2esqFy8J8NyStgFYp+mqDi14v4oa7lDV9Xq+Mrj0jcPa0Ez/9kI3tvxXC6wWaty5/G81LzvA8melArwxlOnhhrgteWUZ0jLZc59Dn5ntbY//uYnz+/knknC3d7VUJxjISW2oxaGT5DWAyhkTjpx+ysWenVQmXZYKAL0hknXZCFIG2nUw48FcxTh13oFmShIN7i7H/LyuaRyUgAsDwi2OR0sGIowdsOJnpwLHDduzeXoTd20tDkMmsQZeeETCaNNAbRBw9ZIfbLfvDVGnnsuI4vDB5NFYd+wld4roCUAIczrRAikVCm/ZKd3DUJfH4dt5peL1KMDx7xoXOiV2q/N5URhK1sJaES9ErYdPPBRgzQTmSZt/uYsheYMvGAv9053O53TJW/qAcmdO2kxGiWHFslK65dONkpgNulzJluN/gaADnbkpU8X68Xhm7tirTsXtlROGPDQUYPCoGbreMtT/lwuhRvs9eR5lwWW5abPVj3iAZ0DoyqcLlvtDv60pWtkv3uUsU6jItFgDaWNr6317x/Vm4XDIuvCQOH848jkiLBk+9EprnXYbXU8hEoU6WEfnAvdD9vAruLmko+OATQFf3s7UotLjTe8M5chQ0R49Av3CB2uUERLh1Lssfs9Jw02J9/4TX5+tVvnNZZkOfJrLmsqyynZGqNt+INCnXcdq9/mlvAOCwihAhISqq5l+r8lOPqw/Tvu9NRKQWbTvUbCOfqqT3i4KvSd1/UAJalXT2zrfhiKnkKJSyU2NdTi9sxV5EWWreEQOUabZdekT4O7BHDijr8lq0Kv8PeIuScHnquLK2TRIl5JScHRodq630iRWtVkRyO+UxlV17mVvyeb51mWWldFBCWebhirt/GjQG2Io9KCrwIDZe69+Y5sRRBzxOEXt2WuGwyzh7wgtBBHr2i0JyWyMGj4rFNbe0xJMvd8PwMbFo3caAth2NGDEuDlMfTkZEpASNRkByOwPcLhknjtr9T2pYXVVPt2wV2RqTu9yIthblSCRrkQeyXNoFBJSg9dAz7TBktBKu9v1prXA7ZbndFTdachVr4PEARpMIjaz330ZRodu/YdKurYVV7v677JssrFuVB71BxNDRlR+Z4+tQnjzmgMup3M6uLaUhvOzackMlm5UdPaRMMU7pYMQlVzfDrfe3xrCLYzHqkjjc80gKupRsemXLK90orOwRKr4xW5Dvxp5d5XcHrk6UXul+ZhWfAVDVtNhzjqkp83s0O8uJV586hO2/le7c7HZ7q12ray1y49eVudi4Jg9rf8qF0+FFy6TzH7cSrNi5JAoi5mefguHzz+Bp0RL5876EHFXx8GAKb9a//x90K1fA9PKLcEy8Kmy6l76OZbjtFhuIziWghBO37G64cBkEG/qUrrls/HDpe5xaUVvl19QXLmW3VC6MOazK9X2dmJqozbjwfT/Od/ZnTURESrj21pZwubzo1N2AeX8pO/OeL+D61lL6pkoCSscJACItdasrNkELnV7wb5LU/JxwGRuvfPzUcQe8XhmSKCE7S+lGxjbTVvkkhMmsdARzzrogyzIEQfCvt/RttFRWi9Z6iBolXMqyXC4s6DQ6nD2t3Gd8c52/U3f8qB1erwyPC7DESBCydehxQSSizvla6PQiRo6Lx/AxlQeXNh1M2PdnMQ7tt8GSrtTmW+9ZVeAvO14K8yv/HpjMGnRKM+OX5bnY96cVURYJRrOI9qkVn5xY+1MOVi3JwahL4zD4QiUI5ud4IcgiomO1cHmNyD7jgtPhxdGDpWeV2qxebFyTh1bJerTpUL5Tt2+3EkbvfDAJsfFVzAQoCcRl18IeOWhDYb4bkRap3JT8ygLcri3K9OFu6ZEQRQFJbUsDaEJzXcn9WmHL1wBmZWaEr4Po+9pu+60Ai7/MgsPuxcQbE9HjgvPvtu87usW/oU9l02K15cNw2WmxO/8oRF6OGz9+dxZdekTA7Zbx/uuZsNs8uP/xNpCkir8PDuwpLtmTQNlECwC69QrdtZfh9RQyUQgzvfo/5cgRSzTy530Fb8uKW75T+HP3HwDnsBGQDh2E4fPP1C6nwfj+YWqodYnBIhBHkZS9rfp2+XyfX/7sTCVw+F4aiy/gqDEtVhAEtLW0KzcN7VxREco/jLJLKjeN1G4FRI2yq2pNiWLlYb4yvq9HQ30vOqWZkZYeCa1GC0mUqj2SwccfLst0Lgvylbd9u37WligK5QKlbxps2Y+3SjHA6ZCx708rBGiQfcYFjUYJiVWNE0EQEBOvhcspo6jAg1PHHaXhspIpxVqtiBatDSi2epBz1uUPCwX5bvyyuMi/KU1Cos6/TvLYYTs2/JwHERqkZ0Th+tuScdm1td9UK7lkF9WTmfYKU5NrMpWyqnAJKDv0mswaHNpnw5cfn8JXH5+utDu3d5cSBFcsysbekg5l7lkXNLIW5ggNEuIiABk4c9Lp3/21QxclTC7/7iw+nHkcf24r7Tjaij3Iy3YjNl5bZbAElK+7wVTmCS5J2dTtz5IpxGWn5J/bufR6Zfy5Tdl1t0vPyrv5vi61NVsDg2SARR8Ng2RASlQbtLd0QFGhG998dhoOu9Ix/H1dQbnP/2NDPl59+hD27Cp/LqpFX35ataGaDX18yu7GfHCv8jUsKvDg5x9z8Pn7J5F1yonCfA8yj1R+VM/+3aVHkMkyoNML6NC56t3Bg114/ZUnClHGWW/B/OxT8JojkD/vS3i6pqldEqnI+s/HAQCml14AHJX/MQo1/jWXYda5FAQhIOtJfYGkvoGjqpBqlIz+KWSNReufFqvOvx5DWg/DgJaDqvx4VIQRCfbOSBa7+df7ybIMR5GIiEip0nVlVSn7JMp5p8X6ngCoZl1mXQ1sORj9Ww487/V84dJatnOZpwSbc7t1tdGitRKutDoBsZVMWc0YGg0A+GVFLnJPe+B2y4iO00IUhXJTuc/lu62ffsjGO/89irU/KWdZVrVe1bfxT+Zhu38N3fbfCrBjkx0/fqtszhOfqIM5QoPoWAm5Z13Iz3WjZUszoiwSTHoDNJra/3z7dkfNOuUsN0tAK2phrOJcx7KqC5eiKPhDIKA8MVBUWH7HX7vNgxPHHJC0SrD7/vPTcLu9yDnrgghJOeO0ZNOYUycc/t1+R18Wj559I9EpTfkdsWRhlj+knT6h/E0698mCykSW6fZ376104o4dtPm/Bj7nrms8csAGa6Gy6645ovJx4BsDudluXNr+ClyYrOyoPyxpBHo264XjR+2QvUCPPpGIjpVw5IDN3xkHgD+3FiEv2415753Eb2vz/ZdbdOVnjFW22ZAoiP4dbgVB8D8Wp8OLY4dt0OoEQAB+XZGLw/ttSrAGcGhvxXOsvV4ZB/YUK2t+OypjIrVbBLS60I1ooVs5UZgwfPoRIv71CGSDAQVzv4C7Tz+1SyKVuXv3gWPsJdAcz4Tx4/fVLqdBlE6LDb8/O6U74TZguBR94bJ+gcMfLs8JLqNSLvL/M9ZYfFPHAhGiGoLJrEEzR1fEelL8/yw6HF4IssY/xa+myu7Oe/41lxW7yw2ljaUtkiKTz3u9yjqX9Z0WC5Suq2zeSl9pOO/U1aycB3nYjvU/KdMg4xPOvzY3tiREbitZ1+YLPlWFS99aymOH7f4pk14PIMmlHaeEROVt39TYVikGDBii7CSqq+PGVwajBpEWjbI+1KtBcbEHsiyjV+IFNfo5KCwo6R5XMSW735BoJLU1+DvEvmM7fI4ctEGWld1rU7uZUZjvwfbfCpGb7YIoa2E2a9A8UQmQmYftOJFphylCg2bNdZhwfXNMvr0luvWOQGG+G2tKdsI9mamEy3PX0Fam7M9NWq+SEFuyxrZcuDxn6qlvbWZaNVNDfd/r3GwXjJKxwjmZJ44q99O6jQG9MpTpsFs2lHYvfcfsCCKwamm2snkSlDNHyz7xVtX0Zd+6S62o9T/BeOSgDV6PMq4HXxiDlsl6DB4Vg+vvaAkAOLSvGIX5bpw4Zvff3+kTDlgLPWjdxoBRl8YjsaVO2dk6hIXfX3miEKKfPxcR0++DrNUi/8O5cA0crHZJFCSsj/wLsiDA9Mr/AGv1GzaEAv8GNWH4Z8c/5beB11w2xG1G6qLK7aDoY9FHI0rfuGu6o3RRysHsZQ49DyalAav0GAqHTYYoS4iIrF3AquqM0equq8Z0YR9zJRv6FPg6l9F1r6tdqglR0VKV68dEUcCQUco0xAN/KmEgNqHkSYhqxn5sSQCVz9kjxRJbea2tS6an7tlZpKzRAyBpBWjKhEvfmaXDx8ZhxLg43DS1FYwG5bKqdhiuiYREHWQvcORPL35alI292+1Ijelc4XrLvs3Cgg9PlpvaWvo9qHwMtU4x4Nb7k5CWrgS3rFPlZ7ocKpmi2aaDEYNLvs5rf8pFdpYLGlnpXLZIVL43238rgNcDtOtkLDfDZPSlSsD2Ta/1hcNz19BWpmwobp1iQFS0hLNZyvpO37R8GTKyMmV/2AKAPbusEERUeyxPVLQEUSy/prOs40eVLmyrZAPS+0UBArB1cwE8Hhlutxd5OS5ERUto18kEa6EHh/YpXcWVi7Px0+cO2G0eHN3rxnsvZfp/LlxOL76bfxrzZp/Ant9dkCGXC58HSzqTbTuZMOqSeNzxQDJGXRKPNh2MMEVokHnEjnf+dxSzXjqGFx87iMMHbNizU/m6duhiRqtkA6Y+lFLlLr2hIvz+yhOFCMNH7yPqvqmARoOCWR/CNbJxuwgU3DxdusIxYRLEs1kwzn5H7XLqrbRzqXIhARCIcFl6m/X7gl3UZgwuaXd5Q5RUb0bJiKtTr0N6s95ql1Ip/46pRR7/5joOh0cJl7XsXFa1mVJlStdcqtfRLd0ttjStVTcls6aiLBIemNHWP/21Mt0viMRl1zZDVJQOJpPo70hVF7bLdihTuyndz9ZtDNBqK/8ZtERLSOsVgcJ8D76YlQ27zQO3XQOh5N/gqGgJ+pIjWBISdRh2USz0htKNkM632251EporIWz3z3okWftDt2VEuenHgLJb6IbVedi1tajc1FZ/9/g8m0kllJwzeeZU+c6lLzC17WhCUhsjUtobkZ3lwvEjdkiCFkaTiITYCOj0Arwl3/qBI8qvObTEaBEdKyHrtBN2m6c0XNZiWqzJrIHRpFECqVzaYZVECceP2LFgVg5+XqZ0Ru12DwrzlTWdvid8KqPRCIiO1aKoQDmfFVCmsW/dVIBD+4px4qgDogZIbKmDJUaLDp1NKCrwYP9uK3LPuiHLQFwzLXpcoITrHb8XwlbswfrVufBazThzyomje5VjVHw7v+7ZZcUfGwqwZ6cVe7YouwyXfeLBF+bbdSq/XlIUBbTtYITXA1gLPYiJ18Jh92L10mz/eta6nm8bjBguiVRgfO9tRP7f3yHrdCj4YC6c4y9VuyQKQtaHHoWs0cA08zUI+Xlql1Mvvn+2w+2cS6BMcG7AP6m+bfrrO1VSEqUK08XUFKxTYoHyU0MlTUm4tHnr1LkUyx1FUv1jFivZdKmxVbZbbEF+/ddc1oRyPqcF05/oiBHj4vxrG6sL277OJQB0TY/AnQ8m45b7Wld7H1fe2Bxd0yPgKBJx5pQTbrsGogbo2TeywtmYPr4dTeuzq3J8Yun0zSh3S8guCRvX5JW7zl87rPA1LMsesVLTgN+szNpOH4fDi9MnnbDESP4wPm5Sgr8TbYlUOpQGrR7NWihBsX1nU6VHYLROMQAycPSgHVmnnIiI0pw38AKl02J93y9ft7Ps1NjjRx2QZD1+X5cPt1tGTsl01biE8wd636Y+uTnK56xZnotvPjuNT945jmKrB4kt9f7dWXv3V6bG/rGhwL/2Mi5Bh87dIyBpBezebsWGn/PgcsoweKJw7KANjgLlMW7dpEzZ9oV1o0mE5DWguMjjPzfVWuTGqeMORMdJla4vbpdq8n8t7344GZYYCYf32XDmpBPNWuj807LDAcMlUSMzvvEqIh57GLLBgPyP58N58Vi1S6Ig5W3XHvbJN0LMz4Pp9VfULqdeStclht+fnYY4k/JcWv/OqsETDMNduXBZEu7tdi9E1L5zWZtpsb7umFobHQHlH/v+3VZ88Eamf3OX2hzBUh8ajQitpvS+qutcRkZJyiY1AtChsxmSJJx3wyVRFNA+1QRJNkBri4HemojIKAkTrm9eZWdVKnOETV35OpcAYI5UAu2mX/L93TYA5XZjzclyYtfWQvy2Nh+FBW5IWuG8OxVHx2ohaQWcOen0T6vNyXICMtCsRWloSWyhx50PJiG9XyQuHtgdLcwtkGhqjnadTBBFYNjFlZ9Z2bpkzeq61bnweoHmLc/ftQRKQ3HcOeFyxx+F+PDNTBiz2wPH2kKEBGuRB3/tKEL2GVe5z6mOLzSfPe3Ejt8LsWpxNgBlPS0AtCoTlDulRcAUocHeP63+s1fjErTQG0R07RkBp8Pr754avBbkZLuh9SqB8NRxB04dd+DQPuXzevaNgtZrQHFxaefS97F2HSvf5TW9XxQuu7YZJt/RElqt6F8HCsA/rTlc8JxLosbi9cI8418wvTMTssmE/E+/gGvwULWroiBX/OAjMHz1BYyz3oLtb7fAm5yidkl1EogAFiwCMS22d2Jf5NpzYNKG7nb0ocYUIQKC0i3Siso/wQ6bF4Y6dS6DY7fYmtLpBWg0AoqLPNiwJs//zzcASFLjzTbQiBp4PEoyqK6TK4oCxk9qBo9b9q8XrYlIiwQBApLzh8Fms8IcX/3nxhrjkFl4DBZDdI3v41xlO1Kdu5vhdMjY8Xshdm8vQs++USi2esrtIpp9xoXNa/NLNymK1553l21RFJCQqMPJTAcK8z2Iipb8G9ace1yIOULCFZObA2gOQFn7OexiPTKGWqrcmbV1irKL6eGSANX9gpqdwdipqxnp/SL94d23wZNvfB05EIUEbxqi4yTkZbvx29p8tOmg3FdsDcJlmw5G/LY2H6uX5qCoUOnyTr69JVYsOoszJ51olVIagiVJQM8+kVi/Og+bS3aH9XVHx05MgNst48+tRWjTwQinUw/XiQEweCxo09GIw/tsWLUkGzlZLmUKdooB2rWmks6lch++9ZbnTon10WiUDr1Per8orF6WA8hA1/TQPdOyMuH3V54oGDkciLz7NpjemQlvbCzyFnzLYEk14m3REsV33wfB4YD5mRlql1MPDX9cR7AIRFc2zhiHDjEdG+z26PwkSUR0jIT8PDdkjxI6bMVeiFCOp6iNssHofNNdS3eLVe/5fkEQYIoQUVzsgd1W2lGLb+SpemWD+PlCea+MKPQZVLtNqXxTQn3TMk3nCabd43vg2s7XI0Jb986SOULj7wy3TzUhvZ8SJLZuLlnHt9MKr7f02JJ9u63+YAnUfFqy7/NXLcnGqeMOf7iMa3b+kKbRCFUGSwBo3lrnn65siZHQrXfNwpBOL+KKyc39R9JEx0rQG5Tfk0aT6N+QadQl8YiKlnB4v81/7mhNpsWmpUegTUcjsk45YbN60WegBZ3SzLjmlhYYMjqmwkZSvUqmxrpdSnfX97UxmjS46m/NcevfW+PqKS3QpoMJke4W0AkmXHZNMxhMon/jnbYdjYiO08LsTkB8cRekxXcDUHYzn/MfMaN8LbQYfnEsBgyPDqspsQDDJVHACYUFsEyeBMPCL+FJSkbeouVw981QuywKIcX33A9PYnMYvv4K0m+b1C6nTko39Am/cBmIziWpIz5RB8hAQbbyX6+9SBmvVR1xUZVyG/qEQOcSUKbGyl7gzEkHIABjJiTgsmuaNWoNUgOtNa6KL6jl5ypdrpp0PRvi+9Kuk7JbaNuOJrTtaEKkRcKhfTbk57qwe7syJXbwhcq6z9Mnym/KE1nDKdm+jt+WjQWYN/uEMi0WNZteej6SJKJFktKhGzQypk5nfgLK7//+w6KR2s2MqQ+lICJKA71BRMcuZv+ZnQf2FNe4bkEQcMlVzSBpBUREaXDhJXEln6vDhePjK5wV2ay53j/FVxSVgFf2tpLaGGEya9C25GvZMsmA2HgdLr269OegbUcTYuIkCBARkdsJFn00srOcyMt2I7GlrtqQfq7hY+Jw8RUJNb5+qOC0WKIAEk+dhOW6SZB27YA7rTvy538Fb2JztcuiUGM2w/rYvxF131REPPEo8n5YHnLbrvo39AnDABbOj62piW+mw/7dxcg/C8hmGfYiZb2b0VS7gCEIAkRBhFf2nnctpW89n9rra31dPKdDhiVGUuWsPV8QD1TQNppEaCQBHrfSuarNlNr6uOL65vC4ZX/XrmffSPy6Ihe//pSLA38Vw2AS0a13JH748gycjpLzFnUCXE65xrv19sqIQsskA778+BTOnnbiYMnOpedOi62rEWPjsHeX1d/9q8/t+NwxPRkupxd6g4j2qSb8sb4AkJVjYmr6uOOb6XDXg8nQ6oUa/Zz27h+FzMN2xMRpqwzJ7VJNGHxhDDp2Vc6yTEuPROYIOw78VYy2nYzQ60VodQLyctzwemX8sOAMACC1W3itnawr/iUkChDpj98QPXoYpF074BwyHHnfLWGwpDpzXH0dXN16QPvbJui/+1rtcmqtSZxzGYaPranxTS3MPSPDafdCdmkQXcuupY9vXJyvC9fc3AI9E9LRJbZLne6noZQ99qFsR6cxlW5uFJjQJwhCuWmm55sW21AkSfAHSwDoM9ACrU7A5l/z4fHI6NwtAhqN4D/jE1A6x1qdgLZVbBBzLkEQ0LyVHu1LdiUtzHdDoxFgiWmYPlL7VBPGTkyo8riXuoiySP7pr207mnyrJxAbrz3vBk1lxSfqYImu2ZhN6xWJ5HYG9OxXdUjWaASMujQeKe1Lp7hefHkC7n44BQaDBoIgICZOOU5k+XdncXCvDc1a6PxniTZ1/EtIFAD6L+Yh+vKx0Jw+Bdv1NyF/3peQI+v3bB81caII65PPAADMTz0B2O0qF1Q74Twt1ncESRg+tCbHt8awIEtAtLc1LK7kWk+J9fGFy/OtHRQFET2b9YJFH12n+2ko5cOlOhPbtAHuXAKl6y6Bxutcnis6VosLx8f73+/aU+l4+Y6wMBhF9O4fhUdfaI9OaeZa3XbZQBRTy5CmJpNZ49/wpyGm8lZFrxdxy31JGDq68p1xa8r3e2H96jxoNAKuvrkFdDrGKoDhkqhheTwwP/k4oqbdCbjdKHz2RRS9/AagC6/F2qQO15BhcIwZD82xozDNfFXtcmolnHeLDefH1tT4NtbIOu1EqjgQCY7OiKlj0PKvpVRxo57aCIbOpe9rJQXwaxZpKX2ctVkf19D6DbGgY1cT4ptp0S61ZIfUknDZMkkPQRDq9GRccrvS4zcCGdICoX3JTquxNdjMR21lf0a69Y5o9M2vgllo/MYjCgFCdjai7rkdupUr4I2ORsF7H8E1bITaZVGYKXr6OehW/wTT6y/DPukaeNu0VbukGhH8r0PjWfTa4LTY8GEya2CK0CA7y+k/zL2+nUu1N+qpqbJTRNXqXPq6vOc7G7Q+1JgWWxlRFDD59pYASp+g8p0fmdS2ZjuOViYiUkJ8My3OnnGFXLjsO8SC3GwXetdzXWdjiIkrHUd9B0erV0gQ4l9CogYgbdyAmAsHQ7dyBdypnZG7dBWDJQWEN6UNiu97AILdjojHH1G7nBoL5x1VA3EUCaknIVEHr6f0aIG6rrks7VyGRrg0B0Hn0hcuzzeVuD7KbhSj1rRYn3O7k13TI3D1lOYYdGH91u75psbGNQutbpolWourbm5Ro2NI1OZ70qllsh6tUwznuXbTwr+ERPXh9cI48zVEXzEWmhPHYZ90DXKXrIS3XXu1K6MwVjzt7/CktIF+2RLoli1Ru5waEcL4nEuR02LDim9qrO+8vbp2Lv3nV4Zk51LdabHn22G3PoJhzWVVRFFA156R9V67N+SiWAwcEV3j8yip9tp3NqP/sOhyx5SQgn8JiepIyM5G1I3XIOKpxwGtFoWvzEThm7OACG5FTQFmMKDouf8CACIeexiw2VQu6PxK1yWGY7jkUSThpGffSECAcsC7UPcpor6NnkKlc+lbcykI5QNYY5L8gTxw9++bFitpBej04fkzGx2jxUWXJ0Afpo8vGEiSgDETEtCiNbuW5+KoI6oD3YpliB2aAf3yZXC374DcJSthv/4mbhdJjcY56mI4xl4CzdHDML3+strl1EDJz0YY/oyE85TfpiiprRH9h0YDUIKIJNXt++rrWAZyc5qG5AuXUdFSlef/BVqgjyIBgMiS4BxsXUuicMG/hES1UVSEiAf/DsvkqyBmnYFt8o3IW/4zPGnd1K6MmqCip5+DbDTC9MYr0Ozdo3Y51fKvSwzLPzvhO+W3qRo5Pg4du5rqtbGIJsQ29ImI0qBLzwhcMMCiWg3+3WID3LlsmaxHx661O+KDiGomNJ5OIwoC0uaNiJx2J6RDB+GNj0fhS2/AOXa82mVRE+ZNToH1occQ8eS/EPnAvcj7bikgBmd4K506Gn4BjJ3L8KPTibj+jlb1ug3/brEh0rkURQHXTGmhag2N0bkURQF3PJAcsNsnaur4l5DoPISiQpgf/T9EX3IRpEMH4RgzDjk/b2SwpKBgu/NuuHqkQ7tpAwwfzlG7nCqF81mQDJdUGb1GWYtlkPQqVxI6tL5wGSLdXiKqiH8JiaqhW74UMUMyYJr9LmSLBQWvvYWCj+ZBTkhQuzQihSSh8JWZkDUamJ/+N8TjmWpXVKlw3i229CiS8HtsVHe9E/tgZPIoROqC/8y+YBFjiIVOo0O8kX9jiUIVwyVRJcTTpxB51y2wXH81NMczYb9iInJ+/Q2O624Iyw1JKLR5uveA7Z77IVqLEPHwA4Asq11SBU2hc8ndYqkss9aM1pFJapcRUmIMsbi28/Voa2mndilEVEf8S0hUlsMB4xuvIqZ/bxgWfglPy1bI//RzFM76EHIznmVEwcs6/WG427aD/sel0H/9pdrlVBBqB8rXhn9aLP+kEhFRE8e/hEQldMuXImZoBiKefgKC04Hiu+9D7q+b4LxorNqlEZ2f0Yiil98AAET880GIp0+pXFB5nWO7oHt8DySYwu9JGoFrLomIiAAwXBJBs3cPoiZPguX6qyEdOgjnyFHI/XkDrDP+AzkiUu3yiGrMNWgIim+/C2JuLiL+MS2opsfGGGLRK/GCsAxgkVrl90SELkLlSoiIiNQVGvtjEwWAmHkMpv89D8P8uRC8XrjbtoP16efgHD2G6yopZFkfmwHdyhXQr/gRhrkfw37D39QuKeylxXdD++gOMEgGtUshIiJSVfg9hUx0HkJ2NsxPPIrYAb1h/OwTyBYLimY8g9w1G5UpsAyWFMpMJhTOfBeyKML8+D8hHjmsdkVNAoMlERERwyU1IUJuDkwvPovYvj1gemcmoJFgfeAh5GzeDtvd9wJ6nkVG4cF9QV8U3/8ARGsRIu+bCni9apdERERETQCnxVLYE86cgemdmTB8MBuitQiyVgvbrXfA+o+HuAMsha3i6Y9At/xH6NavhfHdt2CbOk3tkoiIiCjMMVxS2BKPZ8L45mswfvoRBLsdsl4P25TbUDzt7/AmJatdHlFg6XQofHMWYkYPhfnZJ+EcMgyebt3VroqIiIjCGKfFUtiRftuEyDtuRmyf7jDNfhcQNSieei9yftuBohdeZrCkJsPTpSusj82A4HAg6s4pgNWqdklEREQUxti5pPDgckG/6FsYZ70F7e+/AQC8sbEovvlW2G6/G3JcnMoFEqnDdufd0K5ZBf1PyxHxr4dR9MpMtUsiIiKiMMVwSSFNPHYUhrkfwzDvU2hOngAAuDt3ge2Ou2G/8mrAaFS5QiKViSIKX38H0oiBMM79GK6hw+GYMEntqoiIiCgMMVxS6HE6oVu2BMZPP4R29UoIsgxZEOAYfTFsd9wN19DhPE6EqAw5IQGFb70Hy1WXI2L6/XD1ugDeNm3VLouIiIjCDMMlhQZZhvTHb9AvXADD119BPJsFAPC0aAn7dTfAPvlGeJNTVC6SKHi5hg5H8f3TYX71f4i66xbkff8joNWqXRYRERGFEYZLCmqafXuh/+oLGBYugObwIQCALIpwXDwW9htuhvPC0YDEYUxUE8X/90/ofl0D7W+bYH7637A+9azaJREREVEY4X/lFFxkGZrdf0K/9Afofvge2h3b/B9yXdAX9iuvguOyiTyfkqgutFoUvPs+YkYNgemdmXD16QvnZRPUroqIiIjCBMMlqc/thnbTBuiW/AD90h+gOXK49EMdO8Fx5dWwT7yKa8SIGoA3KRkFb8+G5bpJiLz/HuR17gpPp1S1yyIiIqIwwHBJqhCPHYXu51XQ/rwKujWrIObm+j/mSu8F59hL4BgzHp7OXbg5D1EDc40cjeIHH4H5v88h6pYbkLt0FRARoXZZREREFOIYLqlRCGfPKt3JNaugXb0S0sED/o/JWi2cw0fCMWY8nGPGwduylYqVEjUNxdMfVjbJ+mk5Iv8xDYWzPuATOURERFQvYR8u77vvPqxfvx6DBw/GK6+8onY5TYMsQ3NgP7SbNkDatAHajeshHdhf7iruLl3hHDoCruEj4Ow/CDCbVSqWqIkSRRS+9R6k0cNg+HYh3H36wnbnPWpXRURERCEs7MPl9ddfjyuuuALff/+92qWEJ1mGePgQpB3boN2+DdL2rZC2b4WYk1Puau72HeDq1x+uQUPgGjYC3sTmKhVMRD5yTCwK3v8E0eNHwzzjX3B3SVPOiSUiIiKqg7APlxkZGdi4caPaZYQ+WYZ48gQ0e/dA2vsXNHv3QrNvD6RdOyEW5Je/qlYL1wV9lTCZMQCuvhmQExJUKpyIquPukY7Cl15H1LQ7EXXbTchbuhKedh3ULouIiIhCUFCHy82bN2POnDnYuXMnsrKy8M4772DEiBHlrjN37lzMmTMHWVlZ6NKlC/71r3+hR48eKlUcwmQZgrUI4vHj0Bw7AvHIEWiOHYXm2FGIR49Ac2A/xKLCip9mNMLVpx/cPXrC3SMdru494UntDOh0KjwIIqoLx9XXofiv3TDNfBVRN16LvCU/QY6yqF0WERERhZigDpfFxcVITU3FxIkTce+991b4+OLFi/Hcc8/hySefRM+ePfHRRx/htttuw9KlSxEbG9vg9YhicG12IYqC0lH0uAGnC4LbBbhcgNsDweWEUFQEobAAQmFhyUvJ23l5ELPOQDxzGkLWGYhZWRCzzkAoLq7yvmRzBNzpveHplAp3p07wdEqFp2MqvO3aAxpN+boC/cCpUfjGe7CNewoM2+MzIO3ZDd3yZYi68xYUfragws92Q+L4okDjGKNA4viiQArl8RXU4XLYsGEYNmxYlR//4IMPcM011+DKK68EADz55JNYvXo1vv76a9x6660NWoskiYiLC6Kt+p1O4IILgJ07EdMQtxcbC6SkAK1aAW3bKi9t2vhfhObNIQkCJAD6hrg/ChkxMdxsqcn48gtgwADoflqOuBeeAl56KeB3yfFFgcYxRoHE8UWBFIrjK6jDZXWcTid27dqFqVOn+i8TRREDBw7E1q1bG/z+3G4vCgpsDX67debxICq+GbTJyfBoJECjgazVApIWkCTIOi3kiEjlJdL3EqW8joqCt1kivAnNIDdrBm98wvmnseZYG+dxUdAQRQExMWbk5lrh9cpql0ONQoT48XxYLhoO8eWXUdSmAxyTbwzMPXF8UYBxjFEgcXxRIAXr+IqKMkKrrX5WU8iGy9zcXHg8HsTHx5e7PC4uDkeOHPG/f8cdd2D79u2w2WwYOnQoZs2ahc6dO9fpPoPpmwtBRMGX3yIuLgJ52UX1ry2YHhsFFa9XDq6xTwHlTW6DgjmfwHLV5TBPvx/upBS4Bg0J3P1xfFGAcYxRIHF8USCF4vgK2XBZFVmWIZQ5CHzWrFkqVkNEFHpcg4ag6IWXETn9PkT9bTLyFv0IT+cuapdFREREQS5k916JiYmBRqPB2bNny12ek5NToZtJRES1Y7/xZlj/8SDEgnxYrrsS4qmTapdEREREQS5kw6VOp0NaWhrWrVvnv8zr9WL9+vVIT09XrzAiojBR/MjjsF91LTTHM2G5bhKEwgK1SyIiIqIgFtTTYq1WK44ePep/PzMzE7t370Z8fDwSEhIwZcoUPPTQQ0hLS0OPHj3w0UcfwW63Y8KECSpWTUQUJgQBha/MhHjqFHS/rEbULTci/7MvAa1W7cqIiIgoCAV1uNy5cyduuukm//v/+c9/AADTpk3Dvffei3HjxiEnJwevv/46srKy0KVLF8yePTsgZ1wSETVJOh0KPvgE0ZeOge7nVYh84F4Uvv42IITe2VtEREQUWIIsy6G1BZFKXC4P8vKK1S6jHFEUEBcXgeyG2C2W6BwcX1SWeOI4osdeCM3JEyi+7wFY/zWjfrfH8UUBxjFGgcTxRYEUrOMrOtp03qNIQnbNJRERNR5vy1bIn78QXks0TK+/DOMbr6pdEhEREQUZhksiIqoRT5euyP9sAWSTCRFPPwHDJx+qXRIREREFEYZLIiKqMXffDOR/+BlkrRYRD94P/bcL1S6JiIiIggTDJRER1Ypr+EgUvPM+IAiIvPt2aFcuV7skIiIiCgIMl0REVGvOSy9H0ctvQHC5YJlyA6QN69UuiYiIiFTGcElERHVin3wjimY8A8Fmg+W6KyFt3qh2SURERKQihksiIqoz2933wvrwYxCtRbBceyWkP35TuyQiIiJSCcMlERHVS/H0h2F98BGIhQWwXD0B0rYtapdEREREKmC4JCKieiv+v3/C+o8HIRbkw3LV5ZB2bFO7JCIiImpkDJdERFR/goDiRx5H8b3/gJiXB8uky6DZuUPtqoiIiKgRMVwSEVHDEARY/zUDxVPvhZibi+grL+EUWSIioiaE4ZKIiBqOIMA64z/+gGmZeCmkTdxFloiIqClguCQiooZVEjCt0x+GWFiA6KuvgPbXNWpXRURERAHGcElERA1PEFD88GMo+tcMCMVWWCZPgnblcrWrIiIiogBiuCQiooCx3fcAip55AYLdDsuN10K3eJHaJREREVGAMFwSEVFA2W6fisKXXgfcbkTdeiP0X32hdklEREQUAAyXREQUcPYbb0bhzHcBAFFTb4Nh1tsqV0REREQNjeGSiIgaheOqa1HwwVzIBgPMjz4EPPYYIMtql0VEREQNhOGSiIgajXPMOOR/8Q28URbg2Wdh/vs0wO1WuywiIiJqAAyXRETUqFz9B6Jg0TKgRQsY5n6MqFtuBGw2tcsiIiKiemK4JCKiRufpmgasWwdP+w7QL/0BlmsmQMjPU7ssIiIiqgeGSyIiUkebNsj/4Ue4evWGbsM6RF9yEcRjR9WuioiIiOqI4ZKIiFQjxycg76tFcFw4GtKevxAzZiSkLb+rXRYRERHVAcMlERGpKyICBZ98DtvNt0LMOoPoK8ZBt3iR2lURERFRLTFcEhGR+iQJRS+8jKInnwXsdkRNuR7Gd2byqBIiIqIQwnBJRETBQRBgmzoNBXM+AQwGRDzxKCL++SCPKiEiIgoRDJdERBRUnJdchryvf4A3PgHG99+D5fqruJMsERFRCGC4JCKioOPu3Qe5S1fC3bkLdKt+QvSYkdDs36d2WURERFQNhksiIgpK3uQU5C1eAceYcZAO7Ef0xSOgW7FM7bKIiIioCgyXREQUtOSISBR8+BmsD/wfxMICRF1/NYxvvMqNfoiIiIIQwyUREQU3UUTxI4+j4L0PlY1+nn4CkXffDthsaldGREREZTBcEhFRSHBcPhF5i36Ep1VrGL76AtGXj4F4PFPtsoiIiKgEwyUREYUMd/eeyP3xZ7gyBkC7dQtiRg2B9udVapdFREREYLgkIqIQIyckIO+r71F8250Qs7NhufoKmF75L+D1ql0aERFRk8ZwSUREoUeng/XZ/6LgnTmA0Qjzc08j6sZrIOTlql0ZERFRk8VwSUREIcsx8SrkLl0Fd4eO0C9fhphRwyDt2KZ2WURERE0SwyUREYU0T+cuyPtxNRyXXgHN0cOIHjcKhrkf87gSIiKiRsZwSUREIU+OiETB7I9Q9PRzgMeDyH9MQ+TU2yAUFqhdGhERUZPBcElEROFBEGC78x7kfb1YOa5k4QLEXDgE0tY/1K6MiIioSWC4JCKisOLO6I/clb/CMfYSaA4fQvT40TC+PZO7yRIREQUYwyUREYUdOSYWBR/OReFz/wNEERH/fhRRN1wN4exZtUsjIiIKWwyXREQUngQB9lvvQO6Slcpusit+RMyIgdD+ukbtyoiIiMISwyUREYU1T7fuyF2+BrbrboDm9ClYrrwU5v/MAJxOtUsjIiIKKwyXREQU/sxmFL32Fgreng3ZHAHT6y8jesxIaHb/qXZlREREYYPhkoiImgzHlVcjd/U6OAcMgnbndsRcNIyb/RARETUQhksiImpSvMkpyF+4CEX//g8gy4j496OwTLoMYuYxtUsjIiIKaQyXRETU9Gg0sN1zH3KXrYa7azfofl2DmGEDoF8wH5BltasjIiIKSQyXRETUZHnSuiF32SoUT/s7hKJCRN1zB6JuvQlCVpbapREREYUchksiImra9HpYn3gK+d8shicpGfpF3yJ2SF/oFy5gF5OIiKgWGC6JiIgAuAYMQu7P62G7+VaIOTmIuutWRP1tMsTTp9QujYiIKCQwXBIREZWQIyJR9OIryPv6B3hS2kC/9AfEDO4H/fy57GISERGdB8MlERHROVyDhiBn9XoU3zEVQkE+ou6biqjrr4J44rjapREREQUthksiIqLKmM2w/ucF5H23DO72HaBf8SNihmTA8MFsnotJRERUCYZLIiKiargz+iN35VoU33M/BGsRIh9+ANHjR0Oza6fapREREQUVhksiIqLzMRph/ffTyPtxNVzpvaD9fTNiRg2B+aknAKtV7eqIiIiCAsMlERFRDbl7pCNvyUoUPvsiZIMRppmvInZYf+h++lHt0oiIiFTHcElERFQbGg3st92F3LWb4Rh3KTRHj8By3SRE3n4zjy0hIqImjeGSiIioDrwtW6Hgw7nI/2gePC1bwfDtQsQM7APDnHcBt1vt8oiIiBodwyUREVE9OMeOR+6vm1B85z3Khj///D/EjBoK7YZ1apdGRETUqBguiYiI6kmOiIT16eeQu+IXuDIGQPpzJ6IvG4PIu26FeOqk2uURERE1CoZLIiKiBuLp1h153y1Fwduz4UlsDsPCBYgZcAGMM18DnE61yyMiIgoohksiIqKGJAhwXHk1ctf/rpyN6bAj4qnHETN8ALSrflK7OiIiooBhuCQiIgoAOSIS1n8/jdyfN8A5bASk/fsQfc0ERN10HTQH9qldHhERUYNjuCQiIgogT8dOyP/iG+R/MBeepGTol/6AmCEZMD/+CITcHLXLIyIiajAMl0RERIEmCHCOvxQ5v25G0b9mQDYYYXr3LcRmpMM46y3A5VK7QiIionpjuCQiImosRiNs9z2AnA1bYLtxCoSCAkT86xHEDM2AbuliQJbVrpCIiKjOGC6JiIgamdysGYpeeg25K9cq6zEP7IflpmthufJSSDu2qV0eERFRnTBcEhERqcTTNU1ZjznvS7g7pUL36xrEXDgEkXfdAvHQQbXLIyIiqhWGSyIiIjUJApwXXoTc1etR+MLL8CY0g2Hhl4gd1AcRj0yHcPq02hUSERHVCMMlERFRMJAk2KfchuyNW2H95+OQjSYY338PcRnpMD3/NITCArUrJCIiqhbDJRERUTCJiEDxP/4POZu2ofiuaYDbBfPL/0Vs3x4wvjMTsNvVrpCIiKhSDJdERERBSI6Lg/WpZ5GzYQvs114PIS8PEU88itiBF0A/71PA7Va7RCIionIYLomIiIKYt3USCl9/G7mr18MxZjw0mccQdf/diBnUB/oF8wGPR+0SiYiIADBcEhERhQRP5y4o+Hgecn9Yrhxfcuggou65AzFD+kG/cAFDJhERqY7hkoiIKIS4+2Ygf8G3yPtuKZyDh0Lavw9Rd92KmOEDoPvua8DrVbtEIiJqohguiYiIQpCr/0DkL1yEvK9/gLP/QEh7/oLltr8hZsQg6H74HpBltUskIqImhuGSiIgohLkGDUH+t0uQ9+V3cPXNgLR7FyxTrkfMiEHQf/MVp8sSEVGjYbgkIiIKdYIA19DhyFv0I/LmL4Trgj6Q/tyJqDumIGZwX2V3WZdL7SqJiCjMMVwSERGFC0GAa+Qo5C3+CXlffqesyTywH1H3343YjHQY5swCbDa1qyQiojDFcElERBRuSjqZ+QsXIfeH5XCMvhiazGOI/OeDiOvTHcaZr0EoKlS7SiIiCjMMl0RERGHM3TcDBXMXIPenX2C/bAKEs1mIeOpxxPZOg+m/z0HIyVa7RCIiChMMl0RERE2Au3tPFM7+CLm/bob9mskQCgth/u9ziOudhoh/Pgjx8CG1SyQiohDHcElERNSEeDp2QuEb7yBn41bYbrkdkGUY58xCbP9eiLztb5D++E3tEomIKEQxXBIRETVB3uQUFD3/ErK3/Anrw49Bjo2F4buvETNmJCyXj4XuxyWA16t2mUREFEIYLomIiJowOTYOxdMfRvbvu1D4v9fgbt8BuvVrYbnhGsQMzYBh7seA3a52mUREFAIYLomIiAgwGmG/aQpy1/6G/I/mwdWvP6S9exD5j2mIu6AbTC8+C+H0abWrJCKiIMZwSURERKVEEc6x45G36EflGJPxl0HIPgvz/55HXO+uiJx6G6Qtv6tdJRERBSGGSyIiIqqUu28GCj74FDkbt6L47vsgm8wwfPUFYi4egeixF0K/cAHgdKpdJhERBQmGSyIiIqqWN6UNrDP+g+ytu1H44itwd0qF9vfNiLrrVsRe0A2ml1+EkJWldplERKSysA+X9913H/r27Yt//OMfapdCREQU2sxm2G++Fbm/bELegm/huHgsxDOnYX7+P4jr1QWR996lTJmVZbUrJSIiFYR9uLz++uvxwgsvqF0GERFR+BAEuIaNQMEnnyNnwxYU33kPZL0Bhs8/U6bMjh4GwycfAkVFaldKRESNKOzDZUZGBsxms9plEBERhSVv23awPv0ccrbtRuHzL8HdJQ3a7VsROf0+xPXsjIhHpkOz+0+1yyQiokagarjcvHkz7rrrLgwePBipqalYtWpVhevMnTsXI0eORPfu3XH11Vdj+/btKlRKRERE1ZEjImG/5Xbkrl6H3EXLYb/qWghOB4zvv4fYYf0RfclF0H/5Oc/MJCIKY5Kad15cXIzU1FRMnDgR9957b4WPL168GM899xyefPJJ9OzZEx999BFuu+02LF26FLGxsQCAyy+/vNLbXrhwITQaTYPWK4pCg95effnqCba6KDxwfFEgcXyFMwHe/v1h7d8fxc88D/38z2D4cA60mzZAu2kDvP96GI7rboD9pinwtu8QsCo4xiiQOL4okEJ5fAmyHByr7lNTU/HOO+9gxIgR/suuuuoq9OjRA48//jgAwOv1YtiwYbj55ptx66231vi2N27ciPnz5+OVV16pc32yLEMQQu8bTEREpDqvF1i1CnjnHeCbbwC3W7l86FDglluASZMALmEhIgp5qnYuq+N0OrFr1y5MnTrVf5koihg4cCC2bt3a6PW43V4UFNga/X6rI4oCYmLMyM21wusNiucIKIxwfFEgcXw1QekZwDsZEGY8B8Nnn0A/92No1qwB1qyBd9q9cE64Eo4bboK7dx+gAZ7M5RijQOL4okAK1vEVFWWEVlv9zNCgDZe5ubnweDyIj48vd3lcXByOHDlS49u54447sH37dthsNgwdOhSzZs1C586d61RTMH1zy/J65aCtjUIfxxcFEsdXE9QsEda/PwjrfQ9Au+5XGOZ+DP0P38HwyYcwfPIh3KmdYZ98E+yTroGckFDvu+MYo0Di+KJACsXxFbThsiq1nZ46a9asAFZDREREdSKKcA0eCtfgoSjKz4N+4ZcwfPYJtNu2IOLfj8L89BNwXjwO9sk3wDliFCCF3L8sRERNTtAeRRITEwONRoOzZ8+WuzwnJ6dCN5OIiIhCl2yJhn3Kbchb/jNyVq5F8e13QY6MhP6H72C5/mrE9UiF+fFHIG3fCgTHVhFERFSJoA2XOp0OaWlpWLdunf8yr9eL9evXIz09Xb3CiIiIKGA83brD+syLyN6+FwXvfQjHhaMh5ObA9O5biBk1FDFDM2B8/WWIxzPVLpWIiM6hari0Wq3YvXs3du/eDQDIzMzE7t27kZWVBQCYMmUK5s+fj6+//hoHDhzAjBkzYLfbMWHCBDXLJiIiokDT6+G4fCIK5n2F7G17UPT0c3D1SIe05y9E/GcGYnunwTLxEujnz4VQVKh2tUREBJWPItm4cSNuuummCpdPmzbNf+7lp59+ijlz5iArKwtdunTB448/jh49ejR2qXC5PMjLK270+62OKAqIi4tAdnZRyC32peDH8UWBxPFFdaX5azcMC+ZD/9UX0Jw4DgCQjUY4xo6H46pr4Rw6AtBqOcYooDi+KJCCdXxFR5vOu1ts0JxzGewYLqmp4fiiQOL4onrzeqFd+wsMC+ZD9/23EK1FysVxcXBccgWcEyfBMn40svNsHGPU4Pg7jAIpWMdXTcJl0K65JCIiIqqSKMI1ZBgKX38b2bv2o+CdOXCMughCfj6MH82B5fKxQFISTI89DOm3TdwIiIioEbBzWUPsXFJTw/FFgcTxRYEi5GRDv3gR9N98Bd2vawCvFwDgSU6B4/KJcFwxEe5uPYBaHGtGdC7+DqNACtbxxWmxDYjhkpoaji8KJI4vCjRRFBDntqLoo7nQL/wS2o3r/R9zt+8AxxVXwnHZBHg6d2HQpFrj7zAKpGAdXwyXDYjhkpoaji8KJI4vCrRzx5h4PBP6b7+G/psvod26xX89d/sOcI6/DI5LLoO7Zy8GTaoR/g6jQArW8cVw2YAYLqmp4fiiQOL4okCrboyJhw7C8O1C6H74HtptpUHT0zoJjvGXwjH+crj79gM01f8TRU0Xf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVdIyJR49A/8P30P/wHaTNGyGU/FvkaZYI59hL4LjkMrgGDga02sYqnUIAf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVZYyJp09B98P30P/wPbTrfoHg8QAAvDExcF48Do4x4+EcNgIwmwNZOoUA/g6jQArW8cVw2YAYLqmp4fiiQOL4okCr7xgTsrOhX7YYukXfQvfzKgguFwBA1uvhHDoczovGwnnxWHibt2jo0ikE8HcYBVKwji+GywbEcElNDccXBRLHFwVaQ44xoSAfuhU/QvfjEuhWLIdYkO//mCu9F5wXjYXj4nHwdOvODYGaCP4Oo0AK1vFVk3ApNVItRERERCFJjrLAMfEqOCZeBbhc0G5YB92yxdAvXQLt1i3Qbt0C84vPwtOqNZwXjYHj4nFwDRoC6PVql05E1KjYuawhdi6pqeH4okDi+KJAa5QxJsvQ7PlLCZrLlkD6fbN/QyCvOQKuocPhHDkKzgtHw9s6KTA1kCr4O4wCKVjHFzuXRERERIEiCPB07gJb5y6w3T8dwpkz0K9YBt2yJdD9vBL6JYugX7IIAOBO7QznyNFwXjgarowB7GoSUVhiuCQiIiJqAHKzZrBPvhH2yTcCdrsyffan5dCtWgFpz1+Q9vwF09tvQDaZ4Rwy1B82vckpapdORNQgGC6JiIiIGprBANfwkXANHwkrnoN49Ah0K1dAt3I5dGt+hn7ZEuiXLQEAuDt0hPPC0XCOGAVX/4GAyaRy8UREdcNwSURERBRg3uQU2G++FfabbwWcTmg3rle6miuXQ/prN6T9+2B69y3IOh1c/for6zWHDoe7Zy9AU/0aJyKiYMENfWqIG/pQU8PxRYHE8UWBFkpjTDyeqXQ1V6+E9tefIebm+j/mtUTDNWgInEOHwzV8BDxt2/O4kyAQSuOLQk+wji9u6ENEREQU5LytWsN+482w33gz4PFA2rkd2p9XQ7dmNbQb10G/+HvoF38PAPC0TlKC5tDhcA4eBrlZM3WLJyIqg53LGmLnkpoaji8KJI4vCrSwGWM2G7SbNypBc80qSNu2+o87AQB3l65wDRgE56AhcPUfBDkhQcVim46wGV8UlIJ1fLFzSURERBTKjEa4SjqVwAwIuTnQ/voLdD+vgm7NKki7/4S0+08Y338PgHLkiWvAILgGDoZzwGDIiYmqlk9ETQvDJREREVGIkGNi4bz0cjgvvRwAIJ44Du26X/0vviNPjB/OAaDsROsaOASugUrg9DZvoWb5RBTmGC6JiIiIQpS3ZSs4Jl0Dx6RrAADiqZNK0Fz7K7Trf4W0fx+k/ftg/Ph9AIC7XXu4MgbA3a8/XP36w9OhIzcIIqIGw3BJREREFCa8zVvAMfEqOCZeBQAQT5+Cdv3a0rC5dw+kgweAeZ8q14+Lg6tvBlx9lbDpTu8F6PVqPgQiCmEMl0RERERhypvYHI4rroTjiisBAEJWFrSbN0K7aQO0mzZA2rYF+qWLoV+6GAAg63Rw9+wFV8YA5bzNvhmQ4+LUfAhEFEIYLomIiIiaCDkhAc5xl8A57hLlArsd0tYt0G5arwTOzRv9Lz7uDh3h7tMPrt594L6gD9yduwJarUqPgIiCGcMlERERUVNlMMDdfwDc/QfABgBeLzT79ylBc+N6SJs2+NdtGubPBQDIRiPc3Xv6w6ardx94Wydx7SYRMVwSERERUQlRhKdTKjydUmG/4W8ASqbS/vEbpD82Q/v775C2/uGfVuvjTWgGV+8L4O6thE13r96QoyxqPQoiUgnDJRERERFVSU5IgPPisXBePFa5wOuF5sB+SL9vLgmdv0P6cyf0y5ZAv2yJ//PcHTvB3SNdeemZDnf3HpAjo1R6FETUGBguiYiIiKjmRBGejp3g6dgJjmuvVy6z2SDt2A7tH5shbfld6XDu2wtp317gqy/8n+pu174kaJYJnNExKj0QImpoDJdEREREVD9GI9z9MuDul+G/SMjOhrR9K6Qd26DdtlV5++AB5SiUr7/yX8+T0gaunr3g7tGzpNPZE3Isd6glCkUMl0RERETU4OS4OLhGXAjXiAuVzYIACHm5kLZvK3nZorw+eACaI4eB7772f66nRUu4u6bBk9Yd7q5pcHftBk+HjoDEf12Jghl/QomIiIioUcjRMXANHQ7X0OH+y4SCfEg7titBc9sWSDu3Q7N/H/QnTwA/LS/9XL0e7k6d4Unr5g+c7rTuPIeTKIgwXBIRERGRauQoC1yDhsA1aEjphTYbpL1/QfPnLki7dkAqea3dsQ3aHdvKfb4nsXlJ4OwGd2pneFI7w90xFTCbG/mREBHDJREREREFF6MR7p694O7ZCw7fZbIM8dRJSH/uhGbXLkh/KqFTs28vNCtXQLdyRbmb8CSnwN0pFZ5OneHu3MV/xIocEdnoD4eoqWC4JCIiIqLgJwjwtmgJZ4uWwIUXlV5ut0PatweaXTsh7d0Dzd6/IO35C+LRI9AfPQKs+LHczXhaJ8HTKVWZYpvaWel2dujIXWuJGgDDJRERERGFLoMB7u494e7es7TLCQDFxZD274Vmz19K6NyzG5o9f0Fz+BA0mccqdDq9cXHwtO8Id/sO8LTvAE/7jsrrNm0Bg6FRHxJRqGK4JCIiIqLwYzKVHG2SXj502mzQHNgPac/uki7nHmgO7ofm4AFoN22AdtOGcjcjCwK8SSnwtG9fEjw7Qu7YEeibDhijAQiN95iIghzDJRERERE1HUYjPN26w9Ote/nLPR6ImceU4HlgHzQH9pe+HD0MzdHD0K36qdynxBoM8KS08b9427RV3m7TDp6kZMBobMQHRqQ+hksiIiIiIo0G3pQ28Ka0gWvkqPIfKy6G5tBBaA7uh3RgPzQH9sFw5BDkPXsg7VHWeFbG07wFPG3awpvSBh5f8CwJn3J8PCCw60nhheGSiIiIiKg6JhM8ad3gSesGJwBRFGCIi0BudhHk3FxojhyGeOQwNIcPK2s6jxyG5sghpRN66iSwYV2Fm5RNZnhat4a3dRI8rZLgTUqCp1VreJOSldctWgIS/1Wn0MIRS0RERERUR7IlGu4e6UCP9IofdLkgHs8sEziV8CmWvC3t3QPs3VP57YoivC1aloTPMqEzKQmelq3hbdECsiWa3U8KKgyXRERERESBoNXC26YtvG3awlXJh4WCfIiZmdAcPwbx2DFojmdCzDwKTWYmxMxjEE8ch+Z4JrRV3LxsNMLTvAW8zVvA26IFvM1bwtuiBTwtWsKb6LusBaDTBfJREvkxXBIRERERqUCOssDT1QJP17TKr+ByQTx5AprMY8oU28xjSic08xjEUychnjoJ6dBB4NDBau/HGx8Pb2ILeErCpjchAd6EZpATmsHrf0lgJ5TqjeGSiIiIiCgYabXwJqfAm5xS9XVsNoinTkJz6iTEkycgnjpV8vokNCWvxVMnIZ09C2nXjmrvTtbp4I1P8IfN0gCaUBpCY+Mgx8XBGxML6PUN/IAp1DFcEhERERGFKqMR3rbt4G3brurryDKEnBwldJ45BfHMGYhZWRCzzpS8lHn71EloThyv0V3LJjO8sbHwxsRCjo2FNzYWcozyvjcuzv+2XOY6ckQku6NhjOGSiIiIiCicCQLkuDh44uLgQffqr+vxQMjOLhM8z0A8e9b/tpCTDTEnR3mdmwNNyXTdmpJFEXJUFOQoC7xRFv/bssUCr+9t3/uRUZAtZd6OjIJsNivnhzKgBiWGSyIiIiIiUmg0kJs1g6dZM3hqcn2PB0JeHsScbKU7mpsDITcHYnZ26dtlwqhQUAChoACao0egqWOJsiBANkdANpkgm82QzRGA2ex/WzabSz5W8rbvcoMBst4AGPSQ9QbIBmPp23o9YDRC1ivvQ68HRLGOFTZdDJdERERERFQ3Go2/K1orbjeEwgII+fkQS14rwTMfYkF+yfvKZaLvbWsRBKu15KVICbRnTgfmcQHlgqas1wOSBFmrVV5LWkArARrfZVpA0vjflks+Bq1WuUwQAVFQOq6iCLnkNQRB+VjZ93Va4K7bgdgWAXtsgcJwSUREREREjUuSIMeUrNGsz+04nRVCp1BcXPp2mddwOCDYbBAcduVthx2CzV76vt0OwW4HHHYIJe/DboeQnwfR6WyoR14zbgfwxDONe58NgOGSiIiIiIhCk04HWaeE1ICSZcDtBlwuCB7lNVxu/9uC2wW4PWXedkNw+67ngiB7ldvwegEZJa/l0teyF0LJ+4JGg8iJl6J+qVsdDJdERERERETVEQRAq1WmuZa5WK7yE+pOFAUgJgLILgrArQcWV6kSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9CbIsy2oXEQq8Xhkej1ftMirQajVwuTxql0FhiuOLAonjiwKNY4wCieOLAikYx5dGI0IUhWqvw3BJRERERERE9cZpsURERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdBbu7cuRg5ciS6d++Oq6++Gtu3b6/2+kuWLMGYMWPQvXt3XHrppVizZk0jVUqhqDbja9++fbj33nsxcuRIpKam4tNPP23ESikU1WZ8ffHFF5g8eTL69u2Lfv364ZZbbsGOHTsasVoKRbUZYytWrMCVV16JPn36ID09HZdffjm++eabxiuWQk5t/wfzmTVrFlJTU/HCCy8EuEIKZbUZXwsXLkRqamq5l+7duzditTXHcBnEFi9ejOeeew733HMPvv76a6SmpuK2225DTk5OpdffsmULpk+fjkmTJuGbb77BqFGjcPfdd+PAgQONXDmFgtqOL5vNhtatW2P69OlISEho5Gop1NR2fG3cuBHjx4/Hxx9/jHnz5iExMRG33HILzpw508iVU6io7RizWCy488478fnnn+O7777DpEmT8Oijj2LdunWNXDmFgtqOL59du3Zh/vz5SE1NbaRKKRTVZXxFR0fj119/9b+sWrWqESuuBZmC1qRJk+SnnnrK/77H45EHDx4sz549u9Lr33///fKdd95Z7rKrrrpKfvLJJwNaJ4Wm2o6vskaMGCF/8skngSyPQlx9xpcsy7Lb7ZZ79eolf/fdd4EqkUJcfceYLMvyFVdcIb/xxhuBKI9CXF3GV3FxsTx27Fh5zZo18g033CA///zzjVEqhaDajq+vvvpK7tevX2OVVy/sXAYpp9OJXbt2YdCgQf7LRFHEwIEDsXXr1ko/Z+vWreWuDwCDBw+u8vrUdNVlfBHVVEOML5vNBrfbDYvFEqAqKZTVd4zJsoz169fj0KFDuOCCCwJYKYWiuo6v559/HhkZGRgyZEgjVEmhqq7jq6ioCMOHD8ewYcNw9913Y//+/Y1Qbe1JahdAlcvNzYXH40F8fHy5y+Pi4nDkyJFKP+fs2bOIi4urcP2srKyA1UmhqS7ji6imGmJ8vfTSS2jRogX69+8fiBIpxNV1jBUWFmLo0KFwOp0QRRFPPvkkBgwYEOhyKcTUZXytWrUKGzZs4DpeOq+6jK927drhueeeQ6dOnVBQUID3338f1113HRYtWoTExMTGKLvGGC5DjCzLEAShyo9X9rHqrk9U1vnGF1F91HR8vffee1i8eDE++eQT6HS6RqiMwsX5xpjZbMY333yD4uJirF+/Hs8++yySk5PRp0+fRqySQlVV4ysnJwePP/443nzzTRiNRhUqo3BQ3e+v9PR0pKen+9/v1asXxo0bhwULFmDatGmNVGHNMFwGqZiYGGg0Gpw9e7bc5Tk5ORWe6fCJj4+vcP3s7Owqr09NV13GF1FN1Wd8zZkzB++++y4++OADdOrUKZBlUgir6xgTRREpKSkAgC5duuDAgQOYNWsWwyWVU9vxtW/fPmRlZeG6667zX+bxeLB582Z8+umn3PmaymmI/8G0Wi26dOkSlLPNuOYySOl0OqSlpZXbxc7r9WL9+vXlnrkoKz09HWvXri132bp166q8PjVddRlfRDVV1/E1e/ZsvPXWW5g9e3bQbrFOwaGhfofJsgyn0xmACimU1XZ8de/eHd9//z2++eYb/0u3bt0wYcIELFy4sBErp1DQEL+/PB4P9u3bF5S797NzGcSmTJmChx56CGlpaejRowc++ugj2O12TJgwAQDw0EMPITExEdOnTwcA3HTTTbjhhhvw/vvvY9iwYVi8eDF27tyJZ555Rs2HQUGqtuPL6XT6j7VxOp04ffo0du/eDYvFgpYtW6r2OCg41XZ8vffee3jttdfw0ksvoVWrVv614iaTCWazWbXHQcGrtmNs1qxZ6Nq1K1JSUuB0OvHLL7/g22+/xVNPPaXmw6AgVZvxZTKZKsy0MJlMiI6ORseOHdUon4JcbX9/zZw5E+np6UhJSUFBQQHmzJmDEydOYNKkSWo+jEoxXAaxcePGIScnB6+//jqysrLQpUsXzJ49G7GxsQCAkydPQhRLm8+9e/fGSy+9hFdffRUvv/wy2rRpgzfffBPt27dX6yFQEKvt+Dpz5gyuuOIK//uzZs3CrFmzMGHCBDz//PONXT4FudqOr3nz5sHlcuG+++4rdzvTpk3Dvffe26i1U2io7Riz2+146qmncOrUKRgMBrRr1w7//e9/MW7cOLUeAgWx2o4votqo7fgqKCjA448/jqysLFgsFnTr1g2ff/452rVrp9ZDqJIgy7KsdhFEREREREQU2viUCxEREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdWbpHYBREREweaNN97AzJkzK1w+YMAAfPjhh41fEBERUQhguCQiIqpEZGQkZs+eXeEyIiIiqhzDJRERUSU0Gg3S09PPez273Q6DwRD4goiIiIIc11wSERHVUGZmJlJTU/Hdd9/hoYceQp8+fXDXXXcBAPLy8vDEE09g4MCB6N69O6699lps27at3OcXFBRg+vTpSE9Px+DBg/H222/jhRdewMiRI/3XeeONN5CRkVHhvlNTU/Hpp5+Wu2zBggUYP348unXrhhEjRuC9994r9/FHHnkEEydOxNq1a3HppZciPT0d1113Hfbt21fueh6PB++++y4uvvhidOvWDUOHDsUjjzwCAJg7dy569eoFq9Va7nM2bNiA1NRU/PXXX7X8KhIRUbhi55KIiKgKbre73PuyLAMAXnzxRYwePRqvvfYaRFGE0+nElClTUFBQgIceegixsbGYN28ebr75Zvz4449ISEgAAPzzn//Epk2b8OijjyI+Ph7vv/8+jh49Ckmq/Z/j2bNn45VXXsFtt92Gfv36YdeuXXjttddgNBpxww03+K938uRJvPjii5g6dSr0ej1efPFF/P3vf8eiRYsgCAIA4IknnsC3336LW2+9Ff369UN+fj6WLl0KALj00kvxwgsvYNmyZZg4caL/dr/++mukpaWhc+fOta6diIjCE8MlERFRJfLy8pCWllbusv/85z8AgJ49e+Lf//63//IFCxZg3759WLRoEdq0aQMAGDhwIMaMGYP3338fDz/8MPbt24cVK1bglVdewbhx4wAAGRkZGDFiBCIiImpVW1FREd58801MnToV06ZNAwAMGjQINpsNb7/9Nq677jpoNBoAQH5+PubNm+evS5Zl3HPPPTh48CDat2+PAwcO4Msvv8Rjjz2Gm266yX8fvhqjoqJw0UUXYeHChf5wabVa8eOPP2L69Om1qpuIiMIbwyUREVElIiMj8cEHH5S7TKfTAQCGDx9e7vL169cjLS0NrVu3Ltft7Nu3L3bu3AkA2LFjBwCUmwJrNpsxcOBAbN++vVa1bdmyBcXFxRgzZky5++vfvz/eeustnDp1Cq1atQIAtGrVyh8sAaB9+/YAgNOnT6N9+/bYuHEjAJTrSp5r0qRJuPnmm3Hs2DEkJSVhyZIlcLvduOSSS2pVNxERhTeGSyIiokpoNBp079693GWZmZkAgLi4uHKX5+bmYuvWrRU6nQCQnJwMADh79izMZnOFzX/Ova2ayM3NBQCMHz++0o+fPHnSHy7P3eFWq9UCABwOBwClQ2symartnmZkZCApKQkLFy7E/fffj4ULF+LCCy9EdHR0rWsnIqLwxXBJRERUS761ij4WiwXdunXDjBkzKlzX1+2Mj4+H1WqtsLtsdnZ2uevr9Xq4XK5yl+Xn51e4PwB49913Kw2nbdu2rfFjiY6ORnFxMYqKiqoMmIIg4Morr8QXX3yByy+/HL///nuFzYOIiIgYLomIiOppwIABWLt2LVq2bFllJ9LXBV25cqV/PaPVasW6devKhbrExERYrVacPn0aiYmJAIC1a9eWu61evXrBYDDgzJkzFabo1lb//v0BAN988025jYDONWHCBLz++ut49NFHkZiYiEGDBtXrfomIKPwwXBIREdXTFVdcgfnz5+PGG2/ELbfcgqSkJOTl5WH79u1ISEjAzTffjI4dO2LkyJGYMWMGioqKkJCQgDlz5lSYJjtkyBAYDAY8+uijmDJlCjIzMzF//vxy14mKisK0adPwzDPP4Pjx4+jbty+8Xi8OHz6MjRs34s0336xx7e3atcM111yD559/HtnZ2ejbty8KCgqwbNkyvPLKK/7rJSYmYsiQIVi9ejXuvPNO/4ZBREREPgyXRERE9aTX6/Hxxx/jtddewxtvvIHs7GzExsaiR48e5Tbwef755zFjxgw8++yzMJlMmDx5Mrp3745ly5b5rxMbG4vXX38dL774Iu655x6kpaXhpZde8nc7fW6//XY0a9YMH330ET744APo9Xq0adOmwvVq4t///jdatmyJBQsW4L333kNsbGylnclRo0Zh9erV1W7+Q0RETZcg+w7tIiIiokbnO0Ny5cqVapdyXvfffz+ysrLw2WefqV0KEREFIXYuiYiIqFp79uzBzp07sXz5crz88stql0NEREGK4ZKIiIiqNXXqVOTm5mLy5MkYM2aM2uUQEVGQ4rRYIiIiIiIiqjdR7QKIiIiIiIgo9DFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvf0/E8krr8igmf4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "norms = [\"leahy\", \"frac\", \"abs\", \"none\"]\n", + "\n", + "for norm in norms:\n", + " ps = Powerspectrum(lc_ar4, norm=norm)\n", + " mtp = Multitaper(lc_ar4, norm=norm, adaptive=False) # adaptive=False does not calculate adaptive weights to reduce bias, helps see the normalization similarities better\n", + " \n", + " fig = plt.figure(figsize=(12, 8), dpi=90)\n", + " plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + " plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + " plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + " plt.legend()\n", + " plt.yscale(\"log\")\n", + " plt.ylabel(\"Power\")\n", + " plt.xlabel(\"Frequency\")\n", + " plt.title(\"AR(4) Spectrum, \" + (norm + \" normalized\").title())" + ] + }, + { + "cell_type": "markdown", + "id": "ddda379e", + "metadata": {}, + "source": [ + "### Other attributes with the S(f) estimates\n", + "If you look closely at the attributes of the `multitaper` object, there is a `multitaper_norm_power` attribute. This attributes contains the PSD normalized according to \n", + "\n", + "\n", + "Another attribute containing the PSD is the `unnorm_power`, and as the name suggests, contains the unnormalized PSD." + ] + }, + { + "cell_type": "markdown", + "id": "c6e7f041", + "metadata": {}, + "source": [ + "## A summary of the jackknife variance estimate\n", + "Assume that we have a sample of $K$ independent observations, $\\{x_i\\}, i = 1,...K$, drawn from some distribution characterized by a parameter $\\theta$, which is to be estimated. Here, $\\theta$ is usually a spectrum or coherence at a particular frequency or a simple parameter such as the frequency of a periodic component. Denote an estimate of $\\theta$ made using all $K$ observations by $\\hat{\\theta_{all}}$. Next, subdivide the data into $K$ groups of size $K − 1$ by deleting each entry in turn from the whole set, and let the estimate of $\\theta$ with the $i$th observation deleted be\n", + "
\n", + " $\\large{\\theta_{\\setminus i} = \\hat{\\theta}\\{x_1,..x_{i-1},x_{i+1},...x_K\\}}$\n", + "
\n", + "\n", + "for $i = 1, 2,..., K$, where the subscript $\\setminus$ is the set-theoretic\n", + "sense of without. Using $\\bullet$ in the statistical sense of averaged\n", + "over, define the average of the $K$ delete-one estimates as\n", + "
\n", + " $\\large{\\theta_{\\setminus \\bullet} = \\frac {1}{K} \\sum_{i=1}^{K} \\hat{ \\theta_{\\setminus i}}}$\n", + "
\n", + "\n", + "and the jackknife variance of $\\hat{\\theta_{all}}$ as\n", + "
\n", + " $\\large{\\widehat{Var}\\{{\\hat{\\theta_{all}}}\\} = \\frac {K - 1}{K} \\sum_{i=1}^{K} (\\hat{ \\theta_{\\setminus i}}} - \\hat{ \\theta_{\\setminus \\bullet}})^2$\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "9e982a2c", + "metadata": {}, + "source": [ + "This is just a summary of the jackknife variance estimate, kindly explore the references for further in-depth details." + ] + }, + { + "cell_type": "markdown", + "id": "1738b1ea", + "metadata": {}, + "source": [ + "### A look at `jk_var_deg_freedom`\n", + "This attribute differs depending on whether the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a $chi^2$ model of how the estimated PSD is distributed about the true log-PSD (this is either 2$*$floor(2$*$NW), or calculated from adaptive weights) \n", + "\n", + "We'll do a combination of the valid values for the `adaptive` and `jk_var_deg_freedom` and have a look at the results." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a03504ed", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAmACAYAAADckwLtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOz9eZhdVZnwf3/XHs5c8zxkIiEJSYAwQwgyCIKAI2pLi60tTq2A2tq2traK3WqjtkOD/uzHqbV9nre1pVsFBRVlUmZISICQQOaq1DyeeU/r/WNXVVKpMUkllVTdn+vKlZy91957nTr7VM597rXupbTWGiGEEEIIIYQQ854x2x0QQgghhBBCCHF8kABRCCGEEEIIIQQgAaIQQgghhBBCiCESIAohhBBCCCGEACRAFEIIIYQQQggxRAJEIYQQQgghhBCABIhCCCGEEEIIIYZIgCiEEEIIIYQQApAAUQghTjhaay677DJWrFjB7t27p3XMtm3bWLFiBY8//viM96enp4fbb7+dlpaWUdsff/xxVqxYwbZt22b8mtO1YsWKcf889dRT0zr+E5/4BG984xuPci+P7bUvu+wybrvttgn3t7S0sGLFCu6///4jvtbb3/52brnlllHbfvazn3HZZZexatUq3v72tx/xNQ52Ir/mQghxPLBmuwNCCCEOzYYNG2htbQXg17/+NR/4wAdmtT89PT3ccccdnHvuuTQ3N49sX716NT/96U9ZuHDhLPYO3vWud3HllVeO2rZs2bJZ6s388tnPfhbL2v9Ro6uri8997nO87W1v46qrrqKsrOyoXFdecyGEOHwSIAohxAnm17/+NYlEgpNPPvm4CBAnkkqlWLt27Wx3g6ampuOiH/PRwUHZ7t278X2f6667jpUrVx6168prLoQQh0+GmAohxAnE933uvfdeLrvsMq677jpefvllXnzxxTHt/u///b9cfPHFrF27lve///10dXWNafODH/yA6667jrPOOot169bx/ve/f8yQ1eEhgj/96U+57LLLOO2003jve99LR0cHEA5HfM1rXgPAX/3VX40M54OxQ0xvuOEGPvShD43px2233cYll1yC1hqAYrHIl7/8ZS6++GLWrFnDa1/7Wh588MEj+KmN7xe/+AXXX3895557Lueccw5vf/vb2bx586THDA4O8qlPfYr169dz6qmncskll/DpT396VJtt27bx3ve+lzPOOIMzzjiDW265Zdyf/6Hq7Ozkk5/8JK985Ss57bTTuPLKK/n617+O4zij2hUKBb785S9z6aWXsmbNGi677DL+9V//dcLzdnR0cOWVV/LOd76TfD4/bpvHH3+cM844g6997WsA/M///A8rVqxg69at/PVf/zVr167lqquu4ne/+92o4w4cYnr77bfztre9DYDXve51rFixgv/5n/8B5DUXQojjiWQQhRDiBPLYY4/R3d3N1VdfzVlnncU//dM/8etf/3pUNua+++7j85//PG9961u5/PLLefLJJ/mHf/iHMedqb2/nhhtuoLGxkUwmw3/9139x/fXX89vf/paSkpKRdhs2bGDnzp184hOfoFgs8tWvfpUPfOAD3HnnndTW1vLVr36Vj33sY3zmM59h9erVE/b96quv5rbbbiOXy5FIJIBwPuW9997Lq1/9apRSANxyyy1s2rSJm2++mYULF3LPPffwN3/zN9x5552ccsopQBhs3HHHHWzdunXKn1kQBHieN/JYKYVpmrS0tPD617+ehQsX4jgOd999NzfccAN33303CxYsGPdcX/rSl9iwYQP/8A//QHV1NW1tbaPmtu3evZvrr7+eNWvW8JWvfAXf9/nmN7/J+9//fn7+85+PPMfD0dfXR3l5OZ/85CcpLS1l165d3H777fT19fH5z39+5Of5gQ98gA0bNvCBD3yANWvW0NHRMeH8u5aWFt75zndy0kkncfvttxONRse0efjhh7npppt4z3vew0033TRq38c+9jHe8pa3cOONN/KTn/yEv/3bv+W+++6jvr5+zHne/OY3U1lZyec//3m++tWvsmDBgpHhx/KaCyHEcUQLIYQ4YXziE5/QZ599ti4Wi1prrd/znvfoSy+9VAdBMNLmuuuu0zfeeOOo4z71qU/p5cuX68cee2zc83qep/P5vF67dq3+3//935HtN9xwg161apVuaWkZ2fbUU0/p5cuX6wcffFBrrfXWrVvHPfdjjz2mly9frrdu3aq11rqnp0efcsop+u677x5p88wzz+jly5frTZs2aa21fuSRR/Ty5cv1448/Pupcf/mXf6lvvvnmkce33367PuWUUyb/YWmtly9fPubPW9/61jHtfN/XruvqK6+8Ut9+++0j2//+7/9ev+ENbxh5fM011+gf//jHE17vYx/7mH7Vq1418vporfXOnTv1ypUr9f333z9lfw908LUP5rqu/tWvfqXXrFkzcr2HHnpIL1++XN93330THnfppZfqf/mXf9G7du3SF198sb7ppptG9Xfv3r16+fLl+o9//KO+77779Jo1a/T3vve9Uee488479fLly/V///d/j2zr7e3Vp5xyiv5//+//jWy74YYbRr1uB98TWstrLoQQxxvJIAohxAnCcRzuu+8+Lr/8ciKRCADXXHMNH//4x9m4cSNnnHEGvu+zZcuWMUPgrrjiCv77v/971LaNGzfyzW9+kxdeeIH+/v6R7Tt37hzVbtWqVTQ1NY08Puuss6iqqmLTpk284hWvmHb/KysrOf/88/nNb37DNddcA8BvfvMbFi5cyKmnngrAI488Qk1NDWeeeeaoDNAFF1wwMhwR4KabbhqTzZrIjTfeyKtf/eqRx8lkEoDt27fzta99jQ0bNtDT0zOyf9euXROea+XKlXz/+9/HMAzWrVvHkiVLRu1/9NFHef3rX49hGCP9b25upqmpieeee45LLrlkWn0ej9aaH/3oR/zsZz+jpaWFYrE4sq+trY1Fixbx2GOPUV5ezitf+cpJz7Vz507e9ra3cd5553HbbbeNKiQz7He/+x133XUXn/zkJ0eGhh5s/fr1I/+uqKigsrKS9vb2Q3pe8poLIcTxRQJEIYQ4QTz00EMMDg5y8cUXMzg4CMB5551HJBLh17/+NWeccQa9vb14nkdVVdWoYw9+vG/fPt71rndx2mmnceutt1JbW4tt27zvfe8bM6ft4GOHtx3OHKurr76aW2+9lUwmQyKR4N577x21pEBfXx9dXV3jDlU1TfOQrwfQ2Ng4EoAOy2QyvOtd76KqqopPfOITNDY2Eo1G+fSnPz3m+R/oM5/5DP/2b//Gt7/9bT7/+c+zaNEiPvShD40EvH19fXz3u9/lu9/97phj29raDqv/w370ox9x22238d73vpdzzjmH0tJSNm/ezOc///mRYLG/v5+ampopz7Vhwwb6+/t505veNG5wCPDHP/6R8vJyLr/88gnPc+BQZIBIJDLpz2888poLIcTxRQJEIYQ4Qdx9990A4xZ6ueeee/jkJz9JZWUllmWNyo4AYx4//PDDFAoFvv3tb4/MB/Q8j4GBgTHnPvjY4W3TCUQOdsUVV/C5z32O++67j6amJjo7O0dlesrKyqirq+Nb3/rWIZ/7UGzcuJH29nZ+8IMfsHTp0pHt6XR60uNKS0v59Kc/zac//WlefPFFvve97/Gxj32MFStWsGzZMsrKyrj88st585vfPObYioqKI+rzvffey1VXXcVHPvKRkW3bt28f1aa8vHxagfsb3/hGMpkMH/zgB/mP//gPTjvttDFtPv3pT/PDH/6Qd73rXfzkJz854v5PRF5zIYQ4vkiAKIQQJ4BsNssDDzzAtddey1ve8pZR+7Zs2cKXvvQlHn/8cdatW8fKlSv5wx/+wPXXXz/S5ve///2oYwqFAoZhjMoe3XPPPaOG+A174YUX2LdvH42NjQA8/fTT9PT0jAQVtm0DjBryOJGysjLWr1/PPffcQ2NjI0uXLh1VYOeCCy7ghz/8IYlEYtSH+JlWKBQARobqAjzzzDO0trayZs2aaZ1j5cqVfPzjH+euu+5ix44dLFu2jAsuuICXXnqJNWvWzHhxkkKhMKq/AHfdddeoxxdccAHf+973uP/++7n00ksnPd+tt95KLpfjPe95Dz/+8Y9Hqs8OS6VSfP/73+ftb387N954Iz/+8Y9JpVIz82QO6rO85kIIcfyQAFEIIU4Af/jDH8jn8/zVX/0Vp59++qh9Z555Jv/f//f/cffdd48sV3HTTTfx2c9+liuuuIInn3yShx9+eNQx559/Pr7v88lPfpI3velNvPTSS/zgBz+gtLR0zLUrKyt53/vex8033zxSxXT16tUj8w8bGxuJxWL84he/oKSkBMuyxgzvO9CrX/1qPvWpT5FKpbjhhhtG7bvwwgtZv34973rXu3jPe97DsmXLyGQyvPjiixSLRT760Y8CcMcdd/Dtb3+bF1544bB+nmvXriWRSPCP//iPvPvd76a9vZ077riDurq6SY+7/vrrueKKKzj55JNRSvGzn/2MRCIxEizfdNNNvPnNb+a9730v1113HRUVFXR0dPDII4/whje8gfPOOw+Ayy67jHPPPZd/+Zd/mfR6BwYc69at4z//8z857bTTWLhwIXfdddeYZUmGf34f/ehH+eAHP8iqVavo6uriqaeeGql0OswwDG677TZuueWWkSqkixcvHtWmoqKCH/zgB7ztbW/jfe97H9/73veIx+OT9vlQzZfXXAghThSyDqIQQpwAfv3rX7N48eIxwSGEGbxXv/rV/P73v8dxHK644gr+8R//kfvvv58PfvCDvPDCC3zhC18YdcyKFSv40pe+xLPPPsv73vc+7r77br75zW+OmVMGcMYZZ/CXf/mXfPGLX+RTn/oUJ5988qjhgNFolH/6p3/i+eef5+1vfztvetObJn0ur3zlKzFNk76+Pq6++upR+5RS3HHHHVx33XX86Ec/4t3vfjef/exn2bBhA2edddZIO601vu9P62c3nurqar75zW/S3d3NBz7wAX70ox9x6623smjRokmPW7t2Lf/7v//LLbfcwoc//OGR+WfDyzosWbKEn/70p8TjcT7zmc/wnve8h9tvv51IJDLq3Pl8nsrKykmvVSgURrKzAB/84Ae59tpr+eY3v8lHP/pRbNseU4xIKcW3vvUt/uIv/oIf/ehHvOc97+Eb3/jGhEMdLcviG9/4BsuXL+ev//qvx50zV1tby3/8x3/Q2trKTTfddMhzDKcyX15zIYQ4USith1YmFkIIIQ7y9re/nYqKCv7t3/5ttrsyZ+zdu5dXvepV/O53v5tw7T0I5wkuXrx4ZHF6IYQQ4liQIaZCCCHEMbRhwwYuv/zyCYPDzZs38/DDD/P888/z7ne/+xj3TgghxHwnAaIQQghxDL32ta/lta997YT7h6uUfvzjHx8zBFcIIYQ42mSIqRBCCCGEEEIIQIrUCCGEEEIIIYQYIgGiEEIIIYQQQghAAkQhhBBCCCGEEEOkSM0EgkDj+8Fsd2MUyzLwvOOrT2JukHtLHA1yX4mjQe4rcTTIfSWOhuPtvjJNA8NQU7aTAHECvh/Q35+b7W6MMAxFVVWKwcE8QSB1hcTMkXtLHA1yX4mjQe4rcTTIfSWOhuPxviovT2AY5pTtZIipEEIIIYQQQghAAkQhhBBCCCGEEEMkQBRCCCGEEEIIAUiAKIQQQgghhBBiiBSpEUIIIYQQs0prTRD46Fmo5WEYCsdx8DzvuCkmIk58s3FfKQWGYaLU1JVKJyMBohBCCCGEmBVaazKZAbLZQWD2grPuboMgOH6WIxBzw2zcV4ZhUlXVgGlOXa10IhIgCiGEEEKIWTEcHJaWVhKJRIEjy3wcLstSeJ5kD8XMOvb3laa/v5vBwV4qKmoO+ywSIAohhBBCiGNOaz0SHCYSqVnti2UZgGQQxcyajfuqpKScvr5OtA5Q6vDKzUiRGiGEEEIIccwFgQ/oocyhEGImmGaY/zuSoa0SIAohhBBCiGNuf0Ga2RlWKsTcFL6fjqTgkwSIQgghhBBCCCEACRCFEEIIIYSYNc888xTr159NLpebtN2b3vQa7rzzp8eoV8fWL35xJ3//9x8Zeex5Hv/8z5/lqqsuZf36s3nppa3ceuun+a//+sms9O+mm97LHXd8Y1auPRskQBRCCCGEEGKavvCFz7F+/dl8/etfHrPv1ls/zfr1Zx9RMPGb39zFNde8csz27373x1xzzetGHq9ffzZ//vPDh32dYyGXy3HHHd/gzW9+LZddto7XvvZKPvKRD7Jp08aRNsVikR/+8P/wzne+e2TbAw/8gYcffoBvfOPb/PKX97JkyVLe+c538+Mf/5BsNjPpNd/0ptewfv3ZY/784hc/n7K/EwXrX/ziV3jXu95zKE/9sBwvr6lUMRVCCCGEEOIQ1NbW8fvf/5YPfvDDRCIRALLZDA8//AC1tXVH5ZoVFRVH5bwzwXVdbNses/0rX/ki27a9yEc/+gkWLVpMf38fTz/9JIODgyNtHnjgD5SVlXPKKatHtrW07KWpaQErV54ysm3RosUsWLCQ3//+Xl7/+jdN2p/3ve+DXH31a0ZtS6UOv1JuaWnZYR97IpIAUQghhBBCiEOwatVqdu7cwZ/+9BCXXXY5APfd9zuWL1+JYYweoLd+/dncdtvXufDCi4Awq/aqV72Cf/u373DmmWePavvMM0/xxS/eOnIcwF//9Xu48cb38aY3vYbrr7+B6677C970pjD4GR6WWV/fwM9/fhd79+7hjju+zgsvPE+hUOCkk5bygQ98iNNPXzuqPx/72Cd58ME/8uyzG6mtreVDH/ooF1ywfqTNjh0vc8cd32TTpg0kk0kuuGA9N930kZEg66ab3suyZcsBze9+dy+rV6/hK1/55pif06OP/om//du/5/zz1wHQ0NA4KhAE+MMffseFF75i5PEXvvA57rnn7pG+Dj83gHXr1vOHP/x+ygAxkUhQVVU97r729ja+9rUvs2nTRjzPpampmQ9/+O+or2/gllveD8CrXhX259WvvpZPfepz3HTTe1m5chU33fRhIMxSvu51b2T79pf5058epKKiio9//JMsWLCYf/mXz/Pcc5tYsmQpt976BRobmwGmfG0mek0BHnroAX7wg//Dnj27qKmp5bWvfQPXX//2MffaTJEhpkIIIYQQQhyiq69+Db/5za9GHv/mN3eNyVodqlNPPZ1bbvkopaVl/PKX9/LLX97L9de/fUy77373xwD84z9+nl/+8t6Rx7lcjnXrLuKb3/w23//+f7JmzWl8/OMfor+/f9Tx3/ved7jiiqv4j//4v6xffzGf+tTH6ehoByCdTnPLLX/DqlWr+cEPfsJtt32DvXv38IUvfG7UOX79618Rjyf4znd+wM03/+24z6eiopJHHvnTpPMrN23aOCpT+KEPfYy3vvUGli1bPuq5AaxcuYrnn38Oz/Mm/iFO4Wtfuw3XdfjWt77Lj370X9x44/uJRKLU1tbxhS+Ew4Z/+tNf8Mtf3suHPvSxCc/zX//1E8466xx++MP/x9q1Z3Drrf/Il7/8z7zlLX/J97//EyzL4itf+dJI+6lem4le02ef3cgXv/g53vrWt/Gf//kzPvzhv+PnP/8pP//50ZuPKhlEIYQQQghx3Hjuz4rOPcfuerULYe3Fh37cVVddw/e//+90d3eRzWbZseNlLrvscu6999eH3RfbtkmlUijFhBkw2D/cNJUqGdVuxYqVrFixcuTxzTd/hAcf/COPP/4IV1559cj2yy+/ciSYvemmD/PEE4/yi1/cyfve90HuvPOnnHLKKt797vePtP/4xz/F2972Jvr6eqmoqATCIZ/ve98HJ30+f/d3/8Ctt36aq6++jOXLV7J27ZlcfvmrWL487GM6nSaTyYx6DqlUing8jmmaY34GVVXVOE6Rvr5eampqJ7zuHXd8g+98545R2771re+yfPlKOjraufjiy1i6dBkATU3NI21KSkqBMLBNJBKTPrcLL3wFr3nN6wF4xztu5J577ub889exbl2YiX3LW67n1ls/TRAEGIYx5Wsz0Wv6gx/8H/7qr97FVVddM9Lfd7zjXfz85z/lLW+5ftI+Hi4JEIUQQgghhDhEVVXVnH32edxzz69Jpwe5+OLLSCSSs9qnXC7H97//7zz66J/o7e3B932KxeJIdnDYqlVrRj1evfpUdu3aCcDLL7/Ek08+zhVXXDTm/K2tLSMB4oFZv4mceebZ/Pznd7F587Ns2rSRxx9/lP/6r5/w8Y9/imuvfR3FYhFgZB7nVKLRKACFQmHSdjfc8M5RATEwMjf0jW98C1/72m08+eTjnHPOeVx22RUsXrxkWtc/0HCACVBZGf5Mliw56YBtVXieRyaTprS0bNqvzcG2b9/G5s3P8sMffndkm+8HaB0ccp+nSwJEIYQQQghx3FhzoYYLj/VV1WEddc01r+E737mDXC7HZz/7z+OfWSn0AauWH8nwyKl861vf4Omnn+QDH/gQTU3NRKNRPvaxD+G67kF9Gr+fAPl8nosuumTc7GBNTc3Iv2Ox+LT6ZNs2Z555NmeeeTbvfOe7ue22L/CDH/wfrr32dZSVlaGUIp1OT+tcw8VtyssnL9hTXl5Oc/OCcfe97nVv5LzzLuDPf36Yxx9/lB//+Af8/d9/mle/+tpp9WGYZR0YRoU/O9Mcuy0Iwtd+uq/NwXK5PO95z99w0UWHkeY+TDIHUQghhBBCiMNw4YWvIJ1OE4lEOeOMs8ZtU15eQW9vz8jjl1/eNuk5LcvG96fODlmWRRD4o7Zt3vws11zzWl7xiktYunQZpaVldHV1jDn2+eefG/X4hReeY9GixQAsX76CnTt30NDQSHPzglF/otHYlP2ayqJFi0YygLZts3jxEnbt2jGtY3ftCvtVUlJyRH2or2/guuvewpe//HWuvfZ1I0VxhiuxBsHMZ+em89qM95ouX76CvXt3j3ktJgqAZ4JkEIUQQgghhDgMlmXx05/+L0qpkQzcwc444yzuvPNnrFq1hnw+x3e/++1Jz9nQ0EA2m+GZZ57ipJOWEYvFiMXGBmb19Y089dQTrFq1BtuOUFpaSnPzQh544I+cf/6FaB3wne98C8Mwxxz7hz/8jhUrVrJ69ancffcv2LNnN7fd9g0A3vjGN/OrX/0Pn//8p7n++rdTUlLKnj27eOihB/n7v//UIf18br75fVx55atZvnwlqVQJW7du4f/9v/9k/fr9VUvPPfd8Nm3ayHXX/cWU59u0aSPnnHPelO1yuRw9Pd2jtsXjCRKJBN/85r9ywQUX0ty8gP7+PjZvfpZTT10LhIGjUopHHnmYc845n2g0OuVcxOmazmsz3mv6jnfcyCc/+VFqa+u4+OLLAHjppa20te3jHe+4cUb6djAJEIUQQgghhDhMyeTk6+vddNOH+cIXbuX97/9rGhubuPnmj/CRj9w0YftTTz2d173ujfzjP/49AwMDI8tcjHfeO+74Or/4xZ3U1NTy85/fxc03f4QvfjG8VkVFJe94x40MDPSPOfbGG9/Lvff+hq985YvU1NTyT/90G/X19QDU1NTy7W9/n+9853Y+/OEP4LouDQ1NhzXE8ZxzzuOuu37Jnj3/huMUqamp45prXjsqsLnmmtfx3ve+g1wuO+kcTtd1eeihB/jqV/9tyuv++79/i3//92+N2va2t72Dv/mbm/F9j69+9Ut0d3eRSpWwbt16PvCBm0ee+403vo9vfesb9Pb2ctVV1/CpT33ukJ/3eKbz2oz3ml5wwYV86Uv/yn/8x/f48Y9/SCRis3jxSbzxjW+ekX6NR+kDB0WLEa7r098/cUneY80wFFVVKXp6MiNjmYWYCXJviaNB7itxNMh9Nbd4nkd3dyvV1U0Hzec69izLwPOOXtGP48nB6zIeDz71qb9jzZrTuf76GyZs86tf/S/3338fX//6tyZsc7yZjftqsvdVeXkC2x6bUT6YzEEUQgghhBBCzJoPfvDD4w6jPZBhGHzkI393jHo0v8kQUyGEEEIIIcSsaWxs4g1veNOkba699nXHqDdCAkQhhBBCCCHmiT/96anZ7oI4zskQUyGEEEIIIYQQgASIQgghhBBCCCGGSIAohBBCCCGOuf3LBkpFWiFmTvh+mmBZzmmROYhCCCGEEOKYMwwTwzDp7++mpKQc07SAI/hUe0QUnieBqphpx/q+0mQyAyhlYBhTL2cxEQkQhRBCCCHEMaeUoqqqgcHBXvr6Ome1L4ZhEATzYx1EcezMxn2llEFlZS3qCFKIEiAKIYQQQohZYZomFRU1aB0QBAF6FpJ4hqGoqEjQ15cjCCSLKGbGbNxXSoWZ+SMJDkECRCGEEEIIMcuUMjDN2SmNYRiKSCSCZTkSIIoZcyLfV1KkRgghhBBCCCEEIAGiEEIIIYQQQoghMsRUCDHvFHyPgu9jDo3RT1gWppLvy4QQQgghJEAUQswbXhDw5+597M2ncfwAQyk0sDRVxitqmma7e0IIIYQQs06+MhdCzBtb031sTfeRNG3qYwmqIzEq7Agvp/vpKORmu3tCCCGEELNOAkQhxLzQ7xR5pq+TykiUuGlhKIVlGMRMC4ViU383wWzUVxdCCCGEOI5IgCiEmBe2Z/sp+j4pKzJmX3U0Rms+Q9pzZqFnQgghhBDHDwkQhRAzIuM6PN3bQcH3ZrsrYziBz8vpAcrsscEhgG0YeDog67nHuGdCCCGEEMcXKVIjhDhirfkMj3W301HMURaJsixVPttdGmVfPsug69AcT07YRqHISIAohBBCiHlOAkQhxGHRWtNZzLN1sJeXMwPYhkGJZfNyuv+4CxB3ZAaIGAZqaFmL8ShgwJEhpkIIIYSY3yRAFEIcsp5igWf7O9mVTQPhHL6IYeIGAW2FHH1OgYpIbJZ7GUq7DntzGcrt6KTtooZJj1M4Rr0SQgghhDg+yRxEIcQh0VrzUFcLO7KD1ETjNMaTRAwTGJrLFwRsGewjf5zMRdxXyOIEPlHTnLRd1DTpdwr4UslUCCGEEPOYBIhCiEOS9VwGXIfaaBzbGPsrpDYa57mBHu5t2z3rBWu01mxP9xOfIjiEMINYCHxyMg9RCCGEEPOYBIhCiEMy4Dl4OhjJGh4saposiCfpKebpKuaPce9G63eLdBRylE0xvBT2Zz+lkqkQQggh5jMJEIUQh2TQnbqQi1IKQyna8tlj0KOJDbgOAXrcTOf4pJKpEEIIIeY3CRCFEIekq5jHVlP/6khZNnty6ZE5fS+n+9mVHTza3RulGPiH1F4pSEuAKIQQQoh5TKqYCiGmTWtNZyFH3Jz6V0fSsmkv5Oh1ClRHYmwe6GHALXJBdQMFz6MpkaI6Gj/iPnUX8ygUVdGxVVOLnke4gMX02Eox4BaPuE9CCCGEECcqCRCFENOW9T2ynktFZOo5faZSaK3pyGeJKIN+t4ilFA91tuJqn+VOBa+sXTDp2oRTcQOfh7paSbsu51TWsaqsckx/zUM4f8QwJUAUQgghxLwmQ0yFENOScR22DPZSDCYuUHOwlGWzNd1PezGHHwTUROMsSKRYEC9hTzZNRyF3RH3amR2ku5gnahg8099J0R89pDTruViHFCAaZD0PXwdH1C8hhBBCiBOVBIhCiGl5pLuNDX2dVE0jezis1I7Q6xR4Kd2PZewP1GzDQKF4bqAHLzi8YKzge2zq76bEilBqRyj6PmlvdAGdrO9iTWO+5P5+mTiBT947PtZwFEIIIYQ41mSIqRBiSlpr+twilZEoScue9nGGUkQMg+5intRBx9VEY+zIDpDotTivqh5zikAu57m4OhhZsmJzfw+9ToEF8RRKKTSajOeOzGvUWpP3PKwDK5g6BrSnUANR0CqcnmgG6CX9EPewDQNfa3K+R8qOTPt5CiGEEELMFRIgCiGmVAx8nMCn1Dr0oKkyEqO9kCNhjg4QLcOgPpbg+YFe6mNJTkqVTXqel9L9bE33cUltMxnPZfNAN7XR+MgcRgUMOEVI7u+zqwPiaujXnK9QTzaicuM8h4KFPrN96EEYIAohhBBCzEcSIAohppT3PdwgOIT1BPezDYMFidS4+yKGScQw2JEdmDJAHHCLtBVy3Nu+GzfwiZsWsQOqqUYMkx4nP/K4GPh4Wo8MbVU7y1G5CLoiH2YMrQACUM/XonoS6N4YVBZGnq8QQgghxHwkcxCFEFMq+j6acMjoTCu3o7TmsqRdZ9J2/a5DXTROiWXTEEtSGRm9rEXMMOkuFgiG1l10ggA/CMKhq1kLdpWjzQC9uhOq8lBWhIoiemkvAGp7BQAGasq+CCGEEELMVSdMgPjkk0/y/ve/n/Xr17NixQruv//+UfuLxSK33nor5513HmeccQY333wzPT09s9RbIeaWfDCNjJqnwjl+hyhqhoVh2grZCdv4OiDjuUQMg7hpjRuoxkyLnO+RG1rovuj7I0sgqn2lKK3Qi/shPrrSKfVZdNSD/hj4CtswGJAAUQghhBDz1AkTIOZyOVasWMFnPvOZcfd/8Ytf5P777+cb3/gG//mf/0lnZye33HLLMe6lEHNTwfcBPXGD3hjqTwtRjzaHgeIhipsmz/R1sqGvEyfwx+zPex5O4GNPsrzGcIGZ9HCAGPgoVNjtthQaDY3psQcqoMQJ22ZtIobJoASIQgghhJinTpg5iBdffDEXX3zxuPvS6TR33nkn//qv/8oFF1wAhAHj1VdfzebNmzn11FOPZVeFmHMyrovB6MCvsrOPc/70HDgGj5ZdQ8YKgzfdmYTGzCGdvyoSY9BzeLK3g/JIlCXJ0fMRc76Hp6eeA6m1pqeYpyGeHAo0NfTGUUULXZmD2NjgE4CkA90JyEaIJA0yvosT+NNe71EIIYQQYq44YQLEyTz33HO4rsuFF144sm3p0qU0NjaycePGww4QDWPm51sdruG+HE99EnPDdO6ttO8QMc2RiqFmJuD8+zaTdMJhoeu83/C7s66FlnLUvhJomni46HiUUpRHYuQDj+5igaUl5aP25wMfQ6mR608kadnszA1yakU1hcBDKYVqKwl3NmYmPj4VZh1VNkLEMPFch6L2iRlz4lfkrJDfWeJokPtKHA1yX4mj4US+r+bEp5/u7m5isRip1OhKiVVVVXR3dx/WOS3LoKpq/MqLs6miIjnbXRBz1GT3lt+rKDVjJKNRvH0xmu7fR9LJsi++BDtSoGagjWWpLWyPnwN9cWJGAiMxQbZuElW2pk85VFYmRwVzLeSIDdokU9FJj48kbDpyWUhakDcpjSZQnQmwAhIn+Shr/OP9GigCViFKsjROX9olXhqlaoLqq2L65HeWOBrkvhJHg9xX4mg4Ee+rOREgAuNmBrSeZM7UFDwvYHAwP3XDY8QwFBUVSfr6sgTB4T8vIQ421b3l64DuwSwxwyTrFuH5KhZmtgGwdX0Dygq45J42mjft4KUVp6B2lpN/uAJWd0N58ZD6ooKANifHro4+Su0IOzIDtOWzGErh5D2yTH2+TN7hsT0t7M4OYu8rA99AN6bJFQqTXNhBUYM3YOJlihQLLu3dg0ROvN/pxw35nSWOBrmvxNEg95U4Go7H+6q0NI5tTz19Zk4EiNXV1eTzeTKZzKgsYm9vL9XV1Yd93uPlxTxQEOjjsl/ixDfRvZXzPBzfJ2XaaA9iAx7VThvZZJzuxlIA0qVJqrr6SZ3XQqYygupNoJ+pQ1+8+5BKYVnKwPUDugt5UqZNSzbNi+k+qiIxbGVM60ufhGGyqb+biDIp6ygHQDekYbJjLQ1RD/I22tdorcl6nrzXZoD8zhJHg9xX4miQ+0ocDSfifXXCVDGdzJo1a7Btm0ceeWRk286dO9m3bx9r166dvY4JMQfkfS9ccF4pyESoL7QA0LagBpQCpdi9tBGAptZ96DPb0dU5lGdCX/yQr2coRXcxj681+/JZHN+n33WITFGgZliFHaUmEqOOFKo/jo65UDFJ9nBY0kFpBTkbUOS8aSztIYQQQggxx5wwAWI2m2XLli1s2bIFgJaWFrZs2UJXVxclJSVcd911fOlLX+Kxxx7jueee45Of/CRnn322VDAV4ggVfB+NDodxD0aoLewBoKNxf3Z+34JaAJr2doICXRMWqVHdibBBAGTsSVfKGJa0LHZmB+kp5sl4LgsSJQQ6IGFNb8CDUoqYaQ0FeoTB4fAIdK1hom/xkmGhGjIRLKXIeLLUhRBCCCHmnxNmiOlzzz3HX/3VX408/ud//mcAbrrpJm6++Wb+4R/+AcMwuOWWW3Ach4suuojPfvazs9VdIeaMvO+NxFcqHaXaaUMDnfWVI20GKkrIpuJUdg8QyxUoVA+Nb++OwwpgdznGy5XoJX3ok/rAMyASjHu9UitCaz7LlsE+Ah2ub9gUP4xiMcWhPkTDYjkl/RnOe2gj8VyRR9atZndjZbj2IRAzTcykGz7K20QqDdISIAohhBBiHjphAsTzzjuPrVu3Trg/Go3y2c9+VoJCIWZY3nMZTsFFewOSfprB0hRexN7fSClaF9SyfMtuGvd2smPFQnSqiMpE0TkrrCQKqJ0VsLc0LBxzVtu4Qz+VUtiGQbeTx5yqMnRHErWtEr1oABYMMmqpRif89aYjHgSa8x5+loreNADrHt7M3tevo2CHbXqcAgtiYUUalbOwlEHGddFaT7m0hhBCCCHEXHLCDDEVQsyOQc8J5x/6isq+PgB6asrGtNu3sA6Axj2d4YbqHACqpRQGo2jbRxsBeAZKK9T2igmvWRGJsi+fIWnZE7bBV6itVaiCjbG1GrW1atRudUAGsXl3OxU9g7RVlbBrWTMx1+OtnUXeunA5b2heSpkdJW2H/aVgYxsGxcDHCcbPcgohhBBCzFUSIAohJjXoOSQGSlCPNFPpdADQW1M+pl13XQVOxKK2rQfT9dCNmXDH7rJwKGdNFr1+L/ri3eikg+qLQ29s3GtGDJPmeIqSyQLE1hJU0UJX5NFKQ3tq9BxHZyhAjPgs27IbgCfXLCGy/hwArBe3YyhF3LQ4vbyaAWsoQMxZ2IaBpzWFQArVCCGEEGJ+kQBRCDEhrTVp1yXRGmbqKnUbAL3jZBC1YdDWXIMZBNTt64aki67Mjczz09X5cD5gJEAvCTOR6sVqcMf/NRQ3rYmHdzoGakcFGo1e2Q0pB+Wa++cdwsi/k+4gNZ199KdilK5cSklDPX5lOWZHN6p/EIAlyTLiEZMg4kHRwtQGvg4o+P5h/dyEEEIIIU5UEiAKISYUDrP0MQs2aE1lsRPPNBioKBnTNu97bKoN10Vs3BsOM9ULwgBMo6Eyv79xfRZdlUNlI6gN9WGV08lkbNRjTdAxNJdxa3UYEDamIeVCyVBBmUzkgM6H8wub28JlObYtrGFRMgxs/ZMXAWDtbgUgapqUWhH82NBSFwULUOR9ySAKIYQQYn6RAFEIMaGC7+MGAapokdK92K5HX1UZ+oA1CbXW9DoFep0C2cWN+ErR0NIVLidRk0NX5cJAzj4gClSgT+9AlxVQAzHoTE7eka4kKh3F2FSP2liHak+hox56eU/Yh9RQgJg+IEB0TLQR0Ly3HYDepQuoioRDWv3mBgDMlvaR5pWRKG6sGD7IWyg0xUAyiEIIIYSYX06YKqZCiJkXaM3OzCClFeGC9lpr2gpZ2gs5nMBnQaIkLCrjmVQGw8NLy0fa9rsOac+lKhJjXXUjGk1LTRmLOvup6u6np7YCfWb7+Bc3NXpJH2pjA6otha7PTthPld//q0p1JdFmgF7TCfbQpMNUGNipTCSchhiAck3iVg+VPQP0peLULlw4MmTVb64HwBgVIMZoiw4FmnkbnQBXitQIIYQQYp6RAFGIeWzQdXi0u428HdBAjM193byUGRjZH2iNVQwLxVR6wwVqyki7Dn2uQ1Ukxvrqak5KlREzLQq+x7YFNSzq7KdxTyc9tRNXKgWgKo+2fehJgDPx2ogMBYjB8u6wTU0WrAMq0owMMY2Gfw8VqGnObwdgx8IamhP711LUiThBRRlmbz8ql0cn4qSsCF4sHBKr8hYKcCWDKIQQQoh5RoaYCjGPpT2HnOeyobuDX7Xu5KXMADXRGE3xJEpBT7GAURgKEPPhvMKeqjL6XYcLqup5bdMSVpVVETPDAC5mWgQnLwagfm/H1B0wgLpsOO+vpXTiuYj5oWqmzWloyIwODiEsfBPxIGuH5xief5jZCUD25MUkDqqIOpJFbA37mbRs/Nj+DKKplAwxFUIIIcS8IwGiEPNYxnPDGC2epNyO0BRPEjHC7FulHaXbKWA7EQztUZbvIx+P0he3iZkmJ5eUYxvmmHMuX7CYdEUJ5QNZIv3pKfugG8I2xvZK1J8XgHtQ5dIAKFjoqAemHnuCYSVDBWayEXBMEt4glblu+lMxKhc2j2k+HCAOz0NMWTZGcqgoTd7CQFGUKqZCCCGEmGckQBRiHutzCpiGQcyyRrKAw2Kmha8DYm6UCqcLQ2t6q8vIBwFldnRM+2EJyyJyyskA1OyeYP7hgcqLBKe3o1MOqmBDX3z0/oIVBn5xd/LzlA4VmOmJQ9GkaWh46c6FddTHU2OajwSIrWEfo6ZJPK7CNRULFqYyJEAUQgghxLwjAaIQ81h3sUDUmHgqcnM8RcyJUukMzz8sp+B71MXiEx4D4C1bDMCioeUuplSbQy/sB0D1xUbvGx5emph8yQldGxa5UR1JcEya8y8D0LNsAVFzbKYzqKpAR2zMjm4YKkZTFY3jR12UY2Fog4IMMRVCCCHEPCMBohDzlBv4DHoOsXGCp1EKFhXuUIBYXYavNZWRyQPEoLEWtzRFU/cgsXQOgM5inq5ifuKDKgrh38MZRA3sS8FgWHhGT5VBLHHQcRc1GCPV4VLpdjKQSOLXVo7fXin8umqU42L0hoV5KqMxvEg4D9F2bBwJEIUQQggxz0iAKMQ8lfFcir5PdJx5hKMULCqdDjRhgRqlFKV2ZPJjlMJfvQyA+u2taK1xfB9TGezLZ9mby5B2ndHHxL1wnmE6Ap6C9iTG87UYL1eO7B/PoOsw6DqggLoMAM1trQBsbaolZU3c16C+BgCjvSu8hGnhR8PrmEUbNwjQepJ5j0IIIYQQc4wEiELMU2nXRWuNodTEjQKI5hySfprB8hRZSxExDMqmChABf/VyABbvaiPv+8QsiwurG2iMJzmltJI+1xkdfCmgooBCQX8MdfBcxHEyiF4QMOg5ODqgrZBF14XDTJvzLwHw4pIKohPMlQTwG8IA0WwLh8LGTRNvaC1E07Hx0Xha1kIUQgghxPwhAaIQ85AbBOzODRJGZZNwTKqKYfDUVVVKVzFPRSQ2YYGaAwU1VRSryqnpz2J19dAYS7IoWcpVDYs5t6qOykiUgYOyiLo8HIKq+uJw8FzExNgAsdspsDBewqvqFqJQeKkCiZNfosLtZrAsSW95Ytz5h8P8+lpgfwYxYdoEkfA6ZtEmCDRuIBlEIYQQQswfEiAKMc9orflz9z62DPZSG4tN3rhgUemEVT53lidYU1bNRTWN075WcPopAKx4qZWmAxaqjxgma8qqGPRc/AMzdNV5NBpaS1C5CDrhoBcMoOsyYI/O5DmBj68D1pRXUR2NEzctCoHHwr4dAOxd3ABKTTqEVleWjSpUEzctVDycd2gULMkgCiGEEGLekQBRiHmmGPjszaWpjcZH1jycUN6iaihAbK8u4+SScsrs6LSv5Z26ksA0OHVvNzVqdNZxaaqcZakyWvNZ/OGhpnEPqvIod6hfFQX0yh70aZ0UAo+stz+L2FnIc3KqnIZYEkMpKiMxiq7HkpdaANi1tBENkz9HpfDra1Cuh9HTT9Q0seJhQGgUbQIdSIAohBBCiHlFAkQh5hknCPC0xjamfvurvEGF24lrWgyWJYlPY2jpKIkY7oqTiLo+NS/vHbXLNgzWVTfQHE/Rc0B1U908uP/fw5VNCYeTDrgO/U6RjkKOEjvCmZV1qKE5lDXROPX7ekjkCnQ0VDGQimMpY9IhpgDB0DxEY2geYio1NOy2aKEJ5zkKIYQQQswXEiAKMc84gU+gNcZU8w+B8t40lvboLq/Asqypl8QYh3/WGgCiT22GgyqCxkyL5aUVFA8Mwmpy6JgbDjUtP2BZDK1YmirHI6AiEmN9TSMpyx7ZXWpHWLOjDYAdyxfg6QDLMKas0uoPVTI127sBKEvYaBVAwUKhcCWDKIQQQoh55BDTAUKIE124tp8eybxNpqqvF4COqlISloWpDv07Jb+pHr+xDnNfB+b2PfjLFo3a3xhLEjNN8r4XZigV6LUdULAgfsA6hEpzckkZZ1fWEjetMdVXK7MFmvb1UIhF2LewFi/wiSpzykzpcKEasz3MIJZGInRHXexCFHwlGUQhhBBCzCuSQRRinnEOIeCpHAyzaq21KUoPyNYdEqVwLjgDgMijz4zZnbBsFiRKRlc0LXGgJjfy0B/KeCZMm6Rlj7s0R/WGFzE0vLhiAYFp4umAhDX1d2C6ohQdjWB09IwUqvGj4VxHy7HxZB1EIYQQQswjEiAKMc+4hxAgVuXD5R9aqhOUWNMvTnMw7+TF+FUVWC3tmDv2jtl/UrIMBbTkM+P2zw18IqYx4RxIlcsT27wVzzLYtCyssuppTXI6Qe1woRrPw+juI2Fa+ENLXRgFSzKIQgghhJhXJEAUYp5xAh89PP9QD/05UAAMRoj2+aS8QQYj5eSiFin7MDOIEGYRLz4XgOj9j8JBQdfCZAlXNy6hOZ6i3y2O0+eAmGFNWHAm8sgzKM+ndeVi+uzwuXlBQNKcXp/94UI17V3ETYsg6gFgurbMQRRCCCHEvCIBohDzTCHwRt746ukGeKwR7SgoGqgt1aj7F2M83kz1o2GbnmQNaHVYBWoO5C1fgtdcj9nZg7V565j9NdE4CxMlFAN/zD4n8CdcXkP1DWI//Rw6YlM4/wwCrdFa42umNcQUIBguVNPWRcy0UENrLpqeiTtOf4QQQggh5ioJEIWYZ3Keh6kUuArVF0eloxQeqoY/LUC1lIZFYmyfqlw4vLSnrAqlIG4cYU0rpShetg4NxP74KCqTG9OkMhIDQB8w709rjRMElE8QIEYfeBQVBDjnraW6qoqkaZP1PZRiyiUuhh1YqMY2DEw7vL7pm+MGrEIIIYQQc5UEiELMM3nfw1IGZCMj2/SgDYFCLxxAX7QHfXIv1cV9AHRVV6IIl6Q4UkFTHe5Zp6IKRaK/fWjMshflkSgx06QwFJR1FnLsyWUItKZknCGu1ovbsV/cQVCawjn3dCKGyeJkKZ3FPIZS0x5iqstL0LFoWKjG94lFwl+Nhm9S9CVAFEIIIcT8IQGiEPNM3vewDAWZMEDUTYPYqwbhwhb0ih6wA6yqfircTvJGgv7yGLZhHPEQ02HFS84jKCvB3rYT++nnRu2LmRY10QRZLywS4+iA8kiUYuCTOCjYU9kc0d8+DEDh6ksgEu5fkCihOhLj4pomGuLJ6XVquFCN72N09xGPhb8aJYMohBBCiPlGAkQh5hGtNXnfw1QGaihApKqAvTIDCW+kXXV3LwaarmgjTmmOiGFOueD8tEVs8q9/Fdo0iP7hEcxdLaN2N8aSFAKfQGsUipNSZVREYqPnE3o+8Tt/i5HL46xdhb9kwciupniSaxtP4qRU2SF1a7hQjdneRTIaPlfDMyn6UqRGCCGEEPOHBIhCzCOuDvC0DucgDg8xTTlj2tW09wDQeXqUYqxIiWWjxll78HAFjbUUrnwFKgiI//wezL1tI/tqYwkMFBnPJWFanF5ezZkVNfuL1Pg+sbv/gNnajt9QS/GKC0edWyk17eI0o/o0VKjGaOscySAavokjGUQhhBBCzCMSIAoxB7lBQGchN6YCpxMEeEEQzkHM2GilIeGOOb62vReAroYqnCCg1I6MaXOkvNNPoXjJ+SjXI/5fd2M9vw0Iq5nWxhK0FbLUxRJEDJOVpZXYhgGFIvE7f4u9ZTtBWQn5N10FhxEMjscfrmTa3k0sGgbDhhcOMZW1EIUQQggxX8zMJyshxHGlNZ/hgc4WoobJ2vIa6uMJdmfT1MTi+FpjuRbKsdApZ8zXRJbjUtEzQD4RJVOawM3nKLFmPkAEcC44Ixxq+sdHif/qD7jbdlG85HxWllTQksvsn0OoNda2nUTv+zPGYAa/qoL89deiU9OcYzgNuqyEIB7D6OwmOTTd0fBN8r5Hn1ukJhqfsWsJIYQQQhyvJEAUYg7K+x6uDkgoiz917yNimGQ9h5WllYBGDQ8vTY4dXlrd0YfS0FlfCUqhlCZhTa8a6OFwzz2doKaS2K/vx35xO/aL21ndXE+sNEbd3jTRgoO1qwWjPx22X7WMwqteAfHxl704bEoR1Ndg7dxL2eAgmhLwFBpNTzEvAaIQQggh5gUJEIWYgwbcIrZSlNoRkpaFF2jipklHIYfh2KitVQDo0iIHzywcGV5aXzW0Rc1YBdOJ+EsWkH3v9USeeBb72S1EWto55aA23oIGnAvOwF+66Oj1oyEMEBNdfWizAeUZRJTBvnx2KLgWQgghhJjbJEAUYg7qc4pEhqqOmsrANCFiGLTks9RtPQmViaIrc9A8OObY2rahAjX1lWit0WjiM7AG4pQiNs76s3EuPAujoxujuw98H+Ix/KY6dDJx1LswXKjG7ugGO0AVbFKmTVshixP4Iz9TIYQQQoi5SgJEIeaYQGsGXYeIMXpyoVKKcjtCJBtHGwH6jPah+Yf7c4jRXJGK3kEyqTjZkgSe1ljKIHYsAsT9HSWorxkJ1o6l/YVqOjHKwsI0cR2h10/TWyxQP911FYUQQgghTlBSxVSIOabgexT88bNdJWYEwzMh4o/77q/f1wVAe3MNKIU7lDWLH+UhpscLXZoiSMQwOnuxzLACrPJN0NDvFme5d0IIIYQQR58EiELMMTnfw9U+thrn7e0OBXqRMPgJtKa9kBtZxqG+JQwQn6tJsTefoRgEJCwLc7xzzUVKEdTXooKAcj8caotnYBmKXkcCRCGEEELMffPkU58Q80fO81Aw/sL27tBb3g4DwoLvAdCSTZMuFqht7cY3FE0rV1Jpx+hx8pQexQqmx6PhYaaVxf0BYtSw6C7mZ7FXQgghhBDHhsxBFGKOyfoueqKdzugMYjHwqYrGKEnGCFr3EHM9nMXNrKyuwx+waMlnKLVneDmJ41zQEAaIFfmu8DekZxAzTQY9RwrVCCGEEGLOkwyiEHNM2nUwxyxeMWR4iKkdBogF36cuGufqRUt4ZSbMKgZLFwKwKFFCTTROcr5lEJvqAKgYbA83eAZRw8TxfTKeO4s9E0IIIYQ4+iRAFGKOcAOfXdlBWvKZibNcQxlEPZRB9NGUR2IkLJvYzlYAvKEAMWVHWFNWRWUkdvQ7fxzRyQR+ZTnJ/CBRPwuegaEUGk3adWa7e0IIIYQQR5UMMRViDtgy2MPG/m6yrkvEMKiOxsdv6IyegwiQsmx0fxqzvYugvBRdWT6y77Ty6qPY6+OXv7ABs7efaqeNvV4lAFor0pJBFEIIIcQcJxlEIU5wvtY8P9BLEGia4klqYwmM8QrUAOqAKqZeEGAqg5Rt429+CQBv+RKY4Nj5xG9uAKC6uA/lhb8mI4aiRwrVCCGEEGKOkwBRiOPcgFtkV3aQXdlBtA7Lz6Rdh/Z8lrzvMeAWGXQdyiOR8SuXHuiAIjWFwCdmmKQsm2DTVgDcFScdzadywvAXNgJQ7bSh3fBnGjMtuouF2eyWEEIIIcRRJ0NMhThO+Vqzsa+T5wd7R6pnvq7xJFDwm7ZdZFyX08qrqIzE8bWe3lqFByxzUfTDCqZmrkiwo4UglSAYKtAy3+myEtxkkrJsN3bBwwUihkHacyn4HjFTfnUKIYQQYm6SDKIQx6ld2UGe6esiZdo0x1MjVTQHXYes51IVibEt3c/O7AARY5pv5aEMome5ZH2X2lgC66WdoDX+ipNkeOkBCg0NKKBysBuAiGHiBAFZz5vdjgkhhBBCHEUSIApxHMp5Lk/3dpCyLBLW/mxV2nPIeC4KSFgWhcCnu1ggaU0zo+WYaKXZ52U4uaScVaWVmC/uAMBbKcNLDzQ8D7Em3QEwNK9Tk5VCNUIIIYSYwyRAFOI481K6j9+07QrnFR6wSL1lKPqcIt3FPNbQcNJyK0J3MU/CPGCtQl+hNtahNtVCRxJ0uA3XCNdBtH2ipsE5FXXEXB9zZwsk4wRD8+7EkCXhz6Mm0xn+DIdkfQkQhRBCCDF3yUQaIY4jGdfh0e52bEPRFE+OKjoTNUy6inl8HRAzw6GiJXaEpGWPrlraH0N1JQFQHSl0RR4yEfAMlFYEto9pGERNE2vLS6ggwFy9DAwDAo0ImXUV5M04lcVOrAGNV64wVRikCyGEEELMVZJBFOI40l7I4QQ+FZHYmIqkMdNicGiIadQwR7aPWdIiF37vo2uz6ISD6oujXBOlw3aB7WEphaUM7Oe3hec4a9VRfFYnKKXoqKjDQFO7Iw2EQXq/I5VMhRBCCDF3SYAoxHFkV3ZwwoIzUcOk6PsUfX9UgHgwlQ+Hm+raDPr8VoKV3QRr20f2B0ZA3LQwMlnMXa0EJUmMpQtn9onMEZ3N1QDUte0vVNPvOvg6mM1uCSGEEEIcNRIgCnGcyHgu+/JZyg6Yd3ig4SIpSqnJ1zvMDc1HTHhgalgwCDU5dDSsvqlci7hpYb3wMgrw1ixHGVK9dDx9J1cCUNfXDjoM0p3Al0qmQgghhJizJEAU4jjQUyzweE8bhcAnak6cHQQ19UoUIwHi6GIq+qx96LICg4vaSZgW9nPh8FJvzfLD7/gcp8oT9EfLKfEGiHd6WIaBrzVP9XbwWE8bGdeZ7S4KIYQQQswoCRCFmGVaax7qamFndpCGWGLStvWxOHXR+CQnA/IW2vbBPmgYZNJDn7uPfHmG6oEsZmcPfm0VurbqyJ/EHBU1TVoragCo29UHQNw02ZtL89xAD79u20WfzEkUQgghxBwiAaIQsyzrewy4DrXROPYUC96bysBUk7QpmqjAgPjESzEEGpq37QXAXX3yYfV5vogYJrtrywGo7+wCoDISoy6WoDmeYtB1aM1lZrGHQgghhBAzSwJEIWbZoFvE0wGRSQrPTNsEw0sPZAU+NS/uQhsG3qkrjvyac5itDPY0pggwqO1vH7MMSMK02J1Lj9rmBgG/b9/DjszAseyqEEIIIcSMkABRiFk26DrMWImYoQqmxCcuorK0pQer6OAtX4JOTj6kdb6zDINCiU93tIGoX6Syu3/U/hLbprtYIO067MoO4gY+vU6B3dlB7u9s4cXB3tnpuBBCCCHEYZIAUYhZ1lMsYE5ZeWZ61FAGUU+SQTx1exsA7lpZ+3AqllJgQFtpMwCNu7pH7Y8YJq72eaavkwc6W9idS9NVyKEURAyD1rwMPxVCCCHEiUUCRCFmWWcxT8ywDv8EAdCeRG2sg11l4bYJAsRUf5oFXQO4ZSn8xU2Hf815whqaE7qvtgGAhr2dY9qYKF7ODFD0fV5K97MnlyFmWMQMk55iEa31mGOEEEIIIY5XR/CpVAhxpPK+R8ZzKLHswz6HerkStbscAB3xCBYOQllx3LZLtobFafKnrZx8LUUBhHMQQZOpjpG2yilP95PI5Mml9leSrYnGKQY+EcOkLZ/FUgZldgSloM9xyPkeySN4fYUQQgghjiXJIAoxi9KugxMERI+kQE13OI8wOK0DfdEeWNKPpwP6nSJO4I80s1yPk15uxTcUzmlSnGY6bMNAoQhSRdpii4GxWUTLMEhaNrZhEKApBh5R08RWBq72yXgTD/cVQgghhDjeSIAoxCzK+x4axs/mBcDeUtRjTagHF6KeC9fjY28J6pl61JMN0B9FZSPopAN12ZF3dL9bJAB6nCL7ClnSrkPZC9uJuB4vL6rDLik5Rs/wxFZqR0lZNrlYjrbYEgAaxxlmOqwmEqciEgPC11ShSHvOMemrEEIIIcRMkCGmQswiX+vxK5hqUE81ogZi+7e1laCX9aJerEYNH7WpLvy7Mj/qcDcIWFNWwZJUGU/2dtBTzHPOy+0AbF21iEYZXjotplI0x1Nsdfvoji3GMaLUtPdguh6+PfbXZ9Q0iTI6GzzoSoAohBBCiBOHZBCFmEWuDoBxipjsLUUNxNCpIsH5LejqbLi9I4VCoSvyaCtAFcMgRVeMDhB9rSmxI1RH41xRt5DrixFK0jlaasrI11Qc5Wc1t9THk/hodMqnPboIM9A0tHZN69ioYdBTLBzlHgohhBBCzBwJEIWYRV4QoPUB2TwN9MRQ2yvRSqPXdEGJE/4BVFsqbFaRh6bBoUM0VI4OQpRipDCKZRiknn4OgJZTl5E0pWDKoaiMxDANgyDh0BpfCkDzrvZpHRszTXqdAoFUMhVCCCHECUKGmAoxi7wgQKn9wYPaWoXaGy5VoRf1jwSGOumgAJWOhg1LHHRpEfaWQmkR7GDkHOGyCoq4Gb69jdZ2rN37CMpLqT9tDeXsbyumVmZHKLMjOPEC7bGFeKZFQ0sXpufjW5MXF4oaFl3FPF3FPHWxxDHqsRBCCCHE4ZMMohCzyAkCjOH5hK4BLaVoKyA4tQN9cu/+hiUHzWNLORDz0eta0Gs7Ru1ydYA9VFkTIPrIMwAU151JVTxBUzx11J7PXKSUojGeJB/NEyiLtvImLM+nfhrDTG3DwFCKp/s6yHkurfkMO7MDZGReohBCCCGOUxIgCjGLioGHMVwwpiuB0gpqM1CfZVT1moSLHso0ajOAuBduj3ujsocARd8napjEDBOjoxvr5d0EpSm8NcuPwTOamyrsGE48HMbbkjoJmP4w05ponNZchl+07uCetl38rn0Pz/RPbw6jEEIIIcSxJgGiELOoGPiYQwGi6kgCoOuyYxsaQGJoPb2Uw/ilT0NOEFBuR1FKERnKHjrnnwHmEay1OM+lbBs3XgSg3VyCZ5k07O3E8PwpjgwrodZGE0QNg6ZYkvpogh2ZAXodKV4jhBBCiOOPBIhCzCInCMIMYsGEngTa8scsWTEi5Yz+e8Jz+pRHIhjdfVgvbidIJnBPWznDPZ9fSqwIpqXQMRe/GKOtth7b86lv7Z7W8VHTJGnZKKWImia+1mxL9x3lXgshhBBCHDoJEIWYRU7gE+0qRT2yIBxeesBi9wfTZcVRf08kQFNqR4k88gwKcM47HcZZs09MX9KyiRomftxBoWgpnArAwi0dUxw5vgo7wsuZAQq+N5PdFEIIIYQ4YhIgCjGL3CAgsbsa5RvohQPo5T0TN14wQHB6OzSmJzxXVzEPKKr6MljPbyNIxHDPWH10Oj+PmEpRGYmRbexBV+Rpa6jFUVEa29uw+w59CYu4aVHwPbpljUQhhBBCHGckQBRilgRa43gaIxdFRzz0ih6wJgk2DKA2N+78w45Cjm6nQHU0zmV1zSx8fHOYPbzwbIjIuoczoToWY7BiAH12G/45XbTULsAkoHnLQcNMByPQHZ/0XEopFIqO4jjzTYe05jJskmI2QgghhDjGJEAUYpb4OsDI2uHQ0oOXsTgEgdZ4OuDyugW8umExy3qy2Nv3EJSX4J6xagZ7PL+V2dFRj3ctbwBgccue/Rs1qGfrMTY0oF6oZrIlJ5Omxe5smkDv/1Kgs5Djoa4Wuop5Hu1pY9NAjwxDFUIIIcQxJQGiELPEDTRmOhY+KJl4XmHWc+kq5uks5NBDwUTWc+lzCjiBT873SJg29bEkaE30/scAKF50rlQunUElVgTN/mCuZ0mSjFVCda6T1OMJ1CPNMBBFFcL5nqq1FFpKJzxfyrLpd4r0Oftf+13ZQTb0dfPHjr30OkUKvkd7IXf0npQQQgghxEEkQBRilvg6wMyEAaIeJ4MYaE1LLkM+8GiOp1BKkfd98r5Hv+sQM206CnmynktjPIVtGFjbdmLu68CvrcJbffKxfkpzWtKysZSBGwylBQ3FnpolACxs2YvKRlAvVgOgy8NKtGogOu65ACzDQKO5p30X93e0UPA9dmYHaYgl8IKA+lgcE8Xe3PhzToUQQgghjgYJEIWYJZ4OsLMTZxC7innq4wle17iUS+sWUG7HKAYeed+jIZbgsrpmIoZJ1nNpiCfA8/dnDy85H9QkiyWKQ5YwLeKmRTHYv/bh7qXhMNNF+RdBa1Q6DAj1ooGwQSYy6TkbYkmSpsVLmX6e6u0g7TmkLJuqaIyIYVJmR9idS5PzZJipEEIIIY4NCRCFmCWOH2BnYmgzgMToAKDge/hac1ZFHSV2GGTUxGIUfJ+C71MdjVNmRzm5pIy4ZVMViRN54lmMvgG8kxbin7RgNp7SnGYoRZkdoejvDxAzJxn0lFST8gapVC0A4VqWNTm07UM2Muk8REMp4qZFuR1hZ3YQhQrXxRwSNy1ynscDXXsZcCdf3kQIIYQQYiZIgCjEMdJdzHNv2y6eHwiXsshnwAjMMHt4QLKvvZCj1ymypqyKhnhyZHuFHcPXmgBNRSTMPK4oqaQ5nqKi4BJ55Gm0YVC4/ELJHh4llZEYzgEZRAzYtaYOgMXe5nBbVT58PZNOWIAoP3UV2dKhLwGqIqOHpCqlaI4nacvnuLdtN7uzgzPyPIQQQgghJiIBohAzyAsCNvZ1jcxTc4OAJ3s7uHPvy9y9byct+QyP97SzKztIcbj2SGx/9rDge5hKcXXDYs6prBt17pRlo4YCvxIrDDqqojGuqF9I4v7HUK6Hc+7p6Kryo/4856syO4qvRy9FsuekRlzLZEH3bqz6TvRJfeGO1NC80imGmQ6ricaJmdaY7YZSNMWTBDrgwc5W+h3JJAohhBDi6JEAUYgZ1O8W2ZLupS2fxQ0CHu5qZUNfJ572KbcjNMdTRA2Tp3s7cJyhQMPaPwZxwHVoiqeojydHgsFhKdvGUApbGaTs/UGHuWcf9paXCVJJnAvPOibPc75KWvaYdSg922LPSY1YfsBC8zlIuQDoob/JzMw6lBWRGK72SXuHvySKEEIIIcRUJEAUYgalPYfeYoGd2QF2ZAd4OdNPYyxJmR0dyQ6V2DZpzyVbHAoMrf0ZKVcHLEqOvzRCyrKJGSYJ0yY5nGnyPKL3PghA8bILIDIzwYgYX9KyUKhRaxcC7FgRzvk8adteGN43lEFU2ellEKdDA2lXAkQhhBBCHD0SIApxBDoLOfZk9y9DMOCEH9735NI829dNqRXBMka/zSKGiacDMoVwaKkeyiAWfI+IYVIfS4x7LVMZVESiVEVjI9nFyJ+fxuzpx1uyAG/Vshl/fmK0pGUTNc1RlUwB+qvK6K0uo6w/Q3Xn0BDT5KENMZ0OWxn0OIUZO58QQgghxMEkQBRiGpzAZ18+M6pASc5zebhrH3/u2TeyDEFnMU+ZHaHg+/S7Rcrs8YMDBXhDIxAxA9KuQ2exwKJESTiMcQJ1sQS10TgARmcPkcc2om2LwlWvkMI0x0DEMCmxbDqLefbmMqOWn9g+nEXcuneocYCOu2EGsTc2I9ePGibdxfyMnEsIIYQQYjxjKyIIIcbYOtjHYz3tlNoRXlm3gKpIjKf6Oukdyua8lOljTVkVPcU8MdOixIqgFGPmEQ4zlSJwVfgNjenT7zpcUFXPytKKSftxWnm4EDtBQOzX96OCgMJlF6DLxx+WKmbe2ZV1FIe+ANjY10WAJmXZ7F3cwNonXqR5Vxsbzz0FJxZBL+tFba5DvVATZhSHhpvq09uhxJ3iSmPFTJO051LwvXEL2gghhBBCHCnJIAoxBSfw2TLYS6ltk/EctqX76CrmeTndT10sTkUkwnMDPezLZykEPnHTJGqaRAxzwnPGDAt3KD5wTY+YaXJySTn2JMdAOMzUVAaRJ57FbO/Cb6zDPWvNTD5dMYWmeIqTUmWcWVHL6rIqBobmBPq2xa6lTZiBZsm2PWHjuiy6KofK26juZPh33kbtqDysa0cNEycIyHiHHlwKIYQQQkyHBIhCTGFPLs2AW6TUilAZibE9M8DmgW4gHHKYssIhpU/3duLrAFNN/baKmSb+0Gf8ovIotSPTzggZHd1EHnwCbZoUrrkEDHkbz5aGWBLN/oI1L5+yCA0seWEXXdksGo1e3YVe0kdwRhvBJTvREQ/VmTys6qZhRlpLgCiEEEKIo0Y+WQoxiUBrXhzsJW5aKKWImxZ532dPLkNVZP+8soZYgs5iHuPgNRAmEDVMtBe2LRoutdHxC9OM4XnEfnUfKggoXno+QfXhZaLEzKiOxokaJnnfo6uYp78kzp6makoKLqfu66WjmIeoj17WB9V5sDV60QAAanf5YV1TA4OurIUohBBCiKNDAkQhJtHrFOgs5Cm3oyPbqiJRLKWImvuHgxpK0RxPUheLT+u8SimiQZhBcg2fyuj0iphEH3gcs7sPb3Ez7tmnHsIzEUdDwrKojyXZm8tgDlUYfWp5IwBnbWvF8/2xBzUPoo0AOpMQjN09FVsZkkEUQgghxFEzZwLE22+/nRUrVoz6c9VVV812t8QJZl8+w5+6WkfWudubyxCgRy1VkbRsaqJjA0FDqWkNLx1m63BIaWD6lFpTL4Vg7thL5MlN6FiUwrWXSdXS48SCRIqGeJJVpZU4QcCemlLy1RUkuvpo6h5AH7RmIpaGigLKM2Bgki8G+qPgjX2NTaXIHlA9VQghhBBiJs2pMngrV67ke9/73shj05y84IcQOc+js5gj74cfuJ/u68TxfVaXVVFqR9ie6adkkmUnjogXBpOWDSUTLIcxTKUzxO66D4DCqy9GlySPTp/EIVuaKqcxniJqmGxJ9+IGAc45pxG/50HO3raPR5obRmWbAXR1DtWTQHXH0RUHrGvYHYeUA71xjOdr0Y1p9OquUcdayhi5X4UQQgghZtqcChBN06Smpma2uyGOY07g8/xADwpYWVrJHzv30pbPYgwlauKmRaA1vU6RvO/R7xZpjB2lYMwz0GgSEZPkZAVqfJ/YL36PkSvgnLUGb+XSo9MfcVhsw8A2wgB/WbKcXqeAcWozwcNPsqS1h6f701BVPvqgqlz4d08CTu4L/90fxdjQgLZ9RuredCThlK5RYz0sQ5HzXbTWEy6jIoQQQghxuOZUgLhjxw7Wr19PNBrlzDPP5KMf/Sj19fWz3S1xnPCCgPs69tKSy6CAtkKOffkMzfEUxgEftIt+lo58FqUUBmrUvpntkIG2AkrsyKQf9KMPPoHV0o5fX0PxsnVHpy9iRqwuq6QY+GCauGefSvSBx1n93E6ev/iM0Q0THjruotJR9O4yaEijOlIAKDfMNmojQPkGuicBNbmRQy1lUAhcXB0QUTJKQgghhBAza84EiKeffjpf/vKXWbRoEZ2dnXzrW9/ibW97G3fddReJxDQrRB7EMI6fb+eH+3I89elE0+cUaS9kaU6kcAKfvbk0DbEk5kHLRKTsCPuKWZwgoDwSPTpZGg3KNwiiDnHLnPB1NbfuIPL4RnQsSvG6KzEiM/+WlXtr5qQiEVJD//bOWoP5yDOs2NXBzrML5FMHzFtVQG0OdpdhbKtCt5SAH2aUObkP8haUFeH5GlRHEmrzI4dahonvObg6IGYcv7/C5b4SR4PcV+JokPtKHA0n8n11/H66OESveMUrRv69YsUKTj/9dC699FJ++9vf8oY3vOGQz2dZBlVVqakbHmMVFTL37HDt7c4Ri9mUloSFQarLxv9ZRgObtlyWQENtydG5B7SryAPYmuqy5Lj3WrCvE+dXfwAg8pdXE1/aeFT6MkzurZmWovO8NZQ+vIHVW3ez5eLTR+3Va7P4DR7eSymCnrBKrlFdJHZqOCdRu4r8Fo3qShIL8hil4bxDrTWDGZdkWYyq+OF9+XUsyX0ljga5r8TRIPeVOBpOxPtqzgSIBystLWXx4sXs3r37sI73vIDBwfzUDY8Rw1BUVCTp68sSBHrqAwRO4JP3PMoi4Yfv59o60U5ANjP1GnLpXJGkaU2r7bTlLOiPQX0GHBMFeIaHk3Pp6cmMbpvNE//hnRiOi3PxuWQbGuDgNjNE7q2jZ+DUlcQefZYFz+9i86olFOPR0Q1Ki3BKDh5pQgUGfnV69D3XlEbtLSX/x2pY3Q0NWQDyeZeOnjRG/DDWyThG5L4SR4PcV+JokPtKHA3H431VWhrHtqeenjJnA8RsNsvevXuPqGjN8fJiHigI9HHZr+PR5r4etmf6uaphMQbQUchRatljlx0Yx4JYEqXUtNqO4qmwwIg9dJyvoDuOykRhVxkqMNB9UfTCARQQGAEWxujX1PeJ33kvxkAa95RlFC84E47Bay731sxLlJTw4snNnLZlDyc/t4PNZ68c2yjuwooeaCtB12fgwHtuRTc64qG2V6A216LT/eiTewFN3vNOiNdL7itxNMh9JY4Gua/E0XAi3ldzJkC87bbbuPTSS2lsbKSzs5Pbb78d0zS5+uqrZ7tr8053Mc/Gvi4urm3CNib+lsLXwSGtG3goCr7Hi+leeosFnurtoCISxQl8Yub0F7I/ZBrUE02gQV/QAq6J2lCPSodZI6002vJRraUQhOcPLH/UGotoTfR3D2PtbcOvr6FwzaWy3uEJLGKY6PPPwNu6l6Uv7uGxFU1kbJNSO0L8wMq1zWl0c3rsCRRwUj+6rACb6lC7ytGL+tEonMA/Zs9DCCGEEPPHnAkQ29vb+du//Vv6+/uprKzk7LPP5mc/+xkVFRWz3bV5xQ0CHu9ppzWfYXWxiob4/nHXBd+j3ylSH0+yN5dme6afS2oXzHgfvCCgJZch47osTJSwNd2HiUGJfZTWMxxWNFHZcLkD3ZVAvVSFytvosgK6NgvVOfAM1JNNqLaSsJ0ZYB0QJEcefYbIxi0EqQT5N10F9px5i85bi+rq2bV8Icte3M15W1vZcs4qdmUHWJAomf5JqgpQlYeOFGQjqJjGCY7f4aVCCCGEOHHNmU+fX//612e7CwLYmu6jNZ9Boegs5EYCxILv8VBnK71ugdc3LaUll2FvLkPO80hYM3cb7smm+XP3PjwdEDdNbMNg0aF8ED9UrgFWEGZ60vsXu1cv1KA8E12VQ69t37+OnSYcMuiEz1mbAdZQltV6dgvRB59AR2zyb74afZQK5Ihjy1QGZZdeiH65hZUv7qX6onV0FXNkPIeUFZn6BEN0ykF1AJkIRkyR89yj12khhBBCzFtHZ3yfmJcCrdme6afEsklZFrtygyNz+J7q7WBXbpCM59Kaz7InlybrefQ6hRntw9Z0L3nfI2FaVEViM3ruMdqTqAcWwa6y8HF6fwES5ZloNHp5z+h3mQJKnJGHgeljKQPzpV3E7nkQbRjk33glQf3hz50Vx59YeRnumWtQnkfZE5s4pbSSfseZ+sADpcL2KmNjGQY53zsKPRVCCCHEfCcBopgx/W6RnmKBEitCyorQ5xQZdB2cwGd3Lk1VJIaJ4sXBXjKei6kU3cUjrxSb8zwGnCLdxTx7cxlqonGSlj1z6xe6BuqpBtSzddA9NIcxb6G2VKNQqJ0V4BiooQyiTg598G/IQGqcLE/J/iqVgeWTaush/ovfo7SmcO2l+EtmftitmH3OBWegIzb2xuc52TexDOPQ5hEO31eZCJYKM4gvDPSyIzNwdDoshBBCiHlpzgwxFbOvo5AjQI8UXXGDgPZijpRvk/c8KuNRFIpep4DWmqRl0ZLPsLbi8LNlT/Z2sGWwl0BrqqIxAg22McPfe+wpRfWFgaHqTBKc24LaXhlmCYeHi+4uH8kg6tM6woqUi/rHPZ0ucRgOXSuyvTT98hGU51F45Tq81ctntu/iuKETcZyzTyP6yNNUPbGZytMXkvUcIpGpy00DkPDQRgCZCCYGGd9lY38XTfEkJ6XKjm7nhRBCCDFvSAZRzJidmUFiB1QtTVoWLwz0si+fRSmFUoqEZZF2XUpsm6Rp01sskHH3D7VrzWXYOtg37Wu25bOYKCrsKN2FPNXR6NQHHQpfofaWhcNFF4SZGvViNaongY676HP3hR/a95SGBWniLqTccCmCyARFRIaGmJa53Vyz+RHMoktx3Zm4554+fnsxZzjnnY6ORbA3vcjKoibrTZxB7HUKtOaz+zcoIOmiPBPbtXGCgJ5inq5i/tCXYxFCCCGEmIAEiGJGZFyHrmKOUnt/0Y1yO0p3Mc/u7CCJA0r6n5QqpcyOEjVNioHPHzpbaM9nwwqove1sGujGm0aFRl9rMp5LzDSJmiYN8SQxc4aT4m0plGtCbRa9rBdtBajBcG6jXtwPcQ+9tA8VDL2VSqYxryzhUuJ3cVH3L4l5LulzTsV5xbkz229xfIpFKV5wJkprVjz5AkrpUcHdoOuwMzvIgFuk4PuY6qDlLIbmIdq5GL3FAhWRKFnPIy/zEYUQQggxQyRAFDOizy3i6oDIARlEQynipklnMUfKGn+JiaZ4kgGnwO879vBMXyc9xTwDbpGuacxNLPoebhDM/JDSA6iWUgD0ogGwNDSGa9XpiBfOMQRYNICuC/+tS6cuulMykOYVXb8iGhTYvHgxuYvPk7UO5xH37FMJykpI7WhhaXeG9AHVSNOew0nJMjKex6rSSmqjCQYPyLDroQDRysVYkEhRFYnhan9UGyGEEEKIIyEBopgRvcUC44U4lZEYtdHEhEGcoRS1sQSWUmzo6yJl2SigNZ+Z8pp538fTAbaawdu4Pwq5oSxkxkalo2HRmbKwsIxe2I9OFdHLe8Ecyvwo0Ku7CE7tgAWDk56+vHuAS+95nJhf4KWqFfzpvMVYprwN5xXLonjJ+QBcvHEHec9lTy6NE/goFGdW1nJV/SLWVtSwNFVG3j8ggxgPM4WqYBI3rZFCTIPe+AGi1po/de2j/cChqkIIIYQQk5BPpmIMJ/BpL0z+gdIJ/FHrsO0rZIkZY4d3GkpNmD08UEUkRlM8SUUkRokVYUdmYNTcRAg/7HYX8xSHPjAXfA/QR16tVA/92VuK8WQTalMdwP7F7BvSjES/cR99Qev+7OEwU0N9NswyTqC6o5dLfvsE0aLL1tWL+fNVzRimgTWTAa44IXinLMVvrKO0Z4AbBmFRopTduTQVkRhVkRhNiRQx06I+Fn65MnzPExn629mfqTdR9E2wXEx7Ice2dB99bnHc/UIIIYQQB5NPpicg94A5SYHWvDDQy9O9HUdc7n54rtPzA73c17Fn0qzDEz0dPNDVQqA1Bd+jx8kf8YL3w1nGlGUz6Dr8b+t2Nvd3j8zR2lfIck/bLu5seZm9uTT5wEPrQwwOA6A3Fv49GEE90Yj642LUH5ZgvFgNgEpHoWhCWwqNHhsMHoa61i4u+t2T2K7Hc2uXsenslQSArQwMGV46/yhF4ZXrACh9+GnOLqmg3I6yNFU66n4oi0RZXlJOZzFP1nPHDRBjpklnYWyAqLXm+cEe+t0ivcWZXW9UCCGEEHOXLHNxgulzCjzcuY+LqhtJ2RGe6e1kY38XoElZEZoTqVHzAKers5DjT937WF1axXMD3eR9j0d62qiOxrGVwQXVDSNtu4p5Xkr34aPDKqJKUfB9quyZWZjeUIrmRIqM5/J4bzumUpxSWskLA714gcbBZW8uExbEUYdQvTFjo56rDYeNVuYgG0EVLbTlgxGgDQ12gEpHUdsrwn2VOYgdwlp141j0citnPbIZM9Dcf/oSNq9spEEpAjQx89BfKzE3BM31uKcsxd6ynYYNW7nozBXURONj2p1f1UCJFeHpvk7yOkstjAoQ46ZFVzHHhr4uVpZWEB8q1NReyLEnm6YmGqdnggyjEEIIIcTBJEA8wfha01HI8UhPG1HD5OVMP7XROFHDpLWQpaOQY0Gi5JDP21nI0ZbPMuAU8bVmQTxFezFHb7FA3LI4q7J2JPDc3N+NVmBh8PxgTxjkaGZuYfohw0NTH+lpo6uYZ08uTW00Ts53actnCQ5l/qEG9WwdKhdBGwGqNxFubkijV3ftH0LalkQ9V4dqHSpOc4jZQ18HtOSyNMWTWEqxYuNLnPbsdgIFD5y3ktiZp5Ic7KWrmMdU6qgW2BHHv+Il52Nt20XksY0sOXUFOjl2OLahFKeWV1MdjXNf+x600gdlEC1K7YAnettwAp/zquoJtGZzf/fIEO9Bz8ENfOzD+PJICCGEEPOLfDo9AWk0e3MZdmQHaYyFSzsopTCUoiV3eMMhd+fSlNtRyiNR6mMJlFI0xJI0xZMUfJ9+J5zDlPVcWnIZquxwrtSOzCAvpQfGzXzMhJRlUxOJsy3Tj2WEAVXCtEl7Dl3FwvQDrKwdBoclRfT6vejSArqsgD6lm1HVdSr3Z1q0GUDtoRX3yPselmGQLhQ460+bOO3Z7bi2RecbrmDVxRexpryaC6obKPo+vtZE5QP7vKbLS3HOX4vyPKL3/XnStg3xJNWxOIHtgRt+KTMsZUWojsR5KdNH1nNpzWfYk09THYkRNUyKvk/mgDnDQgghhBATkQziCWphIjVmW6kVYVd2cFS2bzoyrkN3MU9FJDrmOKUUGk2vU6A2lqDXKeAEPtGhoZGLk4eerTxUUdNkQXz/87UNA08HOIE//Qxiz1AAW52DqI8+d1/4+OCkZ9RHJxxULhIGh5MUnRlPwfepx2TdA8+wsHOAXCKG+xfXkqyvGWlTE40TNU3yvicBosC54Ezs57dhv7QL9+Xd+MsWTdi2OhKnw/YwHRvtGhDZv15o0rLpzRV4bqCH3blBYoaJNfIFiibtulREZmYYuBBCCCHmLskgziFJ0yLjOew9xCxil5Mfs4bhgWxl0F7IAdBTLMz4UNLDVQz8iTOIRRP1VAN0JAFQPUNDSqvC54FibHA4rDaHRqObJ1+yAmDALdJ9QAGQZN8gr7nnCRZ2DtBVnqT9L6/FOCA4hOEhgRFynndY80XFHGNbFC5fD0Ds938Cd+JF78sjUXx7aL8z9t5JWRE29XeT9zyqD8jqayBz0FIYWc/FDQKEEEIIIQ4kAeIcopQiadls7OvaXxZ/GvbmMpgTRkthZqK9kMPXAa35DPGpCqt0x2EgOu3rH46EaZF2nQkDRLWnDNUXRz1fAxkb+mJhMZqyqcv966W96Av3Qvn+tm4QjGRPh4XD9jzcwKfo+zTtauOt920kOZilbWE9T7zmFVRXV497jZpoAm+SoFzML/7Ji/GWLcLoHyTy2IYJ26UsmyAycYBYEYlSE41RF0uM2m4rg94DCtVkXIfftO3i53tf4ome9lH3tRBCCCHmNwkQ55gKO0qPk+elTP+02vc5BXZkBqicZOhZwrTIei4vZwbodQokzElGJvfGMDY0oDbWjZojNYoG9pZAdur1ESdSakVIWTbmeENMfQWt4dBX5RuoJ5pQgRHOL5zOHW8AidFZnK5iHtsw6SoWGHQdtNZ0FHOsKatiWbKMFU9uYd0DG7G9gL4Lz8R4y7Wc29A8Yba1KhIjYppSpEaMKFyxHm2ZRB7dgOodf8maEstGT5JBhDBDfbCEabErmx6Zo7xpoJsBp4htGGzs7+K+jj0SJAohhBACkABxzlFDVQt3ZqYeHgnwcnoATwcjcwrHYyhFzDB5tLuNYuCP+wEUAE+hXgiHUyrHgsHI/n1ZG/VoM2wvh544xos1qK1V031aY1iGMSZLMhx4qi3VKNdE12bQZQWUb6DjLnrB4a0TOTwM7xU1TZxTWcuA55D2XMrsKGutBJfe9zTnvLiXom1xz8WnodefQ8K2J/45AaV2hKRpHzBHTMx3urwU54IzUb5P7N4HQY/9hiVh2RjRoe0TBIjjKbEjGAp+376bu/ft5MXBPmqicVKWTXM8xb5cdqQQlRBCCCHmNylSMwfFTYt+t0DB9yYNUnKey9ZMLxX21MNBq6IxMp6LryeZs7S3DJW30VaA8gzoTkCZA3kL9XQDqmhBoQxqh+YB9g0tWD9TMVJXAuPF/fP99KIBKC2ivdHFPA5Vr1OgOZ6iNhonYVps7OumxynwmpxB5f/eiZErkK0s5T/PXUpFXd20soIldoSEZWFNt8iOmBec88/A2vIy1u5W7E0v4p5+yqj9hlIkEmFWWjnmhEn68VRGYhR8j7RbJGXZI18KGUNZ7sIhDEsXQgghxNwln07noNhQWftB15m0XXshR973SVrTG+qZsmzKJgkm1VBBGH1KV/h4qDDMyKLzRoDyTNgXViRVgQEDM1dVUe0tC6+/qJ/g9PZwDqHBEQWHWmtcHbCytBKlFCV2hKXxFFc+t5dTfv0wRq6Ac8Yq3L9+C81NzdTHktM6b9K0KLUiWMdJwR9xnLBMCldfigaif3gElR67zEpZcuhLn6IVzvc9hNs7ZlpURGKU2pFR25WCfDBxcRwhhBBCzB8SIM5B4bw3xYDr4AXBhAVr9uTSRGYqg1UwUekoOu5CXRYd9cJCNU6YSdRKo1f2hP07sCBO7xEEiI4Bu8pQm2pRWytRvXF0zEWf3Ls/S3mEMp5LiRWhIR4Gu0ZPH5f95jFO37IHHYuQf8OrKF51MWbE5qKaJk6vGL8ozcGUUpxWXn3U1o8UJ66gqQ73nNNQRYfo7x4eM9R0JIO4rwRjQwPsm5mlZnKeBIhCCCGEkABxzjIV9Dp5NvZ38WRvx5j9Bd+jJZ+hxIqMc/Rh6BzKnNVmw+UjqnMoFGpbFco1oSIP9Rm0EaY7dF1YLEP1HRAgacKgcpoZEbW9AuOlKlRHCrWnPDzFgsGJl6+Yhl6nwM7sIHroQ/mg53JSsgwbhf34RhLf/28iHd14zfVk3/UWvJVLR441lBq/aM4EFiRKSEwzeyvml+IrziUoL8HethNr645R+2Lx0Te4moGKwbYyGHRlDqIQQgghJECcs2KmRWs+ywuDvbTmM2PmDnYUcuQ9b+olK6ZJdQ0NL60Nh8QNryGo2sLshq7Og6mhIRNmE5f2hctO9McgPRSk7ivBeKIJtaNiehfNhcFVsLoT3TQYrnHYlD6kfhd8j85CjtZ8hpZcBl9ryuwoOd/DHwoST3ICEj/5JbE/PgpoipecT/5tr0OXzUzmRogxIjaFV18CQPS3D6Ny+ZFd8YMCRNIzECAaJoOue8TnEUIIIcSJT4rUzFFx06TfdXACHy8I6HccqqLhcM6M67B5oAfbMGZm0XtfhesM2gesM1jqoKtyI/MQGVqgXq/shqV9EPWhIRPOG3y8Cb20F9USziGkLRW2maprhaHbty6LbsxMq6tuENBZDPtSE43TWSywNFVKZSSOG/g0JVJsHeyjJZfG9TwufLmNRc8+gvI8/PoaCtdeRlBTeSg/HSEOi7+4GWftKUQ2biF674MU3nAlKEXM2v+ljjaDcLmYIyz2ZBsGWc8h0HqkaI0QQggh5icJEOeoqGFSDHzqonG6i0V6nQJV0RiDrsMDnS10FnI0xqdXUGVKA1GUVuiKwqigTi/pR/Uk0DEXkkPZCYMwOAT0ih500kVtq8R4ef+SF6pgowejky9qr4GCFQal5vRqOfo6YF8+y8rSCtKey67sIKeVV7O+unHUh+K065DfvZdXPvUyNQNZtGFQfMW5OBecAbIshTiGipetw9rVgr11J95z2/BOXUHUMOk+bQdlZhRrdwWqN4HO2ZAaJwNYNMNh21PMyY0YBjnPo+D7JCz5b0EIIYSYz+STwByllGJRIhwCaRkOHYUsdbEE93e20F3M0xRPzkz2EMJhooAuL4zeXl4gWNUZBofjXUoBCwbRqSJsaAgzkU1pVGspqj2JnixAdA1UYKCT0583lfU8qqIx1tc0kvd9tg72sqqsanTGJF9g+UMbOGfzNgAKzfX4r76YoFqyhmIWRCMUrn0l8Z/8gtjv/0R2YSORVAK/PI9reVg9SehNhMNMDw4QNahn61ADMYJzWyf9wsVWBq72KQQeCflvQQghhJjX5JPAiU4TZgkUEPHHDcSSQ/MR9+WzpD2Xxlhi4uDQNVDP1ENVHr2sb/w2eQu1pRq9pA8qiqihAJGDA0QFNE1j6GdFEX1BS7jwd9SD1hJoKwkDy8Z0mHXUoLZVQtFCV+UhObSER2z6lRcznsvqskpMZZCyDM6qrNu/MwiwN75A5KEnMfIF8lGb5885hRXr14VrAAgxS/wFDTjnn0H0sQ3E7v4jwfWvwVIGntboEgcFqHQE3XDQgT1x1PAyMoORSQPE4crHec+DGapbJYQQQogTkwSIJ5jObRaxQgrigK/CDMHQPD+9uA998tigLmFZ7M1lKbVtmsYbVqqB3WUQ91D9MdRgDAZj4ZIVVgAVhVFrCaptVeE1HRN9XisMRMPqpCVHUAUx7oV/AJrTqJZS1JYadE8cfVon9MZHKpWqjtRIFdTJAkQ3CHCC/es8BlpTN846heaOPUT/8Ahmdx8acE4/hSdOX0J1eaUEh+K44Fx0DtaOPVh79hF5chPx5hKKvgclQ1+UDFf/HR4BrcMqv8NUNsJUA7G1lrUQhRBCCCEB4gklCDQtG21qgsVouwO1uxzVF0fHvDCL2FoaFnc5aJqcqQwWJyepuJmxMV4K5wBqdLigfWBgvFAbbqvLhEEahPMNh5a0UOkoelcZyjPRFflR19VaH/YQVn1KN7oxjdpci+pMwfMa8uGtqquzqO4kdA0FxZMEiB3FPBAW3TBQRAxz1LqDRncf0T88grVjDwDewkaKr1xHUF/DmYfVcyGOEsuk8JpXkviPnxN94HEarzmfl1JRSDpoy0f1x+HRZvSZ7eEXLV0J1GAMHfVQRQsyU6cFldIUJlgzVQghhBDzh1TcOIEYhqJprYvSBsbGhjA4LCmiz2uByny43mDfYSw8P1xplHARe31SP8HSXnTcRSsNvXGG0w/DWQldEy5nMVJc5oDhpYOuw/bsIF4w8YKGWusxS2+MUlZEn9kWfsBtK0H1x9EJB72yJ+xHMHTrxscPEN0gwABOTpXTVSzQUcxRHY2TtGxU/yCxu/9I4ns/xdqxh6CijPx1V5H/y9cS1NdM9pMSYtYEtVUUL1uHCgLOf3AjynHAAH1mO7o8j8pFUDvLR2UP9cru8D2cnXq9TVsZtOezR/lZCCGEEOJ4JwHiCab2ZI9sTTiMVDcPoM/eB5EAXRd+sFMdqUM+p+oOA8RgVSfBim5Y1A8n9aPX74XSYhh4Zu39y1lYPvq0DnRpIVzTsD6NXtwPgBcEDLgOtdE4GW900Qwn8OlzwkCy1ymyOzvF/MSEhz6vNVzfENBL+yDmoaMHBIUHZRC11rhBQI9TYEEixQXVDZxcUsaa0irOs5NE732Q5L///7A3bw0LgLxyHdn3/AXe8iUynFQc99yz1uAuX0JyMMclT24Lx4WWFdFrO8IlL9pSsKcUlYmiywpQk4OEi3IscCb/dV9qR9hXyJL1ZD1EIYQQYj6TIaYnGKWgZ/le4qsGRs0LpCaLVtXQmYSV3dMP/T0F/UNrGDZmxha5qSjAQCysVOq4YeXQqmyYuTi7LcwsWvtnN3U6eU5KlVJmR3m2v4tywkW8ncCno5DDUIpk4JMPPJKWjRP4RAyTCUV99BntaM8Ae+j5lhdgOBA+KEDscQo4QYBtGKwoqSRimFwWqyDy+EbsDS+gfB8djVA893Scc06DqFTkECcQpShcfSnBvg5W7Oki/VILO5cvCN8bDWlUSxlqWzUAellv+H5OOZCNhH8ihQlPHTMtup0CHYUcJ6XKjtETEkIIIcTxRgLEE5FidHDI0OOqHKo7id5XAs3p6Z2rNx6uYVidG7cCqi7PoyhH9cfQThjI6YqhD5kHrT+otUZrWFkSLgmxga6RuYgdhTyry6rod4p0FfMYKFKWTdZziUQmCRCHn6+9//nq8kJYqMYIwsqtB1w/7/tcVNNIYzxF2UCG6AP3Yz23DRUEaNuieN6ZOOeuhXh0ej8fIY438Si7r7qQZXf+nrWPv0BPTTmDFSXoBYOolrIwq7+6CyrD96lOhpVOydjhFz4AHUlUTzxcmqYuO/JetpTBnlxaAkQhhBBiHpMAcQ7RS/tQ3UnU9gp0fWZUZm8iqi3MxA0P4xyjvIhGQ18MVRwK5Cry4zbN+h4J06I2FifQEDct8r6PbRhYhsGq0io6Cjm2ZwZojKdYnCplY18nFeOebRLD8x2jPpqwsIavNVprUrbNsoECqd8/gbVtJwrCjOGZq3HPPR2diE96aiFOBF5THY+cupj1m3Zx9v3P8OBrLsRPQXDmvvDLlFJnf+Oh9RHVYBRNOlym5rkaVGCgWkvRuxz0aR2Qcim1IrTkMxR8j5h5+P899DkFCoFPVdWhD3kXQgghxOySAHEuKXXQDWlUWwl6bxks6Z+8fc6CziQ64kHtBAGiHUDKCec0Fa1wnlPKGbdp2nVZXlKOPTRktDmWZFdukKhhURmJUmZHUArK7CiLUyXURuPoqWPYsUrC56lLi7QWskQNEzuAup37uHh3N2UdvQAEqQTFc07DPWO1DCUVc0rUMHlyRTMLOgdY1N7H2Y88x+OvOB2qxhlCWhbOFVb7SsORBulIOFS8IQ1FE9WbgGca0Ov3EDdNet1wmOmiZOmE1x+vSnHWc+kpFmhOpHiqt5Oi9jltQf1MP3UhhBBCHGUSIM4xetFAWPWzN4ZeMnlbtbsMhSJYODhmuOiocy7vhWfrUL6BLs9POL/RJ6ApsT9jsLSknJezAziey8rSSpRSlNlRlpWU0RwvocSyiZgmed8jPpSt6CkW8HRAXSwx/kUAFOg1XQAkex3e0JGj8rmXMbNhZtOvLMc973TcNSvAmmL4qhAnoIhhYpkmz1x8BhV3/ZmFO9vorS7jpdXjvOljPnptO2yqQ+0qB0DHXPQp3WBoeLwpXLKmaKHiHiYGe3PpCQPE7mKeZ/u7eGXdwlHb9+bSPN7TwaqySnZlB4lZJhl3/C+ThBBCCHH8kgBxrkk64dy8wWhYQGaiwpyegn0lYUaweXDyc1bl0ee0wsuV6IXjty34HlHDHBXYNcVTNMSStOQy1MX2D+1cV9048u+TkqW8ONhH0rIosSLkAw8F+DrAVONHoioIqGvtZvHLLTTu6cTUGg24Jy/GPetU/MVNUpFUzGkx06QyEmNFRQ2/vWgNb/z9Bk57aiv9laV0NVSNPaA6jz6vFdpTkLfQzQd8KZRwIR2FggVxjxLbZk8uM2EBqa5inq5ifsz+nmKBtFfk2f4uooaB4wd05fOUsr/Nxr5O4pbNipJDHlguhBBCiGNEAsS5xgBKHNRADJ23IDHBQvLdif3DzOxJ1iMcVuKiz+iYcHfO96iMxEYygQCGUqwuq8IJfKqj48/9W1fdSFMixZ+729idS7MsVU7Wd0m7LuWR0YVkUgMZlrzUyqLtrcTzRQAKEYvC2lXos05Fl088JE6IuSRmWlxWt4CUZfNkbSV/OncFFz+2hfMf3Mh9r1lHPrn//TYyHDTphkvFHGx4LdFC+N5Nmhb9bpaOQo4FiZIxzVtzGfK+T97zRhWY6nLyVEfiRAyDuGnRVszRWchSaobvy4zn8txgD4sTpRIgCiGEEMexQw4QOzo6eOCBB2hvb6dYLI7ap5Ti7/7u72asc+IwlRbDpSm6E6icjV4wCMnRa5upziQAunZmFsbO+x6nlI7NXCxMlFBhRydcysJQiiXJMuKGxaM9bZxWXk1nIceTfR2UEyWaL9K8u52FO/ZR3dkf9hloa6rmxZMa2NlYyXVLTsGQjKGYZ1KWDUBtNM7mxbU09WdZ9uIe1t2/gfuvOo/g/8/efwdJlp3nmfhzrk9bWd60d+N9D9zAzAAiCDqBJCBRK9GIFBnSxlI+pBB3ZWJXbqnYlWJDil3yF9QGKWopR5GgAUkQIIGBncF419M97burqsunN9ef3x8nK8tluZ7useeJ6JiezJs3z72VXXnf+33f+1omUkqutOsM2d6WGy6rSC9SjQYd9XUghMASBi9Xlxh2PLLd9wEVVzMftAnThE4SM9CNsfGTmEYUUrDsnrlNxrS4Vq+TcQ38JGYl8FkJfAYs7/adFI1Go9FoNG+afQnEr3zlK/zdv/t3SdOUoaEhbNve8LwWiO8MZDFAAOLCECI1IDGU7f0qKbCcVa2ow1sdSeM0pRFHDG5zQQkQpSmJTHsXgxIYdrZe+BlCMLDDflaZyOT4oanj2IaB7Qf4l+a5d2aFiYUyotsJ1yhkeeP4BNMnDxIXclRCn4LlanGoeV8z7GY416jw0gfuprRSZ2SpyiNPn+G5j95PNQoZtD06SdzLJN1CN0tU+Bark8jjbobZTouvLEwjgAdKIxzNFSkHPn4SYyJoJ2vdCfUoJEgSRtb9DsibNnPtFpfLVdJU7blkuzTicMcWco1Go9FoNG8v+xKI/+bf/Bs++tGP8ou/+IuUSqXbtCTNfkilZCFok0qJbZiMuRlVQQQlDgEqm4TbclYZzoy2NpjTrM4UzQcdHGFQCYNtReKcryqPBzN5EimxhLGjoNwNUWuQvXgN6/wVjl6b5VjX3rTlOdw4OsH0sSkuljxiIJESO/BJZEpx000Kjeb9RtFyQII0DZ765MN8zxe/w7GLs9QHcvzpiXGO5opca++Qi7qpxRTUzb7JTI5qGNBKIkptl6O5IsvB6g0lQWe9QIxDEGxwNnVMk6JtUpQ2JhDJFIFgJfTpxDF5WzsLazQajUbzTmRfAnF+fp5//I//sRaHbyO2YWALk1YckTEtbnRaTGVzHM4WeWZlnjhNsXIR0kwRiRKIomMjfRO8BOoO4vVRAJWV2KUehZTDAMcwcITBQ4OjPFteoNWOkMgNs0j1KKRgO7iGSTUKMIWgaDu9lrc9kaYYNxaxLl3DunAVc6m89lQ2Q3TXcaonD/NlO2YlCZh0szQ6LR4fO0AqJd9evoFAULB14L3m/c2A45KzbGY6Tca8DN/61Gk++UdP88Dz51nOe4w9eJhr7R2MqLytAhHAFIJh18OJDOY6LRIpmek08QyTWKY04jWH0loYYPRxxCq5Lq0oQEqJI1SbeSxT2okWiBqNRqPRvFPZl0B8+OGHuXLlCo899tjtWo9mFwZsl9ODo3xnZQ4QHM7m+cToATKmxeVmjXocMuR4MNFEVj0oBoi5AlQykI0QL0wgYhN5pArja/OHzVhlGC4FHU4VSjxQGsE1DCIpeba8oISnoQRnNQr42MgUtmHy1cVpJPBQaWRLLtoGpERU6ljXZjCvzmJem8XorGW2JcMlkpNHiE8eJTk4AYZBBng8DPja4gxXWg1GPI+j2SLVKEAgkEiylvZZ0ry/yVs23zd5hDO1Fc7VKzgjAzz98Qf42JMv8cS3z7B85BimMDb8G96AJZFWomYQ+zgfZy2LBb/DdLvBvN9myHFpRBHVMCSRkuvtOtfbTTxzb5EyAmgl0a7baTQajUajeXvY19X1L/zCL/D3/t7fI5vN8thjj1EsbnWNzGT6u1Vqbh13DwxTj0PylsPdxSHs7kXf8VyRp1fmGXJA3rOsNl7IqVzE6SK0HERsII9VlJvhugvBREpOFUp8cGi8N1d4Z3GIVErO1cu0k5ii4RAkCZ5pcTRXxDIM7iyUGHEynCiUNi5SSkS1jjkzj3X9BubVGYz6WsVSGgbx0QPEJ5QolEMDfY+15Lh83+SRnmGGa5rKvMY0qYchGUMLRI1m0PG4f2CEi80afhLz2uQguYdO8vBLFxn9wp8w+D0PEVhJf4EI4MWIpouMDHA2uhqbwiBFcrFZJUpTHMPEMRLqUciVZo0nl2awhcHoNk7Fm5FS0I63cVfWaDQajUbztrOvq+vPfvazAPzP//P/vG216OzZs29+VZodMYXYkCW4ylQ2j1EWGysFg2pmSNTUHKI8XkEe3ygOO0mMZ5qMuJkNMRWgTGamvBxvNCoUbYdWEjG0ztnwibFDasMoxrwxhzk7jzG7gDkzj9FeM8CRQDIxSnz0AMmRAyQHJ8HZW0tqxrT48PBk7/9d02TY8ejE8Z6rFhrNe50Bx+VYrsiZehnPMLE+/kGi2MB+7Tw/8M3X+J1PPQjbtYFnYmh2sxCdreH2JoJqGPT+vTmGST0OOVNfwTPMbWNs+mEZgloU7L6hRqPRaDSat4V9CcR/+S//5c5thJq3lUHbZcLLshR01gLrnRQ51IaGi7xnCcbaW17XjCMmvNwWcbjKWCbL6w01I9hJYu538qoiuLCMubCMsbCMsVJFyDXDG2kYJJNjJAcnSA5NEh+egsyts7ef8nIs+R2y26xZo3k/ckdhkAW/zaND4xzND+B//xOIap3hmXk+9c3XeP7TH0B2bx51khhLGKoDYf0cYnGrQMxZNvN+m8PZPKBmocM0ZSXwlTHWPnAMg2qoBaJGo9FoNO9U9nV1/bnPfe52rUNzCxBC8GBplC/NXyNK017rqXx4XlUMt9H2fhJzqHvh10NKRKOFsVLl8OISn5y+zngrIF9pUOhsvYBMCzniiVHSgxMkB8ZJJsbAvn3ibcj1KNoOrhaIGk2PyW5cTG821zLp/Lnvx/oPv8WxuTI8dYbnHruPTpqwEvpY3dnEKbeovgw6/SuMBcvGEKKXZ2oI0Y2qENu3rW6DY5jUIx11odFoNBrNOxV9df0eYyqT41iuyLV2nUkvpx7scw0m0hS3EyLqDe5rtrlrIcRtnkHUmxi1BkalhohUVSELDHdflwqIhkswPkoyPkw6PkI6PoLMvrWzp+NelgdKIz0RrNFoFFuMmzIeS5//XoZ+4/c4dmGGTtblS3dN8dDACHcUBnm5tszVSp0JRhAVD3mktmWfQogtLsVFy7kpk6iMaTIb+rxYWeL04JjuStFoNBqN5h3Grt/un//85/f1Bf7f//t/f1ML0myP9ANothFxAmkKqUTIFJIU4hgRRogw4tFmg/zyAiPCxA5j3CDE9Tf9CXZ2EZSuQzI5RjpUIh0usZT3eAqftFTkB46ceouOeHscw+R4vr+xjUaj2cjg6ChLn/9enP/6R9zz8iXKrs2px+8ka9l8bGSKhdZFpJnASgZiAZbcdZ+lm8w9NYXBmJvhxeoSA7bLqc0GVzfBtVYdKSVH9e8EjUaj0WjeNLsKxFOnTuk7vO8AzFffIPj9PyW3+3UbB7p/tiM2DVo5j47nUMk6TIyNYw+WkAMF0mIeWcwjMx6s+7kPAB8OA8I0ebOHotFo3gZGDh2i+bnPUPrvX+Kjz76Bf+go8R3HMISg4NoEww28xRJyJbshAud24JkWedPi5eoSR3KFXuvqfiiHPmGaMOJkeL6yiJ/EDLsZKmFAkCaMuRkGblLEajQajUbzfmZXgfiLv/iLb8U6NLsgBwcQRw4QhxEIA2kIMA0QBhgG0jLBsZGOQ+pYvNapE1omlusSeg6+5xB0/yTd2cBFv81kJs/ExGH2kkp2sxUDjUbzzsA+foTgz/4ZvN/5Ct7vfoXOj/0gyZEDFG2H68M1vMUSYiGHfLMCsU+e4mZKtst0p8m1VmPfVUQpJc+uLFCNAh4ojbASqkzVry/NsuC3SaRkyHH50YMnMfUNTo1Go9Fo9oWeQXyXkB6cwP2bP05zpUma7l5GXFic5UqrxojrkUjZ9w59kKYczW3NstRoNO9d4rtPErQ6eF/5Fpnf/EPaf/HPUsy7tEvzDBopLGchEWDuoV1hPauisOoiXpiEO1fgru1vPQkhKFg2L1QWEdDLVt0LC36b2U6TWKa8Xi/jCINBx2Wu02LU9RAI6nFIlCaY2shKo9FoNJp9oR0+3qOMehkimTLnt1nwO1ueD9ME2zAY895acxmNRvP2Ez16P8HjH0JEMdn/9gcMluukBjDSRiQGlHf4vbCYheYmt9OOhXjyKOLcMOL8sNrHXL7/69dRsl0SmfK1xRmeLc8j5d5E6blGBSFQsT5+h0HHxTFMDmXzeKaFZQhiKQnTdE/702g0Go1Gs4YWiO9RBmynVzlUlvQbL7waUaRmdGzdNqrRvB8JH3uE4LFHEH7Iyd/9GkONNnJMtZaKxVz/FzVtjJcnEGdHNj5eziBiAzE9gKh1805rLnL9yHIi4EZe/beLEIIhx2Pcy3CmVuZSc6uD6mb8JGam06BkK1F4tM8Mo4EglVLPTGs0Go1GcxNogfgepWi75CybOwuD5C2bTrLW6tVJYtpJzIlb4B6o0WjevYSf+CDho/djdQI+/+QrZN1lpJCwlIV+xbfVymJ7YwVRNJwN/y+9GJEapOW1x8WFIYwzY3CjsGW3jmFStB2eWplnOdja8bCeVhwTJCnuDsY2QggkkkhXEDUajUaj2TdaIL5HyZkW9xWHuHdgmAkvRytWmYbtOGYl8Hl0aJxT+dLbu0iNRvP2IgTB93yUzv13kO+EPP7Vp8nklxCRqSIvNm9eUY+J0NpQCaQrENP7FknvW0AeqQKQLHU7FAITZpUwFK1N7aldirZDIlO+tXSDVrz97KJ6TmLsaj4jdAVRo9FoNJqbQAvE9yhCCB4aHCNv2UxkskQypR1HlEOfDw6P81BpZA8XWBqN5j2PEITf/wQXj4yRb/o8fu0PycZ1xJkxWMipmUOJ+lPx1l7X6Zq/SKDhIs0UJpow2YJB5SoaX87BV48gnjmASLtfN+3+AhFg3M2wHHb40tw1bnSafbdpJXvxXAahK4gajUaj0dwUt0wg/tRP/RR/5+/8HZ577rlbtUvNLWLIUa5+tSjkg8MT3D8worMtNRpND8M0efbjD3Hp8Bj5TotPVH+bXKeF8co4xssTMJ+DpqMqi6usCsSOpUxp8uFatEU+RNoJhAbEAuFbSKMr1nYQiEIIDng5mnHIU8v9TWtqUbCn6AopIZJaIGo0Go1Gs19umUCUUjIzM8PP/MzP8PnPf/5W7VZzCxi0Xe4qDPK9k0d4oKTFoUaj2UrBdfnjD9/F9WOT5IIWn6j+Fpn8AgCinIGyqh5Kq9u22ekKvUa3jbQQrO1MAPctYd9bhyeuk56+gfzgDaQTg2/1n29cfakQDDouzTiklcRbni8Hft/Ynq37AT/RLaYajUaj0eyXWxYQ9R//438EIAxDXnvttVu1W80twDIMPjo69XYvQ6PRvIMp2i6hkDzz8QeQQnDk8g2emP4i3yj8OZqVLMLvfl1MNmF6ANGxVPRhd/5QFsKNOxztYOdTwmYKQ6rllGyEqFpI34LsVvG3imOYRDKlFgXkrbWKYyJTqlG4o0HNKpYwNphzaTQajUaj2Rt7riCGYcgv/dIvce7cuR23cxyHRx555E0vTKPRaDRvHQO2o0YNDYNnPvYAV09MkW37fGLlCxQaLShnkE6MnOjOBrYcxMtjcKWk/n99BXE7VkXhDm2m66lHa6Lz+fICM+0mYZrsSSCaQtDpU4HUaDQajUazM3sWiI7j8Mu//MvU6/XbuR6NRqPRvA2MeVkcYRIkCRiCZz/6AFdPHCAbt3h86bcpRSsw1oKsqsqJlSxiMQ9OgjxWgWK4yzuA7L621566A7YwWPJV5EWUJrzRqPJcZZE4TbGM3b+6TGHQiXWLqUaj0Wg0+2VfM4gPPPAAZ86cuV1r0Wg0Gs3bxKrjcT3uCj1D8OzH7ufioRN4aYdPLH2BIes62Oma4QwgH1hAnqysGdTsRKYrLvdQQcyYFotBm1RK2klMkCasBB3kHkeoLSHwU11B1Gg0Go1mv+xLIP79v//3+c//+T/z//1//x/T09O02206nc6GPxqNRqN5d3I0V9xo7CIELz52F2cLp3FkyCee/hbjN5Ygo4SXzIVQ2kNr6SqrFcT27uPvGdOiGUe04ohOHJPIlIOZPJNudk9vZQqDME1JtJOpRqPRaDT7Yl8mNT/2Yz8GwD//5/+cf/Ev/kXfbc6ePfvmV6XRaDSat5xxL4ttGIRpsuYUmkl57bFjhDMBD555jY/96fN891CeG9yLPFjvWzlsxhGRTMnhbnyiKyxpupAIMLfGWKxiGwZxmlKPQoI0QSAwhNhzfqtlCOIkJUxTMqbBgt8ma1oUbGdPr9doNBqN5v3KvgTiv/yX/1JHJGg0Gs17lAHbZczNUA59RtzM2hOTLc5PHiIcgEefeo0PXXuSF475XJka6m3iJzHNOGLY8SiHfn8hZ6fIwQ6ikoFXxpEPzu/YxyIE1OOQVEr6RCIqJNCyIRdtEKumECRSEqYJAvj64gxCCD4+MsVEJref06LRaDQazfuKfQnEz33uc7drHRqNRqN5B3AsP8Dscqvvc1fvOETDhMe/dYZHrzyNWzrFuQdOgBBUwgDbNLnSqjOeydFOIvx44wyglBIeWIDnphDLWeR0EY5sb3xmCYOloIMtDKzNQlKiBOF0EeONEdKTK3Cs1nvcFAaJTInSlCW/Qy0KcQyDp1bm+ZEDx/XNTo1Go9FotmFfM4irXLx4kd/5nd/hl3/5l1laWgLg2rVrNJvNW7o4jUaj0by1THhZTARR2n9279WpIX7nE/cSWSb3v3iB00+dQaQpCZLjuQGG3QwPl0YZdjya0cYcwjm/zVzSRD6wAIC4WlKtptuQMa2uuAuwxbpoixUP8afHYLqAuD6g9nV5EPHaKOJPjyGeOghzeQQCP0k4Wy+TMU0GHZd6FNK+hfEXc52WjtPQaDQazXuKfVUQW60W/8v/8r/wx3/8x1iWRZIkfPzjH2d0dJR/82/+DVNTU/yDf/APbtdaNRqNRnObKdkuI26GRhwy5Hhbnk+RLB0Y5Uvfm+N7vvYSx89Pk2n7/PYH7+BYrsj9A8PkLZtmEvFau0JGqJm/ThJjCkEsU8hHyLEmYjGvqohHa33X4pkmlTAklinOumgLcWkIIQWcG0EgkEaKSA2YKyCFRDQduFyCR+Z5pbrMnN/iQCaHKQwimVCLAnLW3rIYd2I56PC1xRkeHhzl7uLQ7i/QaDQajeZdwL4qiL/4i7/Iiy++yK/92q/xwgsvqHahLo8//jjf/OY3b/kCNRqNRvPWIYTgzkKJVhypTMR1RGmKKQxsYbAwmOOrP/gR6gM5JmeW+PNfe5mBMKZgOwghGHE9JJJy4LPgt1kOfEa9TG+WUB6vAmBcGEa8MAHh1q8jxzCJZLLRNKfqImqeEoLdoUN57xJyqK3+fOw60kwhNHEMk4Wgpaqiort/CfVo98zG7Vj93ovSlGfK8ywFbWbauntGo9FoNO8d9iUQv/zlL/P3/t7f48Mf/jCmaW54bmpqitnZ2Vu6OI1Go9G89ZwqDPJQaYylsMNMp8lSoCKM2knEgO0w7HiEaUo7n+GrP/AR5sZKjFWajP7G7yNWKgAMOR5FxyFrWxzI5hmwHe4qDCGEIJUSCiHp/QvITIRYySJeHVPzg30I0xS7W0EUV0sAyLuWkYUAmQ9grIU8PY88PQ9eAnaCiE1G7QyTXm5NXKLcUVePB9gggttxRC0KmO+0eKNR2RKRcblZ4/duXOZqq85TyzeYaTc5mMmzELTwdZupRqPRaN4j7KvFNAgCSqVS3+dardYW0ajRaDSadx+GEDwyNMZkJsdy0OG5spoZbMUx9w4MYBmCa+0GAJFr8zuP389nn7vEgSs3yP36F+h87jNkjx3kh46cIG3GmIieEHO6MRqeacFECznahmcOIMpZuDyIPFHZsBYTQZCmyhVVAhUPaaQw1UAeUGvYErXhJODbEBvgbBR5GdNi0e8gpUQCX12Y5uHBUQYclz+Yu0ozjpQwlGqtx3JqxvFio8o3ltRN0D9dmCaRkkkvhyUElShgJfQ5kMnfuh+CRqPRaDRvE/uqIN5///387u/+bt/n/viP/5iHH374lixKo9FoNG8vphAczOY5mM33qn6JlIx7WfKmo6qAXXwB09/3UYIPP4TwAzL/5YtYL5xhLJPtVf5c08Q1TTKmRbjeAMeUyAcWVFvo5RIsZzaso+S45K3uvczIQMQmZCP17SXom8OI3d1/uPWmpWeaNOOQVhLTiEMWgjZXWnXmOi2qYcCY63HAy+GaJmdqKyRSEqUJL1WXyJgWU5kco67Hge6xKTdUwbLf2fJeGo1Go9G8G9mXQPxbf+tv8eUvf5mf/umf5jd/8zcRQvD1r3+dv//3/z5f+tKX+Bt/42/crnVqNBqN5m2gZLtkTYuV0CdjmYx7WTKmhRCQSMmi30YIKDou4Sc/QucHPwmA+0dfJ/rtP4FNbqgl2yVMN842kouQ9y4hEIjXxqC8Zo6TMa21TMaW09t+R+zu/qOtAlHNNaZUw4BaGNJJYq60apxvVHANA1Mo0TfkuMz7bWbaDabbTSphQMl2evvozTQCOdPkcqu2ZWZTo9FoNJp3I/sSiI8++ii/9mu/RhiG/LN/9s+QUvLv/t2/Y3p6ml/91V/lgQceuF3r1Gg0Gs3bgGUYTHhZloIOhzIFMqZFxrKQKBfPQcfjibFDTHXbK+MH7qLzlz6LzHok33oB97/+AfhBb3+DjruxgrjKeAt5pIqITMTzkzBb2LpNq+s8uptAXG0rjfp/xQkEC0GLauRjGyatOGbeb1Ny3N42pjDIGBZfX5rlleoynmlum504YLssBR1eqS7vvC6NRqPRaN4F7GsGEeD06dP8p//0n/B9n1qtRrFYJJPJ7P5CjUaj0bwrmczkON+scjinRFvGtLCFgZ8m3F8a4WiuuGH75NAknZ/5c+R+60tYl6fJ/offpvPnvx85VCJvO8ht3GjkqTIyH2KcGYOZwtqMYRfRFYgyu7MLqbQT1Xnap8UUIG9ZXG02KNg2XrcF1l/vlNpl2PVoRCGLQYcDmey272cIwZib4bXaMsfyxbWKp0aj0Wg070L2VUF86qmn6HTUnIXneYyPj2txqNFoNO9xhhyPCS/LhJcDugLRMBlyvG2NWWSpiPM3f5z41FHMcpXcf/gtzIvXyJrWdmalap5wsom0E2i4sLnQ2H7zLaYAecumFgUsB36vhfXgNsdRsB0OZ/MbWkr74ZkWKdCKd1mbRqPRaDTvcPZVQfwrf+WvYJomd999N48++iinT5/m9OnTDA4O3q71aTQajeZtZtTN8MToQTKm+sowhaBkuxzM5nomNP0Qnkvw576P5GvfxX36RTK/+YdMfuRhxKE8iZSY/Vo2BVAMECtZZMuBQqhaRSNjrcU0u7cWUxEafcWoKQxSJH4SM2BvXxncP5KoX/usRqPRaDTvIvYlEL/zne/w3HPP8fzzz/PMM8/w67/+66RpyvHjxzl9+jSPPvoon/3sZ2/XWjUajUbzNiCEYGDdfB7Ao0NjFLqmLTtiGISf/DDp5CjeH3yNwade5MemR/nCB04yWhzoP9dXCGAlC3UXCiHitTHEshJy0o3B2rYGqdilggiQMSwacdhfpN4kUoqtBjwajUaj0bzL2JdAHBwc5NOf/jSf/vSnAWi32zz99NP86q/+Kv/tv/03fvM3f1MLRI1Go3kfMObtr/IW33WC9sgQ3m99iamZJX6q1uT3P3oP9sTYlm1lMVQJFnUHeYCeOAQgt3X+cDnwQcCI03U/dXYXiEOOy9Am0ftmMYSaZVxlwW9TjwJOFXSXjUaj0WjePezbpKbVavHiiy/2KomvvPIKruvyxBNPcPr06duxRo1Go9G8B0hHBmn/9OfxvvhVCuev8Oe/8iLPPnYfsycObNyw2HU9bbiQbKrw5ZVAbMYhUSop2jZBGmMKg3Yc004ikiRgEiDcof31FlYOVzGFoBPHvf9/vbZCJQo4kS9h3Ib302g0Go3mdrAvgfi5z32ON954g+HhYR599FG+7/u+j3/4D/8hd9555235stVoNBrNewzXwf/cZ0ieehH3G9/lsW++woWlGq984E5Ss1vx82KklUDDgbb6mpKlDvJgHYY7SCmphAGWMGgnEaNulqlMjmfK80x6eYYHPXzYsYJ4OzCFoJMogViPQq63GyRSUosCBh1vl1drNBqNRvPOYF8upm+88QaWZfHQQw/x8MMP88gjj2hxqNFoNJr9IQTRY48w/aPfQ8e1OXXuGp/8g6fJ1Vvd51FGNakBq+2luQgmW+Ck1KKQQcfj7uIQUSq5uzjEfQPDfGx4iu+dOMzp4TFSM1mrIM4UEN85CMu313XbFAadRLWYzrQbhGlKimQl8G/L+023GyRyb6Y4rTjipcrSbVmHRqPRaN5b7EsgPvfcc/zSL/0SJ0+e5Mtf/jJ/8S/+RT74wQ/y1/7aX+NXfuVXeOmll27TMjUajUbzXmPwzlPc+MnPsjQ+yFC5zqd//9scvDKnniyqVlKxqKI1ZGatdbMeR9xTHOKhwVFOD41xKJvHMy0eGBwlZ9k4hkFqJ4jEhEggLg4hWg7ixQm40T/O4lZgCYHfrSBeaFbJWyov8obfuuXvVQ59ni0vUAmDPW2/4Lc5Wy9T2+P2Go1Go3n/sq8W00wmw2OPPcZjjz0GQBRFPPXUU/zKr/wK//pf/2uEEJw9e/a2LFSj0Wg07z3GRsfo/OTnePWPv8Z9r17mI19/iUtzK7x05FGghKh3WzMzKtoiSlMcw+BQtoBnWnxgaHzLPi1hgB2CD0wPICITmQ8QTRemi8ip5m05FlMY+GlCO45oxCF508Y2JLPtJlGa7hgJshOV0MczrV7MCMC1Vp2loNNrad2NpaDDUtBhPmhvcaTVaDQajWY9+zapKZfLPPfcc70/b7zxBmmacurUKW1So9FoNJp9k7Edcp/+BL8/XODTT7/OifPTDC/U+K77QzTtrgNot4IYpAmeYZK17G33J4RAdLMQjUtDAMi7l+GlCWV8k7LP/pltuFxCzBSRH5wFL8EyBHGiWmDDJMW2TRxgNmox12lxOFfY91ukUvLk4ix+GnNHfpAB26HkuLzRqBKmyZ4EopSSG50mhhBcada4U7uqajQajWYH9iUQP/OZz3D9+nVM0+Tuu+/mQx/6ED//8z/P6dOnKZVKt2mJGo1Go3mvM+pmOHTfPfzHgsefffYCk/Nl/oz4b7w88HGuZu/uVRDDNGHQ8XbNLzSdtdk8OeDDQKDmGleyyKbTa2G9aSou4tIgAoFcysGhOqYQJFJSjQJSZG+NrjB4rbbMwWx+326mjTikGgV4hslL1SVSKbENgzBNyBg27Xh3gdiKI+pRyISXZcFv04jCvWVYajQajeZ9yb4E4g/+4A/ygQ98gIceeohM5vYO+2s0Go3m/cWJ/AC1qQP85scdPnJuhtOvXuV09WtMBFd4LjlOiEuQJHvKL7THAvwVD2OijTxW6RnfsJKFuruzQJSo7Tc/tphTGYu5EHFmDNHdSKxkkIfqmMIgkSm1KAC5toNh1+OG3+JGp8XB7PYzkC9Wlhh2vA2VxkoYkKQpg16WQdRxh2mClFCNAurR7kK3EgVEMiVv2VTDgMWgowWiRqPRaLZlXwLxb/7Nv3m71qHRaDSa9zlCCE4PjTPguDxpQF3ewYfOPsWBzlWGf/cGz37sAWaGMgzYuwvEwqGIq4VzTGZyvcdkMUAAou4iaUDZg6YDh+qwmEMsZVXuYiUDmQj5gRuqFVWCOD+MuD6g9uPEiNBCjrSgnFHbd9tWBYJaGLK+UGgKA1sYnKmtcCCT29b5e67TJCXdIBDLob9le8dQ8R1OYlCPdxeI5cDviVlTCBb9NifyA7u+TqPRaDTvT/Y9gzg9Pc2///f/nhdeeIFqtUqpVOL06dP87M/+LIcOHboda9RoNBrN+4iDmTyuYbIwmeNPVv4CDwRPcrx8gY//yXMUTk7ifu+BXffhmRYpcuODxa6DZ10JTHFuBNFySHMR4swoIlk3mBiZyIWcita4NoC4PoC0EyUWu+JQPrCIeHlcta3WXSgFgCRIE6xNom7Y8ZjpNJn32xtE6ypSShpxhPA7Gx6f67TImP3zHG3DpBmFpFJu27oqpeRau9HbR86yme00d3yNRqPRaN7f7GtM/7XXXuOHf/iH+fKXv8x9993Hj/zIj3Dffffx5S9/mR/5kR/hzJkzt2udGo1Go3mf4JkWRduhVaoTj8Q8/+EH+PYnHyFwbR66OMfJ//JHGPM7Z/o5/RxD3USJvKYDoYFoqTZL8boSh3KkRfroDdKH5tXjV0uQgrg2gEQiT88hPzJDet8i8sEFMCVyqCvoyqtjF4IwTXpVvlUsw8BAcLa+0ne9QZoQpgmVMCBK1fykn8SUQ5+s2f9eri0MQpkSpMm256EaBayEPgVLHWvOsqhHoWqD1Wg0Go2mD/uqIP6rf/WvuOeee/iVX/mVDTOInU6Hv/pX/yr/6l/9K37913/9li9yP/zGb/wG/+//+/+ytLTE3XffzT/6R/+IBx544G1dk0aj0Wj2x4SX4/VghdJpJdaeamW5+P2P8snvvsHhuTLWf/htwo89Svjhh6BPhc0xTKTcVCETwICPWM4hp4trD/vqq1AeqsOgD1IZ24iaBy+Pq4rhaAsK3XbOyXUxGcNtuDCs3EwP1ZFAmKa4fQTqsOtyrdVgOegw4m6c4+8kMWGaAinNOMQ1TM42KvhJwojj9T1HtmEQpSmdJN4QgbGeBb9Nsi5iwxQGqYRyGDC4zX41Go1G8/5mXxXEV199lZ/7uZ/bYlCTyWT4K3/lr/DKK6/c0sXtlz/8wz/kf//f/3d+/ud/ni984Qvceeed/NzP/RzlcvltXZdGo9Fo9sew45F0O0TjNMUxTRZtkyf/zCP43/txMATuN54h++u/jbG4tSpnGwZCyC2Py2FV8evNE3a3kU4M3ecQIE+WkUIillU7qDxc67/QQoScbCACC3F2BANVDdxcQQQlWhPgUnPrvvwkQSIBSSUM+OriDM+XFxhy3G1nFldbRHeKurjaquNtEtCmgEW/ve1rAC40KrxaXd5xG41Go9G8N9mXQHRdl2q12ve5Wq2G67694bu/+qu/yl/4C3+Bz3/+85w8eZL/7X/733Bdly984Qtv67o0Go1Gsz+KtgNIpJREUlXA7hsYYszLEZ2+j9bP/hjxwQnM+WWyv/rfcb71HCRrrZaqgthnxyNKGIlYiSZ5rKLaRw/WNzqXDvnID8wi86Eyoxn0t12rvHMZ6caIhTyO7+Inca9it5lB2+FCs0I7jjY83kliFZmB4FKzxlynxcFMntwOeY/rX9uPahgw77e753KNrGUx57e23Z+fxLxYWeJMvUy0Q/uqRqPRaN6b7EsgPvHEE/yf/+f/yXPPPbfh8eeee45//a//NZ/85Cdv6eL2QxiGnDlzho9+9KO9xwzD4LHHHuOll15629al0Wg0mv1TtB08y8TvzublTIvHRqb44PAEAHKoROfHfxj/ez4KhoH7zWfJ/offxlhQVS9HGBhCkG5WidkYmVOtohIJR2rIj1+H49WtixgIkR+ZQT68sDX2Yj22hO4sohvtHB+Rs2w6ccKFxsb385MYKSWuYbAUdMiY5p5MZCQSP9ko4qI0QUrJK7VlEpluqWa6hkkrjvC3EZZXmnWqUUAzCpnfpdKo0Wg0mvce+5pB/IVf+AX+p//pf+Inf/InGRoaYnh4mHK5zMrKCg8//DD/4B/8g9u1zl2pVCokScLIyMiGx4eHh7l27dpN7dMw3jkOb6treSetSfPeQH+2NLeDN/u5yho2JcejGYXEUjLquFimsfFLyzBJPvQgnVNHcb/4VczpObK/9ltEHz2N+6H7sUyDBIkpDKphgGuYZCwLRtvQciAXIWzATtlZAe4BWxnLFKRHPlfcti0UVC7iC9Uliq7bi5topTGWYZC3bG74LY7lBnbcxypZ0+K12jIF2+FYvkgjCvnS3DXGvAwXm1XGvOyW/bimRTkK6KQxtTjkervBh7rCuxVHvFZfYcB28dOYy60a19p1ht0M9w4M3+zZuWXo31ea24H+XGluB+/mz9W+BOLg4CD/+T//Z77xjW/w6quvsrS0xOjoKA8++CAf+9jHbtca3xRSyj19yW7GsgyGh7cPNH67GBzcao+u0dwK9GdLczt4M5+rk+EQLy0vYgKHh0vb/04eziP/1k+QfPsF4j/4Bs43n2X04hWOfeAknQN5LGGQyBBfpAgrpXQ0IrgqsSdCnPytGY2I8oII8EwPq6DEYtoyEZkEsalXJ4eLE/i83Frhnqkx8rZN2hQU8x6jmSyj7P27J5d3WfE7PNtc5OjYIL4PbSNhJmozlM8yuMkzYJUKIVbeoe53mK23yZU8LGHwzPQ1QivlcL5IJ4mZ7rTw44Q7XfMd9Z2of19pbgf6c6W5HbwbP1d7Eoi+7/P1r3+d2dlZRkdH+chHPsInPvGJ2722fTE4OIhpmiwvbxyqL5fLW6qKeyGOU+r1zu4bvkUYhmBwMEel0iJN+w3WaDQ3h/5saW4Ht+JzZQWSVke1g6admJWV5s4vuOdOxOQE7he/hnn9Bt//e8ucu+Mg33jgKGPFAY7nB/jqwjRuRiAeC4gyMVHzFn3mpYMAgkZK0AxgxUM8P448UYET1S2b2wjmOy3emFviaK7IXKVBnCa0kv3HT3gYLLdbvDq7QDnsIMOUIc+DBFrN/vvr+BGzyzWm2w0WW00uzC3TjCNeXJhnysvRbqnznk8t8obFtXKV2XwVbxu31DfLgt/GM00G7J0Fu/59pbkd6M+V5nbwTvxcFYsZbLt/tu56dv1NPz09zU//9E8zOzvbeyyfz/N//V//1zuqaug4Dvfeey/f+c53+NSnPgVAmqY89dRT/OW//Jdvap/vlB/metJUviPXpXn3oz9bmtvBm/lcFUwHKSVI8IS1t/0MFGn/pc9ivXIO40++xd3nZzg0vUj5Ux/GG5nCNUyCJMHtziHyJj/yldAnZ9k4dqKaVENDda5c78ZoLGSRxyt9X2tKwUyzwZSbox3HeIapjvcmyJo2b9QrdNKYvGntuh8TWOy0WfI7+HHCXLvF9XaTrGFhCtF7/eqalpOYFd9nMnPr74SfrZX5bnmeI9kinxw/uKfX6N9XmtuB/lxpbgfvxs/VriY1/8f/8X9gGAa/8Ru/wcsvv8wf/MEfcPfdd/NP/sk/eSvWty9+5md+hv/yX/4LX/jCF7h06RL/6//6v+L7Pj/6oz/6di9No9FoNPukaDvKjVSgZgf3ihDED97NVz73OK8dHiHfCTn8B99g8AtfYSJMd4yF2A+NKCRIU1YCH+yuUUxkQmDCclYtpemq/+9Dwba43mnSiEPCNNnW+XQvFG2bahRsn4kYmBCvjVu4hslS2KGTxAw5LpeadZaCNiVnawVPCIEAyuH2Tq43y3LQ4bvleRzD4Fq7TuU2vIdGo9Fo9seu30Yvvvgif/tv/21Onz6N67qcOHGCf/pP/ylzc3MsLi6+FWvcMz/wAz/AL/zCL/Bv/+2/5Yd/+Ic5e/Ys//7f/3uGhobe7qVpNBqNZp9kTIuCZeMIg+xNtDYeHB3H/+z3UPvz309aKmBfuMpnf+873HH2GiJNb2pNq66ocZpSjQKOZAskSHC6AjE0YS6PkKKXsUi5/xxg1rRpxSHfXLpBlKZY+5iXF2eHES9M9CqgpjAQgCXE1rn70EB8+xDi1fHeQ063kiqlpGg7VCIfEwNzmzU4hslMu8mLlUVudHZp9d0Hc50WcZoy5HjEMuVKq37L9q3RaDSam2PXb9ylpSUOHTq04bHDhw+rlpPlZcbGxm7b4m6Gn/iJn+AnfuIn3u5laDQajeYWMOpm6CTJTc2+rTqEUhikdeQAzreex/nuSzz+4iWqVxd54cP3MDc60IuB6CQxqZSEaUInSRj3MpjrHGYW/A5+GpM1LTpJzB2FQR4qjXKt3SAyY1yAyEAsqjZMeayCuDyEWMkgJ7eKKkMILGGyFHSYyuT2bqjWthAz6thkYIKnxOmkl+2/fdVDJAZyOaMqiW6Ca5hUoxAhBI5h4gqjb/VwlZxpc73T4I1GhcdGJpnKvHnDmlRKLrdq5LrV4ZLtcLZe5o7CIPk95D9qNBqN5vZw8/0sGo1Go9HcZkbcDEOOu21la8/YNuEnP8z0j/8QsyNFSpUGn/qj73L/ky8Q1OqEacJy4BOmKVnLZtj1KIdrBi8LQYesZfHE2EEypsWdhUE+OjLJgO0w6Lg0RdfULDKhbSONFA7XVdbiSmbbWcdxL8OBTG7745vLqUrhQg66RU8xW1x73l8TzqJf9RAQFU/9FwFLSkRahkEniXqV2TEvuyUvcT1Zy2LY9hhy3FvWaloOfVYCn4KlsiPzlkMnjnmluoSfxCzqDEaNRqN5W9jTLdmf+7mfwzS3fnH89E//9JbHn3rqqVuzMo1Go9G87zmQyZO7hdWkzNQEv/k9D/PA9AqPPH+eB64vc+dchWfuO0rmgVN8z+RRhBBcbdX5yvx1UilJpSROEz42fpjJTI4j2QK2YfSqi4eyBV4MFhmyEvAt1V6aC1U24qCPqGSQi1kY37/gEVcHEU0HsZJVYjMXbZxp7FhQ2sX5tOat7W8xhzzYAOBItrivttasZZHIlEoY3HSE1CqJTDnfqJIisdbNXo66Gc7VK0y3m/hJwhNjBziSK+6wJ41Go9HcanYViH/9r//1t2IdGo1Go9FsoWA7FGznlu3PMy0GHI/Xj4zyxuQgHzlznbvOXePjL16ic30Z+X0uyeEpDmbyjLoZyqFPKiVTmTwT3RbOze2u4263tdNOEHFXvGUiAOTRKqKSQVwZRI61YTtNFRlQ9mD9NpGApo10YigG0HQQLXUupJAIKTZUEPuSCKi7yFUTnXJGvZed3pQpjmuaVMOQThKTvUnhLqXkuyvznKmtMOZubIt1TbPbcipxDME3l29QsB2GHK//zjQajUZzy9ECUaPRaDTvK45kCzxbXkCYgqXHH2XmjsPc+9SrHFiswm/8LtE9Jwk++RFOD43x9aVZOknM3cWhbStmk5kcp/IlamaES1fMZrpOqcMdZCFANFzkSgZG+ufriislxLUS6UNzMNrdpu4hEMghH3m/MoWTLVu1rBoScXYU4ds7J3XUXFXRHPTBShA3ishyBsZb+z9xgC0MwjShGUc7CkQ/ialFIeN95iIbccT5RpUxN4vbpztpfRbiTLvJdKuhBaJGo9G8hegZRI1Go9G8rxj3siCUScqQ4zF15DAXf/RTdH74e0jzOezXL5L7//0nTjx7lh8cPsCjg+Mc2MGUxRCC00PjCGfNGVVmVQURocxqQInAbWkpsSXWt4NW1d/lwLqZv1wEh+sw0G0r7exyn3d1HyUfOaT2szqTeDOoOUdo7xIVcqFR5UtzVzlXL2/JZGxEIbFM+4rDzeQsi2vtxk2v93ZxoVHheuudty6NRqO5FezfFk6j0Wg0mncxw26GvOXQiqOuyYzHkVyReGic+ORRnKdewHnmZdzvPM/Bl88y+vgHiUsjO+4zZ9k4brj2QGadgBprI3MhoppBVjwY7GPystoq2ljXTlvtVtJKfbb34o2v2wbRzWNksLMWxbFN7MZekVLQjKNtn0+l5GKzRixTnlqeY8jxGFtXSazH4bamPZvJWTbl0KcehRRvYavxm+VKq45jmBzOFTY8/kp1mclMjlH3zZ1jjUajeTvRFUSNRqPRvK+wDYPDmTxZ09oqOhyb8PEP0fqrf5HonlMYrTaZP3yS7K/9Fua12R33a7rrVE9mnYASII9V1V+3qyL2BGJXFKZAzVNuqPlw6/Z2irRS9brtxJZvImoe0ougEIKXIDORmmMMb/7r3zYE1R2cTJeCDuWww4SXJYUtYnIl6GwwptkJxzCJ05Q5v8Wr1WUaUZ9z8RaTSEk58HsZjqvUooCXq0tcb+8tyzGRKc+uzON341WutGq8Wl1mOejfhqzRaDRvFVogajQajeZ9x6FcgSO5woacw/XIgQL+D38PrZ/6HMmBccyFZbL/6ffw/vsfIVaqfV+zYUwus6kFc7ypxNlKFpqbZvdi0TO3EYEFS1nEUwcRiaGqh9t9U3uR2ibeZoNupMUG45uhrvio7FDhkqhYjaT/zKVjmBsiQFZJpaQc+lxt1ZAITGEgkTQ3ibrl0MfbIVJjM5YheLW6wlMrcyy9ReIp7Rrp9BOkrTjCTxPaSUw1WjsPl5t1KmHA9VaDVO5eIq1HIRebNeb9NktBhycXZ3lyaYZrrd0F5oLf5k8XppnrtEilxE9irrRqRGmyvwPVaDSaPugWU41Go9G87ziULXAoW9h1u/TAOO2f/FGss5dwn3wa+8JVrEvXiR66m/CjjyLza62TjifoANKNwZTUogA/TZTLqQHyUB1xfhhxfQB5z/Lam2xqExWvjCFSAznYQd61sv3ivBiarppDtLcKGbGYA0COrRnSyEEfMVtEVDzkdkY1VwcwLg4jD1eRd5a3PJ0xTaphQC0KeoYyqZQ8X17k1doyCZKh7uOOMCivE1F+EtOIQgr7cEAdtD1WQh8QtHZobb2VNKKQc/UKUZrysdGpLc8lUiKRrIQ+i0GHZhRyqVVj1M1Q6Z6bwV2MdepRSCXymWk3yFo2iZQM2d6eRHA59Hm9XuZqq07BcpBIqlHAfQPDfHh4kjjd24ynRqPR9ENXEDUajUaj2QkhiO85Seuv/g8ET3wIbAvnhTPkfvk3cL7+DARKnDmr5pvd9tJ6FBGl6ZpJy1RDtYzO5VXUxCpdgSi7vaI9cfjonDKl2Y7MDnOILQsqGRVvsX6GcfXvdXfra0BVM6+V1N/n86rVdROeaRGmCa9W18TrmdoKL1UXGXJcDq3LrnRNk/K6dtR6FBKkCe4+KoiuaTKVyeEaBrVol8zHW0QlCvDTmPONCvOdjUK6EYdIKbGFwYV6haeW53ittkIniSnZDimS5WD7FtzZdpNEptSjkDiVXG83udSsUbRsXNOkEgYkss+JX0c1DChYFuNuBpAYwKSX5fVamd+dvcTv37j8lolpjUbz3kMLRI1Go9Fo9oJlEX7kEZr/448TfvBBSFPc7zxP7pd+A/uZl8llYyXyigGdJMYzTbKmveb4aacw1USkBuL88Nrs4KrAW2deI49Xdl2O7BrViPVibyEH0wXEuREVb3GktjF70YuVSG3Z6v2XMxvnEWeKiKjb7hpasJCHmQLEG9tNx7yMEk9+iyhNOFMvM2C7WzIiXcNULZndc9CMIwRi28iQnXAMg0qf1tZ+pFIy3W5scVDdK8tBB0sYCATnm9UNz5XDAMsQ5C2ba+0GBctmKpNjysshhMAWBrPbOK92kpjvlue50WmxFHQo2Q7tJKIWBeQtG88w8bsxIjuxEvq4hollGBS7WaGOYTLmZgiThFqksio1Go3mZtACUaPRaDSa/ZD1CP7MY7T+2l8iuv9OhB/g/el3eOB3f5fBka8jj5epRAHHcgNMZXIbLvblsQrSjRE3CtA1rBGrFcSxFtJKkMNtGNq+AgUqbL6aq6nXXxlEXBiC0EC8MoZxbhRRziKzIRypAqq181qroQRsNlIzj4tZjBcnEee6Dq1tC3F5EInsCVTjtTGMs6MwXdzw/k63AniuXmHeb9OM+7eNOoZJmKa0YiVW5jotDPYvDlf3papuO1fXABb9Nt9dmadykxXH2U6TrGlSsK0tZjRLQRvXsMhZNoezhS1GR0Xb4Xq7Sb3P/GItDFgOOky3GywHHTKmhSUMLCEwhMAyDFIpaUbbC8TV6qPTpwrrmiYlx0UiCfU8okajuUm0QNRoNBqN5iaQAwX8H/oU7Z/9MaJTR7EbLf7My2f43j/4JkenlzmWLXAgkydK11WxvAT58DzSSJWjaSLWKoj5EPmxaeRD87u+dyuJqWTrtB6YRloJ4mpJVf8QSDdG2gny7uXet3wjjrAMQ1WVum2rYrYr+lYykAjEK+PK9OZYFXm0ijTXRJHoY2oz7HhcbdV5o1HBEP2rgoYQgKQVR4Rpoipu9t7nD9ejxGZCuyu4EymJNonFIFGi6Hq7wY1Oi0W/ve/3accRtTAka9pkTZtmHPWE5oLfphGHeN35PruPG2vGtAjShEvN2pbnqlFAkCRcbTVoJzGeaTHhZZnwcr1tpJQ04u3dWptxtGubrgDCPQjptwspJYt+e09mPhqN5q1HC0SNRqPRaN4E6egQ/p/7fhb/hx9kdrTIQLXJD3/7dY7/1y9xcHYJA7lxpqwQwmgbkRoqk3A17N6LVRvqpm/mZhz2hM8q1TBk1M3QGWzAIeV6uRqhIe9aRj5xbUMVMkgTRt0M9ThE5rriY0WJPhGbiLMjiIaLLHVU9dCUyEfmSB9UYpaqtyVOwzVNYpky77coWjtnFLaSiAW/TTuJyK1vQ5XA5RLiW4egvvM+bMMgTteqa1daNZ5ZWRPTC36b379xmYvNKpdaNRzD4OoeHEFBtaSuVtwqYUAoE1zTxBCCFBVr8XJ1iT+4cYUoTXd1YS3ZDuca5V5r7doaOxS7baWxTPsKTFOIDe6om2nFEYlMd4kKEe/YCqKfxHxr+QZ/sjCtIz00mncoWiBqNBqNRnMLkIem+MKnHuZLjz/A0mABZ2GZsS/8CT/+1VcoXJ2DddUSOaIqW2IpC76lWj+9rTNjUkrKYUAlCphpN5nrtKhHIYZQIfJRmiInm2pfqYEUci3KYt0+kDDqZohTuVZBXNfqKeaUo6u8Y2XtyqAUqIiMkq8qi42tAm7I9mhF8UbRtwlTCGY7Ta616lsqjeL1UYxLQ4iOjbg8uNPp7b6AnvlKOfCZ71YIW3HEt5ZusBx0eHplnlYUMeFlWfA7u87zAVxu1fjW0g0A6nG4oQnWFQaXWjVeqiwxYDtMdmcNdyJv2bTiiEV/7WeRSsmC3yJrWpg7NNp6psmSv32LcSuOd23SVS2me68gRmlKJfR3Nce5FZyrV3i9XqYZh2vzuRqN5h2FjrnQaDQajeYW4BgGpmlwfqLEyuGP8Lm2gfPNZxlZXOEHv/4Ky69f58zDp1icHIaRthKFS1mITHCSvrdsO0lC1rL59PhhyqFPOfC51m5wMJNnwssy22lCLkIWAkTDVeLQ2ljqC1JVDburOMjFZpXA67DaMCqtFNHNUZQDPgxsbW2UJR9RzqpqpwDyYc/4JmtZHLF2jgsZdjJcbdVJUsmwuy76oW0hbhSQTlckLGWhbUF2B9EgoRVFDAmb5aBDO4noJDGXmzVWwg5HsgWWw4CsZeGZFsuhz6LfJp8f2HaXqZScq5epR6oyt9I1qFklZ9mqHRLZc2fdjVUB2VzXKtqIQlpJzKjjkbfszQXZHhnTohL5NKOQvL1VlNejYIO474eJ6LXi7sZsu8k3l2fxk4SPDE9yZ3GQRhSSt+ybMhPaiShNudCsUrIdGlGsnVbfwTSjkDm/DUhOFfZw80bznkILRI1Go9FobgGWYWALg3oSUHJc4oMHiU8dhXOXiJ98ipGlKo9/+VmWxwY589BJlgbGETUl1eRYm+l2g6xpbxBR7SRi1M0y7qk/AKe7VZeZdrMnE+TBOuLsaN9sw3YSM+R4DDoeU5k8s3ETD6lExlgTuZRDRCby0DbtmF13VXFhCHFBkD44ryqLe8Q2DA5m8kTpppbKhe7c3YEGUkiMy0MwXeybvbiKZRhUAp8Jx6MahfhpQitW7asZ00IIwai7MX9wNxGy6LeZ77QxDYNmFPUcQlfJmhb1KGTM3TqHueNxC2NDxMdK6BOna62h21cQLZYCn/PNKo8Mjm15fiX0cXZsL1XnaS/VuXYc8/TKPGGS4BgGr9aWKdg2T63M8+HhCQ5k8rvuYz/M+y2qUcABL4efJFTCnc2YNG8PldDnT+anqUYBjmEy6mYpOdtE42jek+gWU41Go9FobhEZ08JPk16APELA3Se5+uM/xO9/5C5qpTwjixUe//KzPH7j9xj3ryMPV5B3LSOE2BJN4Kcpk5nshsc80+r96XGgQfrhGZjaGq/QSWKmuhf6BzI5QiPptbPKgQB5oowcb8J4s/9BDQTKVKcracR2GYq7sHneTiyoNcmJJhzsZkTOFNdmMvvgGSY3Wk3qUaDm+6SkFoUsdR1BN2MiaCXbC8Q4TTnfqKpZQ5myEvo04mhDyLwQgslMbpeZv604hkm5G8vRSWJerCyR2WN4/aDj8np9ZUt7rKpw+lviRDZjCUF7h+Ne5ZXaEuXQZ9TNMGi7VMKAp1bmmW43qOyQ5bhfOonKlHyjUcHCwBACxzCphNub8WjeesI04XqrwZOLszSTkEPZPJFMON/YPXZH895CC0SNRqPRaG4RnmliCWNLK+KRfJHlEwf5r9//AZ56/CHqAzlGq8t8bOX3+dT5LzJ1bQ4h2VJWklIy6GysiK2iBJFQM4YCZX7T5/USGOlW1YYcZTYji4FqcS35cKiBfGBx+ysCUyIfnic93q3stW/OhXQDbUuZ4uRCNRPpJnCkpjIiXxtFPD8Bl0pbjHEKts1K4HO11SBFIoTBjU6TThL3FV/KubW/WYufxDy5OMO5RpkR10OiKlxBsrND6F7xTJN6HBKlCS9XlyiHHYa3+VluJm/ZdJKEy5syGOvdfMPdhKYpDNrxzhVEP4m52Kwx5LiI7mxoyXaohAFDttub77wVzLSbfG1hhqutBsOuusHgGgaNOHxL5h41e+M7S3P88fw16lHIhKtuTA3ZHucaFRp9Yls07120QNRoNBqN5haRNS0cwyRjbazw2IbJfQPDNJKI6aMT/PGPfJzvPPEwlaEiQyt1PvrkS/zUl57nniuLpN0qYpgm2IbBoN2/YpfpitFohwvsdhKTNe1ee+qg45G1bNon55GPzkF+jzNgQ37PLZXWmxSIkYF4rds6Od7qiVp5rIr0IkQ1gyhnVcvp9Y35i6ZQOYHzfgsB2EJQCQNSJKbYekljie1n8ZaCDldadQ5kcjiGOpcrgQ/IbjzHm8MxTIIkYcHvcKFRZcTN7Gumr2jZnKtXiNa5kdaicNtjXY8lBGGa7ii+Fv0OnTgmu64aWbAdDmZyau4y6GyJEdlM3H2PREqeWr7B9dbWCjaoc+0YBge75xq65ydNehmZm4nSlDcalbc9CmPRb/NiZek9L2TDNGHWbzLsuIx7a5/VrGURpemOzrqa9x5aIGo0Go1Gc4vIWBaOYWy46F7laK5I0XZpxBEIwezRCf7kzz7GN77nURZGSwzV23zmmTf4gd/+Jodfv8Jyq8Ww421rjOKZ6r12uoivRyGHs/neRbltGEx4WZqm35st3DN2irQSVUF8E9fs4pUxRM1DDvjIw9W1J0yJvG8ROdYivWNZtbWeH4bmxuMvdKtcljDwTJNOEm9r2mIJY0vb7ip+kmAIemLL6wqWWyVHTCGQSC41qwRJ0rcFdieKlkMtDpnprLX+VsLdDWpAVU5jmfZ1MlWiTjLdbmAJo69ozZgWnSSmtoMoiNKEry3O8Cfz07xUWeLF6hJz/tY2ZSklc36L7KabJpahxP52Ar4S+rxQWWS63ejtZ77T2vbnebt4o1Hh28s3+Pby3C0TiSuBMk96J0WRVMIAf9vPqdwStaN5b6MFokaj0Wg0twjPULOBWXOrqPNMizsLg9TXt2oJwcLBUX7v04/wx5/5APMHRim0fD70zDn+xz98jh+4WkaE/S+gDSHIWfaOcQaxlBzMbnQZncrkCHe50F0IOtzobDK8EUAuUvmN/g5iJzARTx1AXBzcKiQTAeUM0omRj8yBvWmDwQD54AIcqSOPVZUYWsxt2GTAcVjpzhy6hkk9CrfNJTSFsW0lbbMYdE2TRhxh71KdIwWq7p5FciUMdjWV6YcQAlcYvFGvqDZiVDVrtwxGUMcdpylhn4v65yoL/NHcVa61GxTt/jcfDCGQEub9NucblZ6Ia3Y/u6mUPFte4EqrzkynyXOVBVzD7NuW2oojGlHYV3hICc1tZiXbSUw58HmpusRsu8mfLk7zxbkrvFxZ2vX4UympRcGOJjjtONqSU7l1m5irrTpjbobz9cotabtdCXz+aP4qv3/jCn+6MH1LRGctCnij/ubmBMuhj5Ry2yq3/ybFbDUMeLa8QCJVpMrZ2krvc61556FdTDUajUajuUU4hknOtDaYnKznWK7Iy9UlNee2bptIpvgHxjh/7Ai//8Y5PnN5iUPXFnC/8Szyuy8TPXQP4aP3I4sbXSWLtkN1m4vgVhyRsUzG3I0mN7u5EUZpStIVnetdNwHIRlDzVJtpZpuL6xt5RNOFpguBibx3ee25poNAIIvBljiOLYy24dIQYiWLPF7tPWwaBkdzRSwEEvDTeItz6SqWIYjjlCBJyVobRVozDrHWXQwrsRkwvul8bWF6AOP8MOn9CzCxTkQnQhnsrGvbtYRgJfS3Xd9uDDkes50WS0GHQcdjJfT3ZHRjCkEqJUGfi/py4Peqh4OZXJ9Xr+4DXqws0oojJjN5Rl2PmXaTz0wcIUVyrl5hwsvgGCaJTIlTST0KacfxhmphJQqIZdqrYq9HCJhuN1gJfB4ZHMVet007jnAMkwW/zZfmr2EgKNku5xoVThZKjOzgKnuhWeWp5Tkcw+T7J49smeOVUvKNpVnqcciDpVFG3Ay5eOvPaM5v4ScJo26GejfX8s04uyYy5bnyAmGaMOFlmWk3udSscSpfelORIkt+h+cri4x6GTVn3Hs/SSrlFoOoftxoN7f9vWUK0YtsacXRnuNe1nO5VeP58iI50+Jqq86s3yJr2d2bOAnHd4ii0bz1aIGo0Wg0Gs0tImtZjHnbC4yS43IsV+RCs8rBdReaUZpSsFwGbIfO+DC1+x9kuJPgPP0i1pkLON99CfvZV4jvOUn4wQdJx0cAJRA3zyCGaYItDFZCn0eHxre09uUtR80ubo6d6LIc+BzNFWglMbUwZNj1epUFmeuGyLdtoLPltUgQc6piKe0EcaOIPFZdyzZsdHP9CnswvMiHKiOx6kJogBTgqWN1DFOtCTiVL227C0ustlomZDdd8jSjaEPeoSEEBzP5XVtBRVUJbLGcRa4TiOLsCGKuQPrBWRhQrZl5y6YahX3FEYGpqpBeV8SlqGM014SzZRgI4EKjyslCiU4SU7J3EbC9BbGl/VhKSSOOGHU98tbWjMX1jLoZ/DRhxPFYCDosB21SqQTf6nJXj8sUBoahBGk9CjZ85qphoI6rDwO2w+VmDQkczw8wuk701aIQ2xCMOFnEulbgehzyanWFT44f3HbtK34HKSXtJKIaBT2BmEo1X7oYdJjttPAMk28uzSIQlKoe+dTivoFhBmyXZhTyRqOC2/03kjNNrrfrPFQauWkxd6PTYrrTYNLLYgpB0bZ5rrzAa7UVDmbyfHB44qb224gj5v0Wr9fKfGx0qvf4hUaFRb/NJ8a2P1eg2oUXgk7f1nhQ/44a3ZzQry3OcHpwjMkdbi5s3X/KxUYVSwheqC6pmwimyVPLc7SSmDE3+54TiKmULPsdhrm1UTFvFVogajQajUZziziQye9aYXhocJSloMOC32HcUxfEKZK8rTIQT+VLHMrmSXMG/g99CvHEh7Cffw3nhTPYr53Hfu088dGDhB96kNHxEpYwWPTbjHlZOknMot8hRTLqZrinOLTl/bOm1Zu3a8URlSjkWE6JOj+JQcA9xWGqUcCTi7O0khjbEEx6OeU4CojWNkHvTQfRcpD5QImk2SK0nJ5AFE0lSuReBKIARjqIGwX41mFIBXx8mv1cbxlCVRn7zXo1k2iLQO5VRkIDYmNN2G46RgAqyhEWAfgmzKuFicUssicQnW2FmHhhUlVYP34d8coYLCvhJx+d2zAfOui4XGrWmO00MYRQBjornqrg9lvf6v4RWyqIQZoQpgnFXcQhKHGa756fie5Nj9lOi0o3umOzRFoVTdUoYGKdeLjht/DM/hWsvGWTt2xmOk1acbRBIFYiX5kHbfoZDdous34DP4m3jftYDlUUSCeJWfZ9juWU+HiuvICfxBhCTXKuzxy1HIsb1QYz7SamEMQyxUD0/o3mLJtyGNCII4r27uevHyqbUvTE7oDtshL4NKKQS2mNhzdVUfdKJexQtBwuNqvcOzDUE8Qz7SaznRYPReG2a27HES9UlmhEIaVs/39ctmHQjENaccxy0OFau74vgTjvt6jHIQcyOZa7FXXPMFkKOhvcbHczX3qr2e+awjThmZUFHh0aoxIGPFdd5OTk8G1c4e1DC0SNRqPRaN5CBmyXT4we4A/nrq61mkoVizBguxsqAAAynyN8/EOEH3kE+5VzOM++jHV1BuvqDHeODjH00F387pBNM45oxREn8gOMeVmGHa/vBbQhBCVHXZj6aYLbNbpZraw8XBpjoutkOeS4DDkeV9tdB9Nst32yveliMxFq5nClK3ImmyC6IqJlw2h3u9UKYn5vlvlyuI24UUAk6iJNNhwY2f/M1uY5zURK2nHcqw5tRrw0AQ0H+ZGZjSIsEb2YD+HbyLYFqaHWuFolW8nCqV3mwUJjTSxfG0Asr7vYXskg1wnEjGlRi0LCNGHSy0LdwXhhCikkHKgjC6Gq2iZCzXU66lglcosw9pOEaHPb8D7wDLPnINtvFtIWBsvBWmXZT2KWgvbuLYlStS6ukkpJPexfefUMk5XQpxoGTGS2fr7DNKEeh+S6n/0bfhMYpxoGnK1X8NMIUxgbIkeEEHiWxbiXJU4TUqnaKte72TqGSSxTloPOTQvEThxvmV1drdDPdlosBju3sCYyZdHvbBFnlVAJwHocUg5VxTRMExaCNo04ZKbd4J6B/kLl+coiZ+tlJjPZbd17baHiYupRSJAkXG7Weag0umse5ypXW3VMlCHS+psAY16WOE1ZCn1acbzjea1FAQt+m5P50i1xGd6Neb/FS5UlPjV+qPc5rIQ+RdvF3Ob9F/w2F5pVxr0s5bBDMwp5t45ZaoGo0Wg0Gs1bzJiXZcLLshx0cE11wZQxdvlKdmyiR+8neuRerPNXcL77EuaNRSa+8h1+OuPy4vFxXjkxyZGRKU4VSjvuasjxmOu0kEjVThdHhGnCwWyehwaVmivYDj84dYxUSmY6TcI0wcmCNFNVPWtZkIshBfHyOGJVHFoJTDZ7YlC0HHVNLIGmizTSNaHZpRoG2MbW/EhG2siij6h3L+bbNrB/u/3NQilME2KZku93ziMDUeu+3/lh5EMLa891ZyhXEc9PIQK1Dykk2InKdwxMle24HY21C2FxeVC9fqyJWMyvVSjXMbG+bbnebXGVAmYGNlbyXp5ADrfV+S22tjhP+kmMhG0vcHcja1mshD4C+s5CZkyLeb/da19eCX38JGHY3nkG0zKMDYYy7SQmSJMt7dGgxJxAmapMbBJKqZQ0ooggSRiyXQwEtSikHUecb1SIZMKhTKGbJdn/35spDMxtTo+JYDFo33Q7ZCNWbbP9jskQghvtJs0owjUMjvZ5jxudFl9fmuUDg+PcWVSfGz+JaScRBcvGQFAOfE7kByiHPp0kZshRc5sSGHa8DecslZL5TpuS7fZvg+5iGQZRHLMSdjCFoBVHzPmtXmV2J9pxxNVWnZLTX/ytd7PdTiBea9X55vINgkRVvzcfQ/NNVHW3Y6HT5lKzxuFsgXsGhpluN/j28g0+PDzJ0Vyx72vmOi1qUcDr9TLtOOLdHIzyzqrlajQajUbzPuFIroifJiRSVe/2ejcewyC+6wTtn/oc7Z/8EaI7juF0Aj585jo/+8VnuPNPvosxO89Ot64HbJeo20I37Ho044hIptw/MLKh7TLXbQEcsB0VvG6ovEIhBeKCqkiIi10jmXxI+pFp5CeuK3HUbUft5Sb6FiI21PzhavahlNzwW6RAOewj/CyJ/NAN0gfm1f+3b+a+dr9KWqwqaf3ax6prJj5iKafaOVfpCjvZrYCKwFKOrNkQjlVhrDuTuNLfQEWcH0K8MNETeUCv8ihPdKuOfQTihn10z2d6xzLpPUvIw1XSB+aVkK56GJeGEK+NYQlBa5NLZyeNeTMZJZ5h4icxfpL0/bzmLZtKGHCtW3Fe9DuA2HVmzzUMKmFInKa8Ua9QjwIlMrdp73MMc4vL7vWWuoBvxCESVSl3TZMwTThbr3CmXmbY8Xruvzd1/KbVPaabQwnE7dttLzZrPLk4w+VWve82C36bWhjw1MocN7rxJ+0kVjdvDBPPNFkIlNNqOfBBQsl2KQc+31q+wdeWZjYE3jfjiFYS7Tp3awuDWCYsBR2EENiGwXR7a6RJP250jX52e4/Nn9X1XGhUSdIUIZQB0Xrm/RZ/NHeVV6vLJLeoXCel5FrXyOnl2jIvVBZ5cnGGJd9n3m/1fU0iU661G0y4WZaDdm9W992KFogajUaj0bwNjLlZDASdJMY2VKbfvhCC5OAk/ue/j8b/+Bd59e4jxJZJ7txlcr/+BbK/9ltYr74B8dZKVs6ySaQkZ9kczw2QSMmQ4zHVZ65ICMGBTL47PwUcrqlA+6UclD2YyyOFRD48pxw8V01WvFhVC1vd3MT61vbSVhKRMSyeGDtA1rJobpOJt9bauocLewnipXHEa6O9h/xNlbTVylq/VjVRVYJQlpQQWDXdgXUzlAdr6pjNFHl6DvnRGeSJCnK4+5rlPkYyEpgpIlayiBlVeZFW0n0vH/IR0ouUE2qyg6Bqdc/jkA8HGsg7yzDeRj60oNblxAgpsGOLzqYIic3nYb8IIUCqCIx+506JL4tXqstEacJ0u0FuD59rxzBpxCFzfounV+Z4vVZGCLYVljnTYiFoE60T/q0k4nKzzvVWY8v2r1SX8Axz31mUm/FMk3oc3nR+YTPaPkYlb9ldsWayHPikm8ROKiXX2w2GHQ8BvFRdIpWy25qrKpAZ06IaBYRpwo1OC9c0lflSNs+RbIFWFPF8ZbG371rXYXY3l1PRneVtdKubWdNi0W9vWWM/LjZqe/rd1oz6t51Hacpi0CFv2QzZLpeb9Q1RQY04ohz6fHdlnqvbCOv9srrPyUwWP455sbKIa5iMexmm282+0SQrgU89CijaDo5h7SmO5p2MFogajUaj0bwNDDouJcdl0fc5livivokLCjFYovHEB3npL38W//sfJxkdwpxfIvPFr5L7v38d5+vPIBprd/xzlsoQHHU9xrwsg47L3YWhbQ0ZRr0MsUyZ7TSpJJ1etUucGUWEFgx11tw4e4sCshEiNlXb5qoJS2mtlbAeRRzPF5nK5LkjP6gcL/uxOgfY2YNArLuIpZwSdh0TSxi0NwulNGHbStqqQDxZQSLXzGhgrbo36Cth+IHZDbEWDHeU6FvMKeOa9TSd3iyl6OZIrp5HeaB7YZsPVQvrTlXElq3WtalNFzdB3r3Sc4h1YodWvLEq046jDS2yN0PWMne84B+0XZYDnz9dmKYS+nuq1rld06RLzRrNOOKG39pxditjWvhJsqGK2ElUC+RK2MFZJyxHnQwlx2Vwl3iXveAaJkGS0IgiptsNLjWqfbeL0mSLUA2ShCBNthVjqy66JcelnURrN2S61KKAahiQt2xGXI8b7RYzbWXus5onuFrhnW43udFpkd907se9LJebNWrd6tZODrObEQjCNMHtCu3VmeedqIUB836LgV3aP20htq241aKg1xLsmRZhmnClVes9Xw9DXMPENU3ON9YyQyuh3xOM1TBgflPFecFvc6PT7JuFuRx0iFMVzTKZyXEgk6doO+Qsm3oUMt9p882lWZ5anmOhm42pWvbVz3HU9W7J5+3tRAtEjUaj0WjeBgwhuLs4xMdHp/jIyNSbykEDuL80wj0j40QP3UP7Z3+M9l/6LNGdxxCdAPc7z5P7f34D73e+jHltlrxpkTEtxtwsGdPig8PjHMv3n6sBNbNYsl2mMnklOiaaqlLlqwtQOd6/7arXZtp0YCmn5vRG1QWVlJIUycGMqtCdKAxgGQadfq1mpkS6MXQsZIqae7w4uLHldC4HMwXE3DqTj+UcphCqPXYdm2fzeqRA3VUir+RDIVTH2LIRFwah6q3NUA76UNh0gWxKOFhXLbjTm+azahsvGKUbw+E66cevwVRXvK9WV7cTiIkA31IOpuY2CspRx2bF1pZzqaIj3tyl35DjMbJDrqMQgikvy7zfJpZy62xbZKhIkFfGesJ7dQ5twW/3TExyfeYP17+Haxg8uTTTE2ntWLVKzvmtDe2vrvnmK4errLriNuKQs/Uyz1YW+35ep9tNnq0sbIgZ8dOYeA+ZhCpXUm5oBQUVP5NIiWUYmMLAMQxerC4y77d7M6Wrv0PO1cuEcmtbp909z6tOtIt+G3cbh9nNSCR+11TLNgziNKW2aY2vVJc4U1vp/X89Dkn6fQY24ZrmhhlU6M5WxjHVKEAiexXrAdtRZkPd874SdnANk5LtMtdp9VrVX60u83xZVUsvNKo8tTLfq/xVw4CvLFznizeu8EZ9q6HUjU4Tq8+sqCkEEskLVWXs81ptme8szxGmCRebNfLmzbUuvxPRJjUajUaj0bxN3N0nhuKWIATJkQMkRw4gag3sF87gvPQ69tlL2Gcv4Q0N8NiJKbxH1BzhbmYTA7bLD0weZTn0me201Czi4Tri4pASfWM7C0QxU0REpjJQsdVFWjOOKFhOLzdyyPG4pzjEy9Vlxr0M7TimtP4ufCZSM39tExZyiCuDEFjIe5dgMYvx2jjQNYtZPQ1LWaxxY0s1ppPEyNXKSQpcKcFYW7mxpgZyqKUqoEMdaLiIFyeUa6mQyJOVHW+vy0N1uFaCmQIcq4Cl1rNqfCOttDuL2a2YrKu8yrzKmRTNbWJEWjYCgcztULnpCkQzsolkuiHvshlv3+J4K7EMY6OxziqBiXhmau3GwqmyEruokdlmHDLp5SiK3Q1HRtwMy0GHM/UyJwol5YJpOZhCbKmc3WoW/DYLfptGHHGhUeWB0siG5y+3atTCgFYc9T7DfpLsOTZBosTVJGst3/N+C2eduBxxMywGHZY25RcaCBb8NiNOfxFvCMFS0OZIrsBi0NmzeDa6sSm9z49Q1b2D3dyZOE15o1EllZJThRKOYdKMI1Xt3gXHMGmtm6VsxhFfW5juZkU6mOuq3gXLZqbT4nq7wYl8iWoY9ERriuRqq44h4HKrTiol5dDnervBctBhrtPmYDbPcthRMSmGSXVT5VK1Rje3jafJmhaz7RYHMzkMIZjz27xcXaYS+Ux5e4/+eKejBaJGo9FoNO9h5ECB8JMfJvzYo1hnL+K89Drm7AL3lWvIF94gvvME0SP3kBychB2qmHnb6bVmSikRB+rI6SKsE31b3jvXFTwL6iJSdoVkIlMqUcBDpdENFZX7Boa52qqzHPg4psly0GFk1RY/G0E1g2xa0OxWJJo2dCzEmTG1fyERUighWnehnMFKzS1VnuZ6N8kbBYzLQ8iGq14HUFSVETnYQVwrKXFoJcgPz/YEzbZ4CYy2EYs5ZN1Vs4LQqyDK42XE+ZENrbZrJ3mXCuKq4U92+5gQ6SQIwIos4jTtzqM1ibtujxuiPSSwlFXtvxLkXSvbVyZvAWK62BPaQgp1PN3zqX4cYl8RBqutjomUtJMIyxAM2Le3tc8Rgnm/RZAmjDoeZ2ornCqUekKrEYXMtltEMqUVR3imybzf7kqcvR2bCVsqaiuhv6EN3RCCCS+Ln8QbKnQl26G9Q0ZkzrKY7bQ44ndoJzETdn9DJQAioW5wCHAMgzCOelVKp5u/mjFMEtQMZS0KkN1ZyZP5ErUo2CDutsMxTMphQC0KKVoOX1+cYd5vK5fl2N3gZiu6c66v18qMu1n8NGG4e0Ng0HZ5qbrEnN8k7lZvLzarah3C4FKzysFsntl2C1sYOIa5pbV1OfBpJREH7P5ib8jxGLTd3nkwhWCm3UDs87P7TkcLRI1Go9Fo3g/YFvEDdxE/cBfG4gr2i69jnzmP/foF7NcvkAwPEj18D9F9d0Km/0V21rRxDJMwTXEdgfz49Z2vecdayIkGYr6gWjPHWt3MtzZHcwPcv6nykrVsnhg7iBCCJE358sJ1mnFI3nKQ2RgBpC1zLSai5ahqYmwgD9WU6Do3gjxSQ8zlEXMF3Gqe6mBlQ7B6fdVNUqrqJgANB+F1q1mrQm3QXxOd66pduyELAWIxpwTQkK/aKlsOMhOpttJiAAN9Zq5yUTdGJKNmGDfNdYquQc1eKohGaJFI2Z3ZqnOxWcUWJvn1rZvzeYzXxtbWnY/AShFVF3nP8l71zN6QwI2u4c9UA2aLXdMhZezTt+K4CyrAPaaTxHSSZNtcy1uJZ1q04hgDQcF2mG43mWk3e9EyN/wWYZpgCoNmEhF0Ep4rL6hojD26bHqmucEtNUwTmnHUy3bcvJ71ZC2b7A4V1KxpsxL6vFhdwhCif0VzKYO4NKQiWw7WkHev9NrMV8l0jYKudcXRkWwBgcAzTc7WyhzPDVAO/D0Z1Jjd6JIXK0sM2A6znSYHM3mCNGHOb3EoU9iw/YDtMue3uNiqEa+rkOcsG9swmPfbjLge9ShkoWumM+pmuNKqc6rT5EanSd6yMbqRHeur7PN+m92cd9c/N+S4XG01ONDH4OvdjBaIGo1Go9G8z0jHhgk+83GCT35YVRVffB1zbhHzT76N++TTxHedIHro7i1VxYxpkjGUUYRrmtsKiDBNaMUxg46LvH8JeayqzDCcFD9R+XYfH53q2942tk4o3Fsc4qXqsmr36pqyyKa1lrGYGMoQhm51cshHTrS62zmIObB9h6B7ge2ZVi8rzzEMqLmIRjdX0LeRq3OCua5AtCQcqSJDCw5sdcfcltXW2tUMyKXuMQ0E6pwNbmPGYwCHaoirg3CthLxzZePzra1OsFvoCkQRmUgkQZpQiwIEEKQxtui2Hvom4twwEok8WVZxJZdLEBuqjfVAA0q30Kp/JaNahIfayOE2YraIaK+10t5M9cUWBpFUx5fIFEvc/stazzS52mow2f2cZk2Lc40yJ/Iqk/JSo0rGVDdRGt2g9Dm/Tc6ydyrQb3oPi3Lo8+zKAqcKJfVz7GY7vllW5wfnOq0NofU9VjKIlyfUTRGkEvJHahjZeMPPKGNaXG03GHJcgiTlcqtG0bLJWhYLfofloEM1CvdsvjXuZbjaqmMKwZib6bmyHu/T/m6uy43c/EvIMUwOZlTHQiqVu6hjGOr3VQTfWZ6nlUSU7BwpkmqU0k4iBgyXVKoW1X5CfDscw+R4roj1FtyceCvRAlGj0Wg0mvcrjk384N3ED96NsbCM/eIZ7DMXsF87j/3aedLBAaL77yS6/05kMY8QgpLjsuC3KOyw2+XAxzVN5vwWE24Wsc7p00/UrNheZp/GvRySJdXSmldiJZnzeuH0sDbb15vp6x3bmlBCKmORETfTy/EbTLOIN9QMpjRSRGog6p6aYVznECpPbTWxWAjamIi19tfNrArMlqPm7s533+fg7jb88kgNrg+oGcajVZUpuUrdURftexCIhKq5rx3HSqzb3sZWvUuDiNhEHqnCsRo0XcT8OoOfmndrBGJoIJ6d6kWUyKnGmnnRXmJLdkDFbkA9Coml7GsscqtxDJOpTJZc15Ck5DjM+20WgzaOYar5PzdDPQp7YfWeYVAO/T3PfyqX1phnywvEMuVgNr/BqOXN4pomIDYa5jRtxIUhWMkipCC9ewlCE+PSEFwtqYryOizD4HiuiCEEqZTUIuWwKoQgQeUIBmlCcY/zoKYwGHU94jTdUybsoO1SDoMdRXfGNFkKU4YdJebH3QwznZaqWAqBiVp7O44ZsF0W/DaV0Gdsu3/X2/BeE4egXUw1Go1Go9EA6fgIwfc9TvNv/GUVlXFgAqNSw/3GM+T+7/9I5r98Eev1i4yYFsEOOXBp1530kcExMqZFI96axTfm7e0CbMT18ExTzT7mYmQ+RLa3XjzKbAj2pva9dUIJoezwQQVyx7HEfe6QEoRFHw6tE265aNeroyhNu/OYG5npNFVGWzZSQrN70S0iE3moppxPd8NJ4VBdCdbpdc6yoaHMXXJRz/im/+vXHTf0cvHWG5yQAos5pJEij3ejNo5X1Jzlav5jdR/VqtBQLrL9lrWSRbQdsFLkUFuZAWViJXRbO4gHybZJJOsRQqgKYro3A5h903C25FLmLWfdDJqBIQSvVJa51mqQdJ1Kna4orIUh416WWhR2hdneGOy6xU63mxty/24Fo26G0U1OtOLSIGI5B1ZKeucyHGzAoZpy9L1RUD/jTawKVkMIBh2vd048w2Smmxe4H/GUMS0Ku0RirN/WT+MNBj2bEUK1vq6edyEEBzO5XvV3lXYS04hCvr18A0uI96Tg2y+6gqjRaDQajWYNxyZ66B6ih+5BrFSwX30D+9XzWFemsa5M85jrUDw0zNJdx6gOF7cY2zTjiAHb5VS+xFynxWynueH5BHXxuxc802LCzTHdbrCCz8RYHaep5hblgL9WPew3z7dOKLmGyUqohE8rjrBb3XbHUgd5eg6WcmuNarmdL8ZTKRHdNMH1rpTtOMIxTOpRRNFWLbGi5SDn80p4nSxvPA9SVVkOZnJYwmAp6BBJSdGyKR6qwbUBmCnC8a5rar0r2Iq7VPXWHbeUgmoYbL1QL2dU9XC0tSY2cxHyiWtKDD15VFUQJdvPIXYsxGwBOdlEvDaKqHukxgJsijwRq+Y8dy3D5LrnvFhFdiRiqzGOBPHUQXBj5CPzO85CSqQSULejeLjiYbwwhSz6ah3bmDGNuRmuthtUoqCX+6iiG0IimeCZmV61bT/kuu2aM53mnsxebhoJVDLKpfdj19c+E7aEoQ5iMY/s2ODsraJcsGwa8a0Vtf04kt2pj6E/m2cLJZJWFPJsq041DDmYfW/NEt4sWiJrNBqNRqPpixweJHziw7R+/ido//kfILrrOGYU89DFOT79xe/w6d/7NqfOXMHtBKRSXahXwoCTeZVpOOR4hOnGi2oBFLexkO/HoWyBUKaUbJfGcHVtbeNrwlP2E012VyhFJp5hshwoh8VOEmOG3fvjxUBdCa1r2ZT5ECklV1r1vhl3QXf+MmfZG/IVy1HIuJsBoVxeV4WmkEJVzTZV/fwkxjVM6lFIIw7JWBZ3FQaV2MkkMNZS7bGrbZ9dgSiLAbUo4GqrTjn0e0Y0i35b5e4ZqKpPaGIIlb/Xi/TomKpS1K1Mys3xJAK1znyo2nh9q38VLzQQz08irgwivnMQUVdCvW/VsdoV8ZvbVXORktmdPrUK30K0HEQ5q44/MBFnhxHPTEFnYxXOEoIgSbuS/dYiuqY6ou4hnp9Uldc+mMJgxPGohIG6OUB3PnJdlbknDq8OIJ4+oHIgmzu3X5rCIJXqpsuO1cfQ2FO1dVtatvqsDQRbq9OrRkn+3qufnqkyOI31P5OGs1aFjN7kem8hjjCY6bS41qoz5u3txtX7AV1B1Gg0Go1GszOGQXLyCMnJI7QaDS489TT3XJ5nuNLgoWfP8cBzb3BtvMS145NUjx/sGUuodrG1K8EwTbCE2HMbGcChbJ4nxg5Sj0Jei5cRpZC0asNYG3lRzQ72raqtryCaJpUwoJXE1KIAO+jOw63O92Wi3hwiuZBOkpC3bJYCn0OZ3Iaqg5/EDFgug47DxWZVtazKFAPBg6VRVsKAdhKTX+c0Kic2VlHVfhKGHJeV0MdPUk4PjTLsZDhXV5VGeaiOWMwjrg+oKt26CmI7jjlVKFENlUujIQSDXWfHA5kcpp1gdBys1CBO1+VCXishptXPRgoJo+3+J73kq/zH7x4AUyLvXVRCz0rhcB3x6hiiYyNzIbRspJkqw6D6JoGYCGg6SCdWFcP1ZCNYAcoZcOONLcLrZhPFuWFIVT4lABeHkfcv9p63hUksk7W8vVggLg9Cx0YWAjhe3Xp8NRdxtYQ8UIeRztbnu/thMadcZbORcvSsu9vOZWYti6PWWkVLCEEs043h6VVXtRwjoOFCw0F+ZGbHco1tCBpRSGG7Wb6Ohfj2IZhsqkzQm6HSbfke3HoupKvcgwn2JxkGbXdtxrFpq89SLkTesYJ4aQJG2sgHFlUrtJPcngrwHnAMk3ockHb/rlFogajRaDQajWbP5AoF0g88yK+dmOT+TsLRi7McuHKDY/MVjs1XkM+eJz51jOi+U+QmhzYUCoIkIWvaO84NbSZr2dxZGOR8o0Iqwf1Qhc5KqiInBn1k04FCn3a2dZU0xzCJZEozVsYhTtx1RnTj3rbkQ6h7UAhpJxHDboZGFFKLwl7YOShhdyzvMeJkeLG6zIFMjnuKQwBMZHJMZXJca9XJdTMgpZ1suPBeCXxKjnJWnXLyVKOQhJQDmTyWYSC6ph/GoI/MB0qY1Fyou0rUFUKSQHIwU+Dx0QHq3Va+rGnx1cVpZtstxq0IDwcnsfGTeM28pbNOZEw1ts+vLPmI6QFVVYpAPD/Vey4dbiPKWaQXIT80qyqAZgpPH1ICMWVN8NRd5Ya56t66/j2yEQIw3hhBXiup1sbVbbpzplJI1QprpspMZy6PmM8jD9d6bcW2YRCkydruF/KIayUAxGKO9GBdzXWuQ7wxjKh5KqsyH0AhJBpOoZRApivsl3KI1EBONpD5ULndrmT2ZdxzKFtY034piNdHEQjSO5cRS1lVIT0/jMxGMNHcsk5Q+YLT7ea2wffUuuf4Rh6OVGHVECoRiMsl5MHGrvEsoqL2LfvNyHb/jYjAQi5kVUbn8equgm79TSAxV1CV9KYLL06qvy/m4QVDfZaOV5AntppBvRW4psl0u8mhbH73jd9HaIGo0Wg0Go1mX9xdHOJCo8o1S7Lygbv40n2H+bHEY/j8Naw3LveyFY9nPD51cJj5Uwepjw7ipwkHMvmbcmPMmTYIMHIJyEAFuz+4oATJphm2VErKoc+okyDaDjIRKoav06IRReTCrlBa5xAq71pGthzIxgSdhMOZPFbO4FtLNzYIxBTJoO0x7HocyuR5bGRyQzTHwUyeC42qEq9WosRMVyWEaUI9Dumab3IkW6ARhcQyZdjNkMoU1zQJ0oSMaSEP15WoODeiLtDzAZgSIVTm22ob7yqfHDtEPQp59o0EGmBFNk2ntWZQ020TTB+/2leM9BhrkZ5aUcK74SAuDoGZImITMdMV14O+Ou+rgqQYIMoZZMuGQvex1fnDgT7CY7SFnM9Dy0H4FtI3VWstIFYdT+9aRlopDHeUmM1GiLOjiCsl5EMLgBKItSjE6s6Cim4EirQSRGyqyudYW4W+z+chEyNqHtKLwJCIpgtNl2gOEEXEeEv9cJbVz1RONJVIujCsxMyJ6vbnbRPm+s95zVUzqaUOHKojhzvwVEYJcVQsy2anUFA/5+P5HWIUuudKIODSIPLBbnV1tqDiUtqO+neyHbGASte9t9Tn57SuxVQsDCM6NulwZ+9CWQJzyoUVoVquZdFXNw/K3X83ZQ9O7G13t5qMaXE4m9+Tc+qurBpoZWKc18fBieDhN7/btwMtEDUajUaj0eyLjGnxwMAw31yeI0UynMmSnTqGf+dJ+MwnsC5cxT5zHvPyNA9emOXBC7M0CllePTxC/sF7b+o9s5alqi/rw8ZNCX26wupRSCuOGbJjLBwITYZtl1eqywgExVWBuL7tcSBUf1DXtIOOh2daGEJsMKORQMG2GXQ8fnDq2MaoAFTgu2eatM2A7BPXNjzXjmOGHU/lEgpB0Xa4szBIisQUAlOYFC2HVhyqGJCJJvLCUC+rUR6sk3RNcnLW1ku4jGmRMS0MV2U2WrFNJ4nJW90WQt9CGum2lcMeBnC0pv4+3FEid6aIeGMEbqhKy5a5z2Kg2kXrXk8giuoOJkKZBPnBG4jXRmGuAG0HMt1K62qLaTGA4rrq8FQD+cYwVNYMdGxh0OlGpwCqwtXdluslJQbH2og3RhBzhV4rqjxaU0ItMBFNF7udI7qY60V9SCNVzrPDak3SiZXgjcRWx9y94HePqdStpuYi5D1L6pzN51VW5jamQDu1PvbENFKZyfgr4CW9qiBLWQjMjXEpqzRtxAuTiFDlU24xC4K1Knvb7s2LihsF5F4FYnld/uV4C+bzqkV4MauqtCtZNeu6G6tLuw2tqFvEoQRmC+oGSb/Pbj9SVJyLFMj7F7HnB5ADrd1f9w5FC0SNRqPRaDT75khugBeqS1TCgAdLo2tzeo5NfO8p4ntPIVptzn/3WaYuzjCxUuexM9fhzHWSsWHiu04Q3X0COVTa0/tlTRvHMAgSdaGbStmLFFhFxTmYNJOIyUyOyIrUhU5oks3YNOOIehwysTpP1eeiOUjUPgYdF9e0yHfNaPKWTbVbqSp0xchmcQiQtx1OFUq8VitvyB0E6CQxB7J5mnGEY6r9bM5SHHUzlLuOq5hStd5dKSHvXIHxFmGS4Jgm+R3y5SxXCUA7sugkiQorj4Vq18zehOOnQe9CWcRdsbJJIMqij0C5lsoDDVXZrWSUIN10kS2lpB6HStR1W01p2z0x1muFzWyMSFldh6hkeq3FVrfF1Da6xidNR7lxTjUR10tQdVVlZ15VsQRCzRVOKhGNm4DXwcmnRBNl0qqjhFIh3CikhztKYFYyqiK5X7rVW+muuykx1VTrDCxVfV2d88yFW+cSUxAvTKoIlbuX17Xjds/VSEdVPWsuuO3eXGGv/fRQfYsBjbhWUuJtrKn22Y/VfyMNd80IaCEHd670F5SbEHNdwT3ZVMd7sHveDzWQhxrwzUPbu9lCrwIpLg5BPkQ+vLOr7S2h7mKcHUU6MfJj02pdVwcQVU+J237rrHqIVfOr10YBCEYbwPBtXuztQQtEjUaj0Wg0+yZrWdxVHOS1apmpTH9reJnLUnnwTr51dITRdsA90yvcN1vGXFzBXFzB/cYzJOMjxHefILrrBHJwYNv3c02TrGURJAk2sBx08NOEw12r+2oYUI9DHMPEQHAgm+eq3b0Y77onjnlZhtIUAkvNJ3Yv9KSUxF2x2U4iSrZLtivApjI5Ljar1OOIgm3zkcGJHcUZwMl8ibO1ck+wrpJIOJYbIEgTpKSvM+Wg424wluFQHbkupzFIEgqWjb1DVcnxIATM2OZUfkCJp9X2t81mMXulEKiZQCl6s5AbWBWBK1klDusuIjaQwxsrU2GaMO+3sQ0TQUSxa+YjWjYyBaSAtq1mN/tV6gZ9JX4qXm8Nx7NFnBslJR4jU7Xi5kP1M667iMuDKvz9RBmZiVTbZL8sSSeF0f6mNXJICURRySBvQiAKf/vzL8daiHIG8fI4IjJVSP2qkFql6iEqGXXsZoq8s6zEU8tW1c7RFmI5i6i7ar4zMpFehPBtjIvDcHGY9K4lOLRuv6vOuHetbN9ybEqknah51NVjiU3kcnZLpMkWYgELKm+TzY65q2TVGmXHWmtXXs9cHuPMmPp7YKl53NXqpQTx+ggyH8Hh2i0TjqLbXixCC66WkGaKcUEJPVn2+n5GxNLa70ARWkghCcbqW7Z7t6AFokaj0Wg0mpviVH4QJJTs7UPVBxyXQKbMeDZHP/Iw7dIIxnIZ6+wlrLOXMBeWMReWcZ/8LsnE6JpYLBW37Ktku1SSCBuTUKYYQiClJEgTWknMo0PjvFJdZszLcndhkGtOt00yXLu4tVITkRjKgbPLYtChncQcyxXxk4QT+bWZwolMjleqyxQdl8+MH2HA2f5YVxlxM4x7OSqhz7DbnfuTEoRk0HE5mSvRTvpcDAOFdSHs/QjShIPOzoYabkYQAiI016qcq1VTb2vVNEpT/CQma9kb5+bWYwCFQLWQ5sOtVRQvQY60EMs55Gyhd87l0MaL6aXA567iEJ04ZiloQ7b7c2jZiKcPQmIoEZrtf37kYAfBIKLiIQ+rC3BnpYBxbnRto3y3SjoQqBbGuYISi4dqN9ceCmsV0+beHXg3EOwg0EdbcG6kJ8JE1VurtHURK2ufSXG9hBzyYcBXYi0frK2v4a5V/SabyLatzHUSA3F+WL0uF3UdZm2kF/dvP12PG0O0+vNUJkViOaNaRndicc3op68gB7WWMqoS2kcgroo1OdZCLOYQ00VkqevWWncQN4pqhnM5o+ZS91DV3JVlVX2VSHVzYf16VrLIzQJRolp5AZkNEW2HZLilbnK8S9ECUaPRaDQazU1RtB1OD43vuM3RbJEPDY1zuVlnqusUmI4MEX58iPBjj/bEon32Iub8Eub8Eu7XniaZHCO66zjxncd7lcVBx2XB91kdPLSFcicthwF3F4d4ZHCMESeDKQRZy6aQNdXo0jqB2LtQ77b6pVISpSmOYZJISQIbROCw41FyPB4ojexJHK4y6maY99cuoP1EGc8M2A7DjrdtDNyA7WAbaq4u08c4I0pTBrdztOzieYIGbDzubSpY5dDHTxI802LR7zCZydKOIzKmtVWoDnQFYr9YEUCeqCCWc4grg2sxI8NrF9OJKhFyZ2GQmU6D2U4TsrGaC6xklLvlKtsIRAZUJZNKZm1mL9xYTZXdXEtZ8tUFvZUo8XCz4rC7HimkyvPrtrL2hOhe2KGCiJcoEdV01Lxpo48I7YqW9I4VjPPDiEuDyDuXe2sjH6r11V2E0a2MD3XgZNcd9HIJ49IQvD6C/MCc2g7RP0MU1Q5dDQMMIZjwYuVACsgDDWUusznSpA9iTlX35eTWmJdVVt1safWpykug6iGRyLuXlJnNQh7uKCtR2+oaEiGVgdBCDqa675UIMOT+q4qBiagrEyM51YDrA+ozN9XAeHVciW3fVOstdtuQW7aKfSn6yOMVeG2M6NDb48p6q9ACUaPRaDQazW3DNU0eHhzj/oGRrU6MQpCODhOODhN+/AMYS2Wssxexz17CnFvEnFuErz1NMjpEfMcxRg+NctZNSYTKHXRNNZOYIpnMqDv4h3NrWXTFnEkNVUnrSYOgKya6VZN6N8YiSJPufKPckDk3YLt8cGicI7mtFc2dGHCcDSKwGYeMZ3K91tDtrlvztsMdhRKvVVc42M96Xwhyu7S4eqtjjeuE02qLo1wnUIIkoZMk/JnxQziGwZfmrlEOfepRxEDXiGc9crypHCn75DoCUAyR403EQl61A9qJElFdalHIqJtl1M1QiwJ1fkwJXozwNx7TdhVETKkcU2se8toAHKltEYi99zzQQEaGmons1764HwwgFyKaLvLaAMaFYdKTZThW3bhdIhDPTSoX2zvKa4/7qu1w22iR+7pVsa8fVsJnfVxI10hHZlQrpZzPIeoeXC2p53NRr8Ir6h5ySYniDbOfR6vI2QKimkGGxprDbHGrc2kzDqlHEacKJa626kRORE+yDnWUYU/L2Tg3mKh2Uiaaai2RAWVPzVwO9W/bBXo3AkTb3nrTxDfVjGQhUC2wBxqIayXkTAFOVBGronKyCXMFxGwBOdVUlcVnp5DHqzDSRjw3qWZ4u+JRXBhUrdB2omYvs+tE+0r3H89IB05UN7jWyiuBcr19+qBq4RUSed8iYlWojrZhtIP85DXSJIZ3bwFRC0SNRqPRaDS3n21t+lcRgnRsmHBsmPATH8RYXME6dwnr/BXMpTLmUpm7gQN5j+lDY3gHRginxlkM2xgIBvq0ubpeV4ZF/SuIiUypxSEfHZ7kartBJfSxhEHeWqvgGEJwslDa9/HmLbvnmBmmCZGU3F0Y2tNr7ywMcq5ewU/iDQ6LysFUVW53wst0j3uXCuJS0OG+gWGO5opIKTmcK3CxUeNorsBsp8Xg5h0PBshPXtv86AbkPUvqon+2AAcaINTxrwQ+fpryyOAYhhAqtmSVXNRz+UxPrqgcw+HtRYU8XoGXx5VIQ90A2MCqQHQTNat3qyiE0HQRXWEmrpaQB+sbRd9SVom0wFKVLlCiMTKVwNutolUIVdWztS7fsyda2iBAnqwo99FlNffWE9NFleUpEKRHaxvbLQ2UULthq3nG1QrgugpilKZUo4AgTfjYyBR3FYfImBaXTR+HbqanrUyHxFIO2XB684Di8qA6Hx1bGSu1bFWhHPB3PubVtbfXfR7qDuJKaU24deM35ME6XBtAzBSRx6prFcSDdXVMVRWzIq4MIlID5vIQGcpY6fKgqmRGhor/6CIXcnCs1vv/XkvrSJ8505GO+vlHJrKgMkq5uO7f9HY3Tt6FaIGo0Wg0Go3mnYUQpOMjhOMjhI9/CLFSxT5/BfP8ZYo3Frn37HXuPXud0HN5fWKAuSMTFA9uNW3pV0lbdZOMnYjZTosTuQFOFEq0koirrRrDTmbXCt1eyFk2pjCI05QFv8O9A0N7DuMedDzuKJQ4W69wILN2qeZ3206L1s4CMesZSpyGpmrT61i9415trY3SFNMwuKuoLnCFEDxUGmXMzZC3HGY6N3mxa0nkycpaayP8/9m77zi56nr/469Tps/2mk2FQAIkgdBJCMUISrFSvBcBUVBBqV78cRVRypVqRcpVKYriVaygCFgQBAGxEek9hPTtdeopvz/O7OxOtmTTd7Pv5+ORR7Jnzsx8Z+aw7Hs/3+/nS0cuS2MswbRYklmFSmzCDmEQhF47noe2QjVrl65gC4rRQkVtGn/fdRj/bMJoixUDmj+zEz/sFvdT3Nr8ZC7o1Nq/VtAxYUVF8HoL+rt2Glkb3zGCtXf97/1YGgQlc0F1q2cgIPZvF+JXFUJzTRpv9zaM16uDabmF9bR+WTZYjxd2gvWWG46/KhOs2euIDkwRHbSNyLpMimnxJHPLqtg1GUzrnlNWxfJYW3BCIgi4fnkQEOkurHeMOrCu0KRlZTnM6hxYq5nYSOU26gSV1f6A2B3G+OeUgW65DNpHM+4EFcHWBH5zYmBaaiKH39SD8UY1xss1wdYhEOw76RT2x0yH8NtjA2tjCw18jPSgyqUHtMWC8QxT9fTr+4IQXJ0Kuqn+cwpGZ2xgjPHNbAA1DikgioiIyLjm11SSW7Qv5qH78WL7WlY9+QyHtKaoWtvCwreaWfhWM/5TL+HsOgNnt5m4s2fgx2NEY/071A+aalmoIKZDWZpiSd7RMA3LMKkMR3H9YJ3jiI1aNkHSDhExLbqdHBHTYkFF7ajNZza0WzIIiI7nFauvadehPhrfaDU2Yll4IQczZ8OqDRq4FEJKdz5HfSRG5aB1lbWRGLWRGB25DCal+z8Ox/E8DCPYpH1lqpeEbQ/ZtgMg73vskigvhlGAhG0TtixynotVXgg2/U1PjGC9YnMmTUM0jjnc+9Y/fTJjgxcEQn9a91b/Ib0rn6Unn2dKLI41aLqsX5kOAtLbFUEgsv2gW+6gZjJ0RTFerB1YjzmGgOiXFUJoz6Apyv1BaPA02Vld+DXpoKtnf8ir78NfU4Y/s2v4pjCFShxrywa6vRbCdf91trhmSsla2/JQmERF4bHKCu95oepovFGF8Uotfk2qOEXYyFv465LF6Z+Dm0ENyyToZNoXxm+LYTxfFzTeKQS4YNwDVU5/enewznVFBaRDwRTWkB9MJ367IlgfCcXOq0bWLnbfNVaVg+UNPM5rNRtULiPBc9eMsCdkRRZv8cpg+xWz8Bj9AbF/25SdhAKiiIiITBhNUxp5bK+ZTKlposPxePVfz3BgSy81K5sJvfwGoZffwAe8qY00zWxijbMbPanqgYYmhamWuVCOhlC4GIDKCoGuJjw04GwOyzCpDIV5rbeTBRW1lG1kWuiG6iIxpkTjtOUy1BVCV9ZzaYjEN3JPCJsmXsjFyoeCvfEGcUwXwzdIeQ77JeuHvX95KEKisP/jSON2PI81g5rw1EdjtGWHrmfz/eAH7coNGvyEzGAvx6zrEJvSixd1gi0sClKOg0fQRKc2EsPzfbryWRJ2KNg6pLD9Qskm6xvrxrkZevJ56qNxVqf7mJqwissC/ak9GDEn2BtxXTLYlmJ9orgNSBBIyoKQ0x90IgPh3PN9EnZo6F6ayUIY6o4G20TYQXXNN/yh+0KW5Uq3Gwl7+AetGfnFxBz8sFPcr8+fOVBl7HPzlNvhYT/vZI3PmvnLqawtHOgPiIUqX3+HVb+xB2NdGcbK8oFQvLEKIoWg9XItxr8ag2mpU3rw57TB01OLa1SLatJBp9DuQlU1MWg68aJV8GoNpG386V0YzxcaaE3tCaaSNseD68bwoakH//XqkoA46vTSfoNfT31fsKY3Z0LjRjq6TjAbWRAgIiIiMn40xhM0RhOUh8LEk0nW7D6dde99B70XfZTUyceR23cv/LIE1up11Dz5L969/qccu/pu9n3iJRpXtWD2BtWoTDRTstawzA5TFgpREd7MbQyGUROJYhtmcVrlpjAMgz3Kq8m4bjFk+f7QoDWcsGkF0wwh2PagwG/oZV0mxZpMHxYGjdHhw6ZlGDRGE3Tlc6xN95FxHXzfJ+U4hXH4rMn0MaesisU1U6iPxIPq4DCFvqznEjGtYbdCqQpFgsZABlBdulYt67lUhyNk3GD94qp0L5Zhsj4zaOpf1AnWmqVD+JZXrPp4vk+fk6cnP3L1KuM6haZEI8u6LiHTZHHtFBqicbrNDH7IDabv1qSDiiUElSl/oGsn/dWkQXvjQdAgqCefI+26xGybtZm+QmfXQRJ5fNPD6IxiPDoLmuNBoIvnR/ypPeXkWZMeQ0AxKIZwP5ELmrsUH8NhajwxbLW2LBSmr7JnoAts2MNPBF1T/ZmdwePh489px0/kgrV5hSY4/YGqz8mzoq8H1/fpdXKsyfQVr2umdQfbZ2AE3UP3aA2eY9Eq/INXl15XBiX7gpYEtoiLv6A5CMn1qSAIAn5dH/4erRgYGK4JFZmg6U3UCWYUuIUn6P9lyijrX0uY4B+wJhjjCM2HJipVEEVERGTCsE2TpQ3TCRkmnu8zJZagJhIDO4S720zc3WaS9X3M5jb8V98k/a+3qE21sdvrvez2+ls4xjKao9N4YYVNebKM/k4sCTtEZShC2UbW922KilCE6nCUxmhi4ycPY1o8SUUoTLeTI2mHMI3hm/FsyDZNjMLG50bWDn54X/pW0PY/A/tV1oPhj7p/ZWM0zopUN42ROG+nevDwMTCACD6QtMMcUtNI1LLZs6KGjOvwNyOYMho2B6b0plyH6nC0pNlOv6pQhOedPNlUL1M2mDqb8zzmxJKU2WF6nDwH1TRSF4nx4Nq36M7ngkY9UQd6IkHVLjxQZWrOpgibNlnPDRribLCm1Pd9mrMZQoZReC0hLMcaCCwFXfksU+NJaiMxZsTL+VdHM1ULmsExg2pl2MVPBs1K/LXJoLNqLNgewVhTXrptB+BF8nTkcxxWO4U55VX8Yd3brMukqC9UiE3DCELHvBZYWR5MX3yj/wIdOez2OHkMw6DXyZX80sP1fXzfL3lf/cZeaE7g795WErxc36d+hOp0zBroApx2HaKmBfutBdcMAm3IDa6tiBs00ukLF6eJ9of2jlyO2miMdZkUnu9TEQrTliuEVaBufgu8WRl0nO2fHjvS3olTgurfhvuZlrD84LyuaBCKLR+/qwvj7Qr8+kKFMJ6HdChYo9sXCj7HWH7kLVaGfXN2nnWHgykgioiIyIQSsSw8z8c0DA6rmzr0hEKTG7e+mgfMXah5tYz6ihdo6nubhtVtNKXfoukfwD9ex62twt11Bs4u01kypZ6yEapqm6MuEmdBRQ1xe/N+3AqbFnuWV/PXtnVAEGLLQmNroGNGBlU0ok7wA7IfhLyZibJh1woOtmuynMZYnHI7zKs9nfQ6eZqzKdqyQXWlLhovhj6rEMLKQiHSrlMSENOuy9zy4d/TGYlylloWz3W2knYdysyBcBOEiAj7VtVjGhSnAi+orOWp1rUDAbH4Zg1UAx3fZ1FVPStTPazN9BUDolfoAtvt5KgMhzm0ponlfV205DJ05bK0p9PETZuYZZP1HLKey66JoFlLfSQWBO3q1MBaUgP8GV0YL9ZjvFBY59nYW1LV8m03qI62xOmO9NEYjTOnvArLMNm3qp7frVvB2kwfvs/AtiaNfUFDmcdmBtsqwKhTNR3fY0oswapUX0lAbM6kyPseM+IDW79Qn8J/5/KScOh4HqZhUD3C/ppRy8YovH8rU73URWJURQ2K+zgM6gLq16aCLrSDxuz6wVrVPcqq+Ed7M9MSCXZPVvHH9W+TsEP0OnmIufh7to34GkuEfJjejf9WRcm05A3581pLv57TFmzV0t+5tX/K7vpE0HwGP9gOY8uXIE94CogiIiKyU7IMEyOZI2vFeTu5ByvmTsX2GqhJvk6Z/xLzWnsIt3ZgtXYQ/tu/idk27owpOLtMx509A6+6EragYU1NJEpNZPRN7Tdml0Q5yzpb6HMcDqmZMmrTmMFCUZ9iRCxUORzfxzKMYat5Q+5vWlQUgt7c8qCK9e+OlsJURp/GYapNjdEEr/a0l1Q5ffwR13VWhiNUhiOsTPXQnEkxKMZgGAZx2x6yRm9mvIx/mOvJex6hqDPws/wG6w+ToRBTYgneSg1MR1yT7iu8crLikQABAABJREFUJz6H1ExhajzJ1HgS0zSIVUR4fnUzy9pbSLsOcSvEPpV1xXBVE4kStSwynkts8PvX1IvfnBxYvzalN5geWWiSQkUWf34zpG2ydpbp4criZ9gQjfPO+ulkPZdHm1eVNCQi4gbTNfu3chi12YvBjHg5HbksvU6eZCEQu/jELJt0ofvtoNOLMq5DczbN1FhyxO1ToqYFGMG030iEPidP1UhTnSsz+LYXdHgtjDnY/zLGnuXVJOwQteEoyVCYpQ3TsQyDP6x7G7dwbY6Vv1s7zOjatHWnBqUNb+LB9WO8WRVsDbJbO9QF1UXf94MOuxvbnmeQvOexItXDjHiSrOsSt+1Nuv94ooAoIiIiO61weeEHyN4wpEJ4hsW6hjr+1ZSjZtpsqlM57OUrsd5cib1iNfabK7HfXAkPP4lXnsTZdXpQYZw5FaIbn965tSVDYQ6sbiBhh5g+uBK0EeEoFGsrhSlz+cL0z5g1dEuQsagKR4P1dyOshayNRHmxe2BaYN7zsA1zxMpUv5pwlFWpgfVwXmGqZ9waWi1N2iHKQ2H6nDyVJRXEQgguPOeGU4X7nDwRy2KXRDlr0n1D1oXG7RCzkxXMiJUBPiZGSdfZqGXTGEmwNtM3JGz585qDhirx/EClL5GHTgu/MpjeSDJPPu0NqQBPjSfxfJ+aSJQeJ0fV4PeqOl3c649EHrfQqKcqFCkZm49PXSRGUzTBylQPSTuE4wUdaBuicVale0vHPEhrNsPeFbUsrKobvlssQcXeIAiTUdMmb/pBQB8u/JhAdQqak/jF9YdOoRJslLzvsxLlwTVZ6GY70hiDx8jTnc/RGI0Hr91gy5sSFf676F/7SGE9JQRV5pZshpnxsuLr7MnnSBSmeg+nx8lRHY7SnsvieB7zK2tHPHe8U0AUERGRnVYsbpILORh94WI1xo3lCBkmEdPGr4yS33ce+X3ngetirVkfhMU3V2KuayG87CVY9hK+YeBObcCdORV31jTcpgawNy9obarB20OMVTRmFAOiX5hKl/c9YpY15irkhirCha6vBsOuhawMRTAGbY/R6+SoCkco28i+kslQmMEtPvKeR9g0SQwzNdcwDKbFkjzf1VYSEP2wi+f7ZDyXqGmRsEPYhkHYtMi6Lh25LPtW1bFvVT29Tn7EallQxRr+h/qp8SRv9XUPvSHs4R+6svRu5RnojJbsp2cAsWFCr2kY7JIo5+n29WQzKWzDpDYSxa9OY6wMpriSyNOVz5LzPNZn08UGQ/0hPGGHqI/GeaMvmO7Z35V0XnkNb6d6WJXuJWGFSip/vu+DAbsmK0atKketoBLW6+SZW15GwsnTmk0Xu+tuyJ/dEYTihl6yrkvYNJkaG34P0JBpkbDsUQNiazaD5/vE7RBd+VzJLyc83yftOpu3d+mgtYb+jK6SJkC9Tp5psSStuTRToglas2lynkfWc0ecnp1yHXZJlPNmbze2YQxMGZ6AFBBFRERkp5W0bdbHM0S6kvitwQ92+WgW2zSJbFhJsyzc6U2405vIHXEwRiqNtTwIi9byldir1mGvWgdP/BPftnGnT8GdNRVn5lS8hloYR9PJotFBaaWwN2De87ZoG48yO0zCCuHjD7sdQm0kxtRYgvWZFA3ROCnXYY/ymo3u/5i0QhgEa9XWZ9LErGAdYMQcPoDXRWN4XaXbH/SZGZpTPZTZIeqicSzDIG6HqAiFWZPuozIUYfeyKkzDGDEcbkx5KDzy+rQNPnp/dkfQEKZi8NRQg+gI1dvGaAILg6QdpitfmAZZlcE3veIa0nTOYY+yat5O99CRy1AVjha7xMYsm/JQuDi8PsdhXkWwjnRhZR0G8FxXW8l004znErXsjXbGjZgWIcOkw3WpDkdpiMZZPajiO0Qyjz+/BYDOTNDoZ7T3vDocZUVfN4yQ8TKew5H108g4Dk+1rSsZb1c+R8rN01moLm7SHqaxoGMsZrCPYj/f9/EJKpwdHUEH3ahlM7e8ipe62od9KLdQ9d6rvIaufI6oaY08DXcCUEAUERGRnVbcDpFNpol0JTFSwQ+p+WimUEkb/YdJPx7DmTcHZ94c8H3Mlnast1Zhr1iN9fYa7OUrsZevJAL40QjOjKagujhzKl5N5RatX9xSJb12+iuInrfZ4QiCSldDNF6oEA59baZhsKCillXpt3A8L+hOuZFmOABxO2iC0pnLEbYs1mdTzBslWFaFoliGiRPKEyrsOZgLBWvv2nNZ9qyoKZ7bFE2ScV2OqJ+6Ra8dgoBsG2bpWsGR2H5JOAxChz9ipa4mEuPA6gaSoRB/Wr8yaCgU8vD3Xwu2Vwwts5MVNMTiPLJ+FRUhn5znUhmOYBU63FqF8Xn41EfjWIbJAdXBfoCGYfCP9mamxxIYhkHadagKRUqaCg2nvxOsncuQtEPEC6/B9/1Rw7/v++Q8j9nJilEfvzIU4XV/+I6lru9hYlATjhKKWjzT2VIScrOeyy6JCtKuQ2s2TcOmNJkywd9vHVheScfUIDhb7FFeFXzOvk9jLIHn+7zU3Y7n+0OmjvY5eSpDEeqjMfarrA86CU/Q6aWggCgiIiI7sZBp0jN1PWXN1UHTECBnOVTam9it1DDw6mvw6mvIH7QPeB7m2mbst1ZjrViNtWodoVeXE3p1OQBeMhFMR53ZhDN9Cn5VxXYNjLHYoOeK9XeT9DdvKt4gs5MVwTrEEUyJJdglUc7rPV3EbZvaMTTpSdohwpZFRy7Lwso6fN8ftfpSHgpTZofodLLURRzIhMiH8tQW1vFVDAqC8ypq2LOiuti4ZUsk7BBRM2hUk8ln8aC4RcVgjufRmc+WTEV0fB/bMImNEMYsw2BBZS2ZQhfYbKG6199UJeU4JKxQ0PiIGHWRGB25LDnPLa7xDMJbiLZchohpUbdBtXh+RQ0vd3eQKkzJHK3D7Ib6P6OkHSJph4jaQxv29G8T0h+M+vd7nLKRbV6SowT3lBOMtTwUhODdkpW82N3O1FjwvI7v0RiNE7Nt/rhuZTG09jp50q5DXSRGn5Mn53nFa8r3fTrzOXx8khXukIDck88xNZYkatnMH/TLBtf3KLPDdOSy9LkOZuF9qQxH6HFy7F1Rh2WYzEpu+r6n440CooiIiOy0IqaFG3Lx57VgLGvEr0rj+H7JdgCbxTTxpjaSm9oIh+4PeQdr9TqsFaux31qFubaF0AuvEnrhVQC8ZLwwfXUK7owpeLXV2zQwxsIWTjiPZVLc4NwwjFEbgYzFxtZVmYbB4XXTmJWooM/Jj7ljatIOkXYc5pRVMiUaJz5KoDMNg4NrGnmsZTW5WJZwxsaL5GiIVJN13ZIGNZu7xchwLMOgOhKlOZMi47mYGEP2fQToyAfdRKvCkeJ6T8cPmrpENvJ+RC2bslCYjOOUvHe9Tp6ZiXJChefau7KWR5pXkvXc4npQ0zCoj8ZY1tHLYfVNQ4JX2LRoiMRYU9j6w/d9qkJj67JbZoeJFNZ2Ri2bCjtKr5MtuZ7WZlIYBsVAmPEcqsORjV4DCcsesgdlznPx/WBd38xEebFivVtZJS91txeb5BgEe3I2ROMkQyH63DxJO0xHLoNhGHi+T0c+C37wiwXLMEi5TrHy2pLNMDWW2OC5PaYN0xDKMkxmxMv4R8d69quqp9wO83T7OhJeCDCYPoHXHG5IAVFERER2WmHTDHJYXQrvoNUQcXB8b6ONUzZZyA6ml86aRu6IgyGTxVq5FnvlGqy312KuayH00uuEXnodAC8WDcLi9Cm405vwGmq26hrGsGnRtuAtqsNh+uNLMMVx2zfWCZnmRqcVbqg6FMXxPGoiUerHME1weryMJbVNPLLrKhr9CtyIS20kyvR4kpoxTGvdXLWRGG/0dhG3QkyNJXg71UPTBgEj4wahLet6xO3gM817HlFr6LYdw6kLx3gt11lyzPG9kueZlShnSe1U/t3ZUlIdrYvEaIzGmVs2fGOjpniS5X3dxWmSwzUbGk7CtoPKYSGgNkbjPNeVoqpwu+sXNhDxKYa3rOtSs5EOthBMA7fNgam7adehNZcBP2hC0zjoeqiLxJiRKGNVqrdQvQ2mv0Ysi92Tlfyro6X4mCYGfU5QPa8MR+jKZ6kOR4OwHS9jWqKMPzevLhlL/56Q9dHhr6EZ8TIc3+Og6kZMw+DNvi5WpXtoiCao24p7qO5oCogiIiKy0wqb1sCUyIpgup6RHttegFskGsHdfRbu7rOCr7M5rNXrsVauwXp7Ddba5pIpqX44hDutEXdGE+60KbiNdRDa/DGGzWAfOseGjmweFx+DLa8gbiu1kShlodAmdVgtD4VxY3m8aAo/4xOxrDGFyy1REYrg+B710RgLq+pYle4tqSKmXYeoFTSNybgOtmfQmctiGeZGm8H0q45Ecbq9DY4aJZVR0zCYW17F9Hiy5FqeFk9SZodHnFJbFYqAAd35HEk7XDIddzRxOzSwxURhjB4+zdk0PhApvL6kFWJtpq+wVtUfUwBN2EFDopTrEMOmJZvhgOp6OnNZ3uzrGvK+zS2r4q3ebjKuQ8Qyi691t2QlK1O9rEn3sqh2Cn1Onmc7W6kOR9mjvJonW9dSHQ4qhFPjZcWGS4P1V35HGnf/3pn99iivZk26j92SlZvWIGecG5/fJURERES2gqhlEzLMDaYCbp9KWolIGHfX6bi7Tg++zjtYa5uDsLhyDdaq9QN7MAK+aeI11uJObQyC49RG/LLR13INFjaD7SwcP2jNn7RD5GDbB+PNtGd59SgrG4fXX5HLeS4GxohdT7emMjtE0g4zK1FObSTG9HiSVaneYnOUrnyWXRIV2IbJ672dOHmPrO/huA672GOrqpbbpd1Sgz0NjWHXj244FbciNHK4gaCSFrUs2vNZ3lE3bcwbuc+IlzFt0FYV/cEyZJq4vk9rLsNhtU1UhaO8ne4J9rI0GNOaV8swmV9Rw1Nta+nKZ9mjrIqFlXX0OXnC5tB9NJtiieJU34ZovNiNuDIc4dgpM3mjt4uZiXLWZfr4d2cr0+JJdk2U8+/OFtpzGSzDoDYSxTQMLMMsbssC0Oc6zC2vHvP+hTPiZcyIl+1U00tBAVFERER2YvHClgnBfmxWYa3TOKikheygWjijKfjadTHXtWC/vRZz9TqsVeuw1jRjrWmGvz8LgFdRFuzFWAiNXv3I01JNwyBW2IDcx2fvyloyrrtdQtTmMAxjxB0kRhIxLcKGSdp1sQ1zo904t4ayUJiacLTYnXX3ZBVv9gZTNg2CZjQzE+X0OXnyngcGNEYSvN7bMeYuquWhMFHLZlW6t7C3ZBD4h9sXclNFLZvacIyoabPrJkwDNg2jJDRVhMJMiyVZUFlLn5Pnn+3NTI0nqQhFSNphep08BsaYmwPtWajE9Tg59q9uwDQMykJhltRNHXKuZZjsUVbFylTvkG1bopbNvEJjmbpwjJpwlKZYkrgd4uDqRh5ev5K6aIyKUATX9wu/YPCIWWbQKdb3aRhheulwYpbNMVNmbvbeouOVAqKIiIjstEzDoDocZV2mjzKC6WUh09zibp5bnWUNNL0B8H2Mjq4gKK5ej7V6HWZLO6GuHkIvBusY/ZCN21QfBMamBrymevzEwBTLmBWi18ljYtAUTVAxgfdlG06w/UKY1myKsGVtl/Abs2wOqwsqZRB0ba0KR+jO57BNk4QVYko0wdpMX6EJkc+0eIKOXGbMVeuyUJij6qfzdqqHZ7taiVs2laHIVgshc5KVmMPtA7oJQqbFuxtnFhvBlNtBcDYMg2mxBM91tVIWiow5INqmyaF1TeQ8d0z/bU6Pl1Edjmy02+3csiqmFKq7s5MVdOSyhC2zGHiTdoiME2yb0ZnPURYKj2lrlsF2tnAICogiIiKyk6uNxFiRCjbCznkuUdMuNtsYtwwDv7oSp7oSZ+89gmOZbFBVLFYY12OvWIO9Yk3xbl5FGe6UOtwp9UyLmawJe4Tjsa3azXM8KQ+FWJlyKAuFxzxdcktVDZryGDJN9iqv5onWNYDB3pU1RArbQYBP2LSYU1ZFVz5XsoZwYxpjCUzD4LmuVjKuS01ybN1Gx2LXssqt8jj96xFNw6BxUAOdqfEk/+5spcwOFbuujkXwno0tUJaFwuxZXk3NKNuoGIbBftX1JV8fWNNQ0jG1MhTh7VyWlOOQdh3e0TBtk8a8s9o5v1uIiIiIFJSHwvT/TJjzPOqisYm5iXU0UrqO0fMwWzuKYdFc24zZ2hFUGV9+k0XAIUBXRYLEjDVBtXFKfTA1dXuvwdxGykLhko3Td4S55VWsSffxVqqb6YXtERJ2iLBpUREKk7BDHFE3dZOvuepwlIQdpiWTGnO30fGgLhInaYeHrB3c2g6obtis+w3+HCpDEd4orKE8sLqBXRKb1n13Z6WAKCIiIju1slAYjGB9Uc5zx7z327hnmnj1NXj1NeT3mxccy+aw1rVgrW2m9+1VWGuaqezqg+deIfTcKwD4lolXXxsExsY6vMY6vNqqrbrNxvaSsILOpztyyrBlmBxU00hFOFJsVhM1LeKWTVM0aF6yOb+QsE2TplgwPXXcTYkeRdIOMSUa3+YBcWtIhkKkXYeaSJQ9y6s2fodJQgFRREREdmpldoiIaZHzPFzfpyw0cX7Y3mSRMO7Mqbgzp/L2vF14YO1bHJmoZt+UF3RNXRs0vun/dz/fsvDqa3AbaoPuqQ21eHU1W7TVxvYQtaxgTam1Yz/T8lCYAwdVtAzDoCmWGHE/vbGaEk3wdqp7zGv5xosDahrGbUOkweKWTdSy2LOsetx2+N0R9E6IiIjITi1q2STsEBnPwRhj6/2dQdi0iFoWkfIy3KlVA3sy+j5GZ3cQFNe3YK5rxVrfOjQ0GgZebRVeQyEwNtbhNtRCZOxr6ba1mGUTtixi43CN5SE1Uza5M+uGaiNRqkPRCRcQJ0L1ECBph2mIxJm9CR1dJ4Px91+TiIiIyFZWH4nxUndHYfuHyfHjT9gyids28Q1fr2HgV1XgVFXgzNs9OOb7GF09WOtbi4HRXN+C1dKO1dJO6PlXi3f3qipwG2rw6oLprW5dNX5leaFr5/YVLWxjMh6rVWPdS280VeEoSxumq3HKNlIeCnNU44xJ8z1hrPRuiIiIyE5vQWUtK9O9OJ43aSqIEdMiZoWIj2X6pWHgV5bjVJbD3F0HDvemgqA4ODh2dGF2dMHLbxbP80M2Xl01biE09v+b+LatJEUta9wGxK1FUx+3LYXDofSOiIiIyE6vIhRhUc0UXuxuH/9bXGwlUcsmYYW2aIN1PxnHTc7EnT1z4GAmi9XShtncjtnShtX/95pgfeNgXjKBV1eNVz8oPNZUwlaaEho2Lcrt0Jj3GBSRjVNAFBERkUlhVqKcabHkxNziYjPELJt3NkwntLW7k0YjuNObcKc3DRwrTFE1W9qxmtswW4LQaLZ1Yvf2wfKVA6caBn5FGV5tFW5tFV5NVbDWsaZqs9Y3HlY3daeuIIpsbwqIIiIiMmlsr83Ux4utHg5HUpii6laWDzTDAXAczLZOzOa2gapjWwdmZzdmZzf26ytKHsYrSwwExtqB4OjHR+4GqimYIluX/osSERERkW3DtvEaavEaanEGH8/lg6DY2lH822rtwOjsxu7pg7dWlTyMF4sGYbG6Ar+6Eq+qAq+6Eq+qfKtNVxWRgP6LEhEREZHtKxzCm1KPN6W+9LjjYLZ3DQmPZnsn9sq1sHJtyek+BNNVqyrwqisGgmN1BX5FGWhtosgmU0AUERERkfHBtoNGNvU1pcc9D6OzB7OjMwiQ7V2Y7Z2YHV0YXT3YXT1Dqo6+aeJXluFVBZVGrzL441eW41WWQWhydLMV2VQKiCIiIiIyvpkmfnUFbnUF7uwNbnMczI7uYPuN9k6MQeGxP0wOx0vE8SvL8avKyE+pxY7EcCvKghBZltgh+zqKjAcKiCIiIiIycdnBHoxeXfXQ27K5ICgWmuIYnd2YnT3Bv7t6MPtSsHod7vOvERl0N98yg6mrFUG10a8owytP4pcX/i5LwCRreCSThwKiiIiIiOycImG8xjq8xrqht3keRk8fVncPZfksqVUtGB1dmJ09QZAcpfroGwZ+WaIQGpN45WWFv5PFMEkkrCqkTEgKiCIiIiIy+ZiFKmFVOXZNkvxuvXieP3B7Ll+oNHZjdvdhdPdgdvVidvdidPdg9PRhd/eO+PB+OFSoNgYVRy8Zx08mCv9O4JfF8RNxVSJl3FFAFBERERHZUDgUNMupr8Ed7nbXxejpKwTGXszunuDvriBAmt29WK0d0Nox4lP4hoGfiAXBMRnHK0uUhshkECL9eFRBUrYbBUQRERERkU1lWfiV5biV5cPf7vvBGsiePozeviBM9vZh9KQwevsGjvemMHtToz6VD/ixaBAmE3H8eGzg34kYXnzg334ipr0hZYvo6hERERER2doMA6IRvGgEhmug08/zMNIZjJ7+EJkaFChTGKk0Rl8Koy+Nmc6MWpHs50fC+PEYXiKGH4tCLIofiwQhs+TPwDHtGSn9FBBFRERERHYU0yxU/+LQWDf8dFYIKpK5PEZfCrMvXRIcjb40RqoQIgu3mR1dmB3DN9kZ9uHDoYHQGB0UIKMR/EgYIhH8aDgIn5EwFI77kQjYlhry7EQUEEVERERExjvDgEI4c6srN35+3glCZDqDkc4W/h78Z4NjmQxmVw909Wzy0HzTxI8WQmQkPChIRiAcwg+Hgr9Dpf8mbA9zLKSwuYMpIIqIiIiI7GxCNn5FsIfjmHkeRmYgOJLOYGRyGNn+P1no/zqTHTiWzQXnpTJbZeh+yC6GRd+2wLaLf2Nb+CE7WAPa/3Xh78HnFc+3THzTBMsMGv30f13yb6t4+8C5RnCOaU66wLrTBMS5c+cOOfb1r3+d448/fgeMRkRERERkgjHNoAFOPLZ593ccjGyuECILATKXD6bG5vv/doJj+XzJbQP/doK/czmMVHrrvr4t4PeHRMMo/Bn874HbiufZFu6JR8PUph0y3i2x0wREgBtuuIHFixcXvy4vH6GrlIiIiIiIbF22HVTzEnH8jZ+9cZ4XTJV1Xcg74LjFf2/4N64bhMv+vx0Xw3HA9cBzg+qo6wWP6XngehiFv/uPDXu77w/6A1D6teH7hWPBeI3+81wXcvmt8S5sdztVQCwvL6eurm5HD0NERERERLaUaQbrLgcd2irBczswTYNYTRLaenf0UDbZTrXj5uWXX84hhxzCySefzK9+9asdPRwREREREZEJZaepIF500UUsWrSIcDjMX/7yF770pS+RSqU49dRTN/sxTXP8LEjtH8t4GpPsHHRtybag60q2BV1Xsi3oupJtYSJfV4bv++O2UnvTTTdx8803j3rOn//8ZxobG4ccv/HGG7nvvvv405/+tFnP7fs+xiTrWCQiIiIiIpPbuA6InZ2ddHWNvsHntGnTsCxryPFHH32Uc845h+effx7b3vRCaT7v0t09fjonmaZBVVWCjo4+PG/cfmQyAenakm1B15VsC7quZFvQdSXbwni8rsrLY4RCQ3PThsb1FNPKykoqKys3674vvfQSVVVVmxUO+42XD3Mwz/PH5bhk4tO1JduCrivZFnRdybag60q2hYl4XY3rgDhWf/rTn2hra2PhwoWEw2GeeOIJvvOd7/CJT3xiRw9NRERERERkwtgpAqJt2/zoRz/immuuAWDGjBlceumlnHzyyTt4ZCIiIiIiIhPHThEQDz/8cA4//PAdPQwREREREZEJbafaB1FEREREREQ2nwKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIABMkIH75y1/mhBNOYP78+ZxwwgnDnvP000/zwQ9+kPnz53P00Udz7733bt9BioiIiIiITHATIiACnHjiiRx33HHD3rZy5UrOPvtsDj74YO677z7OOOMMLr30Up588sntPEoREREREZGJy97RAxiLyy67DID29nZef/31Ibf/5Cc/Yfr06Xzuc58DYPbs2fzzn//krrvuYvHixdt1rCIiIiIiIhPVhAiIG7Ns2TIOPfTQkmNLlizhhhtu2KLHNU1ji+6/NfWPZTyNSXYOurZkW9B1JduCrivZFnRdybYwka+rnSIgtra2UlNTU3KstraWzs5O8vk8oVBokx/Ttk1qapJba4hbTVVVYkcPQXZSurZkW9B1JduCrivZFnRdybYwEa+rHRYQb7rpJm6++eZRz/nzn/9MY2PjmB7PMErTue/7mz02AMfx6O5Ob9FjbE2maVBVlaCjow/P27LXJjKYri3ZFnRdybag60q2BV1Xsi2Mx+uqvDxGKGRt9LwdFhBPP/103ve+9416Tl1d3Zgeq7a2ltbW1pJjbW1tVFZWblb1sN94+TAH8zx/XI5LJj5dW7It6LqSbUHXlWwLuq5kW5iI19UOC4iVlZVUVlZulcdauHAhjz32WMmxJ598koULF26VxxcREREREZkMJsQ2FytWrOCll16ipaWFbDbLSy+9xEsvvVS8/T//8z95++23ueGGG3jjjTf40Y9+xEMPPcQZZ5yxA0ctIiIiIiIysUyIJjWXXXYZf/vb34pff+ADHwDglVdeAWD69Ol85zvf4brrruMHP/gBjY2NfPnLX9YWFyIiIiIiIptgQgTEH/7whxs955BDDuHee+/d9oMRERERERHZSU2IKaYiIiIiIiKy7SkgioiIiIiICKCAKCIiIiIiIgUKiCIiIiIiIgIoIIqIiIiIiEiB4fu+v6MHMR55no/rejt6GCVCIYt83t3Rw5CdkK4t2RZ0Xcm2oOtKtgVdV7ItjLfryrJMTNPY6HkKiCIiIiIiIgJoiqmIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggjis/+tGPWLp0KQsWLOBDH/oQzz777KjnP/jggxxzzDEsWLCA9773vTz22GPbaaQy0WzKtfXaa69x/vnns3TpUubOncvdd9+9HUcqE8mmXFc//elP+fCHP8yBBx7IQQcdxJlnnslzzz23HUcrE8WmXFd//OMfOfHEEznggANYuHAh73//+7n33nu332BlwtjUn7H6ffe732Xu3Llcf/3123iEMhFtynX1y1/+krlz55b8WbBgwXYc7dgpII4TDzzwANdeey3nnnsuv/rVr5g7dy4f//jHaW9vH/b8Z555hosvvpiTTjqJe++9l6OOOopPf/rTvPHGG9t55DLebeq1lU6nmTZtGhdffDF1dXXbebQyUWzqdfX0009z/PHH84Mf/IAf//jHNDQ0cOaZZ9Lc3LydRy7j2aZeVxUVFZx99tncc889/PrXv+akk07i0ksv5cknn9zOI5fxbFOvq34vvPACP/nJT5g7d+52GqlMJJtzXVVWVvKXv/yl+OeRRx7ZjiPeBL6MCyeddJJ/1VVXFb92XddfsmSJf/vttw97/oUXXuifffbZJcdOPvlk/8orr9ym45SJZ1OvrcHe8Y53+D/84Q+35fBkgtqS68r3fd9xHH/ffff1f/3rX2+rIcoEtKXXle/7/gc+8AH/pptu2hbDkwlqc66rVCrlH3vssf5jjz3mn3baaf511123PYYqE8imXle/+MUv/IMOOmh7DW+LqII4DuRyOV544QUOPfTQ4jHTNFm8eDHLli0b9j7Lli0rOR9gyZIlI54vk9PmXFsiG7M1rqt0Oo3jOFRUVGyjUcpEs6XXle/7PPXUUyxfvpz9999/G45UJpLNva6uu+46Dj74YA477LDtMEqZaDb3uurt7eXII4/kiCOO4NOf/jSvv/76dhjtprN39AAEOjo6cF2X2trakuM1NTWsWLFi2Pu0trZSU1Mz5PyWlpZtNk6ZeDbn2hLZmK1xXX3ta19jypQpHHLIIdtiiDIBbe511dPTw+GHH04ul8M0Ta688koWLVq0rYcrE8TmXFePPPIIf/3rX7WeVUa0OdfVrrvuyrXXXsucOXPo7u7mzjvv5JRTTuH++++noaFhewx7zBQQxzHf9zEMY8Tbh7tttPNF+m3s2hLZHGO9rm677TYeeOABfvjDHxIOh7fDyGQi29h1lUgkuPfee0mlUjz11FNcc801zJgxgwMOOGA7jlImmpGuq/b2dr74xS9yyy23EIvFdsDIZCIb7fvVwoULWbhwYfHrfffdl+OOO46f/exnnHfeedtphGOjgDgOVFVVYVkWra2tJcfb29uH/GaiX21t7ZDz29raRjxfJqfNubZENmZLrqs77riD73znO3zve99jzpw523KYMsFs7nVlmiYzZ84EYM899+SNN97gu9/9rgKiAJt+Xb322mu0tLRwyimnFI+5rsvf//537r77bnVfFmDr/HwVCoXYc889x+WMLq1BHAfC4TDz5s0r6brmeR5PPfVUyW8aBlu4cCFPPPFEybEnn3xyxPNlctqca0tkYzb3urr99tu59dZbuf3228dta2/ZcbbW9yvf98nlcttghDIRbep1tWDBAn7zm99w7733Fv/Mnz+fD37wg/zyl7/cjiOX8WxrfL9yXZfXXnttXHaMVwVxnPjYxz7GJZdcwrx589h777256667yGQyfPCDHwTgkksuoaGhgYsvvhiAj3zkI5x22mnceeedHHHEETzwwAM8//zzXH311TvyZcg4tKnXVi6XK26XksvlWL9+PS+99BIVFRU0NTXtsNch48umXle33XYbN954I1/72teYOnVqcb10PB4nkUjssNch48umXlff/e532WuvvZg5cya5XI7HH3+c++67j6uuumpHvgwZZzbluorH40NmN8TjcSorK9l99913xPBlnNrU71c333wzCxcuZObMmXR3d3PHHXewZs0aTjrppB35MoalgDhOHHfccbS3t/Otb32LlpYW9txzT26//Xaqq6sBWLt2LaY5UPDdb7/9+NrXvsY3v/lNvv71rzNr1ixuueUWZs+evaNegoxTm3ptNTc384EPfKD49Xe/+12++93v8sEPfpDrrrtuew9fxqlNva5+/OMfk8/nueCCC0oe57zzzuP888/frmOX8WtTr6tMJsNVV13FunXriEaj7LrrrnzlK1/huOOO21EvQcahTb2uRMZiU6+r7u5uvvjFL9LS0kJFRQXz58/nnnvuYdddd91RL2FEhu/7/o4ehIiIiIiIiOx4+nWJiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICgL2jByAiIrK93HTTTdx8881Dji9atIjvf//7239AIiIi44wCooiITCplZWXcfvvtQ46JiIiIAqKIiEwylmWxcOHCjZ6XyWSIRqPbfkAiIiLjiNYgiojIpLdq1Srmzp3Lr3/9ay655BIOOOAAzjnnHAA6Ozv50pe+xOLFi1mwYAH/+Z//yb///e+S+3d3d3PxxRezcOFClixZwv/+7/9y/fXXs3Tp0uI5N910EwcffPCQ5547dy533313ybGf/exnHH/88cyfP593vOMd3HbbbSW3f+5zn+OEE07giSee4L3vfS8LFy7klFNO4bXXXis5z3VdvvOd7/Dud7+b+fPnc/jhh/O5z30OgB/96Efsu+++9PX1ldznr3/9K3PnzuXll1/exHdRRER2BqogiojIpOM4TsnXvu8DcMMNN3D00Udz4403YpomuVyOj33sY3R3d3PJJZdQXV3Nj3/8Yz760Y/y+9//nrq6OgA+//nP87e//Y1LL72U2tpa7rzzTt5++21se9P/N3v77bfzjW98g49//OMcdNBBvPDCC9x4443EYjFOO+204nlr167lhhtu4FOf+hSRSIQbbriBiy66iPvvvx/DMAD40pe+xH333cdZZ53FQQcdRFdXFw899BAA733ve7n++uv53e9+xwknnFB83F/96lfMmzePPfbYY5PHLiIiE58CooiITCqdnZ3Mmzev5NiXv/xlAPbZZx8uv/zy4vGf/exnvPbaa9x///3MmjULgMWLF3PMMcdw55138t///d+89tpr/PGPf+Qb3/gGxx13HAAHH3ww73jHO0gmk5s0tt7eXm655RY+9alPcd555wFw6KGHkk6n+d///V9OOeUULMsCoKurix//+MfFcfm+z7nnnsubb77J7NmzeeONN/j5z3/OF77wBT7ykY8Un6N/jOXl5bzrXe/il7/8ZTEg9vX18fvf/56LL754k8YtIiI7DwVEERGZVMrKyvje975XciwcDgNw5JFHlhx/6qmnmDdvHtOmTSupOh544IE8//zzADz33HMAJdNJE4kEixcv5tlnn92ksT3zzDOkUimOOeaYkuc75JBDuPXWW1m3bh1Tp04FYOrUqcVwCDB79mwA1q9fz+zZs3n66acBSqqDGzrppJP46Ec/ysqVK5k+fToPPvggjuPwnve8Z5PGLSIiOw8FRBERmVQsy2LBggUlx1atWgVATU1NyfGOjg6WLVs2pOIIMGPGDABaW1tJJBJDGtps+Fhj0dHRAcDxxx8/7O1r164tBsQNO6+GQiEAstksEFRK4/H4qFXMgw8+mOnTp/PLX/6SCy+8kF/+8pe8853vpLKycpPHLiIiOwcFRBERkYL+tXv9KioqmD9/PldcccWQc/urjrW1tfT19Q3petrW1lZyfiQSIZ/Plxzr6uoa8nwA3/nOd4YNmLvsssuYX0tlZSWpVIre3t4RQ6JhGJx44on89Kc/5f3vfz///Oc/hzTEERGRyUUBUUREZASLFi3iiSeeoKmpacSKYH818k9/+lNxfV9fXx9PPvlkSTBraGigr6+P9evX09DQAMATTzxR8lj77rsv0WiU5ubmIdNdN9UhhxwCwL333lvS3GZDH/zgB/nWt77FpZdeSkNDA4ceeugWPa+IiExsCogiIiIj+MAHPsBPfvITTj/9dM4880ymT59OZ2cnzz77LHV1dXz0ox9l9913Z+nSpVxxxRX09vZSV1fHHXfcMWTK6WGHHUY0GuXSSy/lYx/7GKtWreInP/lJyTnl5eWcd955XH311axevZoDDzwQz/N46623ePrpp7nlllvGPPZdd92V//iP/+C6666jra2NAw88kO7ubn73u9/xjW98o3heQ0MDhx12GI8++ihnn312sQmOiIhMTgqIIiIiI4hEIvzgBz/gxhtv5KabbqKtrY3q6mr23nvvkqY01113HVdccQXXXHMN8XicD3/4wyxYsIDf/e53xXOqq6v51re+xQ033MC5557LvHnz+NrXvlasOvb7xCc+QX19PXfddRff+973iEQizJo1a8h5Y3H55ZfT1NTEz372M2677Taqq6uHrRAeddRRPProo6M2tBERkcnB8Ps3fxIREZGtpn+PwT/96U87eigbdeGFF9LS0sL//d//7eihiIjIDqYKooiIyCT1yiuv8Pzzz/OHP/yBr3/96zt6OCIiMg4oIIqIiExSn/rUp+jo6ODDH/4wxxxzzI4ejoiIjAOaYioiIiIiIiIAmDt6ACIiIiIiIjI+KCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiExgvu+zdOlS5s6dy4oVK8Z0n1dffZW5c+fy9NNPb/XxtLW1cdNNN7Fq1aqS408//TRz587l1Vdf3erPOVZz584d9s8//vGPMd3/c5/7HCeccMI2HuX2fe6lS5dy/fXXj3j7qlWrmDt3Lo888sgWP9fpp5/OBRdcUHLspz/9KUuXLmWvvfbi9NNP3+Ln6HfTTTeN+Hn3/9mazycisjOxd/QARERk8z3zzDOsXr0agN/+9rd8+tOf3qHjaWtr4+abb+aggw5i2rRpxePz5s3jnnvuYcaMGTtwdHDmmWfy7ne/u+TYbrvttoNGM7lcfvnl2PbAjx0tLS1cccUVnHrqqRxzzDFUVFRstec6+eSTOeyww4pf//CHP+Tpp5/m5ptvLh5LJpNb7flERHYmCogiIhPYb3/7W+LxOLvvvvu4CIgjSSaTLFy4cEcPg6lTp46LcUxGGwbxFStW4LouJ554InvsscdWfa7GxkYaGxuLX//ud78jHA6P+tlnMhmi0ehWHYeIyESkKaYiIhOU67o89NBDLF26lBNPPJHXX3+dl19+ech5P/rRjzjiiCNYuHAh55xzDi0tLUPOufPOOznxxBPZf//9Wbx4Meecc86QKav9UwTvueceli5dyt57780nP/lJ1q9fDwTTEd/73vcC8JGPfKQ4lQ+GTjE97bTTuPDCC4eM4/rrr+fII4/E930AstksN9xwA0cccQTz58/nfe97H3/+85+34F0b3r333sspp5zCQQcdxIEHHsjpp5/Oc889N+p9uru7+cIXvsCSJUtYsGABRx55JJdddlnJOa+++iqf/OQn2Xfffdl333254IILhn3/N1VzczOf//zneec738nee+/Nu9/9br7xjW+Qy+VKzstkMtxwww284x3vYP78+SxdupSvfe1rIz7u+vXrefe7381HP/pR0un0sOc8/fTT7Lvvvnz9618H4Je//CVz587llVde4WMf+xgLFy7kmGOO4fe//33J/QZPMb3ppps49dRTAXj/+9/P3Llz+eUvfwlsn8+8f+rsr3/9ay655BIOOOAAzjnnHCCYinz33XeXnH/TTTdx8MEHlxxbs2YNn/nMZzjooIPYZ599OOuss3jzzTe36jhFRHYEBUQRkQnqr3/9K62trRx33HG8+93vJhQK8dvf/rbknD/+8Y9cddVVHHnkkdx0003MmTOHSy+9dMhjrVu3jtNOO41bb72V//mf/8F1XU455RR6enpKznvmmWe4++67+dznPsfVV1/NK6+8Uqxa1tfX89WvfhWAL33pS9xzzz3cc889w479uOOO49FHHyWVShWP+b7PQw89xLHHHothGABccMEF/OpXv+Lss8/m29/+NgsWLOBTn/oUL730UvF+/evNxsLzPBzHKf5xXRcIAsMHPvABbrzxRr761a/S2NjIaaedxsqVK0d8rGuvvZZ//vOfXHrppdxxxx185jOfKY4bggrZKaecQjab5Stf+QrXXXcdr7/+Ouecc04xAG+ujo4OKisr+fznP8/tt9/OWWedxS9/+Uu+/OUvF8/xfZ9Pf/rT/PjHP+bDH/4wt912GxdccAEdHR3DPuaqVas49dRTmTlzJt/5zneIxWJDznn88cf55Cc/yVlnncV//dd/ldz22c9+lqVLl3LzzTcza9Ys/uu//ot169YN+1wnn3wyX/rSlwD46le/yj333MORRx4JbP3PfDQ33HADiUSCG2+8kbPPPnvM9+vs7OTDH/4wy5cv54orruCb3/wmqVSKj33sY2QymS0el4jIjqQppiIiE9T9999PeXk5hx12GOFwmMWLF/Pb3/6W//qv/yoGlW9/+9scdthhXHnllQAcdthhtLe387Of/azksQaHRtd1OfTQQ1m0aBEPP/wwH/jAB4q3tbe385Of/ISpU6cC0NTUxIc//GEee+wxDj/88OIP7bvtttuo0/mOOeYYvvzlL/PII49w/PHHA7Bs2TLWrFnDcccdB8BTTz3Fo48+yg9/+EMOOuggAJYsWcJbb73F//7v//Ktb30LAMMwsCxrTO/Z1VdfzdVXX138er/99uPHP/4x5513XvGY53kceuihPPfcc9x3330ltw323HPPceqppxbHC0E1rN/NN99MbW0tt912G+FwGAiqU8ceeyx//vOfi4Foc8ydO5f//u//LnkdsViMSy+9lMsuu4xwOMxf/vIXnnjiCW699Vbe+c53Fs8d/Hn2W7FiBWeccQYLFizga1/7WnG8gz388MNcdNFFXHTRRZx11llDbj/jjDM46aSTgGDN6aGHHsojjzzCKaecMuTcxsbG4pTTuXPnMmfOHGDbfOaj2Weffbj88ss3+X7f//73SafT3HvvvVRWVgLBZ7B06VJ+8YtfFKujIiITkSqIIiITUC6X449//CNHHXVU8Yf5448/ntWrV7Ns2TIgCHovvfRSSTgAOProo4c83rJly/jYxz7GwQcfzF577cU+++xDKpVi+fLlJefttddexXAIsP/++1NTU8Ozzz67SeOvrq7mkEMO4YEHHigee+CBB5gxYwYLFiwA4Mknn6Suro799tuvpOq3aNEinn/++eL9zjvvPF588cUxPe9ZZ53Fz3/+8+Kf/rD4xhtvcO6557J48WL23HNP5s2bx/Lly3nrrbdGfKw99tiDO+64gx/96EdD3icIws7RRx+NaZrFsU+bNo2pU6eWjH9z+L7P97//fY477jj23ntv5s2bx2c/+1lyuRxr164FggpzZWXlkM9/Q8uXL+fUU09l//335xvf+Maw4fD3v/89F154IZ/73OeGDYcQBLl+VVVVVFdXj1hBHMm2+MxHs7kh/amnnmLx4sUkk8niGBOJBPPmzdviz1ZEZEdTBVFEZAJ67LHH6O7u5ogjjqC7uxuAgw8+mHA4zG9/+1v23Xdf2tvbcRyHmpqakvtu+PWaNWs488wz2Xvvvbnyyiupr68nFApx9tlnD1nTtuF9+49tzrq64447jiuvvJLe3l7i8TgPPfRQyVYOHR0dtLS0MG/evCH33dzqUVNTUzGA9uvt7eXMM8+kpqaGz33uczQ1NRGJRLjsssuGvP7BvvSlL/Gtb32LW2+9lauuuoqZM2dy4YUXFiuiHR0d3Hbbbdx2221D7tsf4jbXXXfdxfXXX88nP/lJDjzwQMrLy3nuuee46qqryGazQDANsq6ubqOP9cwzz9DZ2clJJ51U0mV0sD/96U9UVlZy1FFHjfg4ZWVlJV+Hw+FR37/hbIvPfDTDXc9j0dHRwbJly0p+wdFv0aJFWzosEZEdSgFRRGQCuv/++wGGbfTy4IMP8vnPf57q6mps26atra3k9g2/fvzxx8lkMtx6663E43EAHMehq6tryGNveN/+Y2MJIhs6+uijueKKK/jjH//I1KlTaW5u5thjjy3eXlFRQUNDA7fccssmP/amWLZsGevWrePOO+9k9uzZxeMbrr/cUHl5OZdddhmXXXYZL7/8Mrfffjuf/exnmTt3LrvtthsVFRUcddRRnHzyyUPuW1VVtUVjfuihhzjmmGP4zGc+Uzz2xhtvlJxTWVk5puB+wgkn0Nvby7nnnsv3v/999t577yHnXHbZZXzve9/jzDPP5O67797i8Y9ke33m/QavGe0XDofJ5/Mlxzb8b6GiooKlS5cO2zU4kUhs3UGKiGxnCogiIhNMX18fjz76KO95z3v40Ic+VHLbSy+9xLXXXsvTTz/N4sWL2WOPPXj44YdL1oH94Q9/KLlPJpPBNM2S6tGDDz6I4zhDnvvFF19kzZo1NDU1AfDPf/6Ttra2YqgIhUIAxSrWaCoqKliyZAkPPvggTU1NzJ49u2S7g0WLFvG9732PeDxeEty2tv6mIoOnVv7rX/9i9erVzJ8/f0yPsccee3DJJZfwm9/8hjfffJPddtuNRYsW8dprrzF//vxhg8iWjnnDqaC/+c1vSr5etGgRt99+O4888gjveMc7Rn28K6+8klQqxSc+8Ql+8IMfDGkAk0wmueOOOzj99NM566yz+MEPfrBN9hHcXp/5aBobG0vCtud5/PWvfy05Z9GiRTz44IPsvvvu2hpDRHY6CogiIhPMww8/TDqd5iMf+Qj77LNPyW377bcf//u//8v9999f3K7ivPPO4/LLL+foo4/m73//O48//njJfQ455BBc1+Xzn/88J510Eq+99hp33nkn5eXlQ567urqas88+m/PPP59sNstXv/pV5s2bx+GHHw4EUzij0Sj33nsvZWVl2LY9ZErnYMceeyxf+MIXSCaTnHbaaSW3HXrooSxZsoQzzzyTT3ziE+y222709vby8ssvk81mufjii4GgGcytt9662WvSFi5cSDwe54tf/CIf//jHWbduHTfffDMNDQ2j3u+UU07h6KOPZvfdd8cwDH76058Sj8eLYfm8887j5JNP5pOf/CQnnngiVVVVrF+/nieffJIPfvCDxW0Tli5dykEHHcR111036vMNDpmLFy/mhz/8IXvvvTczZszgN7/5zZBtSfrfv4svvphzzz2Xvfbai5aWFv7xj39w1VVXlZxrmibXX389F1xwAWeddRZ33303s2bNKjmnqqqKO++8k1NPPZWzzz6b22+/fdhOp1tie33moznqqKP4v//7P/bcc0+mT5/Oz3/+c3p7e0vO+ehHP8qvf/1rzjjjDE477TQaGhpobW3l73//O/vvvz/vec97tvq4RES2FzWpERGZYH77298ya9asIeEQggrescceyx/+8AdyuRxHH300X/ziF3nkkUc499xzefHFF0u6eELQRfLaa6/l3//+N2effTb3338/N95445A1ZQD77rsvH/7wh7nmmmv4whe+wO67714yHTASifA///M/vPDCC5x++unFrpYjeec734llWXR0dJR0A4UgEN18882ceOKJ3HXXXXz84x/n8ssv55lnnmH//fcvnuf7fnG7is1RW1vLjTfeSGtrK5/+9Ke56667uPLKK5k5c+ao91u4cCG/+tWvuOCCC7jooouKaw77N2jfZZdduOeee4jFYnzpS1/iE5/4BDfddBPhcLjksdPpNNXV1aM+VyaTKVZnAc4991ze8573cOONN3LxxRcTCoWG7MFoGAa33HIL//Ef/8Fdd93FJz7xCb75zW+OOD3Utm2++c1vMmfOHD72sY8Nu06yvr6e73//+6xevZrzzjtvk9cYbsz2+sxHc95553HMMcdw44038vnPf5499tiDE088seSc6upq7rnnHnbddVeuvfZazjzzTL761a/S09OzVbbfEBHZkQx/SzdjEhGRSeH000+nqqqquNWAbLmVK1fyrne9i9///vdMnz59xPNOOOEEZs2aVdycXkREZFvRFFMREZEd5JlnnuGoo44aMRw+99xzPP7447zwwgt8/OMf386jExGRyUgBUUREZAd53/vex/ve974Rb+/vUnrJJZcMmYIrIiKyLWiKqYiIiIiIiABqUiMiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgZrUjMDzfFzX29HDKGHbJo4zvsYkOwddW7It6LqSbUHXlWwLuq5kWxhv15VlmZimsdHzFBBH4LoenZ2pHT2MItM0qKlJ0t2dxvPUV0i2Hl1bsi3oupJtQdeVbAu6rmRbGI/XVWVlHNO0NnqeppiKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIGa1IiIiIjIDuX7Pp7n4u+AXh6maZDL5XAcZ9w0E5GJb0dcV4YBpmlhGBvvVDoaBUQRERER2SF836e3t4u+vm5gx4Wz1lYTzxs/2xHIzmFHXFemaVFTMwXL2ni30pEoIIqIiIjIDtEfDsvLqwmHI8CWVT42l20bOI6qh7J1bf/ryqezs5Xu7naqquo2+1EUEEVERERku/N9vxgO4/HkDh2LbZuAKoiyde2I66qsrJKOjmZ838MwNq/djJrUiIiIiMh253ku4BcqhyKyNVhWUP/bkqmtCogiIiIist0NNKTZMdNKRXZOwX9PW9LwSQFRREREREREAAVEEREREZEd5l//+gdLlhxAKpUa9byTTnovv/jFPdtpVNvXvff+gv/+788Uv3Ychy9/+XKOOeYdLFlyAK+99gpXXnkZP/nJ3TtkfOed90luvvmbO+S5dwQFRBERERGRMbr66itYsuQAvvGNG4bcduWVl7FkyQFbFCYeeOA3HH/8O4ccv+22H3D88e8vfr1kyQE88cTjm/0820MqleLmm7/JySe/j6VLF/O+972bz3zmXJ59dlnxnGw2y/e+910++tGPF489+ujDPP74o3zzm7dy330Pscsus/noRz/OD37wPfr6ekd9zpNOei9Llhww5M+99/58o+MdKaxfc81XOPPMT2zKS98s4+UzVRdTEREREZFNUF/fwB/+8DvOPfciwuEwAH19vTz++KPU1zdsk+esqqraJo+7NeTzeUKh0JDjX/nKNbz66stcfPHnmDlzFp2dHfzzn3+nu7u7eM6jjz5MRUUle+45r3hs1aqVTJ06nT322LN4bObMWUyfPoM//OEhPvCBk0Ydz9lnn8txx7235FgyufmdcsvLKzb7vhORAqKIiIiIyCbYa695LF/+Jn/5y2MsXXoUAH/84++ZM2cPTLN0gt6SJQdw/fXf4NBDDwOCqtq73nU43/rWt9lvvwNKzv3Xv/7BNddcWbwfwMc+9gnOOutsTjrpvZxyymmceOJ/cNJJQfjpn5bZ2DiFn//8N6xc+TY33/wNXnzxBTKZDLvuOptPf/pC9tlnYcl4PvvZz/PnP/+Jf/97GfX19Vx44cUsWrSkeM6bb77OzTffyLPPPkMikWDRoiWcd95niiHrvPM+yW67zQF8fv/7h5g3bz5f+cqNQ96np576C//1X//NIYcsBmDKlKaSIAjw8MO/59BDDy9+ffXVV/Dgg/cXx9r/2gAWL17Cww//YaMBMR6PU1NTO+xt69at5etfv4Fnn12G4+SZOnUaF130/2hsnMIFF5wDwLveFYzn2GPfwxe+cAXnnfdJ9thjL8477yIgqFK+//0n8MYbr/OXv/yZqqoaLrnk80yfPovrrruK559/ll12mc2VV15NU9M0gI1+NiN9pgCPPfYod975Xd5++y3q6up53/s+yCmnnD7kWttaNMVURERERGQTHXfce3nggV8Xv37ggd8MqVptqgUL9uGCCy6mvLyC++57iPvue4hTTjl9yHm33fYDAL74xau4776Hil+nUikWLz6MG2+8lTvu+CHz5+/NJZdcSGdnZ8n9b7/92xx99DF8//s/YsmSI/jCFy5h/fp1APT09HDBBZ9ir73mceedd3P99d9k5cq3ufrqK0oe47e//TWxWJxvf/tOzj//v4Z9PVVV1Tz55F9GXV/57LPLSiqFF174Wf7zP09jt93mlLw2gD322IsXXngex3FGfhM34utfv558Psctt9zGXXf9hLPOOodwOEJ9fQNXXx1MG77nnnu5776HuPDCz474OD/5yd3sv/+BfO97/8fChfty5ZVf5IYbvsyHPvRh7rjjbmzb5itfubZ4/sY+m5E+03//exnXXHMF//mfp/LDH/6Uiy76f/z85/fw859vu/WoqiCKiIiIyLjx/BMGzW9vv+ernwELj9j0+x1zzPHcccd3aG1toa+vjzfffJ2lS4/ioYd+u9ljCYVCJJNJDIMRK2AwMN00mSwrOW/u3D2YO3eP4tfnn/8Z/vznP/H000/y7ncfVzx+1FHvLobZ8867iL/97SnuvfcXnH32ufziF/ew55578fGPn1M8/5JLvsCpp55ER0c7VVXVQDDl8+yzzx319fy//3cpV155Gccdt5Q5c/Zg4cL9OOqodzFnTjDGnp4eent7S15DMpkkFothWdaQ96CmppZcLktHRzt1dfUjPu/NN3+Tb3/75pJjt9xyG3Pm7MH69es44oilzJ69GwBTp04rnlNWVg4EwTYej4/62g499HDe+94PAHDGGWfx4IP3c8ghi1m8OKjEfuhDp3DllZfheR6maW70sxnpM73zzu/ykY+cyTHHHF8c7xlnnMnPf34PH/rQKaOOcXMpIIqIiIiIbKKamloOOOBgHnzwt/T0dHPEEUuJxxM7dEypVIo77vgOTz31F9rb23Bdl2w2W6wO9ttrr/klX8+bt4C33loOwOuvv8bf//40Rx992JDHX716VTEgDq76jWS//Q7g5z//Dc8992+efXYZTz/9FD/5yd1ccskXeM973k82mwUoruPcmEgkAkAmkxn1vNNO+2hJIAaKa0NPOOFDfP3r1/P3vz/NgQcezNKlRzNr1i5jev7B+gMmQHV18J7sssuug47V4DgOvb09lJdXjPmz2dAbb7zKc8/9m+9977biMdf18H1vk8c8VgqIIiIiIjJuzD/Uh0O397Mam3Wv449/L9/+9s2kUikuv/zLwz+yYeAP2rV8S6ZHbswtt3yTf/7z73z60xcydeo0IpEIn/3sheTz+Q3GNPw4AdLpNIcdduSw1cG6urriv6PR2JjGFAqF2G+/A9hvvwP46Ec/zvXXX82dd36X97zn/VRUVGAYBj09PWN6rP7mNpWVozfsqaysZNq06cPe9v73n8DBBy/iiSce5+mnn+IHP7iT//7vyzj22PeMaQz9bHtwjAreO8saeszzgs9+rJ/NhlKpNJ/4xKc47LDNKHNvJq1BFBERERHZDIceejg9PT2EwxH23Xf/Yc+prKyivb2t+PXrr7866mPadgjX3Xh1yLZtPM8tOfbcc//m+OPfx+GHH8ns2btRXl5BS8v6Ifd94YXnS75+8cXnmTlzFgBz5sxl+fI3mTKliWnTppf8iUSiGx3XxsycObNYAQyFQsyatQtvvfXmmO771lvBuMrKyrZoDI2NUzjxxA9xww3f4D3veX+xKU5/J1bP2/rVubF8NsN9pnPmzGXlyhVDPouRAvDWoIAoIpNS3vN4um0dGXfb/SZXRER2brZtc889v+Kuu/6vWIHb0L777s8vfvFTXn/9NZ577t/cdtutoz7mlClT6Ovr5V//+gednZ0jTqdsbGziH//4G21trcXK2rRpM3j00T/x2muv8uqrL3PFFV/ANK0h93344d/z4IP38/bbK7j11ht5++0VvP/9JwJwwgkn09HRxlVXXcbLL7/I6tWreOqpv3D99VdvylsDwPnnn83999/Lq6++zJo1q3nkkT/yf//3Q5YsGehaetBBh5TsiziaZ59dxoEHHrzR81KpFG1trSV/+hvl3Hjj1/jb3/7KmjWrefHF53nuuX8zY8YsIAiOhmHw5JOP09HRMWpznU01ls9muM/0jDPO4oEHfsP3v387y5e/yfLlb/L73z/IXXfdsdXGtiFNMRWRSWlFqpvXejuZnawgaulboYiIbJ5EYvT99c477yKuvvpKzjnnYzQ1TeX88z/DZz5z3ojnL1iwD+9//wl88Yv/TVdXV3Gbi+Ee9+abv8G99/6Curp6fv7z33D++Z/hmmuC56qqquaMM86iq6tzyH3POuuTPPTQA3zlK9dQV1fP//zP9TQ2NgJQV1fPrbfewbe/fRMXXfRp8vk8U6ZM3awpjgceeDC/+c19vP32t8jlstTVNXD88e/jjDPOKp5z/PHv55OfPINUqm/UNZz5fJ7HHnuUr371Wxt93u985xa+851bSo6deuoZfOpT5+O6Dl/96rW0traQTJaxePESPv3p84uv/ayzzuaWW75Je3s7xxxzPF/4whWb/LqHM5bPZrjPdNGiQ7n22q/x/e/fzg9+8D3C4RCzZu3KCSecvFXGNRzDHzwpWoryeZfOzq33W4MtZZoGNTVJ2tp6i3OZRbaGyXht5T2P36x5k+ZMmvdN3YWm2OZvnivDm4zXlWx7uq52Lo7j0Nq6mtraqRus59r+bNvEcbZd04/xZMN9GceDL3zh/zF//j6ccsppI57z61//ikce+SPf+MYtI54z3uyI62q0/64qK+OEQkMryhvSFFMRmXRWp3tpy2WwTYPcNlhnICIiImN37rkXEY2Ovr7RNE0+85n/t51GNLlpXpWITDq9Th6DoL9YdoPF4CIiIrJ9NTVN5YMfPGnUc97znvdvp9GIAqKITDrd+Ry2YeL4HjlXAVFERCaPv/zlHzt6CDLOKSCKyKTTk88RMkx83yfljr7/kIiIiMhkooAoIpNOr5MnZJp4+KRUQRQREREpUpMaEZlU8p5H2nMImSa2YZByVEEUEdkRBrYNVEdaka0n+O9phG05x0QVRBGZVDKug+N5hGwTxzBJu86OHpKIyKRkmhamadHZ2UpZWSWWZRO0D9sRDBxHQVW2tu19Xfn09nZhGCamufHtLEaigCgik0q6EBBt08TyTDKei+t7WIYmVIiIbE+GYVBTM4Xu7nY6Opp36FhM08TTtkeyle2I68owTKqr6zG2oISogCgik0rWc4vTLmzTwHE8sq5H3FZAFBHZ3izLoqqqDt/38DwPfwcU8UzToKoqTkdHCs9TFVG2jh1xXRlGUJnfknAICogiMskEU0qDb5zFrS48l7i+HYqI7DCGYWJZO+YXdaZpEA6Hse2cAqJsNRP5utKvzEVkUsk4TvE31KZh4OGT89TJVERERAQUEEVkkul2coTMgakXBgY5rTsRERERARQQRWSSCQJi6bc+VRBFREREAgqIIjJp+L5Pb94hVNKx1CergCgiIiICKCCKyCSSdh3SrkPEKt0bKOMqIIqIiIiAAqKITCI9Tp6875ZUEEOGSXc+uwNHJSIiIjJ+KCCKyKTR4+TAN0r2B4pYFh0KiCIiIiKAAqLIpLc23bdF9+/O52jOpOhz8ltpRNtOVz7LhnvHhk2LXidPXusQRURERBQQRSazlOPwr45mevO5zbp/znP5/boV3Lf6Tf7Wtm4rj24o1/d4rrMV19+8bSlaMxmiZun6w7BpknNd+hxnawxRREREZEJTQBSZxDzfw/V9nM3cB7A5k6Yzn6UqHGFdJkV+lMfJuM6ot49FWzbDq72d9A6qVnbkMiVfj8T1PdpzmSENaizDxMOnzx3/FVARERGRbU0BUWQScwnCoev7m3X/NeleTAzilk3KzdORy7Ay1cPy3q4h5/6ro4U3hzm+KdpyGbpyWbKDuo6+2N3Oir7ujd6318mT8dwhFUQAg6CaKiIiIjLZKSCKTGKe7292BdHxPN7q66bMDmEaBj5BgPtXRzMrU71Dzm/Jpki5WxbCVqZ6yHhOyb6FPfn8mMJdTz6P63nY5nDf9oyggY2IiIjIJKeAKDKJub6P63s4m7GmrzWbpsfJkbBDAIQNk9d6OlmfSdG1wZrGnOfS4+Tp24IQlnEdmrMpPL9038K0m6d3DNND12X6SrqXDhY2TTpzmc0em4iIiMjOwt7RAxCRHcfzfRzfx/V8gomWY9eZz+L7YBZCV9wO0ZHLkPM8ep0cnu8Xb+t18mRdl94tmMbZls2QcV0illWsIHq+T9p1CeVHD4h5z+WN3i7KC2F2QxHToiOnCqKIiIiIKogik1gQEDevgtiRy2KbA6EybtmkPZfGaJyc55EZNJ20z8mT9ZwtagTTH0hDhkFvoRKZ81xc36PPzeOPso5yXSZFj5MjOUJADJsmKTdPegunwIqIiIhMdAqIIpOYS1A93Jw1iK3ZDJFBDV9Mw2BWvIyEZeP4Xsl6w14nj+v7ZF13s7eoSDkOtmFgGya9hYph1nNxfJ+c55Ib5jXkPZe3+rp5racTC3PEKaYR0yLtOry1hU10RERERCY6BUSRSaxYQfQ2rYtp3vPocrJEraGz1PtD2OBqXEcu2H8w73klHUg3RdrNYxUCYn8lMu95hQqoX9K4pt+6TIo/rV/J8r4uaiKRER/bMAwqQmGe7WorqXyKiIiITDYKiCKTmNvfxXQTq3q9To6s6xIeZssIAB9KKoht2SwJO4Tje8MGubHocx1s0yRkmqQcB68QCg0f3A2mtPbLex4+MDWWHHGs/crtMF35HCv6ejZrfCIiIiI7AwVEkUnMK3Qx3dRpn/0b01sjTNk08ItbT+Q9j24nS9QMqo2bW0FMuQ62YWIbJo7vFaaVuhiGgWEYwwZPxw8C4lgYhkHENFmfSW3W+ERERER2BgqIIpOYR1BBzG1iaOt18vijRK+QYdKVz5J2Hf7evo4+J0/EsgCfzGZUEPvXL1qGgW2a5D2PjOuScz3Ax/cZPiB6HozSvGZDMcumJZseteGNiIiIyM5M21yITGKuH8S8rOtt9LuB7/vF9YVt2TQhY+TfL4VNi658lsdb1vBWXxeN0Xih2hhU+l7ubqc6HKU+Gh/TOPOei+N7JAwbyzDwCaaXZl0H3zfAKN0bceB+G1RGcyasS2J0RaBwPywPf5dOiDlErWC7i7TrEB+h46mIiIjIzkwBUWQS83wfr9AFdGOeaF1DUyzJtHiS9dl0SQfTDYVMkx4nz/pMmqmxBNagMNmbz/F6bxe7JMqpj8Zpz2VI2qFR1whmPRfX9wdtq2GQdd3CusSgSJhyhm6hkfXcgWmwroHx9yaMVHjoE2Rs/P3WETJM8r5Lt5NTQBQREZFJSVNMRSYx1/fxC9M3N2ZdJsVf29byt7b1tGXTlIeGCVoFUcuiK5elLhItCYeWETxOZz7L26keMq7DX1rWsCbdN+pz5zwP1/OKj+UDGc8h5eaDdYmmWVwXOVjGdTELAdFYXomRCuNXpfH2W4t30Gq8A1bjx/IYbXFojxYrpD35zd+vUURERGQiU0AUmcS8whTTIVMxN5D3PDKeS2cux4vd7dRHYsXgNRzLMJmdrCC2wTYYtmGS8VxMoCuf4/muNtZm+kbcoN71PfKeS851Gfx0pgHt2Qx9joNlmISM4QNirr+C2GfDW5X4loc/rxlq0lCRhaos/ux2AIw3qoKxY9CeS4/6foiIiIjsrCZMQPz73//OOeecw5IlS5g7dy6PPPJIye3ZbJYrr7ySgw8+mH333Zfzzz+ftra2HTRakYkh73uYsNEmNVnXwfE8psUTNERiw+5/iGMEa/xGYRsmnbks5aEwvu+zKtVLbz5HTz437PnLe7v5R3szOd8lWDAYqLDDvN7XSdrNEzKDxjUpJ4+3QXOZ/immxppyDN/An9UJsQ1ea2MffsSBzii4BlHLojmTGfV1iIiIiOysJkxATKVSzJ07ly996UvD3n7NNdfwyCOP8M1vfpMf/vCHNDc3c8EFF2znUYpMLP3TNje2BjFTWAMYMsxCN9INtEcx/jID46lpQVAcQcSy6HXyJO0wMctmTaaP6nCUrhECYsrJszrdW2hAMxD+EnaIlOOS930swyRiWmQ8t2TvRQgqiCYGrE0GXVebhtnj0ADKchgY0BciZtm05dKs28i0VxEREZGd0YRpUnPEEUdwxBFHDHtbT08Pv/jFL/ja177GokWLgCAwHnfccTz33HMsWLBgew5VZMJwfA/LNDY6xTRbCGjGoHme1c0dHPiX5yFn8lTF8fTaQXD0mxPQ1Dvs48QsmznJCgzDoDIcIWya+ECPM3xA7HXz9Dp52rLpoFvpIEnbpiOXpSIeJmQGeyP2OjmSg5rLZD2XSGcCI2vjV6cgOkIQTuSgNQ59YaLlOWwnz8PNK3l340xqI7FR3xsRERGRncmECYijef7558nn8xx66KHFY7Nnz6apqYlly5ZtdkA0zZErIdtb/1jG05hk4nN9n5Bp4XgevjHy9ZXzXShsSA9g9Xoc8sfnSOSCKtti5wF+v/97YFUlxpoymDpy9a3/MWzDoDwcIe04pDwHF5+QWTqpIeU6ZFyXLidHyDRKAmpVOIppGIQLFU3DMEi5TvE1OJ6HB0TWVQZ3aOotuX+JZLB+0egLg2FQF42zMtVDWy5DfWxsW3FIKX3Pkm1B15VsC7quZFuYyNfVThEQW1tbiUajJJPJkuM1NTW0trZu1mPatklNTXLjJ25nVVWJHT0E2YlEe8PEnTAePmUVseGnjwIr/RSx7hCJZARnTZSpj6whketjTWwXQuEMdV1r2S35Em/EDoSOGFEzjhnfeGdUgIgXIptKESuP0JXPUh+LF9c4+u0mfsYgHAuRtHwS8UjJfcuIFv8d83MQH/jvNu04RNaEsVuTYHvEd3Ux7NL793PrIAvYmQiRZHBO3M+RLI+Oy+8DE4m+Z8m2oOtKtgVdV7ItTMTraqcIiMCwlQF/g4YVm8JxPLq7x08nQ9M0qKpK0NHRh+dt/usSGayrJ42bc/Esi7b23hH3Nlzb3k0u49BnZOGFGmb0vgrAK0umYNgeRz64lmnPvslrc/fEWF5J+vEqmNcKldkxjaM3lWV5czt/bV3HPpW1zCmvwvN92rr7MB2flu4+TAz6vJEfz8u5vNXSyW5WOQA9+Rzu2xFwTfymHlKjNZ4xchjU4XRZOL3Bc6TTOTq6UrQZw0+XldHpe5ZsC7quZFvQdSXbwni8rsrLY4RCI+873W+nCIi1tbWk02l6e3tLqojt7e3U1tZu9uOOlw9zMM/zx+W4ZGLKeS6WH2x3kXNdQiP0rerO5bAMA9+BaJdDbW4tfYkYrU2FMFaeoKalk+TBq+itDmO0x/H/1YB/xIoxtsLyWdHbQ2smzavdHcxOVJDxXPKeR5kdojuXoyYcGfWXPhHDpC2TwXU9DMMg57pEC9NL/Sk9MNovjGwfIg6kQ/iuD2bQuybruvrvbQvpe5ZsC7quZFvQdSXbwkS8riZMF9PRzJ8/n1AoxJNPPlk8tnz5ctasWcPChQt33MBExjnH87FME9f3cUcJUL1OnpBhQm+YxswqANZOrwPDAMNgxewmAKauXoO/3zr82hSGY0HH2Bu8dOaDCt/6TIqOfJas2x8Qw2Q8h/AI1c1+Ecsi7TrFPRVTfRDtTuJH81A1hm0rEjkM34BU0OTGIOjyKiIiIjKZTJiA2NfXx0svvcRLL70EwKpVq3jppZdoaWmhrKyME088kWuvvZa//vWvPP/883z+85/ngAMOUAdTkVG4vodlGHi+j+sPH4Y83yfl5LFNE7rD1GfeBmB900B1fs30egCmrmwGA/y6oEmN0Vpo8OIBvaHBO1WUMDDozueoCIVxC/sj5jwXr9C4Zm6ycsT1kf1Chkne9+h1goYzqe7CDVWZgS0UfR9G+i1eIrgfvWEATMPAGeE9EREREdlZTZgpps8//zwf+chHil9/+ctfBuC8887j/PPP59JLL8U0TS644AJyuRyHHXYYl19++Y4arsiE4Pp+sE8gPs4IFcSc55L3PWKGjdEToTa3Fh9obqwuntNVVUZfMkZ1axfRVIZMbSHMtcZgLrCiEvP1avxdOvB37QDHhPBA+AqbJh25LNNjSTx83urrpiocKea6EbuPDmIYBj4+nfks9dE42f4lxJGgWU5ZZy8HP7aMWCrL35fszbppdSX3z8YyRKmA9EAF0VEFUURERCaZCRMQDz74YF555ZURb49EIlx++eUKhSKbwPE9QqaFYYxcQeyf6mmbJpF2j4TbQ3d5Eic8sN8ghsHq6fXMeWkFTSubeXPuDPxkFqM3gp+yMZqDSqKxvApWlgeNY/ZfW5z6WWaH8QHbNElYIbryWTpyY2hwsz6B8Wo1/swumN5N3LJ5oaudXRIVxYDohx3wfA5+/N9UtfcAcPBjy/jtSUcWX0PKcWg3ephBA0bKxkcVRBEREZmcJswUUxHZujzfx/MLsy/9YD3icDKFqZ6WZ1Ld0QFAW13FkPPWzGgAoOnt5uBAbQoAY1U5dEfwQy6+6YFjYvgGxhtVxftGLIu6wob0YdMk67m0ZFMjzUgNuAbGKzUYmRDmK7UYr9RQGYrQmk2xMtVDPl2oOkZcpq1YR1VbN211lbw1eyrhnMNuL79dfKhuJ0usrPBsmf4KojHieyIiIiKys1JAFJmE2rIZXN/Hw8csNJoZqYLY5+SJdCQxnpxGdW49AO11lUPOa22oIhe2qV/bhpV38JsK20OsqMDAgLo+/CUr8Y9YgZ/IYXTEoD065HH6p5NmXBeLUaaWri7DyNr4VWl8w4d1SUwMYpbNC11t5DOF+4ZddntpBQBP7DWdlxfsAsC0t9YWH8rxfCLxQhhMBRMrTAMcVEEUERGRyUUBUWSSyXseT7evpSOXwff9QgVx5C6mKdehfE0tRiZEtR+EqpfKwsVuof180+Ttphosz6NhTSsk8vjVqSAcAn5tOlgPGPbwdwkqkcbLtZAf+m0oYlr09jfGGU7OxHizCh8ff49WSOYw8hZkLSpDEVqyaTLp4PUk8t3UNXfQmYyyvKGS9vIE3eUJqtp7iPekSLsOEcsiHrZww3nI2uCpgigiIiKTkwKiyCTj+h451yPlOsFaOwwwGHG9XWcug50Ng+9TnW3GsUzWlsfoyedKzst5Ls/WB/siNq0Mppn604NWoj4+VKcHTm7sw69JYfSFMZ5pZMNCXdyy6c7nsI3Ct6jeEMZfp8L6wlrGV2qDQNjUA8k8lBXG0hvGNk08fLxM0Chn2tpgW47XZtRTH0vQkcuwttB1tX5tG935HNNjSaojUZxoYauLjK01iCIiIjIpKSCKTDKO75PzXNKug+f7wZROf+RqWUcuh5UNkfTbCeUd2mvKiYXC5DcIT1nXZd3UOjzDYMqqFt7q7cat7cWvSQVBLjTofAP8fdbjV2QwuqLQnCh5rJhl0+fkCfdXEFsSGD0RzGcbMZY1YKxL4kcc/DltAPjJQkDsCbaoiJk2ftbENz2mrVwHQGrOLPYqrybrebTUVwJQ29xB3veojcZJWCGcSOFx0nZhH0RVEEVERGRyUUAUmWRc3yPnu4MqiBCyDFqzAxW+7nyOh9e/Tc5z6c04mK5FtRdML22uKSdkmkMayGQ8l0g8xur6CqKZHI2tXWQ8F3+/dfjzWocOxPIHppquTZbcZBoGu5dVkLALDWPSAw2XjZYEvuXhz2+GUGEUyaDjqVHYw7DcCmM6NjGjneq2LjqSMepmTGdqLEnCtllZUwZATXMnBhAyTSKWhRPtD4ghDFUQRUREZBJSQBSZZFzfJ+d6pB0nWINoGMTtEOuzKbzCOsTOXJb1mTSrUr246eDbRLUTNKhZV1NO2DQJGSY5zy0+bs5zSYbCvNFUA8Be67vIb2wfwZo0fsiFtjjkSr8dWcagrwsB0ZvTije/Gf/wFVCdGbi9OMU0AkDICYLltMybALw+o46qSIyIZVFuR+gJW/SUxynv7iOazRMxLSLmQEA00jYmBj6M2LxHREREZGekgCgyybiFhjS9Tq7YxTRhh+jL54vrCvvcPO25DCtTPRiZIJxVp4N1hWuqk1SHo5SFhjaqiZgmbzZVA7DrmvYh01CHMIGGvmDd36ryIWsRiwqb1zOtB6b0gr1B/TLsBfsd9oWCx8gGY57euxyA1TMbiVvBsfJQmLzn0VofbLMxpbWH8LAVRIK1jCM07xERERHZGSkgikwyrufh+T4Z16V/nqhtmrj4dOaDqZoduSw5z6U9l8HKhjF9h4p0B+lYhI5oiPJQmPpIrBgQfd8HDOoicbqTMVor4lR19RHv6tvoePwpweb15hvVGE9Mh/wGW1t4QMbGjzhgjRLWygoNZvrCkLOIO91Up1rpSkYxGuuC7TyAslCYnOfTVgiITa1dhAsVRDc6sAbRxMAfpburiIiIyM5IAVFkkunf/9DxfQZvM2gQBEOA9lyGqlCEHiePnQ1RlWvB9H3aayvwDUjYIeqi8WJjm6znErFM6gub3fdPM521um3jA6rM4u2zDj+Zw8iEoCNWenvGDoJfLD/645QHY6ctBlmLqek3AHhleh210YHHTNg2GNBaaFTT1NZTCIg2ZsQL9lTM2EEF0UcVRBEREZlUFBBFJhnHDyqIju8W9ygEiJoW6zJ9OJ5Hdz5HeShMn5MnlA1TnQvWH7bXVeL7ELUsGqNxQqZJxnXIuC5ldpjKcISwafLG1GCa6e6rS5vTuL5PRy7DEPUp/BmdABgd0dLb+qeXxkuns27Irw+qlcb6BOQspqVfB+DV6XWUhyLF82KWjYFPT0WSvG1R19FLGIhYJrZl4kfyGDkb0zPwUQVRREREJhcFRJFJxvV9fIbuexi3Q7Rk07Tm0kFF0AxCYCQXoSpfCIi1FRiGQcy0qQhF2DVZQVsuS4+ToyEaJ2JahE2LjtpKcuUJprZ2E+sd6I7a5+Rpz2VJOcOEvapCcOyvIPrAmiR0B+HO31gFsSyHH8tjdEdJrs9TnW+mJ56ktTJBmR0unha1bPzCw7dVlxF2XKKdvVhGsA7RiwRjM7IhPF9rEEVERGRyUUAUmWRc3ydkmjieX7JVRcyySbsuL3d34PoetmkG1basTXVuPT7QUlOBQRCyAHYvqwSgMZpg74o6DMOgIhQmaoXI7rkbANPeXFN8jrznUR+NF9c6log5wTrDnjA4BqxLYL5Qj/l6dfH20eR8Fxp6g+dcuxqA5TMaidg25aFQyeu0DRPH92mpDra7sNcHlc6EFcIJB0HUzAZB0h2yoYeIiIjIzksBUWSScX0PyzBwfZ8N2sFQZts0Z1IDxz2IpHIk3B66K5NkbJOQaRK1LAAaInEOrm7g8PqpxO3+LqERKsNhvHlzAJixfCAg5jyXpB0afvsIA6jKBNNeO6MYG65FHKWC2OvkebOvG6c+aHgzLf0aAK/sWkVVKELItAYexgqqnHnPZX1VEBCttUGH1qRt40QKW11kQ/jqYioiIiKTjAKiyCTjDAo8G2afilCEznx2YG1izqImG4Sn9toK8r5b7PgJYBgG8ytrqRi0xq86HKEuEsdsqKWjMkl1Ry8V7d0AuD5Mj5dRH4mxNpMaEhL9ymA6qtERgw3XIsZLA2Le81je14Pn++QLwTOTSBPf/TWq8q10VyRYnYzQFEuW3M8yTGKWRd73WFeVAMBc1wJAwg6TDxc6mWaswpgVEEVERGTyUEAUmWQczxuoEG5QQjQNg5pwlJpwIZxlbKpz6wBoq6sk47pUhMIYxoa1xwFzyqrYu7IWgFW7Twdg11dXBk9nQNyyWVLXxIx4OavTG2yDUZvGx4fVZRipMH48hz+9C7+hF0KlYTLl5gGfnOeS8zzK7WBfxhkdbwKwctYUfMOgNrJB0AQqQmFynkdbMooTsrHWt4LnEbMsnEgQRI2MjYG6mIqIiMjkooAoMsnkPS/Y44+hU0wh2MIiUphCStqmZlBATLsuuxXWHY7ENAysQoDs2HNXHNNg5htrsPLBGsK4ZVMVjnJo7RQipk3OcwfuHHOgJo2RLzx/VQZ/jzb8vZuHhNmM6xb2NPTIez7JUIic47DLa6sAeG3XRkKGRVV4aEAssyPkPQ8Pg766Koy8g9nWScSyimsQyQRTZlVBFBERkclEAVFkksn7LqYRTCL1N9KAxUibVOWbyVs2axIRykJhpsfKxvxc8fIyXpteSyjvMG352pIGNwk7RHkoNKSjqT+te+DfVcNsiVHg+B4JqxAwDYiYFjPWdRBPZVg/pYbmWIjKcJikHRpy32Qo6FBqGD6ZhmDPRnNtMxHTwo0WpphmbcBQBVFEREQmFQVEkZ1cxnVK9h7MFaaY1kVixY3tR1LZ3oPtO7RXVdPp5plbVjVQXRyDcjvMs7OnALD7i28RMgxihYAIMCWWIO06pF2HdZlUcLAuhR/NB+G1Mj3cwxYFzWY8DHzqInEWvBlUO9+cM52U6zItnhz2fnWRGHahk2uuIZgOa61rDbbAsF1804OMje+DizfsY4iIiIjsjBQQRXZyq9N9PNPRUvw673mYhkG4sGfhaGo62gFoq60EA6ZE45v03GWhMC11lbTUVlDV2ctu67pKAmZtJIaLT1sug+N7QdMaA/yF6/EXroeYO+zjOp6HaZjF+/s+TM047LqmjXQkxJoZ9fi+T214+ABcG4kxK1GOYYDb2B8QgwqibZoQcTDyFqZn4KmAKCIiIpOIAqLITi7nubTm0sWOoXnfLa4R3Jjq7mB/wObG8qD7p21v5B6lEpZNIhRm2V4zAdjvxRUlt1eGIhgYWIZJ0h403bQsB3WpER8347nELZu6SAzHC/ZsrHvmZUwfnp0zlZxhYJkmlYO6q25oz/JqaiIxjOpK/EgYc30bEQxs08SNBOOwcqGh23GIiIiI7MQUEEV2chnXJeU49BXCl+P5A9tYbERNOqg8rqtLEjJN4tamBUSj0BX11SmVtJfHqW3uwHpzZfH2ilCEmGUzM55kWixJn+uM8miDX5NDdThK0g5hGSZlOYf486/i2hb/nN1I2nWIWzZlofCIj1EfiXFgVQMV4ShuYx2G4xBu7yJq2niFTqZWNqQ1iCIiIjKpKCCK7OTSrkPGdel1guYrOS9oUgOAX/gzmAd0h4l0uCSdbrrDlfSGg3AY2siU1OHURmLkfPjL/KCKGHnkKfCCqlzINNk1Wc4e5dU0RBM4Y5zPmfU8aiMx4naIkGly0IsrMRyX7vlzyEZCpFyHhmh84HUOwzAMZiTKsAwDd0odEOyHmLDtYidTMxtSF1MRERGZVBQQRXZyGTdPznOLFcS87xWDk/HPKfDXJvycAVkT46VajEdmYT49jdqngvu3JerIex4Vo1TjRlMeCpP3XVbNqCfTVI/V3Ib93CvF2w+pmUJTLElVOBKsCRxTIPOJ2zYxy6ImlWOPV1fih0O4h+5H1LLodfIbbcAzmNcYBERrbQtJO4RjBe+V6ZqqIIqIiMikooAospNLuS6O79Gdz+L6Hr4PJgbkDYyOGEZPhMxjtfCX6RiryoMmMSGXmlQwvbStooac5426nm80FaEIdZE4S+qn4h61BB+I/ukpjN7SNYZV4QhJO0TazY/pcSOmhWWYHPrvNzE9n9zBC4mUl1MXiWMZJhWbMF63sR4IGtUk7HBJQHS0BlFEREQmEQVEkZ1cxnWIWTatuQyu7+PhYRpA30BF0O8OgWfgz+jCP+xt/N3bqc2uAaC1tgbP90kMs5/gWFSGI7y7cQa7JCrwpjaQ338BRiZL5HePwaDqnGWY1EWipN3hO5eWMoiaFvbLbzBzxXqyyTi5g/YBYGo0QTJkUxEee0D0K8vwoxHM9W3EMfDsIBRajj3maa8iIiIiOwMFRJGdmOt75LxgQ/nOXBbH8/A8gimmvUFA9Kd2E9qrGw5dhT+3DUIedk0nVflm0macnuoYhgFxa/MCIlDSLCZ75MF4FWWEXl1O6J/Pl5xXG44FG9+PwveDhZPRTI7I7x4HIHXsERAOxlcfjdMQSZDYlIY6hhE0qnFdyrt68cwgIJquRV4VRBEREZlEFBBFdmJ5L9hbMG6HSLsO3fkcHj4mBkYhIFKTIbRHL8QHOojWtrZj4tMSacKvyOLDJm9xMaJwiPQH3oVvmUQefhLrrVXFm8rDkSE9czbk+D5hDxp+/SfMVJrcwr2wd5tVvL0+GmdpwzSMMW7l0a+/UU15SwdeaGCKqba5EBERkclEAVFkJ5bzPBzfJ2paOJ5HZz6L5/tBBbF/imkyN+R+devaAGjeJ0I+liVkmMQ2cYuL0XhN9WTefTiG5xH7+YNYK9cCUGaHMTBGbQzjug7vevoVwmuacafUkz360CHnWMamf2vrb1STaOkAK6himo5F3lNAFBERkclDAVFkJ5bzXDzfxzIMMKA9l8XDD3ZB7A3hGz7EhzaFqV/XDkDLlBrynkfItLZqQARw9tmT7JGHYOQdYj+5H/uFVykPhYhYFtlhppm2ZtN09vRwxCPL2O3tZryKMtInHQNbqbLpFgJiZH07FGbTmq6lJjUiIiIyqWzdn/hEZFzJex4+PoZhYBsGbbk0AEbewsjZ+MnckF8T2bk8VW1dpOMResvj5PO5wob0mzZlcyxyi/YNppr+6Sliv34Y+9W3mLrXVNZFKQ2kvs/UFes5ctmblKeydFUksE7/AH4ysdXG4leU4cWihFrasM1giqnhqIupiIiITC4KiCI7ga5clqhlE7FKN7IPGr4EwS5m2aQdp1A9LEwvTQydXlq7vgPDh+bGajAMHN8jubXWHw4jf9A+eHXVRH/7CKGX3+B9/5+9/wySK0sPu8//OdelLe/ggUajvffd09Mzw6EZURT1cvhKerVSaCVF7Co2QlqFGJwgJYU+SWJQihDfDwoGuUvFiitppV2KfEWKdoYcb3raTHuHbjQatrxLf905Zz/cW1mV5VAFFBoF4Pw6EGhUZt68WXUz6z73ec7zfPAxl0f7aY4NkXoOxXbE6OQ81WYW3H54dIyzLzzKZ6qVvd0RIdATo7ifXGSk2coCa+WQ2vjQsizLsqzbiA0QLesW8GZtnoOFMndWB3q+nmiNyNu+FKRLLY2RsYc4PQyA6YtYnxfslpdODHe3UXF9rid14git/+vfxH/5TcTr73JorgZztZ77zI4N8vK9h3lvrI8ny3uXOezZjwNZgDi23GDG1chUkpqdjN2wLMuyLMu6NdgA0bJuAY0kJvQLG74ea9UdNehLSawVY6ePIpoBZqgNh+sbHjMyOQ/kGURAAaWrnIG4K75H/PwTxM8+widnP2bh0iQlBLJY5J2qx+NHTrBQXyBsNfZ8PeSKlUY144sNphyFE/kkSvP1mYucrPRzvNx3XZ7XsizLsixrv7ABomXdAjoqpZluLBcNtWJl6eDK2AevVcRIjXl0Ol9/uJpDDNoRw0sNauUCrWqJlVsL60pXryffcbn71N28PTrMDxemGPILJGnKeKHEdNjiUru5oZR2r6w0qhlZbGCGNUTQihTT0QLKaBsgWpZlWZZ1y7NdTC1rn6rFEd+fmyRU6bb3U8YQa00jSdZ8TVOLIzppirtm5INnJE7qgq82ffePXJoB4JOJQVjTlCaQn16AuOLO6gAVz2c26vDo4CgDfsBwUMSXznXbH9NXQZcKDCw1QGQBd9H4HCtVmey0qCXRdXley7Isy7Ks/cIGiJa1Dy3HEX8+c4H36ossx9sHJYlWKKN7MogX203+fOYCi3HY0310VOaNXfzN19WNXpoF4NzBwe7XjDE3JEAsOi4P9o9wqjLAfX1ZuWvF9Si77vXbHyHQE2NIbehLs1mQA6JI4GTzECc7revzvJZlWZZlWfuEDRAtax+63GmyEIUIBE21cU7hWqnWKGPoKIXKFxw204RL7SbzcdgzNF6meWDlbWzNKbTmyNQSWkqmx4eI88DTkZLCdVrzdyX39w3xhfEjuDJ7DVXXp+J61zVgXSkzHYzmsi+k2XOXXZePm7WtHmZZlmVZlnVLsAGiZe1DjTTGlxIhoJ5sXFu4VmI0ymhSrYnyctSlOGTQD/CEoLK2wUycB1abZBAHZpcpJCnhkQncICBSikRrXCFuSAYRsnWTazOgfZ7P4VL1ujbN0QeyAHGokzXrWQkQC9KlnsSk2s69sCzLsizr1mUDRMvah+pJnK+1kyxE4bb3jbXGkAWKkc4Cv8U4JJAOI0ERT655mycrGcSNAeLIxWz9objzGMN+gUgrUqPxpYMv98dHhSclTw6N976mPaYOjQMw3urNIHp5F9grrQm1LMuyLMu6me2Psz7LsnrUkxhPSgLpsBiH6JVZFZvIZh0KDIZQKWKtaKTJ5p0+8wyi2SSDePByFhCpk8cYDopEWpNoQ9nxuh1QbwemXCIcqNIfNglUqxsgukKQak3bBoiWZVmWZd3CbIBoWftMrBWhTrMA0XEIlaKzTVCSrAxyN4JQp7TShEgp/M3KQuP8Lb9uDWKh2WF0qUmnr4wZGqDP8wFDajRl71OYgbjPtA6NATAST3UDRCEEQkCoNm/wY1mWZVmWdSuwAaJl7TMdlZJogy8lnpAkRtFMt25UE2sNmG7w0kwTDKZn7d4KkWy+BnHs40kA6iePgBBUXQ8QhCrN///2EuZlpiPRJCLt/ZjsaJtBtCzLsizr1mUDRMvaZzoqzbqHCpllrYDpsMXpxlK3S2ltzeiLpNs0xdBWWQaRrSpSt2hSM5EHiMldJwAYDoqcrPTTUYrSDepgeiPFhyeAPIOY9H5MtrYJ1i3LsizLsm52t9+Zn2Xtcx2V9gR4AsHrS9n6wPGghMHw3blJfmz8CBXXI9IpAoErBK0kJtVq0+whsBrsrCkx9cOIocl5WkUf78hBABwheHp4grZKKbq34cfEQB+NQoH+cB4vTFnpI+sJSeMKXWUty7Isy7JuZjaDaFn7TKgUrInvxoIiQ36AMoZWmtBMExbikNmwDUAnTXGEwJOS2ajDR43a1nMLN8kgHrwwizBw8egYxTXlpEXH5cfHj3C01Lfnr3G/c4VkcngAAQzX57pf96RDzQaIlmVZlmXdwmyAaFn7TCOJcdZEiK6U+NLBAE2VBYjLccTFdgPIAkpHCMquRy2JCKRkwPM333jsYIQBdzWDeOjcNADLJ49s6FbqS2frbOQtzJWSydEBAEYas92v+1LSTJNuqa9lWZZlWdat5jasHbOs/a2Wj7hYTwL1OEahCaTkYqdJqNI8QMyCyEPFCiiBeHMMpMGMt2CsBVpkfxInm4EoIFIKJ44Zn5qnE3iYowc//Re7T7lCMD2RZU5HmzNgDoHIZiE205RIpZRuw+Y9lmVZlmXd+myAaFn7iDGGRhpvOqIikA6LSUiqNQN+QFulzEUdQp32ZvmWC4i5MgBipoIZ7EDTh1QijMD4WfZwPu5wz9kZpDacPzqCfxuOs9iKJyX1wTIdp8hgNItbM6QDAk9IUpPNQrQBomVZlmVZtyJbYmpZ+8hs1GEpjihusoYwcCTLcUQtiQny0s9PmjVirXsDxHb2WDPWwpRixFIRkTgIk9/HW11/eN+FrHzyozsmcIX9OFjhCIkrJdODY0gMY2ezcl4hBAaz7dgRy7Isy7Ksm5k9I7SsfeT9+iIiL2Vcz5cOoVJEWhFIhwEv4Hy7gTK6J7gTnSyzZcaamGcuo++ZRz8yvbohJ8sgltsxR2aWaZcKTE4M4tgAsYfvOFw6OAjA+NR89+uekLxXW0AZvenjtDGcbiytGT9iWZZlWZZ187BnhJa1DyijOdeqc65VZ8QvbHqflfJGZTSulBQdl1AplDHrMoh56WMpBcfAkTqMtjFBPuA972R694VZBHDxjoMgJK68/ZrRbMeXknPHs1Ld8aXp7uiRkaDI5U6L863Gpo+73GnyxtIctSTa9HbLsizLsqz9zAaIlnWDaWP4+sxF/mLmQrfZzGaEEBjTMwGDsutST+ItAsTeMkjz+CSmP8TcuQjAveez8tLzJ7PmNLbEtFdBOjTLHrVggGpaozibBdiOEBQdh/fqixseo43h7do8i3GYzbO0LMuyLMu6ydgzQsu6weajDhfbTSaCEqPB5tnDFVLSUwo66AUcLJZXx1MYoONiPAXeuhLHcop5ahKGQ6qLdUaXW8z1l6kP9QHGBojrBNJFGcPs8DgA4+eWureVXY/lJCLRqucxk50Wk50WjhA2QLQsy7Is66Zkzwgt6wa72GlgTDZ770oOFspMFErdfwshqKztphk5CC2huH0TleMfXQLg/eNjaGMQAhxbYtpjwA9IjWb6wAgAE7Nz3dsC6RAptaFZzXzUAUAiaaU2QLQsy7Is6+ZjA0TLuoESrTnTqNG3VyMmtigvXUumihMfT6Kk4PSJCVKtkULi2Qxij34vwBiYO9KPRjK2PA06W4go826mjWRjgFiQDr4UNJL4Ruy2ZVmWZVnWNbFnhJZ1A81FbZppQnWvZurlHUwpbp29OnRhhiBOOHd4lKjgk5hsTEbPOkaLfs/HlZKwopgPDhCoiKH55Z77NNPVIFAbw0IcEkgnm6NoA0TLsizLsm5CNkC0rBsoVNkaNrFHwZnIM4hmmwziHacvAvDRqUNIIfIMothRievtpOJ6VFyPjkmZ6jsMwMFzveMuFuOw++9WmtBRKQXHxZMOzTRGG/Op77dlWZZlWda1sGeElnUDRVphuMYgQgPTZcQb43CuP/vaFgFipdZkbGaRerlA/dA4jpDdDKJtUtNLCMF4oURHpUyOHQDgwMXZ7u2BdFhYEyA20pjUaDwp8aUkNrp7AcCyLMuyLOtmYc8ILesGCpXiWnOH4swQ8u1xxFwZfIW+cxH6o6zkMQpJ1wxsP5lnD989eYCK7+MIQaI1rpBIW2K6wWhQJDWa5kiBhjvAQKNOqZk1ogkch0YaE+VBYCNNWBlC4glJohWhto1qLMuyLMu6udgA0bJuoFYaX3vmbj7raqofmsF89gKcWCbSisudJhrT7bTpJinHP7qEkoJ3ToxTclx8mWUQfWfz2Yu3uwEvyPK7lZipwnFgNYuYdTLVNPJ1iMtxyMp3MSsZFnRsJ1PLsizLsm4yNkC0rBuordKtA0QNXOxD/PAQ4ttHEe+MZl+/WEW8NoF45QAsB4iWjynHMN7qvqMbacyxUh+jQRGVr4M7duYyfpJy8cRBmgW/u1Yu1ZqCDRA3VXY9XCFJyxFThRMAHMwDRCkExhg+bCyhjWEm7PR8H42Bjs0gWpZlWZZ1k3Fv9A5Y1u2srVLczeYPGhCvHkTUCqtfm6pi7lxEfDCCWClMfSsb4s5Qp+fhsdYMBwVaacqsaYMxnHrvHAAf3XcMgcGXDr6UpEbjSxsgbqbguLhSkrgx84XDxDJgdHoBJ0lRnstoUOSD+hKhUsyEbcYLxdUHC2MziJZlWZZl3XRsBtGybhBtsgDC2SyDeLEPUStgKhH6mUuYkVb29ZkKAoEZ7GBcjYiyazxmsDdA1BjKrkfRcVHGcODSHNVGm7nxQZaHs0Y2npQE0iHRtsR0K56UFB2XxGhMRTEdHMPRhgOX54BsHWIgHc40lxkvFHsCbV/IniY2lmVZlmVZNwMbIFrWDZJoTWo07trmMAZYKCA+HsIIg3lgDqpx9gcQU5XsboMdOFTPH2JgaH0gIig6LgXHQWG4691PAPjwvuPdp/GlxJcOhixTZm2u6nokWkMp4XLxJACHz013bx8OChwtVTdkYYuOy0zY7pb4WpZlWZZl3QxsgGhZN0isFcqYnjWI4vQw8rWDiFTC0Vo3MDTlPEBsBNkdqzHmaA0jNQyE4OnejRtD0XHxpGRivs7Y9CLNaonJI+OYPGDxpYPvZM8dOPajYCt9nk9iFKYcM104Suq4HLg0h5NuP8Ki6Li0VUojiTfclmjFmeYyyuhNHmlZlmVZlnXj2LNCy7pBIq1I8xmEACQSLvVhXI1+cAZzanH1ztV1QUYlhoLCPHcJ88hMz02p1rh5aaQvHZ5+Pxtt8f5Dd4AUhFoRSIei4xJIFwm2xHQbVdcnNUA5QQuXqYFDuKliIi8z3YorJUprakm04bYL7Sbfmr3E9+YmibWdlWhZlmVZ1v5hA0TLukFirRCIfCQCMFdCGAFjTZho0TMgsZRgRJb5M46GYt78pJhuyB7GOms6U3RcKgvL3DG5SLtc4PwdhwBYiEJOVQcoux6OELjSwbVNarZUdNzsR1HOxoVcqtwB9JaZbkUIWIp7A8SVzqcOgtONJS60G3u9y5ZlWZZlWVfNBoiWdYNEWrF2eZqYKQNgxlsb7yyBUhagUIl7g8d1EqMouVn3zbFX3gXggwfuwDiSjkpxpeTu6iCQDXT3pOxdB2n16I6uyL//084JUtfhwMVZ5BXKTAvSZTrs/XkuxhFTnRYjQREp7KxEy7Isy7L2FxsgWtYNEmuNyLOChA4slDCu2jCyoqsS9/69zXb7XB85v0Tlo/O0Cj6f3HmIehIzF4Xc2zfIoJ+Nz3CkwBUCV9qPgq2sNPDRUmMKCSoqMDU2gZcqJi7Pb/vYouOyEIc9ZaQX2g00Jg/MJY10+5/nWqGywaRlWZZlWdeXPSu0rDWaScz35ib3dJvTYYvleOM6tChNMUbATAnxgyNZeemaYffrmf6o5++tJFrT7/v4P3gNAbx2z2FiR1JLYj47epAnhia693XzDKJnA8QtFWTW7Cc1WSdTgeBS+CAAR9+f2faxRceho1Lmo9Wg/2K7QTkPOj0haSTJjvbjo8Yyfzx1btNjybIsy7Isa6/Ys0LLWqOlUpbiaE9HE3xYX+Jyp7nh622d4koQZwcRSmZdSe9a2HpDR2roh6fh4PZr1rQxjC61cd/9EF0q8P7Jg3RUSsFxOFHuW22Kw0qA6PR0UrV6FRwHT0hirTFH65jBDlMHxohFwMHpKbylrY8VIQQCmOxkZaYdlVJLIkqOB2RzFneSQTzXqvOducssRJ1dZRwty7Isy7J2y54VWtYaqclmE+7l+IFaktDc5KS+nSa4xoGWj/FTzN0L4G4TmEpgrL3l+kNjDPNRBykER196GwGEzz2OCrwsQJQuwbpmNG6+/tCWmG5NCkHF9bNZiKNtzBNTqCfnuDR2BAfN4ffXlZnWfZgvdv9ZdX3Oteooo1mKw7yJUPb99qQk1IpkXSfT781Nbsg6OkIghaCZ7izjaFmWZVmWdTXsWaFlrZHqlQBxbzKIxhhaKt60jLCVKvx2MSstXT/G4io00gRHSH4m9ameu4weqKIeux9PSDpK0e/7qx1Tc64QeNKxJaZX0Od5G4K4c3cdAOD4pQurXzQg3pxAvn4A8d4IaKi4HrUkYj4K846mpvtz8IQk1ZqOWt12O0250G4wlweIqdZMdlpUXBdXiA1dUS3LsizLsvaSPSu0rtnFdoNzrfqN3o09oYwh1Rql9yaDGGlFovWGssCVwDFoZ81iqF77SX+sFSN+geMvvp0992efAsehkK+DG/CCDY9xhcyziPajYDtVzydZl1VeOFGm6VYZac9SeamE+MFhqAWIMFtfKC73waU+ZB4MfthYYqrTwl+TxXVlFiCubT6zlITUk5jpvCx1KYlopgklxyOQDgtReL1frmVZlmVZtzF7Vmhds8UoZC7covPmTSbJS0zTPcogRioLEDtK9ZStrgSObjMLEM1VZBA7Ku3pjpkaw4lL8ziTM6ixYdL7TwEQSBdDFuSs50mJLyS+Y+cgbqfseGw4JKTgwugJAI5euoho+YgPRgAwA9n7QdSyoHw0KPJ+fYnpqE0pb1CzQggI12QQl6KQ2CimwzbKaBaiDgaDFIJAOjTSOCt3tSzLsizLug5sgGhds1jrnkDlZqa0JtF7V2IaakVqNIlWPUFApBWpMTiNq88gzkUdptcG5qninpffy7b/+WeyyIOsyYov5YbAJLvN5Qvjhym6G2+zVgWOs+naz/MnszLTY50PwBhEIwsIzbFadodmFpT70mEsKBCqlOK6n4NB0NGrGcTJsM2A69NRKctxzOVOq7t2NHAcQpXSsusQLcuyLMu6TmyAaF2zxCjiPWzqciOtBIdrs30f1BepXeW6r1ClSASpMb0BolJobRDNAONoKO1uvl2sFb50qLge9STLPj52+hLFepP0jqOoO45071twHHzHoex6m26rsEngaPVaH9StaN4hWaiOUEnrDIlLANksy9E2xlPQ8iE/lAqOy+FipVty2mWyhkXfm5vkneV55qI2FddHY/igscj5Vp1q/rNzhEQbYwNEy7Isy7KuGxsgWtcs1ppE3RoZxDgPENM1AeLZZo2F+OrWfYVa5Zk807POLNIKN/QQSmbZwy06k26lmSaMBEUeHhhhOYkotjo89d4FtJSEP/6ZbvYQoChdAuFsmkG0dqbgODhCbuxuK+HcA+MAHE+ztZ8Md7KfZznOGhB1Ng/MV3hScLnT4oPGIi8uTNNKU4qOg4PgTKNG0XF6gnghsJ1MLcuyLMu6bmyAaF2zRGviW2RNVKRTDKZbYqqMoZEmdNYEd3NRh/dq28wrXLu9NAUDrCsjjJRCxvlJf2H77KExBrOu5LWtUo6WqhwtVfGlwwOvfICnNMuP3YsZHui5r+84FF3XZgqvQdFx8aTY9Di/cMdBEtfhyPx53IlZzB1L2Q2VfF1pc+Paz7U8KVmMQgrSYSwoMuBl3WaHgwKBlAz6hZ77C0Q3a2xZlmVZlrXXbIBoXbPEKBJzq2QQVV5iarr/jrTqKelbjELeqS30ZAS30kgTPCkw9DYiCbVCqrwxjLt9cD0TtbkctpgKWxhj0Pm+jRWKlFyP43N1jp+bpln0aT376IbHe1Iy6AcbSxutHfOlQ0G6pJsEiKnncuGOg7hKc9R5ByrZsWLyv2lun0EsOS6hThnyCwSOQ5+3um5xwN/YedYRglDvriTZsizLsixrp2yAaF2zWyuDqNFrMoixUqTrxlS0VcpCHDIdtrfcTi2JCFVKM02yURICGknM9+Ymudhu0ExjnG6AuH1DHGUMDw+MEkiXtkrpqJSS4zHsF3GU4nOvfgjADx45iV8obnj8RKHMA33Du/1WWOtU3I2jLlacvTtb83nHhxfptjvNM4iitX0GseC4HC1VdxzAO0IQ3SIl3ZZlWZZl7T82QLSu2UpjF71HnT9vpERrzJo1iFHehbSxJoPYSGI6KhtmDlkA9/byPJFSRErx59MX+B+XPuaHC9M00wQvnzM4HbZ5r77AdKdNK01wdVbyaa6QQQTBRKHEkB8QKkVHpQwHhWxExfd/RF+txdnxAT45PpF121yn4npMFMt78w26jVVdb8N4iUYSo4xmebifxZF++pebjMzmJablnZWY7pYjZDcb3UwT27DGsizLsqw9ZQNE65oYY0i6WbebP4sYa4WBbrAb5SWn7TTtvr6miun3fM636rTThPmow+vLc5xr17nYaXCuVaPP9fi4WSPUKZ6U2TqzOEQZzaVOI8ssrmQQnd7v20zY7pYyruxHyfEYK5QI85LX8aCEnF3A/+EbKNfljx45TsF1cWwZ6XVT9byeDKI2humwQy1fD/jxShbx9MXsDr7GFJMsg7hY2LC9q+UIQZSPlTndWOSjxvKebduyLMuyLMsGiNY10ZhuQLVXw+VvFG0MsdYIRDdAWzkRT7RezdokKX2uT0cpPmnVudhusBRHvFdb5IP6IkXHpeR6uCJrJuIKScnxkMChYoVaEtNO0zUlpqtBR6RUlhVSSfd5fSkpuy4DXpA1rAEGXI/CH38ToTVzn3mEsK9MZYsxFtbeKDleT7PZUCkGfL97XFw8foDEczl8bgo/zIJGc+ciAOK9UcTr44jvHUF87wg0rv5n5QhBrBXaGDppSlvZDKJlWZZlWXvHBojWNUl1ljnUxqB2uA5xqtPaUYOXT5syWSbUE6I71zFSCldIUpMFiLFWxCbLCvZ7Hu/UFvi4WWOiUGQh7jAdthnMG4uM5h0pVzKIB4plfOmQGk1q9KYBYkslDPqF7prOWCsK0iWQWfMSIQQSweE3P8KZnkMdHCd+7H586VB2bIB4PRUcl7WXQDoqpeJ63a8pz+XcyUM42mRrEQHGW5jhNqLjIebL2d8dD3F26Kr3wxECRXYMtVVKO91/7yXLsizLsm5eNkC0rkkWHO4ug/jW8jxTYes679nupfk6SldKkjxz2FFpt2wzVCmhUiTa4ApJn+tTS2IaaUyf61N2PIrSwxHZ20oKsWFEAWRjCuItupi2laLf84nUSoCo6fezwLDf8wkch8P1DgPffw3jOIR/+fOU/YDAcWwG8Toruy4C0S01DnVKn+f3jCE5c+8xDHDn++dJk4RQp5j75zAnltCPTqE//wnGTxGz5St2N92KFAKlIc2z2u19eLHFsizLsqyblw0QrWuijMFg0PQOl9+KMYZaEtHah1mPVGeZUFfIbjOSVprgrgSIWhGqFKU1rpQIIRgNCvS5WQA36AcMBxvHEqxXclxaaYpQ+duvZw2ioex6CLE6ZmPQy4JMTzqMSJefePF9hNZEX3gGPTKUjUPwAjvn8Drr83xKjksnLyk1wOFSlcBxuhnfZn+ZqSNjFDsRg2cuMh+FECjMnUsw0gHPYI7VABDnB65qPxwhUUaTaE0n72q7fk6mZVmWZVnW1bIBonVNUpN1MDWG7miI7cRaE2nFchx+Cnu3OyuvxRViNUBUWRfSbI5hSqQVa/vAFB23O7dupwY8n2OlKqT52y8fcxGqlEA6HC5VIF/tpjBUvdVM07NvfkLfcpP0+GGSJx7sfv1UZYChYO8aoVgbOUIyGhTpqJRUa1whmSiUqLgeLZVwvt0gUooP7zsOwKMfXkawyXvicB0jNcyW4Sr6OjlCoDF0VEpiNElesmxZlmVZlrUXbpkA8d//+3/P3Xff3fPnS1/60o3erVveSgZRCrGjLqbZ2AjDUhxf8b6ftjQvFXSl7GaE2mmKIyQO0EjjnmH3V0sIkY2jWMkgulnmciGOGAmKDPsFBHkHU5M1RwFwzl7k8Ntn0IWA8Gd+jLWR6t19g4wGG2cgWntrvFAiyss6K65H1fUZDYrMhJ3uwPu5iSGWhqqMLzU5NFffmN1zDQyGiFRCbZugfjmAdPOutAJBW6UobUi1JrpF5pBalmVZlnXj3VI1affccw//4T/8h+6/nU1mwll7SxmT57rMDjOIK3MFs/lxK+v19gOlNQi6XUzTPNtZclw8KaknMWXH2ywndHXS1QBxMmwxUSjz1NAEZdfDd2SerRSUXBfRaFL4w78AIPpLn8NU7VzDG2HAD0BAPYl5dGgUKQQjQZGxQpGq69NIYhCCD+49xrPff4fHP7zMi0cm8EXvZ5EZaSMWSoj5ImZwTTZ9vgiVGBaLyHfHMAcbmPvnNtkTQytNUCbrIxxrBdg1qJZlWZZlXbtbKkB0HIfR0dEbvRu3lay0Taz5/ywI/KC+xAP9w8h1c/kipdDaEAtFO02p7rI8c6/Nhu3uSX5ishEXjhAkJutYmmqD4wqqrs9kp4Ux4O5VUJvKbP2myJ732eEDDOdlokXpsRCF9Hk+/dKl8Pt/hmyHxI8/QHrPyb15fmvXBrwAV0ikFNxZGQCy0SUlx8vHnWTB3kdHx3joNZ8Tlxd4bamBGR7o3dBwO/t7oQSnlrL/Xw6Qrx/AeIruVYiZMtw7t2mtR1ul+d0E8R5kti3LsizLsuAWKjEFOHv2LM8//zxf/OIX+cpXvsL09PSN3qVbntKG7GzW5P8PS3HE2WZt03LMSCtcKbst+m+0N5fneWM5y9CsrKWUYnWtZGqytWaB42CAxSTE28MAETdbQ+ZLScldvV4z4Ps004R7+oaofPdV3EvTqIlRoh97bm+e27oqZdejz/O5qzpAv5c1JKp6PkfLVcqu1+3kGwrDR/ccRwD3v3tu44ZKKaaYIBoBnO+HWCJmKgCIxEGkDkbqrJHRQmnTfWmlCeRzSFfmdVqWZVmWZV2rWyaD+PDDD/Nv/+2/5dixY8zOzvLrv/7r/K2/9bf4wz/8Q0qlzU+wrkTKzdf/3Agr+7Kf9gnACIPIs4RaGKQUtFU26D1GUZG9ZW8pGpGXcXZ0ekNfT0elzERtlDFZySsGKUEKSWIUkVEgwJFZQDgeFDnbqnOgUOq+5qtmQCiJKWSNRgLHyUpJ8+0OBQWGCwXunV7Ef+kNTCEg+vmfQvp7/5bdr8fWfiQRPDU8zqBf2PD9Knkuguz9EBvDwsN3krz7CXd9Ms3Zx0M6lTVrRAUw1obz/cgPhzGXqqCyjDKnlqDjQn8E744iZsow1lm3JyLLeAsBBhL0vvv52ePKuh7scWVdD/a4sq6Hm/m4umUCxBdeeKH7/3fffTcPP/wwX/jCF/jqV7/Kz/3cz+16e64rGR6u7OUu7onBwf219mxWRhRqWRBYqhYYHq7wsWqgPUGxGjBc6f0eeqpBoeEBArfs3tDv8Sf1GtLPgr+am1IOChTqHtVigEgSKLkUix7lyuroioerhWsPDgGTCDqA9A1uwWW4UGRkpNq9/bgTM9BuMfS7XwfA/z/9NMWTB6/5ebez346t/WqrY3bMTSg0A8qVANdEHDo4Rv3J+xj+/pvcf/o8777wEAthh5FCESEE5pEW6kBK+lEFvZAdY3IkovBgVqZqEkHnfYOYK1PQHWTfasa9REyx7FMwWYl2sRLsy88rsMeVdX3Y48q6HuxxZV0PN+NxdcsEiOv19fVx/Phxzp8/f1WPT1NNvb7+qv2NI6VgcLDM0lILrffPzLPFeouwkzXmWFhqsiBKfDK3RL0dMr1Qpxj1BlNTi3WSSCGAc3PLHBU37k1zemGOMEwoOS6vXJ7iRLmPTpjQ0S6tNOLC3BKdTkKLaG+esO3CcgEmmhA7WadSqai1OkzIAgsLze5dh1uKw7//fYgT4s89RevAAVhz+17ar8fWzabTjuh0YlpERGFC2kqZf+AU1Zfe5si75/jmHRMsBQ4iNhRXZlb2RXBvG35wCKElaqRBq7nmeDvUQFzso/ONEbh/Hg60AIjDlLoJ6YQxEsH0YoMFcXWVEteLPa6s68EeV9b1YI8r63rYj8dVX18Rz7tyE89bNkBstVpcvHjxmprW7Jcf5lpam321X4nSaASOyRrQKKVZjEISrWmn6YZ9bSYJLgIpBEtRdENey1SnxWTY5FyzQdlxqbo+lzotXATCZNV/qTbMhh18IXc3hDzNSv7w8scoAfNFRDOAc/0ILTFLAeZoLWvt42gSbai4/ur3QimKv/dnyFqD5N47iZ59DD6F79N+O7ZuNp6QYEBrjdaGonQQ5QpvnTzAE6cv8+AHF3jvyXtpJQkFuebDuZjA3QswVcVMNGHt8Xb3PMZPER8PIt4ewzSWMacWkWTvN2nAEdBK4n37s7PHlXU92OPKuh7scWVdDzfjcXXLNKn5N//m3/Dyyy9z6dIlXnvtNf7hP/yHOI7DT//0T9/oXbulpVqDyeYgxlrRyWfEBdLZtAlNK01wpcCTklYaZ7P+9tBSHPJubaHna8m6GXEf1Bf54fw0i3FIxfWQQjAeFJkMWzhCIPMYr50m+HIXbxED4uVDiJcPZQPQIwfxykHkWxOIs4NgBMZViMt9iHMD2WNcjQBKKxklYwi+9l3ci1OoiVHCv/yFnnmH1v4VSAdHZPMJA8eh6vmUHY8P7j9OKgWPnJnilFOgs1lDmcMNzJOT4K2bZyiAO5Yxj01lx865AYgljsg6lzpC4EpJax80fLIsy7Is69Zwy2QQp6en+YVf+AWWl5cZGhriiSee4Hd+53cYHBy80bt2S0uMzoMqQWIMzTQmVoqy49JM4p77amMIlcKXEk9K2mlKqFJK7t7Nb1uIQs40l7m/fxjIGtF8bfo8D/aPcEeln0gpJsMWBwqlnucNHIfxoIgjJBKBNprYKCrOLvYtchCtbE2YmSshPhpGdDxMf4gZa8FIG1KJeOUQYipfb+hkAcFKyaH/4mv4b7yPrpTo/K9fAu+WeYve8gLHwZWCZprQ5/ndn+lnT9xF88F5Bt48zam3z/LDk0O73/hwCMMdmKlAy8epdAiVxpMSV8h90RHYsizLsqxbwy1z9vm//+//+43ehdtSrBVSCCSCRClaKgHAk5JGmmy4b2o0JeHiCUliNB2lSLSmnsYcKVU3e4pdaaQJjTQmVCkFx+XjZo3L7RaNJKHq+SRa0UlThorBhscWnNW3gzEQKc3Qleq0k2xUBQJorM50FO+NZqMKhtuYR6ZXc/WGrGQwzp5L5xnEouPivvk+wbdfxvgenb/205jq/mw6Ym3OE1mwVktDTlb6u18f8guIzz6NefcMw29+wMDhp4gLCl9eeQ3AWqYSI2aApo9TzTL2BcfDESIr7zYGZ5Ns8ysL0xwt9zFe2F9rFC3LsizL2p9umRJT68ZIdBbgZCWmmkYSIwR5CWnSs34vmytocKXIO4EaQpVyudPk/frinuxPLYmIlKajsuzku7UFhoOA1Gi+NzfJhXYThLhiJ1IhBIasdHZL02XEt47BuTwYaKwGnSJ1MBjMXQu97zIBVFczq1oqfEfSf+4yhT/9NkZKOl/+KfTE1a+dtW4MIQQlxyPRmpGg2HObqZZJHnsAkSqePX05n2G4S5XsuBFND0dIYq1wRJaNT7Um2iKLOBt1aKTxprdZlmVZlmWtZwNE65okWiOFyNZEGcWFdoOCdHHzE9i1A7xjrVFa46wZNN9RKQtxyFIc7a4ZzBaWk6jbIGey06KexvS5PuNBkYWow9lmjbJz5cyNwWQLEQESiXj1AOLNcZjPT/w7LuL9EQQC8clgNug8zyCacn4yfqAJlU0Cgepql8rUSTmy0KT6B19HGEP4M19AnThyLd8C6wYqOS4Fx6XP8zfcFj/7KMb3uOvDS7j11u43vnJcNf3s/aYVrhDdbHxbpWhjWIzD7kO0MTTThEhtsu7RsizLsixrEzZAtK5JbFS3sUusFXNRSJ/nZ1kNY3oCxFrcOy5ipRHMfNTZEExejURrmmlCarIM4nzUwSHLFgohOFAsEap005P39bRhtVzvQh9iqYiYLSNfPwA1PwsOUycrF1UScX6gm0E0D81gji9n2cNNmDUZxL72Aj/5jTcQaUr4xedI77/rmr4H1o1V8TwKjkOfu/EYM6Ui8RMPIbXmyfcuXHFbKj+Ou0opRmpo+vjCYaJQIpBONxvfTrNj/vtzkyT5eynWilgrQm3XKFqWZVmWtTM2QLSuSaoNApE3dgGls8YZjpBoownXZC4utBt4a7qCekIyG3dopgmxXncyvENnmzW+OnWer89cpJ0mJFrjCUkzTZgO2xTXZAsdITlYLPdkMLcSSEnV80AJxMX+rFz0SA0A8cEIYqGEKSaYpyazk/YLfVlDmmIClQRzahF8vfnG8wCxP5nnJ9/8Hn6SEj33GMlTD+/69Vv7S0m6VFyP8haNl+KnH0YFPvd/Mk11efu5lotxxFTYXv2CAMoJInUgchj0C91SaQO0VUIzTailEfUky1yvlHW3EhsgWpZlWZa1MzZAtK5Jt0mNELTShEJP+aYgzIO+UKVMhi2qazIrvpTUkphIKzTmqgLEDxtLXGjXudBuMBm20MZQdBxmoza1JFodSL5L44USFdeHqQoicWCshblzEeNqRL0AgDm+DMUUc3IJofO3UnUHa71KCVU1x2fn/4BCknDmwZPELzx1Vftp7S9F12OiUN56jWshoP70Q0gDD776wYablcmy4JA1Sdowh7OyWma6loOgkSTUkphaHHfXHMZak2ptu5xalmVZlrVjNkC0rsnKGsSs1X7SU75pMDTyURdzUYcwTXsyep6UWSmcEUjoyTZu51K7yUKUrbNqqZR+L0BpzaV2EzD40qGexMRaE+yyU+R64lJf9lqO1cA1cLCR/dtPszWGAMdqmPHs/01fuOl21qrWGrww9z8JdMhbx49z5qn77azDW8Txch9PDI1te5/0iQeplwscujTH6FRvGfJyHHezhkIYPOmQmNVMtFkJEFu9AaInJUtJyELUIdKKel7OHamsc3BbXUVTHMuyLMuybks2QLSumjIaA0iyYd13Vwd7WveXHZcPm8soo7ncaSFlb/dQTzjESiMEGMSOsxzv1xeZDlsoY4hU1qgjcByaaYwBfOkQaw2YK3Yr3WA5gHaedWx6iEaQNZ3pz064zdFlTCXC3LUITp7ZEWDun0M/OANH6ttufmC+xhf+9CUKKuTM8D1864mjeDtommPdHDwpe8albKYQFHjt0VMAPPzKB9lMlVyssxmiidaAwJcyP5Zzxew9IsLeYyaQDrU4ZiEOKTou83Gnu700L/XWe9AEyrIsy7KsW58NEK0rUmbztXSdNM06KcrNg7B+L2AxDnm3tsgH9UUG3N7Zg9msxJhASlwB9SRmstPk3drmzV1W9mU+6tDOnzs1GldK+lyfhTjEExJfZtlMyQ6DQ5P/udiHfOUQ4q1xgO4we3OgQXdTRYV59vJq9nCFY2CilWUZtzAys8jnv/oyQZRw+v7jvP4zx9GO6VmXad0eaqeOMD3cx+BinUNnLjKTZw2VMRRdt1tu7TsO8drmTX7+/3FvgOhLh1CndFTKgOczF4XovEmUIwTK6N7tWJZlWZZlbcGemVrbutBq8L25yU1vW0oiUq23HPi9sjbxdGMJY6Dkuhtu96VDxfXwRFYW+m5tgR8uTOflohs1k4RQKxppnJXP5WMzAsdBGUPZdXGlpK3SDc8HgAYWC9nfdR/x8kHEN44jvn4C+cEIAKIRQOTAVCUbd7E+GLwK45fn+OzXXsFLUt555E7eeuIeEAIDuDtommPdWgaCIt9+5A4AHn7tI8IwJNUaIQQF6dBIY3wpGfYKOwoQvTzTmGpNxfXpqJRWmhAqhSc2dhS2LMuyLMvaij0ztbZ1prnMZKe1aRZxKQ7hClm6Ya/AchwxVihuevuRUoWC4+YNa6KsFBX44cJUt8HNWvU0JlRp3vlUYVgdR3GsVM0aywAnSn0bRw00PcTLh5A/Ooh4fQLxxgSiVgBpwFOYQoLJZxSKjwcRkQtDHShc24n1sTOXef7rP8JVmjeevIdXHjjOhU4edK4dp2HdNqquz9RIlYvHJyh3Yl44M9PNGlY9n2aaUnRcRgtFUr0mK71FgCjzURcI8hEzmkYa00pjfOmgtO4tVbUsy7Isy9qCDRBvctezbKyRxFxsN4m0opVuDNamwjYFZ/tDKHAcjpQqVwyCsgyIItGaiUKJ5SRiOYk23K+ZJiRa0VbJthkRT8re9YcGxJvj2ZpCqRGLJUTkYg40MJ8/j/ncBcxnL2KOLQMgLufNaa4le2gM977xEU997y0w8MpnHuDD+46zGIeINYH1TsZuWLeWLLsteOvxu0ml4LH3L2CW6/hSZl1QgT7Pp+S6vf2LXI0RZkOACNnszm5ZtYFaEtNWKa6QCAHxDptAWZZlWZZ1e7Nnpjexi+0G35y5tCfb0sZ0O4OuuNxpEmuFMoZW2tsFMdGKhSikdJVjJNbzpEMtiSk5bhbYGUEz2dh5cT7qUMibeKx0SN2Rlodo+5hqhHn+IqYvxPSHmHvne5OgQ6vfA+NoGGtd1esRSvPk997mgTfOkHgO3/riY3z30CCXOy0GvAApwBiDEDaDeDsqOx4CaFQKvHrvEVylef61MxQdlxG/QOA4DHoFyo5Hz6pWQZZFTBxYt9x1vFBkLMgy9YHjcKndpJUm+RphYUtMLcuyLMvaERsg3sTONGrMRu2e+YEXWg2iq8gUzEUd/mLmAmeaywCkWnO6sZQHgKY7m23FchLTVskVOzbulCMEI36BQT9rZCME1DbJIM5FHSquR2oMjTRhw1nyVhbyEteRNgQqG3D/5ORqJ9IVgcKU8sBzrLfpTKwVZ1t12ptkU9fyooTP/sWrHP/4Mu1SgW/+pWc4O97PoB9wpFTlvv5hpJBkPWBFXh5o3U7KrkfgOERK88o9h2lXS9w9tcTd08tUXI+y61L1PEqOiytk3tU05yuEEZD0fnz70sHNGx5VXI+ZqEWoFK6QGIxtUmNZlmVZ1o7YAPEmY4xhOY6oJREX2nVCpbqZtGaa8PLiDLNRe9fbbaYJC3HId2cvc7ZZ41yrzmzY6QZs9XQ1WKslER/Wl8Cwp8HNgB90t1eQDnNRp+f2lcYbZcdDGc1yHPWUavaIHMSrB2CmDIBYKAFghvPvjWDr5ZNjbQwGc3h1ZEWqNdNhmxG/QKS3DhBLi3Ve+MPvMT61wNJglf/PFx9iebBKojX9XsBPHTjGHeU+JFnHyrVrKK3bhyclfW5ApFNSx2Hqc08A8OjL71Mygj43oOR4FF03H9ty5UY1axVkFnymRmdNkMzWc0aVMby0MN1zocmyLMuyrNvX3qR/rE/NUhzx1enz9Hs+sclmCDbShDHgcrvJTNjatvRSG8PZVo07yv09wV09ifGFQ8l1+fbsJcquR8V1kUIQSKdbftpRKV+bvkAtiRgNNm88w3wRPN2dHXg1AsdhKY5QRnfX6C3FIZFS+H620mqlhf9mxIV+xFIR6vkcw6UCxlU72idzchEO1aG0esJcT2MOFssUpMt0uHnZ6aFzUzz5vbfxUsX5w6N8+7n7mNcJRZ2dqFc9D8jWHEoh8vF3xq5BvE0N+QEzYQtXSoJ7TnLh9fc4enke+dIbPPzY3YwVijhCMuD5LCcRZbLjpzdA3FiGDSDy4yvRGlcKvHz0y2ZqScS5Vp3DpQqHipXr8Eoty7Isy7qZ2DPTm4zGUE9jLnVaDLg+AsFyks08O91YIjWahTjc8vH1JOb92uKGofRLcYfAkfR7AWXXo5HGDHhZ9rCQB2vaGD5u1liKQw4XKwSbDXhfLCBfP4B4Y3zr6k8DXKxCy9tyPwvSIdSqp7R1LuwAott8Rq1kR9ZTAi5nMwyFkoiXDyG0zNYX7uSIl/QEh5BlEPvcrGmIWjNwfD7qMNlq8uCrp3nuW2/gpoqXHjrBnzx/Hw2ZdatMjCI1ptth1ZVZWenKdmwG8fY0FBTo6BRPSsqOx9znn0I7Dv6Lr3M8Mt3y7dGg1Jv920EGEaDkOrTSBEdIHCG2LI1ejEIW43B3a3oty7Isy7pl2QDxJiSAw8UyVc+nIB3mw5C5qMN81GHELzK/rjRzrY7Khmkna0rWjDEsxhFBPs+wz/M5VKx0AzFfOoQqZT7q8G5tgX7P33TbpALx3mi2j7EL9TX3a3mIFw/DxwOwUER+MIo4PbzlfrpSoo1hKY641G6ijeFip0nJzfbRsJodWX0hwMUq4v0RROJgxpqY/hChJKaYYI7Utny+K1HGUHQ8io5Lumbkh2x2+F++8zb3vHOW2HP54889yIcPnyIyhtgYKp6XjRcwgkIeUDtCIhH5GkQbIN6uyo6HI0S2zlBK7jp6jOS5xxBKUfizb5OnmBn0A9ZOujA7DBAHvICJQlZa7UuH5SS7yLPedNiinSbbfm5YlmVZlnX7sCWmN7nAcViMQ95ezrpxll2XRpoQqnTTBjJtldJRqqfpRUcp2iplYIvAz5cOHZXy1enzdJTiSLG8+c5c7Ed0PIyrEamE+RL0x9BxET86kM0VDPthLF8HuJQPrN/iMoUxhteXZllOYh4fHGMhChn08yycyLoy9nRRnSshPxhdffyxGvRFmFSCf20z4BSGguPkpaFZQDd+aY6//N03KUUJywMVfvBjj/GxBxP56A+BwReSptYgDAW5uq++dLqzJW2TmttTxfMIpEt1zbzO+JlHcd8/g3v+Mt5bH5A8fC9Vzwdh8q63optBFLGzbYsmKUT2WKDkuMxGHWpJxKBf6N5HGcNkp0W/FzC/TeWBZVmWZVm3D5tBvMmtlGKebzcY9YsE0iHWekPX0RWtfNB8siYL1kxjYqXwtlkLd6hYoc/1OVws984XXEPkDWHMvXPZv/PGMCtD543UiNSByWydk9ASaoVNtwVQ9TzqaYwvJO/VF0i0ws+znK6Q3Q6N3ee/2J89/7Fl9MPTMBBlR/g1BofZRrOgzpcOjtY89MoHvPAXr1KKEt658yB/8peeotVXRhtD1fUxJutQOuAH3e91YU1JriclymgEwmYQb1MV1yNwJH1rL8y4DuFPfwEDBF//AaLRour6eaOa/DheySBGbrbedweH90pGfn35+XIc0UwThvwCjST7bLAsy7Is6/ZmA8SbnCsloUrxhFgzHN7QSDdfT1RPYhKjezKIrbx5xVaBH2QBTZBn0DYVOtkQ+mIC4y1MkEItgDjLJBphMPcsZM+ztn3o4tYBYr8XMB6UGA4KNNOk28J/ZX+i0OBfGES8NYY4PYRYLGIKCebU4mqWcp2VtZS7JUT2nJXlBn/9629w97ufEPku33zhIV595n46K6WuQjAaFAkch8BxGAtKpDpbK7k2o+tLSWoMUgjbpOY25UuHfjeg4vauxdWHxkmefAgRxQRf+y4lx6HieoQr3XNXMoiTVeTrB2CyuqPnc6VgutPbYGkxDvPyaYdIKep2HaJlWZZl3fbsmekt4GipsqGjaCPe/ERvOYlRxvQEiI0k5pqTWLN52elYK1skOdJGIBAfDiMSBwY7MNHEyOx5zXgTIOs0usKQBZWbZEQOFyuMr3mNRcdl4vJBnDMjiJkK4sJAtokj9S3HVyRasxiHLMWbdzKNtSLVm6djhIbxNz7gzv/2J0wsNZkfG+S//tRjxHedYND31wwhNwz6BUqux4Ab5NmhLHgvyN4MYqo1ErsG8XZ2pFRlIB8ls1b0wlPogSreh5/gnj7LSFBcbVTj946rELWNj99M2fG43Gl1S5sBzrfqBPmFJSGybr2WZVmWZd3ebIB4C3CE7Mn++dJhepNZiMqYbqfCtU1q5qNw2/LSnRBzeXnpWJahWJkhKKay7IYZ6WRD6Q80s2ziyaVs7MRyARp5id1kFfnyIcTZwc2fY91rrMbZc+r7ZzGH6tmMw0ONLfcx1opBv0BbJXkJ6KpQpUyF7U07wFZqLf7aN95k4ruvIYDvPXSCb33pKZZLAcOFIgN+gVjrbqaw6LiM+AVGCwWKjosvs+zh2gyoLx1So/MMog0Qb1ePDI5ycLPREr5H+Jc+D0Dw1e8yoVi9qLMuQKSxswCx5Ho004T5fGRNO02YCltrSlwFteTqR9NsprbFxRjLsizLsvYvGyDegvpcn6lOe0Pb+lClxFpRkLKb8Uq0ZiZsU3a3HjlxRUpkcwa9NXMG++LVofQA+f+be+Yxn70A5QQONBFGIF46BJ/0rwaGU5WtR2T0vKC8ZHO8hblvHvPYdDZ/cQuJ1hQdlwG/0JMpSbVmNgo5VKz0jLAQWnPXO5/wE//zexxcqBONDzP9t3+WV+89gsqDun7Pp8/1AUNiNK7MAsS7qoOcKPdnAaIjqa77/np5iamwAaK1BXX8MPEj9yLbHe757ps4ZBc51n5qG0dn42J2sA7REQIp4EdLM9n7PmoTKtUtfQ6kZDHau4Au0YqvXzrPsg0SLcuyLOumYgPEW1DgOMRaMbluoHtbpSRaEzhZV1KA5SSirVKKm3Q83bFagDACBsOe8k5zYjn7u5BkASFkR1yQBafm7gX0PfMgDPLMMCIP+EToQf0KWREDhG4WlDo7W1OYGE2/53N/3xC1ZDWLWE9jDhRLHC1VMXlk2j+zyI//4Q94+NUPEMbw4oPHWfxbPwtjIzhCdBvkVPLZiCtjN4rSxZOSA8UyY4USgeNQkG53BuKKIO9iKhFIuwbR2kL0Y8+hB6qUz5znM1N1FvNgSz8xiX5sEvrDrNlTe4sLPJEDs6XuP8eDEpfaTV5ZmOaTZh1vzZiYQGbzTtdn169WO01pJsma8mvLsizLsm4G9sz0FlV0HD5uLPec7HXSFCFWO4BC1qTCYK5t1MJy1mjGDKwrzxwI0ffNYh6c3XxdoACO1DGPTWEcjcFgDuWlqdNbjNJYkcjsxLiw866Lic4CxJOVAYb8gOW8nK6tUk6W+wmkgx8mPPaDd/jJP32JgaUGc+OD/PFffobXHziO53r4UuJKQUelBNKh6Lj5PDtJR6VUvY0n6v1e0NupEvCkkzepsWsQrW0EPuHPfBEDPPLSexQb7azJ0mAIwyFU8kz4ZmWmBsSb48g3J7K1vWSjL8aDEu83FjnTrNHvrT4ucBxCnY3B2QttldJKE6IdbK+exDu6n2VZlmVZ158NEG92BgidLFOw5sJ/vxdwudPiazMXuNDKgq62SjCQZ8CywGombPeuP0wk4qWDiDObrwMEsrmGr03AUnZyKfIAkfUBogAONbNxE9sZjDDPXsI8NYm5YynL4k1V4VJ1tXTOkHUqfWsMLldXMya7CBANhpLrETgOjwyM0kxTQpUiERwIioy/+zF/989+xMkPL9IOPL797H387hceYrG/jCMknpS4QuKwEgz6OEJQdj1G8nWI/ZvMkjxe7mNoXSMSVwiMMT1jOixrM+rIAeJnHsWJE3761Y9orymPNtXs/0VjkxmmC0XEyhiZ+urtgeNwqFjhaKnSUzngCUmsVber8bVqpQntJCtrv5LXl2a52Nl6/bBlWZZlWZ+ea6grtG6E2Q9dCmEFioASiDfHu/MGzfElzKklIFvjNhIUuNRukGrN0XIfs1EHT8gs26UVymimOi3Kjgvn+qGYIpYLiHoB6oVsZIWrs2zFmlmC4sPh7DljB/P0ZagFWXfS6jWsNSqm2R+Aww3EpT7E+6OYhSLmoVlYLHY7lYqZSrcL6lYBYqo1QrBhhMTKCfHxch8nK/28V1/kmeWIQ1//nzjzSxjg7KnDfO3+w9w1fpDO0hye0T0jPnzHYT7qMJhnX1wp+dKB4yzGIaVNSnVPVQc2fM0REpkHnZZ1JfFnn8Q9e4GDMwvc/e55Lj9yV3ZDHiB2u/+uHE4mmz+6QrT8Ky7rFSIbQNNKkw1dka9GK01op1cuMdXGMBd1GCuUtr2fZVmWZVmfDhsg3kS0Nlx6w2NUH8d4M4jzA4ilIqaQZhnEy31wcql7klh0XIb9AotxSDNNmOq0KDkuUghipaglMa00YTztR340DGRZNiM1Qkvke2PZ18abWZAG2XrDfKSFaASYc/2I1MEMdvYsH23uncccbCDeHkPMVuBdA53sUDUjLcR8GebyoHiLAPFip0kgHYSAA4W8wyqrAaIrJZ8TJT7z0iuMXJwBoH1onP9x30G8g+OEYYtDxTIf1BfpqJSxNWsIi9LJ1jOuyQp6UjK+ixNcV2bNaWwG0doR1yH8K1+k+B9/l6ffOss3D4+zNNIP5RjjKsRyEV48nDVqKqYwV0LUC5ggRUQuNDfJMG7CmCyw2wu1JCY1enU8xxY6KqWdpj2jdyzLsizLunHs2elNRErBoUcShJHINw5kwWE1wjx9CYY62bzBpd7B8wXHJdKKc606rTSh5Lo4QqDIZgJqY3AWVtf7CQTmjmX0yUVMMcEIA4vFbvnqSlbCjGYNcOSZLLDcUF56rfqjbG1ikCKmqojlIqYUY+5ZyPZDr0TBGwPENO9W+szwBMoYjDEoo3GEpOA4iOU6hT/6Bv3/r//OyMUZ9GA/nZ//ElN/7aeYG6qijMERkqrr0+f5NNOkZ8h9wXHwpUPZvfrrKw4SAdc8XsS6feixYaY++yiONjzz7Tdw4wQkmMemMQMdRNtHfDLQkz0098xn7+HWzroUe1KytMmol6uxHId4UtK+QslqM00IdWrXIFqWZVnWPmHPTm8yY6dSWqNZGak5XMM8MQm+xoxnAZuY2WSmmoFL7QaaLPBxhCTVhsUoBARiPst86ftm0XfPw7FluGMZ8/xF6IuywLPlrY6zcBXmoRlMX5jNNJxoYI4v7/2LLaWYpy93x2WYk0tQSDHBmqBwkwxirBW+dDha7iOQDpFWJFozEEaM/MWLlP8f/w3v7dNZA5AvPkfr//I3SO86gedkg+xTo3FENtx+LCj1jAKALOj2paTkXP1okCyDKHtmI1rWlcSPPcCZQ8NUGm0ef/HdLOXXH2EemclGXkxV4EIfohlg+kMYbUMpQcQuxFc+1nzpdDulrkjycvTdUEbTSBPKrkc73X6dcCsvQ13prGxZlmVZ1o1lS0xvMkLAwl0XKd5X61kXyGgLI0Zgtgz3zPeE/gXHoZ7EOHkrUUcIlDHMhm0C7cByPsPwYHNjt9HBEGqFrFNpnCC0xAy3sszFE1NZZtG9clv8RhLjS4cgD8J2LFCYR6cxqVydcTgQwkogvGmAqCm7LhXXo8/zkfUmD79/gbs/msTVGhP4RE89TPzkQxCslt65QuIIQax1tynNUFDAy7uVrsgCRGfT9YY7la1BxJaYWrvS5wf8/rP3MvGnr3L0kylmDwzzyV1HsvfGgQbiUj/iwxEAzJ2L2fu5EkPLz/7422cHAylppgmp1t2LF28sz9HvBdxV3aZx1TqdNCXWmqoX0I63zyA2kphY6x01s7Esy7Is6/qzZ6c3I0FvcEj+7+F2lu2brPbcVHY95qIO5XxY+0qzlbZKqdT7shmGI+1NR1GYgU72lMuF1XEWg/lJpmN2FBwCLCcxs1Gb9GrWGQlWg0NWx2kYqcHfeFIZa8WgFyAXlvjCDz/gb/zPF7n/9CWQgui5x2j+3/428fNP9ASHkJXXSSFItO428+l3fcquS2FNYBtIh4LjULqGElNXZM9lm9RYu+FLh0KpzNefux8tBI+89B59S1n3T3Mk61ZshEE/MAtD+fuknDeyaa7JeM+UEe+NwGQlqwzIBY5LR6XMRu3u12bDDuEVsoDrtVWalXq72fb0NrMVF+IQf83oHcuyLMuybix7dnoLMSez0lPx8SCkqyd9BenQ7/lU3N6SyFArCnP92WOH22xqIMrGTiwVECvrGwc7u9ovZbJsxNFyH9PRFs+zGyvrHQO1aVA7PF/j6W/8iNL/8//LoQ8vkDqSl+89wvf/5k8Sf+5pKG4yM461GUTVzXT25d+3tYGcLx0GvGBDh9TdcIRAYgNEa/fGCkXOD5V559FTuErzzLffwElSqCToxyYxT12GA83VB1SyDJ6o58d9x0W8M4q43Id8dwzx0qFu8LhyXH5Qzz5LlNHUkpi23l2A2EwTENka29SYbRvQLMYhRcclMjZAtCzLsqz9wJaY3kr6YsyBBmKqirnYDyeWgax9/ciGtvUG3XKQsxWMn8LYFoGbp6ESZ2uaIjdb51SJN7/vFjpKUZAOD/ePcLG9B7POqtnrNH2ra6WE0hw6N8WpDy4wMrcMgK6UWHj0Xv5/Iz4EAX9lbGLbzbpytcR0JWNYcj36vQBfrGYQB/2AOyr91/QS3DxbaZvUWLs14AUoYzj94B2MTS8yMTnPEz94h5deeBiGNykh7c/WCovJvqzSoOFnpeIHGhA5iMUSvHYA8/wFkDAcBJxr1ZmPOgTSIdZqV9m9RhLz+tIcgczW2Cqjey66rNVRKR2VUnJdYqUwxiDEJld9LMuyLMv61NgA8RawHEeU3GxdnDlWy7p+LhYwJ7Z7lKDv8igCgT5az8pFt2DuWoQ3xxFKZiWn28Q0m80fDFXKaKFE4GSrIK/5JFCAeWAOgEI75I7TF7njw4sUO1nAuFgtEj/9MOVHH8IIQ3D5LHdVBxj0C9ttFcjKRxOjKMjVt8ZTQxNUvdXs60hQ3CTg3h1HiKxRjc0gWrtUcjyEAITgpRce5sf/8Psc/WSKxZF+Prp/kzd9QWEemYa3xhHnBgAwhQRz7zxIAy8dykbWRC4UU3zpoIHz7TqHipU8QNxZBtEYw4vzUyzFEYdLZRwhSLUh0orqJvdv52sVh/yAlkpJjcYTu1ynbFmWZVnWnrIB4i2glsY0VcLhYiWbiyY11IOsgcwWcZhIJeXZwSwjeLi+/RMMdzBPXoYzQ5ij2993OmwjhOBQcXV0RqQ1o0ExX3cnUcbgbhMgamOQQhCqtGd2YXfftWb88jwnzlzi4IVZpDEY4PzhEV4+OcHk+CBfPnIKXIcC8OTQOIeKm3R33USWMdE9zzkcXDmw3C03X+Po2GyJtUsl18WQBWNxwecHX3iMH/uTH/LQq6dZHupj7sDwxgeNdDBPX4bpCnRczOE1F4VKCTQCCN3u2Jiy43Cp3WTQK+yqw2hLpUyFbcYKBYQQ2R/YsgFNmJeuOkKgtCHRBs9eM7Esy7KsG8oGiDc5ZTS+dHCFoJW3lacaI2oFTMeF0uYndhOt4dUyM28HjWOqCebRmSvuixQCjUEbw1TYxhUSY7KyuJUSTk02m7ClUlppwpBfwJMSbQyXOy2kgEPFCgtxiDZwpJQFd5VakxMfXebYx5e72cIo8Pjk1GG+e2yEu48cZbG+iI/paSCzm3JQXzoY6GlKcz04eXmpDRCt3So5Lp5wSIzGFw7LI/386Nn7eer7b/PMt9/gL/7Kc3TKm2S4y0l3nXKPlVmi4ep7pux6LMUx02ELbQzRDss/a3FEYrIxMyuMyDoLb2YlcFz5XEiMwv5asizLsqwba9e/iWdmZvjWt77F9PQ0UdQ7L0sIwVe+8pU92znrymKt8aTkVKWft5cXsgCxL8pGU8yXEG0v625Y7m0178xmQZcZa23YZqhSFuJwx1m3Fc00od8LSI1mMQ5xhUQbDcJQ9fxu505lDO00JjFZpq6Zxgz6BabCNqNBkfm4gzEmCyxjxdFzn3Dy3DQjs8vZPgNTh0Y4d+dhPjo4yLxKqboed1eHSLXhcqfZc4K6GwXH+VSax2QdTJ1ranRj3Z5W5nDGWneP8/OnDjO0UOPODy7w3Ddf55tfehrt7uw9YApJVmjQWf114Oel1vNRh6LjkmJ2VP65nESbfn19BrGZJlRcjyhf2ygRKKNJ9c66IluWZVmWdf3sKkD88z//c37hF34BrTVDQ0N4Xm9XTBsgfvpirSg7LsdKfbxTWwTA9EUIQHw0hNASlMTcP7f6IA3Ml7JS1OGNHUnrSUyqTc8stJ1opgmPDA4QK82LC1M8OTSOLx3ONmtUXQ9XCByyADExmiOlKr50+LCxRKqz7ONTw+N8/8LHHPrkHM+em+bQ3DIyP2dsVEucOXmAy6eOdDMk8+0mDw+McKLST8l1uadv8JpKQgPp4sgseLveAmkziNbuSSGoej6NJAJWP4PfePJeBhbqjMwt89gP3+XVzzyYDU69knyWqAiz0tUVAkFHKUqOm5d/ajzpkGjNUhwyViht2NRM2Mbf5KLH2gzidNji5YVpfnLiGB2lgNXMZGI7mVqWZVnWDberAPHXfu3X+MxnPsOv/uqvMjAwcJ12ydqNOF/fV3BcBKCMwcm7ewqdn6gtrQuY5ktZw5nR1qbNaWKtGfAD2iqlT/obbofsRDA1prvWcCXjN1Eoo41holXmzsoAA37AgBdQyNf0+Y6D0hplsk6hfa6fBaL1Jo9dmuOOH37MqfOXkfnctKRU4M2DQ3x8bIwLQxUUcLgY4OavVQrBqTUNaKqeT9XbfJ93InCyct1Po7toyfFsF1Prqgx4PgtR78Ud40he/MKj/Pgf/YATZy5T6y/zo3uO0Hel98MmJaYAJcdhOYkY8QvU8mH2JeDDxhKnG0v8L4dOdmeqQvZ+nIs6G+aDukKyHOczGY3hvdoC81FIR6W00hg3fw8IhM0gWpZlWdY+sKsAcXp6mn/xL/6FDQ73kVgr+v2AguPgSUmqNU45wTgaofITr46HCR0oKKj7iPdGATATzQ3bM3lgVnJdFqNwy5PLWGuk6P237zgMegU8KXhscJTxQgkpBHf3DXbvFwiHhlGoVDM2W+PApVnu+OgTRmurYzbiYsAbB/rR997JyXvv5dzCNGXH4YvFCi8vTBNqRUVKIqUoOA4V9+oDwvU8KfGkg/8pdBd9cnj8qkthrdvbSin3emGpwPd+7HG+8Kc/5OEffciHHpi779h07WArTSg5LqKweYBYcX2W4pii47IUR8Ra0U4T3qrNEylFK016LsbUk4hWmjBeKK7bjsfFdpNEaxaiDudaDVKjaacpzTTtBojG2AyiZVmWZe0HuwoQH330UT755BOee+6567U/1hV4QuIKSaxXG0FUXJ9AOt11Q4FwYKKJWS5AX4SYqsJSEUoJ4rUJROpgji3D+Mb1h7HWBI7DkWKVmXDz2YihSgkcp2ddkcEgBbh5eeY9fUO9DzIGsVTn7o8u0X9phgOzS5Si1QY6i9Ui9ROHGHvwfj4eLPGdmYt8buwQBc/nxyeOdu/3UWOZ+aiTrV/SKf1esKfrBV0h8YXcVWnt1VrfndWydqrkemzVonh5pJ+XX3iY5775Oj/3yhm+NjxEe3Sw5z6p1kyGLUb8IoN+gHFVtgZxTedjT0ruqPQB2fKBxGhON5ZopgkS0RMgNpOYd2uLWQXDuqx42XFZikPmow7v1xcQCBwhaKuUlkq6718hsBlEy7Isy9oHdnWG+su//Mv84i/+IqVSieeee46+vr4N9ykWr20+nLW9fj/gjnIfZ5o1DhbLgMiyAEJQ9TxqcVZeau6bzx4wU87mIl7sg5aPSCXmxFLWzXDN+aUxhlhr2iprNDNRLMHS5jMLG2nCgBewEIcoo3GERBuQrFlTZwxiuY5zaRr3wiTOuUvIepPH8m0oKWgcHsecOsEflDRTJY8vjB1muG+I/jhkOCgw4AUbXv+QX+ByJ8t8hkpxorK3Iyg8KfGlc92b1FjWtSg5Loatg6nLxyb43gPHef6dc3zum6/zzZ95jrC0+l5ppgljQSlrEEUAhRTRDDCJBH+zjqPZGsSL7SYVx6WtFM00a3yljeGbs5eYCdsbsoeQBZcYwenGEudaDUaCArNhSD2JsyoAuZJBNJtmRS3LsizL+nTtKkD82Z/9WQD+6T/9p1u2O3///fevfa+sbd3XP8zHzVq3A+BKJqrq+syF65rODGb/FrXs5NDcsYS5ozc4VEYz1WkjhaCZJtxZGWTACwikQ6RVd/3gilApHh3sp74ckWiN40hEmjIxX6Mw+QbO5CzOpWlke3VfDKAmRrkwPsBbAwEXR/r5wqETHC5VCC9+CHHULRXt8wJOVQcY2qTZzIAfoPMTY41h0NvbANEVWYmpHdZt7WdFx807f5otGx29et9hDrQjTp6d4jPfeI1v/dRTKC97L7dUyqFimUYa5xtMoZnPQvTjTbYmaKcJ9TSmnAeItTS7GLUYh8xFHQ4US1t25S27DlOdrGLBlw6+FMxFbRKtqeRrFoWAWNkSU8uyLMu60XYVIP7Kr/zKFedgWdffSFDkruogb9XmKTseJSfrZFh1fZL1JVq+xgy1oRFg7puDsdWy0XaasJhkHU9PVPq4uzrEG8uzjBWypjfDfpGFuNMTICpjKMcpd8zWkB9fZnipwehyk2qt2e02CmCkRB0YQx2eQB05QHr0IBQLXFya45OlGQxZtk4KQb8X0E5TKm72OhwheHhgdNPXXl7TAMMAlXWddK+VKwW+lDaDaO1rRcfFdySJVjhblSoLwY+ee5BCvcWh+RrPfPsNfvBjj2HymaN3VPqZizqEKqW4dh1i38YA0RhYjCMipRjyAgIpWYiyxjNTnWxW4nYjW6quz7l2gyP56BxfOjTThNTo7hpEiSDUm89t3YlEK96tLfLgwIjtDmxZlmVZ12BXAeKXv/zl67Uf1i49PjTGUhLRTpPuUPeS6266LMk8Op19fc1tS3FEpBWPD45zqFhmOCjgCMnBYjm7mzE8KHzem7zIiVDRV29TrbWoLjcot7PMwfia52gVAxaG+xg/dRJ1aBw1MQbexsPLlxJjBELQDcIG/YDFOMxmOF5B1c3mKYYqa25R2cFjdqPouJQdF9eeYFr7WOA4BMIl0ZpCnuxeWw6uTbaYcKBY4g8+cx9/+1tvc/DSHI+/+C7fe/oeCo7D4WKVs0GN+ahDoZDmsxA3fz9JAfU0xuSdgwuOw1IcoYzhbKvWc+FmM66U3Fnp7/7bl5IwH32x0gnVEaJbFbFTKyXuAPNRyMetGicr/dfUydiyLMuybne2S8ZNquC4fHb0IAtR2D3BKjouAtMdOB3kgSObXNjvJAnPF/u5p6WQU5OIegNZbyLqTWStgVyqcV+Sct+6x2kBtf4ypUMH+bjicbrkwMQosxKKrstfPXRy2/12pUSTDdxeCRD7vSDvfnrlrF3J9Qikw2zUYdAv7GkH05V9+bHxIzZTbu17Fc9jKR8fAXA5bBFIh9GgSKI1vpSMBEXeK3h85yee5It/8iInPrrErCe5/PSDlFyXo6UqlzpNqGZZQ7FUwByrbXguRwjUmlmGgXRZiEPOteosRCFjwe7WnvvSoZ4msGYdpSMkod55gHi6scSPFmcZ9gt8buwQy0nEchzSUokNEC3LsizrGlwxQPz5n//5XZ0s/+7v/u417ZC1NRNG0GwjUgVaM6ANg0ZDewHSlIFWixNTCwTpLE6SMiZdvDgliGKCcN2fKNn+uQIfdWCMWl+J9zyDHB6kMVDhYw9ODg7z3MhBFpbm+GRplkOFABOH3VKx7XhCooyhIES3C+tEodTNgl6JIwSDfkCsNc8OH7gupWQ2OLRuBlXXY3Zdp+GVgfSxVgTSZdAPAEG7XOA7P/Ekn/+TF3n6vQssHjwME0fp9wIEAgY7WSfThSKkAtzeUnVHCDoq7V7E8aQkNZoXF6ZwpNh1119XZp8Da0khCHeRQZwN27TThFaaMBW2mOq06ChFO83KVNdmFy3LsizL2rkrBoinTp2yJ8z7gPP2aaI//DrlbbrAl4G/uoNtpY6kXgpwqxW8wX5MXxXdV8H053/3VTDFAgiB0YrTlz/GGEO/FxB3mt2h9EXXYyUDoA07ChBdIfP1SqvD6Af9QnebO3FPdZAH+kc4XKrs+DGWdavpc31Ss/L+M1mgl78fY60ZDoqUXQ9PSmKtmesr8cfPP8DPfedtBr/+ImF/H9UTh3CEIEXjjbYRU1XMQmnDCJyVsRTFNRdyAuniCcGIX7rKV2AwZvV3iyezIDTVekcB51zUoep5dFTKJ806M2EbbQxtlbIcR7y0OM1PjB/tVlhYlmVZlrUzVwwQf/VXf/XT2A/rCsxgP+LYIdI4ASExUoAjQUiQEuM6aM/lw7iNE/gsC4NfCNCeR1zwCQs+Uf5HeS6XOy2+dOAYh4rbB1m+dLivOsQPFqbo97JsxMq6vyzrl518GQyuvPKJmCcljpDZPMerbARzfM1aJsu6Xa29QBNpReDI7hq+xCgGfJ+CdChIl1grGmnC4B1HCfvHKPz+n1P4gz+n/6/9NEXHJdQKd6yVjcSZKWM2BIiSVhoxsKZ0c3STLsNda+YpbkUK0VNWXnI8JsMWs1Gbg5t8Ln1vbpL7+ocY8gt0VEorTehzfTzhMBk2iZSm6nosxyElx6UWR8SbdGG2LMuyLGt79jfnTUIfniD4v/8tmgtN9DbDpD+eucg91UHenruML7du4mIw3QzeldxR6eeN2jz1JFuntLLNYj6LzRiDNmZnGUSZzUq0J22WdW3WXqCJVFZSGqmsxFQZQ5/rI4TgYLHEe/VFXCG5p2+IdKxE1OpQ+PPvUf7dP+XkTz7FB30+leEORmqYL4ES4Kx+zgTSweR/b2klKFwOEK8dgLsX4J6tS9kPFMo9/5ZCIBFcaDc2BIjaGC51GgjgM6MHaeQzFH1fIoRgoR0iEBRcl+U4JpAhbZX2NPGxLMuyLGtn7AKNW8wXxg5zqFShz/NJtGI+6jDZ6c0GmLwcbaejHEqux0P9I8zHIYHjdLuNFqSDKySpyUZ272Q9oCtEtwuiZVlXb+0FmkgrijK76GLystNi3ln02ZEDfGHsCA8PjDJWyMpBkyceJPrc04gk5fk/f4W+hXoWEI60EUrCYm/TmcBxuLPSny03mC1Bc92Fp46L+NZxxAfDiA+Hs21M7b4EvM/zOdusb+hmmhpNajQfNZdZjiMaaYIQq+uFK65LxXXxpaSexkyGLZTRJEZv9jSWZVmWZW3DBoi3mJX1NoNeQKQ1oVLo/CRyxcpw7Z1k/Fbc0zfIwUKZqut1m8sEjoubN6vQxuyoZNQTeQZR2gyiZV2LguN2L9AkxjBWKOIKSWI0BrrzUR0hOVUd4PGhsZ7Hx889RvTcY3hxws99+22qy03MWHYxScyW1z9dpukh35xAvD/S+/XFIiKViIv9iFpeeloLMGvjPCVgspL9vYWy49JKE2bWNd9JtUZpCFXK+/UFluOQtTWsg36BAT/Alw6xVtSTiNQY4l10RbUsy7IsK2MDxFvUQN7pU+TlnJ01V+Q1eZOYXawB9KXD08MTnKoMdr/m5CVhOs8g7mR7KyWmRVtialnXpCAdfOmQaI3AMBRko2JCpXCFpLyD91j8wlPUHr2XUpTwwldfphzMY4SBuRJslnxbySy2ezOIotE7VsIUUoSW6MXVr4uPhpDvjsFkdcv9EUIghKCWRD1fT4xGYxgvlHi3tsj5doPCJuWuK91VI61whCDRNoNoWZZlWbtlA8RbVMl1SbSi4nqM+EXaanUtkMqHXe8mgwhwoFjmvv6h7r9XtqHzNYieuHLZqCuyJjXFKwzWtixre66UFJ0sY2bIZnj6UtJWKb50dvYeE4L4xz/D+3dMUOpEfO4bL1GszCESJxt5sf7uS9nXROz2ZgLzAFE/MIt+YAZzbBkANRdkt0cOXM4CQ9HafF30ikBK5qL1GcRsvmtBOvR7PpOd1pYXmQSAAYENEC3LsizratgA8RZVdrJS0IlCmaOlSs8AamUMrtj97LLNeFKgs7OxHbWTd6XEl3LHDXIsy9pa1fVZSiIKjkPF9Si7Hu00oer6O54BWHA9fvD0fZw9Nk652eFz5/+EUlpHvDsGM+VszaEh+7O0pnNpJw/QDNAIMI6GiSYcaMFgCEB6tgzfOIZ4+RBC5/vT3j5ALEiHuShEG8OZ5jLtNCE1GkGWYax6PsdLVUpbBMCucLq32RJTy7Isy9q9PTtL/zt/5+/wT/7JP+HVV1/dq01a16CUnyxOFEsM5e3oV9YhKqO76wivlS+dfAbbzprUQLY2ajflrZZlba7P8yk7Hs8MH6DouJSdbC7ggO9f+cFrFDyPrz97LxeOH6DSafHC8v9BudNCvjWOfHMCpsvQ9LPM4oqVALHjZk1pKvHqssBKjPEUxBJSgQjdrEMqXDFALDouHZUyG7V5c3mehTgkXZcJ3O7i1nihyJBfwBiIlQ0QLcuyLGu39uws3RjDpUuX+Ht/7+/x8z//83u1WesqFR2XQT9gxM9OlsqOR0ulQNYyPtijLqKelKxM3ZBXGnyW6/N8SnYNomVds7uqg/z0wePcWRkAoOx5CCHo93YXIJZdl1TAyy88xIUTByhHLV5Y/j2KlRkAxGIRFvMLTW4edHXyQK+Rl5FW16wbFMADc3j31+HzF9CPT2KemsT4KYTu5usbc66UpFrzUWOZxSgk0VfXjdQR0NHprh9nWZZlWbe7PTtL/8//+T8DEMcx77zzzl5t1rpKjhD8+PgRvDxTeKLSx7u1RSquhzJmz7qI+tLJSkzZeQbxuZEDOypHtSxrewN+0PPvkuMSSIeyu7sAseR4pEZjpOTlzz6EEYJjZyf5/MU/4jvV/5XmUgkR5p8ZB5pwsR/RcbPRh/n6Q1ONezc62sGraOKmhqEwf6IEsexiQhdKWwdvQsBCHNJMYyKt8pL03X1muFL2NOey9kYjiXGE3LLE17Is61awMkLqdp3bveMMYhzH/MZv/AYffPDBtvfzfZ/HHnvsmnfMunbemjLSY6U+DAZlsj/bDrzeBV9mTWpgZ2sQd3M/y7J2JwsOvV1n6MuOS5on6YyUvPz8Q5w7eZBSO+SFhf9BtdGCxSLGTzETzeyOLR/x5hh8MpD9uxptuu0eK0HhFcpMXSGZjzoE0iFWKs8gmm0fs54jBB11/TOI81GH8FN4nv3ig8YS59v1G70blmVZ19V8HPKD+akbvRs3zI4DRN/3+c3f/E3qdfuL4WY0Vigx5BeoJ3GWQXT3qMRUOLsOEC3Luj4C6VBy3F0HiIHj0hOAScErn3mIcycPUUpbfG7u/2AgWYCxFpSyjshioYSYrYCvMCeWoC/efONrmPyx3fLULfR5PgJByXVpq5RU612Gh1mA+GkEbm8tzzHZaV3359kvIpWizG5/GpZlWTeXRCui23iZwq7WID700EO8++6712tfrOvIEYI7K/200gSNIdizElO56xJTy7Kuj8BxKLnersv/fGeTEk4peOX5Bzlz5CQF3eGFuf/BkHsBPL3acAYwD81g7lzaWQVoMQ8ud9Co5lCxjCskHZUSa7XjNc4rHJHNhDTXOZhZSrIy2NtFrHX3oqB1dT5qLNsRLJa1zyljbuv36a4CxK985Sv8t//23/gv/+W/cPHiRdrtNp1Op+ePtX8NeIVsEDUCd4+COVdKsh6mwmYQLesGG/QLPDE01lNevhO+dNj07SsErz93D+9XH8c3MS/88HuMT85BMbuqasoxDGSlpanWtNJkk42ssZJBbO8sgF0pEw2V2vUFKFcIFFfX4GanEq3oqJT2LVhiqk02e3K9RGvS6/g9vdUpY/iouUQ9uXLG3bKsG0eb1WVZt6NdXWb+63/9rwPwr/7Vv+Jf/+t/vel93n///WvfK+u6qHoeAkiN2fUJ5FZcIclK0wTOLq/wW5a1txwhmCiUd/24QDoYDMYYxPpArKh557kTxJciHn73HZ7/+o946UiFSe7HHK53M4dLSUQ9iTlZ6d/6ifLAkmYASoCz/S9eJ88gFh131xegHCFJtSHWezfWZ71IqSwwvgVP9j9u1mimCY8OjvZ8PTEapW/PE6a9oI1B6c2Db8uy9g+NQZnsPXs7VsjtKkD8lV/5lY0nD9ZNo+r6FByXpTjcswyiI0U3LLQZRMu6OfnSwRESZczmnw0HWnx44AhxPzzx4js8c/5b/OhEyCcHh7p3SbXGk3LzIHOFpzGDHcRSEd4axzw8vW0diysEodZ0VLr1L2gDtDwoJz1lro4QeYmQArYvab1aoVakRtNU22dO1T44wWilCR82lnh0cGxH94+0opluDHyT/DVbV2clK2HLdC1rf9MGtLl9S+p3FSB++ctfvl77YX0KXCkZ9APqSbxng+odITBGgDA2QLSsm5QvZVaSacy2vxTO3XWExHd55jtv8sQnPyQYOMUHD50EIVAGCo5LrPW2c1bNQzPw6kHEfAlzsQ+Obd34LAtasxLODWsQs8IFuNiHPD2CvnMBTtS6X88+j67vGpIsg2hoJVuXmIYq5Zuzl3h+5CDVXc6n3Ev1JOZSu8nDA6M7+qxO8sB8vdRmv66JxqC4fcvWLOtm0b2Ys+sWabeGq4oSzpw5w+///u/zm7/5m8zNzQFw/vx5ms3mnu6ctffGgiKOEHlp6LVzhQRhEIgbfoXcsqyr40sHV8gdrdc7c2SU3/3MvSSuw4Ovf8TjL76LyIOwQDrE2zRsmQnbzJlWFiQC4txAVmq6BVcK0jzb0vP5slBAfP0EXKwiLmQlreLsIOKdUcTXTyBePAxTFQxZU5XrJcqzaZFRWwailzst5qPOpzJyYzup0cRGb/vzWSvRilj1viZjDKnRpDa4uWpZiam2AaJl7XPa3N4Xc3aVQWy1Wvyzf/bP+OpXv4rruiil+OxnP8vo6Ci/9mu/xsGDB/mlX/ql67Wv1h7o9wOKrrOnGURtDJ6UNoNoWTcpKQQFZ/vgbkUrTZiaGOAbX3qaF77+I+748CLFdsjvPXUKPwhop5sHQpFSGCDSGioJZqyJmK1kWcTjtU0fk2UQs5PptZ9Z4uMhhBHwwQgCgZEaoSVMVTHCIJo+nB1APDaz44DoakRaZUGs1kQqxZO9GUJjDKfrizTT5IZ3w0u0zmZKak1hB0syY62ITO/3buVqus0gXr3uSSf2e2hZ+5kmWy98u5aY7ipK+NVf/VVef/11fvu3f5vXXnutp3345z73Ob773e/u+Q5ae6vP9Sk7Ht5eZhDJKr2cPdqmZVmfvpLjke6g+UikNWXHZ36owjf+8rPU+8scuDTHX/vmW/THasuAbD4OGfYLiLxcx9yxDID8aBjx2gTEW39+KKNXL0AtB4haIQsE87JTc/8cZqid/Xn+AsbREGedWeei69ddu60SvHztZrjJ656LOkyFbRwhbvgojNRoYr3zrq6JMcTrxoSk+Xoc26Tm6q2uQbzRe2JZ1nZWLojZAHEHvva1r/GLv/iLPPPMMzjr1pgcPHiQy5cv7+nOWXuv3wsYDYr5YOxr54gscygRu55TZlnW/lF23R03H/GlJNaadqXIN376WWbHBxlfavKTf/JD+motluKQ6bDdvX82xxAmims6rFZj9IMzmGKCWCgh3h5js6UegpUucvnFqHMDAJh75jHVCFOJYKyFeXwa8/g0FBR4CpE6VITH+VadVGteWZxhds0+TYctfrQ4u9tvE401HUtbSZJfbDNEavMA0WCQiBueQUy1JjZbB/DrJVqhMD3HhM4Dm9Rmv66axqDtOk7L2vdWRv3criWmuwoQoyhiYGBg09tardaGoNHafwLH4fnRQ3taYioRCAHSxoeWddMquh5tlTATtre9YmrIyj3TPOBJAo8//+JjfHR0lGKjzf/2jTcZnJzvOQFejiMOlSqMB6XejU20MM9ewlRixGIJcXZwk2fMmudIIbIAcqmAkRoONjBPX8Y8c3njbzI/C4IqFGikCR80lni3ttCTTZzptDndWCLM1wYaY/igvtgN9DY7KZgJ23xr7lLeGRWaKul+lm6WIZyPOlkAKbiupa47EWtNordeK7leorNxFsmaVJcyBoPZUabZ2py6zdc1WdbNIjEKY7BNanbiwQcf5A/+4A82ve2rX/0qjz766J7slHXzcIVACoEQwpaYWtZNrN/zmShU8KTccuB9rBWukBSk05NZiiV8+/kHWX7iAQpxype//Q4PnJkEssAr0po7KwObX5hyDOahmaws9OwAzBd7bjb5H0cISCQidaCUZL+9BGxauOBl+yaTbL7j2eYyS3HIzJoM4lTYop7EzEchAB2V8ubyPBfaDRpJzFenz21YT3m502Qu7FDLs4jtNO2W2a8PEI0xzEUdio6Lg7guTWomO80dBxqRTkmN2XHTnlgrNIZkzTrElfEMNvt19W6WrMQbS3M099F8z0QrPmltvlbZsq4HpbMLYrbEdAf+8T/+x3zta1/j7/7dv8t//+//HSEE3/72t/nKV77Cn/3Zn/GP/tE/ul77ae1TjlwtMbVdTC3r5nVnZYCfO3ySw6Uq7S2CmVgrio7LaKHUk4lKtKHk+sQ/9ixff/puEPDFV89w77ffpJ3ElF2Pg8UyrpRs+ru2nGDun0MgEO+MwWKhe5NkzRXclt+9/7a8PKhJHMqOy8V2k7GgxFzUQRtDrBXzcUhqNFOdFgDNNKGexLxfX+T9+iIzYYfWmvmGymjONmu0VUo9iUm0JtQKV0oEgva6WYgtldJKEwqOgyP2LkBsJjEmn+/4+tIctSTa0eMipVF6511MVR7IrM0WpkbnTWpuzxOmvbCypmk/n3RqYzjfrrO0w2Pr07AUR7xbW7QXJ6xPTbbmmn39Xr2edhUgPvHEE/z2b/82cRzzL//lv8QYw7//9/+eixcv8h//43/koYceul77ae1TWQaRvMTUBoiWdbObyIM/Y0zPejuAUCkG/YCK66FMliWL81EPFc+jIB2W77uT03/1C7QDj+NvneXzX3+NO90CBcfFExKRdz7eYLyFObaMSBzEjw7A5SqQD7xfCUZb+cD7KwWIfn7/RDLgBRwslun3fDoqpZHGLMcRkUoZ8Qucb9dRxnSDwdmozQeNJSKV0lmTQVzJHBYch+UkykZcaI0rshmSC1HI9+cmqcXZSXUjiUmNyUaISLknAaIxhu/PTzIXdYhUtp4w3WFGMNQpKm88s5PnSXTWkGbjGkQbIF6LlXWcibmxJcfbWZmBudWFohshNZpQKTo7OH4tay+kt3kGcdedSh5//HH+63/9r4RhSK1Wo6+vj2KxeOUHWrckR0gkcs+6olqWdWMN+QWEECzEIbUkJnAcfJmtL4+0ZjjIgj0hYCmJWIojCo5DxfEQQvDF8cM0hxN+5ydafPkH73Fseomx//ld1N/ox+0rZwHfyprCdcypRUwlRr47BpeqmEMNCo5DmJ8UijxANKXtS9+Mp7LK09hBCEExb8qVGk09ibvbq3oeM2GHpTikmSQIAZ5wUEbjSUlHZyfIidZ81FwGoChdZsM2R0tVlDG4QuBJh/PtBkprjpar9PsB9STG5JnPvcogJkbTVCkdlSKFIMyD852IVRbMrrym7ayOszA9meK1V9SNMQh7UXDXtMnW8d7opkWbCVWKn88yDZXacmQNZBcRpsM2B9Y2nrqOsk7B2bFfcb1P5Tmt25vi9r4gtquz+hdffJFOJ1vkXygUGB8ft8HhbU6KrLTUlpda1q1hJUPYTBOGgwKRyrJUl9pNJFkAWZAOYOgoxWhQpJ4klNwsCHOExBMO7b4i3/nyZzl7cIjicoPy//v3KJ292J2duikBHGhiPAWNAHTWeflYOcsm0t59iWkPA7UkZiZs5Z9bEoVhIQpZjEN8IRkvFDlQyE56W2lCqjXfnr3E+/VFRoMCRcdhMY4401hG50FSv+cz6hfwpNM98V+IQ9z8c9ERklCpa74SHStFR6WEWhHlg+zXN4xRxnCmubzhuSKj8KXcUQZmZZyFWdfFdKVJjQHbx/QqrWRhd5r5/TS9uDDNVKdFrDWp0RsqCNZaTiJeXZy5LmtrN5MaTaRUt6mUZV1vSuv8s+72DBB3lUH8+3//7+M4Dvfeey9PPPEEjz/+OI8//jiDg5t1nrNuF76UtkGNZd0iHCGZKJQpuy6ukMxHHZQxjARFnhs5wEhQZDEOAYExhrFCiaU4IljTxdrLPxMiT/JHz9/P//bxAmM/eo++3/sqTz54gvceOglbdb0WQF+EWChhWj5UY0hk9melxLS0sxJTEcueX+2+lHxQX6SWxPR7WbAZCMnlTpNa0vsafOlQT2IW45Dz7TqHimUcIXGFZDlp81FzmWE/ALILZQXHxRB1A6q5qE1BZr9iXSEIyU66fXH13b4jrYlUSpSmeEJ2y3vXaqUJ79UWGPGLDOT7Z/LSUl86dNQVvneslkEKRE8gs9KkZmUdnb0wuHs6D7DTfZiVaCQxHZ1lp5U21LcJEJfiiKZKsvLvT6GBfaoNkd5fZa+3A5OXmXvy9ptSkN7mcxB3FSD+4Ac/4NVXX+VHP/oRL7/8Mv/pP/0ntNbccccdPP744zzxxBP87M/+7PXaV2uf8oTDHk3NsCxrH3igfxiAc60ak50WqdAcLfcxVsjGVBRk1nhFCMkD/cMsxSHBmhMIN29cpbTBSMHiZx+nevQwhT/+Jk++/Qnjiw1ee+ERkmCLUrFqBAslqAdQjRHvjCHms+c2QQruFX5hb5FBHPADFuOQ0aDQLZutuB5TYQuDoeys7o8nJLUkop7GeRfV7ENOCkFqDEZn2dMeeWZIG0M7TfHzD0ZHSFKddRD1r+FEK9IpiTY00gTPcbJ1kOsCxNRommnKchJ1A8Q0H63g7TiDmJ0YSSFI1mUQs5d56580GWN4qzbP3dVBCns0NxhYzczuswyiNoa2SgiVwhMyP45i9Bbl4PNRh06afmqBbpZB1NuWvVpbu9qS8MlOi49bNV4YPXQd9mrvJFrteRCbao0xm488uh3s6rR+cHCQn/iJn+CXf/mX+b3f+z1eeeUVfv3Xf52hoSF+53d+h1/6pV+6Xvtp7WOelN1W75Zl3fyGgwLDQYGq56PJAoZhf7WzaOC4uFIy4PuMBEWeHTnAeGF1xqEQgsBxuh0HfemQ3nOS9v/556n1lTh6eZ4f/6Mf0LfU2PT5TV+WuRD1LMu3EhwCUN5+/aEyBr1FgOhLh4lCuSdIKzouHZUSKd0T5GbjPlLmww5y3SyN0aDA2PqZjrkkL89T6G6Gzc3XXSZX6CD6zvI8lzvNLW9fKf1rpgmhSrNh9utOXlKtaamEpXi1A+VKyagvHaIdlLqq/P4SSJTq+boU4rYou0qM5kKrQWOLkS9XK1u/SU/gvR+kJju2WmlMrLOfc5w3htnMVNj6VDvarqyLbeyjzqo3i1Rr/mLmIu2rOJab6z5L9qO5qMN35ib3fLsKfVtcDNvKri+LtVotXn/99W4m8a233iIIAj7/+c/z+OOPX499tPa5TWebWZZ10yu7HoJsDmHVW5Ndk5KidDhUrAAwUdjYqCJwHEKtEQj8/AKSHhnk6z/zHI9+5w1OXJrni3/8Iq8+9wAX7zjY++C+/ISkEYBad9W7sn2AONVp45uYCcgGNF7BylV1sy5T4kuHRppwudOiuK4ctrhFRskRgigfRq80SFeseY4rzyCcjdo4UnJoi6X9kVaoPEAspS7KsKHZSWqyAfczYQsYBeh2JPUdSVulxFp1s2LtNKWeRj0/w5W1hq6QROtKTAXXL4OYaMWlTpMT5f493/ZuxUrlP8u97Zqp8lWc+61JTZofs800oeL6uEKSaEWoU0r5qaIyhjeWZjlSqlKL4091Jmass8ZTtWRvA/admOw0WYyjbmXFzSbSirZK6ChFaZcNfjppNq5HGb1vlxJFSnVHD+3l+Wiafw7e6hfDtrKrAPHLX/4yp0+fZnh4mCeeeIIvfelL/PN//s+5++67bTez25gvJfr2fP9Y1i2t4mQBoiMkfV7Qc9tYobRlFg2yMtSaSnCl6Cn9cQoF/vT5+3n+wykefP1DnvnOmwzPLvPWk3ejVwKxQopxFTR8aGe/psxAB3O4DsOdDc+1MtvPlw5CGBInP4lc36RmC/2uv2HQvSsEqdF0dNJTeroduTZA3HBCJa44g7CZpps24bjQajBaKBKlKRJJqFNqSYzAEK3L8KQ6O2lfiMNu2VVqsv1ZCXoTrSnk35rpsMW5Vn1DgCjy1xOu6Xqq8jI1w/WZDXamUePd+gKHi5UbvuYp0rr7s9xLK8H1Spb2w8YSp6oDN/zke+WYbaYJoU5x8p9zJ00h7w0VqpT36otc7rSIjcrWKn5K2ZVYKwLp0Nqm7PV6MMbwzvICBm7aADHWikhd3cWORhqT6qy8t+TuzwAxNbrb4daT/p5tV+ns886WmO7A6dOncV2XRx55hEcffZTHHnvMBodWd86XZVm3lpLrETgOFdejvC5r9uzwAY6UKls+tuA4xErhCNldiwcQSAcNnH7oJN/5iSeJAo9TH5znx/7kh5Tr2dD6bqMaLWGlvLScwIHW6ozDNWajkLloNXA0kizAXAkQL1URPzgM85un5qpeViq7lhACAYSpyru2XpkjRNb1NR8ov76Jy5UyiKHKrtavNd1p8f35SabDFi2VUnSyTqntNOmOJFgrzQPBUCmW8yYjad6NbyXoXbsfsVY00njDNkB0X8+KRGscxHUZ9B6qlLdr8zTTpCdreaN0T6r3OEOWnWxmJ52hUnzcrNHc4zLWq5EYjSJbO9tK0+6xu3YsSphnVafDFiL/b6djVq5VnJeAx3rrstfrYT4Oudhp9lwoudnEKxc7ruJn1Ujj/DNj/86fXOlwu9cddZXRCFidw3ub2dVZ/auvvspv/MZvcOedd/K1r32Nv/k3/yZPPfUU/+Af/AN+67d+izfeeOM67aa1n3nSsXMQLesW5ElJ1c2Cp/UXAl0pt704WHRcIpWNVlh7AangOihjmAk7nB6p8rWffZ658UEGF+r8xB9+n8OfTGV3XFmHOJtltkxx61/+K3uR/UIX+NLJZiGmEhKBODOEaPmI1ydgcuugdqut7/QiqCMEsdk667TdSZYymsToni6NkVK8tDjDdNiiHse00oSCk33/UmMIHId4kyY12TpBQy1fr5Xk35cs6BU9Q9rjfN7d2oBPaQN5gBtqhclvS7TqZpb2uuzqk2aN5WT/nIxGWl2fDCJZZjbRmiQ/VvbDGqdUa7Q2JEazHEd5XwHTE4xFeZB0qFhmolCET3ENYqwVgeOQmL0PBLZztrlMK00+1aB0r8VaEV/FsWyMoZkkKGP2xXtyrVClvL08D2THbrjHAWJWZp83GLtNh/rsqsS0WCzy3HPP8dxzzwGQJAkvvvgiv/Vbv8W/+3f/DiEE77///nXZUWv/KrnuvuvIZlnW3hgJCvSvKy/dCT+fCVjwen/NBNLNmltoRWoUYbnCt3/qKe574wz3vvUxz377DT6eWuCNY08AA4h63hynuHWWxWCywCdfg1J0XLSrsiugF/sRiYOpRIhmABf7MAe3bgSz1sqYip2SecYt0Zr1IaUxWTC2lVhrlDE9AeJM2GYuajPsF1iIO7RVmq0LRJPoLKOyvsRUrRli38jXa/V+Phtitfrvtk5R60ZwKFYyiJJIK95cnuvOeJT5HMu9DgzmopCClCT5SI5rpYzm/foS9/UNXVU5YqQVsdZ7si9rpVrjiCxQjJTKR5Xc+AAxyS8spHm2yZUC10hqaxqURFqBEWvKYT/FElOjcIUghk9tFmI9ifmwscywXyAxes/XuH1aVjKIuw3yVh6XGr2hBP9GW4hCzrZq3Nc/RGqyESh7GSCujPNx8pEvt6NdN6lZXFzk1Vdf7f45ffo0WmtOnTplm9Tcpu6qDNzoXbAs6zp5dHDsqubdeVLiSLGhoYsrBNqs/g1gpOTdx+5ibmKIp7/zJic/vMjwTI2Xgp+h6eVzdrfIIK6s9TPGEOXrlCYKJRa9BJci8uOh7DnunYc3JrLGN5od1c8MB4Xt73B2AHGpD/PUZShk2bWVTqOwPuMqti0ljPOOpJ08myeFoJ3PLCw6LvNRhEZn2Vj1/2fvz4Jsy+6zXvQ3xmxWn323+119lUoqVanUWJ0tWXAMNgYc3AsHrgGDfX1vYIIb9wk/EATwQjiACIKXGzcwAcdxDNxz4JiDMQYbW7YkS7JUKlWVqlSlql273zv7zJWrne0Y92HMOVefuTJ37l27SvOLUGhX5lpzjjnXmCvHN77///tMNlnZGi0xTVUCV8oBBTGF1mTHBWNSMxzBYRb9ZgxBHPNWs86ZYjlTv7gPJaatOMCRMjOHuVe0o4gb7QaPVmaObcwBPTfa7imXFqbutgqjekRaPxQlbCn5TyM4zEaL4K7XJlJm3vlxzPBXwYMyqUnHB0bVfhB4u7mPH8esFEvUg9M3QXlQMOXS6tgKohebGBMrUbwfJrTikE4UESqVqaOtUzQwUslGmyUeXBn1w4ZjEcSf+Imf4ObNm1iWxTPPPMOnPvUpfumXfokXX3yRubm5+zTEHA878h7UHDk+uJjk2HkUHGlhCTniAJouNKuF4kjo9dbZJX73z36WT371NVbXd/mS+N94dfbzXC8/M6Ag9hvABH2LtnYUsVYqs1wos233jq1nPZj1TV/jbhndcrMS1hNjv4B4dx6BQG9X4EIDiSTQMV4cZWWZKVwpOYgm28WnJiGRFpnLaCMMsDCRIfuBjyUFRWmhNQhhyp+GCaIfG6LqCEk9IYimB9GMxxIiI45gFoG9CA5DpNIdc0sIPDQHvkdBSiq2k0V+nHaJaTs06qggPrJXcxrEWp2orC4bTxSgtT710sJYaSQSrcFTUbYx4MURX9u+y+eXz1GwHrxBT7oI1ghiFCVh4Vo2d702236XM6VKotD0Pnf9AEtMQ6WQGAL7IModm2HAm4095t2CUZHQSWn26WViPih4sXE/Pu5c9hLX5NSd+WHCQeAbdTNR+QXQOOT79bhIvzEl4oe2Qu5YM/2nfuqn+MQnPsHzzz9PqTTBhztHjhw5cvzQwxHG5KQ85ADqCIkUxsRmXOi1Vy7ylT/5CZ753rt86LtXeLH+Zdb8a7wUP0pAAaU1V1sNFlyT1RgqRUnaIGDf95ixXWqOQ3e+TvlgBlbb6Ef2M+MbdsvQKBxOEI2PyOjPtirgxlAJEG+sIJIXid0S+kLDLCS1MmH0Q+93paQZhhMDqyOlUEkoc+oyWg99XGll5boaiW1Ls6OfqIyhUgPHDJRxl3SlRTsKiZQaKGEsWBa7vpf9dyeOTP9j3yIo0gqtzefXjkJcKWnHEVIIZDL001QQQxXj65iKZaPRp7IYDZVK+vxOShAjHClPnSBGyYJbJeQzTPIHfRVzEAUchD4r1mR34PuFMAkFF0ITKY1lS2Ri1HS70+JMqUIrCkcyjx8EQVTJM+FKsz3xIPoBt/0ufhyznJhXDT8j7yek+Yfd+HgKWzeOsq+x97oHM91wS7/n9gLPfFcmG0EFy6IR3uOmXx9SIy6jIOYlpkfi7/ydv3O/xpEjR44cOT5AcKSFa8kRNcSWMlMWhZjwh1cK3vzo42yFj/LJN7/Bue51Fv/Pu3z7c89x6+wiM45LqBXNMCBQMWvFIkLANaWo2S4V28FfaRBdCAbiA/SMjwBEo4CmCXtFaLlwoQFbFcR22eQu7pegFKI/cdeUomoQby8ibpp8Pu1GiMBGL7Vhr2Rer8hs/9txkCltKVxpUQ8DPBWPVWWDpDctTkplq1pTD4KeA2zyO0sIKrZDN44yhS/SGidZOPmJkYwrJY3ImN74KsrGU0jGkZYGpr2P/apdWmJqC4mFYKVYYsf3CKWVkeLTbMvxY6MEOLY5X3fMxsFxEWtNcA+L+k4cUZDWqbtXRkonJaZkCkisDSnrRCHNKGTlVM84HQKlEEKjtSBCYSfzqWa7XGsf8ML8Mq0oHCixFHDqOZHjEGtNnJQ820KeKPD9uBjXz/Z+JYjdOMqcjY8DUwlh2gXu5z3vRCGtKGSlOHlj5I2DXRzL4qnaPLHW1AM/2zjwVExR2nTi6NTKgFVmUpOXmE6NW7du8au/+qu8/PLL1Ot15ubmePHFF/n5n/95Lly4cD/GmCNHjhw53mdwpKQg7ayvLft5Qg7nnCJ3u+2x7w2UCT7m3DL/Y/cv8Zz/Bzy69w6f/x8v8dZTF/jqRy/zzOIq39rdxBKCWaeAFOacJduc00rImtXP02aSEqSGMd0Rby0h2i6qEiLeWEbEfQuL0EJvVky0xo1ZxM1ZtBMbspiQQ/3cFuLVVVO22ihgzXqoxPlvuG/TETKJp4jGEsQwUe2ESHqGVIyvImZsk+slk0gBIQQzjsuM4xKoOFGiIr6xs80nF1cJkl4tW0rTQxdH+HGcGbUUpEUjWZC50iLWRjnqdzYNExVSCsH5JMpEYxbq6XFOU0H0EiMMK1Gd28dUOsYh0opInZwgdqMoMQE67R5EnSnAXrKgjZNcRBNN4gGzp3rOaeAn2YdCCLpxnCk1Vdth3euwG3i0hxREyYPpTYuSzMh0fgyXpt8PNKNg4BkWD+ha7wfMZoc8dj9tO46SUvbTeSYn4a7XZr3bPpQgtuIQKyG43SjEUzGKVEFUxuFWKbxTykJMzb5k8j36w4hjEcTXX3+dv/bX/hqFQoEvfOELLC0tsbOzw+/8zu/wm7/5m/zar/0azz777P0aa44cOXLkeJ/AFkY9dId2c52kl80YwIixJZf7gU8njlha6hAtVfnOhedY79b4+Ne/x9M/uMXq+i7Rn/uTvJKUUVYd0xtXsixKlm2iNYQkUhq37/SxG4ETIVouBBLRNgsJ8X1DDvVSG335ACKJfGUNcX0OvdpG3JhFo9EvroMTo/dLsNoCCXqhi9gtw14JOeej0IkaOHhNIjEA6cQhi4ya3wQqThRV0+/TjqKB/sqa7XAwZMIgk0zCeuizG3ST98Q99VKbEtG9wMs+B1tKYq1M3qINkdbYUgxlI6oxzp/G1c9J4g9OswfRT3qIhBBGrZhyMRomTqOVMSY0kT55iWmoFL5OYxX0qZqTxKkZTPIZxDrtPTVEccvrHn2Q+wAvySy1haAd9T5bM1bNtt/FU/FAHqoU4r72Ayqt2fI6VG3HGDdhFMQHEXPRCIOBzS2tjZPq+xEnVRBbYYAj5H2/57HSI27MwwjimBjzmlYUEmmjcptS8jgr4e/GETXn3gmi6UHUJuYidzE9Gr/yK7/Chz70If7lv/yXAz2I3W6XX/zFX+RXfuVX+LVf+7VTH+Rx8Ou//uv8q3/1r9je3uaZZ57h7/29v8dzzz33no4pR44cOX7Y4MiUIA4qiAVpGYLoljKVzx4iIykx0nYML24AcJdVfmd5lue/+hoX1nfRv/6bfPGjj/NbjyxQsmwkgrLtUEjMcdwxO797oUe10qZSn0Xfmsl+Ljzzp1BfaMC8B9oY24iDIry6ahTD5TbUkh6XM30xGYsdeGfRuJleaCAQmUo0CjFxoRXGcaIgGoKZkqSUqNUcd2Thk5a0NsKAdhziJ6YnvXNrNrwOO77HotsjpQIGFMS0lzEbi4pHTF4Fpr+yICxIiOlpwbhSmjFbQo7tTR2Hm50WW16HTy+dGfldrHRiUnP8RX2oYmKlKdk27ej0ytbAEHKZ5FEGKkYnP4uUURH3Az87351Oi7JtM+8e4aZ7CvBjs7Ew5xSYGZpnrpTcbDeMm6ndpyAmSuj9QiMM+M7+Fh9fWM2cfW1p3H0n9fKe5rkHymmFfl8qiOkmScGyMlXdnmIue3HElt+lYJnv024U3bd7Pk32aRq5AUZNTEvdI6WyDTkhODUznbTEVIoH59T7sOFY33jf+973+IVf+IURg5pSqcTf/Jt/k9dee+1UB3dc/Nf/+l/5x//4H/NLv/RL/MZv/AZPPfUUv/ALv8De3t57Oq4cOXLk+GFDjyAO/pkp2w5fWr1AxbYzgtiPlLDYQo78zisX+e0vfITvfOoZkIJnv/s2P/fl15nba1C2bSqWk5VvFi175A+7r2KCBUPusn7CpA9SuxEsJuqNAP34HlpoxE7F/P7iwfgLrYXoM02EbyPeXDLXoNRA72MKgTE/GYeuikw+njbREp0hx8hxSGMJmlFAO4qM6Umf+mdLwa7vjRAcgaCR9G8KBBIxUEqZZuL1w00MW4xJzenGXPh9rq92EhUyzaIsVL1wbD+OB4hlav5yEoOJNPutIK0+98rTQax7GZlxYoQRJZEarrToxhGtyGxEXG0fsOU/GEUx7V0VQozM3bLtcBAGmWqTwpSY3j9VLdKmv6wZBlnEiiVk8rnev0V7oGI8FQ08M1oLwvfYqOUkCFRMnGSmpqYu0+Ctxj77gTH9soXpS03fux94p/r8R0oRHDGuQMfZd6cx+wLQidOqcQaG0zNNUlqbqoYHmPX5sOFYBLFQKFCv18f+7uDggELh+GHKp4l//a//NX/pL/0l/sJf+As8/vjj/MN/+A8pFAr8xm/8xns6rhw5cuT4YYMjJE/PLzLjjP5dcKWVxWAML/TaUUTNdsaSR4AYuP3sY7R//i8SnFtlZb/F+X/7W6x+63UuFMqUbUMQy5Y18P4osckPU4IYGWVTP7JvionONwadRxc89CfuoKuBMaOZ95gE/dQOuhAhNqtYXXegV2/wuuVAxEQ/unGMLSW2hHYc0gqDbJf8MAgEB0FAN4poRWFm5mHOZ9GMAorWqIq763tJWalRO/uVzXElpmmJWvrz+BRLTNtRlKmetpQmrD0+eiGbxkMAXGsf8Ep9e+B3kdYn6iH0VYxGY0uZGWGcFmKtk8/VjM9OelN7c0ZnboypC+2DwKDyPIiyZWd9f/0KkhRGoWpHIf9j8+apK2xpf+1BFJBulqSl4/59vC/dKCJUemBzyxKceibmg0CgTNZmShCnKQk+CHxeO9hh0S0iks26SGmCOEZrzTd3N9gLJn8fHn+M6sh5HihFoM0G2H7gUbAkWoskpict6T89MmcIsEgUxJwgHokvfOEL/NN/+k956aWXBn7+0ksv8c/+2T/ji1/84qkO7jgIgoA33niDz372s9nPpJR85jOf4ZVXXnnPxpUjR44cP4wQQvCRhaWJpXmp0+bwH992FHK+XB1LHsH8sS5aFnphDv9n/zytH/80SEn5ay/xo7/5NZwtUzFSspwB9agVhcw6LqISoyqGpGk0XDpAf/4mPFofHeRsgP70bfQLm6OxF/1wNCwYpccO7Iklpv3ZhMPwEldSW0iaYcC61xlRXyfBUxGRVjSjIDPzAENId4MutaEevZJlsx10E2Vm1PgjzZzrRzEpUUuPPZzzeC9oxWFW9pZ+7tMsZFPHVzALyE2vk/3OV2Yxe5LeqSBWA1c/bvG64bXZOYG6F/eps7E2ym6o42Sua5Q2cxWMuciDIIipi+24TQ1I+xAZ2bAwJaaGIO763qmSBkgUxNgoiCnsJErmfvY+djPS0U8QxXse9XAS9G8CTbvZcaPTxI/jrLc3dfL0k8icUJ2uguur6EhlM4wNifRVzEHo40qJJcyzkpYfGyOt0xmX2QDTmYJ4EsVUac3tTvNUxvNe4Fg9iL/8y7/M3/pbf4u/+lf/KgsLCywuLrK3t8fu7i4vvPACf/fv/t37Nc4jsb+/TxzHLC0tDfx8cXGRGzdunOiYUh69e/ugkI7lYRpTjg8G8rmV435gmnlVsm2aYYgQpqxyK+hiS8n5So1Nv0uk1EjPS4ymbDvmuNKCT79A96lHKfyX38e6tU753/xHws++SPVDF41ak7y/oyJemF3m3dYB4UKbQrsAlRDhAI7icAY4BRyzMJGRTYSHLeXI2AuWKSFsxyH10Gfb6/LR+eUsiNooVrAf+hyEAedKlSN7foQw5ZRFy6YRBpmxghCCqu2yWoTSEEEs2zb7XZ+toIvARJL4Ks4+qxiNNTT+gmXzzMxCela0OL3vjHYc4kgrUSvMsSPU2OP3z6u07E3KhKjEIYGOKVp2Vmob6PHHOQwRZt6JpK8pQo8c40aniUSwUhp0Xlzvtpl1XMpjjHOATOEVSdSFKy0inZj+CIEtwNcmRzNQ8cT7kKIZBlRtZ2Se3O22OFM8ev6AWXyrRDGd9PqCJQn14POYkvkQRSMK2A26nClXjjzftNCJQumpqO/zEJAQ09P8m9U/r3wdZ59RiuFn5P2CdC5LKREimX+HXEOsFe+2D5hx3Oz6ReJoHKHQQhNh5stp3YsoUYd14pg6DKXNOWM0XRXRVTFlaRNI88wrSL6vjM58KuMS9MqthUJIJm6gTELd93mtvsMzZ1fed/MGjkkQ5+fn+Xf/7t/xla98he9973tsb2+zvLzMRz/6UT73uc/drzHeE07aVGvbksXF6n0Y0b1hfv70vnxz5OhHPrdy3A8cNq+WmhX8TotKqUDge1wsz/Kl8xdZKZW5EbXY9T0qxcES1YL2WZ6vDn4/L1bR/6+fJf6jl4l+6yu4X/02L/7gCpufeIziyiJKa4ra4ekzy7S2YvYvdODWPM5agFs9ndaIsCoIgQIusmAzUy4iug6iFJMKEQXlcL3Z4Ld3b+LHMa60+JGZ88aFdduiJhxsKbnTbvLY4jzuUGnoOBS1j2XbLNplZMHCFTa1SjFbzFTHOKYClAixihYV5VJ1XdBk99TZtikIQcUd7wZY1D61meKhfyNvtZq8vL3JF85eYPaQ9hOtNXpbMFMoZucr6YDSTIHF2uTjz89XKHRd3NBhdr6M6zngSayqw2K5QqHjUG0XsIr2sf+W3xUexYZDpVqgREBlpsDi3OAxnI7NnuePHPuPrm/wZGWBC/Pjz1nYdkxZaaBxpIV0JW7ZplB0KXdcbCmwSjYz82XcLYdCxZ04/s1Om6/tbvCFsxc4X+295sD3+f5+nQvLc8wVjja4aQYB7pbNTKmII8fPuUfGPHQUjwMAAQAASURBVCcqFISxolgtgCPYFeGx7nUQx4fO8bod4RQt7KJDCZdKMoYyAeWZIoszp79Gm5+v4Kh29vlnY3U00rKOdX2t0DgsnzZCFU/8nIaxYwUU6+Zaito/8r7dbjXpypjzM7UBQlTUAbXZEjOFIu6eTXWmxOLs6dx/p+FQxGFuvjx2PgRxTHHLIQg0uiSxXIu5cgntC1zHpoBNrVqgTkDliO+laVG3I0r7DpVSARUKZucrI5m+R6HdUlhtQ7Pej+urqQii53n84R/+IXfu3GF5eZlPf/rT/OiP/uj9HtuxMD8/j2VZ7OzsDPx8b29vRFWcBlGkaDTeG7vpcZBSMD9fYX+/jfohtdzNcX+Qz60c9wPTzKvIi2i1fSqxRdP3KBbL2F3NXrdN7MW02h6laLDM0vdCui2fXdEaPeCHnkKcWaPwX75M4eZd/vxvvcS7T2/zR89dplQsUPQAT3FgNyh8BsJSRNg6pTmvXQSgOpJmx2duZwb58ir6sX14rJ69bE0WCSNFWTisdzqs75jd+kbLp2LbSMvmjFUm7EaEHF0e6XkhASZb8SDs0o1CugRHvk+GivV60xhERAJPxVzb2OPNg102Gy2W3RLtYPy98bshe/vt8Z9BgpuNfb6zvs7mQZM/febyREWtG0cctDxqtpOdr+sF3No+oBaMLsj659VevU2747O102T3oE293eXmdh2nqtk9aKOCmL1mh93dyeMch716m243pC18ut2A7f0Wi/EgWd496LDhtbm1uZ9dW6wVN3cPmIltltUouVZa02r7FKRFNwzxMUYo+3TBUwReiBaSTdVkw2nQbPvs0Ga3ODr+bhzx39avc6Pd5BGnSsnvLeavtxtsHLTYKjeJC0fPoXrg0+4E1JRNIKYvyfWjiI6K2NhrEPox1/f2uVXZn/hZD9+L39m4yY8srjHnFuhE4cj7dlvmc6jToRMGtDHl2Z1uwNZek9nweAt2gDcP9ihaNo9UZwZ+3j+v7uwcEHSj7HwAQWieq2nn0o7f5aW9Lf7UmUvHHmN/SPsw9nyPb+9t8hMTjvu9+g6PVGepJvdyp9HC64a08el6ITtH3LfXdjbwvJCuGPwO6XoBO/stYjek0fbZ2W8xFx07Sn0s9hpt2mHA9m6T4piM2G4c0er4dMKQG9t12l0fHwc/iFC+wgtDOiIwc+Wgk30vpfmiw07a02C/1abrhXRVQDvy2ZkwtsOw3mzQaJuy64dpfTUzU8Jxjr4nR17trVu3+Lmf+znu3LmT/axarfLP//k/f6hUQ9d1efbZZ/n617/Oj//4jwOglOIb3/gGf/2v//UTHfNh+TD7oZR+KMeV4/2PfG7luB84bF4VhEWsFDrpaylKK3ttUZrg4+FeN601NnLyXJ2dofNX/izNl15h4Ssv8fhbN1i7sc7tH/044pygnJQf6kqyADqtKe+YLD8rskxpbBqjsVlGP7o/+NJEUtRam0B2YSUmOsfv7UsXkwUpacWmH2eaY1Qsh9vdFjO2a4LbleKPd9a50jpg2S3hSnnocUKtDv2+aIcRJWmb3jTfoyhHlxsHoc83dtbpRCELTiE7X9Wy+dbuBrO2y5nS+J13lcRYREoTxjFeFONHMfu+hyrP4McxtpB4UUQcj5YqHwaTyWbuo9bgR/HItXpRTCeM2Pf97NraSQ7bQRCMvTdxEvguMJ9zDBQx5dW+jBEaLGn6Qf0oSsj76LkB1jtttrpdZmyHrW6HJ6vzWS/WZqdDKwwI4t5ntN5t40jJUqE0cqwgNk6X6bimhyZWikYQUJQWfhyz1e1ysXL0QrobR7TCgGZo3vvlzVt8fvl8RmwgiX7BZDRq1ZvXWoEXRSf6e3W302KxUJr43iCK2fE9U+rcdy+kEHRjM8fSvmo/NmZG44hDOwzphCFhki95HLzV2CNQiufmRsWN/cCjEQYD40ihteZq64B5p0A5mZNBrHrfCdrkDR523za6XUrSHv3eVWaehLEiiGOCI45zHASxIlaaKFYoMXrMIDKxM1II9gMfpcy1Skx/sE6uT2AckdNx3Ww3uN1t8dmls8cek/nbYxoP1CFjOwydKCJI+lbfj+urI2ftP/kn/wQpJb/+67/Oq6++ym/91m/xzDPP8Pf//t9/EOM7Fv7G3/gb/Pt//+/5jd/4Dd59913+wT/4B3iex8/8zM+810PLkSNHjhxDKFp25oYZa51FVACUpU084e+pc9SCSwg6H3mK/+VPv8i1R85Q7QY8/d+/TvE//Daz3eBULdp7gzILASu0Eb4FO6Y3TbQK4E/YrdWm9zCNdbCPuZAEEzWgEjfMSOnJzqe+BVF/T5WkKC3KfXEjN9pN1vqcYCdBYHIGD0MzyZETpEYZg4i14hs769zutjhXqg6Us806BQTwzd31gc/qrcbegGFJqEwvVJS4MxYtKzOOCZRZQMd99vzTwuRAJj1pMNacJFAxXRUNmA51YpNDmcZUjF6zCd82XqUGaQaliZmQWeZcOifG3TswJjxSQFHabPtdQhXzOxs32PDa3O62jItr33tvdprc7bbHHitQ8YlacKUQKG0yAy1hZt60Tp9+bCJK0ngSL45HwtJjrSlIOWKsIoUxZjoJDqJgosGNF0f84dZtbnVaI1mQlhAoNWjy8nZzn+/VdyccK8ZPIhimwbbf5WbbGJq0opDGBDOrRhDQSYLih9H7LumdM+iby2mEziTE2kTmjDfH0obEJbmKJ4mPmYQgcQ2edK8inbj8Jlms6dPTc7pOntWkZ7V3XMVBMP4+HoX0eyd9Vk/iZHoQ+LzPOOEAjtzm+e53v8sv//Iv8+KLLwLw2GOP8Y/+0T/iJ3/yJ9na2mJlZeW+D3Ja/ORP/iR7e3v8i3/xL9je3uaZZ57hV3/1V1lYWDj6zTly5MiR44HCETJbKQ/vxLuWBWN2bDVMFVruSkm3WOC//chTfOjxc3z+2z/Aeec6z12/zcGHL7HzkcfRRxxnx/cQwOJQH5cXmwWtI2Xm9IcbJ//nsLq/gtDC5ChqAXslODOmNE2YHX1PRlnO27QQby5C16H24ZtEqCweYqxSFkjEH12AeQ/9wkb241Sd00mcQMGypuqzkYmr4WFoJQvNKFZjnROvthrc6jQ5W6qMLaWbdVz2A59OHFG1HUKleLOxR8VxuJy8JlTGXTB1tSxbNnu+l7lyulISJIva45SZBaoX5yGFwB8iIzohpAUp2fQ6mXlPOw4JlKIZhmOPqxJFUpC4aQidEUTjImpcOj0UnThMcuvGL+iDRF0rWTaNKOBGp8mNdpNQKQ5CHwEDxDhSig7jx9WJI+MQckxITA6nMRmShJEintJ1NUgyLL04wlMR3TgeudY4ceQNVTyweWILQTs8PkGMlKITRSNENMVWp8O7rQPOlcojqp8lRF8mpvmeakXhRFfibhRmCrc7xb7PerdFPQy4WKnhxRGtCXmpu0E32xApDSmXvjLK3ghBFOk1gHeI+2s32eAYdj0GIHnmY22I4mm5yEbJJo95jsezqXRjxZHCVAYkF2QJgaI33wRiYFMk1opmFI440k6DjCAm7q8n2VQ8iE5GTh8WHEkQt7e3uXDhwsDPLl68iNaanZ2dh4ogAvzsz/4sP/uzP/teDyNHjhw5chwBJ3Ge6//vFK60RkQNlWTITUMQTc6ioBlFWI9dpv3R53G/9h3cP36FL3z3XerXt3j5Rz7E7urkDUSjUowunLd9j8VCkW2/S9myDSlLXUxDi/LuLGAyFsXVBcRuCT2GIApM/qErj7nY7diI2+YcNVWColmsCdGvTfWhXkTEEr1TMkpiYXBxJ4RgznGp2eNNacaNOzpka1xrTTMypEHHYmQxGSrFd/e3qdnuxIWbKy1CrWhFxqXzIPRphOGAohbqOLPuD5WibNt0k1iEWJscu25C2spjz9JDJ1nsny1VCVQvziN1mO1HpDUxmorlsOV1stLOThShtVHRQqVG5qnS5n9CpCRbJyTLbDpkQfBK046ijOiOQzeOsDBRMb6Kebd5gBSCDa+TONPKkcVyMGFNb5yEj7hBYyATBSdSqfotplaWjNplws/LdowXRyMbCen4ldZYfS6QtpQDsSzTIiVAk0LZ05zPcXPSEpJYK7pxxGyS7dqJQ/YDfywBMcREHxq70AwDWlHImVKFZhjSSUhhN47pxqNkXmvNjm/ON+75C5KNhgGCGPcURBPVMfm+dZLcTXvMZBD04i00JyOIu77HW829gZLPKCm71iROvn1IxxpphcBEAHXiKNvssYRMKhnM+0zsSu8Yae6jF8dU7OMTRK1NBcG4sR0FrfXEjaL3C45fz5IjR44cOXKcAvoX0FqLgdIm87uhiItEUZjGwa8gZZKtp1koFMFxCL74I9z52Z/mztIMc/tNfvy3/5hPfPVVCp3Rnd4gVS2GFryBinGl5HNLZylKu6fSJCWmhBZ0HLRUcLFhshZ3S2N5my0k7SigE0eTlx/rFcTLa7BZId0sF3f6DDa8o/u9xL5RQAUCtsdTpXm3mGURHnm8RE2ZhHTxbwuZlGgOLko7cUg7Dqkd5fCoBa1kkbUf+DSHygNDZRaXvoqJ0UlkRJIHiSEtpgT1aFVrw+vwVsP0ivZnAsqxBNGct2zbeHGcXd9B6FOyTD+pF0fsBd4A6TFLa0MK7aQk0wRxqyxjMs35a0chKim7G6estOOoF0uhBXuBx5zjMue4mao9oCBqTTcav2DdC7oUpvzs+5Heo0hrbGFCxScpnsPwY6OuNSPflJqqeIQgpnmcq8Uy827PUdQSYiyBOgppCfAkBTFQ8cjzPoyDvhLndmTG3RpzX3sEcfLxrrUPeK1ujBUPIj+7JlN+O1qe2okjuocoy34cE+h4gJT2z2VLyEMVxE4cwVC8RwqJ2ehJr+mwUtVJuJmo3P3PcJoxqPRoGeeV1gFvNHaJlXluDEEMsxaDdINC67Qc3KjN2bGVygjiNHi1vs2bDZOjqwCESUHoLzH9QXOfzoTnqB/pd+D7GVNZ8vzCL/wC1piyk5/7uZ8b+fk3vvGN0xlZjhw5cuT4QKOfBAqhcUXv74krLUOu+hAni+gjexAx5MsWgrLlMO/2lYiuLvEfv/Q8n7izz/PfeZvL797l7M0tvv/841x55hIBZve4E4dUbYdGGAwoBK0oZLFQYqlQomhZCWG0QIK2Y/BsU15aCYyqOO8h9kvorTKsdkbG2IoiBD7OBAlHXJ9HtFzEbtncj0o42NPYtWEuJbi9fpwBHPSuX2xV0OfvLbzZ9CBOJl1+HGcKmiXEiNozLoh8HKQwpAtgy+tkpb1AVpKm0HixURLTPrhWFBIrkLa5F9OEg4dKZQv9/r6t1MCnH1FCTAvS5kCHdOOYsu1QD3zKtk0niujEES/tbfLc3BIXyrVszBqjIC4XSmhSsmmUxV72nqAVhaa/FJXcq8G1VjcKM6VHCmhGAef7ejnbnWhAQYy0ojtmoay1Zj/wT+T0CEZdiZTCtu2RHrDD4KmYKFGaZ5JyzOFe0TDJIxwupbSFpJt85scpy+4mKuXEHsQoQh9yPFsItr0OT9Xm0cl3hB8bgpiqiilakckkPWxz4manRStRu1uh2RDQWuOpiCgpm+6/9mYUECa9yuPu86QS0341/DCy1I2jRM8ehRSGIKabI4cRzXGIEwOdThzSDEMWC2a+RdoUiY4Lue9GEa04ZNE1Bkq2lHSCiGW3lF2P0jpTv6Vg4H4HWhEqfahq2o+9wOdu0hOdmjalSEtMrzTrVG2Hsu3gx/HEknyjViuK1vtXhzuSIP7tv/23H8Q4cuTIkSPHDxkcYUigTowGBktMJSIxYIHebrEl5FQlpiJZWJYsBpwRC9LClpIrj6yxfmGViy99n49ducvz336LR965zX9//hFurcyh0bwwN8fbrTqBUnSiECk03Tjiw7OLSCGYcVz2A6/vghQiShYMJUM29OU6Yr+EuDaPXukM8DdHyiToWeHGNmyWof81oYCWg3YjmPGh5SLapgw062/sUxCXxzhUEgtoFNCpwrlXglBmJbEnQVoe2Y9uHGEnn01XRWjMZ2UnpivDr51mWV+QFtt+F6U1617bxEMkKktKDuNEQVR95ZqNMEDRI4zTkBZfxXTiMHPUzRREBH48RBCTXixbmB68bhyhtKYRBrjSoitiNr0O+6E/qCBmbotJ6DsgtUhK2BQyI4EaX0XYQqAUY/vYOnGUEewFt5CVR6awxKC5TqRVZprS3/PpqZhOHDE7ZXnxMAQiUT/N8zotQexEIa6UdKKIeuAbVWwMER83T2wh6egoMSaaPnqgG0eEejJB7EQR9iEzs2TZbPldM0cS1TfSakRBDFWMl8zJSQpiKwrZ9T1AcxD6+CpGiJ5pVaSMW2g/QWyFoekVnUDEgzEmNX5fP60lxET1FEzJq5xw/ZYQ2bHVmM/qKOz6Xeqhl5SfB1lfd6RMGa4UjPT5deOQdhhmRjRFaVGW9kClSaw1bvIcmB7E3jFCpQh0PDWZ9eOYba/LK/VtKpadGX6lf4fSzzV1Tv3D7dt8YmF1cAMyG7vZjCiebN/loUBOEHPkyJEjx3uCkmXhCCvrs3IGSkxND+GG1yFQigvlStZXNq1qULIc5od29gvSwhGSSGt8x+IbLz7B1SfO8/mX3ubMVp2/+Aff49ajZ/ntD53n7Jkq616bbhTRic2CVmlYKZgyzXm3wKbX5wzpxtBNyGgpIUWLXXTNRzQL6N0SLPXyde1kRz9UMdVbq8hbC6jn12E5eU2jiECgFzz0R7YA0G3HlKxKjXhzGeE52Z7/WBXooGAUzXkP7Bhxdwa9V4LV8Y6W00Awutv/Rzt3aYQBH59fHejXsaWgM2Ty4sWHFaj2ULAs9gOfg9CnFYXMOG7WpxVrlVjdm76qOFGTLAT1wM8II4ipXEw7cUikdabcpHPRlJiqAbUqjV9JSV43jrIySeMAq9nwOjTDYKTEVCUupilkooLESmSKJwhiZUpmDQkeHH/qblpMxli07BGiNGyuky7EQxVj9b22nah3450rp0NKxlNDmWnQjiNKlukzrSemOsNmQP3lkf2wpdmg8I9JEBuhj50owunn149WGGAdch9Kls1+ENCOI9CaSBmX1WGnTC9OSARMVBB3/S6hjhEIdvwuoTIkO1XXU0Lfj4PIRyTGXePmtDE2GjSFSst0IVEQE5I3zhiqHvoTN99kShCVUfyOUz4ZqJgbnWainosBh9Z0bgvECJnuxDHtOEyUcI0tJefL1YHXKHrPpelB7L/2OCv3nga+ilgsFLnaOuBsqUKv7dX0HPsJaTffEzp77ufHHMuL46lK2x9mvH+1zxw5cuTI8b5G0bIpJIYTthADBMeVEluaRcnZUoUNr0us1dg8vUm4WK5yYWhBIYSgbDtEfQulc5cu8u+/8GF+81NP4pWLXLh6l5//7Ze49K3XWRbGJbJoWXx8YZW1Yjnb/Z51CoNKmtNbNOlyoioIY1YDIK7NDYzFTiz8g1hhd42CI/rLQevm33q2T6WshHCxAbPJIqt7xP1IjzHnoRfMcdKexJNieDGntWbP99jxu3xt5y71wM9auSwh8eJoIFetGQaMWhCNoigtPBXzan2bQKlEQUwJos5ImxfHhiwKo0KnSmBq2jMNaekmuW5eHGeEx4zflHn2L/ZirTOVV2tBOwppR6Epq03MWrw4ynreUvQ7I6aQSY9T/zl1ojw5UhoTmKGFZpCYhRzWMzpsrhMn0QTDpCNVv46TEzmM9J2GRExn5tEOQ0pJJqkpxbPwoiEzIz2eIKaGMcdVsQ7CgKI00Tpj+zr7ynbHwRgnxRyEPl6ixpYth52gO/C6bhxlZi+T3C+3vG5ybZrdxHnX9J5GiWsnI59VOzT9d3qCUttO+nXT+R4nRKa/BzHdJBiHVAEfh7QHMdIaS4yPrhmHVhTyn+9c5ZX9LeadAq6Q7Pi977PUgIYxn4mnIkJt3G71BJddR0iKSZmnFAyUVYfJJtKk2JlheHFMUZoe4k4cDUQGpc6tfkI6o2STZtJ9OImJ0sOGnCDmyJEjR473BFIIZlzXODJKOWhSIyQ2kjOlCp9bPkvZstkNfEr29DU7T88ssDYmaL1s2Vl5mCUkz84u8fnlc2w+foHbP/cz+J/5GFIIyt/4Ll/833+fx6/cZdkp8uzsIn/qzOXMJKdk2Ymjp6IRBoNlm6W+BcJKB10JEPUS9JEzW0gibXLFpJcoj82+Ur96on7O9RHEFMXk+EeY1Igkj5H5rvkfmDLTe4AUYkDV8pOF00qhRDsKueu1s74gK7HH79/ZP0gyEo9CGt3xdrPOWrGELUVGENPeJSnMzn9KcFxpFOn+df40zprdOCRGZ6WBWQ6iEMSKkX6+9PCuNIpIal4iEqOZg9DHEXKgzHMSWdCJzX//OdNes3H5cEGiUI1TgVKMEkRDNIeJRTsKxxooHQfp4n04ZuAwtBNFXifumEVpj2Qb9qtfwzCK4/H64Bqh2ejRY0g3mJ63o7JIBYJGGGTZfUXLoh4EI8+D+Wgmx8Hc6jYpSxutBQdhkG0UtBMTGsmoOVKqqMoJ196Kw4H+xFgrFIOOvMP5mNmYk1zKSUpyL47FmE8d5dCajSkMqIc+50tVKrZD0bLZC7xsw8jMbfPv/ucjjd6JVErwxk/S8+Vq1v+ZloKmxwmVxpHWVG6isU43DCVzboH9wB+YeWl/Z5jmQCb3Yty9jJTi3Vad0hSRQQ8zcoKYI0eOHDneM8w5RdO/ltiYpxBCMF8o8uzsAgtukT915hKfWljjTLF6yNGmQ9m2Mze+gmVKWZ+aWeCnzj7C6uwcwY99ivYv/mXCDz2B2/H4cy9f5Sf/6zexbtwZIDZly0ZrE3uxF3i9Pj/IehDNxYB+pG7+2aciDqgjKdFrJqRQAQdF44ZaHbMD7ii0rcz7Ji3wPQtxUEQXQ6gFUIzRpdD0MQYn//NvSkx7J00NGVxpUbZs6oGfGQnZSWxD/067CeOebvE057isFsq40jIREImDYqYgYkpAU7hSJg6PvXs7jdJkXCNNOZoaUF0ECj1Uuqay4zvS4iAM2fG72ULckZKDMGDGcQbcNtOYlmEIxEDJY0ruTA/lKMkIEqOQw0x+5FC/WaTV2Py6/cCbiqxPRm8eTOtiagxpYjN+ba6vYFkjBirRBAXRYDQ+5TD4cYynIoqWlSlrA+dSCj+ODyXdAI4QbCZl7wKM8hlHAySkdx06iWEYhBdHtKOQomXhSFOWqxOi1IlCNGaeDDuFBjrOSnn9MQpVJ4qS+a+Sa9IoxcBcjrUeW55qHIIn54WmJjV+nBLE8VEbwwiTzZR0bhcti3YUDWz0pM9S/3dKlCjeYZJleNTnko4xzVQ012+qDppTKIihSs2gBFXbwYujvudC0I3CzJk0TMx6ggmGR7e6Tba8LvPOvVVqvNfICWKOHDly5HjPMOu4pnzQskbK3D63dJZHKybvb94t8onFVT40Ozm3cFpULIcw6cnq3+XtN7PRszW8P/cnuPOXf4rNpVkqO3XK//Y/U/wPv43YrQNQth0TEK4Vc26BwOpbiJSGFnCrLUPOdsvQ6o930IhIZOY2wrdhu4z4xnlELI16OOkvdTE0r4kmvCCNtOg3vllIVMT9Q1REjYnViCeoN2KQtHRjY0ojhWDOLbAbeNlC004XpclCKkzKt6YlJTXHzZwCLSGynfs0O80Shlyla0tHWgSxyv7blMYdXu4Va42fkM5uHGXKZPp+pdXI4rXX9ylpRgHrXjvpP4Sa7bLoFnDEIOmZ3Hmp+/kstpDJQjwpvVOjCuJR62VL9AhUL0bALGp/0Nhno9tGa82W381K9E4GQRoxZ2IGjiYNacSFI2TSU2ciDIbNRMIJJjVgVNcgnk6thKRcURnnWTVGRUsdOo+KeilZNlteN+trs5IolXpfX103Ckl1sXEKYjvqbaiYrM4oIUCCdtJjK4XJ0+yHuR9irBtppEzPolHQze8irYj7SpdFYqo0vGHixzHf2ttIzjvZpEZhHFYdKc09HHNtu743YNzVv5kCpjIk1DEbXscouX3zpV9BTPsd48SwZ5q+cwEDxkChjilYMtv8OQz9LQcAl8u1zHzGFoJmFCal3TqLZImUGpmzsda8Xt+lZFknyhZ9mJATxBw5cuTI8Z6hkpCskjWaiVexnWPZ2E+LgmWBMCrCuPP2o3jxHG/8zBdp/dkvoWZrOO9cp/Kr/z8K//0rlLtGCVsqFDlfqtG1EufSQgTW0EJZgr7QAEDcnM1+rDVY/uAYxGsriI6Lnu+in949ZHDJAnJCH6LYMuW1eqVnSKPnp+hDvD6LfG0VcWWc/UK6EOst6LpxnCljlhBcKleZdZKeyoTkpApi6u43TVTJMOzUXCjulXal7rapeYeVlOql/52aaxyGUJkFpNKmBzHWvdLGNAdtoMRUqSwvz0n6SJtJT136s3m3aPL6+hb5k0pMjYbY70AqkngCc4+GFR9TXnj4cyEx9yq9LmOQY4jQD5r7XGs3aEUhjTCgfMQzcBjWiuXMtEkmGweTr7M3/nQxLhAJITeKWVp6mC70Jz7/eryKNgkp4bDTz3NMX2eo1JElpkXLphMbxbi/L26/z6gmLfVkjPEKJGW9yYaKKy1aUYgjJZqkd02bMuV2OOyOqjIFcbgc15Q7mr7V9NrSz76/THecq+/3G7vc7rQ4UxyfkQrpRolO3IrF2N5YgLcae7zTrA+Mqz+uSAhBUdp8eesW39rbTI5hNnj6SVyYkDFLSGKmizORQiTH6ZWYutIy7qNHZCGGySaQ7CPTKZxkE8hPvieCOM5eP+zQ3IoCdgKPuSFztPcjcoKYI0eOHDneM5QtY1v+IPs1XGklRivqyPO60uITS2fQzz5J+xf/Z/wvfAocG/flN5j5//5bfvSNmzxbqHKuXCG0kwVdaULPy9mmKRldr5qoCWCpUGRRmbLZdCEllDTk8OPrxpRmEkqH9CG2bdgvmbLX/h7G9N+NCQuYSCBuzJl/b1STxOhBFKQpq0sXxaZcrLcIdOWwGtxTs1KXxqOUmnGQiVqYmmUIellog+j99zTOmkG2GO31OPaPf7jMs3+B7WR9pPFIeZ4txXQ9iEM/NuZMcaYqDb8vdeE8DOl9CZXK8vUkpg/vIPS53W2xE3SJtLqnElNLiAEXyTR65DCk/XNCCObdAvOOa8of+8yA0hiTScTAlsK4iU6JVHVNVbSRvk7VMzo6DCkBq4dBppyWpD3gZuwnRE4wvt+v3Vd2XJAWrThM5o5GaQXC9N+2+l6Xxq+I5H4Px1X4iQJqCJE55yS31uENh02vS8U6fDMuddv1lZkvCj22xHQ/8NnwenmvgVImmqMPS4Uis47L1dYBfp+j8XB+ozkvIyR34hhJS0xVYvTUux/DUSTDSO/VWNdcIWlFId0oSnIq40RxVNn3RYpudPLvt4cN7/8ryJEjR44c71sYgmiNhGHfTxSSxVikoHwMV1Rsm+DTH6P1//y/EXzyo6AUT796hY/9+m9z+XvvYhd8Q/Jm/PHvdxScbSGURLy9CNooEnaQGNPM94icfnT/yOHoREEU/WRvswK3aoi3lky8xaWDQbGpGBmS2nYMj9opDfYj3p5BhEm5a2DDZhVu1yDqHcROSsw2kkXxQeAfqbz0K4j3ogkLYUrilO4piGpAowBNL+57GgUxLVmViePqOPQvhoM+g5iUcIy7JkuY8uN0wa4YT5xStTNFybKp2W5yjtGeMaOcHX4X+w1JUldMWwi2/S6+immGAddajbE9kSeFTHopjyrn699QKFk21eRaY2UW6n6i4upDiIEtBJ34aPORFP2qa2os1Y/j9DOiSVxKZXYNu4GXbUSkvYymvHn0XuwHfjZ/bCmZtV3Klp0RHHN9km6fq2tKmI2CaEqQ+zcJUsJoiZ7Dab/bbj/6Nzi01jRC/8iYEynMXlHcV+45rCDGWtGIzAZE+hx5cYQ1Zgwly6ETR+wGHhKBEINmUmESbZEaH03TgygSEpv2mGbltUJwo90YuQdf276bjTPSaqKTryNN+fNB6Gcl7Onxh91Kh91P38/ICWKOHDly5HjPULIdCg+YILqWhdZmYe6cRLksF/G/9Bna/4+/QviRpxCez8yX/5i/8odfY2Xlq+hH9ya+VT+yjy5EiLs1SAxrRKIA6pU22o7Rix1YGONcOoy0XPTaPOKdBQgk4rUV5FvLiL0yuhzApfrgewRQDk3P41YZ+d0ziLeWzO86NuLqPBqdEVT5+gryzWW4NTNwmJJlc7V9gNaag2hyflpy1dkCvB7492SaqTWZSQ2YRXg05Ha57BZZdk2P5aRFej/SxSjaBMePW971L4Z9FQ0oDQIxdv5aQqBUr+erGQRjSaLWDFBcS0jOliqGfGqzKO9HR0WZejUJaeltmJQZam0cHTOyqjX7oX+qyr3sW6AfhuvtxsiGQhrBsB/6/N7mLTqJWdAkXmALmfXrTYNhAjhatjt9P2PBsvrKSFOjmjhzsg1UjEQkbrSjxLMeeMkmlcFqsYwtZUbuJEkfqur1zqWluzLpQYwYNNrxlVHi+rMAexESPWjNgKKeOhAfZRolk4oLnfx7nHlSJ4oyI5v0XvT6KweRbn504wgpyJ7jFEFiNGULQaDj6UpMMc9RnGSHphsMc47LldbBwOZPN4643W1yt2s2uUI1afsm6ZtUioMooCAlvjZGNWkszsA9SPqxPwjICWKOHDly5HjPYCVlZvfmpHg8uFJiJRlz07ppjoOereH9mR+n8/N/kfCJy1TaHj/63e/xP/3WVzl7c3O0dhCMk+gLG2ipjKNpLHolotUA/blb6Oc3phvArI96YR1tx4jrc0b9Q6ALEdqJ0c/sjP8rn5StijsJ6dstQSwQr60a05tH6ujLdbTVW7CJIVObGcdlx/eohz7NMDxSgfDimFYY8EZjlznHPfS1h0EkgdVR4vpo+t4GS8MKlpUZ26Tui4ehV/KoM+I5iEEVz1eDbpfnShUW3NGeTlM2qQl1zPV2g5eSLLhxV3XY8nfYcbMTRYc6mEKvHDdK3F5TBdFLesgcKakHPuVT3JjJVKZDCGI98LndaTHvDt6H1ARly+twEPk0wwAFE5Wj/siTaeANKG6jvYHhhI2BcShZFq0wxJa90lrdZ1QTKENo0miIfsRJeeq4753UnMgSAlcaNXs3yQzsz/0c3ngw41cITBlx2ocXaTXyFSTEIBlOHYiP+v5N1bV0DMN9uWBKZ40SZ0qZzfHjQ8ote5s7w2Q6SDZtHCnx4ylNapINlTTqQmlzvVXboR2F3O60+o4f04pC3m3VgeQZmzBtbSkzwxxXWiZmRmssaUhyv2JeD7wT9Vc/jPhgXEWOHDly5Hjf4mK5xpz74Jr6C9LCTojFUcRmGqjlBbz/y5/mlT//BW4vzzBbb/HZ33+ZL/2Xb7B2a2uUKNYCWO4glDSZhKnJTDEyZajHGdJSF1Lzm0SR1E/voL9wY6IKqSuJ2+quIX0ishBvLiGaBfRc16iHlkZ/bB31UUNmqRcHFlBOsmh6dX+HQMU4YjLRtoRkP/B4tb5DJ4qo2n0EUQNX5xBfuwCNKYijEPhJnw+k+WyT4wnSRfphPXvpQtsSMnEMHXyt1oPqxjBBnIRUFfPjmJf2Nila1oBTborFQmEswUzHP0xw21F0aKB7BpEa8JgFs5MYohSlzazjEiYxAKeF1MjksBLTW50m0SFxCtt+l2YY0I7CibEg0F++O11paCcO+0iQIU9eHGXv9+J4QqHwKEqWyWwcvoa0Ry3M8gpH1et2orKNu++WEARJ1IItJUIIXtnfzshe6q7bv/GQwvRQpiXXhrTESo+UL5sIlR6x7kSm3Hc6l1CRGcYMR92kxxKYebAbGLdkT41XEMEQ7U4cZcfrL+NOFT1byEyRnQqCLMJI0ytRdqXM1EIw5FZpuNNtUw98Mw/E5O+ItATWlZYpLY3CrP+4/zM+CINT+ZvyMOCDcRU5cuTIkeN9iw/NLrJWHA20v19wpYUtTEnXaSqX0fk1/sMXn+OrX3qR/cUZFnYP+PzvfYcf/61vsHp7e4Ao6iVj5CC2y+DZpiypOL0i0g99xuyMCyXRQveiLCYhVRD73Q3Xa+ZYT+72VgZzvonImPOMstgcJHCrxTJvt/bpHhFbMWM7XGsf8EZjl6XCIBES319GvruA6DqIq+NdU/thIWhHJkxca6OmhHpyoHqqTB2mahmnRZEZpQwriEIMmo348XQlbyn2Q59WFFKzxxPgkmVPLLG2hghipBTNKJiK2KWLbtOjadSYVmTcVouWzeVKbWLf1UkwyQAmxUHg82ZjbyxJNuMVtJK8uXZfdMo4mHxNNXVpaDvqERWdKFff3tvky5u36cYRnainCB4FS0iers0PEEQLkbmzpr1v43Ih07k7TlWzEifXdJwrhSI3u01udZqJIpaobfQMiFL4ypjwmDLfnoI4PJctIQfKIo+jwpKZHY3vjW2FARozn9MYC9ODOP67oWTZtJOMQ1MJ0BuXF0dYGKIcTLkhA2TmY9GQK6krJa2+PETTR2xKjde99ohKP3rlaV6nRGtNKzLGQrHulc8rrWmGAc4pbrq8l3hwTR85cuTIkSPHQwApBEXLohOLeyoxHUZJ2iAEGxdW2Di/zNlbWzz73XdY3DngR//HS+wsz/HGC0+wdWYRljqGFG6XIbTAjQ/dsk1zx8aOtxKiaz6iWTDk0D6iB6bPGVXbCpHkKOpZD2ZHQ6X1nIfYKxu1UwDVAIRREdeKZdpReChhKtsO5XGkoGMj7tbQbrJI3S5Dx4by5EWrJSWdMKKozSLV9C5p5DgnDHqqVqQV9oQb7KkISc/5c7iHSCaL/xSBmkxIhyEQ7Preid1CBQwoFK0oxIsjZp1Dciz73p32rmmMIdSiW8zKb+8XxsUfdKKQP9i+QysKD41TSGMejnKdNFELaVD50TEdnb6eQZFkAW75Xe522xyEAb6OqZRdOIZXTT9kUr4b9fW+jSsxNfNo/PNpCUmgVEagLSFBG2JdsZ2kb7o37/o3LTpRhC1Md2C/UcvwXB7OUDT3edpNApGRrmFVHcxGiCskRcvKVOBIawoTiHdRGgVxxnFQelBB7CSEviAtKpZzrGdnQEFMzYCEpBmFmatroGO0FrhSsOt3KSYmQROhjarpOi6tKKKdKNJpJiIYsu0rleWhvt+RK4g5cuTIkeOHDmXLwRIS9xT7RYqJ+Q0AQnD34iq/+2c/y9e/+AL1+RpL23V+7He+zRd/+49Z2dmCWQ8R2AgtjFJ3CPYCjzt9JVLD0OdNmalenfyaDOWwt3BcaZkoDHo5jSNIzXDeWUB+87whcglcaWWB0sfGZqIan2uizxtHTTFkhjMMV0j2/O5gn5c+vMRUaX2oQpAuRi1hFr3DR5KiRxDTxee0igZo0491Qt8KKymxS9GKzGd3VA9ieu40rw3MdSwWTvhZTQkxIftvy++y5XU4Uywfqlr6cUzFtulE4aGdmeYYgqutA251moeOSeskvy8hGRJBIwroRCHnSxUUirJls1SchnSPh5XMkUj38hslowRxODi+H7YUI+XLtjRZmrFSQ28bVPBSM5jMKEipsaWZwyWmjdDHOcZcNj2Io6o6JARRWhSkRaCM4VCsJj8rQggulCrUbBcpBjcWUuVRCsH5cvUYir3OSqr73+FISajjbLPFRIZoCtJiL/CT800+h5NEz9jC9K6nmZSiL8KnE0eEOv7A9CB+MGhujhw5cuTIcQyUbTspMT1FBdGysaUpfctKyITgzqU17lxc5dyNDZ595QpLW/v82O98m+25a/zA+jQbT9bQTx4ea+Ed5TR4roma9Y26dxSspJzVc9Czvonl2C/Bamv862d9Y6qjEgWmUUAfQWingdhM8h/XWuAodGK0w8VGL+NxCCXLphEGOJh+LJmQukkLyH57/mF044ib7SaNMMhKjr0xlvr9ZZ5p/pk8pOdyGKGKT1zKLMVgLEErCsZ6H41DaiQyvFi+v9BJH+cgfBUnxGLySIw/kFm0DxOrcXCl5Ft7m1wu17hQrk18XZiUHBZlz7ioEQYEyvysZNkIIe6p3DYjiMn9tpLjDWcRhkmv4DjYQiIZrGqwhKQbp7mfvfFpbeIy0uvuxrEhVPScPIPkng+Ps19BrB+zJFIlqv2wqh4mpi+V5F5qzPhirQ7dzEgrCwRikPAe0rt4OHoVA/232ZGSMNR4KqJgGaMZrY2hVSMyfYOHnc+VFs2kUkIPbBLpjHSaTY3D5/j7CTlBzJEjR44cP3Qo2w62kKfag1i07GSnekw5oxDcuXyGO5fWOH99g2dfeYfl+g7L/CZ7b8/wVvEx7lxcZaKvf4Jxwdfm+Bjzm2kx46M9G+Y8qIboC4eoMJY2zqv7ReTVBegcXdJ3JDq2McWpBKbkVQCXDhDX5uH1ZZAaPefBo/UB5cS1LBqxT0uHmeX/glucGNeQ2vOPUxA3vDZ/uH0bECwlKmikogmqS8yO3+V79R26cTTBjXQ8unFE8YRlncMmNf0ZekfBlKeajMcHh7SPcxBBXyD6JCwWCiaGQcfJNR/+juVCCVfKI2NM/DgmUho7yQZJlWKY8CydAGl4fUpMUrdRP1G0UlMhP1GuJh3jidrswM8sIegm7qD992PWcXmjscsTtTljmpO406ZOnpFSBPE4BVHiq8go5cIo0oUpvwONv685R8myudlp8tzcEsWk59CLIxaS50Kg2Q/8jCxPc//6n1EvjqfuCR1GqvL3E2pLmOxWP47BMQTUliJTENtHKIhzjkstLZMXZJEj9KnEJuLig4MPhg6aI0eOHDlyHAOlRDk4jtnIUXCkpGTZh6sfQnD7kTP89z//eb7+hRfYX5hhYbfBZ778XX7iP32VS1fuIMaEeDtCZs6r7ShkL5giJ/EQ6Kd30R9fh+qUYeMLXuaWSvseCWIoEa+vmH+vtjMCqB+po4shol5C7JUNGb05WnIq6NntgzHLmaRSpARgnLNmPQiwhORiuZopyuEYNTJd/L9e3+HtZp3lQukQ6/5BWELSjiOK8mT78Ua97I19x/emJpspsT0ql/B0MV5BbMch1hE6ZsmyKdt24g45Lm5kFHJMHt8w0nuQEgCZuICepq5qJbmF/USuv/81xWGmLeOPaxS/4fiVmuPSCgOuNOvEWhH2KXVpYHwwZi5bQiTGKopubIj4tH3Y6fWAIah7gcebDVP58G7rAAs50PPXCP2pCbgUvZ7KQMUD13NcxFlZ9fA87OUWZopraqx0SBUCmHuaPvOpg6uVKKXpBs623/3AlJdCThBz5MiRI8cPIVzLonYPeXyTULPdibl7Wmt2/K5ZZAnBnctr/I+f/gxf+RMfZ3tlnpmDNp/82mv86f/jKzz61g1klC5mIiq2gyWNrXojDGiGUxK7SSjEWW/h1HAU2o6NgngPnEO8toI4KKJnPfTFeu8XlkZ/eAu90kY9uWPKWt9ehNYgIU3NIaYl9+NCvQG2/c6AemIl/YwjBDGJK7jttVkuFCc6jo6DJQSdKDqx9X1q8+/HxgyjEfkUpiSbEkMuJkeA3x+MI6SH5+ENwpHW1PEV08SYGJfanlooMYTfPcXNISvZvPH7yjeFAJXk8qXwjuHIaY4rEwV0UEEE813zdrNOoEwJbU9x05m75vC50tD31Lk10mq6yBTScm2dXJtg0S3yan2b1w92udFustAXVeRK61BDnmGkvatKm55dPx4fBXIUND0FcXiDQSPwkv7LbhwO3Jt46r5eM1pTZi6QmM9Uac1Gt3Os74aHHR+cK8mRI0eOHDmmxFqhfKoZcClmHIfbnfGKRjuOaEQBRcvuWf0Lweb5ZTbPL7O0ucfTr73LmTs7vPjN7/OhV9/l7Wcv8/WLi1xYXOZ2p530wJnIgqP6e04dAqiEhtx59sQ+QXwL8fIaLHfQj+0PrtNiAXsltBuhP7Y+6rg676PnNwHQsUS+u4DeqkC1nr2kZDtsd9pZT9nRGI1eiLVi1/co9i3ojIKox5aYhsrk5i06BdPU2CjArH+kyFWxHNMDeEIy4kiZnVthCMjclBsblpAEcVpi+mD6orQeT8Y7UTg1EUmV8mEHznFI1cD+Mk5zPpNxOOsWCIaMhywhaEVBr2TwFJA64Pb396URK4Olk8frrbOFwMMQOq0H31eybBpRQDMMBhTSNJJh3CaKSPrmOmnZqp6+91IiBtThiu0QacU3dtcRMOCOW5AWXTV9hEaq5KUEMc10PDYSchjr0W0RAXiRGZMXx5mrrS0EQawoOtP/PTD321R17AeecW2NQ5ZPatj1ECJXEHPkyJEjxw8dqo57qLHFiY9ruxNL+lpRwEqhTGeChf/O6gJf+5Of4Hf/zGe4fWmVYtfnoy/9gL/xm3/M8y/9gEXP2OgLISha9sBi9DBseR2a4TH6Ew9DORn7YWWmd6uIVgFxbR7x/aXB37Vc0xs04x8dx7GcZEXuDsYiVJxeftp0GCUtzTDEU/FA72K6UB5W+1IjnLT/iluzyG+f67mwpojFiNpZtm1WD4l1OAqWkCg0XRXRikLUMZQOY7qTEsQHpSKOz0HsHqO0Ms1TnAYSYxoy/Plebx/w1e27xAlRGniPEHTi6FQ3iGSigJlcwZ5SqRKykuK4BNESkkjpsXmFTtJ/uR8OmsGkJZDhhDgWjcljbEfRsfYNao7LvDu4OTHrFDhTKLNWGJzjBcson8OkdhLSsvFYa/ZD76hW7IkwrsYq6UEcnEO2EDSjMOtFTAloQVqZC+x00Flv5YzjcqfT5la3RdxvTvYBwAfnSnLkyJEjR473GGkG1qbXYT/w8PoWdpHWzDiFkYDpYdSXZvnGFz/Gf//zn+fa4+dwYsXqd9/iz/4ff8iPff37LO43KVnWVARRaY2n1JG5ctNCVxKiOcmoRoNYN8RbOzHi7ozJNkzRTBaY0xjqVAOTkVgvQCDBNwt6R1pUbPsYxi96IGMNoBkFYxXYp2pzI5mNUphYhGry2Yp6YsSxM7goFm8uIb9xAQ6mNLDxLfD6rkFhSOYQBEbx6ETRsXTA1OAm1npq59N7RRo70g+TV6gyxWZaTHOtWazD0AW2o4hb3SZXWgfcajcH1KiCtCgmcQynBaMgqqSEsVeGqYcI83CMxTTHjbVR/IY9W9Jrqgf+0Ls0nTjCn+Cea2FcXPcD7xgRF0axHBdpY0s5QoysJA5ikiHPMGRirhNrzWa3M9F06ujjQJTO+eFxCkkrKauN6ZXWFqRNJ55+w0lrkfVAFy2bQMXc7DQ+MO6lKXKCmCNHjhw5cpwSLpZr/PjqBS5XZqnYLju+6fMzRjMWlyq1qbSRbb/LVq3INz/zYf7NT3+K5qc+SuzaPHV9k7/6O9/lT/3ed1m9s40fRWPVhRStKGTWcbPeodvdNvsjC8pjoGKIppikILZcRNtFV31YSTIZ2z3VQbTMv/U0BFEAS12j3H3tIuKrFzNCdbZUndpcY5yCeGQ2YSAzYusIyYztULOT60iugf1i7xieBRsmtkNsTacYipfPIL55HmKB+O4q4vceQfz+ZXPcPmiMAncQ+j1FaLc4SLzHIDW4MarzVEO6Z8ikXK8ffqyS6JfpB1GQFuUp+rnSGJMRhTgKCJXiu/tbXG03WCn0Mg5tKblYrp3qgj6NdugOqWYCwYbX4Vu7G4TKuOkepyw8Lb3sRNHYkkuN5iAMBsi0xuSm+mp8H5+bOHfuBd59KbPvH9u0z6jAlOP6KmIv9E9s6iQSV9FwTJ6pIw1BDJQiUr3PoWzbPFqZOYYyz4BPb9my2fW9E5PahxV5D2KOHDly5MhxSrCE5NHqLI9WZ7nTafHbG9cBU9K4XChyvlTFFdah7oGRUnSiCKU1NdslqpSJvvBRvvORR2m+9AqffGedlbs7/MzdHbZnr/Lyk+dpPX0ZNWaB0owCzhQrtKKUkGlaUciM454sZywtMe0M9cHFAnFlHpJyUH2mBSJRgdoOLKcDSt43TV4joBc7iLs1RGwWb7rpwtLRGXkDxxhT9rjjdw81jhGvrEHTRX/6NqIcsZKWicYiU0+F56A7NihpxpgSg90yPHF4riWB7JHlG7OInb5y1d0Sus9ASCJohSH7gQkip+EiXz6LFhrONdC1wKi2sTB9na65P6YHTk2VKXhakDByviBx9zyOgrhcmC603pRxqpEoj1Zknjcvjlgrlh5Ir64A/LinIBporjTrdOOIZ2cXUUpj2cd77kzXoB6r6FiIMYY+IitjH0eCC5akHnrEWlM6IRGbBudL1akVbynIshP9OM7iMo6LNC4jGlNe60jjKNyNo4GeTWCgF3mac6i+ez7ruFxtN7h0H1oW3kvkBDFHjhw5cuS4D0hNG7TWdOOYD5WqVGyHGdc1zpauxd1uG0fKgQXxQRiwVCxRDzwCFVOxbVPGVSzwrcfWuP70ZX66qdDfeJkze01+4ttv0339BlefvMDVpy7glY0CpZIyq7OlKne9NmFS5rdQKLLjd0/WG1cO0ZYyKlfbhkoECsSrq1mvoLZjONPKyKBou2bJrIFWAS1Vj2gehaUOesZDNBJVreMAx1NABYwsopthODkgPJSIg+R8by+in9/s/S7toUyP/Z2zCN8spbTQ4MQm39G3jFPsJDT7VNWr8+b9Ky3EVrWnUCZwpeQg9KmHPgVLGoMcMIT09uzgMvjVNfRiB8ohcqVBrExZ44MuMd0PPHYDD1dYFC3LBKzfBxkzy/3ru0CVRME40hpbEnk/MUw8QLDldyhIy5jJMF0u4CAE8QTTltQtdKDXT2tCpSfGirjSoh0EKDRzzv0jzsf5vNN+zRudBlqffK4IzAZbKEcNemwhiZTiIPThHuajIyWdvlJwW0qerM2d6FgPM/IS0xw5cuTIkeM+oCAt7KQXB9HrTzxTLNOJjUJoyqoGiURHRZlTZaBi5pLd9IK0sISg7LpYzz7Jf/vTn+JbP/15rpxbpNj1efbVK/zUf/gDPvmVV1jY2seLQsqWw8VKDUtIuokxx0fmFg9VlQ4NVpcmr1BogXhnEQBxZQGxW0ZXA9Snb6F/9KYhR5UhQxvPRkTS9B9OuzazNfpTd1HPbSQ35/j72mkeYD86SbD4WNR76oXYrphyzhQJsdOJAip82ziylgN4pN4rq90dr4CJtxeMw2uj7xzJ4l4/lqiOQwTRkZL90MeLjeqclveqJ3dQH9pGX6yjntswRLpeRL67gHh9BSsp2+vG48sT7wdkktv35a3b/N7GLb6+c5dOHA2Q6tOGEIK4bz77SY7eSaNF7gXxGHJTtR0irTlI+l7HGcccDp2YE41XA704HuhPNCY84cTIBRN1ET94F+RDkCqd11oNFu6B1KfGTJNKTEOluN1p3ZNl07xT4FK5eg9HeH8gVxBz5MiRI0eO+4CiZWFL46pHXznX2VKV7x3s0okNgevEPTXN9CpKHqnMcr3dJNCK2QGCKJlxXIqWzedWzlJcs/lPFcklX/HU27d55J3bXLq6zqWr62wv1PjB0xepnXk0679ZK5aZcwpZmPbwYjZQMdeScqmJZVcXD9C3a4jtCnqvCOtVtNDoF9ah2EfEipFRC9tJbmLjeOWlA8hKW6eIJtBG0cRW6A9vmxzDvr64UCkCHVOZcH2ibhaoeq6LqJcQ6zX0oin5zMpCzx/AD5ZAavSL61BNxrdVRtyeReyU0WdbI+Pi9owpl036MrUdIyILPedBNUQXQ+jappTVMstYR0i8pJfQEb33suBBLcgWu3rOh6tzsFVBBDYytIm1ich4UPYZEkE3jtgPfM6XK2x4Xbb9LvfTRTUtId7xu+wFHsuFUqaWP0hoyNwtU5wrmdLhO902jTDoOeEeE+OeVTBqYD0cDGiXQtCOQhYnEC0hRK/8+yFCeq/uBRXbYdvvjiXq5vc2O373njYshLif2x0PDx6OrYMcOXLkyJHjAwZHWrjCTkKuyVw314plarbLhtdhwS0kFvmKThSy6XV4vDrL2VIFVxqr+DQz0ZWGcNYcJzlOJSs/rVeLvPaJp/kvf/GLvPSZD1Ofr7G81+RzX3+Duf/P/8pnvncd0Wwx5xYpSBtHyLF5dXuBx7xTPLxvzdKZ2iXeWEYENix0B8khmBVoOURElinbTFw/9ZzHsVFOjHi6UxDERgGxXTF9eV1rxFkzUDGxUpNL/VKC+Pi+iVvoN6NJ1b15D/3iOvoTd3rkEGCxa0pstyqDDqXJe9NeSuElZanJfdTnGuY1VUMi+lVER5qeVZ3mKbYdM67hMt1CjH5mN3OIFaGVlNeqB6ogtqOQomU2M7SGXf8En/cxIDAmNbuBx1uN/czd90FdcwZtMhnHm8kkxkgnIMoCMbanDpLNg3jQGVVCojYftsQX91XVfa/gSotYK8IxGZBg+gXTEtMchyNXEHPkyJEjR477hIptsxd42FJmJV+OtHi8OsuO3+WR6ix7iTHDbuDz8YU1nptbwhKCqu3QjiJKSWlqQUqKlkXF6pEkJ7HsD5WiZEFsW1x78gLXnjiPfXOdT1/bYvXGBh/93jU+/Pp16o9uU/jk89hJ+Hu/UU6sjcvijG0xGjM9hLUW+p0FhGfGolfbE25ACK2CITzbFdOnl+QbHguWRhci6Npohel7fHcefbbZI4/rFYh75i8A7FSQq+2BElNjmqLHK0wKaBQMyZszCp1oFtBtB7FehXqx10Mpx/RRWhrONxDX5+HWLPqJvd7vhuIvdCGCiw3USrtHrqsB7FTM/Zo1vZYmOF6BEEZZ9GwoRZnCOAI3OVZgQckshR8UFbCFpB76PFaZNf8tR/s/CSXiygKEEv2RrVMYnMhy/w5Cn93A470gAJZgIpETMFLmPP1xk2fVHl2yCyGo2jaVvmiWkmWj0IcqlWeKJR4+DfF0MGu77Ac+NXt0M8mE23+w3EbvF3KCmCNHjhw5ctwn1GyHO90WZdsZKNm8UK5xs9NkrVhm1nHZ9ju40uKJ2lymBiy4RfYCP7P7dy2LonRGSj9nbJdtv0s98BHChFcjBDdWZlh86gmqssjuH32LlTevsvjuLXj3Fn95psz3HzvL5lOXCIqGUNWDgNVCGSEEzfAIIxgJ+mIDcWXBkL6VQwgiIG7PIELLGKg4J3TVLIWm569jwWYFcW0efBv97DZslZGvrwKJWUwCsV1GrooBRTRQyrhCpgtoBVybg5WOcWNVEr3QNuvnhS40C4jvrhnXUqHRj+8fWn+lLzTgxhzcrsEj+2AnuXiJ8Y22VdKLmdzjPuVVV01kgWg5GcURCUEoWza0HQQCXTnE5GeIIE4qT7wfKNs2T1TnsvOVLYeDKOiRcd9CfOtsb2PhiT1Ddu8BGqMg+nFEO4rY8jq8F+QnVardMQTEEYLohGZBtpB0VURNjFfP14qDpZk1x6XmuGNfm+Jh6T28H6jaDvthkJmEDWO1OJ1D7g87PrgzJEeOHDly5HiPUXEcOlFESdoDodXLhRKfXz7HrFNgqWCI4GqxlJWTgiGIRcuinCiGjpBUbHvEfKLmuIQ6phWHNMNB4lC0LPRsjc3PvcC/+ulPsfUTnyM+t8pMo8OPfPcKf+Z/+30++ZVXWNrcoxOFPDkzT1FaI7EQY3GuYVSwM82JpE9XknLHTWPqoCcRyWmQlFTqlt0rwWw50LURb6yY3wmN0AK92EE7MeyVkLE1RBDjQfpwt4a8uoB4d77nLjpjxq3nu2b8noO2Y/Rnb8Glg8PHWYxhuWNKa/vMaFIFUT9qVMWxpbZpf+aQUc2iW2TeLfQMf8qT+zh1P0HE9OhNLCfUmL7J7y8h3lgyCuU9op+Mli2bZhhkmx7i1kxGtIHe9dwTTA9iN47oxiGeenA9l/0wSt94Mm7KhNWJeGuqIB7f3OYUEIr3XTWmEIKL5epEk54c0yG/ezly5MiRI8d9Qtky/WJp32AKIQRLSbTFnFOkIC0uVWYGXlN1HGYdN9sJF0LwmcUzI+pAzXEJElMOPbSGTIOwS5ZNqVhEP/oInY99hDfe+QGlV97iQze2MlObj86UsV4M2T03f7iTaQpXoT9/8/BF70obvdZEbNRMaeY9EERdNgt/1bZ6RK7tGjUxkugLB4Z0vbWEvnSAWK8i1mu49QrdxUampJlSv2TQ2qibADRdRNGoWalLKfNej3QeQ+3SNR+xVTEEaMEzZZVtF10KTVnpjJ+VkA6gksaIlEwPY6Iuzji9yBBgKgVRJARRYapTx2Kjinx9pTfuagi2QtQL6A/t3LMQZ0uJJZLyag3cTbLizjbhzkxiOtS9t5Ng3ENTt9R2dIhD7X2EJSSdOMASo+qdKyVdFZ+I5GUE8UFe03YJ8e6CKa8+f2B6W3P8UCEniDly5MiRI8d9QkFa2FJmC/xxqDoOS4XSSDj4mWJlpFxt1h0NkC5aFl4cs1J0aUeDxCEliGXLppa4nwKwssTvf+xx3v3Us1y4vs6FN2+wtteEL/8xf8KSXLywxMYzj7CzMn8Iu+BoAiFBf2Qb/UgdtMhC3FNorWlEQebUeij6FcQ0YzGWxhCGRJ1c8NBr7eR1LmIdXN9lJw650WnwSGWWIDaGLwAcFBDNJFfQc9Bpn2CifGJruFRHBzacax49xhRpaW2aAbmdZE7O+uaezU8o4ZXAhQPTw3hjDv3U0MK8PYUTbJ+CqLUw5jbjPijPQry1iEajH98zcSVX5yCSpoz1XBPmjpc5OQ4X00iAnZIpEV7ooBc7iDsziI5zzwKVRBCoGC8xdGqEAeUJ5YX3E4cpfWlUiXOC0k5HGkOp4+cnnhC7JcSra2ZTBG2I/KWDXq9vjh8K5AQxR44cOXLkuE8oWBausKjakwniglvk0crMSP5X0bI5N0XeVknauNKiYjsDBFFrMvVxuVDix5bPZSpEybKN54ljc/2JC3z13Dw/Jas88oMbyNff5pnrWzxzfYtmrcz1x89x4/FzdCv30LtTHa94deKIDa9LUdoTe4Z6xzBkJV4vZuH00Ovty3r6UiREyQptKpbNt3c3WSmU6aokF9CzED8wWY5aKoSSiEbRlD/2OYTqJ/aPc6UGKcFsu6bv7u3kPOcbR75VXzqAm7Omh/Fy3WRKpmi4ZtE+JUG0RJrNN/oy8e68idi4VIdHDqBVQGz0zbeD4qkQRAKJ+PbZLKJEn232MjKniS05AlIwQBA3vA6zzoPPqZNCEExwx3WEcSQuOscnrkVrsK/zvqHlIN5ZgN0yQgvUM9sQWMh3F+D6nFGUc/zQIO9BzJEjR44cOe4TitKmZNtZxMU4lCybTyyunXgBWLRsKradmFWYfMNYKywpM5dSIQTlvv7GfjIWa4UtJZVzZ/D/1I/x8s/9NL/78SfYWZmj1uzwke++w0/973/A53/n25y/to6MTubGOA5eHFOzHZMVOQY3Os3Elh6oROhqgO6M7m3rcgDOkBbVR5Tm3SL10Odmp0k7jLCVhfjWOUMIZzy40EfcKuG9r47KoSGayaJbhBb6wgHMTxH54Cq40DCE9VZf2XEgjblLJcyMb8a/v3fdxjhFjSqICtiqoKVCP5pEbTy6b/os55K+y/oUqm7f2FivjO9X2y0jOq7JpVzoGDOgUmSI7mE9iJqp+t8EAi+OibRx5b1Yrk7MuDwRmu5UvZlFaVG27LEEMc0e7HcNPg6cQyMrTgfi3XnETgVshXpqB8434cKBcfS9WzOfcY4fGuQKYo4cOXLkyHGfULDMorEk79+f25JlM+sUWCuW+X6Sb6i0xhZiYhZaUdqmtFBrvDimkCiQANIt8MZja9Q//DjVgxaXr9zh8rt3WLu7w9rdHQLX4eajZ7j2+HnqizOHl6AeAU/FzDpuEoUwSBbSvqtuHDOb/mqtDVeSPrxZr6cejuvnGzJrKUqL9W6bQCkK7aTcca5rgu63Kz0KVTlEnZsWEpMB2XbRG1VDvB7fO/JtKfSFA7gxC7dn4NHENTU1vJk5QtUbUBBNhl7RHpoHeyWjHi63e2SzEqK/cMOQoT+4bBTEwzIyujbiTg19poV4fRnRKKLkJgxFnojUnOfpHTjT97tiZCI7YjEa2aFBfOM8FCL0xzYOLWW2hKAThURaYUsb9zSftd0i8uWz6BnPjOMQB15bSi5VahN/n0Z/PJTQwH7JuPR+7mZvTjgaFrqIrSq664B7CopyjvcFcoKYI0eOHDly3CcUpGUMYsZkmJ0WyrbNpxbXWHCLWNJkwsVa4wiZ9SAOo2hZOEISakWgYmacAnZCJi0p0InbTWu2yusvPsUbLzzB6t0dLr9zh3O3Nnn8rZs8/tZN6vM1rj9+jpuPnsUvHUNx6oMrrZHeSYBWFDDvFKj3R26stuHKPAB6tdWLjhhHmpyEKIVJH6btsOmZOBEnTHoCZ3xDvvpKNvVh5ZvHQSWAtmt6uVY6h6t+wyjFsNI2C/ONKpxtZQRx7LX2Q2JUn0RBjFXcUxC7FuLuDDQSkj1sGiQw46wm+Y+ebYjcMEELJOI7ZxBdB67NZccX9cJoJmY9IfHD5aqV0PR9du3REmTPNoY8CcFmoWv6I5sF9Ec2zf1JL1cIPBUTa33qfXoiMdURjSJ85wz6k3fuXV2+PmtKecuhUW8nlF8fC4E05PWkl992jMo9543O0zSGxbPgXjhu04VCZBTyUIJ9D+PNcd+RE8QcOXLkyJHjPsGRks8snWFuGhOWe8Bq0RCegrCIlCLWmpJtTwzLLloWjrSIlMZXMZf7+h9tIRHCqIs7gcecU8CRko3zK2ycX8H1Ai5eu8vld24zv9fk+W+/xXMv/YDNs4vcfPQsdy6uEjtHLy+01mg0Vdth2x91smxHMefKRQ7CPsJWCRFzAaruwEoHfcX0Do5V1YYUxJJl0wg75jBB0g+X9veVwqwP8VQUxGSsKfRa69hv1xcaiK0q4uasUemmVRAB3BjRcbGUJOqLXhA35hC3zCpfCw3LnfHvn/NM/uMfnwNLo5/dMkTPVnCxgfjeCqLrmBiTtoO2lDEMagzN81hAy0W7kSGa/SiHsAvslQxx6C8R7utNFG8tgjL5lABcWUR/ZKv3ewRKJ3mPCIgE4uo8dB10zYdH66PXd1BAXJ9Dn2vA0gQX1UiYMlxLGTW4WUA3CvfWl1kvmJJjBDQL0HTRn759b6SzayP+6AKcaZlM0JNgP+kvnh+9F7qQxIb490AZWo6ZS5UA/eQu4pU1WOqgn9syz6cb52TxIUNOEHPkyJEjR477iPkh85n7iZJl04x8Yq2z/MRxMNEDFn4cE2nNXJ87qiMkGgi1IlSKda/DWrGU9U8FRZcrz1zmyjOXmd1tcPnKbS5eW+fMnR3O3Nkhsi3uXFzh5qPn2Dy7iJ5Q5uqpmKJlsVosc609mC2otQahWSmWudMdJFeFT+3T3VUmcmLeQ7dcqI0hdX1KmrlmgUIbR8iEIFKIstdSDaBRHH+sE0BXTOi9duKxC+8jMe+hq74hJgcFaBQMqZtmfK6CDtiRTUS3t/bu9s2Js4fkV855iFuziNCCEMR3zma/U4sdxF4ZXQzRn7oDXRssBd+8YAiiokd4GgWjoKburf3nKIcIQP5gCX1jzpQ2pq9J+ky10KYU1lLGTGe9itiooi8eZGXFlhCopIdVCAGbVcSNOfPfWxXU+caIe674wSLioIjYqqCrPtQCwkUFczGUEmK/XUEoiT7TRCeKKrulkxNEBeL7y4bQPrWD2C4j9srw9iK6HMJaa2ScU+Egucd3q3Cp3lMkY4G4Ooc+3zwynkXsJ0r8uB7Z5BkRvo3eLJuMzkfrxyJ0Yr2G0AJaBfjuGfPvrSq8LM1cenQf/dgJzKBy3DfkBDFHjhw5cuT4gKBs2+yHHkprKkeUtZ4v1XjtwDgTVvsMbKzE8jJUiqJlc7lS4/WDXS6UqiOK5MHiDK8ufojXPvE0K+u7XLx6l/M3NrNsRa/ocuuRM9x49Cz7S7MD/YpeHDNjF8ZGXLTjkIrlcKFU5ZX97SzDEEBWYtA+aNAf3TSEZLiHLUWipOmkz83C5CBaQXJv+hxC9dM76LZ7enb+857pPbx4cDKFSIC+2DCk4q0ls0Cv+pOvtR+pg2vgEDl94e1eko34Y9cPJyMrbdQTu4aMNl3ElQWwFCKyELdns+vD0j1CMuMj9krotgO15Gdp/+HsGOKx3Dblo20X4dloz8pKR0XqePr0DtpWsNg1ZLYcIt5cRlybQz+/CRgX06gvt1MkESjajhGRZZTPlY4Jfd+oQilCHBTRxRCkRrQK0CoQrgNiBrHaNj15O0aV12stQ5LeWTRk5rH60fd/HA4Kpid1rgsXGujFLnyjZIg4JpblRE6hyb0SCHh3Hv3RRF29UzNxKR3XPCeTEAnYT9x758Z8Tn0lpmJzEdF1UIvd6YmyBtarxpRIYMjsjGc2D/aSUu+9Ijw23eEeaqQGWqUI9/ur4Ibwwns7pJMiJ4g5cuTIkSPHBwRl205KTKF6iIIIcKFc5bWDHQRigCDaSVZbpBUly+Jj8ytseB12A4+lwvioCy0lm+eW2Ty3zMs/EnH21haXrt5l9c4OT7x5gyfevEGzVubmY2e5+cgZbpZs6kHAI9UZE6JOkteXEJl6EPDCwjIzjosrJaFS42MwLA2HGUO6MXQwKmIpomzbbHhdhJ9cb3/Z42xg/ndMNMIARyZh8P0oxsb05V6w1kK/s5BlNU4TkwFk/Zd2ZBPZfdl8no2W6lCzFcAQ2suJqrvYNST39gziB0tw10RIjPRCzvimXLRRzAiiqB9iIlSK0Z+8i3h9GdZr0HGhlCitaYnpjA8zfZ/J2Sb6B4uw3zPQkYlzb8YRW272Wm7OGTK40kH8YAmxXjNEBdCXDwxR8y1Eq4DTqRBeqWRRH1oqYxa0aMak3cgQ3lCMOuZOAy+5prlETa2E6A9tm3u2UTVZmYeZAk1ARqbRpmfV24VinKmCbJfBtwbjUlK0HMTLZxCByaccu/mQquwdx6jFmN5MPS1B3OvLv1xtw0bVlAhvlY1Ku1s2ZkVHIR3agyhF1cCdmtkgGTd3x0Fh4ly0QH9kC2djFj3bPvp9DylygpgjR44cOXJ8QFCxHOJklVmyDyeIy8USc06BrooyB1MwBFFiQr/nnSJFy+bF+RV+d/PmVEYgsWNz69Gz3Hr0LIWuz/nrG1y6epfF7TrPvnKFZ1+5ws5chfaTl3Fn1pB9hjmusOjGEY60eLw6R0FauNIi1DGFQ5ngBKQqWUIQZ2wXt2yZBTOMXzQfgkDFHIQBS26xR2ZDH0tIzpXGLKnudTFraVN6d20O/dTuiEPoRLgpQXR4vDJrDIgiYco1y8HxxyXJFsoiSu7dEEHUMx4C41qqzzWNsrtfMoT0kEV2WmpKx8nIWFYKWxoycEnGIfZLWWmxEAKFQghtFvYt17hxnm0hbs5BvWCUnQ2jYgmE6Ss80zTHLMRQ7OJWFeHaHqruGqJUCwaJ9GLXEMz9klEkj4tEvdWFvk2Jsy0zTt826mva51kJRlVnBeLlM8bc5pmdvnLc5F4tdY3qeVCAQifrK8zKTy80RgxoxI05Q95WWuaY45A+I81Cz+xoswJP7U6lZov1hHCfaZnrPZ/c9wtN9IUmfPXCZDdbyBRIcWUBqgH6hcNdbU8FjQLyzWW0G6E/d8uM6/osol405HbcOOtFRFqZ8PoyAP5yE1i8z4O9P8gJYo4cOXLkyPEBgWtZWcTFYuHw3kdLSB6vznKr0xrIZ7OlRApTillOylSXC2VcYRFrRaTgrtemYFmsuKXM/XQc/FKBd5+5xLvPXKLSaHPx2jprV++wVG+z9K034FtvEK8u8fG1GW5dXkPPz7If+Dw9M5+VntZsp5eFeOwbkhrVmDEKIYzS59umP3GKBa7SmrteO1N3bCHxVJwphpa4z/lwFxroC1Mqhwm0G5s1dGD1lNdUpRk2i5kWNd/0BGoxvhcyJYG7ZUMOGwVEJNGLE5SpFImZj2g7aAVoAR3H9G6OU+rmPUN+9k2/qCUEcQyVuwuwjHHjrPqGTNixGcfVeRP+/tgeuhSasslxrrKuguXx/aJ6wRBEsV8yrrTHhDjk/uuVNmKvhHh1FRFaJqQ+JVIp6kXEfslcu6XQT+2ZOdl2jNq53EbslBGNgiHdoYUuGqdYeWURriyint6GC33HTZ1xn96dXHJsabQTm37U9FoiC71TPnrDIhKwafI2GXbMTVE+xM0WYL2KfGPF/Nu3TT9uql5qEN9fQldDuHhwasRRJOXFIrDh+hzaUsh3DNHTe8Wxc0RsV3r/Dmy00Pgrx3tuHybkBDFHjhw5cuT4gKAgLQKlWCgWp3JOfbw2x3JxsGzUFgIryR+s2KZcz5YCKQ1ZirRi3i2w6Ja41WlyttRbGGmtudZuslQoMuO4A8dtz1R447nH+N0n1/hz7hznrq1jv/ku1uYOn9rc4VOvXmVvcYY3zi2y/MJ89r4Zxx3rcjoVhpxMAaOkxdI4cE6BUCkK0uL5uWVmnQLf2d8kSAii7ut96++TfM+RXLcIrF7WfOpCWTyeappBAjXflJBWg1HSV4zRS23ETgV9p5bdc71wxGdXTj6HtoP45nmIpSGh5fHxD3q+i2AesV9EX2wgEdi7FRaunoeryYuqiUo665sSxvWaIYsXDk5WHgo9xbTlHv66SfAPIejLbXhrKSNhol7sKW0JxG659++bc+gFD2Y9Q9aqfm98zUJP9TvTQnccY64TS8Tbi+Z9lTBxmHXQxehoJb0QZXExesGYFImd0mikyTC2ekY/E2NeKiHsYZTQMQQxJWt6pY3YqiBuzaDnErfWhou4O2N6OHdKpi91mh7do7BjvhM12mwu9I9nt4weJogaU8oL6HKA6LjEi22zyfE+xX3e9sqRI0eOHDlyPCi4UmILyYVydSqyUrEdzpaqAz+zhVEQIw0lq+cAKpFJnAA40uLJ2hyKwcVYOw6ZcV2aY3INAZpRwJxTYP7sWYLPf4LO//0v0f6Fv8g7zz/Bfq3Ewm6Dz792jaf/l/+T8r/5jzjf/C4r7WDAhOQ4yBZo/QQxXagXplPSQq2wheTZ2UUuVmosuiW82Bw3LbktWBa+OtlicNvvsuWdoGTxMIwjxveqIEJPJZwQtZE6UYpr8z1FZfEoghiZvsD9EiIxrDE/n5APOGuUTPZLoE0OYlYynI4jybLUiemKtmNDHk5KDpPxaKFNnp+m9//T4rD7X4yNW2otJXljSGhCWtSTuwCId+eh7WRjoxqY8TUKiL2E4Cx00c9tob94A/3oPkJJxPeXzHsaScnoNLEpfWPW55rZ+4+CWDc5kvrM5JiXbCOgPaYkXgP1IhqNfmbbkPzNau/zbieGRGhjeLPZ26wiFsf7fFL4FqJhTIz0o/tm7ix2UB9JjH52S6ZceLdo8hyTsYuug57x0E/uou2Y8ML725U1VxBz5MiRI0eODwhcaVFzHFaLlaNfPAGGDJpuo7T01BISKUChUVpTFJLlQomCtPDiiGJSblkPQy6Wq9zsNAdMZ1K0oojn55d6ZalCoJYX2fyRj/Jfnlzl6a5i6d3bvHC3jr2+hbW+xYvAxdkyW5fPcvfSGlFl6Rg3ZJySdrz+w0gpyradEe55t8DbLXO0UCtsKajZDu0oHDWqmQJ+nPTPnSbGEMSUeOl7IIh6tWUcKSflOs4E6NUWYrNqygGd2Kh5h8HSUIwQ3iBBmKQgYmnjmHpQRN+YRVysZ+pWhvSc55roUBpSc6+B9BKoBIhWAX1jFvnOIurxPXikPvi6WCBeOmNcbJ/c6/3cM2WHE6NFPpyoYn940RCf/riQxEhHl0wppd6oIBpFuD5nfl8JM4VXNIro7bIhU/29n5fr6Ds1RL2EDmTPYXZmjHPpMPqflYWuMexpu4N9g7EpJ2WtZcYSStgrmp7Lw1Tk5HMWHWeUz3mW6ZGs+aYE9lwTcWMOfbsGj9URKak804L1GuJODX22ZZTFb59FP1qHpQ7ipTOmh/esmbfinXlTCu3Epvey37l4N6moWOrCY/UB11p9zTeut988b0p4hUZ/eAuREtXlDix30V+8gYojeP8KiLmCmCNHjhw5cnxQULRsZp3CRLfRaSCEwLUsbCEHnEMdYfobFRpXWpRth5VimVaiFkZKIYBnZxepWA7teEyvFZold3RsVcdFCMHWbIXvPP8YjV/8n2n/zf8r/mc+hr8wy/JBh2dfvcKf/M9f48d+7Xd47lvfZ2lzz8iZhyElSuHJFcRIKyp9jrBVx0EkS9lIKRxhcbZYzVTF48KQw1MuTb1fCuK8j/7iDViYTCr0h7bRj+wbEnG+Md2lVXrkTT2+a4jlIcqjfnQfLU1fmLg5hxUOEfOUIBZi06t3r+QwRdJ3KRJiJq7P9VSkFNtlQ942+pT5WJjy0WJ09P2oBSYnsN2nImakpWPiTx5PlNodsxGUkenE8VUgjEtrf7mlpEfU6kVEqgBOoSCmxjqmL9SYDgktBpROcXUe+cYK4lpSHt52zDbTrHf4Nadj7/RtEDRcxKsrvUiVVAk+3zBq4e0ZQ6BTYna+gS6FiHrJnPfavFFL16vmf5GFuDpvFMVAIq7PI5qFUdWRvpLWpTGq/pK5fyK00DVzD8SVBUiMeJi0cfI+RK4g5siRI0eOHB8QVG2HH1s+NxBbcRI4QmJJQaHPvMaRkjCKUVrjJFmJF8s1bnVMydlBGLBaLHGmWOFCuco7zfrAOEJlSjXn3NHStIpto4FQx5QtG8eyUKtLBKtLeJ97kd/7/ms8fmeXR27vsLhd58k3rvPkG9fxii53L6xw5+IqW2cXUcNRGGOJUuomOaWCqBVVp3cdFctBa9NvGWlFzS6wUCiOlNtOD8HJauEOgaNM2WZgmUN37ey6pyXGJ4atDYF5/BglduUQdhM165EDQ24OIxVLXfQLG4jvnEXslpixzWepL9XRbpzlKZ42dDUwTq1pr2Ak4cZsRtig59opfBsdCdN7l977ach5NTDqVtPtEdJ6GmSfELzFLuqJXcSVBUPUkn5aXfPNbHIj0285PP55z/Ts7Rd7JaIzU/Tipn2rldAQ1BnflBA3kn7HYgQbCdG6NQOX671ezcoR5LwYGWU1JYgNF/GdMz23XPpyNMuRUQR3KuitSq8stRKgzzYR7y4g3lo00SFgciejxKCq66D3Sr3e2MTAR3T7lEsF7JbMeMaonnqljbg+ZyI7XtiA75wxpDQd42llqD4EyAlijhw5cuTI8QFCzTmhiUYfitJETwwTxLTE1BHm56vFMraQBCqmHUd8vLaKFIIL5Ro/aO7TjsIsQqMTh9Rsl5o9Or6K5WALSSeKWKoMKoxFy2bx7Bm+Vilw/fknWUAx9+Ytzt3YYHljj0ffuc2j79wmtC02zi+zfn6F9fPLBEV3fKnlYWYhYxBpTbVvzFXbxbUsQq2ItKbiOMw6LhJBrNUJXE3vg4IoMNceWHC7hnxrufe7e1EQ7xP0TEJsUtOTaW5HWj7p2ViueYM+37i/i/S+clk91zUE6easIUS2Nm65fWYyHBRNz186D6e497qWkNCm2yMuKRHqV0IvH6AXu8bVMyV5K2303Rr60sF4U5hEiWO91nN7PSoTEzICSm2wB1W8O4/4wRJ6sZOVCIvQQm9Us/LPI82gJMbJtO2id0uI15eN8U5C4My4eyqnvtBA7FQQN2ah6xh109GmnPjmrFEFIXNeFb6due+K2zNgqd5x3lkcUi4L5tyTnHdnfdRnbpn4FZkcIyWIaWzKBwQ5QcyRI0eOHDlyDMCxLGwphkpMZa/E1DIkaMEt8mhlhjcae1Rth3OJ4c3Fco1PLazx7f0tGmHIvOvSiSKeqtXGmueUbQdXWuwFXWbsUYXxYrnG6we7KK3xayWuPnOJd5++iOOHnLm9xbkbm6zd2ebC9Q0uXN9AA7src4YsRhUanYUeD0tLLadUEAUMEOWSZVG2bPw4JlKKquWw4BZZLpaoBwEFy+IgDDhXmq4PNIltH9uzOQ2U1sRa4wzHjbixsenfKQ/+fJKb5HuJMy1UMTIRFtMiiV8YCFk/Zq7lsdFPEM81EaXIZCNuVE0sxWYliwExhKRmSE5KdKZRb6sJGWoUTUyEbdQ1LfRoLmQtGIwbcRX6k3cnH7sUod0oy+vTl0ZVxrGY81Efu9srR00JYqLypQ6req2J2Kghbs30SPFRCiIJ0XprCfHymimPPdNEP7kLf3wu61HNsNg1TqGNRFWt9JUTf/o2vL0IXRt94QDx+qr53bkmerMCW2Uzb4SGs030lYUBgnhoeWmK/utZaZue3kDC2pQZpe8T5AQxR44cOXLkyDGAgpQ4wqiIKVyZEETNABl5emaBK60DLlVmspJSIQQfnltivlDkauuAd5p1fBWzUiyPnAuMMc6c47LptQfKOVOsFsssuEXqoU+NXr5jWHC4+dg5bj52DiuKWV7f5eytLc7c3mJpq87SVp2P8DZtq8r6Hy2xfnmJ7daaIWWTTFDG3o8+BVII5pwCG16bGDIDmydr83xl6w6dODJq2DEInyUkcZJfeVxs+106cczlcnXwfOkCvdkj3Hr1wfdI7foeVdsZ2GwYgeDQvsaJKEaIZgHdddCWOp2Ig8NQiA0pDWVCVEKTjXh7xhDGxLWTM024OwPbg5sEUxkEVUK0VKas9A8uo5/bNLl6leDenUMEhoRvVs3xDnEXHcFi3+fjKvP+jgMXD4xxDNqY8jQL5jOxpyeInG+gt8qIvbJxD316x5Qqf/q2GfNAzkRCKH+wNHr8QmyC7AHiHlHXy22Y7yK/t2p+Ptc1pjfFyJSYpmY76WbKUc67KSToj981Bj3TKLHvI+QEMUeOHDly5MgxgIK0KFn2AOGwpYXCKFau6C32V4plPjq3xPlybeQ450rV7H/frW+zUCiOvCbFQqGI27bGOoFaQvLRuWW+vHWLWI1fiMW2xcaFFTYurIDWzO41OXt7izNv77PQ3uHxKy0ev3KdSLzCVvE8d69V2Ti3RLNUwBJiIpnTMEJulgslrrebCNH73blSlaJlUbEdmqGJ5nCOIHxKa5PjJ4QhiIe+ejxCpVh0C9RDn3m37/4mwefCt83i/cevg3zw6mErCvF1zFkrMVTRGg2nkxlZjAwh0cL03d1vCAwBiaRRK90YXfUNIVqvGmfVUmj64e7OmP7AgfFOoXBK0M9uw60ZU774bmL6MmVu51HQay3YqqCf2L2nymb9sXWIpSG0TmzmViE2RjptNysTnYq0i8TF9eqccZxNVe5JavcZo/4dmmdqafO6g6IhxZZGHxwgbs6iVxKFsBxC1zE9um3HfI6l8FibR5QevpLt00BOEHPkyJEjR44cA3ClNWJ0U0gURCHoxVQkeHFh9dDjPVqd5WypksVhjMOsU6Bo2ROjIi5XapwvV9nsdpjlCBMeIThYnOFgcYY352YpvVliZfYNzrZvsnpnl7Pd65z9unnp9kyJ9bNL1C+ssr26gLJ7ZDBOCFy/ggiGFCMM0Ul/V7UdPjq3zFKhyB9s3SFQ8WjZ5xBirZFCZAriJHTjCEfIkfue4kypwluNfeacPtXS7SMjxej+q2tjoLXGliJRns21bvtdPBVzccyGwrHRr8i597m8NEW/uiRAXzxAfH8F8UbS57nWGlC1tB0bdXS7PD3JW2sbQ5mvXDKxCjCdEjcNVjroL12797bXYkyW4/BIr1RVL3UQN+bMfxxnzIUY/czudK91NFxooK/PHlqWrJ/dGfzvJ3eNip6WyqYlu5sVYz6DNnEYp9wS/H5EThBz5MiRI0eOHAMoWNaI26gjrYwgWidQfw4jh2CMaqq2M5EgWkLy4sIqf1i/y0HgMzPG7AZM9AT0kdhqgG8tcrP6NDeeOoetVlmsXmHNeoel21ssN7osN27BW7eILMn22gKbZ5fYOLfMTrWII+WIgrhUKFGxHFpROEAen5szZW8V26YbHa0sGFMbgSWMwc0krHc7VGyb1aREdy/wCJVizingWhYfmV1i1/e43W2zWizhSgvtxr117nukckRaYwlJ2bJphAGzjouv1InmzzjoYtS7xjH9h4GKsyzP+4azLfRWtde/dqZlSjATkxRmffSHt4xKdRwDnUKMrgS9jL1TUhCB+0uA5jy0rYzD62mOeQj68T24eHC8vlPBoOFN2cwfcXUegTC5lsuH9B/+ECEniDly5MiRI0eOATxWnUMPKVpmUW9WlvaxnTqPRtU5nCCC6UX80rmL/Mbbb1MQ1ti+tk3fKDyZSUxqLNJyoeOghMXm6jLXLglazz/Cs8omunKdp7ebrK7vcubODmfu7MC336JVKXJrbYGK56Iun4eiIc2OlCbKo3Uwoi4C1GyXRnj04lglBKpo2XSintoSKZURXC+OqDoOoTIL4btem6rlEqKohz6zboE5t8D/tHaRl/e3eLO5z4VSdVBRO07J3Cki1gpbCh6rzvGd/U2kEFRth04cndiUZwADCuIg+erGETc7LS6Vq0duTtwTBOhnt4yhSjnsqWaVEOoWes6UN54oi3Gh28tDPC0F8X5DAgsd2Kqi7+eYBfduSpQ8FwJhymEv1e95WB8U5AQxR44cOXLkyDEASwgYWrwbUmhI46n0jw1hwS3yueWzR5ZlPjm3wHKhRDsMJxifaAa4rZsYi7TdTI2hHOKpiKVCkdnaPH+gA/Y/UkEoxeJ2ndU7O6zd2WF+94Bn3r0L795FC0F8bpX40jniy+c5P1tiw+6MHcOs43K9fbRphTGmkVQsm2boE6iYTa9LqGMul2eQQtCOIiq2w35gXFPR8OOr53n9YJfv7G3xZM30qJVth2dmFnm7WTfKZB9B1MPulw8IUXJ9z8zMs+61udo64Pm5Za61Dwi1GuhlPRH6CKIeKjHdDXyWCyVCpSjeZxERV6E/e2tQmZvxoF4cm6c3LfRCF3ErCYt/vxBEQD+2b0jxe2CKdCz0bZzoiwf3bgL0AUJOEHPkyJEjR44cR8KSPSOX+6EggulDnAYly+Yg8Ed+bvr4xCC3FUA1QOyX0DtJxmI5ItaakuVQtmwQSdiElOysLrCzusAbH3uS1sEBz+52eGGvg3XtFvbtDezbG/BH3+HDtsW5tUVKjzdRl8+jVpcgIbdluy98O8F+4OOrmLU+J9dYa0q2RdGyiLVm2/d4rDrLzU4z60/sxjGPVGdohgH10GfGcVlwizxeneNau8FSoZcbOe8WmHUKtKKQ2QEF8cGVmPYrg5FSlGybsu3wxZXz1GyHD80ucLvbIlLq3ss/+xXEPjXJj2MsIShZFl78gK596JHQj+0bQ5jZeyiznPfQUr1nPaQnRjU0pjMPO0rGMRZpchRz9JATxBw5cuTIkSPHkbCEQGsjLJ4kjuE0UbbtsaYufhxRsmy6w6Rgxof9EqLTUxDjWFNM3VoxRip3u22WC6VMFWwVbPafuoy3dAa0Rm7vYV2/jX3jDtbNuyzc3oLbW8Afo4sFootniS+fZ25lFvp6CmOtaMchYqj5S6EpSJtS3/Vcrsxwp9tCaZONiNBcKs9wt9vmTrfNjyzOIYXgTKnMxXKNhT7nUikEF8s1XjvYGSSID0hB7EQRt7pNnqzOIRJn1rRkuGI7/NjKeTMcyyJQp2AqU4izKIP+ktrd0OOxyiwCuN5u3Pt5TgJb3xs5BHAU+sV1sD9YEQoPDSToj22ApR7OfND3EDlBzJEjR44cOXIcCVtIhDDlm9YRZaD3G2XLIRpj6uKpmIJl040HCZG+dAB3a8Y0BMBRxJHKXFNdKWlFIaFWdOJe6WqsoZr2rwmBWllErSwSfvKjoBRyfQv7+h2sG3ewbm/gvH0N5+1rPAmcLbnsnllia22Bt+ZLLM7PsjvUlxhrTcGyKEqbUCkKlsW8W8hcTX0VU5AWi4UiK4Uym14ny5K0hORLqxdG7sFaqcyrdT0Y+/CACGLq3JqWj0ZaUbFGHWdrtsuGdwrB4gITPu85GUFMy3CfmpnnTrdNdIg77PsCc6NKeY5TxCEuqD/MyAlijhw5cuTIkeNIWEKgeTgUxKJlj5RwAnhxzHKhTD3wB01QCjH62W3EK2vo+W7fcayMJO76HnNugSDuV7Y0BXvCUklK1Lk1gnNr8NkXIYyw7mxg3bgD125R3timevUul67e5ROAXy5yfbFK+9wK26sLNOaqhiBKC0dKfBUz5xaYcQpIYdTFSGnKtkPRslkulpjpuCy6pfHjSbCUKKC+iCi5kSmfcx4MSYq1pmw5eLFxD420omyPIYiOw63OKalilRDt2Vm56W7gca5UZbVQZj/wUWNnSo4cOQ5DThBz5MiRI0eOHEfCEiYH0ZHWfTGpOQ5cKSEJIY+1zmITlDYh9ne6rdGg+uUO6pN3jOKUwEl6KWccl5udFhecKnejQWVrnEvpWDg28eXzxJfPE3z+4/ynd7/P7N0dPtYMObd9gLu5y1O3PLhlstn8gsOtpRm4eA596SyWJlEPTe5iqBSxVlSkIVjzboEzxQq1MYSrHyXLpmw5BEpRfHH9gWa6RVpRtmz8pHxUY0j4MCq2y2mlFuqnd6Dr0HV8djselhA8PTOPSO7jcFlvjhw5jkZOEHPkyJEjR44cR8ISAinMcvt+mdRMC1daCGHC199p1rlUqVGUFkLAYqGY5Qru+z4WgsVC0qc3O1iul0ZJzDkFypZtyiF1j1BojkEQh8ZnFYuET1xmdu0igbS40zjglddf4+n9Lssbeyzs1Hn8zi7c2YVvvMb/27Zon1nCfWyXM0W4OVMgtmRGsNaKFZZXS1NFQ8y7Lne67ZNFK9wDlDaKZ9PrxQeMM6IxfZ+nhHIE5YgDL+BydYZnagucSSJOxrvc5siR4yjkBDFHjhw5cuTIcSRsIZGILNj9vUS68A9UbMopE9dKW0jm3WLWwxcqRTCxB01kkRo1x2XGcTlXrvJOsw6Q5UCe1GnzI3NLrBTK2ftlocCNtXniRy4QKYWIIuTdLT7b1czf3cW5u8nCrU24tcmfBGIp2J6v0j2zjP1ESHxuDatWmercc26Ra+2jXRm9OMKREuuUCH+MTsqPe/fcHdOvWpTWwGtO5dxasVascK5c7TuPWeb2lxsrrdkNPJbc4r3nMObI8QFFThBz5MiRI0eOHEciUxCFODVCcVIYYifwVUzFdgi1IlAKV0rKlk3BsoiVQqOxpCRUaiRfUWudlZhWbYczxQqLCWlQWmcZhSdVodJ8whSWEMjELXUn6OIrhb06z87KeZRb5MvrN/iSKrC0scf+1WvMbu6xttuE3Sa8fhUANVszWYzn1ojPr6FWFrNojX7UbBd9BAGLlGLD61KyLFb7ojfuBQLjVqox91ejxxJsc0/FYJ/oPUJrMVLOWrAsLCEGyo27cYSnYjb97kDkSI4cOXrICWKOHDly5MiR40hYqYKIeM9NagrSwhaCbhxRcwocBD62UFRtFykEJWmxH0UIBDXboRWFzLu9jEWVZAym5OVcqcpqsUystXHhVAqFxpaSwik5tqYEOyWfjjDnsYUpI50pFikunyN45BLfe3KNtw52qTa7fN6TXNxrYd3ZQG7v4Rw0cb5/BQDt2MRnVwxhPLuKOruCrpQp2/aRvXfbvsdaqcyOd/Ig91EI5t0ijpAESiUlpqP3r2TZ2EPE7Z7PLDQlObisLUgLW0oirXCSoEKlNTO2i69iNrw2Fcuh5rinMoYcOT4oyAlijhw5cuTIkeNI2NIE0DtSvuelea6UWFLSDH3jWoomVDGzyUK/aNl4qo0jLc6WKrzZ2GOeHkFMjW1SVVEKgSssdOIqGuoYrcEVEudew9wTWEKYvMVE2as5Lru+hyMlRcvmS6sXs9cWpEUMHNTK7D9yhtWZBfMLz8e6u2XcUm9vYN3dxL5xF/vG3ey9arbGxdVFXiwJwrUlDpbmiJzB5V6gYjSaD80s8PVgfazCehJoNLOOS9GyacehUWDH3L+iZeFIK4vFuOfzap0Y4gxepyMlRWmZ6ItkGHHSJ/mZpTNcazdY77a51W3xSClfEufIkSJ/GnLkyJEjR44cR8JKSkvf6/5DAEdamUqVEoxA6UwJKlo2XhxTsRwulGt8v7E3UM4Ya4UlxQg5EUJQcxzqgY8AanaB04IUAinAtDYKKrZDI/Qzo5zh69MAmkGCWiwQP3qB+NEk/1Ap5M5+Rhbl+hZyZ5/yQZPPA7x6DQ005qrsLc2ytzTL/tIcb5csLtdmeKI6x5uNPVpRwLxbPJXrLEiLlUKJN5t7zDqFsSWmlpAsFopsex0qR7iyToM0d7E0phy4bNvUg545kUrKXi+Ua1wo1/DjmD/avcte4FO7z8viRhhwEPpcKNdO9bihUkRaUbLeX8v6Hb/LrFM4lU2CHKeL99dMypEjR44cOXK8J7CERIiTm7acNkyZomTOKXCTJkJAJcksLFk2XhxRtV3mnQJ2YlqTlsZGWmMhsx7EfszaBba9LlIIKs69k5cU5v6lCqI2pY22O7Zc1xESgTFUPbScV0rUyiJqZZHwY8+an/kB1sY2b771JvM7dVZ3m8zWW8zWWzxy5Q4AX5CCYHkB+/wNPjlT5JuORqy56GMu1NtRaEp6LRulNSIx/vnY/Ap7SQbhOAIMcLZY4dYURjrTIFVAhxVEgKrlsqN6ZbSx1gN9pQXLYsZx2fLvf2B6IwqwE+X0tJ6jbb+bEETNxT6DnocdrSigFUXmGXZPbyMmx+kgJ4g5cuTIkSNHjqngCPnQ7PaXLRtXWiy4RSSmny1VUIqWyWqccVwKlulDC7XC7utDK1jW2FLZWbdAqBWWFlROUZHpN6kBwVqpjICxqo8lBVr3SnqPhYJLfOkcd0uab7YbrBTLFLo+CzsHLOzUmdmus7RzQHlzFzZ3eRJ4Eoil5GChxv7CDPXFGfYXZjiYr6HsyURmP/ARwvRw9sp2Laq2wxdWzrPjdya+d8EtnlpGY6AUFdsZm89ZdYyJUQqlNe7QxkDJsom1vq+ZkbHWCEzmZisKWXDvnSBqrfHjmBfmV3ilvgWkKmXA2VLloVD7x0FrzX7gs1ws4cfR0W/I8cCRE8QcOXLkyJEjx1RwpfVQKYiulCwUijhSolSckS1HmOiGmuPiSAtXDPehKarWeHWwbNloDbEwvWqnBZnEg+hEQSxJmx9dOTf2tbaQCKHRwyWmx8CcU+DdJKrDLxVYv7DC+oUV7nTbPDezyCetEtbdLfw7/3/27jtOrrre//jr1Knbd7OpEFoCJJHQSQigCFcEVFT0JwoIoheVptd7RVFpCgpWmgooXEGvcEXFgmAFUUD0qggoNdT0bC9TT/n9cWYnO9meZFv2/Xw89iE7c+ac78x8s85nPt/v57OerlfXMLsjUwoiO8vnCAyD7poU7Q01dNRXlf/Xc6PXxSg/n+g1tc0tRWkaYvEt/ScHUefGiZlRi5Lt7VdYDHyqncFbgERzYkug5IfhwGqnpsV4f+3R4xWocWLslarhL+0bd8g586U2L3MSSR7riAKvrO9R58ZYl+1lXiI1aNA82bq9ItVOjJRlk/V2bK9OPwxYl8swy02oD+Z2UIAoIiIio9I/AJhsSdvBNS1qnBgx0yYIt2TjouWGFsnSktO0bdNZ3LIPzQ/Dco+8rTXHk8Qti65iYdACK9vDNk38IAAMLHPoD+6OYRKEUVC5rRVj08Msj22IJwjTNXh1NXTvtQs/XtPA7FiCdG+O2rYu6lq7yv/btzyV1Vse312VpKO+mjVVMTbXpLCbDXoSzpDLdgeTtG3q3DhdxfyAD/IdhTyWYYy6umgxDKge4ti4ZdG/FWYwSOuN8p7PcdTjeSyva2R2IkXYtqWS7vbI+T5VjkuV7ZZ7f3phwNxSRjfjF0nbO75CaxCGBOHQy4dH0u0VWV7XSM7z2ZgbOsu8LeNal+0lZbtkfG9cAsRC4FMI/HF5XacSBYgiIiIyKq5h4RhT41v5uGVR58awDIO0Y+OFQXkPWlS90i63PUjbDi35yn1oW2eR+qRsh11T1TzR0bLDA0THMCmGPhD1WByKbZpRD8ftqKKathzCcGDYs3VvQseMCg/5QKYqSaYqybpdZ5fvj2Xy1LX1BYyd1LZ1UdWdoao7w4J+5y3aFh21aeLz1kf7Ipvq8ZsaIDl0FnFuIjVogNDjR1ml0QaIYQipITLCcdMGY8vrYMCAwMY1zXFdXhqUekLOjadpiMWpdlx6vSJVjrtdgWIu8FjgVm15D8OQMDSocVxaLYcer7CDn0lkcz7q47ktex77+mM2x1KsD3pLS653jM5igcZYAse06OxXmGhH6ijk6S3tb96ZKUAUERGRUXFNc8pkEGscl3mJ6ANqte3iBWF5z5VrWsQti0Qpg5hyHLx+H0RHqvi4W6qaVzLduNaOfa622bck0xh2f5htmOUlqduaQUzaTtQDMAgqAqKtexM6pollGvj9egX2l0/G2JBsYsP8pi2PyRep6egm3NhCY2cvc7tzVLd109TSCf2WqAIE6RRBUz3BrChgDGY1EDTUgm1T68Rgq9xdWCp2M5awwTCMIQP+uGVF7UX6BWJbZzljlkXpbRkXfZm8xlgCyzCZm0jxfE8HSdvhue4OdklWlbPdo9FeyBG3bLwgpKG0xLovg2gY0RcAKduisxgMeOyOKJDjhcE2L8nNBT5xy6YxFqetkMMvvdGdxTxVpT6m28oPA6qdBKZh0l7YcUWHMp5HRzHP3EQKL9zy5U4YhgQwZfd6bg8FiCIiIjIqbqnx+FQwN5Fmbr8A0e8XUTimScKySZQ+CCctp9x/ECAMjWE/JM+OJ2mOJYfMSm0r2zDxSsVKhs0glgrabE8GMWVHRXzygV9+z4LStfs/d9swMYmCi9EqxhxamutZWx0FeHPjKVryWRYFNisDF2tTK+bmNszNrZitHdg9vfDiq+XHh4ZBWFPFHvXVFFwIG+voqknTXZumt9R+pBAMDG4GE2VJh94vGjOt0usetcKAgRnELQFWgDkOUWJ30WPv6rpywaHZ8RRPd7fT6xWpdlzygUc8tHg50838RHrEwkS9vkePV8QoFWKyDLNUqTcoP5+k7eCFla9hIfB5qbeb2fHkkEtyR82gonXMaHUXC8xLVhG37FJP1ZAwDNmYy+LHwqh40TYKwrC8/3hHZiZ7/SLZUjGdgLA8Qzbns2R8n12T6UnvDbujKUAUERGRUZmXTO/wZZc7wtxkmobAL/+eth32rKotBw0x06r42D9Suw7HtDimecEO/9DnlJq2j7S30C4tGXTNbe87aRkm1Y5LdzFPiuh18MIAy6jMApul64wlQNz6Ol4YRhna2ir8hjn4ey3ccoDnYbZ2YG5qxdrcirmpDbO1HbOji3RHFwcDsKZ8eE8yRmd1ik1VcYLGOrpq03TVpCnEBw9osr5PzLKpGSLgiZUCkWIQ4Jb2Gm4dnLumFWVRiyHmMHtDhxOEIR3F/KABjk/A3MSWIjp1pcq7XV6BBjdBVzFPPvDxw5B84I8YIBqlPpr5wKfa7uv9aZHxilBqNZKyKrPmAF4Q0BhL0FHMk7JtrFHuFx1sBI5hlPtPjkUhCJhfWppqGyZhqQJxteOS8TzqtyNuDQDXsrAYPEBsL+1tTVr2mL7o8oKAmGXhhwEGUXXhIAzLe1+7S4V2/DDYYf1EJ5sCRBERERmVHd3ge0dpjCUqfrcMk32q68u/x7YqVBKG4cgfwschI+CU9om5pok1zPX7lphu71LAejc+YO+lZRoDspIx096m/WphGGJbUebKDynv+axg2wTNjQTNjVQ0NCgUKW5q4e/PPU1zd566rl6qO3tIdWdIZ/LM2wA8t658eD7m0FWbprs6RU91iu7qJD3VKdpjBk3JqiFfK8swSFhR78HykLYKAt1yltEfdJntaGR9j425DNW2WxF8ZH2PmGkxK54s31bruqRsh7ZCjqRl01bIUShV4fXD4TOnfXv4dklW0VLIlr8EiZsW3WGBMIyWmLqWNSAX6pXm3q7Jatbnepndb0yFwGdzPkeN44xif12IY9rloHu08n4U/PZd1zIMDKLAyjIMAsMo/fe2vQdB6d+1M0hGPO/75AKfKtthYz7LvMTgVW8H09c70wuibHXfcl6AOjfGiz2dpGyHuGWzNtvL3H6v63SlAFFERER2ajEz6nkYhiG9vkfCtmmehA9xthktdYwb1ggZxGh5aXw7A8Rax61YZuiHwaC9LGOWSVdxbBnEaHkhWJSWzRpR9mbUXAd73mxeDLp5xaAclKzv7uYwI0b7+vXM6c5R15WhqrOXqs4emja207SxvXIcQL4qid1QT1BfQ1BXQ1BfS1BfQ1hTBZZF2nbZmOsFouzb1hlEyzCI2xbduW3vyeeXAjM/DCs+XGd9jwY3XrHn1TJM5iRSFAKfOYkUa7I9FIKAZF8/xhGuYxsmS2oaCNmyrzJuWRTDKDvtGOagmX4/DEg7MfaprufVTDdhGNJSCk4NDOYmUrya6SZlOSN8QRJlnYujXAbcp72YY9dkDTVODOjr8RmWemiapFyH7mKRWjc2pvP2CcKokFaUda8cf8Yv0uDG2a+2kV9vfHXwEwzBMCj1UvUJobxnFwwWJKvww5BlNQ3UODF+tu4Fcv2+jJiuFCCKiIjITi1uRh8avTCks1hgWU3DsEVqxotjRsGUiTlslsQyoqWl21umP2U79P+g7AWD79WLmyNnrrYWfTw2StUzAyAsV5EdLcMwqLKdihYkgW0Qb27mJTdkvWmWngMYQUCyJ0tVV4Z0Zw9hWweNPXlqejJUd2cwujPw0pqK84emSVhbxRHpOGvjNn5tFbGYRSLeAE029GsFkrAc2sMsQ1mb7aEplhgyY+aH0TJELwyIseWYQuBTO8iyw7mJFH4Q0ODGCcOQQhBQ5bp0FYevvhkFU1FRnv6vd9yyKQQ+MTPqDzpYgOiFIUnLYXYiSdpxaS3k8MOQo2bNp9p2qXZcfrL2BTqKBSCkql82tLOYxwtC6t1YuRJuZgw9DIPSMuQ9q2rKt0V9QUsZOtNi91QN/9e+kVq2LUA0jKj1hmkYGEZloJ3xffaqSpGyHQzGun/SwDEscn4x+rdZ+lIEQqptlxPmLCyfK207O6QQ0GRTgCgiIiI7tVhpz1HO9zCAhanqSRmHY1jl5XQjVWt0TXOHBIj9PwxHrUAGnjNuWWPegxiWqoI6pknG8wihHMyNRZXjsrm0DDbaN2ZQ48RI2jZ5f0tGLzRNeqtT0c/sWvLBXHK+h2kYnDx7IdU9Ocz2Tsy2Doy26H+j3ztpauukrwbrgQB/+Gd0vVSSsLaasK6KpUmbpBli1NbQW5Ugm4xHqSOi4M8LQtoKOWbHB1+a6JWCnK1fRz8MqR1kf+RuqRp2SVaVi830LY8c6X3Yso+08n2MAsSApB0tIY7uNyoCIa+UpXRNiz1SNTzUso6D6pvZM11bPs+ymgYebl1PwrLpKOZpjCVoL+QoBAFeGJYzmPVujM35LK35HAHQFBt+711XsUCtE2NOv9fPNkwMoi8YovYyVTzWsZmc7435y4Y+lmGUvnyp/PcVElV8TdsOrmmSL1VTHUlfqxjXNGkvROOyTbM8V13TrAg0a904azLdChBFREREprKoL6LFhlyGRVV1NG21Z3GiRNk2RtUqJGZZg+/pG4OkZWMbZrmYiB+GJAf5UBwfJLAZSVBa3piyHFrzOVzLIr0tAaLtUgyia3cW89Q6Mapsl5Tl0FMs0OsVcczKgKirWGCvqlpsw2RjPkMqniBIJAma6gdeIF9g7Zo1PL/mZebkfOJdPezlWdid3Rid3Zi9GVi7gYXAwn4P802DTDpJbzpBVzrOrgmH9oRLrLaWbDpBLhkj7Pc++mFAwnIGzcQOlrWNAhmLhBWWg2zHtPBHaPDRtx9u6y8YouAywC4F7bFSgSMvDHH6At1+1V4XJNMsSFVV7NUF2KuqlhonxiuZLp7uipbz9nge+9c18VjH5lKAalDrxgmBTClIH0m3V2RFw+yK/Zl9S529Ul/SOjfOoqpanupqZ15iW+a+Ud6/2799Sl912lonRtyySdoOhSAgPooYzitlbGtdl5d6u6hyXFKl4DkkHLCft86JsdrvJD3NI6xpPnwRERGRkSVtm7TtcEBd06SVpO8ryuGMovJj3LRHLKQzEts0sUzKwZ8fhiQGCVYcyxpzD8Cor2C0pK7Xj/aNbcueyZTtYBghQRjS7RU5etbsqAqnHVXh3JzPkrAq94z6hMxPVjE7nixn4IYUcwnmNPG8kaXVcckFAfN2WRTtUwsCjO5erK5uWls3se7lNczOeqR6sqS6M1R19VLV1cvsQU4bGpBNxsmkEmRScTbGLILqNK1xG7u2hkwqQcGJsniDBeV94qZFzLTwzIBax+XVQd6I/r0svTAgPUj7FceMsnF9WTHXssp7XvsK7xhsCcqa40mOnjV/QNVNx7SYl0zTWczjhyHFIMAxTeYn0zzZ2Uo+8KMKubaLF/ikHYec7w+7ZDPre8Qta0Dmvi+Y6yvQA7C4qp5nuju2cZlmWN6D2V/G80jbDtWlvY8NbpxXervI+h6WYQwoctVf3/OvdxP4YUDSiorRFPIZbCMKxPtLOzu2Nc5kUYAoIiIiO72+5W3DfRgcb1a5OunIgV+V427zMrs+fT0O+0r+ByGDBnGOMfbuf0EIJiZpx8UPo71p2xJ4R0teDVoLOebEU+Ugosp2SoFFZeGWvqqgzfEkccse1WsUMy3Cfssjy61DTJOwpoqgrprswgYeqbbLvTUBrGIULJodXaQzeRYUobetjYZckWRPjkQmR7I3asi+yyDXLToWXckY6brVmNVVBOkkYTpFWJUiSKcIq5KQSlLlOBRDnxo36ivZX9b3eKm3m0VVNeXqmYnBAsTS84qXss6OYeL0643Y/7WAaP/ncC0Z4paNUQreXNOi3o3jmhZZ36OqtATYNk1mx1NsyPUOu2SzvZBn7+o60lsttY328xnkg6D82Ho3RsK0KIyxQipQbmFimUbFq5jxPRamasrve70T49lSoLt1r8itRcuybVK2jWNapO1ozuX9gGTptv5SlgPG2LLxU5ECRBEREdnpHVzfvB1933aMaO9hKWM3ggPqmjC2s2n71j0ODSMc9EN3X3aqu1igo1hgQTI94Jit9TUMj1tRi4g6d9sC74RlExJlqvavm1UeS8yKgoSmmEtHYUvhlqzv0RCLj6nIUN++sUIQDJnhiZlWec9hH9+x6aqroj3lUOPEqKlt5FcbXim3SDCCgERvFCTm2juYVwyhs4umnE+yN0uyJ0tDZwY6M0OOLTQM3pJw6Ym7xGprcA0fszpNNhEjm4yzyTFosg2KnofluHhBQGKQ+eOYUeGjpLUlAExY9laFZEb35QRQznoWgqC0b88iYVl0FvPMilskLJtq22XPdC29XpGMN/S+wSAM2SU5cN+vYxqYpoHnhRWBa8K2yXpjrygbVagdWKW2GIQVfTLTjkshCGiOx0csClQMAmqcGHEzWq6dsh1c0456UBrugCx/stRfclv7ik4VChBFRERkp7f1N/2TwTQMzFKT8ZHsqGC2strk4AFC35K8Hq9IOMIeuD59vSSjwMGmahuX1sUtm6TlsHu6ptxAHaKALWZaJG2bjmKufHsxCKixx1blMmXbJC2b9kKe+iGKqcQsa+vkXZlXWprbt8cyKBXoCU2TTFWSTFWStTUumWQVr2a6mVfKQrbns9Rj8cZUI0ZPL0Z3L2ZPL0Z3BqOnF7O7F6Onl1hPhngmD23dvGaI5xAChZhDd8zBrkoTr64mTCUIU0nCVIIa12JuTw81Tgo8D+wo69UXAPX1TxxtVi5u2RhAPvCY50TPp8aJ9uElLIeEZbN3dT1z4inWx3p5Ot8Gg1QfLZaWx9YMUqjHMkxMogI9/ceVtBy6i9vWl9MyzVLm3Ci/T4YRVnyhkLYdUrZDUyxRUUF3MF4YBchxy8I1TVK2i0m0XDs+yF7QpBUVwYn6bk7OUvYdQQGiiIiIyAToq146WAuC8dLXQB0YMkDoy4L4REv0+j5YDycgxDXM0odmZ5sK1ECUqVpW08BeVbWV47Zsqp2oWE3/TGoxDKgeJNgYjmWYLEhW8WqmZ8jXvj4WJ2ZZ9HjFAc8lqv5pkbIdYlZUAXNgBtMgudXSz0IYkk6no+I5gxXQKWnPZfB6MqRyeR596QXmeAHJTIFEJgc9GaoLHrFsnmSuSGO+CF0ZWLup4hyzgff0+z2MuRwbd+h0LMJEnLzrsIdjUL8ui5NOESbipZ9Y+b/pl5mMWxaOadLlFcpVWKvsWGmJaxQYvaa2sfzaDdX5L+d7JC170Aq3fRnuvmq4fVK2XWoj0e+1DHxe6O1iUbp20LnZtwfSLv2YhlExj/tXBE7bLk2xBHuma3mxt6tij+fWvDCkynaImTYJyy7PH7OUod2aY5qkbYf2Qg5nO4tMTabpO3IRERGRaSQqUmNgT2CAGLOi1hphGGJgDFr4Jrotqvxom1EvP3eEQjpBGBXbcU2LpGUPWjhlNEzDYFkp0OgvadnUOjGa4wme7+nYckcYLUEcqzmJFHHLGjJArHJdltY28OeWDQMCRJ+wlBmySNsued+rCA76snMp2y4tvI0Uw7C0r3B4dfEkxJNkfY9XvS66HbccyK/J9jA7nqIln2F2LMnm7k5el2pg19DGyGQxejMYvVn8nl42tLbQ5IWkckWMTJZUZy/RYtiuLRd7es1gQ4ieh+uUg8ZEPM5xYZE2C+bXd+BUVbNb6NGW6WRuwcXMGRCPEcZcajAxhlhSmfU95ierhvzCwS31KO1fWCZlOXilyrZ53y8tN/ZLVVkHn5t9VXUtw8QqBZ1BKSUcQkV7l6Rtc2zzLuXAtBgG2AweIIZA3LaJW1Y5QAyIKpsOtcy5zomzIZvBmdwV7dtFAaKIiIjIBLBKhUS2tzrpWMSs6AOtX8qmDLoHsVy4JfqgPpoCISFRU/K07bAgWTVoK4ftUeW4HDN7ARtzGfqv/TQMxrT/sE9jLEHadod9Xour6vhXRxs9XoG03S9LGVJ+XL0T58VCJzX9nm5f8Zuo72S/scKwFUy35paWR3ql198LAmzDpMGNsyGXAcOg4DiE9bX4yaqKxxYDnwfWvsCBdbPYPR01o3+2bTOPrX2ZXQyHIJPFyhU4PFWHmc1jZHMY5f8t/eRymJ3d0NkNwO6lH17YCMBupR94ruLaewHnmQYFx8ZzHfKuje86FF2bDhMaqqpx0+vAdQgdh9B1yv89t7uDwCuQTPVgBAah40SVQY2QQuCzureTPdM1eEG0T9ELQtxB/vn4YYjZbw+iaRj4YVQd12Rg1r4vo5i07IoqqoOJmzamYTA3kaLacen1i1jGwIxxn6ZYnMdHKH4z1SlAFBEREZkAlmFgmyb2BLbZiJlRFdAoiBliD2KpZ55b2veX8ysLhHQW8xSDoKICbNTYPWqrcGD9rHEZe192qS/k6qvGui0BYtp2aCotIx1K0nZojidZm+2p6GNnGAauFb1udW6MZ3sqs2V+qVdeynIGbGMcy1it0pLdvuWVucAnZlo0xhL9As9w0CxoX8uF/l8+2K5LdypBRyJFZ3VUhdSbv+fwgwgCjFwUOD65fg0b29tZWVVP2gvp6e3hlbYWdjVjVAdEx+ULGPk8QS6PkyuQyBfpH7rOB2DjkJd7Xfm//l7+r4OB5ZaJ51jkLYvQtihaJp5pEtoWhmPjWya+ZZX+16RgGmQMSK3vxXJclnS1gG2DbVEVBlR7CSzHAdMEy4x6WJom87rzbC7mSMV9AtMgMExC0yAwoz2mVuBjlf65HtIQNTwp5Hxs0xwykz03maZqB39hMtF2mgBx8eLFA277yle+wgknnDAJoxERERGpZBmDV1kcT65pEmKUGpybgxbriTKIJnVuDNsw6PEqC4R0eUW2boQRhOGAfnPjwTbM8h7Evp502xIgAuxb0zDi/s8a1+Wl3q2zP2F5WWPaqcwSAuXXNmU7pQqWQXnM8VFUrO0vbtl0lwqn5H2fxliitHS1L0AePANtGEbUfqJfVqv/PBuqPcYApkmYTBAmEwR2wLoqB+bvRdGyyBXy/G3Dy8Qb5+BulcEEaM3nKBTy1AbwSlsrz7VsJO75HFHdRCoAo1iEQhGj6GEUilAs0tLVRS6XZZ4Vw/Y8KBQJ8gWKhQJu0SeRKw4yyOG8BMCRA25/ctCjjxnVOR8CooqzAGnD4HxCTMPEMI0ord33pY9hkDIMPhAGFA2D0E7DgvljfA6Tb6cJEAGuvvpqVq5cWf69unpgSV0RERGRybBlj9TEZRBt08QgxAuj9gjWINnLvqxmYyyBFwQUg+7yfT1ekaRlk/Mry5CEMGRhjx0pukZIGIYUw6Bc3XRbbN2ofTBpyy1nKvuE4ZZCPinLIQypaAzvh1FWL1Z6ff0wGq9rmmPuZRlVW42qtmZ9n8ZSSw8DI6oIOsQyYYCjmuZV7PWz+82zvkI7YxG3LKpst5x1jVs2Ccsa8voNsTiUqsQurqkhqK/lhd5O7DkL8YbImj/dupFnetp454JF5fO25LPcvXY1FgbVlo1fKOIVCzRaLrl8nibLwfIDTN/H8gIsP6BYKIDncWhNI4Yf8HTrJkLPw/J8XAx2T6Sj7KgfQFD68QN6C3k6c1kShokZhBhBgO/52GGIHULg+6QsCwsjmgil977ge7ilqsTR/svoPoIAIwxxwjCKGQtjDXCnhp0qQKyurqapqWmyhyEiIiIygGWYE55BjLJ8Bl4QUucOnUGqclxqnBg538PvFx91FgvskqzilUxXRVXIKIM4/sV2osqvJgEhxcCnxomNWGF1eyRKDeL7+GFQUXm2rydgsV+xFD/s6xUYLdX1gpCAKMM61mA2adv4YUCPV8Q2DeYnq4hbNq5pkgs8LNMcspfh1q9L/3nmheGY94k2ugkW9asuG7Ms5ierqLJHV0V2n5p6FlXXDvqlRP9zWpgV2ehoabFJMfBxbYe2wMezXArxFG2ugRtPDThPV7GAaRgcuGAvAJ5Z/yKdhTx+GDInkWJe8y6DXv/V3i5+u/GVcmsSgBd7u0hZNrPiSdZke3jrvD2j4LekEPjcs+5FDqmfzbwheoYWg4CXM10ctnA+tPUO/0JNQdO4vs5Al1xyCYcddhjveMc7+PGPfzzZwxEREREp69uDONwH5h0tChKiDGJqmCWG+1TXMzuejPrflYYXlKpz7lVVi2NE1U37BKUiNePNKfW088OQQjD2FhdjFbesqCppKYvoh9HzdEtZtL6ej5l+jdy9MCRuRQ3SHSOqGlsMgqhn3hjf66Rpk/F8Oop5DqpvpjmeJG5GWbvOYoG4aY36C4a+rGcYRgHrWLOZtW6Mvasr23McUDeL5BiqyI7Uz9MxTZJ2ZVDuljLaXhD1NYzmnVEKvgc/z9a9FGOmhR+GFINg2BYsScuuWDAc9vW4LJ3TKF23P7sU+LvDZGQd02RRdV3F85pOdpoM4kc+8hFWrFiB67r88Y9/5OKLLyaTyfCe97xn5AcPwZzAJSAj6RvLVBqT7Bw0t2Q8aF7JeJju88ohKiLiWNaEPQfXjvbw+YRUue6Q1929Kqp82ekVSluqDLJekSrHZUGqCteKiqfE+u21ci1z3J+Ha1vYZvSB3SNqG7Gjr9l/XqUcB8ey8AGntFzUMU3idl9TdIP5qSr+2dmCYURZpYAoO2eaBgnbIuN5eGFAteuMeax7VNeSdl0Mw2Bhqrp8zSrXpcsrcHBDM5Y1ugDRtaLXLiB6P2MTOO9Gy7FM0k7lvIwbNo5p4Vo+1Y7Lhlx0n2tZmCaDBl2hQcV8jFlWFOQBVc7QcybpONiGWf4iwCsFmn1Bo2UY2FvNcxODw5rmUO/Gh/0CYDr/vZrSAeJ1113H9ddfP+wxv//975k9ezYf+tCHyrftu+++ZLNZvv3tb29zgGjbJg0Ng6eNJ1Nd3cC0usiOoLkl40HzSsbDdJ1XXhBQ052gqT5NQyI5MdfMGMTbXCCkub6KhvrhP9t4CZN4u0My5dKZKbK4tp7ZTdU0dabpLRZJxaO+fgny1Nemxv2zkh8GpDbHiNs2CdNnTkM1DXXjc826uhRVQYKatjiObZNyHLwCxHGZ1bhl/+KeVgPP5jqJpxzW9fZStGB2fZqGhjRN3SnWZXoJfIN59TVjfn0agIXUD7h913wtu9bXcuDcuaPOSiW8IqnWGPGYS8Io0liXpqF2an22nesGBLGBn7kb25NYeYuFTbW8UuwhBObUVbHRz5JKD+wt2Zv1qUsly+dpyKdZ62exgiCa90PMmZTnUdUaI+Y6xG2b3mKRWidO1veIJ1ySlk9TQ5r0VpnrBkb/Ok7Hv1dTOkA87bTTePOb3zzsMUPtOdxvv/34xje+ged52NvQUNXzArq6smN+3HgxTYO6uhTt7b0EweDNSEW2heaWjAfNKxkPO8O8mm8m8Xs8WjM9E3K97kKOXK5IEIbkugu0hsNfN1ssUMz7dIY5uvN50imL1tYerEJIV2+WmBcFJ7lskZ6uHK2M//Mo5Ir4eOSKRfI9BVqDHXvNreeVWQjpyGbBDegu5Kh2XFpbt1zTLPgUch4v5Tupc2PMjydx8watrT0EOZ/unhw+IUHWq3jc9ljsVGMZBm1j2M9WDKJxdhdz5ApFMt05Wv2JmXejlcZkb7dm4OuUDwgKHmY2IJMtYBomYdYnlyvSa+QHnKc3l6dArHyefG+B3kx0XK4nP+ScCcKQYs6jsxDi2w6dxXyUPS8W6fXz5L0iHe0Z8lZh0McPZyr+vaquTuA4I++LndIBYm1tLbW1tdv02Keeeoq6urptCg77TJU3s78gCKfkuGT609yS8aB5JeNhOs+r3VPRUs6JGr8VGpiUWkQYxojXdY2oEmfe9yCEWidGEIRUWQ6FICjvzQvDqBH8RDwPxzApBD4BITHDGrdr9s2rKsels5gvVav0ScadimtWWS5p26Eln+XIprns1u89nRVL8s+gDdOIXssdNVYbE0IGVFgdjhkaGGGUuQ7CEIuR3/+pImHapCwX14iWe1pEfSaDfvtD+/PDANswy8/PNsxS1VdzxDkTMy0KgU8Y2hT9INpjGYaldiVghNs3z6fj36spHSCO1u9+9ztaW1tZvnw5ruvy0EMPceONN/KBD3xgsocmIiIiMmn6iuLYpkHMHPljn2Oa1NoxXsl20eAmqHOj5XxJ2yHcqv/fRBXbcU0rquq5DVVBt0W141AMomoohSBgTqJyiaBpGMyJJ3EMkwWJyn6ATbEEjmlSCALiEzDW4Rillhh+qbjQRFSd3VH6Kq7GTAun1BombTsYGBXVdPsEYbQHsY9tGGQ9j32q66lz4wwnZW0pOlQMA+zS6xSEYDKxRaWmip0iQLRtm+9973tceeWVAOyyyy5cdNFFvOMd75jkkYmIiIhMHsc0o96LRljuZzeSo2bN48nOOLZplKtQDmxOH2JNUDF817TI+z5x2x5z4/lt0dcLsRgEWKbJrFhiwDGLqurYMz2wkmuNE6MhFmdzLjvmqqHjIap+GgXXQ7XHmIp2SVbhhwGxUqEd17BIWja2EVU1dbcKdoOQittsw6QhFmd5XdOIAV7StvFyURDthQGOGRUGCggxiIrSzDSTP3N3gCOPPJIjjzxysochIiIiMqVEwWGUSRxt9q3KcVnROKfitni/yo7lc09QdcaYaZIPfGrNGM4EZOVStoNhGLQVcjS4cWqdgUVRZsWHLjK0W7Ka7mJxQoLZkcQsk2I+wDbNctuL6aCv72BY6reZsKLKppYZVZbdmmFUBus1boz9aptoHuZ96pO0nXILF4MtrTnCMMQyzGnbqmJ7TJ+ZIiIiIiJj5poWcdPargAhbtnlfoSRgf3hxotrWeQDf9h+djvS3ESKxVV1dHtFFqaqxxwgzE6kaHDjE7IcdiTR/rog6tE4jQLEPoZhkLBsknY0fx3DLC+Z3Vr/ZadNsQSvqW0c1TUSFb0QDVKl+iUhYE/DFhU7wk6RQRQRERGRwY12aelw4lb0Ab0Y+FiWXc6uTATXtAjCcMICRNMwOKh+FgEhC5JjbwvRGEvw+uYFUyLzFLMsiqGPbZgT9n7taGnbJmFF733Cssl4xUGOMnC28fm5poWBQRiGhISkbAcICcIQe5q+ZttLAaKIiIjITqyv0Mf2niNmWhSDgJgZYhgTW6TGNAzStjvywTtI3LI5smneNj9+672Jk6UvgzgVlrtuq5Ttlgv+JCybruLANhcwsHDNaPXtzfRLAWHKcgCDkFAZRBERERHZ+cRMa5AiM2NjGAbVjktbIUcIGBhYE1S8wy5V40xsR+uymapvz+Z0DhD3TNeWv4xIWnZ5mXPGK+KUlk6HsM1FeGKmRUgYVTA1zajNBVHhm5maQZyZz1pERERkhqh2XKqc7c++VdkuxVJPPdOYuD2Ife0tpsKevunGMUxMDOKjaHEyVTXE4tT2a7fSV1BmUz5LWyGHH0Z7LFPWti1Bdk0LE4OM51Ftu8RMm5CQAC0xFREREZGd0LKa0RXrGEmNG8MLAwJCTAzMCfrwbJtmVGhnGmfBJottmpimsd0Z5KkiYVlQylw7pkUxDMj7Aa5plnsnjpVrWtiGSZdXYJ+aeizDKBdkmqkB4sx81iIiIiIzhGEYO6RgSrz04bwQRB/Id0Txm9GwDIO4ZU3rLNhksY1oKfDOEly7pSxyWFpmagD5wKfKdre5SmvMMst7RhvdRBQgGgZ+GEzLyq87wsx81iIiIiIyJn1ZqJzv0RhLTNgSU6e0xHRnCXImUl/2dWcJdPq+lCiGQSm7Z5DzPercgb0qR8syzCgDadnUuzEsw8CY4RlEfRUjIiIiIiNKlgNEn6ZYYsKu65gWccsuZ49k9JxS/0NnJ3nt+grKeEGU3bMw6CjkqXPj23XepG3jmCZpxyXne5gG+KWiNTPRzHzWIiIiIjImcSv6EF0MA2q2I2MzVvVujCOb5m5zG4OZLMqObX+bk6kiVtovmA98YqZFVWnfYWo7K9ymLJd5iajnpWWYGIaBH7LTZF7HShlEERERERlRvK8XohlQvQOqoo6WYRjbXIBkprNNA9c0t7kFxFQTsyxs0yDr+9S5cdK2w6ZcdpsrmPZZVFVbXsLcV6QmCMMZm0lTgCgiIiIiIzIMgyrbwQ9Dqiawab1sO6e0v25nWSrpGGZUcdQvkLIdGmIJEnYXqe38AmFOIlX+774WLkEYYu0kmdexUoAoIiIiIqNS7bgYhjFjl95NN45plVqE7Bwf+Q3DIGk5rAt6SdkOaduhxo7t8DYetmlOaK/PqWbnmC0iIiIiMu5qndh2Z2tk4jimyetmLZiwliQTIWXbGERVdZvjSQ6on7XD96c6holhMGP3vSpAFBEREZFR2aemnlILOpkmdqbgECBlOzil/bCuaZWLy+xIthntQ1SAKCIiIiIyDMswo+7kIpMkZTnYpd6Y48U2ZvYSUy0gFxERERGRacG1LOKWNa6ZUce0MFCAKCIiIiIiMqXFTIuEZY9rBtExjBm9B1EBooiIiIiITAtxM8oejmcG0TZNTIwZ2+ZiZj5rERERERGZdqocl+ZYEnc8M4hmqYrpDN1wqwBRRERERESmhZTtsKJxzrhewzGsUgZRAaKIiIiIiMiMZhnR8lIFiCIiIiIiIjOcZRhYpjKIIiIiIiIiM15f9lBVTEVERERERGY4yzCwtAdRRERERERETMOIWl2ozYWIiIiIiMjMZhkGtqEMooiIiIiIyIxnGQbOOPZZnOoUIIqIiIiIiJQkLYd6Nz7Zw5g0ChBFRERERERKat0YhzbMnuxhTBoFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkZJpESB+7nOf421vextLly7lbW9726DHPProo7z1rW9l6dKlHHvssdx9990TO0gREREREZFpbloEiABvf/vbOf744we979VXX+Xss8/m0EMP5Sc/+Qnvfe97ueiii3j44YcneJQiIiIiIiLTlz3ZAxiNT3/60wC0tbXx/PPPD7j/jjvuYMGCBXziE58AYI899uCvf/0r3/nOd1i5cuWEjlVERERERGS6mhYB4kgee+wxDj/88IrbVq1axdVXX71d5zVNY7sevyP1jWUqjUl2DppbMh40r2Q8aF7JeNC8kvEwnefVThEgtrS00NDQUHFbY2MjHR0dFItFHMcZ8zlt26ShIb2jhrjD1NWlJnsIspPS3JLxoHkl40HzSsaD5pWMh+k4ryYtQLzuuuu4/vrrhz3m97//PbNnzx7V+QyjMjoPw3CbxwbgeQFdXdntOseOZJoGdXUp2tt7CYLte24i/WluyXjQvJLxoHkl40HzSsbDVJxX1dUJHMca8bhJCxBPO+003vzmNw97TFNT06jO1djYSEtLS8Vtra2t1NbWblP2sM9UeTP7C4JwSo5Lpj/NLRkPmlcyHjSvZDxoXsl4mI7zatICxNraWmpra3fIuZYvX86DDz5YcdvDDz/M8uXLd8j5RUREREREZoJp0ebi5Zdf5qmnnmLz5s3k83meeuopnnrqqfL973rXu3jllVe4+uqrWb16Nd/73ve47777eO973zuJoxYREREREZlepkWRmk9/+tP8+c9/Lv9+0kknAfDMM88AsGDBAm688Ua+8IUvcNtttzF79mw+97nPqcWFiIiIiIjIGEyLAPH2228f8ZjDDjuMu+++e/wHIyIiIiIispOaFktMRUREREREZPwpQBQRERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlBhhGIaTPYipKAhCfD+Y7GFUcByLYtGf7GHITkhzS8aD5pWMB80rGQ+aVzIeptq8siwT0zRGPE4BooiIiIiIiABaYioiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgCgiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgDilfO973+Poo49m2bJlvPOd7+Txxx8f9vh7772X4447jmXLlvGmN72JBx98cIJGKtPNWObWc889x3nnncfRRx/N4sWL+e53vzuBI5XpZCzz6n//939597vfzcEHH8whhxzC+973Pp544okJHK1MF2OZV7/5zW94+9vfzkEHHcTy5ct5y1vewt133z1xg5VpY6yfsfrcdNNNLF68mKuuumqcRyjT0Vjm1Y9+9CMWL15c8bNs2bIJHO3oKUCcIn7xi1/w+c9/nnPOOYcf//jHLF68mPe///20tbUNevzf//53Pvaxj3HyySdz9913c8wxx/DhD3+Y1atXT/DIZaob69zKZrPMnz+fj33sYzQ1NU3waGW6GOu8evTRRznhhBO47bbb+P73v09zczPve9/72LRp0wSPXKaysc6rmpoazj77bO68805++tOfcvLJJ3PRRRfx8MMPT/DIZSob67zq889//pM77riDxYsXT9BIZTrZlnlVW1vLH//4x/LP/fffP4EjHoNQpoSTTz45vPzyy8u/+74frlq1KvzWt7416PEXXHBBePbZZ1fc9o53vCO87LLLxnWcMv2MdW7197rXvS68/fbbx3N4Mk1tz7wKwzD0PC/cf//9w5/+9KfjNUSZhrZ3XoVhGJ500knhddddNx7Dk2lqW+ZVJpMJ3/jGN4YPPvhgeOqpp4Zf+MIXJmKoMo2MdV798Ic/DA855JCJGt52UQZxCigUCvzzn//k8MMPL99mmiYrV67kscceG/Qxjz32WMXxAKtWrRryeJmZtmVuiYxkR8yrbDaL53nU1NSM0yhlutneeRWGIY888ggvvvgiBx544DiOVKaTbZ1XX/jCFzj00EM54ogjJmCUMt1s67zq6enhta99LUcddRQf/vCHef755ydgtGNnT/YABNrb2/F9n8bGxorbGxoaePnllwd9TEtLCw0NDQOO37x587iNU6afbZlbIiPZEfPqy1/+MnPmzOGwww4bjyHKNLSt86q7u5sjjzySQqGAaZpcdtllrFixYryHK9PEtsyr+++/nz/96U/azypD2pZ5tfvuu/P5z3+eRYsW0dXVxS233MIpp5zCz3/+c5qbmydi2KOmAHEKC8MQwzCGvH+w+4Y7XqTPSHNLZFuMdl7dfPPN/OIXv+D222/Hdd0JGJlMZyPNq1Qqxd13300mk+GRRx7hyiuvZJddduGggw6awFHKdDPUvGpra+Mzn/kMN9xwA4lEYhJGJtPZcH+vli9fzvLly8u/77///hx//PH84Ac/4Nxzz52gEY6OAsQpoK6uDsuyaGlpqbi9ra1twDcTfRobGwcc39raOuTxMjNty9wSGcn2zKtvf/vb3Hjjjdx6660sWrRoPIcp08y2zivTNNl1110B2GeffVi9ejU33XSTAkQBxj6vnnvuOTZv3swpp5xSvs33ff7yl7/w3e9+V9WXBdgxn68cx2GfffaZkiu6tAdxCnBdlyVLllRUXQuCgEceeaTim4b+li9fzkMPPVRx28MPPzzk8TIzbcvcEhnJts6rb33rW3z961/nW9/61pQt7S2TZ0f9vQrDkEKhMA4jlOlorPNq2bJl/OxnP+Puu+8u/yxdupS3vvWt/OhHP5rAkctUtiP+Xvm+z3PPPTclK8YrgzhFnHnmmXz84x9nyZIlvOY1r+E73/kOuVyOt771rQB8/OMfp7m5mY997GMAnH766Zx66qnccsstHHXUUfziF7/gySef5IorrpjMpyFT0FjnVqFQKLdLKRQKbNy4kaeeeoqamhrmzp07ac9Dppaxzqubb76Za665hi9/+cvMmzevvF86mUySSqUm7XnI1DLWeXXTTTex7777suuuu1IoFPjDH/7AT37yEy6//PLJfBoyxYxlXiWTyQGrG5LJJLW1tey1116TMXyZosb69+r6669n+fLl7LrrrnR1dfHtb3+bdevWcfLJJ0/m0xiUAsQp4vjjj6etrY1rr72WzZs3s88++/Ctb32L+vp6ANavX49pbkn4HnDAAXz5y1/ma1/7Gl/5yldYuHAhN9xwA3vsscdkPQWZosY6tzZt2sRJJ51U/v2mm27ipptu4q1vfStf+MIXJnr4MkWNdV59//vfp1gscv7551ec59xzz+W8886b0LHL1DXWeZXL5bj88svZsGED8Xic3XffnS9+8Yscf/zxk/UUZAoa67wSGY2xzquuri4+85nPsHnzZmpqali6dCl33nknu++++2Q9hSEZYRiGkz0IERERERERmXz6ukREREREREQABYgiIiIiIiJSogBRREREREREAAWIIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiAFFEREREREQAsCd7ACIiIhPluuuu4/rrrx9w+4oVK/jv//7viR+QiIjIFKMAUUREZpSqqiq+9a1vDbhNREREFCCKiMgMY1kWy5cvH/G4XC5HPB4f/wGJiIhMIdqDKCIiM96aNWtYvHgxP/3pT/n4xz/OQQcdxAc/+EEAOjo6uPjii1m5ciXLli3jXe96F//4xz8qHt/V1cXHPvYxli9fzqpVq/jGN77BVVddxdFHH10+5rrrruPQQw8dcO3Fixfz3e9+t+K2H/zgB5xwwgksXbqU173uddx8880V93/iE5/gbW97Gw899BBvetObWL58OaeccgrPPfdcxXG+73PjjTfyhje8gaVLl3LkkUfyiU98AoDvfe977L///vT29lY85k9/+hOLFy/m6aefHuOrKCIiOwNlEEVEZMbxPK/i9zAMAbj66qs59thjueaaazBNk0KhwJlnnklXVxcf//jHqa+v5/vf/z5nnHEGv/rVr2hqagLgk5/8JH/+85+56KKLaGxs5JZbbuGVV17Btsf+f7Pf+ta3+OpXv8r73/9+DjnkEP75z39yzTXXkEgkOPXUU8vHrV+/nquvvpoPfehDxGIxrr76aj7ykY/w85//HMMwALj44ov5yU9+wllnncUhhxxCZ2cn9913HwBvetObuOqqq/jlL3/J2972tvJ5f/zjH7NkyRL23nvvMY9dRESmPwWIIiIyo3R0dLBkyZKK2z73uc8BsN9++3HJJZeUb//BD37Ac889x89//nMWLlwIwMqVKznuuOO45ZZbuPDCC3nuuef4zW9+w1e/+lWOP/54AA499FBe97rXkU6nxzS2np4ebrjhBj70oQ9x7rnnAnD44YeTzWb5xje+wSmnnIJlWQB0dnby/e9/vzyuMAw555xzeOGFF9hjjz1YvXo1d911F5/61Kc4/fTTy9foG2N1dTX/9m//xo9+9KNygNjb28uvfvUrPvaxj41p3CIisvNQgCgiIjNKVVUVt956a8VtrusC8NrXvrbi9kceeYQlS5Ywf/78iqzjwQcfzJNPPgnAE088AVCxnDSVSrFy5Uoef/zxMY3t73//O5lMhuOOO67ieocddhhf//rX2bBhA/PmzQNg3rx55eAQYI899gBg48aN7LHHHjz66KMAFdnBrZ188smcccYZvPrqqyxYsIB7770Xz/M48cQTxzRuERHZeShAFBGRGcWyLJYtW1Zx25o1awBoaGiouL29vZ3HHntsQMYRYJdddgGgpaWFVCo1oKDN1ucajfb2dgBOOOGEQe9fv359OUDcuvKq4zgA5PN5IMqUJpPJYbOYhx56KAsWLOBHP/oRF1xwAT/60Y94/etfT21t7ZjHLiIiOwcFiCIiIiV9e/f61NTUsHTpUi699NIBx/ZlHRsbG+nt7R1Q9bS1tbXi+FgsRrFYrLits7NzwPUAbrzxxkEDzN12223Uz6W2tpZMJkNPT8+QQaJhGLz97W/nf//3f3nLW97CX//61wEFcUREZGZRgCgiIjKEFStW8NBDDzF37twhM4J92cjf/e535f19vb29PPzwwxWBWXNzM729vWzcuJHm5mYAHnrooYpz7b///sTjcTZt2jRguetYHXbYYQDcfffdFcVttvbWt76Va6+9losuuojm5mYOP/zw7bquiIhMbwoQRUREhnDSSSdxxx13cNppp/G+972PBQsW0NHRweOPP05TUxNnnHEGe+21F0cffTSXXnopPT09NDU18e1vf3vAktMjjjiCeDzORRddxJlnnsmaNWu44447Ko6prq7m3HPP5YorrmDt2rUcfPDBBEHASy+9xKOPPsoNN9ww6rHvvvvu/L//9//4whe+QGtrKwcffDBdXV388pe/5Ktf/Wr5uObmZo444ggeeOABzj777HIRHBERmZkUIIqIiAwhFotx2223cc0113DdddfR2tpKfX09r3nNayqK0nzhC1/g0ksv5corrySZTPLud7+bZcuW8ctf/rJ8TH19Pddeey1XX30155xzDkuWLOHLX/5yOevY5wMf+ACzZs3iO9/5DrfeeiuxWIyFCxcOOG40LrnkEubOncsPfvADbr75Zurr6wfNEB5zzDE88MADwxa0ERGRmcEI+5o/iYiIyA7T12Pwd7/73WQPZUQXXHABmzdv5n/+538meygiIjLJlEEUERGZoZ555hmefPJJfv3rX/OVr3xlsocjIiJTgAJEERGRGepDH/oQ7e3tvPvd7+a4446b7OGIiMgUoCWmIiIiIiIiAoA52QMQERERERGRqUEBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBoojINBaGIUcffTSLFy/m5ZdfHtVjnn32WRYvXsyjjz66w8fT2trKddddx5o1aypuf/TRR1m8eDHPPvvsDr/mSK677joWL1487M9pp5024eMazHXXXcehhx66w8972mmncf755w97zOLFi/nud7+73df6xCc+wdve9raK237zm9/wxje+kaVLl3L00Udv9zW21vdvYOufn/zkJ6N6/Hi97iIi05E92QMQEZFt9/e//521a9cCcM899/DhD394UsfT2trK9ddfzyGHHML8+fPLty9ZsoQ777yTXXbZZcLH9I53vIMjjjii/Pvtt9/Oo48+yvXXX1++LZ1OT/i4dlYf/vCHyeVy5d993+fCCy/kyCOP5LOf/SzJZHJcrnviiScOCPQnY76JiEx3ChBFRKaxe+65h2QyyV577TUlAsShpNNpli9fPinXnj17NrNnzy7//stf/hLXdYcdTy6XIx6PT8Dodj5bB2WbN2+mp6eHE088kYMOOmjcrjtr1qxJm2MiIjsTLTEVEZmmfN/nvvvu4+ijj+btb387zz//PE8//fSA4773ve9x1FFHsXz5cj74wQ+yefPmAcfccsstvP3tb+fAAw9k5cqVfPCDHxywZLVvmeKdd97J0UcfzWte8xr+/d//nY0bNwKwZs0a3vSmNwFw+umnl5f5wcAlpqeeeioXXHDBgHFcddVVvPa1ryUMQwDy+TxXX301Rx11FEuXLuXNb34zv//977fjVRtozZo1LF68mJ/+9Kd8/OMf56CDDuKDH/wgMPiyy8GWI65bt46PfvSjHHLIIey3336cddZZvPDCC9s9tkwmw+WXX84b3vAG9ttvP44++mguu+wyenp6Ko7zfZ8bb7yRN7zhDSxdupQjjzyST3ziE0Oet7u7m3e96128+c1vpq2tbdBjnn32WQ4//HD+67/+C9/3y+/ho48+yvnnn8/+++/P61//er73ve9VPK7/EtMf/ehHHHXUUUCUWVy8eDHXXXcdAEEQcNNNN3HssceydOlS3vCGN/DjH/94m1+roTzwwAOceeaZrFixggMOOIB3vvOd/PGPfxz2McVisTwXly5dyqpVqzjnnHMoFArlY8brPRcRmWwKEEVEpqk//elPtLS0cPzxx/OGN7wBx3G45557Ko75zW9+w+WXX85rX/tarrvuOhYtWsRFF1004FwbNmzg1FNP5etf/zqf/exn8X2fU045he7u7orj/v73v/Pd736XT3ziE1xxxRU888wz5azlrFmz+NKXvgTAxRdfzJ133smdd9456NiPP/54HnjgATKZTPm2MAy57777eOMb34hhGACcf/75/PjHP+bss8/mm9/8JsuWLeNDH/oQTz31VPlxfXsMt9fVV19NKpXimmuu4eyzzx714zo6Onj3u9/Niy++yKWXXsrXvvY1MpkMZ555ZsVSy22Ry+XwfZ+PfvSj3HzzzVxwwQX86U9/GhBcX3zxxVx33XUcd9xx3HjjjXziE5+oeG23Hu8ZZ5xBsVjktttuo76+fsAx//rXvzjttNN43etex1VXXYVlWeX7PvOZz7D33nuXlxJffvnlPP7444Ne67WvfW15Ke+FF17InXfeyTve8Q4APvvZz/KNb3yDd77zndx0000cc8wxXHTRRdx///3lx//oRz9i8eLFA/a0DiYMQzzPK//4vg9EXwC87nWv4+qrr+a6665j//335wMf+AB//etfhzzXjTfeyM9+9jMuuOACbr31Vi666CKqqqoIgqD8Go7Xey4iMtm0xFREZJr6+c9/TnV1NUcccQSu67Jy5Uruuece/uM//qMcYH3zm9/kiCOO4LLLLgPgiCOOoK2tjR/84AcV5+ofNPq+z+GHH86KFSv47W9/y0knnVS+r62tjTvuuIN58+YBMHfuXN797nfz4IMPcuSRR5YDtT333HPY5X7HHXccn/vc57j//vs54YQTAHjsscdYt24dxx9/PACPPPIIDzzwALfffjuHHHIIAKtWreKll17iG9/4Btdeey0AhmFUBDDbar/99uOSSy4Z8+P++7//m2w2y913301tbS0ABxxwAEcffTQ//OEPec973rPNY6qvry+/dwCe5zF//nze/e53s27dOubOncvq1au56667+NSnPsXpp59ePrbvdeyvra2NM844g2Qyybe+9a1B917+4x//4P3vfz9vfvOb+fSnP12eS31OOOGE8pcChxxyCPfffz+/+tWveM1rXjPo+PfZZx8Adtttt/KcePnll/n+97/P5z//ed761rcCsHLlSjZv3sz111/P6173OgBM08SyrAFjGMytt97KrbfeWv69ubmZBx98kFNPPbV8WxAEHHrooTz//PPcddddHHjggYOe64knnuDEE08sjw0qX8/xfM9FRCabMogiItNQoVDgN7/5Dccccwyu6wLRB/e1a9fy2GOPAVGg99RTT/H617++4rHHHnvsgPM99thjnHnmmRx66KHsu+++7LfffmQyGV588cWK4/bdd99ycAhw4IEH0tDQMGQGaSj19fUcdthh/OIXvyjf9otf/IJddtmFZcuWAfDwww/T1NTEAQccUJEZWrFiBU8++WT5ceeeey7/+te/xnT9wbz2ta/dpsc98sgjrFy5knQ6XR5jKpViyZIlFePcVnfffTcnnXQS+++/P0uWLOHd7343AC+99BJAuRrt1pVDt9bS0sKpp55KbW0tt9xyy6DB4d/+9jfOPPNM3vnOd/KZz3xm0MDs8MMPL/+34zgsXLiQDRs2jOk5PfLII5imybHHHjvgvX366afL2b+TTjqJf/3rXxVzbihvfvObueuuu8o/N910ExBlxy+88EKOOOII9t13X5YsWcIf//jH8us3mL333psf//jH3HzzzTz99NPlJc/9xz+e77mIyGRSBlFEZBp68MEH6erq4qijjqKrqwuAQw89FNd1ueeee9h///1pa2vD8zwaGhoqHrv17+vWreN973sfr3nNa7jsssuYNWsWjuNw9tlnV+y5GuyxfbcNtq9xJMcff3x5P10ymeS+++6rCHLa29vZvHkzS5YsGfDYHZEx3Npgz2002tvbeeyxxyqC3T4rVqzYrjH9+te/5sILL+SUU07hox/9KLW1tWzevJlzzjmHfD4PRMsdk8nkiJVYV69eTUdHB2edddaQlUQfeughfN+vyBpvrbq6uuJ3x3EGzJORtLe34/v+kBm8zZs3VxQWGo3Gxsbylwt9giDgQx/6EL29vZx//vnsuuuuJBIJrr32WlpbW4c814c//GFM0+T73/8+X/rSl2hubuass87ive99b3n84/Wei4hMNgWIIiLT0M9//nOAQQu93HvvvXzyk5+kvr4e27YHfBDe+vc//OEP5HI5vv71r5cDB8/z6OzsHHDuwT5Ut7a20tTUNObncOyxx3LppZfym9/8hnnz5rFp0ybe+MY3lu+vqamhubmZG264Yczn3haDZctc16VYLFbctvXrUlNTw9FHHz1oBdlUKrVdY7rvvvvYb7/9uPTSS8u3/fnPf644pra2lkwmQ09Pz7BB4qGHHso+++zDxRdfTF1d3aD9CD/0oQ/x8MMPc+aZZ/I///M/49YmoqamBtu2+f73vz/o6z7Yvsht8fLLL/Ovf/2Lm2++mSOPPLJ8+0j7BGOxGBdccAEXXHABL730EnfccQdXXnklu+22G0ceeeS4vuciIpNNAaKIyDTT29vLAw88wIknnsg73/nOivueeuopPv/5z/Poo4+ycuVK9t57b377299yyimnlI/59a9/XfGYXC6HaZrY9pb/S7j33nvxPG/Atf/1r3+V974B/PWvf6W1tbW8/8xxHIBydms4NTU1rFq1invvvZe5c+eyxx57sPfee5fvX7FiBbfeeivJZJI99thjxPONh9mzZ7N69ery70EQ8Kc//animBUrVnDvvfey11577fDWGLlcrryEuM/Pfvazit8PO+wwIFqK2n+/3WD6smkXXHABN91004Bsl23bXHvttXzgAx/gjDPO4Pvf/z7Nzc074JlUOuyww/B9n+7u7oolqzta3zzs/xquXbuWv//97yxatGhU51i4cCEXXngh3/ve91i9ejVHHnnkuL7nIiKTTQGiiMg089vf/pZsNsvpp5/OfvvtV3HfAQccwDe+8Q1+/vOfl9tVnHvuuVxyySUce+yx/OUvf+EPf/hDxWP6Pqx/8pOf5OSTT+a5557jlltuGbCUEKLMztlnn815551HPp/nS1/6EkuWLClnZ+bOnUs8Hufuu++mqqoK27YHLPvr741vfCOf+tSnSKfTA4Kbww8/nFWrVvG+972PD3zgA+y555709PTw9NNPk8/n+djHPgbA9ddfz9e//vUdsg9xa8cccwz/8z//wz777MOCBQu46667BrSYOOOMM/jpT3/Ke9/7Xk499VSam5tpaWnhL3/5CwceeCAnnngiQLmJ++233z7sNftn1FauXMnll1/ON77xDfbbbz9+//vf88gjj1Qcv/vuu/P//t//4wtf+AKtra0cfPDBdHV18ctf/pKvfvWrA87/n//5n/T29vLhD3+YW2+9dUAxoXg8zje/+U3OPPNMzjjjDL73ve/tsIxe/zG/613v4j/+4z8466yzWLZsGfl8nueee46XXnqJK664AoiC3osuuohf//rXo9qHONh1Zs+ezVVXXcUFF1xAb28v1157LbNmzRr2ceeccw5Llixh3333JRaL8ctf/hLf98t9HEf7nouITEcKEEVEppl77rmHhQsXDggOIcrgvfGNb+See+7h0ksv5dhjj+Uzn/kMN910E3fffTeHHHIIV1xxBWeddVb5MYsXL+bzn/88119/Pb/+9a/Ze++9ueaaa/joRz864Pz7778/K1as4Morr6StrY1DDjmEz372s+X7Y7EYn/3sZ7nhhhs47bTTKBaLPPPMM0M+l9e//vVcfPHFtLe3D6i6aRgG119/Pd/85jf5zne+w/r166mpqWHvvfcuB1sQtTfoK2qyo5177rm0tbVxzTXX4DgO73nPe9hrr70qeiPW19dz55138rWvfY3Pf/7zdHV1MWvWLA444ICK9hvZbHbEICeXy5WzsADvete7WLNmDbfddhv5fJ7DDz+cL3/5ywMyx5dccglz587lBz/4ATfffDP19fXDZuYuvvhistksH/jAB7j99tsrMrcQLZO8+eabOf300znrrLO47bbbRvV6jcUll1zCwoUL+cEPfsC1115LOp1mzz335OSTTy4fEwQBvu8PKBIzWq7rct1113H55Zdz/vnnM3v2bD74wQ/y5z//udyTczD7778/v/jFL/j2t79NEATsueeeXHvtteUvO0b7nouITEdGuK1/dUVEZEY57bTTqKurK7eXkNErFAoccMAB3HLLLeWWHYM5//zz2bhx45D9I0VERMab2lyIiIiMsyeeeIJFixYNGRw+99xzfPe73+X+++8f0JZERERkImmJqYiIyDg78MAD+dGPfjTk/Zdffjmvvvoqp59+OmeeeeYEjkxERKSSlpiKiIiIiIgIoCWmIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiIjVDCIIQ3w8mexgVbNvE86bWmGTnoLkl40HzSsaD5pWMB80rGQ9TbV5ZlolpGiMepwBxCL4f0NGRmexhlJmmQUNDmq6uLEGgukKy42huyXjQvJLxoHkl40HzSsbDVJxXtbVJTNMa8TgtMRURERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlKhIjYiIiIhMqjAMCQKfcBJqeZimQaFQwPO8KVNMRKa/yZhXhgGmaWEYI1cqHY4CRBERERGZFGEY0tPTSW9vFzB5wVlLi0kQTJ12BLJzmIx5ZZoWDQ1zsKyRq5UORQGiiIiIiEyKvuCwuroe140B25f52Fa2beB5yh7KjjXx8yqko6OFrq426uqatvksChBFREREZMKFYVgODpPJ9KSOxbZNQBlE2bEmY15VVdXS3r6JMAwwjG0rN6MiNSIiIiIy4YLAB8JS5lBEdgTLivJ/27O0VQGiiIiIiEy4LQVpJmdZqcjOKfr3tD0FnxQgioiIiIiICKAAUURERERk0vztb//HqlUHkclkhj3u5JPfxA9/eOcEjWpi3X33D7nwwo+Wf/c8j8997hKOO+51rFp1EM899wyXXfZp7rjju5MyvnPP/Xeuv/5rk3LtyaAAUURERERklK644lJWrTqIr3716gH3XXbZp1m16qDtCiZ+8YufccIJrx9w+80338YJJ7yl/PuqVQfx0EN/2ObrTIRMJsP113+Nd7zjzRx99Ere/OY38NGPnsPjjz9WPiafz3PrrTdxxhnvL9/2wAO/5Q9/eICvfe3r/OQn97Hbbntwxhnv57bbbqW3t2fYa5588ptYteqgAT93333XiOMdKli/8sov8r73fWAsT32bTJX3VFVMRURERETGYNasZn79619yzjkfwXVdAHp7e/jDHx5g1qzmcblmXV3duJx3RygWiziOM+D2L37xSp599mk+9rFPsOuuC+noaOevf/0LXV1d5WMeeOC31NTUss8+S8q3rVnzKvPmLWDvvfcp37brrgtZsGAXfv3r+zjppJOHHc/ZZ5/D8ce/qeK2dHrbK+VWV9ds82OnIwWIIiIiIiJjsO++S3jxxRf44x8f5OijjwHgN7/5FYsW7Y1pVi7QW7XqIK666qscfvgRQJRV+7d/O5Jrr/0mBxxwUMWxf/vb/3HllZeVHwdw5pkf4Kyzzubkk9/EKaecytvf/v84+eQo+Olbljl79hzuuutnvPrqK1x//Vf517/+SS6XY/fd9+DDH76A/fZbXjGe//zPT/L73/+Of/zjMWbNmsUFF3yMFStWlY954YXnuf76a3j88b+TSqVYsWIV55770XKQde65/86eey4CQn71q/tYsmQpX/ziNQNep0ce+SP/8R8XcthhKwGYM2duRSAI8Nvf/orDDz+y/PsVV1zKvff+vDzWvucGsHLlKn7721+PGCAmk0kaGhoHvW/DhvV85StX8/jjj+F5RebNm89HPvJfzJ49h/PP/yAA//Zv0Xje+MYT+dSnLuXcc/+dvffel3PP/QgQZSnf8pa3sXr18/zxj7+nrq6Bj3/8kyxYsJAvfOFynnzycXbbbQ8uu+wK5s6dDzDiezPUewrw4IMPcMstN/HKKy/R1DSLN7/5rZxyymkD5tqOoiWmIiIiIiJjdPzxb+IXv/hp+fdf/OJnA7JWY7Vs2X6cf/7HqK6u4Sc/uY+f/OQ+TjnltAHH3XzzbQB85jOX85Of3Ff+PZPJsHLlEVxzzdf59rdvZ+nS1/Dxj19AR0dHxeO/9a1vcuyxx/Hf//09Vq06ik996uNs3LgBgO7ubs4//0Psu+8Sbrnlu1x11dd49dVXuOKKSyvOcc89PyWRSPLNb97Ceef9x6DPp66unocf/uOw+ysff/yxikzhBRf8J+9616nsueeiiucGsPfe+/LPfz6J53lDv4gj+MpXrqJYLHDDDTfzne/cwVlnfRDXjTFrVjNXXBEtG77zzrv5yU/u44IL/nPI89xxx3c58MCDufXW/2H58v257LLPcPXVn+Od73w33/72d7Ftmy9+8fPl40d6b4Z6T//xj8e48spLede73sPtt/8vH/nIf3HXXXdy113jtx9VGUQRERERmTKefMhg0ysTd71Zu8Dyo8b+uOOOO4Fvf/tGWlo209vbywsvPM/RRx/Dfffds81jcRyHdDqNYTBkBgy2LDdNp6sqjlu8eG8WL967/Pt5532U3//+dzz66MO84Q3Hl28/5pg3lIPZc8/9CH/+8yPcffcPOfvsc/jhD+9kn3325f3v/2D5+I9//FO85z0n097eRl1dPRAt+Tz77HOGfT7/9V8Xcdlln+b4449m0aK9Wb78AI455t9YtCgaY3d3Nz09PRXPIZ1Ok0gksCxrwGvQ0NBIoZCnvb2NpqZZQ173+uu/xje/eX3FbTfccDOLFu3Nxo0bOOqoo9ljjz0BmDdvfvmYqqpqIApsk8nksM/t8MOP5E1vOgmA9773LO699+ccdthKVq6MMrHvfOcpXHbZpwmCANM0R3xvhnpPb7nlJk4//X0cd9wJ5fG+973v46677uSd7zxl2DFuKwWIIiIiIiJj1NDQyEEHHcq9995Dd3cXRx11NMlkalLHlMlk+Pa3b+SRR/5IW1srvu+Tz+fL2cE+++67tOL3JUuW8dJLLwLw/PPP8Ze/PMqxxx4x4Pxr164pB4j9s35DOeCAg7jrrp/xxBP/4PHHH+PRRx/hjju+y8c//ilOPPEt5PN5gPI+zpHEYjEAcrncsMedeuoZFQExUN4b+ra3vZOvfOUq/vKXRzn44EM5+uhjWbhwt1Fdv7++ABOgvj56TXbbbfd+tzXgeR49Pd1UV9eM+r3Z2urVz/LEE//g1ltvLt/m+wFhGIx5zKOlAFFEREREpoylh4dw+ERf1dimR51wwpv45jevJ5PJcMklnxv8zIZB2K9r+fYsjxzJDTd8jb/+9S98+MMXMG/efGKxGP/5nxdQLBa3GtPg4wTIZrMcccRrB80ONjU1lf87Hk+MakyO43DAAQdxwAEHccYZ7+eqq67glltu4sQT30JNTQ2GYdDd3T2qc/UVt6mtHb5gT21tLfPnLxj0vre85W0ceugKHnroDzz66CPcdtstXHjhp3njG08c1Rj62Hb/MCp67Sxr4G1BEL33o31vtpbJZPnABz7EEUdsQ5p7G2kPooiIiIjINjj88CPp7u7GdWPsv/+Bgx5TW1tHW1tr+ffnn3922HPatoPvj5wdsm2bIPArbnviiX9wwglv5sgjX8see+xJdXUNmzdvHPDYf/7zyYrf//WvJ9l114UALFq0mBdffIE5c+Yyf/6Cip9YLD7iuEay6667ljOAjuOwcOFuvPTSC6N67EsvReOqqqrarjHMnj2Ht7/9nVx99Vc58cS3lIvi9FViDYIdn50bzXsz2Hu6aNFiXn315QHvxVAB8I6gDKKIiIiIyDawbZs77/wxhmGUM3Bb23//A/nhD/+XffddSjab4eabvz7sOefMmUNvbw9/+9v/sfvuexKPx4nHBwZms2fP5f/+78/su+9SHMelurqa+fN34YEHfsdhhx1OGAZ885s3YJrWgMf+9re/YvHivVmyZBk///ndvPLKy1x11dcAeNvb3sFPf/ojLr/805xyymlUVVXzyisv8eCDv+fCCz81ptfnvPPO5g1veCOLFu1NOl3FM888xf/8z+2sWrWlaukhhxzG448/xtvf/v9GPN/jjz/GwQcfOuJxmUyG1taWitsSiSTJZJJrrvkyK1Yczvz5C+joaOeJJ/7BsmXLgShwNAyDhx/+AwcffBixWGzEvYijNZr3ZrD39L3vPYtPfvJjzJrVzFFHHQ3Ac889w/r163jve8/aIWPbmgJEEREREZFtlEoN31/v3HM/whVXXMYHP3gmc+fO47zzPspHP3rukMcvW7Yfb3nL2/jMZy6ks7Oz3OZisPNef/1XufvuH9LUNIu77voZ5533Ua68MrpWXV09733vWXR2dgx47Fln/Tv33fcLvvjFK2lqmsVnP3sVs2fPBqCpaRZf//q3+eY3r+MjH/kwxWKROXPmbdMSx4MPPpSf/ewnvPLKtRQKeZqamjnhhDdXBDYnnPAW/v3f30sm0zvsHs5isciDDz7Al7507YjXvfHGG7jxxhsqbnvPe97Lhz50Hr7v8aUvfZ6Wls2k01WsXLmKD3/4vPJzP+uss7nhhq/R1tbGccedwKc+demYn/dgRvPeDPaerlhxOJ///Jf57//+Frfddiuu67Bw4e687W3v2CHjGowR9l8ULWXFok9Hx9AleSeaaRo0NKRpbe0pr2UW2RE0t2Q8aF7JeNC82rl4nkdLy1oaG+dttZ9r4tm2ieeNX9GPqWTrvoxTwac+9V8sXbofp5xy6pDH/PSnP+b++3/DV796w5DHTDWTMa+G+3dVW5vEcQZmlLemPYgiIiIiIjJpzjnnI4Muo+3PNE0++tH/mqARzWxaYioiIiIiIpNm7tx5vPWtJw97zIknvmWCRiMKEEVEREREZog//vH/JnsIMsVpiamIiIiIiIgAChBFRERERESkRAGiiIiIiEy4LW0DVZFWZMeJ/j0N0ZZzVLQHUUREREQmnGlamKZFR0cLVVW1WJYNbMen2u1i4HkKVGVHm+h5FdLT04lhmJjmyO0shqIAUUREREQmnGEYNDTMoaurjfb2TZM6FtM0CYKZ0QdRJs5kzCvDMKmvn4WxHSlEBYgiIiIiMiksy6KurokwDAiCgHASknimaVBXl6S9PUMQKIsoO8ZkzCvDiDLz2xMcggJEEREREZlkhmFiWZNTGsM0DVzXxbYLChBlh5nO80pFakRERERERARQgCgiIiIiIiIlChBFREREREQE0B5EEZlhNmR72ZjL0FksEBISArsmq9gtXTPZQxMRERGZdAoQRWTG2JjL8KuNr1AIAtxSha+AkDWZHurcOLVubJJHKCIiIjK5tMRURGaEvO/zp9YNhGHI/ESKWfEks+JJZsdT5AOf/2vbSDAZ9dVFREREphAFiCIyI7zQ08HGXIZZscSA+5pjCV7N9tBdLEzCyERERESmDgWIIrJDBGHI2mwP/hTMwvlhyNPdHVTZ9qDNY23TJAhDerziJIxOREREZOpQgCgi260Y+PypdT2/3fgq67O9kz2cATbmemktZKl2httjGNLjK0AUERGRmU1FakRkm/lhwJpMD491tLAxl8EAXujtZH4yPdlDq/BCTyemYWANkj3sY2LQWchP4KhEREREph4FiCIyZjnf45VMN091tbEplyVuWcxPpCgEPi/1dnFAbRNpx53sYQLQ4xV5sbeLumGzhxCzLFoK2QkalYiIiMjUpCWmIjJm929aw+83raXXKzIvkaIplsA0DOKWTd73ea6nAz8MJnuYAKzJdJPzPRLW8N+HxUyLjkJhyoxbREREZDIoQBSRMcl4HpvzWWbFEtS7ccytlm3WuzH+r20j929cQzGY3GDLD0Oe6W4nZTsjHhszLQqBT6/nTcDIRERERKYmBYgiMiZdXp5C4OOag//5SNkOcxMpXurtYnM+M8Gjq9SSz9KSz1EzwvJSiCqZemFAj6dWFyIiIjJzKUAUkTHpKvUKHKxdRB/LMDEMWJ/bUtG0GAQT3oi+t9S2YrjiNP0ZoAyiiIiIzGgKEEVkTNoKOSxGDrjStsOLPV3lvoh/ad3An1s3jPfwKhQCf8yP6VIGUURERGYwVTEVkTHZmMuMWPAFIG27bMhlaM1naYjFeTXbQ1exQH0sThCGNMeT1Lnx7R7P5nwWA2iMJQbcl/V9YPRZS9e0yhlSERERkZlIAaKIjFrO9+gqFqgaRdEXyzAICdmQ68UyTHq8InHL4sHNayn4PntX1/G6WQuGXao6Ei8I+OPmdXQW8+xf18R+tU0V9/d6BWxj9AslHMOkq6heiCIiIjJzaYmpiIxKGIaszfZSCAJipjWqx1TZDs92d7ApnyEMoSmWYHYsyYJkFS/1drMht31FbF7JdNOSz5K0bB7vaCHnV+4fzHjemAJE1zTp9Ty1uhAREZEZSwGiiIzKo20beGDTGmKmOeqsX5Xt0lHMs7qnE8eMHmObJo5pYhoGj3e0bHMrDD8M+VdXKwnLosp2KAQBPaWiNH16/SK2OfoMpVNqdZFVoRoRERGZoRQgisiorMn0UGU7g+71G4ppGFgYtBVyJLfat9gUi/Nyppu/tW8iHEV10yAMK6qgvtjbybpshjo3jlFaztrdr8BMEIZkfX9gBrFgQmsCNiWjn81JKMWojmniBQEZXwGiiIiIzEzagygiIyoEPrnAI2WNvPdwa/VunLW5HhqS1RW3W4ZJcyzBk50tzE2kWJCsGvY8z3V38GqmmyNnzcMLAv7atokq2ym3sDCA7n4FZgqBjxcGpIzSn7kQjKcaMdZWDzh3OL+TcJ/W6DyGQc4fe/VTERERkZ2BAkQRGVHW9ygGIa4z9kUHMcti91TNkPeZmLzc2zVigNhayPLPrjZCQnq9qFjOgmS6fL9rWrTkc+Xf876PFwTYZmnMG9IYa6sJHR8aM+CU0obr0xhraghn90JdjjAMyfiVS1VFREREZgotMRWREWV9jyAMsMZQ8GW0ahyHlzLdAwrMbK2jmKfOcVmT6SHrF5mbSFXcHzMt2gq58nLVfOATEEYZxryF8XQDISHhfhsJl24mXNxa+mkBwHi6EYiWxfYqQBQREZEZatoEiH/5y1/44Ac/yKpVq1i8eDH3339/xf35fJ7LLruMQw89lP3335/zzjuP1tbWSRqtyM5l1EsuR99ysCxh2eR8b9iKpkEY0lUokLQd5iRS1Lnx8tLSPnHLotfzyJYCzXzgY1A6Zm0VhmfBgi6oy1WefHYvYbKA0eNCMSqg01lQL0QRERGZmaZNgJjJZFi8eDEXX3zxoPdfeeWV3H///Xzta1/j9ttvZ9OmTZx//vkTPEqRnVN2pKItOQvjL3Mw/jy3XPBltAzDwDYMnu1qZ3VP56AtJnK+RyEIcM2h/2Q5hokX+nSXKpnmA58wJNp7uDZavhru0jnIAIB0KSDsdXBNk071QhQREZEZatrsQTzqqKM46qijBr2vu7ubH/7wh3z5y19mxYoVQBQwHn/88TzxxBMsW7ZsIocqstPpKRYxqczY1W9q5+CHngDP4JH64+kJouqmYUsSZo2tv2Gjm2BttodXMt0cM3sXFqYqC8lkfI9iGOAMs8Q1qmQKHYU8zfEkBd8HQmhNYOQcwvoMJIcIdFOlJaU9Lk7aIrv1/kURERGRGWLaBIjDefLJJykWixx++OHl2/bYYw/mzp3LY489ts0BojmG/mnjrW8sU2lMsnMYzdzq9gu4llXuf2gVPA773eOkSstCV+Z/xa/2fBt0J6Iqoc3ZMY3BsSzmJtOsy/awuZBl96rKoja5wAcDzBECtrhl81K2i31q68mHPpZpbKlaOr976P6N6ShANDIuMcui2y+QD31c0xrT85At9DdLxoPmlYwHzSsZD9N5Xu0UAWJLSwvxeJx0Ol1xe0NDAy0tLdt0Tts2aWhIj3zgBKurS418kMg2GG5u+W0GNVacVCyG3+Iy97frSOUyrIvvhm3mmZVZx55zH+P5lw7BaEkQtxKYiTGuNQWanJA2CtTVpzANgw2ZXroKBZy0QyLukkrHhn28nbBpzWWx0jZkLKqtFMbmJMR8krv7GObgjw+aIAdYuRjJqjidPR7x6hgNSf172176myXjQfNKxoPmlYyH6TivdooAERg0MzCa5ttD8byArq6xZUHGk2ka1NWlaG/vJQi2/XmJbG2kueUFAZu7ekmYFr3FPDzWwC4dzwPwzAG7YNTkmXXvOuY/8QLPLdoH46Vasn+sg6WboWps1UCNIGRdvpsXN7RR68Z4rHUjq3s62DVVRS5XoNcYeW9gVybHn15ey+qeDmIvN0BoEM7pJpMZ5rFGAQjxO20yvQWyuQLrWzpxUvq3tq30N0vGg+aVjAfNKxkPU3FeVVcncJyRV0ftFAFiY2Mj2WyWnp6eiixiW1sbjY2N23zeqfJm9hcE4ZQcl0x/Q82t3mKRgu9TbTmEfki8w6OxsJ7eVIKWvRJAgu7qFA2bO0gfsoae2jhGR5zwr7MJj3hlTKWwLMPADwI25TJU2y5rMz1szmVxDQvXMEf1pU/ctHiiowVCqFlfC0A4txuGe6wZYiQ8jKxDUATCqNei/q1tP/3NkvGgeSXjQfNKxsN0nFc7RQWGpUuX4jgODz/8cPm2F198kXXr1rF8+fLJG5jITiDre1sKtvS6zM6tAWD9giYwDDAMXt5jLgDz1q0jPGgdYX0Wo2BDR3zM17NNg/XZXrK+R2cxT8y06CzmR70fsN6Nk7JsZnu1UXGa2uyWIjTDSfVVMnUByHgjVG4VERER2QlNmwCxt7eXp556iqeeegqANWvW8NRTT7F582aqqqp4+9vfzuc//3n+9Kc/8eSTT/LJT36Sgw46SBVMRbZTzvcpr+DuijEr9woAG+duyc6vWzALgHmvbgIDwuYeAIxNpXX3XS7G47MgO/KihWo7xku9XazN9pD3fWbHk3R7ReLW6AJE0zCoclzIlY5P9wsOwxCG+hav77heB8cw6VKrCxEREZmBps0S0yeffJLTTz+9/PvnPvc5AM4991zOO+88LrroIkzT5Pzzz6dQKHDEEUdwySWXTNZwRXYa2cAjLLW4MLpcGgvrCYFNs+vLx3TWVdGbTlDf0kk8kyPXZMFTwOYkLG7FeLkGY2Ma8hbhARugYEFi8Axd0rZpKeRY3d0JBtimyZ7pmkGPBaK+i4N91VWI/ryFbnSdqo4eDn3wMRKZPH9Z9Ro2zG+qODxMFDEAI+vgmBZdxbHtnxQRERHZGUybAPHQQw/lmWeeGfL+WCzGJZdcoqBQZAfLeh6Ukm6x9oCU301XdRrPdbYcZBisXTCLRU+9zNxXN/HC4l0Ia3IYnXHCHhfaox6JRkcCHtgVAiMKFBsGLwSVtm1aClncYfoeArCmCuPpRpjfRbhnG9j9soP5UgYx5kMQcugf/kFdWzcAB//+Mb594sEU3OhPoGkYzE0kSk/YxjFNer0CQRhiDtUaQ0RERGQnNG2WmIrI5Oj2CjimAQHUt7UD0No0MKO3bpdmAOa+sgmAcFYvAMYLdRh5mzBeJDQDCAwMDIzn6suB59ZqHJfWQo607Qx+AIBvYKyuwwgNjFdrMJ6cVXG3USgFiK7P/Jc3UNfaxYaGap7ffQ7xoscpm/OcNG8PTpy7GwnLpsuKxkvOxjVNCkFAzvdH+zKJiIiI7BQUIIrIsLq9AvF8DOMfzdTno+Cvral2wHEtzXUUXJtZ61uxih7M7iE0wi37EJt7CQ9/lfColwmrcxjdsWgJ6iAsw2RRupbkcAHiuiqMgk3YkCG0AmhLVAac/TKIez71MgCPLN0Fc+VBANQ89wqNsQSz4ykOrm+m0y5lM7M2jmFSDH1ygQrViIiIyMyiAFFEhhSGId3FIqkXmzFaUtR7GwBoGySDGJom6+c3YQUBzetaIO5DY2bL/XW56DY3INwjykQaTzduCeTGwjcwXorGEO7ZBukChm9Crt+q+VIGMVXoomlTOx3pOKm9dqdpwXz8+lqsjS0YHV0A7JaqJuXaBK4HeRsjNAjD0vJaERERkRlEAaKIDKkQBBQCHyvnQhhS723Es0w666oGHFsMAv7ZHAVtc18tLTOdFwVgISHU5rYc3JAlnNONkbcx/tEcFZoZTt7C+FcjdEctKIyXSi0smnqhugDpUouKHrff4KMAcf66tQA8s0sTe1TVAeDvtSsA9svRfZZhUuu6+LECRmiUglaDrDKIIiIiMsMoQBSZwYpBwKMtG8gNkSnL+R7FIMDM26T9NpyiR3tDDaFZ+acj63tsyPXSMr8Z3zCYs2Zz1E6iMRv1IZzdA06/KNCAcN/N5UI2bE4NP9D1aYy11Zh/mg+vVsGLtYRmQLi4FYBwsAAxbxPaPvNfKWU995hPYywqROPPnwOAtWZD+fAGN04xVjpPzsEwQorBSJGriIiIyM5FAaLIDNbjFXi2u4PVXR3l2zbkenmuu4O12Z4og+aDUbCpD9cDlfsPc77H2mwvncUCB9U3s6R5DmuaaojnCjS0dESB4MHrCZdtHnhxE8KF0XWNjcMHiEa/paPm003REtDd27e0yigFiEYpw4hvYPgmSaOd+tZO2tMJmnfZtVyR1J8/OzpXvwCx1onjxUsBYtYmDKGoIjUiIiIyw0ybNhcisuP1eEW6iwX+1rKRw6tn86+ONv7Z2UpAiGtaLK9twipEhWLqvY1AtP+w1yvSVsjjmhaLqmrZt7qBhlicnO/x7IImdt3UwdxXNtE6q274ATRkowIzm5PgGZVtKvrLRGMIGzPg+ITNvRX7G8tLTHtLAWJpX+P87AsAvLDrLBaktiyLDZMJgroarLYOjEyWMJkgbTt4bqlQTc7GMgzyyiCKiIjIDKMMosgMlvE8HNOgJZfl52tf5PGOzdS7MeYn0uR9nzXZHsx8FHTV56J9ha0NNbQW8uxf18RJ83fniKZ5NMTiAMQtm3CvhQDMfnXjyAOwQmjqxQhM2JAesu0F2VLT+2UbCZduhqYM9G9P6AaErge9TrSfsW//YXcUIBYXR60s+itnEddG40zbDkG8CICRtTENg7z2IIqIiMgMowBRZAbrKhYwDZPGeALbMFmQrCJeCqRqHJeOQh4n72KGHjXZdrKJGO0Jh4RlsbSmgRonNuCci3ZZSHddFbWdvcQ6ukccQzg76j9oPtWE8dCCKJNYcQCQdQgdf+gMI0SVTEMjChLzFkmvi/pMKx3pOI277DLg8L4AsW8fYsp2sJKljGE5g6glpiIiIjKzKEAUmcHaCjlipknacal23Ir7qmyHjmIet+BSV9iMGYa0NdaQCwKqHbccSG4tYdm4e+8JQOPLGwY9pkJjhnC3dsJEESPrQGui8v68FQV+yeLw56kuLTNtT0DBZl52NQBrFs6hKT6w32I5QFwbjdE2TVLpUnCadUoZRAWIIiIiMrMoQBSZoYIwpKOYJ2YO3ofQMAwWJNIki3HqC337D2vJ+h7NgwRc/Xl77QbArqV2FxAVtCkMFnAZEO7ZHhWdAYy2fgFilxtlBGFLQZohhLOiTKSxMY1RsJiffR6A1j0XlIvT9Bc01BG6DtbGFijtNWxIxvAdL8ogYlDQHkQRERGZYRQgisxQOd8j5/u41tCN6h3TxMjZ1BVLAWJjDT4h9W582HMHc2dRrE4zr6WLWHcUuG3O59iQyxCEQywTrS8ViOkLEFsTmI/Ox/hXU/R7YqQMYp4wXsToiJPaVKC+uImOZBK/qWHw4w0Dv7kRo1DEbOsEomW1fb0QrYJDQVVMRUREZIZRgCgyQ/V4RYqBj2OM8GcgZ1Nf2EhIVKAGGLAcdQDDwF+yFwDNq9fihwGWYdAcS/JqpodXsz10FPKVj4n7hKkCRsaFnIVRWmpq5EoVTIcIEFvyOTblMgSE0BwFo/PXrwXg2fmzSDrOkMMMZkfBp7khasORsG28WHQdO+/ghSH+UAGtiIiIyE5IAaLIDJXxPQwjWko6pBBivQVSfjddtWkytolrWlTbA4vTbK0vQNztpQ30eh7VjsuKxjnsmqriNdUNdHvFgdnE/lnEjq2ylMmBS0yLQUAh8Kl2Y6zJ9hDM6gFgfvY5AJ7ZrX7IJbQA/pwoQLTWR0thE5Zd7oVo5V38MMDTMlMRERGZQRQgisxAxSDgld5uKntFDHagSUMuyq61NNSwOZ+lxnZJ2iO3UA2aGig01DKroxdncxtz4ylmxZMcN2chB9Y3MyuepK2Qq3hMWAoQjY0p6HYJjX4B5CAZxJZ8jl1TVRwzawFx06ZYnSW5cDV1xRa6alK01iRxhwsQZ88C+mUQLbvc6sLKOQRhiBcqQBQREZGZQwGiyAwThiGPtK7n6e42ZsUSwx+ctakvRFU+X6hNsDBVzeFNc0d9rWC/fQBYsno9zYlU+XbbNNmvtpF8KQNY1pAltH2MllTUG7EhS9iYIUznIVa5H9ALAgJC9qmuJ2U7JG2bnO+zS09UnObVhXPAMIgNs8cyrK+pKFSTtGyIR5lKI+fgh6EyiCIiIjKjKEAUmWHygc/LvV00xRI45sj7DxtKAeL6xmr2q2uicaSgsp/isr0JLJNlr2ymYau9jrskq9i3uo4NuSx+X5bOCmFuT/mYsCZHuHwD4WFrKYaVweSmfJZdU1XMjqcwDIN6N07B89jtuTUAvLjHXAyMYZeYYhj4s5swih5maweOaeGkorGYOYeAEE97EEVERGQGUYAoMsMUgwA/DEcuTgMYGZO64iaKlk1XTZrEEL0Ph5SMU1y8O27Rp+G5VyvuMg2Dg+qbmZ9M0ZrfstQ0nNe15aCaXLQK1ogCwo25LFnfo8crYBsmB9bNKrewaIzFmbOuhWQmx8Y5DXSm49iGOewSU4CgtA/RLO1DLPdCzNkYoCWmIiIiMqMoQBSZYfKBjx+GWMMVpympbevBDj1aaupwbJvEMMs1h+IfuBSA2P89AVtl4xzTYlG6rrLfYLpI2NhL6HpQ07/SaciuqSpa8zl6PZ/965qo69duo9qJsfSF0nLYRQvwggDbNIlZw/+Z80uVTK0NLdFzTjgEtgdZG0K0xFRERERmlDGmA0RkuisGASHh8NVLSxra2wDY0FBD0raxRpF13Jo/bzb+3GasdRuxVr+Cv+euFffPTqRwTYuc7xEvZSjD/TZCaERLTvvZp7qeJTUNVNsuVVu12qjtyTJvXSu5uMu6XWbhBT4xyxpxzH2FaqwNUQaxynHZFCvi9iYwPYuiMogiIiIygyiDKDLDFAIfY6TqpSX1XVFWbV1Tmmp76H6CwzIMCiv2B8B95G8D7k7bDnOTKTqLhS03mlQEh1E7DIO07TAvkR4QHAI0/v1pzBCeXryAwLLwwoDUKJbEhnXVhDEXc2MrBEHU6iIWjcXOxbTEVERERGYUBYgiM0y0nLMUfPU60c8QGjJR+4dXZyWocUbufTgUb6+F+A112Gs2YL3w6oD7d0vV4IUha7M9FAdZ0lkMAlzTHHIPpJHJEn/iGTzb5PE955Yfk7RGEdT2FarxPMyW9q16ITpaYioiIiIzigJEkRmmEPiEoQEhGH+dA4/OISz0yygG0U+sp0Da66LLqSUbs0ltawYRoiziUYcAELv/Edgq6NotVc1xs3dlfrKK9q16I/aNOW7aQ1YkdR/+G4bns3bvhbTb0XPxw5CUM7ox+32FajZsjoJQJxqf4VmqYioiIiIzigJEkRkmF3iYBlA0MfJ2FAS9kIp+/2cjxu92w/zt7jQ+Gh3fmmrCgPL+wG3lLdoNb/5srE2t2E88U3GfaRjMS6bZNVlFYZAlnYUgoNpxB903abR34fz1SULXIXfY/gSEhGFISBj1NRyFoK9QzfrNJCwLoxQgWp5FPvCHe6iIiIjITkUBosgMk/W8qIJpv6WlxefS8NA8jHXVYAWEZlAuUNNa00gIY29xsTXDIH/0SkIg/rtHMHoyAw5piCUwMEp7DqGtkGNttpdC4FPrDtx3CBB74BGMIKBw6HIaGxpIWQ69vgcj9UDsp3+hGse0sEtZSMu3yPsKEEVERGTmUIAoMsNkfA/bMCETBVyhEUbZw4JNOKebcNWrhLt10JhfB8Dm+nosY+j9f2MRzGumeOAyjFye2C8fHND2os6JkbYdMn4xGmspmM0GPtWD7IG0n16N8/QLBNVpCofsh2taLExVsyGXIWZaVA9SzGYwYW0VYTwWFarxfRLxLQFiQRlEERERmUEUIIrMMFk/CrqMTCmDuGc79l49hIeuJVy6GZwAe1Y7dcVNZM0k7XUxnGEKxIxV/rWHEtRU4Tz7Is5fn6y4zzZN5iZS9HgeYSl4bHAThGE44PpGb4bYL/8AQO7414IbPZ9dklXMjid5XfN8GmOJ0Q2qr1CN72O2tJOMRX8aTd+ioAyiiIiIzCAKEEVmmJzvYZv9lpjWZ3GXdUHNljYTjR0tmIS0xOZRSBZImDaOuYP+XLgO2ZP+jdAyif32YayX1lTcPSeeohgE5Et9DPeprqPejVfuJ/R8Ej/8JWYmS2H5vvi7LSjfNS+Z5oS5uzEvkR7TsPoK1VgbNpOKR9cyPYucMogiIiIygyhAFJlBioFPMQyj5vF9GcSkN+C4pg2tAGzcK0WuqpeqUVYDHa1g7ixybzgSIwhI3HUv1qvry/fNTaSIWxZthTw1Tozd0tXsXV23pc2G7xP/+W+x1m7AnzOL/LGHDzj/tmQ7+wrVmOs3kShlEA3f1BJTERERmVEUIIrshHK+x4u9nXQW8xW3F4IAPwiwiQLE0PHLLR36m7UhKlCzeY9qiqFPlT26vXxj4e23D/nXHoZR9Ejc8XPsfz4LQNJ22CNdQ0cxz7xECssw2b9uFjHLglyexA9/ifPUaoKaKrInHwf2jln66vdVMt3QQjLeb4lpEKgXooiIiMwYO+aTlYhMKetzvfx2w6vYpsny2ib2TNewJttDrRvDC0OsnIMRGoSpwoDH2oUida2dZJMxeqqT+LleqkZZ7GWsCiv2j5aa/u4REj/9LcVnXyL/2sPYPVXD6p5O6mPx6MAwxH72RWK/eQizqwe/oY7sKScSplM7bCxhTRVBIo65qYVU6S+j6ZlkfY/2Yp6m0e5nFBEREZnGFCCK7IR6vajNQ43j8pe2DTzZ1UpPscC+1fWEhJilCqYkiwMe27ixHSOETbPrwTAIQ4O4Nbp2EduieMh+BE31xO+5H+fp1ThPr2a3BXM4oS5FfbqLWCaL/dIazI7u6Ph99yT3b0dCYmBV0+1iGASzm7BffJWazm5CIwWeSUhIaz6rAFFERERmBAWIIjuhzkIexzRIWDaz4ynygY/txFify2DnHYxnGwAIqwts3Xq+vLx0dnSMYYQkzPH9U+HvtoDefz8F98//wPnHU9ivrmfXVyuP8RbMobBif/w9dh2/ccyJAsT4plZCexaGb+IaJuuyvexdXT9u1xURERGZKhQgiuyEOot53FLVUcc0cUyTMAxZk+2l+ZndMTIu4axemNcFW4WIs9ZHBWo2za4vtZowov1/4811KKw6iMLhB2JubMFsaQffh0Qcf14zYSo57kMI+u1DNOwAo2iTMl025DIUAx/HnIDXQURERGQSKUAU2ckEYUhXsTAgmDEMgyrbwc0kCM2AcNnGAWWqYpk8dW1d9KQT9FYlKYYBtmHssB6Io1Ja6tkXrE2kLYVqNmHWQZiFZOjQHuRoK+Rpjo9/kCoiIiIymVTFVGQnk/U98oFfziD2V2vHMD0LXB9M8IKAZ7vbyXlRq4vZ6zYDsGF+ExgGXhDgmNa47kGcSsLqNEEyjrmpDceKXhPDtzCA9kJucgcnIiIiMgEUIIrsZHq9IsUgwDEG+eddLAV6pdYWucCnzo3TkssCMHtNFCA+2VjF+lyGYhiQsKyob+JMYBgEs2dhBAG1XrQXE8/EMgzaC/nhHysiIiKyE5ghn/pEZo6M74FhYBhbl58BiqV/8m7U/L0Q+FTZDgCduSyz1m7GNw3m7rOYuGXRXsiPSw/EqaxvmWldviW6wTOJmTab89lJHJWIiIjIxFCAKLKTyfoeEA5+Z6GUQSwFiHnfZ24ixe7VtTS0dBIv+gS7zGOfxmYWVdWS9T2qx6kH4lQVzCkFiJkom4pnErcsurwChcCfxJGJiIiIjD8FiCI7mc5iHmtA84qS8hLTKNDxCalxYxw1dwHH9ETLTv09dgFgt1QN9W6cdCnDOFP485oBqOveEN3gmcRMi7zv010c2DdSREREZGeiAFFkJ5HxPJ7v6eDVTPfQbSkK0T/50I2CQQNIWg5pxyHx4loAvFKAWO/G2S1dQ2qGBYhhKolfX0sy00XM7wXPxDQMQkK6vcJkD09ERERkXKnNhchO4B/tm3m8s4Wc75OwLBrc+OAH9ssgBqUehynbJuzoxtqwmaC2mrC+tnz4qsa5mIPtZdzJ+bvMwWrroLGwnle9egAMDLqLChBFRERk56YMosg054cBT3e3YxsmC5JpGmOJwQvUAEa/PYjFIMA1TVK2g//EcwB4i3aDfo+dicEhgD9/DgCN+XUYXvRn0jVNFaoRERGRnZ4yiCJTWBiGbMxnyi0WFlXVYQKb81l6vCJNsQT5wKfHKzJ7NE3c+2UQ84FPwrKJWzbB489Edy/efZyeyfTi7zIXgMbCekJvPwBipkVbIUcYhkMG4CIiIiLTnQJEkSmqGAQ81LKOF3o6CQkxMMpB4K82vkxP0WNJTT2zYkkCQqzRBC2FvjYXAYXAZ04iBb1ZghfWEKSTBKUCLTNdWFNFMZWiprcFO+vhAXHLoqNYIOv7JG396RQREZGdk5aYikxRz3S18Wx3B02xBPMSaUKgxyvSVSyQ83zmxJOs/v/s/XeQXOl12H9/nxs7Tg6YGeSN2IANwAbuLpe7pCQGUZQoyvL7WrKtVH7f10m2yyrL5VCOsmRbzirrV5JLsixbtiiZEimK5FIMyyU3ERu4CTlOzp375uf94zZmMJgMzCDt+bC2CHTfe/tpoAfdp895zqmVOV0v4250kH0rgxhYAY04ptfNYZ08C1oT37V/SXnp+50/MIACuivpPERbGQRJTD2WTqZCCCGEuHVJgCjEDWjab/JGaZoux8E2Wp1H0VTDgEoYAArXNIl0wqzf3Hin0cBEoxmPatzb3sU9bV2Yx84AEN0t5aWXilr7EHtrkwAopVBAPZIAUQghhBC3LqmTEuIG89rcFO+UZwFNwVocUm8rg9nAI9Yax0gzfV12hgm/Qc+lXUtDA/XdQTA0ur8Ge8rpV0E6vQ87JmOaPNDRixWEmGdHIJ8lae27Eylj/xB8E3prU6B3ggKNoiYBohBCCCFuYRIgCnEDmQ883irP0G7Z5C7LCmZMk2m/SaI1GTP90c1ZFvuttqUXKbuoehpYqqqLns1BYEJgohKDJBtiGunwd+vEaVSSYN57OxgGJPqaPM+bgerroGlm6fKnsMqaqENhK8Wc713vpQkhhBBCbBspMRXiBjLWrBPrZFlwCGkXzXoUUo9CMqa5+kUa6bl6qILOB6j5LKruoFr7DxMrxlYGtmFgv3sCAOPQPVv/ZG52SjHZ1Y+Bpu9MFWh1Mg0lQBRCCCHErUsCRCFuEInWnKqVyJsrJ/Zdw8RPLs4vXD1AVM1WgNjVRD8yit4/T3JgevFxrHS8harWMM+NkhTzGLft3tonc4uYHuoFoH88bVTjmia1KCRI4uu5LCGEEEKIbSMBohA3iPFmnRnfo812VrxfKQVard9otNEKMHMh2Bp92zzsrKJVWj5qeDYZ08R67xQKiO67E2VI99KVlO7oBKC/NAG6FaTHsTSqEUIIIcQtSwJEIW4Ab8xP8dXJC9iGgbnGyArHTPcOrqmVQSS7NIjRj4yinYjqrilypoX9TlpeGt1351Wt/ZbWmaPkdFAMy2SnQwyliLXm2zNjvDk/RUMCRSGEEELcYiRAFOI6i3XC0co8OdOiz82ueWyfm6VnrWM00LTQdgz2ZQ1n2gP0hy5Q7ynTU65jTs0S93Wj+7qv/kncolzDYrSzVWZ6rgTAjkyWWhjw3fkpvjB2lvlA9iQKIYQQ4tYhAaIQ11ktCvGTmLy1BU2F/bRTKbnVM1uJhp0nhgEI773j6h/zFuYYBuf7uwDYMTndus2k08mwK1ugGgYMN2rLztNausEKIYQQ4uYkAaIQ11ktCkm0XrO0dMMaK5eXXspKYnqPnUMbBtH9d139Y97CLMNgeDBPgkFfaWLZGJCcZXG+UVkSEAZJzBfHz3G8Mi+BohBCCCFuOhIgCnGd1aIQzRYFEgsBYrTqIbePzGD5AdGd+9D53NY87i3KVgbNYsyMO4Ab+3TNlJbcX7QcZn2PShgw2qgRJgnTXpPxZp0Xpkc5Wpm/PgsXQgghhLhCEiAKcZ2VAx+Trekiqpppmapeo8T0vtMTAIQPyuzD9VjKQBua8bZdAAyen15yv20YRDrhtVaTobP1MmPNOoZSZEyT0eby8lMhhBBCiBuZBIhCXGczQRN3rcH360mAyRzqrT4435HetkqAWChV2TVdJmwvEO8duvLHfJ8wDYUCxvoGABi4ML3sGEcZnKyVSLTm3fIc5xsVipZNxrSYCzxiKTMVQgghxE1kC7piCCGuVKwTSkGw/uiKNahTXahWYKjtGL2rAu3+isfuazWnaRy8G2PdgYrCVgagqfW4VK0OOqolcrUmjcJiJ9leN0usNYZSjDbrGAp2ZPJorZkJPOpRuOpsSyGEEEKIG41kEIW4ji52ML2aAJGZdB9hct8k+oMX0LfNE+iYKa9BPQoXGqVYYcT+k6PEhiI8KM1pNsI2DBSKpOAzntkLwMDw1JJjlFJYhoGhFHnLwlQKs3VbrDXVMLgOKxdCCCGEuDISIApxHdWjkFgnWMYKP4oJcKEN9dIQ6vndqHfSeXwMF1Gv70B9dwBKLqruoHMBDNTBTIPBShiQs2y8JGbUa9CMIzqOnsEJI07t6ccqFq/dk7yJtdkuBcumkWkwntkHwOBlAeKlupwMOzL5hd9rralGEiAKIYQQ4uYhAaIQ11GQJCu3p0lAHRnEON6DqrmowEKNF8EzUcd6ULM5VCmLeqs/Pb6ruey6+wptfGpwP4PZHOXA59DJcQCOH9iDKeWlG2IqxWA2T81qMpPtIzBceidmMcPVu8ReyjIMZn1vm1cphBBCCLF1JEAU4jqKkmTlO4bbUeUMuuiTPD6C7q2nt08WUCh0VxNtJii/1bX0sgBRoylYDkXb4cN9u/jzvkNbtcFIbxvNvs7tfEq3nB3ZPBEanY+ZcPdgJpqB0eXNalaSMUymg+b6BwohhBBC3CAkQBTiOgr1CgHibBZ1uhOtNPq+KSgGUEjLFNV4AQDd0YSdlfTXaOi6PEulyJlp8JgxLbreeA+Ac/feRta0t+fJ3KK6nQwGCp0PGM3eBsDOcxMbOjdjmlTDgHq0+tgRIYQQQogbiQSIQlxHUZJw6RAEdbwL4/UBVGzAvhIU0sBCXwwQq256YDFA7y6jjQQ6PLAXA82LTWlyrUDQGJ3AOj9G0tFG38F72Z0tbPvzupW02y5ttoOf8ZjI7CYyLQZGpjGjeN1zXcPEiyPeK88t3NaMo9Uzx0IIIYQQ15mMuRDiOgqSGOPiLsTQgOF2tJWg75mGvvrigYXLGp0UAsjE6CdGwFwabARJgm0Y5Kz0x9t98XUA/CceZiAvzWk2y1CKHZkcI5kmWdXLeMcQu2bPs2N0mtE9O9Y8VylFj5vl3cosGdNkNvAYaVa5p62bhzv7rtEzEEIIIYTYOMkgCnEdeXG82DBmKo/SCvpr0F9nSfeaXIhWaWZQmwlkW01SshE4lweI6diMjGFiTM5gnTpP0lYguu/Oa/CMbk3dbhY/m5bxjhT2AxsvM82a6eiLV+cmOF+vYKB4rzIrZadCCCGEuCFJgCjEdeQn8cLAejXR2l+4o7b8QAPIt7KIhYCVW5+mgiShw3ZRSuG0sofB4w+BeRWzFt/nipZDlPXRaCaMfUSWycDwFMYGykwBet0sQ9nBsCozAAEAAElEQVQC/ZkcXU6GZhRxulbe5lULIYQQQmyeBIhCXEdBkqQZxPkMzGXQbgSdq4xFuFhmWlx7rl6QxHQ4DsbMPNax0yT5HOHBu7d45e8vRcvGMBVkI5Igy/hgL3YUs2N05oqu1267HK3MESQbCzCFEEIIIa4VCRCFuI6CJCY70o1xZDAdXzFUWTU7qNv91v+vPVcvRtNmuzgvvo4CgsceAFu2G1+Ngm3jGiZxLv07GKkfBGD3qfErul7RsqlGAVOejMAQQgghxI1FAkQhrqMgicmMdwCQ3DsF+0urH7yzQnJoDAZWKEEFYp0wF6TBY+d8FevdEyS5DOFD927xqt9/TGXQ5bhUd06juxqM5/YSKJfB4Uns2uazgEopDKUYaVaX3ScdToUQQghxPUmAKMR1kmhNECcYTQftRDBYW3NvIQbpvMMVjpnym0x4TfKWzdO9Q+x95Z00e/jkYXBk7uFW6HGz1Is19KEJ4g+NMNK5B5OEne/OLj0wNMBff79nm2Vzrl4lvKTMdLhR5fNjZzhTK3OuXmG0sfKXAUIIIYQQ20UCRCGuk0gnqKaVdi7NX3lHS601YZLwkf5d/NDgfg7MN7FPXyDpKBI+dM8Wrvj9rcN2SS4OrbQ05+5OR1zsvTC85Dj12gDq27tgIr/m9fJmWmb6bnmOWT/N/F6oV5loNvja5DBfGT/PS7PjxFoyikIIIYS4diRAFOI6iZIEVWsNvs+v3nimGUfM+h6zvofWaYTixRHl0CdMEhpxRNa0GMoWMAD3Gy8D4H/wUelcuoUKtg1KL/x+dn+emlmkpz5F/lwCw21Qt1BVF5UYGG/3w3Ru1esppWi3HL47N8lXJ84zH3icb1Tpy2TZmc2zK1egHAbM+GvvORVCCCGE2EoSIApxnYQ6wWykAaJeIYOYaM1os04lDOnJZIm0xktimnHETOBhKINJv0E9ChnI5LANA+vEWcyxSeK+bqJ777jWT+mWVjBtLGUQXtwjaMGFnnQm4p7X5jGO9aBOdAOgWwG/WiNABGizHXblClSjkFfnJmnEIXnTWtijqDWMNevb96SEEEIIIS4jAaIQ11CiFzNQUaKxGk76m8LyDOKM36THzfLDQ/v56I49dDouXhzjxRE7Mnm+v383ljKoxxGD2QJE8WL28JnHQa21oVFsVtayyRgm/iV7Bs/fNgjAnsYx0Bo1k5aV6v3z6QE1Z0PX7nEzjDZqGEqhLvl7K1gWZ+tl4kteN0IIIYQQ20kCRCGukUYU8dWJ83xraoRKGBDpBLuRSe+8LIPoxzGR1hzu7KPDSbOMPW4WP4nw4pheN0OH47K/0I5jmHS7GZxXv4cxXybav5t4/65r/fRueaZStDvuktmFtX2K2XwvhbhClxoBSBsO9dfRZgJVBzYQ22VNi6xp0uNkltxetG3mA49pv7Glz0UIIYQQYjUSIAqxzbTWzPhNvjU9woVGjePVEs9PjRDGCVbTRVsxOItBx4zfZCZocqCti6FcYeH2LsclSjQxmo5WIHF3sZPBTJ4uL8R58TW0YeB935OSPdwm3U4GP75krIWtOXewD4C98Vvpbb2NtNNsMUAlBjQ3NoOy08ngGEv3jJrKQCnF8cr8VixfCCGEEGJdEiAKsY1infCdmXE+P3qG0WadoWyePjfLfOhTqkQYiZFmD1vx3MXM4ff17+ax7h1LrlW00nJFhaKt9eu+TI4fGNhN7huvoMKI4NEH0N0d1/Ipvq+02+6ycs8L+wcJLZNd0xcw7xxB3z6X3nGxbHiDZaar6XEynK1XFjqdCiGEEEJsJwkQhbgK5cBnwltsIhImMa/NTVKPQmKt+e7sJO9V5uhxMwxl8xhK4RgGQRwzX21lorLR4vVCn53ZAnvybRiXZQELlo1pGJhKUbQWZxs6wxPYR0+RFPIETx7a3if8Ppe37GVzKCPb4sL+Qaw4YU/9BDhpExtd8NMDqlcXIDqGSaQ1x6tzV3UdIYQQQoiNkABRiCsUJQnfmR3jG1MjlMM0GJjymrw+P813ZsZ5aWact8oz7Mhkl5QOqlYjkobfChCtxTl3fpKwr9C+4uMVbBvXMMmZFrmLAWIU4X75+fTcD38AHHvFc8XWyFsWCrWk2RDAmbvSPZ/7TwzDxfuKrU6mF0eZXIVeJ8OxyjxjzdpVX0sIIYQQYi0SIAqxAbUo5LW5SZ4bP8+M3wTgRHWe0UaNWhhyZG6SWOuFkQTn6mXeq8wxkMkv21d2URK1UlGtALEZR2RMk4HMyqMRTGXQ4Tj0uJmF7KLzndcwZ0tE+3YR3XP7Vj5lsYK8ZeOaSzuZApS625nraae9VKNnqrVf8OJsyw02qlmLa5qYSvH6/NTimA0hhBBCiG2wse4JQryPaa15bW6So5V5lALbMHmws4fX56fpsF2ypsWZWoWd2RLnGxXabYeCZaNgyciCS7mGQRSACWgroRT4VKKQe9o6F7ODK+h3c9itgNOYmsV5+U20beF97GlpTHMNOIZJ0bKZ9Bp02C5Fy174Oz591y66ZsrsPz7MTH8X2Bpd8FE1Fz2dg75GGihGCuzNR4y9bpYxr85c4NG/ypcIQgghhBBXSzKIQqxjpFnjZK3EUDbPQCbH2XqZ78yMEyQxRdvBMgyKls1r81OUQ5+8ZS+bZ3c51zAJL062MGOqUcjTvYN8oGdwzbUc7OjlQFsXJAmZL34DlST4H3oM3dG2hc9YrOVwZz8PdPSigeFmfSGjN7x3gNC22HluHMdLs4f6jnTfoDrejTrRhfrOLtQ398JsdtOPezFrXGqVMwshhBBCbAcJEIVYQ6wTXp+fJmOY2IaBY5gYSjHSqNGfWfyQ3+G4NOIQhcLcQCbPNU3iVgViZMa4psnuXNu659qGka7j1e9hTkwTD/YTHrrvqp6j2JyhXIHHunfwqaH97M23MR+k3UVj2+LcbUOYiU73IgL0NNG9dZRno853oJo2CoU63XlFZae2Mpj2ZCaiEEIIIbaPBIhCrGG4UWPab9B1yQDzfjfLrlweUy398RnK5NmxwdI/xzAX9iAGRkSuNSh9I4zJGZznX0WbJt4PPgOG/BhfD1nTYm++iH/JnsBTB/aggX3vnSMIWlnEAzPoffMk90yTPHkBnQ9Q5QyUMqtcee3HnPAay5rkCCGEEEJsFflkKcQlvDhitNUpMtGa9yqzOMpYMnJCKbUsOLx4++WjKdaS0+n4g8AI6XLcNUtSF0QRmc//WVpa+uzjJD1dG348sfV63SyWYRAlCVprau15hod6KHgBXadHqEUBuDH69nkYqkIuQu8tAaDOr9ytdi1Z06IWhdSicP2DhRBCCCGugASI4n0l0ZrRZo3xZn3ZfV4c8cL0GN+eHiNIYmb8JhPNpdnDreQkaTOawIjodDa2J8395iuYM/NEe3cSHr5/W9YlNq7DdulyXKb8JmfqFaphwJE7032kHzw9SamVRVxiRw1txzCTg3Bz/wTbhkGkk4WxKkIIIYQQW+2W6WL6n//zf+a//Jf/suS2ffv28eUvf/k6rUjcaGKteX5qmLP1CgrF3W1dhElMpBNsw2SiWacU+pjKoBIGzIc+CRpru0o44/S62oxps9cfpm6eGcb57lvojIv3yQ9L19IbgFKK3bk2prwmd7V1crZeodzbRrOnk8LMPEPTJdhTWHqSAfTWUWNt6JkcDGxutqFCMed77MoVt+x5CCGEEEJcdMsEiAB33303v/mbv7nwe3ODe7rE+0MtDDjfqNHrZkm05mhlDkulTWVircmZFjuzBcaadSphwKzXxNrOIKyVPYqtmLy19o+iqtbIfOHPAPA+/iF0Mb996xKbsr/QRtG26XdzjDfrJBr8Rw6S/dLzHD4xxsu7BrEv+5JB96UBoprKoy8GiJFCvd0HhTAtQ63bUAzAXLrf0FKKSrRCZlIIIYQQYgvcUgGiaZr09vZe72WIG1QlCki0XhhcP5Rd+eWvlKIU+kz4DbLmNv6IxGnwaVpQsNbIIMYxmT/6KkbDIzh0H9Hdt23fmsSmtdsu7bYLwJ3FDkpBgLl7J8kL32Xf6CxvlCokXR1LT+ry0GYCM1loWpCNYCqPmsnDDKhz6fF6ZwV9YGbJqbZhUJUAUQghhBDb5Jbag3jmzBmeeuopPvKRj/ALv/ALTExMXO8liRtIOfDZSPNH1zAYadSoheH2BoiRgTYSMrZJbo3HcZ9/FWtkgnhHL/6Hn9i+9YirdrCjl8e7d4BpEh6+HwXc887Z5QeaGnobqMTA+PZu1PEu1FSaFdZFH+1EaKVhMg/J0lNtZdCIou1/MkIIIYR4X7plMogPPPAA//pf/2v27NnD1NQUv/Zrv8ZP/MRP8IUvfIFcbmOjBy5nGDfOHq+La7mR1nSj01oTab1Q3jcdemRMY91uoTnLph6HhMS42x0gmgntjoNlrvxdjXn8DM4rb6IzLv5nPorhbP165LW1dfKGTd5Omw9Fh+7DfPF17jw7yZlDHs3CZY2I7pxDuzGMFuBCOyjSrOJjY+lXd6/1o2ZzUM5Cl7dwmm2a1KOImHTv7I1KXldiO8jrSmwHeV2J7XAzv65umQDx6aefXvj1XXfdxQMPPMCzzz7LV77yFT796U9v+nqWZdDdXVj/wGuss/PG33umtWbO9+jObKwz53Z5a2aKV6YnGMoXeHJgiPp0TFdbjrzjrnleJrEZb9TJaId8Ye1jr5ROoJkY6ExEd1t+xddaMjZF8PmvAeD8hU+QvW1wW9Zy0c3w2rq5FJh87F7aX3iTe4+f5+iHHrj8buipE7ZD+FY7aDAHPNy29DUX7goIZ3PYpSLO7sXUt5PYBM0G2fYM7eu8lm8E8roS20FeV2I7yOtKbIeb8XV1ywSIl2tra2Pv3r2cP3/+is6PooRKpbnFq7pyhqHo7MwzP18nSW7sIdljzRqvzEzw0YE95Cx7xWNindCMYwqr3H+1qmHAN0cvkGjNm9U6tZrHbKNOj5OlHqw/IqBU98iaJnW1heMEKk5aMrirAoZGAbEREzZDZmcv62RZb5L9rT/ECEKCDz1KfWAALj9mi9xMr62bTem+u8m+9Ba73j3H2/fsw8+uEND1+ZDJozyLqLNKVGu95tojFB2EIy7hPh9aX0Bqrak2fSZmKkTu9f0SZi3yuhLbQV5XYjvI60pshxvxddXWlsW2168+umUDxHq9zvDw8FU1rblR/jIvlST6hlzXpU5USow3G8x6Hpnc4kusGUfM+E125YocK89zqlbiE4P7MLehU+jbpRlqYciuXIFCHHO2ViHRGlMp9AY2IvY6GRzD3NCxG1JxUK8NoCIDfaENfdscCkjMGBtz6d9pHJP9wy9jlKuEB27H/8DDcA3+zm+G19bNJlcscvT2IR44Nswd75zh7cN3Lz9IAfdNwlQe3VeDi38FTgTtHqqcIZlzl5SZajSNMCKxb/y/L3ldie0gryuxHeR1JbbDzfi6umWa1PzKr/wKr776KiMjI7z++uv89b/+1zFNk0984hPXe2nvK+XQ52ytTKw1M/5iBjbRmu/OTvDNqRHGm3Xeq8wx4TWY9hrbsoYTlRI9bjrg3jVNbMPA2kQNeN6yl40muCKBgTrejToymAaHXQ1UbKBOdQEQmzHupeNYtMZ97gWs4XHiHb14P/iszDu8iWVMi+DRB4gMxW3HLmA2PeYDHy++rMlMp4++a27Zv8h6VxkAdb7jsjsUXhKhtd66LzGEEEIIIbiFAsSJiQn+zt/5O3zsYx/jb/2tv0VnZye///u/T2dn5/Ve2vvK2VqFMEnosB1Gm4slkWfrFY5XS3hJzKuzE8wFTZSCC43qtqwhSOIlHUh73Sw7MtegBjww0v8gnWv3+gDqQrq/LNk/h354Am0lqCQ9RpvJklmLzkuv47x5lKSQo/ljHwP7lk3yv2/sHxjk1B07saOYXd87hW0YTPve+icC9NfRmQg1k4PaJeXYCvw45q3yDEcrc9uzcCGEEEK8L90ynz7//b//99d7Ce97jSjkvcos7baDbRjMBh7NOMJSBm/MT1GwLNpshwuNGkXLJmOanK6XebCzd2E24ZWKteYbk8PkLIvhRo02e425glul5KK+14++fQ6G0tJA9coQxAb60BjqeA+q6qI7m+iDk+C05hXkAyin2c3EirFamUrre0dxn38V7dg0/9wn0MUbr0mS2DzHMMk8/TjJqTEOnRpj17NP8bnyOPUoJL/eHlwjzSKqk92oM53og1MAmEAtChhrNmi3be5p797+JyKEEEKI94VbJoMorr8T1RK1KKJoO7iGiZ/EzPkew40q84FHh+1iKoPduSI9bpa8aVMNQ743P01ylWVyFxoVzjUqvFeZoxT6FLe6+Y0mHWjebH2nkoB6rxcVWKhjPdCwoOyiPBsVmqiXd6Lms+lMuwcnFoNDSAPEi5c1EyxlYJ48R+ZLz6MNg+aPfpRkx5XvnRU3nu6eHqJD92FEMV2vvsNdhS7mww02QNpVQbsRarIAc+kXC7ZhMOk1KYU+07531T8/QgghhBAXSYAotkQzjnivMkeXk2bulFJYyuDVuUneK8+RMa2F+YMXm9Iopeh3s7xZmuG1+Snmgw2W3V0mTBK+Nz9DxjDZmS2wJ1dcd9bhpngm6qWd6UDz7+xKS/3Od6DqzkK5qHqvNy0DBLQVo1DoDg99aByspR/edSFc+HVixRQnZsn+0VdRWuN98lnifbu2bu3ihhF84CG0Y2O/+S53ahNTGYRJsv6JpkbfOQuAOt4NGixlECQxQRzTjCNqUbjORYQQQgghNkYCRLElxpt16lFIwVos7ex3s5RDnwvNKp32yvPaXNOkx83wvflp/mj0DN+cGtl0oDjarDHtN+lyMlf1HFajTnalwaATobRKS0fPdKCVRj8yii4EqPksnG8HQB8eJ3lgAv3wONgrBACXZBA7G3Ps+eOvo6II7yNPEN1757Y8B3H96VyW4PBBVJzQ9+rb9LgZqlGw/omQ7kUs+KiaC00L2zCoRxEZ0yRKEirhBq8jhBBCCLEOCRDFFQmTZEknxjO1Ms5lXT+VUuzI5NiXKy7ss1tJ1rTYmSvQ7bicrJZ4ZXZiU2s5WytjGwbGdnT7nHdRE0W0E6EfH0XbMWoui0oM9L55KITou2cA0ttyARQD6GuAuUrZXyH9MN8ezvCJt7+DGYT4TzxM+OgDKx8vbhnBYw+gMw72W8c54EMjipYdE69ULqqAztYXJxUX2zAohT4Fy0YpNh5oCiGEEEKsQwLEm1yYxHxvfprSBoa/b8aKH1Iv8VZ5mq9OXKARRVTCgNFmjY5VsoQbLfd0DJP+TJZxr7HhLGItChlu1ujYpqY0F8dR6DvmwI3Re0vp73MB7Et/TaeHHmh1Y+3ZwNgON6YYT/PBmT8mE4VUHrmP4OlHt37x4saTcfE/8DBKa+589T0MpYj1YpZ5PvAYadSY8ZvMB96Sn2vdlv5alV0cw2QomyNv2VjKYNprLnuoMEk4VSvxTnmWmmQYhRBCCLFBt0wX0/ejRhTy7ekxTtZKlKOAp3uHrvqaWmveLc8y3KzxAzt2Y6rl3yF4ccTxSolS4PPizBimUgRJsnSe3xVyDJNYJ4w2akx56SiMO4urjyoZa9bw45iMm73qx16m7KJK2TQYHGiN7NhVIYkV9NeXfL2i75pF50MYqqx72WK5ytPT38BNPN7au5fupx+lTWYdvm+Eh+/Hef1d8meGufu2Po52abqdDBnToh5F3NfezYRXx1AGs0GTNu2k2fH2VrBYSb+IuVjOnTUtpv0mw40qvW6WTGu8y3uVWV6ZnSBKEqz+Xdxtd12X5yuEEEKIm4tkEG9SsU54eXac840Kg9k8Z2rlJYPpNytMYo5X5nllboKXZycYbdQYa9ZXPPZCo0o9CtmdK3C+UeV8o0rfFgZoedPiWHWeF6ZHeWV2gvIa2dHz9SqZLQhMAUiAsx0wnT4XdaG1p3B3OS3xg7Rs9LYSFC5rCmInaUbRWbvpSMdMmWe/9AqZ2ONU+z18+9A+rKsc8SFuMpaF/8zjAHzozbPsy7Ux7Xt4cYRSijvbOvmRnbfxycF9FC2H+sUGNLkQbSVpgHjJyyxnWswFHl8eP8+3pscIk4RS4PNWaYYuJ0PesplcIcMohBBCCLESCRBvMkES81Zpmu/MjHGqVmYgkydrWsStzN+Vtruf8Bq8MD3Ku+VZut0MlmFwslpadpzWmmOVeXKmhWUYDGXz7MjktiR7eFGb7TDjN2m3Hfwk4Y3S9JIyvIuiJGHab5IzN5EIL7uoY91QuawkVadjK4xTXajjPemw+8k82o5hsHaVzyjVMznHM195FdcPOX7vXl76oUGUq7EMyR6+30QHbiMe7CczPccPTDW4rdDeKpV26XIymMrANtKRMNWLAaIC2nxUYkB9cYyLZRjsyhUYzOY4X6/w0uw4z0+P4icJBcsmZ1pMePV1y8aFEEIIIUBKTG86lTDglblJLBT9bm6h+Uuvm+FErcSOTI672jZfSjbne6AUQ9k8kI6iuNCaX9h5SXfQZhxTCv1t2/OXPrbB3nwbABnT4kR1Hi+O6HQylEOfp3uHyJgW5TDAiyM67NyGrqtOdaLOtspVR9qgswlNG5wYmhYqaP04NC2Yy6K0Qveu0WxmE/pHp3ni669jxQnvPHg7Rx+4nTiOMDCwVijjFbc4pfA+8gT5//E53Odf5f6f+mEuNKrsLRQXxsAADGULvFOeRWud7uVt82EuC5UMFJdmsU1l0OtmON76Amcgk/5c5CyLSa9JJfSX/CwLIYQQQqxEPpnehBQwkM0vydo5hkmH5fDq3NQVNawZ8+pkjaXXi5KE8/XqkuNqUUAQx9jXKKixDYOhbIFJv8G7lVnO1SucqpUBKIc+idYb616qgfPtaCNB70rPV3M5VNNGlTMQmujOJrrNQ6FQ44X0tOLVN//Zc2qUp772Glac8K0H9/PNu4dIgERrnO3qvipueMnOHYQHbsOo1Rl68wQPdvSyJ9e25Ji+TJasZdFsdQzWrQ64qmEvux6kX6jsyhXodjMLgaapDBI0pXBrG1kJIYQQ4tYkGcRbSNF2KDdrzAYeHc7KHUVX4sURM36TgrX0Q2eb7XCiOs+97V3YreCxHocotfHOpFvBVGm2FNIM6tvlGfbn25gPvI2vo2GnYyg6mui7Z2FvCe1b6UzCyAArAUujTnWm2ZnZVlay7So+VGvNge+d4r43T5EoxXOP3MnMgX10AaPNOkXLJruFpbni5uM/8zjWiXM4L7/JQ/ffhb5sL2/GtNifb+NoZY6cZYPbGovhb+51o1DM+h778u1btXQhhBBC3KIkg3iLUai0XHQT5gMfP4nJXNYspWjZlMOA0Uua1dTCkOu5k6nNdqiFAW+VZpjwGhsPsKqtkthiq91/Jk67Qlo6/bWVPivdul9phUYvzCzcLBUnPPLtt7nvzVMElsnnPngvMwf28UzfTj7YO4SpFJFOcKRBzfua7mgjePxBVBTh/tl3Vjzm9kIHCkWYJODG6Y2bDBDzpsWpWokpbwNjWIQQQgjxviYB4i0ma5pM+Zv7EDgfeCiWZwWVUjiGwZlWSSfAXODhXOc9c31ujncqs8yHHtkNNqhRrQDxYgC4qsIlGcNcuBA4rkZrvawxUNho8MGvfpe9p0ep5Vw+930PcfsDB/nYwF6KtkPBssmYFo04wjXkR/D9LvjAwyQdReyT5zBPnV92f6+bZVeuwFzgXZJB3FzxR4fj4scJX528wJla+YqbWQkhhBDi1iefTm8xWdNiPvQJknhDxzeiiKPV+VUDrTbbYbRZW9gDNRd463csTWA704yuaVK0bCphuCzruaBuob6zE/XdARgpQrVVcrvensJchDZaHVPXCyaBca/BSLOGbn3gdmbm+fifvkL/xByznQX+z0ce5J4772J/oR27FQxahkGb5dCMI8kgCrAtvO97CoDMV78NYbTkbqUU97R1E2lNaMRoM9l0BhGgP5PFRPG1yWGem7jA8co8F+pVKuGVZcmFEEIIcWuSAPEW4xomfhxT3sCHPq01r89PMet7dNor71nMmhZ+EjPtNfHjmHoc4q4V1MQK9eIu1Bs7rvQpbEi77bI/37bqHkR1shvVcFClLMbRXpjLopWGfLji8YsnslBWqi/bfxgmCdUwWMi+1KMQSxn0ujmm/SZD58b5+JdfpbPmcWZnD5/98AMc2nvbQkfWS3W5GcIkwTVkG7CA+I69RLfvwShVcF5+Y9n9g9k8txXamfKb4EaoyIR48/uAOxyXHZkc036Db8+M8uWJc7w2N7kVT0EIIYQQtwgJEG8xhkr3zm0kKzDtNzlRnWdHJrtmsxcDxZhXoxaF+PE6++Ym86imDbNZCC97eTUsiFQ6UuL53XCmY4PPapPmM6jpPDoTktwzBaR7CskHGxtZ0dnaw9mxuJdzLvCY9puEWjPtN9FaMxt43N/Rw2OdvTz25hme+Oab2FHC2OMH8X70ozyzcz+3FVZuCtLpuJjKkBJTscD7/qfQlonz0huoufKS+5RSPNDRg6kUiXNljWousg2DXjfLULZAl+My5TdlRqIQQgghFsin01uQQjHZrOPF0ZrHjTbrrVELa3/QLFo25+tVRlullGuNZVCjbQtroHxJVrLkLmQW1YV2VGChLrSn5ahbTJ1OZx3q2+dhsIbubLaeyMZK6fRt8ySPjUBHmkGMkoR6FPFM306e6hkkTBKm/SY9bpZ7DJfbPv88h48N49kmX3j6PpKnDrMr38ZQrrDqY1wcYG5JgChadEcbwQceRsUxmS8/D5cFbZ1Ohh43S+S0suBXGCBeKmOke2FrUmYqhBBCiBb5dHoL6rRd3q3M8fnRM6vORIy15kytvGy0xUryls186PHK7DhFe43jazaqtDiIW823fh0r1Lu9KK1QpSwMt4LI0EyHfm+lmo2az6KzIeyogQJ99wy63UMPVNc/H9IsY9viB+bpoMnefBt7W0HfjmweP0l4phzT9dt/iHVuhLCnkz/62CNU9w7RZjnrPkTBsslaEiCKpYLHHyLu6cQ6P4r91rFl9/e7OQKr9dqsuKj3eiC48teQZRgkWm+oJF0IIYQQ7w/y6fQWlLPSYdnlMOBCY+WgaMZvUgo9ivb6wYyhFIOZPEPZAu2r7FUE0owgLAZirWBRne1ANRx0/pIREq1ujGpi9SzbplQc1OlO1NlW9nBXJd1PCFAI0Y+OQffmxn9Auu9Qa3igowdDKUyleKitix87NsGez38do+ERPHQP3k/9GAf27OOetq4NzWZcyCBe546w4gZjmXifeBYNuF97EVWtL7m7280Qt0pM1emuNGM/snyP62ZoDeXwKuZ9CiGEEOKWIp9Ob2FFy+ZUrUSsl9dxXqhX0DoNeDbCMcw1S0vxTBgroq0Efdcs2oqh4qb7EEfa0EqjHx5H99XTX98/mXYLncov36u4WQmot/pRZzpRE4X0uoMbzBauYy7w2Jkt0NsaYG7MznPHZ7/K7rdOojMOzU//AP7HPgS2xf5iB7cXOzZ0Xdswabfdhc6mQlyUDPUTPnIQ5Qe4z72wpNS0zXaIWyWmKk5fO6q2/pc8a3FNQ+YjCiGEEGKBfDq9hbXZDvOBz5TXXHL7jN/k3coc3e7q2cDNUuc70kYwu8pgJ9DhoRIDdbQnLSXtq0MmTgPDJy9Apw87aqjYQL3Zf3V7EceKqKaNzoRpp9KdlXQNVyBIYqb99M8r0ZpQJ9zV1onSGvuVN8n9t89iTkwT7dxB/Wd+nOju26542Y9172Agk7/i88Wty3/60XQ24omzWMfPLNzebjuY2cte29WrCxCzpslM4EmjGiGEEEIAEiDe0i5m/IYvKTNNtOb1uSk0esND5tcVKxgtoo0EvTvtvqgHagCoybSEVO+qtBYFZNMZjfruWXTRR5WyqO/sgrMdaZfTzUjSElYAfXAK/ew59J1zqx6utWYu8JgPlpebBknMpNcgSBKiJKEaBXTYLruaEbnf/WMyX38J0PjPPE7zJ34Y3V7c3Fov02Y7sgdRrMyx8T7+DADuV15ANdIvLWzDpJi/rDlNw76ikRcXXWxUU5V9iEIIIYRAAsRbXtGyOVevLJSZzgUeI80avc4WNoeZzqXlbn0NcFrZjR11kgPTaDS6zVsyMmKBqdEPTaC7GyjPxjjVhXphN5Q2kdmczaE8G93dgHY/bTCzymflRGuGm3UypoVlmFxopJ1ZR5t1Rpo1pn2Pe9q7KVg2XhIRhCGPnxij7bf+EHN0gnhHL42f/nMEH3gIJLAT2yzeu5PgwQMYjSbuJV1Ne9sXM4baTNKOwVdRZmoZBrFOKMk+RCGEEEIAMqX7VqBZNSgqWDZjzTozvkd/Jh3onqCvLnMVKtTZTvRQFfLhYpawv7b0uJ1VdHcTrGTV9eHG6Icn0HU7bWYzXoQzneiHJza0FDWRlmjqDew59JOYnGXx8YG9xEnCyVYXV1MpIp3Q6WTodjJ8LRqGkTE++eoJest1tGHgP/2oBIbimvM//ATWuRHs42eJ3jlBdP9dtGdsZsw4/VJmsArD7WmZafuVB3gGilk/7dYrhBBCiPc3CRBvZpFCvdMHZTft0pldPvfQUAoUTHp1+jM5LjSqZNaZe8hcBnIhZOIV71YXOlDnO2Aqjz40BjNZtJVAzwqNLlZY04ryIfqeaZjJpaMvAiMNLNeKx2IF0/m0KU3v+k02vDii3XLT0loTHursXX5Q0+MDL7/HwNGzADSG+tCfeJakp2tjz0OIreQ6eJ/8CNnf/SMyX/029d2DuJbJ/G2jdFoZsDRquB1Vc1iygzABdawH5jNgaPSh8cXs/gqypslIs8Yh+rf9KQkhhBDixibpkJtVqFBHBlHT+XTofGsf3krypsXZeoVGFDLlNdaefXi2HeO1QdTbq3xQTIDRdO+datqoF3ehEgN661f/ajKA/no6L/HtPtQ39sLYGmMwZlqlrb2NtLR0HV4c05fJrHxnkmC//g75/+f3GDh6loZj8dXH7qL0//qkBIfiuop3DRA8/hDKD8j8yddxDYNGXwmGalBoZQ2n8qiTnYsdgYfbUaNtqIaDqrkwu3ZJec60KQcBjSjc3icjhBBCiBueZBBvRhrU0V5U1UV3NtNxEmNFuG0e3OVZv4LlMO41eHF2HD+J6TWzy693ohvmM6hquv9PlTLomg2Fyz4wzuRQvoXuaEJoQt1Gt3noPaWteWr9NdRIG2oul95wvBvd01gx+6GmcwvnbEQMdDjLA0TzzAXcr72IOTOPBir33cHv3taNW8jz6AbmRAqx3YIPPoJ15gLWhTF63jiK2pEl0RojF6HdCOVbcK4Tag763mnUmQ40GvaWUOc6UeUMeqC+6vVd0yQIYuYDn9xaXyAJIYQQ4pYnGcSbzPkjNjveuAM1WUBnQ/QDk7CzkmbdVski2oZBv5vlfL2Ka6zwnUDdRl1oTwNOO14IuNTo8i6dF2/Te8rox0fSrqGPjUFxizIPnR7ajdJZiR0eKjJRJ7vSfZYX/7uo4i6cs5JKGDDcqKX7LrVGAW3WYsBnzMyT/T9fJPd/vog5M0+0e5DGT/8Y/ieegVyGHje79uxHIa4Vy8T7oY+gTYP2F15jYL5GpNO9vfrxEZLDY+hcgJrJo76zCxWZ6R7godbe3PIGGj9pOFkrcbw6T5hc+dyZRMZlCCGEEDc1ySDeRJJEUxoxcZo22onQ90+BnaD3lGG0iBpuR/c2oLu57FzXNBnKrjJzr5Rm1fTuUjoiIjDTAfbjRbhjbunXCBU3nTXY00hvN5Z/GPTiiJFmnX35NszNBliKdL9UZEA2hO/sQo21QSUDTQvaffTD45CoNHvpRitmFxOtKYcBD3T0MO7VGWvWsQ2Dou2gShXcbx/BeucESmuSznb8D3+A6I69oBQZoGg59Lpb2OlViKuU9HXjf/gJMl/9Nh998Sh/8onHIJdNX/+Ohz44Ba8OQmSguxvo2+bSfx/sGKpuWh6+xleC3W6Gs7UyJ6olxot1nugZwFlvv/Jlpv0mL8+M81j3DnbkZManEEIIcTOSAPEmYhiK+3/I4/PnzzJYzC52BnVj9IEZ1Nv9qHd60U8Nb2hP3kXqYoDY5aXXdGPoaaCm8+jpPPS3StNCAxVY6Hyw5gfNucCn3XZoxtGy/Y5aa5RSVMOAchSwM7vCHsP8YjZSHx6Hd3rTfVQAc1n0TA7sGIVCt63cuXEu8OjL5Hi4s49Jv8Gfjp+j24/p+uqLOG8dQyUJOuPiPXmI8NB9YC79IHxXsYNuCRDFDSY8dB/m+VHaT5zl8Vfe4/VnHoaLX8IUA/QTw+nP8KUNptp91EwOXXXX7HSaNS2yWYsoSThRnQfgg72DmGpjhSZzgcefTV5g2mvSn8lJgCiEEELcpCRAvMkYJiR2vHxsxI46eqyBms2hKw50bqLl/cXys/bFUk09VEkb4IwW0RcDxHor2MutXk6aaE2Cpt12KQXekgBxLvAohwG7cwVKYYBtGPhxjGuukaUoBujHRtE1Bxo2xtv9qNOdC2MtVgoQE61pJjFPdfRgGQZDgeZH3h5hz/HzmHGCdh38Rx8geOQguCvvMTzQ3r36moS4XpTC+8SzBKPj3HZ+ivmTI5y9c9fi/dnle5B1m4eayaU/5xsYhWEZBoOZPCeq8xRtm0OdG+tsOtqoUQtDBrN5TtXKPNi1tEtwmCTYMiZGCCGEuOHJu/UtRF8cRl/dxKD5wEA1HHQuWFqq2d1Myzdns9BsBXCNVrCXXz1ALIcBXU6G/YV2gkv2MQVJTDOOGcwWGGnUcU2TPjdLeSPDuQ2gLYD+Orroo6puOmYDoLj8/HIY0O1k2NMMyXzxGxR+/X+x/72zKMPAf+Jhav+/nyR46vCqwaEQN7SsyzsfeYREwYOvvEdmprT28a2gUI0XINpYybdlGPQ4Wd4rz9GINjaqZrRZI2ua5E2LehQy1lxsijPerPOl8bNUw2BD1xJCCCHE9SMB4q2kFSypzQSIrfJSOi4LtAxgsIpCpR1SAdXKIOrc6h/yqlHAXcVOepxMup+w1bBi2m9yV7GTR7r6sAyD2/Lt3FnsXBJErkuBvnMWjUZ5reR32+JaGlFEmCQUJmf5oW+/R/E3fh/7rWNgW/gfeIjGX/1Jgg89BtlN/PkIcQOKBvt58b69WHHCE9/6Hma4RhDX1Uy/WKlkUK8NpHt5NyBrmvhxTD1evwGVF0fMBE3ylo1SCtcweKc8ix/HlAOfF2ZGGWk1jBJCCCHEjU1KTG8lxVawVN14ZkxNpvuEdPvyTqB6oIo624mayqNvK0Gjdd1VMoi1KKRg2ezLt2EoRcY08ZIYA4WpDO5r76bddjjc2ceufBHHMHFMk2YcpcPrN6LLgz1lON+RZjhbYz3iMKLn9AUeOjnG4GxafpoUcviPHCR86F7JFopbimtZfOvuIXZNl9kzMc/hF9/hlacfWNyPeCkD9KExeHMHqpSFl3bCrgq6qwlOlI6yWeE0pRRKQS0K1m3YNB/4eHFMt51+4dTjZhlt1vnO+CgnZ2aphSFZ02KiWWd/oX0r/giEEEIIsU0kQLyVuHHasbDmrNuxEIDpLGqiiHaixUY0l8pH6GyIqrloz1x3D+J84HO4q29hjlqXnWU2aBIlmr35NjqcNHP3QOfi3qS7ih18rzTDUDa/4WYY+vY5CA10u0+m4bH/+DB7j18g76UBcrOjiPrAw4T33QXW5rowCnEzcA2TQGu++cS9fPrL32X32XHmeto5ee++lU+wddod+EwnnO1AnUv/A0jumIW95RVP0yjqGygxnW1lBlUrQDWUos/NcmRmEivUDGRy1KKQkWaNWCcb/lkXQgghxLUnAeKtRAFtftqopu4sZhRXkoA6mgZq+p4ZsFcp9expwHA7zOagaaUB6ApjJbw4wjVMbit0LNx2T3sX35waIdIJdxQ7lp0D8HBnP7Uo5FStTLvl0G47Cx8yV3+aCf1t77Hv5AiDF6YwtEYDtf07MR59iHjv0MqZFCFuERnDxFIGXZ0dPPf0/Xz6udc5eOQ4pa42pgdWabBkgL59Hoaq6Kk8qpRBTeVRc1n0KgGirRRz/spzRi/SWjParJO5bCRGxrS4PZ+jUQ/QWpO3bMa9BnOBLyNkhBBCiBuYfI17q7kYFFbWKamcz6B8C93dgN7Gqofp7vQ+NVJEJcaq5aXlMGAoV6DNXnzcvfk2Pty3izsKHQxkcyueZxsGT/YM8mT3AJZhMNysrdrIolCucf+R4/zgZ7/JB7/2GjvPTxI6Fm/cvYs//cwzJD/+SeJ9OyU4FLc81zTJ2xY7c0Wi/h6+9eidGFrz+PNvkq2vs88vG8GeMvr+yXSm6Rol6a5hMhcuDRC9OOJMrUwjSv8tGGnWGGnWlvzsX3Tplz2GUmg0M7IPUQghhLihbTqDODk5yTe/+U0mJibw/aWNTZRS/MIv/MKWLU5sni76KECd6EYHFuwtrby/aKq193Cl0tJLdXlopVGVVjObQhq8xVqTaL3Qtj5IEvbm25advjtfZHe+uOZDZEyL+zp6uKutk6OVeV6ZnaDY+rDpNn12np9g95kxeqZK6ZqB8aEezt2+k7FdfZwPmjzTN7Bu5lGIW4VrWLRbLt1Ohl43y9t7+thVanD7sQs88Y03+MbHHiNZr7zaAPJBWkLumwv7eZc8jmlSi0KCJMYxTLTWvDk/zfdKM+RtizsKHUx4TRzDwDHWL+fOmRYnqiXuKnZiyM+rEEIIcUPaVID41a9+lb/zd/4OSZLQ1dWFbS8dgi4B4rWXaM2k16DDcdNGLz0NdH8NpvIYp7pIehrLS001MJVHo6F3nQDRbB0zVUD31tH70wHaE16DWCcMZPLEOsE1TXZkVs4SbpRtmNxR7ODE5ChDR89x24Up+iZmUWkjVGrFHGdvH+L87UM082mJmh/HOIZx1Y8txM0kZ1k82TtIp5Ohw3GJ0bz5yAE6Ziv0TJd4+OV3efWJ+5gPA0Kd0Gm7K88bLQZQc9Msors8s+caJnOBTz0KCYyE0WaNdytz7MjkiHXC2+U5tE4YyhY2tO5222HCazLlN8gaFrZhkrNkp4MQQghxI9nUO/O/+3f/jieffJJf/uVfpqOjY5uWJDYqShLGvDrdbpZZ32NnrgCWRh+cgnPtqJPdqIkCuji39MSyiwosdGdzxf2EM36TehyyO1tEKYW+bxodzkImXnhcgD25Ns41KmgNtxfbyVv2smttlCpXsU6dJ3viLH/5/ChGazxGI+Mwum+A4b0DzPZ1LCsfrUQBA9n8QsZRiPeLLifN6rdZDmio6ZjvPPMgP/DFl9h3apSxvIN/8A5sQzHre/Sby79E0UUfNV5MZ6f2LA8QL5aFfq80w4VGlSCJyZt2K9g0FxpSbZSpDBTwXnmOSb/B/nwbj3UPXMnTF0IIIcQ22VSAODExwT/6R/9IgsMbgNaacb/BbYV27m/v4Uvj55eOi+ivwclumMjD7XNLykzVcFoKqvvqS65XjULqUYhjmnTYGapRmO4rMjWYi+VnpdCnP5Plg72DOHMGbZaz+db1SYIxNoV1+jzWyXOY04tBbJjN8OZgB+f37mC4q0h3Nrtq+ZoXxyuWtgrxftHuuPS1uoSeVjHf/vDDPPulV3jie2fZt2sPo3v6mWiOrXxyq7pAVR30KtdXKE5U5+lxsuS2oLlMh+1wrDqHo0xO18o80NFLZqNjboQQQgix7Tb1rvzQQw9x9uxZnnjiie1aj9igCa9Bp+3yWPcABcvmjmI7RyvzDGVbf6XZGN3hoUoZdNmFjtZ+0ZK7ONpisLpwvWoU4icJu3NF7mnvZsJr8Nr85IqNJ7w45q5iFznL5tm+XRtbsNao+QrW+RHMc6OY50cxmovNL+LuDuLb9xDdvpfaQA/vTQ1zsKMHp17lZK3MUDa/wiU1SkFnK5MixPtR1rT41NB+GlHIlyfO857yaTx6Jz/80jEGvvJtwj/3MeDiz8tl+/42MDt1IJNL9zVv0Z7BnGWzxyxioBhp1hiT2YhCCCHEDWVTAeIv/uIv8nf/7t8ll8vxxBNP0Na2PHOTzUr78u2UMS12ZQugFA+091BolXgdaOvidK1MNQwWyi11fy1tZT+ZR7cCRHUybYGv75gDazFn0IhD7ix08kTvIACOYfLm/BRhkiw0ooG0vNQ0DPoy6/w9a40qVTBHJrAujGGeG8Go1BbvNgyivUNEt6VBoe5a/ICYBT4xsA/bMOiwXUabdca9OlnDwk9i+twsSim8JCZjmmmJnRDvcznL5gPdA7w4M0bh/gNUrAJtLxxh5xe+QcdHDhK4yfJ9iHaSzjptOOhQgb08j7gdzWQuzkF0DZOT1RI7MrlNl6terhlHvFOe5f72bslICiGEEFdhU++in/rUpwD4+3//76/6bfLRo0evflViVQXL5qMDe5fd3ulkONzZz7dnxsiaFpZhpM1ljvekMwyZA89MM4rZEAZqS86PEk3vJY1eut0MA9kC035jycyyIIlxDZO8edmHuTDCnJjGHJ3AGJ3EHJnAaCzuadJAvKOXaO8Q8Z4h4p0D4Kz+gfBiUNrpZPiBHXt4ZW4cL44xlKIUBnQ6Ll4c0Wat0nxDiPehgWyeT++8PQ3qnuwnnK9gv3OCH3rhXb7wkYdwcys0c2rzoWlDJQPd13YERZeT4UKjyudGT9PlZOhxMzzc2Y95BUHpqWqJ785NECUxj3dLV2MhhBDiSm0qQPylX/oledO9gd3Z1snJWolqFKRll9kYXQhQNQfdtGCuVYrZ01iyJzHRGlTaYfBStxfbGW5Ul9zmJwndEbgXxjAmZzAnZzAmZzBmSyi9mH3QhkE80Ee8cwfxrgGi3YOQvbJS0G43w8d27AXgZK3E81OjdNgOXhyzvyDdS4W41ELGTym8jz+DKlXoGZngmRfe5rXvfwRtLB1/qzs81GQByu41DxAtw2BXrkA9CpkPPEYaNdptlzuLnRs634sjXp2bYGe2yDuVWdosh/cq8+zMFdmVW3u8jhBCCCFWtqkA8Ud/9Ee3ax1iC5hK0Z/J8V75kg953Q2oOTCTQ5XSAE1f9iHQi2OypkWn4y7eqDU7A7h9pkxfdZruWpNiuU5+vkqxuXT+JUBSzBPt6CXZuYN4qJ94Rx/YW1fmdfFD7758G287M5TCgFjrhU6OQogVWCbNH/s41n//Q/aNz6FffIfXnrx/aTfg9lb5eTmzaqOa7Za3bPLYmMrnyNwkOzL5Ffc/X+5srcy75TlOVcvEOmFXrshIo86870mAKIQQQlwh2ahxi+lyMsSXfMzTPQ3U+Q7UTA7KLlpp6GyikgS3GZCrN2kvVdgRJBSOT6MqNYxyFWO+TDGM+NRl108UNDrbsAf6ifu7Sfp7SPp70Llrs/fUMUwe7OjlG9MjKMWGPkQK8b6WzVD98U+gf+dz7D81SjOX4b2H71y8v+ijjSTNIGqWVBdca+22y3CjxoRXX/dn249j3i7P0mmnM2Avxry2oahEwZrnCiGEEGJ16waIn/nMZzZVVvoHf/AHV7UgsTrt+VBroKIYkgQSjdIJxAlEESoI2VGrcvfUFH1qFiuKsf0It3wcd9bHTRq4NHA/28D1w7Ufy3WIB/qotud5105QXZ1UOwqcsBKeGdp3XUdL7C+0M9qsMdpc/0OkEAKyXZ3UfvwTWP/rC9z71mmqWYfhA3vTOw2gGKQZxIYN+bX/bdhullLMB96ax8Q64e3yDOUwYGc2v+Q9yjEMCRCFEEKIq7BugHjHHXfIvsMbgPn2cfwvfI38OjVgOWBwnWtFpkE9n8HLulRyLuWsw+7BQbJdXSRtBXRbAZ3NgFKEccRbIyfJmzYZwyRq1sld5w6BhlIc7uqnt15ZnPsohFhTdnAHjc98FOv3v8Sjrx5lyoIzO3vImzad7R6UM6j3etBDVRisrX/BlWjSMgPzyotVM6bJpLf6XkitNS/OjHO0Mk+vm1n2/mQbBtUwXHmshxBCCCHWte6n61/+5V++FusQ69Cd7ag9Q0RBCMpAGwpMA5QBhoG2THBsEsfmuFfDt0zMjEtkmQQZB89y8f02/IGY2E3/2hOtGWnW+UD3DuyOHqIVHjdjWuxw84x7dUxbYRsm+atsR78V8pbNPe3d13sZQtxUzH278T/1ETJ/9FU++fIJ3vx4N9/Kh3T0NmC4HVXKokpZdNNG3za/uYuHBur1HdC00U8Og3NlQWLGtKhEPn4cr9ihuB5HnKmV6XezK95vK5NmHOAnsYy7EEIIIa6AvHveJJKdO3D/5k9Qm62RJGt/8LowNcK5eoX+zEodPhf/yqtRQLeT4e62rjWvtzNX4FyjQtCaOyhZOyFuXtGB2/HrTTJf/TYPfuVlTjx9H8nOPMbT59HlDOqdPtSZTrQdw+7Kxi4aK9RrA6hq2uhKT+Zh15VlITOGyWzgUYkCes3le5sroU+oV5jp2GIZBmGS4MUSIAohhBBXwlj/EHGz6XGzNJOIMEnWPK4WRewrtC3MHFzregpFKQhot51tGZwthLh2wsP343/oMYww4tPfeofsdAmcBHob6IfG0UaCOtEN8xvsEjyTQ1XddMYqoMYLS+/fRDLxYlloJVx5H2ElDNa8nqkUmnQEhhBCCCE2TwLEW9DOXIH9uXYmvQbNVT4kJVqj0Qxk8uter9Nx6XYyDGbzPNzZt9XLFUJcB8ETD+M/8TBuGPH9X3uNYqmV8evw0XfPoLRCHe3Z0LUWRujsn0dnQlQpC81W9i5WqCMDqCMDGw4UFYpSuHKjmhm/ibXOl1paQzORAFEIIYS4EhIg3oLabZcfGNjD3W1dlIKVv4VvxCFFy6HHXX88hakMfmDHHj46sJe+FctWhRA3o+DpRxm+7zayfsiHnnuVfLWR3jFUQ2dCqNsQb6BioNSaodrhwUAr0BwpojVwtDvd2zh/SdC4jqxpMr1Ko5opv0l2lfLSBUrjxfGGHksIIYQQS0mAeAvbnSsS6wStl39tX4lCdueK65aXXpSzLEwpLRXi1qIUMx96hHf29ZNt+HzoK6+SrbUCs1yIQq0f1MUKqi7aiSAboYeq6VzFc+0Er7ejxi4ZWD+3sXmptjKohMvHbTSiiFoUkjHWXpOJorbC+UIIIYRYnwSIt7D+TI6cZVO/rMzUj2OUTucJCiHe34qOy58dvoMLe3eQrzV55suvkKs1F+ch1tfpWlx2UVql2UNFGiTeMYfSivh8Hm3FJPvnAFAbDBAtwyDQMWGyNAtYiXyCJMZZ54st2zCoRP6GHksIIYQQS21ZgPiX/tJf4m//7b/NkSNHtuqS4iq5psnefHFZs4dpv8kdxc5VupwKId5PipaDbVm88OR9XNg7QKEVJGZVKT2gsU6AeHH/YcclAdmuCrqvjiqG8Og47C2jlU4ziBvYh2grgyhJ8C8rE61FIWi17nxD2zBWbXIjhBBCiLVtWYCotWZkZISf/umf5jOf+cxWXVZcpZ3ZIskln8j8OMY2DO6XGYJCCNLy8aJl09AJrz59kAv7BtJM4ptfIxdVUA1n6Ql66a/VVKvRVcclTWUU8MAUme+bhkIIpoZ2DxWaUFt/jqqpFJFO8C7LIAYb3FdoK5N6HBEksg9RCCGE2KwtGxL1P/7H/wAgCALeeeedrbqsuEo9bgbXMPHiiIxpUYtCet0c7Y57vZcmhLhBDGTzHC3P0eG4vPrBg2il2HNmjA8Fn+P54sdZmGjomahXhsBO0LvLAOl4izYP2i4r6VSwJNHX5UEpCzM5KJbXXI9SCgXLMoheEmNsYCt01jSZCz3mAo8dG+jULIQQQohFG84gBkHAf/2v/5Vjx46teZzjODz88MNXvTCxNXKWTa+bTUuzSFu/78oV1jlLCPF+0uNkiVuZQW0YvPrUQc7tHyQX1/jQ2T+lUKmn2cKjPajAQtUdjKO9GEd703Pumk2zhmvQfWmYqcaLGxx3ofAvywA2o2hDzbIulqDO+h61KOTt0gzxCs26NitMEs7Wyys2/hJCCCFuFRsOEB3H4dd//depVCrbuR6xDfbk2/DieOFDzUZGWwgh3j/aHReUJrkY+BiK7z51kHNtd5CL6zz7hVfoeNlGzeTRuYDk8Bi6v4ZGower0LGBhjDFEF30UXUHznagXhtYs0Oq1nrZsPtmvLEAESBjmIw0a5yozvPS7DgnKvMbOm8t036DV2YnmPAaV30tIYQQ4ka1qT2IBw8e5N13392utYht0uNmUUpRjUIypkW3m7neSxJC3EDabYeMaS2dHWgojux7gtP5+8iEPh868WW6olH0PdPQ6aEPTqGfPZf+foP0QDW99Oku1FwWdaFt1WMNpWhcFiA24ghLbextK2/ZTPsNjlXmcAyDI/OTXKhXF4PgKzDne4w3G7xVmrmq6wghhBA3sk0FiL/wC7/A7/3e7/G7v/u7DA8P02g0aDabS/4TN54ux2Vvvshc4DPg5nCMdYZMCyHeVxzDpNvJ0LwsIKMY8mb70xztfBBHB3xw5vP0N0YW77f0uqWlSwzU0Epz8X9MFCBZ+VDbMBZK4y/y4nhTGcRmHFOPQnZk8hgonps8zzemhqlHVzYjcdSr0+W4XGhUOVqZ25KyVSGEEOJGs6kmNT/+4z8OwL/4F/+Cf/kv/+WKxxw9evTqVyW2lKkMnu3bxW2FDrLmlvUlEkLcQgYyeS7Uq3hJTJ+bxTYM9O4yOhvxTv8gwTGPB44c46mvvcbLTz/A6N6BFa8TJgn2anMKnQT94AQYGnWuAzWbQ89noXv5l4uWWjrsPtYJoY7JGhv7N0wpRc6wcM30C7FuN0OUJJypVaiGId/Xv4uC7axzlUVBEjPtN2mzHaIk4cWZcab9Js/07dzwNYQQQoibwaaihV/6pV9ad/6UuDEZSrE3v3o5lxDi/e2utk46HZfz9SpHq3MMZvLYDjCUloWeuG8fgWNx+KV3+MDzb3IkiDh3564l1yiHPnOBT5fj0uGsUsrekwaD2q+hZnOoc+3oog/O0lSipQzq8WKAGCQJsdZYK7UxTUAdGQQzQT80sVAbc3k5vWUY7MzmGW7WGWnWuNvu2vCfz3zg48UR3baLMtPA81y9QjUMKG4i0BRCCCFudJsKEH/0R390u9YhhBDiOsqaFnvybQxlC6DgWGWOndkCxiVfCp67cxehY/H4t77HIy++Q6bpc+zgbaAU9SikEUXc3dbF6Vpp9QDxot462o1QcznU83vRVozeW4Z9JaBVYhqHBEmMY5gESUys9colppN5VDl9PH2+Y+EaK1FKkTVNLjSq3N228QBxLvDSTq6tx3cMk0gnTPtNCRCFEELcUja1B/GiU6dO8Ud/9Ef8+q//OtPTaYOC8+fPU6vV1jlTCCHEjcwyDB7r2sFgtsCEv7xb5+jeAb79kUOElsn9b5zk0EvvopKEchhwoL2b+9u7MVBEySqbCxceSKMfG0XvLqEzIcQGxqkuKKUzWi1lECZ6YRZimCTEOsG82KRGg3qrD/XdAdTZzvQmpVGnO6Fur/nQRctm0mvQ2OBexLnA483SNHlr6XeqJoqJZn1D1xBCCCFuFpsKEOv1Oj//8z/PJz/5Sf7hP/yH/Mf/+B+ZmpoC4N/9u3/Hr/3ar23LIoUQQlw7rmnyePcOFIpwhUBvcqiXb378MZpZl/0nhnny669jBhF9bpYuJ0O3m6ESBQvH16OQU7UywWVzDXFj9F1z6A8OL3RDVUd7IUkD1ThJ8FrnBEmMurQjznwGNVlAlbKouoNu92BPGaUVzK09yidjWvitPYXrKQU+35wawY9jOi/LihYsm+FmjVivEwwLIYQQN5FNBYi//Mu/zBtvvMFv//Zv8/rrry8ZFvyhD32IF154YcsXKIQQ4trrcjJkDXPZsPqLSt3tfP0HP0ClPc/AyDR/7ptv0R0mGEpxR6GDWhSitSZKEmYDnx2Z3LKupEsM1NAdTVTNgflWuSgw0kj3QAZJ0rolpc51pMf01tHZEH37HDqfBqXKW79Ts4HiQqNKrBMSrZnxm5yqlpYExDN+k69OXqAU+vSvMD82b9nUooBJmYsohBDiFrKpAPG5557j7/7dv8vjjz+OaS59Ax4cHGR0dHRLFyeEEOL6MJSizXGWZ/0u0Shk+fonPsBEXwf98zUGfu+LqNl59hfa6XWzjDfqjHl1bi+0sy/fTjNe/Voo0L2tQKuWlpl2OS5vlWaZC7xW4NbKIM5l0g6omRB9cBL91DB0eZBpjenw199e3+1kOFqZ4xuTI3xh7AyfHz3DN6dHGGlWF455rzJHOfAZzORXbNBmKIVlGHxjaoRz9cq6jymEEELcDDYVIPq+T0dHx4r31ev1ZUGjEEKIm1eHnVkzQAQIXZvPfeh+RvcNYpar5H/nc+RHJnm0ewemUtxV7ODJnkH6MtklVScrKrQygNW06Uvesol1wtulGYIkTvOH01nUGzsA0PtKS9/F3FaA6K0fILqmyWAmz3CjSj0K6c9kcZTB8UoJrTVBEjPSqNHpuGtep9/NgYZXZiek1FQIIcQtYVMB4v33388f//Efr3jfV77yFR566KEtWZQQQojrr8N2iDYwDN5TMPrxp/AffxDl+WT/95+w99h5PrX3dp7qHcI1TbqdDI5pLjSdWVGxtW+xttgVtNNxGW5WKYc+BqCO96ASg+TOWdhZXXp+pnVtf2NfVlqGwUA2T5eTwVQGnU6GsWaN2cBjxm/SiEJyG5gd2+G41KKQ+cDf0OMKIYQQN7JNBYg///M/z3PPPcdP/dRP8dnPfhalFM8//zy/8Au/wJe//GX+xt/4G9u1TiGEENdYzrKBtWffhkm677DLzRI8+wGaP/gsAO6Xnqf3Ky8vzFLKWTbdTmbJbMNlnBhtx2mA2ErGZU2LZhQz43tYkYlq2uhcAHvKy883dXq+Z126XXHDbMMgAd4tzzLWrINSG5r9ayqFRjPre5t/0E1aM8AWQgghtsCmAsTDhw/z27/92wRBwD//5/8crTX/+T//Z4aHh/mt3/otDh48uF3rFEIIcY3lLRvQS0pDq2HA+UaVKa9BlKRzAPcX2ulrNXGJDt5N8y98Cp3LEH/7ddz/80Xw0szarlyBRhyt/oAKKPppJ9LG4qgKUymCJCbTyKU3FIKVzwdwI1RiQHRFU5zod7Mcr5Y4VSuR30D28CJHGYw0t3fU06TX4E/GznC2vkJwLIQQQmyRjb/7tRw6dIj/9b/+F57nUS6XaWtrI5tdu6W4EEKIm0/etLCVSagTHGUS64RSGPBwRy+zgc9os4apFPe39yzJtMW7Bmj+9I+R/8MvY50ZJvff/y/NP/dxBvMFDKaIkgTLWCWAKwQwl4OqA4U021i0bEqhT3ejHQBdXCNAzMRQI80i2msctwrbMNiRyTLpNxlwcxs+r2DZjHt1giTGMbZ+P/584PH1qWHKgc935ybpd3OtDK8QQgixtTb1FetLL71Es5nOjcpkMvT390twKIQQt6iMaZExTbw4Zj7wGWnW2ZUr8HBXHz+wYzcfH9jD071DdLuZZefqjjacv/kTRHfsxZwrkf/vf0jf8CQ9bpZyGDAXeCuOvbgY/KnaYnOYvGVTjyKceutx1goQFxrVXHmQ5hgmu7KF1YPYFWRNCy+Otq3MdLhRpRaG7M23UQ4C3q3MbcvjCCGEEJvKIP7Mz/wMpmly4MABDh8+zKFDhzh06BCdnZ3btT4hhBDXiaEU7bbDyVqZoWyeBwu93FXsxFRp4DSYLax5vsq4+D/2MeJvvIL78hvkPvslPvToffyPXUW63CzzgU/h8izYxfLR2uLthlLcWWjHuBggrlFiqjNRumtyA6MuttLFDGop9BnI5rf8+ufqVfJW+pwKlsVkU2YvCiGE2B6begd98cUXOXLkCK+99hqvvvoqv/M7v0OSJOzfv59Dhw5x+PBhPvWpT23XWoUQQlxjA9k8bbbDw519ZDaxJ2+BYRA8+zjJQC+ZL36Dna++w18a62X240/zfHVmeUmme7ET6dLHUiioOWgrXpx3uJLWfcqzrqRPzVVxlMF4s86Btq4tvW61lXHtao3ccAyTShQQ62QhWBdCCCG2yqbe7Ts7O/n+7/9+vv/7vx+ARqPByy+/zG/91m/x+7//+3z2s5+VAFEIIW4hD3T0bsl1ortvo9HTReYPv8zQyDQDn/0q4x86yGkV0OteslXBidFKQ3BZiWjDRiUGuq25dmPVVQLMayFn2Uy2mvdspjx1PdN+k0gnC4G0a5hUopBaFNJurz2nUQghhNisTb+D1ut13njjjYVM4ltvvYXrujzzzDMcOnRoO9YohBDiFpD0dNL4qc+Q+ZOvY584y/d98SWiw7dTvWvvYiZMAXacBoiaxWCw3io5XaW8NEoSJrwmA66Zbq6/ij2IVypnWoyHDcphsOK+zCsRJgkjjSrmJVGxZRgkWtOIIgkQhRBCbLlNBYg/+qM/yvHjx+nu7ubw4cN87GMf4x/8g3/AXXfdtaFZUUIIId7nXAfvRz9K8vIbOM+/yg++fJw3Ziq88OB+DMuiP5MDN0YFFjo0wGkNRGxlFLW78hzA2cCjaNtM+VUG0dBwrtUzWmC05iHOh96WBIgjjRqvzE4wGzSXZlkBraG+QpMfIYQQ4mptqgbm+PHjWJbFgw8+yEMPPcTDDz8swaEQQojNUYrgAw/T/POfJMlmeOjUOD/7/Hv0NQJKgX9JmeglWcCw9XZlJws3JVoz3qzTjCPCJOHe9m4sW5EUfJRnQfPal5maKKa8q28gc6Za4s8mL9CMQ3ZmC2RX2P9ZlQBRCCHENtjUu+eRI0cWykufe+45fvVXfxXbtnn44Yc5fPgwjzzyCA8++OA2LVUIIcStJN63k8bP/jkyf/xn5IfH+cyXvsuXDt9O0xlKCyoDC0iDIBW1gkV7MYNYCn1yls2032Qgm+dAWxfNOORCsUaxloHZLGqyAO0e+vb5q1/w2fa0Cc5AfdVDOhyXo5V5upwMd19Fs5r3KvNYStHjrjxKyjUN5oMmtSgkShI6HCk1FUIIsTU2FSBms1meeOIJnnjiCQDCMOSll17iN37jN/jVX/1VlFIcPXp0WxYqhBDi1qOLBZp/4VM4LxzBefE1PvnSMY73BbxnfT/JpRnEYGkGUWtNLYp4pm8I1zDJmBamUhQsB7+9TnG8B3WqCxWaMJdFdzah+ypmFDYtjFPdaCNBd3qQWbnUNWtatNual2cn6HVzK5aahkn6HOxVGtloranFARlz9X2UrmEyF/h8e3qUWhTy0R17KNrXvqxWCCHErWfT9Tdzc3McOXJk4b/jx4+TJAl33HGHNKkRQgixeYZB8KFHiXcPYP3xV7lr6gz91h/wUukxaoOtYy7LIFajkHbbYU+uDfeSQCpjmnjFNMOnwsXb1Xu96IcmoHCFZZmlNEOnEgPOdaDvnl310IJlUw59GnFIN0sDxHLo88L0GLtzBQ6u0iHWT2LCJCFrrR7wOYZBJQqZCzwMFC/NTvCR/p0y9kIIIcRV21SA+NGPfpQLFy5gmiYHDhzgscce46/9tb/GoUOH6Ojo2KYlCiGEeD+I9+3izP/7E3R87lvsnJ/l+488x5vW3Zy9Y+eSDGItCqhEAU90Dy4JDgEyhoV2Y3Q+QNUddJsH2SgtNX15J+wroffPrz0qYwWqfEmgN1qEwSq0rdxRtXUGXrw0y9iMI742OcxIo0ZujeygF6cB4lqjMlzDpBo22JHJkjFNhhtVKmFAp7M13VOFEEK8f20qQPzBH/zBhX2G2ezK+yKEEEKIK5Vtb+MLjx7i6RdLHKh+l8MvvsPA8BSvOT2EZImtiLkg4IM9g9zd1rns/ItlmbqrkQaIu8vQX0e3+6jTnagzndC00PdOby5ILKWBlx6sosaK8OoQ+p5pGKytekrzsiYyJ6rzzPoeOzI55gIfrfWKTd68JCJBY67RAE4pxW2FtiW3NaKITqkyFUIIcZU2FSD+zb/5N7drHUIIIQRF28HIwrG2R5js7ePR6a8zNDxFt/mHHOn4MKeJyFsWtxc7VgyuMqaFbRgE+2dxepvQ1UwDwT1ldHcDXh9AjRfRQxXo9De2qEhBzUG7EfqeaXSbjzrWjTrdiR6orRhoWkot6TJai0LeKc/S6TjYyqQcBXhJvGJ3Ui+ON5vgBDSNONr0WUIIIcTlNr0HcXh4mN/8zd/k9ddfp1Qq0dHRwaFDh/jZn/1Zdu3atR1rFEII8T6RNS0yrQKVOWuA5z71JA++epT9J0d4avaLdLw6xLFH71m1wYtrmFjKIDQinO7m0jsLIXpPCXWiBzWbQ280QKy4KK3Q7V4aDO6qwGgRVXXRTQtyywMz2zCWBIjDjSqNKKQ7V0RrTZDE1KNwxQDRj2O03tjSFilqMvZCCCHEFtjUbvZ33nmHH/7hH+a5557jvvvu40d+5Ee47777eO655/iRH/kR3n333e1apxBCiPeJnlyGxIzBN4lti9ceP8hLXR/HN1zuOznKx7/4MsbE9IrnGkqRt6yFTqHLXAwa5za+TUKNFwHQ7ZcElF1rX8dSBrVocY/ilNfAMdLyV6UUClYN6BpxxGbHCzuGQSncYMArhBBCrGFTGcRf+ZVf4Z577uE3fuM3luxBbDab/JW/8lf4lV/5FX7nd35nyxe5Gf/zf/5P/tt/+29MT09z4MAB/uE//IccPHjwuq5JCCHExnW7Gap2hO256FhBYDCW3cNsTwf3Vb7M3ol59H//vwRPHSZ4/EG4rOFL0bKphqs0kMmHaDeCsguhsTA2Y1XDbaixItqJYGBxv6HubKLOd6Dmsuid1WWn2YZBPY4IkxhLGUz7zSXZQq1Xz/hVwwB7k91IHcOgFFzFGA8hhBCiZVPvQG+//TY/93M/t6xBTTab5Wd+5md46623tnRxm/Wnf/qn/Kt/9a/4a3/tr/G5z32Ou+66i5/7uZ9jbm7uuq5LCCHExhUth9hpBU+etTDiwsu5fO6D9zL17KNgKNxvvUrud/4vxtTSkRMFy1k9g6iA7iYKtTT7p1v/XWqkiDrWjVYa/cAkuJd0Je300ErDfGb5eYCtDKIkwYtjGnFEPYqWzDW0DcX8KgFdLQpWLaFdjWOYCwGpEEIIcTU29Q7kui6lUmnF+8rlMq7rbsWarthv/dZv8ef//J/nM5/5DLfffjv/9J/+U1zX5XOf+9x1XZcQQoiNy5gmfnsDAHWuY2HERWLFWKZJfPgg9Z/9caKdOzAnZsj91h/gfPsItMZK5C2beI09fLq7de2zHTCdQ73bi/rmHtR3dkHcqu2cyWIc7QUF+uAkdFxWvmlpaPNRgQUjS7uJAlhGK0BMYqphQKjjhRJTuDjo3kNrzbTf5EytnK5Na6pRiHUFGcQwSWhE0qhGCCHE1dnUO9AzzzzDv/23/5YjR44suf3IkSP86q/+Ks8+++yWLm4zgiDg3Xff5cknn1y4zTAMnnjiCd58883rti4hhBCb4xomtaFptB3DWAE1n2b6IjMkZ9rkTAvd1UHzJ34Y7/ueBMPAfeG75P77/8WYnCFjWmvv4ettoDuaqKqL8eYO1FgRFZmopg1TOQDURAEgHWXR11jxMnpvCa00xrEeONe+7H6lFF4cUYmCZV1JXdNkxm/yvy+c4POjp3lldoIwSQiShCCJN51BNJVBoqWTqRBCiKu3qT2Iv/iLv8hf/at/lb/4F/8iXV1ddHd3Mzc3x+zsLA899BB/7+/9ve1a57rm5+eJ45ienp4lt3d3d3P+/PkruqZhbL7R+Ha5uJYbaU3i1iCvLbEdruZ1lbEtbBei/bPYx/vgbDrvMLRiejIZLLMVPBkm8WMP0LxjL+6ffB1zeJzcb/8hOx+9H2NXccUxGED6znd4An2iCypuOvTeSlBv9aPG2mCgAbNZtNKovgarRpv9TTg0AUcGUKNF2FdZdoivY8qhj6mMJevJWfZCVWvGNKnFITEJIQmx1jimufr6V6PSGYrr/ZnHWtOMIwqWvXBbOfR5tzyLo0wOd/dv7nGvIfn3SmwHeV2J7XAzv642FSB2dnbye7/3e3zrW9/i7bffZnp6mt7eXh544AGeeuqp7VrjVVltEPF6LMugu7uwDSu6Op2d+eu9BHGLkteW2A5X8rqKdUJxNoO5vwknNSTpv+EqlzDY1bb83+buAvrnf5L4O68TffFb9Lz8PX7ieIFjH3mYykD36g90uA7UAdAavJMRzGVxqm0EgYXRFZBZb/J8QdM8HkLVIWNmMbKLex+z2sfIWtSimM5ilnxm6TaMPOnvoyQhaDQodmTx4hgnY9FW3HiX1SWPl7Po7i5wdH6WShBwf3cPuUsCQYDT5RJvlKf4kX13YBkGWmueOzXCcLNCr5ulvTOHtckM5rUm/16J7SCvK7EdbsbX1YYCRM/zeP755xkdHaW3t5cPfOADPP3009u9tk3p7OzENE1mZmaW3D43N7csq7gRUZRQqTTXP/AaMQxFZ2ee+fk6SbLpAVlCrEpeW2I7XO3rSvsJlaRJe4eHajWT8RKfsG4wO1tb+aR77kIN7MD+k6/TfWGcJ/7gW5y+ew/vHLqTyLFXPudSA1XUmU781zpQQNxRp17bwOiI9iaqatMcMWBg8X0j9GNeHhmlFgYMZPPUo5WvpbWm5vlMzVZpxjGeF1JXKxzrmeCb0L5yh9YkSDg1Ncs+s8CRsXFO10q8OzHFJ4f2YV6yp/HYzDQnSnMcc6cZyOZpRCHj5QpdlsNkpc7J8Rn6Mrn1n/d1IP9eie0gryuxHW7E11VbWxbbNtc9bt0AcXh4mJ/6qZ9idHR04bZCocB/+A//4YbKGjqOw7333suLL77Ihz/8YQCSJOGll17iL//lv3xF17xR/jIvlST6hlyXuPnJa0tshyt9XeUMi3oYorsbCwFibEVYylj7eu1txH/hh/neCy9y33ff4/Zj5xk8P8Ebj9/D2J4daz/orjKMF9K9iLSa2WxkYn1nEzXSBnMZ9I7F4LXbdvGSmJ3ZAoZS6DWupbXGj2P8OEJrlh9bs1FHBlGhSXJ4FDqXB5AZw2Taa9IIQ+Z8jz4ny7TXpOwHdDguzTjCMUwu1Ks0o4jztQr9bo5KEOBHMY6dZhOnvSY9zuYzmNeS/HsltoO8rsR2uBlfV+vWkPybf/NvMAyD//k//yff+973+OIXv8iBAwf4x//4H1+L9W3KT//0T/O///f/5nOf+xynT5/mn/yTf4LneXz605++3ksTQgixCTnLItIJ9Cw2iInNZGPNW5QiPHgXv/3xQ5zc20+u6fPkN97gia+9Rra+RmWIk6AfmkBbcTr3sG1pEObFESdrJaLLR2h0tsZVzGeW3GwZBgXLxtjANgeFWmhSs2xuRmigXh9Ahem3vupYD6wwxSNrmjSTmLFmnWYckbdsNJpKGDDRrPOV8fNcaFSohAH9mSxn6hWCJB3DoVTaVCdjmgw3ls913E7VMCDW68yjFEIIcc2sm0F84403+MVf/EUOHToEwG233cY/+2f/jE984hNMTU3R19e37YvcqE984hPMzc3xn/7Tf2J6epoDBw7wm7/5m3R1dV3vpQkhhNiEvOWkAWJ+cZh84sQ4av3SGIAuN4OXcfnCo3dy6I5dPPDi2wwNT9E3Pss7D9/J6bt3o1cKNvMh+omRNEa77O5aFNLjZJkNPPovLcF0Y3Q+QNUdtG8unZe4CWGSECbJ8rGK0zmUb6F762mwWMqix4qwc2kgZyqDWCcMN2pordOsJYpymAa65xtVDKWI0bRZDqNenSmvSS0K0ToNYvOWzaTXoBGFy/YubodZ3+O5ifMYSnGwo4cDben7dawTKmFAp5NZ5wpCCCG22roB4vT0NLt27Vpy2+7du9FaMzMzc0MFiAA/+ZM/yU/+5E9e72UIIYS4CgtD5RUkD49D1SF2Nz5AvtPJ4Bhp59C9B+/nC91t3P3mSQ4dH+GhV4+y7+QIrz9+D7P9K3yBuEqA5yUJ+/J5ztYrxDpZsq+PDg/qDpTdVcdirE0T6gQvjjAvG4pxscRWD1bB1KjXs6i5LHrnCpk+DfU4WGjO5hoG034TP4npsB1GGjWKto1SCgVM+Q3qUYjd6rKXMUxm4ibfnZvkqd7Bpc9xG5xvVKjFIW2WzYsz46A1txc7eW1ukvONKj84uG9Jt1UhhBDbb1NdTIUQQohrwTVMuBgodTfT/5psOEDMmhbdboZuJ0uXk+HZob28mc/zu7t7+egbZ+ifLvHhL73CudsGeevQ3fg5d/2Lorm90EGYJAw3awy4i90+dZuPGgVVdtFXECDqVolpI4qWlqRqYC6LRqelrHHrvubKb9+OYVAOAjJGGmBnDJNpv0GQJLTbDl1OBqt1/ZxpL5STuq3jlVIMZPKcqM4T6oSd2QJ3FDu2JVAMkpiT1RIdlkPRdjCVwQszY7xbmWMu8NFoztTKHOzYfKM5IYQQV25DAeLP/dzPYZrLy3p+6qd+atntL7300tasTAghxPtWGrAsFlvGWmOgsDcRqDzStYOsmb7NtTsuT/cO8Z6b5X935Hl4dJ7Dr59k7+kxhi5M8e6Dt3PqwJ6Vy05Jyz8tZdDlZHiqd4hXZyc4WSuxO1tIs3XtrX2I5SsriTQAP4nxkrQRz4KGnZaXtnlgJ2CBNhJo2Okfz2XbG7OmxUzg0e/mlvw+0gk9RmbJ2KeCZTMbeFiGQd5c/DhgGQb9mRxjjRpnahUcw2R/of2KntdaRps1KlHAzkx+YT1Z06IS+vS5GYIk4WhljruKnbgrfAa53sIkYbhR3ZY/GyGEuJ7WDRD/+l//69diHUIIIcQC1zTTQfKtWbYXSzo3mkEE6HWXduJUSnFvezdzgcebhmJmzwe5981T3H70PA9+99hC2enMjuWzE5txRNFyKFhpeeYTPQOMNmt4SZwGoYUQbSZQcVcM3NZjKoUfR3hxjHlpBnGuFXB2tQJQBeRCVM1FhwY4S5u75CwbNwoXSnQtw0j3cqKWzQS2DYMoSUi0ptNeOu/RMUz6Mrn0z6o0zc5cAcfY2iDtQr2KrYwl6zKVWth36BqaUa/OuFdnb75tSx97Kww3qrw2P0V/JkdeymCFELcQCRCFEELccBzDbDVd0VhKEWuNaSjsLQhSBrMFjlfmiTI233v0AGfv2MlDL79H3+Qcz375VS7sG+Ctw3fRzC8GmI045PZCx0IwkzEtet0sM34zDRAV0Oaj5rPoug2FcJVHX5mhFF4c04wjLEOlQeaFNtS5DgB01yXdV3MR1Fxo2uAs7bRqKsVgdulQ5oxhkjFXfrs3lcJPklVLSDttl+FmnXP1CncWO5fcN+U1OFadx4sjPtK/e2lgu44giRlt1imuEVhd3CfZiDb3Z7mdJr0Gx6vzHOrs41S1xJzvUQkDCRCFELcU2YMohBDihuMYBpZSRDrBYjFQ3EwGcTXdTgazlT2zDINKZ5HnP/You86O88CRY+w+O87QhUmO37uPY/fvp2kqQq0ZyhWWXGcoW2CkuTj3kDYf5rNpo5pNBoimUtSjkFAnOFiod3pRE0UA9EAVOi8JELOtazdsaF8+D/FyPe7qMw273QxevHrXVaUUjqGYC7xl971RmuZ8vYKpDGb85tLOruuY8Zs04pBOO7/mcQaKShRs+Lrb6UK9yjemh6mHEV4cMdqsoZWmHPoMZNd+HkIIcTORAFEIIcQNxzVMbGUQtQbGxzpZaKRytdpth3bboRaFdDit5jRKMbx/kLFdfdz99hnuevcs97x1mn0nh/nWvXvoe+Ae9uSWljl2uxnQi2Wwut1HAWqigB6obWDS8CJTKZpxRJJo3JFu1EQRnQnRD05CcWmApHNh+jgNe/lIjE1yDHPd0lFbmVSCpWuItWbe9+hyMpTDgAv16qYCxEmvCXp52etK6ysFN0aAeLpWAg27cwXO1SsYSpExLGb8NWZrCiHETWh7+1cLIYQQV0ApRZvt4MURkAYkq5VJXsm1d+eK1FvXvihMEmLb4t2H7+RLn36ac/sGyDYDPnrkJM9+4dvYF8aWHN/lZMhYJl7SysB1N9C5ADWXS4fZb4KpDGI0kU4wKukePH1wallwCECulUGczqFeGYSpjQdmV8I2jGVZvHoU4iUxGcOkzbI5Uy8TJhub/5hozYVGhby1fsDvGAaV0Efrqw2Fr06UJEx4DfKWjWUY7Mjk2OHmyJomUxIgCiFuMRIgCiGEuCEdaO/CS2JinWxpgAgwmM1jKcWs7zHlNRhu1hj36tRa+92ahSx//OgdPP/JJwgH+7GmZsn9r8+T+YMvoWZLQLoPcTBTYNpvEiUJWBr98ATaiVCjbeCtEAA1TdTpTgiWvv2arX2WidYov/U8c6uUqbZuV1UXVcmg3umDxvYVBNmGgZfESwLAahSk5b+GQcGyKYc+75XniHWy4jUSrXltfooL9SpvlKaY9JoULWfFYy/lGGaru+vGgs/tUgp9GnFErvUadAwTyzDImha1MLyh9kkKIcTVkhJTIYQQN6TduTaGsgWmvAYaTXYLRx0MZgt8uH8XL82M02VnuKvYyaTX4L3K3MJg9gRN32234d13kOjoadxvvox98hzW6QuEDx4gePIwH+gZwFSK49USu3MFyEbQ4cFUATwLMpcENjUb46VdAGnH073lhbtMpUiStFQV30pHWVgrB1u4MdpIUImBtmJUZMK7vehHxrfsz+dStjIIk4RmHC80CaqFiwGRUopuJ8Mrc5NUo4CneoeWXaMaBbxdmiHSCVpDn5tZmCG55mMbBkGSNu/JbuEXBJs1H6RZTOOykljHMAmSmHIYkJNGNUKIW4QEiEIIIW5IplLc197NV5o10JA1tvYta1euyI6daSZRKUXesjlaSbNgYZLueex2M6AU0T23E925F+e7b+G89AbO6+9iv30c+5EHOHToHs7WKwRJnO7nc1tBoW8BrSYyCag3diw8tqo5S/YPmkoRo9PjQhOdDVcflaGAtgBdcdCPjMHrA6hSFh0rMLe+FNMyDGKd4MURba1xGPOhh3nJAvOWjQLON6o8lsTLus2WgzTjOJDJoTUbCg6BhYCsEUV0rZ9w3DaTXn31Nau0kc4A0qhGCHFrkBJTIYQQN6xeN0vGTPf5OdswLN02Fufw9bpZut206UotCul1s0uzVpZF8IGHqf1/f4Lg0QcgSXBffI3+3/wsj58cx/fTYFC7rb2N/iXrHSuiPBuda+3lay4Ndg1asx6D1u3u2iWV+oEJ9BMjabfU/MrX3FqKxiV7Nmd8b2HW4kUZ08KL02za5eYCD0W613KjweGlGvH1K+GMtWasWSe/SgbTAGorPGchhLhZSYAohBDihpUxLXa4eRKtsVeZ1bdVDKW4u62LWhRSi0N2ZgsrH5jL4H/kCer/n79AeP9dKM/nkddO8GNfeJk9J0egFSCqiwFiAupsBwD63mm00umIikukM/8Uht9Kk7lLG+hc1IgiEq3BSdJyVlj8/+Y2ljhqvdAwKEwSyqGPe1lG11AKjV4xQBz36mSuOAOsqEcr/3lcC7N+k1oUkrNWXr9jGMwF648bWUusE07XygTXea+lEEKABIhCCCFucDtzBVzTvKLM02bdXujgnrZuXMNac34ggG4v4n3ywzR+9scp799JW8Pn0e+8zQ+89BUGmmcWm9TM5NLsYXcDOnzIhqjAgnBpDWmiNVbYOmeFDOJ84DEf+kxf1jVTX5yLuI0ZREMp6q0sXi0K8OMYd4WMroFizl86MzFIYmYDb9UAaz2OYVAOry4AuxrjzToJGnOVLygcw1xYXyMK04ZFmzThNfjW9CjfnBqVhjdCiOtOAkQhhBA3tB43S7vt4FyDANFUike7+3msq3/dAPGipLeL6qd/gN//vgeZ6uukvVrlibkv8eH3vsSO4SlUKc0K6v56ekLukkH3l4h1gh20jr0sg1iPQvwk4VBnH7HWSzNNrQyi2sYA0TYMKuHFADFsBUzLN0lmTZNxr77ktlLg48fpSIwrkWbovPUP3AaJ1pyulymYq2dnXcOkGUd4ccS3pkc5Mje56bEcF+pVYp1wrl7maHVuU+ddzOxqrYmS5LqPBBFC3PykSY0QQogbWqfj0u1krlkXS8cwuae9e1PnFG2Hxo5ePt/XyV1jVe77znm6mtN88GszzOXO8172ccbzrQApH8IMaYDYvliO2eVkyMXpDMTLM4ilMOC+9m4e7OylFoUcr84zlG01RbkGJaa2Mqi2SkfrUQirxCBZ06Ic+nhxtDCWZD700eiFvZ6blTEsylFAI4ooONe2U+hs4DEf+OzIrP5lQdppNWHW95j2mww3avRnc+zLt2/oMbw44my9TKftEiYJ5+tVHuroW9YxdaXzvjMzxr58G/e2d/PNqREqUcA9bV081Nm3qecphBCXkgBRCCHEDc1UBh/u37Vqid+NwFCK/kyWU7UyE3t7mTx9mAHvHPdG36FrfoanGn/CzHc6ePehO5jKFtL+n5dlENtsBxW0brssg5hoTX8mB8CefJHjl2aZrkGJqW0Y1KKQWGvKob9i9hDSbNps4lMJg4UAcdJrXNX+Uac16qIS+tc0QIx1wtHyLKxRXgqLnVZHmzX8JCZvWRyZnWIoW0i72q6iFPi8ODuGY5jUo4jOrEtiaia9JvOBn3bQXcOs71GLQt6rzDHlN5nymhiKFfeACiHEZty477ZCCCFEy40cHF7U6+aILg6Kz8RMOLfx1Y8+zUtdH6PkdNEzXeJDz32XZ9/4Gr3eMKreCujqNgSt5+cv34MYJgm2YdDlpAFDmklVi6WEdpLOVfTsVTN7V8ttDayvhQGzgbfi/kNgIUvoxen6E62ZaDYWBsxfiYvXLEfXLvDRWvNmaZrj1Xn63NxGzmC2VQbbabuUQo8L9SoAUZLwwvQo85eUydajkOenRxlr1hmuV2mzbZRSmMogRjPtN9Z9xCm/iaEUrmEy5TUYzObSjr+xNLoRQlwdySAKIYQQW6DddlCkwYVyY2gAcznGsn2M7upnsPN73PvmKXrm5niazzNd28GxqQeZSnaiu5voQxOt2YksySDWo5B226XYGsSeM21swyDUCY4y07mI2RBVc9GRAfbmm6Ss5+IsxOmgSTkI1syMAQQ6DVIqYUAtCujb4H7OVR9fKWb9a7cP8XS9zBvz0/S6WewN7H1VrTEgGcNEKUXOtHm3Msu+Qhvn6hWOVebpy+TobAX5p2slJr06u7KFZaW3WcPkXL3C3W1dqz6e1poLjQo501y4JqR7aJvXcSSIEOLWIAGiEEIIsQXaHRfHMAmShEym1ThmthUYFUNG9w4wumcHO89OcO9L5+j1J+gd+TLzdi9Hw4cY1Qb4ZpoNtBZTgY044rZCx0IgkTVNXMMkSOLFQC0bQc1Ny0ztK8i0eSZMFGBHDTIrZ6BMFOfrFfwkpmCtVeqpCVudPOdDjwR91R1oM4bFpLd+Vm0rzPhNXpoZp81yFspk1+MYBqXAp9NOmwx1Oi4jzRovzUww4dXx4oiJZoO7ip0AjHtpVnWlfZlttsNYs85os8bQKqNWqlHIfODT5bhLbjeVwr+BRmVcuhdVCHHzkJ9aIYQQYgtkTYs226EZRWQulojOpuWJutAK2pRiZP8AI4NDDJ2e5sDJ43SWpnli+jkqf1TguBFyoXsvmjRLNB/6JGj6LmmSopSi3XaWdva8tFFNIYByBtq95RtJYoV6txfdW4eBVrfRyRzq3T5UbKBrDvq+/z97fxIkWZal54HfvW/SWdVmMx9jjozIyIzIqaoyUUgUqgg0ARCggN3FRZPoFmkRdAuEG665IHdccMENKQLhgr1oEbAHijRaWBSMrEJljTmPERmzz4PNprPqG28v7lM1VTNVm9w83T3rfCIu7mGm+vTq02cW93/nnP/fmfn+yq7HbjgkMdmpVbVRm+PucIjiYuY0kxSdkVFNzFH7oE4c8fPmLrvRgOvFKl9uLJ9LkFqDmAKNXGw96HcJ05SVc1Q9C47LXtRlI58T1UqxFpT4uHNAZgwbxRKbwx6pyciMYTcczG279bWDpzXf29vkd1evU/P8Y4Y1+9GQJMuOVXIdpRlmybgt+Vny8+YuP2/tUHcDfnvlylSlUxCE55vnf6hDEARBEF4Q1gslBmkyjqlQo1zDypGqXiHj4ReX+N/+w2/ypxt/h11/g1qryzcO/pB//+7/m5c/vMvjboeC4/I7K9e4VqpOPb3hB1NRF+MsxL4H9+roH15B/eU1aE1XmNgvorYqqM8Wx/OK6tYCKtXj78+bYyw5Lr0kPlXwOUozyKMXHg97lObMK56HkVFN80geYmoM/9vWfX7Z3qefxPy4uc3ukZzIk4izjO/tbvKHW/fHM4KPBt1zO+ZWXI/XKvUpIRc4DleLZa6XKpQcj25e9WvGEYNTKmvLfoH9cMj/7+Hn/JvNu6Rmum24l8Qw43NwlCLLDiu4z4rPuy1+sL+FrxweD/t81mk90/UIgnA+RCAKgiAIwiWx5BeJTYYJDufATCE5zD48ilJs1a/ynZX/iH/3rW+zGdygHHf5+vd+yf/1X/yQ/+hei9f80jHX0Jrrk07m3eUCVHV81IGt1Ki+j/pgZfrl9m1VTA09aAdWDPY9jJtiqiEqdOe6obpak5whY89VimGakJqMbhITXDD/cGrdSqFR3Om1p74+SBNaccj6aL7PwPYZDF5GNOOQXprQjEP+cvcx/SRhLxpSds/fYHWa06kxhv1oSDMKwagTYyyUUlwrVVjyCzzod9kcTL+ng2iIp2cLxBRDbJ5dm6kxhl+0dik6DjXPZ8Hz+bzXms7uFAThuUZaTAVBEAThkrhWqnCtVOFhtsu113woJLDSP/l2rGurPbuldf58+UvU67e52f4+rz3YRX3n+5jv/pT4vbeJvv4lTM3OpJXyGcBeHj1Rq+Qv0PUhVRgM+Cmq52MSBdtlm7+4f9jmp7bLmCBBZRpTGcLCEDqBrSKWOjOXuuwHp+bzWaOUhDBNibOMygXE1iwaXsBnnRbdiRiHfhKTZBluvqaS63Kn1+HLjZV5h5liPxpiMGwUSmwO+3zSOSDKsksRtUfxtOazbpOy4+GcsevW0xpHaT7vNrlaOpxH3I/CmWt0lDUTepYVxF4S05yYj6y4Hg8GPR4Petws157ZugRBODtSQRQEQRCES6LguHx7+SrlwKVzbcfO+bnTVbfUZNMtg7lAVHnQ/UFjgf/1r73Fo//zPyT+0psQJ/jf+ynlf/rPKPzBH6K3dik5LsZYodBNYgZOZNtae56tDpZiqOftmNtl9AerqB+vW6dTL6/kbJUPsxhLMWbBtmaOKpCzKLneqaYjoxbTMEtJTIZ7UkRJM4DN8mHMxwmUXJdhmnCrfdiu2E8TlDqMwqi4HvvRkM4ZswA3Bzaj0VEaAzwYdDGYmeYxT8pyUORhv8ftXpvSOUTzgu9zp9cZv6c4y2gn0dyokdFjnhX7UUhiDucjlVJ4WnGr2z7lmZfD7V6LW91W3oYrCMJFEIEoCIIgCJdIxfOpez6xOb5JD9OUh4MeW8OJOblRLEXe2pm5Ka7S6NUlhv/B79L7z/5Twm99FXwP7/1PKP/f/2eu/X//La9utbhRrPDuwjI74QBTCQ/nA6vRYdvpvbr9O8kFxUoPUxuiBh5qu2y/VkpgYYhRxlYQn0BfOEoRZRn9JMFg5lccY4360Qb6F2uoP7kJj/MKmQEeVY7PT2Jba//k8QN+crBDajI77znxfV87JCZj6wxtpqnJ2Bz2xu2kDc9nc9ij8BSqh2DPy7VimYJ2qLr+mZ9XcFzCLOXR0JoK9ZKYKE3x55jQKNQzFYh70XFjogWvwN1+eyoL8mkwTBP+fPcx/3bzHn+59/ipvpYg/DojAlEQBEEQLpmK45Mc2aQnmRUuN0s12wI6Iq8gjqp5qZvgaj1uITSVMtHf+E26/9k/Yvi3fpusUSW4+4h/8J2f8w/+17/k6/f2qCqHpHxo4GKqEaY6mku0Qmv0mmZxCEu5QM1FmSnFttK5MEBFrjWxuSBu3ubYSaKTDW02y7a9tZyv84MVW9W8W7cVz5+vHROqdT+g7vv8cH+LR4MerTjEOfIaBe3w3b1NbnVPNkZpRhG9JKbo2PNedj1cpah5Zxdv50UpReMMbbpH8bXmYb8LWIGYGTN35tEYZt6c+FXxcNA9ZkwUOA6pyZ66WU03iQnTlNVCkUeDHt0XoIpojOFer8OD/PM9K5kxdp5VEJ4CIhAFQRAE4ZKpeN6xTfp+NORGqco7jSUmvV6Mm7d85hXExLGB68diCnyP+Otfovd/+z8y+Id/m/TKKv5ek8q/+A7/6f/yl7y1+WMKaR5dUQ2hMr15NO9sY9a7toK4mLeTjqqKuYmOeXsX46aouw3UT9Zhu3Tu9+4oRWoMnSSeFsJHUI+r+WvuYN7eQRmF/vka+lMbZKGGLuwef/2K56MM7IdDWlF0LOphOSjioviLvUf0TxAI+9GQ1JgpA6D1QvnY8Z4HKq7H42GPKEvppvEsA9MxShniZ2AI82F7n7/YfcR+NKTkHM/JbHgBH3cPTvxMnpROEmGMoei4hGn6K8vOvChxlvKnu4/4V5t3+MH+FtkZTKBGPBx0+ReP7/Cz5s4xl9vLoBWHz9wNV3h2iEmNIAiCIFwyR2MSUmOITMbbtSUqroejtTVX0XrcYjoSa4mbnOyiqTXJF14lefMVnIebeN/7GcVPbvPe7Y/5Mp/yoPgqn4ar7C9WMTrLTWgi2OhhRtmH9RCjDMrkSmPkslpMMF/ehp+toXZLsFvEfOuBNbg5I45SJCajHUfzdUzPQ7UKmFJkZyUbIZmboT5fgJ4PVzqohzXU/Tpm9fgmv+C4PBh06SXxzFbLuufzaNinm8RjQ5+jbA17M51Az8x2CfwUGk+/ilNyXA7ikL1wSDuKjlVNJzHGtvj+qrnba3Or2yZwnJnzkWXX46AfshsOuTHnM3lS2lE0Fs++1tzutegmEUXH5Y3qwlN5zYsSZxl/sfuYjzsHrAZF9qMhu+GA1cLZbsrshkNaccgP9reoeT4vl+uXtratYZ8/2rrPaqHIt5avnDv2RXjxkU9cEARBEC4Z2x56uIlvRiFrQYmrpQrGGALtEI0Eoju9mY+dmIpzhjZHpUivbZBe2+CDu7fwfvQBX/p0hxuDT7nxbz9lf6nOZ36fh+pt0saRbEDHQH0IzaI1rfEm1rA0wPzOHbi1gLq9ALcbmHd2zvzelVIoFL0knm9Qs2VnH81G9/A0rfYxK31IlV3ffhG1X8T0XCgnU08vuy77+TxbbcY8n1LWybWbxKzOePnUGB4NepRnVLrORN9F/2wdU4wxv33/Ysc4B0opMHCv32F72D+xyukoO4t3EoM04eP2ATfL1UsJsDfG0IojVgsFKifNVypFMx5yg+r8xzwBO+FgPENa83xu99p82mlS93yuFCtUnpIwvQi3ey0+7hxwpVDG1ZrMDHk46J5ZID4cdKl7vp1r7ncvTSB24og/3n5AlKXc6rZRwO+u3biUY/86kRnD+609+mnM1xfW7O/yXyNEIAqCIAjCJVM4UkEZpCnvLtRtO6NSlF2XQZJQwp0hEBPKXoXz4Cw0+JP3XubuF97lxv0HvHb7Fot7LX6DP2Gof8Ct4k0+720wLE+IgUUrECnOqA5qMC834UHNzim+3JyuIqYKHlVQu2XMSg+uHY3FMMQmO94mmzPKY2T5SHVQcej6utyH+3XoBscEYqAdwjRFKU40a2nPcTNtxSGdJGa9UJz5/ZlkwN0GuClEuUPnwMPEelpgPyVKrssvWruAYuOEdTt5DuVJ7IYDvre/yc+bu3x79SovPWH8xDBLCbOU+inmOwWt2R4OTnzMRcmMYS8ajmd3i47LghdQclweDnp81N7n64trT+W1L8K9foeCdsbCoup5fN5t8eXG8omZmgD9JGE/GlJ3fXztcL/fJc7sz9utbotftHZZL5R4r7F6otvtLHajAZ0k4lqxQpimPOj36CUx5UsU18M0oR1HZxbDzxvGGL6795gPWvsYDElmeKlcYzkonOry/KLw6/EuBEEQBOE5ItAuBoMxNjJBKahObLAWvALNKDfsOCIQEzehdM5Nhm0BU6QLGbcXrnD7SxusbO7z2gf3uPpgi7c//4gv3PqYhzfX+PzNG+ysL2KW+qhbC9bxdBaOwVxvoW8tYnZKUD40GFG3Gqg7ecteM8Bc6RxxNVB5PuGMjW6qoFmwlct5rw2YYmKLi4Pj50IpBbaoNjeSwtea/ei4GMnywHrDfKOXYyQK9bM11L7d0I7nRgE6vhXbT5mR2DlbzMjJM4idOMJRClcrvr+/yWpQOlf0xlH6SUKczXdWHVFwXHbCAanJjp37JMswMPemwulriBmkCUsTFdFRxXDJL/DL9j5vVBeeqgnRWRmkCY8HPaoTa6m6Po+HfQ6ikOXg5BsXB9GQKEsJHAffaB7GPfbCAUXX5bt7j4mzjK2hbVc9b2WxM9EaHjgOYZiyHfZZo0w/jU9d21n4RXOPzWGPv3/1lSc+1rNga9jno/YBa/mNmo/a+3zY3uelco1/b+36U4nJ+VUjAlEQBEEQLpnAcXCVJjGG0f37yda7hu8Td3NhOFF9MsqAc/6g9qLjMuV8oxQ7G0vsbCxR6g549aN7vPzpfa7f2eT6nU06tTK33rjOnS9FREsnbGZGTqhDd9puZuSMWoxtFW2/CMuTYsxWEMuzxMxBAWWUNco5aR+VVzaPvXZOxfEYnGDGEmiH/Sgci/R+EvN+a4/Pey2K2j1xju8YD2qo/RKmEKOG3qG5D0D3VyMQlVJnqk44SjHMTq4g7kVDPKVZ8AIeDHr8tLnNby6tn10wH2EUN3LaxrjoOLTjiHYcHWtt/cH+FgXH4SsLs5qCT6eTxKTGzBSYJddlLxpyp9fiy40VwFaRA+38yio+UZbySadJJ45YL5YYpikrE2JL523RrTg6VYTtRQPI54dH7cefd1t0koh+mnKtWObxoHeh1tP9KMSbuA5cpXjY73K/12GYpvztjZvj76UmY3PQx9WatTNWA/fCIR+093C1IkzTc1c4nwd+2d5HKTVu9b5WqpBkGff6HR4Nelwtna8D5HlEBKIgCIIgXDJB3jqWmIzEQODoqfmnsusfypPJCqKbgVLn3jSVHBdX63Gb2ST9SpFffP1NPnjvNa7fecwrH99neafJuz/8iHf0xzx4aZ1bb95gd3UBjm7wg1xohEe2Cz3fVkhfaqI+XEFtVTATAtGYvILoHt+sj9pLR06qcynkrz2jggjQ8AMaJz3dcWhGEYM0QSvFH27dZ3PYp+75dJKIxXPM3qmmfax5ZwceVVGPqpjVHmq7jOoEJ3i1/upxtWJ4SgVxNxxQcByUUqwVirzf2mOQJvy15SsXEkz9NOZktW9xlCbLRdCkQGxGIZ90DrhSvPjGuhWHJ7rm1j2fD9sHfKG2yH445Ds7D3mvscKbtePmNakxHETDsYi7DBHzJzsP8+gVxU44wJlhkKRR7IdDXq3MF3XdJOaTTpOye7immufzQXsPX+tx+3HV86daT8/KXjicugaqns+9vjWEqnk+mbHZpqnJ+Neb93jU7+IoxTuNJRpegdVCkbp3PMN0Pxry04MdWnFEYjLSVNFL4xdOIO6EA+702iwH078/XK1xleJnrR3Wi+Upd+QXERGIgiAIgnDJeFpT0A5xlpEZQ9X1pzZCZcdWxVJj6JoB4y2qZzf2564gui5+/nrzNoOZ63D3tWvcfe0atYMOr358j5ufP+LmrcfcvPWYdr3M52/e4O6rV4mDXMwWcqExnFhPomxVrxjDWhfz0bJ19HyLcZupqyFMU9zRJinWtrXUy2AnrzScJhCLuUAcXmyr4ilNlKW04ohPu002hz2uFSvnb/8yQCuw1d1aiKkPMRsdKMWo7bJtMX2OcJQmzJJDl9wjDNOEbhKPW5597XC1WOZWt8XrlQVulM9vINNLkjPXYxXQikIoH37t484B7SSiOFHxPS9bw8FU5esoVdfjwaDLv358l/1oSDMO6aeznU3v9zv88fYDYpOx4hf55vLGmStks+gnMY8GPdaCEkrBg36X1RlzpEXH4fGwN/c4SZbx3d3HNOOQq4XDE1jz/GOts2XH5WHcYzccsFEsHz3UTAZpQj+Np4yfyo7L9rA9jg4Zpgkl16OfJGwP+6wVSiQm4+fNXaIs4+sLa3xjaXrWc5gm/PnOI7bCPmXHZaNQZnPYoxvH57pRcxHm/RxclP1oSIaZaRS1HBR42O9xt9fmlRNE/ovAr5fljiAIgiA8J5Rcl8RkhFk6NRcF1vK/4npsDfsozxyG2LsZjlJjJ8az4ihNyXWJzdny79oLVX7yW1/kD/7jv8kP/to77C3XqbV6fOX7H/L3/z9/xDf+9Ocsb+2Dl1hhNCnSerl4LEfgGVjuoxIH9dN1iPR4PSnZeKOvfraG+tMbqO9eRfV9TGNwKADn4WYYJ4Ohx0VKdHb2087YfdTeZ71Qvths0NBFRS5UIuuuqrEtpUFq5yi7vjWweU4Y5VAezeEc0UliwiydugnhKI1Cz33OaTTj8NT5wxElx+Xj7sHYQKgTR3ySRz0M0oTBKQY7s0iNYXPYO3F2VynFol+gk0RUXZ+GF9BLZs/A7gwHpMZwrVDmIBryg/3Nc69pkt1wYmZQO7xSqc10VC06Lq04nGsy9GjQ406vzUahdOq1bL+vThScR+nm18bkZ6mU4qVyjfVCicik9PO1DdKEJDeiKjouV4sVGl4w8/Xeb+3xeNjnSqHMgl8YV9d66bRB1kE05OP2Ac38RsGTkpqMP9y6z0F0eS3g3SSeezPEUZqy6/Ljg+1TjaKed6SCKAiCIAhPgYrjs5MNiE127C551fP5OxsvYYzt6vxLJ0OlDpmX4mp9obarmuvzcI5r5yTGGLLcoCX1XO68fp1PX72K2dzhy7ce84U727z0+UNe+vwhnWqJu94ud/236WdYcdTLqwu5q6l5cw/6HmqvBB8vYb60Q8X1DjdRqbJzhyjo+5hKhHl36/SORAUUE1TXxyQXcwotaIeDKORqsXLxlq9m3i7XOLLJVEA1slEcfQ8qTy8A/jyMBGKUpjPz6zpxBEYdFxjKEJ0w03kSrXMIxAW/wINBjz/bfcjvrd7gTq/NMEtZ9gt04t6J2ZXzaMchvSQem4bMo+x6lLHHHqQJ3eT4Jt4Yw8Nhl7LjopRiKSiwFw7pxNGUqcx52A779vo/hUA77GUhrTia2ep7q9vC1erMs6J11+PjzgFv1xbP1DrcTSIwx2dJ9ehGD9BLrFFNPz1eNS45Ls04ZJAmU9fedtin4rrj44AVU/vh9M/UZ50W39/fpOR6VF2PVyp13qwuXNhBtR1H7OXV4suIcwFb/T4pZmbBC7g/6HK31+GtxuKlvOazQCqIgiAIgvAUqHgeiclQMDMbru4FNPyAouOOXTEzJ8FXDt45K4gAdT8Yb/Bbeaj6rLvwrTjidq8z9b1Hwx7B1XX+8Guv8wf/8d/kh996h93VBtVOn3f2f8jf3fx/8Nf/zQ+5dvsxTsduHUw5F6PFBPONR7YKms/qFR330Gij7aNQmMU+2Vs7mK89Av+MYq+Qi645c4insRQUWC+UnmgeSLXy+cP6jCpEJT8H3eenzdRRmswYwjlirx1Hx0ZNwW7+w1NmF2eRZBm9JMZTZ79mrxRKPOh3+f7+Jh93Dqi53liUHK0qnYWDKBzf9DgrntYzX6uXxDSjcOzq6muH2GTsznDEPQvGGO71O7MNm44wyu9sxeGx73XiiHv9Do0Z833zqLgenTjmdrd9psd3otnXxiSTFcSjv118rYnSlGY0vf5+khxzNA60Zn/iccYYHg27LPoFlv0CmTH8aH+bf/n4zpmrccM0YWt4GJ1zEIUcREPa0ek3zs7KaTdDlFJnipp53hGBKAiCIAhPgaLjMkwzio5H/YTKg6s0Jjeqybz0WIbiWZmcG+omCZ7WPBj0jonEXprQ8AN6+QYmzqxr6jcW1yg4Dh2tuP3Gdf7d3/0m//If/nU+WnuHoS6zvrnDN7/zU/6D7/9z3mt+h0a8c+ic6mVQtg6fozbTMe1cYC0ObV7iWcUhPPEc4qXQGlUQj2/azShDcvD8BLCPmCUQU2O4229TnHGN2XiM829qB2lCnGVnriCCrUitF0p81D7gIBoeXrtK0Y3PLxD3wiH6PK60WHfOME1Jj7TV7kchicmmqkQOis1B/+ghAI49/yitOKIVRzNbSmfhoNgLj9+MeDjoEmbpuUyElFJUXY8P2nvEZ6gO70TDE6tjGkU7F6+dODrmBDyKn2lOCNzUZEQzIm8C7dJJIuLMnr9uEnMQhZRdF09rap7P9VKFZn6z6yz8rLnLn+48HB9zNxwwTFN2wsvJ3oyzjH6anHozRKMu3K79vCACURAEQRCeAhuFMr+3do2/s3GTuj//rr9WauxkmjoXF4hV18Ng78QbDN9YWiNwHKJseqNiMDS8gE6+EY+yFF871D2ftaA0VVXp1iu8/+q7/Mv1/xN/+rW/xv2b67hpwqu99/lbf/zH/K3/5c95/YPbBIPwsJp2xLRFtfP3XjsusE7DnOJk+tSJNLQDTJAcuqpOMorieNL13anD7fqFZi3nMUsgPhp02RkOZrpMukpdSCAOs/RCRiC+dlgJCiz5hXH10FOKg+h810lqMh4OuzPbaU9i5Pp7tGq6Fw2PSc2K63G/3+H91l7uRGp/bn5ysMMfPLp9YrXol+090nOcn6Ljsh0eF6MP+90L/W5oeD770ZBbvZOriIM04dGge6KQ9bXDQV6Na8bhTEMsX+mpKl6YZvn1MX1WA0czTBN6if0Z2o+Gx4Q5AMZ+7zT2wiEftvc5iEK289d/NOxR93z2oiHZJcw0nvVmiFJqLFJfVGQGURAEQRCeAg3ftpCeBZXP16Vucm6DmhEVz8dTmm4SE2iHjUKZsuONhcJ2OGA1KOIph1fKNTZzM4koy6i6Po7SXCmWudOf3kiaIMEozWbtOptfrBH82w2uRx/zkvk5C/sd3vvBR3z5hx+ztbDOffNFHhzUSZcmDtC6uEAcVRDV0Hs2URK7Jdseu9KfPTNZGglYDxIFfQ9q52xnGzroT+0JM30f8/bOWRIjTsQwu130o/YBntYzW26dCwrEKE1PbUucx9FqWKAdm/F3Du72OuwMB1w5o1PnCJtTak2kRuEaxhju9zvHxGbJ9bjb6/Cd7QfcLNd4pVLng9Y+39/bxFGK9pGZwShL+bzbwhjDh+39mY6l8yg6Lu04mprjy4xhLxpe6HeDUoqa6/Oz5g4112dn2OeLjaVj7bibw96xbMaj+FrTikMyY2jH0cxqY8l12Rr2x3EYUZaSmOMVREdpDLaluEHAbjSYOadZcBweDXt8ieW56xqkCT852CYzBkcpHgw6NPyAVhSx4Ad0kphWHPJZp8mXGysXjtYYGfOcJvY1iEAUBEEQBOHJ0J6VP4mbXDi4u+y4lByPVhyyXChScFyWgwJ3e23CLKXoOjwYdLleqvJypc6Pm9sM0oQoS2n4tuo3MtOZihrIoy7U0MEMPGJd5PONN/ns6zXqe21e+uwBN24/ZmP/MRs85qt/4fLw0Qr3XrnK1soKauDZVswZJjOpydgc9ilol7rnH994PeMKosojOczyHCfIifWpTxdRD+pk72zDRvfsL7J9KGzUoypmYQBXzvD8tm9nHze6xwSlg537muThoMu9fofVOQLgoi2m9gbE5WS+BY5DL43HVe3TiLOUnzZ3KDnuuedMR4Ypk0J6Lxqym99ImcRRipfKVeIs4yAa0k9i7vXb1DyPXpIem2VsRiF/sfsYg6Go3TO9lxG+HsWzhGOB2M/dXRfOeMPpKHXP5/6gx7/ZvIsBXq7Ujxnu3O938WZkM04S5Nmi7ThimCVUnOPVRk85DNKIKG+HDbOUDDNlUDPJ6Jp70O9SmiHcyq7HTjggTNOZwm5z0ON7+1tsDftcKZQYZgm3ex2KjkecpZTdIgdxyAetfe7027xcqRM4Zxfsk/TT+Q6mk2ilzuwo/bwiAlEQBEEQnjFuOSUFoiCi4Jw/hw4YOy7eH3T4gm/z3ZaCIp92WqAyXinXGSQtrpcqFB2XjUKFR4MuicnGxhcLfoGS49HJQ7EBCHLRELrQz7cNJbshbi3V+NnS2/z8G19g9f4BN7/b4urw83G24tAPeOA94G71Ovsjy9YJ2nlguq81jwY9rhbLOMq2nh1EIeuj6LlnYQKTAXsljM5srMUsHGPbT4cu7NnFqo+XMIsDCM62QVSbtn5lXjlA3VpA7ZYwZxCI6pcrqE5A5mTWSOdxBRSYL+7gVgZ0J0TLIE343t4mvtZzczJdpRhmGWlehTkrF3U+nUWgHfYj60jq+6eLqoeDHvvRcCoT8HwYhhPrv9/vkmFmVoi0UgSOQxil3O93OYhCFv2AfppYZ9gJbPXIcK1YOXac07BGNfZnYz1/X904Ip7VfnmOY64XiqR5JTLMUiZ/ywzTxApe92QB6ilNmKXc73eI0gzPO74enbvopnlLZ5SlJzi4GoZpSpSldJKI8gzBWdAOe9GQg3jIujP9Of9of5ufNXdwlOZ60cbYlJXHnX6H7+1tUvNGx1M8GnTpxvETXa+DGa63s9BKEWfPpOfh0hCBKAiCIAjPmOJrPW7VtomLQzx98YDlJb+AozRLeQXEhqHbjcqb1QVKrg2pBrhSLHO720IpxjbygePw1YUV/nTnEYU8s21cJRu6toUSMKXpionRmq2bS2zf/Qo/HnybjVd/wM07D1l7sMtr0S947aNf0HlY4t6rV7j38gbdut04d9OELzdWeKO6wJ/sPODzboslv8B+NKTouvRUTLUY2ypkouBX6QWzU0alGrPSs/mH8yjGqNAdG9Wo2IFPFzHv7Mx/jgF1awG6HqpVwBRizM0m3G7AftF+ZCdptFiPZz3V+6uobELQ7BZxq4rehNnLR+199sLBiYLFUZrUJMRZijNRxR6kCYF2TqgApVzW8KTOXTy7STwVS9CKQ37W3OHdxsrU/KQ1TJkR2XEORi3YSZbxaecg/5k5AQN3e+18Fs3BU9NunMATG5SMjWpyFdc5IXvvrIzEpUIdm09txiFhmrLsn1xZU0pRcBw+7jRz19jjq9JKkRlDkp+DMEuZN/7nKE0rvyEQphmLMwSnUgqMdSRdn7gR8HDQ5WfNHRZyJ+jJx79Uqk5dEw5wEIfWmOgJBGInic5khqRQJNJiKgiCIAjCk1DwHMLSEFBzKzxnoeb71D2fau4KWfV8lLLHXPALXC0dCoRFv2ArToapgPE3qgvshkM+7uwDinW/iMLYwPiRW2dpjtNkJSILS9xfu8n91zYo/KDG9QePuK7fZ+nggC/+9DO++NPPaC5UuXNzjcHVBa5eq+BpzbeWr+Brh8+7LV6rNig7Hj9v7lGtRFZ8dX1YuDy7+hMZOqgP7cyTuXpKREAxgab9p1nu2aiPzQq8vm+riHsF6AZwo3Uo+u7VrEAcsdYD10BjiDooYjr+ybOMo1xJQGUaozPMKwfoz5Yg0bhK088riJkx3Oq1qeXXwjxcrUiMIcoyCvk+vRWH/JvNexQdl28srrFWKB17Xj+Jj82XPRGGsXHJiDvdNj9t7rI9HPB7a9fH4nE3HBI8wc+LMYowrwptD/q0ooiNGe9xkoLj0E6isTgqOC57R0xUnnT+7KhRTTMKz5SjeFaOzqfaduSzHX8pz7GcJ5Q0kGFI8gqanVGdrRB9rekk0bgdet5NCKVgOLHmOEv54f4WrlIzzYmOXuerefV0ezggSi/+2TSj2XOXR9EKaTEVBEEQBOHJ8LUzLhp5T7DZrrq5QMxbq6quR+A41Fx/nOs2YsEPKDgucZZRnPieVopvLq/zWrXOTw522B72Wa9EqG6A2c8rDPMEop9vimL7HsJBg8+qS3z6N6uUe11u3H7M9duPaRx0eO+gw3s/hfSHt0neehX1hVf56ytX+XJ9mYJjLfDfb+2RVkLcnbKtmP0qBGIG6hdrqNjBXG/BymzTlCTL2IuGrBUPqztmcYAqxah7DczDKtxojY+VLQ6gGtlcyE+WrKh7cw9CB25YEWqWBqiDom1XPUEgqoN8VvSVA2gFmKudw8zIxMHVml4+X9pNYlpReGqIvMZWfkYteJkx/ORgh2YU0mTIx21vpkDspfET5UwexVFqKiYhyTI+7TZZC4ocRCGfd1t8fbGAMYa9cEhwwbZLsKJ41IrbiSNQ80XKiLLrsTnss5jPAwbaCsZhejg/nDxhBbHgOHbOLz/mbjR4ovd5lKNtloM0mVvlO4pWipWgMLdCNhJno3MwOKHF1FOadhznM5zzF+AoRZgdtne24oidcHDm1mJHaRwFoAjPOGfbTWLu9tp8sW4NpHbCAZvD3mHr/Qlo1LjF9kVFBKIgCIIgPGM8rcdthU9SQVzwA96qLY4riJ52aHg+GzMcHn3tsBaU2A77lI7M/jhKs14o804941/3u2T1IU43QPXyzVFxziZrZEQTa1uFC11MJQTH0KuV+fDd1/jw3deoNjvUP73He4+aFLd2cbZ2Cf74e6TrK/hvvUr8hVfx61XWC2V6xR51FlGdADiH+csFUZ8vopoFTG2IeWNv7uOaccggTUkKEeMtYz3ELPdR9xqoBzVItW05BWgGViDmzqjZKwc2F3KSxT6waOcQX2rOL+ocWLFnNjrw6oH92mg+NNZ4SpPkEQ47w8GZQuTtxt6Mq1+PBj0+7zZZL5ToJhHtZPZNgX56PAT9SQgch/2J3LvNYZ9mFHKlWEahuNVt8W5jhShL6acJC/7F51NHrr9gQ+LPQkE7lB13/DNmTWUyukk8FohROr+t8kzr0g5xFjJMUzytOYjCC8ffHMfkbcGHtOLoWAzFSRQd1/ZtzkGhxgKxn8y/geBpTSeJ85zD+a9v55IP15yYDHWB1mJ7Q+D4765uEh+L99gPh3zQ2uNqsULJdfnu7mMMnClOZRRzcTSD9kVCBKIgCIIgPGM8pa05hTF4T1ApcJTmC7XFqa99obZ4GER+hCvFMmG+CZ39/QobxTLdSoc6djbSBAk4hkGasB9Zy/truUGEcVO7zYsdOCH/sFmv8PE7L7H+t19mtTPA/fBzvA8/w9ncwdncIfh33yXdWOWrN1b4bqUOXJ9vVJMBe0U7K1mJz2+oOTnv1/ZRdxoYN8V8eftYWvQwTdiNhqwHJQZpyqIfEAYhPmCUsQLQMVYk7pbgTmP8XNUqYK53DnMhF2ZUJmsRphhbgbpdgrUZ4eyxgo5vP4dJoZ5naZLYGIvUmLGhyNmrT2pcXWrGISZvefa0ppfE0+622CrjIEmOXz8ZcK8O2sBSH8pnd0cNtEMzj3n4WXOH+/0ujtJopai4Ho8GPbbDPg7WKfKixi1gBcOonXUvHOKfQegqpVidqKSqibnJ5Xz2d5AlT1RVdZQiw+QVYDvHVzttNvKMuErTPyL2m/Hw1Gy/82CANG8x7SfzbyD4uRDeCfsnvr6j1JRATDOb9XpeXKWOvffdcMCf7Dzkr69cnYr4GGQJO+GAB/0OiTE8Hva5dsYoFUcpQgzZswnnuRREIAqCIAjCM8ZVepzh9SQtprN4rdKY+71rpcrYoGYWjlK8XK7xveouY+ucvL10NxzyVm2Re/02/TSxx/EORYoa2i2GqR8XiP0kpux6LAQFskKJaGWJ6K9/A72zj/vhZ3gffo7zeJvXH2/zOtD0PuJR52UevlokKU/koXV81C9Wx5VNUx9ivvHo7CLx8wbqYQ3z3qZt6dzLK3MvNY9VSbtJTDMOWQ1KPBj0KDouNc9nJ+hT0ZkVwrmZjXlnGz5dhIdVWO+iNqt2NhGgHdjNbXVGxUqBeWsX9eMN1EfLmOQAVnrgT7TzdQKbzdgYTr9P97B6OxJxB1HI42HvxPDzaQ4riM1oiDcOsLfRBWEeXTBilHFXVNMiTX22iLrbsEdUBvPNB1Ce05Z8hEA7dJKYD1p7/Ky5y4IXjNtjtVJopbjf67AUFC/FuGXUinswHF5cbBo1rkSCnfF70rZbRW7wgo2DOS1776y4Sk/Fchhj6MTxpQpExWGLaT+N51YndS6Eh2l64k0MzXSLqa0gnh87mzv9c7017HO/3+En+9v83vqN8efWT+x18XG3ST+JWfSDU9uPRyjszZPkBXYyFYEoCIIgCM8YV9uKj6f1pW0Ez0LdC6ZcIWdRcFyyIMEEiXXrLI0qSfBGtQEYPu00pwSiijV05lcQe2nMa5XGdNujUmSrS0SrS0Tf/g309h7dn/8S95PbLLX3acT7vP0H0K+VeHB9lYc31ti79UVUz8c0BtDPHUH73pnFiNqs2Pf0k3XMNx7ZuAiAxoyqZxTy9cVVXi7X+V8f32ajUGa1UOJBv2tFqT/RtudlmLd34fU9az7Tse25puNNtd3OZGmA2eigHldRv1zB1KuY33h0+P2Rk2z5iMDUYJwMksNz+lmneWr4+STGHFYQ96NwLJhcrYnzltVpgZiRGDNdIdoqo+7aKiwLQ9ROGbNZhlebZ1qDqzWpMdzqtqi53rGZr4YX8Mv2PleLlSc2biloh73QZh924ujCIsnXit3wsCI8TNNTW3pPRxGOW1Uvb8ZzsmoKMMxSwiylcYbZurNjiE1mK8xpeqKRkEIRmXRmxMUIRynCCXMZO993/nPiamveNFkJv9Nrs+AF3Ol3+PHBFm/Xlii7Hu04ZMEP2B0OcLVmJTh7BVcrhTFW2L+oiEAUBEEQhGeMq2xboKvVpd7JvwwCx7F7scYQtiqYUkxsMjylKbse10pVPuoc2E2XNzKpcWwsBsw0tEmMYf2kdi2lyNaWaf321/gXry7xhc9qXP10jyvmE5bae7zxwR3e+OAOQ/0zHpde4sEXyuz0X8fcW4L9wtkEYqRR/TwqInLhkyVr+KLMTFE7ai2s+wG/s3KNwHEOw+jnGcp4uQish9DzUffrJz8+x7y9g1npoT5dsqK3dyh6VX/kJDujbdPLYOjkfh+G7bDPclA4/rg5KGVzAZPRTF1+LTp5G+UwSw8rydgKYmqyqWqZemizGcwXd6Aco3bKqK0K5owCEayzbiuOZrb0lVyX1GTc6rWeWNQopUDBw36PME2pXrCCWHBcdsPBWHiE2ZNXEA22gphirIvwJeHm83yZseH1/SQhzrJL7VwwRpFm2fj6cNV8uWEMRHMiLkY444zODEfpC5sAjbI+oywjcBw6udnNoh+QGsNPm7s8GvT4D668QjuOCbRLzXUInPOdG42tjL7IRjUiEAVBEAThGeNpO2Ol0ZcbGXAJFLSLwZBdaaPbASz3ifJWw6Ljsl4oUXBcBmlCaWIOjsixIfOu3STFWZZv0Gx1Zck/XbgUHRcFtF6B3uZX+bjwJRb+9/dY+Og+V+9ssbK5z8vdj3j5DyF2fsaWf5NHn23weCUgKpwiHlq2wmnWujZ7cMeax5jq8ereaE6z4dk1j+JCDtQQlc/7nSQITH2IelS1YfaAmSFAp9DAWh/T861pzuMK5rWRGc0JUSNuisLFJBpfO6TGnMlUY/x0pRkkCb00njn3NjjSnhfmDpXjuUSDFdk6g+W+rWpWQuuA2/XsjOgZqLguWs03Ial6PkXHvRT3VFcpNoc9UjIc7V3IWKTgOBxE0bjVengJLaYOts3R0xpjLrGCqDR9k4x/hvtpjME8UZbkcYw1ScpSW2E+wQDH1RBm2Yntm4cZnRmOo3PhdZEZRE2S2dnOwHHYDgckeZ4lwEZQYica0o5DukmEp/Ux9+ezMMqCzEQgCoIgCIJwUUYVRD8Xis8TBcfBUw7xYg//t627ZBhmLAdFtFIUHJc3Kg1+2txhRfuUAULHxkQUrSBITcaDQXfcdveNxdWpIPQTX1trIj/EaQxQzSKDYZ2DtzSfb7xO8N0l1r1PuMInrD/c4drgc67d/RxzF/ZWGzy+tsqj66u0GxUbpjbBqJ3ULAxQXop6kNfG6sOjy6CfJtS941EhFden4DiEaXryRnK1h7ndQA1zwXWaQByx0YXPF62wfPXAVnJPyqKcEOgrxbO1lU7iKMUgTegnCZkxU+3OxhzPzzsal0DfQyUOpj4cG/yY9R7qs8BWESsHZ1pHwz+57RmY3Yrd8eGgYM/N4uCYydAsSo5n59KeYEfsKU1sUjpJRMFxSEw2rr5eFBtVEuNmCu8cDqOnH9fmXY7mSa3ov9zfOTaWwlbq0iw7sd224nqo5GQTI53fhEmyDBzbYnoR6TVp3lTMMj5s79kOiRzb3pyxHQ6Is4zyBcQh5DOImCeOO3mWiEAUBEEQhGfMqIJY0M/f/5ZHIm3yTnuYpSxOCLyvLa7haYcfbe1YgTiKw8jn8gZpSsML8plFxbuNlTO9dqCd3Okwo3Clg2oWiX7SgC+GMHSJdYF7V29y980KTpKy+h3Dlb1HrJvPWd5usrzd5Es//oReucDj66s8vrbK9voimeuMK4jUQ0w1GgvEWaY6gzThlUr92NdtVTGgFYeUTtpS+Rnm64/gxxu2/bZyxjzHYoLJhbFpBbZVte/a+T5vxuZzMmbk/PqQkuOyGfZYC0vHYhqU4pjBR5im026S43M6IbLXuvDZIjyqwCsHl61Fptf4/gqqa9eQvboPrzRPfU7RcdmPh3iOe+G1KWWnITtxTMML8lbIJ/tZdpU1vnGUeqLom6M4SpPm86R40EviS/9IdJ5bGKbp0fsyx6i4PpU5LssjRsIuzgVXlKXoC6x6VCUNs5RbvRaPBjOcSQ1sDXrjNvqLYK+HFzsL8fn7P5EgCIIg/BXDzW38Ly/r7PJwlKbgOMQT1aIMQ20if85RitcrdX52sANwmP0X2OcM04S1QpmvLa6d67WVUlQ9j2YUwkYXs12B3RL8cAN1vQWAKVjRkroOmzcX2MrewCx9ndq1z7nyeIuN+9ss7rZ47aN7vPbRPRLXYWtjic3eW2wGN+hXbEC6KUV2JrFxvIKYYViaM8u3FBTYHs6IozhKMbVunqmeb1AzA7PSRzWLNvuwkKAyjakcXyMwVUG8CCXXY68f8mDQPbax95S2YfLYDfqP97fppQlMtD+qUdvupMlPKcEs9lH7JcxuEVZmxHtcBhnQ8zE6Q2UatV3GnEEgelrTTxJWSoE9xgVRKJpRyEahdGrL8RSpsnOzi8Op68LGUSRoxWyhcjGfltFibXZjHPFJp0npHG3IZ8FRiiifQbwMdB4BNHLYjbKUJymqHkQhH7T2qHvesY6NwHHYj0O4hLZbEYiCIAiCIFwYV2vc51Qggm0D2xlOVI8MVI64DpZcj5LrYpwUlebvw7fPCbOU1TM6aR6l5vrsDPN2wa9s4XywTvqoiNmy83wUJiz7r7eti+ZehTav0/pqlQ/ffY1gELL+YIcrD7ZZe7jL1fvbXGUbgNb/UmHz6jJbawfslDaOmb9kxqBQNOa4vVZd/+wbQQ3oc6qQBSsG1UHBtm7CbIMamK4gXpCi43AQhcfMkmyouRWId3sdftbctRVU34dIw1bZznLCsTZdc62D2i/ZSJGnJRD7HsrY+A8TOqhOgBk6UDhdpKwXSjQKRaL+2WYkZ1FwHHbCPq+Z+tkFYtezMS3dAHOziXljf/wt22KagIHyUQEXK9R3r0E1wnxx+9AM6YwoFK045JPOAZ0k4lqxcq7nn4bOBWJ4SQIR7M2iUctmlGYXqiBarENuO4m4PuN9F7TD8FLabsWkRhAEQRCEJyTQzlSEwPNExfV5ZHqAnSfUSh3LT9RKsRwUCN0UJxeIZiL6oX6GubJZ1Fx/3FqGAr0akj4qokazeJN5hUFqIyH+/LoVKxmgISwG3H39Gndfv4ZOU5bfD7nyyQFr2R3qzTb1Zpc3uUPiaHbWF9m6sszm1RU69TK9JKbienMFop09fELHSmM4iEMa3oystWpo4yuahUODmuJsIWPc1K4kufiNhoYXcKvXZn0iDB6sQOwmMUmW8X5rj6rnjduM1SeNw9xDPxlXjses9OzXd0pWTPpPYTarl5+bcgRV4J4P22Xr/ro4OPEjKrmenXV9gpcvaJeDOBy34Z5afeq7qB9eOay2b5Xh9f3xOq2hij1PnntE8DcLdp516MEPrmJ+4+HYDOosGGP4SXObfpJy5cjnDMCduq3A5k6050Vj41KG6cmzhefBwLiCGJv0wrPaxii2hv1j1/eIouOyEw252JTjJIpMZhAFQRAEQXgSnmeBWHW9w7v3WYbvOMcEIsByUOSem+KMOgwDa3OvUNQvGElQcr2pvDtnMWJqy1o4sgn1MqhEqIMiZnA8EzFzHHbcG+w23iF793VKxV3WH+2y9nCXtcd7bDzcZePhLvzgI3rlArfWGqSv3MBdjaFwXCQWHRel7GZyFB1wXjpJTJxlPBj0uFosT1efNNAYovZKkFdNzSyDmtF7h9MriBlWiMxYqqs1L5Wrx9oaXaUZpDE/b+2yGw64Ojm7NcpmrIaYK53jx9XA0gD1uIrpBLD0FKqI+dyrKcc2XuNeHfXxknWmfekA8/rZDHIuSsFxOIjDqTzEuSQK9dN1a+R0vQWtANUuYLo+VK1MdUcVM3PckGdssORkNl9zrwRrvTOvdbVQJMkMy6UZVf1HFfSnS/bfP9zAfP3xuUWirSCm9JL48lyZDRMziCe7np7ESlAgw8yd63S1Zpgmp7fdGqAZ2MiaOS3jUkEUBEEQBOGJKLku7nPmYDqikMdNgDUmqeQVl6PUvIDMnage+SmDNKXouMcCz8+KjWk43GipWjKeMzNONtuspRTbmb3+cYEIQL7Bph7SD0rcevMGt968gcoylnaarD3cZf3hLgt7Lb50axNubWL+8AekV9dIb14lfeka6ZU1cB2KjotW1v3wQb9HwXFZK5yvnbaTRLxVW6IbRzwc9NgoTlc3zIIViGrUwpkLxGGaEGjnsFqVzyCqRM+vf6QK9efXQRvMG3uwenx+0p+RB+hrh0E64McHO9Q9f3qDnmdemq8+nlsdNJXIXkMd/6kIRDVZQVwYWvGU5tfo/Tq81Jp9rVwSo3D03XDIqREM22Ur7Jb6mDf3bMWuXbBVu1wgjj7TmZXIkRnQtTbcbaD2ipiRQOz44KUnttb62sGfpY8ijfpw2WaBLg1QuyX4dBHz3tYp734arRRxnqV5WQJRKcYV1Ti7eItpcIY2/iW/QHBSJmYG6oMV1GYV0xhgvro5QyQaEhGIgiAIgiA8CRuFypns/Z8Fk7ORUZay7s0Oua95Ppk7Ich822a2WiifaHV/EuW8gmgDtx2Uxt61bxZs9XDGPtGUcmfGngdHDVNjbTfnxfhYK6TRmt21RXbXFvngq29gen0aD7b56+2E4M4D3AebuA824c9/hHFd0usbODc3uBKk9JZcXK0xGAZpcub8wSy37H+pXCXKMu4NOscftHAoqMx6B+ohmTE8HPSouh4rQZGtcICXavt2TzKp6fqo0K5N/Wyd7L3HZzKO0Upxo1Sd/c2Ba7MPTxJgI+HT9S8x9n2CkXNuObb5i1/ewgxdVDtAPazBvTrm1adbRXTU8azIWYyEvrnWttfvah8+W4Ltko0zGT0OxTGxaYB2AaMzzI2Wbe0d3TjYLKN/YY2gTH1onXPP82PX8e2Nl/WunW3845emWrXPiqMUQ4wViEfdZFKF+nQRs9qzxjxnxGAmWkwvXkE8C6fdzFIfLaM27c+CahbhRxvQGGJutsa/U4yx7fgvKiIQBUEQBOE54M3awrNewlwC7YxjD6LMnGjYovwJB8sgJcxS1i5oUAPWIKfguAzTlMrorn5jaAVicc5mPK8aqr43vb1Olc3Jg5l5h0fZcUC/+TLJxk0SY9A7+zh3HuDefYhz7xHu7fu4t+/zfwCGvsvj1QWim1f4i6oDa6vHshcnGc0dZsZQdX1WghLDNMFVmihLp6t49ZDszV0riPOK3yBJWPALDNKER8M+q0GRRqPMAE5uMe0dtoOqToD6ZAmz9OB8QmKSRNnsw1J08ijmKNqjM2PzbYC2b4X/Rfb9Buh5GDc7FP3LVvSawQAeVeFeDV5qnstB9ryUXJd+Ep8sgA2wV7QzbiPhX44xxdia1cR6LLSNMcfPR8+zFeLGAAopphLa53U91Me2NdR4KapVwLQDaJwxcxMOW4XLkb0eFoao3RLmoGirlmu9M7WbOnlQfJRlBEc7De7XUPfr0Pcwi5tnXpqDYpjncMZZenmtq+dl4MLDKsZLMV95jHp/1bb8tgoQO3ZuE0BiLgRBEARB+HWm4NjqWJJlKGWozJg/BGtkMnXz3U8x4dmCz+fh5k6ZzShk7Dm4MIQ72HbCWYxm9EamLhm2Fe9WA5XZjeWsvMNJBmlCYgxv1xftF5QiW10iW10i/o13IcvQj7dx7zyk9ennLG7t8/KDHXiww5tArxiwu7HE9voiD1dqRPUqamKzvBUOKDouGamd+dMaV3ks+AG9JMb3JwSiAm60p9bXS2Kulqo4SvFg0OWbyxvsqoR7cGIFcdSKaW604HHFxk/crcPLrRPPx1zy9tK5Yn1EkFqjmp5/vCJ1v4b+eJns7R24OqOCeoY1qExjqsPjgqqYwGoPtVXBbJdgo2cF9H7Biu1LLEQVHZf9KDzeYWqAzTLq1oKdJ41c60g76T5aC2HgWQGdV9ZqR1t5YSq/E7CP7Qaon6zb4653MLUI9ckSaq80HTlyCqqf//DmPz9m0baZqvdX7LEH3oQAwq51pwQb3anPX2MFYkJGeTIPMlGoOw377/7s3yHzGGUrpiYjMzzVCuJJqPs1O9d6vQ31CPNbDzEdH/WTdXhcgVf3x+29mQhEQRAEQRB+XSm7HkXHzdvnFEV3/vbB9e2myLgZqbZug/U5FcezsuKX2BxMzMotD8je3RxHQByjGNs5qnwTqj5cRj2q2bY8N7OVxBPm4FKTsRMO+friKtfntVVqTXZ1nejqOu9/4Rp/uXWf/zAr8Ppej8Fnt6ntHHDz1iNu3nrEN4Be0WdvbYnd9QXuLFVxq0V+b+06Fdcbm9IopbheqvKTg21OqydHWcaVYpnrpSpfSBZYDoq0/a79ZnzC/NREK6Z5Yw++V0R/tkSWKXi1ecqrzmCQXwtHzYJmUYmsIO0dmrGQgbpbB0C1A8xFBGJ3NH84x931Sge1VUE9qmKWB6jv3EQZNb+9NlH2PDkZVM5u0OJrh2GaHq+a3W6gP89vNIxE2OL065pKhNoCutMCcfpBoEZGRblANIt9a8gz9DBBYqMyIg0s2fbQ87TV9o6cx8U+sISK8s+4f/hzrz5cQj2wn5u5W8e83Mwr3D10HmyfGWMNdvK2UvaLh66tA/dcrauOshXE1JjcSfkZRAKlylYPlbHtwWAr0o0QrrdRtxfgbgPz5h46z5p8URGBKAiCIAjCiThKsV4ocavbQgFlZ/7dfy/Auoz6CYM0pex6VL3zVQuO0vCDadv50dzWPDQ2VH7gYR5VrDj0E+vIWIztRu+E7Lit4YCbpSpfri+faX0Vz6MQBKj1m0TvVNn9zS/x/7zzKW83B1Qe73Bjp83Sfpsbdx5z485jvgrEBR9u3CW9vkF6/QrZ2hJozUpQxBjbXjgvKmHUerjgB1Rcb1zRDYL88SfNII5EQCkCz2De24Sfr6FvLZKtd6F8zmiCkUHNWQRiNYL9khVBI4G4U7aRDTAlQM5F296AMNU51bKlAaaQoPZL8P0rKJOfp4EHHBGIQwf1F9fHBjfmessK6TMKmarrEThHXEcfW1GXvbqP+nzBVqCOCMTxjGbnhBnNh1VbFSxFsJxf/8sDslf3bWvtetcKFj+v1rYCK3bPGoExquqNKvCVGOMnhwJxOPFzvFmxN2HWuqjNKip3Ps3e3kFf7WDyn1hHKdStBdtWinVexU/tz+YMl+F5OEoRZilJZp5dBfGgYNup17rH55dvtOBuHR5U4aUmCkguMQfyV40IREEQBEEQTmWtUOL91h5138+z/2bj+yoXiCmDNGHjCQxqRlRd7/zGJuUYBh7ql9alZirTTc8/WjuOCByH31xaPxYvMI+RS2vdtxWflaDISr3ODz0Hd7XKW7VFPt3b4kudmOWtA+qPdtjY76I/uY33yW27Pt8jvbbOjWvrvFEwPEZRL802AxpmKQXHZcErTH3d96xJzlyBmAEDz4qHkUBeHsBqDx5XIXTPLRDVcH4FMcmyqXM4cjJV+0XMhq12qnu1wyecs+1wvIZcIFKbIxAVmKtt1OeLh22UYGMmjj52v4hKNaYSQuhaYeNmmNfOVolbCqY/E0IH1fetqHulabNBmwU7RztJJV97d45BSqxRHy/Z6tU7O4ezlAp4pXns/bI4sC6bB0VYOeFmyogMazYUJFPHNjdasFO2n83QsY/L8rnTcoT50g7mage1WUE9rKFatgo8jqZpBXCnjnEza5pTiu2s5ENv2mXY5I8txTOdcB2lCTMbm2MwZ3MxvVtHtX17vi5DT45uhlRmtLb7ma0i3m3YivFLHSIxqREEQRAE4deZhh/gaU3R8WbGIIwICtCD3KAmY21OIPV5qHg+Xm7eclQyxVnGdtjHGHC0Zi0o2upC6XDjmb26PzYtOcpBFFJy3LH9fSeJeW9h5Vxzk1XXZ8ErUHXt5l4rxe+sXuejzj79JOH1aoNftvd5fKXOoytLbL11lf9o7SZLe22ce49w7j/CebCFe+s+lVv3+XtAqhUHizX2VxfYXW2wt7rAsGTFRz9JWA4Kxyz7fa3J3BQ9z6Sm76GMwhxtm/TySsdJranzGFWVjgjEzWEfg62iLAdF6+q63LcGKo+q1sWyFKOaResomym7AT+nYyYA7cBWs6pzZlIBXmqSNYZ2nT0f/dN1CI+/33HG4CtN2xL7F9ftnN0ZBeIxmrlgHLVDX+tgrs1ooy2kGDe1AnHWOdgu2TnLK+3D+cMTMEtWIKrtMuYsArFv3YLN0bnel1uYl1uoH2zYz2ro2s8KDj/zxaF1Dn5YO6zmYsAo1MMqCkX22u748xm7DE/eENgton+6kUds9G2F9Up3bNijlSJMUxKTkZ4lb9SAulO3s5OvNM+d5TiLk26GAJiXmvCgBg9quOs+cUUEoiAIgiAIv8Y0vICS69I4xQK+vJxyd2OX8rUQxZMZ1IyP6biUHG/sYjjCGMOjYY83qwu8VK7x/b1NeklM1fNtYPvAtRWQOXb6mbFW/N0kYr1QzrMdDYvnXPNSUOB3165NbVoDx+Hdhq1exllG0XEZpgkGW3Gslkqk5QrpjSv2CWmK3tzBvfcY/WCT7MEjlndbLO+2eOOX9iG9cpG91Qa3FkoUX7oOaxlMVOg8ra0AG7iYVB137JxsL508j15mN+wnuZ/OY4ZJTSsOcZXmb65e406vzUedA64WXfAzzNs7qJ+toz5YGbdJmqsd1F4RFbrnaju0r+9YEVAJT3Yo1RxeB6P3OUsQj01ghla0FWIr2ibcRc+Dyl1zzdGK4bEHYgVpszjzHIxnD9d7Z3vh1R7moww2y/DG3ulrP9peepRiAk1sW+7oNE8KpSDFeIcC1wZ0mEMRPmmWUxq5DLvjQ6n9wxtJareM2i1jbi9g3tqBtT6uUgzJ6KeJrSCeJhBD57A1tnfOa2oepwhE/Ayu2Spi4aBKsngOB9nnDBGIgiAIgiCcSsFxWfSKpwo+z9UcvPKQUrGEGRpKJ8wrnhWlFNdKFT7qTFdxYpNR0C6/sbhGyfV40O/wWbdJ1bMzbqcFfA/TlKLrcq1Y4bNuk41CCVBzYzxOwjuhquppzXJQYHtoBdFqoXS87dZxxqY3AGmWsr29y2cffsiV3Tbruy1qzS7l2wNu3AZ+/DnG+zPSK6ukV9dJr6zhrS+R+S4MAoic486iuUGNObpZHomHiwjEgWuFQHD4Wu045m+sXuVqyYqaDzv7hzOVq33M9ZZt3Xxctc/dsGKeg6KdQzzPZr59xNXzLPj5jYajFcRUQde3LbijGbPFoa14HhROnnudx9EK4klUI2gWrTvo5DmINOwXrQBbmG+uNIVrz6t6UMc8rMJLp7jUjiIuThKIcGhKxJG5UwXUQjsj2fXJPDs3OBbh3sTNnaMuwzAW5ua3HmAix85tPqqiPljFrNzB0w5RFNKJ51SJQwf143VrcnSjfXhdQH7dX+CzO8oZDJlMIUEBOtPE0mIqCIIgCMKvO29WGxROmD8E8JQGBYkxuEofa4O8KDfKVX7Z2Z+yjo+zDE9rgjyUfr1Q5sP22VsBB2nCUlDgawur3O21acURpXye8LJZL5S42+uglWI1OL3t1tEOjfU1Ei/jX7X3uVIo40YxSztNvEfbvNOOqGzt4d59hHv3EQAl4O97ZZrOOnvvFzi4VuZguU7i2fOjdvLXPSqmXLt5V8mMmbyTyLAiK0jHLZGjucO1/D2uFoqUXY9eGlPJW3DNG3vQLKA6gXWTLaSHbYezjGNOYDR/aObNH85iNOMWHbk2275twa2H45k1szBAPaqiDoqYowKxFdh51nmtrZGGjm/n+s5g4mOq+Yxmx5+uFO6U7bpWe+dqvzXX26gHddSDmg1xP6Hopkazj/OcYIv28xm3WcLx91QLYa8E7YDiimNb0Ufn2J8QiEVbBZyKoWkHVgCXY2uOszhEDV3retv1cWoRBkMrjma+DXW7geoGcFfb9906FIiqd4EZ5lkM85shJ32W+XyzSm0s0IuKCERBEARBEM7Eq9XGqY/xtLWPSIwVCscs/y/IWlCi7vm0oxAv3yLGWTYVE7HgF3Byi33nDC6HgyxhvVCm6vlcLVV4v7nHO/WlJzbVmcW1UpUP2vscRMNztd1eL1V5v7lnc+V8j80ryzxcKLJ69RXwC+jdA5wHmziPttCPtynvHlCJP+faB8AHeQZ9o8J+bYFmq89+fYGD8gAzqTQuWkGMHTu3NlE9HKQJJcelkotsTzu8VKrxYXt/LBDRYL68BZ8s2XgEsO6ygOqfczOft3DONaiZhWNs3MlRgTiqYtUnqn2jyt+jCmqrjHlrF5b6qE+XUPfq1h332/dmii91u2HPz0rvbCYpI/OTI0Y1qpmv6yyzhFPHi63APShitss26H4WBtgt2fm/+rzomFEF0QOVf0JHhNKkwF2+VrRfjBw7Wzl5aTm5yBrNnLaDXJgfybGsh9b1thVAzZ6bThJhjp7M0IGHNo5GDT1Mz5uuIM4z/jkPBmvi5Kcni3Qnn5k0UkEUBEEQBEEArCAweVaZpzTuJYktV2teqzT4RX+fZRWgsC2mk9W+hu9Tdj36+RziqRgbFQHwcrnOp53mpZjqzGLRL/B7q9f5/v4mC+doYV0LStQ8n24SU/N8YmOrpiXXs1mMq0tkq0vEX/0iAP/6322z8lnKwsItFqJtFneb1Jtd6s0ucB9akP5PiuZijf3lBgfLNQ78ZXpmDXNugZg/fmK+bZAm3CjXpgT6tVKFD9pW5I5nx0rJdAtwKRcb53EybQWHJjfVCGMM9wddHKUoOd74s52Jn1h30VQd7oZH7aCTFdZCginENoojAR5VMKGDupdnN0auPW8Tzpvq8wUrWh5VMU5mTVLOQsVWyegcWfcou3KWe+YpmJebqIMi6lYDtkt2VvCN/ekHtQPr6Lo4mB//UsgriwP30AV4VgUxPx5gZxFTbT+foxQTK+YGHoyMgY5Utk3dzjGrVgFz3TqjhmmKmryFkIH6eMka+HipzVncKduKpM6HIfse6pfLEDv2xsRFHE1Dx4rYo23bR8nnYFWmiKWCKAiCIAiCYFtMtVJEWUbF9edm+V2E16sNWjrhk909NoIScZZNCUFHaTaKZT7rNE8ViKnJcLQezxtuFMqsFUqXYqozj9VCib+78fK5MtxcrblZrvJBa5+a5xNlGb52rCvoDFTZZTdYZ/tKEV6+CkDQTFj6c5eFcJuF8j0W95ss7bZY2j2cS0v5E1oHCxz0ijSXahws1mgtVMncE1qEZ7QPxiZjNShOPWy9UKbuBXSSiPo8cTxrLu0U1O0GkLtHKltRLmiXLzaW+PH+9ikCMbNjaZEDbopJFOwWbU7fpFBRYN7ZwbQCG/beLjD6+MaCpO+Bnz8ndFC3FsZPz17eP5aZNxfHWGfXvm9Fp5fZylXPs2LnLFmTR1kcYGpDVLsA3bwS+fr+lEgatR6b5RMqlIXUVhgH7qEZ0NH3VUjsY8L82pzVXjrxWMCaDI3aQY8a+YyqmbngDLRDlKWMFx9p1Purdu4xSDBf3EH9eAN1v2bbpetD62baLsBDG6dibwhcoOH0NIOaEbl41qkmy2+UvYiIQBQEQRAE4dJwtR5b0q8VLnebUfV8/v5Lr/I/9Ya0o5DMGMpHhNIb1Qb3+x22hgPWCsU5R7JRESXHHQvJkuvyW0vrrJxhPvBJuEjA90pQIjN7AMRZStUL5rbQugVDAqjocJ4wur/Bpl/l8WtLmDdXwRjKnT6Luy0W9to0dtssbHdZHOyy+MnhsTKl6NTLHCzVaS5Wx38nfi7iZhiQGDgmAj2teb3S4If7W/MFomOsOcxZoy76LmqnbNtbr9jYiDC1+ZBvVRf4ZWuPYZpQmCOkx6IlcqCUkm4Ftgq11j3uhrowtH8eV1FdH5Pk7ZjrXbhftwJx5NKZV1VNObKGKddPNocxxrAXDVEom6FYjaDvW6OaxaHNP0wc69Kqpp83SBNbST4JlQvCn69ZMQvWjGdSJO3m1/xJAlEBhQQ1yM1s/OT4eVLYFss0X+gsg5oRI6EVuva9AlSPtAn7mZ197FnBHDg2CxGMDa3/mX1PphxhvvI4d51NDuckF4a2ktueyKaMHHAvILTPKhDHFUSNgamZ6RcJEYiCIAiCIFwantI4StFP00txMD1K4DhcLZbZHvRBqWMCYL1Q5t9bu8G/fHyHKEvnZjYO0oTrpeqU0LpSrFz6ei+DBT9AK0VqMqIsOzFqxC/aTshx9Wa/YAPT/QTzat5aqBS9Wplercz9V67YKsu/fYmS26L+6odWNO63WdhrH7anfn74Gp1qieZijZZepjPocZA63Bn2GWYZvtbUZ1Tubpar/KS5c+JnYnMRXZu1N2o5NbZl05Rim4s3YtTGuHZo3BJmKWuFMiXXY61QYmvYP0Eg5sfPz1P6MG9znDenB1AbQtdHJRpTDTHVvAVycm4yyRdTieDmyeIwM4ZHgx41z6ed2BZZqhFqCzs3tzg8bC89Yh7TjEN6aUI7iVkLiidX6heHmN+5Cz/cQB0Up0VSrFGdwLaBTjiYJlmGo9T0cZf68MC21s4VSk4ebWE4sYJogiQ3JXKt+YuXzm5vrYV27rEd4C/E9KIIkynU+ytWHF5tW9OjXPCa1/Zgu2KF/moP7tanO0pjh/wn5HzkAtGcsYJIpjAGXlB9KAJREARBEITLw9MaR9k7/Uere5fFol8gy7fks1otV/Jg9jCdL0Zikz21ecPLpuYFVFyPfpIQm4yGX5j72KCgrKF/ZIWKepzn572+P7+1TgG+oZ/V6d1c59FNG7WhPl0k2MloVO7RMDss7Ldo7LepdvpUO32uswm8D9+H6Mea3kKNzmKNxm6CWV0iXVmCkl3rgl9gyS/QSyJ8f55AzLP2+t6hQGwFqNsLKCAbupDP86lxZMfhXF6YpSwGVjjeKFW51+9wEA1xlD7uTDvpZJpBulmwbZwnVNFMPUQ9yv9jYTi7LXYkEN3TWwsfD/tcKZX51tIV/sXjO/TThHI+Z6g6vr3CR9mVRwRiP015o9pga9inGYcsnHBNjJmqmh6JrShH4wrlME3YCgc4SnG1UB6LRPNyEzUSiPP0qJvZPMtMja/ByfnMMbnQUu28cluZbY5jqqHNgOx5eIuaKEupP1yx84vLPczbu9NP2OhhNiZE/tEM1KPGRGdEnbmCmL/X7PKNrn6ViEAUBEEQBOHS0Erhazt/EzwlgVj3AhQKrdRMgaiVou4F7IXz4xIMzKx0PY84SrFRLPN5twUGSiec13FX7SgkfD//woTwMcbQSxPKjntYIXIz1MDDjNo7mwHqToMI2O4tsvnmLrzbBsALY+rNDvUPMxrbfWrBJtVOk4Ud+4eP741fK6uUyVYWyVYXebfo8HMf9Ko3c7ZxVtTFKCAeQH++SDZq95whnAxQc+1nuhwUsX66inYSUXG9qfZe4+cVrMix1bpE23N0tG1ykonZRNMYHr72BQTiQTSk6nn89vJVap7PtVKFW90m5VGbZW5Uo3qjfMJpgxpjDNeKVWpuwA8PtlngDIxaPeOJcz8SPrn5SmoytsMh79aX2QkHVsQWy/YxhRSz0kPtlKeqjVOMBFJ6mIFoZraY5l8bGQPNM38ZGSClGqUUWQa1B6sYZWzl8DTqIdnv3EHdq9vZ0LMKxIFrz9fopsroepsQiN0kJsmy6bnlcczF5c1ePwtEIAqCIAiCcKkE2sXVGt95OnfRa55PyXFJMRTn5Cwu+D6PB92Z34uyFE85Y4OaF4G1QomfN/dYLxTtrNocfF9hVGarNwPXVlqq4VQVp5PEdJKY/WjIeqFkq6xeaoVZ7ICfoj5ZAhgLAtX1x22UceCxu7bI3tYqKq6QfP0BW4UDfr+2Rv2gi7O9h97ZR+/sofeauN0e3L7PO8A7gFHQq5RoNyq06+X87wodzydj8bBl0wBbZQwG88oB+taijZpYmGy9nBZO5Tync8Ev8BuLa1wtVfiTnUccROH0ecvPh4oc6Ofb4XmiZ3zwCKMzVKatoYqX2biMvmfXqhgLRHOKQOylCb9ZXx9XNq8VK3zSObAizMkORWf/eIvpyA227gV5hfxQ1EZZSjeJKTnu8fbaWfmPR1on23HMWqHI1xfX2I+G/MGj21Pus+ZL25j7NTt/OYuRwE60Pbcw26Qmj0ZRSf6YeQIxP48qsTN9DVNEp7kBTfmMraJeZg2F4LCqeRKRRv3FNWvw85Ut2C3aPEY/GX8OnTiik8S4StOKw8PZWuewxfRFRgSiIAiCIAiXSuDYeIu5s2ZPiKs1y0GRVhzizXmNmheQzknU6ycJNc+jfJrBx3PElUKZby1v8GZ1gZI7f/vmaU3qJTiRB3t59XBhupIaZik3SlWKjsNH7QOulSrTWYg9z0YLVEPMKwe2YhTOOM95hSh2YzxH4y0skC4vk77+0uFjkgS910Rv79F/vEnn4WNWOgMqnT6VTp8r96cP2XcqdFo1Wk2PjrNIp12gvVIkvNaBW4uwU4I39qyzp5eORU9qMhylx5+poxTvNJYBeKe+xB9t3WfRmMOK6eQMYm68MlekjNBg3tyzDqMjB89ShGoXMKFjq2JnqCAaY8AwJVhXCyU85RCZlCCYiOCYUSkd5OY7Nc+n6LgE2mGYJgTaYXPYZ61QYjcc0vDM1DVu/OMiSQ2mWyejLOW6X8HVmqWgYFub0/gww9Ix8NIJs5XOYcVvnklNO45oJRE3RmIbMIU54tyduC6Buh4JsXO6g+YiVcXO9G+F+zX7GhsTgrfn2bbX3ZK9yfKhvY7MW7vgGJIsoxlH/M7qNVyt+JPth3STHiXHYUHbnzmVSoupIAiCIAjCmIJ2cbQieEoCEWCtUOQkX46y4x0bk8qMYZim9NOEm+XaU1vb06Di+XxlYeXUx3lak3kJbuTDlm0NNIvTAjHKMlaCIq9W6tzpd+gmEdVx+6EeV+fMam/abfIoudCInJhAuQSzqrmuS7a2TLa2zPALL/MHDz5j2S8QpBm1Vo9as0u11aVy0KHe6lHt9Ch1u6x9CHAX+AnsQnjLo+0s0mWRzndden3oLBToJCmZ6xCmKYF2KM8wRrpRqlD3fDp5liQwUU3Th3N4pwlEgGud6f8uJdDGVvwKKeoUgWiMYZilFFyHxYm5wYrrUfU8BmlCMIrgCB0YuNapdaL1dZAmVlBqjac1S36BgyhkoFLqXsDfWrvJjw62+Lzbmr4Jkn/Gkw63R905Y2PGM66O0lwtlvmsawVhP7GveyKjlsx09gyiMYZmHNr23yCBQf55nFJBHAvv0WyfPqf7y+T85Yihg/5o2bar1iYqkvm1rlDw0zVbhV/pwapt0z6IQ64Wy7xWqaOUorzhsR0O+O7eY2p+aj2TpIIoCIIgCIJwSNFx8Z5iBRHgRqnGkj8/xsJW2RQmrxoN0oSdcEDJte2Ly8H8577IeEqT+gn0sG1xytiZvSNUPI+q5/Pl+hLf3dui7KY4ALFzWFUqxrY9T5nZFcTIwShD7CRnatctux4F7TDMUlzP42C5zsGyNT253++glOLmX75JddilGu9TY5equ0s1OaDa6rISbrHCFnwC8AvYB/M59MtFDqoF+vUqxa0h2WKDbLGOqVfBcfC0w2vVBj852B4LxI7Tp4axwm60l58V6H4ak0Y1i8O5FcQoS9ka9smMdeLdKJaPtYAuB0Vud1uHYqbro1DHnDPDLGNtIo7lWqnCrV6bouPyN1auUnJdNgplPu4cTK/VP2EGcfQa5rBNF6wr8IftAw6i6FhES5JlHMQhjlKHYteZEHQzWkzbSUTV84nSlCxIcM4rEEezfSfNis7CmyEQ8/lcZRR8voj58rb9+vDw/atuYAXk69YB2OQ3mb5QWxxXo1cLJZaCInd6LQ7CkBWMCERBEARBEIRJAsfB1das5mnR8IMTQ+1LjoenNbHJUEaxGw742uIqb1WX6CTRySHqLzCu1qTeRJ7cUv+Ye6nBUMkrbV+oLbIXDdlRQxpgN+KjlstSkjucpofRBWp8ECs0vJTYZNTc+dEbIxylWAgK7A4HVCYqW/0kpuha19msYminS7S9Je6/V4GVNQBUllHaial9v0g1aVFJWpT9bapxm1J3QLk3gM2DKYMcozWmUSVbaPBerYQhQi3U2C369AsupWKINyhYx00Yi5RRlS/OMsqui6PmX8emHFkrnF4+ozlHIG4OB7xVWyQxGb9o7vH1hdVjx1r2C3xiDg4rfblRzWQgfZjaNtGViYzPK8UKX64v83KlxtU8qmUpKKBQ49ZbYE4VzbU3AEavocxUPM1SUEArRdX16CTx+IZLZgwPBz2ulyv0k4T7/S4Fx2FRp3hwrMW0l8QcRDbL8bcW1/lFa480iBmvZJ47qDvRsjr597lbTKdbVQFU3oJtlEFtVTC3I7jZRB2tlm90DmcP8yr0tdJ0JI6jFG/XlvjDrfvgGGkxFQRBEARBmMTTGl85T7WCeBpFxyHQtvWwlUS8Xl3gK41VtFInzvC96LhKTxmkmFenq0hJluFOzOr52uG3l6/yb4v54+IJ05ZRRS1IbHRB5BwKiUSjjML4GYkxZxKIAMtBgQf9aYOTgzjiWrHM/X7XVuRaBZvLt3zYGmu0prcW0Hu3wtbHLwGQffUxLA3QSUpvd5dv6RLXBwlqv4Xeb6IPWuh9+6cO/M6RtfTdH9HXDfpOjV5QpXs7plsp8jDQtAs+Zc/j4aA3jk2ZyWg2cDQrOBIg3uFnYLMfNe81VnCUIkxT1kfOoBNUx+2vhxVE+9+HwnU77POl+vJUZudyUOTbq1enjlX3AuqeTy9JJtpqjwjEVKEi155rBfHo2ph4r3UvYK1Q4mapyo8PdohNhq8coiyl5Lr87up14izjl+099qOQLhH1/NhEDkZnZDpjbxjytYVVNool1gol7vU7RH6Mj3WUnVsRfFoVRAPsF2118O0d+OUK+rNFTNcbV//MWhc6PuaVw5+hQZrwaqU+83fb9VKFRd/GpYhAFARBEARBmMDTmornH2tJ+1WilKLhBXzSbbJeKPG1hdVnup5fFZ7WqHw+y+gMatMun2EeVD8pkj2tCQJNCqjYVhCNkx2KnJEoDCcE4mi+zEsBQ/GMhj8LXoHMmHFlK8kyFPBGbYHHwz5pOcSlirnenp21d6NNlinUbgnqtnU2dTR79TJm42Wio8IrjKxQbLbp7eySHbQod/s4zQ6Fdo9Ssgls2lSNPzt8WpZXH5ulgAeBRtVr9CtF+uUC/XKRYSnAaA2lGIM5dFWdUUHs5yKt4noopfjb6zdnXotV10ejyLzEVtY6+Sxofs47SUzdD3j3DLOoWimuFit81N4/FIheZtc6quwN878nDGoC7Ux9llopfnf1GoHj8IvWHnGW4WuHxNi/A+1QcFx+c2mDu70233MGh+chN/PZjgZcK5b5cmMZL+8qqHsBj/z82swrt0mWEZtsWow7xq75mEA8vYJojOFOv8uVQonAcTBueigQu74Vx40BXOli6iF89yrslsai37yxdxjHkRNn82+GeNrhy41lPtUZbuwyxyPrhUAEoiAIgiAIl0rZ8Vg6S3D3U2YlKKKU4jeX1g6rM7/muEozuLpPIfPQr7SPfT/KrJHJ0bZJz4cUoO+hUo2phIcCbSwQXSDf1MeT82WKwpy4kaPcKFW5WaryYNDlSrFMK45YLZS4Uaria4fBlX3K1RiW5mdY8lILM+GkGeWipTbrMw58svUVsvUVgi+8CkAGfN5r8Rcf7XPzZyuU0g7V6i7F6mPKnT5uu8tKP8bbb7G0DzbwY3PqsEbBoGTFYr//MYNWnd4HIYNmSj9eoJeFxEZDPv/6cqU2nlmbd6Oi4noUHJfIjSkCatTqOyEQ31tYnl/NPMJGscz7rb1xWygKK/ojbcXLcDrbL8pSal6Ac2R9pVwwVlyPfmLFU5xlNo904rE1zydzbEi9Grp2ftJPSU3GW/XFsTgEm0F6O8gD7fM5zp1wgKs1e+EQV2vquUsr7qRAzF1Pz1BBjPKbD/00tgZKfjp2h1XbRwycyjFUckfajrKidEY8h1JQOKED4aVyjc+d/Hkv8ByiCERBEARBEC6VjWKZjRktdL9q3l1YQTF/Q/7riKc1upDRf3Nras5vRJilLMwQ74UiDAEO8u+VDmfCTJCHyk8a1USHIegGc2bR4mrNbyyts/v4Nq04pJ8mfL26hqM0Vdenm0SUl08QhzMYZgkV1xsLmbPga4ewOqTv1ui7NZo368Qv10iylK3hgH947VUWcOCgxfc+/4RSb8DiMKbUG1LqDSh1hxT7Q0q9IZC3IP4A4AP77/8ZYs+xBjqBR3VxAX/hHqZSxlTLZJUyplrClEuQCydXaxq+T8+NmLJQ8hMyYytpVwrTs28ncaVYpnbMvTW185KpOjRjySt4YZadaDZU93yaka3axll2GH2RU3V9vNFHMDI68m3YzFFH45LjMqx3MC8fYPJMxRTDbyysEjgOjwc9Pu+2aMYRV5zU3pwwnKvFdJAm1D2fMMuv5ZE7bM+De3U7e3llot25EkG7YCMuggRmdomefK17WuO7hgTGER4vIiIQBUEQBEH4teRoJeSvAlrZal6UzQgnBxJjZhr0lBYy9rwEJzoyfwiHlZTwsDVRtayQzLwUV+njoewn0PADfmNpnT/auk9Bu1wt2JsJdd9nPzqfOAQYpOnYnOWsBNohc1JMMUYNPFQecTBIU4p5xiBKw9oysQ75UbfJemH6pofKMoq9IeWPPUoPobi0SWkzo5R0KRX2KXUH1JtdO5O3dXB8EYBRClMuWuFYKfHXPM3DVOP2+gycMkOnTN/02I0iaq7Pyjncd33t8EZ1gR8dbE20mR7O4qmuVXMjl9Qky040fqp5PrGxrZ2xMceq8q7WlIP8GhlVP/PXOzqzV3Y92z76mj0vmTEoFGuFEstBkdcqDd6qLfKvNu+SuRlOqKyoPcGkppPnK17Lr4VhlrDkl+iF8dRa1KeLqERjrrWm3FNNJTrsap5jmmPMcbF7FJ3/KCipIAqCIAiCIAjPA0XHo58c3+CmJkOhZrb/+q6mv9yk+jgPBZ+MHQjsv1Xo2va8715D5S2mqZfgaU3hnIZEr5TrPK71SI2hkguNhnsoQM5DYjJWglPy+Y7gaY2jNaY2RA08dMW+x2GasF4oT7XgjqIejmK05qAU0L9SRx+sYlbXYFCHIMV8+x4YQ9jvU+iH/PuVZZxuH93toTp9VLeH7vRQ3R6q20d3bcbetfwPfH74Qv8iN40t+DiVH2PKJUypaIVluYQpF8lKh/825SLkbZAvlav8tLmTG+U4h2K/WYAHNTunOpGTWT6hCjtdoTWUZtwUqBc9OjCuIGZeiqP0VHsp2Aqim8+gulozTBOKjkt9ooK5HBRZ8gtkTh7BkmjUCRXEgziyzsVZhqc1iYGS66BGpr75e1f7JYzOMC83pw9QnZjXDY7//IzWelq1XOVre5GNakQgCoIgCIIg/BpRcly2ZwitZhSxWijOzID0tKa/sjcWiFMVxEmTms0KKnas82U5Ilxs4ysH95yRJlopvrW8QWoON/olz7Ph5Ocgy59fP+eMaaAdXKWIXtklWAzRKxH0YJhlrB0Jg2/4AVopHg56+FqzEhRJsozNsE+cZVwrBQQA7cDO3eUGNQbYUoZvXL+GWVhlTpADZBlqMER1erT29vnlw3tc+aRBMe1TSHsElSbuYEgljNG7B7A7uxo5iQl8TKlIsVzk97Vh31G4pSJRe5OoVyf6YYFIxwxfConMkE5kXYdPygct6kPZYObMndYLViCqxH4v8xIcpY5VEEuui69tpdvVmn6asFIoHROSa4US9508OiPRkM2uIHbiiKrnUdKujbHxAsCwXihzp9chMwZnYqbQvNw8ZkBDZVIgHq/Ax8YKxNOq5eO3KhVEQRAEQRAE4Xmg7Lkk5niFpZfP+82ayfSUQ1jtj1suxwHwMGVSox5UATBf3IaFkDiKqToXMwBylMaZWErJca05yDk4iEJWguJULuBZ8LSDozRxISK43kGpUeXKHGuzXPADVoMigeNwr98BYCsc8FKpzl40YOgM8DHQss8zbspuOCAzhrrn84Xa4smL0Tqv/pVQyw0+LKU0976Ail2Mn5B9+y4PBz3+wZWXWdUeqtdH9wao/gDV66N6A/unb/89+p4+aKEPWmwAG/Neexf4of1n7Do45R9higGmUMAUC/m/A0zgs+ooXu8dUCn3SUxCtbCIMg4mCMB1QCkqwbS0SPMW5KOZqI7SlF2XQZJQws7Grs+oAi/6Be6OTF8SPXMGMTUZB3HIby2tA/D9fTt/6yuHK8UyvtaEWUqchDbrE+Cl5vFz4WcYP7HupjNaTOMso6CdYyL2KHpUQRSBKAiCIAiCIDwPFLRLdkRn9ZKYouPMndXztEYpMF/axnT9KZMa/NQaenR9m31YCaFh+/ZSk1F0LyfvsuR46KPh7idgjKGfJvzm8vqZHj+JoxSB45Bmh5WoQZJQcI5X0Ryl+btXXqKbxDwa9EgyGxfxerVO2s7YzQZQilF9K5RTJwVl5+7ea6yc2cAHrEguOq5tzYxdCFJik+Fpx7biuh4m8EkXG6cfLE5Q/QGmP+RHj+7QbXep9g2LuwGBOyBwe/hhjB9GOMOQSpSiWx1odWYergD8vamv/Gz8L6M1puDzhuuzMSiQaJ9Y+fQ/TogeGYp3muB7GM/D+B74Hq/2DthKY8qlEt00YqWSQRiB71m7UGxl2LgT0RlHZhDjLOPxsMfL5TpvVBdoxva6bMcRFc+j4QWUHI+tYR9/NaU8KOO82ppjQIOtIu67M1tM4yw7scI6YlRBlBZTQRAEQRAE4bkg0A5KHSpEYwz70ZCvL67NdDYFxlURUxui6uH0NxVQPBRA5kZrHIGRmrM7mJ5GyXXxHYcoyyg6p2+u20lEww+4Wape7PUcl4N0OHW8G8XKzPczclktOR6dJMJVmoYfsOAHPBp0bd5kfn4yJ6XmBvy9Ky+hz9kyq5WdER16MQ4BBAlRllJwnHMZAQHguZh6FepVbi5WGKQJf7bzCF/rqVnDzBgeD3v8/SuvsOoXUMPQtrwOhjAYooYRKowww5BPdrfwoxgvTrihfZwwRoUhhBFqGOH1hywyEa/ycPSP+8eW981jX/nh+F/GczGeR8n3+A9DyJIC6Z+nZElAGvukP4wYehkDBd8sllivdNDeFmXH4Zu9A4YarlcbeJ1bvNU5oDjsUgsKZCtNigOfLFQYrci0JtMKk/+dNXahuURa7mKSzH5PKVCK2GRUvdOdcg9NakQgPnPefPPNY1/7b//b/5a/9/f+3oxHC4IgCIIg/HriaY2ZECYHcciiX+StE1odPaVxlCY1BndGC6p5dwvT822FpXzYfpqYjKJz9niJk/C1Q8lxibOM4kRR0hhDL02OidthmvJapYp3ToOcESXHZWeighibjOvl2tzHa6VYLRR5v7XLeqFM1fWpej4ZYGohatNWZzPXBs6ft6o5YikoctdL8AGClDDNWC4UnyiuZVT5muVw208TSo7Hol+w7a6lIqY0u1K2s7fJ9/Y32QjK/P6N1499fzgI+d7/y+BlEZ4JGbx2m6UivFuqo+IYohgVJ6go5qDbYb/bpZIZiGPWtY+O7feJYlQUofuDvC20PU4TAeDB/Pf6W0f++zfzP+fiuJ4lU9gZWTX6w8S/889GKb6dgMkUyS6YNeD6tfO++jPn10YgAvw3/81/w7e+9a3xf9dq83/IBUEQBEEQfh0JtDNVt+qnCV9fXDuxAuVpjaOUFYj514wx7EZDSo5LuQJU4mPPM4aZZiUXpeH5PBr0pr7WjEP6aUovSVibmDVMTDYzsuOslBxvbJIzTK0b69opLYSrQZE4y9golNFKUXY8wED1sOqaOZkNZr8gdc8n9UbZfSlRlrLoHXeevQhFx2WQTrdPxllK1QvOZDT0heoCH3cOKHuzryU38Bm6mtDYecLNK/s4C1WSlSvHHvu42+KPtx9Qcz0Mit+//hrqqAjOMr73wxaDD0qol3ZwdwKcjsPBFz7jStnnK9UFdJpBnECaWnE5+jtJUUlCPwqJ44RBHNGPQkpKozKDzjK0MagsQ2cGnU3+O7OPMRkqAzBkWTY2N8KY/A8oYwD7b7IMxxiMAZUA0fGfmReBXyuBWKvVWFlZedbLEARBEARBeGZ42sFgMMaQYdCoU2enrEDUU66irTjCUYp+mtBNk5niSSlONe04D3U/4E5vegaulyR8sb7E3X6bg2jIQh7TYVAnxjKcRtF1yXJTnF4cs+gXxpEbc9fnBdS9gNXc6bTkuhjAVA9bVVM3wb9g9RCg4nokvj2eKSZkmMMcwyek6Lgk2bQDaJxl1M54Hut+wFvVRZI5cSSuVhgnQyX2GoydmKI7W27YaBRDbDIW/cJxcQigNbrkETlFjFsFt4TyArZXt/nGjZtkQZHTglGc/M8v9rZ4v7XLRrF8yjNm82DQ5X+3fpPrp7Q0//zHMZvvB3Ref8z/5WsvQ/P82Z7Pmhe3OXYG/9V/9V/xW7/1W/z+7/8+//yf//NnvRxBEARBEIRfOYHWuLnY6ye2NXMyX24W1lHUGsSAnUtrJxFfW1jlm0sbx0TFCIPCV5dXQay4/pSTaZJlaKV4vdrgndoSvTzf0RjbRPskAjHQzrgVN8pSGmcQYXU/YDEojJ1OS451y4ydFFOyMQmpkz5RVbXieoQbTeIvbMF6F3iy9znJZNV0hJ2tO3sl9r2FFb6ycEJBZhRB4Vn5PS8j01ZZFVGWniiA3dG3JkxqSt7JkRyzKLou6Rldcgdpwp1+B5Ofq4MopOr6LPmnv6YznkEUF9Nnzn/+n//nfPOb38T3ff7sz/6M//K//C/p9/v8J//Jf3LhY2r9/Hywo7U8T2sSfj2Qa0t4Gsh1JTwN5Lo6GwXPxdOaFOvy+XqtgXcG05dR+6FSilYcsloo8Vptga1hLx+3On7eFRC4zqV9JhXPQyk1fq1uGrNcKLJcKKKUQh8oMiAxhsDR1Hz/wq8duA5agdKKODU0CoVTj1XzfX5reZ2VfCaw5LkUXIc4ywhyo5rMTSm4F19X0XPxChBdaVFwXJTSVHzvUs5xyXPtLN3EZ6mUouy5Zz5+oEc1udko10AI+ClaKwJ39rFLnoerNcM0oe4Hc1/f9/OvJxoyhVEGz9PnPh+B46Anrq0RUZriHxH0wzTFUYphZudJe2nM765dp+KfLtRdzx5/ZFLzIv6+eq4F4n/33/13/Pf//X9/4mO+853vsL6+zj/5J/9k/LW3336bwWDA//g//o8XFoiuq1lamm0F/SxZWLhYWVwQTkOuLeFpINeV8DSQ6+pkjDHUdgu4jsbTKW+sLbO0cPqeZqldZmfQp1wM2O9GvL2ywvpKDdV3KBx4lCvTVSZjDEXjsbZUZal4PMPuImQlTeHAp1Dy2Bz0SVx478o6K8tVFk2Zje42qTFoHJZUmaurjQu/1iAwFJoepZIP3SHri9WznSemH3OlXWNn2Kfw5oA4c2E9ZKmx/ET7yMZekQyDqx0aboHrq43zu5jOYEUNKfb8qc+ySMTGUo2l2uXsex3/gKwHTtFQKHisLlZmHrueZdT3CsThwL5+Y/brL7USHgIuLmmqMU5GvVI89/ldcWMK3en33o0jNrsDbpRqlCccStsq5oZfohWFxKS8vbrC129eOZPxUL3eBwxebmf6Iv6+eq4F4j/6R/+If/AP/sGJj5k3c/juu+/yT//pPyVJEtw5vc8nkSQZ7fbz0zOstWJhoczBQY/saLiRIDwBcm0JTwO5roSngVxXZycLM5pJyDBLcAeGvax76nPSQUKnN6SYagb9EAYpe3td+nFENExomcGUkUmSZcRRQq81RPdPmwQ7G2GakEYJt4dNFoKA32pscJUCe3t2/asq4GetXXxtQ9BHX78IgyhkOIzp6hAMxP34TOfpKEEMre6QUtGB97oMBkN6nZA9Lr62LEzpxDZOwwC95pDeqc86nUE3ZDiM6KlDU51+P2LYidiLL77eSYyyLqmpkzAcxPTb4dxjZ1FKGqZE3Yi9dPZjwjAEPJIhkCqMlxIP4nN/9v1+yHAQ0ePwvW8P+6x4BR4ctLg2MVvYGYRUjUerP8RRilcaGzT3+2d6nTBM7HrDvD31Ofp9VasV8bzT25+fa4HYaDRoNBoXeu6HH37IwsLChcThiOflw5wky8xzuS7hxUeuLeFpINeV8DSQ6+p0io7D3V6bVyo1qq5/pvPla01qMowxGBSBcsgyg4edT4wz23Y3IskyNAoHdWmfh4/GVw47yYBvLm9ws2Qd6UfHXw/K/NTs0okjFmpLT/S6Ze0RaId+HIOjKOTv97xUXJ8kP29gzS2f9JwUtcNBlmEUZ/78zoKLtp9vvtbRjGdwwfc+C+VaQ0+8lAxz4rkoa48DFZ74+uPxy8hBGUXqZHjq/OfXzddhJmYwozTler1KN4loRyHVfBbSGMN6UGJn2Ge9UGbNL5359Ub3UEYtpi/i76vnWiCelT/6oz9ib2+P9957D9/3+fM//3P+h//hf+Af/+N//KyXJgiCIAiC8Cun5Ng5xHfqy1Oi7iSK2iXJN9DGmHFgvK81ntYkR8xNEpPhKH3hHMJZKKWoe4HNJCwed4u8UizzbmOZnzR3zhRafhKe1ix4ATvRgLIfjN/veTmazwjgPoGLKUDR8azohKnWxyfF05rJjzE2GZ7WlxpVol1DBmRekl8f889FxfXwtT7x3Ad+/vzQrtHoDO8C59fXdgYxMwadR7popbhZqlLULt/f36SXJqznDrUNP+Cd+jJXi+XZDqtzGCWAqPTFmz0c8WshEF3X5Z/9s3/Gf/1f/9cA3Lhxg//iv/gv+P3f//1nvDJBEARBEIRfPUXX40qxzPXS2ee0fMdBKWsA42pNKd+0K6UoOR79ZDrTLTUmD4S/3I3woh+w4PuUZnSBKaX4ysIqgXZYC5587nGtUOJWr8WCLtkZvwsUeiquh+JQeAA2K+8JKDsuSQZGZVScyxOIQS6SUmPyqnBGQTv4lyjyXRcSRgJRnXjsqmuruMEJj/FcRerHOJE9D8bJzpTZeBQ/j3JJTIavHPpJTMX1WPADloMii37Av9y8S5Ll7quOc7Jb6xwcN//sxcX02fLtb3+bb3/72896GYIgCIIgCM8FN0tVrhUrZzLVGDGqykRZiq+dqfy6suvSjsOpx6cmm1k9e1K+1FhGM39z7SjFlxrLl/JadT8AlHVDzatL56XsegSOJsxSio6LwVxIwEziOw4oQ4qamyN4ETzt5BEoGY6y7qtL54yLOA0394BJvARXafwTzkXBdVkM5mQgjtasNGkhGgvETGd4F4hW8bSDo9U45qObxLxRXRj/jKwUShS0wyBN0CgK+mLnfVxBzF7cNMFfC4EoCIIgCIIgHHLejDgAV1tDlDjLKLvulLgsux7xkSzExJhLcdY8ykVbPS9CzfUpOE4uFC+Grx0qrs8wSWyFDvXELaa+dnKJbObmCF7suBpXa5LM4GvbYlq7xBZWgNorQ+4nTfRiZ1y1m8dGoXxqxqOrNWkhhrb970xnJ7atzsPTGk9pkiwj1RkphhvlwzZmRykW/AKPB108rfOcxvPj5hXEF7nF9MWVtoIgCIIgCMKlseAFuErTS2PqR4LTK65/LGQ8NdnMNtAXiZrnU3RcFoLCEx1n0SsQZul4ru2JK4jaGZ/tiwqVWbi5SEqNFfuJyah5FxfHs/BLhu7VPRKdnVqFq3o+V4snt0E7SmOKh+3NF20xBXvzITWG3XDIlWL52GuvBAW6SYyr9IltrycxFogvcAXxxV25IAiCIAiCcGnU/YD1QolmFB0TiIF2UHlNKzOGzWGfbpJQvGAb3vNCwXFZCopUnrCKtuAHxMaQ5bN9TzqDOGrLNHCp84Fg33NiDEleEa65/qUef1Q9TU1G0X3ytTtKTQtEnV147rXouIRZSmIyvlRfHs+Mjqh7gTUGcr1j3zsr449LBKIgCIIgCILwovNKpU7JdSkfqQxOVlNacUjF9fhibfFCrazPG+8tLHOtfNwx9TxUPA+Fyc1fTnbuPAt+3qqqUReuZM2j5DqkJmM7HPBKuca1cxgZnQUrrAzJhBPuEx+zlIz/bRxzYYFYclz2oiE3S7WZlcuK6xE4DpUnqIw74xnEF7fF9MW+7SMIgiAIgiBcGhuFMitB8djG3rY5jsw9Ev7a8gpv15eewQovnyvFClXfZ4/owscoOx7GkJu/qHOZA81iNLun1OW2mIKtoh3EIct+ka8srF64UjYPV9lZ1tRkFC/JgdUrH86/Zk6Goy523KLrsnTC+654PkE+U3pRtAPGTUG9WNmHk4hAFARBEARBEAA7E/alxvKxyuCoxbSfJASOw43Sk1Xcft2oej6BYx0wR2HrT4KnHVytUJwcE3ERNgplvrW0wSuVOgv+k81ezsJVdt0Gc2n5in4RUp2hMo3RKY662Dle9At8bXGVpTkzpyXHpeJ6pxrnnIRSoL62STsbAo0LH+dZIgJREARBEARBGPNmdeHY13zt4GnNTjjg7foilUsQQb9OFB2XqufzeNC7lLbbkeOmp/Wl50y+XKnzMvVLPeYkjtYYY1CnZCCeh8BxaAcR3qDwRDOIL5VrJ35fK8V6ofTE5ktuIyEdXrwi/awRgSgIgiAIgiCcSNFx+ObyBp7SrBWePKD+15FVv8itbuvSRFHR8U7MEHxecZVCKTCYS1t/oB3SQi4Qn2AG8Sz8xtL6E7cIP2nMybNGBKIgCIIgCIJwIkopXqs0nvUynmuWgiKOUpc2M1h0nEtr0fxVopVCK02UpU9s1jMi0A5xMaRwAJmbPrGAO4nLEPhPGnPyrBGBKAiCIAiCIAhPSM3zKWj30lxHS653aS6gv0pcpdHYSuJlVVNdrWlv7FEJXAaNDo5avpTjPi08qSAKgiAIgiAIwl9tap5Pwbk8gXijVH3iPMVngaMUWikc9KUKxKwYkb26D8On22J6GUgFURAEQRAEQRD+ilNyXGqed2ltlZedT/irwsZzKFzFpc0g2oqcIsPkLazPuUDM5zBfVEQgCoIgCIIgCMITopTiSrFM8AK2hV4mrlI4KEBdWqvlKFsxM6Dgqc4gXgaOUrzA+lAEoiAIgiAIgiBcBl9dWHvuq1tPG6XUOJ5DXdK5sJmQkBlbQXzeW0xfhCrnSYhAFARBEARBEIRL4LLaS190XK0p6MuTGbaCaMYtps/7bKaj9AtdQZSrWBAEQRAEQRCES8NTmtIlRnSMTF8yY9DYGI3nGUc9/2s8iRd35YIgCIIgCIIgPHd4WlN0vMs7ntK4SpOYDK14MVpMn/UinoAXee2CIAiCIAiCIDxnFByXont5LaYFx8XVmmGa4r4AlbnLnL98Fjz/Z1gQBEEQBEEQhBeGmutRvkSB6GlNyXEJs/SFmPPUvNgVRDGpEQRBEARBEATh0nhvYfXSj1n3fB72u5cWnfE0cV5wF9Pn/wwLgiAIgiAIgvBXmoYXEGXp2LDmeUZLi6kgCIIgCIIgCMLTo+x6aKXx9OW5oz4tHKVfaJH1Iq9dEARBEARBEIS/AhQdF19rvBegMqcVUkEUBEEQBEEQBEF4WliB6LwQLaaBdvG0fmHnEJ//MywIgiAIgiAIwl9pSo4VXS+Ci2nJdfm9tRsvhJidxYu5akEQBEEQBEEQ/spQdG0F0VPP/wwiWCfTFxURiIIgCIIgCIIgPNc4SlN1vRdaeL0oiEAUBEEQBEEQBOG5Z8EviED8FeA+6wUIgiAIgiAIgiCcxhfri/gvQMzFi44IREEQBEEQBEEQnnsW/MKzXsJfCaTFVBAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiC8P9n777j5Krr/Y+/vuecKdtbdtNDSIAASSB0CKEY5YpgQUV/ooAgerFQ9HovKipNEcHrVQQsoHAFC1wVUUGwgiggooi0AKGkt+1l6inf3x8zO9nJltRNNtn38/HIQ/bMmTPfmfnuOJ/9fL+fj4iISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEjRbhEgfvGLX+Qd73gH8+bN4x3veMeQ5zz++OO8/e1vZ968eZx00kncc889O3eQIiIiIiIiu7ndIkAEeOc738kpp5wy5G0rV67k/PPP56ijjuIXv/gF73//+7n00kt59NFHd/IoRUREREREdl/erh7Alvjc5z4HQEdHBy+//PKg2++8806mT5/Opz/9aQBmz57NP/7xD77//e+zcOHCnTpWERERERGR3dVuESBuzlNPPcWxxx5bdmzRokVcd91123VdxzHbdf8dqX8sY2lMsmfQ3JLRoHklo0HzSkaD5pWMht15Xu0RAWJbWxtNTU1lxyZMmEBXVxe+7xOLxbb6mp7n0NRUvaOGuMM0NFTt6iHIHkpzS0aD5pWMBs0rGQ2aVzIadsd5tcsCxBtuuIEbb7xxxHP+9Kc/MWnSpC26njHl0bm1dpvHBhAEET09me26xo7kOIaGhio6O1NE0fY9N5GBNLdkNGheyWjQvJLRoHklo2Eszqva2gpiMXez5+2yAPGss87irW9964jnNDc3b9G1JkyYQFtbW9mx9vZ26uvrtyl72G+svJkDRZEdk+OS3Z/mlowGzSsZDZpXMho0r2Q07I7zapcFiPX19dTX1++Qay1YsICHH3647Nijjz7KggULdsj1RURERERExoPdos3F8uXLWbJkCa2treRyOZYsWcKSJUtKt7/nPe9hxYoVXHfddbzyyiv88Ic/5IEHHuD973//Lhy1iIiIiIjI7mW3KFLzuc99jr/97W+ln0877TQAXnzxRQCmT5/Od77zHb785S9z++23M2nSJL74xS+qxYWIiIiIiMhW2C0CxDvuuGOz5xx99NHcc889oz8YERERERGRPdRuscRURERERERERp8CRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkbHW2l09iLEoiixhGO3qYZSJxVx8P9zVw5A9kOaWjAbNKxkNmlcyGjSvZDSMtXnlug6OYzZ7ngJEERERERERAbTEVERERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAUURERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAcUz54Q9/yOLFi5k/fz7vfve7efrpp0c8//777+fkk09m/vz5vOUtb+Hhhx/eSSOV3c3WzK2lS5dy4YUXsnjxYubMmcMPfvCDnThS2Z1szbz6v//7P9773vdyxBFHcOSRR/KBD3yAZ555ZieOVnYXWzOvfv/73/POd76Tww8/nAULFvC2t72Ne+65Z+cNVnYbW/sdq9/NN9/MnDlzuPbaa0d5hLI72pp5dffddzNnzpyyf/Pnz9+Jo91yChDHiF//+tdcc801fOxjH+PnP/85c+bM4YMf/CAdHR1Dnv/Pf/6TT37yk5x++uncc889vOENb+CjH/0or7zyyk4euYx1Wzu3MpkM06ZN45Of/CTNzc07ebSyu9jaefX4449z6qmncvvtt/PjH/+YiRMn8oEPfIANGzbs5JHLWLa186quro7zzz+fu+66i1/+8pecfvrpXHrppTz66KM7eeQylm3tvOr33HPPceeddzJnzpydNFLZnWzLvKqvr+cvf/lL6d+DDz64E0e8FayMCaeffrq96qqrSj+HYWgXLVpkv/vd7w55/sUXX2zPP//8smPvete77JVXXjmq45Tdz9bOrYFe97rX2TvuuGM0hye7qe2ZV9ZaGwSBPeSQQ+wvf/nL0Rqi7Ia2d15Za+1pp51mb7jhhtEYnuymtmVepdNp+6Y3vck+/PDD9swzz7Rf/vKXd8ZQZTeytfPqZz/7mT3yyCN31vC2izKIY0A+n+e5557j2GOPLR1zHIeFCxfy1FNPDXmfp556qux8gEWLFg17voxP2zK3RDZnR8yrTCZDEATU1dWN0ihld7O988pay2OPPcZrr73GYYcdNoojld3Jts6rL3/5yxx11FEcd9xxO2GUsrvZ1nnV19fHiSeeyAknnMBHP/pRXn755Z0w2q3n7eoBCHR2dhKGIRMmTCg73tTUxPLly4e8T1tbG01NTYPOb21tHbVxyu5nW+aWyObsiHn11a9+lcmTJ3P00UePxhBlN7St86q3t5fjjz+efD6P4zhceeWVHHPMMaM9XNlNbMu8evDBB/nrX/+q/awyrG2ZV7NmzeKaa65hv/32o6enh1tvvZUzzjiDe++9l4kTJ+6MYW8xBYhjmLUWY8ywtw9120jni/Tb3NwS2RZbOq9uueUWfv3rX3PHHXcQj8d3wshkd7a5eVVVVcU999xDOp3mscce40tf+hIzZszg8MMP34mjlN3NcPOqo6ODz3/+89x0001UVFTsgpHJ7mykz6sFCxawYMGC0s+HHHIIp5xyCj/5yU+44IILdtIIt4wCxDGgoaEB13Vpa2srO97R0THoLxP9JkyYMOj89vb2Yc+X8Wlb5pbI5mzPvPre977Hd77zHW677Tb222+/0Rym7Ga2dV45jsNee+0FwAEHHMArr7zCzTffrABRgK2fV0uXLqW1tZUzzjijdCwMQ5544gl+8IMfqPqyADvm+1UsFuOAAw4Ykyu6tAdxDIjH48ydO7es6loURTz22GNlf2kYaMGCBTzyyCNlxx599NFhz5fxaVvmlsjmbOu8+u53v8s3v/lNvvvd747Z0t6y6+yozytrLfl8fhRGKLujrZ1X8+fP51e/+hX33HNP6d+8efN4+9vfzt13370TRy5j2Y74vArDkKVLl47JivHKII4R5557Lpdccglz587loIMO4vvf/z7ZbJa3v/3tAFxyySVMnDiRT37ykwCcffbZnHnmmdx6662ccMIJ/PrXv+bZZ5/l6quv3pVPQ8agrZ1b+Xy+1C4ln8+zfv16lixZQl1dHVOmTNllz0PGlq2dV7fccgvXX389X/3qV5k6dWppv3RlZSVVVVW77HnI2LK18+rmm2/mwAMPZK+99iKfz/PnP/+ZX/ziF1x11VW78mnIGLM186qysnLQ6obKykrq6+vZd999d8XwZYza2s+rG2+8kQULFrDXXnvR09PD9773PdasWcPpp5++K5/GkBQgjhGnnHIKHR0dfOMb36C1tZUDDjiA7373uzQ2NgKwdu1aHGdjwvfQQw/lq1/9Kl//+tf5n//5H2bOnMlNN93E7Nmzd9VTkDFqa+fWhg0bOO2000o/33zzzdx88828/e1v58tf/vLOHr6MUVs7r3784x/j+z4XXXRR2XUuuOACLrzwwp06dhm7tnZeZbNZrrrqKtatW0cymWTWrFl85Stf4ZRTTtlVT0HGoK2dVyJbYmvnVU9PD5///OdpbW2lrq6OefPmcddddzFr1qxd9RSGZay1dlcPQkRERERERHY9/blEREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAPB29QBERER2lhtuuIEbb7xx0PFjjjmG//3f/935AxIRERljFCCKiMi4UlNTw3e/+91Bx0REREQBooiIjDOu67JgwYLNnpfNZkkmk6M/IBERkTFEexBFRGTcW7VqFXPmzOGXv/wll1xyCYcffjgf/vCHAejq6uKyyy5j4cKFzJ8/n/e85z3861//Krt/T08Pn/zkJ1mwYAGLFi3iW9/6Ftdeey2LFy8unXPDDTdw1FFHDXrsOXPm8IMf/KDs2E9+8hNOPfVU5s2bx+te9zpuueWWsts//elP8453vINHHnmEt7zlLSxYsIAzzjiDpUuXlp0XhiHf+c53eOMb38i8efM4/vjj+fSnPw3AD3/4Qw455BBSqVTZff76178yZ84cXnjhha18FUVEZE+gDKKIiIw7QRCU/WytBeC6667jpJNO4vrrr8dxHPL5POeeey49PT1ccsklNDY28uMf/5hzzjmH3/72tzQ3NwPwmc98hr/97W9ceumlTJgwgVtvvZUVK1bgeVv/f7Pf/e53+drXvsYHP/hBjjzySJ577jmuv/56KioqOPPMM0vnrV27luuuu46PfOQjJBIJrrvuOj7+8Y9z7733YowB4LLLLuMXv/gF5513HkceeSTd3d088MADALzlLW/h2muv5Te/+Q3veMc7Stf9+c9/zty5c9l///23euwiIrL7U4AoIiLjSldXF3Pnzi079sUvfhGAgw8+mMsvv7x0/Cc/+QlLly7l3nvvZebMmQAsXLiQk08+mVtvvZVPfepTLF26lN///vd87Wtf45RTTgHgqKOO4nWvex3V1dVbNba+vj5uuukmPvKRj3DBBRcAcOyxx5LJZPjWt77FGWecgeu6AHR3d/PjH/+4NC5rLR/72Md49dVXmT17Nq+88go//elP+exnP8vZZ59deoz+MdbW1vJv//Zv3H333aUAMZVK8dvf/pZPfvKTWzVuERHZcyhAFBGRcaWmpobbbrut7Fg8HgfgxBNPLDv+2GOPMXfuXKZNm1aWdTziiCN49tlnAXjmmWcAypaTVlVVsXDhQp5++umtGts///lP0uk0J598ctnjHX300Xzzm99k3bp1TJ06FYCpU6eWgkOA2bNnA7B+/Xpmz57N448/DlCWHdzU6aefzjnnnMPKlSuZPn06999/P0EQ8OY3v3mrxi0iInsOBYgiIjKuuK7L/Pnzy46tWrUKgKamprLjnZ2dPPXUU4MyjgAzZswAoK2tjaqqqkEFbTa91pbo7OwE4NRTTx3y9rVr15YCxE0rr8ZiMQByuRxQyJRWVlaOmMU86qijmD59OnfffTcXX3wxd999N69//eupr6/f6rGLiMieQQGiiIhIUf/evX51dXXMmzePK664YtC5/VnHCRMmkEqlBlU9bW9vLzs/kUjg+37Zse7u7kGPB/Cd73xnyABz77333uLnUl9fTzqdpq+vb9gg0RjDO9/5Tv7v//6Pt73tbfzjH/8YVBBHRETGFwWIIiIiwzjmmGN45JFHmDJlyrAZwf5s5B//+MfS/r5UKsWjjz5aFphNnDiRVCrF+vXrmThxIgCPPPJI2bUOOeQQkskkGzZsGLTcdWsdffTRANxzzz1lxW029fa3v51vfOMbXHrppUycOJFjjz12ux5XRER2bwoQRUREhnHaaadx5513ctZZZ/GBD3yA6dOn09XVxdNPP01zczPnnHMO++67L4sXL+aKK66gr6+P5uZmvve97w1acnrccceRTCa59NJLOffcc1m1ahV33nln2Tm1tbVccMEFXH311axevZojjjiCKIpYtmwZjz/+ODfddNMWj33WrFn8v//3//jyl79Me3s7RxxxBD09PfzmN7/ha1/7Wum8iRMnctxxx/HQQw9x/vnnl4rgiIjI+KQAUUREZBiJRILbb7+d66+/nhtuuIH29nYaGxs56KCDyorSfPnLX+aKK67gS1/6EpWVlbz3ve9l/vz5/OY3vymd09jYyDe+8Q2uu+46PvaxjzF37ly++tWvlrKO/T70oQ/R0tLC97//fW677TYSiQQzZ84cdN6WuPzyy5kyZQo/+clPuOWWW2hsbBwyQ/iGN7yBhx56aMSCNiIiMj4Y29/8SURERHaY/h6Df/zjH3f1UDbr4osvprW1lR/96Ee7eigiIrKLKYMoIiIyTr344os8++yz/O53v+N//ud/dvVwRERkDFCAKCIiMk595CMfobOzk/e+972cfPLJu3o4IiIyBmiJqYiIiIiIiADg7OoBiIiIiIiIyNigAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEZA9hrWXx4sXMmTOH5cuXb9F9XnrpJebMmcPjjz++w8fT3t7ODTfcwKpVq8qOP/7448yZM4eXXnpphz/m5txwww3MmTNnxH9ngnzDwwABAABJREFUnXXWTh/XUG644QaOOuqoHX7ds846i4suumjEc+bMmcMPfvCD7X6sT3/607zjHe8oO/b73/+eN73pTcybN4/Fixdv92P0u/vuuzf73u7IxxMR2VN5u3oAIiKyY/zzn/9k9erVANx333189KMf3aXjaW9v58Ybb+TII49k2rRppeNz587lrrvuYsaMGTt9TO9617s47rjjSj/fcccdPP7449x4442lY9XV1Tt9XHuqj370o2Sz2dLPYRjyqU99iuOPP54vfOELVFZW7rDHOvHEE7nrrrtKP//mN7/h1ltvLTsWj8d32OOJiOypFCCKiOwh7rvvPiorK9l3333HRIA4nOrqahYsWLBLHnvSpElMmjSp9PNvfvMb4vH4iOPJZrMkk8mdMLo9z6Z/BGhtbaWvr483v/nNHH744Tv0sRobG2lsbCz9/OyzzwLovRUR2UpaYioisgcIw5AHHniAxYsX8853vpOXX36ZF154YdB5P/zhDznhhBNYsGABH/7wh2ltbR10zq233so73/lODjvsMBYuXMiHP/zhQUtW+5cp3nXXXSxevJiDDjqIf//3f2f9+vUArFq1ire85S0AnH322aUlfjB4iemZZ57JxRdfPGgc1157LSeeeCLWWgByuRzXXXcdJ5xwAvPmzeOtb30rf/rTn7bjVRts1apVzJkzh1/+8pdccsklHH744Xz4wx8Ghl52OdQy0DVr1vCJT3yCI488koMPPpjzzjuPV199dbvHlk6nueqqq3jjG9/IwQcfzOLFi7nyyivp6+srOy8MQ77zne/wxje+kXnz5nH88cfz6U9/etjr9vb28p73vIe3vvWtdHR0DHnOSy+9xLHHHst//dd/EYZh6T18/PHHueiiizjkkEN4/etfzw9/+MOy+w1cYnr33XdzwgknAIXM4pw5c7jhhhsAiKKIm2++mZNOOol58+bxxje+kZ///Ofb/FoNZ86cOdx2221cffXVHH300aU5unjxYq699tqyc/uXrKZSqdKxrq4uLrvsMhYuXMj8+fN5z3vew7/+9a8dPk4RkV1JAaKIyB7gr3/9K21tbZxyyim88Y1vJBaLcd9995Wd8/vf/56rrrqKE088kRtuuIH99tuPSy+9dNC11q1bx5lnnsk3v/lNvvCFLxCGIWeccQa9vb1l5/3zn//kBz/4AZ/+9Ke5+uqrefHFF0tZy5aWFv77v/8bgMsuu4y77rqrbKnfQKeccgoPPfQQ6XS6dMxaywMPPMCb3vQmjDEAXHTRRfz85z/n/PPP59vf/jbz58/nIx/5CEuWLCndr3+P4fa67rrrqKqq4vrrr+f888/f4vt1dXXx3ve+l9dee40rrriCr3/966TTac4999yypZbbIpvNEoYhn/jEJ7jlllu4+OKL+etf/zoouL7sssu44YYbOPnkk/nOd77Dpz/96bLXdtPxnnPOOfi+z+23316Wgev3/PPPc9ZZZ/G6172Oa6+9Ftd1S7d9/vOfZ//99y8tJb7qqqt4+umnh3ysE088sbSU91Of+hR33XUX73rXuwD4whe+wLe+9S3e/e53c/PNN/OGN7yBSy+9lAcffLB0//6AbdM9rVvre9/7Hq2trVx33XV87nOf2+L75fN5zj33XB555BEuueQSbrrpJhoaGjjnnHOG/EOLiMjuSktMRUT2APfeey+1tbUcd9xxxONxFi5cyH333cd//Md/lAKsb3/72xx33HFceeWVABx33HF0dHTwk5/8pOxaA4PGMAw59thjOeaYY/jDH/7AaaedVrqto6ODO++8k6lTpwIwZcoU3vve9/Lwww9z/PHHlwK1ffbZZ8RlfieffDJf/OIXefDBBzn11FMBeOqpp1izZg2nnHIKAI899hgPPfQQd9xxB0ceeSQAixYtYtmyZXzrW9/iG9/4BgDGmLIAZlsdfPDBXH755Vt9v//93/8lk8lwzz33UF9fD8Chhx7K4sWL+dnPfsb73ve+bR5TY2Nj6b0DCIKAadOm8d73vpc1a9YwZcoUXnnlFX7605/y2c9+lrPPPrt0bv/rOFBHRwfnnHMOlZWVfPe73x1y7+W//vUvPvjBD/LWt76Vz33uc6W51O/UU08t/VHgyCOP5MEHH+S3v/0tBx100JDjP+CAAwDYe++9S3Ni+fLl/PjHP+aaa67h7W9/OwALFy6ktbWVG2+8kde97nUAOI6D67qDxrC1JkyYwNe//vWtvt8vfvELli5dyr333svMmTNL4zz55JO59dZb+dSnPrVd4xIRGSuUQRQR2c3l83l+//vf84Y3vKFUhOPUU09l9erVPPXUU0Ah0FuyZAmvf/3ry+570kknDbreU089xbnnnstRRx3FgQceyMEHH0w6nea1114rO+/AAw8sBYcAhx12GE1NTcNmkIbT2NjI0Ucfza9//evSsV//+tfMmDGD+fPnA/Doo4/S3NzMoYceShAEpX/HHHNMaa8ZwAUXXMDzzz+/VY8/lBNPPHGb7vfYY4+xcOFCqqurS2Osqqpi7ty5ZePcVvfccw+nnXYahxxyCHPnzuW9730vAMuWLQMoVaPdtHLoptra2jjzzDOpr6/n1ltvHTI4fPLJJzn33HN597vfzec///khA7Njjz229N+xWIyZM2eybt26rXpOjz32GI7jcNJJJw16b1944QXCMATgtNNO4/nnny+bc9uif5nr1nrssceYO3cu06ZNK40R4Igjjtgh762IyFihDKKIyG7u4YcfpqenhxNOOIGenh4AjjrqKOLxOPfddx+HHHIIHR0dBEFAU1NT2X03/XnNmjV84AMf4KCDDuLKK6+kpaWFWCzG+eefTz6fH/G+/ce2ZbndKaecUtpPV1lZyQMPPFAW5HR2dtLa2srcuXMH3XdHZAw3NdRz2xKdnZ089dRTZcFuv2OOOWa7xvS73/2OT33qU5xxxhl84hOfoL6+ntbWVj72sY+Ry+WAwpLRysrKzVZifeWVV+jq6uK8884btpLoI488QhiGZVnjTdXW1pb9HIvFBs2Tzens7CQMQw477LAhb29tbS0rLLS9JkyYsE33639vh5qDu6Iir4jIaFGAKCKym7v33nsBhiz0cv/99/OZz3yGxsZGPM+jvb297PZNf/7zn/9MNpvlm9/8ZilwCIKA7u7uQdfe9L79x5qbm7f6OZx00klcccUV/P73v2fq1Kls2LCBN73pTaXb6+rqmDhxIjfddNNWX3tbDJUti8fj+L5fdmzT16Wuro7FixcPWUG2qqpqu8b0wAMPcPDBB3PFFVeUjv3tb38rO6e+vp50Ok1fX9+IQeJRRx3FAQccwGWXXUZDQ8OQ/QE/8pGP8Oijj3Luuefyox/9aNSCoLq6OjzP48c//vGQr/tQ+yK3x/a8t/PmzSt7/QfeX0RkT6EAUURkN5ZKpXjooYd485vfzLvf/e6y25YsWcI111zD448/zsKFC9l///35wx/+wBlnnFE653e/+13ZfbLZLI7j4Hkb/+/h/vvvLy2nG+j5558v7X0D+Mc//kF7e3tp/1ksFgMoZbdGUldXx6JFi7j//vuZMmUKs2fPZv/99y/dfswxx3DbbbdRWVnJ7NmzN3u90TBp0iReeeWV0s9RFPHXv/617JxjjjmG+++/n3333XeHt0/IZrODApFf/epXZT8fffTRQGEp6plnnjni9T7ykY+QSqW4+OKLufnmmwdlOD3P4xvf+AYf+tCHOOecc/jxj3/MxIkTd8AzKXf00UcThiG9vb1lS1Z3pk3fWyhkUAc65phjeOSRR5gyZco2Z5hFRHYHChBFRHZjf/jDH8hkMpx99tkcfPDBZbcdeuihfOtb3+Lee+8ttau44IILuPzyyznppJN44okn+POf/1x2n/4v65/5zGc4/fTTWbp0KbfeeuugpYRQyOycf/75XHjhheRyOf77v/+buXPncvzxxwOFojXJZJJ77rmHmpoaPM8r7Skcypve9CY++9nPUl1dPSi4OfbYY1m0aBEf+MAH+NCHPsQ+++xDX18fL7zwArlcjk9+8pMA3HjjjXzzm9/cIfsQN/WGN7yBH/3oRxxwwAFMnz6dn/70p4NaTJxzzjn88pe/5P3vfz9nnnkmEydOpK2tjSeeeILDDjuMN7/5zUChTQjAHXfcMeJjDsx2LVy4kKuuuopvfetbHHzwwfzpT3/iscceKzt/1qxZ/L//9//48pe/THt7O0cccQQ9PT385je/4Wtf+9qg6//nf/4nqVSKj370o9x2222Digklk0m+/e1vc+6553LOOefwwx/+cIdn9GbNmsV73vMe/uM//oPzzjuP+fPnk8vlWLp0KcuWLePqq68GCkHvpZdeyu9+97vt3oe4qZNOOokvfOELpeq4v/3tb3n55ZfLzjnttNO48847Oeuss/jABz7A9OnT6erq4umnn6a5uZlzzjlnh45JRGRXUYAoIrIbu++++5g5c+ag4BAKGbw3velN3HfffVxxxRWcdNJJfP7zn+fmm2/mnnvu4cgjj+Tqq6/mvPPOK91nzpw5XHPNNdx444387ne/Y//99+f666/nE5/4xKDrH3LIIRxzzDF86UtfoqOjgyOPPJIvfOELpdsTiQRf+MIXuOmmmzjrrLPwfZ8XX3xx2Ofy+te/nssuu4zOzs5BVTeNMdx44418+9vf5vvf/z5r166lrq6O/fffvxRsQaE9Rn9Rkx3tggsuoKOjg+uvv55YLMb73vc+9t1337LeiI2Njdx11118/etf55prrqGnp4eWlhYOPfTQsvYbmUxms0FONpstZWEB3vOe97Bq1Spuv/12crkcxx57LF/96lcHZY4vv/xypkyZwk9+8hNuueUWGhsbR8zMXXbZZWQyGT70oQ9xxx13lGVuobA09pZbbuHss8/mvPPO4/bbb9+i12trXH755cycOZOf/OQnfOMb36C6upp99tmH008/vXROFEWEYVjqi7kjvfvd72bFihXccccd5PN53va2t/GRj3yEyy67rHROIpHg9ttv5/rrr+eGG26gvb2dxsZGDjrooCGX6IqI7K6MHY1PWhER2aOdddZZNDQ0lNpLyJbL5/Mceuih3HrrraWWHUO56KKLWL9+/bD9I0VEREaD2lyIiIjsRM888wz77bffsMHh0qVL+cEPfsCDDz44qC2JiIjIaNMSUxERkZ3osMMO4+677x729quuuoqVK1dy9tlnc+655+7EkYmIiGiJqYiIiIiIiBRpiamIiIiIiIgAChBFRERERESkSAGiiIiIiIiIAAoQRUREREREpEhVTIcRRZYwjHb1MMp4nkMQjK0xyZ5Bc0tGg+aVjAbNKxkNmlcyGsbavHJdB8cxmz1PAeIwwjCiqyu9q4dR4jiGpqZqenoyRJEKz8qOo7klo0HzSkaD5pWMBs0rGQ1jcV7V11fiOO5mz9MSUxEREREREQEUIIqIiIiIiEiRAkQREREREREBtAdRRERERHYxay1RFGJ3wVYtxzHk83mCIBgze8Vk97cr5pUx4Dguxmy+EM1IFCCKiIiIyC5hraWvr5tUqgfYdcFZW5tDFI2dapOyZ9gV88pxXJqaJuO6my9GMxwFiCIiIiKyS/QHh7W1jcTjCWD7Mh/byvMMQaDsoexYO39eWbq62ujp6aChoXmbr6IAUURERER2OmttKTisrKzepWPxPAdQBlF2rF0xr2pq6uns3IC1EcZsW7kZFakRERERkZ0uikLAFjOHIrIjuG4h/7c9S1sVIIqIiIjITrexIM2uWVYqsmcq/D5tT8EnBYgiIiIiIiICKEAUEREREdllnnzy7yxadDjpdHrE804//S387Gd37aRR7Vz33PMzPvWpT5R+DoKAL37xck4++XUsWnQ4S5e+yJVXfo477/zBLhnfBRf8Ozfe+PVd8ti7ggJEEREREZEtdPXVV7Bo0eF87WvXDbrtyis/x6JFh29XMPHrX/+KU099/aDjt9xyO6ee+rbSz4sWHc4jj/x5mx9nZ0in09x449d517veyuLFC3nrW9/IJz7xMZ5++qnSOblcjttuu5lzzvlg6dhDD/2BP//5Ib7+9W/yi188wN57z+accz7I7bffRirVN+Jjnn76W1i06PBB/+6556ebHe9wwfqXvvQVPvCBD23NU98mY+U9VRVTEREREZGt0NIykd/97jd87GMfJx6PA5BK9fHnPz9ES8vEUXnMhoaGUbnujuD7PrFYbNDxr3zlS7z00gt88pOfZq+9ZtLV1ck//vEEPT09pXMeeugP1NXVc8ABc0vHVq1aydSp09l//wNKx/baaybTp8/gd797gNNOO33E8Zx//sc45ZS3lB2rrt72Srm1tXXbfN/dkQJEEREREZGtcOCBc3nttVf5y18eZvHiNwDw+9//lv322x/HKV+gt2jR4Vx77dc49tjjgEJW7d/+7Xi+8Y1vc+ihh5ed++STf+dLX7qydD+Ac8/9EOeddz6nn/4WzjjjTN75zv/H6acXgp/+ZZmTJk3mpz/9FStXruDGG7/G888/RzabZdas2Xz0oxdz8MELysbzn//5Gf70pz/yr389RUtLCxdf/EmOOWZR6ZxXX32ZG2+8nqef/idVVVUcc8wiLrjgE6Ug64IL/p199tkPsPz2tw8wd+48vvKV6we9To899hf+4z8+xdFHLwRg8uQpZYEgwB/+8FuOPfb40s9XX30F999/b2ms/c8NYOHCRfzhD7/bbIBYWVlJU9OEIW9bt24t//M/1/H0008RBD5Tp07j4x//LyZNmsxFF30YgH/7t8J43vSmN/PZz17BBRf8O/vvfyAXXPBxoJClfNvb3sErr7zMX/7yJxoamrjkks8wffpMvvzlq3j22afZe+/ZXHnl1UyZMg1gs+/NcO8pwMMPP8Stt97MihXLaG5u4a1vfTtnnHHWoLm2o2iJqYiIiIjIVjrllLfw61//svTzr3/9q0FZq601f/7BXHTRJ6mtreMXv3iAX/ziAc4446xB591yy+0AfP7zV/GLXzxQ+jmdTrNw4XFcf/03+d737mDevIO45JKL6erqKrv/d7/7bU466WT+939/yKJFJ/DZz17C+vXrAOjt7eWiiz7CgQfO5dZbf8C1136dlStXcPXVV5Rd4777fklFRSXf/vatXHjhfwz5fBoaGnn00b+MuL/y6aefKssUXnzxf/Ke95zJPvvsV/bcAPbf/0Cee+5ZgiAY/kXcjP/5n2vx/Tw33XQL3//+nZx33oeJxxO0tEzk6qsLy4bvuusefvGLB7j44v8c9jp33vkDDjvsCG677UcsWHAIV175ea677ou8+93v5Xvf+wGe5/GVr1xTOn9z781w7+m//vUUX/rSFbznPe/jjjv+j49//L/46U/v4qc/Hb39qMogioiIiMiY8ewjhg0rdt7jtcyABSds/f1OPvlUvve979DW1koqleLVV19m8eI38MAD923zWGKxGNXV1RjDsBkw2LjctLq6puy8OXP2Z86c/Us/X3jhJ/jTn/7I448/yhvfeErp+Bve8MZSMHvBBR/nb397jHvu+Rnnn/8xfvazuzjggAP54Ac/XDr/kks+y/vedzqdnR00NDQChSWf55//sRGfz3/916VceeXnOOWUxey33/4sWHAob3jDv7HffoUx9vb20tfXV/YcqqurqaiowHXdQa9BU9ME8vkcnZ0dNDe3DPu4N974db797RvLjt100y3st9/+rF+/jhNOWMzs2fsAMHXqtNI5NTW1QCGwraysHPG5HXvs8bzlLacB8P73n8f999/L0UcvZOHCQib23e8+gyuv/BxRFOE4zmbfm+He01tvvZmzz/4AJ598amm873//B/jpT+/i3e8+Y8QxbisFiCIiIiIiW6mpaQKHH34U999/H729PZxwwmIqK6t26ZjS6TTf+953eOyxv9DR0U4YhuRyuVJ2sN+BB84r+3nu3PksW/YaAC+/vJQnnnick046btD1V69eVQoQB2b9hnPooYfz05/+imee+RdPP/0Ujz/+GHfe+QMuueSzvPnNbyOXywGU9nFuTiKRACCbzY543plnnlMWEAOlvaHveMe7+Z//uZYnnnicI444isWLT2LmzL236PEH6g8wARobC6/J3nvPGnCsiSAI6Ovrpba2bovfm0298spLPPPMv7jttltKx8Iwwtpoq8e8pRQgioiIiMiYMe9YC8fu7Ec123SvU099C9/+9o2k02kuv/yLQ1/ZGOyAruXbszxyc2666ev84x9P8NGPXszUqdNIJBL8539ejO/7m4xp6HECZDIZjjvuxCGzg83NzaX/TiYrtmhMsViMQw89nEMPPZxzzvkg1157NbfeejNvfvPbqKurwxhDb2/vFl2rv7hNff3IBXvq6+uZNm36kLe97W3v4KijjuGRR/7M448/xu2338qnPvU53vSmN2/RGPp53sAwqvDaue7gY1FUeO+39L3ZVDqd4UMf+gjHHbcNae5tpD2IIiIiIiLb4Nhjj6e3t5d4PMEhhxw25Dn19Q10dLSXfn755ZdGvKbnxQjDzWeHPM8jisKyY8888y9OPfWtHH/8icyevQ+1tXW0tq4fdN/nnnu27Ofnn3+WvfaaCcB++83htddeZfLkKUybNr3sXyKR3Oy4NmevvfYqZQBjsRgzZ+7NsmWvbtF9ly0rjKumpma7xjBp0mTe+c53c911X+PNb35bqShOfyXWKNrx2bkteW+Gek/3228OK1cuH/ReDBcA7wjKIIrIuNWZz1IfS5T+aioiIrI1PM/jrrt+jjFm2P8vOeSQw/jZz/6PAw+cRyaT5pZbvjniNSdPnkwq1ceTT/6dWbP2IZlMkkwODswmTZrC3//+Nw48cB6xWJza2lqmTZvBQw/9kaOPPhZrI7797ZtwHHfQff/wh98yZ87+zJ07n3vvvYcVK5Zz7bVfB+Ad73gXv/zl3Vx11ec444yzqKmpZcWKZTz88J/41Kc+u1Wvz4UXns8b3/gm9ttvf6qra3jxxSX86Ed3sGjRxqqlRx55NE8//RTvfOf/2+z1nn76KY444qjNnpdOp2lvbys7VlFRSWVlJddf/1WOOeZYpk2bTldXJ8888y/mz18AFAJHYwyPPvpnjjjiaBKJxGb3Im6pLXlvhnpP3//+8/jMZz5JS8tETjhhMQBLl77I2rVreP/7z9shY9uUAkQRGZfachn+0rqGE1umUR9P7OrhiIjIbqqqauT+ehdc8HGuvvpKPvzhc5kyZSoXXvgJPvGJC4Y9f/78g3nb297B5z//Kbq7u0ttLoa67o03fo177vkZzc0t/PSnv+LCCz/Bl75UeKyGhkbe//7z6O7uGnTf8877dx544Nd85Stform5hS984VomTZoEQHNzC9/85vf49rdv4OMf/yi+7zN58tRtWuJ4xBFH8atf/YIVK75BPp+juXkip5761rLA5tRT38a///v7SadTI+7h9H2fhx9+iP/+729s9nG/852b+M53bio79r73vZ+PfORCwjDgv//7GtraWqmurmHhwkV89KMXlp77eeedz003fZ2Ojg5OPvlUPvvZK7b6eQ9lS96bod7TY445lmuu+Sr/+7/f5fbbbyMejzFz5ize8Y537ZBxDcXYgYuipcT3Q7q6hi/Ju7M5jqGpqZr29r7SWmaRHWE8zi1rLX9qXc3S3i7eOnUWE5M75q+DstF4nFcy+jSv9ixBENDWtpoJE6Zusp9r5/M8hyAYvaIfY8mmfRnHgs9+9r+YN+9gzjjjzGHP+eUvf86DD/6er33tpmHPGWt2xbwa6feqvr6SWGxwRnlT2oMoIuPOumyaV/u6sVjym6z1FxERkZ3rYx/7+JDLaAdyHIdPfOK/dtKIxjctMRWRcacjnyWyFgeHnAJEERGRXWrKlKm8/e2nj3jOm9/8tp00GlGAKCLjTirwcY0htJZ8qABRRETGj7/85e+7eggyxmmJqYiMOz1+npjj4BhDJhq9flQiIiIiuxsFiCIy7vQGhQDRNYb0KDYsFhEREdndKEAUkXEltBGZMCRmHDzjkFKAKCKyS2xsG6iKtCI7TuH3aXtaPGsPooiMK5kwxI9CarwYvo3IhP6uHpKIyLjkOC6O49LV1UZNTT2u6wHb8a12uxiCQIGq7Gg7e15Z+vq6McbBcTbfzmI4ChBFZFzJhgGBtXjG4BmHTBgWKppuz5/aRERkqxljaGqaTE9PB52dG3bpWBzHIYrGRx9E2Xl2xbwyxqGxsQWzHd9rFCCKyLiSDUMsFlMMENM2IB+FJF19HIqI7Gyu69LQ0Iy1EVEUYXdBEs9xDA0NlXR2pokiZRFlx9gV88qYQmZ+e4JDUIAoIuNMNgwwxSVMnmMIrCWnAFFEZJcyxsF1d01pDMcxxONxPC+vAFF2mN15XqlIjYiMK9mokEEEcI1DaCN8LSsSERERARQgisg40+Pn8MzGjz6DIReGu3BEIiIiImOHAkQRGVd6fZ+YKf/oy1sFiCIiIiKgAFFk3FuXSe3qIexUvUGemDPwo8+SD7XEVERERAQUIIqMa+kg4MnODfT546MXYCYMyIQBiQG9gaw15MJgF45KREREZOxQgCgyjkVYAmsJx0mRlr7AJxeGxAdkEGOOoTvI78JRiYiIiIwdChBFxrHQRoRRRGDHR4DY6+cBU9YfKOG4dOZzu25QIiIiImOIAkSRcSyylhBLuJ2diUMbEe2K7sZbqcfPs2nv2Ljj0hvk1epCREREBAWIIuNaZCG0lnAbM4ihtfxx/QruWrGUv3Ws28GjG1o62Pb9gm25DAmn/GMv4Trko4h0MD72YYqIiIiMRAGiyDgWUdh/GETblv1rz2V4LdVLZCNWpHpHzER25XPbHYT1+nn+uGHlNl0nspaOfLasQA2AaxxCG5EKFSCKiIiIKEAUGccia7crg7gumwIsDfEEfYFPt58jEwZDBnBPd7WxPN27XePdkMvQ5WfJDGhs/1qquziOkaXDgHQYkHS9QbcZILUdmUkRERGRPYUCRJFxrBQgbkMGMbKW11I9VLoernGIKGTo/t6xnme72wed35bPkN7OLN3qTB99fkA22hjMLU/10prNbPa+fX6eIIo26YHYz9CrSqYiIiIiChBFxrPtySB25LO057LUeHEAPGN4ta+bV/q66fLLq4LmwpB06JPytz1Ll49CVqX7CG1EbkAGMRX49G7BktO23PBBZMJx6Mxnt3lsIiIiInuKwWutRGTcKPRBjLapimlnPofF4hUzclVujLZclh4/T7UXKzs3Hfrkwu3b59eay5AOfOKuSy7aGCBmwoDYZrJ/kbUs7eumyhv6Iy+uVhciIiIigDKIIuNaWMwgBtsQIHblcxg29oyo9Dw68hmaExVkwoBsuDFb2Bf45KOQ1HYUqenK57CAiyntcQyiiNwWXLctl6Ezn6U2Fh/y9oTjFvYoqpKpiIiIjHMKEEXGsai4vDTchh6AbfkMSXdjRVDXOOxTXU9dLI4fRWQGBIjpICCwEfko2uaCOOkgwDMGz5jSktJ8FBJElkwYDnndXj/PPztbWdrXRWQLYxxKwnXJhiHLUj3bNDYRERGRPYUCRJFxLMISWUuwlQFiaCM687lBLSMAHGOIsGUBYrefI25c/Kh8/+DWyIQ+rjHEHIc+vxAg5qKQwEbDXrcjn+Vv7et4tqud+nhs0O0D1Xoxnu1pJx9t2/hERERE9gQKEEXGsdBaItjqoKgv8MlF4ZABIoDBkB4QIHbmc1R5HoGNyvYPbo1UGOA5DjHHIRX6WGvJRSEWS2DDstYX/QJb2CO5V1UN1d7Qy0v71cXidOXzrEhtXysOERERkd2ZAkSRcSyyFmst+a3MIPb5PpHdWKBmUxZb2s8XWUuXnystR93WADETBnjGwTMO+SgkH0XkwwiDwQK5aHCF1CCKsFu4v9IYQ9xxtqinooiIiMieSgGiyDjWHyD64VYGiIEPDB94xYxDj58ntJYV6V4yYUDccQuB3DYsMY2sJRuGpSWmgbVko6CY+bQYDNkhruvbiAF1dDYr6bi0qd2FiIiIjGNqcyEyjkXWYgF/C7J6obW4phBtdflZnBEir7jj0OXnebx9Lc93d5BwXeLF5aj5KGJDNk21F6PSG3lfYL98VChC4xkP1ziExT2H2SjEYgA7ZGbSj8LBo8w70JuAsHiLAZrS4EDSden182TDgKSrj0cREREZf/QNSGQcC4oB4pYsMf1L62qmVdYws6qW9dnyCqabijmFQGttJsXEZEUpOKRYvGZJTzszq2o5qL6ZdBCQcJ0hK4z6UUhgLX4UFfcTFoI6YwpLVTNBgEshhzhUi4pcFJaCWiyYJRMwq2sHnWendWMPaCfhuLRFhV6OChBFRERkPNISU5FxLLQRDluWQdyQzfD3jvU819XG+myamhGKviQcl9ZchrpYfEBwWOhhuCbTR2suy2upHoIo4k+tq1idHnrf32upHp7s2FDKIA7MWmbDkPSAyqa9QwWIYbjxPuuqMatrsbEQO7kXO6O78C8WYlbVQWcSYwwGU1xCKyIiIjL+6E/kIuNYYCNc4+BvJoPoRyE5G9Kdz/HPMKQuFh+2QA1AzHGYXV07KCsYcxyyYYgfRbTnsrzQ28nqTB97Vw3O6gFkg4DWXIa9o1oMBtOfDcTQ4+dIhT4xxwEMvf5wGUQHci7mhSYsFnvwemgYsM+wNot5diLmhQnYY1ZhLXT5uRFfDxEREZE91W6TQXziiSf48Ic/zKJFi5gzZw4PPvhg2e25XI4rr7ySo446ikMOOYQLL7yQ9vb2XTRakd1DGBX2FW6uD2I2DAmiiMnJKuKOoTY2TPZwQN2aoZaMesah289RG4sRWcurfd105/OkhsnYpcKAvjA/qChOrRfjpb4uUkGAa4qtL4I80SYVS3NhhGMMrK7BBC5M7ykPDgEmpbCVeUxfHHyHpOvQmsuM+HqIiIiI7Kl2mwAxnU4zZ84cLrvssiFv/9KXvsSDDz7I17/+de644w42bNjARRddtJNHKbJ7CQdkEEdqB5GNCgFipefREE8OcYKLeWIy5m9TYIRY03McOvM5arw4CddlTSZFfTxO9zAZu3TokwsjOvPlt1d7Mfp8Hz+K8IxD3HEKexLD8lYX+SjExWBW1wBgZ3QPfhADVOcL/52KkXQ9OnJZ2hQkioiIyDi02ywxPeGEEzjhhBOGvK23t5ef/exnfPWrX+WYY44BCgHjKaecwjPPPMP8+fN35lBFdhuBtbiOIbKWqNguYijZMBiwvLOgcUMnRzzyDASGxxpPoS+qAMC2VUJLesjrVLkee1fVEnMcGuMJYsbBGOj280OenwoKrSy6/VxZUw1jTKniaHVFJTHj4NuIvsCnqlgZtdDfMaSiswaTjWEb01A5uFdiYWDFDGZfnKo6j3VBmvvWvsbilulMr6wZ5tUTERER2fPsNgHiSJ599ll83+fYY48tHZs9ezZTpkzhqaee2uYA0XG2ooHaKOsfy1gak+z+IgrN7iMK1UzdYeZXvthPsD9IdPMBR//xaaqyhUBwYe63/Hafd0BvRaFK6MShs2/GGJLFvYuecWlIuKQDn2wUlsYyUDYKyNtiBVPjlAWpjfEkvk0Td1yMMTjGkI6C0u+IH1msgfja+sIdpvUOCnJLqgsBoknHMY7DlIpqVmX6SIWBfue2kT6zZDRoXslo0LyS0bA7z6s9IkBsa2sjmUxSXV1ddrypqYm2trZtuqbnOTQ1VW/+xJ2soaFqVw9B9iCJ7hhVxImspaa+Yti+hCtsioqeGFXVCcK2OFP+sIaqbJo1yb3xnBwt6TXsM+UpXl52JKatgqRbgVOx+dYZAPHIozWToaIuQcL1SBTbZ+TDkNh6j1ongZt0qXYTVFUmyu5bR0Xpv5M2h1Phln5v04FPYkUCr60KEiGVs0KMU37/flEzZAE3myBZnShdr7o2MSY/B3Yn+syS0aB5JaNB80pGw+44r/aIABEYMjMw0p6qzQmCiJ6esbMHyXEMDQ1VdHamiKJtf14iA3X3ZfH9kFjCpb2jj4w7dIC4ur0HPxuQMjl4qokZXS8D8OKhMzB1OVruX8O0Z15l6X4HYJbVk/lLA8xrhZotaxfRm8myqrWbJzs2MLeukRlVtfQFPj2pHC7Q1pPCMYZUNHx10TAX8lpbJ3u7hYCu18/DsiqwBju5l3R6hMqkJg9Ywm6PVF/hvGzGp6MrTbvp26LnIOX0mSWjQfNKRoPmlYyGsTivamsriMWG72Pdb48IECdMmEAmk6Gvr68si9jR0cGECRO2+bpj5c0cKIrsmByX7J78MMQBImvxw4jIDD23evJ5XGOwoSXZFTAhv5ZUVQVt+1YAFfTWVtHU2kX1kavoq09iupLYf0zCHrdiy0phWViR6mVVupfIWqYkq8kGAUFUaKnRkc9RH0uM+EefhOPSns2Wfj9yQUjF2obC5af0wkh/MHIspiLAZGJEPuBZDIX2Hvp92z76zJLRoHklo0HzSkbD7jivdpsqpiOZN28esViMRx99tHTstddeY82aNSxYsGDXDUxkjItsofVEZC3hCAFUX5Av9BtMxZmUXQXA2unNYAwYw/LZUwCYumYN9vA12MYMJu9B1xAVT4dgLWzIpgkiy5pMivXZNPkwBAwJxyMVBHjD7R8sijsO6dAnW6xk2tMBXi6Orc9sLEIzkqr+SqaFFh6OYbP9IUVERET2NLtNgJhKpViyZAlLliwBYNWqVSxZsoTW1lZqamp45zvfyTXXXMNf//pXnn32WT7zmc9w+OGHq4KpyAgCGxU/BMywAWJoIzJhSMw40JOgJbsCgPVTNmbn10xvAWDqyg1gwE4sLMs0G4rr7nvimKdbIDP0ogXHGFKBT00shoNhaV8XuSjEAjHHYVpFFRXuyAseEo5LPoqKPROh1KWiekBwaG0hKh5K/3mpwjJbgyHczf7iJyIiIrK9dpslps8++yxnn3126ecvfvGLAFxwwQVceOGFXHrppTiOw0UXXUQ+n+e4447j8ssv31XDFRnzrLVE1mIcB4gI7dDZslwY4kcR1Z6H6YkzIb8WC2yY1Fg6p7uhhlR1BY1t3STTWbLNLiwBWithTjtmeR1mfTXkXOyh6yDvQsXGlhMxx6E9l2VKRRVxJ2RtJkVLogJTbG5RE4sP/0QiwCnsQ7ZYeoM8ExIV5IqdNmy88Dg1XX0c9fBTVKRzPLHoINZNay57LXpjKeqox2RiWArtEYNhXhMRERGRPdVuEyAeddRRvPjii8PenkgkuPzyyxUUimyh/tYW/Qs3h8sgZqOQwBYyiInOiKqwl57aaoL4gII2xrB6egv7LVnOlJUbeHXODGxdFtOdxPbFobNQbdR0VcBDe0FkCoFiUyHNV+3FCKKImOPgGMP6bJrWXAY7TF/GklU1mBcmwLQe7D4dxIzDSz1d7FVZSz5bvG8ihMhy1J//RUNHLwBHPfwU951+Yuk5pEKfXs9SB6Usp2OMAkQREREZd3abJaYismNF1hJhSxWAh8sgZsIAMBhraOzoBKC9uW7QeWtmTARgyooNANiWFADm1QZMzsMmfawTQWQwGMzSRooJQipcj8kVheWorjFEWHr8PCPW2QoN5pUGjDWYlXWYZ1toiidZleljbSaFny2eFw+ZtnwdDe09tDfXs2z2VOL5gH1eWFG6VK/vU9Ff3ypbCBANhkBLTEVERGScUYAoMg5lw4DQWqy1OBQKzQyXQcwEAW4mhvnXRBpzheCvo7l+0HltExvIxz1a1rbj+gFM6sMau3Ef4sQU9tiV2BOWY2uzmN5EYQnqEFwMuSjEHakwzZoaTN7DNqWxbgQdFXjGwTOG57rb8bPFj7dEyD5LlgPw13l78cL8vQGYtmxt6VIhlnhl8fmXMohaYioiIiLjjwJEkXEmiCIe2rCKHj+PtYVCpIxQxbQv8KlbPgnTVkVjsA6A52vixcziRtZxWDO1GTeKmLimDZIhTEhvvL0hWzgWj7CzC5lI88IEyA3OE1Z6Hj1+Hs8Z5iMqNJhlhSym3acDqvOY0IGsR0M8wepsilym8Hyq8j00b+ikqzrJixNq6Kqroqe2ioaOXip70+SjEM84VMQcwrgPOQ+iYgZRAaKIiIiMMwoQRcaZwEbkopC+wC8sMcUwUhXTbj9HPBsHa2kM1hO4DutqKwqN6AdeN4r4e3MhWzhlZXGZ6dSewv9ioT678eSmDHZyLybnYf41sVBoZoBKN0ZPkMczxY+onIt5fgL0ForVmGX1mGwM25yC2jxUF8fSFyfuuAQ2IsoV7jttzWoAXp7RQmMiSY/vs7ZYdbVlbTt9gU9TIklzopIg4WOsgZxb3IOoJaYiIiIyvihAFBlnQmvJhSGZMMBS/BAww2cQu/wcbi5OddhBzA/oaKqlIhYnv0l2LRuFrJvSTGQMk1e1sqyvh7ApVehDOKkPYgPON2APbC0VsqG1quxaMcehKZakyivW0VpbjVldi/PXabCyBl6rxzoRdk47AHZAgAhQ6XjYnEvkhkxbUch65vefxb41DfQFPm0TGwCYsKGTTBgwpaKaKs8jSBSvk41hgFB9EEVERGScUYAoMs4ENiJvo0KAaAtFagyGVLAxI9jn5/lz62ryUUgqF+L4Ho22sGdvQ1MtMccpFZjplwtDklWVrG6pI5nNM6mtm2wUYo9Yi53fOnggDtiZXQCY9VWDbm5KJHGLGUST3Vhw2XmhGWMNdlbnxlYZxQDRFDOMdU4CJ3SpMJ00tnfTWV1B84zpTKusxjOGdRMKy1ObNhQev9L1SLgeYbL4GmQ8nOK+TKssooiIiIwjChBFxpnIWvwoIhuGxSWmhT1/azKp0jmdfo5VmT7WZFKExWIvjcF6ANY11RJ3HDzHwR+QYctGIdVejFemNAFw4PrustuH1JQpFJhprYRghII06UI7CjshjZ3cS7RgHczs3nh7fwYxVQgQPb9w/vTsKwC8OqOZ+niShliC2liCrphDb20ltT0pkrmAhOOScNwBGUQPU+zCGG0aCYuIiIjswRQgiowzgbUEUURvMWNojKHKi9Hl50gHhYxcKvDpyGVZke4tZe8as4V9hWsaq2mMJ6l0Y2QHFKqxFmKOyyuTGwGYvaaDfBSOPBjXQnMKEzmwrnpQVrKkWFnUzl+PndcKzWnKWiTGI2w8gFSssJ8xXyh8M733NQDW7j2FpOthjKEmFiMfhbS1FJaZTm7rIeY4JFyXIOEXXpOMh2MgIhp26a2IiIjInkgBosg4E9qICFsWvCVcl3wU0VVsHtjl58hFIR35LF4ujmMD6jKdZCoSdCZj1MXitCQrSpVMrbVgLM2JJD01SdrqKqnvTlHRnR5yDAPZSYXMpbOkGfPI9MGZRAtkYthYCN4IwVp1vlBgJhWDnEtl0ENjup2u6iTepJbSaXWxOH4U0V4MEKe09ZQyiLZ/yWp/BtEWMq4iIiIi44UCRJFxJowskbVlFTqNMRhr6S5WJu3IZamLxekLfJxsjIZ8K461dEyowxqo9GK0JCpKhWp8GxEzLi3JShwMLxeXmc5e2775AU1IY/fuxFb4mEwM2ivKb8+5hcCv0h/5OrXF5aGdFZD3mJopLC99adoEmpIbr1ntxQmtpa2lHoDJ7T3EiwGiqSg+RiaGYwyRRRlEERERGVcUIIqMM6EtBohRVLZKM+a4rMukCG1El5+nLpag188Ty8dpzBf2H3Y01wOQdF2aEhU4GILifsYqz6MpniTuOiybWggQ91nVVvbYQRSxPpsuL/xiwO7TWSg6A5iOAQFiT7yQEYSNBWmGYVsKmUizvhqTd5mWeRmAl2Y0UxOLl86rKC417a2rxvdcWjr7SBhD3HGIeQ5RLChkEG2hPYcyiCIiIjKeKEAUGWeCAVm/gSpdjw25DD1+nnwUknRcGuMJkvkEDX4xQJxQBxgqHI+WRAVTK6ppz2dJBT5N8SRJ16PCidHZXIdfW83Uth4qejcuM02FPtliD8ZBGjOF/+0PENsrcB6fhnm+ufBzxeYyiDls0sd0JanakKfR30BPVRWdDTXUeeUBIgDG0N5YQzwISXb1Yoyh0o0RJQu9EB3fI7LDt/8QERER2RMpQBQZZyJr8Uwh8zdQpRejx8/zQk8nobV4jkNdLIGT82jMr8cCrU11GCgVfNm/toFsFBJ3XQ6sK2QN62Jxqrw4+QNmAzD1tTWlx/CjiJZERWkpa5lkiK3KY9JxyLqY4lJTky1WMB0hQAyiiPW5NEwsZBGnrV0NwKvTJ1Lpxaj0YqVzK1wPU3wd2hprAIitLyyFHdgL0WS8QgZRVUxFRERkHFGAKDLOBDbCNU4xk7hxkaljDEnXZW02RSlpZiGRylMV9tJTX03Wc4g5Dkm3UCV0WmU1c2sbWdwynYnJSgAa4gma4hVE8+YAMOO1taXHyEcR9fEEMccpq4BaMjCL2JUsv61y+CWm6TCgN/DJt/QUxpVZCsCSmQ2FfZFm4/NMui6xYouO9cUA0V1bqNBa7cXw+wPEXKzQ5kIZRBERERlHFCCKjDOhtWCG7jnYGE/QnstuvNl3aMoWmtx3TKjDt2GpoAuAaxwWNU9lcsXGRvfTK2vYp6YOWproqq+mqbOPuo5C4BZZy+RkFfvVNNCay9Lt58oe3xYDRLO+CnrjWDMgONskgxhEEctTvUS2UJG1xouTqUpTOfMVGvw2euqqWFdbwaRi4Nov4bjEHZd8FLK2vjBuZ13hOVZ6MfxEf6GaQqZRS0xFRERkPFGAKDLOBFEE1jJUiOgah9pYjIZYonAg49GYXwdAe3M92TCkNhbHDBNgArQkK5lSUQ3A2jl7ATDrpZVAIS6tdGMc1TSJ45un0uP75Rm6pgzWCzFtVYXeiE0Z7IQ0tjoHifKeiukwICQiH4X4UURtLEYmDJjRVyhOs3LmJDCGhnh5JrK/F6JvIzqqkwQxD3d9G0QRScclTBSC1v6lreEmezVFRERE9mQKEEXGGd9GuMYwXGKsLpag0isWcsl6NPUHiC0NZMKQWVV1W/xYfXP3IXAMe72yBifvY4EKz8Mxhr2ra6nwPHID+jHiWpjSV/rR1mWxC9Zhj17NphFtNgyojcXJRxEhlgrXIwhD9l66CoAX955M0vWo7w92B6j1Cr0QQwOp5gaMH+C0d5FwXcLkxgxiYYnpFj9dERERkd2eAkSRcSYfRcUM4PBBYj+TdmjwN+C7Hq3VSRKOy9QBy0k3p6K6mqXTJxDzA6a+tpaYcUpVROPFKqnpoHxvoZ3as/GHumwhMBwiYZm3lmo3XggwbaG/4cx1nVSms6yf3MT6Co8J8SSJ4n7JgWpjcXwbYTBkJxaK6zhrN5Bw3NIeRLIeBqM9iCIiIjKuKEAU2cPZTVo1BFGIA0xIJGhKDM6uDVTf0YdnAzrqG+kM88yorKF6QE/BzamJxXl69hQA5ixZVhYgAkxKVpEtLhHt6a9sWu1jJ6Sw8QDqckNdtiTuuuSjCAy0JCuY/2oh2/nqftPJRhFThglma2JxrC3sicwXA0R3XRsJx8V4FuuFkPHAQoiWmIqIiMj4oQBRZA+3KtPH4+3rSj/no6hYsdQrC9aG0tTZAUD7hAaCyDKzunarHrvGi9ExsYHWCXU0dKWYs74bd8D+xYZ4ArC05jJ05nOlbJ09eD120Urwhs7eRcU9lE3xJGGxKuvkjM/ea9rJJGKsmdEC1g7af9hvekUNkysqC30OJxX6LLrrNhB3XTzHKfRTjBycwNUSUxERERlXFCCK7OHSQcD6bApbDL58G5W1fRhJY08bAG2TagvFXbwtzx4CxByX+niSJw+cDsBBzy0ru72wP7AwlppYnHR/6wuHwn7EYeSikITrMjFZSWQh5hgan1yCY+Hp/aaSMwbPcYbcfwjgOQ4H1zfTEE9gGuuxiTjO+nYSGDzjlPYhutm4itSIiIjIuKIAUWQPl49CegOfTDH48qMIp39TXypW+DeMpnSh/cO6lmpijrOxeM1WaE4keXFSA+21lTSu78B9dWXpttpYnErXY0ZVDdMqq+kL/BGutFE2DKn14tTHEsQdh7p8ROKZFwk9l3/MmkQmDKj2YlR5wz+3aRXVHN44kbp4gnBSMyYI8Nq7qHBdwmKrCy8X0x5EERERGVcUIIrs4dKhTy4MS8FXKYNowfxjMjw+GZsfkFGMCv8SfXmqgx56YvX0xR2SjkfSGVzwZXMa4kly1vLo/ELLi8SDj0FUyMq5xmHfmnrm1TUxpaKq0IJjC+SikAnxJFWeR9x1OeL5FZggpHf+fuSThUxkS7JyxEypMYZZ1XW4xiGcXFhm6qxrpcqLEXqFYNoErvogioiIyLiiAFFkD5cOQ3LRxgAxiEIcA/gOJudhApfg1arCz89NwPxxb5w/zGLC44X7t1c1k48i6jfT/3A4NV4czzF4++9LMG0S7oZ2vGdeLN1+eONEJiWrmBCvwHUc/C0IEkMbUR9PEHNcJqbzzH5hOTYewx57GEnXpS/I05Ko2OIxRv37ENe2Uu3FCNxCgFjYg6gAUURERMYPBYgie7hM6BcCRD9PaC2hpbDEdMDSUn9pNTwyFbOmFtwI60QbC9TUTSAfhdTHR654Opz6eIL9auo5tHEiucULsUDyj49h+tJl59XF4tTF4qTDLVlmakgUC+wc89SrOJElf9QCvJoaJiUqiRmXumH2Hw4lnNQCFArVVLsxArfQm9EJHQLtQRQREZFxRAGiyB4uE4YkHZd2P0dkIyJsIROYLhScscYWsod5Dzu5F7toJXbvLibk1gDQ3tRIiKV2K9pbDFThehzfPI1KzyOaOhH/sPmYbI7Ebx5mYCNGYwwtiQqyYbgFV7UkHBfvhVeYvGwtYU0V+SMPBmBKZTU1xWBzS9n6GmwygbO+nSQOUTFAdAOXQGVMRUREZBxRgCiyB4usJReGVHkeHbksgbVE1uIag0kXM4j7dOLt24c9ajV2XivEIryWThr8DWScSnoaKjFApTt8wZetkTvxKKK6GmIvvUbsH8+W3daUqMDfgoydBSqzeRK/+XPhmqe+DuKF8bUkKplWWU3lCAVqBjGmUKgmDKnt7iv0QQSc0N2i8YiIiIjsKRQgiuzB8lFIaCMq3Rjp0CcV+MUeggOWmDZmiM/vgbp86X4TutpwsLQlpmKr84WAbBsqmA4pHiNz2r9hXYfEHx7FXbaqdFOtFy9EfyMIooh4BJN+9SBOOkN+wYGEe08v3d6USHJ889StHlZ/oZqa1k5CrxAUOqGrNhciIiIyrihAFNmD5aOIwFoqXY9cFNLlF5rRO8ZAfwaxMhh0v+Z17QCs37cKvy5D3Lg7LIMIEE1pIfvG4zFRRMVP78dduRaA6lgM13FGrGYahgFvfPwFEms2EE5uIXfSsTtmTMVCNVWtHVBcYmrCLSuaIyIiIrKnUIAosgfLR+HGJaVAZz6HxeJYIB3DxkKIDQ6AWtYVCtS0zq4lX2xKX+FufYuLkQQHH0DuxKMxfkDFnffiPfcS1V6cCsclGw3eh5gJA/x0hhMeeop9VrQS1dWQOf1k2EGZzbAYICbWd2C8QhrTCVwVqREREZFxZQetGRORsciPImyxKI3B0J7LYC2YbAxjDbYqP+g+Xt6nob2bTGWCvtpKfD9HbSyxTS0uNid/zCGFpaZ/fIyKX/4B76VlTJ83g9dihUb3JdZS/+oqTvznq9Smc3TXVeGedRq2umqHjcXW1RBVJIm1tuM6qmIqIiIi45MCRJE9WC4K6Q/rKlyXVBgUAr2+/uWlg1tKTFjfibGwYVIjGIMfRVRtTcGXreQfeTBRcyPJ+x4k9sIrnPzCK6xqriPV0kgQc6lI52hZ00Z1XwaAl/Zq4eVFCziupnrHDsQYoknNeK+tpLkvjXWiQo9IxYciIiIyjihAFNkDPNGxnknJSqZX1pQdH7h/Lul6pEIfJ+dhXmoCwNbm2TQvWFpeOqlwTmBteTZvFIR7Tyf172cQ/9u/MP98jmmt3dDaXXbO+pZ6Ht9/Gi9PquegqsrRGcfkQoDY0tnLOjfCBA6B3ZK2GyIiIiJ7BgWIInuAzlx2yCAuH4VYWwgBk45Lez5Ly4t7YdJxbEsKpvbAJiFi45pWoJhBBCILle5O+KiIx8gvOpxo4aEsW76cFcuXE7fgVlTwTG2MBVP3YkN3O6lsiipv23oybk5/oZpJHX2s9SIc3yMI4Z+drUytqKIlOTqBqYiIiMhYoSI1ImNYt5/bovP6Qp90MHi5aDYKcIrxnykWqomlk1gnws5fP+gTIJHO0tzZR3dVklRNZfF+kNgZAWKR4zhM3ntvKhbM4x8zJvDqtCb8iiRTK6ppTiQxGBLOji2Y06+/UE1TRw9RsZJpJhvyl7Y1PN/TMSqPKSIiIjKWKEAUGaPWZlL8cf1KuvIjB4mRteTCkN4BAWI6CHgt1U06CHAHFJcxkcENPIiHQ/72N65cD8BrkxsKkWHRaAVkI9mrqoaY47Ium+aA2kbq4wma4hXEHWfUxmNrq4kqk9R39oJTKODjRR5Tk1UsT/XS6w8u6iMiIiKyJ1GAKDIGpYOAx9rXsi6bpm+IzOBAgY0Iiej1N563Npvi4Q1raMtl8MzGX/Nmp1jYZYjWFgAtqwvLS5dNbsDaQqsHay2JHdziYkvUxRLsXV1LQzzJ/LrCfsjaeJwqLzZ64zGGaFILTmSp8wsZw0angkrPIx+FrEz3js7jioiIiIwRChBFxqAV6R7achlijkNqMwFiPooIIksqzJeCuj4/T0+QY102jedszATGwuJS0fjgwismipixtpPIcVg3sRHfRoQ2wh3FjN3mLKhv5oSWqVQW91fWeHGqvdiojqd/mWl9rhAsExQ+Jqs9j6V9XaP2uCIiIiJjgQJEkTGo1/fxjIODoWczyxr9KCS0Fj+KyBUbzHf6Oeq8OBMTldQMLOiSLwZWQwSIdRs6SfoBuemT8BIJ8lGIH0V4xhB3ds1HRW0szqTkxl6HdbEEU5JVo9p2I5pc3IeYaSscKAaISdejL/DLKsOKiIiI7GkUIIqMQd1+rrTXrsPPjniuH0VExQAxGxYDxHyWhOtS6Xk4Axvc+8UAMTY4QGwu7j9kn5nUxxLkwojAWmJm12UQNxVzHI6eMJnYKAas4dSJAEzsK88gxoxTfI2DUXtsERERkV1NAaLIGNQd5Ik7LnHHoSufIyouHR2KH0U4BiyWXBSSj0JSoU98qKAuX/iVt/HBWbApqwsZs3D2DBrjSXJRSBBFVHoxjNm0W+Key1ZVkq2vpS7bRyJMlQJEz3EIooiMAkQRERHZgylAFBlj/CgkEwbEHIeE65INwxGzVnnb3+vQkAkDUoFPLoyGzvoNk0FM9mVo7uwjU1uFbaynNh4nolAAp8obf+1S01NbAJiQX1sKEKFQ2LU/SysiIiKyJ1KAKDLGpMMAP4qIO05xWWM4YiVTP4qKve4LGcRUEGCx5UtLi8wwexBbXlkDQN/s6WAM1W4MU7z2aO73G6ty0wrLTCfk1mCC8o/JTKQMooiIiOy5FCCKjDGZIChUDzVOobm9gfXZNP/qbCW0haWh3f7G3ogbi6YY0kEhgzjsgtBhMoiTigGiP2cWAA3xBDVejO4gT/XAIjfjRH7aJGBwBhEKLUhERERE9lQKEEXGmHQYgN0Y4llreLa7nSe7Wunx83Tlc/xpw+pSVjEbBTiAZwypIE+Pn8cMFyIW9yAyYA9iPJujcU0bqYo48elTAaj0YhzXPJWWROWYKVCzM5n6WnqTSer8NmLZjQFhzDj0DgjORURERPY0ChBFxphMWFgi2q8hHscAoY3oC3x6gzzt+SwbsmkAskGIawwxx6E9n2V5umf4oG6IDOKUFRswFlbPmEhiwH7DyRVVnNgylckVVZteZY8XMw5rmxowQFNP68bjjkuPP3JfShEREZHdmQJEkTGmN8gTG9DcvsqLUR9PgIVU4NMX+HTlc6xI9wKFgNI1hkrXY302TTYMaIgnhr543i0En7GNGcSpy9YB0L3P9EGnT6mopnoc7kH0HIe1LXUATOjdUDoecxz6gvyIVWVFREREdmfjrzyhyBjXlc8TM4MzgK4x9Ph5IiwJx2FVpo9sGJANQ1zjkHQ9ZlTWgO9gHpsCjsVO7IO9ugt/CrKA7xSCQ1PYx+jmfCaubSOTiGH3mrrTn+tYFXMc1k2qB6C5bz3YqWAg7jikw4BcFFLh6uNTRERE9jz6hiMyhoQ2osfPER+iEXzccenIZwmspT6eIBUEbMhmyEaFDGJJdwKTKhSWMb0JbHsl5F3Iu5jIwVbkAegNfOauWI8TWZbPmIDrjr+9hsNxjUNvQyUZt4KG3Aa8bktQb/CMgx9FZMNg2AAxspalvV3Mqq4jNsT7KCIiIjKW6duLyBiyPpumJ8gP2Voi4bp05XP0+HkSjotnHF5JdZGPovIAMV24r53ag63KYzorMKk4ZpP9hwbYf3lh+eTSWZPwjD4OBoq7LusaWnCwtLxaWM7b3zpkpEqmXX6OZ3vayyrNioiIiOwu9I1QZAxZlurBMWbIHoYJxyUbheSikKTr0hCPsyLVR2ijsuDOZIoBYmMGe8Rq7KxOogM2Flrp339Ylc4zfX0X6cokayY14CnbVSbhuqyc1ADAxLVtZbctS/UMe7/12TSd+Sy5MBz2HBEREZGxSt8IRcaITBjwaqqHumH6DsYch8BGpR6JSdcjH4UE1m6SQSwufaz0IWaxszthWi/WFAurZAq3z1mxAQOsnDUFjFN+DSHpeCybWajgOrFrHf2FZZviCV7u66IrP3SG8LW+bjJhQDZSgCgiIiK7HwWIImPACz0d/HbdctJBMOTy0n6F/oYbA7lqL0aPny8P7ooZRCrK2zHYI1Zj4wF2VhewcXnp8tlTAKslpptIOC491R7diXpq/G4qWguvZ9L18G3E0t6uQffp9nNsyGXwjEMuHH4ZqoiIiMhYpW+EIrtYOvB5omM9fb7PlGTliOd6xhAfEAzWx+LsVVmN6T9mgYyHjYUQ26QVQ10ee8IKmJiipqOHlq4UrXVV9DTWFq+tj4OB6uMJ/ChiQ+MkACYu6yrdVuvFWZ7uwW7S7qI1l8GPIpKOS2qEfYoiIiIiY5W+EYrsYutzabJhSFMiudl9gBOTlbQMCCKNMSQHVtPMFSqVUjlyM/e9lq4CYMnMFqy1GAOuoyWmA9V4cTCwbvIEACat37iPM+kWAsD0JlnCbj+HYwye49Ab5HfqeEVERER2BAWIIrvYynTfjmuHkB56eelAThAy65U1hI7hhZkT8W2Eg6MM4iZqYjEcDOum1RDh0NK1DqJCxjBmHHwbDgoC23NZEk7htewLRg7SRURERMYifSMU2YWyYcCKdC+1wxSm2WqlAHH45Y1TV6wnkfdZPq2ZXEWCIIpwHYOnIjVlarw4SdcjVe3TlphMIszR2NYFFDK3WEOfvzEIjKylM58j6brEHId04A9agioiIiIy1ilAFNmFWnMZskFAxQ5qUm+KFUrtCEtMZ724EoCl+07FNYbAWgyF5vCykec4NMQTZG3I2trpAExZvnGZqWMo63WYDnwyYUDC8YoZxoicKpmKiIjIbkbfCEV2oY5cFmPYWGRmW0TA+krM0y2wvL5wbJgAsbq7j5b1HfRUJemZNgnHmEIG0Th42oM4SEuigmwUsqZlMgCTV2wMEBOOS2suU/q5L/AJbETMKbyWfhSpF6KIiIjsdhQgiuxCa7Ipko63+RNHYF5uxHl6EmZ9NXgRdlYn1OUIbURbLkMQRaVzZxezh8/Nnkx1cY+dbwtLTJVBHKwungCgb0KCXq+e+t4eKvsKQWHSdenIF15nKASI2EKQ7RqHCKteiCIiIrLb0TdCkV0kF4a057NUetsXINJWqGoazVuPPW4FdnYn2ShgdSYFhlKxFM8PmLl0FaFjeGbvFqq8GDHHIYgi4s6OWeK6p+nfG2qr86xNzgRg8spC/8ik65KLwtI+xO4gx8BEsMEogygiIiK7HQWIIrtIl58jF4YkhwvOImBFLeaxqZg/zcA821w4vrIG8+QkzBOToSuBScWxlXmYnAK3UBSlN/DZu6qW5kQlYbFQyl4vrybuB6zcewqpRKEAS9xx8a0CxOFUul5hn2ZVjrXJvQGYUgwQXePgRxHP9bQXs7WFCqb9LJCN1AtRREREdi/bmboQkc15tquN2liCGVU1Zce7/BwWO/T+wwjM36dgupMbj62twe7TgXlhAobifZ6eWPjfxkzZ3f0oojGeJBUEBDYCa9n3+WUALD1wL4wxxBxnYwZxBxXJ2dMkXY+Y4+C7edoqppF3EjSva8f1A8KYx6RkBc92t7Mmk6LLz9EUH/B+WcgGChBFRERk96IMosgoa8tn6Rmiafr6bJrYcPv+VtZhupPYmhzR0auwzaninaoxGGxjButGmFyxaukmAWJkLVVejArXI7KWyataqelN0zqxga6mOsASNy5xxyGwEfEd1YdxD+M5DhWuh0+IrQpZl9gLN7JMXl0oVhN3XCYnqwhtREuiggp349/c4o6hLZ8d8rrWWrryuSFvExEREdmV9K1QZJSlQ5/cEEsNu/P5oZd2tldgXmnAGoudtwFq8lBdCDDN2moAbH0GpvUU/hsLjeWBiDFQ4XpUeB4hlv2eew2Alw6c2X8Gccch7rgE1pJQBnFYNV4cP4qgKs/qitkATFu2rnR7zHGoiyUGvZeVXoz12XSpiM1AG3IZHtywqqxNhoiIiMhYoABRZJTlwpDMEEsNc1GAu8nyUvNiI86TkzGhA3t3QXWhAIrtDxB7C1U1qcljZ3RjnQjqsxDbGIRYa7G2ECDGjMOkth5a1nXQV1PJmukTC7djiTluKXOoJabDq43F8KMIW+WzLjmDwPWYvKoVNxi5AE2F65EJA7ryg7PH7bkMKzO9LO3tGqVRi4iIiGwbBYgio8haSy4KyWxSzTKyFj+KygNE34GVdVgvIjpofaFdRb/qTYKM6jwkQ+zCVdiD15fdFFiL5zhUFvfPHbWk0NpiyUGzwDGkQp9KN0aV5xEvtthQBnF41V68UOinyicyHmvrp+IFIZNWt454P9cYIsuQWcKVmT6SjsuSng56/cEBpIiIiMiuogBRZBQF1hJYSyYszyCGNiLE4gwMEDdUYayBiX0wsdCioqTSx5pCNVLrRlBRvF5FAPHyJYx+FBJ3XCo8j+r2Lmat6SBdlWT5rKkAdOXzHFDbUCrA4hhDTFVMh1XheoX2FZWFQG5V9SygfJnpcBwDrbny/aHZMKA1l6Y5UUE2DFmXTe/wMYuIiIhsKwWIIqPIjyIiawf1w/MjSxTZsgyiWVfcXzipb/CFHKCqmGmqzpcHj5vIRxFVnodrHFqeeA6AF+bNwroO2TAg5rjMqq4DwDOGmHHwVKRmWEnXxQJUBlgs65y9CTyXySs34GxmmWml67E2myo71pHPkgsjko6LMYWAcWuENiKIBu9rFBEREdkR9K1QZBT5NiS0Ft9GZcVKgmIGsRQgdiahI4lNBNAwdOXL0jLTmpGXJPo2oi6WwGnrpHrpclLJGK/tM5WufI7WXJb9auqpixX2MnrF4NAbqtWGAMUMIobIKWRuo3wFa6c0EwtCJq1uG/G+lZ5Hdz5H34BlpG25LNYW2pt4xqF3iAq3I3mpt4tnutu36bmIiIiIbI4CRJFRFES2sJzURuSj8gAxshEOBpbX4fx9SqF9xdSeYbODti5X/N9hAsiifBRSG4sTf/RJDPDk/tPJuQ69gc/xzVM5smlS6VzXMXjGKIM4glIvxGIlU4BVqYMAmPHy2hHvG3dc/ChiXW7jMtLVmb5SO4yYcejz/a0aT1suQybcuvuIiIiIbCl9K5Tt9mJvJ88pozGk/gxiUCxK069/iaAxBrO6BoBo7gaY1TX8xab1EB22BiYPsQR1ExO6UnjPvURUmWTJPlPIhAFJ12WvqpqyZa2ecYg5Dt5w/RiFhOMSNw6+jbB7d2Eb06ytnEneJJiycj2xvpGXmcYdh2WpQkuSTBjQlstQ5RUDRMehdyuDvc58TktMRUREZNToW6Fst3QQ0LeVy+TGCz+K8IxDZC35KCw7DkAEpGPYeABT+kbcW4hDod/hMOdE1rIum8Y1Dns9/gwGyC48jCgeIxMGVLgeyQGN3KFQadPTHsQROcZQ3d8LsT6HPWwd4QmrWNWwFy4R057b5I8jvgO5jUV/amNx1mRS9AU+HbksuSgkUSwKFHMK+0L9TQK+bj83ZP9EP4roDfL4Q9wmIiIisiPoW6FstyCKBn3B3V2lA5+/tW++OuWWGiprCGz8gp+JFSqXVm3/ksHeIE+VF+NtQYLq11YT1dcQHjoXzzhkwqC073CgUgbR0R7EkdTEYvgDAnw8y7L9C0t1Z65YWXau+cdkzF+mw7oqoLBENReGrM2kaMtlwBpMMYvrmcLS1dyAa4fW8ufWNaxOp7DW8ljbWtYXK52mAp9cGO4xv28iIiIy9ihAlO3m27Bsf93urDfwWZ/NEFlbOpYNg7Kft0YhELSAHbQH0VoDqVjhQNX2Z2D9KKIxFmfqo/8CIHfckeC6pYbt9UMFiMXlpVpiOrKaWHxQ1q59VhV9bg0TUhuoWhbBylpIeZjeBCZycJ6ZCK2VAFR7Hn/vXM/ydA8VA3pOesYQ2Kiskmm3n6M1l6E9n6UnyPNibycPbVhFZz5LKvTJR9Ee8/smIiIiY4++Fcp28/egL6x+FBHYkGBAMPB4+zrWZFIj3Gvk6xVCS0PebswSBVEExkJfHAC7DRnETZcmBjZi5qo23DXrCVuaCObuC1Bop4ChNhYfdA23WKBGS0xHVuXGGPQ3Ag9WTCj0RNzrH504L0zAvNQEgC0G/KYYIDbEk2TCgHXZdGn/IVDKJGbDkHTgE1pLRy5LX5BnTaavsN/QRqQCnyfa1xcyiFH5/BQRERHZkfStULZbIUAcuVDH7sK3heV74YBooCufG9TofkvlorBQqZRNitQUr2/6M4jVW59BbM1lS0sPAWwQMudvzxce98SjoRh8JF2XuOtQ6XmDrtGfPVQGcWQJ1y29ngMtnz0FgL3SL4C1mLbCslI7q7NwQt/GoHxyopLGeHLQPlCsIRMG/HHDKp7vbmddNkXMOHTks6xI92IwTEgkWZ3pY2W6l03nkoiIiMiOpG+Fst18G+0xRTOCqNizsPgFPLQR6TAo2yO2NbJBgGsM1hry4cZr5KKgEDimigHEVmYQ81FIzHFIel6pQNBhL66moruPYNYMwlnTS+cmXY+445ZaKwxU6XrMrWukKhbbhmc3fhReu8HLjPv2NrRXNVMd9tBoVgEUCg5NTGHdCHrjpbsZY6j2hnidjWVNpo/12RTPdLezOpOiMZ4kF4Wsy6SoKr5/IZYuP0+F6xFau83LnkVERERGogBRtpsfRQR7SgYxCovLTAtfvvNRIfjtHdDovDOf5ZW+7hGvExW/wOeioLiMEzLRxixkLixmFlMxrBdCfOtev77ApzGeZF5tE535PBWpDEc+v4LIcci+4diybFfS9Ug4LpXu4ODEGMPe1XU4Q2THZKOk6+IaZ3Bl0Zhl2UEtAMwMny4ca04XKs3W5DGRA5nBgflAnjH0+HkskAr9YrEhDyykw4CqYlBZ58VpzWaocD0iLKG1vNjTwcu9XTv2yYqIiMi4pgBRtptvI0JL2bLM3VUuighsVNrjlY8KfQz7go0Zvg25DE90rCs7tql/dm7g+e52slGIawyucciGIR35LNkwIBdFxHPxQgBR5Y/Y3iIfhYOWuGbCgJlVNexdXUvMcZj/xAvEwojuQw/ENtWXnRt3HCpcr6w4imydCtcj5pghl3aumDUF33OZ3roCd79V2H06Cjf0LxvuG7z3cyDPOHT5OarcGBPiSeLGwTUOCdclEwbEivtDq70YVZ5HtRfDWktoI7r9PB357A59riIiIjK+KUCU7RZEERHRkH3bdje5qFCxtD/Y9YsB48A+j7kgYH02M2zmJrQRr6Z6eCXVTTYMcYzBNYZuP8eD61eyIt1LLgzx/GJGr2Lk/Y2tuSw9vs/abKHtQWQtFmhJVlLtxZjZ2sNey9bRVxEnfcwhg+4fc1ya4slSQRTZenHHJWG8IQPEIOaxYtYUvDBir9RLEC+cY6tzhRN6Rw4Q445LZz5HbSxGhevRkiwUtmmKJ5lWUV06zxhDc6Ki1FcztJZsGI74hwoRERGRraUAUbZL/xfVKCrs39vd5cKQyFIKdvNRSBhZMmFYChp7Ax/XGJb0dgxZvKYtl6U7n6MjnyMXhrjGwTWGVBCwIt1LVz5HPgpxg2JGz9t8YD2vromY45IJC9nESjdGU7wCN4w44e8vAfDogtnEK5KD7ju1oooFDc3b+pJIUXUsNuxe21fnFPZ8znppJaVypzXFSqZ9g9uLDFTjxdirsgZ3k0JBjjGl7GH5cYgoZOzzUUg62LYCSiIiIiJDUYAo2yW0lghb3BO1ZRnEV/u66fO3v+/faMiGIaHdWMU0H0VYLMGASq19gU9DLEGf77O22P6iI58tFQ1Zl0lhTCHIDLG4xpBwXNpzWRrjSdpymUKAGG55gDipopLGWIJsFJAJAyYkksQch/gj/6C2O8WrE+tYNnMScWfwMtKk69EQHxw4ytap8WKDMoh+FGGtpaupjo4JddR19TFhQ7GCaX9vywGFaoZijClUSd1CDqb4h5nCnEyHyiCKiIjIjqMAUbZLaKPifii7xb3ZXurtpG2M7pvKRSEWyvYgesbBH9DMvC/0iTkOMcdhZbqXznyW365bzj+7NpANA15L91Dpxogbh0yximnS9di3po5qL0aXnycfRTjFANFuEiBmwwBbDDb7g85K12NiRSWZMCQXhUxMVOJsaCf+16cIYx73HTKLylhMxWZGUa0XLxUvArDWsizdQ09x+fEr/VnEF1cWTohZbHUOk4lBsR8iFvC37z0yxmCLRWpyUUjeRvh7SJEoERER2fUUIMp26S+3319VcXMia+nx8+TCsfmFNltcShpGGzOI/TFXLgwJoqiwf9A41HpxVmb6WNLdQZef48mOVu5e9QobsmlqYzFqY3FSoV/WYzDpumTDgIiNASLuxgDRjyKWp/tK+8r8KCoVmWmIJbG2sIKx3ouRvO9BTBTRtnAB2ZqqoVsoyA5T4cUYmArMRSHVXpxMcS6vnDkZP+Yxbdla4tlC0Gj3LRSsMS82YV5qxDwyHfPQTGiv2K6xGDYuMQ2iiJz6IoqIiMgOogBRtktgIyIoK+wyknxUyIBlt7Hx/Gjqz4IaNmYQs2FQanSfLY7dL/YgrHBdMkHAq+keJsQraElUEHccpldU4xqHpOsxp7q+LKvnGqcQTEdsDBAHZBB7gzxNiWSp72I+Ckk4hTYVtbE4xhT2pk3711Lcda2EUybiHzaPhOuW2iHI6Ei6LgPLzWbCgNpYvDRXwpjHstlTcSNb2IsIMCGDbU5hsjHM8npMJobBYF5pGHHZ6eaZYoXdwlwdq39wERERkd2PAkTZLv39/lwMwRZkMXJRSGAtqTG4b8qPCvsPXWNKSwnTQYBnDNYWMojZMMS3EZ4xGGPwjEM6CKj2YiRcl2ovVlYtdLjKoREWExZ//QYEiOkgoCGWIB/1L3GNqIvFMcZQF4uTcF2m92Spe+RJrOuSPfVEquMJkq5LtTdytUzZPpVurJS5A0iHIZVueY/Dlw/YCwvss2Q5JixWMz2gDbt3J9GBrUTHrsBW5THdSejann2hheWloY0IokK/TREREZEdQQGibJfQWiwWY8wWZhAjgigak6X5g6hQnMYzTqkYSSYMcI2DMYZMGJCLgkIGqBj4TUxWMLWiaqsexzMOuTDEBOUBYhBFOMbQGE/SHzL6NqQuXgj8Yo7LBMfjDY89j4kicq87mmhCI65xaE5UkBiiQI3sOPXxOBWuN6ByrWVysgoHUyrQ1FdXxdrpLVRkckx4ZWWhR2EixO7TCVN7oTLAzuwCwCyv247RmNJyaLClPyiIiIiIbC8FiLJdQmtLi+4GFnZ5pqutVGBloHwYEtiI1BgJEDNhUFru6herl8Ycp5QNzUQBnmPwjKEvyJPdZClff4/DrZF0XPI2xGzS5qIjn6UpkWR6Zc3G1zSy1AzIDC58+jVqu/oIZk7DP3x+6fiC+mamVW7smSc7nmscJiUrSQc+oY0wGKZVVpN0PbJhSK+fJ7KWlw6cCcABS1aQ9ofI7E3qw8ZCaKsEf9s+gq0tZOMja3Edp7QkWURERGR77TEB4g033MCcOXPK/p188sm7elh7vEJQWAhn+jOIbbkML/d1DfmltbAsrtDge6gAcmd7uquVp7vaAEpZQ9cU9ndZa8kGhQxizHHo9vPFKqfbN+66WJwZFdUwYInp+myGmONyROPEwjJVNr6elV5hGaP76kqmPv0yUTJB9s2LYUBgOiFRQcUmyx1lx5tUUUU+ikgHAVVejIZ4kvp4nM58jg25DH2BT+ukRjoba5jY2ce0tu7BF3GA5hTGmkKQuA2MsYWenViMNeTUC1FERER2kD0mQATYf//9+ctf/lL696Mf/WhXD2mPFxWXuMHGNhdd+dywlUrzUYiDIbAb+wruSuuzGV5JdZOPwlITdMeYQusAGxFQ2G9Y48VZn02zJtNXLFqz7Uyx7UUpe+QV2hQc1zyVKRXVVHkecdctvD4GKlwP09tH8le/ByD3phOwNVu3rFV2jIZYAgx0+XlmVdXhGsOEeAWpMGBisrLwO2AMSw/cG4BDX1o95N5c21Lon2k2DHgfA4P550TM0sbC3OhKQDj8XMtFIQaD5xj6Rij69HJfF91+bhufsYiIiIw3e1TKwXVdmpubd/UwxpXQWqw1YDZWMV2XTZMrVvzcVCYMiTkGv9guIrkNWa/2XLZUEGZ75MKQniBHn++zPpsuBbsOBj8Mi/slLa5XyCBaoMfP4+2oXoPFL/+BE+A5DnWxjXsNq70YnbksCcel2ngk7/k1TjpL/rB5BPvP3jGPL1utvlgQKGZc5tY1lo5Nq6iiNpZgbaYPgGUzJ3Hg319g1up2nu7qJWjcZL9hYxbrRtBWARkPKgLYUIVpq4I2MMvqAbDTerAHtA0ah4XSH2A8Y0iPsGR7WaoH1xjqYontfwFERERkj7dHZRBfffVVFi1axOtf/3r+67/+i3Xr1u3qIe3x+rOGho1VQNdn08OW3k8HPnHHLXzB3cYM4ou9HaxK9w55W3c+x4s9nVt0nd4gTy6MiDsuy1M9xQyiKWQQo6j4fGwpIGyIxdmQzRBzdtCvTeBgnQjfRHiOU2yjUNAYS9Dt59m/ppGmR57EW7WOcFIzucULd8xjyzZJuh5TktUc2tBCZfEPFNMrazihZRqNiUSp+m3OWJ6ZMxUDHPDsa4Mv5FpoTmMiB+cvMzAvNpayibYmh40HWGNhfRUMUX/GUKiEC4WiRyNVBU4HQWn5tIiIiMjm7DEZxIMPPpjrrruOvfbaiw0bNnDTTTfxvve9j1/96ldUVm7bPh/H2UGZoh2gfyxjaUxQyGQ4Drg4BDaiN/DJRAFxxyVPOGi8haIvDmEU4hNt0/PJRiERQ78WHUGO19LdHFDfuNnr9IU+xhSWDS5L9xYaoRtwHUNAYYmpMeAUA8KqWJxUGFBdbDux3QIHXEtgLUnXJeFt/HVsTCSZXFnFoa29xB9/CptMkHvnG3HiO/5XdqzOrbHqxInT8Ab8kaDKiVEVi9GWz4IpLCEOrOWV/ffi8CUr2fe1dbxyWJZMdUX5hfbrwCZCWF0NK+rAUMgqHrWm8Ke7f0zEtFdCdwU0Zsvu6hoHsBgDMdclG4UYM7itirWWbBQQYnf6+6t5JaNB80pGg+aVjIbdeV7tMQHi8ccfX/rvOXPmcPDBB/O6172O3/zmN7z97W/f6ut5nkNT09irCtnQMLb2nlWTIdkXI+Y4JKri2EqHRLJQZCVZHR/0GpoOh1ovSW8+T7I6QVPD1r/GptOlombwtQFWk8HPQH1jZfFL9PBeDnuoSMZprqkm09tDnxdQkYxRnUgQWUjUxEkmY1RVb1yat3f1jlmmZyPIRA6mIiCW9JiQrCh7PvMqHWZHlvr/+wUA8feeQsXsKTvksYcz1ubW7maim6ciFaeqOkE6E9LcUEv3EQcy4ZGnmfvicpaccHD5HaqBCSn8OvCfrgML7uQsidrCHPOn5/HbK4l11RCfUV4Yqcr4VCQTJAmoq0jSnc9RXV9B0iv/SPejkNiGGImqoX9fRtuy3m6m19ds9ndRZGvp80pGg+aVjIbdcV7tMQHipmpra5k5cybLly/fpvsHQURPT2YHj2rbOY6hoaGKzs4UUbTrq3/26+hKkcnkiRyPdlL4aZ981sdgWNvewwyz8ZfCWktbbxrPOGTyPhs6e2mO4oTWEtrCUs8teszeFNWRQ7vbN+i2Ne09dPVlWLOhu7QEcODjm2KF0tBaXt7Qgc2HpPpyVEYur7Z1YYBsWGgbsLqth2zWJ2V2UIGPnnhhyeD0HnAK7UEiJ6QnlaXFSdDevvH5OKkME378G8j75E84ktTkydA++PnuCGN1bu1uMukcmUyeFDl6MlmmuJW0zt2X2sefZfpzy/jn/jNY6URMSlbhDMz0teQgWYXJegQNvQR9xflWF2Cox1+VwN87x8DaSLmsT2+YJZPLk7cevbkca9q6B+0zzIQBfeksG5xe2r2anfAqbBRi+Uf3esJUQL32P8oOos8rGQ2aVzIaxuK8qq2tIBbb/PftPTZATKVSrFy5cruK1oyVN3OgKLJjaly5MARbWBGXCyNW+ymSjktobaEv3ICx5sKQfBiS8BwcoC/vE0WWZalu1mZSLJyw+QxZZC25MCIXhEO+Dr1+nnwYkQkCkk5hemfCgL93rCfpehzROJFnOttZ0tMBQMJxsdaSdFwcDBWuW2ox0ZHLYGwhsNxuPXHMPyZjAge7ohY7u6Pwfd+LyIcR1U5s4/MJQyp+9gBOdy/+AfuQO+ZQ2Anv+VibW7ubmHGJrMVaix9Zqt0Y8UQFT8+ezOEvrmb60y+z9pB96PPz1MQ29rbEAPPWw4YqbEsfpS4q8QDqspjuJFFHomyZqaFQ6MnYQtXdIIrI+AE1brxsTPkgJIgsmXDo35fR5NuQIIoIokjzSnY4fV7JaNC8ktGwO86rPWbdz7XXXsvf/vY3Vq1axZNPPskFF1yA67qccsopu3poe7QginAwOBhSQZ5uP0eF6+EZh75NerPlSkVfHDxnY2GNXj9Pez471OUHP56NiIjKCtx05rP8pXU1AH2+XyiQU7w9iCL+sG4lT3e1sSLVS2QtazJ9pAOfdBCU9Q6cmKygNhbHNYbIWjryuS3Oag4r72BebML8fUohOGxMY0IH83Jxj6RX2OdYWhpoLYnf/hlv5VrCSc1kT31dWb9DGbsSjotrHMLi3tUK16PKi/HcgTMIHMNBL69llhOnd6iCMg057JyOQZ/Idnqhj6JZXl923DGFue0W54YxZsiiT76NiGxEboQ2GKMlsBY/ikrVjUVERGT3sMdkENetW8d//Md/0NXVRWNjI4cffjj/93//R0NDw64e2h4tH4U4plD5M7SWXBQywUkSWEs69EvLOvvPDWzhS61nHHr9whflHj9Pyi8/dzh+FBFGlvyAqox9gU9rLkM+CkmFPkEUkS1WUF2TSbEul2J6ZTUd+RxtuQwd+SxNieSwjeUNhQAxEwbEt7Ziab54fjwq9LV7cjKmN4F1IqJZHTCrCx6aiQk29kAEStnO+GNPEn9qCVF1JZnTT4bYHvMrusdLOC6eMaWKoZXFAPGoGfuwav+1zHx+GYe/sJolsxu3aK4DMDGFfTnAtFVi+2JQXfidMRh8Gw1YqmqHDBCDYoCW3QU9R4MoKvxBRwGiiIjIbmWP+fb5ta99bVcPYVzyrS0FiL6NwBayGZ4xZMKIfBSRKLZv6Av80u0Jx6U3yBNEEV35PH4x67e5voj9X3gHlu3PRxGpMKAznys0l6eQrbTW/n/2/jtIzuw874Z/5zypw+QZ5LDYxM3YgF1uIpfZpCiJlkSH9/0sW8Eq11eWQ9klleVYTq8slS2Vy/7D+kpySa9sWbZlm7YoieIyLsMuudzMXW5eAIuMwcROTzrnfH+cp3u6p3sSMABmsOdXhQIw3f300z0dznXu+74uXq/NEghJKD1yrTnaWOyI2JVoVxBTrRjxwxWvx3yEeHEX5qZZ2GdbA8V394GSmCOnEa9PWXE43sIcPmdFI0A1hYXi/n2NwbqY+i++SvTE05gwoPXnP40Z3nomSY6VCaXNy4yVwhOCclEV3lcZQnz0McwbJ5h88TXGDz5IK8z7ZmQHIm0VUbw5iXhnHHP4vP2xEORKdTYwDHQ2RbqxFUQGRs5cbnKji/eri9hwOBwOh2M7cc20mDquDplWnRbTRKlORqAvJLnprWqci5udikfkWSOYWp5aoWgGV0D67s9oFKYjBNvn0MpzZtOYvGhhTfKcmTTmRLPORGjFmBCCmbTVEakr0c6YS7Veyjw02EDzViFgNYgf7ECkPuK1KWj6sBAh4gCReYjv7EfMlW2m3T1nl8QhWIFYoD2FJySjx05R+sITGClp/cQn0bsvfnbWcXUQQlDxAuayhPEw6tlcMMNVsvvuROSKx14/TW2VYPs+Dixiohxxbghm7WtZCkFubHs3gIegmdsq/Hy6ZKrUFmhtsXYlUcZ0NnTWop5nPe9ph8PhcDgcVw8nEB2XRG40UtiZqEaeddo2bdbh0iygNoYTzRpDRdXEExJtTKc1NNd6XVWOtuFFpnXHPCbVmqbKmUliVFGxrKuM83ETjemIvIrnMZ+mawbdCyEQWHMaKQTEHuKp/TbQ/NsHoB7A8TFEI8T4GqGlFYsXbN6m8RUCgRmLMUfOgN+7QDZDS+JAeYr9M4tMfv5rCGOIf+QjqOsPrOOZd2xFhnyflso5WBnp24RIH74XEwYceu1dyvXm+g/qGcz7ZgAQr092TKFybToziL6UnVbrb06f6oit3JhOy3R2hSt51qDGrEsgvjg/zYnm5XHpdTgcDofDsTGcQHRcEpnWCASBlEghqHblsAmx1No2nyUsZmnP5QaYTlqdWaruCuKpVn3g7JKtINoqYl5cHqucTCsWsgQhBIGwi+WzcYOoy2Sm4gXMpC0qa7SxFmff8YYRb05YMRjmCCNs6+g7YxhhMA+cwgyliLkyHB+1j+v+M+i7z2LuOwPBgEV5VwVxtHGBH/769xG5Iv7YI+R3vG8d5+bYqlT8gKofsLtU6bvMVMqk9x9Gas37XzmxsQPvamCGEkQ9gpZftHSrTkW+/ZpfzFPmsoSFzL7GMq3wpOhU864k7crlegRiI7fmUg6Hw+FwOK4+TiA6LolMW3HnCcn11ZFlgdiCWFv3xAtJC21Mz+UeMJ8mRZOc6YjJuTTmezPnWMj68wczbeccTZGdCDbGwheyEJgGXwpqWcq5uNVjRBN5HjujcqeKuRrGGIwRMBchzg5jwhzz0ClMoBCzZYSWmOvnYCjD3HrBPlotMZUUhlPY2QRvhYXxkF28j2YX+OiL3yTKcpJH7iN7/92Dr+/YNgz5IaN+yFQ0eMY1ffBuVBRyx7GzDM/3V8wyrXtaRDsIYLxw+l2MOtEW3RXEZp4xlyTMZwkLxTHyogqujL7yFURjyLRal0lNS+XOzMbhcDgcji2CE4iOS6LXSbEXTwjebdQwxnC8sdjX2hlKrzCTKUw2igrimVaDmTQe2HKaGb1UESkWlC2lqPh+5/pWLNq20+XVwtEgWpd7ZGY0oRSdOApz8yxECnNo3v6/ksL19t+Mx5g9NfvvqXW0DkaKYTXNBy/8H0p5xut33kD62PvXvp1jy1PxfK4fGiFYKR6lFLH44GGkgbueea3v4oUs4UIaY4xhIUs42VoSkWbEij6xEOELybAfdmJYAiHJjOZ0XEdpbWdtgUTneAgM9Bg7XQns3OPaLaZtx2AnEB0Oh8Ph2BpcMy6mjiuPMgZj7PzhICbCiHebNb6/MMO7zTo7o3LP5ZHn0VI5spj5a+Qpxhjeqi/QUjkt3Z/d1m5p1cagigVvrK0QbKocWbS7NvIcg1lRvK7FnlKFoFZGzJetGNxTLNQPLKKVgF2Nnu0Vc8sMpprBvsU1jz28UOOx6a8R6ZjvHzrEOw/cyl6XdXhNcMPQKIeqI6teJz1yF4vPvsy+k9PsODPDud0TtFRO1Q/ItKbqB6RaU89zeiTTaFFZLCqI+ytLLre+FOTGUM8zxoKIs7HdqEgKR1VzFVpMc23W5WKaauXyEh0Oh8Ph2EK4CqLjoklUO9dw8MsolB7KGF6vzREI0VdBjKRHLcs68QCNPGMmjbmQtAikGGjbn2iFLyS6mEE0xhCrnFIhNgMp8YUkLionG0IDR8dgukzJ8/FP2AxNc3CBzqE8AzfOd/LoOgTaVhTD1RfDYxcW+PAXvktJxbw1ejvfPHIIf6Vqk2NbstamRCmK+N49NwJw9/deo5YlnGjVrYgzhqrnE2u7wdE2SwKgkmF8DYuRfa120TZ9SpRiLIxYyFKaeUailyr8V7rF1M4gri1M206nbgbR4XA4HI6tgROIDsC2ec2l8YZuM5/FZFqvGiY/EUZFMH2577JASjKtbAagkNTznFNNa04TCI+m6o8CSFTembvK2/b9xWzjWBAy7IeF4Y0ePGu4ECFem4TFZfmGxsZWyLcmEK9P2cD7c1VMoGDv5rgrTp2b5cNffJpSkvH0zXt5/scOogOzosB2XJtIITh/437OTY4wPrvI9W+foeoFnXbtsufTzG013BdyqbImgJEEoSU0Bs/RagxlzydVioUs7VQQ4cq3mKbFTPBawjQ1RRTHFT4/h8PhcDgcg3Er022MMnrDom4lppMW35g+RTNfauvsjpIYxGwS2yrHKhWTsudzXWW4s0hdzk1Dowz5oTXZUBlv1OcZDgJ8Iahn/QIxVqpoSbU5cJnWqMLufyoqE3m2GndTdYThoFcEirfGkU/vQ5wYRTy9D/HsbsS3DiCe3ov4xkHEmWF7xZYPs2WEEbBjFbOZDbDr1DQffPx7BFnOk3cc5Nv33gBCYApTHcd7i5Eg4pv33gDAgy+9wyiSRCkMhqEgpJZntootRW9lbaTdZtpvgqOLimOb+Swh0VZoGmMdTa8kibLnvZYwzVwF0eFwOByOLYUTiNuMWOW8ujiLMYaj9UW+deF0z+WnmvWLCpyu5xnn4xZn4gZg29q+MX2K08X/B3E2blK6xPbItrj0hSDTmoUsYdgPCaSkNkAgJnqpIqK0DbNXRuMvq8L1iVYDHB/FSI05sGCvM1tBtALEQgkyDzPewozECATijJ3vMsMDHCU3yHVvneIDX3kWX2leuP9WvnvHdQghMcagjXWgdLy3GAlCTkyMcOLQboZaKUdeO0GsFRLBzqhMKD0moxKB8HqEkykccEWzv4I45oeMB1Y4BlLajFFlnU6FsHmhK3GssbjmrOBGybRCwJqVwVSrIobDzSA6HA6Hw7EVcCY124x6nvH9+QuMBCGv1eaYTxMSpYg8j1jlPD17jvdP7GJfl4HFeljMUmp5ylu1eW4cGmUxSzndqrOvXIX+7lAyrTiXNNeZKbg2gZQ085zIs3mKgZQ0VIYxvRXKuNNiaisOmdFosw4zmmZgYyjGWphbZ+DQPCbxbSZhLsHX4BvEW+O2OjNT5NiN9ArERClCKdflhIox3PbiW9z5wltoIfjeo3fy+g17ifKU3Bg0xlYQ3T7Ne46qHyCE4aUjt7Dn3XPc+coxvrN/nGB0mF2lCmXPZ3dUIVWaer6Um0lUVPiT/o2Z7op52fM512qSGU1JSjyxFDmznFjlfH9+hpEgZCIcHM9xMaRG40m5ZotppnWnXdzhcDgcDsfVx61MtyGLecpzc+c5FzfJtO7M6p2Nm8ykrYHun2sxl7YYCyLOxA3m04TppGXz1JZlERpjeH5umlcX52jlOaVNEoiesEY17QVqIDxSrYpswyXSIvvNYKMuUq3WJ9ZqxeJ5uFhsl5R1hfSN/bdvqxemuFwY2/7ZziwE29J7vFmjlvdXNpcjlOaBb32fO194iyzw+NbHj3Ds5gM0VUbZ8wvzEVvY9FwF8T1HyfMwQHO4wjO3HcBXmo88/w6h9BgPS4yHEaNhRNX3e4VTVLwfBgjEbsqeT0NlqGKuUSIGxsYANFVOS2WbPgOYaoUv5boqiLl2LaYOh8PhcGwVXAVxG2KAs60mUgg0NkNsHDjZrLFYuBdu6HjGMJsmDPkBi3nKDxZnSJVCafvzbmKteHnhAi2lkKzt2LgR9parnX/70racJkp1RGheVBoC4dOpIGoNrN2aJgqB2BaAKzLU9XgrWUc4gq2yjoXRmgvZIMl4+OvPs+vMDM1KiW99/AgLEzb6oKUU+8rDNPNFNFYhrjSf6bh2sZsENuz+mVsPcM+JGW45M8e5s3N4BwUPTu5mIow4Hzd7BVangrj6R3cgJbnRCCSesH8GuQIDNPOcuIia2ExSpQmE7OSVroSbQXQ4HA6HY2vhShfbEIF1B90ZlcEImionUYp3m3XKnsditoYIWkasFU2VE0mPnVGZVxfnOBk3mAgjFtKkJ8C6kWekWrOvXGFPuTL4gOvTbKviFVEWcVcFMS/aST0hwFjBuOKituEjvr0f8b09cHIYapH9+VozhZUcI4tjLhOTdZUzEoQ9C3Zles9hZK7Gx/7oSXadmWF+fJiv/PDDLEyMYIxhOmkhgN3lCkLYCqIQIDcax+HY9owGIWXPp5anyDBg5sMPAnD/069BlrOrVCGQHhU/sBsJbXyD8fSaFUQAjM0qbbds1/J0YBh9U2W0VL7pMRiZWV8FsaVyfCHcDKLD4XA4HFsEJxC3KVU/sLmCwtDMMqaTFk2VMRpEawrE+rLL63lGqu1sXSg9StKjVlTL2uKx+7oGOlWJPpRAPHkA8fzuTXiUgpbKOxXRtKg0eEIghSA1ilQrjOkXWOLNSUQzRMyXka/ugNkyRhiorlFdFXTaSk3X/GGqFYGQDHlBT6D3dBJ3jH32HTvDx/74KYZrTU4d3MXXPv0QcdW2zDZVjhCCj+8+yPXVEURR/QWxqVVYx/YgKDZj5rOUUHqEt97IsX2TVGpNwu8837leNMgEKsoRuQdq9ddNVGSDekJQ8XzqeUYt7/9sqOVZJ9N0s9DGkGmNv44ZxJbK8aXcdJMch8PhcDgcF4cTiNucQEgW8pTzSRMBhFJSy7OBlQKAs60GXzl/grhL9DXyDMGS8+dkVOJQZZhQWgfFRlfLajPPEKuVB89VEa0AZsqQLXt5NX3IBbR8xBMH4Z2xVR+bwPB2fZ4/On2UmSTuzFz60hrZJEoXM4jLzmeuhJiuYkoZ+vbz9lhGQDUlYR3zmeNFdMjYUoRIPc/YEZXZGZVRXXeXG41n4M5nXuORr7+AlyueufsGnvzIveSB33O9YT/gQGUYKSQS0fkduRbT9yZ7ylVilTPsB5Q8nxfefzva8wifeh4xa512BwvE9c0hDvtB5/Z+0XK6kPYLxIU07quEXyrKaLRZanVdjZaymy9qjVZUh8PhcDgcVwYnELc5ofSYT1NONGtUPJ9AeCQDzF3AtmQ+M3ee2cL5tE0tS5clqC2JRYHoEYhzabJqsLs4NdK5HQvR0gXzUaeyKN4dRaQ+4t1R24660rEQvFNfYDZNeHVxltcWZzuuqRLrpNrM8/6Ii7fHATA3zcHeOma8Zf8/lHC0sUh9jRlNc+Mc+sGTMLZUQcy1puoHhJ7XI0irrYzPfuMVbnv5KGng89WP3sOf3rSLllbkWvNus4YxBmUMkbTn3o4dMNg2U1dBfG8yHkZUvKDjPrpv714WHzyMUIrSnz4BxhAVZjY9rFMgljyf/V1uxgKYHZCbOp+lGNbOK9wI1qVX4wu7EbLShhVAS2UE66g0OhwOh8PhuDI4gbjNCYvZork06bSdZlrRUv2VsmONRc606iitSbsWY7NpTLiCSDGYnpbU2TQhWsl1sx4g5pds8sVc8W8lEK/sQBiBmC/DiUJEZh7MDsjQKNhVKrOnVGV3qcxb9XnOJy3GQruY9oQk0Yr5LOkViPUAMVfGlDPYXQcB5tYLmNGYfM8iI0FIba0ZTc/ASO91lDFWgEsPCjG98+R5fvKLz3Lg3Byzo1W+/KOPcHTPBCNBSKwUDWXnNTNjW2NL3tKCPihyEN0M4nuXibBENfAZ9u1r+taRCbxHH0BNjeMfP0Xw0mtE0uupNgMQFu/txQjxgylI1/cxXpJ+px26TVa0kJc9b0WX04tBaTsv7EsrcFeqDhpjSLTCFwJjVr6ew+FwOByOK4cTiNucUHqFTbwmlF5RjRK08n6B2K7+CSFIiwpj2zxlpbiKUEhmi6iLXGtqeTq47Q1sRRAwe2r2B4VYFEfHEM0QU+2KkCjcGMXZlfMaPSHxpaTk+Rhsu1q7eimFnZ06FzcZDUJYDBFvjyOOFtXDA4t0dNdQhnn/abLxJpHnremqOAhlbEUmEBKpFIe/9xof+vKzVJKMo7dex3/7xL00RqokSjEShCQ6J1aKId/OLCqjewSi15lBdBXE9yolz2dXVKXid733fI/40x/BANFXnqTcjDvtoW1MUUEUb0/Yiv3JkXXdX8X3mUnjznsfrINpqhQl6ZNcRDzOSuTGoI11I9bF63/w9TS5MQTSmlKtVml0OBwOh8NxZXACcZvjC0GyLAvQGAZmITZUhl+EzLfbyVoqp5HnPeKlm6ofcKJZYyFLaKiMRCuiQdeNPTg9jPE15pYZjK9gMbJziCdHMMJg7juD2dmw/77rnHULPV/tn1UcwJ5Sxbq2FtgZRAUCfCTipV2Id8YRZ4fscffW+o6hjM1QjORFVEuEIZSS6nyNv/CVF7nllaMkoc/XHzvM9MceIvbs858ZTcXzybV9jkuehyoqiGW5JAR84aGNrdBKpw/fszwwsYuDleGen+l9u8geOIxIUka+/CQ+orf9s725ouz7RtTDdd1XSXq08pw3avOd139T5WisQFspBuNiaDsO+2J14ZdqjdL2/s0qQtLhcDgcDseVwwnEbY4QAg9pq2idH5qBWYiN3M76mK4F52KWkhlFuEJVsOoHJFrxysIM82lSiKz+l404PmaNYA4sQKBhLEZoiXh1yraS7mxASVlh+Oi7MJ7A7jpCScQLu1adRRyEJwQX0hYTQQSnhxGtAFPKrFPp/kV7DsuwbZ4+O0tlFge4Oa6G1IZ9L7zBwd/7PLvn6kzvHOO/fvII9ZuvY8QP7cwlYIxg2A+tYBfgC9mx7w+7hLUvBaaY/FxtptNxbTMWRgOr98lj70ePDRO+eYy7z873OAl3ZhDb1NYnEIUQjAYhT144w5MXTgN200gg8IqNps1CtdunhejM4A7CZiBqfCExBlzShcPhcDgcVx+3Mr0G2F+pMuQHnf8HQjKTxn279t2GLu02s/UIpamwxA8WZ/n6+ZN9hjCAtds/NYyRGnPQui+aPXUAxDnbQmoOLNrrSqBctLfeOoMZThDzZcS3D8DRMetyug6qXsDeUpWS8BFHx+zxDp/HfOQY5n2zA2+jjKEkPW4eHifRqs+sRhVVj+UMLTT48199ib3ffh4BfPvu6/nqJx9grhIyHkYMByGeaItuw+5yBSkEvpAEcsmdMeia3fSFRBvjTGocgwkD4h/6MABHvvMDZKO1dNlygdgM1oy8aDMShOyISpyK68Qq52yrgcRuUsSbKBBzbRuopRDoVWYLc6PRmE7uqb7UAFWHw+FwOByXjBOI1yBjQcRbtQW+N3uuszDLtCYpgqslEBctqHNpjLeGSUrJ85kISoyHEbtLlf4rTFdsu9vOJoRF5W53A33bNAaDGYl7IiM6eAZz71nMZBMRB8i3JhDfPAjzUf91lyGEsKJ4poKIA8xkE0YTazCzwsNRxhB5PjcOjfLo5F7m0qSnde9Es8GFZGkhnuUZe194nU/84bfYO7NIvHOS2Z/6cV64/TryYtZzyA8Z8gPGwxIzaYtAeuyKKpSkR8WzP2/PjwVd4tqX0i6FnUmNYwXUof2k99xG0Er4+HNvk7dbQKOlaqLxtK1er7PNFGyraZwrppMWp1oNhvzA5ooqhdmkGUBlbHVcAJreCmKmNS/MTaOMIdf2/GXh6utaTB0Oh8PhuPo4gXgtsGxNF3k2hPul+Qu8WZsDICmMbHwh8cSSic35OF5x/rCbiu8vtaFmAvHGBDRs1bJTJdxV773R/hrmAycw951dUbQRKcx9Z9GPnMDsqSFyD/HO+PoeNyDOVu19D5g5XE67gghw68g442HUcXtt5hlV3+9Y7U+cn+MTn3+KR194B2EM377rEOf+0o/g7Zwq2kbt9dqL69tHJjqznEN+wERYYkdUour7xeJYLKsgCpQxyKK9z+EYRPLRR9Cjw9x08gK73zxhf+gbO+uLWZq1XWebKSxF2LxVX6CeZ1T9AE8IFOaiDJwGkRuNMUv31S386nnKiWbdmmsV9ydYOw7D4XA4HA7HlcEJxO1MLhAv7EJ84yC0eueYIs9jNAh5du4880XuoTIGv2h9bKqcVCsW8qR/Bmq2ZE1nVkC8O2ZnDp/fDS0PLpQxvoapZv+Vy/nAecA+qhnm9mlMoGz0RSrXnktUAqar1pRmx4D7Xn51ozuPVQjBzlKlIxDnsoSJsEQYZ9z35Mt87E++w46FBqd2jPL5Tz/Ec3dcR+j51llVSBvuLSVDRUTBgcoQE1GJibCEEILd5Qq7S1VK0rdmNMYUERkWX0iU0QghXIupY2WikPhHP4YBHnn2DUo1+zo3t07b98u4rcz3GdVoED+YQnx7P+KpfX1RGGXPZzaNC5Mku0mhtSHVitcX5y65kpdohaAt/ugRfpnWpMZuWNnquj0Hw8qzig6Hw+FwOK4cTiBuVzKBeGYvYrpqQ+eLObxuRoKQllK8ujhLonNrilIsBmOlqGUZqVK9sRVHR5HP7kV8f9fg+9XAKeu6KFoB4skDCC1hR+PSX00S2NWweYnf34n42iE4vXIMBheK1tYdTdtaugbGCMKuKt6OqEymtW1z03D4rdP89J8+w41vnKAVBTzx8O388cfv49xICU+IjsAreR71PGPIDzoRBSXP57bhcXYUTquHR6e4dWScUHqdRXhPi6mQnTY8JxAdq6EO7KHx/sNEmeKeb7yA1hr2NGBfHYZsBA3nq4g3x5ccgU+MIk6NIJohoh7BTG/eaNX3mU3iznu/XUGcTWN+sDjDXJpc0jnPJC284tgGUF1tDqnWRfWwLRDt679dRXQ4HA6Hw3F1cQJxO2JAvLoDUYsw4y2Mp+H0MCT9Vb8hz+ds3LAOhcYuxHwpiniLDF20OYrXJxHf2Yd8axLABt7Xg77jcaGCSHzMWMvmGmqBGYkx181vzkMr2lTFbMW6oL4+uWIQuJiu9Nymm7Nxk4Vs2SJX9BrFjAYhCBh+9ww/9aXnuf3bL1FOct65eT//7w/dj7rrVoYC24baNpwBKxAbKuuJ3QA4PLaDw2NT9q6EQAhRmNToQmD2ziC6FlPHejEfeohsxwQHphe44eV3li6o5JgoRyQ+4tg44uUdkErEO2N2/veQbTEXC6We45U8HynouB9LBMpoZtOYuTRhMduYy+9yzictyoVAXF5BTLUiU7qzOWO6xKMTiA6Hw+FwXH2cQNxmHH8mYPfzNyPODWHKGebuc7B/0VbdBlQRy55PLc9YSFMQdvHlCUlmNPNZYldvjQDx7qgVnIFaEmmnhvuO1/6ZuW4B89BJ6xr64GkY7o/VuCjGY0yU26zEsdjOJL45YcsQ7T9tFqPObZaTa01mDOe6TGcwvQJxYrHJj3/jFX7k6y8xNl+nuW8X/+UT9/Lso3cRRz67ShVGg5CWyok8r1PpK3s+AsHkMoEoB7SL2oqlwJO9ArEdDC6cSY1jPfge6Wc+jpKC+154i/EL1i0YAeahk+j7T2MqKeJCFfHtA4jcszPA+4oZxYV+46d95aHOXLEQNqhlLk1YyFL72VDwTn2Bs63Guk+1mWfU86yndX25SU1q2hVE0/PqV8sHqh0Oh8PhcFxxnEDcRmhtmD/pETbLmDDH3HUeAm3Fmq8QJ0b7WslCKUm1dSxsL8Q8IVDacD5u2rbHeVtdMAfnMR86boPuhYEzw/1zgIuRvWyqaV89/iYv6ASYI2cwD5zG3H3WPq7TI4jv7Ed87RDiuT1Fz5qARoCJ8iXn1PbzZGxL55HxneRFzpo9tiEQHmJ+kdIffZWp3/5fHDozy/xQmfkf+zjn/sKnOD9RGO5g5zhHgpBE6R4jn7LnU/Z8RoK1jUFC6eFJm1XZ3WIqAa1xM4iOdaN3TvLc/bfgacNDT7yAnxabMqG2GyuHz9t53FxiJpuYG2ehnNu53lq05kyvAWpZCtjPhjZHG4tcSAe4EK/AYp6SatXTzq2WVxC1Jtemx0UYnEmNw+FwOBxbAScQtxFSCu760ZiTD76CeexdG+sA6DDH3DYNYFvMujLR2i6CsVrKQGwbpMxnCaH0bDspYCZiW1GMFEw1bcD9dHXpBDKJSH2oZJf3lVPN7GMLNeb+M5ihBFEPEUoiZstwoQK1Ipx+pH9WShmDJwQHykNMhKVOu9xwM2HvV79L9f/3+wTffx2ikFcfvIPv/PmP4d12M4Hn2eqq1kgEkfSo+gG+lJS9pXbbUlsg+msLxEBaU5vQ8zq/C2jPHboWU8fGOH7b9RzdP8VQrcmRp16BbkE1nGIeOYH54LvWOTjU9v08miCMsCJxNYwg1oqxIGK2KwJmLo2JVb76bbtov9+6X+/dpjctlXfmDxOd97z+nUmNw+FwOBxXH3/tqzi2EtIDHaie2IijjUWmJlPGJkcQMxXMYgjjS8LJQ5Bo1RGINrzakGhFWfpL7WejS1UCs2/RGuCcGsbsKtrLilgLKpvUTroehlPMg6cw9RCaAfL7uxBvj3diLcxAgajxpCD0PG4aGuXlE8e5++13uOH1d/G1wUQhyfvvJn3gMKMS7i4WqKH08IQg0Tm+lESeR8nzCKWk3FVBDKRkJAio+gNmNJfRPmZZ9s6H2mBwnEmNY0NEvs9XH7yF/2uuzsGjZzi/Z5Kj7zuwdIVyf9i9GYkRFyr2fT66svmMEIZY5YwGEfNZQi1PqXg+LZXTzNcvEGcHZKt2C7+mytHGkBlNqnRPi7WrIDocDofDcfVxAnGbY4pqWayUndmbqdhKQZdALBVziJUukSOEIFGKMVNGNENMJe1t1Zxs2fbNmbKNsigraBaCqHoFBSLYauVIasXisQRRi+B48ViGV6ggIglnFzj85As8+OpbeNqQ+pLF9x9GPHQEylYUd09ZBkVGZKysmI6kR9nzrUCUS2+Vqhewtzy0LmEXFhXEyFsuEG04ePdcosOxFpH0aAY+3/3QPXz4C9/lnu/+gJkdYyyO988LdyhEoTgzZDdWVmkLT7VmKvSYywwLWYIofhbr9QvEc3GzZ/7QmF7h11I5yhjyws20+33kBKLD4XA4HFcftzrd5uTGUPJ8GzhdiCWxrJWs7HnUsrRTQWxjMHgLxczi2DKhJYG9NdvGebqItSgqiKZyaQ6HF40A874ZG9cRFwvQkaVzOdpYZDFLmZie55PffJmh3/xvDL3yJsrzeOa2A/ynH32I+LH3d8Thcnxp5wRjpSgXpjQVzyfyfMIugbe/MsSDk7vXdcqekEUFsncvRgqBcO2ljg1S8nyU0czsHOfle2/GV5qHnngBL1tFwE20MMMJYrGEeHZPX2ZqG1PkddrWUMFcmtDMbV5qrPork4PItKKWZz0zu9BbQYxVjsAaSaVG9baYOpMah8PhcDiuOq6CuM3JjbaRCSqH4UIs1Xpn4yLpMR5GfSLFGBDn7IyhGe03oTB7aoij44jzVcyN89AsjnsRFcR6nuEL0aksGGOYz1JqecqOqNx3bisyEcN1C3B8zFY4I7twFUpzy/FpHnznLLsvLAKghyokDxzmu9ft4Kn6DGNh1GMUM4iS5zOdtBgq5gvb84ah7I8QWS8lz++pqMBSBdFb43wcjm5CKWn7fr5+1w3sPDvL7tMXuP/Jl/nuY3fDoA0HCebIaXhhN2K+DE/thwOLmIkWhDkMZSBsNmJeCLmK53GyWWfID8i0prXOGcRmnpMqxXiXgZMUVjiCrRDGShFIj0QrErVUQTS4CqLD4XA4HFsBJxC3OZnWBEKSAETKOhbWQ+tYWGgPIUQnwL2NLyTluSHE2WFMmMOuATb21RxTzhD1CBN7Fz2DqI1hLk3whSCQGVNRmYUsxQA7owpNlVGSHm83FtlXrq4pFs1Ns5BJzGhCqRlzw+snuOGNdym3rECeGy5z9PBN3PzIw+B7jDcWMPUZfCHx12jpLHl24dqeL5RCMBFGnUDxi6HqBX23l9gKoi9dBdGxfnwpEe0qmxB897G7+fjnv83Bo2eYnRrlzTuuH3zDwGCOnIF3xuHoGOKY/QOgb56BQwuMh0tZiVU/YC5NOBc3kUKQGZtbuFZLdENlaEzPxkcgJLXcfmZk2prThNJW6jNtOjOIAmdS43A4HA7HVsAJxG1OpjVl3weEbb0cSaxRTSNcqigOYFdYRry1DwBz+wUIVvDAn2rCiVGYqUDLtwI0XMMvfxn1PGMkCLlvfCdPTJ+05200+yvDeAgWGwm5MUTSYzFLOwKxkWcYTKea10ag2TXyA65/8yR73z2PNDZq++i+SZ67aQ9ndk9w4/AYN/tWlI0HpaJVdG2RV/F8tIGhLpH60OSeS6ogTkUlhpYZ2nhCIBH4rsvbsQGWV8DTUsiTH7mPj/7Jdzj8zOvMT4wwvWcSsGKrUbz3AFtJvGkO9tUw56uI+RLifBUxW8YcWug5big9MqOYSWIqno/ShkyrjkC0/156TyxkCUN+SFPlYJZlgXoes0VMRqYVyhhC6RFrm4UYFcdcPqvocDgcDofj6uBWp9uc3GhGgpBASDKjl0Th4hoRDHMlROJjJpuwo7ni1cykvUycHEZo2Wkvbam8yExbm1qeckN1lMmohMC2l6pCEA4FAVlheV/2ffsY2qeYJcynS9XKoYU6dz3zOj/8B1/ng195lv3Hz5EEHi/cdoD/+WOP8qUP3c2J3eMo6KlCjgQhQ35IaR0ir+z5BFIQ+X7Pzy5lVvCusSmuq470/EwW+YeeqyA6NsCgCt781CjPPnwH0th8xHKjBdhMwzPxgM6Acg7XLWDuOmczTWuDPytE4X5cLuYe27EXJ5t1vnLuBKYQc8povjl9ipPNGvWsv7sgkh5NlZEoRWZsLmkoJS2VodGd95atVK5v1nEQscr59vRpcr2xDSyHw+FwOBy9bLiCeO7cOb7+9a9z9uxZkqTX2EQIwS/+4i9u2sk51iY3hqmwzIW4Rao14bB1HhRvTGJSHw7NwwANIs4Xs4cDWkvrecb5pMUN1RGYiDHCIBaL9rMhKwpn0wRtDMNrhMXrorq3vzJUuIRKlDEooyl7Xmc2L9OaUEgyIcm1LlrpoJKk3HD8AtcdPc3U+Xl7zsCZfVMcu2k/T09VwPep+r414VECjSHqEohSCPaWK2TrqE5ExbzhpbSUrgcpBELQZxzkcKyGL+RAG5fjN+9nYmaBm157l0e+9jxf+9SDZEYTSg9tzGDHXQlUU9tCnnided42Fc9jLk3YVSrTyDNSo9HG8MrCDOeTFi2lqPg+s2nCubjFnlKLWp4RLtv0CKVHojRNlZFqjcFW0BOlUBqkv9RiulFxZ4zhTNxgT6nKYpZyPmnSUjnDcu2MUofD4XA4HIPZkED80pe+xN/9u38XrTUTExMEQW/bnBOIVx4DVHyfIT+klicw1cTsqsP5KvKtCfRUs7/V1ADnqxgM7OgXiItZil9kJUoPe53zQ5gdDcwNc/YQxgz0w1h+nIUsZVepwo6oTG5stUAZg0EQSq9wOxRkWjMZlQikR1pvcPOZOR58+yT7pxeQxYq4Plzh6E37OH7TPlrVMspoRBKjtK1uVH3PPibT34q3vzJMfR0Vz1DaeIv1VBsvBa9wMXUC0bERVpsBfOGB2xibWWRqep77vvMKf3jfDUSrCUSwnw31yFYRo1bPRUN+yEKWEUkPIQSpVpyNG5xs1THGUM9TKr7PhaRFPU852aqjjelr5ZbCtr/XizlEgX3958YU84pLFcRcb6zF9HSrwXdmz/KxnQdoqpx6nhFrxSqhHw6Hw+FwONZgQwLx13/913n00Uf5lV/5FcbGxi7TKTk2gsBQkj4jQchM2oLQYA6fh2OjiDcnEWeHMMOzvTdaiBCpjxlvDZwn1NjojExrIs/D3DmNyWagZCsMxhgoql/tat9yMq1ZzFMemdrDjUOjtiJo6FQQBdZwI5JW1JXrTe44foHd755j7NT5jihslkPeOrCDCzceYGbnWI9LY6o1gRRoQ2eGUWAriMsX0oeWtXiuRCAlpXXOK14KrsXUcTH4QiIRA0Wf8SRPfeRePv5HT3L9W6e4rxLw/TsOoYxZ8YPeDCeIM8M2O3WqVyAGUnKo2pZahkxrTjRrSAQKQ0NZwXe8sciIH1ojKimpDjKZMnam2M7yCiQSbZR9HD0mNeuvICpjeHFhmvNxk3qe0cgzmnlOvE7HVYfD4XA4HIPZkEA8e/Ys//gf/2MnDrcUgpLnMRKEZN2777vq8OYknK3CTbM9babihBVLZmd/9TBRilB6nZnGCA88A95S+1msFZH08IQk0WqgQJxObYvq7SMTRa6aFYe+kLbypw2jZ2fY8e45fvL1t9ixsDQH2YgCzhzaw/N7x6hefx1vNObZGVUQxuB3LYptW6pHjCLXmomwxHQS09TZRQfQh8Ij8jwieXn9mzxhl8WugujYCL6UyKIKP6gqGFdKfOujR/jIF77DB146RnN0mLPXrZLZWXQXiFq4RgKhnUc8Fzep+j61PKWWpTSKdvTxMOJCEqON6Ym4aOMJwWKWFoY5pugk0F25i3TcUtfLyWaN060GnhDUctut0I7OcDgcDofDcfFsaBV87733cvToUR555JHLdT6ODaCMRhbZglU/QIiuJV5ZYcZixHwJsxDBWDEvOh8tRVvsrfUds5an7IzK5NrYllWCvuskSjEShEgk9TyhSoAympOtRuECaheAh8d2dBZ/GIOYW+TOt0+z4/QFdp+bo5IsGVrMDJfJb7qO5MaD/C/RZFe5yoU05uFKldfq85xPWihjOFCudo6ZasVIENFSOS2dMxKE+FIglVgz73AlAikpSY/Iu7zCTVK4mDqB6NgAdo7XiqtgBY+x+alRnn7sbh752vN89MlX+JPhMunOycEHXCE7dTkGmE8T6nnGZFgiVjmzacJQ3CRRilJUti2iRg/M9gyldTJtG920RW63xhUI1AZaTBfSBIwglIK5NGE+jcmNJtZOIDocDofDcSlsSCD+0i/9Er/wC79ApVLhkUceYWSkv22vXC4PuKXjcpAVLZYlzxuYHWh21a2V/bkqphCI4k27UDQ3z4LfvxiLleJAZZiZpMVs2uq7HCDWOQejEbTRnetkWlPxfMaDEoGU3DEywY5mivfGu/jvnsY7dhK5WOfB4hhKCpoHdsPN1/O/q5oTJY8f3XuDjYM4+TZZMa+4p1TluuowN1RHeW7uPPNZyngYde5zZ1SmnmfU84yKb/MGWzJfM+9wJSajEveN77zsAfaeEEgpLvo8He9NfGmNntaKgzh+YCfcdYhHvn+Mj339Rb72I48QV0r9Vwy0zTpthphMQDD4uBKYLQRYuw17Jok7mYYAo0FIIx+ckRp5krks4WSrzo6wjFfMOPfch7CuzOulrnJ8KYik5ELSopHbecn1uis7HA6Hw+EYzIYE4mc+8xkA/v7f//tLlaFlvPrqq5d+Vo41SZRiLk2o+gGh9BjyA7sD372Dv6MBr0/ZDENmIfZsRbGcwZ563zFzbSuSu0oVUq1XdP3MtWEijMiNIdPzAMhcsWd6gU/mLYLT5/FOnkU2lwSmAdTuHRzbMcIrExWOTw3zo9fdwmRUIj3xFkEaW3MYzyeQkljl+EIy7Af8md3XdY7ztfMnGAtChLCzhqNhxFASUMtSIulR8X1q+cW3mHpCsqdcvajbbgQpBB7C5cw4NoQnRNGmbYhV3nEBXk5mNC/eeYjdjYQb3jnDo199jq9/8v2oYOn6tSyl6gd4Iwm0AlgsweTgTSFPCOswWnwkRNJjMU+pNVPGA7thU/UDqn5/x4G9vs/pxiK7SuXOfK/GILp63wXWuGa9NPMMXwgiaVterVGV/bfD4XA4HI6LZ0MC8Zd/+ZdXFIaOK8u5pMWh6jDXVWwVd8gPKHk+sVJU/UJ2lBVmKEXUQ0zLh9migjDVHBh9UctTJqMSE2GJmTS2jqADKKUZu87M4J+fYezESfYutBheqHeMZQCMlKg9O1H7d6MO7CE/uBfKJY7NnOXt+Qt4UuIXBi1VP2AxT605TDH/2FI5E1Gp5/W2u1QhkJ413Sh+XvZ8xoKI6aRF5HlUvQCP+KJbTK8UnhC2iujeT44NEnmS+TRhtpVwQ3WkI7jOxS1CKRgPS2RaU/YCXv7g3ZRrTfZML/DQEy/w5Efvw0hJpjXnkhaTRjM+FiPODcFCtKpAbKm8s/ESSkmiFAbWZegUSMkN1ZGeirkVh0sfGu0W1fXSUBm+kESex1xmOySGfH/FKqbD4XA4HI71sSGB+BM/8ROX6zwcG8AAu0plPrbrQKda6EvJWBAyn9mZwA6TTaiHcKGCmLcC0aywCKznOXeNTiGFoCw8hhoJO+dihhcaDC827N/zdarNuHObvcXfjUrEhYlhdt98E2rfLtTunRD0v7xK0rP5bHgEwi4sh3y/0yorhaDqB8ymMZVl1RGvMOjQxaLSABXPOrgGwjqiVrwAKQXBZY6puFSsg6m87K2sjmuPSPosZDXGwmjJSArIjSJTMI5tvx4rRQSezx994A7+4ldfZO/JaY489QrPPHIntTxld6nCQpYwPlq0ny+UVjSq8YWkoXIqhRi0FXwYWaFiOPAYa1T1S57HbJownyaMFW3kK2GMoZXnRcutjdEQQCA8Wkr1dlI4HA6Hw+HYEJfXqtFxWSh7PneMTvYtgCajEufiZs/PzFQTcXwMcaECCxFGGBhvIbQmaMaUGzHDzYRSrcnNi3XeZ44R1ZrcNrvAHXm/XbwWMDdSobp/L/GOCb4mWmQ7J1kIPDwp+ez+m1Y998DzrLmOFJ1qxJAfEgm/sMCHkSAkVnmfQPTFkoNjrjW+kJQLg56S53VaTAMhe9xOtypB8Xgcjo0QebaKPuwHy4LlRacgZw2cQnwhaYU+3/jEA3zsT57i+jdP0qpEfPGWveyqVphPExhOMFLbCqJhYHeBJwSNPGMiWBJuBytDl/xYugVpKD0yrTnWWOSecMeqt7Mt8JpSsckkAGMEvhRkuertpHA4HA6Hw7Eh1hSIn/3sZzfUVvo//sf/uKQTcqyMiROiVsIhJbg+AzG7gDAalIY858DCAo0LF9gt5vEzhZ/nBElOtPA60UxCpJtENIn+oEmUrN6GpcOAcxPD1EeHmB+pkIwPUxsd4mQkKZcq/Oi+61Fac+bEG9a5VClK69ixD6REG/CF6G0TDZdcFIeDAANU/V5nRa+Y29PGkBZmGWXP71QR27mKQ36wLVqhQylxMYiOjdJ+jftC0jJ2E8cUs3vtl70yMOyHaGNQBlpDZb7x8fv58J98h9tffJszvmDPB67jdNwgNjnl4dRWEJsBVPs/G8qeT9nzOoY0m0Hb7bibkSDgjfocd4xOrjpHnGhFbpbyTifCUlFBlOTGFAJx/dVNh8PhcDgcS6wpEG+++eZtsdi+1vG+/zrJ57/CbgM/tMJ1bin+rEXuSRYrEWKoymIl5HzkM18OObB3L3t27caMDJFGIZ87+SbzaUogBQcrNjC7FTfZW4g5T9ioBmUMBrOuqp1f2PRH0uu8rqaick9gfMWzxjulZbNNUohCYBrAEEkPX0p2lytUfJv1Vvb9Imtt6xNKD8/Z1Dg2SMmzAnFnqcLcom33zk07W9B03EHLnk+iVSf+5tRwiS9/+G4+9dXn+chzb9G67kYmh8vMpTHl0RgWSogfTGH21WBvr4mVLyX7yuuoGBpsm4G3ttlMIGWf4BzxQ07FDc7FTfavUqFMdW8b6XIX51j3dz84HA6Hw+FYH2sKxF/5lV+5EufhWAMzPoq4bh95moGQGCnAkyAkSInxPVLf4820SRCF6DAgC3xy3yMthcR+RJKMkOxRqMjnVKvBR3buxxeSr5w9RsXzuX3/Tehi1z0Aql7AWDXiQtIi1arTAjYe2llGUQg2Y4ytCq6juhAWc3fdxhaTUYnJaMmC31YrllpOuwmkpFW0vrZbUD0hO+e0t1RlZ1S5uCf5CrOvMsRouD3ErGPrEEmPA5VhRoOQduJfbrSdxzOGVCsQhuEgRGcJ7Z7RhSzjhpsOsVgaZeyPvkblD7/MHZ/+AF8qacyOJpwYRcyXEfNlTCvA3Di3sRPLJOK53dAKMI+egHB1kbi71P8+bW8a1VdwIrUVUUOi1KBO2AJ7ucNxtVFGIxFuk93hcGw73AziNkHv3030t/4S9Zk6eoUwaWU0T7/7JoGUNk9wIEu/cl9I9par7IjK7IoqVJbd5r7xnYyHEV88e5xYWYEoBD2tW54QpEYXFcS1BWK7glhaxUSmVFQPB7WzBVLSwGCMXSgvRwhBsE2+jG8ZHr/ap+DYhtw4NIo2htNxozPEl2tNqXD4rRd5gMN+UDh6miLCBg5WRvDv2kWSZJS+9C1u+8K3efmxO+HAEOax45iFEuLlnYh3xjGBgoOL6zspJRDP7kHU7IyiOVeFA/1ROuvBQ7C4QpbhscYiZ+NmIS4Hv88NYkWB6XBcSZ66cJabh8fYNWAzxOFwOLYyrr/tGsITkv2VoXXlgBkMfhHU/sjkHu4Yney7zsHqMMNByI6oTKxyjLHCrFsgBsJDF21t6xGIofSKFtOV9yZKnk/ZCwYKwLB9f5h12es7HNcaJc+n4gdFm7b9WWY0Fd9nOAio5SkjQWgzRYv3ZDvCZrKotGf330XyoQfxspwf+8bLjM4sQqhhRxNz7xmM1Ig3JmGutNJp9HKhgqhFNmMVEGeWtYeuP96QUHrMF7EVy4lVzqlWnabKVzxoJCXn48FOzQ7HlaSlclvRdzgcjm2GE4jXGDcMjaKKNqxVMXSiIHaXq6vayk9FZTJjXQMD6VHtmvcJC9MZDesKp/eLqIqSv5pA9CgXrqTLCaXXaTMbdLnD8V6h5Pkdc5pca4a8kFE/opnnTIVlwL7fDBArxa5Spcc1N33kPmYeuJNSlvPYl77H8HxR8RtLMLdeQBiBeHVqXefSidC5YQ5TyhDzZWgV73ElEM/sQTyzZ11CMZSS+TTtPLZuEq1ZzFLOL3Nr7qbs+cyk8dqfgQ7HZSY3GvcydDgc2xEnEK8xdpeqTIbWeKKZZwMXWdoYRJeL6FqMBCEGawxR8jxKXQLRlxKNwayzghgISVC4ja5EyfN5cHL3QLOZ0LP3p42rIDre20TSRsuoYvNmKAgYDSN86XVmetubNsoYxoL+TaD5R+/j+Zv3UopTPvT401RrhfDaV8eUMmgEoNbxOTFfHHsshj2F0Dw5bBfHr07a2ca5LtG4CqH0iHVOPKDykuicpspo5NmKnzdlz6ORZ9RWaFN1OK4UyuhObq/D4XBsJ5xAvMbwhODW4XE0sJBn1PN+y/q2vXywziDpET/EE3ZXfzyMeqoQYeEqqjHrMqkJpOyIxNWYisoDB/ujYs7KYAaa2Dgc7xUi6eELQVZkIbbNnYb9gOFic8XO/MoiN7F/w8X3PJ649wbeuWkf5WbCh774NOV60Z5ZyRCItUWdElCLMGEO5Ryzr2ZzFY+Nkj43ijg9vHTd2fKajyuUkkxrmgNyWGOlSJUi1mpFgegJicGsOMfocFwpcm2/qxwOh2O74QTiNcj7Rsb57P6buGlolIbqX2SpQiCuR9ABDAUBVT9gIipxz1hvgLVtYbNfgetpMZVCUPGDdYvT5QTSwwDGcNHHcDiuBUIpCaVHbjQgOq3ZI0HIiN8lEBGERTTGcnwhkdLjew/fwbvX76Fab/HhP/0ulXprKQ+xsUae4EKEMMJWDwVWJN48izACdbyK8RX6hlkAxDoEYntjqKn6N7dipaj4AYtZir9KiKhBMJ/FnGrWqa8gFOfSmDdr82uej+PyUc/Sa7bSa4xBFYZqDofDsd3YtBX2X/krf4W/83f+Ds8888xmHdJxkXhCUPUDdpUq5EV1oRsrENeu4i0dT/KhHfv41O5D7FzmxhZID23sunB56PVKVP3BBjTrwRcCUdiGr1fgOhzXIkIIql5AVlQpIukxEkTsiModI6lASqS0uaNDwSCBaLNMcwFPf/Aw7x7aw1AhEsti3l6puYZAbM8fjnUZyxxYxOxsIIYzeP8ZOLSAEcZWENexYDbGDKwgJjpnuBCIq20QlaTkWKPGl8+d4FSrMfA6F5KYo42FtU/mMqGM5rXF2U5u5XuRd+oLvFGfv9qncVloj164FlOHw7Ed2bQVtjGGkydP8jM/8zN89rOf3azDOi6B8bAEgr4FiEbjCdEJmV4Pu0oVKgOMZUJhTWqAntbT1XhwYhe7y9V133c3tq3MVizXO0PpcFyrVIOArJjVi6TPkB/woZ37O+9FXwg8BGNhOPD97kuJJ+1nhJGSpx87vFRJfOErVPJFRHNZa6rp/bc4X7yXx+Klnwvg7vOUPj4NQxl4BkZjROZBfQ3Bif0sGdQiGis7B32oOkzZW7n1tez5nGjWWMySwvG0n0Srq1q9auQ57zQW3tMulxmaRtZfKb4W0KZ4Xzl96HA4tiGbloP4n/7TfwIgTVNefvnlzTqs4xIYCyIqXkBL5T3RFMps3vyerRqarn+vzfK8xQ3dnxQYIxBifS2tDse1zJAXsJhnDPsBpQGmTULY9tK2q+lyfCGRyI7jp5GSpz94GCME171zmg+ln+OJ4R+ik2gYe4jv7oNAYw7a6puoRZiRGEaWRVMI6PlImIhhvgwXKjC8euUulLIv6kIZjTKGQHirikOwXQrXVYaZTeMVRWA9T0m0Rhm9oc2yQcwkMWdade4cW5/rK9jHk2vznq4gKm0GthJfC7Rn810F0eFwbEfW/a2Ypin/4T/8B1577bVVrxeGIffdd98ln5jj0gmkZGdU7ttB30wHUE/KYhFoW9UuN76QnUXnelxTHY5rmZuHx/jg1F5uGR7vcRfuZsiz7qaDkIVZVbdIMVLy9AcOc+yGvVRUnQ8d/ROGFhu2WvjqFCL1EY0Q+eoO5Kt2JtncMrNSbv3ScXdamSnODK/ZZhpI2ZfnmnbE3Po+Z3xp2+jrK+TC1rOMXGsS1d+GvxFyrfnu7JkNt0raOCK9rjiOazWyIzd64Jz8tYB122agk7jD4XBsdda9wg7DkN/4jd9gcXHxcp6PY5PZW64Sq94Wps3MELSLNYFh/RXES72/tiucqyA63uuMhRF3j+/goak9K77/bhweZXdUGXgZ2OiYPgEiBd/7wGGOjdxMRTX4yOe/y9h3AsSFKqaSou8/jdlVtwZVe2s2O9GYgTPPHYYzzHCCaIRwdAzx7J4VHVJ9IYmV6jmvXOuOwdZ68YWkNsDJGaCuMnKjOy26F8vrtTmO1hdJlNqQGMgLcbieCuK3pk+tmv24Xcm1IVEKZS5NpG9F7Pyhqx86HI7tyYZW2IcPH+aVV165XOfiuAwcrI5Q8f2eNqvNFoimY1Jz+QWbLyTG2Pt1FUSHY21uGhpbsYIINndw4DJWCp65/hHert5JKUv40Bt/ykR+CnP7NIzHmMPnMR85Zv8PzGUJx5v1/uN0YfbU7KHfnkDMlhHvjgy8ni9svmP3fF5mNlZBBLuJlBnVN+enChMcZQzJJQrEt+rzVDwfhSkcZdeHrSCu3YKYac1MGtO6BittCrMpVdytiDamM4focDgc240NrbB/8Rd/kd///d/nP//n/8yJEydoNpu0Wq2eP46txZAfcHh0irks7exua2NWbEfbKLbl07ooXokKoi8lUtjWOOdi6nBcOpH0Vl7EDme8MPoYr47fQ2hSPnjhD9nVPLl0uW86raWZ1vhSrNgO2cwz2FPHFJ8XBgNnh2CANvClIDeGtKv7IdNWSg3KR12JQEoybfrEVapVUcHTnRzJiyHTilqeUfUDlDYbOpbSplNFXI1mntFUOVkhPp+eOTtwrnIujft+ttXJit/DtWjUo7DVYScPHQ7HdmRDKuEv/IW/AMC//Jf/kv/n//l/Bl7n1VdfvfSzcmwqNw2P8eLCNLFWlD0fZdi0CqIsWkzBrNvF9FLwhEAKaQWiqyA6HJdMKAe0mBaYgwuYcs7Lu/aSvhZz9zOv8YGvPMt3HrubU4f29Fw3N5ohPyBeZooFVpAdb9a4vioo3XMWpEEcG0PMVDBzZZjs3Vz0hERp3VPdy7Te8JSzV1QiE6Wg65RilZNpa06z0QqiNkufdfU8I1GK0SiknmcbE4ho1DpMahoqo6Vycq3RxnA2brKvMsRwsOQuG6ucp2bO8tiOfQPzLrcq2liRfKlV3K2IMe0qopOIDodj+7EhgfjLv/zLG9q9dWwNyp5PKHw7H+SBEGbTqm/t2Am4MjOIgZBIrHW/i7lwOC6dSPorL2JDDftsW+gbd15PGvrc/9TLPPzECzyT5hx734Geq1c8n0ZRUesm05qyF5BpTWnKikGT1BEzFcSxUcxwYu+rG2GNaTrHMApjVnjPaxDP7AVPY+4929MbI6BvDjsp/i8FGxJ1c2nM0zPn+PjuA3hCUs8zDIZASjSmU+VbD0qbTpVpNZp5TqsQtKlWJLq/ZTYv5j/tPOX2EYh5UUW9FiuIuqiSO4HocDi2IxsSiD/xEz9xuc7DcZmpeH6PK+BqIdMbwRMCDVa0XZEKom0xDT3PbVY4HJtA5HmdmTyNZsgPV7zusfcdIAt9HvrGizzw5MuUWgmvHb6xyLMQRJ7P7IBWRysQ/d4ZvR0NTJQjZiuIJw5hfIU5tADXzwMgED3CIdeGFd/y56qIhRIA5vhY5xgABkGse1tMY60AgzFiXdWrdhTGiWad80mTRp4zEtiq4fLHuV5UUT1TazQhLuYpqdLEStl5PZ2TLpvZU0aTXWK77NVAoTtGNdcaNuaCNX+/DofDsRW5KJXw1ltv8b//9//mN37jN5ietgYFx48fp15f3aDAcfWo+F6PU9xmVRA9YeMtpBBXpMXUlwJPSCKxOS2yDsd7nbYb8GwWM7+O4PhTh/bwrY8dIfM97nr+TY489QqiECbDfjBwOZwbTdnzeiqC+Abz4CnMwXlMKQMlkW9NwLw11DGYZS2mqjd03IB4aSfie3sQR8ftj4RBvD0OjaDnenHeKxDbgsSXrJnD18xzvnDmODNJzFv1eZp5TqMQhgtZglc0vgo2JhBzs74W0/k0RgpItJ1DTFR/S6YqKojbLQ4jN4Z8E4yCtiLaGDCg9fb6nTgcDgdssILYaDT4B//gH/DFL34R3/dRSvHBD36QHTt28Ou//uvs3buXv/f3/t7lOlfHJVDxg57d+82rINp5wCvlYuoJiSesNb/D4bh0PNFOtDc9+YTaGOazhImw1Hebc/t28PUfepAPfPlZbnjjBOVmzP96//uYisq8WZtHGY3ftYmTac1YWOqPnIgU5pZZuGUWTg8hXtmJeHUH5sGTCKClck416xxvLlL2AoToOsG5EuLcUOe/ZjSG8RhxbAwzW4aqva9AChaXZSG2VI4xAk9Kmvnq7qAtlXMubvLUzBnm0hgh6FQOZ5KYUidTVmysxXSdOYhzaUrZ84iVIiuyIJeL2lzbCuJGXFS3AkobfCHW/B1sRzSm02bqcDgc240NrbJ/5Vd+heeff57f+Z3f4bnnnuvJfPrQhz7EN7/5zU0/QcfmUPEC8u7N+02tIFqzmivRYgoQSI/SJpnsOBzvdXwhO+YvvpSdKti5pMlitrLxyvzkKF/94YdZHK2y5+Q0f+5rL7Izsw7J/dmrFDPDqyyW99QxYy1EPYS5Er6QNPOMC0mLdxqLzGdxz2eMODYGgNnRwJQzzE2zmKoVgiJe+nwIpGQxSzkXNzuZh/U8JZB2jnmt+IhUK7QxnG7VMUUr/WKekGvNQpYSFp9FBrOhTMVM2+bD1SqIscppqoyy5xNrRVpUCZvLhLbuzCBuM4FoNIGUNNao4m5HjLF/tltV1+FwOGCDAvHxxx/nF37hF3jooYfwvN4F+t69ezl16tSmnpxj87CupQZT2G5vlgOoV7SWCuwc4pUgFB6h5wSiw7EZBIUo9IUk8jwSnVPLUnwhqfqrGNgAzaEyX/30w5zfNc6uuTr7/9sX2NNI+4SKEHbW0az2GSHA7CjC4OsRvpA08pzppMVCmrCYpUtdCrMl64BayjCHz2E+cAImYigVYi9Zao4JpceJVp0/Pn2Uky07BlHPc3wh8YRcUyAmWiEF7C5V2B2ViaTHTBLTUBmJVl0VRNsyuV7SwpV0tRzERp6TFvObiVZkRhUCsd+kZrtVEFXxXRRKuWab73bERlw4kxqHw7E92ZBKSJKEsbGxgZc1Go0+0ejYOtiWTIHG4AmJLzdHzHlCIgqReKUqiKEnieTm5Dg6HO912ptFofQYDyJipZjPU+4cnUQIsXaQexTw5Y8d4c2DO/AXanzqC99l59mZvuuNBRGrVhABhooKYC3El4KGyphJYwx2btATAqbLiOd3A2Cun+/9FosKsRcvfT4M+QH7y1W0sYLLGFNUECW+kEVVbmVhZY1yBKH08KWk5HnMpQnn4xZ5EZUB4CFobaBV0uY6ri4gWiovMmYlqVKdc20uE7W50eTa/tkutMVxINZu892OtNtLXQXR4XBsRzYkEO+66y7+z//5PwMv++IXv8i99967KSfl2HxC6SGE3bX1EASbZPLSMam5Qi6mACXpEW1Si6zD8V7HKzZ3RoKQHaUyjaK6dl11BA+xrgpIKuGrj95J8uA9hGnGj3ztJa5/7V2AzijCWBghEauKMYaLWcF6iC8kiVI0Vc6OqMR8luAJgXh9CqEl+n0zsL/We/tSUVlLej/f2ptiC2lCrBUtlRNJD1+KImah/5za550WQq5NKD1ilfPKwgzlrk1RKQRJl1vqk9OnWVzF9CcztnV1NQGRaoUoPlsVhlae4wlBalRPlbbtiLqdWky1sR0tgfRItNpW4nY92MfHmhssDodj+7NWJ8p2ZEOr7L/9t/82jz/+OD/90z/NH/zBHyCE4IknnuAXf/EX+dM//VP+5t/8m5frPB2XSCQ96wqoFJHn9bRFXQo2sN4uYK5U7MRwEFL2XQXR4dgMAmmNpibCiNEgItGKqajEeBDZfL91CERlDJHvk370Yd788P0g4MhTL3PbEy+iVI4vBGPF8VYVMaHCBMoKRCPJjUYbzYgfkmpNqAJEK8BUUrhuof/2nrG3j/2+YmUoJQt5QiPP7LGkxBOCXGvSZTOTLZXzpXPv0lI5zTzrOJXa43hkRjOTxoyH0dJdC9GZvVTGMJPGHbfTQdgK4uoziEkRx+EJgdJF5VN4KN2bHaiMbVfdTm6gbdkdSIEyG8uQ3A60H59rMXU4rm2U0Txx/iS1dbiAbyc2JBDvv/9+fud3foc0TfkX/+JfYIzh3//7f8+JEyf47d/+bQ4fPny5ztNxiYTSwxOSpsqZCEubGkkRSIl3BSt694zt4FBl5Irdn8NxLeMLSSAkY0HEkB9Q9QOur4wghMAvAuDXoh1jAbBw5038zw/fRRKFHHrpHR778nNUc82wHxJKb/U5OQEMJwgj8OOIvJhTE0Jw09Ao5VbFXm9olS/iKEdoCXnvZ1IoPRbTtHAgNQhhI3MGCauzcYPzSYtaltJQeZ+plzYGKXqdmz0hOwIx04p0jZlAO4O4lkmNKo5tW33reUbkSXJjlglEs/0EYnHO7d/BtdaKaVMu3Ayiw3Gto4wh09vr83c9bLgMc+TIEf7Lf/kvxHHMwsICIyMjlMvly3Fujk0klBJfCGp5xlS0ub8vX3hX1Mr7SlUqHY73Au25uoofMOyH7IhK7Cnb+IhQSlr54Pf28WaNsSBkNIhQxlDxbPZgJD1O7xjlKz/6CB/82nPsPTPDTzz+LN7/vZ8hP2AxSwCYSxMCKRjyw94DD6UwW8GrR7SGc6rd3QI1e10zvIpALCmoY6uIwdL1QmlNb9ozjW2EoM919d1GjYU0oals5qG/7DNnb6nat8nmCUFctJi2BdxqAjE3Gl+IVY1tWirDF7LTmhsrhS8kyqietlibgci2CpzXhfj3hG1jVtdqi6kTiA7HNY0uIou2k0nYethQ2eepp56i1WoBUCqV2LVrlxOH24R2BVEZzWgQrn2DDRDIzTO9cTgcVxZfCMqerRxW/YBHp/YxGdnsw0B4Ays7tvIjqGWFINKaimeFnG1nh+Zwhaf+3GMc2zfJ6GKT6v/7P7nhzGynxbSWp9Sy/hbMtvgTdduSOtwlIEW9+PdqArFjVNPbRh8I27J6Pm72tIwa0zs/0sxzTrTsbGNL5cQq73N99ou23G48ITrOpJm2M4L5KiHpmdadFteVaBQzh0IIBFZMtme9uyuIqVEIDKlZWSBqY5hPkxUvv9KoYgaxXR1V19isnmqb1Fxjj8vhcPSijd0UXO3zfjuyoQriz/7sz+J5Hrfddhv3338/R44c4ciRI4yPj1+u83NsElIIyp5HSfoM+cGmHtvOkDjTGIdjOxJIj8Njk0wU83RtcQgQFTOIqVacajU5VBlCCFHEO/jEhSuoMlAuBGInF9AYVBjwx4/ewadfP8P1L77JA48/jbrzICeP3G5bCwctntvto/WAA5Wh3suKCuJqLaamlFv5l/R+vYkih7GlcqJl5jJ1lWKM4fXaHDNpTCtXVDyfuTQm0aojflfDE6Kzi5wVmYQr7Si3Wyo9IVbddW4tE6fKtF1TRU87U6Y1vpSrVhAvJC2emzvPJ3dftyW6MNounxIBhmvOpMYYgzb05EU7HI5rD+tWfO1VEDckEJ988kmeeeYZnn32WZ5++ml+93d/F601N9xwA0eOHOH+++/nM5/5zOU6V8clUvYCIi/rb+m6RALhIYX7EnQ4tivXVQfP9PrSQ2NbF7XRxFpR9nxaKme0+BxpKWuk0haGkefhC9lpncwlnHj4MLtvuJ7wj77Kwy+/y+n5Fv/ngZuJwwFmWVHbiXTZ15MB6iHGV0t5h4MoLhOx3yc/jbHGL2HXTGEgJQtpSkvlPD1zjlQrxgJrijMdt8i1wfPXFlS2Q8OQ6iWBuJIhjzK6Ezm0kqurMYamynq6M5QxRFJiDD3GOqnSBEVkx0ooY4i1IjOacJNcrC+FdoupKCqk11orZjsHUV1bD8vhcCyjveF3rW1ybUggjo+P84lPfIJPfOITADSbTb7zne/w27/92/z3//7f+YM/+AMnELcwFc+n6gVUNtkBNJAScY3tnDgcjqUKojKGIT8kVjllzydWipuHqlTzgJPNGkIIgkJ0RUVeYHs31c6ZSfJbb+Ttssfez3+dvSen+b/na3z+0duhvKxKGCqMMJAuEzHNAKElZqQFq+m1lQQmtloYK0W1y300lJLFPKWWZ6RGsa9cRQhBLUtp6byYFVy7Q6I9S5drTWZsXuFKFb3u9sqVZhDbwfclaTs+DO0KoocU0OqK1MiMwpdWoC5VGfvvMyscW9ti/mqijen8Gg1m1VnM7YjG/s407rvR4bgWqWUpQ36AZulz/1piw0qh0Wjw/PPPdyqJL730ElEU8eEPf5gjR45cjnN0bBLVwEdTWvuKGySUEvcd6HBcewTSQxsrLoaCgPk0YRy78B2PIkbCkNcW5wik7IiOQEpC4XV2U4WhMzeXT47zXz9xL5955m32v3uO/+vLL/Dso3dx4oa9S3cqgEBZgWhYEoONojV+NQdTWKouxv0iKJSS+Sxld5dRVyA8mnlu5/PMUlxPKD0W8tS2Qa6jJVMWAjEz7fZS05OL2E1eiG5frjyDmBYzjJ5fiL3i9+AJazjWyLoEoraB86q4b8/rF4i6EIiJ1gz1XXrlsRVD+7yKtfIxtzCpVrwwN83ByjC7y9XOz9sC+FqrjDocDsuTF87wwOQuJHZU4D1dQfyJn/gJXn/9dSYnJ7n//vv51Kc+xT/8h/+QW265ZUvMNDhWZ3dUZUe4+V9WwRbYjXY4HJuPX8ztKWNbGE1R+QIY8UOG/IDHdu7DF4KprtnFiudTV4WQE0sC0ReCNPB46iP3suf513jk+8d46BsvMnl+npceuAXdng2MFCL1MZmEsPjSLSqKJlrDqbOUW1flZn8r/bAfdtoa2wRFBfFs3KDbayssMhs38s0mhOi4l2rTm1XYjTJ2+rK7FXc5qVaowunUHttW2XwhiDyPmbTVc91A2mOtdDyFPZ+VzulK02vesj1jLjKteeL8Kd6szzEaRuxmSSAqo5EIrjHfCofDgd34aYtCX0oMZst8tm4WGxKIr7/+Or7vc88993Dvvfdy3333OXG4jdi33PBhk9hVqmzb3V+Hw7EynpQI0Z598xBCEBczfMNBSNnzuXN0su921SBgPl9yzGy3PLZbNRXw7G0HOTc+xI9853Vufu04U9NzPPWhe2iMVG2baA1IvCWBmBVVsWCNzxrPwFCKqEeYlg/lpUpb5Hns8HqdtwMpybUNvo+6Nrva32vGbOT7zZAoRaxUZ+ZvEDa3UONLf8XPTjtjuFTR9IQg0RohBJH0qOUZscopeT5Z0Qab6nzFXWzVqSBujUVMb2VNbEuBuJilHG8u2qinZeefa9OpKjscjmuLdsap7vzdH5e03dmQQHzmmWc67aWPP/44v/Zrv0YQBNx3333cf//9PPDAA9xzzz2X6VQdW5VdpcrVPgWHw3EZ8AvHTGVgZ6nMTBpzJm5y09BYx7V0EFXP7wgVA50WzXbgvA2aF5zYPcHjn/kAD33jBXacm+MTn/82zzxyF6fCKXug1AdsFIbIC/EWrONLeDyGegQzZcS5IRiNMTfNrXz9Yjax5C3vhli2uD86altY9zQGHsYYQUvlJDonkCubxqgiI0+sIowS3Vtjs4Y2VuxG0uOCjqnlmRWIWuFLgVGs6KSnCjfarbLLbYXT0iPcjpuM7efaVgp7f48KjRRuBtHhuBbRxnZBtEUihQHatcSGBGK5XOaRRx7hkUceASDLMp566il+8zd/k1/7tV9DCMGrr756WU7U4XA4HFcWr2gxFUJQ9nx2lspMhBEfmNq76u0qftBpIRR0t5hKa9xRGLQoY4irJZ745Pu5/YW3uO2lt3n4iRd4e3edl+TH0EmXYEvXWUEEzHiMODGKeGsCkXkwW8aMt2AyXukWJFoxGvRGANl4i6KC2PKRb01ipMaMx1DqXwx4wuY7xspWWdOVTGqKSqAUYkVjg1RrRJeAKneJbiEEGGukMxGW0GZJhK9UQdSFw+pqTqdXEt01YLpdTWryogXZCNMnA5U2rsV0i/NOfYGqH7hNbseGMZhi5AKMoGgx3RqfrZvFhk1qZmdneeaZZzp/Xn/9dbTW3Hzzzc6kxuFwOK4h2oIOY6t/D03uIewypFmJSHpdDpW2wmKPJzoD/bIQnwBGSl65731M757gwW+8yI1n32LSn+Op+Qept7XoOiuIC1lCMKwZYpcVhwXiBzsw956FoazvNhJrFrPc/XM87DL1mrfOp0JLODaGuXWm7ziBlCxmKdpY85u2GY23bAxDFdUzgRUSg7AVxKXbDflBT4atELCQpUVkhkYW0RUrziAWO92NfA2TnytEu4oKViZuR4OHjrg3/WY0qqiStzdE1mN01EYbw/m42WN649h8zsYNJqOyE4iODaOL/F9dCEVt2DLdGZvFhgTiJz/5Sd599108z+O2227jwQcf5Od//uc5cuQIY2Njl+kUHQ6Hw3E18IVAIDACQuH1CJTV8IToWfx7XS2mUggybQ08lkuZ83un+NJnHuX9X3mZXTPTfOKZx3nBv5WjN+9fdwVxMUvxRE61miIaIWYkhnJuW02/sx+un8fcMNcTlTHsByvOC7YRC11i8dQw7K3BSK/YCovZQL+I/VCFiYG3rHVVGYMp5gtXEkatPGc1GR5JyYWkZYWfBulbwb1Si2mmNcYYGvkqGZJXkC4TUyRixczIrYx9rgVS9Lf2qi73W9Njx7s2i1nKs3Pn+Xh4kKiv7dmxWbTjZhyOjaINaKOLjSD7GnpPC8Qf/uEf7swZlsvltW/gcDgcjm2LJ61zKYKewPY1bycE3QUTr8toxWb/aQLpWfFpTI/RWVwp8Y1HH+H2r53httr3uP/Jl9lz4jzPhlNklCFQLGQJI37YZ5DWPpY2wEQLGiHm4ALsamBGE8Tb44h3xqHlY+6Y7qzZh4OQ4bUe1LwViGZvDXF6GJ7eh7l9GvbWO1cJpKSpcjwhbIuptlmG0TKplxvbmihp5xv2VxlbKuv7WTclz2M2jUm1QmM6VdqVBGeubdW2qbaGQFRmySHWttpuv8VVp+WX/kqwKjZBrImFbT9eL8rYlueWyp1AvIxkWvdtUjkc68FgOzJsq+lSi+lGuwW2Mmun/3bxt/7W3+Lhhx924tDhcDjeA/jCVrmM2VicTXewvOmajwukxBM2PsIrZvDaSzRlDHNpbAVpSfPayAN8/YYfpj5cYd+J8/yZY/+TXfExlFScbjVoDBA6WRHHIQSYG2fR952B3Q37TXfdAub9pzBRjjgz3GkZXRe5gHqIiXLM7dPoWy+AAfH2eI+PTVA8NmUMgfRQxgwUbJ0WUyE6LnjLqeUZgVz5KzqSPi2VFy2tS4uSlWYaM2PnIlurVBAXs5SzrcEGPJuN7qreCNimFUS7QBQDKohLvxNTVBDXjy7ccFtbRMxfq+RFBcjh2Ci6aCvVpv1vg0av2MGxHdnwDOKJEyf4rd/6LZ577jnm5+cZGxvjyJEj/NW/+lc5cODA5ThHh8PhcFwFPGFbQgVW/Kz/dr07qLJTQZRIYUWMJwQSOtWVRp6RaM2JVoM9fpUImPX38PhnHuWep1/lhjdP8oGZP+b17x7g9O37BgqKVCtCzyPPMwgMTLZ6rzCUYa6bR7wxhZipYMaTvmMMZDFCGIEZja2aObAIp4YRtSJKo5J3Hne7UhcIicYMFGyq3ZpYVFCV0QRd+7XKaBaytCd2YznteI65NLEVxELIryS0cm0IhEdiFJnWA8XnmVaDc0njisy+aVhqMRXbs8U00TkS24a9XOTnhYupGTCfuBa6q4LouHzkRrsWU8dFobGCUBuDFoXpmrZdBWvN6G8XNlRBfPnll/mzf/bP8vjjj3PnnXfyYz/2Y9x55508/vjj/NiP/RivvPLK5TpPh8PhcFxh2qYyXjFTt168IjhYFy2f3YIxkh651pSk35MTp41hNIi4oTrCrG5hPA2Jhwp8nn3oME9N/BCJjLjl9RP81FdeYvTCfOeY7fiGRGlK0mPVea+2aJxdfyeMOGMbUM1ol6Cc6D+OKFprlTH40grrQTvKqqvyZAw0Vc7TM2c7i9VGnpNqtapAtHcIM+mSM6snBE3Vb8IDkBcVRKX1irMyiVYsZoNvv9ko3dtimhr7O3x5YWbbLNoTpWw7Nf0xHVrbGJPeMI/1oYz9HW2VduBrlVwPrt47HGthjH2P6+KzXK6yIbhd2VAF8Vd/9Ve5/fbb+c3f/M2eNtNWq8Vf+2t/jV/91V/ld3/3dzf9JDfC7/3e7/Ef/+N/ZHp6mttuu41/9I/+EYcPH76q5+RwOBzbkXbFT2xUIIqlqoqEnpmMQHhkRlP2fUS21GJqMERScrA6zLHGIoQK0QowSkAqOV2+jpmpMe6pP87+0zP8uS8/z6t338Rrd93A+aSFATwEU36ZmWSlOAugmmGiHBYiyOTasRknRhCnhzFhDnuW5g3NeAtxfAwxW8bsry39HIEyujMTOMilNC3EkShm1ObShLNx085mCo9GnhUic/XnPBSSxSxBsNTC28xXEIjaEEhJUgjEKv2GQy2V0RzQglovjrlek6L1kKM7521dZA0LWco79XluHBpdNWdzqxAr1amwL3ePVegiyoUNC15t7CbCYrbOCvcWpZalHG/WuHN08mqfykCU0agNy3eHo11BNF0zxqIwJbt2Xk8bqiB+//vf5+d+7uf6ZhDL5TI/+7M/y0svvbSpJ7dR/uRP/oR/9a/+FT//8z/P5z73OW655RZ+7ud+jtnZ2at6Xg6Hw7Ed8aXAExIPueEW03acha0gLt029GxrZMnzewLG7ZesZCIs2XbJqBAqsd+JuIgrEV/88N08ef/7MEJw5/Nv8tE/eoqpuQaBkCRadW6/4myRACZbVpx0VxEHlXpODiNem8QIg7n7HERdlbfxGCMMzJV6b2fs7nLbQGfQjnItS/EL8W2w7bWxyjsio6Ey1qMpyp5ftCHaK/tCUl9hxrDd1muK+bZBoqWpFGnRgtrNm7V53qzNr31CG0Bp01NBzLQmVbZqFq9QOZtOWmRbyCkw1aqzGbK8UpwbU1QQ+zMS16I90zS/zQXiYp5yulVf+4pXCc3G238dDmjHXJiuWWr7OrqWZhA3JBCjKGJ+fn7gZQsLC0TRBob+LwO//du/zV/8i3+Rz372s9x00038s3/2z4iiiM997nNX9bwcDodjO9KuIIae1+cYutbthBA2LFz0ziSWpIcp/vZEOwLA/u1LwXgYUfUD0hFrliKOjfVEXCgMb9x2Hf/pz9zHhZ3jTMwu8v/58vN85PXTeNowHkb4Qva1/IGdD1nMUsxk0x776BhMVxCv7EB8/TrEtw+AKs71Qhn56g4QYA6fg7Fli3XfwEiCSH04OdL5cSBF1333CweAep4SStmpsrZUTmoUqhBmtSxjPU+3FYgKY9oxIrbFdJD4a2dPagNfO3+SJ6ZP9V2nlWcobfpEWKLzTRVmxpiuLEyKuVRVzN2t3Fr50vwFzsWtgZddDRKt7AyisBsc3Zgu46ANVxCLd0UtG/y73C5oY7b0bKlyLaaOi8RAx2CsXYXernmuK7EhgfjhD3+Yf/Nv/g3PPPNMz8+feeYZfu3Xfo2PfOQjm3pyGyFNU1555RUeffTRzs+klDzyyCO88MILV+28HA6HYzsTSK+Y61s/1qG0HecgOu2WYMWmLFpWfel1FtbaGHxhXU73lqvM7TuPCRScHkLMFZW+QNlICAQLIxW+9qkHefK+mzrVxJ/66kvsnG8i5eAK4nyWcC5pwY4mZqyFqEXIF3YjTg8jcg/RCuC8Dc0WZ4cAbJTFzubAx2kOzWOEQb42BcdGARj2Q6pdrZjLFwzGmCIrURZB6oZ6npEq3akgzqYtonW09PpF1qIQSxXETGvSAYuUTNvfxa6oTG40F5J+odVSitxokuUCUSlitTkC8a36PC/OXyDvriBihWtL5TTzrOe+WirvCO5Y5egttEOfKr3iDGLeqdjCRsMU2g6oqVZr5nNuZdoCcauKXGV0X2uw49pmpe6EjdKuHC5VEFd3kd6ObKjJ/5d+6Zf463/9r/OX//JfZmJigsnJSWZnZ5mZmeHee+/l7/29v3e5znNN5ubmUEoxNTXV8/PJyUmOHz9+UceUG8j9uty0z2UrnZPj2sC9thyrEXkeZc/f0OsjxAq9XGs8KQg82bl9yfPxpCTwJKGUNLVtQ0UsXW9Ppcob9Xm4cQ7x2hQcHbcHDjS6OCchBEYKnnnfXrxbb+S+b77I1ImzmN/7PA/eeR0v33E9YtnMXGo0Vd9Hexrv/rOYNyZgMbKh975GvLQLcXoE9jRhpowRBrGzyYrlvF0tOHIWntmDODUM1y9SDQKqQXG/oghM73ruEqXJjGbYDxBF1EdTZXY3WljjmvksIfL8dVVthQBh2nOiHpqUDE1Z9n69K+xMY8n30RhirTDCdNp/lTGkxmYq5svOOW27zm7CZ8RinjKTxgRSIqWtNEspMVrR1HkhivLOfT174RyHqiPsrwyTGY1uO59e5c8rZQw51hRJaysC2+fUFkTtCqLY4HOnhSGUdlY30Wrp9bTdEPaxIHvnkLcCush3Rdjfm/sevPbJteYb06d4dMdehoPw0g5mh8jt67v4EG7PlHe/hrbz62pDAnF8fJzf//3f5xvf+Abf//73mZ6eZseOHdx999184AMfuFzneEksD2FeL74vmZwcugxndGmMj19++3HHexP32nIMYnyxwkgYbujzUBtDZTok15pKOWTH1HBngThlGlRrIZNjQ4yZGJ3EVEsRkUiZGKkyOTnEdSUoL05TeV9G6w1DWxWEQ5Kg5LN/fJTGgiKIfEIC9l53kKH7DqO+/Rz5H3+D+146yvUnL/Dqx+5jYfdE57xKxgqvMAwo+T7c3wBsK6sxEL+Zw2yZsDZCmvrIiZTS+BoLiSFD6/UMaiElr4wsL+0gV0gpDfU+d/NJTBD5jFXKeFJSMilBFBARMDxaphJFcE4yHkb2HNdgX2SrpdXQjngs1DIqIxENpQg8yZ7KENoYSucDSp5PNQjwlY9KYobGylQKEd3MM8JzPkFqqIxETA4vnbM/5+NLsSnfibo+Ta5hOAqpEFItR/jKJ09AR4Ig8qG09P2bzBpKwxFjoxXCmYDqUAm4+p9XscoJzwUMhyGxyok8v3POudaUzoeUfI8sMYyNV5gsrd81d1jEVGoBGIiGw57fxXbigpdSikPGxquE3tay/s+1pnw+pFyNel7XV/t15bh8xHlOuBgwPFbe0PtxEM26IboQUBmKqAYh5br9nqiMlJic6H+/bsfX1boEYhzHPPHEE5w6dYodO3bw8MMP89hjj13uc9sQ4+PjeJ7HhQsXen4+OzvbV1VcD3muWVzcOrMOUgrGx6vMzTXQ15BLkuPq415bjtVImyl5LpiZ2ZjZRJ7kqEBg4py52aXw9WYtQaWKRi0maWY04oRSLmm2UlpRwsxMnVaakMQZdVrIsRhRmMmkOqHZShEVjUoUs3GTVOXQVMzmDbj9FsSe3TT+1xfYcXaWh//gCd6+9TpePvI+8jCg1crwA5hP1OAd5D01xDvjJM+O2bbBsQaN+jqMQkZbiFpA66SEPUvfG2mcMT1XZ8Zfeu7OxU3qzYS4cBGN45SF3NBIU6Zn69S8FguNmKryaIhl7YWxB4kHo2nnRwL7Rd5Ik+J4GWdnary2OEszz/n03kPWCKeZ2ugQT6OMph4nnL2wyGhQCMssodZIyIzm/Gyd4XRpQT9baxAIb8OvgUGcmV9kIUvJ45wky2iohExrGmnK2awGmeHk7CIzpTqJUkwvNpn1G5zLPBbqLeZLTRifuOqfV408o9FMiHLbmpuIvPP8ZFrTbKXg+TTTjJnZeq/B0RrMLTSJW9Y59szMItV0Q9NAW4bZWoNaPWZ6pkZpi7nSplrRaCYs0GJmpu6+B98DNPOMxXrMhQ2+Hwcx22zQamXMLTTJg5xWbN+vM3N1Zkypc72t+LoaGSkTBGtv2Kz5jj1x4gQ//dM/zalTSwPtQ0ND/Nt/+2+3VNUwDEPuuOMOnnzyST760Y8CoLXmqaee4qd+6qcu6phb5ZfZjdZmS56XY/vjXluOQYTCIxDehl8bXuEqGgjZc1uJsPmKRhRmMnaGQ2mDh71uICSeEGRaEU42OwLRBAqjDQGSsvR5t1njUHWEES9cuo/REb73w48Sff91PvjCUW567Ti7jp3m+Yfu4MzuUXwhiVU+eC7qwAKcGbKziGDNbNYzozTeQpwcgdkSZveSiPIQ1LOs5/E3s8waphbHNQZSpdCFiyfGdO6y5xzrAeKZvYjMQ99/CsYHC1djDM08YzpuMZPEvF1b4EBlyOYOysI8pTDPSXKF9ux9JLmdP5TYnfb2OWtjSJTGyEv/TlRGU8syEqVIpO6cr8DmIiZKUfY8FtMUrQ3NzLq7pkqT5YpcazJlb3e1P6/S4nxE4VWad51PrrQ1HJJLr+2NnGuudcc8xb42tufnslLWjChX2rbibSFyZZ9jpXXP83u1X1eOy0emNJkuXo+X+lmmNRpNrjWp0lC4FscrvF+34+tqzW2pf/2v/zVSSn7v936PF198kT/+4z/mtttu45/8k39yJc5vQ/zMz/wM//W//lc+97nP8fbbb/NP/+k/JY5jfvzHf/xqn5rD4XBsS3aWKowHG3eo9otcKH/Z14wvJL7w8IUViu2FsBBLc0qR9DqGK0x1GcQEupPJ2K4A3jo83jffVPYDXr5+N3/64x/kzUO7GI4zHvv6C/zIt15hf87Kzoqhxtx7FuMrm3s4ss6YgfEid3Gu1PPjUHp9UQWxUkV8+hKZ1vjSQ63k+phJxHN7EJnd9RWvTbFSdoIBZpOYlsoZ8n1emp8mNzarq/tpEvQ+D4lWnVzCWKnC7MaKRo01vrlUx0d7XHtMGy5tfy6xLra5MZQ9n1jbqIuWzkm0ItE2AiQ3W8d1MjPWeqY787Mt6NsupFLYHJONnrM2pnDNXyWuZRugsVEAW/Ex6CKOZiuem+PyoNobApvwO9fFRp4yBk17o4iOE/W1wJoVxOeff55f+qVf4siRIwDceOON/PN//s/59Kc/zfnz59m5c+dlP8n18ulPf5rZ2Vn+3b/7d0xPT3PbbbfxW7/1W0xMTKx9Y4fD4XD0cfPw2EXdLpCSPDf4Xq9484UkkBJPSkLp9XxZt+MwpBCUPY9UK6h2Bb8HtsLmC8mIHzARlthf6Z/3KHm+zfsrR3z54dt454a9vP87P+D6kxc4+D++hnfndVy46ybMIKfQaoZ55KRdoK+whXo6blD1/E57JpHCVFNEI8QkXqd9KZSSurIVs6iYwVoe4WAN8Axe4fq65O3ZxXQFkfiYHQ0rFufLmNPDsL/Wd1WJYCaNyY1mR1hmMU9pqdwKsq5jG6xLZhsrFu1z21IZry/O0lKKO0YnUBqQBmU0Ulz8LFmryHr0EEXlcMnExRj7+If9gLk0IS6cUzOtSZS2lajiz1ag+zwEbdt78LBV0c7LWvTHa65FZlQRSbI1xdV6aefEbcXH0B1y7nhv0N6sUBt+R/bT3gRSRqO1/Qxo57leK6wpEKenpzlw4EDPzw4ePIgxhgsXLmwpgQjwkz/5k/zkT/7k1T4Nh8PheE8TSo/caHyxrIIoRad66EvZEwHQXQkc8kPOxQ3rFHffGaiFUFKYlhWf42GJ20fGB842BV3CTxnDhf07+e1PRvzEOzNc99JbfPj5t5k/dp7nHrqdmV0DNhBXmU9pqRwPQS3PlgQiwFgMjRAWok4sRiA90jShqbKOQKxlac9z0n7IxgjbWlhEX3TTabHdWwPPIJ4rI2bLmAEC0S8WKQL7XOfG0MrzTnRC55iYvgoiWJHezHMWs5RASuscikFoG/5+KX6asVIYrHGcxgrFpefBPv6wyMmMVU5L2fzFTiVzC+XqdZ9H+/FoY/AKYdcW5KIQwxtBFREgsmiz3q50wsQ3YUG+2RhjClG/NV5PjsuPMjZHdzMqiLbIb4rOBtvZMijuZjuztaaGHQ6Hw3FNEBQxF77sbzENpLR/C9kz4tctGKp+sJRRNtmyf9rHlpI95dEV7zuUshMer4xhKirRVBnTH7gOdcf7KD3+TfZdWOSjX/gux27cy0tHbqFZjjoVzNWYTRP2lqucbjV6XLLNSII4BWIhwhQC0SuEQ1Pl1Js15tKYep4SLntO7MM0xUwbvSUnA8yWrWgcj0EV59ga/PXtSztjKRF4QqK0pqVyltcmjenN7Mq0Xcb7QlLLUxoqZ8QPybQushbt75NLMKOMVY4AAiFIlI0c6X6gBtH5HTRVbuc3jSFVqhNqvpUqiO2Xp4BOJhrYSBGDFf+GjQuk3OgiI3N756qpYnNhq7QFd9NuCVbb9+l1bBBdzANvRkVbY7sEdPG+72zobOP363LWJRB/7ud+Dm+ARfFP//RP9/38qaee2pwzczgcDse2JZASXbSDdtOeQfQKI5puuitcw37QJwZUYbCy/JjLCYXXCY83GEaCiNuHA6aiMuwu898/epiHTy9y97Ovc+jt0+x59xzfvv0gs3e/b3DbaUG7Mnf32BTzaUJT5VTbWYujxRziQu8cIkbQynNOtxq8XptjOAh6zl8Xs3gSYef80L3PSzOw7aUjMQQafDBSQ9PGICzvSPWFpJ5nlIvKqhC26kmRldhGCHoC6Zt5hlcItEQrmnmGX1T1TPHcX6o4aypr0BNKj1qeMdy1BFlqOLUP6VzcpFVUXhNtsyO3lEDUpvMaa4u5duXXGDottIL1+Rz1HRv7PKTbWMHkuhBhW1Eg4iqI7zVsi+nmzCC2x4Tz4pj2/SpQ11DP8poC8W/8jb9xJc7D4XA4HNcQgbSbh/6ygOCy5zMZlYg8O4fYrYW6BaJtyey9rSoC24NVRJy9b9lz20BKbhmdBKCeZ/jS450b9nDm4E7ueOEtbnr1GB998Sjzx6d5/qHbubDbXvd8bCuBO0sVwAqcsTBib3mIPeUqxxuLSwJxKLMxEotRj3ATwobDn4kbSAHTSYuD5eHOuY35IV5RtUt03mlT7DBbCM6JQoAKoJIh6hEmkxD2LnDbAnE8XGp/baq8Lw+4PWvYfR2vaPtNVE6q7bxfs6hGmsIk5lKoZRlBUUGOdY4QS2JadD1pI0HA8WaNUEoi6ZEa1Zkd2iotprnprQu2qwnQFh/tiq24qApiu2UtN9u3xVSh0WZrtt2pog14K1Y3HZeH9gzi5pnUFDO22M03KdgyG1ibgROIDofD4dh02iJuuZiLPI9HpvYAbVOapbpRtzCKpLe8OGbFk1xbIIbFbW3lQvS0dJY9j1B6ZFoRhAEvvv82vnNgko89/xb7zi/wkT99mnev38NL999CKnu/7BOl2F2ygcd7y1Xeqs0vXSiAkQQxV8Y0Ahiy4isQgtOtOo08Y3epgjKGUC513rTdWJsqI9XWLdQT0orMd0cQx8YAMBNdubyVHOoRtAIIe11SS57HWBBS6rqPlspZbpXiCVH8nM79+1IWM4gZVc8n14ZGnmGK6uOlOvTVcjvXGEmPXC+rlHbN6lW8gNNxg4oXUPJ8UlU4nxrbhrsVyLSGoo1ZInrEhjbtFlNrX7PaejRWed8crY0bEQgB6TauSNjq89Y0grFRM87F9L2EQm+ySU27IrlUQbzUTbStxPZMX3U4HA7HliaQEiEE/iqul6u1mNoKYu+XrW0xlWu2mJY8z7qoFgvUoOscPCEpe17PrMjsWIXHP/EAX3nkdlqViINHz/BD/+sbPPL9Y4TZUgUnNYaJ0Fa9xgZFf7RjMRaWLgulZ7OxMHhC9ojD5Y891ZpE53hGIF7egXxjCpH6mD01GO8SiOWi8tfst4yRQrCzVOmpGCYDjE48IWnligtJiy+fe5e5NCnafyXNPGc0CMmNpqGyTpX3Uudr2hVEX0puGR7veS66TXRksXGQaEUkPRSGRNkq4laZ8UmUwuuqEhvoLDy16W2YXamCmGnF18+fpJlnPT9XxiBEseDcIoL4YmhXa7ZilU53KohX+0wcgzgfNzds7rQWm9tiansEVDHXKBDX3AyiE4gOh8Ph2HQ8IdZsB/WKBLyl/y+JmpL0O/lybWz1TfblHi4nlB6BkJ0v6+XnUPL8nsqBMVANAl4+MMUXfvwxfnD4RgAe/MEJfvpPnuHQmydAGwSmU/GLpIcUvTl1ZtQKRHF2qJNTGEpp2zcHxVd0IYvYiVgpqid2IM4OY0oZ+qGTmDune76tTcUKCjFAIC7HL4xqlrfrekIQ65zTrTpv1eYRwJAfIIXgfcNjVPwAgaCRZ7R/R5dSbUm1IjGqY1q0/He4MyozFS21nA55PrUsJZIexhhilV/xCuJqC8lGUXEFunIQi9sV1YU2y11p22RaF3mTy2ZtOwtOG3mxXVFFG67agnN+Vri6GcStSKYVz8ydZzFLN/W4nZiLTTGpASnoVCTthg7X1AyiE4gOh8Ph2HSsCU2/EU3vdVavIPpS9sx0KGMoybW91aQQVP2QrAh/X+4aGhWh9EDHaXV3qWLnpQKfV+57H1/48cd47eAOqnHKA99+mY//0bfZf26BoWLmMJD28fXMV002MZUUMVuxYfZYsTqfJkuziqucc6xzcqPxFotYi8PnYXjAIqkQiExXEN/dC+crKx7XF3LgXIxfVCxPNusM+yETYWlZBc+Sat3jsnqxJEqRa02wQvU3Klp/24wGIYeqw3iFCG/kefF6uDILMG0MXzl3gtoKi9S2iQ+0pfeSW+lyYbnSKWcrZDvm6I5xUb6NF5z5Vs5BLCqIbUMhx9YhLzaCNrsapzexgqiNQbLkjCoQtg2/aIW/FnAC0eFwOBybjldkHcpVKmeeXJpBNPTm9EXSwxeyx5REGd3JE1yLoSAgVspWMUW/QGwvEjJjBaI1ojGdL/fWUJkvPHQr/+MT9zG9Y5Tx2Rp/7usvsfcPv4aYmbcCUfZWEPEN5r6zmDBHnBqB2IrcXaVyR1jS8hBvj0Pae05SiI4Fu0wLEVzpbT3s0K4g1iLEYgnx8k5orhR7MXgupi1uZ7OYir+y6F4yzRGXZMCQFFmG64kSATu/F3ZVaZsqs9XQK9TC1W6vbeSDfwdNlXdanUXhYtp+TSVadeYTYXmj9BKqyHVcLqC6W9byi1hwamM43li86q2dbSOfq30eg2iLeetk6thKtB2TN3tjwWZybk5VXhUt8dbJ1M4gysJqayvmfl4MTiA6HA6HY9PxC0fM1SuI0s5yFDNb3deVQlDx/WUC0VBap0Ac8QNirTrOnN1E3lIFMdOakvSYDEuUfI+4mNfTxmYczuwY44//zP189dE7qFdLRG8dp/pb/42hL32b4Vbav4gp5zBWOI7GVniNBpEVv/UA+a3rEO+Mw+nhnpu1MxOVMTbWQmrwV1i6RspeDhhfIZREvLJj4FW9dn7hskVLWzjGueoxtOnF7rjbhdCSi2lL5Xz3wpkNLeASpayRwzoFYpv2fWdGL8VuLLvf0636pi8mM61JlRo4v5lrTaJV3+uqLYSaebcpkFlR4OVad4K2e35uigpi12tiIxxvLvK92XPUVxC3Vwqt2dIVRG1MkWe39c7vvYwy2r43NrmdPCs+OzajDVQXRlIaU7gO21lkzeYL26uFE4gOh8Ph2HSkkPhSrDov6Anr1NjejV1+3SEv6GsxrXjriu+l4gdkhSPocmOYngqi1gz7ISXPZ8SPiAtnT1VUzgIpyYzh1QNTfOPPfZTkww9C4BM+9wp/8fPf4Z4X3sJPly3Eo0JUJF3nqkE8v7vzX1EPe24iizk2pQwi8+wxVnrqBDCSYqTGPHAaE+WI+TKo/hv47SrUsp+37w+xsmjzhexUYdszkgCNPONk3GAxSwbebhCDhNZ6EYXDqSckmt5ZyFxrnp2d5kLSWvkAF0FWiMBB551qRa5740hElxlNLU+7LlvZpCY3dgaxe8Hats4XiKXXhDG8MDfN2bix5nk385xnZu381tWu3OW0XUy33oK5nYPY3Rrs2BrYvNPNN6RqC87NiMrpVBCL92f7/WrM1qyYXwxOIDocDodj07EmNatXEINiTrHdouMtawUdCcKeL3MNROsUiG0TmUGmNn5X/mJmNMOBbf/cVSp3wuPbmYtDvhWpqTGMVaqkD99H/f/7l0jffzdSa+59+Rif/p9PcPMrR5G5va2JiviIpEuYnh5GxAGmUsy0tXofR7uV0mu3l0arCypz91nMIydtnEZ18DGhPYNo+vocRRFzEa1YPbS3TU0hEAUdgZhqxWKWMptuTCBeyrJJGft7Wx68nhlNU2WbXi3LjRWIyw1kYKlddrmbbnthuJCmnU0JY1aOuWi30nVvgrSFiyhiLto5gheSVlGZ7OVb06eY7/o9HG8uMpfGF1V53GzswnlrRkkYYxfA19KC/lpBFTOIa71uNtpu3m4t3Yw29e4WU6DojrDv12vl9eQEosPhcDg2Hb8IRF9VIBaXt3Pfls8rVv2gb5Gw3HBmJUqenWFcnjEH9Mwk5sZWEAEmwnKnmqCKitV4EBWZd4axdvh8pUTysUf42p//KK9ev5swzbjne6/xqc99g+vePAmFQBRtgahBHB0DwNwxjRGmL6LCE7Za5KdFZTHqFwO9T4S27ayw9Her3wjHK9oyB1Vyd5fKTIQD4joKfClIlK3CSgRpIZ4zrWnmGedaa1e02jRVtuo86mrYRbxtMdVF22ubXGtaKl+342Gscl5dnF3zepnW5NpQz/uP264qLn9O24XAdt4jtNvOVq4gLl8It9sehVjKV7QzmHnfwlMbw2ya0FBL4ng2ia04NVd/Fkpp05mj3Gq0W8gNK8+IvheZT5NOF8XVQrc3Tlap9C1kCV89d3JD7cHtz8HNeD2q4jurvcEgii4LswU2ZjYLJxAdDofDsel4UuCtEUnRdgLNtJ3hkMuuWvb8nvZHgVkxR3A5Jc8nkILygJnF7tkxUdwPwHAQFAHaphOpMRSENFVO6Nk5xW7M6DBffvB9PP6ZD3DqwE6qjZj3f/v7/Jmnvsie1jsQF/d9oWKrh5NNGEugnCFSH7LemUsD664g9pxHOxdxQAVRFKJq+XMLMOSHfVXbbnwhSbXqtP+2q2lZYSBxOm6se7e8kS25fm4UIayVvC+krah1tWTac9HrbjGdTWPeqi2seb3caDS6L6MQ7DxlP7aVMlGKlso7GxmruWTm2nTOv40qZnJlYVLTXizHKu8L+E61ItWqp8o+k8a2Kiw2p1JyKbSr8Fsxy1Fhq5tX28VUG8Mzs+cGVoevBi8tTHN6Axs/l4NBlfXlpFoTK7UhV+Os/XrcJBdTr5iPthV/Ou9XJxAdDofD4VgB62IqVxUgXhHMnhc7sMuvW/K8ZRlyq+cq9txWevjCGxiL4QvZZSFCp8o44keE0iMtqjol6VMqDG0mwxKVZVEVZemTa8Pi+DBPfuwIX/30Q0zvGme0VuOR2S/w0R98gd0nziPmbVXQ7CoWXpWVgu6XWkzNWhXEnhMpKpYDBCLQMQHaKL6QRSC8NRBqt5hm2rrJLmYpC+ucQ6x35QZeDMbYiqYxvRXEtgvobBqvS6ymWpMataZ4ah+3PmDhng4w/QFbsWupnExrgvZGhljZJbNdJelesLbz+USXSU17Ibz88bUzFNsL6UwrFvOUkuf1ZYheaZSx79x2C/lWoy0KDeaqupheSFq8VZ9nPouv4lksUcuyqy5w2lmFg9q727QjKzby2sq0WTH2Z8PnCMtaTO0nrLmGZlqdQHQ4HA7HpuOtw6QGrAjMtG3XWd6OWvb8noWuMWbVmbluIs8nkJLSgAgHvyintReJbWfUiu8z5AfEOkcZTcnziKTN59tfHuo7Tuh5PUYyMzvH+fqnHuSbH76fuWAHE60LfPArz/LRF77Ervg4VAsxVV1JIAq8tPjZsgpiolTPrFkPq7SYAkyEJUaDcOBlqxFKyWgQduY5262VmVJ42JnJC8n6FrbNPF8xA3EtDO1qlOybrcuLnMaWygdW+5aTFFW3tfIFsyIvraXyvgrTYMMd0bm+psvAZpUKVTtku2fO1tiaRLsdV2Af26CZrFTrngpiPc9IlOpU2a/mQr/dKmsriFtvway7Nk2uZgXxVKvBTBLTvMptnWCfk0aeXXVB384qTPXKz4kpjGw2Up3Otd6016Mu5uZNV0v48rib7Y4TiA6Hw+HYdPxOBXFtgdi2CV8uJiNpRV5etOF5Uq67gugJQdUPBkY4+EIiCoHjC9kjOndG1qimHalR8nxGg5CpqNx3nEDK/sqcEJw9tIOv7P4s397xKebHh5loXuADM3/ER779BDtPX8CUi7m2ZQJRG9MlEHsXR7U8ZSZdQYyt0mIK1uxn0CzmWggh2FOu2hZTREeINHWOJwQVz+cHi7PrqsbFA2Ih1ovEtoX5QmKMFT4vzV+gkWdF25hEGUNtPQIxz4vq4Nrn7AlJZlSfm2IzHzxP2a4gLr9kpeVioq34zLoEp2q3rHUdJFZ5R7D2nKNRfQIR6LznruZCVXe1yl5twTEIjX2Or2ZunTKat+vz1mgpu7qRJFC0LBs1cGPhWGPxis0mqkJ0JWqVCiIXUUEsDLc2xaRG2xl1QzumybJVTZkuBicQHQ6Hw7HptPMH16wgSltBHFRdKnkegZCdlk+vCE9fL+NBOFBQBsIu71Ot8KUg6ppTnIrKZNouxkueT9XzGQsiJqPSwOOsuBQoKc6GN/KlTz7GUxOfYj6cYGp6ng89/j0+8vxX2BGfQDQK0dYIILUh8P4KFURduOYNJNAYT0McXDbHjfbsjirm7DwhGAsjzidNTjVXn1lKtCLX/a6fG7pvrTtzlJlWHK0vMJ8mnflVg1mXk2ld5cWM0+pPVKoVoZTk2vTNHDZU3id27ewqNFWO6ZKIYpVZwLRYAKddArGdzye6lpyxVgMXw5m2MRnt87OPf+lxXdUKIu0W0y0qEI3pVICu1tM0HbeYzxLGgoj5DUTGXC5Srcm0GRgD8crCDLMrbVBtMrr4naSrRONosxQTs17axmOb8b5QRdWwbXLU/mxudztcC2x8S9HhcDgcjjXwheR9o+MM69VbG8tF1uGgSqMsqoCNomLjC7luF1OAO0anVjSp8YqWyUB4PeJ0OAitwQdWIFb8gI/vPjhYaErJioosUtAEZiucLu/k1IFd7Bl7kVuef4Op2Vke4w+Zru/mtfP3cF7vx0y2mLo7IcgGVxA1S06nfUJRYI1v6hEmlxBs/gLFzsPZyltLqc5zGArJDxZn2V8Z6jmvvKgaDvkBiWrHQlycSY0Ugswo2vXaRpbRUjmJVmRa2UqVEOvKZWzmWWd+aTXiwmhGGUOiFcNdlzXyQYY7VtgtZmnPZavNArYNgNKeFlMrdpeeS2MNaga006VaozDERSveXBr3vI+u5ixUu4K4VQVibnQxQ9a2Gbny1PIMgd0km1+nC+/lJC3iW7JlwqydCXqlWoVVsUmSmpUFosF0TJ7WS1a0mG5KDqK2GwyicDLtZgt2VF8UroLocDgcjk1HCMFdkzvWbAkteV4ROj74eiNB2GkxDeXqpjfLmYz6jWXAilc7U6epeEGPU+qIH1ojg66q5kqPYXk1M1Fd7VmlwjhmpmhNHc5488AUv/WJu/n6o3eyGIyxIznLB0/+KR+d/gP2nj3FkOcjEt9WA/3+SINAeisvtjtziBe57xt7cGx0yXl1Gb6QZNoapiRFiynAZFjiRKvG8eZiz/VPtuo8PXMWsK2UNtfvIgVi0Q7cvn0jz4rzUCRFBdETYl1zXM1iRnCtKkJStJjaf/cuVFt53lcNFVhBVsvSng2H1VrO7AaF7BGIyuhlew6i0/K8/HefaoUq3BwBZpKEqGPKdHXdFHW3Sc0WXDErbYpYgqtXaU21whib1VrPs6teeUq0QmnTV7lLtepkf14JlNFFi+nKAlG1TWrWIfbaxlbtivZm/M41tsrf3mBoV/yvtjnUZuIqiA6Hw+G4agRFG6o/KIcBGz2RFe2Jw95gE5aN4hdCs5mnVJeZ2FT9gIrn92TZrXjuRT5gu/31bNxACMGuqEKp3SI6UwHADKXESjEaRbxxXYnpA9ex7+1pbnvzdcbnp3lk+nEW//cQr8uMdycP9dU0dDET2d5d18b0tjl2G9UMpbBQgtG4fxtYCcQrOzA7GrCnaA09V0G8shOhJKYeYu6cHvic2ephTly0mLZ/XvV8npudZk+p2pl1jFXecRaNV1norYee34OwFcREqx6x6gmx6oIS7EKxmWdo3Su2FtKEqh/0PJ+JWhLB7QXzm7U5pv//7P1Jl2VZft2J/c45t3mtPeu9jz4jMiM7ZBKAABAkgSIWq0iKUqkkqAZcNdGMM34Ccs4BJ+RMiwNxppK0qCVWlUSCDUC0hUxkh+yi8/Deza03e+1tzjkanHPvu68zM/fwjMhI3J0rMtzNnt13u2dx9t37v3cyJrGa9txMZ7HoHOpsZn8v6kHMjCGQcjakBjsTfGT9+zsFcS6kRuuyWkNbQz9PaVTe+yoLVW0tEl6YvK+C8YqqlC8283VveE4kJTeXhEO9DGjcgwXm+finiInRSOEeNJ3nGaM8dw6GzwilgrgQhqRJtXkute6TQPvZ1eyCBwuWogrj4qtnreU/PnvI1zd2MPh5ZX9vXjYff/E+mnJO2FlMK9/7THNxXx5qBbFGjRo1anxmCKVCSbFyPq2lwnKuoxlcff7wIrgKDlfb0JlTGKUQbMdNlLi8UqPocSyeZMcq4J3uBgfJuKypEJnf507KxGjWgojEGGgYHn95i//wv/91/vDG3+UwusHa2YBfOfmP/Df3/++88dP7yLxCeIQg9MrmYTLmse8qG+U5gzyddiGOQnjQQ377JuJPb8NZPLvTx03Esw7iw81yZSzubiC0LL+/asUscHNuuTUzSu5GGHOcTmb608ZaM8xzly6q808059UNQl5vrZV/H+Y5mdEM89STVTlTw7EKqXGLXIMtuxSHecbvHzxibzKaeW1idNlzVhDPjwZnfOfkgPM0XZyZtd5Wq/WCxVSvWOimXkHM7OwMYjX4qAjSXzaDODY5oVQlWc4qQUD2ikrGt472eDQeXPq658VUQXyx1Mj9yYjjVam9LwBrLQ+G/TKxNDfGq9qfXYrpOM/KWe3cms88yTTRblY4m3vQkvjwmk+rzzKzhkAK7xxZfm2MD6u6bJ9SYzjLU87SBGNdeNp8Vc7z4I8OHrsHX1SqLWzRhEgZovWLgJog1qhRo0aNzwyhkChWE8SmCrDeLtd8gSTOVYiUIrNmqQV1J24uzCYuQ0Fuizm1SCpeb/fck+XGdLFnG7nvPrREvjuxhBA8693iD3b+O/7zb/xN9uJXaGcD/tqf/Zi/9//6A97+4V2CLAes75SzZNai/CPr4zThJEudagiIfoQ4cYE6YhQhfrQzs8/i2FlexSSE89iRwVGIDTS2myCS4AKbqpvz03NP34VwdSZnlTmqYZ6SWs1I5xwnE8IVCvFVIPwiusA4z8mtZZhP1Uwl5Ir6iSmcTc7N9xVk68dnxzwZDxfIZbFdVzOhGeucg2TM7WabV1qdhZAaIWCkMxfGM/e9VQpiatxCuAia+c/7j5Yeg8ERrgWCqDWxlKTG7V9uK2FP9moW036e/UyISXWW8kWsiUUAz8vCIM/4wdkhQ3+sRUgNiM9sVrOqxGPd/fNZorDIzyuFqXZziRf1Er5MFIFWxczzMlj/ebhM1ZyYnLHOGPjZYyXczOCLuJ6ttRynCcM8K2cQwSuIxYvEL07NRW0xrVGjRo0anxkKFW4VQdyIYgIhmeic5kuymALlPOOyXsW1MKIVBJfWMoRSEvjY9MwY1oKYWCm33NweYd46ckRxZ4QVLplvM4p5NOrPbihwi5zD1nX+ePur9Hof88XhX3Dr/jO+/u33+NL3P+IHb17n/rtvsB9Pg3Gs9f1bUBJEBhFop3wRacQwwuYC9tuuf/F4msYq9tvYOEcYie1MYGMC/dipiK25fcS9z0m6SBABYik5SKYq3DDPSbVmmGccpeOya/JloHhgMNROgZGImZ7GVUh9Gqi7ZpaTdMKPzo+wzC6KtVcuQqFoyIDH4z5bUYPEaHbUYt0JuDnJUe7qKIK5GcRlC8aiDDwoKzpSjtMJG2G8+FofrjFP+MY6I5IKjWGYZ74ew12XqxKzsc4vJWL7kxHbcfPSROLZ43Pezemc36zqfBnyK86XXRWlJVk710DxoABrPrMU07FXvx3c/fNZYqhzQrmoxDv18OJewpeJYqRAG0cWlyVXFzbR5JJ9SrRmnGvO87SciTUvWGafW1PacA3Tz7llOh+96vP+eUStINaoUaNGjc8MoZTOYrpCYVoLInphzNjol0oyGlIRCLGSILaD8Eqdiw0VoK0lNaYkswBWWHj9zM35Be77sVJca7RmZsyAkiAKX3R/ur7Bn/72N/l3/+3f4OO3bhFozS//9BH/h3/zh/z2n/6YrZMBoVAVUiMgMs7WOgydOtjKoOctevtt5I92Ed+57pJOQ78AfNaedjG2MuzG2G3tZLHSAxypPs9SN1s2dxANFZTkEWCoMzJjOE0TBnm29Dy7g41hrw3p1ZcjmTE0pGKidUVBFJdazhKtnSXMz40WwSCRr1qpbl/7ZN31KObpeMR7/ZMlzYdTCOFmymYTSB1h09ZymiYzC0ddWWQaDIM8Y5hn9PN0hrBIBKk1hFIuWFXH2qnW2jiFbNaaypUIVmo0owvqQbQ1fPvkGSfPafe0fieKGcznXTQ7deiTza5WkRrNxOQloaiS589KQUxMXtqRAyk4fYmW2hfBKM8IpVp4EJH6FOKLeglfJgqLqWF1HY21FmO5dO44MZrMam8xtZWQmuc/ltSY8h9bjgrP/lb4LEOPXjZqglijRo0aNT4zhNJZTEOxnEAIIXil1bnSTODzIJKKUMqZDsQCa2HEG+0e7Ssolk0VeDucZT2KCaQon1JXMdY5nSBkK2r4RNDKAqWopfDWTuv/3l/v8O3f/Br/8//pt/jzL90hCwO+eG+f/+Hff5f/9ve/z/ajA2bYRCedkoRuxXb6oOf+nftj3Rli1yaIcYjYb7uvtXLYmDhie9xkWc5C6O2MsBhq0pCKsc6d/cq6WbxQSp5NhqQrVAAyifiLG8i/vIb4L6/CUx9IYoEnncX5Sf+t3BgaKihnlJQPC6raMLU1/PDsaGYh6BRGRxGdGuAmiSRipgQ8r/Ruuu5NybNkSOsCi7OLu5/OIk2/7sjbf3j2gL3JdEYzNwZtXMiPMW4W0v2TUz210ndABktmFROtfRWHWehAvIqCaK3rvLvIYppoF1DyvAvqghBKipmv5ySIK/r4XhSpMUx8NYrbv6K77rNJndT+/isUxFgqjj6lnsFVGPlql8yYmbnMscm9WvfyCPtFKC2mS+ZuC7j+QevmuS+Am6t0+26xZVXQi1zzzBgf2KOdWr/skVHlXtfWcn94vviazwlqglijRo0aNT4zhEI5i+kFM2o7cYtuEBGtIJEvglgGBCsspkpIvra+fanFFOBWo81Ya4SwTnWsJJtWkRjNTtykGQREUs3auLyCWKp5gSYzplzETFoN/uRrr/Hv//u/ze/90uuctRvc3jvhv/5P3+V/+Hff4Usf7yG1hu5UgbDdFNst5hId0Sr63uzmBLacWliQMtvKXLXGxhiRBi7EZg5T1XJxcRX4zsB+lpJoZw9sqYChzhdUtRJ7bWdvbfv9/NGOUzXv95zi+YNrC0RVWK8gKuWJnFmqIA7yjA/6JzPKV3WBq60t+96UEIwrJCnzxLPY562oQT/L6ASrEybF0rPiFpEnPsCnX1HqcutsbqF/mOCqO/IFIiaAzDqyXb2nCrtsKCUWOM+S51YQtbVo7IWzb4nRpEY/94K6mPETwpGxF1IQXypBdPbSQnHS1hSxIp+JxTQ1Zqb/taEU53m60EF4ESY6595LIiDW2opleZbQj/KcUF4+4/uykJUdlavv4WL/LlMQJ36fU2P8/ShKi/rzIjXu9/LEaFdzIQDmQqXEVJ0+Ssb84PSQ9BOmOH9WqAlijRo1atT4zBBKWapuq7AVN+iFEdFLVBBjtVpBfB5cb7bL4IOWcnOLSi4uiDNj2YgaKCHpBtFM4IMN/AKiCIcJDQ9HfU5nit8FUaPBt9+6wf/4D36dP//tb/Jks8PW2ZD/+s/f5+/9P/+AL+19l4b2KlU3gc6sZc1+ZR97feAUxE1vJy1UxZYjCfbdQ2ygEffXEd+9Dvut8ucLdWHRI+u372fpEuNm8dpB6IjwqlTUp13/ngfYdw8QViB/cA35wZb7/iSAw9bsz/g6i1iqss9Q+ZCcasBGZgxnWTqjyri6DWePTX3ohrVLCKK/NrK0/0leb69dqGALUYSdzB5sKwiwuCTW08q+aGvKqhLjz5ulWNDOKoGZmc4qVvexmGEEp1BX01OdgnjxIji3xhOD1QtYl2Bp0M9pwywUdMmLLcivEkDyPEh92fu4JIjThf1nYTEtr59/MBZLRaK1V4KvhqNkwvdODi4lSVfaH3++IynLAJgCozxffKj1M0RurE8IXa2CW+uI/WUziMM8paGUJ96frKsw86R+nLvQsGlITeXzWkktPsvSzzyZ9pOgJog1atSoUeMzQyilD6pZrSC2g5Avrm2yHi1aDj/J+0ZSLbc+Pgc2owYbUYNQKtelJyQSuXRB3PKdixtRNLvY8pbSkqyFZqG2wVpLSwUoIWhFEaN3XuP/+rfe5X/+O7/Mh7e2aIwTvvzRT/i7e/+aXzn+92wmz6CZYaXbtu2kcGOI/eq+Uwp7ibOTljvnF6bNHPu1fawyiMMW4vvXYOiUzUBK/0R/+eIqkILjNCntXLFUDL36sIBhiDhrYFupm5W8OcB8fQ/bcftlbzllRDzszfyYFG4mKhCyLKEvCKJb2Lp9S30oydNK9cYwT931EcX3c5TAhyBNz/WVUzf3W26GkqliF8zdx00VcL3RoqEUB8mUIBY2vmImapBntFSwoDY4gjhVEE15fLMKVGbtbP/iBYvrAsX2ivTKZXAJlua5F9TF9sQLWvpy+3ItpuPc2SSHeer3r+ixEzML/E8LhSpbzPK6hxGWfnZ1gpgYzWmWcJSOP/n+eCtmJNXC9RppN0P8qRFEq32v4GL35/Q1jlynl8xFDvLMjQHMfRZe5KFAat3npKjtESXhnEIKUVrBD5Pxpfv384w6xbRGjRo1anymaMrg0tLiL60tWh4/CUIhaQfhJypLBrcgeKO9xgeDU5oqQPqZtYUFt7C0/EzjWhDNLn6D2UWEDXKUlCXZKdJKm8rZYnthRFuFCCE5vb7Ov91o8nYueesnD3j9p094ZfwBr/zeBxxv9fgwGvFYvIten1tEKgu9CZw2XWhNWNmHrTH2t+7B3Q3Exxvw8Tr2Kwf+OFYvqBsy4NlkxM1mG4E7D4M85VrcWnzxMzf7aG8Mpius3RF2ZwRauP07biKOm9hhAG3fK4lTELvSz2tWEwTF1JKWevvp0/GQzDgrZhFoo+0sQVNelSxwJWIyCpDfv45tZtjffIhAuNqKFUp4LAPOsqTcF21tZdbQkhlnUXbkegpXGF7MIDqiVixCXY+fJ4hGz7y3FJcTXZfGiE/h1aglM5aFxfR5FcDpDKJ7nPC8C/LcGF6iYYChzgilZOiTQqsK4mdhMc2Mmbl3Af+gIF39Q0u2cZ6lHCZjbjY7n2h/Ev/AwVmeKX/3GGuZlLOudmmNy8tGbqbEedU9XJTeF3bwVb/Hh3lOKCQps8r8Ve7nzBiO04kLFmOq+k4KgijAWjEzMyz8/gMzM8efR9QKYo0aNWrU+EzRDILnitB/GYikYn1JpcCL4NX2Gu90N8pjKJ7CFyhCF4qQEynl7GPnOYJoQhd/X7XASSEdQZSStTCmoQIi/2eJYNBp8oNf/SL/0z/4Hb79za9zutFl8+iMX336X/i7e/833j38No3hXAjGpv97c4lqIcG+furI49NOqSIaa1EIR+Iedp0N9ZGzinaCkNMsYd+XzgshuNXssBYuzu4VfYxsj+a+gVM4ReV7g+l1KsiRU94WYyKKBWURjz/SGSfe2jkx08TTzGhG2hXLTxeaU3K5VCU1wMfr8LBbzm6KcQiZUyWzCwhiQ7nU1YIAzC583TE1ffBO9a2LsBk3aziN53fKRPFCW75musXLC+qdgmjILwggSfzc1XMTxCLGwz9QyCszn5fBegUre5GyuhUoVLChn7d0M6bVff10kRmzcPeGQnL8HEE1ReXCg9HgE+9PcT8WIS7Tz4J7j+J32ot0Wj4PCnur8H9YoasAAQAASURBVJ/vVe+njS0rhlbNKTrFOFtKaK+iaB8lY75/elD+PfWfg8x6co8AMfu4rPi8jvLsudTgn0fUCmKNGjVq1PhM0Q2il5pQehXcanXYbSzvtHterEfxjP01loq+nSoBqXF1BE1PEJUQs/xjjiDmSqMQGL84Mp4vtYKAWCpaQUBTuX+6YYT0izopBHrD8PHGTT7+6g129o5560cPuPXoGe9+9FO+ePc9Hr96jY/eeYWD65vYrRHi7oZLPF0GZbF3zpB3N7EHLWifcaPRcmEPH60j7m24153G2Jt9F1Tjn7oXy6ZOsCQJVgs4bTjyueq9AdvM3RJ6PF2qqMqiWgHZzDpPlOpfaopKCzjJEnYbLRLjiLfFkBrLxOSVgBuXKtlUkrO5wBd3UQTi+9cQx05NKOdGAfoRojMmszltuXxZVbUQbkQNv/CdTjHlxrh5RT8TWaDoCXUL9+nCdqSzUvmy+DnFQM6832XJo7mfwdSsDoQZ5dmMtfWqqL5eAD88O2KS5/ydG6+Wx3eWJqyF0UIirvF3j/YzkvPfL/BkPGAzatC4IF22wDjXNFTAROty/rOYe/5MQmqWVHjEUnH4HARxrHPaKuQomTDIs+WftSsit6ZUpKups27uztKVkpHOHRl7eVlhCyiuvUTMJILOo5i/LUhrvGSnCnLbEu7+mD5vuNpMrGb2wYmrJfH3Je6+FszeP4W1+zRLGOmcrlwdbPXzjpog1qhRo0aNzxTf2Nj5xFbP54USYqml7mUgVmpGlUiNoR0E5ZNsUf6fR8XeaYVFS01gC1sUZQpow5PClgpoKDfz2AlCF7owr4IIwcGNLQ5ubNEajHnzpw94/YOH3Lm3x517e/TX2tx9+w73vpqSbl1w7osk1IkLWymJfJGM2swQ4xB73ITtMZGUDOcCUxZw0kBY4YJyLrrsXtks3hugF8XstAL02Cludi4EolAcEmNKC1iS51hrSX31hrSinEEMhOvgLGbemsoVwy90bj5aQxy3sI0MMQmn86IAgwjRdYvp8IKwJWuhX8zAmWqgjbeRSumDjqYnpakC3ur0SktsQbz6WVZ+ZoSf1QpmFMTLbXTaDVJ5e+xydW+QZzOK0lUxTyjvD8/JvOX3dquDsZY/PnzCr25dZzuefVCjrcWZX4UnAstvkh+dHfN2d51X22szX386HrLbaJYEUFsXUNOQitQYxr6moKg5/6wUxHmrdqwUgzx1IUxXCM8a6ZxWEJBozWmafCKCWL0fRaUiJfFpuZHvR1wVHKSt4YenRzSDgFvNDu0X3Jfi2kufWL3qwUWRXnxR92midfm56oVxRcG+WkiNsRZtpkFYYx/WY6w7U8J/dqr3T2HtPsvSn7na+rNGbTGtUaNGjRqfKSKpLkwx/bwhmiubTo2esbMW/WslqgpiYNC4xY+ry5hWLsRSshU3WAuikih2VIgUF6sgo06Tv/zld/iffve3+fPf/CqHO+t0z4d8/ds/5X/77/+//OqffoftZ8fLNxJ7ApbMkelhhMViXzsFQDxzlstuGHGcTlZaLWFqLy2SVFei4d+7qiB6ogxOub3ZbJffs3Y6gzjWGYGQBBJGJnediUwDbSZGk9tph6L2tQqZMZxkCY258CJx2nDv8ZUD7M2++/OumzES/Xg6g3hBXUsoJUc+qCaz1WWlLTvaXGLvovW5UEOL++okm5QBS0oszrwKIS6dpSxUI7AzqbpVjPL8hVJIjZ3WR2TGHVsoJO/3j/3XDGOjGeWLKY9OsWQhTXNx37KF/Z7onD872mNvPLUuF4E+DeVqWsY69zUFxQzip08QJ1ovPBuJpCLVZiZR9yKMtHtIICrBKC+KeUW7SOJ0SrwPgWJ1cf0gy/jO6QH/8dlDPhqcvvB+FNdeCkEgJf1sucOgKL03rCatRR2FEoJOELIRNaY/f4WHAk5dnz4cGWvtf7d7Zbv89ExRWLsPJuMLHxZ9HlAriDVq1KhRo8ZLRKxmZxAza2cW/VLMGRirBDF0xCWSroYjNxbr0w6lkPzNnVvlS7+xsctOo1mpWLgYJlDcf+s299+6zdpJnzffe8CrHz3h1btPefXuU857bT565xXuv3mLLPYKQMMvPCcVwpQLp+o1M7g2wP502yV6fskpXqnWrM93BmbSWUtDAwc+tOYygtj0C+XJ1ZYqQkyTL11CqZtjGnslQRuLCgRa+K5D/3ch3FIvM5p+njLRmo0qSbPAWexSX9cSbG+CvdGHVobYb0N/apG+6EFHLBXHmSOIJ2lSUcbEpVevsBE74mU5TdOy9qUh1cK8YREOc1GAhyN9ziy3agZxqLOlvZ6rcJ6l/PDsiG4QutJK4NVWB+FTeR+MBpykE0KpGOt8aQdjcYz2AqXHWMvEB+hUcZomHCZj9pMxt1ruoUXqU1qLOc5qTYG1z9/R+DJQ3J9VFPN/F9V7GGs5Tidsx03Guggm0gvX31rLj86PeavTu5IFd/b6Tq93YnRJ9AUCveJBwti4Ds+mCq5U1ZEazVmWsrNMPfbkK5ZqpqZm5nW4hyDCigsVxBWFPFe6nw0WXZm/HeucyIeHlRZTIbCV9y9mEPeTEc1PWKH0WePzTW9r1KhRo0aNnzPEUs3Yx6ydncWT88uWoGI3C11YSi+MCIvkSixKsLCgvN3qEArp5xWfb5F7vtHlu7/2Zf7t//m3+dZf/wpH2z3WzoZ8489/wj/4H/8Tv/KHP3CqYpg7YlQlaT6whnYKoYXtESJXiO9dh1TyZqdHdy6YRnz/GuIPX0H82S3EKMKuj6cEcBUCg1UGJuHKLsUqZIXojPQ0kGass8p5FEikUwesqRA6tzA/z1wf4Uxo0iRApAF0UpeuKnEBP7F2c5SDiKYIeKe7fuH+OQthRmo0p+mEuFQp7aUU0SkVzg45MZqJyUsFcT2Kud1qz77ePzS46L7Q1mKtU4aWqY2Z0WTWJVgWpOXxeHCh4rY/GXF/eE4/S8u7vFDqCmV9lLtZtlTrmSCPDwenvH9+4giiP95VC/miJ3Ey14N3kiUMdcbDUb/8WmI02hTXWjA2lZoC4bKHfpboZykfzqlqY50vf5gguDDM5zid8L8e7ZEZQ+LvcbskAGiocz7on8x1qa6GUxDt3N99d2ilDmcVeR1rNy8cCnklgvh4POD39x+VAVIFivk+KVyw03meLj0f2hffX7RPF9VyXNliWpmDnJQKoi0TaDtByFo4/d0ucOr4MM+uRMx/nvH53vsaNWrUqFHj5wwL1iJhaQbT/9wWgSUAj8dDIinZDQzkyllMrXUW0iBklGfebrX8abQQAuXDGl4EOgy494U73PvCHXpH57z5/gNe+egJr330mNc+eky/2+J+eMj96F1GBkeOhp78td1C0L5zBKMQcdSC97awXz2YexPh5g4RMIqwnRT79WcXzx+C+34zRwwibC5nqziWQAlR9hm6xbMs/1x0+SkhkcLg/ldV15xFdJCli2TNdx2yPqdmCKCbuiqOUQidixfGsVQcpwnnWcpplpYEMZLq0qAU4fsStU9mzIwpFcRlkBRhI4ZwhRbg0iKdOj1eYvVMKt14uZ/Z/P7pAZ3tcKkNFly0/1mWcpYvCfoBCiJe1BNUCcyz8YhQSnYbrfJ+XkkQjcUYu2BRfToe0g1CjtMJ/SylG7pKmSrfd52IboYMK36mFtOJzvnDg8eMdc5bnfWZry+frbzYGpwazVjnnGUJ2hoCH8Ay/zOnacJZls70e14EbWceaZXnf5hnMw+0Vll+J36uM5CC4RUIYj9LeTQa8K2jZ/zt63fKz2qhkksEkf+8DPKMjWj291+hMsLqOUWnfi6eY8sVCSLWWUx9ZU5uDY3i4Z//cffgr0IQhcAYd3+vSUl2xfP/84haQaxRo0aNGjVeIlxYiK+o8AuZVuVp8qyCaEm0mdpMQ2eHawQBnSAsu+8ummcJ5eUWxctwd3DO3nqL7/z6V/i3//1/xbd/4ysc7q7T7Y/4yvG3+Xt7/5q/8e+/ze2Pn6L6Pt6j7eeDmjn2V564hdNpY3Hj5xECgd0cYb50gP1rTyC6om7T8IvN8eXPs6VwCqKx1ieW+nlDTxCrr1u2psyM5iAZl8pcAXHm5w97S+xuHX8OBpenFRZzXAfJmNTokiDuxM0rJ+oaW5Ci1eme4MiPSz1dvS1tDNY6lXWZ1TPx9rrC6lwE+ayqz9DW8Hg8JDF5mby7ZM9IjSbz3YpnFYJ4liVl56LxaulFCqLGzszr5cbwbDLygSSmtCc6VdntTSgkHw/PXPATAiGeP6H1efC90wM+Hp6X5xKc/XO0SkG0qxUxcMR4rHNO0qS0DyuxaBE+SSecZ+lMv+dFSI2u/F6ahtScZ+lMwvSqaz/IMhSCQEjG+vLezOM0YSOKeDjusz+ZWs2r6lzx8KaqSBZ/zjG+psSu7I6cmJylI8H2aj2IZUiNn9HNrZsxXggZq6Cwdn8GuUcvHbWCWKNGjRo1arxEBGJK2FzFhSwrLqAgChUIWyGIBmPdXJkJInJjUEpcGH6ihGTyCUIqiqj4iXbJoDoM+PjtO3z89h06ZwNe/5MTXj34mOt7B1zfOyBVP+Zh423uZtuc2oZjI6GBdoYYRthUzhLAc0+wNidwu79iL1agOoe4dnGJeLFQTn3yYiACLJYJhlGFSMgyebBSUm7dYng/Gc2QeQDOCgVx0a5nm5mv4rhiaqOFZ5ORS+d8gWoXY62ruLjkdRJHRs1FZMPPIAaVfsAqEm/fLOaqtA/xmVeREq358fkR1xotBnlGL4yZGL2029RCSTLdHGFO4vsoz7KURpEAbJ0asyo9NbcGY2ev61mWMtY5vbDFuUjZn4x4rb1GanRp4d6JGzwaD9wcsE+h1D/D1fzBZEInCH0IkkapgLHWjHROb35Ol9k5WnBERjC1POc+ZOc0myWI80rh08nId31eLfAmNbokU9UwmkGeVR5OrQ4NOssSQikJpWSYu2vaClZTjKN0QkuF9PN0huQXx1vAYktSeJYm/MnRE37n2qv+AY8LPjpK3efy4ajPVtSg5e38o3xxzhOKLtXLH1AV6b25MaRCz8zzLlfHKWdtP+3app8FaoJYo0aNGjVqvEQEcvosPjOGWAYz8yhSLFlgVAiiEM52SADah2hEYnXgQSQVAy4mT8uQGk3oEzBjn843j0Gvww/ffIUfq7/Bzo0f8NrhR9y6v8+bwx/y5u/D6UaXe2/d4sEbN0k7qbOf9iPYmqpt4twTrLWrzUNVYRuLXYiroIT06pQpF3PWpwqOKiqE9PH4VZquBOwnYwZ5zmarooKmEs5jbJxPU1WrKKo4xsGVaIYSzoK3IGDc6zn29NrZSnWiqK44z9KZPsilr/VVmxeRn9SrrIGQjPPFBwxFQEkxVzVVEGfvk0Ge8YPTI7biIdZaOmG40mYocemSDWsIpSxTOwPrrl3q7XwIP3O50mLqrvHEV5gIITjLkjIBM5KytK+OtQZvNZRCcC1usZ+MnYIIZWLnMrzXP+FOs3sh2VkFay1D7azEE39fNhQM8pRUa6JokURYO2sx/cHpAS0V8s6a6xzNfE3Hqe8aFV4lryqImTEcJmNaQbhSXZtHqk2pILpzYsqi+YLszO9bFf3cKY2Bn5tOTE5rBcWY6JxRnrEWRJwjZkisnklThUBIjhKnMA7yjJHvsdS4GcSGCjhKxmhr+dbxM760tsmX1jYBZyVelqYsBeQXzCcWMNaph8bf97Mzy8shcZ/v7XiJk+Jzhpog1qhRo0aNGi8RoZClYpFZw2Y0ax+cV1YkAhu4BY8NNeBsfUIUVkF74RPpUD5/SA3AvWGf3bhJQylipVYu/mycY4Vkb+0Oe19eI/69G9xJ3+M1+wM2jvv80rd+yte+/R7PNq7z0H6ZRyc99FZlA2cvThALBVFMwislfVZJRvG0X3tLX+H7Kqye1aughOAkndAL55TAw5azx+6MlhO3VlHFEUIuYBReqHTGSjnCUsVEIT9wJ8yOIuy7BytJosFykiYLNth5SKapp6uQepUv9CXomTEz95k21s0oCtcTWQTDzKsv7uuax6MBrcB1dR4mCe0lpEoJwSTPyVTg7m2cIhoYSWoMqScmwiugF1lMjXVWw8waIqFIjC5nDSOp6HuS2s9SoooCHyvFHZ9w6s7pivveWt47P6GlAlpBd+V5XIXUK67dIGTgg5KgsEmKpRZhJRyBKvB0POR6pcol87Nw7h4S/mdmCeJZljDWOWtBVPZuXobMThVf6edxJ1qTWUNbBuW+LbOs5sYpuU0ZlNu4yNo68PUkkZQEwin3BeavdzXJdKAzEm9fNbbohlWcpil7kyGnacLHg/OSII5MvtR5IS6Z8yxgoOxBtAuvX35fKuHOXVMFz10N8/OGmiDWqFGjRo0aLxGFgmitm11Zm0v0nE8xDaXEBLkLBQjcE/RISgLrJlos4mKC+AIhNdorOLk1aCuJpFo6hwaUVRdiorDjkEw2+ejGO3z4y2v0js557cNHvPLxU24cP+UGT/nmnwQ8frLDgzdu8WxnBzEOXSXGJSEzy997sQtxFdxC2TLRuTOQFj13LLFlzjpMXSBGNuH11mzpuvCVHHbbdR5qa9ifjLneaLntV/ZPfLCJeNTDfGUfbgyW7mMkXRl6rCrXc39KAMSTLnZjDDeX/7y2tlRrOI/c7OONwQKhFBVyvAqpT4IMhPSpmDmhnN6rGlumfebeWrrMYpoZ16f4ik9SFV6hXWbvc6my+XSBbp2CFIhCQazOr62u1yhm4XJjPdlQpHpayRBKydC/z1mWEl4Q8qRXnKLUp1FeJXRlGSYmJ6883ClSNftZOpMMWoWzi7p7KjOG0yxlPZoGAiXG/Z5w/YTW/4ycIYhHyQRrLZGUDDO3rYnOaagAay1PJkNuNtozBDWpWIKl71VMjDt/hQrnlMpFFb24nr1gakWdXKDQDfKsVD9DoZYQxOm5aShH9FOjOU9Tl0hbSRYtkp4fjvokfoZ4kKW0g5BJni+1cUtP4i5DaTG1BmGL1kOnpIoV1y+Qki921xH+Pv88oyaINWrUqFGjxktEICTSWzdzaxcJolewCkRSkTdS9x/kVoa1llAqgrKfzxBeYDENpHzuKarUGFoqIPeLreK9qtDWcm94zmuRz8FMAhj5ZUPLzwVtrfH9rXf5wa98kd2HJ7z6Z2fcmnxUditOophH4SPud+9wbIvoyOdA++ohMEWP3EjnC8cy1nqGmDtb7XTxuB7F9MJoVtUxwFELK42rtcD1FxZKV6wUKOvsp5MAjhyZFO9tYTfHEC8ukmOpeJINud5olV8Te07Nsm+cIO5uIA5b2KUE0d0LqXFpiuLHO4h+jFHGBek87Thr5pcPYGt8oUUTCoupJPAzhhOj6VS+b6xFCGfJy6xGG+uI4tziOrPeilo5d6+0OisIomSitQsRQqCFZZRlhEqVBLRY/AtWp2YWgSHaGk+8QsYmp+AooZBe2coY5OnKBywCVs5pJsbtZ7WK43mQ6Gm9RlW1OpqpOJmFErIkVwM/n1edL0y0pqGCmYROKYQnx+68fTA4paEUgZQMdUY/S/kvB4/LDtXvnhzQ24noVH4vZWZqMS0I1FjnLsynrCmRHKaTBaV5rF1tSZWMzYfmfOdkn62owavtNaeg2uk2B3mKtpb/9OwBTRVSfdrhkn8nnKYJJ9mkJG3uAURxz1mOkgkNqcisZj8Zc1spcgyNJb83ZSWE5yIUlRtFcM70GkF2wS/ci8KjPk+oCWKNGjVq1KjxEhEU3YS+324+9EQKUSqMIAikZHDngOj6BN1OkYkgEpJWEJYzNhcriOq5FcTEB9KcZylaGiIVMG+byox2c2dR5oLcJ4GzUAK2lVVe5xaMz17dYv/+N/jO+G9y481v8eq9x1x7dMhb6V/y1k//kv7jFg/evMmD128w6HW4EgLrgmDGITYX1UT5BRRWu/1kNPP1ouC7Slg0BiVmr8vCwu6gjdASuzN0RNBaxlrTDaNZZauZIZKgDKoRmYIPNrFfmav7wClbW1GDtgoRH23AIEScNbCNDPvqKXy8DsfNBYXTwZZqTcf6WU9A/HAXYSr3x2ETuzVGcLH1OLcuCbI47vmgk6L6QHolr7CY5nPbzI1d4P2r7lclBBOTM9G5mxUUivujPltxw3XMYSv9dYsE9/snB1xvtsmst2QzVeZcKIl730A6gniaJmTGLLW7QkEQl5+j1DiL5Um2vKz9MjjL6/TEZMZgrSu6X00Qp4Ez51nKROczXY8TrWmpgImehsooIZj4YJnzzIXz7PoC+txYnk6GnGcpI3/OR3nGeO5hQGZMSQSLmdOJ1jMPWnphzKPxkHvDc75Q6fycaD1z/a11NuIqnk1G3Buec6PZ5jidEPqdD6Wkn2ccJWMejYcLt7wUAgMlSSySbYvKGvweD/KMVhAw1jmPxwN2Gy1yY1HB8hnEqyiIuZn2IDqyWCi24kKF9BcFNUGsUaNGjRo1XiJCKZBSlAvs5jxBRPgZKwBLJCQDDHSzUnEIpSKUkl4YsTcZXph4GUjpUzmvjtRo1qOYfu7tgAjmGUluDbFU5KGzhDEJEEVaZ6EgZgn7yZg32z0309Ya00i6PLz2Kg/fukHjW2vcefSEO/KHbJ2c8OXvfciXv/chpxtdHr52nUev32Cw1uZCdFJHvgYRbKyeqVJCOoVuPJx54o/vM6vOfm6GjYXrMoOJQvxk2/30rXN/rCkbUVyqGCWaOZz6d9oeuqqPvQ584dipiEcNGMTwigug2YobcH8NcXdjuo1rQwgsrE8QJ01sP1qYZbTWqzXWEJ63ysW7MBIrDfaNE+SHW5BPrX4XWkz1lBRgxULpfFFGLnzqo+suNAvqUGb0lbsEHYk3vuZBsB7FPJ0MyXzHnPG27HIf5rb7cDygEQTkxj1+EVhS7V4/XtIteJImZNasrIkRQrBqqe96IA3nWVoG4TwP3Bxesf/WB8zkjPKc9Wi5Iq6EKOf3zrOU1JiZeb7EJ2SOsrR88FQo57k1PBr1MUwTcnNjeDoe+U5ETxB1PjPnaH0IS0HqVWkx1TOfIykE3SDg+6cHvNLqOgUdFqyUoRQz1RTgft88Hg/4w4Mn3Bues+7Vy1AqMpPwdDJEW8NaEC0Q9khI7g/7rmvRWn/tpz19sZScpAm3mm0EgmeTkZ9VNEu7JotU3sugMRWb6XSf2sEVE4s/56gJYo0aNWrUqPESUSiIubdtLRBEIXzxuVt+dcOoVL20tSg5nTncjpu83z9datcrEL6AxTSzrt6geE/3fnZmIZwZN8dkhYVOihjE2GMfuOMJoiuxbjDROed5RjfIaABkvqR+vM6H3S0++O0u7eGAVz5+yp2Pn7J+0mf9pM9Xv/sBJ5trjiy+dp3hMrLYTeGg7RSzCwgiwHZU1BhMCUFhE6uew+pc1wIMiL+8hsgU9s4Z7ExTFH916xr3hv2ZVNSy6gKwm2NEK0M8WMc+7sIrZ+W2zObYHct5hHh/y5G6d44gUfCKI6F2a4w4aTq76hxBFIJyTlSeuOtg3ziBsxh7qz/tjMyn6tRFDw5yO7UVIhYVxBw3Wyhx5LSwf84HkMwX0V+EQEhGNmeYZ2VFQyyVr7gIypoSdy/O1lxo68jaOPczpv7/U1/xMp7vFhTCq3+ryd1lFtOClCdGzyQRXwUToyv00JGkQZ5dSFidOuWI+EEypqGU3w93DBNPrCOpyt8rRSBRbgx3h+e01Wxx+0k6ITHOqlrMgFavde7TOhuVGcSJ1pymyUJa7noY83g85CSdlOE5Z1kyY98OhFwgiBOt6QYhH/ZP2W00y31XvvJnbzJCIBbs+AAtFXCcTUh9kE7m1bzimnaDqCTOFsVplvp+zeVBQNL/br4M2tgyKMnNfrpttYPwrwRJrAlijRo1atSo8RIhhGA7bnB3cE4rCGioWTtZYTEtysTbQVjOE2m/eCwI4noUEyu5NK69wCryaK3rEMutoRNEM7Y/aykVCO3nJA+SsQvVqHSuRUo5FWc9gUGMGPoFXNPNHQmEi6vPnJVPhn5JnEmnwiUBtpOAsgzX2vzk62/xk6+/Rfe0z517e9z5+Ckbx+dsHJ/zte+8z/HWGo9eu8GDV6+x3wzphhG2mzglqx8Dy8Nbquf+VnPWvlqQ9YtI9sw2PtpEnDawaxPs20cz296IGuxNRi5opECzoqD0Euz2CPFgHfFoDbR0llOA09gRRJ+Mat44WeyF3BwBm24O8bXTBZtpqUoVBPFGH948cd8s5kOzShLpCmWvUI2iQjWChUoEZzt0x22wJEZ7hW+WII7N8r65ZVA+wCYz08qAzSjm0WjIVhQzTvKZ7Vf3f6w1mdHlTGFhfU19sqWbzax8TiyLibFzEBcE4TjS4ZJxRz7k5XkwzKd1JApHuga+4mQVYVVCom1OagyHyYS2nxMuPpepv49vVZJNi3M60jlDndGe2U/3denrJEIpGeuccYXAaeusrwUB6gQhj8fDhblCcPstxGx5/bPJeOZ3XCglAz27fW0ta0FMq7H8HA7yjKZabrttBQF7k3H5UciMmUkhjpUqP/OhkKRac5ImrEoaFUKUdt+LVOHCypobwyTXV77Hf1FQE8QaNWrUqFHjJeNLa1t8PDynMdeBCFOLqbaOYHWCsFRgcmNpVualukFIS4UXLk7UkoCZsc45SCb0wgglJMfphGuVYBSEZSOKvYop6AaRm9uyhr3RkOuNNrkxtIOQ3Brs+sQRHlztBcpynqZsx01eb6/xp0dPCYRERP7JfKbggv7D/nqXH/9Slx9//S3WTgf0PrjP2w8P2Tw6Z/PonK/9xXs83mhz+MZtHl+7xZjrq4NqDHDUdIminWyhRqSYTWytWIDOzPudR4h769hAY7+2X/rYtJ956wYRTRXMWtS8mmqFdQRQWUcSD1twb316ys8a2Dv9aS/kxnhxX9ZSp0ieNrD7Lbg2nacseIzIJfQjdx2q5LTo0syns1mFXe+HZ0cEQvBFXwFQqEbFuQqlZDAXxqKN9QqicPOXueuknFcQ07kAIMBdkwc9kBa2RtB2++nIjKmo1o4Uvdru+h+zJNpbCAWlOgguiTO1hkGe01KBs1b6xMzMaF9tMv3shFL4vrvVnx1XI7P8e27OzylcwzxjM2owyjOX2FlRoPcnI3bi5gLZGFQ6BAvlbqTzlQmY0/NjOU0TRjqjG4RlGqsU7qFNuGR21mLpZ6kj/eGsej7KM9bCiH6WOju6tWUFCFAGVRX3ghKSW802e5Mxm0uVdsFZ7j7Tidac5ZMZ1TLwCmTRGzjtEFxOOdxsbzazjdlzIksLsxDFLOfysnp3DQrleBUJFyRMw7lWodB/i17HmiDWqFGjRo0aNT4Rbjbb3G51UCwPSZCCssur5QNirF+oxbJKEB0huZggLr7HUTrh6+vbfGNjh++dHPCjs6kSVizc1sO4VFBaQUAkJP0sRVtnZdRYVx+Qa1ivBHV4QjTKc76+vuPn8qAThpTryVwiJu44bO+C/kMhON/o8pOvvsaffvlVvpxYbt/b4+bdJ9w6GXLrL97j67zHafg9nvRf5/GbTfL29vTn+xHiL3dLZdP2JthfeTKzNlRCMjY53WW2sI/WEY/XsL+05yydR16Ze+10hnyNfahPNwxpyGB2TqqVuaTTNaeUAtiv7MMHm/C4C9cHiL2um00EOHfEnO4Su6wA+6VDxHduIH66jc1PYGcIkfGBHZZo4LsZ1yeza+CCIGbTGcRiP0/SCfuTMW911gmkXFCNXFjI7P4UpLggURPtagPmZxCddXFOafpwE3F/3e2FsNhffwTtzJMZZiyNs4fvFDssSMlMX12RljnMMwLhCuIDJCPfq5dbO9N7F/mqi4tIwEUW02GeEgj30KQoc/94eM5BMua3dm8Dbk7wTw6f8ps7N9mOm3M/Py1qd+mtOSfp5FI3gLau6F5bS0MpzvPM9RQafDjL8vN2lqdz4S1eUbO6TAsNpJvTrV5r7bsnqw9WCpK4DLGUHCXu98F5njLRmq2wMfOz2jpSq5QLC1pVe1Ic8zDLZ7Yxj7UwQoA/F8bX2Kx4sXBq8qq52CKYSFt7IQkqZnBTo5mYWkGsUaNGjRo1anxCSCH45sburBWx8j0hnIVJgCeA0j/JNzNKVzHvsowEFlCiyHN0KBZGr7a6RFIRSzVjo0t9IMV6FPv+uYxIKloqZD8ZsRO3fM+aTxG0Fho5Ns5dWqcniEII2kHIRtSgHQTcbLaxTcUYEJmE/moFcRECIeFss8vZ5hr/7os3uHk+5suPj7nz8ID102PWs2Pe/bcwWmvx6M4uj1+5xtHdLyOGEXZ9DCOfCDoKoT1VSJS3lC1dWO913DF99zr2V564ughwltoKJjpnt9FCCUkzCNBV+1pkHCmNKsQpNNh3D+ELRy58pu/subYfzthul2JrjL3RRzztIn68g+11sb/6xC9WDdHEdzO25+4tCVaZUkG0dmrRdIrymKeTIXda3QXVKBCSsbdqFucps46USpxCNTa5IxzzBHF+8fysjbjvVFg2JoiDNnavDW+eFlcabSwqWLweFlu+b9G/WMAF9FgmJifSsnzPkXa2VFMhvOBI71mWrVaO/d4UPYijPOPu4IzXfBfmyBM8bW1pvz3LEp6Oh+VDllGecZiOeTjqzxBEYy3DOQVxYjSTVK9MMAVKAn2YTlzFhHca5MaiWE20LCz9XbMTN10PaJ7T9/vTVMFMdUduLQa75FHWcjSU4iRNMD41tdjvAsXvjOLhRGYvJojtIIQ8v9DuWcwmnueZC6mxdqmCCK4aI9F6wUkwu3/4+dbV10J7sp37oKBV2/tFRU0Qa9SoUaNGjZ8BrjfaXG8sPoWfWkzdDEysVNnp5lSD6X+apRC8u7a5wurlML/wyqwhEqpcVLlF6vQ1idZ0CuuqFKCd0tAKAjJj6IYRT8fD8v0NflhyfQLPOmXFhcUSCLfgvNZocb3R5qzhCCKZcrUYUBLKizHX6yAEp5s9/mJ7k5/8tS/S/UvFrQ+OuGnfZ+v8iLd/dI+3f3SPifw+T1uv8eiLbQ5GX8A+2ILjxgxBDKRLhlywQaYSMfJVEWkA72+5wBdhF0htYgy7sSNmoZCL401rK8JzipnMXgLDCPGwd/Hri7Px7gF2Z4j4YMuR3mGIVL4Tc+LvhdaSIu7QwESBr5wsQmpc92DOe+cnTLQL9KiqRqGUDPKcROe0vNJaWkz9gr9Iupyf30rnCKJ47Oyi9ssHTjU8aCOedbCeIIIjJMuVMPzivyhsn57oUe4IapEGKoUgEJLTNC2DbaokIxSKkR7RWxJ8Un0/gyOhh+MxPzg95FajQ+g7BAMpsEiOE3c/nGYJI51zmqZsxQ2fCKr5oH/KV3rbJSFMjSa3hpa3VQZSMNYZubU05eVL7/MsIRJyGhhlNdIuhi1Vj2Oi84XbUnrLZVEnUbgFEutIdSRVGQR01ZTWWAYcpRN/HiYLRE0K5zAukj8LFXjV9tfCaGk4zTIUDxCWtsCU+6cY6mwlIS0eeFQfmp2kEzaiWQXTVeEI33taK4g1atSoUaNGjZ8hCnXEYJHCLWgU0vdtQWNOYXij07twe8ovAguMdU47CKdJgVLOzD1l1nAtjAmlJBJOiQmlpB0EtIKQtSDiiR2CcGSomNGyt/purnB7OhdXWPp+Y/smDan4oDHmCJyKlSpnvQyukrEqykh97dM1C7sdQP9Nwft73+S9xlfZ+D8+YOOnD7l17xk7e8e8Pvgpr/9HyNT3eRa9ypMPb/B0JyZtuEVnQwZ0giVznGeOaNlrA9c9eOCtm91Fdc9i6UVTwv28lQe2N0E86boye8CuUFUHPt2zqQK4NsIOIxea87SDuH1GZgzNcUEQlxDvQCMIsLks01vB3RM7cZO7w3PuDc+JlZpRjUIhya2z0rV82WRW9CTiiKbxc4Ma62fhprUUcRFmYt15tdK4+0SC7SQuAXcQQsft87zaV54nK0riKhFkFbXyPE9pKlUqXoFP8zxJE07TxfMZSUlDqpXhJ1BRyHHzfYM84zRL2IoajLUmlhIpBcfpxKWopq68/ixL2IobDPKUhlSc5yl7Xp0F9xAmq4S8KCFJjAufWQ8v0eqsm1csPr8CMVNkv+zes1gys3qmLpSFQ0GzHkacZO44IqnI/Sz0VRH6WeVBnvJsMlo4vy5V1ZSf3atUSjwPMnOxxTSWitMkWTnTWFzz4rNxkk74k8On/M61V8rqDnDz4IF09S+5dXb7v0qoCWKNGjVq1KjxKaJIMc39QjgQkoZSvi7AEl5oiVuEs59OCc1Ea17vdMqF5Hykfmp0qao0VIDy1rN2ENEJQm63Ovzk/BiFoBOGmLHf9tYY+5sPgamNNRRuXztedWo3/XslytVENK+iHrKw/w0V0JCqnP2ilWPXx4jTJuNJj5MvST668QXiP9vievg+N3mf648PuD3+iNv3P8Leh6PddZ7e3uXJnV2C9c7CirKwk9qNMSLUiEeeiPdmi9GNt7OtBY6YrSqBvxC7Q+zH64iJX7SuIIjHaUIgBM2mX57dGMBHm/C0g7zt5vPUxKstSwniNKhG4BbTmXEdhm0VsOlVkvMsdcRAVEmHmOm00/64hRBg3XkIhPRqoiWUVAJI/D07ChG5wvYmZcCPvT5EfBg7FbFzUqo/y0l2EZtEGcpS4DxLiaQk1xpjQQpJJN3n5ij116wfwUkDWhlic1wStotQEIXcGPpZymma0PXhTG0RIKXgKJ1wmExIjEsZPkjGvNHpcZq6RNXMGk7TpHy/sclnVFIlnK22sKZeCOFmXncqila1yH4VilnDZXBzgY4Ixl41TLSGsDj+5yvKEQgeDPscJBPWwlkiJoTA2kUF8WWgmAm8yGIa+aTWVcpx4Yoo7q1R7mpXJjqfIYjuAYr0gTurLbK/qKgJYo0aNWrUqPEpQ/lZLiUk0ttM3eJcPDcBKbrECuTWsFOZh3KhGNPFjWVa9lykQYZ+VvFGo81GFBNISSDEyqfwbvErZ0JBALoFsRn6n4surhmo7lOxiE2MZj2KicRsmIa92UecNkm/uw5fTmASkMkGD269yv13Oqhcs/sHlptHT7huP2J7/5Tt/VO++p33GbYbPL2zy9Pbu+xf38QEqlQQ6SXYbloSxPlQnaIOou3TZYvOyOdCZLC//AS+c8PZbzvT4zrPUiyWbhAhBTPl5DSnxDjstxi3+shx6Ob7wiUL73AaVBNEskzdNHMzf8tsfZbZ+oJiFhB8obxXEMdal4vrvJwv8/dseU4rJPvaAD7chCcdeOMExax1dAZ+Pmw6g+heZ/wcYCgV6Hw2FVO4lFFrBeKHO4iB2wfz5jG8cbr8fSh/dDorZwwTo3k2GbIbN33Ng/D3peXZZERmNWthxN7EWbBPs4RYKoy2M+R6ovUMfVFCuLlVewWSYZ29cVox4WyVyqz+WYmzUa8iiNOjdTZcgeA8c6E27lo+P/l5f3CKwC70vIK/XzwxzKxh1eV+Xkic5bNac7Hsve80OxfWklSvu6sHyRmbnB5TK39BCot5ymWK9y8yaoJYo0aNGjVqfMpQUqBzSyzwSaYhR3aCZVHxu3RbfsE3yFO0tVjr0k8LzJM4gSg7EFuBJ4i+auBGo0VDBcTSNbg1g2Dpk3rtF0zz+9rxBFFkfnkRX04QC4WuiPifaM1O5IJyZjrqbgyw+x04bMG3byDunAFgG25hrgPFk1fXeWbexm79Mmu3P+Lm02fceLjP5uEZb/30AW/99AF5oHh2Y4u94ZfYi19h1EldemgrdTOJ67MKYmZ1GfYDlFazy3rUFtDULs1TyxkL63megvVzoCpkNFcybndGiNMm0WkbLYcII7GdyfzWHSoKYhC7ubPMz8Ndplwp4DSdbtfNIE5hsMRCMbB5aR/MfAJmoa6IwrZbDflp5djNEeK4hT1sEqyNmeTLlWXh5xOL2cfMv09iNKkxZQVMNWDHWVEt0gLDCCsNwkjEfht7CUGUfsbMWEuOASx7kxFf6OryoQU40n6QjBEI2kHASeqUxkGe0ZCS1Myqr+O5eUAlpCdMS+4XLdzc7OYElCWQYGz1gc40ZGmGaFUG8Vy5fU5brU4CFTOTe5bvnR6QGsOX1jZ43gcem1HMRGu2q9U5c8gryuzLEt+kECTGPUi76LPXuqTI3jJVpwd5xijPmMzVt2hjyyqVWkGsUaNGjRo1avzMEfgn00XkfUMVYRH2BRREp0IepwndICJWim5Y7SWTpSpVWEOLp/5NFRII6YrH/UwXOMuowXoCuLh4NNaiJAtF2qESWKUR2lu1oiVBKnOwTK22ubHlvN8gz2bnlyTwjWeoH11HP2lin7l5PhqObGhr+Gj9IW+3OsijDud8gbNvdvnJ198iHidcf3TAzUf7XHt8yK2H+9xiH4Cz/0+HvVvbPLt2wkHrxkL4iwvuiWcsu4WqdFGFwlJIQC4qfy5xM2U9ihnrOfK04UhbeNZCtfx1reyjtdb3BooZBbEIWkntLIlbhYZSHCQVgmhN5V60MxUKhW0w99uWmYJnbTfLCQs2XXu7jzhuIR6vsbk9ZC1YYf/zyaVFFUyRYjrxXYChdBFPjvCKcr9HOiNOGgjr6j9sohD9GDtR0Fj9kEIKgcaQW1eT0ZAB/TzjvfOTmSoTiSNgFNUvRvPB4JTEaNaCkEDqGYI4yDLUHBlMjaY7b3schK6mZRBjXz3Fvn3MtXiWdEkcQQ58+rG7AALxZ7ehm2K/vF/2LF70u0MwdRp0g4hEa0Y+3fZ5FcSmCpYqh1PYispsZ1XxT4AixGhVhcXVtyPKh0/nWUJqjL++U2h/jzkR+zkfBv0CoCaINWrUqFGjxqeMIpSmWOS2ZEDu1/bPG4ag/EzjzWabv7Vzm4NkPLMAD6QsF1aZNQRClgpiQylaQbAw37ThFYJ5e2oBpyDK5Z1uoQFPEO0VLKaFGjkNpXHWVhdnP/feAuRugn7SRIw9WfJ9hbmxBE3D+Tc+pvfnbzmyYgAJSTPm/hduc/8Lt5Fas/3DhJvvn3DN3KN3ek7vdMA73CNXkoPrmzy7uc3erR36vTaZMTPnM5SyVDtfxiJKIOiEEfeHfa4t657rJlhlCM9brG95UlyZ7TxOEwY649VWFxt4a2OuCISbn5roiysECsQy4CxLylJ2CzO2uqpql1cURCFA3Fuf9h5G+aJyvDN0Xz9oobIAFS2fS5NCuNlcXEhNQW4Tr+5IH6h0nmXlvjSk4iRLWRt7YtVOoQs8iGC/7RJtN8dLOZCbDXREdGJ9aIsxvD84YTueqnENpRjmWXk+Wirg/rCP9kE0BUErcJYlC2RtLYzKWV0ARgHi2zcRmf+8P2vDF44XrpUSgkTnxFJNidZpw82zTkL41i2Cb3xEbuyFc4rXGlPbeWEvziYjr5zNEa57PafA+iTa58eUgE10vkCWXxRFRcUn52rTkJrTLAEsw8r1M/6hixKyTAL+q4aaINaoUaNGjRqfMqR08fqFIhP5VMlALNo2L4MSgl4Y8bXeDt0wWlApAiGRfqGT+nm6Yj4nkmrpnOFG1GCYZ64GYwmMtURedVxAaKAQkK5gMbXWqUWBT3oEZ30d6XwmfbU83s2UmSVrYTG1lqYKmZDR66SIkyZ2HC4scI1SHASvcLj+FczXv0Crecj1J4dce3zItadH3Hh8yI3Hh/CtnzJsN7h7bR351uuwtg2NmFCqcl7yoh61q8PSVgGdIPAzZHPnVALrE8RRi7XjTfcTlYCaorMSWFAQ+3nq+/HmzmPhdqy8VawUJ1nCIE9LBXl6eafpouDIeEEmARi5e8h2E+zN/iIZk8DWGPG0i+3HsDVeeiaKhwSBVE7dsy5kJ6mkmRbl9dP9DhiOh2yNfOhQO3P1Gg96iPe2nHL22gn2CydL38/4Gb/Ud93daXUWXhdLxWmWlgnD61HE3mRcnh/lyXhxjs7zdIEgVnsSyQXie9ddkNOdMziLEecN7CCC7mwFirOPaiKZT5NMi4AlZRDDiPWzDVo7/aXndHqsi79XukHoLM5VPOkgP9hyf/72DewvP30BkjhVECe+kuRlQBaznJ+YcDoCmxvDMM9pqZBBpUfSeNVTVWzOC7DAaewqa1Z1mn6OURPEGjVq1KhR41NGUcBdzAdGUmGsQcnwuS2mDRXw69s3yp6+xfcSvnDbkhlNN4jLBdt23GAZB3yr08NYSz/PWGYx1daWKuQ8RDU85QoKovEW004QcjqeEElFS4WEcnlXoFjLyzkzq0xJigzG2Q3zzCV8njQdcVm2uPULbHoJo7jF3Xde4e47ryCMYevglGuPD7n++JCNozO+encP7u5hf+/P0LeuoV+9xZ0W7G+twSWzTqswYwtFsNNoMdaa9TDmPosLfbvhCKIoLJwVgqixhD6ZUvkZRJG7kKHMGn8NKxdZC8Qf3wFpsW8fwa6rLXEzbpZ+ltFUAXYumKOayvl4POBbJ0NeaXXdtn3npf3mU1ihDtpO6rbWj1YSRDdjZmhQEEFLYrQnou4+XAujmc+IEoL1MCIe+3PTTmFj4siT9q972IPXzhaCfaZF9C7Vc5UNt6EU/VHKmld4lZAoQRmVEgjBxFtVha+pWPX5AGC/jRhG2K0R9p0jp9idN5xqN0cQlXBVCzo1U0tzEQZ0+xzuryOPW8TXff1MP4JQX2itLdBSAYfphKggj6lE/GTbdYFujRGHLfhgE/tLzy7dVhXWUobUJC+xQ1AiPrG9tIC2hpF2fZDtIOA8m36mjE/TDaRkki95PwPiRzuIvS52fYz95t4vHEmsCWKNGjVq1KjxKaO0KPqFWSidwqfk86eYAlxvLLEmegRSoiRlZ13R5wfQC2N6YbzwM4XCOPLJqvPQ1pahLfMQYWXi6Dkspu0g8PH0MbFSRFIuNXcJiXtqf9pw6qGYbkd5Wcy2MvflYQg7cxvIpFucN7MFhdNKyeG1TQ6vbfKjb75NNEmI7j3h104Teg/3CB65f/4ekCv32v0bW+zf2OJkc42lbHsJ9iZjDJZbzTZguR63uNFoMcrdnNsCNqaEyl7vQyVpVeDuHxfiUqm58Ivyfp7ObnEQIRIfJvT965hfego70+2f5ynbtrFg5avGphwmYx4O+zSkcgv2ceC6Dz0BezwesBbMqdme+IhBtNK0V84gBlPLcWo0idGl3Vj5hwlV7DZaLmAI3AMBCfZrz7CTAHEeIx6vwYMe9s1ZFVFUKmcSrVcmVSohudPqzJC+6mdO+fnZ1Bhn5TaGMLhgHtATfXv73J3Y3RF8uAX7LZjbRyUEgyxjkGfO9mqB8wZWGuwrZ87aWzw42Gsj//Ka23Zv4pJzL/h1IoSg7UOpAOhH7sHL9QH2y/vw+6/NWLWvDlGG1CwQRC0QH2xid4cumOc5UO2t/CSw3mI60m7OuRPEDPO0VICND/tSYsXvoJ9uI/ZcpYk4bcJf3ID1CfbVsyu5Jj4PqAlijRo1atSo8SlD+T65KkFUQqIQy+f6PgECIZF+5jGzht6KgJBVP1tEwldtYgY70xlWhQw15RLpShZTdx5aQchE65KwXjiLuT5xBLE5OzcUKTenZVuejIzC2QWeFq4nD2aCVM6zlJM04dX2bG9e2oj5+NVd3v711wniJvLgGHXvESfvf8jW0yOuP3H2VIA0Ctm/PiWM/V575bBUbmd77QIpudZocXdwxlL7XC/BvHPoCLFX/KqIfXBKs2IxBTffmBo9u7YfTu2goh8j3t/Cbj0C6TrkjpIxr7W6LjzI74utkEWL6wXcbTQ5zRKklq77sJWWu+4skZqZs1lUe/SX3H8WOI9QzbQsbi/qGBKjvU1x6amc/vwwxAZmes9tO9Jrx2N40oUHa/Da6YLSY3GzlIm3mK5C+wK1OBBThd51Q9qFAKeZNzxqunnCgvi3M2wzc2E1mZxROpWQ3m7tPxODEJFL7PoYGhrbSdzPDULEe84aakONOGtgz2NYX965WWDG+lpYhdupI4QbE8RhC3vSdKrlteGV7KZSuPRfwCuzlXPxcA3xsAejELu5d+m25rebvzQF0VeTWGfrH9ucxGiaKsBYPEEUGDs3Cz0O4HEXG2rsN54ifrjrLL9nDciUm9v8BUBNEGvUqFGjRo1PGUGpIE4tpoEQNJR66Wl50s81Gut62C6LgJ/fz+KJenXxfJGCKCM7JYhXtJhGUtLwc2cb0bSQvpj1W5if2pjAPZydsLpPQhIKSd5M3HSgX/BigPvriLvrCOOrCyoq3ETnfrZpFrkvKG+owHX07W5hdrf43uvb3D0/5YuDlN2nR+zuHbP97ITbD55x+4Gz441bMfvXt9i/vsnh9U0G3Rb4OoJYKTI/V+fCMHxlw3yVQQEBvHK+4gwKIik5SzMI/PnOp+mjRVx/+eqCIL5yBk87rn7ifg9eP3Nzi1mG9t1v1Xtxaqd0ZHwzanB/2KeZeIJRIetSLLECxtoF1QyjRUXq4RryvW3id/bQm09nyGCiNcM8vzgxdhI45as7WeTXzRx2h4hnHex+C24MHYE+bsDuCIEjiOknsEK68+QUxPmKC8Bd5L024u6GmydNA2xvAmHllWsJjENHoCvKWiQlj8cJrxcPLyr9nYB77SBGfPe62+71PnYtRby/hThqzVaOXHYchQrrLcx209lMxQ933LbH4SwB6kdw0IIbg4Xrn2qnproEVn+xc4G4t+7+PHp+e7agUBA/aYqpu+ZOsZ8q8BOdO4JYqVvJrSWqfn4errm51jvn0Euxv/YY248Q370OTzvw5vGV7L0/76gJYo0aNWrUqPEpQ/oFUxlS46sTVqlynxSRkj7Nkkvi6WehfBDNfJKftma1ghj5So3AXGkux1g3Qxf6rsGiwzGSqrTiqvl1+/YY8/W9sgLC7ZNlPYoZ6pxEToiELReh4ifbiCdrzpYXGKckVubgck94c2NmlJ/MVz005o61GQTkAo53Nzje3eCnXweyjN2DM3b3jtl9csjm0Rmv3n3Cq3efADBuxhxc2+TedofT69vcbamygLtYQIvy/64Oi6UThBwmk0pIjfLbc3OIM8RnOLVi2reP4H9tIj/cwhiBemWfxGo/gzXlcFJQpj5WaxiuN1qoof+7Dwuyvtdy6ZXvpI6QDithLAbE/R4AatAgWzdl96bFkhpXx7BSkQMYhOUxLT1HN/uIZx3Eky52e4z4g1cRVjh7bWdAbl0QTvkQJBfuPCkDnasGtDi1tqjDmMHH68iPXMAQBQnbnJ3DtJ0U8QwYzBNExdudniOhFoSvdykecNjNkQvkmYTYOMe+fQypBLacPXTOsnohhnPncXMEbCFS/ztjNP3dIX6yhXjkrpu938O+fuoV7iESfP+mdZ8tKxE/dftTpraOg+e2rk5/F32yh2iuO1Mz1hmBFOV1L7oQi4cb0j8MkcUTCy2ceiissweD+x23nsCdc8THG3B/3c2Vfs5RE8QaNWrUqFHjU0ahhhQhNaEnQw35s/nPciQVAx/C0Aqu/h6Fgqjn1CDLaguoKlSRK3QgAhjrVJJQOptpsX+Rrw8Y5BmpSbheLeUu5rZmtmNpqID1MOYwGdNt5IhxiH3SceQwyl0iYzNzC72KemOAplKk8wTRGBpSLRxrUwYzs1DDPONpMuJ8Z439m9vwzbcJ0oydZ8fs7J2w/eyYjaNzXrn3lFfuAXzAOAo4vLbJve0ujXADbl1HCrFy6Wu8GlMl+IW6uhE1+HjQnxJEryAGPgFzRoEtSEArhdBif2kPfnANeXeTYOeUpJGU3XWFgiigfEhQVRVjpSBxhMdW0mRDKZfPinVTOG45ElQQxIO2q2wA1Nhtq/hcYN2ifayzi9W9c6eq2e4KtWxrjG3kiOMW/PlNRGEZHIfQcQqyMdZxlYlC/MmdMuDG3jlzRPoKRCYzhqHOFmYZxVNH6sybx4iPNhyBniOI5Yxmf3FGszznj7tOFWylsO3v/+0x5s1jZ629PnCEJfJq7VnsyG5wRcWtUPWKEKROho3yKUGcVFS/vY4Ls7k2QOx1ET751Lx7gNwekxpT9mTG97ecrRSXvEqk3WdzScrwRXhZITVSODJ/nqU+Odgfnk9RNl5BL9JOy3vvpOHs1NcGi/PLr5zB/R486jorc3C1338/r6gJYo0aNWrUqPEpo6iPKMhIYadsPIe69zyIpWRiXM/b87yHEhLJYjBEEYyyDIWCeBV7KTjiEUoXStNUqiRASkhCodhPhsRXIM4apwJuRg0ejwdu4TkOET92KTUznW5y/nhcAbqbm5q+V2YMW9UZLY9ozgqcW8Nu3KSfZ36eMiCPQp7eucbTOy40JMhyNp6d0HzyjHdPxjSfHXHn4T53Hu7Ddz/CRiGv3Njhl3sR6a1rnGz1MMGUmPbzlL3JmHe669P3Nc6mvB7GICwo6xbt+fS+GuucblCx2o5DRx4Kgrw9ht0hPO2i0hDdmJBqPUNxNqPGTLXEzLnzCabVupGgrAGBk3RCOwiJpCqTTMVxE3tj4H7+wdp0W6OQL3bXy3MbSskgT/1M4wWhL54gsraCIAqwt84RH21ObZTgaiasI9HaGlcxc9xEaIntJJAEjtgEBvvW5UpcajSHyWR2XxOFGEWO1L1x6rpBTxtujraKjt/3wYoZ4Uwi3tty6tVXDqbqvADeOF04XjbHLmXzpAk7i3OrCzC4sKE4n9m2feUMDtqOPE6Ue50Rjii1U+xXD7C3+oi9DuLxGuIsRu0IUuvmMeVZA3V/AxsYF5rTytys5ONwNmXY4ghtK1uZhCsEZXH9lXC/hziP3Pmq3NCOIBpPEJX/Gnw8OOfV1tqMgt5WwTScqEjr7SxJWI6MUxHvr8PH6/CF50t+/XlDTRBr1KhRo0aNTxmBlyOKf0shiCvk6GUjkoqJ1nSCqOxyuwqkcPbHRTVodV9jWBBE/4T9PEs5z1y33rqfL6zOFRprCYXw9RYBrUovY0MpduIWg/mutiUoSKsqkg5b04WnefO4DC1Z9dNu/i4n0ZrMunOVWzMlVxW4+cuKAmkt3TBiN27yYNRfUGlTo7GB4uPr62S7a9y48Sr/+v4HvHE2ZmvviG+cZwSPn9G5/4TfBPjBPYwUnGyucbS7weHuOpP1FiqYVTTyUkGMXWUDhiAwZUiN65ZMWReeQI1ChBXYTjY72xm6a6XyAG2cUlm94rFSxKs6HwtVqSSIzpab5W6bR2mCttaFoWyPXIDKk65LsWxliNOmS5Q1ri5DWFEu5pUQnGUuuKYlLvhsnMeOGHcvuE9eO8WsT9x+DiPk965DolDCKcDG93GWHYNvnDpL7J/ccXN2lxBEa912jpLJ7Of41IciFXbo233s7SWdhQ2NDbQjiMusl/stN2d583wmxXbl/mw5gij229irEMRR6JTN9tw5fP0M+/oZ4ls33LWaBO5aQXnN2Zy45ODHa3AeO2uzcR2Wrb11Nzv41mF5fcqU4eoc4mET+b0bvmJj5BTWm4OZwB7Jot199QkAca/nZiffOJ1RKiWCfp6SGFN+VneiJncHZ7zR6dEJwlJBv9GcptXOPwxZeMvXTuHRGjxaQ9w+uvJDsp9H1ASxRo0aNWrU+JRRzPapitLQViHxC1RcXAWxDEiMphuGzx2CE0r3tH0eq9JWG9ua/o1D2rfdIvY8S3m7u8G94TnDPCOWivcHp7zV6fn+R6ferYURr7V7NCvzfrtxk1Aqvnu6f4U9FQRS+sRN4Qrbx4FTQK4Qp9+QAUdmzFE68dH3jiAuC/WJpJpZphrr5kjbQbRgx9XWcH84YDt2KtzNRtspokHAo50eD3Z6vPPK20hjOH3wiPs//jGvn4zY3j9h6/CMrcMz3v4x/AZw1oo59oTx4WYXs9EhVgGdICQqLLKhRmQRVrvzMdH51LLp7aVZc8KHgzO+2N0AwIYGAchcYXAE8cp3SbFo9iEleUFg/QZiHwDiTpzBvnuA+P51xI92SpukvdVHHDURSTBjOwyEU0BnbH4L768cCegkMzOv1lrOspReGLl7XjK9DzyBJnPBSEOd+T5OWQmBmTjS1sgcaZtLF51HIGE/GTPWOevh1A4tfGqunVcM5yFwhPS0udR6Wc4eXh9evJ0Cu0PsTw3steHtowv3HVi0l86jmcMpzpZbnOYqUYo1NnQEV1npkmFNjkr9dqthOf49xCgoNyWOK+fssI04bGM/3sB+6QCuuftkWnNxhbszUVNr7HD2fBZpqJnV5YOuQEqaKuC7Jwf89e0by0XKSwgikYHbTkVUR224cfWAoJ831ASxRo0aNWrU+JQhcOpIddHbDUPC51D3ngexnwnrBYudh5fBqY+LC6JgRe+AlHDyxlParbZbzAn44toGJ9mEcZ47VVLKkkg5i6kkkoqvrW/PbOvXtm9wkk743umBCz+5kNw6a6MVrsOMbnqlgu9ipmkjink07ruC+Mr7zAfUgJuPLBIVi+CMUClaQYCeW1ieZSnXmy3OswQLXG+2CaVAShcgE/n0VpQivbHDt+0rPG22wVo6/RFb+yds7Z+y/uyYzbMhvXt7vH5vj18BMiU53lmn/cYRX2xYHvfaTrUYAami0TBcb7SnM5Q+oCZrJk4tKs6pJw8yc4Q90c+hfIwDZ8iLqzOIqlzCT5MnPXZH2Dtnzrr51NVpcMOReU6aLgilIIhSlrURKwni+VyqZ+W8n2QJoZSLFRWFspO42d9Ua7Q0SB3CIHIW3GLGbHPiFM+TxtKKkQJKSK+8zt4/CwriReimcNp06aBVgpg666sN9Uwn5oUI3HkVj3rYx1147ezi1xcVF568PZuM6IXR1JJepJSOp9TBVomSANYSxFELNYpJ2mPGWiNzb5kNK/dUQUKrCqIn5vbXHmFT5eY2n3QRP9rF7twDSXlel84hJgrxnevYW32X+Hte+V03jHAfimJXRRmmVP2d0goChjojNWZ5Q834EoLoz4kAMD+bh32fFmqCWKNGjRo1anzKkD78pRpm8bXe9sXdf58AgZQEQtKLnp8gusCRJdtcoSBKIRDC/cAgz1gLIrbiBp0gpJ+lSCOIhSpJg4ULibH0mZZXCTwMi2JrcfUgi0Lx6oVRWd8xnbcTS2ctY6kIhCS3hsgfSygEsVQLC8thnvPFtS7nWYrFJa0WnZcTo2dK32eIhRCcdJp8GAmuv3WbvcmIrrbsHJ6x+eyEW0d9rh2dc23vGPaO+e3i/aLvciKvc/TDBie324TbPYrlrDhwKk3aGRNJicGiEGU9hsjddUjMFQmiARLlyJQ/TdoaGlU7qGuAmIF9+whOG4h+7NJkG3pqOxyHgCNBgRCMrZkJzJlHMX9oK/OHxlr6ecZuo0Wqc9rME0R/fVOflOtnzkQ/dhbcXlKKVHZjjHjSRZw0sfME8Sx286zdlMATzZmAmlRCP3JzfReQivK8dP2MZj+aVQoP2m6/dofPlfpp75wjHvUQj9ZcifsFz1fEYJpumxvDSOcuOMsTRNt016e0WcLiMa0lcNQiHDQYtUcM8wyZeWWwards5u6MV2tozmNHgNuZC8fZnCAmgUu9HUSwVlhf7dLjEB+vIwYx3JfuuM+mv+vEcLYPdRq8NXtjKiHQxjAxS6pKACb+YchF19LPNwv9cuuKPm3UBLFGjRo1atT4lFGQQzmjIF69wP55EUgXgPMiM46RVDNzP8XT+5UhNZUuv0Ge8W5vEyUknSB0oRVCECk1oypdlFBZkOnL0gstXFyFsAK5dcml62GMEoJOEHKWpeX+LZu1jKQilJLcWCJJaZON5mYTEx+u8pXeFnuTEWOdsxHGrptSSvq5IRRTcqx8n16h7I11zkk64VrcdMpmI+betXU+2F1jLYx5MuzzO7LFLw00/fsPkE/22Twf0uYjbv8I+JHvoF/vcLy2wenZiOPeBs+a/ZL4K0GlHsMdq4v7v8ICN1NOjYmnC+Zpv6coazyMsLMKsAT7tWfw/parRwCXLosLqinOoAu7sRfvibdwVgNqjtMJN5otemHMR4Mlypmyru4kVaVtUQimKlavovYVyt+TDuJZG/ulQ9gaIT7YQjzouXTcv/kAJSSDPJv5jImP3fyd3RlerZmhCD+ZC6oRp36/VswSDvKU4zTllVZnbnuZI7gnTex+2xXdL4MFDltu/q83oZ+nrEfxrJJcKojh9AHMHFEqCK7qN7C7ltNsgsq23Gxl9WOkPMmaBCU5dMR8rseyl7jU27O4JIhLM2oSBY9dT6SYhNhhOKsgzp1PKdzDmfm0WffQxynoC3nCFkgCR3Qv+jWj/GepVhBr1KhRo0aNGs8DhXAJoS9YzP28CHzHYvMFehajucqCwu63KqRGVmxbxlquN1zIQzuI0Lhk0EjKyhpPXEgQlRDOpnhBOMU8aRX+a1eZtyzSK9fCiFgqrjVaDHNXFm99uuk8AimJpCyVxiKJNVazs4lDnbETN9mIGrza6vJsMipnGiOp3LlQ0/Mo/P+KKStjLUpKDO68x0pxkrrvtpTrYjS722Rvb7P/ziv83rP7vPrgGpsf5Gxs3GUj3Wfz8JTe6YDe6QB4CGfwtx4JDtc7nO6sc76zzkm0zdBew3qCmJglXX7LUMzyVebbtLVlSm+h/IVIZ6etkGFa+awFuOXJRsV2qITw53jFdTyLpyE3lYCasdb8aneD3BjesyvCZaIcMYpQRqKFdYdb2EGrdtVGjm1kroojB550sIlCPHC1DSINsJlESUE/z9iKGoiPNhxpedLFKoN945TH4wHrYbxod62i41Rm+nNKf9FduSw9ExjlObkxS+95+/op4qSJuLsO+y03K/j28ewGzmOX6Lo5htAyGufcaHZ4klUIZcPbQsfBNAV4mYIIyH4DYy2nk5SGVu76zKOZOzI3DqEIBpqzCdte4lTLswb2jg/2scyq9AbEe1suwCfUrmfxoO0USWncrTMKET/ehkxhv/YMiSDReiGwSwqBxTJZpqAnypHY5iVKsKoVxBo1atSoUaPGC0D6+cMVY3wvHYGQNKSaSQi9KiKpOM9SUk/sOkGI8nOEy1BVEBGUFsqGcnNpubW0pEL74BLBartqsT0p4CIB0WBRwtlo3XynrChZFyM3llYQ0lABvTDmZrPD/dE5uXWF7auU0pYKOMt8WTn4OcppLUihTBX22S9010uyXJyP3JoZe62z54rC8IjFEhYpsl51LtJHdxst7g3PSwLbDUNAkLUkh/Et9m824fVbAMSnOVt/HLCR7LPRfsD60QnXj/tcP+7Dew8B0PwXzk42eHwWkF7bIm2HyOvNmaqNBaT+exX7oMX6vjoX3iNxDxnc/XPBtpbMpQlREOblF198vO7e87XTkkPmvstyJ25ylqWsJJeRgRGoLCSVCWgJh03X01clKgLsVw6wZzHig004b5QEpSQko5BmT7MTN4jzCHF3o/xx87rrKMyGlkGeXUwQlUvfFaPIkfXQuJtrGDqys8LamFmXxrlAwgE2x9i1CeK8AQOvRH7heOa0FNZjuz0qQ2Dc57Zy3hvaKYzjYBoGNNcFSCPHCotIAuc+nkADlqd5FscyUVM76HyQT6HkVtRAVz/hdz6ViB/uum7IOMd++QDxnRuIh2uuhqM3cYTyvAGPXZ2K1e73yUTnrK24FktncC8LqClQkGdTE8QaNWrUqFGjxnNACE8Sn2eg6BMgkG6WaFngymVoByGvd9b4QneDjwfnPJ0MaalgJakTuOOz3hpYqIOxJwdFCExWLj7thUqqI02sJAngVStcJUdxbrW1V1rk5NbQUgFSCH5t6zqbUYNvHUlSo0sr6DK0gpCjdLqgVUIQy2BmNtF93X1/I2qwETXK18deQawm10oK9dP9oegUNH5eSvj+tl4UcL3RohtGpQLZDkJipciCDAWIdKpmpg9vsBd1efrWFvadXR6P+lwb59w8HnD9dMj64Tkb+wM2x4ds3gXu7vHXACME/V6bk60ep5vd8t955BfWmb+fQk3u7cPgrb5iqiA2lGKsc5ifBaxCWRcOU9gOKzONS9XqUYA4aDt7681pbUQ/z9iMYtbDuLSnLlWTPWlRWYCJxjSPuk6FujYgFTnDNGejmNndmLh/nnYRgwibezvm9QE87MEoRK4nbEYNGLh9te3UBabccRbX0IcSXYpuCqPIBdVsTlz/Ya5cSuuKj4m10AgUqdGLJFx4QviDa47MAmjhQmwKHPo5we0RI53RCUJuNtu8f346sx0aOWLsw2yifCY1tnyNMqAFxhp06nc4vIAgJoE7VoDuXOpnZNzs43BKmC0uXIaTBuL77phsO8V+46lPnc2nc5IbE6fknk8/d6QK1dAkRhMv+X0oECQmX3wgdVWCWCqItcW0Ro0aNWrUqPEckBQK4qfzlLmpArpeJXtevNPd4J3uBlII3u6sc56ljE1+oYIIFmcMnAbxNFTgF+qUKpuDuFBBVEIgWR6UU0Bbi5SOzBWkdL5uYhVya0vb527DLZRjpRjkGcr3My5DSwXkZhpmo4QgVpJASnKvlllw1QlLUCxOqzOIcs5OW8xVGhzRKYh5U4bsxE26QVgS0UgqukFIEqROtSnUveOGK0yPcuybx367kuFam4/W2uyHkVNZfu81WsEZ+s53eaOf0jw44cbpcGpP/Wi67/1ui9PNNc7kNv3xkBOt+Ol4SKQUIGjIoLTISuESYs+Gl3dZul7EwHXtectpSwas3b8GXeN68QoUqtK12eCWoc754tomQgjaQUjo1csFMhC57asscMmrz9wMm7025Mx3d27MhzqtTWAQIXKJ7SbYrrdAVuYmyf3OdFJ4dTr/eNV+d9tNEc9wc3Obk6m9tL2ifgL3QCaSinGe01n2Ed+cYH/rPnz7BuKk6e6NwBOdTCL6sbOBtjLyzH0eWipYTPLcGsEjZ62lkS8n3spCorAGTOLPxRIF0cY+7XMcuPCXUEO45AStJW7u8dwFGhmL+63ywx1HDm+du9AjT3jtW0ew38FeG8DuEO73Znl1pghbkjfbvRWfbUuil6SYeoJoawWxRo0aNWrUqPGzQJli+imtITaiBr+1e/uFfrZKYoUQ9KKYHqvTUAtCWCiFxc/HUhH4xboUVPTDCyoMmKaYXk1BdBbNQEgMV1BrcBbT9hxxbqqQo2RCKwiJLlAQCyJX2GSVkDMpqNaHtCxDLAP/78oMoldLCxhvk9VeUmwHIYGUZf3A6+3eTDLtVtTgYzWmBy5BE1xdAF5F8otoIaxPhvXnVOBmz2yPp3d26UcN9pMRtx+9QnxgWO88YN0esHF8xvrxOd3+iG5/xB32gB/Cn8PvfEdytNbmcL1NfOMaw8iSb28gQ8VG1ODD/vnFFwIcKTzF2Uw9QdyerCMfuPoTMwngjVO3y544VYvdrbVgLdcaTQAaUtGUAekytcgnmco0QGuIDjrOxrk9Ik8NoZQLBMj2EsQT/5eNyfK6hoIgBtP7rwjrEVKUFtiV8HOGoh+5q+O7Ky8iiNYf65m5pHevIGqpms58FtUN7bRUfasPRqrnwL5+iigIooD3+qe81u7OPngKDCIJEFZMFeZoyWfREy1xHjvltrO8BsR2E9cBOQxha8xu3CR+sOnmF7eH2HcPZ3/gxhB7ozI7Od+B6h+cLFMPgcqjmdnfN+LKCmIdUlOjRo0aNWrUeAEUxEldoJy9bLxIwueLQBYJlt4KVpC/hlIEUmCsqNgmmXnNMgg/r2kuUASNtURKlQvZWCmSJd2Ny7e/uFhsKWfX64l45TVyltliv6c22WagOE1z/1VWPgSIpCOUasZiKkrlrTwuOU18bXvCuhE7UvhLGzsz29yMGrwfetWqKAk/dmSpKKX3R42SkrRyjrIgI5o0UNZZZOPzNuLeOimwP9xk751D+LojeWGS0Tvt0/uJYX1/xFq8R7d/yo3jPjeO+3B3j7f9dofNCL2zRaMp0btbPOu2OOhGrDXbzGNZ1UVREA8gP9rEFHbPJcQpt5ZAStZCd36EEKxHMc8mQ7rz7xU5BUtkAWoYI7XCbo9AWYwPJ1qYY63MJtr1yfS9r0IQfQ3KxGg6F30WC5ulD6oRw6KfcLkCq61BItiKmzyZrEgpLVBYPbPK/V4Qn+b0ni0edBRKfHkOGhq7M0QctDHNlKYKGOTZLEH0BEkahcq86rbUYuq/VgQDrQp/KQKQvGWzJQPEvU3Xd/r20cXHC9BLML91D/Gg52ZD04tt9gp3zGoSQlix4hb32xUVxDqkpkaNGjVq1KjxXFAIFJ+exfTTREGIrHV/Lo4xkopQKIyEbhCyPxlhfVLoZURZSYk2hkGecTxI2WQ2tl5bS6ti1WxIxShfrbjMY95q1lQhidEXWnLdbGLFCuqPoaNCDs24/Poqi2kgJaGUM8R9GlLjYLyaU8wgtlVIUwV0guWVKIGUWGXdfFwqYRw4paWblCpOQTYllLZdYy3GdyEGWpFpw/rHTnEuCIEYROV+ZXHI4bVNjp7tIrIO5lce8zg6YnuS0T3u88u5ZPB4j93zEb3zEfLBU34Z4L3H7v0EjDotztc7nPfa/t8d+mGEYXNq2bTAszYWi33jBHl301VNbFStl1PilPkZvGpa72YU83A0nVEs4c+HSBXSz9WViiCCwM8MBlX/ajvFSoMw0gWqhMbVZYxCyuhZTxBtlSD64J52EHKeJTPdlwuItQvKKUjn6GKLaWac2rkVNS5v0qj0P5aYs04WqnXsH+jkc+fAfnUf+3CNZPeMdhAwyefUwcoMnvQEcWlIja9GKbo3VxJEfx5F7pOPU4XQ0gXQtK/2EIjQuEAhKJX1VVBCoBPB9e+8g9gcY7/xDA6bro8xyi9Uct0GaotpjRo1atSoUeMFUKhiq+yHn2cUx2R8QElVHewEISaztANHNox//WVpo4EQ5FjGOifBsjlHkJyCOF34xSq48gwi2DJAp0AzcCmMF9WCNCoKoqgcQzsIyf17W2vLkJp5hEISCjlzfqSfzyx2vZhBnOicgrRsxY2VBEMK4XYp0i6c48irhxvj8jWFIhRJxQC32E2NRniVJ8gDGAVE/Zabs3vjBHHQdtubRxlSY7AC8l6XB62YN3Zv8x+erbMWRETW8t81tvjJh+/Ds0N2zkZsnI9Y64/o9EfcfDi7yZHq0D9b4+w0pK826Z83ON9pktzuw91NOGjB20cu2TPUM/bF1BjaQTDzwKEVhMvtyX4GkVQRCH8+SxXNhQPlxkD1sCXYd45cYEqR4NlKEecNbKKcKrZKQZRwrdFifzLmQgggdhUcVotLLaa5dfOu61EMiAvrXWy0SJLEeNY6aXEPZEKfCpzPB+soC6+dofMMZSSIOfKnpoROVkKMFhCaKdkGbGMF8SrOY1GpUihz6moW8hKepIpstoqGh2vuPW64+dZASkw/QBqJPWy5hyw/cRZn+6XDxWCeeUh//HVITY0aNWrUqFHjeeAspvJTm0H8NFGE1BTzd1UFrROEfkHrQmcK6526xP6qvCXV+A5GO0f+tDUznWYNbw+cfn/5nGMR6d8MZpdDoZQEPn1zFVwgizvOYt4SXCBQ1Q4rVyTVBsIriJXzs2zesgj0cWRT8utbN1YG55QPHCKNSAJ45mycdrNKEA1KCtpBwGHi3ic1hoYPCFFZgB54W+PucDZtch6eaJgwR2jBZtRgrHNfaeKseiIIMNe2iToh/8uTe9xqdjhKJ7wSxKydDVk7HdA9G7B26v7p9Ie0BgOu/QTgPvBdOITkbsi52mTAJv0/CxiOoL/RoJ/rsoojs4bduYcHKwOQSjVN0hSeSDdzjLWe8CuyZX14t+fUyFYO5zjFr6ERSwmiuw+2osZi+MmqfRvhSPk4cEmtK4hJZgw9368YScneZEQoFdtxY/HFnqhVE27n0zmttS4FVwhaKlypxBefqUgoEl2Z8fSWTGkUUR5Oj2ceAkeyx/58XaIglsS7mO2TV30A5FGdvywwUcifbju76ppTJJUQ2LHyuyjge9ecCr8zhN3Rkg3PoVYQa9SoUaNGjRovgk87xfTTRNGDWNSbzyiIoSOIxdesn927aAYR3CLf4havoZ/Jq547be2MHbShFNorHxOd8/HwvExirSLz3Y6tOStp6ANnmhdYASOpUEKS+2TWwipaJHm64wO54ilA4FNXq8dehNRMl76irOxw4TviQttrQc5LteTY1zFsTIM6cmtRSJoqLIlsajQtP+uldICZFIpa5tVBu1xBTBVWWIzSKCPYjZucpQmxVH6/pxUVNxptbjbb3Gp1OEzG6DDgZLvHyXZvZpPqP92iOxnQzY5Z45BucEg3P6F7NmAnecYOz+B9gL+EY7AfwajdZLDWYq8d0d7dQfUNZrOH7XW9FXjJNWjkjoiPQprFt5uZ76aUtIKAoyQj0a4SYS1cbuudCarZnCxXEHFprp1VauY8CjIziFwP5AVzb6kxdIKIhlSshTHaGo7T5YEv5XaXzSA2ZmcQAdpBwHm2PPhGW+veVwUM83RKEL2yt6NaiJIgLiHaxXuOZ9XbBcwTxFJBfE6CGC4hiH4+V1gBH21iv7bvjr3yMEQMYkcgv3B8tfcpKnlqglijRo0aNWrUeB5I4YjTpxlS82lB4GyOjszNHt9aEPtQGokQ1tVTiItrLsBZTI21aCxtpcgzS1QhVgZLt7KAj6TCWvf9zBiUnO0mLII9UqNpyGDBYurmJeWMKjmPSEoC6bZRDdqJpZoWqePSVZcfk1MP5zv+AiFLhbQg2MUxXPZAoSSb1QX51mim805bQ0MpF37jyUpmDDLyCmKuMOVMXj5rWS3m7NzBOaIRaoxwatLNZtsFogqnZWo7nS9tqIDf2r2NsfCD08MFkl/AdCzneovzcIuHv9SBnWvuXBhD6yBj7c+bdPMzOvkZ7WifbnZOazCmPRxzDeDDp8AP3C5KydtrHdrNgHy9y7Dbcv90mgy7LUxRSl8s5ps5qXGkdjNq8Gw85DidLLWuFrDt1IXdDP2M5gqLaSgVTRUgccT5ws9+ofT5oBpizUEyJpaKtTDiLEvcfatcYm43jBBC8Ld3b6Ot5f/9+O7yTsSlKlrgHgB4y6zFovxDjZYKS4upthbt7azFMcVKshU3+N7JmI1ie4X1U8uZnsylqBLfVSQ4qGyv+u/ntpjOWVUB4S3YVljEsw724xR1+2hRLb/Rv3z2sNwooGxtMa1Ro0aNGjVqPB8K1ewXcgZRUNoL4zmC+GanhwU+HrikzWo9xUUIpCyD5yOpyG1OVA3OQMyogKEvai/eIxazltMHowFr3oq4HTcXZrYiKYk9iVqFYkYr8wXxxYLfqZ3FDOJqlTj0ITXz3xczia22VOIC5KVEuryfwuni2b55MvOaQm0N/TkFr3D5n5G5Iph4st30i+I4RyQBNlXT2btcIqzARqZUODtBxLu9BqM8c32O1hBWFNSNqMEgS8vgnfljz41hEo5Yo+F6+ban1lgrJcNrMcOvd3j23mtuv7/5FLbGkOes9cckh8f8KhGbgwR5fIo8OSM+PXfNGE8XFaBx0GQoe4zUGsO4y+DjjL2GIu916fQCtO+f3G40OUkTtuPm4kkviEMxK1gQkHCWIDaELM97ZgxKXXAtKwqi+3vORGsyY1gLI86zjIHIueWTYIt7vxNGWGvpBCETfQWCqAUiDdy5roRLFfdZWwUUGTQn6YR+nvF6e839qLd1d4NoVhMtlD0tnMIsDShHLs+zlF4YT6+7D6qx0WoL7c9MQbTAcdOpg+8ewI93kB9u0uiHJP6g7bUB9CPsGyfLt7kK0k7383OKmiDWqFGjRo0anzIC4YhB8As4hFhWNSxJJy0WhmUVxlw9xSoUCqLAh7ZUgjOsT/hsVeygoZxSb20tccVyCr5UXGuUgPVo0ToYSulUxAtmI4sZrdN04lXQ6bGJ8jXLVTLwBNOTxPljzcsld2ExLRTnyxVECyA8QZUG1mbrEbS1NFWAquynRSC8giizAJHEWKWnJKcghUmFIBZBJ6FeIPpFx2dm7AKpLZRQs8RqOdI5WXsMh2DvnC91hvLKOcYIxGELes5K+cFkwG6nST/e4su33qDdaJUvP+73+aP3fsTrqaUzGNPuj2hX/t3Mx8Cea9X4o+nbGCl5px1z3m4g1td4EArC9TVGnSajdpNJK8ZKCa3MPRAoUlVXWExD/9AhlgGZMTRWPHs4SiY05MTVcvR912OsZ86Z8DZGN//KzKysEIJrjSYfDc5oByHWV3+4a2XcvhbK3sT/u6LeVT+3cRAg/L1UdHEWKD5X8+q7DYx7VS4dWY41CDhNUqywPBoPuN5oOZW/4UNzVtlLAZRLOl4kiM+pIEqwgZ4SxEHkyPH6GG4OsL0E/uwW8qiFarj7yr59NK3jWIJEa3JraM9b0ZVBZOF8leLnCjVBrFGjRo0aNT5ltIOQv75980KF6vOKouNRW7uSABdER1tDS1wQ+e/hFETr/yzIzXTllVlDKNRM2X2VlBS2uOrPACAsBsrOvCoiqS4liOAW5qkxNCr2Q1H5f2vFSo048EmR8wRSIcv6CesTVqeJsJcoiMVs56tnkEvs66cLr8mNoamUP0eiLJdvxIIEEOMQqRW6PZkGqpQEMQA84SxL0PUC0Vd+lrJqMS2P2x/zspTZsc7RN09I1iHcuaD0/bUz7GtTFbqlQk7ShIYKaM7NaAaNmKOtNVTcWDx/RzGdP+/S0n263UOa3afI03OuTzTt/ojN/pjN/hj2Tnh1bheMgGEzJum0GI3eY3zWY/ijhPGpZpRtMDQJmZXgH25E/l7qhiEnq2YE/TkQQUoXdy3cOXbzksLbUyWuhmI/GdMKAnbmlM3tuMl7/ROejkcgLLebvktS4Eh/Kh15mSx2+1k7JfpV8mfmEnkNloYMaKgAUWVCRYrpJHDzk161nBjN19a3meic9/unTv0s3rd1gX1T4CzSJUH0qafPqyCCC2/y6bBify7AqZ1BxyXShsOm+32zZHbyNE04z1NeaXU5zRLGWi8hiJ//oJqaINaoUaNGjRqfAVaGXnzOUZAE16e2nNAUC/VChbgMCkkhYMxH76fGEEs5E94SVgiltpaWVEz0dBFaqCqJ1guEArzF1KuIF6GtQjJraFVmEKUQ5XtfpCA2VMBXelt051I3HY+YLn6jIpSHyxXEqXVPY989XPoabaEpA78tW5bLt1uOIHLi0i9la6pj2tiVys8E1aTT+TJtLc1KD6UUAol0ITVLFNKijBzcffJgNOBms0VmDY1IoZtDQuGuy1mW+G7D5UvW3AcNgbvuCwRRyGn5+fzpW0sZBWuMgjVOX+2Rvb7Go1Gf39i+yWbU4H+59z43E81/09zkvUf3UedDNicZreGYuD+iPU7ojhLAWxC/BfAj9+f/B2ShYtRuctYIEd0O0c5TvkzOPamJ19cYNxskzcgpkf5YlJSYcFZR01FOICTaWnLj1MhrjRY/Ojvib+3cnlHPAXphjLbQkJLMzpGcSLt5SS2mATVVBU9M76PqfKzxdueiRsNad75jOU2sVUJMyVFRnxFNZxt34iadIOTD/qmbkdwaYV8/wV4fLL2204tonNppeXGLKUzTYYchPOi52cublffupHDeQFqJjjKW/fpKjS4fNhkfULUAn7BaVHh8HlETxBo1atSoUaPGS4PEzVbm1lxAEB05MXaxg3AZAimdioYgkHLGLpoazXoUzxCx0JMVay3aOsI3zKfdhEIImspZ/eYTTMGRitc7vXJOcRVaQUhq9EwibaniVYJmVuFVP881894VBREgVmo6s3oFgigqx7gMQrikVWdHFWWYycaG5CDMUak/H60KaYgqFlOAiUKc+RqFyPjruFjXoa1dqDARwqW3FnOWidGEUnCSForhjB7FeZYhRc6t5vIla+bvs17sEjyDufcLpUTK5YolocU2M8Q4RJSl667eJJYKG4WI9Q3s9Vc52Wry47Mjbvi5v0ejIdJo3rSKznsRrcfQ3NqjtWdo5QNajWNagzG90wE9gL0T+OAhXwa+XNkFK2DSiBm3YvqNiFEr5kzEhMOEsWozUW1OTZ/AWjSQWU0oJG+0e5ymCW911xcOqxdGdIKQnbjJg9FcLUdlFk8UdSYzATHThxrF7K/7qlMWix5NhCCUioZSBNJ1RiqlptbaQv0Mdal69sKIjajBa+0e94bn3Gi2sG9dYb4vMAgCR2pfNKSmcuzig01ELrG3z2bIse2k5efVxBnLfjNZKp9xfCjXPFRBEGsFsUaNGjVq1KhRw4XUCDBL5s8KTC2m9sKuwQKBVywEuJqLCoVIjWY9nO18c/URnlQK60mlf+rvF8DdMGKi8wX1BRyJ+Upv69L9aig1Yx8Et4+iJDni0vnKeRQKZKEaxtKRuegSuysUxEzMhI3Ow+JCagIhEVgyY+gEIVEgGW2f0n3qS8GrqpIPExGJW6SLP7uN8BZTG2oM1td7+HNQsRnPp7SCU0WLfr3MGLpBxHE6oR2ESNy1njkfF4hFuXEzYG91ehwmiyX084rlAnoJjENkp6h5sGVCaChlGUyzHsYz950QEIYhp0HE+GYPebKL3b0G455TcP/mA7CWMM3pn5zwNdXgbSJOjo7YPzxgOzU0RxOao4TGOKE5Ttic2bG70z/+/7wjNA4ZN0LSZoONjQ1ebUQ0H/ax7Sam1cS2W9h2k1a7yVd6W+zGTR6NB7OpqQXZP23AozU3p1rpycROw47cnOp0UlV59T7wrwikKBN/c2uIUUsURMPYK/WFa+LNTo+Phqcrr+kCKkE14hMpiJX6F2kWLdjd6bxu0Fw2Jevuj2pK8VIXvfQ2289xkmlNEGvUqFGjRo0aLw2ynD9bVHOqr6FMOr2CxdS/HgHtMJx5aq+tZX3Orhv5ovvcWJckCqUqpz3xut5oMcyzldbFqyCSCiVlqVhCtewewD53Uq3yqk2R8hlLhfTF7ZfBnfvC4rr4vtoahFdyEq0BQWZdMqYSgtHOlCCWCaYwG1Kz10FkyiVftlPYHS69jkoIDCy1xcZS0bduMZ4azXbcJPfpm8M8W+gKLIJSlsGFhAS83d3g9U5v4ftCCCKl0Ga54mTfOoaNCXInxQ5cEFKRYNsKQnp+RnV+zqyYD52YnLjjicW5q3GxBaERgiwOOVxrMdi6Tr6+zdlowH/euzedCwSOxiPseExnnPI11eTg4ICb76/T1CMaeohqH9NKMhrjlGaSwdkI9o5ZnJ6d4jfiCNNq8ruBJY9j8kZEGkek53ukwx7ptxukMmPyWkJqJyQ6wipZknvAP0SgDIhSQs4Q7WKetBUEjHP/QKGYQcynDxDGOudmo12pPFFLlbfU6DJEaQaqkmRqPoGCWJkptK+fLgbQdCqBTvHycJriQZX7s5i5N7U1fNA/44vymntNrSDWqFGjRo0aNWpMVaxV6hFMSYMVzChPK7cpRJnc2A6ChSf78ypg7FWNzBoQTnUsFnKOeMHNRtvZ4p5T4asi8kEzVSJchPRYPzT5vJtXPjimsNQWpfOXBeYU7+0W9CzO2wETrWmpgG4QkdsEa52C2A0jlJAk3VFpuawGhxyJATsASYB41AXAfnkfNpwt1Iwt0Vxtg1Ofls9gRmqqAqfGsBM32YwaSCH4aHA6rd+oEJOlvX5MFchASgKWn6NYKvp6RVJmM4c7fYSIS1t0odpej1tsRo6GdYKwDIkR3kbdCUIOkjG9tie1Z56yBfPkZTo/WpCjqg14jOHtnWuk1hB3N/lhL+D06MuOiEc5B7/2HtcbbU7TCYf9M36zucnXwxZiNEYMR4jh2P0zcn+WwzFiNEadnHFj+VFPcQh825/LQDGOAoJ2i6jdJmhE/HY+QTYb3BAW0YjJooCg2UCbnFbcRxjJGpK+0cuPPdIk2rBbSZaNpCqJZ/X+OEpc5+Sr7e7sNqpVF59AQbTCTmnpa6eLL4gMNspduumKXkZTuafnH1zkxtfSSI2ktpjWqFGjRo0aNWoATrERuEj+VQqiKpIszeo5xfnXW6/GtYNwOifkSdj8HKEQgpZXoyhJZRGe47a302hy3c+TvSiiJfbPYtFfLB2fW0H0VRUFkY2U9ATx8u0U85/zClyBsc7ZbbQcmfJqo7GWjgodgRFgv7qPHUQzM4ip8gRoELnuw04C69OUUYMllrPXIBQKKeQKBXE6g2ixdIKINzprWODe8Lyc3ywIW6RcoNAygqjnKk6WoSEVp7YILTKcpilbcWPhdblx92zxPn9952b5vXYQEitFog2BFARCcq3R5slk6MhKK0OMvJK9QBCnduumCgiEU24jrwoL4Gazw1vddfpZihTSEZXM1Yrk1tIOQlKrGQUKsbWOvoIFmizn9++9TzIYEkxSojTl+iQkfqYI1ZA4GBIlGVGSEvt/r40SGCVwcEIAfO3CN/geAP87QEtBFoVkQUiWtMllRCYi0p8a3mxm3F4/Imp3sGHIWiB5+/yQuNFARCF5oMjDgEaeoALlZbrKfTNDED+BgnhzgO3Hrtdw1a+dTgrHQWmrnoe1oqyRcZjupylSh0VtMa1Ro0aNGjVq1ChR9OtpSxmXv+w1Ei6swqhCCoHx22uHjgwYa3kyHnK71WEjWlzsd4KQsywB69JGS1LJVJX6pIj8rGOV5LryiGqS6fNtU0n3s0UYRqkgXsli6jvyVogridFci1v+tU7pzKyh4UNrBAKzNkH2ZismjLDkzZRw7BQy+8rZjINVVDoQq8chYKmC6Hopp12PrSAg9KSsIK0wJWwbYYODZER3YUvuvS+bY21U3m9/MmFictajaOEeyK1x6vOSBxuhlHSDyD90cKrxDMlcS8ETRBtoJjovk3WFECg5VRBDqciMKYmohfK1gXSk2kYahkCco62lrQIy45TSqyT/up0OUOs99gLITAshYHjJQ5EnwwF/p7fLKzJED8f88cO7dLUhG0/Y0AKShK626MmEV2REmOak4zFmMqGR5jQmKW7HPR7B6wA8Lr/UAP7uJbueB8oTR4XWETqL0X+sMXmMziL0t1N0LNBKopXEKIUOpP+7cv8OFEZJjJQYKTBSYq89w4wlJhFY/zUjBbZ4zfohnG6h2wNsbtz3fCiPu5hUQoZn7+2i7kUXM4h1iulnj3feeWfha//8n/9z/v7f//ufwd7UqFGjRo0af3VRWCxXpW5WEzmvSnwKO1orCAmE5Ml4xGbc4Dd3bi1d0HeDiNS4gvF2EJbF4i5U5uX0T8ZSlQrXdF9nbaWrmxCXo6j0KGYlIz+DOG/hXPqzws2QLY/XcOh5y2QgZCmiNH1ojfLkbNl1O/zSfa7lPaewtOd76xbV4uIaL1MQI+EspoVSWJ05k0BRsJFbV2Gx22jxaLy6CuGyOdZYBhhr/dylm3Gb630HXCJq74L6mc0o5iSdoITrIVwPY6S3naq1BLHn5gpzpbk7POdL3Y2yEqI4D0rIctayjU+crZDcYq7PFlUXsdvnOAjo4GzbDXn15bv7HJiZ+pWLYKXwoTdd2Fznoe0TSslZlrAbtzhOJ2xEMSdpwu/e+QItX1vxBwePuNXsIDNN/B9vEZqU0CaILz5kaPr8xto2LWMhzRBZzvtH+4SZpmksQZYT5BqTpIS5pqktQZ4TZgXh9CE61cDTR1c+BS+Gh0vOjXDc0PqZ6OLveAJp/GswEmEk+SHYa8Cd2z/jnX35+IUhiAD/7J/9M37jN36j/Pva2mJ8dI0aNWrUqFHjZ4vCJrlqvk95e6MU4koKoiuPd5bLdhC6+H1r+c3tm3RW2AtbgauxaKqAVhCUPXLGWhpXIFtXQSQVgZydDyxyH50K9iIhNe7cWev67gIhUZIrzyDOp4AWqAbUwJTAuaqCYKogriARWTOB1nDp94AFq3ARcKKWePkC6b6X+Z7ElppeQyUk1nf3aWvohLFPv1y+X9bamQ7MZXCKJRymE15vr/FwNFh6nLkxtNVqu+pm1OCn9oTQGroqohUEREqSGYPqViy3ShNKSW4toXBBJtXzsx03OU7HQEzu+wNLBVEIAgQ61G6R7oNVYqkwylkYr5L8W6AZBExMzlbUZKzzlQ8Appjes9VKkkLlLD5DSoryoUBV0TSBYhI0SaxTqse3BpyLJv+bO18gq1ynHzy+yyjPWI+mUTuPx0PAcqsS4COMQd1rE7y/jnjtgOAgRvUV8uuPkCpD5QalDUprbJ6TpSldJIEuvm6Qxv0jjEUaW/mzQVqLMMZ/vfpn/xprcI5Ri7BgrAELiqLKxqIQCGvdPwaE0QhrEDmQzj9M+XzgF4ogrq2tsbOz81nvRo0aNWrUqPFXGlP1aFWKqSyL368yg1ioclJIGoGiF0a80VubCb6YR0MFbvEtBW0/Y6d9+MtVKiOugmJeLZoriReiWnPxnNsUbkFusERCEkhXOn8VpbWw9xbkR1vDo5Gz4c5XDRRqYygETaUwdqrULuKy41i8joG/B5aRkeK1qdELhEdVlK7cWloqpBOES+mhtq5Y/jIFMZQSISzWwq1Wh8fjwVISnVuz8oEDQNefO0ckAxdQ5CseWKsQxEATCUVuDaE3HVcflmxGcVm2XlhNm2pqsY2VwsSOWBR1I7FUWK9+XiX5t0BTulKKbhCirSEz5kKLarXnD9xDkEGelvO/hkLdnlqr3f5ULJjKQO72N1M5IYvXqKUCzrPpOdPWlFby8jxay3464Vqji1FNbNCFoIUIY8zuAMLZOcTDZIwSkkGecq3RemlOgSoejwcIBNcaLfYmIwBuedvuaZq4zta7PdbvX6f/haf8X/7a63C6WL/y847Przl2Cf7pP/2n/Nqv/Rq/+7u/y7/5N//ms96dGjVq1KhR468kHPlYPn/mvi+Qwr3uasoYPjnSkYv/6tod3lnbvPBnGj5ARiFpBUHZ4Wa8Mvey0A6CuRRTZlS851UQpQ+LcfupynO0ap5zHqpMUHUJoZk1jHVOojUbUVyS9qIfsCGVfx+fvgrcHZwzXpX6uQLzSrBTCZdbTN1rBakxdMNw5j5RJbl2RKylAj8jKdF2lhBkxhCIy2cQQ68eSyHYCOMyEXcehiUVCxX0wphASCZGu7AkIWip0JG9wGJbribBKE2kFLmv1rC+Q7BAN5jaWDOrafrjKxBJxfj6MeZLB9hrfaz/WiyVI4jPoSA2lCJSitutLrEMSM3y+oYqZgmiJPcW1YLEFt2fxeti5eZkH44GPJkMsUWATOjuv7aKFvpAm16NLJAb6/tOp18b6ZxhnpFIr8JdElKTGsObnR7XGm0/K/qzgTsW98Cheh+53lXhuiWpU0x/LvCP//E/5td//deJoog/+qM/4p/8k3/CaDTiH/7Df/jC25RXsL18Wij25edpn2r8YqC+t2r8LFDfV3+1EUivDkq58h4IpXKx/kpdep+ESqGkIFQKIQTdKMKY5ZbDAs0wIJKSOFCEStEMAjKjMXCl97wq1sJo9jitI8e+tpFArT4Hy+DCXQQWUe5nUwVX3k7oiUmZUBqEJEaTWs1us1XZhiBUkrUgQkpBKGTZc6expMbQCgqrof+JC0hqNHdOQyWdDXHJfkdKIYRb0G/FzZnvF2RbCIERrveyGQSlZbNKRLW1xEoR+/ti5b4FyvU9RhHrcYwUErzSC3CepyjtZj2bQbDyPK9FEZ0w5PE4oRWGSCnohCH9PHXb8kE1NtDESpF7wiD8+Si2uxa7e0ZbS24tO1E8857NIOA0TBB3BuTGEmpFMwxoEnC92aIRXH353gydarzVaHCQRBwlkwvPlWD2c1scRyglrSB0KjPQqlzvtSjilza2iaVTBQ+lJiKESKOtYS0KF85pOwzRTKs+3Hu43wngrv/EaLbiJukopwW+B1G4uoolPS5WwEbcYGRyzotr8pyw1vJwPKAXRmUH5sz5KR+kCKSkTEcuXANKCHJfwVGE1Hwe/zv4c00Q/8W/+Bf8y3/5Ly98zR/8wR9w/fp1/tE/+kfl1959913G4zH/6l/9qxcmiEEg2drqXP7CTxkbG58skrtGjVWo760aPwvU99VfTXTPmjT1hM2NNltry/9bun7cQGSS3e21SxWRfCRoHkWsNV1q5FXuqzAN6R432Gq22drqsH3W4iiZYLVkq9d5af+N/5X4Fu0wZKOSaNk+iAmVJAmMOwftq7/XBmOaA1epsNFpsbXVYavfcvu8cfl21o5jRjqnHcekiWXn/8/enYc3Ua1/AP/OJOleulME2QQToC0t+1JEQJBNFFARFLSyKqusRVRWQQQBadlFQcSLXC7IvSjIIspPBUFQRHFDZQellELplrbJ+f2RzLRp0jZp0w2/n+fxuTfTmcmZyUnIm/Oe98ADt7Kz4QEZdUIDbc4RcMMbNX191XsRkOyFLFMuAjVe8NBp4ett+YLsJSypgL5+9l+YzULABx4IC/ZHsFfePQjK8YVPVipCgvwQ4mObCpzlJeCVYplXeE9YMEKC89pULc0bqXIufL094S2MqB7kj5pBAQi44QWtJMPXI2/0LSvLjBAPT4SGOqpvmifdwwzfGx6oFxiEGmHV4HPdA95arVoR9+/ULJgys+Dl7YHqIf4I8S/8Pt+TGYwb17JRPcgfIUF+CDf64bowwtfXEyZDJnLMWkg1jQj08UZGbg68vT3gA0+b+xNg9kFwig9kjQyNrEHN4Go2/TE00xfJMMLXxxOZuTmopvPEXaHV4KHRoG54UJHXWpC/yRt3ZfijfvVg3NbmIuVGDnx97V9HhbcwIiTYFyHeltcsJNMXF3PT4afzwF0h1eCdlgQPrRYhPr42bX4w1FL3Iy0nBzu+TAUyAY23gMZLa3d9ABCOTHhlpah9ypgl4C3LENkSfHw9IUsSkoURNf38cTXTMjKrhRYmkwxoBXwc9EUfkY27QqrBlCbhb3NmkddZmOSsTIRofWASZvj62B/vJYzw0Gjg4+kBbykXkKC297aci1AfXyR7WwJDnbWYUFX8d7BSB4hDhgzBww8/XOQ+hc05jI6OxurVq5GbmwutC7+0KHJzzUhNrTw5w7IsISjIFykp6cX+akrkCvYtKgvsV/9sxoxsZBtzcftWJpJzHAd/xsxcGHNykJqSUUzRDOCWMRPGrBzkSpa0R2f6VY7ZjFyjCSYpF8nJaRBZZqSlZyFbmGH0zEZycuFVMV3hDQlmYy6S0/LOl5WZjRxIyMjJwc2bGfDMcv58t1OzkJWVg1zJBKPG0k5zpgnpchaSzcW3OSszB+k5OfDIkXDbaISPVovM7GxAAOb0XJtz5GbmArJZvRfZmTm4mW2ERpKQlm2Ej8ny2mVm5UACkC4Z7Z4vx2xGdrbltRbpeWmpGWlGGLNykHozA9pM23TA21lZyMzMtgyxZppsXovMdCMyMrKRbtIgKysHmWlG3BDpgNGM1NxsyB55r3ua0Qhfk6bY1zItKwu5RhN8cmXcvJGBrMwcmGQToDVb5qVmm2DylGDMykFmqhHJ2YWfzydHBnIFMm8bkWxOgznDhLQMI9KFDvA0AjFpSMvKgjbLE7eNWfDOlZGdbbkPamVSAF65Eq6nZyDTnAtR4B5kZ+QgPT0b6WYjMnJzkGU24WZKRqFFn4rT2jcMIj0XcpZAerq1rQ6YhUBWVi5u3cyAnGFW23I7wwidhwRjWjYyrH0zBJ4O73uWKRcmyQQNAJMmFxmZ2TBlmOz2zbxttPRVWPpUqjELAToPZGfn4LY5C1pZRmZmDmSdQJbJsk9uFgCTBHiYkJ5m2xeFEMjMykZ2WjZMmblIy8hGurDvr0XJNOUi2ZiFmj6++DszC+lm++OzsnJglk1Iy5GQmZ0NCRLShOU9k5GVDUn2Rq7Jcu9yjZa+Wpn+HaxWzRs6XfEpypU6QAwMDERgYGCJjv35558RFBRUouBQUVlezPzMZlEp20VVH/sWlQX2q38mCQCEZT3pwl5/LSxpjRCFFUbJdz4hQRKWuWSAc/1KAwkekgwPSYbZLOAtW6qamq2Llpdlv7QsfWBdxqGIe+CQsHzZNcMMDSSYzQLRAaHw1GidOo8MCWZhhhACuWYTZOgsc8YkDXw1Optz+FgLnijbNJIMoykXgR6eyMzNzZsPJqBWVi3IZDZDBiAXuE4ZloqqjvqAMtvOU5ZRTWObLiwJCWazWV2SRAfLa+Wr0eJWttGmDWbh3GupgWWuYDWt5blk5D2H0ZQLnWRJU81BLnTFnM9fq4OfRqfu5yFZ7p9tu8yWPmAWluqxQrJeV94+IR5euJhhCZo8JY3N3zwlDXKt5zRZ+5DkxPukMF6ype94SppCX0el3cp7V2mPDpY5iBrI0MKyrkOW2QR/rc7hfZKFlG8OogkQUN+D+WlhqUSstCXHZIK/tw43jEaYhBlmk6W6693efvhdk2o5KFsDyXr+gteQbTZBCxlekqViMYQo9DoduWbMBAQQFRACrSzjSkYahBC4lpUBf52HOjdVeQ3M1vnMljm/ZgjIMJnN0EkyPK3xt5JiWhX/HazUAaKzDh48iOTkZMTExMDDwwNfffUV1q5dixEjRlR004iIiP5xNJJsLUJT+IiHUgHUGUplUFeLy/hpdeoXO1+t1lJEAkW3yx2U9QSV+WeukK0TGM0C6uLxfkWszefouZXvxSYhEOThiVs5RstyHwUKsDQNDLUpyuIhy2pl0TThXJEakxAOiw3J1mtxNDqss665GKTzsksvVorUKOsDKn3EV6tDjtl2JNIshPqjQVF0kqVQkbrEh2wJ3gDAaDLBT6tDoJcXsjJziq0QGqDzhL9Wp+5nWZ+y4ILp1sJKyrqSsn0RnyAPS7qpSQi7Ijtaa9VVWO+Du/prwde/ICEsV5K/sJJlriSgkyWbYkZ1fBwvJaeRpLwCMjoTBOyvD4C1knDe85gh4K/1hCxZKsxmmXPhp9WhlrcvPDys+xmt55Hzgi0hBHKE2dJvNZaKuK5UeVVkm014ILw26vsG4MdbyWrpmdTcHGuBnvz3Lq+QkmVJG0BjXRNRK8vw0lnmaUqmqjf3UHFHBIharRbvv/8+FixYAACoU6cOZsyYgccff7yCW0ZERPTPo823zmHh+8jwciVAhHNrAebnr/WAp/WLXd5aec4trVEaGkmGUVgWOC8ufbYgJY4wW0deXKWV5HzLXFgCmmo6D/hr7StJKkGKQidrrJVBNWphGiEEhDWwFkLYnSPXWmio4JImlmVOHFcx1ciWALGGt/0yJZZ1IIU18JTUJUl8tR52axc6W5HWR6uF3i8w3xIfEnKt5zKaTbjb0x+1qwXg71tpxf5o4afVoXlwdfVcnnLevcrfLtk6TmoWgAzZ7j7U9a2GztXvxu+3b6Ka1vYHgPzXJGC5X+7grdFCgnV5EAd9y9EPKFrZciUesgYesgytLKOmlw9CPL3sjgcsQbGktQa3ulxIgMN1KnXWZTvy9ykfrdYSVEMg05SL+r4B0MkaBHt5wuSRA022dWhOk9cPUnOz8bcxE0E6T4R4ekG29pnixuuyzSb1tc41W+5HsM5yTVqb65eQW2Ak0lKlWFjXPM1blsVszXLw9ZBxGwBYxbRidezYER07dqzoZhARERHyFmwvauRDJ8sQcC5AVEYtXF3XrIF/gLp+oGWkSlLPV5Zk9Uuj6yOIliOUlE/X25l/qQBJsozUhHv6wLeI9f0UOkkCJAk6OW8UUiBvRMlyRbZyzGYEOqj2qLGOEha2DqKPVodgD/sgQwMZQlgCT02+19zRqJAyYlMcjSSjSUCIzXMoGX85QiDYwwu1ff1x0dvPqYA+/0LuSvtsgmfrkhDCup6lZF3SxbZNEu7xC8A9fgF258//A4ZliQz39FdPjcZSDdYsUFhdKClfdVelLbIsWZdakRGo84Tev+glZmTr+oS5HrnQShqHPwR5Ws9nEkINyLw1WjX4yjGbEehh6Vehnt646pWdL0DMG0k2mkwI8/DGX1npaOAXaD231hK4OfhBA7D02T/SbqGebzV4a7TIMpvgo9GqI/XKEi3CmsKsLK+ivq9gGSEU1tc2j4BWlqFVqv+aq+5qgndEgEhERESVh1aSC00vVFgWL3fufLI1bHI1QKzhlVc90MtaUVD50leWZNmSOlgwXc8ZSjAgSSUbOdIWGD3RyRrEBIU5FaoqQYBOltVI0GxdP1AAatCbX44ww09nH3wW9SOBVpIQ4uGFEA9v++Ms01Kt87vyUlcdBYjOppgWpJEBJQiXIOCr1SHcxxcdq9dyea6YpzXtMn+gI8ES7GhkGTlms8sj3/mvSQhLQOsOOjlvKRNHzA76rMa6XqZOtqx12Kn63fAtJlVVqnMbadpsIPi2ZU6eg2hUSVfNFWbLfERYA0TrMhpKewHL/cj1zIYnrO/nfCOIOUKguocnUnKy1BRiD+sIdf7XJD+TMMNf54HbOdmWANGUixpevmpfVT4fzNb1K81KgGi9N5KkpEDDOrKed25ZkqDcnqqcYlp1Q1siIiKqlDTWlFBNEUGJhyyrQZsz53M0z80VnhoNtJIEEwQ0ZbwumWz9wltwNMa5Y5VgzHFQVBxl/qOFZUFzLycXV9fJlnvkp/WAEkBZ0g4luy/CilxhRjUHI4iyNcCVHQRwkjXQqOZgbqUlWBCWOVzIW7TdU2MpsGI0mfB3Vkbe/iUJoiXLCKIlfdaSNlpSnhqNNQ3Rdn6kj1YHrSQhNScbIQ5GSouiyxfkCwhrQFt6Gkm2vAeE/SLzlueCXWq4zvpjj5Lu7KfVFdunPXwEMmolI1c2W4M1+wtQfozItRbikSHBU9ZYXxsB5EtP1sgycr2y811IXvuFAO728cddXr7wsRamLOw1yX+d3hotsq1zWo1mM6p75f1YoTyv0i7lRxGhrmspWdOdJTUlFrD+qJM/QOQIIhEREZGFLMmWKpZFjO7c6+/8em6yJEFbyHw2Z3nJGkvqmNlU5iOIWqVIDVz/JV6S8qpzOkrdLPa5bUYQJZdG2HSSpXCQn1anxIcQ1oIrZiHZzQG0PAMcphAqo4euvmayJEEIS3pf/h8EPGXLQvbJ2VnqF3tlf1dZCuFYipt4yBr4lqLivU7KC3Ty89ZoLfdecq2vA3lBr6WSK9zaXz01GmSZHBcgEtaAKP891ciup3frJA3M1sDPW+M4+JYlCV4aDbLNJpiEGVpZtgZ2lkq6EvKuWwIKBIj57rUkEOzhiXYhd6kpqYW9JgpzvuvMNVuSRQPyvdeU5zUJS3Cea1KOgxoumqwj67a9z9LfJSWArcIBYtVtOREREVVKGsmShlXUQJ23RlugMmDhZEmCtpCRCGdprSNpcikDTWfI+QJEl0cQrVVIfbU6+LtQvVShjMApxWV0Lnyxt1SWleGn1anXYFZGTQq9DMnh6KQsuRac5j8OkrCm9+U9qRo8mE1q4CiV8LXUSJYg2lKxVXa6HzoiSZYlNHJtKqxa2u6j1aGGlw/u8nZtoXRLlVdLsSF3zkEELPPzCk0xBex+1FDSxT1cGKn10FjabhYCnkUMf/pqdcg1C2thJMuPE1pYRxCR9wOBLEnI9cq3JqFGKcJkWU7ER6NDDW9ftRiOZK06mmt2PIKoLE8R4umFJGMmJEg2o9ka6zxepdiQUoRGIC+wzAsW8+b8CljSgTXW9klVuEgNA0QiIiJyK9maElqagK4gS0pa6b5w+Wl0kMuhiqnWmnamVDl0hTLHKdzLp2TBj3UEUZk/5UparjJS5Kf1UOdwKaMtlnL+toGFso6doyqV+QvMuEIZlRHCtrCLkn7op9XZtKWkhXzMyuicrHE5iC/IR6OF0WzC7RxllMsSuIZ4eCEiIMTlNmokGRplLU3YF7gpDS+NptAAUSijYgWK1Ogk2aVUXp2sgVlYAriiKhX7aXXIFWaYhLBWwrX8EGS2rrup3DcZksMU02yzGR4axyPAPhpdkSmmGllGQ79AVNN5oo6Pv02AaJkfLamVdC1riwpYM18hW9N0ldFE5VkkazAvaSSYNCbL4pVVFFNMiYiIyK2U1MKSpP8VxsNa1KI0lJGx0gaaxVFGASW56FHUwo7VyRqEe9kvAeHU8QAgJOSaLQU6XBn50UiS+oVbI1u+BAsIa+EQyS7B1CQsVRsdBQGhnt6Iylc51FlKmRczhM3agbK1MqhO0uF6dpYa5JSkgIsygmgWAl5uCL58tDpkmkwwmk3qPDiNJKFtaA2XixQpx1oKoSjpxu7rr5YAsfDAqeCPJ1pJglZ27UcVD+vop0k4XuJC4afRIccsoJPNqKaxBGg66zInUr4fcmRJgsnDBCGbIZllCOsIXbbZBF+N1uEoua+2iJFS6+seERCCCAd9VGMdNc0x5y3hkivM6mi6Tso/xxhQ87HzpVVfanIG/l46AIFO3rXKhSOIRERE5FZKcRF3psb5a3WFzmdy5RwaSXLbunKFka2jD4DrC11IkOCjyVvUvSTPLUmFL2BfFK0ko5pWZwnGIVtHEK1fmCHZFanJsc4dcxQEeMga1HAxtRJQUnItozUFg5IQT2/U8wvIV4inZOmXWklWl6AouIB9STT0C8AD4bXhpdFaR/2EOoJektFJZRTPbE1uLGour6uKSjFVfgzIT2MtJuNKYSdltNEkRJEjiJ5aLSRJINdsho/1va3LV2U1L5XY8h+8rXMn840gBhQyT9e7yBHEol93rWSp3JojzPDWaKGVraO51tF0nSyrVYqlAu8LS4o0YPTLgMknu9DnqOwYIBIREZFblXT+WVHah9ZEmJf9sgiu8NRqLfOcymMOonW0wfURREvKYkkK1CjPLWBJ79O5mOYb6uGFe/2D1FRTJdjRybJ1dUbbwCLHbEkhLE112YKUyrdm2C9H0jo4HPf6BearHFmyHyFkWVJHEJV1MkujupcP6vtWU9NygdKttWmb1liypTwK4yHLEMJx2wqm9QKWYForaVwaQbRcu+WHCl0R1XOVKr25QsBXZ/mRQStbRussI/3WEURlbVDvHMuBsjKCaEZQIRViLetQ2qdFAyi28I9WliHLsASuWh08JA1yzWZ1jqZSaVVS0qEBdc6v8mOK/YqhVQsDRCIiInIr2ZqqWNl4yRrrunVlPQdRzrdOmmtfFKvpPNEsqDp8Srj0gixJgIA6r8sVfjoP1POtBsDy5d0kzOpag7K18md+ucJsXRLDfSRrcOFovUovjdaybEK+4Kkko8E66xd8AbgtuNUqyzaYzZBKGLgqZOsPC8pyJ7Ibl2XJv8ZlQY5G1jTWFFNXrkcrKYu1FB2IWUYXLa+lt3XJG52kQa5ZQANJfZ/K1j4BH+sIok4ZGRSFLlGiLO1yMSMNGbm2VVvNxRRvsgR5MnKEWS1ilKv0N+t8TMscY2XOr1DXSFTSg6s6BohERETkVpZCMJXvW5KlcqrGrXMjHVFHEOH6OogaScLdPn4lfm7lC6pJCHiVIkhXipmYhVJV00GKqdkM/1KsIeiIEp+YAYdpgJKUl+IHqWQjdUoaoLvn93lqNMixjn6Vto9p1SDWvSOIymiwI2ZhqYKbnyxJliViXBxBVH4eKSoAV37AEID6g5I6gihL0Ml5RWoEAFHnFkT9FCAkbx3Mws5f18cf/Wo1QAO/AKSbcgpcp4CuiNdHmUeozEH00Wqs83Gty35AqVJs+ZxTRiqVtPqSzDutbBggEhERkVu5um5aeQnz9Eb70Jpl/jzKQuwlWQextJR0vFxhhk8plm9QAkTLqJI1QCywT45wf4CoJO2JItI/LQGiZYkDTQm+jCuFfMwF1losLS9ZixyzpbplaUeplbUaLXMQ3RdwFBXoCQiHcw0N1YIQ5OF8ynPeCGLRwa2nrFXnHCrpplpJQq51rp9yD63xPOCdC9EwBdDmLStR2PklSYKfzgM1vHyQbTbZXWdxVVk9rIGqp6yFj7XaqoBQi/Yoy9hoJcsIovKDkPKDRVUPERkgEhERkVsF6Dxwl5frBUrKmiRJJVpb0FVqOqbk+jqI7nhuWJdIKKqCZHGUgitma6qnsi6iQqmEGeJZunmhBSnzt8yFBCuAJUDMMZtLXAhJKeQjYFnmwl28NJpStSs/y2LzAITk1i/rOjlvXT8AuJKZjuvGTADK0hL2z1bfN8ClvqSR835MKCoQU9a2lCWoPygpBYg8ZFkNjNU5iAVIkIotnhPo4YWC4ZpZFJ9arJM16gihj6xFrtlynAaymiGgFCKyzEG0jH4ro8dVd4ELCy5zQURERG4V5OFVaPGIfwJ1Hb8KGEdQvlQLCPiWYnTPS6O1LHZuTRPUQLb50ptszEJNL1+XF4Evjtp+UXihI09rAR3LcgSuh0/Kc5iFZUkGd/HSaJArzPCSSl8ISaMs9yC5dwRRGZUV1iIrZghkmiwjbMoC8qWljFIWN8dTY126JMskqyOIGskSDubPQCjs+oWDQkYFBXp4QitJyDab1HM6U5zIwzpqrga4Ut5outY66qlR5ooKqEWptNKdUKKGI4hEREREbqWMIJT1XEdH8gelvqVYFkSrBmrWEUQ5r4qpWQgYzWY0CQhx+zWqpysiMNJJlkBMkhzPUyxO/vO6cykWL1lrmT+HkgWu+SmFdAA3p5jKltRNM4Q6j04ny8g2m2wWpy8NjSRZ0y3lYgM4X40OWkm2GUEsmKKujPbmp7S9uPb6arTw13kg05SvUI0TQbendd1VpW2Sdd6hRsob5ZSlvFRgszUtVrZee1XHAJGIiIjIjZQiFRURIMqSpQIoIKmLtpeE+qXYusyFFrJapCY1JxvBnl6oXYpiOoXRQFkovfBgxUOTtxRCiVJMrSmLkiTcWtHW0zpvs6i2O8tSHdPC3SOIGmsKstFsgqdGRpCHJ9JycxxWji0JrbWokUYqukgNAPhqddDKMjw1eRVLJckygqeQYR90KaOdxbVXkiTU8PK1qWTqzOujkzXqUhuW0U2hpiRrrMG7MoKtLJmiBLfuHvWtCAwQiYiIiNxI+YJYYQGiZEntK02KqY9Ga13bzTKPTEl5BIDbuTm41y+wTJYLyb+2XGH3z1O2LIUgo2QVI8tqBNESrBQfFDlDp875FG6tiqmTZcjWhd+zzSb4anRo4BuADFOuWqWztCxpopLNWoaF8dPqbJaeka1VQD0LpJgWXGLFDNtCNkUJ8fCyrpupKP6HBU+NZa6hVpbgqdHkBYHW64I1ANZYl2TJn07LKqZEREREZEO2BjkV8UXR8gXbEuB5laIAi7dWC42cf66VZaQk22yCVpbLZPQQUOZuWXIKC/vyr5M1yLVWIC1JEaC818W9QbxOlqF1Q4EawBKUK0GRe6uYWtpnEgJGkwlBHl6o7uUDwLrshxtCA60sQSNbnqu4uZheWi2q6fJ+yFBG4fKv4Zk3LzUvyDMLAVl2LsXYErgVXN+xmCqmUl6Kqad1mY9cYYZWtry/lEq1SnVfc77RV0vV1aodJLJIDREREZEbyai4NDMlHS9A51mqCqo+Gh08ZBlpudmWVE7rSMmtnGzU8vItsyJEymiRZC0A4ogSdJQ0EMtfZdKdI4g6a7XX4gqgOEMrKSm97l1XT5Is6xpmm03IFmYE6zwR5OEFH40O142Z0Lhh9NOyFqAlsCquD4Z4eNlcnTJ/0WYOIiwBl0BemGcSAjKKn+MIKO/DvOBSiOJfd60sQydZ/rNUW5WQmWNWK/paRkjz+pKSig1U/eAQ4AgiERERkVspIwhuyNZzmTICE+zp/Lp1jigpqsqXaa116QKj2eT2yqX5KaOvApYlBRxR5riVNBCT1REe985B1FkrXBa3xp4zlEIygPt/aPDUaNQCOH46D+hkGWGe3pbCP244v2VuHmxGAQsT6ukNvX+QzbFa2TZNN2/piHxBHvLm/BVHK9lW4LXMPS36OMv8SU2+QFGDHLMJGllSf7zQWkcYhXU5GF3+EcQqHiMyQCQiIiJyI6WkRmEBTllSKkD6a0u/3mOQzlMtBKOO7KHote1KS0kxFUIU+uVfI1vnt5WwHWU1B1FnXbtP54ZfBnQ2RWpKfTobXtZlQgCo81Tv8vJRR8fcQSdrbOYROktJ68w/Migr4Xy+KM9kXSvRGVoHlUWLG5W1tMG6bIUkwVejQ47ZrBb5Uaq0Wqr7Kmtq5s1BrOLxIQNEIiIiIndSgo6KKlLjqdGUaokLRYDO01qIQ86X8ohC1yd0h/yjRYWnmFpGqEoaiOUPDtwbIGqsI5vuSdNUIkS3jyDKWqTn5kAryfDVWGabBXl4wUerdV+AKMklDxBl2WZuYd7annnMQkDn5Pk1smwzf9GZIjVaSVZHEAHAV6cDrH1TqVSqpNIqy1zkf92reojIOYhEREREbqRUcNRUUIqpl6wpVQVThZ9WBw9r0JOX8ljykTtn5B99KSz9U/liXtJALH8QVBYFYNxxf5R5rMr/dydfrQ7VdJ6o61sNPtZ+EuThCV+NzmYdzdLwkDXw1rgeZsjWAFtbINiSYZtiahZwbQRRshS5kZz88UYjS/CQZTWQ9NPo1OUx8lLILa+3ELZzEC1VTl256sqHASIRERGRG8nqF8jyT9TykDVoG3IXAj1KNwcRAHy0WnhqlADR8kVYGTkpK8oX+KIWQVfmIGpLWKVV48RzlITOulyDO4rUlFUQCwBRgSGICAixmefno9UhyMPTbc/lKcvwLEGAqLGmbtqkmFrn9OUfBDRD2BSyKYpsrcJrhoAslPmLRb83A6wBtMJHq7WMXFuDVQnIS8mVlADR0h77hNaqhwEiERERkRspXyAraj20EE/3VBj10ejgJWvz1nS0Xk6ZppjCtkKkI1rZkmLq7AhSQcoXeEkqfp0+V2gky6iTe4rU5FXtdHdAblmewX57TFCYW+auApZlUkrST2RrkRptgSI1loxb22UunB9BlCHDMuooSbCun1j0PfXT6hAZEKI+9tRo1DmmaoqpdckLCMvaox7qCCJTTImIiIgoH0lSlrmo6JaUjo9WC2+NRl3vDQIQkijbFFPrfZNE4cs7KOsyljRQtaQJWr7cuzv48tJobUbmSkq2jtiWZ7BRw8t91WmbVAsp0X1Q5nDmXz9Rti50UXAOorMjiEqRJbOwFFlSUkNd4Slr1JRT9UcMyNb3uqVlyvuiqgeHAIvUEBEREbmVsm5bRaSYupOHrEF0YBgCPTzUpSdkuHfUrSBl1LCoL/FKimlJ1+yTrEtpqCOjbuSj0bol6NRI+deDrHoBRzWdR4nmIOpkGXf7+MEv3xxayRqU5S80Y3IhQFRSQc0QMEOUKLXYU9ZAJ2vU0UPlHHk/YuQVJ5JQ5acgcgSRiIiIyJ3yqhxWdEtK724fPwCwfsE2Qydpy3iZC8voniQKX6tOWQqhpIGYOo/MWnzHnXy1OrcE0AVHvP4pZElCdGCY7TZYAi5zgX21Tt4XJZAzCWF57YtIXy6Mp8YygijnK06TV3E3b04ioGQQVO3XjAEiERERkRspi73Ld1CilgwJJrOARiM5/cW8RM9jnSMmihg5U9aoK3GAKDk/F81VUQEh7pmDqKYxFp5q+0+RN4oq8m2D0yPIkiRZ1pUUAmZJlOiHgfwjiEqQmVfR1EJZmkMJaKuyO+eTi4iIiKgSUOZMyVV9EmI+siTBZK3+6I45doU+j/WrtVRMkRqtLJd4pE6Zg6gpIggtKR/r0iCllb8Yyh3UjUpMqaKbx7X1JnWypYqpsI4iuvrDgIesgYd1/U2lKmrBQlRqf6zio4cAA0QiIiIit1KCG3etKVcZ5K39Vvj6hO55HmsKIIpOIfWyjuaUhDIKVJapsqWlznUrxUjpnUSp6ppHuPT662QZZiFgBkqUYipLEmr5+MFXq8s3ipi3vqLyHIAygli1X7PK+84gIiIiqoLUZS7uoC/2yjV5umF0rPjnsh+dKcizFMVglGspy+U6Sksj5UsxvYP6UUnJ1qI9+bny+nlIGpiEgFmIEo88Nw+qjgCdZ948RuvrYxlZlwrMQSzRU1QanINIRERE5EaSdOd9sVdSHnXlECBqZAkwF13oo1lQGPzzVbp0hTJKqa3EuZtqiikqbj3NykQDGeYCKaYaF14/D+sIosi3oH1JSdZRdOU1MgnLaGbeMhdVfw4iA0QiIiIiN7JUyKz6XxLzU4KU8hlBBFBM+mewh1epnkMjlXwOY3nQKHPcrGmm/3SW7pAXIQq4NhKolWUIWNZPLG2KtEZ5f1vTrpVsAXUE8Q545zNAJCIiInIjOd8Iw51CtqY8epbDvD2NJEMukE7o/ucon9HQklKWZijL+Z5VSf4RRMvyH67NzfSQNdYRxNKnFkvW+cVKqqkEy2Oluu+dENQzQCQiIiJyIyU1sGp/RbQlW9MyPTTlMIIoSWU+CqORZOgq8Zd4ZRSaBWosNPnmIJqF7Zw/Z3jI+eYgljK1WKliqhSrkWB5XyhBIUcQiYiIiMiGpFY4rPpfFBWWgFeCp1z2Xx015RIgVoUqphxBVGjkvDFls7WCqSv3xjK6J8EsROlHEAFoJCWItwTynlLeDyfKGptlOwZethggEhEREbmRulbaHTCSoFAKcniUR4qpiwVISvQcZbyeY2nlpZjeOX2oNDTIW07CLITLRYY0sgzLzMXS/zCgrKOZlykgwUOTd847YQSx8r4ziIiIiKqg/Guk3SksKX2upfWV+Lnksn8erSRBJ1XeOYiWEbKyXXOyKpHzrYNoEgIyXCsypAR1lhHE0r3uyhqnynqnkCzrcub/e1V/67PXEREREbmRZZmLO2t5AgkSNLJcLmmZcjlUGNXKcqUfndNIlb+N5UUj5aWY5gozvDQal4pAKf3JBMCrlPNolRRyWf1f+7m5Vf1lY4BIRERE5GYaSa7yXxLzk9URxLK/KA1Q5immHlUg+KoKQWx50UqymmKaZTIh1NPbpePz7qOAv86jVG1RlrTQyspPQPZzc+UqHmJV7dYTERERVULacii0Up5kQP1SXNbKY35gdS8fBOo8y/Q5SkvrYhrlnUyW81ZBzBFmhLi4DqZWktXlMfy0ulK3JzasJoJ0ntZUYPu5uWX8+0aZY5EaIiIiIjfTyPIdlWKqVI0srzmIZT0/sKF/YJme3x20MovUKCwrY+bVBfXXujYKqCyT4anRuHysI0qQKUOCVrYvfFPVKxjzZwkiIiIiN9PeYSmmUjkWqdFa15j7p9NKcpmn2lYVWkmCEBJM1lFAf51ro4Aaa5/y13rA041reUqSBA1ku6UzqnqAxRFEIiIiIjcL8/R2SypbZaGRlCI1ZR+w3OXlW6mXoCgvWpkppgpJkgBJwGgywUujgZ+Lo4Baa1EZV1NTiyNDqfBr+zpZqs+a3Ppc5YkBIhEREZGbNQ0MregmuJWHrEHLoOqo5ob0vOLU8vEr8+eoCrQuLgZ/J9NYl44wmnMRoPN0+QcEjWyZ1xriYnGb4siSBJ2DH06qeno5ex0RERERFau6l0+Vn1tVlehkuVyqxlYFSrXQLJMJYZ6ujwJqJQk+Wp3bR/UlOJ6bW9UzgzmCSERERERUyXjJ2nKpGlsVWOakCpgEEKgrSYAow0ejRbVSLnFh3y7L6GbBEc2q/kMKA0QiIiIiokqmcUDwHbVUSmmoKZuSBG+N6+GLVpbRufrd8CrBsUWeV5Jxj1+A3ZxITRV/3RggEhERERFVMh5y2S71UZVYRhAto4glrULq7uAQsIwUNq4W7HB7VcZxayIiIiIiqrQkCTAJAY0kw8uNy1SUlao+B5EBIhERERERVVoyJOSYTdBKErzkyp8AKVfx6rNVu/VERERERHRHkyUJkmRJu/WoAoV7Kv8YZ9Eq/x0mIiIiIqJ/LBkSJEjw0+qqxPy+qtDGojBAJCIiIiKiSkuSLGsO+rt5HcOyIlfxKqYMEImIiIiIqNJSUkz93LyOYVmROYJIRERERERUNmRI0FkXu68KWMWUiIiIiIiojMiSBJ0sl8lahmVBruIhVtVuPRERERER3dEkSPCQNfCSq0Z90CpQaLVIVbz5RERERER0J5MlwIMjiOWmareeiIiIiIjuaLIygqipGiOIGhapISIiIiIiKht+Og9EBoRUmRFECZalOaoqBohERERERFRpaSQJdX2rVXQznCZJUpVeCZEBIhERERERkZtU9QCrqrefiIiIiIio0uAIIhEREREREQGwzkGswiEiA0QiIiIiIiI3kSSJRWqIiIiIiIjIsixHVcYAkYiIiIiIyE0sy1xU3SCRASIREREREZGbsEgNERERERERAWCRGiIiIiIiIrKqwtmlABggEhERERERuY1UpccPGSASERERERG5jQwuc0FERERERERQUkyrboTIAJGIiIiIiMhNmGJKREREREREACwjiAwQiYiIiIiIyDoHseqGiAwQiYiIiIiI3EQCRxCJiIiIiIgIqNKjhwADRCIiIiIiIreRULWDRAaIREREREREbiJLrGJKREREREREdwAGiERERERERG5iGUGsumOIDBCJiIiIiIjcxDIHsaJbUXIMEImIiIiIiNykao8fMkAkIiIiIiJyGyXFtKqOIjJAJCIiIiIichN/rQ7RQaHQyZqKbkqJMEAkIiIiIiJyE0mSUNPbr6KbUWIMEImIiIiIiAgAA0QiIiIiIiKyqhIB4quvvor+/fsjMjIS/fv3d7jP0aNH0a9fP0RGRqJbt27YuXNn+TaSiIiIiIioiqsSASIAPProo+jVq5fDv128eBGjRo1CmzZt8N///hfPPPMMZsyYgcOHD5dzK4mIiIiIiKoubUU3wBkvv/wyAODGjRv4/fff7f7+wQcfoHbt2pg+fToAoEGDBjhx4gTeffddtG/fvlzbSkREREREVFVViQCxOCdPnkRsbKzNtg4dOmDRokWlOq8sV57FS5S2VKY20Z2BfYvKAvsVlQX2KyoL7FdUFqpyv7ojAsTr168jJCTEZltoaChu3ryJnJwc6HQ6l8+p1coICal85WmDgnwrugl0h2LforLAfkVlgf2KygL7FZWFqtivKixATExMxIoVK4rc59ChQ6hRo4ZT55Mk2+hcCFHitgFAbq4ZqamZpTqHO8myhKAgX6SkpMNsLt21EeXHvkVlgf2KygL7FZUF9isqC5WxX1Wr5g2dTlPsfhUWIA4ZMgQPP/xwkfuEhYU5da7Q0FBcv37dZltycjICAwNLNHqoqCwvZn5ms6iU7aKqj32LygL7FZUF9isqC+xXVBaqYr+qsAAxMDAQgYGBbjlXTEwM/u///s9m2+HDhxETE+OW8xMREREREf0TVIllLs6fP4+ff/4ZSUlJMBqN+Pnnn/Hzzz+rfx84cCAuXLiARYsW4Y8//sD777+PTz75BM8880wFtpqIiIiIiKhqqRJFal5++WUcO3ZMfdy3b18AwK+//goAqF27NtauXYuFCxdi06ZNqFGjBl599VUucUFEREREROSCKhEgvvfee8Xu07ZtW+zcubPsG0NERERERHSHqhIppkRERERERFT2GCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrSQghKroRlZHZLGAymSu6GTZ0Og1yckwV3Qy6A7FvUVlgv6KywH5FZYH9ispCZetXGo0MWZaK3Y8BIhEREREREQFgiikRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiJXK+++/jy5duiAqKgoDBgzAqVOnitx/z5496NGjB6KiotCnTx/83//9Xzm1lKoaV/rWmTNnMG7cOHTp0gUGgwGbN28ux5ZSVeJKv/r3v/+NJ598Eq1atULr1q0xdOhQ/PDDD+XYWqoqXOlXBw4cwKOPPoqWLVsiJiYGjzzyCHbu3Fl+jaUqw9XvWIp169bBYDDg9ddfL+MWUlXkSr/asWMHDAaDzX9RUVHl2FrnMUCsJHbv3o3XXnsNY8aMwYcffgiDwYDhw4fjxo0bDvf/7rvvMHnyZDz22GPYuXMnunbtitGjR+OPP/4o55ZTZedq38rMzMTdd9+NyZMnIywsrJxbS1WFq/3q6NGj6N27NzZt2oQtW7YgPDwcQ4cOxbVr18q55VSZudqvAgICMGrUKGzduhX/+9//8Nhjj2HGjBk4fPhwObecKjNX+5Xi9OnT+OCDD2AwGMqppVSVlKRfBQYG4ssvv1T/++yzz8qxxS4QVCk89thjYu7cuepjk8kkOnToINavX+9w/wkTJohRo0bZbHv88cfFnDlzyrSdVPW42rfy69y5s3jvvffKsnlURZWmXwkhRG5urmjWrJn43//+V1ZNpCqotP1KCCH69u0rEhMTy6J5VEWVpF9lZGSInj17iv/7v/8TgwcPFgsXLiyPplIV4mq/2r59u2jdunV5Na9UOIJYCWRnZ+P06dOIjY1Vt8myjPbt2+PkyZMOjzl58qTN/gDQoUOHQvenf6aS9C2i4rijX2VmZiI3NxcBAQFl1Eqqakrbr4QQOHLkCM6ePYsWLVqUYUupKilpv1q4cCHatGmD++67rxxaSVVNSftVWloaOnXqhPvvvx+jR4/G77//Xg6tdZ22ohtAQEpKCkwmE0JDQ222h4SE4Pz58w6PuX79OkJCQuz2T0pKKrN2UtVTkr5FVBx39KslS5bgrrvuQtu2bcuiiVQFlbRf3b59Gx07dkR2djZkWcacOXPQrl27sm4uVREl6VefffYZvv76a85npUKVpF/dc889eO2116DX65Gamop33nkHgwYNwkcffYTw8PDyaLbTGCBWYkIISJJU6N8d/a2o/YkUxfUtopJwtl+99dZb2L17N9577z14eHiUQ8uoKiuuX/n6+mLnzp3IyMjAkSNHsGDBAtSpUwctW7Ysx1ZSVVNYv7px4wZeeeUVrFy5Et7e3hXQMqrKivq8iomJQUxMjPq4WbNm6NWrF7Zt24axY8eWUwudwwCxEggKCoJGo8H169dttt+4ccPulwlFaGio3f7JycmF7k//TCXpW0TFKU2/evvtt7F27Vps2LABer2+LJtJVUxJ+5Usy6hbty4AoHHjxvjjjz+wbt06BogEwPV+debMGSQlJWHQoEHqNpPJhG+++QabN29m9WUC4J7vVzqdDo0bN66UGV2cg1gJeHh4ICIiwqbqmtlsxpEjR2x+acgvJiYGX331lc22w4cPF7o//TOVpG8RFaek/Wr9+vVYtWoV1q9fX2lLe1PFcdfnlRAC2dnZZdBCqopc7VdRUVHYtWsXdu7cqf4XGRmJfv36YceOHeXYcqrM3PF5ZTKZcObMmUpZMZ4jiJXEs88+i2nTpiEiIgJNmzbFu+++i6ysLPTr1w8AMG3aNISHh2Py5MkAgKeffhqDBw/GO++8g/vvvx+7d+/Gjz/+iPnz51fkZVAl5Grfys7OVpdLyc7Oxt9//42ff/4ZAQEBqFmzZoVdB1Uurvart956C8uXL8eSJUtQq1Ytdb60j48PfH19K+w6qHJxtV+tW7cOTZo0Qd26dZGdnY0vvvgC//3vfzF37tyKvAyqZFzpVz4+PnbZDT4+PggMDMS9995bEc2nSsrVz6sVK1YgJiYGdevWRWpqKt5++21cuXIFjz32WEVehkMMECuJXr164caNG0hISEBSUhIaN26M9evXIzg4GABw9epVyHLegG/z5s2xZMkSvPnmm1i6dCnq1auHlStXokGDBhV1CVRJudq3rl27hr59+6qP161bh3Xr1qFfv35YuHBheTefKilX+9WWLVuQk5OD8ePH25xn7NixGDduXLm2nSovV/tVVlYW5s6di7/++gteXl645557sHjxYvTq1auiLoEqIVf7FZEzXO1XqampeOWVV5CUlISAgABERkZi69atuOeeeyrqEgolCSFERTeCiIiIiIiIKh5/LiEiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREAABtRTeAiIiovCQmJmLFihV229u1a4eNGzeWf4OIiIgqGQaIRET0j+Lv74/169fbbSMiIiIGiERE9A+j0WgQExNT7H5ZWVnw8vIq+wYRERFVIpyDSERE/3iXLl2CwWDA//73P0ybNg0tW7bEc889BwC4efMmZs6cifbt2yMqKgoDBw7E999/b3N8amoqJk+ejJiYGHTo0AGrV6/G66+/ji5duqj7JCYmok2bNnbPbTAYsHnzZptt27ZtQ+/evREZGYnOnTvjrbfesvn79OnT0b9/f3z11Vfo06cPYmJiMGjQIJw5c8ZmP5PJhLVr16J79+6IjIxEx44dMX36dADA+++/j2bNmiE9Pd3mmK+//hoGgwG//PKLi3eRiIjuBBxBJCKif5zc3Fybx0IIAMCiRYvQrVs3LF++HLIsIzs7G88++yxSU1Mxbdo0BAcHY8uWLYiLi8O+ffsQFhYGAHjxxRdx7NgxzJgxA6GhoXjnnXdw4cIFaLWu/zO7fv16LFu2DMOHD0fr1q1x+vRpLF++HN7e3hg8eLC639WrV7Fo0SI8//zz8PT0xKJFi/DCCy/go48+giRJAICZM2fiv//9L4YNG4bWrVvj1q1b+OSTTwAAffr0weuvv469e/eif//+6nk//PBDREREoFGjRi63nYiIqj4GiERE9I9y8+ZNRERE2Gx79dVXAQDR0dGYNWuWun3btm04c+YMPvroI9SrVw8A0L59e/To0QPvvPMO4uPjcebMGRw4cADLli1Dr169AABt2rRB586d4efn51Lb0tLSsHLlSjz//PMYO3YsACA2NhaZmZlYvXo1Bg0aBI1GAwC4desWtmzZorZLCIExY8bgzz//RIMGDfDHH3/gP//5D1566SU8/fTT6nMobaxWrRoefPBB7NixQw0Q09PTsW/fPkyePNmldhMR0Z2DASIREf2j+Pv7Y8OGDTbbPDw8AACdOnWy2X7kyBFERETg7rvvthl1bNWqFX788UcAwA8//AAANumkvr6+aN++PU6dOuVS27777jtkZGSgR48eNs/Xtm1brFq1Cn/99Rdq1aoFAKhVq5YaHAJAgwYNAAB///03GjRogKNHjwKAzehgQY899hji4uJw8eJF1K5dG3v27EFubi4eeughl9pNRER3DgaIRET0j6LRaBAVFWWz7dKlSwCAkJAQm+0pKSk4efKk3YgjANSpUwcAcP36dfj6+toVtCl4LmekpKQAAHr37u3w71evXlUDxIKVV3U6HQDAaDQCsIyU+vj4FDmK2aZNG9SuXRs7duzAhAkTsGPHDjzwwAMIDAx0ue1ERHRnYIBIRERkpczdUwQEBCAyMhKzZ8+221cZdQwNDUV6erpd1dPk5GSb/T09PZGTk2Oz7datW3bPBwBr1651GGDWr1/f6WsJDAxERkYG0tLSCg0SJUnCo48+in//+9945JFHcOLECbuCOERE9M/CAJGIiKgQ7dq1w1dffYWaNWsWOiKojEYePHhQnd+Xnp6Ow4cP2wRm4eHhSE9Px99//43w8HAAwFdffWVzrmbNmsHLywvXrl2zS3d1Vdu2bQEAO3futCluU1C/fv2QkJCAGTNmIDw8HLGxsaV6XiIiqtoYIBIRERWib9+++OCDDzBkyBAMHToUtWvXxs2bN3Hq1CmEhYUhLi4O9957L7p06YLZs2cjLS0NYWFhePvtt+1STu+77z54eXlhxowZePbZZ3Hp0iV88MEHNvtUq1YNY8eOxfz583H58mW0atUKZrMZ586dw9GjR7Fy5Uqn237PPffgiSeewMKFC5GcnIxWrVohNTUVe/fuxbJly9T9wsPDcd999+Hzzz/HqFGj1CI4RET0z8QAkYiIqBCenp7YtGkTli9fjsTERCQnJyM4OBhNmza1KUqzcOFCzJ49GwsWLICPjw+efPJJREVFYe/eveo+wcHBSEhIwKJFizBmzBhERERgyZIl6qijYsSIEahevTreffddbNiwAZ6enqhXr57dfs6YNWsWatasiW3btuGtt95CcHCwwxHCrl274vPPPy+yoA0REf0zSEJZ/ImIiIjcRllj8ODBgxXdlGJNmDABSUlJ+Ne//lXRTSEiogrGEUQiIqJ/qF9//RU//vgj9u/fj6VLl1Z0c4iIqBJggEhERPQP9fzzzyMlJQVPPvkkevToUdHNISKiSoAppkRERERERAQAkCu6AURERERERFQ5MEAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiERERERERGTFAJGIiIiIiIgAMEAkIiIiIiIiKwaIREREREREBIABIhEREREREVkxQCQiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREABggEhERERERkRUDRCIiIiIiIgLAAJGIiIiIiIisGCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrBohEREREREQEgAEiERERERERWTFAJCIiIiIiIgAMEImIiIiIiMiKASIREREREREBYIBIREREREREVgwQiYiIiIiICAADRCIiIiIiIrJigEhEREREREQAGCASERERERGRFQNEIiIiIiIiAsAAkYiIiIiIiKwYIBIREREREREABohERERERERkxQCRiIiIiIiIADBAJCIiIiIiIisGiERERERERASAASIRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERExZo+fTr69+9vs+3AgQPo2bMnIiMj0aVLF4fHHT16FAaDAb/99ptb25OYmIg2bdoUuc+QIUMwfvz4Uj/Xjh07YDAYkJ6erm77448/8OSTTyImJgYGgwGXLl0q9fOUl0uXLsFgMBT7X1W6JiIich9tRTeAiIgqv9GjRyMrK0t9bDKZEB8fj44dO2LevHnw8fFxeFxERAS2bt2KOnXqlFdT3a5Tp07YunUrvL291W2LFi3C7du3sXr1anh7e6N69eoV2ELXVK9eHVu3blUfX7x4EVOmTMHMmTMRERFhsx8REf3zMEAkIqJiFQzwkpKSkJaWhoceeggtW7Ys9Dg/Pz/ExMSUcevKVnBwMIKDg222/fnnn+jSpQvatWtXQa0qOQ8PD5vXRAnuGzZsWOhrlZOTA1mWodFoyqGFRERUkZhiSkRExcqfYrpjxw7cf//9ACwjiwaDAYmJiQ6Pc5Ri+s477+DRRx9FixYt0L59ezz33HM4f/683bH79+/HY489hqZNm6JNmzYYMWIELl++7PB5hBCYN28eWrVqhe+//97hPrdv38bAgQPx8MMP48aNGwAAg8GAd999F0uXLkXbtm3Rrl07zJkzB9nZ2epx+VNMlfTMCxcuYOPGjTAYDBgyZIi674EDB9C/f39ERUUhNjYWixYtQk5OTlG3tlJS0nO3bt2Krl27omnTprh27ZrDVGPlnnz22WfqNrPZjHXr1qFbt26IjIxE9+7d8eGHH5b3ZRARUQlwBJGIiFzSqVMnrFixAmPHjkV8fDyaN2+OGjVqOH38X3/9hcGDB6NmzZpIS0vDBx98gEGDBmHv3r3w9/cHAOzcuRPx8fHo3bs3Ro8eDSEEvv76a9y4cQO1atWyOZ/ZbMbMmTNx4MABvPvuu2jSpIndc968eRPDhg0DAGzatAmBgYHq3zZs2IC2bdti8eLF+PXXX7F06VLUrFkTI0aMsDuPkp45duxYtGnTBkOGDIGfnx8AYPfu3Zg8eTKeeOIJTJo0CRcuXMDSpUshhEB8fHyh98NsNsNsNhd5zyRJshm9M5lMEEIUeYwsy5Dlkv8O/O233+LChQuYMmUKvL291dfGGfPmzcPOnTsxevRoRERE4KuvvsKMGTMQGBiIzp07A7AE3i+++CI+/fRT3H333SVuJxERuRcDRCIicklwcDAaN24MAKhfv77LKaQzZsxQ/7/JZEJsbCzatWuHTz/9FH379oXZbMaSJUvQrVs3LF26VN33gQcesDuXyWTC9OnTcfjwYbz33nu499577fa5ceMG4uLi4OPjg/Xr16sBnaJWrVpYuHAhAOC+++7Dt99+i/379zsMEJX0TA8PD1SvXl29diEEFi9ejL59+2L27Nk2+8+dOxcjR45EUFCQw/uxcuVKrFixovAbZm3jwYMH1cfdunUrdDRVMXbsWIwbN67IfYqSmpqKDz/8EGFhYS4dd/78eWzZsgWvvfYa+vXrBwBo3749kpKSsGLFCjVAVFJWJUkqcRuJiMj9GCASEVG5OnnyJJYvX46ffvoJN2/eVLefPXtW/d9r167ZpTIWZDabMXHiRHz//ffYvHkz6tevb7fP9evXMXjwYISGhmLNmjUOi+nExsbaPG7YsCF+/PFHl67p7NmzuHLlCnr06IHc3Fx1e9u2bWE0GnHmzBm0bt3a4bEDBgxAp06dijy/h4eHzePVq1fbpME6UtoiMxERES4HhwBw5MgRyLKMbt262dyLdu3a4eOPP4bJZIJGo0Hfvn3Rt2/fUrWRiIjcjwEiERGVmytXrmDo0KFo2rQp5syZg+rVq0On02HUqFFqwJOSkgIAxQYnmZmZ+OKLL/Dggw86DA4By3IUSnppYZVWq1WrZvNYp9PBaDS6dF1Km0eOHOnw71evXi302LCwMISEhBR5/oKjbA0bNnQqxbQ0QkNDS3RcSkoKTCYTWrRo4fDvSUlJLqUkExFR+WKASERE5eaLL75AVlYWVq1apQZsubm5uHXrlrqPkoqZlJRU5Ll8fX3x5ptvYuTIkQgLC8OUKVPs9mnTpg0aN26MmTNnIigoqND1GktLmdM4b948Nf02v6Lm2FXWFFNHqZ8eHh52RXfyv3YAEBAQAK1Wiy1btjg8R8GKsEREVLkwQCQionKTlZUFWZah1eb987Nnzx6bVMT69esjPDwcO3fuLDaga9euHZYvX45x48bB19cXzz//vN0+zz//PNLT0zFhwgSsW7euTJamUNp8+fJlDBgwwKVjK2uKqSM1atTA5cuXYTQa4enpCQD46quvbPZp27YtTCYTbt++bZe+S0RElR8DRCIiKjdK8PDiiy/isccew5kzZ/DOO+/YpHnKsoypU6diypQpmDx5Mh566CFIkoSvv/4avXv3RlRUlM05u3TpgkWLFmHKlCnw8/OzWXZCMWXKFKSnp2P06NHYsGGD29dmlGUZ06dPx7Rp05CWloaOHTtCp9Ph4sWLOHDgABISEuDt7e3w2PDwcISHh7v0fAaDwR3NdlnXrl2RkJCAl156Cf3798dPP/2EHTt22Oxzzz33YODAgZg0aRKGDRuGqKgodR7muXPnMH/+fACWSrUzZszA/v377SrTEhFRxWGASEREZU5JNTQYDHjttdewYsUK7N+/H40aNcLy5csxceJEm/379OkDT09PrFmzBuPHj4ePjw+io6MLTU/s3bs3MjIyMHPmTPj6+joscDNz5kxkZmZixIgReO+999CoUSO3XmOvXr3g6+uLtWvXYvv27ZBlGbVr10anTp2g0+nc+lwVRa/XY8GCBVi1ahX279+Ptm3bYsGCBRg0aJDNfrNmzUK9evWwbds2JCQkwM/PDw0bNsRjjz2m7mM2m51aroOIiMqXJPjJTEREZeTgwYN4/vnn8cUXX5RJyiMRERG5V+lKnBERERXi22+/xdatW1GjRo0SV8QkIiKi8sUUUyIiKhPPP/88goOD8dprr5V6yQUiIiIqH0wxJSIiIiIiIgBMMSUiIiIiIiIrBohE5Wj69OlqdcUdO3bAYDAgPT29glvlXv3798f06dMr5LlPnDiBfv36ISoqqsKWAQCA9PR0GAwGu/L/VVGXLl3w+uuvu/Wcly5dgsFgwGeffVboPu58fxgMBmzevFl9bDabMWfOHLRv3x4GgwGJiYmlfo7SOHv2LBITE5Gammqzvbw/IwprR2mMHz/e4bIj5elO/awFnO/Lu3fvdvh5NGTIEIwfP75M2ubM+7wqef3114tdl5XoTsE5iETlaPTo0cjKyqroZtyxZs2aheDgYLz99tt2C4tTyaxYsQKBgYEV3YxS2bp1K+6++2718b59+/Cvf/0L8+fPR8OGDVGjRo0KbB1w7tw5rFixAv369bNZD7JTp07YunVroesnllc7qrryvo/lydm+/MknnyAlJcXh8i9ERAUxQCQqR3Xq1KnoJjglKysLXl5eFd0Ml/35558YMGAAWrduXeg+VfXaKkqTJk0qugmlFhMTY/P4zz//REBAgM2afJVRcHBwoes+UvFMJhNMJtMdfR+rSl8moqqFKaZE5Sh/iqkj69evR1RUFD799NNiz9WlSxcsWrTIbvv48ePx5JNPAgAyMjIwd+5cdO/eHdHR0ejSpQvmzJmDtLQ0m2MMBgM2bNiA+fPno23btujTp49T1/Pbb79h4MCBiIqKQs+ePQtt9/HjxzF48GBER0ejTZs2ePnll+3acPToUfTp0wdRUVF49NFHcerUKbRp08ap9L+jR4/CYDDAZDJh/vz5MBgMapprly5dsHDhQqxcuRIdO3ZEixYtAFhSs9atW4du3bohMjIS3bt3x4cffmh37gMHDqB///6IiopCbGwsFi1ahJycHJt99u7di+7du6Np06Z46qmn8Oeff9qdx2QyITExEZ06dUJkZCR69+6NXbt22eyj9I/PP/8cvXr1QnR0NEaOHImbN2/i/PnzGDJkCGJiYtC/f3/88ssvxd4XdyiYYvrdd9/hueeeQ4cOHRATE4NHHnkE//vf/+yOu3z5MiZNmoQ2bdogOjoaffr0sbve/I4ePYpmzZph6dKlhe5T8P2h3K+vvvoKffr0QUxMDAYNGoQzZ87YHJc/xXTIkCFYvnw5bt26BYPBAIPBgEuXLgEArly5gokTJ6J169aIjo7GsGHDHL6WBTlz3Nq1a9GtWzdERUWhffv2GDZsGJKSknD06FE899xzAIAHHngABoNBTWMrmBqppOx9/PHHePHFF9G8eXN07NgR//3vfwEAb731Fjp06IC2bdti8eLFMJvN6vP/8ccfmDhxIu6//35ER0ejd+/e2Lhxo7pPUe1w9hqvXr2KESNGoGnTpujSpQu2bdtW7L1LSEhAbGysTVsB4LPPPoPBYMD58+cBADt37sSgQYPQunVrtGrVCkOGDMEPP/xgc4zSHw4cOIDevXujadOmOHXqlMMU0zfeeAN9+vRBs2bN0LFjR0yePBlJSUk251P6/saNG9GxY0e0atUKEydOtEvBTUlJwcyZM9GhQwdERUWhe/fu2Lhxo/p3Zz9rCsrMzMSrr76K2NhY9XPxyy+/VP9eVF8ueF/27t2LY8eOqfsV/FzdtWsXunXrhubNm2P48OH466+/bP5uNBqxaNEi3H///YiMjMTDDz+MQ4cOFXsNBTnzOQgAmzdvxv3334+YmBiMHj0aR44cgcFgwNGjR4s8f2JiItq0aWMz3eCRRx7B8ePHbfb79NNP0b9/f8TExKBVq1Z4/PHHcezYMfXvqampmDx5MmJiYtChQwesXr3a5Wslqso4gkhUSaxcuRLr1q3DqlWrcN999xW7f8+ePbFnzx5MnToVkiQBsMx9O3ToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixbBmeLGWVlZGDZsGIKCgrBkyRJkZWVhwYIFyMjIgF6vV/c7ceIE4uLi0LVrVyQkJCAlJQVLlixBamoqEhISAAB///03Ro4ciWbNmmHSpEm4fv06pkyZAqPR6NS9i4iIwNatW/HEE09g6NCh6N69u82IwUcffYSGDRti1qxZMJlMAIB58+Zh586dGD16NCIiIvDVV19hxowZCAwMROfOnQFY5u1MnjwZTzzxBCZNmoQLFy5g6dKlEEIgPj4eAHD69GlMnDgRXbt2xYwZM/D777/jhRdesGtjQkIC1q9fjzFjxiAqKgr79u3DlClTIEkSHnroIXW/q1evIiEhAS+88IL6BXHmzJm4dOkSBgwYgOHDh2Pp0qWYNGkSPv74Y/W1dyQ3N7fYe6fRaIo8R0FXrlxB8+bNMWjQIHh4eODbb7/FjBkzIMuyeh3Jycl44okn4O3tjfj4eNx111347bffcPXqVYfn/OKLLzB27FiMGDECY8eOdbhPYe+Pq1evYtGiRXj++efh6emJRYsW4YUXXsBHH33k8LpmzZqFDRs2YO/evVi/fj0AoHr16rh58yaefPJJBAYGYvbs2fD29sa6devw7LPPYu/evYWOOjtz3M6dO7FmzRpMmTIF9957L27evImvv/4amZmZiIiIQHx8PF5//XWsWLECYWFhxaZHK8FNYmIitm/fjunTp+Pnn3/GlStXsGDBApw+fRpvvvkmmjRpgt69ewMArl27hvr166NPnz7w9fXFzz//jMTERBiNRowaNarIdjhzjUIIjB49GikpKZg/fz48PT2RmJiImzdvol69eoVeS+/evbFy5UocO3YMbdu2Vbfv2bMHERERqFu3LgBLcNy3b1/UqVMH2dnZ+OijjzB48GB89NFHqF27tnrc5cuXsXjxYowePRqhoaG4++67ceHCBbvnTU5OxqhRo1C9enXcuHEDGzZswDPPPINdu3ZBo9HYtMNgMGDevHn466+/sHDhQixduhSzZ88GYPkcfPrpp5GcnIwxY8bgnnvuwYULF9TAFnDus8aRl19+GQcPHsSkSZNQp04dbNu2DaNGjcK7776Lli1bFtqXCxo9ejSuXLmC27dvY9asWQBgk4r6/fff49q1a4iPj4fRaMT8+fPxyiuv4K233lL3GT9+PE6dOoVx48ahTp062LNnD55//nls374djRs3LvQaCnLmc3D//v2YN28ennzySTzwwAM4ceIEXnrpJaefIysrC1OnTsWoUaMQFhaGDRs2YMSIEdi3bx/CwsJw4cIFTJgwAUOGDMHUqVORnZ2NH3/8Ebdu3VLP8eKLL+LYsWOYMWMGQkND8c477+DChQvQavm1mf4hBBGVm/j4eNGvXz8hhBDbt28Xer1epKWliSVLloiYmBjx9ddfO32u06dPC71eL7777jt1265du0SjRo1EUlKSw2NycnLE8ePHhV6vF5cvX1a36/V68cgjj7h0LZs3bxZNmjQRV69eVbcp546Pj1e3DRo0SAwePNjm2MOHDwu9Xi9+/fVXIYQQCxcuFK1btxaZmZnqPh9//LHQ6/UiISHB6Tbp9Xrx3nvv2Wzr3LmziI2NFVlZWeq2c+fOCYPBIHbs2GGz79SpU0X//v2FEEKYzWbRqVMnMX36dJt9tm3bJqKiosSNGzeEEEKMHz9e9OzZU5jNZnWfVatWCb1eL7Zv3y6EECIlJUVER0eLxMREm3MNHz5cPPjgg+rj+Ph40bhxY3H+/Hl12+uvvy70er348MMP1W2ff/650Ov14vfffy/2fhT3n9LGwnTu3FksXLjQ4d/MZrPIyckRr7zyihgyZIi6/Y033hDR0dHi77//dnjcxYsXhV6vFwcPHhQHDhwQkZGRYv369Tb7OPP+UO7X2bNn1W379++3uzcF+0VCQoJo3bq1zbmWLVsmWrduLVJSUtRtN2/eFM2bNxebN292fHOcPG7OnDli7NixhZ7j4MGDQq/Xi4sXLxZ6D4TIu2/5++Tt27dFkyZNRLdu3URubq66/dFHHxUTJkxw+HzK67Z69WrRpUuXYtvhzDUqffLkyZPqPpcuXRKNGze2e/8X1KdPH/HKK6+oj41Go2jevLldn1CYTCaRk5MjunfvbvOeio+PF3q9Xvz00082+xe8jwXl5uaKv/76S+j1enHs2DF1e+fOncUDDzwgcnJy1G2vvvqqaN++vfp4y5YtwmAw2D2nwpnPGkd+//13u+NMJpPo3bu3GDp0qLrNUV92ZNy4cQ5fh8GDB4vmzZuLmzdvqts2bNgg9Hq9+nmsfF4fPXrU5tgnn3xSjBs3rtDnzP8+F8L5z8H+/fuLESNG2Owza9Ysodfri/03MiEhQej1evG///1P3ZaWliZatWolFi9eLIQQYs+ePUXes99++03o9Xrx8ccf252jc+fORT4/0Z2CP4UQVbCFCxdiz549ePvtt9G8eXOnj2vSpAnq1auH3bt3q3Osdu/ejdatWyM0NFTdb+fOndi4cSPOnz+PjIwMdfu5c+dQs2ZN9fH999/vUrt/+OEHRERE2PwS3aJFC4SEhKiPMzMzcfLkSbz88ss2o1ktWrSATqfD6dOnodfr8eOPPyI2NtZmlOaBBx5wqT1Fadu2LTw9PdXHR44cgSzL6Natm0272rVrh48//hgmkwnnz5/HlStX0KNHD5t92rZtC6PRiDNnzqB169b44Ycf0KtXL5vRqgcffBBvvvmm+vjMmTPIzMxEjx49bNrVq1cvTJ8+HcnJyep9q1Wrls1cVWUEJf/oivL3v//+Gw0aNCj0uv/zn/8Ue2/yF29xxq1bt5CYmIhPP/0Uf//9tzoiGx4eru7z9ddf47777nM4mpHfvn37sGvXLrz44ot46qmnHO5T3PujVq1aNiNUyv0o7t4UdOTIEbRv3x5+fn7q6+3r64uIiAj8+OOPpTqucePG+M9//oOEhAR06tQJERERNqNUrsrfF/z8/BAUFIRWrVrZnLNu3bq4cuWK+thoNGLt2rXYtWsXrl69apMmnZubW+TIiDPXeOrUKYSGhiI6Olo9rlatWoiIiCj2enr16oWNGzdi5syZ0Gq1+L//+z+kp6ejZ8+e6j5//PEHli5diu+++w7Jycnq9nPnztmcKzw83KkRrUOHDmH16tU4c+aMTbr7uXPn0KpVK/VxmzZtbO5Nw4YNkZycjOzsbHh4eODrr79GkyZNCn1OZz5rHPWFH374AUIIm88MWZbRo0cPdbTQXaKiohAQEKA+btiwIQDLe6hu3bo4fPgwwsLC0Lx5c7trcKVSszOfg4GBgfjll1/wyiuv2OzTpUsXbNmyRX1sNptt0pILZkJ069ZN/f++vr5o3749Tp06BQDQ6/W4ffs24uPj0adPHzRv3hw+Pj7q/krqcv4U64LnILrTMUAkqmD79u1DREQEmjZt6vKxvXr1wvbt2/Hiiy8iPT0dX3zxhc0/rPv370d8fDwGDRqEiRMnIjAwEElJSRgzZoxd+mb+oNIZSUlJDgs/5A8QU1NTYTKZMGfOHMyZM8duXyXlMCkpyW5ZCk9PT5t/tEuj4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc5sK7qc8vnXrlvr//f39bfbR6XR225VtxaXgOvNF2dVAZfr06fj+++8xevRoNGjQAH5+ftiyZYvN/NObN28iKiqq2HMdPHgQgYGB6Nq1a6H7FPf+KOx+OZuerEhJScHJkyexe/duu7+1a9euVMc9+uijSE9Px9atW7Fy5UoEBgZi0KBBGDduXIkCxYIVRj08POy26XQ6m3uwePFi/Oc//8GYMWMQEREBf39/fPrpp1i9ejWMRmORAaIz11jU50Fxy0v07t0by5Ytw9dff40OHTqoP3opP2ClpaVh6NChCAkJwfTp01GzZk14enri5ZdfRnZ2ts25nPkcO3XqFEaPHo2uXbtixIgRCAkJgSRJGDBggF2/cXRfhRDIycmBh4cHbt68ibCwsEKfy5nPGkeVR69duwYfHx+7yqshISHIzMxUA1R3cHSNQN57KCUlBUlJSQ6DfVf6rzOfg2azGbm5uXZ9qeDjGTNm2MzjfO2119T5/T4+PnYp4SEhIfj1118BAPfccw9WrVqFdevWYeTIkdBqtejWrRteeuklBAcH4/r16/D19XV4DqJ/CgaIRBVszZo1eO655xAfH4/FixdDlp2vHdW7d2+sWrUKJ06cwKVLl2A2m21+Of3kk08QHR2tzpcBYDMRPz9X5qEBQFhYmMMCHvl/3ff394ckSRg7dqzDEUplhCksLAw3btyw+ZvRaLQZ8SyNgtcWEBAArVaLLVu2OLzu4OBg9UvtvHnzHAZayshbWFiYzTUDsLsW5QvkjRs3EBQUpG5XjiurZSScGb3J/8WqOEajEYcOHcIrr7yCQYMGqdv/9a9/2eyn/BBRnJdffhkbNmzA0KFDsXnzZpt7oyjN+8MVAQEB6NKlC0aPHm33N19f31IdJ8sy4uLiEBcXh6tXr2LXrl1YtmwZwsPDbe5jWfrkk08wePBgjBgxQt3mbJERZ67R0XsYsPTx4qoG165dG5GRkdi9ezdatGiBzz77DBMnTlT/fvLkSfz111945513bEaFb9++7VT7Czpw4ACCgoLw5ptvqu//y5cvl+hcgYGBDuc4Kpz5rHGkevXqyMjIQGZmpk2QmJycDG9v73JdxicgIADh4eFYuXJlqc7jzOegcr8K9qWCj8eOHWuTdZA/EyIjI8OuWnVycrJNIN+pUyd06tQJt2/fxueff44FCxZg3rx5WLZsGUJDQ5Genu7wHET/FAwQiSqYXq/HW2+9hbi4OMyaNQvz5s1z+tiGDRtCr9dj9+7duHTpEtq3b2/zD29WVpbdF4miKkm6IioqCrt27cJff/2l/gJ+4sQJm39EfXx8EBMTg7NnzxZafAQAIiMjsWPHDpt/kJ2p5FpSbdu2hclkwu3btxEbG+twn/r16yM8PByXL1/GgAEDCj1XZGQkDh48iMmTJ6tfAPft22ezz7333gtvb2/s2bPH5j7s2bMH9erVK7MS/O5OMc3OzobJZLLpU2lpaTh48KDNfu3atcN7772H69evFzmi4+fnh7fffhtDhgzBsGHDsGnTJvj5+dnsU5r3hyvatWuHPXv24N5773VpGRRXj7vrrrswcuRIbN++HX/88QeAko96usJoNNq8biaTCR9//LHNPoW1w5lrjIqKwooVK/D999+raaZXrlzBTz/95FTqfO/evbFmzRq0bdsWWVlZNmmIytqx+dv/7bff4vLly4iMjCz23AVlZWVBp9PZBGwl/Vxs164dPvnkE/zyyy9o1KiR3d+d+axxJCoqCpIkYe/evejbty8AQAiBvXv3FjoaWZSCI8quaNeuHTZs2AAfHx+X0rYLcvZzsFGjRvj0008xcOBAdZ+CnzF33313kZ9d+/fvV6txp6en4/Dhww4/x/39/dGnTx988803+O677wBAzX44ePAgevXqZXOOgp9PRHcqBohElUDTpk2xdu1aDB8+HH5+fmqFTGf07NkTmzZtQlpamt2X5/bt22Pu3LlYvXo1oqOjcejQIRw5csQtbe7fvz9Wr16NkSNHYty4ccjKysLy5cvtRoGmTJmCuLg4yLKM7t27w9fXF1evXsXnn3+OiRMnon79+oiLi8O//vUvPPfcc4iLi0NSUhLeeusteHt7uzyy6Yx77rkHAwcOxKRJkzBs2DBERUWp8wrPnTuH+fPnQ5ZlTJ8+HdOmTUNaWho6duwInU6Hixcv4sCBA0hISIC3tzdGjBiBAQMGYMKECXjsscdw5swZu8AsMDAQzzzzDNasWQOtVovIyEjs27cPhw4dKnJZh9JyJs3TFf7+/oiKisLKlSvh5+cHWZaxbt06+Pn52czjiouLw86dO/HUU0/hueeeQ40aNfDnn38iIyPDZgQLAIKCgvDOO+/gqaeewqhRo7B+/Xq7tLrSvD+cFRcXh//973945plnMHjwYISHh+P69ev45ptv0KJFC5tKs64eN3PmTAQEBCA6Ohr+/v44evQozp8/r1Ybrl+/PgBg69at6N27N7y8vOxSrkurffv2eP/991GnTh0EBgbi/ffft0vPLKwdzlzj/fffj0aNGmHChAmYMmUKPD09kZCQ4PSPHz179sSiRYuwaNEitGzZ0mb+akxMDHx8fPDKK6+oSzCsWLHCZt6rK2JjY/Huu+9i/vz56NKlC7799luHS7U4o2/fvnj//fcxbNgwjB07FvXr18elS5dw7tw5TJkyxanPGkcaNGiA3r17Y+7cuUhLS1OrmP75559qJVJX1K9fH59++ikOHDiA8PBwVK9e3en7Fxsbiw4dOmDo0KEYMWIEGjZsiLS0NPzyyy8wGo2YPHmyU+dx9nPwueeew9ixYzF37lz19VFGu53JIPDy8sKyZcuQkZGB6tWr45133kFOTg6efvppAMAHH3yAkydPqvOkz507h08++QSPPPIIAEsg26VLF8yePRtpaWkICwvD22+/bffjyOXLl9GtWzcsWLBADeKJ7hQMEInKWWEBT6tWrZCYmIjRo0fD19e3yBG3/Hr37o3ly5fDw8PDbi7XwIEDcenSJWzatAlGoxGxsbFYsmRJkSNizvL29sb69esxe/ZsTJw4EbVq1cL06dOxatUqm/1atmyJ999/HwkJCZg2bRrMZjNq1qyJ++67Tx1dCg8Px9q1azF//nyMHTsWDRo0wIIFC/Dss8+W2S+2s2bNQr169bBt2zYkJCTAz88PDRs2tFlwulevXvD19cXatWuxfft2yLKM2rVro1OnTupoS1RUFJYuXYqlS5dizJgxiIyMxLJly/D444/bPN/48eOh0WiwZcsWJCcno06dOli8eLG6DEFVsWTJErzyyiuIj49HYGAgnnrqKWRlZanrDAKWtLktW7Zg8eLFWLBgAbKzs1G3bl2MGjXK4TmrV6+OjRs34qmnnsLYsWMdrjlW0veHs4KDg7F161a8+eabeO2115Camorq1aujefPmRQZrzhwXExODf//739i6dSuMRiPq1KmDefPmqe/XWrVqIT4+Hu+99x42b96MGjVq2I2YlNYrr7yCWbNmYe7cufDy8kLfvn3RrVs3mznLhbXDmWuUJAmrV6/GK6+8ghkzZiAkJASjRo3C4cOH1fm8RbnrrrvQrFkzfPvtt3avbWhoKJYvX45FixZh9OjRqFu3LubMmVPiYi33338/pkyZgs2bN2Pbtm2IiYnB2rVr0b17d5fP5enpiXfffRdLlixBQkIC0tLSUKtWLXUtWsC5zxpHXn31VbzxxhtYtWoVUlNTodfrsWbNGrRs2dLldj755JP4+eefMWPGDNy6dQtjx47FuHHjnDpWkiSsWLECa9aswbvvvourV68iICAAjRo1wpAhQ1xqhzOfg926dcPLL7+Mt956C9u3b0fr1q0xbdo0vPDCC079e+Dl5YVFixZh3rx5+OOPP3DPPfdg3bp16o8OBoMBBw8exGuvvYZbt24hLCwMjz/+OCZMmKCeY+HChZg9ezYWLFgAHx8fPPnkk4iKisLevXvVfYQQMJlMdmt4Et0JJCGcWPCMiNxi3LhxyMjIsFuDkOwdP34cTz31FN59912bqo1Uvtq0aYOhQ4cWGtwREZW1VatWYc2aNTh27FiRqdyJiYnYvHkzjh49Wo6tI7rzcASRqBzcunUL33zzDY4dO2Yzr4LyLF68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdtH+kS5cu4eDBg7h582aJ5nkREZXEjRs3sHbtWrRp0wbe3t44fvw43nrrLTz22GMuzQ8mopJjgEhUDr755htMnToVbdu2xbPPPuvUMfnXmypIluUyq+YI5KXOlOfzZ2dnY9GiRUhOToavry9iY2Mxffp0yLJcIe35p9u0aRN27dqFoUOHulRcg4ioNHQ6Hf7880/s3LlTnQP49NNP26SAElHZYoopUSV06dKlIheK79evHxYuXFhmz3/06FF1Qr8jrsxfuRPbQ0RERHSnYoBIVAllZ2eri/o6EhQU5NLyBK5KS0vD2bNnC/27KxXw7sT2EBEREd2pGCASERERERERAICTdoiIiIiIiAgAA0QiIiKX7dixAwaDAenp6RXdFCIiIrdigEhEREREREQAGCASERERERGRFQNEIiIiB44fP47BgwcjOjoabdq0wcsvv4y0tLRC91+7di26deuGqKgotG/fHsOGDUNSUpL695s3b2LmzJlo3749oqKiMHDgQHz//fflcSlERERO01Z0A4iIiCqbEydOIC4uDl27dkVCQgJSUlKwZMkSpKamIiEhwW7/nTt3Ys2aNZgyZQruvfde3Lx5E19//TUyMzMBWJauefbZZ5Gamopp06YhODgYW7ZsQVxcHPbt24ewsDAAwPTp03Hs2DEcPHiwXK+XiIhIwQCRiIiogCVLlqBZs2Z488031W3h4eGIi4vDb7/9Zrf/qVOn0KFDBzz11FPqtgcffFD9///9739x5swZfPTRR6hXrx4AoH379ujRowfeeecdxMfHAwBkWYZGoymbiyIiInICU0yJiIjyyczMxMmTJ9GzZ0/k5uaq/7Vo0QI6nQ6nT5+2O6Zx48Y4dOgQEhIScOrUKZhMJpu/HzlyBBEREbj77rvV8wFAq1at8OOPP6r7LViwAPv37y/bCyQiIioCRxCJiIjySU1Nhclkwpw5czBnzhy7v1+9ehU1atSw2fboo48iPT0dW7duxcqVKxEYGIhBgwZh3Lhx0Gg0SElJwcmTJxEREWF3vjp16pTZtRAREbmKASIREVE+/v7+kCQJY8eOxf3332/39+rVq+Orr76y2SbLMuLi4hAXF4erV69i165dWLZsGcLDwzFo0CAEBAQgMjISs2fPtjufh4dHWV0KERGRyxggEhER5ePj44OYmBicPXsWY8eOdfn4u+66CyNHjsT27dvxxx9/AADatWuHr776CjVr1kRISIi7m0xEROQ2DBCJiIgKmDJlCuLi4iDLMrp37w5fX19cvXoVn3/+OSZOnGi3/8yZMxEQEIDo6Gj4+/vj6NGjOH/+PKZOnQoA6Nu3Lz744AMMGTIEQ4cORe3atXHz5k2cOnUKYWFhiIuLAwDMmDED33zzDechEhFRhWGASEREVEDLli3x/vvvIyEhAdOmTYPZbEbNmjVx3333ITQ01G7/mJgY/Pvf/8bWrVthNBpRp04dzJs3D127dgUAeHp6YtOmTVi+fDkSExORnJyM4OBgNG3aFF26dFHPYzab7QrcEBERlSdJCCEquhFERERERERU8bjMBREREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERuNX36dPTv3x8AsGPHDhgMBqSnp1dwq9yrf//+mD59eoU894kTJ9CvXz9ERUXBYDBUSBsAID09HQaDATt27KiwNpSlzZs3V+j9raz++OMPPPnkk4iJiYHBYMClS5cc7nft2jWMGDECLVq0gMFgwNGjR8u5pXkq8v2qMBgM2Lx5c4W2oSiXLl2CwWDAZ599VuR+iYmJaNOmjfr4zz//xJw5c9CzZ09ER0fjgQcewKuvvorU1NSybjIRlSEuc0FEbjV69GhkZWVVdDPuWLNmzUJwcDDefvtteHh4VHRz6B9m0aJFuH37NlavXg1vb29Ur17d4X5r1qzBL7/8gqVLlyIgIAANGzYs55ZWLlu3bsXdd99d0c0otccffxydO3dWHx8+fBjffvstBg0aBIPBgIsXL+LNN9/EyZMn8e9//xuyzHEIoqqIASIRuVWdOnUquglOycrKgpeXV0U3w2V//vknBgwYgNatWxe6T1W9tn8yo9EIT0/Pim5Gsf7880906dIF7dq1K3a/6Oho3H///YXuYzKZYDKZ/hE/dMTExFR0E9yiRo0aqFGjhvq4d+/eeOqppyBJEgCgTZs2qFGjBoYNG4bjx48X+TlFRJUXf9ohIrfKn2LqyPr16xEVFYVPP/202HN16dIFixYtsts+fvx4PPnkkwCAjIwMzJ07F927d0d0dDS6dOmCOXPmIC0tzeYYg8GADRs2YP78+Wjbti369Onj1PX89ttvGDhwIKKiotCzZ89C2338+HEMHjwY0dHRaNOmDV5++WW7Nhw9ehR9+vRBVFQUHn30UZw6dQpt2rRBYmJise04evQoDAYDTCYT5s+fD4PBoKbNdenSBQsXLsTKlSvRsWNHtGjRAoBl0fV169ahW7duiIyMRPfu3fHhhx/anfvAgQPo378/oqKiEBsbi0WLFiEnJ8dmn71796J79+5o2rQpnnrqKfz555925zGZTEhMTESnTp0QGRmJ3r17Y9euXTb7KP3j888/R69evRAdHY2RI0fi5s2bOH/+PIYMGYKYmBj0798fv/zyS7H3xR2ys7Mxd+5ctGzZEq1bt8aCBQuQm5trt9/Nmzcxc+ZMtG/fHlFRURg4cCC+//57m31u3bqFiRMnIiYmBh06dMC6devw+uuvo0uXLuo+Sur1qVOnMGTIEDRt2hTr168HYOlvI0eORLNmzdCsWTOMHz8eSUlJLrdj27Zt6N27N5o2bYo2bdpg8ODBOHPmTJH34eeff8YzzzyD6OhotGrVCpMnT8b169cB5KUgXrhwARs3boTBYMCQIUMcnsdgMODIkSPYv38/DAaDeu3Ka3/gwAG1badOnQLgXB905t44+37dvXs3+vTpg8jISNx///1YtmyZzWuuvEanT5/GkCFDEB0djUceeQSnT59GRkYGXnzxRbRo0QIPPPAAPvrooyLvq3JP8qeYDhkyBOPHj8euXbvQrVs3NG/eHMOHD8dff/1V5HmuXbuGF198EQ888ACaNm2K7t27Y9myZcjOzi62DZcvX8akSZPQpk0bREdHo0+fPnbvz8zMTMycORMtWrRAx44dkZCQALPZrP69YIppUFCQGhwqmjRpAgBITk4utk1EVDlxBJGIys3KlSuxbt06rFq1Cvfdd1+x+/fs2RN79uzB1KlT1S8h6enpOHToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixZBCFHs82dlZWHYsGEICgrCkiVLkJWVhQULFiAjIwN6vV7d78SJE4iLi0PXrl2RkJCAlJQULFmyBKmpqUhISAAA/P333+qX20mTJuH69euYMmUKjEajU/cuIiICW7duxRNPPIGhQ4eie/fuCA4OVv/+0UcfoWHDhpg1axZMJhMAYN68edi5cydGjx6NiIgIfPXVV5gxYwYCAwPVNLHdu3dj8uTJeOKJJzBp0iRcuHABS5cuhRAC8fHxAIDTp09j4sSJ6Nq1K2bMmIHff/8dL7zwgl0bExISsH79eowZMwZRUVHYt28fpkyZAkmS8NBDD6n7Xb16FQkJCXjhhReQmZmJV199FTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccf230Bzc9RIFeQRqMp8hxvvPEGtm3bhokTJ6JBgwbYtm0bPvnkE5t9srOz8eyzzyI1NRXTpk1DcHAwtmzZgri4OOzbtw9hYWEALEHQt99+i5deegmhoaHYuHEjzp07B41GY/e8kyZNwqBBgzBmzBhUq1YN58+fx6BBgxAZGYnFixfDZDJh+fLleO655/Cf//wHkiQ51Y5vvvkGs2fPxvjx4xETE4O0tDScPHkSt2/fLvQe3LhxA0OGDEGDBg2wZMkSpKenY8mSJXj22Wexfft2VK9eHVu3bsXYsWPRpk0bDBkyBH5+fg7PtXXrVsyZMwf+/v6YNGmSzQjh5cuXsXjxYowePRqhoaG4++67neqDztwbZ9+vX375JSZOnIi+ffti6tSp+PXXX7F8+XKkpKRg7ty5Ntcyffp0PPXUUxg+fDiWLFmC8ePHo2nTpqhTpw4SEhKwfft2xMfHo2XLljYja874/vvvce3aNcTHx8NoNGL+/Pl45ZVX8NZbbxV6TEpKCgIDA/Hiiy+iWrVqOHfuHBITEx22Pb/k5GQ88cQT8Pb2Rnx8PO666y789ttvuHr1qs1+b7zxBh588EEkJCTgyJEjWLlyJRo2bIhevXo5fV3ffvstAPzj04qJqjRBRORG8fHxol+/fkIIIbZv3y70er1IS0sTS5YsETExMeLrr792+lynT58Wer1efPfdd+q2Xbt2iUaNGomkpCSHx+Tk5Ijjx48LvV4vLl++rG7X6/XikUcecelaNm/eLJo0aSKuXr2qblPOHR8fr24bNGiQGDx4sM2xhw8fFnq9Xvz6669CCCEWLlwoWrduLTIzM9V9Pv74Y6HX60VCQoLTbdLr9eK9996z2da5c2cRGxsrsrKy1G3nzp0TBoNB7Nixw2bfqVOniv79+wshhDCbzaJTp05i+vTpNvts27ZNREVFiRs3bgghhBg/frzo2bOnMJvN6j6rVq0Ser1ebN++XQghREpKioiOjhaJiYk25xo+fLh48MEH1cfx8fGicePG4vz58+q2119/Xej1evHhhx+q2z7//HOh1+vF77//Xuz9KO4/pY2O3LhxQ0RFRYm1a9eq20wmk+jevbvQ6/Xqtn//+98iIiJCnD17Vt2Wk5MjHnjgAbFw4UIhhBC//vqr0Ov1Yvfu3eo+mZmZonXr1qJz587qNuV9sXHjRpu2TJkyRTz44IPCaDSq286ePSsaNWokPvvsM6fbsX79evU96KzFixeLFi1aiNu3b6vbvv/+e6HX68WuXbvUbZ07d1afpyiDBw8W48aNs9kWHx8v9Hq9+Omnn9RtzvZBZ+6Ns+/Xxx9/3O79um7dOtGoUSP1WOU1yv/+Ufpk/rampqaKJk2aiPfff7/I+1HwfTt48GDRvHlzcfPmTXXbhg0bhF6vt/mMKE5OTo743//+JyIjI23uTUFvvPGGiI6OFn///bfDv1+8eFHo9XoxdepUm+0PP/yweOGFF9THCQkJonXr1oU+T0ZGhujRo4fd/SWiqoUppkRU5hYuXIh//etfePvtt23Sk4rTpEkT1KtXD7t371a37d69G61bt0ZoaKi6befOnejbty+aNWuGiIgINf303LlzNucraj6UIz/88AMiIiJsRgZatGiBkJAQ9XFmZiZOnjyJnj17Ijc3V/2vRYsW0Ol0OH36NADgxx9/RGxsrM3cwAceeMCl9hSlbdu2NnPYjhw5AlmW0a1bN5t2tWvXDr/88gtMJhPOnj2LK1euoEePHjb7tG3bFkajUU1J/OGHH9ClSxebUbgHH3zQ5vnPnDmDzMxM9OjRw2Z7r169cO7cOZt0s1q1atnMVa1bt656DQrl73///XeR1/2f//yn2P/yF9Uo6LfffoPRaLR5LWRZtnttjhw5goiICNx9993qfQKAVq1a4ccffwQA9X/zp5N6eXmhffv2Dp+7U6dOds/RrVs3yLKsPsfdd9+NWrVqqed2ph2NGzfGTz/9hAULFuCbb75xKv3w1KlTiI2NtRkVbNq0KWrVqoUTJ04Ue7yzwsPD0bhxY/Wxs33QmXvjzPvVZDLhp59+cthPzWYzvvvuO5vt+edaKn0yfz/19/dHUFBQsf3UkaioKAQEBKiPlRG3os4lhMDGjRvRq1cvNG3aFBEREZgyZQqys7PtRgPz+/rrr3HfffcVWlRIERsba/O4YcOGxaa95m/bSy+9hBs3bmDBggVOHUNElRNTTImozO3btw8RERFo2rSpy8f26tUL27dvx4svvoj09HR88cUXeOWVV9S/79+/H/Hx8Rg0aBAmTpyIwMBAJCUlYcyYMXbpm/mDSmckJSXZpHEq8n/hTE1Nhclkwpw5czBnzhy7fZUvbUlJSXbLJnh6esLHx8elNhWm4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc8EK7qc8vnXrlvr//f39bfbR6XR225VtxaXg5g82CuMovVOhzLErrN2KlJQUnDx5EhEREXbnUAKH69evw9fX167YjKM+VNhzvPXWWw5TDJXXwpl2tG/fHq+99hree+89bNq0CT4+Pnj44Ycxbdq0QvtbUlIS7r33XrvtoaGhuHXrlsNjSsJRPwWK74PO3Btn3q8pKSnIycmxa4fyuOC1OuqT1apVs9nHw8PDqSC8oILncabPv/vuu3j99dcxcuRItGrVCtWqVcMPP/yAuXPnFnnczZs3ERUVVaI2OZsGv3jxYuzfvx8bNmxA7dq1nTqGiConBohEVObWrFmD5557DvHx8Vi8eLFLpc979+6NVatW4cSJE7h06RLMZjO6deum/v2TTz5BdHQ0Zs+erW47duyYw3MVNQ/NkbCwMIfFWPKPhvn7+0OSJIwdO9bhCKXyi31YWBhu3Lhh8zej0YiMjAyX2lSYgtcWEBAArVaLLVu2OLzu4OBgdX3KefPmOQy0lLL8YWFhdgUnCl6LMgfvxo0bCAoKUrcrxwUGBrp4Rc5xFCgV9NprrxVaOEkJDJKTk23aWPB6AwICEBkZadPPFMocu9DQUKSnp9tVJC14rxSOXrOuXbvi8ccft9tXuafOtAMA+vXrh379+uHGjRvYt28fXnvtNfj5+WHKlCkO2+LoNQYsQa8z97iklHteXB905t44834NCgqCTqezu1blh4L8I3qV0SeffIIePXpg4sSJ6rY//vij2OOUH87KysaNG/HOO+9g6dKlaNmyZZk9DxGVDwaIRFTm9Ho93nrrLcTFxWHWrFmYN2+e08c2bNgQer0eu3fvxqVLl9C+fXubACQrK8uuTH7BynwlFRUVhV27duGvv/5S09ZOnDhh8+XSx8cHMTExOHv2LMaOHVvouSIjI7Fjxw6bJSicqeRaUm3btoXJZMLt27ft0sYU9evXR3h4OC5fvowBAwYUeq7IyEgcPHgQkydPVoOaffv22exz7733wtvbG3v27LG5D3v27EG9evUKHUUrrf/85z/F7lPU+nN6vR6enp749NNP0aBBAwCW6q8FX5t27drhq6++Qs2aNe1G/hSRkZEALK+rUtQjKysLhw8fhq+vb7HtbNeuHc6cOYPIyMhCf8xwph35BQcHY+DAgdi/fz9+//33QveLjo7Gli1bkJaWpqaZnjp1CpcvXy50FNodnO2DztwbZ96vGo0GERER+OSTT9RUdMDST2VZRrNmzdx0ZWWjpJ937dq1w3vvvYfr16+7nElRnF27dmHhwoWYPn26S8VsiKjyYoBIROWiadOmWLt2LYYPHw4/Pz+1OqEzevbsiU2bNiEtLc0uuGzfvj3mzp2L1atXIzo6GocOHcKRI0fc0ub+/ftj9erVGDlyJMaNG4esrCwsX77cJkAFgClTpiAuLg6yLKN79+7w9fXF1atX8fnnn2PixImoX78+4uLi8K9//QvPPfcc4uLikJSUhLfeegve3t4uj2w645577sHAgQMxadIkDBs2DFFRUeqcrnPnzmH+/PmQZRnTp0/HtGnTkJaWho4dO0Kn0+HixYs4cOAAEhIS4O3tjREjRmDAgAGYMGECHnvsMZw5c8YuMAsMDMQzzzyDNWvWQKvVIjIyEvv27cOhQ4ewdOlSt1+fwpm0uaIEBQVhwIABSExMhFarRcOGDbFt2za7kd2+ffvigw8+wJAhQzB06FDUrl0bN2/exKlTpxAWFoa4uDjo9Xp07twZc+bMQXp6OsLCwrBhwwZ4eXk59RqPHTsWjz/+OEaOHIlHH31Undt2+PBh9OvXD23atHGqHQkJCbh16xZat26NoKAg/PTTTzh27BgmT55c6HM/++yz2LJlC4YPH47hw4cjIyMDS5YsgV6vt5tv6k7O9kFn7o2z79dx48Zh2LBhePHFF9GrVy/89ttvWL58OR5//HGXK5GWt/bt2+O9995TK6nu2rUL58+fL/a4uLg47Ny5E0899RSee+451KhRA3/++ScyMjIwYsSIErfn2LFjePHFFxEbG4uYmBicPHlS/VvBNROJqOpggEhEblfYl+FWrVohMTERo0ePhq+vb5Ejbvn17t0by5cvh4eHB7p27Wrzt4EDB+LSpUvYtGkTjEYjYmNjsWTJkiJHI5zl7e2N9evXY/bs2Zg4cSJq1aqF6dOnY9WqVTb7tWzZEu+//z4SEhIwbdo0mM1m1KxZE/fdd5/6a314eDjWrl2L+fPnY+zYsWjQoAEWLFiAZ599ttDlAkpr1qxZqFevHrZt24aEhAT4+fmhYcOGeOyxx9R9evXqBV9fX6xduxbbt2+HLMuoXbs2OnXqpM6JioqKwtKlS7F06VKMGTMGkZGRWLZsmV263/jx46HRaLBlyxYkJyejTp06WLx4MXr37l0m1+cu06ZNQ25uLlauXAlZlvHwww/j2WefxcKFC9V9PD09sWnTJixfvhyJiYlITk5GcHAwmjZtalOUZuHChZg9ezbmz58PHx8fPPnkk6hduzZ++OGHYttRv359bN26FcuXL8fMmTORlZWF8PBwtGvXTi3k40w7oqKisHHjRnz88cdIT09HzZo1MW7cODzzzDOFPndwcDA2bdqEhQsXYvLkydDpdLj//vvx4osvlvlC9s70QWfujbPv1w4dOmDZsmVYvXo1du3aheDgYAwdOhTjxo0r0+t0hzFjxiAlJQXLly8HAHTr1g0vv/wynnvuuSKPU5ZDWbx4MRYsWIDs7GzUrVsXo0aNKlV7jh49ipycHHz55Zf48ssvbf42duzYKnFPicieJIQTi4ERETlp3LhxyMjIsFuDkOwdP34cTz31FN59912byoh058jNzcVDDz2E6OhovP766xXdHCIiomJxBJGI3OLWrVv45ptvcOzYMQwcOLCim1MpLV68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdNHKTPXv24Nq1a9Dr9UhPT8e///1vnD9/HosWLarophERETmFASIRucU333yDqVOnom3btnj22WedOkZZw80RWZZdqnbqKiEETCZTuT5/dnY2Fi1ahOTkZPj6+iI2NhbTp0+HLMsV0h5yPx8fH+zYsQMXLlyAyWSCXq/HmjVrSrTECxERUUVgiikRVYhLly4VuVB8v379bOaAudvRo0fx9NNPF/r38p4/U9naQ0RERP9MDBCJqEJkZ2fj119/LfTvQUFBRS5PUFppaWk4e/ZsoX+vXr06wsPDy+z5K3t7iIiI6J+JASIREREREREBADihhYiIiIiIiAAwQCSiKuizzz6DwWDApUuXXDquS5cubltqYMWKFbjvvvvQqFEjTJ8+3eE+iYmJaNOmjVuezx12796NHTt22G0fMmQIxo8fXwEtck52djYSExPx888/22y/dOkSDAYDPvvsswptR2ls3rwZBoOhyH127NgBg8Gg/teuXTsMGzYMp0+fttnv4MGDGDhwIFq2bInmzZujd+/emDlzJtLT09V9unTpop4nMjISHTp0wIgRI7Bz506YzeZi21tWfaXgfTh69CgMBgN+++03p45PTk5GYmKiS58JBoMBmzdvVh+789oKe6+VVHp6OgwGg1vO6c7PQWd8+eWX2LhxY7k9HxGVHquYEhG56IcffkBiYiImTZqE1q1bIyQkpKKb5JRPPvkEKSkp6N+/f0U3xSU5OTlYsWIFatWqhcaNG6vbq1evjq1bt+Kee+6p0HaUl3fffRdeXl5ISkrCqlWr8PTTT2P37t0IDw/HRx99hMmTJ+OJJ57A888/D0mS8Ouvv2Lnzp24ffs2fH191fM89NBDGDJkCEwmE5KSkvDll1/i5Zdfxq5du7B69Wp4eHgU2oZZs2ZBqy37rw4RERHYunUr6tSp49T+ycnJWLFiBVq3bu303OWtW7eW2TznqvpeKwtfffUV9u7di7i4uIpuChE5iQEiEZGL/vzzTwDAU089BT8/vwpuzT+Xh4cHYmJiKroZ5SYqKkoN9CIjI9G5c2fs2rULw4cPx+bNm3H//fdj7ty56v4dO3bEiBEjULDUQPXq1W3uW48ePdCzZ0+MGDEC69atw9ixYwttQ8OGDd17UYXw8/Mrs9c2KysLXl5e/6i+Q0TkCqaYElGpTJ8+Hf3798fnn3+OXr16ITo6GiNHjsTNmzdx/vx5DBkyBDExMejfvz9++eUXm2MzMzPx6quvIjY2FlFRUXj00Ufx5Zdf2uwjhEBiYiLatWuHZs2aYdq0aUhLS7Nrh9FoxKJFi3D//fcjMjISDz/8MA4dOuTy9ZhMJiQmJqJTp06IjIxE7969sWvXLpvrnTZtGgCgRYsWMBgMOHr0aJHn/OmnnzBgwABER0ejb9++OH78uEvPeeTIERgMBvz999/qtieeeAKNGzdGamqquq1Pnz5YtmyZwzZMnz4de/fuxbFjx9QUw8TERJt9du3ahW7duqF58+YYPnw4/vrrL5u/l/QeO3Pcp59+iv79+yMmJgatWrXC448/jmPHjgEAmjdvDgB48cUX1bZfunTJYYqpkj63bt06dOjQAS1atMDChQshhMChQ4fQu3dvNGvWDKNHj8atW7fU4zIyMjB37lx0794d0dHR6NKlC+bMmWPT1wprh7PXmJ2djblz56Jly5Zo3bo1FixYUORaoEW56667EBwcjMuXLwMAbt++jdDQUIf7SpJU7PliY2PRvXt3bNmypcj9CqZh/vXXX5gwYQLatWuHpk2bomvXrnjzzTeLPIcz98FRium2bdvQu3dvNG3aFG3atMHgwYNx5swZXLp0CX369AEAPP300+prk/88X3zxBZ577jk0a9ZMDaILppgqtm7dii5duqBp06YYOXKkzfuusNTX/PeluPfagQMH0L9/f0RFRSE2NhaLFi1CTk6Ozfn27t2L7t27o2nTpnjqqafUH6WK88Ybb6BPnz5o1qwZOnbsiMmTJyMpKcnhvitXrkRsbCyaNWuGyZMn4/bt2zZ/v3jxIkaPHo3mzZujWbNmeO6553D+/Hn174WleCv/JgCWNPt33nkHly9fVu9FYSn5RFR5cASRiErt6tWrSEhIwAsvvKAGfTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccfq19YX375ZRw8eBCTJk1CnTp1sG3bNowaNQrvvvsuWrZsCQDYtGkTVq5ciVGjRqFly5bYv38/Fi9ebNeG8ePH49SpUxg3bhzq1KmDPXv24Pnnn8f27dtdSgdMSEjA+vXrMWbMGERFRWHfvn2YMmUKJEnCQw89hNGjR6NGjRpYvXq1mvJX1KhKVlYW4uPjERcXh9DQUKxcuRJjxozB559/Dm9vb6ees1mzZtDpdDhx4gR69eqFzMxMnD59GjqdDt9++y06deqEmzdv4syZM5g6darDdowePRpXrlzB7du3MWvWLABAjRo11L9///33uHbtGuLj42E0GjF//ny88soreOutt0p9j4s77sKFC5gwYQKGDBmCqVOnIjs7Gz/++KMawL377rt45pln8Pzzz6NTp04ALKNg165dc/h8H3/8MZo2bYoFCxbg9OnTePPNN2E2m3H8+HFMmDABWVlZmDdvHpYsWaIGC1lZWTCZTJg4cSKCg4Nx9epVrFmzBhMmTMDbb79dZDucvTdvvPEGtm3bhokTJ6JBgwbYtm0bPvnkk0LvW1HS0tJw69YtNShs0qQJPv74YzRp0gTdunUr0ZIo7du3x+7du3Hp0iWnUy+nTZsGo9GIefPmwd/fHxcvXiw2mCnJffjmm28we/ZsjB8/HjExMUhLS8PJkydx+/Zt1K1bF2+88QamTJmCmTNnIiIiwu74l156Cf3798czzzwDT0/PQp/nu+++w9mzZzF9+nQYjUa88cYbGD16NLZv3+7U/QCKfq/t3r1bTQWeNGkSLly4gKVLl0IIgfj4eADA6dOnMXHiRHTt2hUzZszA77//jhdeeMGp505OTsaoUaNQvXp13LhxAxs2bMAzzzyDXbt2QaPRqPt99NFHqFu3LubNm4ekpCQsXrwYL730EhISEgBYgvi4uDhotVq8+uqr0Gg0SExMxODBg7Fr1y4EBgY61Z7HH38c586dw9GjR7FixQoAQHBwsFPHElEFEkREpRAfHy8aN24szp8/r257/fXXhV6vFx9++KG67fPPPxd6vV78/vvvQgiuTrydAAAYAElEQVQhfv/9d2EwGMSOHTvUfUwmk+jdu7cYOnSoEEKI3NxcERsbK2bOnGnznHFxcUKv14uLFy8KIYQ4fPiw0Ov14ujRozb7Pfnkk2LcuHHq486dO4uFCxcWei0pKSkiOjpaJCYm2mwfPny4ePDBB9XH27dvF3q9XqSlpRV5bxISEoRerxeHDx9Wt/30009Cr9eLQ4cOufScAwYMEHPmzFGvt3Xr1uKFF14QixcvFkIIceDAAdGoUSNx+/btQtszbtw4MXjwYLvtgwcPFs2bNxc3b95Ut23YsEHo9XqRmZmpPqcz97ggZ47bs2ePaN26daHnSEtLE3q9Xmzfvt1m+8WLF4VerxcHDx5Ut3Xu3Fl07dpV5ObmqtseffRR0bhxY3HhwgV12+uvvy7atWtX6HPm5OSI48ePC71eLy5fvlxkO5y5xhs3boioqCixdu1a9e8mk0l0795d6PX6QtshRF5/S01NFTk5OeLKlStiwoQJonHjxuKnn34SQghx5coV8fDDDwu9Xi/0er3o0qWLWLBggbh27ZrNuYp6D/zf//2f0Ov14uTJk4W2ZfDgwTavd0xMjPj000+LbH9+zt6Hr7/+Wuj1evHrr78KIYRYv3696NevX6Hn/fXXX4Verxdff/21zXblPPPnz7c7Rq/Xi/fee8/m2po0aSIuXbqkblP6gPJ+Ldiu/Mfmvy+O3mtms1l06tRJTJ8+3Wb7tm3bRFRUlLhx44YQQojx48eLnj17CrPZrO6zatUqh32vKLm5ueKvv/4Ser1eHDt2TN3euXNn0apVK5vPr//+97/CYDCon8//+te/7N4zV69eFREREWLNmjVCCMfvPyEs/ybkf60WLlwoOnfu7HS7iajiMcWUiEqtVq1aNsUk6tatCwBo27atuk35u5Ku9cMPP0AIgR49eqj7yLKMHj164MSJEwAsI5NJSUl44IEHbJ6vW7duNo8PHz6MsLAwNG/eHLm5uep/7dq1w48//uj0dZw5cwaZmZk2bQKAXr164dy5c0hOTnb6XAqdTmdTybRBgwYA8u6Ds8/ZokULNTX1+PHjaNmyJVq1amWzrVGjRiWeExkVFYWAgAD1sTIqqrSzpPfYmeP0ej1u376N+Ph4fPnll8jIyCjRNShat25tM1pSt25d1KpVC7Vr17bZduPGDWRnZ6vbdu7cib59+6JZs2aIiIjAk08+CQA4d+5ckc/nzDX+9ttvMBqNNn1ZlmW7vl2Uli1bIiIiAp06dcLXX3+NBQsWqKOTd911F3bs2IGNGzdi6NChCAgIwMaNG/Hwww/bpQoXRpRgWeRGjRph6dKl2LFjB65cuVLs/iW9D40bN8ZPP/2EBQsW4JtvvrF53ZyhjPgWp0mTJqhVq5b6uEWLFggJCcGpU6dcej5Hzp49iytXrqBHjx42/aRt27YwGo04c+YMAMtnY5cuXWxSgx988EGnnuPQoUMYOHAgWrRogSZNmqBjx44A7Ptw+/btbQoXPfjggxBC4IcffgAAnDp1Ck2aNLF5z9SoUQPNmjVTP5+J6M7FFFMiKjV/f3+bxzqdzm67ss1oNAIArl27Bh8fHzXNUhESEoLMzExkZ2fj+vXr6raC++SXkpKCpKQkh6ll+QOF4ihzdQp7vlu3brlcsdTX1xeynPdbnFIhUrkPzj5nq1atsGHDBqSmpuL48ePo1KkTWrZsiQULFsBoNOL48eNo0aKFS23Lr1q1ajaPC75eJb3Hzhx3zz33YNWqVVi3bh1GjhwJrVaLbt264aWXXipROpqja3HUR4UQyMnJgYeHB/bv34/4+HgMGjQIEydORGBgIJKSkjBmzBj1HpTmGp3ty0V5//334eXlhaCgINx11102/Up5rnbt2qFdu3YALMsLjBw5Eu+88w5mzJhR7PmVHwNcadObb76JZcuW4bXXXkNqaqq67IvShoJKeh/at2+P1157De+99x42bdoEHx8fPPzww5g2bRp8fHyKbaez1+Rov5CQkELn8bkiJSUFADBy5EiHf7969SoAy2dCwXY48z44deoURo8eja5du2LEiBEICQmBJEkYMGCAXR8ueH4vLy/4+PioadtJSUkO57SGhoY69UMAEVVtDBCJqEJUr14dGRkZyMzMtAkSk5OT4e3tDQ8PD/ULSsGRu4KPAwICEB4ejpUrV5aqTWFhYQCAGzduICgoyO75nJ13UxbP2bx5cwghcOzYMXz//feYMmUK7r33Xvj6+uLIkSP46aefMGzYMLe3T1HSe+zscZ06dUKnTp1w+/ZtfP7551iwYAHmzZtXaNEdd/vkk08QHR2N2bNnq9uUIjnFceYa8/fl/P3IlVHpxo0b24z6FKdDhw5o1KiR0wVOvvrqK4SFhbm09EN4eDgWLlwIs9mMU6dOITExEc8//zw+++wzm/6sKM196NevH/r164cbN25g3759eO211+Dn54cpU6YUe6wzhXoKa0dycrL6PlXmLxYsKnPz5k2H15ufcr3z5s1zOGdXue9hYWF27bhx40axbT9w4ACCgoLw5ptvqterFDEqqOD5s7KykJGRoc6pDQsLw++//2533PXr19VMg6LuBRFVbUwxJaIKERUVBUmSsHfvXnWbEAJ79+5VR8LuuusuhIWF4dNPP7U5dv/+/TaP27Vrh+vXr8PHxwdRUVF2/znr3nvvhbe3N/bs2WOzfc+ePahXr16ZFFdw9jkDAgJw7733YuPGjZBlGU2aNIEkSWjevDnWr1+P3NzcYkcQdTpdsaNhhSnpPXb1OH9/f/Tp0wfdunVTv6AWHM0sC1lZWXbr/+WvJFtUO5y5Rr1eD09PT5u+bDab7fp2STkKbIxGI/76669Cq5vmp6xVN3DgwBI9vyzLiImJwdixY5GZmVnoKJM77kNwcDAGDhyIli1bur2P/PTTTzZtP3HiBJKTk9G0aVMAecVm/vjjD3Wfq1ev4uzZszbncfReq1+/PsLDw3H58mWH/UQJMCMjI3Hw4EGblN99+/YV2/asrCzodDqbYLhgH1YcPnwY6enpNueXJAmRkZEAgOjoaJw+fRoXL15U9/n777/x3XffqZ8zISEh0Ol0NvciPT0dJ0+eLPZeEFHlxhFEIqoQDRo0QO/evTF37lykpaWpVUz//PNPtfKfRqPB8OHD8frrryMoKAgtW7bEvn37bL6QAJYS/R06dMDQoUMxYsQINGzYEGlpafjll19gNBoxefJkp9oUGBiIZ555BmvWrIFWq0VkZCT27duHQ4cOYenSpW6/B64+Z6tWrfD++++jQ4cOaupiy5YtsWjRItSrV08d5ShM/fr18emnn+LAgQMIDw9H9erVna52WdJ77MxxH3zwAU6ePIn77rsP1av/f3v3H5Xz/f9x/N5VV6VwdVHKRe0wKtRSIwtnuA5nE+MoZTOJJcWUzbIfWk1CfsSWakpnlGEMzYbFDjabw2Fnfq2zhv2oaZJ+UKqVku8frevrWpmrpsk+z9s5znFd1+v9fj3f73N1To9er9f71Y3c3FwOHDjAxIkTgYZpuT179iQrK4u+fftiZmam28bgQRk6dChLlixh/fr1uLm5cfToUU6cOKHX5l51GHKNarUaf39/EhMTMTExoU+fPuzcufMfr7dsFBQURO/evRk1ahTdu3enqKiIrVu3Ul5ezpQpU/TaXrt2jbNnz3L79m2Ki4s5duwYn3zyCUOHDiUkJMTgPm/evElQUBATJ06kV69e3Lp1i40bN2JjY6Nba/tXrb0P69ato6ysDE9PT9RqNT/88AOnTp3Sfe80Gg3m5ubs2bOHTp06YWJi0qI/DjXq0qULISEhhIWF6Z5iOmDAAN1aPjs7O1xdXUlISKBDhw7U19eTmpraZHbBvX7WGrfJqaio4Omnn0apVHL58mUOHTrEunXr6NChA8HBwfj7+zN//nwmT57MpUuX2LVr131rHzZsGBkZGSxbtgytVsvp06f57LPPmm1rZmZGSEgIQUFBFBUVsWrVKsaMGaNbe+zj40NaWhrBwcGEh4djbGxMUlISarVa931SKBRotVrS09PRaDR07tyZjRs3Ym5urtdX7969KS4uJjMzk759+6JWq1s0Si2E+PdJQBRCPDRLly4lPj6e999/n/LychwdHUlJSdFtcQEQGBjIjRs32L59OxkZGWi1WhYuXKg3rczIyIikpCRSUlLIyMigoKAAlUqFs7MzAQEBLaqp8Zehjz76iJKSEhwcHFi9ejXjxo17YNfd2j4HDRrE1q1bGTx4sN578P979P2dqVOnkpOTw6JFiygrK2PevHmEhYUZVGNr77Ehxzk5OXHkyBHi4uIoKyvDxsYGPz8/5s+frztPTEwMK1euZObMmdy6deuBjbw1ev7558nPz2fz5s3U1NQwbNgw1qxZg7+/v1675uro2bOnQffm9ddfp66ujuTkZBQKBRMmTGDmzJmsWLHiH9c/a9Ys9u/fT3x8PCUlJXTp0oX+/fuzbds23ehXo3379rFv3z6USiVWVlY4OzuzdOlSJkyY0GRd498xMzPD0dGRzZs3c/XqVd3m8x988EGTkHC31twHV1dX0tPT2b9/P5WVlWg0GsLCwggMDNTVEhsbS3JyMgEBAdTW1nLhwgWDr6WRu7s7Xl5eLF++nNLSUjw9PYmNjdVrs2bNGt5++20WLlyIra0tCxcuJCMjQ6/NvX7WvL29sbS0JDU1ld27d6NQKLC3t2fkyJG6UVBXV1fWrl3L2rVrefnll3FxceHdd9/Fz8/vb2sfMWIEERERbNmyhZ07dzJw4EBSU1N55plnmrQdN24clpaWREZGUlVVhVar1ZtebWpqSnp6OnFxcURGRgIND39KTEzUC8PR0dFERUURExODSqUiNDSUM2fO6O0TOXbsWE6ePMnq1aspLS1l0qRJD+Q7L4RoO0Z3WvPYMiGEEEIIIYQQ/zmyBlEIIYQQQgghBCABUQghhBBCCCHEnyQgCiGEEEIIIYQAJCAKIYQQQgghhPiTPMVUCCFEm/r888+prq7Gx8dH7/2AgADUajXr1q174H2WlJSwbds2Jk2a1C4eqZ+YmMiWLVs4efLkv9ZnQEAAp06dAhq2jNFoNGi1WsLDw+nYsSMAVVVVbNiwgaysLAoKCujYsSO9e/dm4sSJuqdmnjx5kunTp+vOa2Fhga2tLYMGDWLatGk4Ozv/a9ckhBCi7UlAFEII0aYOHDjA9evXmwTEtlRSUkJSUhKenp7tIiA+LEOGDGHBggXU1dWRnZ1NQkICV69e1YXysLAwcnJymDNnDn379qW0tJRvv/2Wr7/+usm2CvHx8djb2/PHH3+Ql5dHZmYmvr6+LF68+L5bMAghhHh0SEAUQgjxP626uvpv9+17lFlZWTFw4ECgYc/MqqoqEhISKC0tpby8nGPHjvHee+8xduxY3THe3t40twOWk5MTjo6OAHh5eeHv78+iRYuIiYnB09OTxx577F+5JiGEEG1L1iAKIYRoM2+++SYHDx7k1KlTODk54eTkRGJiol6bvXv3MmbMGDw8PJg1axZXr17V+7ympoZVq1YxYsQIXFxcmDBhAkePHr1nn/n5+Tz33HMATJ8+XdcvNEyXdHJy4ptvviE0NBR3d3eWLFlCfn4+Tk5OfPnll03q/+vI58WLF5k9ezbu7u64u7sTHh5OUVFRi+/N5cuXmTt3Lh4eHri7uxMaGkpeXp5em7KyMl599VUGDhzI8OHD2bBhAytXrkSr1ba4P4ABAwYADfeovLwcABsbmybtjIyM7nsuhULBW2+9hUKhYOfOna2qRwghRPsjI4hCCCHazNy5c7ly5Qo3b97knXfeAcDOzk73+blz57h27RpvvPEGNTU1LFu2jKioKNLS0nRtwsPDOX/+PGFhYTg4OJCVlcWcOXPYvXs3/fr1a9Jnt27diI+PJyIigujoaF0oultkZCQ+Pj4EBgZiZmZm8PXk5eXxwgsv4OLiwurVq7l9+zYJCQmEhoaya9cug4IVwK1bt5gxYwYmJiYsXboUY2NjEhMTmTZtGnv37sXKygpoCKinT58mMjISa2tr0tPTyc3NxdjY2OCa7/b7778DDaGwU6dOWFhYsHz5chYsWMDgwYNbdC8AVCoVLi4unDt3rlX1CCGEaH8kIAohhGgzDg4OWFlZcefOHd1Ux7tVVFSQmpqKSqUCoKioiLi4ON20zxMnTvDVV1/x4Ycf4unpCcDw4cPJzc1l/fr1zT7gxtTUVDdi2KdPn2b7ffbZZ3nllVd0r/Pz8w26nqSkJKytrUlLS8PU1BRomHo5duxYjh49ysiRIw06z+7duykoKODgwYPY29sD4ObmxujRo9mxYwchISFcvHiRI0eO6E0B9fLyYsSIEVhaWhrUz507d6irq6O+vp7z58+TkpKCi4sLdnZ2GBkZERsbS1RUFEFBQSiVStzc3HQPqDE07NrZ2ZGTk2NQWyGEEO2fTDEVQgjx0Li6uurCITQEOoDCwkIAjh8/jo2NDR4eHtTV1en+eXl5kZ2d3ep+DQ1yf3XixAnGjBmDQqHQ1dKzZ0969OjRonrOnz9P//79deEQGoKWu7s73333HYDufHdPJzU3N2fo0KF657r7vtTV1el99sUXXzBgwABcXV158cUX6dGjB/Hx8brwN378eI4cOcLy5cvx9vYmNzeXqKgoXnvtNYOvpbn1ikIIIR5dMoIohBDioencubPea6VSCTSsOwS4fv06RUVFzU4Tbe00S4CuXbu26rjr16+TlpamNwW2UUFBgcHnKSoqwtrausn71tbWXLlyBYDi4mIsLS2bTPvs0qWL3uu/3psLFy7o/v/UU08RERGBiYkJGo1GL4w3UqvV+Pr64uvrS21tLdHR0WRmZjJ79myDtrAoLCxs9lqEEEI8miQgCiGEaLdUKhW2trYkJyc/0PP+dfpkYwirra3Ve//GjRtN6hk9enSz2zqo1WqD+7exseGnn35q8n5xcbEuxFlbW1NZWUlNTY1eSCwtLdU7ZteuXffsR6VS4erqanBdSqWSGTNmkJmZyS+//HLfgFhWVkZ2djaBgYEG9yGEEKJ9k4AohBCiTSmVSt2IYEt5eXmxadMmLCwsePzxx1vUJ2Bwv127dkWpVPLzzz/r3qusrOTs2bNoNBq9ei5duoSLi4vBa/Sa4+bmxqeffsrly5d100wLCws5c+YMYWFhALi4uABw+PBhvL29gYYtOY4fP663BrElAfBuFRUVmJiYNNnio/FJqvcbZa2vrycuLo76+nomT57cqhqEEEK0PxIQhRBCtKlevXpx+PBhDh06hK2tLd26dcPW1tagY4cNG8bw4cN56aWXCA4Opk+fPlRUVPDjjz9SU1Nzz7VyGo0Gc3Nz9uzZQ6dOnTAxMfnbIKVQKNBqtaSnp6PRaOjcuTMbN25sEp7mzZuHn58fs2fPxtfXF7VaTWFhIcePH2fSpEkMGTLEoOvy8fEhLS2N4OBgwsPDMTY2JikpCbVazZQpUwBwdHRk1KhRxMTEUFlZiY2NDZs2bcLc3PwfhdNGv/76K3PmzMHX1xcPDw/Mzc3JyckhJSWFfv368eSTT+q1v3DhAlVVVdTU1JCbm0tmZibZ2dksXrxY9kAUQoj/EAmIQggh2tTUqVPJyclh0aJFlJWVMW/ePN0o2f0YGRmRlJRESkoKGRkZFBQUoFKpcHZ2JiAg4J7HmZmZERsbS3JyMgEBAdTW1uqtzWtOdHQ0UVFRxMTEoFKpCA0N5cyZM1y8eFHXplevXuzYsYOEhASio6Oprq7G1tYWLy+vFoUkU1NT0tPTiYuLIzIyEgBPT08SExN1W1wArFixgsWLF7Ns2TIsLCyYOnUq9vb2fP/99wb3dS8ODg74+flx7Ngxtm/fTnV1Nd27d8fX15fg4GBMTPR/RYiIiACgQ4cO2NraMnjwYGJiYgxapyiEEOLRYXRHHj8mhBBCPBLq6uoYP348bm5urFy58mGXI4QQ4j9IRhCFEEKIdiorK4tr167h6OhIZWUlH3/8MXl5eaxatephlyaEEOI/SgKiEEII0U5ZWFiQmZnJb7/9xu3bt3F0dCQlJYUnnnjiYZcmhBDiP0qmmAohhBBCCCGEAEDxsAsQQgghhBBCCNE+SEAUQgghhBBCCAFIQBRCCCGEEEII8ScJiEIIIYQQQgghAAmIQgghhBBCCCH+JAFRCCGEEEIIIQQgAVEIIYQQQgghxJ8kIAohhBBCCCGEAOD/ALcKCtN39HWvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "\n", + "# Setup utilities\n", + "import scipy.stats.distributions as dist\n", + "\n", + "fig, axs = plt.subplots(4, 1, dpi=90, figsize=[11, 26], sharey=True)\n", + "fig.tight_layout(pad=4.0)\n", + "\n", + "axs.flatten()\n", + "idx=0\n", + "\n", + "for adaptive in (False, True):\n", + " for jackknife in (False, True):\n", + "\n", + " mtp = Multitaper(lc_ar4, adaptive=adaptive, jackknife=jackknife)\n", + " \n", + " mtp_stingray = np.log(mtp.multitaper_norm_power)\n", + " \n", + " Kmax = len(mtp.eigvals)\n", + " \n", + " if jackknife:\n", + " \n", + " jk_p = (dist.t.ppf(.975, Kmax - 1) * np.sqrt(mtp.jk_var_deg_freedom))\n", + " jk_limits_stingray = (mtp_stingray - jk_p, mtp_stingray + jk_p)\n", + " \n", + " else:\n", + " \n", + " p975 = dist.chi2.ppf(.975, mtp.jk_var_deg_freedom)\n", + " p025 = dist.chi2.ppf(.025, mtp.jk_var_deg_freedom)\n", + "\n", + " l1 = np.log(mtp.jk_var_deg_freedom / p975)\n", + " l2 = np.log(mtp.jk_var_deg_freedom / p025)\n", + "\n", + " jk_limits_stingray = (mtp_stingray + l1, mtp_stingray + l2)\n", + " \n", + " \n", + " axs[idx].plot(mtp.freq, mtp_stingray, label=\"Multitaper S(f) Estimate\", color=palette[6])\n", + " axs[idx].fill_between(mtp.freq, jk_limits_stingray[0], y2=jk_limits_stingray[1], color=palette[4], alpha=0.4)\n", + " \n", + " axs[idx].plot(freq_analytical, np.log(psd_analytical), color=palette[0])\n", + " \n", + " axs[idx].set(\n", + " title=f\"Adaptive: {adaptive}, Jackknife: {jackknife}\",\n", + " ylabel=\"Power, ln\",\n", + " xlabel=\"Frequency\"\n", + " )\n", + " axs[idx].legend()\n", + " \n", + " idx += 1\n", + " \n", + "\n", + "text = \"if jackknife == True:\\n\\\n", + "jk_var_deg_freedom = jackknife estimated variance of the log-psd.\\n\\\n", + "else:\\n\\\n", + "jk_var_deg_freedom = degrees of freedom in a chi2\\n\\\n", + "model of how the estimated PSD is distributed about\\n\\\n", + "the true log-PSD\"\n", + "fig.text(0.5, -0.05, text, ha=\"center\")\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "06082f55", + "metadata": {}, + "source": [ + "### Linearly re-binning a power spectrum in frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "efea10b1", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "Original df: 0.0009765625\n", + "Rebinned df: 0.0068359375\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHYCAYAAABHktmQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AADrAElEQVR4nOzdd3hc5ZX48e8t09R7l9wt924MxmB67xAI4LC0zYaa3lkCWQjpyZLdX0iApcWEQBKH5gChmGIb3LvcZVWrd0295ffHSLKFbVkjjazi83keHqSZe997xroe68x53/Mqtm3bCCGEEEIIIYToNXWwAxBCCCGEEEKI4UYSKSGEEEIIIYSIkCRSQgghhBBCCBEhSaSEEEIIIYQQIkKSSAkhhBBCCCFEhCSREkIIIYQQQogISSIlhBBCCCGEEBGSREoIIYQQQgghIqQPdgDDhWXZmKY12GEAoOsqhjE0YhFDm9wrIhJyv4hIyP0iekvuFRGJoXC/aJqKqirHPU4SqV4yTYumJu9gh4GqKqSmxtHS4sOy7MEORwxhcq+ISMj9IiIh94voLblXRCSGyv2SlBSDqmrHPW7EJ1JTp05l/PjxAEybNo1HH310kCMSQgghhBBCDHcjPpFKSkri1VdfHewwhBBCCCGEECOINJsQQgghhBBCiAgN6URq7dq1fOUrX2HRokUUFhbywQcfHHHM0qVLOeecc5g+fTrXX389W7Zs6fZ8c3MzV199NTfeeCNr1qw5UaELIYQQQgghRrAhPbXP6/VSWFjINddcw3333XfE88uXL+exxx7j4YcfZubMmTz33HPceeedvPXWW6SkpADw3nvvkZmZyd69e/nyl7/Ma6+9Rlxc3Il+KUIIIYQQYoSxbRvLMrGlj0ZUqKpCMBjEMIwBazahKKCqGopy/K58xzOkE6nFixezePHiYz7/zDPPcMMNN3DttdcC8PDDD7NixQqWLVvGHXfcAUBmZiYA48ePZ+LEiRQXFzN9+vQ+xdObNogDrTOGoRCLGNrkXhGRkPtFRELuF9FbI/VesW2b1tYm2tpaAMmioqmuTsWyBrr9uUJcXALx8Un9SqiGdCLVk2AwyPbt27nrrru6HlNVlYULF7Jp0yYgPK3P4/HgdDqprq5m9+7d5Ofn9+l6uq6Smjp0KlnJybGDHYIYJuReEZGQ+0VEQu4X0Vsj7V6pqanB620lOTkVl8s92OGICAUCfpqbG4iNdZGRkdHncYZtItXY2IhpmqSlpXV7PDU1lZKSEgD27dvHgw8+iKqqqKrKD37wA5KSkvp0PcOwaGnx9TfsflNVheTkWBob22U/BtEjuVdEJOR+EZGQ+0X01ki8V2zbprq6loSEFFyukZUgDgUnYkNelyuWuLjwz1FVPUdUpRISPDgcJ+E+UrZtd/1hzJkzhzfeeCNqYw+lNwDLsodUPGLokntFRELuFxEJuV9Eb42ke8U0DcDG6XQNdiiiH8I/PxvDMNC0vqVEQ7prX0+Sk5PRNI26urpujzc0NBxRpRJCCCGEECIaDjWWGFnrvk4+4Z9ffxqFDNtEyul0MnXqVFatWtX1mGVZrF69mlmzZg1eYEIIIYQQQogRb0gnUu3t7RQVFVFUVARAeXk5RUVF1NbWAnDbbbfx0ksvsWzZMvbt28dDDz2E3+/n6quvHsywhRBCCCGEGFE2bFjHokXz8Hq9vT7n0Ucf4oEHvhPVOAZizL4a0muktm3bxi233NL1/SOPPALAvffey3333ccll1xCQ0MDjz/+OLW1tUyePJmnnnqqaw8pIYQQQgghxCEHD1by9NN/YM2aT2ltbSE9PYNzz72AW265HY/Hc8zzpk+fyauvvtXjMZ/31a9+C3sEb7I1pBOpBQsWsGvXrh6PWbJkCUuWLDlBEQkhhBBCCDE8lZWVctddtzNlyjR+8pNfkJaWwb59e/j97x9n/fq1/M///BGn03nEeYZh4HA4SE2NrA9BXNzQ2TpoIAzpREoIIYQQQggRHb/5zc/JyMjipz/9NaoaXuGTlZVFYeEkvvjFq/nLX17kS1+6lUWL5vHtb/+AlSs/Yv36tdxxx38wadIU7r//K7zzzkfExMQA8Oqrf+fZZ5+itbWF008/g3HjJvDaa8v4619fB8LT8Hw+L4888nMA7r33y0ycWAjA8uWv4/HEsGTJrVx77fVdMT7++G/46KMV1NTUkJaWxqWXXsGXvnRbV7xDydCLSAghhBBCCBFVLS3NrF37GV/84pIjkpK0tHTOP/8i3nvvna7Hnn76D5x99nm88MLLnHvuBUeMt2XLJn71q5/yxS/ezP/931KmTJnGiy++cNw43nzzNZKTU3nyyee5/vqb+O1vf8GBA8Vdz8fFxfHAAw+zdOkr3HPPV/nLX17k9df/0fcXPoCkIiWEGHaClsmLJbv4tL6KmoCXzq1JbsifwI2jCgc3OCGEECel3+zayKf1B0/Y9U5NzebrhbN7fXxZWRm2bTN69OijPj969BjeeeefXd9feOElXHzxZV3fV1SUdzv+b3/7C6effgY33HAzAAUFo9i0aQN79uzuMY7Cwsl86Uu3AnDjjUt46aU/sWnTekaPHgPA7bf/e9eGvNnZOezdu4f333+XK6+8ptev9USRREoIMey8UraHv5bvJTGgk6m7aXObtBhB/lK2h3Mz88lwxwx2iEIIIcSQpChH3//Ktu1uz02aNLnHcUpLSzj77PO6PTZ58tTjJlJjx47v9n1qahqNjY1d3//rX2/zl7/8mYqKcvx+H4ZhkJmZ3eOYg0USKSHEsFIf8PP38n3EmzqvfDYfTVXxfTeFpWW7+HPpbl4s3cXXJvb+EzohhBAiGsLVoaH7709eXh6KolBcvJ8JE46cvVFScoC8vIKu793unrvz2faRSVlvOvTpevf0Q1EULCtcgdq2bQsPPfQAd955F/PnLyA2NpY33ni125TDoUTWSAkhhpWXy3YTsEy+3zAZRwuoTRZqlcnVueOI0x28X12OzzQGO0whhBBiSElMTGLu3Pm89NLSrsSlU11dLe+888+jroU6llGjRrFjx/Zuj+3cWdSvGLdu3UJubh5f+tKtTJo0mfz8AqqqKvs15kCSREoI0SPjc2+2g8m0bT6pqyTB0Fmw+VBLVbU4RIzuoDA+GQubKn/7IEYphBBCDE3f+MZ3qKo6yPe+9022bdtKdXUVK1d+zNe+djfjxk3ghhtu6vVY1157A6tWfcwrr7xEWVkpr7zyEhs3rj/m1MHeyM/Pp7Kygvfe+xcVFeW8+OILfPbZ6j6PN9AkkRJCHNMrZXu4dtWbbGisGexQANjRXE9zKMg95eNQ/WBlaQBo+4MAZHWsjary9X7XdSGEEOJkUVAwmieffI74+Di+971vcMMNV/Hb3/6SRYsW89///fuj7iF1LDNmzOLrX/8OS5c+x2233cTWrZu59trrIxrj8xYtWswNN9zEr3/9U2677Wb27dvNzTf/W5/HG2iKPZK3G46iUMikqWnwfzlTVYXU1Djq69uwLPnRiWPrz71i2zZ/K9/LswfCJfoz0nL47uR5AxFmRP6wbysfF5fxyop5aJaC7+vJeH7TCG4F73+msqxiP08Xb+eOMVO5Om/cYIc7rMh7i4iE3C+it0bivWIYBnV1FaSl5R6x3udk96Mf/QCfz8fPf/6bPo+h62pX176B1NPPMSkpBodDO+4Y8tMXQnRT2t7Kk/u3sbGpFocSLlqva6wmZJk41OO/qQwUy7ZZVXeQm/fmoocUQos82Ok6Vp6OVmKg1JhkdlakZGqfEEIIMeBefPF5TjnlNJxOJ5988hEffPAuDz/8k8EO64SRREoIAYS74S0t2cm71aVYQL4njm8WzuGlst18Wl/FpqY65qdkDlp8u1sb0ZotrizJwnZC8Oxw0mSOcaCVGGjFIbKmdSZSg189FkIIIUa67du38uKLL+D1esnLy+P733/wiJboI5kkUkIIAB7e/in721uI1x18IX8Cl+WMwalqnJaazaf1VbxbXcrc5AzUfiwi7Y9VdQf50u48HJZKcFEMxIWrZdZYJ6zwhROpeeFEqloSKSGEEGLAPfroLwY7hEEliZQQgnYjxP72FjJcHh6fcxZxuqPrudO0dCZ/MoP9ce382ljPN6bNPeHJlG3b7DtQz93lkzA9EDrz0N4W5igdWwF1f4gYLZ4E3Um134tl24OW9AkhhBBi5JOufUIIyrytAIyNS+yWROG1SH3ey4SmWC4sz+Cq5cnsrWk44fHtb2/h8q3paLaCuTgWPIe9dblVrFwdtcVCqbfI8sQQsi0agv4THqcQQgghTh6SSAkhKPO2AZAfE3/owZCN+/kW1GoTY4KDugyDmQ0JjH42hNJkntD4avY3c25lGl6PRej0I3dat8aEkz+tOEiWOxaQdVJCCCGEGFiSSAkhKPOFK1L5no5Nbi0b159b0IpDmHk6gS8lUn6rizXpTSQ3aLj/XxO7dtfym10baTdCAx7fxJXhboE7F4TAeeR0PXNsOJFS94e6OvdVS+c+IYQQQgwgSaSEEN0rUraN87U29O1BrFQN/22J4FIYm5LEf526l3/l1aE2W0x6waR6ZxN/Kd09oLGpJSEKDjip8vipm3X0tyxztANbAa04RLorXLGqC8jUPiGEEEIMHEmkhBCUd6yRyouJw/GBF8dqP1acgv+OxK7ueJqiMikpmZ/M3EPlaRAT1Pjlp1OoW9/EfRtW8KNtn9Kf/b29RohHdqzhpdLdmIeN43w7XFl6dmI58Z5j7JYeo2JlaaiNFtl+F4CskRJCCCHEgJJESoiTXNAyqfZ7SXd5iN9g4Hzbi+1UCNyeiJ3afQPeGUlpoMBTk8t4fGoxDkvhwXUTmLbDw/rGGjY31fU5jvdqyvm0voo/lezk5zvXYds26t4g2r4Q1YlB/pVbS4LjGIkUYI0JP5dXGf6/JFJCCCFE9GzYsI5Fi+bh9R57DfLTT/+BO+740gmM6tguvfRcli9/fUCvIe3PhTjJ7WxpxALOr8/A+VErtgb+LyVg5TqOOHZ+Sib/V7yDD2vKscZAfmYiV6xI5htbx5Lmd/JGSjGzktP7FMe7VaUAxGo6K+sO0hDwk/tWOBl6dVotlgrx+rETKXOsA8cqH6kVKmRDQzDQpziEEEKIkejRRx/in/98AwBN08jIyOTss8/ljju+gsvliso1brzxS1x33Q1RGWs4kERKiJPYp/UH+WnROiY3xnHbZ9koFvi/GI818egJS35MPHmeOMp94TVV2iwPwfFJuJ9r4ZY9eSz3V1M1uo2s2LiI4tjX1sy+9mZGx8RTEJvAR7UV+Le2o5XZmDk6H2bVQwASHEcmd53Mjs59MQcslGypSAkhhBCft3DhGXz3uz/ENE0OHCjmscd+DCjcfff9URk/JiYGiInKWMOBJFJCnMTeqSolq9XFr9dPRTcUApfGYs5293jO6WnZ/KVsDwDj4pKwMp347krCfrKeS8oyKXqqDvvLHhSP1uM4h3vzYDEA52cV0BoKodqQ+YEJqIQujKGlMYhH03CoPYwZp2JlaGg1JqPNWMqCXmzbRpFNeYUQQggAnE4HqalpAGRkZHLOOeezbt1nAFiWxZ/+9CyvvbaMxsYGRo0azZ133sXChYu6jbF580Z+//vHKS8vY9KkKXz/+w+Sn18AhKf2rVr1CU8//QIQroL5fF4mTpzEyy//GYArrriaL3/57q7xFi2ax/e+9wAffbSC9evXkpubxze/+X1mzpzV7ZpPPPE7du3aRXJyMueeez533nkXTmf4g9/6+jp+9rNHWLduLenp6dx1130D8wf4ObJGSoiTmNVs8vPPJuP2q4TO8GCcefxPkU5LywbApWrkx4QrT3a2TuieZMoT/EyujMX8n7oe95r6rL6KH2//jMagn2q/l/eqy4jVdM7NLCDHGcuXi0aRWK9ijtYJTtRpM0I9Tuvr1FmVOqUpGcO2aTGCvfljEEIIIU46FRXlfPbZajQtXFd54YVneOedt/jud3/I88//hSuvvJYf/vDb7N69s9t5TzzxO7761W/xxz8+h9Pp5Ic//DaWZR3zOmvXfkZjYyP/7/89yf33f5MXXniGzz5b3e2YZ555iosvvoxnn/0z48dP4OGHf4hhGF1xfutbX+Xccy/g+edf4sEH/4vVq1fyxBO/6zr/0Ucfoq6ulv/5nz/wox89wtKlz/e4litapCIlxEnsyvVpZPvchGa6CF4S26tzxsUmckFmAeluD5py6LMYR6qT2n+P4eBzDcyvS8L6nyYCtx19rdWzxTso87XxjU0fMzE+CdO2uTJ3HPHNKme/4iauMge/w8K+LI62jjfSnhpNdDLHOnB85mdGfQJ/SQ1P70t0RGfetxBCCNET58st6NtP3Ad4xlQnwesTIjrn448/5Pzzz8A0LYLBAIqi8NBDjxIMBnnhhWf43e/+wOTJUwHIzc1jw4a1vPbaP/jWt77XNcbtt/8Hc+fOB+CBB37Mddddxrp1azjllFOPes2kpGTuv/8bKIpCQcFo/v73l9mwYR0LFpzWdcxll13J2WefB8Cdd/4H119/NRUV5YwaNZoXXniGiy66lOuu+yIAeXn53HPP13jgge9w333foKyshDVrPuX//u9PTJw4CYBvfvO73HnnLRH92fSFJFJCnKQsv8m8ygS8uol9XTyo4Slw+rbdOD/bhDFlAsHTZh9xnqIo3D9x1lHHnJCewpfP2MDN67K5tCwT9xNNBG5KwJzcPZnpbG5eG/BRG/CRoDm5vjoXz1ONKEHYltzKCwsP8mD+6bR0tGbvTUXK6qhITaiJgYnhhhNjepcfCiGEECPevHkL+PrXv43P5+Pll19EURTOPfcC9u/fh9/v5/77v9Lt+FAoxJw587o9NnXqtK6v09LSyMrK5sCB4mMmUmPGjO02zT41NZXGxoZux4wdO/6w58NTDzunF+7du4d9+/bw1ltvdB1jWRaBQID6+npKSg7gcDiYMKGw6/nCwsk4elhXHS2SSAlxkjK2+Yi3NFblNzHTmQWA0tSC+80PUCwLraYeMyMFc9yoXo+pKAozUjP45Yz9jBuVyqRPdFzPtRC8PA7jdE/Xca0dU+4mJyRTqCVy+4Y84rf7sBUInuvhezFrsVQb27ZpCYWP7U1Fyk7UsFJV0usdJAR1GmRTXiGEECdI8PoEhvqEco/HTV5ePgDf//6D3Hrrjbzxxj8YMyacyPzyl78jNTW12zlHdvQ7cu1xT+uRdb17uqEoyhH7Th5+TOdYndMFfT4v11zzBa6++gtHjJ2UlIRt93z9gSRrpIQ4SWmbw+3Bd4zzdT3mXLsFxbIwU5LC36/ZEvG4c5LTQYG/FVbhvykeNHC91obztTawbIKWSXMoSJY7hl/FL+C+13KJ325iJav4/yOJ0AVxZMXG4jNNmkKBrqSrN4kUgNmxn9SM+gTp3CeEEEIcg6qq3HLL7Tz55O8ZNWo0DoeDmpoq8vLyu/2Xnp7R7bzt27d2fV1fX0dV1UFGjRo9YHFOmFBIcfH+I+LKy8tH13VGjx5NMBhkz55dXefs2rWTUCg0YDF1kkRKiJOR1yJur0WzI0RtQUdTCNtG33sAAN9Nl2MlxqMfKEdpaYto6JmJaaiEG0osS6uk9c547FgFx0ofrhdaaGz1oVkK/1aUh/uPzajNFsYsF76vJndNzctxh+fjHfS1d1WkejO1D8AaGx5jZoMkUkIIIURPzjrrXDRN57XXlnH99Tfx3//9K956600qKsrZubOIv/xlKe+//263c/7v//7Ihg3r2Lt3D48++hB5eQXMm3fKgMV48823sGnTRn7721+yZ89uSktL+PDD9/nf//1vAAoKRjNv3in87GePUlS0naKi7fzmNz+XqX1CiIGhbw+gWvBRXgOJnnC7c7W+CbWpFTM7Azs+DqNwLM41m9H3HCA0d9pxRjwkzuFkTnIG6xpr+OP+bejjFC69pwD3M83oO4JkNsDv/FOZ3BSP7VIIXBWHMdsFh5Xlsz3hRKrc1xbR1D441LlvZn0CG4I1vY5bCCGEONnous51193Aiy8+z8sv/4Pk5GSee+5pDh6sJD4+gcmTp3DrrXd2O+c//uMefv3rn1NREW5//pOf/BxVHbjazIQJhTz++BM8+eTvueuu21FVjby8PC666LKuYx544Mf89Kc/5p57/p3U1DTuvvt+fvnLxwYspk6K/flJiuKoQiGTpqaBb6N4PKqqkJoaR319G5YlPzpxbD3dK+6nmtD2hPj6qds55ZQCrsgdi2PjdtxvfUTgtNkEzzoVrbSSmKWvYowtwHfDpRFd27As3qku5f/t3cJZ6bl8a9Jc8Fq4X2hB2x8utVdlhkj4t0zs1CP3hlpdd5BHi9ZydkYeKU43fyvfy7cL57I4I/f4F7dtXI/VozZbfPPaPTxyyukRxX6ykvcWEQm5X0RvjcR7xTAM6uoqSEvLPWL9j+g/XVcxjGO3U4+Wnn6OSUkxOBzH3w9TpvYJcbJps1D3hmiPMdmS2kKKM1yR0iqqATBzszr+n4nt0NHKD4J57D2hjkZXVRal5QCwu60JANujsObaEJvn+PjDpBI+/IL/qEkUwIykNFQUNjXW0hwKr+VK6G2JXlGwxjpQUcg8KP/ACSGEEGJgyG8ZQpxk9K0BFBu2jvJiKZDkDHfj0SqqALByM8MHahpmXjZ6cRlqVd2hx3spweEk2x1Lpa+d1lCQzU11/HTnOgjnV/zAc+zqUqzuoDAhiaKWRrY113eM1/v9oOyxTtgYZEy1G9u2B62bjxBCCCFGLqlICXGS0Tu69a3KbwQgxemCYAi1oRkrMR475lCbcnNUOOvRSyv7dK3C+CQgXJUqaum+Z0Say93jubOTwl2CqvxenKpKputQXHrRPmJ//yecKz6Fo8xO7lwnNaM+nhZjqDejFUIIIcRwJImUECcRpclEKw5hJatsTGgGINnpRq0LJzlWekq3442CcCKllVb06XoT45MB2N3SSHF7S7fn0g5LjI5mdnJ619dfnTCbuI5mE0pzK+7X3kVtasW1eiP6rv1HnGunabR4DCY2x9HU6jvieSGEEEKI/pJESoiTiLYlXI0yZrhoNAJ4NA2PpqPVhhMpM6P7JnxWVjq204FWFvk6KYDCjkRqZ2sjBz6XSCUeZ6peYXwyl2WP4b4JM7s1mXB+uim811VHrI4N2448WVEozwqi2QpmsVSkhBBCRM+h2eIjo3nGySv88+vP7H9JpIQ4iXRO6/NNd9BuhEhydLQ+rwmvQ/p8RSq8TioLJWSgVtVFfL2xcYnEaDqbmmppMYKkH1aF0o7zzqUqCl8ZP50Ls0YdetA00Yv2Yqsqvhsvx4qPRSupBO+R+0XV54U7/jgPGBHHLYQQQhyLqmqAQjAYGOxQRD+Ef35Kx8+zb6TZhBAnCaXORCs3sNI06tMMOADJHY0mDk3tSz3iPLMgB31/GXpZJcEIG044VJUFqVl8UFMOwMykNM5IyyW2j+1itZJKVJ8fY9wo7BgP5ph8HFt2opdVYhSO7Xasd7QKH0NiWZ8uJYQQQhyVoijExibQ0rH21+l0AdLUKHoUDGMgq302wWCAlpYGYmMT+tWQShIpIU4S+pZw1caY6aKho6V4Z+tztaYBW1WxUhKPOM/Iz8EFaKWVcOrsiK+7MDW7K5EaHZvA3JSMPr4C0IvDWZExcXT4/6NycWzZiXag4ohESs9y0uwIkVatEwjZ4JB/5IQQQkRHXFz438twMiVT/KJJVVUsa6D3kQonw50/x76SREqIk0TntD5jpovGYHi9UrLThdLuRfX6MNNTQDuyvG1lp3fsJ1UFlgUR7l4+JzkDt6rht0zGxCb06zVonYnU6Dzg0J5XWlXtEcemuNxsTq3mzKpUQqUhrHHOfl1bCCGE6KQoCvHxScTFJWJZ5tEayIo+UFWF5OQYGhu9A7aBs6KEp2dGY2uUkyKR8vl8XHLJJVx66aV861vfGuxwhDjhlCoDtcrEzNawM3UaK8PVqWSnG7X22NP6gPA6qdws9APlqNV1WNmRVZRcmsYlOaP5tL6KCXHJfX8NbV602gas5ETspHBCZifFYzsdqLX1RyR5KU43K1NaOLMqFW2/JFJCCCGiT1EUNO2k+HX6hFBVBafTia4HByyRiqaTotnEE088wYwZMwY7DCEGTWc1ypwZnsrX2LFANtnhOiyRSjn6yYTXSUHH9L4+uH3MVP4471xi+rg2CkA7EJ4e2FmNAkBRMDNSUUIGSmP3roDJThdbUsOPacWhPl9XCCGEEOJoRnwideDAAfbv38/ixYsHOxQhBodtd5vWB9AQClekUpzucDUHwlP7jsEsyAb6vjFvNOgdiZQ5Jq/b41ZGGgBaR+fBTpqiUp9q0qYbqCUhGNCFq0IIIYQ42QzpRGrt2rV85StfYdGiRRQWFvLBBx8ccczSpUs555xzmD59Otdffz1btmzp9vzPfvYzvvGNb5yokIUYcpQKA7XexMzXsVPCa6C6KlJOV9ceUlbGMab2AWZ2JrauoZUfDE+hO9FsG624HFtRMEbldnvKygzHrdYc2Z49yeVia0origFqubRBF0IIIUT0DOlEyuv1UlhYyIMPPnjU55cvX85jjz3GPffcw7JlyygsLOTOO++koSH8i+G7777L6NGjGTNmzIkMW4hB5zcNHty6mn+WFqNt6l6NAmgMdqyRcjhRaxuwnQ7shLhjD6hrmDmZKP5g11TAE0mtb0Rta8fKTgd39418zc6KVHX9EeclOlxslul9QgghhBgAQ3p13OLFi3uckvfMM89www03cO211wLw8MMPs2LFCpYtW8Ydd9zB5s2bWb58OW+//Tbt7e0YhkFCQgJf/vKX+xSPqg5+++TOGIZCLGLo2tHUwLqGGtbX1/Du5tOxFSieEKK8/iCZ7hgagwFUINkXQgkZmLmZqFrPn6tYo3KgtDK8Z1N2+ol5IR0OTevLP/Lez0zFVhTUmrojnvPoOnsS2gFQawz5e9MDeW8RkZD7RfSW3CsiEsPtfhnSiVRPgsEg27dv56677up6TFVVFi5cyKZNmwD45je/yTe/+U0A/v73v7N///4+J1G6rpKa2sMn9idYcnLsYIcghrBgazUAUxvjUZssqvIM7tqzGghvGWgDaW4PKQEvIcCZn0Xsce5vc9o4Qh+vw3OwBucJ/rsQLD+IBcTNnoh6lGsH0pOxaxpI8egoMe6ux5Ni3KyJC1eqnPU2CUPo7/BQJe8tIhJyv4jekntFRGK43C/DNpFqbGzENE3S0tK6PZ6amkpJSUnUr2cYFi0tvqiPG6lwf/1YGhvbh0VbSDE49tc3AnB2ZXj90IvJpXg0nQlxSWxpDq8lStSdtO+rwAl4E+Ix6tt6HjQ+kRhdw9xTQn1tS8T7SfWZYRKztxScDhrjEuAocbqSk9BrGmjaU4aVl931uGLY1LmDGE4b7WCI+tpWGCafcp1o8t4iIiH3i+gtuVdEJIbK/ZKQ4MHhOHJvzc8btonUsdi2fdQNtq655pp+jz2U3gAsyx5S8YihpcbvRbXgrMpUTMXmwJgAv551BgB3rQ83bUl2uFBKwuudzLSU499PmoaZn4NeXIZSVoWZn93z8VGilVaihAxCE0ZjKSocJU4zNRkdUGoasHKyuh53qzoo0JZik1RlYzea2MnHf2M8mcl7i4iE3C+it+ReEZEYLvfLkG420ZPk5GQ0TaOurnunroaGhiOqVEKcbGr8PmbVJ5ISdFJTYPLj004nPyae/Jj4rmNajdBhrc+P3bHvcMa4AgC0/aXRD/oYtOJD66OOxUoLb/Sr1jV2e9ythpOm5pRwp0G1xhyIEIUQQghxEhq2iZTT6WTq1KmsWrWq6zHLsli9ejWzZs0avMCEGAJqAl7O6ZjWl7ogGYd6qApzelq4kpTjdKM2NGPFxcBh64p6YowNJ1L6vhOXSOnFZeFr9yWR6thtviEpnEApNdICXQghhBDRMaSn9rW3t1NaeugXtvLycoqKikhLSyM9PZ3bbruN73znO0ydOpUZM2bw3HPP4ff7ufrqqwcxaiEGl2nbNPr8LK5KBR3Mad3bhX994mzGxSVxiRqLYq3DTDv2RryfZ6ckYiUloFXXobS1Y8cN7GJQpd2LVl2HlRSPnZxwzOOslKRw57767omURwsnkHVJIcAlFSkhhBBCRM2QTqS2bdvGLbfc0vX9I488AsC9997LfffdxyWXXEJDQwOPP/44tbW1TJ48maeeeoqUlN7/YijESNMY9DOnJpG4kI42OwY83dcVuTWd6/MnoG/bDfS8Ee8RFAVj/Cic67ai7z5AaM7UaIffTee0PmNMPhxl7WMXh46dlIDa2AyBILicwKGKVHVCEAC1VhIpIYQQQkTHkE6kFixYwK5du3o8ZsmSJSxZsuQERSTE0Ffj93JuRccmtQuO3e770PqoyD54MCaNDSdSu/YNeCKl7y4OX7NjbVZPzLRk1MZm1PpGrJxMADwdiVRNbBBbC+8lJYQQQggRDcN2jZQQ4ujqW32cXpVM0GGhzYo55nFaTTiRsjIja85i5mZhxXrQSipRvAO4JUDIQN9fiu3Qe2w00elo66TcHVP7fBjY6RpKuw3t1sDEK4QQQoiTiiRSQowwniIDt6VROd5EcR77r7haU4+tqlipyZFdQFUxJo5Fse2uitFA0IvLUEIGxvhRoB+/eN75OrRuiVT4PJ9pYKWHv5aqlBBCCCGiQRIpIUaQar+XuK3hRCEwy3XM4xSvD7XNi5WaBHrk+yoZk8cBdK2zGghd0/omju3V8VZH04zDK1IeNZw8+U0TKyP8OqXhhBBCCCGiQRIpIUaQP2zezKyaBNo9JgUzj91EQu2c1tfL/aM+zyzIwUqMRy87iNLQ3KcxehQKoe/aj61rvVofBYSTQkCtb+h6rHNqn980JJESQgghRFRJIiXECFKwR0ezFfTZsaAdu8tdVyIVSce+wykKoemFADi27uzbGD3QdxWjBEPhalRHB77jcjqwEuNRmlohGAIOTe3zmyZ2Rvhr2UtKCCGEENEgiZQQI0TQMllcHk6MrNk9b7Db2WjC7GsiBYRmTMIGHFt3gRndKo9ja7hbZ2ey1ltWWjIKoDY0AYf2kfJZBla6hq1IC3QhhBBCRIckUkKMEP6aANMa46mJC2Ll99ycod8VKcBOjMccNwq1tR19574+j/N5SlML2oFyrPhYzNG5EZ37+c59uqKiKQp+0wCHgp2sojZaELR7GkYIIYQQ4rgkkRJihNA3BQDYNKat581rTRO1rgHL48aOO3Z79N4InjIDAOeazWBHJzlxrtuKQrjihRrZW5TZ1XAivE5KURTcmo6vo2JmdUzvU2tlep8QQggh+kcSKSFGAtvu6ta3c1zPezupDc0ophWuRvWUcPWCOSoXMyMVraoOraSiX2MB4A/g2FyErWmE5k6L+PTOFujdO/dp+E0D27ax08NT/RRpOCGEEEKIfpJESogRQD1o4qmD3Ylt+NJ6To7Umjqgf9P6uigKwdPmAOBa8Vm/q1LOjTtQgiFC0yZix0ZeLeuc2vf5vaRsIGBJC3QhhBBCRI8kUkKMANomPwDv5tQRpzt6PvZgLQBmVnpUrm1MHoeZmYZ2sKZ/G/T6/Dg/3YCtKAQXzOzbGC4nVnwsSlMLGOFkyaMdvpeUbMorhBBCiOiQREqI4c6y0TcFsLH5IKf+uImUWhVOpKzs6CRSKAqBs04FwPXeqq7W45Fyrd6A4g8SmjUZu2OKXl9YaSkott3VuU/2khJCCCHEQJBESohhTj0QQm22OJhrUOcJ9pxIWRZaVS2204GVkhS1GMyx+YQmjUVtbsX10ZqIz1eranGs3Yrt0AkumtevWD7fua9rLynLhBgVK05BqTPBlM59QgghhOg7SaSEGOb0jeFufTvGewGI04+9ga1a34QSMsLT+vrZaOLzAuefge124ly7BW3Pgd6faJi433gfxbIInHUqdlxsv+I4lEiFO/e51Y69pMzwdD47Q0exQKmXqpQQQggh+k4SKSGGM8NG3xrA1mBzfjtAjxUp9WANEMVpfYex42LwX3I2AJ7X30Otre/FSTbuNz9Aq23AGJXTp059n9eVSNWHK1KH1kiFEymZ3ieEEEKIaJBESohhTNsVRPHZmJOc1GvhylRsD4lUV6OJ7IwBiccoHEtg4RyUQBDP0te61mMdlWXheucTHDv2YCXG47/i/KhUyczUo0/tO2IvKWk4IYQQQoh+kERKiGGscxNeY5abNiPc5KGnipRWFa5ImVkDk0gBBM88heC86ag+PzEvLMOxZnNXB71OSkMTnr+8iXPDNiyPG98XLun35sBdPG6sWA9qQzOYJp7Dmk2AVKSEEEIIER36YAcghOgjv4W2I4DtUjAnO2nfepxEyjRRq+ux3S7spPiBi0tRCJx3OlZCHK4Vn+F+bxXOTzdijsrFdrtQ6xvRSg+i2DZmanI4iUpOiGoIVloyekklamPLoWYTnWukZFNeIYQQQkSBJFJCDFP69iCKAaGZTnAoXRWpmGMkUmptA4ppYhTkRL3RxBEUhdCCWZij83CuXIe+qxjHjr1dT1sxHoLzZxA8ZQbo0X8bslJToKQSta4Bd0LH1D4rnDjZiSq2S0GtNcCyQR3gPwshhBBCjEiSSAkxzHxYU86K2gq+8WkBWegYs90AtBkhYjQd7RhJ0qH1UdFvNHEsVmYa/msuAl8ArboWQgZ2XAxWZhqoAzez+PAW6HEpmQA0B8PTIFEUrHQNrdxAabawk7UBi0MIIYQQI5ckUkIMM/+o2E9dfTvppWNocRu86S5j184mvKZBhstzzPO08oMAmDmZJyrUQzwuzNF5J+xyhydSY2ZPBGBvW/Oh5zPCiZRaa2JKIiWEEEKIPpBESohhpi7g46zKVDQU3smu5Y8HDnQ912PHvvIqAMy8rIEOcdAd3gI9PyYOl6qxp60Jy7ZRFQU7QwcCKDUGTDz2vltCCCGEEMciXfuEGEZClkVTKMBFB8Nd94rGeRkdc6hxxLEaTShtXtSmFsy0ZPC4T0isg8mO8WB53Kj1TWg2jI9LxGcaVPjaAOncJ4QQQoj+k0RKiGGkIegnu93FxIZYrFSNb5y3gN/NOavr+abOdUCf0zWt7ySoRgHhdVBpySimidLUwoT4JAB2tzYBkkgJIYQQov8kkRJiGKkL+Di3Ig0AY7YLFAVFUViYmg1A0LaOel7XtL7ckySR4tD0Pq2ukYnx4a93t4Y36bVTNGxNNuUVQgghRN/JGikhhpH2ah/X788BwJjl6nr8vgkzcagql2aPPup5XYlUfvaAxzhUWKkd66RqG5iYPwmAPW1N4Sc1BTtNQ602od2CWPlMSQghhBCRkd8ehBguDJvpr2vEGTo75gaw0w99DhLvcPLtSXOZkph65HnBEGpVLVasBzspuhvfDmVWVrhyp1bXkemOwaPplHlbsW07/LxM7xNCCCFEP0giJcQw4VzeTlqNztbkFirP6n3LbrWyBsW2MfOyB34j3iHEzAgnUlp1LYqikOOOxWeaNIXC68isjHAiKtP7hBBCCNEXkkgJMQxo2wI4Vvpod5n8eM4eUiPovKeVVQInUaOJTi4nVkoialMr+ALkeGIBqPC1A1KREkIIIUT/SCIlxBCn1Ju4XmkF4KkFFdR5gqT3sPHu52kHKgAwR+UOSHxDmZmZDoSrUp2JVGVHImV3VKQUqUgJIYQQog8kkRJiKDNsXC+2oPhtgmd5WJFah64oJDpcxz8XsANB1PIqLI8bK+Mo66dGOPOwdVKdidRBf0dFKl3DVkCtlYqUEEIIISIniZQQQ5hzeTtauYE5WufgYpWmUIBUpwe1l2udrOIKFMsKV6NOovVRnaysjopUVS05njgAKjs25cWhYCerqI0WBO3BClEIIYQQw5S0PxdiiOpcF2XGwBOnlfP6xlIAJnZsLtsb1p4SAMzRJ9+0PgAzs6MiVVVHjrv71D4AK11HbQii1hpYuY5BiVEIIYQQw5NUpIQYgpSGQ+ui/ndeKX9tLQbgmrxx3DNhZq/H6UykjFF50Q9yOPC4sRLjURuaSLAgRtM56GvvaoFudzScUKThhBBCCCEiJBUpIYYaw8a1NLwuqv1MF/9IqCDd5eF3c84iTo+gauLzY1dUYyXEYSefPPtHfZ6ZlYajuRW9toEcTyx725ppDAVIcbq7de6TVEoIIYQQkZCKlBCDyGcaLC3ZyY+3f8Yvd64naJn4Xm1AKzeozAry2Snt2MCk+OTIkihAK6kAG8zReSfl+qhOVkfnPrXbOqnOFuiyl5QQQggh+kYqUkIMkipfOz/YuoqagK/rseua8pm6RqHZEeKrU7fC/vBnHRPjkyMeX9tfBoA55iSd1tfBzM4AQKusIXNmeK1Ytd/LtMRU2UtKCCGEEH0mFSkhBsmzB4qoCfhYkJLFJdmjyfS6GP9meO3Or+YWU+cJUhf0A5E1mADAttH2loAC5tj8KEc+vJg5nYlUNZmuGCCcSAEQo2LHKSj1JpjSuU8IIYQQvSeJlBCDoLi9mU/qKklxuvjOpLnMjEvjwQ0TcAVV/jyuArPQyZjY8LomFYVxcYkRja/W1KO2tqOMyoGY3m/eOyK5XZipyahNLeTZ4SmONQFv19NWho5ihht8CCGEEEL01ohOpAKBANdddx1XXHEFl112Ga+88spghyQExe3N/HLnBgC+kD8Rl6Yx61MXU5ri2Z7cytOFZeR4YjknI1xJGhUbj1uLbBauvi/crU+bPDa6wQ9TVm4mAPkN4bVRVf7DEymZ3ieEEEKIyI3oNVJOp5PnnnuO2NhYvF4vl19+ORdeeCEJCSdvBzMxuFpCQb6zeSU+02BGYhoXZhWg7QyQsdqi1WHwX7N3Y6o2OZ44FqRm8lFtBedlRj41T98b3nNKnTwu2i9hWDJzMnFs2UlqbROKftjUPronUubUwYpQCCGEEMPNiE6kFEUhNja8CWcwGMS2bSzLGuSoxMlsfWMNPtPgjLQcvj1pLlqrhevl8H5R/292KdUxQQByPbEkOlz8ZvaZkV/E60etrMaKi0XJzYCG9uOfM8KZHRUpx8EaUsd5qA/4MCwLXVWx0sNvg4p07hNCCCFEBIb01L61a9fyla98hUWLFlFYWMgHH3xwxDFLly7lnHPOYfr06Vx//fVs2bKl2/N+v58rrriCs846izvuuIOkpKQTFL0QR1rfUA3Amem5qDa4XmpFabcJneamdHyo67jcjjbdfaEXl6LYNub4ApSTuO354ay0ZGynI9y5z+XBAuo6uiXaMrVPCCGEEH0wpBMpr9dLYWEhDz744FGfX758OY899hj33HMPy5Yto7CwkDvvvJOGhoauY9xuN6+99hrvv/8+y5cvp66u7kSFL0Q3lm2zobEWTVGYmZSO430v2r4QZo5O8NI4cjzh6mmMppPocPb5Ovqe8Pooc/yoqMQ9IqgqZnYGSshgejCcXHauk7ITVWyXEk6kbOncJ4QQQojeGdJT+xYvXszixYuP+fwzzzzDDTfcwLXXXgvAww8/zIoVK1i2bBl33HFHt2NTUlKYNGkSa9eu5eKLL+5TPKo6+J/ud8YwFGIRkdnT0kSLEWRGYhoJZTaOd73YToXQkgRUl9qVSOXGxKFpffyMwzDQ95VgO3Ts8QWA3CudrNxMKKlgSmsQnFAb9HX82SjYGRpqmYHWamMnDenPlwaMvLeISMj9InpL7hURieF2vwzpRKonwWCQ7du3c9ddd3U9pqoqCxcuZNOmTQA0NDSg6zoJCQm0tbWxZs0avvCFL/Tperqukpra9+lW0ZacHDvYIYgIFDXW8/Nd6wE4PzUf9/Ot2DY4b0kjdlI8ABN9qXAAxiQm9vleM7ftIRQMoc4sJDkjCZB7pZM5eTShVRuY0OKDNPiwvoIJGanMz8gikO/FLGsj0edAGxcz2KEOKrlfRCTkfhG9JfeKiMRwuV+GbSLV2NiIaZqkpaV1ezw1NZWSkvDUpvr6er7zne9gmia2bXPjjTcyadKkPl3PMCxaWnz9jru/VFUhOTmWxsZ2LEumIQ0X/7V+NQe97SxKzeGCd+Kxm0IYc934ChWobwNgijOJC7IKuCRjFPUdj0XKuXYHDsA7poD2xna5Vw6XmEQMkFZRj56ewqb6Wu795D0uyCrgGwkTcAGte9sws0/OhjTy3iIiIfeL6C25V0Qkhsr9kpDgweHQjnvcsE2kjsW27a4F9hMmTGDZsmVRG3sovQFYlj2k4hHHZtk2pe2txOsOHqibgnNnO1a6RuDKODjsZ+hUNO6fMCt8Tl9+tqaJvqcYW1MJjS1A7RhD7pUOLhdWRirOmnpemHQpa8x2ni0u4p2qUi5wZjAXB0q1cdL/Wcn9IiIh94voLblXRCSGy/0ybBcDJCcno2naEc0jGhoajqhSCTGYGoJ+QrbFgvZUnG+1Y+vgvzkBXNGd/6uVVKL4g5hj8sHV92YVI5mZnwNA8sE6zs0s4D/GTQdggzPcoKazc9/Oloaurn5CCCGEEEczbBMpp9PJ1KlTWbVqVddjlmWxevVqZs2aNXiBCfE5VX4vsSGNu1bnoZgQvCwOOzv6xWB91z4AQoVjoz72SGEWZAOglR0EYGpiCgAr7RpsDdRag7qAj+9sXsn9Gz6kpL1l0GIVQgghxNA2pBOp9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCdFPtb+fe7aNJaXNgTHNinOqO/kUME8fOfdiaijFxTPTHHyHM/HAipZdVApDsdJPtjqUk0EZrqo3SZlO1sQELmxYjyH9uW43flI16hRBCCHGkIb1Gatu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj1NbW8vkyZN56qmnSElJGayQhThCQ5OPmyvSCLhtjOviYQA2ydX3l6L4g4QmjgG3K+rjjxR2bAxmahJafRNKWzt2XCxTE1M46G/nZwW7eLRmEhPfVog5Q8NyQUMwQHF7C5MT5D1FCCGEEN0N6URqwYIF7Nq1q8djlixZwpIlS05QREJELnk3OGyVqkkQ7xmYIrC+fTcAxtQJAzL+SGIW5KDVN6GVHcSYPJ5piam8W13GqqxG3sup49zKNP6jqIDt55u8U11Kpa9NEikhhBBCHGFIT+0TYiQYvy/c+MGeMQBT+gD8AfQ9JdguJ8b4UQNzjRGkc3qfVhKe3jcnOYNY3cGClCwen1ZMozPEFaVZLGoKN62p9LUPWqxCCCGEGLokkRJiILVbTKqKpdEZIrZwYDZ61XcXo5hmuMmEPqSLzEOCOSoXAP1AOQApTjcvnnoh/zn1FArSEnl8WjEA899z4TZUSaSEEEIIcVSSSAkxgOytPjRbYX1eM5p+/I3d+sKxNTz9Vab19Y4dF4uZnoLa2IzS3AqApoTfCq/JG8dnec00TAR3E9yxq0ASKSGEEEIclSRSQgwgZZMfgJ1j/QMzfkMTemklVlJ8V6VFHJ85Og84VJXqdEpqFq+cfgnuL6RguxWuKc4iqSK80bcQQgghxOEkkRJioLRaxBywqHcFqc+1BuQSjs07AQjNmDwg3QBHKqMjkdKKy4/6vJ2gEbwiDhWF+zeOock7MImwEEIIIYYvSaSEGCD6tgCKDR9m1+N0DMC0PtPEsXUntqIQmlEY/fFHMLMgB1tV0Q6UwzGqTcYcF3tyfRS0e1D/1XaCIxRCCCHEUCeJlBADRN8SAOCDnHo8avSbQOh7S1DbfZjjCrDj46I+/ojmdGDmZqL6/KjVdUc/RlH47Gw/7bpB1qc2annoxMYohBBCiCFNEikhBoDSYqIWh/DF2WxPbsWtRT+RcmwqAiA4a3LUxz4ZmGPyAcJVqWNIzYrlD5NLUG0F1yutYMhaKSGEEEKESSIlxADQtgZRbCgbH8JWwKNFd2qf0tyKtr8UKy4Gc5zsHdUXneuk9P2lxzzm1NQsPhnXzMbUZtQqk/p/1vH/9m5hf1vziQpTCCGEEEOUJFJCDAB9S7g5wd4JQQBcUa5IOTbtQAFCMyaBKn+N+8LKTseKcaOVVYE/cNRjnKrGVfnj+OWMffg0k5yVFjt31fDk/m0nOFohhBBCDDXyG5gQUaY0mWgHDKwklfK08C/oUa1IhQwcG3eEm0zMnhq9cU82qoo5bhSKZaEfo3sfwMVZowkkK/xfYRm6rfL9LePZ3lhPlV/2lxJCCCFOZpJICRFl2tZw8mTMcOGzDADcUWw24di+G9Xnx5g0FjtBmkz0hzE+PC1S33vgmMfE6DpPzDuH62+chTlKZ3xTLF/eOYr3qspOUJRCCCGEGIokkRIiyvTN4UTKnOnCb5oAeKI1tc+2cazbCkBw3ozojHkSM8bkh9ug7ysF69h7fXk0nRing8AX4jHdcMP+HPL+ZWH3cI4QQgghRjZJpISIIqXBRCszsFJUrFwdvxmuSLmiNLVPK6lAq23AzM7Ays2MypgnNZcTsyA73Aa9sua4h9vpOsH/SKbVZXDJ3nTMl5vAkk5+QgghxMlIEikhokg/bFofioLfim5Fyrl2CwDB+dNBUaIy5snO6Oh6qO8r6dXxVo7O61e1UOsKkrjRxPWXVjAlmRJCCCFONpJICRFFWte0PjcAvo6KlDsKFSmlvhFtbwlWXCzGpHH9Hk+EGeNHA+ENjnurYEwyX124jca4EPqmAK4/tdDmC/B6xX5aQsEBilQIIYQQQ0n0dwkV4iSl1JtoFQZWmoaVHU6cOtdIRaPZhGv1RhQgMH86RHlfqpOZnZKImZKEVlOP0tLWqwYekxNSqI0L8a2FRTy5YTb6jiDBp9t4dtoOXq3cz/i4JEzb4juT5uJQ5WclhBBCjERSkRIiSvQt3af1AV1rpPrb/lxpakHfthvb7ZKW5wPA7Ozet7u4V8e7NZ1JCcnsd7bzfxdXEcpUyS9z8rPPJtPSGuCTukpW11extbl+IMMWQgghxCCSREqIKNEOT6Q6dFak+rshr/PTTSi2TXDedHA5+zWWOFKocCwA+q79vT7nrPRcAJY27uUHi3axM6mNmQ0J/GnTPC5LKgBgS1Nd9IMVQgghxJAgiZQQUaDUGmiVBlaGhp11qPrktwxcqobWj8YQSls7ji07sZ2OcCIlos7KzcSKi0UrO4jS7u3VORdlj+YP884h0xXDukAd31ywgwOZfpKrVe55J4/kgIMtzZJICSGEECOVJFJCREHn3lGHT+uDcEXK1c81Ms7PNqOYZnhKn8fdr7HEMSgKRuFYFNvu9fQ+gFxPHJfkjAbA6zDZdJ2JMcGBu8bm8dXTKG1qwWuEBihoIYQQQgwmSaSEiILOtuf+6Q7eriqh0teGadsELLNfrc+VNi+ODduxdY3gKTOjFa44CmNSx/S+nb2f3gdwQWZBV7I8JT2NwK2JmGMd5LW5mVeTxPaWhqjHKoQQQojBJ137hOgnpdpArTKxsjT+2LaTNw8ewKNp3DVuBtC/1ufOVetRDIPggpnYcTHRClkchZmXhRXrQSupQPH6sGM8vTov3uHk3gkzqPb7yHHHgqIQOtWNtj/Eoupk1jZUMz9FNk8WQgghRhqpSAnRT53T+jaMauPNgweI0XT8psmvd28Ewh3e+kJpasGxcUd4bdSps6MWrzgGVT00vW/PgYhOPTsjny8WTETpmNZpFjqxNTitOoVV1ZWEOjZmFkIIIcTIIYmUEP1h26hb/AD81rMTXVF4YMopjI9L6jqkrxUp1yfrUCyL4IJZva6OiP7p3OhY37mvfwO5VcwJThJCOmNq3KxtqIlCdEIIIYQYSiSREqIXiloaaA0FAbBtm7+W7WFzeTX6Jz70WovdCW0k58Ty+OyzmJGURpb70DS8vqyRUusa0LftxvK4Cc6fEa2XIY7DzM/GinGjHagAr79/Y00Jt6lfVJXC+zVl0QhPCCGEEEOIJFJCHMemxlq+vfkTHtmxBrvVpPnjRqa9BAv+R8H1RjsAK8Y18sDUUyiIjQcgyxPbdb67D137nCs+C+8btXCO7Bt1IqkqxqRxKJaFo59VKWOKC1uBM6tTWVNXRYWvLUpBCiGEEGIokERKiM9pCPpZU1+F1whh2zav7t7D5SWZ3P52FrGP1pP7psncuiSanSH+MaqKby3cwbxLxxCnO7rGyD6sIhXpGimtuBzHngNYSfGE5kyN2usSvROaOhEAffvu/g0Ur2KN0knzORnfHMvfyvdGITohhBBCDBXStU+Iw/yjYh9P7d8OwL3eiZy7N4XHSsejEW4i0OQOsXOUj5dSyijJ8NNiBvne5PkUxid3GyfLfVhFKpI1UpaF672VAATOPg10+St6olm5mVhJCejlVSiNLdjJCX0ey5jqQjtgcHZNGk8nl7Jk1CRSnLIXmBBCCDESyG9pQnRoDQVZWrITFyp3FhVw7b5UAOpcQbxTNP6WWsEbrgpsBVRF4fn5F+A3TTLdR7Yl7+saKcemIrTaBoz8bIzCsf1/USJyikJo6gRcK9fj2LGH4Olz+zyUOdUFb7ZzXk06f5hYQlFLA6en5UQxWCGEEEIMFpnaJ0SHNyqLIWDzv1tmct2+bFocBj+Yv5PvXbGH5BsyOWVeAZYCNjA+LolEh+uoSRRAqutQl71eT+3zB3B+tAYbCJx3OnS00hYnXuf0Pse2XWDbfR7HTtWwsjTSmsIb9Ja2t0YrRCGEEEIMMkmkhACClsnqveX8z8ppjCt1E0iBu0/fyurMRm4cU4iqKMxMSuuawjc1MaXH8bTDkiC7l7+Iuz78DNXnx5gxCSsrve8vRvSbnZqEmZ2B2tCMerC2X2MZU11AuHtfiVcSKSGEEGKkkERKCGD31hp+sWISY1tjMcc7MO5LZeq4DBan57IgJQsARVH497FTKYxP5vzMgl6P3dzRNr0nakU1jg3bsd0uAmef2ufXIaInNK2jKtXPphPm1ENt0EvaW/odlxBCCCGGBkmkxElP2+hn7ksaKUEn5bMt/LcnQozK/RNn8e1Jc1EOqy5NSkjhV7POID8m/rjjdnbuS3MdZzNdy8L91ocoQOCc02Tz3SHCmDwOW1XRt+8Bw+zzOFaOjpWsMrUpHn9TkJDV97GEEEIIMXRIIiVOSo1BP9/Y8BG7Xy7F/VIrigV/mFFC3PXpoEVnbdJjM07n38dO5ZLsUT0e51i7Ba2mHiM/m9CMSVG5tug/OzYGY/woVJ8ffc+Bvg+kKJhTwtP7Tq1KpsLXHp0AhRBCCDGoJJESI1ZzKMDjezbxuz2bCZiHqgAhy+JnW9Zx40cZzF7vIeS0+d6CIppPceBQo/dXIs3l4crccTh62JBXaW7F9fFabFUlcNGZ0mBiiAnNnAyAY3NRv8Yxph0+vU/WSQkhhBAjgbQ/FyNSUzDAfRtW0BgKALCtuY6AaeLUNBIaFL62bgyFzXFUxPh599I21vma+XrCCW43btu43/4IJWQQWDgHK63nBhbixDPH5mPFx6IVl6E0tWAn9W1PKWuUg4DbZnZdAi80NkJGlAMVQgghxAknFSkxIq1vrKExFGBOcjqF8eHpVFqzxU2fZvI/70+jsDmOorQ27l60lXc5CEB+TNwJjdGxuQh9XylWSiLBhX3fq0gMIFUlNGMSCuDYsrPv42gKzRMVHLZK4r6oRSeEEEKIQSQVKTEiVfjaAFiUlsvZsdn43mkiawMoBlgeheDZMbyRWUlLrUFLx7F5nhOXSClNLbjeW4WtKPguOxcc8ldxqArNmIRz5XocW3YSXDQP+jj90z9Zhy0G4w+4ohyhEEIIIQbDiP7tbf/+/fzgBz+gra0Np9PJD37wA+bNmzfYYYkToNzbhsdQOWVdDIlrmkkKgO2A4DkxhM70gEcluzwOOrYISnG6idEdJyY428b95gcowVB4Sl9u5om5rugTOykBc0w+enEZ2v4yzPE9Nw85FrXQjU9rprDCgxmywSHr4YQQQojhbEQnUi6Xi5/85CeMHTuWffv2cffdd/P2228PdlhioIVspm528e0dc0gK2tgahBZ6CJ4TA/GHqgk5ntiur0/ktD7H2i3opZWYmWnhCocY8kIzJ6MXl+HcuB1fHxOphBgXa9ObOLMqFf/eIOZkqUwJIYQQw9mITqRyc3O7vh47diytra3Ytt1tXyAxMti2ze62JsbudZLwTz83NWdjYROa4yJ0fix2ypGd83IPm8p3oqb1qTX1uD78DFtT8V92DmjH7ugnhg5j4misuBi0vSUojS3YyZE3ndAUlXW5zZxZlYq2XRIpIYQQYrgb0s0m1q5dy1e+8hUWLVpEYWEhH3zwwRHHLF26lHPOOYfp06dz/fXXs2XLlqOO9d577zF58mRJogZQUzDA3ramQbn2v6rLeOb9TSS81I7abPFxZgOPXFJM8IaEoyZRAJnuGFTC90NeLzbY7bdgCPc/3kExTAKLF2BlpA78NUV0aBqh2VNRAOeGbX0eZleeD0Ox0HYEwLKjF58QQgghTrghnUh5vV4KCwt58MEHj/r88uXLeeyxx7jnnntYtmwZhYWF3HnnnTQ0NHQ7rqKigl/84hfHHEdEx893ruebmz6mxu896vO2bROyzKM+1x+WbfNayT6+uWUsKgq/mLGPB+fvQs1y9nieQ1XJdHsAyD8BFSn3Ox+j1TdhjCsgdMrMAb+eiK7QrCnYqopjSxEEQ30aQ4/V2ZTagtpuo5YYUY5QCCGEECfSkJ7at3jxYhYvXnzM55955hluuOEGrr32WgAefvhhVqxYwbJly7jjjjsAaGtr4+677+Y///M/GTWqb2sbOqnq4FezOmMYCrEcrj7gY2tzHTawp72JrJhD648O+tpJd3lYXnWAJ/dt49ezz2RCfFLUrr22vpqztiYyui2Gg/kGy/NrAMiLjTvun9PM5HRaayuZkJA0oH+m+padOLbuwoqPJXDFuajawH+GMVTvlWErIRZz8jj07XtwFu3FmD0l4iESHU5WZjUwry4JfUcAY1zPyf6JJPeLiITcL6K35F4RkRhu98uQTqR6EgwG2b59O3fddVfXY6qqsnDhQjZt2gSAaZp89atf5frrr2fRokX9up6uq6Smnth9hnqSnBx7/INOoPf3VdA5UanS8HX9Wa2squAba1Zww7hCVlVXYto2n7XWcOrovKhde9Oqg9yzNxfTAZlfyYfVawEYn5Zy3J/Zfy5YSNAyB7Rjn1VdT/Dtj0FRcP/bFcTkpw/YtY5mqN0rw5l17gKC2/fg3rgd57nzI54qnBEfxyeZpXx1Gzh3hEj4t9ghN91Y7hcRCblfRG/JvSIiMVzul2GbSDU2NmKaJmlpad0eT01NpaSkBICPPvqITz/9lLq6Ol5++WUAXnjhBRISIl8obhgWLS2+/gfeT6qqkJwcS2NjO9YQWmPxzoEDXV9vq62lvr4NqynExx/sRk2CV/btwup4fmVFOUtyJkblus1+Pxd8kIDDVglcGIvlNLlr/HTeqCxmvCOe+vq2Xo3jIxCVeI7gD+B59m+owRDBxafQnpgMvYypv4bqvTKsxcXjzk5HO1hL08bdWKNyj3/OYdyWQp0nSH2mSWo1NGxrgpwT1Hb/OOR+EZGQ+0X0ltwrIhJD5X5JSPDgcBy/IdiwTaSO5fCufGeffTbbt2+P2thD6Q3AsuwhE09j0M+25jqSHS5ajCD72pphfxD92Ubu943ivKQUHpu1l/I4PwAl3laqfV7SXZ5+X7f23TpmN8VzMD1IwulpYNlcmj2GS7PHAIP8M7MsPP94F7W+CWP8KAKnzRmUBgND6V4ZCYJzpuF58wP0tVvx5+dEdG6CHp7K93pKJbdW51O1pp6MK4bWPmJyv4hIyP0iekvuFRGJ4XK/DOlmEz1JTk5G0zTq6uq6Pd7Q0HBElUoMrPeqy7CAxRm55MfEM784Hvcfm3D5FKrdAaY0xfPkRzO4pjiLs9LCn+Cvb6jp1zXfOljCtz5YwaRPdAzFou4KFwyx+bTOj9ei7yvBTE3Cd8V5MMSmcIm+MaaMx4pxo+8uRmlqiejcBEc4kfogoz78/S6rp8OFEEIIMYQN20TK6XQydepUVq1a1fWYZVmsXr2aWbNmDV5gJxnbtnm7qhSACzMLuLMonx9smoBt2fxm2n6+c+luAufH4ETlvu1j+OoH+WR6nbxdVYJh9e2XSMu2+VvZHr62dSweU+PViTWMnjC0WonrRftwrdqA7XLiu/ZicA2dpgKin3Sd0NzpKLaNc83miE5NcIT3jiqN91Ea6yO1TkdpiH4nSyGEEEIMvCGdSLW3t1NUVERRUREA5eXlFBUVUVtbC8Btt93GSy+9xLJly9i3bx8PPfQQfr+fq6++ejDDPqlsa67noL+dmTEpjP+bzelbEmh1GPzotN28Nrqa0zNzMM6LJXBvMlaWRlKJwjMfzWJckYM/HdiJbUdett3YVMvUfTGcWptMU6JJxuWZqEOo2qNWVuN+431swHfFedipSYMdkoiy4Jxp2A4dx+adKN7er51MdBxKqD/JCm/ToG0foPV5QgghhBhQQzqR2rZtG1dddRVXXXUVAI888ghXXXUVL730EgCXXHIJ3/ve93j88ce58sorKSoq4qmnniIlJWUQoz65rKw7SJrPyUMfTEDfHsRIUXng7D18khL+JfHM9PBUPivXge++ZIJneXCbGt/dPJ5Z/9D40eqVbGuuj+iaHxWXcu/20QC4vpjCnPSMqL6m/lAaW/C8shzFMAicuxBzfP9a7oshKsZNaOZkFMPAsb73G/QmdlSkAD7MDt/3zve9KNWyp5QQQggx3AzpZhMLFixg165dPR6zZMkSlixZcoIiEp/XtL+VJz6ZTlJAxRzrILAkgbuU2Xx/y0pyPHHkx8QfOlhXCF0chznZhfJSE6dXpzBteTy/LdvJrtMzuTZv/HGvFzBNTl0ZS2LIQWCBC2vsEJoy5/UT8/IbqF4/wbnTCM2fMdgRiQEUnD8Dx/ptONZvI7hgFjiP333v8IrU3qR2XhpbyRf35+B+uhn/3UnYScfvECSEEEKIoWFIV6TE0NMY9PN2VQkhy6J1XTMPfDCO1ICT0Hw3/jsSIVYlPyaeJ+efx6PTFx51DGu0A/MbaQRPc5MYcvCjDROZ/WcVbY0PvD2vm6rYVM955Wm0eAyMi4fOvl4YBp6//RO1oZnQhNEEzjtdmkuMcHZSAsbk8ag+P44tO3t1jlPV8Gg6CjAjKY0/Ti6hfrqC2mzhfroZ2qX5hBBCCDFcDOmKlDg+y7Z5ung7DQE/35o0F62fv7zbto0FxxznuQNFvH+wjLyPbU5ZF4uFwkentTL3yrRuiYNHO86t5VQIXRWPOc1F+59rmV4XD39rw/5HG+ZEJ8ZMF+YUF7gOiyNgM2q5BWhsO89kpmeIfA5gmniWvYNeXoWZnYH/ivNAHSKxiQEVPHUWjh17cK7ZTGjO1F793O8YM5WQbVEf8LGpqY7V5/i4KJSAvjOI+9lmim5U+FdjOS2hADcWFJIbM4Q+MBBCCCFEF/ltbxizbZs/7NvKqxX7+biuks1Ntf0az7JtfrZzPf/22Tu0hIJHPB+yLFp3tfHHj2dwyrpYfLrJD+fvRF0c1+fqizXeyRu3ePn6qdvZOKkdn26iFwVxv9RKzH/V4fpTC9q2AIRsnG+3k9CmsSK7jux5Q2QdnGXhfuMD9L0lmClJ+L5wca+meImRwcpMwxiTj9rcir5jb6/OuSh7FJfnjCHHE06Qtrc30HiDB7NARys1MJ6r583yYlbUVvDmwQMDGL0QQggh+kMSqWHs47pK3jx4AL0jiflXRxvyvijztvJ08XY+qaukKRTg0/qqbs8rTSbB5+v46SeTGNcay+aUFu46fSu7831MTexf6/HZKelsSmvhG+O3cMW5a3nirApCc8L7QulbA7hfaCHmv+rRV/lodRj8dV4tGe6Yfl0zKmwb19sf49ixBysxHt+Nl2PHDoG4xAkVXDgHAOfK9RBBS/88TywAb1WV8OUtH3DwJjdtqTazqhJ4cNtEFBsOtEe2T5UQQgghThxJpIYh07Y46Gvnqf3hbmE/nHIKsZrO6voqWo9SSTqe96vLuGv9B7xasR+VcFK2uv5g+MmQjeP9djy/bCCjSKHWHWD9JUF2LlH5wrzJ/H7uOTjV/i2QHxuXSIIeXoRvqjZ/iStl68Um3v9Mxf+lBIzpTjBtFBv+d8oBcjMT+nW9qLBtXO+vxrlpB1ZsDN4vXo6dIFOwTkZmQQ5GQQ5aQxN6Ue+qUgCFCSl8IX8ChfHJNIUCPFG1jf9auJcad4AzS1P4ys5RlHolkRJCCCGGKkmkhqGvr1zBHWvepSEY4OyMPBa0pfDv7eMxbKtPU4G2NNcBcHpaNj+beTqxuoNNDbUYW714ft2A820vWPC3iVXcdvZm8k7P4LLcMZyVkUes3v9pbKqicGnOaApi4rmpoBAIr8XyqSa7RvtouykO74OpvHpjC2/n11JweCfAwWDbuN5diXPNZmy3C9+Nl2GnJA5uTGJQBRfNAyKrSmmKwr+Nnsx/TTuNFKeblXUHWWPX8duzSrFjFK7fl8MFO1NpCso+U0IIIcRQJM0mhqFZaem0+gPkeuK4dcxknM+2c+XeZFYvSOYVdQ/nZeaT5vL0erzitvCn3v8+dhppLg8Xa7nMX+khsbYdAGOyk5ZL3PzPrtXkemKJi0Ly9Hk3j5rEzaMmEbJMPqwtZ0tzHTetfouQbXFp9mjuGj+DbTEt0Ar5nkFMpDqm8zk3bsfyuPHddAVWev+mNorhzxyVi1GQg15aiV60D2PqhF6fG6Pr3Dt+Bv+7dwvzUjL5YsFE/GN1tD82cFfRaHZ/2kLSmekDGL0QQggh+kIqUsPQ7ZOm88vZZ/DVibNIdLgInRZOmr6/YwKEbJaW9Lz31uEMy6LE20qC7iTV6UZf6eOuZVmcUptEXUII/20JBG5NpCo2/Kl4hmtg1wA5VI2fz1jEtIRUQraFisK71WW0GyFKva0A5A9WFzPbxvXPD8NJVKwH381XYmVIEiXC+lKV6nRKahbPLbiA+ybMJN3lwRrl4MOLvRiKxfjlNlqRVKWEEEKIoUYSqRHAnObCmOIksVXjlt15bO2Yqtcb5b42DNtiTFwCWomB8/U2FE3hqcml3LF4M/6J4epTTcAHcEKaPCQ6XfxkxkKWLriQ8zLzCVgm71eXUeZtw61qpEdQbYsa08T9xvs4NxdhxcWEk6j0IdI5UAwJ5qhcjPxstPpG9J37+j2eY0oMP5u5D9VWcC1tQak3oxClEEIIIaIlokQqGAzy+9//np07e7f5pDhxglfGYTsVbtifQ2wNBK3e/dJV3NEVrFBPxPVSC4oNwSvj2XeKSYsd6lo/VeP3ApB5gpIYVVFIdLq4JHs0AM+X7MRnGuTFxKGc6I1ugyE8f30Lx7bdWPGxeG++Eis1+cTGIIaF4BnzAXB+si7iqtTnjYqJ5928Ot6YVIsSAv0zXzRCFEIIIUSURJRIOZ1OnnjiCVpapJPUUGMnaQQvikWzFb65ZSyV7W29Oq+4rRmAyz5LRW20MKY7Mea5OC01C4DVdeHufdWBcCJ1otuOj49PYkpCCj7TACD/BDeaULw+Yl58DX1/KWZaMt5brsFOSTqhMYjhwyzIwRiVi1bfhGNr76fYHk26y8OY2ASezSvBUmz0dX4w7ChFKoQQQoj+inhq34wZM9i+fftAxCL6yTjNzcH0IJOb4lFX9e7T6/3tzZxbkUZ+kYaVqBK4Jh4UhfkpWajAuoZqAGr8HVP7BmFa3Z1jp3Z9nTnAa7QOpzS2EPP8MrSDNRj52XiXXC0tzkXPFIXAWacC4Px4LYSMfgyl8MCUUzDjFVZmNKK227DNH61IhRBCCNFPESdS3/72t/nzn//Mn/70J8rKyvB6vfh8vm7/iUGiKmw538BUbMZ9rKI09Ty9r7S9lerKVr6+dQy2AoEb4iEmfEskOJyMiU2kLuinxu+l2j84FSmAifHJzE/JBGBGUtoJuaZWfpCY5/+G2thMaOIYfDdcBh7XCbm2GN6snAxChWNRW9txrN/ar7Ey3TE8PO00VoxrAGD/vw7ym10b+XPprl5P3xVCCCHEwIi4/fn1118PwCOPPMKjjz561GOKior6F5Xos/hRMbw8toIb9+WivtZG4JZj72/0wv4ivr9xPLGGTvAsD9Y4Z7fnJyUks6+9maKWBmoDXnRFIcXpHuiXcFQ/nDyfA+0tjI9PGvBr6ZuLcL/1EYplEZw7jcB5p4MqfVlE7wUWn4K+uxjX6o2EZk0Bd9+T8HFxidxywUwatjQxvS6en+/fy3txfvI8cZyRnhvFqIUQQggRiYgTqZ/85CcnfrG/6LVcTxw/nljOeVXppG8HY1sAc9qRv8SVtLcwbq3G9MYEjByN0PmxRxwzJSGFNw8eYFNTHU2hINnuGNRB+tnrqjrwSZRl4Xp/Nc61W7BVFf9FZxKaPfX45wnxOXZqMqGZk3BuKsL56UaCHdP9+irNE4PjdBve9vKNxkK+Ebe5azsAIYQQQgyOiBOpa665ZiDiEFGS6nSjOhV+O2M/j66ehPPVNnzjHeDuXlEp3dnArbvzCek2oZsSQD8yQZqcEG7v/WFtOTA40/pOGK8fz2vvoheXYbtd+K65EHOUfNov+i64aB6Obbtxrt1KaO407Pj+ra8z5ntw/MvLtN0xOHIUKnztUYpUCCGEEH3R5/lKe/fu5R//+AdPPPEEtbW1AJSUlNDW1rtucWJgKIpCnieeVamNbBnXjtpi4Xzrc79wBSzmL3ei2Qpl56vY6UfPp9NdHhIdToIdbZxz3EdWrUYCtbyK2GdeQS8uw0xLpv3W6ySJEv1mx8cRnD8DxTBwrfgsCuOpmFOcOHxwZlUq5VKREkIIIQZVxIlUe3s7X/3qV7nssst44IEH+O///m9qamoA+PWvf83//u//Rj1IEZmbRhUSrzv40dgd+FwW+qd+1JJQ1/OOV9tIbXOwMquBlDOOvR+SoijMTc4AYExsAtcXTBzw2E8o28axZjMxS19FbWkjNHUC3n+7Fjs5YbAjEyNE8LQ5WLEeHNt2o1ZW93u80IJw18wrSzOp8LVj2dIOXQghhBgsESdSP/3pT9m4cSPPPvssGzZswD7sH/LFixfz8ccfRzVAEbn5KZn8ZvaZNLkMls6oRLHB9fdWMG20zX6c6wPUuYK8fUYTDk3rcawvj53GT6Yv5LezF5M+CK3PB4zPj3vZ27jfWwUK+C86E//l54LTMdiRiZHE5SS4eAEA7ndXQj8TH2u8AytFZXp9ApnNTuoC0iVVCCGEGCwRJ1LvvPMO3/rWtzj11FPRPvdLeE5ODhUVFVELTvRdljuWfE8cSzPK8I1WUatMnG+041oWnnr501l7GZeZctxx4hxOZiSloY2gBiNacRmxT72MY1cxVlIC3luuCTeVGEGvUQwdoemFmJlpaBXV6Dv29m8wVcHoqEpdVppBhU+mUgshhBCDJeJEKhAIkJSUdNTn2tvbj0iuxOCZk5IBCnx0Zju2Bo5VPhSfzasTqtmQ3sxpqdmDHeKJFTJw/esTYl56A7WtndC0ibTfdh1WVvpgRyZGMlUNt9AHXB+shlDoOCf0LDTPjanaXFiewcFWaTghhBBCDJaIE6np06fz6quvHvW5t99+m9mzZ/c7KBEdneubPlKqCZ0T7rjXlG7xv+OLWZCaRW5M/7qIDSdqRTUxz/4V57qt4a58V10QnsrXj/19hOgtsyCH0KTwJr3Ozzb3b7A4ldoJNgkhndjtRnQCFEIIIUTEIm5//tWvfpXbbruNW2+9lYsuughFUfjwww959tlnefvtt/nTn/40EHGKPpiWmIpDUdnSXEfgLA92gspDgXWEsLkub/xgh3diBEO4PvwMx7qtKIAxOg//ZWf3uxW1EJEKnH0a+p4SnKs3EpoxCTuh7/dg8BQX7AoxabsLLo5ikEIIIYTotYgrUvPmzePZZ58lGAzyX//1X9i2ze9+9zvKysp45plnmDFjxkDEKfrAqWpMjE+izQhRFmijbpbKZhrJ88QxKeH466OGO21fKbFPvoRz3VZwO/Fdcha+L14mSZQYFHZSAsEFM8Pt0N/9pF9jJU2OpyLWz9haD0pV/6YKCiGEEKJvIq5IAcydO5cXX3wRv99Pc3MzCQkJeDwjqKPbCDIlMZXtLQ3saGkgxekGYFLCsVuejwRKazuu91fj2LEHgNCkcQTOX4QdN4I3FBbDQnDhHBzb9+DYVUxobwnm+FF9GkfTNFaNb+YLm92Yq9tRr06KbqBCCCGEOK6IK1KrV6/G5wu33HW73WRmZkoSNYRN6ag87WhpYGdrIwCT4kdoImUYOFdtIPYPL+LYsQcrLhbftRfhv/oCSaLE0OBw4D9/EQDudz7uV+OJsikmQdXCvTEIQdlPSgghhDjRIq5I3X777WiaxuTJk5k3bx5z585l7ty5JCeP0F/Oh7nJ8ckowI7mBjLd4WSicKRVpGwbbe8B3O+uQm1qwVZVAqfOIrhwLricgx2dEN2YE0YTmjgGx+5inKs2dO0zFamMtDg+zmrg3Mo0rK0BjLnuKEcqhBBCiJ5EnEitWrWKdevWsX79etasWcPzzz+PZVmMHTuWuXPnMm/ePK644oqBiFX0QZzDyaiYeA54W6kOeHGrGgUxCYMdVtSoldW4VnyGXhLev8wYPwr/uQuxU5IGNzAhehA473T04jKcn27CmDoRKy3yDzfGxCbwSsF2zq1MQ//UJ4mUEEIIcYJFnEglJydz/vnnc/755wPg9Xr59NNPeeaZZ3j55Zd55ZVXJJEaYk5Pz+FAyS4AxsYljojNddW6BpwfrsGxuxgAMyWJwHkLMcf1bc2JECeSnRhP4Iz5uN9fjevtj/DddEXEG0KPjk1gc2oLB+MDZJeCctDAzu7TslchhBBC9EGf/tVtb29n48aNXZWpLVu24HK5OOuss5g7d260YxT99MX8icTpTpaW7OScjLzBDqdflMYWXCvXoW/bjWLbWPGxBM+YT2h6IagRL/kTYtCE5k3HsXUXemkl+tZdGDMmRXR+ktNFktPFsvyD3L1jNG0fNxF7fVpEY5i2xc6WRiYnpKAy/D9gEUIIIU6kiBOpa665hl27dpGamsq8efO46KKL+OEPf0hhYSHKCKh0jESKonB5zhguyx49bH9Gam0DztUb0XfsCSdQHjeBhXMIzZkKunwKL4YhTcN/0WJiXliG+72VtI/Nx46LjWiIL+SP5/1QKcGdFrGbbeou9pIW37vGKrZt8+tdG/mwtoL7J8zkopzRfXgRQgghxMkr4o/wd+3aha7rzJo1i9mzZzNnzhxJooaJ4fgzUg/W4P7bW8Q+9Rcc23dju10EzjyF9rtuJnTKTEmixLBm5WURmj8DxR/E9dZHYEfWfe/K3HH89xlns3dsgFhD48N39mL2cox/VOznw9rw2sJVdQcjjl0IIYQ42UX8W+i6deu6pvW98847/OpXv8LhcDBnzhzmzZvH/PnzmTVr1gCEKk4aloW+uxjHuq3oZeFf8Ky4WIILZhKaNQWcjkEOUIjoCZx5CvqeAzj2HMAo2ocxZXzEYxSckwl7W7hufQa7HRVMuCQX9J4/OHm1Yh8q4NI0tjTX4TeNPr4CIYQQ4uQUcSLl8XhYuHAhCxcuBCAUCrF69WqefPJJfvWrX6EoCkVFRVEPVJwEfH6cm4twrN+G2tIGgJWcGE6gpk8CXRvkAIUYAE4H/kvOIubF13D962PM0bnYMZHtzaeMdVJ9hkrKJxazVrowdjZgXBaHOdl51CYWzaEAdUE/BTHxFMTE80ldJVub6snNSMKybf6wbytZ7liuzB0brVcphBBCjDh9mhfV0NDAunXruv7btWsXlmUxYcIEaTYhImPbaCUVODYXoe8qRjFNAIyx+QTnTcccWxBxNzMhhhtzVC7B2VNwbtyB61+f4L/y/MgGUBTiLkvl8dQNnL4qjlNrktGfa8GY6CB4eRx2Rve3+uK2FiDcQn12cjqf1FWypqGKixjHWwdLeL2yGI+mcVnOmBHR5VMIIYQYCBEnUhdeeCGlpaVdm/IuWLCAe+65h7lz55KUlDQAIYqRSGluxbF1F44tO1GbWwGwXU6CMycRmjcdK3WEbRosxHEEzj4NfV8pjh17MSaPx5g4JuIxtEwn3z9lJ790zGP2x2703SG03zRinO4heG4MeMLLYve3NwMwLi6RecmZaIrCB9XlfLGpkWf2bwfAZ5pUeNsoiI2P3osUQgghRpCIE6lLL720ax2UxxPZ9BNxclPaveg796Pv3IdWWtnVbNkoyCE0YxLGpLHgkPVP4iTlcuK/eDExf3kT1z9XYOZmYsf2rgNfpwxX+PjteV4mfT0bx0ofjne9OD72oW/0E7wwFmOem31t4URqbGwiSU4XF2eN5o2Dxdy+4i1ClkWsptNuGuxua5RESgghhDiGiBOp+++/fyDiECOU4vWh7ypG37kXraQSpaOjmBUfS3B6IaHpk7BTEgc5SiGGBnNsAcE5U3Fu2I57+Qp8110c0dTWDFf4w60avxd0hdDiGIzZLhxvteNYH8D1tzYcn/i41JHIqbiZVevA4Wnj37VRxFUHaVFDZCXGUpiWwk/bt7C7tYnzMgsG6uUKIYQQw1qf1kiVlZXx1FNPsWHDBpqamkhKSmLu3Lnccccd5OfnRztGMZzYNmpNPfreEvS9JaiV1V2VJys2htCkcRhTxmHmZsnaJyGOInD2aegHytH3luDYVERo9pRen5vhDlekagK+rsfsBI3g9QkYp4ZwvtaGVmYwn44PL8pDQAgn8B90T5h+FzONR5KL+/tyhBBCiBEr4kRq27Zt3HLLLbhcLs466yzS0tKoq6vjnXfe4fXXX+f5559n6tSpAxFrn9x///2sXr2aRYsW8Zvf/GawwxmRlDYvWmklWkk5+r5S1Nb2rues+FhC40djTBmPmZcFasRblwlxcnE68F1+LjHPL8P13kqMUbm9rtp2VqRq/d4jnrMKHPjvTmLb/hqeKdrG7Jg0/i17EgRtlICNEoJYzYG3KYC6O0BupZupRW6Cc0ycqnTMFEIIIT4v4kTqZz/7GVOmTOHJJ5/stkbK5/Px5S9/mZ/97Gc8//zzUQ2yP26++WauuuoqXn/99cEOZcRQWtvRyg+ilVSilVag1Td1PWcrCmZuFsb4Aoxxo7AyUqXyJESErJxMgovm4fp4LZ7X38X7pat79SFEnO7Ao2ndKlIV3jYe2bGGwoRkloyaxIvefexKaueayZMx01xdx6mqgiM1DqO+DXuWC/dvG7h5dx776xqZlJE2IK9TCCGEGM4iTqS2bt3Kb3/72yMaTXg8Hm6//Xa+/vWvRy24aFiwYAGfffbZYIcxfPkDaFW1aAdrUCtrwv8/rOIEYKYkYY7KwSzIwRidDzHuQQpWiJEjuHAO+t4StMoanCvXEzxj/nHPURSFdFcMpd5W2owQcbqDZw7soMzXRpmvjY9qKwhaFtnuWE5NzT7mOHa2TkmhwZhdDoyP2uA6SaSEEEKIz4s4kXK5XDQ1NR31uebmZlwu11Gf64u1a9fy9NNPs23bNmpra3niiSc4++yzux2zdOlSnn76aWpra5k8eTIPPPAAM2bMiFoMJ41QCLWhGbW2AbW2Aa22AbWuoas1eSdbUTAzUjFzMjELwsmTHR87SEELMYKpKr4rziX2mb/iXLk+/PdtVO5xT8tweSj1tlLla6cu6OPT+irSnG7Ozszn1Yp9AFydN+64+0MpF8YT2u1l+iY3pYubCXlgbJw0hhFCCCE6RZxInXXWWfzyl78kLy+PefPmdT2+bt06fvWrXx2R6PSH1+ulsLCQa665hvvuu++I55cvX85jjz3Gww8/zMyZM3nuuee48847eeutt0hJSYlaHMOeZaH4/Cht3vB/7V7UphbUplbUphaUphbU9iPXVNiAlZSAmZ2OmZ2BlZOBmZkOTmlRLsSJYKck4b/wTDyvv4f7tXfx3nE9dkzP2050Npz42qaPuh67aVQhF2SN4tLs0expbWJBatZxr52eG8+KceWcvzeNrX8v4bnp5fzp1AtxyHopIYQQAuhDIvW9732Pu+++myVLlpCamkpqaioNDQ3U19cze/Zsvvvd70YtuMWLF7N48eJjPv/MM89www03cO211wLw8MMPs2LFCpYtW8Ydd9wRtTg6qeogr/WxbRxFezFMA2ebD9swwbLAtMLJUjCEEgiCP4ASCIa/9vlR2n1dbcePOqyqYiUnhv/LSMFOT8FKS8FKSz4iaZJWEcNH5/066Pet6BdrRiGhkgocW3bifv19Al+8tMd1hxnuQ4nW5IQUzsrI5YLsUaiKQoYnhgzP0femOtr9UnY6+IpNrjyQyStjKtne0sCclIwovTIxnMn7i+gtuVdEJIbb/dLrRMrv9/Phhx9SUVHBjTfeyJIlSzhw4AC1tbWkp6czc+ZMFi1aNJCxdhMMBtm+fTt33XVX12OqqrJw4UI2bdoU9evpukpqalzUx42EVVFD8O/vYAC9rgmpCsTHoiTEoiTEocTHQkIsSnIiSmoiamoSJMWjSDe9ESs5WaZeDnf2jRcRrK5F31+Ke8sO9HMWHPPY0+w8Xjiwk2vHTuTrM+aiRtjs5fD75YKZE/j7qq3cvCePW3bnsWVaA+dPGNvn1yFGHnl/Eb0l94qIxHC5X3qVSJWVlXHrrbdSUVHR9VhcXBy/+c1vOOOMMwYsuJ40NjZimiZpad0XQaemplJSUtL1/Ze//GW2bNmCz+fjzDPP5I9//COTJk2K+HqGYdHS4jv+gQPJ5cFxxbnEKBbegImtKKCp2KoKmgoOB7bbhe1ygtuJ7XKFK0o9/SJlA41HTusTw5+qKiQnx9LY2I5lHbsiKYYH5Yrz8DzzV0LLP6Y1LRUr9+jT8/KVGP6+6FIcqkZjQ/tRjzmao90vqTi4+KZpmD9v4uKyDL67czf1eW1ReT1ieJP3F9Fbcq+ISAyV+yUhwYPDcfyp7L1KpH7xi1+gqipLly5l2rRplJeX89BDD/HQQw/x3nvv9TvYaLJtG+WwxOGPf/xj1MYeCm8AoemF6KlxhOrbehePDfQwrU+MfJZlD4l7V/RTWgqB8xfh/ueHuJb9i/bbvgCeozf30VD7/DP//P3iinFgnh2Lc3k7l21JY9OcWmYk9b2L3893rmd/WzO/nnUGMbqstxzu5P1F9JbcKyISw+V+6dV8ro0bN/K1r32NuXPn4nK5GDduHD/+8Y+prKykpqZmoGM8quTkZDRNo66urtvjDQ0NR1SphBBiJAjNnExo8njU5lY8r797wj4kCS304I21OOtgKs99vJm713/A43s2YUV4/SpfOx/VVlDua+Pv5fsGKFohhBDixOhVIlVbW0t+fn63xwoKCrBt+4hE5kRxOp1MnTqVVatWdT1mWRarV69m1qxZgxKTEEIMKEXBf/FizNRk9H2lOD9Zd2Ku61BQL0wA4Cu7R1PqbeWdqlJW1R3s1ell3lZ+v3cLL5Xt7npsWcU+GoL+AQlXCCGEOBGGdIeB9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCCDFwXE78116I7XTg+mQd2p4DJ+Sy5jw3VprGrJoE/jvuVABeLN2F2Yuq1B/3bePNgwd4t7oMBTgtNYuAZbK6l4mYEEIIMRT1umvfnXfeiaYduejq1ltvPeLx1atX9z8yYNu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj3dtyPvUU0/JHlJCiBHNSk3Gf9k5eP7+Np7X36P91uuwUwZ4s1xNIXhBDO4XW5m60sGURSnsaG1gbUMVp6ZmH/O02oCPTU21qChY2MxOTmdBahar66toCAYGNmYhhBBiAPUqkbr33nsHOo6jWrBgAbt27erxmCVLlrBkyZITFJEQQgwNRuFYAqfNxrV6I56/v4X3lmsGfLNsc7oLM9eHVmbwpbbRfJ8G9rQ295hIfVBdhg1cmzeOOckZjIlNYFdrIwBNIUmkhBBCDF9DOpESQghxbMEzT0E7WIt+oBz38hX4rzyv5+0O+ktVCF0Ui/Z0MzNXuVBPhUrfsduhNwUD/LMqvB3FuZn55MfEA5DkdHU9L4QQQgxXQ3qNlBBCiB6oKv4rz8NKjMdRtBfn6o0DfklzggNzrANPPZxfnk7FMRKpgGnyo+2fUhvwcUZaTlcSBZDk6EikpCIlhBBiGOv1GikhhBBDjx3jwXftRcS8sAzXh59hpSVjTBwzcBdUFIIXxeL5f03cvjufJx2laEEvqg/wWSheG8VnEWj2873mUaQYTuLGxhAaZ4MzXC3rSqSkIiWEEGIYk0RKCCGGOSszDf8V5+H521u4X3sX75euxsocuP30rFEOjKlOMrbDD9dNgHXtRxyTgkoKseFvtoVQg80E/i0RdAVdVYnXHTSFAkdsoi6EEEIMFzK1TwghRgBj4hgCixeghAw8f/0nSpt3QK8XvCKONZNaeXlsJaVnQuCqOPw3xuO/IxHfvUn87xcOcsUFa1l1n42VpaHvDuF6qRU6dqpPcrgIWCY+0xzQOIUQQoiBIomUEEKMEMHTZhOaOhG1pQ3P394Cwxiwa9lJGpvOCfL7KSWsndOOcZoHc5Ybc6ITK9/BDkcLrU6DzNRY/HckYqWo6FsDOJe1gW0fajgRkk15hRBCDE+SSAkhxEihKPgvWYyZk4lWWY37zRXQiw1z+yrXEwdAhe/IqX0VvjZ0RSHdHYOdoOG/MwkrXsWxxo/jn+2yTkoIIcSwJ4mUEEKMJLqO77qLsBLicOzYg/PDzwbsUp2JVPnnOve1hYI0h4Jku2PROtY/2aka/jsTsT0Kzg99nL8jvHG6dO4TQggxXEkiJYQQI4wdG4Pv+kux3U5cqzfi2LBtQK6T4fYAUB/wdXu8wh+uUOXGxHWPK0vHf3sithPOWBPP5SUZUpESQggxbEkiJYQQI5CVnoLv2ouxNRXXO5+g7SmO+jXidCcK0GqEuj3euUlvjif2yLgKHPj/LRFTs/na1rGk7Ih6WEIIIcQJIYmUEEKMUGZBDv7Lz0WxbTz/eBe1oiqq42uKQrzupCUU7PZ4hbejIuWJO9ppWOOdbL/cwgbOejcWbadUpYQQQgw/kkgJIcQIZkwej//chSiGgeeVf6I0NEV1/ASHk4Bl4jcPdQis6pjal+0+siLVFdc0F7+YuQ/NVnD9qQW1OHjMY4UQQoihSBIpIYQY4ULzZxCcNx3V5yfmL2+itEdvj6l4hwPoPr2v8+sEh/OY56U43bydX8vLs6tRQuB+pgXl4MC1axdCCCGiTRIpIYQY6RSFwHmnE5o0FrWpBc9Lb4A/OtPpEvRwG/PDp/d5zXAiFas7jnleqtNNjKbzf/klBM7xoARsXK+0gjlw7dqFEEKIaJJESgghTgaKgv/yczFG56LV1BPz8nIIho5/3nF0Vp1aDmtj3t6xEXCsph/zPFVRGBuXSMAy2X+6RWseaBUG+irfMc/pDXMA980SQgghDieJlBBCnCx0Hd+1F2PmZKBVVOH5+9tgmP0a8lAidVhFygihAO4eEimA8XGJADxZvJ37x27CVGyc77SjNPYtppdLd3PT6n9S8bl9rYQQQoiBIImUEEKcTJwOvNdfipmegl5chvu1d8Gy+jxcfMf0vZbD1ki1mwYxmo7asRnvsYyLSwJgY1MtBxJ8/GVcJUoQnK+2QR8qS582VNFuGrxRGf1W70IIIcTnSSIlhBAnG48b3xcvw0pKwLFrP+5/ftinxAUgwdG5Rio8tc+0bXymQUwP66M6dVakOj03oZy6+BB6URBte2Rd/EzbpqS9FYD3q8u6dREUQgghBoIkUkIIcRKy42Lx3ng5Vnwsji07cf5rJXYfkqnEz03t85nHXx/VKccTh1vVALg4axRJMS4em7IHAP0freDrfaXsoK+dgBWeEthuGrxTVdr7FyGEEEL0gSRSQghxkrKTEvB98XIsjxvH2i0Yr6+IuDLVuUaqs+W5t+P/valIaYrCxPhkAC7MHsWvZ52JVujmndxa9FYb+58tvY6juL0ZgML4ZBTgyf3bWC5T/IQQQgwgSaSEEOIkZqUl47vxcmyPC3PFWhzvr44omYrXu3fta+9F6/PD3T9hJg9PPZXxcUkkOV08MGU+a0/30uwIEftZELW0d50Fi9vDSdcFWQV8b/I8NEXlyf3bCVn9a6YhhBBCHIskUkIIcZKzMtPw33QleNw4P92E88PPep1Mfb5rX2fr85heTO0DyPLEMjclo+t7TVFZMm0qf5hcgoKC8++921uqM5GaYMdz1pZEztayCNlW1+NCCCFEtEkiJYQQAisrDedd12O7XbhWb8T50ZpeJVOxugOVQ4lU59S+uF5WpI4mzeVh3fg2Nqe0oB00cXzS895Stm1T3NrMpaUZTH3Cwvm2ly9tyAZgd2tTn+MQQggheiKJlBBCCADUvCz8N12O7XLiWrUB58drj3uOpijE6c6uNVLtHc0merNGqieTEpL51Yx9WBo4/tWO0nDsKXrrdlfw/Y/G8q0t41ACNrYD8kodpPuc7G5t7FccQgghxLFIIiWEEKKLlZ2B94sdydTK9ThXfHrcylSCw0nAMvGbRldFqjdd+3oyKSGZsjg/m+b4UELgXNZ6ZBymTfC9Fk571sGc+kS86eC/O4nQ6R4UFC4sT5eKlBBCiAEjiZQQQohurJwMvF+8DNvtxLV6I653V/aYTHWuk6oN+KJXkYpPAeAvEyqx0jT03SHUzQGsjjjUSgPX/zSS/E4ABVg5rxX7a2lYBQ6M+W4ALivPpMLbRpvRu4YVQgghRCQkkRJCCHEEKycT701XYsW4ca7biuufK8A6+r5OM5PSAHirqiRqFamxcYk4VZXNbfVsOT88pv/vDXz74w9Rl7fi/l0jeqXJ1uQWfnZxCVOvHQW6AoCdpmOOcZDZ7mJmfQLvVZf1KxYhhBDiaCSREkIIcVRWZhq+m6/CiovFuXkn7tffB/PItUqXZo/Bqaq8U1VCTSDcGKK/FSmHqnJD/kQClsnXWz/jn/k1JAcc/Pc/J+P50A+6wlMzy/j6wu3cfupMHB0b+3bqrEpdWpbBk/u38UFNeb/iEUIIIT5PEikhhBDHZKUl411yJVZiPI4de3D/419gdE+mkpwuzsnIx2eafFRbAfS/IgVwff4Ebi4oJF53UHaOgt9t4bJU9ub7qbjPw9L8cgriEkhyuo4415juwnYqnF2dRmxIY/lB2ZxXCCFEdEkiJYQQokd2ciLeJVdhJSfi2F2M56//hFD3dUdnZ+R1+76/FSkARVG4cVQhfz7tYm6eMoW2/0jg26fu4Ftzt7NVaQJgUnzy0U92KhgzXWiGwkUHM9jf1oJpH31qohBCCNEXkkgJIYQ4LjshDu+SqzDTU9CLy4j58+vg9Xc9PyE+CV1Rur6PjUIi9XmeHA/GeAfNRpBl5fuAcHe/Y+mc3nd5RRYBy6TM2xb1mIQQQpy8JJESQgjRK3ZcDN6brsTMyUSrqCbmT/9AaQknJ05VY1xcUtex0ZjadzRnpocrX3vamoBD3f2OxirQsTI0RtW7GdMSw96Oc6JtXUM1v929EV9Hx0IhhBAnB0mkhBBC9F6MG++Nl2OMG4VW30jM839HrW0AYErCoaTGPUCJ1LmZ+UxPTAUgTneQ44k99sGKQqijKnVxWTp7BmBPqTJvKz8tWse71WW8XinrsIQQ4mQiiZQQQojIOB34rr2Q0PRC1NZ2Yv60DK38IJMPS6TUw6b5RZOmKHyjcA5pTjdnpOWgHOc6xmw3tgoXlKdzoLklqrHYts3Pd67Hb4Wbb/yjfB9+qUoJIcRJQxIpIYQQkdM0/JeeTeC02Sj+IJ4/v86cmtYTcul0l4f/O+V87pkw8/gHx6uYk5wkhhxk7lMxjrEXVl9U+b0Ut7cwOiaexem5tBhB3q4qjdr4QgghhjZJpIQQQvSNohA861T85y5EMUzSXnuf31gp/GjqggG/dCQVL+OU8PS+C0rTqPS1Ry2G3a2NAExPSuPCrFEA7Op4TAghxMgniZQQQoh+CZ0yE98V54GiMGfVVhZt2g+2PdhhdTEnOmmLMZlfm0R1VfSm9+3uWHM1MT6JLHcMALUBb9TGF0IIMbRJIiWEEKLfjKkT8N14ObbbhfOzTbiXvX3EXlODRlMon2KhohCzKXprmHa3hatPk/Qk0is1VKAu4O/5JCGEECOGJFJCCCGiwizIof2Wa8Ib9+4qJmbpayhtQ6NCE5rnAmDcDgdY/a+WGZbFvrZmYjUHo18xiftDC4sb06kP+GTjXyGEOEmM+ETq3Xff5cILL+TCCy9k+fLlgx2OEEKMaHZqEt5brsbIy0I7WNOtPfpgyspPYEtKC6ltDtTi/lfKDrS3ELQsrq/PQ98fHu+6fVlYQEMw0O/xhRBCDH0jOpEyDINf/OIXLF26lJdeeonf/va3BIPBwQ5LCCFGNDvGg+/GywlNGY/a3ErMC8vQ9g9uN7sY3cHHY5oAUNf4+jXWx7UV/Oe21bgNlWs3ZgBgexSmVMUxpiWGWv/QqMIJIYQYWCM6kdq8eTOFhYWkpaWRnJzMjBkzWL9+/WCHJYQQI5+u47/iPAKnz0UJBPG8vBzHms2D2oTi4EQTr2bi2BYEX9+m361vrOEXOzfQboT40cEpxLarGDNcBM8LN5v4QnE2tbJOSgghTgpDOpFau3YtX/nKV1i0aBGF/7+9+w6PqzzzPv49Zfpo1IsluclFNu7GBUwxGAIEQjAltDgkBLIJkITsy242m90kkE1Cwi4ppFNCSCAhkGAghNA72MaAC+6ybMsqVu/T55zz/jFFkiXZGlm2ZHN/rkuXpClnnhkdy/PT/Tz3U17Oq6++2u82jzzyCCtWrGDOnDlceeWVbN68OXVdY2MjhYWFqe8LCwtpbGw8JmMXQoiPPEUhcuYSgp88BzQV58vv4HzmFYiOzqa14zK9vFLcjBoDfVP60+9CRoy7tr+HicV/5S9k6ZYMLBtELvIQW+wkYrc4pzaPrtYjq3gJIYQ4PozpIBUIBCgvL+fb3/72gNc/++yz3Hnnndxyyy2sXr2a8vJybrzxRlpbR38+vhBCiLjYrOkEVl2KmeHBtmUX7keeQunqPubjOKuglBcmNMfHtC79/aQaQ0H8Roy5vjzOfCcDxYDoOR6sLA0cKnXzLOymimddhB9tf4/WiFSmhBDiRKaP9gAOZfny5SxfvnzQ6x988EGuuuoqLr/8cgDuuOMOXnvtNVavXs0NN9xAQUEBDQ0Nqds3NDRw+umnD3s8qjr0DSCPluQYxsJYxNgm54pIx1E/X0oKCH7+Uzj/9hxaTT3uB/9G+IoLMEuLjs7jDaAsI5PTF01k36YAk+rchBoMrHF9/xtsCAXIczjRlP5/Z+wy4mtsT23MQt8ZwczTMJa7U69ZcJkD470IZ1Rk8YuJe1AUhW+ctOjoP7FRIL9fxFDJuSLScbydL2M6SB1KJBJh69at3HTTTanLVFVl2bJlbNy4EYC5c+eyY8cOmpub0TSNTZs28f3vf39Yj6frKrm53pEY+ojIzvaM9hDEcULOFZGOo3q+5HqxvvppYk+8CGs343r4KfRPnYe+ZM7Re8yDXJ11Er8c/wY3bZ+E98MY9tlZqeseqdjOPR9+wI0z5vCFk+b2u68RasVmKFy4PgcA16p8vIXu1PWKR+e1cZs5py6P82ry+btWy9XmTE7OL+x3rBOF/H4RQyXnikjH8XK+HLdBqq2tDcMwyMvL63N5bm4uVVVVANhsNv7t3/6Na6+9FoCvfe1rOByOYT1eLGbS2Tn6895VVSE720Nbmx9zBPZCEScuOVdEOo7p+bLiNPSsLOwvvEXs0X8S3LWfyMdOB107uo+b8OaEVr6wYwLW2110nWIDn8b6lgbu2fIBAG/UVnNZYVm/+9W2dnDlnmJ8HRrGTDvtJSa09ExRtCyLx8rqOKcuj8/tn8AzExp4ZPtWJqnHxxuCdMjvFzFUcq6IdIyV88Xnc2GzHf7/pOM2SA3GsiwUpacceN5553HeeeeNyLHH0i8A07TG1HjE2CXnikjHsTpfIgtmYeRm41z9ArYPtqIeaCJ46XlYmRlH/bHNDI1Xi1v4WG0+jp+2EVqVwe9bt6Wuj5rmgK9BpDnKqooSDM0ifLEXa4DbLJs/gbrKKMUHbJzSmE1jRvCE/vcnv1/EUMm5ItJxvJwvY7rZxKFkZ2ejaRrNzc19Lm9tbe1XpRJCCDH2GBOKCXz+itTmvZ7fPY5WefT3m8qyOfjfuZV0L9BRu0ycv+1gzlYXZW4fDlWjMTzw7IOT33LgNDX2L7Gwcgf+S+UV46eR87FcAK7cM46WyOjPZBBCCHF0HLdBym63M2vWLN55553UZaZpsmbNGubPnz96AxNCCDFkVoaX4LWfJLJ4LkoojOuxf2B/410wh7fP01D4bHaimsXeixTCl3qxsPjXLWX895bpFOtu/LEogVi0z33U3RHK97pocIZpO/3QkzmMmXbMXI35LZnkN+kY1tF7LkIIIUbPmA5Sfr+f7du3s337dgBqamrYvn07TU1NAFx//fU8+uijrF69msrKSm6//XZCoRCXXnrpaA5bCCFEOjSN8LmnEbz0PLDbcLz9Pq7HnkUJHJ1qTpYtvla2MxYlvNTBv5+2nWZnhMnbbNzx2lQKgva+VSnDwvFUfC3Ur0/aR4bnMGttVYXoGS4ALt8zjrZI+ntWCSGEGPvGdJDasmULK1euZOXKlQB873vfY+XKlTz66KMAXHjhhXzjG9/gnnvu4ZJLLmH79u3cf//95OTkjOKohRBCDEdsxhT8n7scIy8bfW817gf/ilZzYMQfJ9NmB6A9GqYpFGRDZgd3f3w/xmQb41ud/PbNuUR39QQp/Z0gaqPBtoJuXh/XSqbt8E2LYic7CTgMzq7LpbNZpvcJIcSJaEw3m1i6dCk7d+485G1WrVrFqlWrjtGIhBBCHE1WbjaBz16O87k3sG3dhevhp4icsZjIqQtAHZm//SWDUEc0Ql0ovjGvN8dJ6AuZ7Hu0hlmbncz7i0WkM4Cx0In9xQCWCr+ZU4WuKri1IfzXaVf4cGaQpRu9eNdG4fIRGboQQogxZExXpIQQQnwE2W2ELl5B8KKzQddwvPEurkf/jtLlH5HDJytSHdEwB4LxY45zekBT2HMufH9+BYYKjmf9OH/WhhK2iJ7qZKurC5/N0acz7KFUzTeIKiYlGxUIyzopIYQ40UiQEkIIMfYoCrG5MwhcfwVGQS56VR3uBx5D2111xIceqCI1zhXf66nA6eal0mbuu6geM1tF7TKxvAqtZ9sxsVIhbCjcuQ5eLmnGHlHQ3wsd8biFEEKMLRKkhBBCjFlmbjaBz15GZOFs1GAI9+PP4njpbYgZwz5mpr2nIlWXqEgVJ4OUI94k4kNvB3VfdLNpfpDKy1TatQjQ06hiKHLtLv5aFl/jZXsrCMfBnihCCCGGToKUEEKIsU3XCZ9/BsHLL8ByOrCv34z7j0+gNrcN63A9FamDpvYBOXYnKrCrq53PbHmRr5Vu5EGlko5oPEj50qhI5dqdVPoC7CwKoLaaaFsjwxqvEEKIsUmClBBCiONCbPpk/DdcSWz8OLT6ZtwPPo7tvQ/BSq/Sk5ye1xYJUx8KkGmz49FtAOiqyvzsfIxex2yPhumIhhP3TaMi5XAC8PTUBgBsbwaGfF/Lsni1sZq/1+0d8n2EEEIcWxKkhBBCHDcsX3wD3/BZS8G0cL74Fq5Hn0Hp6h7yMeyqhkvTqQ8FiFlmqhqVdMesU3jitIv449LzAIiaZqoilc4aKaem49F0XstpwizQ0KpiRPf2XysViEX53x3vs62jBQDTsvjhjve4e+cGflv5IS1hWV8lhBBjkQQpIYQQxxdVJXLqQgKfvSy+59S+Gjz3/wV92+4hH6J3IEo2mkhSFCUVtgCCRoyuYUztA8h1uAiYBs2naABEHmqmfXUT6r5oas3UOy0HeL2plr9UVwCwq6uNt5t79s+q6B7eFEYhhBBHlwQpIYQQxyWzKJ/A9VcQWTwXJRTB9dSLOJ96EYLhw943Q+8JRJM8vgFv41A1VOJBKmDEAHBrtrTGmGxi8XJpM+/ltVMQdFCyFly/bsf9/Rbsj3dhfhjEYahs6Wghapo0hOIb+Lq0ePiq6GpP6zGFEEIcG2N6Q14hhBDikHSd8LmnEZs6Eec/XsW2bTda9QFCF56NUTZ+0Lt9ongSrzbWcHpeMecWThjwNoqi4NJ0gkYMfywKgEdP77/N4sS0wbUdDdx7SjNFAQfLGrL5TPdkMqstbO+FuJQcLlQX815+O62xVroK40FqWW4xLzdWU9HdntZjCiGEODYkSAkhhDjuGZNK8d9wJc4X3sK2dRfuvzxDZO4MwucsA2f/BhHnFE7gnEECVG8uTac1EupVkUozSLm8AGztjK9/0nJ1nnDXUzgln7U1dSxqzGRcpcbixixOa8iBZy0mqD42npzFohkFvN5US0VXO5ZlDXkjYCGEEMeGBCkhhBAnBqeD0CfPIVY+Gcdzb2DfvAN9TzWhC87EmDZpWId0aTom0BaJN3xw68Ob2pfsArgkp4jVtZW819bIhnALGzJbYCGU2j0U1Opc0jKOM3dn818bplG9xEmZ18eurnYaQgGKDlrLNZK2d7byWHUFszNzOb9wAt4014IJIcRHkayREkIIcUKJlZfh/8LVRGdNR+324/7rP3E+/TIE0+9+50pM5WtOdM5LtyJVkqhIJS3OKQRgQ1tjn8vPKCphT3GIO2bs5O/ljXhjOlP/ZjLTmQXAlkRF62h5rLqC9a0NPLh3G/+1ZQ1R0yBmmtxXuYU3m2qP6mMLIcTxSoKUEEKIE4/bSeiT5xC44uOYXg+2rbvw3Pco+s49aR3GqcaDU2uiIuVJsyKVY3fgVONNI7JsDqZ6swCIJSpUycl65RnZTM/IwsTip1Mq2ZDXga3e5Np3x4EFj1TtJBCLpfXYQxUyYmxqb8Kj6czIyKayu4P792zlseoKnqrbw28rP8SwzKPy2EIIcTyTICWEEOKEZUybhP8LVxGZOwPVH8T1xPM4n3wBpXtom+O6ExWpsGkA8b2h0qEoSmp6X6nLi1vXye61qe9Xps3n6vHTWZBdwLREyDJVuHdZDWamSsFWuK25nKZwkNu3ruWd5rq0Hn8oNrU3EzFNFmYX8B8zF+HVbfzjwD7+tH8nAO3RCB+2H92KmBBCHI8kSAkhhDixOR2ELzqbwFWfwPR5sW2vxHPvn7Ft2AqJytBgXL2Ck0vT0YbR8CE5va/Y7enzva4onF1QyqpJM9AUhakZWT1D9tkJf8aHpcFF63M4oyuPbZ2t/GD7e+zobE17DIeyrrUegCW5ReQ7XPxgzjJmZGQDMDczD4A3xtj0vtZISDYqFkKMOglSQgghPhKMsvH4b7yKyOK5EInifO4N3H9cjdo4eLWld5BKd31UUjI4lR4UqCa6fdjUnv+Gp3ozU1/nO9yY421ELvGimHD7B9P5l7yZAPzzQNWwxjEQy7LYdaCV3LCNRdkFAJR5M/nfeafzh6Xn8V8nLUZXVN5uOUDUHBvT+0zL4t83vcW/b3oT6zBBWAghjiYJUkIIIT46HHbC555G4LOXYxTlodU24H7wr9hfWwvRaL+b9w5S6a6PSrqoeBKXFJdxXqLdenJvqbJewQkg2+4k3+ECSH2OLXESXeRE7bK4/LU8vIrOm821dEcj/R6nKxphZ1dbWmNrbfTz4xdn8MgrC8mq6AkliqKQY3fi0W3MzszBH4tSG+xO69gjzbIsuqMRdnW10RAK0BgO0h49/ObLQghxtEiQEkII8ZFjjssn8NnLCZ17GugajjUb8Nz/F7TK/X1ud/DUvuHItjv5wpTZqZbip+aOY4I7g3MK+28YnKxKJYMUikJkpRejRMe+L8a3984kYpr9ptr9ef9OPvvuC9y28U3eb208+LADMywyHvWTHbHhMFQcf+hEf7v/2rF8hxvoabgxGkJGjG9tWcN1776QWrsFUBv0j9qYhBBCgpQQQoiPJlUlunhuvFX69Mmo7V24H/sHzidfROmKv0HvW5Eama0XS9xefnXy2czOzO133QXjJjHVm8mC7PyeC20K4VU+LLfC4i1ezq7N7RMgTMvi8eoKIompd2tbDgxpHLbn/GTXqWzP6uL9j0dAA8fTfuxPdYHRU53KsTuB0QtSlmXxox3vszHRFOODtqbUdTWB0a2SCSE+2iRICSGE+EizfF5Cl19A8PILMDM82LbvjjejWLsBd6//Jt3a8Kb2pePk7AJ+umA5ecmKVHKMORrha3xYwL9vnoK9sWe9UlskTMQ0U1WsDe1NHI62LYz9jSABm8EdCyvwLPER+pcsLI+C7Z0Qjj90QjgepnLt8S6DrZHRmUbXHg2zvrWBfIeLSe6MPtfVjfJ0QyHER5sEKSGEEAKITZ+M/wtXE1k6H2IGzlfXct5Tb7KoLbEZ7whVpIbLmG6n5Wwdl6Fxxcu5EIyHqYZQvDpVnpHNZI+P+lCAA4eY8qa0Gjge6wLgRwt2051hUOLyYk60EbwlGzNfQ98RwfmbdpQOg+xkRWqUuuTt9XcCMDszly9OmYOuKJyaWwTI1D4hxOiSICWEEEIkOeyEV5xK4MYriU0ej7ejm7u3tvC9bS0UBY/OhrjpMFd4eLuwlYIuO86HOyFg0hCOr2sqcrpTUwIHrUrFLOyPdKAELQ4shTcKWpmekY2aaOtu5WoEb87CmGJDq4vh/EU7Je3JitToBKl9iSA12eNjTlYej5xyAbdOXwAw6g0whBAfbRKkhBBCiIOYudkEr7qInRecxgGHxhmtIT773PvY31wP0dELVG6bjf9bsIf9GUG03VFc97QR2xefclfodLMwK97CfHVNJc3hYL/76892o9cY7Mz18/WSzQCckqju9DyISujzmURPdqB2mpQ/ZLC0IWvUgtTeXkEK4t0TvbqNbJuDAyE/hjU22rILIT56JEgJIYQQA1EUQtMmct3CQh4cH1+b43jrPTz3PYq+o/Kwm/kenSEp2Dw6Ny/7kOgcO2qbySdW+1i5r5BCh5u5WXmcklvEgZCfb324BqPXGLUtYRxvh+iwRfnv+TuoifhZnFPIx8dN6v9AukLkUxlEznOjRuD762ewaLvn2D3RXpIVqUmJIJVU4vJiWBb1of6dBoUQ4liQICWEEEIMwq3pRDSF30/08eKly+Pd/Tq6cK1+AdfDT6LWNRzzMWXZHPhtBg2fshO+JL7J761bypj/Dx01YvGNGYuY5PFRHexOrZ9SWnrWRf1gwW66PAbnFU7gtukLUtP6+lEUoud4CF2dgala3LBxPNq6/lWuoylqmlQHusiy2VNrtZKSGxvXyTopIcQokSAlhBBCDKJ3+3Ml20fo8gsIXHMxRkEuek09noeewPnUSygdXcdsTFmJLnpt0QixZS6+tbyCeleIjC0GrnvasTWYTM/IAhLNGKIWjkc6UcIWm04O8m5BO5+bNJOvTp+f2tvqUIwFTn56Znx/LduL8eMdK7XBbmKW1a8aBVDocKOZCoHGEJjHvjoohBASpIQQQohBuHp16nMnQpUxqZTA9VcQvPAsTI8b27YKPPf+Gfvr6yAcOepjyrLFg1RHNEzUNFjnaeE/z60gNsOO2mzg+mUbZ+7LBqA60IX9H91otTGMMhtPzY43oZjgyRj0+ANpHG/wRlELWpeF/u6xWyu1p7sDgIkeHwRM1MoI+psB7I91ctnjmTz73BIufNCN81ftqS6GQghxrIxuL1chhBBiDLMpKpqiYFgWbr3XPlKqSmzeTGIzp2JfuwH7uk043vkA28btRM5cQnTeDFCPzt8qkxWp9miYxnAQC/D6HIQ/68N8I4jteT+nveTm38dPwew0sa0JYXkVwtdksHd3vHI2wZ1ekMqxO3loeg1n1udiezVA+BTX4e90hJR2g5xXo3yvrpyFr2fj6mrpc30WKu32KAG7SVY1OO/vIHRDJriH9rr7Y1G+vWUtp+QW8anx047GUxBCnOAkSAkhhBCDUBQFp6bjj0VTFak+7LZ4cJp/Eo7X12Hbsgvnc69jW7+ZyFlLiU2bBIOtQRqmrMR0vLZImIZQT+tzVIXoWW6MCTq2Rzq4sLoAqsFSIHSNj1iGQk2gG59uT1W1hirH7mSPL0DdNIPiCuJrpS5JL4ylxbRw3t/BaU3xx7AUMPM1zHE6ZrGOOU6jJjvMF3au4RRvAbevnY6jKhYPUzcOLUy929rAzq42dna14bPZOb9o4tF7PkKIE5JM7RNCCCEOIRmgPL0rUgexfF5CF5+D/3OXE5tQjNbShutvz+H+w2q0/XUjOp5kCGqPhmlKtDjPd/RUiMwyO8Fbs9mQF58WFz3XjTnVzoFggJhlMsGTgZJmuMtxxBs9rFsYb+xgeyWAFTl6U+m0TWHUJoMt2V3cvmI3ge/mEfy3HMKf9hE9240xw0FmrhsUqDUDfH3xNjbndKLVxnDe1wH+w49tQ1tj6uvf7P6QQCx62Pvs6e6gMjHdUAghJEgJIYQQh5Bjd+JQNbyHCFJJ5rgCgtd+ksBVF2EU5qHVNeB+5Clcf3kGtX6QTXLTlJza1xGJ0BRKBil3n9uoPp2fnVXNp8/eQOvy+LirAvE24hPTnNYH8T2qALZ5O4nNsaN0mcReP0oNNgwL+0vxStt9M6pwlbnB3j/4uXUdl6bTFA6yNdzGfyzZzt6iUHwj4fvaDxmmLMtiY3sTKnBydgFRy2RXV/shh2VZFt/esoavb3qLxlCAB/Zs5dtb1vD7vduO4MkKIY5nEqSEEEKIQ/j3GQu5c+4y7Ko2tDsoCkbZhHhDikvOxczyoe+pxvPgX3E++SJK65FVNAaqSBU4+q9ZKvF4qfOEqAl2A7DfP7z1UQAlrp5W45Fz4l9Hn20/Kh389E1h1GaDquIwm3O7mJ2ZO+ht8+xOQqaBYVmEdJObFmyie7KCdsCIh6nu/mFqT3cHLzTspzUSZnpGNguz45sY7+hqO+S4DoT8tEcjhE2Dr296i9W1lXzQ1sRfa3bTPYRqlhDixCNBSgghhDiEIqeH6RnZ6d9RUYidNA3/v1xN6PwzMD0ubNt347nvURzPvYHSNbz9j1JBKtITpPIGClLu+B5TtckgFRh+kMp3uNEVldpgN9Y4ndhcB3QYaGtHeF8pw8KWqEb9vGwPKgpzs/IGvXmuo2dvKZ9uJ6yZPHDWAYxptniYure9T5iqD/r5901v8fOKTQAsyM5nRuJnu6Oz9ZBD291rSl9zJIRL0xiXqNQNZVqgEOLEI0FKCCGEOJo0jejC2fi/9GnCy5eATce+YSueXz+C48W3ULrTC1QZNjsOVaM+5KcpHA8deQ5nv9tlJwJXZzTekr0qGaTSbH0OoCkKxS4PHdEI3dEIsY95QImvlSIyclUpfUMYtcVgd3GQ97PauaSkjBx7/+eW1DtAXlY6BRV4vb0O/3U+2iaD1mBg/qoJukxMy+KnFRsJmwalLi85difL80sp8/rQFZWdXW1Y1uDPZXdi6l9OYmrldRNnUuyKh9WgETvyJy+EOO5I1z4hhBDiWLDbiCw7mcj8WdjXbcD+/hbs732IbeM2ogtmETl1AZbHfdjDqIrCRE8Gu7ra8RsxfLod5wAdBT2JPbACsRgx06Qu2E2WzU5mmh37kopdHvYHuqgN+fEV5aAt8mCs96OvCxI74/DjPizDwvZyPFT+ZPJu8uxOrp1Yfsi75PYKWXOz8piblcfG9ma2BlpZfUoll3XncEpTNua97bx3pcGWjhYmeXz8ZP6Z2Hq1p5/qzWRHVxt1QX+qknewZEXqv09aQsQ0meXLYWuiiiVBSoiPJglSQgghxLHkdhI5+1SiS+ZhX7cR2/tbsa/fjG3DNqInzyKydP5hA1WZJzPVHCHfOfCeTi4t3mQiYMSoC/qJWRYT3L5hD7skUX2pC3YzMzMH2yezib3nx/ZagNhS14ANIdKhfxBCbTXZVNjFtuxuvjllMa6BWs73kpuoSCnEpyyekV/CxvZmHt2/i81dzWxc1MRdG09i/gEfs35v8j1POeOyvHiq/FhOBRwKllNlZec43uyCug9bGV/oiM/XUeMHtlQFS7EIHggxSXEzNeJFdWmgKKmOjgEJUkJ8JEmQEkIIIUaB5XETXrGMyNL52NduxPbBFuzrNmH7YCuRk2cTXTofyz1wSJrizUx9nT/A+iig15v8aKpj33DWRyUlG07UBuJVI7XEjjHXgb4pjL42yLrZ3WTZHZR5fGm3V49Xo+LTFH87dR+Lcwo5NbfosHdLVqSKnB6cms6y3HE8uHcbmzuaAYhqFv+5YDtP5ZyOZ2uU07pzoAEg1Oc455PJ+WTCewDtAz7WvcyJf/Fye3xvri9lpYLeaFWkTMviiZrdKIrCGXnFFDhHoDIohBgyCVJCCCHEKLI8bsLnLCOydB72NRuwbdiGY+1G7O9vIbpwFpEl87C8nj73KfMMIUj1mtq3/wjWRyUl1wMlm1cAxD7mQdscJvpyJ3ca7xHSTaZ5s/i/+WegDSFMvdVUx4N7t/Gj4HwmtlnsLg2yPbub28fNGlIYG+/2ogIzfPGGERk2O/837wzu3vkBzeEgOXYnlf4Odl4Kf56ym4Z2P9+dupRc0w5hCyVkoYQtCFmsq6vD3x1hitNHicOLXVHBBExoD4fY29VJgc1FqeJBq4thezuI67TRDVLPHdjH7/dtB+CRqh3cv/jcQ64pE0KMLAlSQgghxBhgeT2EP3Y6kVMWxAPVxm3xCtV7W4jOnUHklPlYWfGpeRM9GajE3+cPFqQ8qal9UaqOoPV5UrIiVdMrSFmFOnunRiirsHNNbSlPT2ukorud6kAXkzyHn0b4RO1uWoJBHK+GAAd/mXkAYEj3hXi4+/H8MynqVYkpdXv5yYIzMSyTh/Ztp9Lfwd5AJ5uVNmJZFr7pXowBQlpGVz7f2fgGFuBUNe5bfA7ZiVDyYm0L9+7ZzucmzeSKohLc329B2xoma0n8NQ7Gjn2QagwFeHDfNlQUZviy2dbZygdtjZxbOOGYj0WIj6oTvmvfV7/6VRYvXsy//uu/jvZQhBBCiMOyMjyEzzsd/82fJrJ0PmhqvMvfb/6E8+8voza34dT01Jqlw1akjBgtkfhUtqIjmPqVZXOQZ3eyz99JRyScuvyfs5sxsbi6soRzsksADru5bVJXNMrHq/MpCjrYPT7EG64mvLqtTxOJw5makYXXZu93uaaoTE5U7t5va8JvxOIVrEEqXdMysvjBnGXM8uUQMg3Wtzamrku2mc93uMGmEFvoRDFg5s54447RWCP1UkM1QcNgZWkZl5dOBWBD28hs+iyEGJoTPkh9+tOf5kc/+tFoD0MIIYRIi+X1EF5xKt03ryJ8+iJw2LFt2YX7vkdxPvEc51pOFGDiIA0kkut3ArFYqgW6b4DAMVSKorAktwgLWN/akLp8p7ubV4tbsAdgxe745rkVh9ncFiBkxGjxB1i1uxSAH0+qIGKaTHIPY43VICYnKltvNNUCMP4wFbk5WXlcOWE6AOtb61OXN6eCVDzgRZfEP5dtsYE1OlP79vrjXQRPzR3HnMw8NEVhY3sT5iFauAshRtYJH6SWLl2Kx+M5/A2FEEKIscjlJHLGYrpvXkVoxalYHje2nXv53Eub+Pt+g8nNnTDAm2eHqqGiEDCidMUiOFUNu6od0VCW5BQCsLalJ2S0RcL8YVoNlgJT39NwxlQqutsPe6yqQBcXVBdQEHTwYWk32zPjUwYnHsE6roOVurx4dVvq+6FMbZyTmYtT1djY3kTUNABoPGjjY6tIx5ig421TmdfqG5UgtS8xXXOiOwO3rjMjI5uOaIR9/s5jPhYhPqpGNUitX7+eL33pS5x++umUl5fz6quv9rvNI488wooVK5gzZw5XXnklmzdvHoWRCiGEEKPMYSe6dD7+mz9N6PwzMTMzyNhfj/tPT+P+/d/Qt1WAaaZurigKHl2nOxbFH4uScQTVqKS5WXk4VY0PWhsJG/GQ0RIJ0ZwVxZjnQPPDVdUl7PN3pkLIYPZ3dPLp3fGpgPtP77l8qOujhkJXVf7f9AWp78cPskdUb3ZVY352PkEjvu8UxCtSKpDba+Pj2NJ4qPpEVcExn9oXMmLUh/wUOFy4E0FxQXYBAO+3NR7qrkfk2QP7+NaHa/jd3q10x6JH7XGEOF6MapAKBAKUl5fz7W9/e8Drn332We68805uueUWVq9eTXl5OTfeeCOtra2p21xyySUDfhjGoX+BCyGEEMclXSe6cBb+L11L8OJzMApy0eqbcD31Ep7f/Anbu5sgHJ/K59ZsREwTC/DpRx6k7KrGopxCQqbBbe+8RnM4SNCIkWN3EjnHjaXAtTuK+cqmSTTs7BiwUpbkez9GQchB/VSTaeX5qctHMkgBLMkt4tZp81mQlc/czPzD3wFYlAglG9ubiZkmbZEQOXYnmtLztik214HhgDPrc1H85mCHOiqqAl1YwMRer9UyewH/vmkKe/a0HLXHfby6gg3tTTxRU8nz9VVH7XGEOF6Mate+5cuXs3z58kGvf/DBB7nqqqu4/PLLAbjjjjt47bXXWL16NTfccAMATz311DEZK4Cqjsyc7ZEYw1gYixjb5FwR6ZDz5TikaphzywnNmY66rwbb2k3oe/bjfPkdHG+9R3ThLIrtFsnVTD67fUR+vv8ydTZ1oW7WN9Xzq0ROynE4UYpsxM7zoL3YzSf3F8HvDcy8VoyTXRgnO7Gye00rjFos3BBvfBE618V4bwYTPRnUBwNM9vpG/Dw8v3gi5xdPHPLtZ2bmAFDZ3U5bLBzvjuh09x2XU6Frnk7WuzFm73ajLjp2/3aS7ezLer1W097SmFldQFHAQdOpQQpHeE+pqGmk1ooBbO1o4VMTph32fqPxu6UzGmFLRzOn5I4btLmIGJuOt/+Lxmz780gkwtatW7nppptSl6mqyrJly9i4ceMxH4+uq+TmHn5KwLGSnS3rvsTQyLki0iHny3EqbyYsmolZ14Tx+nqMD7ZhX7OBuxV4Kc/FX0oyyCt1j8j/Y7l4+VHGcj714t/5INHZrjjDGz/2VV7aPpbBHx99n8W7fcxqzkB93o/teT/qDCf6qRloizzE3uokGtR5c1wr5yxaiK6q3HPGOXRFI4zPzD7iMR6pzGw3jg0ae/ydhOON+SjxZfR7/VrPNeHdZk7Z7SMnxzNiTTIO5cPWZt7tiMfj2YUF5OZ6MZujhD6Id2Zc2JLJmztbOWlFwYg+7v7uTixgbk4eO9pb2d7VRnaOZ8hB5Vj9bqnq6uT/rX+TukA3dy49gxUlh28HfyDQzU1vvMTFE6fw+Rmzj8nPURza8fJ/0ZgNUm1tbRiGQV5eXp/Lc3Nzqaoaejn5X/7lX9i8eTPBYJAzzzyTe++9lxkzZqQ9nljMpLMzePgbHmWqqpCd7aGtzY9pSmceMTg5V0Q65Hw5QThccN6ZKKeejP7eh8TWb+L8piDnNwXZXxumPerDmD4J1COb2e9WVByallon5bF0Wlp69pc665Jyrl/3IouNHL4fWYD2fgh2hIjsCGE93ISlxtcWvDyvjUVtAQBsQA62PscZTZM8PnZ2tfHO/moAMgcYW8hnsjeri5ntGbS/34Y5+cinTx5KbaCbf1n/Msl/oXmWnZaWbmxPdKIbEChWcNdZ5L8YpWXeyL6OO1qbASiyuzEzLLZ0tPDB/jomeHyH3Hz5WP5u6YiGueW9V2lNtOd/Y38185w5h73fy3X7OBDwc+/2zYSCEa6eWD4i46kLdvN07R5WlkyhyHV8BIPRNlb+L/L5XNhsh2/OM2aD1GAsy0rrLwX33nvviD32WHpzYZrWmBqPGLvkXBHpkPPlBOFxYyxfys9yFTK27uaKum4mNHXA357D9HmJnjybyNyZ4B76fk29qapCWUYm29vja5az7Y4+502+3YVXt7FZ7SC83I1yrht1bxT9/RD6hxHUsMUrxc3YShxj9nyb6s2MB6nm+CbBeXZnv7HaUPnHhEZmtmegrg0Sm2gb6FAjpibQnQpRU7yZFDs9WK0xtPUhLIeCeUM2dT+uY0aDh0BlGGsEg92BoB+AAoebbJuDLR0tfOvDtWiKwk/mn0mW3XHI+x/t3y2WZfHznZtojYRZmlPEutZ6Nrc3Dekx93b3dDr8U9VOVpZMOeIOl1HT4Htb17PP38mG1ibunn9GqjGIOLzj5f+iMdv+PDs7G03TaG5u7nN5a2trvyqVEEIIIfrTHA6eKPay6uRCXluxgNjk8aid3TheXYv3l3/A8eyrqA3Nhz/QAKZkZqW+zrb1D2QFDhdh04jvYaUqmFPsRK70EfhWLi9e3M3/zq0cdA+ssWCKNwuA3d3x/ZryBtj4WFEU1k7oIKAb6JvDEOjfdCJkxLi3cgsbRqCbXltiY+VrJkznZwuWoykqttcCKAZET3eheDWenx0Pt8qLI1uRqg/Fg1Sh081JmfH9wj7z/jjueXYGayqqR/SxhmNrZyvvtByg0OnmtvKFjHd5qQ36aQmHDnvffYF4kCp2eYhZFpWJn/mR+Mv+Cvb5O9EVhepgN/fu2XLExzze7fV3cNvGN3m1cfTPl5EyZoOU3W5n1qxZvPPOO6nLTNNkzZo1zJ8/f/QGJoQQQhwnPIm/gJuKQtfkUoJXfwL/v1xNZOFsUFXsm3bg+d3juB5+En1HZZ/26Ycz1ZeV+rp3W/CkgkSzg8bwQdPi7Qpv57US0s3Uhrlj0VRvZuprm6IyNSNrwNupDpWXiptQYqBvCPe7/oO2Rp6u28O3tqzlkaodRzSm5JS1HHv89VY6DPR3Q1h2hejp8aBXPSNGrTuEq9JArRq5FuUNofgUzCKnm1m+HE7vzmVlVRFFQSdz/qFjxY5t58KDJVvVf7J4Mm5dZ25W/I/umzsO/YcCy7Ko8ndiU1TOyo9vDr0rsaH0q401/KJiE+8016W90fGrTTUA/Hj+meiKyrstDVgjuFnySB7rWGgJh7hjyzp2drXxs12b2DMCYXUsGNUg5ff72b59O9u3bwegpqaG7du309TUBMD111/Po48+yurVq6msrOT2228nFApx6aWXjuawhRBCiOOCW+uZwZ/cR8rMzSZ8/hl03/IZQueehpmdiV59ANfqF/D86mHsb65H6Tx8NaN3RSpngGld+YkKTlM40O+65KaxI93qfCRNcGeQZXOQabPz/Tmnpp7PwVyazjMT49Um27vBfi3f60M9z//P+3exP7GR7nAkK1LJIGV7PRivRp3mBHf8Ld04j5eHp8XfxNte8g/7sQ5W3ytIORWN23efBECXI0Z5i4e2fx69tutDsTMRfqZnxJuVzMmMB6kP2w8dpFojYbpiUSa4M5jpi993V1c7rZEQP6/YyHP1Vfxg+3tpVVEMy6I5HCTH7qDMm8kUbyadsUifc+FIPFZdwap1z6fOh+PB7/ZupTkSYrzLS8wy+X8b3+DWD16ncYRek9EyqkFqy5YtrFy5kpUrVwLwve99j5UrV/Loo48CcOGFF/KNb3yDe+65h0suuYTt27dz//33k5Nz+IWDQgghxEdd7yDVbx8pp4Po4rn4v3gNgSsvJFY2HqXLj+Ot9/D86mGcf/0nWmXVoFWqKb0qUsk39r0lg0fvilTIiLGrq43qQDdZNsdh19WMJl1V+dXJZ3P/4nNTU9kG4tJ0KjL9hItV1HoDdX/fzXmTlZyTfPH3Lk/U7h72mFoTb5yz7Q6ULhN9XRDLDtEzelqdl7g8vFjSTIfPQN8VRd3fU5X6oK1xSFPdBtIQCuBQNbJsDvQPwmg1MYzxOuuujRHUDEretlD3Rob93I6EZVns6mpDVxSmeDMhYLKgyosrplIVOHRwTYb6iZ4MpiVC2M6uNv5Ws5uIaabC/ocdQw+KrZEQhmWR74j/XKYnqplvN9dx5/b1qcccjpAR4w/7ttMRjaQ1ptEUiMVY03IAl6bzkwVncnHxZFyaTqW/g2cO7B3t4R2RUW02sXTpUnbu3HnI26xatYpVq1YdoxEJIYQQJw633rsiNchCd0XBmDKR4JSJKG2d2DZtw7ZpB7aKfdgq9mFmZhCdN5PovBlY3p7OY7lOF6UuL4Zl4tT6v50oSLyJbAzFg1R1oIvvb1tPTTBe7RrL0/qSfLbDN2tIhtW2hRpFdSb6uyEivZpOJKsQ102ayf9sXcdrjTVcM6F8WPs89Z7aZ3sxgBKDyHIXeHr+Ll7s8mKoFi/MauVTa/KxvRQg/PlM1rXU8z/b3qU8I5u755+R1uN2x6J0J6o2SsTC9ly80hW52MucYg/3zHmf/9g4Fcefu/DfmsV7oSZm+HKG9PodiYqudn688wO8Nhsd0QjTvFnYYyrOB9rx1MR41LaQp6c0Yk03UNwDN49Iro+a5PHh1W2UurzUBLt5qnYPDlXj38oX8uUPXmNnZ9uQx5WsshQk/phQnpHN39nL7/fFZ2BFTJPvzFoKQNQ0eaWxGruqcnbB+MMe+42m2tTXHdHRCa7pWttygIhpck5BCU5N54tT5nBF6TSuf/cFXmmo4bqJM9GPsJPoaDk+Ry2EEEKIw3JrPW/o+1WkBmBl+4icdQr+L3+G4MrziE0qQe3owvHGu3h++TDOJ55H21udmr72o/mncde80wc8VoEzWZEK0BEN8x+b3qYm2J0KEItyRnafo9HiSgSphpkmlh30TSEI9lTxkhWpyR4fnyguI2ZZfGfLWtoj/ddTHU5yKld22Ia+Nohl61uNgnjDBIB/FNdj5qjoOyOo1VGer49vHZOcApeO3o0mbK8EULtMYgscmBNteG126mdZvFTchNphUvuHWr679V0eq9414LEsy6IzGjniNT57ujv4+qa3qA52sz0RcqZ7s3D8pROtJoaZpeKJ6azaUYL7R63YXvAP2Axkc2LqX7LyVJ7Rs4/ZNROmM8njo9DppjrYTXdsaGvOGhPTWZPrBGf0OqYzppLsPR2IRbl1w+v8vGITd+/cwAN7trK1o4WoafQ7ZkckzM8rNvFIVU8BYqBps2PR64nwd1ZBSeqyXIeThdkFtEfDvD8CjVhGy3HX/lwIIYQQQ5OsSOmKknrDPySaRmzmFGIzp6C0tmPfuA19805sO/dg27kHM9tH7JR55EydhOEdeJPfZEWqKRTkT1U76YxFOKdgPLdOn49hWdiO079AHyz5Gvt1g9g8J7b1IfSNYWKnurAsi8ZwAK9uw6PbuGbCdPb6O3i3tYE/VG3nq9PmD/lxLMuiNRLGp9txvh1CicY79ZHR93X06DaybA5qI37CZ7lwPeFHf9HPlhnxaWC6kv7rXp2YHjcrkontzXiAi3y8pzp5St44fjJnG/M7Mpmxz8VFGQVsyeg/7Wx7Zys/2LaetmiYKd5MvjNr6YDTQodibUs9Ucvk9Lxi3mk+gInFJZvy0bdEMHNVgrdk8+stm5ix3saFtYXYXw5gezNIdJkzHj69Kpvbm3m/rZECh4vZiembV02Yhk+38zG9mMnNLrQN3Xyneho/mryLiq42FmQf/g8AySpssiJV6HTj0+2cUZnFv35YxuYJ3TDZZEOgif2BLiZ7fDSGg6yurWR1bSXnFU3od248uG8bLzX0XafVFBr9/U0PJ2qabGhrwqfbUw1AAJTmGF+qmMRN2U08X1/F0tyiURzl8J0Yv8WEEEII0U+yIpWh29Pag7E3KyeL8Ipl+L98HcFPnkts/DjUtk5i/3wT18//iOvRZ9C37YZY37VBmTY7dlWl0t/BPw9U4dFtfL7sJFRFOWFCFPRUpIJGjNjSeCjQ18WbTrRHw0RMM1WF01WVz0+eBZD2IvvuWJSYZTLBcmN7J4ilQ3T5wA0wShJtvKtPMjCzVWw7o4xvia9Hi1lmaiPlodofiE/H/Nh7WfHmFme7sTJ7psqdkltEwGbw7fk7MRSLL2+dRJm//9TFN5vqaIuG8eo2Krs7+I9Nb6U9lqQ9/njXt0tKyrhu0gyuri9h2nody6UQ+lwmeFTchU7unreHlz4fInqqEwwL+2tB3D9swfb3Lh7fGu+i+KX8k3DtiGF73s/kR2J85Y+FzPxVDOejXdjeDjJzv5sfvjuTqvr2IY0tuS4wWZFSFIWrwhP51y1laCgs2J+B66dt6Hvi/2aW55dw19zTuKBoIgC7DppGuM/fycsN1fh0Oz+Zfya/PXkFAE0Hd8QcQe+21B9RY5Sk9mgYE4sStwctGeJjFs6HOpmyVmNhIIv1rQ2pqufxRipSQgghxAkquX4nYyTWqugasVnTiM2ahtbWQUbFHqLrPkTfW42+txrL6SB60jSic2dgFuWhKArJSUwmFp+ZOINM29htLjFcvYOUWapjFOtodTHUmhj1mfGwVOjoCRWeRAUrYMT6H+wQko0mPllZiBKB6DInlm/gdT/TMrLY2tnKM437uOXsqTie6Oa6XaX815L4tLDmSJAS18CVxIHs93exsNlH8W4NM1slembfkJTncPFv5QtpDAXYr1lMfkPj028WwVILHD0BPtlk4XtzTuXeyi1s62xlZ1dbn0rFUFV2d6ASnzI5q9mLc0MHlgqhVT6sgvhrXJKY5lhp6+a0leOJnu3G9noQfV0Q+1shfqhOo9thkBO0AT0NICwdjAk65ngbxnidwIfdFG11sPxpoKzvcxrIwWuklKYY17yaj2JZ/GZuFdNaPZxTk8fZf3NyYMoEfFOcTPT4+PK0ebzTfIDaoB/DstASf/x4vLoCC7h6wnSmZWRhWCYqSp8gFTJi3Ln9PbLtDi4pKWOS2zfsP540hgL8z7Z3menLGXTq7lClpqP22mvO9lIAtdHAmGZjykkFrKtu4x91+7ihbNYRPdZoOHH+JCSEEEKIPnIdTjJ0W7yT2QiycrOwXXQmwa98hsCVFxKdUQaRKPYPtuD5/V9xP/AYtnc3sdwT71T3+ckn8YniySM6hrEiGVb9sRgoCrElyapUqM/eSz23j1cJA7H0glRbJIw3onHmziwsDaLLB29WcUXpNDy6jX/U7WV7eZBGV5hljTlcQbzi0ZxmJaOmu4tbtsZ/fpELvWDr/wb9rIJSrpwwndwL8tmQ28GEdif2f/atMlQF4hvUTnL7WJJTCMDu7va0xgLx9UJN4SCl7gxcbeD8YyeKAZGVXsypPX80SIbF2kSDEytTI/JJL4Fv5LJtYQRDscgK6ZhFGtFFTsKXegl+NYvAd/MI3ZJN5JNejAVO1Kuz2ZzXSWmrA/2RdjAOvb6rqXdFKmDi/H0nSsgicpaLNTO6+N78Cjo+5SZss/h0ZQln/cWB0hw/H0rdXqKWSUOvCk1dMP71GfnFAGiKSq7DSSAQIZao6G3paOH9tkZeaqjmKx+8zr+89wrrWurTfm0BqgJdWEBN4Mg3dW5LrAXMTnToVGui2F4PYNkVwpdn8PHiieiKwgsN+zGs0d2LbDgkSAkhhBAnKKem87slH+Nr0xccnQdQVYwpEwldej7+r1xH6NzTMApy0Zpacb78Dv/5/Cb+UadwZZcC0fSCw/HCm2jikWxEEJvvwLLFm060diYqUr2ClF1V0RSFgJHeZrmtkRCX7x2HI6oSW+zEyhq4GgWQZXewauIMTOCOHet5eGp8sf+FW+LrgNKZEhY2DBbt8lLW5caYbMOYc+jqpqap/HTRPjptMWxvB1G3x99It0fCdEQjlLq86KrKVG8WEK8spasyMa1vli0b54OdKAGL6BkuYkv7TnVMNt6oDR40bSxD5feza1h53nu8f5tK8F9ziHwqg9gpLswSG2h9g6LNrvHiBV1UeQM4dsawP93db7+wpOS6uAzdhgsN58OdqM0GsVl2oud7yE2sCTtwkslPPlHDluxOMuoVXD9rQ18fZLwrA4DqXiEmeW55VR21KorteT//98oMnn1uKeqjHWBYqWpfnt3JVG8mB0J+/mfbuzxVWzmk17Q7Fk0FmarEsTpjkbQD/8FSFSm7E2IWjse7UEyIXOTBytbItjspdWfgj0UJHuFjjQYJUkIIIcQJzKXpqSlCR5PldhFdPJfADVfiv/4KIifPAbsd754aXE++gPfnD+H8x6to+2oG3ZvqeJRsK98VS7SidqnE5jlRIpC7LX5R7yClKAoezRavYKWhqyvE5fvGYaoW0bMO3zr9wnETmezx0R4N81xpIwGvyeR9DqZ2uNMKUvWtXVy/czwmFpFPemEI51I0A+6aF98vy/6XTqz2WK/9muLd8aYmqqQVw6hIVXZ3oJsK171eGA8pJ9mJXOjpdzufbser2zgQ9GP2Cj5R02BzezOaXWF67tD2Jl1cUsw3luygyxnDtjaE/sbAr2FyXVyB3Y39yW60yihGsU74Kh+oCrmOeJBqCYeodHRz66lb6TzbAVFw/LWba17PxxvRUg0+CJos2OflvzZOI/MH7bh+1Y79lQAT2pxEFZOMzQaOP3ZS3RF/ff+1fAE/XbCcb520BIBn6vYd9rnVBrr57LoXuH/PVqBviGsIH9napd4VKdsrAdR6A2OKLbWeEOJ/XACISkVKCCGEEB91ZlE+4fNOp/urnyVwxQVEZ04Bw8C2eQfuP/8dz68exvHKGtTG42ND0UPJSFakoj0VpuT0vmXveflEVQFTXH33zHLpOmHTSGsq08SNOhlRndpZJlb24NWoJE1R+dKUOfHxaBbhs+PVmut2jac5jU15XS8HyYza2DozhFk8tKX1Xt3O20VtdC+xofgtwvc3sa+7b5Dy2uwUOd3UBf34D2orvs/fyZ5DVKoqOtv52oeTKaqJr0kLXx0PKQdTFIUSl5ewadAS6XnO2zvbCJsGczPzh7x/0bysPPw+k28s3o5lA8ezfrTN/VvYJ6tfl+4pwvZuCDNDJfxZX2pdVbJLYUskFA8ZqoJyfgahL2VhZqtM3G3jgTfmMfltFedv2nF/t4V/f6+Mc2vyIGhhTLERvsjDI1e18ukVG+jONtG3R7js+RxcMZVJ7vjruzS3iHyHi/qQn9Bh1uM9e2AfYdPgneYDWJbF/l6bGDek2RTlYG3R+Gs0vtWB7dUAlh3CV2T0CeR2JX4+R47DP7BIswkhhBBCHB2ahjFtMsa0yRAKo+/ai23LLrSqWuzrNmJftxEjP4fYrOlEZ03D8g29AcJYkaxIdcZ6Nkc1J+g0zVfI32jjtg+nYNYFiHxMwZjnAFXBk1hXFYjFhtYIJGyyYLMLQ7FoOE1jaDUUmJWZy5emzMEC7AUZRF8Pc0ZDDu8e2A/TDn9/pSHGxI0a3XqM/WdC2RAfN/ma1JyjMn2/BtuCnNFsx+OczEldPrSOMFaOxixHNvWhAFet+SdXlE7lc5NP4oX6/dxTsRGfbueRU87v1zChORxkwnsKF1UXYmQofULKQIpdHnZ2tVEb6CY/0fxhb2Jq4Exf9qD3O5iuqpyWV8xzsSreOj/I6f9w4fhLJyFfFuaknv3atnW0cEpDFhe+l42lQ/izvj7TMJNT+1rCQdojYbLsDlRFwZxkI3hrNtYT7RRsdlCwwQFEMb0Kz2U3sHt8iM+fvwCc8eBnr7PT5I/w9GVdXPnPHE6q8/LTdbPJXGqDxCk1yeOjKRykOtDNtIysAZ9X2DB4uaGaOS0Z7M0IcCDk76mG0bOh9HC1RkLopsLs5zQUE8If92Ll9P1DQLKLZ2SA/bPGOglSQgghhDj6nA5ic2cQmzsDpasbfdvueKhqbEF7bS2O19YSKy0iNnMqsfIyrIz+U7XGolRFqleQQlF4dGkDW7z13L7/JMbt13E+2oX5WoDI+R7cavyNt9+IHj5IGRa214PYwxr/LG2kOL/k0Lc/SO8mH6HlLmx/D3LB+hzUyVHMcTrog4QQy8L+TDeqpfCH6TVcUDz0jmrJ16RTiRL5dBbO+zoobXRQShHsh2SHvP9mAjc7iqhzh6hzh+mc3ExjcyOXaUWENJOozY/LZQObQkgz2dDdRGe1ny9sm0BUt4h9LuuQa8WgZ51UXbCb+dn5ADQk9l8qcqZ3jp1XNIHn6qt40LMH95lTOfl1B84/dBC8ORsrLz6OlqpuvvXBdBQUQldmYI639TlGsiK119+JiZVqwgCAS8W6Npvbne8wsdvFVStm05Ab5a73KznJl5MKURDvlAhQo/jZ+ek8zPvbmNPmw/xtO6EbMrF8GhPdGaxvbWCfv3PQILVlQx13vTaDmR1e9nuCvFpSS6hXoNnZ2cbP/Bu5YvzUtDo9JrVFwly7uwRXAxhlNmKn9N83LBmkolKREkIIIYQ4NCvDS3TpfKJL56M2taBvrcC2bTd6TT16TT3Wi29hjB/XE6q8h18TNFq8emKNVK+pfaZl8XbLARqyAoTPyyJYq2F/zo9WFcP5UCf/ljeBn06NDryQP2iiVUVRq2Jo+6Ko1VGUKJiKxSNTa7lDnzTssapLPTS92MGsRi/8oh1LA7NYxyztafVt5WmgKmg7Iui7ouz3BNk7L9ZnndfhZPRqwGEV6Zg/GMcNjz/D1LCXf8ubh9pqoLSY0Bwjs81GTpud2W1ArcUXE50FAdgcBOKhxwmcjTPxFbRe4cRV2jekDKSnc1/PWp+BuikOxTRvFpPcGez1d/JvGR/w/6aWcfHuQpy/6yB4SxamafGZlwtwGxqhc10Y8/qHhuQaqd2JqYsHb0isKgp7J0V4PdDCRePm0B2KnyPJ8ywpO3G/9miYPUYXv1q6nd9smc/EGgfO37QTujGLSYlplPsCnRxMqY8R+XsbZ+6OHyfkMJngd7HsSZNHl6qUZGZQ6e/gzea61ON8Z9bStF4vAF+jwmcqSrBsiSl9A0zBtKvxECpBSgghhBAiDWZ+LpGzcoksX4pa14htRyX69t3o1QfQqw9gvfAmxoRiYjOnxEOVZ2yFKoeqYVPUPhWpNS0HaAgFmOXLId/hwiyD0E02tJ0RbM/5mXjAyU+aZ9FRH0E9J4LabaLui6JVRVEaDJReDeEsh0Jsms5v8yqp9YZSXQKHxabww3P2MmeXm2uUydhrDbTqGFp1DNaEUo9njtdRmuJViV+dtI9zS6am9TCp6Y7R+GuysaORfRlBJpblEJtx0M/PtPjDxq3srmpmfMSNFbEoVF2EQlHOzi6lVPdA1GJvWzv1XX7shoq5wMm8BflDGsvBLdABGsKJfZ7SDFKKonDBuEn8pvJDAH5avoePO8ajb43gfKiDkGFQGHTw/sQuZpw78N5YyeB0INHePHuAvdWSe5NFTCPVsc9zUJDKSlSy2qNhqgJdhHSTLZdZlLxiR98SwfmbdqZ9Ov7ck134AJROA9sLAfT3grgthTp3iD1nmkxdUkTjL2qY2+rju++Vs+lyI9UdERhWwxorZvKF90rRLZXwxz1YuQNXD23HcbMJCVJCCCGEGH2KgllSSLikkPCKU1FrG+Khakcl+v469P11WC+8hTGxmNiMKcSmTx4ToUpRFDJsNjqiESzLwgL+XBXf+PaqCdN73xBjhgNjup1XXqxg3jonE/a54IG+TRXMbBVjog1jkg1zog2zKF4hem1dC0qkZ9+qYY83R+eh8hoWL5zKJHcWSpuJWh1Fq46hVkdRa2Nou+Nv3tcXtLO5uItv5Bam9RjJilSyk+G7jfH9jOZnDRB+VIXsIg8f+PfwQWLK32WlU3iiZh+usmw+WRJ/7Gcq9/H3ur3818zFnJo3bshjObgFumVZNIQCuDSdDP3wFa2DXTRuEsUuD/+34wM6YxH8V3rx3t+JVhXDA2zL6mLj+RFmDBI8su0OHKpGODF9rs/UvgRHokITNnqC1MEVqazElND2xJ5aAPleN+FrfVh/68L2fpipD1mUn+xhn60LQia214PY3gygRKHDFuOP02rwLc/m8knxBXP/t6KBm57XWNycxdw1Np6avJfuRJt+mzKM/nSv+pnW4WFXnp+SUwffdFnWSAkhhBBCjBRFwSwtIlxaRPicZWg19ejbE6FqXy36vlqs597AKC0iNn1yPFRlj+ymw+nw6nZaI2GChsHWzhb2BbqYkZHNgkGCQ3W5wU+dG/lxbBGzqjxYeRqxiTqxiTpq1sBvzfxGFLduQz3CVvbJtTVN4SCTPD6sHI0dti6+E1jLqpNncGHBRJRGg2BtkP/pqKDY6cWmHr5LYG/JilQyBLzXFA9S87IGfjM9yZ3RMz67M7XHVGO4p9FBMNF5zpVmkHRpOjl2Jw2hAFHTJGTECBoxJrkz+jWyGApFUViYXUC+00VndwS/GkP/XCau37TTHg7z34t28pWswfdt0xSVswtKea6+CoAse//pfw4t/nqHzMGDlE3V8Og22qNhWhJBKtfhBE0hckUGOFVsbwf58ZpZ/HXSAZwvtKL5LSwdXpnVxo9LK/jszFlcOG5S6pj/Nn8RoUkRzAfCODZH+VqwjO9N3wlKz89yyK9TfQz3KyHCqslflzVzqzpp0NsmQ5pM7RNCCCGEGEmKgjF+HMb4cYTPTYSqHZXou/am1lTxypp497/pk4mVl2EW5A5pv6OR4uvVcOLDjmYAziuaOOgbdbemY6qwa2aYqecUA3DPro28vrWWy0uncuX4aX3acsdMk6BhUOjsX71IV15ijU5zr72kXmmspjMW4Te7N5PvcLF4XCH7PFG6NsWYk+b0N+jZpLgzGqE1EqKys4Nil2fQqXTJlugAZd7MVHe93vtdhYx4tSLdIAVQ4vLQGgnREAqkWoGnO63vYMlg0x2Lkul1EPzXbP5v23ra2qPkOlyHvO8niif3BKkBmo2kKlKmkZoyOtCUzmybg5pgN3WJaltqvZWqELnYg+VUcL8c4LqKUiwsoic7qDzN5H/27KDQ4eb8ogl9jpdhs5ORbyd0oxPXr9o5pyKHoGsad0+oSC9IGT0b7z5w0n5ieYcO4rJGSgghhBDiaFNVjAnFGBOKCX/sdNT6pnig2rkXrakVrakVx9vvY2ZmpCpVRmkRDHGvoOHy9mqBvqurHYDyQbqkAan25/7Em/raQDcvNuzHAv60fydZNjsX9uq25x+kKjEcBQOElA1tTQCYwK93b2bR4nNTba/TbcgAvYNllJrE5q7TMwZvNe6z2cmxO2iNhJnizaTAEX/MxlDPGJMVKaeWXnUM4uukPuxooTbYTSyxDied5hkD6R2kANAUmmPxdWYDTdfrbZLHh66oxCwz9Vx76z2171A/+6xEkGqLhvHp9lQgAUBRiJ7n4Z+B/XiqLEouKmLCVB9/370ZgJUlZWiDTNez8nRCN2Ti/G0Hn9icx06rg/fLD78xr2lZNIYCjF+roNXEaBln8LfJB1hpn3LI+9llap8QQgghxDGkKJjjCoiMKyCyfClKSxu2XfvQd+1Bq2vEvn4z9vWbMV1OjGmTiE2dSGxSKTiOoFnDIJJrgjqiEXZ3tePSNEp7TVc7mCvxpjj5Jnl1bSUWUJ6Rzc6uNvYHuvvcfrDpXcORd1CQagwFqAl2M8GdgU1VqezuoD4USHW2G07gSAbLrlgkNe0sWQkbzES3j9ZIE2WeTLLtDnRF6RP2hju1D3rCYGMokGpocORBqicsJrVFQqhA5gANJA724JJz2d7ZSvkAe1klp/aFDzG1DyDT3nMu5wzy+m45KcRLudV8Py+fCcTXVAHM8B16NzKzxEboOh/O33XwtQ/LuMtZCYsHv73SabD3rXpsGyPYO7xYOvzfvEpMBeYNNMW1F12aTQghhBBCjB4rN5vIqdlETl2A0uVHr0hUqvbXYdu8A9vmHViJilZsygRiUydh5YzMuqpk04Idna2ETIPZmbmH7HKWrEgFjRiBWIxXGqtxaRpXT5jOHVvX9dncF45OkEpO7dvQHq9GLczOR0GhsruDzR3NvSpS6e/nlWo2EY3QHI5XaXIHWAvU26WlU8i02VmQnY+qKOQ5XNSHAkRMA7uqpabkDSdI+Ww9oac9Gg8ShQNUgtKR/JknG2qYlkVbNEymzTGkDnfZdifL8ooHvG4ozSYgXpFKGuz1darx1ys5NTLZ5MI+hCqtOdVO+Gof9kc6uO39MmLzw1hT449ZHegCv8nkPXb0jWHUvVHmWnbATrUnSNMKnbVWCyf5clh4mCCVrKRFZGqfEEIIIcTosjI8RBfOJrpwNoTC6Huq0Sur0Cr3o++rQd9XAy+/g5mTSWzqJGJTJmCMHwfDmDYG4E28UX+/rRGA6YeY1gfg7lWRqg/5iZgmi7ILKE6Elo7Em/2kwVpgD0eevaci9VRtJX+t3g3AguwCTMtidW0lm9ubaUtULoZTufHoNhSgKxalJZIIUodZN7Qwu4CF2QWp7/MTQaopHKTE5e01tS/9t66pvb5iURoTAXKkp/Z1RSMYltVvX6jh6LtGavCffZZ9CEEqcU4nX7/k9DnHEBuIGHMd/HF7HZ/9oAT9D52Er8+ENoPu1xqY35iBbiWCpE/lrdI2Hs6pYlemnwmuDAjAqokzDtvUo6fZhEztE0IIIYQYO5wOYidNJXbSVDBN1LpG9Moq9N1VaI0t2N/dhP3dTVgOO7HJpcSmTMQom5DWJsDJ6kRyfdR07+DrgaCnhXnAiKWCRp7DRaatZ4pgbyNZkXJoGpk2O/WhAPft2QrAKblFzM3MI2oaqCh82NGCrigoQIHz0AFoIJqi4NVtdEYjqcrX4ab2HSy+dqiFplAySBnoipJqlZ0Ob6927G2J1/tIA8/BQao1OrT1UUMx1Kl9vfegGuz5JCt4oVSQild90unEuH5GN2Z3NdfvGo/rN/F2/YvIpMMWpb48yoTTCjAn2Xhy2y52tcXXUu0PdDHNm8XcQTo19pasjkmzCSGEEEKIsUpVMUuLiJQWxddVdXaj766KV6v21WDbsQfbjj0AGAW5GJPHE5s8HmN8EeiDv2XKOKij2owB1r305k4cKxCL9Qoarnh7cxQ6D6pI+Q/RuW048hyuVFi7sWwWK0vizQBsqsrUjMxUIMy1O/s2MEhDkdNDRXc7u7raEsdKL5AlA1xy89yQERvWtD7o2449uUlw8rLh8vbq1AikKngjWpE6XLOJ3hWpQYKqMzWNNF7t6alIDT2QenU7f5hWwydyJpK32aJmYpRfZFTwfl4HWU4HD0wqRleV1PqrpE/0aphyKDaZ2ieEEEIIcXyxfF6iC2cRXTgLojG0qtp4tWpvDVpjS7xitW4jlq5jTBgXD1Vl4zFzs/u0V+/9pnx+Vl5qHdJgPFr89gEjSkuvNUSqouCz2elMbO6bnBI1khUpiE/vqyReWTgzv6TPdSsKxqeClG+A1txDNcGdQUV3O83hEArpV2qSa7PqQwFMyyJkGmQMczwZvUJPRzRChm4btGPdUB1ckUpWuka+IhVBV9QBp+INZY2UK7kn1UFT++xpTGP16jZQoOJsE/el+fypYhPv1rfj0W20REL8z7Z3+X/TF6TWn0G8c+MZ+QOvATuYLdVsQqb2CSGEEEIcf2w6xtSJGFMnEgaUtk70vdVoe6vRq2rj66z2VMPLYGZ4UqEqNrG0T0Xq4702OB2Mq1f78+ZI36lvmTY77dEwASOWWhcz0kGqqddGtwdXUC4aN4lnD+xjf6DrsIHwUMa7vamvsx1OdFXFNK0h3z/Zaa8+6D+iPaSg53VrCYcIm0ba0wwHPOZBmw63Jqox2SNYkQoZMbpjUby6fcB1Rr0rUoN17UtVpMyDpvalESQPDo07ElXG/565mF/u3sz7bY08sHcr7ZEIOXYHnywuY7I3c8jVTJnaJ4QQQghxArGyfUSzE9Uqw0Cra4yHqj3VqAcasW/eAZt3YAEz8nO4xRbmgywHSz2HntYH8XbPDlUjEOupSCVDiy+1Tip81ILUJ4onc0/FJr5QNqvfdYqicNfc0/hLdQUrCkuH/Rjje7V/z3el39gh2QyiPhQgZA6/Yx/Eg4muqKl26kdSaUtKhYtoMkgl116NQEUqEUA6YxFiljXoz31oFamDuvYZBnZVPWwDiN56B6lALMZ+fyf5DhdzsvK4c+4yPrPuBTa2N2NikWVzcMX4aUM+NsjUPiGEEEKIE5emYYwfhzF+HJEzl0AwhL6vFm3vfvR9tTiaWrkSuLLOj7X9IcyifGITSzAmlsQ3BLb3fyPs0XU6ejVjSL4RTu5B1BGNUJwoCI1k1z6AcwsncJIvl9JeVaPevDY7NwwQstLR+9jDaViRY3diU1QaQgGCseFvxgvxcJih22hLTD0byj5PhzPYGqkRqUglnmcyZA8WpJyajkvTiZjGoM/J1avVPsSnz6W77q13kNra2YJJfM8ziIc5j25LBcnhvLbStU8IIYQQ4qPC5SQ2cwqxmVPi0wDbO+Prq6pq0arq0A40oh1ohLUb4ntXFRfEQ9XEEoySQtB13JqN1kiY+lAAl6anWqInO/d19urcN9IVKVVRBg1RI6XI6UZXVGKWOayKlKooFDrd1AS7U50Nh1uRAsiw2VNByjcCTTvcmo5KvKU6MGLdAKGnIpUMJ4cK0J+dNJOoaaIOUmFyHrRGKmyYZA0Q7A+l9zTG5w5UAXBqbhEQD6nFicYi0He64VDJ1D4hhBBCiI8oK8tHLMtHbN5MsCyU1nb0qjq0qtp4wKqpR6+ph7ffx9I0jOICvuRWeFoPsyXDTm6GL3Us3wAt0A/VuW2s0hSVEpeHqkAXecOoSEE8jNUEu6nydwJHFqR6v3YjMbVPVRQ8um2ANVIj12wiGaQO9XM/XGc8V68NeWOmiYmVVse++OPHX6893R180NZIts3RZzPhYldPkMoeTkUqERyjlgQpIYQQQoiPLkXBys0mmpsdX19lWahNrT2hqroOvfoAZwBnAAZQ52vH0foWxvhxFCTe43dGw3REwvzfzg+o9Mc77B1PQQri66SqAl3DqkhBT+e+vYkg5RxmK3YY+SCVPOaBUIBdXW0cCPnJd7iG3S6+t2RFKhmmj+Tn7uw1tS/VsW+YU/uSG05fMG5in/28il2e1NeZR1CRisjUPiGEEEIIkaIomAW5mAW5RBfPTQWr6L5q3t+8kTkdEcZ3BuH9D+H9D7kMWOLU6KiNsa+wlsZoKzg1Cl2eI27ZfaydkV/Mzq42FuUXQij9+xclAlgySLkOsZfX4fTurJg5YkHKDgT49e4PAbi8dOqIHPfgVudHsn9Y7/bnyWYOww1S8fuq/TpT9g5SWcOqSCWDlFSkhBBCCCHEYBLBSivI5a+Obr7b0cKNORO4wnKj1dQTq6qmtK2L0r0NsLeB04Gw045ZrKFG3scoKcQYVwCOkQkDR9NpecWcUVBCrsdLS6g77fsnW6DvSwYp9Qim9tl6V6SOfPod9GysXNHdTqHDzflFE0fkuP2D1PArUo5U+3OjV0Uq3al9PY//8XGT+q0DK3b2rLcbzhopm5KY2idBSgghhBBCDMWyvHFs62wlp7CAWH4JsTnl7PV38N/rXuGskEpxcyeLumJM6Y6g7KmGPdUAWICZnxMPVcWFmCWF/TYJPhEkp/Yl1844x9AaKejbcvzmaXP7THc7Eg5t5IKUpig4VI2QESM87Kl9Pa/XFQNU3Y60ItXTbEKm9gkhhBBCiCH4ZHEZ5RnZqVbSEG8f3WHTeMoGZGRy9fjpFJZORa1vRqtriH/UNqA1taI1tcLG7QBYDjvGuIJUxcocl4/l9QzyyMeHEpcHFUjWKY6oa1/vqX0j0LUP4NoJ5czIyObMgtIRXb92cNA50mM7NY2QYaSmzh0c1A7Hpqp8Y8Yi3Lo+YHv3DJudDN1GVyx6RFP7pCIlhBBCCCGGRFUUZvpy+lzm0+04VY2QaaArKmcVlIKuY5YWYZYWEU3cTunyo9U1oCaD1YEm9H016PtqUscyvR6McfmYRfkYRfnxcOUZXuOH0WBTNYpcHuqCfqBnvc9wZByFilSRy8OFrkN3zRsOVVGwq2oq+Bx5kIrvWZbcS8o2jLV2p+cXH/L6M/JL2OfvHN7UvuQaKenaJ4QQQgghhktXVb4/dxkt4RAzfdmDbvBqZXiIlZdBeVn8AsOIdwesbUCrb0I90Ija3IatYh9U7Evdz8zwJEJVAUZRHmbR2A5XE9wZqSB1RFP7EuFJV9QjqmwdKw5VSwWpI92I2ZWocHUlugCmW5Eaipunzh32fTVFRVMUmdonhBBCCCGOTHlGNmSkeSdNwyyKV5+SVSuiUdSGFrT6pni4qm8aOFz5vBiFefHugoV5GAW5WFm+MbHmqtTV08hgJPaR8tnsKGPgeR2OQ9XoYmT2D0sG0GQ79ZFo0T7SbIoqU/uEEEIIIcQYYbP1mxJIJIra2IJ2oLFvuOrs7hOuLLsNMz8XoyAXszDxOT8X7Md2L6sJ7p5EeWRrpHqC1PGgd9XoSNqfQ8/r1hGNbxqcbte+Y8GuaqlmGMcTCVJCCCGEEB8V9kHCVVMLWmMLakNz/HNjC1ptPVptfequFmBlZ2IU5mIW5MU7B+Zlx6tXR+nN+fgRClIFDjflGdmcnF0wEsM66pIt0FWUI1obBvFmEzC2K1K6qtIdix7+hmOMBCkhhBBCiI8yuw2zpAizpKjnMstCaetEa2xGTQarxhbUtg7Utg7YsafnprqGmZsd/8jPxszrHbCO7E17qbtnap/zCAKFrqrcPf+MIxrLsZSsSHl12xFPRUxO7etMVaTGXpCyqyomFsZx1nBCgpQQQgghhOhLUbByMonlZMKMKT2Xh8KpipXa3BpvcNHchtbQjNbQ3OcQyYAVKcnH5vNh5GZj5GbFA9YQQ1HvKpT7OGgSMVKSFaneGwkPl6vfGqmxObUPSDXYOF6c0Gfknj17+OY3v0l3dzd2u51vfvObLFq0aLSHJYQQQghxfHI6MCYUY0zo1Q7bslD8wXiwam7rF7DMhmZ6r/KxFAUry4eZk4WZk4mZm5X62vJ6+jW5uGP2KTSHg7hHcK+msc6hxt+ij8T+VMlKXmeya98YrEglW7Ifbw0nTugg5XA4+MEPfkBZWRmVlZXcfPPNPP/886M9LCGEEEKIE4eiYHndGF43xqTSnsstCy0YIjMSpLuyFqWpFbW1HbWlo2eKYGXfQ1k2PRGqEiErJ4vFOZmYWYVgWWOik+CxkJza59FGoCKlHtxsYgwGqeReUsdZw4kTOkiVlJSkvi4rK6OrqwvLso6LtpdCCCGEEMe1RMDScguI5eRimlbPdeFIPEy1tqO2Jj63tKO2dQw4TRDActgxs3yYWRnxilavDyszY8jTBY8Hqal9I1KRGvtT+5JBSipSaVi/fj0PPPAAW7Zsoampid/85jecffbZfW7zyCOP8MADD9DU1MTMmTP57//+b+bOTX/Tr5dffpmZM2dKiBJCCCGEGG0Oe2rfqz4sCyUQjIeqRMhSWttRO7oOHbIAy+ftCVZZPszMDKxML6YvA8vrPq6C1kgGqWTXv2iikcNYrEglx3S8bco7qkEqEAhQXl7OZZddxle+8pV+1z/77LPceeed3HHHHcybN4+HHnqIG2+8keeee46cnBwALrnkkgGP/cQTT6AlTpza2lr+93//l3vvvffoPRkhhBBCCHFkFAXL48bwuPuuw4J4yAqGUNo6UdvjH0p7r687u9E7u2F/Xb/DWonqmOVLBCufF9PnTX02fRngcoyZqYOprn0jsO9VxkHHsI/BQNkztU8qUkO2fPlyli9fPuj1Dz74IFdddRWXX345AHfccQevvfYaq1ev5oYbbgDgqaeeOuRjdHd3c/PNN/Otb32LiRMnHtF4VXX0/3ElxzAWxiLGNjlXRDrkfBHpkPNFDNXInisKeN3gdWOOL6LfW+6YgdLZhdrWidLWGf+6owulszv+0eVH7fKj1TYMeHTLpmP5vFgZHiyvB9PrTn1tpb52wwh00jucZIOIDJvtiF+7fKer37HH2r/dZEUqRnz651gb32DG7BqpSCTC1q1buemmm1KXqarKsmXL2Lhx45COYRgGt956K1deeSWnn376EY1H11Vyc72Hv+Exkp3tGe0hiOOEnCsiHXK+iHTI+SKG6pidK4WZg15lGSZ0dmO1dWK1d2K1dSU+d2K1d0FbJ0pLO7S0H/oxnA6UTC+KzwM+L0ryIxHyFK8bxeuKfz3M6s9JwXyo2sncosIjfv851dV3TVR+tpfcnLHznhYgw+UAwOGJh9Tj5XfLmA1SbW1tGIZBXl5en8tzc3Opqqoa0jHeeOMN1q5dS3NzM4899hgAf/zjH/H5fGmPJxYz6ewMpn2/kaaqCtnZHtra/H0XbQpxEDlXRDrkfBHpkPNFDNXYO1dUyMyKfww0USkSRenyo3T7UboD8SpWr6/jn7uhoQWroeWwj2Y5HVhuF5bHheV2xr9Ofu9xYbmc4HRiuRxYTgc47KAoLHDl8thpF+LVbbS0dB/RM1YsExVSFbxgV4QW68iOOdLMaHxtVFtHAPIZ9fPF53Nhsx0+BI/ZIDWYdLrunX322WzdunXEHnts/AKIM01rTI1HjF1yroh0yPki0iHnixiq4+Zc0XXIzox/HEo4gtId6AlZ3X6UQCjeKCMQRPEHUYLxz2prO7S2D+nhLUWJByqnA6czHq6SISv+tTN1vWW3YdntWA4b2O1YdhvYbf3WeSkoZNudtERCANgUZcz9LPTEPlIhIx6ojpfzZcwGqezsbDRNo7m5b2eW1tbWflUqIYQQQgghjhmHHcthx8jNOvxto9F4yPIHUQI9H6o/iBIKQzCEEgr3fATDKMHQsIZlAdhtWI5ksIoHrW8FO2mwYgQ0lcLQBuwOB9hsWLoGNh1L1xOfNdB1LJse/5y6XAddBTXxMcJNOaRr3wiz2+3MmjWLd955hxUrVgBgmiZr1qzhs5/97CiPTgghhBBCiCGw2bAybfG9roYqFusTrAjFw1WfwBWJQiSCEo6iRCLxaYnhCEokGq+WWT0VnQW9j31gyxE/JUtVQYt/WKoKqhb/XlWxNDXeal7t9b0CoMQDmKIc9D1cHPSzINhNvn8HzJxxxOM7VkY1SPn9fvbv35/6vqamhu3bt5OXl0d+fj7XX389X//615k1axZz587loYceIhQKcemll47iqIUQQgghhDiKdB3Lq2N5h9l0wbIgGouHrXCE1Xu28359DS7D5D+nzsdmWijRWDywJT/HjL7fRw2IRROfY2AYKIYJpgmJz4phoMSiYIRRrOFPxZuc+Ih078Eyjp+q1KgGqS1btnDdddelvv/e974HwJe//GW+8pWvcOGFF9La2so999yT2pD3/vvvT+0hJYQQQgghhDiIosSn+Nlt4HUTC+SxIdQEgDVrOrGjsV+WZaUCFoaJYho931sAVvw2lhUvSFnJ76EpFODF+iouKJ+NbwzuczWYUQ1SS5cuZefOnYe8zapVq1i1atUxGpEQQgghhBAnljxHz15S6tHadFhRQNeAeBA6VH3q4OtyyeXqCeOPm/2jktTD30QIIYQQQghxvOodpMTIkSAlhBBCCCHECSzX7hztIZyQJEgJIYQQQghxAsuRIHVUjNn250IIIYQQQogj59A0vjlzMT6bfbSHckKRICWEEEIIIcQJblneuNEewglHpvYJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaFMuyrNEexPHANC0MwxztYQBgs2lEo8ZoD0McB+RcEemQ80WkQ84XMVRyroh0jIXzRdNUVFU57O0kSAkhhBBCCCFEmmRqnxBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmC1Bj0yCOPsGLFCubMmcOVV17J5s2bD3n7f/7zn1xwwQXMmTOHiy++mDfeeOMYjVSMtnTOlYqKCr7yla+wYsUKysvLefjhh4/hSMVYkM758thjj3HttdeyePFilixZwuc//3k+/PDDYzhaMdrSOV9eeuklLr/8chYtWsT8+fO55JJLePLJJ4/dYMWoSvd9S9K9995LeXk5P/rRj47yCMVYks758sQTT1BeXt7nY86cOcdwtIcmQWqMefbZZ7nzzju55ZZbWL16NeXl5dx44420trYOePsNGzZw2223ccUVV/Dkk09y7rnncvPNN1NZWXmMRy6OtXTPlWAwSGlpKbfddhv5+fnHeLRitKV7vqxbt46LLrqIP/zhD/z5z3+msLCQz3/+8zQ2Nh7jkYvRkO75kpmZyRe/+EX+8pe/8PTTT3PFFVfwzW9+k3feeecYj1wca+meK0lbt27l0Ucfpby8/BiNVIwFwzlfsrKyeOutt1Ifr7766jEc8WFYYky54oorrO9+97up7w3DsE4//XTr/vvvH/D2t956q/XFL36xz2Wf+tSnrDvuuOOojlOMvnTPld7OPvts649//OPRHJ4YY47kfLEsy4rFYtaCBQusp59++mgNUYwhR3q+WJZlrVy50vr5z39+NIYnxpDhnCuBQMD6+Mc/br3xxhvWqlWrrB/+8IfHYqhiDEj3fPnb3/5mLVmy5FgNL21SkRpDIpEIW7du5bTTTktdpqoqy5YtY+PGjQPeZ+PGjX1uD3D66acPentxYhjOuSI+ukbifAkGg8RiMTIzM4/SKMVYcaTni2VZrFmzhr1793LyyScfxZGK0Tbcc+WHP/whS5cu5YwzzjgGoxRjxXDPl+7ubs466yyWL1/OzTffzO7du4/BaIdGH+0BiB5tbW0YhkFeXl6fy3Nzc6mqqhrwPs3NzeTm5va7fVNT01Ebpxh9wzlXxEfXSJwvd999N+PGjeOUU045GkMUY8hwz5euri7OPPNMIpEIqqpyxx13cOqppx7t4YpRNJxz5dVXX2Xt2rWyhu4jaDjnS1lZGXfeeSfTp0+ns7OT3/3ud1xzzTU888wzFBYWHothH5IEqeOAZVkoijLo9QNdd6jbixPX4c4VIXob6vly33338eyzz/LHP/4Ru91+DEYmxqLDnS8ej4cnn3ySQCDAmjVr+MEPfsCECRNYtGjRMRylGAsGO1daW1v51re+xS9/+UtcLtcojEyMRYf63TJ//nzmz5+f+n7BggVceOGFPP7443z5y18+RiMcnASpMSQ7OxtN02hubu5zeWtra7/0npSXl9fv9i0tLYPeXpwYhnOuiI+uIzlfHnjgAX7729/y4IMPMn369KM5TDFGDPd8UVWViRMnAjBz5kwqKyu59957JUidwNI9VyoqKmhqauKaa65JXWYYBuvXr+fhhx+WzqAnuJF472Kz2Zg5c+aYmX0ja6TGELvdzqxZs/p0OTJNkzVr1vRJ473Nnz+ft99+u89l77zzzqC3FyeG4Zwr4qNruOfL/fffz69+9Svuv//+MdVuVhxdI/X7xbIsIpHIURihGCvSPVfmzJnD3//+d5588snUx+zZs7n00kt54oknjuHIxWgYid8thmFQUVExZroPS0VqjLn++uv5+te/zqxZs5g7dy4PPfQQoVCISy+9FICvf/3rFBYWcttttwFw3XXXsWrVKn73u9+xfPlynn32WbZs2cL3v//90Xwa4hhI91yJRCKptviRSISGhga2b99OZmYmxcXFo/Y8xLGR7vly33338bOf/Yy7776bkpKS1LpLt9uNx+MZtechjo10z5d7772Xk046iYkTJxKJRHjzzTd56qmn+O53vzuaT0McA+mcK263u19l2+12k5WVxbRp00Zj+OIYS/d3yy9+8Qvmz5/PxIkT6ezs5IEHHqCuro4rrrhiNJ9GigSpMebCCy+ktbWVe+65h6amJmbOnMn9999PTk4OAAcOHEBVewqJCxcu5O677+anP/0pP/7xj5k0aRK//OUvmTJlymg9BXGMpHuuNDY2snLlytT39957L/feey+XXnopP/zhD4/18MUxlu758uc//5loNMpXv/rVPsf58pe/zFe+8pVjOnZx7KV7voRCIb773e9SX1+P0+mkrKyM//3f/+XCCy8cracgjpF0zxXx0Zbu+dLZ2cm3vvUtmpqayMzMZPbs2fzlL3+hrKxstJ5CH4plWdZoD0IIIYQQQgghjifyJwIhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJNsyCuEEGJM+PnPf84vfvGLfpefeuqp/P73vz/2AxJCCCEOQYKUEEKIMSMjI4P777+/32VCCCHEWCNBSgghxJihaRrz588/7O1CoRBOp/PoD0gIIYQYhKyREkIIMabV1NRQXl7O008/zde//nUWLVrEl770JQDa29v59re/zbJly5gzZw5XX301mzZt6nP/zs5ObrvtNubPn8/pp5/Or3/9a370ox+xYsWK1G1+/vOfs3Tp0n6PXV5ezsMPP9znsscff5yLLrqI2bNnc/bZZ3Pffff1uf4b3/gGl112GW+//TYXX3wx8+fP55prrqGioqLP7QzD4Le//S3nn38+s2fP5swzz+Qb3/gGAI888ggLFizA7/f3uc/atWspLy9nx44dab6KQgghRppUpIQQQowpsVisz/eWZQFw11138bGPfYyf/exnqKpKJBLh+uuvp7Ozk69//evk5OTw5z//mc997nO88MIL5OfnA/Cf//mfvPvuu3zzm98kLy+P3/3ud+zfvx9dT/+/wPvvv5+f/OQn3HjjjSxZsoStW7fys5/9DJfLxapVq1K3O3DgAHfddRc33XQTDoeDu+66i6997Ws888wzKIoCwLe//W2eeuopbrjhBpYsWUJHRwfPPfccABdffDE/+tGPeP7557nssstSx129ejWzZs1ixowZaY9dCCHEyJIgJYQQYsxob29n1qxZfS773ve+B8C8efP4zne+k7r88ccfp6KigmeeeYZJkyYBsGzZMi644AJ+97vf8R//8R9UVFTw0ksv8ZOf/IQLL7wQgKVLl3L22Wfj9XrTGlt3dze//OUvuemmm/jyl78MwGmnnUYwGOTXv/4111xzDZqmAdDR0cGf//zn1Lgsy+KWW25hz549TJkyhcrKSv7617/yX//1X1x33XWpx0iO0efzcd555/HEE0+kgpTf7+eFF17gtttuS2vcQgghjg4JUkIIIcaMjIwMHnzwwT6X2e12AM4666w+l69Zs4ZZs2ZRWlrap4q1ePFitmzZAsCHH34I0Gcan8fjYdmyZWzevDmtsW3YsIFAIMAFF1zQ5/FOOeUUfvWrX1FfX09JSQkAJSUlqRAFMGXKFAAaGhqYMmUK69atA+hTbTrYFVdcwec+9zmqq6sZP348//znP4nFYnziE59Ia9xCCCGODglSQgghxgxN05gzZ06fy2pqagDIzc3tc3lbWxsbN27sV8ECmDBhAgDNzc14PJ5+jSkOPtZQtLW1AXDRRRcNeP2BAwdSQergToM2mw2AcDgMxCtvbrf7kFWxpUuXMn78eJ544gluvfVWnnjiCc455xyysrLSHrsQQoiRJ0FKCCHEcSG5tigpMzOT2bNnc/vtt/e7bbKKlZeXh9/v79flr6Wlpc/tHQ4H0Wi0z2UdHR39Hg/gt7/97YBBbPLkyUN+LllZWQQCAbq7uwcNU4qicPnll/PYY49xySWX8P777/drbCGEEGL0SJASQghxXDr11FN5++23KS4uHrTClKxuvfLKK6n1R36/n3feeadPgCksLMTv99PQ0EBhYSEAb7/9dp9jLViwAKfTSWNjY79phuk65ZRTAHjyySf7NKk42KWXXso999zDN7/5TQoLCznttNOO6HGFEEKMHAlSQgghjksrV67k0Ucf5TOf+Qyf//znGT9+PO3t7WzevJn8/Hw+97nPMW3aNFasWMHtt99Od3c3+fn5PPDAA/2m+p1xxhk4nU6++c1vcv3111NTU8Ojjz7a5zY+n48vf/nLfP/736e2tpbFixdjmib79u1j3bp1/PKXvxzy2MvKyrjqqqv44Q9/SEtLC4sXL6azs5Pnn3+en/zkJ6nbFRYWcsYZZ/Daa6/xxS9+MdXMQgghxOiTICWEEOK45HA4+MMf/sDPfvYzfv7zn9PS0kJOTg5z587t01zihz/8Ibfffjs/+MEPcLvdXHvttcyZM4fnn38+dZucnBzuuece7rrrLm655RZmzZrF3XffnapiJX3hC1+goKCAhx56iAcffBCHw8GkSZP63W4ovvOd71BcXMzjjz/OfffdR05OzoAVp3PPPZfXXnvtkI0phBBCHHuKldygQwghhPiISO7R9Morr4z2UA7r1ltvpampiT/96U+jPRQhhBC9SEVKCCGEGIN27tzJli1bePHFF/nxj3882sMRQghxEAlSQgghxBh000030dbWxrXXXssFF1ww2sMRQghxEJnaJ4QQQgghhBBpUkd7AEIIIYQQQghxvJEgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBp+v8g94NCrVDNAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "mtp_rebin = mtp.rebin(f=7)\n", + "\n", + "print(\"Original df: \", mtp.df)\n", + "print(\"Rebinned df: \", mtp_rebin.df)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Original\", color=palette[4])\n", + "plt.plot(mtp_rebin.freq, mtp_rebin.power, label=\"Rebinned\", color=palette[7])\n", + "plt.plot(freq_analytical, psd_analytical, color=palette[0])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "163d3050", + "metadata": {}, + "source": [ + "### Poisson distributed lightcurve\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2c4dcaa6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABpKElEQVR4nO29e5glV10u/K6q2ve+Tff09Mwkk0yYEGguEkw0qARkouR7sIGon+IzD5yj4vFR/DDikw9HOGZCAh4bfcRoEsMR1Afh4CEigQz4JcCgh0QuETESOpCQTDKTTGcufZm+7Utd1vfHqrVqVe2qXatq757e3b3ef2b6slf/du2q33rX+7sRSimFhoaGhsamh7HRBmhoaGho9AbaoWtoaGhsEWiHrqGhobFFoB26hoaGxhaBdugaGhoaWwTaoWtoaGhsEWiHrqGhobFFYG20AQsLq/C87KnwY2MDmJtbWQeLuoO2Kzv61TZtVzZou7Ihr12GQbBjRy32Z0oOvdls4g//8A/xta99DaVSCVdeeSVuu+02HD9+HIcPH8bi4iJGRkYwPT2N/fv3ZzLO82guh85f24/QdmVHv9qm7coGbVc29NouJYf+x3/8xyiVSrj//vtBCMG5c+cAAEeOHMGhQ4fw5je/GZ/97Gdx880342Mf+1hPDdTQ0NDQUEOqhr66uop7770XN954IwghAICdO3dibm4OMzMzmJqaAgBMTU1hZmYG8/Pz62uxhoaGhkYsUhn6yZMnMTIygjvuuAPf+MY3UKvVcOONN6JcLmNiYgKmaQIATNPErl27MDs7i9HR0XU3XENDQ0MjjFSH7jgOTp48iZe85CX4vd/7PTzyyCP4jd/4Ddx+++09MWBsbCD3a8fHB3tiQ6+h7cqOfrVN25UN2q5s6LVdqQ597969sCxLSCuveMUrsGPHDpTLZZw+fRqu68I0TbiuizNnzmDPnj2ZDJibW8kVGBgfH8TZs8uZX7fe0HZlR7/apu3KBm1XNuS1yzBIIhFO1dBHR0dxzTXX4KGHHgIAHD9+HHNzc9i/fz8mJydx9OhRAMDRo0cxOTmp5RYNDQ2NDYJSlsv73vc+vOc978H09DQsy8IHP/hBDA0N4ZZbbsHhw4dx1113YWhoCNPT0+ttr8Y2AJlfRPWT92Htv/wc6GB8vq2GhkY7lBz6vn378Hd/93dt3z9w4ADuueeenhulsb1hzC3CWFqBsXgernboGhrK0KX/Gn0H4nnsP463sYZoaGwyaIeu0X9wfUfuuhtrh4bGJoN26Br9B5+hE+3QNTQyQTt0jf6DkFy0Q9fQyALt0DX6DkRLLhoauaAdukb/QUsuGhq5oB26Rv+BO3ItuWhoZIJ26Br9B66hezptUUMjC7RD1+g78Dx0ohm6hkYmaIeu0X/QQVENjVzQDl2j/+Bph66hkQfaoWv0H7TkoqGRC9qha/QddB66hkY+aIeu0X8Qeeg6y0VDIwu0Q9foP+jSfw2NXNAOXaPvoCUXDY180A5do//g6tJ/DY080A5do/8g0ha1hq6hkQXaoWv0HzyfmWuGrqGRCdqha/QduIau89A1NLJBO3SN/oOuFNXQyAXt0DX6D9qha2jkgnboGv0HLbloaOSCdugafQeiGbqGRi5oh67Rf9CFRRoauaAdukb/Qfdy0dDIBe3QNwmK//x1mCdObbQZFwa6l4uGRi5YG22AhhqK33gEtuvBvWTvRpuy7gj1cqEUIGRjDdLQ2CTQDH0zgFIWKNwuEgSXXKT/a2hopEM79M0ALj1420SCkJ34dtnENDR6AO3QNwOEQ98mzk124j3S0Yv/8k0Yp870ZC2NFFCK0hcfBJlb3GhLth2UNPSDBw+iWCyiVCoBAG666SZce+21OH78OA4fPozFxUWMjIxgenoa+/fvX097tyV4G9ntkvVBPA/UNEBcD8R1QbtdkFKU/vVbAPXQ2rurFyZqdABZXkXx374Db2QI9tjIRpuzraAcFP3zP/9zXHHFFaHvHTlyBIcOHcKb3/xmfPazn8XNN9+Mj33sYz03ctvDcdi/24Whex5QKABusze56NtsQ9xw2Ox+1ZW+Fx65JZe5uTnMzMxgamoKADA1NYWZmRnMz8/3zDgNH+72k1xosQCgR0MuuGPRDuaCgNg2+w8nIhoXDMoM/aabbgKlFFdddRV+93d/F7Ozs5iYmIBpmgAA0zSxa9cuzM7OYnR0dN0M3o4QTGe7MEwvcOi9cMJiU9CVpxcExGfoegO98FBy6J/4xCewZ88etFotfOADH8Ctt96KX/7lX+6JAWNjA7lfOz4+2BMbeo1e2+WtraAFoGQZGOxi7X69XkBgG/UompTCqpRAAewYLMPo0m5qUTQBlAsGhjKu1a/XrJ/tcufOwQZQLRgY7hM7+/l69RJKDn3Pnj0AgGKxiEOHDuE3f/M38fu///s4ffo0XNeFaZpwXRdnzpwRv6uKubkVeF72sNf4+CDOnl3O/Lr1xnrYZZ5bQhVAq97C+Zxr9+v1AiK2OS4GAdiGAQvA4twy3Gr+TR8AyPwSBgA0VxuZrl+/XrN+t8s6t4QKgPpyHYt9YGe/X6+sMAySSIRTNfS1tTUsL7M/SinFF77wBUxOTmJsbAyTk5M4evQoAODo0aOYnJzUcst6YDulLfL3WPAllx7IJEJy0RLAhUGLaehEa+gXHKkMfW5uDu985zvhui48z8OBAwdw5MgRAMAtt9yCw4cP46677sLQ0BCmp6fX3eBtie0UFPXjBL3U0IMsF+3QLwSEI9cb6AVHqkPft28f7r333tifHThwAPfcc0+vbdKIgAdFt0PaHfGrYXua5eJus6DyRkOkLWqGfqGhK0U3A7YhQ++t5KL7q19IkBZPW9TX+0JDO/RNAMF0toND8tZBcuEnHO1gLgxE2qJm6Bca2qFvBnCHtJ0YupBcevCedR76BQUvLOrHDdR69HEYp05vtBnrBu3QNwO2keRC2hh69yyP6KDoBQXpY4Ze+srXUPz2zEabsW7QDn0TYFtVinKH7jeCE86hG2yn69cP6ONeLsRx+3Kj6RW0Q98M2EYMXU5bpIQAvC9IV2vqPPQLiaCXSx9eb9ftT7t6BD2CbhNgO6Utik3LNICC1RVDJ2t1WN/5PmCx21xLLhcIdh8XFvktmbcqNEPfDNhGlaIi8GsYoAWrK4ZuPfo4yse+BoMPWtjCD3I/gbT6NCuLj3LcwgxdO/TNgG0ouTCGXuiKoRvz5wEApNEIr62xvuCbsO2wId/9gm2Qvqod+iZAkIe+DRwSrxQVDL0Lh76wCAAg9Sb71/P6y8FsUfBNuO+GfG+D9FXt0BNgHn8W5olTG20Gg+/ICaVb3yEJycVkDL2VX3JpY+jAlj5u9w3kTTjvhlxvovCtR3t6vwdN2vpQ2+8RtEOPA6Uof/4Yiv/nmxttCYN8A/YT41kHEElyocUugqK2DWNpha3ZaAbf38LsrF9AbBu0y0B0+csPofzAV3tLqrZBcoF26DEwzszBWF4FqTfSf/kCIPRQbOGbEYDE0A2WnZIzKGosLAVf1AOHvpUzHPoClAK2A1phdQS5T0S8GGx5tUeGQUpf1Qx9W8H6wTMA0DcOPfRQbHGGLvLQDQO0i6CoMb8o/h9i6FpyWV84DggAWikDyJ+6SKsV9vq1eq8s2xZ98bVDj4H1g6cB+MG0PtCs5aj8lu/n4oUll7waLNfPAT/2wJGRoRtn5mA+81wuG7Yj+AbMHTocF2RpBdb3nsy0juzQre89CXK+BxOHeCxqC5/StEOPgXH6HKhpMOfZRVCuZ9hGkouch87SFvNdf7K8yrJkot/PeP2KD30LpQe+msuGbQn/eREO3XZQeOQxlO/9YqbTJbXY8Hnj/ArKn3kAhW9/t3vbHM3Qtx9cF8T1QAfZzL6+kF22oeQCs8u0Rc8N2geE1s/2MBPb7irTZruBSyxCcnFZ7xTia+vK6/hzhs1Tz4OgN9KLaNK2hdNXtUOPwr/pvKH+cejEdSFuvy3O0EVzLs7QPS9XZgpxPcA0gShLz8rOXLerXPhth1ZUcnHEqShTPMS/D4xFJrUQKbCdG/J9tEVZunboEfAjPu0jhw7HDfqDe/1zI5o/eCasbVLKeqd08bC0lf4D+Ryq6/lrFMLrZ90cHDcU2LO++wTQ6IFz6QMYs2dhPH+2p2uK58fPciGOG5wqs8hnkZNoT57DkHTZP89RL6EdehSCoQ8C6A+HThwn6A/eJwydrNVRvecLqNz7gPiecXYelaPHYB4/kX/hSOk/gHw6uueB+g2+AICapr9+RsnFcUUJO1ldQ+VzX0L1k/dlt6cPUfryQyh95Wu9XbQtKOoI55yHoXP04jkkjif9Xzv0bQERpR/mDL0P2JgbMPR+0dDNp06y/8gata81E7uLh4U7XJmht3IwdM9n6P51o6WcM0pdl5Wwu55wVmaPWe1GgdgOSLO38QF+AqJliaG7fcjQt2guunboEXA26A3U2Nd9wNDhuKDFIvt/nzB0nqvv7hoT3yO9aCLmeUw/JySQmXIwdOK6TEP3KxbhXz+ZpSmtw5mc7YTkGuJXoW5qeF7vHRu/XuWi+JrkYOjRbKRepBATLbn0OepNmL5j6Rk4GywVQcvFrhm68ezzIAvn038xCZ4HQqlgmr3KQydzCzCeyzlb0XVhPXVC2Bd832v/Xla7XI/JLYBg6LmKi7iGXvQllxLfEHMEReFnb0jHdKvX991GwHV7MxEqsiYQTJyC4+Rk6IHz9gaqvUkhlus5tOTSf6jc9yVU7/kCyErvyoNFUKdggZbLXTP0yn1fRumfv55/AX7j9VhyqX30U6h97B9zrWcsLoE0WwAiTErM7uzCRp6dAgQBzTxOx9fQ+RpBDCJrUNQJbJCcgDl7JrtNfQbi9r43OHeUfAOVg6Iki3TmB/+9ahnOFZex13d7WtYMvb/BMyzIWg9lEa6hFwqgle4dOpqtYMBCHvAHpNDboCh3ukYexyQ7Acme3kguLgtmAiKgmU9y8cTUIwAAdzBZg6I85c4JSy49GY230fA8EKfH74PnofMagFBQNBtD9wZqWL3xV+C8YB97fZfPokw0NEPvR/BBws3eBS7FEbRo9cShE9uBsXA+t/4ngkyl3jJ0b5hl8eSSDmTHJqdRimHMXaQthhh6F2mLPCgaZehZH+QEhp6JbfYrXBfoJoAdA+E0LROwTBDHDb6XqbAokN7Ai5R6ydC1Q+8/CCfXaPVuUSG5+Ay90cVNRCljdn4/i1zgN57vmIylFRjPPQ9QCvOJp/M7Tz87JY9DDzGdOMmlm03HdVnZP9Bd2qLrslTFQlhDzyIHUUpDDB2uzz676ALZTyB8vmYvM6f4Bmia7Dp1k7bo36NUdugtG+aTOeMXWnLpb/DASy8zUcRNV7BAy6XugqLSDSw3i8pkDz/C+g6p+NC3UP37ozBmz6D6D/8E86mcOd++Bm6emcsdKAQQcgZCkuhSQ6eRoGh3DJ1nueTQ0GUWZzsiQ4ZWSr0PJm4E1qP7oOuyLCXDYCy9i8IicR8Ih95E5dP/H6qfyhc3Izoo2t/gDJ30snLPttkNaZps/ZadXy6RbmC5nWsm+I5X3NSrayAtG9bTz7Kv88QPKAVpttj7BLI7YC4DERJ+bS+GWXuB5BKkLWZ3noGG7ksuluXbm8WhB3+XZblIRTNbgKEL5tzD1EXiuMyRA4Bp+qeAnAzdvz9FTnu9Ie57/lxkgmbofQ5+JO81Q5dYHaE0P4MJMfTFfPb48QFa9R26/33Rsz3Pje04IJ4n1sxcPcmdeLEQYei9SFuUJBfDYCwtZ6VoiKFLmq4ynLDmKuIZW4GhS3JST3vVcKkLYJ+dl5eh0/B9UC7COLcgfpyrYZpcR6ALi/oQnGH4Dt04O9/9hBPblgJpvu7ayqfRhxl6TsnFjw/w/tBiPT+HPM/pJLpmZs2bD6EoFGKLNXqVtggAKFj5ApBcuuGVoqbJGHuWzUtydEQKitJyfzF08+Sp7PbIG3EvnVuEoSNn2iJxA4YOsGtuPXE8+HkOh04cN9jge5AtRuYWQBaX0n/xAmJLOfTyZx5A8avdzQElrYChd1V6Lr2OFgtdMPSw5CK+H/l5rjUFQ88nuaBoRQqLeiC5uFLaIvxNI2dQFIYZfIamyZx6lqBoiKE7gdTUTwx9rYHKxz+LwnefyPY6+Tr08L0Qxw02ZF9yEfdF1tJ/yaF7YyNhopCLoXtBgVkPNrHK57+C8hcf7HqdXiKTQ7/jjjvwohe9CI8//jgA4Pjx43jLW96C66+/Hm95y1vw9NNPr4eNyYg4dNJqdd2bgth24ARKvWHo7sROljOfpw1s1Pkm/DwTuIxT8Vl/Xg29WIjPQ++C/ZAIQ6fFQq6HV6S98fx9y/QdTE4N3XaCoplKmTn0PuipTRoNtrlnPam568TQXVcMp+CSS57Sf9YCIugTVP/5/wsrv/U2rP7qL7C18jyTbtBCoxdBUbJaB1lZ63qdXkLZoX/3u9/Ff/zHf2Dv3r3ie0eOHMGhQ4dw//3349ChQ7j55pvXxcgk8Cb4IhPFdbsPdthOEEjrJm2OrwXAm9gJQmm+41mzCUpIUErd9vMeMPSMLXmJJLmEg6Lda+jw3BAzQ7GYUy/1giEZ4JKLmS0eEmXojt+Xnn8WfcDS+bXJ6qBCbZh7mIseDooaYcklZ1CUrWWCDg0EMmGOUzPxm9xRoDdB0WarP3o9SVBy6K1WC7feeiuOHDkC4ueGzs3NYWZmBlNTUwCAqakpzMzMYH5+fv2sjcKNMHSeV9sFiO0EToCnuuVk/fwGdid2Asino5Nmi50UZD2R5+cS0p3kIqbK5JRc+ACKyPe7y0P3wpJL0QLysDG/yZeosDVNxhy7Yeguc1aix0wPmC1ZWOqq0ZfY7LJuLqGNuIfxANcFzEDmYpJL9qAoiTp0H+KZzMnQecO2rhm6nynWbw69fehiDG6//Xa86U1vwr59+8T3ZmdnMTExAdM/HpumiV27dmF2dhajo6PKBoyNDWQ0OUCpaMADYDSaGB8fRMPzUDQJBsYHc6/ZpB7IQAUD44PwnAZaAIbLJswMa477v+uUTTgAhl98CVqfB4ZadVgZbWuBgtYq2DkxDH6oNl5wMeiJWRi7d8JwHeX3K+z6gQEHQG1iBxwAO4bLMDLY5ZQtOACKgxV48wti3VaBfR6lgoHBjO+Tr9EkAKmWxOtbA1XQhaVMnymlFE3PQ3WwAmv/BJqmgeFLJ2D/exHEgLJt7vyc+H+lwDpAugULA2ODcACMDpZgjOa/1wCg8T/+EgBQ/tN3Z3odv17uWQs2gGrBwHCGa+QZLrhLHK4UMt3fnVAgAKkUMT4+iFalBNpsgvrSlOW5wu40NA0CUim0fe7U89AEULMIChmfySYhIJUivIKJStHEUBfvmbZsND0PaHnYuaMKYpnpL0qwq5dIdejf/va38Z3vfAc33XRTT/8wx9zcCjwvuxY5Pj6I5loLBQCwHZw9tYABx0Wr3sL5s/knhNfqTbgUOH92GWSlhQEAS3PLcBTXHB8fxFn/dwvzKygDmHcIqpUy1k6cQTOjbZXzqyCWhaW5FQwQAkIp6i86APuG61H+p3+Beeq0+HvKds0toQxg2SWoAFg4twyvVFO2qbhURwlA0wNM2xHrllcaKABormX7DGTbai0bruOJ15dBYK41lN6jgOtiEMBaw0HLIcC7fhUoFFAhBrDaULZtVGLgjaU1UNOAZRhYrjvsuj2/CM/tLq+AP85Z3p98vayzS6gAqC+tYTHDGsbcEvgnvjS/onx/p9nlNFqglTLOn11G2fVgNGwYDusp7zZayu+z2nLgOTT2sxooWKgvriq/X369qo0WaKUEwzDRWq5nul5RkOVVcCo6d/Ic6EA18xry55gFhkESiXDq3fjwww/jqaeewnXXXYeDBw/i+eefx9vf/nacOHECp0+fhusfYV3XxZkzZ7Bnz57MBuaFfLQna3WmU3ebjiQFRUUAJU/gEZA6NxZAR4fzZbo0m0FknhdalIpMCywV82nojRbT5XnBRua0xaBhWFzpf1ZNPrx2VHLJERSVpx4BQWC0WMimx0fz0B0XsCypgnXjUxd5cDCz/CMHRXsZC3AcERQVQejcGjqJ/VHeQLnIkbcyBsdjIPuEfpJdUh36r//6r+PBBx/EsWPHcOzYMezevRsf/ehH8YY3vAGTk5M4evQoAODo0aOYnJzMJLd0DYnZk1U/2sw/KEphzKZPliErqyDLgYZJpKAoeCVq3j7MLYcFYCwT3ugIjHPzMI+fzJQdQZqtwKGbkkMHWL/2ZivTesbpc2yCeqkQOLzMGrrvdE0jtrAoz6ZKFpeAtYZINxTI6oR9+wAElbA+aGaHzjtvWmxz5g6hiwpWuC6M0+dC63eF3Bp6JODbI4jBIgD715M19Px56CEUi/myXPyALc0aHI+D1BCQrK4Fn+kGo6vz4i233IKPf/zjuP766/Hxj38c73vf+3pllxpkZ7JaZ//xbx7z5Cxqf/sPMM7Oxb1SoPxP/4Ly0a+wLygFpKAoTJM5hZxMjDgOe/gJgTuxE8Zag/VhOdPZptAaPCgKhBk6AJSKjF2r3pwtG7W/vgfF/5gBLZVyl/7zh5aaRvi1XeShV/7hn1D6l2+Eu+zBPwVIDZ6U7OMnBDOsa9JiMVMwjdq8kKjErjF3CF30mCk++C3U/voeGGfmejMnU2S59AtDD7JcKC/k8jxQ+CdBVWZMkx165o3ZRzDFyux6E5MZevGbj6D6N//ACMkGQykoKuPYsWPi/wcOHMA999zTU4Mywc9kIJ4nDVzwMy38/FCS0omRrNaDm8x1Wam/PCm+WMif227brOMcAPvql4OWiqh8/iuZJBzSbAlphJoGCCSGXgokIeFkOq0lbUy0VAwcXp5KUcNgTDquP0YOh07qDXZycCMOnW9eLRsoJ6RuRsH/ftQhZHUE0nxMYjsAIeyadZHOapxjWWDG3CK8sZHMr48ib5ZLSGbrcaVoSHJx2DNFy0XWFbXlABWFAKLrtZ2wOLqWXLLWI8RAfobNk7NM7q03EutFLhQ2f6VoMTIEgTt0zsTSPjjbDhhKKzhiczA2kFNDbznCPhACumPIt0nR4VEKyJILv8G5g+ffV+0HH+o25wjHmfnm5sUj/gYTNHnKX1hEHH8cmuuJXiAA8s0V5ZKLGSO52BnYPh92Ui6JSlHaJUMXqaKNRm+0V6Gh5++Y2UuGHpZcDOF4RWdU1c9R7uUSRSEfQ+dtJajVveQS0tDFcPSNj6lsaodOPC/IM+YfMHcm/OuUh5c4jngwxQcScei5g19SXxgAoFwbVnWgzVaIkbdp6PwhUe0HL93Exvz5gAlnZNTioY1q8N3koTsO21wj+ceiuCsTs45n6CKHWdWBOZJD55WiUo/1PE5F7u3dlUN3HJCF80GBTdZ7NK5LpoxmS0wEy2aXXClqshMvpHtY2aF3CIqWMjB0x4F3ljX1Yvet0TVDN87Oi8pcOXqlfD/4n916YFM7dEgOXeySnhv6OpUtthzhyInTztBRLOaWXEKdG4GAESs6PMECJIZOTSOYZF/KloUj38TO/ou6aJ/rdzI0IhtCztJ/Silj6Pwzi5b+A5mKu5I0dMH2FU9copdLqegPuOAaehdBUW7DWkNUOHNZLgsK//EYah/5FJOpkKNSNIWh1z78vzBw18czrckGgkgMPdRcizN0tWuWVFgEZNPQSw98Fa3/8VfMAfubDS0Vg5hbRhjPn0XtI/8bpf/zTZYpVpPSFRWfw8Ij30Pto58C7dE4yZB9PV/xQsKjgeTCP2Befs6ddBpDt+2AsYnxWRHJpUcMXdzoih+kqOj0mTg1jIDpIKyhK8F/6OtvvA71//sN4oHJzKj53M/IhpB7pqhvl3i/slTSheSCGMkFgDq7sx1Q03fgfrdFagUMPdfJjZ9iJIYu7MoAslYHcRwYC4vC1mx2+LIU0K6hex6MPA6Pf/78+ZGKbYKh0Yp2dnDoyNCwzTzFZuYaC+f9gLsJ95K9bNB5jjTi0HD0UiGkmavaROoNPyaT+c+nYnM7dFeWXMKauWDVnZyLn9Uiou+8+ZLMLPIGYNDO0ANGrMamAofOJRcz6CMC2aGraeiEj1CrVZldGTcYsY7jiWZXgMSI8/Zy8R9y0Qo4dP15UDRDHMNLSlvkzdZUj8Z+xkbB8odEO6ysnRA/lTHnJCWwoL2QXJIcVyfw+3zRH5SeNbDJP6Nyse19mM89H3yRpQEZf34kyUVASC6KJwnPa4uBCJOKReXBM9SfnWuc9VuSmCacyy8FkHOebihgXwp1QVW+r/i1J7336JvaoRPPC/RM34ETStk0cxXJxXGCTbLlxB/Vc6ZIAfA7N8oMPaNmzR16WZJcZIbOsz6UGTo/gfgPXMYNRoDniidp6FmPktyh8PcRI7lkkb1IAkMPJBd1rZPyIJpg6H4cI+dcUZGrv7IaOHQ5/XZBrYEbl1jE/ZszD52WSm0M3ZQdXZbPktsQJ7nwjVm1b4xHAZKUh+4PnlF4z94Qc+imn11ELRN0ZAjuzh0oPPYkjOfTa1VCkK4HLRVBK1Lmlep9RSnLztMOPQLqxXdE9LzgYevgPGVmQhxbkly6b98KIJzTDgSMNiNDh/8w0FoF3rBU8iucnapD9xm6nIUAZGfUPnuKavB5JRfKg9L8624ll4S0xcySi2DoBRD4wWfeeIpnzGSF74gNiaFzycs4t4CBuz8B89nZ9HUi9xDxvGy5+lxyKbUzdOvEqeCLLNed6/j8+ZGfI5+UEBWGTilz2IkMPcM94QdWzWfZQBiecupccRnMU6dR+5t/gDG3kPTqdkQd+vAQPP8UkImhJwR8u8XmduhuwNBDD6njBiXRnW5y+UZuOQmSS86qNPg3XBxDV2U9nEX5Drg+dR0ab3id9AcIs1U1yOpGHjiRtphVcglnuZAug6JtWRZxQdE8+eNthUVZg6IOq/Kt+S1b/a8BP3CeazSez6wbzaCXthewdgAg59O7L8YGQbNsMIKhF9sYujynNsumRSOEISR5CYausJ7YkDuU/gNqgXJeaOjLSM4lrDVJ6yeuQuOnXw0A2XqayxtpqYjmtT+Ctf/6c6CWpXxfEY+ui9wCbHaH7lEx/Fe+mKzQKF1ykXd4YttBD5Ko5CJPXcmClsPav/oQDkbVAXsR6aBSai+uMQ11hxzROBHNUlGF5zt0WbKR++hk7eUSdYxxDD1Lz5qEtMXMkovNClHoQNC4TFy7Qj6GLn9WvMgoOnNT6b1KDj1zwFH+mzEMHc2WxKgzbFp2lDDEBEVVrllC6waBLBuzdC96O4ZBR0d8Gy24F+9m62Qp9PNkhl5iPZVq1Wwn+U4B3y6xyR26f3SxzPBD6rpKkos8Wo71u+aSSyQoCuRoEOVParFi0hZVN4ckLVhGHoYuaZyUkBwaui+5yBuUXEqedYOIHsPlDTVHALJtI/QRBFizSC5WuJOeKTP0/JILgLZCLJ5TruRgpM9MzJvN2isFXEOXrr/f59vjmxiXw1bX0u8TNyLphbJc/OcoE0PvEBSF2mYjb6DOgUtCzFjEo7JMe3LbN1IA2WJtXnIVbLfY1A5d5KqaZkRykYKiHTV06TW2LUkuMZWKWR26NE9UIGvetxtjTwTUMNTXi2qc3KashUVOlKFHTjBZ89Ajjig2OyWL7JW0EWYtCHIctnHJDl0wdCtfOqvnigElAHuvhFLmSLmzU8haktl4IAll2JhFW4Ni+H04jIjwUwlvSlb78CdReOSxzmsKhu53K40JiqpszCTVocfIrEmQHfoVl4V/ljXtN7IeHZJObpkYOl03DT17RUM/wXfo1AwzdOJJGnon5xKd6h7D7MQRO2NamOF3f6T+w8a+mZERJzDNEMwMDjlOW84i2ch28W6L8CUu0VLXyi7hRK9tTHZKpg01IW0RBhtJp7oW5Qy9WhE9g6jE0JUCfBEQ14M3MYbG618D0mrBPHEKpX/9d2YzL45TqfyNY+gZJRdqGH4ltD8fVZqAJTaxlsMm8zRbIMudtWZRiMVPuPJ9VrDY56HE0P10xCQWa/GJUQrX33NBdu/EytR18MbDnWAz13Eg2GzW3vpmuLt3BWtlaRGiJZcE8FxVK8rQ3UBOUcxyAR8xBoQZbJabR17bD3DJ+iuATA40janwnylXnjphBiXWzjGCjkZL//npJjI4WglR1hYTzMzTVKutUhQZmZTjsDUICTZmkcFh5RtB57CUT++iCbiX7Qvysz1P3I8qDka+H7ltmWQp12WffbEY7oLonw68QYmhNzg5SllfBEXbC4tgGP6ppvugqFhX4ZkkLquZiDpzAKyvS8HKyNDZ3/RGR8JV4MWC8pzTTlWw3WJzO3TXY7mqhhEquiItW8q86MTQI0HRGMmljaG3bCWWwSPnXnSSCe8RrQJVDV2V8XO75RMIt2etoV5EwpscyUFRbmuxGGrYpYRUySVb6mjHjbCQgUnZwbAGvjHTbjX0SMFMKPUzS1C0W4bOh2hHJEV+OqCShi7sSTuRRCS9kORiGCx3X4lVdw6KihOmyn3v36tJYENismjo3LYuWjNTneXSBupR5jgMEjhdH6GmRxkYeqzEEWHolX+8H+X7v5pqHx+4EWXoNIsD9jwm0XT48GlGyYX6jFPANEDqDQzc9XewHvuB0jJykyMgIrnwmEEGh07bJJf2Hiy5mnPFbIS0VFRbi1LQtYZgYWJj7pKhh3qdAKH2C+J+VHEwjgvPr1L0RobYGpnSFv3AdiToH5VciG0HlchpDJ13p5QHXHCYBlAwM2W5JEsu/n2nsjnwezUBtFTMxdC7kgU9um5B0c2rocvON+oAJIfeSY4IpS227OCIZyUzdOP8EjyFzdVYXmUsLtqnwzTVe7lEH/7YP6QumRBp+ID8emNlDcR2YJxTLLDgG4Oc9ihr6ACzSfXuapNcIgzdMnOl5MU9NKps3zg3Dyyvwt3H8paFpswDfpyhZ2VbrguUpZ7Z4hrSTAydOC7cy/ahfs0rAgkt0zXy7y2JoVPpb3sxDD0tZiA2ZrHpSddfMHSF0y3tfDIVko4CMSKuB1IqJP9CqajerRSdMqiyZbnowqIo+IdptDv0EENXCIqKYI0jrckR1dBbdmj0XRLIyhpj59GH3TSypS12klv4elkZugRqGoIRct2/I3i+uWkE0oHUBwc5GHqaQ4dpZYphJJb+A8q9tHmfD+fAJQBkycVf07JEm4lMiMxMlat1s2jovDe7t3s8V392EpFcAobud4AUDN0JWjKkauhRySXC0C1VDT0tKOqfapQZeifJpdSTGgdBFFRkS62hx8D/0Jk2F34bvC0p+73kD53wiUJFiwU0eH6onFYWYeikZQM0/SEmq2vt+jmQLQipkq9qZGD8CQydMxRDpWJOMBQzmP3pylkuPuPrSkOP2GiZ6jIV0DkoKvfS7uDYzR88A3LRLtBB1mohlqHH2J6G6KlLpDC6XpDzrVpYFMn3Js2W+uAG1wM1TKlhmf83ueRSKbPN37ZF07TUrJ6k1hLwn9OCGkNPLSwyw89kR3he+KQQAS0rDlr3/M/Hddt8BADRX4bU02NRpNPwji6xeR16Lxh6i/VaYe1RbRERD0EcZ1k1pCpDN1ZWw/nLPrJp3ukMPdN6TgxbMc3ggVVx6PI0ILn0340w9AyZLjTqhKLH2axDfTt0s6M+QycLSxj404/GN2eyHZjPnYbx4hcES/o6tWiIljP7qe0zFQxd6gevMPibuMHmzDfR8pf/FbW/VOxhzrXlaFC02WItdYsFlpXSkoKiqRp6ci8XGFkYekqWC+/F36OgqMoGWvz6t1H9m3vEyaZtHX9jHLj9b1F86FudF9OSSwykTIaojECyaOj8xvW76bXtnHIAxmbdGVXYJ1lZCze/58gwLUUpvSlLYZDrtgWQYRhCn1Zz6BL7jUtbLOSRXDqU/gOsEjgLQ+eZJHHats/2jZUVEEphLC61/Qqxbca2pMIR99KLsPq2n4U3sROAdHLL0eUwdL8aPLBMA8kFSGeN8uxO6TNVOmWhk+TiDyUnRMwCEBp6yuZF1+rMJlFYFJZcVBl6kKXUIX5kmUqbaWocStGhGwtLMM4vJ5IsuQmf9WRKW16qK0Xb4Uq7eEKWS2oVpR0wdN7LpU1jlgJOQfVpCkNv2SzINFhr/5mZQXJJYRcAmEPOJLmEI5WynktW19JH9kkOXZ5Y1JblkiUX3XFDU3vaP4NsDJ24HTZCnrfP7YtzyEKDD7cg8PzeHwCCQdFZM12inylnanKHUHSWXajniWENbI0cj7HnMYcZx9D5iEMe+OW2pH0Ga41Qf/CQ4+slQ4d/j6hs8p4HEiUx8jqlUjCNqhNaNnt+PDe+cltqA+DujMl5D9mkJZc2UDmTwUhw6OVSetpioSBu3HjJRWLoXGfsoKFTSmGcmQMAeDEMneV9q6Ytuuk7eSYJx2kfGiA7dCB9NFdIcpHygUUeuqKGTmnwENlOuK90m40mWy8t4CT3RkmSqrgj4L3b48r34wrMouZnYeiS7SLlk68j5aET2xFfd2SNcQVi/E/FkYg4uG4obVHW0EWPEv/kKmxJ2bzoaj3s0OVsMcMELShuzCoFdaqbvBtz6pagWi0qKs9bdipDT920tOQSAynaLIYO8IeBz2pMcehsRJwVjLSKk1x4ub4iQ3e/9ghqf/cZ9veHBtp/ITNDT9HQszTncrx2JxB5v6myiyy5yCPsommLKTYVv/owBj/4P5kz9yc7ic0mQfbq9ACTtToG/vSjbDhDEouCvxG5XnCqiXv4eDvbTg6F94VRYOi1//n3KDz8n+yLqOQi96S3nSC7RMGhJ030UQHhJwV+0hKFRU2JofuxpSySi7wxy9fPNACroHaiSSksYuupyXCxJE1C0KArRXaRJam4U7P0XKVNECOeXxC5Dti8Dl3exfkFFgN46372SqGjHMFHxImjJZ+VGfolIvQ6lYZf3iPfhzcyhPoNPy1ymEPIIpF0kg44Mm0QTntZfTT+kJK6SGQ5QtLQeWBVlMin2FTigSPbYU2wLCt4KKIpYQqVgWS1DuK6KMw8kcrQCaXBHNMYhx503ezE0BWzXCgFWVxiee1SyqdAqLDIDgrROjp0nu8dOJHVt/8i7Bfuz9bXh2drSDnUpNkKWjRzhs67EaY54yhD5/36Ab+Pjql+ovFfkwRlGc5LIUXKDD0IWMdtpO6+PVj7pTfCufSidE1eSy4xkHONeTk2d+iUMqaQJkfwEXE+Q0/azUXJchpDb7bgPXkS9otfAGfy8tgPTZTaqyDtZgQy9XIJBdKk14e+XFVl6MwZUEKYTllvsNQ0XjSTpee7zQZHUMuKD2aqVAb6kob15Am/G2SSQ/e/z6WWTpJLp/iFKkP3PD+drRlO+eSQi7NsB96gz9A7tHTl3Snlz9LbNQY6NKDeaE1qQUAjDj0/Q49o6EB4mIplMVatktbHX5ME1UB5Wh66v3mlsmp+fVp2vDMmBO5lF7P1Uh26B6ollwjEsSwo/Zd1LFopp8oRgqEXrWBiUdxR3TJDkgtJuCGt4ycBz4PrD6GNhamYbgX4D51CpWiW5lxtaYv+Q82d5nJKcZEbOe77zcZIvcFu5ugUozR4HqjtM3R5cLUEqlIJyWWSRpONcEvpAxI8oJ2Cop0YoiJD5yeBeiMcf+DrcDv9YeWiba2Khh69VpkynrwwEZIZaERDh4qGTimwVm936FyyJCRoZpV2zeSEhyTIqaxJGwQ/ESlILqmsOk1ykdZLZ+jrV1i0KUv/K/d8ATYPLMqSi2mC+g6GVkoAIZ2LIfjMT8vvbe0lTBq3LF9y8T+ohIfGfPpZoFyCe9Hu2J8ze80MkosbHjIdA5pJcklm6LRUBC1Q0YMm2aYIy/SDjKTuszMhj3TOLhLgDL1QYCX+cTe6SjMm6TMxllbg7twR/3tc4uBl9jEMXQwL7+AIVBm6SAmtN+KZP98Aoz1UlCSXGPksU1sJ/1pzhu4PtwhlufgZW+w1XnKrg2aL9SiJOHRqBp8ptYJrRqMtMWQoaOjUTz+tfOrz8EaG0Xz9qxPXIWnNubj9HRCqEZBbYkeh5NC15BICWVkDPXWGfRFx6IJ1VMqpjIUVZ1hiIg5x2jVmgOt1TsBiEhgBWauDjAx2/rCyMHSV0v8srCymUlRsYIWC2uDjiFPipyDm0EtSKmPyezQWz0vreUHaYqEQfyJRkVx45bA4OSQ8xGbAiEP/ynAVHEEOht42MQoINhhRoVlhhT2d1hVB0ZjNOUuvfYmhkxYjNMTzguKwQoHNPnXdwPElbGChzDIZUgGaMkNXyXIxWVzLOLeQPFRbpVupygAbzws25mar46lZNH/r5Hd0lksYtFgIotKGEUguphEwTgWHLjrO8WNXo5kYwVYJipKW096MK2p7BhalVvqfoR96nJ5oBHKVUqApKhv4uf6k3vQZuqQJJ5k8Hzh04nnMSVgm+/txKWEqQVE/ldS99KLArhi0SS4d89A7ZbkobDJA0DKi3ozPTuEOnQeVC0x66sj87XiGDtNQb13supKG7rd+5VO2/FMhLVhCXhTB7oT3Kxx6VHKRsqGUpDOgc/tjH6LRV8uGMb8YT7Li6gmi60RbH8QhNDyns1wiNrROLJ1qhh5GdKybHEmXGDrtxIZ5HrRhiCIR1Juxkgs73jnpWS62DVJIUbGM3jfnyjKCrk1ykdmTQkvYNpbpNwcj9QbAN1Ggo6wkO3SuoYNr6HE3egaG7ryQjRlLTOkTmnWHoGjcsPA2mzjb7Nzoi9vMrlGzbd0g79z/WcFizqoDi6VJefJy5W4KQhlUvCKUvxd+D0vPGa+pSPoMkhw6lZu4cZkqlaGnNOcCRNoiadnsdB2TbqsknZlGKG0zDm3sXUHC6Si76KBoGLL+Rg0jPGXcChw6DDOZvVK/n7ppBtkxSQzdNJkWz1ldQpYLsR2gU6tOIFMhEOHVfB2gmodOPRquLpTtgc/KlBh6xNn5x3wuuUSdivnUSdTu+Fi4CnIh7NBhO6CmCVoqxWurVjpD507A27kD3o7hYJOOQjB0nzl3Slvs5NAJ8dv6qjF0QEoJjctD55JLoaDM0EUbWR9y5W4qpIIbWigATVt8Rjy5QB6CLNIpEyUX/4RRiUoucQw95ZopVIryKWWcYBjzi+2/o3LSiqRtxv5KZNPumP8fcehk4TwGPvTXIBESs6FB0Xe84x149tlnYRgGqtUq/uAP/gCTk5M4fvw4Dh8+jMXFRYyMjGB6ehr79+9fF0NliOntQLiXiyy5lEudJRcp/Y5PJCeUJlaBkXoj+NCTNHTeG6aT7Vkkl5Tm/AACySWtL3dM7jIgOYGCxbTbtDQ87kz4Q2+aIE1WFi0yiwBx3Y25BRjLqyBrDdBhaeMU75EHRS00f/QVscxGOK6ODD0IpNV/9vXJzoAHIVXSFjt06WM/T+9NIjt80WclVnLx33fRSu8bHp3dyaESkOZwvUCqLBUE0wUgNkN78nK2lkFAi0UUHvsB+5xjlhP9k+IkF8HQ/c1UUUNPC4rKPZuMhfOB3Ca9R6BzLARAei/zZkqvIXmtiEM3z86DNJowFhbhjg6zX/LouhUWKTn06elpDA4OAgC+9KUv4T3veQ8+85nP4MiRIzh06BDe/OY347Of/SxuvvlmfOxjH1sXQ0OQnaachy4d74Sem3Rzyy06JTaXGJRznKD0P1FycUDkzSYOXAZSGYyQlHUTWs8MbOp043L9NinLpeC3/0yL9ouH3r91TANk1Z+fKksu/Bpx5yg5ttBgEer5hUUm6OhwrLNQ6n/NN1mDiAZasb/GnYSShm4CHXyj0hi6GIYebs4VCYpyhq4UFI2v+iVevNMNDI+c1goFJl/INgBAuQT76pcDAMwnnm57PzJIvQGQ9qAoNQ0py6XQcQ2xlmpQVHq24xi6kuQCpA49adPXO5yaacnPa+ekxd905Ht3w4Oi3JkDwMrKCgghmJubw8zMDKampgAAU1NTmJmZwfz8/LoYKiN0LJebcxnhLJdOckSoyZTshDulLXJH1ElySWHoME0m9ag0wlepFJV6gXSEmCcalVzkoKgC44wwdBgGyArr/xIKinJ2xP+V17WdoA+47bLrGdOXhENlQo2SEwAkySWZofO10pidUsxBfpBX2xm60NB5UJRXzHZYlyYERamqhh7NVOKSIx+bGBcHSoljkHqTTWKKXn+5iZsIJCtmuXSsA4hUOMuSBkfaKDuONIaeQXKJpkGKU4R83TZacgGA9773vXjooYdAKcVHPvIRzM7OYmJiAqZ/U5imiV27dmF2dhajo6PrYixHSEMnUtBFZus+W0wMzsn6WojxJ6ctkmZ6UDTdofOHLrlpUOlLD7G/p/DBi/eeopvSJIYupy26brombLNRZcIBm2bgCCSGjo4M3WFaY6Mp2E/Hk4il4Aj4Bpl26olUiqZmudjJ11XuRlj760+hMXUQ7r694V8KMXTu0JM1dBQt0ILZuX7CSWCeqhp69F7gMgG3L9ahd5a9SKMBUi23fZ8WLBDeTlc11VPFEcuB5YIVDrSLdVQZeuc5sySD5IIyu5blLz0E97En4Y77vlC+d/thpugHPvABAMC9996LD37wg7jxxht7YsDYWEwDqxQ4o4Pgl2d0fBDU9GADKNfK8NbWQAGM7dsJ5/tluNTD+Phg2xqe4aIFYHCkBmPPDnBVtzJYwVDk9+3BClzXFUdZQil27hwAkScbuR6argdSsGL/nrB9qAIHwM4dNZBoAMlH89wcY7GeF2tPeL2qv14VJG5CEn+/p1kHyKEdNZjSevz1leEqYAGuF3+9OGyLwC0WML5riH192V64zz0PABjZOwoyMoQmgIFKAdb4IOySBRfAjoEiDH/dpucC1TJoo4mhsgUbwMBIDVbC36UVM7RmHNznSrAB7Ng5KP5O7HVYHUQLgCm6LTrYOTYAIh2BnYrF7i/LxPh4cvfCZqUEYgA1w0VrcRlDjbU2+5xKQdyrxUYDFMCIZCNt2WgCMP2NbWzPKOxaGXRxOfFzcB5lK45NDINIEoe7owYbwOhwpeM1oMsGu57DVVjjg3B3DsEGUKMu+6wmRtpe7zVW0AIwXCuE7h+OFqGg5WKbzd7PHgSaNmrjg+JzHCyaiZ8jANiVAlxCxD0Wew2Gq+K6Gjt3gJxvv17e6hJaAGCaHe/p1kAFdG4x+XqXTMhbUKVWTnwmqVtFE+zEZT17CqWdw3ABDEr3boN6qA6wza+TXXmQuVL0hhtuwM0334zdu3fj9OnTcF0XpmnCdV2cOXMGe/bENKTqgLm5FXgKE4BkWC0XvFZrfrEOY6WJKoB6y4XhASaAcystFJsOio6Hs2eX29Ygc0sYALC02oKz3AS/rGtNB63I7xdtD0XbgVdvCo3q3JmlMINo+GuUCrF/j6NQd1AGMHfmPGg1vuKsutYEHAeG48baE16v5a+3BFpPZnVjPrNaWrPhSOsV6jbKANYcCuJQFFp2R/tLS2uwLEv8jnnRHvBtZL7hgi6sYhDA6lIdrbPLKC3XUQSweG4Z7jB7Ta3RAq2UYQJYnl9GGcBK3Yad9HebLQwCWFlcTfwda3ENFQDzi2ugZrL9xnIDNQC00QJ34edmF0Inq+L5OkoAYJodr0UFAFYbWDk1jyqAlYV2+woLq+C81V1chgFgYakBj/+e62IQAF1rgAA4t9RA2QOMegtLCX97h/9ZnlusA2ag71qrLVQALJxbhmckx3LI0goGEFxzs+mhCqBxegEFAPMrTVCE/7ax3EINwNLcSuj+EdditYFCIebeN0tAtQScXQYch90b88sd7+nicgNFg3R+jhqOuK52rQpz9izOnj4feibNuRV2b5pGx7XKIDDXGom/U/DvUY56y8Vih/WEi27aaJ5ZgAVgZWGF3RuUYtCjWGvYGAY62pUEwyCJRDiV96+urmJ2NqjEOnbsGIaHhzE2NobJyUkcPXoUAHD06FFMTk6uu9wCxGS58CAFr0rjGS4dNXR1yYUHYEIBw4gGLo7uWSSXJPh9Y4hCAYJyqhqf95gYFLWU0hZZ8VTAA9xL9gYZLx0kFzn3nrTsQGuUB3UngUsuKqX/adkD0eZcaE9LU2rOBfjtYF2hk8bKVf519yrleMlFCiJTnoefos1Tx2GyV7QrpaFwbwFtlaYiM4MHbWNSPqOzdaMgtpteg8H19LTcfRWNWYq5eMNDbHOOtsDl9163QVERLOaZXepyiXGWxRTFvUEVcuy7QCpDr9fruPHGG1Gv12EYBoaHh3H33XeDEIJbbrkFhw8fxl133YWhoSFMT0+vi5FtSAqKmiZowYLHma9hMKcYl1EiKh5Nv9qUPUSxHxYviGi2QAkJpr3LDyYfH5aS5SIPNEhCaKiASum/v575zHMoffFBrP3Xnxc2F//1Wyh+9d/Q4jdS0sQiOSjaKQOHD9bmsCw4l+2D9cxz7Hrwv8OdSlzfcdsJutzxB6mT8zQMP6VSLculE0QQUr7+toPCN/4D5uxZNG74aZZdpLJWwWSflQh8sfdoPfo4Cv/5PdQPvUk8yHRoAAYvvolMQuL3lKjQTCksEi0cop+RYlCURLXlctihd9LQE2MsjgMUU4ZrEMIGskc16SiUHHpwDb0RxolJvQEq6/gq9QRIT1skYrKZn32UttFLMPg15RuhSo59F0h16Dt37sSnPvWp2J8dOHAA99xzT8+NSkNbYRFPVTQN2D9xdZAyJN/g0V1abgMLgBat5F4ucgBmZIgVxnhRhu7fEApZLqG/Hweps6PSxCIwVmM8f5blva7VQYfZTW6enAWtVWBd83KsORTuRRPh18tpi5afgdOhQx2f8iSj+bpXwZ5b9H+BgJZLIGs+axWO3f+Xj6uL9gZJK/7wmzEl/krGLJfQa20H1olTMHh/IL8TIUkLsPokIMrQzedOwzxxiv2OwzJ6vB1DME+f822IZoIYzEmLHioKhUVxn080ZTQJ0SwXP9XOWFkLtc+QkcbQeS1BGmixGD8lKmRferpu6Jn0B8mQeiOUrkkiz3giikX2u0mtdlstpgrIyRcdsHboTSDLq6jc9+XAFr4R8p5DGx0U7SfQaOm/1JzL2zUW/F7o+B9Jc4r2pi4WgbVG/Acq3aje2AiMGIeOjJILcb3EXOEQC1JpnwswRylyq22xNllZgzexE4U3vCZetxS5yFa410bSMdW2WbthCXR0BO7oiPjaG6wFKXo8bTHSDEsc8/n3U+WNlKpMT42hxz6Mtg1SbwbVfSoFXQiyXERJvxiaYYtTHPHZtCddn7a1DQNA0ABLMPSkk5LjtOegy+umprAmSC7NVntzLY60tEXHAUnpDAr4ck6nvilAag9z2R4KwJMcengddYYOgPWyqcRs+C0/e83/KNJaWruXXiTyzwWcgNCwRXXpf4BoYZHcRF9GJ3mjjaH7x91OzaEAMQCWROaKinasxc57ZGqaIaXh47Zq2qIbOHRIPb7Jyiq8gQ5H4WjpPzoX8MQx9DabatXgqBlh6CTBoacxFir3v479BUVtMoGhg3dDdFy1/H+gjaEL9sodlr8etayQQ4/tkggp/7sgnZRiQGO6ZgIIYkkpM2vbmKsV5IrH5qADUtpidwwdxUKq5NI21SkG4hoWC6AVJrG2OfS4gSIJNgExBUTcnpYNWiwEhEfl3iiXwp8zb9KmepLMiU3p0NuCojzPNaFohsTd4HKlKKRdOoWhizmhbZKLIkPnD53rovjQt1B64MHwz/0JN8F7UNTQPVeqfrTF3zDWGqLHdhwES5Nv2A7HfcKnPHUAHaiKAGBbYRHvF8KZoK2goQPBtJsk8HLxFOYjbxwBM7MD2aTZ9EcRpuukAUMPSy5iaIYTdJL0dgwHL4ysLWwqSgwdSNbRHSf+vvC/Z5ydR/Uj/5udOOMQ1dAJCU8pigMhjDx0YOip9z7A2mykSS4q158z9GJR9I8xT59D9a/+HuR8kEEEKAZFgWQd3XfoicQxDoSEnruo5KIdugwebQbY0aVcQv1nXgfnpS8M/16HDJB2ySXZoScO9ZXRUtXQA8nFfPpZWE+dCP888hCnt8/lm5YXMAweoF31Kzg7MHT30ovQ+KmfgLd3l1o2CR8K0gHeQI05dN7REmAVoZAYOQ+KCsmlS4aeQ0MPbLCDuEuzpcQQAYAO1kAoFZkMgoW1AumGT4nqKLnwU1Ip0NCBDoVUDTtMaiLrmLMslmIsLMa/3g1LLgCCmEanE2ZS9g0/Vapo6IWUqkyAfc5pDl08txZQKoISAuuJp2GeW4BxhtVchDLZUmwCkJjpQhpN0HIp2GgVg6IhInWBgqKb06Ebfqqh9EE5P/Ri0FqYiXYshU6QXJJK/wHAG6gmpgmKBvipvVw4Q2dpkNFjYtsDo9I+l68X6U/CWbLXgaHDMmH/yA+JdDkAHTMsiG2nPrh0oBq01BVpi1yO8B8akbaoGPxNC4pmrRSF5NBX1sTrSaMVGs/WCd6OEQCA4TNCwcJawQkJjr8BytkX0fcqdz1EOkOnjWaoE6L4fqQvTFI/GOK0SxG0HDkdxP3dpM/AdUGA9LRFgAUgUzR0leHoVGLoIAS0Ugo+h6YkeQHpn2WpM0MXraH531Rk114sQ09vPNYNNqdDB5hDUO1zEqdXC8lFCooiIcfU303p4EDgMKK9WBQZerDJuOx432iG7Ys+hGkBHfk9RvqTcB27k+QSWktkMqQx9DTJxZ+LubIWsKQoQ88aFDXNzpkfqgydEBEw5jYYSyvBj5stduRXeOC80eHwN1zO0AOHHjvHNQqpLzkABYYe79DFaY33Vk+SNmIYejBHtMNnayU0DeNtClSCokWrY843AHb9U2QSTj5E7Evq8igcukJPGLYGvxeTHTqt5GHo7DnwKmVxb2jJJQGkWFB26JXPfRnWf34v/LNEhh7zYfkPlrtrNDgqRRm6cpaLJJHwakWpIKLtIc7QnCuJoas6dP6QFGaeQO3P/xa1u/8XyFo9+LnnMQetwNDZ318NAnT8hnZ8Rh4pLEp96CwT5nOnUbvz78I2CdsUs1wICdL1OEPnmit8Z6gquQwNhByP6L8iZnC6gJsuUUXjOKkMvd5gxXNRRPrCyM7XeuxJlP/hn9gXMT1OeOpiNIMp9HcTCs+IExmM0QkpfVMA+JKLYjJArENnG1pbvn3SWnwjius0agetoeWhLirgDp0O1sS9IZIptOQSQbmonKNtzp6BxfOCfUT1tU4O3b1sH5qvexWaP/XqINc3ytBtmwXklAuB3PaObEDAdnykt8+Vco8jQVGysgoKtElRSeDOyTp+EsZqHcbCeZBFKdWR58anbFqecOhrUipfJGBYLLCCGjGsIV37Js0WjKUVmM8+H/NHM6SD8b9VKoKWi0F+OOBr6Aqs2v9boWBnlKE7Hnvf/lqrv/aLqL/pp5Lt4XJdXobO74U4h/74cRSeeJoFceOkCAWGTitlkHrMZso/W5WgaJFV13ae9Zs+2KUTQxeOWTT5yi+5BIM7ykHsTpFd2y+/Ao3XX8sSKdyw5KIZehQKkkvowkcfDn7sFJJLctoiDAOtV73Sz0XlDD0my6VYSC1G4euTRivQbSWH3s7Qs+ehC8e+usZmQarePLwacHk1sEcu2Y/2Qk8AZ+iGLLlwZyem4vgxEOUslxh5IPRHKdtQFRy6yOwxTXg7RoT2CvjOUKGwhSMU7LRZcUqomMoNUgy98bH2wD0QaOgqDN3zgKadoKFzycV3aJKD4v3C5U02TnLpdJqQs5dkiHtWqbCocwASAKvUTZNcRHaWfx0SJBdqGKHGa51sipNc5NF6wSAdRcllcAD2VS8L983Xkks8SLGYfmwJOfTIUTGir4ljV4ZCnhAUsj/k9WXZIMzQswVFaUhy8ZmZ/4AZy2sdM1za1uK2yTbI1012xp1QKLDp5yur4jqJoJDcT90wgr+lGARjNsU5Oqp+jJUq/kIOGSyjgbV1UHXojKHTcokFfuWBwq6rdl/wGI2Kht6MSFYyxDQmJ/QvKGXFcACM1dVgk5UmHqlo6LRWC6YuyVDc6AFIOd8dHLpCYZe4HwRDDyQoPv1JtUAMlsXIQEx+fGhWqjTUJRNMM9jkFdNr82JTVooCYP0nVDNAIN3kC0sof+ErcPf6JfCRarnUIGQiQ7eVgkLioUtw6NGHWFVWghvkofPCIrK6qiy3AAjn25eL7MHw7Sl+/dswnjvd9ntJ8GrVEBsUKX1iELEfA1HtWSNVRhLbQekL/wz3sn2glonC955knStVWQ//PdOEN8quD/XfF/ElF2olVExGwDcEb7AWHlMIAI6rJN/QSFC00+xNrg/HB0Uj759Lb2v1QIZZWYvN/uDxhFSG3myxdaV7PQ9DJ61W50rpVMklqJ8AIIqLvEoZpNlC6YGvovDv302f8QsgmCvagvX4cViPPo7Gz74eIERy6KUgsyZDLxfAv6ZtaYvrw6U3rUO3XnM1Vvfv6/xL8kXzb2Khp0d2W+fy/Wi+5kfhjY2orZmTofMHx1hcEt8LzdjMyNBl3ZTv+cS2GStbXIK9dyL5tVHIDY8GajAbLcEszCeehuVr10onkXJJOEcgzNB5rIEaBgxfdkp9SGRC47gozDzhN2azYD32A9g//DL1h0QaWSgYernEmi81W8pBUQBwrrgMzfPLIKt1FB57IuTQiZy22NEeLrlwlhxzUuJr8g2wA0MXv+u/Xh7+QJZXAddln4F8vRQYuhwboXLsQDSmU9HQ/b+TIrmkBTJhWWi8/lo4L2A+wH7J5aAGgfXUCZBmE4XvPgFCKTzFe4KWiiCNJsynTqLw/afQOjMHb2JnmKFnDIoKmEHbCqIll3gY+/fCmby84+/I7FY8HNzBNJrs55xxV0po/cRV6RpsQlBUmaFbFmi5CIM3s0KKhq4oAUU3BVJvgDRabZJCJ8g5yMGU93C6IQDl9DRi28HGJ69TsPxsE+n2S3lIQrq+7Q80dj1fs/bY31E8xgp93DADyaRSZqy32WIOT/WhLZfQuvZHWFGQ44b7lCinLXK2ySf7JM/eFK1c47Jc/M6NAtzRSvM2yeparE1qGjq7J0RbB75mBoauKrmoXH/7qpeJjYUOD8K+5krQUglktS6eByOpWjYCFvBtgjTY71s/eIbZyYOi5XJo7GIWxDN0neWSHWY7QxdMsdHMt0smpS22FDV0AF6tBiIz9E4aemrg12dzkkMnti2CYG250p0gBx4HfYcuerAED6DSSaRQYO8lIrlAbh0gv7cUpxcKXNZ5WpoXZDK4Lqiyhh4wLZ6lQitloMRPFQpZFjFrEscNOyqXD8BW09ChwNDRSXLx7eDgn5kxfx7UMOANVJkG7roh/Vxer1MGE5Wzl2QIDV0tywXo7NCJqyC5JK1fKobSUJVfVykzEuQ/i9aT3KE3glkBGYOiAnygteete1B000ouSpBvbu5YBENvZT86AZJD9z8YSlG55wswTp8Tx7800MEqyNwC+3+xwG4ix0HlMw8EWqavYSu3z61HGLp/zObVjEowmAxCPA+e79CjwUxAISgKMD26ZQcDl+U+J1GmQ5DOrqUTkYg/uK54GbEdpA634BAaugGUiqwC2A+qkdV6pqCoAM8QWguftkiHVsQccf2EWP93yaF7Hsr3PiCmXCU7dANiXpqQXBbh7RhiOeAra6DDA20SF89D7zisO+rQPQ/lz35ROHJSsICUFPPELBdKUf7cl2G/5HK/fXNOh1cqtqcUK4BWyow0uMw+47nTrB+OYQQpkTkGXAAIrqkbpGsqk4+M2NoOPS5tkQfnms3UfOo4UO40/AIBslaH9eQJuHt2wX7lS9XWqAWZJ97IEGMG55dh/eCZIMhTLqttOkJyCYYnENuBMb8IahigfvN/ZVgm0PICycWNkVxSOkoCvtOXCzVkhs7foxFIH2kOvf4Lb4D51AmUjn0tONG4bvA6x1E+xvIHkju15ut+DLRWReE/H2NSmOtlD3zxPjjyaYu//zSGHq2FIIRtiNI1J8urKHz/eHA6SnDo1DCCWIrvNI2lFdDhQVDThLG4BFKrtLFMb2IMzR97JZzLkkkJrZTZ+rzx2loDhe89FdhdVGi8ldDZ0JhbQGHmCdbbKMf1FzZK16X5ulfBG6iFxsclvq5SEq0qnP0Xgw5UYT32JIjrwp3YCQBwLr8UzZ+4CnQkedZp7Np8Q7el/HtV8pERW1pyCeeh854iEmPMc9NEGDq/uVuvuhLugUvU7PKZDiUEdGiAaXdc72yxiUAde8vIEHnt/lG8VgFsG8b8eXgjQ9n1Ph4wbGPokuRiKTJ0WQaSNXQrHJBWYWPe+Cjsa65k64rhGZ604bgZgqJ8I/ED4i+7Au5lF4c09PwMXcpe8tPnUnOqo6X/QDA9iq/FnahonZCQhROX2bXC0ldFHnlcrxrTROsnXwUkDC5nC7EOgkJD5xWZnG0rDrgA0MbQuWbt7tmlNoIuaX3JodsvfxGcl12h9rpKGWg0QdYa8HaNofHG61hfc/4zALRWRes1P6ocqxHg94brBKcHraHngHxzRxh69OfKMCIM3b+5O/Ycj0A07SkVA+1OZsCWGVTCpWmJfIQZD97UqgFDz6KfcxSCRmQA2PXiJf8cSgzdEjev7JyIPCCD39QZNlZqWSGGLuxyHPUHzYjXQmlJyszJuhFyhi47dFWGbhhsI5XtiTB0Y1XSrS0zWcaR7faD0mR1jclKAzUYfmpl6iaTgFBrZOkERrldaShYoGjX0E3foYt7I699XLIkJHEIe9LrCJif4PKbc/ml7GcVFY7fYW25R5KuFO0CshNyXIDS8PCGPBfVdxokwtCV+6VIv0slh45I0FHc2CqbjmGwIC8YQyetFoyF85kyXAQ4Q69UmDTheiE2ReUJUZ0g6ey0VGSO12+z2hYUzXJSKlhB+TmvxIT/IGZk6G1aaLnotyG2s5/eJIYupkXxAKaChh6V/9oYupTlg04OJhQU9bOdKBUMHQDI0nK+0yn81si+LaGh6QUrfWQfIOV8Sw690RTtHEQWT077uBRFa9VMTFp22vz/gUNXq0lIhJjH6ug89G5Adwyh+apXgtQbKD7yGLuYUil7rpsmkodu5HLoftOeUpExA8cVx3MALLUxLhMkCaYh5A1voArLXyuPQxeTzSulYCKPzxRbP/Ti9Dz9yDoAWHHHKtisVMeRTh9ccsnwOVhmaHgGJTyLxs2gocfnE4ce6oynN8ozU9Ya7OTVsoNAdYoU4fzQi+DtHg9/s1wKBbrlzBJSTm7RHNrUbCdMOHwHZyyvwBsbTX1PcfB2jcF6/HioWAlAeiaPbGOxGIqvGEsr4fbFQNeSS5bnEYh36HR4EM3XXgPHl17yIszQ+UxRLblkByFove5VgRNy3HD1XQ7JhbZp6KvsmJfhhvZkhs7LvKUjNS1Y2cqMDSOQN6rBjZwpZZHD9MeRlYo+Q3dFtoR7yV7Yr3ql2jqyHsz1Xn79I5NfSIbPITQgQZJciO1k19CjgUFZNsucmiYxdH+6jShKSemR7+7bC/uql0VsqQo5D0Do/7GdFoUdsoZuCzbt1arCUZFGK3umhg/n8ktBAJhPnmhj6KqgpWL4tdLpVMRd8kouvGtkDxw6ALR+/IfhRQerZ8UFZOhb26FzSBc0NI0nT64rCTN0srLWeYBEDEQGSakojogkpJEyhk4BpQ9epL2ZphhUAORn6LRcYmzOstjpgT9wGbKCZIYuep87DssXF6PPckgu8oPuekF73gxZLuLvRa5tyAlkdXgSQ2eNx2SHniObaiDcN8VYWQtSSTtJABGGzrV3OlANa8F5JZfd4/BqVVhPngix7CwMHRGHLgK9BUusmXcABL/XssS0gGSH3hMUAoZOVGff5sS2cOihI48jSy7589DNM3MoHz0G4/xypgZYAFjr2GIBtFQKCi1Wg2AaLZiM8ajaJ6e9ccmkYGVmKWwtM7ihTTPE0FULpwC0aegA2A0tZxclMOVOkG0QQ539tVVTwYINMOrQg88xc9qiz9CNeoN9vpJDz7IRBrZUQRpNGM8+j/LRYyBLy/B27WTXUoGh05IfD/CLbKiUaw8oZN4kgRA4l1/CSuzlFM0eMHRarQTfz6uhl3shuXSpmUfX5n2IQkFRnYeeH8KhO+ERWl1o6MVvPiK+ZSumRslovvpqeLt2CnsMyaHDKrDeFKpReu6gRkeE9u6NjmRPrwJgv/IlQQqkP9Ag1FBLEfEM3Q0xdMHCsmysMhN0XRGIY0HRrN0WI1kuncbEpdolVdnWqszZcXacw6HzU1/x376DwmM/AAC0Lt4N59ofweD+3YmvE2mnfpMqY+G8kARDrDevwwTg7Z0AeeR7MPziOACZJEdaLoV7GfnN5ERxD5BfcqmU0brmFXBefCDbC8tsLimhtPcMnWdAOY6uFO0JhOTidp/l4jsNr1YVx9msxzsALKcagHmSDd4Ia+gmvIt2o3VR8oMrgzMl5/JLg7TDPPo5AOdFLwi+8Nt+khwMPVRNKk0nimXoGR7e0NHe9QCDj7jLkuWS0GQp5PCypi0GdnljIzAWFoN+YjkZOgCY0mAWWqvC/pEfgjk+CJxNKG/nm3u1DCwuwVhYCiRBwwjYcTcOnfd0ObcoKot5UFgFIt/fB08pDrHkvA6PEDQP/niu19FyiZG+LPKRAkLdM0X7XC255AaVGbqUCpZPcgnnoQPZj3ch24qBhi4aK2W8oXiQ0Ln8UuF0M5X8J9nGR46p9kGXEcfQeXVgREMnGdMWOYgXSC4EUD6RiErRmBiKxzMcMqctSp0qR4fDwyPSBofH2cidprzRqxAH7tD9drLGwvmwlMTfX97SegT3u7HgF68B2e7ZqOTSCiQXgS42nLyglXJ807NuEWLoujlX95AZepeSC3e6YpQaunTohUBDp7Uqy0nOolVL8MZHhSySl6GHYPkNp7IMMPBBYzR0IeV0o6GHBl14kSC3ai+X5DaogiVmLiySGProSJDPbxj5sqmke4pm0IXFZlXlGS3N8FpyfCQnRD6754FWy/Aq5Wynt1IxFP8QJ0BZ8sqr8XeDSqn3cguke8N21r197raQXMIMvbu0RdE7xWf69ktfCPeSvfmN4/MMPQ+0aKF15Q/D3bcn0xKN11/LHihC4E7shP3SK+AqNgrrCNNkA6xbORh6MYahRyonc2nosg1uJPdcNWbQaSPJ6/AiDF28Xh5bmAG0WhFyRuuaK2GcXYBzscJ9wR265Ji88SDnXAT8unHo1YrQm1EqovWqK0GztGkW90MT1Kqy/j5AiB3nlly6QOuVLw1Lsr1CqQBqGizxgctvOijaBSSG3nVQVHo4vVoFjbihvxkgB8xooYDWtT+SeY1QDnOpiMabruvKJmGPZYYKi1RK/sVrZcfLH9RojnGXDJ1QCiq3TMhaKRrz+8LhZX3e5KDoQE1IGnkCouzvE1b1u7wK96LdaP34VWqv473VJfmCVzwCsuTSBQM2DGbbyhpoqaRem8Bt4PdDswX4rSpQLIRZ/gZILs7LX7Q+CxsGvJFh1vVy15j43rr8qXVZtc8gM3R5B87FAuTX9CJ4wucZImNa4IUA7+Ns2+ol/xxxGnpUcuGBoSx6buQaya1SVbNckipFAUjFN822n3WEfF8QEkgueR06IMYHZqoniEguAOCN7QjWzCkptdkmFcdlfm30xManfcnPU87Cp36FN8ocOjz1YeZ5sLWuWhLkKLPbreQSfBBdsRwOv7cFgExpgRcEfj8RMWUoCwwj0HP96j1Ryt4VQ+9gh+oxtkMPGaE91zM69Og6suSSE95gLXM9gcixF331SyHnIRx6l/cubwFNO7QhSETEofNpX6FU1w1g6OsJOjoMY2GJFcKtk9wCKEguCwsLePe7340TJ06gWCzi0ksvxa233orR0VEcP34chw8fxuLiIkZGRjA9PY39+/evm7G5IaLMkbTFLiWXXqU30UIBpNnqO4Yul/7nsq1QANymeOjbGDqPR+Rk/m1QZJ3u/otgv/xFrNVwBK1XvRJkcRmtKyfVbfLR/LFXwuU6txhinMPh+XBedgW8iZ3Z2Jy/Sbo7R2FPXs7GKkqgebN4IpA7hmZFMkOXbNpyDH0ExHVhLC6vm9wCKDB0Qgh+7dd+Dffffz/uu+8+7Nu3D3/yJ38CADhy5AgOHTqE+++/H4cOHcLNN9+8boZ2gyAP1C895wMW8tw08tzGHrEI2scMXZT+57AtOowh2qdDSCR589CjUHR83s5RNKYOxj5YtFpB4+eu79zRMAGtn3wVXK5X90BycV58IHtMhb+nchGNG346FBAFehMUBXojufCYCmnZrK3uBmvo6wkumxnn5jfWoY+MjOCaa64RX1955ZU4deoU5ubmMDMzg6mpKQDA1NQUZmZmMD8/v27G5obE0OG43euIBte8e3TT8Q0mQ9DxQoBaZlcMnQdGaaHAMjaiQdFcWS5+hkyc896AzIgk9EJyyQW+kSRsfD2TXKSOoZlfyyU4Ibn4LZWtrSu58DRi49zCuunnQEYN3fM8fPKTn8TBgwcxOzuLiYkJmP6FN00Tu3btwuzs7LoY2hUMgzmAls0yI8pdshThiHokufQrQ/eDoqTVymeb3NNdmmAUBCUj/yqAO6rYApA+cugiOHmBP1OaUn3bK8klYOg5CnF4qi6XXBw/RlPYukFRWquy+cFY35TMTB7ptttuQ7VaxVvf+lbMzMz0xICxsYHcrx0fV5+X2ShYqBIPLoDCcA3e6XOoDVUwnGENsZZpADZQrJUxEPP6LHYBQGuwAg9AZbiKoRz2qCKrXc5wFQ6AguOA1KqZX9+slkEJwfjEMBrFgqgU3TE+BGN8EM5ghc0zNk3ltd3FQdgAzIEKqNwcCkC5UsRgj69f1vfMYQ9W4AKojNTW5TNNssu98gp4roPx3SOxP6fDZdgveyGGX34ARhd20crlsB97AXa87DKQwaASVfV6NUpFVA2K4fFBND0XZLCC6vgQeP3ozt3DID0swc/7OfYSzYsmQI8/C8MK7vde26V8xaanp/HMM8/g7rvvhmEY2LNnD06fPg3XdWGaJlzXxZkzZ7BnT7aimLm5FXgeTf/FCMbHB3E2qZ9FDAYMA43FVRQANE0LBQArdRt2hjXEWiAgAJouxfnI67PaBQBlaqAAYM2maOWwRwV57Co0HJQBuMtrcGu1tveahgolME0TZ88uo2ay4cIEwPxSA7SwjEK9hTJYP3RV24zVFmoAHKuAKMestxws9vD65blmHMWWixKANRc9/0w72jW8Azj4E8m9XgDgjX7tRLd2vfl6oOEBjeV0uyKoFQuwF1exeHYZtXoLjgfYK+yzBYBz82s9kya6+Rx7ieKlF6F0/FnQ5VWcPbuc2y7DIIlEWIn7f+hDH8Kjjz6KO++8E0U/aj82NobJyUkcPXoUAHD06FFMTk5idHS001IbBiof+buUXGiPNXQRpO2zLBcRe2g0c2X00GLQAphawYxRsVaeiUVcl+97ycXXsvvtM+0TsAZdflCUpy3KFcTrqDNvFHiBl1w70Wuk3m1PPPEE7r77buzfvx+/9Eu/BAC4+OKLceedd+KWW27B4cOHcdddd2FoaAjT09PrZmjXMM1gxqMo787b0a23Gjr61KFznZW07HwB20JB0nRjMhi6qBSNdej95AT4e8oRNNwW8AdyAwiC7lmmdG1CeDvXn+ymPqUvfOEL8f3vfz/2ZwcOHMA999zTc6PWA7Rgsb4kYClEzoFL4OYdLZUj3a6jbf0aFJXL2XOk8TkHLgkKXOSikbYslwwOfWiAfXb7LxJ9wgX6iKGLjedCZ7lsEtBigZ38XBfE80IMfaulLAoQgsbBH2NzZ9cJ/UUJ1xOmCbLmD5EoFVH/xZ/Jv5YRyAi9QP9KLpEOghnhvOSFcF7ywra1gjz0fAMu6r/4MzCeP9v2o/UavJsLQnLRDj0OtGCxGQByr31+X2xVh45gDsJ6oX8ozTqDWqY44nVdsk96y9DBqwn7jM3JD1Yehx5aK65oJI+GLtaIuXX7iKEL+0r99Zn2DUze+E2ahsXbRWxRyeVCYPtcOb/qEUD3VXKcofeIUfcvQ5ckl277qwv2JQW8TF76n6NfeNyA7z7S0MUouC5K/7c0+PCUVmQaVsHaupLLBcC2ceg9GZDLYfS29N/duwvOxbu7ZsE9h9mdhi5DPLDyNcuhoQvEfYZ9xNC9vbvg7NsTTPTRCIGKxm+coVvi+7lacmgA2EYaemgkW7eOuNcMfccw6m/72Z6s1UuENr5u2S9PSZNZf48kF2pZbOBIH2no3tgO1N96w0ab0b+ITMMSsQZLM/RusG22wtBItm6DmT1m6H2LlL4gWSA2P3mtLhi6LLmItddp8K5G70ELlj+vNjw8hWrJpStsmydAljO6D4p2wSw3E/wCCG8of3sGgbiUNDNHlotYT1qHxyD6iKFrpMA0QTxPtIOQGbqWXPJj+0guMkPvWnLxK0V72GuiH+HtGIY3WEPz+mu7X6zQLrl4YzvgTuxEaWIMaCW9MAGy5CLmNGpHsFnAT1XE78fDv3Yu29dX0tlmw9b2SDKkoF63DJ32Om2xX1EsYPX/+S89WSquaIQO1rD2q7+A2vBg9r4isvMWkot2BJsGvAqZF9n4DL312h/dKIu2BLYnpelVUHSLM/SeIoahdwVCghF3mqFvPvA+QRGGrtEdtucT0HXa4jbR0HsI4ch7ec1Mk52WeE8dfVTfNOBkiDv0zDNrNWKxrRx646dfDW94sHsmR7aHht5TrEefDsNgTp0zdc3QNw8EQ2+yz01ntvQE28oj2Ve/HPbVL+9+Ic3QM4P2WnIBq8YklAYBUq2hbxqEGHqfjV7czNBXMgfyDDfe9lgPhm6ZoJQGG6yWXDYPJA1dNzDrHfQZNQ+2SdpiLxFbWNQtDL+RU7TZl0bfI8TQ9XPUM+gnIA+05JIdvPS/h0Uj1HfmQjvXksvmgTQNS/eM7x301pgHhPjZFdqhq2JdGLplsmJWvklohr55IN0HOmWxd9BXMg8MQ7PzrIhpztU1DBMwAw1dZ7lsHoTuA62h9wzaoecBIVo/z4jY9rndrmkaIDRIW9SSyyaCZujrAn0lc8DdNQaysrbRZmwuFCy4O3fAG+/doFxvYifr2GfooOhmg2bo6wPt0HPA/tFXwP7RV2y0GZsLhoG1//ZLPV2y+dOvBgAUH/w3/29ohr5poBn6ukBTGo3ND1PnoW86mAYo/7926D2Ddugamx5ixqsecLF5QEgQKNeSS8+gnwCNzQ9dKbo5wXV0XfrfM2iHrrH5oStFNyV4YFQz9N5BPwEamx+6sGhzggdGtYbeM+gnQGPTQ5f+b04EDF079F5BO3SNTQ9vxzCoZYHWKhttikYW6KBoz6G3Ro1ND+/i3Vj5f//bRpuhkRGiuEgz9J5BM3QNDY2NgQ6K9hzaoWtoaGwMeFBUpy32DNqha2hobAhEUNTSDL1XSHXo09PTOHjwIF70ohfh8ccfF98/fvw43vKWt+D666/HW97yFjz99NPraaeGhsZWg2boPUeqQ7/uuuvwiU98AhdddFHo+0eOHMGhQ4dw//3349ChQ7j55pvXzUgNDY2tB11Y1HukOvSrr74ae/bsCX1vbm4OMzMzmJqaAgBMTU1hZmYG8/Pz62OlhobG1oOpC4t6jVxXcnZ2FhMTEzD9kmvTNLFr1y7Mzs5idDRbv+uxsYE8JgAAxscHc792PaHtyo5+tU3blQ1Z7HIu2gnnqSGM7xpaR4sYtsL1UsGGb41zcyvwPJr+ixGMjw/i7NnldbCoO2i7sqNfbdN2ZUNmuyavAF54AMvr/F62zPXyYRgkkQjnynLZs2cPTp8+Ddd1AQCu6+LMmTNt0oyGhoZGIgwDKGr9vJfI5dDHxsYwOTmJo0ePAgCOHj2KycnJzHKLhoaGhkbvkCq5vP/978cDDzyAc+fO4Vd+5VcwMjKCz3/+87jllltw+PBh3HXXXRgaGsL09PSFsFdDQ0NDIwGEUppdwO4htIZ+YdCvdgH9a5u2Kxu0XdnQNxq6hoaGhkb/QTt0DQ0NjS0C7dA1NDQ0tgg2PA/d6GKwbzevXU9ou7KjX23TdmWDtisb8tjV6TUbHhTV0NDQ0OgNtOSioaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWw4aX/WXH8+HEcPnwYi4uLGBkZwfT0NPbv37/RZmF6ehr3338/nnvuOdx333244oorNtokAMDCwgLe/e5348SJEygWi7j00ktx66239sUwkne84x149tlnYRgGqtUq/uAP/gCTk5MbbZbAHXfcgb/4i7/om8/z4MGDKBaLKJVKAICbbroJ11577QZbBTSbTfzhH/4hvva1r6FUKuHKK6/EbbfdttFm4dlnn8Vv/dZvia+Xl5exsrKCb37zmxtoFcNXvvIV3H777aCUwvM8vPOd78TrX//67hemmwxve9vb6L333ksppfTee++lb3vb2zbYIoaHH36Ynjp1ir7uda+j3//+9zfaHIGFhQX69a9/XXz9R3/0R/T3f//3N9CiAEtLS+L/X/ziF+kNN9ywgdaE8eijj9K3v/3t9Cd/8if75vPst3uL47bbbqMf+MAHqOd5lFJKz549u8EWxeP9738/fd/73rfRZlDP8+jVV18tPsvHHnuMXnnlldR13a7X3lSSy9zcHGZmZjA1NQUAmJqawszMDObn5zfYMuDqq6/uy5mqIyMjuOaaa8TXV155JU6dOrWBFgUYHAwmnq+srICQ/mig1Gq1cOutt+LIkSN9Y1O/YnV1Fffeey9uvPFGca127ty5wVa1o9Vq4b777sPP//zPb7QpAADDMLC8zIZbLC8vY9euXTCM7t3xppJcZmdnMTExAdM0AQCmaWLXrl2YnZ3tCwmh3+F5Hj75yU/i4MGDG22KwHvf+1489NBDoJTiIx/5yEabAwC4/fbb8aY3vQn79u3baFPacNNNN4FSiquuugq/+7u/i6GhoQ215+TJkxgZGcEdd9yBb3zjG6jVarjxxhtx9dVXb6hdURw7dgwTExN46UtfutGmgBCCP/uzP8M73vEOVKtVrK6u4sMf/nBP1t5UDF2jO9x2222oVqt461vfutGmCHzgAx/AP//zP+Nd73oXPvjBD260Ofj2t7+N73znOzh06NBGm9KGT3ziE/jc5z6HT3/606CU4tZbb91ok+A4Dk6ePImXvOQl+Md//EfcdNNNeOc734mVlZWNNi2ET3/6033Dzh3HwYc//GHcdddd+MpXvoK//Mu/xLve9S6srq52vfamcuh79uzB6dOn4bouAMB1XZw5c6YvpY5+w/T0NJ555hn82Z/9WU+Odr3GDTfcgG984xtYWFjYUDsefvhhPPXUU7juuutw8OBBPP/883j729+OBx98cEPtAiDu82KxiEOHDuHf//3fN9giYO/evbAsS8igr3jFK7Bjxw4cP358gy0LcPr0aTz88MN44xvfuNGmAAAee+wxnDlzBldddRUA4KqrrkKlUsGTTz7Z9dr992R3wNjYGCYnJ3H06FEAwNGjRzE5OanllhR86EMfwqOPPoo777wTxWJxo80BwLTX2dlZ8fWxY8cwPDyMkZGRjTMKwK//+q/jwQcfxLFjx3Ds2DHs3r0bH/3oR/HqV796Q+1aW1sTmiulFF/4whf6IiNodHQU11xzDR566CEALAttbm4Ol1566QZbFuAzn/kMXvva12LHjh0bbQoAYPfu3Xj++efx1FNPAQCefPJJnDt3DpdccknXa2+6ARdPPvkkDh8+jKWlJQwNDWF6ehoveMELNtosvP/978cDDzyAc+fOYceOHRgZGcHnP//5jTYLTzzxBKamprB//36Uy2UAwMUXX4w777xzQ+06d+4c3vGOd6Ber8MwDAwPD+P3fu/3+kLjlHHw4EHcfffdG562ePLkSbzzne+E67rwPA8HDhzAf//v/x27du3aULu4be95z3uwuLgIy7LwO7/zO3jta1+70WYJXH/99Xjve9+L17zmNRttisDnPvc5/NVf/ZUIJP/2b/82fuqnfqrrdTedQ9fQ0NDQiMemklw0NDQ0NJKhHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwR/P9WOPqjG/dGXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc_poisson = Lightcurve(times, noisy, dt=dt)\n", + "lc_poisson.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b9e4b55d", + "metadata": {}, + "source": [ + "### Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "dabd22b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wcdfnA8c/M7F7vLXeX3ntPCIRQQpEuGBFEUBERVJqogAIqXfgBitgQREABQToiTZBOCAnp7dKv5XrvW2Z+f8zu3t7d9pK7yz3v1yuvJHd7s3OzbZ55nu/zKIZhGAghhBBCCCGECJk62DsghBBCCCGEEMONBFJCCCGEEEIIESYJpIQQQgghhBAiTBJICSGEEEIIIUSYJJASQgghhBBCiDBJICWEEEIIIYQQYZJASgghhBBCCCHCZBnsHRgudN3A6dQP6X1aLCoOx6G9z5FGjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4f6GGuaiqoqQW8ngVSInE6d5ubOQ3Z/qqqQm5tGa2sXui4zk+NBjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4NxjLOyUlBVLejtpLRPCCGEEEIIIcIkgZQQQgghhBBChEkCKSGEEEIIIYQIkwRSQgghhBBCCBEmaTYhhBBCCDFEGIaBrjsxYrSmXlUVbDYbDodDmiHEgRzf+IvHMVYUUFUNRQnemS8QCaSEEEIIIYYAp9NJQ0MVuu6M6Xbr61V0Xdpzx4sc3/iLxzFWVY3c3CI0LXh3Pn8kkBJCCCGEGAJaWxtRVY2cnFFAdFfKvVksCg6HZEviRY5v/MX+GBs0N9fT2tpIdnZ+5PsVwz0SQgghhBARMAydnp5OsrMLsFisMd22xaICkjGJFzm+8RePY5yenkVTUy2GoaMokbWNkGYTQgghhBCDzF22pGlyjVuIQ8H9WoumZFACKSGEEEKIQdbbXCJ2JX1CiEDM11o0jV0kkBJCCCGEEEKIMEkgJYQQQgghhoT169exYsUSOjs7A97u3HPP4oUXnj1EezV0vf76vznjjBMHezdGLAmkhBBCCCFERO688xZWrFjCb3/7fwO+d+utN7NixRL+8IcHIt6+v0DhkUf+zhlnnO35/4oVS/jkk48ivp9D4dFH/8KKFUsG/LnssotD+nlfweOJJ57Mk08+F4e97evOO2/h5puvj/v9DDeyolEIIYQQQkSsoGAU//3vW1xxxY9ISEgAoKOjnY8+ep+CglFxuc/s7Oy4bDcW7HY7VqvvzotTpkzj/vsf7PM1f7cNRWJiEomJSRH/vIiOZKSEEEIIIUTEZs2aTXZ2Nh9//KHna++88zbTps2guHh0n9v2zxx1dnayYsUS1q9fN2C769ev4667bqWlpcWTvXn00b8AfbMz5557FgA33HAtK1Ys8fy/vLyMG264lrPO+hInn3wsl1/+HTZt2jhgf15++QWuvfYKTjjhaL7+9a+wevXHfW6zb98efvzjqzjppBWcffYp3H337bS3t3u+/4MffI8HHriPBx64l9NPP5Ebb/yp32OlaRq5uXl9/mRkZHq+/+ijf2HVqjNYufIovvKV0/nLX/4IwJVXXkZ1dRW//e29nmMBAzN2jz76F7773W/y8ssv8JWvnM7JJx/L73//G5xOJ4888mfOOONEzjnnNF599aU++/WHPzzA17/+FU444WjOO+9snnjiUU83u0cf/QtvvPEa77//P899ux+vmppqbr75Bk455TjOOONEbr75eurr6/z+/ocbyUgJIYQQQoionH76Wbz++quccMJJgHmCf9ZZ5/Dmm/+JeJtz587n6qt/wuOP/5V//MMMmpKTUwbc7pFH/s5ZZ53ML35xG0uWHIGqaoAZpC1ffgyXX34FFouVV155keuvv4Znn32FrKwsz8//9a8P8cMfXs21117Hq6++zE03Xc8///kio0YV0tbWxtVX/4BzzvkqP/rRT+js7OL3v/8Nd955C7/+9X2ebfznP69y7rnn89BDf4v4933vvXf417+e5pZb7mLixMnU19dSXl4GwF133cvFF3+Dr3zlXE4//ayA2ykrK2XDhnX85jd/oLR0P7/61Y3s27eXWbPm8NBDj/H++//j/vvvZunSZRQVFQOQlpbGzTffSm5uHrt27eSee+4kKyubs89exQUXfJPS0gN0d3dzww03AZCRkYnD4eAnP7mKefMW8Oc/PwooPProQ9xww4955JEnUNXDP18jgZQYsaxPtdCjtMM30gZ7V4QQQogBfluygc8aqqLfkAKE2OL5yNwirp2+MOy7OPXUM3j00b9QX19HR0cH+/bt4YQTTooqkLJaraSlpaEokJub5/d27jK/tLT0PrebPn0G06fP8Pz/qquu5YMP/seaNZ9yyimne75+0kmneIKTK6/8EZ9/vpqXX36Byy+/ghdeeJaZM2dx6aXf99z++utv4sILz6WpqZHs7BwAxo+fwOWXXxH0d9q9u4STTz6mz9e+/OVVXHXVtdTUVJOTk8vSpcuwWCwUFhYyZ848wAxcVFUlJSUl4LFw+9nPfklycjITJ05i1qw5NDU18b3v/QCACy/8Fk8++RibN2/0BFIXX3yp52eLiorZs2c3//vfO5x99ipSUlJITExE15197vutt15HURSuv/4mz9duuulWTjttJTt3bmfWrDlB93O4k0BKjFjaThtOB4AEUkIIIUQ0cnPzWLJkGW+88R/a2lo57rgTSElJHdR96uzs5NFH/8Lq1R/T2NiA0+mkp6eHmprqPrfrf8I/e/ZcDhzYD8CePbtZu3bNgOAHoLKywhNIzZgxM6R9mjBhInfddV+fr6WlpQNw/PEn8eyzT3PeeWdz5JHLWb58BcuXHxN2Zqe4eDTJycme/+fk5JCQkOj5v6qqZGZm0dTU6Pnau+++zXPPPUNlZQXd3V04HA5GjSoKeD979uymrKx0wLFxOp1UVlZIICXEYc1hgHOwd0IIIYTwzcwMhZ8d6s9iUXE49Oh3KIgzzjiLhx76A52dnfzqV3f4vI2iKBheE1AdDkfc9uePf3yAL75Yyw9/eA2jR48hMTGRn/70Gux2e7998r2fAF1dXRxzzPE+s035+fmefyclJQ/4vi9WawJjxoz1+b3CwkL++c8X+fzzz1i7dg13330706bN4P77f+/Zn1BYLH1P7xVF8fk1XTcfh61bN3Pbbb/g0kt/wNKly0hNTeW1117h3XffDng/XV2dzJo1m5tuunXA93JyckLe3+FMAikxMhkGivu9W49ipLUQQgghADj66GO5995fk5ycwsKFi33eJisrm8bGBs//9+zZFXCbFosVpzN4EGixWND1vldHt2zZxBlnfJljjz0egNbWVurqagb87LZtWzn55FM9/9++fSvLl5tZlmnTpvPRRx9QVFSMpmlB9yNaSUlJHHvs8Rx77PGceuoZXH75xdTU1FBYWBjysQjXli2bKS4ezTe/ebHna9XVB/vcxtd9T506nffff5ecnJxBzz4OlsN/FZgQvjj9/FsIIYQQEbFYLDz77Es88cTTfjMoCxcu5oUX/sWePbvZsmUTjzzyp4DbLCoqoqOjnfXr19Hc3Ex3d7fP2xUWFrNu3ec0NNTT2toKwJgx43j//f+xe/cudu3ayS233ORpROHt3Xff5o03XqOsrJQ//el3lJWVcvbZXwVg1aqv0dTUwG233czOnduprKxg9eqPueeeO8M5NB5Op5OGhvo+f5qamgB4443X+M9/XmXfvr1UVlbw7rtvkZaW7snuFBUVsXHjeurqamlubo7o/n0ZO3YsVVUHeffd/1JZWcHTT/+DNWtW97lNUVGRp5SvubkZh8PBl750Gqmpafz859exadNGDh6s5Isv1nLffb+mra0tZvs3lEkgJUYmh1cWyikZKSGEECIWUlPTAmYnrrzyR2RlZfP973+He++9i0suuSzg9ubOnc/ZZ6/iF7+4gTPPPImnnnrC73bXrFnNqlVncMklFwJmc4mUlBS+//3vcOON17Fy5YmMGzd+wM9+97uX8eabr3PxxRfwwQfvcfvt91BYWAhAfn4Bf/rTo9hsNn70ox/yrW+dzx//+GCfrn/h2LNnF2effWqfP9/+9tcB89i9/PILfP/7l3Dxxd9g584d3HvvA57ZXN/97veprKzg/PPP4cwzT4ro/n1ZseI4zjvvAn7zm7v5zncuZO/eXVx44bf73Oass77CmDFj+O53v8mZZ57E5s0bSU5O5o9/fIS8vFxuvPEnXHTR17j33rtQFNWzz4c7xfAuVBV+2e1Omps7D9n9qapCbm4aDQ3tnhpWEUPtOqm3m6UFXbfmoSeFXnssQifP4/iS4xt/cozjS45vL4fDQX19JXl5owesZ4nWoVojNRytWLGEe+75LUcfPbCZRKjk+MZfPI5xoNdcVlYKVmvwUk7JSIkRSfHOSDlG9oe3EEIIIYQInwRSYmTyCp4UuYgkhBBCCCHCJF37xMjk3W1Vmk0IIYQQI9LHH68b7F0Qw5hkpMSIpEizCSGEEEIIEQUJpMTIJBkpIYQQQggRBQmkxMgkGSkhhBBCCBEFCaTEiKTYvQOpwdsPIYQQQggxPEkgJUYmr+BJkYyUEEIIIYQIkwRSYmTyzkhJ+3MhhBBCCBEmCaTEiKR4N5uQgbxCCCGEEFFbv34dK1YsobOzc7B35ZCQOVJiZHJIRkoIIYSI1p133sIbb7wGgMViYdSoQk477UwuuuhiLBY5zQSoqjrI1772Zf7+92eYNGnKYO+Ox+uv/5u77rp1wNdzcnJ59dW3gv78lVdexowZs7jyyh95vjZ37nxeeeVNkpOTY7mrAzz66F/49NOPefTRf8T1foKRZ7gYmaRrnxBCCBETy5cfww033ITd7mDTpvXcc8+daJrGN7/5ncHeNex2O1ardbB3IySDsa8ZGZn84x/P9vmaqmoRb89qtZKbmxftbg0bUtonRiTv0j5FuvYJIYQQEUtIME+eCwsLOeWU0znllNP4+OMPAWhtbeHWW2/m1FOP56STVnDDDddSXV0NQHt7O8ceewS7d+8CwOFwcNJJK7j22is82/7Xv57m0ku/5fn/vn17+PGPr+Kkk1Zw9tmncPfdt9Pe3u75/pVXXsYDD9zHAw/cy+mnn8iNN/4UMDMYq1adwcqVR/GVr5zOX/7yR8/PnHvuWTzxxKP88pc/56STVrBq1Rn85z+v9vkda2qqufnmGzjllOM444wTufnm66mvr+tzm1dffYmLLvoaK1cexTnnnMaf//x7AL72tS8D8K1vfZ0VK5Zw5ZWXAWY27+abr+exxx7h7LNP4ZJLLgRgxYolfPLJR57tdnZ2smLFEtavXwf0ls+tWbOab3/765xwwtH85CdX09rayrvv/pfzzjubU089nvvuuxunM/BJjqJAbm5enz/Z2dme77/44nOcf/45rFx5FF/+8inceectnn3fuHE9zzzzJCtWLGHFiiVUVR0cUNr3+uv/5owzTuTDD9/n61//CiedtILbbvsFNpuN559/hnPOOY0zzzyJv/3t4T779fTTf+eb3zyPE088mlWrzuCBB+6np6fHs83HHnuEkpIdnvt+/fV/A9Da2sqvf30bZ5xxIqecchw//vGVlJYeCHgMoiEZKTEySUZKCCGEiIvExETsdjsAd9xxC9XVB7n33t+RmJjIgw/+hhtv/AmPPvokaWlpTJkylY0b1zN16jR27NhGYmIiW7duxuFwYLFY2LBhPQsWLAKgra2Nq6/+Aeec81V+9KOf0NnZxe9//xvuvPMWfv3r+zz3/5//vMq5557PQw/9DYD33nuHf/3raW655S4mTpxMfX0t5eVlffb56af/zsUXf49LL/0+H3/8IffccwcTJ05i1qw5OBwOfvKTq5g3bwF//vOjgMKjjz7EDTf8mEceeQJQef31f/Pgg/fzwx9ew9Kly2hpaWHXrp0APPLIE3zve9/m97//C+PGje+TdVqz5jNSUlJ54IE/h32cH3/8Ea677kY0TeOmm67nF7+4gZSUFO6++35qamq46abrmTdvPl/60mlhbxtg587t/O5393Hzzbcyd+58mpub2bFjGwDXXPNTysvLmDJlGt/5zqUAZGVlU1V1cMB2Ojs7efnl57n99ntobW3hxht/ys9+9mNGjSrkd7/7Mzt2bOOOO37FkiVHMG/eAgA0TePaa6+nqKiY8vIy7rvv11itCVx++RWceOLJ7Nu3l3XrPuf++x8EIC0tDYBf/vJnJCcnc//9fyAlJZnnnnuWa6+9gqeeej4u5YYSSImRySFzpIQQQgxtCf9qxbLNFptthXg7x+wEbOdlRHw/27Zt5a233uDMM8+mrKyUTz/9iIcffpxZs+YA8Ktf3cG5557FunVrWLr0SBYsWMSGDV/wta99nY0b13PMMcezfv06du7cwezZc9i8eQNnnGFmdF544VlmzpzFpZd+33N/119/ExdeeC5NTY1kZ+cAMH78BC6/vDer9emnH5GTk8vSpcuwWCwUFhYyZ868Pvu9cOFiLrjgIgC+8Y1vsnHjF/zrX//kllvu5N1330ZRFK6//ibP7W+66VZOO20lO3duZ968eTz22CNceOG3WbXqawCMHQtz5swFzAADIDMzc0DZW2pqKtdff1NE68kuu+wKz+9x6qln8OSTj/Pvf79NZmYWkyZNYcmSpaxfvy5gINXS0sLJJx/T52vLli3njjvuoaammqSkJI4++hhSUlIpLCxixoyZgBm4WCwWkpKSgpby2e12rr/+JgoLiwA4+uhj+fzzz/i//3sAi8XC+PETeOqpJ1i/fp0nkDr//As9P19UVMwll3yPxx77K5dffgWJiUkkJyejaVqf+960aSMlJTt59dW3PMHqtddex4cfvsenn37MiSeeHOKRDZ0EUmJE6tO1TwIpIYQQImIfffQBJ598DE6nE6fTyUknncIll1zGunVrsFqtzJw523Pb/PwCioqKOXDggCuQWsw999yOYRhs2LCeU045DcMw2LjxC5KSkmhra/OcXO/Zs5u1a9cMOPEHqKys8ARS7pN9t+OPP4lnn32a8847myOPXM7y5StYvvwYVLV3hYs70HObPXsu77//rud+y8pKB9yv0+mksrKCyZMnU1V1kEWLloR97CZPnhpxU47Jk6d6/p2Tk0NOTi6ZmVmer2Vn59DU1BhwG+npGa6sWq+kJDNzs2TJEeTnj3Idt6M58sjlHHvsShISQg3LTampqZ4gyr1fY8eO7fN75+Tk0tzc5Pn/2rVr+Mc/HqO09ACdnR3ouh60THHPnl10dLRz+ukn9Pl6T08PBw9WhLXPoZJASoxMUtonhBBiiLOdl0Es8lEWi4rDEb8WtUuWLOPaa6/DYrGSl5cXNDAwDANFMf+9YMFCWltb2bNnF1u3buaGG25C13X+97//kpSUxOTJU8jIMDNkXV1dHHPM8X2yTW75+fmef7sDAbfCwkL++c8X+fzzz1i7dg13330706bN4P77f4/i2hH3397cX+vq6mTWrNncdJOvDnc53j8R8Pf2JTk5yef9GkbvuYnD4RhwG6DPcVYUZcBx778dX1RVYcyYsT6/l5qaxuOPP8369etYs2Y1f/7z7/nHPx7n4YcfIzFx4H7742u/NK3/c0RB183naFXVQW644VpWrTqPyy+/kvT0dL74Yg333/9/Ae+nq6uT/PwCfve7gWWS7udQrEkgJUYmaTYhhBBCxERycpLPk/Hx4ydit9vZsWObJ+NTV1dLdXUV48dPBMyucZMmTebZZ58mMzOLUaMKWbhwMQ88cC8Wi4UFCxZ7tjdt2nQ++ugDioqK0bTwOsslJSVx7LHHc+yxx3PqqWdw+eUXU1NTQ2FhIQDbtm3pc/tt27YybtwEAKZOnc77779LTk4OKSmpA7ZtsagUFRWzfv1a5s9fMOD77jIzpzO0YDYrK5vGxgbP//fs2RXSz8WDxWLhiCOO5IgjjuTCC7/Fl798Cjt2bGfBgkVYrVZ0PfYnUSUlOwD6tFV/441/97mNr/ueNm0G9fV1WK1WRo0qjPl++SJd+8SIpEhGSgghhIircePGs3z5Mdx99+1s2bKJXbt2ctttv2Dy5CksWXKE53YLFiziv/99k4ULzaYShYVFZGRk8umnH3saTQCsWvU1mpoauO22m9m5czuVlRWsXv0x99xzZ8D9eOON1/jPf15l3769VFZW8O67b5GWlt4nm7Rx43qeffYpyspKeeaZJ/nss08499yvA/ClL51GamoaP//5dWzatJGDByv54ou13Hffr2lrawPgkksu46mnnuDFF5+joqKcnTu38/LLzwNmYJSYmMiaNZ/S1NTYp8ugLwsXLuaFF/7Fnj272bJlE4888qcwjnp4DAMaGuoH/AH45JOPeP75Z9i9exdVVQd5443XsFgsFBePBqCwsJht27ZSXV1Fc3OzJ6MUrdGjx2Kz2XjhhWeprKzgtdde4T//6RtIFRYWU1lZye7du2hubsZms7FkyRHMmjWbn//8J6xd+xkHD1ayadNG/vjH38Wtc59kpMTIJM0mhBBCiLi76aZf8cAD9/HTn16N0+lk0aKl3HTTrX1K6RYsWMQLL/yLhQsX9/nam2/+h/nzF3q+lp9fwJ/+9CgPPfR7fvSjH2K32ykqGs0xxxwXcB9SU9P4xz8e43e/ux/DMJg6dRr33vtAn7U+F1zwTbZs2cTDD/+JjIxMrr/+Rk+ziOTkZP74x0f4858f5MYbf0JXVxcFBaNYuvRIzzZOO+1Menq6eeaZp3nwwfvJzs7h1FPPAMyszo9+dB2PPfYIDz/8J+bNW8Af/vDwwB11ufLKH3Hnnbfy/e9/h+Li0Vx11bVce+2VYRz10LW2tnD22acO+Pq7735CWlo677//Px599GHsdhvjxk3gzjvvpaBgFAAXXHARd955CxdeeC49PT0899yrA7YTialTp3HVVdfy97//jT/96UEWL17K5Zf/kF//+nbPbY4//gQ+/PB/XHXV5bS3t3Hjjb/i9NPP4r77HuShh/7IHXfcQmtrC7m5eSxcuDhupX2KEax4UgBgtztpbu48ZPenqgq5uWk0NLSj6/IQxVriYy1YdpqV5/aTUrCdPDBVL6Inz+P4kuMbf3KM40uOby+Hw0F9fSV5eaMjbj7gT7zXSA135557FhdccBFf/er5Ef28HN/4i8cxDvSay8pKwWoNXj4qpX1iRFIkIyWEEEIIIaIggZQYmWSNlBBCCCGEiIKskRIjk3TtE0IIIQTw/PP/Dn4jIXyQjJQYkaRrnxBCCCGEiIYEUmJk8p5tJxkpIYQQg6y3iZ1c3BPi0DBfaz5mMYdMAikxMkmzCSGEEEOIqpqnZE6nI8gthRCx4H6tqWp4w529yRopMSJJaZ8QQoihRFFUEhNTaGtrRtMsQBSXyQduHYdDPuviR45v/MX6GBu0tTWTmJjSZ6ZZuCSQEiOTvfef0mxCCCHEUJCRkUNDQxX19Qdjul1VVdF1mXMUL3J84y8ex1hVNbKzC6LahgRSYmTyzkKN8CGQQgghhgZN08jPH42uOzFi9NGkqgrZ2Sk0NXWO+KHH8SDHN/7icYwVxQykoslGgQRSYiQyDBTvEnQpRxdCCDFEKIriKu2LDVVVSEhIwGKxyYl+HMjxjb+hfIyl2YQYeVylfIb7IsQQe1EKIYQQQoihTwIpMfLYXYFToiuSkjVSQgghhBAiTBJIiZHHnZFyBVKKdO0TQgghhBBhkkBKjDiKZKSEEEIIIUSUJJASI4+zfyAlGSkhhBBCCBEeCaTEyOOaIWVIRkoIIYQQQkRIAikx4iiSkRJCCCGEEFGSQEqMPO6MVIIrkJJh5EIIIYQQIkwSSImRx+HKQFkU0Og7nFcIIYQQQogQSCAlRhylTyClyEBeIYQQQggRNgmkxMjjykAZVsxgSppNCCGEEEKIMEkgJUaefqV90mxCCCGEEEKE67APpK6++mqWLl3KtddeO9i7IoYI79I+RZOMlBBCCCGECN9hH0hdeOGF3HPPPYO9G2IocTeXsGAGUwayTkoIIYQQQoTlsA+kli1bRmpq6mDvhhhKXBkpw91sAqQFuhBCCCGECItlMO987dq1PProo2zdupW6ujoeeughVq5c2ec2Tz31FI8++ih1dXXMnDmTm2++mXnz5g3SHouhqsvpoLKznfKudnqcDqyqRqKqYVVVElUNi6ri0HXshs7oVoOpaOzobGKKbiUVONjeTk56MknaoL4khBBCCCHEMDGoZ42dnZ1Mnz6dVatWcdVVVw34/uuvv86vf/1rbr31VubPn88TTzzBpZdeyptvvklOTg4AZ599ts9tv/jii2iaFtP9VVUlptsL5b4O5X0OJw09XbxYsZfSjlbKO9up6+kK+We/XTWGqYzljbpSvtpTxFRS+ckXH9GW4CBFs5CdkEiSZiFBVbGqGgmqSoKqMSophZMLxzEhNSOOv9nhRZ7H8SXHN/7kGMeXHN/4k2McX3J8428oH+NBDaSOO+44jjvuOL/ff+yxxzj//PP56le/CsCtt97K+++/z0svvcR3v/tdAF555ZVDsq8Wi0pubtohuS9v2dlSlujLc9v28FLFXgBUFMakpjE+PYMJ6ZmkWxPocTrp0Z3YnK4/uhOLKyCaV20e0xVjxpBZbYFWWJRTwAHaqe/uorKrw+/9vlSxl/m5+ayaOJWVo8eRGONg/XAlz+P4kuMbf3KM40uOb/zJMY4vOb7xNxSP8ZCtY7LZbGzbto0f/OAHnq+pqsry5cvZuHHjId8fh0OntTX0rEe0VFUhOzuVpqYOdGmEMMDBlnYArpm2gJWjxpCghh7QWDe2AV0syx9FYno3ek0PP5u8CCPL3EaPK/Ay/+jYdSc9us6W5nperzrApoY6NjXUcf/GdZxUOJbzxk0jw5oQj19z2JPncXzJ8Y0/OcbxJcc3/uQYx5cc3/gbjGOckZGM1Rr83HLIBlJNTU04nU7y8vL6fD03N5fS0tKQt3PZZZexefNmurq6OPbYY3n44YeZMWNGRPs0GC8QXTfkhelDm90GwPiUdCyoYR0jw27eVlcxZ0kBut3AcG3DqqhYNZVUzdrn5yanZvLl4klsbq7njeoDfNZQzYuurNglE2dH+ysd1uR5HF9yfONPjnF8yfGNPznG8SXHN/6G4jEesoGUP4ZhoCih10g+/PDDcdwbMVjaHXYA0izWILf0wd3+3OrdtS+0F6aqKCzIzmdBdj4bm+q4eetq6roPXaZSCCGEEEIMDUO2/Xl2djaaplFfX9/n642NjQOyVGLkaXOYGal0S/gldd4DeXFnbR1+b+5XYVIKAE32nvB/WAghhBBCDGtDNpBKSEhg9uzZfPrpp56v6brO6tWrWbBgweDtmBgS3BmplIgyUu45UqC4MlJKBKnirIREAJptEkgJIYQQQow0g1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRZDQbvDRqrFihZGmaeHO/vkPZDXGf5mkjQLyZqFJlt3+D8shBBCCCGGtUENpLZu3cq3vvUtz//vuOMOAK688kquuuoqTj/9dBobG3nwwQc9A3n/+te/emZIiZHJoet0OZ2MSkqM6Od7S/vwNJvAGdnixeyERA52ddDjdEordCGEEEKIEWRQA6lly5ZRUlIS8DYXXXQRF1100SHaIzEcuMv60iMp6wOv0j6vNVIRZKQAsq1mINVs72GUlhLZRoQQQgghxLAzZNdICeFPbyAV4ewmH6V9SqSBVEISIOukhBBCCCFGGgmkxLDj7tgXUetz+pb2KVp0pX1ZVrO8sMku66SEEEIIIUYSCaTEsBPVDCnom5FyF7fqkW0q29W5r0kyUkIIIYQQI4oEUmLYaXdnpKwRlvbZDQwFc31UlBkpCaSEEEIIIUYmCaTEsNNuj67ZhOIwzCBKid0aKWmBLoQQQggxskggJYadtliU9lldAVS07c89a6QkIyWEEEIIMZJIICWGnd41UpF27TPM1ucQdfvzLCntE0IIIYQYkSSQEsNOVF37DMMs43M3mfCskYpsX9xd+6T9uRBCCCHEyCKBlBh2PHOkrBEEUt4d+7z/jrC0z6KqZFgSaLJ3YxiRbUMIIYQQQgw/EkiJYcfTtS+S0j7XDCnDk5Ey/1IibH8OZuc+m67T6XQEv7EQQgghhDgsSCAlhp22aLr29ctIeQbyOiLPJrnXSUl5nxBCCCHEyCGBlBh22h12LIpCoqoFv3E/ijtg6l/aF01GSjr3CSGEEEKMOBJIiWHFMAzaHTbSLAkoihL+BjyBlOv/UQ7kBZklJYQQQggxEkkgJYaVHt2JwzCimyEFA9qfRzqQF8w1UiAt0IUQQgghRhIJpMSw0hZNxz68S/tcX7BE1/4cvAIpKe0TQgghhBgxJJASw0pUHfvAq7SvX7MJPYrSPquU9gkhhBBCjDQSSIlhxd2xL9alfUTRuTxLSvuEEEIIIUYcCaTEsOIexhtpIOW3tC+ajJS0PxdCCCGEGHEkkBLDiru0Lz3i0j7X356MlKvEL4o1UumWBFQUmuxS2ieEEEIIMVJIICWGFXdGKqJhvOBZIzWgtC+K9ueqopCVkEizzYZuRL4dIYQQQggxfEggJYYVd9e+tBh17fM0m4giIwVmeZ+OQZvdFt2GhBBCCCHEsCCBlBhW2u3Rdu1z/d2vtC+ajBRAtlVaoAshhBBCjCQSSIlhJdpmE72lfa7/W6JfIwWQnSAt0IUQQgghRhIJpMSw0rtGKrKMlDIgI+X6vx7dfmVLC3QhhBBCiBFFAikxrLR5BvJGl5GS0j4hhBBCCBENCaTEsBLr0r7YNZuQ0j4hhBBCiJFEAikxrLQ57CRrGhY1sqeuYnf9w52R8qyRii4jlSWlfUIIIYQQI4oEUmLYcBoGnQ575B37zI2Yf7ubTXjmSEWzZ16lfRJICSGEEEKMCBJIiWGj02HHIIqyPgC7q7TP2m+NlB7lGilXRqpZ1kgJIYQQQowIEkiJYSPajn3g1eZc69e1z+Hr1qFL1iwkqpqskRJCCCGEGCEkkBLDRtQd+8CTkcK1CUVRMDSibn+uKApZCYm0OezY9Sg3JoQQQgghhjwJpMSw0ebu2GeNIpByZaQMd0YKQI2+2QT0rpNqkfI+IYQQQojDngRSYthot0fZ+hxQPBkpr0DKokTdbAJkKK8QQgghxEgigZQYNtpdpX3RrJHydO3TvL6mEvVAXpBZUkIIIYQQI4kEUmLYiHoYL4BrjpThnZHSlKjXSIFXC3Qp7RNCCCGEOOxJICWGjbYYZKSU/nOkAEMDRSfqFugylFcIIYQQYuSQQEoMG7HMSGHpl5GCqLNSvWukpLRPCCGEEOJwJ4GUGDbaY9G1z2FgKPR95rvXS0XZcCLb6l4jJRkpIYQQQojDnQRSYthwd+2LqrTPYZhlfYqPjFSUDSfcGalmWSMlhBBCCHHYk0BKDBsxGcjroG9ZH8QsI5UlpX1CCCGEECOGBFJi2Gh32FFRSNEswW/sj8PA6BdIGar5/2iH8iaoGqkWq2SkhBBCCCFGAAmkxLDR7rCTZrGiKErwG/uiGyhO+nTsA6//x2IorzWRLqeTLqcj+o0JIYQQQoghSwIpMSzYdCc9ujO6RhPuQKl/aZ/7VRBl+3PwWiclDSeEEEIIIQ5rEkiJYSEmrc8dZqBk9M9IeZpNRL5pt+wEd+c+WSclhBBCCHE4k0BKDAux6NiHu9rOT7OJaNdIAWRZXQ0nZJ2UEEIIIcRhTQIpMSzEomOf4spI9Q+kjJhmpNyd+ySQEkIIIYQ4nEkgJYaFWJb2DWg2EaP25yCBlBBCCCHESCGBlBgW2j0ZqehL+/q3P4/VQF6AbKtrjZRd1kgJIYQQQhzOJJASw4I7I5UeRdc+JUhGSpGMlBBCCCGECJEEUmJYaLPHsrSvf/tz1/+l/bkQQgghhAiRBFJiWPBkpKIp7TM3MbC0L4YDeTOsiahAs3TtE0IIIYQ4rEkgJYYFd9e+1Gi69jl9l/YZauzWSGmKQoY1kSZbN4YR/faEEEIIIcTQJIGUGBZ6M1JRlPa5MlL+5kjFIiMFkJWQiMMwaHPYg99YCCGEEEIMSxJIiWGht/15FKV9royTv659sRjIC5CXYHbuq+/pisn2hBBCCCHE0COBlBgWYjKQ1x7/OVIAeYnJgARSQgghhBCHMwmkxLDQbreTqGokalrwG/vjDpT8lfbpkW/aW4ErkKqTQEoIIYQQ4rAlgZQY8gzDoN1hj6rRBACujJTRbzOGeyCvIzalfflJEkgJIYQQQhzuJJASQ16X04GOEV2jCbwG7mq+M1JKjDJSeQkSSAkhhBBCHO4kkBJDXpsjBsN4wZORwuq72UQs2p+DZKSEEEIIIUYCCaTEkOdpfW6NomMfeEr3jP7LrGLcbCI3IRkFCaSEEEIIIQ5nEkiJIa/NHn3HPgDF4fpHnDNSVlUlOyGRhp5unDKUVwghhBDisCSBlBjy2mNV2uduJtGva5/hehUoMcpIAeQnpqBj0GTrjt1GhRBCCCHEkCGBlBjy2j0zpGJU2jdgjpQ7IxXd5r3lSwt0IYQQQojDmgRSYsjzrJGKVWmf3zlSsSvDy0tMAiSQEkIIIYQ4XEkgJYa8mHXt85T29ft6XDJSKYAEUkIIIYQQhysJpMSQ51kjFXXXPvMvw19GKkbNJsCrtK9bAikhhBBCiMORBFJiyItd1z7fzSbcGanYNpswA6l6mwRSQgghhBCHIwmkxJAXqzVS/kr7DMlICSGEEEKIMEkgJYa82HXtM//yX9oX3ea9ZVoTsCqqrJESQgghhDhMSSAlhjx3Rio1zqV9scxIKYpCXmIyrQ4b3U5H8B8QQgghhBDDigRSYshrc9hJ1SxoihL8xoH469rnHsirR7f5/jzrpHpkKK8QQgghxOFGAikxpDl0nS6nI/qOfQAOMBQGPustsW9/DlCQ5B7K2xnbDQshhBBCiEEngZQY0hptZjYnMwaBlOIwzGxUv8yW4X4VxLC0DyAvwR1ISUZKCCGEEOJwI4GUGNJKO9sAGJeSHv3GHAxcHwVxGcgLkC8ZKSGEEEKIw5YEUmJIK+1oBWB8Skb0G3MYAzv2QW/XPj22GSlPC3Tp3CeEEEIIcdiRQEoMae6M1ITUKDNSumEO3O3faAJ6B/LGuLleb7MJCaSEEEIIIQ43EkiJIc2dkZqQGmVGyl22dwgzUnmSkRJCCCGEOGxJICWGLKehU97ZToYlgSxrYnQbc7U+N3xlpDzNJqK7i/6SNQvpFit1PV0YRmyDNCGEEEIIMbgkkBJD1sGuDuyGzvjUdJQoZ0h5yvZ8ZaQUBUMj5oEUmFkpm67T6rDFfuNCCCGEEGLQSCAlhqzSDnN9VKwaTQC+AykAFZQYtz8HaTghhBBCCHG4kkBKDFmlne71UbFofR6gtA/MACsOGSlPINUtgZQQQgghxOFEAikxZB1wtz6PttEEoNhd/wiQkYr1QF6Qzn1CCCGEEIcrCaTEkOVufT4+FsN4nYFL+wxNAT36u+lPSvuEEEIIIQ5PEkiJIanb6aCqq4P8xGRSLNboN2h3lfb525QGio4M5RVCCCGEECGRQEoMSRWd7RjEYH6Um7trn+antM/99RhnpWSWlBBCCCHE4UkCKTEkHXA1mohJWR+guLv2+ctIxWmWVG5iEioSSAkhhBBCHG4kkBJDkqf1+SHKSBma6x8xbjihKSq5ick02rpx6HFYhCWEEEIIIQaFBFJiSPJ07ItRRsrT/twapLQvLkN5kzCARlt37DcuhBBCCCEGhQRSYkgq7WxDRWFsSlpMtucp7dP83MD19fgM5U0BoFbK+4QQQgghDhuHdSC1b98+vv71r3PmmWeyatUq1q1bN9i7JELQZrfRaOtmdHIqVtVf5BMmd2lfsIyUtEAXQgghhBAhsAz2DsRTYmIid911F5MmTWLv3r388Ic/5K233hrs3RJBuOdHxaxjH/SW9vl7xsdpjRT0du6TobxCCCGEEIePwzqQGj16tOffkyZNoq2tDcMwUBQ/WQkxJLjXR41LjdH6KLxK+wIN5IW4rJEqkIyUEEIIIcRhZ1BL+9auXcv3v/99VqxYwfTp03nvvfcG3Oapp57ihBNOYO7cuZx33nls3rw5ovt69913mTlzpgRRw0CpK5CakBLLjJTrbz+BlPuVEJ81UhJICSGEEEIcbgY1I9XZ2cn06dNZtWoVV1111YDvv/766/z617/m1ltvZf78+TzxxBNceumlvPnmm+Tk5ABw9tln+9z2iy++iKaZ9VqVlZXce++9PPzww/H7ZUTMuEv7xscwIxW8tC+yjJRS78TIUUH1H6DLUF4hhBBCiMPPoAZSxx13HMcdd5zf7z/22GOcf/75fPWrXwXg1ltv5f333+ell17iu9/9LgCvvPJKwPtob2/nhz/8Ib/4xS8YP358VPurBjhZjjX3fR3K+xwKDMOgtKOVRFWjOCUNNUYZRNUVIClWdcCxVVXF80pQDQIGRX22ecBO4h+bsJ+WiuOEVL+3y0xIIFHVqO/pGnGP50h9Hh8qcnzjT45xfMnxjT85xvElxzf+hvIxHrJrpGw2G9u2beMHP/iB52uqqrJ8+XI2btwY0jacTifXXHMN5513HitWrIhqfywWldzc2LTiDkd2tv8T9MNRTWcHHU4HM7NyyM+LXUbKZunCAWTkJKPlpvT5XnZ2Kj0pHTjpISM1GS03OaRtOna1YQOSu1QSgjw3ilJTOdDWSlJGIqlWa4S/xfA10p7Hh5oc3/iTYxxfcnzjT45xfMnxjb+heIyHbCDV1NSE0+kkLy+vz9dzc3MpLS0NaRsffvghn332GfX19fzrX/8C4B//+AcZGeGvvXE4dFpbD11plqoqZGen0tTUga7Hft3OULWhoQaAMUlpNDS0x2y71jY7FqC1qxu9wexx7n2MNYfD/H5TJ3pDaPV9WkM3CUB3u522IPuabUnkALCrqo5xsexGOMSN1OfxoSLHN/7kGMeXHN/4k2McX3J8428wjnFGRjJWa/ARPEM2kPInnK57K1euZNu2bTG778F4gei6MaJemPvbWwAYl5we29/btUZKVwc+jrpuoLqaTRiO0I+32uMaOmUP/jP5CWaWq6arizHJMVz7NUyMtOfxoSbHN/7kGMeXHN/4k2McX3J8428oHuMhO5A3OzsbTdOor6/v8/XGxsYBWSpx+OidIRXjYMPT/tzP99Xwm00oPa5t2oO/qHs793WGfgdCCCGEEGLIGrKBVEJCArNnz+bTTz/1fE3XdVavXs2CBQsGb8dEXLlbn4+Pdfmbq/254W+OlDvACqP9uSeQcgT/md7Ofd0hb18IIYQQQgxdg1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRbx4jR0yjvbybAkkG1NjOm2gw3kjSQjhc1wbTv4TQuTzAYXH9ZVclrReE9gJYQQQgghhqdBDaS2bt3Kt771Lc//77jjDgCuvPJKrrrqKk4//XQaGxt58MEHqaurY+bMmfz1r3/1zJASh5eDXR3YDZ3pqemxH5wcrLTPtZ5QCae0zxZ6ad+szFyW5RSyprGaGzZ9wp1zj6Iweeh1nxFCCCGEEKEZ1EBq2bJllJSUBLzNRRddxEUXXXSI9kgMptIO1/qolDh0tQtS2ucOpMIp7SOM0j5NUfj5zCXcX7Kej+oPcsPmT7hj7lGMTRl5jSeEEEIIIQ4HYa2Rstls/PnPf2bnzp3x2h8xgh3wrI+KfXCh2IOU9mmur+thbNMVSCn20G5vUVV+OmMxJ40aS4Otm59t/oR9ri6FQgghhBBieAkrkEpISOChhx6itbU1XvsjRqhup4P/1pjr5WZmxKF00xm4tM9Q+90uFGGU9rlpisLVUxdwZtFEWuw2fr7lU0pam0K/TyGEEEIIMSSE3bVv3rx5MZ3NJATAqwf302Dr5ui8IibEY2Ct3RUsaX4yUq5MVVhrpNwZqRBK+7ypisLlk+dw7pgpdDjs3Lx1NY026eYnhBBCCDGchB1IXXfddfzzn//kySefpLy8nM7OTrq6uvr8ESIcLbYenivfjaYofHvCzLjch+I0etdB+RJNRiqErn0D9sf1u55aOJ4up4P/1ZSHvxEhhBBCCDFowm42cd555wFmh70777zT52127NgR3V6JEeWZ8l10OR2cVTyR4uS0+NyJHbAG6ASoRTCQN4LSvj4/ryh8uXgSb1aX8k5NOV8dMyX23QqFEEIIIURchB1I3XXXXXKyJ2LmYFc7r1cdIFmz8PWx0+J3R04DI9F/AtaIomufort+zl/ZYADjUtOZlp7FrrZmStqamBGP9WFCCCGEECLmwg6kVq1aFY/9ECPU3w/sxGkYfG3MFDITYjuE10M3UJxgWAPcRgtzjZTD6HtbJ4FLBwM4qWAsu9qaeaemXAIpIYQQQohhIuw1Um579uzh5Zdf5qGHHqKurg6A0tJS2tvbY7Zz4vBW0trEx/UHyUlI4sujJ4X3w04DpSbExUnugCdQxsgdBIXa/tzWL3MVYXkfwLH5o7EqKh/WVdLjDKO2UAghhBBCDJqwM1IdHR3ceOONvPXWW1gsFpxOJ8cccwz5+fn85je/obi4mBtuuCEe+yoOI4Zh8Lf9ZvfHi8bPIEkL76lo+aybxFfb6f5WBs7ZQTJZriDHCLhGyvV3iKV97o59nv/bDSINpdKsCRyZW8hH9QdZ3VDF8QVjItySEEIIIYQ4VMIOpO6++242bNjA448/zqJFi5g3b57ne8cddxx/+9vfJJASQX3eWMO21kbGp6Rz4qixYf+82mhmbixru4MGUp4SvACld4YaZrOJ/hmpCDr3eTupcBwf1R/k3ZpyCaTEYau6q4MXKvbQrTtRMEcBKCgoCizKKmBFfvFg76IQQggRsrADqbfffpubbrqJI488Eme/MqTi4mIqKytjtnPi8OQ0DB7bvx2A70ychRZJ8xLX7CZtlw06dUgJUKXqLruLY0YqmtI+gAVZ+eQmJLGxuY7a7k4KklKi2t5hw26gtOsY2REuQBNDRrfTwa3b1lDe5bv8++3qMm5Wl3JkbtEh3jMhhBAiMmEHUj09PWRlZfn8XkdHB5omJzxDhfU/7SjtOrbz4zDgNgp72pup6GpnZkY2i7MLItuIK3BRnGDZ2oPjiGT/t3UFXUagp2a4zSb6ZaQUR+SlfebdK5wwaizPle/mvdoKzh8Xxw6Gw0jic21o23ro/HkupEW8pFMMAX/es4XyrnYWZedz3thpGIb5mtENg8qudv68dwu/KdnAbxemMzpeYxCEEEKIGAr7zGTu3Lm88sorPr/31ltvsXDhwqh3SsSGdU031vU9UWdLYq2ktQmARdkFEbfSV7xK6Swbe0K7bTwzUo7oj/FJBWaJ4zs15RjG0HrMBovS5ERxgFobZe2kiIldbU3U94Q/dP2dmjLerS0nNyGJn0xbxJzMXOZm5TEvK48F2fmcUTyR88dOpdPp4K7ta+l2xu/x1g2Dj+oqabEFft8QQgghggk7kLrmmmt4++23ufjii3nuuedQFIUPPviA6667jjfffJOrrroqHvspwtWle072lY5QW9EdGjvbzEBqRnp25BtxZ5kUUPfZUVoDpJLcQY4lhIG8EXbtU+wh/lwAo1PSmJmRTVV3B9tbG6Pf4OHAdRFAbRpaz+GRaF97Cz/d+BE3bPqETkfogU5pRyt/3rMFFYXrZiz2O+bgG+NnsDArn9LONn6/e5PfiwmWL7qxfNQZ0e8AZgnhPTu/4L6S9RFvQwghhIAIAqklS5bw+OOPY7PZuP322zEMg9///veUl5fz2GOP9Wk+IQaP0tJ74jnUAqmS1iYUYFo0gZTrBNs51YpigLY5wNVld9AVoJDVU/YXYmYpHhkpgBMLxgFmVkr0BqhKo7SFH2xPl5WgAzU9nfx1/9aQfqbb6eCenV/Qozu5aMIM5mTm+r2tppiBVkFiMh/UVfLqwf0+b2d9vZ3E1zrMtZFhsutOni3fBcCG5jo2NNWGvQ0hhBDCLaJFB4sXL+bpp5/miy++4IMPPmD9+vU888wzLF68ONb7JyKkNveeeCrtQ6dMrMnWTU1PJ2NT0km1BJqQG5i7XM+xJAkIXN7nKe0LmJFy3TbUc7OefsFZjMonj8kvJlHV+Li+Mq7lTcOGey2cBFKDak9bM581VJObkESWNZG3q8tY21gT9Oce2ruFss42FmXnc+6YKUFvn2FN4Oczl2JVVP62fxtbWxr63sAwUDpdWcqD4b8+3q4uo66ni/xEc03l4/t3oA9SGe2+9hYabd2Dct+HHbsB+tD5nBNCjBxhB1KrV6+mq8uskU9KSmLUqFEkJwdY6C8GxVDNSJW4yvqmR5ONAk8GSJ9oRc9V0codKA1+TrY9pX0Bthdm+3PFVdpnpJovISVGMU+qxcpRuYV0OZ18Un8wNhsdxhQp7RsSniorAeDr46Zx1dT5ADy4ayOtdpvfn3m3ppx3asrJSUjix9MWoYa4HnJqehY/mDIXp2Fw9451NPR4BRs9hudih1oZ3ovOpjt5tnw3ADfPOoLp6dns7Wjho7pD22m2xdbDvTu/4OoNH3Ddxo9H/AWTz+qruGv9Gmq7IyzX1A2S728k8e+tsd0xIYQIQdiB1CWXXMLSpUv52te+xj333MM777xDU1NTPPZNREFp9jrxbB86J6E7W2MVSJl/GRYFx3xXVmqTn6u7Xrf1yx1khdlswh1IxbKhx0mjzPK+P+7ZzFOlO0f2iZZkpAZdSVsTaxtrKEhM5qRR41iWW8hJo8bSZO/hob1bBtxeNwxertzL73dvQgWun7GYLD/rovz5UuF4TikcT7PdDDqchvke5s5GAWhhZqTerCql0dbN8twiJqdlcvGEmQD8vXQndj3+75GGYfC/mnJ+8MV7fFBXiYJZJvlM2a643/dQpBsGTx7YyW3bPueVA3u48ov3WdNQHfZ2lHYdtUmPKEMphBDRCjuQ+vTTT/ntb3/L4sWL+fzzz7nmmmtYvnw5Z5xxBr/85S959dVX47GfIkxKi1dp3xDMSM3IiC6QUrxmQzkWmCdplk1+yvtCaDYR8UDeVKXvfcTA/Kw8vuU6yftn2S5+8MV7fFx3cOR18jOM3jVSrXpMj3E4NjTVcu2GD9nX3hLxNjocdtoDZG8GU2lHK+0O/91Sni7tzUZZVfMj43uT5pCfmMyHdZV9MjpNtm5u2fYZf923DYArp84PuC4qkMsnz2FyaiZbWxt4yrUPite6qHAyUt1OB8+5slHfGD8dgLlZeSzNGUVNdydvVB2IaB9DVd3dwS+3fsZvdm2g1WHj9KIJ/HHRSpI1jZcq91LaMbKyKZ0OB3ftWMsz5btI1iycOnYC7Q47t2//nEf2bg0rsFVaXUF2/3WrQghxCIQdSGVnZ3PyySfzs5/9jBdeeIG1a9fyxz/+kZycHP71r39xww03xGM/RZjUZu/SvqHxAeM0dHa3NZOsaYxNSY9uY+6Tag2MURacRRpqtROleuDJlRJKaZ+72USIdfYDSvti0LXPs21F4byxU3lo8QkcnVdEXU8Xd+9cx8+3fMr+jshP5ocdr4dSMfpmWau6OrDrhyZL9VLlXna3N3NfyXpsEdxnt9PB1Rs+4Fufv81j+7cHDFoOtQMdrVy1/gOu+OI9n8+tHa2NfNFUS2FSCie42vODWYJ6zdQFAPxpz2Yabd2sa6zhqvXvs76pjnEp6fx24TF8qXB8xPuWoGrcMHMxyZqFf5Xv5ovG2j4ZKaXeCT2hnXC/UVVKk72HY/KKmZDaO1fv2xNmogDPlO2iM06Py+r6Kq744n02NNcxJjmNe+YdzQ+nzGNcajoXjp+B0zD4057NI+ZCSVVXBz/d9BGfNVRTnJzKbxcey61Lj+ZXs5eRbrHyysF9XL/pY6q7OkLantLmeg70GDBCjqEQYuiIqNlER0cHH3/8MQ888ACXX3451157LSUlJRx//PH8+Mc/jvU+iggozUNvjVRpRxvdupOpadloEc6P8nC4Ou25MknO+QGaToTUbCLMgbz9S/vikC0pSErh5zOXcufcoxiXks7WlgauWv8BP974IS9U7An5RGPY6lcuqTQ6aXfY+W3JBr637l3uL9kQ911od9jZ1FwPQFlnG08e2Bn2Nl6p3EdNdyc2XeeFij1cuvYdXqzYE1FQFmv/qy1Hx6DB1s0Nmz5hY1Ndn+8/VWr+vheMm4ZF7ftxsSA7nzOLJtLmsHPdxo+5Zdsamu02Tiscz28WHMPE1Myo9684Oc0TsN1fsp62lt7yXcUA9WDwY9jtdPB8xW4U4IJx0/t8b0JqBieOGkurw8aLFXuj3t/+mm09PLh7IzbdyQXjpvH7Rccx2ytDd1bxRCamZrCttZF3a8Pr1KkedJD0l2aUmuFT0raxqY5rN37oaUDym/nHMC7VvKi2LK+QBxcdz6yMHHa3N3P1hg94fP923qwqZX1TLZWd7T5fM56MlAEMnWsUQogRItA1ep9WrVpFSUkJubm5LFmyhFNPPZWbbrqJ6dOnRzxcVcSYYaC0ODEU15X8IbJGyl3WNzPKsj5wZZm8AiPH/EQS3uzAsqkb+ykpoChgGKh77VjWmidfAddIRTiQ14hDaV9/87Py+f2i43i9qpRXK/eyq62ZXW3NPLZ/O5PTMjk6t4hTisaTaQ1vHcpQp/QLpMormrixaRMNrk5nH9cfZF97C5PSoj9h92dtYw1Ow2BRdj4lrU28VLmXI3ILQy5Xa7b18HzFHiyKwh1zl/NebQX/rS7lb/u389rB/Vw4fgYzM7JJtVhJs1jRlIiubUXEHEx7EAU4s3gi/z64n19t+4xrpi7ghFFj2drSwMbmeoqTUzm+YIzPbVw8cSbrm2s52NVBusXK1VMXcFReUUz3c0V+MWe1mvv3bkUpX6cQI1lB6TJQD9rRJwbu/vnawf202G0clz/ac9Lu7RvjpvNBbSUvVe7l9OIJ5CQkxWzfH9m3lTaHnTOKJnDh+BkDvq8pKldMmcd1mz7mb/u2c0ROIRnWhJC2rW3rQdtnRyux4RgV9kd5bDgMEl5tx7EoCX1C4Mdha0sDv9r2GU7DYNWYyXx7wqwBF9TyE5P59bzlPFlawnPlu3m+Ys+A7YxNTuPGWUs9VQ2ejBTm+7KRIOchQohDJ+x335KSEiwWCwsWLGDhwoUsWrRIgqihpsNAcYCer6HUOYdMaV/MGk2Ama1I6n3OGTkaznEWtDIHarkD7AYJ/+1E229eotQLNZwzA5yguM9fw1wjFW1pn+WDTiybeui+PAsS/b+GNEXlrOKJnFk0gf0drXxSf5CP6w+yt72Fve0trGms4f4Fx0S2E0NVv2O6dk8VDTO7WVkwhtHJaTxZupNnynZx46ylcduF1fVVAJxRNJGVBWO4v2QDv921gd8vPJ4US/C3z3+WldDldHBW8UTmZOYyJzOXs4sn8cSBHaxprOa3u/pm1ZI1C2kWKzMzcrh66nySNP/3YRgGj+7dTsWODm6cvgSN8N6Dd7Y2UtfTxZyMXC6fPJeJqRn8YfdmfrNrA3U9XWxsNrNTF4yb7jfAS9Is/GLWEfyvtoIziiaQlxifDq6XTJzFztYmulrNJ4VzshXLVlvQdVKdDgcvVuxFZWA2yq0gKYWzRk/kxYq9/LO0hCtcXQkDUUvtaNt7sJ+S2tvxs591jTV8UFdJbkIS33atefRlRkYOpxSO583qUh4/sJ2rXRm4YNyVBkr34L2/a/vsWNd0o7Tp9Ezwf0GjydbN/+1ch9Mw+OHkuZxePNH/NhWVb0+YyXH5o9nb3kxNdxe1PZ3UdndR1d1BeVc7f9y9mV/PW46iKH0CKXp0SD90FyOEECLsQGrdunVs2LCBdevW8fbbb3P//fdjtVpZtGgRS5YsYenSpSxYsCAOuypCpboaTeh5GkqrPmRK+2LW+txwBYr9MkyOBUloZe0kPd7iCR71Ag3byak45yT4PeEBQFHMUsFQ25+7M1IpUXTtcxgkvNdpXlmvcgS9omvupsKktEwmpWVy0fgZlHa2cfeOdZS0NbG7rZmp6Vnh78dQ5TqmHVYnqXaNcd3J3DRzKUflFWHTnbxedYBPG6o40NHaZ91LrPQ4nXzRVEuSqrEgK58EVWV1fTWfNlTx6P5tnjbg/lR0tvNGVSkpmoWvj5vm+fq41HR+MfsItrU08HrVAZpsPXQ47bQ7zD/1PV18WFdJl9PBTTOXDiipc3uqtIQXXFfstxc2MDczL6zf7wNXk4hjC0YDZqe83IRk7t65ln+4SvrGJKdxbP7ogNsZm5IeMFCIBatrvdTWz80hvXuLupm+VUULEEgZhsHzFbtpddg4sWAsY1LS/N72a2Om8lZ1GW9Vl/HVMVMoTE4NuD8JL7WhVTlxzkhAnzjwAk2308Gf9mwG4AdT5pISZGbexRNmsrqhireryzipYCyzQsh4ut/jBjOQclc7qP5GTwBOw+C+kvU02no4edS4gEGUtwmpGQNe105D55r1H7C1tYH36ypZWTBmYEYqgt9DCCEiFfalm+TkZJYvX87VV1/NP/7xD9auXcv9999PZ2cn999/PxdccEE89lOEwb0+yshSMVIV84N2kDqeubXZbVR0tVOUlEJmmK2QB3B/ZvcPpOYlYqjmCYaer9F9QTpd12bjnJcYOIhyU0EJsbSvNyMVeWmfttuG0uU6GWoJf72MoihMSM3gDNeJyRvVB8LexlBm7zFPkvenmfNllin5nrKxBFXzDHh9Nkj76EgX8W9srqNHd7Iou4BETUNRFK6YMo8sawJvVZcGHUj7+IHt6BicN3aqz7LL2Zm5XDdjMXfNW87vFh7Ho0tP4tmjTuOpI09lbHIaaxtr+MOeTT73//WD+3mmvPf33tBvbVMwTkPnk/qDqCgcndtbirc4p4C7560g27W/3xg/Pfr1jDFSmJTKEUn5ADzcvpOOVCdKrdPnRYy6ni5u2/45/yrfjUVR+gSyvqRbEzhn9CR0DF6qDLxWSqlxoFWZr1e10fdFqidLd1Lb08Xy3CKOzA1e6phmTeC7E2cDZvMORwhd6zwl292xv1AWyv0D4ApilAan30Y9z5SVsKm5ngkp6Vw+eU5U+6UpKt+fMg+Av+3bRofD7lkjBXjWrgohxKESUQ68sbGRt99+m7vuuovzzz+fH/zgB6xbt46pU6dy/vnnx3ofRZjcw3iNTK239GyQs1K72pqBGJb1AUb/i7zpKj3fzqD7wgwzgFqQFFoA5aYpYQ3kNRIAq6tJRQSlfd6NMbwHKIdrZcEYElWND2sr49Z5bDB8dNDMmDizzWyhtbnvMTqlcDxZ1kQ+rj9IWUebz23s72jh25+/zV98zDsKZnWDWda33GvNT2ZCIle5Sq8CDaTd2tLAZw3V5Ccmc1bxpLDuN8OawK1zjiQ3IYl3asr5e2nfBhef1lfx571bsCgqV7qyYhuawwukNjXX02y3sTA7f8CFjclpmTy46DjumHNU0GwUgLazh6Q/NKE0xb95Rr5url9qT3SwKbUFRYcvtlWgu4JNp2HwauU+fvjF/1jbWENRUgq3zTmKoiAZJoAziyaSpGr8t6aMFpufUQr0HbPg63fe3dbMq5X7SNUsXD55bsi/28qCMczNzOVAZxv/crVqDyRepX3/rS7j/NVvhNRYxR3MKQ76BjQuG5pqeaZsF8maxs9mLg1YqhqqOZm5rCwYQ5O9h6dLSwZkpIQQ4lAKO5A65ZRTOProo/nxj3/Mhg0bWLZsGQ8++CCrV6/m3//+N7fcckscdlOEQ2l2lfZlqRhp7kBqcD9gdrY1AjA9Iyf6jQXowueckWhmoLQIrqJrhNz+nB4DI1Ht3YdwM1I2A2177wmZ6uMkJCS6Qc7rPVzWNplu3cn7XjN9hrOGnm4+qzYDmQk5WRjZGkq70Tu/C0jUNL46ZgoG8Gz5wKxUdVcHv9zyGY22Ht6qLqUjjCDTaeh83lCDRVFYmjOqz/e8B9L+esfaAW3DDcPgsf3bAfjm+BkkahrhKkhK4bY5R5JqsfJc+W5erdwHwLaWBu7d+QUAP52+iNOKxlOQnMKetma/QZ0vH7rL+vwEStkJSSzIzg9pW5YvetDKHVg+9zMQO4bcwcNNi5dhKzaP67qtB/nxxg/5oLaC6zZ9xMP7tmLTdb42dip/WLSSeVmhlTymWxM4pXA8Nl3ntar9vm9kGH0CqS/2VvHf6jI6HeabktPQ+f3ujejAxRNnkZsYeuMKRVG4cup8klSNZ8p2saO1MfDt4xBIvVl1gN/t3kiP7uSZ8l2eNYJ+98GrkZFS3zeorO/p4r6S9RjAVVMXBCytDNclE2eRoln4d+V+T1YMgEEscxRCjExhB1JnnHEGf/vb31i7di3PPfccN9xwAyeeeCJZWVlx2D0RCdWTkVJ723MPcuc+zyDeGGSklBAG7EbCCDUj5TDMNukJiicrpoQZSGk7elBsoOe4At0IM1LaHjvWT7o4pcRcU/Fm1YHDYh7Nk6U70VwBc0qSFT3bdZwa+z5ApxWNJ8uawId1lZR39malmmzd3Lx1NU32HtI0KzbdLGUL1baWRlodNuZl5ZHqY33LZZPmMDo5lS2ulvS3bVtDiauZysf1Bylpa2JyaqbfbnehGJ+awa9mHUGCqvLIvq38q2wXt23/HLuhc9mkOazIL0ZRFI4oKMQANrvatAdj152srq/CqqgclVsY8f65qVXmA2XZ0hP3OT7uOVK52akcOc+ca7W0M4c97S3cW7KeXW3NTEvP4oGFx/LtCTPDDmLPHj0JTVF47eB+up0D11+plQ7UeieNiWbQmtgCv9u9kW+ueYv7dn7BX/ZuZV9HK7NcDSTCNTo5jcsmz0XHXFfkN8OsG+CeqRWj4OHfB/fzhz2bsSgqq8ZMBuCBXRuoCjBmwTuQUr0CKaeh8387v6DFbuOMogkhZTbDkZ2QxEXjZ5Bm11C93hIkIyWEONTCDqSuvvpqjjrqKJKT49OdSUTPnZEysjTPGp7BLO3TDYOStmYSVDU2TQFcQYsR646/Gig6wU8G3eujEpXeYC7MZhPusj77MSkAKK2RlUVpG80sQJKuMTE1g30drexqb45oW0PFvvYW3qkpIxNzEb9hNbsyAqj9SqmSNAtfcWWl3OVQ7Q47v9j6GdXdnRyXWcxzHyzhkp1j+V9NRcj74C7rO8rP+pYUi5XfLTyOyyfNIS8hic8ba/jJpo+4acunPL5/BwDfmTgLNcr1RbMyc7lhxhIU4O+lO+lw2Dl3zBTOGt1bLnhEgbmPoZb3rWuspcPpYGnOqKBNEIKyG+b6GECtc6LUxLe8T+nSzYsXVgV9tPkGsLw7j59MX8SsjBwumzSHe+dHPsOqICmFY/NH0+aw83Z12cAbbOgC4IWJ5vNjljOTEwvGogDv11XyetUBLIrKVVPnR/zYnzxqLMtzi6jp7uTP/kpSuwzzvYrYZKRertzLX/Zuwaqo/GLWEVwycTbnjplCh9PBr3espcfp+3FV2r0GJDc4abPbeKemjJu3rGZ7ayNT0jK5dNLsqPfPlzOKJzBX6XdhTgIpIcQhFtEaqfLycn71q19x1llnccwxx3DWWWdxyy23UF4e3kBBER9Ki46hgJHhXdoXfiDVaOvmg9qKgOsFQlHZ1U6Hw86UtCysfjqQhcOzHska40Xw7nLAIOeCnqueCWC49yGcmZhdOlqJDSNZwbHYLP2JKCNlN7BsNa+MKw441XUF/M2q0vC3NUQYhsHf9m/DAFZkuYIYq4KRbQZSio/F/acXTSDDksAHtRXsa2/htm1rONDRyoKsPH6cN5ekZji2NpetrQ3UdHeGtA+fNVSjAEcGyNgkaRbOGj2JR5aexNVT51OUlMqm5npqejpZnF0QcmlcMMtyC7ly6nxUFE4eNW5Ah7yl+eY+bmyqC5iNVBqdaFt7gpb1hUOtdXhO6MGVlYoX3YAuw9Mp08y4K6jVDlbmjOb/5q/gy66MUjS+6mpi8lLl3r5NF3QD54ZOdAxq5yjo6SqJrXDt1AU8eeQp/HjaQo7MLeSKKfM8M44ioSgKV02dT25CEu/VVvBB7cALAN6ZIHunA3uozSF8eL58N3/dt41EVeNXs5exOKcAgG9OmMGczFz2dbTy8L6tvvfVq6yuZF8dF615iwd2bWRLSwN5CUn8bMYSrGr4pa2h0BSVi3KmAuBQXE17JJASYthosfcMKLlXS+0k39eIWjl81nuHfVa7detWzj77bN5++23mzJnDOeecw5w5c3j77bc555xz2LZtWzz2U7g8sm8rf96z2bO4egDdMAOpNNf6ndTw1khVd3XwYsUertv0Ed9e8zb3lqzn51s+pS2M9Rf9xbKsD+hdjxTj0r6QZ0m5M1IJCkRQ2mfZ2oPiBMecREhU0NMUc6F2qOuzXLQdtt4TB7vB8e6mE3WVYa0HGkrWNdWysbmeMclpzE0219MZVsVTAtk/IwXm7KVzxkxGB67b9DHbWxuZlp7FTbOOwGozf66oKwkMeM/HSWl/e9pbqOvpYkZGNtkhDGe1qipfKhzPQ0tWct30RawsGMMPXZ3FYuVLheN55qhTuWbaggEz+3KSkpiUlklNTyfVAQLFhP+0k/SPVirKmknWLAPWfkVCrTYfD8csM3to2RokkOrQsXzY2WetW8i6DRQDjBTX768oOEdbUJyg1oRzJSOwCakZLMkuoK6ni4+8ykFrd7SQ1qGxJbeNb8ydiZGtouhmk4UkzcIJo8Zy86wjOLlwXNT7kG5N4CfTF6FgdvGr9XpcyzvbeMLrc1btNvjOmrd5fP/2gGV4vrxQsYfHD+wgSdW4ZfayPsG/pqjcMGMx2dZE3qou5d2a3gulumGwvrEWo91Jl2Y+B9JaVNIsVk4tHM/tc47kr0tPCtpGPloTdXPd1cEUMzNfUt/Ie7Xl7GxtpMXWg2EYOA2dVruNg13t7G5rZmNTHQe72uO6X0KIwFpsPfxg3Xv8aMOHfcqotX121DqnOQ90mAi7OOqee+5h1qxZPPLII33K+7q6urjsssu45557+Pvf/x7TnRS9drY2UdLWRG5CEuf5aOmrtOsoOuiZrqu27tK+IGuk3qut4KWKPezraPV8LT8xmXSLlX0drdy2fQ23zzkqoq5LnkG8GbENpGJd2me4L5w6DQgw3NQTvHg3mwijtM9d1udYYHZLMzI11HaHueYhLfTg0LKpd3G/4jBItVg5Ln80b9eU8V5tBWeGOK/lULPrTnqcTtKsfefvOA2dv+0zTxC/M3EW2mbXsbAqntK+/muk3M4smshLFXtoc9gZm5zGLbOPJFmzoHSbxzrBrpBht/C/2nLOHzs14ADxYGV9/miKynEFYzguinVRgQQqw1uYlc++9hY2NNf57VDnvpiS3WFlwoSciJpgDNhmtavJwtxE1EYnarUTpdaBUeD7xZn4SrvZrCFFxbEk9EYMAEqn6z0spff6nz7aArvsqJUO9NFRlil6+eqYKaxrquWFij2cMGoMumFQ9nEt48mia56VKUkpGNkOKHOgNDkxsmKfdZmXlceqMVN4oWIP95Ws52czl/BM2S7erCplRX3ve6nVUOnucfB8xR6er9jDwqx8zhs7lblBmmw02rr5x4GdJKoat8050ufsquyEJK6fsZibtnzKn/ZsJi8xiZK2Zt6qLqWr1cYrxlKqUnso6klifFcKf196MloMnlehcncKrEnvYVxHMmWNLdxfss/zfauiYjd8f/YtyS7gnNGTmZ+VF/D9YMB9tukkvNyG/YSUmD7nhBhJnijdQavDRqvDxjNlu7h44izzG+5zqVhXHMVR2BmpLVu2cOmllw5YI5WcnMwll1zC5s2bY7ZzYqCrp84nUdV4snQnG33MjvGeIQWEVNr3YsUe7i9Zz76OVsYkp/G1sVP57YJj+dvSk/i/+SuYnp7NjtYm7tn5RejzRbzsjNUgXhdPaV+sM1Lu0r5gv6L3GikVDAUIMQGktOmoe+3o6Sr6JPND2HAFvWo4s6S6dLSdNowkxcyMuS7enFrkLu8bmk0nHLrOzzZ/ytc/e5Nr1n/A4/u3s7m5Hrvu5K3qMsq72pmbmcsROaP6vKHq7tK+Jt8PTorFwpVT53NkbiG3zz2KDHeQ5rV+ZBn5HOzq8GRI/XF3Kgs3kBpMC12ZBF/vCR6u521OjzVmi/9VVyClF1pwzDUvDPjLSin1DrTN5vfc6zjD4W404clIAXqx+RpSD8b26uWczFymp2dzoKOVL5pq+c++vcwrTcWhGMxeUWzed7Y7Sxq/9acXjZ/B5LRMtrc28p3P/8vrVQdItlg4Lb1v1uvhOSv5xrjp5CUksaG5jl9u/Yy6nq6A2365ci8OQ+fM4okBBwDPzcrjWxNm0qM7uWnLav5+YAc13Z0ckWA+58aOyiChIAHVARbfUwjixl1aOHuymV2dl5TLV8dMYXluERNSM0jWLIxKSmFyaibzMvNYnlvEiQVjyUtIYl1TLTdvXc1VGz7gnZoy7Hpoz0lttw3LVhuWdXEsYxXiMLarrYn/VpeRYUkgWdN4qXIvB9wX8e3xuVAeT2HvamJiIs3NzT6/19LSQmJilMNWRUDjUzO4cup87i9Zz70lX/C7hceRl9gb1HoCqUzzxDPQHCnDMHimbBdPlZWQqGr8fOYSlvQr90nSLPxq9jJu2PSxZ0DoNVMHlhf50+lwUNbRSl5CUp/9jIojTlcsXBdSFYdBoBCkd42UAopZ3hdqaZ+2uQfFMIcHu2dcGRlenftCPL+1bLWhOMC+IBGtxOa5Wj81LYvJqZns7WihpK2JGbFoNx9D/yrfTUlbEwmqyt6OFvZ2tPB8xR4SVQ0FMw/43UmzzeeX97ywVAUjAVQ/GSmAo/OKOTqvuM/XvBfiH28ZxX+p4n+1FX6PS0VnO+Vd7UxISQ9p9tBQMTszF6uisqmlHqdh+FwnZPSYz5FiezILs2KzfkutdmKooBdoGFoiCf/tRNtiw37CwGNnfa8L11KWoBlyX9zPcaN/Rgqzm14sKYrCV8dM5q4d63jywE6KD1g40T6VlikKljTzPnvX7cWvwYZVVblu+mJ+tOED7IbOWcUTuWDcdHI/sAO95X65RiLfGD+d88dN5dF923n14D7+WVrC1dMW+Nxuu93GG1UHsCoqZ3s1LvFn1Zgp7O9oZVNzHccXjOHUwgmMq0oAWiBdw0gDyh0o9fHJzvnjzkhpBVaghyI1he9MDH4BxKHrfFJfxcuVe9nd3swDuzbyxP4d3D73qOANkVzv/5E2CBJiJNMNg4f2bsEAvj1xJt1OB4/s28Yf92zinnkres+lDueM1PHHH899993HunXr+nx93bp13H///axcuTJmOyd8W1kwhtOLJtBit/F//bJESkvvDCnwCqTa+57oG4bB4wd28FRZCcmahdvmHDkgiHLLsCZw29yjyHMNCH3iwI6Q93VPezM6MSzrgzh27Qs3I+X6v0UJubTP4uqy5y7rg96MlK+BlkG3szDRDOScmOvjFKU3K1U9tJpO7Glr5tnyXSSqGn9YdDwPLzmB70+ey7KcQlQFunUnJ44ay5S0LAAU7xS/Ypb3Kd0GdIZ+nLwDqTnObCyKwkd1lX6vPnvK+vKGTzYKzJlaszNz6HDY2eMaft2frdsMNmarWVhi0PSFTh21VcfI08CiYIyyoBdoaAcdA2YKKU1OLOu9SlEjCqQGZqSMHBUjSTFbsDtjm4FdllvE6ORUdrU1c1RZFgCJS3pnIRlBsqSxMiYljT8uXslfl57E5ZPnkmFN8JRpusuR3c9zTVH5xvjppFmsvFNTRkWn77VAr1UdoMtpvt5yQlgHqCoK181YzJNHnsqlk+YwJiWt9zFMVdFzXV01Gw5tcOHOSOn5rseiJ7THwqKqHFcwmt8sOIZ75h3N4uwCmuw9vFK5L+jPKjZ3IDW4I0WEGI7erSlnV1szU9OyOHnUOM4snsjk1Ex2tDaZnVJd1T3G4RxI/exnP2Ps2LFcdNFFHH300Xz5y19mxYoVfPOb32Ts2LHccMMN8dhP0c/3Js1maloW21sbefzAds/XVU9GyvXQumYdeWek3FcEXqjYQ5rFyp1zj2J2gNIOMNdL3TbnKNIsVp6v2MM/S0uo7Gr32y3KruuUd7Z5OoTFqqwPzA51QBxK+1x/Bzkh65ORAgyLq7QuSCmd0uhEK3Og56joY3ujQHf2MNTOfQPKAz1Dgc2/jssfQ7Km8VHdwbCGtMaTTXfym10bcBoG3504i+LkNIqT0zizeCK/mH0ETx95Gg8uPI4rpszv/aF+b6ju8j5fDSf86u49psmtsDRnFG0OO2sba33ePNL1UW7qfjvJ/9foaUt/KC1wZZl8tUG36U4M1/PWvUA/Wt5lfW6OOb7L+6wfdqLoYF9kft+721vIfGSkUMw26IodlLrYnsRrisJXRk8hwamyoiYHwwrOWb0XQAI1QIm1UUkp5HtXHriCGPfaQbp633vSLFbOHTMFHXMeW3/dTgevVu5DpbdDYSQ8+5Cuoue53sPqByeQMlz3H277c0VRmJ2Zy3XTF6GisLaxxn8jJzd3IBXh7D8hRqp2h91zvvr9yXNRFQVNUbli6jwU4PED27H3uE5kYn1+F0chX9Pv7u7mgw8+oLKykgsuuICLLrqIAwcOUFdXR35+PvPnz2fFihXx3Ffhxapq/GzmEq7Z8AEvV+5jVkYOy/OKPRkp7/IKI0016/idBrX2Lp4qLeHd2nKyrAncPveokGeujEtN51ezl3HzltU8VVbCU2UlqEB+YgqFySmMSkyh1WGjorOdqu4OnF4fSLNiWWIWp8WIRojtz90f1kai6tkPxcDMZAWoarFscjWZmJ9klgS66J7SvhBr9Dd39ykPNDyBlAEJCikWCysLxvJ61QFu2vIpt8w+ktzE8Bb2x9o/9u+krLONhVn5nFY0YcD3rarKpLS+z0Ol3+PcJwMQYgmkd0ZKadQ5oWAsqxuq+V9tOcu9sk5OQ+fRfdvZ1dZMYVIKEyOcd6bttqE2OEl8pg1bl4HjqEM3b29hdgGPH9jBxqY6vt6vEc3f9+/gCocZaGV3W4nF6g53xz69qPdJ75ybCP/rRNvSg/14c0YabTqWz7sxrGA/JRXr+p4BGfJQuDNS3s0mAPRiC9peO9pBB47C2KapTxo1loydTlIcGo75ZpdNN/d7rHIIAqn+3BfG9DzNnN/Vb5bUmcUTefXgPj6uP8ie9mZPlhfgv9VltDpsHJc/OqryVfdjaKSpnkBmMDJSRqLSuxY4wvbnadYEZmXmsLWlgd3tzYEv/LkDqTZXp1U1wOeQbqBtteGcZIW0GGSBhRjGni4tocVu46RRY/tUKU1Lz+aMoom8VrWf0pZWZpLi6Yg8HIT0qVNeXs7FF19MZWWl52tpaWn89re/5ZhjjonbzonARiWl8JPpi7h12xp+u2sjJW3NXFCbQy4aey1tZNpSaLfbGZVgJweNH33yPnsUczVwbkISd85dzpiU8K5Oz8zI4Y65R/F2dRlV3R1UdXVQ09NJTU/ftss5CYmMSU5nbEoa09KzY5qRittiRNfnnOIMskbK1jcj5XnB243e8kAftE0Dy/qgd42UGuIVTssGV0C20LUd13HwXtt18YSZVHa1s6m5np9u+ohbZi9jfCyGIUdgY30tL1bsIVWzcPW0BWbpV7OOc3aQ9ZSeQMr8y50BCGdNivcJptrkZEnOKNItVtY11tBqt5FhTaDVbuPuHevY3FJPhiWBa6ctDKuLV5/7c12lVwxIfLkdpdvAvjIlom2Fa2JqBpnWBHa2NdLldJDs6rC5ubme18v3c41hlu6qkWSDfFCrBmak9CINPVdDq3B1s8vWsH7caa7nOybZHBKeqESUkepdI9X3sXGOtmDFtU5qUeS/jy8WVeWEyjygB+eCfhcjrOYsKaU5hBPqGHMHUoarpE7p7ns8kzQLXx83nT/t2czfD+zgtjlHAebaoBcr9wJw7tjIs1HglQ1K8yrti2FGSt1jM58veX6uTtkMlB7DLOvTFAxLdHOkjsgZxdaWBtY21AT8vPKU9ulmJ0wj3f/jru63k/RUK/ajk7F9OTaZYCGGMsMwz0P6DyQ/0NHKawf3k6JZBsxCBHNu3acNB2np7AFShlVpX0inovfeey+qqvLUU08xZ84cKioquOWWW7jlllt49913472PIoClOaP4+thpPFO+ixcq9vD15sU4FIVr9q5Gd5V7/9qYwZFko7c5mVCUwZyMXFaNmUxBUmQneDMzcpjplWHqcTqp6TaDqQxLAmNS0kgN0Ko5WvEr7QttjZTiyUh5lfZBwKG8Sp0DrcqJXqhh9Ltq7u6wGErNvdLgRCt3oOeq6GNc23G/4Xh1DkyxWLll9pE8uHsj79VWcP2mj7lp1hHMC9ISOda6nA5u27AaA7hs8lzyE5NJeLEJ9aCDzltyzRby/niaTbiOs6uMKVDDiQG8M1JNTqyKwrH5o/lP1QE+qqtkVmYOd2xfS013JxNTM7h51hGMivB1Ab2BlO20VKzvdpDwZgd069hPTe2ThYwHVVGYn5XPh3WVbG1pYGnOKDoddh7YtYEkZ+/JaCTrk3zen4/SPhQFx9wEEt7vQtvSg2NJEtbV3Rga2I81s3NGumqecNuNsLLKvWuk+mWk4tRwAoBuHXVHDySr6DMSBnzbyFZR23SUVv2QNlmgwzCbfLjeO+geGEB8adQ4XqrYw/qmOjY31zMvK48P6iqo6+liSXZByJUI/nhK+9IUSFExUhSUBmdsgso2naRHW9DHWej+ge+gxv1+aaS7jkGS4vM4hOqInEL+tn87axtruGjCDP839JqBprQ4e+/fB9VVbhpqtYEQw5ldd3LF+vdptvUwLT2L6a6L6NPTs/nL3i3oGFw4fobP+YypFiuXTZpLwgfmRXm7poffDW+QhJRr3rBhAz/60Y9YvHgxiYmJTJ48mdtuu42DBw9SW+t7rYE4dC6aMIPfLDiG66YsIrfHSmeqwRF5hUxJy2RWRg6ZWeYJzL1TlvOHRcfz/SlzIw6ifEnUNMalprM0ZxTTM7KjC6JCadkdr4G87vOgYOdjnoyU6/+uk0ElQMMJ94J05xgfxyZRNa/Sh5CRsniyWr3lgX1K+7xYVZUfT1vI+WOn0uF08Mutq3k/hIG0sfS3fduo7GjnqNxCTnDNV1LazFlnSlfgxzpgaV+I3BkpI0Ux2+a3G5xQMBYwh5H+dOPH1HR3ckxeMffOXxFVEAW9mQLH/ES6L83CSFZIeL+LhJfbfQ9cDnMIczCedVKuNugP79tKbU8Xx2T0ljEqncaA50rYdMPs2JegeC4EuDndbdC39GD9tAulx8CxJAkjw9VJ1DUrLeyslDsjldz3dW/kaWZHx4OOmB9PtdaJ4gBtRpLP95tD1XCi750aKB262UgoyXURxkcAYVFVLhxvBgRPHNiBbhg8X74HgK+NnRr1bnivkQLQczUUR2yaMKgNThQd1Cqn388Epc3Z5/6NRMW8yBbhc3t0cipFSans7WihPkDreMU7kAryu7q76HrKUoU4jJW0NXOwq4NOp4ONzfU8W76b27Z/zoVr3mJLSwPjUtI5w0dpv9vReUXkKObnx4b2+kO019ELKeCrq6tj7Nixfb42btw4DMOgvr6egoKCuOycCN209Gym2zNQaCQ1L5GbZx3h+Z61oh12dZHSrQZd/jOYLGu6SHizg66rsnsXUfvi7toX46SXZyBvkJMxxdY3I+V5FQX4APd8+Cb6Dv6MDNW8etmj+8/SGEZvWd98r7I4H6V9nvtVFL45YSb5icn8ac8W7itZT4vdFlLL42jtaG3kPwcPkJWQyFXTelvmK12ukw9bkJOLAc0mXCWQYWWkXGtJisx1NGqjk2njshidnEplVwcK8K0JM/namCkRl/N567NuJFuj6/Iskv7ajPWzbrS9dvPSVY9hPh9cmc2eb2bgnBmbsRGeeVLNdXzWUMU7NeVkWxP5dvEMoLeDm9IeXQZFadZRbAbOcZYB2Qd9tAU9W0Urc6DWmO3RPeul8Jpt164Hfp33v093Riq13+tDVcx1UgccKI1OjLwYXsd0B/Mpvl+T7uek0uSEiYeoqL/LMIeupymeoNJXIAVwbP5onq/YQ0lbE3/YvYnyrnZmZeQEbS4UCk8g5Xo8jDzNbIHeEH0LdPe6M6XHMNdBZQzcXv+MlLlmVTdfVxFcZFMUhSNyRvHKwX2sbazxuZYT6JeRChxIqa55aUoYnUajoW3vwfp+J93fypQ1WeKQ297aCMC3J8xkcXYBO9uaKGltoqStiQZbNz+cMi9gx1hFURhtSQF0ZudG/x51qMgr7TDiaTSR2e9DxzNLamhfFdN22VA6DU/JkD/xHsirhNhswh3wuDNCSqChvO7gK8FPIOVugR7gg1mtcqLWOnEWWzBGeZ0s+ijt6+/Uogn8YvYRJKoaj+7bxm4/LbJj6T8H9wNwxZwFZCW4AgWngeJqJKgECaT6Z6RIVjGSFfMkK8Rhw+4TTHf5mdLkRFEULhw/g3Ep6fxy9jLOGzs1JkEU9C5+92TRiix0/yALPccMlNUap9lZ02H+XooTtD0hTnMOQX5iMmOS0yjrbON3uzYCcPW0BaTpfYOLiLrmefFZ1ufZuOIZzqv0GDgWJPYJmNwnvuGWGHoC8OSBj5VnMG+s50m5noOKnxJEI5JOktHuk7sDa6rZ+h3o053Sm6oofMuVlXq7pgyITTYKwzAD4RTF874Zy3VS7u6zAEqt7+151mi51pi6L1JFtU4q11xH+Hljjd/bRJKR4hBlpCzre9BKHVh2DI1urd4e3beNq9e/z0N7tvBpfRVtQ6SjrIidbS0NAMzLzGNSWianF03g2ukLeWjJCTy3/HTmhHABR3Oar+OUpIGl1ENVyJfuLr30UjRt4FWhiy++eMDXV69eHf2eibC537T1fqU2vbOkhna7Vs+HTrCZTHEeyBtq+3NPUGT1XVrX52eCZKT0TBUNM5Ay/CR4tc1mWZ+zf7MKP6V9/S3NGcX3Js3mD3s288CuDTyw8FisanzWdXQ47HzaUEWyZuHkMRPobHG1A/cu5wuakerbbAJAz9HQKh3QbkCARd5uSreBkaB42jOrTTpOzCv1x+aH2PovVHbX4vfcfq+/PAtdP80xy7HcQZaqoB6wk/zn5pi3UV6QlU9FVzttDjunFo5nac4oaOp70hLXQApXed+HXRhK32wUeGWkwtwHpcMwj5+Phi56sWudVJUD5/wB346cOy4LEkgdytI+T9YzVTXXBeE/IwXm635mRjY7WpuYkJrBkuwYVJDYzAtH7owc0NsCPQad+5Tm3m2odU50H30xPDOkvEr7gLBboHublZFLimZhU3Md3U4HSZqP57fXSynY2iflEGek3Jk8dyOYoaKyq52XXE1O9nW08lrVfhRgUmom87Py+OrYKWRaY5OVF4PDaRjsaG0kUdWY3K8Db1jcn/vDZYEUIe7qlVdeGe/9EDHg7vrWPyPlWZPQEd83c6XKgZHdW7cf9s+7P3SCXaCP10Bed4lSsPOAfkGREUJpX29Gyve33Y+Z2qr77XWhlZofjo7p/TbiLu0LYSjwKYXj+aj+IJua63m2bHfgRdVR+KiuEpuu86XCMSRbLLh7OnqyCgTPSGE3zHJLr9IxI1uFSrO8Tw+wyNu8sVk+Z5bZhd/xL1yeTmq+Smo0ZUB5Uu8g5tju08LsfF6r2k9hUgrfnTTbvI9+J5dRB1JVrtbnhb4DcX2sBfuiRIxsrW/2FK+MVDj74HQFqTl+Suw87bdj/B7nfk0lBC7tCzsjZRgkPN+OXqjhOCa8dXme51mqihFgjZTn9orC5ZPmcn/Jer47cVaMSlgHPteNGGakvANTtdZ3UBAoIxVpKGVVVRZlF/Bx/UE2N9dzRG7hwPv1et9SA2WkdMNzkURxYH4G+KlIiBU1jEDKaejsbW9hcloWWpDnxMGudj5rqOZLheNJi2AN9Guu6oRVYyYzISWDzS31bG6uZ29HC3s7WijtbOPWOUeGvV0xdJR2tNLpdDAvMy+qge+KwzDPqeLcnCmWJJA6jLgDkf6Lvw9FRkppcJLyQBN6hkrPeenoU8NMy9oNVPdsmSABQbxK+zwBUbgZqRBK+/oP8R1w38FmSRlmyaOhgZHf7+TVkxELuNvm9hWFq6bO58ov3ue5it0szysaML8pFv5bUw7AlwrH973/PhmpwNtQ7AzIBOg5XrN7xgf5QLeBooORpEQ2zDdMvk4uAzEyVAwlNovzvZmZxzksyS7wtED3BPIpCkqnEfeMFIqC7Xzf7fa910iFzPW8MZJ9H1vDe61SDIVa2hfu/SrtBtZ13RgpCo4VyWGdNPQG7IpXaV/g96wp6Vn8eckJYe1jwH1oG/hc9wSzsSjt8zqeqr/SvgFrpKIv7QOzDfrH9Qf5vLHGZyAV6hopd1Mdz/87dYyEOHZ2tBme8n31oMO8kBTgefVkaQnPle9mQmoGl06czQLX+kpvPU4nz1fs5vnyPdgNnZ2tTdw4a2lYu9XhsPNOTRkJqsq5Y6aSYU3ghFHmmvvq7g5u3rKaL5pq2drSELT0S9vagz7O4nPNnBhc21zro2ZnRjkz1Mfn/lAna6QOI4onI+UnkIrjGin3VXW1VSf5ry0k/Ls9eIme9897fyAFy1TEq7Qv3IyU+zw+hNI+TyvvCNdIKe0GSqeBXqANKG0KtbTPrTAplW9PnIXTMHhg1wYcemxP5Ms72yhpa2JMchozvYbuQd9AKqSMVL/HOJwW6O7ZOkaSckhKsPovvg9KUzBSFfOEMIbd5lRF4ezRkxjtNSPOfazd61iiuqjiMFDqXRnBUH9XL5GskfIEDyn+L0QYWpiNSEIRpLQPq4KepvTOkgpVd283N6Ux3BJHr+eZp7Tv0JZt+7xokOJaw+hugR4pw0BpdnWEVECp8/2YuuehedqPx6C0D2BxTgEKsLaxBsPHWkzFZpaYGtbAF0GU5r7fi3fnPu9gXuk2Ar7X2XQnb1YdAMz5PjdvXc2t29ZQ3tnmuc26xhquWP8e/yzbhaooZFkT+LShio/rDoa1X/+tKaPL6WRlwVgyrH0vsBYmpXLh+OkA/P3ADp/H203dZyPpH61Y/9vp9zZiIG1rDwkvtUX8mqzsaufyde/y9wM7At5uu2t91OyMKJtE2I3ec5phQgKpw0jvGqn+pX3uQCqOJ5Gu7IKzSMNIVrB+3EXy7815QSH9vFdNfNAStXiV9rkOW7BmE0qPue7GHXgZ3gN5A/wM4D8j5Snz8hNIuUo1+s+gAsIq7XM7o2gCczJy2dfRynMVu0P+uVD817Wo/cRRYweWEXWFGDA7zc5k/aeb95bohfBcdrc+T1Ig0RW0NEV5kheAd8e+UBmZmvl8i/didHcW1R1IRZGRUmvN1tT+yvqC6c1IhXGhxR2A++meh2oGy0qHEfWJdB/9G574YGSbj2E4mcU+g6LLw2s20ud5ZnENoo1iflIkeluf98sY58WgBXqn2ZBGz1UxcjSzZL1n4PaUNt38DHA1H+nNSEX3OZdpTWRGRjYNtm72dbT2/aZhgM18/zcyNfO4+3kf8/5MA/q+98VB/4sIgcr7Pqk/SJvDztF5RfxsxhJGJaWwtrGGK13NIO7avpZbtq2huruTZTmF/GnxSn46fTEAD+3dTGuIjSKchsG/K82yvrOKJ/q8zbH5YxiXks721kbWu8Y2+OIubY91Bv9wZ32/E+tn3RGtXWzo6eaXWz6jsquDfx/cR4/T9zYMw2BbayMqCtP7XTwNi5/P/aFOAqnDiNriND9YUvt96CeYQUdc10i5Tjj0yQl0XZuNc4oVtcZJ0h+asHwU/AqSd5emoKV9cRvI6/o72Im264qkRzhd+/w1m3CVKvjLSKk1AUqpwijt82xPUbh62nwSVY1ny3ZxoP8JQ4Schs57NRWo4JnX5C3kjJSfrGM4JXqek0vXOhI9x3XCG2VZm9/7C7O0D3pLOtU4D+wckJGK4hgo1QGC+hBEskbKvVjfX0YK+rUijxHF9TxUAqxtiSjb6RX4aOXhNQbozUi5Agj3INoQO1nGgr/sqxGDhhOqp0RdMzPw9A629XCYZWxGuuopX4tFswm3I3LMkr7PG6v7fsNplguTqPSWY/tZ4+i+sOkeqxHvrrnu55/uuigX6CLmG1WlAJxeNIEV+cU8tHgll0ycRaKq8VrVfj5tqKIgMZlfzDqCX8w2h5QvyM7nS4XjaLbbeGTf1pD2aU1DNTU9nSzIymNCqu9SX01R+Kars+TfXfPOfFErzA/YQ9W443DhWacX5sW6druNX25dTU1PJwmqSpfTyRdNvrtZ1nR30mjrZnJaZm85eSSCVQAMURJIHS7srg+WzN4PFg9FMT/wOo24XY33lK5ZzSt13d/NpOesVFAg8bUOT0bFnz4ZqWAXu0K4ShwRd8lcoHMAh2FmELxPrMLp2ufvhCxVwdD8r5FSq/0v7g+3tM+tODmNb06YgcNV4uc0ov+A+qKxliZ7DwuzC8hNHDi9XAk1I+V6Dvgr7QvlZFnxzkjhdcIbZilVqHoDqdCfl8EykTHjDuRjkZFyr48qivAD06qYw1PDCqTca7z8f2R5yj5juU7KfXEkwHuNuwFGOAFcdBmpfkFMkmq+Jx3CRm39h/G6xaIFujsgMLJUdNd60P7lfT7vP0ZrpMBcZwhmeV8fXmMsgpVjuy8OekYvxDkj5X7+OWeb3e/8ZaQOdLSyvbWR0cmpzMvMA8CqaqwaM4VHlpzIqtGTuXD8dP60eCXL+q0R++7E2eQmJPFebcXAY+PDqwf3AfDl4sBzC4/MLWRqWhZ7O1r4tL7K523cow2CDXIXXpyG57USzvOv2+ngtu2fU9rZxsKsfK6ZuhCAj/yUdW5rNcv6ZkW9PspdbSSBlBgEfmdIuRhpKopB3EqIegMF1xdUBceKFBxHJZv/rQkWSIWekYpXaZ/hfjUEajbhI7MUUte+/g0q+lPNK5xKh+FzO56T11EBSvvCDKQAziqexIz0bPa0t/B+bUXYP9/fO64mEyePGuf7Bt4ZqQAnPANmSLlZFfR0NbQ1KV5rpCCyE96wBOra50dvk5E4n2S5n7fJitlwok2POIMRKKgPlZGumo9/qOWoIWSk4hEoKyGsx4xklpT3mia10hG0wU0fHX0DKSOEFuix5i/7GosW6O7Xp5GteRrr9G84ofRfH0VsM1LjU9IpSExmV1szTbbu3vt1v46soGcEvgjivjjobs3vnRFw6Dot9p6o99Ob+/nnmJmAofgPpN5wrY06tXDCgNLrzIRELpk0mwvGTffZ+j3VYuWKKfMA+MPuTXQ4/F8E2NfewtaWBoqSUlniCkz9URSFb0+YCcCTpTsHXtTr0FGb3JkVyUiFSmn3angSYgDq0HXu2fkF21sbmZaexY2zlnJkbiHJmsbnjTV0Owc+rzyNJjJ8B1Lath6S72jwVDP43V/P+21IuzpkSCB1mPA3Q8rNXQYSt/I+r4yUN88VyiAfrOGskYpbaZ+7RC/ArvaudfLxc4HWSHnaKAc4Icswg90BV+p1A7XGYTZN8PX4hjCQ1x9NUbjIVVbh72pTqFpsPXzeWE26xcqyXN8fnEqoc6TsvScs/RnZ5hX4YMFHb2lf34xUzBsSuO8votI+14lnvDNSPb0XAIw01SxDDdbsww+12oGhgl4Q+ZUMz0iGEBtOeE5CA2Sk3IFyTB9fd9c+P+3PIfrSPsVB0CHk3pQOw7zo4x5MHGQob0A9uidIDYe/9YCxaIGuen2WuZ9jal3f4zOg9TnENCOlKIqnvG9tYy0A1V0dvF16AIANnfX8p8NcC6r6axDk/j3cgZTrs/dgVztXrn+fSz5/h73tLVHvq+f+3Jm8Iou5tqxRH7Auq8vp4H+1FVgVlRNHDSy9DsURuYUcnz+aBls3j+3f7vd2vdmoiaghdKVckJ3PvMw8Krraea/fRT3Ne9B2V/Ay1v0dLdy85VPeri4Ler+HM+/PyFAyeYZh8Pvdm1jbWMOY5DR+NXsZyZqFRE3jiJxCenSnz2HV21vMQGqWn0YT2l47apve93H0JV7VRnE2jEZeiUA8M6Sy/Fwl9mqBbgS+OBQRxU8JjGdNRpBAKpw1Up6MTcznSLn+DnR12HNC6vUBHsoapWAZKdzZRIc5lDe793FUGnUUOzhHawPLNom8tM9tTmYu6RYrG5vraHfYI5oTAvB+XQUOw+D4gjF+B/32mSMVSuDp4w3VyNGgzIHS5OxznAbwlPa5rtzHuXNfZM0mDm1GigTFvIpf6zQX6yeGeS2tU0dt0c2Sqyg+7LyH8gZ8DF1CWSMVTtlnyEL4YI9klpQ7yNfTVdQ2HbXcgT46hNedYZiDnVO8mt14ZaTCfQdIeqIVpc5J189yfA469rv/Ptqfg/c8Lz/HQjf6zIXzue3m3oyU50Jc/9K+fq3Pwes4xKjZyNLcUbxWtZ+XK/fyetV+9rS3MK05lXOYR49FZ6PRyFfIZ2t5LcX2YtL7daRTm801y+5jQpfBluZ67tqxljZXJuc3Jev57cJjSYjBYHS1ybw/I01BL9ZQG5yoVQ70Sb379UFtJV1OBysLxgzooBeOyybPZWNzHW9Wl3JMfjHzs/q2Tm+ydfN+bSUpmoUT/VUn+PCtCTP46aaPebq0hOPyR3s+R1SvE3BFx7wI5Ge98bs15fxpz2Z6dCe725o5Jr84unU7w5j358qaioN8vKsNh6GjGwYOQ6fH6aTb6aRLd9DtdNDhcNBs7yE3IYnb5hzZZ0jysfmj+aCuko/qKvsMs2+29VDR1c7o5FSyEvwMVXZ/7gc9tzP/ktI+MSg8Hz6Z/jJScW6B7ifjYgT7YAVPu1uPUNpix2NgWwhrpHytdQqltM+z7itIRgoGZic8jSZ8lfVBVKV9ABZVZVluIQ7DYG3/xdUhMgzDMzvqpAAfnH2uigU64QmwNkX3tEAPLyPlyViEO/On0Yn1zQ6fncP63K5d75spCIEeZMF6zLjXnLkDKSLLggWdHxWicFug9wZSATJSntK+WDabcP0jUGlfVvgBuvu56ZxqBk9qqA0nul1rNL0H4boHoIe7dsRhoO63o7bqYa+ZUzp086JQ//czdwv0+oHdMZVaByl3NGB9oz3wtt2ZlWwNUlWz22Zd3+35Ku3DfVEgRoHU3MxcklSNss429rS3UJycyum55nvbEYWFHDVpDABt9d1ctu5dXju4v7ckzWaOqzCyNE/zp/rGdm7eupo2h52vjJ7M/Kw8SjvbeLJ0Z8D9qOxs592a8oCtwelxrZHONi+2ubNg7sHZbq+7BuOe1m++X7gyrAl8f7JZ4nf7ts+5v2Q9axtrsLtGabxZVYrD0Dm5cBwpltDfK2Zk5LAsp5Dani7e9MomuRtNuD9rfTVOsOtO/rh7E7/dtQG77mRschodToen3Hwkam/o8vy7uqmd/9aU8V5tBR/UVfJJfRXrmmrZ2trA3vYWKrs6aLX3MCY5jdvmHElBUt9B4Yuy80nVLKxrrKXTq6Rzu6esz3/bc89ncZBzu0AXUIeykRmmH4Y8HYL8lfbFuQV6b+14v0AqU8VQQWkIcL+dBordXL+hdBmhlfbF4YqFu7tSwLU3vrrvWYOX9mEzzO0H2G/dk53w3cbW38mr5+pNBKV9bkfnFfNOTTmf1Fex0ke3vWD2drRwoKOVSakZTA404DfUrn1+SkUBrxboQcpF+zebyIosY2H5vIuE97ow8jUciwc20DA3bi7qNVLVoFfc+/yYu8NWnEv7BmSk8FFCGoJYrI+CvhmpUPQ2mwhwbFMVjAQ8ayliIshAXsA8pmmKeTEohIwL4MmW6lMTYH0PWogNJ5R+66MAr1lS4QUQ7jb24MoM+qtm6M9hoHQZngsT/el5Glq5A6XVa5tOg8Rn21A6DCzbbdhPC7BfrkyOuxxdz9fQDjhQmvTeZim+MlIxLO0DSFA1fjpjEfvbW1mWW8jE1AwsJTagFSVR5dgpY4FGpujptDvsPLR3Cy9V7GV+dh5HOvJYSSJGlorDdWGlrtnsXnv11Pl8qXA8dT1dXPnFe7xUsZcjcgp9DqPd1dbEL7d+RrvDTm5Cks+hudD7nubOjrobwXh37tvR1MCe9hbGp6Qz089alnAcnVfEuWOm8O+D+3mvtoL3aitIs1hZnlfE5w01KMBZRb5bngdy0YTpfN5YzT9LSyhOSmVxTgFqpQNDAX28FW2vHaXLwPDqsl3b3cndO9exq62ZLGsC189YQqrFyjUbPuDVyn2cUTQhpPLCw4lD11m/v5ovYT6vjk0tYvScYjRFwaKqqIpCoqqRrFlI0sy/rYo6cGSJi1XVODK3iHdry1nTWO05T3A3mgg0iNd9ATXoiBZPs4mwftVBJxmpw4Q7hav7azbhXiMVzSDOQDxXEvp9XVPMeu023e+VQne7W3eHpqABgcOIzwvNlZFSAlwc9jkPKoRARrEZAbNR4HVS3dI/IxXk5NV1zCPNSAEsyMojRbOwvqmWLh+LSQMxDIPXXQuYA2WjgJC79in+nk/0ZqSCBkT9mk30aVQRxuJ+9wlqwPvrMudfhNOxD4Ak12DPCEv7lAYnzpKu4Df0Ki2NZCCuW9Qd+1zC3ocQMlIo5nuN0m1EtO7HJ4eP17sPenZ4rfXds470PA09W0WpdQbNeIJX+Wiqd0bKHUiF9zt7NyMIawZWkLWAho9ybusHnWgVrq5r9U7/2XubK7OSpXkCUj3fFRTUeu2vex8yBgZSxLDpxpG5RVwwfjqT0jLNE0z3+7/VfB0ZChT1JPG7hccxLzOPmp5O3q4u4/UdewH40FHNjXtWA5Blt3L7nKP4kisblJ+YzOWT52IAv921gU5H3/fdHa2N3LxlNe2uq/8f1lf63U/Vq0EHeAVSXo/xS/vNeYGnFU3we7IcDkVRuHjiLJ488hSum76IZTmFdDsdvF1dRrO9h2W5hRQmp4a93YmpmZxZPJFWh41fbfuM36xfh9qkY+RpvWvAXa/vToedt6vL+NGGD9nV1szMjGweWHgc87LymJyWyZzMXKq6O0LqMHi4ebqsBK2197WQpyeyIDufuVl5zMzIYXp6NhNSMxiVlEKmNZEEVQv6vDgmvxiAD73WUwdbHwX0rt8Mdf27ZKTEYOidvTE4GalAGQQ9R0Wtd6I0OjF8nIB5FuUWWNDKHIGvWhgGisP3/UTNk5EKcBtPRsprl4IFMu4hjhmBr1sYfmZJBS2ninKNFJhXm47IGcX7dZV80VjLCtcbZiBOw+DT+oM8V76bfR2tWBWV4wpGB/wZpcvAUDCbakSakQoxo9K/tA/AyDHXpCitoa3NATyPeaDSLc/rKjXMa1OKOS5ArXeav3OYz+uEv7fQU+OAX+QFLCn0HOvEaDNSMSrtiyAjZSj0eSx90bM11GonapMTPVDQFSJ/az/7M7I1KHdlTfxczOqzXa9sqT7GiqWpB7XCgT458LoVT0bKK2A3kiMLIKIOpNL9Z6TAbDihTzazItZ3OjGs5nFSa52otU5P+VmfbTcN/Bxzz5JS6pwws+/+xqv9uT/uEm0jUTEvEqapKG06k1IyuGvecpps3WxraYSWDgAOJHSytbsJh6JTrCeTm5XXZ3srC8bwWUM1nzZU8bf927hy6nwANjfXc9u2NXTrTlaNnsyrB/fxWX01P5ysY1EHHvc+5ZC4KkFSFLMs3GnQoTt4q/wAiarGyoIxMT0myZqF4wrGcFzBGNrtNlY3VLO9tZFzx06JeJuXTZrD/Kw8Htm7jdYD5rHcl9XJmKQMrMCumkaes5fzeUMNdlc55VnFE7lk4mysXsfnnNGT2NrSwCuV+wa0cj+cbWqu47ny3fyuZ7bna7FoG78gK590i5UNTbW0221oqsre9hZyEhIp7FcK6M1dUTBoo23iTAKpw4TS7KpZ93OiEe81UoHWABl5GuyyozY4cfoKpNyNMtyLcgMFUvHq2Ae9gVSAbIXnQ9p7kb4nI+Xn5xxm4BCo0QR4NR7wXi/jMFDqneZaGj8nhrEo7QNYnlfM+3WVfFJ/MGAgZdd13qut4PmK3RzsMj/kpqZl8Z2Js/osTh1AN6DH8Jx8BM5Iuf7hK5Byn4QHaeWv9Gs2Aa4TjVKHGdSHGEi5gxC12X9GKpKOfZ59ylCh3mk2GckLvWROaXR6SneUDh2SA/yszdXpTQPdE8SE+V5gGKjVToyE3vLKSHkew3DWSCUrQcvm+rRADxzTh8Y9kNeqBGwm02cY8IQQmkZ4BfnOsRYsW3rQysMIpPqU9rnuO9xAqjo+Gak+DYYcBonPtqI4oeeMNNQmJ2ptl9kG2Ucg1duxr/e5bLiH8nq1QFfadAyl3z5YMJ/jcQyk+q8FNjJcF2Y6DIx0heyEJFbkF2NN6AA6OWf2VGbNHI/6oZlpwzDwXturKApXTJnH9tYG3qwuZVluIZqicMf2z7HpOhdPmMm5Y6dS3tXO2sYaNrfUsyi7YMBu9S/tQ1HQiyxmGVydk/8Z5XQ7nZxSOJ7UCJsJhSLNmsDJheM4uTD0BhO+KIrCkblFLMwqYE+FucbpLWsVeU2NnE8R/91/gE/0WlI0C8fnjeHEUWN9lkYuzSmkMCmFzS317GtvYVKgsvPDRIuth/tL1mMAkxzpvd+IwRwzi6pyVF4Rb1eXsbqhmvzEZHQMZmfkBsxmed6bBmm0TbwNs90VPnXrKD2GeeXOz5O5N5AajIxUb8MJX6einnkb2SqGJUimIo4vNMN9khaoYsxH973ernmh/4zP+/fRbMK9jsE5KsBJcgxK+8BcTJqoaqxtrKHH6SRRG3if+9pbuH3759T1mOVk8zLzOG/sVOZn5QUvF+k2UAzQ0xSMTkJqf+7zylSyYma1gp2E91sjBV7PxSY9YOKxD9dFgj6zzvpxByURBVJeAXQ4gZS2w2sOTZCTaKXHVVqqRJ6RUlrM9xnnGEtY68B86S3tC+E5azfXUOpBMrrgNSssRg0nescWqAEDKe9ZUqHcs3eQr491lWGFsE7KfSHMd2lfeK9/JdKMVJDnuuGVkbK+04Fa7cQ52YrjqCQs683nrFrtCPhZ4B2oe0r73C3QdcMMpNL6rUdUFEhU4pyR6vtebmSoUAlKi7NPdsz9eyTlJTInMx2SG1HanOZnQb+LnZkJiVw1dQG3b/+c35ZsoNPpwGHofG/SHM4ebQ6yXZFXxNrGGj6uP+gzkOpf2gdm23Vtr53GA228ajFbkZ9ePCFGR+LQSNQ0FnVkAza0sQlUV5qfO3Os2cyfOY4lOaMCdjzUFIUvF0/i4X1befXgPn40beEh2vPBYRgGD+zeSKOth5MKxpLSrvSuPY/RIONj80bzdnUZH9VXMj3dXKg2K9CaO6fheU0GXf8+TDNSskbqMOApjfPTsQ+I+xypgO2q3UMa/cwWUT2T7DXzZC9QW+zBzkj56NrnaTbhJ5Dx+TO+WBSzQ1WLjntOhnuAnRGolCoGpX0ASZqFJTkFdOtONjTXDvi+Xde5v2Q9dT1dLMku4N75K7hr3nIWZOeHVHPveSNPViFBibi0D1WBFCXoYEbPmhHv0r4QG1X02Y67tK/Zib/5JUoEw3jd9AiH8lq299ZJBJxabxhmp0vvkz8iCKRca17cQ1KjEU4w5/7dAjaacG83pzegiYmQS/vcz6sQj2m3K0NoBX201RygGkLnPk82yEcgFdYcqTYdtd3oLUsOo2tksOe6OyOl7bdjfb8LI1Gh52vpoCqedZ7upiUDtt2vRM38t3mBzdMCvdO1HtFHaaGR6HpfCTasO1L91sj2XgTpV47dr/mT50Kmnyz6stxCTho1llaHDYeh88Mp8zxBlPn9IiyKwur6Khz6wMfZc9xcz3+HrrMjrQ2AjzeVUdnVwcK8AqamZ4X9Kw82d6OJbx49l/OnmzMPT8gYzfK84pDaxp80ahwpmoX3ayv7DFc+HL16cL9nBtQPCmejOM1yZyNJiVkgNTcrl0xrAhub6lnTYHb5ne0jG+jhfWEjaLMJ19/S/lwcakFnSIG5qF0LvZQmbAGChd521X4+PL3WdxlWxXwx+Wv1Gs8rFu5mEwEOkeI12NTDHeP4e5Pw1enPDz3TXLSO68qzp/V5gEDKE2xEWdoHZvc+gE/qqwZ87/mK3ZR2tjEvM49fzV4WducnzwlxsmKe1Ad4nAM1mwCz6UCwobJKj+tE0Ws+TsiNKry5AykHnsdlwH15yp3Cf176azISUJeOus/rAQ+UjXC4ntPu51+yYnbSDDOQco8wcJ8oR8WqmCe9oeyDp2Nf8I+rmM8Kc7jWZgX5lfXs8AI4pVs3A3xXFsUYpaG26EEDGl9rpCLp2ucu63O6SgnD6Rrpb4aUR6qrBXqnmYG2nZXa2wRhlMUMGv0MIPY0HvJe66sqGHmamY3r0H23PndzP8cjHDYdjM+MFAMvgvSOI3GtWXJdBAh08eeySXM4tXA8P5uxhNOLJvT5XprFysLsAtocdja11A/4WfcMqY4kJ/8sLeGSte/wu45tAMxuT+fSSbO576jjwv11B1+H7mk0QaJKVmYyELys21uKxcKXCsfhMHTeqCqN154OuvVNtTy2fzsWReX6GYtJ7nAF8Zmu12NPbC4waIrK0XnF6Bjs62glRbMwPjXD7+37BHDBXpfuiiPJSIlDzd0u298MKfNGinlVrDNOV+s8L4CB3zJyNLMUy88sKaXZnL9jpKtgVVAM/JfRxLOG1n2yFCiz4wkYe7/kedH72WdP5iWEN4fek2rzWIXUbtoSOCMWjiXZo7AqKp83VHtmggCUdbTxbNkuElWNK6fOi6zrk+sN1XBnpAz8B3+BMlKEsMbGMMyr/kl9XxO9JVhhnDh6vfn7O1GObo1U35bOodB22foE/AHLmfqd/KG6Fsl36GG9F3gyUrEIpDCPldJjBO/k5D75DCEj5RmOG8vSPgtBn+9hBXBO17gHr0ypc2yI86R8ZqTCXyPlGakw0WqWU0e0Rsr/MXEH246ZCTiWeI0MsCoYuWbQ6KuzouKjRA28y/ucZgdY/GekIMjrIRr9Lhj6fO3qhvmZlqZ43vONZHe3Of/7lWKxcuXU+X7Xp65wX+Ty6pgG9Jkhdf+uDTxVVkKTrZuCsenomsHsjgxWjZlMWhQDeAeL5hrEq48xH39PQBrmep+ziiehAq9X7cemx3lm3yD4X005t25bg8PQuWzyHLPLpNd5oef5F6Os1DF5xZxYmcejH8xnqTUfLdD6KK/HSglysTfYBdShSgKpw4Cng1GwrnCpinnyFaMXU599cFcZ+TrxtSoYma620/1P9p2uevcM1eyC5D7Z83NyFd/SPtc2Q8pIeR3rYHOkwshI9V8npVa75mf4G8YLvRmxGARSKRYLi7IL6HA62NRcB5jd+X63eyMOw+DC8dMpTk6LaNu9pX1ej7OfK1TBuqUFvcLrwMzs9VuPYGSaLYvDWkPjtY/+1klF3WwCBswPC8Rd1uecZH7iBCrb8DlEOl013wvCuLKr1scwIwUY6a7HMEiWXAkjI0Wy6+prk/8yzLA4jNCy3/1nSQXSPfD9INR1Up41Un0G8obftc+7jb2RoZrHOMT3j2Bd+wAci5NwjrVgW5VG/3W7nvK+moHPd6XJ1USi30VB3dNwwtGbkfLxeec5pnEKpNzv8YYrJvFV2qd0mEOT+zTMSA3yfhWCZbmFZnlfQ9/yPnfw2ZzmYE1jNYVJKTyy5ERunrcMY5QVtcOAOM+pixfVFUg5R7sCqWT3cQzv8R2VlMKRuUU02218WOe/jfxwYxgGL1Ts4Te7NmAY8KNpCzzZTE8TrwzV09E1VuV9s1Jz+MGO8UxqS+GYjrzAN/Z+XwqxtM+Q0j5xqIV8EhfPhhN2d1cwPye+uZrZ8rrfFX2lRTc72rlLOdyTy/294Nxfj+dA3kDns15tpD2CZLIUH1ksv/vgGcqrm+Vbza4hlIFO5jSzVCsWpX0Ay/OKAPjUVd73n4P7KWlrYmpaVp+6/XB5l/a5T+r9rpMKUsLpWXPg5yS8/zBeD4tinji2+gjq/e2313PRX0lgVIGUn3UWfjkNtBIbhgbOua4uiYHWx/goR42k4YR7/U/MAqkQO/cpnhlSob3m9RwNxY7/RhZOA+v/OlDqg2R/DMN8TYVYZqJnuWZJBft93Cf5XtlS3ZWR0oJkpJQOM9Do0+o+gjlSapUrKC7Swl4zF8pz3bE8me4rsz0ZG2/uMuUB5X1OwxxL4Lqo1udn8ns79/lsfe4W74xUvzVSuo+LIIqvUSTJoXUaDcRfeZ87S75BaQTge5PmeOY36UWu43Yw+Pq7SCjVjrhtG0CtMD/UdE8gFXlmxf3Z9XLlPoxYXGQZZLph8Nf923hs/3YSVY1fzD6izxxHTyCVqfUGoDHo3AeQsNVGbrd5QjPDkhnwtt7BW9BmE47An/tDlQRShwHPkMYgJ3HxnCWlBJmB4z75Uuv7B1LuDx3XB26QjFSgEsKouXZBCaH9eZ8OfMECmRC79gF9ZkkFHcTrzRKb0j6AZTmj0BSFzxqqOdjVzhMHdqApCldPm4+mRP6WoXiV9hlB1jJ4rvz6WyMVZPE2PhpNeH42xxXUh7omybu0z29GyuizX+FwD/YMdX/UA3aULgPnlITeICzAiaOv0lL3SagaaiBlGKj1TvNxS43Nh1zI88DCyUhB0IYi2uYeEt7qxPpRkEHGOuZFnhA/1Pu0Xg/AV5Cvj9IwrK7SPn8ZLcMwg5gUpW+3OotilueFmpFyGqg1DoxU11DZ9PBKS5V23bzoFGSmlz+eYbH9AinPRTUfrfUNr1lSg5qR6r9Gyl2K7Z2R8m6e5N6vENZIhcJd3vexV3mf+/72JrSzKDufI3JGeb7nntXlPTMsZnSD5EeaSfprc2yyvz64G024AymiCAhmZeQwNS2LAx2t/HjjR6xpqB62AZVdd3JfyXpeqdxHhiWBu+YuZ6nX4w6951Z6rEv7DKPPe2e+MynAjfs9VkEzUlLaJwZJKKUWQHxnSdmMgIGCZ9p9v5MbT8dBd3cjd5mcn8FtcS3tC6X9ua+MFJhru4JlpEIp7fPKToQ1/NSixKS0D8xZIAuy8ml12PjFls/o0Z187f/be/Mwuao6//997q2q3jtJd0ISIGEJpIEQIKMsIoigguOGggubyOYoCurIPLiNAm64jIPiuDPy5SsObgPDyPBFZwRmHEDgJ7KvggmELUl3J53urq7l3vP749xz7lJ3rbq3blX35/U8PpLq6rqnb517zvls78/u+2KvgXDPUyTOiFQxwnMcGZGyXk8akYKj50+c9D6T23MOtre54XozVh+3GMZyA47GnnFqlgqPWWl9+5fsfmZhh2if1NLEEalpDlblwiHSTH2cD7Gb8jYRkQKCo4e6JdIRaXio6Hesy9rS61GCE35Gvs5g7lYAq3DReNaPikgZ8zPWeS8TcyDGwZBtM0Tq2YoCwJhv24VATA7MiF5wzc4Dc7lU7vMYUpMep5rzd5baEugqIuXnOOyNdiy0hDdNtpeBFz2pfT6CGdIJ0EpECpDpfZorva+yTUjKb+mv4v17H+iq55NGK8sgaqS9ZIBNW/2xMigX8ApNiIsyoUDXxH1kljNwzcAiPDW9HV949B589E//jTu3vQizRYNq48wUvvHA/4eX52Zb+pw4TFTn8NmH/oD/2fo8lvf04+sHH4Wx4SUN79McqX1pRqS0jTXoloELwLfW0YVznY0UmxD/R6l9RNuJm1Yki4NTV+4zxAYf5kWwI1JBMrHW5qkU6Nqf2qcOTEkjUvJ3o2qkYni2TZXaZ9iGVFh9lAUvsNA+N0mR6X0vV2axqm8Q71m9b8uf6a6Rsl4MaWIMhIhNqIhUwFyW0a9en0NnEols+d3JGge/iFRd9OhoRrFPjWlY1CxFOjk4h/6obUjxGLnvQTVSQHxDSktZaMI1hpg1UkENqRs+VwqKBEWkpNphXCnehBGpqHkVZOSr9L7N/g+yX32UolcTa3CMNUAJTViH7ESGlKXE10wKq4SPWtG3l9x1bH4GiKKHwVykgU2YtsEVEpHKzJCqedZ/xsAX6eL5U427gyNSrTZFFel9yzBdr+GB7SK9b/PzOwAAa1ePYlX/kOv9KvqXhSG10U7BSCJWEhev0ISE91sKdCH7dBB7DSzCNze8Bp874DDsO7gYz8xM4cuP3YuP3Hc7HtzeqIYYh5fnZvGZB+/EL55+Ap998C7srAV4gVPgge1b8ZH7bsfDU+NYM7gIXz/kKOzW71+zrFL7FqdbIyWjUcZBIq08yqh1p/aFfzb1kSJyg02b4mAa1fA1qxqpeuNBreHagREpdz55lNhElql9qiFv2O2pWHLInuvzAhORCx/PltrUE4hNaM7UvpUxDq9FCPGAJjYXP44YWQENDAzAR9YegmKMfh1ROFP7VC1DUGpflNKhqpEK+P254HsuDak4PX/kOMwluuhl43NIbqWHlBqTw4AOHc9WQzS23rUgDmryMF6JUSPlVJqMGw2yUNLnS9PbMrKqkeKqKa+PKtyUYacXR3hHWUIpXpVSGKXcF2BIGRGCE3YPKZ85nUACXRlSVqRb1fnE6CUVKj0eF43B3KUANsdd6ax+PaSc8F1ESq40CkLlz7NK7as07nXcc//8aqTSikgBQjENAP532wt4bGoCunXfjttvz8Y392swl2hg2wzwsDWiCfS/2PM0UeuGmMj6KCk0IWk1TY0xhsNGV+AfDzkal607AmNDS7Bxdicue+RubJyZSvRZU7UqLnn4D5isVjDS04vN5Wl84dF7UlcGNDnHdc8+gc8+dBe216r46xV74OsHH4WRUnBaHZsyhWOhx07ta9WQYuMG9EerMAcZaq+SUvQR63czqX1ZqDJnCBlS3Y7yhkd/lZml9lkOmLADhzlqGQjeGimV2icjUtbrUWpueTbkLXpqFAD7wO+3fnq9mGH0CkU7tkOk9vGCffAPRTXljX5rHBaVevC3Yxtw0dhfJe4XFYi3jxQQfOCJ6iMVoYIlC+/DUvviRaSs/+9h4It1cRDyzM1WhCYkcQUnlFrfAcIqUh74kAO0X2pp3GiQ+gwZkYozF2MS15hLWiMV1tPJ2XsrqvA5afRbrmFxI1LwREvNCAn0UIM9QVNe1VLBctAkiUiFGXNJsBvz2n+rndrn/z1LCXRmutODnbRD/pzrcIlhuASC4LOnAUq6Pw0npjO97/tPP4QVsz0wdI6+xf5qRubKAhgHzM0pRko4d0ekEiiOxkUq9pkeQ6qVOiknjDG8YmQX/MPBR+GMPfZDxTTwxUfviR1RqhgGvvDo3dhcnsbhoyvwy+Pfhn2HFuPRqQlc8cSfWk4XlOyoVnDpI3/ATzc9gZKm4+/G/gof3vfg8GbEc6boo2jNTZm5kKhptw/FO8pgHKi/qs9eN6IiUo69KdLZS32kiDxIcoiLUjpregxxwrE9GsxBS5bYUQeieSNSUal99WSHm0TIhrwRNVJ+MuYqQuYzbj8vZiDMkoqvcLBZDnOXQqASouv6ypBK7wBx7C6747W77J7a57kiUqoWLiryGJHaF3QwCamRskUBYnjgHcXlco42KE/GFHsJI6ixpxf9MVEPIQ0pqQYWq0bKL7UvZkqOHZHKIrUvKjUkaUQq+Pt1etGjVC5VbVzM6LeKkEQ4qoKMfL5EAx9gImLkt45IQ8qvRqov2qCWaC+6WyqoKHgSQ6qViBScyn0OtTvruTIDIlJSAj30+nJtTiAFnwRWRcM6bnpbVmwXzXGdoiwqIpVCatVAoYi/stL7Xti+E4tqRWBE1Lv5IdP7zOdiGlL16LQ5Nmm6BTayiEh5hSYs0ozuAcKges+qffHqpSvx0twsvvb4H2FEGEEG5/j6E3/EY1OTGBtagk/s/woMFou49MDDsbynH7/f9gL+z8ZHWx7bY1MT+Oif/hv3TW7F6v4hXLHhNbH2ZFuxz3pOUlCNRNlE4d458AJQO6IvvoCK3PflIxuSCRDV9qRTIUOqy0lkSA2m5xVzEdE8VV1/1JIHdtSZsEkr/CwPFaonU8CHtKMhb9D5um7VgvkZRKoprs/v+Rxkw3Dm/sdS7APsSF6Ulz1HXDVSUap9YX3JEB1dDfL6A2Jz4VqMFCzn+IrMjnR46qTSiUjFUE6bNqFtqsMc1pQaFwoA9PADmm86UsIaqbSb8QIJ0gtnrNYKMVJjAYjvasjqW+cR79CdEamowme5rsV12vQxob4Ytb76yNGLATEYq4pghn9NS5gypKoFjDqoz5rQdlgF/LJZbDMRqRbmOuAvgS73haDUPimBDgQbUplGpDgXbT4867jdRN0EalZz3EW6O2uhaIlStKjaJ5HqfStmRZ2Kn9KhRK4V/NlK9AcbHH3fnETvj3aEvk06JOR30rQhxTm0TbXG2jE/oQn5KylLeQPCmPrY2g3Yo38If9q+FT/Z+FjIkDl++PRD+MP4S1jZO4DPHXAYenVxj5eUenHpgYdjsFDE9Zufxk0v/KWp8XDO8evnn8EnH7wD26pzOG6X3fGPhxzdUAMX+PdY34dp7Ssq9bcFQ75w7xxYlaO+oRcY1ET2jIbIXoTKcSTX+7AzSj3hmtshkCHV5TQTkULKhlTcbtRScEIeylB2hJ+lNy1uQ94sPBbyFgZ548Ia64ZE0pKo9gG24AQA8DiKfYAjta+TDSlTRO4KLFYfKc5gG7deStbBJGAuK1GQPp97ronokrbTjM7Z9otIeZX71DPY/Jz060fjpfBEFYxb0Sj5vDAmvI1h9Q9+qaU9QvAjbnRaGxde9lYjES5KwqAOHQPn4vDZzwI97r6/tsQS73Ae8KZNaFsMuw9W1HeftKeJxoA+Fl0zoIx8n7TTPcTzrj/dGD2wI1I+44lZI+VsxKvosZ6lGEZ1WoYUl2py1ng452CThvByBziceIyIlC1/nn6EBDWAcTSMzykf79tDSr6vXxOGbgxlziiOGF2JfQcX450De4nPDjA+AduQMjdGR6S0Z2vQthrQ/1ID2xKcJ65ZhlT9YEtwoJnUvjpH6Rc70ffd7ej/8gRKv55WUWQpuOIVmgAckemUlQL79AL+/oDDMFAo4leb/4zf+zTuna7XcO2mx/EfL27E4mIJnz/wCCwq9bjes6p/CJ894DAUmYYfPv0Q7h5/KdE4ykYd//DEffjBMw+DgeGCfQ7G367doIy1OGieiJSKHjVrfBocxTuFyETtKFEbJfaeGOudjEhJB3FIJkDcs2SnQYZUl6O8lHEOOJYHISqVJjExIy7Smy3ThJTXxFmUKw8tTTZqbQnGRP57wJ4QJhqhImR+h7MYNWSuz3IYUrGkz+Hw4KTUlDd1OAfmuCp6VXMlKCJV52IxDTk88wHrYOJn+Iak9gGO9L4AOXM1Dvl9lpjjdzwRqZCUq7jESa/SH7XS+vZ310KwPk1EcAMcAEHzlg9pYpOLMihmTbBZLp5fb21gi/BBTRz+A1U6RaqtKjCP+7k+EugyGmXsXRSGQ1RzyCbWGt5vfRdh6Stqbjb+TfX9xaFMf8Tn0BtSI8VjNuV1NuK1B8TAh/VYcyGNNFbx+0ykMW4xxLydMsDqnroi7+8M2f3nolL7MolIBexzTqEYbzsP1/v6mTDEUkg77C8UcMWG1+B1pd3EZ4cYUnyJBnOxBnNTBYgwlvXH7XlXeDg4gqVb9VH1Q8R8jZMW6mLORO//2YHifRXhGDA5iv9bRt/XJtBz7Q7o988BaBSaAJBOmloAK/sGcPHYK8AAfPPJ+/HM9A7sqFXw25c24ZKH/4Az/nALfv7cU+jVdFyy7gistBofe1m3aBQXjf0VTAD/+OSfMFOPtzE/N7sTF93/e/z31uexS08fvn7wUXjjyj1ckvZxUP05h2WNVGsCHfojVWiTJox9iy7nLu/XhHM7LLpfFhkFas0IW2OyrIHPEDKkupxEHkKNgQ9owoOQYiO6uHmt3oiUXR/l2ASiUtSyTO0DAA1gQR7DsMa6KrWv9YiUbMoL2D1XIrHuR1NNeQ0O7flaKp7SQCpcFJrKCJGKSAW8X4p6hMAHNHEw8dkcWEhDXsCuw4hM71OHJ/tw5BUTSKNuxFuw3kCdQ3+yBl4EjDWeovKoOqmgA2BMwQkpI26mmNZnj4GFjiE0ChOCSsN0KPfpz1hCHXsXxfyLTO2z/j/BWhMlggIgvH5vhQ5zRIO+ud5g5NtCD8GGVNQh3avYp34/ZnpfWhEpMAZzRUGkem81YE5YkamQFDUwplLJTB/pcyDb1D6/NgKA+9757mkSVduTXrRMPZtR921dD8BtZ0wQBYchpT8UsDhPm9C2GjCX6uBLhZR9ktQ+NmWg9/vboT9Vg7FSR/mjSzD7qVFUX98P9DMUHqqieJ8Yp29EKoPUPievGNkFZ+65PyqmgU8+eAfe+4ff4sqnHsAfJ7egXy/i+OWr8dWDj8K+Q4tDP+eoZbvi+OWrMVOvxUrx+8P4i/j4/f+DZ2d34hVLdsE3NxwTeY0gGmuk4jlagij+XvTHUtEoizh1Uqxsin04TvlBPSITpUMhQ6rLUXK0cTe2ASbqfNIsxo3puW2ISKmceEdEKm5qX1YeC50FKt8FbaQA7L89jRoph9KOMzoVirp+8u+1cM8c+q7cDv2x7Ppf2EITlkc5LCLFRRPcyJo7eWj1Se8La8gLwLGxRHjgHd+5PBw1RKR2Bh9wY9OrCbXGgIOs/nQNrMphrC01PGdMHtAC/pbAA2DMOim2Lf36KDWGCAl0l0BJks9VEuiOiJSs69i7CF5kwgEU5lBqQkEqTiF8qJHPGIx1VlTK8zxG9ZESn91Eah8SGFJJ95sQnHVSfNwypEIiUoAtOBHotFDtAILvQ8/VO9BzbXgNkC9BDolhTdTGTZn2nhYQkQLSjaQopcOQiBQAe049EmxIsUkD2ksGzGU6zKU69Bfqdhq+AxmNMvYswq+PVuh4X6qj95+2Q3/RgLFPEXMfWCzqyQY11N4wgNlPjaJy8iDM5TrMXXSYuzXmeKUtNuHHO3ffB0cv3RWzRh3DxRL+esUe+OKBr8JPjjgeH1l7CNYMLor1Oe9atS80MNz4/DMoG8GpklvmZvH1x+/DnGHgtNVjuGTd4Rgu+qswxkE1rbZqpKBbqdxNRKTYpAH92TrMpbrYfxxEfhd1DlazzjJR2UawjKyITJROpMvU2gkvtiRuzEP6gAbAAJsxEx9OAolpKJgNhpRfRCpCbCLLhryA8IQEPeghNVJhqX2JVPtgb8LmimAlpsbrN5/aJ78PbZsRqLPRMkr63JpzYTVScevgHMp9DZ8Skj4F2HM1UnDAWSO1yDoweSMFYQfcBPBFGrSthjgEeuaY/oQVTdmvcXNl6hBtgvu58gIiqXENKaXYl0lEKmIMCXtISUxvat+MKQ6JI5pYb5yOj4B8fNbEWhOnDjXKyK+vK6H4+zIKj1RQf5XtAWbTpvDW+tyLWH2kTC6Mll7WcNB390IKLlBQY2hR/hywhXTYi3XwmmXghUVWANSP7AOr+z8HQIyIVI2j8Hi1qT6EtkPC8wNdpCmyKbtZsF+Kourlk2JESvXeimhLYO5dBPo1aE9VfdcXwE7rM/YrgReA0m1l6A9XUD+m3/0+y5Ay9xQ3kS/SgG0G2A4DfFnwkVL7Sw291+wAK3PUN/Sg8s6hxmeryFA/rA/1w/r8PwS2M67V5sZhMMbwd/u9AqfMrsXu/UPQmzzYr+wbwDG77IbbtmzGzS9uxMm77+P7vqv/8igqpoF3r9oXp+0x1srQAdipfa56615NrLMmT5SiLc+Y5i6Nqd2Rjaad+7Dcc0NT+6IzUToRikh1OUkbJPKIRqZNjSFugWA/A+9jwsvFuVI/c+WTR3ktMmzICwBcZ9E1UiERKd/UuqoVro7ptjB3LaD6hn5U3+iff+2LDJs3k9onvVRpqzk6SBSRksZLjNQ+AL7KfWEF/YDDGI5IAXJFcwpM1BXtcKvBhR1wk+Bt7OlEf9I65Kz1OUBGpPa1HJHK0pCKUO5Tns6YPaTU56peUuJzZTTK2NvqvxVRowcgvkHvvG4cSeCQZtEAYO5RFPVDTzvUzDgXB5o+5nsI4jH6SLEJA6xmRaM8B0OvhLcvnIvI4YD/GJLiG5GKiKyYq4qonD5sz3kvxfDnWv59rIbo2kAvIQ5DvkgHMwH9+eAURZWemmIkRZu0RGCiHKk6g35QP1gd0J/yzzyQhlR9/xKMA0UEy69OSgpNGHuJTceM2QOv54adYGWO6rH9qLzHx4iKSZpS8mHojGGPgeGmjSjJu1ftCwbghs1/xpxPVOqh7dvw+20vYLTUi3ev2rela0m0HaZw7jr3JFmjlzTtdc69d7voC96DAUf03dn3LSjxhXMgRiZKJ0KGVJeTNGc9Ewn0mPLnYAzmiA5WEwcnlQaxyN48uYpI5ZXaB1HL45fyEyRb7ByPT/SeVbk4xMZdkBlD7fUDyuMXB95CQ16Za552fzEX8vAQIyIV1zAPT+2zNpKgeaI813FrpCwDcLGlBjflOOCmdLg0A+qk2IQhahJW6L6pTyq1L2iDlGInXrGJmPLjWgbS5w1jCErtazIixRdb0UOpAvaMndYHIFa+PlPrWoILx2h6zuasXnRB80VjqO/fIw7mViQSVbH2BaaPxohIKaEJn5YKyogPmwtzov1DGml9gN3Hir3oTO1r8bM1q6F5kCHlUJdLWmMTltqt7t/L1rOyyOcep10jVbFEYJbosfYW/RARWfJN76ty6H+ugvcwmHsWYe5WgLlEg/6sp1avwqG9UIc5yMBHrRR0p/x7EAYXtXDDGmpvHGgtdUumZacY2cuSVf1DOGrprtheq+I3Lz3r+pnBTfzgmYcBAGfvdUAiZb5AaqIHpUsNGY6IaMKyjtBWInIPDniWnA5UHuZsBgADwtAjQ4poN2zaFEpzQbUgHrJoypukiRp3CE6w7QY4g7sOSDrc82jIC9jNb32iUmGiEYENebnIHY9bH9U0IWIXUciFMuzw1yqql0SciFRM2enQprxz/ukr6ndjR6Ss/1CGlKdOKsXDZZBynzxM18cCcuYj6mMiI1IRawEbN4XqUquHXB+ixmAbUgmvrVuNradMoM4bvOiRjb+dP0szIsU5UPFv6u3EWCe+64Kl3sdCFPsAO4U13JDyr48Cgueek9SEJiQ9DOaIBm3ShPm8+DuDmvEmgfcw8Vz7OMNcToqk611oRMq6/9w6XPqt9ymrzcm0vqh0SIm+vh9ctwQlPAqf+tNVkTK5tiT2QMZUVMqpIKk9VwMzAXOvojqkqx54IYYUmzTBzHScMe2KSKXJe1avBQD86+Y/o2bah4vfvLgJG2emcMDwCI5Ztlsq12qoj7KwRTqaM6R8xXEi5rQypHo12zEakW3UjQVHZEh1MyYXzSoH3Z6HMEIPn80SJsLgQdVJbTXAdphi7A6jKK78eVapfeqJ8Ls9cVT7vAczw4pwxW0m2ixBhlwcrMUuy4iUXGhVeoCMCPlFpGLKxQem9tUtsYqA+ijX9aPSHDxphvLQImshog64SQg6kKj6qABDSkakAgVkKlZD20KAIRUWhahyaDtNUYOhpz+H7ahYwEYs501SQwqiboRxYUBoL9ZhLtHsWpI4NXJNOG2iGkWjyoXXNcLxZexTAi9a6VZ1HqleGEe1L0ixD0AssYnUDSnHWPjWuljTW0yPBQD0MrHm+kTnnc20s4hIAXYT1Ib3xFF0TIAWU2hCwvo0mPuUwGatJrgOVH2Uo7VC3Se9T/c4JADH3AnpJZVqnWURwnncJREpANhzYBhHjK7ARHUO//nycwCAnbUqfrLpcTAAH1izPrHEeRBe6XOJWiOS1pZJJ6ifISWf16DvQtVGs2jnlTUlKbWPaC+zYlNOsrHZHuD0a6TiPABKuW+j8Gw1eLlzTu3jcp0PkzFPotqXULGvWVJJ7cuwRkot3jK1T57l/AyZuCqQQal9UYp9aLJGCnZESh7IpAGQZkTKVSNV59CfroKXGMw9ArwHKmUjIKpT9Y/OxTGkVH3USDZbRWRUrMnUPsA2egv3zYlGxo7Dn91AO/j3mdrY418zKn3L9tBG/D0lBmNtCcxKuYo0YmL0kVKKfX6GlKOpbBBpznWJcyxxU9SiCHu2Xal9SSNDYREpR8uKoMhtlPc+KUpoIkEUT6r3FZx9yjiH/ngVnLmj3ubqAsxhTURzp921hs6088jWDYCt/Lk0BUOKWbXWZf+oYx5oT1VR/rtNqsG0H6esElGpXz33FOqmiZ9uegI76zWcsGKP2CqAcVD9Ob2Kv3L+NRmR8nP+RKn2qd/tY5FiE82I+3QKZEh1Mc1I0aqDS9IGemEk6EZtWnnV+tNiQfbWfPCoA47qI5Vxap/P7WEhNVK2ap57kbAFKlIboT+tpPbJiFQbxSagseCmqDEFRYKiq1FCEwDiR6RqXkPKuuZ2T0SqFelzC78DibaxBlYFjH2KgRsMCxObCEktjVMjpeqj0jgA+ZCV2AQAFX0q3G/1pNnbcfiLIcUbN8XUdU1p8AU9SzGMfImSrH60ajfCDZpnBQZeCEntmzOhTZhi/fWLjvcw8J5g+X0gq4iU0wBJaY6FPNvOZytpZCg0IuVURwv4OyK99wmJ1UPKg3GA2Ij0RyvKCGEvGdC2m6Jnk/O71RiMdSUwDhQeqYh+g8/WRB2VIz3UjJHal7ryZ78m2rh0SAN6/U9z4BMGtKeDW4jsM7QYr1yyC7ZUyrh646O4+cW/YEAv4L177JfqWDTVQyogtS/pvHem53mJSGV2tq/gUWITGQuJZQkZUl2MvbEl2OhVUXGKQtcJoi7yQKYF9duIksjMOo/WWnuY4XP9sMa6QQ1x2xSRQoj8eigmt2ukqojVC6QpHCF+RQ/zvZ46sMRM7fPWOrCQVAT1uzENKdYgNuGukWrmGQwck096VVRaH2AbUr6H6Lqo2/CNokrZ5p1moGdX25adYh8gxsV7WOpiE4DtqZfGmFTsk9cFQtYZoKlWC8q4D/LQyvkWlnZqUd+vBM6kIRVtsPNeJgw1n+9Se0kKTQQvnHxYE+MLEmrIMLUPQHgz3gSEPdsuQyppjU3IWu5sEGwGRaQi5kZS4vaQcrFIh7F7AdqECWbNicLjwa0V6ustY/6hCrQX6mA1wNij4BZKGWDgenhqH0vZIdOsURBI2RRjLAevhWFom0UkKkrI4RSrVurG55+BCeD0PfbDolJP4uuF0dCM10KtoUl7iIbVSEUJqDj34qhsoyZqUjuFLizrIiRqY4spfe58b5oRqSQPAB/SrEiE+HeDNy3CIEgibNEUYWITITVSPCC1LzQdMEWCrh+JZ1FlMyZ4Kf1Ds19jVV5i0Ka5KHx21t/E/Y77mFBmayK1DzFT++z6P/F/cr5qMiKV4uGSD1pKc47DXuGJENlzSZghFWHI8yEN2owh7pmPvC3LULFPjWFQEx5rnx4irdRIOdMRzUWaatILIFgcxnntZnL2Iw54kY2inQxoMPcqQn+mpgzqoBopcW0NbNrw7Y0VltYn4cMasNUA22mA9zS+z95v0lvL+FJdHMKNhAZBGPLZ9klz1JyH/cQRKes/IiNSAXNVFfuns/cqsYmIHlJejHUl6JvrKDxaQW1lAfrjImLrrI+SmHsKKX796RrMR6vqNRcaE0b4diHs4ud4sB0yKRnLcj0oc2Bxix9W5ej/6oS9R2kQe0ufBnOJhsopw+5InZcaB3vZ2ngjjJT9hkdwyOKluH/7NqzuH8KbVu7Z4uAbUTVSqaX2ybT8JlL75LWcvxtRI0WpfURbaeoQV7CbB6aWX5zkwMGY61DWIBOrWSkqUcouWZ3r5OcmjkgFeFtCmvimStD1I/Auqpml95V9FuMA5T6mQvwR90xjojfGjHsuh8m1SniPtQEkjEih14qgTIprpuql160+VdOmiBRuN6C9bMBcpoc23FSpfX4e+ErInAUi5cezbMarxmAdzP3GwGYtGfsm0j2cB3Nzb1tlDIDtHY0lNpHgorpVvxGY2hcdLXUNQaZiWbUpYfMsrCmv9nJMQwrBTrYsIlLQGfguluBESoZUYESqzl21wWnWSKGXKeM8MEVRt9aOlNRRZQ8pJIyG1w9wqPHNmtA21WEOaTB39ZkbOkP9ACHFX/zfWQCeWkMLvkgD4wEpugYHmzRgDjKgJyVDKsWIFNtpgpWFkqa5Qhfzu8qhbTNQeKqGwkM+cvEOtJfqQtwECK1RlJyz1zrsP7wEH9n3YBS09I/ggRGp3uYM+VDnTwmhwh/OtED13ERkG5HYBNFWmt3YzGFNiDakJB/KPHUkkdd3GlJ+3rsSC45I1bnYPFJSuPHCm4xIqYOeJ7WvXREpddhLWCPlXfizUu4LikgBwcZnnMMzH7DmsiPvOpbXX3527IiU9VmMgS+xUqDmUjakYKVXmeJ7iJPWByBcbCJGRAoIOTyPWy0KEnq9kxBozHEOlLmYM00873xYU+Ix3sOfvamHfECTqSa8XxPRC581LFb9ngNZJ6U+O6wWL6Qpr2b1NzKXB3+PUU151QEtTUMKlpQ2/GXZmyFIbELJQsseYinWSIEx5RQMS1Hk/VaPKz9HXRIS9pByjWG5DnNUg/58HcV7LSGW/UqBn2NY6X2sKg7N5iofQ2o4uE6KbTdFxDHNOssmoyt+yH3d2LuI8t+OoPyZUcx+cRnm3jcMANCeDS/E0p53pIHESJvbe3ARvn7w0dhveKT5QYfApqx2FZ7nlDd7z8Ick4yJ9S5I+MOZ0h/hvLLFJpINrxMgQ6qLaUZsAsggvS9mTYu6vuNQZvp473iRiQOO34NZi3+dprBuZdIaqUCRjDDjK0WaTu1riEhlUyPFZrk41Dr34JL/gSd2g2fAX3AijtdfNu6MqAljVctwd9QEyDmrTZq2CEBahpRDcEJ/Mp4hFVYjFWXIm2HKfXUuWhQs0jJNtwhUD5zjwtMbls4WhsZUlMPY23P4i8jXB2ArhCY1pMJkrpOk9kGslcZKxxrZbETqpTq4Hn6YDd0XnI1YvSlDLVL76wH0XrIbeEqGVJDYhBSIkVG5Zmukgp6l6gkDqB7f71Lw8+JKSWsBu1dQE98FYzCsqFTxv2YA+Kf1SYw1RTW3zN0Kvs+DvW41eiCziGpH9mtLQkDU3rBUUvVnwzdVpyGVtNlt6hgcbKcpnmVPw29Vn5xiHykAQB8Twh9+9c4O1b5oITHr/ykiRbQTeehNbEhJ71FKhpQtfx7v/aa1mfMC/A9JRSYK5P1qV+s8O8U+oGnVviDVvPZFpPyvH4WKFMk9LoOIFOccKJtiIXd2Wg/o5ZPkAOsngR7X6x/WuFNR5Y2NbB3KfVlEpABR/6A/VQMv+qfSuAjrIRQ3IuVjSLEJQ7RXyDCtD0Cgcp+am03UR0mqbxlA5S0D4Ms8h/SwhtCSBAa9EzVen9SxOGmnXuShV3x28FiUqpb3oDRtgs1w8GXhvcDCmvLqVrsKc+/gyEXT9GrQ9kiv4D4wIiVloaXB1mREKuhZMg7qQe11A+Fj629cr5qhldpBwE4ZlVEmY58QZ02BqfcHrUVmiAR62kITQAvRFR8Cv9cBDeZSXdR3hXxf2gsOQyvnJsFspynWbD8DW869xKl9puUEDdhDQkRUXJkoUQI/Ta63nQAZUl1M0xEpuWGGNeJMQsIUGFkcyxf7pyUog8x7yDG58HxkGfpVNVI+P6twcBZw/SCRjA5X7ZOLqjwsZ1IjVbW+tz7PPFWH2cb3A4hnSMliVx9DKrQhLwD0BDfuBCDmW61xYXcq9wlxDqRmKMv0oMJDFbAKh7GmFHkfmGbVXvhFpJT8foQh5WNAt6M+CghO7VOKfT5FznEx9u9B/ej+xmtGNYeEwymRcL0J7G+GmGmnHox14hDL+1h4U+SAiJSqj1oe/oeEOdikrLOxpgu0iQPqH6UstLlcF6IuTdZItdRcvT8dA6AVNUsAMPcoqnlq7l2M/Jtqx/Sjvm8R9cP6fH8u1y3Nx5DKQvlT/d1pCHeE1JEaq8Uzoz8XEEYxOLQX63a6aIwaqSwJqo8CWkztC1PADatXm7MyUQpw9O6j1D6ig2DTpjjYJ0x9idPFPhGWVyt0k3def2UBvAD/4lYgOO1GGjdZphmFiE2wKhdj0/yMP//Uurap9jXZkFcuqjJKmEVqHw84EAdGpJKk9slDuHPcSSJSQHCdlLyXnu9Oyhtr44ZIWUyxZkQ+m/ojlpJWmFqf8/d6reiaGWDIBzj8QyNSbVDsc43Ba0jJiHsLEalA5MEnjvx5Ug9pmJJVQrEJQKyT9YN6UH9lb+j7eEBTXlUftSL8e7RbY/hEpKy+f91gSAWJTSg1s8W6SEdqOiLVwthSSknzqzlNhM5Qt+TO6z6y5174igIq5y0OjCqFNeXNZB1Rh/f0aqT8Mk3M1WK+a5v8N1btZQPMEIYpGJJLi6cMC+ghBQAoiPNNoohUnYPVw52San32OTuwsim+K2aLsQS3trE+rwsjUl1o+xEAoBTDBvwP9qG/mrIhxXxki0OvP6Sh/LElwYXTQeou7Qj9WsYg84tIVXnwoS5v1T5pfCZtyOs1pLIQm1CGVFBEyjNm1Qg1+qP9GqDG6SMFwFVLwQd9fh4QTZR1NzI3Po1mvBKVImPNv0ihCUkvA9sB8Yw45lqUIS//Fv2JqkjrdBiFKiKVUTNeNQaV2uc5+E615nUPvWas1D4IKeSYDiL12QGNogFEqij6whgqpw9HXzcgxVNJn0dGpAL2hbIJ7fk6zGEts8bMqRKR2scXaeD9moiUJNm7EtYC+xElFx2bcuvPRu2NA+AjOuqH+0eZkmDPHZ8aqSwiUimm9oX2B5MRqWdrvqU9cg8wdy9Cf97IvUZKOgucfc3sH1qKolIYIk6KbowIOg9KGawJI8yURlhEE3TqI9WhVCoVnH766ahWqzBNE+973/vwrne9K+9hpcOcSJcym/CGhy16TVELMTCCxuCtWXD+TKm7AM5HrtlUm0QERaTq4n4HpugFqvZZ/5F1al+Mvjh+qNS+pdml9nH5mTEjUmpjSxSRcopNxEufcnqu/e5akBEia6S056MlqZPCnY09R+MfXIXH0LBkfB0/iBA74aM6aof2onjvHHp+tROV9w2rDZZl3YxXjsERkWJb6yg8XIX+SAX6c3XXz1NFRb2D38LqvKm1JizqEDvttBl6/UVH7NS+iO+xaB20pgzXQUvfWBPKbmuK8Q5fORMckbLWusW6nY5UNsGL8ea3n/BM4rFJw6fViJQ0xFpIe+XDOmqvD6/piv9ZjT3wAIj06AlDpBE2Gz3zu16KYhMsJGXTXFEALwLac3UR7fd899oL1h6wWwGsXwPG/d8Xi5qVUdCCRLwWktoHwO41V4PqjRgG82tb4iXAOaDWOvm7umjcHCw20b2pfV045PiUSiVcc801GBgYwOzsLN761rfihBNOwPBwtHev02mlyD1V1T5DGhitf5QiKJdWRtezFJuQC6DXxoyILAWm1rVLta/Z1L45b2pfBobUrJXa4V2Mg/pIJWm6rGqk7M+ILTEdldoXFJEa1sA120hO1ZBybICxo1FAoOBEnNTS6lsHoT9TQ+GxKoy751A/QniotQl3/VxWyPunbayh/x8m1evmiIb6gdEpbU1dM0aNFGq8KQeIHZHyS+1LXiMV+7p+NVKcQ3tZ9BuKI2HPhzRoWwzxTFifp9L6vMqHHYq6tz6qfVwD+ABzC4LEPQ5UeWv1UYDj0Jmv2ETq6Ax8UBNnCochwXYI6XMj5TVEZTekEZEK26N1BnOVaIrNthjgnj5sKiK1W8E2FCu8KQO398c7wHYYKP/dSNPGuq3mGJCC6XQglKK/kzg1nYFGbdknM6TISGyi22CMYWBAeFyq1So45zDNfIsB06JZoQkgvC4iMSoNK73JH9i4TT5oGZr/QTVSkSk5AXVdna7ap9LuBjXhjZ5OYWPyMuOf2hcYkUowp7jVjLIZsQnbcx3QN0d9d54faG4J6FT76vRoalxx66OAgEM0EC+1tIehcuoQuAaUbpoG21IXDpIJQ8ijZz13SwzmqGjoaa7QUX1dP8ofXYLyxSOovXkwVU+285qAz9yTcA7U0ZRCaHhEynotQ0PK2UdKNhs1dynEOpz5pfdpqj4qTW9ZhvhFpOoc2jQXz63VyBtIYNBI4ZkWnwV7brS2zjJnf54OgS+yeuA5nVpZpQc7DIJWidrbleDEJk8oxRQtAXgPAx/VQ9tQxEF7vg5t3ATb0nymkKoDDIhIJTZAY+ylQemqKu3S2TuyyELEJqz/yNJRnhG5GlL33nsvPvjBD+Koo47C2NgYbrvttob3/PSnP8Vxxx2H9evX493vfjcefPDBRNeYm5vD2972Nrz2ta/Fueeei8WLF6c0+nxpqX+NzsAHmdgsw6Sf4yC98ml6EQKKElkGRlsDQfLnUZEluU94DZl2q/Ylbshrp4jwAU0cLBOmB0YRJDYRGJFSqX0xPtvPwzvHRW1LxO9Hik2EfHfc0f9MGnNpYe5eAB9kyQ6uvT6HR8Q35M1VRdTe0A9WA3qu2wk2boCZAB9tzxZR/vASzH5iBOW/HUHt+AEhRJNlGllUjZQB0YKhibXGLr72T+3jBWRzWPAxptlL8YQmJA1NeWdNaC/WYS7WwEe6w+/q91x7+y7xpOp5KdVv+K5XzdCq2EQG+PWSkvVRqUe1dUupNAWxiShnkxKc8PSTYlsNsJoVjdIcqYvNGFImV2u3TGluBpW+6lcjBSQ2QONkdwSlq/oa+0Wr/tevT2c7zncZkWtq3+zsLMbGxnDSSSfhwgsvbPj5zTffjMsvvxyXXXYZDj74YFxzzTU477zzcMstt2BkZAQAcOKJJ/p+9vXXXw9d19Hb24t///d/x8TEBC688EKccMIJWLp0aVPj1VrIjW72WkHX1OQmPaw1NS4+rEObrkObQ/MNL+EQZSix9O5PyUr1qQPc8ZmaYf13MZ1r+d1jZj0Rmum+tupt1BNwbU3k/7Ka5/OsDVjr1Vyflzry+vVk81QeJNiALozybQb0WQ6+JJ0NWtOYWmBZv3uuMnnwq3L3mK17rfXEuGdDttqg/Aw2ZwK9DJoe/jcwKxddq8H3Opo1DlZqfMb4Eg34i/XzIT3VtaF61iKgLuZMFOq61iauVbh73lqODtYbvU4Yxw3AeLIG/S819PxqJwCALy20Z90b0oEhoG0rrIxa1Lj/32fYm3rUWtyANSe1ss9nz4m0nyzuKeu3PeLy83Xp3V4R83u0UoL0nSI9S/tL3aqPKkU+T82S+P5GISMDFfs+yN5YfLH1rFr3SivzeOuy9JYHrf8xYQO2Aef3OWzCEOtwhONDk2vqoAYWYzyp32M/ZKPyKTu1TwrWYFn66wjvZ9AmTRENaOU7sQypoDWS7ykcWvpzNdfP9RctI3E38bfJ50+vcJhJx+MwvvTn6zAPb+LvMTnYlAk+yKCVAp5VOe8riHXPNOmMCFmz2ID/eqdV7Guq1615rRloMJiY2m/9r9WWOdwkuRpSxxxzDI455pjAn1999dV4z3veg5NPPhkAcNlll+H222/HDTfcgHPPPRcAcOONN8a61sjICPbbbz/ce++9+Ou//uvEYy0UNIyO+kl7ZcuSJf7FoFWjijqAgeX9KDQxrrmlO2G+UMcSrRfaaPMpG+ZcFXMAigMFDKV0f6qLqqhjFoOlHtffZmwpowKgZ6CI4RS/C+c9rg3WUMMsBns9137ZuvZwKfDas6VtgMFd82TO2AETwJIVg2AhHe/TYLa4FTCQaJ7OVsaBAjCyfBDVJTMwNtawuNALbTS9BpnVmTIAYHCXfhRG7XttjGqoYAp9WgElx5jLfDs4gCW7DIINRd+z2dI2aLPivvM6R7kGsMV65H2ojdRRwwwG9BKKPu+t94iAa++ixu+8umsV9fvETjG06wD00daVr1qhb0mPmLd6yTVvK5iBAWB42QD0GN+peX4v5i55Hrol99u3qi/VZ61T4HWOMrZBN5nvPOE76igDKPTqGLTWh6C1uOF3F1mfXXY/i7xmomwAbKCQyV7CiwbKmEChztRaXNlehgFgcN8h6KON/bS81FYaqGEWA0YBxdFBVJ+fQx1A/yFDTe0zSYh7f+MwW9wGrWqvxfWnpsWzvKIXw6ODqC0zxLPPir7PvhfTqGEO4ygMFDDYwn3gPdZ3VGEN+6W5uYq5r21G4bXDKJ0e7uwtVyfBAYzsPgQWdGj2Ic177KW2so4ayhisF9Q9reychgFgaM0g9NF0ax3LQ9vBJ6sY6esHG2x+b50zd8IEsHiXAf+z0ChQXrod2st1jPT1gfWLa1XHK+LZ2G8QhSUDqPaJfW642AN9NNl9FvNLUHrBaGrN5VOGWF9Gi4HrS3WkijrKGNJKsZ7nmlZHDUD/aF/gc2JqdcxhAsWqe07XdFP87kiv+t25vh0wYWBksB9skdv8qDBrrxrtD50rWc7hZulYsYlqtYpHHnkE559/vnpN0zQceeSRuP/++2N9xsTEBAqFAoaHhzE9PY177rmnadW+et3E1FS5qd9tBk1jWLJkAJOTMzC9vWEAFLfMoQBgJ6vCHJ9O/PnFXo4CgB3P7oTZ1/yhmW2toRdADSZmmhiHH4V6DUUA05NlGOMOD8d4BT0AKoaB6RSu5XePC9WquPbUHIxxhxT0VuvaqAdeu1cHUOYYd/y8Z7YODcDEzCxQy9aT0qsDqJqu64fCOXpnDKBPw8TEDIolU8yJ56dhDoXImSVA0xj6Le/pTqMCc9yey1qlih4Ac1M17HTes7Ih7tn0LFCNvmc9A8IzOb5lJzDH0QfAKCHyPuhGDSUAs5NzqI83bsT6eBklAGWj7hofAOg9hiqd2mFWwMebz2tvBTmHZ3kdRQAz43OoO+ZtaWcNOoAd5TL4eIzvlAH6SYMo/XQKADDTb8BI6bnuNHp1gM/5Py9swhDrGjNRnpwJXYt9P7uXgU8b7s/eaYq5WeTxn9Ek1K2577huz6YyNAA7+mvgMa6p6TX0ACi/WMbUeAE9j8xAAzC13Iz1+80Qtdc1Q28JQNn+bgvPz6AIYLbHwM7xaeiwnv2tc6jH+LvYy3U1H1ra50yOXgaYU/WGOVD4n2kUDaCyqdyw3njp3VkHCsDEztlYl83iHnvRC3VxT18oq/W054UKNADbC1WhaJcipRKHDmDy+Z3gS5s/ypZm6tABbC+Xwce93eEFxd11FLbVsf3+7TDHxHmp9PQsdABTiwywyRkMWJHQnVvLMMaT3WP2gjhHAYCxuYrxl3YmTnFjm8Vn1AeC974CxD4xvdV9tgqiMD4n9hWzGrwP1MS6U/fM6cK2svhdXlO/W9JM8Z29PANed++5pVlrr5qdA/eZK+2Yw16Gh/tQjKHq2bGG1OTkJAzDaEjDGx0dxaZNm2J9xvj4OC6++GIYhgHOOU499VTst99+TY+pXV+e95q+17WEIswB1tS4TCkpvN1s6e/SrEJ9s5De/TGt+gFecf/tzCE2keZ34bzHprW28Lrn2lYBt1kMvt+8CGjTgFk37bB5hYMzwNR4Y91VyvACgzbDYRpmvPqSmiWh3yf+JlP2Q9rZ2pxowDKkzB7PvZM1TBXP9azvOe494/0aMGnCnDFdzRWj/gZmXZ/P+f+9Mq3BLDbON+ZU1xtgjY1w24yUPOdlz99SlfMW4DHHaB7UA/ZULwp/nEN990Ls3+s6igyo+q+vUoDEudYErsU+8H4GbcKEWTVtIZiylQoUY242hSbWICbnM+dgLxvgJcAYjjlH5b4wZcKcMqC9ZMAc0WAs0jKf40nubxS8x1oLa6aoe520noNhDabJVVoxZuKtdZrsTRey/sfGagbs/RzNasIdOSbOgTIHH9ASjyXNe9zAsDXPtxviGiYHGzfA+xnM3vTXSFl7w2dMmCMtfLa1zhtFBI7RWF1E4f4K2MYazH1LQmhicx28KDIrNJMrsYmGNTgGmqO+iBkAnq+p2qy4FP4ijEBzRA+8vimtNZ/554vsMxm2ZunWuuP5TK72fXsNleI9ZsUENz2RVCvF0tR56J6T6Rxuko41pILgnIPFLELed999ccMNN2Q8onxoRf4ccKgz7WzNk56JKl1QB2wlj5nepRoIaMgb1mtC4ZQgt8IVqllxO/J6pQfLQKwn21sMygfsw0WaBIlN8IAGfayWrF+LHDebNsEMqTIU43cD+s2ocYTMbdPqJcUZlAJYnvCAHkJKDCbh81k9aRDVtw5mr9iXI7zIAov+WxW24QMaMGGCzZrgVkpvHCnhVuG9mvibOAfbLhwLxqp4in2AQ9F1yoD+TJep9TlwCU70swY1s8AmokGkKBrk1wyYTRqq5iZSObXKhRBMB6w7TqTkthQ8YFMmWB0wVmaT0q6a8raqgFiJPsPIxrzas+KZYJPWs7Xa8Wz1B6zBccYgxUM0gJmAtrmezJDiHMW7RHJg/a+CM4wSNzKO2dye92lCBdopfe+j2uc82zWMoIvFJjpH8sXDkiVLoOs6tm3b5np9YmKiabGI+URqhlSrvaSS9PyJSVCPF7shb4YPmlzzvRtsjH5QatxO5bwKT7fHVhjSeIqrujfrPtjZ/W9SNqRmAvpIOQr+XVSRbD7Jcc+aifr0BDXutMcRvMHyJdZE6W+TkRyF6p3jUU6KcUjwhbF5bUQBAEohClItSvG6+hRJ2mBIoZeJv6nubMQb31/q3Bf0p4UVbqzpjv5RLjzPNvM0Kk16CFdrVBqGlI9ymv6YnVImDeHAsch1u4OkzwGHap91ppDS53Gbiie+njQkW5VAr5ii7UnIs26uLIAXLEU9k7v7R1kwpdqXfDxyLpirLIPtuWSp9drTNWhbDRirCzB3C35e1ZxJUbUPEM5MxuFWyiw3ztPA1jaAWnOpj1SKlEolrFu3Dnfeead6zTRN3HXXXTjkkEPyG1iHwKZNMUGb3ejTasqbRRM12ePFu5a0oSGvsUcRXAOKd5TBttp5uvEiUtZ7pSFlNStuuYljTJI25VWLpHXoU4ZU2r2kZk0hR+65D2pR9RoydZ5oPjnHrQyHBBGpIPlzFuaFLjFU39CP6hs6o/A1rI9U1CFhwRLWlLfe2rqmoqQ+/c0QQ42xWZzzQHvZkj5fnuAgW2Dg/cwypMQCbHahIaX63jgMKa7ZjscgyeZAlER2CmOTKdSOfksFK62P65ZxH+TcAVQUtWOa8UqK1tzZYQCcK+lzM6uG3mlFpOI0Wi4wmLsXwMocbJsB7Xnr2fAxpFqJSBn7SoXAZPVkxTtF/X7tyAjRo4QRqbg9Gf2+C1kO4ZY/t9Ynn7YTylnRhXtVrk/izMwMHnvsMTz22GMAgM2bN+Oxxx7D1q1bAQBnn302fvazn+GGG27A008/jUsvvRRzc3N4xzvekeew86fKwarNR6OA9CJSavKnudcGpHy1I7WPryig9jqrn87PdipvNYsRkbIPZta/29VDynP9uE15mbfz+GBWESkhR95Qt6WaojpeM0TaSpL5pA6ts2b8hR8A77Flkn2JSFutvX4A9Vflq9anCDCkWJXP/8hSk0gjqcFhgxTWNZ8mle1I7YOjKS97SRzGeIKIFCD2BlYHtK0GzKW6Sk3sKuTaUuFAnQvH47BmR497GThLEJFqNrLrhzciVTahPVMDH2AqncvZ1LYBH09/p2Au0sTzVOZ2M96MDCm/yF5iTOssFeN7NazvRt9Ud0SkHAtEKw15ZURqqQ5ziQZtqxE/arTdgP5oFXyAwVgfbuknvmcx1yzfJuRln73Ye0ZyUs/gLNkmcq2Revjhh3HmmWeqf3/xi18EAFxwwQW48MIL8aY3vQkTExO48sorsXXrVuy///646qqrVA+phUqraX3ydzlLISKlmqemn9oX2JA3Y49F7dh+6E9UoT9bR/F3s6gdP2B7CEM8VyoiVHMbX207yCZtyutp6igby8r5lQp1LqIifjLmusgJdxnM8r+bikiZtpc2QWpfYERKGu5dUCKiNivnJs6tex/UnHGhE9aUt9XUPp+IVNx6g1ZoOSIFIcigWY18uzKtD+60XbbTBON2XSMAq4EqS14jlcI+xz1Gtv5EFcwEavuV7J5GM2ZgE1tl/HVQM14JH9aBFw2wHabqIZV6M155LR9nRWLkcx5jjxZGbhnaszXoL9TBdcDcxf7bZB+pZhry2vVEDOaqIrTJCrTn6zD3id58CnfPgXGgelhf5HplG1JxI1LW8xFpSAU7jpy/G1S2IV4TEdmOSJVPSK6G1OGHH44nnngi9D1nnHEGzjjjjDaNqDtgO6Uh1cKE0xn4YGOBYOKxpJg7rpBrh/dha0NqHwBAZ6icMoy+b06geOssjLFSeJqXxJHaxwF7/G0ypKQhx2poLOT0wZvDrBbDNCNSc/YG0TgAUYfjDPPLpnxNpfbNctFJGemITTRj1OWGX0SqDjDexoholxG6qbea2qcOFn6pfVkaUvazoG2pg/cyVbsS+zOGdcgTZrcaUs60XbbdWhM8kTXep4nDfp1H7ilpiiop7721zhas+ihjXQ/0J6uun/mORWYSdJjYBGDXSWk7DDsi1cE1UkqdM0b6vbmH2OALj1bAZjiM3QrueaMiUs3USNlOTWNVAYUHK9Cfi2FI1TmK95TBGVA/PEafrh4mnJcJUvt4AdEGmk+qLCub4neda6hThMt7rRjPYafSeS4NIpI0IlKAlcJhwl0Q7bzOhIH+z29D4Z6Q/lkZFAgGHnDk4aYN5j8f1VF96yAYB3p+PqWM19Bcak/YOlY6YJr4iV2EoLyx0sgpMPBelmqNFAtQ7JPwEhMGiyyuriU3Xlze/yTpU0UI1b1maqQ6jQIDL3g2cYcUPOFDQOTb9VqTa43tlPBL7ctw27XmvfZiHaxmRaNiqtxKnBFMY+8uCMf6oCJzFd6g2Kfeo5T7Yqx3tfSeJTU3yhwwOPTHq+AFUR8TJ8qiDt2dViMFh+DEDhPaNkOs+1kZfEkV6PyIU/tswYd1kbpo7Y/O+iig1Rope580d7cEJzZHC07oD1XApjmMA0q2AFLohZgQpIljfHIOzPF4e6l33kqJfk/UNEipF4ClYhl9qU6k855EIpLUDClLcEILSO/Tn6iCzXBVdOw7lkzkz/1rF1gGCoFh1A/tRX1dCdq4XXgdtpHaYg/WPcni3oTAE6b2MU9qHyDmFKvy+Mp/UURt+iVL7UdGG5tIoXGqDapNNc5hVUbEmqyR6jh6mSutJJNncx6hUjb9NvWUxCZcYgZz8Q9tzSIPPdpGqxg+YX0UYBtS5i663Veqy7DTdk2l2OdK7YPDuRMjAp9mmrbTe6/9pQY2x2HsUwJKzM4yCUuvjnBO5YmKSG22DPnR5IZ87GvJNLW4giE+JHV2OiXJvYaUrLtrJrXPmWZv7lYEZ4AWQ3CieJclMpGgVpf3WXVsUeeEuiV8EiOFtKFGqgbhpPfO0SDnFedgdccZqsvozlVygZNmRAoA2JR/LylZUBkaBm4ighA5riCvRZtqpBSMoXLSEExHCmW42IT1a9Y4VUSjXREBR2pfLKSH3ClP6lfb4YC9VEfvtydVP40oGqJeHrinToU1UXDqVMFKWtDPezwRMSfdFJGCiHQI6Wu3Id8t4287oREp6z9alD9vt9iE/Gx9k2VIrUieViXrPur7dWc0CoArbVdT0ueeeyEdMHG882k+S465UXjUSus7QNxrv5RQLx1fIwWoHmRZ1UcBCSOKQcSofXZi7GEbTw0RKY0BPawl1T70ic/gy3VoO8zAsxkAaC/UoW+qw1ymw9wn/oZpS6CHj7NBjCrsMz3rXeDvKvlzzwdIm7Eb0uh96LwnkYhEGVItegujlPu0F8XsDt1oslDSKwUccNqY2qcY1FB915D97zgNeZVqn/X/7VocWk3tAyJ7SRUerEDfXEfp5pmY12iMermQOdPSaG7GMO+zFLhmzOQF/T1WRMxPuU1+f11iiKi/2drI2y520m0oh43Pz1pV7ctJbAK97gNNMxEpc+8iyn+zSIjsdClOIZnA1L4E8tksxbXc6b3XHxWy58b+1kKo1t+w1L7OrZEyZUQqa+lzQETwNASWJsQhqbNTRqS4BpgrGp8t3suEcWYmGxMrm+IMZZ0hjN3FdbTNwVGpgpQ8f1VvsqhfXOW+BDWdDQ2uA/Z9u47bc3+yaKPTRsiQ6kLYTmvSpRaR8nmgDA7tJWlIhSzqGUSkghrLtju1T2Ls14PK2wZQPbY/9FCq1Abr7oNsuyJSTaf2OdLgonpJySaf+l9q0DbFiEoljUhZB5ZEC6om8vDZjC1/HtfDGKrcV+Vio+4W9WfphZd1UhSRCoUHOWyAbMQm5BzLMCXLa6Q1Y0iBMZhrSl3rHQbgikh5m/FKbIMmnxopfWMN2qQJY1VBRXKiMgKAGM6pHGm4xxkJTQAQxkN/AuVFP5Km9u1WgDmswdyr6P989FqOOb904SBkLZLj+7Qb8wYYUrMmCvfPgZeA+l/FEJlwXi5mbVmSCLoauzVvWZDIVICQmK3IHHmpjqRLh72wST21b2fjQsS2GkpBLTwiZX1WmpuuZhXOB6T25ZFHW391f/SbvAZgm1X7VGpf3F5+jgJXCY/oJSUllQGg+N+zqJy5KPQS0REpa8xVS+lQpfYlu2d8QIM2YyinQOz6AceBiw+5f8SqXIwjoxz/tHFKX3MgXhPphUyIal+rqX0oMPAe5p/a15N9Q17AMhRaUXbtYpT8+Ry3m/EO+RtScZryZlEjJaNOMq0PiM4IAGDXSHVgRAq9DLxkO8QyjUhB7CvatGEJFSS/H4nrSAsM5Y8vAfQAx2CvBsAQa3Bc+6Yieic69yzbkPJ3Vhb+OAdWA2qH9yZO8YzbSyqROM6AO7oblNoXWLaRk5M8LTrPpUFEkrbYhF9ESn/BcRovB9SQIMOC9hJrSLfqdK8F96TW5abaF1MowhZmaKyR8i12rosmi+YggzmsQX+0CrYlwmqLo9oH2Atrk6mi6gCywxQFvzHvud1vxvP3ciG40U3RHG9qH0WkwokjNtHKxs77mVJmAyC8zhpsr2wWOA9jKwpd4wRIHek8KIs+UnxIa2jxYavntblGSkpQW9QPsJuo+qk9emFlLta4LFNEm4UxVy1aVtLnkpYFJ5rJGunTgvcX7xocA28bEkA8u7wA6JvrjWevGRPF/04uMiGJWyOVKLWvocl0gAM1KAtA7vskNkG0CzZt5dO26GkOS+3THIYUM+DfiRrILLeVF5j4bOci0q4+Us3iFXvIS7UvgSHFe5nrgBEWkWJbDeE5W1lA/ag+MA61oIddA0Cw10waMiq1r9mIlPU5HGLhj3uADErtMyBUh7rJCJH1MQ01UnkNqMMJEZuwN/bmP16JoFjPAJszxXzL0Lhxeo+TNuKdT8ion7bVEL3U/HppqUN4nBqpFNdyKyUNAMwRDdz5PZUYeDGG2IRn3e4k5L3mPUzVCmZ2rX73M5aUtKP2zqyA2GPwMzp0BnPXAliZg4075gLn6PnlTmg7TdRe0QO+sokFKm5qXwKxCRQYeMmOwAel9tmtbTzXakJkqpMgQ6rbqHNxAE5BlpYPaqJIP8SQUgtDwMJuN+RteThupCy2U7Sm0wsSPTVKuan2xUntM7lIZ/NGikJqpGR9lLlLAbXDe8F7GQp/mgtVFvLztjlRHl556G9Svccpr56kmJ87UvtcKA90omHkSsMm3u7512WENeRNox7T1XjV5GDVZHOzqWs6Pr+p+qh5gnquJyyhicWNRmWcnk2KqhUFSumWymsbB/Q0GNZ8UBNjMnzGZXCRBt2B0ucSKTiRpfS5Iq2IVFoOM+XMSjAenxR7ADCV4IRtdRTumkPhsSrMpTqqJ3py0WOiokdRY/RR9Q39XBmBN3mwERbkvKLUPqKdyEiB8na2gsbAhzSRKuhUmeEc2gt10STQytUN9PhIj07KUSKV2uVIu+ma1L6a+yDbtsXB28cqDLVIeuoGQiJS2hZLiWm5DvRqqB3RC2YAhf8NiUpFiE2ohVVGpJo0lp1prs0YUt6IVDf2YFJ/t5Wm2I1/Q1tR9Xk+P0uj1YKqG0jYKLoVXIbUwo1IyfvArK/RLyLVoDQWgqiXRGpRILl/1w9o9NSERlk6uBmvRAlnZFwfBcDd3LgJWEL588jxyH2uiYiUN2tDnr10S3CCvVhH6T+mwXWgcupQ02OOq1apHHIxG4g7521gbbTPuQ4ApfYR7SUt6XMJH9ZECpMjJ5ttF41NzRUFQB6sgzabGsB1BBZfNo2f56LTU/uUap/4Z7sjUsr4jGFI+dVHAQhVjVIRKcvTXX91H7gOFP8wZxtMAdcJ2vjVvWkwPiP/BPfnOAuvYy78AOzDdEBEqquMEOmFL7vvJdVIBRAakWquVs+Js94l6aGkaXSmxryQI1IowFWHZPoZUvKQFzMileZaUH1DP6rH9wv1N++4QtZgFXnp4IgUX2JFpJa1wZBKkJ7pS9p7dEupfZ6IlBSc2FwDqhy9/zIFVgeqbxxQ0apmiN1HKqnzx9mUN+B3eUBEilL7iLYiFfZaFZqQSINMc6RnybQ+c2XBUUTo/9CxlDcYRcnnkFOz0is61dHqlR9v92E8QUNeFpBOYMuf+xlSjogUhOex/opesAoXxpQf0sAKWoy9hkyTstNZRaS6yQjxpvZRH6lwgjZ1AKmJTQDiYNGOZrwSY98SjH2KKiK2IGHM5bFvaMYL2P3notLCDA5mpLsWmGtKqL1uwD/CFaLcJw2GTpQ+l9Q39KL6hn7UjkouhJAU5UBrUgI97TXSqRYZm6C9eFQH72XQnq+j9O/T0LYYqK8tot7qfY3dRypZ3ztnqqxfj0oA/uc6x787tmwjgs59GglfZO1KaoaUj+CEMqR2K0T3HKjzTMKxfkWJrM6FsdKhSlTe1L62q/Yl6SMVFHovMPBe1qgaJRX7hjVXCkLtNX3gDCjcUfb37Je5eH9QSoxS7bPe32yutDPileSwGlEj1VVGiIx2VNyGPNVIBRCm2ifbOrSwtnFnc9VKhEMhRSrvW4S59y/O/DqdjnPd9RWb0Jjo+xMVzWi3aFBIU95ObsarKDHUXj/QHkM+pnBCIGk7zOQanKBGKlCQSWMwdy+A1YDivXPggwyVdw+3nF6atI9U3DXL5TgKOl/olmKlJ52adXq2UQRkSHUZaUmfS0INKUdEytfjY3nqMlEF89TOABCpfZ38oAWp9rUttS9+jZS9eDeOjQ9owrBwfI5S7PPUXfBlBRjrStB2mijc54lKmSKliYXk86umqFX34T+x2ISjX04aYhMqItVFHrKGiFQ3GoNtJFRsIsWIFJwRKTJq20dPhCEFq0C+ykPXzHZHp0NT+zq4GW8etCp/nlWNVLLUvuAWIapGHRBGVBoiYzHruBL1kYJHvCVMqKLI7PVVUmt9vc0Tehq7DNuQSunB9zOkXqyDM2FIhXp8Mpz8qjbBVSOVTfQrNYJU+9ql/JZCah/g2Mgd6X1OxT4vtWNEs+Li72bBXvT0HwPCPZOePlJMpfZF/w2uMTtV+5Jsij3u6yukx6yLjBC7j5T1vbU7ItptFEOeF7nupCB/zmbaKDZBKOS95pq9zzW8RxokYd75dkek1IHUxzjo5Ga8OdCq2EQn10gBgDEmDg/V1/ap/24ZOcbI1L5ka5bLcRSS0s+LCBGbiHWpjoMMqS4jdbEJ2ZTXqr3CrAlt0hSKOz0stAu2PIBk4rX3Nm4zrehXBxcj5q7a10REys+z6afc51Ls82CuLqK+vgfaDhN9355E8bZZEa2UkZEkEakmjXOXimWCgn7Zb6YhIlXrQiPEG5GqtfcA2G00NIN2UrPECloR0XHWDLRLbIKwsQ7Hfs14Jc50pCDaHpGS669PC4rIvnwLDGV8tBqRSqtGqomGvEEKugBg7lXCzOdGUfvrwTSGJ9Cs9P1I1b6E6cie9Y6X4L9+lpg4yznk/VmTbU86BXoauwwlNpFS/rE3IqVZEQVzV+EaCBWbyNBTp4wSeY1uyKH19HFiVS68L21qnMiT1EjNhUWkGjdyr2Kfl8ppQ6i8ZQBgQOmWGfR+fzu054SlzRJEpNBsSl3JVitL5PUPasjbhWlx3NOQlyJSEYSITYh6zBZrERwpWu0UmyAEMsoQlNYHwHX4C6TN0ekw406JTVBECkDrESlW5WLfTEt12LsGxxlDlBJjBrVmvI8JI9IMHiebs84vMe+Na96WeXBKoJ/Dt8tT+7o0kLaAmUk3ImVaPR+UIfW8LTQBRKQ+ZKm04k276YY+A94FosLbVh8FIFFD3iD5c8CRNuqMSL0cHJESb2CoH90PY20JPb/YCf3ZOvRnd4qf9QfLLHojUq14pvigBjZpplsj1U1GSAlC1ZJqpOIhdz8/1b5a68+uu2YgmQIW0Tq2IRWy/sToJdX+Gilrz/WtkQp2gC1I4irQBZHyHt2QXh2DPOreeJ8GTFopx35GORd1Tklq8ZWIxaQJxoPnqO0kB9BjvShT+rvUIqGIVJfBdpoi5SSthXRAqKg0RKRWWjM6pJiTZelF8MhkdnozXsBeBFhNeHpYvc0H8ZDieS+hqX1eCfQAxT4/+PIC5j60GNXj+1Ufl/CIlPX/Lab2AY46qRTkz+2IVOJh5AdjQoVMekOrED3eOtn5kCeaiGIyb2oft57dVte1IgMvwSV/3g7VPsLCStsNi0jFak7aQap93dCQt63oDLwUQ3nRD5OD1VLeo5uokULZFOt0O8sWItraoArRXzTJXmpF4LUJ4XQNNPZ9MgGaVuvtEDr4WEr4wZfqIiqTlgS4xsCHNGFImRy6pdhnyNS+sNB5hmIKDWIT3ZBDqyJSaLtiH5AwtS9UbMJdIyUV+8xdYjbw0hlqrxuAsV8JxTvm0HvkEBr0TuW1ZERIRqRaaIQqF/K4KkMAIuXPuyoiBeER1SbFs8wqnKJRUZRYo+MhxTRi3q+B7TDtlCwypNqGXFv8mvGq9zgK5INoe3Ra9rfq0oa87Yb3M7AdYs1LlEafxR6tWYZdktS+OS6+zza2dXHWvnOfxpysiQi6ckooQypA4MVPSEyJ+3TnvCZDqsuY+8BiIOW5xoc0aDtMsO0m2BYD5pBmy2wWLa+2r9hEhhEpr/x5N6T26VZqVY3nI5/dTGqf34Y86PaIalvC66OCMHcronZKCdpoCRj3N6TgrYVrYU4ZB/WAzXKYKxN0bC5YogIBqX3dZoi4ip1rnGSSI+BFy5vNuX2QaVI50vfzBzRo202w7dbhgsQm2oaxbxHmwzqMfUM8fbFqpNq8FugM6GPhDXkpIqXgfQzadgSnqQWQVZ9H3stELbtzTQmiJqLfZpvXabUvBM37Zmo6pXFmWP8O+l2HkJi8erNqvZ0CGVLdRgbCBVJwQn+yCmYCxm6OacGsRb3MGxeGDMOxDc1tuyC1D4wBBWusOUSkQms+PISn9tlF8kCM+qhW0Bh4wWkwN6+WVj+0D/VDE3Z9ZwzoYfMmIqUibDutPHXqWxROkYFxiCiUtYmzFL2jMuIh013auh4scMw1JZT/biT0PZ1YIwVYBvhWQ6xDjuuysikyDzo5M6Pd9GsADLAyB+9P8HtZ7dG9DGzK+vyIz1Y1b+2OVEdIoDelMqpbaoBhPaSARucp0PViE+TWIGxD6gkRNVD1UfLnfZrwMnj6rbAsxSaU18L6dzek9gHi8FUDmBWAaetBnFlGSRz587ngDdlbIxWl2NcyPczuI1Xjbf+OeclqyulQMOreiJS7nUHXGYJthntqMcV/W/+fxjz0KGBSal9nkaxGqg0DsvBtysu5UEOjKLML1cJlhxHxTjdZRqSAmEqCsxFGR0YoB0JACmKzKqNONcmg6Dv3CokB6nzX0RlHIdATSdiG1FOWIbWr15AK8F5kedhskD/vgtQ+WOOrcztVrN0HWcuQCyViQ/b2kco0IgXLkKlBGDI13v5eYT0+h+k8UjPTwNr4NNlgmwypcGQUyukdTVFBqiEFiwypjiJOH6k8otO+TXkrXAgAkPS5C3NE7EvaeELlvrSb8Vok6SWlDJk2p2oqB0KQsdekOqRzvYuMSLnEJigiRXQ5qpeUdQBvNKQCJNBbEAaIHJNH2cV+0NK/VqoUhdqNKtZs80GWFxAtNlGz8piDDnUFBt7DhBc9gWJf08jFs5KSWlpC/CTQlbesywwR5Q3dYc0/SiULpaGJNtLd1F0e2hJrW085Ih7q4BcSkcojOu2n3MdIsc8XbhlSUuQgLmq9Tz21z7/Ju+8YcpKzV9eLTO1rPiIVJIiixMl8xSYSXa5joCeScPWk4j0MfMQzLQIiUtnKn1v/71Xt6/CIlBJ8mG3/5gtA1HwYCG+0F2Px5oOibkh7qQ5mAjyuYl8TKENmNievlJ8EepfWSClDSkakutTD1zY8fcwApJpG7GycTml9HUicPkS51EhZ13Kk9snoFPWQcmOOimdMS2hIZdWwnCeQQM+jhxQAu0YqwIFgp/YlHJcrIhXekNdvze26DBALMqQI8GH7kGyu1Bu8pjyo50CGdUAqhU8ZUl2S2ld0b4BtjwjI+xO2p8RYvOUBUHtGhGYyq48C7MOsvGedEJHq0hop5Q2dslTiKCIVjopIOV5LUSHU5aElQ6rz0Bh4X3gfonwjUg4DT63bNI+cqIjUeMKIVEbfq/p+4jTlzUlswjd11EkKEamgvynrLIA8IEOKEGlb8r93bcydC8qnbUdDXplixbol9CtrLmbzqVHhMZT7QqXP5edYG7muDKkMI1IeQ6rd6Zu+TXmrXEjZd3oqqQdlFFKNVCy4j4KUEmtJSf5c/TcZUh0J77NUO42ANTOP6LRfap809ii1zwUf1sALLUSkMlDtA2JGpGaj9+IsMCOMz2b6SAEe52zQ3+QVEgPscoTsjhmZQk8kAfQz0SsKgLlr40xWHhav9yJDQ6rhgNNNqn2wN8C2p4apXlKtpvZZhtRf2hiRms43ta8hIlVEW5skpkFDjRQZUuE4epoo5AafRvQ7hoeWyBdVcxRQeJ9PRMrjXEJ+9TQdj8bAl+hiz40TBbLIqkZKKacmEJtoe93bgIjEatsM3zKAplX7BpzrXXhqn1f+nBfQtTWkZEgRYiGyDs5eoQkASmSgIbUvQ7GJhgNOt6T2FTwbYA41UgBsw9MHu89DWGqf26tmZlkjJb/r2XxT+xpqpLrRCJGGlCV/Tn2LwlFrl0+aSRrz0BmRQg9tt52ISl33aYALINMU9iD8UvuoGW8w5qil3DeRQLkvq0hjAtW+ZtXxWoYxmEt1sJrtdHPRTB8puM8UQX+TV0hM/Dc630keAj2RBADAOKAEY7eCb+TBblroSe3L0lPnSVHrioa8gCO1L5+IVJzUvjh52c4DoDmkZZtOIu+RPDS021j2RqQMDmZ0ZzRHRaSsW9mNf0Nb8S18TjG1r59S+zqegQBHoUUuESlVw+IYE0WkAmlGuU99rxnJn7MY0TE153JYG6RzlG1tvGfNRqQQpybUx3mFOu94J3kYnX4sJdpE9e1DgT8L7CNlpcBkEkHQrOay8mFLs0lmljREpNp8fXkwrHMEmVJxaqQw6DgAZlgfBTgiUtM5ScZ7I1LdKjQBNHoQ2z3/ugy7Ia/jxRTFJlBi4EXL40qGVEei9regwntZL9nG05Jvap+qpyH/txel3DduhOosucioRipRH6m8VPsA8GUFABVoWw2Yaz0/bLZGynJK8B4WmKbX0ATdtByXXVaP7ISeSCKSoD5SmSutFJlKq+jW1L7cVPvCUvsSqPYBGddHAeqwb8ufZ3u5xuu7+36kmdrVbrwbH0WkIvBLM0m5HlNGFygi1Zmo6E9QRKpipfm2s16yR9Qt+9ZIUUPeBpqKSFUycpglqZHKMcpoLrPSIbc2Hhaa7iNlnSlC/x6VBWD9u1ta24RAhhQRTVBEKmM1I15kwmvBedel9imjM6/UvrCmvDH7SEmyVOwDGiNS7V5QG+TPuzgi1XBYpxqpcOR37Cl8BpDaPFReWjKkOhK1DvrVSHEuCuHbvRYwJubNLFdiANSQNxhVI5VAAl2m9mUVkYpjSKFsRTtzWKfNpdKQ8kntK/PQqFIQfIiBa3D1Jm14j1f+vIsdl5JOP5YSHUAu8ucAUGJgHKInkkwj7HCvhSqkzKtGxcfD7iWJ/DnQjoiUJ4rX7nvmSe1jORSXp4ZnQ+7Kv6GN+PU0SV1ER0YQkja3JNpDWETKEGt5Hs8RH2DQpiBSxPqZUs2lGqlGmolIITPVviSpfabYh3NQq+NLdXDmUyNlcqDCwYebWK96NFTOWgRzUcjves4o9jky+eU6BVrZiWhKANfQKA+b8QOgDjJVnmpvl0zxGno5yZ+nmtqXoWIf4IhIzWRsmAddfx5FpKAztwHQjX9DO5HiMJTat2BRYkp+NVIq66KdI7LwKPexWSt6QfOokSKDOayBTZrB/cA8sKwyauR+EiU2YXCwao7rQoGBL9Gg7TDdEfkqFw7sJsdljJXAV4Q4X+Wz5FFkptQ+Yn7DGNDHfMUmuI7svClOz0W3PGye9aMjVfvmYng2iwzmLjqMXQvZN4D0GDK8zXFyldpRdRtS3RrNcfbvaHuNXpfB25DaZ+5eANeyT5ElmsNXIc8iq15DcVDjmnGk9vXmE73oBviIBmYCbHtMCfSsaqR0Bl6KkdqXo9CExFwmNlttmx2ValqxLyaNqX2e17sQSu0jYsH7NGgzhpj8TsngLA+bTkUty0vcLal9ik5syDsbLy+7/KHFKQ4smAaDJafUPq/YRNdGc3oZsNP67y7enNqCctY4XpPCNilFv2uv6UPtiF7qI9Wh2O09QiJSOTxHSrlv1gTqHKzKYY7QHArCHNWhb6yDTRjgo9FOC1bl4hnPwDDlvZqo+eU8UKREzbccUzX5Mh14AmBb6oDsIRqjz2RLeMQmuqb+PQR6KolY+Eqg13imG4zTc9E1ebQOQ48XAOj51EhFNuSN49ns09ojtes1WPJuyJtnOk8KOD2JFJEKx69GKvXaT8bIiOpg1IHRLyKVo1PF1ZSXhCYikXVSsQUnKjy7SGMPE3XSteC35Cl9LrGV+xwRqax7W+kQjtx5JDZBTyURC5UGJjcbg4uFIsvJ74x8dU1qn2N8eWy+Ual9Bger8I6q1/BGpNq+oHojUt1cIwW4N8Bu/RvaRcmxxki6JPpNpERYH6kc1wLbkOK5ymR3C2YSwQmDg9UzVByO0ZTXNqTy+06VIeVK7Wuuh1RsGAOKzCE2Yb3exestGVJEPLzKRm3w2nNnB+wuOdw404FyqbGJSu3LOmzfDA0RqTZfvyB6tqBibXo5pvOkgdwAuY72R0S7DecaY9E10W8iHXQG3stCa6TyiOzK1D7MmNSMNwY8iQR6RtLnaizSCAnoTSZ+lr9xzC1DyqXcl3GNFAAhOOEVm+jS/RYgQ4qIiTe1L3Ppc8D2Fte6SLWvmHM0ICK1L470ebvJPSIFiFSMeRKR4jKNjNL6IgmTP+9mDymRDN5vPf9exbdqfoc8Z2ofNeONxo5IRYtNZC4iEqMpr70X53cM50MaeA8TqX3c2v9UM97sxsWLTKijmjz9dhM5QIYUEYuGXlIyHNuOGqkqt6/X6YcbZ41Unql9AREpFkexr93kXCMFCM8kq0Es7F2u2idT+7p2/O1EpfY5XpPR7y72kBLJUBF6b6/EHHvKuVP7qEYqkkGhlqeN20ZBIJVs1/g4TXk7Il2TMZjLdLAqB5uynOTtiEgpBxal9hELCPWwS7GJWhsOm7JGqg6gbinNdfiMdXlV8ogIyNS+oCLXWblIdtCNLFjFpxZ5RaQAABVuH6q71BBRG2CXjr+t6Ez0yMtSbILofIJ6SeWp4ClV+2ZMasYbB8bAR3QRbfJJ03S9NeusA9WUNyQ61gE1UoBPel/WNVLwZAJQah+xYFCpfR6J6Cy9CI6IFKtzIY8ZICXaMeQckbJT+wIiUh0gudoAY+4NLYcQv2oKXOn+iBSniFQyHIXPABzCNvkMh2g/Qb2kcq2RUmOiGqm4mLJOKkpwok01Up2e2gc0KvfZqX3tKdug1D5iwdCQ2tcOsQlnB+wausNj0SmqfYGpfTJFpLPupevQn1NqHwArItXdNVJqA6QaqVjwEvM05EW2jcaJjiOwl1Sea0GBiZTjaWdqH83JMKQEOosQnMi6RkpFmTo9tQ+OprweQyrLrBVlNFUd9e+U2kfMd7ypfW1Jf/HIn3e6Yh/QAap9fg1GHagNuZNS+wDXQSXP1D5W5e1JW80Q+d126/jbThFgBpTQgIh+071bSChHoTcilbOCJx8QIhhsZ2ccujud2BGpjGukkohN5K2ga6rUPqs4tI01Ukw6yR2vdSMddpoiOpaGiJT1ejvEJipWz6puSLXJPSIVntrXCZKrfrgimxSRagn1t3TxxtRWSp5npsY7Xx2USBUpNa494/FAqbWgzQOyUIITVoSFxCbCsSNS4cp9ao3PMbWvY2qklurgzBmRakP6v1xza1w55bvBUR4EPZVELILkzzP1ess82tnuCf06PZf59JES/xfUR6oT5c8BuDe0PAxmSzLcWSPVrYaUubqA+r5F1Df05D2UrsBWBwVgWo06yQhdUBgH9oAPMBT/vzkU/ndWvc4yrqWJQhpS2jYrWkCpfaGYo9b9yjkixWOITag00iwjP3EoMvDFGth2Uxg2bYhISaOJVeEQm8jscplDhhQRC5VDPuvw2gLtSe2TUZRuONx0iGqfqy+Og05JJ/Aiv1teRC6CIlzaHI6IVJb1f5nSq6Fy3mIYB5AhFQtn4bM8f3WB04ZID75Yx9z7FoEXgNJNM9AfqYgf5OxUkZEyJcPeYet2p8EXi+hK3jVSiCk2wXtYRzRNN5fqYBxg2wygbCkkt8FJjrqd2tcV57sA6Kkk4lGyZILbKTZhGSUqitINHguXal/7L68Wo4CGvCq1L28vmBe5sOa1mPpFpLp4YSfi4+5Xl29NDJEf5h5FVE4ZBgD0XDcF7bmaw6mS03xwpPLxAmhNiqJgRVemzOD0diBzZVYeVSNlcqDCc0/rk3CH4ASb48LAzFBsh8QmiIUJY0Afs1P72jH5ZURK9vbohgdNc/RE6sTUPrmwd1iuvUydya2oW4pNWBEpXgCpti0UHIXPjKTPFzTG+h5U3zQAVgN6/s8OsEkrspGb2ITDkOqwNbtT4SNWdGUyOCrVrhqpQNW+OQ7G86+Pkpi7WCIdW+pgFZ69o9UlNtFFjvIA6MkkYsP7NNEct8aV2ESWnjp1qJZNZLvBkGJMLQj51EjJ1D7/H9uqfR12L3OPSNliE6jyrq2PIpLT0GYBIM//AqZ+dB9qR/RCm+bQLNGCvCJSMrUPQOfVtXYopiU4oYWk92XeH0ym9lX8a6Q6pYeURPWS2mylsmR8PuAOsQmQ2ASxkHAKTrRF/rxkXw9A93iJ5YKQx+arWxGxkIa8HZki4qyRygFXRKpG0uELCmebhXmwqRMtwhiqbxtEfT9HbnZuhhRFpJLCLQl0NhGi3CdrpLL6XnUGXgxO7euUHlISvlTcM/054UnKvBZPrbkQznnHa90IPZlEbOxeUu2pI+Eq/IvMr5Um8hCWy2GcMaAQkNrHuSgk7RAvmJO8Jbvld8Wmrc2XDKmFg5xzNcdz08VpJkQK6AyV04Zh7FmAsaqQW1q5y5DqkEN3p2OOWMp9YRGpNqgx8l5NpPZxn71YKuN1yF7MF2ngJYBNtyljRa25vD3CZRnTLT5+ohNw9JKy5c8zvJ7nMNs1XmK5IOQkmYsC80/tmxP9uHgnSuh2SGqfanxJhtSCgTtU+/g82NSJlOhhmPvg4lyH4EztI0MqHnZEKkS5L+uIFAD0MrCdEMJPHseMUj/ulO+UMZhLC9BfaFNqn7wfNa6yZ3gXWyOdYQ4TXYGrl1Q7DhzeB6tbHjRZI5VXdKXAfFP7ZG8Nc4ne7iFFIg+zuYtN7KSI1ILDpdon/rNrnDZEtjCWSzsGiTMi1WkCQZ1Kshqp7O5pWFPeTkvtAwC+zD4XZB6Rcjivui3jyA96MonYcEdESsmHZjn5Neb2UnTJ4UYdwvKKSBUBZgIw3As4m7QW75EOfOxVRCqn60tDapoiUgsNp9gEpfYRHUUvUyqwHZlJ0In0a+B9TESk/NLqAEdpQobjCGnK24n9HM02GlLelhOcAeg8/25sOudbJDoeu0bKtL0IWR84HYZat/R2qR0lVJ/4opweL2nIeRxyjCJSwdeXhlSZUrsWHD5SvBSRIjoCjQGWAdVJh+5OxxzRwWqODAMPrMqFAyXLXklhTXnnOi8i5TSk0NsmsQlZl1pArpHfVqEnk4iPTO2bbV/jStfnd0lqn7GhF9V3DOW2MHBnIacDzeqrwUc60JAaEksRH8xpSfJED/Nopkzkg+0dnR8KUsT8Qqb3ddKhu9ORexwbD1Duq/BM0/oAuykvyn6pfR1WI4U2p/a5xCbQ9estGVJEbKT8qlNsIvMHwBHxIi9xTAKa8qrUviWd99ibexQwd84i1I7rz2cAuieNlFL7Fg6lxohUtzhtiPmPqpOiGqnYmKOWcp+f4ESdgxnIfo0Pq5Ga7cTUPnvRyzy1z3JUMktsotvPdp3zLRIdjzO1r13dqF19hbrca9E25KJUd7/cyWITYAzGWCnfBoWOqBTVSC0gPPn6QPekERPzH75YrInmMB3X4mJHpHwMqTZInwPO1D6fqJgUm8g68pOEEoMpyxHaFZGylIS7vSaV/G5EfDxiE7yATHOMAbiNJ5qtsfBN7eMcbNIQCzd5Nn3hPQxspg2yuERHwR01UpTaR3Qa1TcNoH5QD/gK2gDjYloS6H4RKaakz7MdgzKSfFX7rNc6bC/my3Rgh5l5pEytubOWkdnl6y09mURsnPLnrF15rUVK7UuMI7VPLeEzHKwKGLt2YDSqQ+AUkVqYyANV1ZnaR98/0RnwYR3GAbRuJ4EvtSJSW3wiUm2QPgegBBt8U/tUQ97OWmeqx/WjsKwCc/eMTQOZTl2eH+I+ZEgRsbENKUuysg3CAK4DbZc/bG1D3idHU14lNNGB9VEdgzPVgwypBYMrgiubQ3Z5qglBLGT4IiGBrr1cB0zuypxh1fZkHUT1keJFdNyZxlxTQnVNG5SWdICz+aOSS6cqIj49DFwTvXaYifYcNp0PGB1uYqG8Ow6xCSl9zjuxPqpDcBntXb6wEwlwSvFK50OHHXAIgkgAYzBXFMDqPnVSba6RaugjxTlQ5h0lNNF2GHOd53iXh3QW8DdJJIYxoNeuI2mH15a7HjY63MTCumdO1T7NUuwzO7EZb6fgSPWg1L6Fg/qunal9ZEgTRFdjrrDqpF50G1KqRipjQypQta9qCSx0ktBEHhTnj+OSTlVEIlxelHZMfkrtS45Pah+bpIhUFJxS+xYmLrEJmbOf54AIgmgV0xLn0F7yyNfKGqmcUvtUXVD/wt5j5lPZBhlSRCJcxZFtMKQ4pfYlJiy1z+zAZrwdg0tsIsdxEO1FGk01ikgRxHzBXOlvSKkaqcxT+6zjtTciJQ2phZzaB7iFxLr8bLfAv0kiKU5Dqi3pT6TalxyfhryaasZLhlQQFJFaoGgMvGgdsKwzF/WRIojuxk7tyycipVL7yqYQvLBgsodUhyn2tRs+j1L7KIGBSEa7U/uK8yf82zbkPZP7h2n1kBpg2eeFdzMkf75wKTKgxsFI/pwg5gc9GswRDdqEKYwna31vV0QKBQZeYtAmTPR/aRz1tSUYYyV7jeld4HEMZxSqy9dbMqSIRDjzetsiNuFMsaLZGgsVubMWbDZtgtUBYwVFo8JwRaS63ENGJIMXmWrrAIDSiAliHmCuKECbqEJ7qQ5zD/FQs3ZFpABU3jmI4h/moG2soXhfBcX7GpOhNQAAHBBJREFUKupnFJGaP6l9dDQlEuF6+Nud2keH23h4UvvYBKX1xYIiUguXEgPjjkaZXe4hJQjCEpx41G1IoV2qfQCMg3thHNwLzJnQ/1yD/ngV+hNVaFNm9k1vO515JDaxwL9JIjGO1L52GDacUvuS40ntk4p9JH0eDtVILVzkOsNmrZ4v5LQhiK5H1Uk5BCdYm/pIuejVYBzYA+PAHtFHqsIptW8eOcnJkCIS0W7VPrfXIvvLzQekN13mYmskfR4LubFyDWS0LzRkCvGsrJHKbSQEQaSErdzn6CUlI1J5OcusfpwLnfkkNrHATWIiKW3vI1VwHG717n7Y2obMN/am9pH0eTjSQ0nRqIWHjEiZANcBaDQHCKLb4aM6eMFS7uPWfphHRIpopDh/nORkSBGJcMuft+F68hpd/qC1E+5pyKvJHlJL6HEPQ9ZFUX3UwoNSiAliHqIzmMsLYGUONmWl7bZRbIIIxnl+7PbUPjpZEclod2qfvAYdbuIjU/tkRIpS++JBEamFi+M773YFKYIgbLz9pNomf06EQ6l9xEKF5yQ20e0ei7biTO0zOdh2E+aQ1vWLVdbwAQ28xMAX07K40JhP+foEQdiYKzx1UhUOzkAtDnKGz6PUvi4fPtFu2i5/XqKIVFJUal8dYDtMMJPS+mJRZCh/bMmC7++xIJlHUrwEQdjYghOOiFSJCdEHIj9ItY9YsPQwcAYwjrZ4btUDRjM1Pg7VPpXWR0ITseCjdJ8WIs50vm7f1AmCsJERKfZSXUmP8wFyLObOPKpLpeMpkQyNiTqpWd6eA0c/Q/2AEsxVNFVjI29VnUObFAW2JhlSBBHMPEozIQjCwZAGPsigbTGAKhfKnFQflTsusbIud17RlkEkhvcxsFlu917JEo2h8r5FbbjQ/EEZuHWATUihCfLAEUQQLgWvLt/UCYJwY64oQP9zDdpmkd5HhlQH4Erty3EcKUCnKyIxUnCCd3k4dt7iTO2T0ucUkSKIYOZRvj5BEG5kep++yeoJQsqsucPnUV0qGVJEYsxVBfB+UjfrWHxS+0j6nCBCKFFqH0HMV5Ry37MUkeoYCvPHeUVbBpGY6omDqL55kFJgOhWdgWtQqX2cgYxeggiB5M8JYv5irhSORIpIdRCudOr8hpEGZEgRyWGs6yf+vKcAsDkO1Dj4Ig3QaeMgiECcqn1dnmZCEIQbc3lBqA3Pima8FJHKH1ddVJevueSmJoj5SIGBVTkYp7Q+goiCxCYIYh5TZOBLHfsgRaTyx1pnuYaud/SSIUUQ8xCnV90cocecIEKZRwpSBEE0Yq6wDSmKSOWPcl51eTQKWCCGVLlcxrHHHot/+Id/yHsoBNEenAdDikgRRCh8HjWHJAiiESk4AQAgQyp/5Jo7DxxXC8KQ+v73v4+DDjoo72EQRPtw1nyQ9DlBhEOpfQQxrzFX2oYUp9S+/CmIyCAf6H4zpPv/ggg2btyIZ555Bsccc0zeQyGItuFK7aNmvAQRjktsIr9hEASRDRSR6jAYw9y5izB32nDeI2mZXE9Y9957Lz74wQ/iqKOOwtjYGG677baG9/z0pz/Fcccdh/Xr1+Pd7343HnzwwUTX+OpXv4qPf/zjaQ2ZILoDx55BqX0EEQ7JnxPE/IYv0cBL1n+TIdURmHsUwVd2v+cq179gdnYWY2NjOOmkk3DhhRc2/Pzmm2/G5ZdfjssuuwwHH3wwrrnmGpx33nm45ZZbMDIyAgA48cQTfT/7+uuvx2233YY999wTe+21F/70pz9l+rcQREdRsBVx+CKKSBFEKJTaRxDzG43BXFGA/mydVPuIVMnVkDrmmGNCU+6uvvpqvOc978HJJ58MALjssstw++2344YbbsC5554LALjxxhsDf/+BBx7AzTffjN/85jeYmZlBvV7H8PAw/uZv/qap8Wpa+x4+ea12XnOhMa/vsZQWXaxBK+RnSM3re9wB0P1NCU00sWYmwErMdT/pHmcL3d/soXssMA/ogfZCHXxFIdV7Qfc3ezr5HndsTK1areKRRx7B+eefr17TNA1HHnkk7r///lifcdFFF+Giiy4CICJUzzzzTNNGVKGgYXR0sKnfbYUlSwbafs2Fxny8x5WBGRioorC8B4M5zFsv8/EedxJ0f1tntmcrUOYYXNKHwmjj/aR7nC10f7Nnod9j/s4B4CRgICNlzoV+f9tBJ97jjjWkJicnYRgGli5d6np9dHQUmzZtavt46nUTU1Pltl1P0xiWLBnA5OQMTJO37boLifl8j4tmHQUA1SGOmfHp3MYxn+9xJ0D3Nz16CwwMHDvnKjDH7XtJ9zhb6P5mD93jbKH7mz153OPh4T4Ui9E15h1rSAXBOQdjyb0JJ510UsvXzuMBMU1OD2bGzMd7zK1O4eYSrSP+tvl4jzsJur+tw4sAA2Dq/veS7nG20P3NHrrH2UL3N3s68R53bBX6kiVLoOs6tm3b5np9YmKiIUpFEISHkjSkSLGPIGIhC9BJbIIgCIKISccaUqVSCevWrcOdd96pXjNNE3fddRcOOeSQ/AZGEF1A7dBe1A7rhXFAKe+hEERXICXQeUb1EwRBEMT8I9fUvpmZGTz77LPq35s3b8Zjjz2GpUuXYtmyZTj77LNx8cUXY926dTjooINwzTXXYG5uDu94xztyHDVBdD58ZQHVk4fyHgZBdA28zzKgesmQIgiCIOKRqyH18MMP48wzz1T//uIXvwgAuOCCC3DhhRfiTW96EyYmJnDllVdi69at2H///XHVVVepHlIEQRAEkQbVNw3COLgOvpjSYQmCIIh45GpIHX744XjiiSdC33PGGWfgjDPOaNOICIIgiIUIX1lAfWXX6S8RBEEQOdKxNVIEQRAEQRAEQRCdChlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEARBEARBJIQMKYIgCIIgCIIgiISQIUUQBEEQBEEQBJEQMqQIgiAIgiAIgiASwjjnPO9BdAOmyWEYZluvWSzqqNWMtl5zoUH3OHvoHmcL3d/soXucLXR/s4fucbbQ/c2edt9jXdegaSzyfWRIEQRBEARBEARBJIRS+wiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIdSg//elPcdxxx2H9+vV497vfjQcffDDvIc0bfvCDH+Dkk0/Ghg0b8KpXvQoXXHABNm7cmPew5i2XXHIJxsbGcO211+Y9lHnFSy+9hIsuugiHHXYYDjnkEJx00kl4+umn8x7WvGF6ehqXXnopjj76aBx88MF4y1vegn/7t3/Le1hdy7333osPfvCDOOqoozA2NobbbrvN9fNKpYLLLrsMhx9+ODZs2IALL7wQ4+PjOY22Owm7x9u3b8cXvvAFnHDCCTjooINw7LHH4ktf+hKmp6dzHHF3ETWHJdVqFSeeeCLGxsbw5JNPtnmU3U2ce3zffffhve99Lw4++GAceuihOOuss9o/UAdkSHUgN998My6//HJ8+MMfxg033ICxsTGcd955mJiYyHto84J77rkHp59+On7xi1/g6quvRrVaxTnnnIO5ubm8hzbvuO2223D//fdjl112yXso84odO3bgtNNOQ6lUwlVXXYVf//rX+OhHP4qBgYG8hzZvuPzyy3HXXXfhH//xH3HTTTfh1FNPxac+9Sncc889eQ+tK5mdncXY2Bg+97nP+f78y1/+Mm677TZ885vfxE9+8hNs2bIFH/nIR9o8yu4m7B5v2bIFW7ZswSc+8QncdNNN+PKXv4z/+Z//wWc/+9kcRtqdRM1hyRVXXIFly5a1aVTzi6h7/Kc//Qnvf//7cfTRR+Nf//Vf8bOf/Qwnn3xym0fpgRMdxzvf+U7++c9/Xv3bMAx+1FFH8auuuirHUc1fxsfH+dq1a/kf//jHvIcyr9i6dSt/zWtewx9//HF+7LHH8p/85Cd5D2ne8PWvf52feuqpeQ9jXvPmN7+Zf//733e9dvzxx9M6nAJr167lt956q/r31NQUX7duHb/lllvUa3/+85/52rVr+YMPPpjHELse7z324+abb+br16/nhmG0aVTzh6D7e+edd/Ljjz+eP/nkk3zt2rX8iSeeyGF08wO/e/yud72LX3HFFfkMKACKSHUY1WoVjzzyCF796ler1zRNw5FHHon7778/v4HNY3bu3AkAWLRoUc4jmV986lOfwnvf+16MjY3lPZR5x6233ooDDzwQF154IV71qlfhpJNOwo033pj3sOYVGzZswO9+9zu8/PLL4Jzj97//PbZs2YIjjzwy76HNOx5++GHUajXXvrdmzRrsuuuutO9lyPT0NIaGhqBpdBRMg+3bt+PTn/40vvKVr6Cvry/v4cw7xsfH8cADD2BkZATvec97cOSRR+J973sfHnrooVzHRU9PhzE5OQnDMLB06VLX66Ojo9i6dWtOo5q/cM5x+eWX47DDDsOaNWvyHs684dprr8Xs7CzOOeecvIcyL3nuuefwL//yL1izZg1+/OMf4+STT8ZnPvMZ/O53v8t7aPOGv//7v8fq1avxmte8BgceeCAuuOACXH755dh///3zHtq8Y9u2bejt7cXg4KDr9dHRUWzbti2nUc1vJicn8d3vfhennHJK3kOZN3zuc5/D2972NmzYsCHvocxLnnvuOQDAd77zHZxyyin40Y9+hD333BNnnnkmXn755dzGVcjtykQiOOdgjOU9jHnH5z//eTz55JO47rrr8h7KvOHpp5/Gd7/7XfziF78gT2dGcM6xfv16fOxjHwMA7L///nj44Ydx3XXX4XWve12+g5snXHvttXjsscfwwx/+EMuXL8ddd92FT3/601ixYgUOOeSQvIc37/Db3zjnOYxk/jM9PY0PfOAD2HfffXH++efnPZx5wQ033IDNmzfjG9/4Rt5DmbeYpgkAOOWUU/COd7wDgBCzuvPOO3HjjTfib/7mb3IZFxlSHcaSJUug63qDF25iYqIhSkW0xhe+8AXceuutuPbaa7F8+fK8hzNveOCBBzAxMYHjjz9evWYYBr70pS/h2muvxS233JLj6OYHS5cuxd577+16bc2aNaTumRJzc3O44oor8L3vfQ9HH300AGC//fbDgw8+iGuuuYYMqZRZunQpyuUypqenXVEp2vfSZ3p6Gueddx76+/vx7W9/G4UCHQPT4O6778Zjjz2Ggw8+2PX629/+drzzne/E5z//+ZxGNn+QAh7OvU/TNOy111548cUX8xoWGVKdRqlUwrp163DnnXfiuOOOAyCs8Lvuugvve9/7ch7d/IBzji984Qv4z//8T/zkJz/BqlWr8h7SvOL1r389DjzwQNdr5557Lk466STlRSJaY8OGDdi0aZPrtY0bN2LlypU5jWh+Ua/XUavVoOu663VN01Cv13Ma1fzlwAMPRLFYxJ133qkcMH/5y1/wwgsvkNGaItPT0zj33HNRKpXwve99Dz09PXkPad7wt3/7t65U9i1btuDcc8/FlVdeifXr1+c4svnD7rvvjmXLlrn2Ps45Nm3ahFe+8pW5jYsMqQ7k7LPPxsUXX4x169bhoIMOwjXXXIO5uTk6hKbEZZddhptuugnf/e53MTAwoGrPhoaG0Nvbm/Poup/h4WEMDw+7XisWi1i2bBn23HPPfAY1zzjrrLNw6qmn4oc//CFOOOEE3HfffbjxxhvxrW99K++hzQsGBwdx2GGH4atf/Sr+/u//HitWrMCdd96JW265BZdffnnew+tKZmZm8Oyzz6p/b968GY899hiWLl2KZcuW4eSTT8bll1+O4eFhDA4O4otf/CJe+cpX0iE0AWH3uK+vD+eccw7K5TK+/vWvY3p6WvWQGhkZaXAaEI2E3d/ly5e7Mlv6+/sBAKtXr6aMlwRErRPnnHMOvve972G//fbD2rVr8fOf/xxbt27FiSeemNuYGack5I7k2muvxT//8z9j69at2H///fHZz34WBx10UN7DmhcEqchdfvnlOOmkk9o8moXBcccdh3POOQdnnHFG3kOZN/zXf/0XvvnNb2LTpk1YvXo13v/+9+Ptb3973sOaN2zduhXf+MY3cMcdd2Bqagq77bYbTj/9dJx++ul5D60rufvuu3HmmWc2vH7BBRfgwgsvRKVSwVe+8hX8x3/8B6rVKo4++mhccskllNqXgLB7fNhhh/n+DAB+97vfYffdd896eF1P1Bx2snnzZrzuda/Dr3/9a6xdu7ZdQ+x6ou4x5xzf//73cd1112Hnzp3Yf//98clPfjLX8zEZUgRBEARBEARBEAkhSS2CIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEKny7W9/G2NjYw3/O+uss/IeWtdz9913Y2xsDE8++WTDz66//nqMjY1hZmYmh5ERBEEsPAp5D4AgCIKYfwwNDeGqq65qeI0gCIIg5gtkSBEEQRCpo+s6DjnkkFjvnZubQ29vb7YDIgiCIIiUodQ+giAIom1s3rwZY2Nj+Pd//3dcfPHFeOUrX4kPfvCDAIDt27fjc5/7HI488kisX78ep5xyCh544AHX709NTeGiiy7CIYccgqOOOgrf+9738NWvfhXHHXeces+3v/1tHH744Q3XHhsbw7XXXut67Ze//CXe/OY348ADD8Sxxx6LH/3oR66ff/KTn8RJJ52EO+64A29961txyCGH4NRTT8VTTz3lep9hGPjBD36AE044AQceeCBe85rX4JOf/CQA4Kc//Sk2bNjQkHL3hz/8AWNjY3j88ccT3sV4fPKTn/RNsXzve9+byfUIgiAWGhSRIgiCIDKhXq+7/q3ruvrvr33ta3jDG96Ab33rW9A0DdVqFWeffTampqZw8cUXY2RkBNdddx3OOuss/Pa3v8WyZcsAAJ/61Kdwzz334NOf/jSWLl2KH//4x3j22WdRKCTfzq666ipcccUVOO+883DYYYfhkUcewbe+9S309fXhjDPOUO978cUX8bWvfQ3nn38+enp68LWvfQ0f+9jHcNNNN4ExBgD43Oc+hxtvvBHnnnsuDjvsMOzYsQO33HILAOCtb30rvvrVr+I3v/kNTjrpJPW5N9xwA9atW4f99tsv8dhN02y4v6Zpuv79oQ99CKeccor697Zt2/Dxj38ce+65Z+LrEQRBEI2QIUUQBEGkzvbt27Fu3TrXa1dffTVWr14NADj44INxySWXqJ/98pe/xFNPPYWbbrpJHfSPPPJIvPGNb8SPf/xjfOITn8BTTz2F//qv/8IVV1yBN73pTQCAww8/HMceeywGBwcTjW96ehrf+c53cP755+OCCy4AALz61a9GuVzG9773PZx66qnK8NuxYweuu+46NS7OOT784Q/jmWeewZo1a/D000/jV7/6FT7zmc/gzDPPVNeQYxweHsbxxx+P66+/XhlSMzMz+O1vf4uLLroo0bglJ554YuR7Vq9ere53rVbDmWeeidWrV+NTn/pUU9ckCIIg3JAhRRAEQaTO0NAQrr76atdre+21F7Zv3w4AeO1rX+v62V133YV169Zh9913d0VaDj30UDz88MMAgIceeggAXGl8AwMDOPLII/Hggw8mGt+f/vQnzM7O4o1vfKPrekcccQS++93v4qWXXsJuu+0GANhtt91cUZw1a9YAAF5++WWsWbMGd999NwC4ok1e3vnOd+Kss87Cc889h1WrVuH//b//h3q9jre85S2Jxi254oorsGrVKtdrt99+O/7pn/7J9/1f/OIX8dRTT+FXv/oV+vv7m7omQRAE4YYMKYIgCCJ1dF3H+vXrG16XhtTo6Kjr9cnJSdx///0NUSwAKqqybds2DAwMNAhTeD8rDpOTkwCAN7/5zb4/f/HFF5Uh5VUbLBaLAIBKpQJA/E39/f2hUbHDDz8cq1atwvXXX4+PfvSjuP766/G6170OixcvTjx2ANhnn32wdu1a12veui3JL3/5S/z85z/Hd7/7XUrrIwiCSBEypAiCIIi2I2uLJIsWLcKBBx6ISy+9tOG9pVIJALB06VLMzMw0qPyNj4+73t/T04NareZ6bceOHQ3XA4Af/OAHvobYXnvtFftvWbx4MWZnZzE9PR1oTDHGcPLJJ+MXv/gFTjzxRPzxj39sELbIggceeACf//zn8aEPfcgVySMIgiBahwwpgiAIInde9apX4Y477sCuu+4aGGGSEa5bb71V1R/NzMzgzjvvdBkwy5cvx8zMDF5++WUsX74cAHDHHXe4PmvDhg3o7e3Fli1bGtIMk3LEEUcAAP7t3/7NJVLh5R3veAeuvPJKfPrTn8by5cvx6le/uqXrRrF161ZceOGFOPLII3HhhRdmei2CIIiFCBlSBEEQRO68/e1vx89+9jO8973vxTnnnINVq1Zh+/btePDBB7Fs2TKcddZZ2HfffXHcccfh0ksvxfT0NJYtW4Z//ud/bkj1O/roo9Hb24tPf/rTOPvss7F582b87Gc/c71neHgYF1xwAb70pS/h+eefx6GHHgrTNLFx40bcfffd+M53vhN77HvvvTfe85734Ctf+QrGx8dx6KGHYmpqCr/5zW9wxRVXqPctX74cRx99NG6//XZ84AMfcKkYAkK2/Z/+6Z/wxBNPNHEHG/nEJz6BmZkZnH766S4Z+cHBQeyzzz6pXIMgCGIhQ4YUQRAEkTs9PT34v//3/+Jb3/oWvv3tb2N8fBwjIyM46KCDXClpX/nKV3DppZfiy1/+Mvr7+3Haaadh/fr1+M1vfqPeMzIygiuvvBJf+9rX8OEPfxjr1q3DN77xDRXFkrz//e/HLrvsgmuuuQZXX301enp6sOeeeza8Lw6XXHIJdt11V/zyl7/Ej370I4yMjPhGnF7/+tfj9ttv9xWmKJfLGBkZSXztIDZu3Ijp6Wm8//3vd71+2GGH4Sc/+Ulq1yEIglioMM45z3sQBEEQBNEsskfTrbfemvdQIvnoRz+KrVu34l/+5V8afnbGGWfgiCOOUHLsBEEQRGej5T0AgiAIgpjvPPHEE/jXf/1X/Od//qer15SkXq/jqaeewmmnnZbD6AiCIIhmoNQ+giAIgsiY888/H5OTkzjttNPwxje+seHnhUJB9aMiCIIgugNK7SMIgiAIgiAIgkgIpfYRBEEQBEEQBEEkhAwpgiAIgiAIgiCIhJAhRRAEQRAEQRAEkRAypAiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCfn/AVWqP9WzEBgDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ps = Powerspectrum(lc_poisson)\n", + "mtp = Multitaper(lc_poisson, adaptive=True, low_bias=True)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Multitaper Estimate\", color=palette[4])\n", + "plt.plot(ps.freq, ps.power, label=\"Powerspectrum Estimate\", color=palette[7])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, Hz\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7b9118bc", + "metadata": {}, + "source": [ + "## Time series with uneven temporal sampling: Multitaper Lomb-Scargle \n", + "\n", + "Uneven temporal sampling is quite common in astronomical time series, and a popular method to deal with them is the Lomb-Scargle Periodogram.\n", + "\n", + "A 2020 paper (A. Springford, et al.) used the Lomb-Scargle Periodogram in conjunction with the Multitapering concept for time-series with uneven sampling. That method is implemented here in Stingray.\n", + "\n", + "Everthing works as before, just\n", + "- Create a `Lightcurve` with the unevenly sampled time-series\n", + "- Create a `Multitaper` object by passing it this `Lightcurve` object, with the desired value of NW, __just additionally pass the `lombscargle = True` keyword during instantiation.__\n", + "\n", + "__NOTE__: Jack-knife variance estimation and adaptive weighting methods are not currently supported, so setting their keywords will have no effect if `lombscargle = True`." + ] + }, + { + "cell_type": "markdown", + "id": "14120f67", + "metadata": {}, + "source": [ + "### Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "7b45c2aa", + "metadata": {}, + "outputs": [], + "source": [ + "# Loading data\n", + "import pandas as pd\n", + "\n", + "kepler_data = pd.read_csv(\"https://raw.githubusercontent.com/StingraySoftware/notebooks/tree/main/Multitaper/koi2133.csv\")\n", + "times_kp = np.array(kepler_data[\"times\"])\n", + "flux_kp = np.array(kepler_data[\"flux\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "346ea2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Bin sizes in input time array aren't equal throughout! This could cause problems with Fourier transforms. Please make the input time evenly sampled.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD7CAYAAACWq8i5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABBt0lEQVR4nO29eYAU1bn3/62q3md6mIUGehwERGWRwQUuwlVEYViikJmYIFxQDBoMQiTLe3PFvF6RX3AZrz+TXFQwxHg1RqOTm4jAiCMRFxC3iKAsDiLINgOzMnsvVfX+0dM9vVR3V3VXdVf3PJ9/YPrsVafOc85znvMcRhRFEQRBEAQhAzbdFSAIgiAyBxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIxpLsCWtPS0glB0MdRlKKiXDQ1daS7GqpCbcoMqE36Ry/tYVkGBQU5UcOzXmgIgqgboQFAV3VRC2pTZkBt0j+Z0B5STxEEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRCE3ujugf2RDTAcPprumkRAQoMgCEJncE0tAADTx/vTXJNISGgQBEEQsiGhQRAEQcgmrtCorKzE9OnTMWrUKNTW1krG4Xkea9euRVlZGWbOnImqqipZYbt27cLNN9+McePGobKyMiTP9evXY8qUKSgvL0d5eTnWrl2baBsJgiAyCx17E4nre2rGjBlYsmQJFi9eHDXOli1bcOLECdTU1KC1tRUVFRWYMmUKSkpKYoYNHToU69atw5tvvgm32x2Rb0VFBe69997kWkgQBJEuvF6AYQCOSyi5yKhcHxWIu9KYOHEinE5nzDjV1dWYP38+WJZFYWEhysrKsH379rhhw4YNw9ixY2EwZL3fRIIg+iH2/9oE27NV8SNGgdHhikOVPY26ujoUFxcH/nY6naivr48bFo9t27Zh3rx5uOOOO7B37141qprVMJ1dYBub010NgiCC8FtCKUKHKww/up3iL1y4EMuXL4fRaMTu3buxYsUKVFdXo6CgQFE+RUW5GtUwMRwOu2Z59zy+CfB4YXniPzQrQwot25QuqE2Zgd7b1NP7r9x6+uMJ7efhBmAwcrproypCw+l04syZMxg/fjyA0NVFrLBYOByOwP+vueYaOJ1OHDlyBJMmTVJUt6amDt34qHc47GhoaNcsf7vHCwCalhGO1m1KBwMLc9DY1OHTRWcJ2fieMqFN/uFeTj2D28O1dsEGwOPl0ZbiNrIsE3OyrYp6as6cOaiqqoIgCGhubsaOHTswe/bsuGGxOHv2bOD/hw4dwunTpzFixAg1qksQMXH98nGY33g33dUgCF0Sd6Wxbt061NTUoLGxEUuXLkV+fj62bduGZcuWYdWqVSgtLUV5eTn27duHWbNmAQBWrlyJoUOHAkDMsE8//RS/+MUv0NHRAVEUsW3bNjz00EOYOnUqnnjiCRw4cAAsy8JoNOKxxx4LWX0QhJaY9h2C68br010NgtAdjCiK+tDdaES/Uk89sgEA0H7f3ZqVEU4mqAiUko7nqDXZ+J4yoU1K+tJAmwGNTZ2A1QzuZB1sL74Gb8kQdN/2Pa2rGUJK1FMEQfhg2jrAfXs6pWWyjS1Ads/9+gWu/1wP+2//mO5qxIWERhZgfuNdcMdPpbsaBICcTX+B7aXXU1Ye981J5Gz6CwxffJWyMon+jW5Nbgn5mD4/CNPnB9NdDQIA4/aktDy29wwAd7YR3qDfzdvfhZibA/e1E1NaH0It9LtypJUGkVKY5lZAENJdjazHtPcgzO9/ku5qEFkICQ0iZTDNrch95mWYdDaYGQ4cgWXbznRXgyAyAhIahCyYto6k82A7ugAA3Mm6pPNSE+vrO2Dcf1jdTHle3fwyHVGE+a1dYE+fjR+XgJ79iJDQIOJiOHQUuU/9iTbbFWA4/E26q6AvBAGmT7+A7cXX0l0T5QhC0tZpTFMrmObzClLQngaRwXCnfQ4m2bONaa4JERW9jDGiCMPBr7Nn34rnYa98Bua39ySVTe7vX0buMy+pVKn0QkKDkE8W+WIitMHwZS2sm9+C8RP93W0dD6Zd4owN7xN+xr0H0lAjfUJCQ0s8Xhg/3qfNwStRRM5/Pw8jmdoSOoLp6gbQt38VgY4PIdqerUrpGRs/7JlzGbUHRuc0NMS061OYP9wL0WaFd9ylqufPdnbBkgrHejr+0Ik4dPUAnA7mhhmwSmW7eyJ/1Ljvs00tyHn+f+GeWBpWrqbFJoUOelPmYDhwBGx9g+z4TI/L968ntQe+0oHpg8/oAqgQ9PHV23/3HHLXP5/uamQ+Ggm9wMos2rgSXK4gwPzWLlUsGZOBhIYCrK/vQM5zfwVcbpjf/gDwarykFMXoM510zP6jfTheHuZ3P4Lthb+nri48D0jNDLMVQQB35FiM9x69PzAeb9SwqGnaO1U1j7X87U1fvqLouzc7RXBHjiG38hkgxSf1o8GcT9zBIneyDqZPv4Bl69sq1kg5JDQSwLz7U5g+2gfjvkPyEiQ4vts2veLr8OlGbv1TOBhY/7od9t8+l3xGcax8jJ99Cctf30iqCLahCfZHNoCtk79KDce0+5+w/XU7uKMnQgM0mgHnPPMScl74G9DjSmxfLiy+8cjxvv+rfSYmBub3PgEjCGBbes1dvTwsW/4he7bOuNyq1if36ReTzyTN6mISGonQa1ER16wwye+Za2rxzcxUxvjxPli2/ENBCl8dTB9qdE+7y634QzB8cyJ+JBmYPvw8ZrjlzfdDBrxEMBz51vfvV0cBUYTpg898ew0KYFvbAPSpM7TA9odXAqal/tWJ5c33YPnHB/I998oRYmkc8wxHv4Xxy1qY39oVMx57rglwe5D71J8SLyxGn+a+/hbGT79IPO80QkKjH2L5xwcwflmrOF1Ui5ggbH94BeY33pGdJ9PVDfsTz8K0+5/gjp9KavmeCGxjS0rL406cgfndj2DZ/k5Ky5UD19AM00efh/zm35fLJOseKZjObvkTE1FEzrOvwv7//yGJ8rpgf3Rj1HBbVTUsb+2Cnk9+R4OERkpI09Squ0fWMjzaoT2mswtQuInPNTTD9LlMtR0AplcQGQ4fhe3lLcj5/cuKytMt0V557+DLuJNT5ZnfeCdwwU82Y/zocxj3Jm9WbntlK0y7/ykvsgqr+1RPRlIJCY1ESLUMkFJlyOjYueufj7u8Nhw6ipw/VvlO8Yan/+/nYXv+byltL6OVcYHLHblxLoowHlC+4pIDd/JMcEGq569EMGsJd/wUcn/zR9/z1QDL23tg2R7brJxpaZNlFGH4+tvEK5Jqk2Edm7mT0EgA4z+V6yLZxmaIHV2wVlXD/I8PlKXt7FRcnuFALRg+cs/FcChUOPjNZKOZy3INzdCL+Wgy2J94NnLjPAmVi/nN92CN4Ucp5YN6Mq+ouwdctAE1Tr7m9z4G0+MC2yDdf9hzTfHN1EURTHsn0O2C7YW/g+ndv5FL7sY/+96tnAmHjME4HasERsH7Yxub0+oHjoRGAiiec4hAzqZX4HrgSRi+/hamj/cBAAy1x5Dz1J8Cgxd3sg7Wl7f4NtjjDWixOpnHC+vr0hvd1tfeUlr7kLLsj2yAefu7KbWUiokoAn69e5Rw847dIT+xDU3I+e//8em5E8T02QEYZHvrVWGWKmem63L7NnAVYqt6A7aq6r4fumM8zyiwbR0RExIAyHn2VZ+ZejDhllV7DyD3yRdgfvcjcKfrYdqTmMGFpXqnb9UhhxiPM+fZVxXFT4po+cZ432xXD2wvb4Hlf7drU6c4xBUalZWVmD59OkaNGoXaWumlPM/zWLt2LcrKyjBz5kxUVVXJCtu1axduvvlmjBs3DpWVlbLzzBxi9zRzzftg2zoCg5fl9R0wHD8Fpr0T9sd+n3ixGm9amvYehP2/NmlahlxMez6D/Td/BNMhvRpjz5yFKcwPkvHj/WA7u6XVFalSC2hQjvXVbdIDXhzYM6HnMcw7+1bChmMn5ZW9+a3EJiRAwDKLbWlNKL0f44EjyN34Z81UZXrDWHssLeXGdSMyY8YMLFmyBIsXL44aZ8uWLThx4gRqamrQ2tqKiooKTJkyBSUlJTHDhg4dinXr1uHNN9+E2+2WnWe/Q+H4kohllKoVSCF+F+RMexfE3JyIcO6cSqfURTEJvXbw8wvNg21oguHLWngvuxRgGAiOwoSraDhVn1C6cLNuKbVmVHTYNayv70D3/BsjfufqzoELHFhU/i65YyfBuD3wjroofuRkJwWZvKcxceJEOJ3OmHGqq6sxf/58sCyLwsJClJWVYfv27XHDhg0bhrFjx8JgiJRdsdIRQMyvNQG31NyZc0nUJQ4eb4gKidFiJRRlDFDLoSN3LAEdcpwZL1vfgJw/vArzh5/71Dh/eCXB2mUgHi9yfvc/4CTOwJg+Pyh/tSzR12NtePtVw8phYPvLVlh7T7Yng/SeTZTvOYGJCtPWAcMXXylOJxdVHBbW1dWhuLg48LfT6UR9fX3csETzTBVMSxvEvBwwbZ1gm7XdHDPt+hSs3zxW5UHVWlUN0WJGz7wZUeMYjp0EW9cAwelQrVzTux+BO1kHtr0TbGsbuhaXA1AmoJimVuT8z1/hHV6CnrnTAbMpNILSGVmi7iR4GXs4Yfs8jMsNMby+QUTo+mVg3bYTruZWxelSBSNzP4Q93w62qxvmnXskV1fGL76C54qx8fOpT/COlzQej2CD3p+oQUVsL78Otvk82kddBJiMquef9V5ui4pyE0on9rjgeuTPYCdeBuFTaV/6ublmGBz2qHl4rEbwAHLtFoQPOQ6HHT293kcLzQzcQfdm5z4TelahoCAHbFg5otuDaJ9nbq45pDz/zMt+RwWCDRMLmxshQIBfROUbRHBB5fjjWs1GSIkxR2/cgY5cuBCq1nA47Oj54LPQen3+JYSwtIKnB24ABo4NzLX8YZ7Xd4J/x/dcjLXHYPniIIzfmQrR6w20nes9IV1QGPmMAKAnzHIn/7P9gP+9hD0nh8MOURADeTsc9sAzGJBnlXw2/rqKLW1wPRK6z1NUmAOmwA5vjq8cm9UENt8KDwCTiYPUetARpT+5vZ5AfHPQRrHtm28hALC4ugPhRe4uSK1xgvMWu11wPf4cuImXRbxbs8UYUbcBA2wh7ffjMrAhc2TzB76zEFarEXlBzy+Y3Fwz2MKcwHtnzL7yTEZDoFzr4aPIn3l1IH3ey5t9Ps5+cXtIXgUFNsm2DhyYC4Zh4OJYyTm82WyEPaw9sYx2maAZv8Nhh9jjgnvDKzD+241ghwyMiM+32hBtejJgQF9YQb7V9xyMXEj/58/74hiNHHJ76+n/LRip/tLT6Tv7NLAoB4zFHKNViaGK0HA6nThz5gzGjx8PIHSVECss0TyV0NTUAUFQrh9kOjqRC4Df91XUuUBHhwuehugnmM3dHpgAdLT3wBIW1tDQjhxBBAugpakTkdr4PlpaOiEYw3LweBBNXHk375T8vaGhPSSN55lQ44Lz57vBB7XHH7e7x9cOqfwcDjsaGzoi6hJeFgAIB46GhAMA2+Jru5cXwIWF2d/5JCR9V6cLnq9OhgrV3sOBLS1dEEyR7yK8Dt0dPYC79710uELeS0NDOyCKgTTBbTjfJv1s/HXljp2GLayspqYOiB7AXv0+AMB15ATcgxywAXC7ecmPryFKf7L2eCTjC0d9G9Xek2cDuubzx8/CGidv7ui3sLW0gX8r8kY67+FjEXrr8+e7Qtrvx+blA+8tmO5uD1ol+gDg+x745t737hUguDwwAnB7vIE2isdOhTx/8bjv3Etj7WmIBXkAfANmS0uX5LfT2NAOMAxsQf0qGJfLi/Nh7Yk+/QNEsW9N0PKPTwCTEdaT9ejcvBM9N8+JiM+1dkX0Bz/nz/eFtfbG83pC+78/vcfDo83fx853R+QZ/E4Nh4+C6XbBLPoWUo2NHYBZuVEAyzIxJ9uqmNzOmTMHVVVVEAQBzc3N2LFjB2bPnh03LNE8U4kiD6FuD4wf7u1TmchceXL1cdQ1qTJvjVrfeEJXIlzGvgrTrszFM9vRFbEKSwqp9kZVdyWmRgh2UijfRDcBVDx8JsddDADfnkQUVWPcd9tbXa65FcYo96lL6f5zN/5ZVt3Uhgnak7Nuk56UJUfyG9/Wv9fAsv1dMBp79I0rNNatW4frrrsO9fX1WLp0KW666SYAwLJly/DFF75DbuXl5SgpKcGsWbNwyy23YOXKlRg6dGjcsE8//RTXXXcdnnvuOfzlL3/Bddddh/fffz9uOr1ifucjWHZ+CMPho/EjB2F58/2Y4aaPJDbvNDGu6Bt4QhzjRVmpxToTYHv+f2OWxB39FrlP/gmGr49HhJl2St/HHNNZn9xBUxTBeHsFmhrP0MvD8voOMG1RVpxq3ZUdr3lB5TDtyg+DJgIb431EEwQAZO9DyfIOEOW5pO3Oia4enwmxTM8GWuxpaE1c9dT999+P+++/P+L3TZv69Lccx2Ht2rWS6WOFTZw4Ee+9957idHqFcfXORsJXJ8mazwVvjHe7wLachzCwILk842Cufifwf1MUV9Y5z74KPPEfkmFcnA1KrncGzvXOvrmgE8XmDz+H+4YpEWmUuoGQ8s3EtHfC+JX0gGb8/CA840f31VHGysBQ+w2MB47AIJVnCs0m2SBBYamJPQlJBNur1ei8/fsQigclnZflHx+gs3hw3Him9z+JGycauU+/iPb77o4eQaN3Y/vLFnBnG8En+5x66xei6UjSPb1a0IlwTdHGMiLn+f+F9dVtqucdqG6PC5yCGwqTQTVTX5mPOnCvAhDh0dX4zy9D/rbFcBPix7p5h+8/ir9PpQnSPyM1v/Ohovjs6ejWjlKrFMPxUPfrRoUrdiUYv/pGsUZADoHVt0wVkd9ikoty4RVXdw5we6IeXuW+OZHQCf5kIKERBUbhfQepKoPr9UirjX7cNzDlPPfXkJmrtqTvEBMb5oadcXtCzCGTxbL1bVi3Sd+ypvjdqykzPB5Zq6iYxHLd0ku0gRCAimblsR9M+DsOxvr3muSLF313Y0SoIeWqS2WoL21/+jty178gHfbKNlj/ltrzayQ0omD7UwJXl0bpKOZ3P4r4zfTBP8HI3OBO9hIg2TCA4eDXgQt/0kVCYkRE0stxtrUNOZuiHLBjGDBtHbA/sgGcpGuNyLINJ+vANp+XiAtwCn1ERXNfnwi2l7eGmO0mQmCFlSBKnXaG4PHKnsnLvXmPO5WYEDXWHoOtqlqRvyylAjvQV6KML2xTah0sZv05jURRwwLB7zlWKi/zux8nnb/6MJJO57TAHEdfrfSGupxnXwXvKETXjxbEjpigYDEcOwmx1925ZN01XjDJtWiSAxdDbRQTv579fLtiT7ThJLOSzV3/PBiXG8L9P44ZT4k3AOPH++NHioGSy8PMweeXpOSAUnVTihfrtNJIAsPXx33H9cOWmIaTdWC6umE4cSZKSv2SaidoTE/kTJABkPu7/1GcFxfFPbcamD79AuY4V8PqGSGJ+8n9GE6c8XmkffpFcGk8le5fPbjXPRNTAFreiH0PRyjJj7zcsVN9frxkW/NF/pT7lLQqKhpRrdg0EiYkNJLAcPw0rFvfhjnMWsW4/zCsf96cplolQYJ6c9n3R+sBrSyaVMpXK59B7v96Ln4kGUhd1pVOuASdNPrJfeyZhF2xB2Padwi2v2xRnE7KD1u0s2FKV9/G2hhmz0lAQkMFDEciTUE5tS9y0bHXSy6DVlRa3QwY7ik2RsyYodatb2t6T7rsK0+joLfVszFJdSrDCzC/82HABDzVWIJM2+OhdOOebWpVVhm5+WqSK6E6anlrjUmCp4oZGVdtZhfamr/KvcMiEczv6XEvLf2wSg8DxvlWlBo6ZBIkNNQgBSb0bN25pK0kjHulHS8mg8gLMO2TPvyXFuIZMKR5xZboRUP8EPW8D6eMVN+rTaQEEhoZA5PU9aQAYNkuffo+GVy/fFz1PJOB+zZ9dyfLIZ7LmGiIKnkrFWkg70fQiXBCa2hA0S9qvZsUvmNOxbMlukPjFSt3XNnkR8pljlaQ0MgUaEBXhVgnhGXj0daLqJYwajlQlIFRw9vj0o7G95Ane/hSS0hoqImWAzvJDFkwKdiyCPZfRfRP5FvLZR8kNNQgVasAJXd7JEIWCKZUuQVPOf14kNIjyg4OpgttPmgSGhmE1qathkPaeRVNFYajJ9JdBW0g9SShGNoI1z3azgW1HzSiOdfLJAxHld25QRCEMkhoZAo00dQPpCki+jEkNNQgBXd4J33/AUEQhAqQ0JBC4aZjwMGYhqsBLT24EsqQew8KQWQjJDQkMHxZm1hCrdUWWlvQkApMv9C7IZRCrtFTB9Op3oU3mQWNTASRLWhlbRlXaFRWVmL69OkYNWoUamulZ+A8z2Pt2rUoKyvDzJkzUVVVlXTY+vXrMWXKFJSXl6O8vBxr165Npp3a0msOGc0PvmrFyLiXOSmy5CxA/xX6BNEHeybGHe1JEPe61xkzZmDJkiVYvHhx1DhbtmzBiRMnUFNTg9bWVlRUVGDKlCkoKSlJOAwAKioqcO+996rXWq3ReKJu+uxLTfPX0iV3KmHrGsBfPCzd1SCIrCTuSmPixIlwOp0x41RXV2P+/PlgWRaFhYUoKyvD9u3bkwojJMiOhYDmkJsPgtAOVfY06urqUFxcHPjb6XSivr4+qTAA2LZtG+bNm4c77rgDe/fq14FXH7QnoAfY1rZ0V0EDqG8RCtFokhlXPZUuFi5ciOXLl8NoNGL37t1YsWIFqqurUVBQoCifoqJcxWV7c8xQsjvBMAwcDjvcFiO09CHKcQwtNmRg6epEnsOOTL1PMNduhcFhD/nNbTIk3bccGfxMCOUYON+4pHq+amTidDpx5swZjB8/HkDoCiLRMIej76aya665Bk6nE0eOHMGkSZMU1a2pqQOCoGyoNXa6YFEQXwTQ0NAOi8sLo6KSlMF7BTJ3k4HnbDPON7RD/c8lNXR09MDTEOrC3erxJv2xNpxry9hnQiiH5wU0NCi/CoBlmZiTbVXGoDlz5qCqqgqCIKC5uRk7duzA7Nmzkwo7e7Zv5//QoUM4ffo0RowYoUZ1tYM0CLqAbW0DUnhvRKbAqHGXCNHviTt5WbduHWpqatDY2IilS5ciPz8f27Ztw7Jly7Bq1SqUlpaivLwc+/btw6xZswAAK1euxNChQwEg4bAnnngCBw4cAMuyMBqNeOyxx0JWHwQRDYYXstdFehJobrJN9AsYUcwS4/woJKSe+nAvLDs/VJSm/b67YdnyDxgTPU0uAyE/L0s3edWna9F3YXvp9XRXIyF6brwensvHhPxmfWUbDN8k5/a969/mwfbylqTyIDIH0WBAxy+XKU6XEvUUkSqyWr6rCpndRkKrr/6FVj7SSGioCV2UoxsYWpFFQOopQg1IaBBZCa00IiGhQagBCQ0pEl0xaL3SIO2ULITcHLAttNIIh4QGoQYkNCTg6hsTSqf5mE5mpLIQCshgQAoSGoQakNCQIFHVBtvVrXJNwvKnjUxZiAUDwLjc6a5GwjAaqdZIaBBqQEJDTXhaCegBIT8v3VVICkPtcW0yJqFBqAAJDSLrEAoyW2hwTS2a5EsrDUINSGioCZnc6gJhQGYLDQAAz4f8qYYJMQkNQg1IaEjANjYnmJLMm3SB0QDBnpPuWiQFdzr01jWuuTXpPEloEGpAQkMCra9tJbRHKBiQ7iokBXf8lOp5Ml4+fiSCiAMJDVUh9ZReyPjNcA2EBkGoAQkNIutgOjohZvhmOHvmHJDBZsNE9kJCQ01ooaEPBBFCfmarpxhRBHfiTLqrQRARkNBQEaatI91VIHrJZLNboWAARIOBVFSELtHtHeGZCNeQqNUVoSpMZu9piBwLoWSIJpvhBJEstNIgshMDl+4aJAU/ogRcYwuYjq50V4UgQiChQWQhGb65JALe4SUAtDG9JYhkIKFBZCmZLTiEwQMhWsy0r0HoDhIaRPbBIMNlhggwDLzDLwD37WlAJE8DhH6IKzQqKysxffp0jBo1CrW1tZJxeJ7H2rVrUVZWhpkzZ6KqqkrTMILoD/DDSsC2dYBpplsICf0Q13pqxowZWLJkCRYvXhw1zpYtW3DixAnU1NSgtbUVFRUVmDJlCkpKSjQJ0yOW12rSXQUiQIYvNXoXFv59DcO36qioRIuZ/E8RSRN3pTFx4kQ4nc6YcaqrqzF//nywLIvCwkKUlZVh+/btmoXpEUPtsXRXgQgmg2UG06uOEgvyIOTlqrYZLlrMquRD9G9U2dOoq6tDcXFx4G+n04n6+nrNwvRI19L58JYMSXc1iGyCYeAdXgLDt+qcDBetFlXyIfo3WX+4r6goV3GankTKGTsMrrcN5BxdBwzIt4J12JGpihiOY+Bw2AEAfOnF8Ow/rEq+xjwbhDpVsiIyBH8/UhNVhIbT6cSZM2cwfvx4AKGrBC3ClNDU1AFBUDaUJ/KYGxraYfUK2S+FM4Dz57vBN3Yk9B71AM+LaGhoBwAwRUVQPu2RxsVyMKqUF5EZ+PuREliWiTnZVkU9NWfOHFRVVUEQBDQ3N2PHjh2YPXu2ZmEEEZsM3tAAQkxsxRwbeEehOtmaaU+DSJ64E+N169ahpqYGjY2NWLp0KfLz87Ft2zYsW7YMq1atQmlpKcrLy7Fv3z7MmjULALBy5UoMHToUADQJI4isJuxcBj+8RBW/ZrQRTqgBI4rZfXIoIfXUIxsUl9N+392wvrRZtU1LInG6Fs4DP/wC2B/dmO6qJIQwwI7OFbcG/uaOHIftr28kna/rhskw7/ww6XyIzKH9vrsVp0mJeorwk+FqEUIXCANCd2P4C5Xv5UlBKw1CDUhoENlHhstuYYgj9AezSZV8aU+DUAMSGkR2wmS45NAAWmkQakBCg8g+SGBIY6DPnUge6kVqQoMVoQJMZ7dWOWuUL9GfIKFBEHpD4NNdA4KICgkNgiAIQjYkNNSE1FOEnqHuSagACQ2C0B3ajO4iSY1+hWjQxhMeCQ2C0B3aOGlgyAczoQIkNIjsI8PVhN6xl6S7CkQ2oNFnQEJDTTJ7rCJ0gmCzapIvqacINSChIYHIJfpY6KMkCCK7IaEhgZiXqdf3EARB9KLRFhYJDYIgCEI2JDTUhLRTBEHoBdoITyHZfS8V0V+hSU3/gtRTKSTDTTb7PfT6okAPhkgeEhpSJLjS8Iy5WOWKEISKkMzoX5B6Sv+IuTnprgIBaLYsTxWandzO8OdC6AMSGgShN2hwJ3SMLI9Wx44dw+rVq9Ha2or8/HxUVlZi+PDhIXEaGhrwwAMP4NSpU/B6vVi+fDnKy8uTClu/fj1eeuklDBo0CABw1VVXYc2aNWq1PQYJfrW0/CdUQSOpQf2TUAFZQmPNmjVYtGgRysvLsXnzZjzwwAN44YUXQuI8+uijGDduHDZs2IDm5mbcfPPNmDRpEpxOZ8JhAFBRUYF7771X/ZbHItFvlmaIhBpo1o9IahDJE1c91dTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnToVAFBYWIjRo0fjjTfeSCqMIAiC0BdxVxp1dXUYPHgwOI4DAHAch0GDBqGurg6FhYWBeJdddhmqq6tRWlqKU6dOYe/evSgpKUkqDAC2bduGXbt2weFw4J577sGVV16pqIFFRbmK4gOAi2MVT/YcDjv4Fis8iksj1Ca/wAbWYUdPuiuSIAMGWME5Ql3ZqNGWggIb3CrkQ2QGDMPA4VDfJZJqt3SsXr0aDz/8MMrLy1FcXIzJkyfD0HsJSKJhCxcuxPLly2E0GrF7926sWLEC1dXVKCgokF2vpqYOCIIyEZDj5RVbCDQ0tIM73w2bwnSpxjv8AhiOn053NTSltaULfEM7MtWD2PlWX/2DUaMtLa1dIPu+/oMoimgI60dyYFkm5mQ7rtBwOp04e/YseJ4Hx3HgeR7nzp0L7Dn4KSwsxOOPPx74e9myZRg5cmRSYQ6HI/D7NddcA6fTiSNHjmDSpEnxqp1S+EFFvv9kxJ4G6bV1D3kkIHRM3Al1UVERxowZg61btwIAtm7dijFjxoSopgCgpaUFXq8XALBnzx7U1tYG9kESDTt79mwg/0OHDuH06dMYMWJEUg3WBJYsl4lMgCYMRPLIUk89+OCDWL16NZ5++mnk5eWhsrISgG9VsGrVKpSWlmL//v146KGHwLIsCgoKsHHjRlitvstkEg174okncODAAbAsC6PRiMceeyxk9aE76Jsk1IAWGoQKeIeXxI+UALKExsiRI1FVVRXx+6ZNmwL/nzZtGqZNmyaZPtEwv3DKVESQHCESgc5pEMnjnnKVJvmSXkVNwr91UlsRiUArDSJJPGNGQhgyUJO8VbOeyiqyeiMym9uWLdA7IpKjp2KWZnnTVFhNMmH5T+OR/qF3ROgYEhpS0EdLpJXM74Ci2ZTuKhAaQUJDkgQ/2gz41kWLOd1VIOKRAf0oHvxgbfTpRPohoSFJJuiZEqQfbc6Lva5vCIJQj/4zgqSCjJA16k1jhRyrankRQWhliEHXGBMqQEJDiqy2nlIPT+nodFeB6OdodYCNiA4JDUmUCQ3R1l9n3CRctYAfeWHEb7QXJY2Qn6luKTMXEhpx6FpwU9w4Ql7/9B3K6F5m6L6C0mi07yQMyMIBNkNfcSZDQiMO/EWRs76Mhj6ymPDOQemugnYYssswwFz5i3RXoV9CQkOKbB5YNd6v6fzhD6KGdd1WoWnZcoirzmBpszhTYIyGDDE+yS5IaGhJlm2ouy+Pv/EtmoxRw/gSZ9QwLehaVB752+3fT2kdwum4a2FayyeIZCGhIYEwUP7NgD76yXRHlgyUjiSmwdxTKBkSWQ85RgtWiwa16S2/SGnfUpPUvQNP6aik0ruuv1peRBl9snPJ99B94/VJ1Yfog4SGBGJuNm9sq7f6Ea3yLXp65k5XrVytMa38t5C/ecWTCOX0zL4OHStuRcfyRZqXlQq840ej80cLEk4vqii4hQuGwHv5GNXy6++Q0OhvqKgxc0+6POK3qHNZGXsFevFXxBaHXfRljK5yUwvPVZdBHGCHWDBAMrxr/o2qlOOa+i8JpxU5bYYLtdpGpAYSGpIoHFlTrHkR9eIKhOPADCuWF1fGI9WrSah7Yqkq+SQz6Eqp2rIF/uJhkT/KVWdmqWY4Hepcuehk9MlsXNf16l9jDIw9N0wO/F80JneNiZiXm0TidG3OyyhXrx9KAj6sBIkVQ+eP06x60unjTYo0dGetJjfGH9/S94dGqzo10G/NMglbfP1ryHkPlR3pdVfMlPzdfdVlcdP2lF2jal2EwnxV8wuGLwrNW+mKyztUhvWWxCAkmpWrp6QmBmK6V1Ii4B0xVFbU7u/PifiNHy4vbSxSsT+kNfGeoXvCuJjhgj3+nqnc95QOSGhIEP7CvBf5/pZaMnovlKmeCUHZ9EjIzYmti46SnWv2dfEzjzGj4eVcFxm+cpF4RoLNCu+lF8XPK95MOExI8ENTo7LhdfwBS9FdMQsdK25F+313R4QJFwyW5ZJEyqdT9/f6Jiftq5crHti6b7xeXp9EX5fmBxUpKiNdeEbL6N8K6CmXngjqAVlC49ixY1iwYAFmz56NBQsW4Pjx4xFxGhoacPfdd2PevHn4zne+g82bNycdxvM81q5di7KyMsycORNVVVVJNFU+Ur5/AEQMiO333Y3uxZFnASRJUC3kHTkMnfcsgfvaiVHroRlhg3SipXb+9IeADJWcaIm9YhOGOGKGa4Ze1WZREA2cNquaMIOAnhuvh5Brk51ccBSCv7AYXYu+G3OV2HH34r40QxxwTbkyeqbpeDUSJ+v54sERv3nGjET7z5bKzpbJDTIHD/pepIR/OpElNNasWYNFixbhzTffxKJFi/DAAw9ExHn00Ucxbtw4bNmyBX/+85/xm9/8BnV1dUmFbdmyBSdOnEBNTQ1eeeUVrF+/HqdOnVKr7fLxj/dqDR4K5IdnfJ+9u3/m75o6MVr0uDA6PHAoMgzcl49GT3lZzHgpudhHhVfcM2tq8pkkRbR3rODdy1D9iXm56JkzTX6evQ+XH3ZBzG9JzM8L+iNOnYOCu+P0H7VwXTdJXkSWlX3mp+vWcrAXRAoePRK3ZzQ1NeHgwYOYO3cuAGDu3Lk4ePAgmpubQ+IdPnwYU6f6PpbCwkKMHj0ab7zxRlJh1dXVmD9/PliWRWFhIcrKyrB9+3Y12p0YyQwoogh21PCkihd7Z3qR50j0JwiU4L14GFw33pCAt2DtppldP/hO1DDX5CshGjgIQQOC59IRff+Po9MOxzvsAuUVjEE8R5KyLHO08FMVXGw8YRBUR2FgoazsvSMlrLC0QGXTcM+oi8APVa7m9g67IC2HFuMKjbq6OgwePBhc7+Ytx3EYNGhQYDXg57LLLkN1dTVEUcTJkyexd+9enDlzJqmwuro6FBf3PUyn04n6+np1Wq6EQAdPbJByXzUOwuCBMN75fbT/7A716pUAvJzNYD/h37XUh67GyiXBFZyghb67tzlCrFWN2YiOX96Fzp8tReedt6Bz6Q+SGkhS5vY8yqtKy4FCBf3Ge9klcePwQxy69RsmxhPACVabT9OhxeRsP4NYvXo1Hn74YZSXl6O4uBiTJ0+GwWBIKkwNioqUm6eKFhau3v87HHa4TRwEAExYp3Q4QvXGfIsVnqC//bHti+Ygr3e577hwIDzXXgX+Hx/KqktenhVcbzmekkHgT9Yh31kId1gcj0Rah8OOnrDfci8cHBI3N9cCb5SyDUYuZJyxWIzgw/J3haUJLtN42zzAaAh5TuH1AQCzyQB7bxyp8Gh1zbn8Eng+2R8RL3+AFaxEfubRw5Er8UyCMRh9H3hRYU5IHwhOk5NjxgB/m/zv5svDgWfjcNjh4liIAAwL5sD7yvbA71JtNJv72h+L8HSm/3sX3A/9PiJecJ8JTjNwYC4YkxE9Yf144KUlEXlL9Z3g3wY67GAYBvy56H1P4F0h/bSgICfovYghcXvC0nrtvndtsRhhH5QX9Z1Ze/ukeeqVyCkuBL/0e/Du/Bji8dMh+fnKlIfhuzfA+/rOqOGS31WOOdA3rVaTr05mI+wOO3rCJkVs2PP3x4sow2ICetyS5QGALceEAVHCwscmNYk7OjudTpw9exY8z4PjOPA8j3PnzsHpDJ2xFhYW4vHHHw/8vWzZMowcOTKpMKfTiTNnzmD8+PEAIlcecmhq6oAgKJsNM51d8IuahoZ2WN1eGOCbqAW/7oaG9pB0XGsXgrcFBasFbFc3GhvaAZaFw2H3pfmXK2A7fAzc6bNx69LW1g2vv5xrJ4EbdiHajRYEd4m2892QUuw0NLQH4rmumwTvxcPAtpwPidvR0YNoWlevh0fwHKmnxwP/Vmj3TTegvaEdeWFpgstsLum1wAl6Ttyt5bC9uDkkjcvtxfneOFJd3XthMTylo8CE1fX8+W5IbcO2nu8GH5Zfx48XQcy3A0H1k8Lr4WEG0OgSAvEawtK05Q0I5O/HEvRsGhraYeMFcADO59iRE/S7VBuD2x+L8HRNAifZlrbzXYE+Exze2NoNMD0wXzoCpr0HA7+Ht0/Ob42NHQAALso7aGhoB9xiSB4tLV0QLL31EkPj2sPSGtp7YIWvz7XGeGfdPR6YAHS0u+BpaAeGDIHFZIIxLD9Aum9JEeubkKovAHR0ugJpurt9dXK5PDjf0I5chI4bgiCChU8tZfzqG7hcvvcfPNA3NLQDd98KxuNFe5T2d3W64Y4SFj42KYFlmZiT7bjqqaKiIowZMwZbt24FAGzduhVjxoxBYWGonrGlpQVer0/W7tmzB7W1tYF9kETD5syZg6qqKgiCgObmZuzYsQOzZ89W9ABUobeDizLOYwTTteR76PnOtMhNRYZJ7MSnwQB+hPT1lj3Tp8S0gRfNJkmVS6xzFd4Yp7294yM93sZyix6oB6PcyltwOiTLU4JYOEDZ5UZRztJ0/PSHkia4fO+J7e7vJrIZmyK1Sm+fc82aio5Vt2tfntWC9nt/3GfAoGUzZeQt9B6KdV0/OeT3jpW3oTPI+7Dnyujnm7pvDh1/5BzU7a6YJR3gN3ePVneLGWKMMx3eMSNDy0mRma4sPdCDDz6I1atX4+mnn0ZeXh4qKysB+FYFq1atQmlpKfbv34+HHnoILMuioKAAGzduhNXqm9MmGlZeXo59+/Zh1izfQ1+5ciWGDk2fzbxrxjVg2jpgeWuXrPhiwQB4ovgSUhvP1VfAc/UVsD+yQXaa9l8uA4JUgaLFDPeVY2HesxcA4J52Ncwffi47P8GZmEmsV2Ub90RwXTMB5t3/jBrunlgKw9fHo27Wey4fA+/wklDLnzTBB7kccU39F5jf/yQ0AstCzJFvKhsLMZ7JLctK7l+4plwZ6GdK8F5YDMOJM4rTAUDnnbeA6XGBbWkL+V3MtYWaAEu49+9YvhiMxxOxj9Z592KgxwXDkeORBfr3xxzyNvKVIGWG6x17MbD5LdXLCkeW0Bg5cqTkGYlNmzYF/j9t2jRMmyZtfpdoGMdxWLt2rZwqaozv7YsmI7wTS2ULDc1gGHR/bxaMn+yH4VQ9gnc4RZYFIwgRScLvufCMuihEYAC+Q43u6yf3fcxyZua9M3LX5Bi29HHwXnZpwmmThR/iAFffAH54CfjD38A1Ywqk5naumdfCNfPa6BkxjC4EhvvKsSECwX3txEihIYFgtYDtlqv1D0rnHITOJTfDsmM3uDNx1K1Bq+uQfhaLMIHTvbhc0cQoBIvZZ3TQ2iYZ3DNrKgxffytdjYI8STsCMccG5NiAYKERtnIQB9jRtWAuLDXvg205n1jddQSdCJeDxhatiRze8Y4eCdEeqXd0Txof8rf/RK1Y4BvQ/JY6ah/+CnY61/mjW7TxXBqu0lPBcsvbq+4TBtjRdddCTS6KEnJzIFpiWFfpwOin60cL0LnkewmlFS4YDNGojolu97wZysruncWH+INK8Hl6JoxD94KbEkobr0j+oqGRF5RlqKW8emZK/YE4+xB8yRCIFhOYHnfMeJpiDjXfDO+o/PASdN88G14pz6LxiDVIBz0awVEEOKKYw+pggAzGfd0keK4Yq6lfqM6f3KZZ3nLwr6ZiIeba4quaYqU39QnFCAGp4YFSz8RS8BcMgVAcdLe7zgdjT+komD/4zLfHeOhr6O6jiAOtNOQgt9Mbjej4+Z3qlh1LUEkE+WfOsTbFvaMuCtnojemmQYKeGf+qKL6uYVnt1UoME2fCIW/QkOPoTiqvrlsrYP7/fiKrDDUQDVEcPGrhjoVhQgVGIqTYS4J31EVov+9uCAOUHwfomT0VnbcltiJUCxIaSlCx08c7tRsg0Q6t4KyLELYqcE+6HF23VUSvUtBhNMN0n0sFvkj9zT6tCfZxlNJylydWbueyhei4Z4nyhEYDmCRWEXII9gvmvSRsFevvizqZUGt+mDLeOCGG/asAz1XjIu5W6Zl9HTrvvCVKCvUh9ZQcdOivKYSg6vn3OcLN8ZTgUrCS4MZdgmYVHarxxYMlNlS1GW3StXHt319SjNmkm9sNw3H/61XwXjwMYo4twjS9++bZMO47JNsdiNYIQxzouuVG2F6t9v2g8gooqolxRDGR44r7X8aDbVa2We4JugKhY9XtgCfacV11IKGhhBTOlDyXjoCx9licWJEVEnNtaP8/P5LlVTY9xH6IXQvngm1rR84fXo0I8146AuLOPWC8vERKfcFfMATcuSZV77rWNSwb1QuxmJcLdxLXzCqmt4v1zPjXqBeW8SOHQWQYWQ48vQpuTXRffYVyIRQU3ZXk/TZqmVLHgtRTMuhTJWknNaIeEkpkFmQyKkyno5WU2RShLvMj5uWi45d3pbhCieGaeQ06f7Qg6qDVdctNfdfI6kRtoytUmP2Lebnwjk58xe0n5AK1XroWfTd5r7o6+uyUoNfpqK7omXUtzDt2g0/w8JoUYtg30fXDH4A7fiq9Z0Bo8FIPjot5qIsfeSGYwLmI9Dz4jrsWyrpFUrBadHEAM11IueTnwzwTB0zZFXqN8JFZHx4JDQnEsMtmhCEOdN9aoWmZwsACCAMLlAmNzOprihDy8yByHLimlsiwggFZcUgqUXq+Mw1i7+ayd/gFMAQ551OCWCTv6tVOBRcJKaH7phtg+nhfyG/eUWHCKc2z8Y4Vt8oyx/aMHw0wDDylo2A4+LXvxwxdScSDhIYUJiM6Vt3ef/TRfuR28mRUBzKTdt69GKY9e8G9E+kNuPNHCwBBAPdtGi7k0gGeK8YG/t/9gxuR8+yrGSlEveNHR/oUU2EvThzQe5BV7vcbY19D9vkdloUnDW7K0wHtaURBzLEpc3CXIIIagilGp3eVXQt+iMN330BU9L1kCVflwcBJ+gfKWJJ5/EYDOu+cr/isTTbjuv5qdH9/ToQKKYK0XeOb2UsQEhppwr+53vP9OcnkEjeG4HSga+kPIu53DiV6Jw5xcaLTvs4PHgjPJcPTXQ3lqGXKbTT2uZRRcRzsmfGvEFLkcDM6CTwjjoM36CZF/RDl5ch4Zx0//jd0LS5XtzoJQkIj3UTrMAG3ySmcDaWgqGBX7CLDqHKftmjPQU+M61n1jz5Xep5Jl6MzRbf6ecMtlNK2CtAnYmE++AuVXwmrBbSnoVNcs6b6TAZj+Ihy3TAZEPjMsmyxmNF5x3zk/LEKgqNQ8X3awYi9LvSFovyocbxDnWDcUnfL6Qg1x0edrgbj0T3/O/o/RJs0oe3zW1oJGvo90wISGjpFtFnhmh77ZLZoz0FPtAteNEGdj9pv+SPmyvGlFB2hZAi6Fs4Df2F0z7TJWr3xF8g/2JUNiGYTvCMTcGaZLNH2DyW6nHv8aBgPfa1tfTTFN0vgRwxF1w/mSJ4D0TMkNAjlJKk6EIvy0T1vRtzByTP2Ypj2fAbP+OhWKdFuMowF7yiU5Zur/ed3KPLhlQ10/EJlh5sa4LrpBrhuukHyiuOMgmHAX6LHvZfY9K8vQkX4QVFcf8NnEiqyGaSTjbOA6PjpDyGCgWWHegcPvePiX7wkDrBrMoh1/WiBvIgaO7bzu93wqrmJn0HdjshMSGgkQOddCyHE8PGixfWOqUF6xIl2xSmRHIKjEO3/cZesU9l6oXveDDBd3doXZPA9E9Hss/oT8nLhuXJsrBSKcU8a77vOOAWm9aFk9t4NCY0EEGSepI0F7ygEd7peezfNiojTmTO7r+uTDBIYgLwVoirljLoIruuvhvsqn6FE50r1L7Jy3zAF7humqJ5vdLJjGUhCI024Zl4D72WXRLiLdl99BQyp3uTLjr5MZBMMA/eUq9Jdi4Twu68Xc7JzhU5CI10YDJJ2167pU+CansrZD5EN8BcMBoD0WD4RIfAXD0P3TTfAO/bidFdFE2QJjWPHjmH16tVobW1Ffn4+KisrMXz48JA4DQ0NeOCBB3Dq1Cl4vV4sX74c5eXlccOamppw3333oa6uDh6PB5MnT8b9998Pg8GA9evX46WXXsKgQb7rHK+66iqsWbNGxeYTAGSrnfjiQTAePAIh0UuEUkUmGSGohDDEkXH7I1kLw0T61MoiZAmNNWvWYNGiRSgvL8fmzZvxwAMP4IUXXgiJ8+ijj2LcuHHYsGEDmpubcfPNN2PSpElwOp0xwzZu3IiRI0fi97//PTweDxYtWoSamhrceOONAICKigrce++96reckCD2YOuZWArvRUNle0dNF/3tbEUAEhiqwgd5LyD6iGs20NTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnepzCVFYWIjRo0fjjTfeiBvGMAw6OzshCALcbjc8Hg8GDx6sXgsJ9WAY3QsMAOSCgkia9p/fga475muTeYYblMRdadTV1WHw4MHgemcxHMdh0KBBqKurQ2Fh3ybuZZddhurqapSWluLUqVPYu3cvSkpK4oatWLEC99xzD6699lp0d3dj8eLFmDBhQiDfbdu2YdeuXXA4HLjnnntw5ZXKvHkWFUnfnJYuHA79uQzg8yzwADBbDLAnUD+9tMl/pZEa9dFLm9SE2qQE9fN1GTmIAAoKbGCj1DsT3pFqG+GrV6/Gww8/jPLychQXF2Py5Mkw9J6mjRW2fft2jBo1Cs8//zw6OzuxbNkybN++HXPmzMHChQuxfPlyGI1G7N69GytWrEB1dTUKCuTPdpuaOiAI+hDtDocdDQ3t6a5GBIa2HlgBuHq8OK+wfnpqk/9zS7Y+emqTWlCb0o/Nw4MD0NLSBcEaWW+9tIdlmZiT7bhCw+l04uzZs+B5HhzHged5nDt3Dk5nqL+fwsJCPP7444G/ly1bhpEjR8YNe/HFF/Hwww+DZVnY7XZMnz4dH330EebMmQOHo+8OiGuuuQZOpxNHjhzBpEmTZDafkIVfndMPN5AJglBG3D2NoqIijBkzBlu3bgUAbN26FWPGjAlRTQFAS0sLvF4vAGDPnj2ora0N7IPECispKcF7770HAHC73dizZw8uueQSAMDZs2cD+R86dAinT5/GiBGZ56tF73hHXwT3xFK4ZsR2kEgQBCFLPfXggw9i9erVePrpp5GXl4fKykoAvhXDqlWrUFpaiv379+Ohhx4Cy7IoKCjAxo0bYe11XR0r7Fe/+hXWrFmDefPmged5XH311bjlllsAAE888QQOHDgAlmVhNBrx2GOPhaw+CJXgOLhmXpvuWhAEkQEwopjdTuxpT0Nb9NQm+yMbAITdNpgAemqTWlCb0o/tub+Cq29A5+3fh1A8KCJcL+2Jt6dBN/cRBEGkAO9wn8VoprsXITciBEEQKcA9bRI8V46FmGE39YVDKw2CIIhUwLIQ83XugkcGJDQIgiAI2ZDQIAiCIGRDQoMgCIKQDQkNgiAIQjYkNAiCIAjZkNAgCIIgZEPnNIisof0/7gKy28EBQaQdEhpE9kA31xGE5pB6iiAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2WW9yy7JMuqsQgt7qowbUpsyA2qR/9NCeeHXI+uteCYIgCPUg9RRBEAQhGxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRAEIRsSGirR0tKCZcuWYfbs2Zg3bx5+8pOfoLm5GQBw7NgxLFiwALNnz8aCBQtw/PjxQLpYYXrhySefxKhRo1BbWwsgs9vjcrmwZs0azJo1C/PmzcN//ud/AsjsNu3cuRMVFRUoLy/HvHnzUFNTAyCz2lRZWYnp06eH9DMg8TbooX1SbYo1TsSrtx7aBAAQCVVoaWkRP/zww8Dfjz76qHjfffeJoiiKt912m/jaa6+JoiiKr732mnjbbbcF4sUK0wNffvmleOedd4rXX3+9+NVXX4mimNnt+fWvfy0+9NBDoiAIoiiKYkNDgyiKmdsmQRDEiRMnBt7NoUOHxCuuuELkeT6j2vTJJ5+IZ86cEW+44YZAW0Qx8feih/ZJtSnWOCGK+m+TKIoiCQ2N2L59u3j77beLjY2N4oQJE0Sv1yuKoih6vV5xwoQJYlNTU8wwPeByucRbbrlFPHHiRKDjZ3J7Ojo6xAkTJogdHR0hv2dymwRBECdNmiR++umnoiiK4scffyzOmjUrY9sUPMAm2ga9tS9cEAbjHydEMXP6YdZ7uU0HgiDg5ZdfxvTp01FXV4fBgweD4zgAAMdxGDRoEOrq6iCKYtSwwsLCdDYBAPC73/0O3/3udzF06NDAb5ncnpMnTyI/Px9PPvkkPvroI+Tk5OCnP/0pLBZLxraJYRj89re/xYoVK2Cz2dDZ2Ylnnnkmo9+Tn0TbkCntCx4ngMz5tmhPQwN+/etfw2az4dZbb013VRJm7969+OKLL7Bo0aJ0V0U1vF4vTp48ibFjx+Jvf/sb/v3f/x333HMPurq60l21hPF6vXjmmWfw9NNPY+fOndiwYQN+/vOfZ3Sb+guZOk7QSkNlKisr8e2332Ljxo1gWRZOpxNnz54Fz/PgOA48z+PcuXNwOp0QRTFqWLr55JNP8M0332DGjBkAgPr6etx555247777MrI9AFBcXAyDwYC5c+cCAC6//HIUFBTAYrFkbJsOHTqEc+fOYcKECQCACRMmwGq1wmw2Z2yb/CT67WRC+8LHCSDx9qYaWmmoyG9+8xt8+eWXeOqpp2AymQAARUVFGDNmDLZu3QoA2Lp1K8aMGYPCwsKYYenmrrvuwq5du/D222/j7bffxpAhQ/Dss8/ixhtvzMj2AEBhYSGuvvpq7N69G4DPGqWpqQnDhw/P2DYNGTIE9fX1+OabbwAAR48eRWNjI4YNG5axbfKT6Lej9/ZJjRNA5owVdAmTShw5cgRz587F8OHDYbFYAAAlJSV46qmncPToUaxevRptbW3Iy8tDZWUlLrroIgCIGaYnpk+fjo0bN+LSSy/N6PacPHkSv/rVr9Da2gqDwYCf/exnmDZtWka36fXXX8emTZvAML4b11atWoWysrKMatO6detQU1ODxsZGFBQUID8/H9u2bUu4DXpon1Sbfvvb30YdJzKhTQAJDYIgCEIBpJ4iCIIgZENCgyAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2JDQIgiAI2fw/Me9yy6rjJcUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_kepler = Lightcurve(time=times_kp, counts=flux_kp, err_dist=\"gauss\", err=np.ones_like(times_kp))\n", + "lc_kepler.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "e53378f7", + "metadata": {}, + "source": [ + "##### Plotting the first 3000 data points of the kepler lightcurve\n", + "The unevenness of the temporal sampling can be better seen with this" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "837c95a4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Days')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6cAAAHXCAYAAABAoSyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd5wctdnHf7O714vtOxtjbMBgjDFgG0zvhBRK6CWF/oJphoQkEJMAIRBMDZAAocV0BxJ6DYbQezHuvfd6d77e9nZ33j/2ZneKpJFmNNtO33yIb2c0kkaj9uh59EjTdV2HQqFQKBQKhUKhUCgUWSSU7QwoFAqFQqFQKBQKhUKhhFOFQqFQKBQKhUKhUGQdJZwqFAqFQqFQKBQKhSLrKOFUoVAoFAqFQqFQKBRZRwmnCoVCoVAoFAqFQqHIOko4VSgUCoVCoVAoFApF1lHCqUKhUCgUCoVCoVAosk4k2xnoCyQSOuLxRFbzEImEEItlNw8KhSiq3iryFVV3FfmIqreKfETV2/wgHA4hFNJcwynhNAPE4wk0NXVkLf1QSENtbSVaWjqRSOhZy4dCIYKqt4p8RdVdRT6i6q0iH1H1Nn/o378coVDYNZwy61UoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKHzyysZPce6MW9Ha05HtrCgUeYsSThUKhUKhUCgUCp9MWfMW6qPN+GzbnGxnRaHIW5RwqlAoFAqFQqFQKBSKrKOEU4VCoVAoFAqFQqFQZB0lnCoUioIimujB+s66bGdDoVAoFAqFQiGIEk4VCkVBcd2CRzFh9l1Y0rY221lRKBQKhUKhUAighFOFQlFQLGpbAwCY37IqyzlRKBQKhUKhUIighFOFQlGQ6NCznYWCIpqI4f9m3oEpq9/KdlYUCoVCoVAUKEo4VSgUBYmuK+FUJivbN2BTdwNe2fRptrOiUCgUCoWiQFHCqUKhKEiU5lShUCgU2eDBla+guac929lQKPISJZwqFIqCJKGEU4VCoVBkiZc3fpztLCgUeYkSThUKRWGiZFOFQqFQZImE2lqiUHhCCacKhaIgUZpThUKhUCgUivxCCacKhaIgUXtOFQqFQqFQKPILJZwqFIqCRHnrVSgUCoVCocgvlHCqUCgKEqU5lYsGLdtZUCgUCoVCUeAo4VShUBQkSnMqFyXsKxQKBT+qz1QovKGEU4VCUZAoh0gKhUKhUCgU+YUSThUKhULhijLrVSgUCoVCETRKOFUoFAWJMqlSKBQKhUKhyC+UcKpQKAoStedUoVAoFAqFIr9QwqlCoShI8klzqus6Pq6fhfru5mxnRaFQKBQKRQao627Cd42LPD27uasBL234GNFETHKusk8k2xlQKBSKIEjkkeb0y23zcNey59AvUoEXDrgl29lRKBQKhSKjPL/+A5SEinDGDkdlOysZ47yZkwEAD475DUZWDhN69rfz/4HGnlYkoOPnQ48JIntZQ2lOFQpFQZJPmtO1nVsBAM2x9iznRKFQKBQyyJ8RKDd4dt27mLLmrWxnIyts6qoXfqaxp7X32QbZ2ck6SjhVKBQFST5NDPLCD25eZFKhUCgUivwin+YrmUAJpwqFoiBRDpEko4pToVAoFArp+LH0KsR1YyWcKhSKgiSfzHrVGaIKhUKhUCgUSjhVKBQFSv6IpsiPpc98yKNCoVAoFHmGv/lK4Q3OSjhVKBSKLKM0pwqFQlFo5NUSqSKbqG1IFpRwqlAoFFlGiaYKhUJRWCh5Q6HwhhJOFQqFIssozalCoVAoFH0TtY5hJavC6fTp03H55Zfj8MMPx6hRo/Dxxx+7PjNt2jQcd9xxGDNmDE466SR89tlnlvu6ruP+++/H4YcfjrFjx+LCCy/EmjVrLGEeeeQR/OIXv8C4ceNw0EEHEdNZvHgxzj77bIwZMwZHHXUUHn/8ce8vqlAoMo4S9xQKhUKhUOQ6+eTAMRNkVTjt6OjAqFGjcNNNN3GFnzVrFq655hqceeaZeP311/GjH/0IEydOxIoVK1JhpkyZgqlTp+Lmm2/Giy++iLKyMkyYMAHRaDQVpqenB8cddxx++ctfEtNpa2vDxRdfjB122AGvvvoqJk2ahAcffBAvv/yyvxdWKBQKhUKhUCgUil78iKZaAa7ER7KZ+FFHHYWjjjqKO/wzzzyDI488EhMmTAAAXH311fjyyy/x3HPP4aabboKu63j22WcxceJE/OhHPwIA3H333Tj00EPx0Ucf4bjjjgMA/PrXvwYAvPrqq8R03nzzTfT09OCOO+5AUVERRo4ciUWLFuHpp5/GmWee6eeVFYqcIaEnENKUZX8uoOXB6KJMjxUKhUKhCAKlOTWTVeFUlNmzZ+Piiy+2XDv88MPxySefAADWr1+Puro6HHbYYan7VVVVGDduHGbPnp0STnnSOeigg1BUVGRJZ8qUKWhra0NlZaVw3kOh7E3sjLSzmQdZdMa78XnDXBxWMwYVkdJsZydveWL123hhw8d44YCbMaC4KtvZIeK33mqaljd1PmQSTnM1z2b5OVfzmCsUUp+r6DuoeisXTVNl6QXRMiuIeuujrmjIn7kOL3klnNbX16O2ttZyrba2FnV1dQCQ+nfgwIHUMLzp7LTTTpZrRpz19fXCwmkkEkJtrbhAK5sBAyqynQXf3DH3Tby8+lPM3mEZ7tr/0mxnJ2954cvk/u650eU4fcgRws/H9QQ+3DgTBwzcAwNKgq3bXuttaWlRTrQ7HiqaSlJ/52qe+4XKU3/nah5zjULocxV9D1Vv5VBalj9jUC7htczyud5WVpR6fu98muvwklfCKUA2f7Nfs//WdV3YbI4UBy19N2KxBFpaOoWfk0UopGHAgAo0NrYjkchv04EZW5cCAL7ZshANDW1Zzk3+09HW7akc393yLe5b/iJ2LhuMKeMnBZAz//W2u6snb+pIR3t6T3yu5rmlNd2H5Woec4VC6nMVfQdVb+XS2Zk/Y1AuIVpmhVBv29o6PdeV7u78qWfV1WUoKgq7hssr4XTgwIGor6+3XGtoaEhpNQcNGgQgqUGtqalJhdm2bRv23ntv3+kAcGhuecmFBpNI6DmRDz8YeyQTSOT9u+QCCd1b3VzVvhkAsKZzS+DfwWu91T2+W7bJ1TwnTIf25Woec41C6HMVfQ9Vb+Wg66ocveC1zPK53ib81JU8neuwyCtvKPvssw++/PJLy7WvvvoK++yzDwBg2LBhGDRoEL766qvU/ba2NsyZMycVhjed7777Dj09PZZ0Ro4c6Wm/qUIeoV6nLHE9keWc9G1KQkXugfogs5uX4YGVLyOux9HS046ZTUtTVhcslLMhhUKhUCgUiiwLp+3t7Vi0aBEWLVoEIOnQaNGiRan9oZMmTcK9996bCn/++efjs88+w5NPPokVK1bgwQcfxPz583HOOecASJrcnn/++Xj44Yfx4YcfYsmSJZg0aRK23357HHPMMal4Nm7ciEWLFmHjxo1IJBKpPBjHzZx00kmIRCK44YYbsGzZMrzzzjt49tlnccEFF2SqaBQUwobm1IdwGtcTWNW+iUtooLG1uxFburd5fj5X8CoSKeGUzB8WPoZ3tnyD2c3L8et59+P6Rf/EjOal2c6WQqFQKBQ5i3k+5mdulq/0vTdmk1Wz3vnz5+P8889P/Z48eTIA4KqrrsKvfvUrbNq0CaFQWn4eP3487r33Xvz973/Hfffdh+HDh+Ohhx7CiBEjUmEuueQSdHZ24qabbkJLSwv2228/TJkyBcXFxakwDzzwAF577bXU71NPPRUA8OGHH2LYsGGoqqrCE088gb/85S84/fTTMWDAAFx55ZU466yzgioKBSeGWa8fzeljq9/Am5u/xMRdTsPJ2x/m/gCB82feBgB495B7POcjnykJFbsHyjLZPJ2lJFSEzb2LFyvbN2D//qOY4ZXmVKFQKBR9Fd0knunQ+9yY6E8gL7yyyqpwetBBB2HJkiXU+1OnTnVcO/7443H88cdTn9E0DVdffTWuvvpqapg777wTd955JzNve+yxB55//nlmGEXmSWlOfawzvbU5afb9af1sz8JpXyeizkd1QTP95T5wFN7QolAUPl3xblw592/48XYH4BdDf5jt7CgUBUFf1CL2xXdmoWaYirwirLl7+XLDOFNSV92BJ+/TigBQ30GhyDtmNC3Fhq56PL12WrazoshB1AyDH53xq2/QF9+ZjhJOFXlFSIKOyYgj0Qf3NdhRIlEwiJar+g4KhUKhUAC3LXFaTRY6yqjXihJOFXlFWII5qWFmqUN5/FUED492uq/tr1EoFAqFIk1aPPuqcX4W86HIBZRwqsgrQjKEU01pTtN4FIrywgw1e3kUNZfOh9JUZvAKhRW1LUKhUMhAja9WlHCqyCvkmPUmq73qDBSZoGCmr6q5KBQW+uKRFwpFEPT5ptTnC8CKEk4VfQ6lOVVkFg7xVGlgFAqFosBQcwwFH6I1pScRCyQfuYISThV5hYy9eSmHSGrgKBytXp6TD3tOlaWBQmFFmfUqFHLo6+OL6PsbRyIChdkPKeFUkV9IaINGQ9Z1/w6R8t2sqxA7tVwjm+ecbu1uRFusU0pc+V3TFQqFIrPk+/wgk9hLSpUdmw1dddnOQqAo4VSRV8jUnJpXqha3rkF7rEs4rr6+2qeQhXzxtCsexfkzb8OZ0/8kPW6FQqFQKIKir82tRN/Wui2t8JQMSjhVZJS4nsD1C/+J/2z40NPzMpqg4fHXaNzzW1biN/MfxG/nPyAcV1/rQBV8mFd9eZTTQQwtrbEOqfGpuq5QKBSKYNAZv/KfrngUdd1N9ACCmuJEgR+FqIRTRUZZ17kFM5uX4um107KWB82mOV3SthYAsLZzK9fzZsEj/y1PvIlF+bBOlyt55DLrVebVCoVCocgyXfFuthDlQiwRR0tPu4Sc5P3kysL/zboD582cjKaeVuJ9cc2pEk4VihxCglmvT2+9ZkdKyqmSgoSqFQpF4aOWlBSFxoUpIarN0/NXz7sfP/v+z2iMkoUwGvbpWKGdptDYK5Ru7GqQEp+5fAqxH1LCqSLDZL8Z2TWn4pg1p4XVgSqyg+xWEdfjuHHRFKlxqrquUCgUhY0hlG7p2ubp+RUdGwEAqzs3+8pHXxttROejyqxXoZCIeRI+r2WF+PMSvfV6NYswr1jped5BZH+poFARHVrlfonFrWuxpnOL1Dj72mRBoVAo7NR3N+Pf6z9AR9zdgWI+95l+fQyIjmjO9PK59ILHqjktvJmcEk4VGcXciCYteNTX814ROee0JxHDxs56yzXzU/lu1luInVouYB5os3mUjEKhUCjkcdPiJ/DMuneJfjP87NXMNfzObMTnFjaHSPk9tRJGaU6tKOFUkVHMwly2vH/aO01WLv606HFcNPtOLGxdTXyir3WgBvkg1OZKHnlyIdshUjAOlgqjssf1ONolnf2qUCj6Fit7zVbXdybPmYwmYogmYgCA82ZOzlq+ZJNt7+zZTj/TiM4lC21Prh0lnCoyil8PYzIFDp49dLNblgMA5jQvT12zmvUWdgeh8Ib4uCFXmAwFIJgXSl2/Ys59OGP6nzyda8yDrutoiLYEErci18iNBTBe1nVuxcOrXkebWpzxjTEXOfnbP+D0727Icm5yD9G5mnN0IY83U9e9h/tXvOwpT7mMsOZUeetVKOQRz4EGZdcqiU8vCschUn5NrfIUDi2m7O9gnOWrcLK2dy/u5m45XhPtPLjqFfxy+i34auv8QOJXKLzyhwWP4s3NX+Cpte9kOyt5T8jUr8f0eBZzEgx+5zZ+jXdIqUcTPXhu/fuYtvWbvJ97+aE73oOvGxdkOxuBomYwioySU5pTCc/l+55TRTCIroLKNkEOwqS5D88FhHhnyzcAgP9t+D7LOVEUIrqu45+r38S3jQuFn23oSWr0C2lvpCIYMt3d28dM0hh60aw7U3/ngqJDLvwl/u8NHwSYj9xACaeKjBL3uYlbirfe3n+Nzk/88GO53np1Xccbm77AyvaNvuPKdb7eNh/rOrdmOxs5h7lad8WjvuMLB6A5LRSz3kyhSksRBIva1uDVTZ/hz4ufdNyr627CJo5zFAvdmUomCAWyrz+X8Out11/5kBZD66PNqb9zWTj9rnERvt5G1mzSNL4ipb2qwzpXLMSqqIRTRUaJ54T5i3hLtna06W5Exqb0uS0r8Mjq1zFx7n1Y1LrGd3wirOjInEC8sbMetyx5GpfMvjtjaeYCXLXNNLp850EjYqfwJ07+UcKjIh+JJnqo986bORn/N+sO1zgK3ZlKZuDpY/O3nP0vRgruObUl55Z+LptS37T4Cdyy5KnA4g/1AdGt8N9QkVP4P5vJ/6TbrjkVxepx2D/GodcA8Nv5D0qIkZ+XN36SsbQae1ozllYu4d8xRPBpZovGaCtWd/g7rD1X6ct7ovoK2WhlMtq2soLwTxBO53IJv92X39Jxq6O56hCoM97t6TmR8cLpU6Lw6mIk2xlQ9C1ywRTDt0MkUx/SVyegXrrCvuSkR3zPaRoZ+5iDKOsgJrS/nHELAODlA25FZaRMevwKRaEhwyqir45bMgnmuK7cwW9/L14+DtUpk1zVnGbCE3a+LD77oe/MFhUFgcwmaQzQol2wbtGcqkGed8Gh0FeaaXCdc2oO1QcnjmbrgUyhJuiKfETGxNSv7wdF3xAQMom9N85ns14WW7obiUeNicwlg/ApkWsU/hsqchZvRr3yzHq9YtZsKccSwBVz7gXgvmKY6ZXmuS0rMpqeGT8LHlu6G+VmRhJBinK5sRddLmrhShEEfsZA49l5LSvV4oxPghzN/rf1OyxrWx9gCu741pz6dYjkcj8XrPC8cPfy53HOjL/4isNuPVGIyyRKOFVkEQkrwHoC32xbgHYhUwr/uyFSf6kBHms7t+CLhrk4c/qf8MKGj6jhMm3Wu6w9u4N7Cg6h3FyLnl43zXeSQdRL2XH+Z/2Hqb+VgxaFgg8/i3xmgaEu2iQhN30Xnu/gpVdb17kV9614Eb+a93cPT8sjs+6Q+I6SMZOrC5pehXqRp/qC1l4Jp4qM4n8fg/X3u1u/xc1LnsJNBLf6QeXFPJGWsT+wEDQsr2/6HACYh7v3JbNe3bfjr8LHLIRHdboHUoVCkcZPPxo2DaA9iZiM7PRZeDymehnbW2MdXrIjnewvvOenWa934VTEIZJdc1p4cwwlnCoyQnusy3HN2wKw9aFFrasBAAtaVwnH4LXr1ak/FCwKsQOVhuSJQL4teLCOxwiKoMso+5M7RSHCY4FCr3vpPjhXJ/d9nULpN4THe7s/JJdiyFVrm0xkSx0lo1BI4I1NX+CM6Tfio7qZ0k1FvDRSnk4zoSfw3tbvKHflak7zEg8rC9k4ezMX9qVkQyQPolYGKczl6DxDoWCSDY+tPOMXra2aryvh1B+Ffpa07/7eZ/G4za1I+WvobsZ9y1/Exq56f4lnA4HiLnRP0YASThUZ4Jl17wIAXpFwpqZ9YPazj5G1QvnKxk/xtxUvEu+ZV+zyTUMVNNnWjq7u2GT5nS+ma6oWZZ7ANaeBxq7oq/AIRUo4zQTBjHW50m/4VySInu/t9NfLgiS83rfiRfyv7jvcsvgpobTlkgGz3j4guhX+GypyC8kqEk+rlxzPLG/fYHuGHC5XD4IWQYYZEU8MmRDkL+/1HGyQrQmY+V2zc75rAA6RpMdojjtXpmQKRW7DpTmlNCfz9VhCCad+KHjdlc95gbhwKpY8ae7V0N0MAFjTuQXvb50ulL4szNkWmVuJlHZYaU4VChlQVnE99X02zamHIYLnCdZk2Xx8TCFMqmUeh8Mq22yYbuaC5pTnTDLZ9SiQsla2twpFXmDuT7riUcsdA6U59UdwZr250c9me8uS25hIEvzMV+5d8YLkHIkjUoYic4BsW6hlAiWcKjKKfGHOi3CqueaFahal67hyzt9Sv3N1U74IMt6B57tmQ5D3MgFb1LoGTT1tvtI1v+kKuxbeJbwMCmHRJHACLiL1DRTZwqh5K9o34NTvrseU1W9ZrgO5sR8/nwlKQMiVOYXf/kv0edHwJMEv2wI1YH8PgfwIfPfsWGNllsJ/Q0UOQOvEs3MMix9vvQkk0BYXOVM198mVwTAIRLXCqzs247fzH8RFs+7AtmiLFJPn13qP2eHlBwP39Z1mEChhS6HIPnztMBnm/a3fAwBe2fSp41nVnv3hx7y6LxC0cEu8nwsFbspCUHMrJZwqFFLQCX/Jwd+eT4bmlHIrbruRCyt1fpFp1stOJ/NlJTo2rO/cCgDoiHfj7Bl/wb/W/y8zCZvKpiJc6i3NgMn/mq5Q5D9comlvINb5wao9B8+0rd+gIdoi9EyuLBr4XpgVfly3/XJxiESY++VGyaURyY9IWPt2tkL03quEU0XesqJ9g7fOqLche+l77R1iIZxJJtepE72TzEZZ+R3on1//gaSc8CPDXCyICU6gR8nk3LTCP4XQNyhyD556ZbQn5p57VT8zwhubvsh2FjzhV+DxrTl1dYhE2nOa/TptsU4QcogksOe0AIVRO0o4VWSAdEOS2Xk8u+5dT2YT9mZN7kDI8dq1jJnSOgZJIWh/aYgKCLLqp/B+G1M+c3Hg+aJhLpa1rc92NqSSCxMZhSIYknU7yhBOVf3PDJWR3LSECRph2yHHA+JmvblQp607TgMy6+0Dolsk2xlQ9AUozoWkxOxdOGQ7RCJjF4YzdQxLkHgT8MkCFEuuyoYg71fwzsZgJ0dzKo+mnjZMXvqsxBjtHkSz3waCIBcmSoq+iVHzWJpTVTszw6Di/kLhC6Xf8OsQyW3sJt3PNWsVkTIQybvdU3TuLWf7p/DFb0VB46UrsnvrFdFU2U1gC0HrKMOsl6tjzUJRmQeH59a/j5c2fJyhdL2Hl3FEgcxBujsRdQ8kyM1LnpIep0LRFxDxjN6jK81pUHCXXw5awuQFrma9ubnnNBNOx7wcoZhvKM2pImvIaLjl4RIJOXFiz5sh0BaCGW+QsLR+2ZgMmYW0qeveAwCcNfQHGc+HO+ayya2BJ4yw9DhnNy+THqcoQdfGXJgoKQoPLuFUVb7A0cG7KCuqQcwNMq2FtKcmes7pxo56bOyql5wrf4jtOeXHrlApxHNPleZUkTk0TUKHZ53E71G5s8/4+DqQFzd8hO54j9NbbwHMAjIlNGajpLKl2fZTprmwKtoW60ytTIcz4LY+H51lKRRZgava6r3/r+p4tsnXL+B7puazT3d72j62P73sPV/pycL83mLeekXMegtfdCv8N1TkDjkiyKXMeln5sd1qj3fh26aFTm+9SpMKAGjsaXUNk23NaS6nKzuXfsq6vrsZZ07/E/648DEAhW+Vpus6lrdvYHs2VSgIZENjwdO2jYk7c4jLkfE4nxExseaOM2e+S7DCpdsTns45zTGCymO4D4huhf+GipyC1lSjiR50x+lnssnE62S7Idrs9Nab5YFEyn5RCfnY3L3NPZ0C1I61xzrTaXlcMQ0CP++9uG0NAGBOy4pkXNl+mYD5sH4Grpr7N9yz/D9S482dSaaikBBQnPqPR8FElSGLYEtH7hF48vB6lIwIuejRXzZKOFVkDkaDOuXb63HKd38Uiw6ar0m48SSpoTfF2pzhdYK33iwOT+s6t+KEbybhlY2fZC0PdlhdZlAlNb9lFf68+Ak097Q77gVp1vvaps9wxvQ/4eO6mQD8OULIJUHGnneiy/4cyq9fvt62AADwacPs7GZEoeBAnraucNpwduArP3HneLnxXXhzEdcT+LJhHlp7OmzPi46B9t8u3npzdAzSKX+7Pydg1psDW3+CRgmniszB6Ex4G6ZdALB0BJydVdoUyzB9cj63sHU18VmHt94sdpD/3fw1AGDKmrd9xiT+Dl66xqBMoK9d8BC+bVyEf6//wJlmgN/n2bXJPS6vbPo0mVaG0uXCR/JOxxSFTa450VAo/KKn/mWNuQr/8C0CfN4wB/XdzdJizAS8Y9h7W7/DrUufwfWL/ml7PvlvZ7wbD6x8GcvbN4ilXxBmvfxzHpEpg9Ojf+EJq0o4VWSY4DoU/s7Ke0POlaNjookYXt/8ebazQYDhrTfgoiMdeUKqE7Obl6Eh2hJADnxoTi1/+y8okThmNy+jLsYYsfmJn4ds7kde1bGJK5xCkS+Q2tM7W76xhpFQr1/c8FHGjufKRXiKcHrjYty2dCounXN38BmSCG/tWNq2DgCwrH297flkDC9t+BjvbPkGV839m0t6YlZpuTIXc2I26/X2nBt9wSGSOkpGkTkk2MmbHVAk/xbf52fVm4oRz5FzTr9tXOD52QUtqyy/5c69/WvHvUIyzyZNwP6w8DEUaxG8efCdUtM3JyX+rtkbaP/Q6/jo3UPuId4n1Y9cnRbI5vqF/0RXIor79r4q21lR5CDZ0FfwCZU6Xt74CWY2L01deWDly7YQ/nly7TsAcvV4rtxgfVcdAKAj3s33QBYXw5osjg358uF2LndzzLndhge3YnA6p8yNUcmcb5H5oUj+C/HoGDuFL34rso510h5kOpxmvb2dqZfOzNEhZmhTvrH6aNCTiHuO68GVr8jIUs5B6rDTXiut3zrKOJzeK7IcIchoIzLbGamdvL91usQU/BPXE4Fow2c2L3XRKtPJlcmSorDgqVVNPe143GW7h5dtFrqu4+m10zArB84pzja6ztfG82l/4L/WvS/8TMhFjPD69qLnnOYmIsKpdwrRP5ISThV5hcP0w+Ih1dsGfF7PZ7pjl6skzSlHJ/vE2v9aVr79pNsW77T8ljuJppdl0FpmUsrGu2VCUPDqCMFLePf4/Gw6dX/27ytf8h4/KUmfz09e8gzOmfEXoX1NQdeI/Jg8KfIP93rFcyySl9q5oHUV/rPhw9QxUwp3zJrF6xf+E//d/BUzfDYXtcxbY3jzQTMxTT/PP78SwT6fyJXFQHM+ctVpUz6ghFNF4JhlP5kTNqtRr3dTSpE8OZzFZO0cTe8aW27zIsncs+zfAadA0JzqhnCaCUyDUo4MlF5wOkTK/Xf5utfM/fvGxVnOiUIRLLLao5exK1tjR67CU4Jmi56ZzUvx4KpXfccZFF4WWMOmCZ6f49RET0LIh3FJBLF5qDVsIZr5KuG0j9Ie60QL4eiNIMiU/EZLx97o/TRke1zZ6iD9pBvk+WBE7aWu4+FVr6Ohp8VyTTakvS+G6VrGFxEE09M9TQsyQ0bquKTvE9P5zd3vWf5v4vFDssitr6goFGR1ZV7adeFNgf3iXob5JTiY92Bxak5NYgRpawvv29+y5ClaTojY5zG5WM6JgE4o6AsKWSWc9lH+uPCfrt7TgkB+mzKv1JE7gmsXPIzrFjwSSF6y1UfEfe1plJFr/oFgU3cD3tz8RQB5sEIanIxiyohZr0dHCEHgb89r/o58IsLp5u5teKrXoYtC4YVsTIizqTmlve8Hdd/7zU7e4dfs1W+8QeDFP4h5UZj0DO+2KbvXdNFzTnNl3LIK6FnMSJ6jhNM+yraeFtRH+c7d8ovMzdrmtm4fKGn9wILWVZjTssL0nBFevOdw7DnNQO9D6qRldsRBd+qk/U9BpEgUTjO659S7SZPsUUxmbPk0wIoIpwDQaPFOKZfcW8dXyMbc5ueZxph8QGazvmf5fyTGlj/w9I351A9406abNKc+fICIIjv+2c3L8NbmL33HYxeZ+Z8LJmy+ooTTPkymqre1A/ebqrXzM8fmJigax8B4X+0mCYnBe+slaeEy5SVYBuTvEoDmlPBZ0956+eIQyZVzgDCvmIp9H4tRb5bGHbq5d2YFexFiiTjmNC9P/Y4LCqfmdx5XPcJTHhQKAPj9gkewrnNr4OnwtBWeMJ6sOwrRLWjA8GoOcwEvPjzMmtOEZX5m4O39Rc85bexu85SOwR8WPoaHVr2Guu4mX/GYETtKRgQlnCoKFA1aXq6+2CfuIit1/9v6nf/07etiAUsSbbFO4oRbptmot3pAfoZ41ihRuPaQpCv0c04zsYjgZWAPDvH0n1v/fupAdX8xeecfK1/BX5Y8zR3+2XXv4bqFj6Z+xwSPWDIvnJSEioWedSOfJqUKb9jbxsauemK4tR1b8NDKV9Ee6yTe95MmCR6/Al4WOFWNthLEUTLZ9fAqbv0T1siaUwPPqgBXs950/dV1HZ9snu0xJSudPp1+6V5so8UDFzyRbGdAkR2yNcjInLQ7zXrZca/p2GI86B1bEms6t/iIjE1LTzt+9v2fMbx8iOOeV+3vzKal6E70+M0ale5ED3Rdx0sbP8bStnW4YffzM7b/kjQJSGlOA0zX+BY0F/Kk72dHtjDrJb7n1r+P59a/j+tGnuM7Lq+8veVrofBfbptn+S1a18wOK/zKkt82LkSbBOFDkb/EKQLfLUuewoauekT1GH474meB54OnHfi2Ycone/8A4B1ZRPecZlNIsXxSbodI5j2nZsHM33uInHMq0/GQ3LgENKcCxWUPmovOoPyihNO+Su9MTNf1jK3w86Tilh+H5tL2LF8+0vGTNEXM/NnSf279+zhvx2OF4uBldcfm3n83Oe6JD3hJrl/0T8c1L2MI65F3tnyNJ3sdzWyNNga+Z5aFoR2QlV5TTys641EMKa0lpGX623R9WOkgoTSMvK5q34SP62fhvB1/gqJQBrtqh3lCBpKUFo+gcGoRJvz1g39e/KSv5xX5h9MHAXliuy2a3NssOt4Q0+TosLnCeNpfSDbhVNARFRyyqTn14jfBPBexPp/826vg5Ja+xYRYYpH1CFrf2CGVgehzrmH7wMKQMuvto/hxCuQVHe4djvvZVt7umeM2d5W/nne/y1NiaciE5dwll1fK3q+bkfo7rieIE7YgypG0qJHecyonxV98fwv+b9YdFA0JbVDypsW4Yu69eHHjR3hnyzfC+eTeYxvQJNYvuq5z7R+1f3HR72z+jrLbVC63UUUw0ITTQSX9AEDqfjY75sURHu2P3z6xL0yQ2dh6eUp5CAunGdiCIhPzuGsWrPXUfW/xipxzKnOhpDsRlRaXaiPeUcJpHyVtiphbCE3jNetv0r5C8wQ31Vn6WMkLYqJOi5E1OSed6Sk/B/6J6wnKwCE/TVaJyE6N9G1oe069pG3Wlj+y+nXh53nrKZ9zleCx5+OFjR/hp99ch+XtG5jP2RckRPNqDq9ESYVf4pQa2L+oCgDQFpex55ScxreNC1N/82jfPGlONYoJZx8liDKgfbtMCDpetH5h2jmnqYVhSZmz8eamL7GgZVVvGvISoZnm88JbhvY8G78Wtq7Gsrb1QmkW4tilhNM+imbSnWYuTXD0VG77DOih7ffmNC/HT7+5LvWbx0lEMp7cGHS7GCt4ogJ2lHCcix9Yna45Z3E9QQwbRBFrjO5M9jclabVJB5Dbr1OxrThfPudeX/nzgz232ZiEPr12GgDgv5u/YoaztwLSxG5jVz0+qZ9FfN68X0o5MFKIYu9XaGMM79jDlSZHGB5Nkhdtk7mFKOHUCq08/G01SNIVj+LsGX/BY6vf9JQ3XliLqtFEDxa2rmbWZdK7etVquo3Zm7obcM2Ch6jpesVrfrdFW/DoqjdQ150+opEpnNruGVuQfjf/H/jVvL8z07I/W4hjV1aF0+nTp+Pyyy/H4YcfjlGjRuHjjz92fWbatGk47rjjMGbMGJx00kn47LPPLPd1Xcf999+Pww8/HGPHjsWFF16INWvWWMI0NTXhmmuuwfjx43HAAQfghhtuQEdHR+r++vXrMWrUKMd/s2fPlvLeuUSOyGEp3PIj0tifX/++5XdqRcylIWdz0DVPllkDkYg54+LWNTj52z/gOVt5pJ4VyqEYCT1BFBiCKGOSNvnVjZ9i8pJnpO+PIq6u6uY/xdIzhyZ6Zw7o6KAca/4OxDWhznK6aNaduHPZc6lVdjPmQV2Z4Sr8Qmun81uddc8zkvacehn8LXtOc23ykAU8O2ZlQNK+L2lbi8aeVry26TPCE/JgHft397Ln8bv5/8B7W6cznict0HormRc3ussDqbR8lr7d868X/rbiRby++XPcsWyqKa7kv6STIpyLwPz0hZaXVeG0o6MDo0aNwk033cQVftasWbjmmmtw5pln4vXXX8ePfvQjTJw4EStWpA+/njJlCqZOnYqbb74ZL774IsrKyjBhwgREo2kt1LXXXovly5fjqaeewiOPPILp06fj5ptvdqQ3depUfPHFF6n/9tprL9/vnCsYk7JMC2LuelPRST19pS+shS2/jb0cflybB61VNTsXqI82U8OJaLcMD6hT173nK2/WBBmaU9OEn7bn1HiDzV3b8GHdjMDKdU7LCnyxbR42dNW5hq3vbsbtS6e6hgPcz9MUdSdv/n7/JXisjemJpBaas5z425GkiW5AiPYH79d9TzXL2trd6Lhm0ZyKZc2VQlzNVlix185MOAniOsOUYzHLb177uubU2S3yl0eU4TGf9O1kL5zRLanI1j8A8EWvZ/QZTUuseXM959Qb3zYuREtPO1dYvwslZidIvO1iS/c2/GbeA6lztjd2NQCwLlwbbeS+FS8SYvAjnhY+WRVOjzrqKPz2t7/FT37yE67wzzzzDI488khMmDABI0aMwNVXX40999wTzz33HIBkY3r22WcxceJE/OhHP8Iee+yBu+++G5s3b8ZHH30EAFixYgU+//xz3HbbbRg3bhz2339/3HjjjXjrrbdQX289o6x///4YNGhQ6r+ioiK5BZBFMm/US8oD6UxMNuwB0XovbPNoy7uXoD3WxZmCfHjPRFvcZrUG8DNRCHKSkaCZ9fb++3+z7sBfl//bMeDJz4f7O765+Qvu+GIJkpMn8sAso3yjiR6c/t0NuGHRFK7w3KKpoOCcezjby6LW1fxPWwRIhpdwD5OfXNkeoAgSPrPe4FIkk5GjZHK6XwgG5/c1C3P88Zz87R+pi8VE4VSibLq2YwtO/vYPeGz1G860Ob4pOy864W/vme/hcIqXTMlfXYzq6cUC3vN/n1zzDha3rU2ds02e5zAs/Wy3hI6d6QNtL6+Okpk9ezYuvvhiy7XDDz8cn3zyCYCkOW5dXR0OO+yw1P2qqiqMGzcOs2fPxnHHHYdZs2ahf//+2HvvvVNhDj30UGiahrlz5+KYY45JXb/00ksRjUYxfPhwXHrppTj66KM95z0Uyt4qupG2OQ+GYBgKZTJvmqWf0qA50hbJj2YTbzXNGl8kZNWc6tARCmkOjYb595fb5uHWJc+Q09M0Ysfst/zMcYa0EDM+457Dg6tGz4fbwKZpGnQtgS1djdihbCBnnumRmu8ktASgOTtSrTe/Rie7JdpIqAvOesvOk9g9e7yt8Q5nIEr6CS3hCGNZCzG/M+PbGLgNNttiLehO9GBm81Ku8rAHoT1DXAwx18eQBo32rMx+g1FGrHRI9VDXdOIzWsjZ35ifD2nO++lnvTkhy2a/rwgee/1LgFz3zEgdLyhxkczbSaFE+9xwKN3J2ZtDX6jrX9TPT/2tabD0jdTT3SjF8tz693HBzsc5ruumsSP1PUyR+y3nTxtmAwBe2/Q5rtj1VFtWzXvwyWmFbPM22vqeMR8z95uieQ9xjJ2hkEZdGeBNLw6TEMyRpv0Z81zGDK0MjWdo7c/+tyNee1yMsStfySvhtL6+HrW11vMFa2trUVeXNNkz/h04cCA1DCmOSCSCfv36pTSn5eXluP7667HvvvsCAN577z1cfvnleOyxx3DUUUcJ5zsSCaG2tlL4OdkMGFCR+jscSXZ2A2oqUBouDjRdo2+KREKoqiq1XLeXi1t+ikvSVbakJILyipL0swPKUVuWjq+8pMTybKQ4+R2Ki6zVvqIind7bdV9S066oKEZ1v1LHdb/ftrIzHWc4lK4rZ+x8JF5ZY91jQktrQE0FSsJkzX7xGnYzH9C/HH9b/CL+t/F7PHDQr3DY4L2Z4QGgvKWEeq/IVL6V1SWIxsOOMANqKlBZVJb6XVVZSn83U71lUVZGrzdV1e7frXKDMwwpHABU9ytNTUyN9h3qTg9O5eXpvBQVhZl15L0N010dXVT3S5cVT32rSpRZftOe6SGYd1VWpr9tbW0lGovKHGF488FLdRX5+5eURJjpRMLOGWElJa5KQh0z9wWstGprK4XPFtY0jbvuKvKTyqi1zyivKHJtF37bTVXM2RfYtfTlle5jellFsXCf2w/ptPsPKLfcy4U5TtC0N6UXMItLIqipSZeT+W8zRRHn+GdAKrOylvS3e3rTO7hm75+hH9Jl/UHLdPxs+NGetw2Ubk33efb0I8XpPq6isoTSJ1vreHljerww1wmjHy7blJ6XiNaRfrY5HYnk2Eu/x0O0Ix1BZRX5ve0UF1vLkSQcVvcrQ21/clw1tRWW88tLSq3jDysP5Q3W9l1eTm/L+UpeCacAeaWcpQkDkh23xfEFabXdFKampgYXXHBB6t7YsWNRV1eHxx9/3JNwGosl0NLi34W8V0Kh5CSpsbEdiURyEEvEk/82NLQFLpwa42YslkBra7ocNGhoaGizhHXLT3d32vwiGo2hvT3dqWxrbEe4I90Rxnqsq8edXVE0NLShp8c6ITfH0ROjrzi3t0fRHHJ+R/s7iNLWajIj1tPxxaLOvNDSqm9opZZbdzfbU++mhkb8b+P3AID3Vn+PPSLDXfNsLjM7sVh6RXFbUzvRs+22bW3ojqSvd7RHHe9GqrcsOjrp3o2bmp1aUXt68Sg5DVKZ1ze2piaEsVgCDQ1taIymw7Wayqc7GmPWketnPE69Z9DYlN57w1Pfmlus70t7hrT3qK0tXR8bGtrQ1E7WKHut95t69+aYaWntQkORM76u7h5mOvG4s400t3SgIeR8pq2tyxFXrCddB3uicUb7anNsE+CBt+4q8hPzeAYAbe3dru3C73hhnksYcdm3rDS1ktusmXZCXt363JZmU9+wzbof0O975QPmca+7uwcN29LvbP7bTLSHPv6Syqy1Pf19n1/5IS4ccgJaTd/87nn/Qb94FQ4YsIdQ3g3aTeOkPf0u0/yqldBfAsB3dYuxpa45ZZnW2ZGOr66hJf18aycaitvQ1ZmOU7SObGtsQ6SDvZ2uoaENzTFyvLzpbelI+/dobukkjkV2otH0d21oaEMs7pznNDV1oCFOH1OKTcJpZ6d1DsTKe3uHda7T0eGcP+Uq1dVlKCqiL9gY5JVwOnDgQMe+0IaGhpSmdNCgQQCSGtSamppUmG3btqXMeElxxGIxtLS0ODSqZsaNG4dvv/3Wc95zYYKSSOipfGipawkkCGaXwaAjYbV2dJSLW36s3uCs+zM+q5+D04YcCQDY0FmHbd0tlmcTeu/76/bFC3L8pLRJ37Gxuw39irxrSMxJhrRQKg1SXmj1aEXbRnzTuADnDvuJZTWOFo+ZK+bcl/o7pse56ipzb5Xp8VgiTkw/nrCVpU5/t4Q9LC1ZxnvGEgQPuLY4I5TukJR2NB5zhDGHs+5b4cs/i7hpjytXWdg+D6tsHddM5ZhI6Ja0eeJ048+LniLGRcsLMx3CrXgiQY6LkIalyugao5wSwpoKo3/Lhb5fEQyO+sTxveNx8bpkTdPZF9j74x7CRNmRD0o7MeIl3TO3F3u/0BfqecI+/zC9czxOfn/WuEQqM1K52qNY1b4J+/UbxZNlZpqO+ZdurVuk/DX1tOFfa/+H83dKmiSb38/iWIjwvGgdMddRWjmy+lje9MzzA1a7MGPOTiKhE/1asNuY9Qz4hG5dbGXlwZ6WvS4WAnl1zuk+++yDL7+0ml1+9dVX2GeffQAAw4YNw6BBg/DVV+mz8dra2jBnzpxUmH333RdNTU1YsGBBKsw333wDXdcxduxYatqLFi1KCb+FgeGtNxj+s/5D3Lf8Bb482M54ZGG+bx/eH1v9Zurw4otn34V5rSst93epGJJ8zodpPmlfwR8XPuY9Qlg3wvM6RLLz2/kP4oUNH+Etl3MhXfOSAYcegLMcvezn85MeiaIQezXPXDYk51q6ZaDx5iiDRkzwnFqZ3npls7V7G3fYuB5He4xsddIe68Lqzs2O60E4IlK+jRQkvFSLtzbTt454TdNeP928idNjEslHZsaKXMLRt1jWV+V0EqSxxT4vaKP0iTywvhuv08hvGxf6ep4Xo7wfXfUGTv72j9Rw/j1Pm//2Fpdfh0jJ0M7wXfGo65hWiA6Ssiqctre3Y9GiRVi0aBGApEOjRYsWpfaHTpo0Cffemz6M/vzzz8dnn32GJ598EitWrMCDDz6I+fPn45xzzgGQNNc9//zz8fDDD+PDDz/EkiVLMGnSJGy//fYpR0cjRozAEUccgRtvvBFz587FjBkzcOutt+LEE09MaWBfe+01vP3221ixYgVWrFiBRx99FK+88grOPffcTBZPoKS99QZTqZ9eNw3/q5uebFiWHtwkiJHMq13y4zi42HZ/W08LaEQ0d1MCL+WxsmOj8DNmzEKPeV+bl0k26bgMkXfidcnuW/Sx3Qj6jEme/LrVD4vAyfBA7Lzuv42RTKNZcH8fjoCy+4iQwLDzcf0snDH9T+iIOz1o/5pyULnXiQpLm+WlDNS5qQoSb/gUTkmt217nYzxHyXg659SUi8KbDwsR1xNY17XVdIWiORXsO4iOdWx9iZ+jU1jPch8FQ/GCZF4U0Qn3RTHieH3z5+jR6Qu0/hckTQvLtO+o67h/xUuYtoVsQUm0dGMJp465rPPLr++sw6nfXY/7V77MfLYQyapZ7/z583H++eenfk+ePBkAcNVVV+FXv/oVNm3ahJDJO9z48eNx77334u9//zvuu+8+DB8+HA899BBGjBiRCnPJJZegs7MTN910E1paWrDffvthypQpKC5O78e75557cOutt+KCCy5AKBTCscceixtvvNGSt4cffhgbN25EOBzGiBEjcP/993MfeZMPaCmtZbDpsDRiqTyIuGO337c9YD/b1PqobknXC0F0CubVRq+aUwOzS3QvJBirqnXdTVjatg6H1Y5hxmEpX8oHtZej5mE/nyNOxqfZ2Ol+zqlbvSCdX2bLQeov2ecdigqn9sKw77tPXScJ2fZnxVJO0dTThifXvIMzdjgSO5dvn7pO7hPYqWzorMfIymHWa131xLA07b9b21WipEIc97Zir4+khRbvKZKvJjj6iyfW/hcnDD4EFRGyIzgStDMt+yJfbJuLL7bNTf2mlYZoORH7L0fnFEzZJ2zbUWjQ+kqS5tRPv8o732LNW7jSsehPyGlu6m7AtK3fYtrWb3H84IMIefCrvdVhL/OvtyW9Q7+79Vv8ZsRZ5AwXKFkVTg866CAsWUI/33Dq1KmOa8cffzyOP/546jOapuHqq6/G1VdfTQ3Tv39/i0bWzmmnnYbTTjuNer8g0NK60yDRdeuk32qWSzIt9me+UMTSfkl41SBKy9yxVkRK8b+t36E4VOQpLfrh2nywzHIum3MPOuJduGPPy7jj06ETBU/7u/kVyt14Q+AMUxpmcyjSAGYZ4Cwr0BI0p4Q9s0HhXP/xlv/H17yFD+pmYHrTIvx7/z+nrot6vQWAbsah9Xa8ljdrcaLwpwIKL5C0H3bsmqqOeBeiiRjCmsZcTKWm6dL3AHyaUwB4YcOHuGjnnwrngZaPQodppkm5N69lJfG6na+3zcfOZdsTNZsOzamPHon1rHUBlg6trzQ//8amz9Eaa7eEXdK6FqOqduLOK28d81sXLVtyKG9unxt5afv2VC2/9D4hc3KTV3tOFfIwuou7l/870EFGJxor9OZBS4dy/kWLj/2bZ7D3qjnVoQdSVvYB4b4VL+LOZc95iot0NIgIrD2nxor/yvYN7F7UrDilBHFqTv0Lp6y9NDuVDXaPwCUL5hx3xLvRlaB7B35vy3fp5yRUGd7DyFNpcgycxp2gaIgmTewbe1ot18OEYeeR1W8w2xarrO2IvJG52rHroAcTyID3USvyA7tWJ64ncPK3f8C5MyZ7io9ss+FMg4fWmLtXXxr2dt0XYJpp+uhKV3dsxi1LnsZFs+9EnDCO2ecs/uYhDLNeV+sgNmYLn3mtKx3mqDctfkIoPl4hXKYW32vZkp9jLWbYf9PnyvyxFg5KOO2jGJ3dt40LAx5k6JPkwSVJj8o0jRM5Nvb9CEMrkzLrZcwZs7EabBkQfKZPMv8UiZFnL0tHnH6MjDNt2nKg9ZoMzSkr7yMqhvqO31z3nlk3jXl/U7fzuBQ/xBj7bUi4LeK4XbeG8VYnaQsdJM3p1u5GLGhdTY2rK84vnNLqAbEWcr6aWtFWkOCpFjSNi/dx17SY21sx7fngc4gkjllI+hVlz3ffxXsnUR9NH2VC6jcdxyP60Zwy95z6M491c6gouj2F10Gj33mTxWsuZ9nyaLNFNO0k0ZS2wOl4tgAHKCWc9lEsjg0CXIfRQddU7li2HfkB1xgNNEfeQ1oIn9XPdn0yl6DvZRTPsdteSNe8cAxOHfFuIZMf8r5G+zP+8WJy5ZWV7Zu4w+aGWS9NYHPPm2fhlPIcbR96N0M7+mnDLIF0+SdYbXGz5ihXewhFvkA27ZPswZRjEswvBIgfj9SXYVkm+ek9zOVKNuu1p+XdiovVn1vSZsRPm9Nt7W7ylCcamdIkWo8o9NZeiQ6RdB11lDJxOH7WC1PI9IoSTvsqpglikO3BbqpAFp104t9e07t92b+o95J431sWhCCf4NznwYPvFUQuL4/8nbeu08Rl3SKUyzHr5Rx0KbiZe7tp+INc5PFr1iuGfdT0GEtvgdnLVcRbr8HnDXPdA9nS5WFJ2zq+OKFjY2c9Hl/zNtpj/hzaKAoIjrpGOpPQ4PqF/8Qjq17nTEp3CEdGO7fXeV6zXmV5zs+ytvV4bv371Pt++lxzH0laXLP3oe9u+Q6nfnc91nVudYR1g3nuKu+eU/N2CFPeSBZF5rFddEsV/+kBEs16PcZFe+68mTTzfZLm1HqNt7QKUaRVwmkfJVNjkrlvoWnURHSFwt58CQ/789YrnzjF0Y6XtPzmj2dSI5KGDpogZzU98yKw2GENZHIGL5PpD8kpiQ/tpBtmTYiXBQjaI25RvbLxEzxg2zfEi6E5dQinFNN7WW2LbpbFToFdFjquXfAwXt74Cf61/j2ufKijZAofh/k8oQ4562P698zmpdzO2iYteAQnffsHdBO0d/YUeDWnonW0ECfBvLxfN50dQFLh8Cz+dia60Z3owSsbPxWOnzUexTkVBbR6c3jNWEJY7/AustDKrLWHb0817YxyEYhWEwKVguStlxqWksfWWAfxOMF8RAmnfRSrB90ghxz6wJxuX+lrD658BU2MvTjmvGqaM+88nYH3lTEEomaWeXA1jwkti5nNSzlTYQ1c1rC0OMywjhzixb/mlE5DtBmPr/mvJTVH+pQkZjUvw5qOza7ps7AIpx7qr4hDJPOVKWvexgqP5/gaE4aw7dvaf6cT5h+Ym3vaWQG44nE8Zl/Jti0UGWco08y03OJTFD4vbPjQMVH2MkaRmNea9PpaZ5p86ql/bWlINiVOp9eX67SLZY2kshERjopD4gdusOqfXyuuqki541omju6jheP18s5jvefWpkifjbWQ7JwZ+69BZ02/CefPvA1RAe/2uYoSTvsoQa7qmxux20C8sn2jxRHKF9vm4l/r6KYzbrD3HfLF4DV+r1jLy++kwr+5qZuwPLt5mY/c9F7XrYOwjPrIHgj8aYRvXvwUpm39JvWbXK/pMVw25x7X9FmIThr8nFUqa9+L8X3tmlK/WvI7lz2Hn3//Z+r9eABtVKEgYe9bm2Pt+HLbPGuYDOwjs6fBrzlVyEKe5YdzrKKN4UWauHBqr45xPYGZTUvRGe8WWNQwmeqaKhGPzwoapaFiAMDoyp1T13jzQxPoubcLmR6npem2aCDy3Uj3dJ0UnuYQiR2X37OUcwElnPZR/CiqYok4Hl31BhZSvGtahBtbK7IOojomzr0Pf1z4mCUM66xOUoOmx0971vswQnvylY2fCK9WGZ0g79lifHHKNV8lsbZzK1N7ZNHK63THDVYtuARvvT41pyyWta93DROs/YFY7Lyhg8yzMVg7Fh44PRDS+LRhNvM+zaGFm5DAGvC91FVl1ts32Ra1Wv7IXtAkLTvZU+Dv71Qd5Se43tLcp8SFNKdFwmnZ6+P7W6fj+kX/xOQlz1rHUKZDJErcxGf46tjw8u0BAINK+qeu8VoZeNV2ktKhpemmOCCeP8wI/+rGz2xhdX7v8X1gAVYJp30UP2a9H9XPxOubP8fv5v+DeJ/ufdYK7U4Jw1TFIYw6hmoOs15GHF4b/ZQ1b+OljZ9wh39781c44ZtJWNG+geohT675pkAcHFGs76rjiwvk7yxyphcvrIGIZ5DzOk1L750ObsBI2BZ13HGKWuRQPhZq3FaSKZrTbE2HdQC3L53qEoL8i7V3XtF3ofVtbmHk58Nm1suZqmhNVt5E6fhziJSGNI7RYvZk1mv7hkva1gIAZjQvEXCI5G2BkWdhz+IcSmCrBwleSzRzvmmmwG55IfYFjDnJvzd8QMiDaf7no60VQjNVwmmfxbtw2hbrZN5naQK9TKut9/gmxMRnOc4/dGvUrPQ3dtazHzbxj1WvAgBe2/S5JQcJS+fEHZ2vZxxxcHwl1uHtVmE/AdIXnbruPcv38LICbId9QHoGeusAk9CDqhc+8uw28BvfQ8YZtjLoiHfhs4Y5Ak+ILghYyY23VgQKl2O04DqGrd1NvX2bTTgNaM9p38atRcv5zkTzUEoHHtHCwvHbt7hURSpSfw8s7mcKx7vAwRYm+S1rjcVMc3ziwqUZLxZTc5qXU+Ji7yUn50sA3T7i6H16IVQJp30Uyzmngu3XzXlNwqY5DdKLqVPb4a6ple0q3MCLU58Sm1AmriGzIkVzyhGG7RnX9DflKJn/1U23CJMyBBhWPfbqhCRXsLcpN5zTY/735w3ptjc57RCJb5hxS/f3Cx6WEg/1OcaD5lt9ecKgcId0fqHU+E218f9m3YF/rnnT0R/zaoxEt1Pkdy8aLH6+sxdtIeBtO4w59paednSZzpceXFIjHJ81bv/aPrdjdUhQTXF5hVtTmdOc7XnZTytSHgnbXFlkv6qfdHMVJZz2UaydmtyKHIfZGQNjFdmLBsj0EGmS6NcU1rXRMwYO2hEZLIpDEWr6sr6KeJm4h2cNifZ3oJWZeRBwy+Oi1jX4vnExMwxrIOM5WNuv0JEps14u64MMnA/HK5zaJ1B0JS47L/NaVkr1bO2WfiGYRimChWjKJ7BgKoPXNn3uHGUDq7yqUdAI0luvzDpkPsLtZ9//GW+ajjLiNwcnj5VEzanZeRIjTrLmlHMco5r18o6Dznw44rKlwTNfEGmHyT2nfBZSbtvbCgElnCqEtUpuWq5YwnxuZ7CaBnvOPZ11KfD6rKBevJAWaUWWOC2eewnvMnHOfZjXsoKRPwmaU79RmJ5n1a2GaDPpESK/nf8gblz8uEU4aY11WJxn8TnDouO37IIcHhK24dPO7OZleG79+4wyoFkv8F+1YxcUW2MdeGPTF2jvNftPTTYkDjN+XOSLn+lIXjTijUeGky9FPpKNiaI1TRGnOgo+MmPU61xkXd9ZJ034+P2Ch/Fx/Sx62pwWOrSy8H/agF1zyvfetHD8i5nuCgovpvIii6l2KzMdusUkWkzQzX+UcNpHsXtUFXuY3U2bNad2s16eFSpW09pq8xLrZYXY88q2nvo/ItTzGxkUhcKWd3ATQlZ2bMSkBY+ys+i4JlZGfgdC675Zemw9nMcdmIklks90xaM4a/pNuGjWHcR07WRishbk6qVZ80t6lT8sfAxT172XOpOUYa9guy5Pc/q3FS/ikdWv46FVrwEwO0SSJ6RlbYXYlKySORUGpPpoX1SUUWf/t3U6875Xs17RndGFqKGRh/eysZr1Wr/dNRTHk6K0x7owr2UlMwyvbwPaAp0vJz69aWsmscSLWa4ZL0fR0OLa1N3AFZeZW5c+wx2WNVcGgLkWpUTht0MlnPZRLN7hJGtO/XrrZbHB5CWW1EEyneL40hO548WsN2xzaEAXVE1hWO8oweyRZwKyrnMr1/N2D3RmzOZFvINaVE9qzhp7ksc11Ju1r4w4eCZrudzdf8rpyCetWfQ+QeYNGbctLixqXQMAWNK2Lnm/t8x59xPz1AG+aiLebkj3WQtpuq5jXedWRxmYUXtTCx+e6ijjeK/7VrwgFJ63PxX31iv4QB/CS9kY46h5wcteX5pj7RkbnKzbR8QTdZtLsvpE40nzYiZvHqjaTg/P057424oX02ECaAhu3nq3dDfawpqedWQn/xuqEk77KLya06aeVsd9twEtrtPNemU2alKHxBLOjKSdDisETC8Y97yYL9rL0k1z6oYMxz88A0JbnO2x2RyXTDMZw4yXVI9YAihPWr7Nej3U7X+sfJUr3NrOLel0mNr7kGsYK/I0p3aMMpd7lAyHAEu9LvqutPAaPmuYg0tm322ZsCgUAKmeSZ4ocuxJ5HaIpBZQpOFl/Lh58ZOOa5u7t0mJ2w6fxQfn/IMSF/msT17LNENzKu6tl7YA5GWOwTOH+uPCx/DltnnCcdt5eu20dLq6bmnadm+9CT2BuJ7ALYufwlubv/Kddq6jhNO+inmljtIYF7Sswi++v8Wxaqu5aAjtmlNxb73eB0yejkVEQ+J4lukQyZvnPHOabntO3SA6iRKMxu/6gbmMXtjwEbVEYx7Ment6NYOk78wqLxnaCze8TCDe3uJlkKGnQztagPb6foqFJpwaNdCoB14sCmj4+Yru59TRV6PNdzQgNTH5oG6Gjxwp8h/SIhl9fAkmRWfdXtW+SXKqRtr5r5Hxiqgg37+o0jWM4RTQHPfitjWOcKKlbmx/scTBEYk5SEO0BSvbNxLDWZ0cie8RZaVtnkfxbsfxuwBuNWd2f2Z2C/m4GVH+s+HD1N92b732r56Aji1d2/B14wKLh2UShWDhoITTPgqPNvOLbXMBAO/XfW97lg2rQ5A5bIe1kOBgSQ5rcarjKYYkMibhokeG2JGzDu5Tg2j6e13nVmpPyWv+bcYwbSFqzRlxcGkS/Arl/h6Xko5hJk4qHf74+cK6nftmTFR4J3U8qfqZHLtNVNhHyaRvatCoB7UrFPbxtDPeLfwMMyyxDVivre7czBWXyHpqNBHDFw1z+R/oY9i/y//tdILwM37DAUlt3InfXufYeiPqFPDVTZ9h4tz7iOfa06oNSbDjrdppB3pms16f55xyly/570yi62y7OdIWksNrxlBC5z9KOO2jWA+SEavYbpNNs0bM22SS75mSULEjpBdvvS9u/IgzVzozb169ktI0t/JWv8Qi8p8sXwxejgXZaginguZDQWpOdcJfQcJ6z9TA7nDKIh6XGzTNt+GlNn3OKd8MuNtlNRgAVxF7P1bAXmbkqYKmAd82LnTNR3eiB8va1gd4rIci25D7ISt/XPiYazw3LJoiNU1++KXTf617D295svToG9j7Up6SNS95ycLQxn1os+rg29PvDGP4dzBDPUpGgubUbJnHO277Neu1HOGSJUEvYZtfOpycEd5RplVSrlG4b6Zg4scUw61BsBu6POHr3a3fOtNmvIvOEcYNnv1+XmI1sHi69aQ59T/I+T9ShU8wsjhE4ow7JfgQnmANZDyCsNf3TpuxenpcGFY6om2ZGJrzRVz3nApqTu9c9pxrmCA1p19sm4ffzHvAZElBS4vvfT7YOANXzvkbvmtaxJ9JRV5B1mFarzbH2gmhrMxsXsqdJqmN+10ASegJNPW0McPMdfH02tdxfgJ+8TSInb92TRvflicn3YkefGCznqNBHoPNC3uMNzW2gQjOTeu7m6njgpcF8ExsASKh2/acOs16E4QFEK03JGthNT9RwmlfRXM366U+6nKfV/snowHZB1TmWZcc78nqzF7Z+CnzWS97Tp9d925q3wkgYQVPwjkXfic6vAdE+xs4SNoDhkMkH9563cqDNkDYaY91ueaBD1Y6OjGEyLFNvF8/7lKm5j2nH9XNxEsbPuaMmRGnj2d56tvitrWYRRAU/DSJOc1y9icp8oOgNeWiWxpYGKPFLUuexi++v5m5V9X74mth4D60imtOeQUhL3XKy5FGpDDd8SieW/e+9SKlMGQs/JsFWB7N54TZd1HLkXuLCsVKJpPY95zqsC7sxnWnqC7zmLZco2/3Nn0Y61EytA6AXPHdHCJZCXig9tQB01ndQR+c2+Kdgew1+6h+Zupvc/cjawVPNBa/qdq/Acn7IGAzC+V+V50a3K9DpCjl2z619h2+rLlwxvQb8djqN33Hw3oT4z0d7YDyEKlYuPdB2dse5azFEDTcvfx5PLH2v+iKc5justL00b5FPTf+d8s3xHSFj98ogFVsBQ15giKNJptZpUyzXmPya5ipz2yia3D7unDqhpdvQBLIZMVtn9fxCbgE4ZQwLtJySxpn7fv13bDMTTn67K5ElNrmuMvNfIRfljSnCd0unNrGU0JZFLK3bdXb9FH8HO/irjlN48VzoUhu7J06l1mjj87Hi7bPO7KEU1FTT7mds9lduhkvDpGowpdLHG6DXFus0+I5z8yLG/1r/Axe2/SZtLhIiHrG/v2Ch51hfXpINFpkwqQ5NehKdPsaUP1opURNnqeseSudrum6aP6zNdlRFAbXzre20XdMiyYGmVgAUcIpG/v44SZwAvz92dR17wrnx+7plsusl7JYaX8Xq7dec1jnOMutHSbE7XWh1O26M22fFmsS0G1mu/a8JzWn1muG5rQQRxjV2yjE95y6TM4sDShgs16H0OHBIZJYevQ4ZK9ieXEukBveevme9yLop416nWkwNacuJqgsjTkvmRrUeBw/8eZkU3cDIX7OfLgM/OlzTtO1soPDcykzTR9lvC3qdOwhknIasVamNKeFC+nLyjbrXd9VZ/lNOmM6E063lHDK5r2t3wk/w/vV5rSsEI7buSDrzaxXg+Z7wZIPYzFT/CgZ2lyJ3xuy+DOycZ5zaoU0v6TNOQthzFG9TR/Fj+ZUZF+jzI3apHw6j7Ng5UVCHhjPyu4QvEw4pDhE8vkavI97cYhklDFJEGUJ85k55zQzPLb6DUYeenPB6a2XGYfPcGmHSCbNaZxugsWXJj9xPYE/L34i9ft/dXyTR9c9xoJNTGlOCxfimJSFiWFUj7kHIqBpVsGDpe1TwmkQFhNGHynfPNO++Ovm8CqZG391t4dwvqrocS7m8YLrCDgwLIa8aE6z5RAJOswjHM+3MMqqED3C9/Xeps9iHoNEOyQ3zakZHemGY++ARdsTUVsmIPy+tukzzGhaIpaoPQ8ZNOvl7Zhl41vIluTtlRi1IZwSyob1bTIxYczUAPGB7YgASx5A1pwGsZLqVqZps16rUwd/8E/4FrWuwbeNcjzlmj+t6ESyEFaxFbnNU2u874t/lLHYZSaMsOc0+ibu7T69gCcf8xjZGuvAlXP/5voM7xBm6QNN/funDbMdYY3j3xzPOdL2Pl5QzXo99L3Z6q113eWcA835nrRj2gphzJEqnHZ0dMiMThEglqNkRPecCmpOjdhDmmbp/dy8fTrjcuL0SMfmhkVTfDVbYzA5sP9oxz3pZr1ZW8HLzPNezsM1Omey4wU6os5w8hW6gMz/VWXVO2NyFDYNM76PKRJ4nPcAd764vOdbaU4LF6JZbxYmhjOavS266rqONzZ/wRW2kM9UzBZBdg3mMW9zF9kpoR2iWS9hvidiPfLltnmcaScxKz/sx+HQoC2U8i5Km/vobAl2cctsOZknezE780YRTgtgyBHqbc477zysX7+eeO/bb7/FSSedJCVTiszi5tiE93oqPqoHXeuTs5uXuWeOES9A0KDxHDQtwbR4l4ohnuPgxcukVo5Zr08BgrN8SauiH9bNwLI2ch8DpAcbkrDJEkDnetizI0ourFYa5ROU6bolLVs9SZ1BS7nuN18ynpcBqY191jCHGj4X8qzIHPk0MbRP3lmjR1836w3GLyrZ0kUGQXpy9Ro3j09i83gRI5gJE5/03eisQmE20PWEpSLw5IJ+lEwedUIUhHqbtrY2nHzyyXjhhRdS17q7uzF58mRceOGFGDNmjPQMKoLBojklmcvqCbxK8SyquVQbc2y6yT22Bn9NhuwEh3/PqQwyuZ/Iy6RWxrFX/gUIPuzHimzsrMdfl/8bv5r3d0bkdLPebOz1AvjPOc0ExiDtMOsVyhrvPh3rN6BNWCwal+wXkW9Ibez2pVOp4ZXmtJAhWXDI09hHE972kvLinNTTB5CIpsx6ZRNszyA+GSB6wc9Q/5VWYaTz/cTa/6K+u5njWYrmVNBTMABs62nB/JZVXM/JRLdpTu21Q4PmeEvaFrtCGHGEhNOXXnoJF154IW699VZMmDABH3zwAU4++WS89dZbuPfee/H3v/89oGwqZGPZc0powKy9mebmsC3awkwngbQHMhFzYBI8Zr18R8l4z4Oh7cvE+VL5aoq6rnMLV7jXN3+e+lvXdTTF3B02pDWnpIWK7HTJ6zq3Jv/IgRFB9CgZEvwHw/PFF7IthPk6SobjPYIwS/dl1pulveOK4DFqxW4VQwOJP+ijp0TqZl/XnHqxY3KP05+lCysFL9Mtb04Y+WnoacFls/+K+5a/yJ32ZXP+6hovfa4ktl3I4PqFj3E9J5OErlvmr6s7NhM+ot0qidwmc2Gh3C9CvU0kEsGvf/1rTJ06Fd999x1+9atfoby8HO+88w5OOOGEoPKoCAS25pR08HLqSVODOXvGXwghrKs/RkMJQZNiUmvGObgGa9abSYFRdE8ujUw7cPHq9EZEuCSlkS1hvjPRja+3LciJASGdB2teGnv8HKPilhYb86Q2E2a9aUsNr0IwSRuWvibcnpTmtOCxns0oD969gqLsVDYYgFif29eF01yE9fUsZ5FySqq854f7WWBc07mF6TndHnN7vMs1TpmaU4Ds/fqA/ntwxeUV+zvcsGiK6zPGwq/j/QtgyBHubRYsWICbbroJpaWlOProo7F48WI88sgj6Opyr0CK3MF6lIxzUs9yfuC659TUMnRdfLIoov1xOEQKeCJoCPIiHou9EvRRMmOqdiWnm4WeTQefOZzxvYl7TrOooXp367cZT/P6hf/EzYufslxLnXNqqzs8nhoN3L5/yHBfT22nVmRaGWRLzvOTbrbMzRXBk1p4lbCfYnbzMsdZmTK2aZC4ZOcTATjbsNpzSifIET+IeYtG+ZuZD85rMuplj81kPTVP9FDPaKXHX6rBKjV4SJ5zak3DPM/U4ByHaIsOubBQ7hehWvDggw/i5z//OQYPHoy33noLjzzyCB544AFMmzYNp5xyCmbNmhVUPhWSMVdp0uSJJXyJVHuLxkFz2syL4XzarkHjid9PHlJmvUHNGkzImtRSc0q5kR0BQOda5TQEWJJW2Z9Zr7/v2RHryvhwMLN5Kb5pXGC5JuKMamX7RuI9txh+OGg8AP7yNi90+TW95nq/VBoy26jSnCrouPlh4OEPCx/D31a8iM54tyneYMYZQwAQaY8hxp7TklCR7zwpxGHXDjl7Tt3z4K2O2q3z/ByrQ6vHvPu/eeZaQXfjieQmOMs1+4KQ/X5acwpbuPxHqEd96qmn8Kc//QmPP/44Bg9OmoX8+Mc/xttvv41Ro0bh3HPPDSSTCvmYO5Rn176LDZ11lvusVVK3yRbttt9hlhSt09V4sCtgRnqZ0JwGvYeSPqhkp2vjMQc2ckbec5rdvX25sFqZ0py6hHtq7TuYOPc+4j239h3unaR6e99MmPX6w+150ZafC/VCERCEsxn9Yu4HgxpljPFL7TkNDpFvF0QPYa6T3AIkUXVK1J16ypOZ7oTVIaKRjhdhl2rFwzuHCviUBx4SjnNOnRaMrTHrcZ1Kc9rLm2++iZ///OeO6wMGDMADDzyAu+++W1rGFAFjqtMrOjbi4tl3WW7bG0XcciYlP1bNaUho+amuuwlvbPoi5U7cmHgPLO5nyldmvfWm0suE5tSDsCUi0NLeIBtmiDpnuulzTnPLrDcDaxVUyAMwuyzf3UI3Q3Y74kmjrNbSMK9e+15w4VGcBlB//cQ4s3mptHwocgujXpgXKzN1FJcfDMFFJK9KOA2SIMx6xQcl0hgse8+pQXfcqjnVfcRL2ppmxMnDGg4njsELpwk4HB5Z7uu4buGjlvuZUJJkC6HeZtiwYcz7P/3pT31lRpE72IXTn35zHeq6m3p/uWhOzXtOTddFm9E1Cx7CI6tfNx0SnoytMlKOQwfsDYAgnAa959RYKc9Ap7C0fZ3wM+QOlJxX6kCQhUU3Xde5hHHj/UiCaDzL5pPZMt+0HNwNuuZ0fssqRBMxNPW0oi3eSY1vdstyZnrGugxtQuDInykzmXGIlESuUa91e4II9tVuReGRiW0eshhaOjDV9zvOOWW8B0s47QvHJYkKTiJ1wmu/yHpKA/Diho/wysZPfOUjGL0p0GXTnOrQPcdLW9jmXWh/bv37rmGCHt9jetyhuzH/dFoJmuuY9cFC2EoSEQnsphnVNA2///3vfWVIkRuECesWX26bh1OHHCHUkZobCemcJvIzyX+3djcCANZ0JFe1zKvURqO0N1i++P2b9ebTZIRKjpmE8AinrKNkNnTVOa5lCt66HQTmdLd00717XrvgIfxk0IFIgO9gcxq0fS40RJyuuMfFEyiAL2GJsgDavkIKZk/0EiM1Ib+u/WHkuehKJPe1CmlOmbqM/J8MyybbAoKmaXhy7TsAgIfH/s5zPIFpTm17TnVd9zyvopa1xG8Q9Lworjv3nLrVoRClTRaCWa+QcPruu+86rrW0tKCtrQ1VVVWorq5WwmmBQPLW2xVPrnR5Nuv12KEZAqHRUDVTXDEPe079YGjsSJORXJiyEgcSSsZyaccpr1mvESTb+0vtiIlrskmn++DKV/DTwYdQB7UP6qZjv/6jfKWWNuulvS+9HJzDrxiZ2HPqRi60c0VukFowlWjyaq7jQWjdty+tSS34ytpzqjxS+8OrDMXrEIn7pAQPGfHao9v3nPo5A9ur5vSzhjmojpT7SkMWCSQIHozJfxvk0hxONkLC6UcffUS8PmfOHPzpT3/CLbfcIiVTigzgUntJA1Fn72qrW09qNes1m8N568gMATT1rKal9szYzXq59i0K5yBNylsvoVvgjXdV+yYfObByZO04fNYwJ50HoT2nuaY5Tae7LdqCgaX9nGF68xbPwe43F8rNIMicGKvbvKZ85nCZ0CakjySQtwrvd5HNj1ZAkftIPS6p998vGubi04bZ0uJ986A70RHvQlWkPDV+2tsw+ygZurfeArAilI65vR9eMxZfbJtLDRvE2GE5SsaXPyTCVQnV3a459RMt7zJpTyKGolBS7Inrcdy+dCrxuX37jeRPRBLRRAxXz39AKFEttXfcfif/G6SU5b5x48bh4osvxq233iojOkWWuGz2X/HY6jfxyKrX8fiatx33eTWnOuWH1wE8LZwmCUFLmTPYNafB7zn1f5TMl9vmScnL6MqdURyyri/lrzmHblnFv3T2X8mhess/1zSnQGYnaOZ6bv7mu5QPcX/WZx1Jt2NaPNa2IbNOZka4ZV/z8j5Ks1SgBOCt16hfL2/8VFqcAFAciqB/USUAs2m+wGIm4x3zd9zJDPv7tFbxQtpXB/9CIunolc3d27Cpu8FyzTyX8/rlDS1hXXcTehKx3j2n/hYUD68dY7uefp/HVr+Bk779Q+pkCtbpACMqhjquBd2HO60A3ccdmsVGISwWCWlOWfTv3x+rVq2SFZ0iC6zp3ML0Wqan/hXYcyrBrDctnJpc7KdWfsU1p35WlViaU963a4g2e07fkp6mOVK1v9nGrnq0x7rIz9M0p1no2XRYHSLRHPYYOevRY8T72SK55zRz5WZOyzyoDSmpTYWgPuszmylnKh4iWt+5FSs7yOersghrIeKeHBLBeOslLwaIxKAoXMx96fqurVLi7IiT+20Z0MZP5jOMezp0dMS7UB4u9ZmzwiRTVhO0s6tJgg8JUpf+zFrndj4Zb6NDx8auelw0607sVjE0ZV3ipX815oY7lA60XU/z2qbPAQBfbJuHnw89hjl+uVnPZAq3NGmLTIWwWCSkOe3s7HT819LSglmzZuGBBx7AbrvtFlQ+FZLxU3ldNacWrU4aftMSHYta16R+p/ec9sZjmgp48dbr75zT3j2nhJfhjbVelnBKEC8t+5V6OnDRrDupR1nQvke2tDw8wo7xfg+ufCXo7AROV7zb87PmkjK3AZa33iT+pxUpUyJqCOtCg7k+Pbz6dU9pju+3u0uaptQDrr5eFm/6gjfTvkh6z2m6XX3buAjfNy3xHSvJO6cbuxE0PiQMyyORvt5tcfkvi59GNJFbi4bZZER5+lu4ng3vccydsuZtSz3Z1tNKDGffy0iD5FQwqCPadABL2pInEixv3+BrXmb0ryWhIsv1ul6nmmaMWkx6r5EVyRNJPm2YjYdWvmqdy2ajD3dJv5C3iggJp/vuuy/Gjx9v+e+ggw7CL3/5S9TX1+PPf/5zUPlU5AS9jUOgkVo1pyGuDujdrd/it/MfTP02zjlN7yVLTwbsHUwmPKoB/vYYyRNOnfkwd2ANPex06O+QjRVCvkEw2x4QqQgOEi9v/ASnfneD5+TM5WAWTo0VZFY78NtG0qu11u9lrk+WRSMJ3yzlhCkjh6UHq3lVFA5pb73WqdR3jYu8x9lbVbycK8pj1g+kx8+lbfbjyuj9GG0ifPCAvQAkj6C6a9lzTHPJfEZUENilgu9bAP56nM/q0z4nSm3CmcG2nhauuNoJ2nqydt1UFh77d/vxcTro3mdd4+otQbvmfur6/5mOQExCsvzZu2oXAMBRA/cBkJyjvbXlK6zqSPsHEe3DDxqwp1B4EuYUSQtJNC/hhTDeCJn13n777Y4GWlJSgsGDB2Ps2LEoKiI3DEVh4bXaexXn7HtONYRSsTkcIvFMXn2025wy6wXbrNf7/g3vefIDzcRsbUfa1Dw4ra7/eEUGBNKebq9pmVfOM6mhswuK1jyRNadeSZ2tKmC2L9VJDcUahP95aVlR5CD2eVHCg9bTwKjjLAdE1Hxw1nkjnMhCKS3mUZU74updz8Q1Cx7Cl9vm4cGVr+DqXc8saK1OLtGRSFvgFFOE09sojn94IC02yPi09q08SbNeb/126vx5TcOde16GPyx8LHVvZcdGDCrpT3jGKhgDTuHYrHEWFfi8LC7ZsZxhTtKcUs4JKIThRkg4Pf3004PKh6KAsOzPsp1z6oVYbydiPUomicOsl0f75qPpGnsdSQMvT6zRRA9aZB0PoDkHCZE9vjnlrVfXEafM4P++4uV0MIl5M3tQ9SvUacjsgEATBNMBgstNyNWs15onUU1KsRZB1LGn2LCUcH+vhKmfkMXz6z8w/fK+J0pRmNg1GLS+jAfjSS+TW16BUKYDJw0aBhRX4fbRl+B38x/Cu1u/RXWkAhftfIK0NAodPxZB5nFc5oKcAanPleEQSYdzL7/nBXWT6mKffiNx4Y7H4+l105L3bGVLsrpLWUDYF5kIwmFJqIjoadiOHOHU/LdzDKG145y1MBNA3uFcioLHqPDvbv2W/xmzsKRpnubMi9vW4P2t001mvendlg6HSAE3ymhvp+T10HVZJr2AsedU3AwrfV9aVnzDb9YrM02d+Lfn+CQc48OfVvpvi5ZSZ+859XqckyUOiqBofifrqrRYeqR6S2vvmeKThlmpv71ogpW33sLG7jXT3Cb3IR1LwUEkQM2pV/NJYpq97XX70lrcvuclqAyX4cWNH+HljZ9ISyPfCbL1m794UPtDnWnKUJ1aF6RlCKcpYU2z3jObr2sIYV3nVvxr3f9S14z79nZMGm/s+1pphCHefh3oTuHYjJZqx4U3vrhqTg8++GAh84yvv/7aV4YUuYvhTnxuywrLdfsZftbVHrMmzzv3rngBU8ff2BtPWndqn/QFrfUzzDxI78LzfrJMeoGkgGxP09yBuQvQOaQ5BV24Kw0Vp8ME5pzB3zvPal6GY7c7kDt8RAuhx5fpH1kzmYlvx+PpMw6zqbHYNyNNnI2ampk9p/IpgIVsBYHUgqmtL/1f3Xf43W4/A2Dtv3hjBbya9XKGo8zpWMIBrQqbx5nh5UPwl9EX448LH8Pja95GdaQcPxHoF3MZP/MXN021rD4riMV5N0/0XvOegI77V76UjkcH4HHxNG1Vlyxnc51M6Do2daWPwtG05LGJ5rmjsXXMru2cvPRZHFk7DlfscmoqfGmoGC1wt36LhPwvAK03Oagi7jmlaU5zcAwUxVU4Peecc9TegQLES9X9vmkJZjcvc1yP6XEUaaaqZPEwlr7s1U24gbEqqCGt9XPsOeWI308eoimzXm8dT32UzzEBF4SjZLZ0bzPd9mbWmw3Povb9J2ZKw0WmcN45b9hPMHV9erXUuojinzuXPccdNqSFAF/CaRrzMQFpb72syYQ/vmxIntP7z9Vv4oeD9iPG78esl6U5jXOZ7fvDrX94Z8s30uNU5CdGV8kSPkS/PU+cNEhtZ+eywbhrr8st17xa/vCkuWfVcPxp9wtw85Kn8PcVL6EyUo5Da/aWll4+8Ztdz8Lqjs0YUFSVkfSCsCwJ6pi0rTZPujp0z+bmxrhn1GuLFQ8Sljq6LdpCnSfaF0Ybe1rxxuYvcMUup6YaZkmYb7EpJEFz+ubmL1N/kxZm+7RDpF/96leZyIciT5hBcJH/3Pr3ceFOxxPDyzjnNBWXno6HZuYXtK19WnPq0azX5jnOD2Yh3aDR5ErebQKSa0tOtAHDbN7m5/s64yfvjc4EES2MbrjvW6GRsJj7mJ1KGN56Gfh8V2M1tznWTg3jxyESca+O4RApA5rTh1e9bjKXkkMh7AFS0GHvLxMUTinaWB5IzwwvH4L+NuGIrjll5ItSh0nP7D9gD1y72y9w17LnccfSf2Hy6AkY16/vHTV43OCDAADfNi5khpPVOwRj1svecyovFR9mvYbmtLdem+t3Qtct7fMlhrl5mCEcG+MYt1mvhD2n1vRJjql6/T/oulXYL4DhxrX0Zs6ciY4OSQ5cFAXJZw1zLL9pk0PNt9sY555TYxJ8ZO04ALyaU++k9px6XOFrkKg5ddtzyvM8iewcNk3XsFmdL7jn7SeDDsCFOzoXS1gavEy/s9+ByzxQWZw2uLyHjEnFUbX7AEhOeslpWMu6U/A8V9KiStoroft3aoq2WZ4RpbGnFZOXPiP0TP+iSuZ9tee0MDHqY1moRHrcXmov6RlSm6HuOfU0rpGfOXrgvrhyl9PQo8dwy5KnsKxtvYe4+wi+Fq+sgphsSDHK8dZr+y1h4ZmsOdUde0lpsMIZuSvhNNOXLpy6aE6vW/Bo6u9C0Jy6lt4555yD5cuXp34nEgmcc845WL16dZD5UuQopAlfEWNvjEzNqdEBmTWGxiTdGGx5Orj2WKfnPEQZe055kOkQyS0friVBeThb3nppJknW/czueetfVEnUDNg7d/PPTL+xl/1kZuiaU934g/ic3vs/PxzdexbcuOoRlDSswqnoPmvSBMH4mjwmwquNs+kyZBoQTfSgqaeNGaYQJgsKOuWRUuo9r3NuWZpTEjK99bI4cftDcd6Ox6Ij3o0bF03Bus6tGUk3CILQFhpI23MaQD+Tqb5LB1s4ZD5r15yaF7R1fo0sy1GYYZWULc0p6TuYt5cZPmGSYfMf19JznGWn65gxYwba2+kmXYrcx2uHQ3quKBSxhSH/nfQU6gOCWa8xWTU6Ap732mzalymKsb/P60Al1SESYc+pGc+Diu0xXdfx2Oo3vcUlgMgxIV6wO1OyHnmUOS+wus3MyAsJi4depxaVVkoyVtZpWkxzTTSfvcrjdt8MuWz4NafVRRVC6fnltU2fu4ZRZr2FSvK7locZwqlHs14vkI84k2OW6TVfZw/9EU7Z/nA0x9pxw8J/ok7i1pZMkqsLTBZvvRkbx8QWjEnYn/Pnj8RqCm9efEkgwb0Yw947noTXwZl8zSnBrDc1LlrJ1boqgjpKRuEb+8HPtHNO/aoyrEfJJEl7WQsT0pOP0UF4d4gkTzh1Nep1KQpes97VHZvx2qbPxDIniE5I14B0ptrgkgHCaTg0p5S/gyYBCcIpxazXqP+0svSvNzV766WXp6gTJDMks15j0sCKNyQgwMpks8kTJA1l1luYGF/V4hDQd5xyTDxZUDVUQXh71TRcNvxk/GDgeGyNNuGGRf9ES0/fUm64zUtklXqmFsFk6JAd/kLgfc+pecuXMx2d2wEYa1w22mVJOFt7TglmvQXsrFYJpwrf8Jv1ytlXYD5KxpislvV6UAt6Emjf2yD0rJ7Ath6J3nrB9sjrNsmhPWl/qqfXQ3G2MOfT0HCyNYBk74KsumEOz6rPctA9nWFo5pwZt6b+NpcFz8RW1jmnrCmVL+GUaNabdvxA45Bej6CpIBmSB/m82SvhtJCROUlM1V8PcZLGJVKToXv5ZORLODem9LQQrhnxcxzYfzTWdm7FnxY/LrwXvZCRpS3n8WYuA6vZrLc47GOErntvR8YYaNTrkGVBW+dWJrDNenuFU27Nqdx5BGnso43FhWCpw7Xc995772HevOTxAcaZlu+++y5mz55tCadpGs4++2zpmVQEgbzKazfrpaUis7nYu7CycElvGhnSnHp4tqmnzdek3Y7bKqN7SfBpToPca0NL04pTc8oOT77nNIsha/gjWsTXGaRu2L0H+o8v/V6tseCd1xkDP0vY92NexqpvrDTtA3WmNKg8C1XZOJ5JETy6bVJMDOOxHnpyTcT5EG1BJRhvr0kioTCu3/08XL/on1jYuhq3LnkGN+9xEYoZ84dcIhPjoF8y1c/IWIv5z4YPLb/9eKl2PGvz1surTGA7RDKE09zx1mvk135EYSGMNly9whNPPOG4NmXKFMc1JZz2TewmTZZVG4mdpfmgZfvgWm4Ip0Gb9TLMR9yQ7gxJs5pUV0XK0RrrSC0guWpOaQ6RsnLOKR1zPo138jIIO48dSv9tXjQI+lxnHbrUVVXzOacbuuqR0BPBCmYm9/WWy6a//azg85hWMbJlWsDIFO71pRD2APVlYok4OhPd6IpH0RnvTv6X6MY3xhEhhD5jQ2cdhpYNEh4Cl7dvwMaueo85JfvrtUObrLP6VVodFtGAloaL8Zc9LsbvFzyMmc1L8dflz+MPI8+VPpHPNZhLqYQyLwkV4aKdfopHVr8umE7+9jM6kkKkl/E3pTnVnJrTBBLc9Ytnzymv5lQ2pLZp5PabxgW2O/lbDwxchdPFixdnIh+KPMa+59SMtbP012CMuEKac7elkYfAzXp1wzuweAdqOEMqC5WgM+HfpElDCNWR8tRvw1TU2LvhJmTS95xmCUrCFrfwve/kZYWfVje64z241XR0iMwD6on5kKw5bYtbvU+7aud9fuD03k46cR+aZ5ZZL0sjazfJytREjc+oN/8nC/lCXI+js1eI7EqYhMl4NzoTUXTFu9ER70aX43cUnYnu3me7Uvc641FPWxumrvsf/rD7OcLPGccYjaneVfhZ0pYEUs2jaYhY5zzSEHVAVhkpw+TRl+Da+Q/h84a5qIq8il/tckbgi4LZhd7+n9/wAZa2rbNc271yRxy33UFcwmm+OkQiR6t5Gn/tmlOvZcK0gOide5SG+YRTNw/uopCPhOKzfstH8sOeQiEdme7teb316rq/RsM6liaSMYdI/jWng0r6Ya0El/oagKpIemKQ9liM3n+9Caf2gVTmpKEyXOYQpkhpWtInhGN/Z7JbaKcDn+TvtZ1bLNeDdjJwwczbKGXgjVabcxEdOrN9dyWivtIjOUTSdR0Npv3Ush0ipY6OYryYyFmoMuFpH4WwBygI4noCXfEouhImAbFXK9nZKxh2mQVGy++0wNkZ70o9G5W4R740VIzKSBlKQ8UoD5egNFyCsnAxSkMlKA+X4H9106nPGo5TvNZHL22oX1EFrtvtbNy1/HlmOFqNLQ+X0R8ivMYhA/bCTwcfzJ/BXmqLq3H7npfid/P/gXe2fIPqSAUu3Ml5NnVu4X1cYDnMmrruPce1MEKeTGczJZwGNUJqcB9/Bxb3c1ihpTWnyTmQeY8pb+vrF6lg7k0VNeuVbQZOPOeUkt9CGG6UcKrwzY5l21HvyZwoGg0uadZrvWdMEJtjcler7BgaTy8dj9GhDizuL0U4nd28HD/e7oDU77Q2Tjf9vzisI0L8csnwk3BE7VhcNOtOx8oiqa7oum7ReBp/szXklD2nDm0rOVzQe4uaY3I9VXbYzOrczHqXta/3lV56Z2e6POe0LLeE8bP3iSzsGftc6ZMvzW7XmyF46ksheOtN6IleTaRJ29grKKZ/R1NCpV37aAicXaa/RY8ZYlESKkJ5pBS1oRKUhotRFi5BWahXmAyXoCxUjLJwKcqMe73XDIGzLFxq+V0aKnY9d5ElnFYwjpcJispIOUZUDLVcI/ar1BjE6ulJ2x/meYvCkNJa3Db6Ekxa8Aj+s+FDVEXKccYOR3mKK9fZt/9IHF27Lw6t2Qu3L/uXa/hkveMdh9Lhltg0sEFh7fPk9W1J6xfx8ffljZ9Yflti0Pl81B9RO5aZstGHl3IKp7IhLVbRFkaV5lShIEJuGH6PsTAfJWPufkLJnQoAgA/qZvhIgR8vAkyDSTiVQWei22LWa5g16jqSykOvZr06XzgvaEieCWiPU9fJdeM33z2EL7bOc+TNywox7Rl7yl4PAs8WdsEnbvqAR9Xug08bZktNj3S22kbbcSp2s15jP7RI/NZrSVh12n6UTCa0lWWhEr72keG5gq7r6E5EXc1V01pKd4HTr8bdTLEWQVm4BAOKqkyCY6/A2KuZTAmMlt+GwJkUQMvDJSjtFUZzbd+iYVGUyYliWAtzafJpmjz2kh9hz5tPK5NdK3bALXtchOsX/RNT1ryF6ki5ZcG1UAhr4ZSJN59w6m3UfWXTpx6e8sbTa6dhbssKHDJgL6nxumlOmWOAZpj1mvec6lyLpRpcDufrjYO1jc2MbOdiIma9hUBWhdPp06fjiSeewPz581FXV4dHH30UP/jBD5jPTJs2Dffffz82bNiA4cOH4/e//z2OPPLI1H1d1/HAAw/gpZdeQktLC8aPH49bbrkFO++8cypMU1MTbr31Vnz88ccIh8P4yU9+ghtuuAHl5emJ/uLFi/GXv/wF8+bNQ01NDc477zxMmDBBfiFkCakaTVtcVlNeeems69U22ruQsMeO3A9eTD8Nj2qDSvpJy0eVSTg1JgoLWldhVccmjK0ewXyW6hAp0MmU2D7XL7bMs4VLoC3WifZ4l3DKtHqa7yaXpPPijLfbqXww4H4MpxBG3TeXW3ssbaas67pjlbemqIpfOCVUzNSeU0bdTOXLyAdXav7h6QqYxxjpOroTPURzVfv+yPT+ScO8lRQ2iq5EVFo7LtIiKAsXo7qowqp9DJkERJMW0vw7LXCWoDT1u1j6MQtZJ0f6kBAIe/YIWSsJF2H3ih2xtH2dLagzcDQRw02Ln0Bdd6Pjnoy+c6/qXXDD7ufjliVP4W8rXkJlpByH1MgVePKNEELcc4zsiCdaytvuiPId5MVK8Cdih72hR0vFY32GQzh1WdxK9Pry4BVOZZ7MAJDbGu9Z9flIVoXTjo4OjBo1Cqeffjp+9atfuYafNWsWrrnmGvzud7/DD37wA7z99tuYOHEi3njjDYwYkZyIT5kyBVOnTsWdd96JYcOG4f7778eECRPw3//+F8XFyY3M1157Lerq6vDUU0+hp6cH119/PW6++WbcfffdAIC2tjZcfPHFOOSQQ3DLLbdg6dKluP7669G/f3+ceeaZwRVIvsJoB06BwHujuaN3xTGpNzVpToVMYOTgyay3uwlAcs+ELCojzj1C1y18FAAwaTc3z9mZ79hYpcZ3RifwV5f9VLRUfjBwPM4e+mNcNPtOS3r2dHNNA+OGXfBJmvUmCWJllSQoujllqi3uhzW2vb00WHtOWZNhzbAcyKB4yntw/GOr34AGzbqX0iRUyjL7DWshlIVKMKi4X9pcNaVptP42zF3LQ6R7ScGzNFTMPCpM4Y7n7RUeBD/S5J7Wr+5RtbNDOCUJ2d82LsDs5mXCeRHhwAGjce2IX+Cu5c/j9qVTcdvoSzC2H3txNdNk0l+TyJwmG46kzEnyCmtc8ZIWVwQwnrU7UeRpSRrYZanrYsKpzHkeQPaAT1vAyH/RNMvC6VFHHYWjjuLfY/DMM8/gyCOPTGkwr776anz55Zd47rnncNNNN0HXdTz77LOYOHEifvSjHwEA7r77bhx66KH46KOPcNxxx2HFihX4/PPP8corr2DvvZOHtt9444247LLLMGnSJAwcOBBvvvkmenp6cMcdd6CoqAgjR47EokWL8PTTT/d54ZRLgDA7ShF8lgd7BxLKgnGDlwGhIdqC8nBp6kxWGfSLVAIAdiob7DCldHO6w+cOSbJZL7Xc+OqGruuY0bTULZTjyn/2vxn9i5JlNbxse6zu3CyYcg5jm1AmkEgfuxTAxIV08Hd7zKrJtg+kNcVV3PGzFgd4NKeZ/KK8wun0JqfX+xBCKA+XoKa4OmWemhIYTb+d+yOd+yXLQ6UoDStBMmuw2lkGtaoiR3GQQpFymqnc/2DQeLTEOvDI6tdx85KncPdeV2A32/7ZvoJXs95MEVTu3AREgD2PNLSf1h2xCegcWkw3na2O5HfhdYh09MB98dz697nC8iCkOc0RSw4/CI9kixcvxqOPPor58+dj8+bNeOGFF7DXXnvhb3/7G8aPHy8kbIoye/ZsXHzxxZZrhx9+OD755BMAwPr161FXV4fDDjssdb+qqgrjxo3D7Nmzcdxxx2HWrFno379/SjAFgEMPPRSapmHu3Lk45phjMHv2bBx00EEoKiqypDNlyhS0tbWhsrJSOO+hUPa6GiNtSx48ZofYcWjWuC1zS1uSMkohpGkIh0KW35kuX9IEWmPkoz3Whc5EN3YuGyzVG2xxJII3Dr4dRVoEl876qy0/7Gdp+dBs31Nm2Rrfyh6jRhiMSenqmu5ahzRCRaspMQlHWjrNUEgDNGtHLvs82qDRbfmHlm6nQXgeNtqeDj31jdpNCyGaZnWWBCQ1p9zxU9oWQHhXE+Z3TX5X7iR94N73/N/OJ2Bc9QjLnsqycCmKOPcHKnIf4rDY27/olE98SM1e+Hqb/XxCcwTi+QiHQs76qJH7UuLe+t5g5vCREMOShBK3V04begRa4x3417r/4cZFU/C3MVdhaNkgafH7QbSt+imXsBayzHFYsOYdQWEuC5nO3jRN82W5FA4ly8JSdrwTT43ubyIU0noXItNeuO33zQws7ofisNyFQtLYR6sjWii7MocMhErv008/xcSJE7Hvvvvi1FNPxT/+8Y/UvaKiIvzrX/8KVDitr69HbW2t5VptbS3q6uoAIPXvwIEDqWFIcUQiEfTr1w/19fWpMDvttJMljBFnfX29sHAaiYRQWysu0MpmwID0sSPFRd4aTlmZ84ynsvIi1NZWYury9/Hams9x0e5pl/BVlWktYVFJBOXl/g8wLikusuQjEgqjqjKznhH79XOa05aVF1O/c3Nrcr/p9pU1qK4uJ4bxQjK9ZJrhiLWjcivrkhLyCmBVVanlPZoEz7FjUVWZjFuzdZwVlSVos3X65vpqUFwcSQ4gjHM0y8pKUBaxxmV+n0g4ud9tQE0FqorKUA3G8Ql5QEmZ9V379S9DeVvy21eWy28X/fsl629RcThVrqEis2AYQlmFte7tNGAQsIEvflLfVNpbVysq6HW6rDR5L1KUzFe1noHvqukoL2NbQhy7y/4YWd03NUB9hYoKZx0oK0uOi0VF5P21e9buxBROQ2HxyWV1VRlq+1vHoOLiCHFcKt/k7P+NMcPc91ZH6eNVdXWZ9LnNb2pORzQcxYurP8H1i6bgycN/j+3KBkhNwwtlW8XMV/2US1lJMQYO5LM2qawsyfj8srQ03UeXlMoTwtZ1bkWly1yOJXRVVyXrY1VHOo6ysmJUVrmPg6WlRSivIo8vtbWVyUV7LYTtaqqp9w05vSgcQQ1h/uIH+/wOAPpR5pJVVfLbZaYRqlX33XcfTjvtNEyePBmxWMwinI4ePRr/+c9/pGfQDtFZhu2aYzO0rluukeJwC+PHTC4WS6ClRd65hqKEQhoGDKhAY2M7Eonke0R7vJ0F19Xp9NjY3hFFQ0Mb/r7wZQDAB2tnpu61tKbN/bq7e9De4d/jYzQaQ1fIfASBhva2bmr4IGhtcabX2VsOJJY3bQIA9NMq0dYq7syHhjm9RNy6stbWzi6TaJRcB5pbOtEQTsfb3MHnyIaHtrZuNDS0wW5l09rWhY5ua91obHQeudLV7V5/OjujSNjmg9ZySibeuK0N0UgczS3y3i8bdHRYv3NDYxvae691EtqrX1pakvW3q7snVa7d0XR7TCQSaG61lmlpD7+QnIgRnLJ0J+tqSyu9HzXCRHtiaGhoy8h31XUdXZ3s41CamzrQIPlAdkVu0U7oazs7k+2jh9LPdrrUm54YfQGORltbN1phHV+6Te3Ucr3LmS+j3zDPFVhja0tLh2WskMVFO/wUdW3N+Lh+Fi7/8u+4d+8rUV0kb1HXC27t3A5tLsBDTzTO/Xx775iaScx1p7NL7tyro509ZsUTdBPdtrZuNITb0G6Ko72jGy26+1jQ1dWDphbyMW8NDW2pdDtanPWgoaHNYr2fSOhobpI75zePsQa0uWRQ7VIG1dVl1AU7M0LC6cqVK3HdddcBcApplZWVaG4O1hxu4MCBKe2mQUNDQ0qrOWhQ0vyjrq4ONTU1qTDbtm1LmfGS4ojFYmhpaUlpVGnpAHBoXXkxOvpskkjoqXx4tUknPaYnEpb3szRSkxSi63Js4e0GoCFomXeWSCoHXad+57quZNuoLeondROPOT37solrWVNuJ2zvYX+nEwcfire3fCWSTRMasYz0hNPdOzEcR9npuu54d0v97P033tseWINdPhC3lVMsnt5zGsiGMSNqUz2xt/9YwjqxHlDEv+eUZCam99pGxhkVIHXETW++MtLnctbHXOj/FcGhE/uq3npIO1rNrXv24hBJB0KwTvx08Pel5vZs/K3R7JJt4eSi4Xcjfo7WWAe+b1qCGxc+jjv3vBSlEv01iCL6OWjlMmWfSbhk9t3MZ7XecVKD5uqrI6Fnfn5pLgv7+OM/cre0mR44k2Vhzp+eYI4b5nhpc4FEQk/5FyAdw2Qv/xA0ICHXrJb03rTXytj4FyBCxt21tbVYt458yO/y5cuxww7yXEqT2GefffDll19arn311VfYZ599AADDhg3DoEGD8NVX6YlzW1sb5syZkwqz7777oqmpCQsWpM1pvvnmG+i6jrFjx6bS+e6779DT02NJZ+TIkZ72m/Y1zOsW8nz1muK3bV1nOYEYUFSFq3Y5XUKqtjyQNxlRw9enzjitRnCb4fi8NKZDU/Lh0pFP2PmnQrmypklJEsDqjs2Uu2m4zw7jEGIae1rdguYF9jJJWKbDfHVtn+rduNMjeeu11zXnUTJOUyga81pWOtPsfQ32+baZ32Ojg8c5SH7v/VF4w61euNUKL6OlBg0RxzE95HhI+9FJaWbLe3lRKIIbdz8foyt3xuK2NfjLkmfQk/Bm8ZVLbFfsbqIcIjj2oYbNSv9C7/v94sdPAslbL2mxmgbrPNREr7fewSUDMLpyZ/e8SPYnQPLWW8hHyQj1OieccAIeeOABfP/996lrmqZh1apVmDJlCk466SShxNvb27Fo0SIsWrQIQNKh0aJFi1L7QydNmoR77703Ff7888/HZ599hieffBIrVqzAgw8+iPnz5+Occ85J5eX888/Hww8/jA8//BBLlizBpEmTsP322+OYY44BAIwYMQJHHHEEbrzxRsydOxczZszArbfeihNPPDGlgT3ppJMQiURwww03YNmyZXjnnXfw7LPP4oILLhB6v74CqxlkwmsYy+16ebgUe1YNl58mKT3Guzb0Cqe1xf0yJJryCF3knNhX+mV+wdQ5ZLbrK9o34Mtt85wP2OCrTxozz9t6kvt/jdXrfO/IHVpiXU+9E+8A+adRF3Knl3JORPHKDViF04gW9m2Sx3XOaW+Y75uW4NLZd6cWH4LGrxCiyH/IXm7Z1gvuXknF0TTN4bGZ1mVqhOkfKSjNSUwyfLB9Z2m4BH/Z42IML9seM5uX4p7l/5F+fiQvmRwnQqlv4957ZKN/MffD7AVDcUa4eGhmeuvtLTe7w6bl7XwOD2jv8p/1H6biDWth3LHnpcx4NE2TLpyKzKXze0aTREg4/c1vfoO9994b5513Ho4++mgAwMSJE3HSSSdh1KhRuOyyy4QSnz9/Pk499VSceuqpAIDJkyfj1FNPTe1d3bRpU0pQBYDx48fj3nvvxQsvvIBTTjkF7733Hh566KHUGacAcMkll+Dcc8/FTTfdhDPPPBMdHR2YMmVK6oxTALjnnnuw66674oILLsCll16K/fbbD7fcckvqflVVFZ544gmsX78ep59+Ou68805ceeWVOOuss4TeL5eRKTOyOguLWa+k9EK2s9yy4XZdNMWU5rSkP3VScuLgQ6Tmye4xlRfn97T/9l7atCcXta7mel4H0J1w3/vDqpNNtv1/eS+ckuwTei/x1tOKCP+eUEMINKdqr2vmCeTgkgGmyZY3jLdgnnNqaldrO7fi5Y2f+EqTDz0Qj8iKwsFr/+JlYTcEDRFOTSep2pIm5yzNXCZ6zqqicty25yXYvqQGnzbMxsOrXsvrozJ4uotwbyCesNkoCcvWLck5GFExFPftfZWnZ42+2FxsbbFO/HvDB1zP09rq0+umIQHzSQFuC5IacfHHD/ZyHldNPwdYB7+2OFcR2nNaXFyMxx57DF9//TW+/vprNDY2ol+/fjjkkEMsx7fwctBBB2HJkiXU+1OnTnVcO/7443H88ccTQifRNA1XX301rr76amqY/v37WzSyJPbYYw88//zzzDAKMuYJcdxm/iHLsNc8ITQORyYTTAMlDhqcZr113Y3EMCcMPgRvb/maPw8+RfIt3Q1c4aT2cZQy4j37NcohmIp+c6fo7b7PJ5ewmyKZBUPZyzYHDRid3tuJBOJ6HH9e/CS+b0r345u6G9ASSzqWOLxmLH4+9BhiPs4Z9mNs6W7EB3XfO+7RYH0X+yS6My7fGZQdHrPe3D6xUCGL83c8Ds+ue9dx3WtP4smsVws5NJ20eEj1kqSVZNXfTPWTtcX9cPvoS3HNgofw3y1fo1+kAufvdFxG0jaQNw669wdps173sNkYq8yLkUEIQSMrhjHSppO2zEq3gdYYv2M8thZYT8XrtiCpcYQRxT7Ou9WNPy76JwYUVeG6kWdLzUem8OQD+pBDDsEhh/jT8iiyi/d2Q/Z0TEO2yQcpBz16nCmakhrxDwbui4/rZ/nIA2FVzMWsN6KFUR2pAGtwKg+XoCPO5/3OsRfI7mHa5XmaeZT9e9oHvyAm27zDWw/jCBnPaTs6/fwyi7GvqCb0ROqbyfxSh9bsjd/v9kts6d7Wm46ORa1rLYKpwX82JM2g9u0/EiMrhxEXFY4ZOB7vmwRTY1FgYHE/wlmzWipNGnaLhO5E8MIpYC3jB8ZcjV/Puz8j6Spyi53KBguFd+tHvfRBIvsPycKps3/NlYW6HcoG4rbRl+D3Cx7G8xs+QHVRBU4dckS2syWMyD5SnrDZ+D4N0ZbU37I1p26w5pskzamI8Mx6l4SuI5w6xsZFONU06XuBRSzhdF3H3OblqCnm9/WQawjpnY855hj89a9/xcKFC4PKjyJDyDXrtWIe9CzCqS4nYbtZb08ixpS2ybf8dRwiq2I9iRiaetpQW1yNkEbvspLvxB+vXTh17jl1cYhEeQe3L+RnQTDVtdsi4V3E0LnCaYL7M2zCaZ6ZadrLZE7LckxvWgyAvV9MlAP6j0ZZuMQ2qWWXc5ixd8quod6+JOlhnfTtUg6RGAO0U3Ma/PFSMT2OZtPK/NDSgY4w+VafFN6wf+W0hYHHMc+Lt16BukYaw2KCwmmmTQd3rdgBt+xxEYq1CB5d/QY+rJuR0fRlwLO4m+63OTSnWTDfnNm8NPV3MAqIzM3PDJLTU0Zdh869aLAt2iJ17AUIC7OMd9SRXwvsJIRK79hjj8W0adNwxhln4Nhjj8X999+PpUuXuj+oKCDEqjzLo6dXvtq2wNI59OgxuuZUT+pO7fhd1RLpPI1VxtrifslnKZ2KaH8atnllFO3QM20KzUqTt26wNGfW+Pixhw3K++Goyh0Diddedo+tfhMLe/fwyhSMjAHfGHQTlLZlJszyOimQNfMxMfT8WYezTDlOeXPzF6m/KyJluGevKzOSriK3EG1rbqG9jJd++64Yoc2w+tzyMP9edVnsXb0rbhh1PkII4d7lL+DbxkwpS+SMizzVRMRbb7Y129lO3wxJqBfJX5xzIcZtrtUe75JuYUbS6tL7HMNyKn8XRoWE0+uuuw4fffQRnn/+eRx55JF45ZVXcMopp+DEE0/EQw89hNWrVweUTUUuw+sQKRnWPx3xLksP35OIMxuh4PZQLkiP096tIbXftFc4ldRhuGlO3cxteEVT5/f1k3/ys7xCJ8mduhO397aZPzsmZO7vd8seF3Hkw8rQ0kHCz/DA48FWBg7NPIczIGOyQAqngf98YuNp1vd3OgRjR/6LoT/kS1yQSgHnUorCgb1ASnrAzazXg+bUZ3uPJ8Q0p2Oqd/WVnlcOGrAnfrfbz5FAArcteRbzCcdPyUaeEMahOTU0dBwTlWyLhrxjtwis12Z76zUWUM3CKT8syywd6e9hz5+u6+jRrcccBe2tlxV7UnOa7ZrhD09653333Rc33HADPv30U0ydOhUHHngg/vWvf+GEE06QnT9FnhOEt17AZjqMBLWhbl9aQ43BV/oCHY9TOKXGKpSr47c72J4py0+v55zaBxu5342MbM0pqxydQowVt0GlSItgNxd39zzpykJEm+iH1MAvYK4YZpinGbGkfjPLnUdzKla+xaEiofAKBRty/VvUtsZTbJ72nBLawGXDTyGGJfVHRLNeSps7c4ejs2qy/qNB++Hy4acgqsdw0+InsYLzuBCvZE40FTtbdkNnvffMSCDTQhArNfJirJw9p0mHSOQ9p6Q27tdDvR173jTGjMJos/mrN/UonBp0dHRg48aN2LhxI1pbWy3HtSj6DqzOya7pkNWRORodYZA8dfsjcO1uvyA2Yb+NltTx0N6tznTGaTJtilmvYB4usHkrdDzvUtRuJiGpXwIrdm4MLCGXAa9TBZLDDgC2g+fdtHnp+w3RZjy86jXrfZdu8fjBB7umQSKoiRyr7GSmmF41TguKbppZplmvQO6MkKz9TU6NOLtOBXd4vWb7lc9TBAUvpK+8rG09I7yL5tTLnlNbnDeP+j8MKyNbbJBSJ5nC08a1XDiq4tQhR+CXQ3+EjngXblz0ODZmWVDjQWTPKU/YFzd+5DtPfghCc+p15DLGJnPfLpI/Vlizc0177roInuFlj/d8/jZ6w0pNOTsIe+vt6urCRx99hGnTpuGzzz5DIpHAYYcdhttvvx0//GEwZlKKXMLZ4Fht36o5lddk7A2f1A1cvktyxZjk/dbvhNGP5tS3TTGAAUVVBLNeOZrTIFZCp+wzCcvb1mNU5U7E+7xOFWiCWHGoCLF4WnBlfR/ze9+97Hls7vU+y/MsAFw2/CQ097TzZNeWbjCICGx+SA/MyX+betqwrJ0++QbS+6L91jXjmzAFcUFv1UF9EHu0SjTtG5D6jW09LYSQfHg7SkZj/naDtPiXaW+sopy/47FoibXjv1u+xh8XPYb79r4qtRCci/B8k5Ctr81lWE7qvOJm8E6DVG4i+WOd953Q0+ecci0wSP52Yu2wN2weO+MTEk5/85vf4NNPP0U0GsXBBx+Mm266CT/+8Y9RXZ2/7ooVMqA3mh7LHhaJwqlP7YTfVS2RjsdwiORm1puJDfQ8uO059ZLPHcu2w45l29HTJKxwvLXpK65wAFASKkruRU6GYuYlpGmpIBu7nGe9umsDw8z7NAIz6xUQ2PxgF05Xd27GQzats52U5pS055SSNR3AvXtdiRlNS/C87fB0plmvaB+QBxM/RX7gRbvoVvs8mfWKWA8QGiBRc0qJI1e8UGuahom7nIa2WCc+bZiNGxZOwV/3noiqSLm0NBJ6AotavZlneyGlOc2NImby1bb5GU2PXaWt1j2AmOb0sJoxrJSJ8ZN+0675gXTOKXVrVsohUv4iJJw2NDRg0qRJOPbYY1FTQ9vLp+jrmBsM75md4mm4XyHlh3XNL7RBvC7aBIDDrFegM+PJv5s2kirUuJxzKmOjvz0GkiD94MpXHNdo71Qa4t9SQD3qSABv9Scgs17m4CtTOE0i8v3DDBNpVhnuVb0LuhM9wIZ0aMDNhNkenzeHYF7ZqXfxxe/CmSI/IX1ndssMwKxXQHNKzq8zzXxwrBLWQrh2t1+gNdaBmc1L8efFT+L20ZegNFwiJf53tnyDBa2rpMTFQ/q79c2+g9U2eBwimZ8X8doe1kI4afCheGsLYWGc8dzGzjruNLwi0g57EjH3QDmO0J7TqVOn4pe//KUSTBUWnOdEpv8274fQ9fSAu11xf19pOieAos/7gzRBd/PWWxvwgciOfZwukxva5Mdx1XZB9vldgIhZLzlcSdgsnLK/rtXkx1kGPIsEXuRz2d77DNiDtTxSq8YCsbLqCmvlF7C+lxGKVadFzHpPG3IE4643fh6Q919FfkAzXM8k9v3yMkwLg9lTKJ+iUAQ3jboAe1TujIWtqzF56bPSJumix9VM3mOCr/SMRb2+IJqWS1pAAGiaU7EF6EiIrLPTLQ6RrDy46lWhNLxgfw/WdOKvy/+dDJPHNch1lrl8+XJEo9HU327/KfoevEOXebLZv6hKah7YK8T8V7nT43w+oSewLdqC/kWVKOrt9ILQPALOzsptpY2mhepORHHDwin4uH4WVzwy4E0jTpkoldo8rzKPFjLdIqUr4ilRhOD2nMozdWVBWpV2Q6QsWbGmzjll7B9ymDRS6tTz+92Ey4afIr1WU49/yN/5gYITt4UWykPy82Gre+zFISekNpEPmlOD0nAJbt3jYuxcNhjfNy3Bvctf8GwdY0ZkQbZIi2D/AXv4TC9/9pz65dCavR3XWPM5Vn00+mDzWMCvOU3GW8TYtiP6NQba9j4P8DHvzfW937JxNes98cQT8eKLL2Ls2LE48cQTqZVG15P22IsWLZKeSUVuI2J+ZIT0K6DxOERK3+Pf78YLabAidZotsXb06HGLgwa6t176BKciXIr21J5Kyh4Hh+bUm1nvjKalmNG8BDOal+AHA/fNSJe4oYvPy6L5na4feS5uX/YvAMk9p2l0l0EkfZdUd0dWDMP0psUuOeGrQOXhEpNpe0BmvSyHDzL3nFL227Bg7c91c5Jk/jJGkkKaU0pQo+3KnnTnyh48RebRAOG25iZ4eHE0Y1+gERdunG0i3ybFVUXluG30pfjdgn/gk4ZZqC4qxxXDT/XVPoPz7E1Jj7FXn0RCTwRi0eSF/kWVaOpp4w5fpAn7ZaVCqu8rOzYKxRFh+ZQQrENH1o7Dq5s+E3qGhvPUBPe85NPCkh3XWvHss89ixIgRAIBnnnlGDcAKDnjqiF/NpUB8hFs8DbtIizgOVhalPuUMyd2kV7Y+1XXFkNJvFdvMWgLp4Dz2I+a8mE15xc6sTMdhL6PLh5+CWc3LXGPgnfSNqBiKeb0HxHvtOs8YchRe2fQp9b4fpysieNkFxdKcipWHlz2n/sKJQpvA9gXth4JfE8mLjKNkWIvA3PUyT8x6zQws6Yc7Rl+K383/B97c/CWqIuU4b8djPccnJvj5L6+QoFlvQtcRypFuJqKFMbpyZ+7zfYsoZrQ0eM66Ntf7xp5WofjDIXmaU5l9P0nZ4LpvXVrqmce1Vhx44IGpvw866KBAM6MofAzhwrfmFPZjVFhhvaVVFi5GT4wsnPKupKaPkenvOz9u2GN1W/Gm3Y/m8GZ6cwdt1spZhVONW/IhC97BdOlBrb7LENh4MOIScojkMqnjPkrGCM+YmDjTcolb8mf2sidXUSBoTquXbdHWjHvrdVoUiS3akrKbb5pTg6Flg3Dbnpdi0oJH8Nz691EdqcApQw73FFdQ/gLc0uPtS+J6AmE9NzSnogShOfXTB7PGadF47fXGT77s7bDQxxmh2jx69GjMnTuXeG/+/PkYPXq0lEwp8gveCaYsDdxvR/zMIXuI7zl1h6WNI6VHer/67iYAsJr1UjKkQaMfSUAI65Ynr2a90USPNVwAK+dev4m5gzYLI17jc3oi5usSvaUXzGCSKc2pYaplXxhiwRZOrbkbVjYIAIhHDhn1nWXqKPrtpJv1UjWnir7I/+q+Y54D7K71EK+f9om16P55Upq5vFjpxm4VQ3HzqP9DkRbBI6tfx0d1Mz3FY3c0deGOx1PDyuhV3BzJ2UkgkbeLCMKaU8Y9GQuEoh6uWcg0tfY0XuWh1YOBUMmxJkGxWAzhsLfz/xT5jVNwooQzBfSjRSoPl/heNeJp6KwVPVL+Sc2DZNZLzbvGP7DxvL3bO9Las30yYg71k0EHIpuYzXCtx5SYS8TtvcnxJeMMzjQ0KCGFOSmRuOIf05NnFksz67X9/u2In+GsHY7GdSPPpj7D2nNqT4sWMu1cSS7pVXvnHUXhQ5rUfu+6d50Oz6Lg+H67M/PAdAzHWS8/qPueK1yuMrbfCFy/+3kIIYR7V/wH3zWK+0WxCxlBa1KNcYhUp0h9anIcy09BhOWAiAzHUTI5sr/Y3sb8LIiSvPW6vWZ+1ogkrksWGzduxIYNqcPmsHDhQnR3W8+u7O7uxmuvvYZhw4bJz6Eix5BjBumn8xA/t9RbWuwVPe9mvexnyWVZES5Fh8khEg+yNKfmPPUvqhDKAw2viwtWs17zIO3N5MXhZEC2UwlT9NLjNpLIkOY0bginATlE6l9UhYt3PjF9gfBebE+NduHUZZFC8tCdadM/RW5B+vrL2zcQrvLhpgmbtNvZGF21M/5v1h2pa8bEemTFMCxrX4+dygZTn+fZI7uwdTXmtqzgzXLOckjNXvjtiLNw74oXcNvSZ3H76EuxV/Uu3M+HJZpn8pByiERIJ6yFUguFBnE9kTdH/tgR1ZyykOHlmO3pX1BzaovLj+folliH8DMF7RDp1VdfxT/+8Q9omgZN03DzzTcTw5WWlmLy5Mmy86fIMV7c+LHjmr1PZHnhTO059dW5O/f3MEVTwk0uh0iMTpM8ESWY9RLOOKWlTMrTQQNGI64ncPFOJ+KKufeaArsL6G4OkWiDWVS3mfVa/aYy4wwamlmvFfbXNb+PvfPW9QSf2SpnMZDO6pQN+5xTeQJxrLc+ibTdMCN991VfU9n1BhbRnNITNhIIxqzX0TcpmbXg0SA+IfbrXPKYQeMdXlGNOP8+5lfojEdRGSkTjNXaJv69/gM/WcwpfrzdAWiJdWDKmrfw58VP4u69rsCuFTtwPet0NBXs/k5W/GTNaTxvxRDRdsM066VarwjkR+IWMft3lGt67eH4qjzCVTg9++yzceyxx0LXdZx88sm45557MGrUKEuYoqIi7LDDDiguLqbEoihkMr06Q2qOMsyX7BQzzHpJcRL3nKY0p+Y9p/S9afb58uCSWkzc5VRiWLdrbh2hOb9/HvV/WN6+Hs+tfx/ddrNei/aPGWXgmLWENK3cAQNGYX7LKnocFm+91jKKQ7cdSyOPoAYS1iKEXM2pkQ5/rOxJHH88RkgZe04NpJv1ZrtxKLJGEG3bz57TsBZ2FUzd8ry8fQOmNy3GdsX9sTXaJJyXXOSMHY5Ca6wD/9nwIW5YNAX37X0VhpTWuj5n71tYC2Ey5kOpM5MJ38huIQIk++YgfENkAtF+k+ecU9mWeea7QnE5jjeT941YPkoKAVfhtKamBjU1NQCADz/8EIMGDVJCqMIzMtomUWspuImda8+psObUSUO0GWWhEpSHS5n5oeVLFzAD8XPOqXkf7+qOTdRw2V6pMwsnIU3DPXtdibJwMf69/sPU9THVI7CgZbW3+PUEysIlruE87TkNqOiM70MarGQKTIZZryxvvcn88pHaJ8rSnHJ+k/SeU8lmvUb6tmxku80oMoOw5tTlPs9E1qml91fXzGn+p7dPPXPoD/DwqtcIaecnF+x4HJp72jFt6ze4fuE/ce/eV6LG5ag3u0CYObNeJ5FQGLBa9SaF0zwUVIaU1AqXJKtZ+HGIZNR9tqJDDLvlEElh8POhx0CDhv9s+NBxzw03U+58XbAABB0iDR06FMXFxYjFYli3bh2WL1/u+E+RH8jsyHhjsppT+oFk0iof5mHMRIHXSme8G+3xLtQWV1smDSJdn9B3sj0u+o3zYbJh7oxDCGHv6l0womKoMyDny9jncjp01BRVuT/HF73NIDqYEmYNqkFoTkXeQ9RbKJ1es17Wqrmo5lS2WS9jn5ii8JG9+OTFBJCkVRPBSHFtxxZ8uW0eBhRV4ViKE7x8nfZqmoardj0dh9eMxabuBtywaAraYp1CcbAW6OQswPf2JSSHSIRvnMhTh0h37HkpZI5SUo6SYSk6BBu5w0kfoXLsWDbYU35D0PLWQzMPQjuRe3p6MHnyZLz++uuIRqPEMIsWiXtCU+Q7Nm0fs8HoHGHYaHB2Z0FMCFkTa7K3Xus7kUx6AXpeNc1ZLrTOh3TVuedUUDilvK8XzWlluAyH1Y7Be1u/I6fl8XuZtcEyHNDY83Fk7TiUhUvw/Ab5e62CElqMOqJpIFQM+ZpTkfdgH4nAxiLY9wZmWQPw1oegREfaXlwlrBY+XvacuuFl8UQkD6yJ9qsbP4MOHacPORIl4WC2OWSTsBbCpJFno31xJ2Y1L8NNi5/A7aMvRWmYbBUYtzkgCrpNM08KIO05RSI13vcvqnTsRc5dvOybZC1QBmvWKxqr3fqOtC2FNJ/lQuOxjstfhJbZHnroIXzyySe47bbboOs6/vSnP+GOO+7AIYccgqFDh+LRRx8NKp8KycjsXO2DKO1cNJ36QwzRjsfruzIn1hx5SHnqLbEKp7TsEM2PTWX72xE/M98gPG9FpOPSoVNLyYs7pNJwcSADeNxi1ivXKcW5w36C2uJ+FhNsOvR3O2bg+IwKJJny1vvDQfsl45Ro1ssLjykuyzMwiaAGbiWK9lVE987JT9G/GX8yVxu76gEAh9TszZ12vlEciuCmURdiVOWOWNi6GrctfRaxRJwYtke3zmmCfvea4qT1jrHAbYbmEMkQfGqLrCbK+/UbhZO3PyyAXPqH5zgUOzwOkfw43GS3IbF47dZ3pLE6BM1Tuw1B83wiQz4gNLubNm0arrrqKhx/fPIA4rFjx+LUU0/Fk08+if322w8ffihuM63IDkGa9XYnyFp1s0DlT3NKMF9kmmJ4S4flaZSn8zPOOK3l1JwCzs7LrDk9drsDMbhkAPVZx55ThvMYR7qMfOXSvgWLQyTT97F/Y09mMgLCrludMm6TPM7KxqgjpDrpJ027xn94+RBqOjSYZr0essbaY8Ofr4D2nCqHSH0a8b1z7PrnzaxXZMHHiW77t9DrdFm4BH/ZYwJ2KtsO05sW494VLxAn/F1xypwmIFhbS2jnnBp9o30cG1Y2CBN3OU1uBhmIHGmjedCcMr3T+6ivRqysGESFXrvmlJh3j3nWtMI26xUSTjdv3oxddtkF4XAYJSUlaGlpSd076aST8N5770nPoCJzDC/b3uOT1gbC6shlTAhJTZndvL1qTlnmHe77Q+t7PRzyCqek67SVMWIp2vJb1+1cdaWh6zqxmDZ21nPH4YgzgI7T3Bmzvw8d86TQHC7oaZjX1Vz+8zrlvsHk0ROI10XG0jD4zzm1Q3pvpqfGgI93cCP9PoU9oVcQ0LxpP1gE7xCJEZbDOUyh0K+oAreNvhTbFffHx/Uz8ejqNx1l32lfcGeWs/9xb0AR3UHTydsf7riW0HWqw7pMf0OqciIDGGOsn0UV5jgtGK9dc0oSJr1uCQgh5HpcYD4jNJoPGjQoJZAOGzYM06dPT91bu3at3JwpMs7+A/aQEk9nopt4XZZDJLLjF+u1W/a4iBkHz+Keb7PeXuFwkE04ZebL8Zu259T9BRa3rRFIVyeW66/n3c+l/RM9fkXGRM6rMGIuuR7TXiIvZqYi8LyzFwHWWMAgDch+zJv6RSrxw4H7Oa7LcoikgV8rb6TJMmPi1pv2BgxKc0pysqUobHLtKBm/aQaz3JW7DCrpj9v2vBT9IhV4c/MXDp8DXXHrnCZIge8HA8dT9/lOO/iv2LFsO8f1uB5Pa07tnoUz/BHb413cYe2a0xMGH+wrbRkLhDTfG15idWhOaWa9gvEaKLPeXg488EB8//33AICzzjoLjz32GK655hr88Y9/xF133YUf/vCHgWRSkRm8nu9or/49lD2n5rC+Gg1Hb7trefpwba8Nn+X5kKw5tdJAM+sVWHW1m8gU934jUhkLv6duXSwgPd8W7+T6UucM+7Fo6r4xfx97n+9XeDx4wF7ssO6xEa64P/XmQXe6LqzYYZlR+ZlEaRpZ4BVziCRn/44RkmXGxJpUkJBtra5R+gu3CYSiMJDuEImn57VvZxCQRPqCVlSEHcu2w+TRl6AsVIKp697DW5u/TN3rjJMX3En46VaOrB2H60aeTb2vaRqxT43ridQ2HueCIPs7v3zArY5rpw05EmOrR7hnmMCB/UcLhTfnbuJwf+bHRv33teeUeU/QrFezO0SSZ9Yb0jTEdPIeaYNc2pIlitBo/tvf/hannnoqAODCCy/EpEmTsGHDBixevBjnnnsubrzxxiDyqMgQrHM9WfjxMOsFe8dD2rdg/k3eo+qeDmugJ0+6rW9YRzHrFfHqaRc8jAWE7kQP1/Pc6GTNqXHPDdln/PHg3XSH/D7m2G7e4/+wc9lgj/F7JxIKM/c6kzCfc+rAVkYH9BexjtCIToZEJsCyTG2NNGXsOU2XU0CaU1s+Ctn0SpFGtqjnZWIptOeUENRIMqitArnOyMphuHmP/0ORFsbDq17HJ/WzADjNerNZKqR+Prnn1LCgsZ/JyqYyUua4dtnwk/HjQfsL5+2kwYfiupFni1lGSVTtGgvWXiyz9qjaKfkso8SENaccTvpC0DyVgQatoMcWIWlk0KBBGDRoUOr3hRdeiAsvvFB2nhQZ5oTBB2NDZ513zaltDKXvk9QDWcnRQHCIo5H/TuWFIxthj3saDRqiLQhrIfQvquQIjd6jZKzYBX9DcxolCKei2L31+iEbjjPMadqTP3a7A/HE2v8Kxcda4CCFFsXr4oHbl0k5RCJqOa2IeLQNgbxKLwsvUesCTr7c45LbF9G+byE7rVAk8bJvjH8vOStdW58lyVtvSjTtje70IUfi1U2f+Yw7PxjXbzf8cffzMHnJM/jr8n+jMlzmMOtl9f9++hWvz8bMZr0O4dRbnfBSl46oHYcKgrBLTQOaZUHFb/XVKAuEbvSLVOCYgeMBuMxlBDPIp/DxcpxOMp+FbJWTXQ8Sipzg17ueibv2usKH5o1timowr2UlXtn0afIJH0KqZvM/rmlszanXdc5hpc69HekYnU3H/EqxRByNPa2oKap2mNkwvfU6tNDWzqc0VNx73Vl+TM+oLuigD0Y8A+bQ0kGW35kwJ6GZUQJAdVEFzhhylFh8rBUOR9rsOkV6lLsWOh52mcTqdC2HPZ8REY/E0IS1uCKIenV0e4a3/gejN01rrZTmtI8iOMzwLjqJIOat1317iRHm/B2PFc5LPnNozd74zYizENcTuHXpM2iLdQIABhX3xysHTA4sXZ5xkyQ86dBTx6w5LMs8S3xetsb4TcWfdOr16QMHjE4J9TI1p3aHSCRCmuflA8vYQhr/8nnPqatYf8YZZwhV7pdfftlXhhTZQ5ZmR+QIEy/Yc6n1rls7r3ln0m5nY/fKHfH0umnkPGga9qneDbNblqNYiyCqxywdQWNPK3ToDpPe5LO0VDWHRvfo2n0tv1nabT8mlLznnNp5cMxv0NTTit0rd7Jc1zTnu8hGrlEvqV7JhbcfFU2XdZSMHaGzQDXxfZwiuLVRy4p6778s4bQfp4WCgfQFFKpVfP5OEBT8SN9z6qHasBbsuNJkxOy8Utgmvz/Z7kC0xDrw+Jq3AQBDSmrx5L5/6F0Mzx7khXE9Jag4F8OT3LD7ebhr2fOu+xTtz4nlTXB7j83sjffp0lAxughegUO95me+jir0sShth0dz6sXqAkiOj+Zz3/848lxMXvqsJUw+jzyuJTdy5MjAzudT5BayvjKPRkSmt95RlTs5BQvTBS+Tw2MGjWc6dgpBw217Xoq2WCcWtK7CX5Y8bblvHJ5tPyuyN3fEOElXD6sdY/ldzBBO/Wu5xDWntcXVGFk5DM097Zbrfr1G8uDWoYtqHuyDPnMFlfP1MiGY6AzNXHPM+l14VnINkt8wmPwfu92BqIiUMsPs22937N9/FI6oHZdqT6y6WB4uwRlDjkpZZ9AJpm6SHKgNLR2Incszv3dZkWnkntdohHBP1fbb51wt5a3XdpQMz9FphciZOxyNlp52vLjxY1RGytJmowHNiXlKlJSyDp2x5zT5xBG147Bn1XCcM8PpAImcjjUlvr5VFGu74W1Dt+95KW5YOMVxMoSMZQOZSw92h0hH1I7F5w1znel5SrKwzXpdhdM777wzE/lQ5AIeO1yHKSpXg/GxsmVryTfufj7Wd211hEqn5C2tolCEutdG05IrlP2KKohmgg1M4ZQFO68lvWa9JHj2B14x/FQ8svr13pRM3npZDpFM2MMYna/jSU1zqU4SBhGNPajRBENafXBY9bJTd7nrvC/usIcPQwjnmTAJaU4Z+fjBwPH4uH6mQFxWjtvuINcwkVAYk0dfAgB4bv37ANgLDrXF1UJ7ZKXvOSXsd7ptz0uyfv6qIniCEFWyadZrT7kv6yf+b6cTsH1pLXYyOcgLqji49hkTPkYCeqq+hBFCTVE1tvW0GE+Yn2bGPb7f7pi4y2nEkOP67RaAcGrLHWdF27NqOF476DYc9/W1trg06BBfFDa3BVYbEh2b7cf+XDvil07hlLAtjYeQpqE8nF7gJZ4LnsdWO55GTV3XsWnTJsycORMdHR2y86TIAINLagAkTVUMPJtJ2h0icXSwLK2kG/b+a0BxlUNba+5g/ExCR1YMI+eB2OGn0zE0PbXFpMO0ad5iNdecllLOPwP4BI9IiBwmueeU/Aypg/vT7hfg4p1+iqqicuIzIYKJsmwqwmzNG9VrNCVfjgFC8ozMi4nsXXte7lqOiZSWw51ISGDPqcYa3Nw/Lq3tAOJ9jfFtaFri20ZfgrAW5hIEU3EJ5sEN0qRGWR31HYS/tZQKaNvO4ldzmmrvDA/gqZT7Rt3WNA0nDD4Ye1fvEnhaPMIEbSHWfN71nXtelg4v8JmO3e5ADCsbRHyQb+FD0KzXwzPM+Ayv7n4aF8usVzCrkVAYV+96Zup3SbjIobBI6PQtVSw0aDh64D44dfsjcN/eVxWcHYPw2SHPPfccHnnkEdTX10PTNLz88svYa6+9cNVVV2H//fdX3nvzhIt3/ikqIqX46eBDUte8DjYd8U7Lbx7NaVT3IZwS8ml3OmIOI+J4xU8ezKTMekv688fJUfwss14erZFVaE9TGi6mvhOp9Ozmxpk+Sua0IUe6TsRY5q4knE61WGH5MJedl3ce1283fL1tgUsa9ImkfbIjYvrNWizh83YtT2NovJnRlvfrNwoDiivxQd0MAMBeVcmJI+tsYifBeOtV8mjfRPSzB2EWK6Y5FUFVaivZKw8es96dys1aXrOFkY90A+rYsmcgTUam5pTvGT6rNTshLXnU2+W7nAIA+Kx+tnAcuYzQ7OHxxx/HnXfeiZ/97Gd45plnLBOfAw88ENOmkZ3HKHKPykgZJux8IoaU+tecfrFtnuU3j3dK0jmd/JDNWmhByJMAzs7L1CFfPvwU02Vnh29uD2mzXpLmlJqY69marMk3z8Sc1gnuU70b4ymvHX1wa3k8kzDRyZ89Rj9aA9Jd3gHIPglwPXLC0JwSD2e3Or8Q0d6KeJWmxeAlblZ4o52PrByGkwYf5rjPs0BjBJHuD4l4lI+a1PcVsvGtnQ7GBfLACGs/SkbVYivBmfVypE0y69V1NPa0AWAvCorUUXvIILYnaNACEXr99O3m/Fwx/FT7XeH4dqkYAgDUIwW9Kk/s35I8y81ffapQbXv++efx61//Gr/+9a+x//7WA3p32WUXrF69WmbeFJlGUifB0yBoZr3DbEeSkCC53rZra80haoqqURoqxgH993CNm8WeVcOJ10mda323YdYrtuf0ltEXMe+zJt9cmlNCmMpwGXPfA1f3Jlh1/A5I9ufJDjto0Ox6A56CcUYvmgvDOzaPRYG8oybcYZ8XJxhZb/iUdsA2qTH+5ptAGWa96XpwwY7HCWbISbps5WgqFPlDoZhv2x0ipQ0vC+P9ch2euVNVOL2V5vQhR6aeu2XJUwCAT+vnWMJ7P6jEi5ZQMLwmr4/88z7np/4mleN2JQO44jGPkacMOdxyz0teR1XuhHv2uhKPjfs98b49r0fUjuWKl2e+l7+iqaBwWldXh7333pscUSiE7m77QcWKfELWAMSzErRf/1EAgMNrxlg6A6+rc07hNE0kFMYrB07GX/a4mBKCjjlUsYtbcPNbs7310tLSMLikhrBal4YlXPDsOfVyhpeXTfXJDje4CY29HEiDkeiKpON8OMH8H14zFoNLBuDcHX9iyZnX+JwxUO7bPGuacWpOBYRTn5/voAF70uP2qDlNmTDbFlOMv0hmyz8etD8mEtqUuVwrBQ6Op+aRpDktEKFF4Y64t97Mp2l91olu+ze13KKqsYXg2rV7rdihbCCu3vVM3Lf3VQ6LkuTfdMs1t2zrlvHKip/zmo+q3YdxV05ZjqgamvqbtP1pn+qRnDEx5kgev/ve1bugX1EF8Z7d6s9soZfOkbtVji8LwRxESBLYeeed8d133xHvTZ8+HSNGjJCSKUV2kNXd8pxzesiAvfDouGtx3chzLEIVzz41UkO1N3B7JxLWQrZr6fAhaFxaVbtbcCfpVeeGaDOqI+XMPaJ2jNwdP/hgnLL94XhgzNXOMD41p5bn7cIb5Xk+A07WVIcU3h88g4Rvs17BTN446nw8M/4G7FA6kBAb/zt79tZLuGeeUJy8/eGCR/xooH1DUtmaz+S9adSFOHOHoxgxiwqnSYz30aBZ+gqWWe/gkhpURspNYZOUh0tS18S8GNPyaGiZFH2RfDOho1rK6Dp4HCL1bYIpF9711OMHH4w9q4anx0HGg55zautL7Qud5EecqY2sGIZLh59Ee0JaSZqTHlY2CGftcLTlfphzQOf1+P7EPtfxZs2CfbFf13VLuRVrzjkjKU9cZr351SVZEBJOL7jgAkyZMgUPP/xwyoS3oaEBL730Ep5++mnlDCnPEekm+hdV4u49r0j9Njc4Ho2VpmkYXr49ikIRy9mLfMKpE5ZZrxuH1ozBlb3u01nQPN3a02qNdSCqx4RNeg2KQxFcscup2L1yR8c9lmaZZ89pCUFYTh+BQYO+muoVv30mz7vS6iEtbft+TPY5p15MnoKa0ND3nJrZr//uQvkOgeEQiXCnyNQ+xlTvKkXgM3BoTmEtT+O1SO1DA7nenrnD0Tiydhzu2/sqRCTspzIEfy/n9inym+QyjlivlpPCrK7jjI//jCVt62w3VD3OBKJ1wuhz+L3TimzrsNKTcBdORQlqzykAXLTTTy2/ea3yWLkx9+dDywahOkI+rUAE+7cj5bMveoIXGpHPOuss/OY3v8GUKVNw4oknAgAuvfRS3H777bjqqqtw0km01RFFPmCu7HtU7ozLhp9MDwvrOZbmTpVHc2rGLJDShA7zsSFkxy90s14eaA3d3Bm5ydzGbS8mvfa0aLDNet2bc0WYbr5Ii5vr7DXXEHLh229BrofUc045rhiEtRCuG3kORx5Mgr3nwYRd/gmGluPH2x2QTh8as/5MHn2JxfwqF8e+5e0bACQXEqx1oFdzSuo/KPuTKyNluH7387Bn1XCEZGhOlUOkPowm7thEglrDT+0iPftpwxysaduSDqP5T6cQCc6oV9Dap/cD6bqOyt6x/UeD9qOHN+V8ePkQ3LLHRdT79r4rZjph4f4xv8aYql1FcurxnkgKtn6ewy+FeBry0W1HyZDmcSSB9djtDrRH5Iw7FxfAOBE+SmbChAn4xS9+gdmzZ6OxsRH9+vXDvvvui6qqqiDyp8gg5gZSU1yF04YcicdWv8kIbxLcIKg5Nf09uGQA2jqSx9HQBKwQwYTPjHPlUKwb4dHEDS4ZgGMGjscelTsRUzLKoMGjcMqTZabmlEM4ZQqwPsx6RZ/xbdZrH4gIMYp3zNY43ATgw2rGUO+RngxKUEmkTF2dlJlMVzWwBeT9+4/C/v1H4dOvZ6eeoJWhWxN39Wbs1yEW7H1CEqr5k0t6IprT47c7GNO2fkNOB9ak1KS+75DPE0E6TmsARe6Uh3nP6YEDRuOj+pkOoYXW107a7ZfYtWIHyzVrHbYLp2nN6SjbHMgrNKuWIGDPj/hyEYTAm7D554gQFkrt6exZNRzDy7e3XOvT3noNKisrcfjhh+Okk07CkUceiaqqKnzzzTeYMGGC7PwpMoqoOVo6jFkgFW0QN466IPU3rQMJ2fLmSME2W+bRrN2yx0UYUlKL/9vpeGp4i25G0zBp5Nk42eHBzfqsoTmlmfX6WTBnab549xM+t9+fMHX8jY7vRP3mXBnO7GDNI9wIO0QKWFXo2SGSy3uYnQS5pS+SB3Z9cuZJ5Dw9v5YN9ndJ7zl1N+slFRNpQkDj17uegX/v92fHdWL9yUX1syIQvDiO4+2zfzhwP+xYth3hjo/6xeOjILXgouqxmcA0p4JVyKg/cT2Oj+pn9l5jHSXDjz3skJLksYPFvb43SPM82iIxr6msP9zGP//xSNG+2o+Ks3vUJ7Q1+7hGUjLksyBKgktz2tLSgs8//xybNm3CsGHD8MMf/hBFRcm9a9OmTcOUKVOwcOFCDB8+PMi8KgLGaSTHj3izSKdgPmvV3uhCCCGBBA4asBf+V5d2xmXfY3pIjd2LtPsbHDRgz5RH0cZoK2/GqRgDS5Bmvb4dIkFzCM2a7V87nro811HWXyef7XNOSeFd4w9oRpNgeOs1o0PnMv020DSN+hndDaPdBWURHN9G0yz13WgXYUq8bumJ7I/VNA0Dip2WQhqhJakpfd9Ag8i+vyQ6gCf3/SMunHW7a9h9+u2G7kQU6zq3essggVzR/inS2Mess3Y4Gi9t/IQa3uj3pm35NnWNpSH08833qNoZk0dfgl1sGjs3WK1CbLmUjdv4yrv4zBak7Wn6z31SeE/Hw7vn1BlPYeEqnC5ZsgQXX3wx6uvrU9f23HNPPPjgg7jmmmswe/ZsjBw5Evfccw9OOOGEQDOrCBZrQ+MRdNJ4WTUmYW+YE3Y+EacOORzPrHs3na6mWUxMAKA0XEzNGwmHEbCfTib1rGHW2wLAi3DqDntVlEe4Tf9NWvckYRkwaRpmwuUgV/J4TJjFq6RdO+cWmmPAMBddQJPBtJMgfk0Ii+t2OxtNsTauNKnpcL4qfx1xfhvSgE3WnDqNwO1IcYik9pz2abw4RNq+tIYzLJmg65eqvRQypEke6nLuu/H9jb34gIgQRtJymu4TTjzYv/cIQHtYJrpOr6caAi3LpJVdMqc8W7d44mP95sHhrZcnXY9lJGteng1cv9bf/vY3VFRU4IUXXsCcOXPwzjvvoH///jjzzDOxbNky3HXXXXjrrbdw4oknIhTy//EV2cSsiXALafWyRnM+456SFfs5hTp0hLSQpWMJwSmckvInguWsVZ9anfpoEwC6WS9/TE5YAw9PB+blnNPNXdtc4xXF73AUhObUXrbu+yZZ94IZcPtFnGelibwnT75+MGg8Tus93J06dPrccyoKaVJAehfiogVHVuQeJaOm9H0RYYdIgsiOnaeWsuty363nst58fL/dLb8dW23ctmr03jc7obQLYTOalpgeYOenJ5F2euTlHUnPBO1/Ih2PM6YiU78uZUwOYFxP6Lq71tf+bsRCJTlEyl9cpcn58+fj6quvxrhx41BSUoJdd90VN998MxobG/GHP/wBp5xySibyqcgAVr2pWCMUNWmyY6wQ2jd5G9gFh7iLW3P3/Xf2+E3OVSxCNz9pb729mtMSsnDqp39jCWV+J8W0Mnt63TTXNDI9Iefacyq4YOKoFZJfyfOeU5f7Cc6jZNy89Yrliex+IZ0WG2GzXvun0TTiSjjJbNnuEImUsoi5Mw2jj7L0o2qvXp9A0zThBVo56fp62meQfJ765gbblQyw/Ha6dWR/o9RRMqaFEXtftqW7kfgsqe50JaKW1EWhOauk1VNRPwiiREJp41DesY/VZzvMej3k/bjBB1l+8ywu81mKFVZ7dH3j+vp6DBs2zHJt6NChAIBRo0aRHlHkKXanQ26Yw6zp2MII6c7de12OX+1yOk7f4UjL9XH9diPmrcdVc8qGNQiIa0613jjT3npLQkUp1+6OtCl9CM9Ew/9kl256KHOIcF8t9SlI82hORR0icZjsjKwYZgnhmodMHCWT8tbL0WZzRFgSzQZJc0p0HEEY0jS4fyleh0iimqTcKG1F8Hg4SkYIveAcnuQzsgQqxze11SHXRT7NOvcAnAv5YepJB87Yu+NRxl2P2N7JeXyNHEjxFJuEUxljn/sGEXfOGfZjPDru2tRvXU9wL0KIk799hq/l4khE+CQaRS4j0HjtE77fzn9QMClrWrXF/fDT7Q9FsVZkub5bxdDe8GbNZtI7HTt/Yo05LLjflkZ3vAetsQ7UFvcT7gy5zjllHSXDtaBgxt/xO6wng55I8eyruXCnE7BdyQD8edSFXHE6V0Wd3LHnZcz7LGjOevyS3nPqjuggR/uK7m7r3XWnADC2egQAYEy1yJl59BV3Ur1Y17nVEpb0nAzh1Chbt7QUhUf/SAWKQ0XU+0WE+iWyeBZEb8pTM5VZL5mg3lzUrJe47942rQ8TjtyiURlJL6ib075v76tcnqQnoNuOSjFvTdHg/o68kM16I8z7PFy800/paXrIe0gLYXj59vjdiJ9ht4qh+MGg8VzPuMG2Zco/uKTLCRMmIBx2dq4XXnih4/rXX38tJ2eKjJMLQ01RiDxJtHjmhOa6R0xcMDTtabWY9QpMIHS+M077FTn3DfLCNOvl2XMqYLLilyA7RvtAU9PrPbU0lHaMNaxsEJ4df4NApO6aU8vgLVpiAWktDZN6Xm/NMnB1iMSZzkED9sT9Y36NncvYHiDt6YU0jezVkHBtSdu6lFduGjyDv5EuDXLbyoVeVREUD475DWY2L8V+vY5iTh9yJCJaGC9u/NgS7pUDb8PJ3/7Bczp0QdbHgiJXf6EgElBfLmrWS7pv/660hTdzqEfHXYPP6ufgR4P2J4bds2o4Mx8G/YsqHdfY7xSwWa/p3b1qH32N+Qx+st2B+IntTFoafPNZ0p7T/BVPXYXTq67iXDFR5D2iK/5BdCpFIXKVtJv1njHkKCxpW4szdjhaSrp24VeEdMehu55xCgA1xdW4ZOcTMWXN29Z4eNJiCac+v4e/FczMTmPswsS5w36CnkQcJ25/qOc4HW+QIyawZkiDTXriyqN5F9WciuhO07g7VDPCaVwHupPm5jxaA8BYDDK1b0Lm7N6+afBoTs1BcrAKKSQysnIYRlamTf0vHX4y5rescginxYRxTXjamJV5pqrAmYT77HHjPqGDsTuVtO5BJc9zhpcPwfCdhgilbc/rTwYdiMElJO/TNm+9zoGWGP/Vu56F+1e+xMyDNRpnPCyz3uO3OwjTtn7reNT53uaxgz87IrgedcZh5HpYzRg8sea/aI61y8pWVlHCqSKFZT3LbXKpaYGMWzSNqN1hUVVRucXE0i/mSbvoBN4cOq05rWY+c2jNGIdw6le4yDUzLZmxmQcSwCmYVETKcNWup0tMkX+/D/nZ5D37AD6malfMa10plA9Xh0gi3noluNOn4bZbKqKFU162RRdSHJpTkDWnYcI3KdIirqkNKx2E/kWVaOphH6EjqjlVZr19D/sXp2lshKxyONMSQdVM7wRm1mvfc8rh5M6OvY8KWTzWCuRFcDXkwAF7UOKxzS1twh4tS8cPPgj/3fKV5ZgcFqR4zMoOe1ldPeIsy5yCBktxkan+3f5NSd+mIlKGqfvdiJO//WM6XP4qTgOcqSjyD+FzTn2YFIlqJwPuBKwaF29p6SbN6cDi/sywJPMXHpgHbPv0OOpvouN8mtkvCoySO5UNxmXDT7Y9Lr8+OCYGAdS5u/e6wjWMXYvHO0kwHCPRCGkh1EXJnhtp0AY38nW2t95/jP1t+r7w97MlqNH2nJLbAM+RDJftfDIzDMA+K4+851TR13DWNRm1IDsOkZTmn0ymhBK3VIhO4Wx9oHmriyVu6R+XLz67hV6QTvoilj2nfIi03s54t2iWuNK0w3vUmXN8yl/pVAmnihRiomlmtQJm0xRZx2GYMXeQ5s6c64DklJYMXGa9AFAWLsHvRvwMI8p3cMTDgjU55vtmaUT3t7DSEJc1RLQG9rXXYOpA0DMx3oHY68KFmwY1rIWwLdoqGCs5Ti97TqsiZO/VPNg9oWqgTMwC7pPY2vJQ77/Wq4q+jagljgj+xuBgF6AV4tgXtb3sObXPEcrDJdzxBYGu68x0ZeWIlIbFnN5jO2Rtd2uLd3qKUxT7djdaeQbZ12QaJZwqUmTSyyQr9uO3O5gQXm7eWJPrEobXRTd4zXqB5Ib4/U2mMH6PkuFzcEEwPSScz+iXoM/cCqJ+OldM/VsGeCmFQcX9sV+/UThjyFHE+4fVjCFed9OchrUQfjr4EA854sP9k8v7ZiGQzzmlak454uT5VqIOyQpnqqDgRcZxE3Z0yNeBiC5mKszIKRnzOHny9ofj8l1OsabixVuv7RmvZ9CLH6lHxrEI7jhzmiW4+itnL956He3XnN+gGoRLxMWaVTilzV/t41/+6k2VcKqwILcR/nu/P3t67tLhJzmuWTrcnB0x+c16DYSPvPHbkZuCOARIHx9dVBYVNVGzvxuvd1U/aWRrETKkhXDbnpfgkt52YC5bHcB1I88hPsdj1ktyzMKC9p1cNacuZed3zyk0shaaXi/c0+OZxJnTdJ6LS/irgFayFXzwnJfMui6Cql7ZQVaxRxOx1N8TdznVYTXjlg5XH2gaQKzWceJaWS/o0C0J0/tNf5DaQsR0+oP5tn1hk9/RZHYanFeFSUF761X0Hawrbu4dl9vEq7qonPk8/R4hb5I1p2Szw3K0xjo8x6XrSbPeEDQMKPZimsmh+QzQIZJUzanUuJyxZcJ8RbZ21mts9qOHaAKmm8AelijQkxYj3M459TPE2wXHpOaU36yXLz33WmvphzTNUhCFZFKl8IGtGtD6bJEJp86x5/Seva7kjo+VL1soxvNCyRU8B/RPWkGdNuRI7mfct0ew+2xSf2f37Cp2/rQ5qHztMCGRQM85NR8lY74/qnJHSzhLGTGOlAvKotAtVtopFoVM33tjBRXRyaNbGNb+SFFCAgdJ80AaFEpCRXDsyONQCRp9WQIJbIu2YkBRFfcGdlHnKazByvdRMj6eJw+y9LITFV7t41cmzHp9xUWMzFsKPxv6A/xnw4eu4YpdJrsy26P7pIp0zccg70hOIwqDJAFch841ASJNokIIIYG0RtquOY1bctRrpKY5ryn6DrwePUvCAtoQjnHIvLeQD47FUEaYfPYE6hdSf1IZKaNatdj548hzMa9lpeuZ565fiKg5tV7z6unZ7b6IZ2Fa3x+09laj/PjTqAv443CYIWcet7G9EFFmvQoTYk2PfeZfiD0hZE4WSVqX3DeVa+xpQwIJDCxhO0MyI2JmA4gfZcGXB82RF1GC1xrZzHqDGCYYK6bZpDxciuFl27uGc9PEhLWQVO0pC/LeZu/xOY6SEfDWyzuHJoWzlxfLq3e6HQW/0q7IXbiFU4oXVTqkGhps/crRoTbr+LHPAICjBu6Dq3Y9HdFEDzOc27hKGgft8wBz35lJwZCUPhDkQjP/+9Rw+AQhxRqc5tTlO/fBhqiEU0UKkUbo1lRkT4KtmtNgGuqw0kEAgB1KBwo9Z+SnvrsJgLunXsuzgp0O0yGLYLk4lVHeV9KLQ0WYsPOJprjdRAJ/y+6ZWKCQkkQG1Qt7VO7EvB/SQsKDnEjuLcZjxHQ04p9e8qFR0iC2D+5v4AwXsVlAXLDTcem07IsZJIdIfW9OobDRmSAfN7FbxVDuOES8xvPit2r27bpNWkAX5/jBByOEkOOoNN5Yebz1mjWcIt9MdIylhdahO5ZrzGkw1RRC+WXf513QtofKBcXI9iU13GHH99s9wJxkjqwLp8899xyOOeYYjBkzBj/72c8wd+5cathoNIr7778fxxxzDMaOHYszzzwTM2bMsISpq6vDtddei8MOOwz77rsvJk6ciC1btljCzJs3D+effz72228/HHLIIbj99tsRjUZT99evX49Ro0Y5/ps9e7bUd881zA1vXstKX3G5TYLZelO2qQqtO+M1qaHx+5Fn44whR+Ga3X6eusY3re0VTlPOkPiFU0ssHP0e85xTn9MNns6b5TTmzB2OxlBOwV5IZNOd9SWQ44Qcv/10j3ImLyIMLOnPvB/WQh5Me705RCLhR6PoWH2nPE/WnLKPMkiHc2J2qAEAx253oGsezFczpalW5A48E9jf7/ZL7G7b9+YpLUu6os/yPNCnJdDA2aF0IP578F3Ufapupc8659TVY7xL5H6+vFkgtnua1mx/8zsj8gKvQEofmzJh1kuLd/LoS/DI2GswyOZgsy9Y1Gd15HznnXdwxx134Morr8Rrr72GUaNGYcKECdi2bRsx/N///ne8+uqruOWWW/DWW2/hmGOOwYQJE7Bx40YAyQZx5ZVXYsuWLfjnP/+JF198EeFwGJdeeini8eTuoC1btuCiiy7C7rvvjpdffhkPPvggvvzyS9x1112O9KZOnYovvvgi9d9ee+0VXGHkGJu6G1zDuJn1yoQnvkEehUKD2uJqXDL8JCGTDzNdieQCh4hwKuoJjiWU8WjFXNYpXZ938wjL232LHDVDEi6C8NZrR9ZAZAjsu1UOY4Y7McBjXgCgIlwqXG41Rcm2YDcZ9jI4itV0G5z7m2hmvTzp7Vk13HGtOx51BjTywBEr795zReHAU9f2ItQ1Fjp0hJH5uqREUzJkuxBvpeXneDhSmmHb0XA0h0h+zXq5xwBdt8wbHIJggA6R5MRL/2XH0HCOrR4hmAg53tqiauxSMSRnt7IFSVaF06eeego///nPccYZZ2C33XbDLbfcgpKSErz22mvE8G+++SauuOIKHHHEEdh5550xceJE7LLLLvj3v/8NAFi9ejXmzJmDW265BXvttRdGjhyJO+64A0uXLsVXX30FAPjkk09QUlKCG264Abvssgv2339/XHvttXjxxRfR1tZmSa9///4YNGhQ6r+iosLelCzUuDWN2af4OUqC9KzFEQk1cvkNmEdDZE9VyKxXMD9+hTLW+/DkxU045X0fvyt/dnNLGfDuFRNBB/Dg2N/g4bG/czXju3KX093jYwj1tNzeP+bXuH7kuagprhZ+o18M+yFO3v5w3D/mantGSLkTiNmfeTFVc0q4zrsQsmPZdpg6/kbLtageo4RmTRz73kRCkSaISbIOssdOP8dc8OlNVV0mkSkTflcBkjAfMBbygxdoSJstyJgtrqznhmauhnn3yWHaUuYSxc+HHoPrdjtbyOESC6PN2+d9faFVZs1bbzQaxYIFC3DFFVekroVCIRx66KFU89menh6UlFg90pWWlmLWrFmpOAFYwhQXF0PTNMyaNQtHHHEEotFo6po5jmg0ivnz5+Pggw9OXb/00ksRjUYxfPhwXHrppTj66KM9v28olL3qZKTtlgf7fVZ4DcnvRUdjPx+ix2+eYBphIqa0QqEQ8dlwyPkcC54wFqGYll/b9UEl/bm/t2Z6r3CI7IHUzPZl6b0H9jR4Ot+QZv4uyQFD642LJ8+6prPDUW458uqakjmwhnDY+sSAkirpbcpeBrNblhPDsJ430Ex/VBaVYbci9/1l4TDDZNtYDdfoeSDuwQxpGF29M0ZX7+zIo8EPBu5LjbMyVIarRpzmuK67FD0pvpClDfPVtxS2oEY9Pn+n41ASiqT7ibBz0SJZZ61p0xhcNoCZDfOzdkE41c+aCieb/b4iO4QJ46JzbCWPYTRCmtO7byikWdaIwoJtSuMcI1n9TV+t37TzRWWXh70u2eMPE/JhjCNps970mB22za1Y+Q279Jl20TRkGpvM2dJtv81zHHud5Z3TkPKjEa6HKEoNZzrkebK9jEIu89ricBF+uN1+1Ps0aHkrCSfHNsf2EOY8wBZ3nrbRrAmnjY2NiMfjGDjQukettrYWa9asIT5z6KGH4sknn8T++++PHXbYAe+++y5mzZqFnXZKOgLZddddMWTIENx33324+eabUVRUhHvvvRfxeBz19fUAgIMPPhh33HEHnn76aZxzzjloamrCww8/DACpMOXl5bj++uux7777AgDee+89XH755Xjsscdw1FFHCb9rJBJCba2Xcy/lMmAA2215v3iZ5XdtbSXu3v8yTPr+MUfYUCiE/v3o55iGNI35zv2qy6n3o/G0BzsjTHV3Om81AypQW+p8tp9W7niORmlpEdc3qepIL3TQwpvTBYCRg4egtpLve5fXpz02DqytchUwa1GJfxRfjeGVg1Fbbk2jvNnd+2O//mWo7Z98zhjEQqFk/ayOlrEeBQAUl0aY5ZaOU0NJSXoyZX8mFObvMMMhDTU11ud3HDiQu4x5qaoqs+SzI97lCMN6d/M94ztGws62/++jbsQvP50sFLdRXhqjXZWXO7+/PWxHm/Mc378ecpnwqnJRkVMILC5JDyekPBZF02nUDKhw1F8WpXXWibnxra6utQrOLYTzhcOREKqr03XbT19sfjYU0mA+S8a412UyBXbrcxWFRyPhfG97nROt/+UVJahOWOO1xzmgfwVqq/jjrOosdQ1TW1vp2HdtUFbGN4YWItUx51hZWiK/PKpNc7Idymsd8Vd1OvNhhEmew5zs/4xrPYl0h+VWB/uB3WdGIlaBqbo6PX5GIuk6c8O+52JwTdqazNwnDqytQj+dPm8ripDrHik/GjRHf2sekyor0vXd/rx5PlidsL53P9O8qMTlG1dXlnqqA5Wt5Hnm4Nr+qC2tRHW79TtHImFqOkVFVrEuX9tozp1zquv0M+luvPFGXH/99fjxj3+MUCiE0aNH46c//SkWLFgAACgqKsIDDzyA66+/HgcccADC4TCOO+447LXXXqk4R44cidtvvx133nkn7r77bhQVFWHixIn47rvvUqvrNTU1uOCCtFp+7NixqKurw+OPP+5JOI3FEmhp6RR+ThahULLRNja2I5Ggm7i1tli9CjY0tKGtjexpMJHQ0djUTk9UTz5Po6WlEw0h8v1oIm1KZ8TR3pae8DU1dkArdnZazS0djudodHf1uIYBgFbT+9PC279tuKMIDd3ucQNAZ2f6vRoa2riEhN3DOwGdQEOnNY22NqcwZae5qRMN8eRzsXjSRDeR0JPfutX9+faOLma5xXvjjCcS6O52fkd7OB7i8QS2bbPWtdbmLu4y5qW1tQsNxew4We9uvmeYksZicccztSBr53jKVdd1arjODuf+SHvYxk6rcHrQgNGOsuWhJ+o0d40yvjcAtMXS7aSpqQPFnfznMrZ3WPuh9rZuYhqtnc5+tqcnjtaWdN3mafc0LM/q5HvdpsU1tz5XUXg0dzjroL3OCdf/9u7/b+/O46Oo7/+Bv3Y3m01C7oNAgHCEJIRADkDCqQXqBR4gUqiAyCWIR78WpC22VrQSD0SF1qPy/SoeVVHBW2q/trZfi4oHKKL9qt9WK+IPAwFCkJCQzO+PsJM9Zueendnd17OPRw27c3x25jOf+bzncwzaTwTnI6ltHmxVn7cj3dsDNTYeizip1/Hj6u6h8ai5KfxeeeLESdOPR2C59duh14Zt/5jEORSXOZVd2tq67kEnA4LTQ4e+h++4TB3tiHyZ2XayPejfTUdbcNB7aj+nvnPDjcFJ/dHa1IGVpZeguy8bRw533YMaG4/haED9KXQ/J0P2IZeezt8UXN4G3pO+/z64rhWopaXr3Anfu4KWC6wXtbbKn+Njx1p15YHmY9L1zOYjJ4Bjzfg+5DxL1Sv82tqC781Ou0YzM1MlH26Hsi04zcnJgcfjEVsr/RobG8NaU/3y8vLwwAMPoKWlBU1NTejevTuuvfZa9O7dNdFIVVUVXnrpJRw5cgSCICA7Oxtjx47FueeeKy4zdepUTJ06FQ0NDUhPT8e+ffuwbt26oO2Eqq6uxjvvvKP79zqhgtLRIcinI+Srjg5BZhiZoDiWS25fghD5eyHgc/8yroBFI60bmByl490hs//g5cLTIrffdE8qkl1e9ec75HdpmSgoVIeKdSMdu44OQdUbN9qFDtnfNiyrDHuPN2BEdnnQbwldR+srSoTQ9ZXysg5qtin3feB3gTMlqk2n/HKntid33Uh8HHbcQ/59Y/kCXcdRatZmpesvcN9Ch7YyMey6iHQcJPobC0JwOWYk30id49DvQvO9E8p+ip7QawyQug615cOODgHn9xiDrd/+LfI2Vd7TupZXcb/oENBx6ua7adgqCIKAy3bWi+snat6OdK81/Z4UsJ80d0rY9l0yZf5PB87EbZ8/jsuKz5Usm5TOn2J5LlMm+79yubo+m5g/DACw73hXnT+03iGVp6VIptvlCitvg+bYkPs9AceiJK0Xlva7EOXpxac+C+yj7NJdr5UT6Rh4BE94GhT2E3rMYvUatS04TU5ORmVlJbZv346JEycCADo6OvDWW28FtVpKSUlJQUpKCpqamvDmm2/ipz/9adgyWVmd3Qh27NiBAwcOiPsIVFDQ+V7LV199FYWFhRg8eHDEfX766afi8qRmoL7J4wFVvOfUCZM3aH2NjLlpNlYIqTln7QoTIi0sPg9DMgdgZPYgbPjnFkPpyUrqhiMnI7XqmX+uE3FGPN2/WSouVMx/+o9v+IvcI4xFkvhcz2tv1IiUhmS3F6vK5qB/QaEl+yVnU1Oma53YToCAopR8/CCvFm8c3Kk3aUHUpDNwmUIN71qMd1JHzor6h5F61oT8WpyRVx0xrxl9l73ecjU0zfKTYxo7pmrPSegvmdpzfIT0yG9H7yvuIh1L76ku9U6o20abrd1658+fj5UrV6KyshJVVVXYtGkTWlpaMG1a5ziilStXorCwEMuXLwcA7Ny5EwcPHkR5eTn27t2LO+64A3369MH06dPFbb7yyisoKChAYWEhdu/ejZtvvhlz585FSUnX1M6PPfYYhg8fjuTkZLz++uu4//77ceeddyIpqfNwbN26FV6vFxUVFQCAP/3pT3j22WdRX18frUNjC8kZ6PRuy8D3Uhdi8PTj+vZplcD9apmpN2xlg1S1nEoUglqSoDRbr8/jxel51RH3JaZDIa09fXloFfzdI6VeJaP/wLngkkzboPRi3duMxGnPLDO95oyB1PWeUwN5PTS7RNqU1Cun1FwXeshVGH5QUIu8vHTHdaki66mpUOt9/63sDPkWzNZL0qTrKHakQz4fhQemGibMUsjHsv185F6PE/ZvdWmqySrFriOfq95u+Pf6zlBwwGlPowyD0yibPHkyGhsbsX79ejQ0NKCiogIbN25Ebm7nE7pvv/02aJbFlpYWrF27Fnv37kVGRgbOPPNMLF++HMnJXROB7N+/H/X19Th06BB69OiBhQsXYuHChUH73blzJ9avX4/jx4+jrKwM69evD2tZvffee7Fv3z54PB6UlJTgnnvuwVlnnWXh0bCfmdnf7IspsIBwWstp4H61Bqd2FjqhAaKatCi1nJpleHY53jr0sfhvLU9blUgFpw/WrAx7v+1PS2Zi3f89pXs/Vjq/cAxe3L9ddhmpY5SelIq7hlyNaz/eYGj//qMXKdBXov38heZV6UqZVCtBlrebJa3iep+SU3xTk7eteRWW+RKxN4kqUTouSsdf60Pa4DBLqeVUYdu6H/qFz5SrxA2XYq80Iy3BahtLjDS6yAo5lrcOXoITHV1zF4TmA6t6AzmJ7RMizZkzB3PmzJH87tFHHw369+jRo7Ft2zbZ7c2fPx/z58+XXebOO++U/X7atGli620ikb64IweCRhoktL7ntE0IGBgf1fulth9Z4NManJpHahygqjSEvLRbTu/U7uq3K7NFo4WroeDUhbDTmuoOn5yk0Cc9cZEaHegM4j0WZdYrB1yE83qMwZIP14qfqa1I9k/raXj//vOnJTgNuslrPCxh3XojLCf1aoWfDJiBvS3faduhCqy4kxQ1uSJJR7de5f1qzI/Mvyazoluv0vfWnUPlbr06txuyYdm6oIbAUHF9ve85DXwvq2IAbOw99H41WaVB/07EB6HmHEmKW7q79Zr8xC/w5hzxQlWxyeLUznFgA7oZr6BL7TfXm6FxVfMKHaMVGDVpuaDHWFPSo5zWrq68UksaqVdJ5R+p7anJoz8vnS35ub8rqdaxZZFIpcT/gm4t63R+bjzP+VvdtZyH0LZvTfsL+XekcyPVrTdf4wMjtfql9bBkuxTb1FxfHgtaTjXHpoZ3l3gVZj/Jx/gWHA6j40K1bk/LsuEPDNVtO3w55fXUBMJKx19vftXyUNWqKyIRH4QyOCWR5jErBsa/yD9hCl83eKyj/m69tw1eiuUlM3Fe4RjFZdUK3K/X7ZVZ0lpGZvoFoFjy9kvrqRgQWUH6dxnr1qtme2qeguZ6MyU/j0a3m9AgW+0RMeM+F9itt+szAbdULMbqQQsi7VniL5X7C8sDEYJTnZN/6LFi4CzTt0lxIEJW+03FYvFvrWNOrRg2bfSaSISuhZFIHTs7Wre0Bi1aWgEVe/Vq2nPgZrUEyP59hc87oXW75jS0mNvo4mfdVIKxi8EpiaSuK6ue2Gi9iAPHOkZaVU2hl5OcgTO7nxbxxeKhtAZ8eie6MIPRqoLi0TOxhqRlS1J50EhFQO3EX0YmXepqOTXn+lnc93wAwH+UzBA/039tmtByeqrbcug1Nzy7HHU50rOeG6kMq+3Wa9bxViPbm4EphaOjtj+KDZHy+YjscvFvrT0q1Awx0Hp9WTHuNbFFP4Qwdh+U/97rUngQHTZnhfkC83RJt14AgL6pOmdB19utN8Lf0stakwfM6i4cS2wfc0rOYeYFoHSRyhWqUt8EtpxGszuRS0UlIjA9Wm/4Zgb/agLjwEr+mNwhePbbv2J8XlVnWjR241Hel7KC5Gw0tB6WXcbsLlRSXT+llzMeTEXalxsuTWOEh2WX4ZVRtyu8Ukl7dym9goJvlT8j8JxpvYbD2k01dOvVsz+1ErlrI0kzO0dc2X8axuQOMX2/SQZ7wTDvB7M6OJP83sKH4f3TeuKc7nUYkjlA8nvdr5LR2ePnvB6jkZ6UiuHZZRG3rGW/atcNHvcavNysXpPw5Devd32vu+VU/lgm4pWWeOE4RRR4AXgNPlVVupjknhy7XW5MyB+Gmb26ZlBuR3RmiQ3lU3EDT/F0zRatteXUzEIncJKNMwtGKC4/v3gybhu8FAuKp6jafpY3XVN6ZF87I45ZdAWdZ/Frxa2b3XIq8VnIcrN7n6l6H+KEQRFuVltG/gY3ls9XvT0g/JpRrrhE+FzTXtXT8p5T7fdwdeObzBrjq1YiVhpIntm9jSYXjlK1Ta37NX6PT9zcL3kPsaDXhlXv1Ty1dYV9u/AfJTPww4Lhkt+bNSGSWh6XB5MKhiNb47we4n5lv438a4LzefBWhmWVySxrnmj2CHIKtpySKLBw9Y8tjPjaFpf8bL1KBbXSRfyz0kuC/q30fk2r+NzJisukeVLEv7V36zWz5bSrsjE+rxp/anhPYm8BrbxuD6qzBnZ9p3DOlg+cqSk9al4744K+At1QdyapzyQ+DGyFWzfkKgzO6Be2TKSAzN+yGOm3pXh8SE9KU0yrHOWnrRGuXVO69cr/PmUaW05Dfmqk8y81Wy9gzjhbKYk76o4iMb+Cqm57Wverd/6AX5dfhs3f/AXTeo7XtX48iFSymr8f5QBS/7aN0jchkqY9a1lUalhawAb6yHQHlqu3BQaG7YFvjZDYp956ifJjXQanRABUjDcwSOuToMCJhlI94a/9sIpPxQRH3QKCU60tN2YWOkbHECmlpNCXq2l7HTKt3Woq9aHB16icSrx9aA8AY8dN+gXq4ectMI9q74aqPObU6JnXPVuiCVnOv2ct13Hw82dtiQjrAu2Qbr0MTymUXF7bPGK1ju0Z368UvfeL0blDMFpFN+NEkePNwKG2o+idkh/1fRt7SGusTDTnLadKy2q5v4QvG3iPTPVEbmhIkq3vdm33zcaPcB1+LLOoRcNHErDllN16SRR4cf/0VCtZpEtC6VJRHnOqLeuNz63CpPzhuHnQQk3rGZWhonUrMIDV+ooAM8sco5MxBZ4zMyZ26lAxgZLsu1CFrqWA4NfYGCmsf1EW/l5lydZUEwIaK2dwlDq8gfuz8nYmSLQMK51uY8czeOORjmvkfGHN0WBoSlpkersh09tN9/qyvZUMBqdSPUNIWuCxvmfoNVjWbyomWzI5mnWluNGH2WGTRaq8JzuxFVBugszAB7BtHSeDvgv9LVbd7514zKzGllMSBWb/AWlFpz7Td1EoBq8ag4sktwfXlco8sbJI/7Se+FHRRFRkFEdcJvC3aB9zal6h0zu1wLRtpXtSceTkMUPbkOuKrdQtNPCJp3+J4JZM/YZnl+P31dfh8g/v6Nqe1IzAJuxPbsIK409DQ1pOXUBnSq2fmF5Pt97gCZE07s/gTNGJd2snu5hdkbSqR0Rgt9785Cwk2/gatFjW3ZeDC3qOs2TbSqfUyFhEo+PzdU+IZFXrouRn6no/6Q/Uo3NnseM1RXZjyymJAi9eNYWe7CIK69v5yhUtXC4XFvSdrLobk8fGS2poZglWlc3Fw7W/iHjjkLuhmD3oXq5bb6DIN43Q1rLAY2ssraE3SOn31mmb/ViKpS2nEp8F/yzrRkYJARNayadIes9GZ+uVy6uL+56HqswSTdsnMovZde+gd1PKbFvrNRU4HGX90J8kYPXX+ZTn7tBf37DrVUJhs/WaNPTFSNArVx8Nfpe3PKsmLtLy2+Ll/cOxESFQdEhVbHV2kzPa7VcPJ1yUat+f6mf2cTg9rxo9UvJ0rWt2WuQmRNLSEuZPV2DBb/QmEBo0Ks3Wq78HgXVVvvSkVNn9Rb5yjafJPwZUS/CtIm6OSMv42ulFP8A53euCl7eo0uCEMoecRev19ZuKxaqXNbNbb+CEbLnJmZrWTXRO6WZp5D5otIEg7PVeKtezasypEXKBupbXHupOr0J9yCn5LZoYnJIoqOVUxcVg5EZpRYuSEyqKdracqqH3XV96yHXrPf/U+NHJhaNUb09N4KV6W6EtpxIbVHUNKO5H5juDvyJ0PPSRtmNRvIVpv9aM/F6tkz+ZVRb09Mk/6DHY25jikNZ8PiK7HL1MmExH6wOY5JDZehOxAqxXtOanUZyt18A5M/qAV+9QC+vymdQDZnX7lW1FlruHq+iBZYbQ/ZxXOCbisvFyS+KYUxIFVf79DacmbEtKvL63KS0pRXmhAE46CmanRW5CpJm9JuL0/Gr09OXh0a//GPa91KrBLZnGHgKEBp5Sgagr+M6mSzQrfB1Ch6r9mdGK6D89gdvSclPU3K1X49wbemcyDjW7z1l47bsd+Kjp/3StT4lHz+WlthXL7Iddfxh+g+ZJ/Ch6FMecGgpOzR1zqjr/aeurq2Fh7Zs6v3AMXty/HWPzhkZeT0OC9dZrFbsLB6ThyRE3IlvunfNx8sSUwSmJgiutrlP/b824tXidGjvwnadqOOk4mJ2W9lNjTiMFfkWnWgsi7TdsnKHEwxO9wvcpkUYVuVyppdxoBUALt8vd+btU3JseGXZ9WMuJFkrvcZUS/HBBK40tpybdoJNdHkzIr5UJTuOjIkBmCs6blRn9FddwqwwQ5XsracfuvPo4pZXZzvqDmt4pkg+ZrWpd1LHOlQMuwuJ+58tOBqYlvdHovScbmEYpDdHg7D6IFFWBl6DRbrdKhabWV8k43eicSuR4MxQLjlBWBS+GZzc14abnD2AM/0Zx+HP4wxO9QvOf1BPP4L1J709pjLFXptJp9i1ayxii7r4cZHszdO9LfI+rgb4VWoSOo9bardfIsZZ93ZGB7VJ8Cs0vt1QsUlzHjAkCjZbZTgm4YkN0jpWV3XqNis57TrUsK7W0cp3ByCzVofuUm2dDjuLEipomRIoP8RUhkCFqp91Wty15lnTrtfGqvKH8Mjw+/FeaKxlOCtLNvtFNLuyclGZmr4mmbC/wWBl9eBKe/5RubNK8EV7efdvgpShP74NFfc+PuK4VFYto5Sep2Xq1PLHVevlP6zk+ZH2l4DRkfzqPtQD5sipenlKTeUJzi5pus2bMVcDgMnqidqQVdmRrzyuZB+D+vChdPmrobeOAPK1lNuHj7SesSYOG8iFe7kns1kuS/BdkpAvTaKFoRSXazovS5XLpKkidNPbW7JSc1X0khmWVI09X17Hwc6n2lQpqaH15dsSW0wgVz+qsgbhn6E+UEmEqQRCiNlGHX7QqD8luL9I9qWhuP65qvzVZAwEA43KrcGoF3aLZNZtiX9irMlRkPq2zvKvZr+b1nXMrIpXsfP+lXG3LLROchuYzs+4hbpdb5cvrtNGSuqMnv7cgBRrrifERmzI4pS5aZ0MtTuse8Tul60PtOzDjXbSfDMqNMTKz5dwv35ele93QG1vwjdjcllOpsl/N/cCMSqW5AlsyreO/ftV0fZaiJ38FdplSWrvQl4utI29BijtZ9/6AzjzohKf3FDvUzAQeSm3LqeyESMymUROtFksruvXOKPoBfKfKRSNkAybZr6w5dh6XS3zFmYpkqCaX3sDvfG4v6nIqTdgjAezWSwGCJif1t5xGWhbquitFonVsZryybMypxGe/Kpsn34oZcLKj2Qqt9gYc9J5Tw93O3SH/lhpzqr9brx0ERK+7WW1WGQBgWHa5+Jm24FS7k0J71/oqKoepHp8plUi5vBYnEyOSicIHDCjnQbXDQeTym/EykdGt0yjeG3WUbwv7noc5fc7SmyTR9WWXRvxOPqBTT+n3l3Tr1bWs4jVkvLAOqxcFJO/p025ClrebOdsNoeXajpduvQxOKYD5LWdSuidnWzJ9fSxektHsllOa3lv2+8BzbtZsp0bIjRs03q1cueudmmsgN7lzUqGC5GzNaTD7GotmK9/SfhfiF6VzsLTfheJn2k6JnpbTgOBU4/pGjot8XrP/OiGn0d6t15yHlAwuE42d3XrL0vtE/C5aqVpXeZX4t0dpHgKdRXXg9St/vK371dpmDI4PznnsT7YLelWH+F9jF9y0nuNxpO0Y/nzgg64P2f9IFM0JDbR0EbL76ZsAiHeTrpZT856lhXe90/eEOtntxTOn3QyfgRn/YlGKJxln5NcEfaZlHLmeciWwy1Y0W3nk8p3d1wk5T9iYOpWt/Ib3y+A0aqJ1rPXel+ym3IoZsKyB/QS+Dk1q0iAzzlPgIQ7tDq11KJz+NLDllBJY8HsIO7NG5Iyu7mJZ0u9CrCy9RMea2sXiRWnnk085dh3JSfnDAQBjcoeIn5n1oCSQmdtKT0qFV8c7Q61oOXXSBFtW0lopM1KJc+o1Ss6k57pe0u8CVGWWGNsvXyUTNU45Uk49Z0qPwVVvR8PPU2w51VmrCTzGoe8GN2ueDqVWXaeeZysxOCVJaguFNRWXS37uhG6hscC6J58Ss+RpGL8SzfMXmKrlA2fi4dpVGJlTEbacmUGCmiAuWk9FzWTnTUxLYGw020crYOwcxysz5jQqqaBYoidndvfl4PbKKxSXk6tgx0oZReopnVOnPjhTO4mQke0AwXUWq+bvCJr0yBN5IikrnwsnykPnQOzWSyI9T4GKUvIM7SfRtVj0Xiw9As9KVFuhQ24wPVJyIywW3ZbTWLsf2P88SNtUF9GkZW8FydloaD0MAChP74Ovvv9/MkvbftDJYbS8k9BMRiuwsVbe2Slq3Xo1BGexwufx4se9fojuvhxTtyuV/804PIHHeNipiQAjLKl7H0r1re7JnccqzZOivC37KwKmYHBKIlfQ32o7Zmi/IBmcdunmSbVku5KvvlY47E4acyqVBjOfHqrbljlddiJu3eSKhYAOWysrWp7iG02l1ryg5fzdNeRqvHNoD07LqUB3Xw6+Pv6d1uRRArPyEpQvl43umPdl1RxyqJxUlwrMm0rl87zic0zffzTeRz2795lB/w4eCqefUn0rw5uGTcNWITNJeTZg+2tu5mBwSiI9s6HG4IM7RxmVW4kr+k3FiIBXclhHw6B6J5VwpzKZlgl3FDfpoJu6WVyn/mfb/jXs2mg6zcwLofJ9WZjSY4yqZR11nZBDWHcNylVindrFMx455f7h1O6eTjk+Zggec+oN+U56Oa3UtHYW+qR7lElsTXc6nITBKXVxSf6psIqOllOHFqh28LjcuLDnuKjsS+mo29VyqjYPmXnDUzfm1FoWtMWGHKPo3qSiWSGJZhnCSj9pYWVukavDckKk+KNlhv1YZdb4VKu4IvwdtpyB688JPdWchsEpibSMOfV/74TCwy9e+tpbRXn8StffTigsQ1PQKrSZtm1VY04t7tZrNpfL3t5mmia6MJhQTxTH9VVnDUT/tJ5hr84BnHGdkLNYW1YwvzlB9F4lE5XdmM4590vjD9zlehSa9TvNvKrj5Z7E4JREQU+ILCwVrdpyaXpvFCRnY1xelUV7iB1SgbqWMadOlOvNAACUdutteFtqxqdYXTHok1po6vZccNnaK0HbvrWn0+vyoE1o17EvY5LdXtxXvVzyu/ioBpCZrB1zah1nl/6Jyd+Vs19qD8nvO9ARzeSoZlb57IjgPCANVvWiMbNhJV7aaBickkhPgaIvoLHmAk92e/Ho8F9asu344MwuQhPya/HI19swq9ckye/9qUrx+LB15C1h4z6iwYqbZLI7CVf3vwgb/rXF/I3bQNsrArTbUHUtln64FoCTxlrFSU2ATGNlOWpl7yCnP5xMRKkeH7aM/A18bulXmDi1t5gT85LeIxX8WywKTk28j7DllOKOpgLlVOVQTx3RecVW/JF6H5fS+U1ye6xKjqyeKXl4edTt8KhozUz1+KKQIr8o5FSTgyxbJ0TStKz2dPZL62o9sHJCJC0cWjckGzmxYk7mimbPDbnXh3Q4KBAJTIl5R8foOOouegP5wG2EPhR1YrfeeOGMOzw5gpmtoPHy9CZW1WaV4tzudbixfL74mdLZTYnwdDYapANTe/NQNJ6YGlWXMzjo37HTrdcYp7ScspyjUFZeB5bmN2dcUjHBKYcqyWXPA2UpgtDVxdisoM3odnym9LKK/LoYsy513kfCMTglWR0Rnja5Qv6rBWfrtZ7H5cZPSmZgVG6l+JlSQZ8i0dpqJ3/Ws6slIip7Ndj09ovS2eLfLrhwTvc6oynSTduESJxZlEgrJ7WUJTKnlD/dfTmoziyxOxkAgvOmlvK9OK1z7gUrXqc3p89ZqM0qxW2Dl+reRuCDUJdVIZOZY07jpIxgcEoiqQL35KkJSLSso7wfsoXCgQ8c1+KUmy9gX35xyTwxdYqUgG7OLgCzek2U7QZmpWjmmWi8cF2NeKkIkLlGZldYtGWOOaVg84rPtTsJAIIbMrTkpFSPDy/W3YqbBy3Std9ZvSZhfoRjkO3NQP3gJajOGqhr20DobL3h35rBzIdO8XJHcsYdnhxB6mFXW8dJzeuo2JOelcggpcqHmjGfZDITexG4XC64XW4UmzwLsJJ0TyoAoGeK2peEG6d11kSrgshIPUsosdXlDlZeSAcrsxvvymREhxA4c7C23OR1J0m2tqrZymXF5+LHfX6oaX96hdahHHnNxMk9iRMiUQD1LaddFylbTmOFmuM+sFsvfHHsG8vToobtrVKuwD9jL9dG6+itr/oJ3jz4ES7oMS5Ke2TLKTmbVeUF85szOOl+YNXrTbQSgrr1mrNNJxxnufedm5U+Mx9yxksJweCURFKXWZug0HLKCZFiiP0FvS4Wj1Hul9ZTerexeryirCglHz/qNTGq+3TKuWE5R1KimTsXFk9RHH6jjjOuKdLGKXN4BHZNdcps6oH0ltWBh9eqifj4KplwzstBZBupCl9bh9KYU3WuGXCx7H7IGRLx3KwbcqXk50Fz9TqkAiAnkc6dR+P5sOzYxEc9gGKEVMVzRq8J+HHv6HRrJOdxSiDo1HeuGtd17wjtsWNWvcDMgLIsvY9p27KTM3I1OYLUhZaZlCa57OCMfp3rqKz0TS4cJY5Ns7oljKSpOexOeuoWrZREzsOxlU+NzKAdayybNVEjzp5K0ixqYbFyzGkiFBxxyCkPTjsseJWMmZeR7pZT85IQkZnX9ZJ+F5i3MRs54w5PjiBVoIzOrcS8Pudgbu+zgj5f1HeKfyUd+yE7aCkAndQKZ3VKnPNLSS2t3auseugioEN5IUo4VpUpVj48dFKZT+o5Zcxp4IO6C3t2zj+wsHiKoW2amSdL0nphQFoRftxLWy+DaFwXZt5H0jwpGJ1Tqbygw3HMKYmkLkG3y40f9/4h3mrcE/S5/xUWkcecSn3GVgZ78fhLk87DDnkgTRKsGvujFWfrJSI7OWWW/cD6XUVGX7xUdxuS3B4bUxQsye3BvdU/1bye3K2GD3Ss44xcTY5g9TtL/UUXL2h7qKlGO6uqHZ3URMqPcrP0maWbme8kdUjAFg1OGWdFJMWqrpZsOXUGJxW1PrfX7iQACH2VDEwJTJ1xmCOnwqz0mX1Vx8O1zJZT6iL7hEjHSmEEzWuQeZLdsXW5t5+62SW5rH36GqmiEY18Oj6vCp8c/RLjcqsMbysWbkibR6w2NLNoTeZA7Gs54JhxVuwNQlIs69bLlnpHcNJpSHZMcOqgg2KiqHTrjdNjZ0Rs1VbJUrpaTgOn2YZLdoIQ8fpzSMUyUTw67Jc41n5c1U0s8Mxc0GMsXvh/f7cuYQr8wan13ZaU86NVOdbj8mBZ/2mmbCsWrqpMbzdD69cPXqJrPatu/fFaISOi2OBzJ9udBADWTA53QY9xeLNxNxYUTzZ922rJjek1K3A1+yFniscZecII9o0ikZ7LLPDirM0qk11WYMupLQp82RHf5RkqsIi8ot9UcVZmO/hb2NwWt5xGDl1iK6eG3ijjsVXP5XI5ptUUiM9jTGZgt9545qAiyNZuvZuGrRL/FgTzJ4eryirBC3W3Rv092kHkzrVJ+cDs63ph3/NwWvYg3DXkalO3G01sOaUAka+0SBePK9IyEi0KXcGpg0p2kuRydQYCpo6J1CnJppbTaIw5peiwbvZUonBW5Te+usgZnNRhIsntwYC0Ivzz+31R33ehL1f826q8afdwJLl7v2ktpyYfurzkTNxcscjcjUYZW05JJPc0MHL3ta6V2IpAVrCqW+/KgZdgQfHkiDc/Jz0dVyXW0hsPnFRLpfjH95yShJ8MuNjuJCDJFZ9tXdG4LKqzSgAANVmlUdhbbIjP3ES6yPWtjxyauhSXEb8X2HLqeCGVbSecK49F3XonFgxTWMIl+afTOanbq1NYVacfmlWCXU1fYEzuEIv2QLEoFmfrJfWcVsTamS9WD1qAP363A5MU76exyvrZekflVGL90J+gb2oPk7YY+xicUgC54FR6PEFQIa2yFcFpBTtJcc5Jcsp73JzOCQ8SEs3MookoSStCddZAu5NCjmLNtZiTnAEAKPTlWLB1lh9qscNEl7qcwajLGWx3MmKay+VCWXofu5PhKAxOSSRXuY081bX6br0sz2OJc86WXcGpK+hv51bcLi76AZ7Z9wZOz6u2OykJJ8ntwajcSruTQQliWb9pSPOkYEbRBNO37dwSjsg+cvVa59SS4g+DUxLJjjlVNSGS9N+hnzq5op/wQjKBna3cNVkDsevIFxiSOcCW/cdKPl3U9zzMLz7Xsu7PRKSNVSVHTnIGri35kUVbJ7XY+ytxyL2DlN3srcPglERyXVUiXaBul56WU5bsjhVynkvSeuGdQ5+i3IYuJ78edBn+r+MbVHr72/KI0hVDQ04ZmBI5h94HWz19efj2xEGTU6NOrDyMo3AMkazjk3tnKA+8ZRickiqRrkF3wITPck+YAvEWGAs6z9Ks3pOQ78u2ZcKXbkmpmJBXg4MHm2VmiyYiig+yFWEiirpkdxIeHfZLpHp8Yd/x1U7WYXBKoiR35NaXiN16g1pO5bELROxJdnsxuXCU3cmwiSvC37GB8XyXopQ8AEBZN046Qc5lZynDrqpE0gp82ZKfs05rHQanJPK43Hh8+A1IcXslvlW+CLv7crDn6L9OLR2+vL+yzFddOBeL2i7MpfEjzZOC50begmTJso3IXLFZaWWJR0TOwHc0UJC85Ex0S0oN+1xNt8p5fc5WWCIWb9iUqALHYPF5SuxL8fjg5muJiIjIBGqHspF2vFOTKmqeBHdLSkVPX57MNjpx4gXn4pnpwhZ+IkoULO2ItInNHhKxgcEpqaKm5dSt8vbGm6BzsaiVxgcqRKSWWeXomorLTdoSxTMGSfbgUbcOg1NSRV3hJ1+BZwHqfP5zxFAsGINTIrJaaDkzLLvMtn2THB4rAhieWofBKakiCB2mbYs3QefjOSIiss/C4ilR3iPLfPUYlJC6HoWkj+3B6eOPP46JEydi6NCh+NGPfoSPPvoo4rKtra245557MHHiRFRVVeHiiy/G+++/H7RMQ0MDVqxYgbFjx6K2thbLli3D/v37g5bZvXs3Lr30UgwfPhyjR4/GmjVr0NraGrTMP/7xD1xyySUYOnQozjjjDGzcuNG8Hx2D1FyCHVAZwPIe6FgsaomIjNJXkvpvjT63FzN6TTAvOURkuhQ330tsFVuD01deeQX19fW48sorsXXrVpSXl2PRokVobGyUXP7uu+/Gli1bsHr1arz44ouYOHEiFi1ahH379gHonDnryiuvxP79+/H73/8emzdvhsfjweWXX4729nYAwP79+7FgwQKUlZXhmWeewYYNG/D3v/8dt912m7if5uZmLFy4EEVFRdiyZQtWrlyJDRs24JlnnrH+oDiU3MuGZ/WahLqcCqR7wmf5lcJWOSIiImkeG2aV5vxvWjjrYLFOZY+i1HwsLJ6CWyoW252UuGNrcPrQQw9h5syZmD59OgYOHIjVq1fD5/Nh69atksu/8MILuOKKKzB+/Hj07dsXy5YtQ//+/fHEE08AAL788kt8+OGHWL16NSorK1FaWor6+np89tln2L59OwDgjTfegM/nw/XXX4/+/ftjxIgRWLFiBTZv3ozm5mZxP21tbaivr0dpaSmmTJmCuXPn4uGHH47KcXEkme4LlxWfi9WDFnJ203jAbiqSYvPmz3NJFFN4D40Rzipby9J7ozqzBIv7nmd3UhLOjF4TMDy73O5kxJ0ku3bc2tqKPXv24IorrhA/c7vdGDNmDHbt2iW5TltbG3w+X9BnKSkp2Llzp7hNAEHLJCcnw+VyYefOnRg/fjxaW1vFzwK30draio8//hijRo3Crl27UFdXB6+364Xt48aNw4MPPojm5makp6dr/r1ut303Hf++jaRBcAUXxpG25T+sAgSZZVy2Hg+KTDh1WpxwjszIt2Zxu+0/Hmq5A8q2WElzvHFS3iUbBJx2LXkgcMlo5x23RGDM/CvN5bAy1o0k3DF0md3JsA3L2/hjW3B66NAhtLe3Iz8/P+jzvLw8fPXVV5LrjBkzBv/1X/+FESNGoKioCNu2bcPOnTtRXFwMABgwYAB69uyJdevW4cYbb4TX68Wdd96J9vZ2HDhwAAAwatQo1NfX4+GHH8bs2bNx+PBh3HvvvQAgLnPgwAFxm37+dB44cEBzcJqU5EZenvaA1mw5Od10r5t6OLhvfaTf4/F4AHQ+aIi0TLLX44jjQeGSPJ2dKdxul2POkZF8a5bc3G7IS3HG8VCSlOQR/3bKOUxUTsi7FH3px1LEv7Vcg56kzvLX5Yp++Zuy1xv2GcsPaYe9Xdc1j5FzsLyNH7YFp5EIghCxe+gvf/lLrFq1CmeeeSbcbjcqKiowZcoU7NmzBwDg9Xqxfv16rFq1Cqeddho8Hg/OOeccVFZWitssLS3FmjVrcOutt+L222+H1+vFsmXLsGPHDrjdXb2cQ9MgnOruqKfr6smTHWhqOq55PbO43S7k5HTDoUPH0NGhrztK87ETQf8+eLBZcrn29g7xv5GWOdkW+Tuy18mTnWOzhQ7B9nNkRr41y6HGY3D7HFdcSvKfQyDydUrWclLepehrPtYi/q3lGmw/2Xn/7LCh/G1pORn2GcsPaYeOHRP/5jGyH8vb2JGZmQqv16O4nG21rZycHHg8HrG10q+xsTGsNdUvLy8PDzzwAFpaWtDU1ITu3bvj2muvRe/evcVlqqqq8NJLL+HIkSMQBAHZ2dkYO3Yszj33XHGZqVOnYurUqWhoaEB6ejr27duHdevWidvJz88PS9fBgwfFNOjhhAumo0PQnY6OkFfJqNlO6DI1WaXYdeRzlKcXO+J4ULiu95y6HHOOjORb09IgOOMaViNw2HCspDleOSHvUvQFnnPd99xo5xuJ3THvShME4+eXzMfyNn7YNiFScnIyKisrxYmKAKCjowNvvfUWampqZNdNSUlB9+7d0dTUhDfffBMTJ04MWyYrKwvZ2dnYsWMHDhw4ILlMQUEBUlNT8eqrr6KwsBCDBw8GANTU1GDHjh1oa2sTl92+fTtKS0t1jTeNB4LKiXLk2pWvL5uLFQNn4ZLePzQnUURERERRxbGNRFaytZ/a/PnzsXLlSlRWVqKqqgqbNm1CS0sLpk2bBgBYuXIlCgsLsXz5cgDAzp07cfDgQZSXl2Pv3r2444470KdPH0yfPl3c5iuvvIKCggIUFhZi9+7duPnmmzF37lyUlJSIyzz22GMYPnw4kpOT8frrr+P+++/HnXfeiaSkzsNx/vnn43e/+x2uv/56LF68GJ9//jkeeeQRXH/99VE8Os4iaJydTmr5jKQ0/LBghFlJIoqaFHf4eCwiImnGWm+03m/NwImC1XMzOCWylK3B6eTJk9HY2Ij169ejoaEBFRUV2LhxI3JzcwEA3377bdA40JaWFqxduxZ79+5FRkYGzjzzTCxfvhzJyV2T9ezfvx/19fU4dOgQevTogYULF2LhwoVB+925cyfWr1+P48ePo6ysDOvXrw9qWc3IyMB//ud/4qabbsJFF12EnJwcXHnllZgxY4bFR8S55N5zGoyFdizzn2W+FihYisenvJDDsHMTkT30Xnt2vrIqNl+XZY8+qd1xel41KjP6250Uorhk+wwfc+bMwZw5cyS/e/TRR4P+PXr0aGzbtk12e/Pnz8f8+fNll7nzzjsV0zVo0CD84Q9/UFwuYbCmmxDEib9YUQnicdn6SmhNeOaIYpstLadR32PscrlcWFU21+5kEMWt2Klxka3UtpzyBkdERBRbvCFDF8bkDrEpJUSU6GxvOaXYIITM1qu4PJtaYxLPWrDnRq6RfDk9EVEkaicQdJIUd9fwqLqcwfhV2TwbU0NEiYzBKamiuuWUFfkYF3uVKiuleJKVFyIiinGBZZ3b5eK9nIhsw269pMrw7HJNy8fik2PqwjGnRESJw8cZyYnIIRickiqDM/rhx72U30/KkIaIiBJZLM7W63V5bNs3EVEgBqekWqEvx+4kkMXY3k1EZC/2PCKiRMbglFRTNwaFbaexrOtVMkREpI++4JLDPImIGJySBlqe5nK23tjGyTBiH69BIns0th3Vtd7Z3esAABcVnWFmcoiIYgpn6yVTMaQhshcnsyKy14S8Wjz69R8xr885mtabXDgKw7LKbB9Cw27FRGQnBqekmprWNN7SYhtb24iIjClKzcfLo26Hx6W9c1qPlFwLUqQCe8sQkUOwWy+ZzD9mkTe6WMbzR0Skn57A1E6BZT4fURKRnWKr9CRbqQlXOvwT6vApbExiyykRERER2YXBKZnKH9qw5S228ewRESUmlv9EZCcGp2QyduuNZWw3JSJKbLwPEJGdGJySBuonRGJoGqP8szSyWzYRERERRRmDUzKVwDGncYFnj4goUbHtlIjsw+CUTCWwWy8REVFM4R2biJyCwSmZqkMMTikWcUKrOMBTR0RERDGKwSmZi2MWYxpbvomIiIjILgxOSTU14QonRCIiIiIiIj0YnJKp/C1vbmYtIiKimCBE+JuIKNoYQZBqambg9c/WS7GJ54+IiIiI7MLglEzlD23cHHMakwam9wYAlHTrZXNKiIgoWgS2lxKRQyTZnQCKLwJHnca05SUz8cfvduCcwjq7k0JERNHCXjNE5BAMTkkD9QEnQ9PYlOnthhm9JtidDCIisglbUYnITuzWS6qpCTiv6D8VALCo73mWpoWIpPE1QESkFcNRInIKtpySauNyq/BS+nac3X1kxGVOz6vG2FFD4XHxuQcREVEsYGspETkFg1NSzefx4q6hVysux8CUiIiIiIi0YhRBRERElMDYbkpETsHglIiIiCiRBczWy4l7ichODE6JiIiIEhjjUSJyCganRERERAQAOKv7CLuTQEQJjMEpERERUQILnK33BwW1NqaEiBIdg1MiIiIiIiKyHYNTIqI44rI7AUREREQ6MTglIiIiSmACp0QiIodgcEpERESUwPj6GCJyCganRERERAmMLadE5BQMTomIiIiIiMh2DE6JiIiIiIjIdgxOiYiIiBIau/USkTMwOCUiIiJKYAxNicgpGJwSERERJTCB0/USkUMwOCUiiiMuuOxOAhHFmLL0PgCAvumFNqeEiBJdkt0JICIiIiL7VGcNxF1Dr0Jt74FobWq3OzlElMDYckpEFEf6dysCAFSk97U5JUQUSyoz+yPDm2p3MogowbHllIgojszrcw56+HJxRn613UkhIiIi0oTBKRFRHEnxJOPCnuPsTgYRERGRZuzWS0RERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtnMJgiDYnYh419EhoL29w9Y0eL0etLW125oGIq2YbylWMe9SLGK+pVjEfBsbPB433G6X4nIMTomIiIiIiMh27NZLREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2YlxxIwAADHZJREFUY3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwGsPeffddLF26FOPGjUN5eTn+8pe/iN8dPnwYN998M84++2xUVVVhwoQJuOWWW9Dc3By0jX379uHyyy9HdXU1Ro8ejdtvvx3t7e3R/imUQOTybaDW1lZceOGFKC8vx2effRb0HfMtRZuafPvBBx9g7ty5qK6uxmmnnYbLLrss6HvmW4o2pXz7z3/+E0uXLkVdXR2GDx+OuXPnYteuXUHLMN9StD3wwAOYPn06amtrMXr0aFx11VX48ssvg5Y5ceIEVq9ejbq6OtTW1uLqq6/GwYMHg5Zh3o1NDE5j2Pfff4/y8nLccMMNYd999913+O677/Czn/0ML730EtasWYO//e1v+NWvfiUu097ejiVLlqCtrQ1PPvkkbr31VmzZsgW//e1vo/kzKMHI5dtAd911FwoKCsI+Z74lOyjl2507d2Lx4sUYP348nn32WTz55JOYPn26+D3zLdlBKd8uXboUAPDII4/gmWeeQXFxMRYvXiw+yGa+JTvs2LEDs2fPxubNm/HQQw+htbUVCxYsQEtLi7jMmjVr8Je//AV33303Hn30UXz33Xe45pprxO+Zd2OYQHGhrKxM+POf/yy7zCuvvCIMHTpUaG9vFwRBEN544w2hoqJCaGhoEJf5wx/+IIwYMUJobW21NL1EghA5327fvl0466yzhM8++0woKysT/vd//1f8jvmW7CaVb2fMmCHcddddEddhviW7hebbgwcPCmVlZcIHH3wgfrZ//36hrKxM+OijjwRBYL4lZ/Dn1ffff18QBEFoamoSKisrhW3btonLfPHFF8y7cYItpwmkubkZGRkZcLs7T/uuXbswaNAg5Ofni8uMGzcOTU1N+Oc//2lXMinBHT58GKtWrcKtt96K1NTUsO+Zb8lpDh48iA8//BC5ubmYOXMmxowZg3nz5mH37t3iMsy35DQ5OTno378/tm7diuPHj6OtrQ1PP/00ioqKUFpaCoD5lpzh6NGjAICsrCwAwMcff4y2tjaMHTtWXKakpARFRUVit3Tm3djF4DRBHDp0CPfeey9mzZolfnbgwAHk5eUFLee/iA8cOBDV9BH53XDDDbjgggtQW1sr+T3zLTnN119/DQD43e9+h1mzZuHBBx9Ev379cOmll2L//v0AmG/JeVwuFx566CHs3r0btbW1qKqqwjPPPIONGzciJSUFAPMt2U8QBNTX12PkyJEoKSkB0Jn3UlJSkJ6eHrRsXl6emC+Zd2MXg9ME0NzcjCVLlqC0tBRXXHFF0Hcul0tynUifE1lp69at2Lt3L6666irZ5ZhvyUk6OjoAALNmzcK0adNQWVmJX//618jPz8fzzz8vLsd8S04iCAJWr16NwsJCPPHEE9i8eTNGjRqFJUuWoKmpSVyO+ZbsdNNNN+Gzzz7D2rVrgz6Xyn+CICguI/c5OQOD0zjX3NyMRYsWIS0tDRs2bEBSUpL4XX5+ftjTI/+/Q582EUXDO++8g08//RTV1dUYPHgwzjrrLADA1KlTxQk9mG/JafwTdw0YMED8zO12o3///vj2228BMN+S87z99tv4n//5H6xbtw61tbUYOnQobrnlFrS0tODll18GwHxL9rr55pvx5z//GZs2bUJhYaH4eX5+Po4fPx72BorGxkaxdZR5N3YxOI1jzc3NWLhwIbxeL+677z74fL6g72tqavCPf/wjaOrt7du3IzMzM6iSRRQt1157LZ5//nk899xzeO655/D73/8eALB+/XpceeWVAJhvyXl69+6NgoICfPXVV+JngiDgq6++Qs+ePQEw35LzHD9+HADEeSiAzhYlt9st9gZgviU7CIKAm266Ca+99ho2bdqEPn36BH0/ZMgQeL1ebN++XfzsX//6F/bt24eamhoAzLuxLEl5EXKqY8eO4d///rf477179+LTTz9Ffn4+UlNTsWDBAhw/fhx33HEHmpubxSdMubm58Hg8GDduHEpKSrBy5Upcd911aGhowN13343Zs2fD6/Xa9bMozsnl28LCwqCno2lpaQCA4uJi8XPmW7KDXL4tKCjAggULcN9992HQoEEoKyvDU089hYaGBlx44YUAmG/JHnL5tqamBunp6fjFL36BpUuXIikpCY8//jiOHDmCcePGAWC+JXusXr0aL730Eu69915069YNDQ0NAICMjAykpKQgIyMD06dPR319PTIzM5Geno7f/OY3GDFiBIYOHQqAeTeWuYTQDtoUM9555x1ceumlYZ9fddVVGDlypOR3APD666+jd+/eAIBvvvkGN954I3bs2IHU1FRMmzYNK1asgMfjsTTtlLjk8u3VV18d9NnevXsxadIkvPjiiygrKxM/Z76laFPKt4Ig4P7778cTTzyBo0ePoqKiAj//+c9RVVUlLst8S9GmlG93796NdevWYc+ePWhvb0dZWRmuueYajB49WlyW+Zairby8XPLz+vp6XHTRRQCAEydO4NZbb8XLL7+M1tZWjB8/Xhzr78e8G5sYnBIREREREZHtOOaUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbJdkdwKIiIgosg0bNuC3v/0tAMDlciEjIwPFxcUYN24c5syZg4KCAptTSEREZA4Gp0RERA6XkZGBjRs3AgCOHj2KTz75BE888QSeeuopbNy4EUOGDLE5hURERMa5BEEQ7E4EERERSduwYQMee+wxvPPOO0GfNzU1Yfbs2WhpacG2bdvg8XhsSiEREZE5OOaUiIgoBmVmZuK6667Dv//9b/z9738HAKxduxbnn38+amtrcfrpp2P58uVoaGgQ17ntttswadIkhD6XfvbZZzFkyBA0NjYCAJ5++mlMmTIFVVVVqKurw5w5c/D5559H78cREVFCYnBKREQUo0aNGoWkpCR8+OGHAICDBw9iyZIleOCBB7Bq1Srs3bsX8+bNQ3t7OwBgxowZ2Lt3L3bs2BG0na1bt2LChAnIzc3Fu+++ixtvvBEXXHABHnzwQaxZswa1tbU4evRo1H8fERElFo45JSIiilHJycnIycnBgQMHAAD19fXid+3t7WIL6gcffIDTTjsNAwYMwLBhw7BlyxbU1dUBAL7++mu89957uO+++wAAH330EcrLy7FkyRJxW5MmTYriryIiokTFllMiIqIYFthF969//StmzZqF4cOHY/DgwTj99NMBAF9++aW4zMUXX4zXXnsNx44dAwBs2bIF+fn5GD9+PACgoqICn3zyCdasWYN3330Xra2t0fsxRESU0BicEhERxagTJ07g8OHDyM/Px0cffYRly5ahsLAQt99+O5566ils3rxZXM7v3HPPhcvlwquvvgpBEPD888/jwgsvRFJSZ2eqMWPGoL6+Hu+99x7mzp2LUaNG4cYbb8T3339vy28kIqLEwW69REREMertt9/GyZMnUVNTg//+7/9GTk4O7r77brhcLgDAN998E7ZOWloapkyZgq1bt6JXr1745ptvcNFFFwUtM23aNEybNg2NjY147bXXUF9fj/T0dKxYsSIqv4uIiBITW06JiIhiUFNTE9auXYu+fftizJgxaGlpgdfrFQNTAHjxxRcl17344ovx3nvvYcOGDaipqUFJSYnkcrm5uZg1axZGjBiBL774wpLfQURE5MeWUyIiIodrb2/Hrl27AADHjh3Dnj178MQTT+D48ePYuHEjPB4Pxo4di02bNuGWW27BxIkT8cEHH+CFF16Q3F51dTVKS0vx/vvv46abbgr6bv369Thy5AhGjhyJnJwcfPLJJ9ixYweWL19u9c8kIqIEx+CUiIjI4Y4ePYqZM2fC5XIhPT0dxcXFuOCCCzBnzhwUFBQAAM444wysWLECjz32GJ5++mnU1NTggQcewNlnny25zUmTJuHrr7/GlClTgj4fOnQoHn74Ybz88ss4duwYioqKcPXVV2PevHmW/04iIkpsLiH0TdxEREQU9y6++GL0798fd9xxh91JISIiAsCWUyIiooSye/duvP3229i9ezduuOEGu5NDREQkYsspERFRAikvL0dmZiYWL16Myy+/3O7kEBERiRicEhERERERke34KhkiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKy3f8HqyjkYRAoJzkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[12, 6])\n", + "plt.plot(lc_kepler.time[:3000], lc_kepler.counts[:3000], color=palette[3]);\n", + "plt.ylabel(\"Relative Flux\")\n", + "plt.xlabel(\"Days\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6635859b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 19 DPSS windows for multitaper spectrum estimator\n", + "CPU times: user 19 s, sys: 4.61 s, total: 23.6 s\n", + "Wall time: 9.73 s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "%%time\n", + "mtls_kepler = Multitaper(lc_kepler, NW=10, lombscargle=True, norm=\"leahy\") # Using normalized half bandwidth = 10" + ] + }, + { + "cell_type": "markdown", + "id": "864f7f79", + "metadata": {}, + "source": [ + "As stated before, the `adaptive` weighting method and `jackknife` log-psd estimate are currently not supported, hence these keywords will have no effect, no matter their value." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4082f502", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AACxjElEQVR4nOzdd5gbxf0G8FfS9V7tczl3+9x7t8EFMA41dAi9JPQWagjNgVBDCfADQgktEEISHLrpxcY27r13+3xnX+9N0v7+uJNutdquVb338zwJui2zI2klz1cz8x2bIAgCiIiIiIiISDd7uCtAREREREQUbRhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMigt3BaKF2y3A5XKHuxoAgLg4O5zOyKgLRQ/eN2QW7x0yg/cNmcV7h8yw8r5xOOyw223a17Tkal2Ay+VGdXVjuKsBu92G3Nw01NY2we3mWsqkD+8bMov3DpnB+4bM4r1DZlh932RlpcBud2hfN+ArERERERERdTEMpIiIiIiIiAxiIEVERERERGQQAykiIiIiIiKDmGyCiIiIiCKKIAhwuZwQmG+CdLDbbWhtbYXT6dSVbMJmA+x2B2w27cx8ahhIEREREVHEcDqdOHLkENxuV7irQlGkvNwOt1t/+nO73YHc3B5wOLSz8ylhIEVEREREEaO0tBR2uwM5Od0BBNZjQF1HXJwNTqfeLkwB1dXlqK2tRHZ2vvlrmj6TiIiIiMhCguBGTU0tMjPzEBcXH+7qUBSJi7MD0N8jlZ6ehaqqoxAEN2w2c2kjmGyCiIiIiCKCy9XeEHY4+Fs/BZfnHjMyHFCKgRQRERERRRgO6aNga7/HAklowkCKiIiIiIjIIAZSRERERERk2J///CDuvffOcFcjbDgAlYiIiIgoAH/+84P44otPcdZZ5+LWW30DiwUL7sXXXy/C+edfhLPOOhfnnHOaaln33PMACgp64KabrsFXX/2ElJQUv2MqKyvwyisvYsWK5aiurkJGRiaKiobiuutuRt++/ax8agCAkpLDOOec0/D22+9jwIBB3u0333w7hBAs9nX22afiggsuwllnnRf0axnBQIqIiIiIKEDdunXH119/ieuvvwUJCQkAgIaGeixe/AO6devuPeajjxZ5z3njjdewa9cO/PnPT3i3paWlYfPmTarX+uMf74AgAPff/xAKCnqgrOwofvllGerq6ix/XmrS0tJCer1Iw0CKiIiIiChAw4ePwN69e7BkyU+YO/d4AMA333yFIUOGwm5vn03jcDiQm5vnPScpKQlxcXE+27TU1dVh48YNePHF1zB69FgAQEFBD4waNUb1PLfbjX/84018/PFCVFVVom/ffrjqqmsxffpMAEBtbS2efvpxrFy5HM3NzejevQBXXXUt5s493tuLdskl5wMAxo4djxdeeAV//vODaGpqxMMPtweCN9zwOwweXASXy4kvv/wcSUlJuO66mzFt2kw88cSf8csvS9G9ew/84Q/3Y8SIkQCAqqoqPPvsE1i/fh3q6mpRWNgXV175OxxzzGxvmaWlJXjmmSfxzDNPAgCWLFkFAFi/fi1efvl5bN++HTk52Zg79wRcddW13kA22DhHioiIiIjIAieddCo+//xj79+ff/4JTjrpVEuvkZycjOTkZCxe/CPa2tp0n/fOO2/gq68W4a67/oi33/4XTj/9LPzxj3dgx45tAIDXXnsJ+/fvxVNPPY933vkAN910m7fH6dVX3wIAPP/83/DRR4vwyCNPKl7ns88+Rn5+d7z22js46aTT8PjjD+NPf7oXxx47B3//+7vo168/Hn74fu+QwJaWFgwbNgJPPvks3n77X5g371e49967sG/fXgDAI488iW7duuPqq6/HRx8t8vboFRcfwu2334zjjpuHt99+Hw8++DCWLfsZL7/8vPEX1SQGUjFGEAT8YcPP+OuOdeGuChEREVGXMn/+yVizZhXKy8uwf/8+7Nmzy9s7ZZW4uDjcfff9+OSThZg/fzZuuOF3eP31v+HgwQOK57S2tuKdd97AH//4ACZNmopevXrj9NPPxLHHzsbHH/8PAHDkSCkGDy7C0KHD0bNnL0ydOh2TJ08FAGRlZQMAMjMzkZubh4yMTMVrFRUNxcUXX4bCwj64/PLfwuVyobCwL+bNm4/Cwj646KJLcfDgAZSVHQUAFBQU4PzzL8LgwUXo1as3fvObizFq1Bj88MO3AICMjEzY7XakpKQgNzfP23v3zjtvYP78k3H22eejd+9CjB07Htdffws+/nhhSOZtARzaF3OcghsbayqwsaYCNw8ZG+7qEBEREXUZubl5mDhxCr744jPU1dVi1qy5SElJtfw6xx13AmbMOAZr167Cpk0bsXjxj3j33bfw6KNPYcqUaX7HHzp0EM3Nzbjppmt8tre1tWH8+IkAgNNOOxP33Xc3du7cjsmTp2H27LkYNmyE4boNHDjY+zghIQGpqWno33+Ad1t2dg6A9iF93bp1h8vlwttv/x3ff/8NysrK4HS2obW1FYWFfVWvs2vXTuzevROLFn3q3eZ2u9HS0oKKigrk5ekfLmkWA6kYU93WGu4qEBEREXVZJ598Kl5++QU0NjbigQceDtp1kpKSMG3aTEybNhNXXXUNbrvtJrz99t9lA6mmpiYAwF/+8jxyc3N99iUmJgIAZsw4Bv/5z8dYunQJVq5cjuuuuwqXXXYVLr30SkP1iovzDS9sNt9tNptnIVw3AOC9997Bf//bPpSwf/8BSE5OxuOPPwynU33YYlNTI8488xycccY5AACHwwaXq70nKisry1CdzWIgFWO+Kt3vfdzsciLJwbeYiIiIKFRmzDgWTz75KJKTUzBu3ISQXNNms6FPnz7YsGG97P7+/fsjPj4eR4+WYsyYsYrl5OTk4pRTTscpp5yOf/zjTXz00UJceumViI+PBwC4XG7L675x43oce+xszJs3HwDgdDpRXHwIBQU9vMfExcX7XXvw4CLs3bsHvXsXdhxjh9Npff3UsJUdYwalZXkft7hdDKSIiIiIQiguLg7/+tdC2Gw2b++LWXv27PL2GAGA3e5AXl4e7r//DzjllNMxcOAgJCYmYe3a1fjss4/xm99cIltOSkoqzj33N/jrX5+Cy+XCqFFjUFdXh/Xr1yA/vzvmzj0er7/+NxQVDUX//gPR1NSEFSuWo2/f9uF1WVnZSExMxC+/LEVeXh7i4xMsS31eWFiIH3/8Hps2bURKSgreffdN1NfX+xzTo0cPrFu3BnPmHIf4+ARkZWXhwgsvwdVXX4Fnn/0LTj75NKSmJmPnzp3YtGkjrr/+ZkvqpoWt7BiTGd+Z7tGOwD68RERERGRcaqo1QcY111zh83daWho+/vgrDB06HP/85zsoLj4Et1tAQUEBLrvsKlxwwcUqZd2A7OxsvPXW6ygpOYz09AwMGzYcl112FYD21OwvvfQ8SkpKkJychHHjJuKWW24H0B4c3nLLHXjjjVfxyisvYvTosXjhhVcseY6XXnolDh8uxq23XoeUlBScccY5mDx5is8xV155DZ588hGcd96v0draiiVLVmHw4CI899zLePXVl3DttVfAbnegd+/emD//FEvqpYdNCFVaiyjX1uZCdXVjuKsBu92G3Nw0VFTUw+32f+u21Vbi9vVLAAD/nDof6fGhyaNPkU3rviFSwnuHzOB9Q2a53S6Ulx9GTk4Pv7k2RGqMDu1zOp0oLy9GXl4vv3stKysF8fEOzTKY/jyG8Z8uIiIiIqLgYCBFRERERERkEAOpGMNeKCIiIiKi4OPg0xgmMKwiIiKiKPfM9rVYXlES0mtOze2BW4vGhfSaFH3YI0VERERERGQQe6RiGTukiIiIKMq19wyxd4giD3ukiIiIiIgstGbNKsycORGXXnoB3G7flNwzZ07Ezz8vBgBceeXFeOaZJ3z2v/POm5g5cyIWL/7BZ/vNN1+Hhx66z1R9fvzxO/z+9zfg5JOPw8yZE7Fnzy6/Y2pra7Bgwb2YN28W5s+fg8ceewhNTU2GrvP663/DlVf6rmX1yy/LcPzxM/HKKy+aqvtHH32IG274HebNm4WZMyeisdF/OaIVK5bjiisuwfHHz8QZZ5yEN998DaFY4YmBVAxjhxQRERFR+Bw8eADffPOl4v5x4yZg7drVPtvWrVuDbt26+2x3Op3YvHkDxo2bYKoeTU1NGDVqDK655kbFYxYsuA979+7BM8/8Hx5//BmsW7cGf/nLo6au5/HDD9/iD3+4DVdeeQ1+97vrTJXR0tKMKVOm4+KLL5fdv3Pndtx55y049thZePPNf+Kuu+7F//73X7z//ruBVF0XBlJEREREREFw5pnn4LXXXobT6ZTdP378ROzduwfV1dUAAJfLhY0b1+PCCy/1CaS2bNmE5uZmjBs30VQ95s8/GZdf/ltMnDhZdv++fXvxyy9Lcffd92HEiJEYM2YsbrnlDnz99SJUVlaYuuZnn32MBQvuxe9/fycuuOAiU2UAwLnn/gYXX3wZRowYKbv/u+++QVHRMFx22ZXo3bsQU6dOx8UXX4Z//evdoPdKcY5UDGPWPiIiIqLwOf/8i7Bo0Wf46KMPcdZZ5/rtHzNmLOx2O9atW43Zs4/D9u1bkZKSgl/96hS88MIzqK2tRUZGhreXqlev3gCA9evX4vbbb1K99h133IN5836lq56bNm1ARkYmhg4d5t02ceJk2Gw2bNmyGTNnHmvgWQMffPAeXn75Bdx330OYO/d4n31fffUFnnzyEdXz//KX5zBmjL55ca2trUhISPDZlpiYiPLyMpSUHEbPnr0M1d0IBlJEREREREGQkpKCSy65HG+//TpOOulUJCcn++xPTU3D4MFFWLu2PZBau3Y1xo4dj5SUFAwaNBjr16/BMcfMxtq1qzF+fGdv1NChw/DGG++pXjsnJ0d3PSsrK/yOj4uLQ3p6huEeqT17duG5557Gvfcu8AuiAGDmzGMxfLh875JHfn6+7utNnjwV//73P/Htt19j5szZKC0twfvvt782lZUVDKSIiIiIiKLRr399Nj744J/44IP3cOmlV/rtHz9+ApYvXwqgfX7UjBntvT9jxozH2rWrMW3aTGzatAG33HKH95zExCT07l1ocU1tMtsE2Gxy25V1716ApKRkvPvuW5gyZRqys30DtJSUVKSkpAZQT19TpkzD1Vdfjz//eQFaWu5BcnIyzjnnArzxxh7YbMGdxcRAioiIiIgoSBISEnDFFb/Dc889hTPOONtv/7hxE/DPf/4DlZUV2LBhHW644VYAwNix4/D663/Dtm1b0dTU5JNowuqhfTk5uaiq8u15cjqdqKur8wuEtKSmpuHpp5/HzTdfh5tuugbPPfc3ZGdne/dbPbQPAC688FJcfPGlOHq0DJmZWVi9eiUAoGfPnobqbhQDqRjGGVJERERE4Td//sl477138M47b/rtGzNmHOx2Oz744J9ISEhE3779AACjR4/Dnj278dNP36OgoIfPEDWrh/aNHDkaNTU12L59G4qKhgJoT+EuCAKGDx+huxyPzMws/PWvL+KWW67DzTdfg7/+9WVvMGX10D4Pu92OvLz287777msMHz7ScBBoFAMpIiIiIqIgstvt+N3vrsODD/7Rb19KSiqGDBmK//73A0ydOt27PSMjA/369cfChf/B7Nlzfc4xOrSvtrYGR46Uory8DABw4MB+uFwudO9egIyMTPTr1x9TpkzH448/hNtv/wOcTieefvoJnHDCicjJyTX1nNuDqZf8gimjQ/sqKspRWVmB4uJDANrnYCUmJqJXr0KkpKTA7Xbjgw/ew/TpM9Da6sSiRZ/hm2++xHPPvWyq3kYw/XmMCcXiY0RERERkzLHHzsbgwUNk940fPxFNTY0YO3a8z/axY8ejqanR9PpRHkuW/ITLL78Qd9xxCwDg3nvvwuWXX4glS37yHvPAAw+hT59+uPnm63DHHTdjzJixuP32e3zKmTlzIj7//BPd183IyMSzz76IuLg43HLLtaiqqjJc9//977+4/PIL8fjjDwMArrnmClx++YXYtm2Lz/O76qrLcPXVl2Hbti34619fwsiRow1fyyibwJa3Lm1tLlRX+6+kHGp2uw25uWmoqKiH2+3/1m2pqcCdG34GALw1eR5yE5NCXUWKQFr3DZES3jtkBu8bMsvtdqG8/DBycnogLo4DpyJJSclhnH/+GfjHP/6NwsI+4a6On7g4O5xOt+7jnU4nysuLkZfXy+9ey8pKQXy8Q7MM9kgREREREZGqX35ZitNOOzMig6hwYahPRERERESqfv1r/4yDXR17pGKYwLx9RERERERBwUCKiIiIiIjIIAZSRERERBRhOKqGgq39HrPZzJfAQCrG8GuHiIiIopXD0d40dbmcYa4JxTrPPWa3a2fnU8JkE0REREQUEWw2OzIzM1BXVw2HIw5AAN0F1MXY4HTq7VIQUFdXjcTEFNgC6JJiIEVEREREEaOgoAA1NTtRXn443FWhKGK32+F2619Hym53IDu7W0DXZCAVwzjMj4iIiKJNXFwcunfvDafTCYGNGdLBbrchOzsFVVWNuhYBt9naA6lAeqMABlJEREREFGFsNlvH0D4ibXa7DQkJCYiLa9UVSFl23ZBdiUJO4M84RERERERBwUAqxjB0IiIiIiIKPgZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAxiIBXDmHiCiIiIiCg4GEgREREREREZxEAqyrkFAbVtreGuBhGFgVsQ0ORyhrsaREREXRIDqSj31PY1+M3yRTjQUOe3T+DgPqKY9sKu9Thn6ec40twY7qoQERF1OQykotyPZcUAgJ8rDoe5JkQUal+VHgAAvLhrQ5hrQkRE1PUwkIoRcj1SRNQ1rK46Gu4qEBERdTkMpGJEVVuL/0aO7CPqEsZm5YW7CkRERF0OA6kYMTqTDSmirmpAWma4q0BERNTlMJCKESlxcQAAQWA3FFGXw489ERFRyDGQihEumQCKbSuiroGfdSIiotBjIBUj3OyJIuqyuNQBERFR6DGQihEMpIi6Ln76iYiIQo+BVIyQH9rH5hURmbOm6ihuWvMDDjZyaQUiIiI5DKRiBHukiLqwIHz8X9m9CXsaavHa7s3WF05ERBQDGEjFCKfgDncViChMgvEzyqGmegBAq9sVhNKJiIiiHwOpGNHmbg+kxA0q9lERdQ3BHMbrZG83ERGRLAZSMYJNHSKyki3cFSAiIopwDKSi2C8VpeGuAhERERFRl8RAKoo9tGWF97Hs0B52UxF1CRx9R0REFHoMpIiIolxQlzpglEZERCSLgVSUOhTg2i7VrS2oam22qDZERERERF1LXLgrQObcvOZHzWPUfke+6JcvAQCfHnOaRTUionBhnxEREVHosUcqSjW5zK/tUt3aYmFNiCjchCAMv2PWPiIiInUMpGKEkXYUF+8lii3skSIiIgo9BlIxQm6yudIE9Hh759veEkDPFhERERFRV8VAKkbYTA7E+e7oQYtrQkShFsweKfZ2ERERyWMg1RWJWkatbg7zIyIiIiIyioFUF1fdxsQTRNEuqOtIERERkSwGUjFGT4NKfESNSiBV29aK+rZWC2pFRMEUnDVzmbePiIhIDdeR6uIy4hIU9/1m+SIAwCczT4XNxkYVUVfEvi4iIiJ57JGKEXJxjtKv1EaHAdU62StFFMk4tI+IiCj0GEjFCLNDewakZWoeY+cQHyIiIiIiHwykurj8xGTNY7iAL1FkC8YcKY7mJSIiUsdAKkbIDu2zaLiPKzgz2YnIBEEQ0Ohs893GoX1EREQhx0CqCzLa5GpxuYJSDyIy7vld63Husi+wr6HWu41hFBERUegxkIoRbW43bl+3GB8e2m152Z+V7LO8TCIy56vSAwCA5RWlIboiwzQiIiI5TH8eIzbUlONwU4PPNqXmj3iknqBj2F6rmz1SRJFmWUWJ97GezzERERFZiz1SMaLR6Qxa2eOzuwWtbCIyp2dSqvcxwygiIqLQYyAVI6rbWhT31be14vGtq7CrrhoAJ6YTxYLshKSgls+kfUREROoYSHUB/z60C4vLD+OWdT/57dMTUjHwIoo8ofpcctQgERGRPAZSXcB/D+3SPEYQBJQ2N6jOtXALAu7ZsBT/2LfNyuoRkQluRjhERERhxUCqi/M0xb4sPYCrVn6Lfx7YoXhseUsTNtSU4/2DyscQUWgwjCIiIgovBlIxTGnoj9zWd/ZvBQC8d2C7Ynl2uVV/iSgs2CNFREQUXgykCABQ09aqeUyDsy0ENSEiPYL9s4YnTOPvJ0RERPIYSHVBRtec8Rz+/dFDQagNEQUqGLFO59cEIykiIiI5DKRimJF4aXBaFgAg0e4ITmWIKCoxjCIiIpLHQCpKJVkU8Hh6pzzDd9RSKnNhXqKuhHOwiIiI1DCQilJ9UtMtLc/W8buzW6XtxGQTRJEj2GGOd45UkK9DREQUrRhIRalAMnYJMo9t3r+Vy2WyCaLIZAvmjxz8AYWIiEgWA6ko5ba4PE9vk1p89ta+rRZflYhC7aPiPfiydL/mcRzYR0REpC4u3BUgc/Rk3jvYWI8Xd23wP1emiaSnR+pwU4Pu+hFRZHp1zyYAwIkFfXUdz/4oIiIieQykopRbx+/Fz+1chxa3S1d5njlS6qXyN2qiSGEmwDG69IHZ6xAREXUFMT+076abbsKkSZNw6623hrsqltLTHlIMomTO1TMNgqnRiaKbM4C5lXqUtTShnnMpiYioi4j5QOrCCy/E448/Hu5qWE5tCJ6Zcmwqvzt7jjmvzxBLrklE4eEUrJ5d2anV7cLlK77G+cu+CNo1iIiIIknMB1JTpkxBampquKthOauy9hmRGZ9o+ppEFH5Od/ACKWb1JCKiriasgdTKlStxzTXXYObMmSgqKsL333/vd8y7776LuXPnYtSoUTj33HOxYYN/8oSuyKoBOkEe6UNEESSYPVJqa9ARERHForAmm2hsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJycHADA6aefLlv2hx9+CIcjduf0BNYjJZO1T9eMcu1rNruceH3PZswr6IvB6VmG60ZEweF0u7Fg8y9BK39LbUXQyiYiIopEYQ2kZs2ahVmzZinuf+ONN3DeeefhrLPOAgAsWLAAP/zwAxYuXIgrr7wSAPDRRx+FpK4AYLeHP39VoHWw220+ZXj+tkmOEbPZOo6x2RSP8fjs0D58UbofX5Tux+ez5INcCj3P+xUJ9zBZQ/x5tNm039v1VeXYVV/j/VvvveC5jtbxTaLkNrzPiN85ZBbvHTIjXPdNxKY/b21txebNm3Httdd6t9ntdkyfPh3r1q0LeX3i4uzIzU0L+XWV2EzeKLm5aWio7xzek56RhNzcNCQkxPkcI5aWnojc3DSk1icqHuPhLrFpHkPhk50de/MFu6rEpM7PbEJCnObnLaOtxudvvZ/PuLj2nn2teyelNsFw2RT7+J1DZvHeITNCfd9EbCBVVVUFl8uFvLw8n+25ubnYv3+/7nJ+97vfYcOGDWhqasKxxx6LV155BUOHDjVcH6fTjdraJsPnWc1utyE7OxUuk5PGKyrqUd3Y6P27trYJFY56tLW5fI4Rq6trQUVFPerqmxWP8WhtbtM8hkLPc99UVTXAzcksMaG52el93NLi1Py8lVf7Lqit9/PpdLZ/N2jdO40NrYbLptjF7xwyi/cOmWH1fZORkYz4eO0pQhEbSCkRBMFnSIuWV155xbJrR9IH2uwUKbdb8Mnc5XYL7c9L8D3G91rtx4jnqSu9FnbRexNJrxe1877fFPXEi+t6PqNqcuKTfP7WfR8IncerndM3Jd142RTz+J1DZvHeITNCfd9EbPrz7OxsOBwOlJeX+2yvrKz066XqigJZR+qj4j0mryl6rBDJOVTWoyKi8ElwmPy61/mRDiQBDhERUTSK2EAqISEBI0aMwNKlS73b3G43li1bhrFjx4avYhEikDbLotLOoZGeYgx08vmcJ2U3WhARmSL+pAU1hNFZuIuBFBERdTFhHdrX0NCAAwcOeP8+dOgQtm7diry8POTn5+Pyyy/HnXfeiREjRmD06NF466230NzcjDPOOCOMtY5+wzNysKW2Uvfxne0j0VAihWMZSBFFpsqWlqCWzx4pIiLqasIaSG3atAmXXHKJ9++HH34YAHDDDTfgxhtvxEknnYTKyko899xzKCsrw7Bhw/Daa69515DqygIZ2pdg7+yI3F5bhfHZ3WAzOCRPEATZbiyj5RBRaPzn0E5zJ+r8SLuCuNgvERFRJAprIDVlyhRs375d9ZiLLroIF110UYhqFD3MhlFlLU1YV9057+zdA9sxLa+H4WsqXT+QAI+IoheH9hERUVcTsXOkSIPJNssvFaV+29ZUHfXbVu9s89smbicJaM/+t6hkP1ZWHjFXGSKyhJ6vA71fGZ8U78GBhjrDdeDQPiIi6mqiLv05tXNb2PNT3NTgt+38ZV+oniMIwMLDu/HWvq3ebf+dfrJPY8poqnoiCh6lTJtiS8oO4297Npkr39RZRERE0Ys9UlFKAJBod2BaboGh8xaV7PPb9mXpfo1fkwXJf9t7pLZKElasqjqCnslpfmcRkfX0LEegdLySx7at8tvGn0KIiIjkMZCKVh2tovzEFEOn7Ws0PmRH6fLS4X9tbjfsNt9jAODHo4dw1/olaHY5Lbk2ERnHoXdERETWYiAVpQQIsMG65A7icnbWVfvs+9fBnShvafL7BVyaQl06V8rzK/mT29dgc20lvjty0JK6EkWTPfU12NdQG+5qsIeYiIjIYgykopQA44voapXnceu6n3z2HWiswz0bl0LL0PRsSUIKX2pZvdyCgL0NNcz8RTHnprU/4oY1P+g+vqylCUvLSyyvh7RHSm44YG/R0FyjmLGTiIi6GgZSUcwGG6yKO7TKOdzUoJn+PN5uR4OrTfEotUt8fHgPblzzI/6+d7NGTYli29WrvsUjW1dig2iZAi36svZpfx7nduut+5p+5TOOIiKiLoaBVJRyC4Klk8A31OhotIlaSuUtTbKNrmd3rPM+dksaVq1ul2yxS8tL8Nqe9gDqC5lkGETRysy8pFZ3+8K2extqVI8z+vmXVkWuB8nOLJtERES6MZCKUgIA2GxhG05z/ZofEGdXv32kdXtz31bctm4xKlqa8fCWFbh7w88AgEe2rvQeIw2+iKKZU3CbPndTTYXuY/V8D/RPy/A9R+aUQBJS8KNLRERdDQOpqGVtj5Qe0uQSWuQaVtvrqvDu/m1YXlGq0FBkc4xih9NtPpAanJ5tYU2AUZl5Pn/LfdLkass+KiIiInkMpKKUILQ3cCZkdwMATMkxtp6UGT+UFUsqoX680o/bzQpD/AD2SFFsCaSHx2WgN0vPZfx7rfxPCixo4oeXiIi6FgZSUUpAe7KJSTnd8dKEOfjDsIlhqYP6fvkjmkTrSUkbmm42xiiGuET3s3TdNS1Oi39VkBYnVzo/fURERPoxkIpiNhtgs9lQmJKuOV8pGKSB0g7J+lNKjTLxelNcJJRimfj2NjrM75eKEsPBl2pdJJ9Iqz97/CQTEVFXw0AqSlmdtc+MmrZWn7+/OnLA9wAdDTWuG0WxLJAe1n2NdXhg03LF/UZLlls3ykr8KBMRUVfDQCpKtbdZwhtKiXuW5Oj5/Z2BFMUyca+PmU/r9roqXcfpydon/TzKnSFfx3D/ZENERBSZGEhFrfD3SGnR1bgLID00UaQTB1J6eqeC2mskKZu/YRAREQWGgVSUEtA+RyqS6Wmo6e2RcgluxQV9iSKVOHiKs2l/3ZodCqjnLP+fLMIbSW2qqdBcdJiIiCiSMZCKUu3xh28klZuQFJa6KNlSW4k2jQn2Lp2NuStWfIMzf/7MimoRhYy4R0pXsBPUDilphkyLyzcQmLW4XLh7w8+4cc2PFteCiIgodBhIRS3B7817eNS0sNREySNbV+JvuzeqHqO3R6qitRkAs/xRdBEHRnoCDSPBiNEOab/ASeazFKpO7jYO6SUiohjAQCpKudGe+lysMCU9PJVR8e2Rg6r75RYdFQQBj29dhY+K9/jt8wRS7+zbipd3tQdpqyuPoqoj0CKKJD6Bv44YKZg/FEiDNKuvZKg8/iBCREQxIC7cFaDYpvXLs1yPVGlzIxaXH8bi8sM4vdcAn31uCGh2OfGvgzsBANPzeuCBzcuREZeA96bNt67iRBYQz3nSEzqYDS/0xCXSYywPpAwUyDCKiIhiAXukotDhhnoAQFlLU5hrEji5RUrVhhe5BQHbajtTQu9vqAUA1DpblU4hChvfOVLhzdrn3yPlfy3ZlOhBGO/HIbpERBQLGEhFobe2bw53FSxz/ZofDB3vEgSsqTrauSHSUxdSl2Y0C5/TZIChb6mBYKc/119gIAsVExERRQoGUlEo1psgW+sqff5eXdkZODkFN+LsnbctwyiKZEaz9snNGbSK9PpywVeoPk+x/h1GRERdAwOpKPTRvl3hrkJQvbx7k8/fD2xe7n383ZFDPmnexQ0yvRkAiUJFfEdafXsKCo8Vjw/y58NI6RzaR0REsYCBFEWcBmeb9/Geet8FO1/fuxndklI6N4h/8Zc0zlyCG3sbaoLegCRSZDj9efBI+7rCmbWPn0giIooFDKQoolW1tvhtS3Z0JpsUNw6lDdWPi/fixjU/4r+HYrsHjyKXkXWhgOBmBfdLNqHzWsGoE3/cICKiWMBAiiKaXC6JJWWHvY+PNDd6H7slbbN/d6RI11rLiihYDA+/C2JfjVPyAdGbtU+Pn8qK8dKuDbqPZ7IJIiKKBQykYtzA1MxwVyEgdpnp75+W7PU+/vhw56K9wWyEEgUqqKnNdZT9r4M7fM+RK0e+dM2yn9i2Go0up+76sEOKiIhiAQOpGPObPkU+f1/Sb1iYamKNmjb960NJe6Q8vVlss1G0kLtXlRIzBJphTy7YserHCK1S2CNFRESxgIFUjPlNX99AKvqXWdLf4JI2AqP+qVPUEwymPzcS3BgdNmiWmbK1zmGPFBERxQIGUjEu2oMJm4FIUNo28ww1OtRUb2GNiPTzDXYiK3qQrY3MRrNLBKvvjazXgoiIyAwGUhTR/rJtje5ja9pa8NKuDShubA+cWt3BW9yUyDAdsYOR8OJwU4PpqrRfy7pkE37laBTEdaSIiCgWMJCKQeIEE9HeXDEyl+KNvVvwWck+/GHjz/jh6KEg1opIH6OfP9ngRqGQDTXlhsoelZmrWa5sT5GJLxHOkSIioq6AgVSU+df+HdoHdUh2OIJYk8hT0dIMAKhsbWEgRRFHV+hgMr7QM1Suu3gha53nmMesfUREFPsYSEWZt/Zt1Tzmgr5DAAC/HTAq2NWJKOLpVJwXRZHAN9mEdvQQ1NBGUrjea5kJuLTO2FZX1XksoyoiIopSceGuAFlvam4PLJxxMuLtDqypOuqzb3hGDqpam/HnUdOxq74G22or8WHx7jDV1Fo76qq9j482N4WvIhTz9jbUYGddDeYV9NF9TjAX5DUVi8iN4rMoptEqR/y95AbQtfrOiYgoVjCQilHxdvmmyfHd+3gbf92SUtAnJT1mAikxu83GCe0UNDeu+REAMCAtA4PSshSPExT/0HG8/tN0kQZpeq9lLkZTP2tQWhaWV5S2HysIsbBOAxERdUEc2hfFEuzab5+0OZMkmTelVMaTY2b6/F2YnKZ5rZl5PWW3h2OullNgxj4KPiMLRgdzjpSZouWDndD8+LBT1HvMVOhERBStGEhFsSv6j9A8psXl8j4+tWd/zMjr4bPfYZO/BYZl5Pj8fdewiZrXWlddJrs9QaF3LBp8Wbofb+7dEu5qUITS+gIVBwnhniPldy2dFwvGgrwjMju/X0qaGk1cgYiIKPwYSEWxU3r21zym3tnmfXz1wFF+gVOcXd+QmngdvV8OheE5SsFauG2sLseta39Cicp6PM/vXI//HNqFRqczhDWjSLZdlCjBrjEkzejoUrO9RLqCNEE6tE/nOlImhshqnZKXmOx9rKdnnYiIKBLxX7AoYia71ZSc7kh2OHBBnyGy++N0BjlKQZIekTr74YHNy7Gzvhov7togu39TTYXoLw4/ona3rVvsfWwL492daLCn139on/Yx5ulPf57YxZZpICKi2MFAKoqYmfeTmZCID6adhAv7DpXdrzdA0gq4Tu85QLFJ6ZIEgO9MmafrmqEi7rUTu3vDz6K/IjUcJCs43W4cbKwzfJ5Wj5SYnt9B9Bzj+STmi3p1LEtIIVOB4PyE0Fmq9PuBiIgoWjCQiirmGvM2lcaeXIB0fPdCv21qDca3p8zDVQOU52tVt7X4/J2dkKR4bCjZO15PTnanp7avwbWrv8fKyiOGztP6RBqfI6X/Xgz0vg1mVksjJfPTR0RE0YqBVBfn6ZHKFQU3ckOGHCpNxpyEJNVgTexvE+carKH12txuNDrbmHGZvBaXHwYAxWGeSjTnSCk81nO81nlu0Q5dvV06rm/VeVrn+Lwu7JEiIqIoxXWkoor1DQ6bzYaFM06BU3DjnKWft2+TCZr0BkpaeulIo241aWB49apvcbSlydsbp+9VZWOvKyhrMbaQsz2MQz6N9kj5J5uQK9MiGsGReK+bny0iIopS7JGKIsFqbsTb7T4NwiHpWX7HRNqNkhGXoPvYFrfL5++jHY1lz5yzJpcTL+/aiLvX/4xdovVtxNjU6xqM3FeAfI9Us8uJP2z4GT+VFUt6pCwe2hfgTSl3raUdPXPSI43aXleNRoW5h36l88NFRERRKtLaxxQBJucW+G2zqkfKKmYyfQmCgDdk1oQ63NSAT0v2YlNtBW5Z95PiuRT7Bsv8iKBG7lPx3dFD2FhTgSe2rfaJQaxKNgGNuX2fl+zDszvWavZAPbBpud+csJJm/zWdzNz6D2xejtvXL1E5orNQ9kgREVG0YiAVRcQNmm6ijF2WlC1qzMjdFHqyk7lD2B4y8/z3NtTiv4d2mbqe8XyJ1BXI3fINop4YKxKZ+Acygt+1xdd5cdcGfHPkIIpV1kcDgJq2Vry+Z3PA9VNyQCULomAwwCQiIopEDKSiiLixNEWm1ygQ4iBIrvcpzmbDjYPH4L7hkxXLcCmkZ89JSNRVh8x4/cOquiWl6D7Wo9FlflFdpedGscXwvCOZ4ytbm01ff2Hxbv3X1ohApENa5ep6qKle+zq6a2QOs2YSEVG0YrKJKHWFSrpxM8TrSSn1PZ1Y0Fe1DKUhOpWtLfjP9JM016IK9i/TgQzP41o3XYPRt1nueHFyE6NZ+74/ekj3tcWhvVzZR5obMDAts/OYCLqFfZJNRFLFiIiIDGCPVBTKS0o2NUdIjbg8T9a+03sOMFRGqiNecV+SIw5x9s7b7cMZJ/sdE+xfpgMp3dPYO9BQh2XlJdZUiCKOFT1SDoUfDMze38rnqZdnJCjzmCrT0x2czyXnSBERUfRjIBVFPEPTypuNpWg2ytM5pdTrJbfOFADEK2yXkyBzbJNk6N0zY4/VXZ6Wl3Zt8Ctfzdqqoz5/ewKp69Z8jz9vXYnSZvX5JxSdjDbpNddL8pkMZLQ26twa3V3Tcnv41kVHBZIdoR+kwA4pIiKKVgykokiry6V9kAU8Q/scNht+O2AETu85wCdIemfKPNlfrgPllLSojGZQU/NZyT7diSbu2bAU921a7rNNOrSvprXVsroFqtHpxCW/fIl/7NsW7qpEPeND+wykKzdYF+3yBNnHHtKeMemcKdkyQxTVcB0pIiKKBQykoojVw/mUiBfkPb3XQPx24Eif/Slx8eiWKJfsIbIbRFtqK3Udt6Gm3G+btLEXyHCnVZVH8Jtli7Cjrsp0GWLrqstQ2dqC9w/usKQ80k/uLrAp7Ld6iJxWZ1dqXJzoWAFrqso0y5RLqRKUgX3M2kdERDGAgVQUyU5IwtmFg3D/hGlBvY6eJaO6WqYtaY9UIM/+wc2/oNbZiqe3r5Xdz8n34WN8jpS/3ilpuo81Q/D+VzTPSOaeEW/RmywlHOulsUeKiIiiFQOpKHPFgBE4ua+xJBBG2RTz9gXPZf2GhfyaRkgbol+W7jc0T8rpdmNHXZVPg1cu9fR/Du7EaUs+wYEG5TV4KHgMz5GSCTzS4zrT+PsEZhbHC0aGxzl1pu+XKycYwZVPTx1/OCAioijFQIr8mA2jjDaHXhg/G9Nze+DF8XNwduFgQ+cm2R0YmZFr8IrmSdeR+ubIQVy/+gefbW1uNxaXFWNRyX6fRVkB4G+7N+L36xbjo+I9qtd5c99WAMAXpfsCrjMZZ/Tel7vnxcGIOEbY21CrWM6zO9binY73Xve1BfnreOsh2qi3Ryp0vaGCzCMiIqLownWkyOvZccei0emUXZBXyopeq36pGbhn+CTVYxLsdrS6/X9Nv7DvUKytLsOm2oqA66GHXANTOnn/vQPb8e+DOwEAv1SW4oERU7z7vizdDwBYVuGbOt0lCD5reHkYac+Gvv8wdhm9r40MBfz6yAHM7+G/FpsgCPjmyEFD1wV85zNZ1SMVjqCGQ1mJiChaMZAir0FpWbqPPadwELbWVuL8PkO821LjlNeRMiLJ7sAz49pTn8/I6+m3Hs61A0chKyERX5Tss+R6euj5Rd8TRAHAysojPvuUzna63XDIJBEx0kDXM6eNgkOrJ0jPu6gV4iiuIuXTIyU3R0p9DpWcUC08bXShYiIiokjEoX1kSnZCEp4ZdyymiNKg3zl0AibldMf9wyf7HJtmMMAamZmLwpR0AECczOKm8wraf9U/scD/1/1gcQkCalpb/LY3K6xNJY1tPI1FaUNVOmTQw+yv9Px1P/wEhTBBKTg2OkdIkPwXkH/fxetMSZcWUCxb5rhd9TUGaqeP+DK8Z4mIKFoZCqRaW1vx0ksvYds2rldD/nolp+GBEVMwObcAT46ZiYyOSfeBdJjINbLi7faO66UGULLxejy6dZXf9rOXfo7lkuF6arZLUp4rNSL1DcTyd/bSz9ASovXGSH5InTiA8U2qoL8MPXx6nBSO8HDJDI+Vs0qyELW3fIuCnb/t3ointq8JStlEREShZiiQSkhIwMsvv4zaWuVJ00QAMCwjB5nxnkBKXyh1fmH7MEFxT1NGRxnxMj1T9hCOaXNBUFyH6oltqxXP+9eBHVhUsl+1XDlmG5etbrdsNkDSx+gtdf+m5X49lUo9T+nx8j2zWu+10m7x9gONdWiTzNkzk/5cSauOxXz1+OTw3o6huto9dURERJHO8Byp0aNHY/PmzZg8ebL2wdSljc/uhoNN9Zic213X8Rf1G4rTeg3wBk8AcH6fIWhyOXFKz/5YXFaMZEfnLRvKQMotCO2NbJk2n9zwQwHAhupyvLNfvfdWsUeKv9JHjQ8O7cRvB3QuWq202Oycbr1lzzfyTvvMi5Kc+XN5CWaLriG+dqCBlNNt7f3om7qdiIgoOhkOpO644w7cfvvtiI+Px6xZs5Cbm+uX5S05OdmyClL0urT/MIzKysW4rG66zxEHUUB7AosbBo8B0J7lT8wewnx1bkFQvJpSQHfPxqWa5So1cOXmTu2pr0HP5FQkOXw/tha3cbsMp9uNn8tLMC4737vNzB1V3+ab6l6ph0XpfjUyR8onU5/ktDbJ8D1BodcnKz4B1W2tuq/pKSFYuI4UERFFK8OB1LnnngsAePjhh/HnP/9Z9pitW42th0KxKcHuwNTcHkErP6RD+1TSRwfSDFTqeVpfXe7z96aaCty94WcMTsvyZjT0kCbzkK5h5dHicsHpdoc0AI1knxzei9f3bkZRerZ3m5m0/tI5Tr5zpLTmMRntfdSf707pyN4p6aiuMbZsgNWxDrP2ERFRLDAcSD3yyCO61hkiCrZQBgQuQWUmR0cr0w6b6cQBUlVt7fNudtVXQxCAHzpSwO+sr/Y7dmHxbp+/11WXYXRWnt9xx370PgDg02NOs6SO0W5HR+IPaQIQo6T3odHsfEdamjSuIL/wrjQwk34tKw0DNPOpsXoek7huHMZKRETRynAgdeaZZwajHkSGhbJHalHpfsVheA0uJwRBMBVEec7ZXluFbkmdQ2I9z+yWtT9pliFds2p0pn8QdbCxznDdYp1VzXe/AMZnSJ38drGvSw/ovpZaQKOUch/wDcDM9LpZHeq0iXp4mWyCiIiilekFeXft2oVNmzahtLQUZ511FvLz87F//37k5uYiLS3NyjoSybKHsGNUOtROaqPBoVIe/9y/Ayf17Ifb1i9GnM2OOJsNTkHwGW5mlFx8WdHSbLq8WCXXE2ImNpcGJuKhfW6fnhf58wuSU3RfSy3kkJavdKyZ57itqhKD4tKNn6jApeN1ISIiinSGA6mGhgbcc889+PLLLxEXFweXy4VjjjkG+fn5ePrpp9GzZ0/cddddwagrkY9Q9khpqVeYl6Tl26MH8VNZMQDAKbgRZ8Fzkus4EzfojzQ3onuS/sZ7uO1vqIUNNvRJta4hD8iv32Smt8b/PpQfUqfU89IjSf96aGrD4FrcLt/hfIJ8z5jaM0y0O9Aik+r8QH0tBmUF9vor1U3v0D6XIGBZeQlGZeUiMz4xoLoQERFZwdA6UgDw2GOPYe3atXjzzTexZs0an38QZ82ahcWLF1taQSIlgcyRSrI7LKwJ8MjWlabPbfNJZNH+nKz+kV7c1q8znLEtvK5f8wOuW/O95eUuryi1pBzpl6hvj5T8Y7F6p/r7ofde+Lxkn2ISB73D55SOc6gE+GpZ93wCJtF28WO9dfvmyAE8tm0V7t24TNfxREREwWY4kPrqq69w++23Y+rUqXA4fBujPXv2RHFxsWWVI1ITSI9Us0ULjFrNqZIdMBD5iZ3zr9qCdI1gs2pRWKs5JOuI+WTqU1n3yePfB3fpvpZayHGosc5nf01bC97ZtxWVrc0+J6r1uinFRHaZtdL08E3XrtQjpa+sPfU1AIC9DVwQnoiIIoPhfx1bWlqQlZUlu6+hocEvuCIKFrVfyand8ooS3LdxGRpdznBXJWChyO5m5o6SBvQ+vVCQDx7EZuTpXyJArfenPWjp3P/3vVvwr4M78eS21bp7tZSO65eeobBHa96WfFC5rKJEdL6+2iXy3xYiIoowhgOpUaNG4aOPPpLd9+WXX2LcuHEBV4pID/HQvsv6DQMA9E5mopMvSvd5F2d9eMtKrK0uwxeH94e5VrFLmvREqUdKqR8wNyFJtXwjay7JxVkHGut805+rRovyV1A7R+9qVuIEE4ca60VH6AukzMxfIyIiCibDgdTNN9+Mr776Cpdddhn+/e9/w2az4ccff8Qdd9yBRYsW4cYbbwxGPYn8iHsCzi4cjA+mnYSL+w0NY41Co6pVPQPfz+Ul+ODgDp9t4mFxgiDgme1r8cruTUGpX7C4BWBLTQVe2rXBGygGwrOQcd+UziQKZtbIkzbwxWGBUo+MWWolnFc4WHa/w2aXJJtQfo5Kw+zUh9+pzJESl+GzODGz9hERUfQzHEhNnDgRb775JlpbW/HQQw9BEAQ8//zzOHjwIN544w2MHj06GPUk8iNt9KbEmc7mH3EqVYKl+zYt9/lbLnHG0vISn7+lvRrfHj2Ijw/v8W5rc7tVh41FAgEC7tzwMz4r2Ydvj+hfe0mJVf0b0ux/SgkWFBfqNXAttfcoOyFJtrR4m93AReQPNBsE+iwgLMj3TuntkVolWS+NiIgo3Ey1PCdMmID33nsPzc3NqKmpQUZGBpKTk7VPJLKQXNa+WBn8I04OIbVPMtn+rN6D8O6B7T7b9ksW4BX3YkmbrYeb6vG7Vd+hR1IKXp10vLkKh4A4iKiOoMyDCZJA1id4sni9JLUiBEE+JLHbbLoXi1Y6Sj0zn66i4RIlOTGzjpT0niYiIgo3wz1Sy5YtQ1NTEwAgKSkJ3bt3ZxBFYWFkFNZv+hThk5mnBq8yFkt26P+NI96u/TEWLyjslAyLu7+jh6ukuVH3NdUcaKjDUQNlba2txEodvQ3i9rb0OQRCXK6ZlPopkvfKt0fKeM+LH4Vsd1JuyPcclTQ3+PydqJL6X6l0tUBMNbjTMYTP9OtCREQUZoZ7pK644go4HA4MGzYMEydOxIQJEzBhwgRkZ2cHo35Eiow0eW0wN/8lGhgNKVySxrbaulJv79uKtLh4nNl7kO6yPWs+fXrMad7te+pr8I/923DtoNF+vW13rF8CAPho5il+qcTdCkGJ3KKxRsnNFTKTCVIa3CgmmwjyHCm18sV1VBoCqxqkWVB38fvXLzXD27Ma6UNKiYiIlBgOpJYuXYpVq1Zh9erVWLFiBd5++2243W4MGDAAEyZMwMSJE3HaaadpF0QUBDVKQUFsxlDtZBqiGXEJig1Ul2QdqQaV1OgfHNwJAAYCKfmw7t6Ny1DrbIVt10bcN2Kyd7t4yKFbABwqGfDET8eK9bas6gmRluK7CK+geJzWdvlj1XqGBNlen6Hp2T5nZcUnyp6v9oqqB1I6k02IyhD3ioUirT0REVEwGA6ksrOzccIJJ+CEE04AADQ2NmL58uV444038MEHH+Df//43AykKCbkehc01FbqPVTMwNRPDM3NwbH4vb49JKGnVtsXl8q6rI9cArnW24g8bl8qXHcSeOd+EAm44bHb8VFaMWmd7gNvgbPM53ik6vs3t8humKA4MxEGEFVn7rCINA3x6pMTbQ9Ij5X9Egt3h3To7v5diGQdV5iCp9nap1MnnOIXeOb3vZLzNHrWLSRMRUWwylWyioaEBa9eu9fZMbdiwAYmJiZg9ezYmTJhgdR2JZMnFAycU9MEPZcV+2xN0zCMSy0pIxNUDR5mtWtCdtfQz79A5pV6KTQpBpbgRW9PWongN8XGLSvZhfo9+mvUSn3O4qQGFKel4Ytvqzv0qze6K1makdKQk9/DpkfLZHjir1iWSvv6K6c9Nly96rPLE3QrXEH9ObDabYkDXqjJc0myiDJ+sfaJnsrO+WnSMvsLndi/El6VcD42IiCKH4UDqzDPPxPbt25Gbm4uJEydi/vz5+OMf/4iioqKYnYNCkUnubkuSTPzPSUhCZWszRmXmKZazcMYpOOPnT322xdkM52GxlFqDV8poR8dDW1Z4H9e0Ks+PEgcBL+zagGl5PZCpMCxM7hy5eknfs/KWJu/jNEkQJS3P6BCwurZWpMXFB/17SVotpZ4Xa3qkNOZByVzDDt97SWkoZ6tKL5/6/CvFXRCHgYprVKmdDqCipRnv7N+Ko81NGkd2crrdeGzbKkzP7YG53Qt1n0dERGSE4dbi9u3bERcXh7Fjx2LcuHEYP348gygKC7keBWkA9PTYY/CXMTMxOD1LsRzxcLLx2fkAgDFZyoFXKFS2NuOAznTPgcz1kUuuUN3aArcg+JW7vKJUszyXwqKrSsTDJuUa2uJN4tdD6zmvqyrDBcsX4R/7t2nWIVDvHdiOhYd2e/9WWjtK6fUwNkdKmRuCbFDS6nZhTXUZgPZA9tsjB2XPV+2R0pibpbxP+zit9/K1PZvwzZGD2FBTrnqc2NrqMiyvKMXTO9bqPoeIiMgowz1Sq1at8g7r++qrr/DUU08hPj4e48ePx8SJEzFp0iSMHTs2CFUl8iUXu0sDg4z4BOSprMnkMadbbzQ6nbitaDy21FZgXHY3q6ppyu76Gly/5gddxwbS0SGdR7WvoRY3rPkB03N74Ir+w332Vbd2DgPcVV+N4sZ6zOrW2+cYt8+cJ/m+hqrWZqytKsO4jqDVQ65BLS5vSflh8cGqvu5YsPdfB3fi4n7D1A+2wOt7N+OM3gMBKK8dZfZ98h3ap55ZT27/5tpKbK6tBND+44NS75LavDMrEkJIF4nWW3aFyuLUSqxMj09ERKTEcCCVnJyM6dOnY/r06QCAtrY2LFu2DK+++iqeeuop2Gw2bN261fKKEvnzj6RSJcPD9PaT3lY03vt4Yk73QCoVMvVtrXhmxzrUO80vTlspaaR61ptaWlHiF0iJeyVuWfsTAKAoPRsFyamdx4jaxOkyQ/UEAHeuX4KS5kbML+jrW75Mg1ocGIjXeDLSrF9TdRTjVQJj8TWsyOTnM0fKinWkFMr22ydovy42m3LvUjACKfFZ7yj0DmqVbCYlPRERUSiYSjZRWVmJVatWef+3fft2uN1uDB48mMkmKGTkmlfiNYomZHcL+1ynYHr/4A78Uqk93M4I8ULAdkkDVq4xXdPW6htIKSSHEPMs/OtZR0itfLP9CuKy7t+0HJ/MPFXX8GMrklgEmp1OtWyNIXZawZoNNgxKy8Su+hrvtnpnG9Li4pHkUFuo12TWPh0BmNbcMQZSREQUqQwHUieeeCIOHDjgXZR3ypQpuP766zFhwgRkZWUFoYpE8rSaVwtGTlXd3y81I6qHAH1desDyMu2iF/WKld/47JMLdDzrRtU725DsiAsoOYRTo0fKSHNauujwsooSTM/rKXus1fM7fYJJPa+HkddJI2ufZo8UgPS4BJ9t3x45gNN7DUSCXTmQkr6ePlUKMPrU+gRKF2kmIiKKFIYDqZNPPtk7Dyo5WXvuCVGwKDWA35kyT1dq6+fHzbK6SiGltpBuMMg1eF2CgKrWZlz8y1cYkZGDW4aM8+6Ta1+LExrsqKvy2bek/DDO7zNEck3R0D4DAY80UceyilK/QMpTF5+hfRZ0SYnL8Em+YXp4nL4EHm5B0L6GTa53yeZ3Hb866MzMp39PJ606m+mRanC1aR9EREQUIMOB1E033RSMehBZJjshSfOYyTnddfdEJDscaHJ1BgCPjJqOH44ewldHrO8RCje1V+TfB3dideURPDd+tnebSxCwo64aQHtSA7fGfCPxkDJpYNYkExiK51w5DcxlOtRULynH9/iKlmY0y2Sps2Yek0L686DPkdIuX+4HBk+votrpqj1SanXSrJF2vaWLNOvxt90bDZ9DRERklKk5UgcPHsRrr72GNWvWoLq6GllZWZgwYQKuvPJKFBZyzQ4KnfHZ+chNMN4zOjwjR/ex0rTco7PyMDorD2f2HoRrVn9n+NqRTKvhu6ehFls7MsAB7T0uentMtEyQSQghLjuQxViltVKaW2bFHClxgPjJ4b2Wlq0WczS7XZq9O3KBcr2zvfemWBJ8+l63s9yKlmZsqCnH7Pxemj9G6Akete6ZRJUhh0rEP3wQEREFi+FAatOmTbjkkkuQmJiI2bNnIy8vD+Xl5fjqq6/wySef4O2338aIESOCUVciP38aOS3o11BqDPZOScP8gr5YFEADPxqJ10yC4BtougIYJic3dE8pMOielGKobGk5Hxfv8T7Wm15cL8UyjG1WOFb56M9L9uHs3oMMlNauW0eClpdUenHE7+tdG5agtLkRgIA53QoDDhC1RyMy2QQREUUmw4HU448/juHDh+PVV1/1mSPV1NSE3/3ud3j88cfx9ttvW1pJIqsZSTAgt1Csx6C0LABdK5ASEyAoJpiQa/RPzS1QXNhXNv25wnXTHP6p1dVIy1aab2VJr5FSHcyWbuC0W9f9pLrfJlNcZnyiZrk/HD6IWZk9AKAjiAK21VZhTrdC9UhIR921eq30Domsb2vFa3s345Se/XUdT0REFCjDg883btyIq666yi/RRHJyMq644gps2LDBssoRBYuR37jzEpXnXJ1Q0AfJKmmjY5G4YbunoRbNbqfo7xrRcf7UXnfPXB0xpR4poyHJ0ooSbK/tTG5xQvc+BkvQz4peLSVaQ/dq2tTXFJP7ASFBx/37y1H/xXSbO4bPBTpHyqq8mf8r3oNvjhzEbesWW1QiERGROsOBVGJiIqqrq2X31dTUIDFR+9dNonC5afBY9ElJxzyLGtIOmw3H5PWypCw1MxVSd1tNTwxQ3tK5iO/b+7bi2R3rvH+LH7fKJHNQG6Yl7fnb11CL3676VvbYBqfxrGy3re9sYCeIEhiIE1NYkRBCqefJkoyAAZ4v++obKPTp7WtEpwlGT5elFXjqLb+kuQFA+zDEeKZMJyKiEDD8r83s2bPxl7/8BatWrfLZvmrVKjz11FOYM2eOZZUjstq8gj54ccIcpMUnaB/cQbMhF4IpHDcNHhP8i0Bfo/WwSlICsXf2bTN0bWkA8t9DuxSPfffAdkNl66UV7OhJYa48Rcpc79rC4t3YUF2uuH9Ot96adfKQC2SNBI/fHT0kOq+ddGFlo2UHkqBETBy4n95rgOHz11Ydxb0bl6JOo1ePiIjIw3Agdffdd6OwsBAXXXQRZsyYgdNOOw0zZ87ExRdfjMLCQtx1113BqCdR2NxeNF51f7Anw2fGJyAlzticIPN0NGp1zi9bW13mt21phf8QMY8nt632+dsexNfV7HAytTTgHkpHmA0X/nNoF+7ZuBSCIPhkAfQ4rpv+TKkHm+r8tpmtl6cn6Z6NS02W4CknoNO9WkWLayc7jCekvW/TcqyrLlcN4ImIiMR0/2vT3NyMH3/8EcXFxbjgggtw0UUXYd++fSgrK0N+fj7GjBmDmTNnBrOuRGExLCMH/5l+Es5e+nm4qxJ0aok1gq2xYx2plZVHsKTssGZPxb8O7MB5HQv4NrmcqGxtRq/kNF3XUhpOptWDIjePS28Zgc6dWl11VDYFvJEFa9dXl2N0Zl5A9fDQtUaUjmPMLlQs1SYKpIwkk5ESB2RERERqdAVSBw8exGWXXYbi4mLvtrS0NDzzzDM45phjglY5okiR5IjDaT0HIElmYr60yfbm5BNw2YqvLbt2KJM/v7BrvaXliRM86FHT1oIFm38BAKRq9MK9s3+bN5A6pyPIfX3S8bpSo7+9b6vsdq0m/RUrvtEsW67XSFy2IAjYVV+DvqnpSDCwRpLcELo53XoHFDR46qMlI0H/UFijrBraJxbIDCkr5skREVHXoOvfmyeffBJ2ux3vvvsu1q9fj88++wzDhg3Dgw8+GOTqEUWO3w0ciUv6DVM9ZnpuD+QlGl8gWE11FM/ZECd40OPRrZ1zL50megY8iSO0hgU2yyTCALSHmdU6zb8XnqIXlx/Gret+whPeoYz+F82KT8DgtCyfbW/KBH8jM3NN10daLzlD0tvrkCQzVE5Xj5Se9OcWxS3iAGhXfY3KkURERNbQFUitXbsWt9xyCyZMmIDExEQMHDgQf/rTn3D48GEcPXo02HUkimjiJnuAnQMBMZJ0IBBmMubptammwvvYzJCvQF9+td6RQIfmeRr6y8rb54kpracFtK9zpedeKm9pCqj3xaNWIVj3DHM72tTot0/P66Gnd8eqHiBxKUvKD1tSJhERkRpd/waXlZWhsNB3QnOfPn0gCALKy5WzSRF1BeKhVcFIPJHf0cP17Lhj1eth+ZXDq03HfCQA2FlX7X3sEgS0uV2mh4uJAzmpdTLJMwzpqNJiXY18fe9mvbMt4KF9P5cfxm+WL5Ld5wjBXaUVMH8vyhSoJpjrdxEREcnhYhtEAQp2UzOpYx7NIMlQLym7zYZXJx4X5NpEniPNnb0lLsGNz0v8EzIY8XXpAdntRuYzyQnGXCCjsUOhTDKO71QCFXsIulitelUsK4fxGBER6aQ7a99VV10Fh8xE+8suu8xv+7JlywKvGVGUCHb6c70NcDts6JGcGtS6RLoURzz2NRxRPaamrUV1/193rsMJBf4LNmslvzDDLcgPbDNyRxlJE2+32QwNpVMLpPTcl7qy9kVYcgcmmyAiIr10BVI33HBDsOtBFLWC/aO93rlCerLVxaKtdZXex+nx2sHOhcu/NHWdQNN0y51+2pJPZI+1wUCAbuD+M9rDZFc5XF8iCfMLGBullnY+0OGPREREchhIEQUo+D1S+hzXvX0e451DJ4gywsW+j4r3eB8LgjU9Ck0uJw43NWBgWqZ3W6CBVKvbhfKWJsTZbHBqlGXT2XMkQAha7xWgfm9XtDbrLkctoLKqB0hpDbQdddUoysi25BpERERinCNFFKD1OpMQ3DNskqny9Tbg42ztH+dj83uZuk4s+KmsGN8cORhwOecs/Rw3r/0RW0TJJ1wBBlKLyw/jshVf60qPH2ez6+6pMRTIG4z51QKv7XVV2C+ztpUctaei9boGmuK9RSHVPRERUaAYSBEF6EBjna7jpuf1MFX+0PRs2cdSHL0E/OfQLkvLe3jLSu9jrbk8f9u9ERUt2r00pc3+qcSleian+l3vzN4D/Y5rz9qnWZwPQ+GgRtnXr/lB17XUep20hv/p7UULRhp1IiIiNQykiAKkp0fg8v7DTZd//eAx3sf3DZ+seJw4VfVJPfqZvh51qnW2YnlFCZaWH9bsOfnk8F78defagK85MiMXtwwZ69cT+U2pf0/b7voaQz1Seo6cX9DX+1hPYKjGE9woDbtrP0ZfGWJyvbRKbw9/XyAiomCJ6UBqz549OP/883HKKafgzDPPxKpVq8JdJYpB4gn5co2+mwaPxVm9B/lsG56Ro7v8NFG2uMyERMXjxBPqrxs0GlNzC3Rfo6vYorJOlJKHt6zEI1tXwenunK2WEZcge+wRHb1NWq4eNBLZCUl+PTW1Tv9Fc8dm5VseKByT39P7uKS5wft4Uck+02Wq9RZpDV2V2ytXntI1jCaaKGlq0D4IwDdHDmBPfY2hsomIKLbEdCCVmJiIRx55BJ9++imefPJJ/PGPfwx3lSgmdTbU0jsa2OKeI7XMZ9bWwvdCDp0NyOm55oYchlt8x5yw3jJrIym5c8PPpq9376bOZR2UXttinY1wNZ73Uc8QM4fNZvmQTqU078/tWG+8sI4noRYsaT5PmQOuWfU9lupa2BiIM/gCrdUx53FfQy2e3bEON6390VDZREQUW2I6kOrVqxcGDBgAABgwYADq6up0peMlMuuSfsMAAFNEvUHpMr0X2So9S2ZJA7ZgZxMMN6fgxrM71hrKHmcVvUFqIPTMvXNDsPx9Fj83o0GIlCD5rxztHin//SXNDXhk6yrJcfLiA1xIWU51q/paZERE1DWENZBauXIlrrnmGsycORNFRUX4/vvv/Y559913MXfuXIwaNQrnnnsuNmzYYOpa3377LYYNG8b1RMhymfGdgVKG6PEzY4/FhX2KMCmnu3fb+9N+hdcmHqf4q//ZkiGARhhdIyjaCQC+OXIQTS5nyK+tlb48EJ53UdditmbqoXGKeC5YTwO9faqX7ChT7h8crSQRep+h0o9kgQaDRERESnStIxUsjY2NKCoqwplnnokbb7zRb//nn3+ORx99FAsWLMCYMWPw1ltv4aqrrsKiRYuQk9M+x+T000+XLfvDDz+Ew9H+S2RxcTGefPJJvPLKK8F7MtRljc7Kw/dHD/ltH5yehcHpWT7b0uLifeY8WUnaS5Ku8zpsZxrXGiEptQUYWxtKT++V+Bg7gNyEJNO9ft5kEx1/O2x2uAW35JhOqyqPINHuwKisPBPXCh1+ZoiICAhzIDVr1izMmjVLcf8bb7yB8847D2eddRYAYMGCBfjhhx+wcOFCXHnllQCAjz76SPUa9fX1uO6663Dfffehb9++qsdqsYdqsouOOkRCXaiduCdI7/ui1Hskt1lvmXF2u0+P66UDhqPJ7UJ1awvWqcz70NO4vnbQKGQnJOERUTrwcEiLi8eYrDz8XF4S1no0BrEXzGG36X7PBRj8LrBBM43dgPQM72O75J4yymZrfy6eIhw2G9okEc/yilJUtjUjLzEZD27+BQDw+Sz5H8ikdD13m/7XU2+5Zj7zXQ3/rSKzeO+QGeG6b8IaSKlpbW3F5s2bce2113q32e12TJ8+HevWrdNVhsvlws0334xzzz0XM2fODKg+cXF25OZaM8zFCtnZqeGuAnVISuzs+dF7j4jPEUtM8t+ut8y8vHTf8wA8XjALz25YrRpIJSZqfw3kZKRiTG4+sEVXVYKm3tmGuydNxalfLAxvRYIoKysVuRn63vOERAeys1N0lx0f50C8Q33OUH5u531UkJqKknL5BBqZCYmo0ZgrlJWVgtz0NDg60qjHOxxolunNu2XtT/ji5LO8f4vv+bh45fpm5aRgXXkZRuTkwuGQH6mekZmE3Cxj391an7kMd73uY7s6/ltFZvHeITNCfd9EbCBVVVUFl8uFvDzfIR65ubnYv3+/rjJ++uknLF++HOXl5fjggw8AAO+88w4yMjI0zvTndLpRW9tk+Dyr2e02ZGenoqqqAW61xVkoZIYmZ+IzAJNyuqOiol7zeABoaWmT3d7U5L9dWqbSUCulaw9IaG8Yj8/rjjXlR/zr0qrdu9LQ0IxqR+Cpva1QUx0Z9QiWmppGVLTpS5DQ1Nxm6PVoc7pgdyvvtwGorOwMnH5dMABLj8hnx0u0aU+xrapuQGqrHZUd92tdm38KdwCobGlGeXlncg3xvdzWpjyM8u2Nm/Dyro2YmdcTbU754yqrG1Hhkk9Xr0Trc1xb0/lvgd7PfFfDf6vILN47ZIbV901GRjLiVX7I84jYQEqJIAi6h5rMmTMHmzdvtuzakfSBdruFiKpPVzYrvze6JaZgYFqm7vdEKUeAXPIAaZmvTzoeyytK8di2zqxlx3UrVLz21JwCPDl2Jib16YXZH//Lb79NR5UFt/Jk/pBTCQRigeDW/10Tb7Mr3kvyhQOX9xuOuzYsQc/kNL/MgDbYfK6dpJLx7miL9g9LPx09jPP7DMHqiqOax4rX6RLXQe2+W1PZXu6S8sPok5Iue4zL7Tb8Xal1vLhK/B5Wx3+ryCzeO2RGqO+biE1/np2dDYfDgfLycp/tlZWVfr1UROFkt9kwIjMXSY7Af5dw65gyH2e3Y6Zo0dTbisbh1qJxisfbOuqXHCdfP6X5WuOy8n3L0axZ8J3as3/MZyfU8+ym5hZgYnY3/KZPkaH3RYCAooxsLJxxCmbk+a8fJn1tA03zvqaqPdD5slR7FIH4R4R6Z2fPrNonQlw/pYDLaGbDfgoBmdjhJvZCERFRBAdSCQkJGDFiBJYuXerd5na7sWzZMowdOzZ8FSMKpjD8+KYUmJzZe6DP35GwLlW3xJSYD6T0vMz9UzPw4MipyExIRKNTf+ILT0xhs9lk30/PHN1hGdkAgO5J+udfybEBaHY5saW2UvNYcdr1z0v26SrfIRpeqPTRMRpIuXQc/+a+rYbKJCKi2BTWQKqhoQFbt27F1q3t/ygdOnQIW7duRVlZ+8T4yy+/HO+//z4WLlyI3bt348EHH0RzczPOOOOMcFabyFLnFQ72Pg7HIAaldrt0IeFghS9G0nc3uZyWfmld2rGAciTR82r8IEq3X96qf+6muMdT7jqtHcPrHh89E/+dfnLAvawNLie+PnJQdt/VA0f5/N0mHtonCmbU1pny6ZFSOM7oSFClNd7EuDYVEREBYQ6kNm3ahF//+tf49a9/DQB4+OGH8etf/xrvv/8+AOCkk07C3Xffjeeeew6nn346tm7ditdee827hhRRLLhY1JgXICDBbuxjaXbqUmFyGvITk3FBnyK/faf27I9BkjWwghVJaS3IKrappsKyRbUn5XQPeOhaMOjp+TO7ILDPWSqXsdtsSNTI7qfHvoZa/G33Rtl9U0QLVQNAi8LaXGpPVU/vpNEeqfzEZM1j4nQk2iAiotgX1mQTU6ZMwfbt21WPueiii3DRRReFqEZE4SUIwBNjZuKWtT/pPkfPL+hyZub3xIV9h8ruO7Vnf5+/bbbIGNrnsFlTi+z4RDwwYgr+V7zbgtKspef5iYefGRl+J27+h/v9lAbEpc2d2Qf1him+PVLyjAZSeo52MJAiIiJE8Bwpoq5IgIBBaVk4oXsfzWMfGz0DZ/QaiEmSX/b1yklIUqmH5G8heEP7jDRzbTZrGrGe5+6IgODQDHEikPwE7R4UD3HwFO5nLr3+qkpRan4dQ/YA354hpWQTWj2egiCguLEzeYSewCsCOzKJiCgMGEgRRRAjQcXIzFxcOWCEqeQLc7r1Vg3WpCVGSsPRBhviDQ59VGM2ccWCEVMxMDXTsnqI6Rm2N79H384/jDyHCHkfAf/X3mdon85epBRRJkrlHin1MhaV7sfVq7/TdT2PCHoZiYgojBhIEUWQUK3VdEX/4YhTCUh6JPmuDJ5sQWp3NUprAAVNR0vYzBypqbkFmJDTDTcNGWttnTq0CcoL0ALtAfSQ9Gzv32a/xLfXVZk80zxxanHpKy9OoCH+FKh9IhJsnfO4FNdm0/h54ltJMgw9SxBMy/VPHU9ERF0PAymiCCJ4/xucgOquYRNwQZ8hyFYZ1vfJzFO981fuGz4Zc7r1xtTcAsuSPMjR+0VkdL6LEs8zMdMjNSozz6cMq3me4q0Kgdr9wydLAkD9NZnTrbf3sdm5dYFwiIJ36Ws/WJTcxOddVnnLxUUoBUBa98w2SUCp5xYrSE7VPoiIiGIeAymiCBLs/qhZ3XorJpjwEAdMU3ILcFvReDhs+pOUPzZ6hqE6zczrqTtI09NboIdnrlAkZu0rTEkDABynMPRSGoAYeQqn9xzQeZ7xqgVMfBdJ76gUR2dgJ/4hwaXynovLKGuRTwOvFkjVtrX6Hx+WRQiIiCgaMZAiiiDB6okKldn5vTAyM1d2391DJ8puj7frD9Ks6pHyMNMjFewAJN7eOVwtXiaxhjTZhpH62HRkuQu2awaOwh1F4/2CZ5fQueKT+G2Wew089ATgap+pQ411mufLcbmNrk5FRESxiIEUURgoNeA9DcgQTZUyRCtddpzNhisHjJDd98L42ZiZ39N02R6D0rJ0HaeXPUhfgVnxiUEpF7CuF21rbaUl5Rixu74Gp/Tsj1ndevu98p4hk0B779LBxjrZHiMxPe+eVrIJ/+O1T2gTGEgREREDKaKwOK9wCPqlZuDe4ZMAAGf3HgQAOK57YTirpUqr/X7H0AneuVcTs7uhd3Kad1+/1AzVc6fn6Zu8f1KPfrqO0+IJZIM1tO9x0fDGeTpS2RthNtOglHjdplARD5uT9iYliRKafH3kAK5d/T0u/uVL1aF2enqkXCqBkdz50d4rTEREoRPWBXmJuqrcxCS8MH629+/L+g/HuYVDvOmcw9WYU1tbSqvJKt7/4MipaHO7ccbPn2pe87huheiRnIp39m/TPLbAwOKzajwBVLCG9uUmdr6OF/QtwldHDhi+jl5JOjMqDsvI1j4ohKSvo9w97xIEtKkMo9PzXhj9LCnFXS7BjRvX/IjRmXnIT9K/dhcREcUu9kgRRQg9a+IE2/l9hlhWlt4QZWx2vmpjV5xdzqrMgY4AeqT0vDfxdjv+Om4WXpt0XEiSOuj5IjeaBMTjiTEzTZ0nZ4goM590OKdS6v8DKvOY9NwPakP15M5Wuhe/P3oIBxrr8GnJ3pAtU0BERJGNgRQReal9IWjPY9LOJpemkHJbrezL+w3XuK5xgfRIfXe0fd0h9VNtGJiWiYKkVN3zvwAgRaV3qV9qhmIwdEm/Yd7HZ3UME5Xulyap0Ksg2ZpeQED9fTYz6yjQHim5+ijNqXp2xzp9lSIioi6DgRQRiZjvPwmk50XtXLOdUL8dMALPjjtWdp8nqPBby0hHMotd9TWax/is8mSg/icW9FXcN7dbb8WMiAWiBZTPK/TvVQzki97KHjVxUJMgWRDaTC9PnI7g0KVWrMknx/4oIiICGEgRRSStbGVWS+xIud07JU3xGCsa1EoNUPEQrW6J1sw/GZSWpZjlr97ZBgBwSJ7VE2P0D3+ra2tT3GdmudyTevTDZf19e9/Er5fe1O9ygZvcELjjdSY2sXIhZvFTkJZrpkcqzq79T5ja6ya3zw0Ba6uO4qHNK9DodMqex0CKiIgABlJEESlRtJZQKPxt4lzcP3yyYo8HADS4lAMHwL8Bb4cNozPzMK+gM2td/xT57H3iU0eo1MEItWF72+uq/I65dcg4nzWclFzZvz3Fu95gV+/Qvv6pGapzttQa7z7Z8GTr4C9ZZ5IKabCZrjA8U49Wt0txn1aP1OSc7hifnW/4mmpD++QCKUEQcN+m5filshSfl+xVKLTzvOrWFsN1IiKi2MBAioiQl5iMybkFqsdorccjDRhsNhseGT0dNw0e691257AJOL9wCGbl91I8VzpPyNNwTwpCcCkOXPqkpOs6x3OcS2UtIXFvSyD9OceK1t5SK8enp0fmyEBSpkt7jrTXE1P+Z2W/SuIItaQSAPCHYZMwNksSSOnopVNLfy4bSIn3K5zXIgoId3QE5URE1PUwkCIiXcRZBc3KSUjCRf2GorskjXlOQucCttJ03gl2B96aPA/vTD0x4OtLNbo6h27pDjY6DtNaG0t6vBk3DB7jfayeLKKz+W+XG9pn4dw3ufLF3p4yz9R1FpXuV91vt/m/R3qG2KkGUjIliHuwXAqp1z1DQ9vrFYq8jEREFIkYSBGRLtnxidoH6STtCRD3ehSl+653JKB9XSa9Q9GUfDDtJL9t4kVp9TaHPcf1Tc3A6T0H4Dd9ilSPtwcQxCSIeuHEjXcpyavptz+Qpr40UNAKyjLiExSHKM7t1tt0PWwmw0G1nkPZOVKiTU6Fc8XvRSBBKhERRTcGUkSki81mwwfTfqW836LrTMktwNmiFN5WrdmT6OgMSjzB2jBR0Ca9itIQNfHz/O3AkThWMkxR7fhAjmtQDaTUe6TaZAICvQGA9HXR0wFzz7BJstvNpmAH2l8faZ31JKhQH9rnv038WhYqDPf8sazY+1irh46IiGIXAymiCGTFMLpgSImLxyOjpuOGQWP89hnJ7qYWGjlsNp/sdVZlSBPXLr4j25t4iKG0d+L6QaMVypH20Kizqv4Z8QnK19CYI/WfgztNX1cayCoFYCf36Ifnxs0CYGDYo052tN9f0ivrCbKVepUAhaF9ok16FmzWk4KdiIhiU2S21oi6uEv7DUO9sw3nFg4Od1X8jM7KU23U66GWSU1Kb9pvv2v4BQCdPMPtxNukjWrpPC5FGm1tufrnJCShsrVZX/k6iK8gV506md4svWFvWlw8RufkYUNlOQCgTWbeUJzNjmtFgafSvCEj77tYfmL7eyEN1tWCJA+XSpYUufdmZ32197GeQErc00lERF0Lf0ojikDZCUm4d/hkDJHMF4oUAY9mMtCeNtv49pz17Nhj8fDIab6Z9GSegLRRHa+wRpHR3AIOmXJO7dnfWCHQyNonTn8uU8FAUpbbbDa8Orsz0UeP5FSZo7RmaclTSrcvzdDoeUrScv++d4vmNVwq94/a/CmgMyB8avsaxWPMBvpERBT92CNFRIbJ9TgYiS/khlTdOmSsbG+HVtp1JZ7TBqVn+e1TSwBx99CJWFddhqEKQazR5AJpMkGM3OsnziBolFZb/tzCIX7bzCabk+ulkV5ebya7R0dNx6lLPvHb7pQ8IWfHfWFmceDatlbUtLYgM8E/WYqelP4tLhe+P3pI8RgGUkREXRd7pIjIEkYCjKm5PQAAx+R1rpN0XPc+mN+jn6Frzs7vhQnZ3XDNwFGGzvO2x0UN84KOoXwz83vihsFjdDfa9Rw1OjNP8xxp8GDkQlq9dhnx/sHcWaKEHkbIBlKSy+tOsKHwGrslPUWeZBla5U6VWQvty9L9uPCXL2WPV0tE4aH12upJeEFERLGJgRQRGRboj/AjM3Px5uQTcMfQCZrHyvVeedhsNiwYORXT83r471MpUy7oy05IUjxenHpdemZuQrLKlfQLpGdDeuZtReNV9wPqz1eNXG+TNNgIdG0laXDSOadNvdxeyWn4/ZBxyEtIwtUawfX/infjqe2rVY/RM6yUPVJERF0XAykiMkx2kr/BtnNeYrKuBreedqpD5uJDM3L8tk3r6LEYl50PQH+Vm1SG3SU6HHh01HSdJbWTzgECtBvkakGENLHGoLRMSdnq9clPTEb3pBRdPXtyr4Xf0D6L11by9IJp3S77G2oxt3sh3pwyD90S1QPc1/Zs1uxNcgvarx0DKSKirotzpIjIMD3Z0qyi1ivgCSDkAjK5IWi3FY3H1tpKjM7KN12fvQ21GJXlO1QvyeBiwcd174ONNRVYXH7Yu83KHilpIKPVszIuOx83DR6r61o76qo1j1Easmf2KXrK0+qRqlDJhOgWBOxrqEV5SxMm5HTXeWXBb5ihX7mWJbgnIqJowx4pIjJMdm5JkNqTeoZX6R1KluSIw7jsbrrSWoudJ0rWUN7S5LffaP9LosOBu4ZN9Nmmll1Oi18QZtPYH2RWr1Erl65eToKop0967Pa6Kty09kf8acsKLCrZp+u6ArTnUbFHioio62IgRUSGJRvsgTFjfMfwu+EZ8imyxYwGRh56z+qbmu59PEOUIMNwQQCeHnuM7HbtoX3KlOYUeWgtXGs0E6EWPQvlGtJRPbtGNcXD+aS9Yj+Lev8211bquqwgaAe4Vj7Tl3ZtwG3rFjM4IyKKEhzaR0SG9UvNwNUDRmJwehZuX78EgPn1npQ8OGIqGp1tSNOx+G+gyQ2MkFtHycicIPHaYBf3HYp39m8DEFjPxoDUDADtc50A/7lEoW6WKw11NPs22WQeGSVOrf9TWbGucwQIaHW5VI+xMuj5rKOnrM7Zisx4/3TtREQUWdgjRUSmnNprgGxCB6vYbTZdQRRgfXIDtfLjNKKB3w0Yqbvc8/p0DhkMpEdqRGYuHhs9A8+Nm9VxrO/RoU7RHaewmPFFfYeaKs/zbLR6pOTO8TATbAsA/nNol+oxelKoA8DismLcs2EpmnWsFxbs+5mIiKzBQIqIos78gr4AgDndCwH4N5I/mHaSzpLUG6w3DBqNY/J6on9ahnebXJAgvv7cbr399uvptdDbIFcyMjMX6R2Bp/RZWT7UzoRRmbnI08ikp01/gGHFcEVBABaV7lc9Rm+P1OPbVmNDTbnq4r4eDKOIiKIDh/YRUdS5btBonFs4GN06FtGVBlIpcdZ8tc3v0Q/ze/TD4aZ67zaHTf33J7mMda6OPiG1ngaXQna4GwePwX8O7sSJHcGjHtKmvVZmuchvuLfXUOuXP59nKXlS1a0thq+qax0pgwMn9QRe4Q97iYhID/ZIEZElGpzaQ5asYrfZvEGU1LyCPpZfT9ywlUtsId4iN4Qsr2PR3t4paYrXUBp+d2JBX7w66XhkJuifMyPtgYqE5AUjM7WThijxpNtXSqvusUSUUEJ6pDjVvF56XjWjvX16gtYFm3/xCd6JiCgyMZAiIkvsqq8OdxUAACd0tz6Q0mpRi4MnuYby1QNH4eQe/XD/iMmKZVgZ7IQ/bPL1+yHjcK4ohbxRZR0p5430nFnTy2Z9j9Sa6jLNY7bVVeGp7WsNlUtERKHHoX1EZIlIGR5mrIdA37FGGstyPVZZCYm4dtBo9WtYGkiFtkeqd7JyTxsAzMzviXiFBBRGaM17KhJlRLRijpRbx8tm9LVdXlEKoP0+FfewSYd21jtbDZVLREShxx4pIrJGhERS/VIzdR9rVYAhnvtkNhW70hwpM6RPK0Vj3a9AXwWtdbysujW05ixZfwtqvzJrqrR7mKROWfwxTl3yCY42N3q3HW5q8DmmWPI3ERFFHgZSRGSJCJiGA8BYognLQhdRC95s6morU5SL34r5BX1xgsa8sWXlJZplPjhyCgDgL2Nm+u3TesZGeoem5BQo7tNa/0kcz1mxtNiOumrNY37UsSbVgYY62e1flh7wPjbaY6f0I4B4vSwiIgouBlJEZAmrF+QNBb2NV60gUdxm10qIoMTK4Xc9k1MxOjMPF/QZghsGj0G83aF6fK2OYWSTcwvw6TGnya4dpvWc9b4m/VLS0Tc1XXF/iagHR/Y6Pkv3Bh5J1TvbAi4DANbXlMtuF/dCxtvU3yOx53asw5k/f4omyZpUNa0tOOPnT/H09jXmKkpERIZwjhQRWSJSeqSMSHbEYcGIqcg2kBFPjhULqFoZSNltNjwyerpl5WnR7pHSZ0x2vurrEK+Ret5qG6rlAyCjmhQCMrPv+VdH2nuydtZVY3RWnnf75toKAMB3Rw/h90XjTZVNRET6sUeKiCxhNHuZ1a7oPxwX9R1q+LwJOd0wIE19XpVmb5sFw8gCXZA3nDR7pHSWY4cNX5TsU9x/UT/j728gqtqMrz0lJQgC6pQCKdF9ZaZHVzofT6vnkYiIrMUeKSKyRLJGQoNgO7P3oLBd25IMcVE4NNJDs0dK59A+mw1ocCmvR1aQKL92mFw9IiT3CR7dugpLK+TnoIljZ6eJZCPS56iV9ENOs8uJA411GCLKeEhERPqwR4qILJEZnxDuKgSN0uK/HlY02sO5aG5uQlJA51sRSOopx0icYHaumtWUgijAN3heXKa+YHBZSxN+6Uid7iGe4+cSBDy3Y53h+j20ZQV+v24xVlYeMXwuEVFXx0CKiCyhZ82daKXV22ZFoz0cgdQdHfNoXpowJ6ByzPSEyJ2rVYrWXDSrAjojeienoUYyBHBLTQWqWps1zy0Urb8lTRwh9duV3+KhLSuwtbZSdv+G6jKU67im1PqOeWCrGEgRERnGQIqIAjIuKx8AfCa9dzVWNN/DMUdqVrfe+PSY05ASFx9QOXEBLLYrXkB5V321+sEGslqEKqQ61FSPC5d/ic017YkeDjbW4c4NP+OyFV9rnpslSnLSS2FR4/q29oyKnqF/xU313n3i4FsrENPSGOD5RERdEQMpIgrIgyOn4M3JJ2CgRsKGWBZIT8jNg8cCAM7vM8Si2oReIFkLxTODDjTWIz8x2fR1xHulC9wG25Ly9qF5pR0p2vUExuJe3B4yw0df37MZ5y9fhP8c3OndJi5WHEh9ppKkQw8n158iIjKMySaIKCAOmx15Ko3friCQkX0nFPTB3O6FAQ2PCzer6l7Z2oweSamK+40MoWwzkbwhEGaGZnrmSLW6XbKpRhYW7wYAvLlvq3eb+LjipgZsq6vCqT0HeIfoeWysLkd1WwuOye+lqy6hfr2IiGIBAykiogAFGkZEcxAF+KfhDhbtkX2dR7hC3MMiF0itqypTPWd/Qx32ptTgxjU/on9qhq7r7G+s9T7+6851AORf/z9sXAoAmJJbgAQdadGjOf0+EVG4MJAiItLhhfGzFQOecCQ5iATDM3JQ1dqCqwaM8Nt3XuEQ/OvgDkuvZ+R1doY4MJAL257esVb1nH8d3OF9jfY21Koe6/FR8R6/bSUqwxilAZ5LcGNV5VGMysz1mRunNbRvQ3U50uPj0T+16w7hJSKS4hwpIiId+qVmoDAlXXZfVwujHhgxBaMz83D/iCl4ddJxsq/LxSYXzz2j90DFfUY6vsz08qUGsBbal6X7caChDocaO5NBVJrIomeG2rDCL0v3ezP9lbU04dPD+/DQlhV4dOsqn+PUhvY1u5y4Z+NS3LjmR2sqTEQUI9gjRUQUIPkZLrFrUk53TMrpHpSyT+heiBd3bZDdZyQ0mpXfC6/s2WTo2unxCaoLAmu5bs33ps8NhNrcsVf3bAYAXD9oNP5P9LqurW4fdmiHDW4IcKkEUvXONotqSkQUW9gjRUQUIGY8M8+zlhUA9E/NQLzMfJ5kR/s2I0P7Ehza84Kkbh0yTvOY38oMYwy3Bh2BjlJWP8+ivq0q97DeQMoluPFLRSkanUylTkRdAwMpIqIAZSckIc5m966pRe0GpmVidKb6+mKzuvVGasdcHUFjXpO44+WK/sNVjzUzRapnsnLGQI/TeykPPQyXA411OK5bofpBCi+IZwik2vBAp86Mfp8e3ouHtqzA49tWaR9MRBQDOLSPiChA8XY7/jvjpIDWU4pFz449Vtdxjo7XzdNcf2PyCbjcZ0FbW8f/B/f1tcGG2fm98ENZcVCvY7WpuQUoa2lSPUYpTLJp7Af0p3bf0jEXa3XVUV3HExFFO/ZIERFZwGGzG1rnqCuw2Wy6XhPPIZ4eKemivOcWDgbg+w+WXOM+KyHR+zhJYWjfJX2Vk2DYbMDc7ho9OxEoLS5B8xjFBYo7X3zFc/UGUnrSrBMRxRIGUkREFFaenia55vo9wybinI5ASjy2T5plbk633vjdgJHev+02G/rKZVlUCewcOnu8gpVowyw963gpZeXT0yOld5RkONZDa3W7sKOuSnNYaCzbXFOB29YtRqlKGnwlTrcbnx3eq9mjSUTyGEgREVFYJXb0Hsk1xLPiO3uZxP9gudy+DeebB4/16ZECgDi7/z9xav/o2Wz6Bg/eP3wy3ps6X8eRofH2vi345shBw+cpZUeU+rn8sK7jjAy9rHe2oc2CJC2Pb12N369bjJ+ibDimle7a8DO211XhbwazVALAotL9eGn3Rty+bnEQakYU+xhIERFRWP1x2CQUpWfjjqET/Pb5Dg3sfJwnGf4n1xkil4VPrd9CbyBgs9mQEa89nC5UmlwuU+d9XrJPV4/U/2QWAZajt0OqyeXE+cu+wDWrvtN3gopfKksBcF4WoH8IpphnMeeKEK15RhRrGEgREVFYDUjLxFNjj0G/1Ay/feK2uV30xwkFhZLMff6t+H6pGX7D8L4s3a9YD3sXnOJmZQIPvclWKlraG+1HWhotu3YoBvaVNDXgy9L9ETuM0Mw7KddrS0T68RNEREQRSylZhcNmx5m9B2meL/2VvrRZufGuZ65RsE3LLQjLdQVBQG1bK05Z/DH+3rGILwCsNdDTI371nty6Gg1tsbWQ729XfYvnd67Hisoj4a6KLDP3r3g4LdfDIzKOgRQREUUscQIItYai0h4jw52CnV5dD+mQxWDzJu0D8Pe97QHUh8W7vfvv27Rc9rxWtwu76qp9emfE78/3Rw/hT6uX4ewln/nNXxKC0H9kZlibWUdVgvFw0rtwspJgvC9EsY6BFBERRS6b7EO1w3y4DTQO7bbwB1OfHd4X0uu1ujvnV1W1tngfN7mcaHP7z73aVFMBAHhky0rcsu4nLK0o8e6TvnY/HD6IRpcTT2xb7d3WGGBjX0koQ4AmlzOEV9PPs46XEYLCYyLSh4EUERFFrHhb5z9TZoYu7a2v1X2sHbaw/ypvJPCzgidRhUvSo3PO0s/xm+Vf+h1/94afAQCrOob8ra0q8+7TensWlxXj3GVf4COdySuMCOW8pbf3bwvZtYJN/LqFslePKFYwkCIioohzR9F4nNyjH/qI1oJy2Oy4euAo3DNsot/xSnOpap2tuq9pdEHlSFtPKhAlzf5rEOnteREEAV+U7MOBxjrV4z481D5kcJEo4UdFS7OuIEirkd9VQoA3927BDau/1zWfaV9DLQ411oegVkRdFwMpIiKKOLO69ca1g0b7BTen9uyP6Xk9TZc7VSOZg5GhffcOn2y6HpHIzPwsAe3D/f5v1wasry43fP6lK77Cewe2qx7zn4M7cdqST3C4STkokAu0Pj28F98fPWS4TnKaFYLKRqcTxSr1stp/Du3CvsY6bK+r0jz2hjU/4JrV6inmObSPKDAMpIiIqMvol+KbYr0wOQ0PjZyK+00ERXILCAcq2eFAsiPO8nL1GCCTfl7OO/u2eh+7BQE/6FwMV2nY4gcHd6qe92bH9b4qPaB4jNyQzJd3b8RT29foqpsW8fwxAN4EGlev+hZXr/oOZS1NllxHr08O77WkHJfQ2bPV1Ub2uQUBu+qrma2QAsJAioiIYpZ0baO0+Hifvx8dPQPjsrthssm043O79TZdNznXDByF96aeaGmZemTHJ+JvuzfqOvZfosDn6yMHsLehRt9FFBrqLkHAkrLDmqd7ArFDjfWoafMNbNwCUN7S5E2QYfWcKWnM/MS21fjw0C5UddTjRxM9X+IgxqgGmaQdvZJTZY9Vey3Ec+PCPT8w1D4v2Ydb1v6El3Xe97Hsld2b8KlFwXlXw0CKiIii1k2Dx+CyfsMU9yc6HD5/S4fuZSUkBnT9BLtD+yADEu1xiLe4TD2yEhJhtlm/o65a13FqDfXHtq3SUwDq2lpxzervcOkvX/vsKmluwGUrvsata38CANPPxYi/793iffzNkYOGzn1y22qcvuRT2YBID+l9DSgPzVQLj8S9MbEURh1tbkSLyz/rpJgngFqkskh3NGl1u/DCzvXYajB7Y72zDR8f3sOA0iQGUkREFLXmFfTF2YWDFff7/xpvbXMxSaZBG4hwrQm8t0F/dkOzpJkB5by4awPuXv+z7D4BQIOrPfBwSnpzPIku9nX81+oMdNKhfVJGM0r+2DE0cKfOIFSqe2KKfx0U5vepBbBtotcxWrL2fXhoF54UpdSXKmtpwhUrv8H1a74PYa3Cb1HJfiwq3Y871i8xdJ7LxNDG0uYG/GPftohdCiCUGEgREVHMkjYN3QG0Fed17+O37dSeA8wXKCPc61gFy2+WLcJ+jax+QPtwq021FdgvE9hVtDbjPwd36bqelcPUNlSXazZOzaTmB0QLIguCoeGIA9MyFcsCgMrWZu9jtXu+TdSI/qFjeGJ1awv+sW8bqjWCx3D5+94t+LGsWHFe2sGO+6w0QhdODpY6AxlKxcRzFx/eskLXOX/cuAzvH9yBd2NoKQCzGEgREVHMkjaoxX/LBUZKXpt4HG4YPMZve3pcgvnKyYjNMMpYGnoA+KWi1G/bT2XFPsOwVoiOyY73HaJpRe+KZ/HgxTqSaWSYvA8OdqQnX7D5F1yx8hvdwZRcQhJxEC4OpJR6YQVB8PaMAcCRjsDjhV3r8f7BHXh2x1pddQkXpddKnASm3tmGbSYWKo5Ga0RruhkhDrSXy3zu5HjulcNN/ssmdDUMpIiIKGaptUvlAiMlBcmpsr0Ocpn7/jRyqu5ypcz2bMSC9/Z3pkHXM9joT6Jfz1PifAOL1gAzsX1z5ADOXfYF3tq3VVdP2oaacrgFASsqSrHRQBr4l3dvxJ76GqyqOoqyliafoXZq5G5r8Z0jHuan1CO1o77a529Pz4RnmOe+EAz3lNPobMOja37B7nr1JCZKnxWHaBHvW9f+iNvXL+kSwdTwjBxT5wWyCLjWcN0fjxbj73s2A2ifw7Wm6mjMZUlkIEVERDHLv0eqkxVBS5zdv4y8BOPrMXl03TAKPutJGe1RqmvzTdrwWUlnBrJ/7ldfp0rOszvWAQD+fXAntuhshC8tL8GftqzAHzYuNXStNVVHvY+XV5TitMUf4zPNDGr+r4/NZsOR5kZcu+o7rKg8IjpS/rWsbfPtJfS85J7ehnKfXq3QqGtrxX0bl+F/+3bhptU/mCpD/Bkq6Xgue8IUFIZSZrx6r+iPR4tlg/xAMlxqZZ58cvtqfFi8GyVNDXhx1wbcv2k5/nVwh+nrRSIGUkREFLOkmcysTostN8E/LzHJdHnSBYi7qu+OGsuCJx06WNHSGQS8e2A7SpuDPwTpW4N19hDP5Xli22q4AbykkUFN7i5udjlx5cpvcLCpHv8QzV1RuuPzpZ+NCMjb9/t1P2Frbftiw1q1UQq25XpJ5D6nnoQdOQnmP6+BqHe24c29Wyy7N9Ver1111Xhy+2rZIF/6Omp9R+4S9WTqnXPa4nZhcccSB6sqj2ocHV0YSBERUcx6cITvMLtRWXkAgJEZuZaULw58hqZn44/DJgXU08Uwql2giQKKm+p9/l4ZgsbbSlEvkNWkwYFcW3djTYXsuXrmEgGRMd+lxMD7rtSGf33vZr9t0o7j8pYmHGlpv1a4PnNv79uK/xzahatWfmtJeWq9uGoLOLskr6RnqJ9LcOPZHWvxVel+fHZ4L2raWvDPA9txS8cSA1rE6eftsHnrF2u/FTGQIiKimNU7JQ3zCjqTShSlZ+OViXPx0Khpll9rck53TMvr4TNHQ2xOt94Yl5WPB0dMUSyDPVLWkCYB+aWiJEw10ab1o/7ismKcvuQTrK7yDQZr21pxp45U1x8V78HqyqPebHZK1lb7JytYU+UfgNa2tWJJ2WFd6eyB9rkxakPABEEwtTixUtY+ublVX5T4rhX1ronhnkbVtbV6F4iWY2YRZzVq60epzYOSvo2egOeXiiP45shBPLdzPV7avREXLv/S73Xz9GL+88B23LF+sc/7KO7htNk6/461zKQMpIiIqEvpmZyGeLv1//x5mg3SX/r/Om4WTu3ZHzcMGoOHRk1TXcTXkynuuXGz8Psh43z2pcfFIyEI9Y41JU0Nfu+B0UFr47PzrauQiNPt9mtAN2osyvv8zvUAgAWblnu3CRDwUfFuXfO33j2wHQ9sXo5rV/uuqyRtQA+SSal+/6blqG5twSNbVmJHXfuQu/s2LcNj21bha50L2Z7582c4fcmneFO0gLHYqUs+welLPkWzwTWJ/nVA/1ybnfXVaHR2li9dh0xLm9utO3AE2odZXrB8Ea5c+Y3iMQ0m12ByCwIWbP4F/zm402f7Kpmg10NtuJ60J8slCHALAl7f49+zJ7WxpgLLykvw7v7t2Fpbhf0NncG69Iqe108uQU804zcyERGRjAv7FgEAbisar+t4T8NBOrRvYFomrh44Cok6Fu+t62hUD0jLxNzuhT77bLCpZiFUMy4rOIFBJPrtqm/9Gsqe163V7cINq7/Hz+WHVcsI1tq0C4t348nta3y2LVaoy3M71mFPfY3393vxMxKgb4FjNdI5UZnxiXhs6yq/497Zvw1LK0rw+3WLAXT2+KzXkZ1Q3ID/zyH1NcCUepiUGG2PN7s7Axdx8FDR2oy6NuX0/IIg4IyfP8XpSz7xL9PlRINMIOxZg6tS51pc5S1NaHO78eruTZr35u76GqysPII3923VVTag/ENCTVuLX2/Vq3s247Qln3iHPmr589aV3sfi7z7x7emw2RS/H6MdAykiIiIZ5xcOwT+mnIg53XrrOl7vZH21ZkQw/lEem5WHS/oNC0LJkWuZZD0cz3vz9r6t2NdYh0dlAgZxY9qKxAtyvQBqw6+kvjpyADet/VF23+aaCvykY30rNdLara46iiUyjfgmUc9JlSiTn1IACACbOnoqjPT7JMr01D6yZSVe3LVB9ni5BBJ6SZ/7Jb98pXjsto6eOKnK1macvfRznLfsi/YyRe+30SG6l634Gmf8/Ck+OrxH9t4U+8BE1ju5+VM/Hi3Ghcu/9OvZ+1JnT6MccW+T+DMkvrraK7O66ii+O2IuaUu4MJAiIqKYdkLHwrtn9x5k6DybzYashETtAzuI2ypn9hpo6FoecRpD9/SuMyT28KjpyDbwPCLFdoUGrBmet0apzH8e2I4Lli/CvzuGS+nNRqakxeXCqUs+wSmLP0aTywmXIEAQBFPPSW4I2Gcl+3DUYA+O2OKyYr85V0rEd+T7OofT3b3hZ/x560q0qswRArSDj6UVJfi8ZJ/suUaDFfHnUxpYqH2uxM/BU98Wl8sn+HIJAn636ls8uW01mlxO3NbReyensrXZL/W8EXK9XH/Ztlr1HLnb+dOSPQDUA2KjbD7rl4kCKVEF5HrwPB7YtBxP71gbVWtN+S+NTUREFEOGZeTgP9NPQpIjuP/kiX+BNbvIZbxNefhfIL0k0TjB+7Z1i/HW5HmWlDUqMxe76qu9qbWlPJPo39q3FTvrqgNapBSAdz4R0D6X57OSvRiUloWaABrQVnpcpuGdk5CESpm1o8RDsRoNzuv5uHiPz9+Vrc0+6cZ3iRJDWL00gZT48yPX86ZHg7MNafEJPsMEgfahfCXNjShpbsT47G6oblMe0ucJwE7u0Q+fKQSJasTPo6q1Gc/uWKcZFMsF8IH+WCBHHNu6fXqkjF3MJQhRE6CwR4qIiGKe3iDKqrV09JZyab9huGnwWBNndtLT0xat0xLKW5qQbEEAbINNd9rmpRUlhhcElnpXtLjwwcZ6NLlciunJI4f8c/5OlByjWmHOT5vbjXqZnob/SuZF3bHON8uguHfC6Ctu9Jb2vKfipBN6zvle9Py9CRMkV790RWfvlN7vkMx45V7ietU5W52PH926SlfPYo0ksCturLe0x1eOuJ7iJBR7GmrxzPa12KeySHKgP2SEEgMpIiIiC4gbDmrtcHGD8+Qe/X3Ss6uZrTBXS8/k7SiNo+CGYEnd3zugnu7aszirR6AB9SZR0PRLZanKkaG3QSFJhJ7YUS5FOgBcseJrnL/sC5+1gwD/HixpAoN7Ny0TXV+7AuIAd2hGjs++Nrcb3x45oHjux4f34FBjPW5WmHfm8fnhvd7X6Ofyw/hGNGfHBQGv7dmE5Srv6auSbHfi3sn/68jACKj/uKHW8ye+N/VkbQQAp6T76RuTi0drET8lcTD02DbfeV/fHj2Iuzf87LNNHOwF+kNGKDGQIiIi6lCQlAoAptKMCzqHsvgGPvoaDI+NnoEr+4+QL09HqBHIxHzPHLNYUy6aYyR9v4Mx7ClS3LNxqez2KpXhaEoanU68tW+r91xpz4cRenohmkWBWo8k3+D3f8W78cyOdYrn/q94D65Z/R1KmpUXHi5vacKLuzd6XyNpJsFttVX4X/EePKtyHekcoN+vWwy3IKCytRlfiBI5HGhQXtfLyLpPSg411mNvQ41secEeRgloB0P1zja4BQGPbFmJT4r3+CwIbTQ9fTgxkCIiIurQIzkVfxkzE3+fdILhc8XNBrVGhDjI0jvkcERGjmIiCl3rsgTQrXNqz/7mT45gl634Gh8V78GDm5bDKXm/oukX8XA6d9nn3gQdAPDS7o2mXzs9p22u7ezpe3zbaly58husry5DTVsL3jKQDlxJs0s9OUaL29zaT9vrqvxeF7UkD3KvhSAI+PFose408des/g43rmnvfZNbIywYxNXWk33vQGMdllaU4G97Nvn2ZkXR5y9a5nIRERGFhHTIkF7if/rV5sOI2wh611RRy1CmZ3HhQHqkwjm/6vmd6w0nODDi1T2bZLdbNVeuq1lZeQQlTco9Pmr09EhJG9hHmhtx78ZlmJjT3dQ1tUhrZLanclttFfLzk3UfL/fjyLKKUjy5XT07n5wzf/4U3fyGrgaH+O15e/82zePFGRHFmQwDXSMtlNgjRUREZAHxcJkDjcrDdtSaCNJ9PZJSNP+h/lWPfhiekYO7h05UPCaQRTDD2aZRex2DKXqacZGnyWSvjdZ9dvu6xXhoywr/89AewFlBHEB/VXoAb+zd4rO/zWRabq008FJyP44caqo3eW236XONEiDA6XajUSXFuZgnWyYAn3ln0RRIsUeKiIjIAnr/6fcMs+mfmqF57MsTj9Mc5pIaF48nxsxs/0PhR+AUyRDCO4dOwBMaa8+Ydd/wybIN3mhS36avIRhtmoLYu+dhtg2sPi9IUFwYN1ie27nOb9s/dPSyyDEaSMkx0vPhUpljJAiCasa8QFy7+ntDx4szDoq/59TqH2nYI0VERGQBvRO4uyWl4K3J8/D02GP99kn7jRw2m66he1qkQwOPze8VcJlKpuQWBK3sUJFmlwOAnsmpYaiJMmmyBbEku/x6ZB9K0pEHg575LZWtzWiWBHVy6dO9ZYaoj/BIs//7Lqa2PpSafx3cqTn/SqzZ5cKd65fg69LOLIRGXgG1VP8C1F/rcBH3mrNHioiIqIsx8k9/bmKS7Ha1uVBWOa3nAEPHR0+TJrgGp2X5ZBYLt57JaShRaPgrBR7/PLAjmFUCAHynklo7Mz4BR5obceXKb/wCQWk6bLFQJR9YWl4StLKvWf2d7mMXlx/GltpKbKmtxAkdyyMYybS3V6XHSYD8Ar3hJl6bK5oCKfZIERERWUA8v+L47oWGzu2Tkg4AGBiC7Fq/GzjS0PFGEi/kJsgHiGStBLtd9X0JZ0N0W61yI72mrRVXrvwGABSDQDmheD6Pb12Fr1TWoQoll2guVmlTA74q3Y9VOhbe1SMUqc/N+Kms2Ps4mgIp9kgRERFZQPxPf1Z8oqFznxl7LKramr3rWGmZ0603vj96yG/7vcMn4eEtK2XPeXOy8ZTuAAx1SV03aLS5a0SBSFrU2KZRm3A2RHd3rF1kpVD0SKmlIw+1rXWdC+3euPYHNBkYFqhlZ321ZWVZqUE01DOa5kgxkCIiIrKAuK03rCOFelF6tq5zEx0OFDj0z8HJTpAP1Kbm9lA8Jy9Rf/plqXibHW2CG8kOh2qjTprUIpaEYtilXgKEsGZTDLVoWlfICmuqyryPrQyiAOCO9UssLS8Y2CNFRETUxYiHWk3O6Y4nRs9Av9TgDNXT6pGw+GJ4eeJcbKopR9/UDNWJ7J71b47J74nFZeH/hT/ZEWdZpjqnydTXweAWgLXVZdoHxohoalhT4KLp/eYcKSIiogDM694+GXxGXk/vNpvNhuGZuUiJC87vlWrzY/46bpahsq7oP1x1vw02dE9KwXEdz1NNXEeGwTuHTTBUh2Cxcs7W/jCtaSXHGUVDn6wQqqx9FBkidR6XHAZSREREAbhx8Bi8O+VEjMzMDdk17So9UgPTMjEhu5vusrSGH4qvpHZdAEjoSLst12OWozAcMdoN7xjGScETTT0UFLghOodERwIGUkRERAGw2WzIDHGQ4NCYr9O3IwtgPx2L/hoZJGhXuG7v5DRMzS3wZh+UO+r0XgMNXEnd7UXjdR2nVF8zDir0SKXGxVt2DZL3yeG94a4ChVCiQ34dtEjEOVJERERRRitA+E3fImQlJOpaeNdIEoXCjkBJ6rReA3BSj36myjQjHGkflPpE4iIoCYUZ47PzfZIbRKL/aiwkrJUEhShY2CNFREQUZfITU1T3JznicGbvQboy9SkN18uMT+i4VmcZWj1hZvRRCM6sEIpGjmc4Y7S6sM/QcFchYAyiKFwYSBEREUWJlyfMxY2Dx2BsVl7AZV3RfzhGZ+ZhULp8ZsHXJx2PNyefgPSOgMpKl/Ub5n18YoF2EgspvettWdkzNkhhseT+OoZPRjKHPbp71IjCiUP7iIiIokTvlDT0TklDWUtTwGWd2XsQzuw9SHF/kiMOSTLrQt0zbCKaXS48vWOtd5ue1ODiTFzlLc3exw6b/t9042w2XNF/BIoy9E1G10qOYYTc0L6XJszBysojll0jHKx8jYi6GvZIERERkW7T83pibvdC9EjqHF64qHS/5nlzuhV6H9c5W72PjQwXHJOVj9N6DQAATM0t8Nt/nOgaACydTJVg928y9UxOMxQIRqIon+JFFFbR/eknIiKisHhl4nHex2o9ZK9NOg4fzTwFuYmdazr1TO4cmmckEFldddT7+ObBY/32i69hNfE6YR4Om83SzIDhENLFnUlVKJdQiFSpMr3gkYyBFBERUZTJTUjC4LQsnNqzf9jqoHf+kQ02v2BpREZng1Ep653DZsOdQ5UX9pW7fjCDAqW1ucSpJoKRjCNYTu7RDy+On+P3ivn16sWQzCDM97NStM+3s8LIzMDnf4YSAykiIqIoY7fZ8My4Y3H1wFHhrgoA4w3UONEwOfHj1ycdjyHpWQDaR+WprcOaFhePM3sPxMnitOuSYxqdTkP1UrJwxskoSJLPlOgQ1V8ayEVyD8M5hYPRJzXdr87DYniB4benzDN9brDT3N80eAzXywJQmJIW7ioYwkCKiIiIAnJxX2MptMWNUvHj7kkpooa9DdIUD/O6+2b4u6L/CMwV9aBI27olzQ2G6qUk3u6A0oSrabk9Oq8v2ZcUwanRPUMSpa9ZFHWqGRZIj2VakBdenlfQN6jla1/fePZMLc+Nm2X4nAsNfpeEGwMpIiIiCkiGSo+UIJPvLk401E867M9zvFxW7jiZhA9iwRzap1RyapzynI79jXXBqYwFPNn6pFn7YnnOlPSZGWnoG31dLus3DH2DuEaa1YLxvic6jP+QEK/xGY800VVbIiIiCjqjTapAMtdJr+UZzmeDTTbluN/5ogK06q0258rIdcQcNjv+Pul4vDv1REuvF2zeJBk26fbQ1yVUpPPqBiisDabnXC2n9xqAF8bP9kmsEgqfHnNaSK+nJi9Be0HwaMdAioiIiAKiN3PdtQNH4eK+Q5EqGialdK7eZqu4R0WrsXtsfi+dpRqrUbekFGTGJ3qDrSHpWfj0mNN0N6KvGzQ6gHq1OyavJ+4bPln38Xbvf6U9UtpuKxqvv2JhNjOvJ14cPwdPjT0moHKMJhKJtztgs9lwdu/Bus/pE8YeLLPx86Sc7or7zPRIRRsGUkRERBSQ7PhExX0ZcZ37Tu7ZH+f1GYIeogBDOqTI3dEPJdduFdSyT8DSZaMCKttTTb2L3Z4kSphh1l3DJmJwR6IOPbxzpCTb5YZ4Ses3LCMb70yZh1/3GoAPZ5xssKahlRGfgD6p6ShKb1/EWSn7opp5BX2QrCMt9/Hd5TIe6ulXbXdBnyEGamUt/bX0pTfA7J4on6wl2sV0INXS0oKzzz4bp512Gk455RT8+9//DneViIiIYsYL42fjrqET0Esm09Y3p5yDv08+Hikqc4gAmYaYt0Wnb2ifuN1vdPiVll8V9MUfh00C0B543DR4LM7oNVClKpLenRBlbhjekWnPyNU6k034nlXa3IhLJBP+XZIA1g4bshOScNWAkUiI4IQagP9r0ivZeFa47okpuHvoRIzJUk7NPS4rH9fL9CwaCVBCnT7/fzNOUdxXaOJ1UnNJv+hKIqFXTAdSCQkJeOutt/Dxxx/jgw8+wMsvv4za2tpwV4uIiCgm9EvNwDEKw+XSExJQoDK07ckxM3Hf8Ml+k8tdnh4pmXNOllk3Sxy86GmGnluof6jV9YPHYFpeZ1a+eQV9MFllKJNUII0s+d4NdUYSBniOrXO2+mx3CwLO7TMEc7v19m6T9gSGKkC0ghULJgsA+qSm48+jpiseMzmnu08SFe+5Gr2oYoEmfDCaJU+avGVQx5yxBSOm4sUJc/DwyGmaZeh/etFzzxgR04GUzWZDamr7l3hraysEQYDb7Q5zrYiIiGhYRg6m5Bb4Na9O6dEeLJ3fZwjEv+d/PPNU9JNZsNSm8FjJJf2G4cbBYwzX10NPu7Ez86D5xqOZRrWRy3nqJm0Ie3pFips6U8e7Jc862E3iwjTr5gpZkY3u2Pyemse4IcgGmOJW5xOjZ6iW0ehqM1o1r2SHw1DyDDmPjJqBJ8fMxPjsfNhsNl0Z9OSyciodGYvCGkitXLkS11xzDWbOnImioiJ8//33fse8++67mDt3LkaNGoVzzz0XGzZsMHSN5uZmnHbaaZg9ezauvPJKZGVlWVR7IiKi2BTO347n9+iLNyefgDN6DURhx+T7nIRExaDETPNMaXFdqwXSiDdypqcnxMj1PNn5EiSNZc/rvL2uyrvNb2if5L2wujH51pxfWVyiee9NnY+eomFuJyvMZ5O+Rl6i7cM1FmjeVV9juH5WSomLw7CMHG9AqOeHgFhOl6+H9sy5IGpsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJyc9vHAp59+umzZH374IRwOB5KSkvDxxx+jsrISN954I0488UTk5SmPcSUiIurqwv3bcV5ie9rkQWlZeGz0DBTKzMGSo3fImd4kEIFSSyV+TF5PLC4/LNvLBgBp8Z2ZDXMTklDR2ix73PCMHFw/uH1ujjSgGZKehR111fJ163gNpJnipL1PQPtwP7lzPRw2O9yCNSN+0uPikRof3MVvjYiT3FPXDByFz0r2+R0nfY08jHyWlMoIlyQdWfdyEpQTzXQFYQ2kZs2ahVmzlMdzvvHGGzjvvPNw1llnAQAWLFiAH374AQsXLsSVV14JAPjoo490XSsnJwdDhw7FypUr8atfmfulwx4Biyt46hAJdaHowfuGzOK90zXZENh7bui+ETVU5Y4fna3+42e8Q7y4r/r1POU7dC76KVcf8TbpfpvkOIdKX82IrFxcPWgUshR629JFixyPzMzFj2XFsuX8ZVxnWm+Hw/d6k3MKFAOpzmMlvUs2m9/zkgZXDofvMQPTMrFN1IMViEfGqg9/M8pmk7xnoqem5/6Mc9glx9lw7aBRqHe2YVHJfpS1NAEABOl1Oh4LOq43p1tv2O02BBKKCoLxz6z4+Fa3y+/8AWmZuKDPEPzzwA7FMtJUgl5xeTYddRufnW/6eydc/1aFNZBS09rais2bN+Paa6/1brPb7Zg+fTrWrVunq4zKykrExcUhIyMD9fX1WLFiBc455xxT9YmLsyM319oMJoHIzg7tAm8UG3jfkFm8d7oWm81myb95eu6bDKHR+9jMNXNyUoFV7Y9TU9V/HfeUn40mXWXL1SfD3aC439Mj5ohzIDc3DS6VXprU1EQM7tkZJH5wwqlYuHcn/rlrGwAgJbkzkEpIVG6uieuQ2OY7xyYjLUnXeT71Skn02xef4Hv93Jw0ZIp6Ip6cORv3rViCdRVlitfrlZqG4oZ6xf3eOqdbu4hrcnKCz/NJKu58XfXcb7k5aUiSZJ68LLe9B/CrLw50lpscj9zcNNw8ajxS4+K9ZZ+WOhhv7N2Cy4pGIDc3DW/P/RUu+e4L73mvzz4RQzKzkeBwID7BfAZEM59Z8fHfHz2Ex2b6d27ckjfJJ5C6aPAw/Hv3DrS4XQDaX1895aep3IseBelpAX/vhPrfqogNpKqqquByufyG4eXm5mL//v26yqioqMCdd94Jl8sFQRBwwQUXYOhQc+kXnU43amv1ffEGk91uQ3Z2KqqqGuB2R1YXMEUu3jdkFu+drkkQgIoK7UavEiP3TU1NZyAVyDUBoLGxVXW/p/w6nf+ey9VH3Bbw39/+XJ1OFyoq6lUzttXXN/ucnwY7Lu5V5A2kxM+ltcXpfZxkd6C5oxErrUOTq/O4O4ZOQPd45blgSq91U2Or3z7x9QGguqoRzrjOoM0B4De9i1QDKbdL3/dHbV0TkK3rUF2am3yfT3NT5+uq536rqKxHksIaUi5RArP6hhZUVNTjxJxCv7I/nHEybDYbKirqkYcE3DN8Eh7ZshIA0ENIQl11+z01I6sAH+/fbeDZdWpyOQ1/fqTH6zl/dnZPHDuhJ3638tv26zYpJ8gQl1dfLz80FWhPlNHkcmFebqHp7wCr/63KyEhGfLx2YBuxgZQSQZDPiiJn8ODBWLhwoWXXjqRGhNstRFR9KDrwviGzeO90LQPTMi15v/XcN+L9AV9T43Rv+aLjrh4wEn/bs0mzbnLb/PfbvOVrPRdB4xjpfJl+qRnY11DrN3xRXIYgetwnJQ39UuTnX8nX3Vt1v31+mdnc/sdoz+/R997aLP6akb7O4mrqud/iYVc87pbB43DvpmUAAJfGvS4OqpXuobwE7d64u4dOxGPbVsnuM/r58XsPdZzf3smq7zput4Azew/ER8V7MDYzX/G4Z8bOQnpcPDITEgP+Dgj1v1URm/48OzsbDocD5eXlPtsrKyuZLIKIiCgI5hf0xYV9i3Dv8Mkhu6aVTR7pz6zzC/p6H380s3PxUfGcpFN69sd9Ms/3pQlzZK/hyfiXqLIQrVxK6AUjp+JRlXWIPE7tWCtrRp5vym1PjdVeL3EGtQanM2jrPclNQzGyXpKSGXk9FJNvWOXXvQciPzEZvx8yDgDQXSODo9prODa7MzhwGbiTG11O2e3i++b9qfNlj5mpIxW7Hi+Mn+3z9ySd66PZbEBBUipGZuTi3MLBmmlbrug/Av+bcQoy4hPw90nHK5aZGaVJKyI2kEpISMCIESOwdOlS7za3241ly5Zh7Nix4asYERFRjEqJi8MFfYqQm6g9nyGSvDNlHt6bOt+vUddf1Ch3iBZLFWeds9lsGJ/t/2u5UgO7W1IKXhg/G29OPsFvn1qjckJ2N4zK6vwhWKnZffXAUVg442T0TknDxOxuAIAxWfkY2ZE6e5xMXb3XF1XgQGOdz773p/0KT46ZqVLDdnoahnIpr+Wez5D0LB2lteuRlII/DJsU0Npb/VK015/KT0zGG5NPwNyOBY+li9j+utcAQ9c8p2OB5zn5vTWO7FSlkIEx2d45UCwtPsEvNb1RfVLSMaebfL0y433nNum9lh022G02PDZmBi7pN0zXOZ5gNCNefj5VqLJoBkNYh/Y1NDTgwIHOiXqHDh3C1q1bkZeXh/z8fFx++eW48847MWLECIwePRpvvfUWmpubccYZZ4Sx1kRERLHFkyZ7eEZOyK+tf0FPZdkJ7YGftPdAqTdB2liXCwzUmnZGek1uGDQayQpzbJTEd/R23TVsInbUVWFUZh7a3L0wJD0bU3K64+fyEtnzxM9D2jhNi4sPKEjxuY7OYp4eeyzOX/YF6p1tPoGsHCt6JmXfb426psZ1Zp17YMQUTMrpjrndCnHT2h91XfPSfsPwmz5Fuhav9VC6HzITEvHHYZPQrSOIH5OVj5WVR3SXK/XXccfCJQj4/ughAL7DWKX3vNkORSN3lPj+e3/qfJy/fJHhMiJNWAOpTZs24ZJLLvH+/fDDDwMAbrjhBtx444046aSTUFlZieeeew5lZWUYNmwYXnvtNe8aUkRERBS4h0dOx56GGowIQyClNJHfDGmDTKmBJg0y5AMua5p38xUWcNUj2RGHMVntPVCJDodi74KHT2rvjse/HTASnjDF7DNKj/PtSTDyaj00chpe37MZ5/YZjPs3LVe8htlA6vjuhTixoC+SHXF4evsak6W0y4pvH16mZ/0kMSNBFKD+48G0vB7ex0rDR8/sPRAfHtqNJ0bPwJ0bfla5kg3xopvi1F4DRIGUOf7BuP6SxMFbmqh3Su9yBJEorIHUlClTsH37dtVjLrroIlx00UUhqhEREVHXkxIX5x06FmpD0rJwXuEQjMwMPIjTOydIephcMy6QMCp8aVlEQxY7Hp8uGqom1/PmV4LMa3hJv2Focbu8PRvxKvPDpAanZ+GxMTPQ3DEvqDA5DQeb/DOznd7T2JA6oL03yDO0DtD//mspSErF2Kw8DM8IzmfCpbP7R+nZXNF/BM4vLEJKnHoz3ob2Ia2vTJzr3wvWUfi9wyfh5V0bcXE/fVmt9dxDSqRz6+4cOgF7G2qRn2htyvtQirqsfURERBQ7bDab7kacZlkB1MHK6+trJlsfbokDQrlhfHqepeeYy/sPxxt7twBon9tyW9F4rKsqQ1Vbi6m6JTni8MG0k5DocOD0JZ94tw/PyMEfhk30Ds/U8s+p83FBx5Awqck53bG7vsZU/cTsNhse1pEYxCwr3nmtIAro/MGgZ7L/2kyegGhqbg9Mze3ht1+JNBgy8smRBmHH5vfCsfm9DJQQeRhIERERUUyQNuriFOblyPUIvDrxOCTYHbh0xVcBVEB/s9KKxvTNg8dKLt95/Vy5wMRAqzdB5rV7c8oJimnO9TwfucZ/siNOdxAFAOmiIWHSa55XOATDMnLw74M7sbGmAkBkzr/RThXfTk+Af0xeTywuP6xUgoFaKXts9AzcrTqEUB+7zYZrBo7yDqGMBdE7KJGIiIhIRNrwnJZbAKC9sSkmlyWsR3KqddkKdTSU4zWSL+hxjEoq7KIM/1VtjQzLyk/yH27lsNkVh/Xp6SGRY2WgE2e3Y3x2t6CnUA/UiQV90Ts5DTdJAmGpyhblRWz1UHttjbzug9IyvY8DzbB3Ss/+lqVwjwTskSIiIqKYIG3ipcUn4H8zTvFbxFbth/7fDhiBoy1NiDMxAV5PE/OBEVPwZel+HN+9j+HypdSy8Jke5thx5pScAlwzcBTGZimnWxcbmJqJC/sWYWN1BTbUlGuf0GGCzvWLjLi47zB8cniv5eVaJSM+AS9PnKt5XFp8vOYxciH7rwr64khLo2WBlPjz458Z00BBMYiBFBEREcUEuR4XuYBIrWfm9F4DLa2T1KSc7roXP9Wi1oaVyySnJ9W8p2Fss9lwSsfiwLrqYrPhgj5FALYbCqSmdvQaWsls75gVqfitZDZGuX7wGB2Fm8u218XjJj8c2kdEREQxQW/bMHYag8rPRG7dJrNrBRmRYmE6+65Oz9tlNvgzlCRCpUdKKUV7V8FAioiIiGLOC+NnK+4L9nCkYMcrcR1PQDpkUYtbT4+UqRp1OrGgL2bl98IjOrPe5RlINGFGIOm6w62/jrleIVlIV+ExAJzUQ3+vZSzizwZEREQUE+Jtnb+OqyUcCFbj2lj6c/Pen/YrON1u1TlSskLQI5XkiMMdQyeoHjMuKx9rq8vwwvjZlqWej0XnFA5GVnwifiwrxpbaSotLNzC0T6VHKiUuDsd3L8Q3Rw5aVrNowkCKiIiIYsL0vB6YUlaA2d3U16bJFKXQtlKoej+SHHGAiRFV+oaBBf85PDhyKmraWpCjozdqck53rKg8EvQ6RaIEuwMn9+yP9dXKc85MD+0z+TbLnZbq0E6KEasYSBEREVFMiLfbcd+IyZrHpcTF48Xxc5ARpIAqmoUiFHTYbLqCKADY31iHSTndsVIumLJ40ldqXGQGBKMyc7G0ogTjs/0zKJp9BQLN6ih2QZ8hqGprwem9BuC2dYtNlhydGEgRERFRl9MnNT3cVQi5yMpJp4/exWsD8dSYY7C3oRa9ktOCfi0zTurZHz2SUzE8IzfcVYFdJgJLi0/AnRrDOWMVAykiIiIiC9Q6WwEAVa2BLaQaiCdGz4ipeUeuAAMpPa9EUUa27ALGkcJhs2GiQsp888kmzPdJUSdm7SMiIiKyUJ2zLWzXHp6Zi2EZOabPH5KeZV1lLDAwLRMTsrsBAI7J6xnm2kSeUM+RMpzgJMaxR4qIiIiIcEL3PhgaQBAWDEPSsnBSj37on5qBwREW5EUCs/11Znuy9KbcT+0i64mxR4qIiIjIQpGatEDJgI5U8b/q0TfMNen04sQ5OL3nAJzReyDsNhtGZOYioYsv/hpN/jRqWrirEBJdI1wkIiIiCpGBqZnhroIhT4yZidLmRtW1t0KtX2oGfjtwZLirEfHSOoL2JJ1B5vTcHjjQWIcEu7G+lF8V9EWr2637+F5JqYbKj1YMpIiIiIi6sCRHXEQFUXrpGp0W41N6rug/HE63G+cUDtZ1/D3DJ0EQBMMJSa4fPEbXcf+YciJq2lqQ1kWWFmAgRURERGQhuRTRZD19ywvH9puRnZCEu4ZNNHROMLM6ZiUkIishMWjlRxrOkSIiIiKyUKQ23oUQrMkUSnqej97kCERmMJAiIiIissD8gvZkDcfkR2aa7oz42OgpGJyWBQCqad7vGz4ZwzNy8OteA0NUK+qKOLSPiIiIyALXDhqNU3v2R5+U9HBXRVbvlDT8fsg49I3C+VBij4yejoONdRiSrryI7pTcAkzJLQhhragrYiBFREREZAGHzRbxQcrc7oXhrkLAkh1xqkEUUahwaB8REREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAbZBEEQwl2JaOB2C3C53OGuBgAgPt6BtjZXuKtBUYb3DZnFe4fM4H1DZvHeITOsvG8cDjvsdpvmcQykiIiIiIiIDOLQPiIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIEUERERERGRQQykiIiIiIiIDGIgRUREREREZBADKSIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIFUFHn33Xcxd+5cjBo1Cueeey42bNgQ7ipRhHv++edRVFTk87/58+eHu1oUgVauXIlrrrkGM2fORFFREb7//nuf/S0tLViwYAGmTJmCcePG4cYbb0RFRUWYakuRQuu+ufjii/2+g+6///4w1ZYixd/+9jecddZZGDduHKZNm4YbbrgB+/bt8zmG3zkkR8+9E8rvHQZSUeLzzz/Ho48+iuuvvx4LFy5EUVERrrrqKlRWVoa7ahThhg4diiVLlnj/995774W7ShSBGhsbVf+xeeSRR/D999/j2WefxTvvvIOjR4/ipptuCnEtKdJo3TcAcMEFF/h8B915550hrCFFohUrVuDCCy/EBx98gDfeeAOtra244oor0Nzc7D2G3zkkR8+9A4TueycuKKWS5d544w2cd955OOusswAACxYswA8//ICFCxfiyiuvDHPtKJI5HA7k5+eHuxoU4WbNmoVZs2bJ7qurq8N///tfPPXUU5g2bRqA9kbOSSedhI0bN2LUqFGhrCpFELX7xiM5OZnfQeTj9ddf9/n7sccew7Rp07BlyxaMHz+e3zmkSOve8QjV9w57pKJAa2srNm/ejBkzZni32e12TJ8+HevWrQtfxSgq7NmzBzNnzsRxxx2HO+64A6WlpeGuEkWZTZs2oa2tzec7aODAgejZsye/g0jTwoULMWXKFJxyyil45pln/H45JqqrqwMAZGZmAuB3DuknvXc8QvW9wx6pKFBVVQWXy4W8vDyf7bm5udi/f3+YakXRYMyYMXjiiSfQt29fHD16FP/3f/+HCy+8EJ988glSUlLCXT2KEuXl5UhKSkJaWprP9tzcXJSXl4epVhQNTjvtNPTq1Qu5ubnYtm0bnnrqKezbtw9//etfw101ihCCIODRRx/F5MmTMXDgQAD8ziF95O4dILTfOwykopggCLDZbOGuBkWwY4891vu4qKgIY8aMwZw5c/Dll1/ijDPOCGPNKNrIfdcIghCGmlA0Oeecc7yPi4qK0K1bN1x22WUoLi5Gr169wlgzihR/+tOfsGPHDvzzn//02c7vHNKidO+E8nuHQ/uiQHZ2NhwOh9+vMJWVlX69VERqMjIy0K9fP/ZkkiF5eXloampCfX29z3Z+B5FRY8aMAQAcOHAgzDWhSPDQQw/hu+++w1tvvYXu3bt7t/M7h7Qo3Ttygvm9w0AqCiQkJGDEiBFYunSpd5vb7cayZcswduzY8FWMok5DQwMOHjzIid9kyMiRIxEfH+/zHbR3714cPnyY30FkyNatWwGA30FdnCAI+NOf/oSvvvoKb731FgoLC3328zuHlGjdO3KC+b3DoX1R4vLLL8edd96JESNGYPTo0XjrrbfQ3NzM4Vmk6vHHH8ecOXPQs2dPHD16FM8//zwcDgdOOumkcFeNIkxDQ4PPr3WHDh3C1q1bkZeXh/z8fJx11ll49NFHkZGRgbS0NDz88MOYOHEis2d1cWr3TVNTEz755BPMmjULWVlZ2L59Ox599FFMnToVgwYNCmOtKdwWLFiATz/9FC+++CJSU1NRVlYGAEhPT0dSUhLS09P5nUOytO6dAwcOhPR7xyZwwGnU+Mc//oHXX38dZWVlGDZsGO677z6MHj063NWiCHbrrbdi5cqVqK6uRk5ODiZOnIhbb71V1y841LX88ssvuOSSS/y233DDDbjxxhvR0tKCxx57DJ999hlaW1txzDHH4IEHHuAwmy5O7b45++yzcccdd2Dnzp1obGxEjx49MG/ePFxzzTV+SQSoaykqKpLd/uijj+LMM88EAH7nkCyte6ekpCSk3zsMpIiIiIiIiAziHCkiIiIiIiKDGEgREREREREZxECKiIiIiIjIIAZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAyKC3cFiIgocj3//PN44YUX/LZPmzYNb775ZugrFENaW1vxzDPPYP369di0aRNaWlqwfft2xeMffPDB/2/v3mOqrv84jj/5gYIiJ6TwbBKKscQFnKB1BqJgIslZyuIiM0wc1soYLiqbXDIlu3BZRgciR1IMM3XAoEVNqOYO5ilhNe9LY7QuOAJDDu4cIEH4/eH4/joeBI5i/tL3Y+OP87mcz+dz/MfXPt/P54vJZOLdd98lOTmZ5uZmAJycnFCpVMyfP5/ly5eTmJjI1KlT/6llCCHEHUuClBBCiDG5ublRVlZmUyZuTH9/P9XV1Wg0GoKDgzly5MiY7Q8dOsTzzz+vfA4JCeGll15iaGiICxcu0NzczNtvv011dTUVFRWoVKqbvQQhhLijSZASQggxJkdHR4KCgibUtr+/HxcXl5s7oduESqWiubkZBwcH9uzZM2aQ+umnn2hvbyc8PFwpc3d3t/p3iYqKIj4+nqSkJHJzc8nNzb2Z0xdCiDuenJESQghxXdra2vDz8+Ozzz5j8+bNPPzwwzz33HMAmEwmtm7dSlhYGIGBgTzxxBMcP37cqv/FixfZtGkTQUFBLF68mJ07d5Kfn09kZKTSpri4mJCQEJux/fz82LNnj1VZVVUVK1asICAggKVLl7Jr1y6r+szMTOLj4zEajcTExBAUFERSUhItLS1W7S5fvkxpaSnR0dEEBAQQERFBZmYmAJ988gnBwcFYLBarPkeOHMHPz48zZ87Y9Rs6ODhMqJ3BYCAwMJC77757zHYLFizgySefpK6uDrPZDEBnZydZWVksW7YMjUZDdHQ0hYWFXLp0SemXkJBAVlaWzfdlZGQQFxdnx4qEEOLOIUFKCCHEuAYHB63+hoeHlbqCggJcXV3R6/Vs2LCBS5cusX79eoxGI5s3b6akpISZM2eSkpLC+fPnlX5ZWVkcOnSI7Oxstm/fjtFo5Isvvriu+ZWVlZGTk0NUVBSlpaUkJSWh1+ttwlZ7ezsFBQWkpqayY8cOLly4wAsvvGC1nq1bt1JcXIxOp6O0tJTMzEx6e3sBiImJ4fLlyzQ0NFh9b21tLf7+/ixYsOC65j+exsZGlixZMqG2ixYtYmBggNOnTwPQ3d2Nu7s7WVlZlJWV8fTTT1NTU8Mbb7yh9ElMTKS+vt4qIFosFr788kvi4+MndzFCCHGbkEf7hBBCjMlkMuHv729VVl5ezpw5cwB48MEH2bZtm1JXVVVFS0sLn3/+OT4+PgCEhYWh0+n46KOPyMjIoKWlha+//prCwkIee+wx4MqZn6VLlzJjxgy75mc2mykpKSE1NZWNGzcCV8JEX18fO3fuJCkpCUdHRwB6enrYt2+fMq/h4WHS0tL4+eef8fX1pbW1lerqal555RXWrVunjDEyR5VKxfLly6mpqVECxkjg2LRpk13znqienh6OHj1Kdnb2hNqr1WoAurq6gCu7dxkZGUr9Qw89xLRp08jOzmbLli1MnTqVlStXkpeXR319PQkJCQAcOHCAgYEBVq5cOckrEkKI24MEKSGEEGNyc3OjvLzcqmzevHmYTCYAHnnkEau67777Dn9/f+69914GBweVcq1Wy6lTpwA4efIkgNVjfK6uroSFhXHixAm75nf06FF6e3vR6XRW44WGhvL+++/zxx9/4OXlBYCXl5cSogB8fX0B6OjowNfXl6amJoAxd2FWrVpFSkoKv//+O97e3hw4cIDBwcGbFjgOHz6Mh4cHDzzwwITa/313beRzRUUFlZWVtLW18ddffyl17e3tzJ07lxkzZhAdHU1tba0SpGpra4mMjGTmzJmTtxghhLiNSJASQggxJkdHRwIDA23KR4LU1ed2uru7OXbsmM0uFqDsYv3555+4urraXEwx3hmg0XR3dwOwYsWKUevb29uVIHX1bYNTpkwBUMKFyWRi+vTpY+6KhYSE4O3tTU1NDenp6dTU1LBs2TLc3d3tnvtEGAwGlixZMuHzVJ2dncD/fsuKigry8/N59tln0Wq1qFQqTp48yfbt261C1apVq0hOTua3334D4Pvvv+eDDz6Y5NUIIcTtQ4KUEEKIG3L1f/DvuusuAgICyMnJsWk78n6je+65B4vFYnPL38jjaCOcnZ0ZGBiwKuvp6bEZD6C0tHTUIDZv3rwJr8Xd3Z3e3l7MZvM1w5SDgwMJCQlUVlby+OOP88MPP9hcbDFZhoaG+Oabb3j99dcn3Ofw4cNMmTJFCbL19fXodDpefPFFpU1ra6tNP61Wy9y5c6mtrWV4eJhZs2axePHiG1+EEELcpiRICSGEmFQLFy7EaDQye/bsa+4wjexwHTx4UDl/ZLFY+Pbbb60CjFqtxmKx0NHRoZz9MRqNVt8VHByMi4sLnZ2dNo8Z2is0NBSATz/9lLVr116zXVxcHEVFRWRnZ6NWq1m0aNENjXstx48fx2w2s3Dhwgm1P3PmDHv37iUmJkb5Hfv7+21e0FtXVzdq/4SEBPbt2wdAbGyscrZMCCGELQlSQgghJlVsbCz79+8nOTmZp556Cm9vb0wmEydOnMDT05OUlBTuv/9+IiMjycnJwWw24+npyYcffmjzqF94eDguLi5kZ2ezfv162tra2L9/v1UblUrFxo0befPNNzl37hxarZahoSF++eUXmpqaKCkpmfDc77vvPlavXk1eXh5dXV1otVouXrxIQ0MDhYWFSju1Wk14eDgGg4ENGzbYBI7i4mLee+89zp49O+Z4jY2N9PX18eOPPwJXdo/gStD08vLCYDCg1WpH3R0zmUwcO3aMoaEhTCYTTU1NVFZW4uPjY3WVeVhYGB9//DEajYY5c+ZQV1fHr7/+Oup84uLi0Ov1DA4OyrXnQggxDglSQgghJpWzszO7d+9Gr9dTXFxMV1cXHh4eaDQaq8sl8vLyyMnJ4a233mL69OmsWbOGwMBAq6vFPTw8KCoqoqCggLS0NPz9/dmxY4eyizXimWeeYdasWVRUVFBeXo6zszM+Pj427SZi27ZtzJ49m6qqKnbt2oWHh8eoO05RUVEYDIZRL6bo6+vDw8Nj3LFee+01zp07p3xOT08HIDc3l/j4eBobG4mNjR21b1NTE6tXr8bJyQk3Nzfmz5/Pyy+/TGJiotUOVFpaGt3d3ej1egAeffRRtmzZorzz6+88PT3RaDTAlVAphBDi2hyGr77eRwghhLhF8vPzaWho4ODBg7d6KuNKT0/n/Pnz7N2716Zu7dq1hIaGKtexX4+Ojg4iIiJoaGiwumnwZjKZTERERPDqq6+SmJj4j4wphBD/VrIjJYQQQtjh7NmznDp1iq+++op33nnHpn5wcJCWlhaKiopuaBy1Wj3uo4GTxWw209rayu7du3F1dZV3RwkhxARIkBJCCCHskJqaSnd3N2vWrEGn09nUOzk5Ke+j+rc4ffo069atw8vLi/z8fKZNm3arpySEEP/35NE+IYQQQgghhLDTf271BIQQQgghhBDi30aClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2EmClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2Om/aAMr6cN41akAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtls_kepler.freq, mtls_kepler.unnorm_power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "82aa6b7f", + "metadata": {}, + "source": [ + "#### But how does this compare to the classical Lomb-Scargle Periodogram?" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "cf030cc3", + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.timeseries import LombScargle\n", + "\n", + "ls_freq = scipy.fft.rfftfreq(n=lc_kepler.n, d=lc_kepler.dt)[1:-1] # Avioding zero\n", + "data = lc_kepler.counts - np.mean(lc_kepler.counts)\n", + "ls_psd = LombScargle(lc_kepler.time, data).power(frequency=ls_freq, normalization=\"psd\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "4ed7d4d4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAMrCAYAAABUKTPHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzddZhTZ9oG8Dsy7o4NDoMOg3tpaUspVaC6pV3a8lWp7Na7NeruLkupb9stS5U6FHd3nwEGxl0j3x8zyZwkR5MTmZn7t1evTY6+SU6G8+R53+c12O12O4iIiIiIiMhnxmA3gIiIiIiIqK1ggEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTc7Ab0NrZbHZYrbZgNwMAYDYbYbGERluo9eB1Q97itUPe4HVD3uK1Q97Q87oxmYwwGg3K59TlbO2Y1WpDWVlNsJsBo9GAlJRYVFTUwmazB7s51ErwuiFv8dohb/C6IW/x2iFv6H3dJCZGw2g0KZ/X5zMRERERERERAAZYREREREREumGARUREREREpBMGWERERERERDphkQsiIiIiahXsdjusVgvsrHNBKhiNBjQ0NMBisagqcmEwAEajCQaDcqVAOQywiIiIiCjk1dbW4sSJPNjtLNVO6hUVGWGzqb9mDAYjkpPTERYW4fU5GWARERERUUiz2+3Izc1FREQUYmMTAPiWYaD2w2w2wGJRm/K0o6qqHCUlBUhP7+J1JosBFhERERGFNJvNCovFiuTkBJjNYcFuDrUiZrMRgPoMVmxsAurqqmGzWWEyeRcqscgFEREREYW0ljFXzFyRvzVdY76M82OARUREREREpBMGWEREREREpJsnnngEDzxwd7CbETQcg0VERERE5AdPPPEIfvrpe8yceQn+8Q/XgGPevAfw66+LcdllszBz5iW4+OLzZY91//0Po0OHjrj11hvwyy9/ITo62mObkpJivPvum1i7djXKykoRH5+ArKx+uOmm29CtW3c9XxoAID//OC6++Hx89NEX6Nmzt3P5bbfdCXsAaulfdNF5uPzyWZg581K/n0sLBljthN1ux2v7t6BbdDwu6Nwz2M0hIiIiahfS0zPw668/4+abb0d4eDgAoLq6CsuWLUF6eoZzm0WLFjv3mT//fezfvxdPPPGsc1lsbCx27Ngue65//esu2O3AQw89hg4dOqKwsABr1qxCZWWl7q9LTmxsbEDPF2oYYLUTJQ31+OVELgAwwCIiIiIKkAEDBuLQoYNYvvwvTJ58BgDgt99+Qd++/WA0No3WMZlMSElJde4TGRkJs9nsskxJZWUltm3bijfffB/Z2TkAgA4dOmLw4CGy+9lsNnzyyYf49tuFKC0tQbdu3TFnzo0YN24CAKCiogIvvvgM1q1bjbq6OmRkdMCcOTdi8uQznFm3q666DACQkzMMr7/+Lp544hHU1tbg8cebAsS5c69Dnz5ZsFot+PnnHxEZGYmbbroNY8dOwLPPPoE1a1YiI6Mj7rvvIQwcOAgAUFpaipdffhZbtmxGZWUFMjO74dprr8PEiac6j3niRD5eeuk5vPTScwCA5cvXAwC2bNmEt99+DXv27EFychImTz4Tc+bc6Axw/Y1jsNqJvJrA/nJBRERERE2mTTsPP/74rfP5jz9+h2nTztP1HFFRUYiKisKyZUvR2Nioer+PP56PX35ZjHvu+Rc++ug/uOCCmfjXv+7C3r27AQDvv/8Wjhw5hBdeeA0ff/wlbr31DmeG6r33FgAAXnvtHSxatBhPPvmc5Hl++OFbpKVl4P33P8a0aefjmWcex6OPPoBTTjkN//73p+jevQcef/whZ9fC+vp69O8/EM899zI++ug/mDLlbDzwwD04fPgQAODJJ59DenoGrr/+ZixatNiZATx27CjuvPM2nH76FHz00Rd45JHHsWrVCrz99mva31QvMcBqJ/4oyHM+tgagTywRERERNZk69Rxs3LgeRUWFOHLkMA4e3O/MZunFbDbj3nsfwnffLcTUqadi7tzr8MEH7yAvL1dyn4aGBnz88Xz8618PY+TIMejcuQsuuGAGTjnlVHz77f8AACdPnkCfPlno128AOnXqjDFjxmHUqDEAgMTEJABAQkICUlJSER+fIHmurKx+uPLK2cjM7Iqrr/4/WK1WZGZ2w5QpU5GZ2RWzZv0deXm5KCwsAAB06NABl102C336ZKFz5y7429+uxODBQ7Bkye8AgPj4BBiNRkRHRyMlJdWZ7fv44/mYOvUcXHTRZejSJRM5OcNw882349tvFwZkXBjALoLtxsS0zvij4GjzMzs4jwQRERFRYKSkpGLEiNH46acfUFlZgUmTJiM6Okb385x++pkYP34iNm1aj+3bt2HZsqX49NMFeOqpFzB69FiP7Y8ezUNdXR1uvfUGl+WNjY0YNmwEAOD882fgwQfvxb59ezBq1Ficeupk9O8/UHPbevXq43wcHh6OmJhY9OjRMmwlKSkZQFPXwPT0DFitVnz00b/x55+/obCwEBZLIxoaGpCZ2U32PPv378OBA/uwePH3zmU2mw319fUoLi5Gaqr6bpfeYoDVTpgNLQGVnfEVERERUUCdc855ePvt11FTU4OHH37cb+eJjIzE2LETMHbsBMyZcwPuuONWfPTRv0UDrNraWgDA88+/hpSUFJd1ERERAIDx4yfi66+/xcqVy7Fu3WrcdNMczJ49B3//+7Wa2mU2u4YdBoPrMoPBMcGvDQDw2Wcf47//beqS2KNHT0RFReGZZx6HxSLf/bG2tgYzZlyM6dMvBgCYTAZYrU2Zq8TERE1t9hYDrHaIHQSJiIiIAmv8+FPw3HNPISoqGkOHDg/IOQ0GA7p27YqtW7eIru/RowfCwsJQUHACQ4bkSB4nOTkF5557Ac499wJ88smHWLRoIf7+92sRFhYGALBabbq3fdu2LTjllFMxZcpUAIDFYsGxY0fRoUNH5zZmc5jHufv0ycKhQwfRpUtm8zZGWCz6t08OAywiIiIiIj8zm834z38WwmAwOLM13jp4cL8zwwQARqMJqampeOih+3DuuRegV6/eiIiIxKZNG/DDD9/ib3+7SvQ40dExuOSSv+GVV16A1WrF4MFDUFlZiS1bNiItLQOTJ5+BDz54B1lZ/dCjRy/U1tZi7drV6NatqZteYmISIiIisGbNSqSmpiIsLFy3Eu2ZmZlYuvRPbN++DdHR0fj00w9RVVXlsk3Hjh2xefNGnHba6QgLC0diYiKuuOIqXH/9NXj55edxzjnnIyYmCvv27cP27dtw88236dI2JQyw2gm7zDMiIiIi8r+YGH2CjxtuuMbleWxsLL799hf06zcAn3/+MY4dOwqbzY4OHTpg9uw5uPzyK2WONRdJSUlYsOAD5OcfR1xcPPr3H4DZs+cAaCoh/9ZbryE/Px9RUZEYOnQEbr/9TgBNQePtt9+F+fPfw7vvvons7By8/vq7urzGv//9Whw/fgz/+MdNiI6OxvTpF2PUqNEu21x77Q147rkncemlF6KhoQHLl69Hnz5ZePXVt/Hee2/hxhuvgdFoQpcuXTB16rm6tEsNgz1Q5TTaqMZGK8rKaoLdDBiNBqSkxKK4uAo2m+dHurG0AA9tXw0AWDj+HIQZTYFuIoUgpeuGSAqvHfIGrxvyls1mRVHRcSQnd/QYy0MkR2sXQYvFgqKiY0hN7exxrSUmRiMsTPkemmXa2yH+k0ZERERE5B8MsIiIiIiIiHTCAKsdYqdQIiIiIiL/YCfWdsLu8pgRFhEREbVuL+3ZhNXF+QE955iUjvhH1tCAnpNaH2awiIiIiIiIdMIMFhERERG1Ok2ZJGaTKPQwg0VEREREFAAbN67HhAkj8Pe/Xw6bzbV0+IQJI7BixTIAwLXXXomXXnrWZf3HH3+ICRNGYNmyJS7Lb7vtJjz22INetWfp0j/wz3/OxTnnnI4JE0bg4MH9HttUVJRj3rwHMGXKJEydehqefvox1NbWajrPBx+8g2uvdZ2La82aVTjjjAl49903vWr7okXfYO7c6zBlyiRMmDACNTWe0yatXbsa11xzFc44YwKmT5+GDz98H4GYoYoBVjvEEVhEREREwZOXl4vffvtZcv3QocOxadMGl2WbN29EenqGy3KLxYIdO7Zi6NDhXrWjtrYWgwcPwQ033CK5zbx5D+LQoYN46aU38MwzL2Hz5o14/vmnvDqfw5Ilv+O+++7AtdfegOuuu8mrY9TX12H06HG48sqrRdfv27cHd999O045ZRI+/PBz3HPPA/jf//6LL7741Jemq8IAi4iIiIgogGbMuBjvv/82LBaL6Pphw0bg0KGDKCsrAwBYrVZs27YFV1zxd5cAa+fO7airq8PQoSO8asfUqefg6qv/DyNGjBJdf/jwIaxZsxL33vsgBg4chCFDcnD77Xfh118Xo6Sk2Ktz/vDDt5g37wH885934/LLZ3l1DAC45JK/4corZ2PgwEGi6//44zdkZfXH7NnXokuXTIwZMw5XXjkb//nPp37PYnEMVnshuI5Ypp2IiIgoeC67bBYWL/4BixZ9g5kzL/FYP2RIDoxGIzZv3oBTTz0de/bsQnR0NM4++1y8/vpLqKioQHx8vDOr1blzFwDAli2bcOedt8qe+6677seUKWerauf27VsRH5+Afv36O5eNGDEKBoMBO3fuwIQJp2h41cCXX36Gt99+HQ8++BgmTz7DZd0vv/yE5557Unb/559/FUOGqBt319DQgPDwcJdlERERKCoqRH7+cXTq1FlT27VggEVEREREFEDR0dG46qqr8dFHH2DatPMQFRXlsj4mJhZ9+mRh06amAGvTpg3IyRmG6Oho9O7dB1u2bMTEiadi06YNGDasJXvVr19/zJ//mey5k5OTVbezpKTYY3uz2Yy4uHjNGayDB/fj1VdfxAMPzPMIrgBgwoRTMGCAeDbKIS0tTfX5Ro0ag6+++hy///4rJkw4FSdO5OOLL5rem5KSYgZYpDemsIiIiIiC6cILL8KXX36OL7/8DH//+7Ue64cNG47Vq1cCaBp/NX58U7ZoyJBh2LRpA8aOnYDt27fi9tvvcu4TERGJLl0ydW6pQWSZHQaD2HJpGRkdEBkZhU8/XYDRo8ciKck1cIuOjkF0dIwP7XQ1evRYXH/9zXjiiXmor78fUVFRuPjiyzF//kEYDP4dJcUAi4iIiIgowMLDw3HNNdfh1VdfwPTpF3msHzp0OD7//BOUlBRj69bNmDv3HwCAnJyh+OCDd7B79y7U1ta6FLjQu4tgcnIKSktdM1UWiwWVlZUeAZKSmJhYvPjia7jttptw66034NVX30FSUpJzvd5dBAHgiiv+jiuv/DsKCgqRkJCIDRvWAQA6deqkqe1aMcAiIiIiIgqCqVPPwWeffYyPP/7QY92QIUNhNBrx5ZefIzw8At26dQcAZGcPxcGDB/DXX3+iQ4eOLl3d9O4iOGhQNsrLy7Fnz25kZfUD0FRq3m63Y8CAgaqP45CQkIhXXnkTt99+E2677Qa88srbziBL7y6CDkajEampTfv98cevGDBgkObgUCsGWO2EXdAtkB0EiYiIiILPaDTiuutuwiOP/MtjXXR0DPr27Yf//vdLjBkzzrk8Pj4e3bv3wMKFX+PUUye77KO1i2BFRTlOnjyBoqJCAEBu7hFYrVZkZHRAfHwCunfvgdGjx+GZZx7DnXfeB4vFghdffBZnnnkWkpNTvHrNTUHWWx5BltYugsXFRSgpKcaxY0cBNI3xioiIQOfOmYiOjobNZsOXX36GcePGo6HBgsWLf8Bvv/2MV19926t2a8Ey7UREREREQXLKKaeiT5++ouuGDRuB2toa5OQMc1mekzMMtbU1Xs9/5bB8+V+4+uorcNddtwMAHnjgHlx99RVYvvwv5zYPP/wYunbtjttuuwl33XUbhgzJwZ133u9ynAkTRuDHH79Tfd74+AS8/PKbMJvNuP32G1FaWqq57f/7339x9dVX4JlnHgcA3HDDNbj66iuwe/dOl9c3Z85sXH/9bOzevROvvPIWBg3K1nwurQz2QExn3IY1NlpRVuY5c3SgGY0GpKTEori4Cjab50e6vuQkHtmxBgDwxdizEWsOC3QTKQQpXTdEUnjtkDd43ZC3bDYrioqOIzm5I8xmdsAKJfn5x3HZZdPxySdfITOza7Cb48FsNsJisane3mKxoKjoGFJTO3tca4mJ0QgLMykegxksIiIiIiLyypo1K3H++TNCMrgKFv4EQEREREREXrnwQs8KiO0dM1jtEXuFEhERERH5BQOsdoIhFRERERGR/zHAaocYbBEREVHrxLsY8rema8xg8P4IDLCIiIiIKKSZTE23rFarJcgtobbOcY0ZjcrVAqWwyEU7xN9+iIiIqDUxGIxISIhHZWUZTCYzAB/SC9TOGGCxqL37taOysgwREdEw+JDCYoBFRERERCGvQ4cOKC/fh6Ki48FuCrUiRqMRNpv6ebCMRhOSktJ9OicDrDbKZrejzmpBNCcUJmp37HY7Gu02hPvQvYGIKNSYzWZkZHSBxWJhQWRSxWg0ICkpGqWlNaomNzcYmgIsX7JXAAOsNuu53RuwrOg45o86E2kRUS7r7OwkSNSmPb17PVYU5ePT0WchITwi2M0hItKNwWBo7iJIpMxoNCA8PBxmc4OqAEu38wbsTBRQy5rT5xtKTga5JUQUaCuK8gEA8w/vDHJLiIiI2h8GWG1cYX2t50ImsIjahQNV5cFuAhERUbvDAKuNC+MYDKJ265S0zsFuAhERUbvTbjuxDhw4EL179wYADBo0CE888USQW+QfHSNjgt0EIgoSk4+DdImIiEi7dhtgJSYmYtGiRcFuht9Z7U1lKe2CcjvsIUhERERE5B/sItjGWVnHlIiIiIgoYEIywFq3bh1uuOEGTJgwAVlZWfjzzz89tvn0008xefJkDB48GJdccgm2bt2q6Rzl5eWYPn06Lr/8cqxdu1avpoccsQCLZdqJ2gd/fNPLG+qxsug4f7whIiKSEJJdBGtqapCVlYUZM2bglltu8Vj/448/4qmnnsK8efMwZMgQLFiwAHPmzMHixYuRnJwMALjgggtEj/3NN9/AZDLh999/R0ZGBvbv34/rrrsO3377LWJjY/36uoLBZlc/czURtS12PwRBn+buwY/5h3FD42BcnZqt+/GJiIhau5AMsCZNmoRJkyZJrp8/fz4uvfRSzJw5EwAwb948LFmyBAsXLsS1114LAIrjqzIyMgAAvXv3Rt++fXHo0CEMHjzYq/YajcEfSO5og3tbrLDDaDTAIFhuMBpCos0UfFLXDbUNBoP+3/Uf8w8DAPZUlgLgtUPa8G8OeYvXDnkjWNdNSAZYchoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR2jvLwcUVFRCA8Px8mTJ7F3715kZmZ61R6z2YiUlNDJfCUluVYNDIsyIyUlFnENkc5lyUkxSImMCnTTKIS5XzfUNkRFh/vt75PR3NTDnNcOeYPXDXmL1w55I9DXTasLsEpLS2G1WpGamuqyPCUlBUeOHFF1jAMHDuChhx6C0WiE0WjE/fffj8TERK/aY7HYUFEhMplvgBmNBiQlxaC0tBpWa0u3wKrqehQXV6Gyos65rKS0Ggi3BqOZFGKE143NxjE1bU11TdP33x8aGiwAwGuHNOHfHPIWrx3yht7XTXx8FMLClOeYbXUBlhS73Q6Dyjlfhg0bhu+//163c4fSF91ms+NfW1c6n9vtTctsgrEYNps9pNpMwcdrom2y+/FzdRyV1w55g9cNeYvXDnkj0NdNSFYRlJOUlASTyYSioiKX5SUlJR5ZrfZqc1nLe8M/QUTtF7//REREgdfqAqzw8HAMHDgQK1e2ZGlsNhtWrVqFnJyc4DUsRJyorVbcRq6wWGVjA6otjTq2iIiCxa8BFqM3IiIiUSHZRbC6uhq5ubnO50ePHsWuXbuQmpqKtLQ0XH311bj77rsxcOBAZGdnY8GCBairq8P06dOD2OrQcPMGtznDNJZpvnz1YgDA9xPP16tJRBQknPOOiIgo8EIywNq+fTuuuuoq5/PHH38cADB37lzccsstmDZtGkpKSvDqq6+isLAQ/fv3x/vvv++cA6s9q7UqF6+Quuk6VF2ud3OIKJgYXxEREQVcSAZYo0ePxp49e2S3mTVrFmbNmhWgFrVeWu6vGm2clJioLWF8RUREFHitbgwWaaPlBis+LNz5+HB1hf6NIaKAYhdBIiKiwGOA1cZpmrdacC92vNY/c+cQUeBoHIKp7dgM3oiIiEQxwCJRDewuSNTqMQQiIiIKPAZY7YTw12apmy7h8jqrRfJYP+Yfxu8n8/RpGBH5kf9CLAZvRERE4kKyyAUFh2uXH/HOhXa7HW/u3woAmJzeBQaDpk6IRBRADIKIiIgCjxmsNs7bG6wok3jsLTyejbdvRCGN31AiIqLAY4DVDtklRr4Ll3aLiVM8jsXG2zeiUCb1XSciIiL/YYBFmghv1yx2FsIgChV1VgtyqyuD3QwiIqJ2jwFWG2eHHXk1lai1WtVs7LKfkpKGOh9aRkR6unPzMty08U8crCp3LmP+ioiIKPBY5KKNy62uxI1H/lS1rdabsb8Kj+GKbv20N4qIdHe4pil7taOixLmMc1UREREFHjNYbdz28mKPZWpuuaSHbrSs6BIV61WbiMh/dgkCLMZXREREgccAq40rbayXXFdlacSHh3aioK4GgPZfu+PDwn1qGxHpr0dMvPMx4ysiIqLAY4DVjn16ZDe+Prof16z7TfU+wsyWsMRFvdXKimVEIUD4PfRnF0F+34mIiMQxwGqHHDdd3x0/pLhtVWMDvjt2EDWWRsltaiyNmLnyBzy8Y7VubSQi7wh/+GAIREREFHgMsMjJ7lJFsMnr+7finYPb8cb+rZL75dVWAQA2lhb6sXVEpIaNmSUiIqKgYoDVHmm4/1pedBwAsLTwmNZdiSgI7BD5pcQPDAaD/w5ORETUijHAIifhjZmqsRvNm/x2ItdPLSIiIiIial0YYLVDWn7UTmiuFJgeESW5TZlMpUIiCiwDWjJL/sw4M39FREQkjgEWOdlFnoQbTQCEN22et2yT0rr4tV1E5B1ONExERBR4DLDaGL0n/20Jq6Rv1MKNvIyI2hsDc1hERESieGfcxthU/GKt5ldtxxaOgexieziO89vJPLXNI6IQtauiBHk1lep3YHxFREQkyhzsBpC+1JRoPlFXgy9y93osFwu8HBG447hiR19ZnK+liUQUYhptNty1ZTkA4PuJ56vah/EVERGROAZYbYyaAOvZ3RtQJTNxMNASbLVksDiWg6i1UTslVoPNqvnY7CJIREQkjl0E2xg191NSwZXYzZjjFsrG+Iqo1VH7w4jFbvNrO347mYs9FaV+PQcREVGoYIDVxqjJYKnhHIPlVj1QeHjHw1nd+ulyTiLynTfZ5kab/wKsk3U1eHnvZtyxZZnfzkFERBRKGGC1MWqKXHhD7qix5jC/nJOIAsPixwBLqTsyERFRW8MAq43xJYElNg+WM38lc1w1p6y3WvGf3L04WVfjXeOIyC+sdhvePLBV835qR2DtrijRfGwiIqLWjAFWG6N3BstR5MLB22IX3xzdj4+P7HZWKiMi/1PzbV1RlI+NpYV+a0NeTZXfjk1ERBSKGGC1NT5lsOyij8Weu65UPunJ+qbMVUlDnXeNIyJVhNX97Cq+mzV+7sLnr27LREREoYoBVhvj082MTBVBuaOqOaPZwEuNKBSVNtZ7t6PKPoLJ4ZHeHZ+IiKiV4l0vOe2vKnM+bqki6PrcWyYD58whCjQ139u+sUl+bUOPmHi/Hp+IiCjUMMBqY9R0CZLy+n6Rge4qAiM1Z+SkpEShKczo5T8DKv/UWHWaOoKIiKi1YIDVxvhSbFk2BBK5SWoJ5pRvoLwtjkFE/lVUX+vX4+s1Nx8REVFrwQCrzfHuZsZudw2Bnt29AYBnF0Gxo6s5I2+xiAJPzfduweFd3h1cZVLaavffHFtEREShiAFWG2PzMpJZUZTv8rywvhY7y4u9HoPl3lXRl66LROQ/ajvvNtqsXh2fXQSJiKi9MQe7ARQaNpQWeCzLral0PnbchD26Y43Hdu73T9vKinDftpUAgMu79sUV3foxg0UUIHLTLYhRk1/Kq6nEjRv+RKTR5EPLiIiI2gdmsNoYO+xICAvXvN+WMs+JRj/L3eO8+XJMOLytvFhwrpZzCs0/vNP5+PPcvThcXYGOUTGa20RE/qdmjNSNG/4EANQJslhqC9ewgCgREbU3DLDaGJu96cZnYmonTfsViAx0L2mod3bt03KPVFzvOplwRWOD6Fw4P+Ufxj1blnvd9YiIFKhIHbMADRERkb4YYLU5dhh1/MXYcetVZWnEV3n7XNY9tnMtDldXuCyz2e0obnANsHZXlIge+439W7GjogTrSk7q1l6i1uLbYwextOCYX8+hqgAN4ysiIiJdMcBqY5qKXBh0+01aWJxCrNrY3I1LFM/VNSYOcrd6coU5TtRW44U9G3GyrkbhLESth9Vuw7sHt+O5PRtU7/PziSN4cNsqWGz6VuWzqfhrkSjS7Vj97zjsI0hERO0LA6w2xw4D9Ov2k1dbpWl7q92OMIPrZWWAAT/mH9Z87qM1Vbhxw5/4s+AontdwI0oU6hq9CJJe27cFm8oKsUlkvKSQcGyUqiIXKlJYk9K6eCxT/xeGKTIiImpfGGC1MXYARoMhoN1+hFmuZ3avx9CkNI9tdlWUSu7/0t5NeGnPJtRZLfj3oR34+PBuAMANG/5AY/McOiX19Tq3mih4vAmwHPZWSn+XvCE2PtKdmiyXFHZBJCKi9oYBVhsTjHuZvwpbxpGsLj6huQ31Nit+L8jD98cP4ZujB/CfvL0e2/hyg0cUahp9mHw3LSJKx5YAUzt2U9xGTZaLiIiImjDAakOEFf9OS2/q0nNepx5+P+9Bt0IXSqQmHS5rlM5S8QaP2hKtk+8Kt1dbHh1Qlz0yeTlGSm03ZH5ziYioveFEw22II8tjMBgwNrUjFoyaguTwCHx3/FBA2+EeQLkHRzYAYtOV7pbpRuhemZCoNdP6g4Fwe70DFn1LZohhiEVERO0LM1htiOMezPF7dEpEpHOC4EBy7873xK51Ls+lMli7dR5bQhSqrIIuglLfByFhtujVfZtduuWq3c+XbSR2JCIiIhEMsNogLV2I/GFjqXyVM3Vz8/Dujdou4dQEaq5094zXs7ulq2pqDZi87X6rdi9+k4mIqL1hgNWGOG6UgpC00kTNDaDWMSpErYnWLn9yc8XJUfVjhvtznb97/CoTEVF7wwCrDXHcx4R4fKXqF3OLyipreytLsbuixNcmEQWUFdq6CGqpoqk1oHE/v/rMlP6Rk91ux9d5+7Cm+ITuxyYiIgoUBlhtiOOGx72L4KD4lGA0R9KTu9bhuMIExmq7Lf1z8zLcuWW5Hs0iChhfuwjK0Rr2uB9b7+qAWtqTX1eNDw/vwmM712rYi4iIKLQwwGpD3ItcODwwcFTA2yJnY2khnpEZQwIAFokbyl9O5OJAVbnkftvLi7G1rAgAUNHYwLFcFJJcgxoVhSg0BViC7oeqsmPu51J9KpXUH9CXCZiJiIhCBQOsNsSZwXIbhBVrDgtGc2TJBUmAa5U1ADAbDDhSXYFX923GbZuWiu5Tb7Xi3q0rcP+2ldhfVYa/rV6MF/du0q3NRHpxqSKoYnstXQS1Fq3w7CKocn99NyMiImozGGC1IQcqmoKW3JrKILfEd8X1nvNeVVkaJbe32+1YUnjU+dwxhuPPgqNSuxAFjTAIUhMQaSlyoS035hm8BXMMFhERUVvAAKsNeXN728nW3L75L49l7t2HhJUGbQCWFqibG4go2LR2hFNb9AXQXgXQfXOxgE9s6gfVgRjjMCIiamcYYLUh+TXVwW6C39jsdvx6Mtdl2Zx1vzkf11gaXbpd1VutAWsbkVZay7S7d5mVPbbGzJL/M1GMsIiIqH1hgNWGtOkAC8DSwpYMVZ3VgsL6Wufz9w5ux/DkDPXH48/qFEQuAZaKa1HL1So8nLrgTbmLYKjPrUdERBRKGGBRq3S81jWY/KPgKDpGRqvad3nhcVy4/HtsLy/2R9OINFEVPGmIsLRnsNyeq/zxQfV2PrSFiIioNWKARa2S2C/qv53Mcz4+VF0hue/zezbABjs+O7LHH00jUuRSSl3V9uppzY5VNjZ4fS4lP+Yfxhv7t6renoUziIioLWCA1U6pzfaEKrFB9xtKC5yPN5UVSu7rmGOLN3MULC5Xnqougv6baPgXt7GNemam3tQQXDWdW9PmREREIYkBVhuhNAh+bu8hLs8v65rlz+aEFE42TKFMVQZLSxdBH6/3YH5btHZvJCIiCkUMsNqIWoWqeVM7dtN0PKNIhiiUaPlFX+qmbRvHYFGQaJ2ryttsqzd7BTPIYfEZIiJqCxhgtRF6f5DG0I6v8Po+9V2PKhsb8WXePpQ11PuxRUQauFT607eKYFmjj9e5ypP5IxRifEVERG2BOdgNoMCJMYeh2tKoalujwRDSdzt7KktVb/v2gW1YXnQcm0sLcWp6Fz+2ikgdu2uEpavVxSfEzyMh3hyOCktLoQv1Ewjr//eBXQSJiKgtYAarjfjnpmWK28SawwAAXaPjFLdtsKmf2DTUHW6uKLi1vAg/5B8KcmuIAthFUMVugxNTdDmXHhrb0N8dIiJqvxhgtRG5NZWK29zXbwR6xybgzqxhktv0i0vSs1khodZqcT4+XlsVxJZQW2e329Fgkx8P6bGPmi6Cfox53I+tOoOle0uayroTERG1duwi2I70jkvEy0MnAfCcJ+qqbv1gB3BJZh9UWxqxpPAY3j6wLQit1F9xQ53zcVvKzFHouW/bSmwvL8ZX46YhyiT951XYvU7vebB8FcxCEyWC7yoREVFrxQxWG5QcHqF5n16xibi0a18YDAbEhoWjX7x4Juvyrn19bV5QWUN4XBm1ftubK1Pm11bLbufSRVDFJenPbnuhNB9cfFh4sJtARETkMwZYbdC5nXoqblMv6MY0OCEF2YmpLutNBvEygld06+fyfN7AMV60sElaRJTX+/qb0rxiX+ftw/xDOwPUGmptjBLfHzGqAhwvYyBvKhSqzWD5IzATZv3qFaaeICIiClUMsNqgi7v0VtymURBgPZU9HmFG10vBbFB3aXSKipFd3xovsEXHDuKC5d9jX2WZ5DYfHt6F/x7dH7hGUcj7STB+SGkeOa3BibehjD9zU94kg5UqDw5OaCm4EUqZNSIiIi1a4/0vuXEvvW5Q8ev5GRldMTQxDQ8PHC26XiqDpXW7+DD13RUHxCer3taf3ju4HQAkA6h32sjYNNLXG/tb5mZT+voI4wy9qwgmavjOubdFbXu8pXRsrdUViYiIQhEDrDZA7dxWQjHmMDw2eCxGJmeIrjeJZLBGJKV7LJPrCjU8KR2PDpLuQlhYX+vy/Jns8ZLbBkO9RDW4746z1Ht7sbLoOO7cvAyVjQ3KGwsodRF0HYOl70TD0WZttYvcgzex9ug1dFExwBJsEMxiG0RERL5ggNUGuHfv04NjziyhoUlpmo4xb9AY9IxNULXtHVlDVWXe9OSefWu02TSP+/DHZKsUOp7ctR67K0vxwaEdmvZT6iKolZbrTOs16b612N5iGTTvuvCpz2Hxu0VERK0VA6w2QPhruZpJhNWIMYfh2ezxeNolq+R506jXLdBp6Zk6HUk99zLa/7fuN8xc+YOmY/AWsH347WSepu2lgo+WKpb+K9MuLM/iTYxi82fFQoVDC1db+e0iIqJWigFWWyC4DzHrmAUakJDiUulPbBLiUPuVOV1DZcIqQddKi82GIrc5eI7WVOKqNb/g3GXfYkNJgegxQuvVk78M1Dg+UOy6OFZThQuWf4fPj+xxG2uk71XkOsdWy+NGm1W0O7H7d7ikvs5j2Q8iEwB70+pPc/cgT8Wk6AC7CBIRUevFAKsNEN6GmHTuLii80eoTl6jrsf3B4EXXrIrGBkxf8b3H8vy6GufEpw/vWC26L28C24dOUbGathe7LH49mQugKciwu0ZYKo6noYugxPLpK37Apat+gsVtsm337e/bthJfq6iQ6c2l/1XePty04U/pY8q0i4iIqLVggNXGaK0gpkTYTUcsdElsntS4Y6R8ufZAGZHsWYhDyZayQq9v5hhgtQ/ay6p7bn+gqlxiW2X7JPYVPZ5LBsuTmqI436iagsC7a192L0Hb+d0iIqLWSlu5KQpJwpu5m/pk63ps4WB9sSIU4UYTvhw7DREmIy5Y7pkFkpMWEYXRyR28CoqkRJhMmvex+XAf1zQhsfZzUuui9V5fbHuLYPJq4XdWKXiz2e3OqQPUkJ8iG6i0NCIhvOWHGLHzV3pRmVQPwpYwwCIiotaKGaw2JC0yChmR0boes4PI8Ua5lXaPNptFy7orKayvxQ29B2OE4HjPBqVUu/c3co6iBdvLi/F7cxcwanu0ZrDECkWEG1sCcS1d4TRnzxQCk1XF+W7bKx9TbEJxf4Q/LgEWOwkSEVErxQCrDSiqbxonVFhXq7CldmJZq7v7DRfdNsYknhCN0pBVGpCQorjNPJm5tbS6bdNSlDXWq9r2RG01Ht7uOhbLEWDdu3UFXtq7GeUqjxUoeytLvZonjVzpcasvrPapdQyWEqnCFmLBltaCHQDQTaQ6qb/DHyawiIiotWIXwTagUWJCXH+JNJlxV9Ywj4l4Pxp9Fh7fuRabygr9ev7hIhMee+tAVTmOVFeo2nbO+t89lgm7fQFomkfLcwoxVcob6rG65AQmp3dBmNH3bod7Kktxx+Zl6BgZjfdGnuHz8dozrdUyxbq3uc6Npb5Mu5pTu3atE18uRc331ZtutN5UGGUXQSIiagsYYLUBnZsrnCWG61vgQs6k9C4eyyJMJtEJigPKi3syiw83cnreBN62aSmKGupQ0lCHy7tm+Xy8A5VlAJqqIZJvtH7KYtsnhIWLrtejTLvU8cSuT+GSWqtF1fFFu+tpmNNKNWGRC3YRJCKiVopdBNuAhPAIzB99Jr4564JgN0WULzGIN92ZAsnq9uJWFOWjorFB0/5Ha6pgt9ud83B9emSPx3bLC4/j7i3L2d0vSLQHWJ575CSleX08NWd0EOZUHUGKVGXBBqu67Ld4oCb/Krx5jcxgERFRW6BLgNXQ0IC33noLu3fv1uNw5IWMyGjEhAU5ewTxmyqtt0m39skBAFzVrR8eGzxW077eVBH0hXsXwQ8O7cD921a6LKuxNOLLvH349MhuVLoFX6/v24IbNvyBpYXHZM/z9O712FlRgsUnjujTcNJE6+xqyrFBywYnJDKMdrsdj+9ci89z92o6nzCYcgQpLhkuwXq12Vvvgh3fuggyvCIiotZKly6C4eHhePvttzF8uHjxA2rdHh801iOQkBLf3A0q3IcJj6d06IopHbp6te8FnXvBarfjy7x9Xp9fC/cMFgAcdhvT9ciONdhZUQIAOFRdgQcGjHKuc0w+u7LItbKb5Pls6j4HCi6x7m1SMcrywuMY6VaZEwBKG+uxuvgEVhefUDyfUhdBqcBF7fda7Dr3TwDEebCIiKj1062LYHZ2Nnbs2KHX4SiE5CSluZRSlzOrWz9MTu+C54dMdC4bkpgKAIhxG5/VUWNJ+T6xifhk9FkAgKGJaR7rnxsyAbHmMKwrOanpuL5QcxPoCK6Apqp+Yoxu1RqlCgRoCq9EKkBSgIh8fMKgyyXjJBGqiAU10qcTBiZizRAPXCwqA3axgFFq4mTnGX2MjxhgERFRa6VbgHXXXXfh888/xyeffIK8vDzU1NSgtrbW5T9q++LDwvHPrGHoGZvgXPbPrGG4rU8O3hk+Gd1j4p3LwzVWyuseE+8s5OEekABA/+bxWpd17etN071isdtEs2VzNy5BUb3YNS8e9CwvOu7yXOq219ubzs9ExnWRelpDVfEMlvg4KKlPVMtnbXM5dstjR5AmdSi1Gazt5cUey5QKZGi5UpcXHsfKouOcB4uIiNoE3QKsSy65BLm5uXj88ccxZcoUDB8+HMOGDXP5j9qnWHMYzuzQFYnhEXh92KnO+bLE5tgS07M5KOslCNrk9gxkJUOr3Y6PDu/yWH64ugIv7d0kskfTTeNP+YexobRA8rg2iRtfrwOs3D0obwitObpaE7XXqsPLezd5TJ9glwirpI7sTZlzwDWDtaeyFHa7XTJw8aWCpjL1x35693o8uWu9SyDIDBYREbVWupVpf/LJJzXfhFD7NDgxFauLT6B/XJKq7R8bPBabS4swIa2jc9l1vQahfPdGXNtzID4+vAtdBBOhGjXnG7wn141LLINV0lCPNcUn8Mb+rYrHFQsTrRpuWt3fBS37km+O1VZj8YlcnNeph3OZ1PxUY1I6QoyWz8v12K777awoQd+4xJb1gtVqM1jS55Vuo3dlMdTPD0ZERBSqdAuwZsyYodehqI37R9+hWFGUj1PSOqnaPiEsApPSO7ss6xQVi5eGngIAeGbIBJd1pgAG+laZG1STQTxB/NjOtYrHlcosuBe5aLTZ8M3R/ZiQ1sk5H5rzGCyI4ZWyhnp8dHgXZnTp7dNx3ANsl+BB8PGaJa5XLQkc12O77lhrtUjPu+VjFCNXqt3XBJSWMWhEREShRPd5sPbv34///e9/ePvtt1FYWAgAOHLkCKqqqvQ+lU+OHDmCK664Aueccw5mzpwZ7Oa0KzHmMEzp0BWRJv/Mcy02Pstf5G4Cve3iJbfvN8cOONfb7XZ8f/wQPj6yG7dvWuqxbZ1bF7WTEuXAf8k7jPUBLAwS6t49uB2/nMzFg9tXOZfpcUVJZbCkxho12OTnqJIa0yUWVttVnHtwQors+cTboHkXkWOIH8SX7w8REVEw6XaHW11djfvvvx8///wzzGYzrFYrJk6ciLS0NLz44ovo1KkT7rnnHr1O57P7778f99xzD7Kzs1FSUqK8A7UaUpkjfzjkVpJdKK/W+x8VHF2v6qwWRIgUA7lt01LEmsOxtbwIAFArMmHsArexYWLBYHlDPR5ctwIA8P3E871ub1tS3Jx5KhRkoAxehFjue9gkxmDZJOKI7/MPqT6XXDBigEE2wyXcTk9KExE7CANCFrkgIqK2QLc70aeffhqbNm3Chx9+iI0bN7r8Iz5p0iQsW7ZMr1P5bO/evYiKikJ2djYAIDk5OcgtIj0FMoM1/9BO2fXHvAyyfjpxBMdqqnDRyh/xzO4NzuVjUjoAAA5WVziDK7XiRIp/uFcvpJabfF/H8rl3VZXMOEkEPIV16iuvygYjBumqhcI2SXWtlQveSuvrVLZQmrCgi8t7xPiKiIhaKd0CrF9++QV33nknxowZA5PJ9Rf3Tp064dixY6qPtW7dOtxwww2YMGECsrKy8Oeff3ps8+mnn2Ly5MkYPHgwLrnkEmzdKl80QOjIkSOIjIzEddddh+nTp+OTTz5RvS+FPmMI1Vpxn3RYrU+O7MadW5p+lBAGQb7c9IvdrwqzWkplt0PN5tJC7K7QP/tcI/I+eBOzuwf6LpkaFfNgjU9VN0bR/XjurDabZHU+YZukXqNcnHOgoky6TTL7CUl1s1Vb5KPOasGiYwdR2uB7sEdERKQH3boI1tfXIzExUXRddXW1R9Alp6amBllZWZgxYwZuueUWj/U//vgjnnrqKcybNw9DhgzBggULMGfOHCxevNiZjbrgggtEj/3NN9/AYrFgw4YNWLRoEWJiYnDllVdixIgR6Nevn+o2Uugy+fC7QZjBiEYfK6sJPbVrvdf7VloadWsHIJ4piRGMg6uxWBDlp3Fx/vBA8xgpvbs2OoJiX7uoyU8eLT7xr9CRGvng3I6Wbohy3fF+zD+MQYLxVfbmtrhXfZUK3uXeBbnuuGozUMIAy2U+L5UH+DpvP77I24vfT+bi1WGnqjspERGRH+l2NzV48GAsWrQIp5xyise6n3/+GUOHDlV9rEmTJmHSpEmS6+fPn49LL73UWZxi3rx5WLJkCRYuXIhrr70WALBo0SLJ/TMyMpCdnY309HQAwNixY7F7926vAyxjCKRMHG0IhbYEm9nk/XugZ3DlFwbpTIPiZ29o2aa8oR65NZXoFtsy8bPNYG8114/w5jsQbTYYDJrPYzYYXfcR7m5wXS527F9P5Moe32g0OIM4uSkyjtdVwyA4/qayAry0dyMeGTTGpRnuAaGjTXKBTqTJJPm+GGV+5xDuYxfsXiso7GGXeF/cHa+rBtDUbba1XL/tGf+tIm/x2iFvBOu60S3Auu2223D11Vdj9uzZmDp1KgwGA5YuXYoPP/wQP//8s27d8BoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR0jOzsbhYWFqKqqQmRkJDZu3IizzjrLq/aYzUakpMQqbxggSUkxwW5C0NVGtN3BG+HhZiRLXG9K12FjhMG5zd++X4yyhnrcnTPSuT4pKRop0aFzLcsRZjoC8f2LjAjTfJ642AiXfaJKwp2PY2IinI+jYyJEj31x7yx8vFd6jF9KSqwzKLLWymSSDK5/F37KPwIAeOfQdtwxZIRzeWSE6xg9R5vcJ0wWijKbkZQg/jcnorFBtu1OgrFma0pPOB/HxIq/L+5io1re11D6W0zy+G8VeYvXDnkj0NeNbgHWiBEj8OGHH+KFF17AY489Brvdjtdeew1DhgzB/PnznQUlfFVaWgqr1YrU1FSX5SkpKThy5IiqY5jNZsydOxeXXXYZAGDq1Klet89isaGiQv1gdH8xGg1ISopBaWk1bFJlydqJCsEN24ejz8RXefsQaw7Hf3L3BrFV+qivb0RRsXjhjLyTpYgWKWThcMeqJZg3aAxGpmSgrKEeALCzoKVQRmlpDT7bsRPpkdGY1qm7ru3Wm3COr6KiShyoKseWsiLM6NJLtwnP+8cnY1fzGK/6+kYUS7zvUupqXPeprG4ZI1QleFxRVSd6bFu9fJn2ouIqZ2GKUpFJrR1yElJRXOJ5fIMNKC9v2a+xwXXsmaNNcgGWzW6X/JtTLdPFVfh6hfOFNVhazlVRWavqPa+vb2m31s+IAo//VpG3eO2QN/S+buLjoxAWpjzsSdcBF8OHD8dnn32Guro6lJeXIz4+HlFRUXqeQpLYmAI5kydPxuTJk3U5dyh90W02e0i1JygELz81PAo39srG13n7gtceHVVbLLBaxbsxvrh7E+4fMFJ0ncP/jh7A8KR053PhRMk1jY34svl9mtqhGwDgRF01UsIjESZSKj6YhBMuW2x23LqxaR6wrtFxLq/PF5Fur1nr98oAg8s+wsdWl8c20WNLjc0SHs/xJ88icU0AQL+4JNHjmw1G2dfkWGexSm9jtdsl/+ZYVRy76fgtbReOx7JY1f0tW17YUgSm3f/ta0X4bxV5i9cOeSPQ141uVQRXrVqF2tqmXyIjIyORkZHhl+AqKSkJJpMJRUWuJapLSko8slrUPrXl3tlJ4RGSRQfWuU0WfF6nHh7bbCordHl+rKba+bjR5nqT/lfhMcxZ9zumr/jBu8b6kVWiGEKxTCZHK2HhCG/miJKrIuhSyU+PyXpl1lnt4gU7DHB9jVLHkCugIRsEqixSYbELg2VByXaVRUbqFSZkJiIiCjTdAqxrrrkGI0eOxMUXX4xnnnkGv/32G0pLS/U6vFN4eDgGDhyIlStXOpfZbDasWrUKOTk5up+PWh+xm2Gp7Obc3tmtaoLdMKNR8sbTvUBHtIqKgMK5tNz3f1Yw/5a7ozVVKNFQFttut+PN/VuxON+1G2+91YpdFSWihRTu3rIcD29fLX48l8ctz+pt/ilS4lXQ7vaa7C7l0cUfazyB4JH0Meywi8Y6uytLXfYSm9BaiVyA5U2ZdmFQqpTBIyIiClW6dRFcuXIl1q9fjw0bNmDt2rX46KOPYLPZ0LNnTwwfPhwjRozA+eeru5Gtrq5Gbm5LBa2jR49i165dSE1NRVpaGq6++mrcfffdGDhwILKzs7FgwQLU1dVh+vTper0camMskjferSvfZYBBdflrsc06RkZLbi81H5G7RpsVN2z4A4D6EulljfX4Mf8wAGBqx27O5c/t2YDVxSdwe98cnJHR1bm8tKEOO2XmuJLKAKkt7a2VN0d130cYSEll4Lwldwib3S4agHWPiXdZKjVBt1yGTS449CbASouIQnFz4B7i9TyJiIgk6RZgJSUl4cwzz8SZZ54JoGkuq9WrV2P+/Pn48ssv8dVXX6kOsLZv346rrrrK+fzxxx8HAMydOxe33HILpk2bhpKSErz66qsoLCxE//798f777zvnwKL2Tew+cWmh+omu5YQbjWiw2TAoIQXby4t1OaZWctkKq93mnJtILAOQX1fjHGflTjoIdVVv1d4lSyyruKm0AKuLm6rGbSwtdAmwiupbsmNi4ytd5kvSJRskT6m7mliQ5L6P5GS/OgRYcq/bZreLBkndouOc7T4tvYvk/gery2WPLfUbhdoufjapzB4zWERE1ErpWuSiuroamzZtcmaytm7dioiICJx66qkYPny46uOMHj0ae/bskd1m1qxZmDVrlq9NpnbijIxM/PuQZ8nrCJO2XrKnpHXG7X2b5nQ7d9m3urRNCwPkMwo3b1iCt0c0FW+R2uyjw7tEl5+sr3E+bpAZ1yI87rfHDuL8zj2lG9RMeONcY2lEtDkMDwq6/7kHKK7d/qyIdOvu6HojLljurwyWwmHFVrsvs0sED95mauyuMw1LskE82DEaDM6lkUYTaq0Wj20A+XFtVpkASy1hy/ZWlgmWq/sssxNSXbq6Kp5PY0EkIiIirXQLsGbMmIE9e/YgJSUFI0aMwNSpU/Gvf/0LWVlZ/MeMAkrsakuPcO0a1zU6Drk1lRgQnyJ5nE/HnIUrVv/sssxs0G3YoncMgNzd9NHaljLVWruevbZvi/Ox2izVuwe345xO3Z1ZMylWjQHF1rKWG2axVyEMUISVEJVecb3VimVFxzA2pSNiZEraux9L7c2+UEl9HRpsVoQ3j21ybXNgM1hiaw1ouUaMBgNyaypF95cb1yZf5EJmlSDIkTqG0vuyp6IUr+zbjCqL9Hxb7soa6nHVmp9xcWYfXNm9v+r9iIiItNDtbnHPnj0wm83IycnB0KFDMWzYMAZXFDLCjK6X+os5E/HeiNORITMmKSGsZTLYmV16A2jKhAXTLydysUAiA+XOl+5yB6pcu4XVWS147+B2HKou9yiGsa2spaukzW73qEYIuAZBcukgq90Om92ODwWvUexGW5i1+vVky3hNpaDyq7x9eHnvZtkCHt4QO+s3xw7g5g1LnM+lqgh6E7x5nF9pDJbIBnsqS/HozrXO5werK0T3l6vS522RC+E6qfmylKorvrJvM3JrKlHSPKebGquK82ED8J82Mm0DERGFJt0yWOvXr3d2D/zll1/wwgsvICwsDMOGDcOIESMwcuRIVvmjoHEPsCJNZnSMUr78nxw8DmaDAQMSUnBZ176IUlGZz99+aC4WIaXRZsXvJ/NQquHG090D21e5PF984ggWHTuIRccOYt7AMS7rhN0J79qyHHsqS/G/8efCLHjP1XSJ+/jwLvwnbx9u7ZPjslzsJl4YlOyvkh4j5M5ROGNDaQGK6muRGqFuKglvs0z5dS1l8CWrCHp5bLUZNjvsosH2sdqWtkkVuACAeomug4B8YRT5NrVwv9YclH4gsNpZBoOIiEKTbneLUVFRGDduHMaNGwcAaGxsxKpVq/Dee+/hhRdegMFgwK5d6n55J9LbQEFXQKWuYULZiS1zq4VCcKXGl3n78HnuXl2PKRyfk+YWlFgEN9l7KpumZihrrHcJXtR0iXNkFX4+4VrKXTyD1bJMS45ceFN+44Y/8dW4aZLbCk+rHAIpbyEVVOkRJsidvSmDpf2YjoIpETLXvffdG4UDyCS2UDi2UrdUqbMSERH5m653jCUlJVi/fr3zvz179sBms6FPnz6ailwQ+UKsYl2EqWWOn7eGnxbI5gSc3sEV4Dr27KaNf7qss4hkEhzLDlaVo0NkjNsYLG23uRYdAyzhkWqtFuwoL8bABOlxeKqPq+Il+bWKoMwxbHbxDJaQAQbnuESHtcUnMTa1IzJksnx6zIPlzbEBwMTu50REFKJ0C7DOOuss5ObmwmQyoX///hg9ejRuvvlmDB8+HImJiXqdhshrrw87FZFGE5LDI2W3+3LsNBh576ZaUX2tszKgg9Vmx/6qMty+6S90iYrF3f1afmARu2+uEozDcWTBHDaXFeB0QQl3wDVI0zLO031urTUlJ1wCLKmsiR5zVbnMg6VLOXKVZdChHACKvYWOsXZywZlsF0HZIhdQjIyVgkJvCs7kSRTyICIi0pNuAdY555zjHGcVFaVuXAORP7iPt3LoHhOvuO8V3bIQbfbua/FyzinYUVGM9w7u8Gr/1urfh3bi34d2YtGEc53LLHabs+T20doqxaIOm8oKJY/vqMInJCyAUN7YMtZMa6jiHgRsLBVvh9Jx1ZxX+B6cqG0pia9HkQvlKoJKGSzpZUrZMSGr3e7MLKkdgyV9bPn14RLfcznfHT+keR8iIiKtdAuwbr31Vr0OReSTGHMYbu6d7VGaXY0OMlUFlfSOS0TvuESc26knrlv/O07W1Sjv1IYsOnbQ+dgO6bLkYswGg2hXQADoHBXrsUx4bGFQpLXbmHuAIDVHmB5jd4SnWlNyQtP2vmy7ruQkJqR2kt1frFut44eKVwTl+90JP9dPDu/GF3l78eGoM1UUD9E2Zk2MWOBNREQUCnSd1CcvLw8PP/wwzjvvPEycOBHnnXceHnnkEeTl5el5GiJFZ3fsjuHJ6V7s6XvfQJPBgOFJ3py7dTshCChtzeXWnc8VusRNSusieVyx4Ezq5js+LFxVW6WOc6BavCKhchdBNWUwpOZ7UtxV8Yxy2aJ9VWV4Ye9G2WOJxaWOaQqkyqgDwO7SlhL9X+Q1jf1bUnDUo33u1LxkPbplAk1zn32RuxdlPlTVJCIi0kK3AGv79u244IIL8Msvv2DQoEG48MILMWjQIPzyyy+48MILsWNH++o2Ra2TXkOvrmrnk5iuKT6BMkHXvR3lxTJbA5Em6WyEWDnukoY60W21BivfHT+Efc1dGQFgcrp4oKd3F0HXff07DxbgOa+ZO7EMlhqf7d8NwLVUv2M8nVyApCZ2UhqbpvZ9+yJvLz45shsPbFupansiIiJf6dZF8JlnnsGAAQPw3nvvuYzBqq2txXXXXYdnnnkGH330kV6nI9LVTb0G49eTeRiT0kH1PhFGk+QkrLHmMIxISsf60gK9mijq/E498e3xg8obBsD+qjLn409z97isE04cXGFpQDrUd8V0z2AtKzyGZyQmChbOO6XWPVuX45vxTePH4swtGbCt5UXOx7oEQRqXK/V2dKlK6GP7xE6lJYM0Y8UPLfup2F7N+6nXLFe7mgubHPaywIXVbkdFYz2SFIrjEBEROeiWwdq2bRvmzJnjUeAiKioK11xzDbZu3arXqYh0N61TD7w09BREapjrqltMnOx6LdXtvHVNjwF+P4dawolr5bwvUgTkcHWF5PZ7BRkmAPjlRK7ktl81z6WlRYOt5VZeKlBRijVqZSbjVT62d+e8bNVP+PehpveyTuT8f+uapdgmOd4GOI7gydFl0OvzK2aw1Km3Nv0IEm40YopbNUo1nty5Dleu+UUxC0hEROSgW4AVERGBsrIy0XXl5eWIiIjQ61REIeH+/iPRNVo+yPKn7tFxMHtRSc1f1IaT20W6C+5wK58u9EFzEHGspgqrivJhVAhcD7rdCCsV2BDyZ8V06S6C3mm02/DN0QPIq6nEg9tXe6zvFZug+lhrik/oNubJ8YLkAmF1h9HWniiJbqaO7ovhRpPLfHhqOQqSbPRzNpqIiNoO3e7OTj31VDz//PNYv369y/L169fjhRdewGmnte3JXan9SY2IwuvDTpVc7x4G/Kv/SH0bEMCJVv+jYvJiLa05WlOl6fxWuw3Xb/gDT+xah2O18vveummp8/G5y77FBcu/E83wiPmz8KjocrkueHa7XbLLotBvJ8WL/TgCG7vdjryaSk0BIQD8etIzkOkQGa0YiArli1S89DbgUtNd0Zcxa1KkxpE53k+TweD1WDNAn0qSRETUPug2Buvee+/FTTfdhFmzZiElJQUpKSkoKSlBcXExhg4dinvuuUevUxGFDKPBgC/Hnq2YSTqnY3eMTe2o67nlutXprU5irJm3btjwh6btH9i2yvnYm2pwx2ur0VNFRkeuYp7cPsLxWlo5ApI/Co7ipb2bcG7HHrih92DJG/qksAiUCgqIfHP0gMc2WousiE2sLRdQdI+Jx+HqCnSMjtG0n3Mbu+P/ZebYUnkMB6UuueWNDQH9zhARUfvlc4BVV1eHpUuX4tixY7j88ssxa9YsHD58GIWFhUhLS8OQIUMwYcIEPdpKFJKizWGiy4UZBF9+OffVjM698M0xz5twvVV6EZyotU3QrVDt2DaLYGyVlmyOmOMy48tqVGbHpDjihM+aC4N8n38IN/QeLLptr5gE1NusLgGWmFqrBTEm8etSrTqrBb9KdPOrbGwAAOTXiLwvqlI9TRvJBVFKGaxy9/dARZVGXwJh7/uPEhFRe+NTgJWXl4fZs2fj2LFjzmWxsbF46aWXMHHiRJ8bR9SaCW/p/dGbb2B8MgDgnRGTcf166YxQlNksW/GwtVHbr3mJW3e/PC+ryAFAbk0lShvqRCvJ/Zh/2OvjAi337e4TU4teMgZ1Y8osNpuma65HTAJq3ALk9w7ukKzKKHdodVUEm/9fLoOl8DqPuH2eUlt7O8+YO4ZXRESklk9jsJ577jkYjUZ8+umn2LJlC3744Qf0798fjzzyiE7NI2q9/J21cmRyOkfFym5nMhjx5biz/dqWQKpWmTGqaM6yOHxyZLfodo5PSemG/so1v4gu93VSaaliDmJLDTLbi22rVpw5zOOociXvTTJdYtW0zxlgyWyrtfS89PvI0IiIiALLpwBr06ZNuP322zF8+HBERESgV69eePTRR3H8+HEUFLDiErVv/q5BobYIQKTRBJMhdKoNBopwAuFIkwl1VvEMniMQnrtxiVfnMfn4QYt9jOcu+xb/ESlzboBB1edugLYAX+uUAnKvWUtPOrlsnNYiF1KZKr3CK4ZpRESklk93XYWFhcjMzHRZ1rVrV9jtdhQV+dDXnagN8PeQDbU3oKemdwEAXNi5pz+bE3KWFR1veSLzVjkKPOSq6EJYVF+LdSUnXZZprfrnrqShDnsqSlVvr+pzNxj8GuCbZQL2E2ome3ZUTlTeRDXJTJXE4sL6Wn2OT0RE5Kb9/axNFCAri/NVbffAAO/Kt6vtQhXe3J1rTs9BXp2nLXjrwDZskJjHSEsBjNlrf8W8HWuwpazQuUwpwFIKiFYW5+OOLcsQpWKS63CjUfUEwP7somqWec/Wlxbgu2MHZfdXNQZL4fpOdRsPJ5XBkjqO2tL9REREWvlcRXDOnDkwiUzeOHv2bI/lq1at8tiOqD2Quo9MDAvHmBTvyrefkdHV+fj09Ez8XiA+z5KvXdjaAqngCgAabGpDlhb/2rYK/x13DowGA6wKgcD5y7/DvIFjFI9Zq+KGf2RyBha5BS8D4pOx022i5pN1NchUGJun1aCEFOck0UpdTt85uF12veMdkws+lQLTSLeAlBkmIiIKFT4FWHPnztWrHUTtTnpEFOYNUr7xlnJ2h27Ox7f2zZEMsIQZmgcHjMJjO9d6fc62qtKtIIYaM1f+gBiTGXf2G6647XsKAYcaN/XOxlkdumKhW8l99+AKaMp0aR1XpeTMjK7OAOtAVblzuTdzSzmCIdky7QoBk3tAJZUNk1quNcPXqDIQP1pThdSISI8AkIiI2g8GWEQB4LjXHZqYhk3N3ctu7j0EmdFxLtsNjE/GDpEbZndmg+sNtFyWyii4kRyd0gH945OwS8WYn67RcarGJYWarm7vqRqXr17s1bmqrRY8sXOd83liWDjKRIK1o7VVXh1faFhiGkwGo6qxSZEms+4dBLsJ3ldh8HPT+j+1H0zFRMNax2DZADy+cy0uzeyLPnGJLsvFmMVmV5bxZd4+xQmc82oqceOGP9ElKhZvj5is6fhERNR2cAwWUQBcnNkHAFwyVlEiXWvDJMpfu98Kaqmw5m0mY3BCilf7BVujzYrHA5ils9hbbuH9Wa3R8TlWWJSzbTa7XdPYMjXl3xsFrzNFZD4wLZxdBOXKtCtc42JrVxefwN1blrtuJ3EcuUId3trfnNnTI6AmIqLWiwEWUQAkN9+QGg0GPDl4HC7L7Iv+zRMFA8D7I07HyzmnIMzoGXQBwNU9Brg892W8ib/n5wq2/LoarC4+EZRz+3O8m5Yj2+x2XT9lk8GAasFExL4G384ugs2Xsdg/RIpdBCUCJ2Eg2HQuqTYQERH5BwMsIj8Zmpgmujw7MRWzuvdzySx1iIpB77hEyZti98yILzeHam+O1QRiXXQupNDaeVMwwx9ssGsOpOW2N8Lg/JEAaMqmReswxsgRaJlFMreW5vfSbrdj3o41+ODgDq/PIrrUD/MotO2fLoiISC0GWER+om8yQ7+bwcu69sW9/UZgVHKG7HZq2n9tz4F4MWeiTi3zzZyeA4PdBJQ11vvt2Fq6etrt2q4/AwyyWVGjwYAeMfEtz2GQ3DpCIgsrxtENUKy73rKi4/jm6H7U26xYV3LSo7iH0jfCUYZdsny7vyeqIyKidosBFpGfdG7O7nQX3Jh6S+om0RthRhMmpHVCz5gEAEDH6BifjqdlrI8/jUySDxhbO+1dBPX7XIwGg0uAN7VjN8my8onhEYrHc1zOjjnEaiSO9e9DO73q4re88DguWvkjfjx+SHIbpfL63giNbwIREQUbAywiP5nVrR+u6JqFRwaOVr2P1E2xmjFX746YjO5uFfQyIqMlt5+Z2RuzuvXDW6ecobp9YkJlTFeoBHqhwGw0aspg2WF3FmIJF+mu5/7edpC5rk7W1Sieb1tZU7n3FUXHFbeVyjTJdfH7+ug+AMAHh3ZKjuViBouIiPyFARaRn8SYw3B5tyykRkT5fCw1t4KdomLx+vDTnM+fHDwOH4yUDp6iTGb8rXsWOkaLj6OSClhOTevsfGxAaPxqf2lm3zYfYKkJZCend8HwpHSc16mHpsDXjqaJq/8z9myc07GHx3qT27F8fa+3lBXCbrfjw8O7FLe1CgKhkoY6xe0jjCbnmEWr3SYZiGkNsKTGVAoFq7gKERGFFgZYRK2ANwPyfak0CHjeVDtc1JzpCCUZkVFtPsBSM21Tx6gYzBs0BjHmMByqLlfeoZnj+ooxh4l+6tXWpgqCl2b2wZiUDog3h6s+tpTjddWqthMGQutLTjofy13d5uZrwWqX/hZYNX6nIkWmVXC3TEVGjoiI2j4GWEQhRBgjPJ093vnYm1DJ1x5QPWITRJe7dzv0V1zTW+L8Yk7U1aBGUEbcV5dl9tXtWIF0oKolqCprUF9ww+VSEfk8HcHIld3744EBo7yeW83hr8JjuH79H6LrnhsyQfTcko1zY0BL1U07pL87SmXg3cXqEFQSEVH7wACLKEQNEpRTt9tbxsio5e098N+6ZuHufsMxSdAV0OGzMVMR5Vae219jsLQEiNWWRt0mjn0p5xS/zmflLTXvszDbo6bYRMuxtZ3HV3U2q+S6GFOYy/NyQWVGYcvksrqun58+XQRD74ogIqJQxQCLqBWwAfh79/6q5rC6uXc2hiWluQRoWmRGx+KUtM6iXe7ECiD468ZTSxdHo8GAGHOY8oYKhielo09cotcBVpSKbmTeUtMiR2VIAMhOSFV/bMHrDXYg4X7dfXv8oPOxcJXU1WEwuM6r5W2Z9kabDRtKC1q259TERESkEgMsolbA8Wu9mjmGzu7YHY8OGusxObEa53XqgXGpnSTXu2c3DM3/8wctt7NGGDRlbJSYRAJJNZ4aPF6XQE+Mmm55Z3Xs5vN5pEqmB4r7yxQWtlDOSzWJU/EZKAVYCw7vxMPbV6venoiIyIEBFlEr4Pj13N+3eP/Xc5Bk9ibeHI4ItwxNemSU38Zg2e120YyZGL3a4DiMNxmsGZ17oXdcIu7KGqZPY9xY7TbZ9Zd37Ys0LytWhgmC8XWCQhKBMjwp3fnYvbjKxtJCwTM1n4sBYYIfIuoluiPKv5vA/44ddHmu5rt3TsfuKrYiIqK2jgEWEeGdkZPxQs5E2Up8n42d6nz87ojJeHDAKGS6zbslZ2xKB01t6hAVE/A5thxZIqkKinK6aHgvvBHeHDS8Oew00fV/65rl8lxLl7Y5PQc6H6frMK2AL9wzdQPik1vWCZZLTXTsvp0UuYDVYvNcpyaDlRCmXxaViIhaLwZYRK2A1DgSvWRGxyErLkn19p2iYjG6OWBSEwQNiE/GPf1GiK7rG5courxzVGzAxwP5ksEyOP/fP612dD3sGiMeyLkHJlp6tKULKkMGY+LoWHMYMiKjMS6lo2yQL1wl9RkZoG6eLrmAaXNZoccyNW+nr1MjEBFR28AAiyiEGCVvbh1dBEPvBk7N7fidWcNcCg843NtvBF7MOUV0HzvsqsuBd44SnyzZW0adKhK6UzOGTi/eFmXYXlGsc0uUlTbU4/0Rp+P+ASM9rqfBgmIdxfV12FBagIK6GtlxVmquGrkfLcS6FaqZi47jtIiICGCARRRSrukxAD1j4vHYoDEAgIu69AYATErrAsD3ua38QuFudt6gMc4MyYikdJeM1YQ06YIasAOT07uoasLpGZmqtlPiyIr4q0z7o82fK6D+tXkrkMGcr2qtFmcw7Z59Es679uHhXXh4+2pcs+43yWOpzmDJBKBie8ttf6i6HBWNDUHJ/hERUegxK29CRIHSISoGrw471fl8do8BuKJbP4R5WdVOLzObAz0xSreUwvWPDBqDqsYGXLZ6seI5p3fphaM1Vfgh/7DituE6BROOyotedRFs6SMoKtxoRO/YRABAn9hEXJzZB38UHPWileqkqhxLdX3PQV4dPyU8EsWCCn++iBQUT2l0G/8klRXKr6uRPJ6vXQTFAiWpzfNrq3HLxqWIMJowo0svxfMSEVHbxwwWUYgLdnAFuBYacKf0q737WqXqbQ5J4ZGyXQTHp3ZUeST1fMlgldTLBxsNNhsiTCZ8M/4cvJAzUVO2Q2kS5aGJaaLLY0zyv6Gdnp6J8zr3VN0OoYcHjfZqPzHRJunufpq7xRoMsKoYtGiVC7BEPhqpDNb/rf8dQFO3wpDMMBMRUcAF/86NiFQL1hgsNRkBKe6BhFK5cZfzyqzrLxP0yRmT0gGXZvYVXdcSYGn/0/h9c6ZN6Z0KN5pgNBg0lZYfJxNM3pE1DPMEXQ+FLhNUFnxl6CSP9X0kCoyoEemnSZXjw8JdnqsZ+yRUbWlUtZ1eGSyXbUJwjCQREQUeAyyiVqS0oT4o500Oj5Rcp3Vgv1zmwJ1sRTlNZ23xfz0H4W/dskTXOYobuGew3hB025TieB+KFDJZDmrb3ys2ATf1zpZcH9EcsIkxC5Yni0zELLZfd9Xl5vUbbyQMTKLcsm7qw/EWqRHS16uDluuwqR12rCg6joe3r0adRIl4hldERAQwwCJqVWJkKqf5w1vDT8OdWcPQKzZBcpu82kpNx0wOj0R2QqqzgAcADIpPEd1WmEka4zGPlnc3+HbYJf/wrSjKbz5vy7Hv7z8S3WLiFY97TY8BAIATddWq2iFdMdLVhZ17IVbmc5cLcIXBiVhWRux96KS6IqPreePN4RLbKSuor5U+i0IgNCalA7IFlQbV0lrkwm6346ld67GhtADLCo+L7ic8YlmQfgwhIqLgY4BF1AqpvTn3VWZ0HE5VqHbnXpTAnXuSxGgw4MnscZjdHJAAwP0DRuK2PjkeQZQwsEhxy6L1ik1AcngEzu3YQ/b84m2Sf/+EmZ1uKjM6HZqr3an9ZNSWoBczu3t/52P5cuwt68RO50sbtGZrpMaJAcDh6grJdUpl4x8YMAqDE8QDdDk2DV1VAdfXK5UxFAa7RTJBIxERtW0MsIjIJ30VJihWU8whPiwcZ3bo6pGp6RgV43wc65YhiTSasGDUFNzQe7CG1sIjMuggKAPusKuixPlY7fgzR7Byfid1RSN8Ga9zUWYf52O5rm7CWg9iQbnYZ6M25nI/rVFhv0clxokBQE6idAbKkVWU402gaJHN/HmuEwZPjSLzZLlv48u4RSIiat0YYBG1IqE4iD4jMtolo+IvZ3fs5lFNz5cMjMP7I89wPnZUS0wUZMvUVhR0bJUQHoEvxp6NxweNld1e7RggpbOXypRKt7tksNS+DrXvqWv7lQIKg8GACani854pBelK3P8hU/POWmQyr2KfjfC97BAZ47EeAH4UTCngr7nUiIgo9DHAImpFHOWs48ICOxZLyUWZfXBV9/6Y1rG7xzott5ly44lSI6KwcPw5zudWPwSbjm6Io5IznMvcA4fre4lnzISBSaw5DGaF8vpqSomrES1Tit2lW5vI+j9O5nks8y68kt4zKy4JTw4eBwC4rKt49UafuX1G7m0TK1cvl8ESC7CEH5dU8FQvyGwpldYnIqK2i/8CELUiN/fOxsjkDDymkB0Jhksy+2CywngtJUohhzALo7V8t5pzOIIp4e2z+/aS3dk0JiysXtXH08b1PfJs4KEa6bFPSrpExyE7pWVcVa1IZb30iCi8kDMR2c3vmVRg4m2o6ah46P4P2Y5y13Fb1SJts8iMwRILsLaWFzkfO65Dueyh/Ng4IiJqyxhgEbUi6ZHReHjgaPSUqeoXTGLd0LR049MSNHl7++ro6vX28Mke5dfFWuqeVZOq6Ke1Q5hY6fvzOmkv2CF3ZrvLY893bLQgU6eVyWDAe5OmOJ+LFQNxP6NU90P3z/1iwRgzoXD3rKAjIHa7xjaUFojuLyTXRVCpAIbNbked1YIr1/wiuY3WMvBERNR2SPctISLSyNfqhikRUQBcu3S9MexU0e52csFY//gk7KoolT1Xl2jPcuRGkRt2R9bl7eGTUVRfiySJOcHcgweldyIhLAIGuHfj89xLaWJmufhV+B6JZY8mpXlmHPvHJ2NZkXgZcjlqusQpFcJw+Hv3/vgqb5/HcvegxXFGb666j4/sRoWlAf/Xc5DIeZT3VyrDrnV+OCIiajuYwSIi3VQ0Nngs03Lze2lmX1zYuSeez5noXNYtJh6dReZmkgs7+sUl45PRZ+Gt4ad5rFPTRVAotTno6xIdi5wk11LjXQTtct8zRcVkt5nuWR+RN8uXTIhwz0iZsVpC53Tq7tW5xN479yDD18p67u+FIxBWOu6sbv3Qo3kus9PTM53LFx076LHt7ydz8WXeXtnj2ezK5WYYYBERtV8MsIhIN412z/LVWm6po81mzOk5yDPwEKF0A5sYHoEwkaxKeoRnWfaezTffvWMT1TVUjNsL7RAZg0skuro5uGfhooyeQZBSgCX3/rq/Ry8KAldAfJyQcHJnx6NJaZ1l2wAANdZGj2XuR9d7/jbH8ZSOWmVpwPNDJuL1Yad6BMnuXtq7GSfqahTPrRRisYsgEVH7xS6CRKQbsZtKPUqpi1FTsl4ssxEm0t3wscFjsbm0CBPSOgJQHxRGGE3OxyfrajwCtJzENHwp0tVNyvQuvXC4pgKri084lynfqEu31j2Acg9wlILUizP74sru/RTO32R/VbnHshKZIhB6UiotX22xIMJkQveYeBxxm9S43mrF2we2od5mxW19clSdzwY7lIpAssgFEVH7xQwWEekmkN2iTCrG/KjZBmgaDzUpvbPq7R2md+nlfCwWCKmZG8qhb1wiYsxheGDAKJdtfOoiqLBroOdVa1QYT6aV2Jg5Ma5Bteu2y4qO4deTufir8Bi+O+7ZZVCMHcrXup4ZrD2VpdhcWqjb8YiIyL+YwSIi3QxMSAEAJIZFoKxRvgiAt+7pNxzrSwqckwLL8fdkrzGCioIjfajIB8BlYmKzwegsI65Y5EJmXYTJ5PLc/ZZfKQuj97sXbjSJLvc2FHG0TyksFhbgcL8ktpS1lF/fUVGi6rx2u10xQ6Xnjw13bF4GAPh+4vm6HZOIiPyHGSwi0k1yeCS+HjcNH49uKd+t9036xLTO+EfWUNnskCMz422ApfbWuMrSUtRDLHgQ/oEdn9pR8jjx5nBEC4K11wXl45Vu1OVe4rmdemB8akfnRL/uQUGgCzGkNRcMcTciKd2r4zleu1IGyyDxGHC9RtaVnFR1XjuA307mym6j9r3dUFqAt/ZvVbW9t3O/ERFRYDHAIiJdRZrMLje8SuNj9JSd0DSh7dDEpht29wDLvciDFKWb3dPTM9ExMhrxYRHOZWLBnPB9+EffoZLncS9fLiwh70tXsyiTGff1H+mc6Nf9Bj3QXQTF9ItLwmCpyZsVOK4tLf+QuV+P3hTesNvt+J9IBUIhq8r39uHtq/FD/mFsUtEFkOO6iIhaB3YRJCL/Clx8hQcHjkJudSWy4pMAeI6B6huXpOo4SpmCf2QNhd1ux+Yy+Zti4dnDRDJcjm6AcmO/pAKsm3oNxo8njmB8aifZNghp7iIYgM8uPdKzqqN28g21yHSz3F0pP1+aGDVhjtbsYL3NorhNRWOD5DxsREQUOpjBIiK/Epsby1+iTGZncAW4Bi53ZQ1TfRw12Qc11RGF24j9sR2d3AEAME6m+6DUjfq0Tj3w+rBTEaVyfiuxYyllRALRI+30jEzljSTk1lQCUJ7AeGVRvvOx+8fmOIYWajJ/2gMszykO3F255hcsL9Q+CTQREQUWM1hE5FeVAQyw3Am77QkDLyVqb46VthJ2PxMLyGb36I/hyekY3FwcRIzarmZqeGawgtvl7PMxUxEXFu71/lWWprm3lLqh9oxNcD7WIymnlPkDlIuTuHthzyaclu4ZbLpnU3/IP4QJaeqzlkREFHjMYBGRXwWim5kUYRfBWLP6G3m1cYf3M1Q1CTOaMCwpXbT7oIPWG3U5nl0fvS+goUaOwtgqX4IrIaWMUoTL++v7BSnX5dDhkNt8W2pcsXoxzl32LeqsLd0FD1S7zi8WyIwwERF5hwEWEbULsYIqfUr0KiagxyTLes6nJNQvLklx/NaOcuWy5TO79AYAPDxwtMc6PQucRJmkg9A/Th5VfRyl7oRqbCgpUNzm89y9itvsrypzeV7eHDz9JegGWGd17TpYJ9OVsNFmRbnE9Agn62rQaNN3HjIiIhLHLoJE5FetsbJ0gk6ZFX26o+n3BvaPT8aA+GSMSemAGc2BkZzt5cWK21zbayCu7jFAdJ1e2ctB8SnoERuP744fEl2/zy1QkWuHHkHf0doqn48BAMskxlMJP/Nwo9vvoDKXw/+t+x1FDXX4cuw0RJtb/nk/WFWOWzctxaD4FDw9ZLxPbSYiImUMsIjIr0KhFLhWSeGReCFnIlJ8rNimR4ChZwbLbDTi2SETNOzh27n1ymANTkzBgapyyfXdY+KxR6YaoN5TBcidS4tjKgK1GJNr5rXWKl1tsKihDgBQ0lCHaHNLqf/dzRMob69QDpiJiMh3DLCIyK/UFATwp+eGTIBZpgy6lCyVJd3l6HFj768ugmrITeYciP2dx4EBa2UmAf579/64f9tKyfVyEw0Hy58FR7G6+IToOmEXVffuqhUW5TFY7t0g5cb4yWm0Wb3el4ioPeMYLCLyq/Ag36D1j09Gn7hEvxxbKcPlzSS27oJZ6S8lPCpo5xZSGssWo2F8nR7j4vTwwp6NkuuEQfXyItduhPFuxVpKG+qwq8J1rJxwegKb3Y7Pcvdobt97B7dj+oofcKK2WvO+RETtHQMsIvKr1thFUK3M6FjZ9Xrcy6upWKe309K7AIDG7oSeTLplsOSFRsjkKi0iCvsry5zP7XY7lhYcVRWwCMcA5lbLz9N19drfcNeW5Tgu6G4orDy5ujgfhfW1GlreZNGxgwCAvwqPad6XiKi9Y4BFRH4xPCkdADAgPjnILfEn/9/a6xWkaHFH1jB8P/F8pET4NgZNr+xlnsJYJaWuiMKsVaAq6RXW1+L2zX9hW1kRAGBbeTGe27MRc9b/rrivMCPXz23+tgpLA2qtFvx+Mhc1FoszAD8uCNwsgn65R33MQFVZG33an4ioPeIYLCLyi4cHjkaN1aKpPHpr48/Q58nB4/DZkT2Y1a2fH8/iX3r9glfWUI8wgxGNEtk8pc9BuF5NZUQ97aooweDEVJyoq1G9j7BbaJfoOI/1F6/8EQDwa3yec5kwT9xot6HWakGUyYyPDu9y2ddqt8Fmt6seW8XS7kRE2jHAIiK/MBoMbTq48rfsxFRkK0zUG+pMXhQXEbOprBCRRhMaJXqbaikmoufEzerO59noKoXJgi02G6otjXhj/1Z0ioyR3E5YFVBYXfCVvZtwsLoCbww71WOfv6/5FWWN9fh+4vkqWs8Ai4jIGwywiIi8ZDQYcGHnnpLFIIJZoCIUjE7JCMh5tPSibAhwwOAIsIRNfHnfZtl9nti1TjZjJ+bZ3Rucjw9WVwAAVhbne2xXJjERsdVux66KEmTFJbpkt5QCrD2VpUgKi0B6ZLTqthIRtXUcg0VE5IM5PQdhepdeouvaW3g1q1s/RBhN+HDUmXhz2GkYm9LRY5uPRk/x6tgzZSZG1lKt0Zshbb6Mg/siby8OV1dgv2AyZKny7EJagispcvH950f2YHt5MRptNmwrK8J/8/bh3q0r8Nb+barbUdZQjzs2L8M1637zua1ERG0JM1hERH4SjAqAwXRZ1764NLNPU1GJCPFtok3a/9npGh2H8zv3xKdu5cbNzYGPUvwjXD2tY3f8ciJX8/kPNWeFvDF34xKv9/WF3Nvyae4eIHcPzuvUA98dP+Rc/ntBHm7tm+N83mCzSh7jRB1LuBMRiWEGi4jIT7yZ4Li1U5pnSm026Ons8c7HaRFRonNdpUU0dUvTksHyJsC7p98IxW3uVbFNoFVZlCsALi1wLcPunvWS6yJYLRj3Jed4bRXu37rSJYtHRNSWtb9//YmIAqRbdBwu6tIbDw4YFeymhIwwown/13OgYkAyKCHF+dgxlm1qh24u2zhiNWFQN72zeHdNB2+6baaqKFc/Ia2TF0f2r0iTCSOap0vwlh7jCN8+sA1by4vw0LbVPh+LiKg1YIBFROQnBoMBs3sMwOiUDsFuSki5oHMvTQGJrTksmttniMtyRxBmENlWSBiAJZjDPdYDQHeRcugORoMBV/cYoLa5IaNrdLxiQFlhka9oKEdt3tBR6MOXcxERtSYMsIiIKKSJJVEu79oX1/UcBMA1gLK4dWnrFZOAKwVzicWGiQdYo2SCYCMMSAyTGFQmEBZiXULtsKNeZgyVGBvsLqXs7TIhmtrkVjC6ypY31GNlUT7s7biS54aSAty+aSmK6ms171trteDTI7txUsP8bUTUIrT+NSAiImqW0TzGKjHcM7iZnJ6JyObxVMJMisXthvqVYZM8Soj3ik3wOJ7cXFpGlePG/jPubLw7YrKqbQPh+T0bvZpY+fGd65yP5cKTz9yKjkhR+/4BwPLC48irqVS9vZQ7tyzDk7vWYVnRcZ+P1Vo9vGM19leV49Mj6j4nof/k7sXnuXtx/9aVfmgZUdvHAIuIiELSo4PGYEpGV/xfz4Ee64Q37cLgaHhSmuJx7xMZ/1VYL/1LvdrwINxoQqeoWJVbh651JSedj+USQHsqS1UdT+37l1dTiad3r8eNG/5UuYe0/ObMy8Gqcp+PpcRut6NRY6Yw1DkyVydlvhdEJI0BFhERhaTO0bG4tW8OksI9i0xI3bSPTemI14edKnvcDlExHlmsPwqOSm6vVBmxrWuwWfHc7g04IAhWCjR0HRMGw0sLjkl22ytrEJ8E2ReB6CD4wp6NmL7iB5Q21AXgbNp5c/mGGXl7SOQLfoOIiKjVkep2ZjAY0D0mXnF/ParjBdIlmX2Ccl477HjvwHYsLTyG2zYtdS6Xmly40WbD8doql2XCMvrP7FqPL/bvxv1bAlO2PRBjsJYUNpW631Fe4vdzeUOu1L4ULd06icgTAywiImp1hN0C5QoxSLFqvPEO9u3myqL8oJzXDmB18Qnn86M1VaKZpi1lhQCAR3eswXXr/8AOwdgv93v1l7dtxOayQmfZdqvdjgNV5aIVIPVof6DU2dTNCxZof8pkZ6W0th8giEINAywiImp1wgVdmCKNJs375+pQSEFv4TLdso66ZYUCpditAt0NG/7ArDU/e2z3r22rAACbmgOtzc3/D0hPBF1jbZoI+fMje3DbpqX4T+4+XdosFMhAwR/tV6usoR5Ha/S7RrT+AEFErhhgERFRq/HooDG4uXc24gTl1mPDwnFvvxF4KeeUILasxUVdenu1X4MXXbn8Lb+uxusxaFWWRly88kfFSn6/nswFAGwtL3Iue+fANsXy4sdqqvDD8UOy3QDFsmLlDfWos+qTbRKeu6wxeGOwZq35GTds+AO1Kl7XW/u34puj+2W3sdhD71okak0YYBERUasxLCkdZ3fs7rF8Qlon9IlL9Pq4/eOTPJYlhkU4S8VrMbsVTkosZ6zKibIPVbcUwbDbgQ8O7pC94XeU1Bfr4vnd8UN4fvdG2fNdv+EPvHVgm0sXRnfuGaxGmw1XrPkZl69aLHtstQ5WVzgf11qtzuIfX+ftw8PbVwe8q51SWX6LzYYf8g/j34d2KmzX0u72OJeY+3x6RFq1ywBr27ZtuOCCC5z/DRgwALt27Qp2s4iIKEi6RbsWxng6ezwWjD4T7448HYB3ldj0dH3PQbhXpLy8v3WMjMaP+YdVbXvLxpYiGF/k7cXyomOq9pO6f99eUYxdFcqFIwqaM10n62o8Ajo7mjJWji5vDc3l1Bt1ytDUu53vmnW/YXnhcXx4eBc2lBaoar9Le+12n7rniQVYyYJ55NQe2eIy2XT7sqooHxeu+B5LvRi71tZ8mbfPZdoGUq9dBliDBw/GokWLsGjRIrz55pvo0KED+vfvH+xmERGRTqZ17I6pHbqp3j7WHOZ8bAAwKCEFJoMRJi8jq+yEVK/2k9IpKhYT0jrpekw1YsxhXt9g11rVzQ0lV6Tkri3LATRlnqSq4dlhR2lDHa5d95tLpUOgaazdFWt+xrwdq1W22ndP717vfLz4xBFN+z6xax2mL//eGQhqFdM8+baQ67Wo7tMUvtfeFJEJVdvLi1GuMB3AE7uaJtp+bo98BrW1qGpswDO71mO3xmD/RG01Pjq8C/N2rPFTy9q2dhlgCS1evBhnnXVWsJtBREQ6uql3Nub2GeLVvnrcTqZGeM7d5YtgZdD2+3mi3hN11ShrbFDcbvqK7zF9xfei6+x24ERz17zjtdUu6xwZnY2lTUU39Oyy12izKmb3pAp8SFldfAI22HGi1rsJfjMiPbu0Ckuuq331jfaWAM8l2Arh7oL/t+53nLvsW8n1eytLce/WFbpMZN2afHl0H5YVHcedzT9WqFUjyM4qjYd02FRagPu3rkR5o/5z2rU2IRlgrVu3DjfccAMmTJiArKws/Pmn55fh008/xeTJkzF48GBccskl2Lp1q1fnWrx4Mc4++2xfm0xERK2YsBhClEl9VcIIown39/fsunexzvNWab1Rby3mrPtd0/Z7Kks9li08dsCZ6QLk533SM8D6Om+/cw4sKd5O2OuIiTaXFmrqopUQFuGxTBhgqe2yuKui5X3+q/k1ris5iUtW/aS522Og5Nc1BddSBUwcVRYrLMoBfVty0MsfSYTfldlrf1W1z4PbV2NreRG+yN3r1TnbkpAMsGpqapCVlYWHHnpIdP2PP/6Ip556CjfffDMWLlyIrKwszJkzByUlLV964Rgr4X9WQZeFY8eOoaSkBNnZ2X5/TUREFMIE991PDB6nerevx03DuFTPrnvCLocOM7r08qppQPDHgAWT8IZeLLNT0uBave+69S1BW6eoGJd1Vh/zk0eqK3DD+j9wrKbKWZJejqOLYEFdDSpVZOoc7t26Ao02Gx7YvsrnLlrC4LzGolxlMM9tCoP65oD16V3rUWu14N0D231qj7csNhv+PJaLGkuj7HY2iY9Y2N134dEDuGXjEtSr7MbamuXqWL5frTqF9/VwdQW2lrVUDVX6TFsjz866IWDSpEmYNGmS5Pr58+fj0ksvxcyZMwEA8+bNw5IlS7Bw4UJce+21AIBFixYpnufnn3/WpXug0Rj8f/kcbQiFtlDrweuGvNXWrh274GX0S0j2WC9VqtxkEv+dMlwkC3Z6Rld8c/SAV+0zGY1t5r3WSpidMhiVr7lCQXcmYUBhNBrwe0Ge8/mSwqOYnJGpqS03b1wCoKmCoVqHqsudBUB+nHSBqn3KGxuwqazA+XxHRTH+fXAn/tYtCyNTMqR3NHi+PwaDASWNdXhz31b0iGkp5iL1Pm52CxztsMNoNKC+eVzYvqqygF+LNZZGvLF/K/48eRQjkzMwb/AYyW2lrpEwwXfyg0M7AACbygtEfyBxaAvfuQlpnfDtsYMAxF/PuuKTSI+MQrcY10I/BrdttbwXVthkt5/b/D36ZsI5+OboAXxyeDfmDRojf217KVj/VoVkgCWnoaEBO3bswI033uhcZjQaMW7cOGzevFnTsRYvXowHH3zQp/aYzUakpMT6dAw9JSXFKG9E5IbXDXmrtV47EUaT84YRACIjWzJOYn/TY6vFx1RJ/f2PFskUdEqNF9lSncSEqJD6tyZYNlYUYmb/fqq3LxOMBUlJicX2nS3ZsOd3b8S5ffsgyuzfW6HPjrV0l9LyGdYLkqD3bFkBAHh4+2qsmXGF5D5x8ZEe5yiw1OKq1b8AgEtJ++TkGNEfDgZa0gHB7wDR0eEexwz0tThn8SIcb87ErCs5KXv+hKRoJIR7dpU0VHr+GJIQFy15rB5xCUH5zhXV1uL93VtxVd+B6BTj+/kjj0r/bVtx4hge3t5UAMb9uiowuo6jUnovlh5v+fEiPNwsub1wHF9sQhQ+Wb4bAPBbUR6m9vU+y68k0P9WtboAq7S0FFarFamprhWaUlJScOSI+mo9x48fR0lJCQYPHuxTeywWGyoq1A3+8yej0YCkpBiUllbDJpUfJ3LD64a81dqvneeHTsQtG5Y4nw+LTcXnAM7IyERxsWeXmqoq8UlkxbYFXMcBZSek4rzOPVBRJv9vhQHSRQgqK+pQbAh8V59Q89uxXPxT4j1XUlxchV0lrmXMF+87gFPSO+vRNEmrTua7tEGtqmr5a67OasH28mIMTUpzriuvqEWxuQon61q6Um4qKvA4BgCcKKpAuNEz02qrdf1xYNPJk5iS7JrpKyyqdBnb5W/H3bq5yb2PxSVVsIR5djl7YqNnV8vqqjqXY20ubcnehcGg6fPSy0NbV2FDaQEWHtqvOuMp52RFy2twfz1vbdssua680vXvlWN9RWMDbt+4FP3jk2G12zG9Sy+8tnez65xw9Y0oLq5CRWMDqi2N6CjoqntCUIimpLTlcWOj1S/vt97/VsXHRyEsTHmcbqsLsKTY7XZNs8136tQJv/32my7nDqWbC5vNHlLtodaB1w15q7VeOz2i4zEyOcNZQKB/XDI+Hj0FiWERoq9Hqnqa1Gs3Cca9nJreBWNTOqK4XvyG+bY+OThZV4Mu0bF4Xqo0tL3pXO6ZNwAwGwzOSXvbA2+vN5vNjo6RMTggmBB5b0UpJsh0EdObXNvdC3BIbetY/vyujVhZnI9rBBNb22x2rCrMx2M71yq25f/W/o4uUbEYm9oR0wSTd7ufd31Jgceyd/Zvw5yeg7CvshS9YhMRZjRiTfEJLDx2AA8MGCU6BtHd98cPoc5qwZkduooW57h3ywocr6vCR6Ndh3IYRNootKWkSPWUBo9sX4PvJ57vfP5V7j7nY7td//s7u92Oz3L3oH98MoYlpYtus6G0JSDWev4tZYXoGBmDdEE1yaWCQiwexxM8dV9ndSsW41j/4cGdOFFX46zc+ZdIoZelBcdwY69sXLbqJwBNY1Ujm6cQsArOIzyH0ufqq0D/WxWSRS7kJCUlwWQyoaioyGV5SUmJR1aLiIhIraTwSE0/1I1L6ahqO8c8Qu5zan0+ZiqeHDwOZ3boilnd+8EgUynQMS/Sx6PPwoejznRZ1ynK+25E6RFRXu/b2nx8eLdH1sVRPdJqt+OXE7keBTPc9YjxvpunnK1lRTh/+Xcuy946sE102+WFx1FjacTK4qbM2L8P7XSuswNYUXRc1TkL62uxqawQb+53rcLsfgt6enomfj2R67Lsu+OH8N3xg7hzy3K809zOx3auxfbyYnx3/KDiueutVrx9YBs+PLwLV6z+WXSb7RXFKGmo95g82mSQv3V1H0OmRJhtFlYTrbVaFMvSX7P2V3x8eLfqcx2uqcDnuXvx0HZ187I5gu5dFSUoqJMv3Z9XU4l/bVuFa9apTx7IzXHmHvCvKzmJN/ZtUT2324uCH4uERS+E77HwFEqfa2vT6l5NeHg4Bg4ciJUrVzqX2Ww2rFq1Cjk5OcFrGBERtQvvjTgdF3Xpjdv75qja3nETEeM21icuLBzZiep+GHQEX9FmM1J1DIou65ql27FC3X/y9mJfVZnLMsf93X9y9+LVfZtx1ZpfPPYTFsrQYx4osWN8eHinyJbint69XrJsdl5NpeYAw517+37MP4xX9m322G51UdN4rsUnjrjMe7TomHSAtbeyFLsqStBoly6l794G9/aYDAa8e2A7fjh+SHQbs8YbdYugLcKg4mhtFV7cu0lyvw2lBSior8V/8lxLkpc31OPeLSvwSHMQJWybUnU9d3M3LsFNG/7EXVuWKwZO7x/coenYgPi0BTvLi3Hl6p9dqvwBwLwda/CThomz1wqmF3CZi01wSmGAJzep+47yYpfum61BSHYRrK6uRm5uy68lR48exa5du5Camoq0tDRcffXVuPvuuzFw4EBkZ2djwYIFqKurw/Tp04PYaiIiak0mpnbCupKTmNqhm6b9OkbFYLagW5ayppuIMKMJ2Qmp2FpeJLqVXPLMH+NdPh1zltcT2gbT+pKTGJGsU7Wx5vu7L/P2ia5+78B2LDp+EH/v3h8Xdu4F+bBAWbWlEZc2d5v677hzUGNtRLQpDHsryzQdp0ZiridhNssb3x07iGK3LJ5FIhgSXpPzBeetkim5/c/NywA0XXtyGlyySq7qbVZ825wlO6dTj+ZtWm7UtX5XhAGQ1S3g+LPgKO7IGia630m3Sa2Bptd+xZqWjFyjzYpr1/2O0ckZuLJ7f5eKmO72VJYiwRzusizXrWS+nG1uf1fsdjue2LVOdh/31wsAL+3dhNLGenx0RH1mTonwExFeT1aZ917onq1NRV6E3TlDXUgGWNu3b8dVV13lfP74448DAObOnYtbbrkF06ZNQ0lJCV599VUUFhaif//+eP/995Gc7Flal4iISMxp6V2QFZeEDlHK1aV8SVwIbxCTRKqbqaFH5sRdQliESzGE1uKRHWvwxdizdTlWz9gE/HEyTzKIWNR8I7/g8C78ejLX5+mefxF0tfsybx/+k7cXESKFJoKhzmrBOwc957iKNplFAzqr4D0TlsZX48tc14A2r6YSmdFxzufCaodqJocW3pxr/YyEx9+pYRJlk8gk0sVu78PCYwdR0lCHn04cQYZgXJS7eqsVdzQHn8KxoVoIhxftqSjFXVuWKf4gcMQtgLPZ7cj3w98Em0RXROFSm92OBptVtPBKaxSSAdbo0aOxZ88e2W1mzZqFWbNmBahFRETU1hgMBnSO9n8ZZpfuTiq3u7ffCMSHheP+bStl9mgidUM5Ob0L/ig4Kruv8Nf+1PBIFCmMQQoV7uNyvHW4ugILj6mbm+x4bTU6RvpW6tkx/xLQMoGye9GSYJGadFfqmt0hCEa2lIlnZZcXHkdpYz3Oa840Ofzs1tXs0R1r8N7IM5zPf8gX7/4nRRhgmUTmO5LLjtTarIgFsLIoX3IboCk7FWUyw2QwoKi+Fq/t2+Jy/JN11R7Zs48O73I+LnALvoTF2YRdV1PDxaeEaDqPTWasUstrvGPLMtnXIuW3k3nKG3lD8PYLf1D4Irele+XK4nzMWPEDbukzBGcJehW4dxfVMk42mFrdGCwiIqJAc1TA8obw1k7uZlHYNWtCWidV47O6x8RLdmFSM2hcOO6htQRXgLqshhpiwZXLPD1u1fCkfon3hlRX0WARdm0T8jaY3VNRiqd3r8c7B7bBare5ZLzq3IJK9+BDmElS854Lq9ENik9xWbe5tBAXuBUQEbp67a9478B2PCnTna68sR6XrfoJdzZnmdzHmeXVVOK69X/gtk1LJY/xY/5hl+eO7oKlDXW4t7kLHADZ8Wly173a70SDzYpGiaB+Z0Wx6HJfCT9DYTvdA22gqVsuACzOP4IDVeUuwbtcoBxqGGAREREpGJmcgUlpnfHQgFGa9xXesMvdLEZ5EcS9PuxU9IxNEF0nN2jcwehDp7c3hp3q9b6+kqt+5qsr1/yClUXH8W+RogF6BXbBoqZ8uh5u27TUJYvy7bFDLuOq3Mldh2oqa68rbelS99aBbXh851oU1NWgqrEBD2xfpbj/IoXKh0eqm7rSOTJN7tff3spSAJB9je52V5aisrEBRW7TN8hlkcQCDLvdjg2lBarHB85c8QMuXvmT6Dp/Xd7Cw64qls8UGg0G7K8qw+v7t+C2TUtduqdKdeUNRSHZRZCIiCiUhBmNuKvfcK/2Fd5crC8Rn/TVfTs9qBnLIFcaXkkwxw49vWu9345d1liPJyWO39oDrEC1/kBVucvzDw7twESZuankfgtQymBZbDaXOeYK62tRWF+L/Npq0fm1fGW32z0CKW+vi10VJUiS6RKoxl+Fx/Cc1Px5IuxoClTOXfatyDr/XCHC9+dDQbdJMTVWi0vxnRprS9GU1pTBYoBFRETkR8JbAtnxNhpuHjpFxSjebFyS2Qd7K0txade+mLdjjeg2ESYfgqQgDoXY73YDHyit5/ZOnD+Kpagl19VQLvNjVchaXLjie9HlZY31HkUcvCUMPOYf3unR3c89C6VWnc3q89dod3P2TA+NGjJwWpQ11uNAVTkSwsKVN0bTVAQOwvLsrSmDxS6CREREfqT2V+EJaZ0Rbw7H7O79RY7h6u3hk/HeiNNlj5cYHoHncyZipEhJ85jmrmLulc2eHDxOVVsB7dmv54ZM0LR9KFKaiDjUSV2JUgUu9OTtzbtVTR9BEXrGkhZBG7456jlu7wu3ubDU+lghm+PODmBN8QmUCq5DLd18leaS2lAqnWH3xe2b/sJjO9fiTpky9VLUlnIPNcxgERER+ZHa7kPxYeH4bOxU0XXu1cn8MS8WANUTHwPaE1j949vmVCpTOnR1Kb8ebN2i4yQzN1IZrJkrf/BnkwAAJ+o8541y6BgZgzqrBU/sXIchbtfgmwe2enU+q475xsUnDut2LKH8uhq8tn+L8obN1hafxHN7NiAlPBILRk8BoK3witJ4NKn51YIpWdCF0uKnDJs/MMAiIiIKkBhzGKplJmKVorZrjWoiN9qfjREP7qRoKZccKnM9+YMvhUL8Qa5YiiWIGYBfZYo35NdV46KVPwIANpW5ZlmkSsAr0as75AcHd2CVYF4uvbmPV5NzqLpp2+KGOhTV1+JQdQV2lPun8l+oyBcE5q2piyADLCIiIj8SZrDGpnTQNNfMq0Mn4UhNhcskrHLGpHRwmaTV4awO3VxKIgtvPe/rPwLRJjPiNQZxWsKKJwaP1XTs1iSUwqtEhc8wmDeo3kyeq0SPsuVK1M6TFgjrBV34btzwp27zwQHK84AFy1rBddOaughyDBYREZEfCW8JRiV3AABMSuusat+esQk4LT1T9bm6RIlPnHxLnyGSbRqf2glDk9JVn0MoqrlIRkZEtOx2sWadM3AhJJQmPrXZ9Z2rK9TJBVFt8V04XF3hfKxncAVAdh6wUMEMFhEREQFwLZc+NqUD3hp+GjpFxfjlXHI3lfHmcFRYGnQ7l9FgwLsjTkdeTRVKGurwvEypaLOxKQi5tGsf/Cd3n25t8FZCWDjKG/V5L/JrpccWBVqFpQEVlfp9xqFOLqPR2kvqkydvC54EAzNYREREfvDooDEYl9IRZ3Xo6lxmMBiQGR0Hk8E///zK5VLeHSlfddDdC0MmeixLdJtXKCk8EtmJqYqTGjuCzIsy+3isiw9CditOx3Mera0SXR5qY7PaIrkS7v6cjJqCQ2s35mBigEVEROQHw5LScf+AkYiUKTqgN7nqgrHmMOQ0V2hTUzQjLixMdr3wTEoBY1xzWXix9l0lUpbeWxNTpSez9Zfi+lrR5f3jkwLckvZHbjwjM1htT3qkfFfkUMIAi4iIqI1QyiTd2icH41I64qEBoxWPpWWeq34SwcQ/+w7FZ2OmIqw5gyV2xKTwCJGl3jm7Y3fdjqWWVA7FX1nKQBnYCsrqv3twu+S61jNah9qi1v3tJyIiIqcOCr/wpkdG4/4BI9E1RrkqYZhR/BYhuTkgijW3ZLikutxFmkwu3XrEAkCpMK6rysqJoUquXHprcFnXvsFuAlGr1bq//URERIT5o87EsZoqRJl9/2f9jqyhOFJdidSIKNH1H4w8Ew02qzMrBchlzgxuz0QCLMG+M7v0xn+P7gcATO3QTTZDIaZbEIKyjIhonKyvcVk2Ob0LzBIBamsR1obnLiPyNwZYRERErVxaRBTSIqKwp7LU52PJlYU3oCmz5Z7dMhoM+PfIM2AyGPH3tb84l7sXgBALOpIEhTPKGupbttVQ/nxSWmdc32uw6kHwehZAEDvWrX1y8PaBbbqdIxhad3hIbU1YK+ty27paS0RERJKCWbcuPTIaKRGReG7IBOeyDTKTy/5fz4GYmNoJveMSncuE3Q7lCna4O1Rd4Qyu/tl3qMf6MzO6eizTy+iUDh7LzEaj4ni4UBdK83sR+WtqC39hgEVERNRGdIlq6iI3KCHFL8dXc8/dX2VxhLM7dsc9/Ue4LBuY0LKvUeYX69lulQdzayqdj7PiPAtu+DNWGC9RuVBLgBhKBsWn4KnB41hmPoQEozpmqBkl8kNGKGOARURE1EZEm83477hz8NTgcX45vtbK1xkayyoLK++ZBPf3z2SPd3YlTIuI8uiiKJxLq1NUDKZ17I5RyRnOZe7BQqmgK6IvPhx1puRrlCoSAgBDE9N0Ob8/PDhwFAYnpnoEpXdlDQtOgwLg+4nnB7sJkm7tMwTLio4HuxlB1yc2MdhN0IQBFhERURsSYTKFTPeuczv10LS9sNXCDNbAhBTn+C2xVyY8j8FgwE29szExrbPkeWqsFk3tkpIaESWZ55HrlqjX+f3B0bXRPSgNlWuqvZnSoVtQz39Zpv7VJD8fM1XzPmOZwSIiIqK2SOs9doQPleikuqgZDAaPshJiWwpvcJS668WY5SdV9kaXqFiMTemAq3sM8FiXLlGhMRQ43iv3gKo9dRn8etw0vx17/qgzg5INPC29i1f7+SOuDvfi70JrC/AZYBEREZFfmGXGUQm7GyaHRyI5PMKlW537/ZSteQcDPLsqivdcNIg8Evfu8MkKW2hnMBjwrwGjMLNLb+eyDpHRuK1PDv7uNoZMSq/YBF3aco6GCZgdgZT7e6bm/ra1zV02Ka0zLs7s47E8UsMcZlpvpNMiojApvQsu7NxT456+ub1vTkDPJyfC1PanAGCARURERH4RLTMvl7DK3vxRZ2L+qCnIFoxNcr+fd5RDF5tLS4wwIFDaJyE8Qna9HLmxVu66RsfhzA5dVRfAeGXoJG+b5fTfcefgfA038y0ZLNflYu9hb7cA8MnB43BJc8Dy8egpGlsaWDM698Jd/YY7g90YLyaGntG5l6rs5+hkz+5tsRKTc4txL+riDbXfG71kJ6Sq2q61T8gthQEWERER6eqZ7PH4R98cJIVHeqz775Tz8eqwSS5zYpkMBud/Du43hI6slcHgOfeU2Pxawi5tevcumpzeBQ8PHA0ASAiLwDU9BmCSzJgvB0erA1VhcERSOiJMJk3d+xxts7qlCWusjbjUbTxOstvnazQYcFX3/vh+4vmin30ocf8Mhialaz5GZnQcHhs8VjaYGJmcIZo9smuoGBMf5v0PAA5arrhPx5zlfCxsptlgVJ2lNKo84YMDRmloWevBAIuIiIh0NTAhBadLFHnoEhvnMveVuzeHnYaXh57isTyxOcsU5/bL/5DEVMUucGp+vb9Tw7iYf2YNw0hBlcIZXXqLzoflS3uknJEhPRG0O8dYF2/iuWM1VR7LruzeD4PiW6YAsLkFCa2pNL0ebY0ymdE7NhFPZktX7Tw9PdOlOqaDTfAjQbiGLKg3Phx1pqYxTAluAd3ZzYU23h0xGW8OP03VGLJAZ8xCDQMsIiIiUsn/N01dY+LQOzbRIyj4R9+hGJaUhjuzhrl0r3pi8DjRblouXQRVNPvU9C74V/+R3jZbE7W/7ovRcuPqyPR5U6DCPb9ia16wvaLYucw9y+Xvm8q7huj3+XhUSdS4/9QO3TA2VTmodn+PHISLP5WoqhfVPFZpU2mBxta16BgZg1Qfi6rc3GcIFo4/F+nNUxKIBYzuWlOw7Q8MsIiIiCjk9YxNwKODxqJjVAxOTe+M09K74Ons8ZLbu5R8V3n77O+bQke3MLnzKM33EyMzrs3d6c3ZLm8qsLlPVu2erQJcszCA/9+/i3rpVzLcva0ap3jDTb2zXQKNVyXGy9lgE10u7OYqNQ7JEUyXNNRpbJ3+hGMN1XzO0W10bJVa7fvVExERkWqB/E1abohKuNGEOxS6KYUJSkGrbbfJhwBByyTMcgHfBZ17wmK3YURShuj67jHxLtsuOnZQdLuPR09xjoNyP9upaZ2xpPCYbBtj3bKCYm+NRwbLbaPU8EgU6RQcvDzMs9uoL3wNBt337xmbgKy4JFQ01qOwvhaW5vfGareLZiylMltCjm6nFq0zfLvwZV+gwW71WDYyOQM5ianYXFYkuZ+W4i9Kzu2obT69UMAMFhEREYUc90IWWg0WZmBU3kv7NteO+vbK3dybDUackdHVOebslaGTXMaY2QSnkWutsMiEe7dCNfMQuQebYudyz2q5n+fJ7HGIU6iyp7ZoQmq4vnOHuX8Gevx48ELORLw38gyXK8FqtyPSZMblXfvitj45zuXndOqBeHM4buqdDaCpMIzQAwNG4ubmdeYgdrf77USex7IwoxGPD3Ydd3Z5V/0nJHZIiQjtgiliGGARERFRyPEtvHIdJ6K2i2CgbmO1jKPqFZuAG5tvtJuIvzNykxcLMygv5kzENBXzYnkGgcptdt+nU1Qsru05UHG/YPDnDbBw/jJHEHpFt344s0NL4Ze0iCh8Nnaq87MYmJCC63oOcq4fk9LROR+XcC41rfLrarzeFwDqbBZV203r2N2ly67aa1xuTizHDwtna5jHLVQwwCIiIiJZPZq7pV3RLSvILVFPeHvnnpkSZmcuFUw0KwzEXh92quhx/9ZV/D1QMzmtWGgUYzJjQHyyYBv50NI9M5XYXPFNrnuj8GY3PiwcmSqyRt4UgRC7qfSl26VQlIaxZ97o01zZMisuyedj3Z013PlYTVdAB4tdfLxWfFhLUZeBgmtF6JPRZ4ku12qOW0DcN1bd+2GAAakaSvM/NmgMLsvsi76xiTg9Xbwy5t+7D8D3E8/36K7aGjDAIiIiIlmT0zPx1bhpmNJcrjkQfBp2gqa5sWZ37487soZ5BAfC+ZyulJjEtXtMvOhkuX+TCDJHJGfgrA7d8Ejz/FhyhBmlz8ae7dI9TOplvz7sVFzXc1DT3FbNXfxSI6KQ0VzZzfH/YoQxTkFdrcu8YVd164crRIJG96BUTZwk1sVSKZOhNB9URkQ0Xh06ye8T0p7fqSfuyhru/PweGOBasVAuQ+iuQ1SMM9joprILJADk1lSKLheOJ3xmyASP9WaDwdml1FdT3b7jPWLjJbZ0ZTA0ve55g8bg/RGnK14vQ5PSMat7PxgMBszuIf4dbM2FCBlgERERkSjHL8ddo+P8foPrztcxWABwUWYfnJbexeMmP1KiW5L7DZ2WrnwmgwG39BmCEcnixSlcz2/GGRmZuKpbP5gMBlVjv7rHxOP8zj1hMBjwUs4puLxrX5zTsTvu6TccZ3fohtv7DpXcV5iNssPuklW6pGtfDEgQz4oI6XmvO3/Umaq3TY6IQE9BlztvJKqYqNdsNGJSemfENWeLxqR0dK67r/8IvJhzCmZ07qX6nK8Mm4THB43F4ETpSYjduc8/5dAzJh4XdO7pnEZAS7An5q3hp+GlnJaiIaeld5HcVu0PHY5rbHhSOjpExWhqj7Br6bxBY5yPW3F8xQCLiIiIxL05/DT8q/9IDEtKC/i5kzV0N1LiXsVNqsiEvydHFQaNt/cdiktECgOouaHtGhOHK7r1g9loRHpkNG7uM0R2riNhAOe4Eb6iWxau7zVYQ+s935su0bEa9m+RFhGFp7PHY1BCCq7o1k92W28zmed36okHB4zCSzmn+Pypdo+JR2J4BCamdVa9T0JYBHI0fm+ksnkGgwH/13MQxqY2BX3pEeLZSkcA+PbwybLnyYyOc3520SYz/iEIztX+GCHWRpfnGt514bbDk9Kdj/XqXhoMLNNOREREopLDI503dYE2OCEFN/fOxsD4FOWNNTJJ3PxpL+ugja/dHr0l/DXdEVxeLugWqKZdYu/FtT0GIi0iCp8e2aO5TYMSUvB09nhYbDZkxSVhbEoHfHh4l6DNBiSGh+MGlUFg37hE7K0sAwD8o28OTs9oKSgh2nVRw827IyjtHZuAczp2R7aGrJQWVrVZW7emO/a6pudAXNm9v6oS6VEmMz4aPQXRJrPbeMWm/38mezwWHTuIi1QW2PBmMmsHq9vYs8cGjUFZY71L18jWhgEWERERhRyDwaBb9TD3X9OlMljuBQniw8IxJqUDesTE4/Pcvbq0JRA6u3XRcslgibx2Nd0xHbtdnNkHX+XtAwDEmMNwedcs55gw0f0Ujms2GvFCzkQAcAmwzu/cA3MEVfXkxJjMeDHnFJy77FvR9ff3H4EX927C8dpqVcdz53jPDAaDW0VHfYlN5ixG7j11BFdGGDwmgnYnliV2HHtgQgoGJsj/uNExMtpZpdA9S6wl3Ipp7oqc3DyObKggi9VasYsgERERtWnuMUXv2EQAnpPpeu5nwAMDRil2Y9OX72mul4dOcnkufPl9m6vlCYnXrnPXdBSxsXgzuvTGDIlMh7BcvhZaMiJK71i/+GS8O+J0DPIyGxqojmrDmgOLUQrj+Eob6l2ei7VvgES1QWXqX+2zgoIbvnSvDTea8MXYs/HByDO8PkaoYQaLiIiI2jT3m/Ws+CQ8OXicxyS3chMAT0jthGpLo1/aBzRV8/sx/zBGqiiSocQ9CBLe/IoFPEqV/JqO0eS8Tj1wpLpCdXZxdEoHDE9Kx66KEtRY1c2pBDQFRWqpDUlv75uDOet/B6AtaJK7LvQ0MjkDbw0/DR0i5YtEyM0d5SCWlUwKi0CdzSq7n7fvi3sGS2u81RpLscthgEVERERtmti9ntg4Grl7wnv7j9CtPWIu6dpXtOiFHjxuft2oCVAch4gymXFXv+Gy2wqFGY2YN2gM3ty/FT/mH1a9n1IWx5W6EEtrdbtgUDNHWZhbkCz36oUf/Yejpyhsra00unAso3sGy98FY0IdAywiIiJq04RjkPo0dw9U2s4f9Cg97w2lm111Y398e296NZdaVzsvlJaPwr35er/LQapNIklNe8S2aarKp/TGaij+IfiQ3L873WPUzZ/VVjHAIiIiojZNeOv3zJDxqrbzB3/fqF/RNQv1Il3AlAJHLUUuvHVGRldEm8zITlCuwDelQ1evx261B1d0y8JD21er2lbrx+Z1F0G3ddM6dsM7B7ZpPHvbwauXiIiI2jTHuKaJqZ0QLlPxLr55ktnW6vJuWZjdY4DHcqWbvUCUjzcZDJiY1hkJ4dKT/j6TPR6XZfbFLb2HKB6vX1yS83GoZZj8bVhSOhZNOBf945Mkt3FkJbVmZb0NsNzPYzIYXea0am+YwSIiIqI2rVtMPL4YM9VZDlpKZnQcbuqdjZ5+6t4UrHmw/N31US9qSoM7pEVEYU9laUCCK/cxT6HAZDCif1wydlWUYmii54TGjvdFcwZLw7Wi1PX0/3oOwsmda3Fdr0GqM25tBQMsIiIiavNiVWanpuk091Zr4v8RWPqz2u3oGZOAA9XlHkU89ApkHx00Bvm11UiUyboF0xXd+qF7TDxGpXSQ2cp/n5xSdcUu0bF4e8Rkv50/lDHAIiIiIgqAnRXFQTv368NOlZ0QWEmoVYWzw+4cF6ZlziwthiWlA9K98IIuwmTC5IxM0XWOcXX+/NRCL68XOvjeEBEREQWAJVh9BNFU1a2jD2XKR6X4Pj+XnnrGJOD2vkPRLToOjwwa47KulfSI9CvHpebPOby86XraXj4aBlhERERE7Zp84PdM9njZ4iCBdHWPATAAOD0jE91j4vHG8NPQX8OkxO1FsKYEUPJ0tnQVz7aEXQSJiIiIAmBSWudgN0GT14ZNwq7yEgwIoQDm4q59MKNzr1ZTuCNYYpsLuiSoHHsYYTSJlvhXkhIeiWiT+nCib1yi5nO0RgywiIiIiAKgtYUEPWIS0CMmIdjN8KA4r5eK5E2ojSnT2619cvDuwe24sls/Vdt/MXYqbF4kvf496kxV7+Rbw09DlaURYSGSCfU3BlhEREREARCqWZfQ7EzmvVDtHhdI6ZHReGDAKNXbexv4mFRe05nRcV4dv7XiGCwiIiIiPzI334QmhYVmue/QDPu8J1ctMSMyGgDQKzb0MnPUdjCDRURERORHL+acgh/zD+PSrn2D3RRRI5Iz0D8+CaeldQl2U3zy2KAxWFp4DONTO0lu83LOKThUXYHsxNQAtozaGwZYRERERH7UMzYBc/sMCXYzJIUbTXhuyMRgN8NnQ5PSMTQpXXabuLBwBlfkd+wiSEREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOjHY7XZ7sBvRmtlsdlittmA3AwAQFmZCY6M12M2gVobXDXmL1w55g9cNeYvXDnlDz+vGZDLCaDQobscAi4iIiIiISCfsIkhERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhtwKefforJkydj8ODBuOSSS7B169ZgN4lC3GuvvYasrCyX/6ZOnRrsZlEIWrduHW644QZMmDABWVlZ+PPPP13W19fXY968eRg9ejSGDh2KW265BcXFxUFqLYUKpevmyiuv9Pgb9NBDDwWptRQq3nnnHcycORNDhw7F2LFjMXfuXBw+fNhlG/7NITFqrp1A/t1hgNXK/fjjj3jqqadw8803Y+HChcjKysKcOXNQUlIS7KZRiOvXrx+WL1/u/O+zzz4LdpMoBNXU1Mj+I/Tkk0/izz//xMsvv4yPP/4YBQUFuPXWWwPcSgo1StcNAFx++eUuf4PuvvvuALaQQtHatWtxxRVX4Msvv8T8+fPR0NCAa665BnV1dc5t+DeHxKi5doDA/d0x++WoFDDz58/HpZdeipkzZwIA5s2bhyVLlmDhwoW49tprg9w6CmUmkwlpaWnBbgaFuEmTJmHSpEmi6yorK/Hf//4XL7zwAsaOHQug6eZn2rRp2LZtGwYPHhzIplIIkbtuHKKiovg3iFx88MEHLs+ffvppjB07Fjt37sSwYcP4N4ckKV07DoH6u8MMVivW0NCAHTt2YPz48c5lRqMR48aNw+bNm4PXMGoVDh48iAkTJuD000/HXXfdhRMnTgS7SdTKbN++HY2NjS5/g3r16oVOnTrxbxApWrhwIUaPHo1zzz0XL730kscvzUSVlZUAgISEBAD8m0PquV87DoH6u8MMVitWWloKq9WK1NRUl+UpKSk4cuRIkFpFrcGQIUPw7LPPolu3bigoKMAbb7yBK664At999x2io6OD3TxqJYqKihAZGYnY2FiX5SkpKSgqKgpSq6g1OP/889G5c2ekpKRg9+7deOGFF3D48GG88sorwW4ahQi73Y6nnnoKo0aNQq9evQDwbw6pI3btAIH9u8MAqw2y2+0wGAzBbgaFsFNOOcX5OCsrC0OGDMFpp52Gn3/+GdOnTw9iy6i1EftbY7fbg9ASak0uvvhi5+OsrCykp6dj9uzZOHbsGDp37hzEllGoePTRR7F37158/vnnLsv5N4eUSF07gfy7wy6CrVhSUhJMJpPHrzYlJSUeWS0iOfHx8ejevTszn6RJamoqamtrUVVV5bKcf4NIqyFDhgAAcnNzg9wSCgWPPfYY/vjjDyxYsAAZGRnO5fybQ0qkrh0x/vy7wwCrFQsPD8fAgQOxcuVK5zKbzYZVq1YhJycneA2jVqe6uhp5eXkccE6aDBo0CGFhYS5/gw4dOoTjx4/zbxBpsmvXLgDg36B2zm6349FHH8Uvv/yCBQsWIDMz02U9/+aQFKVrR4w//+6wi2Ard/XVV+Puu+/GwIEDkZ2djQULFqCuro7dvEjWM888g9NOOw2dOnVCQUEBXnvtNZhMJkybNi3YTaMQU11d7fLr3tGjR7Fr1y6kpqYiLS0NM2fOxFNPPYX4+HjExsbi8ccfx4gRI1jNq52Tu25qa2vx3XffYdKkSUhMTMSePXvw1FNPYcyYMejdu3cQW03BNm/ePHz//fd48803ERMTg8LCQgBAXFwcIiMjERcXx785JErp2snNzQ3o3x2DnR1XW71PPvkEH3zwAQoLC9G/f388+OCDyM7ODnazKIT94x//wLp161BWVobk5GSMGDEC//jHP1T94kPty5o1a3DVVVd5LJ87dy5uueUW1NfX4+mnn8YPP/yAhoYGTJw4EQ8//DC767RzctfNRRddhLvuugv79u1DTU0NOnbsiClTpuCGG27wKF5A7UtWVpbo8qeeegozZswAAP7NIVFK105+fn5A/+4wwCIiIiIiItIJx2ARERERERHphAEWERERERGRThhgERERERER6YQBFhERERERkU4YYBEREREREemEARYREREREZFOGGARERERERHpxBzsBhARUevz2muv4fXXX/dYPnbsWHz44YeBb1Ab0tDQgJdeeglbtmzB9u3bUV9fjz179khu/8gjj6CsrAwvv/wyrrzySqxduxYAYDabER8fj759+2LKlCm4+OKLER4eHqiXQUTUbjHAIiIir8TFxeH999/3WEa+qaurw9dff43s7GwMHToUq1evlt3+r7/+wq233up8Pnr0aPzzn/+EzWZDSUkJ1q5di+effx5ff/01FixYgPj4eH+/BCKido0BFhERecVkMiEnJ0fVtnV1dYiMjPRvg9qI+Ph4rF27FgaDAZ988olsgLV3717k5+dj4sSJzmWJiYkun8sZZ5yBGTNm4PLLL8dTTz2Fp556yp/NJyJq9zgGi4iIdHX06FFkZWXh22+/xd13340RI0bghhtuAACUlZXhoYcewrhx4zB48GBcdtll2LJli8v+FRUVuOOOO5CTk4MJEybgrbfewjPPPIPJkyc7t3nttdcwevRoj3NnZWXhk08+cVn21Vdf4ZxzzsGgQYNw2mmn4b333nNZf++992LGjBlYsWIFzjvvPOTk5ODyyy/Hvn37XLazWq145513cNZZZ2HQoEE45ZRTcO+99wIAPv30UwwdOhTV1dUu+6xevRpZWVnYvXu3pvfQYDCo2m7JkiUYPHgwUlJSZLfr168frrjiCnz33XeoqqoCABQUFOC+++7D6aefjuzsbJx11ll46aWX0NDQ4Nxv5syZuO+++zyOd88992D69OkaXhERUfvBAIuIiLxmsVhc/rPb7c51zz77LGJiYvDKK6/g+uuvR0NDA66++mqsWLECd999N9544w0kJSVh9uzZKCwsdO5333334a+//sL999+PRx99FCtWrMAPP/zgVfvef/99PPLIIzjjjDPwzjvv4PLLL8crr7ziEYTl5+fj2WefxY033ogXXngBJSUluP32211ez0MPPYTXXnsNU6dOxTvvvIN7770XNTU1AIDzzjsPVqsVP//8s8txFy5ciIEDB6Jfv35etV/J0qVLMWnSJFXbjh8/Ho2NjdixYwcAoLS0FImJibjvvvvw/vvv49prr8U333yDxx9/3LnPxRdfjMWLF7sEjtXV1fjll18wY8YMfV8MEVEbwS6CRETklbKyMgwcONBl2fz589G1a1cAwJAhQ/Dwww8713311VfYt28fvv/+e3Tv3h0AMG7cOEydOhX//ve/cc8992Dfvn347bff8NJLL2HatGkAmsYUnXbaaYiNjdXUvqqqKrzxxhu48cYbMXfuXABNQUZtbS3eeustXH755TCZTACA8vJyfP7558522e123HzzzTh48CB69eqFAwcO4Ouvv8a//vUvXHXVVc5zONoYHx+PKVOm4JtvvnEGHo5A5I477tDUbrXKy8uxadMm3H///aq2z8jIAAAUFxcDaMr23XPPPc71w4YNQ1RUFO6//3488MADCA8Px7nnnounn34aixcvxsyZMwEAP/30ExobG3Huuefq/IqIiNoGBlhEROSVuLg4zJ8/32VZjx49UFZWBgA49dRTXdatWrUKAwcORJcuXWCxWJzLR44cie3btwMAtm3bBgAu3QFjYmIwbtw4bN26VVP7Nm3ahJqaGkydOtXlfGPGjMGbb76JEydOoHPnzgCAzp07O4MrAOjVqxcA4OTJk+jVqxfWrFkDALJZm4suugizZ89GXl4eMjMz8dNPP8FisfgtEFm+fDmSk5MxYMAAVdsLs3GO5wsWLMCXX36Jo0ePor6+3rkuPz8f3bp1Q2xsLM466ywsXLjQGWAtXLgQkydPRlJSkn4vhoioDWGARUREXjGZTBg8eLDHckeA5T4uqLS0FJs3b/bIegFwZr2KiooQExPjURBDaYyRmNLSUgDAOeecI7o+Pz/fGWC5Vz8MCwsDAGfQUVZWhujoaNks2ujRo5GZmYlvvvkGt912G7755hucfvrpSExM1Nx2NZYsWYJJkyapHq9VUFAAoOW9XLBgAZ555hlcd911GDlyJOLj47Ft2zY8+uijLsHWRRddhCuvvBK5ubkAgPXr1+Pdd9/V+dUQEbUdDLCIiMgv3G/8ExISMGjQIDzyyCMe2zrmZ0pNTUV1dbVH1UFHtzaHiIgINDY2uiwrLy/3OB8AvPPOO6IBWo8ePVS/lsTERNTU1KCqqkoyyDIYDJg5cya+/PJLXHDBBdiwYYNHQQ292Gw2LFu2DI899pjqfZYvX46wsDBngLt48WJMnToV//jHP5zbHDhwwGO/kSNHolu3bli4cCHsdjvS09MxYcIE318EEVEbxQCLiIgCYuzYsVixYgU6deokmZFyZMT++OMP5/im6upqrFy50iWwycjIQHV1NU6ePOkcW7RixQqXYw0dOhSRkZEoKCjw6K6o1ZgxYwAA//vf/zBr1izJ7aZPn45XX30V999/PzIyMjB+/Hifzitly5YtqKqqwtixY1Vtv3v3bnz22Wc477zznO9jXV2dx8TD3333nej+M2fOxOeffw4AuPDCC51j14iIyBMDLCIiCogLL7wQX3zxBa688kpcc801yMzMRFlZGbZu3Yq0tDTMnj0bffr0weTJk/HII4+gqqoKaWlp+OCDDzy6DE6cOBGRkZG4//77cfXVV+Po0aP44osvXLaJj4/H3Llz8cQTT+DYsWMYOXIkbDYbDh8+jDVr1uCNN95Q3faePXvi0ksvxdNPP43i4mKMHDkSFRUV+Pnnn/HSSy85t8vIyMDEiROxZMkSXH/99R6ByGuvvYbXX38de/bskT3f0qVLUVtbi127dgFoyjYBTQFo586dsWTJEvx/e/cdJ0V9/w/8NbPXG1c5uAOOfsBxR+9NEBVbEFARJXxt8Wc3JkYTYxIwGsTv1xg1JtFoEBG7EKyAhaKAFOlwHP2Ao10/rt/ezO+PYfd2b9vs7uzu7O7r+Xj4kJudnXlP2d3Pez5txIgRdmvTqqqqsGvXLkiShKqqKmzZsgUffvghunfvbjXk+tixY7F06VIUFBSgW7du+Oyzz1BcXGw3nhkzZuCll16C0Wjk8OxERC4wwSIiIr+Ijo7G22+/jZdeegmvvPIKysvLkZqaioKCAqtBLZ577jnMnz8ff/nLXxAXF4dbb70V+fn5VkOgp6am4uWXX8bzzz+PBx54AHl5eXjhhRfMtV4mv/jFL9CxY0csWbIEixcvRnR0NLp3726znhp/+tOfkJWVhY8++gj//ve/kZqaareGaurUqVi3bp3dATEaGhqQmprqcl8LFixASUmJ+e9HHnkEALBw4ULMnDkT69evxw033GD3vVu2bMHs2bMRERGBxMRE9O3bF4899hhuuukmqxqrBx54AJWVlXjppZcAAFdccQWeeuop85xlljIyMlBQUABASTaJiMgxQW4/rBAREZHOLFq0CKtXr8Z3330X6FBceuSRR1BaWop3333X5rW5c+di9OjR5mHjPXH+/HlMnDgRq1evthr50JeqqqowceJE/OEPf8BNN93kl30SEQUr1mARERFpoKioCPv27cPXX3+Nv/71rzavG41GHD58GC+//LJX+8nMzHTZxFArtbW1OHr0KN5++23Ex8dz7isiIhWYYBEREWngvvvuQ2VlJW699VZMmzbN5vWIiAjzfFrBYv/+/Zg3bx6ys7OxaNEixMbGBjokIiLdYxNBIiIiIiIijYiBDoCIiIiIiChUMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSSESgAwh2kiSjtVUKdBgAgIgIEUajPmKh4MH7hjzFe4c8wfuGPMV7hzyh5X1jMIgQRcH1PjXZWxhrbZVQVVUf6DAgigLS0hJQU9MASZIDHQ4FCd435CneO+QJ3jfkKd475Amt75vk5DiIosH1fr3eExEREREREQFggkVERERERKQZJlhEREREREQaYYJFRERERESkEQ5yQUREROQnsixDklohc5wGt4iigObmZhiNRg5yQaq5e98IAiCKBgiC65ECnWGCRUREROQHra2tKC8/C0lqDXQoQamsTIQkcZh2co+7940oGpCW1hkGg+vRAh1hgkVERETkBzU1FRBFA1JTMwF494Q8HEVECDAaWXtF7nHvvpFRVVWGmpoKpKRkeL5Pj99JRERERKrIsoSmpnqkpHRERERkoMMJShERIgDWYJF73L1vEhOTUVl5AbIsQRA8G66Cg1wQERER+ZipiZLBwGfbRHpm+ox60xyVCRYRERGRj7UNasGmgUT6pnxGvRmIhgkWERERERGRRphgEREREZFuPPvsfDz11OOBDkMzZ8+ewfjxw3Hs2JFAh2Jjx47tGD9+OOrr6z3eRn19PcaPH44dO7ZrGFlwY0PgMNLaCoiiMsY/ERERkSvPPjsfDQ31eOaZ5wMdiksHDxbijTf+iYMHD6ChoQHp6RkYOLAAv/3tHxAZGdwDi+zYsR0PP3yv+e+UlFQUFAzC/fc/guzsLh5vNz9/EFauXIXY2FgtwqRLmGCFiVYj8O27Ijqkyxh1DYc4JSIiotBRWVmBRx99ABMnXoYXX/wH4uLiUFJyGmvXfntp3jHtEyyj0QiDwftJad3xwQf/RUxMDM6dO4e//e15PPHEr7BkyXsezdlkNBoRGRmJtLR0H0SqPaPRiIiI4Ehd2EQwTDTUKv+vLmP1FREREWnju+++wdy5N+Gyy0bjppumY8WKj61eHz9+OD79dAV+9auHcPnl4zBv3mwcOnQQR44cxj333I6pU8fj0UcfQGVlhc2233zzNVx77eWYNu0yvPzyC2htdTxB8969e9DU1IjHH/89+vTpi+zsLhg5cjSeeOL3iI6OMa+3a9cO3H//3bj88nG4+uop+M1vHkFTUxMA4KuvPsedd87FFVdMwPTpV+HZZ+ejpqbG/N4vv/wM1157OTZsWIdbb52FKVPGoqqqCmVlpXjssYcxZco4zJ59A9avX4trr70cX375mcN4jx07gl/96iFMnToe06dfheee+zNqa2tdnu+UlFSkpaUjL28gHnroVzhx4hhKSk4BADZsWIfbb78VU6aMxezZN2DZsiVWI+GNHz8cK1cux+OP/xKXXz4OH374rt0mgq6u6cmTJ3D//XdjypSxmDdvNnbv3mkT544d23HXXT/H5MljcMMNV+PNN1+zisXVOTM1q/z2269x//13Y/LkMdiwYR0qKyvxpz/9DjfccDUuv3wcbr/9Vnz//Tqrfd944/VYunQx5s//PaZOHY+ZM6/Htm0/4ty5c/jlL+/H1Knj8Ytf/A9OnTrp8nx7igkWEREREbmtsHA/5s9/EldeeTXefvsDzJ37P3j55RewYcM6q/XeeusNXH/9dCxevAzp6Rl4+uk/4uWXX8D99z+Mf/7zPzh//hxef/0fVu/ZsuVHnDlTgr///d948sn5+OqrL/Dee+84jCU1NRXNzc344YcNkB0M/3byZDEeffQB5Ob2x+uvL8Hf//46hg0bYV7faDTinnvux1tvvYc//3kRjh49gr/+dZHVNurr6/H+++/g979fgLff/gDx8fF45pk/obKyEq+++jrmz38W77//jtM+TRcvXsTDD9+HAQPy8J//vINFi/6GU6dO4tln5zs527ZMiWNLixG7d+/CX/4yH7fcchuWLv0Qv/zlb/Dxxx/g448/sHrPm2++hsmTp2Lp0g9x+eVX2mzT1TWVJAlPPvkbxMTE4PXXl+CRRx7DP/7xktU2Llw4j8ceewT5+YPw1lvv4eGHf42PPnoPH3/8vnkdtefstdf+jjlz5mLZso8xePAQNDU1oX//PPzv//4Nb7/9Aa688mo89dQTOHHiuNX73n//HQwbNgKLF7+LwYOHYsGCP+D555/BzTffijfffAcRERF44YXn3Drf7giOejYiIiKiELNvo4ALvnuIblfHbsDAcdp0Ffjgg3cxcuRozJt3JwCgW7ccHD58CO+99zYmTrzMvN51103H5MlTAQBz5vwcjz76AO65534MHjz00us3YOXKT6y2HR0djSeeeApRUVHo0aMnTp8+hfffX4Zbbvm53VgGDizArbfOwx//+FskJiZiwIB8jBgxCtOmXYvExEQAwDvvvIX8/EF45JFfm9/Xq1dv87+vv/4G87+zs7vgwQd/iV/96kFI0p8hikqdREtLCx577Hfo2bMXAKC4+AS2b9+KxYuXoU+fXADAr371OO644zaH5+2TTz5A//4DcPfdbX2qHn/897jtthtRWVmBlJRUh+81qa6uwptvvoaMjI7o1i0Hjz32CObNuxPTpl1rjv9//udOfPzxB7j55jnm91111TW4+urrzH+XlJy22q6ra7pt2xacPn0KL7/8L6SmpgEA7rzzHvzhD781b2PFio+RlZWNRx75NQRBQE5Od5w9W4J3312Km2++1a1zNnv2bZgw4TKrZbfcMtf871tv/Tk2bfoe69Z9i9tvv9u8fNy4iebreccdd+HLLz/D6NFjMXbseADAzTfPwYIFT0GSJPO11RITLCIiIiJyW3HxcVx22eVWywoKBuHbb9dYLevVq4/536ZCeY8ePS2WpaKystLqPX369EVUVJT574ED8/GPf5ShtrYWy5d/iKVLF5tfW7r0I3Tq1An33/8w5syZi+3bt2L//r1YtmwJli1bgjfeeBvp6Rk4cuSwVeLX3sGDB/Cf/7yOI0cO4+LFi5CkVhiNRlRUlCM9PQOAkviZkitAaS4XGRmJ3r37mpf17t3X6aAaR44cxrZtW3DFFRNsXispOe00wZo+/SoAQENDA3r37otnnnkekZGROHr0EPbu3Y3Fi/9tXre1VYIsW0+W269ff4fbBlxf0+LiE+jUKct8HQElubV04sRx5OcXWPVNy88fhH/+8xXU1dW6dc769Rtg9Xdrayvefvs/WLv2G5SWlsJobEFzczO6ds2xWs8ycbZ/z6XBaDSitvYikpI6OD0nnmCCRURERBQAA8fJwLhAR+Gd9gM8yLJss8xyYALTS9bLBJtEwNHAEYIA3HDDLEyZcoV5WXp62yANKSmpuOKKabjiimm4++77cMstM/Df/35iVVtkT0NDA37964cwevQ4/OlPzyIlJRnHjx/H73//G7S0tJjXi4mJsXqfLDuO1dm+Jky4DP/v/z1g81pGRobT9/7zn/9BbGwsUlJSERcXZ15eX9+AX/ziPkyYMMnp+2NiXI8W6PyayipHo26/Det/qz1nsbHW5/vdd5fik08+xMMP/xo9evREbGwsFi16BkZji9V67e8vADAYLNMeZZkk+WbgNyZYREREROS2nJwe2LNnl9WyvXv3ICenu9fbPnSoCM3NzeZarP379yE9PR3x8QkAoKrWISEhAWlpaWhoaAAA9O7dBzt2bLdqSmZSXHwC1dXVuO++h80Jm5p5nXJyuqO5uRlHjhxGnz5KjcyRI4etkrL2+vbNxfffr0fnzlluj/6XlZVtlVhZbvPUqWJ06dLVre215+qa5uT0wNmzZ6yaMu7fv9dq/e7de+D779dbJWb79u1GRkZHxMcneHTO2mLZjYkTL8OVV04DoPSbKyk5jU6dOntz2JrjIBdERERE5FBtbS0OHy6y+q+09AJmz74VW7f+iKVLF+PUqZNYuXI5vvhiJebMsd9Pyh1NTU343//9C06cOI7vv1+HpUsX4+abb3W4/saN3+PPf/4jNm/eiNOnT+H48WP45z9fwfHjxzBunNIUb+7c27F372689NILOHbsCI4fP4YPP3wPjY2NyMzshMjISHzyyQc4c6YE69Z9i3ffXeoyzpyc7hg+fCSef/4ZHDx4AAcPHsDf/va/iIyMdFhLM3PmTaisLMfTTz+FgwcPoKTkNDZv/gGLFj3ryakCAPzP/yj9jN566w0cP34Mx48fw5o1X2HJkjfd2o6razpixChkZWXjmWfm48iRw9ixY7tVs0QAmDHjRpw5U4KXXnoBJ0+ewNq132Dp0sWYM0fpO+XJOTPp2rUrtm79Efv27cWxY0excOECVaMv+htrsMIEJxcmIiIiT2zfvtVmAIKbbpqDRx75NebP/wv+85/XLg24kImHHvqV035Oao0aNRoZGR1x//13o7XViKuvvh633jrX4frdu/dAVFQUXnrpBVy4cB4xMTHIyemOZ555HkOHDgegDNjwwguv4LXXXsXKlZ8gJiYW+fkFmD59JlJSUvDkk3/C66//Ax98sAz9++fh/vsfxlNPPeEy1qeeWoCFC/+M+++/G+npGXjggV/imWf+aNWHzFJGRkf84x9v4l//egW//OX9aGlpQefO2S6b9zkzZsw4LFz4At566w28/fZiREVFonv3npg58ya3ttO/f57TayqKIhYufAHPPfc0fvGLecjO7or7738Yjz/+S/M2OnbMxP/930t49dWXsHLlJ+jQIRk33TQHN954i3kdd8+Zyf/8z104c6YEjz56P+Li4jBjxk0YOXKUW8foD4LsaCxLUqWlpRVVVY6H4vQXURSQlpaA8vJau+1Ja6uATZ8qFZZXzpNsXqfw5Oq+IXKE9w55IpzvG6PRiLKyEqSnZwfNZKl6ExEhwmjUfxnm5MkTuPXWG/HGG0tdDipBCl+eM3fvG2ef1eTkOERGum7WyU84EREREZGHtm3bgqamJvTs2QulpRfw97+/iJ49eyE3t1+gQ9OtUD9nTLDCBJsIEhEREWnPaGzBv/71d5w9W4L4+AQMHjwUDz/8a7dHFwwnoX7OmGAREREREXlozJjxGDNmfKDDCCqhfs44iiAREREREZFGmGARERERERFphAkWWWluVP4jIiIi7bR1LQmv0ROJgo/yGfWmOxj7YJGVdR9yKHciIiKtiaIBgiCitrYaCQkdAIRGZ37/EmA0MkEld7lz38iora2GIIgQRdfDsTvCBIuIiIjIxwRBQGpqR1RUXEBjY12gwwlKoihCkvgAmNzj7n0jCCJSUzt6NaIhEywiIiIiP4iMjEbHjl0gSa2QWRHjFlEUkJISh8rK+rCbpJo85+59Iwim2mbvapiZYIWouhrgwkkgZwAg+qCnnSxzbi0ivao4DxzdLSB/vIyYuEBHQ0SWBEGAwcDil7tEUUBUVBQiIpqZYJFqgbpvOMhFiNq4UsDhHSLOHNF+27vXC1j3oQDW0hPp0/bVIirPCTi8g09BiIiI/I0JVqiSlYJVY53jAlZ1GbB9jYCGWvc2fb5YQEuTgOYGbwIkIl+TWgMdARERUfhhghXGtq0RUHFOQOEWPuUmIiIiItJC2DYCzsvLQ+/evQEAAwcOxLPPPhvgiHzESe4kGZUX+ZSbiIiIiEgbYZtgJScnY+XKlYEOI2Rw0AsiIiIiIjYRJA3UXwS+Xiri6J5AR0JElsrPBjoCIiKi8KPLBGvbtm249957MX78eOTm5mLt2rU26yxbtgxTpkxBfn4+br75ZuzZ417pvrq6GjNmzMCcOXOwdetWrUIPSt4OWnn2mPL/o7t0eTsRhS1jM6uViYiI/E2XTQTr6+uRm5uLmTNn4qGHHrJ5/csvv8TChQuxYMECDBo0CEuWLMHdd9+NVatWITU1FQAwffp0u9tevnw5DAYDvv32W2RmZuLIkSO455578OmnnyIhIcGnxxVyWHYj0o0LJ4GyMwL6j+L8MERERIGkywRr0qRJmDRpksPXFy9ejNmzZ2PWrFkAgAULFmDdunVYsWIF7rrrLgBw2b8qMzMTANC7d2/07dsXx48fR35+vkfximLgMw1TDO1jUWakFiCItuua17GzTM0xiYIAUbTue6WHc0HqObpvKPjsWqdcw6xe1st9dW1575AneN+Qp3jvkCcCdd/oMsFyprm5Gfv378d9991nXiaKIsaOHYtdu3ap2kZ1dTViY2MRFRWF8+fP49ChQ+jatatH8UREiEhL00/NV0pK/KV/1QEA4mKjkJYWhUhBAqBMXNUWr7JOZKQBaWmxVsucH5OyTkpqHOISRJTENgNoUfE+0qu2+4aCl/K5TIiLBdBoXurrzyTvHfIE7xvyFO8d8oS/75ugS7AqKyvR2tqK9PR0q+VpaWkoLi5WtY2jR4/ij3/8I0RRhCiKePLJJ5GcnOxRPEajhJqawM+4K4oCUlLiUVlZB0mSYWq/V9/QjPLyZtRWw7ysvNw0s7Dyd0tLq82ytr/tUdaprKxHQxNQX6/2faQ3tvcNBS/lM1hzsQGW7Xe1/kxerASO7wP6jxTQKYv3DrmH3znkKd475Amt75ukpFhERhpcrhd0CZYjsixDUDlO+NChQ/H5559rtm89fdDLz8k4fajtb1lW4pMlwFToaotX+Vu2s8z5MbWtI0mALLeddz2dC1JPuZa8dsHt0ufZ4gELoP1ncsuXAowtAgAZnW7gvUOe4X1DnuK9Q57w930TdAlWSkoKDAYDysrKrJZXVFTY1GqFoy1fOkgyfdD0lK2gicKPklwBLU0BDoSIiEingm5c7aioKOTl5WHTpk3mZZIkYfPmzRg8eHDgAiMi0h0fPq3jExYiIiK7dFmDVVdXh5MnT5r/Pn36NAoLC5Geno6MjAzccccdePzxx5GXl4eCggIsWbIEjY2NmDFjRgCjDkMsYBERERERWdFlgrVv3z7MmzfP/PczzzwDAHjwwQfx0EMP4ZprrkFFRQVefvlllJaWon///njjjTfMc2CRm3zwkPvCSeDMMQEFE2SIrvsCEpGONdQCe38Q0GdI25cFn68QERHZp8sEa9SoUSgqKnK6zty5czF37lw/RUTu2rVOaX169riM7N6O15Nl63m0iEg7Wn22Dv0koOqCgG2r+WElIiJyJej6YJF7BCGwI+1IkuPXSo4C374roLbKb+EQhT4f5EBSq/bbJCIiClVMsChg9m8UIbUKOL6PT8WJiIiIKDQwwQpxTfXBlbzs3yTg0E/BFTORP12sAJobVa6s1UeJH0kiIiLVmGCFuNOHA1wycrOFYskRASf2szRHZE9DLbD5cxEblmv3GTG2AKUlzpvzEhERkXpMsAiV54GD2wTILGAR6Vr9ReX/klG7BGvv9wJ2fiviZKGbb+RzECIiIruYYIWBg9usS0KtRqDsjOUSAScLBVw47dewiMgNTQ3AmaPaZzWlp5VtVpxzvG3mUkREROrpcph20tbJQgGdure11du3UcD5Ytsik7HFs+031nkaGRGptW21gPoa91IdXyZGTLqIiIjsYw1WmNj7fVtxyF5yBcDjCYc9TcxckSSgpck32yYKNu4mVwAgSUyDiIiI/I0JVphoqNW+oKV2EtPiQmDXOgGymwncj18IWPuBqH7ENCLyWFmJe98R7n6eiYiIwgUTLPK5om0iLpwUcHS34FZtV22lUuCrq/FRYEQhqK7aP/u5cIq1Y0RERPYwwSK/ObZHwIEfbQtlDbXAT18LqKkIQFBEIabqgg8SH+ZSREREqnGQCzJrrHf++sUK1+u4Un7GdpmpQHjxG/e311gHXKwEMrrYvla0XUB8kowufd3fLlGw8qbpXtkZID1Lu1iIiIjCEWuwQsjGL7zrrFRxtu0x9cVK24La5s9F7Pyu7ZY59JPg/giCTp6EezJYxoZPlJiqy6yXtzQDxQcEHPiRtzgFJ2MzsGutgPKz/tvnjm/4eSEiIvIWf01DyImDrZpta/NnIk4ddL7OmaMCdq+3zpgqzztPlJy1NPJmouOGWuu/Tx/yfFtEelBcqPRz+ulrkQNKEBERBREmWOTQsb2uO160H4Bi22oRu9Z61mFDlrUbPv7wDt7aFNxajW2fh+1fq/9MMRkjIiIKLJZCyax9way5UcDpQ8CGTwS3RiarONdWGLSpzVJZTrxYqX5/ADyew4soGFSeC85RJg7vELDzO/enaCAiIgpmHOSCzOyNPmbqw7Rxpf0CnrFZgLPspn1Nktpi4ubP3Mv9WX4jukRHH4bj+5RP/KkiGWmdgfgOAQ6IiIjID5hgkddamtxY2YMH8dtWi0jPliEagIHjZEREur8NonCho/zK7OBW5YHJlfO86GhJREQUJJhgkdcqz6vPmprqBciyjKJt7mVaZSXK+odjgQ4ZMjr3AASVm2g1AtvXCMjuI6NLH7d2SxR89JhhERERhREmWOR3ddXAyYOe9Sk5VSTgVJGAiEgJtZb9tJwUKs+dAKrLBFSXCejSh0/QKbQxvyIiIgosDnJBfidpMJp8w0XgyK622/fcCUHVPFqSBNRf9H7/RHrlzXQHjqitLSYiIiImWBQA7Yd210LpaQGFW1wP877zOwE/rBBRcV77GIj0oPyM+mzI3mfxxy8EVJVqGBAREVGYYYJFfrf3e9/cduVnVaxzqfBZ4UYhlEiNViPQWB/oKNxTU2ZnWbmAn9yYd0trLU2+qYUjIiLyFyZYFJSKttu/dY/sEnD2mPUye31Sju0V0GrUPi4KXxuWC9jwsejeqJp+ZGxRnwBKAUpwGuuAtR+I2LaGD0CIiCh4McGikNHSBBzbI2DvD9a3dW2l/cJaaYm67TY1ACcPggkZOdXSqNxnjXUBDsSBtR8oCaBlX0WHA2IEaKSM6ks1avbm5CMiIgoWHEWQQoYs2S+UORqxsLFW3XZ3fCvgYoWApgYZfYZwjDZyTu0dsn+TgPgOMrrn+TQcM9Pnw9gMziVHRETkQ6zBorB16Cf7t3/FOaBouwD5Ukn5YoVSMDUNC19XAxzfp10zKlkCThVpP7phaytw4SRr3vytQUXi3tIElBwRHN6DvtRqbKsp0pvmxkBHQERE5D0mWETtbF8joviAgNJT1stNNRObPhVweIeIksPa7O/McaBwi4jNnymJ3MVKYN9GwevC5uGfBOxaJ+LgVja3MpFl3w9EsXud6HIqAlmDitBjez0bkXPrKgFbvhRReR4Oq9u0iM9dsqx8DoiIiIIdf80orLUagQM/Cnaf6NvMq3Wp0GlqatVQa524tDR5VjBtqBEuxSLg/Elg2yoBZ44KOLzDu8So7Izyf7V9zcLBwa1KP6TS077dT10NsO4jASVH7L+uRQJzZKeIzZ+7f4+0NCnvqSl3slIgcnK2viUiohDBBCsEyDLw45eBjiI4nTwInD6kPNEHlNojT9SUK6Of7d/kXcl09zoRxhZlG2wupb1TRcq5PXvctxlE8QEBzQ0C9m/y7VesZPTNcbDOk4iIyHNMsELAxUqOuuUp09N8QEmSNn/m+CMhy0pfKXsunFS2c+aouutwqgg2w8m742IFcL5Y5couagZkWXa7RqWqVGkq6WlCGiwkSTnX7p4fvY0kGIgmf/boJQ4iIiJfYoIVAjgppzbajzZ4sd3w7uVnBM36iBRuEW2Gk3fH5s9F7F4vqupP1NxovwmkyX//3YCNn7q3/53fCqitErDvh9BO7A9sFrD5c9FhUz9HKs7ZPy+trf5PMuprgK+X2t5rgch1Nnws4OA2++eGuRcREYUKJlhEl7RPVooPOE8eTP146i8qExebuFsYV1Pgrq8BdnwnoLbKevnR3QL2/iC43IapCaTdbV+UHc4V5ojc7v+hRJKU8w201UieLPQ+kTS2AN8uE/H1UhEXK7zenGolKmtVnVEzMqIaTQ2CJueSiIhIz5hgUVg7sb+tsFdx1rbgd3yf4/fWVSvrF7V7In/2mO12HA3pfnCrgOP7HBc4TbWTe34QUHZawO711uuWHBZw9pjg/yZpoZhZXbJng4Af/iuaBwkBgNoq75OCqtK2f+/4NvBfvRcrBOzbqC6OmvLQSIpMUyJolTASERHZE/hfeSIdO7zD9Uekfe1R+9zj6G7gm3dEVJyzfa+jSZABpW/d1++IOLEfMDYpy1qa7a/b3Kj0yfKm+ZmxRZlU2dkIe9VlwNE9nu8jGJj605Wd1japOLpbX0mKvQcBoe7MsUtTIngw+iIREZFaTLCIvNDUYGdhuyTn6G7lY7Z9jXsft8Y6pRB46CfRXAPmqFi45UulT9b5k27twsrpQ0BZiYCd3zmOc8uXIo7uahvpMJRpNZG0SVCNChmil7f+0pQIxuYQPUAiItIFJlhEXlj/kYiyEt8X1kzJlivu9qWynAvJ1eS4Wmtpth4Wv6Yc2L9ZsJ1/LEC0HowimIr0prne3HqPrPRH1Oq87dso4LSTybzra5RBM1SPpklEROQnTLCIfOhkYeD2bdN00U7BtyGAw4lv+lTA5s9E88AdP34houSwgGN7BBzeKTidCFeWgV3rBBz6Sdu0xbLWytnonLIMHNwmoPyM43UstRqB+ov2Y9VrfyB3E6Xj+4AfVogoPqDN/s8cFXBgs+OfqCO7BDTWC9i9XkRVqboaRw4TT0RE/sAEi8iHDm7T9iPW1KA+oWhoV6A/fcjitVqlQGxZa3X6sGfJSkuT/WSk8jzw7XuC1WARlprqlf3VtptL68R+Acf3CvjxCydzkklKXynTICWSBLdqvhwd6QWVtSHlZ5SRBX/6Rt313b7G8bktPaX8v7FeGfREL3NoqUlGGuuVlS5WAkd2KufC0/vIbRa72fqVqLs+bkREFL6YYIUAPpUNLt42gfN03rPCLSLqqpV/f79cxOEdygAaJpbNEM8cbetfduGk7RD2Jk0NwNoPRGxbbVu4PfCjgNYWAXu/d17w1eL23bRSwHfviV43c2xV+X53r2F1mevC/74fBJw8KGCPi/PlL6b7rK7G8TpVpcpKziboVuP0Ybg/dH27G+fcCa9CICIi0kxEoAMgCjWV5wVIkoxWo+1rJUeA/Zu8K4z+8F/PC+BbvhIw6ca2kmn9Rfvr7dsoIi5JxoDRMnatEyGKMqbOtU2FWhqVWKpKBbiTKlkO+ODJA4L2bzE1v2tpAqLj3H+/HpiaCmrdZNDTu8V0XarOu/tG91avKYfTpoCOnDuhj0SUiIioPSZYRD7wzTv2C4zeJlcA0FDrpGDponBrbBZQVaquBFxfI6C+RllXktxLoJwpPwPrpnWebNbiPZYJidpNlZ1WmhWK7S9HkJbZAzXQQ1OjjMKd3m2juUmbWHSZNRMRUVhiE0GiEHKu2PVw4D993faxb2lynlEc+NG9r4jKC8DeH5SRAB3VjrWvefAov7J4kyfNAo0tgsvBGNTWrLUagf2bPM/MvM0LThUBu9f77qvcWXy7NzbjzNF2x37pT9PgJa74M6dlc2oiIvIHJlhEIaS+RsBPXws+KUja62dlqfgAsG2ViLPHlP5QpqG+W5oE5/3G3OxTJsvAsT32Y9n7g6C6id254wK+Xy643/enndOHgJIjgav6Ktzi/Gu8+KCHG1ZxDzU1OF5p06f+/XlxWrN7CRMsIiLyByZYRCHmYqWAr5dq/9GuPO+8AHtsr+PXrSZkbrfa6cOCw1q3hlplvixLVRdgHj0QsH698pz1oBrH9gB7NthPOC9WCmioFbD5cxGFW5Sh4T1Jk1q8nLS2td2AGVqnaq3+nhRaBs4cc2N9H4V3vli/Q+ATEVFoYx8sItKEs+aGzU3KvEWyDJuakeoyAbvX23/f98uVRHHqXMncX6r9CH7tR7mzHHDjyC7lTf1HyYiMdhz7qSIl9oHj/F/FcWSXCDHCw6Eh/aB9AmjJXmJcf1HAvh8C25mt8kJbs8kr51lObhaggIiIKKwwwQoFLDSQzv34ufMaNVe1Y031QGyC8m+9NfMSBBnOqmEKt7hONg5tFxGb0HZgaibN9bXWVsAgA82Nvk2WvB1a354GB/3/iIiI/IEJFhEFl/YJlp2ES5bhchALu5u22NbZY9okFqbaMZf7vvT/VsnxKJT+tP4jJYacAdpntMYWICJSOd87v/PfsZrmgSMiIvIlJlghQGcP9Ik0d7ECKC4U0GeIrGqSX0/7oGkxjL63WnxcY+Su4gPax1NdptRKuqq51Fr5Wff3V3JYmWi71yAfBERERCGJCRYR6d6udUric+aoMpeXnhzdrU1SJtmZmDqU7dsYmKHl3bX/0iTIPQZKEA0abpiIiEJW4B/XEhGpZC+5aqxz/T5ZBg78qK/ErD1f93UKKz6o1i8/q/02iYgoNDHBCgVsI0hhTE0NUvlZ4PQh7xKYvQEeGS+UuDNvmLEF2PKVYB76vazEveHXjc1A5Xlgzdvu/dw11Co1piaBnOuMiIiCC5sIElHI2/u998+Szh4TkD+eTzO0cO64+mTlzFGgulRAdamApFQJO75171p+975n137jSgFSK5MqIiJyH2uwiIhUOryTBW6/s8hpG1Q0B9VK++SqoRY4utt2HjYiIqL2WINFRKTS8b0Cju8VkN2bNVmBILuYM6vVCBhU/qoVbhEgGoDc4equ5cUKARcrBEitMvoM5fUnIiLHWIMVAvhTT+Rf7I/jP60WSdXJg87P+/mT6rd7qkhA8QEBdTXuxVN/aRLjViNQtF3Axcq212QZKD9jHTMREYUfJlhERKRbh3e0/UyZkhuX3HjqJHmYDJ0sVOYI2/xZW3y71gn46RsR3y7jTysRUThjE0EiIgoJ+34QIYqST/chXKpEa2qwrU0rPcWaTSIiYg0WERGFkD0bRLea6B3dJUB2Iyc7X2y77Nhe9e8nIqLQxwQrBMTEBToCIiL9OLhV/U/bhVMCztlJmhyRZcEmgTuyU0R1mfptEBFRaGOCFQIiIgMdARGRH/hoRJ+WRjfDkIDGeutlW77U789pYz2wZ4P1gBxEROQ7+v1FICIisqCXEVObG4ALJ4Onv9XBrQLOnRDw0zfBEzMRUTBjgkVERMHBhxnWxUqg/Ky6dWurXa/TvobLG031QKMXkyy3NCn/b7YzMEe4qq1S+s5Jvh0ThYjCFEcRJCKisGcabv3yWyWPh2631FSvXf/Y9R8rsV05z7NsQNZL1Z+ObPpUOadRMRK69AlwMEQUcliDRUREQcFneYJFxY7UCmxf4/uaHlkCdq0VcPqQ/dcb64DCLYJVTdiBzQKTJY01aVjTSERkwhosIiKiSxrrgYuVLhIsFUmOaeh3WW6bO8tSVakyguGFUwIkSUK3ftav79kgoKpUQH1N27LThwV0zJGRnuV6/0REFDiswSIiIrqkQmU/LFeKCwVUnAO+Xiri7HHb1y1rouwNK19/Ufl/Q7u+V5JRm/iIiMh3mGAREVFQ8NUgDZYJTtF2bX4WK84C+zYq8Zr+DwBHdgnYuFKwGVzBnaZ/zY1AyRHA2KLUdJ0/qf69xmb16xIRkWeYYBEREbnhvIoh2luaBTTW2a53bI+AumoB1aXWy7d+JaDqgu12Gmqt/66pELDzOwH7N4nY9Kky/PrudSIqz6uLfctXHEnQkizzfJBnig8A370voKkh0JGQHoVlgrV3715Mnz7d/N+AAQNQWFgY6LCIiCgInD3mZqFcRe1UdZmAravafpKbG5V9yJL1vo7tEVBdpiyzTOCO71MXU1214/XqqoGda637fXmqplypYfMnWbKuCbxYqRxP+yRVK5LU1tdOjyrOAbvXCx5fB2MLR6B0pmi7CGOzgDNHfb+vVqNv7jVjC/DTN+7VgpM6YZlg5efnY+XKlVi5ciX+8Y9/oFOnTujfv3+gwyIiohAkywIuVlovq6mwn+h4WqBtblT+31gHHPpJMP+tbNT1+yUJ2Py5gNJTAn74r4jyM9avN9apj62qFPjxCxFbvvS8dkhqBS6cdJ2kWR7nhk8EbPq0bZ87vlGO58CPbctamoFNn2lTa/XNO0pzz9LTwI9f6K8mY/saEeeLBZwqcv+9LU3Ad++J2LYqtGr4Guvgl+u041sBO75z79zV18DmewJQPgvfviti8+faX4szR4DyM0otOGkr7M/oqlWrcNVVVwU6DCIiCmGniqwLR6Wn7BeWTh20X8hypaZc2d7OtQJO7Bew4WP3CmO71wmQWtve89M3bcWDM8eADZ+IOLzDdpulp5WaL0vVZcr/ndWWuXJkl4Bd60Sr5Ki9o7uBdR+KOHdC+bupQbDaZ/OlCZYt+52VHAZqLUaJFARvqmgE1F8UsPM7ETXlAo7t0Wcy0mp0Py7TPVhVqs9j8tSGT0Ss/8j3Rd+yEgFlp907dz/8VzTPx2fJ9BChtkr7a8GJtn1HlwnWtm3bcO+992L8+PHIzc3F2rVrbdZZtmwZpkyZgvz8fNx8883Ys2ePR/tatWoVrr76am9DJiIi8trBbfYLWWqZkh1JUubQkiV1heRSO4XB3esFHNkl4MwR5bUT+63Xqb8I7PxOxMaVbfEe2SWgaJt78bcagaLt1rV85ZdGcyw91basfQ3a0d3Kfk4VCeZRF71x+lBbcuhKUDWd8yTW0MqrfMreNAxEupwHq76+Hrm5uZg5cyYeeughm9e//PJLLFy4EAsWLMCgQYOwZMkS3H333Vi1ahVSU1MBANOnT7e77eXLl8NgMAAASkpKUFFRgYKCAt8dDBERhb3mBuDgNt+WxNoX+o3NcNhMr64GiE0ARCe50Pli5b2pnaw3LEtKctViZ0TC9rU4tVXKfgxOShvFhUDxAQHFB4Ar59nPBs4eA/b+IGLk1RKSM6xfqzwv4IcVnp1bZZALGbVVwIEflZNx5TxtH+tXXgDik4CoGG22V10GHN0tYMAYGTFx2myTPBdUybYfNdQCFyuAjt0CHUlg6DLBmjRpEiZNmuTw9cWLF2P27NmYNWsWAGDBggVYt24dVqxYgbvuugsAsHLlSpf7Wb16tSbNA0UxsI8vnP1AEhFR4F1w0CRQS/s3CVa1Fc2NAprqbfdbcU7A9jUCUjJldOwKxCU6367lE3pRFLB/i1Jr1DW3bWeNdQJ22TY2waZPRSSlyRh7vWlbAs6eaIUhVjAnXc3mPjGC+ffMMmpRFLD3B2XJsd0Chl/pPN6WRgEni6wHCDH9TrevbRAE5TXLZoRqftPtFapN2wKAkweVWriKc0BLk4CoGBlTbnG5WStHdwMJyUBmjvK3JCn72LZKqaE8tB0YfJmKDQnul1Pqqtr+XVspICnNrbf7hOkYHB2LLCkPDuI7uK5VMm3jwimlCWzBeEA0eB6Xo3KYJ+VDqVXA5s+Bbv2AnP6AYLFtrcub7T/bWvp+ubK90dfKNg9F/MnVfeMrukywnGlubsb+/ftx3333mZeJooixY8di165dbm1r1apV+MMf/uBVPBERItLSErzahrca62UA9QGNgYiIAuvMUesCxPY19gsUhT+KAGRUnhdUDe8eGWUAoNTqpKUl4FSRMvuxZb+y/RsNqKmwX/NTUy5g82cCWpqB/sMi8dO6RqR3FnHVrbEAgJiYJgBG8/YBwBDRAEBCq1FA1dkoAEoGFBkZgbQ0U1VQu1mYL9n8hYjGurYMKCLSgOTkGLQ0AXFxRvO2ACAuLgppaVEwNrQCaLSKwRlZtv3djYmJRFpaNABg1Y/WsTU3CkhLi3e5XZP6ixIO71Qyz9t+HQ9ji4wPXq5Hdk8DJKkVACAKlufCHiWG2FjlGN2xaktb/LHRsUhLM+DC6Vbs3NCMcddGI6GD/5/syrKMmkoJyclxECwyg8LtLUjrJOLUYSMO7jBi+JQo5A6JdLAV5bhM13jVW8rfPftHo0d/d4vEynvj4qKRlta2v6aGtntDbfmwuMgIQOk0WFsWjbrqZhRuAYaOj0ddpASgwa3tqXU+rhlAi6bbrquRcKLQaN6uATFIS/M83WhtlSFLQESkdwlSSor6z58Wgi7BqqysRGtrK9LT062Wp6Wlobi4WPV2zpw5g4qKCuTn53sVj9EooaYmsEMHNdUDbDBNRERq1NW416appaUVpt+Y8vJa2Pu9KT/nvFlddbmyz5/WKclN2VkJ5eW1kCSgsRHttq/0yzIt+3F1W0LU3GI0r+Pod88yuQIAY0srPv1PHeprBPTIl63eV1/fjNLSZtRU28ZgiqOmHEjuaP20Xxky23r/jY0tuHC+BRXn7MdmuV1XlKHy2+KpqVD+LjnWal6nudnoYpvK+xsamnHqRDPOHgO65zlvrln0Ey7Nx9YWf01NAyLLga8/UJZtWl2PYZerPhTNHNsj4NAOIHc40GOgco1rKoAd6021k8q1PbKvCendmszvazUCh3cCnXsCttdY+bumqhHl5fb3W7QdSEwBsnq1f0V5b319E8rLlf0VFwKFW9rOndpr/oPFCIG1tU1WcSrTDLT9XVcD7NsI9BsBdEi33ZY76i3Kj+7cn86s+8h6ConaWsfnVo1vlgHGFgHTbvesLaYoCkhJiUdlZR0kyfv2nElJsYiMdF3dGXQJliOyLFs90XAlKysL33zzjSb71uKCebd/gAkWERH5gtRWpkdrq3WC4o3WVhnfvidAshjlrrlJhiGibR6w9mTZ8jdXfRz1Ncq67Uc8PLpbwNHdwODJknl7lr/pu9cLuHBKwIDRErr0bYtBaYppvX9ZBvZtcjxPWvuygiwDx/YAGV1g0wSv1eJ3XZJkuwmd9bmwxzSXGrDlK6CpXkBrq4zeg2VIrUrTs/bFpuN7bWumJFm2KmdIrerLPaUlQGy80tTRXaZmmKYYiw8qMZwqkpEzQHmx2SI5b3ujdXzH9wMn9os4sb9tlfb3UNsxWmuoBY7vU85Jpx7tV7h0fi3eW7jF+vypLx+2HYMstX3GJKnduZdk7NsooPK8gG1rZEy5xbvyp2xxH7ePtaZc6TcYE2+97GIVkG2TbLZprLM+B2UlQGaO8ziNLUCEg0pHY4toNz53KefSf+X1oOu9k5KSAoPBgLIy66F+KioqbGq1wgX7VxIRka9UnresutFuu7IMq+QKaJt7qdFO3zGt92/pYoX95aa+c+Vnlf9XnAO+Xiriwin7658/oX6f54uVkRB//EIpijU1KKMwNjcC546r344apr54DReVvnrfLBOxa52HibKDa3C+GPjp67aJjU/sB3Z+K2LTp+4VNVualVqgr5eK2PKVbYz1Fy0mT1ZxCPb6IaoViAEsXO2y9dIDD0lpVYvGOuV8nTkKbF3leD42qRU4sFlA5YW2ZZafs4Za4MCPAprqlYTnxy9EbPjE+tr9+IWI/RtFmwcVJvbmrSs54vz8l59VPvdHdztdLegEXYIVFRWFvLw8bNq0ybxMkiRs3rwZgwcPDlxggcQMi4iIQoSzYeV99XNn2aQJUAqsu9Za1Cpc2rFpJMi9G21jPFUkQJKcFyaP71OSNFm2niS5uRFY/5GIY3sE7N8soLqsbTsXK4HNn6srrsmyMnKjo8Sg8kJbgbf0lIALJ+2PBulM+VmlkH+y3Zxtu9eLKD+rDO0PAId+aov5/Ek7sUqmWjillqP1UsJwdJdg7t9Xc+k8VF2wTpS2rVb+3Wi/G57bWtpaFKKqVLn+ljW3etFY13ZOTJd47w/K+dq3UUTVBQF7v1emaDh92Hqeq5IjwOnDAratarsuJwvbzumutQJOH1LuP5cTfDfZLpMkmK+9O0zX+uhuEbvXu953sNBlE8G6ujqcPNn2aTx9+jQKCwuRnp6OjIwM3HHHHXj88ceRl5eHgoICLFmyBI2NjZgxY0YAow4cDhFKRET+YK9GwWMe/HbJHhR61ezG8in7sb22E0ObmCYpbl/zpkZNBXB4R1vhNj27LbKfvmnbXukpweq1oyoKrc2NSpJQckSZaDp3uP0+ca3tCq+71olI7ihj5DR3LoaATSuBhlolrvbD2p8sFNClj/X2dq8TMekmCdHKuCaoKgW2fqWci/gOMuqqBWTmyBg0SbZbA7N1lXWCebFCQEuTjH0/tC1XhtxvS9TccXiHiLTOEooLBXMTz/gOMtKzXL9XeSDg+PyVngbikpSh+tWwTPYrzgPbV7cd454Nlk0JBexeD5s54CrOCdjypZKQypKElEzlfaZz70jDpWS1sd66YlBpEuq4CR8AVJ4Htq32vs7mfLGAxFQZPfOV5ryWUxs01CpTPgQLXSZY+/btw7x588x/P/PMMwCABx98EA899BCuueYaVFRU4OWXX0ZpaSn69++PN954wzwHVrhhgkVERP5QU65dgvXNMvcLZK4Ks/Y0uzkO1ZGdvmncU3nO+u+yEotaqgrr82pZo6JmiP91H1rHfMaiH5hlLUZLs+22qi64f05NyRWglEGM7WrB7E3YbGyGuZB/bG/b++uqlX8r867ZxnHyoP0YCrfaPy8XK90/HgDmppomB7eKyOrVtp3mRvtzmV046Xh/p4ra+mWpnV/Nci65g1usj7F97e75YgHRcbb7NtX21VUrTQdrqwTUVqnavcJiN6bPae4Ix/EXF2r3vdBqFNDUIGPjShGioe3Yvl8uaj5HnS/pMsEaNWoUioqKnK4zd+5czJ07108RBafueTJO7OfgF0REFDqaGtybtLd9879AKdquPnGzbCLokAycPa7UWLRnmbA56l+mla+XapeQ2ntgfHCr/e2fO+75da2tUmrRXLGc+sCTJoPtB72QZddzdFmqrXK9srM1Th4UkJRme1IbapXJuy0ZLyXfrS3Avh9st1q0zfPr3L726fhe4PBOEUMul+z2Zzy8wzSgij4+u57QZYJF7nFUZdqpOxMsIiIKLeeLPX9i3mKn70iwKj8rmAffcMZeAtbe2vcF9B6iXXMYpTaqHUGpjYqOhcMKJkeDJ3iq4rz95p7uDryhhVYjsOETAZ26A/1HtZ0ArY9Zje1rBKtaSEsNtcKloeEdO/CjgFHTZESonF6tfbPNw5dqiXd+a3sd6msc3D9BJugGuSBbggD0KrD9tnLWXpaIiCgYHdkpoOGiZwUwqxERyaylWbCpbTExtgCbP3PvvFk2fzSRJaU2avd60e7rgGe1RM5s16BfkD2HfrKO39jiun9idTnQ0iRYJXwNtcDGld7FaG94eUv2mvU6Sq7UqqsS8N37IupqlFo5pZmkNto3Nw1WTLBCVL+REuJUdqgkIiIKFsYW/ydJVRfCt7/z2WPCpX5N3vFnrVHJYe1rK+uqlQTwzFHYtA767j0R1U5GvwRgVWu35UsBjXXa1F45mjPOH7Z+JeBkofr1ZRnY+V14PORgE8FQ0e5+7dYvMGEQERGFmuZGAV8vDY+CYSC5qo1Ra/9mESeLtM2If/pGNI946AnLIeWrywRs+MSzwTj0pKVJQNF21+ejoVaZ1LtjNxmlp13NixUanzMmWERERERklz9r7gq3CIhL1GZb7Udm1IKnyRUA7NtorwYvNJIJV3ZvECAZhZDoW6UWmwgSERERkV2lKoaJ14ovkiIKPE/mjQt2TLBCRXDXMhMRERGFVS0HhS4mWERERERERBphghWCJt4YPDNdExERERGFEiZYISgmLtAREBERERGFJyZYREREREREGmGCRUREREREpBEmWERERERERBphghUqOKopEREREVHAMcEiIiIiIiLSiFsJVnNzM/75z3/i4MGDvoqHiIiIiIjISmtroCNQz60EKyoqCv/6179QU1Pjq3iIiIiIiIisyEE0zavbTQQLCgqwf/9+X8RCRERERERkSw50AOpFuPuG3/zmN3jssccQGRmJSZMmIS0tDYJgPcJCbGysZgESEREREREFC7cTrJtvvhkA8Mwzz+DZZ5+1u05hYaF3UREREREREQUhtxOsv/zlLzY1VqQDHlSbJqXJqCn3zbUURBmyxPuEiIiIiMKL2wnWzJkzfREHBcDoa2WseVubJMgyWUvPltHcBNSUabJpIiIiIqKg4fE8WEeOHMF///tf/Otf/0JpaSkAoLi4GLW1tZoFR/7XIcOzHoTRcRoHQkRERER0SRCNceF+DVZdXR2efPJJrF69GhEREWhtbcWECROQkZGBv/71r8jKysITTzzhi1jJGY1a43VIA6pLtdmWPV36yjh9iE0HiYiIiCg0uV2D9dxzz2Hnzp146623sGPHDshyWz45adIkfP/995oGSNpIyfRx3q9y832GBtPzByIiIiIi97idYK1ZswaPPfYYRo8eDYPBYPVaVlYWSkpKNAuOtNN/lOeJzZRbJEy9rW12t+FXBdFMb0REREREfuR2gtXU1ITk5GS7r9XV1dkkXRT8IqIA0eKypmbaWSkIW/0lJLM2jYiIiIi05XaClZ+fj5UrV9p9bfXq1RgyZIjXQZE+JaXJiEuyn5QIDv/QLw7MQURERERac3uQi0ceeQR33HEHbr/9dkybNg2CIGD9+vV46623sHr1arzzzju+iJN0YNQ1oVXjw+nciIiIiEhrbtdgDR8+HG+99Raam5vx5z//GbIs45VXXsGpU6ewePFiFBQU+CJO8pIWyYQgqNuOo1XiEvWRoA0cp/Qh61mgj3iI9CAymp8HIiLSsSD6mXK7BgsAhg0bhnfffReNjY2orq5GUlISYmNjtY6NgkhKJxkXTjnPvkZMk3Xx4cjqBXTuKbEGi8hCUipQfjbQURARETkQROU2t2uwNm/ejIaGBgBATEwMMjMzmVwFCdHgOruJjlOXAcVfGiBi+JUSRl0joWNX5+sPvVxCtI5uEyZXREREROQLbtdg3XnnnTAYDOjfvz+GDx+OYcOGYdiwYUhJSfFFfORnOf2BwzuUf0fFyOiRbz/hGnW1jPqLMpJSlb8b65xvNz3b/vLLb5OwfbWA6jLfZjyGCBmtRuf7iIiSYWzWLo7IaBktTczkiIiIiMKJ2wnWpk2bsH37dvz000/YunUr3n77bUiShJ49e2LYsGEYPnw4fvazn/kiVvKBhGQZtVVtSYBoAPqPllBxVkDBRNlhTU9EJMzJlT2JyUBNmev9Gwy+r00aMFrCuRMCKs45X69jV+DMUe32m5kDnD6k3faIiIiISP/cbiKYkpKCK664Ar/97W/xySefYNu2bXj11VeRmpqKDz/8EE888YQv4iQfGXm1bQ1V177AoEmOkys1cofbr/kyRLq3naxe3nfa6tLX9TrZvWVdNWEkIiIiojblJYGOQD2PBrmoq6vDzp07zTVZe/bsQXR0NC677DIMGzZM6xhJI5HRQFO99bIINxMeVQRlcmJ7RBFI6yyj/Ky67C2ji4wzR33fzK5zTxnlZ9icj8IYb38iItKx5qZAR6Ce2wnWzJkzUVRUhLS0NAwfPhzTpk3D73//e+Tm5kLgyAG6NvRyGXs2AHXV2l8n2Y2KJtGg+e7N8sZK2L/J7YpZpHYCys9oHIwORkwkIiIiCgXBlGa4XRItKipCREQEBg8ejCFDhmDo0KFMroJEYgoweLLvS/2BvBPiEn27/XHTJWT3ljFgjOTbHRERERFRUHK7Bmv79u3m5oFr1qzBCy+8gMjISAwdOhTDhw/HiBEjMHjwYB+ESnrmVX4dRLl5fAcgb6ySpB7YHOBgdKBDuuzzESCJiIiIgonbCVZsbCzGjh2LsWPHAgBaWlqwefNm/Pvf/8YLL7wAQRBQWFioeaAUfDJzZJwvZuE7lGR0kVF6mteUiIiIyBGPBrmoqKjA9u3bzf8VFRVBkiT06dOHg1zonR/7BXnaXC8yRkZLo+NCfHZvGSVHHLyup7K/i1j6DpdwaLv7/cUCacgUGRdOyti1LrjiDjeCIEOW9fRhICIi8o47/f0Dze0E66qrrsLJkyfNkw2PGjUKDzzwAIYNG4bk5GQfhEjhZOTVEpobgV1rHRcOe+Q7TrAEAN3zZJzYH/jCZddcGacPOY6j+wDg0Hb/xCKIMmRJm3PSsZsmmyHSTM4AGcUHAv+ZJyIiAjxIsK699lpzP6vYWE4cRHZ4XM6RkZwBlHkzz4EA9Bkqo3uejHUfulnLonH5LNLBUPWBYDAARp2NyzHyagktTcDO71gbRt7pNYgJFhFRqBODqLjgdoL18MMP+yIO8pPYBKX5UFp2oCPxHUEAomICHUV48Ka2PjlDszA0l9VLRuUFoOFiGBXag6jpBRERhZ/E1EBHoJ5HfbBOnTqFN954Azt27EBVVRWSk5MxbNgw3HXXXejatavWMZKGRAMw9TbZL32VOveUcXyfgB4DPS+5RcdpGJAfdenL0mogJaTIqK307iaP8OjbUb2EZBm1VWGUwBEREYUJtyvb9u3bh+nTp2PNmjUYOHAgbrjhBgwcOBBr1qzBDTfcgP379/siTtKQIPpnsraEZGDqXAl9hnqebCRnAL0HO27b1jVXRlJ62/YTkj3eFdKztEmKuvSVMWC099vq0kfZRmaOBnGFWTk+GA63c08m4URERKHI7We0ixYtwoABA/Dvf//bqg9WQ0MD7rnnHixatAhvv/22pkGSf8QmaF/g06K9bKcewJFd1sv6j5JwcJuAbv1lVJcB+34Q0GuQhIhI+9tQc2QpmcD4GRJ+WGE/6Kxe6s6PQaOajy59ZfQdLqPiLFQPdy8aZEitWqUXMlymKnrNEXSaYcV3kFFXrQQXTG3JiYiIAs0flQNacfsnfu/evbj77rttBriIjY3FnXfeiT179mgWHPlXcsdAR6D+k9M1V2nqGJ8EZPUELrtZQq9B3kcQG+/4tZRM/yZYABwmjI70HaY+4/FFQq0XwfQlTERERKHF7QQrOjoaVVVVdl+rrq5GdHS0tzFREPImqfC0MGz5Pj0MatGpu4xO3WV0HxC4xMXgRkKWkqkMaU8UaBGRvA+JiCh0uJ1gXXbZZfi///s/bN9uPYHP9u3b8cILL2Dy5MmaBUfBI9Iirw7X2oPkjjIKJsqIuDQ8e3QckJ4tI6OLZ4XHxBTX69jUQrm5q45OxqTpmuvetog8NewKGYMmeTGPAPMzIiLSEbfrHX7729/i/vvvx9y5c5GWloa0tDRUVFSgvLwcQ4YMwRNPPOGLOIn8bviVErav8byjjCAAQy9XSn6yLOPrpe5tSzCtbi9hFWSMvlZGYgrw9VLXGW16FlBVKqOxTn3227mnjFNFQZotW4QtCDJk2fY4ktJk1JQH7vjcfRCR1llG+dkgvR4uREYDHdIDHQUREZE2VCdYjY2NWL9+PUpKSjBnzhzMnTsXJ06cQGlpKTIyMjBo0CCMHz/el7FSmDCNBBgdp91j6aRUoPKcihUtyq+pnTTbvU1hOj7Z82OLS5IxbroMQQBklZsxRAITZ8lY83ZbIF36yoCdxCOQcodLKNru/egPcQlATZnybzECaG3xepPasDjdWb2B8ydlVJ53fQ2S0mQUTJKx9n3fXa/MnNBN4IiIiPxJVYJ16tQp3H777SgpKTEvS0hIwIsvvogJEyb4LDgKTzHxymh+WvariolXMSIelERo8GUSInzclXDUNDcSLDurulv70X71y25Wzm/VBfe240udusuaDbSSkinj3Al9JwsRkcDwK2VVNZAdu8mIjPJtPNl9gA4ZEjZ/FnzDG7KFIBER6YmqX9L//d//hSiKWLZsGXbv3o0vvvgC/fv3x/z5830cHmlG32VNG3GJ7o+gp5WO3YDUTN/uI8KLwnJ6tvf7Fw3K/4XgK0urY3G/W04YbJpbLGD8tPv4Du6/RxDU9fvzpR75Mrr1Z7pERETBTVXxaufOnfjlL3+JYcOGITo6Gr169cLTTz+NM2fO4MIFHT0CJ7IwbrqE8TO86DjvJp+NZNguOe5rMXGzIADDpnp+jMkZbf+OjtV3wXbgOM+O07LAntxR38eolRQfPyDwlT5DZPQbER7XiIiIQpeqBKu0tBRdu1oPN9atWzfIsoyysjKfBEbkiNrmcfEdlJowX0vPltGzQEZmN9/vC2irfTJJy/J8W4IAJCYHR/VmVi/161oeUaBqQgMtKkZJVOISwyBhCYNDJCKi4BGqDYSI/CYpDeg9WA7a5na+KJv2Huy/mkNyzlf35ehrmdUQEZEfBcfzYABujCJ49913w2Aw2Cy//fbbbZZv3rzZ+8iIgoXOypmZOTLOF3vwLaTRF1dcooyeBcCRXdpsb9wNEkQXScKIqyRsW+06kxAtv/GC6Itaj7Sc7y6c5s5LSJZRWxVGB0xEFIZUJVgPPvigr+MgX/NjEhBOhSW9EUVg0CTr4dj9bdwN9m+21E4yKs65H1d8kut1nPU5srwfI8O0uWCoczZdQXyyjDo9JTQ6CoWIiHyDCRYFXpgUOLrnyTix3zcHO/gyCWePC8jMcbCCH89x+wQ7LkmGsRkYPFnGd+/5KRCL3Rjcnk6dXElM0Vm1rRNjrpPxzTth8iVDRBTCgumbnEUPIj+JjFI3F5cnOnZT5krSo3HTZUC27gs06LLw7KPVuYeMI7sE5AzQ57VSS29Jq7sDmQybKuGnb4K00yQREemezn4miQgAhl0R/AnIlFskQLhUo9Uur/T1PGN61WMgkJ4tISHA802Z9CyQcb4Y6DtM+4QvpZOMSg+ahHpCNACTZ0tY+4G6pMmbkTeJiIhc4SO8ENHx0ij6nXs4KCgFU72qD3TuAUREyegzVPvExRd1EWmdfbBRNwiCuqPqmS8j1sEw4BFR4TtEuiOCqIw66WrQDq05mistLlHGuOkyMrpov8/EZO236UxktH/3R0RE5AgTrBDRIR2YdV8cCiYGOhJ9iooBptwio8fAwMXgLGWJiPJxkzE3N99zkLo3xCQAE2bIyLs0CXC3fvpr+uZJRJ0cPajwoZgE3+0zEDU23frJEMTA3w/B+mypc8/Anzt3pXQKvpiJKIgE0Rc6E6wQEhMnBOUIfsESsqPaGC3itzMDgv9oUCbK7gWMnyEhd0TwF7Auu1lCup8SkqD7vJpqNlXEHZcETL0t+O8HUm/IZF5vIiKACRaFOUOEjMgY14WCuCTZ3AzTF+I6+G7bANzOAlWvbnHq4hK9Txh8MniCm61mo2J8EIMK0QHarxqR0TIGtxuYxNnQ6CZq74dAJ5oTbwz+Po9ERKQfHOSCzDQr5ATRU/nJt6h74tp3mGw1Cp4nnJ1fAUBKpozK8/45eVaxONilZY1daifZcf8+DcV3AHrky0jOkLHzu+B//hObICMyGqgpd31dRTdqMWMTZDTU+u+DNvpaGbEJftudtlScppg434fhSESkDGNLEH1pEhEFSFQQ9bUN/hIMkRdE0fsBB9SmHV36AskdZRRMCtzT8kGTJOSOkFTVFCUkA32HSxh+pYThV8rI7mO7jtY1ToIA9Bni/aALlsXVxEsj9kXHyf6cbxsAMGGmjMwc53s1Da/vbLLk9gZPlpGQHB7NsZLSQvs4L7vZ/vEFulaPiEhvogP4MMxdYZtgvfHGG7juuutw3XXX4dtvvw10OCGF5QL7IqOAkdNkdLKYDHj4lRISkmX0H+WfQmRmDpDTX/363QcAqZ1slw+5XEKvwRLifd20UQOJqcDoayWM/Zmb59hPN/LAcUrzu5756uOLjFYmrlZDTVM+CgxDhOxWzaU7eg1y/0FO/gQ2lSQifUrJDK4fs7BsIlhUVITVq1dj+fLlaG5uxh133IGJEyciMpJjSpN/pXaC+wV/rdnZvauIMrKV/3SrXXKUlHbpH+6caj9dlohIZaJoNcbdIKGhVmnSpuefGrXJH/lOejZwdLd77+ncA9j7vW/iISIKJ2FZg3X06FEMHjwYUVFRSEhIQHZ2Nnbs2BHosEIHq7A0FYpNhXz11D7UxSfBbyMcuiMhRUZO/7akKjHFeYLVb6S6mpJR14RHjUp6trYJ6fCrJI+/N3JHhMc5JyLyJV0mWNu2bcO9996L8ePHIzc3F2vXrrVZZ9myZZgyZQry8/Nx8803Y8+ePaq336dPH2zZsgW1tbUoLy/Hjh07cO7cOS0PgSio+SqnG3O90qfLJ6MFquHOgWl1EjQoO/sqyfYqNIs3j71edmuI/q657RY4OL5gaIKqhVSN549KdaM/X3sB+2wSEYUQXX6V1tfXIzc3FzNnzsRDDz1k8/qXX36JhQsXYsGCBRg0aBCWLFmCu+++G6tWrUJqaioAYPr06Xa3vXz5cvTp0wezZ8/G3LlzkZqaisGDByMiQpenIqh07inj7DEBHbuyeVBQ8WMNmWnAiYDR8NacMFPC98v984yqS1+/7MZvQrFWVi2/HbpOz3GfITIO79RpcEREGtFlVjFp0iRMmjTJ4euLFy/G7NmzMWvWLADAggULsG7dOqxYsQJ33XUXAGDlypVO93HbbbfhtttuAwDcf//96NZNZScIO0Qx8D8WphgcxSKKgsvR8gTBu2MpGA/0HiwjPsn5NiwLV6IoIDJK+bchQra7//aL1ByL1kTB8T69PW9292exvfaFUU/25ShGURTsJh2Ck+P1GWcxutB+HcHipFmdS4tjyuoFVJc53parvbq6z03ban+/OzPqGhlbvrRep88QGdExrj8Xliz3KTjZr7P72mo902fOYp5hQbR/jnHpNWfbbb++ozjanz+127NkMLi+pwL2HX7pnrdXa+RNEiqKAjqkAZ26yzh3Qv2G1J5vZ+93RQjn7JqIPOZpWctV+dhXdJlgOdPc3Iz9+/fjvvvuMy8TRRFjx47Frl27VG+noqICqampOHDgAEpLS5Gfn+9RPBERItLS9DNBTEpKfLsldQCA5OQ4JKU4KvEo6yR2iERampeTDGS4XqVT12ZcONWC9M4i0tJiMXaahC3fNGPQ2Eikptl2zokySAAazH8np8QhIclfpf9L5yYxBmlp7T8uymuxsVFIS4vyek+RkQ0AlP4PlvdUQ5URQJP5b3X3W53VXzExzq5tPQDAYFGCjo3T5pjUUWKNjopAWlqMzXLr47U+LhNlnbbX0jJiYDpnlu9vuth2LoeMi0fhlnoH2wIMEW3XQ80+Ha1zLq4ZQIudY7G3PnBgUz0uVrVlvXEOrkX1uRYAzXa3Ex0dCVFsBSDDYBCRlhZnN9aEhGikpbUf3Md2vbbPnPJaRKQBSYlRABrbHVfdpe1afl5st9f+3KWkxCEu0fIzrbyWmhoPg6ERzq5DRKTt/p3ty94yNdfSkfHXRePgTy0oO6uu71JEhAGm4xEFAWlp8ShPsL2WMTGRAIxux5OUqmwTAC6fBSx7Qf1xpaUloNJOLGqlpsbD9H3iSGxsJEyfByIitSIjDUhLi/X4/bblY98KugSrsrISra2tSE9Pt1qelpaG4uJi1du57777cPHiRSQmJuK5557zOB6jUUJNTYPrFX1MFAWkpMSjsrIOkmRZJaFk7FVV9Whx8Ps/5nrgZCGQ3bcF5eW+/+Hr1AuQRSCjSyvKy2sBAAUTARlGlJfbrl9fA1jWJ1RV1qPJb7/Pyn4vXmy0E5vyWkNDM8rLPSuQWGppadum6bwo+25b3v41x6yf1DQ22r+2yhMdZV1Jksz/bqjX5pjUUfbZ1Gxsd2y258JRvZKyjvJaepaMmKRGu++vqW7bRkVFnd3tmdZvNTreX/t9Olunvt7RsdgXFQegqm279Q6uRW2t4/iamlogScrrra2Sw1hra5tQXt7UbqntetafOQFGYytqLjaaX287LuHSdi0/L8qyvLEy9m+yPA9t+6msqkeD1SG2XSOji+sgy7LN/i3ZO/b2y9RcS0cS0huR0gkoO6vu/UZjq3lfptjr6mxjb2pqURVTv5EyDm5tWy+7j6TqM2NPeXkt6pzcV644+kxZamhgckVE7mtpaVVZ/rHmuHzsmaSkWERGuh6pK+gSLEdkWXar6cEHH3yg2b61uGBakSTZboKlLLf/nsQUIG+s6f2+jc8UUuee6venHE7btXV2LNpzdv5MhSRt7oGufYHK8wJ6DZKs9iXbOX7XrD8LzmO8dBxW6/v/HMMmxrZzb7NuO8o6yms9CmSre8by/bLNctvtmdaXXRQUHb2//Tq2+3Qubyyw4eO27Tq6FpbHGJcoo9cgGXt/EC+9p2092Ums9rdt/5yYEjbT9mWLbbYd16XXrT4vyrLs3m0JVvt4bD9fzq+Rvficxd5+ub39e5pUtL/GAJCWJaP8jLrttT+3JmrnL0vOsI7d9pqqPy5Jkm2+b90htbo+j7Ls+bkm1zK6yCg9Hbjzm9JJRuU5Xl/SXttvmWdsy8e+pctRBJ1JSUmBwWBAWZl154mKigqbWi0ComKVmyna81pV8pNOPYDLbpbQa5B22+yaq1z/zj0cf6mMvCIagiAjb4x+HhQASp+82AR9xeQPMR7MVD9+hmx+aBGMvCmO6fEO6TPE+6gElb/O5jneiICA566JyYHdP5FeBF2CFRUVhby8PGzatMm8TJIkbN68GYMHDw5cYDo1caaMy26WEBFCcyiHch/pqBjX67gjd7iMybdISHEybHPnHAOunKdMTKonk2+RMX6GHovP9vUaFA7zB1nUlGi41Ugvu376Q5+hPri+Ovwuy+wGRMW4f3VjE1W+J0DHHBMfPN8lgTLxRknzKQN8ISlV/zES6TLBqqurQ2FhIQoLCwEAp0+fRmFhIUpLSwEAd9xxB95//32sWLECR48exfz589HY2IgZM2YEMmxdEg3aF9oDKauXjGgPnvCHLQHmURqdrqbDgp4o6jMue3IGyOiZr9QYZoTBNAVaXBelaRvQrb8c9hNPJyQHOoI2kdHAZTe7fw+Pny7rsjbRLEi+S+zp0teNM+vFRYiJA7r20/VVVATxtSTPBdtl12UfrH379mHevHnmv5955hkAwIMPPoiHHnoI11xzDSoqKvDyyy+jtLQU/fv3xxtvvGGeA4tCS2yCMtxwh3QZOQMCHQ3pXaC+hAUR6D9KxslCoPSUhlH48IDUFqV8kegOnizjwinvmzZqFVpEpAxji3YHGhMvo7FO3fZSO2m224BR26QxUIKtcBa0eKLJR4Ig9beiywRr1KhRKCoqcrrO3LlzMXfuXD9FRIEkCEDBRB1/tHQcGlkLpUuVfKnLaVKavo9q9LUSpFbb5VExQJc+3m9fq8mrI6MBo5YD3HlZ0LSX1OYMkFF8gCVYT4RLLam9b4MR0yRsW6UuA0510pyciNTT+TMnIgoInZbhRl4tIbu384RCb+mGr+KJ7wBMnCVh5DR1eyiYEJg+YklpQHJH320/voPvtt0hw7d3U+4Ix9vvkS8jIbnt9Zg4GbnD9XZ3t6MmPBfreDuwTX6A7nPdsHf63Dil/u4PKRp0fk+Tbui0WOIQEywib/nxUx+Oo+pZSs5Q5lPyVISHdfZ9h1sX2toXCgL1dDwm3sm+292XnXp4v7/OPZXjTs8Krvtw/AzJHLs7UhwkhvHJ2hx/kpNW7TFxwNifhd9ImkOnysju4/kxd9bgPrdn0CRvErfwuoZqdEiXMeZ6CWIYlUITU3gfeCNY+mSbhNGtTRT8xv6MX9DuMERan6/kjkD3PBlDp6ovLBkiZHRv1/fPVGs07AoJ6dkyuueFx3UZMEbG8Csl5OQhqMqMcYneT1WRnNH27yw1yVoQnR89iU+C7qaMmHijhMwc59NdOBOT4N3+vS5Yqnh/Zo5/z3lMvHbNe4NFYpANE6C3hztRQTbdEBMsoiBi0GWvSf0RBGDKHAmT242GJghA32Ey0rM833aXvrJ57qG0zsDQy2WrkRpDbZTL5Iy2kTsNBmVABr89dfbw992TfmlxSc5ft5rqQF/lDt1QOzlyQHiRpJjmpkvxdAhzP52X6DjPd6Tra9eOr2sy9N6v1V9GXs3z4A0mWETe0uF3UGKKDEGUg65KXUsRkd413Yu4lDSpGebeUsduSpPCsT8Ljb4gI6/W+X1kJzY1T4pNk3CbGOzcK6an+sHW789S78HW92HOAN9Fq/eRBEPd0Cmy/URJzzdokEvrHJonVxBlr2v9wx2fhxOFoNHXKT+0ui4Y61zeGBlF24DeQ9z7ARUEWDUpTOsMHNmJoJjA0x3B1lzDEx3SgcmzJXOybeLPK+ntvmLbNU9Tajl888Xg7sMIf3L3iEVRhiQJQVWbEQwTdocSQ4SMYVfI+OYdQJJC68d26OXBc9/rFZ83EYUgQfBjM64QYK/pT1wiMGSK7HU/gQ7pwISZEoZODa0frPgkYML10Rg33XfHpYczFhnt2YOKQPXLax9rp+5Az3z/xRITr4er5p5egxzXNvv6IVVsgozR12pY223v9Ks4Bj6M07e4RP9+rvR4P+gxJmdYBCOioJM3VtK0qZPvC1H+T3hN82R1SPPdPrr1jQh8R3WdNolKUnPeVcSp5ta87GYnCYLofi2sM54O9KBnvQZ5/l5vB4dIz1Z5r2jEm35aviSIsvo+bkFW0NaCJ6Oghppg6icIMMEioiCU3dt1vxg1hk2VkJgqo+/QIPvmViFvnIx+IyX0GxV6x+YLvp7zSivRsbZxRsX4b/8Dxwf+PHXpG6DaQTvL0rMDfz4sBVsh1CShA5Ddy7fBR7QbVVaz+8gPCV/XXPvL0zycMkOviXYoYYJFRCHFnZqitCxgzHUyYuJ9s/1AiowCuvXTd78Yn7FT4GlfuGovZ4D6QkdiilKwNs2PluDDyY7b65Duv33Z421trzcDzySmyoAgo/8oGZNukhDfgYVEd8WEwCinntyCgiBj0s0yJt/SVtsbnyRjyBT/DUbk6W9HYorscAThYGs2Z4+zJrrBLEiKCkREzuVPkJDdR/ZZc5uhUyWkZMro4cf+LOHO3sh+NlQWMLr1Bzp1lzH8Kvs/5qKo9FdSQxCUTuCmwUw6dgMKFeJOkgAAKUlJREFUJvi/kFAw0f19BrI8lpkjo0sfz98/+loZU29TRrWMjnWztkanBVF/FJAtd1Ew0f5JczWYh6c1JT7h4TkzGGwfOGV08TyMjl0v/aPdqemQbv9csdbIPkMkMHiy6++yYEsmOYogEYWEzj182z8kPQtI11MhI4RNukmCscW72o72IiIdFy69JQhApx7Anu99snmH/F2bmtPfu/M3aJJ3IxgKgueFrCArm3nMVZfE9qNKmuQMsL9cD+KTZXTLlVG4JfB1ApFRMlqalbtpQLsJsZPSZPQeLKNDBrD2fX3fcfFJQFN9oKNoE2zJkxqBv1uJggCL1RQMTCNNJSQH9x0bHasUADwW3IfvlKfDhpumCUjp5Pm+TfNcRUZbx+DOgDOiCEy5MQZjrtfHRYqICmwcmveZ8nB7WiXr2b1lrwf+aC+lo+M+SIHUvtmeICiDlgRDs2x7A9/Y69/pqSQHtXjhhAkWEVGIGDFNxsBxErK9aIZlqVN3bX8k+w6TQqKJZSCPoHueZ+8bOlXGxFkSktpNwpyS6f7RjLlORpbFgAS5wy22oWJznXMMPh3d0mcC9JS9/TxsbvPTDTt1roTEFNvEQyt5Y2QMm+z77MVp0uvje6CTxq0w+o203/QuItJ2mVa/GwAwwM3Blfw5kqa/MMEiIgoR0bFAVi9tnkZ36Ssjf4K2P/bd84A+Gg4ZHo48bTYpirAZzKXPUMmj2oaYeCejePozCfHRrRTfQba7aX/VTAiC9d67D1BZK6Txuc8d7l4fP183We2aC/Qbaicz8JA/v4nyVfbR7DtMdpgUeaJbP8025VPRsW2DXSRnuDFkv44xwSKisGfvaV5YcPIbZogIzXbxzmhdY+eO7D7BM2S0r6R21nehKqMr0GOgjJHT7BeAu/WTkZii/TFERJr6r7kWrMO0uyPYbvGUTBmde6hb1xCh35EeI33cnLZHPjBokoQhl8voqtX3YQAxwSJSIViG5ibPiAZgwkwJk2eH5nCxJu7MHRYsyZWWYXZI9/NIXxbB542RMfJq7+8/f9WyaH2Wxt0gYegUH557DW4UQQD6DJWR3NH+68kdZZuBDxwRI5T1YuK1PeboWE03Z6ar7wONYlFzrhLaJ8x29u3qCqptMjlsquTW53fQJN//Xhku3aedesgYebVvvxtFEcjMCY4+bGqw2EjkRMFECZ26y0jLCmAQevphC2GxCUBkdKCj8K0BY2RcdrPvf5Sj3ZhXzBOi6PyH3pvCYKAmsXVEbTQjr5bQPU9GZjf3tu/OufJlITs+SdtRI9vL6ungTHp4uQeMkZCULiMzx7P3j7lORq9BEnL6e/Z+R/dpv5HW/eOCSYeMtn/7I3lQc791bl+r7cGp7a+yP5K75QxP7z13TLxRxrgbJBRMkBHvx/n+kgI8358WmGAROdGpuzK0c7jVYDGnC02CAETF+G77426QMHC8hNRM3+0DACIdHMPA8RJSO6nrr2IacTHQo8ip5uLJeXKG0n9DCPR3lYPTGR+AkS1NIy527CYjTuPCYZc+wOhrZI+bF8cnAb0GeZ5UDhjtYK6lWGDgOO3PtSy31WZY6uwocfWA5cihHbu1jVYZm2C9j4Df4+04+73s1l92ODS+OwLV9DMyyvWIrmN/5l0ybO/8xSUCE28M7hYlnAeLiIg0EZ/k5fDqKnTspsw1s+lT25/lrJ5KTUXledfb6ZoLSJJk8xRYi4cLEVFAc6OKFYMkt3OLnRM4fobkcdO1nAEyig/YvyquTl9OfxlRMUqTvopzbcuze8soOeL8SqdkAhVndTK6mbc3pZP3d+ouqx65btQ1Mk4eBE4fattg78Eyzh7zzSO5UdfIOF8s29TyaV2Tmpgi42Klb47B1w8rew2SUVYS2EeiCcm+2a5e+6KppbPnAETUnsGHzWaCWai007anx8BQLHlrY/BlsiY/6KIB6DFQeVKqldHXScifIGm6zVAQl+j50N0dMjz/LAii0uyq/b7zxrreZsEEZTS3PkNdr9ux66U5xhz0zYKs1O4KTpq2ujO/Wddc7b4fOnaV0bGrunUTkoH+I6337bOaFVm5b3oM9G3TUUBJ5DqonLep16DAfDc7Sio7pANX/Nx+TY+7o0B6I62z7FYfXysh2mSGCRaRzqVkKk9c/dEmPZhExwGDL5Mw5rrQOy+WhTqf/vYE8Q+baTLlRA8n3vWFpFSoHi0s6OnhtLsTg6N73cHyqBhliGs1TQAHXSbj8lslRDt54h6fBHRzMlnuyGl6OKEqBPF3hiOiAU6vnaVO3d3bttVVtXPu7DVRdvdOEARg1DUS+o+2/i30ev40Nwy7Qlb14MJSnyESkjNkZPf2UVABxiaCRDonCOqeuIajjm526Kfg4+gJ+fArZVScc39QB03w4+hYGJ4bQfB+cl1f19J4y1eDoQwYI2PPBgF9hgX2xnEUs2VUQ6ZIAbtOrmoKO6Qr/yV0kLBtdXDUnXTqgZCYeN4RJlhEXgqHeUcoRAXxvRsV4/7TZDW0OiWmZoLRcTKa6kPksX+ADiMyWkZLk5c7D6J73RAJGJvdf18w3WWmGqNO3YHMHMmc4JivtZ8PxpvfcT3dWik+HmAokHQ1VYAKTLCIyFaQfZFR6LL8URUEPRVlnIuKUUbBiowCvn3XNx8oT/tnJiTLqK0SlGGxL51S0aDfczvpJhlyGDzJmnijhJYmYMe3gkcJVjAYPFlC5TnBqi+T5Wd80k0ypFbZp4Xpbv1knCyCz0c71YqWd35SuoyaMkGTkQ3JOSZYREQ6FvrFSvXG3RBcZ8PuKFhOCo5qC5VDpkgoPSV4PD/fyKtl1FXL6HBprpnBl0mazTvTuSdwfJ822zIJpmkyvMkDY+LcGzlt7M8kyDKw+TPPT5CzvkeeNntM7ayM0piebTvCXXxS26Ag9oiib653Vq+2f/cbKSN3hJPPm6Mp04Lr68fu8Y26WklgvW3SGgjxHYLrAgThKSYinwuu7zEKA4YIOeRH50tKA7J6yUjt7PwDmNEFyOji+Yc0IhLm5ArQti9jUroMVoH7h2k0zYgoGcZmARGOJkp3cKv0GSrZbVI27AoJZ48JyOoFHPhRWWZvEvaUTPsb7tQdiEuUkJACfLvMt/dCRlcZpaec72PENAkd2g2376/mZpa7iVI5kb29BNOdeAsmSjhzTLDbhFqL/oJacac/W3wHGd36+S4WX9DJaSYiItJG3KW5uKLjgutJgSD4ZpJYfzIlbhGRMowtTLT8YdKNMlqNsttNRi1rdSyldVaG3bZkGk3RsqA/aJIMY4vt+wXBOoH3pdh41+s4HD7fgjcJlwB1zySzewP1F2V07iHjxy8cV9PZq5l2p/asU3dlfjNfiu8go67au8+3O3Pjdc2VdT8QTHtBVPFORETkWnQsMHGWhPEeNCnUXUoQZPlWTBww+RYJw6/0feBu7SGAF9bbM+Gq8G+IUPr8+VJWL9uj8PU+9UZQm0k5IBqA3OGy1eTVGV2A2AQZfYa0DbEuikDeGP9PP+JOH9deg5V1+430LM6O3YLsi80DrMEiIlu6K2WGr0BdiujY4P4BjFHxZNuerrnAhVMycgYE9/H7mrMn6pFRQGOwfIf48DLHJshoqA2WE+Gcv2qk3KaD0+vNLWSIACbMtLMFi+PydW2UiSyrP5kpHYGpc6Wg6h/pb0ywiIjIbMz1Es4dF9DVyaSo/uTvjuWR0cDoa5lcBQVeprAU0JwqADvvMRBoNfp/v64wuXKOp4eIiMwSU4A+Q4Ovvbs/9MiXERUrez3XTK9BEpIzZMQnaxKW3+igskD33BkFkEgNbwfkmDpXQlYv2ePmfIE0cJyEpHTZYX9BPWMNFhERkQp9hsjoM8T77fQaBKt5gJxiVhNUYuKB4VdJiI0Htq/hxfMn0SBDavXdOQ/kMO2GCGXgkfKz7h+fKAbv4DlZvez3/wsGrMEiIiIiXfKmuGwa+c7fUjNhdyLXgBUTwyTPS8/WZjt6LM4LAjDsChlpWXqMjuxhDRYRERG55kZBPeZSghGb6P8C4fArJZSebjcRs6Mw9Jh8sAztVCBPj7/mzwoEQZCRO0LGhZMCklUMbU/OMcEiIiIiTUVGAZNnSzD4shbJQUk7tROQ2kldMTzCj6WgEC6bq+bT+8EPDBFA/ngJURZzOEVEAi1N+pnA1xs5/YGc/t6nsPYmpg43bCJIRKRnLJWRHqkog0VG63+ksT7DTAcSWtVGY67X14AGo6+VUDBB0mQQEMuvxKho/1+3zj2VyZhNhl0hI62zjAFjQuse8sS4GyQMuVyyaiI7bKoUFvNetafzrz4iIgpnSanK/5MzAhsHaa9gopIEePrEXIsiW3Ss63W04s8iZmJKgHbsQFIa0KmH9tvt1h/o0kfGqGt8n1A6ah6YlKokWXGJPg9B9+KTgIx2feHSsgBDu1FpO6Tr4Kb0sRCo0CQKDNMkkokpof9FQRQouSNkJKTI6OyDwhkFVqfuQHKGhOhQHdpc49rn6DgZTfUC4jvwN8ckIhJ+qzkK5CiCoaRgooSO3QIdhe8xwSLy0MirZVRekJEZBl8URIESEan0CwhbOinURcfJ6NpX+2Bi4u0v7zFQxqlDQGpn+69rToD257rd9tTmW+nZQMkR2+WjrpFRdlpGVm/3whDYVilwgqiJt7+Snk7d/bOfQOPHjshD0bFAp5zQHlWIiAgAJt0o+7Wmqc9QGZNny4iMcrxO9zwlg0lM1UkW6oLaKPuNlDFokm2Tt5g4oEtf9f3aBk2S0He4FBKDL7hr+FX66oPWXkyccjc4rI308y09ZY5k3azUleD4yAVUGH7siIiIyBv+KF+5eniV0x/o1F1CWQmwf5N3T7oGjJJx4Ed9PC0zRACZOd5vx7SNi5X2X9f7ACQOqbhMqZm+D0MVBx+UkVfLKD0tI7uPf8NxxOdzxunjo+VXwfrxIiIiojCn1SAVXfoCEZEap406LVQOmSIhd4TEobQd8cPTg5h4oGuukyRXp/cOqccaLCIiHeqaK+NUkRAWnYGJ9MDXfZX0UmbO6BLoCEhPYuL9kFGGYZNCJlhERDrUf5SM3OEyRIPrdYn8LgwLTN4K1CmL7wDEJclIzwpQAEGgUw8Z54vtp8BJ6TJqygQkpfk5KD/p0ocfZl9ggkVEpFNMrkLDhJkSvl/OFvlhK8DlV1EExt/AQrQzzkYDHjlNhrFZRlSMBxvWS7Wl1kL1uDTEb3wiMku6NPlfSscAB0IUQmITAENEaBVwg2301OQAfKcF2SkKexFR9j+jogjPkisKa6zBIiKzEVfKaKiVkZAc6EiISM9SOgGpnWVkdguOxDEQQ5UHx5khk3BNiH0+gmCYYoJFRGaGCDC5IiIIogxZclzkFEVg+BVMIVQJ15K7nwVbrWqgjbhKwpmjArL7evBmfvRdYhNBIqIwkzdWQnKGjE7dAx0J6dXY61mC0gxPJelQSiaQN1aGwQ99fcPxI8AEi4gozGT3Via6DESzKQoO8R2AngVKsSjSQd8Uco4VKv4la3Sb8m4nLTDBIiIi8rHeQ5RiW/cBwVN86zFQRs8CGaOuCZ6YiTymYUY8cJyE6DgZOf352QlXfH5JRETkYzn9gaxeEiKjPNxAAKpDDBFA78GhUUA09c+JjAmN4yFbeuqDldULyOrFey2cMcEiIiLyA4+TK/KaIABT5kicW85N3frJmjW987cpcyS296OAYYJFRLrA/kBE5EuWw1Fn95Fx9hiQlOa//Qfjd1y/kcGboXD4cQqkIPy4E1EoGXm1hBP7BHMfFSIiX8sbI2PAaP82K+ueJ+NiZXD1wwsm3fNknC8W0G+kFOhQvJaSqfw/LavdvRKkt0441t4zwSKigErOAAZPDtJfDSIKWv7usxMZBQydwu86X+mQDlwxV4IQAsO3xSUCk2dLiNBpYuLuXdx7sAxjM5ATRg8XmGARERHpXfiUSwImLhGobgJiEwIdCTnjLDEOheTKJDLazkIdDeThjshoIH9CeH2JMcEiIiKisDdokowTB5Th6Um/fD7ohuzg30RuYIJFREREwUujp/ox8UC/ESxRE5H3mGARERERkdti44GkdBkpHe2/PvFGCWIINdsjUosJFhERERG5TRCB0dc4rvWLifNjMEQ6wucKREREFLx03qpP5+ERkQ8wwSIiItK7IB09jEhrPhtePxg+YzrJ1oPhVAUaEywiIiIiH2FhlEKNTvI8XWMfLCIiIiJSpXNPmQNXELnABIuIiIjIR0LtaX/++FA7IiLt8RkEERERkdbYNjCoWF6uhGQlieyQHphYKPiFfIL18MMPY8SIEXj00UdVLSciIqIgwkSGNDZymowR0ySkZQU6EgpWIZ9g3XbbbVi0aJHq5UREREQUviKi4HDyZCI1Qj7BGjVqFOLj41UvJyIiItIMuywFhZz+yoXq0pcXjLwX0ARr27ZtuPfeezF+/Hjk5uZi7dq1NussW7YMU6ZMQX5+Pm6++Wbs2bMnAJESERERUajqPhCYOEtCTv9AR0KhIKCjCNbX1yM3NxczZ87EQw89ZPP6l19+iYULF2LBggUYNGgQlixZgrvvvhurVq1CamoqAGD69Ol2t718+XIYDAafxk9ERETkFPuIBQVBAGJ03rApKkb5f2Q0a9n0LqAJ1qRJkzBp0iSHry9evBizZ8/GrFmzAAALFizAunXrsGLFCtx1110AgJUrV/olVmdEMfDfnqYY9BALBQ/eN+Qp3jv+JSA0zrUv7hvLTenxHHl77fR4TIHQdh4EO8vCQ7+RgCDK6DEwsMcuCoLqudACfY0C9Vul23mwmpubsX//ftx3333mZaIoYuzYsdi1a1fgAmsnIkJEWlpCoMMwS0nR+eMX0iXeN+Qp3ju+JYr1AGQYDCLS0uICHY5mtLxvqs+1AGgGAF39HhsMyrUTBE+vXR0AfR2THkRGGQC0AgjPc5PVJZB7V+7JlJQ4xCW6yrD0df/6+7dKtwlWZWUlWltbkZ5uPQlBWloaiouLVW/nnnvuwZ49e9DQ0ICJEyfi9ddfR79+/Rwud5fRKKGmpsHt92lNFAWkpMSjsrIOksSqY1KH9w15iveOf0gSAAhobZVQXl4b6HC85ov7prYWMNVq6OkcSa0AIECSPLt2w6Yq29DTMQWS6d5paWk1L+O58Tflc1ZZWY+GZnXrBvoaaf2dk5QUi8hI112QdJtgOSLLMgRBfTXf66+/7tZyT+ipcCFJsq7ioeDA+4Y8xXvHx+S237tQOs9a3jcRUYCpMKencyTDu2tnmoNJSbLJTJahx+sdHi6dd1lWcV/q6xr5+7dKtwlWSkoKDAYDysrKrJZXVFTY1GoRERFReErPBnoWyEjP1kdBjohIt/NgRUVFIS8vD5s2bTIvkyQJmzdvxuDBgwMXGBEREemGIAC9B8tIzgh0JEREioDWYNXV1eHkyZPmv0+fPo3CwkKkp6cjIyMDd9xxBx5//HHk5eWhoKAAS5YsQWNjI2bMmBHAqImIiIiIiOwLaIK1b98+zJs3z/z3M888AwB48MEH8dBDD+Gaa65BRUUFXn75ZZSWlqJ///544403zHNgERERERGR/xh028FIPwJ6ikaNGoWioiKn68ydOxdz5871U0RERERERNTe2J9JaG4EIqMCHYn+MQclIiLSOQ7fQESBlpAc6AiCh24HuSAiIgp76mclIZ1xY0YZIgoxrMEiIiIiIiLNTJkT3hO4McEiIiLSK7YNJKIgFBEZ6AgCi00EiYiIdI6tzYiIggcTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiouDADokUBJhgEREREfkIB4IkCj9MsIiIiIiIiDTCBIuIiIiIggOrBCkIMMEiIiIiIiLSCBMsIiIiIgoOHOSCggATLCIiIp1iaygiouDDBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIyFfYzpMo7DDBIiIiIiIi0ggTLCIiIiIKChxEkIIBEywiIiIiIiKNMMEiIiIi0lh0rPX/iSh8RAQ6ACIiIqJQM3CcjMM7gV6DOMoFUbhhDRYRERGRxmLigfzxMuISAx1JaElMVf6flMbElfSLNVhEREREFBR6FQDRcRI6dg10JESOsQaLiIhIpxI6KP+P7xDYOIj0QjQAXfoAUTGBjoTIMdZgERER6dTA8TJOHgS69WNzKCKiYMEEi4iISKeiY4E+Q5hcEREFEzYRJCIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijQiyLMuBDiKYSZKM1lYp0GEAACIjDWhpaQ10GBRkeN+Qp3jvkCd435CneO+QJ7S8bwwGEaIouFyPCRYREREREZFG2ESQiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgQrBCxbtgxTpkxBfn4+br75ZuzZsyfQIZHOvfLKK8jNzbX6b9q0aYEOi3Ro27ZtuPfeezF+/Hjk5uZi7dq1Vq83NTVhwYIFGDVqFIYMGYKHHnoI5eXlAYqW9MLVffPzn//c5jvoj3/8Y4CiJb147bXXMGvWLAwZMgRjxozBgw8+iBMnTlitw+8cskfNvePP7x0mWEHuyy+/xMKFC/HAAw9gxYoVyM3Nxd13342KiopAh0Y6169fP/zwww/m/959991Ah0Q6VF9f7/RH6C9/+QvWrl2Lv/3tb1i6dCkuXLiAhx9+2M9Rkt64um8AYM6cOVbfQY8//rgfIyQ92rp1K2677TZ8+OGHWLx4MZqbm3HnnXeisbHRvA6/c8geNfcO4L/vnQifbJX8ZvHixZg9ezZmzZoFAFiwYAHWrVuHFStW4K677gpwdKRnBoMBGRkZgQ6DdG7SpEmYNGmS3dcuXryITz75BC+88ALGjBkDQCn8XHPNNdi7dy/y8/P9GSrpiLP7xiQ2NpbfQWTlzTfftPr7ueeew5gxY3DgwAEMHTqU3znkkKt7x8Rf3zuswQpizc3N2L9/P8aNG2deJooixo4di127dgUuMAoKx44dw/jx43H55ZfjN7/5Dc6dOxfokCjI7Nu3Dy0tLVbfQb169UJWVha/g8ilFStWYNSoUbjuuuvw4osv2jxpJrp48SIAoEOHDgD4nUPqtb93TPz1vcMarCBWWVmJ1tZWpKenWy1PS0tDcXFxgKKiYDBo0CA8//zzyMnJwYULF/Dqq6/itttuw2effYa4uLhAh0dBoqysDDExMUhISLBanpaWhrKysgBFRcHgZz/7GbKzs5GWloaDBw/ihRdewIkTJ/DSSy8FOjTSCVmWsXDhQowcORK9evUCwO8cUsfevQP493uHCVYIkmUZgiAEOgzSsYkTJ5r/nZubi0GDBmHy5MlYvXo1ZsyYEcDIKNjY+66RZTkAkVAwuemmm8z/zs3NRceOHXH77bejpKQE2dnZAYyM9OLpp5/GoUOH8N5771kt53cOueLo3vHn9w6bCAaxlJQUGAwGm6c2FRUVNrVaRM4kJSWhe/furPkkt6Snp6OhoQG1tbVWy/kdRO4aNGgQAODkyZMBjoT04M9//jO+++47LFmyBJmZmebl/M4hVxzdO/b48nuHCVYQi4qKQl5eHjZt2mReJkkSNm/ejMGDBwcuMAo6dXV1OHXqFDuck1sGDhyIyMhIq++g48eP48yZM/wOIrcUFhYCAL+Dwpwsy3j66aexZs0aLFmyBF27drV6nd855Iire8ceX37vsIlgkLvjjjvw+OOPIy8vDwUFBViyZAkaGxvZzIucWrRoESZPnoysrCxcuHABr7zyCgwGA6655ppAh0Y6U1dXZ/V07/Tp0ygsLER6ejoyMjIwa9YsLFy4EElJSUhISMAzzzyD4cOHczSvMOfsvmloaMBnn32GSZMmITk5GUVFRVi4cCFGjx6N3r17BzBqCrQFCxbg888/xz/+8Q/Ex8ejtLQUAJCYmIiYmBgkJibyO4fscnXvnDx50q/fO4LMhqtB75133sGbb76J0tJS9O/fH3/4wx9QUFAQ6LBIxx599FFs27YNVVVVSE1NxfDhw/Hoo4+qeuJD4WXLli2YN2+ezfIHH3wQDz30EJqamvDcc8/hiy++QHNzMyZMmIA//elPbK4T5pzdNzfeeCN+85vf4PDhw6ivr0fnzp1x5ZVX4t5777UZvIDCS25urt3lCxcuxMyZMwGA3zlkl6t75+zZs3793mGCRUREREREpBH2wSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItJIRKADICKi4PPKK6/g73//u83yMWPG4K233vJ/QCGkubkZL774Inbv3o19+/ahqakJRUVFDtefP38+qqqq8Le//Q0///nPsXXrVgBAREQEkpKS0LdvX1x55ZW46aabEBUV5a/DICIKW0ywiIjII4mJiXjjjTdslpF3Ghsb8fHHH6OgoABDhgzBjz/+6HT9DRs24OGHHzb/PWrUKPzqV7+CJEmoqKjA1q1b8X//93/4+OOPsWTJEiQlJfn6EIiIwhoTLCIi8ojBYMDgwYNVrdvY2IiYmBjfBhQikpKSsHXrVgiCgHfeecdpgnXo0CGcPXsWEyZMMC9LTk62ui5Tp07FzJkzMWfOHCxcuBALFy70ZfhERGGPfbCIiEhTp0+fRm5uLj799FM8/vjjGD58OO69914AQFVVFf74xz9i7NixyM/Pxy233ILdu3dbvb+mpga//vWvMXjwYIwfPx7//Oc/sWjRIkyZMsW8ziuvvIJRo0bZ7Ds3NxfvvPOO1bKPPvoI1157LQYOHIjJkyfj3//+t9Xrv/3tbzFz5kxs3LgR119/PQYPHow5c+bg8OHDVuu1trbitddew1VXXYWBAwdi4sSJ+O1vfwsAWLZsGYYMGYK6ujqr9/z444/Izc3FwYMH3TqHgiCoWm/dunXIz89HWlqa0/X69euH2267DZ999hlqa2sBABcuXMDvfvc7XH755SgoKMBVV12FF198Ec3Nzeb3zZo1C7/73e9stvfEE09gxowZbhwREVH4YIJFREQeMxqNVv/Jsmx+7fnnn0d8fDxeeukl/L//9//Q3NyMO+64Axs3bsTjjz+OV199FSkpKbj99ttRWlpqft/vfvc7bNiwAU8++SSefvppbNy4EV988YVH8b3xxhuYP38+pk6ditdeew1z5szBSy+9ZJOEnT17Fs8//zzuu+8+vPDCC6ioqMAvf/lLq+P54x//iFdeeQXTpk3Da6+9ht/+9reor68HAFx//fVobW3F6tWrrba7YsUK5OXloV+/fh7F78r69esxadIkVeuOGzcOLS0t2L9/PwCgsrISycnJ+N3vfoc33ngDd911F5YvX45nnnnG/J6bbroJq1atskoc6+rqsGbNGsycOVPbgyEiChFsIkhERB6pqqpCXl6e1bLFixejW7duAIBBgwbhT3/6k/m1jz76CIcPH8bnn3+O7t27AwDGjh2LadOm4T//+Q+eeOIJHD58GN988w1efPFFXHPNNQCUPkWTJ09GQkKCW/HV1tbi1VdfxX333YcHH3wQgJJkNDQ04J///CfmzJkDg8EAAKiursZ7771njkuWZTzwwAM4duwYevXqhaNHj+Ljjz/G73//e8ybN8+8D1OMSUlJuPLKK7F8+XJz4mFKRH7961+7Fbda1dXV2LlzJ5588klV62dmZgIAysvLASi1fU888YT59aFDhyI2NhZPPvkknnrqKURFReG6667Dc889h1WrVmHWrFkAgK+++gotLS247rrrND4iIqLQwASLiIg8kpiYiMWLF1st69GjB6qqqgAAl112mdVrmzdvRl5eHrp06QKj0WhePmLECOzbtw8AsHfvXgCwag4YHx+PsWPHYs+ePW7Ft3PnTtTX12PatGlW+xs9ejT+8Y9/4Ny5c8jOzgYAZGdnm5MrAOjVqxcA4Pz58+jVqxe2bNkCAE5rbW688UbcfvvtOHXqFLp27YqvvvoKRqPRZ4nIDz/8gNTUVAwYMEDV+pa1caa/lyxZgg8//BCnT59GU1OT+bWzZ88iJycHCQkJuOqqq7BixQpzgrVixQpMmTIFKSkp2h0MEVEIYYJFREQeMRgMyM/Pt1luSrDa9wuqrKzErl27bGq9AJhrvcrKyhAfH28zIIarPkb2VFZWAgCuvfZau6+fPXvWnGC1H/0wMjISAMxJR1VVFeLi4pzWoo0aNQpdu3bF8uXL8cgjj2D58uW4/PLLkZyc7Hbsaqxbtw6TJk1S3V/rwoULANrO5ZIlS7Bo0SLcc889GDFiBJKSkrB37148/fTTVsnWjTfeiJ///Oc4efIkAGD79u14/fXXNT4aIqLQwQSLiIh8on3Bv0OHDhg4cCDmz59vs65pfqb09HTU1dXZjDpoatZmEh0djZaWFqtl1dXVNvsDgNdee81ugtajRw/Vx5KcnIz6+nrU1tY6TLIEQcCsWbPw4YcfYvr06fjpp59sBtTQiiRJ+P777/HnP/9Z9Xt++OEHREZGmhPcVatWYdq0aXj00UfN6xw9etTmfSNGjEBOTg5WrFgBWZbRsWNHjB8/3vuDICIKUUywiIjIL8aMGYONGzciKyvLYY2UqUbsu+++M/dvqqurw6ZNm6wSm8zMTNTV1eH8+fPmvkUbN2602taQIUMQExODCxcu2DRXdNfo0aMBAP/9738xd+5ch+vNmDEDL7/8Mp588klkZmZi3LhxXu3Xkd27d6O2thZjxoxRtf7Bgwfx7rvv4vrrrzefx8bGRpuJhz/77DO77581axbee+89AMANN9xg7rtGRES2mGAREZFf3HDDDXj//ffx85//HHfeeSe6du2Kqqoq7NmzBxkZGbj99tvRp08fTJkyBfPnz0dtbS0yMjLw5ptv2jQZnDBhAmJiYvDkk0/ijjvuwOnTp/H+++9brZOUlIQHH3wQzz77LEpKSjBixAhIkoQTJ05gy5YtePXVV1XH3rNnT8yePRvPPfccysvLMWLECNTU1GD16tV48cUXzetlZmZiwoQJWLduHf7f//t/NonIK6+8gr///e8oKipyur/169ejoaEBhYWFAJTaJkBJQLOzs7Fu3TqMGDHCbm1aVVUVdu3aBUmSUFVVhS1btuDDDz9E9+7drYZcHzt2LJYuXYqCggJ069YNn332GYqLi+3GM2PGDLz00kswGo0cnp2IyAUmWERE5BfR0dF4++238dJLL+GVV15BeXk5UlNTUVBQYDWoxXPPPYf58+fjL3/5C+Li4nDrrbciPz/fagj01NRUvPzyy3j++efxwAMPIC8vDy+88IK51svkF7/4BTp27IglS5Zg8eLFiI6ORvfu3W3WU+NPf/oTsrKy8NFHH+Hf//43UlNT7dZQTZ06FevWrbM7IEZDQwNSU1Nd7mvBggUoKSkx//3II48AABYuXIiZM2di/fr1uOGGG+y+d8uWLZg9ezYiIiKQmJiIvn374rHHHsNNN91kVWP1wAMPoLKyEi+99BIA4IorrsBTTz1lnrPMUkZGBgoKCgAoySYRETkmyO2HFSIiItKZRYsWYfXq1fjuu+8CHYpLjzzyCEpLS/Huu+/avDZ37lyMHj3aPGy8J86fP4+JEydi9erVViMf+lJVVRUmTpyIP/zhD7jpppv8sk8iomDFGiwiIiINFBUVYd++ffj666/x17/+1eZ1o9GIw4cP4+WXX/ZqP5mZmS6bGGqltrYWR48exdtvv434+HjOfUVEpAITLCIiIg3cd999qKysxK233opp06bZvB4REWGeTytY7N+/H/PmzUN2djYWLVqE2NjYQIdERKR7bCJIRERERESkETHQARAREREREYUKJlhEREREREQaYYJFRERERESkESZYREREREREGmGCRUREREREpBEmWERERERERBphgkVERERERKQRJlhEREREREQa+f8effSXsUdM9gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 11])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, 1/Day\")\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "948d53f6", + "metadata": {}, + "source": [ + "A pretty visual reduction in variance can be seen\n", + "\n", + "##### Zooming in" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "185d7f36", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAUGCAYAAACMyxAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd7wcVfn/PzO7t+bm5t7c9EogIQmBFBIIvamIVAEbUqSJiAj4VRQFCwoqX1QU/QkWpIkoti8IiIjSeyCd9N6T2/u9uzvz+2PnzJw5c6btzu7Okuf9euWVu7tTnjkzc855ztMUXdd1EARBEARBEARBEHmjlloAgiAIgiAIgiCI9wukYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARQQoWQRAEQRAEQRBERJCCRRAEQRAEQRAEERGkYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARkSy1AOWOpunIZLRIj5lMqkinoz0mEQ10b+IN3Z94Q/cnvtC9iTd0f+IN3Z/4EvW9SSRUqKrif97IzrifksloaG/vjex4qqqgqakOnZ190DSqAR0n6N7EG7o/8YbuT3yhexNv6P7EG7o/8aUQ96ahoRaqmvA/dyRnIwiCIAiCIAiCIEjBIgiCIAiCIAiCiApSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIoCQXBEEQBEEQRFmg6zo0LQM9JvkkVFXB4OAg0uk0JbmIGbncG0UBVDUBRfHPFOgFKVgEQRAEQRBE7MlkMmhp2QVNy5RaFBvNzSo0jdK0x5Fc7o2qJtDUNBaJhH+2QDdIwSIIgiAIgiBiT2dnK1Q1geHDRwPIz8IQJcmkgnSarFdxJPy90dHe3ozOzlY0No7M/bw570kQBEEQBEEQRUDXNQwM9KKxcRSSyYpSi2MjmVQBkAUrjuRyb4YObUBb217ougZFyS1dBSW5IAiCIAiCIGINc/NKJMg2QBQW9ozl4/ZJChZBEARBEAQRa6ykFvFxDSTer2SfsXwSqZCCRRAEQRAEQRAEERGkYBEEQRAEQRAEERm33/4d3HLLV0stRskgR1aCIAiCIAiCKAC33/4d/POfT+L88z+BL33JrnDceust+Pe/n8GnPnURzj//E/j4x8/2PNY3vvFtjBkzFtdddzWeffYl1NbWOrZpbW3Br3/9S7z11htob29Dff0wTJ8+A9dccz0mTz4gyksDAOzatRMf//jZeOihP+LAA6ea319//VegF6FY2cc+dhYuuOAinH/+Jwt+rjCQgkUQBEEQBEEQBWLUqNH497//hS984QZUVlYCAHp6uvHyyy9g1KjR5jaPP/6Muc/99/8W69evxe23/6/5XV1dHVauXOF5rptvvhG6DnzrW9/DmDFjsW/fXrz55uvo6uqK/Lq8qKurK+r54gYpWARBEARBEARRIA45ZBY2bdqIV155Caec8kEAwHPPPYuDD54BVc1G6yQSCTQ1jTD3qa6uRjKZtH3nR1dXF5YvX4Zf/vK3mD17LgBgzJixOOywOZ77aZqG3//+ATzxxN/R1taKyZMPwJVXfh7HHHMcAKCzsxM/+ckdePvtN9Df34/Ro8fgyis/j1NO+aBpdbvkkk8BAObOPRy/+MWvcfvt30FfXy9uuy2rIF577VWYNm06Mpk0/vWvp1FdXY1rrrkeRx99HP73f2/Hm2++htGjx+LrX/8WZs06FADQ1taGn/70f7F06RJ0dXVi4sTJuOKKq3D88SeZx9y9exfuuutO3HXXnQCAV15ZBABYunQx7r3351i7dg0aGhrxgQ98CFde+XlTwS00FINFEARBEARBEAXk9NPPwtNPP2F+fvrpf+D008+K9Bw1NTWoqanByy+/iFQqFXi/hx++H88++wy+9rWb8dBDf8I555yPm2++EWvXrgYA/Pa392DLlk348Y9/jocffgzXXfdl00L1m988CAD4+c9/hccffwbf//6drud56qknMHLkaPz2tw/j9NPPxh133IbvfvcWnHDCyfjd7x7BAQdMwW23fct0LRwYGMDMmbNw550/xUMP/QmnnvoR3HLL17B58yYAwPe/fydGjRqNz33uC3j88WdMC+COHdvxla9cjw984FT8/vd/wre+9T28/vqruPfen4dv1BwhBYsgCIIgCIIgCshpp52Bd99dhObmfdiyZTM2blxvWrOiIplM4qabvoV//OPvOO20k3DttVfhvvt+hW3btrruMzg4iIcfvh833/xtHHHEURg/fgLOOec8nHDCSXjiif8DAOzZsxvTpk3HjBmHYNy48TjqqGNw5JFHAQAaGhoBAMOGDUNT0wjU1w9zPdf06TNw8cWXYuLESbjsss8ik8lg4sTJOPXU0zBx4iRcdNFnsG3bVuzbtxcAMGbMGHzqUxdh2rTpGD9+Aj796Ytx2GFz8MIL/wEA1NcPg6qqqK2tRVPTCNPa9/DD9+O0087Axz72KUycOAlz5szDF75wA5544u9FiQsDyEWQIAiCIAiCIApKU9MILFiwEP/851Po6urEiSeegtraIZGf5wMf+BCOPfZ4LF68CCtWLMfLL7+IRx55ED/4wY+xcOHRju23b9+G/v5+XHfd1bbvU6kUDj98AQDg7LPPwze/eRPWrVuDI488GieddApmzpwVWraDDppm/l1ZWYkhQ+owZcqB5neNjcMBZF0DR40ajUwmg4ce+h2ef/457Nu3D+l0CoODg5g4cbLnedavX4cNG9bhmWeeNL/TNA0DAwNoaWnBiBHB3S5zhRQsgiAIgiAIgigwZ5xxFu699xfo7e3Ft799W8HOU11djaOPPg5HH30crrzyanz5y9fhoYd+J1Ww+vr6AAA/+tHP0dTUZPutqqoKAHDsscfjL395Aq+99grefvsNXHPNlbj00ivxmc9cEUquZNKudiiK/TtFYQV+NQDAH/7wMP7616xL4pQpB6KmpgZ33HEb0mlv98e+vl6cd97Hce65H0cioSCTsaxWDQ0NoWTOFVKwCIIgCIIgCKLAHHvsCbjzzh+gpqYW8+bNL8o5FUXBpEmTsGzZUunvU6ZMQUVFBfbu3Y05c+a6Hmf48CaceeY5OPPMc/D73z+Axx//Oz7zmStQUVEBAMhktMhlX758KU444SSceuppAIB0Oo0dO7ZjzJix5jbJZIXj3NOmTcemTRsxYcJEJJMq0unoZfODFCyCIAiCIAiCKDDJZBJ/+tPfoSiKaa3JlY0b15sWJgBQ1QRGjBiBb33r6zjzzHNw0EFTUVVVjcWL38FTTz2BT3/6EulxamuH4BOf+DR+9rMfI5PJ4LDD5qCrqwtLl76LkSNH45RTPoj77vsVpk+fgSlTDkJfXx/eeusNTJ6cddNraGhEVVUV3nzzNYwYMQIVFZWRpWifOHEiXnzxeaxYsRy1tbV45JEH0N3dbdtm7NixWLLkXZx88gdQUVGJhoYGXHjhJfjc5y7HT3/6I5xzzkeRSFRg06YNWLFiOb7whesjkc0PUrAIgiAIgiAIoggMGRKN8nH11ZfbPtfV1eGJJ57FjBmH4NFHH8aOHduhaTrGjBmDSy+9EhdccLHHsa5FY2MjHnzwPuzatRNDh9Zj5sxDcOmlVwLIppC/556fY9euXaipqca8eQtwww1fAZBVGm+44Ubcf/9v8Otf/xKzZ8/FL37x60iu8TOfuQI7d+7Al750DWpra3HuuR/HkUcutG1zxRVX4847v49PfvKjGBwcxCuvLMK0adNx99334je/uQef/eylUNUEJkyYgNNOOzMSuYKg6MVKp/E+JZXKoL29N7LjqaqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Y5YnlJTKjc0wp9c7o3Xs9bQUIuKioTvMShNO0EQBEEQBEEQRESQgkUQBEEQBEEQBBER8bKxEgRBEARBEEQA7lqzGG+07CrqOY9qGosvTZ9X1HMS5QdZsAiCIAiCIAiCICKCLFgEQRAEQRBE2ZG1JJE1iYgfZMEiCIIgCIIgCIKICFKwCIIgCIIgCKIIvPvuIhx33AJ85jMXQNPs6cOPO24BXn31ZQDAFVdcjLvu+l/b7w8//ACOO24BXn75Bdv3119/Db73vW/mJM+LL/4X//M/1+KMMz6A445bgI0b1zu26ezswK233oJTTz0Rp512Mn74w++hr68v1Hnuu+9XuOIKey2uN998HR/84HH49a9/mZPsjz/+N1x77VU49dQTcdxxC9Db6yyb9Oabr+Ozn/0MPvjB43DuuafjgQd+i2JUqCIFiyAIgiAIgiCKyLZtW/Hcc/9y/X3evPlYvPgd23dLlryLUaNG275Pp9NYuXIZ5s2bn5McfX19OOywObj66i+6bnPrrd/Epk0bcddd/w933HEXlix5Fz/60Q9yOh/jhRf+g69//cu44oqrcdVV1+R0jIGBfixceAwuvvgy6e/r1q3Bl798PY4//kQ88MCj+NrXbsH//d9f8cc/PpKP6IEgBYsgCIIgCIIgish5530cv/3tvUin09LfDz98ATZt2oj29nYAQCaTwfLlS3HhhZ+xKVjvvbcC/f39mDdvQU5ynHbaGbjsss9iwYIjpb9v3rwJb775Gm666ZuYNetQzJkzFzfccCP+/e9n0NraktM5n3rqCdx66y34n//5Ki644KKcjgEAn/jEp3HxxZdi1qxDpb//97/PYcaMmbjkkssxYcJEHHXUMbj44kvxpz89UnArFiW5IAiCIAiCIIgi8qlPXYRnnnkKjz/+N5x//iccv8+ZMxeqqmLJkndw0kkfwJo1q1BbW4uPfORM/OIXd6GzsxP19fWmVWv8+AkAgKVLF+MrX7nO89w33vgNnHrqRwLJuWLFMtTXD8OMGTPN7xYsOBKKouC991biuONOCHHVwGOP/QH33vsLfPOb38Mpp3zQ9tuzz/4Td975fc/9f/SjuzFnTrDEJoODg6isrLJ9V1VVhebmfdi1ayfGjRsfSvYwkIJFEARBEARBEEWktrYWl1xyGR566D6cfvpZqKmpsf0+ZEgdpk2bjsWLswrW4sXvYO7cw1FbW4upU6dh6dJ3cfzxJ2Hx4ndw+OGW9WrGjJm4//4/eJ57+PDhgeVsbW1xbJ9MJjF0aH1oC9bGjetx990/wS233OpQrgDguONOwCGHyK1RjJEjRwY+35FHHoU///lR/Pe/z+HEE0/G7t278Mc/ZtumtbWFFCyCIAiCIAiCeD/x0Y9+DI899igee+wP+MxnrnD8fvjh8/HGG68ByMZfHXts1lo0Z87hWLz4HRx99HFYsWIZbrjhRnOfqqpqTJgwMWJJFcl3OhRF9r07o0ePQXV1DR555EEsXHg0Ghvtiltt7RDU1g7JQ047Cxcejc9//lr84Affxa233oyamhp8/OMX4P77N0JRChslRQoWQRAEQRAEQRSZyspKXH75Vbj77h/j3HM/5vh93rz5ePTR36O1tQXLli3Btdd+CQAwd+483Hffr7B69Sr09fXZElxE7SI4fHgT2trslqp0Oo2uri6HguTHkCF1+MlPfo7rr78G1113Ne6++1dobGw0f4/aRRAALr74UnzykxehtbUFw4Y14J133gYAjBs3LpTsYSEFiyAIgiAIgiBKwGmnnYE//OFhPPzwA47f5syZB1VV8dhjj6KysgqTJx8AAJg9ex42btyAl156HmPGjLW5ukXtInjoobPR0dGBNWtWY/r0GQCyqeZ1Xcchh8wKfBzGsGEN+NnPfokbbrgG119/NX72s3tNJStqF0GGqqoYMSK733//+28ccsihoZXDsJCCRRAEQRAEQRAlQFVVXHXVNfjOd252/FZbOwQHHzwDf/3rYzjqqGPM7+vr63HAAVPw97//BSeddIptn7Augp2dHdizZzeam/cBALZu3YJMJoPRo8egvn4YDjhgChYuPAZ33PE9fOUrX0c6ncZPfvK/+NCHPozhw5tyuuasknWPQ8kK6yLY0tKM1tYW7NixHUA2xquqqgrjx09EbW0tNE3DH/7wByxYsBCapuGZZ57Cc8/9C3fffW9OcoeB0rQTBEEQBEEQRIk44YSTMG3awdLfDj98Afr6ejF37uG27+fOPRx9fb05179ivPLKS7jssgtx4403AABuueVruOyyC/HKKy+Z23z729/DpEkH4Prrr8GNN16POXPm4itf+YbtOMcdtwBPP/2PwOetrx+Gn/70l0gmk7jhhs+jra0ttOz/939/xWWXXYg77rgNAHD11ZfjsssuxOrV75nbvPzyC7j66svxuc9ditWr38PPfnYPDj10duhzhUXRi1HO+H1MKpVBe7uzcnSuqKqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Ugm4+WAlUyqSKe1UotRMnbt2olPfepc/P73f8bEiZNKLY6NXO6N17PW0FCLioqE7zHIgkUQBEEQBEEQRE68+eZrOPvs82KnXJWSeC0BEARBEARBEARRNnz0o84MiPs7ZMEiCIIgCIIgCIKICFKwCIIgCIIgiFhj1bTdf+PQiGKRfcZC1lG2QQoWQRAEQRAEEWtUNTtlzWTSJZaEeL/DnjFV9U9m4QbFYBEEQRAEQRCxRlFUVFXVoqurHYlEEkAe5oXIUZBOk2UtnoS9Nzq6utpRVVULJQ8TFilYBEEQBEEQROyprx+OlpZdaG7eWWpRbKiqCk3bf9O0x5lc7o2qJtDYOCqv85KCRRAEQRAEQcSeRCKBkSPHQ9MyiEsVV1VV0NhYi7a23v26TlkcyeXeKEpWwcrHegWQgkUQBEEQBEGUCYqiGC6C8UBVFVRWViKZHCQFK2aU8t5QkguCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIIjYsruvB2lNK7UYBEEQBBEYUrAIgiCIWLK7vwdXLvoPvrz05VKLQhAEQRCBIQWLIAiCiCXbe7sBABu6O7C6s7XE0hAEQRBEMEjBIgiCIGJJTSJp/v3YtnUllIQgCIIggkMKFkEQBBF7GiqrSi0CQRAEQQSCFCyCIAgilujc3xUKDVcEQRBEeUAjFkEQBBFLdN1SsXrSqRJKQhAEQRDBIQWLIAiCiCW8Batfy5RMDoIgCIIIAylYBEEQROzRdf9tCIIgCCIOkIJFEARBxBKN06o0kIZFEARBlAekYBEEQRCxRyMTFkEQBFEmkIJFEARBxBKds1qRgkUQBEGUC0n/Td6fzJo1C1OnTgUAHHroobj99ttLLBFBEATBo3F/6+QiSBAEQZQJ+62C1dDQgMcff7zUYhAEQRBucDqVRvpVJPxp61qs627HLYccWWpRCIIg3rfstwoWQRAEEW9sLoJkwYqEh7esBgCs7mzFjPrhJZaGIAji/UksY7DefvttXH311TjuuOMwffp0PP/8845tHnnkEZxyyik47LDD8IlPfALLli0LdY6Ojg6ce+65uOCCC/DWW29FJTpBEAQREbxKRTFY+TOQsWqJdVPhZoIgiIIRSwtWb28vpk+fjvPOOw9f/OIXHb8//fTT+MEPfoBbb70Vc+bMwYMPPogrr7wSzzzzDIYPz67InXPOOdJj/+1vf0MikcB//vMfjB49GuvXr8dVV12FJ554AnV1dTnJq6pKTvt5HSvKYxLRQPcm3tD9iTc53R9uUz3svoSDvnTa/LtXSzvuCbVvPKH7E2/o/sSXUt6bWCpYJ554Ik488UTX3++//3588pOfxPnnnw8AuPXWW/HCCy/g73//O6644goA8I2vGj16NABg6tSpOPjgg7Fp0yYcdthhoWVNJlU0NeWmmHnR2Dgk8mMS0UD3Jt7Q/Yk3Ye7P0MFq8281oRSkr92f6Oni0oZUOccuenfiDd2feEP3J76U4t7EUsHyYnBwECtXrsTnP/958ztVVXHMMcdgyZIlgY7R0dGBmpoaVFZWYs+ePVi7di0mTpyYkzzptIbOzr6c9pWhqgoaG4egra0HGkV1xwq6N/GG7k+8yeX+8H1rKp1BS0t3ocTbL9jR1WH+3d7VZ7YnvTvxhu5PvKH7E18KcW/q62tQUZHw3a7sFKy2tjZkMhmMGDHC9n1TUxO2bNkS6BgbNmzAt771LaiqClVV8Y1vfAMNDQ05y1SIF0rTdHpRYwrdm3hD9yfehLk/fNxVRqf7mi89KSvuKq1pjvakdyfe0P2JN3R/4ksp7k3ZKVhu6LoORQnmY3n44YfjySefLLBEBEEQRD5otjTtNHHJl14uBiutaR5bEgRBEPkQyyyCXjQ2NiKRSKC5udn2fWtrq8OqRRAEQZQzllKlk4KVN70ZS8FK6aRgEQRBFIqyU7AqKysxa9YsvPbaa+Z3mqbh9ddfx9y5c0snGEEQBBEptjTtJZPi/UOaU6rSpLASBEEUjFi6CPb09GDr1q3m5+3bt2PVqlUYMWIERo4cicsuuwxf/epXMWvWLMyePRsPPvgg+vv7ce6555ZQaoIgCCJKdHIRjBTeCkguggRBEIUjlgrWihUrcMkll5ifb7vtNgDAtddeiy9+8Ys4/fTT0drairvvvhv79u3DzJkz8dvf/tasgUUQBEGUPzpnw9JACla+8CpVmlwECYIgCkYsFayFCxdizZo1nttcdNFFuOiii4okEUEQBFFseJWKYrDyh7cCpsiCRRAEUTDKLgaLIAiC2D/gFQLKfpw/NhdBsmARBEEUDFKwCIIgiFhiU7DIRTBveJWKLFgEQRCFgxQsgiAIIpbwShUlucgfPqaNFCyCIIjCQQoWQRAEEUt4t0CdLFh5wyupg1qmhJIQBEG8vyEFiyAIgogl9hgsUrDyhW/BQbJgEQRBFAxSsAiCIIhYYncRLKEg7xMopo0gCKI4kIJFEARBxBJSCKLFluqempMgCKJgkIJFEARBxBJewaI6WPmj2f6m9iQIgigUpGARBEEQsYRPbEEKQf6QkkoQBFEcSMEiCIIgYkmGCg1HCq+kUlZGgiCIwkEKFkEQBBFLeBWAsgjmD6+kksJKEARROEjBIgiCIGKJTkkuIoWsVgRBEMWBFCyCIAgilvDqAMUP5Y8taQgpWwRBEAWDFCyCIAgiltgtWKRk5YtdYS2ZGARBEO97SMEiCIIgYokmfCadID90smARBEEUBVKwCIIgiFgiWqwo0UV+2LMIEgRBEIWCFCyCIAgilohKQFoXbVpEGPjMgeRuSRAEUThIwSIIgiCKyv2b3sNNS1+11bmSIbqxpTRSsPJBJwsWQRBEUUiWWgCCIAhi/+Kv29cDAFoH+zGyqsZ1O7FWU4osWHlhzyJIEARBFAqyYBEEQRBFg7dadacHfba2qwGDWqYAEu0/UNp7giCI4kAKFkEQBFE0etMp8+9frV/hua1oryIXwfwgCxZBEERxIAWLIAiCKBoDnBVqRWeL57ailYUUrPywZREkCxZBEETBIAWLIAiCKBr9GUvBOqppjOe2GrkIRgqvU5F6RRAEUThIwSIIgiCKxkAmbf49tnqI98aGFlCpZocqsmDlBxUXJgiCKA6kYBEEQRBFo5+zQvnVtWIWrISiACCrS77wMViidZAgCIKIDlKwCIIgiKIxwLkIan51sIyfFSiFFGm/wZ5FsGRiEARBvO8hBYsgCIIoGrzVyq/QMLOyKKYFi7SCfLArtNSWBEEQhYIULIIgCKJo8EqVn4sgI0EWrEjgVSqKZiMIgigcpGARBEEQRYNXsHwtWDqzYGU/k1tbfmiURpAgCKIokIJFEARBFI2gVivA0gFUsmBFgr3QMGlYBEEQhYIULIIgCKJo8FYrv2K3um6PwSLyg1eqSL0iCIIoHKRgEQRBEEUjw9Wy8pvkWxYs9pnUgnywZxGktiQIgigUpGARBEEQRSPN12IKmEVQJQtWJNhdBAmCIIhCQQoWQRAEUTQyYWKwWB0sKjQcCfYk7dSaBEEQhYIULIIgCKJo8DFYms8knykBlosgkQ82CxY1JkEQRMEgBYsgCIIoGnwWQb9JPvudXASjgZJcEARBFAdSsAiCIIiikQmRKpxZuBSWpp20grygNO0EQRDFgRQsgiAIomhktPBWFNWMwSKlIB+4picXQYIgiAJCChZBEARRNHgXQd8sgro9BquceGjzKtyxalGs0qGTgkoQBFEcynHcIgiCIMqUTIhU4ez3cswi+Ni2dXi5eSdSIbImFhpe1/NLMEIQBEHkDilYBEEQRNHI2JJc+GQRNC1Y5Zvkws9KV0w0SnJBEARRFEjBIgiCIIpGOicLVsHEKTiZGClYtiyCMZKLIAji/QYpWARBEETRsFmw/LIIMgsWcxEsQ6UgTgqWLclF6cQIja7raB7oK7UYBEEQgSEFiyAIgigamRDFbnUxTXsZkolRDJbdXbF8VKzHtq3DpW/9G8/u3lJqUQiCIAJBChZBEARRNNIal0XQZ5LPflXLuAxWnCxYvMVQi49Yvvxl+zoAwFM7N5dWEIIgiICQgkUQBEEUjUGNT3LhvS37vdySXPBKVawULLM9ywt2/zNlqWITBLE/Um79LEEQBFHGpLSM+bdvDBbsMVjlAm+lS8fJRdBsT7WsamL1ZNIA4pWRkSAIwgtSsAiCIIiiEc6CZY/BiqtSoOs6nt29Bdt7uwGEK6ZcTFh7JhSlrFwEGV2pwVKLQBAEEYhkqQUgCIIg9h96Mynzbz+FSYzBiivLO1pw97qlAIAnjz8bS9v3mb/Fy4KVRVXi5boYFKXMLJkEQey/kAWLIAiCKBrdaV7B8kbMIhhXnaB1sN/2+dcbVph/x0mR4Qs3x0eqMJSn1ARB7H+QgkUQBEEUDV7f8HOfM5MysDpYhRIqTypUayjVdB3NnMIVKwXL+D+hqGVZU6wc3RoJgtg/IQWLIAiCKBq8W6DffLlcklxUKNZQurKjxfZbRouPi6BpEVTiq6yK8IpgXGPwCIIgREjBIgiCIEqCbwyW8bOlXsVzgs1bsJ7ZvQVVasL8PBgrBSuLUkYugnz7zapvKqEkBEEQwSEFiyAIgigJvlkEBQtWXJWCJGfBenHfDhw2zFIEerikHqXG4XJZBm6C/Vra/Lu+orKEkhAEQQSHFCyCIAiiaOi2vwPGYMW80LB4FSkuc+BAJoP4wJJc8J/iDd9+WllITBAEQQoWQRAEUSKCWrBYCFZcDS6iopjia30VWxgPrDTt8bYI8gxwhanjVFOMIAjCC1KwCIIgiJIQuA5WzC1Y/MT/2BFjbQpWrNSYcnQRzJCCRRBE+UEKFkEQBFES/NI/sAl13LMI3rNhufm3CsXmIhin1OKOumKlFCYgfRkrBosULIIgygVSsAiCIIiS4GdBMS1YpktbPCfYO/t6zL816EjH1EXQak/xm/hicxEsoRwEQRBhIAWLIAiCKBq8TuU3vbcsLuWDpus2C1YclRhmwYqTdc0NsmARBFGOkIJFEARBlARfC5YYM1RogSIgo+sYtMUNlVAYAV3XocBSWONqEeThswhmdLJhEQRRHpCCRRAEQRQNflLvN71nablZkotyMGBouo5+jU/NXhyhu9Mp/HfPNgxq7mnhdWSVK6XMFFZGnJRVgiAIL5KlFoAgCILYP/G1oBg/KzFPcsGT0XUM8G5tRTrv1Yv+g/bUIB7avAoPLDxVuo0Oe1uWg8LKPyNvtu4uoSQEQRDBIQsWQRAEURL8LBKaIwYr/hpBW2rArlQVSYtpTw0CAJoH+123YS6C1sAf//Ysh1TyBEEQIqRgEQRBECXBtw6WMblOlJEFq5+zXgHFsWAFVUJMddVoz3KIaCoHGQmCIERIwSIIgiBKgn8MVpZyqtuUEZSdYsj80r6dAbe0J7koBx9BsmARBFGOkIJFEARBFA1+uhx08swMWOUw1eZrYAEoihIzoKX9NwKLweKShhRQpqggCxZBEOUIKVgEQRAR8ezuLfjeyrccVgxCjq8Fy2hHtYxcBMV7XwwFoVJNBNpO1w1roNGcWlmoWJaMTZXVJZSDIAgiOKRgEQRBRMTd65bizdbdWN3ZWmpRAvPcnq1Y09lW9PMqCFAHS0jTXg42F2etpsLLnOKsZg0VVb7bWy6ChZEnSvhEKOVQt4sgCAKgNO0EQRCRUy5JGfb29+Kna5cAAJ48/uyinJMpVQoUX+sOm1ybLoJlML9OixasIsic5pS6SbVDXbfTzRis8nER5JUqqoNFEES5QBYsgiCIiAnqslVqBsV4oSKiKkFisEQLVvxJCxasYlhdeAuWl9sfq4NlxbTFX2PRuGekHOQlCIIASMEiCIKInHKJGUqqlpzFihtjZ1GgBM4iyNqzHKbXWgmyCKZ4pc7jhKwOVnlZsLi/y0FggiAIkIJFEAQROeIkO668zKX3bvUoUFsIVEUJXAdLKSMLlnhFxUgzHsqCBSsGqxweU779yiMpB0EQBClYBEEQkWCbCJbDzBXAg5tXmX+LBXKLgV8zWdYu8Zt4Ma2uoaTnTwV09dQBoNxcBLm/qSYWQRDlAilYBEEQETCgZcy/yyFNu2ixCjpJjwpV8Z/g67oOFfGvg+V1HcVo1ZRuPXveyn0ZugjaLFgEQRDlASlYBEEQEdCfsSa5v1i/tISSBKN1oHQKFpvk+2YRRDYpQ9zxVGqK7CLoqV7pootg/FUs3i2wXCzDBEEQpGARBEFEwIbuDvPvTT2dJZQkGEnV3v2nHPWbCgOz9gSqg2UkZbA+F06ufPBquWK0atqmYPnFYCllZcHiIQWLIIhygRQsgiCICPjBqrdLLUIoxHTiKc7FsdAoyFqmgiRpLweFwGviX5Q07dy9DKSDlFMMlq3QMEEQRHlAChZBEEQE9BdRQYkC0SWQfc7oOm5a9ioe2bK6oOdXofhbsKBDVeKfQ9DrOophdMkEzLSXbU+urlgZaCx2JbAMBCYIggApWARBEPslaUHBYkWHd/X1YEVHCx7durYg59VDWCScykk8J9jeaSUKL7MesFGz1iBLXS2HtOf2QsMEQRDlASlYBEEQETCyqqbUIoRCzHTI3MzUopiLlGBZBA2LS9xNWKXOGsmf3Vtpysa0qeVjwBIKDZeDxARBEKRgEQRBRMJpYyaXWoRQOGOwsp8TSnGGBQWKb9ICDfYiw3GdXnumaS+C0EGd6HRkU96bMW1xbVAOnSxYBEGUIaRgEQRBRIBaBunEeRwWLCOGrBjXoSjZLIZpXfeJX9KhKErsFQK/2lOFxqaE+MaD8QprTBuUg7fIxV9agiCILKRgEQRBRAA/sT20vqmEkgTDYcFiLoJF8sdLGoqcX1KGMvAQxN6BPtffil0c18/pMusiGPcWtRD1xTi6CaY0DU/t3ISu1GCpRSEIIiaQgkUQBBEB/ES6HCawYpKLYhUaZlYT5orodV5dFxW++E2u13W1S79ng2sxFIKgcUrZtPcW5VBXSpQwjhL/v/VLcc+G5bhnw/JSi0IQREwgBYsgCCIC9ICpsuNCWphcDxougsVwG1NgFTr2ShBhxQxZn+PG6s5W6ffFVLL1gG502fZUYt2eIuLzGEeZX9m3EwCwpQwKjBMEURxIwSIIgogAW6xIGVgGMi5JLgoNaxnmIiha0ng0PevShjhbBDnZeCnVAC6QUcE/bm7nY88kK/JcLjitbPF7t9jiRG0yWWJJCIKIC6RgEQRBRECY+k5xQLRgpfRiRgspSBougqIcPNkYrPhnEWTYFKwiFvO1WbBczse+VrgWLUcXwWJkZQwLe3OKlYGTIIj4Q70BQRBEBPCT3HKYuGZcYrCKJbmlYHnEYMHu0hZ/LEmLasGy/e1iwWJ/KPbU93GnHCxYjGQZWQYJgigspGARBEFEgGb7O76TQIbDgsUUrEIrh8bhk0a1W08FS9ftg1QMFVd+Ss3Pr5mCVWyJvSPamIug37bxoXzUK7JgEQRhQb0BQRBEBNhrEZVQkICwulcnj5oAwIojKQYKrMmoZwwW4p+UgZdJ5iJYjGfB5p7qckL2NZ/2vhxiBUUZ42wdTpKCRRCEAfUGBEEQEcBP+8rBgtVvKFRDk5UA5C6CXhn+coUdscIniyCflCHONFZUAQAOHFIPu4tg9v9iZGUMkkXQ+p4r3FxIoSKiHN4lhhr3h5UgiKJBChZBEEQE2C1Y8Z8U9mcMBauiAoA8TbtWoMQXigIkDD81t+QaZlIGJd5JLpiCeHjjKJu7Y7tRdPYfOzcVXIZgdbAMhVXhv4lji3pTfhITBLE/QgoWQRBEBPAr7cXMx5cr/VoaADDMsGANMlc9bgZbCAsWg7lTick2GGzyr8JSsuI4uWbp7hMlTHBgr8Hmso3xf7nFYIkugXFevIivZARBFBtSsAiCICLAVosoxpNAxoBpwTJcBHVmwbLY0tMV+XmZ4uSXpt1Kxx3vnHdMCS1lgoMgFiwrBotL1B7/x7SsklwUckGCIIjyghQsgiCICCi3QsOmi6BoweL45YZlBTm3AgUJ3yyChgWL165i2K6WgmVXA6fVNQAo/iDr7iDIZREsmjT547BglUiOIJTDwgpBEMWBFCyCIIgIKLdCwwOGi6BpwTKTXFjS96ZTkZ/XTHLhk0VQ4ywuccbNRbChMpv8YtawpoLLYE9y4V0Hyx7TFv8n1WHBirES41VygCCI/QtSsAiCICLAlhyiDCauA0ZSi7qkmOSC36ZwE8aEj4sgb3Gxvosfbi6CrOhsMdzG7Gna/bcxvyuMOJEiKlRxljlVwPeFIIjyghQsgiCICNDKLIvgYCY7GaxJJJFQFGmSi75M9BYsdnzLkOJvcYlzWvGudDZboGjBYjFmxXYbc7dK8YWG42kVfGzrWnzhnefN+EDAuVgRZ6vbe52tpRaBIIiYQAoWQRBEBNjqYMV3DmjCLFhVagKVqmoWHuZF78tk0J9JR35uBVYhXre2YkpqNotg5CJExqNb1wIAegRlVDWELoY10249ddsmS5wLDT+0ZTW29HZhWUez+Z1DxHiJTBAEIYUULIIgiAjQytRFsFJVUaEkTAuWaCFYWaBVeStVuEsWQXO7uDsJZmke6Ld9NtPQF0GJsSmpri6XBjGvKwbAptSzd8lUyGMotRrzOEGCIIoPKVgEQRARYI+Did8kUGRQy6BSVaEoimnBksm9r78v0vPq4oTZx4Jls7hEKkm0iK6ALEtisV0EXRUQrj3jDlP+edQYmzErVZpKEQRhh3oFgiCICAjiphUndN1ScirUBDRkrS3F0AcUhS8eHCTrXXwn1wwdOmYMbTQ/FzMGy/bsuelXxv/loLD28zFYQhr8OMocR6saQRClhRQsgiCICCi3JBcadFPJqTBW4FPSNNPRXgs7mmp+diuMa7d0Zb+LVJRI0XTdZmVJFDOLoCCH1zaKosQ2yQWDdxE0nxelNBbBIPAyxVE+giCKDylYBEEQEWCb5JbBirau6+YAYKYU17QiZWmzMgO6WVz4Noy3OpBFvAzTglWM9uRO4XY+XeIiGNeFAN5FkCkscXYR5J/hYijUBEHEH1KwCIIgIsBuwSqhIAHRYLnpsRpOKd05PS/UpbSnBgC4p7YWLRfZ7+LbsOeOP8hmbUsU0eJidxH0sWBxpZvj2pq8gsWuLRHjVP38W5OhYsMEQYAULIIgiEgoTwtWdtKaVIvnzsZ4ZvcWAMC/jP9FmChxj8AaXlkNFcCBdcNsgiaKmEWQd7vUIbdM6TaLYJxbFLY6WOxSmKIdN6ubqNCWQ4kGgiAKDylYBEEQEaCXWQyWDitjN3NnS0tcBAtxJUGm92a2wWxGjAJIEQ26rkM12m9FR4v5vapkB9hiWrDUAG6JMW5Kk14uBmuQq9cGxM+C5VSwyIJFEAQpWARBEJFQbhYsTddNS4apYBUhi2BQ5VOmmMSxVXXoUF2UFlVRiqNgGaew3BIl2xj/K1B8a5CVmt60pWD1GcpWTTIJIH4ypwWFKhMz+QiCKA2kYBEEQUSAPZNYCQUJiEwxkE5eC6AghDGiqHzMUAwtg5oud7lToSChqEV1EfSK+5KJEcPmBGApVQDMAtjVzIIVM5nfbNlj+0xZBAmCAEjBIgiizNjc04mN3R2lFsMBr5zEbZVdBq8Y8G5jcZGcWQEVJd4xWK4WLCXrJlhMa6apYEnOyZ7JbExbnFsU6MmkzL810/3Ru25aqehOD9o+UxZBgiAAIFlqAQiCIMJw7bsvAACePP7s0goiYK9FVDIxApNVDAwFi2Vo83Ati+68AWOwzCQX8VYGNLhbsFQUyUWQZdoLkLlQVfgsgvF8UDOa5XZnJrmIaRbB6oR9GkUWLIIgALJgEQRRRuzt7y21CK7Y0rTHbhpoR9d1m6LD/s+muCiC7IqCs8ZNAQA0VFRKNykbC5auSwv3KkDxXATNTHtGkgvJOW3fxbBB+fTmsjQriiL9seSs7263fSYFiyAIgBQsgiDKiCXt+0otgit2C1a8J1lmwgNmwTL+bx3sx9O7Nku3jfrcRzWNAQC0pwY9N+RrS8WxVXXo0oFUUZSsi2ARLVjJABYsW6HhQgoVkpQmV7DEemhxSyDzj52bbJ93x3gRiCCI4kEKFkEQZUOcXe/sFqx4JmRgmGm9he+/teINPLt7a8HPrwDY3NNlySOzuPCWCyWe7mGAPZbtgNqh5vcKjCyCRZDakeRCGoPF5LJKDcepPQc5BUt8lwC7oh0nPjJmsu3z33asL5EkBEHECVKwCIKIPWwCXpVIOL6LC8WoHxUVTFE1LVge2xbqOqq5eymmugbsMVhxziLIJ7lYMHy0+b2iFC+LILtJXsWNzeeTd7mMUXPaLVicYOazanyMkcwAUJussH1urKgukSQEQcQJUrAIgog1z+zagnNffQrbervMVM1ANrlAnBAnfnGOw7IsWPYkF8U6OwCcPGqC+c2AJlGwuKx3TBlrGxwovHgh4S1YKheLpcBq30K7CdqKMrudz9KvHPvFgZSeMf+WScXaOG4ugmIbHt44skSSEAQRJ0jBIggi1vxi/VKkdQ2P79hom8xoEqtHKdE4hQAoD3dGM8mFpwmrMHWwKtUEpg9tBAAMZDKObfg4MWYV6NfSju1KjQ6dswTyCpZiWrYKr2BlCe4iaP8uDvRwxYV1ScIY1fMhLSGGqONrhgCgNO0EQWQhBYsgiLKBV1paBvtLJ4gENq8Kkiq71DiSXBTz3FyzsLbKSJRl1n4qFFSo2aEqJbF0lRpdt5Jc8PWwFMXbZS9SGYz/PQsNc+qULOthqfknl1yFv8tM6t19PQCA/ky8lGwmX9K41+kYv/cEQRQPUrAIgsDHX3sKZ778RKxXXxXYJ6qrOttKJ4wEZjVgk+o4uV+J6KbyksXLRbAQV2EWOPbYxlICs9YuIJ4KlgZLYVEFC5aXAhkl7H4mzDTtkm2M/6VFkWPAwYY1E4D0odvW1w0AeHzHxiJJFAwzg6PKlOn4PaMEQRQfUrAIYj+nOzWIPsNFa01na4mlcUdRFJvSMqa6toTSOLEmucyKUEppvGFTwFJbMhSP7IB8DJZpwYrZ5FXnrGyAvT1VWIrhgOZ0gYxUDuN/TwtWzJOGVKnWdIR3cdR13aaIx9VyXUEWLIIgOEjBIoj9nD5u8vdejBUswD5xjJu1TZzklocFiykGHttGfW7ub6+JPq8QMDnjpBAAvKKa/d82oCqKmfWy0AoWwzsGy/qu31hQ6S+SXEHgFRN7DJbd0nkEl6kxDpgugmTBIgiCgxQsgtjP4ScEsQ0kR3aSxU8c0zFzFzNjhsogBstWYwrFzSKYTQphP6+spXgZzRTdRZAvDEwRUFwsWFWGBWswUywXwQCFhhXgP3u3AQB+s2FFQeUKA79g4ozBUvCpiQcDAIZXVhVTLF+Y4mpasGLWLxEEURpIwSKI/Rx+MlbBpUGPI3wxUlntpKjRdB3NA32Btg2SyS0u8Nah7P+eW0d+bkWwnEmtfcZXKmfBipvSamW4g/G/PU17VZFcBHf2ZxNAeNbBEu45ALSl4pP23m750W1/KwqQMBo5ri54lgUrnvIRBFFcSMEiiP0cPlZoMEYuQwCwj1NuFCjY1N1hfi6GgvWztUtw6Vv/xuaeTt9t2WTbTHIR43mWmPq6mLFYOqyYGstF0LmdZcFSTEUsbkqr5qGoKoqCSmPSXWgFKxPAghVnl1VAsGDxdYb1bLsmXZTHjd0dWNHRUgwRpTBxkgpTAMmCRRAEKVgEsd/DrxzL6hGVEj4lc4Wqop1bcU8XIYsEc6V6tXmn77ZimvY4T2gtxcD+v4xCxGCJdaOkSS64Wl1WDFZu52wb7Mft772FtV3RZp4UFVWHBSuRBGBXsO5ZvwxnvvwEulKD0cjANQpTQrzrYMUTzRZ3ZY/BAp+RUXDBu27xi7hp2avoTZcmfbvpImhYK8mCRRAEQAoWQez38JOxYgXjB8W+qq2jK50yPxczo9zftm/w3cZK0x7/LIKlLN7K143ychE0E0jAUshytWD9v/XL8HrLbvzPkpdz2t8NUVG1pWnnLFiDxsKFput4yqj39Mv1y6KRgWsTKy28VwyWJePoqvhk4rQ5Ber2XxR4K+MA0Fqi7IJWHSyyYBEEYUEKFkHs5/CKQNyKePKr2s/s3oL2Qd6CVbyJTBDF01GLKNYWLMs6xP8vI+oFeb5ulBLAMqUo+acVf6Nld077+aFzboz8/4A8BqsrbVmt2iOKf+ItuUFdBG+cfjgA4OgRYyKRIQrsViun/KqHMg4AvZmU9PtCw55JMwYrzisrBEEUDVKwCGI/x+YiGGML1oCWwXaj2CgQv5ViJo3pIhhDV6G/bV+PK99+zkwWIlMMCokuKHbm95JJM3suE4piWtri1qJiwWZ+QFVgpWlnsY19nBvbzPrhkcjAv79WoWH3JBcJRTHd2eL0iPKyiOkusrff2zJcOhfBLFYdrHj1SwRBlIZkqQUgCKK08JOxuMVgedWUiV1GOTHRQOzUAeB3m94DANy07BUAdpc2N6KMJbPigOxJIWRnYEpghaJGmvq+N51CbbIi7+MAzoLNNguWwlmwjPeqh7MQR/Wu8Vn1WKY9mYugmTQEljUoTs+ozYJlq4nFaqE5t+PpKZEFi+GWhIMgiP0TsmARxH4OP2kdjFkNF6/JSrEVrDafGA8rTXv8swi2GwkWrAK5RbJgifW3PCxnKcPqU6kmPBWxsLy0b0cER8kiFmy2xWBBcbgIbu3tMn/vjcgdly1CDEkkPZNcWG6h8Ux7r7v8beJjxVzZUZoi6WYMlkoWLIIgLEjBIoj9HF6J8bIYlQKvCWCxV99TPsqnVgYWLBE20S5Wrgu3+luy+2xasFQ1UoVgXE1d3sdgiAWbVa4dFViZ5di19HBJWqKaiDML1uQh9VySC+exWdOpnMtlnKwtdquVPR4rm0nSe7sndm4stIhSmAwVZMEiCIKDXAQJYj+HVwTiNjnwkidusoqZ+eJkHXCj2EkETSsKs2B5WM6YkpBUVNPSFYW7YpSX7HR5tGcRZAMse1Z5q1VUzwdLW55QvC1TGvd8xjGmzc2CxWKwFInMvHvkofVNhRTPFdNyzQohx8wLgCCI0kAWLILYz9H0+CpYXhRbgfGzOLDg+6SZ5KLQEuXOLCPBgkwxEInyMtixRMuZ7BwZ3uLC9o9AmCgti+wZVE0Llj2LoGhR6uUsWFE9v0zJSCqqZ4kAWV2xOC0C2JUqXfhenkmSt9SNqx1SSPFcMetgkQWLIAgOsmARxH5OnF0EvSwWxZbUr7Axk7Uc0rQzmEJQLEOWmFnRK/26pbwoedfBssuQ9yEAZJNUXPrWvwFY03+7i6DiSJvex1mwono60pJsi7L3mH3DW7BipWDZat7ZfnCtg8Vbi0p9LRSDRRAED1mwCGI/J84WLC9p4mbB4mNcgGiz70UNiwUy9QEPDSvKdPOmBUusgyXZlndps+pl5SZLTcJaS8xEdF/+sn2d+bcqdRG0rpNZmfgyCFE9vywFfFLlsi16JLlQoXhuVyq8LFjZYtPZz7zM6Rj0Xey0lEWQIAgeUrAIYj8nzjFYpVawGiuqzL/92kYzLVjxdxHcbGSzYxPtYmURdBQ49igey9o7a5kx9s/xvG6JEfJhV1+P+bcspkzlLFjMomSv9RSNHC0D2eyW1WoiUKFhRbEG/lJbfXjck1wA4JRsvtkyMVCw2H2sIAsWQRAcpGARxH5OxuaaE58JFwBPDasYslYahWKBIBYsHSq8M+PFjSLnuLAm+eb53ZVR3uLCtsu1Tfm9IksuwR2HyZdQ7C0qWjX0AixmpIzncnhltakoS+tgySxYMXpG3ZJcAO61u+ztWRrFpiM1ACBbTiArR3zalCCI0kEKFkHs52i6fMISB7xjsAovaxj3yez0TkFPOhtnM6iVpmhzx+CAWUPKDzFdeqEx07QLsV+y+8zHYKkelq4gaKJFJAIOHtpo/s3k4/UrVbG+txQsi6gsaWa2RdW7IDNfFDmeLoL2e2S1j10p5y+Nl75Uis1gJtuyI6tqAMRLaSUIonSQgkUQ+zk2C1YJ5ZBRahdBvm380i/rug5VAZZ1NAMAfrpuSSFFk7KttwsXvvkv/GTN4kDbm7FQHvnao2xlTbRgeaQLl8Vg+eQZcaUQE3FeiZVlYxzQNC7GzFCwbO9aNHKw5CsJhXdJlLgImhasmGYRFETRue/dklzoIRZACoXpIsiS28SoTQmCKB2kYBHEfg4/MYkyoUGhKcZEJowFKxuMb02wd3IxOsViUeteAMDLzTsDba8I/8t+ixQ3C5aHS1uC277TcMcKf9rorbR8TSumqPIugm+27HbUGSukq2JS8bZgsW/sWQQjESESxPvC268UKJ7xekDpFBvzOVXjZxUkCKJ0kIJFEPs5hXCfigovhS+qbHBe8G3jG4MF3VYHqRSEjUPxktdy34sO0yolqG9SCxbvImh815NJY29/b+jz2lOAR3NFfMp1WSueOW6KT4xZJGKY9zxrwTJivjxcLpUyyCIIyFL6O5VHe4Ke0tjfmQxJsmARBMFBChZB7OfEOclFyV0EQ0zgmCtTKQnrJsXklSlaXm6DuSLeMy8lzlKwVJss77btDX9e23FD7y6lP8O5CBryre5qM78bU11r/m26CNpkishF0My2aFmwPJNcKIqp4PZwhY9LjfhsWG2mQ1FcimFzu8QlTXvc+lCCIEoDKVgEsZ+jcYpD3JJceFFsF8G0z/k06AVRSsIQWsEKYMEqRL55MfZLZqm00rTbvw8rjXjsqBQb3oLFFJYBTumqUhMOBbIQljQzyYXiLGzMw1waeUvre52teKc1vMJaDJgibMZgSbMIWizvaCmJkmVZsJhVkCAIghQsgtjvscVglVAOGZ5ZBIsegxUsTXspydWCJbUOFMAeF8qCxSW54AnrhunnepYrNhdBSRbBSjXhqcBG8fz2Z9L43ab3AAAJVTUVvV39zvi/u9ZmE5/8Y+cmm5z/t2ND3nJEgeM+2ax+ltWN31BUlld2tEQq09+2r8c965d5bmPFYJEFiyAIi1LPBwiCKDG8G1wu8S2FxGuuwtSd7b3dWBHxxIphzyLoZ8EqjFtdGHKNwZJJXYiCqVaiBRjn9VdAxHitdV3toRRJUUkvpAWLl7VStYZXptTZMuBFIMNL+3aYfycUBa80Zz8/u3ur534JTk4+WUcpERVfftnHzYIlNmLUb9/vNr2Hp3Zt9ix7wOROelgPCYLY/yAFiyD2czKCG5xfOvJiEiQG6+p3/oublr2K/gJMFMNbsBRHsdliElZ5MBUcD5GjnC6yyaiZ1twjMxwfM8TzzO4t+Mu2dYHPKerFUcVgySxYU+uGcd8pThdB7jqjmIizpBZAdoLfHTCmim/T3pjEYblZGnXAiMFi37vvk1QLM6XxUuhZr8DuRZwShxAEUTpIwSKI/Zw9gtWqEJaL3AnuIvhmy55oz6zrtslSKkiadgU4c+yUSOUIg59lR1T+FH/9KlIcdbA8suwxy6rMJfDhLasDn9NhwYqqDhb3nrDrOGHkeIyrGYJPTJxmfC/Iwru3RSBHklOwdvf34uLJMwEAk2uHeu7Ht2lc1AFRMXHmEJTUwRK2qlQTBZHNa9FJMy1Y5CJIEIQFKVgE8T4mrWm+A/7TuzYXR5gc8LRgCb/ebcSYRIU4pRrwsZANaBl0pAYxrKIyUjnC4HevJwoTb+bS5uWqF60FK/u/ow6WlwUrT/VPbJLoCvzyCpbxv6Lg1ws+gEsOmGl+BuRtGEWZgQrVapsBLYOGyioAwJbeLs/9+Ge01KUFTITmMC1Y5jPDNuOcB4V9CpWq3SvBDZMnyepgkYJFEARIwSKI9y2aruO8V5/E9YtfDL1fXPASRYzZmD60MdJzi+3Q46Fg7ejrNv8+e/yBkcoRBt/YJJckE8WaY+uiBctDATGTB0iEm1BTF/qc5ueInm+/rJKyc9qVg2hdBCuUROB3t4Kz9MRFwRIVXz63qQK5tVO8t4XKIuhl1ecXAhTEq/8kCKJ0kIJFEO9TBrQMNACbejpD7RcnB0EvdNgnqVOHNkR6fHGiNOgR6M7H41QnkqhUVTSUwJLVlRoMtb2V5MI+yT66aQwumjwDQLSp+01rBAQLluQUZmFcQ8ZzOMV1Qm1wBcsZgxW9BcsNh4tgAeRgVKqqZzIGN+I6CbDFYMF6Vm1KqrBPSRQs439VyRZwLpf+kyCIwhJJ3zo4OIh77rkHq1cH94snCKKwpHJMVhGnFVi/NO28FcEvy19YxIQBXhPqCkV1fPaL2Yqa/kwaLzfv9NxGlEhUdBjXTJ2N4Ya7WZRYqddFuSQugsb/bGLNZ8YL84w6swhGQ5BYRVnckCVH/s8Hr1BUqGpOMUilznzJcBYatv7nZfS691H2XfziTcajb7ESt2Tvd5z6T4IgSkckClZlZSXuvfdedHaGWyknCKJw5KpgReVCFQVekuiwx1xEHX/Rlc5ag5iLmpdLWFJQsBKKWvRsjO2pAd9tHAqWZG5966FHobGy2n2nPBAtWKqHiyB7DllKcV6JDSOSo9BwZAV+reO4KilC3JA9yUX+MvDX8qHRk3AQl8Uwl2PECVExViXKqih7lNfCv71+LoLZNPLZDKJxbU+CIIpLZN4Bs2fPxsqVK6M6HEEQeeLl0uZFnNIMe9bBEi1YEU9smIJUnUjaPstgZx5fMwRANuC9UO5KbuSiUJtJLjgF4dD6JuOv6C0bZgyWkL1QptRrwrZDkhXWb6EsWHIZ8iVIe4sukPZzR2vBGlpRCUVRMKKy2vPOibGKm3o6Y7Go4lSW7NYhSZ1hB1G+cxqnVHn1LRqshQJViVf/SRBE6YhMwbrxxhvx6KOP4ve//z22bduG3t5e9PX12f7FiS1btuDCCy/EGWecgfPPP7/U4hBE5ARVsNiEmrmERexplydeExsdGY2fBEVrMWJpuGsMt6sgge5jqrMKVkJRbRO0YsAXjB1dXRtoH1madjHpQZSPA3u2xJgvryQXTAkckkw6fgt0zgKkadeEFP5uCo3XdUbRrpphZ/nYhKnmd6qiOOITAeDUMZMAAJ+eNN1xnIEcF2OiRKYIs+8UKOZkxTsGK7p3zl4f0GNxRdctiyy5CBIEYZD03yQYn/jEJwAAt912G26//XbpNqtWrYrqdHnzjW98A1/72tcwe/ZstLa2llocQqAjNYD6ZGVs4gPKkcGAFg02UUzGsFCmp4ugbl9ZjnoVnlmsqhJZBcu72CiLLbJc3zRkJ+LFytLWl7YUrDEuCpbYRrI07Vbii0LAWSTgncHOnFwb2zBLIgDs7u8JfkYxyUXgPd0JOpH3SkMfxePKJvMVXIFd1qYadNO90hDC+D37/0fGTMY/d28BkLs7cZQ4FSzuO8Uli6Bo9Yqw77IVGfeqgwXdbFNVUWLRlmHY09+LYRWVtveLIIj8ieyN+v73v182k+G1a9eipqYGs2fPBgAMHz68xBIRPOu723HD4pdw7Iix+PrMI0otTtnyfzs2BNqOKQ57B7JW5p50CiOragomVxi8pksa9IIWRWbtwhIHBAmuZz0gi9sqpoLV61OnC5DFYDmVKdGtIcosgmJmQPF72XdMHn6PXf29WctBgLYtRKHhlGDmfa/TZZFOcGvjFYIo2jUjWPkATsHSdSS45rGKPGe/XNg0JmYKlpDkQrdUrGyMk3M7pwUrumfVbsHySnJhtX92YSU+C1R+dKcGccXbz2FkVQ3uP/JDpRaHIN5XRKZgnXfeeVEdCm+//Tbuu+8+rFixAvv27cO9996Lk08+2bbNI488gvvuuw/79u3DzJkzccstt5gKkx9btmxBdXU1rrrqKuzbtw/nn38+LrroosjkJ/Lj7ZY9AIBXm3eVWJLy5sV9OwJtJ044n9uzFVceeGghRMoB7+xdhVSwmIugqWB5yWL8zya3zHKQ1jUki5QI+w9b13j+vry9Gdu5el2AvA6WqXQVQC+0XATZ//IkF80Dfeak301BHdAygVbdHZaRCCbhogVLzDjJKLiLoKRWGJvsZ3QdFdy27LJZe/ZnLLfAXOM1I8VhabS7YBa7DpZmU7Dc+5kMLEU/6yIYmQgFp8Mo67BvIF4hHATxfiBym/D69euxYsUK7N69G+effz5GjhyJLVu2oKmpCXV1wWqX9Pb2Yvr06TjvvPPwxS9+0fH7008/jR/84Ae49dZbMWfOHDz44IO48sor8cwzz5jWqHPOOUd67L/97W9Ip9N455138Pjjj2PIkCG4+OKLsWDBAsyYMSOna1bFnMN5wI4V5THLDf7a49QO5XRvxImGl8yi4nBg3bD4XKNkcq0iu0qcXd/mZGduOhHJnjGOXcVZsNyOrSuWi6CqKkgwly2leM/LZqHeGX/ejK7j68tfc+yTULPy8pYgtp+laCmRXEP2GPZ2YodVuHba0duNz779H05GFaqqYELtUCzvaDG/79PSqK3gVQgXxJTwLvdkUesevLJvJ74wbY7N5U5GRrG/M+NrhkiP6dWX6XB/noLCpv2sjQBO2RKukz2j7J4z11cASBlHKuV7rwunVhT+uVSQMGTTFd3xjJrHQHTXwMvz4r4dWNA0Wr6driNhPs+KZz+RK4Uae3TuOdagI+nz3BNyymlusL9RynsTmYLV09ODb3zjG/jXv/6FZDKJTCaD448/HiNHjsRPfvITjBs3Dl/72tcCHevEE0/EiSee6Pr7/fffj09+8pNmcopbb70VL7zwAv7+97/jiiuuAAA8/vjjrvuPHj0as2fPxqhRowAARx99NFavXp2TgpVMqmhqCl70MiiNjUMiP2a5MGSfVX9n+PAhsXM9LYd70zloT9nt9Ywqhh/RCWMn4KVd2zFlZGNBnulcqOt21mJKqAo0TUeyIoFUtfVsVFRmu7Oo7k9NX7ZQ8JDqSqADSFQkXNulXunP7lNVgaamOlRVZGWpb6zFsALUk/KjQpDVrQBtbU0VmprqMGSvVRSZ7Te0O5uqvaamMrLnYU9b9rmsNtqpdkf2vHVDq81zvNm917ZPY0Mtmhrr8JUFR6ByeQKPb866vg4ZVo2mIf5ypXvt/UdVdYXjenRdx7defAMAcMyECfjIpCnhjlmRlLZRSyJr2aqoSKAtmUK3brlxKoqSd7vWtGfbb2id1X6VxrM3rLEW9dyzV2m8Hw3DatHUVIcPDz8Qt658EwDwfOtOzJ0wtqR9G5OPLaAMa6jF8NpsLGEioWLYsFpzO/MZNd47Rs2Q6J5V/h7/Z882fPfo4+QKiKHINjXVIZlQoUEvWP8Z9f1pTVqW14qhlRheXe2xNeFHOcwN9ldKcW8iU7B++MMfYvHixXjggQdw+OGH29z1TjzxRPzud78LrGB5MTg4iJUrV+Lzn/+8+Z2qqjjmmGOwZMmSQMeYPXs29u3bh+7ublRXV+Pdd9/Fhz/84ZzkSac1dHZGZ15XVQWNjUPQ1tYDrZx8DSJkjGp18nuau3xXk4tFOd2b1kH7xKOlpdtlS2AwlZ18K+nsNXV09KEl4b59Menq7nd8x1ygBgZTuPnNV8zvBwayk4Wo7k97Zy8AQMno5vnc2rGtI7ttajCDlpZu6JmsRaC5pRvpSrn7WNQcMKTetGKlUhmbrG4uYAP92Wvq67VkZPt1G23f2zvg+fwERVUV0+I4OJhGS0s3+vuz5+3s6rPO22NfHOjq6EOLlv3t4vHTTQVrb0s3qvv9F19a+nttn3sk1zPAucv19Qz6Xu++PnuSjXRak+7T2Z09956eHlz4n6dtv2manne7dhr3qL/Xktl89lq7kaqw7muf8X50dfajRbGf98nNG/Cl2fNL2rf1G/KpStaVtLWtBxV92WvRNA1dxjjbP5A2r7Wjw35vO7v7InlWAaBZuMfb9rajvqLSsV1G05FUjPfGaLp9zV2Rxl4Wauxp6bKusaW1G3qVfxwn4aSc5gb7G4W4N/X1Naio8C/qHpmC9eyzz+Lmm2/GUUcdhUzGPpiPGzcOO3YEiwfxo62tDZlMBiNGjLB939TUhC1btgQ6RjKZxLXXXotPfepTAIDTTjstcPyWjEK8UJqm77cvaoa77sFMxp4JKwaUw73p5zLKJRXFU14zmQAXHB+X65MlJGCWfk0HOo0YAsCKzYjq/gwaE9VKI7tixqNdWJYxxTg/c9NKZbSitWUtF4+k6/Z+KZ1xiSHRnf0X+2zWbpJskyvM7Yq1E2T3TJbwwvitUrEGtYFMJpBcYgY42fOd4sasBLzfFyDbL/HokD8b7FJ29/U6foviPTOfO+4esVildEaDluBcwLj2Fc87zqjfVsq+zdYPGTJmzGuC9axw8ov9g65F96yKde/602nUJZwuqZquZ61umm5GW6YzWkHc7aK+P3y/kNaK11e9XymHucH+SinuTWQK1sDAABoaGqS/9fT0IJHw1/byIWhGKcYpp5yCU045pYASEbnCx9WkNQ3weXQ6U4O4a+1inDv+IMxuGOG98X7CIDdw+vUpLGCfKQVxGh5kMevMgiXGjkUtN7P6sEQKnlkEmWxmkgumlJU+Oxvg/gzI6mCJRNmuZjp7ocCx/RyK8MmeIW/KkHps6un0LPxsQ0yeILmPKdt98r/ioCUQGN3pQcd3UbQri7W0JbkwF0rk5+PHyU9OPBh/2rYWRzWNiUCa/NCFa9Ghm++/wj0FfJISh4IVoTxiHOtARm4F1qE7yg6USyZBvn+i+l0EES2RLbEcdthhrnFP//rXvzBv3rxIztPY2IhEIoHm5mbb962trQ6rFlGeBM3exHh8xwa83boH35AE8e+v7OLqBPkN9mwiljAsNXGaG8hEYZMYMRtclOnEASvteW0ygIIlpMtmMkaZ1cwPe/rqYG1j1cFyUgi7MbtnYnp4Xdeh6zruWb8MrwvZQxPCwtmk2qEAgk9iM8J24mfAfp+CLHKu7WqzfXa7zUxyeS+W/7NhWX2soTzhMskXn1EAGF1d4yFfcWHSmgsoum57bmUZJyU2w8jk+c+ebbbPm3s7pdtpOmxZBLPfxagT9eCdtn3m3+UiM0GUC5EpWNdffz2effZZXHrppfjzn/8MRVHw4osv4sYbb8QzzzwjzQaYC5WVlZg1axZee82aTGuahtdffx1z586N5BxEaeEnOF71Rxi8mxiR5TcbV9g+e6WmzugaFFidQbxWX52yuFraIhabpS4emszGXXi1i1XfKfs5UQIFywu3yZNpzfC0/kd3DVYtJucZ1nd34Kldm/Fai13BElOdh1VeHVYOyW6BrWEGYrp7N0TZ7XKFOqUUsw6WJE2707pjf0Z5+eIwuTYVLMn7rUBeB8vtGFHwl+3rbZ//37plrmd1WLBK35yB+NO2tebfsoUHgiByJzIFa8GCBXjggQcwODiI733ve9B1HT//+c+xbds23H///aFinHp6erBq1SqsWrUKALB9+3asWrUK+/ZlV1suu+wy/PGPf8Tf//53bNiwAd/5znfQ39+Pc889N6rLIUoIP5ENMvE5eGhjIcUpS0ZU2gsFeyoHyBbDjVu2RjfYan2hJ4XMRbCpsto4n/u2bNLHJlgs/iI2LoKuFqwsUgtWAR4Hy+XLOD83mXazVotyhLUSiNvJ9tvNJcIIYgkdV23PSOWW0KDQr5S0DpbipmAZv7sUJS41uqAs6tBNt7yd/T2m3LY6WAGU51wZU11r+9zgkg1UB19PrrxcBHli8AgQxPuKSOtgzZ8/H3/4wx/Q39+Pjo4O1NfXo6amxn9HgRUrVuCSSy4xP992220AgGuvvRZf/OIXcfrpp6O1tRV33323WWj4t7/9rVkDK+40D/ShsbLa4foSVxa37cWIqhpMNFxzCs1KrtaNn4tgRtfxs3VLCixR+XHiqPFY0Wm1o6YDCZfHTdOzky5ZjEOpkUnCu0CNrqrFnoFe123zOrdxwIoAyhJTvtgksBQWLHsBVvffeERXPelx85JKPJa7i6CbkiImubHaNpjyasYeGX/LFKh71i9zbB/kmAxZdrnsOd1bNgqX1oyg2Gf/zv7vpljyzcwrM6WGSWBaqHXg/3ZuBGC8R+y6bK6wbkfJnzkNI7F7t5U46wOjJ0q302E9z/2GW3EcFNawlKPMBBFnIlOwmIteTU0NqqurUZ1HPYWFCxdizZo1nttcdNFFuOiii3I+R6nY1tuFz7/zPE4cOR43zpif9/F0XccL+7ZjVn0TRgkrblGwurMV31yRrQ/z5PFnR358GU/t2mz+nfKxYG3r7SqwNOWJOFR6DZ467JPbOA2zMrH5CZhX3FG+sIlcIoDFTBMmunGLxXBbUfde4ol+AYgpotaRLQuWW7ZQ0bIa1g3LsvKoSOuaVOnlF3KCLDCIW4ytltdY8WrBKGybnhYsQcrudMqQiXcntB+nlJhWYC6JTfOAVQJFlbSmM9YwOsTSBrI2MmMKjc/MErqrr8dV6Y4r5Wh1I4g4E5mL4OWXX44jjjgCH//4x3HHHXfgueeeQ1tbm/+O+xnL2rPJOV7cF03a+rda9+DHaxbjmneej+R4Il9Z+or/RgXEzwJQLlbAohMiAYSmZ2MIoqzbEh1OuZOGwpPS7VOCQk0PkgHcqDRhosWeyyBJWqLC6/rdZA9yzyO1YAluYKp5eh1tqQHpPqKMbkkc3GDXnlQsZU7khJETLBmDHNQ45nEjxuHEkeNx4eTp8u08TYP5tyxzoeOVjwRXVoDRm07hvc5Wx7Zxihky3UetYCtb/87+fKNlt2Mf83OE8jAF67QxkwHIF/ss66jhGmwIOeBSdy7OxEHJJoj3E5FZsF577TUsWrQI77zzDt566y089NBD0DQNBx54IObPn48FCxbg7LOLYwGJM9VcrZredAq1SWddjTDsMIKt+8uwQ3fjhJHj8ZKhgPp1+kklHkWI44Y4FfBLMc5bCeI00MokYZPCzT2d5oTGdeN8zs1ZPgBvi4MYg1XyJBcBJ55mkgPpb9EjTkgZmg7cuvJN6T6iHGpIF0HmRpdUVUDLSJ9vmwUrwDHZ1tOHNuLcCQe5bldo18snd20CAKR0q/+XWU+ZGy0gdxGMg/WCvUO8Aq3abJ0BnsiI3rdBLYNXjWyWdcYYLVssMc9miPaB0ZPwr91bhLT/5UGc+n2CeD8QmYLV2NiID33oQ/jQhz4EAOjt7cUbb7yB+++/H4899hj+/Oc/k4IF+4Tr9ZZd+MDoSaH2T2saPrfovziwrh43H3JksEEnIjK6XhSLUUOFFUzsN4mKo80lDohuTp7KgRH/IkuDXGqswHzrGnilis8yGbWLoBgTEiZNu8yKUEpcLVjG/15ucVHG5IlxQEGeObHPyTXJhWXBcu7HYmeAoNfrjGeSUegYLEZnKmX+LYvBslmtJEpLHCbX5rvOuQDbXZedMhaqFh5fGJotgsrd1e2W6yo1W7RRLEQdVw4YUo/NPdn085RFkCCiJdIkFz09PVi8eLFpyVq2bBmqqqpw0kknYf78/OON3g+wzgwAfrZ2SWgFa1d/D/YM9GLPQC/aB+UuNYUipWWQSET6yLieh+E3QaVBQU4YC5YOHQnbVDBGbcrXTRIsSo5Noz618X8Qa5SZ5IJZsNTSTlwdsSk+adplvxbGgsUmpPYkFykPC7yopIS1DoqWSNl+qZAWLMsS502BPQRNKlXrnTAtfNyVqBJXO8Bqyz1cFsVSwdqDj8F6lksyIWsv8auomrRPsxTuIcaYJypYHYMDGGIoX6xJ2X0oFxfBiTV15pwkTsmNCOL9QGSz5fPOOw9r1qxBU1MTFixYgNNOOw0333wzpk+fXjbpn4vBE0ZWJCC3IOcKbiBtHugreBpgniA1qaJgLxfY7DeJisPKaxwJOsEGuEKZVuhDbLC7lNnd8Ap+biGBgF+qe4Crg4USZBEMIJ9IEAtWlIhp2tnY4NW3iPc7bGpxy/KpGjI498vYgpD8j2vF3PmasFyJssX5RQc/Cx9vwWIFk/m4plIhutm+tG+HbYyUXk2BYrD48iBDJC6Cb7bsxvfeewsfmzAVgPUcmxasMlGwNnELvnEeS9OaZpa+IIhyIbInds2aNUgmk5g7dy7mzZuHww8/nJSrArCt1ypwWZVIFOw8vekUvrn8ddt3mZDFOHOlJ225u/jFBogrhXEaJDK6jt502n/DAiA2g1c7ZrMI8imzCydXWEQrkvh3cc7tn0VQXH23rCXxiMVwS2LgZcEqSBZBYRLNzuDVTuIglXOSC2ZVlGzDnz9Mwgd/C1ZxXAR5ZAqoTdHnRGqszD3bb9SI7/o/dm4Sfvd3EYyq8+KPMkTiIvifPdsAWMWITRdBY0weiJGL4D92bMStK9+UWon5gtnx6Kmc/HnbOnz01Sexsbuj1KIQRCgiU7AWLVqEe+65B1OnTsWzzz6LCy64AEceeSQ+97nP4Te/+Q2WLFkS1an2ax7fscH2uVBTzRf37cDi9n2274plwerj4iG8LADP792GGxa/ZPtueUdzweQKyw9XvY1Pv/FM0V05AedkxGvSqOnZiaBZyDNGNiyZK5ZbYhPeMtGfSeNHq9/B8vbcnwezHRQjBszHzRKwFJZEAMtM1HjWwXJVofzveZRXIKa1FtNby3BL0x7UOsinaedl4OGPJTuqruu2Cba5jY+yX0gXQTel1E/BqlCshbljR4wFAEysrctPmAgQM0zynDp6UqAHMapnlW+7GsNFkLdgNQpFh9l7VMFlOI0Lv9q4Am+37sGi1r227x1xunFaWeN4cPMqAMDTXPkWgigHInMRrKmpwTHHHINjjjkGAJBKpfD666/jN7/5DX784x9DURSsWrUqqtPtt2zgVnGyHWK0KtbTuzbjj1vX4viR4xy/FWs1nlewvDr9+za+5/ium7N+lZrXDbebNV1tWNg0pqjndhQZ9UvTHlMXQVsMlkFSlT/zvNxP7tyEF/btwAv7duRcv423SqmKEkzBMj4HSYxRTNzTtLvvUwhDoVUHy7BgGSfxmjw5XARDJmYwswh6KGb275y//2jNu3hx3w48etRpGFpRaSkDgSSQk+9CxuvNcrc+mYWP77urOFerKjU7BShmsiQ3mLSyeldT6obZSzIYfVYhXFt702nbs8Xc/ngF2y3Girnw+9VvLAWi0idmHo5LX0UQ7xcizVjQ2tqKRYsWmf/WrFkDTdMwbdo0SnJhcPDQBqztagcADM/TPSNsat3XmnfhyZ2bcPMhR5huDyK/XL8MAPCWxCe/WDV9+jN8kgv3c1ZIfLKr1cIn4QiLlRXLqSwUCocFwy/JBZ9FMEbjrDXpstjU3Ykjho/G2617XPdri8BqyCtNqqJ4u1kKikPYVOKFxr3QMFNW3PeN0qJpWfrY+f0Rt8k3yYXsevwsWKxu4equNhwxfHTwJBcu77oKpWALGUxBybhZsFTLgmW6tMUgZkiMwXL7HQDOeuUf+NGc4yJPctE80IdL3/o3GowiwaeOnmQu6PAKynOGiyCDyRxnBUt8XfYKVuO4J4yKQykBgghDZLPRD3/4w9i6dSsSiQRmzpyJhQsX4gtf+ALmz5+PhoaGqE5T9vCrREfnYNU4pL4Jb7buNo4Vbt/vr3obQDZ4+CNjD/DcdpfEZSddpGqUfE0Xr1MmJQNxnDvhry97DQlVwe2HHVPwc4mt4LY6qevZaYsCfrIYnzY0J7LcvW5LDWBkVY3rtgCwrrs9snNnXQSDWbCYRSgZszTtbmLwhX5FCpJFUIhV60gN+u7jSNMeNsmFsR2b/Ip9SkbXzD41K6O76xT7O18XQT+LaBB4Sz9/Hj8XQT7jYEJRUKmqtjT1pcKrOXRdd/z+8JbVOGvcFHHLvGRgC4vtxnOpKIrpUpkOoDSx976YBcaDIi4ssMLT5u8x6asI4v1CZArWGWecgSOOOAJz585FTY1z8kNk4Qe9XFa5DhhSzylYelFXyIs1aNhXXt3PKUvXHUc3BzZwrehsKfo5GW6Kp0yBiVcLMlcsS77pQxuliS7YNe/s63ZMHvJBMVwEg6RpZxahkhcaFvC1YHntHOElmHIYt++1ll2++4jua+GzCDILljw5xpI2e5yeeNTn9263jsXOKcSShSWhKEjrGv539Tu4ePIMjK0ZEvoY/+Ay0h48tMF2bJussPrRD46e6LCqVShqLCwuTAFYY2Q25NGgOxSEtKY5lK58H1XRjU6F5ZLsNf5ZrsHxVbC6BPf5EcIi1ZquNiwYPrqYIoUjHl0pQQQmsiQX1113HY4++mhSrnzgJ1y5BMLas13pOQXR5zrpK9Zk0TX7lYAsbWssFSzhc+tgP25Z/hpWdBRO4RInkW6WQNPyAs6VsWBShcd0EeTmhIfUD5fGabBt+UybeZ2b0wUSOcZgxSZNu18dLMnvhYjLEeNsghRkFV3GkiETCViFhv2zQfIyMvgJP2tjy0XQz4Il/519+9K+Hbhj9SLPY7ix0UixPaGmDpOH1Jvfs/b6956t5n1l44RsUUpRCueuGAbvRDw66g23PUZa17n7kCXf103cXVWUQFYphds+CjkKwa82LLd9FhcvH926tpjihCaGTUoQnkRaWGDbtm349re/jbPOOgvHH388zjrrLHznO9/Btm3b/HcuY7pTg1gVcMU8qPIQZH8NeiC3BZFcJ33/3Vuc++gWOyBSIbNgxaQb5u+TDh3PcEH8v9+yGkvam3HTslcLdn5HmnaXdjQtL4rCTVLi0YaAM7YJyCovXrWwZM9FLvC1rXxjsIz/mcJS6hgsUdla1em0CgDBBoAonwYrDjH7OUi9IPFOM1e/oAsU7BlPqnIFS4zlFJ9/3lrKjiXWPXPD7XfeiiRzxw7CiSPHAwCuPugw2/dMeX29ZTfeMuIUtxuLDrJU3SoKkywiV84Zf6DjO03XMa7GnukwrWvcwkY0GVDFZ0OBYmUE5TTAY5rG2nc033vjODEZh7wQr7U2Eb/4ZZ44ZbcliCBEpmCtWLEC55xzDp599lkceuih+OhHP4pDDz0Uzz77LD760Y9i5cqVUZ0qdly/5CXcuPSVQEoWH0iai3L0arPlUpPRdfwxh1Wn32xcEXofwFmXpBBour0b9RqoZG5icbFg7e7vMf/WdeAXRvIQoDgB0I407a4ugrwLXhwtWGwiG0LBirggJUth710Hy7IEAnwdrGJasNxxe+e962BFj6bzz1uw9hFd2l4z+sC3PJKc2M4puAiK74Y4sRQl4hX2XharZPd0dMXtdz5+Ktenlb0DoiWffzdY+nt2///LuTvyxOGdZ/fFK1ERnxgqxbkIRlV8XGwHRbHuP2/BqhOSRKnm//HKHuqF+O71xiAOT6R1sL/UIhBEzkS2ZHHHHXfgkEMOwW9+8xubm2BfXx+uuuoq3HHHHXjooYeiOl2s2GMMYlt6ujCzfrjntnzHG9ZPW9N17BnotX0uh5WyMIgDU7+HC5HcRTBykXLiqkX/Nf92uJ0UMCVyRtfxzeWvY4VQD8zdgmW5tsU1CguwT0JVRZFOStkEza1OVlj4mk1+SQnMN1mog1WqGCz+tF4ymLXPArg/RiKXcKxc2ue4keMcNfq8MJNcmC6C9t/FfkSUiP/97nVLcOqYSdw2+b/LYmxMUKz6XvIYNUCeCEhEVeJhHWCPQhCZAaAzNWhaiJOKgrSef88lLnqqUJBQnYslDkVMKDsQRwVrWl2D7XNc4kO9+OrSV8y/y0BcgrAR2VLv8uXLceWVVzpisGpqanD55Zdj2bJlLnu+f6jwKipjkMlDwRI7RLE4Z6HdPKbWDSvo8QGnpcXL2hbXLILvCa5L4n2WWd6iYnNPJ5Z1NDuSFri1CptsqopiujOVvgUtRNc7RkIWgxWx4HycTVJRoQH4z55tpruV7OSsQ7VqLhXRRdDl+tdKkgYwvO55IR5T0eKQS/vMHJpdxJrfOCrQ9qIiIvYRDuXCw0VQ3Mevyw8Sx5brggAbDxx1wmw14/yPrUCJxcIUa1Pv/pFzkdd1sw3YdeY7BopjrKIEzAxoiGwmYMlLimgZYVj92gRrUByVQBF+jhOHRQCCCENkClZVVRXa29ulv3V0dKCqqkr62/uJIAOlzYIVclQTJyNbezuF3wvbAU0f2ljQ4wPya3AbNOOaRXDfQJ/ts1j8eKlgXYqSF11cgFzTtHMueLGsgyWZRD6xc5OnS1BUGbz4mk2sXtBdaxfj2yvecGzLzmjFYAVLqFAMqri6RyJBYleivAIzdsk470cnHBT6GCyr2+qgca+wT8L97on49IgxfRkuZXiuLoI8p4yeEGArOys7WvBK804AToWEj7MKYg3KJrnI7y63Dfbj3vXLTW+OXGASeL3b4pDJkndEZbWuTdqdelQoZhvy1i2xvcwkF+z3GLz3DNaeg4J1rhwsWDzlJi9BRKZgnXTSSfjRj36ERYvsGZEWLVqEH//4xzj55JOjOlVsCbJaKCapCIOzfov9i0Knhi1G7JBs8uN21nfa9gbav9iIz8F9G+3xh/lMQvz4244N0u9dY7A4y4uZ5CKGK4V8i46orJZOwpjcv9v4XiTn5BNs8EoK76ZrbWu5EwLWpDeXLJ+5wt+3oGf1ssAUws4qKianjZkc+hjs3vcEjBlh/aZboWHnLbJ/IT5rAxk+ktbXhOVLLsrBd1a+af4tuhy/2cLHpgVwEUT+CsFDm1fjyV2b8krc41domG3FwxYdWdxl5C6CigJFUYy0+u5HFwuMx8GTguGmmJSbwhKHUgIEEYbIYrBuuukmXHPNNbjooovQ1NSEpqYmtLa2oqWlBfPmzcPXvva1qE4VW4JkL7P5cYfs4MROe1dfj+1zoSdzuaSVD4us09d0PbBbXRwGNnHCNCBk7qpJJNAXID11lLjGYBn/K4pizsVK34IWMhfBT0w8WKrkvNuWjcuR1dHJ7dyW0uRXuJh3JwRKH4PF4/VOBErFHuEl8FbBwOcXCKuQWGnaWXyM9/Z+l9uvpc2t/C1Y/teXy6IQv4+okDRWVmGXkWQnyKS02XAdy6fYMEtGIFrvw2Apws42Y0kl+HuX1jXOghVNshZxjGP9TlJRPZNSic9zHBb6GOwZcJTuMBMcFd+lcU9/L4YkKxzJQrwIknGUIOJE3gpWf38/XnzxRezYsQMXXHABLrroImzevBn79u3DyJEjMWfOHBx33HFRyBp7/LKXZXQd3elB83PYLlh0EVwkWHAyIVZ4+jNpVAvZs/wG41JZsDK6hgrB2Oo2kMfBNcPPknlIfZPU+hYFJ4wcj5f27TA/J4wCuW7tYlmwYuoiaPzPr9InXJJcMKbWDcP67o68z82UoyDKvRiTYylYpV919Zrsscl5IWpeyWUxzmsmBQh/DLFAKk9/Jo2PvfY0AOCPR52GuopKXxdBsXX8fu/PpF1jA0WCXF4urxtveRSfz0qu/wmzKPbnDWtxetOkHKQBZgxtjKxPUwUF+oyxB+ADo7NyiUoCU3pMpTvPzkt02+djKvl3WTyNw4IVo06UebaIErH+rVJNoL+Iykt/Jo0r3n4OVWoCfz32jMD7iS6OBBF38lKwtm3bhksvvRQ7dlgTurq6Otx11104/vjj8xauHOA7Ur9JyleXvmJbKQrbCfttH2Yw/eeuLThXiH94ZvcWz32KUZ3ezYIlssalrk8cBrahPqtysqfk5uWvYUN3Bx5eeCoqPGJm/BgpTD6TioqMnnFdoeTr+cQyi6AkBktV7PF3KqwaVRldw/zho6JVsAK5/rK/mAWr+DFYbmfykiGIehDlFVh1sIwJaY6KXU0iIY3BfI+Ly/rqslfxy/knm9dfY6T/Fi3Kfojv1KCm2bJvehFMwQrfwvwtFS1Y/NFkda/c6BgcCCmDbt7HMJYIN2RZEVUAn5862/zMx7OmNM28l2yxMH8Llr29FO59DvLcJCKypEUJWxgVF9m0EilY7B6GfQ/7YphGniC8yCsG684774SqqnjkkUewdOlSPPXUU5g5cya+853vRCRe/OFXtbb3SbKLcYiuS22DA6EsLn4dTBh3pFHVzlXgvS6xQcz9ohAWrJaBflz21r/x7O6tAOTuTLIJIks6IBIHlyw/EUQZmwf6sLS9Gd3pFDb2dLrsFYwuzkIKcPEqLqmgzULD3PJA6VvQgsnCu98qsNfBqk0mUWM8D/3pTGQZ0VLm6ngIC5bxOVYugl4KlmnBKpIsgmudnwXIDbe6ZNXc4sTW3i5ouo5njYWjTuPdEPtRR0yWcEwvl0Rf6YM8Ozk8IvwuYkZN/nidqew1swRFXzp4nusxw2Q3fb15F85/7Skz0UiUrtk2BctDppSumW6N1S7jQVhECxY7fVJVbQuMbkku2P9xWOhjWBYsefxaZcR1A/14N4Slc0x1rfm3mCyKIOJOXm/W4sWLccMNN2D+/PmoqqrCQQcdhO9+97vYuXMn9u4tjAtU3OC7rHs3LPdMiSyyZ6AX928KHpD/Iuf6JSOMhUlWzLGpqlqyJVBjrA4WQsF6atcm7Bvow93rlgCQu1TJJqlu/vC/yrGIcpSIA9m4miG2z2INH97dMV8Xx960ffLIJivfe+8tbO3pcpU1YQRzZ7+LD8uMjIt9GleYVSg0rAAYV1MHILtiH1WSDqvGjoqDhzZ4biu6jJVCwdJtf1uf2Jsye9gIzB42Aj+cfaz5m9cA4DXdznUCaSa5CKDYHT9iHC6ePEP6m1tdshohC9y6rnZz0eLpXZtRrSacsUbCYfzeQd3WulG4COZgweL2EZUQfsLMYqNGGH37BOM9kRGmWO8PVr2NQU3DV5a+gv5MOpJFDSsmKJiCBWQXKQFgiGFBy1cMcQxlsiR9XK2ZnHFLcqHp1pMi3iP2/kzz6dui5u51SwNvy9fuioO7dRh29nVLx1xi/yEvBWvfvn2YOHGi7btJkyZB13U0NxcuFXWcELvRRa3hFEu3rG8yDqitt312pA8WelCviYJsAKh2cU0zFSzDfSJKRUuMW5NnEZQoWDHubMOsgPvtGxax/fjV4Ldad3tub1qwYrT6urQ924/s5BK6KAD4J1WBYk6END26GDIWQJ9QVNQmvL2pnVkEA9TOKRLsHo+sqsH3Zx+DQ4c1mb+ZdkuPeayoAAxkMvj4a0/jztXvhJaFTZLMtNYeE+ivzVyAT046WPqbqijSfiEhDGli+1cnko4EM+JR/B6fnnQab7bsNuTw3jaQgpWLBcvDRfAgrl5hj7HgwixZQyvcXflkLpdu8HFS77TtzXlRo2WgH2e+/ARuXPqy2fAJ2+KJdwsyBbK+ohJA/hlQxYU7M8mFyt5n3TiPHKsfikcfai+ObJeJedywenJRpbqPEl7iuLRpUK5a9F9c8+7zpRaDKCHxe6PKDeGl/8PWNQU71RDBz130e+cnE4vb9uKsV/5hTgQAoKlSbqFiPL1rs/T7as6C9eiWNfjk609jW280KzOyGjMiUgtWGXW2YQaGfJUbcRDlJ00yOdgEhc/QFKeWPWHkeADAKaOsWkGKYMEC7MHlfBuM8HnmvTAtWKriSAgjItbBSiglmGi5nIv1CzIXMC8Fx+2nbb1dGNAyvhZ1IGudfWTLavQa7j0/WrrIJpPb2b89a6HncZmL4MqOFjy0eZXZzs7n336GmkQSaV3zzEjmVLjs39y07FVzcuqfHCRAFsGILVifmHgwTjLeG3ZsZtmuS1a6HjOMiyC/bXUimfNz/qpRy2tVZxvaUwOOY/tZsJi7pzmO5Pm6iXHM7PxM+XCzoogLBnHpQ3l5RQvWc3u2AQA293QhqSi+scNRwStyfuNdPmVtCKLU5J1F8Morr0RC4v986aWXOr5//fXX8z1d7Ijilc+ESEPO05ayByXzCta9G5YDAH6+bikWNo0BIHRWko5tW688hozVAEppGh4xFMi/bl+PGzz8+RlL2vYho+uYP3yU9PdKwWomtWCFcBFk7Orrwe2r3sanJx2MY0aM85UzSsRBw8tNLKNrwipjfoiDKP9cyVqMZWbqzaRj6SLIpOcXF1QothV0RbEsCRldt7VBPtfCW7B8g/i5emKANdEqVQwWf9p2w41qWKWz2LsVOxJicu1ntuG4Y9UirO5qQ9vgAL548Bzze2YVdzvvpNqhnsdlLoJfM+ouzR42AnMbR/pao+orKrGrvwedqUEzG6HD6hHhPcsxxMwXXkIxUUhVIoFPTDwYL+zbYfadLKGAV9HpXBWsGjWR83vGiiUDlpXNlsDGRyZ2XVEpNo46WMb/Zl07TbObzw3Yc6xw/VAc0Gxji1ym1sF+KJBbhAvB/MZReNPwpsjoumeMq83VOSZtGhZN10O53xLvH/JSsK699tqo5Chbonjl05omVVKd5/I+G9+pi/VBxP1lxzpi+Gi81rLL8b3lImgNPs/t2RZIwbplRVapfvL4s6W/iwG2QS1YXv7Yf9q6Fg9vWQ0A+P6qRa7n9uMfOzZiSXszvnHIEaEmH6K0XgPXc3u2YWy1FaOVzyCyuafTHLgYfHzXVonVkZ1vVn2TNU0r8UD27O4tOKiuAQfVDTOtJLaYKwVIcLdDAbC+K5s1cF1Hm/Cc58Y7rXuxp783646oKLho8gxzxRfIPn8266ApmxWzwbYrFm7XmvYIZmfyzmsYib9uX2+6CwHuyk8YZWyTEf/0zO4tmNM4wvz+RMPCIr5WlxwwE6OrajCaC26XkXURtEi5BPLzHNU0xrR4eFlsxTvm9Qz5dQtBWiqXd97LRRBwlgkY0DJQ4J3QYGilu3XL7fhAdqzJ1fLO9+3sHvL6u5+LTX9GVLDy67u86mABnIugcL2sOZiyGxc36yB1NytUFaqiFK3b50vVpHUNSY+7bHcRLKBQEcO3e4YUrP0WUrBiQFrXUGUsi/Vn0vjZsndwfMNYTKyxr+L6dYB8bBSricVSTOu6jvYUV4MrRGdVawSO+1mNckFMSR40i2DK4wKYcpUPb7TsMhNmbOzuCBUI7JiwecjaPNCH0VXWZDKfMeQrS172/P2lfTvw1Rnzbd9l+CQXBUjLHZaN3R1mEDSvGPOZ31Q4XQTZxOi2d1/H8ZzFMpeJTvNAH7698g0A1mq6WHvpwjf+hbvnnYjlHS04ZdQE1xisXFayl7TtQ28mFZnllc8UKcKmNnMbR+Le+adIFRvxEsJcE5+KeWWHlUKdvfei9WVq3TAc3ii3dvOI95+5iImi6bqOY0eMxavNu3Du+IPwx61rfa8hzCTdT9l0+31ew0gz2U0u75uXiyD/Hbv3A5kMqtSENGvjaWMm45ndW0KlzBeV21xHhhlDGx3Zde0lGbxl8nJ/zQVxjGPvddLQ+txqSjnqYMXED4B/zt3u0aTaoXirdY85FhSalVwpBb++hP85Lm0aBL48gqyOJ7F/QHc9T6JYqeIVo79sW48/rF+Nzy96Hj9ctch2fH8LlnUcNhCwice7bfbMdbJjuXVgo6tqkVQUpDTNXMljaX8Z77Ttxa0r3zRjLYISlQWLtwJFwb3rl5t/5zt2eylYnanByNwg/GqZjK9xthE7n6oo5nVGlYUvF9pcavHwkz9FESfmnBukjrxdBIOkA+5Op3Dd4hdx19rFeGDzKiuLoFk3J3cXwVtWvI7vr1oUel8vlQGQd/b8hHtCbZ1rsXRN1/G7TSuxoqMlVG0lHj6VNrPwiRP+oJP8oNvpsO5JUlHl98XHr9DrNvhJ4eZN+d1DjzKzOeY7hsjaQowB7NfSrqUtWNrs7y9+M3AtLF4RSXN1wYD8r0escecFGwcsy1Fep3YkRWHPSTJg0pqo5IgKsQ/h7029EY936phJrlk5o2a7EIaQ0jR8c/nr+J8lL0mTZ2kRjY3FZsCmYJWP3ES0kIKVJ5G4CHKddstAv/n3K8077Sm8XfZnhTCZ+0Ja00xrFRto9w7Ya1zJzO1iP/DTeSfg9LEH4MLJ01Ghqq6FjHVdx7dXvIG3W/fgn1yx4tc4//qgyDpRvkzuGy278O0Vb6A7lZ0Ef3rSdHxq4sH43znHYkRldWQPNN8phs2u5FbQUcZTuzbb7kUhV+maKp21z57YsRFAtgQAm8qUcjhwq/XGT/wVKLZJGD8FSyqKoCCGvxr+fvPv5nzBssIUsb9uX2+ek02oo4jB2tqbX000hui+yBNEUdGh463W3fjb9g24admrtgQzYZQtvl3Z37m+r24WC/H90WFfRJAVgBYXFMK8g36LL24WGEVRzGc63/dNpsSZzx+yys+gpjniXRn8ZPDHa94NdE5+n7Su2ReJAh3B2lcklAVLYxb4aNpSnOSLCpaYqZfBxIxbDJa4EMl/YmVZKtQEEi515aKmX7P378/u3oLF7fuwtqsdL0uS5vBjaTkpWIO8N1EZyU1ECylYMcBzsLetDMr3P3DIMADWquLvORc5a2U9gBzCuacMGYZrps5GbbICFUoCaU2THue7771l/s13Jv+72hqs3TpHcbxi+x/TNFa6zW3vvY132vaaGQ+HV1bjogNmoLGyGooQl5ErG7s7bAlEwhqwxCtl1zTRpQYN3+5R98WfnjTd/FumvDA3pWwh4uyVru9qj1aIEPxw9SLp9wuHjzH/dtTB4m5QUlVtbZhLc7oFXX9n1kJH1kuG9YyKFqxwTySf9bM1oDVBhi0OTXBf5PGav/I/8ZZF3noh1l3zglewEm4WrIDmYnG7HazIu8RF0KyvpCimMmLvc/1w38LPRdBLgWW/eE0c/7JtHZa1e5c8kSmblgXLegbdrJPXTZtr/h22zAjALFjW5zAWLNnkky+c7Pc8OOO28utAxey0poJltJ3bIiM7fVSxYFHRKRSe5+8Nu7aE8V4UQ4ER+8+/bF9v/i3zwMhvqax0DGTsLoLE/gkpWHkiM2v7DTB1yQp8/7BjzM9eg30GOjK6jk++9rQZFyLCBk7WYT6xc6Pk2PaBSrZKK8rNPxw6dFsHyA8gb7fuMf/mJ6e8+5/bKo4mTASZvDWJpKlkyTqo3kzWepDklm95a18+PLh5le1z0BWo7tQgfrzmXWwRkkmwa/zohIMc+xw5fHRBU9E2cJnj3KxDjFWGb/wLAdJvF4vhlVVIKorNvYklnoDtmyxJVRWUixxO6jKnUxTFdYK1xbA2sccx1xisOzgFsy+E8uKF2QPkaMEC7ErVf/ZayT4GvNKdC9fOZx90KzQcdDFDHLjuMbKmyrz9NE7BDHJfHHFcHnL4yStrc4Zf22/s7sADm1fhG8tf89xOGoMFS8FPaXYrjMiwiuDJLWSkOSUWCKdc+FqwfNqIPZdRWbAcdbCM/0XXUvE8ZgxWzOpg3b12ie2zzB09YSxYFSPGSXwGpwypd9kyiyZRCMuBQXIRJEAKVt7sEVzvAHmNprZBy/Xv5FETbIVLRSWDR9N1LGnbhx6PyXGFWQQxOzhM5aqfu3Vgf+VWjsxzC5/5yUGX4Q7FJphusTJ8B8orWG4DDn+9g5wvf9adx32wSnODQ9SIK71BO8i/79iI5/dux682LLd9z+QfkqhwTBcmD6n3TZ+fD3y6a7/rYEor48dr3sWvN6yIVJ6wZEsYqLb00hWqarvvfJsmFEWIwcqhPXPYZW9/ryELi/fJzUWQdy0R70eueFuwPCwsilMhAoDn924PdF5x6iyb4IsWIC95vLabYcSESmNLZX2Kb8RaMILKK98ZnrKIZTjckCkhfF04MR5XhHe3ndswMtA5h3P15dK6PQZrIEQyJKkFi2tTv5IAZgxWRGnanVkEs/+ztmMKmDhOWy7C0cgRFRt77G7GvFx8ghBWV67QiM/6KC6pjnine9Np08MCiI/SGgR+4amc5CaihRSsAiCzav2UW0m6cNJ0TKi13MW80o9mhNVBwKlUMPeYJ3duAgAsGD7a/I3VDxLnARu6OxznCtMRuFmLkpxywmcI5AfSNZ1t+P3m1Y6isBu6281MRrwbmNckVS3AIyxOWIKa+Lf3yYsvWxM84EOjJ9l+S2tazqu/PLJnDsg+K585YCYAYFd/j6MtGyssC5cYo/H83u14YufGnJMa5MOBxsIAS3HLJ0ioUFXbZJ2/W5Pr6vNO055b4Ve7LMzi5mc19KInpAXLnhDHwozBkkzEg8inw32g8FRURAuWNNud/XNgC5ZwrOn1TMESZACnYBjpqAHv9NXie1yo6ZFbQoRnd2/B5W/9Gztc6hKKMsmUPN7iwu6xm8JuLxrsXy5ElCCtabY+cmVHS8BjyDPT8vJU+sS/sr3ZPvkm2BAtamLSGrckF+ysftuVGplFSIWC5sF+6Mivvwp7fkB0G7bf66WcclWfrCyzLILOhGPE/gcpWAUgpTsnpO+0Wb7tdRWVqE4kMc9YLbQHCDtXxsTikOJEZa0RM7OapbvN0SIShd847yLIy7mE6yy/vPRl/HHbWrzVuhsZ7pQVagKDhu9yJWel8LqGZIiip0ERlZCgVgi3wYndUwUKnt2z1fZbbyadkwUrpWn41YblWNOZved/2b5Oup0C4NgRVjxbi6AYnzZ2MgDg8wcdZrtf/ETl5uXFLxDOhiRWhLuGs/hWKAkhBkvBxyZMBQDMbhoZMr7GSS5zNFbviU126yuqoCJbxDNX3BT75oE+LG7bG+LdthR8kZ6AWT9dLTUeIoh92Rstux3biEpf4BgscRHEWKVyWBZ0KxFChSLvU8RLeLXZWQvQjXx6H7esnXevW4q9A315lZvgLVh/2pZNTb+r3+ltwW8LBL+eNLcqmLVgWb81cdYt3+NInnF+oi2W8XAjTIp5L8S+njUNc5t+eV82cZNDkTe+8EuGUWp4qVjfyr/b/+KSVBX6/IDdW4T36gGAoZzrKuv/y8UaxL/T5CK4/0IKVp7I/NfdrAkispTBDv9/3dmp+LnFLedWENkkJ8jKXpgxQewMZcfgV6e+v+ptx7adqZStI0rrmhnnVZ1IBoqXiNpF8FcbljuK9QbtINMuDci7KPFJJ4DsgGbLIhjwHjy3Zyv+sXMTvrw0W/vqPa7GEI+qKDbLlBgzwya4FWrCtebIe53yY0eNTNHUjElANfe8VQougoDlauJovhwGt3xWSlVuxbu+ohIdqUGfPdyRuRpv6unApW/9G99c8QZe3Gd31eO33tDdge+seAOarjsScPAEebZ1XXdN5uDVVmK/JUvWkKuLnaiIudUnAoAOw9UuabNghVlVdr/GMPKLg61f3Tm3BRs+5tUN3hVytbEI47ctEPx6+PZLCWnaw9RTkj3j/L11S8zhtU8+aLouFICwH/fJXZvwqw3L8YqQIZe9B37JMEqNPSuf5uhH+eQMhUDsE3h5RGWbbfuBURPNecJfJKENcaRcY8eIaCEFqwCs6GjBmS8/gWveed7TvUoNsJqq6bqjsxZN6SK833KGm6j6EcaC1ZtJSzvj321aaf7tlo3NdkahI2LHrFItK4XXgO3XFmH5h+FmyRN0MuZ2uXyQ/YF1zpi4XFwEuzjLw683rLDdcx4VCho4N0BR+WfnE0V3UxYLCS8ba7OMMQnwisECrI6MzxoHFM+CJSOpqNBCTrTGcbXKZM/d682W8u83cV7Uthd7+3ut+BDJNjMN1zoZtommmwHLo63cfjqGs6iKMgW1RIj3320So0PHNsOFmsWaiNvnc7vDTOtF5YV9clv8cmuLNyWWQMe+3OKdb+2mEEklGGnbxNj+znWGWFSQPeO8pTWsgpXvq5sRlA72V7XR/8xvHCUdI9iJ2aJiZ8D4uUJzeKM9po5vbWbBsv1eYGVAPH7GQ8FiiSIqVRV7Dc+Lh4QEVHGFv5JysboR0UMKVp7I3p0fGbVEtvZ24dxXn5L6mQPyQUFWk+W+jStt34mKy8mjJmSP57FCvdXDn988t3HqSw6Yia/OmO+7/W1cenYG7x7i163osHc+W3o6zYE64ZPkguG3cikWMs4F2SprWtOwpqvNNkC4TU74OkQyhTAXF0H+THzWSMd2ioKkqppugm6TLUXJza3hgU3v4cq3n4tk5ZNfSGCyaEaSC9uqtuKMwVK4FXte9FyGtnwsWPy+srIBS9r24UuLXzKTYojwiQj8Vvfd6hrZjqcmPLMINgZw59Lhrkh5tZR7aQZ7G/EENUSI75ppwRKTBHF/1yUrAvUpIl6bhlGwRJn9lAK35zBIXT52rt39vb7uavwkW5a0SQbfP2R0zfb51pVvBjoG4FzIUWG3Gq0IGM9lxmDlqWKxpDoMJsnnpx4GAJjGJZDiYedlY3N7ajDveLAoGFVVa/usC4qxKjxLhY5zEhdL+fFInCexhD9B+rm4oXkojsT+AylYeRKkO5LFHgBWJr4+Lg5HtDBouo7tfXblSOwUTxqZVbCOHznOcY6X9u1A22A/ntxlX3UbW13r2JZ1riePmoATRo53vR6GzGqysGkMnt29BR2DA6hNyt0IGTWJpG0CdM+G5dhoJN9QECzlLa9sXjx5huP3EVXO4rphkZ3//k3v4ctLXsbfQ7gsqFCkCmEuRTrbA66QsrMlhSxY5rl1+3amHAEGhbvXLcFftq/H7v5ePLwl/5XFlJB5SdN1aHBOTCtUIQaLm5JpundWziDkM0mTKdy8DLeseB3rutvxrRXykgv8mTN+CQACTDwUxTuLoOe+3B5uz4NXW7m1vVfr+tWVYojvkWmpF7ZjbTi2utamqMuSXBxhJAcaz1kRo5JXJjMj7Ap3kLhTXnHt9slGySsU6wLWwPNyEfTin7s24xmjhqF4HMBIbsS1adCFHnOfPPUDllTHRGEuv/ZMvSKyRQzZAkmxcXjE8GONrttqjgHRjJee8nhYsFLCbyzT8W6Xxag4Qy6CBEAKVt4EmYyJ1csZa4ykFH/auhZnv/IPnPnyE44Vu7vWLnbsJ5r12YC7vKNZOqnZ0dfj+G6qZCXOzV0sDH/Zvh53r1uKP25bi1U+LkxJRXHIy7Ib8imVvWOwrEe4RzKRiKJvk7mxsGQVL3E1o/ysaYoCx4AG2DNMBlUIHt/hbrXiYTJVuMQGcLYE28o4PzkYI1HGAeDZ3VbCjv/bsRFbe+RZFINicxGEPXaNx+EiqHDxLLq3BaszNYg7Vi3ynEg+tXOz629njp3idQk2RYSJKFsVFhdNrP3tK8wifFuIlmy3FOVeFqyguNax83he3Vx7vfYJbMEStnPzEmAxnczF1KtPSQqT6SCEaVKnW2tu94N/T6868FDf7f0SmYSVI6PbnzQxTbsX/2/9Mvxi/TJuX8GCpcgXofywLFj5IboIsmfCTyL++llpjKCx2IVElvQFAN7raMGAljELEX9g1EQA2Wx9hUR8TrwsWGx+JMZElwOU5IIASMHKmyAvj1/n3MxldhP912XKkTixYivZrYMD2CnZXoZs0se8NWSrsrcderTrsYZL3IzcshHZ3eGcK87s0hTO2uM1ePODIT/hl50vV7wmurz8fvdZheKYZIlE7aLBJk+WBUs8PlNigHouYUsug4Kb0gAAXalBV7c4Bq/8abpuysDa7JGjPozfHfFBQ/m2u/GwCbcO70WPX21Yjpebd+IHkqQrjGc8MmmNqPJ2qePPzN6jMOFsskKgPIOcK2Zw9z7jHnPf/+Lwk/CLw0/y3pl7VN2UJR3ZGMC71y1x/Nbv4jY6tkausGdlzM+CJU4o2SS3wlSwWOIc3h0Vtt+c7e6hEOZhwZIp4GEtrmePPzDwtpdPOUT6fdhEQeKCU1rTA8Wp2trcuM5BIUY5odhbdF7AulyWu2UULoKcO7JpJfZW4PjvrcWs4pe3EJFlJQayii4P6/sLrQw4LMwBXOkukXimxJ1C1rYkygdSsPIkn7oR5004CABwUN2wUPuJK6x83EbQtNCyd17nJtthCNOB8Kt6GcMNjIcpa6rivdrMsBWllEwUosguJS2GKXH/8msFRbHXCZOxNqCLTlDY5YvFqBmcvQWfnHSw+YmfDAUddL0Cuy944xlc/vZznklf+Gdj30CfQ8EaVlFlZgvkFxkU8MqMaMGyy84sjt0B05PXBK4LZJyPO50YF+JYvZWscPPKmGzSymctFd32ZHdJN9wss1htdsCQehzgUoTccQx4J5F4YudGPLt7K7b0dOKv29eb27q18aeETJq54BqDJWzHnjdm5WdlCu404mR5ghQhzgexPSyrq/WdW31BnmFc0hovxAQmNS6ZX8MqWOIiTVrXArk2v9liZT9kiymbhEK4atYcbTJ9qP0a3IjOgmWPwRpq1JFkY2KHSx/H9zPui1nFR+xzmEiiZEFqThZCHr4PFPvDEcZc4OMTpxVUpkLA33qKwdp/IQWrhDDFKGyXJiZu4CftlZIJIb/1DGPAkk0irHgc7zghkXAKFhdnA91xXDZQ8vFKXsM3PxjKVr+jmCzJJrpsTtKVHvTczraPSwwWz9NcfAJPZ2oQd61ZjM3ChMQP0YLlyCLIxecw95Cx1bWOIPYg7Oz3t56yZBi6rqNLsNaKA+xaw0UkiOLMPuoQsggKt599rJeUVwCAd7l6dQBw7/wPSLdzw27BysLej3Xd7bZtpS6tPvF4TVyMRJDJEP+OhV044Td3VbC4r7/w7gu4f9N7eMlIHy9aJxhibCZL0pOVMTcLltskhgXKVyjZfnEVqxXocUzxWr1aOZ/lG/6ZZfxkzWLf/dh9vGLKLM/txGQYbm3Lv191hkLBs6KjBV9e8jJ2Gd4RzYISmNI0m6s0ILfEtXOLf2lNk26jChas4C6j+cdg6YbVPKEouO3Qo3HamMlmXDOT6t02ebZWu9UrPhYspy02+43YpyvcFrbtJYug+eCVRVCsEanBWaerXODHoDBJX4pNfyaNby5/Ha/s2+m/MREaUrCKwL8krmtA7qllxZVIPpUtP2ixVf6ugKv1ZgyWpD/zklE2ARcny2zy3sNZ/DRJ522mNA8cg8UPDYI/P+SJAoLySWPlTHZ+NuC2Dlormlt7vWOQ+LiysDy4eRX+s3cbvr7sVQDudcgcchqn86vPooCf8IlZwoI9oUMSzsmZm0A/XbsEF7zxDHZzLq2ibKu6svW3ZDEx9u8UwYLFWxXlsle7JIgQk080CS6B/i1hbaEI77eYaVFm/eabWjaxsdeNCyCN7r1wEgQdTmXY+s1Jy0B2Iu0WgyLKsXD4GO63YDgULONcYpsNChYsmcCsTXPJMJiPhVyVWLBWd8lrzsmC5v3KYIgKFrsvDjm448je9VuWv4Y1XW349cYVAJzK7GstzsLMgzLrLP+3rqNNYg1yLJyETNufjyrA5EsoCuY2jsS10+Y4+h63fjfBTaUqXBazSgFfIoT/7G6RtnPryjfxmTefjcyyJS548s8Sb73VdR2tgwNlG78kvq9xeBZkvLB3Oxa378MPVy8qtSjvS0jBKgJuhVr5wPwwiAqWLDnBQXXDzL9/awyMALDaWMGVZTZkYsgsQV7Br9J4Lpdtrnj7OfO7VZ2teFlYOdFMGeR1wkT4AW9A6MRURXXtoLtSg3hh73abIsif57MHzjKL28oVLAs2ieOVLRlpzVnYMShs1Zgpy3NDxiYwq+c2QQnk1AHwcQaii+C/d2/Flxa/hN60u0vs2q529Pu4zLI2/s/ebQCAJVzxWXEQYvdGNom1F0e1T8T4u+X25DRJsmVtD1DKwA8+Loq9leyaxYmpzIWIf5dkCxdeLoSyR523YIV99PjN/75jg3QbWd/FFEs392nxfvJZ8QJnERS2W+nSxzKXW5Y8yMtyzxDd9Ly65yhckLUASjN/r9k2CR93YzHLq1vJCn6BTtbXsvOxfo5tMbwy66oou88yV2BbXArk71s2Bsv+bgfBVFbzULGYy62sj2ZfubpZcs+wacGKwaSatYZfvStxMYixqG0v2lIDeYVC2OQRTiCOrWx8Wh4wPX9cEZ/DAQ/X+FIiZm4kooUUrBLC+rygKbcZfCevQpFm4rHVNum3JgwjPdKwauZEzDnATB3a4Lqf3yrTkGSFdOB+ZvcWbOjpsH3HMgYpimLGOf1p6zoATteUajVhu54vTptj+z2hKK6yfe+9t/CjNe/i/7iJI7/t6WMPsCxokoGSb6LedNrVHYqnZbDfttIZ5uUTB+ugihqbeLBJy2Pb1tl+5yffivWlrS00XcfP1i3Buu52PG8oRrIB983W3fjG8tds33WmBvHlJS/bjsXDP7viNaY8JjxiMVAzYYBgFeVPx98j0TIFAFe/81/b589KMrR5PekHDqnHgsZRllxs0uKyaixza9OFdnee3/t35/Hyt2B5XbTsGthZfrTmHek+4nPPWwmCPtdu24kTG2ZdkVlURPj26fBZLMmFo5rG2D6HUc5sFmXjWvwLudtxy46YUFQ8evRpqE0mPfty9hNrY+Z2KUPW2uKzK5NeFZ7SoM9sFF5kVsyns538Ds8vcrK/g4wJhUYXromN8eJ9dnMR5A4UiTziAoeb4rE3YD22uCL2zX4Lj8T7E1KwiszchhHm32zyG3a1ho+5UhV70POrzVmLkFuAuTjIMzKca1XYh8JvopeAu6LjBh+vxIpfvtW6x7bNI0edZlMGTxg5HrfOOsr8nFQU1+xnzKrIJ5Vg1zGhpg4VasJSsCTH4K0PGnRXN1Ce0dW1tpXOML7l4kQ2aGuKk3wH5uTbGmR16A4Fi5cjo+v4+GtPSw8nJun46/b1ZrpdwDnA8sf+yVp74oGUhwVLrINlrWA7ogiksgVRTg4b1uT80mO/T0462HZPxUyTDgudzELl8rfs9M76MHKFLPcYLP8dZKv07L3pc8kiKD73svgVP9YL8WyMfKaBvFR8RkyvY4ZJcT7apdwB/yx+eMxk6TZp2zvorgh44dXdDKusQl1FZaD6d6xBvO6VzJJk61OgS5Ve8V0PeoWyhCFhYfLJ+ht2fDGOksE/wyzGsNnFJbOYsGsSrWpOBcu7/dxcy8PicOEV+ggmh+jeevth7lmM44jonFCuro5EfpCCFQENFZVorKjC2Gp7gcrTJIPl97h050FWMIdIgo6bbOmZFdQlKzDVyET4TyPFtD1du3xFn9GTTuHcV57EZsM8Hzao1K/zUJXwqUpVBVjUak84MISz3P1s3omokiT0mNtoKbAJRQ0VgyUOsGZxSckx+JW3jK6b2cm8OHRYk23g8JvA8kqRGHfRMig/32cPPBSfP+gw7hxZ3NyJdHM7K5i4J5O2Tf55pSilaaFWZkU3Nq8g5w4hzoe5I/pZsHh03Z44hT+bYtvOS2rvc7hRJcR1iYWGnemt87NgiUHhMlix5iy5LfN7FfqUTby8nmuZQsK/E0EVrH0uk9dc5jEyZYBNRLOubu4HDfOIiGnrZTG444Qixwy7y25uFiw/ZTChKLb6c7LfAUteWUZU07tC5q4qPNuyBQbVZkqHo4HdXPQY+bgIpgO4CLqxvtvyxGiqzHpVDLjUv/RjfVc7dgdIGBQE1h5swZUtLDpcBIXtRaJSENhx2Pm2CaU92LMt9gNzGkZiaLIidFbXUiEuJAZNFEW8vyAFKwLmNY7Cw0d9GLM56xQgdzFSbCvv/ogrPED25WXFDNmgMKrKvbaM3wC+qrPV1iGEGbb5QqZuqIoqjX2YVDsUBw0Z5rKPgroKu3K5h5vouaW2TygqxtUMwbyGkVAVJZQywGS0FCz3GDBewdJ03TfpBFOUR1XV4LQxk/HZA2e5WhRe2bcTZ778BM599SnTJz1jDv7ZV9atiPPJoybgjHFTzM9ssuv2osvuXk86hbu54sf89ad0LZTSWifE7jmSmng8PSxOS1bAmJ8E9WbS9jpY3CHdFKwg2SXFVVTxeCKVgoJlui0ae4nxNbJ4G3uBSu8YrCCyZdsjN8s061uWdTS7biOzYHktHPnF01UEtMqcP2Gq4ztd1/HUrk3S7ZkrscySa37DiZbSNXSnBnHuq0/h7nVLXeUIY8E6wOizJxv/yya1bpZmWdIZPwvWtw450vbZb8HAL8mHqFDJ7pWX0scfVRMWQngZeAVdPMOdc47Dh8dMxgVcSYl5DSPzyubIy8RkEPFbDOPLo1jWovBKyaCWwQ1LXsKVb/8n9L4yRAneNGKvRa8MWRJG/t2OKtU4u+eyvhXg69k5f/Ny+Y8bbunxif0LUrAigHUWYhcss7DwBIkLkK0QZ3TdsZIX1J9/LKdgsZTf4rsfJjYgiGWKdYzi5GHKkHpXbU6BgnPHH2T77qEtqwPJ9Kv5p+C7hx6F9tQANMgn6DLMARZ2C5asUx/NKbSarmN8bZ3nsdkxFUXBtdPm4JzxB7kO2iyjT1rX8GcjZopNxv2CZd3Sl7thWrCE7fiVRZuLoKY7nkmvItRDhOfUYcEK8A7Is43Za7/xWQQdxTXZqil3kaIcG7kVaEYipE+duOoqFhoWLVZ+CpRsUOYnpW6ZEO3H03NcOgkWpC+beFWqqtQ6B8jdFG3xKwEtWLLj6HC6ETPOHpctyCsrY8FbcRkpLeNZcJoRxto/vrYO98w/GT+ee7ztfPyj6Nbiaclk109hmlk/3PbZTyET43ScvzMLlt3tjKfBcFeXHcGe5EKXTqL9FNYDhtTji9Pm2Nzio8ribXkJ5DctquAytuq6jm+veAM/91DSeWQLqvnA2pzVRDtmxFjb9yL810/s3Gj+nYlIQ2DnTbr0rWKWQ34hxStpVdwQ5zpkwdo/IQWrhPx1+3rX37572FGuv2m67jCVe40x4soh49p3X8Ar+3Y6ij2GCYbvD2AhYoNmi1AEWdN116x0qhJ8siWiCLUzntvr7krFD86sExQtWDJLA19HKaPrvh2/vJaT5y4ArMGeV0R0Xbcl92Ar4rLz+J5C99+OHxrSuuZoD7Gu0SJukiveQ3HlNIhv/4GSgrjik+GWYp59B9gVBnGCcfe6JY5zhLVgiduLE9IgWQTtdbCsv/syafxz12ZbyYXhLinkP3fQYaa7YnYiyyyzHsJLCLJqLVPCKtQENgrJaxgyhcQegxXMBUha887jHWTXft20uYGOn9I07A3g9humSVOahom1Q83spNYz62/BWs3FMTL3b7/+sVoYI2YIhYdF2ILCPeuXY6/ELZQ937rwmTGrfrh5bTLrFP88u3k+OOtgyVvYnuTG6u/zmX57xWD5LTp+dPyB5t9Wmvbs2PhO2178a/eWQNmCo4p1YrAzDjfCCliX43QRdLYfv+gUpC9Y3LZX+tzwsOOI1n5W0JndA/as8PfZbaE2joizotgqhnGV630CKVgRwLqApe3yIoRuuFkjnj/7E1gwfLSrv7Gm66hSc7NgicPakzs34aHNq4RjBTqUub8fqqmoCPE40F3TvypQhFiz3AkaDG6miBcULNnqU0pwEfRboZKtCgdxL2KTKF6p0WDVtLlu2hxMrWswf3PPriYnrHUjLXERFFeyv8MVVpSlB17FpdRe2SFPr83zgdGTHN+JEy82QdjZ041lRup3VZg0vM7V6xHvh2xRIWwMltOCZZzLuHeiu6pfkgv+mfrdxpX4f+uX4VcblpvfuS1OnDH2AMw3shk2D/SZ1siwWQSD1NmSWeGTiuJqBZA98x1cse6gbS6beHs5K7PzMtdqm2uyZJGBV0y95fCXlSHef1kdLLcz/oXL/vmOUQzbz/25Qk3YrJwHSBYqeFg/+e89W/GDVVkrOt8/m4tKOju+/R5/cPQkz/Zo5eLmsn2tpE8MuEAkZhFl5DP5Zm5+nS4137yYUGN5MPCulrw01y1+0Vc+sURAvlhuj+xe2S1EDKsN7Uoww09B2NHXjW+ueAOXc2VYZLAFmWph/sIULtbnsWQrfH9htqvnGeKBeJ+jLNZMlA+kYEUBi7UI+Q4dP2Kc9PtaYzXHTTHI6LqjpomXgsVbOMQXfUWnM4NhmIlYe4B0xqxjFIO8NT2rYMkmYwoUjOCsNPkMnGLyAR67e4591YzJJesc+QxpGWhSawSPmMABCOZepOk6blr6KnZxQc+PbVtrynrqmMkYVW21k9sEVWx7hpmm3VeSLO+27rWtsk6tG4ZKj3TNojwZXccmbmXUK76HESSOjp3lld07zO8sN5TsNf6DWwwQb6ns/ZFbsNzvsxiT4ig0HCCLoFuSC1n2MsfiBCcau57b3nsbbxsWxbCuVFUBLMiya0gLbpr85FPWztJsjT7IJPOaBLJ7wc7PW1Kl1hZdd81AajtugDeH9fOH1Nuv01TAA1iwZJNKWZ8i0mjUqgqyWNXMlfNY192OtKbZCkwzi5ibi6BbnS3GPzmXS3kElswCL29fWxZRzur1z91bbFlLw8Dc+GQF493u8hVTZuGkkePxgdETHdvqsKuQm3o6fV28n9q5ObC8QRDjytgwdeTw0QCymXcBeR2seY1WrUU/y1rQsgZsQUYMn2DPEnuHM8JiJ/93oEyXJcaR5CIv2ypRrpCCFQFmIgGuMzjJ6Li8+KgQYyTCD1iHcP70GV13XS3nucpIssH7qw9qGkb4DLZh5mFBJm09hltTr5A6PqVpGNAyGFlVjVMFKwUbEMYYqY35LvWmGQtCSOhd+2uYzdXP7iLI/pcNLj0Z61o0PVjSBBFxNV+WuGNpe7NDCX5kyxrbZz5WTTwmezaPbBrtKUvQyfe2vm7bpLpKTXhmflMFpUPTddzLWWGC8DcPV1qGTFk1XZokt0a8XzKrbRDLJ7+F2A5iFkExvsLXRZD7WbZI4KZ4KpC/w2EtWHMbRvluI3MR/PGad23f87FAMgVLdBcKguw4Xm8ge2bNvSQPhQKYdczSuh4o7iSIFfqrM+bjr8ec4ai9JpvUuvUjMsUriLWPWSGDxBW1CZkZF7fvk9aUY99UKCrquCy3SdWqYuXXcllXL+f3quDe7eZNwV979qzW53vXh+tfGDLFiuH27syob8RXZsy3ubbaS2PYL9JPwTqYqzcZhVsZ609Ye+3u78GZLz9h1oc7c+wBWZnZ9vz95o7jFytb7ZPkicH6LLE/qxDinWUJR1gcc2zd7TicSS7iKXNcCyC/XyAFKwJYF8B3BpcfOMt3Pz8fel4xauD+1nTdMfmTT1yYe5nVOc5tGIlTuNU2GX6WlS9Pn+f5O8+JI8ebSQrYCiarB9NrrMBXJ5KOGSETISFZtfKLJWB8aiLLNOXeufFp8FknyCZNbPW3VYgd03XdVmdMCxCDJUNs5kmcpZERZBLFJzwR7x17LqYPbURSURzHY1mlwky++YmnAsVTwRKPqkG3Kct8Vktm6TiLy4IYVDbZFkyup3dtNt2qTDmE+yVNH+6WScHg+4cdg8umWO+5Y9HD2J2tXooKUUqXZAjljs+7CMoS5uiwXwevnMnjSBxfeSLG1o2SLFSkXAZovuYY3y5uj/Mfj/4I/nj0RwLLJuuj/iIU0eZh7pR2m6bz71mGNS2jaYEC04MsTCiKIr1/iqCAZ/+WH0M2QTt51ATfc7NFrZpksAkwT1rT8LrRP8hkUBTFphzzfYso7gYhiYzbhNP5HrpYsGB/pvj7ECZJ05aeTjy0eZVvQhe3Q8rcdHklU7zM3X3eMUoNldY4/7FXn8q7WLHp9m7I9BdhsSohJOjixR20JVbxHt+Clldgi618DDPAuQiCKVjOGoh+WS7jhBh2EUelUNd1PCDISURL+F6XcIXvDIKkG/YbBnilih+8MrqGCjEGS3I0Jg+rfXFU0xg0VFaFji1hXDx5BvoyaczjVrb9Jr/HjhiLF/dl3baYa1il0TZs9aSCW/kUj8v+5zv4ER4WKZ6kkC735X07sKe/Fx+bOM3cRrW1q33VzPILt3eO4krnzr6enDp9/prPG3+Q1OUnSKIP2WTzumlzsL2v2zaQNVZWo1nw8WeB/G2DwYti8hY9RfG2QIit4swiaH0eVlGJ7X3O1c1LpxziK5M8eUK27X69cQUAYGz1ENPV0qFgeezvxuyGEdjOPQuilUCMsekRXPoGBIvWQCZjT//PtZ6bm6um65LMkfK3MqwFS0SW9OHRrWul2/7GaHPA3i5u70mdpN6fF8vbna6lf/JSsEyLs7uFReEWILJujv6ESdPuPB8csri5oC4Yblmgh1dWoTM1GMjyd9PMBbhz9bu4durs0PLpANZKioSbWTlhX6F19uIWL+/bYfucXWiRx2Dxx1jr4u4nxmC5xWT5cf3il5DWNQwVykmIuE2QeYXIPL8hwNbeLscVdqa93Tp5q3ZK17Czr8c3ds4Lq8i4vFXMTKkSayrvcRJVFjy2MDlUeN/ZOGdmETS+tytY7ll944aokMYxi2A5tGO5QxasCOG7sKEV3h024L/6eSDnMiYqAg5fdeHzbYce7Rju3jBWI8Os8PF8ctLBuHTKIXb/dyafy7DGT1KHGYMRmxgwl6mk4tyb9fvbjQB9Ftw/XDKgubF3ILtayFaT7lj9Dh7YvMo2cPBnZtm5FhvJSiy3CftxxUninWveyamzslkUFPnzELQukMipYybj8il2K2pCUaRZ9oBgKbll2ypQfGIv7OdqHujD6YZbCmAfeNxacESVf/yITAKx7fg4NvFcKzqcsYiyhQhxP9uiiktcpA4d3alB/Muw4DJLnZiB89GtdtfPVZ1tuHP1O+jLpF0n024uZTKFMz/1Sk4QFxO+HbtTKY8tg7NIsEj6wVbjZe8YrzAwZTCta66p5nly7ErN8/HnB9wD+EdW1eD5vdvwu40rDatEsBPPaxyFPxx9GmYIKduDoeOoprGWbIac/BOnSCbA2W3sz+U0zvUNyPapsi5TfOe2C4VoZdvt6e+1nTvM+Ma8O/wK+4qLIRWKio+OP1Dq1s2U/+zCov0iRTd5N3miwqu2F/+9+St3U57fu52Ty3t8syVq8diWLc6JLoWmt41mT3LBy73ByEzaLinbEXfiaHWL+lkjnJCCFQEy87qMWcIg55UcAHC3YGmQrFpzf/9oznGY2zjSdaDJJUsSDy/Ls3uyKdDd6lqoioLZw7IFmFmgNZuIskmPW5ILnuf2ZIvOdvsMUDyv7NsJwLlq6NbZiRkR2WWKk1jZYJNLB8ordyoU6f2SJTfIFZm7pflbiJT4/D1QFO/4DrFZvr9qkW92qlyGImkWQA+fOPF+TZa4Z8oQJ478PRPbgf2i6TpWcSvxLCapX7BoieUSgOwk7e/bN7jW1OPbj5dMtuARpmZTlOS6oBOUIIsQx3CKAuPutUtwK5fxEuAD6eUWFpF8rIKyeCWvQsM/XrMYf9uxAe2pgdDunrmg6fYkNLrwvwJ71ruEorgqnPJFKrkFy76fiysht93Gns5AXhmPbl2DR4X4VYbfQoHozvv3487ElUaMswivAIjS9xRZwWLnd7Vgwd1FkFduw2TJ9WpLtjjniMFyJLmwu+vzsLlAOcD6nThai+Ko9L3fIAUrAtjERfQrFjl97BTbZz7+RH5c629+hS4jcQviBxi2Qu7Wqe5wWRUMCj+RZJnM3NypVEUxsxGxTHamBcvmIujcT0aQ4syMWpfA2y2cWxc/MLAijEyxdZs8yQabXFwAHPFSISdr07j07N+etRDfnrXQc3svF4swljJeQVehhJ64uylYTHkRlZggWeZkIiQ82lOcPM9pGGn7PLa6FkGQxQhYMlkTaD5WifUT4qq42zPfkRpwfTbcBknZoUqjXhVewfLLXnfsiLGY05Bd5OGtRs/u2Yq3W/fYFVOmYCHYpChXd+vsuWCcS64k84j9S77unjJmNDitXP/iMv/JYrB4su59weTSXJwhxYQVbnXRxHbnP7/HlYHgeWTLGjyydY00btDvVocZd3iZxeP2upQlYQQpvB4GXwuW8RCye7m+u0Oq1PplyeXxusa0WxZBxe6O7yW36F4YR4ZVVKJSVc047jgqWEHKcBD5QQpWBAQd6nYJbgiKouBQYfLI1y3hj8sHu0pdBLmtmT9zELe9XJDFBblN0BOw4hr4mCvAuqaE4pyk5xPbYJ7bRaavLXvV/JufNLAzsiQLimQbQN5Z5mvBcoub8eKqg6wV1COGj8YRw70zBVr1yPxXjr14p80qJOy+Yu10J2IwqycguAgaG4v3zW2S9ZO5x1tyhLTYiPdLfJ+6AlpKFeEe8rD7q+k6XthrxaCwCYK40us2CUrp7rYUt4Fb5t6WrwXrygNn5TRgFEK9OpRLee4XizShps5x7XyrsVV1BYrtnrkl8ODxKgHhh5XkgpPLw4JVaCbW2a244lNnWrBcZLEluRB+c6St1j0KDXO3yi29vFPBsp5MmcLN38uURFnwWyDjFazDG0d6bJmtA8cQr9JPfbpv03s+W4SDnd1tLBRdBP+9ZyueMZTqiVx5BT/LGt+fdnl4yDAXQfG9YfdMA3MRdMaOMS+DyXnEpBWLlKahQlFjHTcWx7iw9xukYEWJzzvUIfEd5mM/fnH4SXjwqFPNz/zk7UUuSFg2mefHGzbh0Fy683xWXd3293IRZJ3MoEPBslwExb2jWPR2c6vi4Ts+VqeItZ+b0iGbvLLsRx8ZM9n8zs8qZMt85XE+N8IqoWzgl3WsQ0JkGeMzi7Fn9N75p9i2sdwyvV+KnkzaoYx9YJR3lktGpctihNd3DPEdEp+VoK6oXq5avIXiNa7IMcv6GCSTIZBNBDLgsirssCoY/78gJBXgfwvDkZzSvnD4mNDP6BlcvF2UXDh5uvm3n4LFTy5lijjrlxTF7iIYxGpRGaCPcYM1Jb/w5qZKixO0QrgIXjbd7vImPluiYuXldSBuKw5ZshTmgHNs+dSkgx3bAPbMqeJ+svu2rdfu7tYxOGCLJZW9Lzz8Aqff8+a2IAT413OMMm12Tzpl1gRzj8FyjlGvNmdd6we5cSJMjO56IWMkT8rFgpUUXQQlyTlmG1boclAMBjUNFWoi1pkP46j0vd8gBauIjOdWhGQcMKTelhzDbQzVdN0xNvEvMOuUuoUUsklhtSpK3OJwEooVWzQoKDBsNUuW4pVNNuc3+tficePqgw7zlA2wdzKdhgLMOn8F8s7Ry4I1vb7RzIg23s8F1HYngrvXcLuEgg2mss7+iOFjwh1MEGGM4FLHXEeDdOEsqQiDTw9+xRT3cgd85jmZdcZrUBN/CWqJEA/ppeTyFooPcXXerIKtwdjZ3+06AQxSpJaRy8IK7/ackLiAsTpy3zv0KGm2sw+NnoSzxx1ofr5w2szQMsjgJ7l+KaKTkjTxvGWBn5AnmFKs64EmlX7uiV7wbcksLG63sMuRfS76Xryuwu56JV6/GIMlkvCwwjstOR51sLjPbsmixO/5Z3u4xOrFZz5tGxzAhW/+C9e9+4Jtm2qPPoD3NPGbl9otWHaKOaV92YhBBtyzdFpzAqfMfP/pl1iC74de5xaTRILGYMlcBM0ENCHcFQtNWtPwbttem7u3rutI6xoqVNWU369QcymgJBeFhxSsCLCClb1f/A9z1g3GXGNVRn5gq3M5b4JVTFY2wX9q12bHd+LN/aAxyStETAS/EsbLWqUmwLpSNokQJyVJRXVcExPxuBHjcpaJxbgdLGSw4unlCgazNM9Vqhj4a5dN1jHxNbTYpNtvhYifGPKKaFDCWrD4FNSMKjWB+mRlzlZNJnNCUTC6ylKy2EAaZJGMuZSwdlZguYOcM/5At90woqoGN04/HD+Ze7y0JbZ5xBqK9ybXIdvL7c6K59HN53lEZTUajQmgaK1wO9SqzjbXczjeGw9Zc8lIyRfplj2fXolqgGyMB5/K+rrDDg8tg/S4nCx+Sg4/4bXeaQvefYy/Z0FcBPNxt+Zb89xXn8Jj29a5WrD6BAtmIQbuRiFbpzgpFPtBUZ3yaguHy6Cum8fj+3ixT3Pr4/i06p+YOM32PMiyjvJeB5uMbHRi/7CwKbvI9JkDnIsA04c2WrL79Bb8uyC33AXHb07hBf/uur377HnnX20mIt+3+Nbj4sSU1XNksGQhDhdBlxgs/v5b41d8FIM/bVuLb614A/esX2Z+l+YWjpli65fcpBQEKaRO5AcpWBEgzjtkQ8JZ46ZIV1rPGuc+geSPs6DRctXJeMRk8IjbMLeaKMzVfIZDwD6J4VcQk6rqsGCJk7GEqjgGLdaxBi1gKIOd10vRYbWn+BWopNHZW6vddtjx+EGCKWcJxYo5y/jcJT7lfNIjA5cbYbdvMWpd8YNlWtdc3TuDwNpAURT8cv7JpsXRVLACHGNXfzadPn+bfjrvBPz1mDN8lc4TR03AwUMbHdvdOH2+534O9yfhdzE20m07L+nYb5purdbfcPA8R30sIPtMyeqg+WEvNOxNLm/9KZy7ZqPEMsAmrm712ti7fuHk6fgEV38uX+zp8b2tj/b+xtn2zC3LEYNV4ImcqJw/tHmV64KEo6BtARbJRHdH0YJlpWnXpSLwFk6H5Ua4MI1zwphYa3l2iAs9bl1TDSfrhJo62z2WuQjyY4BYHoHBTiWzgPH4jp82mYMv5GyRZBHNZw7M2vJDoye5LgSxdrNbsOxKjvi3DFsWwYy7MjboluRCsGCx8XR3f69km/goWK8377L9D1ju5bWJpOnKKmaMjQPkIlh4SMGKEK/H9bBhckuV1wTyHa7WC29uzmZg8n85xEGtwnQR893VF7HD5SdY/GpZbSJpXmNKcBE091VUx/FYZ+rl3ucHP8F1g2XE4y1ZTOGQBaEDVscks66pnILlNyjx7aAqSmiLVFiXwj3GYMUyg2m6joyumxmcgGwcIM/M+kZ4wSvAVYmE6f5mTU79HzaxBo0CBRVqIlAMnRsnjhrv+btjFVS4V27B9SJe99isg8Wt1vNxPvw7/NDmVWY85smjJgQ6NyCbbGSP/cmJztiVMHEUDN71U5aGm93npKI6ylCwfQDggknTcemB/gWjg8JPxP3cO2UWLP65tJJc2GOwcmmvfHHr10ULViHcvEVEC57pIujyyKtQXAVzWLA8XQQV22fpubjvRev/5p5Os69j8O97v4sCwLbwW9TxHXu5n8VkOV778nFipkx5TIL5PsftiqS1/nTnuf0m4zaLsIcCxGpfijF0ZpILYd+tXMZfZiGVJSkpFZsN+fix3CqmbHmGxFGZ4d8Jt4zLRH6QghUB4kSX/8Q6DreU7F5d+V5h9YZ/WacaKbq9zPE1QuIC1eigwhTrdUO0OPGKED/pHlVdy1mw5C6CCUVxWMRY556XBcto3XXd7XjZJYal2ajjwrvNmZmVJPEa2W2zHVOjpB0TXFIPv06V75STqhreghVuc5OOwaxSySbnvAVLrAcl3heRczl3UMAaBFuMdg0yrHRIXATDElY5Fe+NOCXY4Bqobd/PrRAqYE3UHt6yGhuN4/HTR34C89ft682/Dw8Rd8jPNXjJ5ksyneVi9FAUBTfPPAI/nH2s53a9mRQum+JUoPLNWOpGwqW/kcFbLGRtwAfzm1ZveCe5uGTyDHzOpQ5SPri9L6KLVhRZVv1I6Zpt4uVMqOIug9hnOmKwuCyCtkycsL//bqUWVEEJExfiFguFqNd1tZt/uyWSeMkn0UVQ+Cu94u3n7L95dIiyREP5KFimwggFq7k6fDxsrOvmYvzYneE9MPx8ZvjFXK+FCdb24qKImOSCuWSyjL6Ad5KmYtMy0G9bGOTH8hRn1VcDzgVKAS9THJNwvB8gtTUCnEOA9c19R3wQO/p6pAHggPdqGb+CX6GottieE0aOR6WawKxh2VXj2w49GreseN22/0IhcQHrTC85YKY5QXly1ybX83vhtGBZ11GbsAfUsgHULamFAsUxEWMKT351Zqx971j9jnSblsF+PL5jIxY2WS6YTBaZKxdgdUwy2RKKGsg1ERBjsNTQk6awMVuzh43Aso5mzDLc39hKID85EV1Jqj1Wtn5w2DGYMmSY7Ts2Sfn+qkV48vizQ8ZgMSH893EQch/RgiVOAPNR7BlMpOVcplAFVhunNA0Pb16FYwVLqPhcVakJ10mhoz6SsavosvfB0RNxqIsV3Y+jR1hFet0m1UOTlahOJHFM01hbxsR8M5a6wbuO+b0HsgD9Ts6ywFbVoVjvfFrTbJNOkU+4ZLfLF7eJTpg6TFGR1jSpPG4LIWlds75zxB7ZP/OFhvnjiGdzu7d8P8W7ZduPLz/uu6125UtkU3eH1Io8sqoG+wb6MLnWO034cSPH4d9cKQo3OURkrq7BggHk8ErP83u3S7dhYx2/kMb2ytWC5RYj9XrzLuwd6ENCURzbVAiKCJOHt3SxPq3UMVjdqUFc/va/beN1ZcJepxTIXlMy4FygFPBjRz7PGeEOWbAiRGb+b6ysdo3nALxXIqsEFzJW/2GMYRU6ZsRYDDM6ormNI3Ht1Dm4/bCjzX3ETEtssBpaUYmrpx6GCbXeWQ29cChY3CRddO2yshpmJzXiQKIqzolYhnM9ypWgdX9+s3GFrQMUB/UVnS22IGlWDFK2Om93EfQeCPJNchF26jrXsGqwASqtWyttbry4131V1y9dcRb3jvuL0+YAgLW6amyaSxFV/j36+iELfLcXU+2L45/bc+dwdQrgIsijKIrZ6b7cvBN/2rYO1y1+0baN811wP4cGHd2pQYc7MC//sIpK3HDwvIIpOwAweUjW8lntElsRNfy757cwYQ/wz27LB52badph3bMBLVOSQpxuZxQV7EKkaRf507Z1NuufFYNlIMigQXd9d6VZBF2Ow38O0ieqiuJ4zsR3hveaWNHZAi/c3rfvHXo0zht/ED7NlQiQMb9xlKvbqpeLoLT8R14ugllURXEtfWElueCdZ8PHYAWxYN2+6m0A2WsSFwzY/Xtw8yq0DPSbE37+/ptZBEusrDQP9iMjxGjy95uNq7Z47BhY3UR4t+M4KoDvB0jBigKjDzhv/FQAwBUHuqeWFvHyVxYnsF+fuQDnT5iKaw6aLd3+tLGTMafBvQiiM4A491FafCG9FCFnZijhd4lywaws+cgY5uHmM+owtxT+3P+3Y4P5N+vgkxLZVCiYPzzr4rXAp/BvJRf7lFQU/0xNAmEVEdEfPB1AieVXtvjirkCwybNXty0+F/m4CPL7jDbihg6RxAQljVg3cZAOkikyux2E7dyv0O3++Cn+uz3iR0RWd7bhU288g19tWGGTjr+nhXLT42H3Uuyz6pLyNNv5wvdlfH3Besn5bGnaJccaNGOwrH6oWPFX4jvllmXO2TcUQcMS0IX/FSj4LDfWHchZs8WrcHzWrUUNsR8IEoPFk1BUVCeSOG88l2lXOGOoCaTLKSfU1uHyA2c54odkuFmcvaTwyk6bC+xZUgB8ZOxkx+/DXErCsKEwjAuZLQYrwLsjxvft7e8z//7dppUuadot63IpkSXx4Ps91m5JNd6FhvmYP3IRLAykYEUA6wKOHjEWfz7mdM/U0iJeKxv8qsiEmjqMqKrBZVMOwbAcY6jEwSqfmy+alPmOcJSRHpZ14KJi50w5bHfxePL4s80OS9z34yEykYVRzgZ1q9OUrfTzPuzsniUkCkZ1IoFLD5iJm2ceYdbhcoM/TUJRXLMvTXCpnxZW9xR92JnSuMbFPx+wpyyeOtTuDuhnXXxky2pvBYuTX7fFZISHV1rYhK1eUkNHVRQkVcX1vWOFdWXxRDLGGsrcUEmdGdnzp8Lf4rKuq90x8RZh7r/P7s66IjFXX3Zk3mW3kJYrdnzW/qLSXTgXQeu4/Lt54qjxeGThh23K9Vxu0UkmzX/2brOOC7u1vdCI1hQ3Vx1RwSq+esVNwkxLs7sy5IjB0p0Kj2xBxeEiGOBK2TbnTZhqfvcXIwsdI8yk/MOjncpIVHilaZcpWE/s3Oi+vaZha0+X6zF5C5bM/fADoy2rFt/KbJwIZcHi/k7p/guF44QxjX/ue9Ips3/m739cXARlyjOvQKU1mQUrfgoMn9lQRzxTyZc7pGBFAD/IBFnd4pnfOAqHN47Elw6e5/jNXiAz+iE1H+uQmHKZl7WhsgoPHnkq7jvig8Z57PuK7gEyCxZDnKDJapS4ESbZ0NutexznVCWTdsA7BqsuWYEKNYGjR4xFdSKJk0a6Z7P7x04r/o2P3RJxS2TiFR8lg19Ne2zbOvxt+wafPezJWRxudD5+So9uXYvdfdlA4BMl7cBbVtI67zIU/rnk92DviuwoqhHvJ1qe2LNy7IhxeOK4s1wTTYiTmQ+NmYTPHXgofjrvRE+ZeNn8Lu/McVNw1vgpntswl6d13e2cbNbvtrg679PlDf8eHN001mPL6HCb8KmKgmGVVbYJzUxO2fLqR7Mugtm/32nzjtMpNn3C4ktvCdM+88qTozaWS/NaCRfYZ/n7ruu67XkNZsFyvu/tQsmDMG5lw1yKG0eBpwVLMmC90bLbdfufrl2Ma9593rWwr2ZasBSpt4XbpL9STUDXdZvS41dyRLcpGP5tLcak8+9zpZow+2O+b0nExEVQpuAxF2mAs2ApaqxdBEWJfrp2cUnkeD9DClYE5DOBqVAT+O6hR9tWkxhhixKGRXb0oOmpPz3J7ofOxzlUqgk0VVWbCoA4SM4RiivzxXlF3AoYB6HGJ833EE5BeWTLGsc5eYnearUGOsvH2vn6iFYdr271HK4GmrjfPG7VfWtvFz574KH4iFCouiZQDJQFWwV/t20vHtq8KtA+NtcRj8yRDPEbFsMxikv3zeBTgKc0zdQQcrNgOWWQuehlM44pkhVt69xekzrRKpZQVJw1/kDTLVE8l0NOSGoaCTRVVvuueLrLmP2eX/CIsheRnZV/D2Zz7/aP5x4f4ZntNFVW44SR420uaoDl3sve0eow74jife+PN5KR8JnNosZNcRSt/m4uaIWEvf+8pfkQw9I6gyvEy29jfcFialg6bt31fQ+rYJnbeGwaZoJbiMVMhmcMlptbsssz8YKRUOgtbnFQdi5FkcfZ8s/aCdwCWEbXHeNWGAvW8o5mz20ZEzkrFt/fVahW2RZbvTu2QFhiF0FZ38zH+PGu96VyEVzd2WqW/XBDvKdL24PdNyI4pGBFQSn8NSJgV5+VZnRmfSO+PWshfiZZiZchDkJ8By6mYReVp/mCdUBRgCONLH5i9iZ+BeuyA8LV0VEURWo5YXxk7AHS79k57YGr3GqeRwyW+JWXknxgneVy56WENlVV45zxB+IgIzU/I6wF66ldmwEE70in1TWAf7jdapXxXDttru0zayvxmQBgu540Vzw7txgsay+vCRJLoy9OuCyrpHeXeMbYKThtzORAyoPUggX/WDtVUXyLncqOzd8dXvmdJ0nZHiWyewv4p/jPB0VR8NUZ83HOePuii1kSIsNKQjgVLHfV1LnQw/qA2cNG4IvT5uDL0w/HpSH7oTCU2pHoSo/4YbErUxQF04Y24J75J+P2w47JfmdubN+WvW2sb+UrOeY7fJqJGjyOFKZodCEnRV7zbDcFy09yt+vuMRZyVChCohfjuJwwtckKPHjkqQCyyrvY1/srWLxVM1hMzzauxAV/7aqimPdLrHcGhLuXhUAWY/ZeR6v5t7kAq5bORfArS1/BTcte9dzGWXaBiBpSsGJMlK+kTBngX7CEouKI4aPRkGN8l8yUzxCVB3ECrCoKxtfU4bGjT8f/CK6S/L65rCx67eE2oLFz1kriagArIYbMRVC8Vq/0p7yHnXh/TuEsmldMyU56xImsV/Y/GcdLCiPLOMVQcr9xyBG27x0KlmTQPnaE3UWMKTKyiW5SUcx6JylNwxazqGR+95lJVSFJbsAyjqV13ab87jAGe7+YoapEAtdOm2PK7S2TXAH3S7mtAJhVPxw3HDzXtWad27vAvuUVrKsKUK+JRyzLwBji8v4UEvb+jTcypE4b2uDYxusOi+/vgXX1eODID+F7hx2F2mQFTh41Ia8C2H6UOtj8vIlTHcXGGW592cTaoWabuGcRzMKnrXa90pD9vMxFUCQTwl+8ZBYsFxn9rG9uVr6frVsCIFurT7YY5pZpcTAXBUv4uV+wuPLnkiWi+dDoSebfy9qbzULRfK1JsVZWqZDNG9ZzdRPTXPkT9mwWK27sj1vX4k0Pt1Iex/tc4Fjd/RFSsCIgl7TSQfCtGB+Cn0sGTf4FkylgYfDKHOTn5sHcemqTSadlLM8MaF6DpVgnzJTHR17eRVBUWsQVcJZZ6yDOWiXbNmtV4RRe7remqqw1I9/+75gRweJjvnTwPPzt2DMwsqpGcBG0IwucFhUpr8FQUaz0ynztpFyuU6aIf+aAmTh4aANuO/Ro83cVijnx7zTSmy9rb8brxqAUZVIG2furQMGYGqc7oWM7RcEHR09y1BljyF1qufeZ097DWjq95XJ+VyVM3u474oP40ZzjUFckBevMsZbLHmuXa6fOwQWTDnYs2GRxV04di0FQMKKqpiiZGIHSK1iAf3ZQ5l7slpQHkGUNNCadquXmZVqwhHc37BvI7rlXXx9mgluo8RzwtmC5lfXo83Ep9pN2c0+ndCbhTFRlKTDib/51sOy/i0lidnAZ62T94sHcQkjLYD/aUwOo4FzsgPhkEfRTeK0SM3zJlsK/11t7uvD7LavxvffeMr/r9UhcEYe+5v0OKVgRUA56vyz5Br9glu8E4sV97vWSZJPBSybPMP/2DDzPs3G9dj+sYYQ0W5tfW/Ad6CeFgqPiBO28CQfhi9Pm4NZZRzllE9wfnt29xfaZwZQW/n75uZDJCHqPFUUxz8nXUhttZIe05JLFoAkWPJ+4qpWGn/jzXCa3fN8nNkEaVV2Ln8w9AXMbR5rPoKoo5grqrzeuwFmv/APfWP6aJX+B6jaZsinAVMHV07kNF3fgIo/svcjoulVouEgKAeB85kdX12KGJEV+oeBdIJksDZVVuHDyjNAZVx2ZVou8qssmskEspIVCZpkGrHd5U08nAHv2RRFHFkHh2GmXGKyc3IMV/33DWD2iqDE2xGVRw0sKt2m7W9Fiht+1Kci66w5NVmAKl1xCnGCz69Z03XFMv0K0ouw9GfvE/idr3/WUV6bUin2xVQer1C6CTvnnci797PpURTEzDRfD6vaSZA72x21rXben4sKFhxSsGFPod5LvYAuZNUs2SeHjb7wmMVH557vx1ZnzHd95WTFe3b3DnGAkOBcAt/NVqAl8eMxkqeul3YKl2AYplZvkWIqMdb9GCspOEA4UMjcFYVb9cHzmgJm4c85xjngXmWIsfuc3GLIrWtvVHlo2Hru7q7vrJp86V7YoEOWEWvb6somEl3WHl4Cf7PKp4GWLFmKx7M8eOAtfmX54cIFzpJAuVYHOz/0d5P55beJ4nwu8fHZ0k92KzhcpLRVuSr2oNH3vUNmikfyYbN8KLtU26xls8ZPIvc/PxR1cRhR9wI9cYjS9vFKYlW+q4O3QL7EU8u7Nfm79rL7bo0d/xObJIk76TWsLdIfy9WrzLmzk3OCcAtk/ijLvG+jjNpUoWJI2FxV9K017aRUDmQWL/4Zdn8qNNcVQCidKsg23DPS7bk8xWIWHFKwIKPUEI1eidEFsqKjCXXNPMFOz88gGLH4CUcjW8+uLZSv9vGwjOEtR++AA/ue1F7Coda+5nbNIZnBsVeo96gcxy1O+d8vtOT1smHvNJUVR8PGJ0zCzfnhOsScZc5VawU0zFjh+H12VdZfjV+xzcdHhJwuyvdl3XiUBALtrZr7IEpyYcgQ8D+9yySeHkV1DRtdtbXfO+INwkpA0Jn8kymuJh2ZbDbQgCpbHccRrKbSic5qQaOe9ztainNcLt/vJHudqNYG6ZAXmSUoZuMZgGfuybIjZ1XYry525vxJexbL6cGs/sS5dGLeyKFwEZTGngI+LoPH/iSMn2N512aPA1y70c/VKCCY5prgMFWKh2Luj6ZaCxY+P317xhofs3i6FfGIfWaiZbCIqlgExLVgldhGUnd9eMyz7P1/f08uCpes67l2/HP/Z424RDoImsYF6hW6I96E8Z7HxhhSsGHPJATMxorIa35h5hP/GOeDnax8G1cgoJUtXLZss8ApFIScTXm4sgLwN+EnaFw+eCyBbi0oM3E2qztpVYVY/+fFDbANZm/B9dFQrYjfNWIBvzVoYybFksDouqgIcN3KcwyXz6BHZFXw+mDkXRY4f4GRDmRmD5aNgRflOyLJdsVN3pgcdv5kycJMaXh7VZ1Gi1MHfpYJXCAI6wbp+60zIk7NYgRBdalnsSjFdPEXckvuwSfSgpvmmvxcfRbaYx+pTre/ukGYRzKW5zSQXvKImHCmcBSsHIQTcDuG9qMksH/b+cEKN0zKxy0gCATiLUIuIi0Y/mXc8PjR6Ej4turfDUrBYX8L3P10hCtGKSt9Axmp/mQVItvgnurQzT45SlCjgkfXr9vHHcn1l77GXEvxW6x48uWsT7sqzDpUsSYrXcy/K1JVOlVx5fb9BClYEFGoMnlBbhwcWnho4OYGMK6bMwsmjJkjrW318glUsWMz+FhYvJYn/7afzTnB857UCLkukkCuTORM6O7+fBWtkZdYVb2RVjaOzkk3Ww1hAxCQXlS6TaQbfHUbRESrIKj1hi2MD2bT+YTBXTSvskzfWBuz3U8dMQi7wyoVsADddBLlVRRm5tIUbL+zd7vjOb3X88imH2OKGeHlsha8l1+AWJB8lYkILoPRpk/kJcV4WLNmxC7yu6xYXGUsXQeMV06H7em24xWDxlhnrlc1PqWXyirultAwe2PQeNvd0hnIri8KC5fYcvtosLwoMWBYF8fzVkgUnfhFGlpW0kyu0LD5LU4YMw/UHz0WdUNOPJRjRuCQX/Hm8WsUv6+ARw0e7/uZW31JUHFkNws6U++JUMZAtZIlp6gHDIh7ARfAHqxZFIpfsHG410gBrweRQzoNlWcAaZkQwSMGKgDibVs+dcBC+PP1w6YDIT+ROFYrYBoFPIR3UKsAC/G0dt8e+I6tq8KmJB0vdy8Iyu2EEHj/uLFwxZRZ+efjJAOTZE/lJD3OveKdtL5oFf+akRMEK4y4qJrmYyK1UyhUsXonI31oxWyj4HIZVnW3+G3EkDUX5dSGFLGsDdj11Lim//eCVKtlkis805jV5jTLznUwOv6fjvAlTXeWxW7AkClY48XLiW7MWYvrQRnzzkCPN77yyyRUDvi3cXLNs23vcBHEhqtBJLtyexYVGbNZRTfJMp6VAR7a0gQ53xdPVcmPGFzXYjifbJ2iLf/6gw/DB0RMxtnqIsZ99z6d3bcFftq/Hte++gFQIq0ch7vhBRjbQ9tQANrjEMlmFgRWbBXCRZJLMu8/JLFirOq26TGESWKmKYovB4s8TxrMgIyjY07kFObGfclNoOwRFKi4Klmxxkx+P2bOuAIFcBKPyRgkbm6aZ76QV87d/+kAUDlKwIiHOKlYw3DJHecG7LnplvZJZifiJkN8k5qIDZuC4kcFqOHnBfKLPnXCQWSdH7pqgSP/+xrLXhO1USSam4M8C73KYUBR88eA5GFVVg9sPOxoAcOkBM3Ht1DnmNvyponjiipmmtcIYqEVLKbsO04c/xwubzCXwqJJMstk8IaNrnlaJXJKHhCHs6ji/OMFbR0tl4Dh4aCN+PPd4LGwag1rDujageaeRLjT8OxdIwfKwYQ2tqMQYzs250AqW2/Fn1g/HA0d+CF8vkHt4UA79/+zdd5wcdf0/8NfMXsvdpVzu0nsnpFMChNACSBNpShMQBBSQAIqCIiIoiOIPRUCxIHwREBAIUoQACQkJ6b33nku5nutlb+f3x+7szczOzM7szuzM7r2ej4dy2TLz2amf93w+n/enWzHujUweLkkdleN4m0V7ZZH/XayTkCHRLXxJ/2G4b/SU6DVcWaYQJJQputEZzTGlx4kx1cr9+rU+g3HT0LHRf1coEj7I2kIhVcZV5cO0TxTZZWXZQsdxrjfORtVDxE63dQiqMVjK9Zh1W43XgmWW2tzqWPCAIKIwKxvH2losfd4teoGMpPO3IAiWugg6Vi6bvVqirZSKa6aTY5AJcK4/TCeWCYdkImNPlOOt7ho50fBzejcA5dOwVA2St3qjMZs0WSlLEGJuDnZ+yVTFPFxZgohBhV3x0tTzo699c9Ao1eeV67KbflrPgejEvu6Tb9Tn9Rms6iYjap7wJXosFGRl4/EJp6FCaEW/LgUIaSpU8tiP0qYGjDJIk/6bCdMcTVgzqEshDjTVq17TW3y2IBp2s1Mef6oskzZbENzQPTsXje1BNMSZp8dtyt+s14XR7nIG5XfFkUjl3O1rk1GlVQBQ4nKwb8W9oyerssvJT+eNrqXa8+ezI/vwxdGD0W5IyvcrW5tjXhMgJPwUXblmCeqWgVR3Y1WW5aSevU0D0k8O78Wfd67H1Eg3Ou0RoTdBvDKphF4LVqJdTEVBQEiC7hgsM9p9ZhZwXT94jPmXTXTPzkFpUwNa2ttdnfDbjF6LUyhOC1YqsgjaaaUFoAiizYcmUOLYguWATDgmExlUrTwZzbpWDcrvioFdCnFZ/+HR19TjjWyv2rJRFtPBKxm1YMV+TkTfSPcUK5/XUt4grHxvco+O+X70WmnsS92BK3c10ZZbbk2IN3mjFSf07I3rRh4X93NGQXMyXSb1mKVpV7ookknuOs2gcwA4pAjQlNvID9ecw80NALwfdC5YfCASfznh/6qSZnjURdAvFR0B6rLIFXurgeezO9ZhY20lllUdiSxPGUx1/PecSLbLU4v7Jvy0Xzm1BSRJ1dKQ6rmTlNsnJJkn8vjzzvUAOsbLCII6yNRLw67cRvoBVse2sHOvEAUB7cougop9b5piXvOe9qGqHLDdPnwcrh8SDrAu7T8MAHBmrwGWyxftJmiSJMht8bIIdiRvEWIeIOpxKqHNv/Zt1X39msUfo16nW6XeeeaX606mYIBFAGJTolphtTk5WxTxwonn4PYR4zvWl6KnJneOnGB7PaLlACv2vUQHSFupGPbr0hHMJbrNBnYpTHoZAFRdXqyQW7AGRrpmyt3LlJNbJlsmq1KVQEB/vpfYz105cAReOPEcXKd9sgv1OIRv9B+O4QXd8LOxJxm3YKXw/jgsgXnV3KA8c/ZG5qgzEy8gVF4Km9rdbZ0zOhadSLTgCKGjLMquY/FKpz32o9M1KL4o1+8EAPeNnoy/nTgDp5X0SziTZ0AQ8MrUr4UTNUBdEU51djRl0D++e7Gt/SlAUHV11aucqwOs8G/77Mg+fHRoDwB1y9PM0ZNgVbgFS9LtPmYW92rf++3WlXhpz6Zoa478G3pkd4xx/P6ICXh72sUY2bUHAOB7w8cjnm5Z4WDTy26Cui1YqiQXHdkg5XpOKsZgGWloD+Ljw3tjXpei73dkh2QWQWexiyABSL4FKx5t1xFlQOFmN5yeikHrVn7h2G5FqrLZ6XcOJB4g2I1vEw0SLuw3BC/u3pTUMgCgv6blTulHo6fgD5qUs3IA3zMnDy+ceA56ZIdvlGK0Bctaxc0JqXpKpzfsQ2/NWYKoO0mk9vPFOXl4NjJR6I4kJ2Z2wuD8rtFJt70kWHzKbpXy/HdzAnbAOJBSHqJf7zcMHx3e42o5jISfwof/lqAeX6JHPi7r2tpU88B1dJsScFzXImytq+6odAoCAoIYHRebIwbw+0nT0U0zT5MVxbl5KMjKRrsUUk3RkeoWLOXW6ZGTC6FR8V6c648ohLvCyeJlrZN/27M71gEIZx0cGnn40S0rBwMUD9XiCUBAUApF16l88Kqd68qoPLJZB3fh40N7cXbvgdE5nrTLUGZJvajfUPx998bov6cqMg/K5Cy09W3WU8Y7TW8Mlt48WFBkrG33OHBpMWl1C3nY0pvp2ILlAN88bUxCIk8Nk6moKi/cbk7UbCeZBhAeh6NUYNL1MT8r9vlEotvEbrUw0eDIrKuKU+uf0WdQTHc3ZT/vQfld0TVSgZD3fUhRAXObly1Yeg8TzMrTVVHRUmURNPxO+l+L7FJul6lJZN2Tj71UdpMxWpXyOCnOjZ1iw21yS7f8IAQIn6PxxmDVRFoW/rZrAxoVrX8d3aYUE9oaZBEEwkk+5IDLrnCiBvVrdpJcOEF7ftq7rgk4vlvP6L/0uk8rf0675rc9s31ttEVpvMkk8npEwXiiYb2J06PvGbzeHGrH7CP7omPglNkNtbR1kGad7KTyww9tlsJU0t8fOi1Y6Li2H2iqj9sNvke2/QcKSgUmU4zodSOVy6zMVMoAy1kMsByQCVWaRFqwkqmopqoFSzXWy8J6RJ3tMMHgJtXfxpNBI7cND89TVpRtL2lF4mNNOrZBVWuzyefMZcUJyLUVsFyDi7+8FL0uRG5JVQVatz6is2qzffntIR3dBlXzYCVTsAyjPK8H6UzKalcq56AyWpMyOPdi0uE/n3g23p52MXIDAc14oo7Kox65rAO6FKoq5AcjYwlFITWt1tpuoG1SKKX7VXuvsbNmUQBO6tkHVwwIzw+l20VQcXzoJfDoSPluY8WITdOuDAwHF3ScWzWtLarus2bBl5KdbMV6XXkDmgdyXtBL2iUhHHi9smczttVVh1+MtMzKXtq9OeZ7yi55yf6ioSZdtvVS28vHVZdAFi4fMDxSHiZqdxLv007IgAjL7S6CWlYTSSTLbguW3lYYFekj7obLBxjPU2bGiRYsu/NmKHWL87RNeyPtatASqJ0Hy+0WrK5Z2aZjCZwkPxkcrOj+pxfkm41/7J6tP9eccjv1V4zNS+WlyC+3YuWpkMhY0uhyIv/NU1wz+ikypbrB6HhXVi7rPBjQHxDEaPct+RzdUV+DY5GyGF2vHjjuRADhDIj6406E6P7qqCQ7e9TqFS0YClm6x5XkONNamJ+VhZuGHBedv9HW/IiR7TEtMqWFbhfBOBOry2/bfXgZTdMeObuVvTTkbsztUgg3LPsU31r8cXQfWr0W2Okpo3eP6ZhXyruWFqMxcV8eOoi39u+IZskVob5mf6qTbr85iTGeT2xejuci3UIB80yZc8sOxATB0YQ1inTybMFyFgMsB2RCF8FEgqWAIOLx8afhmSlnJrVuNx8sqp76G6zolalfU5Ql9jMHGutjXvOaEwFWIp6edAZuHz7edN4zIDZzlVFAJpcnlKIWrPP6DE7ZeJabh43Fr8afiluHjTP9nNXWSOU+V26nkhxv0nlbfWqdSkk9rIl8VRnU3jd6SpIlsrTKGDmK+Yc2Hqt0tQzxKI/OD0p3R17TL7lcgQ5KId0WiNZQuyKzWrgy53QWWb37cVAKxW11B4AfRwJEJ1w9eHR0/ka7LViAIsW33vgZ5RiskGRYebZLjGQwlNfZJZCF748IJ4qSV1Ef7Bj/9GX5wfB7FtdnZyL3H+hM/WJl4l636QUh7ZKEulb1gxDtPterfzQrzhE7P0mSJCypPKIK2vRa1pS03TOVQXhHMg4GWE5igEUAEhuDBQCTi3phpMG8Qlalah4so7UU5+bhqoEjccuw43Xf3+eDgfxaCXcRTDKCGdOtCJcNGB73c9maAMsoVbC2spWKhxXjFOMb3JQtBnBCUW9VOv54E1ubUaUPV/ytnLw5/R/1JEBRMUnmWiJ/V5lgoNihFg0jcgruLpoutMrxR4lemx2jOD7lbsVGD6vkY3l3/THdCXLnHj0Q00XQ8RYszb/75eWjLRRCtoXzrMSl8W72xr6GPyFf4/WCJWVPrqAUMuyNYPfBqd68hEMiLVfyQ7Amxbx3cpIbqz3LLomkZrdCbx44eZsou7LVtrXiuR3rcLipwfKyk6HfRVCKCeBjx+HF0hsbZYXeMREvwGrUtJYpW7ACkag+mV4tFIsBlgPSuVLz6/Gn4oejJ8fc4FMpVWNizNZzy7DjcdXAkbrv/WjMCTGv5Xhc6clyoAUrXitUMrTbx6iLTMeA98i/XStRWI4YwDU68025SfmbkjnSjZJceJEEwa+sdMV6d9olmFYcDkrHdus4B+TvqsYLunxpygtk4Y1TL8RLJ58XfW2gZmxnD5vjM52mDFrla4bRZpGfhG+tq9at8CpbsKymfLerWpPCO4RIC5bBQyllF9tk5lEzY68LuBQpi3FrTUjTRVDb8pDotpX3jdzdLCAI0CYlUXZFk1tarbRg9crtYrme8U/F+aDUMel1Rxme2roSnx7Zp+ou5ybttg5EUttrH5RpHxbqHQOtqjFY1oMbvWAq3mTa2vIoJ0SOtmAxTbujGGA5IJ0DrClFvXFun8GeliFVAVai3Yf0nmp6PRY00VnslVvg4eNPdqYwOnIsTm4ZM9GwS8fCr8afiik9euGKAcNTnjRAWWlLpoXOKMmFsnUw0a5BnUluIICHjj8ZH06/VFV5lbdptjLDaQqu7l2zc9StnJr35QnG8wNZ+NnYk1wvj5ZyXJv8lN7omq188KM3V1EIsa0kbl/+20Lhs8Koi2AvRUuJW+OB1S1Y5uuQ7y1mXQQlVZILKablIV46fSPy3JZyBV4UOkqrndMKAPpExihaSTqRbyG4+tX4U3HXiAnR5caUTyfoPNoczoF/sMnZrvz1ba345calWFtdrnpdmwhChABJij2+tJter3U9XquTEb1joj0UMj2ytOXpaD/uSCfPFixncR4sJ6Ryds8MlKougnoZAq3Q694W0nla1NflAfFAuA97fbANQ/MTm+RVuaWLXOz+FO9pmkzeI/JNy60KzglFvXFCUe/wOlN8vqrHAarfO6VnYmnFBdUyO/5u0klt7Ba/3IoTLYcgCKhu7QgCtC0rQOoenikr3drjc0afQegSyMKEHsXonp2LG4ccF52cNRWUDwjitYwoK5nddVrevtF/OJZWhpMAmKVpd5LcDctKBruAS6VRBVVxViFZasHq+Ls9FMJOzbx4UpItWEGpI8CSX5NXqTw/RAEoa260NEGtla6uJxT1Bkw6VkTTtKu2STQEjLt8O/5zcAdWVZdhVXUZPjrjG9HXtWOwREFAO6SYB3exLVix61B2EbRTer37a3ukFc2wu6i2BUuRadLKhMhkHwMsBzC8SlKKNmBibT4GAZbO5+IlM3DCM1POxOrqcpzde2BiC0hRcGF1Rng5UDjaEn4KmYrWpVSmawbMA7o7R06I+/2BXQqj8wvJlDfmVD2g8KtkJheWVJXF8HZcVnk0+pqbc/Qpmc1xFhCEaLIEACnv4qo8X17ftw2AcWVQ+TuGFHTFVxXq96cU9cLyqiMA3BuDpSWfK0YtWDcMOQ7rar4C4GILlo3FysGTMrPbH7auxoyhQzE5Lzx+VJXkQpLw8MYlqmXI7yY6Bku+fouKMEFvYto11eX44/a10X8LMD42nGgN1pu4V35o5XSvkprW2BZYQC/A0m/B0/5avd/flmCadr2Wr3CAJSIo6T9ki2nBUiW50PQkIUewiyB5riWJVKV2JNpyYSX7VDLLt6NvXgEu7jc05a0wdk0t7mPpc9otW5+ClNSpDrCU69MGQ1b2419OPAevn3qB6rXVim4ruYEATktigt3OTFlRlffNccpxWSkqh2jwt9/ImQH3GiT+UVY0W3RaU7MEIbqdj0TGaLnfghWKrLtjyw5QjLs6TjEWNeDS2FpV5TpOTTo6UW3k2rC5tgpzjh7AQ8sWdnxGUgZY5hPf2iGvU05eIQpCNOBfWHEIbaGQqpVjWdVR3e+bLTsZeq16gsUWrGNtLahoaQIAfFlWiiPN5kkx5pUdjP5dHvkeEPvwMEsQI9slNvBSUv7zw0N78JN1C9HQ3pGR0U4aQd19Dsl0G2sDvJCiBUuMBvNswXKSn6/lacPfVV3/M3pS5LTylsQm1rVaIU+H4yBVZVR2D/qRSapr7Q2hrLnJ4JPOcWsguxFVUKXZATkWyiIKQkyZla2qxTldUGAj/bFTkmk5clIypVA+9ZYrHNNL+ht82j2CSQuWHxltc2XFVy9Ne7YYiJ7zByJjZlL1exsVlVnlOalcv1sPX5QBzy83LcVKTWCiJAdPZmWxGkAlMg8W0PFQsS7YqlrG/w7vUQUSeZreHWbrc2LLRrsI6hyB8bbIz9Yvxs3LP8eq6jL8ftsq3LZirunnlct7Y/+26N/aIKQwKxstoXbVxMtAbECjTL7yt10bsKW2GitMjgMzehMCy10E9dLbAx332q/KD+GZ7WtUmSLlcZZswXIWAyzyzLDIzOODTWYgd5Lc998uqzcpv7cqAd6Mmzmr9wDD97SVK2VXKLc4Pe9OPHotWL84fipuHz4OhXEmbDaiTDzQIycn5Yk7fCWJg1pZUd1QE55vStli7cU5nR5dPvU3unKeI70AK0uI7SiVql9bqshq2GpQkXQrwGoOqSvfj25aBkA9p5RMLpnZOR2vGtzROpFYF0G5C96owh6qrmXb62pU69b27jBtQXFg0+q3YIXFizn3N9YBAFZU2g9qlK1W2tYjOetoQ5t6X1r5vQl3ETRotQwIAi7qNxQvnXxedP4ymbztfrt1JeYcPRCdX09QPMDjGCxrrPa64hgsB6TDE0c/+t3E07G/sQ7HpWheomQGwzv5OS8l2nUkGeZPNTveG5rfFSf3tNa1MBmpnhhcNb4m8t9TkuzSN7Zbz2g3wYAgejJXUibci5WtcPLfWaqsj6nnx8vINweOxDsHdype0S/koMicSYB+F0FlC5bM6aAmWxDjJtlpM5h/yK3gttkg+czu+mMxrznRgiW/bffXaLPJCYounQBQ19aqauXQXnfsdFFLhF6A1ZEx0doylBPNS5Jk6b6tDITkdQ/oUoCTe/bBhkigop3TSvt7u2XFPkzT+x1W1LXFdqVvl0IICOEqfe+8fFzcbyh653bB7CP7sKLqqOHE8AI6sn/qdT2kWGUtTSjMiz99Rid+7OkcH94P00J+VnbKgivA/eAiHU4mLwIssxuYsjVJ74m3G1J9viorSnpdWxLxrYGj8P3h4/F/U88HkJrkIH41vLA7huZ3xTWDRtn+rrI6IVeIvN6WqX4AYIU2/b9RZQ0AZkQS8OhNohoQBNV4lvBrzm7v30ycFvczel2sAPcekhk9ANFLXR6dE9CkLPG650YzxFkrXlTHJNBykgt14KIdg1WvabUxHYPlUpILmdnSjY7Xn21YbPidEkWWXeWDg/Ck1SL+dtK5uG34+Oj1QvtAQS7Pg8edCEB/fLE6oLF2b5AkCV+UHYj+W76nt0uSahsHBAGnFPeNtiobhU7KLujtXs8/kyas1qPYgkWdRk+X0pKfWNQbq6rLMKKwhyvLd5Jfxs3IlJVJq3NnJUtZCRhZ2B1DC7phYveSlKzPqcpzliji0gHDVf9ONb8cS9miiOdPPCeh7yorXvJuSvU8WFqpTsJiiWZXm3Ulkiuc2labEQXdAYSTNqg/7+zvHaCZqFmPdqzJPaMmoSHoXrIleS4zLe2kyEDHMWnaRTBeC1bkvwlnEVS0YCnPgVapXbXuWk3QYHYVcmI3y2VR/vqOYNKkxc/gWiV3k9OjDPyVx2hQCqmut/L5qj3e5WBdnig8BKC2rRXdFN3ClV0PrT77XFdTgS8UCTjk/SFB/2FFRxdKs3M2vVqwFpSX4lhri+oemEpW73wMsKjT+N6I8a4s99Fxp6Al1I48i7PUeymVfazP6jUAjXH6KitbsLqkaPsJqqd8Iu4zScLhBGUlp1uCY67icbqSaoU/wqvkKINEed+oJob2INbxYXgVU0E1m9BarnBqW6S7ZOmf3063GhktbURhd3TLysGamnKM7lqENTUdmTi/1neIo2XQEgUB47sVY2OtukL/WGQslpI2i6CeuGOwEs4iGP6vsgVLGfC3alqwtMyCHCceVsjlU563cqOL2WGUyIS+oiqo6lhfWyikSjIUPd4NWrDU8xQGVd1C7d6PW9rbcUiT/VCCFN0GesdMdH4/SLqtyqoWrDTp9/3U1lUAgEv6D/NknKzVh4v+rxGmAT926aAOz51wFkobGzDUpWQagiCkRXAFpLaL4E8iXSPMKLs0pC7A6uDL1oIEZKeo9U9pSo9eWFp5BGMUaa7TzXl9BuPDQ+ExGTcOOQ6AOy2OdvhxLKf2smF2HZGf7msrc71yuxgs29lrktHWO6moD749ZAwa24P4x66Njq7TiiEFXWMCLFlBVjYaIgkvzCrLMqvbLNEWrHaDFqz2UCjhe4gTrSNyWdQ92eLPp2Z1XkYl5cM/ZdnbQu3oqkjm0tFFUD+LoHIf1LS1qOYsUy433latbm3Gjcs+i3m9XZKiv1zvfibfYyUJ+Pe+bTHvC+jowpouLViycKCT+uul1Z6U6VEr9Dkf3g9JYVhBdwyLdE/p7Px2+cxX3KhyA6kJEpTna3pkbIvPixas8/oMRkAQcWYKMj+65YoBI6IBVqFOqnsvjg4/HpPa+oRZ/cKoi6DVZSfN4FwQhXBltzAr25PurUYBJgBkK8ps1jpY1dqMHlm5MUFOt6wcVXc9+X27DwjkY08OSASoN6cgCAm3cjgxxlZ++KBOThN5z+R79e2x2RrjKczKARBuLZK3R7sUQgjqMXWiQQtWSyRzpLJc2+tqNJ+xvk20XWtl4cq+cWIUQdGCtUQnk7IIIfp7Emnp81I4c2Lq12v1+tF5R0Y7yH+3Q3LTeX0G4ZfjTvG6GAnxIsmFmQJFq1WqkgsoK7Cp6F6QiutDkUvjC83kBgK4sN8QVZCcbtRzIBmPX0glPz6wsxOQyJW8g5F5ruJxOgOm0eZTZSyN9GYYaGG8llOUx5f2FyuvfcrWqROK1GO35ArwZ0f3q17XjoWS/207yYW2BQtCzPXSLMDSlkOp1WLAbVq+yH+V97F4AdbOuhrMXP2l7XUp1yFnpZQnrVb2GDB6oNAS+azyHqNteVSnaTc/x7IN7o/hLoLh5egGWJH/hiQJxTmxQX44TXv4U1+Wl5qWwW+8yslhtRrFFiwH1OikzKTM9aPjTkAoTbPt+O0JlV4Kc7cpK9WpmBOrR3Yuzuk9MDrvmxtyPEhykQmUu18v2Paiu54fW7DsMAqYjH5VscMPB5TrGVbQDXsaasOvK964tP9w5AeyMDXJ6RLsUFd+1VtDmTRBeYWeVtw/Oh0D0NFSrc3EqPXcjnXhtdg8lDqSXMjBgaa1BuYtbGZaHbj3KMcTRUXHYCm6MkbmhAKA+9YuSGhdyoBHbsFqiwZYsUkutC1YcoCmPJ+bNd0InRjzFJKkjnXp7PBAtNUPGNm1O9Yfq1C9LwLR7qnppqatBX0C+SldZ1sohFCALVgp43QfciK3tEmpSYVulTrYSU3FMl6l2vH1CQLuH3MCrhw40rV1pHul3Cvx9r8nXQR92IRl5/iym3Z9iOMPHjrK2lUx95DyN2SLIi7sN9S1zLJ6AiYPdpQtWLmKynuW5oN2axp2nwN2pGnvaMFSjo0NITYDo1WOdBFUjCeSHW1pBBDO0CdJEvY31OGyrz7Eewd3JbUu5abraMEK/4YcGwGW8h53TNPCp2qJi7OvjMZHhSQpOv2Hfiu8EC273gNWQRBwfLdi85X71K0r5mCeImV9KlS3Nlv+LAMsBzC8onThuxYsRaXHkxasDAlM/FgpTwfxtpoX13Y/7kk7yWCMxgPKFb37x0yJvnZKT+dbkJQxibIi7HXykHgtWL8efyqmFffDBYqMhtoKs91nuXaDmo6JfCNjsDQJnEKShCabXf2GROaQciKBgrxv9VrRWkLt+M+BHfjg0G4AwD/3bLK0zJAk6T4kV74mt2DJ/80WFF0ERf0kFx3ZIDtee790t+oz7TaSXFS1xqb0B8LbQg6I9c5TeR1PblmpezwIEJAbCETHCKZbg8HT29akdH3vqiZcN8cAywHplnmFEndan35eFyEpvguwlF0EPWjBcnqSU6/4sVKeDuIlAfAibbHXgYAe7Rx1eSZZK+PNydY9Mi8QAFzm8jw2ynJ7faaLimtNSFNnyBZETCnqjYeOP1kV0JRoWtjsds+z+5u182DJadqfP+HsSLklNFrsTnbd4NH44ejJNktgTq8FS+mN/dts18e+8dWH+On6RTGv67dgmXQR1AQvylZAI+qgyXzf/nXXBt3XQ1JHy5pe99xmRbm0rWxARwAoPxg50Ght7KRXrI4jlyQJO+pqMPfIfvxt8zrH1v+/w3stf9bra05G4OzXncdPJp/sdRGSojcPhpdU3fVSFCaIJl110hVbsBJjtNW+1ncwRhR2180s6LY6H47pvWzAcIztVoRbh43DwC6FplMwxHto4XaSGWWFVjlnkNeBq/JaEwKwrbY67nfGdy/GHSMmoFukq6PdJEV2t++hpvD2kifglbfZgC4F4fVDshzAfHvIcTi3z2BHr+ry7/ng0G78PZJqX9lqU5iVk9BDs021VTHbVtmSIz+YlAMtdYAlt2DpB1hmrb/KoMxsz2rHbimFIHWMDdP57crup2b3f3n9d62eZ1ISb62tLo9pBQSA+YqJl2Xb6qrxw7UL8PS2NXhp60bUezDOjEkuHMAWLEoXfmvBUqcATtE6FX9nSmDideUxXRlVau4ZNTmVxVDZWhe/4p1qXbNz8PtJZwAArhg4wvSz8aYMUJ5zbsxDp1zk3kiCC8D7Vl7t+p/b2fFU/RSDZBuCIODr/YdhaeURrK0ptx1gHWlutPX5HfU1qn/LwbC8zw41NeCTw/tsLdNJym34waHd+N6I8arWrIKsrISnrFhaeRjTSjqmnFDeKeX7ZrSlSBG0yOtrDqqDILle6MRcejUG3QOBcNAtd13UtjRr6SUakfet3+oGepRziCn9v22rcXbvgarX1iiSwwDeZFBmC5YD0mX2a0peuu/q47uHB7OeWNTb45KEebE9lTe8jBmD5XUB0lSPnFzcPHRs2k674Efa6RZmjpoEEcCVkcDM9QDL8HVvz3Xt+vc21EYr6t8aZJ4AR95OdrsIrqous/V5I8rrZE2bcWXfjBOXer0HScptkisGEn5oZhaMyi1XbTqBjGjURTAkJ7mwtn6ze6HZRPLBUChavnjnk9EYLMD/AZbdsWHa7pKJJmdJBluwHMAWLEoXF/cbiv55BTi+e0+viwJA/VQpVcGO8h60sOIQHkzJWt2VKS1xXvjmoFFeFyGjKDPfnVrcFxf0HYKv9RkcrRwrj1R35r7TPxe87g6sd4qKgoDuFrq1yd81qwRfOWAEZh/Zh0aT7mR2ydvMagt5liAa14cceJqmvUcENdujOLdLwseUtoUjpJPkQi9Ne5ZBF8GCSPfigOX7mvH2MQuU26SQaZp2JbMxWGZzmPmB3fJpx4J60RDCB58O0J7klHkGRzIhleTFTtSXTgKCgBN79lal3vWS8uljqrq5ZUqrlZLXT+eJZMpgYWnlEQDG0zG4MwbL6HWvz5HY9beE2i2NDZGvWXevmo8yg5aWHDGAO0dOSKqE2p4NdvbPmK5FOEfTTQuAo32/tYt6/5B6PE5RTq6qFcdOq4dZLS7agiXFJpOQ16edSPnifkMjZbb2+81K+uyOtYbvPb55ueUAS9sFFPDDeWFNrYWxqb/fugp/2LYaQOzZ5lSANbKwu+XPMsByAFuwMt9zJ5yNd6dfgrwsfwQmmUL5lDBladpTtJ5UKm+xN9aCyC3xWhCUDzjcHoOlft3rM1+/gmel4qf8xN2r50f/HtO1KPp3liiiLcmEWz8Zc4Lq31YfRh3XtQi/nXi67jgXR5NcaJb28p7Nqn+HJEl1/AVtVKrzNQ8d23WSXHxxNJxMYUttVfQ9+YGCdk25gXC3PrePuiPNjdFWy0QeHnp9VhjRBsdWujB+WV6KL8oOorSpHtvralTvOdVF0M5YLgZYDrBzElN6CgiCb1p9MoknAZbnFS3nVZsMgiZKpXhJBpRvuxFgKa8k1w8eE/3b68pOMoPsd9cfi/6t7AKozHKZLYromZOr+t43bU5uXpido0rBb7UF69bh45AtmnQPdEi84rRLkqrMdsaL9cnLV/1b+Vvkyv3iysMAgJ2K/WEnqYuZZGqRcvINvVWZrV6AP++HW2urcOlXH6oC6HjHljIg/v7KL/Bleanh+8nYrUicE4/X15yM4MXgOaJM0FMxz0uqxhEpu0RM6dErJet0mxcZkoj0BBTdp87vMzjmfXWSC+erIMqryMQeJR2ve1yRbE/iFDXKDqcdC6Tt4tcvkl7dDrnlBbB+TZaTdbh9HYrXQhOSJFUZFmoq2Wa09bi2UCgmucjJPfsAAC6JdP8D1Me7nlR0wZOTV+htH7P1K9/LjZOBMJV+vO4rAOpJfeO1YOmNL1NyIsAqtTlHGAMsBwQ5DxZRQvoqKgCp6guuHOwu3zDT3VSDNM+Ufh45fqrXRUiKMoX1ZEWAI3O9i6Dib+Xyva7sGAUfym5+RvICBgGWYltniyIEQVAFWYl1GbOfZVVOKGDWyuBELak5zjyO7ZKkGterNy+UEe3+aZNC0cBWfq9vpJVrsuLBXKJp4fXYzZQnk8cn6QXEZqVTbiu7rZ2pZnZsTexegpaQeXIXJwIs24k2kl4jcQwWkQO8eMDsThel1BuQwJNq8pc3T70Qx9paMSC/0OuiJEV5TmlTJWvludDtWtlSpRyP43ULVkhRTxhR2B27It3MSnLzjL4SZdSSpJfNTlkfSSRzovIrlluwRP1xSNrlJSteQrF2KaSqSPe1cV3UVsCDoRByxQBaBSH6ntyKosxQp0yhLgL4xbhTUp7V9aVIVzq9ta6tKdd5Nda1g0fj9f3botkPlSRJSur8qQ+2oSHYFtMN08j0kv74quKQ6rWy5ibDz4cg4c39202X6URPM7tbwOuHOhnh3D6DvC4CUdpLVXY/t7OYecGNrlaUWoXZOWkfXAHqoEZv/h5lNbZQpzLnJGWw53W2NGXbyy7FGJ5krnuiTjCrHteaQAuW4it2uwi63VM53gOxkKT+/X/esU73c1frTM0gB1Hy9+XxXCKEaHAsB6+qlkNFmfKzsnFyzz4JzzOZ7ObT21/ayYWP76Y/RYsgCCjIytZtab1/3UI8tmlZwuW6Yels3LpiDhotZMwE9DP1PWeSSTEkSfjf4b2my2x3oKeZ3SCTd+UkDS/ohgv6DvG6GERpL1WxjqoLTIYEWJnyOyj9BRTNJnpdtFI5ZlnVRdDjU8Soi2Ay564yOJO3tbIlJpFWByGBLpzR4M6RjoDG4i1d24JV0dqs+7nGYGx3snZJwv/bugo3LfsUbaHw3FKiICAgCJDr5rrzYCn+1mYiDJfZ+jaRPylJkqq7oF6rkh69gFrbu0FvXKSsIdiGpvZgzLG6va4GK6qOWiqDHjkRnJVU64B6QuS2UCjS9TPWP046F4C17n9OdBG0+zCEAVaSzGbYJiLrvBiDlUlzYj1/wtn4+0kzvC4GdXLKSrl2sk/A/VYOI163YLkRYAlxWrCSTdtt9ftWxjq5udv/36TpACJjsCwcYA3tsS0pIUnC/PJS1LS14mhzI0KQEBAEiIKAdimE8pamaGY6ZYCl3Eb5OoFQ9+zcmNeMhct+75ov8cjGpdFXzyjpb+nbeseStlteTpxuuwBQ0WLcHS8ZVgP+NxTd/a5c9BHuWDk35jOD87siPzJtjpWHNo50EbR5OjHAIiJfSF0jTMeKjAaPp6OhBd3Qv0v6dzGjzKE3BsvtVg4ldVIEb5NRGVXwrFz2jEp+TJGGXO6aqdy+CY3BSqALtRxI6yVp6Ahsk9/+Rq1B3bJzAIR/e6IVaWULR3OoY16pQGQM1i82LIm+bzS2T28ql2xRxHunf91SGeQi7G6oxRrF2Cm9lkRlq5Yc5OntrluHjVP9W++hh5ZyvyeaeEO2V5HWPJFbvATgsM7k2t2ycqJd49mCRUSkQ+5WMaLA+gzpyVBe9NwYZE/UmSnrMXrVEafmo7FCOZYjlevVY1TttxLEKOfBMuLYGCzl3xa/bpbkQn/JiTHahcqKdqLtFMokJPVt4RYuQQgHNyFIONjUkaLbqAXLKKlLvGQvstpgq25Ao/ez7xk1CUMLuoXLHvmEXgDQNRJ8yqykY59z9IDpuu0oUwRHW+uq8ejGpahs0e+6aebsXgNU/75uyOho4LnHwtxUVs//jccq8cjGJbqteGzBIqK08ofJZ+KOERNwpuYC6pZ4TxyJKHHKaoxepUZOdZ2Xgu71yuQv8TLQuc2wi2CCgccDx52oCjjkdOGqLoLJtmCZlE05h6G8nfVamOyMQYrHaFkBxW93ogXrr7s2AAgHv6Iii6BMFWApNlGyKdtvWvaZboCoF3QV5+ThR6OnqF6zsnorAdY6ReuZcs3N7eap0PUoj6entq7CyuoyvLRnU1LLAYAe2bmq41MvMYaS8rhYXHHIMOvgwxuWYHV1OT47sj/mPXk3WE3/z9oFEXlqYH4hBnqUPS0VlTyizmSgoptqQSB2TEpJbhf8+YSzVRV0p/3ntItiWoaCHrdgGVX8E21ZO7PXAMwrOxj9t1wBbVcFWEmOwTL5frfsHFRpkkiY/RQ3e4CLit+e6PZUHh9ya1W4i6AYExxnCx33DXVSkMTaLLpmZaMukmEvpHOc6Ke/F2K6DloJ1nMtdIvfcKwSu+uPYXhhd1VwV9bchMEFXeN+P57m9nYcaWpAWUuTajJwM3I5zuk9ECFJwuB8dTnind/K4+I3W1ZGl6UdoyZnitzdENtqLC/ByjYE2IJFRJ2YtvsEESUnNxDAM5PPxL2jJhtWxoYUdHP13MvPyo7p/uv1fJXKLNHn9B4Y/btRJ+GC1qkGE4krK7/aNOMAMCCBMZlGEzXLGdtkepNI67dgOcco4AugowVL21JptVWpui2225qcpl37G7IUzVZ6qfLtqlOkL9cLEHW3oRAb0FkJqK20YAHAv/dvi6y7Y+3Kvw821uNIc0Pc5cxVdDeULas6gt9vW42HNizGHp1ARq9nibzmi/oOwU+OOxGCIEAQhOgDnVYLk1BrKccwai2tPIIttVXqMtgM3hlgEVGn1Tu3i9dFIMo4I7v2wPl9jdNBe8H7MVgd679teEfigSWVR+J+9+FxU/HhRVdgfPdi1evq7pihmPUMyrff2mDURbCfJt23XmXebAs70YJ1YlEf3dcD0RasUEwgbdSqpH21TacLqQj936lswVJ2EXRi4nplIC4fs3qBq4DY4NFozN03+g9XlNFatX9p5RH8357NqvIot9Edq77AbStis/tpaScMlm2rqwYAHG5SB2mVLc1o0umKKK9b21VQTtpxqMk82NM7//X2uXKbKjM5AvYfFjDAIqJOK5nZ6YmIrBoYCVB6ZOeoUnf3sJDGWxQE9O6SH22d0RtvFU14EHmtOMEumFa6CF43eDQONNbHvK4XwzoZ1maLIrplxbZ8KrsIVmq6LRplzdNe++t05mgSBUE1J5NMmX1WGdRkmQQvJ/cMB4fK1kuZssVGGSBHu5XqbEQBAgKitgVLf923Dj8++ndBlvWRQe8c3KkK7tpstgJbSZmvDaZ+tVl/QuPFlYd1X7eSdj5cFmtdL5Wvacsm7xurtQaOwSIiIqKMVuBxQpuzew9CuyThhKLeAMIBUGVrM7rYmCpCbp3J0kkqIQdtcotDovNrmU3E/pcTzsGuhhqc03sQvrX4fzHf1U1CIVeyHXqYpZfmXy5nY3sQ+xrrVO9lCQJuHHIc9jbUYqGiNUVbmvmROa60y9WOM1OuT/u3WQvWI8dPRU1bC1ZXl6nGzgHApB4lWBppyVSO1QuGJOSIRmOwYtdnNAYrIIh44cRzUNbShCKbgbcyQ59ei09Nawt65Og/JIjXbQ8A2jU/blecjJna3xgv4YSIcBZIvTFayyuP4EhzA0IS8DULLe52uwgywCKiTufsXgOQk0FzYBGRvgeOOxGzD+/DjD6DPC1HQBDwtb5DVP8G7HVdPLv3QOysP4aL+w0FoO5OJoum7E4woFFW8LXLGFzQ1TTJQSo6YepVcuVub9U6wVBAEHHN4NEAgIULP4i+nisGEIyTFU8UBHQJBNDUbhwoKCv8ZnNMCYIQCW5i94tyGcpWHzmg1g1chdgAy6xHxqD8rgl1GV2gCDzlAEu5DzYeq8T0XvoTITebbDeZlVYuFc1PzIkzpiw3IKKpvV032JtVuiv691mRpDFm56NyAgQrGGARUafz4+NO9LoIRJQCZ/YakLIpIOwQdbr5xXP5wBGY1KMEg/PD3QH1Kt4i7C9XSfmkv81CC4RKCiIsvU5q8rbUa6VQjqm5e+QkPL9zHa4cOAKX9BuKv+/eiBm9B0XTsmsJEJAtBNAE4+1Qr0hQYWUM1mnF/fB2lx3IEUXsjrQOKVvljim6KsrBrt6uFCIZDpXsjvkZoBlX179LQcxYpg8P7Yn+LQcpVjsK6nWv1JK77oUDm/gHkHYLx5s4OVsMB8jxgr12ScLzO9fFvF7V2hzNeNoSWYbVZxccg0VERESUQom0YImCgGEF3aPf1fuq3F3LarY4LWV5+uUVGH6uOCc2QZAc8Imq18KcGu06LDLWTMls2coK+IX9huDD6ZdiWEF3HNetJ/4w+cxoum+9KTt21tege5xslw3BjoDISgKJ/Kws/PWkGbhswHDd9+9ePT/6d9Bmkgu7rZa/nXi66t/xpi1pk2JbsH67dSU2HqvEi7s3xkxFYGXeLPkbt6+YgxuXfhb382ZdBPWOefn9eMGe0TQKNy3rKFNDJONnwOLRzACLiIiIKIXkyrjemCKrJJ1B9/ePmYITinrhwbGJtdLLFc2BXQpNu5zpBR56XahGRCaAHdO1KKHyaP107Em4bvBoXBfp9qdeWyxt4gntb5KDEr0EDu2SFJNIQmuoIuAra240/ayqHBYq6e1ylzyd90QhtgUr2aRNrXEm45a7CGqP2Z+uX4T/lu7GwnJ1xsDtdTVx1xmSJEiShLKWJtQGW+NvlZgugh3bIE+n27+cOj9esGdlGodWg0yGRthFkIiIiCiFxARasLQ6Woc6Knz9uxTiV+NPS3iZcqtJvPmj9Fqm5G6Jyq9+f8QEDC/sjhm9nRkD1zMnD98echxmHdwZfc2swhuv255ZS6KA+K0QY7v1tLwu1bIVHzXqzmk2eW5AiJ1o2Orav95vGHbU16iyWQL6SSz03jcqrzyfV1sohHllB/HsjrVxyxKChN9tXRX99+QevbCmphxZgqgb9GgD08OKoFavBTHLcguW8bZul0IICGL04QOzCBIRERH5UCJdBLXkiq5Reu5EyK0m8VpuZMpV6wV8BVnZuHzACIdK16HGZJJYJbPU6YBx5j1ZvNYK5fvx1qX6nmK9RsdAUKdLnkwUhMhEyB3d7Mpbmiyt+46RE3RfH5BfgKMtxq1w8pg8veQqSh8c2o2X92y2VJZ2SVLNlbWuphwAcP3g0fjXvq0xn9fuDXk+LUA/wM2NtGrVt5lP6G3WgtUWCiEQEKP7yerpxi6CRERERCl0fKTlY2L3koSXoRfQJEvOytYYNO9SFa1s6lRqUzG7YP+8QgDA0MgYKuU6lXOAxWtVijduKV4AphQv4YKScqlGLUcdWQSNy6VstVlTXW55/Xp+OHqK6fttZlkNgeigwAOaVPlm2g1/u/46tLvrxMi0B4D+vpS7suql21d6cstKw/f+uH2NuqwWWyoZYBERERGl0HeGjsU9oybjh2PMK7VmOlqwnAtp5Ilo43WpGt+9GIB64lwpyRTxdpzXZxDuH3MCnpgwDYA6YLln9OTo3/HSeJuVVYjzvpadFixliS/qN0T3E+0hOcmFsYCqBS257V6Uk4f/nHaR4fvxugjK7CRY2asJxnpEgmOj7a59mHCSIsDS+0ZeZP67hjhjsMzm31pUcRiSJNluwWIXQSIiIqIUygtkWZrc1IxekovkyUszr0RfP3gMRhX2wMk9+3SUJxUTYUVkiaIquAuXO1wAZQVfL/GBknn3Snttg1k2+moqPzowv1D3M9qsfQO6FKA0kkZd3vfNikA4O8HMkUpdTCbkNkpyIWuKBDF2As0FmgmeGyLjuIyCRe2rygCza1YOjqARwwq6RSdIln9PY9C8i6DS6SX9sKjisOo1CR2tauwiSERERJSh5IAm2exxSvKi4gVLuYEApvfqHx3jArgV8Fmj3ATKim281pR4XQC1LSlmn7aSpr1jOYLu30ra1OHfHTYu+rfe7rlWkVkxUWbHUptqzqpY8pipLzVBkx1yy2lBVrZ++TTbSrl/skUR751+Cf405azoa7liALmBQLTLq5VA68djToh5TYJkmMrdCAMsIiIiojQjtyQ4WZGTAw7DcTYmomPCPIiwlJV+ZcnjjYsy7wIoxQRgZq0z2XYCLM1q5bFkSh3zYIX1yM7FCUW9IADonRs7D9lQnTnCnFTaVA8AaDWZtLc11G45AQkA9MnL1319SlEv3de12025/0QIyBYDqteyRAGFWdloaG+DJElxu74WZGXrtgSGJEWWTM6DRURERJSZpI4mLOeXncSXnEy6kax4JTELsEKI3bT9uxhPvmwrTbvm74fHTY35TDCkSSohAI+NOxX/nf51R7oD2rW08ggAqLL+aZkFX3oaDFqUjFoetdtY+W/lvhzbLTzv2pQevVGYnYP2SHAVL8AyCoo+PLS7o4ugxd3MMVhEREREaUbusORoC1ak9pjIeCq5Rc3JLouJUAZB8ZJUBOKlade8/4vjYwMhq+vSLlm5jr55sYFbe3QMVmT5ECAIgmGZ481j5ZT/27vF8L1mgwDmqoEj8a5i7jKZUZc9o9ZAbWCpasFSbJaHj5+KA431mFhUgrcPhdfb1B5ES5wA0OjhwEuKtPMcg0VERESU4dxoMUqoi6DNJABuKVKkaY8nbgCmeP+7w45HX4dasJTBgNHX2qJZBK1t135d9LvbOWWAyW+XfXJ4b8xr04r7YWhBbBdIoOMhgVaWKOp2edQmvxAVYYzyPOienRvNdFmYHR7P1RAMxm3BsrILrYaxDLCIiIiI0syYruFuUHJF0glnRzLzXdhvqO3vdszL5R/JBp/KCvfwgu6mn7XTgqVXrrN6DVD9+6PDu/HYpmU43Nwof8mUnSQbiQjGm2EYwFsHdsS8JgjmkxP3iMxVpZQtivjV+FNNWwwB4y6CSnLCjIb2NgstWGF9DcaGAUB9W6vpMmTsIkhERESUZm4fPh6ju/bAGZqKeTKuHDAC47r1jE6EbIcbEx8nK15JWuN0q1P+lskGiRdk2QlONCyv40djpqgy8G2prTYsi5tOKOqFfQ11qNRMznu0pRFHImni7RAgmLaIat8REQ4We+bkYVIP9UTcXbPUwZgyqDKan6swEsA1BttQEyc4qo9kGzy5Zx98eGiPpfIaYQsWERERUZrJz8rCRf2GotAgpXUiskQR47oXJzWOyuMhWGpxytInLzYbn5KdVqn8gPX9oNy+8l8iBJxa3Nf4OzqvTSvuZ3mdVj027lS8PPV83RT2z+9cZ3t5AUEwnZw4qHlPOc5K2+1SmxVS+f7BSJZDrS6RybOXVB7B09tWm5Y1GBn3VtNqnAmxWCeDox4GWERERESUlJBPxmApxWv1yRYDGGfSWhdvniwAuGf0JBzXoyfO6TMw7md1sb611QAAzTFJREFURVYhCAIePn4qhttItx5vTFFCxREEiIKA/0y7KOa9ypaOVq2TinpbWl5IkkwDrJBmfqksC93+9N43yjwoL+9jnfFhOQatjhebdJGNN7datGyWPkVEREREFEc6dREMf0b/U09POgNf6zsYAPDNgSMNv39hv6F4ZcZF6BKwPupGGbhp1949O1f/OzrBxqrqMsvrtCsvkIU7RkzAT8acGH2tTpH17+dxxkfJQpBME0NoJy5WdrW0MxG0URdNs7nQ3p12ie7rE3qU4D+nXaz7ntVkJhyDRURERERJkSu78Sb3ddOPx5yg+reVqrDR+KAxkbmUXj/1AnTLik3EkBRlFkFNKb/WdzDW1JRbWowIIZoe3w1f7z8MAPD7basAAPXB8BimUYU9kC2K6JdXgMPN5uOy4rVgaZNnKCdzjtdVNV6afcA8+YfZ8vOzYkOky/oPj7s+GVuwiIiIiCgpPznuBIwq7IGfH3+yZ2U4LpJZUWZlLJlcvTeqEHfPznV8bi/lurRLnl7SX/c7eiXoFkngYCWFuhPk8VJZkTzzVroohiSgj0lWPm2AaCdZiLIFyyiEixfw3zNqkuX15dlqpSQiIiIiSsKwgu7445QzMbKwh2dl0AZC9lqwBFw5YITjZdIjqJuw1O8ZBHN6XRnlliG3U7RryV33tKnl9YQg4aSi3rh31GT8cfKZpssDYicTNi2HclsZtJJlifrb8/bh4wAAPQy6ZOoxGrOlWzbLnyQiIiIi8qlE2pnkerkgwNGU91ZZHbOmF3e1R4JDO9kOnSAHgd8ZOhanl5hnMhyS3xWCIOD8voMxzCCBRxdFdzztZMJmlOOhjMZ56QWffztpBi6LBNNmrZNXacbe2Wpds/zJDLJhwwZcdtll0f8df/zx2LJli9fFIiIiIqIEaQMNK8GLcoJks/manCTqpGlPxNmRgDBekJOsMzWBp1zmLFHEtYNHG37v+sFjVO8bJYhQZuazEyxa+azeZ4oUrVbK938wcqLqc9+KCbCst651yiQXEyZMwPvvvw8AKC0txY033oixY8d6XCoiIiIiSlRMgGWhri4HVQIEyym4vaCXUe+24eNxZq8BOK5bkc43nDO9pD8WKCZBVgauwwq6Y0L3Ymw4Vqn6zqX9h+H6IWNUrxm1Fim3+876Y6r3TizqbZgtUZnkQjLoIqhd4x0jJiBfMXecsqXpSHOj6rOipvXLThfBThlgKc2ePRsXXHCB18UgIiIioiRoK9N2UsYLAjA4vyuuGTQKo7u6G7AoW3IsJ9DQ+Vh2ZGJot/XVJKnQFrmXYvLdh48/GbMP78O1g4xbtrRyA8aB7cAuhYYBljKkOmAw0bB2s03qUaL6t3Ki45Z2ddIO7fCtbBtj3XzZRXDFihW44447MH36dIwZMwbz5s2L+czrr7+OGTNmYMKECbj66quxfv36hNY1e/ZsXHRR7GRqRERERJQ+tBVgS0ku5DFYECAIAm4cOhanFPd1vnAKOYoWG6shoJeziw0v7K76t7Y1TdlyOKF7CR4dfyq651hPHmHWcmjWadNKl05tAGvWrVAbfGnHb+WkexfBxsZGjBkzBldeeSVmzpwZ8/7HH3+MJ598Eo899hgmTZqEV155Bbfddhtmz56Nnj3DM3JfdtllusueNWsWApFIubS0FFVVVZg4caLuZ60SDTKUJLMsJ5dJzuC+8TfuH3/j/vEv7ht/4/6xLjcrS7WdBEGIu92UlfREtnEi+yc3SzHmSIxfRgCAhd+SKoKg/r3KoCVg9fco5GlasFTfFwxe17yn974oxrZhZomi5hjpeG9ar36qgEwbsOcE0ryL4FlnnYWzzjrL8P2XX34Z11xzDa666ioAwGOPPYb58+fjvffew6233goA0TFWZj799NOkuwdmZYkoLi5Mahl6iopSM6cB2cd942/cP/7G/eNf3Df+xv0TX99e3VSV/fwu2XHraIFIsBMQhaTqc3b2T0NuR867nkUFKO5iPE+UrGv3Liju5nx9MxG5OVmqbdUlr2NM08DePWzPG1aYp57IWbnsvIPZuq8DQDehOfp395xc3f0nVKnLUtKzEMX5Hfuqa2tH98aSkq6m5ezRPR/Z2dZasXwZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL36RVHmCwRBqa5uSWoaSKAooKipAdXUDQqHUZLMha7hv/I37x9+4f/yL+8bfuH+sq65qUP27pTmIykr9sTmyYDA87kaSEPezehLZP/XNHYFBTXUjxEajJOMdqqrr0b3NH0k42traVdvqhMJeeB+7cHbvgajS7AMrpKB6uymX3dTUqvs6ANQc60hKMb5bz5j39Vqwamsakd3Usb66uo46fLz9X9Amoq2t3VKQlXYBVnV1Ndrb21FSou4nWVxcjH379llezqFDh1BVVYUJEyYkXSY3LnihkMQLqU9x3/gb94+/cf/4F/eNv3H/GPvD5DPQGgrFbB8J8bfZpf2H4Znta3HNoFFJbV87+0dSfE6SrH2vTef3eUWAoCrLiUW98Y+TzkXvvPyEyqgc0/XtwWNUywgpklBol10Q6Ahjxncr1l13TIglqZejTD4Yr+xS/Dg4Ku0CLCOSJNlqkuzfvz/mzJnjYomIiIiIyG1GWf+sZBE8r89gnFzUx1ZShmQlMjFwyCANeaqcUdIfCysOAdBPuNGvS+JdWAOCEF3+pf2HWf7eoPyuuH34ODQEg7jY4HvaTa038bCZE4p6YXV1eXhZNr7nyyyCZoqKihAIBFBRUaF6vaqqKqZVi4iIiIg6J6sV4lQGV4A68NOb36pHdk7Ma/mB7JjXUumB406M/m0n/b0VAUHAT447EbNOvwSFmt9+bp9BAIBvaib9lV02YASuHzLGcBJjbVmNPmdEGdfa+WraBVg5OTkYN24cFi9eHH0tFAphyZIlmDx5sncFIyIiIiKKQ5nsTq81668nnYvnTzhb9drAfG8TXAiCfuY9J2QJIkRB0E2DPrprEd6ZdjFuHnZ8QsvWltVu6+GamvKOZdkILH3ZRbChoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyC7vZ7FJF1YKlU8bCrGwUZmXjvtGT8cz2tbhusPVJe1PB6a0aL+jJCyQeriTbgqValo2v+jLA2rhxI2666abovx9//HEAwN13342ZM2fi4osvRlVVFZ599lmUl5dj7NixePHFF6NzYBERERFR5+bP8EpdUTcLLs7rMxgnFfVBd50ug14KJjEe7Lw+gzDn6AEMK+iGPQ21AJILeuLRTp2VVICV7i1Yp5xyCrZt22b6mRtuuAE33HBDikpEREREROnErwGWGGcMllKPFI8Ps2JF1dGEv3vvqMn4ztCx+M+BHdEAK8tm4gk7qhQp8YHY7W3nGMnoJBdEREREREZ+M2EapvToha/byEiXSspWq0QyCqYzQRBQlJOnCnTcbMH65MCemPUnys53fdmCRURERESUiIk9SjCxh38zS6vHYHlYEA8pA8uA6N/2nmnF/bC48jAAtmAREREREfmSKougbzsyukvZGLSjrtqzckzsUYIRBd1xi0GWwtNL+kX/TvsxWEREREREmUhZUfdrpkO3KQPLtTUVJp90V44YwJ9OOMvkE4mlp2cLFhERERFRinTWboFKLaH26N+5OvNf+YUyqGIXQSIiIiIiH+psiS30fHioI/nEzFGTPCyJOUH1N7sIEhERERH5TkAQ8eBxJ6Jrlr/mt/JKN5/N86XURTHJMVuwiIiIiIh86oxeAzC5qJfXxfCFbBfnwbpmxHHRv5+cMM32908o6h392854OQZYRERERERkanz3YleWm+VimvZJxR1B7IQEUvcru3OyBYuIiIiIiBzjVkuTmy1YbaGQY8tigEVERERERL7nZgtWSJIcW5adLoJMckFERERERKacTH4oQkAI4eAny8UWrDFFRTi1uC+m9Eh+vJudn88Ai4iIiIiITNlJUx5PtihG58LKcnFisIAg4pHxpyAUSr4ly056fXYRJCIiIiIiU06GQQFFsJInpkd7T46NCZEZYBERERERkSk7Y5Diubjf0OjfeQHrgYuX2IJFRERERES+dO3g0dG/7bQMeeGEol6YZDPFe3q0yRERERERkWec7CKYrQiq7LQMeeFX40+z/R22YBERERERkSknk1wEfB5UJYstWEREREREZMrpmOjS/sOQH8h2dqE+wQCLiIiIiIhMOd3m9P0RExxeon+wiyAREREREZmaUtQbAHBqcV+PS+J/bMEiIiIiIiJTF/YdgkFdCjGqaw+vi+J7DLCIiIiIiMiUKAiYYDNdeWfFLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA4RJEmSvC5EOguFJLS3hxxdZnZ2AG1t7Y4uk5zBfeNv3D/+xv3jX9w3/sb942/cP/7l9L4JBESIohD3cwywiIiIiIiIHMIugkRERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgOUTR44cwf3334+pU6di8uTJuPLKK7Fr1y6vi0UAZsyYgTFjxsT877HHHvO6aBRRX1+PRx99FGeccQYmTZqEr3/96/jvf//rdbEI4X3zq1/9CmeddRYmTZqEm266CTt37vS6WJ3SihUrcMcdd2D69OkYM2YM5s2bp3q/paUFjz32GE455RRMmTIFM2fORGVlpUel7Xzi7Z+33noLN954I0444QSMGTMGDQ0NHpW0czLbPzU1Nfj1r3+NCy64ABMnTsQ555yDJ554AvX19R6WuPOId+489thjOP/88zFx4kSceuqpuPPOO12vYzPA8oFjx47h+uuvR05ODl588UV8+OGHuPfee1FQUOB10QjAO++8g6+++ir6v5dffhkAcOGFF3pcMpI9+eSTWLJkCf7whz/go48+wnXXXYef/exnWL58uddF6/R+/vOfY8WKFXj66afx3//+FyNGjMAtt9zCiocHGhsbMWbMGDzyyCO67//mN7/BvHnz8Mwzz+DVV19FWVkZ7rnnnhSXsvOKt3+amppwxhln4I477khxyQgw3z9lZWUoKyvDgw8+iI8++gi/+c1vsGDBAvziF7/woKSdT7xz5/jjj8dvfvMbfPzxx3jppZcgCAJuu+02hEIh9wolked+//vfS9ddd53XxSCLHn/8cem8886TQqGQ10WhiEsuuUT661//qnrta1/7mvTiiy96VCKSJElqamqSxo4dKy1YsCD6Wnt7u3TaaadJb7zxhoclo9GjR0tffPFF9N+1tbXSuHHjpNmzZ0df27lzpzR69Ghp/fr1XhSxU9PuH6WlS5dKo0ePlurr61NcKpKZ7R/Zxx9/LE2YMEFqb29PUalIkqztmy1btkijR4+WDh486Fo52ILlA1988QXGjx+PmTNn4rTTTsOVV16J999/3+tikY7W1lZ88MEHuOqqqyAIgtfFoYgpU6Zg7ty5OHr0KCRJwsKFC1FWVoZp06Z5XbROLRgMor29Hbm5udHXRFFEdnY21qxZ42HJSGvjxo1oa2vD6aefHn1txIgR6N+/P9auXetdwYjSVH19Pbp27QpRZFXbTxobGzFr1iwMHjwYffr0cW093Os+cODAAfz73//GiBEj8NJLL+Gqq67Cz3/+c8ydO9fropHGnDlzUFdXhyuuuMLropDCww8/jMGDB+PMM8/E+PHjcffdd+PJJ5/E2LFjvS5ap1ZYWIhJkybh+eefR3l5Odra2vDSSy/hyJEjqKio8Lp4pFBRUYG8vDwUFhaqXi8uLua+IrKpuroaf/nLX3Dttdd6XRSKeP311zFlyhRMmTIFCxcuxEsvvYSsrCzX1ufekskySZIwYcIE3HfffQCAsWPHYuPGjXjjjTdw7rnnels4Unn33Xdx5plnuvrUg+x77bXXsGXLFvz9739Hnz59sGTJEjz00EPo27cvJk+e7HXxOrXf//73ePDBBzF9+nQEAgGceuqpOPPMMyFJktdFIw29VnnuJyJ76uvr8f3vfx+jRo3CnXfe6XVxKOIb3/gGTj/9dJSXl+Of//wn7rvvPrzxxhvIyclxZX0MsHygpKQEw4cPV702YsQIrF+/3qMSkZ7S0lIsXrwYzz33nNdFIYXm5mb88Y9/xAsvvIAzzjgDAHDcccdh/fr1eOWVVxhgeWzIkCF48803UV9fj5aWFhQXF+Pqq6/G8ccf73XRSKGkpARNTU2or69XtWJVVVWhpKTEw5IRpY/6+nrcdtttyM/Px3PPPedqCwnZ07VrV3Tt2hVDhw7FpEmTMHXqVMydOxcXXXSRK+tjF0EfmDJlCvbt26d6be/evejXr59HJSI9s2bNQnFxMc4++2yvi0IKwWAQbW1tCAQCqtdFUXQ3QxDZUlhYiOLiYhw4cAAbN27EjBkzvC4SKYwfPx7Z2dlYvHhx9LU9e/bg0KFDfEhBZEF9fT1uvfVWZGdn44UXXlCNPSX/kSQJra2tri2fobUP3Hzzzbjuuuvw97//HRdccAFWr16N999/H3/605+8LhpFhEIhzJo1C5dffjmfSPlMYWEhpk6dit/97nd4+OGH0bdvXyxevBizZ8/Gk08+6XXxOr0FCxZAFEUMGTIEO3fuxBNPPIGzzjoLZ555ptdF63QaGhqwf//+6L8PHjyILVu2oKSkBL169cJVV12FJ598Et26dUNhYSEef/xxnHTSSZgwYYKHpe484u2f8vJyVFRURD+zfft25OXlYfDgwZzWJQXM9k+XLl3w3e9+F01NTfj973+P+vr66FQUPXv2jHkASM4y2zetra348MMPcfrpp6O4uBhlZWX4+9//jry8vGivFzcIEjtY+8KcOXPwzDPPYN++fRg8eDBuv/12XH755V4XiyK++uor3HrrrZg9ezaGDRvmdXFIo7y8HE8//TQWLVqE2tpaDBgwAN/+9rfx7W9/2+uidXofffQR/vCHP6CsrAw9e/bEN77xDcycOZNPdz2wbNky3HTTTTGv33333Zg5cyZaWlrw29/+Fv/73//Q2tqKM844A7/85S/ZRTBF4u2f5557Ds8//3zM+//6179wyimnpKKInZrZ/pk6daruewAwd+5cDBw40O3idWpm++baa6/Fz3/+c2zcuBG1tbUoLi7GSSedhB/84Acxw3OcxACLiIiIiIjIIRyDRURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERE5LrnnnsOY8aMifnfzTff7HXR0t6yZcswZswYbN++Pea9WbNmYcyYMWhoaPCgZEREnVOW1wUgIqLOoWvXrnjxxRdjXiMiIsokDLCIiCglAoEAJk+ebOmzzc3NyMvLc7dARERELmAXQSIi8tTBgwcxZswYfPDBB3jggQdw0kkn4Y477gAA1NTU4JFHHsG0adMwYcIEXHvttVi3bp3q+7W1tbj//vsxefJkTJ8+HS+88AJ+97vfYcaMGdHPPPfcczjllFNi1j1mzBi89tprqtfefvttXHLJJRg/fjzOOecc/OMf/1C9/9Of/hRXXnklFi1ahEsvvRSTJ0/Gddddhx07dqg+197ejr/97W+44IILMH78eJx55pn46U9/CgB4/fXXMWXKlJiue0uXLsWYMWOwdetWm1vRmp/+9Ke6XTVvvPFGV9ZHRNQZsQWLiIhSJhgMqv4dCASifz/11FM4//zz8ac//QmiKKK1tRW33HILamtr8cADD6Bnz5544403cPPNN+Ozzz5Dr169AAA/+9nPsHz5cjz00EMoKSnBSy+9hP379yMry/4t7sUXX8Qf//hH3HbbbZg6dSo2bdqEP/3pT+jSpQtuuOGG6OcOHz6Mp556CnfeeSdyc3Px1FNP4b777sNHH30EQRAAAI888gjef/993HrrrZg6dSqOHTuG2bNnAwAuvfRS/O53v8Onn36KK6+8Mrrc9957D+PGjcNxxx1nu+yhUChm+4ZCIdW/77rrLlx77bXRf1dUVOBHP/oRhg4dant9RESkjwEWERGlRE1NDcaNG6d67eWXX8bgwYMBAJMmTcIvf/nL6Htvv/02duzYgY8++igaAEybNg0XXnghXnrpJTz44IPYsWMH5syZgz/+8Y+4+OKLAQCnnHIKzjnnHBQWFtoqX319Pf785z/jzjvvxN133w0AOP3009HU1IQXXngB1113XTQgPHbsGN54441ouSRJwg9+8APs3r0bI0aMwK5du/DOO+/g5z//OW666aboOuQyduvWDV/72tcwa9asaIDV0NCAzz77DPfff7+tcssuu+yyuJ8ZPHhwdHu3tbXhpptuwuDBg/Gzn/0soXUSEVEsBlhERJQSXbt2xcsvv6x6bdiwYaipqQEAnH322ar3lixZgnHjxmHgwIGqlpmTTz4ZGzduBABs2LABAFTdAQsKCjBt2jSsX7/eVvnWrFmDxsZGXHjhhar1nXrqqfjLX/6CI0eOYMCAAQCAAQMGqFp9RowYAQA4evQoRowYgWXLlgGAqnVK65vf/CZuvvlmHDhwAIMGDcInn3yCYDCIr3/967bKLfvjH/+IQYMGqV6bP38+nn/+ed3PP/7449ixYwfeeecd5OfnJ7ROIiKKxQCLiIhSIhAIYMKECTGvywFWcXGx6vXq6mqsXbs2ptULQLQVpqKiAgUFBTEJMbTLsqK6uhoAcMkll+i+f/jw4WiApc1+mJ2dDQBoaWkBEP5N+fn5pq1op5xyCgYNGoRZs2bh3nvvxaxZs3DuueeiR48etssOACNHjsTo0aNVr2nHhcnefvttvPXWW/jLX/7C7oFERA5jgEVERL4gj12Sde/eHePHj8ejjz4a89mcnBwAQElJCRoaGmKyDlZWVqo+n5ubi7a2NtVrx44di1kfAPztb3/TDdCGDRtm+bf06NEDjY2NqK+vNwyyBEHAVVddhf/85z+47LLLsGrVqpiEGm5Yt24dfvWrX+Guu+5StfwREZEzGGAREZEvnXbaaVi0aBH69+9v2CIlt4h98cUX0fFNDQ0NWLx4sSqw6dOnDxoaGnD06FH06dMHALBo0SLVsqZMmYK8vDyUlZXFdFe069RTTwUA/Pe//1Ulx9C64oor8Oyzz+Khhx5Cnz59cPrppye13njKy8sxc+ZMTJs2DTNnznR1XUREnRUDLCIi8qXLL78cb775Jm688UZ897vfxaBBg1BTU4P169ejV69euPnmmzFq1CjMmDEDjz76KOrr69GrVy/885//jOkyeMYZZyAvLw8PPfQQbrnlFhw8eBBvvvmm6jPdunXD3XffjSeeeAKlpaU4+eSTEQqFsHfvXixbtgx//vOfLZd9+PDhuOaaa/Db3/4WlZWVOPnkk1FbW4tPP/0Uf/zjH6Of69OnD8444wzMnz8f3//+91VZFYFwevnnn38e27ZtS2ALxnrwwQfR0NCAb3/726p094WFhRg5cqQj6yAi6uwYYBERkS/l5ubiX//6F/70pz/hueeeQ2VlJXr27ImJEyequrb99re/xaOPPorf/OY3yM/Px/XXX48JEybg008/jX6mZ8+eePbZZ/HUU0/hBz/4AcaNG4enn3462uolu/3229G7d2+88sorePnll5Gbm4uhQ4fGfM6KX/7yl+jfvz/efvtt/OMf/0DPnj11W6jOO+88zJ8/XzchRlNTE3r27Gl73Ub27t2L+vp63H777arXp06dildffdWx9RARdWaCJEmS14UgIiJykjzH1BdffOF1UeK69957UV5ejn//+98x791www049dRTo2njiYjI/0SvC0BERNQZbdu2De+++y4+//xz1VxZsmAwiB07duD666/3oHRERJQodhEkIiLywJ133onq6mpcf/31uPDCC2Pez8rKis6nRURE6YNdBImIiIiIiBzCLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDsnyugDpLhSS0N4ecnSZWVkigkFnl0nO4L7xN+4ff+P+8S/uG3/j/vE37h//cnrfBAIiRFGIv17H1thJtbeHUFPT6NjyRFFAcXEhamubEApJji2Xksd942/cP/7G/eNf3Df+xv3jb9w//uXGvunRIx+iGIi/bkfWRkRERERERAywiIiIiIiInMIAi4iIiIiIyCEMsIiIiIiIiBzCJBdEREREKSJJEkKhdkgWx9yLooDW1lYEg0EmUfAh7h//SmTfCAIgigEIQvxMgWYYYBERERGlQHt7OyorDyMUarf1vYoKEaEQ04D7FfePfyWyb0QxgOLifggE4mcLNMIAi4iIiCgFamurIIoB9OzZB4D1J+RZWQKCQbaO+BX3j3/Z3zcSamoqUFtbhaKiXomvN+FvEhEREZElkhRCS0sjiop6Iysr29Z3s7JEAGwh8SvuH/9KZN907doD1dVlkKQQBCGxdBVMckFERETkMrmbUiDAZ9tEfiafo8l0+2SARUREROSyjqQWyQ2eJyK3hc9Rq4lo9DDAIiIiIiIicggDLCIiIiIiIocwwCIiIiIi33jiiUfx8MMPeF0Mxxw+fAjTp5+E3bt3el2UGKtXr8T06SehsbEx4WU0NjZi+vSTsHr1SgdLlt440pKIiIiIdD3xxKNoamrE448/5XVR4tq6dQtefPEFbN26GU1NTSgp6YXx4yfipz/9BbKz7WVu9JvVq1finnvuiP67qKgnJk6chLvuuhcDBgxMeLkTJkzC++/PRpcuXZwoJkUwwCIiIiKitFZdXYUf/vAHOPPMs/HHP/4F+fn5KC09iHnz5kYmdnY+wAoGg0lNRpuIt976L/Ly8nDkyBE888xTePDBH+GVV95IqBzBYBDZ2dkoLi5xoaTOCwaDyMpKj9CFXQSJiIiIKCFffDEHN9zwLZx99qn41rcuw3vvvaN6f/r0k/DBB+/hRz+aiXPPPR033XQNtm/fip07d+B737sZ5503HT/84Q9QXV0Vs+x//vNvuOSSc3HhhWfj2WefRnt7u2E5NmxYj5aWZjzwwM8xatRoDBgwEFOnnooHH/w5cnPzop9bu3Y17rrrNpx77um46KIZ+MlP7kVLSwsA4JNPPsJ3v3sDzj//DFx22QV44olHUVtbG/3uxx9/iEsuORcLFszH9ddfhRkzpqGmpgbl5eX48Y/vwYwZp+Oaay7Hl1/OwyWXnIuPP/7QsLy7d+/Ej340E+edNx2XXXYBfvvbX6O+vj7u9i4q6oni4hKMGzceM2f+CHv37kZp6QEAwIIF83HzzddjxoxpuOaay/H666+oUo1Pn34S3n9/Fh544D6ce+7p+M9//q3bRTDePt2/fy/uuus2zJgxDTfddA3WrVsTU87Vq1fi1ltvxDnnnIbLL78I//zn31Rlqagw32Zyt8q5cz/HXXfdhnPOOQ0LFsxHdXU1fvnLn+Hyyy/Cueeejptvvh4LF85Xrfub37wUr776Mh599Oc4++xp+Na3LsOKFUtx5MgR3HffXTjvvOm4/fbv4MCB/XG3d6LSIwwkIiIiyjAbFwkos1LHEwBIzqR37z0YGH96EvmnFbZs2YRHH30It912B84++1ysWbMKzzzzexQXl+DMM8+Ofu7//u9FzJz5Q9x33/145pn/h1/96hH07NkTd911DwoKCvHLX/4Mf//7X/Dggw9Hv7Ns2VLk5ubh+ef/gQMH9uPJJ3+FkpJeuP76m3TL0rNnT7S2tuKrrxbgzDPPhiDEbq/9+/fhhz/8AS6//Ju4//6fAgBWrFgKKZKPOxgM4nvfuwuDBg1GZWUFnnnm/+EPf/gdHn30iegyGhsb8eabr+HnP38MBQUFKCgowIMP/hC1tbX485//DgB49tk/mI5pqqurwz333InLL78K9913Pxobm/Dcc3/AE088iief/H+Wt78cOLa1BbFu3Vr85jeP4r77foIJEyZh//59eOqpJ5CdnYOrr74u+p1//vNvuPPOmbjvvp8gEAigtPSgapnx9mkoFMJDD/0EvXv3wd///gqOHavBM8/8XrWMsrKj+PGP78U3vnEFHnnk19i1ayeeeupxdO3aFVdffT0A4PHHf4m6urq42+xvf3seM2f+ECNGjEJeXh5aWlowduw43HDDzcjPL8CXX87Dww8/iFdeeRNDhw6Lfu/NN1/DHXfMxPe+dydefvlFPPbYLzB69BhcffX1+OEPH8Bvf/trPP30b/HMM3+xvL3tYIBFRERERLa99da/MXXqqbjppu8CAAYPHoIdO7bjjTf+pQqwvv71y3DOOecBAK677kb88Ic/wPe+dxcmTz4h8v7leP/9d1XLzs3NxYMPPoycnBwMGzYcBw8ewFtvvW4YYI0fPxHXX38THnnkp+jatSuOP34CTj75FFx44SXo2rUrAOC11/4PEyZMwr333h/93ogRI6N/X3rp5dG/BwwYiLvvvg8/+tHdCIV+DVEMd/pqa2vDj3/8MwwfPgIAsG/fXqxYsQwvv/w6Ro0aAwD40Y8ewC23fNtwu7377lsYO/Z43HZbx5iqBx74Ob797W+iuroKRUU9Db8rO3asBv/859/Qq1dvDB48BD/+8b246abv4sILL4mW/zvf+S7eeectVYB1wQUX46KLvh79tzbAirdPV6xYhoMHD+DZZ/+Knj2LAQDf/e738Itf/DS6jPfeewf9+w/AvffeD0EQMGTIUBw+XIp///tVXH319di3by9WrlxuaZtdc823ccYZZ6teu/baG6J/X3/9jVi8eCHmz5+Lm2++Lfr66aefiUsvvRxZWSK+851b8cknH+HUU6dh2rTpAICrr74Ojz32MEKhUHTfOokBFhEREZEHxp8uAafH/1xWloBg0JlWJyft27cHZ599ruq1iRMnYe7cz1SvjRgxKvq3XCkfNmy44rWeqK6uVn1n1KjRyMnJif57/PgJ+MtfKlBfX49Zs/6DV199Ofreq6++jb59++Kuu+7BddfdgJUrl2PTpg14/fVX8Prrr+DFF/+FkpJe2Llzhyrw09q6dTNeeunv2LlzB+rq6hAKtSMYDKKqqhIlJb0AhAM/ObgCwt3lsrOzMXLk6OhrI0eONk2qsXPnDqxYsQznn39GzHulpQdNA6zLLrsAANDU1ISRI0fj8cefQnZ2Nnbt2o4NG9bh5Zf/Ef1se3sIkhRSff+448YaLhuIv0/37duLvn37R/cjEA5ulfbu3YMJEyaqWhEnTJiEF154Dg0N9ba22XHHHa/6d3t7O/71r5cwb94clJeXIxhsQ2trKwYNGqL6nDJw7tkzvD3Vx1wxgsEg6uvr0K1bd9NtkggGWERERESUEG1XPEmSYl5TJiaQ31K/JsQEAnpd/OTvX375VZgx4/zoayUlHUkaiop64vzzL8T551+I2267E9deewX++993Va1FepqamnD//TNx6qmn45e/fAJFRT2wZ88e/PznP0FbW1v0c3l5earvSZJxWc3WdcYZZ+P73/9BzHu9evUy/e4LL7yELl26oKioJ/Lz86OvNzY24fbb78QZZ5xl+v28vPjZAs33qQRrP1e7DPXfVrdZly7q7f3vf7+Kd9/9D+65534MGzYcXbp0we9+9ziCwTbV59TJMMLrCgRiXwuF3HlwwQCLiIiIiGwbMmQY1q9fq3ptw4b1GDJkaNLL3r59G1pbW6OtWJs2bURxcQkKCgoBwFKrQ2FhIYqLi9HU1AQAGDlyFFavXqnqSibbt28vjh07hjvvvCcasFmZ12nIkKFobW3Fzp07MGpUuEVm584dqqBMa/ToMVi48Ev069ffdva//v0HqAIr5TIPHNiHgQMH2VqeVrx9OmTIMBw+fEjVlXHTpg2qzw8dOgwLF36pCsw2blyHXr16o6CgMKFt1lGWdTjzzLPxta9dCCA8bq609CD69u2XzM92HLMIEhEREZGh+vp67NixTfW/8vIyXHPN9Vi+fCleffVlHDiwH++/Pwv/+9/7uO66G5NeZ0tLC37/+99g7949WLhwPl599WV861vXGn5+0aKF+PWvH8GSJYtw8OAB7NmzGy+88Bz27NmN008Pd8W74YabsWHDOvzpT09j9+6d2LNnN/7znzfQ3NyMPn36Ijs7G++++xYOHSrF/Plz8e9/vxq3nEOGDMXJJ5+Cp556HFu3bsbWrZvxzDO/R3Z2tmErzZVXfgvV1ZX41a8extatm1FaehBLlnyF3/3uCd3PW/Gd79yKjz/+EP/3fy9iz57d2LNnNz777BO88so/bS0n3j49+eRT0L//ADz++KPYuXMHVq9eqeqWCABXXPFNHDpUij/96Wns378X8+bNwauvvozrrguPnRoyZChOOmmqrW0mGzRoEJYvX4qNGzdg9+5dePLJxyxlX0w1tmARERERkaGVK5fHJCD41reuw7333o9HH/0NXnrpb5GEC30wc+aPTMc5WXXKKaeiV6/euOuu29DeHsRFF12qSm6gNXToMOTk5OBPf3oaZWVHkZeXhyFDhuLxx5/CCSecBCCcsOHpp5/D3/72Z7z//rvIy+uCCRMm4rLLrkRRUREeeuiX+Pvf/4K33nodY8eOw1133YOHH34wblkfeeRXePzxx3DXXbehpKQXfvCD+/D444+oxpAp9erVG3/5yz/x178+h/vuuwttbW3o129A3O59Zk477XQ8+eTT+L//exH/+tfLyMnJxtChw3Hlld+ytZyxY8eZ7lNRFPHkk0/jt7/9FW6//SYMGDAId911Dx544L7oMnr37oP/9//+hD//+U94//130b17D3zrW9fhm9/sCJAffvgxPPnkry1vM9l3vnMrDh0qxQ9/eBfy8/NxxRXfwtSpp9j6jakgSJLkv1GTaaStrR01NcapOO0SRQHFxYWorKx3rV8oJYb7xt+4f/yN+8e/uG9SIxgMoqKiFCUlA2xPlpqVJSIYDMX/IHlCu3/279+L66//Jl588dW4SSUozK1tlsi5Y3au9uiRj+zs+N062YJFRERERJSg5cuXobGxCcOHj0B5eRmef/6PGD58BMaMOc7rovnWihXL0NLSkrHbjAEWEREREVGCgsE2/PWvz+Pw4VIUFBRi8uQTcM8999vOLtiZZPo2Y4BFRERERJSgadOmY+rUaV4XI62cdtp0nHbadK+L4RpmESQiIiJyWceDeY5zI/K38DmaTGMaAywiIiIil4liuMrV3h70uCREZEY+R0XR3hxlSuwiSEREROQyQRCRm5uPuroaBAJZAOw8HhcQDLLly7+4f/zL7r6RUFdXg9zc/KTGgzHAIiIiIkqBbt16orLyMCoqDtn6niiKCIWYpt2vuH/8K5F9I4oBFBX1Tmq9DLCIiIiIUiAQCKBXrwEIhdphdRZSURRQVJSP6upGzlPmQ9w//pXIvhGEcICVbDZDBlhEREREKSIIQqSLoDWiKCAnJwdZWa2swPsQ949/eblvmOSCiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIyLdqyoEF7wioPup1SYiIiKxhgEVERL61cZGA5kYB6xYIXheFiIjIEgZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYRETkW421TM9ORETphQEWERERERGRQxhgEREREREROSTL6wJ4Zdy4cRg5ciQAYPz48XjiiSc8LhERERmSvC4AERGRNZ02wOrRowfef/99r4tBREREREQZhF0EiYgopXatAw7vsfkl5rogIqI04csAa8WKFbjjjjswffp0jBkzBvPmzYv5zOuvv44ZM2ZgwoQJuPrqq7F+/Xpb6zh27BiuuOIKXHfddVi+fLlTRSciIhOtLcCudSI2LPTl7YeIiChpvuwi2NjYiDFjxuDKK6/EzJkzY97/+OOP8eSTT+Kxxx7DpEmT8Morr+C2227D7Nmz0bNnTwDAZZddprvsWbNmIRAIYO7cuejTpw927tyJ733ve/jggw9QWFiYUHlF0blHq/KynFwmOYP7xt+4f/xN3i+CJMS8ZkRSjruSuG/dwnPH37h//I37x7+83De+DLDOOussnHXWWYbvv/zyy7jmmmtw1VVXAQAee+wxzJ8/H++99x5uvfVWAIg7vqpPnz4AgJEjR2L06NHYs2cPJkyYYLusWVkiiosTC8zMFBUVOL5Mcgb3jb9x//hb9+5dADQBQNxrpyRJABoBAKIoorg43+XSdW48d/yN+8ffuH/8y4t948sAy0xrays2bdqEO++8M/qaKIqYNm0a1q5da2kZx44dQ5cuXZCTk4OjR49i+/btGDRoUELlCQZDqK1tSui7ekRRQFFRAaqrGxAKMW2Wn3Df+Bv3j7/J+6fmWMf1srKy3vQ74RYsIfJ3KO7nKTE8d/yN+8ffuH/8y419061bF2RnB+J+Lu0CrOrqarS3t6OkpET1enFxMfbt22dpGbt27cIjjzwCURQhiiIeeugh9OjRI+EyuXFChUIST1Sf4r7xN+4ffwvvG0HxtzFVgGXh8xRf2X7g6D4B406XIGqGwfHc8TfuH3/j/vEvL/ZN2gVYRiRJgiBY62N5wgkn4KOPPnK5RERERP6ydn44quo9WEKfIR4XhogoQ6VdGqeioiIEAgFUVFSoXq+qqopp1SIiIqJYoZDXJSAiylxpF2Dl5ORg3LhxWLx4cfS1UCiEJUuWYPLkyd4VjIiInMXeNkRElIZ82UWwoaEB+/fvj/774MGD2LJlC0pKStCrVy/ccssteOCBBzBu3DhMnDgRr7zyCpqbm3HFFVd4WGoiInINgy1HMaE0EZF7fBlgbdy4ETfddFP0348//jgA4O6778bMmTNx8cUXo6qqCs8++yzKy8sxduxYvPjii9E5sIiIyKcYKBERUYbzZYB1yimnYNu2baafueGGG3DDDTekqERERJRqqliMTS7O4vYkInJN2o3BIiIiIiIi8isGWERE5H/sWmhqxxoBu9Z5XQoiIgIYYBERUQoxTnLHng0Cdq2zcUtnF0EiItcwwCIiIv9jQEBERGmCARYREaUOm7CIiCjDMcAiIiJ/kgz+pqSxQZCIyD0MsIiIiIiIiBzCAIuIiPyPTS5ERJQmGGAREZGKJAGVh4C2VneWndgXHS0GMWAlInINAywiIlI5shdYNUfEqs9ZC89U3LNERO5hgEVERCrHysPV79pKVsPjaW4EVnwmoOqo1yUhIiK/YIBFRES+pOoV6NNYb+caAdVHBKz8lLdTIiIK4x2BiIj8z6djsELtXpcgQT4NWImIMgEDLCKiTqy+Bti4SEBrs9clISIiygxZXheAiIi8s2K2gLZWAZIETJjus2YiZXHY4kJERGmCLVhERJ1YW2s4cmlrUbzIYIaIiChhDLCIiCh1OA+WLwgMoomIXMMAi4iIKEHKiZNXfia4MjkzERGlFwZYRETkf2nQ4lJ1RMD+LV6Xwlg15+oiIkoJBlhERJQyyp5+8Vp7lK1D6dJFUAr5NxIsO9BRNilNticRUTpigEVERJ5QJdbIEH6OW1TjrvxcUCKiNMcAi4iIPMFWFCIiykQMsIiIKHUS7fbn3553MVqagPKDDCCJiDorBlhEROQJWwFIGgUriz8QsOYLEVWHvS6JsTTanEREaYcBFhFRhti5VsDuDV6XwpyqAStDa/ltLeHmtvoab8thKkO3PRGRH2R5XQAiInLG7vUCAAHDJ4S8LooxRcU+UwMsv5K47YmIUoItWEREnYiVinXKhjuxku+ZnDyvS0BElLkYYBERdSLLPxGw6nN/ZIzI9FYUP/88MeB1CYiIMhe7CBIRdSLHKuTgyvvqf9wAy/siUgpJUvh/Ih/9ElGa42WMiIg8Ifl4qFhGUgSspTv80YqptPR/Aua+LmR8yyYRZT4GWERElDJ2Ei3UH3O3LK7zWaCgLE7pTv8FWHVVAiRJQKjd65IQESWHARYREXkiXoBVUdoRBLQ2+y8gSDs+C/isKjsAbFwkIMQWTyJKExyDRUREaqmKZdK0wk8u0xx/a+eFnwX3Hiyh9yAPykNEZBNbsIiIyBOZnuSCY4mcxa6DRJQuGGAREVHq2BiDlY7xSSjY8Xdjrb+6NaZjwNeQ7uPwiKhTYoBFRNRJ6VW4d6wWsG9zagKDTGzBUo4T8mMiiXTT3OB1CYiI7OMYLCKiTujoPmDdl7HP2PZsdDcokAz/ofPZNAywBMZUSVNuwkC2Z8UgIkoYW7CIiDqhzcsYCXQ26RKwKoupClh5yBJRmmCARUTUCXlWV1XUntfOF1FT5lVBknN0H7DhKyFmsuTSnebfa2sN/4+IiDIXAywiIkJLozfrXT7b+Dbk5xaXdV+KOLxbQOVh9evtQfPQdd6bIua96dGt18fbU8WgnGzAIqJ0wQCLiIhQV83qayLipQ6vq05NOaxIl/iKiCjdMcAiIl9rbgQObldnZyMHeBRP2arkZ0BEsORDH91mM2B7+lFzI2JaMomoc2MWQSLytRWfCmiqE9AeDGHI8V6XJnP4YQyWgx/1joA0KWgG8Gkj64J3wkH0aZeG0LXI48IQkS/46NEaEVGsprpwrYpd2ByWDpvTocAl2Aos/0TA4T3OLI9IT1Od1yUgIr9gCxYRpQU/Jzwgdzi1z0t3AjXlAmrKBfQb5nBf0wTLKEmcM8uKdNpG7MZMRDK2YBFRWtCmw/ajykPAod1elyJzHNjmTO3al8G5B2Xy5XbQYVROv8da6xewSkVEYWzBIqK0kA5Ph1fNCVew+g4JQQx4XJg40qllwNcSHIMlSakPGCoOpXiFRESdFB+3EFFakJ9qp8tTeL9rbvAmwvJk/1n4qe1x0q07zcntYHVZrU2MqomIUoEBFhGlBSkEtLUAn78qYssyf1cUGQOml4pSYO7rIvZtTt06+aAgAT467XesEbD8EyEtui4TUeoxwCJygSQB9TXpMW4onVQdDf/XqbE5rsngynNFKbD0fwKaG7wuiXXxjpa9m8Of2LYyhbdEl44RBm6psWdDOGlKIzMHEpEOBlhELjiwFVj8gYhtq3weCKQROxXH3euBNV8InlU2M7mSu3quiNpKATvX8thORgYfIkREnR4DLCIXHN4Trnwe2OZxQTKNxVrpzrUiyg8KaGl0tziGOkHtOeEgshNsGyOZHHgTEVEHBlhElLE8a8HyYp0mKz20C1j5mYBmrwJOBcYYEdwQxozStLPRlIjSBAMsIkoPElSDaZrqPStJfD6rPG9cJKLqiIAF73Rc8ov6+KyQLvJDiv9QCL47LoiIyB0MsIgITfVA6c406MKkKN+mxf59nO377QggkMGzILYH1f/esdr8Vuf2kbR1hYA5r4nutSBKBn93EulwvhFR58IAi4jw1X8FbFosomy/1yUxpq1EtbV6U45MVledgpW4XBk+uAOY+28RR/Za/47b9fP9W8IhnPL8cisoWPiegNpKd5adKnY2TX1NeOqG/VvdKg0RkX0MsIgIUihcAUyrlMMpemp9aDdQeSj+51qaOv5OiyfqOs02Sz5M/1vCjkjmzt3rvWnhzMs33vmpOC6aGwRft+46bV8kxf7W5R4du51nUxORDel/NyUiXaEQEGyz8Ln2jr8rDqVfbaG1ObZLmFNC7cDGr0SsmiMi2BbulmjUOvDl24rLqSdZLux9POk9nQ5BpEVOHvXNjcZLcyvAaqh1Z7lERJQYBlhEGWrx+wK+eEOMG3wc3tPxd/UR/wZYenXTYBsw/z8iFn+gX+5kK7StLR1/790koHSngKX/i3/ZzKDYgxDujnp4t/phRCLcCrDkVhxZXbV/z2O7VNvMhz+Lk8kTkR4GWEQZqrEuXBtRdl3TY6WVyxek2H82HAv/3VTvTs1LmXWvrcXkgxqVpS4UJkOkKvh0cj3rFwjY8JWYfLdDRaHSohupz/gwvkL5Qa9LkNm2rRSw9H8CA1lKOxmcR4qIMk3pLkUVS/Lv0+NwC0Jqa9C21+ZVbTVOQUOh8H71U5bDykjX2Zry5JbDoMoao5ZCP24/v16DMoXcOtvUICG/q8eFIbKBLVhEmc6HlZJEVRz04zPsWGLA6xLEl+yWdOuwWvCOgLn/FpOuTPvxSJEkP5bKf/Zs1N9O21b6cPtpihSvxwARdQ4+ekZIRG7IoPgqbRT0SIOt7rO6asUhoKEGaG2OFCzJTejLPdDJ56uyqqZM//XG2tS3DMcjaM4jtxLuEFF6YQtWJxIKhSsx7UkO1CZKrXCFStui4WV3oXjdgroUpKYc6chov62eI2LbSvNbUuVhCyvwWeCopPzt1WVAc4N3ZfE1H+9DLSFOLUqSgAPbO8aLplprM7B2vmAYtBKROxhgpZmmemDjIgFN9fa/u2udgNVzRGxd5v+7V4j92h2T9mME5MPVRw+uP39NxIFtxu9XHRYy/xj2YH+s+tzCLctHx4mWMsBav0DEgncz5xbcUAvs3pB8pkUg3JKZLrQtWNrjr6IU2LJUxKL3vdnXu9cLKNsvYPnszDnWiNIBz7g0s36hgEO7BGxYaD9IqohkNjuyz/gz5QeBg9sTLJxDqo8Cc14TPS9Hutq2UsDu9R3/Prjd24C6vib8UKC1ObHvJ1V6m5VtO61iW5YZXz53bxCwd6O9dSfNx4EFhfkxSYNTlnwoYOcaEQccuG63B/3/EFCmDbDaWtX/9rqVMl6WWCcCYiKKxQArSVII2LMx9qLqlpbG8H+bkxlIa3KTX/OFiM1LRU+fvssDnDcv5eGZiH2bBexc27Ht6mu8KwsArPg0/FBg+6rkKk1u1033bAQ+f1V0bNLWitLEfm+qKuExT94zhY9/l98CrD0bw5NnOyHUHl5Oc4OzO8Bv20xL20Vw2cf+um+ZnecHdwBzXhdxdH/qykPUWfjrSpCGGuuAHatFbEmDbnfxKlSJtjA4LSvb3udDIXtzFFFqtbWED7yEjy+D49bpiteO1eHLoVGL34Ft7p/jwTZg7r8FbFzk/rr8Phg/6d3rx4q5w2Vqbkju2rdjtYjSnYLtufCaG8LjeuqqE193pkjnBxXbVoQLn/T8bkQUgwFWkuRKSspuNA7coI0WsWudPy6y8QYNay37WMC8t0TfBIh+k84VABWdAzfe6eDHOraZuqpwS8ChXe7vtERb2JKWbjslDjtb0cmeAaF2YMG7Yvjal+IHTJuXhcf1rJ6TKReXWJJkLeV6xlxffY7bmdINAyynpLjS4Ma4FLtPMf2iriq8NbzuCkfe8qIr0dYVAqqOpH69ZEGKKmRexYvKbLDlB1Jb+5RbzTL5oda2lQK+fFtE2QHzz9l9IJhqh/d6XQKizsnnlwZylA+zsemx86RKTtxBaSDBOqDhYSupF7lmXmLLT8b+LQJWfha+jObl+/zE8gm9reRKcOzGMtPoKfrONTYK69ND18vxV/u3hLff4d3m29HvLSuhNEoYQpRJGGD5VEsTsOBdAQd3OLdMW/GVT2+4WqvndhzCfh8M7Zl0v78aHLiNdYLqpbL9zv7QmnJ7n/f68PN6/UlJ48JLIX8GMrs3WC+XWbGaG70ZrxdqBxa8I2Dlp8a/Q5LCWWfdxPsKESWCAZZPHdgWzsa0eYl6FzlxrbdVIfCA358IJuJYBbB1ucCUuKmWxAlzdF+SB2ICX3eqLndknz8qhqEQsH6BgKMmU0MABr872fIbbP+kWr2TLJMPdok+g4K1tQIL3hHx5TuC/uddvFbXHwNamgSETO5XpTvDD1pc5dud1rkc2u11CYjsYYDViWRyf3kAvr4RLvtYxP6tzrZIWmU3YPVyYuKy/YitjKc64E70OPL6+FNOYvul6HqFRBvA6SVwqDgIHNkrYN2XiluNbh/B2JeSTetvtD9WzxW9e9Chl6glwePG6tZpbQY2LBRQV2V/HfK0IMFW907CdoN9YeW6VXXY/YtD3P3j9XnfSexay+oqpRcesQ6RJKDqqL8TRXg5t5UdmdiCJUvVfGnJcKs7kJXduna+qKqMS1LHGAI/tMiYcaR4Dv5GOflLKhzZF54c/Mhe9etWA5k5r8feivZv1S//0v8lnx484c2c5Cb1IrDbvkrA4T0Cls826WqXwvIo7d8KzH1dRPlBjwpggc8vO46oqxJ8P20DUbphgOWQxloBKz8VseYLdys1ciWzqd6F9Ui6f7qurhpYPVdAY13kBQd+2u71wKL3BcOno17R+2nBNmDLMgHLPxHQ3JjyIsXwU4XC7fEVjvLThksxubVp+0r1EW6xscqW2koBG7/qWE/lIaCp3t4yEr3ESKFw5ki74/Nkh/ek/umRnPGv3SzZgUfH7tbl4SrI3k2xZfPNg7ZOcl4n3WJMRCoMsBxWfdTdi1RrU2LLrzoCtDT68wK65gsBFaX6k6vaebKpbOHYuVZEwzEhqQr60X1A5eHEvw+Ex7sdqzD/zJZlAg5sE1BTLmDHauN9dHg3Eurmk9vF/nf8QvVU1WJFx4knsc0NwL7N7nRRy0SpTqAjn+sNx4BVc0QsnJWaW1n1UQH7twhY/omD6+tEx4khnVPNLwFWRamAxR8IOLDN65K4ixl5iZzFACsDVBwClnyoaAHSsXmJM3erI3uBsgPOdteSu821y90rFcu281RN9/cnUc51X4pY9Xnyp8iyj82XUXmo42+j4KChFtjwlYglH9kvT89+PqnBpajCpOymm8hxKgHYtT75wtaUC77v1piu5Mp3c4Pzyz60y/llmnH7ELG7fElypyvz0X3Ask+EaItaPH4JsACgvkbAlmWZXV1K9lrV3AAs/4TzAhLJMvuK4TONdYh2AWs4Fg4enBiztXqOiLpq89YPKySDf9TXhAO4mjJg/QIRa+eJWPaJC3e/yCIT3SZydxOl2kqfjd3R2WxWime1UuIIP20vryQSmOl8R/lUePXccDfQjJQmc+xZsXFR57stKo/dlZ8JmPemiJbG+NdOO0fzui9FHCsXsN9iS1BtAq31XsiAQx5A8vfJ7avCvTDkeQGJOrssrwvQmXz1XvjCM+bkELatCP8tisDIKf6+RG9aIqCuWsDKzzteq60Q4Nat5che5yqhO9eKEAMhDB3n2CKdJxn8bfSZTsqRKQqk1D4ZXztPwPk3hkteUepuFOLlg4SUh41OrzAN417Lu9vKBxWfkbu5H6sEuhTaLZVD5UH4YR6lTrLXj3RJokWUKryCuWDR++YpceXgCgi3aEkhYN2XAg7vSUHhEhG58Iba07AWAgfmM0ohL+rI2q3jqxY/JasZEwzK3x4E5r0pYPPS1B0PkmRvXY5ue7/uRwcYBckJJ7Xxcls5mLrdwSKYbpMMPrR8nQnYVcnu1BQcFL69NxHpYIDlgoZjAjYutlaxOrRLQOWRcBCwYWHqdockhRNfxEsI0NoMHKvI/IkcQ+2p6YanVzFU3TSMtkWSu2D3BugmEUmlhNau+FIih4kynfexCiDYJuDgdpe2Q4qO48O7gXn/EdBYm5r12RF3yiBJci0d9L7N4ZTfbS0d+7e5EdjwVez+9sElx9CmxQI+f1VM6ZQO5QeATcvSYA6JOLYsS+7c3rRYwBdviNi6XH85lYeBJR+pxzuX7U+fB3hmkg1e3Din0mFaEyIjDLB8wIuJXUt3Ais/E7HuS/0arCSFW9VU73vBjWz0UjhphHK7L/5AwLy3HKzUOF1uC3ev8lIYZizcuUbEoV3OjPlLWCLbJMm79oaFImorE1htgskxUmHDVyLamgXs2eijip2F3o+hduDff2jE2vnOlbtSMdHstpWxt7MtywQc3m1hfT7alKU7w4U5ui88Hqq6zOCDDh5wm5YIWPtVG5oUSUNSHYRaPecajhm/d2BbcjtS3vb7twqAEFugVZ+LqKsSVMmXGGC5ZwdTx1MaY4DlEjvjPLy4sFVFKiYd40LUasrCrWqJpJ3ftyX8lN0RTqR01vz76F5g0X9FbFJkVmysC//dFHkyWbbf4ZVa/GyiP7e9HVgzV4ybsTCt6XWlsvC1RAIscohiBzU5mPGvtjI8F5Xe/ElKrU3OrdMtRsfw9lUCqo4IWDE7dee0aiJks5NLfs+D+q/yoV8i987GunBrfrwMlKY/zYfBiJ5EpzlJiAvbpEHbSp9G233DVwLHpXVyGVwb6xxiLkAOWb8wsTunJIXHmG34Sv/QaqoHVs3RnxuqqS751jwrLVBHI08cD+0y/o2pHKejkuANxGy7HbWZNCSVAX/cdcUruhtlTXSZFr/X2qypyDqxbg8o9538QMms+AGHUyoZPRyyxE/b2WTMoJFgG/Dl2ym4RvlpO0XI1/iGY4mNr133pYBDuwRsiNdlOgMaT+JNz6KafNqH+1orDYoIAFjzhYjDuwWUHfC6JOQlBlh+kMRVw61xQ8FWd+4u21YIqDwkYMVnscsPtukkILBZjHlviimfx8aOHatFbFuh/lFu3zTKDvizplBTDnz+qvvJXeTtaydwdDPInP8fEV/9N/l9kupAeOfacKuR+QdTUhwAwG4rc5U5cOjX1yS/jIQYbMvmBuCLN0SEQu6e16k8vgTA8rHT0iigpRFY9H5i1ZeWyFQp8Vo3TbeuPy+ptnB8k/v8OE6WUocBlg8dqwxh59rkruChEFC6C2hpCnc1kbvApVpTfXgsgUx+KhtSPDlT3lflPvCylsb4iTi0YlqmXK4oHNlrryvGvi2C9a44FjmaejwFFavaSkQCTfPkLsqfZdjq4xN2NltzQ3rV0CpKwwHN8k/S65aRzFZuaw0/wNq32V/7quJQ/M+kIzvnz5fvJH8cJt16ng5MfkMwHQOsdGnCiti5RlTNhUidS3rdLdNUezAc6Fj18avJDxw4uA3YtEjEik8F3XEKqUp2sHCWiHVfiti0WAjf0GzetIKtAha8q/5S9VHgyD6DLzhEeR2Pt63WLxCx5gvNqRTnd+7ZqL8uPww0Vrb4HKuwH+DGU1sJLP2faDs7ZVN9/M/XVoVwTDvmKlXbNMX7Liao1ll/cyNUYw0TldKJrmN4c1LMe1PEvLfcv0UanfOGCUXtjO8N2bymSKb/TAtHHGoRT+V8eTJJSt292enxQckcK5LkTbKvVDi8JxMidUoEA6xkWTh3vnxHwJdvG29qbQXb6Em9na5UddXhgjXW6hcwqfELZgyusqU7BVQcSuympUy7LEnAik9FrP9STHzOG5sSGusQ526za53ieFB8tvKQkFiXJBdasMr2A8s+FrF2nrPHSq3JHHF2aSuPH77chNVzHSivzdpCsE0zniE1qzVflhQeg1G6I/nU1WaaG2Epi2DCOmv9xOYcanqSCq7TMboCsH6hGD4mk+XBcbd6bjhNvJUHssG28FQriT6Ua6pT/zvp3Z3gAvZtBj5/VcQXbwm+eMBox5G94V46RHoYYKWAnfFMW5cbv5fKebLs2rlWwJ4N5tfY5gbo37RsXFT3b+n4e7PFucYSoiiTExVn3VWEgEUfCDETOG9baW19VUeAeW8JqD6aXDn2GGRiqzoSfl2ZCjsZdoPrYxVA+cH0qF07Np2BgxWMA9sERx6klO4UTB/6LHhHRENNeD2+i68MvpxuFTkVGxvELJFPvGVL0f9zpixxObhPnOj+5kULVuWh8EqNpttQWjtfwMrPRBzaafwZs59gafoCh9TXhOcPqy4DqsuABbM6ph+Qp1dobxPiHgN+Om2rjoR7ryyc5d96GXmLR4YPrJvfsRv2bUmPCqXW7vUCdqyJfzgle9M6oJgkNtVN763NwFcfNVu6+VmpeLQ2I1oxVYnMQVa6Q/WSStn+8DxmbS1CeALhBO88+7eGB42rVq+zrPagexkrjSz7WEx6XhtA8XtMtpGye4ok2d+ccsUoWavnJn5JdrPysXmpfrkO7UzBOZiel0TXuLo5/FSDJVPyVCtVCUylAqT2/rl5qYC6qvCUAytmi2iuF7A+kYdSPjo+G+vifwaAr8pMqcUAK8OkqttcQiRvngo6ZedaYN+2diz5SEB7MDzw37Afu5WLqsG2OFYRTj+8aYl+N0IAWDs/sVNXu/13rjHeIcrPLp8tYNF/RUe795mx3MLgwM2rpRH4/LWO7RlsA9qak1+uk6RQ+Ljw27wqYkDzgpW5k2zy4pKhPP6SbSGOvzKXl5+gYKvXY+9ckuoDyuX1pcM9Na1bjJOk99MlCag8zEyOmc7hmUlIZvnphoOO7hNwdJ+A076emlpYSxMACcjNt/6dZG8GiX6/rhrYs1HAmJMk04v95mWCYcpgZWVjy7LwXCrDJrh752iqB3asFnDEbC4rO4PeLRQ3+hnFcuuqOrqudOsZ+522ViArO/U3+1Vzkn9GpM0AmcquM1bt2QjsXCtiyPEdO1CSwuMXDu8RcPKFHtRgJECIs/mVpVo+O8H1eLA7VszuWKnbGVht7zmbxbGVPECx7C3LUvv81W918GST+wRbgawcqH6YZPUho1Mbw8axEgoKaKqX0KXQoXXHkchP3LZSwODjJBT2cLo0qVW2H1j3pYiuRRJOu9RvRz45hS1YLgm2Cji635t1798qxKQ7t8LuU6Yv3xZj0+WaLKOpXgiPw/LAitkCjuwRsH2V+XaprRBwrEJAW5xxc3LqeW0K1mAbUF6a3P1RWWld/EGc4ApAU52AA9uTWKHGqs8FbF0h6N6bla8d3QfM/4+AQ7vDGdfiTWppa1JQF+456Xwbk7vzaOd427ZSRG2lgEoPUgGXHRBQddj6572aKiIRNeX+LavdksljKf0s1I7Un6DxxvuYzDMWL0g6shf44k0R+zarX1d2+zazdr6I1XMFZ5J12LBwlpjwPdqs/qC7uSzsb+3Yz4PbBSz9X+zStq8SsOxjwZ+ZCHV+p5xBV05GRpmJAZaLyvZ7c/Ic2u3JamPWrb3g7t0k2E7NrZVoV4NgW3i9ba3utbLUVQNLPxKwZq6IWgu/02h8kbJ8VhNsbF/p3KncVC9g/xbBsCZXXxMeYL3uSxGtzQI2fhVedyJBPdmjzKjph65B8nkls5oR1ZYkfqcftpEVh3Z5OKFxAuTrcCgoONJttaZcsDWVSTK0h0Rzo/0U4XKCBiPyw6Ydmi7YdiZ9ryiNjK+Nw+4x3tIErPzM+EsNx+wtz0nK68f+LdCtL2iTQgEddYsmjx7gploolKHddzMMAywXpUu/YycncJW7kgHwbZOBcr/UaudMsrqMyH+Vv3fJh6Ktp/S71xsEWC6eldo5YhLZRavnCKYPD6RQuLIoSbEVDKsrdfTQ8elxaEsquxUlQ1GG1XMFbF6S/MGcJjFSwmorgI2LRCz+wOK28tkGsTPJOhCeokJv7InbY90ajoUDo9bI+MrGOgE1ZeEsmOsW2NuorU3mn1c9eFDeEk3me6o6EvtaswspwHeuEVLfqpnAbWDrClZPjSx+X8C8t/TPIzsObgfWL/Bpy18G4BHsJocqPLVViJlsV6adyyIRuzc4d7FVnqi7DAKI2C/F/8jeTYmVBzAPdJf+T/RkvJwZNwOsqiPW5xqpNOj+1RrnydmW5QIWfyCidAewx8FjK2l+CEAc5PcHOE5lVkymFcqsVUSe5qDK7SQWcTSnqOXGLYk8oNu3Wa9lwoHCmFj0fjiDnaSYX6w8Mo2BW71NQu0Cdq/rWHblIcHwXr7ys9RUx+IlwkrZZcWpFu5OSH6Qm0z9T5LC2WGP7BXw+Wuipy2XmYoBlouO7BWwd3P8z8Wz9CMRzQ36F+UNX+nsQptXyLpIZjgnKmzKZRi10MR8R/PvvPzYgmxfZf1pTdypWzTF2rrcX+lim+vNy5PM4OsjewXLczbVJ9g//GAklf4RO2OuNJycvHHrCjGxfeyQHasFR+blMeOXWMsv5ZAZTbQOCdi4SOiY5iCNuNrtMYEdmEh59K5hO1anfj+IovtHbIumtUv7b7eUH0RMvaHiEGyPsQq2WqwbJLAprc75mM4qD3ldAgOa/bVmXubvi1RjFkGXOTk2xi1O3mKcGIfT3Ki/DKeasbU3C6uTsSq/ptcPPFWSfeoXflqbeM7sVPz2Rf919rzZv1VA9xL93+x2FWvPRiHpjGS6CUc6y/3Q7d/pcVRo9+e1pDjxgSt0trl2PF8qZMQ5ZPAb1ut0e1xtM+tqc2O4C2XPvhJO+przJ8rhPfE/k+7CCbP89ugplt+mJskE/q/9k222T2WPzv1Wmyd0KGTyRFqh2qx/eYK/deVngiPdMTsTv9VddFt7U8TJFjmZ6kGBX+7ffilHBtvm4kO7hLpLC7HZVONJ9WFi1P3Jze7YqWJ4nXXgAnysIvzfZMds6QayuhNEJbWa6Hra272ZKicRTiUDag+GxzEm3BPJbzfsDJABlxdv+fKYtHmCVZQK2LzEPHGBG3atE9BUb54OV2nbCu/GdFQdST4DolMqdQZDU2K2rRQMszmmk3Vfio6m6vcTN1oZ/BoHGmUSDLWHK1DlLqfjrym39jll5kABwOq5/q5KLHpfv3yiv4ttjcH54cRpY2UZddXAwR2aDKIWeptIJstPtkv10o8EfPWeiMba5JaTCmvmCZjzuohgW3LL2fCVgBWfijhocSoAv14DM0kmXF46LeObrf1L68EdiV+O4w2aNRJqB9ba6Pdrax4lJeWVRPB/coB4Srd7FxBYHVcHAJWHYz+77ktn0jo7oT0YHmyf6Fgzv9m5xgeX83Q6t+Td7nWZFYefXvIHANi3JTy5+RqXA5ld66ydCw01+lnyLPN6m6cLDy9N7cHwfFzxLPlQxOYlImorOl77/DUxbvKYYGvsfJP1NeEusGstjhM20nAs/P3aqqQW45jDu4E1X+jf+yoORhJWJNnLQX5ALicXsp3GPTNug77CMVhpzO2brVUbFiZ2ZjY3AvXMXOMtmxUdo2QrVh3dJyT9pM4JVUeAbsUpXGGyNy+d7/tx/IiEcOY+p1qbASArO7E5X+I9RffL5rNSjtpKwbeD5f2yHROS1oWPI9HfFrknHN1v72vaMXR71gvoeb69G8zS//mjTuM0uXt6xUEJvQfrfyYr27n1lR0A1s4T0WeIhOxcYNSU8H/NZPKp4JXMPJoppRLtWlh5SEh9H3jJnxVTO5zoW15b6d3Epn5IzZuqlMiycoMJRpsbw8FIvGkI6qtjX/NrS+z2lQKO7HXuJItXMTBidU46P21Go6fYgoC0qQFZCYb9cuymySb1hF/2USZprAN2rk0s6VFzo/V7ttwj6eg+AQe3C9juQYZOYgsWeUwUgFT3GEv3G0dTnDTuVshPCgPZzm4MO10+OztJAhb9V0B7MFx7Lu6vPhMa64AuBfJA/DTZrlL8edL8yDcPXYyyykv+OQJirp+agikfoFQeBvZuEjBhuk8vun7ZqElw69g1W+y2lQKqjwKnXGRxv2bAdnbC9lWJP9hb8E74u+fdEL/GpN3cljKPch85jgEWeSoVLVh1yjE2vIioON2aVGbQUqOU7gGuU6rLEAmuwrRdJ796L9zFY9JZ3GCO8+kmNTp7Eh5/6qDGunDq7x691a+bVfBXfR6+wG9e6mLBdCRyjdnqYLdWP3Dz18hjBZsarG1oz7ZsZu1SAPHv2WX7BfQaaGG/aD7S2iQgFJIyI/GLT3BTkqdSfTJzrgcf8GnlNtW0Y4Ram2I/Y1axtjvNQSqk1a6VUzoHE0/U05ms+lxAbaWA/VvUx6Q2u6pecKPtRn6s0vHiJaSmrKNc2t+V9lLwc+ym50+5OBek9mB4Qma7DxrrqoC9G318vCRYtMrDzhYjU1l9gMMAizyVqlntZX5Jtd6Z6V2bWnSCC9f5LBpY96W9y3FbkqmMXSGlz/kllzTYKpjPneeyZmX3HR9vPqOuyXYyi8pqfXIddnKsoF8E26yn20/W9pUm28/FTdseDCfhSPbByNblAtZ8Idoeo7TkI9HyGE+nWekSqh3za7lF12f3RL+qs5idkgEWdTqpnu+L1FoaYl+zmh7aSV7fS5IeO+H1DzBQHSc9s11dCp1dHhCeS84vrVZVOtMZpDN2AfbW8tkCln8ioq0lueOqdJeF7t5W33T4EN+yTMC6+SJ2rEpuweUHw//1Q0scz5v0YWWeN4ABFhGlWHNj7E1RCgG71nlQGA9ZnUxz5WfpVQEPtTtb3oALI4VrygS06ByHXuhW0vG3b5JtJGnflvQ7br10eLf+61aOB+1nnJrXz1KrbpygQA4anD4S5DlAy0vDcyu6rbkRWPaxf6dKSES6xHM7VgvYtzl16zu6z3oLVTwMsIg6MSnkj0pQsA3YtS7FlyOP7zAbF1nb9lUGFR12d01cY63XJeiwZ0OG7UcJ2LZCNDxuU6WpHlg9V0CtT8Z7mZHnScok7e3A56+KmPOaC8dB5NrdVCeYJ4BxaNU71wg4ViFg1Rwf7KcMu1zEs2ejgG0rw9s92GYxI2KCmhvCXfWXfOTMfmYWQSLynB+ypKWadmJOSp2KUm57t/jlyfiWZQIqSoWUjUfyTORQbm50p7XXjNm+rq0I/zcUEuJ80v/idQlLZCL0lNLb/DqvHauwmIHQA63NwPz/hAOfGdeFHJ2YWeb0fvRBOE5ElHrs806+kwlxn8Xzyu1KqRxEB1szYaOaC4XC8yTNe9M/vQCUb6VrkGv1HrF+obvlUGpvi/+ZRO1eL1hKntRwDFg1R7A88XGilNt/m2IaBT9m0NXDAIuIOiUGWOkhU8YlWZEJP9XqaTXvLVY/nCAgnFXPu7XHp5zvL1001Ia7OO7bEv+YrnBibJbFE0duxXFh0QCsjQ3e8JWAykMC1s5Pbr+GLCaLAIAmRXIst+4JTlcJeIVLkp0DhIiIyFD61UNj8cFFWmvWyfIafa8RqHI4S2iq1FaFE680GIy/1HYDPLAtfDJuWyHGP6b9fsw7XD45CAsm0Zq2dxMw5zXR8hhJZVBVXdaRATLV7LS8M8BKlt9PLCLSxRYs8ptMiK/IeabXKocPmm0mc1steEfEyk8tVhvdvL4msOy1XwioOiJg+SfhxCctjUBrc/i3NtYK+OJNQb2dbaxDcmD+v1Tfjuzc/0LtwNr5Ao7ui7wg/9wkCr19Vfg4kgNZOzZ+JWLNF6In9/D5b1svLwMsIuqcGGCRz5QdSP8Qiw8unHVgO/D5a8C+bUEE28LbVzsxu5NHjdH8cIf32FuO3w4DubWlrUXA0v+JWPaJequ1BwXf9Ug6uCOcrMVrR/eH5w9d92U4ZJBbk/x0rre3A6u/EHDE5nFql53My8wiSESdkp9uDkSZovKQ9xXCTLJlabhS+9VHLcjOBQaNEbB7vXobNzuYulo02H0bFmbW8/jmBp0fqrgn2Lo/CO7cTDYvCW/zYeP1l2+1u1qypQt5NSl7nMmqpRCwa4OAPkMkVJQCFQcFVBwU0HeY/UhZCsWfMkOSgLwC61uTARYRERFljE1L/B/kNRwD9m4SMHKKSYVN8zPaWgTsXq/5iAAs/sC54EcQzcdhWebiA6xEFp3MtBhH9sb5bqSL4OIPgdpK5wNRo2BvxxoBxf0tbA3NR1qakkuMIii6CIZCQH010LWnuwmJ9BZdujOc+XD3egGDxiR3wB3ZazxdTG1lOHPhluWCfmBugAEWEXVK+zb7vxJGbGkk+2rTYBLulZ8JaGkSEmgdkODmaL32oIAF7zqxfP/vAye1NEmorUziNydwnbOaZKL6qIB9WyQMGRv+95dvGweByuvtkT1Abr7xciUAO1YL2LdZwMgpIQyfYK08euTumaKN+NRoPsO21vBy7MwLZ9YKvPR/iQXNmdXmS0Rk0f6tnasCkK48655C5JK188PBFQC02J3Th5ct1yTzMOedvzjYT9MF21bYq+4H24D1C0Ws0EtqomjBKt0Z/vPInuQOzC//I+CLN9TLiLc7yg/qr3PemyLmveX9idIpW7A2bNiAhx9+OPrvHTt24N1338XYsWM9LBUREWl5lY6XyC1l+y1W/nRqmIL+y52LxQ2QTBXby5bzYBtUSTgMu94lUEarXQPNfr8boUtbqyJqS4B2G4Xaw2eKUStfRSmQnQt0L0lodZZ0ygBrwoQJeP/99wEApaWluPHGGxlcERERkW80HItfla2rTkFB0kTZfnW3sESq6pIUrqzXlDtWLNvK9gMNNc6HMdVlwIrZCXRc025IRRbBVE0En8h69m4Ctq8ScNblQXTp0fF6KASsnhveDl+7KdI30YWAutN3EZw9ezYuuOACr4tBREQ6hE5/lyIyxqyNHbatFLF5aeIXjANbgc9fFdBwDKivTu12VbYYWW09a6wTbLW02QmulL9+0xL195TBjgNTYlmSSFIOea6travVzVhWttnquQIqD9lfp5Ivb10rVqzAHXfcgenTp2PMmDGYN29ezGdef/11zJgxAxMmTMDVV1+N9evX6ywpvtmzZ+Oiiy5KtshEROSCVD0hJfJCsNXmF3g+uFaZ37FGBCBg3xaPN7KNH+javE8WNoFkId9KdRmwYaFgOSGHkZryOCsyeVv7VkgnWNNu8opSAavmJBci+bKLYGNjI8aMGYMrr7wSM2fOjHn/448/xpNPPonHHnsMkyZNwiuvvILbbrsNs2fPRs+ePQEAl112me6yZ82ahUAgACDcPbCqqgoTJ05078cQEVHC8gqsz/dClG7sZp6zM9Fppmq3mHJdFARUHw1fQ+wwe6gjuPTERxSFjgx6Qux7RpobBVuZ9+IRhPDyDu3Sf18UBVWa9uj3oF/OFbPDrxX0AEZO0luf+nuqZdgINOPtFnm5ezcDW5fHrs/o+2bbPh5fBlhnnXUWzjrrLMP3X375ZVxzzTW46qqrAACPPfYY5s+fj/feew+33norAETHWJn59NNP2T2QiMjHsrMCAOxPHElEnVuWmIsVn9ptIgTy8rIB6PdJE9u7ALCb+jG+7t3z0aM4HClVFbQB6Ch3UVE+gCbd7+Xn56C4OAeAE5OXAUU98tG1SMTs5frLKy4uRFZ2E4AQIHQEd6F2EbvXBjByYjaKeikjvvByssVsFBfnxrxefVREcXF+9N/FxYXRT7S3SwCsZWdsqTe/TxQVhaPsT1eof5e8vsP5rQBim9nC7ye2bX0ZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL37hcAmJiMgpwWA72C+KiOyqrmxBIteO5uY2w+9VVjYltMx4jhxqRHU10K0nUF8H1TqqaxoN19nY0IrKylbHyrRlTWMks57R769HMBh+P9QenrQYABrrJGxfG8T2tUFc8B0JddVAYY+O5TQ1t6GyUhnAhF9vqJVQWVkf/Xf477DwFB3WfteR/eYP4aqrGxAKSZFGsY5lyutrbNBfl7JsdqVdgFVdXY329naUlKhzKxYXF2Pfvn2Wl3Po0CFUVVVhwoQkZkYjIiJXcaJhIkpEotcOs+9JVgYeJWDV5+FlzrguFJl0t2MdoZDxOiVJivl8MnasMV9OKCQBkvlnDu6UsGmRiH7DOjakJMm/Q6b/+5SfcfJ3hUKS7naU1xfe57HrMtv28fgyyUUiJEmy1Te2f//+mDNnjoslIiIiIqJMcWinu63pwbbYjHnLZxuvc+daEdVHXS2SbeUHwuU9rJh8uLEWSSe6cITNoLupPv5njKRdgFVUVIRAIICKigrV61VVVTGtWkRElN7YgEVEflFe6u7yV8wWsGO1umreXG8e1K383P9dqMsPClg4S0BDLdBYF//zoZA/rv0LZyUeJqVdgJWTk4Nx48Zh8eLF0ddCoRCWLFmCyZMne1cwIiJynh/uskSUdg5sS+x7ktlwHpevR01xgik96ZJZsq1FwKL/ivjqPfPQo7UZmPOaiLmvOxSiCAZ/K7ixW305BquhoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyg7aWxAIPs25hYiDBwpBlnnR5dCHC8mWAtXHjRtx0003Rfz/++OMAgLvvvhszZ87ExRdfjKqqKjz77LMoLy/H2LFj8eKLL0bnwCIioszABiwiSiWza86AURJ2rU2PFiOvNNZ6XQK1YJsicYlm525aLKDUpXF1vgywTjnlFGzbZt62e8MNN+CGG25IUYmIiMgLDTWszBBRCplEWE5O6pu24lyS65O9Zjt8ya84FMLmpcDYU2Lfcyu4AtJwDBYRERERkRvM07Snrhx+dGg3XO9W4EbIc2Cb4N7CDTDAIiIiIiIC2C/ZxMavnA8byvbH/4wTtq8S4s7h5SQGWEREREREMG+lqiljl2WnW4HWzk9NKLJ3U2r3HQMsIiIiIiIAxyqMK+IVpQywXJchm5gBFhER+VqfIeyzQ0TkB6F295ZtZRLidMEAi4iIUq73YOtB04BRDLCIiPygrsq9JqalHwnYtiIzmrB8maadiIgyW16+1yUgIiI/CbYJCLZ5XQpnsAWLiIiIiIjIIQywiIjI39hDkIiI0ggDLCIiIiIiIocwwCIiIiIiInIIAywiIiIiIiKHMMAiIqLUy4xMvFHde3GgGBERhTHAIiKi1MuweKTfsAz7QURElDAGWERERERERA5hgEVERKlno4tgurYN9eybriUnIqJkMMAiIiJyQ4aNMyMiImsYYBERka+la5zSo1dq11cygC1mRER+wACLiIh8LV3Dht6DUlvy4RPTdUsREWUWBlhEREREREQOYYBFRESUAYR07UtJRJRhGGARERF1IunYlZDjy5w1bDy3J5GbGGARZSAxizdPItI3cnL6XR+Gjku/MhNR58UAiyjDFXRnxYTSXBocwuyeR2mFxyuRqxhgkW3ZeWlQ26Go/sO5v4jcVtzP6xJkOAYERJRGGGARZbih470uQWYr6ssAtjMbOk7CjGtDyO/mdUnYikbW8VAhchcDLKIMx0qXu0ZOCgdY3UoYaHVWWTlelwCYdHYo7me6FUuYfkX8z/kRL2MO4wYlchUDLKIEiQFWqAko6gOcf0MIA0byeCDvdC+O/5n8ruH/ERGRuxhgkX2sR4bxCSBFCLySUhoYOYUXbyKiVGC1gKgTKCxixcptBT4Yg5NJivqkxzGb3y09ygmkd+uVGPC6BJlFENLnuCVKRwywiBKUUAOWRzc1Nra5r2dfr0uQYdLkoB0wwusSRAhIm21m1+DjJAZYRJRWGGARpUifIRJEnnFEGSOvQPJV99BE46vcLv5uzejey9/lS0sZGowT+YWPbg2UNnivy0jDJ3DHEnVG3Uq8LgGlGuMrIncxwCLKQIncPHN8/hSbOpdMqABKqT6lEtxo6bCtvZhuIiuH10QiSgwDLKJEJXLDT4eaDEUdf1oIJ56XnvMG+V2XAvPKK6u2qcNtrS+vwOsSuIj3IiJXMcBKE70H8RZoRU5e6rZTpt2fOCFxrIGjgOL+XpciM+V28boE7uM5RUTUOTHActigMe5U8IdxfExcRX0knH21v7dTqupb/t4K/ubWOUz2KM+VlHe1c0gqy51MMMc4UJ92u5yQQa3ZDP6J3MUAi2zza13npPO9LdmEMzLn5tuZFfX26xFOZCyZCnMyR/zA0RJ6D+4c50wJW7OJyCIGWJQxvE6XnJ3r7fqV7Na1+g3vHBUkS/hkN2UE0dpxl2lP27u6NPG3V9sp0/YPEVGyGGARJUow/aensnOAXoMkDJ8YvyJ32qUhjD+dARal3vTLJYw7PX7Lb7p2ETRy2qXO/6BM7iLo9/IREWlleV0ASkMZVtnJVFPOsbajsrIjlTPWYsK4HVKmSyEwoBDYtMjrkmSABI/bwh4SL+mdEFsdidzFFiyHZdqTVjI2clJm7WzebymlMvCAO25qCANGeXNdsFthHnVCuOVw6kVpcB3LwGOFiDIbAyyiBBX1TeBLrCi4YuDoNKgk+lTfodx2Thl8HDDuNPe2Z16+8bLtBljDxgNfuykUbsFOslyu0xQwvyuP2aT5fqcTpTdbAVZrayteeOEFbN261a3ykAG2jGUGz+5pvJla1tk2Va+B7lxcSgYkvtyuPdPjgtfckNqjpbDI5E0PD1y3u5tplx/wcHBDz77pcWzG09muc0SpZivAysnJwV//+lfU1ta6VZ601WeIhFMu9jZNd1GfzLjwp0J2rvPbqqC744tMXCJ3zzS64wayXDzW02g7ZKLTLwth6oW8ltklIHMfxHl1SuboTIY96SwJ407jlBxEZM52F8GJEydi06ZNbpQlrfUfIaF7idelSI1MuIef9nXnf0VegeOLTFwm7CQTOXnqf3PAduYo6O5tC0XaEpC5571H57ded8/sXGDAKCA7J803Nq+ZRK6yHWD95Cc/wRtvvIHXXnsNBw4cQGPj/2/vzsOkqO69gX+ru2ffNwYYZgYYmGEYZphh3xFEJYrKEhci+mj0JvoqMffNfWNcbqKJEU2uMWpyc2O4GkyMRr2o0Rg0cRdwXxAvwSVRAVH2ZRZgmDrvHz1L90wvVdWnqk51fz/PwwN0V1f96pxTp+pXy6l2dHR0hP1JaR7vc73El8BVDDfO9Cp1hSuJlQxJrHJT4bjDrtsCQyXj1ZScAmHbO6wSpWnJWeZAhHVzaCONedIs5OgpM8d7Be+LcPTnT/PeehCpyvR5wrPPPhsAcOONN+LHP/5xxGm2bNmSWFRkWvEQAcG7FpQ2YpzAZ1tS4fDdXXnFwN6dcuc5/XQdGx9PjjGBRrfo6DymYff24P89cUilSJAzzhBoPwSsf0y97TiZEywVz3ooGJJhJUMFhtYAW14N/7xqDPDP99yJiSjZmE6wbrrpJmi8H2eAnh2bW/u3SScJvP6Ue/WiaQJCOLx8jx1M+ANQYq+s+QSErkAgCXC66vNiDS4QQckQgb071SxjfxrQeSzkA5sKMxl3EzLWad459p0JS9YEKwmbkmsq6wTqp0ZuKMm4zRK5xXSCtXTpUjviIAPqp+rY8qqcs+gVowRGtQi88JD5+ZUOBb78NPyz2csEXnyYvXM8E04UeO0v7pbTuJkC773UF0PPTpW1101GQShemJ44kNKi/NuknsGHXn3SnSuQgTSB4519K5CWIX8ZzSck9+0LnmivHjFmcpJm4USKsbzH+eijj/Doo4/iv/7rv7B7924AwKefforW1lZpwXmSjX3XkJGJ/b7/yEcZEUZIMqJsmMCMM5J7h26ElZ1+YVno/+xrLJbm7OGDGB6AWVc2zO0IDEhgUykohdQBiMxcJdI02L5dZecLDKoK/jtpbxN3aPv2+ZM/+dCS405nsolXXpHhBaY3tba2Nlx55ZVYtGgRrrvuOtx+++3YtWsXAOBnP/sZfvnLX0oPkmyQ4A4rt1BKFABSeXj55M8K3HhnTF6x44v0NDuuqBiSxM1/7DQdg4eLYFu0aRNIzxw446S9RdChttI4S04BFg5K0oqgpDf5FLZdWUwnWDfffDPefvtt/Pa3v8Vbb70FEdKjz507Fy+99JLUAMkeKh3b8OqDs5ws7sJBDi6s29CRQGGZ9Z1ESrTHVFhHCTKyrLWjYbVA0xzhSFsKXYYbCZYT65iW7vwyE1E7gQep5E2qb1teYjrBevrpp/Fv//ZvmDZtGvx+f9h3Q4cOxY4dO6QF5yle60+5EaWuaHXvpTbRf3sLiV3TgPLhXtsgSUVNcwUaZobfd2c6iXFwu3LtXYw2r6PXrkrnlbgdgTWaJiJeGSUi80wnWEePHkVhYWHE79ra2gYkXSSP3WcWEhndqv+LX81w44yJUi8FtkEy3Wc/e2myPljiTXOWpVZ9JNw92XS8Gmm2gTR7lqWEkBXuPOpeGMmuqNztCMhVXjrRqjjTh2GNjY147LHHIn731FNPoaWlJeGgvKz/2c2GGWoejERKahJ5FiPSSwtVNbzBmVt33NQ8N7whWl3fyjr3z2Zm5QKZufLiKHLhuTDVJNL8/abHnrUWg9UYE33RdLwYvNTXJauO1iTvwN3CYk15qjcBLz3faHpXceWVV+Lpp5/GhRdeiIceegiapuGFF17A//t//w/r1q3DypUr7YjTsypGuR2BfNKbt8JbdH6pNzbm5nl62IAS+TFuUYmWSEeqhvRM4cpAFWaZaUKZ2cGXPqtiZJPzsQweEVzm8AYLy1Z4ewWACQvsLc/sfJM/iFJeLfPVPPnmdQVu9NnqdCdEyc1D25rpBGvSpEn47W9/i2PHjuFHP/oRhBC48847sW3bNtxzzz1oamqyI07lmanzrDzzLSQ7z/RPPEPlq0leuOM1p0BgUKXxKwvFg03M3KW6ye63jQyqjPOD/nHG2MQ0TZ1bKE86X8eoZuf3GLmFwILzdNROlLtsu0YENTNXu/sT0/OPEnwy3aasUheea/Kl4KGycuXEoFJ5mOHVuIlUZOkwY+LEifjDH/6AN998Ey+88ALeeustPPDAA5g4caLs+JLS9EUCgTRzByKJPOMUiUpJjRtn8I2K9UB7pDJ0+vJ1Zq7AxJOML9MXMHd7pFvPn8xaEv7D2gkCfpPbjBe4uR36bDh5kOg8ayfxqo5hEjeHYbXy5hVN0xyH6jaBcskvARpnWYtzfJK/7DmatPTk65eTQXa+xXpR6NjQ60wnWBs3bkRHRwcAIDMzE+Xl5cjKsvjG2mRi8uWTPivPMchs+IpsROmZot/Ld71tVIuzO5uqOoHM7ARnovX7WyZJ8/T5gZIhcualafDUbQaqiVWliT6fNHh4Yr+XTkb7VaSvjWVQJRLvR+LIMXtrZT9ObbKDqq39rqxCbhyusNBWdYkVU17NjjlRg6qCZShrf6kaL7UQ04f5X//61+H3+1FfX49JkyZh4sSJmDhxIoqKErgun0QMDeHrgR2uU1S6khaRya3ZZ2F9cgoE2g4qWhAqhWWiLrzUCfc3tEbg849jF3xVvcBnW1SqnKBAevxpSBLJ1Z+eoeFIu41nvaNMUzFKYMdH6rRlvx9oPkGXftdIshISL9zlFgp8+ak6bcGLGmYIDK0RKCgFtm1NvrLMzgMO7nY7CmNMJ1gbNmzAG2+8gTfffBOvvfYa7r33Xui6jpEjR2LixImYNGkSzjjjDDti9QYbjuxKK4Iz9eIFLH9AYOqpAhv+ZMNDLwmWdct8HZ9t0bB3p7XSMPM+nBGNfRPPXqpD14H1jwbLJD0TaDtoKQSpopaCin10vLKP8X1escDRDhVXKsjIaJ7DRstNsOado+O5PxrcRtUtOlsom6yrFJjFWMZM1lFVD2MJloPrO6jKuWV5nkrtkOAPBK9IW32Vgerde90kgZ3/UD3KINMJVlFREU466SScdNJJAID29na88soruOeee/Dggw/ioYceSukES/YFrNpJOqrrB35eNFig9QDQeST63IbVCmz/IMr3ibRPU0+cBx+oH/CxJiCEuxtJ2TCgbJjA0/dGjyPWqkbswKLMKjOnb06yHqR2gje6MXNXQofVAh+/a08cuUUCrfs15BQAez+3OBMXDljSMgB/mkBXp1dq3ENS4AA0jVd7koKlrd8HIDUfP1NSwj24zbuAQJrAcYv7maJygTQP3SVh6Y0mbW1tePvtt3uvZG3atAkZGRk44YQTONCF5J1pRmbkg8fJJwu88VcN+3b2fRb6gPmwWoGx02IkWJQw3cRORZla8PDBnqzQ7XyP0YQTBXb+Q6CyDkrewqeUOMWT0f1MUEaW8HS7lWlUi0D7IaB2ksD7G+S2r0SKuNrgLauaT0Do5uIOPTlFNrPQpNjLKUqBilH68QcHmE6wli5diq1bt6KkpASTJk3CwoULce2116Kurg6a8g/U2MeNXcDoFoHXvgDGzQouvX6qwMuPBOsgXlU4VVUqtghT696vYgNpwPHO4L/1LmkhqUvFCpTBpg02+I4te+YdypbtV4Hj2NDVqp0o4PMHD95bD7gVkQQS6yo7r2+EzfflzTZhRkePnLNM4IWHkq9TUWDTsWTKV3Ts2aHhH5sSqJMEq3NUi46P3u4765WeJXBM4Vu4lZdg0cnct4xsFHjv5dStS9Pncrdu3YpAIIDm5ma0tLRgwoQJKZ9cAejtYZ0c5KKgFFiwQmDIiOD/Q9+VFS2Oou6XxhZ54OWx8biyBiF150/r+/fMM5PgHgkb7ia1JkrNirhT9H3v5eateFfqVFefngmMnSaQU+DM8qJKtC15uS1KluHAgMOe3vYdVliGhN/Dl2h3ELZ9a/a8PoLUkfD2qfj+MZTpK1hvvPFG7+2BTz/9NG699VakpaVhwoQJmDRpEiZPnozm5mYbQqVIzB7sTJgv0HZQIK/Y6C8EorXoyafoeP0pRd7YmoC5X9XxwsOR16N/XxBaEoWlff/ueWlo1PrwUKfgPvPjqHvx/E56VvxE0lEyypAHt47pPBqssK7jLgdikNHkKjtPoP1w7Mbo8wvoXZGnkf0C555lmbpV0YP9kWsU7zNitTWiWEwnWFlZWZgxYwZmzJgBAOjs7MTGjRvxm9/8Brfeeis0TcOWLVukB+oV0s+eSd6u/YHgyxRNLT/KOuXKGJk/wTsTZBR3Rqz3vySwAJUT0EGVAru2GXhmItH2p/jO003DRrsdgb1Khgrs2RG9AaXMIYvNK3qkzb4Xu+UVCRzer8W9bcvIfs/osOctJwqsfzTePe7G5iVF97qlp/DrPmM+S+OxDdnIazDCeGz9evbZHgs7KVka5GLfvn144403ev9s3boVuq5j9OjRHOTCTgluMVZ2wQnvum3cyp0+ds8vESgbkoaPN3efMo6zbgUKv0B5/AkCf/1d+AokWlWZuQJHWvvNxcBMayfq+OBNZxPRVL6NKOGkOdbvQ74rGwZsfT3BZSUDD7e1pjkCRzsE9n2h4R+bnFmmX9FbxGI1++p6D1dyiKE1wME95n4je9Q6uxODcTP7EqzRE3R8+JaaJ0GTVXJsKcaYTrBOOeUUfPbZZ70vG546dSouv/xyTJw4EYWFhTaE6DESWs+iC7PwxG87APTb2bjRMhPMsAZVSovEVb6AwIzTgX+8E2WCOHuFvZ9rGDbahgq0uDcKPcjWBvzD2vwzMoEJ83W8/ayGjv6JVgxDRgAfvBn6SeRycqz589SfFHbftulPE6idILDl1YEHSFl5Ah1xbjMzwou3nsrkDwDFg4H9X0a/VRyA3I3TSJnHWp7kjiLe7PwBgeEN5kaVVZWllytb2EYaZup4f72x2/L7D4JBBinadyUUlmZvn9wwQ8f7G+S1NdMJ1mmnndb7nFVWVgpfM+/PzCAXcRSU+NAyT2DnP4HSYdbmEakROr29+fwC9VNT6XxF9I3/aLuzcbgltzD4TqWOVhtmHqspyWzckptsZZ2A0IEvPgWOH7MW6ODhAiUVIupBiZNiroEAhjcIHNgd+VmYytF+bPtQzvCbWTlAZR2w5dXo02RkK9D/SGybqZ7wqSjmLeYeY6l9WfhN6PPLrl7SMLBsbnJyKdAjRzW0Bnh/g7z5mU6wvvWtb8lbehKSNYhgeTVQVtlvbg5s6SObRNiQrZEuYIWOVhhL2bDgGVAv64k/0svttCj/jvWZbHYvw7M7F4V68TFTBDQN+OJT66WZlgFU1ADvr5cYmE1qJ0Yv/GE1cRIsA0UUSBfxE1WF6t/TDDbZjKzg81oFZTD37sXuSbPzBdoPaTEXafTkpdNVnwxJr5X3k/X+1sJvUvkWbepTVC6w/0vjLcj24x3JC7B0+Ltt2zasXr0ab731Fg4cOIDCwkJMnDgRF198MSork+SeMKtsHKbdiX58VLNAzXiB5x7QcLxTQ04BcHh/+DRF5YnHM7QG2PERUDEqgZnEkcgbw3s0zBD4+2vA6AlxbpFRnYHQiwfbH4Y0cbazRPbfgbT401jh4dYjjRcPrMqrgH++J1BZ58HgzUhg9TQfMP304Awsvdze7LIVqoreNq1QTGbNP1dA6DFWwM7Oy8WO0cNVJlVapkDnEYcqIqTQy6vNJVheY/p+k82bN+PMM8/E008/jXHjxmHx4sUYN24cnn76aSxevBjvv6/S6w+dY3RDbZ6nh2XJ2fnGN3HNF3wx4Iwz4t/sHelAxuiSNA2YuVhg0sm6uREHTRjZJDD9dB014+3r4ka1JD7v7DxgwokCeZFGTIx0G2aCd3DVT7XnRv6iQcG/S4ZEnybS/fdFFpKuwcPNl/vspTrSMsJ/N3aajnEzjZWH2S460vYxfm5w2/L6VVfZhtUK12+1C12607vjQHrw5b7VYx1esEsyor0+IIpB/e+0SJSBCo65RI8dNTfOcv/hLX8g2M4pAgPtUfN5rNH1U+XgyaPqsUBWrsC4WXpSXP2NxfShxC233IKxY8fiN7/5TdgzWB0dHfjGN76BW265Bffee6/UIL0k1hnasmEi4UEfCh0amS4jK/hn5z9iTJTIEOsaIictJuQVAYf2Rv8+LSOx+VuRW5jY7ytGxX6mxKpRzQL5xQJlkZ7pi1GP+Ybfl9anemz/QSvi0ICs3OALJw/s6vt4WK25eSQqIztYf7HalDIc3DH5fMD4uQKv/YWDRlC42Ut1ZOW6HUWfvGI1DnTNNPPiIcD0RTo2PpHY2bkxk3X8/XWbntF0qFi92j3Y96KEyEJvqZUzv+DfPn9wLdLSBTotPi8cT2a2wOylwX9v+8CWRSjD9Nb43nvv4ZJLLhkwwEVWVha+/vWvY9Mmh8ZyVVWMrWxQtRqdf7IYP9dceQ6tEdA0gYoERvOLd4uTqgeQ/gAwZKS5s5TpmdbKKawM3GryCm1qqrYJMwpK409jhMxbBBWqYuc43JbiLc6O5MrKFeSeA0NbtrWehhbtNVAJLlNWzGlWRgB0wOARybOlNp/g/tVGO+QWApMX6pi9NFhXJ5wt0DzPnnUtrej7d6JNv2SoUOakSiSmE6yMjAwcOHAg4ncHDx5ERoYLlw0UMnqigC+gboUnE7OjN1WPFViwQhgepMPUbVFJcBBti37lMqhKzrYR2klLYyG0SScn5w5XadzWkprPg+/BUoGt8Tm58v36YSt3UVhdViRhg1lFOGIuGSKUbBxmE/eiQcG7loDgetpxsmLs9ASvePeLqXaisO2ZaRlMJ1gnnHAC/uM//gNvvPFG2OdvvPEGbr31VsybN09acF6UXwzMP0edBKthOg8AQxntNGYt0THzzNj1GG9ejrcC2R2iDR1s8WA5Vw/HTEmsdLPzov/eTOLulYFBCgclVl5Gt5t4S5Gy01ane3Wc48dxzj/3bkhGjDfEOD2Qiozl+WQ892ljXSUy68SvUgATF5g7jhnR6FwjyMpLjrsUnODrn3EkWG6JPmZiN9MJ1ve+9z1UVlZixYoVmDlzJs444wzMmjUL559/PiorK3HVVVfZEaf6YmzPY6fpyC8RKK9yLpweFaOdX2YyyM6zPppcVb1AWaVwvtN1/llz1yQ6EEXE7aJ7hTOygGmLdMw9K/ZO3ZYXR9ukZV78WKPWt10Nwcx8I4SvcvtMNkIkVtoTT4pzgGxyU5q4QIQPxuHhxqBpQE6+jBlJmIcdJNxCWTLU3G9GSxjgSsVleY7kNtkzu2G1AiObhKFlJHpyMRGGD1OOHDmCF154ATt27MDy5cuxYsUKfPLJJ9i9ezfKysowfvx4zJo1y85YPWtYbbBBOCkVzqiouopjJjtY16oWQg+X+rZ4i/X5AH9AoOt45AI0clvK2One2LFmZAtDt10ZXpsE2pzXnsFKpStudoZp5rYgI0WeUwCMmyXw5l/d7wB72ojmC94ulp0PS9uI2XcCDYjD8i8Tk3C76T+DOCtSPVag8yjw+cexJ2yaq2PTC7GvIcho8/64J2IFapoF2g5o+OIT99uro+I9s25xtmOn9c041jwGjxCoGAW8+VeLC0qQoQRr27ZtuPDCC7Fjx47ez3Jzc3Hbbbdh9uzZtgXnWR7ahrJyBTpaPRRwImw8gpBWgqbHG5e14BjcvD/E6GK0fu8pi1IuFaNcPNp1qCzGTNHx99dsGk0sDkdWMcZCeEu0BIruDmIm5woksZoGTDwpGIgr73tTtN5Mi1N26ZkCdZPiJ1ilJq96WRWv2OedK5CWDmx60ZFw+nihPdgco9tFYGgv/NOf/hQ+nw/33Xcf3n33Xfz5z39GfX09rr/+epvDI6uMdvDNJ1jfEyR0djfhe2/jx+3UkPbK8MAzWAmJVeUGY22Y0TcTu97xFpVDB11VY5xZDoAB7ylz5BmsGHL73ZOvRBMOCWLKVxROABVIUgAkXGlefAZLBmlt3en1sWkjldbXKNGJeFSKl52hBOvtt9/Gt7/9bUycOBEZGRmoqanBD3/4Q3z++efYtWtX/BmQslQd2nX83OgHIvVTdUxbFH8vkJYBzDtXkQMaFZ5j8QoJ62Rk59o0R2B0iyLtw0ZGz+RGK7JYRTm0xmw0Erl4YFtaYX7huUXC9EmfAc/5JeP2HsHwBpPlK6FcRoyLvExF8id1ebmAZMSuQcntsn9I+aVerqhuCpZzLIYSrN27d6OyMvwNuVVVVRBCYM+ePbYE5jWWm67Lbd7O9ppv8f0Eo1p0lFdH/z6Q3n0AbSD4AaPW2EWFDd/tQS5klYGE9agcE3y4taY5egKVkQWMaEx8WYb1K5/gbY1SZhVVyRAxcMRFk/UUyEiCHbNkmTn2L8PnF64/5yfrKoDZ+YxyYeCAnMLIy+wZsTDayciEyyjVr7TYVdURyqOyzvl25dVqcUSU6tB8kuopSuFXj3WmHbhzo34y8ugxiB1hj5mso2GGjuqxcuc76WQdlXWiL/nyaJn3qBoTXIGkeRGjkdVIYFXN/DQtHZiyUGBQZfxp3ZLoyGxGDKoWA0ZcjDYCY6TyzcgWqK6XF09ZhcSXHEUoPhm3azm18yVgULSRdRWqgokLBAYPF6ifqlBQDul5gXOio7a6IVLvGu0qpdn5WJlGlVtJnRTvNvxoRTLzDIG6STqGjLSn0Jxqz4YXc8kll8DvH7hzvPDCCwd8vnHjxsQjSxVJeHojLRMYMkL+fIsHJ/geJYmxyFh43SSBYbUCOQXAllckLCMJ21KiUmE0TUNCymHwcOM/a5gh90WOeYUSz+klsEH7AgJ6lBEkaycKfPq/7jec+mnJfUQ2tEYgs/udc6Frqmly++qcAoG2g331OeUrOvZ/AXz4dnhbjFbjuYXB24lVJ6uvC13TeecIdB0XeOd5czP3+QR0XYsaV9gLe7Uo/3aAEye57JCeAbS7HYQBVl8/kJ0PVI8Fuo4L7PxHXx3JGqHZ5+s3KJZNDCVYV1xxhd1xJBVvbrIW2PVwqokJB1UJ7PrMuRKXeRZK8wV33soyW6wGpjdUfBaqM9pPUvGsYSit399A9Ntmk6HfMnKQmZYuMOVUgfWPRp5YlaS8ovv5tilf0fHaX1LsZhOJdTBupsCrT/bNsLAMOLR34HQp3lVE5A9YO9tfN1lgy6sDK3HcLB0Hd2vIzpMQnEOGNwh8+Hb0Bhn3cQUb+pOa8QJv/s39jmrmmTrWP5ZA3xRnowtte3WTdeQURJjI/WKIiglWCvD5BfQuTc7LDA1wqr1rWnAUxKfvNbZEo3H1vsDOZCxJR8I6pWdKPFPUr1oqRgns+EiL9JUnRHsGy451CSbzIvIOKhaPFWxPQh0r7JHjhWN9oQyhA2MkUzcT1mfKbGcKtNmk3B+YMKwWOLBLIKdAoP1wX2EMHQkM7X/bl4PPYFlROCj+PJ2u7rQMAxM5EJSZ99tFYqbqraxOQakzV6qiSbHTYqkjtIOftUSgZb6OovII0yWyjAR+6wajG7M/oMAe2kHxDgbyimJ/H0vPA+KmGCz+qvr4E7p5oDNmio5RMQbZSIjJ9dI0YPrpAuPnJt62rRdp+LJT5SC0rCL4d/Fgd+OwIlYdJTJIi2x25WpOSvhqu0Lbk6YBjbMFRja5HUk/BspoaI2FipBU9jPP1DFnWfKPbNtjcIzBzPqzsnlU1kb+PCxpthETLEnCKl+Bji60s87MBsqGRZnOmXAGUKCIwuQaeK9WqqoZn1jZ9DwoLVvowZ9q7QkIvo9KpQOMeAlNWaQBQcwWrF2bkVtXOCQ0rPppAuPn6hg9QcJKONDQjS6ioFT+sjNzgmUUqa0WlABlwwTGTLHnAFSdPsRaO1EnfpPcftSgn/LqGOVv82FCTgGQbuWkpEelZSQ+smP0ZydF+LN+3YY3CMdOdjHBksSznZsdVBm21oSw9814KNeys6h65u0PBEeTk8LIbCSuVCBd3ryc4lZfMtb2QRVcWDMFOuZAGlBeDUQYI8rbopRttOHOTc1a60u2ej/zAS3zRe+LtEOTMBkt1/MnGzXYd8U8AZ6/Uu3iIBxusnT3iYL6t7/8Eue2dCZYCcrKD45sVz7c7UgoIps7xMHDBQrL5G2wSvXfir2fxUopZ2YD2fkeypjh3oGelKFrE6xraQdj3qrypDL1KwkUvlIdYGyNswUC6cKBExPGaDD4bI4VsVZRjdUfyNDY6XIW1XOrm5UTkYH0ficSZAQkYT75JcC4mTpmnBEjaVd4e+15JKZ4MDBkuDtnt5hgJSg9A5h0ski+s5MJiPTg45CRAoWDVO2J+4nRaRSUhG8yTXMEpiRyQOFxwTp1aP0tLiba7bFkQKQyj7VTtakplFUGzzzWT9UHLD/T7EFNxPhTdxvuEfEZoJjPYEX+3FKibqH4Q+MNC8WhqiwZAsw/V0R8ttkU1Q5SU2BT6EmEcg1cbTVSPfVTgfnLMjBmsvlYHNs/WajXoTVyRzq24wXtg6oir1jPLdk+HzB/WZS3hNuMCVaKM9u3B0dliWzWEh3j5+oR781vnCUwZWG0PaJDjHYwMaarHW/xNL9d6+tQOfYM7R1ICy+cKQuFqasOOYXBv9PSU2AvTjFFOtse7UF/fwCYdppAZd3A72YtERgyUiAzRyC/uPtDk9tFMg9db1pKrrQ7qz14uLz3zGXl8bUUoWLtl6adJtA0Rzd255GBZ319fmDI8EDUfsQVZhq0A+2meqyEkxERDK2J/HnUix4ObugefD83yWRmu6qbrMd8SWl2Hjz1fgsrfH7Fjj5s7BhD13T8XIH/fQVomC6w8Qlt4IQG4ygZAjTP01FQArzwcGJlmVMQPHtVNEig63hCs1KKYi1MuumLBPZ9KcKGH0+Ezx88gRMmSQ807XyeJTtXQ9shgYxs4EibfcuRJVJZJJJguNFkxvVvtyb5/ALTTxfQu5J/32vF6BYd/jTg76+FZz4ZWeZeuO6oJN0BVIwydzI2YQqUo0r5Nimuut7jDz4qsMF5VX5J8KxfXnGEL00cI2gaMKgSyMhOPKae96BVj018XipJ0tygV0FpsC9xjYIFPKzW/aBmnpaBitECTbOdj6VniRG7aJP9tupXcXw+eQFmZgM5+Ym9SiNRMotbkzzDEY3oHRTFLaoM8lEyJPh3aUWEApYQY6KjASYjJlg2UGWDsp3i66lp7tyb7ygnhhG0Z/LUk+IFNHi4whtgtLqJ9mJRyXU5qtn9ssnJ96FxZvgztFZWU/r+z+QJHNVVxTu54IF1kMpi07cyXL/dRev+VhxdbpHA3LN0tMx3JsrhDSqXhjN4i2CScmJH4/MBoyfoUq5GJKJ4sEC6O88wypdAvbm9X2Z3GkcKF1BBmUDjLLejkEf1qySOcLvDiSDZ6yUtQ6DzqPMFn1Cxmg03ZPqKUdGX7IVk2k2RyifqHUhxKjgtU6DzyMAZRquCQVXC8Hv/8opEjDkZoPCJYF7BSlJGdzSJNrYR44ChIxOcSYImnSzQNEfentWOfbQTCaBKxxZDa4LRmHqoNc4KJPvBky0UOQgpHSoMjS5n5KBJkVVKDQpdIbe8GIUbjNnQ5p9rSxi2iruO/Sfo7uczcwUaZrjf6cdqP5rmfnxOMPvqhcxs49tdxSigdqJ672+TgVewKGXIHG7UrJGN3uuIzR6YhE4+bqbA2OkiOKqS9FU3OUNVil7lkTMV4UgSrfABd7JSLclRLR6jXIs7ge2ytEJg+4da1OG0o7FlVSXOdP5y3Zb68GrbDGNiHTQfMHgE8MGb9oXjFl7Bcsm4mQI+vzovKUwFPoPvKrPjalMgXf48Vdc7ZK3RztamHQu3sORkORlLkQZRXi1QPVbSyib4XHzc/i/mKBfm9G8XkdoJr4ZHJ7toyiqBGWfo0e8y8WhdBNIivPPN7HsDvU6BdZMVgh1X0Zhg2cjnj95zlA4FFpwnUDzYwYAi8GjfZqto71VQnQJ9XUSqxpWIkU0e2XJ4htUT7ChTnx+omyQwqNLdtjp7qW74XU8yRhFMKR4oG00L3j0i6x1RPSdALb3Q2kXJntR7bf2mn65jVEtfUjW8Qf4yPNZEvWP+cl2tl86RYaw3uQz3u/EmlHiWOxElQ4Tro74xyZFcBklYnj3lU1AmsGubeysYOiphKKciUm1bCbuTIjQ2K12Kxw5qIzJYP9NO0/HlZxqGdD/zPXg4sGeHwBefKFbBySgZ2lmP7uaSVxQ81vvobfsWxUNJmwTSjN+S1qNmvI7pi5xtyeyakkey9IHx2qRbbbbnOboKBd5Z5BQ3368jhdHGYrJKVThoz8yOHbSMM8p2rGfPO7/KjQ7bn0SbW8lQgeFxbtt0u2mNGi+gaQKNswzeMiWxfvwxrnTmlwCjW0TvCVCfH2iaI1BUbm8DSXQbcLs+U5UKfTSvYCmkYjSQHeVsX7KJPTKPc3GQelQ9nqppFqiqT6JXAsRQN1nHkBHOjH5plZu3pJRVCmzbqrn6bq+sPOBIu2uLt3zkWD81eAXYtrZloErc2sc0zxPwxznxaqpF2bAe+SXAghXC0TKadLKOzz/WUDEa+GSzc8slMmJ4g8An75vfIJhgJSnVkxSv3a+bKCfqQ/Eqj8+uFZDU1jTNvoSjtEJgz45gAaSlJ/heEAnsXFcn1DQJvL9Rs230ztKhwWeLMt18B6DLG7zVxUdqW0rsDpQIIjGlFXLm4/TxQ/Hg4PssVad+hNHFqlJHBm+1q00lMNpxz3vB/IHYJZBTYG2fzAQrSaVaAhOV57OOFCD6/R1nMq+K1RSb5wns+iyYZFWPBT5+17GwklLFaKB8uPHBFayI9myRJYr3U45te4qXgxM0WC/v7Lzg89/P3m/v0x/pmQLHIrx4Vgav9/PJyO46cWuzD6QDc5bppkd5zikwNh2fwaLklQI767CzQkmyvqZfTGnoR2rz+YIPbY+bKQYkBZnZAsMbeNhhlqnkKkr7Uf1OgEgyc4JtJSdfxkNYic/CiNzuA5ac/MRjsLzWNq1rw4y+Z5mcKE47TyoAwdv5qupTqD/yYB9gViJXo70uM8fANtN/PQ2uNxMsIoWY7bBCr1TWTRLILxGYeJJab0W3lDBFEmuf7oH9fWFZvw8Mrvecrwq5V0tsNKTGAxWR5KYsFKidpKPahmGH7dI4W2BEo0DDDIvtJ8ZofOlZlsOSomJU37+9unX0xO3zBV8tY+eBtWrH7HbGU1phb4uYtijkWCCBFQnwXjdLmGARJYmsXGDaaQIlQ9yOhCJpmCkwZkrIDk/hoy0rB1CDKgXKJD0D4jiF68KszBxg+FjEHUzBiJjNQOKRZ0ZWcIS4iM/9JVg3mdnhV5GicqENeO4KQE+8Ht1ezI7sPICV9Y5Sx3PP0tEy396CzC82Nl28KDLcfNZUAVY3UyZYpJzyarcj8A7P7aDtEqMcVHkeMS0dqBrjdhT2SctwO4LUktGdjGRkKdLAFSZr8AennHC2jppmhe5EcLCJ2bGoSSfrGDdTR5rJZ20A2HYJyx/g/tsVDpY5L/wphNsaUD9V98ztUGRM3B0mjw/JDDs6Sg92vnWTBXx+8Pk8AzKygOZ5cfYtCo30mp4Z5Xk0sqR4sKQZxalAMyfzkiW5GlQlsOszDWXDBLZ/YHGlEigLlYuRCVaKS88EsvMECvo/H+IWiVuLShtesnSmoVrmO3uGtWffZbYo80uCQ6wGh1pVSIwVaZyt472XeINBqrDSPWRkBQdFoXDRDnIHVTobRyz5JQLth8z9ZtaiDABHbInHtCTcnxmSpJtbItXZNEeg47AwPLKeVT4P7g6ZYKnEhU5L8wEzFzv7UkFKDmXDgn87ts+xmGENrQECaTqKyqVHpIwhIwV2/mNgwcjcrE/8mkK3LAFSGx67vyhUeCG8meUk0iYc6Mh6FjH1VGF6eUrto0XEf6Y8perIhETq0OczOGy5xbJpnqdjx4cahtZY+70UFmNngqUSl3oqr3YKpJhoQ11b/J0smqbmc30yz8gl/PC2Af6QvUXLfB1+m4eDdpLrB4nsgxPiteLTNHgvaIrL1PO+rH9DBlUGB1CKSuFyZIJFZNLYaQKa5vohmXpYJIa0nKhj2981VNbJm6f0fUycGfZcvXSVwjvWZBMIBG+zVVW0rmfSKSauurr8DJYnuk91m4BtEj0B3ftzEeXzCJrn6fAHgDf/GvksnBMn1JKVkxcUPHhXYxJLwc4rlrrJit2S1K1qDFAx2uSPUrhuOchFuLIKYMKJA18oHMZEmZTFOrtnUVaO9FnKl2Ltxg093VblGGDwcIFJJ7vQJydwVaDYi7cFe21fwe1QukGViPm6lZwCoGqMQONsa9tjbpG9lea1JhwPh2mnpFNdn/g8km1DV5qKz2QkqdCzcAWlQtoxzqzFOhpm6CgZKmmGNnByEEHePh0USAs+zC5tNDYbWX4tgyqJguj3dwxOt09bFqdKudvFhkLTNGDMFIEhI6zF4cUBI7yIxUzkIaXDRPj7UTxwAOiBEKlbdj5QMYqJBXWL1Q4MtJHZSx264hVykJ6RFfzb51PnyD23UAAQ0GIccam8ybnyLkGVC0Qi9rVqG5XA++iYYCmEGxqFqps0cMOumyhQ0+RCMHYy2e65mRC5p3GWDk0TGDU+/lF3eqaEBZrc4Ec2ClTWCUw9TZ0Ea/rpAgtWxB6tV51oHRatTJK9QLrX20jympWb7IVhnaYF359qh6JygZEJHG+lbIK1evVqLFq0CIsWLcIzzzzjaiz103RUjRFydkakJCtJQW6h7CjcURzjXnIzXDmL6hXRyobZKEk2ZCSwYIVAfonbkUQWSAfqpwrkFZn8oY3biqaZuC2L26xSTJ34NriPqq4Xpm7Tq4lxMmPqqTqmfMVkgpFkbayyDva+55LDtBu3detWPPXUU1i7di2OHTuGiy66CHPmzEFamjvjDlfWAsl/uobs4IV+ctxMgece0KKfhWPTJ/KUpLzbgv2QYSyqxNRNlleCBaUSZuJAhSZjlxFPSl7B+vjjj9Hc3Iz09HTk5uaioqICb731ltthkR1U2apVicMFaenBl9TOWszdslMGVQXL2guDEpC6CYsScZnoNpSI1yp2j+FcqssBd0qYicPCLaBOtVnZi2mcpeYozypRMsF6/fXXcemll2LWrFmoq6vDc889N2Ca++67D/Pnz0djYyPOPvtsbNq0yfD8R48ejVdffRWtra3Yu3cv3nrrLXzxxRcyV4FUoIE7LUX4A4j5gLcpXj6IMqioOzEqr7bWgMfPFZi/XEdWrsSgiMxKgW3VLkruurSwv6i/CJXm6aQ/hvLqGF+qvM4OxqbkLYLt7e2oq6vD0qVLsXLlygHfP/nkk1i1ahVuuOEGjB8/HmvWrMEll1yCdevWobi4GABw5plnRpz32rVrMXr0aJxzzjlYsWIFiouL0dzcjEBAyaJIefPO1fHcA0qeByCyTWZ28Kqf1RdKahpiv2eLjFH5QIF6KZmMKGbSKXrvCIumOVnArEznWenn2DfGpWRWMXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPxVzGeeedh/POOw8A8H/+z/9BVVWV5Xh9PnktrWdeic4z+FBt4nGFnn2Rup6aFvEhT63f5xkhA3+YXb7Pp4X1AbF+b2Q9E6kbny/y+vaYtUSg63j4vLUIy+lfPv3/b0W02OK1of7faRE+M7V8E21twLIltNNobdItvvQY34W2E02zbTs1I1Z7CbbT+NtPvO0kOLPw6c2Kt82EztPONhE630jrYfSzeBLp2xJtSzLKL1q7CusHwz6PH3OkqwqakbZngeEy7FdPkWJMpE2UDkmgLvu3oTizMtNuBrSRkKtklvvyBNptrG1AC6mUsH6i+99ahErr/c5AfFH7TwPb5ZCRAhlZsefRU879p7CyncbrqyOVY7Tp+3+eaD8XOo8BcZhc10hxG41OyQQrlmPHjuH999/HZZdd1vuZz+fDjBkz8M477xiez759+1BcXIz//d//xe7du9HY2GgpnkDAh5IS+ffhFBXlWPxlGwAgMzMNJSUZCceRkXkUwHEAkLSewfiKirORleMb8HluTgZKSvqfem8zufzu6Ytzum9La4/7+z05nQCOGVqOuboJxlJcnIPM7OibZUnYiFzB3+TnZQE4EjZdYWE2Ckp8vdPk5kYqL3OxFRWFxtbW+63f70NJSXbU3/WWkwj+P5DmR0mJmVOkPcvPRlauD4FABwAdgIaSkoFlHPAHv/dpA7/fmX0MQGfv+pgTjKOgIAslJRYvGTmmr8yADgBAdnY69E4Budup+ZgyMiL1OcHvsrLSUVQUzBgj14+x7QQAfL52ACJG+4wdZ05vH9PX1kMPjILlF/yusDAb+cX2ZFg+XUdPHRYX56CnnwqPo4fZPrDPFyHbhvG+zfrywn+fA3/A6kFysJ59vsj1fLy9C339Y3AZgYCxPmhvbl9/3yOxvjQSc2WY1t3/ad392+FdxwEcDZsmWD/G++hQifQLPX1vT2yh/W2kw01jywrGmJeXiZKSvkPR3no3uH2npfXsN8wuPzyOHnl5mQgt96LCvr429LtIy8jJyUD/OuuZLj39CICuAb/NyIh1jNW3nw9tr5GWPX9JhFULmUdoOQf6lVlBQRaK4+77wsuppDgHPn//uu/p70P3Bd19aVE28goj96VH2gVC+z8rbdXvD7abePPIzw9vbwP1rWda9zHN4d3h26I/YGyf4LkEa//+/ejq6kJpafjQKSUlJfj0008Nz+eyyy7D4cOHkZeXh5tvvtlyPMeP6zh0qMPy7/vz+TQUFeVg//426LqVa+XBBn/kSCf27u2MM218R4/0zXPv3taE59czr/372tF+ZODnrW1HsXfv0Yi/Mb787un3tcHnA8bNANIyY/++rS3+cqzVTXCe+/a1IcNwMwn+5tDhDvTfeR040N7dFccqL3PL2b+/Dekd4Z8BQFeXHqUsIpWThuPHu0y2ke6y2d+OzKPA8eM9n4mI8+n5XoiB33e0h6+PuW0n+LuDBzugJX5OwmY969je++/29mM2bKfmYzp6NFKfE/yuo+MY9u/vjLH9GN9OdD04ffT2GTvOtt5tpq+tCyEQXn7Bfx842I5Om25ZOnywL6Z9+9rQf1vvv30N/MyY9pBtw3jflmhb6vl9G/wWjzJ66lnXI9ez7gt+n1so0H44+G+jfVBba1+MPVpbE+lLIzFXhp39+rfWCDHu3x9+kBuvjw6VSL9wvKt7nt2xhbap9CyBjsOx2m40wd8cPnwEe/f2fdpb7wa3787OvnmZW354HD0OHz4S9tn+A319beh3ocvo2X7a2ga2n57pjh1DxN8ePRr589DY2lrD+ysr6xdazsf7ldnBgx0QcbfTfmXcfXwVaZrw48/uvnR/O451RZ7z0Y7w+Vtpq109bbTfPHrqpsehQ0eQsRcx9M2js7Mr4rbYdVxHWnr8k7GeS7CiEUJEvDwbzR//+Edpy7aWCMWfZyIJlhBy4hKir0zlrGdwfroQ3R1p+OdiwOchvzGZ1PRMP3QUuv8f/RfBkYOMLcdc3cRar9i/CT3Q6YtT9O6AAEDoZuYbfTl98wg96IxWFv3LyWqb67cOcdqaQPTv9X71ZyWOgW1SRd23PQT62oYQwobt1HxMkeu/+/YYX1/ZRq6fSG0xCsvr2n9bjLy/CN3uDMVjUWgMuhi4rYevm9k+sI+1vs368oL61ktLsH8SUeIIpAMnnC0QSAeevd9cmxAh8+/9THpdmyzDfu06tE8L/Tx2OwlfdvzpDOq/zYXENrJJ4P31RmKKHOOAflfErvdo8zG//Mi/71/GYsD2EL1eY23H0fvoWG03cv+Q0H623zJ75he/7Rtvd+H7gvj71/79cSLHvvHmEf9YbOB8RL9t0Wh0nkuwioqK4Pf7sWfPnrDP9+3bN+CqFlGycfJlu1bPPJN95p6lo/OodwawmHiSjm1bNVTWyZ83n4VXn/FTnjHEqOj0zOjfWZ0nmWNXXySl7cigTCAJirEe2flSZ0fdFHqk25j09HQ0NDRgw4YNvZ/puo6NGzeiubnZvcCSVEb3LdCaj3skp7nZgWXnCTTOUqzOw0+IhUmVzj4jC8gtdDsK40qGAM0nCLkHYQ5WtlOLSpX2azsWpCMU2zN4QtmwYKkNHq5O6WmawIlf0z1zws5xCfYnSp6jbmtrw2effdb7/+3bt2PLli0oLS1FWVkZLrroInz3u99FQ0MDmpqasGbNGhw5cgRLlixxMerkNLwhOLpdxSh1OgUvsvIOqIgX4Ptv8DYdUEw6WSDT6jgrFgW6n3+yfFaayCoemKvLjrrxQn2n+C432Va/YjSQV6wjr8j8b21rrloCd6qotg3ZEM/YqcFWWFoBZOUNfNYwHiUTrM2bN+OCCy7o/f+NN94IALjiiiuwcuVKnHrqqdi3bx/uuOMO7N69G/X19Vi9enXvO7BInkAaUDfJhq4u2XrPOFTri1Q0dqrAVn/wnv5YWJYkW7K+DDRlJLA/CaQJHO/UkFMgL5xkk2K7a1toGlDAp1giktH/Gp6FwQlLK0RvnxBIA2YvEXj63iRIsKZOnYqtW7fGnGbFihVYsWKFQxERJchKB5Jie7XMHGD83OgrPXi4wEfvaBhS42BQlBJ8PmD8XB3pVl/ESkqw0s3OXCzQdlAoc/CrZK7f7/ZsJ2JUshzIFk4+W+5ku1IywSKSQaUOWtYZcic7ItWMGAeUDNWRxwvVZIPy6ggfqtSJkDShL7DPyAr+UV1apBePu9Q+pe6GvLRPixerwuuS7F1ZUTlweL/bUYTz3CAXRF5kKcFys0c0tWxnAtV8wVsszL5xnpKUwgcz5CyzTaGsEhg9Qcf009V5L0O8dRhcHeG9Ow5vA5F6ei8NuhPJnGWx20BS3j6chOs0eoJA4yx1tmeACRaRM7zWoVnYcSfljoiIXNHzLObIRvlZhKYFr4hbGXDALWbe8ylbrBrIyQemn65jylcsHty6vN9wejCnZGG2OdrdfP0BYMhIe5dhFm8RJHKApc7FY2foU/n2xVSWVyxweJ+G/FI2AJJn2Ghg8PDUGULa0vGn08lJlOXlFQGtBxyNxD6p1I0psq7JenKWCRY5yucX0Ls0BCLdT57EPNeBeC1ecs3EBQL7vxQYVOl2JLFpPgGha8jKczsSMipVkiu7ZGQJHO2Q0JkrciDuNteOW7g/lidOWeYUCLQd1Cy9fLk/JljkqBPOFug6Lqy/e8EMdkqOcjWJZF27Jj0zygARipm1OJgIlg1zOxKSLsZLyL1CZg7TM/R8WSWw/QOJM5Yov0Tg0F4N+R4atKioHBgxTqB4iLMZZyo9dzx+rrvPUU1cIPD5xwJV9YnPiwkWOSqQxrOSMsk+niivFjiwy4Mv+03xM6y8PTO+rNzgHxV57go32UdCW5i9VKCjVWD/l5JmaIMpXxE4fkx4al+jacHBFJzSPE/Hl58GE+Ue5dWJL1+1FhG6/3L7ZF1mDjCySc68mGARUa/xcwWEMHfAl1so0HpAs3zwqqXQ2TlbMLnyPM0HzFysIxAAXnhY7gYxrBb48jOB6no2lFSRlhH8E0ywJIqxXzB7ksfn88aJPDdPfgyqBAZVhhfs0FEWt2PVsqoUwASLCMFL/wBQWCb3IGTqqTr0LqmzDGdDp2l2hzLhRIFtW4HhDebKrnmejvbDknay3HmkjGSt6hwJ9/xHkpYOTDvVpeTK4crydNsQMf8bkVPr25M89SwvtyD4d1oGk3anebqNpxgmWEQIjoI0e6mOjGy58y0olTOf6nqBvTsx8MFLBfZvmTnWbptQfVAEIiIaqKwSaJqro7DM7UiC+9j9XwLFgwX2fZF4+pHIQBahe8Gpp+rosvPkahJx8iqhk8tigkXUTdXnMwCgbrICmZTCVK472/GUpm1UeTZqwom6MrGQTTxUv5oGDFZkYJuaZoHcQoHSCuD5BxMsRE303s2SKFknV8m7mGAReZmHdsp2Kq8Gxk4TGNWQjWNd7W6HQyRVaYXbEagtKU8/JeVKyef3A0NrAF3C4HOjxouBJzJM7GOz+NJiCsEEiyjF+fxuR5A4TQOqxgB5hT7s3et2NA7jgRiR96m8HXtgGHwVQiseDIybqaNAgVsnyX1MsIgUlZ0HlFYIFA6yZ887eaGOo+0cNj8tQ6DzqPVREMkdKh+PEiVMhYyhHydC8vp2PbTG7QiM83pZq44JFpGqtOAIfXYpGmTbrD1l9lKBzqMCGVluR0KG2HCUxwONcGOn694sFAWTEssUKn+FQiEZbN5O+LxoEN9AQ0rJ8MB7MSi5BNJSfJAMon6GjQ6+P4vIaTw2j0NGAVnImJvmSHjILcXwChYpYfoiHXs+R9gbyxPFsyiUEtjOKdXxEgvZ1A8mS/ea6PFQyRDj05p96XSy4hUsUkJeMTBiHJOiUMkw+AQ5IMV2Zg0zBHx+gYbpKbbiRG5xcJAL5bZqxY5JpISj2DolK17BIlLMhAU62g4CmZJfekyUDEqGACd+LcJwypTC2BhcJzszcrBKfX4BvUtDVp5zy1SCTdms0n0zXzRMlLpKhwb/GKJyR0ZkE6V34OSapGgXCq+DwqElZOaZAnt3Cgwe7nYk0WXnCbQf1pBT6HYkZBQTLCIiogiS4oCdKEFO3raXnQsc63D2pb1ZucGBXVQ24wyBY0eF6TtbisoF9n+pIb/EnrgoOiZYlHQaZ+k4dtTtKJLXiHHK3SWf2pgEJI5N2hZsmhaYaYtOF7ADy2uaI/DJ+9zP9OfzW3tsYNLJAsc7BdLS5cfkRU5uMkywKOkMGel2BMlt9ATu+JTC6iBSTsv8xIa1VmqzNhCMrHgzc4AxU8zPjVebI9M0SEmuEh0ZMBXrhwkWERGlthTc+ZO9yoZZ/CHbIjlGg2KpfFLhMO1ERB7H944kiOVHFF8KJn/JeOUl0XWafy5fOmwEEywiD0vCvp9SUF5xMMNJy3A5EPKk3KJg+8lOtWG2ncITEEkl0RNyAT7PZQhvESQiIldNO01A6AI+nvIjCybMF9j+IVA91vuZgJmTZk6dYDP0nmHvFz2lAr4Hi4iIUoWmAZrfveWXDInyhQuXiOcv15PntiSH1iMzBxjVzCN8IiOSpn9RHBMsIiJKWcMbBEY2qXNwHkhzOwJykxjwDyKSxcnckjdkEHkYD8aIEjNkhOB2RErLzlMk20qRKx+BdEXKmzyNV7CIPGjSyTp2b9dQVul2JEREJEukHGbWEsfDCJdi+caMMwRefDhYE34eJXvKvHPUGeGQTYfIg4oHA8WDU2yvRyRRbqFA6wENWbluR5LEBFLmqoedVBn8JVWqMjMbWHCeDl0HNEXKnoyJOxItB7kgIiKyz/RFAl3HBYccJiUYHTq7+QQd7zzv7FF/Kp7K8/mDf3R1LoiQxzA3JyKilKP5+D4X26XKJQ8HDaoCAmnOpjzagH8QpS6jozDyChYREVEEPJ60Zs5XdXQd53DQyaJ5nsDmDUDjzFS8lkVkDRMsIiIikiYz2+0IklvZMGDnP4HiaO9vk6ygFJh5RuzkyugtjnYKpAtksO3ZQoX69RomWEREREQqiXFAWz9NYFC1QFmFc+F4wbyzBS87G5CdB+z/EsgpYNZkJyZYREQelpYJ4JDbUSQpHqyRggJpQHmV21GohyP+GVM7SSA9ExhWywTLTmyOREQeNO00HdVjBSpq3I6EiIi8Ii0dGD1BOPuKihQ8WcUrWKS8eefqqbhtEsWUXwLkl/AMJBFF5uMRXsJ47GGeyoPbOBkbNz9SXhqHUiYiIjJlaA2w/wuBoTU8EUPO4YAYQUywiIi8jjs0IurH7wea5rBzIHIDn8EiIiIiUgjTotSg8u10oXwmsgWvrJPdeAWLiIiISAU8OFWLzfXhldvp0jKAmvE6svPdjsQ7mGARERERKcTMFQMiJ9SMdzsCb2GCRUREROSmflcyBg8Hvvi0Z4AKXtYi8homWEREREQK6EmlfH5gwnyP3D9G5BEcpp2IiAzjYRhRcvDqtuyVZ4lUwwEhnDFmssCez4G8IueWyQSLiIiIyE080CayzfAGoKre2bMAfIySiIiIyE0evwKUlRv8O5Du8RVxGK/8JS9ewSIiIiJSgFcvZGVkAbOW6EjPdDsSIjUwwSIiIiKihGTnuR2B9/AZrOTFBIuIiIiIKILcIoHsXLejIK9hgkVEROSwrJzuv3P5EAaRqjQNmL5I8EoTmcYEi4jI63iM7jmBdGDeOTr8aW5HQkSxMLlKXCoWIUcRJCIickFaBuDjXpgoZRWUirC/U1GynmTiFSwiIiIiIodVjALSs3QUlbsdiXv8fmDmmToCSZZoMcEiIiIiInKY5gMGVbodhWQW7gfMKZAfhtt4cwIREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiKyRwqO084Ei4iIiMhFqTtIN1FyYoJFREREpIIUPNNPlIyYYBEREREREUnCBIuIiIiIiEgSJlhERERELqppCj6FVTuRT2MRJYOA2wEQERERpbLyamDBeTp8frcjISIZeAWLiIgoAo0DDpCDmFwRJQ8mWERERBEI3q1FREQWMMEiIiIiIiKShAkWEZHH8UoLERGROphgERERRcBnsIiIyAomWERERBHwyiAREVnBBIuIiIiIiBLGC/9BTLCIiDxuyIjgpZZhtbzkIhNvESQiIiv4omEiIo8bVAXMWaYjI9vtSIiIiIhXsIiIkkBmDq+4EBGRO/JLg3dQFA7inRQAr2AREREREVECJp0k0HpAoKDU7UjUwASLiIiIiIgsC6QBhWVuR6EO3iJIREQUAYdpJyIiK5hgERERERERScIEi4iIKAIOGkJERFYwwSIiIiIiIpKECRYREVEEvIJFRERWcBRBIiKiEI2zdbQfAtIy3I6EiMj7UvFkFRMsIiKiEENGuB0BERF5GW8RJCIiIiIikoQJFhERERER2cLndzsC5/EWQSIiIiIikmrWEh2dR4FAmtuROI8JFhERERERSZWdByDP7SjcwVsEiYiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYCWZonIR9jcRERERETmHg1wkmZb5Aof3CRQOcjsSIiIiIqLUwwQryQTSgKJyt6MgIiIiIkpNvEWQiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJkvQJ1re+9S1MnjwZ//qv/2rocyIiIiIiIquSPsE677zzcMsttxj+nIiIiIiIyKqkT7CmTp2KnJwcw58TERERERFZ5WqC9frrr+PSSy/FrFmzUFdXh+eee27ANPfddx/mz5+PxsZGnH322di0aZMLkRIREREREcUXcHPh7e3tqKurw9KlS7Fy5coB3z/55JNYtWoVbrjhBowfPx5r1qzBJZdcgnXr1qG4uBgAcOaZZ0ac99q1a+H3+22Nv4fPp0mfl8x5khysG7WxftTG+lEX60ZtrB+1sX7UZUfdaAZn5WqCNXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPORJrNIGADyUludLnW1TE2xdVxbpRG+tHbawfdbFu1Mb6URvrR11y6qYNAOD3G7v5z9UEK5Zjx47h/fffx2WXXdb7mc/nw4wZM/DOO++4F1g/x4/rOHSoQ9r8fD4NRUU52L+/DboupM2XEse6URvrR22sH3WxbtTG+lEb60ddcusmeOmqq0tHIC3+HXLKJlj79+9HV1cXSktLwz4vKSnBp59+ang+3/jGN7Bp0yZ0dHRgzpw5uOuuuzBmzJion1thxwal64IbqqJYN2pj/aiN9aMu1o3aWD9qY/2oS07dBBMsYXA2yiZY0QghoBm9ARLAXXfdZepzIiIiIiIiq5Qdpr2oqAh+vx979uwJ+3zfvn0DrmoRERERERGpQNkEKz09HQ0NDdiwYUPvZ7quY+PGjWhubnYvMCIiIiIioihcvUWwra0Nn332We//t2/fji1btqC0tBRlZWW46KKL8N3vfhcNDQ1oamrCmjVrcOTIESxZssTFqImIiIiIiCJzNcHavHkzLrjggt7/33jjjQCAK664AitXrsSpp56Kffv24Y477sDu3btRX1+P1atX974Di4iIiIiISCWuJlhTp07F1q1bY06zYsUKrFixwqGIiIiIiIiIrFP2GSwiIiIiIiKvYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREVEcmmZsOiZYREREREREkjDBIiIiIiIikoQJFhERERERURxCGJuOCRYREREREZEkTLCIiIiIiIji4CAXREREREREDmOCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJAm4HQAREREREZGqGqbrOLhHg89vbHomWERERERERFFUjAYqRgvD0/MWQSIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJJoQQrgdhJfpukBXly51nmlpfnR2dkmdJ8nBulEb60dtrB91sW7UxvpRG+tHXbLrxu/3wefT4k7HBIuIiIiIiEgS3iJIREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwVLEF198ge985zuYMmUKmpubsXTpUnz88cduh0UA5s+fj7q6ugF/brjhBrdDo26tra24/vrrMXv2bIwfPx6LFi3Co48+6nZYhGDd/PCHP8TcuXMxfvx4XHDBBfjoo4/cDislvf7667j00ksxa9Ys1NXV4bnnngv7/ujRo7jhhhswdepUtLS0YOXKldi7d69L0aaeePXzxz/+Eeeffz4mTJiAuro6tLW1uRRpaopVPwcOHMCPfvQjnHLKKWhqasK8efPw4x//GK2trS5GnDribTs33HADTjrpJDQ1NWHatGm47LLLbD/GZoKlgIMHD+JrX/sa0tPTsXr1ajz++OO48sorkZOT43ZoBODhhx/Gyy+/3PvnnnvuAQAsXLjQ5ciox6pVq7Bx40b87Gc/wxNPPIHly5fj6quvxmuvveZ2aCnv2muvxeuvv45bb70Vjz76KGpqanDRRRfxwMMF7e3tqKurw/e///2I399000147rnn8POf/xy/+93vsGvXLnzrW99yOMrUFa9+Ojo6MHv2bFx66aUOR0ZA7PrZtWsXdu3ahauuugpPPPEEbrrpJrz44ov493//dxciTT3xtp2xY8fipptuwpNPPom7774bmqbhkksuga7r9gUlyHU//elPxfLly90Ogwy68cYbxYIFC4Su626HQt1OO+008V//9V9hn5188sli9erVLkVEQgjR0dEh6uvrxYsvvtj7WVdXl5g+fbq4//77XYyMamtrxbPPPtv7/0OHDomGhgaxbt263s8++ugjUVtbKzZt2uRGiCmtf/2EeuWVV0Rtba1obW11OCrqEat+ejz55JOisbFRdHV1ORQVCWGsbrZs2SJqa2vF9u3bbYuDV7AU8Oyzz2LcuHFYuXIlpk+fjqVLl+Kxxx5zOyyK4NixY/jTn/6EZcuWQdM0t8Ohbi0tLXjmmWfw5ZdfQgiBl156Cbt27cKMGTPcDi2lHT9+HF1dXcjIyOj9zOfzIS0tDW+//baLkVF/mzdvRmdnJ2bOnNn7WU1NDYYOHYp33nnHvcCIPKq1tRV5eXnw+XiorZL29nasXbsWVVVVKC8vt205rHUFbNu2DX/4wx9QU1ODu+++G8uWLcO1116LZ555xu3QqJ+//e1vOHz4MJYsWeJ2KBTiuuuuQ1VVFebMmYNx48bhiiuuwKpVq1BfX+92aCktNzcX48ePxy9+8Qvs3r0bnZ2duPvuu/HFF19gz549bodHIfbs2YPMzEzk5uaGfV5SUsK6IjJp//79+M///E+ce+65bodC3e677z60tLSgpaUFL730Eu6++24EAgHblmffnMkwIQQaGxvx7W9/GwBQX1+PzZs34/7778eJJ57obnAU5n/+538wZ84cW896kHm///3vsWXLFtx1110oLy/Hxo0bcc0112Dw4MFobm52O7yU9tOf/hRXXXUVZs2aBb/fj2nTpmHOnDkQQrgdGvUT6ao864nInNbWVnzzm9/E6NGjcdlll7kdDnU744wzMHPmTOzevRv//d//jW9/+9u4//77kZ6ebsvymGApoLS0FCNHjgz7rKamBps2bXIpIopkx44d2LBhA+688063Q6EQR44cwW233YZf/epXmD17NgBgzJgx2LRpE9asWcMEy2XV1dV44IEH0NraiqNHj6KkpARnn302xo4d63ZoFKK0tBQdHR1obW0Nu4q1b98+lJaWuhgZkXe0trbikksuQXZ2Nu68805br5CQOXl5ecjLy8Pw4cMxfvx4TJkyBc888wy+8pWv2LI83iKogJaWFnz66adhn33yyScYMmSISxFRJGvXrkVJSQlOOOEEt0OhEMePH0dnZyf8fn/Y5z6fz94RgsiU3NxclJSUYNu2bdi8eTPmz5/vdkgUYty4cUhLS8OGDRt6P/vnP/+Jzz//nCcpiAxobW3FxRdfjLS0NPzqV78Ke/aU1COEwLFjx2ybP1NrBVx44YVYvnw57rrrLpxyyil466238Nhjj+H22293OzTqpus61q5di8WLF/OMlGJyc3MxZcoU3HLLLbjuuuswePBgbNiwAevWrcOqVavcDi/lvfjii/D5fKiursZHH32EH//4x5g7dy7mzJnjdmgpp62tDZ999lnv/7dv344tW7agtLQUZWVlWLZsGVatWoX8/Hzk5ubixhtvxKRJk9DY2Ohi1KkjXv3s3r0be/bs6Z3mgw8+QGZmJqqqqvhaFwfEqp+srCx8/etfR0dHB37605+itbW191UUxcXFA04Aklyx6ubYsWN4/PHHMXPmTJSUlGDXrl246667kJmZ2XvXix00wRuslfC3v/0NP//5z/Hpp5+iqqoK//Iv/4LFixe7HRZ1e/nll3HxxRdj3bp1GDFihNvhUD+7d+/GrbfeivXr1+PQoUOoqKjAeeedh/POO8/t0FLeE088gZ/97GfYtWsXiouLccYZZ2DlypU8u+uCV199FRdccMGAz6+44gqsXLkSR48exc0334w///nPOHbsGGbPno0f/OAHvEXQIfHq584778QvfvGLAd/fe++9mDp1qhMhprRY9TNlypSI3wHAM888g2HDhtkdXkqLVTfnnnsurr32WmzevBmHDh1CSUkJJk2ahMsvv3zA4zkyMcEiIiIiIiKShM9gERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkScDtAIiIyHuivfR0+vTp+O1vf+t8QEnk2LFjuO222/Duu+9i8+bNOHr0KLZu3Rp1+uuvvx4HDhzAz3/+c5x//vl47bXXAACBQAD5+fmora3FySefjLPOOgvp6elOrQYRUcpigkVERJbk5eVh9erVAz6jxBw5cgQPP/wwmpqa0NLSgldeeSXm9C+++CK+9a1v9f5/6tSp+L//9/9C13Xs27cPr732Gv7jP/4DDz/8MNasWYP8/Hy7V4GIKKUxwSIiIkv8fj+am5sNTXvkyBFkZmbaG1CSyM/Px2uvvQZN0/D73/8+ZoL1wQcfYOfOnZg9e3bvZ4WFhWH1smDBAixduhTLly/HqlWrsGrVKjvDJyJKeXwGi4iIpNq+fTvq6urwpz/9Cd/97ncxadIkXHrppQCAAwcO4Pvf/z5mzJiBxsZGnHvuuXj33XfDfn/o0CF85zvfQXNzM2bNmoVf/epXuOWWWzB//vzeae68805MnTp1wLLr6urw+9//Puyzhx56CKeddhrGjRuHefPm4Te/+U3Y99/73vewdOlSrF+/Hqeffjqam5uxfPlyfPjhh2HTdXV14de//jVOOeUUjBs3DnPmzMH3vvc9AMB9992HlpYWtLW1hf3mlVdeQV1dHf7+97+bKkNN0wxN9/zzz6OxsRElJSUxpxszZgzOO+88PP7442htbQUA7Nq1C1dffTVOPPFENDU14ZRTTsFtt92GY8eO9f5u2bJluPrqqwfM76qrrsKSJUtMrBERUepggkVERJYdP3487I8Qove7n/zkJ8jJycHtt9+Ob37zmzh27BguuugirF+/Ht/97nfxy1/+EkVFRbjwwguxe/fu3t9dffXVePHFF3HNNdfghz/8IdavX48///nPluJbvXo1rr/+eixYsAC//vWvsXz5ctx+++0DkrCdO3fiJz/5CS677DLceuut2LdvH7797W+Hrc/3v/993HnnnVi4cCF+/etf43vf+x7a29sBAKeffjq6urrw1FNPhc33kUceQUNDA8aMGWMp/nheeOEFzJ0719C0M2fORGdnJ95//30AwP79+1FYWIirr74aq1evxsUXX4y1a9fixhtv7P3NWWedhXXr1oUljm1tbXj66aexdOlSuStDRJQkeIsgERFZcuDAATQ0NIR9ds8996CqqgoAMH78ePzgBz/o/e6hhx7Chx9+iCeeeALDhw8HAMyYMQMLFy7E3Xffjauuugoffvgh/va3v+G2227DqaeeCiD4TNG8efOQm5trKr7W1lb88pe/xGWXXYYrrrgCQDDJ6OjowK9+9SssX74cfr8fAHDw4EHcf//9vXEJIXD55ZfjH//4B2pqavDxxx/j4YcfxrXXXosLLrigdxk9Mebn5+Pkk0/G2rVrexOPnkTkO9/5jqm4jTp48CDefvttXHPNNYamLy8vBwDs3bsXQPBq31VXXdX7/YQJE5CVlYVrrrkG1113HdLT07Fo0SLcfPPNWLduHZYtWwYA+Mtf/oLOzk4sWrRI8hoRESUHJlhERGRJXl4e7rnnnrDPRowYgQMHDgAATjjhhLDvNm7ciIaGBgwbNgzHjx/v/Xzy5MnYvHkzAOC9994DgLDbAXNycjBjxgxs2rTJVHxvv/022tvbsXDhwrDlTZs2Df/5n/+JL774AhUVFQCAioqK3uQKAGpqagAAX375JWpqavDqq68CQMyrNl/96ldx4YUXYtu2baisrMRf/vIXHD9+3LZE5OWXX0ZxcTHGjh1raPrQq3E9/1+zZg0efPBBbN++HUePHu39bufOnaiurkZubi5OOeUUPPLII70J1iOPPIL58+ejqKhI3soQESURJlhERGSJ3+9HY2PjgM97Eqz+zwXt378f77zzzoCrXgB6r3rt2bMHOTk5AwbEiPeMUST79+8HAJx22mkRv9+5c2dvgtV/9MO0tDQA6E06Dhw4gOzs7JhX0aZOnYrKykqsXbsWV155JdauXYsTTzwRhYWFpmM34vnnn8fcuXMNP6+1a9cuAH1luWbNGtxyyy34xje+gcmTJyM/Px/vvfcefvjDH4YlW1/96ldx/vnn47PPPgMAvPHGG7jrrrskrw0RUfJggkVERLbof+BfUFCAcePG4frrrx8wbc/7mUpLS9HW1jZg1MGe29p6ZGRkoLOzM+yzgwcPDlgeAPz617+OmKCNGDHC8LoUFhaivb0dra2tUZMsTdOwbNkyPPjggzjzzDPx5ptvDhhQQxZd1/HSSy/hRz/6keHfvPzyy0hLS+tNcNetW4eFCxfiX//1X3un+fjjjwf8bvLkyaiursYjjzwCIQQGDRqEWbNmJb4SRERJigkWERE5Yvr06Vi/fj2GDh0a9YpUzxWxZ599tvf5pra2NmzYsCEssSkvL0dbWxu+/PLL3meL1q9fHzavlpYWZGZmYteuXQNuVzRr2rRpAIBHH30UK1asiDrdkiVLcMcdd+Caa65BeXk5Zs6cmdByo3n33XfR2tqK6dOnG5r+73//O/7whz/g9NNP7y3HI0eODHjx8OOPPx7x98uWLcP9998PAFi8eHHvs2tERDQQEywiInLE4sWL8cADD+D888/H17/+dVRWVuLAgQPYtGkTysrKcOGFF2L06NGYP38+rr/+erS2tqKsrAz//d//PeCWwdmzZyMzMxPXXHMNLrroImzfvh0PPPBA2DT5+fm44oor8OMf/xg7duzA5MmToes6PvnkE7z66qv45S9/aTj2kSNH4pxzzsHNN9+MvXv3YvLkyTh06BCeeuop3Hbbbb3TlZeXY/bs2Xj++efxzW9+c0Aicuedd+IXv/gFtm7dGnN5L7zwAjo6OrBlyxYAwatNQDABraiowPPPP4/JkydHvJp24MABvPPOO9B1HQcOHMCrr76KBx98EMOHDw8bcn3GjBn43e9+h6amJlRVVeHxxx/Hp59+GjGeJUuW4Pbbb8fx48c5PDsRURxMsIiIyBEZGRm49957cfvtt+POO+/E3r17UVxcjKamprBBLW6++WZcf/31uOmmm5CdnY2vfe1raGxsDBsCvbi4GHfccQd+8pOf4PLLL0dDQwNuvfXW3qtePf7lX/4FgwYNwpo1a3DPPfcgIyMDw4cPHzCdET/4wQ8wdOhQPPTQQ/jNb36D4uLiiFeoFixYgOeffz7igBgdHR0oLi6Ou6wbbrgBO3bs6P3/lVdeCQBYtWoVli5dihdeeAGLFy+O+NtXX30V55xzDgKBAPLy8lBbW4t/+7d/w1lnnRV2xeryyy/H/v37cfvttwMATjrpJFx33XW97ywLVVZWhqamJgDBZJOIiKLTRP9hhYiIiBRzyy234KmnnsKzzz7rdihxXXnlldi9ezf+8Ic/DPhuxYoVmDZtWu+w8VZ8+eWXmDNnDp566qmwkQ/tdODAAcyZMwf//u//jrPOOsuRZRIReRWvYBEREUmwdetWbN68GX/961/xs5/9bMD3x48fx4cffog77rgjoeWUl5fHvcVQltbWVnz88ce49957kZOTw3dfEREZwASLiIhIgssuuwz79+/H1772NSxcuHDA94FAoPd9Wl7x/vvv44ILLkBFRQVuueUWZGVluR0SEZHyeIsgERERERGRJD63AyAiIiIiIkoWTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJL8f7OHFRknddK3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 18])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, Hz\")\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_xlim([5.8, 13.2])\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlim([5.8, 13.2])\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "13ba292c", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "[1] Springford, Aaron, Gwendolyn M. Eadie, and David J. Thomson. 2020. “Improving the Lomb–Scargle \n", + "Periodogram with the Thomson Multitaper.” The Astronomical Journal (American Astronomical \n", + "Society) 159: 205. doi:10.3847/1538-3881/ab7fa1.\n", + "\n", + "[2] Huppenkothen, Daniela, Matteo Bachetti, Abigail L. Stevens, Simone Migliari, Paul Balm, Omar Hammad, \n", + "Usman Mahmood Khan, et al. 2019. “Stingray: A Modern Python Library for Spectral Timing.” The \n", + "Astrophysical Journal (American Astronomical Society) 881: 39. doi:10.3847/1538-4357/ab258d.\n", + "\n", + "[3] Thomson, D. J. 1982. “Spectrum Estimation and Harmonic Analysis.” IEEE Proceedings 70: 1055-1096. \n", + "https://ui.adsabs.harvard.edu/abs/1982IEEEP..70.1055T.\n", + "\n", + "[4] Thomson, D. J. 1990 “Time series analysis of Holocene climate data.” Philosophical Transactions of the Royal Society of \n", + "London. Series A, Mathematical and Physical Sciences (The Royal Society) 330: 601–616. \n", + "doi:10.1098/rsta.1990.0041.\n", + "\n", + "[5] Lomb, N. R. 1976. “Least-squares frequency analysis of unequally spaced data.” Astrophysics and Space \n", + "Science (Springer Science and Business Media LLC) 39: 447–462. doi:10.1007/bf00648343.\n", + "\n", + "[6] Scargle, J. D. 1982. “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of \n", + "unevenly spaced data.” The Astrophysical Journal (American Astronomical Society) 263: 835. \n", + "doi:10.1086/160554.\n", + "\n", + "[7] Slepian, D. 1978. “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete \n", + "Case.” Bell System Technical Journal (Institute of Electrical and Electronics Engineers (IEEE)) 57: \n", + "1371–1430. doi:10.1002/j.1538-7305.1978.tb02104.x.\n", + "\n", + "[8] D. J. Thomson, \"Jackknifing Multitaper Spectrum Estimates,\" in IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 20-30, July 2007, doi: 10.1109/MSP.2007.4286561." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8d79e398", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Powerspectrum/Powerspectrum_tutorial.html b/notebooks/Powerspectrum/Powerspectrum_tutorial.html new file mode 100644 index 000000000..93303a338 --- /dev/null +++ b/notebooks/Powerspectrum/Powerspectrum_tutorial.html @@ -0,0 +1,730 @@ + + + + + + + + Power spectrum example — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Power spectrum example

+

This tutorial shows how to make and manipulate a power spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum
+
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+

1. Create a light curve

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out “Lightcurve/Lightcurve tutorial.ipynb” for more examples.

+

Generate an array of relative timestamps that’s 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve.

+
+
[2]:
+
+
+
dt = 0.03125  # seconds
+exposure = 8.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000  # counts/s
+noisy = np.random.poisson(signal*dt)  # counts
+
+
+
+

Now let’s turn noisy into a Lightcurve object.

+
+
[3]:
+
+
+
lc = Lightcurve(times, noisy, dt=dt, skip_checks=True)
+
+
+
+

Here we plot it to see what it looks like.

+
+
[4]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc.time, lc.counts, lw=2, color='blue')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png +
+
+
+
+

2. Pass the light curve to the Powerspectrum class to create a Powerspectrum object.

+

You can also specify the optional attribute norm if you wish to normalize power to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘none’.

+
+
[5]:
+
+
+
ps = Powerspectrum.from_lightcurve(lc, norm="leahy")
+print(ps)
+
+
+
+
+
+
+
+
+<stingray.powerspectrum.Powerspectrum object at 0x17fc10fd0>
+
+
+

Note that, in principle, the Powerspectrum object could have been initialized directly as

+
ps = Powerspectrum(lc, norm="leahy")
+
+
+

However, we recommend using this explicit syntax, for clarity. Equivalently, one can initialize a Powerspectrum object:

+
    +
  1. from an EventList object as

    +
    bin_time = 0.1
    +ps = Powerspectrum.from_events(events, dt=bin_time, norm="leahy")
    +
    +
    +

    where the light curve, uniformly binned at 0.1 s, is created internally.

    +
  2. +
  3. from a numpy array of times expressed in seconds, as

    +
    bin_time = 0.1
    +ps = Powerspectrum.from_events(times, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm="leahy")
    +
    +
    +

    where the light curve, uniformly binned at 0.1 s, is created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand.

    +
  4. +
  5. from an iterable of light curves

    +
    ps = Powerspectrum.from_lc_iter(lc_iterable, norm="leahy")
    +
    +
    +

    where lc_iterable is any iterable of Lightcurve objects (list, tuple, generator, etc.)

    +
  6. +
+

Since the negative Fourier frequencies (and their associated powers) are discarded, the number of time bins per segment n is twice the length of freq and power.

+
+
[6]:
+
+
+
print("\nSize of positive Fourier frequencies:", len(ps.freq))
+print("Number of data points per segment:", ps.n)
+
+
+
+
+
+
+
+
+
+Size of positive Fourier frequencies: 127
+Number of data points per segment: 256
+
+
+
+
+
+

Properties

+

A Powerspectrum object has the following properties :

+
    +
  1. freq : Numpy array of mid-bin frequencies that the Fourier transform samples.

  2. +
  3. power : Numpy array of the power spectrum.

  4. +
  5. df : The frequency resolution.

  6. +
  7. m : The number of power spectra averaged together. For a Powerspectrum of a single segment, m=1.

  8. +
  9. n : The number of data points (time bins) in one segment of the light curve.

  10. +
  11. nphots1 : The total number of photons in the light curve.

  12. +
  13. norm : The normalization, one of leahy (Leahy et al. 1983), abs (absolute rms), frac (fractional rms), or none

  14. +
+
+
[7]:
+
+
+
print(ps.freq)
+print(ps.power)
+print(ps.df)
+print(ps.m)
+print(ps.n)
+print(ps.nphots1)
+
+
+
+
+
+
+
+
+[ 0.125  0.25   0.375  0.5    0.625  0.75   0.875  1.     1.125  1.25
+  1.375  1.5    1.625  1.75   1.875  2.     2.125  2.25   2.375  2.5
+  2.625  2.75   2.875  3.     3.125  3.25   3.375  3.5    3.625  3.75
+  3.875  4.     4.125  4.25   4.375  4.5    4.625  4.75   4.875  5.
+  5.125  5.25   5.375  5.5    5.625  5.75   5.875  6.     6.125  6.25
+  6.375  6.5    6.625  6.75   6.875  7.     7.125  7.25   7.375  7.5
+  7.625  7.75   7.875  8.     8.125  8.25   8.375  8.5    8.625  8.75
+  8.875  9.     9.125  9.25   9.375  9.5    9.625  9.75   9.875 10.
+ 10.125 10.25  10.375 10.5   10.625 10.75  10.875 11.    11.125 11.25
+ 11.375 11.5   11.625 11.75  11.875 12.    12.125 12.25  12.375 12.5
+ 12.625 12.75  12.875 13.    13.125 13.25  13.375 13.5   13.625 13.75
+ 13.875 14.    14.125 14.25  14.375 14.5   14.625 14.75  14.875 15.
+ 15.125 15.25  15.375 15.5   15.625 15.75  15.875]
+[9.75294222e-02 1.37192421e-01 6.62062702e+00 5.42273987e-01
+ 1.26707856e-01 7.14262683e-02 1.46986106e+00 9.35172244e-01
+ 2.04574831e+00 4.88638843e-01 1.46127864e+00 3.24027874e+00
+ 2.95907471e+00 1.46905530e-01 1.42916439e+00 3.58020047e+02
+ 3.04922773e+00 2.14088855e+00 3.89197375e-01 3.48148529e-01
+ 2.32409725e+00 3.72418140e+00 5.10604734e-01 5.98258473e-01
+ 1.75462401e+00 2.24000263e-01 1.06137267e+00 1.07517074e+01
+ 1.14917349e+00 4.59646030e-01 1.30278344e-01 2.09102366e+00
+ 2.17910753e-01 5.49240044e+00 7.32466747e-01 3.46833517e+00
+ 1.93866299e-01 3.93997974e-02 1.97441653e+00 4.28610905e+00
+ 2.93970456e-01 2.72920344e+00 4.52529974e+00 5.42552369e+00
+ 3.00538316e+00 3.14413850e+00 1.65733555e-01 6.16733137e-01
+ 2.85338470e+00 5.56565439e+00 1.60825816e+00 2.83059003e+00
+ 3.84807029e+00 6.35749643e-01 2.52661012e-01 9.73415923e-02
+ 2.64107250e+00 1.31206307e-01 2.20321939e+00 2.08750811e+00
+ 4.61234244e+00 1.15633604e+00 3.60363976e-01 2.24498998e+00
+ 1.71646651e+00 3.38371881e+00 3.32514629e-02 1.67607504e+00
+ 1.77957522e+00 6.92787087e-01 3.35553415e+00 1.94034115e+00
+ 1.16770721e+00 3.76130715e+00 4.34584431e-01 5.72348179e-01
+ 1.14572517e+00 1.41890460e+00 1.64121258e-01 1.96499122e+00
+ 3.52679951e+00 2.58201128e+00 1.05541840e+00 3.76982654e-01
+ 3.81558230e-01 1.09665960e+00 3.52309943e+00 3.00115328e+00
+ 2.81888737e-01 3.46916554e-02 4.78900280e-01 5.10837621e+00
+ 7.05428845e+00 1.79144555e+00 1.45542292e+00 4.14645129e+00
+ 5.47936328e-01 1.43060457e-01 3.85238243e-01 2.86842673e+00
+ 7.07492195e-01 2.11192195e+00 8.18724669e-02 3.11165001e+00
+ 2.71594888e+00 8.22251145e+00 4.21393967e+00 4.85809743e-01
+ 1.66578478e+00 4.52801220e-01 1.39963588e+00 3.83710679e+00
+ 8.29760812e-02 2.04827673e-01 4.46966187e-01 4.58682373e+00
+ 5.11398498e-01 7.53864807e-01 1.49293643e-01 1.48889204e+00
+ 1.55536424e-01 1.34814529e-01 1.31907922e-01 1.49852755e+00
+ 8.75140990e-01 9.00289904e-02 4.72042936e+00]
+0.125
+1
+256
+7984.0
+
+
+

We can plot the power as a function of Fourier frequency. Notice how there’s a spike at our signal frequency of 2 Hz!

+
+
[8]:
+
+
+
fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)
+ax1.plot(ps.freq, ps.power, lw=2, color='blue')
+ax1.set_ylabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (raw)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png +
+
+

You’ll notice that the power spectrum is a bit noisy. This is because we’re only using one segment of data. Let’s try averaging together power spectra from multiple segments of data. # Averaged power spectrum example You could use a long Lightcurve and have AveragedPowerspectrum chop it into specified segments, or give a list of Lightcurves where each segment of Lightcurve is the same length. We’ll show the first way here. ## 1. Create a long light curve. Generate an array of +relative timestamps that’s 1600 seconds long, and a signal in count units, with the same properties as the previous example. We then add Poisson noise and turn it into a Lightcurve object.

+
+
[9]:
+
+
+
long_dt = 0.03125  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+
+# In count rate units here
+long_signal = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000
+
+# Multiply by dt to get count units, then add Poisson noise
+long_noisy = np.random.poisson(long_signal*dt)
+
+long_lc = Lightcurve(long_times, long_noisy, dt=long_dt, skip_checks=True)
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue')
+ax.set_xlim(0,20)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png +
+
+
+

2. Pass the light curve to the AveragedPowerspectrum class with a specified segment_size.

+

If the exposure (length) of the light curve cannot be divided by segment_size with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we’re using 8 second segments.

+
+
[10]:
+
+
+
avg_ps = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm="leahy")
+
+
+
+
+
+
+
+
+200it [00:00, 50515.52it/s]
+
+
+

We can check how many segments were averaged together by printing the m attribute.

+
+
[11]:
+
+
+
print("Number of segments: %d" % avg_ps.m)
+
+
+
+
+
+
+
+
+Number of segments: 200
+
+
+

AveragedPowerspectrum has the same properties as Powerspectrum, but with m $>$1.

+

Let’s plot the averaged power spectrum!

+
+
[12]:
+
+
+
fig, ax1 = plt.subplots(1,1,figsize=(9,6))
+ax1.plot(avg_ps.freq, avg_ps.power, lw=2, color='blue')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (raw)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png +
+
+

Now we’ll show examples of all the things you can do with a Powerspectrum or AveragedPowerspectrum object using built-in stingray methods.

+
+
+
+

Normalizating the power spectrum

+

The three kinds of normalization are: * leahy: Leahy normalization. Makes the Poisson noise level \(= 2\). See Leahy et al. 1983, ApJ, 266, 160L. * frac: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level \(= 2 / meanrate\). See Belloni & Hasinger 1990, A&A, 227, L33, and Miyamoto et al. 1992, ApJ, 391, L21. * abs: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level +\(= 2 \times meanrate\). See insert citation. * none: No normalization applied. This is the default.

+
+
[13]:
+
+
+
avg_ps_leahy = AveragedPowerspectrum.from_lightcurve(long_lc, 8, norm='leahy')
+avg_ps_frac = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='frac')
+avg_ps_abs = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='abs')
+
+
+
+
+
+
+
+
+200it [00:00, 56159.93it/s]
+200it [00:00, 56752.64it/s]
+200it [00:00, 43677.02it/s]
+
+
+
+
[14]:
+
+
+
fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))
+ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (Leahy)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=14)
+ax1.tick_params(axis='y', labelsize=14)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+ax1.set_title("Leahy norm.", fontproperties=font_prop)
+
+ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')
+ax2.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax2.set_ylabel("Power (rms)", fontproperties=font_prop)
+ax2.tick_params(axis='x', labelsize=14)
+ax2.tick_params(axis='y', labelsize=14)
+ax2.set_yscale('log')
+ax2.tick_params(which='major', width=1.5, length=7)
+ax2.tick_params(which='minor', width=1.5, length=4)
+ax2.set_title("Fractional rms-squared norm.", fontproperties=font_prop)
+
+ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')
+ax3.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax3.set_ylabel("Power (abs)", fontproperties=font_prop)
+ax3.tick_params(axis='x', labelsize=14)
+ax3.tick_params(axis='y', labelsize=14)
+ax3.set_yscale('log')
+ax3.tick_params(which='major', width=1.5, length=7)
+ax3.tick_params(which='minor', width=1.5, length=4)
+ax3.set_title("Absolute rms-squared norm.", fontproperties=font_prop)
+
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+    ax2.spines[axis].set_linewidth(1.5)
+    ax3.spines[axis].set_linewidth(1.5)
+plt.tight_layout()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png +
+
+
+
+

Re-binning a power spectrum in frequency

+

Typically, rebinning is done on an averaged, normalized power spectrum. ## 1. We can linearly re-bin a power spectrum (although this is not done much in practice)

+
+
[15]:
+
+
+
print("DF before:", avg_ps.df)
+# Both of the following ways are allowed syntax:
+# lin_rb_ps = Powerspectrum.rebin(avg_ps, 0.25, method='mean')
+lin_rb_ps = avg_ps.rebin(0.25, method='mean')
+print("DF after:", lin_rb_ps.df)
+
+
+
+
+
+
+
+
+DF before: 0.125
+DF after: 0.25
+
+
+
+

2. And we can logarithmically/geometrically re-bin a power spectrum

+

In this re-binning, each bin size is 1+f times larger than the previous bin size, where f is user-specified and normally in the range 0.01-0.1. The default value is f=0.01.

+
+
[16]:
+
+
+
# Both of the following ways are allowed syntax:
+# log_rb_ps, log_rb_freq, binning = Powerspectrum.rebin_log(avg_ps, f=0.02)
+log_rb_ps = ps.rebin_log(f=0.02)
+
+
+
+

Like rebin, rebin_log returns a Powerspectrum or AveragedPowerspectrum object (depending on the input object):

+
+
[17]:
+
+
+
print(type(lin_rb_ps))
+
+
+
+
+
+
+
+
+<class 'stingray.powerspectrum.AveragedPowerspectrum'>
+
+
+
+
+
+

Power spectra of normal-distributed light curves

+

Starting with Stingray 0.3, we can also get Leahy-normalized power spectra of normally-distributed light curves. Let us calculate such a light curve by subtracting the noise level and normalizing

+
+
[18]:
+
+
+
long_norm = (long_noisy - long_noisy.mean()) / long_noisy.max()
+err = np.sqrt(long_noisy.mean()) / long_noisy.max()
+
+long_lc_gauss = Lightcurve(long_times, long_norm, err=np.zeros_like(long_norm) + err, dt=long_dt, skip_checks=True, err_dist='gauss')
+
+fig, ax = plt.subplots(1,1,figsize=(10, 6))
+ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue', label='Original light curve')
+ax.plot(long_lc_gauss.time, long_lc_gauss.counts, lw=2, color='red', label='Normalized light curve')
+ax.set_xlim(0,20)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png +
+
+
+
[19]:
+
+
+
avg_ps_gauss_leahy = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8, norm='leahy')
+avg_ps_gauss_frac = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='frac')
+avg_ps_gauss_abs = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='abs')
+
+
+
+
+
+
+
+
+200it [00:00, 46520.67it/s]
+200it [00:00, 39276.19it/s]
+200it [00:00, 43715.71it/s]
+
+
+
+
[20]:
+
+
+
fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))
+ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')
+ax1.plot(avg_ps_gauss_leahy.freq, avg_ps_gauss_leahy.power, lw=2, color='red', zorder=10)
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (Leahy)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=14)
+ax1.tick_params(axis='y', labelsize=14)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+ax1.set_title("Leahy norm.", fontproperties=font_prop)
+
+ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')
+ax2.plot(avg_ps_gauss_frac.freq, avg_ps_gauss_frac.power, lw=2, color='red')
+ax2.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax2.set_ylabel("Power (rms)", fontproperties=font_prop)
+ax2.tick_params(axis='x', labelsize=14)
+ax2.tick_params(axis='y', labelsize=14)
+ax2.set_yscale('log')
+ax2.tick_params(which='major', width=1.5, length=7)
+ax2.tick_params(which='minor', width=1.5, length=4)
+ax2.set_title("Fractional rms-squared norm.", fontproperties=font_prop)
+
+ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')
+ax3.plot(avg_ps_gauss_abs.freq, avg_ps_gauss_abs.power, lw=2, color='red')
+ax3.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax3.set_ylabel("Power (abs)", fontproperties=font_prop)
+ax3.tick_params(axis='x', labelsize=14)
+ax3.tick_params(axis='y', labelsize=14)
+ax3.set_yscale('log')
+ax3.tick_params(which='major', width=1.5, length=7)
+ax3.tick_params(which='minor', width=1.5, length=4)
+ax3.set_title("Absolute rms-squared norm.", fontproperties=font_prop)
+
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+    ax2.spines[axis].set_linewidth(1.5)
+    ax3.spines[axis].set_linewidth(1.5)
+
+plt.tight_layout()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png +
+
+

As expected, the Leahy normalization, being normalized by the variance, yields exactly the same result in the Gaussian and the Poisson case, while the fractional rms (that depends on the mean count rate) and the absolute rms (that depend on the variance and the mean count rate) change.

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb b/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb new file mode 100644 index 000000000..080f1b969 --- /dev/null +++ b/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb @@ -0,0 +1,779 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectrum example\n", + "\n", + "This tutorial shows how to make and manipulate a power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create a light curve\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy` into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, noisy, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot it to see what it looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIeCAYAAABENbUUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3OUlEQVR4nOydeZhcRbn/vz1rkpnsM9kgC7KEgCwJAZSwyCWAREAWuShrWAT0XpTFBfSKwassPwRUEJUrCIgRlM0gigGUhLCHhDUGAmQlC1knk0yS2fr3x6HmvKe6zr5Vdb+f55lnerp7uqtPn1NV3/q+71uFYrFYBMMwDMMwDMMwDJMqVXk3gGEYhmEYhmEYphJg8cUwDMMwDMMwDJMBLL4YhmEYhmEYhmEygMUXwzAMwzAMwzBMBrD4YhiGYRiGYRiGyQAWXwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkQE3eDTCV7u5urFy5En379kWhUMi7OQzDMAzDMAzD5ESxWERraytGjBiBqip3f4vFV0RWrlyJkSNH5t0MhmEYhmEYhmE0Yfny5dh5551dH2fxFZG+ffsCsA5wv379cm4NwzAMwzAMwzB5sXnzZowcObJHI7jB4isiItSwX79+LL4YhmEYhmEYhvFNR+KCGwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkAIsvhmEYhmEYhmGYDGDxxTAMwzAMwzAMkwEsvhiGYRiGYRiGYTKAxRfDMAzDMAzDMEwGsPhiGIZhGIZhGIbJABZfDMMwDMMwDMMwGcDii2EYhmEYhmEYJgNYfDEMwzAMwzAMw2QAiy+GYRiGYRiGYZgMYPHFMAzDMAzDMAyTASy+GIZhGIZhGIZhMoDFF8MwDMMwDMMwTAaw+GIYhmEYhmEYhskAFl8MwzCMsfz738DttwPr1+fdkvC8/Tbwy18CGzfm3RKGYRgmK2rybgDDMAzDRKG7G5gyBViyBHjjDeD//i/vFgWnsxM49lhg5Upg4ULgttvybhHDMAyTBex8MQzDMEbS3m4JL8ASMCaxebMlvADgnXfybQvDMAyTHSy+GIZhGCPp6lLfNoHOTvv29u35tYNhGIbJFhZfDMMwjJF0d9u3qZgxgY4O+/aOHfm1g2EYhskWFl8MwzCMkbDzxTAMw5gGiy+GYRjGSKjzxeKLYRiGMQEWXwzDMIyRmOx80bBDFl8MwzCVA4svhmEYxkhMzvli54thGKYyYfHFMAzDGEm5OF9ccINhGKZyYPHFMAzDGAnnfDEMwzCmweKLYRiGMRIquEwLO6TOV1eXee1nGIZhosHii2EYhjGScnG+AHa/GIZhKgUWXwzDMIyRlEvOF8Dii2EYplJg8cUwDMMYSTk5X1x0g2EYpjJg8cUwDMMYSbnkfAHsfDEMw1QKLL4YhmEYIykn54vFF8MwTGXA4othGIYxEpNzvlh8MQzDVCYsvhiGYRgjMdn5ksMOOeeLYRimMmDxxTAMwxiJyTlf7HwxDMNUJiy+GIZhGCMpJ+eLxRfDMExlwOKLYRiGMRIquIpFpxjTHXa+GIZhKhMWXwzDMIyRyGLLJPeLnS+GYZjKhMUXwzAMYySy2DJJfPEmywzDMJUJiy+GYRjGSNj5YhiGYUyDxRfDMAxjJOXkfLH4YhiGqQxYfDEMwzBGIjtfJpWbZ/HFMAxTmbD4YhiGYYzEZOeLww4ZhmEqE23F19SpU1EoFDx/truMVq+99hpOO+00DB06FL169cIuu+yCSy+9FB9//HHGn4JhGIZJC5NzvrjgBsMwTGVSk3cD/Jg0aRJ222035WPV1dUl9z300EP4yle+gs7OThx44IHYZZddMHfuXNx+++3485//jDlz5ri+HsMwDGMOstgyKeyQnS+GYZjKRHvxdeGFF2Lq1KmBnrty5Uqce+656OzsxG9+8xtcdNFFAICuri5MnToV999/P8444wy8/PLLKBQKKbaaYRiGSZtycr5YfDEMw1QG2oYdRuFnP/sZ2traMHny5B7hBVgO2a9+9Sv0798fr776KmbOnJljKxmGYZgk4JwvhmEYxjTKSnw9+uijAIAzzjij5LHGxkaceOKJAIBHHnkk03YxDMMwyVNOzhfnfDEMw1QG2ocd/utf/8Jbb72F1tZWDB48GAcddBCmTJmC+vp6x/NaW1vx/vvvAwAmTpyofK2JEyfi97//PebPn596uxmGYZh04ZwvhmEYxjS0F1/33XdfyX3Dhw/H3Xffjc9//vM99y1ZsqTn9qhRo5SvNXLkSADA4sWLPd9z69atvu0K8hyGYRgmPcrJ+WLxxTCVzbPPAlu3AlOmAFyWoLzRNuxwv/32w89//nO8/fbb2Lx5M9asWYOZM2fikEMOwapVq3DiiSfi2Wef7Xl+a2trz+2GhgblazY2NgIANm/e7PnejY2Nvj8jRoyI/yEZhmGYyHDOF8Mw5cBbbwFHHgkcfzzw9NN5t4ZJG23F1+WXX45vfOMb2HvvvdG3b18MGTIERx99NObMmYMvfvGL6OjowGWXXZZ3MxmGYZicYOeLYZhy4K237NtvvplfO5hs0FZ8uVEoFHDttdcCAN544w0sX74cANC3b9+e57iFBG7ZsgUA0K9fP8/32LJli+/PypUrk/g4DMMwTERMzvnighsMwwioEy674kz5oX3Ol4px48b13F6xYgVGjhyJ0aNH99y3bNky7LPPPiX/J4TamDFjPF/fLWyR0mXSEivDMEwZYrLzxWGHDMMI6GIMi6/yxzjnCwDWr1/fc1s4Xv369cNuu+0GAJg7d67y/8T9EyZMSLmFDMMwTNqYnPPFYYcMwwio4Gpvz68dTDYYKb4eeOABAJbgGjt2bM/9J598MgBg+vTpJf+zZcsWPP744wCAU045JYNWMgzDMGkiO18mhR2y88UwjICdr8pCS/H1+uuvY8aMGeiURtLu7m7cdddd+N73vgcA+MY3voHa2tqexy+77DL06dMHTz/9NP7v//6v5/6uri58/etfx6ZNm3DggQfimGOOyeaDMAzDMKnBzhfDMOUA53xVFlrmfC1ZsgQnn3wyBg4ciAkTJmDo0KHYtGkT3n77bSxbtgwA8JWvfAU//OEPHf83YsQI3HPPPfjKV76Ciy66CHfddRfGjBmDV199FR9++CGGDh2K6dOno8AbKDAMwxhPOeV8ccENhqlc2PmqLLR0vvbbbz9cdtll2HvvvbFw4UI88sgjeOaZZwAAX/rSl/DEE09g+vTpqKkp1Y6nnXYaXn75ZZxyyin48MMP8eijj6Krqwv/9V//hTfeeKMnL4xhGIYxm3JzvorFfNrCMEy+sPNVWWjpfO2yyy649dZbI///AQccgIcffjjBFjEMwzC6UU45X93dVvtJJD3DMBUC7bu44Eb5o6XzxTAqtm8vnWwxyVEsAm1tebeCYYJTTs4XwHlfDFOpcNhhZcHiizGCN98Ehg8Hxo0Dtm3LuzXlyYknAgMHAg89lHdLGCYYJud8qcQX530xTGXCYYeVBYsvxggeeQTYtAl47z1gzpy8W1N+rF4N/PWvVrjDfffl3RqGCYYstkwOOwTY+WKYSoWdr8qCxRdjBDQcjleHk6elxb69eXN+7WCYMJSb88Xii2EqE3a+KgsWX4wRUMFl0uq2KWzZor7NMDpjcs4XO18Mwwi44EZlweKLMQIWX+nS2qq+zTA6w84XwzDlADtflQWLL8YIWHylCztfjImUU6l5gEOqGaZS4ZyvyoLFF2ME1IY3aYJlCux8MSZictghO18MwwjY+aosWHwxRkBXhLljSh7Z+SoW82sLwwTF5LBDzvliGEbAzldlweKLMQIOO0wX6nbxZsuMKbDzxTBMOUAFFxfcKH9YfDFGwOIrXeQ8L877YkzA5JwvFl8MwwjY+aosWHwxRsDiK13kPC/O+2JMwFTnq7u7VDgCXHCDYSoVFl+VBYsvxghYfKULO1+MiZia8+XWh7HzlSxLlgBnnAH86ld5t4RhvCmXghsrVgBnngn8/Od5t0RvWHwxRsDiK13Y+WJMRBZbpvQNbpMrFl/JcvPNwB//CFx6KbBuXd6tYRh3ysX5uvVWYPp04LLLLCHGqGHxxRgBi690YeeLMRF2vhgvVq60fnd1ARs25NsWhvGiXApufPCBfXvt2vzaoTssvhgj4FLz6cLOF2MipuZ80T6stta+zTlfybJtm32bF+0YnSkX54s6zNyfucPiizECdr7ShZ0vxkTKwflqbLRvs/OVLFR8mXJuMJVJueR8UbfLZAcvbVh8MUbA4itd2PliTKQccr769rVvs/hKFna+GFMoF+eLxVcwWHwxRsDiK13Y+WJMhJ0vxgsWX4wpyM5XsZhfW6LS0QFs3Gj/zeLLHRZfjBGw+EoX2eli8cWYQDnkfLH4Sg8OO2RMQZ7XmHi+ykVtWHy5w+KL0Z5i0XkRs/hKlmKxVGxx2CFjArLzZUrf4OZ8cYJ6srDzxZiCfH6aKFzk6obcn7nD4ovRHjn+2eR4aB1pby/t+Nn5YkzAVOeLww6zgcUXYwrlMM+RxZeJAjIrWHwx2iOvnvAgmiwql4udL8YETM354oIb2UCPpynnBlOZyPMaFl/lDYsvRntYfKWLyuVi56uyWLsWeOwxoK0t75aEg50vxo1ikZ0vxhzY+aosWHwx2sPiK13Y+WKOPRY4+WTgiivybkk4TM35ohOrhgb7Nouv5OjocJ4fppwbTGVSDs4X3WAZ4JwvL1h8MdrD4itd2PmqbLq7gfnzrduvvZZvW8JSDs5XbS1QX2/d5slKclDXCzDn3GAqE1lsmegasfMVHBZfjPaw+EoXdr4qGzopNe3aKoecr9paoFcv6zY7X8khiy/Tzm2msigH54vFV3BYfDHaw+IrXdj5qmzo9WTatVUOzldNDYuvNGDxxZgE53xVFiy+GO2RxZeJnZLOsPNV2Zgsvsoh54vFVzpw2CFjCsVieThfcs4Xiy93WHwx2sPOV7qoXK4dO8zs/Jnw0O/ZtO+8HJwvGnbIOV/Jwc4XYwqqfsu0vhjgTZbDwOKL0R4WX+ni5nJx6GFlUE7Ol4niq6bGLrjBzldysPhiTEF1bprmGhWL7HyFgcUXoz0svtKFiqwBA9T3M+WLyeJLFlumtN+r4EaxmE+byg0OO2RMQdVvmeZ8bdpU+jlYfLnD4ovRHvkCNmWCZQrU+Ro+XH0/U76YLL7KxfkS4qtYNG/SpSuyi2jauc1UDqpr3rR+QA45BFh8ecHii9Eedr7ShTpcVHyx81UZmCy+TM35cnO+AA49TAoOO2RMoRycLznkEOCcLy9q8m4Aw/jB1Q7ThTpcw4ap79eJri6gutr98WLRCoEAgKoqoH//TJplLCaLr3JxvkTOF8ATlqQwNexQnNNVvDReMbDzVXnw5c1oDztf6WKS8/X000BTE3DSSercmE2bgHHjgEGDrJ8BA4Cjj+Y8Gi9MFl/llvMFsPOVFCY6XytWAGPGAHvvDbS05N0aJivKoeAGi69wsPhitIfFV7q45XzpKL7uvdcSWH/5C7B0aenjTz4JvPuu876nnwbeeSeT5hmJyaXmy8X5YvGVPCaKrwcfBJYvBxYuBGbOzLs1TFaw81V5sPhitIfFV7oIkVVba7lFAh3DDtva7Ntbt5Y+TieuhYJ9W56IMTbl5HyZIr7Y+UofE8MO16yxb9O+jilvyjXni8WXOyy+GO1h8ZUuQnz17Wv9yPfrBO3MVZNUOsFqbLRvmzaQZQm9nrq7S90knZHbakrfwM5X+pjofFH3gPusyqFcnS/OX3WHxRejPSy+0kU4XI2NTsGio/NFzwU/8dW7t32bV+Dcka8nExwCQTk4X1xwIx1MFF/UPeA+q3IoB+eLww7DYZT4+s53voNCoYBCoYAf//jHJY9Pmzat53G3n4ULF+bQciYOLL7SxVTnSzVJpecGdRNMG8iyRL6eTLq+yiHni8MO08HEsEM6geWJa+VQTgU3qqrshU/TPkOWGFNq/oUXXsDNN9+MQqGAok/psv322w/777+/8rH+XHfaOLjUfHp0d9u5UyY4X2HCDqnzxeeMOyaLL1OdLw47TB8TN1nmsMPKpJzCDgcPtq61bdtYfHlhhPhqa2vD1KlTMXz4cBx44IF47LHHPJ9/0kknYdq0aZm0jUkfdr7SgxatMM35YvGVDPKxMelYmZrzxQU30sfEsEN2viqTcgg7FCGzzc3A+vXWbQ6hdseIsMOrr74aixYtwp133snOVQXC4is9qLtlgvMVJueLww6Dwc5X9ng5XzxhSQbTwg537HD2uSy+KgfTna+2Nrs6Z3MzUFdn3eZz2B3txdezzz6L2267Deeccw6mTJmSd3OYHGDxlR7U3SoH58st54sHAXdMFl+m5nzJzhctuMHOVzKY5nzJpbpNmnwz8TDd+aKObVMTi68gaB12uGXLFpx//vkYOnQofvaznwX+v3nz5uGqq67Chg0b0L9/f4wfPx4nnHAC+tKZJWMM8gWs+yBqErLz1auXlTDb3a2n8+VXcIPDDsNjsvgqR+eLxVcymCa+5GpxPHGtHEx3vui529xsLybxOeyO1uLrW9/6FhYvXoxHH30UAwcODPx/jz/+OB5//HHHff3798cvfvELnHPOOb7/v1W1e2uE5zDJwM5XesjOV6Fg/W5pMdP5MlF83Xsv8NJLwA9+AIwYkf37myy+OOeLccO0sENZfOncZzHJYnq1Q+rauoUdPvQQ8I9/AN/7HrDLLtm2T0e0FV8zZ87Eb37zG3z5y1/GSSedFOh/dt11V1x33XU47rjjMHr0aADAggULcMMNN+Cvf/0rzj33XFRXV+PMM8/0fJ1GmvjC5I4svopFayCtrs6nPeWE7HyJ3y0t+jtfYcIOdZ3IrF0LXHCBdT43NgI33ZR9G0wWX+x8MW6Y5nzJYYcmTb6ZeJjufNFzl4Yd7thhzdfa2oBzz7V+F4vAb3+bTzt1Qkvx1dLSggsuuADNzc247bbbAv/f2WefXXLfpEmT8Pjjj+Mb3/gGbrvtNlx++eU47bTTUCfODkZ73PZzYvEVH+puUfElP6YL5VZw4+OP7TavWJFPG+Rjo/sklVIuOV/0XJVFAxMN08QXhx1WLqbnfG3ebN/u398WX4D12TZssAtyrFyZbdt0RcuCG5dddhlWrFiB22+/HU1NTYm85rRp01BdXY21a9fi5Zdf9nzuli1bfH9W8hmUGX6b6TLRoe6WSIkUv7dssVapdCJq2KGuExl6HufleMjXkkmDviy2TOkXZOeLnqssvpKBww4ZUzBdfMnzCFpAqL3deS2a9LnSREvn69FHH0VNTQ3uuOMO3HHHHY7HFi5cCAC466678PTTT2PYsGF44IEHfF9z0KBBGDJkCFatWoUVPkvMDQ0Nvq/XpXtPXkaw+EoPL+eru9vqNPv0yb5dKorFcAU3THC+dBRfJl1bpjpfLL7Sh50vxhRMDzuU5xHU+WLxpUZL8QUAnZ2dmDVrluvjS5YswZIlS3pyu/zo6upCS0sLAHDVQ8Ng8ZUeXs6XeFwX8dXV5XTiyiHni7aLxVd4TM35ksMOqfjinK9kkI+j7uc153xVLqYX3JDnEVR87djhFF+6X4dZoWXY4aZNm1AsFpU/5557LgDgf//3f1EsFrFkyZJArzljxgy0tbWhUChg4sSJKbaeSRoWX+nh5XzJj+eNfB6UQ7VDdr7iwc4Xo6JY5LBDxhzK3fmiY5tJnytNtBRfUVi2bBnuv/9+bFfMYB577DFceOGFAIAzzzwTw4YNy7p5TAxYfKWHn/Olk/iSVwLLQXzRdqnO8ywwWXyZmvPFBTfSxcQxg8MOKxfTc77kLWs47NAfbcMOw7JhwwacffbZ+NrXvobx48djp512wrZt27BgwQIsWrQIAHDkkUfiV7/6Vc4tZcKiGkj5Ak4GP+dLp3Lz8mQkTM6XrhMZdr7iITtfxaL1Uyjk056gsPOVLqpjqPt5zeKrcjHd+ZK3rOGCG/6UjfgaOXIkvvvd7+LVV1/F+++/j3nz5qG9vR1NTU04/vjjccYZZ+D0009HVVXZmH0Vg4mrmKYgr1jR3/LjeRPE+eKcr3htUP2tM6pQsq4uS9DojOx8UbHI4is+qmOoc9hhVxewfr3zPpOuQyYe7HxVHpoPUaXcc889uOeee0ruHzx4MG644YbsG8SkDouv9HDbZFn1eN6UY9ghO1/xkJ0vwGq/7uJLHONCAaiqsgRYVZVdYZSJh2nO18aNpdt6sPNVOajGJ5O+fzFPqKmxhBcX3PCHbSDGwcqVwJw5+uzvJJcXF5hwAX/wAfDaa3m3whu6YiV2WNDF+Vq1ynkulmPBDc75io5KeAF6OxwC8b3X1lq/CwX7fM1TfK1ZA8ye7X5sTcE08SWHHAJmTb6ZeJSL89W3r9WXsfPlD4svpoetW4FPfxo47DDgd7/LuzUWbheqzgMpAKxYAYwbB0ycCMycmXdr3BErVg0N1so7oIfztW0bsM8+1rn4299a95Vj2CE7X9ExWXyJY0wdurzF144dwP77A0ccAdx+ez5tSArTwg5V4kvXPotJnnLJ+RJzB8758ofFF9PDu+9a4Q8A8Nxz+bZF4OYG6D5BfPllu5N58cV82+JFW5v1m+7lRW+Lx7Nm0SI7B+KFF6zflVBwIw/H2VTx5TaZ1nmSLZCdLyB/8bV4MbB6tXX7X//Kpw1Jwc4XYxLl5HwB7HwFgcUX0wO9KHQptGCq+KLHT+fORrgtVKjQVSsdQuFEG8ox54u2q7s7n/PaVPHl5nyZ0H5dnS+BSgyYhGniS95gGWDxVUmYLL66u+35jnC+vHK+TPlcacPii+nBJPGl+wVMj5/Og6g4vm7iK6+2q8LxwuZ8mRZ2COQTeigfG50nqRSTnS8dxRc990wXX359g25w2GFlY3LBDRodoxJfsvNlyviSNiy+mB5oB6BLlTtTnS96/HTuRE1wvkQbw+Z8meZ8Afkcb/la0vVYyZic8+UVdrhjRz4FL+j1pHJiTMI054vDDisbk50vOtcRYYec8+UPiy+mB9oB6O586TyQAmaEHRaL5Se+2PmK3wbdry1BuTlf9HzN47qj596GDeacBypMFl/CNWDxVTmYXHCDznWCOF+mfK60YfHF9MDOV3KY4Hx1dNgFHkwUXzt2lBaocMv50vk7oLD4Co7JOV9ezheQT+ihfO7Jm/6ahGnVDqnTOHy49ZsnqZWDyc6XvMEy4C2+ikW9r8WsYPHF9GBSzpfuEywTnC96bKng0kF8qfa/kgWUqkAF7dTp59D1O2DnKzrl5nzlLb7ka93kvC9Tna+aGqC52bqt64IRkzx0fBLCRdcxS4YuNAcpuAGY89nShMUX0wM7X8lhgvNFJ/rU+ZI7zjwIUnCDPqb6v9pae3Kra2fPzld0yjXnC9DD+So38aXzeSGOdVOTvWjU3a13m5nkoH2u2OpF13mDTBDny2ucrlRYfDE90Ingtm16dPx0wk33n9J1Mi0wodqhm/jSwfkKEnZIHxPQc7a62p7c6nq+yINQHse73KodmtB+HZ0v+VoyueiGSc5XsWiLr+ZmpyDXtd9ikoV+z2KeY8p3r3K+vApuAOZ8tjRh8cX0IA9OOoQe0sloQ4N9W9eBVEA7JF06mmLRmSNVDuJLbp9p4ktH50vXYyVjqvNVLNrH3HTnK49NwYNgkvhqbbX7tubmUteAKX9UzpfOuVH0ug+b8wWYM8akCYsvpgf5gmDxFR3dnK9Nm4AJE4D997cT6emxNVV8eYUzVFXZk1sdvgMVnPMVHVPFF22fTs5X2Jyviy8GRowAZs5Mr01RMSnskDqMLL4qE5O2SPnFL4ChQ4Ff/tL6m3O+osHii+lBviB0yPsyVXzplvM1Ywbw+uvAm28Cf/mLdR+d6OtWcIN+v6INQXK+xASruhooFPR3vlh8RcfUghv0+OokvsI4X2vWAHfeCaxeDdxxR7rtigI9flWfzHJ0Pa/ff9++PWwYhx1WIqqwQ/l+XbjlFqtvuOEG6292vqLB4ovpQUfniwoXk8SXbtUOW1rs25s3W7/dwg5raizhAuhR7TBKzld1tfVbd/Gl4ybLul9bAlNLzdPvXOewQ6+cr9Wrgz0vL+hnEavxup4Xs2fbtw8+mJ2vSkQVdgjoOW5t3Wr9XrPGCj+MkvOl67WYJSy+mB50d77EhQ3of/Hq5ny1tdm3RUfoJr4KBbvz1MH56uqy/o4ivnQv28vOV3TKzfmi16AO4svL+aKCiy7s6AI9fmI1Xtfzgoqvww9n8VWJuDlfOn7/ov/q6LAWctn5igaLL6YHLriRDF1dTrGjQwcqVqsAf/EF6CW+AKutQQpuyFXkTHO+WHwFx9ScL1OcLy/xRR/btCmV5sRCJb50PK+3bwdeftm6veuuwE47cdhhJWJSzhdt09q1/jlfLL7UsPhietDd+aLiS+eLlwodQI+2qpwvt02W6d95CUeV+Aqb8wXoL750cL641Hy2BMn5yuM8CFNwgz6mu/MlJoTFortgz4uXX7b72MMPt36z81V5iD6YVuil9+sE7b/WrnUu0qvE19atpX21jp8ra1h8MT3omPPlts+XzhMs+bjpMICa7nzt2BEv50uH70CFjs6XKQMjO1/Josr5cislT8VXa6t+x1wcv6oq53HVrZ005PCII6zf9JzQtd9ikoVGbOguvmTnSxV2SBdzVc64jp8ra1h8MT2Y5Hyx+ApHmJwvQD/x5RZ26FZqXhZfnZ167kmkwybLpoYdllvOl27iq7PT3dWSi2yIIj66II5f797OY6zbuS3newFO14AnqZWB+J5ra/X+/ru7nYte69Y554lijkY/g6oP0e06zAMWX0wPnPOVDLJo1aEDrRTxJSbeYsJFBwEdzxkdnS8dj5MKdr6SRXXuuYUeyvfrlvdlgvjq6ABeeMG6vfPOwJgx1m0OO6w83Jwv3b5/+fqhzlefPqWFrgC1+NJhTpQ3LL6YHnQPOzSl2qGOzpcq7NBtk2Ugf/GlEiVBCm64hR2qXlMHdMj5MlV8lXPOF4uveLiJL52E+Wuv2YtiRxxhb++h8+SbSQfqfOk8ZqnEl1hspvMzFl/+sPhieuCww2SQj5sOA6if8yUX3BCdZ2dnPknqSRfcAPTs8Fl8RYedr2RRXV9BxZduRTeo+BJ9AaDXua0KOQT0Djtj0sGUnC8v50vkewEsvoLA4ovpQXfny5Rqh/Jx06GtUcMOAT3ykMLmfMml5gE9RLCMDpssu1U73LYN+OEPgdtvz75NQaAiS7gG8v15UiwCt94K/OQnzmNskvPltoGyqc6XTuJr1iz7tpv40rHP0pEnnwSuvBJYvjzvlkRDnJdhnK9f/xqYNs05tqeN3B6a80Wdr6oq+7pT9Ss6zInypsb/KUylwM5XMujofEWtdghY3wGdGGZB0tUOAT07fB2dL3GcHnwQ+NGPrNvjxgFHHZVtu/ygzlddnd1X6CK+nnsOuOIK6/YeewCnnWbdNkl8qZyv7m5g/XrnfTo5X93ddl/Rq5e+YYdif68hQ4CxY+37dV8w0o0dO4DTT7eKvmzcCNx9d94tCo/oc2tqgjmf8+cDX/uadXvkSOCCC9Jtn0AeK1autM9R6nwB1udwm6fpPH/LCna+mB644EYyyMdNh0p75ep8+eV86R7Co3PBjWXL7PtmzsyuPUGhE2kdC6vQ47dkiX3bLeyQXoM6i6+NG0tDPnVyvujn0DnsUByzkSOdzq3ufZZubN5sV9tcuDDftkTFzflyE9+LF9u3aT+TNvL5SNtBnS/AeR77vU4lwuKL6YGdr2RQHbe8OxvqfInJSZCCG/LzsoJzvvJrg/ibDvw0REoXqACg37Mu7gY9rvR71dX5CprzpbpPJ/FFj52uYYddXfZ56pZvC7DzFQR5018Toc5XkDGLjudZjmvy9UMdb5Xz5YaOY3HWsPhietAx54sOPqaIL9Vxy3sQDVtwI2/xFbTaYZicLx07fJ2dL3q8X3tNj/6A4uZ86S6+dC24IdrYr599nyrnSzXB1Sns0Et86XJu0GtL7ns57DAc9Ds1VXyFzfmi43mW45rXe8nOl3xeB32dSoHFF9OD7s6XKaXmVcctz0G0WCzfsMMwzpeOExmdN1mmx6uzE3jxxezaFAQ550ugS99A20G/Vzfnq6bG/jtP8TV8uJUwD6gnsypBprPzpWPYIT0fvJwvnqT6Q8VXS4ue/bwfcZyvLD+v1/XDzlc4WHwxPejofNFBiq4M6zKIqlAdtzw7m+3bnTlnJoqvIAU3ikV7Qm5K2GHezlex6F7tUD7etDS2DpSb8wXYfVweDqh4zz59gMGDrdtBww5Ncb50GTeCii8ThUTWyNe7XAxGd7q77XEraMENE5wvL/Gly3WYJyy+mB7kC6K1Nf9CEWKQqqvTfyIt0M35kkvRbttmfa9Bc77yaLuX80XPA/oZ6CBsSsGNvHO+VHtliTbJols38aV7zhc934LkfAG2+Mra+eruttvbqxfQ3GzdLrecL13ODS/xpbtbrxvyd2pa6CHtD4IW3MhLfHmJJi64EQ4WX0wP8gXR1ZWP60ER719fr+cKpgrdcr5U+4Ds2KF3zpdXwQ2ak0I/Ax2EOecrGKrrSLRJPmdffjkfR8aNcna+shZf8kJMU5N1u62ttP8wzfnisMPyppzEl+4FN7zeSw475Jwvb1h8MT2oLoi8875MFF+6VTukHbVg2zbzxJcQA0HElylhh3k7X6rryC3scMcO4JVX0m9TUMot5wvIT3zJfYFwvoDSHC+TnS9dzg0OO0yOchJfuhfcYOcrOVh8MT2oLoi8875MFF8mOF9UfNXXO/eZEfcJdBNfdIUtjPjScSKTd8GNMOIL0Cv00FTnS55sUXQQXzTsECidzFIxNnCg9dsU8aXLuUGvc3mSqnufpRvyd6oqCKMzdN7FBTcqBxZfTA+qC4udLyfLlwMffuj9HN3El5/zJed7AfmLL7lzpgU36uvt9vnl0uTlfK1fD7z1lv/zdAw7dMv5AvTa78vN+dJlgh0k7FB2vsS12NGR7ecII77E3zU1wOjR1u2WlvzzgwXyZ+Gww3gsWAB8/HG4/ykWs9uewiTn6/XXSxcq5MUY+fvv6rJCvuk5wwU3zIfFF9OD7s4XnUjncfEuXgx86lPArrtaA4sbuoUdujlf4tjqKL7k73fLFnuyXVdnt9mv4EYe4mvLFmDsWGDffYEHHvB+rsrhy3ISG9T5GjTI+v3CC/oMnG7Oly7tC7vJMpDfXl9yzlcQ8dXUBAwYYN3u7FT3M3nAYYfJ8eSTwN57W+NeGEfpppuAiROBgw9WF/VJEvk71VV8/fa3wPjxwD77OL9/L+ervR34xjeAz3wGOOEE+34dww7Z+QoHiy+mB5NyvvK4eJ9/3u58nnnG/Xm6OV9Bwg5laMepg/javNm+TcWXX9hhHqvI8+bZ5Y69zhOgtE2q0u9ponovlfg64ADrd1ubPqWcTa12GKTgBpCt+JLdIuFoAcAbb9i3i0V7ctvcbIsvQJ+iG9Tp79PH6Xzpcm6YUu3wn/+0fm/dGm6fP+GQL1gArFmTfLsopjhfzz5r/V6xAvj3v+37/XK+Zs60bv/zn/bCnI4FN3iT5XCw+GJ60M35KhadoWZ5r2DSAdNtorFjh/o4cthhOLzEl1vYoS7OFx38/SakqvM4y+MdtNph//727bwroApMyvkKW3ADyE981dcDhxxi/03z/LZutT+LLL50yfuiY1bfvvmPGypMCTukC3dhRA09zmnPIUwRX/S7pG30y/kSz6XVp9n5Mh8WX0wPuokvOvmrrweqquzCEHkMorQ9bhMNt+OlY9ihqeLLzfnyy/nKSgDTgdVvQqo6L7LM+woSdlhX5xQFupSbL4ecL12dr6Ym4NOftv6eN8+OgKDndnOzU5TrIr5otIbp4itv5ysJ8ZV29IwpBTfod0mPpVep+bY25wKeOJZ5FdxIKueLxReLL4agW8EN1QAlBtK8xZebo+F2vHR0vkzK+aLHVfecLzr4ezlfxaJaKOgivugG5/Qc0UV8cc5XcsjiCwAOP9z63dVl5foBzkkjzfkC9Ak7pAtgjY0cdhgHOnaEETXsfJVCxx96LOXFGNqXrVrlfA1xLE13vnTpo/PEKPH1ne98B4VCAYVCAT/+8Y9dn/f0009jypQpaGpqQu/evbHnnnvi+9//PrbkXT1Cc3R3vgB9xFdY50u3nK/Nm+34cR3Fl3wu0omd7HyJz6GL+ArqfLmdw7qIL+p85X0+qNA95yuu85XleSAX3ABs8QXYoYfsfCVDJYUdZu18rV+ffpGPKLiFHXo5XytXOl9DHEvdqh1WV3vvFRr0dSoJY8TXCy+8gJtvvhkFeUMiiVtvvRVHH300nnzySey999444YQT0NLSguuuuw4TJ07EOl09aQ3QreCGaoASHVPeOV9uEw16vOiKq25hhxs32rdVnWTek22/nC8xQaQFKlSOQh4TmaA5XyaJL5OcL93Fl+7Ol7j2qfgSBRRk8WWC86Wj+FItLAp0CjukzpcpOV9dXc7xTReC5HzJBTdk8SWOZV4FN9yun759S/cK5bBDb4wQX21tbZg6dSqGDx+OL37xi67Pmz9/Pq688kpUV1fjiSeewKxZs/CnP/0JH3zwAY466ii8++67uOSSSzJsuVno5nyZGHZIj5cozy3/b9aowg6peNTR+fLafFh2YsTEsVycryyPd5Bqh1TsAvqIL7ecL10m2EEKbuia8wUAw4cDu+9u3X7lFas9dO1S14IbsvPFYYfRMdH5AvTM+4rifMlhh62t1vPpeZGX+KLbUcj5XgCLLz+MEF9XX301Fi1ahDvvvBP9aZyDxPXXX49isYjzzjsPxx13XM/9ffr0wV133YWqqio8/PDDWLhwYRbNNg5xQdDBShfnS1zIQnzlcfEGCTukx0sX8eXnfJkgvihuToyf+MrqO6AD/44d7mLF7RzO2/kSuWjsfMWDfr/t7bZY9NpkWSfxBdjuV0eHtdGrnPNFh2N2voJjYtihrjlfqu9Ux7wvOv7QY+lXap6yZUvpeJ5XwY3hw+3bQcRXQ4P6dSoV7cXXs88+i9tuuw3nnHMOpkyZ4vq89vZ2PPHEEwCAM844o+Tx0aNHY9KkSQCARx99NJ3GGo7oBAYOtO9j58smjvOlc9ihn/jKQziGEV/iPNHR+QLczxVdww7F/W4FNzjnKxhu7q1X2CE9zjqJL8AKPfQKO9TF+RJ9cK9e1vE1TXxVV9shXHk7X1HDDuk1mIfzpaP4Clpq3ssxam0tHc/zcr5GjLBvy8U2gNLzul8/9etUKjX+Tymlu7sbr776Kp555hnMmzcPa9aswcaNGzFw4EAMHToUBxxwAP7jP/4DBx54IKqqouu7LVu24Pzzz8fQoUPxs5/9zPO57733Hto+OSsnTpyofM7EiRPx3HPPYf78+Z6vtVUVpxXhOSZRLNoXxKBB9sqMLs6XDuKLtqe11er0qUso7hfo4nypTtVydL78Ss1nMUjRTWgFmzYBQ4eWPldX50vc71Zwg52vYMjHdvt2y9nSsdS8quAGABxxhH179mxr02JBc7NzsUkX8SX6YLEab1rYYaFgnRft7fmLLzrR37LFOodV44VMnjlfgFniy8v5klE5X3kV3AjrfPXrZ4dRsvMVUnx9/PHHuPPOO/Gb3/wGKz/JBCyKUmME4SyNGDECl1xyCb761a9iyJAhoRv3rW99C4sXL8ajjz6KgdSOUbB48WIAwIABA9BXJcMBjBw50vFcNxpVZ1KZQzsAuprJzpeNPBBu3ux0CQE9c75MLLjh1Tm75SCpnK+sQ3haW0u/a+F8Pf88cP75wJQpwK236u18dXTYxyuPsMOrrgIeeQS4807gc59TP8eknC/Ae5FAoEPYIb32R48GRo0Cli0D/vlPZ1L94MHO9usWdiimAbo7Xyqno67O6kfynqTKY8fatcAn0yhPdMv5mjEDuOIK4MILrb4lD+h3uX69vXjrtcmyzJYtpYupeTlfVHypptzyeU2fk/d5rQOBxNeOHTvw//7f/8ONN96ItrY21NTU4IADDsAhhxyCvffeG4MHD0a/fv3Q0tKC9evX4+2338YLL7yAN998Ez/4wQ9w/fXX46qrrsK3v/1t1HvVnyTMnDkTv/nNb/DlL38ZJ510ku/zWz+5whtoYKmEEFWbaek0BoDzYujTx+7883S+VKEwOomvTZtKxRc9XoMH27fz7GzKoeAGReeCG6q8CHGsf/5z4L33rJ/vfc+9PVkeb7fjTCf+WRfc2LwZ+H//z3IRb7nFXXyZ5nyJ71VH58st7BAAjjwSuPde67ZYa915Z6sv1rnUvFhD1V18qaZE4nzOc9GuWCwdO6KILx2cr5/+FPjgA2DaNOC73y2tzJcF9LovFoENGyz32KvghkzeYYf0vT71Kes4FotOISZg8eVNIPE1duxYLFu2DPvssw/OP/98nHnmmWhqavL9v3Xr1uH3v/89fve73+Gaa67B3XffjQ8//ND3/1paWnDBBRegubkZt912W5AmJkqQ/cA2b96METTo1XBk67tvX2t1Jk/ni66kikE+z1LzKvElY6LzZaL48nO+VGGHWXwHqnAXcZ589JF9n6hapSJL58ttEKSTrqydr7Y2e5IvV/uimJbzZYrzJfcHP/wh8PHH9vnbp481gQWs9jc0WOeLDs5XZ6f9WUwNOwTs8znPcaOjo/R4BS26oZv4EuemKIBEr7OskL/Ldess8eVVal5G5XxleY7Q73XUKOCmm6xc0CuuKH2ul/jSZREkTwKJr969e+PPf/4zTj311FAv3tTUhMsvvxyXX345/vznP+Oaa64J9H+XXXYZVqxYgQcffDCQyAPQE2rolYslRFU/mvmnwMs9E3Tp0osnhNwBNDZa4itP54uKGxEKqZPzpZpslEvBDdpx6i6+VIUM8nK+VOJLnCdyFUTa3vp6+3PoEHZIz5msN1mmbfLK3TDN+RLfq47Ol1vOFwDssgvwt7+5/++AAdaEUAfni/a/poQdejlfukVMBM2lyjvsUG4nPd5bt+YjvuTvcu1aYNy40sUYeUGGopPzVVMDXHml9aNCPq/79LHG5a4udr6AgOLrnXfeiVU4AwBOO+20wOLt0UcfRU1NDe644w7ccccdjsdEmfi77roLTz/9NIYNG4YHHngAY8aMAQBs2rQJra2tyryv5cuXA0DPcxkblfgC8nW+6GAunK88S83Lk07VZEPnghs1NXZHTztwHXO+vCZJYXK+dBBf4jyhj+3YYbs7gDVR1El85el8BRVfuud8yeebqc6XH/37W66YbuLL5LBDHZwv1aJdFPGlg/NFj7fqc2WBSnzJ99fW2gVX3PZdldsvtgaRi3+lgdcehTKy89W7t/U/LL4sAomvuMIryut0dnZi1qxZro8vWbIES5YswejRowFYoZF9+vRBW1sb5s6diyOPPLLkf+bOnQsAmDBhQsiWlz9yByC0a1tbdhe2DHWWZOerq8vqdLKM3Y7jfOkwiA4aZIUPyagmWzU1djy3buIrzD5fWRfcUIXltLRY703dRvl8aGy0/1eHnC9ZnGcpvuj32NZm/dAqe6rnlaPzlaUIdyu4EQTRN7e1WZ/Nb1KWJvIGy4CZYYc65HwlJb50KLhBj2NehardxJdblV7VeNXaqm5/R0c2czSvPQpl3MTX9u0svgBN9/natGkTisWi8ufcc88FAPzv//4visUilixZAgCoq6vDF77wBQDA9OnTS15z6dKleOGFFwAAJ598cjYfxCDki4oWfMyrs/JyvoDsB9IgOV9uzpcO4SNuEbwq8VUo2JMCU8SXDqXm3Zyv9eud98lhh/R608H5ksMO83K+APc8EzfnS5cJdpR9vkx0vmh13LzzvsrF+SqnsMO8NlmmkQU6Ol+iX1O5SW4LGCrnS/XaaZGE8wWw+AIiiq9ly5ZhxowZWLFiheP+d955B0ceeSQGDhyI8ePH46mnnkqkkUG56qqrUCgU8Lvf/Q5PPvlkz/1tbW244IIL0NXVhVNPPRV77rlnpu0yAVXBDUFeeV9ezheQ/UAaxvmSj2FeK5hdXfbA07+/enXMbbKVl/jq7nZOrGXccpD8wg7zKrjR0qIOg9FZfOkSdgi4T/jcnC9dJthBCm7okvMVN+xQkLf4UjlfJoovXcMOoxTcyMP52r7d2YfpKL5UYYeqRUOKm/OV1XnitXAkI5/XvXvnm7OvG5HE109/+lOcfPLJjuIWW7duxeTJkzFr1iy0tLTgjTfewIknnohFixYl1lg/JkyYgJtvvhldXV2YMmUKjjzySJx++unYbbfd8Mwzz2Ds2LH49a9/nVl7TMIt5wvIL+9L5XzRTinrCzhMzldjY/YTfxV0AtenjzrRWDfx5fe9mpjzpRJftD1UqOclvqiA0aXgBuAuvkytdugVukPPa10KbvhBna+8875UzpfJYYddXd4LUWkSx/mixznLnC+ahiDn2AryiOTp7i4991Rhh6IfU+39BuTvfHmFTMuw8+VNJPE1e/Zs7L777hg7dmzPfdOnT8eaNWtw0kkn4fXXX8ePfvQj7NixA7fffntijQ3C5ZdfjqeeegrHHnss3nzzTfzlL39BY2Mjrr76arz66quBqydWGm45X4Be4ksn58ur1HzfvtnnG6mgA01Dg1p8ueV46Cq+wuR86SK+5BVjXZwvekzouZFnzldc50uXCbappebD5nyx8xUe0adWV6ujEXQYO6LmfBWLzuPc3p7u4iO93pub7duiz+3udh7DPJwv1XcY1fnSJewwas4XwOILCFhwQ2bVqlU44IADHPc9+eSTKBQKuO2227DTTjth3333xR/+8Af885//TKShgnvuuQf33HOP53MmT56MyZMnJ/q+5Y4svmiCe95hh7172xMCesFnfQEHCTukzhftfPJyvmhH3aePelXbNOdL55wvMeAPGmRNnrdtcw87pOcHFV95Fdzo3ds+p3UKOzQ150s+31SbLOsmvqqr/SdVMro7XzqKLzEeuAldOWoirCBOgqjiS+XUbdnizIFOEnq9Dx1qF5USbZXH3jycLy/xFTbny63gRhbEKbjRqxeLL0ok52vjxo0YJF1JL730Evbaay/stNNOPffts88+JXlhjJ7IF1UWzteWLcCNNwKPPqp+XAzkdGVVZ+eru9vuGPv21SPsUBZfUcIOs257OThfzc32eesWdqiD80XbQI+pTgU3yjXnq7q6tFprVZX9WfIQX2FDDgFn/5y3+DKt2qGbqNJh4U41yd+40f/6Uj2e5gIu/U6HDbNvi35DXszSxfkSi0pBnC9RKLytTX0sueCGeUQSXw0NDVhLRsQlS5Zg1apVmDRpkuN5NTU16NRlJGQ8kS8qOhlMq+P87W+Bq64CvvQlYOnS0sfFKjxdWdVJfMnOl7zqqkPoSJCwQxOdr6AFN6qr7YEr7UnMjh32tdLcbJ+3bs6Xbjlf9Dzwcr50zPnKswqqG345X26TF3GNmiK+uNpheMQ15Jbbo8PYoRIpxSKwYYP3/6mOcZqpC7LzJdBdfImKjH4RGwAwcqR9W7VdTFYCPYzzxQU3vIkkvvbaay/MmTOnR4BNnz4dhUIBhx12mON5y5cvx1B6NTDaIocdZrHfzIcfWr+7u4H333c+1tUFbN5s3dbF+fIruPHRR/btYcP0WL1Mwvnq7Mw26dtvsuGWg+QWj57VahsVCU1N9qR082ZgzRrnc01zvuhkQEfnq6rKFty6iy9xbFV7lwH5iC/Rt0URX3ntTaaCTvJNyPkKGnaYB7QPoALbL/QwT+eLtlO0Xx638wg7VH2H7e3WcVEVsZBF+S672LflsQRg58tEIomvc889F9u2bcPEiRNx8skn49prr0Xfvn1x4okn9jxn+/btmDdvHsaNG5dYY5n0kDuALKqb0feUV8ZoZ0071DyrHfo5X9S9Gz1ajwE0iYIbgB4b/wrChB0C2XX4NDeJhh0C9kKDQHa+dBZf9fVWeJx4XMecr6oq/VZV3cQXzQtVkafzFSW3KOvQXi/ouGFCtUNTwg5Hj7ZvRxFfaTpf9P0aGuzb4pzW1fkCrGPp53xVV/s7XybkfFHx1dXl3IetEokkvr761a9i6tSpWL58Of7yl7+gV69euPvuu9GXxM7MmDED27Ztw+GHH55YY5n00E18qSodAnqFHW7a5OxAZPFVKNjt1SF0JKrzBbD4CgKdlNCwQwCQd9yQnS/qgmR5rINUOxSDaFbiy60ks9fzaNU4XSbYbpss04qoKkwLO9RJfJWL86Vb2GFc8ZWV80XFlzjGOjhfbt/hunX+BTeamoB+/ey/8xRfSTlfQP59Rd5EqnZYKBRw991349prr8WaNWuw5557olFaxttjjz3w6KOP4jOf+UwiDWXSRV59oRdOFuJL7pyp+NIh56tYLBVfnZ3WACU6fFl8AdZx7OzUI3TERPHVp0/pSmVdnVP0euV8iecD2Ysv6tjIiwuy+Kqttb6H7dvzc77ouSHnfAH5OV9Bcr5MCTukRXmCOF/FYmlRjjRISnzluSkwoHa+TBRfOhxT2geMGWPf9ttoOc+cLxOdL7+CG83Nzr5CdXx1LDWvyvmSxZdbzmMlEEl8CUaOHImR1A8l7L///th///3jvDyTIbo5XzSkz018Zbly0tmptslbWrzFl+hsdBhAwxbcyEKAq5BzoeTBsr7e+V0EzflK+zuQxdeqVe7PlcMOdRBfXgU3gOwKsMiTi40brWMlr7TKYlt857qIL7l/2r7deVzdnC/xPXR3W8fCb4U5Ll1d9jEvR+dLt7DDri67HTqHHZrufOkqvqqq7IUjOexQ5Xw1N7v3FYI8Cm749Uvy47TgBqDPQkheRAo7rK6uxgUXXOD7vK9+9auoCbtpCJMLeYgvevF5OV86hB26dW60nUuW2Lep8wXoETri5nzpnPOlcgd0DTukK8JNTc7zVkZ2vmpq7OOtg/iSc77o41k7X4C6wpqb86XLoK5yvlTOjEzWe33Ra9t08SWOb6FgH0fdJnz0eJsSdjhqlH3bT3ypBG6ezpcO+3zRNgwZYt92c77o99/U5N5XCLJ2vgoFu4qwG/IG4hx26CSS+CoWiygGzJYL+jwmX0x0vnQQX7SdwvkaMsQe+PN2vugA2tCgnly5Wf8svsLhlfMl4+Z8iceyImi1Q/p4HuJLNeHTOeeru7vUKd++Xe3MyGQtvuj3GaXghg5CQSCOb2OjHa5povjSOexQt4Ib9HqnubO6Ol8jRti3k3K+si64EdRToX0D3WSZvlalEkl8BaWtrQ21acdMMImQt/gy3flqbwdWrrRu0xAN0fnoMICqnK9evdxzSvISX25VAAWi9Llot0p85V1q3k98tbeXOl9ZiRtKFPG1Y0e6laqCii+dc75Un4HuAwfo43zR861cnC86WdUt7DCs86XDwp2JYYe6Ftyg4mvduvA5X36vnybiuw06rafnNztfTlITX5s2bcKcOXMwfPjwtN6CSRC3ECgg/2qHOpSadzsGop0rVtgTUpX40iF0xE18uaGj8yUm2bT0uWgb/T8dCm74hR26OV9Zii/aBr+cr6w2Wo7qfOmU86X6DLLzxeIreajzJTDR+dLBTRRjR1WVFfomvmcuuBGeoM6Xm/gqB+dLzvnKu6/Im8AJWZ/61Kccfz/00EN49tlnlc/t7OzE6tWr0dXVhYsvvjhWA5lsSNv5am+3wvJ23139nvLKGA3n09n5Eu1UFdsA8g879Cu4kYX46uqySq2PHRuscpvbvi1ym+rrrclp0LDD9vbkqsd99JElZgcOtO8TAqGx0TqufmGHXjlfWVW5c6t2qMr5ks+HKBP1sG0SqCZ8Oud8BRFfuoQdJpnzlWe1w2JR7XyZKL50OKZi7OjTx+qLmput6A6dnS/VfolBxdeKFdZ547VoFhU61xk2zL69dq1TjLmFHfo5X1mdI2GdLyG+CgU7YkV+rUolsPO1ZMmSnp9CoYAtW7Y47qM/K1asQFVVFU499VRcd911abafSYg0xVexCBxyCLDHHsDtt9v304svqPOV18oJ7dxo5yza6Sa+8g479HO+vHI8kjoHvvhFYNw44Jprgj3fy/mSY8iB4OJLfk5Unn/e2vRyzBhnIQghEJqarN9RnS8g+8EUCL7PF5CuO1cOOV9u4kv3sEOTN1kWpfwB57E1Pewwb+dLLIA1N1u/163zDjvOc5Pl+nq7EISb+FKFHT7/vDVujx6tLu4TF9qf9+oFDBpk3XZzvuj3Xw7OV+/elgDTpa/QgcDia/HixVi8eDE+/PBDFItFfOlLX+q5T/756KOPsGXLFvzpT3/CAK/lX0YbvMRX3Ing2rXAa69Zt//+d/V7ejlfuhXcoNWKVM4XTU6mIW951J5JKuwwzjnwt79Zv+l370VQ8SVXB/QrNQ8k0+H/9a/Wd7l5M/DCC/b9mzdbv8X5Gtb5yiqsj+KW80VdpazFl2qCHCTnS6ewQ9V5FtT5om5vmpNWQdywQx2EAuAcQ3R2vmhfqnPOF3W+AGDwYOt3R4e3k5Wn81VdXRqOHsT5+sc/rP6kpcXZpyeFPL8S7teqVc7vV4xV48ZZv+vrgb32Ui/U0GqDuuZ87b239fvTny79v0oXX4HDDkeT5fxzzz0Xhx12mOM+xmzSdL5oZ0zfJ2jOl25hh0OHWmF0gL/zJdvsWdefyTvskFZ9Czoppt+rPEGlkxI5lyuI89XRoS63HwYqBMR5QTfhFsctTLVDWXxt3w706xevnUFwE18U05wvHSbYcQpu0POGLkKlRbnkfLnl09FJqg7nBu1L3SrN6hB2KDtf8nnp1j/lmfMlxFdbWzjni14DabjN9Lqoq7NK9y9YYL2vKNQF2PObiy6yzuGxY635hmrhtl8/e/6hq/N1553Aww8DX/iC9bcufYUORNqE63e/+13S7WByJs2CG0HEl1u1w6oqPZKn6TEQ4ReAPTlS7fEFlK5gZi2+6Cpf797Ziy/6HQcVX17VDmmbgoqvpFfmaf6R6r3Fd9zQYLVD9bll50te8Miq6EZU8ZV1wY0wOV86OF9xcr5UYc1pUi77fLk5X4WCfR3qcG6YEHZYLNpjh3C+ZPE1cqT6f3VxvtzEl6g0S+cS9Dlpi6/aWucc4cMPnY8B1mc4/3z7flVfMWBA9uIrrPM1bBjwX/9l/80FN2wiVTtcvnw57rvvPrz77ruuz1m4cCHuu+8+rFixInLjmOzIyvmiq3hB9vnq399ZeCCvhE23sEPZ+erf3zl5ynsQFat8vXtbE9SsxRf9jqI4X3TfFsB5POViJn6l5ulz46Byvujr0iRjei7Q0Di/sEOdxJeq4IbOzpcOE+w4OV8mO195FtzwqiQprjvdnC9dww6pABF9cNBFgbydLzkcXTV2yQKLXgNp9G3y/IqmJtAFUjdHSRQ9odDvI+sc4aDOlwwX3LCJJL5uu+02nHfeeZ4bKBeLRUydOhV33HFH5MYx2SF3DvQiScv5kgtu0NNJdO5y6JYOYYfU+dq0yVqBX77c+luOxM17YiKvXmZdcIN+R9SpCPo/8kKAKuxQHFe3UvNJr8wHFV+Ac4BsanLmI3gV3MhKfNE2uIVj6hp2qHPOl0nOV7kU3HBzvgDzxJcu4wbgHnbohur608n5AkpDD7MMO5SdL4FwaFUUCqULCrSf0DXsUEaXvkIHIomvmTNnYty4cdhzzz1dnzNu3DjstddeePLJJyM3jskOuXMQpUGBbMIOu7vtTq9YdDpfFB3EV0ODPSC1tFhJs+KzyJ1q3iuYsviSV7Z1d75kR0glvorF0pCirMSXeD35+hHQCUtzs31MdSy4obP4UlVYo+KLOl80zzAvKinni4Z86pjzBejlipoQdigXagLiOV9btwZffAtL2IIbQGnRjbTFl1xUQyW+/ASNfE7TfkLXsEMZFl82kcMOd9ttN9/n7bbbblguLAFGa1SV4uhEMQ60c3QTX4A9eG7bZj/m5XxlefHKSdJiINq0yb3SoXiuIM+wQyEWw4Qd0rbrKL7k1eEsxFdHh3PiEcb5ksWXV6ivTmGHeYov6ljIQoR+31QAyI/lgeo86+hwfgYdna+oe7eJa0wX8WW685X3oh11htxyvtxQHWOaQ5Y0cri5OIc7OqzHdHO+6uqiiS/5nM5afBWL7HwlSSTx1dbWht4BSob17t0brWn6zUxiqFbukxJfQZwvwF4VdtvjC9DD+aqrs9vV0uJe6RDQJ3zELexQd+dLDsdzC0GUxRc9T5IUwOvXO//2E1/0/G1qCu585SG+3CaCbpssZ9EmeUNSipvzBeQvvtz6Jlo4RBfnK27BDUAP8eXlKupUCbMcwg7DOl9Aenlfcri5HEEQxPnKuuDG8OGl7pGfm5S380X726jOFxfcsIkkvoYPH47XX3/d93lvvPEGhtDqBIy26CC+ROdMJxw6hh1S8bV1K/DBB/ZjOoUddnTYx8jN+coy5ytKtUO58qYq7FD8T5CcryT2rFO1NUrYoQ45X+KYVVX5l73Ow/kaPty+LR972fnSaT+nIOKL7udFMS3nCygtfpMHQZyvvEU5YEbYocr5oudlWOcLSC/vy63gBmCd26pzMuuwQ7mvr6oqrRYZ1vnKuuCGPC5HgQtu2EQSX4cddhjee+89PPzww67PeeSRR7Bw4UIcfvjhkRvHZEdW4ot2EvLFZ4rzVV/v7PjefNO+7SW+sh5EVQOoCaXmdQ47lAVAnLBDnXK+amrUA6rI/wT0E18mO18NDc79pyj19fax5rDD4Hg5X6aFHbLzFRy3nC/A3fnKu+AGUJqiENb5yrrghhyREgUOO7SJJL6++c1volAo4JxzzsHPf/5zR2hha2srfv7zn+Occ85BVVUVvvGNbyTWWCYea9YAhx1mhfIMG2atvPzkJ9Zjpjhfea2cyDlfdCB69FH7tk5hh6qk6TzDDqNUOwxScAPQV3y5hR22tzv/R3b4sq526Ca+6GdRia9vfhM45BDg3/9Ork30e6Rhh+ecY4mxr37VLrIikCuF6Sq+Nm60frvlewloWHMazJ0LTJgAfOc7yYgvec+9pFm3Dpg8GfjSl5zvcffdwH77WRu5ejlfpoUd5p3zlVTBDboRc1bOl9xP6VhwAyidK+ie85W08xW2zR99BBx5JHD22ekVb8mSSOJrwoQJuP7667Ft2zZcccUVGDRoEEaNGoVRo0Zh0KBBuOKKK9DW1oYf//jHOOigg5JuMxOR228H5syxRNiaNcCKFcAPfwhs3pxuwY1yzPmiK/KiHf37O8vQi+eqXiML6GQkSsENHXK+ZPFF2yQLW9U5LD8v7iAlb/brF3ZIz5NRo5ztp4N83mGHbuKLtldeUX73XeAXvwBefBG4887k2wQAn/qUfXvzZmD1auC3vwXeeMMegMXEmrZfV/ElcMv3EtCCPmkwbRowfz5w000AzSDQ1fl64AHgmWcskfXUU/b93/++FXlw2WXBnK+8zwvA3LDDKAU36P/k4Xy5iS8dnC+vhVoVeed85e183X8/8Oyz1u/nn4/2/joRSXwBwLe//W089thj2HfffdHV1YUVK1ZgxYoV6Orqwr777otHHnkEV111VZJtZWLy7LP2bdGhdnVZHamX89XREa90s0p8ySvXgN050wmHV85XloOSLL6+/nXgc5+zQgfGjAHGjQN+9rPSjRDzHERVDmJ1tbMDNE18eeV86eh8ffnLwIknAmecAUyZ4jymdAJQU5OPq0tLB6sGVPpZZGdu9Wr7782bk28TABx3nLXSOWaMsy/YuNH+vkX4Hv3O83Y44oovMbFqbU1eMHR1Ac89Z/89a5Z9W1fxRRc9xDVYLNr3r1jhDP82vdqhjmGH1MUK6nwNHGjf1kl85VlwQ/SppjlfboubYYgzf6PzGXkR1EQiHkKLE088ESeeeCLWrFmDZcuWAQBGjRqFoUOHJtI4Jjm2bQNeecW6vfvuwGc/C9x3n/V3W5u3+AKsASBqMrZKfKkGQbFySS8yXZ2vXXcF/vUv///LcxB1O469e9vfQ9CCG1HbnoT4ClJwwyvsMEn3MUrO11/+Yv/tJr5qa/NZWPBzvrzCDun5laRAkCswin5q2jTg2mut2zt2lDpfOoUd+n1/fmGHVGhu3uycxMbljTecYplONnUtuEEny2KckPMm582zb5te7VDHsMPqauu8bW0NvskyHXfSDjssFKwfeZFIh7DDNJyvSiu4Qc+rtLYtyJJY4kswdOhQFlya88or9gV6+OHOi2DrVn/xtWNHMuJLtEE1OVE5XzqKrzDHIc9B1M1B7NXLnnzp7nzJ4XhBC26kFXYYttqhDD2mdCVYdiSzdr6iiC96fiXZXrcVVvl89HK+8hZf9DMUCqWRA0GdL8Ca6CYpvmbPdn9MV+eLLlSI68bLSdE57NBtoYaiU9ghrco5YIAlonR0vsT1H7fgRhoh30HEV5xqh5UQdkjfX/7+TCRy2CFjFjS05PDDnR1qEOcrTt4XHfBEuKGX+NKx1LxccCMouoQdys6XQEfxJa+wBdnnK2ip+aRzvvycLxmV81VTY03QdXS+3HK+dBBfpuR8qYRW0IIbQPJ5X3QskIkrvjo744Wou6FyvtyclPr60skhhx2GQ+V8AfZ4HCXnK23nS3zHphTc2HlnZ5qC7jlfeRfcoOdVOThfgcTXrbfeivaYPUB7eztuueWWWK/BRIeudh5+uLNDbWvzLrgBxBNf8oDX0aG+8IIU3Mir2mHQybVMnoOom/OVpfii33MlVjuUUTlf4nrLY2EharXDHTucEzDdnK+8J9n0/VVCK2jBDSBZ8dXd7cz3kolb7RBI59jTyZaf86U6thx2GA5VwQ3AHo+3bXNvV9YFN8T7qZyvIAU3isV8wg7r6oCddrLv9xM09LyurnYuoFea81Ux4uvKK6/E2LFj8Zvf/MZRVj4ILS0t+OUvf4ndd98d3/72tyM1kolHezvwwgvW7VGjrOR12qHKYYeiE6MDQBbiK2zBDRPEly5hhyY5X0FzvnTY5yts2KHKCRXPz2MPlDBhh3IuhW7Ol65hh6rNlMM4X0mWm1+wAFi/3rpNK3EK4jpfQDrnLp0s+zlfqmNLz6O8y1SbUO1QVXADCLbRcl7Ol7j+w+Z8ycc3q4IbgDP0MEzYYZ8+2Z8jSThfcaI7KjLs8NFHH0VVVRW+9rWvYdiwYTjrrLPwu9/9DgsXLkRRijEoFov497//jbvvvhtf+cpXMGLECHzjG99AbW0tHqUbIjGZ8dprdoci9rx2Czukm6qm6XwFLbiho/iKmvOlQ7VDwCm+vD5LTY3tKphQ7dBt0p6UAO7uTjbsUJCn8xWm2qFXwQ0dnC+Twg7zcr5oBMR//3fp+Ri34AaQTj8X1/nKa9xQYXLYYZBwWJ1yvoKILznHKyvnC3CKrzBhhw0NzsWmLM6RpJ2vsNdhuTlfgfTrF7/4RRx33HH4xS9+gdtuuw3Tp0/HH//4RwBAVVUV+vfvj379+mHz5s3YtGlTjyArFosYNWoULr30Ulx66aWoC2MZMIkhhxwC7s4XvTiyDjuUna8+fdxj98XrZEXUnC9dwg6jOF+AdQ5s25aM+AIsAVPls+Sja9hhS0vppD4J8WWK8yVPaui6W5ITWrfCKWGcr7wn2EnmfCXpfNGx4JhjgH/8w76vpsZ5DMOQdj+nKrgRxvmSz408pyImiC+3sMMgiwJ5O19uBTcGDLDbTD+fLuIrrPNVKFiv5TafShqdcr4qxvkCgLq6OnzrW9/C4sWL8fDDD+Oss87CzjvvjK6uLmzYsAFLlizBhg0b0N3djZ133hlnn302HnnkEXz44Ye48sorWXjlCE2wPuII67dbzlcW4qu93TvnS0w25HwvQA/nq1IKbgB2+5MSX0EcCa9qh16bLNPXpgIvKVEjhxzS14tS7VCgg/MVpeCGbs6XTmGH9HzQxfkqFu2xoG9fYP/97cU4IHrIIZCt8yXGiajOV97nRhDxJSbWgF5hh0EWBXR1vmhb/JyvpIvGqApuANGdLzF/y/Ic4ZyvZAmtX6uqqnDyySfj5JNPBgCsX78ea9asQUtLCwYMGIAhQ4Zg8ODBiTeUiUZXFzBnjnV76FBrjy/APezQa7ITlajOV7mJL9MKbgD2OZCk+PLruL2qHQbZZLm62r2KVNLiK8mww6yLydCNzkWIqVwW3avgBl0hNjHn65lngHffBc47z3lNJIGOztf779sbY0+aZB3bI44Afvxj67444ivtRSZV2CF1UnbaCfjoI+u2X85X3q5oEPEF2K6GTs6XKuxw5kzr3Dr/fOscoseXjjt5OF9UfNG2eDlfxWK8fU1VJO18iflbXV1pteq00Mn5qkjxJTN48GAWWxrz9tt2p3f44fakVMeww9ZW637RMcr5XnL7TMj50iHssL7eOSDR7z5t8SV/z0GS3aOGHcpVrwS6iy/RvqxDalXhfTU17snhoiS+qA6Wd8GNODlfq1cDn/+89V6dncA3vhGvzTJxc77SKDUvii4BtuP12c9ax62zU2/nS1VwgzopU6YA//d/1m2vaoeAPuKruto7zFNMrPPM+aqrc15XcsGNJUusY9/VZfUL//VfpZuk9+5tLdTkUXBj2za7Pb162W2hk3fV2LZtWzbia8wY9f0q5LBD+j9ZO19ccCM+vM9XmbNokX17/Hj7tlfBDUHWBTe2bLFXLwFg2LDS55jsfOUVdiiL2BNOsCbRY8cCe+7p/RppOF9h/qemBjj2WGvgbGgAJk+2H3MLO5QnNEm5j2mHHWa9sKBayZQHVXrsCgV7gi6HHSYZykU/Ow0fTTLna8kS+znvvRe5qa7Edb7SCDukxWJ23dX63dAAnHmmdfuEE6K/dh4FN+hk/oQTgN12s85R1efQMezQb3Ivrr08ww7pQh1Quigwb559PMV1JC/qiD4jzhzCC699vjZvtm/X19vzHq+wQyD5vC/xHVZXO/u03Xe352XHH+/9GgMG2GkjnwSe9Vx3lVBwg55X7Hwx2rN0qX2bWtxyzpef+IpzcYdxvtzaK9Bhk+UwHY8OYYdy+OappwIrVgBNTf4rWDqIr9GjgZUrrUGLTkq9wg4pSU0M5UqHgNnOl2owra11Tjzk9vbqZT2ehfMlh48mmfNFj28ak/Ekna+kwg7dwt3uvhv44Q+dq/BhSdPhLxb9na8hQ6woj7Vrrc1rZXQMO/QTX1lOrGXE8ZbFl+x80fFaXFNy/522O+O1zxe9durr7c/jFXYIpCe+5LlDdTXwyivAqlXAyJHer1EoWKHSH31kbRlEX4/DDs2DxVeZE0R8bd2absENVYU41YW3fTvw4Yfq9gryqnYoBkC/UBGZvMIOu7vtVT9V7tyIEcFeRwfxBTiTpQVu1Q7lgUH3sMO8nC/VcfZyvgB7YrNpk/NYpiG+vNrS3h4v5yvKFghhiOt8NTZaorK7Oznny018VVUBu+wS77XTdL7odw1YE6+uLqfz1bev9ZlUwgvQM+wwqPOVZ9ihvEed7HxRZ0m0kx7f6ur0HTyvnC9ZfAV1vlT3xcFNfAFWP+cnvATV1bbwoq9XaQU3OOwwRf7whz/gnHPOwX777YchQ4agtrYW/fv3x0EHHYTrr78eWxSlc6ZNm4ZCoeD5s3Dhwhw+TX5Q8UVXNnUsuAEA77xj39bJ+RIDS9iinXmFHba22oUTVLlzQRHnQFdXtElqUuJLhSxs88j5SiLsUAfnK6j4Eu2XXcAsxFeYnC+/9qQtvuJWOywU7Os2becrCdLs51Sr3Fu3Op0vv+OpY9ih31iiY9ihKudLoBJfWThfYcQXdb7E+JiF8yWOTVTR4kaW5wg7X8mirfP1q1/9Ci+88ALGjRuHCRMmYNCgQVizZg1efPFFvPrqq7j77rsxa9YsjFAs4e+3337Yf//9la/bP85M1EBE51hbCwwfbt+vY8ENwAodEajCYPIWX2EnLXmFHbqVmQ+LHHoatipcEqXm3cg67JCKrz59nMnwJm6yHMf5kksx5yG+knK+0jjW9DVl9wDwd74Aa6K7cWP6zlcSpOl8qVa5t2xxOl9hxJcpzldeYYddXXYb/XK+li2z/84r7NCr4Iac8yU+T3e3XdHQreBGkojPnvSOS6Y5X1xww0Zb8XXzzTdj9913x6BBgxz3r1+/HieddBLmzJmDK6+8smezZ8pJJ52EadOmZdRSvRHO18iRzkRPHQtuAPo6X0FXK2XyCjt0KzMfFvkciCu+glQ7DLrCFjTsMCkBLNye6morx2TJErM3WQ4ivlQ5X36vlVS7wjpfJoUd+okFwJ7otrRYYpfmv0UhasXWIKR57qpWuVtbwzlfHHYYHLc9voBS8UUja/ycr7Q+R5SwQ8D6nPX1+eZ8xSVLgZ608xX2Oiw350vbsMODDz64RHgBVmn76667DgAwc+bMrJtlFC0tducjC5naWvsCoiFqeTtfK1ZYvxsb1Xk+eTtfpoQdUvGVlPMV5RyQP3M5hB0OHmwfF5M3WQ5b7RDIRny5iWg/5ytMaFmW4kt2uWpqgvUj4rrt6EhmMpiV85X0RNDP+aqr8z+eOoUdBo2iEJ+pszP5TX+9cNvjC7Cuf9Gu5cstZ1ZgUtghYH/OchBf3d3BFjbjoFPO1/bt6X/etNFWfHlR80lPWp/0CFJm+FUOFB0R7aDoxUEHtDTFl+prHD1avdJbKNidrGniK6+wwySdr7CkmfPl5nylLb6am0tXpZN2vnQPO/R6raTaFcf58mtPntUO+/YN5mIlXW7e1LBD1Sr3li228xUkhFOXsEOaOxs07BDIduHOy/kC7EWBxYud97uFHdK8pDREZFTxJT5nOYgv+h5poVPOF2C++5Vo2GGxWMR9992H119/HaNHj8ZXv/pVNKiu3hi0trb2hBSeeOKJyufMmzcPV111FTZs2ID+/ftj/PjxOOGEE9A3SC9dRviJr4YGKyaadlBZFNyQqx0OHGhtekpRtZe2savLjJwvHcIO83S+4oivQsEZKiuTZc7X1q32gNzcbOcShBVfqsdUwifPUvMUt4IbXq+VVLuyyvlKW3zJQ2CQkEOgtNx80AqlbpRTwY3WVtv5CnI8dQk7DPMdyItLSecLuUGPt+x8AdaiwMcfl97v53wB1rUWdeKugrofbpssC+Swwyydr7QKbshjW5p+RBKbLCctvoL2pToS6RDefPPN+MlPfoKHH34YRx55ZM/9J598Mh5//PGev++55x68+OKL6B02UYQwc+ZMTJ8+Hd3d3T0FN1pbW/H5z38eN954o/J/Hn/8cUc7AKvQxi9+8Qucc845vu+5NUA2X5Dn5A2tRKQqXuHnfGUVdjhoUHjxtWNHtquBUXO+VJOSjz6yip94CYu4pFFwI2vx5dfBu22ynEapeVrdr7nZHrC7uqwJgImbLOvufMkiWmzzIAoCiImXW87Xxx/bBQHq6oBPf9p+bpbiq77eOq7ivqBrgOx8WbiFHUZ1vvIMO4wqvrIc67zCDgH38SSI+OroSFZ8yRs6i9+in6C4OV8mF9zI8hwJOsZ5UVVlLaoWi+HbK3+fpjtfkaZ/f//731FdXY3DDz+8575//etfmDFjBpqbm/HNb34T++67L9566y3cc889sRq4YMEC3Hvvvfj973+PmTNnorW1FWeccQbuueeeksqFu+66K6677jrMnz8fGzZswIYNGzBnzhwcf/zxaGlpwbnnnos//OEPvu/Z2Njo+6OqsqgbQcMO6epRHgU3VLldXht+ik42qxXMYjG5sMMbb7T2ohE71KdFUgU34oaexhFffh28fGzTzPmilQ6bmkoHPdM3WY5bcCPJCa2X+BbtoZMjVc7XrFmWU3TggdbPfvsBxx1X+h5A+qXma2qcxy2q8xUXU8WXapLV0mLfH+R46hJ2GOY7yCtqwi/s0G08Ed+7LIjS/BzynmICVT+lKrgBpO98FYvBx7SwZHmOJOF8AXab4xTcAMyveBhJfL333nvYe++9UU3O9oceegiFQgF//OMfccstt2D27Nno169fILHjxWWXXYZisYj29na8//77uPnmm/H3v/8de+21F2bPnu147tlnn42rr74a+++/PwYOHIiBAwdi0qRJePzxx3HppZcCAC6//HK057FrYQ4ECTuUyWKTZdn5UokvP+cLyG4Q7eqyY9XjVjsUl8OMGem2X9ewwzDVDv06+KBhh0nk3dHjOXBg6feaRKn5qiq1M5MWujtfQcWXyvm6997SfmfmTNstydL5ksWXDs5XWiWvgWycLxopEeR4mhh2mNT4GxZ6bamClsI4X9XV6Z4b9NoNIr7yKLiRRKEKN7LM+Urqc0QtwFJuOV+RxNf69etLnJ85c+agqampJwyxb9++mDRpEhbLWZkRqa2txa677oorrrgCf//737Fx40acddZZ2BbwKpk2bRqqq6uxdu1avPzyy57P3bJli+/PypUrk/hYqSLEV6FguS0yqpCCPMIOw4qvqCsnUQk6sVYhT9KpIE6zs9Sl4EacaodRww7TcL7oZ+/du1T4JbHJMmB/5rw2zTRFfNGBV5XzJSZUdXXAqFH2/aqiAGmLr9raynK+kl7bVE2yVq2yb4d1vkwJO6TnTNJhcF74tTFs2GGaoXFhxFddXT4FN5II13PDtIIbQHLiqyKdr+7ubmwnZ+zWrVuxYMECTJo0yfG8gQMHYsOGDfFaqODggw/GXnvtheXLl2Pu3LmB/mfQoEEYMmQIAGCFqGfuQkNDQ6Af3RET/REj1KJB9RHyKrgho5PzFWd/HJGnAlg5KHTTxzQ7S12dryTFV9B9vpIYoOgATcsti/em50jUnC/6v7o6X3kW3KDv7+d8CQ4+GNh339LXpudB2pssR3W+5D2V4iKuX9onJUXWYYdxxJcpzhd1nXQSX35hhzo4X6p2hwk7VN0XlaBjQxTY+TKXSOJr1KhRmD9/fs/fM2fORFdXV4n42rhxo3KvriQQ4udjVdkdBV1dXWj5ZPmwEqoetrXZFYnchEwY5yvOamaQghuUujpg6FD318tafMUN1xHHlBZAASrD+cpDfKkKNQiSEl9uYYd+E1udnK8g1Q512mSZtkflfKmef/jh6glK1mGH9DgGdb7SCjtMoyJamu6GaoWbiq9yDTvUVXwFdb5EGLXuYYdpF9xI0/nKq+BGHOcr6hjH4gvA5z//eSxbtgxf//rX8Ze//AVXX301CoUCvvCFLzie9/rrr2MUjflIiHXr1uGNN94AAOyxxx6B/mfGjBloa2tDoVDAxIkTE2+TbogqX4B78Yo8ww69Cm6MHu1dCTBP5yuK+BL/o8p9SwsxWSsUgq+0q9BZfNFzlYojWfwUCvE3+qSvX1/vHnboN7j6OV9ZnttJ5nwVi8lsetndbedXqr5/uvGswMv5OuIItethQs5XWmGHaYgvk5wvU8IOdRVfbot5svhSVXHNW3zlUXCDfmaTci1lkna+uOBGBK6++moMGzYMv/71r3HKKafgvffew5lnnok999yz5znz5s3DypUrccghh4R+/QULFuAPf/iDI7RR8N577+G0007Djh078JnPfAb77LMPAGDZsmW4//77lf/z2GOP4cILLwQAnHnmmRg2bFjoNpmGX7ENILuCG2FzvrxCDoFs3QEgOfHl9bpJI8RX//7xStrrLL7ocaWDpdekPeoxDxp26Hd+qB6n11xckRiGJMWX/HpRUZWOpqgmg6qcL/H3Zz+rLuGfp/gqR+cra/EVtuCGjmGHfn2FruLLzfmSXWWV+Ep6zDOh4EZWOV9p15HTLefLdOcr0iEcNmwY5s2bhzvvvBNr1qzBQQcdhLPPPtvxnHfeeQdf/OIXccopp4R+/Y8//hhnnXUWLr74YowfPx4777wz2tvbsWzZMsybNw/d3d0YN24cHnzwwZ7/2bBhA84++2x87Wtfw/jx47HTTjth27ZtWLBgARYtWgQAOPLII/GrX/0qykc2jiDiK0/ni3aaUcWXCTlfgHuHm0XYYZyQQyB+6Gmcaod+A1V1tSUsu7vVpccpcUUNPf+9wg79JlSFgvUceixNcr68zv/Ozvgru37ljFXvLxYX5OdPnGgJHVUJ/zxLzeflfEXdKD4IaU4CVSvc9Psr102WdRBfqus5aNihuO6yKrhBr/Mg4osLboQj6VLzlV5wI/IhHDp0KH7wgx+4Pn722WeXCLKg7L333vjJT36C5557DgsXLsT8+fPR0dGBQYMG4aijjsIpp5yC8847D/Wk9xo5ciS++93v4tVXX8X777+PefPmob29HU1NTTj++ONxxhln4PTTT0dVmjvbakRU8aVK/gfSFV/9+tmTaMBffGVd7TBuzpfb/2QRdhin2Aagt/MFWOfCjh3piy8v5ytM2CFgHVO3JGzdCm4EzfmSXy/JNnm1B3B3vsQ2lOx8WZST80Up102WqfhKsgCEHyaFHbrt8xW34EaS4qtcCm4kJSLZ+bKIJL7OP/98HHrooTj//PM9n3fPPfdg9uzZuPvuu0O9fnNzM773ve+F+p/BgwfjhhtuCPU/5UwSYYeFgtVh7diRfLVDkdcBWBPZxka7EqDOzpcJ4mv7drvNSTpfupWaB6xju2OHd84XkK74CuN8AdYxbW21/1Y5X6aVmgeSmdS6TaYEXs6Xm/hSOV/0s2dRap62O6jzVVtrLZC1temf85V1wQ0KVztMlrBhh+IcDRJ2mHfOFxfciE5SzlfUMU7up00XX5FsoHvuuQdz5szxfd7zzz+Pe++9N8pbMDGhlfXcap74hR0C9sWdZs5Xba1zAA0qvrq7k0ny9yOu+Mo67DCpMvOA/s6X+D78cr6SLrgRNexQ/D9Fh1LzbtUOs875ihN2SCdfhQJw6KHW7Tydr0LBal8U5wuwr192vixUxZNNqnYYJoRdV/ElL+jttpv1u6vL/gH0F1+y81Vfb/clXHCjlDQKbtBF+DDvD5gfdphqDF5XV1fFhPnpwHPPWfva7LEH8Mor1n3NzWqHC/B3vgC7840jvlRV/mTxRQdQt+qMgqxDSOLmfGVdcCOpMvNA9uKrWAwfdgioS49T0iy4ESXskJJlqflVq4AvfAH47/9O3vnKO+yQPn+//WzhkkfOl3wORxVf4vqNK746O+2FKlPFV02NWnzlXe1wzhzgyCOBIAE+5eZ8DRrkzNmmlYzFdZlkPuDixcDkycBVV1l/x6l2KBfc6N3bPuamOF8mF9wAgl+LtAquwHTnK8Yh9GfRokXoH3f2xwTmW9+yRZdg113dnx/E+UpCfKmcL3oh1dQATU3Au+9a77fTTt6vJ0+mku7QZEzL+TLZ+aJOZhjni7Yti4IbccMOKVk6X7/9LfC3v1m3zzmntA1xC27EJY7zRRdwjjhC/Toq5yvNTZbFe9MJanNz8NcRw+fWrda1E3Vz5DCT/ihkUXCjTx+1y5V32OGPfww8+ywwdy4wdap3ddkw3wMVEDqJr759rbZt3265XvJCVJphh9deCzzzjPVz0UXJiq9evazX2LrVTPFlmvMFWG0OMs6rrtmKEV8/+tGPHH+//vrrJfcJOjs78c477+CFF17A5MmT47WQCURrq9X5A9bJ3K+fNeB71ETxLbgBZCO+amuBq68Gvvtd4MIL/S9G2rHu2KH+HEnCYYcWSYgvvzDRsB286vvwKjWf9ibLQc4P+Tkq50uEZBQK0drrBt3/b8GC0vc1ueDGwQcDX/oSsHy5tRAlyGOTZfE+4jNceKEVmbD//sBeewV/HbnoglsUgx9Ziq+0nK8+fdRCK++www0brN9btljfkdd4VA7OV1UVcP311kLOD38I3HGH/Vh7e7rVDp991r69caNT6AYpuFFXZ+exiwgRKr5Em1l8lZKG89XR4TzP3VBds6aHHQY+hNOmTUOhUEDxk1nz66+/jtdff93zfxoaGnDNNdfEaiATjOeftye2F18M3H67//9kFXaoKrhBJ5W1tVYolLRHtyu0Y82iCpRpBTeSDDukbc/C+QrbwasGMy/nSxR7CStqvDZZ3r7dXkyIEnboVmG0qyveIKdi7Vr79gcflLbBxLBDmvP15z+XPp7nJsvivffcE3j55fCvIy80JSG+ks47kV8zrYIbDQ3JOF9Jf9/0XNq2rfzFFwBcdpn1AwD/93/2/SrxlZRAWLrUWUhMdk2COF+AtSC5Zo09TtJcSNHWJOcV5VLtMCnnSxUGHua9BRXjfF1zzTU94utHP/oR9t9/f3zxi19UPreurg4777wzjj32WAwZMiSxxjLuzJ5t3xZVvvzIM+xQFl9hoB0ri69SdHK+wlY7DFtRSXVsvXK+isVoosYr52vLFu/2yATJ+QKCh2SEgYqvjRtL3zes+BLhR0D+myy7oSq4kVW1w7iTraT6Ona+7NtJO1/0/PETSSaIr7A5zlmFHdI5jngtOo/wE1+inf37W+JLjJPU+RKLaKYU3Miy2mEazlfQa7HinS+BEF8//OEP02gTE4G0xZcIFYwSBlVO4ivJTZa54Ib389MQX0A0UeO1yTIdBOLmfKVdEpuKL1Ub5OMin7vypGbwYOCjj6zbeTtfbuhQcCMqlS6+6Abqbs5XkLDzNK8r2fnywgTxFfZckfNfvcRXnDFPFl/t7c6+Psgmy4C9INnaal374vPK11pSYd/lUnAj6U2WAXa+QtOdRX1vJjBtbXahjT32AIYNC/Z/qhAWr5yP9vZoA7ef+Ap7IWctvrjghoWO4ks1mHmVmges8zhInDnFy/mi4itutcMoq4JhWLdOfb+q1Hxtbamwkdve1JS/+IrifLH4Spa0JoFUdKicr8ZGf/ENpBt2WG7OV9hzRf7us3S+6GsHyfkC7DGxWHQuRvXq5ZyXbN8efpxQUY45X0kW3AhCOYovrgNfBrz8sn0SB3W9gHDOFxA99DDIPl9hkPMg0obDDi10FF9RnK8ok0M68a2rSzbs0M35Svr86Ohwhhqq2kDfX/VZ5BXlpib7dtLiy+97FJSz85VUfqupzhedYKmqHQYt259V2KHfdxRmIc8U8SXnBYu1+SQLbqxaBbz3nvO+jo7g1Q4LBbs9NBpkzRrn/6RxzMtFfOXpfKn66IoJO1SxcuVK/Otf/8JHH32E7S69TqFQwA+8Su4xsaErQrTEsh9hCm4AyYovOmEK2yGZVnAj62qHOocdhql2mGbYYVjoRpyFQrJhh1k5X+vXuz8WVXwNHmzfTkLEsPPlJKmFprih036klXtCr62GhlKxFSTfCzA/7DCLcU4QNtKDXl+qze6TEAjPPVd6XxjxJfptwLkgScVXfb3zPElKfJVLwQ3x+tXV8cIxueCGReSh4YorrsDtt9+Ork/O/qK0A5oozsHiK31mzbJvh3G+VJZ6GuJLntzIsdrlnvNVLs5XFMcoTrXDIOdF1LDDsNCkbCDZsMOsnC+3fC/6vjo5XybnfMml5qNiYtihjs6XiWGHee/zpQo7VkH7CdpO1SbLUc8NOeRQvFYY8SXwcr7chGQcyqXgRlILSlxwwyLSYbzlllvws5/9DIVCAcceeyzGjRuHfv36Jd02JgDt7cCLL1q3R48GRo0K/r/V1faeF4KsnC/qgATp4Ckm53wNHWp3+Fxww/v5OoUdyknZaYUdpul8ueV70TbQtnjlTYjn0m5f15wvletBJypZbLIcFVPEl1gNLxbTFV+qnK+g7ROY4nxVVdnjcx7iK+h54ia+kiy4oRJf7e3RxBddkFy92vk/aYuvcii4EfczJJXz1dlZmvdnEpGGhrvuugs1NTWYOXMmPve5zyXcJCYMc+fag3IY10vQ0OAcELxKTachvmprw1vYpuV80c5h991t8ZW289W7d/yVtpoaaxLQ3V0epeZVbQqC7HylFXaou/NFz4f+/ZMXi2k4X3lsslxppeYB67O2t6cbdig7XzqEHablfAHW95+X+Ao6dtBznIrlpMIO168H3nqr9H4v50s+tkHFl5uQjEO55Hwl5eYnJb4A63yLu8CcF5EKbnzwwQc49NBDWXhpAA05DJPvJZCLbmRdcCNKZ2Razhf9n913t2+nLb6S6pTi7PWWR7VDr02WAb3DDtN0vrzEl6raoepcLxTsY9C/f/KOQlbOV5riq1hMp+BGnIWmrMQXkOwKfFLOV5abLHtBHw/yPYjUAFOcL5X4irvwJSJ7AGeOaRphh1xwwx3dnC/A7NDDSOKrb9++GD58eNJtYSLwwgv27SjOV17iK86FbFrO1+TJ1u+BA4Ejj7TvT6uzFMckyP43QdBZfLm5M17PiyO+xLHIapPlJEnC+QKAY46xfk+ZkryjEGWT5TDOVxbii4ZUV0rYIWAfZx2dLx02WS4Wgddft2737x9sccw08ZVGwQ3qTu29t/O13PqLoGGHcsGNNMRXuRXciNunJVVwAzC76Eakw3jYYYfhjTfeSLotTAQeegh47TXgpZeA3XYL//9yxcMsxFd7u72TvGniK4rzdeyxwPvvW6t2L71k359WZ5nUqrsgSfFlYrXDYjHdsENdc77cPstDDwELFlgToZtusu83wflShR0Wi8ltqCq/diWJL3G+6JjzpYPztXChvQBy6KHBcp1NEF9phx3S16TCiS7iAsk7X0nNLbjghpOkCm4AZouvSM7XNddcg/fffx+//e1vk24PE5L6euCQQ4Arrog2ecg77DDKhWxawQ0A2HVXa+DIorOME9KpIi/nK2q1w6TDDun3lEbYYR7Ol7zoErTgBmAd3332sSaPSTtfaed8qZwvINkJeaWKrzScLz/xZVLOV5QtYaj4kgpKp0bSYYdpia80Cm6YHHaYdsGNpOYVHHZoEWlo2Lx5M6644gpcfPHFmDlzJo4//niMGjUKVS6j4OFR4uGYTHCbhAniiq9isXRiE7czMq3gBiWLzjJp50t85izEFz03dAk7pJPeJKodys9xKzWfZs7XhAnOvXPCOF8UHcRXFOdLVQgmqesl7DnsRRriK+nVd0EeYYcmVTuk4ivolEiIge5u67im9d0JikX9qh3Sc4C6VlELbtDXoNEAposvE50vDjsMyec+97mefbwefvhhPPzww67PLRQK6Eyjli+TCGGcrygdp2qyHbczMq3gBiWLzjKpxFhBHOerHKodqsSXiZssC/HVqxew1176iy/V92ia8xX3GuSCG/btpJyvNPf5chuPikW7OFZDg7X4EQRZDKQtvmjfmFTYYdxoD6+ww7jOF3UTWXx5k6fzRb9nUW0XqEDn6/DDD0chqQB5JlfSDjtUTcg6OuwQSdNyvuJOXNLuLKnTmHfOl8r1NLHaIT3HVAU3vPbJU5HXJstilbepCRgzRt2GOOIriUltHjlfAIcdJkEWYYf19db7iPeIkvOV5KJGd7dzAu82YV+8GPjoI+v2IYcEH/fkHKS0y2pHGevSLrhBJ9hRxRdtY2OjcwIv4IIb3iTlfMUtuNGvn13RueKcr2effTbhZjB5kXbBDdWkpr3dLPGVZMhO2p1lkhM/gTgHurqsH7/JrkD13evgfCUddujXHpk8nK9i0RZfzc3WhuyqNtD3DzL50iHsMAnnK8ljXaniK42CG3LYIWBNnjdutG8HIa2wQ7k/c5uwRwk5BNIRA15EOU/cxJc45knmfAUNO/RyvqqqnBN4+j/0/0xwvvIouJGk8xWl4Ea5iK9IBTeY8iEP56ury54Am1BwI8mww7Q7yzQ6+qjngOq7z6LaoV/OV9jjTj+zKuzQrz0yeThfmzbZx1YlvnQMO2TnyyzxlYXzBThDDfMOO2TxlV+1Q6+CG145X/LrCLIIO0w6bDSrghtJRtTEzfmiAtzksEMWXxWOLL6SLrjhNiFLap8vLrjhJE3nC4gvvkwPO/RzvnTdZJkW20hSfGW9ybKqTX7Ol98my4AZ4itOX5dk6LQb4txVhRtHxc35EuQddii/ltuEXeR71dcDBx0U/PXTcGK8iOt8+YmvrApuVFd7V25VhW9yzpc7SeaxxhVf/frZt012viINDbPpMk4AuNqhvqQddug30JlUcKO6OnjInRtpd5ZpO19hBs8o4its+7MOO1TlfPm1RyaPUvNUfDU1AcOHO3Nnytn5UgnasIVggtDSYk3qkqx2mFRfl6XzBVjXGJ3IRiUp5yvoIkFrq/U+UUOrVRP2FSuADz+0bh98cGlInBcmOF9p53wFDTuUr7VevexKtEGcr7RyvspBfCXZpyUpvkx2vmJVOwwCVzvUmzzCDr3eLwh55XwlETJgcs4XoJ/zpUO1Q4quzhctqdzcbLlFo0YBH3zgbEOQfb4oSYsvr8mUW5vCOF9phR1ecw3wv/8LXHklcO656veOgolhh4B1nNMSX3GdL7fv+umngS98AdhzT+C114J9d0GcL1pVNOw6tAniK6tqh1VVzu/ba5NlILz4YufLnSSdr7gFN6gArzjny63aYXd3N5YuXYrly5cDAD772c+iNumzjUkUP+fLrapbUMpBfAmnxATxpVPOl+rzZRF2qPq/OKEvqpyvQsF6H/n8NsH5am62fk+YYImvYcPsdo8ebX22YhHYZRf/1zXV+UpafN1/v/X73nuBM89Uv3cUTBJfaeSz0pVtIb722AN45hlrBXzIkGCvE+Q8ve8+q294803g7beB/ff3f90gzteCBfbtz3zG/zUpJoivtDdZFudAQ0PpOeYWdgg4r508ww7TrHZYKFifu6vLHOcrShQKhx1+gl+1wzfffBNTp05FQ0MD/va3v0V5CyYj8na+olzIeYUdJiG+0i64wc5XNtUOxWsmIb6yzvlqarJ+//SnwG67Wav9wj0aMwZ44AHg/feBCy7wf92sxZcI/ZX3ffEiC+dLnCOtrVxwA0iubxOTq/p6+7q+5hpg0CDgyCNLxy83goQdLl1q3w468Q7ifNFrb8SIYK8ryFN8BR3v/MIO6bGP43z16VO6iOYlvuh5rovzlcY+bXV1VlvTLLiRZJ8mb58Q9v0rOuzQj3333RePPPII9t57b9x000246qqr0ngbJgHyKrghiLISVFNjT8CyLLiRtPOVRmepk/OVV7XDLMIOAfXxjRJ26OZ8pVlwA7DCDq+7rvS5//mfwV83602WAev40RVPHZwvcS3v2KGegEbFxE2WgeSdLzpODRsG/PjH4V4nSNjhkiX27aDHOojzpVr4CIoJzpdf2GGhYOeXxim40dBQeo6l6XwltbCbZtiheM1t27JzvuJ+hijnNP2ey8X5Sq3a4ZgxY3DggQfivvvuS+stmASgYYfV1fb+WwIdxRdgd6xZOl9JTFo45yv4/+gSdqgquAGohZ+upeblnK+kyHqTZaD0+IV1vqJs/u0H/a7o/kFxr0Fatc0k5yuphSUxuZLD48NCzxFVv9TZaW+CDATv5+TXUn1HqoWPoJggvvycLyDeNgRuzlcc8VUuBTfoa2aV85Wk8xXFYWbxFYDm5mYsoctJjHbQFUVVx5DGJssUE8RXkgU34oZg+JFkYqwgS/Gle7VDOewwSHtk5A0/6cQwq1LzSZF12CFQOpEK63y5Tb7jQM8psQEwkMwCSBJ9XZIbxbuRZthh0PBCN0RuDKD+rj/6yNk3peF8NTaGq3QImC2+6HUZdQPuYtF5DiSV8+UWdlhTY1+zSYsveg4mSRbiK2/ni/f5CkF7ezteffVV9InbazKpQlcU0xBf5eR8JTFpESEYQPoFNyrB+QoqvuJMDFUFN+TX9LpPhh5P+TOmXXCjqgoYODC519VBfIV1vqKcl36YIr6S2C7DjTQLbsR1vgD7u1B91zTfC4jufHmJryiLHmmEwXkRN+yQ/n8Szhc9nlmEHdLfSRfcSKv2XKU5Xw0NdoQWO1+ErVu3Yu7cuTj11FOxfPlyHHnkkUm/BZMgYZyvKKEkaRTcAMwVX/R1TAk7jFrxMq9qh7o7X/Q5cvvTdr4GD/YXK2HIepNlILzzJQvEpMVXV5czl5GKryQmXOKcSyLnK62QQyB556ujw36dJNZwxXmg+v6jii/5vJEFQVcXsGGDdTtsvhdgnvNFSUJ8yVsNeIkvr3z1oM4XYB/zpJ2vtBxn8bpZFdxIsoJrFPFVW2svxpjsfEWanlUHWDorFosYMGAAfhw2M5bJFDqo+ZV21sn5Eu1Ku+AGnVglNXERn7kSC25k4Xyp/k8n8ZWH8yVyvpIMOQTMcL6ChB3GEV/y95RkzheQrPNlkvhS7fEVB6+wQ1l8RSmBLdi2zd6PasMGK3QOiHbtRZmoxiFt8RW276WT64YG50JLe7v/Pl9ubZSdr6oqu71piS+Tna8kI2riOl81NVZ/sGVLBTpfxWLR9aempgajR4/GhRdeiHnz5mHs2LFJt5lJEA479CaNXIk0O0vdC27kVe0wzsTQreBG1LBD2mb5M6bhfLW12YOU7uLLb5NlIJ7zlUbYoTyhTDrsUHzeShZfuoYdql6LTijj5lpm7XzRczlK2CElDedLDttPKuervt4OZWPxVUqSzldS4gswW3xFGhq6/WZQjDGkXXAjbfElVrKTEhoydDAyQXxVmvNlYthhoWA9r729tP1pOF9xSl37YYLzRTcirVTnK8mKrW4kXe0waefLK+xQrgsWNecLMFt8peV8RQ21V50DdXV2SGpSOV/0uSy+SknS+YobdlhdXR5hh6lWO2T0p1cve8XHbyVfR/EFpBt6aJr40t35MjHs0K3gRlTxBdjHNAvnK61Kh0A+4ks+xkEKSIjXonlEFJ2dL3HOCfEYBZOcrz//GTj0UODEE+37sg47TMr5ols8lGvOl9s5noTzJYcdyq+VpviSXz8qWRXc6Oy0Q1yTJsl5RaEQvqiJl/OV1mdOGxZfFU6hYFvwIk5dfjxOfhW9aOhAIohbcANIV3ylEXaYZsGNtJ2vMMJFp1LzSYUdJlHtELAHf/maS8P5Wr/evl2JzhfgnKCkHXaYlvMFRO/rshBfSVU7/NrXgOefBxYssO9LokKnm/PV3Q0sW+a8r1LDDqOILxoKSEkj7FB+LS/xRfeDorcB61ylgl4lvoBkjnlWBTfoeyVN0vOKsO6iPC4IIV4sZnNdpEEs8bV+/XrccMMNOPbYY/HpT38an/70p3HsscfixhtvxHo64jNa84MfAKNGAVdeqX48TfEVt+AGkG7eF31tVfujwM5XsP8p17BDALj6auua+853nPen4XzRwSnpnT/SFF9ujlbYnC/A6XylHXaYlvMFRO/rTHG+2tudiwU1NcDYscDUqbGaBsB90evjj0v7NQ47DHeu+EUgiHOjuzvcteYlvtrbvcXXuecCe+0FnHwycMABpa9N3S96jdE+MomcoqzCDul7JU3S8wpxXgftz+RcYCqmN2+O3548iHwYZ86cia985SvYtGkTisT3W7BgAZ5++mncdNNNmD59Oo455phEGsqkx+WXWz9uiI5VJ/GVxIQkCHTAS1p8pVHtUKdNlrMoNZ/1Jsv0WMQRX1//uvUjk7SYAaJPqIJA25tEiE5ezlecY+0VdpjENRh3oamzM/mKrSqSmATSye6xxwJPPhmvTRS3cUwOOVQ9xw3VOU+/o0oSX3L+jUp8Ada5EXSvuThhh3vuCbzzjvtrDxgArFpl3aaflRZ3YfFV+ro6OF+0YMqmTcCwYfHblDWRxNeiRYtwyimnoK2tDfvuuy/OO+887LrrrgCADz/8EPfccw9ef/11nHLKKZg/fz523333RBvNZEsc54t2jiy+LCp5k+Usqh2q/i+LTZZFYYc4pBF2mJX40nWfL/paWVQ7pBM2HZyvNL9/ShIFN5IuskFx2w8pjvgK43xFCfkVVfiyCq+Keq74RSDIoXH0nPbCreCGeJ0g1VHdyML5KhbLQ3yl5XwlIb5aWuK3Jw8ihR3ecMMNaGtrw7Rp0/D666/jm9/8Jo4//ngcf/zx+MY3voF58+bh2muvRVtbG2688cZIDfvDH/6Ac845B/vttx+GDBmC2tpa9O/fHwcddBCuv/56bNmyxfV/n376aUyZMgVNTU3o3bs39txzT3z/+9/3/B/GHR3DDvMQX0EHDD9oCEbShUM57FA9Ga+utgvLpBV2mERMfxphh+UuvvLO+fKa8FSq+Io6CaROR9LiS3z29nZnkn7SzpdbwY0ozhctTpD2tipA+mGHQLhzw8/5ChKm7AadwLuJr7jV9Lq67HOtXMRXkhvHb9sWrGCGPC5Q4UxzbE0ikvh65plnMHbsWFxzzTWuz/nBD36AsWPH4umnn47UsF/96le4//770dnZiQkTJuC0007DxIkT8fbbb+N73/sexo8fj5UrV5b836233oqjjz4aTz75JPbee2+ccMIJaGlpwXXXXYeJEydiHe0NmUDoWHAjbgn8oKThfKWZIFtppeaDhh2K8u5AdPElJ5anIb7ScL6i7N0TFHqsTXC+sii4oXrfOMQtuJGV+EqiX0t6by+KaF+x6Py+5TLzQPLOV21tadGHoCRd+tyLqAWm0hJfcQpu+OEmvpIMO6SfNa2CG0lv8aAi6YgacU4Xi8HazM7XJ6xevRoTJkzwfd6ECROwevXqKG+Bm2++GevWrcM777yDJ598EtOnT8czzzyD5cuX49BDD8X777+PK6UKEfPnz8eVV16J6upqPPHEE5g1axb+9Kc/4YMPPsBRRx2Fd999F5dcckmk9lQy7HxZJB12CCQvvkx3vsKKR+poCdw+d9RwT3F+0Y04Ve1LQuym7XwlPQHQYZPlIM5XlqXmVe8bhySdr7QmgID+zhf97PSYpOl8CfHV3FzaTwUlL/EVN+wwbfHlV3DDjyBhh3GdrzQWQ2WyqHaYtPMVNpeRna9PaGhowMcff+z7vI8//hgNEZevDj74YAwaNKjk/sGDB+O6664DYBX9oFx//fUoFos477zzcNxxx/Xc36dPH9x1112oqqrCww8/jIULF0ZqU6UiOuGOjvB7KrD4KiXNlapKc75UZY7dBuG4zpccdmqK81XuYYdBJl0mhx3GLbhhUthhFs4X4OwD0sr5KhZt8RVni4eweyLFIYuwwzD9r1fYIc2nAuI5X/SzJpnzlYX4yrrgRpLOFxBefFVXV7Dztf/++2P27Nl46623XJ/z5ptvYtasWdh///2jts2Vmk++/XpyxbS3t+OJJ54AAJxxxhkl/zN69GhMmjQJAPDoo48m3qZyJuo+TwCLLxWmOV9uK8Zh2iJIWnwBwTfdjSq+xGfOQnxxzpf6tSlxna8sww6TzI8AzBFfOhbcUI1jxaItvgYPth9PwvlqbbX79zibm5vgfOURdgg4r4eknK+0wg5NFl9pFdwA2PkKxVe/+lV0dHRg8uTJuOOOOxyFLLZs2YLbb78dRx99NLq6unDRRRcl1lgAaG1txbRp0wAAJ554Ys/97733Hto+uVImTpyo/F9x//z58xNtU7kTJ7+KXjSqwZTFVzKvqXq9vJ0v1WdLutohENz5iht2KIuvNMIO2flSvzZFN+eLc74sTAo7FN/Zpk2WSAIAWpQ5Cecrbpl5ARVfYSNPwpJW2GHU0DiVE0pfK474yqLgRrmIr7RKzQPRxJdcat5EIg0NX/7yl/H3v/8dv//973HppZfi0ksvxeBPlo3E5srFYhHnnHMOTj/99FgNnDlzJqZPn47u7m6sWbMGL774IlpbW/H5z3/eUUlx8eLFAIABAwagb9++ytcaOXKk47lubA1wxQV5TrmQlPjKquBGsQg8/TTQty/wmc9Ee32BaQU3TM/5SsL5cvs/E8IOTXO+qqrsUthJiy83RyuO89XVlXzOF1c7tDCl4AZgHxMacrjHHsBLL1m3g/YRXs5X0uILsNqdVNVdFboV3FCJcfpadHzW0fmi51EW4iutght5O19yLnA5hB1GPoz33nsvPvvZz+KnP/0pPvzwQ0cVwV133RXf+ta3cPHFF8du4IIFC3Dvvfc67jvjjDNwyy23oD+5elo/Wb7yyjFrbGwEAGz22RJbPI+xSFN8peF8PfWUtUEnAPz739Zmi1Ghr22C86XTJsvlEnZIC254vW/SOV8miC/AarNceSwq4jN7ffdxnC9ALWCS3GSZooP4SrPaJcVE54uKr113tRcSkna+4uR8yRPVLMRXbW2wRQ1BHgU3gOScryxyvtIqdpNFwY00na8gfRqHHUpccskleP/997F8+XK89NJLeOmll7B8+XIsWrQoEeEFAJdddhmKxSLa29vx/vvv4+abb8bf//537LXXXpg9e3Yi78F4EyfnK49NlufOtW+//nq01xeYXHCjUpyvNMMO6UQsi7BD2nYTwg4BZxn3uAQRX/IkJozzBahXWnUOO+SCG8ngFnYoaGoKX9lXdd6I7ygN5yvtvC9xXMKeJ35bfiRRcMPP+Qp7rR10kP2ahx9e+j7y+0ch62qH5ep8eYmvinO+KDvttBN22mmnJF7KldraWuy666644oorMGnSJHz2s5/FWWedhXfffRe9e/fuCTX0CgcUuWn9fDbcCLIZ8+bNmzFixIgQn8BcohZcAJwXjWrFLg3xRQfwuPlgpuV8pRF2WFNjTXC7u7MtNa+D80Wfm0XYYaFgfW633KQolJv4iut8JS2+OOzQwsSCG/Kxqa+3jnESBTfibrAsyFJ8ic+dhPhK0vmqq7NfLynnq6kJeP99SyTvu699v2kFN7LIf0/6c9A2RxFfdXXWdbFtm7nOV+Ch4dVXX8WqVaswbtw47E4zUxW89957WLhwIUaMGOFa/CIOBx98MPbaay+88847mDt3Lg477DCMGTMGALBp0ya0trYq876WL18OAD3PdSNIefyuJGJsDCHOykoeYYdUf1ea+Eqrs6+vt45FmO8/jvOl2r/LjbA5X93dVjuCDNb0/MlCfAG2+DLF+RLHMS/xFdb5UvUJOjtfXHAjGVSLiCrxJd/vRZYFN+hrp0VU8ZV2wQ16LiRVcAMAhg+3fiimOV9ZiC/dnC/AChs1WXwFCjtct24djjrqKHzta1/DABoo68LAgQPx9a9/Hccccww2pXRkhEAS+42NHTsWfT65aubSuDOCuD/IBtGMTVLiSzWYplFwIy3nK6lYe9OcLyDaRttxqh2GaXvYsEO3tqnwEl9phB3S12HnS00U5yuvsMNKKjVvUsENL+dLvt+LoAU3ksr5SrOyL6Cf8yXEDz0Xkiq44YZpBTeyFl86VDsE7NBDU8MOA4mv+++/H1u2bMG1116L5gBLOM3NzfjRj36ETZs24f7774/dSJl169bhjTfeAADsscceAIC6ujp84QtfAABMnz695H+WLl2KF154AQBw8sknJ96mcsa0fb7oalWUlWKKadUO03S+gOxyvsKIr7Bhh0Dw85ieW1kU3ACce1IlgUniS5wfSTtffgU3OOwwPiY5X0mJL3a+LNIOO6TngupaLhSCR0r4YVrBjbjOeBB02WS5ULD7e+EDtbYmU+wpawKJr7/97W9oaGjAueeeG/iFzz77bDQ2NuKvf/1r6EYtWLAAf/jDH7BdMdK89957OO2007Bjxw585jOfwT777NPz2FVXXYVCoYDf/e53ePLJJ3vub2trwwUXXICuri6ceuqp2DNO+bsKxLSwQ5NyvpJOkNXJ+cpLfPmFHQLRxFdWYYfsfJWP88UFN8KhQ86XfL8XQXK+CgXnBs5hCZsfE4e0wg7jFtxwc75omHpSmBZ2GLd/CIIuYYf0e6ZBeD4FzLUk0GF8++23cfDBB6M2xNlTW1uLgw46CG+99VboRn388cc466yzcPHFF2P8+PHYeeed0d7ejmXLlmHevHno7u7GuHHj8OCDDzr+b8KECbj55ptxxRVXYMqUKTjiiCMwZMgQPPfcc1i1ahXGjh2LX//616HbU+kkVXCDxZeFqTlfgJ7iK82wQ/p5swo7TNr5SrvUeN7iK6zzZZr4SjLnK63Vd8CsaodZ5nwNGhRPHGTlfNHKrjo4X52d9rXl5nwJ0hJfXHDDQpdNluk5JZebHzgwfruyJNDQsGHDBgwbNiz0iw8dOhRz5swJ/X977703fvKTn+C5557DwoULMX/+fHR0dGDQoEE46qijcMopp+C8885DvaKHuPzyy7HPPvvg5ptvxiuvvIKtW7di1KhRuPrqq3H11Ve7bsDMuJOm85VEzhcX3LAx3fkSxyNMBx+09HilO1/V1clOUgQmiK80nS8OO7RIwtHXJeyws9PKT/U7t4LkfMXJ9wKyE19xQuT8xFeUUHv6Wd0KbgiS7Neqq63zYMcOFl8CXZwv+t7U+TKx6Eagw1hfX+9Zwt2NtrY2pUDyo7m5Gd/73vdC/59g8uTJmDx5cuT/Z5ykWXAjCecri4IbtbXJdfCmbbIM6O180fOzqso99r/Sc77SmninIb68rjXeZDkcJoYdVlUl31bV9S+7wnIhJ78FNzfna/t2QOxYEyffC8hOfMU5T9LYZJlOOd3CDlXvlQR9+ljHI27YYbkU3Mjb+VLlApu+11egnK9hw4bhzTffDP3ib775ZiTHjNEL0wpuUPEVNwFVvHZSrheQXcGNJAck0eauruAugWpi4lbtcOtWYPVq+/yKGnbo9X+VXu0wrZAzccyTSHout1LzaVU7LBaD98UmVTsUk90+fZIroCAIk/MlP+Z2rN2cr6SKbQDeE9WuLj1yQ9MIO3TL/0s77BCwxV4lFdzw6k/SdL6CCMZydL4Cia9DDjkES5Ys6akWGITnn38eixcvxiGHHBK5cYwexMn5ooNTVpsspxF2mKT4Mtn5AoKfA6rPppqsPPKINUEZPtyetER1vrwG4SjOl1fOV9rOV9KTKpOcL95k2UYOsW5vBw44wLpeXnvN//9NdL6SDjkE/MMO6+rU/dx//ifQty+gKKKsPOe3b09ug2XAXXx9/DGwyy7Wz+rV8d4DSF580esyrvjyc76SFl/i/KuUghvf+hbQ2Aj87Gfqx/N2vvxyvsrW+TrzzDNRLBZx0UUXoSXAp9y0aRMuuugiFAoFfOUrX4ndSCZfdKx26NXhpBF2mJb4SrraYVrOVxTxRb97MTiqJrm/+11pB7zzzsHblqb4yjPnq5LDDsvF+Uqj4MacOcD8+cCGDcCf/xyufaaIr6SLbQDBCm7IfcTGjdYxbm8HfvrT0td0c75WrbL/HjIkXrvdJqqPPgosXw6sWAHMmBHvPYDkww7dxFfQvtct/88k58uEsMOuLuC226xr9q671M9pbbVvJzEXClvBs2Kdr8mTJ+Ooo47CggULcMABB2DGjBkoFoslzysWi/jLX/6CiRMnYuHChfjc5z6HY445JvFGM9mSlPiqqyudKEWdnFRX2/8riwF2vix0El/i/1WTFdpxfvGLwLnnAj//efC2lVvYoWnOl5j4dHZa4XBx4FLzpcgLTR9/7Pzbj6ycL/pZ4xbcyMP5UoUd0knn66+XrrCr+tuuLuCDD+z7R42K1WxP50uQxMp/ks5XdbUzbDRKSKpb2GHaBTfo+3V0xBujs7j24oqvVavs60HkKcosW2b9rq0Fhg4N/x4ySRfcMNH5Cjw0PPDAA5g0aRLee+89nHzyyRgwYAAmTJiAIZ8s63z88ceYN28eNm3ahGKxiN12262kFDxjJknlfNXUWB0n7SDiTFh79bI6C/p63d3OvytNfKVdah6IJr7q6qzBVDXJFR1+bS3w2GPh25aV85V1wY3u7mAV1/zIyvkCrPZGnQjRfEAv0RK0uiUlr7DDJCaFVVXWZ25vt85Hmk8UpP/ISnwVCtb31tkZrV8rFtN1vqLkfNE+rFi0XMcvfMG+j543fftaThkALFxo3z96dLx2u+XH0PPAbdIchiTFl3z9pl1wIy3xBVjnJA1xC0MWrnNc8bV0qX3bTQgtWWL9HjUq/ngEpFNq3jQCi6/BgwfjlVdewX//93/jj3/8IzZu3IhnnnkGhU+WN4QTVlVVhTPOOAO33XYbBlBpyhhLUvt81dRYHWea4ku+kOMkoHZ22u1X5atFJc2CGyY6X2LiEHUXiHINOwSsYxj3dbMUX52d0SdCQc9dU5yvqqpkJiqAde6pxFeQ8zgr8QVY52pU8UWvNV2cL9nJnT3bXXw1NqrF15gxsZrtOlGl5wF16KISRyjI43gS4kuHghuiHVHFVxbXXpSxmeInvjZtsjcxjruQIEh6k+WyFl8A0K9fP9x333249tpr8de//hVz587F2k96gObmZhxwwAE4/vjj8alPfSqVxjL5kFTYoRBflLjiC3AO2nKCbBznK409vgDzna+g5wD97sV3pap2KCYOjY3R2kY/p9cgbNomy4DVzjjiS+xXBGQnvqK+T1DxJfYrExPfsM5XVjlfae2zp6vzBcTLV0xzjy8g3CbL4jE59Hf2bOff9HHaf1HxFTfs0C0/hhb1KEfnS4eCG3I7wmJC2KGf+KKPJyW+6uosp7xYrNyCG5GGh1122QWXXnpp0m1hNCVN8RVngiI6M9rhyB2l7uIr6YIb9HgnteoOxK92mJXzFTRczSTnKw5ZDP6y+IpKGNe2vt6+1vN2vuh5LiYUQLKLH3ShqVzFl9tkOym8nK+amtK9xXbsKO3r5s61RKJon+x8CVautH4PHRo/aiKI82WS+DKh4AZ9vzgVD00TXx0d1jlNj2ca4qtQsM7rtjYuuMEwriSZ8yW7FHH2chGdDu3gTBNfaTlftbXJ7pOTVthhd7c9uEV1vsot7FB2vuJgqvjym0zRz5KE85XUJst0QpCk80XFF3U8dBVfURaV0na+vHK+xGNyPydPvDs7gRdfdP4tUC0eJTFZzSrsMMlqh2mGHfrtKZYEcthhVLK49uhYH1d8AaViKA3xBdjnddRNlhsa7HHCROeLxRfjS1LOV3W187Xirgxz2GEpQarFRSEp8VUsOvMo6PcV1flKM+zQq+BG2pssA+x8uUE/S97Ol+gTC4VsxFcc5yutjV4FSTlfWed8uYkv1cSbhh66OV+CtMRXsWiW8xUlz1mXghu6O1+FgnohOiiimIZA7h/p43mIr2JRPa8pFOzQQ3a+mLIkqU2WZecrKfHV1WVfnPJgGafgBp14Jym+sii4kfSeIklUOxTQc4Ku2CbhfJVD2GFSYgbIptoWbW8cERNVfIV1vlTnbxJhh7W1zgWENHK+4hTcELlyaSKuAd3DDuWcr6DOF+AUX245X4K0xFdrq/MY5+18qUrNU0wvuBGVrFxnVQpGEIrFcM5X3OIxFHFe+7XZqwquWOxi8cWUJUk6X2mIL8C+gCvd+RKvp5PzJU/66ESXrtjqWO3Qq+BGFjlflRp2mKbzpSIJ56uuzjkBT8P56u6OHnaYdsghYE7BDfGdid9hnK+XXrLHFbnUvEwS4qu21l5gEGMSFeBA/s5XuVU7NKngBqCOAgrCunWlYkt+DSG+qqqAnXeO1j4Vos1+zpfXuCCcr5aW+HtMZg2LL8aXJMSXKLucpPiSNx8FzMv5Cno8//EP4MwzgVdf9X6ejmGHNTXOwZGuZCXhfGUVdphHtUMTwg7pMc9DfIV1vlQkJb7Scr7ouUcnGeUkvvIsuBFEfDU32/eLftjP+UrCKRDFCQB38ZW08xV2ISntghvlEHaYZshvVPElu16Au/M1YkSyETXU+fISTl7jgnC+OjvjieQ8YPHF+JJEwQ1x0dCLN+7khE5IRCcnX4A0JDEsujhfxSIwdSowfTrw7W97P5eGQCVJkuLLJOfLS3xVVTnfj52v7MSXmOiKksV+pOl80WuOTsDTqHbo9t5e5CG+yrHgxjHH2LdfecX6nUXOF2AfD9Ee3ZyvtEvN+xXcqPSww7TEV1ubfa4lme8FuG8eLhPE+QLMK7rB4ovxJYlNlsVFk0bBDcA97BCInveli/jasAFYvdq6LUoYu5GW8xXlHKCTUjfxZVLOl2rwpK+pY86XSeJLzg/14r/+Cxg0CLjyymCvnVXYYRbOF0VX8dXdrd7Tz4ssC26IDZTFsRGPeTlfu+5q3xbjTBY5XwAwbJj1e+XK0tBTwBJfccOu0gw7jJLnrMs+X7oX3ACiF9zwE1/Lltm30xRfXqGHXlVwTS43z+KL8SWJsEOV85WG+FKtUkUNPaQdQty9WihhByLaQfp1rpXofOW1ybL8mmltshyHLMJe8nC+zjzTmoBed12w184q7DCtnC+3iVuQ/ljOa0qTOMWE0g47lEPfOjttwaJyvtrbnW2iEz1xTL1yvgYMAPr1i9tqCxG+2NEBrFpV6nx1dwcr2e2Fbs5Xnvt8meZ80U3Yw4hwP/GVVqVDIJr4YueLqShYfOXrfNEO0u+z6JrzRfNy3MSXaft8ya/JmyxnJ76AcPvYZRV2yM6XfTus+Eo77JAW/mlvV18bsjtG20QneuKzeTlfSU5W6WstXVoqvoD4eV+6iS86ltPzXzVvSHq8S6rgBh1nssj5AsK5X3KZecA570mr0iGQjPhi54spa9LK+Uqj4IYqREBn8RXkeIYRX6Y5X3TCoHPOV1WVeoBPO+yQc76Swe96SGKT5SyqHcqUk/hK2/kC7GPgJr68wg7pRE98Ni/nKy3xtWSJWnzFzfvKqtph2IIbffo4F+9MDDukFSvTQLUQHQQ/5yutDZYBFl8svhhfqqvtjiNqzpfoHLMuuAHoLb4qxflyq3aYhPMV9JyKU+2wvl7ttKQRdsjOV/KTqXIpNS/jdx53dtrXm+7iK23nC7AXSHbsCCa+/Jwvr4IbSToFsvMl53wB5et8yeeCiWGHaV975Sy+vHKBOeyQKXtE56qT81UpBTdoaEB7u3ciexabLAc9B8I6XzqHHbpNftn5ymeT5bCklfPV3W3/r45hh1nlnAiiOByCtAtuAM5xLKzzpXvYYVznK86G7H7iq1Cw7wsrvmQXNItqh0nv85X2tRdlcXTzZrVb5Ca+Ro2K1DRX2PlimABEFV9iYpJVtcMknS/6f0mKrzgFNwD376Cry0621cH5ohs+m1pqXnzWLMUXO1/Jn79pOV/0+pWdryQXQKIW3MhTfOkYdhhVfNXWOifkcsGNqqpSwZik+KIumo45X/K5ruqHw+4BR8MOvd7L7f3ikHTYoY7OF51X0MIwKvHV3Jz8ggiXmmeYAOjofAXZZJk+Fpa0nK+wzoYsvtw+D+2kdMr5SrvUfBZhh27iK+1qhyy+kkH13dD7ooovOaG+0p2vONUOswg7DJvzJdrU0KDuP2hYvTxGJCm+mpvt10/L+Uoz7BAIJ76KRQ47DENc8bXnnvZtMe9pbwc++si6nXTIIeBsMztfDOMCHbTCoEPYoW7iK0wIxpYt1j5fFLfPQ19LB+crbLVDHZ2vPMIOTdtkmR5zXcWXX7GUJJwveZNl3cRXmtXWBEk5X7rkfFEBoPps4rypri79jpKcsBYKdtjXhx+qhVY5ia/2dvvYyi5oFuKrVy87x7cSnC+V+Fqxwo6kSbrSIZB8qXkWX0xZQgetMHiJr0otuAHYx8FPBKgSYoM4X2mLr1WrgBkzgnWapuV87dgBPPII8H//Z59PboOn7pssx8njCEoemyyHxW0yKBYF2PlKhiDi6733gOeeK92PSMecLxr65uV81dQ4x4jevYGmpmTbLsSc2xgcJexw+3bg8cctJy3Naof0OUEWvrzOhSzEV6Fgv69oy/vvA089FW7zcJ3FF80lV4mvNIttAMlvssxhh0xZomPYoakFN4Dgq4BhxJe8Cp8kdPBoawMOPxz44heB73xH/fzubnuQClrtMGqeR9KbLF95JXDqqcBFF9nnb5Zhh6Y5X6aGHdLzMinxpbPzpUPBjVWrgE9/2uo/ZsxwPib67tra5PsvQdScr4YGdUgldb7oGDF6dLh96IKgmgAPG2bfjuJ8ff3rwIknAscdF+9codEcQHznK2/xRd+3rQ1Yvx7Yf3/gmGOA3/422P8Xi/YxTdt1jhKZsmyZfZuKLzG/0FF8sfPFVBxJiS+TCm6kKb7EcYgivtw616ycr5dftlYBAeChh0pXsIFSF8PP+WpoiL4PysiRwIgR1u2DDnJ/XlDn6+WXS+/7zGfUzxX3jx3rTFqOA+d8Zed8xRVf8oLHqFHAzjtbf3udi2Fx++5otUUVWYsvvypx8+bZx+z5552PuVW3SxJxDGhOEb2fHqNt2+zjJztfov+g41uvXsB++1l/H3108m1XTYB32cW+HcX5euUV6/drrwH//rd9f5RzhfavXmG+QcTX5s32bTkcXRZ6bu8XF3Eub90KvPqqvTjwpz8F+3/6OXV0vjZutG/TSoZi3rN+vX0fFflJkYT4qqmx+wvTnK8UTlmmHImS80XdD9U+XyYV3HBbeY5K0FVA1Q70eTtfK1bYt1evBhYtAvbYw/l8ucP0q3YYNd8LsD7ra68B77wDfO5z7s8LKr7EY7W1wK9+ZYUPHXec+rnXXmu95wEHJLeJpsml5nUVX37OV9R2y85Xba01UXv7beDII6O9pgqv/qejw33lP2vx5ZcATyMT5MmSW3W7JKF9ABUrKvFFJ6duBTeo81UoAP/8pyVovPqhqKjybnbZBXjxRet2FOeLfh+0X4/i1PilFIRxvui5Qc8p+lpp7gsI2JP6tjbnIugLL1jXvd8xyvLaiyK+aN9FHSQx76HXR5zx2Y0kxBcA3HyzdT4MH55c27KAxRcTCNHRdHVZP0E6O1UOR1phh6KjS6vgRl7iS5ecL6+BZvbsUvElF//wE19R870Ew4b5r84FDecTg1KfPsAFF/i/5jHHBGtjULjUfDabLKcRdggEOxfD4ie+3B7PIueP4hcGRBfH5MfdqtsliZv4EveL4kDd3c5CR0FyvgBg0CDg859Pvt2A2vn61Kfs21GcL9ViZW1ttJBJP+crjPii5wY9p+hr0fE57bBDOg5v22Y5uG7REALTxRcV83HHZxVJbLIMABdfnFybsoTDDplARKkUpxIDaRXcSNP5qq9PztUQpF1wI03nS2b2bP+2uFU7FBOGNFbWZOj55ldwA8hmsqqCnS9zcr7SdJspfuLLjTydL1UYEF0ccxNfaYYd0nGMhrbRYyNu0/YFqXaYNn5hh3GdL0HU8ySo+AoyfwjifFHSFF/d3VaRGMqsWf7/n+XChyoKyA/RN9DQPUDtfOUpvtIcF/KExRcTiCjiK0vna/t2a0BUTUTiFtxIOt8LiOd8uX2eNEvNy+XiKaqBKEjYYXu73eY0OneZQiFY7qJ4LIvS3CpMdr6iihgg+5yvmhr7/iSdrzQwUXz5OV90gt3V5cyvSgu/sEP6HPp4Q4N6ixDZ+UqTESNK3ydOzpec9yaIep74FT4Sj3d1qfOEKX7Ol3ytpRl2CAALFjgfUy04yuTlfAWd79BxTrXnVhLbwHjB4othAkA7jzjOV5oFN+hAQt8nrvOVhvgKknwsSrrL5OF8Ae4DyLJlpSLRS3yJPMC0Y8pVBBG9eYuvtApupPV5Ktn5ykp8ydfe4MH2bZ3EF50oq5wvt7BDen8WBTcAd/GlOk5CEMruTZbOV3W1XcxFEMf52rFDLYLScr7CbMBNz428nS/AymumzJnj32eYEnZYV2ctrIrvJyvnK2ibWXwxFQ3tOMNusguk43zJVjsdwAcNcj4WBfF/eTlfy5er789jk2WgdAA58UT7trwSGMT5SjumXIVpzpcJYYembrJsctihqO4JBAuhBfRwvtwKbtD783a+VMdJCEK53xbnTVaTQrnoxrBh9rkR1vly2zw4CefLK+wQ8O/X6LnhlvNFSdv5kvu1zZuBN97w/n+TxBdgz3PY+coGFl9MINLI+Uq64AYdTJIQX1mEHXZ2uodgUDeJrnTnUXADcA4gffsCl15q/x1FfOXhfAURX1ntzeIGl5rPxvlKotR8XmGHVHyVm/OVlfjyy/miyM6XHHaYhfMFOPO+Ghut80L0nWGdL1XIIZB+zhdgnvMloKH3fqGHuosvObdZFl9ifK6qSmcOxOKLYQJgQsENOpgEESteFIvZiC/AfSCiZeZpNcE8Ss0DzgHk0EOBQw6x30fO+wpS7TAP5ytM2GFeBTdMc76SEl9+Va3ikGW1wzSQxRetpqiT+ArjfG3fbrcvq7DDqM6Xm/jK2vmi4qu52fot+s6wzlee4stvDhG24Eaa+3xRJk+2b/sV3cjy2ouyyXJQ56uxMfkNw+n70fdUkfaWAnnB4osJhO7Ol1fYYZSCGx0ddm5SXuKLOl9jx9q389hkGXB28EccYQ1OYiPZRYuc+WlyW1TVDtOOKVfh53x1ddnfOztfwTDB+VIVizE17HDgQGefpJP4amiwj6lfwQ3AnmRnFXYYNedLCEI5VzdP56upyfrt53xt22Yd361b7b4N0DvsULeCG4IpU6zrDwCee855PGV0d77CiK808BNf4tiy88VUNFFWVlQrFkkW3JBzvpIMO6SdQZoFN4Dw4ksH5+vww52/AWswEsjFP/ycL13CDrNyMrxIw/mqrk5vgmiC+CoU1KvlSW+ynBb02mtuDn6OZFFwhVIo2JNlv7BDwJ5k5xF2aFrBDcDb+dq+vfQ8Pvdcq+2NjdbP7rvbmynTY77nnvZtHQpu6JDzpToPd9kFOOww6/b69cC//+3+/yaLr2Ix/W1g6LxAFl/f/KYVvfTQQyy+mAonKeeL5irE3ZGcxiK3tCRbcCNt8RVk8iQGSSBY2GHanZT4vvr3Bw44wLpNN5p8+233tvhVO9Ql7FAH8ZWk85VFCKUJ4kv1miaFHdbX26HUu+0WPIQra+cLsMPE/MIOAbXzpWPYoargRne3na+b1aRwzz1tF3fXXa3ftO+kC1qrVwP33ef8/w8/BP78Z+s2PebHHGN/7qjjcho5X/L+aqrXArITX6NHu495MjqLr2LRXXx1d1vfT9rOF31POt/atg247TbrHLjjjvIVX2X0UZg0SUp8TZoETJsGbNwI/Od/xm/XyJHWBojLlqXnfHntsROVIAPR2rXW77o6YMgQ+/68nK8bb7TaccYZ9vlA4/Fpu8JWO9TF+cpjsiqTxibLpomvNCZTtbXO6zqJfb6yCjssFIB77gH+9Cfg298G/vAHdRtk8jifqfNVLDrzRcrF+erocJ4zWTlfO+0E/OY3wIsvAt/5jnUf7TtbW+0+ef16+/5evez+WXXMR4wA7r8f+MtfgO99L1rb0gg7VOV7ya8FZBd2OHq0+5gnk6XrHFZ80UJfcsENwDr+4vxOW3xt2eLslzdvtttG2wGw+GIqkKTEV6EA/PCHybVr9GhLfG3d6nSK4uZ8Zel8uR3Pdeus383NwTrXtFeIxo+3BmiKW7t0LzUvcrvkXCAdnK80Nlk2TXxl4XyZVO0QAI4/3vqR30s38SUmp52d1gSfTmKDiC8T9vnq6MhvRf7CC60fgZvzRZ3HffcFXnnF+RxZ8H7pS9ZPVNIouKEKOZRfC8jG+erXzzq3gwodnQtuqPotOs/5+GP7dpoLoyrni57DW7aUr/PFYYdMIKJsspzFigWNgae70Dc22p2KiWGHxaK7+ApScCPNVXiKW7vCFtzIepNlQH3cdRBfJjtfUUUMkP4g65XzZYL4okTJ+cpafAGleV9Bwg6zcr7odxe24EZnpz5V2GjfSSeu9NjTzZlFv5t0qCc9tqrjEfSc7ey0P4eb85VHwQ2xx1pQoaNz2KGf+BJRN0D2YYd0XtDayuIrUzo6OvDMM8/g29/+Ng488EAMGDAAtbW1GDZsGE488UQ88cQTyv+bNm0aCoWC58/ChQsz/jTlQVKbLCeNm/hqaLA7PB3Fl9/KdUuLfX9TU7DONe1NllXIRU/c2qKb8wWoFxF0EF/sfGWf80Xzd8KQVdihTNCJrJvASBPqVsh5XzqFHVLCOl+As7/Lc1JI+046caXHnoovN+crLn5hh0HdWrr/Wp5hh/IxEXONoEIny2svCfFFXyMr50u8J21zpThfWn6UWbNm4eijjwYADBs2DIceeigaGhqwYMECPP7443j88cdx0UUX4de//jUKig0I9ttvP+y///7K1+7v5mMzniQVdpg0VHzRykN9+lgXdmtrNPFF/ycP54uuPEUJO8zD+QobdpjnJsuA+rhnXR1ORRql5tMc/Ol3q7P48nK+AEuAhZ3EsfNVitdeX27OVx77fLndH1R80QU6dr6SK7jhV2Zefi1AT/GV5bUnoku6u4PNd1Rty9P5am+35gXV1c55wZYtzj6WxVfKVFVV4dRTT8U3v/lNHCbqen7Cgw8+iDPPPBN33nknJk2ahHPOOafk/0866SRMmzYto9ZWBiaIL7piJsQXoKfzFVZ8uTlMlDycryDiSy41L6od5rnJMuDvfJXTJssmOF9phyl7OV/i/U0UX7pVO6QTZioAikV35yuPfb7c7g9S7RBg50smKfHlt8Gy/Fpu7xcXWZDqLL4KBes9tm1LPuwwi5wvwGp3Q0PpfnV0XsebLKfMf/zHf+Chhx4qEV4AcPrpp2Pq1KkAgPvkOqpMakTJ+cpCfIk4bJmGBruT1L3ghmogEvlegD4FN1SY7HzpGnaYZBifELomiK88ww6BaHlfeYUdmlBwA3AKALlCIH08b+eLHhvVc0x0vuixHzbMzrsV/W7WYYfsfKVLmPlOmIIbWThfgH090XkBYFXGFpST86Wl+PJj/PjxAIDly5fn3JLKIW7OV1qD04gR6tfu00fvnC+/lWuvsEO345/HRDBowQ1dcr5MKLiRlPOV1eBvivjyCzuM0nYdnC+dxRd1MeSQQ/p4HgU3BHJBINVxEmOAm/jS0fmix37gQFukiX43z7BDrwVcKr50KjUvxJeOBTeAcJE+Ojpf4nqSnS96PpST+DLyoyxatAgAMNxlN8B58+bhqquuwoYNG9C/f3+MHz8eJ5xwAvpmtbxehugadlhTY4VULF3qvJ86X9u3l+4340feBTdo59fUFCymOw/ni34OL+fLq9phbW12E0O/87iccr6y+iymiC9Vqfm4lRpZfJXiVnBDDjmkj+dZcEM+LvLfvXvb/Zdbf6e789W/vyXSWlrSc77SCDt0c76yqHZoqvOVRM6XTs4Xiy9NWL16Ne655x4AwKmnnqp8jijKQenfvz9+8YtfKHPEZLaqlugiPKec0FV8AVanKIsvmvPV3W21JYwblHfYoex8FQrW52lry2+TZRUi1nzHjujVDrNyvYBwYYem53yZ7HyltckyxeSwQ53Fl5vzpRJfWRfcUB0DP/FFJ+E6hh0Gcb4GDLCfp3u1Q12cL3pMevUChgyxbwvomPfSS9ZG6BdfbO2JqbP4Yucrf4z6KJ2dnTjrrLPQ0tKCffbZBxdffLHj8V133RXXXXcdjjvuOIz+ZJliwYIFuOGGG/DXv/4V5557Lqqrq3HmmWd6vk9jlrNBQ9BdfMlQ8QVYHVJU8UVfJynC5nwBVgfuJb7yKsnaq1ep+AqT85WlIW1C2GEazpdp4suUnC8dnK8gBTdk9zlN3Jwv1XqleJxOuHRzvqgY1LHgRhDnq18/Z9hhsZh82CH93lT9TZoFN9IQX3V19sLi6NF25Iyb+PrqV4G33wbefBN44YXsxVeYNAsdc77EYgDnfGnIJZdcgmeeeQaDBw/GQw89hDqpJz377LNx9dVXY//998fAgQMxcOBATJo0CY8//jguvfRSAMDll1+O9qDqgekh7A7qQDabLAOl4ku4RFHaLNDN+QL8E2rzKDUPqFfcvMSXXO1QV+dLB/EVx/nKysUrh02WAbPEV9iCG1m2za3ghlfY4YoV1u/GRv3El6nOlzi2ffta7RPP6+622p6083XKKcDw4cCeewJHHln6uGkFNwDg61+3zodPpo8A3POclyyxfi9eXPpYls5XR4c9xrrhJ742bLBvpzk+9+tn3xbnbqU4X8aIr29+85u46667MHDgQDz11FPYY489Qv3/tGnTUF1djbVr1+Lll1/2fO6WLVt8f1auXBnn4xiHSc5Xnz62ABOELbqhS8GNQsFKlgb8wwryKDUP2AOLW8ENudR8V5c1OIiV1yydLxPEV1WV7VKw85Uc5VTtMGzYYZYhtG6l5lXOV2ur9b0vW2b9PWZMuNzcsCTpfOlScMNvny8hhunzWlvt76OmJplzd9ddre9xwQL1hD2oW6uL8wUAt9xiHav/+i/7PrdtX8Rt8R1knT8cpCiXwE98UdIcn1Uuuex80fOhnMSXER/lyiuvxC9+8QsMGDAAM2fO7Kl2GIZBgwZhyJAhWLVqFVaIZTYXGgJ48F1xlngNRGfxJZebF1+fzuIraMGNwYPtgcVPfJnifHV1WauuxaL1d5bOl9+kVYeCG4B1zNrbzRBf5bLJsknOlyniy8/5KhaBRYvs46gKIU+SuM4X/X9TnC/xfdDnbdlifx9J5th5XbdJOl/y95jm/ELuN1Tzis5Ou//assVaXMzL+RLt8pq3qNrmll6R5visyg+VnS/q4pWT+NLe+frOd76DW265Bf3798fMmTMxceLESK/T1dWFlk++Xa56GB6dxZfK+QLiiS/6/Dz3+RIhh4C+zlcQ8SVXO8yjzDxgRsENwD4/KrXgRlbVDll8JU9NjX1N+xXcAIA33rBvpy2+kiy4oUvOF63GKPrV9nZbHKqcLyq+0gzzpJhWcMMNumgjzgEqxAHr2OYtvrzQxflShSjLzheFN1nOiKuuugo33XQT+vfvj6eeegoHHnhg5NeaMWMG2traUCgUIgu4SkbXTZYBYORI598mOF9ek6dt2+yQECq+xHfgFtOdZ8ENwC7pr2qLPMnNY4NlwIywQ8D+/kxwvpISX2nniJZrtUOv/lg8lvVCgnAs3Apu0OOepfhKK+wwz0lhoWCLXdGvqsq1yw6Z+D7SrC5JCVtwo7raXRjmKb6A0gVHWXxt2ZL9Qp5bOKSKMOIrzcVRVYiy7HxR2PnKgP/5n//BjTfeiAEDBgQSXsuWLcP999+P7Yqz7rHHHsOFF14IADjzzDMxbNiwVNpczui6yTJgdYT0KxUdtqkFN1TFNgD/mO68JoK0XaJT9ys1n5fzZUK1Q4CdrzxyvkzaZDlswY2sxZdY0XZzvmh//eab9m0dxZfuzhdQuoGyyj3K2/kKG3Y4YIB7/l/e4kvOc5bFV2treeR81denO5cI63zlfZ0liZYfZcaMGfjJT34CANhtt93wy1/+Uvm8pqYm/PSnPwUAbNiwAWeffTa+9rWvYfz48dhpp52wbds2LFiwoGdT5iOPPBK/+tWvsvkQZYbOYYeANWivXm3dTiLsMM+CG/IGywK/mO68nC9Z5NbXe4cddnfr63zplPMFmOF8pZHzlcZkSiW+ktxkOctrTuewQ8Be0d661Wpfba1TfI0YAXz0kXU7b+dLvs805wso3cPLz/lqabHHxDzEV5CCG24hh/JrAXo6X+Laq63NZpuHMPMdv02WBWkvjFay86XlR9lA6lzOnTsXc+fOVT5v9OjRPeJr5MiR+O53v4tXX30V77//PubNm4f29nY0NTXh+OOPxxlnnIHTTz8dVVltdlJmmCC+RBFLE8IOvVauVXt8Af6fRwfna/t2q3ys/N3TFUzO+fLHJOdLVGcUm5lHRfwvrfaYJGmGHdbWplulTyaI+OrstMOT83K+AGtS1dTkDDscMcK+LUQYUFo8KWni5ny5FdzIe1IoFrBaW63Qbz/ni+7jpFPYIW27W7ENoFQw6ya+qPOV1bWXRs5X2gujKueLxVeOTJ06FVOnTg31P4MHD8YNN9yQToMYI8SXIEnnq1BIxwGJEnboF9Odd84X4Kz+JKittXPBgHxzvkwJOzTJ+QKSqc4o/jetiVSamyxnfa4EmchmnfBPUYkv2fmSqa8HhgxJt12qRSnT9/kCnHt4bd+uLtdOF7nWrLFv61Rwo63Nvg7LxfnK6tpLI+crS+dr0yZrDPBqezmJL7aBmEBEyZ/KUgzQFVOxkpdEzlfv3umsaMfN+fITX3k6X3JbTK12yDlfwQkiFteuBZ5/3l3kiP9Nq69Is9Q8iy8nqnLzbs6XYNSo9MOzqqtLJ+rysZG/S7ewQ51yvuRiGqpy7XSRKw/xFeScDVJmXn4tID/xFSTnKw/na8cOqw2zZ6v7ZF3EV3293e6WFm/XC8j/OksSFl9MIKI4X2lXL6Ok5Xy57X0Rl6Diyy3ny6/ghk7Ol0nVDjnnKxqivW4CZvt2YPx44NBDgZ/9TP2ctMVXGqXmadhhlgTJn9HJ+QL8na+0870EfjleUQpu5O18yRsoh3G+8gg7dDtng5SZl18LyK/gRkeH1W/o4HzRcXjbNmDyZOCII4Bvfav0uaq+ob6+dKE5i7FZfM+bNnkX2wBYfDEVSHW1fWHqGHZ44IH2IDlhgvU7jvgSg1e/fvHbpsJrIIqa85WX86VyGINssizIauUVMC/ssFycrwUL7Nye6dPVz1m/3vqd1oBfTs5XkBAu3Zwves0PH176P1mJLz+xZWLY4eDB9u01a/ydL5rzlVX/S50Vtz3fVIVCVKiu5SyRF0J1c75WrwZeecW6/c9/lj5XNc4VCqWLzVlEpYjvudKcrzL6KEyaiNynHTv0FF9DhlgFNxYvBqZMse6LKr66uuyJIBU/SZJG2KFOzpfcFrovWXe3c2KYlruowrSCG0k5X2mLAzH5dGvv0qX27ddftwZaOrnavt1ejU9rEl7JOV9Zt0/lfPmFHerqfFFnSNeCG/TYLV2qdpDydr5U54RMUOdLl4IbgNV36eZ8vfuufZsu5grcFhl79XJ+liydr82b3c8LQd6LHEnCzhcTGHlvCz+yLgDx6U8DJ5xgX6BRxdfGjXaBCBr2lyReK9duYYdhCm7olvMlT3Jp+3UVXzo4X52dzmIlYchSSPo5X1R8dXdbuV+UZcvs22lNwtOudpgluud8qaqYUbdjp51K/0dX8WWC8yWLL79S82JbFiA750t1TsiowiVV5B12KI958nich/NF3+e99+zb69aVjiFu45yc95Wl8wUAK1e6P69QyKZkf1aU0Udh0kZcpFGcrzwGp6gFN9ycpyQJ4nz16+f8DCY5X7qKL1PCDmk7o4gCQK+wwyVLnH/Pnu38m4qzLJ2vuBtEm+J86RR2WFUFDBpUOpFKu8y8II7zpWvBjSDOF3UxaNuzEl+9etnHPojzZULBDUAddkh2S8qsb3Bzvjo6So93UPGVpfMFACtWuD8v72ssaVh8MYGJI77yuHCiOl95iy8RJiC7bn4FN3QoNa/K+ZI3mdTZ+dKt4AYQPfRQJ/FFxRVQKr6oODMx7JALbjjxCjtsaLD6A3lyzTlf0fFyvlRhh5Sswg4BZ3EFFaY4X3IUiiy+RNqC/Nw0oePo4sXOx+icBnDvG/Jwvlh8MYwPLL6Sw018dXbaq2bye+vqfKnCIf2cr7wmhqblfAHRi27oLL5efdWZA0QfT8sBkSdscasdFov2581aqBcK/kVZdHW+hJihz6muVocipoGf8yVvjRFEfOU9MRwyxB4fqPNVV2ffX1OjXujKsuARLa6gwkTnSyW+aJ5VHuKL5ljL7QH0cr7o98zii2EUiE6kksRXWjlfbivXdMUsrPgSx7uqKtvYaA47TJ5yd746O4GXXlI/borzRc+fPM4Vv73g8lxI8HK+xGSfPmennbIbI/zEl3xfkIIbeTtfhYK1TxrgFF+ye6RyMrIUX6I9LS2lAgEon4IbeTtfMrLzpVPOl5vzJVeaZvHFVCziItW14IZMmB3fKW6l3pPEreCGl+sWtOBG1iFQQaod0sGxu1vfsENxX1VVvhOqcnK+tmxx5kAIaOhhFuIr6YIb9PzJ+pqj76mj8+VVcEOIGbrinVXIIRBefAXZ50uHiaE4hlu32ts6yO6RysnII+ywWFTv6RS11LxuOV95iC+v94kqvrJ2vpYvt28PG+Z8ng7XWJKw+GICEzbsMMtNllX45Ui5kWfYIRV+XjlfXmGHee55orvzFTTnK0/XCzDX+VIJGCqsPvc5+7ZKfA0enN5ksNKcrzzFV69edvtaWqzJthx2SAVanuJL9d25OV+6brIMOI+h6DN0c77oRFsVehh1k+W8xzwdxFcY50vXnC+xaACU7gXI4oupWMQg1dUVbKKSt/NlYs6X13sHLbiRp/MVdJNl3cMO8xZf5eR8UfF16KF2TtdLL1lt7Oy0B900J+FpOl95ii8dC24UCs7iCnRyqnK+sqp0CPgX2JDvc3O+aPluHSaGqmtHFjC6OF+AuugGFWRy2Bklb+fLr+AG7Qd1FF9urn3epebpWMfii2E+wWtvKsHcucCnPgV8+cvOC1xX8bVhAzBxInDQQXbHn7X4evppa/Corgb+8z/d31tX58uv4Iaq2mFeVQWDhh3mWWwDMM/5EpOfrq7SPWXkSoZHHGHd3r7dKryxYoUtfNIUX0k4Xxs2AAceaPUXtJ/II+xQnMs6Ol+APanatMm5x5duzpeX+Kqqcj7f7XvWwflSCVg5dM8U56ux0Xscy1t8+TlfFB3El1vBDTHvEORdap7C4othPiHIvll33GGVOX3wQWdYka7i66GHgNdesyaBf/qTdZ/oqGprvVff4lBb6+x0urtLE5B32cX5d9CCGzrkfMnC2835qq+3Vsmzgg4uqpwDXZwveq15Dexe5OF8AaUiRs7nOvxw++/Zs7PJ9wKScb4ee8xaYHr1VeAPf7Dv57DDUgYOtH5v2uScaIvJ/siR9n177plZswKJr6FDrd8jRjj7J7fvWYeJYVTnK4+CG4C38+WV7wXoX3CDonPOl3wcZQGXddghRRZfOixwJIkGXQZjCn6uAQB8+KF9e80a+3YeFw5tr5v4WrXKvi32xhAdVVNTesKgqgr49a+B229XC9kjjnBOUgH/ghs65Xxt2WK3pa7OXXxlGXIIWJOPvn0t4UWTewW65HwNHmzfpvkDYchLfHV2Ov+Wy8jTRYVZs4Cdd3Y+nhbydVFbG95hpIVDFi60b7P4KmXkSEukFovAe+/Z94swt/POA954w3repEnZtSuI+LrhBuCmm4Dzz3fer7PzpRJfQZyvvMIOVc6XGDf8HBednC9VwQ2KDs6XW86X3La8C25Qyt35KrOPw6RJEPEll5QW5HHhiJCR9nZ3p452SkuXWhMFcV9aIYeC00+3foISNOdLJ/HVt68lYN2qHWYtvgoFa5Ly9tvAsmVWW2hIpC7OFy22Ig+cQRHniLxvURp4iRjaJ4wcaQ34I0YAK1cCzz8PfOYz9uO6hx1St/T99+3bXO2wFPpd/vvf9m3htAweDPz+99m2CQiW8zVpkloQ6iy+Royw2kHPY92cL9X+b4Ji0Rzx5Zfz5fbcNImS8yWPc3kX3BBUVZXOv8pNfHHYIRMYP/HV2al2E4D8LhzRIbk5XzQWeulSa3IlPlva4issQXO+dCi4ISapovP2CjvMGjEpbG8HVq92PqZLzhc99+KKryw+SxDxNWyYda4UCraru3WrFcon0D3sUEwOAaf40r3gRh7toy7mggX27SydFhVBnC833PpWHSaGNTVOFxkI5nzJE+408Qo73LbNDr33m/TnLb50DDtUiS8RZRBFfBUK2QjzxsbSxcHGxlIBrsM1liQsvpjA+OV8rVzpPoHRVXzRTmnJEu9S73kTNOdLh4Ib8gqmPMkV50/WzhfgnBTKTq0uzlcS4itLIekmvnbssEN7qbCiIbVvvmnfNsn5otdgHucLrT4rFzkB9HK+qPjK0mlRkYb40sH5AkqvHz/nq1evbNvuVXCDXlt+4quqyjlhz1t8eVVTzqpvkPuzIUPsvMq2NmfRmyDiq6Eh/YgJwBJ5qv3oWHwxzCf4OV9uIYdAfheOGFiDiK+VK60fgW7OV9Ccr7wLbnR32+JLDKJytcO8wg4B5wSFnrN0CwWdxJdcqSooWeavuYkv6oS7iS9BY6NdpCENkna+vF47C/y2I9BJfKnCDvMijvjSueAG4C++ZFGT9Xfh5XzRaytIrhE9//MMtdcl50t+r9Gj3ceRIOIri3wvgeo8lc9VXa6xpGDxxQTGRPEVxvkqFoH58+2/dRNfujpfcrvoCpub86Wj+Mp73yZKkjlfeTpftMw8dRz32qvUWR49Ot3Kl0k4X27iK8+wQ0B/8UUn2nmHHQbJ+XLDNOfLL+ww6+8iKecLcF5zeTtfuogv2q4xY9wjKIIU3Mgi30vAzhfDeBBHfOU1OInOSBUmWSyWugpz59q3dRZf8ucpFu3JY97Ol2oQpd//9u12mBSLLzUm53xREeNWRr5QAA47zPkaae/1JF8XtbXxwg4pOoovej7nIb4GDMi/wIOKcs35AsKHHZaD81UoZLtdCaBnwQ3AOZ7KzpcYR4rFYM5XluKLnS+G8YB2In7ii5aTrq7OvnMUUOdLzotoaSktDkDFl245X3SlXna+6OfIupOqrbW/3x071IMoneRSZyzvFXk38ZV3wY2+fe2B0QTxRb9fei567eElhx6mWWYeSNf54rDDUkRlUZm8na844kvONRLo4nzJ15Cf85W1+BLVb4FS8RXW+RLnfx7H3gTna/Ro5xxGLDTTHFFdwg5Vzld9vbPPZvHFVCz0QlU5STTE6Kyz7Nt5XjSiMyoWSycoqkktzU3QzfkC3MMo6YQ364lgoeDMrfNzvrZutW/n4XwNGWK3V1fnq1Cwz7+4OV95hh16ia8jjnD+nbXzVVPjvTm0Cp2cL79IhLzFF6D+Tk12vgB1/6rLxDCs85W1EK6qAvr1s27LYYdRna+8xdfmzeqCNwLdnC+vcU4n56tQcLZBlwWOpGDxxQQmaNhhnz7AySfb9+d50dCO75xzgK9/3RZYKvFFO1EdxZdbAREqLPOYCFBRqBpEaWhI3uKrqgoYNcq6LfZ2A/IvzS0jVi3XrrXb+I9/WJvTnn229fP//p/a9ejstMs26yq+9t3XnoipHk8aP+cryCbLnPMVDh2dL/lYhP3uVM/XZWIoqtsBVn8ri5i8nS/AnmiXi/O1caP3c3UpuCHmO179Av1ceRfcoL8BfRY4kqLMPg6TJl7iq1i0Nq0FrNCHffe1rOSWlnwnsnRwefBB6/ebbwJz5vg7CjqKLx2dL8DZLrdBtKrKchfyFl+AdY4uWmRNpjdssDZ81cn5Auzzr6PDWl0tFIBTTnGGbQLWZ/nP/3TeR88PHcTXwIGlg3l1NXDoocDf/mb9naXzVShY52NSOV8cdqhGFUqqk/MVZQNynZ2vXr2A4cOt7R369y/9bHnnfAF2iFlc50uMHXn01W7iq3fv0hDELK89+n2OHu1cTA7ifNGFkbzDDuU26HKNJQU7X0xgvMTXxx/bE77Ro61JzWWXWX/TEMSsOeOM0sHy9detTskrl6ZQAAYNSrVpkXArIKKL8+WW8wXYE10qHvISX6q8L51yvoDSVctFi0qFFwB88EHpfXTLhCFDkm+bjEp8dXYCK1ZYt93yuf77v63rc//9gYkT02yhOn8gjPgqFtn5CovuYYdRjotKfOnifAHARRdZ49d555U+lne1Q8B2OXbscC4ShXW+zjnH+pznnJNo8wJBzxsqvlQLtllee2eeaQnuL3/ZEjSqqrle4mvffYEJEywR+eUvp99eQSU6Xyy+mMB4bbKsCi+aNs1a3brtttSb5srppwOrV1sTV1FdbetWYP16b/E1cKCeF3sQ5yvvsEO3QVRMUOgkV4dJoUp86eR8Ada5SnMqP/tZ+7ZKkNHnpu0oAWrxtXKlfdutDccdZ12Lc+emf97GFV9iDzsVLL7U6Bh2mIb40mmsmDbNCum75ZbSx3RwvuhEm7pfYZ2vq66y/v/nP0+saYGh5w0Nn1QtdGV57X3ta5YY/OMfrb9VBTe8xrnqauDVV63F9KOOSretFHa+GMYDL+fLLbeD5nTkxaBBwG67AWPH2vctXeoUX/LKi44hh4C7+KKTrzxCoGgump/zRdHJ+dI15wuwBk56jY0fb9+mYZwCr1yrNFCJr6Bt6Ns3G+eAXheqfBE/8eUWcii/dlbQ9/QquBEltC4pdHS+6GS4HJ0vwH3c7d3beS7kGXYIOIVLWOcLyDY0jkKL9VABmbfzBTi/+/p6++8gOV+AdX5kWWwDYOeLYTwJKr7SLhkdFdqupUudOV9yyJOu4kt0lp2dTrdLF+drxw4rP0ngV61IJ/Glu/NFr7G99rJvq5yvrK/HOOIrK+I6X24hh0D+1Q69nK88z2VaWVRguvOlc8ENP+QKcnmGHQJO8RXW+cobWklZkLfzpUKMI0HCDvOCnS+G8cBLfGUd5hQFecJNnS9TxJfbRsu6FNwArDAyganiK+8BEwguvkx3vrKCXhdRxJeX86Vz2GGe5zKtLCqg5azzoNzDDv2gfXLezhd1jaI4X3miOnd0cL5kRJs2brT6CR3FFztfDONB2Jwv3XATX1VVVsI/RbcNlgVu4kuXghuAU3zRlStV6FNeA9NOO9kTb9Ocr5oaK4xW4Od8ZS2+hIjRrU9QOV9h9vmiK/Py58k77FBX8QU4j1VdXf6TqHIvuOEH7ZPZ+YqOauFw4MDScyHvsYTOZTZs0G+cA9z3o2Pni2EQLOywrg4YNiy7NoWBTgKWLLHF1+DBwC67OJ9rgvNF8750cr6oo6ir81VTA+y8s3VbuLa6DUr0HFy3zm7nzjs7ByUv8TV4cDYTLNV+WbqFIifpfO29t/Mxdr7cof1u3iGHADtfeTtfbgU36PWlw3nih2rs6t27VDjmff3Ji3i6RXgApWGHKufLpAWOILD4YgITRHyNHJlfcrcfI0Y43Q6R89XcXLqSbZr4ytv5op04zaXTteAGYH/nGzZYq646F9z44AN7lXj0aOekSQ477OiwS7xn5Th5hR02NOixbYNfzpffJst0Zf7Tn3Y+lrf48iq4kfcEiwrvvIttAJVRcMOLvMWXW8ENcX317m2GmHUTX3LIZN7Xnyy+dBvnAM75YhhP3MTXpk12kQUdVrjdoG7HokX2pLWpyUqUpZ2pruKLduTsfMVDDkPVzfkaNMhKkAeA+fPt+8eMcYZvyc7XRx/ZJdHzEl/Foi2+Ro+2P0eeJFntcMwYZ+5SHtecX8ENcT7nPfkrN+dL1TeYNDHUKexQ5XyZkO8FqMeuXr1K25/3WOLlfOXdNkFtrXMhgHO+GIYgi6+WFuAf/wAeeMC+X4fcDi9E+6hb0NxsTQ5p2znnKxy0XdT5ooO7SeIr7wkrYB2vwYOt2/R8Fe0Wg5UsvvLItZLFl7zpug7Q8y9I2OGOHcC8efb9ck6KnMuUNSaGHergfFV6zpfuzpcJ+V6A+tyRww5ra/OPBDJBfAFOUc7ii2EItLNpaQH22w/4/Oetjf0Euky03FA5c6Jzom3X1fkKkvOVt/jats363aePc1KimqDkOTHU3fkC1OehLL7ksMM8cq3oOdfRoV+xDcCaBImJUBDxdfrpwAEHABddZP1tkvjq7LTdTxZfTio954uKg7xzvlT7fJnsfMlhh3lfe0DpfpE6jnOAWnxx2CHDwHmhPvOMc4IlOOSQ7NoTBdVEUExwJ02yfvfrB+y+e3ZtCkOQnK+8ww4F8gqmagUwT+drp53s22vW6BkLr3JgxTksXEUdnC/azkWL9BRfALDPPtZvkbPlJr42bgRmzLBu/+Mf1m+5FPahh1q3+/a1w5mzxEt8+W2kmiU772yfA/vum29bACv3VzjK4nwIg+nOl6jsW18PjB2b/furwg47Ouxz1nTxRce9vK89wNk3r1+vV99AmTDB+r3XXvY1ts8+9rxBLnJkOmWmJZk0oRNSkdAPAGeeCeyxh+WEHXVU9u0Kg2oiKDqnb3/beny//fQNfdDV+VJ14vIgqlvYoTwJoJ9BF/EVxfnKY889sXABALNnO797nfJAZ8wAnnoKOPlk62838TVnjr156tq11m3Z+brySqvA0H775TNhNEV8VVcDM2da58Vpp+XbFsDqc2bNAubOjdYeWXxVVemR0xiUCy+0+r7ddlNvCpw2qrBD2ofpOvbKmOJ8yfuq6ep8/fznwBFHAJMn2/eNGWNdqytXAqecklvTUoHFFxMYtwv1xhudLoLOeDlfvXsD556bbXvCYkLBDYE8iOosvjZtcv6tw6AJlIqvQsGa8AO287VtmxViJlYI83CdRo2y3mvpUuDFF53OsU7O16hRwAUX2H+7ia/Zs+3b7e2W6yU7X3n3F17VZ3USX4C1OLfHHnm3wmbvvaOvpMv9q0muF2CdN2ecke/79+5t9VvC+TJtg2XAHOdLXmTUVXwNGmQtDMiICINyg8MOmcCoOpJddzVHeAHe4ssETCi4IdDd+ZJXYHUclORzc/hw+zqk+RpUiAvx1dhobfqZFYcfbrflscfs+3USXzJumyzPmuV83tq1+m0Ca4rzVW7IfUO55aJkgeh7hfOl27UVBLeCG7o5X/Iio47jXCWipfjq6OjAM888g29/+9s48MADMWDAANTW1mLYsGE48cQT8cQTT3j+/9NPP40pU6agqakJvXv3xp577onvf//72EKvcCY0qgtVTLhMQbgGFFPFVzk4X3kOTiasCMo5X27FC0TYTnc3sGyZ/dwsw6GOOMK+/fHH1m+dN10H1M5Xa6tV5ZCydq1+q/MsvvLBdOdLB0Tfy85X+vTqZY9nsvjSoX2Vipbia9asWZg8eTJ++tOfYsWKFTj00ENxyimnoLm5GY8//jiOP/54XHzxxSiKoHzCrbfeiqOPPhpPPvkk9t57b5xwwgloaWnBddddh4kTJ2IdrYPNhKIcxFevXqWTQV3LyqvQdZNlE50vupnnpk16FtyQFwbc9kwSRTfWrLEH16xzrVR9gc6brgPqTZZfeKG08qHsfOkwQQwqvnQ5l8sFFl/xEc7X5s3WtWai82VKzhfgFLvcN+iBlsNiVVUVTj31VMyePRurVq3CX//6Vzz44IN466238MADD6C6uhp33nknfv/73zv+b/78+bjyyitRXV2NJ554ArNmzcKf/vQnfPDBBzjqqKPw7rvv4pJLLsnpU5mP6kKlq92mIIdBmSS+dM35Ug0yulc7LBScg5KOzpeX+FI5X3lWGdxtt9KFDZ1DDgG180XzvQRUfNXX53ONybDzlQ/yd89hh+GhUQebN5ev86XLOELDPHUc5yoRLcXXf/zHf+Chhx7CYYcdVvLY6aefjqlTpwIA7rvvPsdj119/PYrFIs477zwcd9xxPff36dMHd911F6qqqvDwww9j4cKFqba/XKmpcYYx7byzXpXMgkLb3K+fWZMTdr6SxW1Q0uWcCCq+hPOVR6VDQaFQ6n7p3j8EFV/r1tkTRF1W5k0quFFOsPMVHznk20TnS3Vd9eqlt/O1ebNz3sDiKz+0FF9+jB8/HgCwfPnynvva29t7csHOUJTyGT16NCZ9Ug/50UcfzaCV5Ueh4LxYDz/crBK7AhM2U3bDreBG3s6XqeJL93AM2ZWlYkYVdpj3/lqyE26a87VtG/DKK6XPo86XLivz7HzlAxfciI9c7KgcnC8xP9It5wuwx7nubmDDBvt+XdpXiRgpvhYtWgQAGD58eM997733Hto+mYFMnDhR+X/i/vnz53u+/tatWwP9VCJ04DEx5BBwTghNCjkEzHK+ghTcyDt8SwxKXV3OQUkX8WVS2CFQ6nyZJr5eftl2kT77WfsxWnBDl5V5L/Glo4tbLrDzFZ9ycL7kMa93b0uA6eh8UbEriiEB+oxzlYhx4mv16tW45557AACnnnpqz/2LFy8GAAwYMAB9Xa7ekZ+UuhPPdaOxsdH3Z8SIEQl8GvOQnS8TKRfn65ZbrFLiRx9tV40C9BFffs5Xr175O6e6D0r19c7JiF/BjbzF1157Wfu15NmGMMjii4Yc0k09V6+2XDFAn5V5dr7ygXO+4lOOzlfv3tZvnZ0vQM9xrhIxSnx1dnbirLPOQktLC/bZZx9cfPHFPY+1fnL1NtAZiUTjJ1f15s2b021oGTN4sPV72DBg7Nh82xIVutnnqFH5tSMK1Klrb7cGrqefBu69175f14IbKvGVN3RQWrvWvq3LoAnYAmbECKfgUuV8rVhh/a6tBYYOzaZ9lKoq4HOfs//ebbfs2xAGWXzRoIgTT7QXB2gunS4r8yy+8oGdr/jQ/QfXry8f5wtw9ru6RNZQsUvHORZf+WHUms0ll1yCZ555BoMHD8ZDDz2EupTOnCD7gW3evLki3a8bbwRuvRW48sr8XYuo7L478MMfAi+9BFx2Wd6tCcfuuwPf/z7wyCPWBOvDD637qZmrq/MlVzvUQXzp7nwB1jV3003Af/+3835V2KHYtHTQoPxKvP/v/1rt+I//sIry6EyhYB2n7m5LfG3caD82cqR1HNevd4ovXVbmueBGPrDzFR+63+ayZWY6X/J1JcTXyJFWH/j888Cll2bfLhXsfOmHMd3GN7/5Tdx1110YOHAgnnrqKexB7QugJ9TQKxdLiKp+/fp5vpeXeybokjeCqRBOOsn6MZ1p0/JuQXR+/GPrp6PDWkGUT3ldCm74OV86TArpoKRjwQ0AmDLF+pFRhR0K8UVFZdbstRfwzDP5vX9Yqqtt8SWOX12ddU43N1vii54buqzMs/OVD3LfwM5XeGg48pIlzsUDXa4vP9ycLwD4n//Jti1+0PGA+wY9MCLs8Morr8QvfvELDBgwADNnzuypdkgZ80kZsE2bNvWEIMqI6ohjdK9/zDABqK0FDjmk9H5dnS8dww5VIqVQMGNCJTtf3d32CjIVlYw34rvu7LTF14AB1nmgChvSZWWexVc+sPMVHyq+li410/nyEl+64TYe6LTIWGloL76+853v4JZbbkH//v0xc+ZM10qGY8eORZ9PZiNz585VPkfcP2HChHQayzAZoyp6YorzpYP4Ug1KdXVmhNTKOV+bNwPFovV3ns6XaYjzsqvLLlwjjp+qII8uk0MWX/nAOV/x6dfP7nuXLi2vnC8dYfGlH1qLr6uuugo33XQT+vfvj6eeegoHHnig63Pr6urwhS98AQAwffr0kseXLl2KF154AQBw8sknp9NghskYlfjKYyVWNcEz1fkyZbIqhx3SipfsfAVHnJcdHfYxFMdPJb50mRyy+MoHdr6SQbhfy5fb111VlR7jQhDkdurcbrfFOBZf+aGt+Pqf//kf3HjjjRgwYICv8BJcddVVKBQK+N3vfocnn3yy5/62tjZccMEF6Orqwqmnnoo999wzzaYzTGYcdFDp5Iqdr+C4OV8mIIcdipA5gMVXGMR52dJS6hzq7HzR89RLfJlyPpsCO1/JIMRXZyfwydat6NvXjKgDwL3gho6oxoPqaj5380TLNZsZM2bgJz/5CQBgt912wy9/+Uvl85qamvDTn/605+8JEybg5ptvxhVXXIEpU6bgiCOOwJAhQ/Dcc89h1apVGDt2LH79619n8hkYJgt69QIOPti5P1EeK7E1NXbVOIFftUMdVuRNFl9ezheHHQZHTEDWr7fvM8354mqH2cEFN5KB5n2JsENdFjaCYFLYoWo8MGWcK1e0FF8bNmzouT137lzXHK7Ro0c7xBcAXH755dhnn31w880345VXXsHWrVsxatQoXH311bj66qtdN2BmGFM5/PD8xVehYA1GoupeTU3ppE9H58vkQYmdr2SgBTcE4rzgghuMDIcdJoOq7plJ0zOTxJfJi4zlipbdxtSpUzF16tTI/z958mRMnjw5uQYxjMbIeV95hB0CTvHV2FgaPqKj+FINSqZMVuWCG1R8sfMVHNXk2QTnq6rKdptZfGUHhx0mA3W+BLosbATBJPElwjlFWDXA4itvtM35YhgmGJ/9rHMCkNdKLJ3kqSaoOoov1ZZ/pgxKsvjighvRUE2evcSXThNEIQQ6OqzNU3/yE+CFF5xhiCy+koWdr2Rg8ZUdVVWlYx33C/nC4othDKexEaA7MOQlHuhgpBpEdRRf1dWlQtEU8VVdbQ+gctghO1/BUYkvr4IbujhfgFN8fe971uauU6Y489d4kpUs7Hwlg0p86XRt+WFSwQ2gdEHOlHGuXGHxxTBlwCWXWL8nTgR23jmfNlAxFcT50mVSKAsVkwYlUXSDna/oeDlfOud8Afa52t4OiNTolhZnDqgu11m5IPcP7HxFo6mpVLDodG35YZr4MnmcK0dYfDFMGTB1KrB6NfDii/mV6vVzvuRqhzo4X4DZK4Ii9FDO+WLxFRwv56tXr9JzWafVeep8LV1q309qVrH4Shh2vpKhUCh1v3S6tvyornaeC7qLL5PHuXKExRfDlAlDh+a7Cmti2CFQOiiZNFkV4mvrVi41HxUv5wsoDT3UaXVeTP7Wr3eKb4pJ57MJcM5XcsjiS6drKwh0DNNdfLHzpRcsvhiGSQQTC24AZg9KNOyQna9ohBFfhYKz0EneCCEg9klSweIrWdj5Sg6TnS/AeW3pMp65YfIiYznC4othmEQI63zp0vmbHI4hhEB7O7BunXW7UDBvBTlPvMIOAaf4Um2hkCdBtpXQ5TorF9j5Sg55ry/T+i12vpiosPhiGCYRwhbc0GWl0ORBibowq1ZZv/v3L82vY9zx2ucLcBbd0G1l3u9cranhcyFp5GPOzld0THe+TBJfJi8yliPcLTMMkwic85U9IuwQsPZ5AjjkMCzyeVkoOCeBsvOlE37Ol0nnsilw2GFycM5XdrD40gsWXwzDJIKf86VrtcNycb6KRes3F9sIhzx57tfPea5S8aXbyrxKfNHryqRz2RQ47DA52PnKDnlc4IWZfGHxxTBMItDO3GTny6QJK3W+BOx8hUM+L+XjZ5LzVSgAJ5xg/80TrORh5ys5hg93ilfdri8/6PWlu/gyeZwrR1h8MQyTCKZusmzyoKSqvMfOVzjk81I+fjrnfMlCYPhw4Oij7b91ucbKCXa+kqO6Ghg50v5bt+vLD5OdL5PGuXKExRfDMIlgas6XyYOSSnyx8xUOk50v+VwdPRo4/HD7bxZfycMFN5KFhh7qdn35YZL4MnmRsRxh8cUwTCKMG2f9LhTs2xRdxVe5FNwQsPMVDj/na4897InV3ntn06agyC7M6NFWe3ff3fp77Njs21TuVFc7txtg5ysen/mM9btvX6cLZgJinBs0CBg6NN+2+ME5X3rB3QbDMInwla8AHR3AzjsDu+1W+vj/b+/eo6I47zeAP8udLLCAN+TmNVGjFEFAUzHFWxTvVq23IKgxtdYYrNfk6JFWG2+1LaLRNkfF69GjVQIhUYwBkShECxop0WrEIIoKKhcRZJH39wc/KIRFgYWZneX5nLPn6Mzs5GGyMvud7zvvGGrxxc5X6/aqzpejIxAXB1y+DISESBSqgXQVXyoVEBNT+ZoxQ55cxs7cvPLZegA7X/r66KPK4bK+vsrrfK1aBbi7A2+9ZTjns/qw82VYWHwRUbOwsADee6/+9YY626GST0osvvT3886FruPn71/5MjS6ii+gsuPFrlfLqVl8sfOlHzs7YNEiuVM0jUYDfPCB3CkaRskXGY0Rhx0SkSQMdcINJZ+UOOxQf68admjI6iu+qGXVPO7sfJESWFryMRSGhMUXEUnCUIcdWlnVPhEZSlHYEOx86e9Vww4N2c+/QHXuLEuMVqfmcWfni5Si5u82Fl/yYvFFRJIw1OJLpard7VDSSYmdL/2x80WNxc4XKVHN321KushojFh8EZEkDLX4ApR7RZCdL/0pufNVswho00Z3MU7Nr+ZxZ+eLlEKp5zljxOKLiCRhqPd8Aco9KbH40p+xdL7Y9ZIOO1+kREo9zxkjFl9EJImasx2qVHWHTMmJww5bL2PpfLH4kg6LL1IipZ7njBGLLyKSRM0vKVZWtR9UKreaX7gNqSP3Kro6Xyy+GkfJxVfNL1AsvqTDCTdIiZR6njNGLL6ISBI/L74MiVKvCP68+LK2VlZ+Q8Bhh9RY7HyREin1PGeMWHwRkSQMufhycvrfn5XU+fj5sEMlZTcUP+9cKKn4qvn/+/XXZYvR6nDCDVIipZ7njBF/bRCRJGoWX4Y25GHePCApqfILrLe33Gkarmr4phCVf1dS4WAofn5RwNA+my8zbRrwxRdAu3bAiBFyp2k92PkiJXr3XeCrr4C2bYGAALnTtG4svohIEobc+erUCUhIkDtF46lUlUMPi4sr/86rmY1X83OptOPn5AR8/bXcKVofdr5Iidq3B06fljsFARx2SEQSqTnboaEVX0pW874vpRUPhkDJxRfJo+b9Mux8EVFjsfgiIkkYcudLyWoWXxx22Hg1P5c8ftQQ7HwRkT5YfBGRJFh8tYyak26wc9N47HxRY/GeLyLSB4svIpKEIU+4oWTsfOmHnS9qLHa+iEgfLL6ISBLsfLUM3vOlH3a+qLHY+SIifbD4IiJJsPhqGRx2qJ+anQseP2oIdr6ISB8svohIEpztsGVw2KF+OOyQGouzHRKRPlh8EZEkeM9Xy2DnSz8cdkiNxWGHRKQPFl9EJImaw3PY+Wo+7Hzpp+bnksePGqJm54vDDomosVh8EZEkvLwAJydApQICA+VOYzxGjao8ps7OgLe33GmUZ+jQyk7Ga68BQ4bInYaUYMSIyn9z7doBPj5ypyEipVEJIYTcIZSosLAQGo0GBQUFsLOzkzsOkSIUFwOPHwNubnInMS4//VT5RbBmF4wa7v79ym4shx1SQ2VnAw4OtYf9ElHr1tDagA1zIpKMWs0vKy2hUye5Eyibk5PcCUhpXF3lTkBESmWwww6vX7+OiIgIhISEwMPDA2ZmZlCpVFi3bl297wkLC4NKpXrp69q1axL+FERERERERJUMtvO1Y8cOhIeHN+m9np6e6Nu3r851Gt5RTUREREREMjDY4qtPnz5YunQpvLy84O3tjU8++QT79+9v0HsnTJiAsLCwlg1IRERERETUCAZbfL333nu1/m5iYrAjJImIiIiIiF6JFQ0REREREZEEDLbzpY/U1FSsXLkSjx8/hkajgZeXF8aOHQtbW1u5oxERERERUStllMVXTEwMYmJiai3TaDTYunUrZs2a9cr3FxcXN8s2REREREREVYyq+OrWrRs++eQTBAYGotP/P/gmIyMDGzZswBdffIHg4GCYmppi5syZL92PjY2NFHGJiIiIiKgVMariKygoqM6ygQMHIiYmBosWLUJERAQWL16MKVOmwMLCQoaERERERETUWrWaCTfCwsJgamqK3NxcpKSkvHTbp0+fvvJ17949iZITEREREZExMKrO18s4Ojqiffv2yMnJQXZ29ku3VavVr9zfixcvmisaERERERG1Aq2m8/XixQsUFBQAAGc9JCIiIiIiybWa4is6OhrPnj2DSqWCj4+P3HGIiIiIiKiVMZriKysrCwcOHEBpaWmddVFRUXjvvfcAADNnzoSTk5PU8YiIiIiIqJVTCSGE3CF0SU1NxYIFC6r//uOPPyIvLw+urq5wcXGpXn7ixAl07NgRly9fhpeXF2xsbODl5QUXFxeUlJQgIyMDN27cAAAMHjwY0dHRzTKVfGFhITQaDQoKCmBnZ6f3/oiIiIiISJkaWhsY7IQbhYWFOmclzM7OrjVhxvPnzwEAbm5uWLFiBS5evIibN28iNTUVZWVlaNu2LcaMGYMZM2Zg6tSpMDExmmYfEREREREpiMF2vgwdO19ERERERAQYQefL0FXVrIWFhTInISIiIiIiOVXVBK/qa7H4aqKioiIAlcMdiYiIiIiIioqKoNFo6l3PYYdNVFFRgXv37sHW1hYqlUq2HMXFxXB2dgYA3Lt3r0EPiKaG4/FteTzGLYvHt+XxGLcsHt+WxePb8niMW5ahHF8hBIqKiuDs7PzSOSbY+WoiExMTuLq6yh0Dpqam1X+2s7PjP+hmxuPb8niMWxaPb8vjMW5ZPL4ti8e35fEYtyxDOr4v63hV4dR/REREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEuBDlomIiIiIiCTAzhcREREREZEEWHwRERERERFJgMUXERERERGRBFh8ERERERERSYDFl4IdPXoUAQEBcHBwgFqthqenJzZt2gStVit3NMW7fv06IiIiEBISAg8PD5iZmUGlUmHdunVyR1M8rVaLM2fOYNmyZfD19YW9vT3Mzc3h5OSEcePGITY2Vu6IRuHgwYOYNWsWPD090b59e5ibm0Oj0cDPzw/r16/H06dP5Y5odJYvXw6VSsXfFc0gJCSk+ljW9yotLZU7plEoKyvD1q1b4e/vD0dHR1hZWcHV1RWBgYE4cuSI3PEU6/bt26/8DFe9EhMT5Y6rWFlZWVi4cCF69OgBa2trWFlZoUuXLggODsaVK1fkjqeTmdwBqGlCQ0MRHh4OMzMzDBkyBDY2Nvjmm2+wYsUKxMTEIC4uDtbW1nLHVKwdO3YgPDxc7hhG6ezZsxg+fDgAwMnJCf7+/lCr1cjIyEBMTAxiYmLw/vvvY+fOnVCpVDKnVa4dO3bg/Pnz6NWrF7y9veHo6IgHDx7gwoULuHjxInbv3o2zZ8/C2dlZ7qhG4fz589iyZQtUKhU4iXDzGThwILp3765znampqcRpjE92djZGjBiBjIwMtG3bFgMHDoRarcadO3eQmJgItVqNqVOnyh1TkWxsbBAcHFzv+oyMDFy8eBG2trbo16+fhMmMR0pKCoYPH46ioiK4uLjgnXfegampKS5fvox9+/bh0KFDOHToEKZMmSJ31NoEKc6JEycEAGFjYyP+/e9/Vy/Pzc0VHh4eAoBYsmSJjAmV77PPPhNLly4VBw8eFD/88IMICgoSAMTatWvljqZ4Z86cEZMmTRKJiYl11h0+fFiYmpoKAGLv3r0ypDMeycnJ4tGjR3WW5+XlCX9/fwFATJs2TYZkxqe4uFi8/vrrwsXFRUyYMIG/K5pBcHCwACD27NkjdxSj9ezZM9GzZ08BQISFhYmysrJa64uLi0VaWpo84VqBwMBAAUDMmzdP7iiK9Ytf/EIAEO+//36tz++LFy/EqlWrBABhb28vSkpKZExZF4svBfL19RUAxLp16+qsO3funAAgLC0tRX5+vgzpjFPVFwF+oWp5c+fOFQDE0KFD5Y5itBITEwUA4ejoKHcUo7Bo0SIBQMTGxvJ3RTNh8dXyVq9eXf3FlaSVnZ0tTExMBACRnJwsdxxFysvLEwAEAPHw4cM668vLy4W1tbUAIFJTU2VIWD/e86Uwd+/excWLFwEAM2bMqLPe398fbm5ueP78Ob788kup4xHpzcvLCwBw584dmZMYLzOzyhHnlpaWMidRvoSEBERERGDWrFkYNWqU3HGIGkSr1WLHjh0AgGXLlsmcpvWJjIxERUUFevfujf79+8sdR5Eac/5q27ZtCyZpPN7zpTBpaWkAAEdHR3Tp0kXnNj4+Prhz5w7S0tIwffp0KeMR6e3GjRsAgI4dO8qcxDgVFRUhLCwMADBu3Dh5wyjc06dPMWfOHHTo0AF///vf5Y5jlOLj43H16lUUFRWhTZs28PPzw6hRo3jhQE+pqanIy8uDs7MzunfvjqtXr+L48eO4d+8eHBwcMGjQIAQGBsLEhNfoW0JkZCQAYO7cufIGUTAbGxsMGjQI586dw6pVq7Bt2zaYm5sDACoqKhAWFoaSkhIEBgbCzc1N5rS1sfhSmMzMTACAu7t7vdtUfciqtiVSivv371eflCZNmiRvGCMRFxeHQ4cOoaKionrCjaKiIowcORIbN26UO56iLV26FJmZmThx4gQcHBzkjmOU9u3bV2dZx44dsXv3bowcOVKGRMbh+++/BwC4urpi5cqV2LRpU62JYjZu3AgvLy9ERUW99PsGNd7Zs2dx8+ZNWFhYICgoSO44ivbZZ59h1KhR+Oc//4nY2Fj4+PjA1NQUaWlpuHv3LoKCgrBt2za5Y9bBSxoKU1RUBABQq9X1bmNjYwMAKCwslCQTUXMoLy/Hu+++i4KCAnh4eOC3v/2t3JGMQkZGBvbu3Yv9+/cjLi4ORUVFmDFjBiIjI6HRaOSOp1hxcXH4xz/+gWnTpmHChAlyxzE6np6eCA8PR3p6OgoLC/HgwQPExcXhl7/8JXJycjBu3DgkJCTIHVOxHj16BKByNM3GjRuxYMECXL9+HQUFBTh9+jTeeOMNpKWlYfTo0Xx8TTPbvXs3gMqRB4Y2HE5pevTogQsXLuCdd97B3bt38fnnn+P48ePIzMxE9+7dERAQADs7O7lj1sHii4gMwvz583HmzBm0adMGx44dg4WFhdyRjEJoaCiEECgrK8PNmzexZcsWfPXVV3jzzTf5bJkmKigowNy5c9GuXTtERETIHccoLV68GIsWLULv3r1ha2uL9u3bY/jw4UhKSsL48eOh1WoRGhoqd0zFqupyabVaTJ8+Hdu2bcMbb7wBOzs7DBs2DKdPn4aVlRXS09Nx+PBhmdMaj8LCQhw7dgwAMGfOHJnTKN+3334LDw8PpKen49ChQ7h//z4eP36MmJgYaLVazJ071yCHdrL4UhhbW1sAQHFxcb3bVD081RCrfSJdPvzwQ+zatQsODg7VV12peZmbm6Nbt274wx/+gK+++gpPnjzBu+++i5KSErmjKU5oaCiys7Oxbds2XrmWmEqlwh//+EcAwJUrVzgxTxNVfZcAoHOUgbu7O0aPHg0A+PrrryXLZewOHz6MZ8+ewdXVFSNGjJA7jqLl5+dj4sSJyM3NxfHjxzF9+nR06NABDg4OGDNmDE6ePInXXnsNu3fvRnx8vNxxa2HxpTCdO3cG8PKZ4KrWVW1LZMiWLFmCrVu3wt7eHnFxcdWzHVLL6d+/P958803cuXMHly5dkjuO4pw4cQJmZmb49NNPERAQUOt18uRJAMCuXbsQEBCAadOmyZzW+PTq1av6z9nZ2TImUa6uXbvq/LOubXJyciTJ1BpUDTkMCQnhZCZ6io2NRW5uLrp27apzxsiayw3tAgIn3FCYqi+mjx49QmZmps4ZD6u+THl7e0uajaixli9fjr/+9a/QaDSIi4uDj4+P3JFajar7Rh8+fChzEmUqLy/H2bNn611/+/Zt3L59G506dZIwVetQdb8SULuDQw3n7e0NlUoFIQTy8vJ0zgaXl5cH4H/3kZN+MjIykJKSApVKhdmzZ8sdR/GysrIAvHyUV9V9zY8fP5YkU0Ox7FYYV1dX+Pr6AgAOHTpUZ31SUhLu3LkDS0tLPnOGDNrKlSuxefNmaDQanD59uvpzTS0vLy8PV65cAQAO8WyC/Px8CCF0voKDgwEAa9euhRACt2/fljesEaq6B8nOzg49evSQOY0yOTk5wd/fH4DuroBWq62+uODn5ydpNmO1a9cuAMDgwYPr7TZSw7m4uAAArl27hoKCgjrrtVotUlNTAaDeRzPJhcWXAn388ccAgA0bNlR/sIDKq4ELFiwAACxcuJAzmZHBWrVqFTZu3Ah7e3sWXi0gIyMDBw8eRGlpaZ11//3vfzFlyhQ8f/4cAwYMgIeHhwwJiep3+fJlREdHo7y8vNbyiooK7Nq1q/ocuGjRourn+lDjrVmzBgCwfv16JCcnVy8vLy/HkiVLcOvWLdja2rJL0wy0Wi0OHDgAgM/2ai6BgYFQq9UoKSnBvHnzquc7AICysjIsXrwYWVlZMDc3x+TJk2VMWpdK1HywAynGhx9+iK1bt8Lc3BxDhw6FWq3GmTNnkJ+fj4EDB+L06dOwtraWO6ZipaamVheyAPDjjz8iLy8Prq6u1VdbgMp7P/gw4MaJjo7G+PHjAVQ+ELx37946t2vbti3+8pe/SBnNaCQkJGDw4MFQq9Xw8vKCq6srysrKkJWVhdTUVFRUVKBXr144efIkn+HTzEJCQrB3716sXbsWq1atkjuOIkVFRWHixIlwcHCAt7c3OnTogPz8fKSnp1cPNZo+fTr27dsHMzPePaGPdevWYfXq1TAzM4Ofnx+cnJyQmpqK27dvw9raGkePHq2eeIOa7sSJE/j1r38Ne3t75OTkwMrKSu5IRuHAgQOYPXs2ysvL0a5dO/j6+sLc3ByXLl3C3bt3YWJigu3bt2P+/PlyR61NkGIdOXJEvP3228LOzk5YW1uLPn36iA0bNojnz5/LHU3x4uPjBYBXvjIzM+WOqjh79uxp0LHt1KmT3FEV6+HDh+LPf/6zGDlypOjcubNQq9XCwsJCODk5ieHDh4sdO3aI0tJSuWMapeDgYAFArF27Vu4oinXr1i0RGhoq/P39hYuLi7CyshKWlpbC3d1dTJ48WcTGxsod0aicOnVKBAYGCkdHR2Fubi7c3NxESEiI+OGHH+SOZjTGjBkjAIgFCxbIHcXoXL58WYSEhIiuXbsKS0tLYWFhITp16iRmzpwpUlJS5I6nEztfREREREREEuA9X0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9ERGQwVCpVo18BAQEAgICAAKhUKiQkJMj6MzSH8PBwqFQq/Otf/2ryPgoKCtCmTRv0798fQohmTEdERE1lJncAIiKiKsHBwXWW3b9/H6dOnap3fc+ePVs8l5Ryc3MRFhYGX19fTJo0qcn70Wg0+Oijj7Bs2TLs27dP57EjIiJpqQQvhxERkQFLSEjA4MGDAeClHZysrCw8e/YM7u7ueO2116SK1+wWLlyI7du3IzY2FqNGjdJrX6WlpXB3d4eZmRkyMzNhaWnZTCmJiKgpOOyQiIiMgru7O3r27Knowis/Px+RkZFwcXHByJEj9d6flZUVZsyYgZycHBw5cqQZEhIRkT5YfBERkVGo756vkJAQqFQqREZG4vr165g6dSrat28PtVoNX19ffP7559XbpqSkYNy4cWjXrh2sra3x1ltv4cyZM/X+N0tKSrBlyxYMGDAA9vb2sLKyQo8ePbB8+XI8evSo0T/Dnj17UFxcjKCgIJiY1D1FP3/+HJs3b0a/fv1ga2sLCwsLODk5wdfXF8uXL8fjx4/rvCckJAQAsH379kbnISKi5sXii4iIWoXU1FT069cPV65cwdChQ+Hp6YlLly5h4sSJOHbsGKKiojBo0CBkZ2dj6NCh6NGjB5KTkzFy5EgkJSXV2d+9e/fQv39/LF26FDdu3ICvry9GjRpVXSD5+Pjgp59+alTGqKgoAMCwYcPqrKuoqMDo0aOxfPly3Lx5E4MGDcLkyZPh4eGB3NxcbN68GVlZWXXe17dvX7Rr1w7fffcdcnJyGpWHiIiamSAiIjJg8fHxAoB41SnrV7/6lQAg4uPjay0PDg6ufv+6detERUVF9bqtW7cKAMLV1VU4ODiIffv21XpvaGioACCGDRtWa3lFRYUYOHCgACDmzp0rCgsLq9dptVqxZMkSAUAMHjy4wT/ns2fPhIWFhTAxMam1vypnz54VAISXl5fO9RcvXhR5eXk69z1u3DgBQOzfv7/BeYiIqPmx80VERK2Cn58fPv74Y6hUquplv/vd7+Do6Ijs7GwMGzYMQUFBtd6zatUqAEBiYiK0Wm318lOnTuHbb79F3759sXPnTtja2lavMzMzw6ZNm9CnTx/Ex8cjPT29Qfn+85//oKysDK6urrX2V+XBgwcAgEGDBulc7+PjgzZt2ujcd+/evQFUdv+IiEg+LL6IiKhVCAwMrFV4AZWFUpcuXQBA58yCbdq0gaOjI8rKymrdwxUbGwsAmDRpEszM6j61xcTEBG+//TYA4Pz58w3KV1Vc1VdAeXt7w9TUFLt378b27dsbNYSwap9V/w0iIpIHiy8iImoV3N3ddS63sbF56fqqLlNpaWn1slu3bgEAVq9eXe/Dnz/99FMAlc/taoiCggIAgJ2dnc713bp1w9/+9jdotVosXLgQzs7O6Ny5M6ZPn46DBw+irKys3n1X7fPJkycNykJERC2DD1kmIqJWQdfsgY1ZX1NFRQUAwN/fH926dXvptlVD/l7F3t4eAFBYWFjvNh988AF+85vfIDo6GklJSUhKSsLhw4dx+PBhrFmzBufOnUPHjh3rvK+qsHNwcGhQFiIiahksvoiIiBrJzc0NADB+/HgsXbq0WfbZvn17AHjlFPUdOnTAvHnzMG/ePADAtWvXMGfOHFy4cAErV67E3r1767ynap8dOnRolqxERNQ0HHZIRETUSIGBgQCAo0ePQgjRLPvs3bs3LCwskJ2djaKioga/r2fPnlixYgUA4PLlyzq3qZr0o1+/fnrnJCKipmPxRURE1Ejjx4+Hr68vvvvuO8yePVvnfV1PnjzBzp07UV5e3qB9WltbY8CAAaioqEBKSkqd9d988w2+/PLLWrMuAoAQAl988QUAoFOnTjr3feHCBQDAkCFDGpSFiIhaBocdEhERNZKJiQmioqIwevRo7N27F8eOHYOnpyfc3d1RVlaGW7du4erVq3jx4gVCQkJ0zoioy4QJE5CYmIjTp0/XedDy999/j8WLF8POzg7e3t5wdnZGSUkJUlNT8dNPP0Gj0eBPf/pTnX2mpaXh0aNH8PPz03k/GBERSYedLyIioiZwdnZGcnIydu7cCT8/P1y/fh3Hjh1DUlISAGD+/Pk4deoUrKysGrzP2bNnQ61W48CBA3jx4kWtdWPHjkVYWBh8fX1x69YtHD9+HAkJCdBoNFi5ciXS09PRt2/fOvuMjIwEAPz+979v8s9KRETNQyWaa7A6ERER6W3hwoXYvn07oqOjMXbsWL32VVpaCjc3N5ibmyMzMxOWlpbNlJKIiJqCnS8iIiIDsmbNGtjb2+scQthYERERyMvLw/r161l4EREZAHa+iIiIDEx4eDhCQ0Nx9OhRTJ48uUn7KCgoQNeuXdG9e3ckJydDpVI1c0oiImosFl9EREREREQS4LBDIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpIAiy8iIiIiIiIJsPgiIiIiIiKSAIsvIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpLA/wFYNv5CU/sxtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc.time, lc.counts, lw=2, color='blue')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `Powerspectrum` class to create a `Powerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize power to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "ps = Powerspectrum.from_lightcurve(lc, norm=\"leahy\")\n", + "print(ps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Powerspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Powerspectrum(lc, norm=\"leahy\")\n", + "```\n", + "However, we recommend using this explicit syntax, for clarity. Equivalently, one can initialize a `Powerspectrum` object:\n", + "\n", + "1. from an `EventList` object as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(events, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally.\n", + "\n", + "2. from a `numpy` array of times expressed in seconds, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(times, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Powerspectrum.from_lc_iter(lc_iterable, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterable` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.)\n", + "\n", + "Since the negative Fourier frequencies (and their associated powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"\\nSize of positive Fourier frequencies:\", len(ps.freq))\n", + "print(\"Number of data points per segment:\", ps.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Powerspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the power spectrum.\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of power spectra averaged together. For a `Powerspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curve.\n", + "6. `nphots1` : The total number of photons in the light curve.\n", + "7. `norm` : The normalization, one of `leahy` (Leahy et al. 1983), `abs` (absolute rms), `frac` (fractional rms), or `none`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1. 1.125 1.25\n", + " 1.375 1.5 1.625 1.75 1.875 2. 2.125 2.25 2.375 2.5\n", + " 2.625 2.75 2.875 3. 3.125 3.25 3.375 3.5 3.625 3.75\n", + " 3.875 4. 4.125 4.25 4.375 4.5 4.625 4.75 4.875 5.\n", + " 5.125 5.25 5.375 5.5 5.625 5.75 5.875 6. 6.125 6.25\n", + " 6.375 6.5 6.625 6.75 6.875 7. 7.125 7.25 7.375 7.5\n", + " 7.625 7.75 7.875 8. 8.125 8.25 8.375 8.5 8.625 8.75\n", + " 8.875 9. 9.125 9.25 9.375 9.5 9.625 9.75 9.875 10.\n", + " 10.125 10.25 10.375 10.5 10.625 10.75 10.875 11. 11.125 11.25\n", + " 11.375 11.5 11.625 11.75 11.875 12. 12.125 12.25 12.375 12.5\n", + " 12.625 12.75 12.875 13. 13.125 13.25 13.375 13.5 13.625 13.75\n", + " 13.875 14. 14.125 14.25 14.375 14.5 14.625 14.75 14.875 15.\n", + " 15.125 15.25 15.375 15.5 15.625 15.75 15.875]\n", + "[9.75294222e-02 1.37192421e-01 6.62062702e+00 5.42273987e-01\n", + " 1.26707856e-01 7.14262683e-02 1.46986106e+00 9.35172244e-01\n", + " 2.04574831e+00 4.88638843e-01 1.46127864e+00 3.24027874e+00\n", + " 2.95907471e+00 1.46905530e-01 1.42916439e+00 3.58020047e+02\n", + " 3.04922773e+00 2.14088855e+00 3.89197375e-01 3.48148529e-01\n", + " 2.32409725e+00 3.72418140e+00 5.10604734e-01 5.98258473e-01\n", + " 1.75462401e+00 2.24000263e-01 1.06137267e+00 1.07517074e+01\n", + " 1.14917349e+00 4.59646030e-01 1.30278344e-01 2.09102366e+00\n", + " 2.17910753e-01 5.49240044e+00 7.32466747e-01 3.46833517e+00\n", + " 1.93866299e-01 3.93997974e-02 1.97441653e+00 4.28610905e+00\n", + " 2.93970456e-01 2.72920344e+00 4.52529974e+00 5.42552369e+00\n", + " 3.00538316e+00 3.14413850e+00 1.65733555e-01 6.16733137e-01\n", + " 2.85338470e+00 5.56565439e+00 1.60825816e+00 2.83059003e+00\n", + " 3.84807029e+00 6.35749643e-01 2.52661012e-01 9.73415923e-02\n", + " 2.64107250e+00 1.31206307e-01 2.20321939e+00 2.08750811e+00\n", + " 4.61234244e+00 1.15633604e+00 3.60363976e-01 2.24498998e+00\n", + " 1.71646651e+00 3.38371881e+00 3.32514629e-02 1.67607504e+00\n", + " 1.77957522e+00 6.92787087e-01 3.35553415e+00 1.94034115e+00\n", + " 1.16770721e+00 3.76130715e+00 4.34584431e-01 5.72348179e-01\n", + " 1.14572517e+00 1.41890460e+00 1.64121258e-01 1.96499122e+00\n", + " 3.52679951e+00 2.58201128e+00 1.05541840e+00 3.76982654e-01\n", + " 3.81558230e-01 1.09665960e+00 3.52309943e+00 3.00115328e+00\n", + " 2.81888737e-01 3.46916554e-02 4.78900280e-01 5.10837621e+00\n", + " 7.05428845e+00 1.79144555e+00 1.45542292e+00 4.14645129e+00\n", + " 5.47936328e-01 1.43060457e-01 3.85238243e-01 2.86842673e+00\n", + " 7.07492195e-01 2.11192195e+00 8.18724669e-02 3.11165001e+00\n", + " 2.71594888e+00 8.22251145e+00 4.21393967e+00 4.85809743e-01\n", + " 1.66578478e+00 4.52801220e-01 1.39963588e+00 3.83710679e+00\n", + " 8.29760812e-02 2.04827673e-01 4.46966187e-01 4.58682373e+00\n", + " 5.11398498e-01 7.53864807e-01 1.49293643e-01 1.48889204e+00\n", + " 1.55536424e-01 1.34814529e-01 1.31907922e-01 1.49852755e+00\n", + " 8.75140990e-01 9.00289904e-02 4.72042936e+00]\n", + "0.125\n", + "1\n", + "256\n", + "7984.0\n" + ] + } + ], + "source": [ + "print(ps.freq)\n", + "print(ps.power)\n", + "print(ps.df)\n", + "print(ps.m)\n", + "print(ps.n)\n", + "print(ps.nphots1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAIECAYAAAAdL2E2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4tElEQVR4nO2deZxUxbn+n56VWYBhHRRQEBEXUEFQ45Ig4oYat0SNiZFEjcZLiF5NQozE5GqM0WgurjGJGu8vmsQN4oILbnFHDIpiEFEhgsq+zgDDLOf3x7Gm6pw5+366n+/nM585093TXd19TlU99bzvWwVN0zQQQgghhBBCSEYoS7sBhBBCCCGEEKJCkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBVpN4AY6ejowNq1awEAtbW1KBQKKbeIEEIIIYSQ8Giahq1btwIA+vbti7Iye7+EIiVjrF27Fo2NjWk3gxBCCCGEkNhYtWoV+vfvb3s/w70IIYQQQgghmYJOSsaora3tPF61ahXq6upSbA0hhBBCCCHR0Nzc3BkxpM55raBIyRhqDkpdXR1FCiGEEEIIKTrc8q4Z7kUIIYQQQgjJFHRSUqa5udnxb0IIIYQQQkoNipSUqa+vT7sJhBBCCCGEZAqGexFCCCGEEEIyBZ2UlGlqajL8rVY9IIQQQgghpBShSEkZVu8ihBBCCCHECMO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmC1b1ShjvOE0IIIYQQYoQiJWW44zwhhBBCCCFGGO5FCCGEEEIIyRR0UlKGO84TQgghhBBihCIlZbjjPCGEEEIIIUYY7kUIIYQQQgjJFBQphIRg6lRgjz2AV15JuyWEEEIIIcUDRQohAVm9Grj5ZmDJEuD229NuDSGEEEJI8UCRQkhAtmyxPiaEEEIIIeGgSCEkIK2t8njHjvTaQQghhBBSbFCkEBIQihRCCCGEkHigSCEkIBQphBBCCCHxQJFCSEAoUgghhBBC4oGbOaZMc3Oz498ku1CkEEIIIYTEA0VKytTX16fdBBIQVZhQpBBCCCGERAfDvQgJCJ0UQgghhJB4oJOSMk1NTYa/m5ub0djYmFJriB8oUgghhBBC4oEiJWXq6urSbgIJCEUKIYQQQkg8MNyLkIBQpBBCCCGExANFCiEBoUghhBBCCIkHihRCAsLqXoQQQggh8UCRQkhAzE6KpqXXFkIIIYSQYoIihZCAqCIFANra0mkHIYQQQkixQZFCSEDMIoUhX4QQQggh0UCRQkhAKFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQExixKKFEIIIYSQaKBIISQgdFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQGhSCGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHirSbkCp09zc7Pg3yS4UKYQQQggh8UCRkjL19fVpN4EEhCWICSGEEELigeFehASETgohhBBCSDzQSUmZpqYmw9/Nzc1obGxMqTXEDxQphBBCCCHxQJGSMnV1dWk3gQTELFLMfxNCCCGEkGAw3IuQgNBJIYQQQgiJB4oUQgJCkUIIIYQQEg8UKYQEhNW9CCGEEELigSKFkIDQSSGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHihSCAkIRQohhBBCSDxQpBASEIoUQgghhJB4oEghJCCs7kUIIYQQEg8UKYQEhE4KIYQQQkg8UKQQEhCKFEIIIYSQeKBIISQgFCmEEEIIIfFAkUJIQChSCCGEEELigSKFkIBQpBBCCCGExANFCiEB0DSgrc14G0UKIYQQQkg0UKQQEgCziwJQpBBCCCGERAVFCiEBoEghhBBCCIkPihRCAkCRQgghhBASHxQpIXjwwQdxyimnYJdddkFtbS322Wcf3HDDDWi1msGSooIihRBCCCEkPirSbkCe+e1vf4shQ4bguuuuQ2NjI1599VVcccUVeOedd3DPPfek3TwSIxQphBBCCCHxQZESgkcffRT9+vXr/PuII46ApmmYPn16p3AhxQlFCiGEEEJIfDDcKwSqQBEccMABAIDPPvss6eaQBLESJBQphBBCCCHRUHQiZfHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667znOeyYsvvoiqqioMGzYszNsgGYdOCiGEEEJIfBRduNftt9+OGTNmBPrfiy++GDNmzEBFRQUmTJiA+vp6PPfcc/jJT36CRx99FE8//TRqamps///f//43ZsyYge9973vo0aNH0LdAcgBFCiGEEEJIfBSdkzJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPn277/2vXrsXJJ5+M3XffHddee21Ub4dkFIoUQgghhJD4KDon5bzzzjP8XVbmTYddc801AIBp06ZhzJgxnbf37dsXt912Gw4//HDccsstmD59Onr27Gn43y1btuC4447Djh078MILL6Curi7kuyBZhyKFEEIIISQ+is5JCcKnn36KefPmAQDOOuusLvcfdthhGDx4MFpaWjB79mzDfS0tLTjppJOwbNkyPPXUU9h5550dX6u5udn1h2QfihRCCCGEkPigSAHw1ltvAQB69+6NoUOHWj5m7NixhscCQHt7O84880zMmzcPs2fPxogRI1xfq76+3vGHZYvzgZUgaW0FNC35thBCCCGEFBtFF+4VhKVLlwIAdtllF9vHDB482PBYAPiv//ovzJo1C1dddRXa29vx+uuvd9639957M3m+iLEr9tbaClRVJdsWQgghhJBigyIFek4JAMdckvr6egDA5s2bO2978sknAQDTp0/vklT//PPPY/z48V2ep6mpybEtzc3NdFNygJ1I2bGDIoUQQgghJCwUKSFYtmyZ7/9hUn1x4CRSCCGEEEJIOChSAHTv3h0AHJPWhQMSdQiX+TWZOJ8PKFIIIYQQQuKDIgXAkCFDAADLly+3fYy4Tzw2KkQYGckXFCmEEEIIIfHB6l4ARo8eDQBYt26dITFe5c033wQAwx4qpHSxEyMUKYQQQggh4aFIATBo0CCMGzcOAHDfffd1uf/ll1/G8uXLUV1djUmTJkX62k1NTYafVatWRfr8JB5UJ6VQkMcUKYQQQggh4aFI+YLLL78cAHDttddi/vz5nbevW7cOF110EQBgypQpXXabD0tdXV2XH5J9VJGifmUUKYQQQggh4Sm6nJT58+d3igoA+OijjwAAd9xxBx577LHO22fOnImddtqp8++TTz4ZU6dOxU033YSDDz4YRx55JOrq6vDss89i48aNOPTQQ3HVVVdF3l4mzucTs0gRlaUpUgghhBBCwlN0ImXz5s2YO3dul9tXrFiBFStWdP7d0tLS5TEzZszAoYceiltvvRWvvvoqWltbMWzYMEybNg2XXHIJqmLYAIOJ8/lEFSn19YCI0qNIIYQQQggJT9GJlPHjx0PTtMD/f/rpp+P000+PsEWkGGG4FyGEEEJIfBSdSMkb5h3oueN8PrATKXaliQkhhBBCiHcoUlKGifL5RHVMamutbyeEEEIIIcFgdS9CAsBwL0IIIYSQ+KCTkjKs7pVPKFIIIYQQQuKDIiVlWN0rn1CkEEIIIYTEB8O9CAmAuQSxgCKFEEIIISQ8dFJShtW98gmdFEIIIYSQ+KBISRlW98onqhihSCGEEEIIiRaGexESADophBBCCCHxQZFCSAAoUgghhBBC4oPhXinDEsT5hCKFEEIIISQ+KFJShiWI8wmrexFCCCGExAfDvQgJAJ0UQgghhJD4oJOSMixBnE9Y3YsQQgghJD4oUlKGJYjziXBSCgWgpkbeTpFCCCGEEBIehnsREgAhUiorgaoqeTtFCiGEEEJIeChSCAkARQohhBBCSHxQpBASAIoUQgghhJD4YE5KynCflHwiREpVFUUKIYQQQkjUUKSkDPdJySd0UgghhBBC4oPhXoQEQIgRihRCCCGEkOihk5Iy3Ccln9BJIYQQQgiJD4qUlOE+KflEFSnl5UBZGdDRQZFCCCGEEBIFDPciJACqSAGkm0KRQgghhBASHooUQgKgVvdSf1OkEEIIIYSEhyKFEJ+0t+uhXQCdFEIIIYSQOKBIIcQnwkUBKFIIIYQQQuKAIoUQn1CkEEIIIYTEC0UKIT6hSCGEEEIIiReWIE6Z5uZmx79J9qBIIYQQQgiJF4qUlKmvr0+7CcQnFCmEEEIIIfHCcC9CfKKKFHMJ4rY2WfmLEEIIIYQEg05KyjQ1NRn+bm5uRmNjY0qtIV5Q3RKzkwLoIqa6Otk2EUIIIYQUExQpKVNXV5d2E4hPnMK9AF3EUKQQQgghhASH4V6E+MSLSCGEEEIIIcGhSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRCfOFX3AihSCCGEEELCQpFCiE/cqntRpBBCCCGEhIMihRCfMNyLEEIIISReKFII8YmbSFHvJ4QQQggh/qFIIcQndFIIIYQQQuKFmzmmTHNzs+PfJHtQpBBCCCGExAtFSsrU19en3QTiE4oUQgghhJB4YbgXIT5hCWJCCCGEkHihk5IyTU1Nhr+bm5vR2NiYUmuIF1iCmBBCCCEkXihSUqauri7tJhCfWIV7id8ARQohhBBCSFgY7kWIT5iTQgghhBASLxQphPiEIoUQQgghJF4oUgjxCUUKIYQQQki8UKQQ4hNW9yKEEEIIiReKFEJ8wupehBBCCCHxQpFCiE8Y7kUIIYQQEi8UKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITihRCCCGEkHihSCHEJ6zuRQghhBASLxQphPiE1b0IIYQQQuKFIoUQnzDcixBCCCEkXihSCPEJRQohhBBCSLxUpN2AUqe5udnxb5I9KFIIIYQQQuKFIiVl6uvr024C8QlFCiGEEEJIvDDcixCfUKQQQgghhMQLnZSUaWpqMvzd3NyMxsbGlFpDvECRQgghhBASLxQpKVNXV5d2E4hPhAgpLwfKvvAihVhR7yeEEEIIIcFguBchPhFOiipMysv1H4AihRBCCCEkLBQphPjESqQAMuSLIoUQQgghJBwUKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITIVLUil7q3xQphBBCCCHhoEghxCdChNBJIYQQQgiJB4oUQnzCcC9CCCGEkHihSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRAfaJq7SGlv138IIYQQQkgwKFII8YEqPuxECiCFDCGEEEII8Q9FCiE+UEO57EoQmx9HCCGEEEL8QZFCiA9Uh8TJSaFIIYQQQggJTkWQf9q4cSOeeuopPPvss5g/fz5WrVqFDRs2oFevXmhsbMQBBxyACRMm4JhjjkFDQ0PETSYkPShSCCGEEELix5dIeffddzFjxgz89a9/xfbt26FpmuH+rVu34tNPP8X8+fPxpz/9Cd26dcNZZ52FH/zgB9h3330jbTghaUCRQgghhBASP55EyurVq/HTn/4U99xzDzo6OtC3b18cf/zxOOSQQ7DPPvugT58+6NGjBzZt2oR169Zh4cKFePXVV/Hiiy/izjvvxN13343JkyfjmmuuQf/+/eN+T4TEhleRwsR5QgghhJDgeBIpw4cPx5YtW3DCCSfg3HPPxfHHH4+KCvt/Pfroo/Hf//3faGtrw6OPPoq77roLd911Fx566CFs2LAhssYTkjR0UgghhBBC4sdT4vyBBx6IefPm4ZFHHsFJJ53kKFBUKioqcMopp+DRRx/F3LlzMXbs2FCNJSRtWN2LEEIIISR+PImUOXPm4IADDgj1QuPGjcOcOXNCPUfW+PDDD3HhhRdizJgxqKysxJAhQ9JuEokZOimEEEIIIfETqLoX0Xnvvffw2GOP4cADD4SmaQxlKwEoUgghhBBC4ifQPinLli2LuBn55MQTT8SKFSvw8MMP46CDDkq7OSQBKFIIIYQQQuInkEjZbbfdMHz4cFx44YV48MEHS9ZBKCvjXpilBkUKIYQQQkj8BJplDxkyBB999BH+8Ic/4IwzzkC/fv0wduxYTJs2Dc888wxaWlqibqdnFi9ejJtvvhmTJ0/GqFGjUFFRgUKhgKuvvtrT/z/wwAMYP348evXqhbq6Ouy333647rrr0MqasgQUKYQQQgghSRAoJ+Xjjz/G0qVL8cwzz2DOnDl4/vnnMX/+fMyfPx/XX389qqurccghh2DixImYOHFiolW9br/9dsyYMSPQ/1588cWYMWMGKioqMGHCBNTX1+O5557DT37yEzz66KN4+umnUVNTE3GLSZ4odZHS2go8+ywwZgzALY8IIYQQEheB45WGDh2K888/H/fffz/WrFmDf/3rX7j22msxceJEFAoFPP/88/jZz36Ggw8+OMr2ujJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPnx5z60nWKfUSxFdeCRx3HHDYYUBHR9qtIYQQQkixEll1r9GjR2OvvfbC/vvvjz322AN33nkntm/fHtXTe+a8884z/O01b+Saa64BAEybNg1jxozpvL1v37647bbbcPjhh+OWW27B9OnT0bNnz+gaTHJFqTspr76q/16yBFi3DujXL932EEIIIaQ4CSVSNE3Dm2++iWeeeQbPPPMMXn31VezYsQOapqGhoQHHHXccJk6cGFVbY+PTTz/FvHnzAABnnXVWl/sPO+wwDB48GMuXL8fs2bPxjW98I/BrNTc3h7qfpIuTSFH/LlaR0tQkj7dsoUghhBBCSDwEEim///3v8cwzz+D555/Hxo0boWmaZR5KoVCIur2x8NZbbwEAevfujaFDh1o+ZuzYsVi+fDneeuutUCKlvr4+8P+S9Cl1J8UsUgghhBBC4iCQSLnoootQKBSw55574rzzzsPEiRNx+OGHo1u3blG3LxGWLl0KANhll11sHzN48GDDYwFg69atmD17NgC9mMDWrVvx4IMPAgDGjRuHXXfdNa4mk5QodZGiChNVsBBCCCGEREngcC9N0/Dxxx9j3rx5aGhoQO/evXHAAQdE2bbE2PLFzKuurs72McIB2bx5c+dtq1evxte//nXD48Tfd999NyZPntzleZpcZnbNzc1obGz01G6SPKUuUuikEEIIISQJAomUuXPnGvJQXnjhBVxxxRXo1asXJkyYgIkTJ+Koo46yDZ0qFoYMGQJN03z9j5MQItmnlKt7aRpFCiGEEEKSIZBIGTduHMaNG4ef/vSn2L59O1588cVO0fLQQw/hwQcfRKFQwNChQ3HUUUfh9ttvj7rdkdK9e3cAzknrwgHp0aNHpK9tfk0mzmebUnZStm83lh2mSCGEEEJIXATeJ0XQrVs3HH300bjuuuswf/58rFy5Epdddhmqq6vx8ccf4w9/+EMU7YyVIUOGAACWL19u+xhxn3hsVNTX1xt+GOqVbUpZpJhFCXNSCCGEEBIXkeyTYt59fv369Z1hUNXV1VG8RKyMHj0aALBu3TosXbrUMkztzTffBADDHiqk9ChlkWIWJXRSCCGEEBIXgUTKhg0b8Oyzz3aGeImKV5qmoVAoYP/99+8sRXz44YdH2uA4GDRoEMaNG4d58+bhvvvuw89+9jPD/S+//DKWL1+O6upqTJo0KdLXNifSM3E+21CkSChSCCGEEBIXgURKv379oGlap1sydOjQTlFy5JFHonfv3pE2Mgkuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlSuS7zTORPl+UskgxixKKFEIIISpNTcDq1cBuu6XdElIMBBIpDQ0NOPLIIzuFSZaqeM2fP79TVADARx99BAC444478Nhjj3XePnPmTOy0006df5988smYOnUqbrrpJhx88ME48sgjUVdXh2effRYbN27EoYceiquuuiry9jJxPl+UcnUvs5PCnBRCCCGCrVuBESOAzz4D/v534PTT024RyTuBRMratWujbkdkbN68GXPnzu1y+4oVK7BixYrOv1taWro8ZsaMGTj00ENx66234tVXX0VrayuGDRuGadOm4ZJLLkGVeVYaAdyBPl+UspPCcC9CCCF2/OtfukABgAceoEgh4YkkcT5LjB8/3vfeJSqnn346TueVRWygSJFQpBBCCBF8/rk8fu+99NpBioeiEyl5g4nz+aKURQpLEBNCCLFDuCgAsGSJPg7GEIBCSojA+6S0trbihhtuwMEHH4xevXqhvLzc8qeigjrIibq6ui4/JLuUskihk0IIIcQOVaS0telChZAwBFIQLS0tOPLII/Haa6+5hlaFCb0iJGtQpEgoUgghhAjUcC9AD/naZ5902kKKg0BOyowZM/Dqq6/i6KOPxuLFi/Htb38bhUIBLS0tWLhwIX7yk5+guroa06dPR0dHR9RtLiqam5u7/JDs4iRS1L+LUaSwBDEhhFijacDcuXr53VJFdVIA4N//TqcdpHgI5KQ88MAD6N69O/72t7+hZ8+eKBQKAIDKykrsvffe+PWvf41DDjkEJ598MkaNGoWvfe1rkTa6mGB1r3zhVIK4rAyoqNBt7mIUKSxBTAgh1tx2GzBlCtCvH7BsGVBbm3aLkscsUpg8T8ISyEn54IMPcNBBB3VubChESnt7e+djTjzxRIwePRo333xzBM0kJBs4OSmAFC6lIFJaWwGLSt6EEFJSaBogpjpr1pTu5JxOComaQCKltbUV/fr16/y7pqYGgL5HicqIESPw7rvvhmhe8dPU1GT4WbVqVdpN8kR7O/DII8D8+Wm3JFlKWaRYhXcx5IsQUuosWAAsXiz/XrMmvbakRXMzYJoC4oMPinMsJMkRSKQMGDAAnysZUmLn9kWLFhke99lnnxncFdKVvFb3+utfgZNOAg4+uGuyXDFTyiLFKryLIoUQUur89a/Gv0tRpFjNA1jhi4QlkEjZa6+98OGHH3b+fcghh0DTNFx33XWdifL//Oc/8dJLL2HEiBHRtJRkirfe0n+3tgILF6bbliShSHG/jRBCSgVNA/72N+NtpShS1FCv8nJ5zJAvEoZAIuWYY47BihUr8MYbbwDQd3nfe++98eijj2LgwIE44IADcNRRR0HTNFx00UWRNphkg+3b5XEpFSRTRYrVFkClJlLopBBCSpnXXwc++cR429q16bQlTVQn5cAD5XGp5ueQaAhU3euss85Cnz59OhPny8rKMGvWLJx22ml49913sWrVKpSXl2Pq1KmYPHlylO0tOswlh/NSglhNmC6l1XQhPiorgS/qRRgoZpHCnBRCCDFidlEAOikTJwKvvaYf00khYQgkUvr27YtvfvObhtt23313LFiwAIsXL8b69euxxx57oE+fPpE0spjJawliVaTkRFdFgnBSrEK9gOIWKXRSCCFE0t4O3H+/flwo6KFfAEXKl7+sj4U7dtBJIeEIFO714osv4pVXXrG8b8SIEfjSl75EgVLklHq4V6mJlI4O6++5lFw0QghR+ec/gZUr9eNJk+TtpShS1HCvwYMBkY7MCl8kDIFEyvjx4zF9+vSo21KS5LUEcamGe3kVKR0d+ipbsbB1q1wlVKGTQggpVdRQr29/G2ho0I9LMSdFdVJ23hnYe2/9uK0NUOosEeKLQCKlV69e2HnnnaNuS0mS1xLEDPeyvl/dhb6YVo9UIVqm9BpJihQrkUS888YbwJVXAsuXp90SQvLPjh3AQw/px3V1wPHH67vNA6XppAiRUl8PdO8O7LOPvI8hXyQogUTK/vvvjyUsfl3SqOFedFIkpSBSGhvlcVIiZfFiYI89gGOO0Vfm8sx77+kboX5RrT0R2tuBr34V+J//AS69NLnXJaRYeeYZYP16/firX9WFSt+++t+bNhVX/+8FIVLE+rVwUgAmz5PgBBIpU6dOxbx58/D4449H3R6SE0rVSVGre1lRrCJFFSNf7N0KIDmB+pe/6CEDTz8NvPpqMq8ZB2+9BRxwgL4R6h/+kNzrfvQRICJJ3303udclpFhRQ73OPFP/LZwUoLRCvpqa5Bghxgc6KSQKAlX3Gj16NKZMmYJTTjkFkydPxmmnnYYhQ4agpqbG8vG77LJLqEaS7FGqIkU4KaoYUVFvV/dUyTuqGFFFSlJOyqZN8lisXuaNjg7g+9+X185jjwEXXpjMa6uThJykvRGSWbZtA2bO1I979tQdXsAoUtaska5CsaMmzYv3vPvu+mJeayudFBKcQCJl6NChAABN03DnnXfizjvvtH1soVBAW97jM0gXGO5lfX+xOinqd6wOvEmJlG3b5LEqWPLEH/8IzJ0r/3777eReW50kbNign5t2QpsQ4szs2bJPPPVUoLpaPy5VJ8WcNA/omx2PGAEsXKhX+GpttR83CbEjkEgZPHgwClY72RHfFMNmjjlpciRQpKTjpKgiZfPmZF4zSlavBqZNM9726af6aqs6sYkLc7jF6tXAoEHxvy4hxcgTT8hjEeoFyJwUoLSS51UnRR0f9tlHFymtrcCSJcY8FUK8EEikLFu2LOJmlC7FsJljqTgpmibLCpeaSFHFiJo4n9R3n3eR8qMfARs36sdikzNAd1OOOir+1zeHW6xaRZFCSFDWrZPHo0bJY3O4V6lg5aQAXZPnKVKIXwIlzhNSips5qjkmpSZSVDHS0ACI9LOknBT1fMubSPnnP4H/+z/9uKEBuPpqeV8SIV/t7cD77xtvY14KIcFR+0N1nZEixShSmDyfTVat0r+PDz/U90DLMhQpKVMMmzmWikhRRUcpixRRBx9guJcbO3boyfKCX/9aJtkCyYiUjz4yXq9AcYqU7du5lw5JBrU/rK2Vx6Wak+IU7iVg8nx2uOMOYORIYPhw4IUX0m6NM55EymeqTA5BVM9TTBTDZo6lEu6lOileqnsVk0hRxUj37lKkMNzLmRtvBBYt0o8PPBD43veAPfeU50kSIsVqclBsIuXxx4HevXUBSKFC4kb0e7W1QHm5vJ1OilGkDBsmF/Ty5qQ8/jjwla/IDTuLCXX+Joo+ZBVPImX48OGYNm0aNmzYEOhF1q9fjx//+McYPnx4oP8n2aK93bihXqk4KQz30qmvlyEOdFLsWb1a3zwRAMrKgN//Xv9dVSVXGN9/3/je4sBqclBsIuWOO/TPcc4cPYSBkDgR/Z45pbRUE+eFSFEXsAB9nBwxQj8WFb7ywk9/Crz4op5PWGwUnUg5+uijcd1112HQoEH41re+hTlz5qDFHD9goqWlBU899RS+8Y1vYNCgQfjtb3+LY9Q4B5JbzF99W1txTcjtoEjRUcO9duxI5n3mUaQ8+6xs9/e+B4weLe/bf3/9d0dH/JsrloKTogqT1avTawcpDUR/qE7IAX3XeZGvV0oiRYR7qS6KQCTLt7bmawFh5Urj72IiTyLFU3WvmTNn4plnnsEll1yC++67D3/9619RWVmJ/fffH3vttRf69OmDHj16YPPmzVi3bh3+/e9/Y8GCBWhtbYWmaRg5ciRuvPFGTJw4Me73QxJATWIWNDXp4RbFTCmLFLtwL3Ffnz7xvn5a+6R0dACXXaa/5owZXVdOnXjtNXl88snG+4RIAfSQrwMPDNFIF4STUijIUKhiEint7XrejaCUJockHYRIseoP+vUDPvmkdHJStmyR44PV5pXm5Pm99kqmXWER3/G2bfpCbEWgWrjZRJ3DFYVIAYCJEyfi3XffxZw5c3DLLbfg6aefxhtvvIE33ngDgL5po6YEA1dXV+PEE0/ElClTKE6KDCsTrbmZIgUoXpFi56SI++IWKWlV95o9G/jd7/TjQw8Fvvtd7//7+uvy2CxCVFclzrwUtbLXiBHAsmX6Z1lMbsOnnxqvtVKZHJJ0aG2VY6CTSFm3Tl/kKPNYnuijj/Tqf3H3pVFjtdu8Sh6T59vajAtjTU36d1MsFJ2TonLUUUfhqKOOQktLC1555RW89dZbWLVqFTZt2oSGhgb0798fY8aMwSGHHILqrL97EggrkVIKyfMUKTp1dcbBOYm8lLTCvd55Rx77qfuxbRvw1lv68Z57Ar16Ge/fd195HKdI+fhjeb3us4/erv/8p7icFHMICZ0UEidqDqaVSBF5Ke3twIYN3kTHnDnA0Ufriz/LluVrwc+u/LBA5KQARsczy5jzbLdsKV6R0q1beu3wQmADq7q6GhMmTMCECROibE/Jkccd563CvXLQ7NCwBLG+6lJZ2TXcK27MIkXT9PCluFmyRB77Ocfnz5fFJb70pa739+wJ7LabLiIWLNAnNGqVoKhQk+b33htYvlwXKWvXFk8Ig1mk0EkhcWK3R4rAXOHLi0h59FH995YtugM7aVK4NiaJXflhgbpAk5d8QvOia1IFYpIiT04K90lJmfr6esNPo7qdd0axC/cqdliCWIqTJEVKa6s+iVf/dqnbERmqSPGz6ZUa6nXwwdaPEXkpW7fGl1CqipR99gFE96JpxTOZp5NCksSvSPHCp5/K47xNiN2clKQXtKKAIiU7UKQQ3zDcq3SdFDEom3NS4sSqRG9SK3LqBNiPEPciUpLIS1FjwFWRAvgL+brrLmDUKOBvf4uubVFBkUKSxI9I8boQoIqUvLgNAjeRklRo8EMPAaeeCrz5ZvjnMrez2ERKnhLnKVJSJo87zpdquJcXkaLeHqdIWbMGuP/+5CpdmUVKkjkpVudbEgP55s3GibwfJ0VU9qqvNyaOqpgrfMWBcFLKy/Xdhfv3l/d57Wq2bAGmTAEWLgSuvDL6NobFHOdeLA6RXzRN/54mTtRD+kg8xO2k5E2kuIV7lZXFv69Weztw7rnAzJnA9Onhn49OSnagSEmZPO44z3Cv9J2UU08FzjgDOOec+F5D0N4uJ+hphHtZOSlJiDPzCr3Xc3zFCjnpOPBA+1yTuEWKWtlr+HB9MAripDz8sPwOslYVTNPopAjefBO49VZ9f54//Snt1hQvbiLF74aO7e3GiX7eRIrdbvMqYryIa6xYtUqOCVHsa1IqIqWiIp5cyCihSCG+YbhXuiJl1Srg5Zf143nz4nkNFatqNmmLlCQGcjUfBfAuUryEegHAwIEyqVZUAosSc2UvIJhI+X//Tx5v2qSXVc0KK1d2dbhK1UlZtkwe58CQzy1ROymrVhlz7pLcByoKhEjp0cN+HykxXsTVb69YIY+jyFcsFZGSdRcFoEghASjVcK+sVPd65RV5nMRk3WpQznJOyvr10ZyP5hV6r+FeqkixquwlKBSkm7JqVfQ7G5srewH+RcqKFcBzz8m/NS1bA7ZVwYHmZutzpthRz58sfEe/+AWwyy7Agw8m+7pPPKHne82YEc/zR52TooZ6AflzUpx2mxeI8aKpSW4oGyXLl8tjq/mJXyhSsgNFCvENnZR0q3sJFwXQP3d1FS4OzLvNA8nmpPgRKQsW6IPl4MHhV9SDOinqTvMHHeT82DiT581J84B/kfLXv3adVGRppdeuKlpcbkpbW7acJBU1ZCjtSdWWLcBVV+mTx//+72Q/s5//XL+WLr4YePzx6J8/aiclzyJlyxb5eVglzQvEuNHR4S+3zytROymlkjhftCLlxRdfxCvqci4pKZiTkq6T8tJLxr/j7kDdnJQsiZRHHtE/9w0bgBdeCPe6QUTKjh3Av/6lHw8bZpywWBFnXkoUTooa6iXYuDFUsyJFFSmDB8vjOPJS3n8fGDAAGDkynokWoAvC//kf4LLL/E+2suSkLFgghcny5V37rDhRiwace27054KbSOnZU8b5F7tIcavsJYh7vGC4lz+K3kkZP348pkdRQoHkkjyHe6lJ4H7JgkhpauqavxD3oJa2SPFT3WvdOnkcdiJpFilenm/BAjkAOIV6CZIQKeXlwB576Me9eslz102kLFgAvPtu19uzKlLUzzsOkXLXXfr5tWgR8OKL0T8/oAvrK68EbrgBuPNOf/+ripS0J7rmPuree5N53dZWo4u2ahXwve9FG2LkJlLKymTyfCmJFKdwrx495HHcIoXhXu6IMSrru80DAUVKr169sLOTbCZFTV7DvbZt08Ne+vXT45X9DlxZEClz53YN70pDpKiDc5ZyUtavl8dhRMqmTV0nGF6EuBrq5ZQ0LxgxQg4UUSbPW1X2AvQ8GFGG2E2kqC6K6lJkUaSUlwNjx8rb4wj3UsPn4sp5+fhjeayGdXohS+FeZsH9wAPJbMC6enXXfn3WLOCee6J7DTeRAkgHdc0a93FGnWAD+RIp6jnn1UmJ4/2pOSl0Utwpeidl//33xxLzMiMpGfIa7vX888Dixfrk9eKL9VAAPx1aFkSKVdhE3DkCVjkpaYd72b3nqESKXUK224TDa2UvQUWFvkkioDs3YnBcuBD44Q+B0083Tly9olb2EqFeAhHytWaNfa5Aeztw3336cWWlfq0IsiJS1PLDu+5qnCTF4aSoIiWuUE71/PW7KV2Wwr3MgnvjRmD27PhfV/0Mhg+Xx1OnGqufhcGPSGlpcR8b8+KkbNjQ1V3OYrhXW1v4PM1izknRtBIQKVOnTsW8efPweBxZaSTzWNmpeXBSzBPPu+8GjjjCe1WlLFT3slpdTcNJqaiQDkCWclKiCveyWoNpbzcKVSuESKmpAfbd19triZAvTQN+/WvgsMN04XLTTfoK9G9/67nZnVglzQuESGlvN35eKs89J1dJJ03S82sEWREpa9fK82D33YPt9O2V5mbjJDcuV0AVKUuWeP+s29uNe9ikOanasUMX2YCxn0wi5Etd2f/mN4HJk/XjLVuAb387miIjfkQK4C6Y8yBSNm0Chg7VnV+1aloWREpHR9fPMOz1WcxOijovKVqRMnr0aEyZMgWnnHIKvve97+Gpp57C4sWL8cknn1j+EHuam5u7/GSdvDopVqvjr72mh4l4WbX066REERtrfn01nEiQhkgB4t+gS5BGuJcqUgoFeex0nq9aBSxdqh+PHWt/jphR81KuucZYYlo8r1/UpHk7keL03Gqo19lnAw0N8u+sVPdSr+fdd/e/iZ4fFi82umhJOCkAMH++t/8zu2LbtukrymmwaJHsK085RYYXPvpo/AJXXXAaMECfUO+6q/73Sy8BN94Y/jW8iBQ/56J5gr1lS/YqyL3xhn7da5pere2pp/Tb3XabF8QpUlav7nquhx17i1mk5Gm3eSCgSBk6dChuvfVWtLW14c4778SkSZOw9957Y+jQoV1+dtttt6jbXFTU19cbfhrVGURGyatI+egjefzYYzLO/tNPgcMP7zo5NOOlBHHv3kBtrX78+uvRlgd++2058a6okLfHLVKswr0AOUBnNSclTN6AeQIscBI+fkO9BKpIEaihKkHeh1VlL4HaxVjtIN/crO8yD+iVio4/3ihSsuKkqNez2UmJWqSozhSQnEjxGvJl5QanNbFSQ73GjgXOPFM/3rEDeOiheF/bLFJ69NDzUcRCw69/HV4AqP1dXZ31Y7yei5s3W/efWYtMUCf9HR3AGWcAH3yQjcR5NR9FQCfFHvWzKdrE+cGDB2OXXXbBrrvuil122cXxZ7CacUmKgryHe9XW6iEs8+YBhx6q37Z9O3D//c7/79VJOeYY/XjNGmvnIyhqqNfhh8vjuFe203ZSvFb36uiIx0kROSOAsxj3uomjmYMOAr7yFT1E7Jvf1Fd8FyyQ9wd5H2JSrVb2Erg5KbNmyfd5+un6QJZFkeLkpEQd7kWR4h1VpIwerZ/TgrhDvqxW9r/yFdlfbtgQvuiB6A+rq+3HAa+hh+akeUHYhaeODuDWW4FbbonGlTH3wZs2AV/9qlwo6NnTXrAB8TopVp9hWJFSzDkpeXNSKtwf0pVlUWWgETSZZvfNzc2Zd1Py6KS0tclQnN1311fWGhuBO+7Q9z0A3IWWF5EC6CEOM2fqxzNn6jkGUaAmzR9/vF4IAEg/3KulRf9svIY3+cWrk7J5s3FAjkKkDBxonHA4ned+NnFUKS+X36VY8dU0/VjT/L8PtbLX7rt3HYjcRIo51AvQJyGCLIqUYcN0kVdXp39HeXVSzDlCXkWKOjkXpDWxUit7jR6tu8vDh+vX1Asv6JPKQYPieW2zkyJQz9+mJucJtRuiP7QL9QK8OynmUC9B2D59zhxgyhT9eLfd9EW5MKgiRfRLixfL25xcFCDe6l5WIoXhXvbkTaRwx/mUqaur6/KTddSTvKZG/511kbJ8uRQZahKwaD/gvsLmVaQcf7zczGvWrGhq9GuadFIaGowr9UmGe1mJFCBeJ82rSDGvQgcVKRs3ytXP4cONExq752xr0505ANhlF+ckUisKBWPuS6Egz02/K7/r18tB2ira1kmktLToSfOA/j6E05hlJ6VQkO9TTA6LxUlZurTrbVZkxUnp6JAiZfBgoE8f/fsRboqmAX/9a3yvr4o19TyPsmS6F5HiNSdFFSlqCHHYPl0VEGroZ1DUMf+nP9WFp4pbf5c3J8V8jrS2JlNCOwlUAUeRQooS9STv00f/vXVr9pL9VMzx6wKRPwK4T2q9ipTevYHx4/Xjjz+23hDPLx98IAe7Qw9NNpFZ7bCtclKAeCdE6iRdiL84RYoa6jV8uPEcsRPj770nX89PqJcT4nX9vg/1c1AnSwKRyAx0FSnvvSfP88MP1zemA/TvWhxnLXF+0CAZWy3e77p10eWDbd9u7D+A5EQKAPzrX+7/lxWRsnSpvDbVXCs15Osvf4nv9cXn0Lu3cQKWtEgJ4qSoYZlhRYr6/1EIdnXM32svveqg6IuBdEWKVU5K1E4KUDxuSkk5KS+99BJOP/10DBo0CNXV1ThXKaY/Z84cXH755Vjptb4ryQ3qSS5EChB+h+84sUuE9uOkeClBLDj5ZHk8a5Zb69xR81EOO8yYiJh2uBeQnEhR9x8wr2yZQ2WCno/mc0V1UuxEijpQmhPVgyLOTb/vQ/0czCuegLOTolaTOuAAeVwoSGEchZPy/PN6cYE77gj2/xs2yPepXs/i/NA0/TFR8MEHXRdg4lhVtdtTw0vIl1W4VxqlbM2hXoLdd5chkO+8I0sUR4mmSZGihnoB0YmUjg75HXkVKU4iQRUpe+0lj8MuBMQpUrp1AyZMMJYidiu3HmfifNROSlubtcihSEmHwCLl6quvxvjx4/Hggw/is88+Q2trKzQlrqVnz574zW9+g4dFmRhSNKgXsDoJynLyvBeR4sdJsavuJTjpJHks8lPCYE6aV2OskxQp6oQ9KZGinm/qBNv8vpNwUuyeU33/6oAcBvG6fsO9VJGiLiKotwlXxCxS1FX7MWOM90UpUq6+Gpg7F7j00mDhkHbOaBxliM2hXkA8TooqqtTqbl5ESlacFHPSvErcCfSbN8trxZwjEZVIUa9/J5GiXndO56E6wVYXN8L26arIieI6MIsUALjoIuBvfwOuuko/diLpcK8wTord+VGMIqVoq3s98cQT+PnPf46BAwfi/vvvxyqL7MsDDzwQ/fr1w2OPPRa6kSRb2DkpWc5LMSfZCiorpW0dVU4KoMdjjx2rH7/9dvjdjkXSfHW1/rx1dTKHIakd52trjRZ/GjkpaYgUL06Kl70T/BJFuJeVSCkvlyu9Tk6KuTSyKlLC5lmJ1d3m5mATCrtFhzjKECclUtTv7UtfkudRXkWK+fw54wzZfzzxRPSvbZc0D0QnUrxe55WVQK9e+rGXcK/ycqMwzXK4l5jYFgr6d3rFFe6FCOISKVYbOQLhnJRSEilF66TMmDED1dXVeOKJJ/C1r30N/dSRQWG//fbDEqutm0muUU9y0RED2RYpYuW1qspYWUZNUI4qJ0VwyinyOEzI1+efy/aPG6d3LGVlsuNPykkxD8pp5KQ4iRRzuFfQUqNql7Xbbt4S5+32kgmDOC9bW/1tzOcW7gXIz3H1aik4Wltl6ePhw41uHSD/bm8Pf62rk54g35MXkRJV8nwaIqVfP+lkffKJ9X42Klmp7iXCvXr1kpsoCvr3B4YM0Y+XLo2moIiK08aCUS2o2BURsUK4el5EyoABxrE0DyLFD1VVMvogyvFqzRrra5EixZ6SECnz5s3DgQceiH3MWxmb6NevH3NSihDRYVVXR5uQGBcdHXKSv9tuRjcA8B5Wk5ZIUTeZVPdHEZPGtERKGjkpSTgpakJ2ba23xPk4RIr6un4m8m5OCiA/xx07ZPjWokVyADOHegHRFmtQ30+Q78lOpOQ53Ev93nr3lk4s4Jw839Qkr1G1b0t6UrV6tdzcb//9jdXqBEKkbN4cfZW4LDkpgBTMmzdbT5pbW6X4HDgw2jxD9f+juA6iCBGKY18tNdRLPd8Y7mVPSVT3am5uxgBzL2DBpk2b0JHlkk8kEKLD6tbNWyhM2nz+uZwUqRMaQVxOyp57yootL70UfLBQ90dR91wRg1pS4V5pi5SqKuNEOQ6RoiZki/ALL+d43CLFz3vx46QAMuTLLmleEGUZYlWkhHVS1PDNqJ2UHTuks6Y6S0mLFKeQLzVkb+hQeZx04rxTqJdAiBQgfAismayKFKCrywvo45JwkwYOjDbPUP3/jRuNY1cQopjYivEqLpGi7hsexklR26f2ecUiUkrCSWlsbMSH6ihhw+LFi7njfBEiTnKzk5JVkWI3oRF4dVL8VPcC9JUd4aZ0dABB07NE0nyhABxyiLxddPpbt/oLB/KDWh/ePPlOOielpsZ5tdGqupffkBJzPgqQfriX0+ta4cdJAaxFipuTElakqJOeIGJSOKM77WT8fqJ2Uj78UF5b6sQ7jupeZpEybpz820mkqGFOal5D0pMqu8peKmoI2H/+E+3rO4V7pS1SrM5FdYI9aFB8Tgrgba8dJ8KGewHxOynqAmRUTopaWrkYRUrRJs4fdthhePvtt/GKGodi4rHHHsOHH36II444InDjSDYRHYDZSclquJddJSBBECfFrbqXQC1FHLTK16JF+u899jBOFNWVt7g6UFV4ppWTIs43s0gxO0jmgbi93f8KoipSxLniJdwrzsR5ILiT4kekqCFFVpPMrDgpTU1y1dx8PQdJnG9pAf7wB+DZZ7vep4Z6qSIlCSdl2DB5jTuJFNVBUPfaSHpS5VTZS1BKToqbYFYTvqMO9zL3jWEFe5QipaUluutHLf2u9gVR5aSoYrcYRUrROimXXnopCoUCTj31VMyaNQttpmXcJ598Eueddx4qKyvxgx/8IJKGkuygOil5CPeyi18XiMmg26TWb7gXABx4oOzonn7a/wC5Y4ecxJnrUzhN2KPCaVBOOtyrWzfngdxqtdDvKr16rmQp3MvPRF6IlIoK+4mUWaS0t8uV8KFDrcPEVFEcRqS0tho3WnT6jpYt08ub3nyzfJzTokOQcK877gAuuAA45hhZOECQpkgpFGTI12efyXwPM1kTKdXVwIgR1o+JU6TkzUkxixS13wgjUjSt6/+HDX2MUqQA0Z2bqpOiRklE5aRQpKRPIJEyZswY3HDDDVi7di1OO+00NDQ0oFAo4KGHHkJDQwOOP/54rF69GjfccAP2jmpnM5IZ7MK9suqkuIkUr2E1QURKWZncM6WlBXjqKW//J1DFh7naUhIbOjpNvpMWKX7DvQD/IqWYwr369LFOXga6ipQPPpCvYRXqBUSXOG+eQDgJsOnTgdtvB6ZO1Se4115rDEszh2/27CmTx72uHr/3nv67vR245RbjfWmKFMBb8rw6OR82TH7nSU6qmprktTNqlH3/mISTYs5dA+IRKW7XuZtgNouUigq5MBGmP9+2zbgIYPf6fsiDSKGT4o2SSJwHgB/+8IeYPXs2xo0bh23btkHTNGzZsgWbN2/GqFGj8Mgjj2DKlClRtpVkBLtwr6w7KeXlXctiAt5XrIOIFMBY5euRR7z/H+AsUpLY0NGrkxJm4F+wwDlm2otI6eiw3mE8qEgpFOQE2E91r7Iyo7gIQ9hwL7ukeaCrSHHaxFEQVbiX+Rpzem9qOMeaNcBPfwp897vyNvOiQ1mZDLPxOjFT38u99xr/FiKlosK4I3gaIsUu5Et1UnbaSV6nSSbOv/OOzP+yC/UC9Bj/igr9OC6RMmBAV3GeBycFkP1bmO/O6n/tBHtHBzBtmu4kOk3Co1h9j1OkNDQYQ1ujSpwv9pyUohYpAHDMMcfg9ddfx+rVq/HGG2/g9ddfx6effoq3334bJ5xwQlRtJBmirU3v2ID0wr2WLQPef9/bYzVNhofsuqu1uPDrpBQKXcsYO/GVr8hjD/UmDHh1UtII94oiJ+Xee/UV6j33tP7s1dCgmhp7YbZ5szwvVfzmOwiRMmiQXDH0k5NSX2/vXvglSLhXS4tso10+CmAUKatXu1f2AqITKX6cFPWcKLMYraycUXV/Ci+FE9RrZ9s24J579OO2NmDxYv14jz30/k5MsOMUKeXlckIXRKTEkaDshpfKXoD+3nbZRT+OMnG+tVVOxM2hXkA2RYrqAsQtUuwE+7PPAr/5jZ6T9fe/2z+nuGYLBX8LdCrqeBXFualp8jMcNMg44Wa4lz0lkThvpk+fPhg7diwOPPBA7GTVQxBbmpubu/xkGbMKTzrc68MP9TCcvfYCXnvN/fFr18pO22pCA3ifDIqJid9OWhVzfid3xR7u9dxz+u81a2TYjYo62Dg5KVahXoD/MCnhxqhVkioqZKEEt3CvqEK9gGDhXlar8Vb06yfF1KpV7pW9gHScFHFffb3uakyeLBcIevTQxa0ZMTncvt3b52Z+L7fdpk+APv5YXvMiallMhOKs7iXyUQB9YUWIzTfftBZdItyrvFx/bBoixUtlL4FwszdujG6vFHWzS6vdEbp1kyI3a4nzDQ1yfFBFStDNLv2IlA8+kMdWG4IK1OiJoIswUTspa9fK61BdVAIY7uVESTgpf/7zn7FCXQYggamvrzf8NKpLnBnEHJuatJPy1FOyJOgLL7g/3i0fBfDvpARZSRK7CVuFJDmR5XCvykrZyQXtwNXP2+o51Amtk0ixCxfzI1Ks8lEE4jx3C/eKUqQECffyUtkL0IWXuH/lSilSBg/uWqBBEJdI8eKk1Nbqydh3361/T9dfr/cFav8j8FuG2OxCfvCBLp7VfBQhUoRYjdNJUcWlmjy/erVx9V0gnJTGRn0iLq6Rpqbod3W3QzgphQKw777Oj1XzUqJyU9QJtpVIKRRk/5UFJ0XTpEgRLgogv7uOjuCb0Vq56nbXgVqMwek6VEVKUKIWKeYSznE4KY2N6eR4xUlJiJTvfve72HXXXbHnnntiypQpmDVrFjYnvXMUSYUsOCkCLzHnXkSK35wUr+WHVcQEL0qRkna4FyAHnqDfvToQWz2H+n1066YLFbGSrr5nVaSooXh+BvqlS+Wx+VwRk2Gr59M02fa4RIrXcC8ve6QIxHrIf/4jB2A7FwWIrrpXkHAv9bMYOhS47DLg4IOt/8dvGWKr93LbbcmKlLY2eT6bHTCnkK/2dukiiFVfcQ6Gmej6ob0dWLhQPx4xwlo4qsSRPG8OebMiaZFSWyvPW/NYtX69HEutRAoQvE/346SkJVKimC6aN3KMykkxRw+I77lYREpJJM5PnjwZgwcPxgcffIDbbrsNp512Gvr06YODDz4YV1xxBV544QW0ht3itERoamoy/KxStw/OIGaRkrST4lekqOVKrTZyBJJ1UrZv97fKk6VwL6tBOWwH7tdJKRSs47ZVB0FNdvQzSVMnIObqQGKyYXWOq5tGph3u5WW3eUH//l1vcxIpPXrIVcUwothPuJf4vFWR4obfMsTivey5p1yF/8c/gDlz5GPiFinq4oWTSHnjDeN9a9fKnC3R9qgng25s3izHBavCJGbiFilWTgqQvEgB5LloFstWSfNANH16UJHiNC5l0UlRi2rE5aR0755O+GSclISTctddd2HZsmVYvHgxbr31Vpx00kno3r073njjDVxzzTU48sgj0atXLxx77LG44YYbom5zUVFXV9flJ8ukHe6lhuSk5aSEESmAv1XoLIV7WU3Aw3bg6jnj5qSISbuVSFEdhEGD5LEfkeKUUOgU7uUm5IISJNwriJOiYpc0DxhDiZII99I0ayfFDT/hXi0t8vX79gW+9z39uL1dhpOWlcn9R+ISKU65RAceKI/nzjXeZzU5T6o0uMBpw1cr4g738uKkBA2D8ytSxLm4bp2xsIc5VEkQl0gJG+6lbjsQlKgT582fYRw5KbW1xS1Sij5xfvjw4fj+97+Phx9+GOvWrcPcuXPxq1/9CuPHj0dbWxuefvpp/OQnP4mqrSQDmFV4VZWctMcd7tXeriezCvyIlEIB2G0368ck4aSoK/N+Qr7yEu61fbvMFfKDXycFiE+kONngQqS0tXXd8DOOPVKAYOFefpwUK5Hi5KQA8jyOMtzL7jvasUNO7OJyUtTrpqEBOP/8rpX7dt9dng9hRYrd5NhJpOy8s6yI9cYbxj0wrCbnaYoUL2tsaTspbW3Bvz/RH6rFNJwQ52JHh/E7TsNJsTr3mJPSFfEd19YaK+0lmeMVJyXhpFjR2tqKLVu2dO6VInah14rhWyWdWJ3gbknFUfHJJ8YJoh+RYl5pUYm7uhdgdFLiECl+BrRt24AnnvAmbNxESticJDeRYq7uBcjPYft2+Z1E7aSYO2+nMsRxiZSw4V5+nZQBA+xXoQWqSAnatXt1UtT3HJeTYhYpgwbJzVcF6n7EQap7tbYCv/+9Hm66997GSlQCt6psIv+muVnmfwDWk/OoV6zd8Osu7LyzFIJRiRS3xHkgmvxJv6XGVcGsChM7kRKFO66e06JktlWlu+3bjeed3XXY0SH72ayKlMGDjX12FE6KOF+SzvGKm5ISKW+//Tauv/56HHPMMejVqxeOOuooXHvttViyZAmOP/54zJgxAwvVHpXkHqudZ5MSKeY9RtxEysaNctJml48CGCeDpRDu9f3vA5MmAV62MnKbgIcdePwkzpudFPU11cm5KlL87JPi1Hk7hTUm4aQkEe7lFOolECJlx47gq5VenZSgIsVP4rx6LYrr6aKLjI9RRYrqpLiJNE0DHnwQ2Gcf/Zr7+GN9f6eHH+76WK8iBQBef10eZy3cy4uTUlGhTyqBeJwUuwKZUYsUL6jnzowZ8jgpJ0V1rczXgrnksN31HFV4UFyJ8z166M9dUSHFbxSJ86K9SV9PcZO3xPmKIP905pln4rnnnsO6deugaRoqKytx8MEHY+LEiZg4cSIOPPBAlPvZ7Y7kBquJXBQJiV4wi5TNm/XJgp3tribN2+WjAN4ng1FU9wKic1Jqa/V4+Y4Of+FeYm+S117TJ1JOK4Jew72AYB24OsFxC/cSA6R5IO/TJ/pwL7ucFKvn9LuS7JWkw73cQr0A4zm4aZNR4HslbiclTLgXAEyYoFepEhs5WokUTdPDripsRtAXXwR+9KOuie6A9cTcr0i54AL92C3cK4nE+SDn/5Ah+uewYYP+HZj7Nr8IkdK7t/3EK4rNZ/2KlAsu0DdL3LhR3yT0ssv08ykpkTJsmBw31641ihY11Auwvw6d+kU/eB0r3MYk8RiROK/299XVer8RRbiX2UkB9HbbOXV5QZ3DBZnLJE0gJ+X+++/HunXrsO++++Lhhx/Ghg0b8M9//hPTp0/Hl770JQqUIsYt3CvO6D41aV5gt4kf4C1pHkjeSQkiUgqFrqv0dpWunOjokBOb9nb3ya8fkRI23CuIkyLetzrJC1rdqxjCvZJyUoDgeSleq3upt/upJ6K+7yBOSqEA/PjH+nFlJfDlL8vHqIO6XV7Dq68C48cbBYq6C/snn3T9HzeRMnq07Hfy7qQA0SbPa5rs05zCFcM6KWqpca8ipVcvYNo0/bijA7j8cv1YiJSqKmN4YtQiRc3DNAv2pEWKlzDE735Xrzr41FPOz7V+vWyXcOXU9gV1Ulpb5f/aiZS8I95fVVXwjTmTJJBI6d69OzRNw4IFC/DNb34Tp556Km644QYsWLAg6vaRjGHVYUWRkOgFs5MCRCNSvDgp7e1SgKUR7tW9u9wxWUVMrLwOaGvWGBPc3f5P7ZStVrPDrE6azxe/ifOA/HzEedDQYLw/KpHi5KRkKdxLfA5iTxkngjgpUYgUr/ukBHVSqqvlORDESQGA73wHePZZfZNCdRLkRaS88YbsK/bZB3j8cV24CIKIlG7d5E7u778vFzqyIFKCOimCsCJl82Z5TjmtcocVKdu3y0IOfhzTH/xALpz84x/6uSBClXbe2divxylSzILdq0iJKodBOP+A9Xn52Wf6Zq1r1+r7FDlhVx1NtC+ok2JVqa5YRUoeKnsBAUXK+vXr8corr+CXv/wlxo4di+effx4/+tGPMGbMGDQ2NuKss87C3XffzV3pixAnJwWINy/FyklxmoSoIiVsToqasJ9GdS+7cAgxqHkN9zIPTG4DobpyaCWSwnTg5s/aa+K8k5PSu3ewyT3gHHudtpPidzNHNxcFMO6T0revcbC3Iy0nxY9IAeTqdBAnBdBXGCdM0EWGiheRop5HV12l53/V1MgwtCAiBQC+9CV5LFwa4SD06CE/o6QT58M6KWHzUrwkzQPhRUrQsM7aWuAXv5B///d/y+9bDfUCohUp1dXGa9rNSbGb2EflpBQKzvtqqe1RxbcVdiIlrJNiVU6+WEVKHvJRgIAipby8HF/60pcwffp0/POf/8SGDRvw2GOP4Yc//CEGDBiAv//97zjvvPOw6667Yq+99oq6zSRF0hIp5vLDAieR4mUjR8DbpDasSAkb7uUmUtRKV06EESlWhOnAzedK0HCvjg75mYYRKV5KELu1O0qRUlEhzzUv70PTpJPiRaRUVwOHHaYfn3aaN+s/DpEStZMCSEGwYYNzaWz1PZg38LTCi0ixm9SJMsKfftq1TV5EilXyvJjMqZPzPDgp6qaPYUWKl93mgfRECqA7cyNG6MfqXjdxiBQxZvToYQwlSzvcC3Dec0Tdx9qqAp6KeSNHQVgnxaovLzaRIj6bohYpZmprazFp0iTceOON+L//+z9ceumlqK6uhqZp+OCDD6J4CZIRnMK9gPiS51essJ4UeHFSGhudJ49eVqzV104q3Ku1VbbHTqSot3vpQNWETcB7uJcXkeL3u3cKmxJ4SZzftEmGYfTpE42TEjTcK8rEeUC+Fy/vY+tW+R7ckuYFTz4J/POfwE03eXu8OpEPujeP1+peqhgM6qQAziGhToUprPBS5tTuPBIipaOj63UoREqhYN8Os0hpbpbnnp1ISSJxPm0nxcseKUC6IqWiAvjVr7reHqeTYhYpTrveA8mKFKv35kekmMsPC4KUCFex+o6zLFKWLfNfFrkknBSVFStW4O6778Y3v/lNDBgwAGPGjMENN9yA7du3o7KyEocffngU7SQZIU4n5e23gXfesb5PDfUSK1KAvUhpbpZhAE75KEB2nRQvEyi/GzqaV8/cOl3RaduJvDA5KU5VsgRWToq59LJ5FTpIwjmQvcR59XW9hHv5SZoX1NXpieFeq7yon30enBTAOeQrDifF7jxS3QNzyJf47hoaum4mqf6/yCOaO9d+l/U8OCmDBkW3V4qX3eaB8EU+wlbxO/VU4MADjbeZQyzDCkxNM4oUp0p3aTgpYrxqapILSwJVbG7d6jyX8BLuFaSIT5wiZc4cfe6ihv6F4YEHgKFD9ZDUIONcUYuUWbNmYcqUKdhzzz2x66674rzzzsNf//pXrFmzBiNHjsTFF1+Mxx9/HBs2bMALL7wQcZNJmjjtkwIEFynz5umJoaNHA2++2fV+Nb9Ejc22EyleQ70A/zkpQcr21dRIcROXSPEyqPlxUnbskO87jnAvv06KXbiXWaRUVcn8GT/7pHgtQZykSBHv2csg5Kf8cFDykpPitQyxXeK8HX7DvaycFMBepDiJy0JBuikbNugOmCDNcK8gTkpFhZxchk2cz4OTAujf37XXGm8zOynV1fKcCSJStm+XoYQ9ehjPJzeRYjexj2qfFMB4bpr7UdVJAZzdFLfEeSBYEZ84c1JuvBH44APg6quj2RRy9mz997JlwEsvef+/kkicP/XUU3Hbbbfhgw8+wKBBgzB58mTce++9+Pzzz7FgwQLccMMNOO6441Drd2QhmcdpnxQgeLiXiLHu6NBXCMyoIkUNe7CbgKgDn1rhxAovK+9hnZRCQbopXid3XkSK3w0d/eSkeBmUo85JMQ+SXkSKeZf1QsFfmJQga9W9AH/vI4iT4pe4qntZTY6iSJwHvDspXsK9/DopVjkpgFGkmHOqnFD7vlmz5HFcIuXWW/V8JbFnjBVBJ+8i5GvdunDtzHrivMoRRwDHHCP/Hjq062P8FkNRUfvznj3180+0Vb0OtmxxL1RidVvY1Xenc9OPSBE5KfX1xvFAvd6ChHzFmZMi5irt7cFDZVXUts6b5+1/OjqkiM2LkxJoM8eTTz4ZRx11FCZOnIjhw4dH3SaSYeIK91Ino+oKoUAN9/IiUtTJuFvVospKPfTAad+QKDZA6tVL73jTDPfy46R4ybWIMidF0/Tb1PPJrbrXpk3WSce1tXp7goiUQqHrJn1O4V5xJc6rrysm8k7J7Xl1UgD9ezaXTE7SSamu9rayGCbcy06kbNokRZofkTJnjjxWw5wqK/X3sn17uJyU118HpkzRj+vr9c0IrQjipADG8Lf//AcYOdJ/G4F8JM6r3HEHcP75usM/blzX+3v00AVFkO9O/R/RT/brp7ddvQ7Mu80Ltm3reh3GkZMCuIsUu8UFTZNOyuDBxj5Rvd62bzeOFV6IM9xLfe4tW5zPVb/P51WkRFVOOkkCiZSHH3446naQnBBX4rw6IXnzTf151OcVTkp1tR6DKXZat5uAqJNxdXM/KwoFvWN2mtRGsVouJnibN+uCyG3P0zjCvYI6KUnkpIjnUCc6QcK9gHBOSnV1VzHgxUkpKwu2A7sT6uTcaiKvYnaU4iCOxHnAenKUpJPidcfzOESKl8pegrFjZd+nvo7ZQejeXf+cw0yqfvYzeWzuN1TUfsKPSDEnz4cVKdXVziF7YcepqApk7Lor8PTT9vere1952X1dRb0mRT/Zty+wdKl+nolxx+77tFtAECQpUuyclE2bZN9gFS4nCOukxClSoigwpD6HVYi8FVG6YkkRSXUvUjok4aS0txs3P+vokDkmw4bpq9xiEmZXuUfthN1ECuCeoBzFKprfCl9Rh3u1tHSdsKUZ7mUlIMydt5fqXlYOQhCRIjpwq4HYS+J8fX30O/j6KQKQRLiX+tlH6aRYvbegO84D/hPnveSjAN4mQXYTgX795N9qOKofkVJfD4wa1fV2K5ECBJ9UPfec/iNwep6gVdiiqvAlXIEBA5yvv6w4KW6Ia6ytzX8pXSsnRQh2NazQTqS4hXtFKVLMY49XkeJUKEFtX5AyxHGKFPV/o8gVU6+7zz5zXkgQ5NFJCSVSFi1ahAsvvBAjRoxAfX096uvrMWLECHz/+9/HokWLomojyRBJiBTAGPK1YoV8XRFdKDpeL+FeXkSKW4JyFE5KHCLFT7iX1QZZUYZ7hc1JsXoOKyelrk4mxpudFDE5V0WK1yovTlVPvCTORx3qBRgnfW5FAJII96qokOdClCLFTbjEEe7V0SHP/7icFHXSVFYm3ZT//Eeel35ECmAM+RKYJ2thRIqmGV0Ut+cREzt1R3EvRCFSWlvl9+uUjwLkT6QA/kO+7MK9BOKzUsdH9b3E7aTYbTTa2mq8DgB7keI0tod1UqzG+ShEiqbF66QA3kK+oiyCkBSBRcqf//xnjB49Gn/84x+xZMkSbN26FVu3bsWSJUtwxx13YPTo0bjHLoiV5JYkwr0Ao0hRk+ZFOWEhUpqarFdMREdWWeltVTkJJ8XvrvNRh3uZ81EAb5MPwH4CXlUlJ25hc1Ks2mMlUgoF+b7dwr06OrxXefEqUuxKJ8ctUrLgpADyPI4qcR5wd1LiCPfaskUKBa9OSphwL0CKlKYmeX37FZdmkVJebny/gDwXd+zwP1l77DFZyETgxUnx2y+qIiVohS919d1NpKjnUCmIFDFmWG3oqE701eqXVuNflKvvdhN+K0ES1kmJKtyrulrmKAYVKdu36xEigiiclLAipaidlH/96184//zzsWPHDhx//PGYOXMm3nnnHbzzzjuYNWsWTjzxROzYsQPnn38+3vQaLEdyQVJOyhtvyEmKmjRvFimAdciX6IR32snb6l7STkpUIsVPuJeVHRw23Eu9L85wL7WsMOAuUoLsleJUmtEu3EtdIYtj4uLnfSThpADhRUoSTkqPHrIKn52T4ncjR8C/SDEX2bDKSwnrpDQ2du3j7Fas3ejoAK64Qv4tnteLSPEbkjdokHz+oE6K16R5QH8t0cZSECnmcC9ACnY/IiWJnBRzqBcQTKSYE+f9YvUdFwrhwyfN5xtFincCiZTrr78eHR0duPPOO/HII4/gpJNOwsiRIzFy5Eh89atfxT/+8Q/cddddaGtrww033BB1mzPDhx9+iEmTJqG+vh59+/bFRRddhOYwuxnmADeREpWT0toqV/NUJ8Uc7gV0nYTs2CE7Yy+hXoCcBLW3G8sNC7Kak+In3MvKSQkb7gUE78C9hHuJgcacVK2KFHVyLj5jP2FS5tfyE+61davclCxtJyVpkbJtW7C9CLzmpITZcb5QkH2EnZPidyNHwN8+KWZhDUQjUvbYw9iXWDkIQUNUHnhAbqg7diyw//76sUjitiKoSK+slInPUYgUNycFkG0sVpFilTjvFu5VTCIlDicFiF6khA330rSu4+ebb7qHNpdM4vxLL72E/fffH9/5zndsHzN58mSMGTMGL774YuDGZZlNmzZhwoQJWL9+PR544AHMmDEDDz30EL797W+n3bRYcQv3ispJAWTIl5uTYhYp6sDlVaS4rVhn1UnxM6CFcVKc3nPQDtyPk2InUrZulYOZulu3n8m9wCncq6JCTlDV54tzjxTAn9gSk93u3YOXyfZC2ApfdtW9zKifc5CqaWJytnat9eDtdyNHwJ+TYnUeqSJFhDj5FSllZcBBB8m/oxIpbW3Az38u//7Vr+R11tFh/R2pZdv9OimADPlauzbYxM3rbvOCYhcpbk6KWaQ0NBjPubQS563yJcPmpARxUuwW5sKKFPP/hXVStm+Xi2OC9euBjz92/r+ScVLWrl2Lvfbay/Vxe+65J9Y6FanPMXfccQfWrFmDRx55BMcddxy++c1v4vbbb8fDDz+Mf/3rX2k3LzbiCveymkgKkSKclKoqueeJk0jxmzQPuE8Gs5qT4ifcy6+T4vU9iw582zZj3K0bfnJSzIOjOpCLjb3UwdavSGlrk52+XectnlM9x+PcIwUIFu4Vp4sCGM85vyFfmua/ule3bv4SsgWij9ixw3pS4HcjR8BbYq6TSFH3BgnqpADGkC+ryXkQkfL//p++IzYAfPnLwFFHuT+P+r0F6RfD5qXQSTHiJdxL0+QYufPOxr41rcR5KydFtNWM13CvsE6KOq8R18HWrf7GOKvntfo77PMJ3EK+SiZxvqGhAZ+ohd5t+OSTT9DTa++fM2bPno0JEyagf//+nbd99atfRX19PR577LEUWxYvVhveRRHuJTrHsjI5cL3+un67Wn5YrJRHLVLUyaBVR512dS+71+zWTX4Pbqva6uciVnSjzEkx/48bfkSKnZMCyB101WRxvyLFy0AsznNVpCTppDi9D02Tk904k+aBcBs62rkPTsLFb6iXwK0McVzhXl6dlDAi5bDD5LHVruV+RUpbG/DLX8q/f/UrYyy+3fME3chREFakeN1tXiD6qpYW67BeJ0TfJvbViouoE+fN4V6bNsnrbeed3ce+pMO9xHfU1mbdv4jvvEePrn1DVCWI1QqSQLhNi63+J6yToj6f2nf5ESlF7aSMGzcOr776Kp5TC6mbeO655/DKK6/gINWXjpnFixfj5ptvxuTJkzFq1ChUVFSgUCjg6quv9vT/DzzwAMaPH49evXqhrq4O++23H6677jq0WvRm//73v7u4SRUVFdhjjz2KuvyyupeEqEnvtIeEV9TJ6Fe+oh+3tAAzZ8rXFKFegHEiFrWT4haGFEVOih8npXt3+40fzZWunBBOSn29dKS2bZOTfDNec1LUiZXTnhRmrM4Vv+Fedu3wK1K8dN5iEmYX7hXH6qrXcC+xQSgQv5MSRqTYvQcnJyWoSGlslMdWK7VxJc477bcjrjvAWqSofYQTEyYAl14KnHaavnu5Gb8T3ffekyLhqKOkCHITKWH7xbBliP0kzgPhQpPtJrBRE7eTYh4f3URKEtW91Otzn33ksVXIlxApVt93VE6K+VwOW4Y46nAv9dwV8yWAIqWTH/zgB+jo6MCJJ56IH//4x3jvvfc6SxAvXLgQl112GU488cTOxybF7bffjqlTp+Kee+7BwoUL0e7Dl7v44otx+umn45VXXsGBBx6IY489Fp988gl+8pOfYMKECdhmuno3bNiABovlt169emG9ueB3EWG1SlhWZh0K4wd1QqJedHfeKY9VkeJU3SurTkrQcC+3CZS6Q7ETqsXvpfqP11Amqzh7L7g5KW1tcuKdBZFidY7H7aR4DfdKqvwwEI9IicNJUVfWrWLe03BSamoAYb6bRUqPHtIVdaNQAH77W+DBB+XzqfidVP373/J4wgR57DZhjtJJCStSVFFqR5hy+XGWGleJWqT06iVF1dq1ziIlyZwUO5GiblZqFilbtsjvwWpsjypxPmqREme419ChMox0/nzncLSSSZw/5phj8LOf/Qzbtm3DDTfcgH333Rfdu3dH9+7dsd9+++F3v/sdtm3bhiuuuAJHH3101G22ZeTIkbjssstw7733YtGiRTj77LM9/d+sWbMwY8YM1NfXY+7cuXjqqafw0EMPYcmSJRg1ahRefvllTJ8+PebW5wO7AThMrC9g7aQAxl2PRWUvIN6clKw5KW4iRQxGTuFeauc+cKC3gdDre1bj7P1MNNw+Z6s9UgRWn0mYcC8vsbpiEtbaKkNFshLupQr1JEWK38R5dZBUz6k4nBR1pVUNCxLEXYLYbhIgRP1nnxk3sYvSAfM7qVLNfzVAIG4nJWjfIRB9fZ8+3opFRCFS4sxHAaKp7lVVJc+/sjLZJ1iJlCRzUtxESk2NsdqYWaS4FUqIKnHe3JdnzUkx586MHasfNzcbr2UzJeOkAMBVV12F2bNn44gjjkB1dTU0TYOmaaiqqsKECRMwe/Zs/FINck2A8847D9dffz3OOuss7Lnnnijz6Mlec801AIBp06ZhzJgxnbf37dsXt912GwDglltuwSZlVOvVqxc2WiwjbtiwAb3jjrdIEbtQBqt4fT+oE5KhQ41hEQI7JyXJnJSysuDxyD16yBA5txXo1lb5mXgVKU4bt6lJ82YnxW4g9BrKpE40onRS1O/BKXFeEMZJ8bLCZPWccSfOew33Sqr8MBCdk6K20/ze2tqkCAiyQg+k46R0dEgBa3ceieulowNYsSLfIiWskzJ4sOwT/YqUjg7Z14tSxm7kTaT4XQQQfbm5f1TLcfsN94pSpFRUyNdTxx0hUhobjY6YX5ESxknZsUNe01l3UtTrrr4eGDdO/u0U8lVSIgUAjj32WDzzzDPYsmULVq5ciZUrV6KpqQlz5szBscceG1UbY+XTTz/FvC++1bPOOqvL/YcddhgGDx6MlpYWzJ49u/P2vfbaq0vuSXt7Oz744APHymfNzc2uP1nGbpUwzCZZgNFJKRSMbopAFSlqaISdSOnWzfvkw6uTUl8vB1W/lJVJweHmpFglQNrhpcKXOjANHGhfClJFtLGqylmYBRUp4lRXJ352IsVvuJfbwGvGT04KINsed05KFsO9wlT3shMp5vemPi6KcK+onBS3mHcvjpwaHvnee/HkEgUVKVVVwG67eX+esE5KVZVcSBJV+ryydq0UhHGLlB075GvFLVL8VGw0Ix5vPp+FSGluloVoAP8iJYqJrbmcb1ubXGRpbDSGLybppJgn/lZtBqIRKVE6KUFFSlFW9/rwww9x3XXX4aKLLsIll1yCe+65B9u2bUN5eTn69++P/v37o9wuwzejvPXWWwCA3r17Y6hVmRQAY7/w0sRjAWDSpEl4/vnnsUbJFH700UfR1NSE448/3vb16uvrHX8avQTWpohbuNe2bV3rd7vR1iYHANFhmkVKZaVxcFc3a7MTKTvv7F1QeHVSwq6Wi5AvN5HiZwLlZeUtiJOirvA6fY5hnRS1+ozXcK80E+fV58xiuFeWnRR14uDkpITZbV6gTmKSclK8nEdqP/b22/I4yu/NT8hQW5ssPTx8uDEvJm4nBZACY9UqfxW3zH2aF4KKlKTKDwPBw700zd5JUfvYd9+Vx35yUioqvOdMOWEWKWqp4ShFil8nxek7znq41wEHyL9L1kn53//9X+y999746U9/ijvuuAM33XQTvvvd72LEiBFYuHBhnG2MlaVLlwIAdlFHDhODBw82PBYALrjgAvTu3RsnnXQSnnjiCdx333248MILcdJJJ3WKmmJD09zDvQDvm+cJrFZNzSJlt926VriyEinbtkkB4HXgUl8XcHdSwiBEysaNzrvDBhUpXp0UL4nzXvfd6NFDvq8gIqW+Xp4/YZyUuEsQW1Wxy8pmjnlMnHdyUqIQKX37yoRhK5EirjFzqV0n8iJS/EyqPv5YigNzEIBb3xLF5F2E9mqateNlhypS4nZSkhQp1dX6ohzgT6SoZZXtwr0Ao0gZMMA9J8Utx8ovZpFiLn7gVDrcLZQ7TAlip748a+Fe5vOxZ09gxAj97wUL7AVa0SbOv/zyy7j00kvR1taG2tpajB49GsOGDUOhUMCKFStw2mmnocPv8nlG2PLFGVfnsAxU/0WvtFnpMRoaGvDcc8+hR48e+NrXvoYf/OAHOPnkk/GXv/zF8fWampocf1ZZ1crMCG1tcmJtF+4F+L8ArSajw4cbwzXUpHmB6Hi3bZOTGnWQ8yNSnJwUTYuusouYzLe3O39OfkSKl/AAv07K9u3yM/Uy6RVuyooV3je7UvOQxOeqfiZqh5o1J0WIlKxs5piWk+I3Zt5rToq6Qh9UpJSXy/h2q8mvEFg9engvKesmUrxMArImUuzyUbw8TxROipp/uGKF9/8LK1L8TDaTFCl+ysqrWFX2EqgiRfQjffvq56jXcK+owoPEOdXaqve76pTHLFKKxUmxCvdyWqR0wyo0TYR8tbYahahK0Topt9xyCzRNwznnnIOVK1fizTffxAcffID58+dj2LBh+PDDD/Hkk0/G3dbMsccee+DJJ59Ec3Mz1q1bh9///vedgsaOuro615+s4hTPGKb+vNWqqTkvRc1HEVglzwdJmldf19wewBjCFnYi6rUMcdThXk5OitVAqLbNy+RJiJS2NuNr2aEmRtfWyvMnqpyUUg73ynJOil24VxxOCiAXOlat6hqGKtruNdQL8OekeMlJUfMD8ihS7Hbo9oMqMJIUKVl1UoBgIkXt+53CvQRifExapJjHHrNIqauT51KSifNJhnu1twcrkSywaquXvJSiFSmvvfYaBg0ahDvuuMMwid53330xY8YMaJqG119/PbZGxkn3L84+p4T1pi/OiB5WM6OQ5Clx3mmV0GqV2St2k9EjjpDHVrUIohQpTh11lMnRXnedjzrcSx3QBwxw/x+/u2D7zUtRJ6F1dcYQALHC5FTdK84SxF6qeyWVOJ/FcK+qKtmuuKp7RSVSxESmvb1r7prXEt8qUYR79etnPeGLUqTU1Eh3KCknJWy4F2Dsp9wIIlKC7hyeB5HiVGxFHSsF4jPzmpMStZMC6OeUWaQAMi/FTqSo7rtKmMT5JJ2UoM9j9Xxi7uVXpBRV4vyqVaswduxYVFkUIj/si61pV1ttDZoDhnyxm9Ryh9Ii4r4h6s5TEZGnxHmnAThMaUe7Sj7nnAN8/evASScBFoXXDJMxsZIch5MSZUiP171Sog73Ep+LsPjdqnv5DR8KI1JUJ0V1WPw6KeqKeBw5KWk4KX7DvQoFf85AUMQ5F8ZJUa+FuESKXRni7dtlf+bn81L7vaAipVAwuimCKEWKmmfjNtEVIqVQkHHtgiSclLTCvfIgUlpavK+4ew33Eojx0es+KWmIlHXr9DFB4FYUJyonJe59UoI+j8BqcWD//WVhg5JzUnbs2GG5uzog3YUddjtbZZzRo0cDANatW2dIjFd58803AcCwh0op4jSRC+OkqBMSdVLWrRtw//3ArFnWA0MenZQ0wr2s9hPw46T4yUkBgokUq0HASaTU1RkHqYYGY2EFrw6EIKyTUlYWbjJtR3W1fJ9eShCbP4e4EOdxGCelrk5+1nGHewHGUJEg5YcBo5NiNQnyuqdE3CIFkNe402RI04D339ePhwzpep0l4aSEDfeqqrKehFuRN5ECeJ/MOokUp3CvqirZx6QtUsT1qlb4EmP7tm3yurUK9QLCOSlO43wcTkqY5Hmr87GmBhg5Uj/+97+t52FFmzhfzAwaNAjjvvDJ7rvvvi73v/zyy1i+fDmqq6sxadKkyF8/T4nzThO5qBPnvZBUTkpcTkpS4V5r18rVKPGZuA2CcYd7mROjrcIwnBLny8qM/2MWUl4dCEHYxPkw++c4USjIc9PLZo5J7SMrREpTk3Gl0w3ztW733qIO9wKMTkqQ8sNANOFeQDIixVxFyYpPP5X3W4XUVlfL92zVt0RZgli0xyvisX5KzedRpHgN+QrqpBQKsr+02lRVFEKJuroX4O6kADLkyy0fxdzGLOWkJBHuBchSxB0dcvFBJY9Oiueq1x9++CH+7//+L9D93/72t/23LEEuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlCnr6WXLzSJYT5c14DfeKInHeC3l0UtII97IKi3AbBJMM96qrM1Y68eKkAPp7EG03tzHpcK84Qr0ENTX6NWX3Ptrb5aQ77nwUgTqx37zZ+wTb/DnX1OjXgZOTEqaLtAv3CuqklJfrkzpNy49IaW7WJy1WFcyc8lHU51m3Lp7NHAH9POjbV+/DvTopaql5r6FeQHGLFKfEeSeRAujX4datXd2HOHIY7ERKdbVst1WFLy8iJUwJ4iQT582v5xc7kaJ+blbnTVGLlFdeeQWvvPKK5X2FQsH2/kKhkJhImT9/fqeoAICPviidcscdd+Cxxx7rvH3mzJnYSTnLTz75ZEydOhU33XQTDj74YBx55JGoq6vDs88+i40bN+LQQw/FVVddlch7yDJxhXvF4aTU1/ubOCblpKQR7mUl3NxyUvyGe/Xtq39327YFC/dSV0L9iBSBeYJXWalPKNvbk0mcj3PiIl7X7n2oe+6kIVI2bvQ+wU7TSVEnOUGdlEJBdxZaWoKXIAaMol4Ql0gB9D7MKo8rrEiJwkkBdKGxdq2+oGInqFSC5KMAxS1SnBLn6+pk/yxQRYoYz83XodfwRT/YVfdqbJTjgOqkiL1SvGwv4BaO6YTTd1xRob//7dv9i5SODus5URQ5Kd26GTfYdCuxncfEeU8iZZdddkEhjliGiNm8eTPmzp3b5fYVK1ZghbJE02Jx9s6YMQOHHnoobr31Vrz66qtobW3FsGHDMG3aNFxyySWWRQOiwFzNK8vVveIK94rDSfHjogD5dlLcBjSrAb2iQv+st26NprpXoaBPvN5/XxcpmuYcgmH+ztU8CnH+OFX3Aozv2zw5F2FSW7bEF+4V5f45TriFeyW5R4ogaBlis0gR110SOSlRhHsBziLF6yTA7KSo+TlRYV6ICCNSAOfV4OrqcLuRDxqkb0LX1qZPSt3qxwQVKUHHqbyJFKvvum9fQK0PZHZSgGREinpebtwoRYj6nVuFe6mLbXZOSqGgn4t+Cg4I3IqgdO8eTKTYjT9RhHs5OT5W53fROinLli2LuRnRMH78eGghdsg5/fTTcfrpp0fYInfc9lXJEnGFe0XlpGzZIi/8MCIlazkpbpWv3cK97ELgune3FylBJr5CpGzbpn8fVsmaAnNOiroGEIWTIp43LpGydWu0++c4YTeRFyRZflgQdNd586RHFWCqsM1q4jwgz9Uow73iEJdekq+9iBTxPNu36xvFid3QAXkdh41aNlf4ikukqCviWRYpXio2mvEjUsrKjEIgLZGydKl0gd1EipdwL0CKlCjDvQC93WvW+BcXdo+PItzLfN35cVLyIlJKPnGeeMdruFdUJYjdUFcf164Nvts8IMODzO0B0q3uVV/vXq1JTW61CveyG9CdavEHmfiqISxu6xrmnAOrMAw3kaIO5HYixfxadngZjM3hXnGXHza/blubPkk0k4aTEnTXeTsnBTB+B1HsOA8Y9+CJykkRfY7VSq3XSYA6KQfi+d68xNELkdLYaFxA8fo8diu6fvFb4SuoSAFkW7MsUrxs0GvGTaSoi0aNjUbnSxUp6jpv3CLlww+NbRKEESminVGGewHOjuK6dfY7yNstcsbtpFg9v/g+y8rCOZ9JQpGSMsVS3SuqxHk/TkqhIN2UtWuDJ82L57JbTYpyMuo33MvrKq+T4LD7XNT/MXewQqSoG/e5oW4j5JaX4qUEsVN1L8Cbk2J+LTuChHvFvZGjwK2ccjE4KYDxvUXlpAByQhNF4jzg7KR4zUnp1s04KUtDpKxfLyeAdi6K2/PE4aR4qfBVSiIlSidFYB4f1f5VPa/jWHmPW6SIdsbhpAD656N+RlddpX+2Z59t/bzqNaO2O6iT0tEh+0dzO91yrsT3mRcXBaBISZ26urouP1nFa05KUuFegOx4160zDlx+RQpgP6mNcoCqrJSflZdwL68TKPE4p5yUigrjapoYyDo6uk5+1ZK2XtPR/FT4CrtPCuCckyKeVzyPWxRokHCvpJwUt3LKqpOSdZHi5KSo7y1KkSJCvjZvls8bNicFCJeTAhivlzREipdQL6fnUXOywvaLfjd0TFqkJLUgIYi6uhfgLFLsNnSMO3FeddxVkaK21ZyTUl1t7/qJ+4HgOSlq2XcVq+ugvR343e/04/vuk+WaVdTzTBUpQZ0UdTwzTxfdrnnxmeQlaR6gSCE+iCvcK8yEREzKWlqAJUvk7UFEShJOCiA7WDsnpa1NCj2/TsqmTV0n5KJz32knY9Ucp4FQrM77mfT6ESnmcB63cC+rTlVdbbNaWRPfZ0eH9YRSxcvk0hzuFWWukhNu5ZTTDvcKI1KScFKskufTzkkBjHkpcYsUq4luWJGyfbv9ZMkvfsO9wrjmoq/ZutV6UmmFXcnXuAjjpFRVWfdh6gKVk5MSt0hRzyeR0wcYRUplpbwmzE7KTjs5L5yJdgZ1UurqrKvLWV0Hc+fKcVzTrEPzohYpXksl00khkdDc3NzlJ6tkLXEeMK64vPOOPM6qkwLICZ6dSHEqJWmHGNTa2oyd844dsnqKecXRbiDcvl1+Bn4mT0GdFDVvAPDupHz728CXvwyccQYwfnzX+/3sleIlTKeyUiYNJ+mkZDHcK2h1L6t9UgRxOSlWZYiTcFLSFiluifNeRYrd80TZLwYN9+rTx//kWW2rl1BQQL7Xmhr3HMEoCCNS7AqteA33SlKkqKiLCYAUVatX69eaWIxxCvUCgjspbq6g1Rj1xBPGx1iN6VGHe6nzK6dwLycnJU8iJSepM8VLsVT3iircy++EJEqRkrSTsn27/mPu/IOs8pqrwYj34lRMwG6lVe1o/UyedtpJDylra/Mf7qUOkl4T53feGfjnP+1fwyxSnEIEvE4ua2v17yfJxHk/4V55SZwXhSrSclJUkRLUSWlt7Vpq28+kLkknJapwL7WfiGqPFECfWHfvrrfTzUnp6JBOit9QL6Cra+vl2o0qrM0rcYiUcePk8UEHGe+zK2ARh0jp1k3uYaVirujWvz+weLH+2S9dKm93Eymine3t+ljkNUE8CpGyfj0wbJj18wLpOyni+8yTSKGTQjzj1GFVVcnOIEy4Vxgn5Yu9OwG4d2RW2FVRitrqdytDHESk2FWDUcMivDopQXMcysuBwYP14yQS593w46R4FSni+08rcd7qfeQpcV4IEfF9ujkpFRXGkrdBUPsCc7hXt27+B2z18WY3xY+T8uUvy2PzpDEKvIqU7t2dF3XsnifqflH0TytWOOeQrV0r++coRIoXikGkHHAA8PTTwKxZwNFHG+/zkpMS1cS2ULAWhlYiRbBggTx2W4BU2+nHTXHb88p8HaxaBfzrX8bHqH2x+XkB44JJUCfF6borRieFIiVliqW6FyAvkLTCvQQNDcFWX+0sb3Gx19REU7bPrQxxWJGiDmpOxQTs/sfvRo4qIuRr40bnwdWck+IU7lVV5b4DtRVBw72cVgzFoJBWuJeTk1Je7r6nTlSEre4lPmM3JyWKya/VXimizX5DvQDjnj5hRMro0cArrwDPPWcULFHhJFK2bpULCXvt5Rzjb/c8TmEnQRAhX1u3OrtzYZLmgXyIlNpa2ed5ESnq5qJOfcBRRwEnndT1+7Yb++LaodzcxqqqrteinUjx6qQA3kWKWrHLq5Py5JNdH+MW7tXQID/rOJyUmhp53pjPbU2jSCEBKJbqXoCcUCSZOG8lUoKEeplfW21T1AOUWxlidYD2Oomy2/zLq5OidphRiBTA2U3xs09KEBcFCO6kOK3ci+dMMnHebgIhCFKJLSyqAxGnkxI21AtwdlL8hnoB0YkUADjkEOCII+L53pwS5xcvlm6FU6iX+XnidFK8VvhKWqSoeX5JiZRCwbmsvJkwhSCAZHNSgK79Zf/+Xa+BoCJFve68Js97ya8yXwfmUC/A3Unp3l0+f1CR4rQ4UCjYP39bm7zmWd2LFCVuHVZYJ6VQ8K/woxQpbk5KVBPRJMO9gjgpYXIcgoiU2lpdGIjv3uykBO1Qg4iU6mrnCaOYjO3YYRSYaTopQSqxRYFbAQgr/DopUYgUs5PS3i7P96idlLgmdUFwclL+/W957CZS7BYzonZSvFb4SlqkRP0+veJHpLjtkeJGkjkpQNf+0hzqBUQjUrw6KX5FysaNeuicGau+0Pzc4nniCPcC7J8/j7vNAxQpxAdenZTmZvd9KVTEhKSmxv+KYh6dlCTDvYLkpITJcQgiUsQAad6/IEonxcqBUPFqg6uDghqZmVZOyo4dcuKYVNK8QEwiVq40lhJ1Ig0npW9fWZFp5UrjRDttJyVOnKp7eU2aB+wdmTidFKcKX0mLlKQ3chQkKVKS3CcF8C9SVNHqNr6r7QzipHjJSXnmGTl2q+eglZNizl102rneb1utzkc7JyWO/KIkoEhJmbyWILbqsMRA1dbmvi+FSpjJaNxOSmurfN9xOClRiRS7cC8nJ8Vu8pFEuJc4zbt1kzG05s47rEhxq4qlYl7ht0OdNKsiJa0SxGkkzQvEd71jh/GzsKO9XfYL4ruxem/qjspRiJSyMjkJWrkyXPlhID8ixSmJNqhISSInBciWk5K2SNm6VR9TnYjSScmKSFH3dVGJw0nxUgRFbfOcOfL4G9+Qx37CvVpajAV6vOJ2PqpOirpYnKW+yQ8UKSlTX19v+Gm0ulozgpsSD7pXiugUg0xIrCZmUTopcQxQSYV7rVghq4/U13cdvLIQ7qWuwJpFijjfksxJCeqkpFWCWGx0BhhXHpNALaHrVs0NsF7ksHpvaj8ThUgBZMjXqlXGiUQQJ8VpEpSl1Uq1xLOdSKmqAoYOdX4eLyIlyupeAEUKYDw33Vbd4xIpcU1szW10c1IEFRXuizFhnRQvIkUVF2edJY/dEudVJ8X8ul5xu+5E+zs6kvku44YihXjGa7gX4E+kqOFefjHvsQFE66TEUcEpDifFLDg6OoDJk+Xgddpp7v8jCLM6L0oQA95EijoJFZ3r9u36uSZWD0tdpDi9jzRFip/NOwHrKn5WTkqUe6QIxOpre7uxVHkxOymAPC/V67u1FViyRD/eYw/3ioVeEuejdlK8hHtVVwdzD/MiUvyUIY4ycT6LOSmCAQPcKz0mkZMiGDPG6ES6OSn19e5lgt3w6qSYHxtXpba4oUhJmbyWIHYK9wL8rRCEDesxh3xl3UmJIyfFHO51003As8/qfw8cCNx4Y9f/iaO6V3W1/PyXLbN/nBCx6meudq5r1sjjJERKkHCvtWv134VCdJNpt9c0h3upn5NdeERcRCFSrJyUOESKmjz//vvyOK6clIqKZHYmd8Mq/v2tt+QCgFuoF6D36yJXME4npW9f+dl6cVJ23jlYVTS/K9lZECluG6bmPSfFvNs8oC/mma8hL2N7kBLEQUXKpEn664l+zClxvqZGfz9hnRSvOSmA8XrN2gKKVyhSUiZPJYjjCPdqb5cXT9AJSVQiJQ0nJY5wrzfeAKZNk3/fc4+12HAL96qqCvadiMnrqlX2druTkwIYHYKkq3s5oV6eIt63vj7e0r9ZDffyK1KsJjxJOymAUaTE5aRkZRIgrvEtW+T5+sc/yvuPOsr9OdTN9+wS56OYvBcKxg0drdi2zTph2Q9hnJQ4HVMzfpyUYsxJKSvruvDiZZPmsCWIvSTOC447Tv8txnSnxHlx3rltsuqGWy6YnQjKUiiqHyhSiGf8hHt5XSEIu6s40FWkWK3KeCGNnBQ3J8XrgKM+7q235Hd1ySXAkUda/49Y2QGsw7369Ak2+VYnr5980vX+1lYZ02uVkwIk66S0t+s/gHvnbTVpjnvikodwL6vv2UwWnZS4ShBnZRIgzs32dr1tmzcDf/2rvE9N+vXyPHE6KYAM+dqwwfqaDZuPAvgPtykFJyWLIgXo2qf5FSlRJs6bz/FevYCDDtKPxSKgk5Mi3nOQzUStns+qTebnp5NCSgrRYZWXW8cx++lUBWqHGIWT0rdv8AswKSelpkZuGOgkUurrvYeMWA1MI0cC11xj/z92K6RCpAQtaeu2wm73naufrzr5jluk+Om8nerSx0VWw70aG+WE3W+4l1XivJWTEtXkVxUpixfL47jCvbIS821etb33XikuvvUt75NuK5ESx+TdLS8lapGS5XAvNd9GhJbaUYz7pADBREpcifNlZcb7jjlGjs9irNy2rWsfbd7CIKyTEkVOCkUKKUrcQhlUsaBWiHLCar8Mv6ivGzTUC0jOSSkUpJviFO7lZwJVVWXsnKuq9AmJ28BirsW/fbt873GJFHUF1i7cK2onxWmfFD8DcRoiJavhXmVlssKX33Avq8T5OJ0UdXKjnn9BnBS1/8t6uJe5zPjvfy//vuAC/8+jljWNw0lxq/BVSiJFXXRQ+0MrVJESRHjb5aQkUd2rosIYXaCSlJPi9TtWrycR6gXYR0e0tcl+TzxvlInzVv2jFyclK4soXqBISZk87pNi11n5WfkRWIWA+CUqkZKUkwLITs3JSfE72Kgd/69/Dey7r/f/EYNcFPtuuIkUu0lo1OFeXvdJ8TMQZzncy2rPoLgRImXzZmvBreIW7hVnTopdCGhYJ8U8CcqySJkzB3jnHf344IOB/fbz/jyin9A0KU7idlIoUuSxm0gJEiKskma4V//+9hW7zO6w38T5KHNSAONne+yx8lhd0FPHdKvnjaoEsRqurUInhURKHvdJseuswjopUYR7ReWkiI46rgFKrOBu3izzIQD9WLym3wnU8cfL3xdf7O1/RKe7bZu+6hOmspfAj0hRV2DtEuezHu4V98TFbgIByMlLQ4Nx8pwUfpLnrSY8aeSkqMSVk5KVlUp1UqVW+PPjogDWG7+KyVJ5eXTnXhLhXlVVMty2WERKEjkpUU5s1fPJacqTpZwUADjzTP332Wcb26Y6KeoYavW8UYV72bXTzklh4jwpevLgpHjpxOywmjDF7aQAxhXoMLb9n/4ELFwI/OMf7rXkBeYyxEmLFC9OStzVvfzY4GmEe6mTQDsnJelQL4EfkWJ1rZeVyf5E3G8XDhiG2lrryVuUOSmaJv/OyiRAPTc//FD/3dAAnH568OcRfaI6WYqqul0S4V6AnMhlWaSo17S6aGOFGDcqK4Ode24iparK+5jihThFSlwliAHgF7/Qx6Z77jHe7sdJiSpx3kupZDopJDR53CfFS05KEJESdEJyxBH6ZKOiAjj55GDPYX79uJ0UO5ESZlOusjJgn3387c9gLnMZZrd5QX29/F8/OSlpJc77WWFKI9xLfV31fbS0yMlJXkUK0PW9xeGkAF0nOOZEWK/YiRT1OCuTAKtz89vf9v+5WokUcR1HWTXfT7hXGNc8qEhJcocAtbqiVyelR49ggtEuRCouZ3DXXaWLKSpkWaH2a2Vl3vq5sCWI3fqEvn27fsbqWKku9Fk9b1QliP06KXkVKS57zZK4yfK+KGbcOizVSUkycb5fP2D5cn0SFGaylpaToq68hN052C/mMI4oclIAfRBav16faLS1GavB2U1Co06cr6zUX7etLd/VvQD9c9q40TjRT7Oyl8BPGWK7+PaaGv0aiDMnBdBDvtTKXj16BFsdthMpWZwEWJ2bfkO9zM9jdlKiHMLEjuIdHc7hXmGqOAL5cFLKy/XJ77p13kVK0DHDbTPHqEVKbS3w4ovA/PnA179u/zh1PG9s9LYAFyZxPujGvH7CvcIkzre3y/7R7rqzE0FMnCdFjaa5OylVVfICSdJJAfTXDbuanEZOCpCuSDE7KVGEewFy8treDnz+ufE+u5yUqBPnAWsHwkzYxPkkJi7iM1DfR5qVvQR5clLMeSlB8lEA++pecSUZh8EsUg4/HNh7b//PYw4LBdxXdINQUSG/J7OT0tEBfPaZfhwm1AswihRRrcyOOMIPvSIWH7wmzgfJRwH0ybk4Z62qe8UhukeNAs45x/kzVfs1r6HcYRLng4YuJpU4r/aNXpwUhnuRkkFsvgc4n+Ai5CtJJyUqspCTkrZIiSLcCzAOKOYIRi9Oivq5xy1Ssl6CGLB+H1kQKYMGyUE9qEgRx3E7KeZJTlCRYlfdK4uTAPO5GcRFMT/P5s26OLPakDUKRMjXqlXGcWfNGt0VBaITKZrmXJ4ckOejmj+VFEKkNDXZt7OlRYrloCIF6HodAukXgthpJ3nueRXXYRLng57Ldk5K1OFeXhZN7Z6fifOkqPE6kRMhQuvXG6tW2RFF4nxUWCUPJpGTklUnJUy4l5oMaRYpXnJSVMIMkOL5nSYieQn3AvTrsKNDP85CuFdVlZz8B6nuBRi/I01LzkkJen3lKdxLvb779AFOOy3Y85gnPuo1HLWTKESKphld2KiS5gF/yctq7k1UBQK8oi4+2LkpYSt7CcT4l0ROildqaoC//x2YOhW4+mpv/+PXSWltlQ5d0MI7dk6K1SJnmMR5L3sTMXGelCReT3DhpHR0uO+bAMQ3IQlCZaWMeTU7KeXl0XbUWQz3iqq6F+BcmcZLuJdK1sO9khApVjtCZ8FJAWTI16pVzpMCNycFMG4mCkS7Sh+Hk2IX7pWVScDw4bJPu+CC4H2YWaTEmUxuV+ErCyIlabyUIY5KpJjDvTQtfZEC6JsmzphhDC11wq+TsmyZXFAdPtx38wD4S5yvrpYlsONwUtTztBgS5ylSiCe8nuB+k+ez5KQUCl0tb3GRR1lmEyj+cC8nJ8VLuJdKmPNCzeWwiz3303lXVRmLAADJOimA/PyyJlIA5+R5NycF0K+7YnBSspKT0tiob+J46616+dSgpOGkABQpfkVKmDHDPPa1tso+Myvnsxf8liBeskQe7757sNfs2VPOD9wS59XjOERKRYX8LumkkNDkZcd5r+FefssQR5U4HxXmlXdxkUc9Ec1KuJddda/q6nDfRxCR0q2bdfWWKJwUtfCDGb8Jz+bJShKJ81ZFHbIQ7gV4T5734qRs3ZqvnJSsh3sBeon2iy6Sq7dBMDuuXsJOgmK3oSNFivVjog73EmGXWSwE4QW/JYjF/kFAcCelrEz2J26J8+qx33Avr+HnViIoi4soXmAJ4pSpT7KmYQj8hnsB3pyULCXOq20wOylRi5QshnupIqV373DOkVO4l11OSqGgd67qZwBEI1IA/Vyz6pz9Ti5ra41tTDrcK69Oilt1L/GYYnBSsiRSosC8mBFnWd4shXu1t8vvNasiRe2LohApHR16gYK8ns9+w72icFIAfeFxwwb3cC9AXk9+nRSviwPdu+vnC50UUjJ4VeF+d53PUrgXYHRSOjriKbMJGJ2UxYvlZCdLIiUMXp0Uc0drNeGPUqRY4bfz9tLmqHEK9yoUwhU5CItXJ8VpnxSB6qQUCtEOpn36GEP1oihBrJ47WcxJiQqncK84nZQVK/SJ1uLFwPvvy9uTEilplh8GvO06H3VOCqCPy3RS/CHGzI0bZXETu+qg4vxrbpaP9UIYJyWv/RNFSsrkZcd5rye433CvLCXOA0YnRc1jiHoi2qOHnNwtWACccYYuVNIUKatXy+8j7KS3e3d5nngN9xL/ZyaK6l7m11UJG+6VtEgxh3v17ettk7O42GUXeRwk3Mv83sTEsLY22jywsjKjeI4z3CtPkzovOCXOx+mkPPCA/tp77gm89pp+W3V1+EUUryIlriIOXvHipKg5jVE4KUC+RUpFhewP/Tgp9fXhHGmx8NjRIYWjm5MCGIWwG16vO/H8LS2yjDedFBKIurq6Lj9ZpBQS5wE5YWprM4ZhRT0Ql5UBd90lO/9Zs3Shogq7MAOOV9TXUCeYYScBhYKcEDpV9zKLFKvPOWtOipc2R41TuFea+ShAfDkpcSxaqCFfDPfyTpJOSrdu8nuyKnZx6KHhxWsQJyWrIkUNg9t55+CvVSwiBZDtdXNSWlv16l6A7qKEOa+syhDbiYqgu857PR+tzu+89k/MSSGe8LpKmPfEebWjVifXcayWT5gAPPoocOKJemc6a5a8r66uaxWpOFDf19Kl8jisSAH0ValPPtHPg/Z2ubrlFEIRZ7iX02ZoAr/hXoVCMpMXs9hqbpaT+TTzUQD9OxPx2F7DvdTP2S4nJY7+QE2eL5XE+SgQFYO2bYvfSQGA//kf4Je/1D/HQYPkz5AhwJlnhn/+vIgUddHPTqQsXy6PBw8O/lrmUuB5FinV1fp35+akqOWHw+SjAF3LEA8dKgVIoWC/J5if5Hm/Tor4n1698uv0UqQQTwQJ98pj4rzakagiJa7V8okTjUJFkESoF9B18iGIIsdBOCkdHfq5ICbTTt953pyUqEtTe3nNbduME5a0RQqguykbNug5BKogVREisVs342eWpJOihhIFPce97JOSp0mAV7p317/DzZvjn7yff77+Exd5ESmVlXIBwC4nRRUpaj6PX5xyUvImusV7cRMpUeWjANa7zotzyzxOBN113m9Oivr86meh9mFZh+FexBNBwr38OilZGNiTdFIEEycCjzxifP9JiRTAOqwsCifFLnleTEJravSwNxXz51xV1fUxfrAKkzITJicliXwUoOv7UM/NtMO9ABny1dYmd282Y7cxnFlIxilSLrhAX40/5RRgv/2CPUcpOimAsSJR3E5K3HhdyU5bpAByEcLNSenVK1wbzeFeeV15B+T15xbuFVVlL8A63MuuOmjQXeeDOimA/CwqK8ONqUmTo6aSNPHaYVVXy4vHT+J8t27ZuHCSdlIERx1lFCojR8b7eipxiRR1hd9KpFhNQs2fc1h3Le7qXkmJFPP7yEr5YYGXvBSxIGH+TtW/N22S4RdxiJTRo4GPPwYefji4A6aKFPXcKSWRkoXJexjy4qQAchFiy5auzkBHh8xJCRPqBRRXToq4/rLkpKgEdVKC5KSYnZS89U0M9yKe8GP99umjX5x+EuezEOoFGNuhrlwlMRk96ihg3jxg9mzgW9+K//UESTgp6qRard5kxvw5hx0ckwj3SgLz+8hiuJfAbq8Uu2tdfW9qnxHXpDBseF5ZmR4m2dZWWk6K6CdaW417QeTRSQlS3SutnElz8rwa0rVmjTwHKVIkXhPn43RSNC16kRLGSaFIIUWNnwG4b199NXXdOn2lx8khiTO0IwhpOSmCkSOTdVEAa5ESRU6Km5NiNQk1i5SknZQ8hHtt25a9cC8vZYjtwr3U96a6r1npE6yoquoqUvI8qfOCeq5//rk8ppMSL04iJap8FMB4zhZD4jygX5+aZr8wIZyU+nrjoloQzInzLS16HwEkH+7l5KTk7bvMQIANyQN+JnIieb6jo+vu4Way7KQklZOSNlbvLU4nJWvhXn4TRBnu1ZUw4V52TkrWRQpQWk4KRUp87XFCFSnm5PmoKnsBxemkAPYhX62tsqLl7ruHd1jN4V5OgiKKcC+nsbGYnBSKFOIJv+FeAre8FDFxycqEJG0nJQ2STJxvbZWbS3kJ98piTopdKck4yVO4l5VIaW2VuSZOOSl5clIAihQgn32jmgOZdZGiXt/m5PkVK+RxnCIlb+ez2l47kfKf/8g+KWw+CtA13MtJpIR1UurqnCNUrJwU8X3m7bukSEmZ5ubmLj9ZxG+4l8BJpGganZQskGS4l1uMd5xOShz7pDDcS7ZBtNFKpDityqrfUZ5FSp4ndV5Qz3XV8cpK3+2HQkH2NVkXKU4bOkYZ7lVM1b28OClR5qMAXZ0U1SExjxNhc1LcFgaKyUlhTkrK1OdkGcqP9et113n1ObMy0NFJ0TuxKL6PPn301Z6ODvlZqiLFS05KEonzfieXWUicF59nRUXwTQmjpFDQ81IWL9ZFijkO3G63efPfeREpasy7IM+TOi9YLWa4rehmmfp6fc8Xp0linkRKWCfFnJMi8inM9+UBtR+3S56PsrIXoPdj1dV6P+DmpMQtUsxOSkeHjGDIm0jJafdCkiYOJyULlVPMqBMm9T2XkpPSu3c0GxSWl8tzwauTEnW4l5d9UsT3XFXl7X2rA0Da4V79+mVnkihCvrZu7bo44bQfUp5zUkqxBLFKHvNRBH6dlKxU91KJ00nJc06Kl3CvqJ2UQkGGfLk5KUHDvcT56HbdmZ0UdTElb99lRoa30qWpqcnws0otg5QhgooUJyfFaXU1LewGolJyUqII9RKIvJTVq/XV9TTDvdxEiteJ5Ze/rA9GVVXACSeEa59X7DZzzEKol0Ct8GUuQ+zkmqp/q4/Lg0gp1ZwUQZ77RVWkaJr1Y9yc3yTwkjjft2+0Czp5FylmV8iKqJ0UQIZ8xZE439Ym34tfJyXPfRPDvVKmLidLUUHDvZycFFWkZGVCYtfRF7OTYn5vUSTNCxobgXff1TvJzZvdVybTTJz32nn37q1PwrdtMwryOFHfx8qVcnKchaR5gTl5fswY+bfTgoTdtZ+VPsGKUs9JEeRk+LJETOTa2vQ+wGpcy0K4l9rHqE5Kezvw2Wf6cVgXBegqUlThljeR4sdJiaL8sECMnWY3OYrEefVc9JuTkue+iU4K8UTc4V5Zd1LyPBi7YRXuFRXm5Hm3lck0SxD7GYjr6pITKIA+KRZhXWpiepZFiorTIofd554HkdLRISsEFXtOSrE5KVbJxWayIFKqqmTemSpSVq2SeSNh81GAro5mnie2bk5KayuwbJl+HEX5YYGaPK+G4pmvndpa2Z97dVLUc9RPuFfenRSKFOIJPye518T5vDgptbV6fkWxkkS4F6CHKmQ5JyXLnXehID8vde+hLIV7OYkUJyelrMz6s8/ywoAQKYB0U/I8EfCCXeJ8XlH7ms2brR+TBZECyOtcFSlRJs0Dxol93qt7uTkp//mPFHhR5KMI1AU+NeTVLObV6nJeRYofJ6W6Ws5ZKFJISRBHuFdenJQ8rxZ6IUknxS3cyzwRCDs4VlbqP0C+RQpgfY3kxUlxyz+zOheysnBhhXqumEVKWZleda3YKDYnRe337CaKor9SJ31pIETKpk3yfItapJRSTkoc+SiAvUhxuna8hnt53W0e0EWQeM2mJooUUgL4OclrauQEI2+J81btKOZ8FCBekeLXSSkrMwqVKM4L8Tp2+6QECfdKA6vPK0siZeBAOZHzE+4FeBcuWUF1UkTfmJfzKCjFlpOi9ntuTkra79Oqwpe6kWMcOSl5FiluTkrUlb0EariXk5MCyOspSLiXl8UB1anJsytGkUI84VeJi3j9vCXO00mJL9zLS04KYJwMRSlSrJyUjg5p+2d9hcnq3MxSuFdFhS5UgOJ3UpzCvbJ+HgWl2JwUP+FeaZ+LVrvOx+mkmHNS8jaxdRMpSTgp6vdjdZ14qS6n4jf0UHVS8pxfRJFCPCFO8ooKb7a3ECnr1nkr70gnJT3irO7llDjvpdxzFOeFeA4rkZInGzzr4V6ALEO8bp3x83YTKXl2UkpZpKTtMITBS7iXOIfTfp9WTkrcOSl5Filu4V5JOClq5T+ra0fc1t5uXyZZJaiTQpFCSgK/A7BYjW9vNyb6qmTRSbGaLOV5tdALaqURIN5wLy+boyXppORJpGQ93Asw7pWiTqLcJjx0UrJPt25dc23y3De6OSmalu1wL/X6Eg5mGMrK5HltTpwXeX15wauTUlcHDBgQ3evajZ1O4V6At5AvvyJFPL+mARs2yNvz1j9RpBBPiAvd64qKlzLEWXRSKiu7OkXF7qQUCsZVxShFijq4enVS4hQpZlcvT6uFWQ/3Auw3dCwFJ6XYc1LUZFxB2pP3MLg5KTt2yPLSab9Pp5yU/v2jm3iK61B1Urp1i65Eb1I4OSltbcDSpfpxlOWHAfux0y1U0kvyvJ8SxObnV3ODKVJIUSIudL9OCmCfPJ/FxPlCoWtb8rxa6BV1wI4yJ6VbN6BnT/3YnDhv19Gqn3cUEz51smsesPLkpJjPy+rq7AloO5FSbE6KU3WvrJ9HYTCfb3nuG90S57NSfhjouut8W5vcyDGKUC+B6GPUnJQ8im4nJ0UtPxxlPgpgDPcSVFYaFzUEfp0UPyWIzc+vLhTn7fukSCGe8DsA+3VSsjQhMbclaxPBOIjLSQFkSFLaTgrQNeQrTyLF/Hn175+9Fc4onZSsLFxYYa7upWmlKVLSnryHwW2SmCWRYk6c//xzvegHEK1IERNYs5OSN5yclLjyUQDrsdNOUIRxUvzkpADGOVje+ieKFOKJOMK9suikAKXppOy3n/57xIjovwuRl7J5s9FVSypxvphFStZQJ0xqzLzf6l5p70vhhjncq7VVhhJm/TwKQzGJlLw6KWvWRJ80L7AL98obTk5KXJW9AKChoettdoucYXJS/FT3AvItUopwyykSB3GHe9FJSZf//V/g0EOBo46KfnVeTZ5ftkwe233n6mr8zjuHf331dcx7peQpJ8U8uc9aPgoQPNzL/N7SnhS6YRYped6HwA/mcuV5XsBxS5zPktOvLvqZRUoUe6QIVJEixoG8TWoBZ5ESp5NSXq6HN6vFguyukbgT54slJ4UihbiiaTLuOq5wLzop6dK3L/D978fz3OqKv0hYBOwnohdeqMcN77UXsMce4V+fTkpy9OypD75btvgL9zK/t7QnhW44iZSsn0dhKFYnJevhXtXVens3b9ZzUtSNHONwUtra5PvPo+h2CveK00kB9JAvVaTYLXL6DfeKKiclb/0TRUrKNKtnnsXfWUCt9+21w6KTQgSqk6JOBuzOpf79gTvvjO711UkxRUq8FAq6m/Lee7pI0TT9Nr85KVnqD6ygSNHJ8wKOm5OSJZEC6M7p5s3xhnupfbKobJZHkeLFSYm6/LCgVy/jYlzWnJS8fZ/MSUmZ+vp6w0+jOqPLCEE2AqKTQgRWk+maGuPeLHHi5KQw3Ct6RMhXS4ssl+q3ulfeREqeN0vzQzE5KRUV8prKupMCyOt940bg44/l7XE4KSpZ7xetsHNSOjpkyPFuu8VTeMScPB9H4nwp5aRQpBBXgqwSqk5K3hLn6aREi5XuTnISynCvZLHKSyk2J8W8UlsqOSnF5KQAMuQrD06Ker2//bb+u1CIJm9PUCwixc5J+fxzvcgFAAwZEs9rm8sQR5U4L85Hq20SrFCvTfX8zvo4Z4YiJWWampoMP6tWrUq7SV0IMgDX1soLKU/7pAB0UqLGSqQkOeirE15zNCVFSvS4iZRidFLydB6FwZw4n4XJexjERDEPIkV1TkW414AB0e4GXywixc5JUQu3xCVSvDopQcO96uu9OUB24ihv/RNzUlKmLgu9nwtBQxn69tU7U7dwr6qqbJUbpZMSLVaT6SQnoWpZyI0bjfflaXKZl3AvNfxEiBTRh5SVWU+q8uaklKpIKaZwL0CKri1bZP6UIMsiRRBlqBdgLUjyeD7bOSn/+Y883nXXeF7b7KREHe7l9Vy0e928fZ90UogrQQdgEfK1bp3cQ0BFrK5mbUJCJyVa0g73Ule21q833pennJQ8OilixVdc6zU11quAeXdS8nQehUEVKdXVel5HnhEipa2taxWoLJUgBqxFSpTlh4HicVLsREoaTkrU+6R4nY/YvW7evk+KFOJK0AFYJM+3tTnXoc9SqBdAJyVqunfvKm6TXJl0Eil5WgE3n5dZdVKswr3cNoajk5IP1L6wGBZvnCaKpeikFItIUa9Pdf6ShJMSJNzLTwlir9cdnRRSMgQdgN0qfNFJKQ0Kha5uSlaclDxNLtXzsq4ue9eNYOBA6ZaYc1LsFiTy7qTk6TwKgzqxysLEPSxOu85nTaRYOacUKdYUCvI6TNpJ8Zo4r55Tbk7Kjh1yK4iwTkre+ieKFOJK2HAvwDp5Pg9OSkVF/i7qLJIVkbJhg/G+PIXpqJ9ZVkO9AH0Cv9NO+rFXkZI3J0XtE0pJpKiT+mJYvHHaKyVrIiWtnJSs94t2iHZbOSm1tcb5SZR4dVLKy2U/5yZSgpyLdo/LW/9EkUJcCRvuBXR1UjTNfeKSFmp7vFbSIM6YJ9VJTkLVla08Oyl5ESmADPlauVL/jN3CvcznQxYmhU6oTor6/oD8Tuq8UMxOSh7DvZiTYo/ZSdE0KVKGDIlvXPeaOK/e5xbu5Xe3ecAoglSyPs6ZoUghrsThpOzYIZPps7ZqqraH+SjRYHZSkhz0q6vld5pnkaJ+ZlkXKeoK7/LlxeekMNyLTkrSpJWTktfz2eykrF4tj+PKRwG8J86r97k5KX53m3d67bx9nxQpxJWgG5U5OSlZ3W0eMLaHIiUa0nRSADlw5FmkDBoETJigl/D99rfTbo0zavL8kiXy2KuTQpGSTfr1k/36nnum25YoyJOT0q2bcYJaVibDKqOimJ2UJPJRAO/hXoCcX7g5KX53m7d77UIh2n11kiDnBQRJEoTZJ0VgFinq5m5Zm5Co7SmG1cIskGZOCqAPHCtW6CJF3Q8hT2E6hQLwzDP6gJV18ayKlA8+kMfF6qQE7SPzRlUV8OijwAsvAOeem3ZrwuOUOC8W0gqF7PQN/fvLCevOO0dfArqYRYpa2StOkVJbqwsBsbO9U18t5hctLfrj7QREVE5KdXX+wtfppBBX4gj3opNSWmRBpAD6uawK5LytgBcK+Tgn/YqUYnJS8jqp88rBBwPTpmW3BLYfvJQgrq3NzsRO/cyjzkcBijtxXnVS4gz3KhSMboqTqFDzV+6/3/5xQXJSrB6bhzHODEUKcSWOcC91opg1kUInJXrM4V5Jh0/YlSHOm0jJC3Yixa7/MN+edZFSqtW9ig0vJYizEOolUEVK1PkoQHE6KR0d+l5tSTkpgFF8OM0hvvENefy97wELF1o/LkonJW9QpBBXgoYyODkpWQ73opMSPVlxUgBjGWJOLuNBFSmLF8tjuwWJsjLjZChrfYIZc3Uvnkf5xEviPEVK9K+TBGq7t29PzkkB9L2iAL0fcxIVZ54JfOc7+vHWrcCppwKbNnV9XFQ5KXnsmyhSiCtBB+DaWtlR5ClxfsgQGRs6YkSqTSka0k6ctytDnKeclDzRp4+8rpcvl7c7XevqfXkSKeacFJ5H+cFL4nypi5Q8TmwBY7tbWqST0q1b10WzqLnySuCww4Abb9RLAdtRKAC33gqMHq3/vWSJLlpE5VNBVE5KHvsmihTiStBwr0JBuil5Spzv1w945BHg2muBqVPTbk1x0KePvlouSNNJYbhX/BQK1pMop/5DPSey1ieYKdXqXsWGXbhXR4cco7IkUoYOlcd77BH98xdjTgpgdFJ22SX+HKPDDwdeegm44AL3x9bUAA8+KBfSZs4Err/e+BjmpBDiQJjKNSIvZd064+pAlp0UADj2WOAnPzEOYiQ45eXGVUDmpBQ/asiXoFidFJ5H+cQucV5dRMuSSPnmN4FzztEXz449NvrnL6ZwL/U6/OwzOdGPOx8lCLvtBvzlL1I8/fSnwD/+oefSAMHDvYohJ4UliIkrixbJ44YGf/8rREprqz4IiEl/lp0UEg/9+wOrVunHWXFShACvrDQ6PSQ8YURKliaGVqilXylS8ou60qw6KerKdZbGp+7dgT//Ob7nL1aRoubFxZ2PEpRJk4Dp04H/+R/dyTv5ZP2z328/Y54KnRRCFDZtAubM0Y8HDgT23tvf/9slz2e5uheJBzUOOCsiRUwu89h5Zx0rkVIs4V6FgjxnmJOSX8rLpSC2EylZF8xRUkwiRW23KlKy6KQIfv5zo0O2fTswdy7w/vvyNlb3IkThscfkpkSnneZ/tdmuDHHWw71I9Ki7IycdRkeRkjx+nRTx+F698jExFCFfrO6Vb0RfpIZ7lapIKaaclLw5KYAummfNAm66CTj9dGD33Y3319RY96t2mAVNHr9LhnsRRx58UB6fdpr//1edlNWr5THDvUqPCy7QXblDD+3a+caNWwliTiyjx6+TcvXVejjpySdHv5N2HAiRwnCvfNOjB/D553RSAP26q6iQuRBAfs/nPDopgP55/+AH+g+gR7O8/bYedn/wwf62RSgGJyUHQwFJi6Ym4Mkn9ePGRn1y6Re1GsmiRcDxx+vHdFJKj0MP1RMY09i92a0EcR5XmLKOXydljz2AP/whvvZEjSpSwhQXIekiJnJbtujFXQqF0hUpgH6Nqq5SXvtG9TpcskQeZ9lJsaJnT+ArX9F//MKclBLnww8/xIUXXogxY8agsrISQ7Iu0X0ye7YcfE85xbnetx1jxsjj+fPlMZ2U0iQNgQLonbVYnWe4VzIMGtT1tmJakLByUgoFuccSyQci3KujQy6elbpIUcmrSFHbLeYblZXGsONipxicFIqUELz33nt47LHHMGTIEIwcOTLt5kTOQw/J4699Ldhz7L23HMzfekveTieFJEmhIEO+KFKSoabGWHYayO+ExworkVJdnZ4QJ8Gw2nVeHZ9KTaSYr9G8XrNWffrgwcEWW/MKnZQS58QTT8SKFSvw8MMP46CDDkq7OZGybRvw+OP6cZ8+waxGQF+5GDVKP168WNb7ZnUvkjRmkdLRoU8wgfwOxFnHHPJVTNe6Wt2LYje/WO06n9USxEmgXqPl5fnID7PC6lossmAXV7jjfIlTVsQbKzz1lOyowyayipAvTQMWLNCPGe5FkkaIlC1b9Ip1QqAAnFzGRTGLFLW6lwiL5XmUP6ycFIZ76eT5fLaakOctHyUsdFJiZvHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667Dq2ipi6xJWxVL5XRo+WxCPliuBdJGnOFL1Zkih+zSMnjSp4dQqS0trIAQ55xc1JKWaTk+Xymk1IcOSmZNvJuv/12zJgxI9D/XnzxxZgxYwYqKiowYcIE1NfX47nnnsNPfvITPProo3j66adRw9mxJS0twKOP6sc9ewJHHhnu+ayS5+mkkKQxixS14lceO+88UApOCiDDWHke5Q9VpNBJMQqTPIsUOil6H6WWlM5j/5RpJ2XkyJG47LLLcO+992LRokU4++yzPf3frFmzMGPGDNTX12Pu3Ll46qmn8NBDD2HJkiUYNWoUXn75ZUyfPt3wP3/+859RKBRcfx5ULYYi5ZlnZGf91a8aB+Mg7LuvTFYTIoVOCkka84aO3CU8fkrBSQHkpDaPk4BSR11tppNCJ6WYKBSM53ce+6dMOynnnXee4W+vOSDXXHMNAGDatGkYoyzj9+3bF7fddhsOP/xw3HLLLZg+fTp69uwJADjllFNw8MEHuz73wIEDvTY/t0RR1UulpgbYc0/gvff0n5YWY0nAvCbmkXxh3iulb1/5dx477zwweLDx72JakLBavMnzpK5UsXJSSrm6V7GIFDopOt27yw2M8zjOFd308NNPP8W8efMAAGeddVaX+w877DAMHjwYy5cvx+zZs/GNb3wDANCzZ89OwRInzeoSTYD746a1FZg1Sz+urweOPjqa5x0zRhcobW3AwoVSpBTTpIVkG7OTwpyU+CmVcC8Bz6P8wcR5I8UiUszXYnm59d5NxY6aPJ/H7zPT4V5BeOuLzOzevXtjqLrducLYsWMNj02S+vp6x5/GxsbE26TywgtSdZ9wQnQntTkvRaxUFdOkhWQbp3AvTi7jobHRuLlhHgdJO6zOGZ5H+YMliI2o12iez2dz2wcOLM2oDYZ7ZYylS5cCAHYxL+EpDP4iBkE8Nihbt27F7NmzAQAff/wxtm7d2pmzMm7cOOyaQ28xyqpeKuYKX8JJKbUBgKSHk5NSTJPnLFFWpod8ffyxLlaKaSM1OinFARPnjRSLk2Jue6nlowhUJyWP/VPRiZQtXyyF1Dn0LPVffGubRY8UkNWrV+PrX/+64Tbx9913343Jkyd3+Z8mUQbGhubm5lTdlJUr9d81NcBxx0X3vPvvL4/ppJA0YLhXOnzjG8CvfgWcckraLYkW5qQUB0ycN1IsIsXcp+dwzTgS6KSUMEOGDIGmab7+xyye0s5BMfOPfwDLl+ubLkbZOffsCey+O/Dhh/pzi4306KSQpOA+Kelw9dXA977XNYk+79BJKQ6cnJTKSmO4YilQLCKFTooOnZSM0f0L2eg0+RduRg+1d0qJevOWoBlg8OB4JhSjR+siRc0FoJNCkoIliNPDIfo2t1CkFAdOifOl5qIAxSNSzNdiqYoU9fzO4/dZdInzQ744E5cvX277GHHfkFI9a1NCTZ4XUKSQpFCL9zHci4SFIqU4qKvT95MAZLiXCEcuRZFSrJs5lmq4l7pAtNNO6bUjKEXnpIz+IkN73bp1WLp0qWWFrzfffBMADHuopIU5RyXtnJQ4sfq4Ge5FkqK8HGhoADZupEgh4bE6Z/I8qStVysr01ebNm+mkAMaFwzz3i3RSdM4/H1i6FBg+HNh777Rb45+ic1IGDRqEcePGAQDuu+++Lve//PLLWL58OaqrqzFp0qSkm9eFurq6Lj/FilrhS0AnhSSJCPmiSCFhoZNSPIiQGHPifCkuohVjuFehUHw5cV7p0we44w7gssvSbkkwik6kAMDll18OALj22msxf/78ztvXrVuHiy66CAAwZcqURDZvJJJ+/bpuplSKgwBJDyFSNmyQZbCBfA/GJB0oUooHkZ66ebO+oXFrq/53Ea8Z2lIsIqW8XO6LsvPO1tcryT6ZDveaP39+p6gAgI8++ggAcMcdd+Cxxx7rvH3mzJnYSQm2O/nkkzF16lTcdNNNOPjgg3HkkUeirq4Ozz77LDZu3IhDDz0UV111VXJvxAFzgn/Wqn1FzZgxwIoV8m86KSRJhEjp6ADWrJG3c3JJ/EKRUjyoTooagV2KIkVNtM5gXR9fjBkDvPEG8JWvpN0SEpRMi5TNmzdj7ty5XW5fsWIFVigz3RY1buMLZsyYgUMPPRS33norXn31VbS2tmLYsGGYNm0aLrnkElRlRFZnsbpXnIweDTzyiPybTgpJErXC1+efy2NOLolfuE9K8aAW+ly1Sh6XokgZPx448ED9czjjjLRbE45HHwWefx449ti0W0KCkmmRMn78eN/7kKicfvrpOP300yNsEQmLOXmeTgpJElWkfPaZPObkkviFTkrxoIoUsaExUJoipboamDtXd5vLcp4Q0L9//oVWqZNpkVIKlFJ1L4AihaRLr17ymE4KCYPVOcPzKJ+oIU6lLlIEeRcopDigSEmZYq7mZcXAgUDfvsDatfrfDPciScJwLxIVDPcqHlQnRe0XSmx4JiRzUCuTRCkUjG4KnRSSJKpIYeI8CQPDvYoHOyeFi2iEpAtFSso0Nzd3+Sl2VJHCQYAkiSpS1HQ3roATv1CkFA90UgjJJhQpKVNfX2/4KeZ8FMFZZwGVlfrq1RFHpN0aUkqoIkWFk0viF4qU4oE5KYRkE+akkMQZNUovb1goAA0NabeGlBIUKSQqmJNSPNBJISSbUKSkTKlV9xKoVZYISQqKFBIVrO5VPLAEMSHZhCIlZUqtuhchaWInjrkCTvzCcK/iQQ33EpUnAYoUQtKGOSmEkJKhutq6WAMnl8QvFCnFg+qkqLCwCyHpQpFCCCkpzCFf5eX6DyF+YE5K8aA6KSp0UghJF4Z7pYy55HAplCAmJE169wZWrJB/c2JJgkAnpXiwc1IoUghJF4qUlKmvr0+7CYSUFGYnhRNLEgSKlOKBIoWQbMJwL0JISUGRQqKA1b2Kh5oaoMxiNkSRQki60ElJmVItQUxIWlCkkChgTkrxUCjobsrGjcbbKVIISReKlJRhCWJCksUsUjixJEGwEilWt5F80L17V5FSU5NKUwghX8BwL0JISWHeK4VOCglCZaXx76oqfUWe5BNzXopdCBghJDl4CRJCSgqGe5EoMJeupiOXb8wihUEOhKQPRQohpKSgSCFRoYZ38TzKN+a9UihSCEkf5qSkDPdJISRZmJNCoqK6Gti2TR6T/EInhZDsQZGSMtwnhZBkoZNCooJOSvFAJ4WQ7MFwL0JISUGRQqJCFSl05PINnRRCsgedlJThPimEJAvDvUhU0EkpHuikEJI9KFJShvukEJIsdXVARQXQ1qb/zcklCQpFSvFgdlJqa9NpByFEwnAvQkhJUSgY3RROLklQKFKKB4Z7EZI9KFIIISUHRQqJAuakFA8M9yIke1CkEEJKDlWkcHJJgqIKXIrdfEMnhZDsQZFCCCk56KSQKGC4V/FAJ4WQ7EGRQggpOShSSBQw3Kt4oJNCSPZgda+U4Y7zhCQPw71IFNBJKR4oUgjJHhQpKcMd5wlJnl695DEnlyQoFCnFgznciyWICUkfhnsRQkqOPn3kcU1Neu0g+YYipXigk0JI9qBISZmmpibDz6pVq9JuEiFFz8knA/36AQMGAMcdl3ZrSF5RhQnDBvNNdbW+yauAIoWQ9GG4V8pwx3lCkmfgQGDFCv1YXQ0nxA90UoqHQkF3U9av1//m0ExI+tBJIYSUJFVVFCgkHBQpxYUa8kWRQkj6UKQQQgghAaBIKS7U5HmKFELShyKFEEIICQD3SSku6KQQki0oUgghhJAA0EkpLhob9d8VFUDPnum2hRDCxHlCCCEkEKowoUjJPz/+MfD558BJJ3XdN4UQkjwUKYQQQkgA+vWTx/37p9cOEg0HHQS8+mrarSCECChSCCGEkACccQbw8stAQwNwxBFpt4YQQooLihRCCCEkAD16APfck3YrCCGkOKFISZnm5mbHvwkhhBBCCCk1KFJSpr6+Pu0mEEIIIYQQkilYgpgQQgghhBCSKeikpExTU5Ph7+bmZjSKYu2EEEIIIYSUIBQpKVPHbW0JIYQQQggxwHAvQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKaoSLsBxIimaZ3Hzc3NKbaEEEIIIYSQ6FDntuqc1wqKlIyxdevWzuPGxsYUW0IIIYQQQkg8bN26FfX19bb3M9yLEEIIIYQQkikKmpvXQhKlo6MDa9euBQDU1taiUCjE9lrNzc2dbs2qVatQV1cX22sVI/z8wsPPMBz8/MLDzzAc/PzCw88wHPz8wpPkZ6hpWmfUUN++fVFWZu+XMNwrY5SVlaF///6Jv25dXR0v7BDw8wsPP8Nw8PMLDz/DcPDzCw8/w3Dw8wtPEp+hU4iXCsO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCmzkSQgghhBBCMgWdFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEgpUR544AGMHz8evXr1Ql1dHfbbbz9cd911aG1tTbtpmaa1tRXPPvssfvSjH2HcuHFoaGhAZWUlBgwYgK9+9at4/PHH025iLvnxj3+MQqGAQqGAq6++Ou3m5IYdO3bgpptuwmGHHYbevXujW7duGDRoEI477jj8/e9/T7t5meaTTz7BlClTMGLECNTU1KBbt24YOnQozjnnHCxYsCDt5mWCxYsX4+abb8bkyZMxatQoVFRUeL5Gn3nmGUyaNAl9+/ZFTU0N9txzT/zsZz9DU1NTAi3PBn4/v46ODrz66qv4+c9/jsMOOwx9+vRBZWUl+vbti6OOOgr33nsvSq0ga5hzUOW2227rHGPOO++8mFqbPcJ8fh0dHbjnnnswceJE9OvXD9XV1dhpp50wYcIE3HbbbQm0HoBGSo4f/vCHGgCtoqJCO/roo7VTTz1Va2ho0ABohx12mLZ169a0m5hZ5syZowHQAGgDBgzQjj/+eO3000/XRo4c2Xn79773Pa2joyPtpuaGV155RSsrK9MKhYIGQLvqqqvSblIuWL58ubb33ntrALS+fftqJ5xwgnbGGWdohxxyiFZbW6uddtppaTcxs7z++uta9+7dNQDawIEDta9+9avaKaecog0dOrSzb7z//vvTbmbqiLHC/ON2jd54440aAK1QKGhf/vKXta9//evagAEDNADaiBEjtDVr1iT0DtLF7+e3ZMmSzsf07t1bO/roo7UzzjhDGzduXOftJ5xwgtbS0pLwO0mPoOegykcffaTV1dV1jjHnnntujC3OFkE/v40bN2pf/vKXNQBajx49tGOPPVY788wztcMPP1xraGjQDjjggETaT5FSYsycOVMDoNXX12v/+te/Om9fs2aNNmrUKA2Adumll6bYwmzz7LPPaqeddpr24osvdrnvb3/7m1ZeXq4B0O65554UWpc/mpubteHDh2sDBw7UTj75ZIoUj2zdulXbc889NQDaL37xC23Hjh2G+5ubm7W33norncblgH333bdzQUH97Nrb27UrrrhCA6A1NDRo27ZtS7GV6fPHP/5Ru+yyy7R7771XW7RokXb22We7XqPz58/XCoWCVl5ers2ePbvz9ubmZu3II4/UAJSMgPb7+X344YfahAkTtCeeeEJra2sz3PfCCy9odXV1GgDtl7/8ZRLNzwRBzkGV9vZ27fDDD9fq6+u1c845p+RESpDPr6OjQxs/frwGQLvgggu0LVu2GO5vaWnR5s2bF3fTNU2jSCk5xIrM1Vdf3eW+l156SQOgVVdXaxs3bkyhdfnn3HPP1QBoRx55ZNpNyQVTp07VAGiPP/545wBCkeLO9OnTOyfZxB9r167tXE1cvXp1l/vb2tq0mpoaDYA2f/78FFqYXbxco1//+tc1ANp5553X5b5ly5ZpZWVlGgBt0aJFcTY1k4Tt46666ioNgDZs2LCIW5Yf/H6GwtW79dZbtSuvvLLkRIoZL5/fnXfeqQHQjjnmmARbZg1zUkqITz/9FPPmzQMAnHXWWV3uP+ywwzB48GC0tLRg9uzZSTevKBg9ejQAYPny5Sm3JPu88MILuPnmm/Htb38bkyZNSrs5uaG1tRW33347AOBHP/pRyq3JH9XV1Z4f27dv3xhbUnzs2LGjMy/PaozZddddceihhwIAZs6cmWjbigGOL/5YvHgxfvazn+ErX/kKvv/976fdnNxw0003AcjG+EKRUkK89dZbAIDevXtj6NChlo8ZO3as4bHEH0uWLAEA7LTTTim3JNs0NTXhu9/9LhobG/G///u/aTcnV8yfPx9r167FzjvvjN133x3vvvsufvnLX+KCCy7AtGnT8Pjjj6OjoyPtZmaW+vp6HH744QCAK664wlAspKOjA7/4xS+wbds2HHfccRg8eHBazcwlH3zwAbZu3QpAjiVmOMYEh+OLd9rb23HOOeegUCjgzjvvRKFQSLtJuWDVqlVYsGABysvLccghh+Djjz/GtddeiwsvvBCXXXYZHnjgAezYsSOx9lQk9kokdZYuXQoA2GWXXWwfIwZl8VjinZUrV+LPf/4zAOC0005LtzEZ57LLLsPSpUsxc+ZM9OrVK+3m5Ip33nkHADBo0CBMmzYN1113naHiz29+8xuMHj0as2bNcrzWS5k//vGPmDRpEv7whz/g8ccfx9ixY1FeXo633noLn376Kc4++2zccsstaTczd4hxo6GhAd27d7d8DMeYYGzdurVzhZvjizvXX3895s6di9/97ncYNmxY2s3JDWJ86dOnD/70pz/h0ksv7VL1dbfddsPMmTOx7777xt4eOiklxJYtWwAAdXV1to+pr68HAGzevDmRNhULbW1t+Na3voVNmzZh1KhRuOCCC9JuUmZ5+umncccdd+DMM8/EySefnHZzcse6desA6CvRv/nNb3DRRRdh8eLF2LRpE+bMmYM99tgDb731Fo4//niWFLdhxIgReO2113D00Ufj008/xT/+8Q88/PDDWLp0KXbffXeMHz8ePXr0SLuZuYNjTHxcdNFFWLp0KXbeeWdcfvnlaTcn0yxcuBBXXnklDjnkEEydOjXt5uQKMb6sX78eU6dOxUknnYR3330XW7ZswWuvvYaDDjoIH3/8MY499tjOx8YJRQohEXDhhRfi2WefRZ8+ffDggw+iqqoq7SZlkk2bNuHcc89Fv379cPPNN6fdnFwiXJPW1lZ84xvfwC233II99tgDPXr0wMSJEzFnzhx069YNCxcuxN/+9reUW5tNXnnlFYwaNQoLFy7Efffdh5UrV2L9+vV49NFH0drainPPPRfnnntu2s0kBABw1VVX4Z577kG3bt1w//33o0+fPmk3KbO0tbXhnHPOQVlZGe666y6UlXGa6wcxvrS1teFLX/oSHnjgAYwcORL19fU4+OCDMWfOHDQ2NuLzzz9PZK8UfnslhLDfm5ubbR8jNtriKqJ3fvjDH+LOO+9Er169OleyiTUXX3wxVqxYgVtuuYVJyQFRw2isHLtddtkFxx9/PAB9Qz1iZOPGjTjllFOwZs0aPPzww/jGN76BxsZG9OrVCyeccAKefPJJ1NbW4q677sLzzz+fdnNzBceY6Lnxxhvx85//HNXV1Zg5c2Zn4QFiza9+9SvMnz8fv/zlLzFixIi0m5M73MaX7t2741vf+haAZMYX5qSUEEOGDAHgXBlE3CceS5y59NJLcdNNN6GhoQFPP/10Z/UVYs3MmTNRUVGB2267rcsqzPvvvw8AuPPOO/HMM89gwIABdAIs2G233SyPrR7z+eefJ9KmPPH4449jzZo1GDZsGA466KAu9++222446KCD8Pzzz+OZZ57BEUcckUIr84kYNzZu3IgtW7ZY5qVwjPHOzTffjEsvvRRVVVV46KGHcOyxx6bdpMwjqsY9+uijXaqULlu2DIDeB4wfPx6AXmWSSLI2vlCklBBiAr1u3TosXbrUssLXm2++CQAYM2ZMom3LIz/+8Y9x4403omfPnnj66adtq9kQI21tbfjnP/9pe/+yZcuwbNky7Lrrrgm2Kj+MGTMGhUIBmqZh7dq1lhWo1q5dC0DG/xPJJ598AsB5Jb9nz54A9Lhs4p0RI0agtrYWW7duxZtvvmkp8DjGeOPWW2/F1KlTOwWKcEeJN15++WXb+1auXImVK1cm2Jr8sMcee6B79+7YsmVL5zhiJsnxheFeJcSgQYMwbtw4AMB9993X5f6XX34Zy5cvR3V1NfetcGHatGm4/vrr0bNnT8yZM6fzcyXObNy4EZq+iWyXn3POOQeAHn+taVrnqhcxMmDAABx22GEArO321tbWThF44IEHJtq2PDBw4EAAunO3adOmLve3trZi/vz5AGBbqp1YU1VV1TmZthpj/vOf/+DVV18FAJxyyimJti1P/P73v8eUKVM6BcoJJ5yQdpNyw9tvv207xlx55ZUAgHPPPbfzNmKkoqKis6CNXTjXnDlzACQzvlCklBiiKsi1117bORADurty0UUXAQCmTJnSuZJIunLFFVfgN7/5DRoaGihQSCqIwfbXv/41Xn/99c7b29racOmll+Ljjz9G9+7d8Z3vfCetJmaW4447DnV1ddi2bRvOP//8zhwJQN+M8JJLLsEnn3yCyspKfO1rX0uxpflk2rRpKBQKuPvuu/Hkk0923r5161ace+65aG9vx2mnnYY999wzxVZmlz/+8Y+46KKLKFBIalx++eWorKzEH//4Rzz22GOG+66//nq8/PLLKC8vx3/913/F3paCRilZcvzwhz/ETTfdhMrKShx55JGoq6vDs88+i40bN+LQQw/FnDlzUFNTk3YzM8kjjzyCk046CYC+Kdk+++xj+bi+ffvit7/9bZJNyz2TJ0/GPffcg6uuugpXXHFF2s3JPFdffTWmT5+OiooKHHjggRgwYADmz5+PZcuWoaamBg888ABDRGz4y1/+gu985ztoa2tDv379MG7cOFRWVuLNN9/Ep59+irKyMtx666248MIL025qqsyfP79z8QoAPvroI6xduxaDBg3qdKQAPQ9A3WDwd7/7Hf77v/8bhUIBX/nKV9C/f3+89NJL+PzzzzFixAi8/PLLJVE4w+/n9/bbb2PMmDHQNA177rmnZc6UQOzJVewEPQet+MUvfoFf/vKXOPfcc/GnP/0ptjZniaCf3z333IPvfve76OjowNixYzFkyBAsXLgQ77//PsrLy3H77bfj/PPPj/8NaKQk+fvf/659+ctf1nr06KHV1NRoI0eO1K699lqtpaUl7aZlmrvvvlsD4Pqz6667pt3U3HHOOedoALSrrroq7abkhqeeeko77rjjtN69e2uVlZXa4MGDtcmTJ2uLFi1Ku2mZ5+2339YmT56s7bbbblp1dbVWVVWl7brrrto3v/lNbe7cuWk3LxM8//zznvq7pUuXdvnfOXPmaMcee6zWu3dvrbq6Whs+fLj205/+VNu8eXPybyQl/H5+Xh9fSlO3MOegmSuvvFIDoJ177rnxNzwjhPn83njjDe20007T+vfvr1VWVmoDBgzQvv71ryfaP9JJIYQQQgghhGQK5qQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRT/H/nb65T8rLR1wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(ps.freq, ps.power, lw=2, color='blue')\n", + "ax1.set_ylabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the power spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together power spectra from multiple segments of data.\n", + "# Averaged power spectrum example\n", + "You could use a long `Lightcurve` and have `AveragedPowerspectrum` chop it into specified segments, or give a list of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here.\n", + "## 1. Create a long light curve.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and a signal in count units, with the same properties as the previous example. We then add Poisson noise and turn it into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4dklEQVR4nOydd7hUxfnHv3sL7dJBQFSwoIDGhqhRxIoaSzCIibHFGjX6s2HvMbEnWKJGTQJqErEiEWM0CLFhR7CBCAooSFF6517u3d8fx8OZnZ05Z9opu/t+noeHvVtmZ8+ZM2e+87ZcPp/PgyAIgiAIgiAIgih5qtLuAEEQBEEQBEEQBOEGEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJNWl3oFRpamrC/Pnz0aZNG+RyubS7QxAEQRAEQRBESuTzeaxatQrdu3dHVVW6NjQSeIbMnz8fW221VdrdIAiCIAiCIAgiI8ydOxdbbrllqn0ggWdImzZtAHgnsW3btin3hiAIgiAIgiCItFi5ciW22mqrTRohTUjgGeK7ZbZt25YEHkEQBEEQBEEQmQjdoiQrBEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAmZF3j19fX405/+hP322w8dO3ZEixYtsOWWW+KII47AU089JfzM+PHjceSRR6Jz585o2bIl+vTpg2uvvRarV69OuPcEQRAEQRAEQRDJUZN2B8KYN28eDj/8cEybNg2dO3fGgAEDUFdXh7lz5+KNN95AXV0djj/++ILP3H333Rg2bBhyuRwGDhyIrl274s0338Stt96K0aNHY+LEiejcuXNKv4ggCIIgCIIgCCI+Mivw1q1bh0MPPRTTp0/Hb3/7W1xzzTWora3d9PratWsxY8aMgs9MmTIFl156Kaqrq/HCCy/giCOO2PTewYMHY8KECTj33HPx7LPPJvpbCIIgCIIgCIIgkiCzLpq33XYbpk+fjrPPPhs33nhjgbgDgFatWmG33XYr+kw+n8fpp5++Sdz57x0xYgSqqqowevRoTJ8+PYmfQBAEQRAEQRAEkSiZFHgNDQ148MEHAQCXX3650mfq6+vx4osvAgBOPPHEotd79uyJAQMGAADGjBnjqKcEQRAEQRAEQRDZIZMumpMnT8bixYvRvXt39OrVC59++imee+45zJ8/Hx06dMDAgQNxxBFHoKoq0KczZszA2rVrAQD9+/cXttu/f3+8+eabmDJlSiK/gyAIgiAIgiAIIkkyKfA++eQTAMCWW26Jq666CnfeeSfy+fym1++44w7svvvu+Ne//oUePXoAAGbPng0AaN++Pdq0aSNsd6uttip4r4w1a9ZE9lHlPQRBEARBEARBEEmSSYG3ZMkSAF7SlPfffx/nn38+LrzwQnTr1m3T31OmTMFRRx2FyZMno7a2FqtWrQIA1NXVSdtt3bo1AGDlypWh3++/jyAIgiAIgiAIopTIZAyeb61raGjACSecgPvvvx877LAD2rZti0GDBuGVV15BixYt8Nlnn+HJJ59MubcEQRAEQRAEQRDZIJMCj3WxPOecc4pe79GjB4466igAXlFz9jNhrpN+ofO2bduGfv/q1asj/82fP1/vRxEEQRAEQRAEQcRMJl00t912W+Fj0XsWLFgAANh6660BAMuXL8eqVauEcXhz584teK+MMDdPn8bGxsj3EARBEARBEARBJEkmLXj9+vVDLpcDACxevFj4Hv95P16ud+/eaNWqFQBg0qRJws/4z/fr189pfwmCIAiCIAiCILJAJgVet27dsN9++wEIXDBZGhoa8PrrrwMA9tprLwBAs2bNNrltjho1qugzX3/9Nd5++20AwJAhQ2LpN0EQBEEQBEEQRJpkUuABwI033ggAuO222/Duu+9uen7jxo249NJLMWvWLLRp0wann376pteuuuoq5HI5PPLII3j55Zc3Pb927VqceeaZaGxsxNChQ9GnT5/kfghBEARBEARBEERC5PJsgbmMcfPNN+P6669HTU0N9tprL3Tr1g2TJ0/GnDlz0LJlSzzzzDObrHY+d999N4YNG4ZcLocDDjgAXbp0wZtvvokFCxagd+/emDhxIjp37mzdt5UrV6Jdu3ZYsWJFZNIWgiAIgiAIgiDKlyxpg0wLPAAYN24c7rnnHrz33ntYtWoVunXrhkMOOQRXXnml1BI3fvx4DB8+HO+//z7WrFmDHj164LjjjsPVV18tLYKuS5ZOIkEQBEEQBEEQ6ZElbZB5gZdVsnQSCYIgCIIgCIJIjyxpg8zG4BEEQRAEQRAEQRB6kMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARhwfr1QD6fdi8IIlk2bACamtLuRTpU8m8nCFesW5d2D8obEngEQRCG/O9/QOfOwP77k8gjKoepU4EttgB23BFYuzbt3iTLlClAt27ALrt4Qo8gCH1OPBFo1w545JG0e1K+kMAjCIIw5JBDgDVrgIkTgQkT0u4NQSTDL34BLFkCfPEFcO+9afcmWY46Cli+3BO5tDglCH3mzQOeeAJoaADOOCPt3pQvJPAIgiAcsHp12j0giGSYPj14vHBhev1IgwULgsfLlqXXD4IoVT77LO0eVAYk8AiCIBxQXZ12DwgiGcgd2aN587R7QBClB7tBRMQHCTyCIAgH1NSk3QOCSJ5cLu0epAcJPILQ5/PP0+5BZUACjyAIwgEk8AiismjRIu0eEETpMW1a8Lh37/T6Ue6QwCMIgnAACTyCqCzIgkcQeuTzXoIin7Zt0+tLuUMCjyCIiuHyy4FBg4BZs9y3TTF4RKVAMXgeJPAIQo9FiwqTEzU2pteXcof2nAmCqAjefBP44x+9x8cdB0ye7Lb9KtouIyqQSo7Ba9Ys7R4QRGnx1VeFfzc1pdOPSoCWJARBVARs5q4pU9y3T1YNgqgsaFOHIPRoaCj8mwRefND0RBAE4QC6URGVSCVb8GhThyD04O+TdN+MDxJ4BEEQDqBYAoKoLGhxShB68NcM3TfjgwQeQRCEA2ixR1QiZMEjCEIVsuAlBwk8giAIB9CNiiAqC7rmCUIPEnjJQQKPIAjCAXSjIojKIi0L3syZwFVXuc8ETBBxw18zdN+MDyqTQBAE4QCKJSCI8iYr1of99wcWLgTuuIPcRInSgmLwkoMseARBEA6gnUiiEqmkGLz16wv/TktcLVyYzvcShC1Z2SSpBEjgEQRBGECuJgRRWfACj655gtCDBF5ykMAjCIIwgAq2EkRlsW5d4d/kHkkQetDGaHKQwCMIgjCgvr7wb4olIIjyJosWPBKZRClBMXjJQQKPIAjCAF7gZWGxRxBJU0kxeFm04NG8Q5QS5KKZHJRFkyAIwgASeARRGcybB3zxBdCmTeHzaVzzvKhsbASqq5PvB0GYEJfAy+eB998HWrcGdtrJTZulTmYteKeddhpyuVzov/W8v8QPfPjhh/j5z3+Orl27okWLFthmm21wwQUX4Lvvvkv4VxAEUa5s2FD4Nwk8gig/1q0DdtsNGDQIuOuuwtfSsOBt3Fj4N7m4EaVEXALvjTeAH/8Y2Hln4Kuv3LRZ6mTegjdgwAD06tVL+Fq1YNvq2WefxQknnICNGzdizz33xDbbbINJkybh/vvvxzPPPIOJEydK2yMIglCFYvAIovz573+BJUu8x089VfhaGps6/MYSzTtEKSGyQLvg7beD9idNArbbzk27pUzmBd5ZZ52F0047Tem98+fPx6mnnoqNGzfi4Ycfxtlnnw0AaGxsxGmnnYZ//vOfOPHEE/Hee+8hV0mBAwRBOIdcNAmi/GPwwn5fGhY83nGJt+gRRJaJy4K3Zk3wmDY9PDLromnCPffcg7Vr12LQoEGbxB3gWfoefPBBtGvXDh988AHGjRuXYi8JgigHSOARRPkTJvDIgkcQesQl8NauDR7TNeFRVgJvzJgxAIATTzyx6LXWrVtj8ODBAIDnnnsu0X4RBFF+kMAjiPKnKmSVlIYFjwQeUcqQBS85Mu+i+eqrr+LTTz/FqlWr0KlTJ+y111448sgj0bx584L3rVq1Cl9++SUAoH///sK2+vfvj3/84x+YMmVK7P0mCKK8oRg8gih/sm7BIxdNopSIKwaPBF4xmRd4f//734ue23zzzTFy5Ej85Cc/2fTcnDlzNj3u0aOHsK2tttoKADB79uzQ71zDjhSL9xAEUb6QBY9IgnweWLUKaNs27Z6IoRi8ZCELHlHKkItmcmTWRXPXXXfFvffei88++wwrV67EokWLMG7cOOy7775YsGABBg8ejNdee23T+1etWrXpcV1dnbDN1q1bAwBWrlwZ+t2tW7eO/Ne9e3f7H0kQRGK4XoyRwCOS4PjjgQ4dgL/+Ne2eiCGBlywk8IhShlw0kyOzAu+SSy7BhRdeiJ122glt2rRBly5dcOihh2LixIk45phj0NDQgIsvvjjtbhIEUSK4XozRQouImzVrgGee8RZBTN4wIkHCYvCy4KJJ8w5RSvDXTD7v5t5MAq+YzAo8GblcDjfddBMA4OOPP8bcuXMBAG3atNn0Hpn75OrVqwEAbSN8XVavXh35b/78+S5+DkEQCeF6MUYWPCJuaEylT9aTrFAMHlFKiOY0F/McuWgWk/kYPBF9+/bd9HjevHnYaqut0LNnz03PffPNN9h5552LPueLwa233jq0fZmLJ0sjjSCCKClcX7Ik8Ii4KYUxVckummmcH74OHi1FiFJCtCnS1ARUV9u1Sxa8YkrOggcAS5Ys2fTYt9y1bdsWvXr1AgBMmjRJ+Dn/+X79+sXcQ4IgsgZZ8IhSoxQWKmlYsZIk7BxkwYJXCmOEIHzisuCRwCumJAXek08+CcATdb179970/JAhQwAAo0aNKvrM6tWr8cILLwAAjj322AR6SRBElojbgkc3FcI1pTCmKlngZSEGj1w0iVJCdM24mOdI4BWTSYH30UcfYezYsdjIzVxNTU0YMWIErrnmGgDAhRdeiNra2k2vX3zxxWjVqhXGjx+PvzIpxxobG3Heeedh+fLl2HPPPXHYYYcl80MIgsgMZMEjSo1SWKiU+7gnCx5BuINi8JIjkzF4c+bMwZAhQ9ChQwf069cPXbt2xfLly/HZZ5/hm2++AQCccMIJuPHGGws+1717dzz66KM44YQTcPbZZ2PEiBHYeuut8cEHH2DWrFno2rUrRo0ahVy5Bw0QBFEECTyi1OAXKo2N9rEqrin3cR/2+7JgwaPFLFFKxCHwNm4svB/TNeGRSQverrvuiosvvhg77bQTpk+fjueeew4TJkwAABx33HF48cUXMWrUKNTUFOvTn//853jvvfdw7LHHYtasWRgzZgwaGxtx/vnn4+OPP94Up0cQRGVBSVaIUoMfs+wudVYo93GfdQseuWgSpYQsyYoNfOJ8EngembTgbbPNNrj77ruNP7/HHntg9OjRDntEEESpE7cFj24qhGv4MbVmDcBUBMoElSzwyIJHEHrEEYPHb3zRNeGRSQseQRCEa1wvxviFVrkvdInk4ceUpMRrqpT7uM+aBY/KJBClTBwummTBE0MCjyCIioBcNIlSg1w004cseAThjiQEHrkte5DAIwiiIqAkK0SpIXLRzBrlPu6zZsGjGDyilIkjBo9cNMWQwCMIoiKgOnhEqUECL33IgkcQ7ogjBo9cNMWQwCMIoiKoJAveyy8DJ50EnH46MGlS2r0hTCEXzfQJ+31ZsOBldTG7cCFw+eXA88+n3RMiS5RKDN7LLwOXXgrMnWvfVlpkMosmQRCEaypF4K1bB/ziF8CqVd7fU6YAH32UapcIQ8iClz5Zt+Bl1UXz1FOBceOAP/4RWLQI6NIl7R4RWaAUBN6aNcARR3iP33gD+OADu/bSgix4BEFUBJWSZGXJkkDcAaW9A1npkMBLn6zH4GXVgjduXPB4+vT0+kFkizgEnusYvMWLg8el7AFDAo8giIqgUurgUcB5+cCPWXLRTJ6sW/BK4frO5dLuAZEVRJsiWYvBa9bM7vNZgQQeQRAVQaW4aPI3u6z0i9CnFCx4aVixkiRrFjyqg0eUMqXgolkucxoJPIIgKgLXC6GsFjqnjGLlQykIvKyM+7jIugUvqzF4BCGiFFw0y2VOI4FHEERFUKkWPBJ4pQtl0UyfrFnwStFFkyB8SsGCVy7XFAk8RyxeDDzzDLByZdo9KeT994G33sqmyTmf9/p2333Av/9dPhcVkU2yWgevoQEYOxb4+mv7PgHFIqDcF+BZYuNGby778ks37cVtwVu4EBgzxsu8akq5j6+sl0l44w3gvfeS7wdBmFAKdfDKZU4jgeeIX/7SS01+yilp9yTgo4+AvfcG9tsPePvttHtTzLvven278ELgpz8FRo5Mu0dEOZNVC94f/gAccwyw++7FizcTyIKXHg884M1le+7pRozFKfDyeWDgQODYY716ZaaUy2JIRtZdNB97DPjxj7NdCiWLG8xEOojGQtYteKU6fkngOWD9emDCBO/x2LHp9oVl2LDg8XnnpdcPGR9+WPj35Mnp9IOoDFwvxvhkB6btX3ut9/+yZW524kVJVkr1BlVqXHyx9//y5cB//2vfXpwCb/XqwNL4wAPm7VSywMuCBc/nssuS7QdBmFCKMXj8vb5UIIHngC++SLsHYtibTxbTFPPB4RQsTsSJ6105VwLPdRuiOC0SeKVJnGUSXN0TKlngZcGC55PFe7wPzT+ETynG4GUx9lkFEngOmDo17R6IybrAa2gI/5sgXMLfRGwXHXzckgtXSBdtiKw85KZZmsRpwXMlTipZ4GWhTIJPVYZXczT/ED6lGIOXxezFKmR4SigdSOCZwQs6suARccJP2rY3gaxa8EjglQ9xCjxXY6KSBV6WLHgk8IhSII4YPNcumqVQnkaFDE8JpQMJPDNI4BFJwk/atjcV3oKXFYEncicp90V4uRKnqxAJPDWyZsErRRdNurcTPqXgohmna3ySkMBzQCUKvKVL7V0qKQaPSIolS4rHq81NpbHRvr2mJuD774ufy+eB774z7xtZ8LKBi4yoZMFLn7DfZ/Pbly7Vv+fl85Vnwfv++2Atk88Xz5lEaZGEwLNdS5IFjwDg7eLPmlX4XBZveC4F3vjxQNeuwI47FqeK14Fi8IgkeOEFoFs3r04li82iQxQHo9veoEFev/g2fvYz7/q6/36zvpHAywYuMq9lUeDxVqss3u9cEocFb8IE79rfcUe9+17Ye7Ms8EwX3I8+6s2Fhx7qHetBg7y/qaRS6RJHDF7cWTRJ4FUo339fPBiyIlTich859FBvwv7yS+D5583bIRdNIgkGDxaPLZuFqagwtE57X30FvPpq8WdWrw5KrVxwgVnfRDejcl+EZxGb4uE+/Hlz0aasbVVI4AWY/vZBg7z738yZwFNPqX+u0gTe6ad7423CBO/f//7n/X3mmW77RyRHKbhokgWPACAeSDZWLZckEYPn0oJHAo9IEpubisg6o9OezLrjwuojihcgC17yxGHBc3keTdvix3klCzwXm6grV7rpS5YFnotxu2iRfRtE+rhOstLQULyWpDIJHhmeEkoD0cDMogUvLoHXurX5Z3lBl5XjRlQGNjcBWwue7L0ubiTkopkNXFjb+PPW0ODOM4MEnhpZyqIZ9n1ZFnguNm9XrbJvg0gf1xa8OO535KJJACCBZ7vzwkIWPCJJXFvwdG4qskV6XAKv3BfhWSQOCx7g7lyaLoJcZ6PNOnFb8HTuzWF9yXIWTRcbTCTwygPXMXhxeKyQiyYBgFw0bXapSeARaZKmBU+2MHRh9SEXzXTgj3EcFjzA3TxJFjw1yIJnj4sxu3q1fRtE+pSiBY9cNCuUSrPg8SmabXapSeARaZJmDJ7svS5EAblopgM/N5LAKw/Cfl/SdfBKVeCRBY/wcR2DF8f9jix4BADxQDIReOedB3ToAPTsCYwebd8vHlcCb/Hiwr9tFjEUg0eosHYtcPjhwIEHAsuWuWs3zSyacVrwbF00N2wAjjoK2G8/tzWnZs0C9twTaNfOaztrSROmTwf22CPI3KcLf+7ictF0NU+SwFMjSxa8UnXRdLEpsXy5fRtE+ri24MXhsUIxeAQA8cDUddGcPRt48EFvAvvmG+D22510LZbdRX7BRy6aRNzccgswbhzw+uvAVVe5a9e1i6ZOe6pJVnSv4Xze/oZ3773Af/4DvPWWeakGEX//OzBpkpc18K23iusSps3Pfw5MnuzV3nr5Zf3P82MijjIJgLt50nRRxY+lpK1YSRN3DJ4OlWzBI4FXHriOwUvCgkcumhWKix1W3vVAJ21yGOyF5Gp377vvCv8mF00ibt59N3j8zjvu2k3TRVM1yQrv9hdFfb14TtK54X30UfD4tdf0vj+MFSsK/87aruhnnwWPZ8zQ/zw/JuKy4JGLZrJkyYJXqgLPxZh16b1BpEcpxuBl7V6lSoanhNLARQyeKBW2C9hFpKvJP04LHrloEiLYa6y6Op52dYmrTAKfSED3+pLdiHT6xs4VLmP3+Os7y8LAZC6Kw4JHLprpkyULXqnWwXMh8JYsCR67vA8QyVIKLpoUg0cAcOOimYTAy6IFj5/0yYJHiGCvD5eLGJubgK0FT/bdvMDTvb5kriQ6v5VdPMUp8LKc+MVkDi51C56qWCGBF+Dit+uIxFKx4PH9dHGtswLPpv4ukS6lkGSFsmgSAOKx4LkqsxCHwKMYPCJp2OsjyxY8nZuK7L38zcqVBS8LAo+f17IsDLJswYtL4KmeD6qDF5AlC16WNkz4vrgYs0uXBo9J4JUupRiDRxa8CsVFHTx+wGfZgscLPIrBI+ImLoGXpgVPNtb5G4nu9eVC4JGLZmVa8FTPdaVZ8EqlTEKWBZ6LvrHXU12dfXtEOlAMXnKQwLMkyzF4LHG5aGYlBu/BB4FLL6VMW+VIXC6aacbgJW3B0+lbUi6aWREG48cD55xT+FyWLXim8+SHH3q/009aZGplqTSBVypJVrK0QSoKv3j5ZeDcc80SGPHU1tq3kWXeeAM4+2zg44/T7omc6dO98/nKK3qfoxi85KhJuwOljosbcBIumq6Isw6e6Q3q7be9OoKAdyE+9JB5n4jsUSoumi4seLZJVrIcg8fPa1mwOOTzwKGHFj/vwoKXtTIJ/ft7///lL97v5tsmgScmbhdNFxtDQLYEHt/P9euBI47wHv/nP145KJftlxsHHOD9/8gj2U0+d/DBwIIFwMMPe2NY1YhQiha8Uo3BMxJ4TU1N+OCDDzBhwgRMnjwZixYtwrJly9ChQwd07doVe+yxBw4++GDsueeeqMpS5G8MVFqSFT5texZcNNkdpIcfJoFXbsSVRdO1i2YcMXi615ds7jAVeC4X71m04MnKULiw4JWriybF4AW4+O0657NUXDT538SWgpo71779ch9zPlkS7TwLFgSPGxqAZs3UPifaFHEdg2d73OKIIU0DLYH33Xff4S9/+QsefvhhzJ8/HwCQF5ytMWPGAAC6d++Oc889F7/+9a/RpUsXB93NHnFY8PJ57znbxWwcAo8f6FlIslIpk32lQhY8dWQ3SnLRFCNzvSlHF82otsmCJyZuC54rgZelRWjcGbLLfcyVGvX16gIvThfNli29ede1Ba9Ux5uSwNuwYQPuvPNO3HHHHVi7di1qamqwxx57YN9998VOO+2ETp06oW3btlixYgWWLFmCzz77DG+//TY++eQTXH/99bjttttw1VVX4fLLL0fz5s3j/k2JIprgbQUe4F0wLVua9cknCYHn0oJnunAp1YuPUCOLAi+uMgkq36PablVV0CdTC55LsphF06XAoyQr5UmWLHiVnEUzrH0iXXS81uJ00Wzb1o3AiyNJUBooCbzevXvjm2++wc4774wzzjgDJ510Ejp37hz5ucWLF+Mf//gHHnnkEdxwww0YOXIkZs2aZd3pLOEii6Zsl7YUBJ7LGDw/LkTXqzfpTGZEsmTRRTMuC57K96i226xZIDKyIPCyWAdPFlvhwoK3caP3r8Yi0j1JgUcWPDFkwdOH74urvAI+5TzmSvG3ZUXgtWsHLFpEFjwfpaV0y5Yt8cwzz+Djjz/GRRddpCTuAKBz58645JJL8Mknn+Cpp54qO+sd4CaLpos2RJSaBU/UvgqlevERapSKBU/npqI6zm0seKzLjM5vjStsutxdNEXnytaKF5fAa2ykGDxVwn4fWfDE8H2Rxbq6ar+cEIXsZB0dgec6Bo/dpGvTxr490edLdbwp3cqnTp2KoUOHWn3Rz3/+c0ydOtWqjSwSRwwe4GbHKw6Bx/fVZQye7LkoSvXiS5vVq4F//hPgjerr1gFPPgl89VU6/fJZuRJ4/HHg66+D57JgwZs0CXjppeDvVq28/+Nw0bSJwWMFXhYseOXuoik6V3//u91mXVwxeA0NZha8777zfhNLU5NXhPrxx4vL6JQDZMHTJ24L3rp1wNNPq5VcWL0aeOIJ+8ydceHf57791vs77mNnSj7vlZR57bXi19Ky4M2a5WVRB7z7nemmZlR/snCvMkHJecRVJsxyzKgZRxZNILupccmCVz5ccYVXP3DrrYGZMwNXst/+FrjzTm837PvvgbQM7//3f8A//lH4XNp18BYsAPbZp/C5li29XcQ4XDRdWfBMC527JIsWPJcumqJzdf753rm+8EL99gC3ZRJYGhrMyiQMHgy8917hc01NwPHHe4u/vfYqfr3UyVIMXqkIPBeln8LE85Il3pirrfVq3/qbbCIuuggYORLo1s0TUVlbhp57ridAt9nGEyyiMJgsOL+99VZQUsavpemThsDbuDEoJwEAdXXFCcJMz3VFWfAIOZVmwYszi6aofRVKwYUhizz4oPf/nDmF1ro77/T+X7UKmDYt8W5tghd3QPoumi++WDhGmzcPhHEWLHh8DJ5PHH3TJYt18GQWPJP5V3auLrpIvy2fuFw06+vNFjEi8dbU5Ik7AHj/ffu+ZY24LXguyqvothM3/Bg1cdFU+T0NDdEbCiNHev8vXFicpTgLPPGE9//s2d54crmJ7hJ2HrvsssLXdM6vK4G3dCkwb17w90EHucsAzfcnS9eWDkYC75tvvsHYsWMxjz268Fw5DzroIHTo0AG77747XtEtcV+CxCXwSiUGb90685ucaKFCFrx0kAm5rLiH+KTtoslXe2nRItgljCMGLw0XzbgsAVm04MkEnsnGlYuyCDxZc9EUkYXzGCdkwdPHhZuh6u/RWX9kfTPYT8zEEse8YgJrReQFna0Fz+RezLbTooUnlF0JPNFnsz52RBgJvD/+8Y8YMmQI1jB3xzVr1mDQoEF4/fXXsWLFCnz88ccYPHgwZs6c6ayzWUR00rPiopmEwGtqMre6uYrBK/cFRhzw41YWHlvOAs/FuKmtDfqUtTIJpgIvrt3KLAo8mYumya552Gdk3xNFXBY8kcAzPe9ZOI9xkqUYvFKx4LlIsqL6e3TOQdbHan19di147P3ERuCJzpfJeWHbOeIIr39xWfBs20sLI4H3xhtvYPvtt0fv3r03PTdq1CgsWrQIP/vZz/DRRx/hd7/7HTZs2ID777/fWWezSJZdNNlBGpfAA8x2mGQXi60FL2v+9VmFd1WpRIFnMmHzN7bFi4Mxl8UyCT5ZdNHMwmIrKQve55/rtwck66Jp2m4p7mzrkKUsmmTBsyPri/SGhsq04JlcR6J1X5wWvCzcr3QxWg4vWLAA2267bcFzL7/8MnK5HO677z7ssssuuO6669C7d2/873//c9LRrFLpZRIAsx0m2e+zjcEjgafG998X/l2JLpomE7boeMQp8NKw4CXlopmFxZZM4Lm24JnGsroSeLwIIwueOlmy4IUd6yxcTz4uLHgk8DyyYsFr0SJ4zPep3AReRVvwli1bho4dOxY89+6772LHHXfEFltssem5nXfeuShOr9wQnfT58+ULB9U2XAs8V7iy4Mkmb9syCZUm8BYv1htrPnw68+nTxeckrWyusu91tVEBuBd4cbhBphGDl7SL5rx56d08k7LgmVYIcnVvEGU1LIUYvMbGwkQKIhYuDF9gbtwYpKA37YOMLNXBKzcLXhwumsuWeck58nng00+9kje2c8/cue6uAdF1mUULHn8+047BIwueGKPlcF1dHb5nTABz5szBggULMGDAgIL31dTUYGOWZp0YEJ300aOBnj299L0qxOWiyeJqcGbRglepLpqTJgHduwM9eng3Lh14C159vbjuXVoWPNnC2+Uka3IDEB0Pkxi8LBc6T9JFc8QIYKutgP32S8fVL6kYPFOB56pMAt+OSZkE2RiKq2ZUPu9lxttqqyDjL8+LLwJbbAH07Su+pzQ1eaUbttyyuH6fKq4teCblKWSfNW0nblyUSYjj9/TtC2y+OTBgALDLLsCeewL7728+99xzj3f//clP3PQvyxY8VuDxorPcLHiiz1aMBW/HHXfExIkTN4m8UaNGIZfLYeDAgQXvmzt3Lrp27WrfywwjO+lLlngXv2kbri14Lm66sjZMdphI4NkzZIh3HJcuBe69V++zvMADvBpvPGkJPNnCW3cch924XVjwTj/dzEUz6TIJabtoipIqNTUBZ53lPX73XeCLL9x/bxQuLXhhbmimRZZduWjy7Zi4aMq+10awhDFvHvDmm97j884Tv+foo73vnzXL21jlefddYMoU7/Gpp5r1w7UFz8ZyWioumkmVSQD0xVl9PfDOO8Hfb7/tecKYcMkl3v+vvOLdh23JcgweK574eTONJCuiHBNxumhWjAXv1FNPxbp169C/f38MGTIEN910E9q0aYPBgwdves/69esxefJk9O3b11lns0jYSVe9MEtF4MluRGkLvEqNwWNdl3Sz9PEumoB4HJrcmF0gW3jrTtquEySwN7K99gLuuKP8YvD498ZV68uVi6ANLgWe/3vatgUefRR4/HFgs82851auNOpeplw0ZWMorppRuu2I5kDRPOeyHybXBn+cyUVTrY04cbHecnGvFGXRzIrAY88hf7zIgpdNjJbDv/71r3Haaadh7ty5eP7559GiRQuMHDkSbdq02fSesWPHYt26ddh///2ddTaLhA3Mujq1NpIodB6nwDNxIXAZg1epFjyWVq303i+y4InGYVruIa5cNF2nFWevy2uv9RbwWY3Bq60NHttYF10sfkTzWRZ2RGUbI6J6VFH4x6221rMWnXiiJ/YAtwIvaxY8G8EShovxoRomEUbcFjydeaNULHhZLZNg+11huKpPmVUXzbBzaFvo3OT4izb2yYJXSI3Jh3K5HEaOHImbbroJixYtQp8+fdC6deuC9+ywww4YM2YMfvzjHzvpaFZxIfCSyKJZzha8OMpBlBotW+q9X9WCl9buoWzhrTtpu16csULFt5DFGYOXhoumyNrDtmWCLD4qbcISFK1fD3C3tVD848ZuMrVr5/2/cqU3H+vOT0kKvKh2Za/z4t2VwHNhEXEh8MLGKVnwxJSaBc/Fd7kQYvX1xeMtKxa8sN+XRQuezTktFwuekcDz2WqrrbDVVlsJX9ttt92w22672TRfEoSddBsLXikJPEqykj66Aq9SLHhh48nWgueLnqy6aLJB8TYxeC68CVQEXhqbMy4Fnv972EWGb8HbuNFrT/c6jUvgiVw0o8aI7HVe5LhaCGVF4LneJLIReKVqwTNB9bhkxYLn4l7Z0FD8e0rBgpd2DB5Z8MQYLYerq6tx5plnRr7v17/+NWpqrDRk5gk76WzdkDCScNGMc8J1acEjF00zVMeaj6rAS2v30FUMXhIWvCwlWYnDRdPFXCRqg/+eNAReWOyq6bEXCTwAWLFCrz22TRYXMXguLXim74tCV+CJFo662YVFZCkGr1SyaLroi+ocmaSYDMPFvTLLSVZcCbw4LXis3KAYPEOBl8/nkVec2VTfV6q4mPzjsuCxZM2CpxrPoYJrgTdihJf6+P777dtyxfr1wMEHe6Ji662Bt94qfF138lF10Uxr99BVFs0kBV4cmSqzkGQlKQue7vk4/XRghx2AW24BttnGi4nUJcqCp0OUwDOJw8tSmYQ4Ftz+vLbHHsANN3jz7k03eSnsXYTvsxtZ7LnQQfR7/Gu+XFw0m5q8rMzNm3tlJ/7zH/O2gGRFV5JiMgxXLpqlGINXbnXwKtqCp8ratWtRy24jW3LFFVcgl8shl8vh5ptvlr5v/PjxOPLII9G5c2e0bNkSffr0wbXXXovVq1c764uPix21UnfRTDsGjz1+7AVuyllnecVLL7ggndpcIsaNA1591TtuX39dXBdKd7yIdrYrzYJncgNgb3I2MXiq3617c2evn1Jz0dTp45QpXqbKmTOB664D5swBbr01XLCJCHu/CwueH4MHmAm8LLloxrHgvuMOb16bPBn4/e+9efe3v/WKULsYd6zAa9/erA3RcfGtzeXiovn++8C//uUd8/nz9cvu8JAFzwyy4Jm1Q1k0xcQm8JYvX46JEydi8803d9Le22+/jeHDhyMX4cdz991349BDD8XLL7+MnXbaCT/96U+xYsUK3Hrrrejfvz8WmxY8keBiARmXiyZ7AbgWeKwp3CRWIi6B59rN69tv3bZnyqpVhX/zAk1X4InenyULXhIxeK4teID6hkBcu9Ol5KJpI/BkYkm3r0la8ErdRTOOBfcHH6i/N+raEr3OCjzd+Ecf9vccfTTwxhvpWfDictHk7y8mY5UlSdHl4ruyYsETXZck8KLboTp4YpQD5LbddtuCv5999lm89tprwvdu3LgRCxcuRGNjI8455xyrDgKeJfC0007D5ptvjj333BP/+te/hO+bMmUKLr30UlRXV+OFF17AEUccsenzgwcPxoQJE3Duuefi2Wefte6TT5YteGy7LgYn215dXXATsBV4LVsGk5jJ72Y/Y+uiyd+wp04FttzSrk0X8MeYX+Dq3txF7xc9R1k0C2FvZL6FjB1zTU1qVmTV37Fxo172xVJy0dQVGCxMRZ7I75GRzycbg5clC57LMgmm7wP0jnF9faFVWgXWFd30nuoflz33BF54wXuclgUvKiSkqcnsHsgfG9t5nyx4ZtTXF8/15eai6SrJSpxlEsrFgqcs8ObMmbPpcS6Xw+rVq0NdHps1a4af/exnuPXWW606CABXX301Zs6ciRdffBFPP/209H233XYb8vk8Tj/99E3iDgBatWqFESNGYNttt8Xo0aMxffp09OnTx7pfgBuBJ2rDxaLKtcBjf4+twGPbYgWeyUTrUuDxC76pU4HDD7dr0wX8eFi4sPBvncVLU1O4H3xtbdAeuWgWEmXBa2xUE3i6u/aqrsdxlElwkc3QtYumzHKiM2+uXx9ugdEd+/7vYcdDVgWey0LnPDr9CxPYPOvWhQs8/lzm8wDrsGMi8PL5oF32GsyiBQ/wzpHJPZC/brIg8JKMwcuKwGtoKJ7rK8GCRzF48aA8FcyePRuzZ8/GrFmzkM/ncdxxx216jv/37bffYvXq1Xj66afR3tTx/Qdee+013HffffjVr36FI488Uvq++vp6vPjiiwCAE088sej1nj17YsCAAQCAMWPGWPWJxYVPfKlY8HiB5+PCgif6DpO2bAUevwibOtWuPVfwE+iCBYV/64wX2bhkBZ4PuWgWElYHT6dNnXFuusPPCjybEg5ZdNGUvVfnOoiK13PhopnVGLw4LXg651FH4OmejxUrCseDyTiWJfCyseDZWK6jjq3popa/bmznfXLRNCPLhc7D+mFb6Jxi8OJB2YLXs2fPTY9PPfVUDBw4sOC5OFi9ejXOOOMMdO3aFffcc0/oe2fMmIG1P9wt+vfvL3xP//798eabb2LKlCnO+ugiq1WpCzzbOniswDP53Wy/XAu8adPs2nMFvzjhF6c6x002Lv3x0qxZsPAqZxfNOCx4qteZCzET9d6su2jqZnFUea/OdRAlLsqpTIKLLJppu2jqng8+U7Bt7GJcFjydazNqfjG1RJGLpn0brlw0+byElWDBy5rAqzgLHssjjzyCM844w3Vfirjsssswe/ZsPPjgg+jQoUPoe2fPng0AaN++PdpIAjT8ouz+e2WsWbNG6R8QnwXPxaKKnbRcT4JZtuDNn+9lwnz4Yf22+EXYtGlmN/HXXwd+9Svgvff0Pysiajy4WByzAs9HRbx/9x1w7rnAAw+o9yEKVxY8FzF4b7/tncs333Qn8OKy4MXhovn5515JgiefVG+DR6UOngvRqzNvJmHBy0qZhCRdNHXOo87iNep88PM0X+vTpcDLYhZN3bZY+OumlCx45VQmIcsWvKzF4JEFLxqjKuRz587Fq6++ir333hu9e/cWvmf69Ol4//33cfDBB2NLgywV48aNw8MPP4xf/vKX+NnPfhb5/lU/pIGqY5UHR+vWrQEAKyPutP77VKhUC16rVsFjFzF4oudVYY9VLgf83/8BY8Z49ez23x/o21e9LX5orFzpuUN2767XpwMP9P7/xz/clFqImkBdumiyY0VlAXbuud7xBoD99gN23VW9LzKyVOj8B89u/OMfwMCBwfOyGDzbfvGk7aJ5wQXe/48+CvzkJ2bp5l3H4Llw0UzaglcpLppxxuDpwCfMNtk0TcKCl0UXzbgteCrJYCrBgsePn6yWSWhsDD/OFIOXTYwsePfddx9OP/300CLm+Xwep512Gv785z9rt79ixQqceeaZ2GyzzXDfffeZdDExKAYvWxa8xsZAbAD6FjTRIsxkYeYalwIvyoLHjhWV3UP2eOukPQ/DVaHzsPFk66LplwophRg8Vy6hS5eqt8PiWuC5cNGMWjjpzGuyZBxxxOC5KJOQFQtenDF4fOp/suDJ4Y9NY6Od6IkaAyrHrRJi8ETXZRYteFFzYdoumq7LJJSLBc9I4I0bNw59+/YNzUTZt29f7Ljjjnj55Ze127/44osxb9483H///ejcubPSZ3y3zDUhfjd+1s+27Laq5H1R/+bPnw8gPguerYumnzLZx7XAY42cLgWebQwefyx1Cx+LFmG6bcRBkgKPPYa6u4eu6hBmyYLH4p+HZs2C3xp3DF6WBB4fH6KKSpIVF5YMnXnTpcCTCQFXMXhsm+VkwRMtXrfYQvzeqPPF7zfzc0hTk938kQULnkoWTRNE142N5UjFgheF6m8p5SyaotjYLFrw4hB47Foha2USysWCZ+yiOZD1VZLQq1cvvPXWW9rtjxkzBjU1Nfjzn/9cZAGcPn06AGDEiBEYP348unXrhieffBJbb701AK/A+qpVq4RxeHPnzgWATe+VEebm6dP4w+gJm+BtyiTYWvD4NivJgseiK85Ei7AsCLyoY+wyBo89hrq7h3ELvDRi8Fj888CKp1KIwbNx0WRx5QImaitpF82ohZPO2JdlW3TlotmiRXBNxCXw0iiTIKJdO+Dbb4uf152LRNZBURr6MOLIohmni6YrCx7gXR+yepNRuBB4SVrw0hJ4KtdluQq8mppg3FEMXjwYCby1a9eiJbsql9CyZctNsXG6bNy4Ea+//rr09Tlz5mDOnDmbMnn27t0brVq1wtq1azFp0iQcdNBBRZ+ZNGkSAKBfv35GfRLhIktfHC6afJtxFDr3yVIMHlnwouFFgN+2aQweS9YseHG5aLL1uExi8KLGOVuLMEsWPJcLyLRj8KIEgwsLXrNmnjhbv95O4DVv7lbgiVw0XYkH24WQTFTozkWiOaShwTsfqlSKBU903di4BrqIFXQx3lTPj8lx49s2OV78+awEF03/uLECj2Lw4sHIRXPzzTfHRx99FPm+jz/+GF26dNFuf/ny5cjn88J/p556KgDg97//PfL5/KYC7M2aNcNRRx0FABg1alRRm19//TXefvttAMCQIUO0+yQjqy6acQi8UrDg8b9zyRK9tkSLMJ04kbiIS+CxQsWFi6ZtmQofVzF4cbpo+pjE4EXdfDp2DB5nSeC5dAGLo0xC1lw0gcCKZ5NFkz2X5VImQTaW4hZ4OmQtBi8uC14pu2i6mK9cbJq4suBl0UXT5WaYf+5Zd3+y4MWD0XJs4MCBmDFjBkaPHi19z3PPPYfp06dj//33N+6cLldddRVyuRweeeSRgti/tWvX4swzz0RjYyOGDh0aGjuoiwsLgeh9//oXYODdKm3TtRsDm0XTtg4e25aLGDxWZPCpssN49VXgb38rfl7XgiearN54A3jmGbcLZBYXAu+TT4DHHiucrDdu1Lv5TZniZVu03XVMIgbPxoIXt4umqcCLo0wC3/60aV6GWh3njCy6aCZhwQMCgWcTg8depy4Wo08/Dfz3v4XPJZ1kRTZ+ZAJPt0yCaJNIZwOgvh74+9+Dv11Z8HRdY1mStOCtWwe8+CLwn//otTV9uvg+yuLSRTPsfXHERMs+44/P+fOBv/4VWLgwug2+fy+8UJi0zG/XZi3ogrhcNPnnPvwQePxxtbk3SuCpjp+PPwZGjgQWLfLua9On21nw0j5XLEYumhdddBEef/xx/OpXv8K8efNwxhlnbIp5W7VqFUaOHIlrr70WVVVVuPDCC512OIx+/fph+PDhGDZsGI488kgccMAB6NKlC958800sWLAAvXv3xkMPPeT0O8MGtu1O5oEHAl99BfTood2t2C14tbWBe1+WLHiNjZ510V888MVuZcycCRx8sPg1XYHHH/vp04EDDvAeP/aYV1NNl7jq4LELx6ee8v7xrF9fmFQnjHvv9f6fPRu46Sb1PrHk8+5i8Fzc/Fn8m7hM4LlaBLu24LmKwVu9Gjj0UO/6+vRT4J571NoULSD5MZ21GLw4LHj5vJ4bM5tkpbra+9uFwFuzpvgaSzrJisyiKcuBFnW++DFua8F74AHg6quDv+Oy4OmM+6SyaALAK68AV1zhPX7nHeDHP45up74e2HvvaGt1OVjwZJa2I4/0RMOAAcDEieFt8P374gvx+/bbD5g7FzCoOOaEOAQeb2377jugf3/v72++Kbz2wtoBzC14q1d76+zly4PnunUDdt65+L2qY+nNN9XelwRGFrx+/frhtttuw7p16zBs2DB07NgRPXr0QI8ePdCxY0cMGzYMa9euxc0334y99trLdZ9DueSSS/DKK6/g8MMPxyeffILnn38erVu3xtVXX40PPvhAOSunKuzEeO65ha/ZTlAbN3o7CybELfBqagJxYCvw2JgI1zF4qha8p5+Wv6brosn/hvvvDx6feaZeWz5JWPBkmFjjfvc7/c/4rF4dnQhGFdcumv5YSNKCZyp84rDgvf12sHnii3kVROPXRuC5cNFMyoLnl0pobLSrree7NLkQeCKStuDJREDLluJEKFHnSyX+WmeeHDas8G+RwEuzDt7pp0e3rYrouvkhZQEAz7tDhW++UXNFTioGL2w+9sWEan+ivtcfnx9/7P2vYsnRuQf9kF8wFZKw4L3wQvD3NdeotwOYl0n47LNCcQd4llfRulF1jKR5nniMI2Yuv/xy/Otf/8Iuu+yCxsZGzJs3D/PmzUNjYyN22WUXPPfcc7jqqqtc9hUA8OijjyKfz+O6666TvmfQoEF46aWXsGTJEqxfvx4zZszArbfeKsysaQs78IcNKxQKSWaBimrTtcCrrg6EmcskKyYumrzAYwWZqgUvrJC5rgUv7Aauk8GNJa5C5yoCL+kYgDBR7jIGz5WLZhwxeJ06BY+zFIM3dap6Oyyi8ck/5yIWKcsWPEA/Do8VeP6CyEUdPJP3uLbgyVxWa2sL7wk+uhY8WxdNHpGLpisLnqpQZL/vV78CPv8c+CEtwaa2TBCNKdaFVvUeUKPoE5ZUmQRZG+PHA+efr9aG6ve6iMHjYT1nXNRGNiWOJCt8DJ7u2BWVSWDHn0p7Mjdx0WdVr/XPP1d7XxIYuWj6DB48GIMHD8aiRYvwzTffAAB69OiBrl27OulcKcAO7KoqYNddg79tyiT4mOwQAqVlwWNj8Gwn2nXrCo/ZkiXeb49K/sEuhnlcCjzVGyBPqVnwAO/Ys0JFlTBRnrYFzyduCx5bINvU/VYU46DbBo9LgefKRXPvvYH33hO3GUYSZRKA4lp43bqptysSeFm34Nm6aNbUeJuHP5St3UTSFjweUZkEFxY8wOu7yr2BH2d9+pjPFSxRAk/1WlA9vkmVSZB9z667AgsW6H8XiyjbpW47UcdhwIAgVtZFKQdTkrDg6d6PXbhoyjaTRb9Hpb2GBuDLL6PflxRWAs+na9euFSXqWNiBUF1dGF/hwqWFv8mpUkoCz2UMHn/DbWoCli4FojxzwyYoWxfNJASeixg8GaYWvKlTAZMcSy4teLZJkGTfF3cMHtu+iWXLj9nS7VfUe1mBF2b15hGNX37eMO2jqQdA0klWADsLXtwumq4seLYumqYWPBWBl0ULnv+cyr2B/Y2mVgsRouNiYsFTPb5JCTzZazU19seN/8y6dfprhajvZcNXysWCJxJ4jY3ZF3gq/Zs5M10hzuMoqXnlwlvwTLL4hA1EVRfDqDazLPBsYvDy+egLWeUYhk1QthY89viYCryoYxynBc9G4JkQJvCStuDJPi+rg+fKgseOkywJPHbRpxPwr2LBM92kMBV4SbloshYWXYHnj6eqKjsXTRcL6iRdNEW16pJOssITVwye7DkR7G/0+2Oy5uBx5aKputB3seGg8j7ZuK+psT9uIhdNFxm3WWzDV1yRhAVP997uQuDJ1oamFjzTNU9cKAm8u+++G/WWhdnq6+tx1113WbWRRXgLnsmuUNj7dNL8h7XZ0OBlaDJ1+eTbZAWeiQufrOSC7iSm8n6VY5iUwMtCDJ5LF8043PnCBHnSdfBkn7eNwYtaUJguPvz31tSYCU9Afd7SaTNOF01WDGQxyYrrGLysu2jGZcHTddEUWVNcCTyXhc5lz4mIy4LnykUzDQueiZdGHBa8xYs9C45NGzxZEXhR57+hQf1aYAud+6Ql8Fxb8EpS4F166aXo3bs3Hn74YazSKX4EYMWKFXjggQew/fbb4/LLLzfqZJYpFQve6tWev/5ll5m1B8gteBs36i+8Xbloqrzf1oJn66LJTo5Zi8ELiz30Cdu9DZv4s2DBs3XRVBF4JkIq7LubNUvXghdHcijR+OUXBEm7aKaRZEW3Fl6SAi/pJCtRMXg8SbtoskkggPjKJMieExGXBS+LLpqlZsEDgnJIqkQdB9sM465QmQt1z30WYvBcW/CmTYt+T5IoCbwxY8agqqoKv/nNb9CtWzecfPLJeOSRRzB9+nTkubt0Pp/H559/jpEjR+KEE05A9+7dceGFF6K2thZj+AqOZUCpWPB8bIyoMoEH6Ltpsu+3SbKisqBT2TXnL+hf/zp4bFsHj22bXzSokqYFL+zchgm8b79V7xNLqVnwTGLwwsZ5q1bZddFk0emXyvg0FaHlGoPHL+bLrUyCbOPM1ILn2kWTnxuzYMETLWpN5woW0XFhj3eWLXgmMXimazXV7/WxLUyfFQueK4HHXi8uY/BMyyS4tuCpFLdPEiV7wjHHHIMjjjgCf/rTn3Dfffdh1KhReOKJJwAAVVVVaNeuHdq2bYuVK1di+fLlm0RfPp9Hjx49cMEFF+CCCy5AMxVzQYnBXnRxWfB0i+PqfLdpm/wu64YN4puyDPbmy8aoxOGiqXKhsxf00UcDd94J/PWv3t+l4KIZZ5KVsGMctrOra/n0KYUYvDgteDYCj3XRNHEdzefdlXpgUbn5m5ZJMHXRzHoMHt9muZVJkL3PNAaP7X8+b++iyS9XXFnwRMfZRDzHnWSFJcsxeGHjTXR+qqq88xeHBU/0nrBlb7nE4AFq515kgfafz7qLpssxmxTKSVaaNWuGyy67DLNnz8bo0aNx8sknY8stt0RjYyOWLl2KOXPmYOnSpWhqasKWW26JU045Bc899xxmzZqFSy+9tCzFHVC8eDdZmIVd5PX18lodYcQx0Fxa8FjR1L69+DtUcCXw2P5fconXJ9+yaOui6SLJij/hyMo9mFrwRAupsPfzhO3s6gpjH9+CJxLDSdfBk/32OGPweIFnYn2rro4nuyeLqQVPtlmVtIumSwueTpkEVWQCL+sWPNuNTRcxePX14vZ1NgD4uZE9r1mw4MWdZIWlnCx4/nVka/lUFXhhVJoFjx+/7EaJ7ppVVAfP1EWzVy/gvPPCP+vSrTgptJebVVVVGDJkCIYMGQIAWLJkCRYtWoQVK1agffv26NKlCzqZFL8qUfgYPNcumoC3y8AuEly0aQI7WVVX2wk8VjTZ1PFReb+uBc9fvNfVef20teC5jMHr0MGrL8cTZ6HztCx4m21W7PLgMgavHC14ti6aSQi85s3FC0bT7zZNJe6yDl4cLppJCzxXFjxbIVhTY1/oXDZn64wP/jxmIQYvySQrLKoWPNV1QJoxeCKBF5eLpq3Ay2IMXvPm4vOs66JZVeX9890zk47Bq68PNty6dIn2ripFC551HbxOnTpVlKDj4WPwXLtoAt4uw3bb6fUrrE3Vmjuiz/m4suDxN/O0LHgygff999kokyATeNXV3u+LMwbPVODV1+uPtXw+2FUTCbykLXilGoNn6qIZR6weUHh9tWghFk+mLprs/JFFF00XMXhVVYUxeLpu+1kskxBmwRN5FuhY8GSbSzrzJD+WshqDF1eSFZYs18HTTaTlz61JuWiGUYoumm3bil0bdS14rMCzjcEzEXjsb9hss2iBV4oWPKqDZ4lLC57M/W7hQrcLW1PXOXaCcSXw6uoKj1kcMXgqE7FI4MXhomkag+e30aZN4fN+sem0YvCiFl26Y23VquBcdOlS/HrWY/DSFnj+e01dNHXGhqkFT+YWXMoumknG4PGv6bYlI+kkK2ExeKJ5UicGTzbv6GwA8Oc/axY8vz9JWPBcu2i6GI8qbaVtwYs6rjoWPFOBZ1May4c9/zJvMlOB5z8fRwxe2G9nBV6XLtEb0aVowSOBZwm/eGcXVboTlGzxf+yx3kX14IPq/XIp8PJ54JhjgDvuCJ7jBZ5uLTxfNPECL2sWPMA7XjqTpGsLXlNT0Ca/6PYFX5wWvLBzErXo0h1r/K4aT1ZcNNnjxl63++8PfPihebtAdlw0d9lF/b1R8C6atu3Jkqy4dNGsr1e/7sMEHrsp4yIGD9CfJ0styYpos9PURdO0zmqYwEvagjdvnlfm6B//KO5DEjF4pVomodIteE8/DWy+OXDDDfqfZeEteCJ0BR6b6CYOgffYY0C3bsDNN4s/TxY8IhJRoKc/gehOUNXVwNZbi9+zZg0wfLh6v8K+W9ci9dJLwNixhc+5tOCxF7ruJBZ3DB7gnWMdAevagsceEz5Xke+2lZaLZtRx0R1rS5cGjzt29DKasmTdRRMAjjsuut2wcTtkiPniQybwTFw0RRZUFp1+sdeXbMyZWqFNXTRVrmkTiwR/jTdrFohQGwseW2IlDoGXtAVP9r6aGrH7adQ9RmbBY5N42Qg89l6ftAXvl78Evvii8DmRBc/WRVPmRVTuSVbKNQbv+OOBRYuA3//ebKz6LFsWPJZFZKmsAcMseC5cNNk58ttvvXCP668Xf54tx6Qi8FxanZOCBJ5D+KxWuhNUVZUnpI4/HnjiCeCKK4ABA4IFkU42TZcWvAULip9zJfD83VXTBAJxuGj6v8sXeICeUOG/j939NJlkefH5yiueiHjtNXuBp5Lc1jQGD9Afa7yl569/BU49NXiuqUlv1zxpF00AmDMnvM2w33DFFcBpp7kpk2CbRbOmxhtrKu9V7ReQHRdNFauE6rwWJvCAYNfblYum7kZYqVnwRAJPp6YYO1+zAk9VgGzcGF5XL2kL3ltvFT8XR5IVmXUmyxY8XS+NJC14UddpkjF4qudQhF/Au7YW6N1b/B6V8yVKsuJ/1kUdPJWs4D68iyZZ8IhQ+AlXN3C6uhrYeWfgySe9Hbs77gAmTgyseqYxITy6i26RCBDVwVNl48bgRuCLKBOhovp+Uwse69qjc8z472N3P00mab5vgwYBzzwDHHBAMNZ0dsCyHIPHJ/Lp1g149FFgn32C523cZVniEnimbV51lXfN87G8Sbpo8plyBw0Cnnoq+r1RsGOI3WVlSdJFs6kpuK7CrgGTrICi8eDH4bkSeFm24LlIsiI6hlHXq8xF08SCJ5rXVq8OHqcVg8cSh4tm69ZicV2qMXiqFjxbgXfjjUC/fuHvUe0fi0uBZ5N7YcYM73Hv3oUb3ywq59RlDJ7Ie04m8ERrBt6CRzF4hBT2hmTjoinCX4C4Eni6bnOiBZCNBY/9/qwIPLb/vIsmoDc5hk3qLgQei4nbVpIxeDYJatgJ10SsRL3XlYumrtutrE3RHAKYCzzb8g0iFzAWE4EnS6DBf3cUti6a7IKVT1wke18YOhY807i+UonBc5FkRSQyotp16aIpup+xAs/Ggif6HWHHVjamXSZZ8b+DdSdmybIFT9dLw9Vx469PkfUz7Rg8FlOB9+WXwXfvtJNdDDUv8FzH4InKq8j6RhY8Qhl2cJi6aMoGmD/hrl9vtjjg0b3QXQs89vttBV4SMXiAnYum6msyVAWe6rHLsgVPZukxEStAOi6aUcjGgEzgmQha//OsC4zO54FogWeSZEVmnQHclEkwsdC0bl34GjsPu3bRbGxUn0tkZRIA/XmylMok8O7FPkm6aIrOOzuXubbghV1LvvWEJw4LnqxExYYNamsPl3XwSqlMQk2NmcCLmkPZ+7NtfJdpXdqpU4PHYQJPpX+8W6XrGDyZBU/UN90kK2TBq2CSsOAB6jd2lwJP1C9XFrwsxuDZumjGacHjJ1eTRR87NuKsgwfYu2j6ZNmC50rgsb/RxFqTzxe6e7P/m1hVRK5MsveqtitbvANuXDRVF/DsuOUteOzGjmuBB6i7aWbNguc6yYrrGDyXLppRAi/JGDx2gc0SRwxeba3cChJXUiIZpVQmoaamsByKj00MXk2N3aYOj6kFjx1/O+5oZ8FTjcFTuafqWPBEx4510ezcOdpFs+ItePl8Ho899hguueQS3HPPPVhjOqJKkDgteCZCyqXAE7VVXW1eJsGlBS+OGDz/Qo/DRfOrr4AjjvDS6T/8sFp7IvdRH5NFn0sLXlIumqYWvCRi8NJ20XzlFeCww4CBA4v75P8/ZQpw2WV6i/goC55OwhvXLpqmMXjvvAP8/OfAmDHBc7wFj93YcSXwTGrhZS0GL+0yCToWvLgFni9AdQXec88Bjz9e/LyJwOOv8ah2wohy0QTU3DTjdtEUjQvTGDyXFjxTF82wvvOZc5MQeF9+CZxwAjByZPCcqgUvao756isvgaAP66L59dfAffcFr6ncU11Z8Nq398Z9OVrwDKpyAcOHD8ctt9yC0aNH46CDDtr0/JAhQ/DCCy9s+vvRRx/FO++8g5YyWV1GJGXB27AhPGaEb1OEbeFuIDsumq4FXrNmwc2bXfix8RdRRE3qL7/s/f/22142TFnaYb5vfv9YknDRDPs9cSZZYX9bHBa8OF0083mxFQLQd9GMGk8XXghMn174nH+82DaHDwd+9CMvS6cMHYHnv1+ltqNrF01+nFRXe32Jugb23df7/9lng+d4gReHBY+ds00FHjuedLMWJ5lkxfZ9tbXA9tvrt8u+zs7XHToEj21cNHfaKXjMnouwa51n6FDx82HHfuZM8fMiC56JUMnng88lZcEzddHs0yfI6OiTFQue6xi8XC55gXf00V45jiefBI46CujaNXARrq0FevUC3nxT/NmoY3jMMYVikbXg8SQh8HwLnl9vl2LwfuCll15CdXU19t9//03Pvfrqqxg7diw222wzXHTRRdhll13w6aef4tFHH3XV10zjwoInG+xpW/BEE4trF804Y/B0XDTZhXvHjsHjxYvd9gnwzhFbXyaqb0D2YvDiLJPgwoIXl4sme9xE123YJoprC97ChcXPiXapAeC//w1vi1+08H0Je38YKgLPVLizO906dfB8khB47Hgxra3HzkdsvUjdtkzfk5QFr6YG+PWvgYMPBnbYwXOfAoqve956xr7OztfdugWPTS14u+4K3HJL8LdtAiMek0RWrpKF8JslsnuCiQVvu+3E79NdLHfvDhx0EPB//1f8vizE4MkseFHjLer+5FLgqWzss7UWv/3W+98vz9WuXfG6jyXqGPKWaDYGj0fXRdPfYMnlxP3jj92GDcFGm1/vlbJo/sCMGTOw0047oZq5Qp599lnkcjk88cQTuOuuu/DGG2+gbdu2eFzkj1CG2Fjw+LgZnrQFnsyCZ1omQWTBizMGT9eC5+Pv7ACFAblRmFoiZMQp8GQp61nSLJPgY2rBS6tMwooV+n0yFXii10XuW0C0oOcXLaI2or477H1xxOBVVwfnw2QR5CIGLyp+xMTKwv9Gdj5i40d023r9dWCrrYrfk6UyCbW1wIQJnmWateaxoo6/ftn22Pl6iy2CxyYWvMsu81yc2ePPW/BUCBubuiIFcJdkhb+/yGqj6lrwvvwSuPxy8ft0LcozZwL/+594/nJhwXORZEUUg2djwdu40a6PYXUcVfC/2z/v/nrPJgaPpapKbvlWEXiiMgmA2ALNHzs+wQpAFrxNLFmyBN27dy94buLEiejcufMml802bdpgwIABmD17tn0vS4BSisEjF81iRDWx/J0dILsCzzYGr6YmemLLQgwe28esZdEULXzC3PBULHg6i7YwgcffKKMK2+u6aKqOuTjLJLDJCFwIPDYGz1WZBNcCT2c+ErUlGgeuLHgukqz48Lv87DWrKvA23zx4bJJltXnz4oWoiQUvLoFna8HjMxfL5ghdC17z5vK2dOdePiuw7H0qr4kseLYumnHE4OXzdhY8/v2myfX88+4LJ5cCb8GC8O8OQ7apFpfAqxgLXlNTE9YzM+CaNWswbdo0DBgwoOB9HTp0wFJdX5ISRbT7HofAU11whH23KwteHHXwNm7UC1x3nUVTZsHT2TEvJQteTU20a0KSMXgqZRJcxeDZTNjseViypPj1MIGXhAVP5qIpi1HwMYnBUyHOMgmsYMmqi6ZJvUp+AWO64SRqS7TwTjrJSpgFj0V27YcJPH++7thRLwmPD3veRQtaEwte2HExec1VkpW4LHhhbenG4IV5E+h6acRlwYujDp6NwOPnQt3NVv+6U7Xg6R7DqqroGo9hyASe6B4XJvD8eZUseD/Qo0cPTJkyZdPf48aNQ2NjY5HAW7ZsGTqygQNljCjFuaskKyaukFmOwWO/n4/BA9wIJPYGrHIe/P6zNyTTBZUrF0KfuAVenBa8OFw0k7Tgyc4Pex5E8ZlJCTw2QQKLCxdNlRg8EwtenDF4ablo6ljwTMqZuHTRNLXguU6yEhaDxyK79vnvYV/z5+suXQp/q4mLpmjByI7htF00s2rBcynw/N/qwoIXR6HzmprCecPHJgYPcCvwdO/FfpbkOC14Jq+x/RO9X2TB448dO3/68yrF4P3AT37yE3zzzTc477zz8Pzzz+Pqq69GLpfDUUcdVfC+jz76CD169HDS0awjcq/KqovmqFFeanVVXFnw/vc/4JFHgOXLg+f4GDzZ98mQTXrsRW4ag1dXF7RTzhY8G4En2tVlF0RxlElwJaDjtOCFxeC5TLIia0vmohkl8OK24LmKwXPpoplEmQQXLpo2FjwVgZe0BU/FRRPQd9Fcvz5IDLHZZnpz5OuvA3/7W+EGTZQFz4WLpomngasYPFWBp2LB40v6yNrSmXvZDLK6Ai/Mguc6yYqudVHWPxYbK6OtwGtsFG90uBJ4YZlnbQRelAVvyRLgqquCv1UteKUo8IzKJFx99dV49tln8dBDD+Hhhx9GPp/HySefjD59+mx6z+TJkzF//nwczxa+KGPitOC5FngAcPjhXl2SbbaJbktF4EVN/rNmAYcc4j1mF1C8iybg3XBUK2vIdmRbtgzEhanAA7wFwjffxBeDp9M3oHhytV04xmHBa906GA9xlEnIQhZNdpyIbiguLXgm2fdMLXhxxOCx9fLCYvDIRTO8zbgteK6SrNi+z9ZFk4+vURV4c+cCBx7oPd555+B50TXj2oJnYt1zVSaB30CU/Z60LHgyTw4f0xg8001D0WdqagrXNT621xT7e5N20dy4sXBd56/JZG7+Li14ccbgXXllkCEUcJdkRWddkhRGFrxu3bph8uTJuOmmm/Cb3/wGjz76KB577LGC90ydOhXHHHMMjj32WCcdzToiC14+r+e3m1SZBL9v//qXWluiSaqqSi/19xNPBI/DyiQAehOZLIcPO9lGTbL5fPCd/A3J391ZvFj9AnZtwQsrdJ6EBU83Bo9dMMdRJsEmBo+9OYVZ2aK+iz0Pt91WvAi0TbKiumiLcnOzEXiuyiTwFoKsuWjyC7O4s2iaxIE1a1boUWBrwRNlz123LjqrnwpJWfBkLpqs+NVx0Xz66eDxp58Gj11Z8MKOi25ZlVwu6IOtwIvDRTOXk28kAHrrItl9wMc0Bs/vY1QbMngL3h57eHVGVfsm6x8LWwsvaRfNxsbCc24Tgyf6nVVVXoZaEboCj70eoyx4n38ePO7cGfjxj73Hovuczroja9Y7wFDgAUDXrl1x/fXX4/7778evfvUr5Dh76ymnnIIxY8YUxeWVKyILHqB20pMuk+CjGh4pm1h0YhtEu1uA3IKnCl9bRfR9UceC/T6RBQ/wzpFqvqBKctEUjUd2kZB2Fk22vQ8/BObN84q1AmqLZNnYYa/JHXbwrLzsHldSMXiycyNz0YxClNjA1oIXt8CzddHkFyxxx+Cpzg+i3XN/w8lW4MnOqe/aGNXGZ58Bd94pfp9tkhXVGDzXFjzZuY7DgrfvvsCLLwZ/67p0s8fEtlYaf33KFvA6SVaaNZPXJAP0LHiiDOUsphY89rELC15VFTBpEnD11cHzOjF411wDXHJJ8XvSFHiiOcjERVM0dqqqvDnkmmvEr0WhUyaBPXZsP2fPDjakozwvosZs2Qi8M844AyNHjox836OPPoozzjjD5CtKDtMU5/l8MFCTFni2GTldCjzTXchp08TP68TghQkoE7eoShd4uVxwvl0lWXFhwevWDejUKTiny5dHj1sVCx7gLbxZd+ekYvB0XTR1XIbiEHhhMXim1w1rKWhs1HeV4Xd8s1Imgd099+czf+wuXmxn8ZRd86obEzvsYB+L49qCJxJ4XbqoW09l5zqOGLyddircYNW1+LPHxFbgqbpV6ljw/GPmIgYvyoJnGoMHuLXgAd7v7t1b/J6o/m2zDdC+ffF7TGsE8/dm3c1W3oJnI/BE6wC/Dt4uu4hfi8I0Bo/dOGC9jaIEXtSYNRlDcWMk8B599FFMnDgx8n1vvfVWketmuSKz4JksqHhMyiSoTKBhNxWWJASeyU3q++/lO9mswIs6B2ECyiSxQZICL+06eCKBV1UVnFdXZRJcxOD5bbDnVJQBU/Z5FtHChU2TnZQFT9dFU2c+krUhe78MPq7SRR28MJdD2XiVjZskLHgmMXjsXO8vWnyBl8+rexQAxYshmWhXFRrV1fZCPSpBkI9qDJ7IRXOzzQrd3MLuUzoCz9aCV1tbWBhbd74wLami0i8XZRL8NlzE4LHjQddFU9WC56JMguixznzLh734pGXB42PwbFw0Rd/tb5KI2lO5pkxj8GQ5L8iCp0ljYyOqdH2EShSTBAn860lb8FRikAD5xKITgyebFGxi8GTumWy7gJ4Fj++nSXHhUrLghe3mi97PI7PgmQq8OLNo+u3pnFMdgWezYAPMvAB0XTR1diFLxUWTF3iyuUjF3RbITpkE0e45uzmhk2hF1YIXdk/wz7VffNz2PMrGjmpRcVUXTUBtkbxsmfh5kUXA1oJXW1u4IZQlF00XFjyXAs8myUqUBc+li6bocdT5YPsni1lMSuCJrqe4LXiA+PpSGR+mZRJkAk90n9Ox4FWcwJs5cybasaueMkbmJ+7Cgue6Dp5PkhY8WX9sLHiswNt++8LXdFw0w5KYkIummQXPF9hpxuCtXw9MnlzcBr9IXrjQy6AnIg4LXjm5aKaVZMX/Hb6bD3s+ZONV9tv5BUtWyiSEWfCA8M2JfN6Lk1u/3rNSf/VVYf9sXDRFWQhF74tC9Xyr1sHz/+aTrABqi2TZ/O7KgsfPbTbzhQsXzcZG4KOPCseZq0LnLgSeaCHuog5enC6afPu6FrwwK5LKuZ06FXjpJWDBAv0smvxcx8fg2ZRJEH23fy5F7enkrmDbAqJdNEWuv0B5WvCUyyT87ne/K/j7o48+KnrOZ+PGjZg6dSrefvttDBo0yK6HJUIpWvBsBZ5fnyafjxZ4ojaaNRNn6lOdbFmBt/POwMyZwd+uYvBMXDRNLUwysizwRDd91oLX0OD9E2Xti+ob+xldC14+D+y/vyfefPzfyS6SP/gAOOoor80pU4rjAWQZ7ETHjC2YrWIJ4YnDRVO2CJZRKjF4/OJP5TpQFXhZcdG0seANHw5cfjmw1VZe3Sd2gWUq8PiFUVwWPB5VC57/t8iCp1JGQza/xxGDV1vrxf/4909di78LC95ZZwGPPlroeVBba1cmwb9eogSejmt3lAVPN3ujTUkrFpkFT+daV7Gsq7qRPvYYcNppwWfuuqvw9SgLHj/XbdxY2L+4LHii9lxb8GQxeCy2MXglLfB++9vfIpfLIf/D1f/RRx/ho48+Cv1MXV0dbrjhBqsOlgouLHhJlkkA7AWev3O+YYOZwGN3ME1uUosWBY+3267wNZ0yCWECStXtjsW1BY/9XnbxCaQbg9fUJP7O4cO9fz5r1oiDx6O+y8aCt2aNJ95YRC6a114bPD7nHOCddwo/I7qO/AxxPLW13r+GhvDdUtnxjMOCxwvwqDEisqDaWvB40e7SRVMk8GRzkarAY4W6qotxHGUSRLvnW2wRPCcrEQN44g4QW6ZtLXhRGVpN5qEwTOvg5XJeUiVAzQqiI/BcxODlct49cMUKOwueaQzeo496/7ObUWEbcUm7aPJiESg/Cx4/b9hY8MaPL/ze//yn8HVdgce7aPpzUFUVsPnmnpWwZcvgPS5j8HQFnk6ZBFMXzbK24N1www2bBN7vfvc77LbbbjjmmGOE723WrBm23HJLHH744ejCbjmWMaYWPN4HW4RLgbfHHl66eMA+Bg8IBF5Uv0RtsAttE4HHLuT4JC6uLHi2FrIoVCYFPisci0n/+J1H0xg89pwfcICXHrq+Hjj0UOChh4LX1q5VF3iuYvDCdr1lU9Lq1cXPyQSejJoa7zyE9VF2rZjMIVExeLzAS9uCF2YhMBF4ft9UXDRVY/DY7IZhZQNkbceZRXPHHYPnwmKQwzCNwVO14Ll20dTNoulbNjt2LN6kCOubjoumCwseEAg83Rg8l1k0WcLmtqRdNP1NMnZT03UWzbRj8FQseKoCj9/YYot5A/Yumuya6u23gQkTvM2w448P3i9D10VTZXzYlklQcdFkx2/ZW/B8fIF34403xtGnkiTOGDyXAu/ii4FTT/UuIBcWKRXXF1kb7ELbVuDxF3WpCDyV9/JZ4VjSdNFkx2KLFsDhhwd/s4JbJ9GKqxi8sMQE/DH0ES1GdAWe/x0uBV6SFjzRfBQ2PkwEnuwzJteNCxdNfse3Q4fgseomWNwCz+9j797eOGlqshN4Jlk0VS14rl00Vevg8S6aog3EsM0q2W+PKwYPCLxYknbRlB0H37IoIsqCx3p0+HOkaR0837UfKLyXyJKs5PPifqdhwdNx0XRpwYsSeOvWed8nu25F9wrRHAQAW28NnHkm8OqrwXMuXTTjjMEzddEsawseS5NuoaEKIKkyCbYCz8/etXx5+gKPvQGbLIDYY8ELvObNvePZ2GjnomkSO+Na4PkLlpYti100k8iiqSLwwuKYdASerEyCCwue34bMgidyTxJ9l2zRArgTeH7ykHzeLgbPRuD5bfgxh6LfpJtkpaZGfqPMiotmq1beImH9evU5Mo4YPNHuecuWwLbbAl9+CXz+efiCTYZtmYQsW/DWrQss8ex1HmXBC4uvjtOC54cArF3r9U10XnRcNFXvATLLdFgZkygLHvvdtjF47D0jyoIHeOdA1G9VC56twHNRJsE2Bo+/r4jKqKxdW1j7LezzYRY8H1VjRpZi8CiLJqFNUklWbOvgsdm7VBcvUS6aQLTAi9tFk7+omzVTW2zz7WTZgicSJjYxeH6SnLgFnk4mTRULnspEKkuOAgCdO4s/oyrwVCx4YedCdg3zixeVG7trF02VuBLZ+2XwC1uXdfD8tlxm0ayu1p8jdSx4NmUSAK9Itv/6nDlqbbHEHYOnuvuuavnSicETJVgBguMvO/a6As9FDB6glkkzSuCxc7jqPUBmmbYpdC4qNySbN6IW8Ow9Q0XgycZcmCcH27+0XDRV6lP6Y6WpKfy4Ra3BgPB7cVQMXpTAS9pF03WZBLLgccyfPx+vvvoqvv32W6yXrFpyuRyuv/56m68pCZJ20YzauQ0TeP6uoar7Udhv8Pvm2kXTv2nK3EXY76ypKZ4YXQk8k4WZS4HX2OhlwQPEroU2AlQliUZYH8MEnq6Lpj+eVWLwdGooiWjWzIsJXL68+Hkekxg82ed8VCx4flsNDXYumvyxMp2PbEQZn2RFt05dWJv+8WavgxUrxJlbVQWeP0d+9130HNnU5C1e2GsvzjIJgCfwnn/eezx1qmfR08E0Bo8/5jYWPJ1zrZNFk028JRJ4Jha8uOrgAcUCj43/9IkSKX57jY3q9wCZmKytld8PojaX+XILQJCIjb/mRceMXdOw94woF01AT+CJ6o2y4yJqbeWvTVwkWeHn2ygrUkOD3INEReCF3YtVyySwqAq8sCQrruvgqbpo6pZJKEULnrHAGzZsGO6//340/vCr8tw2lp+QpVIEXpwWPHbArlwJ7LOPlx1t3LjCoHuWMNct/6aybp1aCvskXDTZPixeDPzoR97kMnGil7FJBBvQzR879jkd1wZ+8kzbgrd0aXBDEVnwbPqnEmMV1i47+du4aD78MHDFFcCllxaLAR9dC17Ucd1ss2KB59KC50LgqYzfKBdNHtP5yKUFL44yCew5OfhgL47uySeBww4Lb18kdngLniy+5+uvgYMOKs5mGWeZBCCw4AGewPvpT9XaY/tnUybBhQVP51zLYvD475k5E9hrr+Bv0Qai7HvDSk5EuWjaxOCpZGkOczf3qa315mMXAk+2Hgiz4H3xBdC3b/A3ez2qCLynnvKyGJ92GnDPPfoumrLzKhIK7LnjN+T+/GcvWdiVVwLXXFP82WXLgAEDvPf37FncDhBfDB6QrMDjY/BEljFVMZtkDJ6piyZZ8H7grrvuwj333INcLofDDz8cffv2RVt2K6oCSapMwtixweMrrwReeEH8GdlEzxdYXbVKvGvIwv8G9v1xCLx77gGmTfMen3lmcbpfnyiBp+p+keUYvLAEK4AbC17aMXjnnuv9f+ONhYtVGwte1Dnv3LmwbiIgXtiIzk9SAk/FRTPKgqf6ftHrMrcjFt0YvLjKJHTvXvj6smXAyJHRAs8ft3V1wTitqgrmSN9Cx8e+AsDo0eJSBVFlEmwteNtvHzz++mu1tlhsXTRdWPB460fYuVe14PGILHiyhByieCXAO+6iY6U7HwHRFjyZ9VTVgsd/RxhhLpoygRdmwTv//EKhyws8Hv43/fKX3v/33gvccYfcRdOFBY+F30Q7/3zv/2uvFQu8K67wYl8BYMYMcb9sLHi77Rb8feiheu2pCLyw61u1TAKLCxdN0fjIYpmEirHgjRgxAjU1NRg3bhwOPPBAx10qTZIqk8ASlkVNdiHzAk/mFsLC3jSOPhq45Zbgb//i9N0qZS6VohuPKAgeKFy0vPSSvF+qFrxSjsGTxZT4JCXwROc2yzF4/HF95ZXCv9mdcx+XLpph59WlwIuKweNJ24IXlrXVxkXztNO8xCOffgq8+ab3HG9xCBN477zj1W78xS+8v/k5UiTwZBsXccTgsYsW9rFJcgiRwGvTxtvsS6pMAnuumzcPnyNUY/B4ZPeXjRuLRYzsXPbuLX7exIIXVwweoJ8sJCxjqOxaD7PgTZhQ+HeUwAs7d2vW6FvwZHOHqgUvn1cTFVOmiJ93FYPXqxfwt78B774L+InrVe/xKgJv8WL5a7ZJVkyzaLIJxXySiMHTddGsGAveV199hf3224/EHUNSMXgsO+wgbzdM4OkW72Z/w+OPF96U2Mm7vl7eVx0LXteuxe5zIrIq8EwWqjLCauABxcdf5ztVBR7g/SZ+QnQZg+cjK3RuY8E76yxg0KDC10UCL20XTdmOYpIWvDgEHu92G4eLZocOwAMPePGqfhId/hyECbyddw4KPwOF42PFCrGbuOx6c10mgY8x1t3s4BElc2jb1hN4SSVZkW3kiFDNoskTlqVZVeCx7rAqfQojLIsmYO+iyX9HGGECTzZ3qBQ693Ep8Nh7iYskKyy615LsGLjMon7mmd4/H5cCL8wVWadMgo+qMSNM4PmPdTZvAHkdvLjKJJSiBc8oi2abNm2wuSwwqkIxqWEF2Am8rbeWt6tqwVNJtCKLiwLUBYaOwOMnUdmFwwo8fuJnXTSjzkGaSVaiJoU4XDT5HSwVgSf6TXwdPBbTMgnsTcZVDJ7o94k8ykXvSzMGT8XFWDcGT2c+kgls2ftlJOGi6RM2TkTtixYDgJplRcd6alMmgd+RthF4/rHn+6iSNZSfN2TeGroWvKj5RxaDp+OiGXX8ZXOULMbdVQyeqQXP1kUzTODJ5jeZi6aoLR2Bx7e7dq3cgqe7cRU1RnQ3XmQCz0UMnuy3uRR4YcmEki6TwF5D/D1BJctu0mUSStGCZyTwBg4ciI8//th1X0oa2Q6OiyQrsvS5YRkmZcKNTSAAqFnwZFYVQF3giSamTp2Cx3wWPBZRnAv7fUlZ8NKIwYuy4CXhoilrOw4XTfa9rix4omtHJPBEv1E0dsLq4JW6i6ZMGMtuti6TrLgWeHzfwix4PK4Fno2LJi9CdTxEZH3j++hbklavlp+HUrPgyVw0RcdfNkfFbcGL2myVtW1rwZOtD8IEnkzc+PHyLOzaJCqJBi861qyJt0wCS9haTTTnqQg8nWtdJQeDyxi8MAteWjF4/GMfU4En6qd/HlhXXLLgSbjhhhvw5Zdf4m9/+5vr/pQsotS7gBsLHiCeJMMmD50YvCjCbsY2FjyZKOZvPqIbCBBMSCKBx7qalHIMXpQFL04XTXZM6wo8UxdNmcBzbcETuWiqCjxbC57LOnhJuWjKbra6FrywGDyT64afj8IWbK4FXtwumjILXtQGYtg58fsmctH0ERXBzufVY/D8RCZhRG3AsJjG4LEbiFHHX9dFM6kYPNm5jCsGr0WL8CyNomMuuj/PnRs8jrLgiQSeKxfNqDHCXqv8/C/6rGzuNnXRdGnBk20cssRpwbNx0RT99qhzZ2LBC5t3bGPwTOKh48YoBm/lypUYNmwYzjnnHIwbNw5HH300evTogSrJ1bf//vtbdbIUkF3gRx0FfPghsMsu4s+p7OAA3qTLXyRhAyqOGLzq6mKroY3AYwkr1TB1KjB4cPHzrsokhAm8qirvX1NT5SVZad482MGzseCZCDx+rNnUwVO14InGbxZcNE0Ensy6b+pRoGvBq68H/u//vPbYzHBhFjwgugYV308dF00dgcfH4ImI20XTv/Z0XTTD5mGZBY8XGu3bF74uWohGncewDcuoDRgW0yyabLumLpqyGoOuCp2z4+yWW7xYYTa1geoGjt/eqlVeIrQTT/T+yQhz0Qz7PevXFwouQJzs7csvg8dRAo+3Krl00RRdH6IkK4A4KRP/fa5dNFXWf3HE4H38MXDddcCQIcAZZ3jPRZVJiIrB03XRjEvghcXghRlUVC14jz/uleC58Uagf//i17OEkcA78MADN9W5Gz16NEaPHi19by6Xw8YsSlvHhFnwBg8G5swRf07VghdmdubJ59UFXlhWJR/ZbjlQuECKS+B98UXxc42NwQUuCgzXKZMQVs8N8Nqpr09H4PlFzoEgeQRLnAKvRYtgghf1U7UOno6Lpn8jCNtdU5lI43TRVBF4Sbloyl7zn2/ZsvAmHTXedF00ZefixReBv/7Ve7zPPsHzUQKvsTFa4LHWpLgEno2LpusyCWEumqYCjy21sPvuXhZNH9HvFW2YiDKLsu9XFXibbw7MmxfdZ0DPRZPF1IIn+w0mhc5Fx5Cf06+8EnjvveBvVQseex948UXv39Ch8vEd5qIZ9ntEAo8vNwMU1iM0seC5ctHU2QTg71MbNxYfP5UEWWlZ8HRi8K65xis/NX68txHQokW4i2Z1tXiNZuOiGRaDF9Ue4F7gqcTgNTR49Rr9+YItU1Y2Am///fdHLiwArAIJyzgXVqtI5QIH9Fw0160LT76w3XbB39Ony7+T/x7RBWAag8eXPwgTeMuWFT/HW91sYvBYkSsqGVFb631fGjF4US4ScbposmMuLhdN/tyoCDxdC55qkhUXAs/vtx8kLpomXRY6l80B/vMTJgAnnBDMQVHXAtse+zt1LXiLFgWP2QVgbW34PNfYGD4XAIXnnx8n7DGMOwbP1EVTZSOmqSkYJ2EumqLfFDYP+OPxF78AnnnGq+X15JNe7dGwz4s2TPbbDzjySG+R2K0b8M03hf0Ki1Vl29tpJ08QjBtXmMnUx8SC9/jjhX/rxODdcAPw2GOFxySsTzYWvG239TImjhjh/b1wYeFnZNcrP6+IrpkZM7zssCLCLHhhc4TIgsXeo/bd15vDb7opeE60bmC/g7fghblo6sYW61jw+PuU6oYp304aMXj5fHDddu4s37j3j/Xkyd7/69d7Vl+ZwJO5ifuoCryoTLCi365jwWPPacuWnnWNHYP+edB10eTd4b//Phgn/MZE2Qi81157zXE3Sp8oc7OMOGLwwtwua2q87Ju+22FYLT2fMAueiYvmV18Vu76ExWGIfg8v8ERZNFUFnmoikzQseP7ruVy0C4Fu/2TuWj7sTlhcLpp8u/4NJWzh7sKCJ4rBc+miCcjd1JKw4Pm/ZZ99vOtNNUZHtAgFChexbM0i2blgfyO72KipCbfQ2WZg9K+TxkZ3FjwXLpq6FjxZkXO+fV0Lnt/nqiqvULtP1Dwi2jCpqfEsRT6HHRbUm9RJ5lNTA9x/v/y9ujF4f/lLsXuiqgWvWTNvYcguDkWYWPBk19bf/ga8+iowa5Z6GAb/naI5bupUM4EXNj5FMWjsORk3rtiyK+qbTgyeigXPNIsmey2tXq3WpgjTLOquLHjs92y5ZbHA23xzYMEC71gvWVK4keCL9rAyCbJsw6oJBUWv2bpoysokAF4NwWOPBXbd1fvbPz5hG7+iPlRXB2vlpqbCscrPs1kUeEZJVohiwix4YdgIPNnkESXwWrTwCmoCwOefq9+MRbuEJgJP1E7Yrr2KwAtz0bRNZJKmwPO/U3Z84o7BC2vbRZkEWZ/531sqFjyVHU2TMgm6FjT2t4RZtXhk8ajs97PPy9qT/UYVF80oouZM2caOqK+yhYtKnHKcMXhhlnsbgSd7LWoeV0mKYloeyHUWTdH1qRqDF+Z2KuuTjQXPx/9efq5UdT0U3R/CNm9NyiQAYgte1FwbtXjnBV5YDJ6LLJoyC57IRVMFPl7c9DqwicFjr9mOHYvXi1tuGXz+nXcKX/PnGlsLnu5GpEsLnujzomte10XTz8Hgf5ZdK4qOV9YggecI2Q5OFHFY8MJq2/l987ODrV8vjw/0UbXghWVxCiu1AIQLPNHvcemi6d9gWrUqji9g+5tGofMw91hA30WTrS+jI/BE/Qyz4FVXB8+FxeDJ+hy3BS9uF01AX/zIBJ6sH2Hfwf4W1vqr46KpsqmQtsATnVuZa2spuWiGJTewcdGUnS8TCx6PTpysTpIV2eaObAEouj5VXTRF878IVzF4Pv73rl+vJmL550XXqiz7NGBWJgEQCzzV65ElLMlKWAyeroumjgUvykVT1hbfJ1YURF3rrix47DXfvHmxJ9IWWwSPeQc8/5yGxeDJNsJUr/koC57LGDwf0Typ66JZXR08X4oWPCMXzTfeeEPr/ZWWRTNLLppt2hSmvWYF3pgx3uOpUwvj8mTf48pFU1fgmVrw2AtTFg8FBDcYkXsm27c4YvBUF9yuLHiiCS4OF03AW7Rs2GBmwYs7Bi8JF03ZudUtk+C3JbpuVG74fluNjW5cNFVqA4UJPNXkGyrvCRNTaSVZibJipGnBk6Ej8LJuwZMlygrrW1YseIAnblq39h6rZod0YcGrrpZbMfzjHuWiGbW5IfpMnGUSou6vOhY8UfkQvg32OZW4fVcxePx6aLPNCktV+BY8oFjgubLg6Qo8dj3mMoumj2hTJ+zekcsVhh/47coseGUr8PwsmipUYhZNUwteVJkEHhWB16FD4cTkD2q2vo+sDIFPEi6aujF47GQUVQcPkC+QGxuBpUu9xyL3TLa/acbguRJ4ooVaXAKvrs5LkONC4KlY8JYvB0aO9OLOohakcRU6j8NFE5AnrVCx4Pltbdgg79P06cDYscDs2cFzMhdNGytlVAxenC6aOufSdQxeLuf99o0b1eaHMAteHAJPx0UzaQuebgxeEi6aLmPw+O9dsyYQeKqWKdEc9+WX3nXIj/GGBrElzn8f31abNsE1EGbB8xfIPEm4aJrG4IUlWeHbDMtMzuMnZvvoI+C557x4sKj+qVjwpk/3Shz84heFeQz49RC7lqmq8pIg+Xz4YWH7MgteQ4M8k6+P6qZOHDF4rl00/ef4uYm9n1SEBU+WRbOpqQlff/015v6wdbDPPvugNiolmoTHH38c//3vf/Hxxx9jwYIFWLZsGVq1aoXevXtjyJAhuOCCC9DanwU5xo8fj7vuugvvv/8+1qxZg549e2Lo0KG4+uqrpZ+xJcqCJ6vvpGrBC0v9ysMLPDa7Ge+iCXhxeGG4TrKia8HbsKH4RqUTgwfIBd6SJcHiNcqCZyPw2F3QqPeyRFnw2IWjysJOR+BFxeBFlZfwb8wmLpomMXiXXRZko3v44eB50XkXuWK5jsFz6aIpa0v2PD/NRWXk3H334t15mQVPxXVUZqVMMgbPxkWztjYoMSETeLKxG7YTryrwVC14Ua7Tqrhw0WTHRdRc5MKCZ+qiyR+zhobgN6u6aMZtwfOxicFrbBRn0pRZomTXQuvWwTUguq7D1geAvsBjXTT5jVoXWTTZkiBse1EWPJnAi7JaDh3qiap+/cL7pxKDN2yY9/9//gOwjnT8eohdy/B/88gseOzxyHoWTRMXTdl5Y/vKWvAqxkUzKovmJ598gtNOOw11dXX4z3/+Y/IVePDBB/H222+jb9++6NevHzp27IhFixbhnXfewQcffICRI0fi9ddfR/fu3Qs+d/fdd2PYsGHI5XIYOHAgunbtijfffBO33norRo8ejYkTJ6KzqKCYJVEWPNbtgkW1TMIxxwD//rdXWHHSJO85lRg8vmCt3zf2gg+L2WO/x1WZBF2BB3iTK7srpeOiCcgvvqgEK2x/bQReXZ34xmobgwd4x27jRnMLnuzGYhODBwSLpaQseL64A4I00IDcosLjwkVTRfy4FHjs8bvzTuDaaz3304svFrelI8iyGoMXtVmkk2QlzBrburUn8GTjV8eCB+jNI6ylhF9cRV0LcbhoRpVrAbxMfT6zZ8uLhANuYvB0kqyExeDJ4r3CiCsGDygcbzYCDxCny5dtvsiuBVYQhVnwVCy7Pn7/m5qK74usiyYvuG3r4G2xBXDWWcHfOmUSdCx4/HN//Svw4IPF71PZ4Bed2zffLPybXw916FD499Zbi9sG5Ba85cuDxzK7iGpsfJSLpm0Mnuh+HuWiqRIvym4wlKKLZixJVnbZZRc899xzmDhxIv7whz8YtTF8+HAsXrwYU6dOxcsvv4xRo0ZhwoQJmDt3Lvbbbz98+eWXuPTSSws+M2XKFFx66aWorq7Giy++iNdffx1PP/00vvrqKxxyyCH44osvcO6557r4iUVE7TLJFgmqFryzzvJ8qt95J5iIVVw0ZQJPx7UvbIfOpNC5qcBj4YOKw8ok8N/Pwu7IRLlo2sTgyRYOthY89jVTgSfztnbhoul/p2xsxBWDx44XVZfppLNo8sfd1oK3777A/PlezTs+xjDKgidCxUUzjRg81ZgfW4EXtUFhKvBsXTSjkubE4aIpc5lj4d3+w1CJ6fOJ24Kn8tvC+uTagsf2xyYGDxBv3sraVBF4YTF4KpZd/jMiwci6aPLnQ/YdKsfp9dc9t1V2g4JtL6pMgmwjXCXuUHZso6xQQPTaCIi24O24o/yzMgueH7oCiEMagMK5SNdFM6zMAWBXJgEws+Dxz7VoUdoWvNiyaG699dbYc8898fe//93o83vvvTc6CqpOd+rUCbfeeisAYNy4cQWv3Xbbbcjn8zj99NNxxBFHbHq+VatWGDFiBKqqqjB69GhMV6nurUmUBc9W4AFeoGxNTfSCXkXgsTdBVYHnKgZPNRCbJUzgqbpoimB3ZFRcNFVu5i4FXlQMHhCcA1MXTdlvsimTAMjdjlhUXTR1s2iy40U16VFSSVZkBaxlhc4BNYFXW+sVuQ3LBCtqR3YjVXHRLKUYPJ0yCUC0i7FOFk1Ab6MoymLmWuBFbfjJkl6w6Ag8UxdN9nM6Frwwq7OJwIs7Bs/H1oInsjrZCLywMgkmFjzRtcW6aPLnw8aCt/nm4RlpTV00VTasZcdWZf2nskEpSrLC/t29uzixGCCvg7dsWfBY9lkgOkMzm7mbRVbKh/1cGHHE4PHHumXLcAse+7sqSuABwGabbYY5UTn4Daj54Sw0Z66a+vp6vPhD1dUT+SqnAHr27IkBAwYAAMb46SMdwg4W0WCTLRJ0BJ5PlKsPH4PH4n8HO/ijFgQuYvBYV0ORxcjGgicSeLylQHbx6VjwwtphKRULnn98XAi8MBdNQN8KYmvBE2WOjSIq9sjHpkxCPh+M3SiBp2vBC/udYTdh2Zhmxxx7zEvFRdMmBg8oFHhRCxTR9/OYumiKRGiYYI9D4Km4MfbtGzzWseDpJFmJw4LH/ra0YvDY7zWJwZNd+yJRIht/YTF4PmEumiYxeKL7gksXzagYt7AyCa5i8ER/+8RhwWvevFjg5XKFGzAsMhdNFQseEC3wZM+z4zDuLJoqZRJE/WjRQl4mASj8DRUl8Orr6/HBBx+gleqMqciqVavw29/+FgAwmEn9OGPGDKz9YWbs37+/8LP+81OmTHHaJ6BwgPGmfsCNBc8naic4LAbP76eqi2ZjY3HdNBZdC55soouaxHj3iCiBV1WlL/BkFryw+A0RovMiuwxcxOD558DURVO2QGEXliYxeCrFzl3G4LGYWPCScNFkj5kLgRcV28q/JmpHFgCvEhNi4qIZJvCy6KKZz4sXtnG6aCZtwXPhotm+fVBva9q0cOGjY8GTbe64qoOXlAUvbGMiLhdNFxY8dnFv4qKpK/CWLw/6qOqiqSKEo4QYvwnPjxOZi6ZKDJ7N+s/WRdM/rzKBZ+OiCUTHd8ue55OZqH7Ox3WZBNFzLVsGbYsSbrHHPYsCzyjJShhr1qzB559/jptuuglz587FsbL8sIqMGzcOo0aNQlNT06YkK6tWrcJPfvIT3HHHHZveN/uH/N7t27dHG9angGGrrbYqeG/Yb4iCfw87MNgLI3i/uB3VMgksOi6avAWP/a7qau/7w4RBVHkD1ULntgJP14LHf5fspqaSZEXFYgEAn37qpSMWvUf2u8Pay+f1LHhJumh+9x3w3nvi9/qoCDzVQue8cHr/fe+GJVuQsROxjgWPr5foSuDV13uJX3bYIXjOtQUvbIyE3YRFbfNtyergmVjwwgT3Rx8VZ/3zaWwEPvig8PjbumiqWPAAb/G3fLlnGe7d23vOJIumrB88URa8uF0016/3zsWee3rfpSqCdtoJ+PZbz71r4cLCxCssLix4sgWV6JzG6aKpYsGbOdPLaCnqD/+9Ki6accTgydyV40iy4n9GdF9g78mqLpoffAD89KfF3kFR66s4yySofNbUgse/N8pFE9C34LFjR8WCp7oZ4RMl8GwteNXVQV07Fy6avPUOKFOBV62wJZ7P59G+fXvcfPPNJl+xiWnTpuGxxx4reO7EE0/EXXfdhXaMY/CqH3yy6kJmaL9EwkrZ1ca9Twf2kIgmVZmLpmoWTRabGDy+ncZGu+QouhY82Y1I1HaXLsFkbyLw4nDRlB3zf/0LGDJEnm3KRODJ3OJk/TMtdK5iwWPbXr3aW+SybpCi/qnE4Mn6HBaD99vfAtdcA+y6KzBlitjl10TgAd75iLJQmbhoHn+8N0aOPjp4Lg0XTVULXpjAs0myEhWD96tfeZtS7HHyuewy4J57Cjet4iqTABSO3y+/BA44wJt33ngDGDhQPauuTxwxeHG4aNbXe8d/wgTg//4PuO8+tRg8wEvm4IfGT50qF3guYvDiSLJi4qIZtRCdNMkTyuxn+WvA1kUzTgsee08zKZMgej4sBo+N/VIVeDff7G0M/eIX4u8BotcILsskhIklFtMYPD+uzb/3RSVZAYAePcTtyyx4LDYxeCreJ3G4aALesWtocJNkRUTWBZ6Ri2Y+n5f+q6mpQc+ePXHWWWdh8uTJ6O1vdxpy8cUXI5/Po76+Hl9++SWGDx+Ol156CTvuuCPeYAuBpAw7CM46q3hQyCwYrDun6s0lKpbDn6hqasKTCKgIgygXMJMYvLC+sLCLA35yjSp0DqgJvDB3VlHfZMdqyBDvf5F7LuBZbvzqHBddFD0p8t/lKsmK6HzqWvDGjy9Mody8uVhksWNPtPPLt8sSZsHzf+fHHwOLFok/z/ZPduNka+XJ+iM6PyaFzv/1L+//f/87eC4qvkT3+Km4aKpa8PhFsm6SFdM6eEBhGnOWe+7x/mcXgDplEnTPJbu4vOqqYNwdf7z3v66Q0onBi7ovhJ1PWxfNhgZP3AHA/fd7/6uWEth+++AxW3+Vx0WZBFcumrZlEqIseGPHFv4dtRlmkmQlzhg8tm+uyyREOUvxY1+W8RkoPs5s34DoRBz8vTtsnMja8OG9uGwseLvuKn6e/W38eqiuDvjRjwo/f9BBgVA78sjg/f45DZs34ojBY+eAe+8tfl1H4MnGBT/n6pZJYC14IspS4DU1NUn/bdiwAbNmzcJf/vIXbB1WfEOT2tpabLfddhg2bBheeuklLFu2DCeffDLW/TA6fbfMMPfK1T9cwW3DRusP74v6N3/+/ILPsIOgRw/g3XcLd6Fl3VLJ4sgTtRPsD7pmzcIXUyqxW64teDoCr1u34HFUDF5UALWKK5lMDOvG4Ilo1cpzK3ziCeDWW9XctVQFno4Fjw/GBvRj8Hi3X9nCQCVTq6qLpmwcy/rOTv6yMXfGGcBzzxWOM5XUx7ZZNH2iBB47TckWCC4seKJ+qrh7yj4LmMfgAXLRLsI2Bi/smLHnh60n5i+IdOcCHRdN9nyLds/DFlW2hc5FY03VjZG9h4lcmnxclEkwrYPnukxC1EKUTzgj+r26MXhJWvDY+4CrMgmqAi/qfPzzn8FjUWKfKAseO1b4enz8cZJd7yILO7vBCMjnbxUL3vbbe+Wx7rxT3j9+PZTLAS+95B0ff2OsfXvgrbeAJ58ErrsueL9/TsPmM5UYPBsXzYEDvU0ldoMo6v4ZVSZB1Lc4LXg6JYiSItYsmnGx9957Y8cdd8TcuXMx6Yeq376YXL58+SZ3TZ65c+cWvFdGXV2d0j8WfhDsuWew0wvId39UXAR5ohb0bNxW2OBUid2KivHRrYOn46IZZsHTjcFTWYjKFu6qMXhhNGsGbLMN8MtfegtHXYEXtgjy+9fUFD0pin6vrgWP3y1TCQ6PGqthnw37DnYcyCzgYQuPIUMANieTigVPVeBFjZUoF01dgaciylRdNMMseHHG4Im+D5CPa9sYvDCLADvFs7v7/nmK00WTPd+ixVWcMXj84hRQd2NkBR67eclj6qJpasFTjcFT9aLRseDxwsOFBS/JOnjs867KJITF4LFECbzBg4OY2OnTw632orUQO1b4OdZG4PHYWPAA4Mc/Bi6/HBg0SNw/fj0EeGW1TjqpMIZyp528dSm7aaSyYRWHiyb7fC4HHHyw98/HhQWPn3NtYvBElKUFLwv4Auu7H+4ivXv33pSx0xd9PP7z/fr1c94f0SBQSROvkuSDx5XAS9KCF+WiyRbM9FEVeM2bm7to+gtRf9dLhIpQiVqk8IsOFYGnunjXqWkouhHoxuDxfWZd5lhsBJ6qBY8VErLFWdS5CeunTQxe1IQfJfDYm6orC56LJCtx1sHz4RwksGSJvD0e9rey/ZZlC5XBLi7ZPUP/M6Yumhs3RouCKIHnukwCO6ajYsjDFt3sPUzVgqeTZMW0Dp5qmQTXFrwNG7z4TRbRXJ5kDJ6uiyZ7PMMseCZlEmQb3z5RgruqKkgesn49MGuWuG+yfugIPN3kNCw2MXgssnEsuq+HIXL/D1uLxO2i6aNjGfdfD5vDwyx4qmUSKi4Gz2fJkiW4/fbbcfjhh+NHP/oRfvSjH+Hwww/HHXfcgSWyO7IDFi9ejI8//hgAsMMPaemaNWuGo446CgAwatSoos98/fXXePvttwEAQ/yAKYeIBoFKFkETC17UQkHVRTPJGLwoF022Pz62FjwdgRcWi6MiVKJ28UwEnq6LZlj/fHRuBDILnupEpjI2TLJosqgIvKgbZ1g/43TR1LHgyRYIujF4+XzxjTPJJCsqLpqAl2afRSYWonZh2d+qa8FjxxMr8HK5YvGogo74Z8+3roumrQVPtGGj6saoKvDiLJMQNSZcl0kIGwczZqhZ22xdNHVi8Fxb8FzF4EWtoWRts9kh+XkjykIW5qLJj5M0LXg+snGsK/DYPrty0bSpg+cTl8CzKZNQkRa8cePGYYcddsC1116LV155BdOmTcO0adPwyiuv4JprrkHv3r0xzk+npcm0adPw+OOPY71gu2jGjBn4+c9/jg0bNuDHP/4xdmZyal911VXI5XJ45JFH8PLLL296fu3atTjzzDPR2NiIoUOHok+fPkb9CkM0CHQEXl2duntIVJY/1oIXNjhduGiyk0mYu4WtwPMXPH7KW1dlEnQFnsxFJWqS59tnJx6VLFOqAk+WjMNHJwaP7TPbR9WJLGkLnk4MCItLCx4v8PJ5+fGyddFsair8/aZxc65dNDduFAs830qvspDh3dpk7n46Gzu67tXs/M2Oi6oqs1hclfnIhz3foqo/cdbB410083l1EdSxY3B+w1w02Vu7aZkE1fpzgHsXTdVC56K4sCRdNHUEnswSxY6NOMskiDa4dQUef7yjLGTsPS5qXpRd8yoWvDVrxOdS14LHnuf164OxJ7qvhyGy4JkKPD6+W9XyGSXwoix/KgKPXeM2Nuq7aEZZ8Nj7XNkIvJkzZ+LYY4/FsmXLsPPOO+Puu+/G2LFjMXbsWNxzzz3YddddsXTpUhx77LGYOXOmdvvfffcdTj75ZHTu3BkDBw7ECSecgKFDh2LPPfdE37598dprr6Fv37546qmnCj7Xr18/DB8+HI2NjTjyyCNx0EEH4fjjj0evXr0wYcIE9O7dGw899JDJT45ENAhkbhcs/k1QNcEKEL1w9i/2pF00H38cOPXU8HZUhQrgZZ30v3PlSm+S3Hlnz7f8s88K+yC6ybqy4LG/u39/4NJLg78vv9yb/MIWM34fRX37+msvyceHHxZ/RtU6w7bdtStwww3y97pw0UxC4KnG4LETrOxGEnXjjMtFc8kSLz5km23E7+UFHt/PMBfNFSuAvn2B114TfzdPWGygTR08/vj89a/e9SCK4/I/p7KQ4RdqOhY82W+1icHj27e1kqkKvObNxXOTaxdNtm+8tbihofD+FSaCqqqCbMGyc3bppcCwYcHfrpOsiHCdZEW10LlI4Il+b1wumitWFM/vNhY8kzIJqi6aIoEXJbirq73SHD788dax4PG4jMEDii2EgFocGQt7jHv08NZDa9bYW/CamuTjuLY2XMSym03XX+9tSPmJXfznRYjGocxa7zN6tJcs5uST9Sx4330H9OoFLFhQ/Jrs+4EKteDdfvvtWLt2LX7729/io48+wkUXXYSjjz4aRx99NC688EJMnjwZN910E9auXVtQjFyVnXbaCbfccgsGDhyIefPm4YUXXsC///1vzJs3D4cccggefPBBTJkyBT0EhT0uueQSvPLKKzj88MPxySef4Pnnn0fr1q1x9dVX44MPPkBn/+7jGNFFHmXBa2wM0umqumcC0Qtn/7mkXTQB4O9/F09kUTF4otfatQt2r1et8uoxTZ3qZdl7+unCPrDH38+hoyPwVMpJ+Nx1V3Cj++Mfo61mfh9ZeCEweHDxZ1Rj8PjXfv97+XtNBV7YRLbvvuLPu3TRVLHgyRYuOvGRUS6aLVoEC1gR7Jh78UWvwPEPuZ2KsMmieccdhYWTAfVrS8WCx4+pSy4JHrMe7vxnzz5bfj34feB/p6iwOZ9iX7aBEnWTjrLgyVKQA/LFZS5nb8GL+rx/vmU756YWPLYeG0uYi+a6dXoiyN+s/O674rll/Xpv/mQxjcHTseCFHXt2vKou1pOy4Nlm0dy4sViUqcTgsfejPfYI2jfJonnYYcXPiVw0u3Ytfl/UWKuq8koQ+cyeLe6brH9hYog/TrJzIRozbLIQH5E11e9fVZW+wAO88fXHP+oLPN7tNir+Lqxv7Fx0883eGGHvF7K1lyhSKspF87jjvDHz+OPe5jgQ3jf2eM2Z4wlQvt8s5RaDF7H0EeNbw24IMRVcf/31GDVqFMaPH6/d/mabbYZrrrnGpGsAgEGDBmEQm24oAUTl/qIE3pIlwc1Bx4IXtVDQzaLpx/KJLhQdC57PunWFbkWsm5qOi+YOOwQTkShYne1Ds2ZeWuDnnw8sbCoZDf0blqqLps8XX4QvDkV9ZOGPA59UAjBz0fRpahKfex2Bx964wlwRRoyI7peti6aNBc+Vi+b55wMHHqjmrgIU10Li0RF4vFVl3rzi9sKudV0LHj9e/Rtj167AD6HOAPRuav5x5vv5f/8HfPWVV1DZv6XwfTKNwZMJvMMO87wNwhIqyxaXSbho+udblr3OROCdd57ncSAizEVz/frC+1eUCPI3Kzds8LKPsveCL74ofr/rGDwRYcde170NsLPgyUIdqqu982niohl2DFeuLDxnKha8v/7Vuzb69we2287rW0ND8fdGlSEAgL33Bh56yCv4/re/FX6O/a1suRofFYtq8+be8auvL/aUSsKCJ9ocHjnS24R76qngPiCKo1axQrGIzvOcOUD37sHfKgIvl/P6vX6998/UPZPtk2xjjx0zJ50E9OzpzWs/+1nxe3Vi8Px5SsWC58OW4IkSeLmc13YpW/CMBN7ChQsxdOjQyPf169cPo0ePNvmKkoP1A/dhJyeRi6ZJBk0g2tVH10UT8C5w0cSgE4Pnw8ffsANfNU5om22848cKPBl+H37yE++fqD1XSVZ8pk0DdtlF/hlZH0V9k6Fb6JxlzRpx7I7OTh8rQGQC7w9/AGQhrWyfZYtOVRdN2Thmd5TjdNHs2DEo+hwG+12ywHofmxg8fuFTW6u+k2liwaurA26/3XusIqpFyARe586e5W/DBjcCTyZm2d/95z97C9cwwgRenC6a+by6BU/VRfOYY4AHHjDr27p1wf2rVatoSwOfaIWdh/gkGEAyLpphv89E4KlY8NavF29KiubyXM47tqtWyV00a2vV50v2vStXFlrHVARely6FxadlLsGqWXzPOQc48cRA4Ili8NiYex9Vl9m6Ou888hvpNhY8GxfNnj29OaZly8BiHWbBU3FbB+TrAJVyTzwtW3pjdN06O4EX1Xf2OLZuDdxyi/y9KjF4YZ/h4Y9XLhdcr1Gbg7L7FUvWBZ6Ri2ZdXd2m8gRhfPfdd0X14soV0eQUVSaBXbS4isFjs7upumiK2vExseDxYkw1loz1j/YFs47A44ly0WxqCn6fagyez9SpejvItgJPx/IJyMWFTh08FQte2OTustC5igVPNsG6cNFUvQGz3xWnwOOtfzpWEH7hIjpuqhsxUQKPFQOyGDx/BzzsenXtoqly/aVlwVu3Lui3bHHFZkXlr1/RXBm16As736wFT+V2HlYLT2TRSiLJiqoFT3VxrGLBmzFD/Jps7PnHVmbB0/HiYM8BbznSjcED5JkSdZKEiM4jK2aj1lBhiI4d+z389/vEZcHzUUmUBZjdX3zyebMx7Pc7yoIXVgMPiO67zhiJisEToWPBa91a/hr//f5xLGULnpHA22233fDGG2/g008/lb7nk08+weuvv47ddtvNtG8lg2xXk83uGCXwXMXg8VafsN1WXQuL6IIQ3RT4BYbqwortgy/w/EnId/cRYSrw2H7qWvCmTtW7oE0EnmkMHiBPq6/joskeExOBl3QWzTgteKo3YJcWPDbBBn8++c9GjaewBa6Ki6asn1HXALtok8Xg+b8lTIS6dtFUuf5UY/BU9zBVY/CiauAB4XObaC4Pmz+A8PPNxuCp/NawUgmqSUdYdOvgiQg79iaLYxULnui3AvK5RCRS2DEb1jf+/LLngJ+HdOvgAXKLse3i3ZUFz79WeU8pNsZNRFwxeD5RtUyj+sfjUuD5/VaJwdPtE4vtJkAUpgIvyvtDZsFj/y5LgffrX/8aDQ0NGDRoEP785z9jNbPyXr16Ne6//34ceuihaGxsxNlnn+2ss1mFDfJlyeWCCcqli6bqzUrnpm5qwRNdJKYCj8XPjMVa8GSLPNmEFrVjnnWBZ+OiKRMXaQk8XRfNJGPwwq6DNAUeENxcXVrwTFw0WfxyB7LPsmy5ZXGb/O/0N3H8mAdRH12XSbC14LHjmV00hKFqwYuqgQfoCzwbCx7ropmGBS/uGDwT9zYVC55M4IkSlQDRFjzV7L1A4TmIKuDtY2LBMy1Yzwu8qiqzMgn8+2QWPFnfkrTghcXg2VjwADsLXpIumqabOaqf4eG/j71uVV00+fexGxFlKfB++ctf4pRTTsH333+PCy64AO3atUOXLl3QpUsXtGvXDhdddBG+//57nHLKKTj++ONd9zlzhJXV8xdicblohk1CzZqF3wSjLCwzZgBsrpoowegTJvBU2+BdNPN54Ntvxe+V3ZjitODNnAkohKFK25dNdOvXA6ec4qUBZrOR6lrw+Jv6nDnA0UcDV10VPKdT6DxpF03VGLwNG7yUzIcfLm9Lx4Lnt9HUBPzmN8GYS8NFEwgW+CtXAqNGAYcc4pVG4BcVUdeVrgVPtb3ly4Ff/hI44wzxOd5qq+I2ZRY8tt2NGz2L/QkneOUgZNV2ojadlizxrtNf/7pwDLt00RTFuopQjcFTseCpuhyKvjuqbzysBU/FZY634M2e7c09V17pJdPhMY3Bc1UHjz1eqhuQuha8Xr2Cx7JkFP6x3bAhmGNVBZ6OBU+3Dh6gZsEzWbyzGweizQxdF02+Rq6NBc9FmQSRi+bq1V484umnB2Jf1YInuk55C55qHKnfb9skK7J7o39dpGnB448Xa2iJunfI7ldbbBE89o/7TTcBDz8c3dekMUqyAgCPPfYY9tlnH/zxj3/ErFmzsHjx4k2vbbfddrjssstwzjnnOOlk1hGlAfaR7SwBAHPIQlOv8+i4aKoKPNGi4PzzC/9WvfmFpWVWbaNvX+9/drISZQ4E3Lhoht3cZH1+6SX5Z3hULXh//CPwz396j9mMc7YxeCedBLz9duFz/rHdbTcv7TCPrP5RGi6ast//9dfA8OHyPoR91kfUz2ee8TK/qbbhwx4P0TXPwt+Ioyx4J53kPf7f/7wMbSw6Lpomhc55/N/51VfBol2UdKhTJ+83rFwZ/BZZDJ7fT78o7XPPAU8+qdYP2XPnnAO8/37xe2xcNE0FXpZdNMNeX748WKzpWvDmzweOPx744AOvbIgI00WfaxfNZs3UUtUDahY8P8FKs2be/cz/W1YTl0/K1qZN4bW5887BPXC//Qo/G7eLZlwxeKzrr2is61rwAO/Y+fNXlIUs7DeHra1YwtYO7dsHj/313m23AU88Ufg+GwteU5OdBa+xMbzUk6mL5saN3rh0FYMnO/5h1yz/GnvtRfVFFoO35ZbBPWXDBmDKFOC3vw1vKy2MLHg+5557Lr788kvMnTsX7777Lt59913MnTsXM2fOrBhxd9xx8uLeQGEMGQ8bU6a6SADCF878hR4m8KIsLHyFC9mF/Oc/F/5t6qL54oueNfSOO4LFFTsByxbMabho6qIi8DZuBF5+Ofh70iS1Poh+P+8Owos79nMXXujtsPOLBpcWPNs6eDI3uDlz5N8va4tH1E9eFJi4aEahI/CirG42SVZsLHgsEyYUP9e8OXDrrd51feWV3nNhFjzWUrBkifg9LKJ5k+2bSNyx3xNGy5bixUPcLprsgtyVi2bU+czl5GOI3YhUWXBvv33w+PPPPXEXhqnblujeJjuvKhZP1YUx3yeZBc+fM+vqCsepisDz73V8ivlf/hLYay+v3iwLf37ZccNvuJq4aLqIwQsTeK1aqVvwnnjCm0/8jJz8+0Quri4seCYxeGym3unTvf///e/i99nE4AF2MXiAuHaxj0qx+bA+mVp5+etbdt2EHTt+c4M9TqJ+i7zN+PbZjPn19eLSL1nB2ILHssUWW2AL1m5ZQYwYET7AwrJA6hSPZQnbjTS14KlkhZMtEn7zG6847rXXen+bCrwjj/T+sai4G5ha8Ngbn47Aa91anvBFhkpM2apV8t0oWxdNEf5xa9YMeOEF7zH7/WkmWQlbsLCopKs3SbLC71raxkiI4MdtmMDj4RcbOoLMNgYPEB8P0UK3eXPPE4D1BlB10WT79c9/el4OBxxQ+FnR8VE5VyrnyU9dz28slaKLpsoxqa0V94sV2iouc127emVFli6Vx6Hp9E0nBk92XlVcNHUEnooFz/+emprCMR7logkEi1k+iyZv+fHhfzc7bsLuxywqFjzTMgk+VVXe8VKx4DVvLh4bv/yl949FVnM4iRi8MIHXs6d3XteuDa4F0TVkUybBNskKEC7wwiyUQLjAq6szj9Pk71OyDf6w9feyZfLXRH0R5T3g38fWP66vVxfnaaDctQ8++ABjx47FTFkwBMOMGTMwduxYTGJNEBWKP2lu3Bi+I6Ej8JJy0eQJm8BlYkDUJx1UBJ6szbhi8KJcFqL6AoiP5cqV8snCVZKVqM+x1NQE/Uk7i2arVtGF22WYuGiaCjwdCx5//EXiXiZsderPAfaFznlkrkI8osWBLMkKUFjAm188itoSHR9XAg8Qz8tJJllx5aIpszKxyM45K/BU7lO5XLDLzZa+keGyDl6WLHhsgiYVgRdlwVOda4HC60JV4IWdBxcumkBhEqWmpmCTta7OO0ZsGzprIpnASyIGL0wAVVUF4SZffeWde5HAs7XgmSQKYvsdtl4IE7CAngXPJgbPtcATHUuRUGbvy61bAx06FL6/5AXe4sWLccghh+A3v/kN2rNOxRI6dOiA8847D4cddhiW++XmK5Qw4cMOWNVgYkA9YNzGRTOfV4+DAgonCxdZNEXtimBFCE/YohZQF3hhu6Oqn1EVeDILnqs6eCwqNwKRi3EaLpq5nPi4q1ieVX3t2f7w4yEtgScba/zvDouhANwnWdGx4EV9VmbB42N3RQsN0fFRmWNUz5NoXi7FMgkqyM65rsADCt2YonCZZEVF4MnCGlSTUwD6Fjx2HMneLxIpqvdOHRdNk1gmFy6aQHAum5qKN7hzucJ+6wg8kfXT/56wvumUSTCx4AHBtZDPe26aovenUQdP1YIX9fui3EZdxeCZuGguXar2XT4iYwSb3K9Pn+L1QskLvH/+859YvXo1brrpJmymkM9/s802w+9+9zssX74c//QzRlQoKgKvulpv9zAJC96aNcWTedgucNjvtBF4UTdd1dTRSVvwogSC6DisWOHORVNWB49FZcyJXIzTsOAB4uMeJWxkbbGI+smP4SQEnghVF03Zzc8nTBCIrg1XFjzRdcXfENm2ZBa82lrxZo+Ji2Z1tXoyDdEikxd4qptzScXgicIBVH6vbI7RjcED9ASeqduWaNzKrnXXFjz2eEZZ8HiBJyPKRVPHgmfiohk2RlTKJOhsrDQ1iTe42X5nzYJnkn0UKLwWpk4VCyaXdfBU11iqFjwbF03AvEyCCwteGKJ+i8qM+bGTgCfw2Htafb35hloSKB2a//znP6irq8OpYdlEOE455RS0bt0a/xZFlFYQskyEQKH/ueqCAyhekDY2Ag8+CDzySPEADRNlbDtr1wL33RdkUxTVnAtLaKEq8Fy7aIZN0Gm6aEYl0NC14KXhogmIBZ6qT71M4DU0AH/6k5f2XzUGDxAvdqMyVUb1UdZPfgzbutCIULEYuBJ4cZVJYDEVeOyYl8Xg6Vjwos63zjkSLTL5BZWqwEszBs+Vi6bqb/XrmKqgkyDI1ILHHvvnn/fmHh9bF80oCx7voinDxkXTRQxe2BwXhwVPlIOAjWfV8WoyjcELm+dcxOABhQJv2jT3MXjvvhskk9LJBOvKgheXi6aLGLwwRPOOyILHbiL37VtswZPVtcwCSre6zz77DHvvvTdqNVbntbW12GuvvfDpp58ad64cCBM+/qJMZyIDit1NRo0CzjvP+/vyy4PXmjULb5sdqH/6U5DGukcP8c3ORQyeawueSuYvwK5MgonA69OnMHMlP0m6jMGL00XTP76yMglh51Pmovm3vwEXXRT+eVULnorAM8miyY9h1aQ6ri14qsllonYRk0iyIloAqQg8FtZSwM8brix4OnOQaP7k3UdVY3JVLXhs3EgWXDSzZMFz4aIJeBkpt90W+PGPg2vdtQWPddHs2jV4XvY9Ll00WaEUdj9mCVvIs9dlPh/8fpsYPHZTyr/O2D7obAbLXDSjLHi5nPc9omPiIgYPKNzs+PxzoFu34vfYbCCyG+86bsZsv22SrETFBbqKwTNx0Qwj6h7mX6d+YiDAS7DCrxdUvIjSQunQLF26FN1EozKCrl27Ygm7/VeBqLho6rgiAMU7wbffHvzN1gSrrfUKI++2m3cRPv+8vB22RtFjjxVb8Dp08NLpywizVLp20WRvrnw2LRZXZRJ0Y/BatfKyqz7yiDc5HHIIsM024W0C2YjBu/hi739/oyAOF81rrgkeyxa63bsXPyc67irCy4WLpuo0lpSLZpTFjsd1khXR9aIq8MKOEWspiLLgNW8ubl+nJmAUorm5oaHwt3bt6pUZyeWKS8bIvjcsBs/PY1ZVJb4OAH2Bp7KrLzvnbAwKm2AgDIVIjk24TLKis2H0j394YsU/F64teGySlRNOAHbYwfsOWT1Al0lWVGPir7jCa3effYDdd5e3L7Oi2ljw2H7513bUpqwMUwseID/v7DXKZv7kibJwsTWOV68Wj0VXWZrD1kM8KiWoAHsLns76LywGT9bHsLlNdq3x3+UjsuA9+aT33j32AA4/vHC8bNhQBha85s2bY43KVjnH2rVr0VxnS6EMCZtoXQi8hobCAcdeFLW13oQ6aZIXk9Wxo7wdlqoq4Lvvgr+HDwfOPjs8W1ySMXjvv++JqBYtvF1YGWm4aP74x8C4cd4Oap8+3sKvU6fi98li8Fxl0VSJwRP95rvv9gSYv0CLQ+Cp3MxEFoA0XTTDgrVZbMokiJCNNZsyHS4seKKbvksLHi/wRDF4KtatsO9QQTQ3b9xYnNRg7FhvE4BdzPGouGg2Nnq7/ADQq5d89zwOF03ZOWd3qNki5mFUVXkLL5XvNXXbMi2T4NOypXjHXgVdC16zZl781cqVxfdhH5cxeKr345NP9kRehw5qMXj+50Uum7oxeKLEIKpWbh7TGDzAO1ai+wj7/WF90bFw8dZ/H1UrVNi8vMsuwF/+otYO31bYfdQ2Bi/NLJpHHumtZUXzlqrA+/nPgYMO8q7bqqrSsuAp3eq6deuGTz75RLvxTz75xMjyV06E1RLzlb+ui2aYwGPxn6+uFt9UwurHsRa8nj2jU4EnGYPXurUnnqKIqw5emMBr167QPUa24Muyiya7+84KPN81xzaLporLpGjaMHHRzOWib54qLpphyYpYknLR1N1v07XgRV2nopu+SFjoCrywMgnV1YXuVKYCT+ccqbho1tZ64yxM3AFqi9fZs4N5KczNMUkXTRZdy5xKltskYvBE39GihVn2QUDfguf3QSbugGgXTZ0YPJ2s1qINSB7ZeLOx4MUl8HSyaLLfzcN+f9g41skyyc9rPi4seDvvrNaGD5+DQUapx+Bttpn3vXx7qmUSgMK5vZRi8JT2Dfbdd1/MmTMHb7NBRRG89dZbmD17Nvbdd1/jzpUDMuHDqn5dCx7v6iMTJ1E37DALHivwVG7qYTcUmxg80UJS9Xi5KpOgI/BUBaxoojNNsmIq8FT66h+XfD44hqoTNvuajgVv++3VSwZEWQhUbpwqFjxVknLRtLHguXDRVLXgidpRsRSIyiQAhfOBTPwm7aKpes2ruGhOmxY8NhF4fn0xHhsXTRZVCx5gdlxEuHDR9C2KLDYCT9eCp0KUi6aOm77rmHjZ/GETgyeq3WbqosluxOha8FRcNMMEXpTA4NchNha8sPOlksiHhf3dYVYo0xg81xY8mxg80TlWteCFtZV1C57SsDrppJOQz+dx9tlnY4WC79fy5ctx9tlnI5fL4YQTTrDuZCkjm2hFGaRU4V19ZBOUjcBjXTRVbupJumia1J2ycdHUicFTXdSIJvmVK+U3NV0XzVWrwq1OYfUDWUTCXXXC9gPYAb1Fxfbbi5+XLejDUBlvIoFnuiunKvByObX3uhJ4YQsnVxY8lUQFou9nCSuTwJMlF00VVKwTU6cGj00Ensx6Z+OiyeIyts4niSQrov7wAk8nmiSq0HlTU/C86nGIy0XTRUy87F6q21YSFjxXMXiqFrwo2M0FmcBzYcGLEmI8qi6aWY/BU1nHqMaCmwi8krfgDRo0CIcccgimTZuGPfbYA2PHjkVeMKvl83k8//zz6N+/P6ZPn44DDzwQhx12mPNOlxJxC7wwC17UwkPVRVPlpi76nevXA//7X2GGJhcumqourWnE4Kku9kQWohUr5JYj3SQr+Xy4CFDtp+i86uzI+d+zYAHw5pvepK1iwROhmq2QReXGqeKiqYrqgkk1nbXsN+u6aLoukyC66Yt2MkU3v7Bj6/ezqUm8KcAuCtMSeKtXAy+/HPytOqepxOCpCjz2N4wfH8yxNjWZon5H8+bRrvosJuJBhMhta+VK73fz6Iig6mo3Frw1a7z7nD/Wv/kmSFsf1ScWl0lW2L9dhEzIvGF0LXhZjMFTEXg6fRHBblzFFYNnY8GLw0XznXe8DJ9pxuD5qGaFVxF47Jro1VeBWbOivz8tlG91Tz75JAYMGIAZM2ZgyJAhaN++Pfr164cuP5h3vvvuO0yePBnLly9HPp9Hr1698NRTT8XW8VJBtpMmShGsimoMngsXzepqtcxpIiFwyinAs88Wvs/WgldVpb7TmkaZBNUbpmghFibwdF00/fZkfTUReP741Zmw/b4tXAjsvz9w553RY6BXL/HzJgLP1IIXt4um6hiOQ+C5KHQuul5EGwqixUyYCGH7yc6XaQk80dy8bh3wxhvB3yauiLIFo++iWV3tZV2Uwf7Ga64BnnvOExWycevCRbNLF/N6rWFEtcnv6ufzwMEHA4sWFb837NzyrzU0uInBu+wy7/+hQ716tH36FG522Lhoqlo/+DGfy3lzzIYN7l0044zBY8+BTvp7WZmEOCx4qsmDWGpqgsRRccXg2VjwwgSeqYvm7bcD99wDXHJJ8JxNDF7SLpphBhB/DOTzwH/+E/39aaF8CXXq1Anvv/8+Tj75ZFRVVWHZsmWYMGECnnzySTz55JOYMGECli1bhlwuh5NOOgnvv/8+OkdFnVcAcVjw4o7Bq64OsgZ26KBvAvcXZry4A+wFnk5ReFdlEpKy4K1daybwZN/pT4giV6akLHh8v6+4InwMdOoEHH+8+LU0Bd7116t9n+qN2j/+Rx/t/X/QQfL3iW6wvMBjS6VE9SsuCx5fS6l1a2Dw4OL37b57kETnd7+T91Mk8NiFVVoxeDwmLpoyl68FC7z/t9hCvcYn4GVK3rChcNHsz9tVVYWLLBlR51zHPRMIP85+spE+faI3OPld/XXrgA8/FL/3wQfV+1NfL44DU0F0Dxo92stCzFuyVecEURyZjjv8Hnt4j8880/tflAEZMHPRlM0fpi6ajY1igXfLLcFzOhkhZRY8/zoL65tuDJ7uhjwQbcFTLT/iMgYv7iQrgDeH33ln8HfSZRJ8VAWev2atqvLWKrLv05kr0kRrud22bVv8/e9/x0033YR///vfmDRpEr7/wdSz2WabYY899sDRRx+NbcNy11cYsuQjScTgmbpoVlUFSTpU457CYvBYbAWezuQal4tmmJuS6q616BitWydf+JlY8PyFhui7knbRZBHtfm67LXDvvUDv3vIxZxKD5yLJyhNPAMceq/Z9Oi6aAPD4456r2cEHy9/btm2xqyNrLXv8cS+Vs2q/4orBY9vt0gWYOFF8zmprgffeAz7+2KsrJOsn+5tF/ZHNm3G7aPKYWPBkcYh+iHvUWBf9hvXrCxfNv/gF8Otfe8Jsyy2j+5ekwBs+HGjf3isrE7VA4wWeKIHUmDHemPvxj+Xt8L+vvt6NBY9F1DcTC55uDB4AvPSSd835UTEuBZ7rJCsyC16fPt5mxZo1wMCBan0DxAKPdfMOu7/rWvBatTL3oJDF4LHF0MMIu0Z1LXiqLppR10XUeS8lF82f/hSYMMGb63r0CG/P1MsnSTSX2x7bbLMNLrjgAtd9KUtULHhZc9Fkb6KqVhNVgWcbg6cjhl0JPH4i0I2HEyFyU1u/Xu66ZfKd/gI5TYEn6pvoZtKiRWDNkpGWBe/nP1ffhde14LVtGy0e27UrTHoEFI6TIUOix52uBc8kiybLT38qj6UEvJun6AbK9pM9B6LzKLtm43bR5HHlotnQEGzKRI110W/kBV6LFuEbBzwqLpo6hB3nNm2An/1MrR3ebUskovbZxys4Hwa/YLQReDJRKprbbGLwVMskAN6idMiQ4G9/we86Bs/GRVMWg8dey74lUgeRi6bq/V03Bs+ktLN/LcgseGHxtqJ2RMRlwYvagNGZT7OeRTOXU5szbWMyk0LDy5kwQSZ82MFqm2RFdgFG3bBkk/uqVdG1pnj43ynL4OjCRVOVqAWVaR08E39+HpkFz6WLZpgFT/UmFYcFT7QTZ1MyIAyVRYdonPi/1a+/5vL7AL3FZNTvVrmmkkiywqJzzFiiYvBYZMewFFw0RcecdXGNsuCJju+6deaCBXBvwTPxOhDBu22JBJ7KIo9fIMZhwRMtQnWs+v57dcskiJBZ8LJQJkFmwTOlujr4vf6xU42xl90LZS6aJnOb/xlZDJ4LgecqBk8n9hHQOx4mCZV8XFvwTO9RQLZLI7CQwIuZJGLwZLsJUTdR2aTKZtA0ddE0yQYpgp+0suCiqZPNTIZLgRenBc+mTIKsb6KJWuW4pVEmQXe3VtdFUwUXAi+JMgm6fRIRFYPHEhYEr/odUcTloik65mwFIpNzzlvw0hZ4OglPwlBx0Uxa4OlY8EwsxiYumjz+3JXFMgmyGDwb/GtVJPBcumjqCiDAnYtmXHXweMu/j45VVgWduTluF00bgVcqkMCLGZFla8MGty6apgJP9jor8FStJmzg6YYN8h2OJC14/KKW75OpwHPhoikSXevXuxV4/u8VpapP00XTtD9xWfDCXDR1BV7SFjw/o1cUuhY8WxdNU4GnE4MXliRK9TuiUJmbXVnwWOFi4qJpa8Hj38+LeJcumjYCT1SKV+W642N/47DgiRahJhsKJi6aPFExeKq1OPnvdmXBM01wI8M/dl995Z3ruASeTiZZn6gkK23aqLXjskyCrC32uldZz7gUeCIXTb/uqOs6eKb3qFKCBF7MsANrzRqgXz8vU+CECcHztklWZALP1EVz8eLgsc6imr2hyAReWjF4Dz7o/ZYzzgieU3Xh4CelOF00ZUUzwyYjmTus6yQrJmUSVL9HZVzo3sAA+xi8LAi8MMul7Q48kC0LnkzgiY5rEgJPZb5xldU3bYHHH08+RjItF02VGDwTqwqfdVTnWpedc5H4NBlvLl00GxvFVjed9lyVSYiqg2cDuxmz996FgsBlDJ6JwIuy4Om2I8LGRVPWjsp1GmcM3tKlwHbbeUmivvwy+jMyyIJHxAI7sYwd62WOW7MGeP754HnbGDyTzIuAfGKzFXjr18uFiu6C2SaLJjtR+ZbORx4RJ9II6xfbTt++blw0L7yw+Dl/p0q33U6dxM9nNcmKCJUCyjY3VtX3ZFHghV2DtmnORX8D9jF4Ll00q6qCm/jZZwevH3KI2XfriAuVuVnVshV2DoBC4WISg+faRXO33Qr/7t1brz1XFjyVGDyTxZqNBU92HzK1LvLtunTRBArvASqlA3hclUnwf9+6dYXHyoXA22674PEHHwCvvRb8rSPw/N8hi8HbZ5/g8S9+odY31oLHX/vsnBZFXC6aLOyxcm3B043B+93vgG++KfQq43FZJkGVAQPMP5skFWCkTBf2YpEt3nVdNF3F4MleX7IkeKwT96RiwdPdBbax4MnKMG7Y4P12nSya//sf8MILwAUXuHHR/M1vvFT3dXVeu//7X/j7w9pt1Qp4+WVg3DhP7F17rfd8FsokqB6PPn3U3vfee8CoUV5x0Zkzo9+v6jZUVeUtHvkkK3HF4Om0GybwXKTod1XoXPZ9OrCf888B+xtvv90b4z/6kbfZIiLqnOvMIVHvHTtW3b0q7hi8desK3RBtXTRvu8071kuWAEccEV54XbWPKq/xqLhomljwbASeTOwuX178nIkFb8OGYsubrcDz1xm2FjwbF83evb05PJ8HPv00eN6FwLvrrsKi05MnB491BF67dt6Yl7lo9uoFPP20V87h8svV+iaz4F15JXDNNWptAG7LJKh4QKjcX2QeRFFtR73e1ATMnl38ns6dC40QLsskqDJihFcnb+xY8zaSgARezLAXnaj+F2BvwTN10ZS9zl6wpi6aMgtekgJPZtnasMGzGLHCJ2oiO+igoBg1n7KeRfVG1axZIMTGj49+f1T/Dj/c+8cWlw+z4KkKA5HA04kLUT0eqlnE9trL+7dggZrAU53EfcHPW/B0b5pZddEsZQse21aHDsCtt6q3IUJnDgnbfDvlFK8chCpRdfBsXTTXry/czdZdNPPnbNttgT//Wa+NsPZUX+NxlWSFx6bQec+e3tjgk6rYWvD4UgkmCVF8ZDV4/TZNM5nauGiyyUSmTAkeuxB4vXt7VrsDD/T+NhV4bduGC7zaWq90TlTtURZRmYQuXbwNKx3iKpNg856wEgs8NmUSfFwJPBsLXu/enjeYbI2ZFchFM2bYiYUtTsxiG4Nn6qKpcvG6jsHTDdS3cdGsrQU6dix+3r/ZsZkSddz/XLhosqiICNWbO9tWmAVP9fdGWfBcucOpZhET9csFfj8bGgoD9MvFRdN1kpUkLHgmlgaV9+u6ecuuFRvrbhIxeLr9c536O8kYvKRdNKuqxBZk0b3YNKnPmjXZcdF0ZcFjN/Jcu2jy7bMCL2y+4r/bF0rsuTSpHcjClknw2zVpx2UMnuyY63oB6BR913HRDBN4ss/IiCMGzyTpW9KQwIsZFYGXtSyaLDqDmC2sKrLgNW+uFmvFf4ZFVwyLLIb+zS4ONzyTSVtl5021XbatMAueqltFUi6acQk8kaVEBCvwbBbJSZdJMLHguUiykoQFz7Qtlxa8XE7+ft0FlY6LZpRrfBxlElj3Qt3fJiLJGLykXTQBN7XLeNixtnZtPALPZZIVXQuj7Ji52rDr3Fm8iRzWPv8a607pY1I7UNam6cZV1GfisOC5Fng6FjzZvZtf06Ul8EohCycJvJjhs2iKiKsOnqmLJotJDF5Dg9hs36WLfqIM/iLUPVaiyZ4XPi6tNCY7kVGLKTbJhE5bYRY8VeFjWwdP9XjYCn8ZsmuDh70Bq8ZmikjagueiBltWC52r9kX3u3XnENkGXNYteDYCr317vc+KSDIGzyQBU1ICz5WLpo3AYzdcbV00bSx4vmsrjysLHiA+Lzoumv5xCXPR1EVUJsGknSTKJOi+R2a4EGFTB8/HlcBzIdCyLvJI4MUMO7EkHYOXlosmIL4J68bfidC1dqpY8FzGWcVhwdNpk7fgPfQQ8MtfFr/PxIJnUibB5HiooHrOVAUea8HLmsBzHYP38steFrBHHvH+Fh2jqHaTcNE0bculiyYgn59J4IUTh4umzIJnIvDefrswSYbu8erVS+19phY81y6aCxYAP/kJsHChfr9clUmoqhJ7a2RJ4LGbff6azVbgRSWPMmmHJw4XTd0YvCixpWPBu/12cRITPu4tzTIJLsdtHJDAi5moRUDr1voXOnshr16dvRg8QJxNzIXAc+mi6S+GdC/SpAWezo2YbWv1ai9bpwhVC14SLpp+8hod4nTRzJrA69pV/ppOEhmfKVO8xa1fEzJLhc6z5qIZ9v40BV4cLpps+vcjj9T7rIg4LHiyGDwVorKd6p7PH/1I7X02Fjx//qqq0hex/Nx9wQXAf/8bPJdGmQRAnDHZ5UJZ1L6JwAOC4+8qBg8IPGvSFniy79cVeP37B4+HDAl/r04MnowOHQr/VrkuROffxK2bhwRehRM2sfTsCdx5p/7E3bp1IFy++CJeF02XAk83wYoIFy6afDZI3Yk2bJKKw0VTp39sW2y5C56kBF7U8dhvP+Dvf1fri6xfYSRtwYsjBm+HHby6iaKxrPp9ssVtPl94jHbaCRg+PHpMJmnBS9tFMymBpxODF4cF7/LLPWF31FFe/SlbkojB69dPPdPn+PHAnnvKX9c9XjvsAFx3XfT7dH4re52uXBnMtSbWBn7uHj3avF+uLHiAOPGZy4WyqP2wa5Vff4muU1cxeEDgPeM6Bk9XsLiy4F14IXDMMV4W7z/9Kfy9OhY8GfzcaGLBc+VayR+f3Xf3SmhkhYx7kJY+tbXeBMK7Z/7tb8CZZ5q3u9NOXkrgRYvkF005WvBcumj6k7fuzTNsQsmSiyabSpgnC0lWRo8Gjj1WrR9h/eKprg76qCpkk47B02333nu9BfhWWxU+rzo2ZNcxX3j3o4/Ubn6lbMHTnUNcxeCpFjqvrjaLcbS14LVuDbz4ot5nwog7Bq9XL+DDD9Xb2Wsv4P33vY0SUeFkE5Hx+997Lmp33SV/j879hV28rlxpl5BDlmTFJ40YPEC8YeJS4InaD7tW+WuRz1IOuHXRtGnHZciDqxi8Fi2Af/3LeyzzJvPRicGTwd/LTASeC/dMvt1jj/XWNKYeBnFAFryYyeXEk4vthcr6mc+fL35P1HfkcuEDvXlzvUVMVAxe1ix4/s3J5OZpKqpFlLMFL6zvuudS1i8e9hjYumhmoQ6ej+g3q45dmcDjY3hV+1/KMXhZteD5C4O2baO9OmQWPNO6bnHgKgaPPRasi6ZpmnLZcTE9XlG/RWf8sr/J1oLHJ8ji++GiTIKJi6boenIpXHQFHi9K+CR2/HtsXTRt2nHhVqjz/ba1NHVfV/l9WRV47OZaViCBlwA2CzMZKhm8VL4j7ALWvYGWWgyeqQUPkB9bk0VCXDF4YQLPlQUvanINOx5xCTz2NRMXTTbjnO4iXvUGnCWBxy4iTeojisiyBc+VwIurTIJK5uI4YvBc48qCl8sF43L16mC86mR4ZnEt8KI+l5bA4+duvo20XDR5i3h1tbsFt6h9IPxaDRN4/nVqG4PnyoJnkkworC1Rv3RdNPk2w3DhoulC4Lly0WTbjbJepgEJvASI24InwncNjSKsH7oCj51ESyGLpo37S1YteM2aBeddJLJ9XAg8lcD/sL7rnktZv3jY46kr8GxdNKOs4j6uBJ7q2KiuFguV+nqz6yDqvGc5Bi8tF03ZItlHxzIVR6Fz17gSeEDwe5ctC54zteDJjktcFjxTF80VK+w2IfkMyPwxz4qLputxGreLpqv1QhZS7IvGALs2cJ0F21UMHttOmhY89viQBa9CSUPgqd6swvqhu0MaZcHTrXUmQvcmLKuDx05iLgVeHBY8XXcmFcuCqsBj2+LLJNgKmSxZ8NgxwNarNFl8xCXwbGv5iBbErIumywUHuWgWw/Zr0iTgqqu8JFmAtzjwry9XAi9tC54rF00gWMSx4QhZcdFMwoLnIgbPlQVv40bggQe8BHHseDMVeK7Hqa3AY3/rffd5Fq2sxOC5hu9DbW3hb3V9bqLGnGoMHttvctGUk4E9hPInDoHXqZMnXr77Tvy6avtxuWiyO60+fHpbE3TdoviaKYB3s7MpIBv2mTiSrOguJFu2DFIxy+CTdah8t4nAC3uPjQUvbBywfdaNwQPsBV5NTfRkb3LjzOW8z7Ft6y4eFywofC4ugWd6A82ii6YsA6mNwFuyBLjjDmDECC/hh06JBL4tn1Jy0XSR2Mq0Vl/SMXg6v5UXeK4seLYxeOz3jx8PPPWU95i9llTb4+d91+NUdF8Ju1bZNcI22xS+97bbvMyyWYnBc42oyPvWWwe1Erfc0u33uXLRZMeaiqdaXAJv++2ByZO9x6prqiQhC14CxBGDB4S7PKpOHmEXsK7AYyfWpUsLXzvoIGDXXfXa83n0Ue+CHDwY6N5d77M1NcDppxc+t2FD4cLfZbpi1y6auRxw0knu2gO8G9o996i1xSZ88EW7jsALs6CZ7sAD8bloAl6cj8r3yIjLggcU90dn7Ios8qYumlFkyUWT/7yuwBs6VOx94KKEhp/pls14K9qU4ikFC55sDFRV6SeLEL3/5z/X7xOQ7SQrvIumP+eaiNm4LHi+uAMKN8NK1YJ3/vmesGvd2suC+ItfFL4+e3Z2YvBcw/ehpgYYOdIbb1tuCVx/vdvvi0PgpRmDd9ddQOfO3r8//MFNmy4hgZcAogW3i4s7bCGvOmmGuXraCDzWRXPqVGDCBPMA4VNP9QSjn4pXl5EjgUceCf6O04LnykXziSeAmTM9l6TLL7dvz2faNGDePPXdpurqYMHpW4t1BF6YJcvGZTeuLJpAaQk8nXmkFFw047Dg8eNM13K8xx7ejjafCt9VAp7GxsK0/SqxynGUSXCNy00w/vc+8QQwcKB+O4D8uJjGgkUdZ537C2stXrgwEFAm8etRAs80Bs/mPUD8Ak/XgteqFTBjhne8d98d+OlPPfdTn/p6t3XwbNpxjchFs29f4NtvPWFrmshIhguBV11d2G++BJkI/vy7suB17+6tp+bOdW/tdAEJvASIw0VT1q6PqO6NiDCBp3txy3bGu3Sxz/6kkjo8DDYWz4UFL+4kKy1benWeunVz055P27b6bq7+4sJfhOoIPFlmqTZt7CZZ1Rg83Tp4QLYFHn/uXMbgucxkl6UYPF7gmcR+1tUVjwWTBDyi37J0aaGrvUo5GVE7WbPgyeZCk7HBL/xsSu5k2YLXrFlwjX/1VfC8icDjyyTwawJTC57Ne4D4XTRraorbVMn6y84LXbsGjzdsqCwXTcA7R3EIUBcxeHw7Kl46cbloAt7Y0l1TJQUJvARIQ+CFFblm2XFH+Wu6FjzZwikqxiwJ+N1MWwuey91p0fGxySwWdrxN2vUXU2vXejvKLgSejXsmoC7wVJPJyCx4JhO3yo3R9PyWu4tmHBY8PobO9ObO98NkbIi++/vvK8uC50Lg2dxTsizwgOA6ZeMyTQQtf89j3Sl1+6Xy3qxY8ETfoXut8skzKsVFM+4+ubDgAfYCLwvW0yQggZcAccXguUgvHJeLJksWdjfCBF7aWTRFx8fm3KomIFGFXXB+/72exUfmohmnwDMZb+SimQ2BF0cMnixJii58P0wT8PB8912hBc9U4GWt0HmcAs/mniI7LqbC36WLJiC+Tm1dNFevLp6Ly9VFU/QdutcqL/DK1YInisGLk6wIPJcWvCxDAi8B0rDgqdKjh/w1Fxa82tpsXEx8NkiT+j0scWfRzJIFjxd4Oqm707bgqVKqAs+Fi6ZNKnYZWXbRNIVv15XA4y14KtaaUkiyIpsLXSyQ47DgmYYAuLbgia5TWwueKKu1TqIbly6apS7wyikGT+aiGQcqdXNJ4LmFBF4CJCXwtt1Wv42wC85FDF4WrHeAewue7DMmE0eSAs9k3LGLi+++03PRlAVA2wZvh40rk8Wfyxg8lfFEWTTFJJFkxZS4BN533+m7aJZymYS0XTRdF9Z2WSYBiMeCx2e1BtTj9AG3Fjze08f1+XDxHZVqwXPdJ/Y6dTmGRMXowyCBR8RGUgKvZ09gt928x+edp97OTTeJn3fhopmF+DugWODFkWRll13Mfq9IrJjc0MPaA4C99zbbpZZZ8FQmyWuvFe/KxWnBu+SS4PVnn1Vrj70e2fhVE/e+OC14/CZKmoXO/aySoiRKaVrwSk3gff+9GxfN9euDRXttrX1iK1tKyUXzkEPctsdiGoPHYnI/YOcKdgPBZ+1a9bZcxuDxxysJC57ueou9tkshBm/0aLPPxSHwrrnG+3/77YHevYPnVcaHaK3AZs0cPtz7nz2eMi8hlt69C0uN7LVX9GfKgQwYicufpGLwamuBV14BPvhA74Z11VXe4n/ECOCZZ4LnXbholoIFz4WL5h13AGedZbao4o9R69Z2RTNFIvNvf/PqeZlgY8HbemuvTMaYMcHED8Qr8Dbf3PvOBQuAAQPU2mNvbPPnB49NXKPiFHj8cbONwbOx4F14obep0bcv8KMfFbqBuSx0bhuD52oBGWcMnr8Ab9FCTZDKju+qVd7/aVvvALeJqOJMsvLEE8BRR5m3l4QFz2QeYtth5zQfHYHn0vrCk4TA070vu7bgxSXw/vEPr4bfvvuafT6O5CO//S2w//5Av37AkCHB8yrlDPjr/NxzvTJRLVp4JZ4OOsh7XteCV1cHfPIJMH68t4Fic72XEiTwEiCpOng1NV7BxSOO0GunWTPg8MM9ccjiwkUzKxY8PmW0awvekUcCHTua9Y2/+ey4o93uu2i8DR1qViwXsLPgAUCfPt6EzxKnwKupAbbbzvunikzgmeycJynw0rTgVVcHG0k25RuiPmcbg+fKkpWEBW+zzdT6KzsmK1Z4/2dB4Lksk8BfUy4teMcdZ7ewTSIGz2QeYr0PFi0qft21Bc/0GMYxVnVrXfK4jsGLy0Vzhx3srFFxWPBqa731JFB4napY2niBd8QRQehR9+7B87oWPMDbND/9dLX3lgvkopkASblo2u6+8BOtCwteVgRe3GUSXPp0h2U2VUF0zE1qf/nYCjygeKzaxuBFCTxd2M/4VpCaGjNRzLYlc/E0vf7542Ybg7dhQ7CzajN/8GMuSzF4OskkwuD74Sp2d9GiwC1Y1VIju/b81PpZEHhxuWhWVdndP11bLeJ20czlgE6d9NoAvDESZg1Oy0WTf28SFjxdkrDgubCW2W5eJRmDp1KyiB9DsvOom2SlUiGBlwBJCTzbNm0FnmjXrBRcNF3syGVJ4PHHvLbWbmzYuGjK+mRrwaupkd/cTM6n6PioWlN42OMiE3imN3fXLprsIs9mwRGnBc/WRdOVwOP7YTI2RL/viy+CxY+qpUZ27fkxeOUs8Fq0sFvYuj42cbtodupkfn8Jm2fTdNFkx0DWBR6/XiinJCtxZ9HUXf/xczUJPDtI4CVAUjF4aVvwmjd3GyvhkrjLJGRJ4PHH3NZdpWPHYEHlyoJnK/ByObkVz+RciG5sJnEv/PfLBJ7pAtW1i+a6dcFjmzHsyoJXSi6aJoiOsW6CFVk7LFkQeC5dNNn7iu09JWmBZ+uiaZNwy5XAc+2iyb7X1QYMS5wumlmKwbM9dkla8FTgf4/sPJLAU4MEXgKUootmixb6N8JcrnjHJSsWvOrqYFEUR5mELAk8/pjb7mZWV3uxnYC5Bc+1wAPkY8ulBc8EFRdN0xtznAIvCxY8Fy6a/LGNy0UzjjZUNxWi2smCwHNZdoMdF7b3FNfHxnWhc95F03SjCciuBY+db9nNVlfE6aJpMp/EZcGz3byKI8kKC1nw0iWTAq+hoQETJkzA5Zdfjj333BPt27dHbW0tunXrhsGDB+PFF18M/fz48eNx5JFHonPnzmjZsiX69OmDa6+9FqvZAlcJUioCj23PdAHO77jYTrQu8X9fHElWbAXeoEHB4y23tGuLjxtzcQ4239z7f/78bMTgidr0cRFTCZgLvK239v7ffHN5DEy3bmZt28TgicSmK4GXJQsezy9+ETy+9lrzdpIQeKrjImqMx1FbTBeXi0WXFryk6+DpHocddij822bDL2yeve469XZEv6FDh8K/TQWeapIMHVwLvCVLvMdt2rhzzTa9PtgkejqJxETwY9e1x5Vue6oxeHGPn3Ihk1k0X3/9dRx66KEAgG7dumG//fZDXV0dpk2bhhdeeAEvvPACzj77bDz00EPIcVfb3XffjWHDhiGXy2HgwIHo2rUr3nzzTdx6660YPXo0Jk6ciM6+OSIhRDcUFxafOGPwTAUef0HauJe4pnlzb9cyjjIJtufzoYeAv/4VOPZY+125Pn0K/3Yh8Pr29dIMmx63OCx4soWayfFz6aJ5xx1e6uqjjwZuvLHwtZ/8BLjySnMXIpsYvOpq4K23gNNOA2bO9J7LmsCLY6d7n32Af/4T+OYb4KKLzNtxsSkXdVx23FGtnVJw0ZT9VpPr06XAc10f0LUFb489vJJFr7/uCf5hw8z7Jppnf/Yz75o4/3z1dkS/oXt389IoumnudbG18rL3luXLgVmzvMf8vVUVly6ajzwCPPCAl5nadqOU74Pr9VpcFry4x0+5kEmBV1VVhaFDh+Kiiy7CwIEDC1576qmncNJJJ+Evf/kLBgwYgF/96lebXpsyZQouvfRSVFdX44UXXsARP2x1rF27FoMHD8aECRNw7rnn4lnV6seOECW9cHGTidNF05XAs3EvcY1/HrJowdtuO+D22+3a8OF3fG3jEQDxwjOrAs8Ely6aPXoAt97qPeaP0a23ArvvbtYuYOeiCXj1kv7wB2+RB2TPRTMOC15tLXDSSXZtuOiHShuq1ppScNF0Gc/D3i9tF++ud/xdW/AA4IwzvH+2iObZ884Dftg/V0b0G7p18+qNhr1Hpb04LDAu10KffBJkGja1prrcuOraFfjd78w+y8PPE64FHsXgpUsmXTQPPvhgPPvss0XiDgCOP/54nHbaaQCAv//97wWv3Xbbbcjn8zj99NM3iTsAaNWqFUaMGIGqqiqMHj0a06dPj7X/PK6FmI+rRZUPe7Gb7gzxF2TWLHhA9ssk2NKpU+HE6sKCJ7qxlbvAc7E54XojwMZF04e9zl1l0cxSmQSeUonBq6vzajWpUMoWPJWCxzzshpytBa8UBJ4rRPdxk/uBaLz5bvs+OtdZ3C52LjaFfPzSI4C5wIsryYotcVvwbAWebJ4jgadGJgVeFLv/sAU+d+7cTc/V19dvis078cQTiz7Ts2dPDBgwAAAwZsyYBHoZ4NqVUtYuWfDCkQm8LFjwXNOzZ/CYtdKYYivw+Ik7zhg8E1zG4LG4Tvhha8EDCuefuCx4ptdDVhdCgBuvi7BjvOOO6uOjlAWeCX75ByB7FjzXLpouEd3HTQSe6FzyAk/n+ojbgmd7zNmkbCyqLtQq/UlT+Pvwc6vr9Zrutap63uIeP+VCSQq8mT8EkGzOzDAzZszA2h+2o/v37y/8nP/8lClTQttfs2aN0j9VkhJ4FIMXjizJShZi8FzjJ/oAgDlz7Nvr1at4IWPzm8MK8KpSiRY8mxg80WeyFoMXV0FgF7jI9hcl8FQpBYEnG5smQrm+Pnhsa8FzveOfZQue6D5u4rIvc9E0JW4LjItjLrqGys2ClzUXTdW5gSx4amTk1qnOwoUL8eijjwIAhg4duun52bNnAwDat2+PNpLc5Fv94P/iv1dGaxerTway4GUD/3itX5/tMgku2Gab4PG8efbt1dQAvXsDn34aPGfzm124zWU1Bo/FddFtFxY89jpnnRmyYMHL6k43EL/Ak5XUEBE1jrIg8Fy6aLICL2sWPNeFzl0Sl4tmy5bF2Zp1yLqLJuBdQ+wGWOvWXny1CVktdJ41C54qJPDUKCkL3saNG3HyySdjxYoV2HnnnXHOOedsem3VqlUAgLqQ2csXbitZp+oEiCsGz3W7HTsGj01350ohBg+wt1xk3YJ3+OHBYzZNvA19+xb+nfZvdnnziEvgqcYUqMJ/3lXNP8Buwcbu1FZVmQvZLFvw2PGgI8ZYwn7LAQeYtQkUz7uu052b4PK8sQLPdmOHTXL005/atQVEj/WsWfBMxi7/G+rq7OKo2VT/Bx9s3o4MNtvlrruatcFvkvTube6mnVULXtZi8FTZZ5/g8eDB8XxHOVBSAu/cc8/FhAkT0KlTJzz77LNoFtM25erVqyP/zZ8/X7m9UnHR3Gsv4JxzPHFgmsGL19esaEwb9nixySXK0UVz8GDgwgu9+np33OGmTb7uke7C5dlnvSyOzz3npj/8+N93X2D0aLO2RNeOi0Qwri14PLYumiznnmveD/ZGbrOgdbXTPXq027EGeGnhb7/dS0/++utmbfC/7/bbvYyGZ57plUjRYeRIYMAAYPz44oVZr15m/XOJyzIJbAyercA77jjg7LO9kiUPP2zXlgpZisHr2tVM4PG/oVUru/nxuuu883DcccAVV5i3I2PPPYGrrvLE4zPPmLXBLy9t1jJZ3bhy+RtV2ldhxAhv7h4/Xv6eU0/15syjjgLuvde8f+VOBoaYGhdddBFGjBiBDh064JVXXsEOXDVQ3y0zLDbOL3TeNmJmCrMC+jRq+OuIyiS4wLUFL5fz6rHZwB+6LAkf9nixw6QcLXi5nPuJj7cS6P7moUO9f65gz+eQIXaLeX4MtGnjRozFPU5sXTR9xowpLrCsAzvH2cxDrhZCxx6rL5hUuPJK758p/G/Zaitg3Diztk4/3fsHeK5VX38dvGZTHNsVLi0UrAXPdl83l0tG2PlkKYumqxiyujq7RFmtWpkLL1Vuu83u8/w4syk3VCoumq7vTybXqkqJkKoq4G9/M+tTJVESFrxLL70Uf/rTn9C+fXuMGzduUxZNlq1/yCqxfPnyTe6aPH7Wza3ZDBQJUCoxeC5wUXMtLthFqK0Fjz/Wri0zWSRr4p0d/y7TYgNurHeA+yyaUe2rIJp/bEtpxGnBy8K85gr+t7i6F/AWPNNsfy5xGYPHxtlkIb4wDNfli2zg5zFXWSBtXTRLAX59ZTNHloqLZqm1T4ST+WXpFVdcgbvuugvt2rXDuHHjpBkye/fujVY/qItJkyYJ3+M/369fv3g6K6FU6uCVO3Fa8CoBEnj6xG3BY13XVBEtkG0FXtYseFmF/y2uxAqfHCHLLpq2ZF3g8S6QWXLRdGXBs3XRLAX4cWYzR2bVghd3iYEs/MZKJtMC76qrrsIf/vAHtGvXDq+88gr23HNP6XubNWuGo446CgAwatSoote//vprvP322wCAIUOGxNNhCaUSg+cCjeoRiSMTeC5i8CoBWxdN17Dn03bsJyXwXFvwWEu0KqJjZWt5d2XBy+pOtyvisuDxCXKycMxclklgcZk9Nw54gZclC56pwBNZ8FzUMs0yLl00s7pxtXx5vO1nYR6qZDIr8K677jrccccdaN++faS487nqqquQy+XwyCOP4OWXX970/Nq1a3HmmWeisbERQ4cORR82xVICVJKLpsmCMylcWvCycKyTppwtePznXS1eXGfR5HEl8Fxa8Gx+I7lomsEmhs6Ku7hLF02WrFvw+CpLac6TvNg0FXi8KK+rs58zsk4lWPDiFnhZv1bLnUzeOseOHYtbbrkFANCrVy888MADwvd17twZf/zjHzf93a9fPwwfPhzDhg3DkUceiQMOOABdunTBm2++iQULFqB37954yDaLiAGVJPDY8goSb9rUIBdNO7Im8Fy5BQKlZcHr0AFYtsx7bNLPOFw047TgZWFec0VcLppbbBE8jiPtvAnkoumR5vjl5xtXWRJbtbK3xGYdlwIvq54JnToFj03LSYRR7lberJPJW+fSpUs3PZ40aZI0pq5nz54FAg8ALrnkEuy8884YPnw43n//faxZswY9evTA1VdfjauvvlpaBD1OkqqDl4UJ44ILvPTdy5YB//xn2r0phHWxYPPwkIumGuSiqU8cMXgvvwwcdphXzP744/U/H4eLpiuxndWdblfEZcG76CLg0Uc9i+5f/uKmTVtclklgKTWBl/Y8edllwN13A7//vbs2fbFz1VXAH/8I3Hyzu7azQtwumlmoVXn++V42ymXLgKeect/+9tsDP/uZd8/K2nqwEsikwDvttNNw2mmnGX9+0KBBGDRokLsOWVJT493UfNcUVzd1ftLIwk53mzbAF18AjY3ZuxGzO3CsSxO5aKqRNQteKSRZiSOL5l57AQsXer/fZLGc5SyaZMEzo1MnYNYs7x6TFUEcVz8oBk+PP/wB+N3v3AoKf7647TbghhuyIVZcE7eLZhZcXJNYr40ZA6xbV55jJOuU0a0zu+Ry3g73unXe365ufPziLu0biU91dfqLfxHsDhwr8MiCp0Y5C7y4YvDiyqLJZ9DVobq6eMPJdk6iMglq8L/PpQjK2nGSjfVKi8HLQkyk68U1ey8o14V73C6aWSkplcR6rVzHSNbJwNRTGbh0J5ORtRt81mAn6BUrgscUg6dGOQu8UorBsyWXK/y9LhYarlw0RcennOa1uFw0s0hcYz3rAs9m86VUyIo4iZM4LXhVVdm3RBOlTwaWG5WBy8WojHJeLLhAJvDIgqcGxeDpE3cWTVPY3+vCVciVBS+XK28RFJeLZilR7mUSst4/F2TBvTBu+PPoMgavrq78k9QQ6UMCLyHIgpc+MhdNisFTgyx4+mTRggcUCgsXizWXGU35Y1ZO11o5i9ekyLooJoFXHsRpwasECyiRPhlZbpQ/JPDSh52gGxqCx+SiqUY5C7xSi8GzJU4Lnu1vzGLyKFeQwLP/zVl3gayEeKNKEChxxuBVgkAm0ocEXkIkIfAqcbGgg2xSJRdNNbLmorn33sGNc9997dpKyoKXFbccth8uFmvNmgF77uk9tj0X/DHr3NmuvSxBLprAgw/qf+a++7z/u3cHDjrIbX9ccMcd3v/bbJO9+q9xUAkCJc4yCZVw/Ij0KaO90WyTRAxeOe10x4FsgiYXTTWyZo3acktg5kwvntK2SGtSMXhZgbVgu1hs5HLAhAnA5MnAfvvZtcVeW127FhbjLXUq2YL33nveddWnj/5nzz8f6NcP2GGHbIriyy7zNjZ23NG7BsqdShAocbpoVsLxI9KnApep6cC6lVTSTT1LkAXPLVk4Bltv7aadpCx4WcG1wAO8mkoHHGDfztKlweOddrJvL0tUssDbaSfzsZbL2VuG46SqKtjYqITNP3LR1IMfE5Vw/Ij0yej+cvmRhItmU1M87ZYLsgmaYvDMKKeFTFIxeFmhvj54nOXFRrkLvCxao+KinOaLMCrhd1aCBcqliyZZ8Ig0IIGXEEkIvMbGeNotF8iC55ZyOgZ8bBxfrNiUSnHRjIsdd0y7B27JmptzklSC8AEqwyqb5TnDFbzAszmvFINHpEFGlx/lRxIxeCTwwqEYPLeU8+LUlTDL6jFirf1kwUsOft7IStKdJMjqZodrKuHekOU5wxUuy11QmQQiDSpkyk0fctFMn2bNxAtukxtypSxWwqANhWiyKvBYsly3q9wFXiVRKWK2Es5xJVigXLpPkwWPSANapiZEXALv1FODx/36uWu3HMnlxBOrySK8UhYrYWzYkHYP3NK+vfd/z57u2iyFjYCsxYEdfLD3f20t0LFjun1xTSUs/lnKTaCrUK4umgMHBo8rodYfCTyi1Kmw2016xCXw7rkH6NsX2GMPYLPN3LVbrrRqBaxcWfhcpS26XLF+fdo9cMtbbwHPPgucfLK7NkvBgpe1Belf/wr84x/A0KFp98Q9lTbX/Oc/wGOPAYMHp92T5CjXc/zEE8DIkcCRR5bGxpUtLgUeuWgSaVCmU1H2YMskuLwBtG8PXHmlu/bKHbLguaPcBN6OOwI33OC2TRJ4+my7LXDjjWn3Ih7KdfEvo0cP4Prr0+5FspTrOd5ii8o6ly7v8WTBI9KgAvZhskESMXhENKKJtVxvyHHAjuNyE3hxUAo73Vlz0SxnaK4pf+gclwcbN7pri8okEGlQAsuP8oAEXjYQuUaUgpUlK7CW6HKLwYuDUhhbNB8lBy3+y59SuOaJaNhSMrbw1kASeEQSkMBLCBJ42cCVBa9SXTTJgqdHKSz2aD5KDhJ4BFEauBR4PBSDRyQBCbyESKIOHhGNqxi8SoW14JHAi4ZcNAkWmmvKn0rd/Cs3XLpo8pAFj0iCElh+lAdshstOndLrR6VDMXh2sJkNDzwwtW6UDFld0O+7b/B4553T60elkdXxQLijbdvgMd1bSpdddw0eH3KI27ZJ4BFJQNNPQhx3HPDKK179mMMOS7s3lYvINYJuwur8/vfAwoWeJe83v0m7N9knqwv6f/4TuPBCoH9/YK+90u5N5UDWnfKndWvgoYeA0aOB225LuzeEKQcc4GUo//xz4IEH3LZNLppEEtDSNiHatAFGjUq7FwSVSbCjro7GsQ5ZddHcZhvghRfS7kXlkc+n3QMiCc45x/tHlDa33x5Pu2TBI5Igo8sPgogHisEjkoTGFsHS1JR2DwiCSBsSeEQSkMAjKgreNSKXy66VhSh9SOARLGTBIwiCXDSJJKClLVFR8DtnpvF3leqiSehBmwcECwk8giDIgkckAS0/iIqCn1jJwkLECY0vgoVcNAmCoNI0RBKQwCMqCt41wtSC17mzfRtE+UMCj2Bp3z7tHhAEkTbkAUQkAQk8oqJgaxQB5uLsJz/xauN07Ai89pp1t4gyhVw0CZa99waOPhpo1w4YPz7t3hAEkRT33OOVybruurR7QlQKZHsgKgpe4JlaWHI5b4G2cSNZ8Ag5tFNLsORyXnkKmjcIorK46CLg/PPpuieSg/aXiYqiXbvCv20nW5qsCYLQheYNgqg86LonkoQEHlFRuLLgEQRBEARBEEQWIYFHVBSuYvAIgiAIgiAIIouQwCMqCrLgEUlCMXgEQRAEQSQNCTyiomje3PvnQxY8giAIgiAIopwggUdUHKwVjwQeQRAEQRAEUU6QwCMqDlbgkYsmQRAEQRAEUU6QwCMqDrZUAgk8giAIgiAIopwggUdUHKwFr74+vX4QBEEQBEEQhGtI4BEVByvw1q5Nrx8EQRAEQRAE4RoSeETF0bp18HjNmvT6QRAEQRAEQRCuIYFHVBytWgWPSeARBEEQBEEQ5QQJPKLiqKsLHq9bl14/iPKnf//g8VlnpdcPgiAIgiAqB6oCRlQcrMAjiDjp2BGYOBGYNAk4/fS0e0MQBEEQRCVAAo+oOEjgEUkyYID3jyAIgiAIIgnIRZOoOEjgEQRBEARBEOUKCTyi4iCBRxAEQRAEQZQrJPCIioPNokkQBEEQBEEQ5QQJPKLiIAseQRAEQRAEUa6QwCMqjp12Ch7vsUd6/SAIgiAIgiAI15DAIyqOXr2Ae+4Bjj0WePLJtHtDEARBEARBEO7I5fP5fNqdKEVWrlyJdu3aYcWKFWjbtm3a3SEIgiAIgiAIIiWypA3IgkcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMqEzAq8L774Avfddx9OO+007LzzzqipqUEul8PNN98c+dnx48fjyCOPROfOndGyZUv06dMH1157LVavXp1AzwmCIAiCIAiCINKhJu0OyHjwwQdx7733an/u7rvvxrBhw5DL5TBw4EB07doVb775Jm699VaMHj0aEydOROfOnWPoMUEQBEEQBEEQRLpk1oL3ox/9CJdddhkef/xxfP755zjllFMiPzNlyhRceumlqK6uxosvvojXX38dTz/9NL766isccsgh+OKLL3Duuecm0HuCIAiCIAiCIIjkyawF76yzzir4u6oqWovedtttyOfzOP3003HEEUdser5Vq1YYMWIEtt12W4wePRrTp09Hnz59nPeZIAiCIAiCIAgiTTJrwdOlvr4eL774IgDgxBNPLHq9Z8+eGDBgAABgzJgxifaNIAiCIAiCIAgiCcpG4M2YMQNr164FAPTv31/4Hv/5KVOmJNYvgiAIgiAIgiCIpMisi6Yus2fPBgC0b98ebdq0Eb5nq622KnivjDVr1kR+n8p7CIIgCIIgCIIgkqRsBN6qVasAAHV1ddL3tG7dGgCwcuXK0Lb89xEEQRAEQRAEQZQSZeOiSfx/e/ceF1Wd/3H8PYCAgoCIFxBRs8J9KKupqLvieq1VNK3oZg8VWrfdrawsy1sX7br7qEf1ULO1dkutpQet13LtohZe0MQLbJtbmS7eMCvUBAJFhe/vjx4zP4kBZoYhmDOv5+PB4wHnnO9nvuec+ZxzPsw53wEAAADg7yzzCZ79tsy6bp20f9F5REREnbFc+UL0kpISxcXFudFDAAAAAGhclinwunbtKkk6c+aMSktLnT6Hd+zYsWrL1qau2zztKisr3e4jAAAAADQmy9yimZiYqFatWkmS9uzZ43QZ+/S+ffv+bP0CAAAAgJ+LZQq84OBgjR07VpL01ltv1Zh/5MgR7dixQ5J0/fXX/6x9AwAAAICfg2UKPEmaPXu2bDabli5dqg8++MAxvby8XFOnTlVlZaXS0tLUo0ePJuwlAAAAADQOmzHGNHUnnMnLy9Ndd93l+Pt///ufTp48qfj4eHXq1Mkxfc2aNYqNjXX8/eKLL+qBBx6QzWbT0KFD1b59e23btk0nTpxQYmKicnJyFBMT0+D+lZSUKDIyUsXFxfUO2gIAAADAuppTbdBsB1kpKSlRbm5ujemFhYUqLCx0/F1RUVFt/v3336+kpCQ9//zz2rVrl8rKypSQkKA5c+Zozpw5tX4JOgAAAAD4umb7CV5z15yqdAAAAABNpznVBpZ6Bg8AAAAA/BkFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWERQU3fAVxljJEklJSVN3BMAAAAATcleE9hrhKZEgeeBsrIyRUVFSZI6d+7ctJ0BAAAA0Cx8++23ioyMbNI+UOA10PHjxxUeHt7U3fA7ZWVliouLkyR9/fXXCgsLa+Ie+Re2f9NjHzQ99kHTYx80PfZB02MfNL1L90FsbGwT94YCr8EiIyNJpCYQGBjo+D0iIoJ98DNj+zc99kHTYx80PfZB02MfND32QdO7dB8EBDT9ECdN3wMAAAAAgFdQ4AEAAACARVDgAQAAAIBFUOABAAAAgEVQ4AEAAACARVDgAQAAAIBFUOABAAAAgEXYjDGmqTsBAAAAAGg4PsEDAAAAAIugwAMAAAAAi6DAAwAAAACLoMADAAAAAIugwJO0YsUKDRs2TG3atFFYWJh69+6tZ599VhcuXPAo3t69e3XTTTepQ4cOCg0NVbdu3XTPPffou+++83LPfduFCxf00Ucf6aGHHlJycrKioqLUokULdezYUePHj9f69evdjjl//nzZbLY6f7788stGWBvflZGRUe82O3funNtxyQPXHD58uN7tb//ZunWrSzHJA+f279+vRYsWKSMjQ0lJSQoKCpLNZtNTTz1Vb9tNmzYpNTVVMTExatmypXr06KGHH35YP/zwg8f9OXjwoDIyMhQfH6+QkBDFx8crIyNDBQUFHsds7tzdB1VVVdqxY4cee+wxpaSkqG3btmrRooViYmJ09dVXKzMzU56MFbds2bJ6c+SDDz5o6Oo2S57kQWMeU/wtDzzZ/q6eI9544w2X++GvOdDQa09fORcEedzSIqZPn64FCxYoKChII0aMUHh4uD7++GPNmjVL69at04YNG9SyZUuX461cuVITJ07UxYsXlZycrG7dumnPnj166aWXtGLFCuXk5Ojyyy9vxDXyHVu2bNHVV18tSerYsaNSUlIUFhamzz//XOvWrdO6dev0hz/8QUuWLJHNZnMrdu/evdWnTx+n8yIjIxvadUsaPHhwre/NwMBAt2KRB64LDw9Xenp6rfM///xz7d69W61bt1a/fv3cik0eVPfXv/5VCxYscLvdiy++qAceeEA2m01DhgxRhw4dtG3bNj3zzDNatWqVcnJyFBMT41bM7du365prrlF5ebl69uyplJQU7du3T8uXL9fKlSu1adMmDRo0yO2+Nnfu7oOCggINHjxYkhQdHa3+/furTZs2Kigo0KZNm7Rp0yZlZWVp1apVCg4Odrs/3bt3V0pKitN5nTp1cjueL/A0DyTvH1P8MQ882f51nSOOHj2q7Oxs2Ww2DR061O3++FsONOTa06fOBcaPrVmzxkgy4eHhZu/evY7pRUVFJikpyUgyM2bMcDne8ePHTatWrYwk88orrzimX7x40UyaNMlIMsnJyaaqqsqr6+GrPvroI5OWlma2bt1aY15WVpYJDAw0kszy5ctdjjlv3jwjycybN8+LPbW29PR0I8ksXbrUK/HIA+8aM2aMkWTuuOMOl9uQB8797W9/Mw8++KDJzMw0X3zxhZk8ebKRZJ588sla2+Tl5RmbzWYCAwPNe++955heVlZmRo4caSSZtLQ0t/pRVlZm4uLijCQzZ86cavPmzJljJJnOnTub8vJy91bQB7i7Dw4ePGhGjBhh3n//fXPx4sVq8zZv3mzCwsKMJPP444+71Y+lS5caSSY9Pd3TVfFZnuRBYxxT/DUPPNn+dbnzzjuNJHP11Ve71c5fc8DTa09fOxf4dYGXnJxsJJmnnnqqxrxt27YZSSYkJMScOXPGpXgPPfSQkWRGjRpVY15paamJjIw0kswHH3zQ4L77g6lTpxpJZuTIkS634cLWfd4u8MgD7yksLDQBAQFGktm5c6fL7cgD19jf+3VdWN10001Gkvn9739fY97hw4cd++eLL75w+XUXL15sJJkrr7zSVFZWVptXWVlprrzySiPJLFmyxPWV8VGu7IO6PPnkk0aS6d69u1vt/PXi1hlX9kFjHFPIgx81JAfOnj1roqKijCSTlZXlVltywLnarj197Vzgt8/gHT9+XLt375Yk3XbbbTXmp6SkqHPnzqqoqNB7773nUsw1a9bUGi88PFzjx4+XJK1evdrTbvuVq666SpJ07NixJu4J3EEeeM+yZctUVVWlnj17auDAgU3dHb9z/vx5x/MYzt7PXbp0cdw+aH/fu8K+7K233qqAgOqn4YCAAN1yyy2SyBFXcJ7wXeRBw61atUpnzpxRdHS0rrvuuqbujiU4O6b44rnAb5/By8/Pl/TjPf3dunVzukz//v117Ngx5efna+LEiXXGKy0t1cGDBx3taov35ptvOl4bdTtw4IAkKTY21u22eXl5mj17tk6fPq3IyEhdddVVuvbaa9W6dWtvd9MysrOz9dlnn6m0tFRt27bVgAEDlJqaqpCQEJdjkAfetWzZMknS1KlTPWpPHjTMV199pfLyckl1v5+3bdvm1vvZvmxdMS9dDrVryHlC+nFwg0ceeUTfffedwsPD1atXL40fP97t52j8hTePKeRBw73++uuSpEmTJrl1rr4UOVCds2OKL54L/LbAO3TokCQpISGh1mU6d+5cbdm6HD582PF7bTHdiefvvvnmG8fFbVpamtvt7Q/KXioyMlILFy7UlClTvNFFy3E2+lZsbKxef/11jR492qUY5IH3bNmyRQcPHlRwcLAmT57sUQzyoGHs79GoqKhaL2DdfT+Xlpbq1KlTkurPkaKiIpWVlSksLMytfvuL8vJyLVy4UJJn5wnpxwEOtm/fXm1aaGio5s+fr1mzZjW4j1bjrWMKedBwhw8fVnZ2tiTP/wkokQOXqu3a0xfPBX57i2Zpaakk1bmxwsPDJUklJSUux6srpjvx/NnFixc1adIkFRcXKykpSX/84x9dbtu9e3c988wzys/P1+nTp3X69Gnl5ORo3LhxKi4uVnp6ujIzMxux976nd+/eWrBggfbt26eSkhJ9++232rBhg37961/rxIkTGj9+vDZv3uxSLPLAe+z/mfXkP6nkgXd4+zxxacy64tpjuhPXH9111106dOiQ4uLiNHfuXLfaduzYUQ8//LByc3NVVFSkkpIS7d69W1OmTFFFRYVmz56tZ555ppF67nu8fUwhDxpu6dKlMsaof//++uUvf+l2e3KgurquPX3yXOD2U3sW8fTTTxtJZvDgwbUuM3fuXCPJXHPNNfXG2759u5FkJJkLFy44XWbDhg1GkgkODva43/7A/oBr27Ztzf79+70W95577jGSTLt27UxFRYXX4lpVVVWVmTBhgpFkevfu7VIb8sA7iouLHSORXjpalzeQB/+vvsENMjMzjSTTqVOnWmO8+uqrjofkXXH8+HFHjhw4cMDpMl999ZVjma+//tqluL7K0wEmnnjiCSPJhIaGmpycHK/26fnnn3cMsvbNN994NXZz1NCBbjw5ppAH/8+T7V9ZWWkSEhKMJPPyyy97vU/+lgPG1H3t6YvnAr/9BM/+EWtZWVmty9i/tDAiIsLleHXFdCeev7rvvvv02muvqU2bNtq4caOuvPJKr8WeP3++AgMDVVRUpNzcXK/FtSqbzabHH39ckvTpp5+6NIgBeeAdWVlZKi8vV3x8vH772996NTZ54DpvnycujVlX3Eu/MJc8qemFF17QY489ppCQEK1Zs8YxuIG33HfffYqJiVFFRYU2bNjg1dhW5MkxhTxomE2bNuno0aNq2bKl00E/GsrfcqC+a09fPBf4bYHXtWtXSXWPvGWfZ1+2Ll26dHH8fvTo0QbH80czZszQwoULFRUVpQ0bNjhGMvKW6OhotW/fXpJUWFjo1dhW9Ytf/MLxuyvbjDzwDvvtmRkZGTVG1moo8sB19vfomTNnqt1Ocyl338+tW7dWdHS0pPpzJCYmhueOfmLRokWaMWOGgoODtWrVKpefD3ZHYGCgrrjiCknkiCs8OaaQBw1jP0ekpaV59AXz9fGnHHDl2tMXzwV+W+DZd+CpU6dqfSByz549kqS+ffvWGy8iIkKXX355tXYNiedvZs6cqRdeeEGRkZHasGFDrSMKNURlZaWKi4sliVEEXWR/AFhybZuRBw33+eefKzc3VzabTbfffrvX45MHrktMTFSrVq0keff9bF+WHHHP4sWLde+99zqKu7Fjxzbaa9mPfeRI/Tw9ppAHnjl9+rTWrl0rqWGDq9THH3LA1WtPXzwX+G2BFx8fr+TkZEnSW2+9VWN+Tk6Ojh07ppCQEKWmproU8/rrr6813g8//OAYeeqGG27wtNuWNHv2bD333HOKjIzUxo0bHfvF2959912Vl5fLZrM1SgFpRVlZWZJ+LNwSExNdakMeNMxrr70mSRo+fLguu+wyr8cnD1wXHBzsKCKcvZ+PHDmiHTt2SPr/970r7MtmZWWpqqqq2ryqqiq9/fbbksiRSy1ZskTTpk1zFHfjxo1rtNfKy8vTV199JUkaMGBAo72OVXh6TCEPPJOZmamKigp1795dQ4cObZTX8IcccOfa0yfPBW49sWcxa9asMZJMeHi42bt3r2P6yZMnTVJSkpFkZsyYUa3N6tWrTWJiohkxYkSNeMePH3cMjPDqq686pl+8eNFMnjzZSDLJycmmqqqq8VbKxzz88MNGkomKijK7du1yqc2iRYtMYmKimTx5crXpR44cMW+++aY5e/ZsjTZr1qwx0dHRRpKZNGmSV/puBfn5+eadd96pMSBKZWWl+fvf/25CQ0ONJPPII49Um08eNI7z58+b9u3bG0kmMzOzzmXJg4ZzZXCDvXv3GpvNZgIDA83777/vmF5WVmZGjhxpJJm0tLQa7XJzc01iYqJJTEysMa+srMzExcUZSWbu3LnV5tkH94qPjzfl5eUNWDvf4Mo+ePXVV43NZjPBwcFm3bp1Lseu7ThVVlZmXnrpJVNSUlKjzZYtW0zXrl2NJJOSkuL6iviw+vZBQ44p5EH93B1kpU+fPkaSefrpp+tdlhxwzpNrT187F/h1gWeMMffee6+RZFq0aGFGjx5t0tLSTFRUlGOEzZ9u1KVLlxpJpkuXLk7j/fOf/zSBgYFGkhk4cKC55ZZbzGWXXWYkmQ4dOtQ6Uo4/eueddxyjA/Xv39+kp6c7/flpkT1v3jwjyQwdOrTa9Pz8fEfBPmTIEHPrrbeaCRMmmCuuuMLxOsOHDzelpaU/41o2b/Z/crRp08aMHDnS3HbbbSY1NdUxOpckM3HixBoFIHnQOFavXu046Ti7mLoUeeC+vXv3moEDBzp+YmJiHCfQS6f/dLSyF154wUgyNpvNDBs2zNx8880mNjbWSDKJiYmmqKioxmtlZ2c7trczOTk5jn+E9OrVy9x6662mV69eRpIJCwszn3zySaNsg6bm7j7Iz883NpvNSDI9evSo9TyRnp5e47VqO059//33jhECBw0aZG6++WZzww03OLa/JJOUlGTZkRs92QeeHlPIg5o8PQ4ZY0xeXp6RZAIDA83x48frfS1yoCZPrz2N8a1zgd8XeMYY8/bbb5vf/OY3JiIiwrRs2dL06tXL/OUvf3E63G99F7bGGLNnzx5zww03mHbt2png4GDTpUsXc/fdd/vNULOusm/L+n5+uq1ru7A9efKkmTVrlhkxYoRJSEgwYWFhpkWLFiY2NtaMGzfOvPXWW6aysvLnW0EfUFBQYKZPn25SUlJMp06dTGhoqAkJCTEJCQnmxhtvNOvXr3fajjxoHOPGjTOSzF133VXvsuSB+y490db1c+jQoRptN27caEaPHm2io6NNSEiIueKKK8ycOXOc/gf8p69VmwMHDpgpU6aYuLg406JFCxMXF2emTJliDh486K1Vbnbc3QeuLu9sO9d2nKqoqDCPPvqoGTNmjOnWrZtp3bq1CQoKMu3atTOjRo0yr7zyiqW/QsTdfdCQYwp5UFNDjkPTpk0zkkxqaqpLr0UO1OTptaedr5wLbMYYIwAAAACAz/PbQVYAAAAAwGoo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAADNhs1mc/tn2LBhkqRhw4bJZrNp8+bNTboO3rBgwQLZbDatWrXK4xjFxcVq27atBg4cKGOMF3sHAGjOgpq6AwAA2KWnp9eY9s033+jDDz+sdX6PHj0avV8/p6KiIs2fP1/JyclKS0vzOE5kZKTmzJmjhx56SG+88YbTbQcAsB6b4d96AIBmbPPmzRo+fLgk1flJ1NGjR1VeXq6EhAS1atXq5+qe102bNk2LFy/W+vXrlZqa2qBY586dU0JCgoKCgnTo0CGFhIR4qZcAgOaKWzQBAJaQkJCgHj16+HRxd+bMGS1btkydOnXS6NGjGxwvNDRUt912m06cOKG3337bCz0EADR3FHgAAEuo7Rm8jIwM2Ww2LVu2TPv379ctt9yi9u3bKywsTMnJyXrnnXccy+bm5mr8+PFq166dWrZsqV/96lf66KOPan3Ns2fP6vnnn9egQYMUFRWl0NBQJSYmaubMmTp16pTb67B06VKVlZVp8uTJCgioeYquqKjQc889p379+ql169YKDg5Wx44dlZycrJkzZ+r06dM12mRkZEiSFi9e7HZ/AAC+hwIPAOAX8vLy1K9fP3366acaOXKkevfurT179uj666/XypUrtXbtWg0ZMkSFhYUaOXKkEhMTtXPnTo0ePVo5OTk14n399dcaOHCgHnzwQR04cEDJyclKTU11FGH9+/fXkSNH3Orj2rVrJUmjRo2qMa+qqkpjx47VzJkzdfDgQQ0ZMkQ33nijkpKSVFRUpOeee05Hjx6t0a5Pnz5q166ddu3apRMnTrjVHwCADzIAADRj2dnZRpKp75Q1dOhQI8lkZ2dXm56enu5o/9RTT5mqqirHvIULFxpJJj4+3rRp08a88cYb1dpOnz7dSDKjRo2qNr2qqsoMHjzYSDJTp041JSUljnkXLlwwM2bMMJLM8OHDXV7P8vJyExwcbAICAqrFs9uyZYuRZK666iqn83fv3m1OnjzpNPb48eONJPPmm2+63B8AgG/iEzwAgF8YMGCA5s6dK5vN5ph25513Kjo6WoWFhRo1apQmT55crc0jjzwiSdq6dasuXLjgmP7hhx9q+/bt6tOnj5YsWaLWrVs75gUFBenZZ59Vr169lJ2drX379rnUv//+9786f/684uPjq8Wz+/bbbyVJQ4YMcTq/f//+atu2rdPYPXv2lPTjp5gAAGujwAMA+IUxY8ZUK+6kH4uxbt26SZLTESvbtm2r6OhonT9/vtozdevXr5ckpaWlKSio5jcOBQQE6De/+Y0kaceOHS71z17A1Vak9e3bV4GBgXr99de1ePFit263tMe0vwYAwLoo8AAAfiEhIcHp9PDw8Drn2z8tO3funGNaQUGBJOnRRx+t9QvYX375ZUk/fq+dK4qLiyVJERERTud3795dL774oi5cuKBp06YpLi5OXbt21cSJE5WZmanz58/XGtse8/vvv3epLwAA38UXnQMA/IKzUSndmX+pqqoqSVJKSoq6d+9e57L22yPrExUVJUkqKSmpdZl77rlHN998s959913l5OQoJydHWVlZysrK0rx587Rt2zbFxsbWaGcvHtu0aeNSXwAAvosCDwAAN3Xu3FmSNGHCBD344INeidm+fXtJqvfrFTp06KA77rhDd9xxhyTpyy+/1O9+9zt98sknmj17tpYvX16jjT1mhw4dvNJXAEDzxS2aAAC4acyYMZKkFStWyBjjlZg9e/ZUcHCwCgsLVVpa6nK7Hj16aNasWZKkf//7306XsQ/00q9fvwb3EwDQvFHgAQDgpgkTJig5OVm7du3S7bff7vQ5u++//15LlizRxYsXXYrZsmVLDRo0SFVVVcrNza0x/+OPP9Z7771XbTRPSTLG6F//+pckqUuXLk5jf/LJJ5KkESNGuNQXAIDv4hZNAADcFBAQoLVr12rs2LFavny5Vq5cqd69eyshIUHnz59XQUGBPvvsM1VWViojI8PpSJvOXHfdddq6das2btxY48vO//Of/+j+++9XRESE+vbtq7i4OJ09e1Z5eXk6cuSIIiMj9cQTT9SImZ+fr1OnTmnAgAFOn88DAFgLn+ABAOCBuLg47dy5U0uWLNGAAQO0f/9+rVy5Ujk5OZKkP/3pT/rwww8VGhrqcszbb79dYWFh+sc//qHKyspq86699lrNnz9fycnJKigo0OrVq7V582ZFRkZq9uzZ2rdvn/r06VMj5rJlyyRJd999t8frCgDwHTbjrYcHAABAg02bNk2LFy/Wu+++q2uvvbZBsc6dO6fOnTurRYsWOnTokEJCQrzUSwBAc8UneAAANCPz5s1TVFSU09st3bVo0SKdPHlSf/7znynuAMBP8AkeAADNzIIFCzR9+nStWLFCN954o0cxiouLddlll+nyyy/Xzp07ZbPZvNxLAEBzRIEHAAAAABbBLZoAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBH/B+lJ1xUb/OFxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy = np.random.poisson(long_signal*dt)\n", + "\n", + "long_lc = Lightcurve(long_times, long_noisy, dt=long_dt, skip_checks=True)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `AveragedPowerspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 50515.52it/s]\n" + ] + } + ], + "source": [ + "avg_ps = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm=\"leahy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check how many segments were averaged together by printing the `m` attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(\"Number of segments: %d\" % avg_ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AveragedPowerspectrum` has the same properties as `Powerspectrum`, but with `m` $>$1.\n", + "\n", + "Let's plot the averaged power spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAIeCAYAAAAxuAm3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABonklEQVR4nO3deXgT1f7H8U9KS4EWKGsBAVlEFEQBARVQkU0UN8QVF1Bc0Iu4gIoLohf1KopXFvW64HavehUEXOAqiyICCijIosgioLKp7DSF0pLz+2N+aZImadN0pkmb9+t5+tBkJpOT0GTmM+d8z7iMMUYAAAAA4ICkWDcAAAAAQPlF4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcExyrBtQnnk8Hu3atUuSVKVKFblcrhi3CAAAACg5Y4yys7MlSbVr11ZSUvh+DAKHg3bt2qXMzMxYNwMAAABwzB9//KG6deuGXc6QKgAAAACOoYfDQVWqVMn//Y8//lBaWloMWwMAAADYw+1254/k8T/mDYXA4SD/mo20tDQCBwAAAMqdouqUGVIFAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAx3AdDhu53e5CbwMAAACJhsBho/T09Fg3AQAAAIgrDKkCAAAA4Bh6OGyUlZUVcNvtdiszMzNGrQEAAABij8Bho7S0tFg3AQAAAIgrDKkCAAAA4BgCBwAAAADHEDgAAAAAOIbAAQAAAMAxBA7g/337rfTKK1J2dqxbAgAAUH4wSxUgaf9+qUcPK2zs2SONHBnrFgEAAJQP9HAAkn7/3dez8fPPsW0LAABAeULgACQdPRr6dwAAAJQMgQMQgQMAAMApBA5AUl5e6N8BAABQMgQOQPRwAAAAOIXAAYjAAQAA4BQCByACBwAAgFMIHIAIHAAAAE4hcACiaBwAAMApBA5A9HAAAAA4hcABiMABAADgFAIHIAIHAACAU5Jj3YDyxO12F3ob8cs/ZFDDAQAAYB8Ch43S09Nj3QREiR4OAAAAZzCkClBgrwaBAwAAwD70cNgoKysr4Lbb7VZmZmaMWoPioIcDAADAGQQOG6WlpcW6CYgSgQMAAMAZDKkCRNE4AACAUwgcgOjhAAAAcAqBAxBF4wAAAE4hcACihwMAAMApBA5ABA4AAACnEDgAUTQOAADgFAIHIHo4AAAAnELgAETROAAAgFMIHIDo4QAAAHAKgQMQgQMAAMApBA5AFI0DAAA4hcABiB4OAAAApxA4ABE4AAAAnELgABQ4jMrjkYyJXVsAAADKEwIHoOBeDXo5AAAA7EHgAETgAAAAcAqBAxCBAwAAwCkEDkAEDgAAAKcQOAAFX3uDwAEAAGAPAgeg4IDBxf8AAADsQeAAxJAqAAAApxA4ABE4AAAAnELgAETgAAAAcAqBAxBF4wAAAE4hcACiaBwAAMApBA5ADKkCAABwSnKsG1CeuN3uQm8jfhE4AAAAnEHgsFF6enqsm4AoETgAAACcwZAqQME1G9RwAAAA2IMeDhtlZWUF3Ha73crMzIxRa1Ac9HAAAAA4g8Bho7S0tFg3AVEicAAAADiDIVWACBwAAABOIXAAInAAAAA4hcABiAv/AQAAOIXAASg4YNDDAQAAYA8CByCGVAEAADiFwAGIwAEAAOAUAgcgAgcAAIBTCByAKBoHAABwCoEDEEXjAAAATiFwAGJIFQAAgFMIHIAIHAAAAE4hcAAicAAAADiFwAGIonEAAACnEDgAUTQOAADgFAIHIIZUAQAAOIXAAYjAAQAA4BQCByBqOAAAAJxC4ABEDwcAAIBTCByAKBoHAABwCoEDCc/jCb6PwAEAAGAPAgcSXqhwQeAAAACwB4EDCS9UuKBoHAAAwB4EDiQ8ejgAAACcQ+BAwiNwAAAAOIfAgYQXavgUgQMAAMAeBA4kPHo4AAAAnEPgQMKjaBwAAMA5BA4kPHo4AAAAnEPgQMIjcAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER+AAAABwDoEDCY+icQAAAOcQOJDwqOEAAABwDoEDCY8hVQAAAM4hcCDhETgAAACcQ+BAwiNwAAAAOIfAgYRH4AAAAHAOgQMJL1SBOEXjAAAA9iBw/L+pU6eqX79+aty4sapUqaLWrVtr3Lhxys3NjXXT4DB6OAAAAJyTHOsGxItnn31WTZo00dixY5WZmanFixfr4Ycf1qpVq/TWW2/FunlwEIEDAADAOQSO//fJJ5+oTp06+bfPOeccGWM0atSo/BCC8onAAQAA4ByGVP0//7Dhdeqpp0qStm/fXtrNQSkicAAAADgnrgPHunXrNHHiRA0aNEht2rRRcnKyXC6XHn/88YgeP2XKFHXr1k01atRQWlqaTjnlFI0dOzbiuowFCxaoYsWKat68eUleBuIcReMAAADOieshVS+99JLGjx8f1WPvuusujR8/XsnJyerevbvS09P1xRdf6P7779cnn3yi2bNnq3LlymEf/9NPP2n8+PG65ZZbVK1atWhfAsoAejgAAACcE9c9HCeddJJGjBihd955R2vXrtV1110X0eNmzJih8ePHKz09XUuWLNHnn3+uDz/8UBs2bFCbNm20cOFCjRo1Kuzjd+3apUsuuUTHHXecnnrqKbteDuIUgQMAAMA5cd3DcdNNNwXcTkqKLB89+eSTkqSRI0eqffv2+ffXrl1bL774os4880xNmjRJo0aNUvXq1QMee/DgQZ133nk6cuSI5s+fr7S0tBK+CsQ7AgcAAIBz4rqHIxrbtm3TsmXLJEkDBgwIWt61a1c1atRIOTk5mjVrVsCynJwcXXzxxdqyZYs+//xzNWjQoFTajNgicAAAADin3AWOFStWSJJq1qyppk2bhlynQ4cOAetK0tGjR3XVVVdp2bJlmjVrllq2bFnkc7nd7iJ/EP8oGgcAAHBOXA+pisbmzZslSY0bNw67TqNGjQLWlaS//e1vmjFjhsaMGaOjR4/q22+/zV/WqlWrkIXj6enpdjUbMUQPBwAAgHPKXeA4ePCgJBVae+ENCgcOHMi/77PPPpMkjRo1Kqig/Msvv1S3bt1sbiniBYEDAADAOeUucERry5YtxX5MVlZWocvdbjdXKC8DCBwAAADOKXeBo2rVqpJUaP2ENyiU9PoazGBVPoQKF9RwAAAA2KPcFY03adJEkvT777+HXce7zLsuEluocEEPBwAAgD3KXeBo166dJGn37t0BReH+vvvuO0kKuEYHEhdDqgAAAJxT7gJHw4YN1bFjR0nSu+++G7R84cKF+v3335Wamqrzzz+/tJuHOETgAAAAcE65CxyS9OCDD0qSnnrqKS1fvjz//t27d+v222+XJA0dOjToKuMlxXU4yiYCBwAAgHNcxhgT60aEs3z58vyAIEm//PKLdu3apYYNG+qYY47Jv3/69OmqX79+wGPvvPNOTZgwQSkpKerRo4fS0tI0b9487du3T126dNGcOXNUuXJlW9vrcrnCLsvKyqLIPE6NHi39/e+B96WmSocPx6Y9AAAA8c7tdudfaqKo49y4nqXqwIEDWrJkSdD9W7du1datW/Nv5+TkBK0zfvx4denSRS+88IIWL16s3NxcNW/eXCNHjtTdd9+tihUrOtp2lB30cAAAADgnrns4ypqCQ6j8r8NBD0f8GjlSevrpwPtcLsnjiU17AAAA4l256eEoawgUZVOo3gxjrJ9CRskBAAAgAuWyaBwoDv/AUaFC6PsBAAAQHQIHEp5/sPAv7eFq4wAAACVH4EDCCxc46OEAAAAoOQIHEp5/TwaBAwAAwF4Ujdso1CxViH/+wSI1NfT9AAAAiA6Bw0beqcFQthA4AAAAnMOQKiQ8isYBAACcQw+HjbKysgJu+1/4D/GLonEAAADnEDhsxIX/yiaKxgEAAJzDkCokPHo4AAAAnEPgQMILVzRODQcAAEDJETiQ8JilCgAAwDkEDiQ8hlQBAAA4h8CBhEfROAAAgHOYpcpGXGm8bGJIFQAAgHMIHDbiSuNlExf+AwAAcA5DqpDw6OEAAABwDj0cNuJK42UTReMAAADOIXDYiCuNl00EDgAAAOcwpAoJz1ur4XJJyX4RnMABAABQcgQOJDxvsEhOlipU8N1P0TgAAEDJETiQ8LyBo0KFwMBBDwcAAEDJETiQ8AgcAAAAziFwIOH5Bw5qOAAAAOxF4EDC89ZqFOzhoIYDAACg5AgcSHgMqQIAAHAO1+GwkdvtLvQ24lO4WaoIHAAAACVH4LBRenp6rJuAKNDDAQAA4ByGVCHhUTQOAADgHHo4bJSVlRVw2+12KzMzM0atQaQoGgcAAHAOgcNGaWlpsW4CosCQKgAAAOcwpAoJj6JxAAAA5xA4kPDo4QAAAHAOgQMJj6JxAAAA5xA4kPDC9XBQNA4AAFByURWN79u3T59//rnmzZun5cuX648//tDevXtVo0YNZWZm6tRTT1X37t117rnnKiMjw+YmA/YKN0sVPRwAAAAlV6zAsXr1ao0fP17vvfeeDh8+LGNMwPLs7Gxt27ZNy5cv12uvvaZKlSppwIABuuOOO3TyySfb2nDADsZYPxJF4wAAAE6IKHD8+eefeuCBB/TWW2/J4/Godu3a6tu3rzp37qzWrVurVq1aqlatmvbv36/du3drzZo1Wrx4sRYsWKDJkyfrjTfe0KBBg/Tkk0+qbt26Tr8mIGL+oYIaDgAAAPtFFDhatGihgwcP6oILLtDgwYPVt29fJSeHf2jv3r11zz33KC8vT5988olef/11vf766/rwww+1d+9e2xoPlFTBwEEPBwAAgL0iKhrv1KmTli1bpo8//lgXX3xxoWHDX3Jysvr166dPPvlES5YsUYcOHUrUWMBuhQUOisYBAABKLqLkMGfOnBI/UceOHW3ZDmAn/1BBDwcAAID9opqlCqG53e5CbyP++IcKisYBAADsF1Xg2LJli5o0aWJzU8q+9PT0WDcBxUTROAAAgLOiuvBfs2bN1KJFCw0ZMkRTp06lEBxlFjUcAAAAzoqqh6NJkyb65Zdf9Msvv+jVV1+Vy+VS27Zt1bNnT/Xs2VNnnnmmUlNT7W5r3MvKygq47Xa7lZmZGaPWIBLMUgUAAOCsqALHpk2btHnzZs2dO1dz5szRl19+qeXLl2v58uV65plnlJqaqs6dO+cHkESZnSotLS3WTUAxUTQOAADgLJcpeLnwKK1YsUJz5szRvHnztHDhQh0+fNh6ApdLeQk6NsXtdufXdWRlZRFI4tDmzVKzZtbvV14pjRwptWtn3b71Vulf/4pd2wAAAOJVcY5zbZulql27djrxxBPVtm1bHX/88Zo8eXJ+6ADiVcFZqigaBwAAsFeJAocxRt99953mzp2ruXPnavHixTpy5IiMMcrIyNB5552nnj172tVWwHYUjQMAADgrqsDxr3/9S3PnztWXX36pffv2yRgTsm7D5XLZ3V7AVhSNAwAAOCuqwHH77bfL5XLphBNO0E033ZQ/M1WlSpXsbh/gKIrGAQAAnBX1kCpjjDZt2qRly5YpIyNDNWvW1Kmnnmpn2wDH0cMBAADgrKgCx5IlSwLqNubPn6+HH35YNWrUUPfu3dWzZ0/16tVLTZs2tbu9gK0oGgcAAHBWVIGjY8eO6tixox544AEdPnxYCxYsyA8gH374oaZOnSqXy6WmTZuqV69eeumll+xuN2ALisYBAACclVTSDVSqVEm9e/fW2LFjtXz5cu3cuVMjRoxQamqqNm3apFdeecWOdgKOYEgVAACAs2y5DkfBq47v2bNH3usJpqam2vEUgCMIHAAAAM6KKnDs3btX8+bNyx9GtXnzZklWIbnL5VLbtm3zp8c988wzbW0wYKeCs1RRwwEAAGCvqAJHnTp1ZIzJ78Vo2rRpfsDo0aOHatasaWsjAacULBqnhwMAAMBeUQWOjIwM9ejRIz9kMBuVxe12F3ob8YeicQAAAGdFFTh27dpldzvKhfT09Fg3AcVEDQcAAICzSjxLFVCWETgAAACcZcssVbBkZWUF3Ha73crMzIxRaxCJgkXjSX4RnMABAABQclH3cOTm5mrcuHE6/fTTVaNGDVWoUCHkT3Jy4mSatLS0oB/Et4I9HC6Xr5eDGg4AAICSiyoN5OTkqEePHvrmm2/yZ6oKp6jlQCwVnKVKsgLH0aP0cAAAANghqh6O8ePHa/Hixerdu7fWrVun66+/Xi6XSzk5OVqzZo3uv/9+paamatSoUfJ4PHa3GbBNwR4O/38JHAAAACUXVQ/HlClTVLVqVf33v/9V9erV5XK5JEkpKSlq1aqV/vGPf6hz58665JJL1KZNG1122WW2NhqwC4EDAADAWVH1cKxfv16nnXaaqlevLkn5geOo3xHahRdeqHbt2mnixIk2NBNwRsGicck3tIrAAQAAUHJRBY7c3FzVqVMn/3blypUlSQcOHAhYr2XLllq9enUJmgc4q7AeDorGAQAASi6qwFGvXj3t2LEj/3b9+vUlSWvXrg1Yb/v27QG9HkC8CVc0XnAZAAAAohNV4DjxxBO1cePG/NudO3eWMUZjx47NLxL/6quv9PXXX6tly5b2tBRwADUcAAAAzooqcJx77rnaunWrli5dKknq1q2bWrVqpU8++UTHHHOMTj31VPXq1UvGGN1+++22NhiwE4EDAADAWVHNUjVgwADVqlUrv2g8KSlJM2bMUP/+/bV69Wr98ccfqlChgoYNG6ZBgwbZ2V7AVhSNAwAAOCuqwFG7dm1dc801Afcdd9xxWrlypdatW6c9e/bo+OOPV61atWxpJOAUisYBAACcFVXgWLBggSpUqKAuXboELaNmA2UJReMAAADOiqqGo1u3bho1apTdbQFKHTUcAAAAzooqcNSoUUMNGjSwuy1AqSNwAAAAOCuqwNG2bVtt2LDB7rYApS5U4KBoHAAAwD5RBY5hw4Zp2bJlmjlzpt3tAUpVqFmqKBoHAACwT1RF4+3atdPQoUPVr18/DRo0SP3791eTJk1UuXLlkOs3bty4RI0EnMKQKgAAAGdFFTiaNm0qSTLGaPLkyZo8eXLYdV0ul/I4VYw4VdgsVZLk8UhJUfUDAgAAQIoycDRq1Egul8vutpR5bre70NuIP4XVcHiXEzgAAACiF1Xg2LJli83NKB/S09Nj3QQUU2FDqiSrjiMlpXTbBAAAUJ5w7hYJrbCicYk6DgAAgJKKqocDoWVlZQXcdrvdyszMjFFrEImiejgIHAAAACUTUQ/H9u3bbXkyu7YTr9LS0oJ+EN+KKhoncAAAAJRMRIGjRYsWGjlypPbu3RvVk+zZs0f33XefWrRoEdXjAadEUjQOAACA6EUUOHr37q2xY8eqYcOGuvbaazVnzhzl5OQU+picnBx9/vnnuvrqq9WwYUM9++yzOvfcc21pNGCXSIrGAQAAEL2IajimT5+uuXPn6u6779a7776r9957TykpKWrbtq1OPPFE1apVS9WqVdOBAwe0e/du/fTTT1q5cqVyc3NljNFJJ52k5557Tj179nT69QDFQtE4AACAsyIuGu/Zs6dWr16tOXPmaNKkSZo9e7aWLl2qpUuXSrIu8GeMyV8/NTVVF154oYYOHUrQQNyiaBwAAMBZxZ6lqlevXurVq5dycnK0aNEirVixQn/88Yf279+vjIwM1a1bV+3bt1fnzp2VmprqRJsB21A0DgAA4Kyop8VNTU1V9+7d1b17dzvbA5QqisYBAACcxYX/kNAoGgcAAHAWgQMJjRoOAAAAZxE4kNCYpQoAAMBZBA4kNIrGAQAAnEXgQEIrqmicGg4AAICSIXAgoVHDAQAA4CwCBxIagQMAAMBZUQWOBQsWaNGiRXa3BSh1FI0DAAA4K6rA0a1bN40aNcrutgClzj9QJP3/p4EL/wEAANgnqsBRo0YNNWjQwO62AKXOGyj8QwYX/gMAALBPVIGjbdu22rBhg91tAUqdN3D4hwyGVAEAANgnqsAxbNgwLVu2TDNnzrS7PUCpInAAAAA4K7noVYK1a9dOQ4cOVb9+/TRo0CD1799fTZo0UeXKlUOu37hx4xI1EnCKd8gUgQMAAMAZUQWOpk2bSpKMMZo8ebImT54cdl2Xy6U8BsIjToXq4aBoHAAAwD5RBY5GjRrJ5XLZ3Rag1FE0DgAA4KyoAseWLVtsbgYQG9RwAAAAOIsrjSOhETgAAACcReBAQqNoHAAAwFklChxff/21rrjiCjVs2FCpqakaPHhw/rI5c+bowQcf1M6dO0vcSMApFI0DAAA4K+rA8fjjj6tbt26aOnWqtm/frtzcXBlj8pdXr15dTz/9tKZNm2ZLQwEnUDQOAADgrKgCx//+9z898sgjOuaYY/TBBx/ojz/+CFqnU6dOqlOnjj799NMSNxJwCjUcAAAAzopqlqrx48crNTVV//vf/9S6deuw651yyinasGFD1I0ra9xud6G3EX8IHAAAAM6KKnAsW7ZMnTp1KjRsSFKdOnW0ePHiqBpWFqWnp8e6CSgmAgcAAICzohpS5Xa7Va9evSLX279/vzweTzRPAZSKULNU+ddzUMMBAABQMlH1cGRmZmrjxo1Frrdu3To1atQomqcok7KysgJuu91uZWZmxqg1iAQ9HAAAAM6Kqoeja9eu+uGHH7Ro0aKw63z66afauHGjzjnnnKgbV9akpaUF/SB+GSN5O+DCzVJF4AAAACiZqALH8OHD5XK5dOmll2rGjBnKKzDu5LPPPtNNN92klJQU3XHHHbY0FLCb/2g/ejgAAACcEVXgaN++vcaNG6ddu3apf//+ysjIkMvl0ocffqiMjAz17dtXf/75p8aNG6dWrVrZ3WbAFv5hggv/AQAAOCPqC//deeedmjVrljp27KhDhw7JGKODBw/qwIEDatOmjT7++GMNHTrUzrYCtvLvmAvXw0HROAAAQMlEVTTude655+rcc8/V7t27tXnzZnk8HjVq1Ej169e3q32AY8L1cDCkCgAAwD4lChxetWrVUq1atezYFFBq/MMEReMAAADOiGpI1ZtvvqmtW7fa3RagVNHDAQAA4LyoejhuvPFGuVwutWjRQj179lTPnj3VvXt3VatWze72AY6haBwAAMB5UQWOQYMG6YsvvtD69eu1fv16vfTSS0pKStKpp56aH0C6dOmilJQUu9sL2IaicQAAAOdFNaTq9ddf15YtW7Ru3Tq98MILuvjii1W1alUtXbpUTz75pHr06KEaNWqoT58+GjdunN1tBmzBkCoAAADnRT0triS1aNFCt912m6ZNm6bdu3dryZIleuKJJ9StWzfl5eVp9uzZuv/+++1qK2ArisYBAACcV6LA4S83N1cHDx7MvxaH9+rjxhi7ngKwFT0cAAAAzivRtLg//PCD5syZo7lz52rhwoU6fPiwjDGqVq2a+vbtm1/PAcQjisYBAACcF1XguOqqq/TFF19o9+7dMsYoJSVFp59+en7A6NSpkyr4H8EBcYiicQAAAOdFFTg++OADuVwunXzyyRo9erR69+6tKlWq2N02wFEMqQIAAHBeVDUcVatWlTFGK1eu1DXXXKNLL71U48aN08qVK+1uH+AYisYBAACcF1UPx549e7R06VLNnTtXc+fO1ZdffqnZs2fL5XKpdu3a6tGjh3r16qVevXqpYcOGdrcZsAU9HAAAAM6LKnBUqFBBZ5xxhs444wyNGjVK2dnZmj9/vubOnat58+bp/fff1/vvvy9JOv7447V27VpbGw3YIZKicWo4AAAASqZEs1R5ValSReeff77OP/98rVy5Uu+8844mTZqkw4cPa/369XY8BWA7ejgAAACcV+LAsXXr1vypcefNm6e//vpLkvJnrzrjjDNK3EjACZHMUkXgAAAAKJmoAseMGTPy6zc2bNggyQoYLpdLJ510Uv70uGeffTazVyFu0cMBAADgvKgCx6WXXpr/e6NGjfIDRo8ePVS3bl3bGgc4iVmqAAAAnBdV4LjkkkvUq1cv9ezZUy1atLC7TUCpoGgcAADAeVEFjmnTptndDqDUMaQKAADAeVFd+A8oDygaBwAAcF6JAsfatWs1ZMgQtWzZUunp6UpPT1fLli112223ce0NxL1wPRxJSaHXAQAAQPFFPS3um2++qSFDhig3N1fGmPz7N2zYoA0bNuiNN97Qyy+/rIEDB9rSUMBu4YrGvbfz8ggcAAAAJRVVD8f333+vm2++WUeOHFHfvn01ffp0rVq1SqtWrdKMGTN04YUX6siRI7r55pv13Xff2d1mwBbhejj8b1M0DgAAUDJR9XA888wz8ng8mjx5sm644YaAZSeddJIuuugivfnmm7rxxhs1btw4vffee7Y0FrBTJIGDHg4AAICSiaqH4+uvv1bbtm2Dwoa/QYMGqX379lqwYEHUjQOcFK5o3P82gQMAAKBkogocu3bt0oknnljkeieccIJ27doVzVMAjqOHAwAAwHlRBY6MjAz99ttvRa7322+/qXr16tE8BeC4oorGC64DAACA4osqcHTs2FGLFy/WF198EXadL774QosWLdJpp50WdeMAJ1E0DgAA4LyoAscdd9whj8ejCy+8UPfdd59+/PFHZWdnKzs7W2vWrNGIESN04YUX5q8LxCOGVAEAADgvqlmqzj33XD300EN64oknNG7cOI0bNy5oHWOMRo0apd69e5e4kYATCBwAAADOi/pK42PGjNGsWbN0zjnnKDU1VcYYGWNUsWJFde/eXbNmzdJjjz1mZ1sBWzFLFQAAgPOivtK4JPXp00d9+vTR0aNHtXv3bklSrVq1VKHg0RsQhwrr4fAWjVPDAQAAUDLFChwbN27UtGnTtGXLFqWmpqpt27a64oorVLlyZdWtW9epNgKOKGyWKno4AAAA7BFx4Hj++ed133336WiBI7BRo0Zp1qxZOumkk2xvHOAkajgAAACcF1ENx8KFCzV8+HDl5eWpSpUqateunZo3by6Xy6WtW7eqf//+8ng8TrcVsBWBAwAAwHkRBY5JkybJGKOBAwdq586d+u6777R+/XotX75czZs318aNG/XZZ5853VbAVhSNAwAAOC+iwPHNN9+oYcOGevnll5WWlpZ//8knn6zx48fLGKNvv/3WsUYCTqBoHAAAwHkRBY4//vhDHTp0UMWKFYOWde3aVZL0559/2tuyUrZx40YNGTJE7du3V0pKipo0aRLrJsFhkRSNezySMaXXJgAAgPImoqLxI0eOKCMjI+SyatWq5a9Tlv3444/69NNP1alTJxljtHfv3lg3CQ6LpIZDskIHMz0DAABEJ+oL/5U3F154obZu3app06bptNNOi3VzUAoiDRzUcQAAAEQv4mlxN27cqLfffjuq5ddff33xW1bKkpLIXommsKJx/yFWBA4AAIDoRRw4Fi1apEWLFoVc5nK5wi53uVxRB45169Zp9uzZ+v777/X9999r7dq1Onr0qMaMGaOHH364yMdPmTJFL7zwglauXKkjR47ouOOO0zXXXKO7775bKSkpUbUJ5UekPRwUjgMAAEQvosDRuHFjuVwup9sS5KWXXtL48eOjeuxdd92l8ePHKzk5Wd27d1d6erq++OIL3X///frkk080e/ZsVa5c2eYWoyyJpGi84HoAAAAonogCx5YtWxxuRmgnnXSSRowYoXbt2ql9+/Z68skn9e9//7vIx82YMUPjx49Xenq6vvrqK7Vv316StGvXLnXv3l0LFy7UqFGj9Oyzzzr9EhDHqOEAAABwXsRDqmLhpptuCrgdaZ3Fk08+KUkaOXJkftiQpNq1a+vFF1/UmWeeqUmTJmnUqFGqXr26fQ1GmULgAAAAcF65q5Tetm2bli1bJkkaMGBA0PKuXbuqUaNGysnJ0axZs0r0XG63u8gfxC+KxgEAAJxX7gLHihUrJEk1a9ZU06ZNQ67ToUOHgHWjlZ6eXuhPZmZmibYPZ1E0DgAA4Ly4HlIVjc2bN0uyCt3DadSoUcC6kpSdnZ3f47Fp0yZlZ2dr6tSpkqSOHTvq2GOPdarJiBGGVAEAADiv3AWOgwcPSpLS0tLCrpOeni5JOnDgQP59f/75py6//PKA9by333jjDQ0aNChoO1lZWYW2xe1208sRx5ilCgAAwHnlLnBEq0mTJjLGFOsxhYUaxD96OAAAAJxX7mo4qlatKkmFFmx7eyaqVatWKm1CfCoscPj3eFDDAQAAEL1yFziaNGkiSfr999/DruNd5l0XiamwWaro4QAAALBHuQsc7dq1kyTt3r07oCjc33fffSdJAdfoQOJhSBUAAIDzyl3gaNiwoTp27ChJevfdd4OWL1y4UL///rtSU1N1/vnn2/rcXIejbKFoHAAAwHnlLnBI0oMPPihJeuqpp7R8+fL8+3fv3q3bb79dkjR06FDbrzLOdTjKFno4AAAAnBfXs1QtX748PyBI0i+//CJJevnll/Xpp5/m3z99+nTVr18///Yll1yiYcOGacKECTr99NPVo0cPpaWlad68edq3b5+6dOmiMWPGlN4LQVyiaBwAAMB5cR04Dhw4oCVLlgTdv3XrVm3dujX/dk5OTtA648ePV5cuXfTCCy9o8eLFys3NVfPmzTVy5Ejdfffdqlixou3tLXhdDq7DEd8oGgcAAHBeXAeObt26FfvaGP6uuOIKXXHFFTa2qHBcl6NsYUgVAACA88plDQcQCf8gkVTgk0DgAAAAsAeBAwnLGyQqVJBcrsBlBA4AAAB7EDiQsPwDR0EUjQMAANiDwIGE5Q0SoQIHPRwAAAD2IHAgYRXWw0HgAAAAsEdcz1JV1hS8sjhXGo9v3iBR8CrjEoEDAADALgQOG6Wnp8e6CSgGajgAAACcx5AqJCyGVAEAADiPHg4bcaXxsoWicQAAAOcROGzElcbLFno4AAAAnMeQKiQsAgcAAIDzCBxIWIXNUkXROAAAgD0IHEhY9HAAAAA4j8CBhEXgAAAAcB6BAwmLWaoAAACcxyxVNuJK42ULPRwAAADOI3DYiCuNly0UjQMAADiPIVVIWPRwAAAAOI8eDhtxpfGyw+Px/U7gAAAAcA6Bw0Zcabzs8B8mReAAAABwDkOqkJD8QwSBAwAAwDkEDiQk/xBB0TgAAIBzCBxISPRwAAAAlA4CBxISgQMAAKB0EDiQkCgaBwAAKB0EDiSkono4qOEAAACwB4EDCYkhVQAAAKWD63DYyO12F3ob8aOoWaoIHAAAAPYgcNgoPT091k1AhOjhAAAAKB0MqUJCInAAAACUDno4bJSVlRVw2+12KzMzM0atQWGKmqWKonEAAAB7EDhslJaWFusmIEL0cAAAAJQOhlQhIVE0DgAAUDoIHEhI9HAAAACUDgIHEhKBAwAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJiaJxAACA0kHgQEKihwMAAKB0EDiQkAgcAAAApYPAgYRE0TgAAEDp4ErjNnK73YXeRvyghwMAAKB0EDhslJ6eHusmIEJFFY27XNaPMQQOAACAkmBIFRJSUT0c/vcTOAAAAKJHD4eNsrKyAm673W5lZmbGqDUoTKSBIy+PGg4AAICSIHDYKC0tLdZNQISKKhqXrKFWOTn0cAAAAJQEQ6qQkBhSBQAAUDoIHEhIBA4AAIDSQeBAQipqliqJwAEAAGAHAgcSUiQ9HN4gQtE4AABA9AgcSEgMqQIAACgdBA4kpEhmqSJwAAAAlByBAwmJHg4AAIDSQeBAQqJoHAAAoHQQOJCQKBoHAAAoHQQOJCSGVAEAAJQOAgcSEkXjAAAApYPAgYREDwcAAEDpIHAgIVE0DgAAUDrCHGohGm63u9DbiB/FKRr3eCRjJJfL+XYBAACUNwQOG6Wnp8e6CYhQcYZUedcP1xMCAACA8BhShYRUnKJxiWFVAAAA0eKcrY2ysrICbrvdbmVmZsaoNShMND0cAAAAKD4Ch43S0tJi3QREqLiBg4v/AQAARIchVUhIkcxS5X8/PRwAAADRIXAgITGkCgAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJqTgX/pMoGgcAAIgWgQMJKZKicXo4AAAASo7AgYTEkCoAAIDSQeBAQiJwAAAAlA4CBxISs1QBAACUDgIHEhJF4wAAAKWDwIGERNE4AABA6SBwICFRwwEAAFA6CBxISAQOAACA0kHgQEIqbtE4NRwAAADRIXAgIRW3aJweDgAAgOgQOJCQGFIFAABQOggcSEgEDgAAgNIRZkJQRMPtdhd6G/HDGyCSkiSXK/Q6BA4AAICSI3DYKD09PdZNQIS8ReDhejcKLqNoHAAAIDoMqUJC8vZYFBY4KBoHAAAoOXo4bJSVlRVw2+12KzMzM0atQWEiCRwMqQIAACg5AoeN0tLSYt0ERMgbIJIL+QQQOAAAAEqOIVVISPRwAAAAlA4CBxJScWs4KBoHAACIDoEDCam4s1TRwwEAABAdAgcSEkOqAAAASgeBAwmJonEAAIDSQeBAQqKHAwAAoHQQOJCQKBpHosjNjXULAACJjsCBhETROBLBkCFSerr00kuxbgkAIJEROJCQGFKF8m73bunll6UjR6SnnpKMiXWLAACJisCBhETROMq7b77x/f7bb9Ivv8SuLQCAxEbgQEIqbg8HNRwoaxYvDrw9b15s2gEAAIEDCam4ReP0cKCs8e/hkKQvvohNOwAAIHAg4Xg8vvHs1HCgPMrNlZYuDbzviy+sv30AAEobgQMJxz88EDhQHq1aJWVnB963a5e0enVs2gMASGwEDoS0e7d07bXSmDHlb3abkgaODz+Ubr9d2rHD/rYBdvCv32jZ0vc7w6oAALFA4EBIw4dL77wjPfKINHNmrFtjL//wEOksVd6i8eXLpcsus65rcPfdzrQPKCn/+o0HH/T9TuE4ACAWCBwIsnu39N//+m6//HLs2uKESHs4QhWNjxzpu++zz5i9CvHJ28NRpYp09dVS3brW7a++4srjAIDSR+BAkDfekHJyfLdnzZJ+/z127bGbf0gozpCquXOlOXN89+3fL33/vf3tA0pi2zbp11+t3zt1klJSpO7drdtZWdJ338WubQDg7/BhaefO8jd0G8EIHAjg8VjDhQre99prsWmPE6Kp4cjLC+zd8PIPIEA88B9O1bmz9W+PHr77GFYFOGfJEqlJE+m886yDaYSXm2udDKlfXzr1VOm99xg1UJ4ROBBg9mxp0ybr9/btfQfdr71Wfr4Iogkc06f7ejOaNvXdT+BAvCFwALFx6JA12cqvv1pDbt94o/D1t2+X9u4tnbbFow8+8H1frVghDRggHXecNH681RuL8oXAgQAvvuj7/ZFHpAsusH7fvl369FN7n8vtli691Ppxu+3ddmGiKRrfutX3+0svSc2bW79/8035/2LMzpamTpXWr491S2LnwAFr5/jhh/Hf9e8/Q9Xpp1v/Nm1qnXX1Lj90qNSbBZR7Tz4pbdzou/3MM+FP1M2aJTVuLDVrFnyRzkRgjDRuXPD9v/4q3XWX9d7MnVvqzYKDCBzIt2WLL1Q0aiT17SsNGeJbbnfx+OTJVs/B9OnSW2/Zu+3CRFM07tW9u9S7t9Srl3U7N1dasMDe9sWTDRuk006TLr9catVKGjYscc7IHTxodfH362cVXV95pTVD2YQJsW5ZeIcP+3riWraUatXyLfP2chw5Ii1aVPpti5XVq6Xjj5cuvpghLojshMHHH0unnGId+EZ6gmHtWunppwPv27zZOllTUE6ONHSotS/at086/3xp5crInqc0TZtmhahffrF/2/PnW70akjWc6osvrGFoXnv3StddV/5P6CUSAkc5t25d5FcXfuUV35frLbdYB9y9e/vOjH7+ufUFapfPP/f9/tVX9m23KNEMqfJ66inJ5ZJ69vTdV16HVX3yidShg7RmjXX76FFp4kSpRQvrb6W8Xgxx/Xqra79uXevfGTMCJ1F4/PH43Ql+/71vFirvcCqvRB1WNWKEFZw//lh67rmSb89b0/bvf5ffz0A8OXLEvm39979SRoZ1Mu2330KvM368dMkl1sUzx48P7DEMx+ORbr3V99nznpCSrBBSMLRMnBi4L923z9rXxlMv8pdfSv37Sw89ZAX2K66Qli2zb/v+n8Xhw6VzzrF6fVavlrp2te7fuVMaO9a+50SMGTgmKyvLSDKSTFZWVqk//7ffGpOebsygQcbk5RW+7uHDxtSpY4xkTHKyMTt2+JY98YR1v2TMAw/Y07bDh42pUsW33fr1jfF47Nm2l8djzMaNxrz7rjFTpxpz6JB1//r1vue95prwj//5Z996kjGXX+5btmePMUlJ1v0nnWRvu2MtL8+Yhx8OfO3NmgX+f0nGtG9vzNKlzrVj505jLrnEmNtuM+bgwfDr/fKLMVdcYcyNNxqzf3/Jnu/2262/f//XKRlTr54xrVr5bj/1VPG2vWSJMW+9ZUx2dvTti8Qzz/ja+Oqrgct27PAt69TJ2XYUR26uc9v+5ZfA/8e0NGO2bi3ZNp9/3re9M84wZt264j1+6VJj3n/fmK++MmbDBmNisGsoE3791Zh+/azv2XPPtd6rkti715iaNX3/d9WqGfP22779Tl6eMXfcEfzZv+66orc9ebJv/ebNrc95x46++z77zLfuX38ZU726db/LZUybNr71GjWyXnc8OOec4PdCMqZbN2M+/7xk2167NvA1HzkSuHz9emNSUqzllSsb89tvJXs+OKc4x7kEDgfFMnAcOGBM7dqBB8s5OeHXf+cd37pXXhm4bMcO30FYZmbwl0M0vvwy+IuspDsUY4xZudKYv//dmL59A1+/ZEyTJsZ8+GHgl93114ff1oYNvvUqVLC+BP116uRbvn17ydseD3bvtnbuBYPWwYPG/P67MVdfHbisUiVjli8vfJt//WXtMPbuLd7B5TXX+J7n1FOtQFDQ999bf5Pe9c4/v+hwXVBWlvU3k54e+Npq1bLCzvz51jbXrvWFzJo1rc9YJF58MTCkObnz7NfP91xr1gQvb93aWpaUZP1/xNq//mUF2R49nHlf7r8/+Hvm2muj317B71XvAdHzzxtz9Gjhj/3hB2N69w59EFe1qjFnnml9xhLdkSPGjB0bfIIjNdX6nB4+HN12H3gg9Ht/6aXGbN5szIUXBt5fsaLveXfvDr/dP/8MDDKzZ1v3T53qu++cc3zr+4eaG26wTl6dcorvvuOOCzzhFwsLFwaeDPT/jvX+vPde9Nu/9Vbfdp55JvQ6d99dvNBnh/HjrQD05JOl83x22b3bOqaKBQJHnIh1D8fUqb6zBN6DsXBnWLt08a331VfByy+7zLd8yhTf/QcOWGdvt20rXttCffm//nrodXNzrQO/q68u/Az2zz8Hvt5wP/5nlG68Mfz2Dh0yJiPDWm/YsODlDz7o287bbxfv9cejw4eNOf30wJD17LPBPU9ffWXMySf71jv2WCtUhPLcc76DdP8Dh9q1rQO/cOHV/+De+9O0qfV/7PX558EhQTLmnnsif80rVxrTsGHg49PSjHnssdC9Kv4h6Iknit7+2LHB7cvMNGbRosjbGCmPx3dgUL166APgYcN87Zgxw/42FMfixdbfmH/AmzXLvu3n5Ph6bVNSjKlRw/dcixdHt81HHw38fPj/v551ljE//hgceH/7zZiBA62z2UV9N/XpY39Pr9fu3casWlX09hcsMOYf/4hNIP36a6vHuLD3qGVLY774onjb3brVCobeIHH55YHb9P+/SU425o03jLnzTt9948eH3/b11/vWGzDAd39enjHHH+9btmSJ1RvmPXlXpYpvv/nHH4HrtmlTeK+u0847L3C/fOiQ1WPq38ZTTolu23/+aZ2o8gbtfftCr7dnT2CQW7YsuufzeIz56COr97qwz/3EiYF/E2+8Ed3z2c3jsb7L9u61/l5+/tmY6dONGT3amIsuMqZxY1+bY3Hik8ARJ2IdOIwx5n//8324Jas71P/M7OHD1pAj7/LWrUPvkObMCVzniiuMadHC90VdrVpwD0BhTj01eEdyww2h133jDd86d90VfptDhwZur2ZN64tz9GjrDGqondfNNxfezvXrrV6RUGfN/XtpCuspKQs8Hmvonff11KlT+E790KHAHp4ePYJ7L55+uugDrGefDb19/wN775lG70HpokXW8CT/oU9t2wbefu21ol/z0qWBB6EVKljBNlRPite6db4gVKNG+ADs8QQPS/N/rpQUaxiGnTZtCjxwDWXGDN86N97o3MFtUfbts3ocQ/1NPPSQPcOs/vtf3zavvNKYF17w3e7YsegeiYL+/NMXcJOTrbBa8DvH+3d0zDHGnHaaMRdcEPj9K1kB/dFHrTO4V11lBZVq1XzL33mn5K+9oF27rDZJ1nd3qINZj8cKyN7v9K5di99bGK09e4y56abgEDB0qHWQNWJEcMAbMyby7d98s+9xd99t3Td1qvV94r/N6tWNmTvXWr5mje/+Vq1Cf1bmzfOtk5ER/N3x6qu+5ZdeaszFF/tujx4duO5vvwUePD7ySOSvz07ffedrQ+PGgSeFjh61/q69y1esKP72H3ss+P8inPHjfeueeWbxv69++smYXr1820hOtr4HCm7n3/8O/hxXrGgNSy+OffvsGyK6aJH1XVHw776wHztP2ESKwBEjWVlZAT9//PFHzAOHMdYZ6apVfX+UnToZ85//WDuegmeIX3gh9DaOHrW6egv7Yx8yJLL2/PWXb6d2wgm+A8rjjgu9/kUX+Z6jWrXQO8uDB3077cqVrTON/l8qHo91VqBp0+jaHIp/HYrdNSh791ohr7T+bP75T997UrmyNVSpKFu3Bna1jxjhW/aPfwS+z716WUO1One2eke8//9VqgSPWfbv3ahVyzqj49+j4h9AJGsYUXa2NTzH/4B+/vzwbV+wIPgz4d97Uhj/M5p//3vw8qNHA8+OSlYX/a5dxnTvHnj/sGHRncmcMMEanjNunLVdY6zPdGHtMsb6u/LvOerdO/yJgj//tEJ1NENYZs60Duofeyx4B+zxWAHA24Yzzgj8jEvWiZGSnq3r1s23vS+/tNrhf/Y81BlM79C/UPyHePh/b3zxRfjw5P+TkWEF7FDvp38QrFPH93/qLzfX+v++6y7r/6Y47rknsC2tWwfWnuTkWCd8Crb5sceK9zzF5fFYPeYFh+ycemrwGe0ffgjugY1k6JH/90m1aoG9sTt3+oZSNWkSPAzRv+d/4cLAZVlZVm2bd/nLLwc/9+HD1r6h4Ptav37o7/affgqsXSis3qgk+5ulS60e4lDb8B+W+eKLwctfesm3vLATgKEcOmRM3brWY5OSrKFshTlyJLBX5cMPI3ueffusz2uoejzJmFtu8Q0x/+ijwIN6/1q9+vUjH73x7LPWY2rWtD5LM2dGP/wvN9eYE0+MLGSkp1snB+64w/qMlDYCR4x43/RQP7EMHMYEn80N9dO8eeHj0v3PEErW0JiOHX0H3ZUrFz7W1cv/zOO99wZ+qRfcgWRlBZ8hDPUl6H8mqahhUk88YQ2bcbmMmTat6PYWxr/rOdSY+eLKzbXeZ+//VcOG1pk4J89Ef/554EHof/8b+WMXLAj8Un/33cBJBiRjHn88+HG33+5bftFFgcsGDPAt8xZn79sXupfq9tsDz8L6H+jXqmVNGhDq9XqHV0jGnH125PUYxli1Pd4dVEZG4AHqL78E17lMmOBbfuRIcGFqlSpWiJk3L7Kz7v4Hp97P4bXXWkMmvffNmRP+8QXrGipWtM6mZmdbO9dJk6wx596/idNPL16x+44dvqGIkhUy/UPl66/7llWvbsyWLdbf9zPPBO7469WLfuiZf51Wy5a+z8/cub77MzOtHqq9e62DKG+PXbVqxnz6aeD2fvvNep+933MFD0IOHLAOzi+6yKrTycz0heqKFY0ZPrzo78b+/X1tGzgwcNnhw9YZcu/ydu0inyBh8+bgkO59nTNmWAfgZ50VuMzb9qSk4ANtu2zdGnjGX7JOAkycGL5n5ejRwPH/4XpI/fkfQIcbBrl5c+jhnW+/7XtswToC/+GJZ54Z/rMbalhlYb2b/t9h4fZlq1dbYef444tf7zFrlu+zPWCAbzIVYwJ7derXD1zmtWeP77NQp074YbHPP2/VUv7tb9b/6Zw5voNyyTrhGYmPPgo8RimsFtXjsXorvKHG+9O4ceCJIsk6SH//fd9r8e5PcnICPw+nnRb6ffD366+B2/H/jF1zjRWUinMI+Nprvm3UrWu19dxzrb/lAQOsIekffGDti4rbU2s3AkeMxHPgMMYav1vwTFLNmtbObfr0og8qPB7rg/P229a2vF80/gdQTz9ddDtuvDHwwGjkSN/tDz4IXHfatOAP8YknBvdetG/vWx7JWM/9+4s+uxKJceN8z/v88yXb1vz5gWfy/X/OOy/0wXNJrV8feHD44IPF38akSb7HFzyj9I9/hH7Mvn3WAaV3PW89wdq1voOd2rUDz/7n5FgH1t7HPPlkcBDLzbWGE3nXOeYY62z6iBHWgf/zzwcefPXpY4zbXfzX7P83PHq0dZb74osDx4InJYWvS3r11dD1Ro0bWwf/4QLQzp2+uoRwP0lJhR+MejzW56pRo+DvgnB1BgMGRB56CwYuyQrQ06dbvUj+xcAFP+8LF/qG/kjWexTqzHFR/HsjnnsucJn/AejJJwef0PAecI8b53vNgwf7lt13X2RtyMmxwlSkPVjbt/tmL/J+NxpjHaiEKjbv0SOyM6j+n5nrrw88gysF7hMqVbJOOPjXqjRuHNzrs3On9f/coIEVFIt7QuT99wN7GCWrpyGSovl163yPOemkwp978eLAA+ji7oazs33fj/7F419/7fusVK5c+HDi/fsD/19PPrnwoWq7dgXOYrVyZeDy3bsDe1Yeeijy17NzZ/DB+Gmn+UKL/8megp8bf1dc4Vvvo4+Cl3/2WeHfUZJV0xIJjydwxqxBg0L38G3bZg1h9H+OSpWsv2Xvd/zbb4cOBt7vOO/B+59/Bg5vGziw8L8z/zAT7ju0cmVrH/Hmm4WffMjODvwO/PrryN6nWCFwxEi8Dqnyt3GjdaZm2DDrIMmO8Ybr1/s+ZA0bFj6LlcfjK9KtVMk6czBzpu/Ddccdgetfd13gAVHBnbEx1heX9/4OHUr+eopj1Srfc/ftG902fv89cIiJ96fggUGlStZQmQ0bCj/LUxS32xrvv3hxYLfthRdGd7bE4wk9HGPs2MIf9957vnUbNbIOzPx3eKHCq8djnaUubMjXvn2RdUdfemn0Xd6bNoXvrpesg+qCB9MFrVplDc3xPxjx/zsuuFPyeAJn0unTxxoqU7Dn8uSTI3sNWVlWb0e413HccVZPoPd2uPDo7/PPAz+vBYca+YelcPVTf/4ZPCXnLbdE/n+Vne37rgg1w9Avv4Q/6GjQIPD2jTda/0/eM8LVq0fWixutl1/2PXezZlYI8e8Brlw58P/7yisL/8yuWOH7bq5Z0woOBw8GF01LVvDwjlnPzbXOqnqXXXGF74BrypTgmbouuyzyXsIlSwLDdmam9VkpTmjp3Nn3+HDfBR6P1fPgXe+VVyLfvj//nozx463vzxYtfPcVdmDuNWpU6H1XOP7TW597ru/+vLzg8Nm8eWTv3dGjwTMQ+n//Tpni+zuvXbvwcOa/z7700sBleXlFF/536VJ0e/0tXx54IJ+WZgWtvXut1/7224EnziSrx3DLluBtLV0a/Dm/4ILg45YVKwJ7wv/5z9Bt++GHwM/Y9u3WCbTrrgv93S5ZPbk33xz6WMm/9vHCC4v3PsUCgSNOxEPReGnxPxB6//3w6/30k2+93r2t+/bu9X1g27b1rXvkiG/nWq1a4Bh1/w+if7Gz3YW4RfGfGSgtzQoCHo9VN3PDDdZwlLfeCr9DmDUrMEhJ1nCJhQutx0ydGni2w/vjclnBrWtX60zjgAHWQcTFF1u9IT16WDvb006z3tNWraz6lVCzOknW8pJcw+LQocB558eNi+y98995Xnpp+N6N4vrll8CDkoI/115b8rDtX4jq/TnmGKvnJdysXaEcOmR9Zs4/P3BoW9u2gWP5/YcN1q1rzWxjjHWA/fbb1k68Zs3iDYkzxqp38h7gt25t9bCsXOnrCfH/m/v44/Dbyc62Dn78P4t79wYOFfL+nHBC4Qc0ubnW+HD/x5xxRmTjqf2HwYSbAveRR3zr1KplHVSuWGEdlPkv8x7ke38PNTzQTkePBh4k+/cCVKtmne1cvDiwTXfeGf77xf/z5X9g7PFYw1u8Q9hOOSV4WuJffw08iHvuOavIPdxnqlWroicO2b3bKoT1PubKK60hOsX1yiu+bRQ8SeX1ySe+dVq2jP7zXrB43L8e5owzIiusz8uzhgLPnBnZcx46FPg+ea/jcd99od/7SK6H9NxzvvXr1bOm7y04Q5/3p6hpYXNzfT3UKSmB31P+/zcdO1p/s6++ag0r7NvXCj1r10b2PvibNCm4NzIjI3g4YGam1ZtaGP8gf+654Ud3vP++b7tJSdbfVEH+Ia7gfi8nx5q455ZbQk8tfM01gScMdu/2feaSkqyhc/GOwBEnEilw+I+N7tw5/Hr+s074j7/1zkPucvm67/1nALnqKiuAeL8gXS7roHLPHt+XUPXq0Q2PKSn/GZUGDw5dXN+nT+A49tzcwGl1vQfZr7wSvAM7cMD6si7ObBXF+alRw57hWn/9ZQ2Pmzo18sds3Bj6bHNRvSOROnTI6hGaN8/qyv77363xsXaMe/31V99O9/TTrR6bkl6jZvXqwB3TySdbZ/w3bgzsbQg1jKGkwgW8v//d97zp6eFrlR56yLfeWWf5DoI9HqtGwvv/XLFi5MWNBYdApKRYBy1vvRV+Ok3/oBmu/sDjsc6qf/RR6J6T994LPrjJzCydqUrXrg2uuahdO/BM/iefBH4fhLoQpf/Mgk2ahH6dq1ZZY97D7Z6mTAn/vXHppdZJIP8ZtqpVC31QZoz1mfMf8tK5c/Sfl337fP8/NWsGv7bDhwOLjUtaq+ffy+T9SU2N7sA5Uv6zR7ZpE3jCLTk5sFe5qNmeli8P7FXyXrhvx47AWae8B/GRnHwaMcL3mIkTrfsOHAgcsmX3cKDt262akHDT3w8YEHrChVA8Hl/9WGH8v9fS0gKvO+V/3HPssYX3wublWTVpw4cHfr6HDPG14d57ffeHm7Uz3hA44kQiBQ6PJ7AbNdz4zL59feusWuW7378OxHsWyP8+71nbJ5/03XfPPYGzK4W6VkZpePPNyA7sq1a1ZlLavj1wBh3J6pkoaqjGmjXWAf0VV1hnjooay+/9qVjReu7ata0zfWedZfWGDB1qDZOJ9UULx4wJPrgqKx+X3btDd9uXxNq1gTPbtG4deFBw0032Pl9RPJ7AMdvNmgX34Pz4o+8gICXF6sksaM0aq9jxm2+K9/zffRdcb+L9u774YmtY2H33WTtr/2lqw03xHaklSwL/H7wHVaXBf+rQY44J/X76F99LVq+vd+aho0etnlLvsv/8J/q2+NevSNYJinfe8b2369YFD/8cOjT4wM+/eLpWrZJf5NC/Vqjg7EX+71+XLiWfdOOtt4L//iKpVyyJo0cDe439hxRNnGh993g/cw0ahD+JkpVl9Sh6H+s/m6Ax1kkZ/6Gsjz4aWftWr/Y9xjuU2f/gvH//6F97UTZvtoY7enuEI+nViNbRo4FDnhs0sP52jx4NrB39978j3+aMGYEnDEaMCJyYIjW17FxdncARJxIpcBgTOLOC/wWQvPynka1XL3An8MEHvseOHGkt8x5kpKT4zrj89ZfvQ1m9emBvQqidcmnYujV4Z9Sjh7WTnzYteLyo/9mNChWiK7r0ysqyhjFs3Gh9Qe3YYe2IDhzwDe+Kd4cPB+4Q7erdKMvWrQs9lK5Zs+LNqGUXtztw51qlinW2+oUXrL89/2FADz9s//P/+ad1ZjDUexLux46A8Pvv1ljs4cPtm18/Ejk51pncSy+16oXC8T8B4/1p2TIwJLRrV7Ievaws3wxeffuGHtZ24EDgxWG9weT5561ejAULfAdYLpc1zKSk/OuF/IfYrl/v20ckJwee2IqWf/G4ZL0fpfH38NVXwf+/N9zg+1737zEKNw24/9DP9u1D1/95PNb+aty44r0u/+tp+V/zKyXFmUlOCtqwwTrQd7Kuyhjr//+MM3yv9ZRTAuut2rYt/mfsnXcCQ6T/RAD33uvIy3AEgSNOJFrgyM72FRMmJwfvmL780veBKjjF4I4dgWek/C8+VPAiZqEKlLt1c/SlFenpp61hNY89FnzGe+/e4LOE3jMl8T4DRWn57jurxqRXr9gMi4tHGzcGntl3corSSPz2W+hxyP4/zZsXbwrd4jp61HoP7rgjcJazgj+NGoUfclWeeDxW6As3Fl+yxuqXVG5u0dOveutC/Gchk6yhTf49RXYF0rw8XwCtUMGagcnjCbzQm50Hbt4hsJUq2TMFeqT8pw7u1ClwitZ33vEtu/XW4Md++mngSYJIrzUUqQkTArfv/f2ee+x9nnjw55+BocCOz5h/aPH+ZGQ4H6DsROCIE4kWOIwJvLpywen6/GsWQnU/ensrKlYMHB9acFrM5cuDP6SFFarHi9mzfYWAPXv6in6BcDZt8hViF+fKyk7ZuNEK/OEO9u04uI1UXp41BfYXX1hnd7/6yjqTvmhR6dRaxJPcXKt26uyzA/8/evUq/bZs3Rp8zQPvzznn2Hv18gce8G37uecCZ75r3NjeoZm5udZ+5scf7dtmJLZssc6gn3568IUADx70TSBQq1ZgTcyBA4FB9LXX7G/bX38F11PUrBndRABlwdq1wbNhlfQz5j+1vuT8UD27ETjiRCIGjm3bfNNs1qxpjTP2jtXt0MH3oQp1tsy/58L7JepyhV7Xf8rGzMySTRNbmnJyrOEyZWGoE+LDoUPWBAnx5OhRK/g/8YQ1nCojwzr4Q+ytWmUNxxowIPKrJDth2bLA7+l69Yp/kbqi/Pyzb/snnBAYhJ2YWCEe+ddXzZrlu9+/BrJXL+f2Of7XtZECL3RaHn35ZWDI8i8ij9bjj1s92G3bOttD7ITiHOe6jDFGcITb7VZ6erokKSsrS2lpaTFuUem49lrpnXcC7zvhBGndOusjevLJ0sqVwY974w3pxhsD7zvjDGnx4uB1p06VLr/c+v3hh6UxY+xpOwDAHsZIM2ZIX38t3Xqr1LKl/c/RubP0zTeB9118sfW8iWDGDKlfP+v3666T3n5b+vZb630xRqpcWVqzRmrWzJnn/+gj6ZJLrN+PP956rpQUZ54rXsyYYR1zXHONdM899mxz1y6pevWy994V5ziXwOGgRA0c69ZJ3bpJO3eGXj5ihPTMM8H3//KLdNxxgfc9/bR0333B6xojTZxoPcejj0oVK5a01QCAsuaVV6ww41WlirR2rdS4cezaVJpycqTMTGn/fik9Xdq6VerSRfrxR2v5s89Kw4c79/x5edZJxu++k/7zH+n00517LsQfAkecSNTAIVlfQkuXSrNnS3PmSEuWSEePSsnJ1u/t2wc/xhjpmGOkHTt8961fL7VoUXrtBgCUHfv2SfXqWQfekjR2rHTvvTFtUqm78UZrhIBkhY1Fi6zfTz3V6u1ITo5d21C+Fec4N6m0GoXEkpxsdek++qj15bd7t/S//1lnQUKFDUlyuaQzz/TdbtWKsAEACC8jQ7rjDuv3Ll2ku+6KZWti46qrfL97w0aFCtKrrxI2ED8IHCgV1atLffpIp5xS+HpnneX73TsuFACAcJ56SvrpJ+mLL8reGHg7dO8u1a0beN/w4VK7drFpDxAKgQNx5dprpQ4dpDZtpKFDY90aAEC8q1BBOvHExK3lS072TaIiWQXio0fHrj1AKAQOxJXq1aVly6RVq6T69WPdGgAA4t/tt0tpaVbR/OTJ1r9APGF0HwAAQBnWqpW0ebM1YQsn6xCPCBwAAABlXJ06sW4BEB5DqgAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwAAAADHJMe6AeWZMSb/d7fbHcOWAAAAAPbxP7b1P+YNhcDhoOzs7PzfMzMzY9gSAAAAwBnZ2dlKT08Pu5whVQAAAAAc4zJF9YEgah6PR7t27ZIkValSRS6Xy7Hncrvd+b0of/zxh9LS0hx7rvKI96/keA9Lhvev5HgPS4b3r+R4D0uG96/kSvM9NMbkj+apXbu2kpLC92MwpMpBSUlJqlu3bqk/b1paGh/SEuD9Kznew5Lh/Ss53sOS4f0rOd7DkuH9K7nSeA8LG0bljyFVAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAwX/gMAAADgGHo4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIGjHJgyZYq6deumGjVqKC0tTaeccorGjh2r3NzcWDctruXm5mrevHm699571bFjR2VkZCglJUX16tXTRRddpJkzZ8a6iWXSfffdJ5fLJZfLpccffzzWzSkzjhw5ogkTJqhr166qWbOmKlWqpIYNG+q8887T+++/H+vmxbXffvtNQ4cOVcuWLVW5cmVVqlRJTZs21cCBA7Vy5cpYNy8urFu3ThMnTtSgQYPUpk0bJScnR/wZnTt3rs4//3zVrl1blStX1gknnKCHHnpIWVlZpdDy+FDc98/j8Wjx4sV65JFH1LVrV9WqVUspKSmqXbu2evXqpXfeeUeJNmdPSf4G/b344ov5+5ibbrrJodbGn5K8fx6PR2+99ZZ69uypOnXqKDU1VfXr11f37t314osvlkLrJRmUaXfeeaeRZJKTk03v3r3NpZdeajIyMowk07VrV5OdnR3rJsatOXPmGElGkqlXr57p27evueKKK8xJJ52Uf/8tt9xiPB5PrJtaZixatMgkJSUZl8tlJJkxY8bEukllwu+//25atWplJJnatWubCy64wFx55ZWmc+fOpkqVKqZ///6xbmLc+vbbb03VqlWNJHPMMceYiy66yPTr1880bdo0/7vxgw8+iHUzY867ryj4U9Rn9LnnnjOSjMvlMmeddZa5/PLLTb169Ywk07JlS/PXX3+V0iuIreK+fxs2bMhfp2bNmqZ3797myiuvNB07dsy//4ILLjA5OTml/EpiJ9q/QX+//PKLSUtLy9/HDB482MEWx5do3799+/aZs846y0gy1apVM3369DFXXXWVOfPMM01GRoY59dRTS6X9BI4ybPr06UaSSU9PN99//33+/X/99Zdp06aNkWSGDx8ewxbGt3nz5pn+/fubBQsWBC3773//aypUqGAkmbfeeisGrSt73G63adGihTnmmGPMJZdcQuCIUHZ2tjnhhBOMJPPoo4+aI0eOBCx3u91mxYoVsWlcGXDyySfnnxzwf++OHj1qHn74YSPJZGRkmEOHDsWwlbH36quvmhEjRph33nnHrF271lx33XVFfkaXL19uXC6XqVChgpk1a1b+/W632/To0cNISpgwXNz3b+PGjaZ79+7mf//7n8nLywtYNn/+fJOWlmYkmccee6w0mh8Xovkb9Hf06FFz5plnmvT0dDNw4MCECxzRvH8ej8d069bNSDK33nqrOXjwYMDynJwcs2zZMqebbowhcJRp3jMljz/+eNCyr7/+2kgyqampZt++fTFoXdk3ePBgI8n06NEj1k0pE4YNG2YkmZkzZ+bvDAgcRRs1alT+ATOKZ9euXfln+f7888+g5Xl5eaZy5cpGklm+fHkMWhi/IvmMXn755UaSuemmm4KWbdmyxSQlJRlJZu3atU42NS6V9DtuzJgxRpJp3ry5zS0rO4r7Hnp721544QUzevTohAscBUXy/k2ePNlIMueee24ptiw0ajjKqG3btmnZsmWSpAEDBgQt79q1qxo1aqScnBzNmjWrtJtXLrRr106S9Pvvv8e4JfFv/vz5mjhxoq6//nqdf/75sW5OmZGbm6uXXnpJknTvvffGuDVlT2pqasTr1q5d28GWlD9HjhzJr2MLtY859thj1aVLF0nS9OnTS7Vt5QH7l+JZt26dHnroIZ199tm67bbbYt2cMmPChAmS4mP/QuAoo1asWCFJqlmzppo2bRpynQ4dOgSsi+LZsGGDJKl+/foxbkl8y8rK0o033qjMzEw9//zzsW5OmbJ8+XLt2rVLDRo00HHHHafVq1frscce06233qqRI0dq5syZ8ng8sW5m3EpPT9eZZ54pSXr44YcDJsrweDx69NFHdejQIZ133nlq1KhRrJpZJq1fv17Z2dmSfPuSgtjHRI/9S+SOHj2qgQMHyuVyafLkyXK5XLFuUpnwxx9/aOXKlapQoYI6d+6sTZs26amnntKQIUM0YsQITZkyRUeOHCm19iSX2jPBVps3b5YkNW7cOOw63h2sd11EbufOnXrzzTclSf37949tY+LciBEjtHnzZk2fPl01atSIdXPKlFWrVkmSGjZsqJEjR2rs2LEBM9c8/fTTateunWbMmFHoZz2Rvfrqqzr//PP1yiuvaObMmerQoYMqVKigFStWaNu2bbruuus0adKkWDezzPHuNzIyMlS1atWQ67CPiU52dnb+mWf2L0V75plntGTJEv3zn/9U8+bNY92cMsO7f6lVq5Zee+01DR8+PGj20mbNmmn69Ok6+eSTHW8PPRxl1MGDByVJaWlpYddJT0+XJB04cKBU2lRe5OXl6dprr9X+/fvVpk0b3XrrrbFuUtyaPXu2Xn75ZV111VW65JJLYt2cMmf37t2SrDPETz/9tG6//XatW7dO+/fv15w5c3T88cdrxYoV6tu3L9Nch9GyZUt988036t27t7Zt26aPPvpI06ZN0+bNm3XcccepW7duqlatWqybWeawj3HO7bffrs2bN6tBgwZ68MEHY92cuLZmzRqNHj1anTt31rBhw2LdnDLFu3/Zs2ePhg0bposvvlirV6/WwYMH9c033+i0007Tpk2b1KdPn/x1nUTgAAoYMmSI5s2bp1q1amnq1KmqWLFirJsUl/bv36/BgwerTp06mjhxYqybUyZ5ezNyc3N19dVXa9KkSTr++ONVrVo19ezZU3PmzFGlSpW0Zs0a/fe//41xa+PTokWL1KZNG61Zs0bvvvuudu7cqT179uiTTz5Rbm6uBg8erMGDB8e6mYAkacyYMXrrrbdUqVIlffDBB6pVq1asmxS38vLyNHDgQCUlJen1119XUhKHrMXh3b/k5eXpjDPO0JQpU3TSSScpPT1dp59+uubMmaPMzEzt2LGjVK7Fwf9eGeXt4na73WHX8V6UibN7kbvzzjs1efJk1ahRI/8MM0K76667tHXrVk2aNImC3Cj5D1UJ1ZPWuHFj9e3bV5J18TUE2rdvn/r166e//vpL06ZN09VXX63MzEzVqFFDF1xwgT777DNVqVJFr7/+ur788stYN7dMYR9jv+eee06PPPKIUlNTNX369Pyie4T2xBNPaPny5XrsscfUsmXLWDenzClq/1K1alVde+21kkpn/0INRxnVpEkTSYXPcOFd5l0XhRs+fLgmTJigjIwMzZ49O38WEYQ2ffp0JScn68UXXww6O/Lzzz9LkiZPnqy5c+eqXr16nKEPoVmzZiF/D7XOjh07SqVNZcnMmTP1119/qXnz5jrttNOCljdr1kynnXaavvzyS82dO1fnnHNODFpZNnn3G/v27dPBgwdD1nGwj4ncxIkTNXz4cFWsWFEffvih+vTpE+smxT3v7GeffPJJ0GybW7ZskWR9B3Tr1k2SNVsifOJt/0LgKKO8B8O7d+/W5s2bQ85U9d1330mS2rdvX6ptK4vuu+8+Pffcc6pevbpmz54ddlYWBMrLy9NXX30VdvmWLVu0ZcsWHXvssaXYqrKjffv2crlcMsZo165dIWdS2rVrlyTfeHn4/Pbbb5IKP8NevXp1SdY4ZkSuZcuWqlKlirKzs/Xdd9+FDGvsYyLzwgsvaNiwYflhw9tricgsXLgw7LKdO3dq586dpdiasuP4449X1apVdfDgwfz9SEGluX9hSFUZ1bBhQ3Xs2FGS9O677wYtX7hwoX7//XelpqZyXYQijBw5Us8884yqV6+uOXPm5L+vKNy+fftkrIuHBv0MHDhQkjVe2RiTfzYKgerVq6euXbtKCt2lnZubmx/oOnXqVKptKwuOOeYYSVaP2v79+4OW5+bmavny5ZIUdvpwhFaxYsX8A+NQ+5hff/1VixcvliT169evVNtWlvzrX//S0KFD88PGBRdcEOsmlRk//PBD2H3M6NGjJUmDBw/Ovw+BkpOT8ydzCTdkas6cOZJKZ/9C4CjDvLNbPPXUU/k7Vcnq9bj99tslSUOHDs0/w4dgDz/8sJ5++mllZGQQNhAT3h3nP/7xD3377bf59+fl5Wn48OHatGmTqlatqhtuuCFWTYxb5513ntLS0nTo0CHdfPPN+TUFknXhurvvvlu//fabUlJSdNlll8WwpWXTyJEj5XK59MYbb+izzz7Lvz87O1uDBw/W0aNH1b9/f51wwgkxbGX8evXVV3X77bcTNhAzDz74oFJSUvTqq6/q008/DVj2zDPPaOHChapQoYL+9re/Od4WlyEWlml33nmnJkyYoJSUFPXo0UNpaWmaN2+e9u3bpy5dumjOnDmqXLlyrJsZlz7++GNdfPHFkqwLWLVu3TrkerVr19azzz5bmk0r8wYNGqS33npLY8aM0cMPPxzr5sS9xx9/XKNGjVJycrI6deqkevXqafny5dqyZYsqV66sKVOmMAwjjP/85z+64YYblJeXpzp16qhjx45KSUnRd999p23btikpKUkvvPCChgwZEuumxtTy5cvzT0RJ0i+//KJdu3apYcOG+T1FkjVu3v9idP/85z91zz33yOVy6eyzz1bdunX19ddfa8eOHWrZsqUWLlyYEJNGFPf9++GHH9S+fXsZY3TCCSeErDHy8l7zqbyL9m8wlEcffVSPPfaYBg8erNdee82xNseTaN+/t956SzfeeKM8Ho86dOigJk2aaM2aNfr5559VoUIFvfTSS7r55pudfwEGZd77779vzjrrLFOtWjVTuXJlc9JJJ5mnnnrK5OTkxLppce2NN94wkor8OfbYY2Pd1DJn4MCBRpIZM2ZMrJtSZnz++efmvPPOMzVr1jQpKSmmUaNGZtCgQWbt2rWxblrc++GHH8ygQYNMs2bNTGpqqqlYsaI59thjzTXXXGOWLFkS6+bFhS+//DKi77vNmzcHPXbOnDmmT58+pmbNmiY1NdW0aNHCPPDAA+bAgQOl/0JipLjvX6TrJ9JhWEn+BgsaPXq0kWQGDx7sfMPjREnev6VLl5r+/fubunXrmpSUFFOvXj1z+eWXl+r3Iz0cAAAAABxDDQcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwDEiSZNmsjlchX68/zzz8e6mbDJihUrVKFCBd1xxx0B98+fPz///7swW7ZsyV9vy5YtUbdj//79qlWrlk477TRxLWAATkiOdQMAAIG6dOmi4447LuSyVq1alXJr4JQ77rhDlStX1qhRo2LajurVq+uBBx7Qvffeq7ffflsDBw6MaXsAlD8EDgCIMzfddJMGDRoU62bAQVOnTtWiRYt07733qm7durFujoYOHaqxY8fqgQce0FVXXaXU1NRYNwlAOcKQKgAAStk///lPSdLgwYNj3BJLpUqVNGDAAO3YsUPvv/9+rJsDoJwhcABAGeSt99iyZYs++ugjde/eXTVr1pTL5dL8+fPz19u7d69Gjx6ttm3bqmrVqqpSpYratGmjxx9/XNnZ2SG3nZeXp+eff15t2rRRpUqVVKdOHfXv31+rV6/Wm2++KZfLFdQD8+ijj8rlcunRRx8NuU1vXUK3bt1CLt++fbvuuecenXjiiapSpYqqVq2qjh07atKkScrLywtaf9CgQXK5XHrzzTe1efNmXXfddapXr55SU1PVvHlzPfzww8rJyQn7/n3//fcaOHCgmjZtqkqVKqlmzZo65ZRTdO+99+rXX3+VJL3xxhtyuVw699xzw25n+/btSklJUeXKlbV79+6w6/lbsWKFFi9erNNPP10tW7aM6DHF4f2/KOqnIO//6QsvvGB7mwAkNoZUAUAZNm7cOE2aNEkdOnRQnz59tH37dlWoUEGS9NNPP6lPnz76/fffVb9+fXXt2lUpKSlaunSpRo0apQ8//FDz589X9erV87fn8Xh0+eWXa8aMGapYsaK6deumGjVqaMmSJerUqZNuvPFG21/DggULdMkll2jv3r1q0qSJevXqpZycHC1dulR33HGHPvnkE3366adKSUkJeuwPP/ygO++8UzVq1NDZZ5+tPXv2aNGiRXriiSf0448/avr06UGPeeaZZzRy5Eh5PB4df/zxuvjii3Xo0CFt3LhRzz77rFq3bq1BgwZpwIABuv/++zVnzhytX79exx9/fNC2Xn75ZeXl5em6665TrVq1Inq9M2bMkCT17NmzeG9UhNq2bRu2DmPdunX69ttvlZQUfL6xbdu2qlOnjpYuXaodO3aofv36jrQPQAIyAIC4cOyxxxpJ5o033oh43QoVKpiPPvooaHl2drZp3ry5kWQefvhhk5OTk7/M7Xabq6++2kgyN9xwQ8DjJk2aZCSZzMxM89NPP+Xfn5uba2677TYjyUgyAwcODHjc6NGjjSQzevTokO398ssvjSRz9tlnB9y/Y8cOU6tWLeNyucyLL75ojh49mr9s165dpnv37kaSeeyxxwIeN3DgwPy2PPTQQyYvLy9/2erVq01aWpqRZBYvXhzwuI8++shIMpUqVTLvv/9+UDt//PHHgNf90EMPGUlm2LBhQeseOXLE1KtXz0gy33//fcjXHUrXrl2NJDNz5syQy73vVVG76M2bN+evt3nz5iKf99dffzX169c3ksykSZNCrnPRRRcZSebf//53kdsDgEgROAAgTnhDRLgf/4N177o33nhjyG299NJLRpK54IILQi4/ePCgqVu3rklOTjZ79uzJv/+4444zksxLL70U9JhDhw7lH2DbFTjuv/9+I8kMHTo05OO2bt1qUlJSTJ06dYzH48m/3xs4Tj311ID7vYYMGWIkmb///e8B97dt29ZIMuPGjQv5fAVt27bNpKSkmOrVq5usrKyAZe+9956RZM4444yItuXlDUObNm0Kudw/cET6U1Tg2Lt3r2nVqpWRZO69996w6z3wwANGkrn77ruL9ZoAoDAMqQKAOBNuWtwTTjgh6L7LLrss5DZmzpwpSbryyitDLk9PT1eHDh00a9YsLVu2TL1799a2bdu0ceNGSdK1114b9JhKlSrpiiuu0IQJEyJ+LUUpqp3HHHOMWrRooZ9++kkbNmwIGtZ0wQUXhKxHOPHEEyVJ27Zty79v586d+uGHH5SUlBRxsXaDBg102WWX6b333tO///1vDRkyJH+Zt9Zh6NChEW1Lktxut9xutyRFNASrsClqs7Ky9OGHHxa5jSNHjuiSSy7RTz/9pKuuukpPP/102HW9bfrjjz+K3C4ARIrAAQBxpjjT4jZp0iTk/Zs2bZIkXXfddbruuusK3cZff/0lSdq6daskqXbt2kpPTw+5btOmTSNqV6S87TzzzDOLXPevv/4KChyNGzcOuW61atUkSYcPH86/77fffpMk1a9fP6BupSjDhg3Te++9pxdeeCE/cKxatUoLFy5UZmZm2NAXyv79+/N/r1q1apHrv/nmm2GXbdmypcjAYYzRoEGD9NVXX+nss8/OL/oPx/u+7d27t8i2AUCkCBwAUIZVrlw55P0ej0eS1KdPH2VmZha6jWOPPdb2doVrT7j7L7vsMqWlpRW6jVA9AqGKn+12+umnq1OnTlq6dGn+gbu3d+OWW25RxYoVI95WRkZG/u8HDx7MP8B3ysiRI/Xee++pVatWmjFjRpHX1/AGoho1ajjaLgCJhcABAOVQo0aN9PPPP2vw4MERn4E/5phjJEm7du1SVlZWyF6OLVu2hHys96D74MGDIZd7p5oN1c4NGzbo/vvvV4cOHSJqZ7S8vSE7duzQ/v37i93Lce2112rSpEk65ZRT9M477yg5OTlgiFUkqlSporS0NLndbu3evdvRwPHiiy9q7NixatCggf73v/8FhJ1wvFP7FhVSAaA4uA4HAJRD5513niTpgw8+iPgxDRs2VLNmzSRJ7777btDynJwcTZkyJeRjvWFl7dq1IZd7azXsaGe06tWrp1NOOUUej0evv/56sR57xRVXqH79+poxY4aeeOIJud1u9evXTw0aNCh2O9q3by/JmrbYKR9//LGGDRumqlWraubMmWGHnhW0Zs0aSdKpp57qWNsAJB4CBwCUQ7fccouOPfZYTZkyRffff3/InoedO3fq1VdfDbjvrrvukmRdPO7nn3/Ov//o0aMaMWKEtm/fHvL5unfvrqSkJH3++ef66quv8u83xmjChAlhaw3uvfdeZWRk6LnnntO4ceN05MiRoHU2b96s//znP0W+5kiMHj1akvTQQw+FbNNPP/0UMjSlpKTotttuU15enp599llJxSsW93fOOedIkr755puoHl+UpUuX6uqrr1ZSUpKmTp2qtm3bRvxYb5u6d+/uSNsAJCYCBwCUQ2lpaZo5c6aaNGmisWPHqnHjxjr77LN1zTXXqF+/fmrdurUaNGigUaNGBTzub3/7my688ELt2LFDp5xyivr06aOrr75aLVq00Guvvabbbrst5PM1atRId9xxhzwej3r06KFzzjlH/fv3V4sWLTRixAiNHDky5OMaNmyojz76SDVq1NCIESPUqFEj9ejRQ9dee60uvPBCHXfccWrWrJkmTZpky/vSr18/PfHEEzp8+LAuu+wynXjiibrqqqt08cUXq3Xr1mrdurWWLFkS8rG33nprfg3EySefrLPOOiuqNlxyySWSpDlz5kT1+KI88MADys7OVsOGDfXuu+9q0KBBIX8KWrFihXbv3q1OnTpx0T8AtqKGAwDKqdatW2vVqlX617/+penTp2vVqlX65ptvVLt2bTVs2FAjRoxQv379Ah6TlJSkadOmacKECZo8ebLmz5+v9PR0de3aVdOnT9eKFSv00ksvhXy+f/7zn2rcuLFee+01LV68WOnp6erSpYs++OADHThwQE899VTIx5111ln68ccfNWnSJM2cOVPLli1TTk6O6tatq8aNG+vaa69V//79bXtfHnzwQXXv3l0TJkzQggULNG3aNFWtWlWNGjXSfffdF/bsft26ddW2bVstWbJEf/vb36J+/nbt2qlz585avHix1q5dmz+Fr12OHj0qyeoZ2rx5c9j1Cs6A5b1dktcGAKG4jDEm1o0AAJQNb775pm644QYNHDiw0Clby6P169frhBNOUPXq1bVt2zZVqVIl6m1NnTpVl19+ue655x6NGzfOxlZG5/Dhw2rUqJFSUlK0efPmImezAoDiYEgVAAAReOSRR2SM0W233VaisCFZ0wB36dJFL7/8clxcZG/ixInatWuX/vGPfxA2ANiOwAEAQBgff/yxBg8erNNPP13vv/++6tWrp/vuu8+WbU+cOFGHDh3SmDFjbNletPbv36+nnnpKnTp10vXXXx/TtgAon6jhAAAgjOXLl+v1119X1apV1bNnTz333HMRXc8iEu3atcuvt4il6tWr519/AwCcQA0HAAAAAMcwpAoAAACAYwgcAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBj/g+IT/wTorwWDwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_ps.freq, avg_ps.power, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Powerspectrum` or `AveragedPowerspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the power spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / meanrate$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times meanrate$. See *insert citation*.\n", + "* `none`: No normalization applied. This is the default." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 56159.93it/s]\n", + "200it [00:00, 56752.64it/s]\n", + "200it [00:00, 43677.02it/s]\n" + ] + } + ], + "source": [ + "avg_ps_leahy = AveragedPowerspectrum.from_lightcurve(long_lc, 8, norm='leahy')\n", + "avg_ps_frac = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='frac')\n", + "avg_ps_abs = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAASmCAYAAADYniQgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT59sH8G+YslFRQEVw0LrFOupGEUFRq9ZdB+CqtY5Wrata7dBWq9Zabat14K5a956gFa1a9xYHuKkiokRk5Xn/8M35ERIgQEIO+P1cVy7NmXcOJ8md+3nOcxRCCAEiIiIiypGZqQMgIiIiKiyYOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBFRnnh5eUGhUCAsLMzUoWhp0aIFFAoFIiIiTB0KERUxTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYgKTFJSEmbPno2GDRvC2dkZxYoVw7vvvouxY8ciLi5Oa/nU1FSsWrUKvXv3RpUqVeDo6AgbGxu8++67GDFiBB4+fJjjPs+dO4cPP/wQLi4usLa2RrVq1TB79mwIITSW8/X1hUKhwNq1a7Pc1syZM6FQKNC9e3e9Xm9YWBgUCgVCQkKgVCoxYcIEVK5cGdbW1nBzc0NwcDAePHiQ5fonT55E9+7dUaZMGVhZWaF06dLo0KED9u/fr3P5kJAQqd/ZpUuX0KNHD7i7u8Pc3BxTp04FoNn/659//kG7du1QsmRJODg4wNfXF3///be0vT179qBVq1YoXrw47O3t0bp1a5w5c0av105UZAkiojzw9PQUAMSyZcv0Wv7BgweiZs2aAoAoUaKE8Pf3F507d5a24+XlJaKjozXWuXfvngAgnJycRMOGDUW3bt1EUFCQKFOmjAAgSpUqJaKiorT25evrKwCI8ePHCysrK1G1alXRs2dP4evrK8zNzQUAMXLkSI11Nm7cKACIxo0b64w/PT1deHl5CQDi8OHDer3mZcuWCQCiU6dOolatWsLZ2Vl06NBBdOzYUZQuXVoAEJ6enuL58+da6y5atEiYmZkJAKJOnTqiV69eonHjxgKAACCmTp2qtU5wcLAAIAYNGiSsra2Fl5eX6N69u+jQoYOYNWuWxrEZM2aMsLCwEHXq1BE9evQQPj4+AoCwtrYWkZGRYv78+cLMzEw0btxYdO/eXbzzzjsCgLC3t9d5zIneFkyciChPcpM4qVQq0aRJEwFADBgwQLx48UKal5qaKkaPHi0AiJYtW2qs9+LFC7F161aRnJysMT0lJUVMmDBBABBBQUFa+1MnBwDE77//rjHv4MGDQqFQCHNzc3Hv3j1pelpamvSazpw5o7XN7du3CwCiVq1aOb5eNXXiBEAEBgaKhIQEad6zZ8+kZGX69Oka6124cEFYWFgIhUIhVqxYoTFv165dwsrKSgAQ+/bt05inTpzUSWN6enqWx0ahUIiVK1dqzBs1apQAIN59911hb28vDhw4oHF8unTpIgCIgQMH6n0MiIoaJk5ElCe5SZx2794tAAgfHx+RmpqqNT89PV3UqFFDABAXL17UO4YyZcoIMzMzjURMiP8lBx9++KHO9dq0aSMAaCUlM2fOlJK7zAIDAwUAsXDhQr3jUydOdnZ24uHDh1rz//zzTwFA+Pn5aUwfMGBAtvEPGzZMABCtW7fWmK5OnN555x2Rlpamc131senWrZvWvLi4OCnx+uKLL7Tmnz59WgAQFSpUyPI1ExV17ONEREa3c+dOAECXLl1gYWGhNd/MzAzNmzcHABw7dkxr/vnz5zFnzhwMHz4c/fv3R0hICEJCQpCWlgaVSoWbN2/q3G+HDh10Tq9atSoAaPUvGjhwIGxtbbFmzRrEx8dL02/evIl9+/bB2dkZffr00eMVa6pXrx7c3d31jkM9/lRISIjO7Q0YMAAA8PfffyM9PV1rfqdOnWBubp5tTEFBQVrTSpQogZIlS2Y539vbGwD06ltGVFRpf4IRERnY7du3AQCTJ0/G5MmTs132yZMn0v+VSiX69u2LzZs3Z7vOixcvdE4vX768zumOjo4AgNevX2tML168OPr27YuFCxdiyZIlGDNmDADg119/hRACoaGhsLW1zTYWQ8ShTqQqVKigc71KlSpJ68XFxaF06dIa8728vPIck729PeLi4nTOd3BwAAAkJyfnuH2iooqJExEZnUqlAgA0bdpU+tLPSvXq1aX/T5gwAZs3b0aVKlXwww8/oH79+nBxcYGVlRUAoHHjxjh+/LjWFXJqZma5L6qPGDECCxcuxG+//YZRo0bh9evXWLZsGRQKBT799NNcby+vceSHjY1NjsvkFFNBx0xUWDBxIiKj8/DwAAB07NhRquLoY/369QCAdevWoVatWlrzo6KiDBNgBtWqVYO/vz8OHDiA3bt34+HDh3j+/Dnatm2bY9JnKGXLlsWtW7dw+/Zt1KhRQ2u+uoJXrFgxlChRokBiIqI3+JOCiIyubdu2AIANGzZkWR3S5dmzZwAAT09PrXl79+7F06dPDRNgJiNHjgQAzJ8/HwsWLAAADBs2zCj70qVFixYAkOV9AJcuXQoAaNasmc4+Y0RkPEyciMjoOnbsiPr16+PkyZMIDQ3V6MekFh8fj99//x1paWnSNHXn6V9++UVj2evXr2PIkCFGizcoKAiVK1fGnj17cP78eVSqVElK/grCyJEjYWFhgS1btmDVqlUa8/bt24eFCxcCQK6qd8bWr18/VKlSBfPnzzd1KERGxcSJiPLl22+/RcOGDbN8nDlzBmZmZtiyZQt8fHywfPlyVKhQAU2aNEGvXr3QpUsX1KlTB6VKlcInn3yikThNmTIFCoUCkydPRq1atdCrVy+0atUKNWvWRMWKFdG4cWOjvCYzMzONCtPQoUOhUCiMsi9datasiQULFkChUKBv376oW7cuevfujaZNm6JNmzZITk7G1KlTERAQUGAx5eTu3bu4fv260aqARHLBGi8R5cvt27elPje6qK94K1OmDP755x+EhYVh3bp1uHDhAk6ePIkSJUqgTJkyGDJkCD744AMUK1ZMWvfDDz/E4cOH8fXXX+P8+fO4desWKlasiKlTp2LMmDFGTRwCAwMBALa2tujfv7/R9pOVwYMHo3bt2pg1axaOHj2KCxcuwMnJCUFBQRg5ciRat25d4DEREaAQuelwQET0lpg0aRKmTZuGwYMHS01jRERMnIiIMnn06BGqVauGFy9e4NKlS1JfKyIiNtUREf2/8ePH48GDBzhw4ACeP3+OIUOGMGkiIg2sOBER/T8vLy/cvXsXbm5u6NGjB3744QdYW1ubOiwikhEmTkRERER64nAERERERHpiHycTUalU0ngntra2BTpGDBEREb0hhMCrV68AAC4uLjnep5GJk4k8ffoUrq6upg6DiIiI/l9sbCxKly6d7TJsqiMiIiLSEytOJmJrayv9PzY2FnZ2diaMhoiI6O2kVCqlFqCM381ZYeJkIhn7NNnZ2TFxIiIiMjF9+huzqY6IiIhIT0yciIiIiPTExImIiIhIT+zjVECUSmW2z4mIiEj+mDgVEHt7e1OHQERERPnEpjoiIiIiPbHiVEASExM1nmccN4KIiIgKByZOBYTjNBERERV+bKojIiIi0hMTJ5K9f//9Fz/88AP+++8/U4dCRERvOTbVkaylp6ejQ4cOePz4MW7fvo1FixaZOiQiInqLseJEsqZUKvH48WMAwM2bN00cDRERve2YOJGspaWl6fw/ERGRKTBxIllLT0/X+X8iIiJTYOJEssaKExERyQkTJ5I1VpyIiEhOmDiRrGVMllhxIiIiU2PiRLKWMVlixYmIiEyN4zgVEKVSme1z0o0VJyIikhMmTgXE3t7e1CEUSqw4ERGRnLCpjmSNncOJiEhOWHEqIImJiRrPlUolXF1dTRRN4cHhCIiISE6YOBUQOzs7U4dQKLHiREREcsKmOpI1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlnjAJhERCQnTJxI1jgAJhERyQkTJ5I1VpyIiEhOmDiRrGVMllQqFYQQJoyGiIjedkycSNYyN8+xuY6IiEyJiRPJWubmOSZORERkSkycSNYyJ0rs50RERKbExIlkjRUnIiKSEyZOJGvs40RERHLCxIlkjU11REQkJ0ycSNbYVEdERHJiYeoA3hZKpTLb56QbK05ERCQnTJwKiL29valDKJRYcSIiIjlhUx3JGitOREQkJ6w4FZDExESN50qlEq6uriaKpvBgxYmIiOSEiVMBsbOzM3UIhRIrTkREJCdsqiNZY8WJiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I13quOiIjkhIkTyVrmChMrTkREZEpMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHI6AiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHACTiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk56+v7771GvXj04ODjA1dUV3bt3R3R0tKnDKvJYcSIiIjlh4qSnw4cPY/jw4Thx4gT27NmDZ8+eoW3btqyAGBlHDiciIjmxMHUAhcWePXs0nv/xxx+oWLEirly5glq1apkoqqKP96ojIiI5KbCKU1paGi5duoSDBw/ir7/+wsGDB3Hp0iWDfRGuWrUKH3/8MerVqwdra2soFAqEhYVlu86pU6cQFBQEZ2dn2NnZoWHDhli/fr1e+0tISAAAlChRIr+hUzbYVEdERHJi1IrTq1evsHLlSmzZsgVHjx7Fq1evtJaxtbVF06ZN0blzZ/Tp0we2trZ52tekSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dw+jR4/Oct309HSMGTMGQUFBKFeuXJ7iJf2wczgREcmJUSpOz58/x5gxY1C2bFkMHToUe/fuxatXr+Dm5obq1aujUaNGqFatGlxdXaFUKrF371588sknKFu2LL744gs8f/481/tcvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE7NMvIQQGDJkCO7evZtjRYvyjxUnIiKSE4MnTr///ju8vb0xZ84cWFlZYcSIEdixYweePn2KBw8e4MKFCzh69CguXryIhw8f4unTp9i2bRuGDRsGS0tLzJ49G97e3li4cGGu9uvv7w9PT0+9lj106BBu3bqFjz76CD4+PtJ0JycnTJw4ESkpKVi+fLnWekIIDB06FAcOHMDBgwdRqlSpXMVIuceKExERyYnBE6ehQ4eiTJky+Ouvv/DgwQP89NNPCAoKQvHixXUuX6JECbRv3x4///wzHj58iA0bNsDd3R1Dhw41dGiSiIgIAEBAQIDWvMDAQABvrqLLSAiBTz/9FDt37sShQ4fg4eGR7T6USmWOD8oZK05ERCQnBu/jtHLlSnz00UdQKBS5D8bCAl26dMGHH36INWvWGDo0SVRUFADA29tba56bmxvs7e2lZdQ+/fRTrF27Ftu3b4eNjQ0eP34M4E3iZ2VlpbUde3t7I0T+9mHFiYiI5MTgiVPv3r3zvQ2FQmGQ7WRFfUWck5OTzvmOjo7SMmq//fYbAKBZs2Ya08PDw9GiRQvDB0kAWHEiIiJ54ThOehJC5Gr5xMTEbOcrlUq4urrmJ6S3AitOREQkJ0Yfx6lhw4ZYvXo1UlNTjb0rvakrTZmrSmovXrzIshqlLzs7uxwflDNWnIiISE6MnjidPHkS/fr1g4eHByZPnowHDx4Ye5c5UvdtytyPCQAeP36MxMREnf2f8oOdw/OGt1whIiI5MXri9Oeff6Jp06b477//MH36dFSoUAHdunXTumqtIPn6+gIA9u3bpzVv7969GssYir29vcaDzXT64S1XiIhIToyeOHXv3h2HDx/GxYsXMWjQIFhbW2Pjxo3w8/NDrVq1sHDhQp0jihtTq1atULFiRaxZswbnzp2TpickJGD69OmwsrJCv379CjQm0o0VJyIikhOFyG2v53x68eIFwsLC8Ouvv+LGjRtQKBRwdHRESEgIhg4dmucmssWLF+Po0aMAgIsXL+LMmTNo0qQJKleuDABo2rQpBg4cKC2f1S1XYmJiMGvWrGxvuZIXmZvmMnYOT0xMZJ8nHYQQMDPTzO0/+OADbN261UQRERFRUaNUKqUhhPT5Pi7wxCmjAwcOYP78+di2bRsUCgUUCgUCAgIwevRotGrVKlfbCgkJ0Tnat1pwcLDWLVJOnjyJKVOm4NixY0hNTUXNmjUxatQo9OjRIy8vJ1dy+4d6G6Wnp8PCQvPCz6CgIOzcudNEERERUVFTaBInpVKJFStWYMGCBbhy5QoAwNzcHOnp6VAoFGjbti1Wr16d76vb5IqJU86Sk5NRrFgxjWmBgYHYs2ePiSIiIqKiJrffx0bv45TZjRs3MGLECJQtWxbDhg3DlStX4Ofnhy1btuD58+dYtGgRvLy8sHv3boM3l5kSr6rLPV0dwdnHiYiITKlAKk5CCGzbtg0LFizAwYMHIYSAjY0NevfujREjRqBGjRoayyuVStSuXRsvX75EbGysscMrENndgoYVJ910jafVokULhIeHmygiIiIqanJbcTL6yOEzZszA77//jrt370IIAQ8PDwwdOhSDBg1CiRIldK5jZ2eHpk2bYuXKlcYOj2RMV8WJwxEQEZEpGT1xmjBhAgCgSZMmGDlyJDp37gxzc/Mc16tRowaaN29u7PAKTOZbsPCWKznT1SzHpjoiIjIloydO/fr1w8iRI1GnTp1crTdmzBiMGTPGSFEVPDbF5R4rTkREJDdGT5wyDwFApC92DiciIrkp8KvqiPSlK0lixYmIiEzJ6BUntRMnTuDAgQN48OABXr9+rXMZhUKBJUuWFFRIBUrXyOGUPVaciIhIboyeOKWkpKBXr17YsmULgDdDE2SlKCdO6ksdSX+sOBERkdwYPXH69ttvsXnzZtjZ2aFv376oWrUqHB0djb1bKgJYcSIiIrkxeuK0du1a2Nra4sSJE6hWrZqxdydbHI4g91hxIiIiuTF64nT//n34+vq+1UkTwOEI8oIVJyIikhujX1VXvHjxLEcIJ8oOK05ERCQ3Rk+c/P39ceLEiWw7hRPpwooTERHJjdETp2+//RbPnj3D1KlTjb0rWVMqlVoPyh5HDiciIrkxeB+nFStWaE0LDQ3Fd999hz179qBdu3YoX748zMx052z9+vUzdEiywOEIco/3qiMiIrlRCAO3oZmZmUGhUGhNV+9G17yMimpFIbvXnZiYyM7jOoSHh8PPz09jmr29PV6+fGmiiIiIqKhRKpVScUOf72ODV5z69euXY3L0NuJwBLnHzuFERCQ3Bk+ceFNf3VhRyj12DiciIrnhTX5JtlhxIiIiuWHiRLKlK0lSqVQc2oKIiEzG6COHZ3Tt2jVcv34dL168yPLLr6heVUe5l1WzXHp6OiwsCvTUJSIiAlBAidM///yDwYMH4/Lly1kuI4SAQqFg4kSSrJrl0tLSmDgREZFJGP3b58aNG2jdujWUSiUaNWqE2NhY3LlzBz179kRUVBTOnTuH9PR0dO7cGY6OjsYOx2QyD3jJATBzll3FiYiIyBSMnjjNmDEDSqUSv/76K4YMGYLQ0FDcuXMHq1evBgBcvnwZ/fr1Q1RUFI4fP27scEyGA2DmXnYVJyIiIlMweufw8PBwVKpUCUOGDNE5v3r16tixYwdu3bqFadOmGTscKkSySpxYcSIiIlMxeuL06NEj1KhRQ3pubm4OAEhJSZGmubu7w9fXF5s2bTJ2OCaTmJio8YiNjTV1SLKXVWWJFSciIjIVozfV2djYaHTkdXBwAADExsbCw8NDmu7o6Ih79+4ZOxyT4QCYuceKExERyY3RK05ly5bF3bt3peeVK1cGAI3+TEIInDlzBsWLFzd2OFSIsOJERERyY/TE6f3338eVK1eQlJQEAGjTpg0A4PPPP8fOnTtx8eJFfPLJJ7h16xbq169v7HCoEGHFiYiI5MboiVNQUBBev36NHTt2AAAqVaqEwYMH49GjR/jggw/g4+ODRYsWwcrKCt99952xw6FCJGNlydLSUud0IiKigmT0Pk4ffvghUlNTNaYtWLAA3t7e2LBhA549e4aqVati4sSJqF69urHDoUIkY2XJ2tpaOo9YcSIiIlMxyfDLZmZmGDVqFEaNGmWK3VMhkbGyZG1tjcTERK3pREREBYk3+SXZylxx0jWdiIioIBVYxUkIgd27d+PYsWN48uQJ3n//ffTv3x8A8OTJE8THx6NSpUrSOE9ETJyIiEhuCiRxOn/+PHr06IGoqCjpZr6pqalS4rR//3707dsXW7ZsQYcOHQoipALHe9XlXuamOl3TiYiICpLRm+ru378Pf39/3LhxA23btsXMmTMhhNBYplOnTrC0tMTWrVuNHY7J2NvbazxcXV1NHZLsseJERERyY/TEafr06YiLi8PcuXOxY8cOjBkzRmsZW1tb1K5dG6dOnTJ2OFSIZKwsWVlZ6ZxORERUkIyeOO3ZswdVqlTBiBEjsl3Oy8sLjx49MnY4JsN71eUeK05ERCQ3Ru/j9PDhQ3Ts2DHH5RQKBV68eGHscEyG96rLPfZxIiIiuTF6xcnOzg5PnjzJcbk7d+6gRIkSxg6HChFWnIiISG6MnjjVrFkTp0+fxtOnT7NcJiYmBufPn0fdunWNHQ4VIqw4ERGR3Bg9cerTpw9evnyJgQMH4tWrV1rzU1JSMHToUKSmpqJPnz7GDocKEVaciIhIbozexyk0NBSrV6/Gtm3bUKVKFbRp0wbAm7GdRowYgW3btuHu3bvw9/dHjx49jB0OFSKsOBERkdwYveJkbm6O7du3o1evXnjw4AEWL14MADh79izmz5+Pu3fvokuXLti0aZOxQ6FChhUnIiKSmwIZOdze3h6rV6/G5MmTsWvXLty+fRsqlQoeHh5o27YtfHx8CiIMKmSySpxYcSIiIlMpsHvVAUCVKlVQpUoVnfN2796NJ0+eoF+/fgUZEslYVk11rDgREZGpGL2pTl/ffPMNQkNDTR0GyQgrTkREJDeySZyIMmPFiYiI5KZAm+reZkqlMtvnpC1jgsR71RERkRwwcSog9vb2pg6h0GHFiYiI5IZNdSRbHI6AiIjkhhWnApKYmKjxXKlUwtXV1UTRFA4cAJOIiOSGiVMBsbOzM3UIhQ4rTkREJDcGT5y++eabPK13//59A0dChR0rTkREJDcGT5ymTp0KhUKR6/WEEHlaj4qurK6qY8WJiIhMxeCJU/PmzZkAkUGoEyRzc3NYWPzvVGXFiYiITMXgiVNERIShN0lvKXWCZG5uDnNzc2k6K05ERGQqHI6AZEudIFlYWLDiREREssDEiWSLFSciIpIbgydODx8+lNV2qPBixYmIiOTG4ImTt7c3xo8fj/j4+Dyt/+zZM4wdOxbe3t4GjowKG1aciIhIbgyeOAUEBGDmzJkoV64c+vTpg/379yM5OTnbdZKTk7F371706tUL5cqVw6xZsxAYGGjo0KiQYcWJiIjkxuBX1W3evBkHDhzA559/jjVr1mDt2rWwtLSEj48PqlatipIlS8LR0REvXrxAXFwcrly5gvPnzyM1NRVCCNSoUQNz5syBv7+/oUOjQoYVJyIikhuj3HLF398fFy9exP79+zF//nzs27cPJ0+exMmTJwEACoUCQghpeWtra3To0AHDhg1jwkQSjuNERERyY9R71bVu3RqtW7dGcnIyIiMjcfbsWcTGxiIhIQHOzs4oXbo03nvvPTRu3FjjlhpEgGZTHStOREQkBwVyk19ra2v4+fnBz8+vIHZHRUTGprqMFScmTkREZCocx4lkK6uKE5vqiIjIVJg4kWyx4kRERHJTIE11BCiVymyfkzZWnIiISG6YOBUQe3t7U4dQ6LDiREREcsOmOpIlIQQrTkREJDusOBWQxMREjedKpRKurq4mikb+VCqV9H8OgElERHLBxKmA2NnZmTqEQiVjcsQBMImISC6M3lR35MgRREZGGns3VMRkTI44ACYREcmF0ROnFi1aYPLkycbeDRUxrDgREZEcGT1xKl68OMqUKWPs3VARkzFxYsWJiIjkwuiJk4+PD6Kiooy9GypiMlaVMncOZ8WJiIhMxeiJ04gRI3Dq1Cns3LnT2LuiIiRzxcnMzAwKhUJrHhERUUEy+lV1derUwbBhw9C5c2eEhISgS5cu8PLygo2Njc7ly5cvb+yQqBDIXHEC3iRQqamprDgREZHJGD1xqlChAoA3AxouWbIES5YsyXJZhULBL0UCoF1xAt4kUKmpqaw4ERGRyRg9cfLw8JCaWIj0lVXFKfM8IiKigmT0xCk6OtrYu6AiKPNwBBn/ZcWJiIhMhfeqI1nKPABmxn+ZOBERkakwcSJZyq7ixKY6IiIylQJLnP7++290794d5cqVg7W1NQYMGCDN279/PyZOnIjHjx8XVDgkc6w4ERGRHBVI4vTdd9+hRYsW+Ouvv/Dw4UOkpqZCCCHNd3JywowZM7Bp06aCCIcKAVaciIhIjoyeOO3evRtfffUVypYti/Xr1yM2NlZrmQYNGqBUqVLYsWOHscOhQkLXcASsOBERkakZ/aq6n3/+GdbW1ti9ezeqV6+e5XK1a9fmrVlIoms4AlaciIjI1IxecTp16hQaNGiQbdIEAKVKlWIfJ5Kw4kRERHJk9MRJqVTCzc0tx+USEhKgUqmMHQ4VEqw4ERGRHBk9cXJ1dcXNmzdzXO769evw8PAwdjhUSOjqHM6KExERmZrRE6emTZvi3LlziIyMzHKZHTt24ObNm2jZsqWxw6FCQtdwBKw4ERGRqRk9cRo9ejQUCgU+/PBDbNmyRetLb8+ePRg4cCAsLS0xfPhwY4dDhQRvuUJERHJk9MTpvffew+zZs/H06VN06dIFzs7OUCgU2LhxI5ydndGuXTv8999/mD17NqpVq2bscKiQyG4ATCEE+8MREZFJFMgAmCNHjsSuXbtQv359JCUlQQiBly9f4sWLF6hZsya2bduGYcOGFUQoVEhkV3HKPJ+IiKigGH0cJ7XAwEAEBgYiLi4Od+7cgUqlgoeHB9zd3QsqBCpEshuOAHhTkbK0tCzwuIiI6O1W4Df5LVmyJOrVq4cGDRoUqqRp06ZNaN26NUqUKAGFQoHo6GhTh1SkZTccAcCKExERmYbRE6ewsDDcv3/f2LsxOqVSiebNm+Obb74xdShvBX0qTkRERAXN6E11/fv3h0KhgLe3N/z9/eHv7w8/Pz84Ojoae9cG1bdvXwDApUuXTBzJ24EVJyIikiOjV5xCQkLg4eGBGzdu4Ndff0WXLl1QsmRJNGzYEJMmTUJERARSU1PzvZ9Vq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXr893LJR/2Q2AmXk+ERFRQTF6xWnp0qUAgKioKBw4cAD79+9HREQETp48iZMnT+L777+HjY0NmjZtitatW2P06NF52s+kSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dy/PcZBhZDcAZub5REREBaXAOod7e3vjk08+waZNmxAXF4cTJ05g2rRpaNGiBdLS0rBv3z6MGzcuz9tfvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE3NMvMi4WHEiIiI5KvCr6gAgNTUVL1++lMZyUlcPhBB53qa/vz88PT31WvbQoUO4desWPvroI/j4+EjTnZycMHHiRKSkpGD58uV5joXyjxUnIiKSowIbx+ncuXPYv38/Dhw4gKNHj+L169cQQsDR0RHt2rWTOo4XhIiICABAQECA1rzAwEAAwOHDh/O1D6VSma/5bztWnIiISI6Mnjj17NkThw4dQlxcHIQQsLS0RMOGDaVEqUGDBhqVhIIQFRUF4E3zYWZubm6wt7eXllF79uwZ7t69i1u3bgEArly5gufPn6N8+fIoUaKE1nbs7e2NEPnbgxUnIiKSI6MnTuvXr4dCoUCtWrUwZcoUBAQEwNbW1ti7zVZCQgKAN01zujg6OkrLqG3btg2hoaHS83bt2gEAli1bhpCQEOME+hZjxYmIiOTI6ImTg4MDXr58ifPnz6N3795o1qwZWrduDX9/f9SuXdvYuzeYkJCQXCVIiYmJ2c5XKpVwdXXNZ1RFl64BMFlxIiIiUzN64vTs2TOcPHkSBw4cwIEDBxAeHo59+/ZBoVDAxcUFrVq1QuvWrdG6dWuUK1fO2OEA+F+lKXNVSe3FixcoXrx4vvZhZ2eXr/XfdroGwGTFiYiITM3oV9WZm5ujUaNGmDx5Mg4fPoz4+Hjs2LEDI0eOhJubG9atW4eBAwfC09MTVatWNXY4AP7XtylzPyYAePz4MRITE3X2f8oPpVKp9aCs6WqqY8WJiIhMrcCHI7C1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3CiQGHx9fQEA+/bt05q3d+9ejWUMxd7eXuPBZrrs6eoczooTERGZWoENRwAA9+/fl4YkOHjwIJ48eQIA0tV2jRo1KpA4WrVqhYoVK2LNmjUYMWKENJZTQkICpk+fDisrK/Tr169AYiHdWHEiIiI5MnritGXLFql/k7ppTAgBhUKBGjVqSMMS+Pr65utqu8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgTwpnKxePFiBAYGonnz5hq3XImJicGsWbPg5eWV9xetQ+bO4uwcnj1WnIiISI6Mnjh9+OGH0v89PDykRKlVq1YoXbq0wfZz9OhRrdG+IyMjERkZKT1XJ04A0LJlSxw9ehRTpkzBunXrkJqaipo1a2LGjBno0aOHweJSY2fx3GHFiYiI5MjoiVOnTp2k4QcM3eE6o7CwMISFheVqnQYNGmD37t3GCYjyJacBMFlxIiIiUzB64rRp0yZj76JQyHwVHa+qy15OA2Cy4kRERKZQoJ3D32a8BUvu6BrHiRUnIiIytQIbjuDq1asYMmQI3n33XemS/HfffReffPIJrl69WlBhUCGha+Rwdg4nIiJTK5CKU1hYGIYMGYLU1FQIIaTpUVFRiIqKwrJly7Bw4UIEBwcXRDgmwavqcoedw4mISI6MXnE6ffo0Bg0ahJSUFLRr1w6bN2/GhQsXcOHCBWzZsgUdOnRASkoKBg0ahH///dfY4ZiMnZ2d1oOyxuEIiIhIjoxecfrxxx+hUqmwZMkShIaGasyrUaMGPvjgA4SFhaF///6YPXs21q5da+yQqBBgxYmIiOTI6BWnv//+Gz4+PlpJU0YhISF47733cOTIEWOHQ4UEK05ERCRHRk+cnj59qtfNe6tUqYKnT58aOxyT4U1+c4cVJyIikiOjN9U5Ozvj7t27OS539+5dODk5GTsck+FwBLnDihMREcmR0StO9evXx7Fjx3Do0KEslzl06BAiIyPx/vvvGzscKiRYcSIiIjkyeuI0fPhwqFQqdOjQAWPHjsXly5fx6tUrvHr1CpcuXcKYMWPQoUMHadmiKjExUeMRGxtr6pBkTdcAmKw4ERGRqRm9qS4wMBBffvklpk2bhtmzZ2P27NlaywghMHnyZAQEBBg7HJPh8AO5o2sATFaciIjI1Apk5PBvv/0Wu3btQsuWLWFtbQ0hBIQQsLKygp+fH3bt2oWvv/66IEKhQiKne9Wx4kRERKZQYPeqa9OmDdq0aYP09HTExcUBAEqWLKlRRSBS09U5nBUnIiIyNaMlTjdv3sSmTZsQHR0Na2tr+Pj4oHv37rCxsUHp0qWNtVsqIlhxIiIiOTJK4jR37lyMHTtW68tt8uTJ2LVrF2rUqGGM3cpa5nGbOI5T9tQVJTMzMygUCgCsOBERkekZPHE6evQoRo8eDSEE7Ozs8O677+LFixe4ffs27t+/jy5duuDq1aswMyuQ7lWywXGcckeddGdMllhxIiIiUzN49jJ//nwIIRAcHIzHjx/j33//xY0bN3DmzBlUqlQJN2/exJ49ewy9Wypi1BWljMlSxiSKiRMREZmCwROn48ePo1y5cli4cKHGJfi1atXCzz//DCEE/vnnH0PvVvY4jlPu5FRxYlMdERGZgsGb6mJjYxEUFAQrKyuteU2bNgUA/Pfff4berexxHKfcUSdGGRMnVpyIiMjUDF5xSklJgbOzs855jo6O0jJE2VEnRlk11bHiREREpvB29dCmQkNXxYmdw4mIyNSMMhzBzZs3sWLFijzN79evnzFCokKGFSciIpIjoyROkZGRiIyM1DlPoVBkOV+hUDBxIgAcjoCIiOTJ4IlT+fLlpQEL6X84AGbu5DQcAStORERkCgZPnKKjow29ySKBA2DmDitOREQkR+wcTrLEihMREcmR0W7yS5oSExM1niuVSri6upooGvljxYmIiOSIiVMB4QCYuZPTAJisOBERkSmwqY5kSddwBKw4ERGRqTFxIllixYmIiOSIiRPJjkqlkv7PihMREckJEyeSnYxJEStOREQkJ0ycSHYyJkWsOBERkZwwcSLZ0afixMSJiIhMgcMRFBDeckV/+lSc2FRHRESmwMSpgPCWK/rLquJkZmamcxkiIqKCwqY6kp2M1aSMiZNCoZCes+JERESmwIpTAeEtV/SXsZqUsXkOeJNIpaens+JEREQmwcSpgPCWK/rLquIEvEmkUlJSWHEiIiKTYFMdyU5OFafMyxARERUUJk4kOzlVnDIvQ0REVFCYOJHssOJERERyxcSJZCer4QgyPmfFiYiITIGJE8lOVgNgZnzOihMREZkCEyeSHVaciIhIrpg4kezo0zmcFSciIjIFJk4kO/p0DmfFiYiITIGJE8kOK05ERCRXHDm8gCiVymyf0/+w4kRERHLFxKmA2NvbmzqEQoMVJyIikis21ZHscABMIiKSK1acCkhiYqLGc6VSCVdXVxNFI2+85QoREckVE6cCYmdnZ+oQCg19Kk4AoFKpYGbGoikRERUcfuuQ7GQ3AGbGRIpVJyIiKmhMnEh2smuqy/ic/ZyIiKigMXEi2cmuqY4VJyIiMiUmTiQ7rDhRWloaBg8ejK5duyIhIcHU4RARSdg5nGSHFSfatGkT/vjjDwBA7dq1MXnyZBNHRET0BitOJDusOFF4eLj0/927d5swEiIiTUycSHZYcaLDhw9L/z9x4gSePXtmwmiIiP6HidNbTKVSITExEUIIU4eiITcVJyEEVCpVgcVGxvfff//h6tWr0nOVSoUDBw6YMCIiov9h4vQWGzBgABwcHPDdd9+ZOhQN+lacUlJS0KVLF9jY2GDdunUFFh8Z199//601bc+ePSaIhIhIGxOnt9SpU6cQFhYGAPjuu+8QGxtr2oAyyG4AzIzPFy5ciM2bNyMlJQXffPNNgcVHxnXkyBGtaXv27JFdZZSI3k5MnN5Sc+bMkf6fkpKC33//3YTRaNK3qW7u3LnS/69cuYLo6Ghjh0YFQN2/SaFQoHHjxgCAR48e4eLFi6YMi4qge/fuYeDAgVi+fLmpQzGI1NRUDBs2DIGBgViyZAmSkpJMHVKRxMTpLXT37l1s2LBBY9qvv/6K5OTkPG3v33//xa1btwwRGoC8dw7ftWuXwWIwhsJ4FWBqamqBVnri4+Nx4cIFAICPjw969uwpzWNzHRlSSkoKPvjgAyxZsgQhISE4deqUxvyEhAR8++23OHjwoIkizL2lS5diwYIF2LdvHwYOHIhy5cph7Nix+O+//0wdWpHCxOktNG/ePOlL3NbWFsCbDrl//vlnrre1bds21K9fHzVq1MDt27cNEp++FafMz+WaOF25cgUNGjSAo6MjPvvsMzx9+tTUIWVJCIGzZ89i6tSp8PHxgZWVFbp161ZgydPRo0elfTVv3hxt2rSR5hWGxGnPnj3o2LEjIiIiTB1KkZeWloZXr15pTU9PT8ecOXPQp08f3Lt3L8v1p02bhnPnzknPp06dKv1fCIFevXrhq6++QuvWrbFkyRJDhq7Ty5cvMW/ePOzatStPP7JSU1Pxww8/aEx79uwZfvzxRzRu3BhKpdJQoZIgk0hMTBQABACRmJhosO2qVCrx2WefiaVLl+qcn5CQIBwdHQUAYW1tLTZv3izFUadOHaFSqXK1v06dOknrz549O89xv3r1SsTFxQkhhPj666+lbe7cuVNjuU8//VSaB0BMnTpVuLu7CwDCxsZGvHr1Ks8xGJpKpRILFy4UNjY2GjE7OjqKadOmCaVSma/tX79+Xezdu1ekpaVpzbt27ZrYv3+/3n/PtLQ0sXr1alGlShWNWNWP9evXZ7t+UlKSiI+Pz8vL0DBmzBhpn5s2bRIqlUpUrFhRABCWlpbixYsX+d6HsSQkJAgHBwfpb/zgwQO9112zZo1o0aKFmDt3rkhNTc122eTkZPH8+fNcv1flSKVSiV27donvvvtOxMTE6L3eq1evROPGjYVCoRB9+vQR//33nxBCiGfPnom2bdtK51C7du10rn/69Glhbm6udZ7/888/QgghNm7cqDXvt99+y/8LzkabNm2kfVWsWFHMmjVLPHv2TO/1w8LCpPWbNGki+vbtK6ysrKRp48aNM2L0hVtuv4+ZOJmIsRKnH3/8UdrulClTtD5c58yZI80fNGiQUKlUon79+tK0w4cP672v169fCzs7O2ndoKAgrWVUKpXOL/a0tDQRFhYmQkNDRa1ataQPsVatWokuXbpI29yzZ4/GeiNGjJDmeXp6ilevXokBAwZI03bv3q13/Mb0/Plzjdeh61GlShXpA19NpVKJU6dOid27d4u///5bnDlzRsTGxmptPyoqSjr2QUFB4vnz59L6c+bMEWZmZgKAGDBgQLZfsOnp6eLPP/8UVatWzTbWSpUqieTkZJ3bCA8PF6VKlRIWFhbim2++Eenp6Xk+bg0aNJD2+eTJEyGEZrK8devWPG87O48ePRJt27YVrVu3Fv/++2+etvHTTz9pHLOuXbvqtd6VK1c0vsTfe+89cerUKa3lHj9+LEaNGiUl4tbW1sLT01M0a9ZMHDp0KE8xm9K5c+dEy5YtpdddrFgxMXnyZL0+DzP+uAIgSpYsKWbPni0qVaqkde7euHFDY93Xr1+L6tWrS/Pr1q0r/b9NmzYiMTFReHh46Hwf/PLLL0Y5FocOHdK5P2dnZ3Hu3Lkc109LSxPvvPOOtF5kZKQQQoirV69KyZOFhYW4fPlyvmPdtm2bCAgIECtWrMj3tnIrISFBREZGit9//13n52JeMXEqJIyVOI0cOVLjjRcaGipSUlKEEG+qAp6entI89Zto9erV0jQ/Pz8xe/ZsERISIjp27Cj9AtNl7969Gvuyt7eX9iWEEGfPnhUODg6iWrVq0pegWsYELrvHgQMHNNabPn26NG/Dhg1CCM1fh8OHDzfIccyPpKQk0axZM43XMXToUHHz5k0xePBgjS/Jxo0bi6SkJCHEm1/RGSt46odCoRCrV6/W2Ef37t01lnn33XfFxYsXRWhoqNb6X375pc44lUqlzv01btxY/Prrr+L+/fvCz89Pmj5v3jytbaxevVrjVy0AERAQoJUQ6uPFixfSsalevbo0ffv27dK2P/nkk1xvNycpKSmiadOm0j4sLCzE9OnTdSb8WUlLSxMVKlTQOpbbt2/Pcd2goCCt9czMzES3bt3E+PHjxbx588SYMWOEra1tlu+TEiVK5KrCldGTJ09E3759xZgxY8TLly815h04cEA0bNhQ9OzZ02CfU7GxsWLQoEFCoVDofC1lypQRW7ZsyXL9mJgYrSquruOn/v+IESM01p8wYYI0z8fHRyQmJgovLy9pWsa/R0BAgBg3bpzGtletWmWQ46CmUqlEo0aNpO3Xrl1bY39t27bNcRt//vmntHyLFi005k2ePFljXk6Vyvv374uBAweK4sWLi379+omEhARp3ooVKzSOrTGSJ5VKJZYuXSqGDx8uBg4cKHr37i3atWun8TcCILZt22awfTJxkqnExESNR2xsrFESJ5VKJWbPnq1xgvn6+ooPPvhA44M345sxOTlZlClTRucHUPny5TWSoYyGDx+utfyxY8ek+d26dZOmT5w4UZqekpIiypYtK80zNzcXtWrV0npjABDh4eEa+4yLixOfffaZWLBggfQBkJCQICwsLATwpsSd2yaMuLg48csvv4jdu3fnu/kjPT1d43UXL15cbN68WWOZS5cuSc2LAET37t1FfHy8aN68eZZfBI6OjlJTxsmTJ7P90tD1yPxL+b///hMNGzbUWKZJkybiwIEDGsfg33//lea7uLhoVLa+//77LPdXtmxZsWHDBikp1OXVq1diyJAhon379mLp0qXir7/+0pkgvXz5UkrOrKysxPjx46UP89TUVBERESF++ukncfv27Wz/NgkJCSIkJET06NFD45d35h8b6kfTpk3FnTt3st2mWsYmb1dXV433T2JiolCpVOL8+fNi2bJlGj8idu/erXHMatasmePfslixYqJFixaiRo0awsnJSeM9nfFvt3LlStGzZ09x/PjxbGPPeL56e3uL06dPi/T0dDF9+nSNL8mPPvooX++P1NRU8fPPP2vErH7PDho0SFhaWkrTLCwsxNWrV3VuJ+OPhtDQUK0fEXXq1BFnzpyRkisHBwfpfDl69Kj0miwtLcWFCxeEEEIsXrxY6zhbWVmJGzduCJVKpZF8uLi4SN0K1B4+fChOnDiR4/GJj48Xc+bM0ficzPjDoHr16iItLU1cu3ZNlC9fXgBvfjhlPg9TUlJEbGysUKlUIj09XdSoUUPaRuYfm69evdJI6rNK/OLj48WECRO0ktLKlSuLs2fPirCwMK1k18LCQmt/ag8ePBA1a9YUJUqUEN27dxcrV64UT58+zfb4CCHEokWL9PpMmzZtWo7b0hcTJ5nK7gQwZOKktn79emFtbZ3lPiMiIjSWz+5LcPny5VrbV6lUOn9hf/fdd0KIN192Gd+Azs7OUv+UjBWuoKAgqV9ScnKy+OWXX0SpUqWkD4x79+7p9XozlvyvXbum1zqvXr0SM2bMEM7OztK6LVq0EGfOnNFrfV0+//xzaVt2dnY6m1yEeNPHImMzZ8mSJTXWGz9+vBg9erRG5ap169ZCpVKJFi1aSNPGjh2r8aGp/mJdu3atmDdvnjRNoVCIiRMnitWrV4sdO3aIypUrS/McHBzE1q1bs/zQ/+ijj6RlR40aJcLCwrSSrsGDB4t9+/ZpJA3Am4QvODhYHDx4UGu7gwcPzvKcW7t2rcay/fr105hfqlQp0a1bN1G8eHGNL7TMzTIZhYSESMtaW1uLWbNmiZUrV2p8UQ4ePFgjWXBychJ//fVXjn93X19faZ2dO3cKf39/jb9bxqYhd3d3ceTIEZGamqrRRLpmzRqRkpIiZs6cqXFuZIx55MiR4uHDh9J+nz59Ktzc3KRlFi5cKNLS0jSSQRsbG633u5quJiJLS0uNCkjGR8aq471798S4cePEr7/+mmN17tixY1pJoYODg5g5c6Z4/fq1EEKIGzduiICAAGn+yJEjtbYTERGhcQ6o+9Vt375dtGjRQnz22WdS38GM59fcuXPF8+fPNSruGb94U1JSpL506sekSZM09p0xQRs6dKg0/dSpU8Le3l4AEH/88UeWxyApKUm89957GttPSUkRtWrVkqZt2rRJWv67776TpmesGj969Ej6kWlra6vRRNewYUOd7+OdO3dKy7i6uopbt25J81QqlVi2bJlwcXHJ8v1obW2tkTRl7Avp6OgoJaAZ9ezZU2s7ZmZmomnTpuL7778XFy5c0Ir12bNnWcbh4OAgGjVqJAYPHix++eUXcenSpSyPdW4xcZKprE5Iff9QefH333+LEiVKSPspXbq0CA4OFnv37tVaNjU1VUybNk18/vnnYunSpRodDatVq6bVb+XKlSvSfG9vb+n/fn5+Qggh1q5dq/U6Z8+eLVQqlahXr540TdcH+osXL0RYWFiWH/a6zJo1S9rmnDlzhBBvqiqnTp3Sil2lUonVq1eLcuXK6fx7qDuc/v7772LXrl3i4sWLIioqSly+fFmcO3dOnDp1SkRGRorw8HCxZ88esWbNGjF37lyNvlbm5uZaHdsz2759u8aXtPrL/+TJk9Iy8fHxGtW5jEmMut/RixcvROfOnQXwpmqRMVnL2Cyh61GmTJkc+1Dcvn1bqzku42P69OnSB+CjR480ktiMj88++0z6W2RMnnU9Mjc7JSYminHjxmUbB/CmevH48WOdxzq79YA3SYcQb943maufn376aZbVszNnzkjLvfvuuyI9PV1ERUVl+8PF3NxctGvXTnreqFEjjS8RpVIpLl26JPbv3y9WrFgh/vjjD3H//n2d+8/4pWhnZ6fROTrj9KNHj2qsl5qaqpF063o/KBQKjS9ACwsLcfjwYfHzzz9LyQLw5gdHVk2Fp06dEsWKFdPYbmhoqM6/U1xcnLSss7OzxsUeqampGklGdkmKEEJcvHhR473Sq1cv6XmzZs20kr2lS5dK8728vLQu3rh3756U0CoUCnH69Glx584djR8LVapUyfIHSMbPh4zni/r/9erV01j34cOHUiXdzc1Nqvz37t07y/Nqx44dWR6PjM3y5ubmom/fvmLXrl1alW4rKyvx+eefi1OnTmn0/1I/RowYIVJTU0WHDh2kaWXLlhV3796V9pUxwc3uUa1atSyrv507dxYXLlwQUVFR4uHDh0a9GIKJk0wVVFNdZnfv3hW///67OHnyZK477Wbs95G5z0HGTuizZ8+WfslZW1uLpKQknX1nypUrJw4ePCg9z8tVfFnJmMhVq1ZNBAYGSv1lGjRoIHX4jYuL02iaAN78CurVq5dGFSa/j5w+1NV++eUXaZ3y5cvrbJ7I2JyT8bFu3TppGZVKJa5du6b15a5SqcSQIUOy/NDS90qmUaNGaa1fs2ZNjV/Iaunp6WL37t0iODhYuoJT/ejdu7e4ePGixpfu1KlTxZAhQ6TKX+Y+Ghndvn1b45e/k5OT6NGjh6hWrZrGF1DGvjpxcXEaVZnAwECtJofQ0FCNc/H58+daTUBVqlQR33//vdbfKDg4WFrm119/laZnrBgAb5pCM76nMj5OnDih198hK7qqd+bm5hoVDgcHB439ZDz36tWrJ5KSksQXX3whTStevLh0scXYsWOl6Vn1TXJxcdH6sfDw4UONxL9u3bo5Nh1mrC6GhYVJ0+fPny9Nf++99/Tqg9aqVSutOJ2cnHSe96mpqaJHjx6iUqVKWkmm2owZM6Tt1K9fX+dFFbr6hWZsCixWrJjOK/r27duntV7GC0z++usvjQqhvb298Pb2lpKrzE21mcXExGTZJUP96Natm0az4OvXr8WwYcOk+Z999pm0j8TERI0Li6pUqSKePHmileAuWLBAREREiNGjR2skiupHqVKlxPnz58Xly5el42JjY6ORiBkbE6dCwlidww1px44dUozvv/++xpsyY9PE9evXRf/+/aXnW7ZskX5tu7q6avyyLl26tPT/lStXGixWlUqls49Uxg/7kJAQjQ9xAKJ9+/bi4sWLQog3TYVz5szRaLrL7cPMzExqrtTXunXrxPjx47Pt3Jv512q9evVylQhfuHBBrFu3TsyZM0eMGjVKfPnll7m61PnZs2eibt26wt7eXgQHB4tjx47plfQmJSWJefPmaVTWMlaNgoODNZY9ceKE1HSTnaioKPHPP/9Iv8Lv3bunUTHx9/cXR44cEcnJyRq/0IOCgoRKpRIRERFSU/P777+vcxgL9XASmaslwJsKRv369UX9+vWlvjnOzs4a7+X09HSxaNEi8dNPP4no6GghxJtO5BMnTtTYVt++fXN8vTl5+fKlRlOTvb292LNnj0hKShKtW7eWpltbW4tevXqJrVu3apznGZOZo0ePimnTpmkkF6mpqToriX379tWqVPXu3VvcvHlTJCUlaTTpNmnSRK+/7bFjx6R1GjZsKIQQ4s6dOxrNl1klNplt27ZNK+Y///wzl0f3f5KTk3UO2ZGx/+iQIUM01vn33381qo+rVq0SERERGpWqrDpt79u3T2OZjImaukKampoqHj9+rNf78dmzZ+Lrr7/WaIkA3lRqM1/BnPk1REREaO0jNjZW4wdn3bp1Nbp96Epwb968KX7++WeN5usSJUpoJGHffPNNjq/FkJg4FRKFIXFSqVQavxzUlzzHx8dLvwwqV64shBBi1apV0nIZ29yHDRsmjh49qvVB4+7unuXl7XmVuZOvp6enRjNixkfx4sWlq/IyS0hIEHv27BGLFi0SkyZNEsHBwaJPnz4iNDRUDB48WHz66adi1KhRYvz48WLy5Mlizpw5YuXKlWLv3r3SF6ShPX/+XOMLqrBdfr5lyxatBKRatWoGPfcvXbqklfRm/EJzdnbWaO569eqVOH78eJYXP6hduHBBvP/++zkmzWPHjtU71m3btgl3d3dRpUoVjT5L+fHPP/+I4sWLi8qVK2s0vyqVyiybTzMnr9mJjY2VfpxUq1ZN/P3330KIN/2sPvjgA41tWlhYaFwd5uHhobNpTpfMnztnz57VuLpz8ODBeh+T9PR0jSEK9H2t2dm/f7/Ga1VXTNSJnZOTk1T5jY+P1+hX9emnn0rbefjwoejcubPw8fERV65cyTL+zH2vgDdV9PwM+/Hy5Uvx448/iqZNm4qpU6fma/y7O3fuZFnJUg+LoEt8fLzO95WXl1eBj8fHxKmQKAyJkxBvBuZTx+nn5ydevXol1q1bJ01Td+B88OCBzjfOkSNHhBBCNG7cWGO6Ia+IUEtISBBDhw4VI0eOFJGRkUKlUonk5GTxww8/aHyBtmrVKsv+InJ2+vRp0apVK/H999+bOpQ8OXLkiHRFla2trUHGlMns8OHD0iCUmR/5vXT61q1bYs6cOaJZs2bSDweFQiHMzMxE3bp1cz0EQ3p6usH7baSnp+tswkpMTBRjx47VuAgBeNN8l5vE7cWLFyIyMlLrR49KpRILFizQ2j7wptkltxdcLFiwQKMaov5/+fLlNS6P18emTZuEmZmZaNCggcEGUFX3+7KxsZGa5jI22aqrWn369JGmNWzYME8/Fn/44QeN42lmZiZOnz5tkNdhKJcvX9aqYulTSU1ISBBNmjTRWE+fizEMjYlTIVFYEqfU1FSNDy4rKyvpqjcAYv/+/dKymUvYZcuWlX4Vbd26VeODVJ/LUg3p7t27YsKECWLp0qX5+qVG+XPt2jUxZswYvZta8iI2NlaEhYWJvn37SsM+hISEFImRtvPr9evX4s8//xT+/v6ifPnyWVZd8yohIUFMnTpVI3nNadT5rLaj68pCXf2A9PH69escR2TP7faWLVumkfyHh4dLcbZp00Zs2LBBep5xOJHcio2N1RiqIWPVSk5OnDgh9V20t7fXOyF/+fKl1BetY8eOJnmfMnEqJApL4iSEEEuWLNH5C97e3l7jF9TQoUM15n/22WfSvPT0dOkS7dz2ASLKK5VKVWRuT1KYPHnyRMyfP1/jh1VuDRw4UOPzJDdNdKaQnp4uNcuZmZlpDJWR32qnuvN/uXLlDHJrI2M5deqUGDBggNb4ezlRX9ySU7O5seT2+1ghRAHe+pwkSqUS9vb2AIDExETY2dmZOKKsCSGwefNm7Nq1CxEREbh16xYA4PPPP8ecOXOk5TZu3IiuXbtKz48dO4ZGjRpJz1NSUvD06VO4u7tDoVAU3AsgokLn9OnTqFevHgCgfPnyuHjxIhwdHU0cVfamTJmCb775RmNaly5dsGHDhnx95qWkpGDfvn2oX78+XF1d8xsmZZLb72MmTiZSmBKnzO7du4enT5+iZs2asLCwkKbHxcWhVKlSEEKgfPnyiI6OZoJERHn2/fff48CBA5g1axbq1Klj6nBydOvWLVSuXFl67urqikuXLsHFxcWEUVFOmDgVEoU5ccrO1KlTsWzZMsyaNQvdunUzdThERAWqRYsWOHz4MABg+/btaN++vYkjopwwcSokimriRET0Nrt58yYmTJiAgIAADBo0yNThkB6YOBUSTJyIiIhML7ffx2YFERQRERFRUcDEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9GSR8yJkDBkHbFcqlSaMhIiI6O2V8TtYn5upMHEykVevXkn/d3V1NWEkREREBLz5blbffiUrbKojIiIi0hNv8msiKpUKT58+BQDY2tpCoVDkaTtKpVKqWMXGxvJmwf+Px0U3HhfdeFx043HRjcdFt8J6XIQQUiuQi4sLzMyyrymxqc5EzMzMULp0aYNu087OrtCcqAWJx0U3HhfdeFx043HRjcdFt8J2XHJqnsuITXVEREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREeuIAmERERER6YsWJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMRJpk6dOoWgoCA4OzvDzs4ODRs2xPr163O1jeTkZHzzzTfw9vZGsWLFUKZMGQwePBj//fefkaI2ngcPHmDu3LkICAhA+fLlYWVlBTc3N3Tp0gUnTpzQezsRERFQKBRZPsLCwoz3IozEy8sry9fTokWLXG1r9erVaNCgAezs7FC8eHG0b98eZ86cMU7gRhQWFpbt31mhUKBVq1Y5bqewni+rVq3Cxx9/jHr16sHa2jrHWF+8eIFRo0bB09MT1tbW8PLywhdffIHExMRc73vv3r3w9fWFg4MDHB0d0bJlSxw8eDAfr8Zw9D0uqamp2LhxI4KDg1G1alXY29vDwcEB77//Pn777Tekp6fnar+GfI8aQ27Ol6lTp2b7noiOjs7Vvm/cuIHu3bvDxcUFNjY2qF27Nn777TfI+bo1C1MHQNrCw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHj85xGyqVCh07dsTevXvRsGFDdOnSBVFRUVi8eDEOHjyIf/75B6VKlSqAV2MYv/zyC2bMmIFKlSohICAApUqVQlRUFLZs2YItW7ZgzZo16NGjh97b8/X11fmB5ePjY7igC5CTkxM+++wzreleXl56b2PatGmYNGkSPD09MWTIELx8+RJ//vknGjdujIMHD6JJkyaGC9jIfHx8MGXKFJ3z/vrrL1y+fBmBgYF6b6+wnS+TJk1CTEwMXFxc4O7ujpiYmCyXVSqV8PX1xblz5xAQEIBevXrh7NmzmDVrFg4fPowjR46gWLFieu131apV6Nu3L0qVKoWQkBAAwLp169C6dWusX78eXbt2NcTLyzN9j8utW7fQtWtX2Nvbo1WrVvjggw+QkJCA7du3Y+jQodi1axe2bdsGhUKh974N8R41ltycL2rBwcE6Y3d2dtZ7v1euXEHjxo2RlJSE7t27o0yZMti5cyeGDh2KK1eu4JdffsnFqyhAgmQlNTVVVKpUSVhbW4uzZ89K058/fy7eeecdYWVlJaKjo3PcztKlSwUA0atXL6FSqaTpv/32mwAgBg8ebIzwjWbjxo0iIiJCa/qRI0eEpaWlKF68uHj9+nWO2wkPDxcAxJQpU4wQpWl4enoKT0/PfG3jxo0bwsLCQrzzzjvi+fPn0vSzZ88Ka2trUbVqVZGenp7PSE0vOTlZlCxZUlhYWIjHjx/nuHxhPV/2798vfU58//33AoBYtmyZzmW/+uorAUCMGzdOY/q4ceMEADF9+nS99vns2TPh7OwsXFxcxL1796Tp9+7dEy4uLsLFxUW8ePEiby/IQPQ9Lvfv3xcLFiwQiYmJGtMTExNFvXr1BACxfv16vfdriPeoMeXmfJkyZYoAIMLDw/O93+bNmwsAYteuXdK05ORk0axZMwFAHDt2LN/7MAY21cnMoUOHcOvWLXz00Ucav2adnJwwceJEpKSkYPny5Tlu548//gAAfP/99xq/ij7++GNUrFgRq1evRlJSksHjN5YPP/wQvr6+WtObNWuGli1bIj4+HhcvXjRBZEXDsmXLkJaWhi+//BJOTk7SdB8fH/Tq1QtXr17F0aNHTRihYWzZsgVxcXFo3749XF1dTR2O0fj7+8PT0zPH5YQQWLx4Mezt7TF58mSNeZMnT4a9vT0WL16s1z43bNiA58+fY/jw4ShXrpw0vVy5chg2bBiePn2KzZs35+6FGJi+x6Vs2bIYOnQo7OzsNKbb2dlh1KhRAIDDhw8bJUZT0Pe4GNKNGzdw5MgRtGzZEm3btpWmW1lZ4dtvvwXwv+8xuWFTncxEREQAAAICArTmqZsWcnrDvn79GidOnMC7776r9WZQKBRo3bo1Fi5ciH///RfNmjUzTOAmZGlpCQCwsND/dI6KisLcuXORlJSEcuXKwc/PD2XLljVWiEaXnJyMsLAwPHz4EI6Ojqhfvz7ef/99vdfP6bwLCwvD4cOH0bx5c0OFbBLqJGDgwIG5Wq+onS9qUVFRePjwIQIDA3UmCU2aNMHevXtx7949eHh4ZLutnM6hqVOn4vDhw+jXr5/B4jeFvHzeAPl/j8rNkSNHcOLECZiZmcHb2xv+/v6wt7fXe/3szpemTZvCzs5OtskpEyeZiYqKAgB4e3trzXNzc4O9vb20TFZu3boFlUqlcxsZtx0VFVXoE6e7d+/iwIEDcHd3R82aNfVeb82aNVizZo303MLCAsOHD8ePP/4Ic3NzY4RqVI8fP0ZoaKjGtPr162Pt2rWoVKlSjutHRUXB3t4ebm5uWvMyni+FWUxMDA4ePIhy5cqhTZs2uVq3qJ0vatl93qin7927F1FRUTkmTtltq6icQwCwdOlSALq/8LOT3/eo3GTuQ+js7Iyff/5Z78Q4u/PF3NwcFSpUwJUrV5CWlpbrJNXY2FQnMwkJCQCg0VySkaOjo7RMfraRcbnCKjU1FX379kVycjJmzJih1xdYqVKl8MMPP+DSpUtITExEbGwstmzZgsqVK+Onn37C2LFjCyBywwoNDcXBgwcRGxsLpVKJs2fPom/fvjh16hRatWqFly9f5riNhISEIn++LFu2DCqVCiEhIXonO0XxfMnIkJ8V2W2rqJxDixYtwu7du+Hn54egoCC91zPEe1QuateujaVLl+L27dtISkrCnTt38Msvv0ChUCAkJATbtm3Tazv6nHsqlUqWx0ZeaRyRntRfgEeOHMGgQYPQt29fvdarXr06qlevLj23s7NDx44d8f7776NWrVqYN28exo0bh9KlSxsrdIPL/MvPx8cHK1asAACsXLkSf/zxh9Qv422lUqmwbNkyKBQK9O/fX+/1iuL5QnmzY8cODBs2DJ6enli1alWu1i1K79HOnTtrPPfy8sKwYcNQtWpVtG7dGpMmTcIHH3xgougKBitOMqPOvrP6ZfbixYssM/TcbCPjcoWNSqVC//79sWbNGvTp0we///57vrfp5uaGjh07Ii0tLVfjQsnZxx9/DACIjIzMcVknJ6cie74AwIEDB3D37l34+fmhQoUK+d5eUTlfDPlZkd22Cvs5tGvXLnTt2hWurq44dOgQ3N3dDbLd3LxH5a5Vq1aoVKkSLl68KP29s6PPuadQKODg4GDQOA2BiZPMZNcX4PHjx0hMTMyyP4JaxYoVYWZmlmV/gpz6NciZSqVCaGgoli9fjl69eiEsLAxmZoY5jV1cXAC8GdemKMjN6/H29kZiYiIeP36sNa8wny9qee0Unp2icL7k1PcoN3/77LZVmM+hnTt34sMPP4SLiwvCw8NRsWJFg227KJxDGalfz6tXr3JcNrvzJT09HXfu3EGFChVk178JYOIkO+pL7vft26c1b+/evRrLZMXGxgYNGjTA9evXtQYyE0Jg//79sLOzQ7169QwUdcFQJ00rVqxAjx49sHLlSoN2zFVXDuQwIJ0h5Ob1GOK8k6u4uDhs3boVJUqU0GpmyI+icL54e3ujTJkyiIyM1PryViqViIyMRIUKFXLsGA4UzXNo586d6NKlC0qUKIHw8HBUrlzZoNsvCueQmlKpxOXLl2FnZyclUNnJ7nw5evSoNDCrLJl6ICnSlJqaKipWrJjtAJh37tyRpj98+FBcvXpVY9BCIYreAJjp6ekiODhYABDdunUTqamp2S7/5MkTcfXqVfHkyRON6f/++6/O5efOnSsACG9vb5GWlmawuI3t6tWrQqlU6pzu5uYmAIjDhw9L058/fy6uXr0qHj58qLH89evXi+wAmD/99JMAIEaMGJHlMkX5fDH0AJhKpVJcvXpVxMTEaEx/9uyZcHJykvUAmBnldFx27dolrK2thZubm7h27VqO20tJSRFXr14VN2/e1Jie2/eoqWV3XF68eCGuX7+uNf3Vq1eiV69eAoAIDQ3Vmn/16lVx9epVrek5DYAZGRmZvxdjJAohZHxDmLdUVrdciYmJwaxZszRuuRISEoLly5dj2bJl0i0OgDfVmaCgIOmWK76+vrh58yY2bdoELy8vnDhxolDdcmXq1Kn4+uuvYW9vj5EjR+os33bq1EkaNFS9/JQpUzB16lRpGS8vL1haWqJevXooV64clEol/vnnH5w9exbOzs7Yu3cvGjRoUECvKv+mTp2KOXPmoHnz5vD09ISdnR1u3LiBXbt2ITU1FRMmTMD06dOl5cPCwhAaGorg4GCte1FlvOVKly5dpFuupKSkFLpbrmRUs2ZNXLp0CRcuXMhyyIqidr4sXrxYGrD04sWLOHPmDJo0aSJVTJo2bSo1WyqVSjRp0gTnz59HQEAA3nvvPZw5cwb79u1D/fr1cfjwYdjY2EjbjoiIQMuWLeHr6yuNxaOW8ZYr6lsgrVu3Dk+fPsW6devQrVu3Anj1WdP3uFy7dg0+Pj5ITk5Gz5498e6772pty8vLS+MzNzo6GhUqVICnp6fG/dpy+x41BX2PS3R0NCpWrIj69eujatWqcHNzQ2xsLA4cOID79++jZs2aCA8PR8mSJTW2rx6EOXO6cfnyZTRp0gRJSUno0aMH3N3dsXPnTly+fBnDhg3jLVcod06cOCHatGkjHB0dhY2NjWjQoIH4888/tZZTV2F0/Tp4/fq1mDp1qqhUqZKwsrISbm5uYuDAgXrdakJu1K8zu0fGY6C+LUDmW2X88MMPomXLlqJMmTLC2tpa2NjYiCpVqojPPvtM41dyYRERESG6d+8uvL29haOjo7CwsBBubm6iY8eOYu/evVrLL1u2TAAQwcHBOre3atUqUa9ePWFjYyOcnJxEUFCQOH36tJFfhfGcOHFCABANGjTIdrmidr7k9H7J/Pd//vy5+Oyzz4SHh4ewtLQU5cuXF6NHj9ZZIVLfhsbX11fnvnfv3i2aNWsm7OzshL29vfD19RX79+83wqvMPX2Pi/o1ZvfI/Prv3LkjAGjdWiW371FT0Pe4JCQkiE8//VTUr19flCpVSlhYWAgHBwfRoEEDMXPmTPHq1Sud21dvR5dr166Jrl27ihIlSghra2tRs2ZNsWDBAo2WErlhxYmIiIhIT+wcTkRERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EbzEvLy8oFIpsH3PnzjV1mGQgZ8+ehbm5OYYPH64xPSIiQvp7Zyc6OlpaLuP92HIrISEBJUuWxPvvv691/zIiudO+UyoRvXUy3tAzs2rVqhVwNGQsw4cPh42NDSZPnmzSOJycnDBhwgR88cUXWLFiBYKDg00aD1FuMHEiIgwcOFDjTu9U9Pz111+IjIzEF198gdKlS5s6HAwbNgwzZ87EhAkT0LNnT1hbW5s6JCK9sKmOiOgt8NNPPwEABgwYYOJI3ihWrBg++ugjPHr0COvWrTN1OER6Y+JERHpR94eKjo7G1q1b4efnhxIlSkChUCAiIkJaLj4+HlOmTIGPjw8cHBxga2uLmjVr4rvvvsOrV690bjstLQ1z585FzZo1UaxYMZQqVQpdunTBxYsXERYWBoVCoVURmzp1KhQKBaZOnapzm+p+Oy1atNA5/+HDhxg1ahSqVq0KW1tbODg4oH79+pg/fz7S0tK0lg8JCYFCoUBYWBju3LmDvn37ws3NDdbW1qhUqRImTZqE5OTkLI/f6dOnERwcjAoVKqBYsWIoUaIEateujS+++AIxMTEAgGXLlkGhUCAwMDDL7Tx8+BCWlpawsbFBXFxclstldPbsWRw7dgwNGzbEu+++q9c6uaH+W+T0yEz9N12wYIHBYyIyFjbVEVGuzJ49G/Pnz0e9evXQpk0bPHz4EObm5gCAK1euoE2bNrh37x7c3d3RtGlTWFpa4uTJk5g8eTI2btyIiIgIODk5SdtTqVTo1q0btmzZAisrK7Ro0QLFixfHiRMn0KBBA/Tv39/gr+HIkSPo1KkT4uPj4eXlhdatWyM5ORknT57E8OHDsX37duzYsQOWlpZa6547dw4jR45E8eLF4evri2fPniEyMhLTpk3D5cuXsXnzZq11fvzxR4wfPx4qlQrvvPMOOnbsiKSkJNy8eROzZs1C9erVERISgo8++gjjxo3D/v37cePGDbzzzjta21q4cCHS0tLQt29flCxZUq/Xu2XLFgCAv79/7g6Unnx8fLLsp3T9+nX8888/MDPT/p3u4+ODUqVK4eTJk3j06BHc3d2NEh+RQQkiemt5enoKAGLZsmV6L2tubi62bt2qNf/Vq1eiUqVKAoCYNGmSSE5OluYplUrRq1cvAUCEhoZqrDd//nwBQLi6uoorV65I01NTU8Unn3wiAAgAIjg4WGO9KVOmCABiypQpOuMNDw8XAISvr6/G9EePHomSJUsKhUIhfv31V5Geni7Ne/r0qfDz8xMAxNdff62xXnBwsBTLl19+KdLS0qR5Fy9eFHZ2dgKAOHbsmMZ6W7duFQBEsWLFxLp167TivHz5ssbr/vLLLwUAMWLECK1lU1JShJubmwAgTp8+rfN169K0aVMBQOzcuVPnfPWxyukr4c6dO9Jyd+7cyXG/MTExwt3dXQAQ8+fP17nMBx98IACIlStX5rg9Ijlg4kT0FlMnQ1k9MiYd6mX79++vc1u//fabACDat2+vc/7Lly9F6dKlhYWFhXj27Jk0vXLlygKA+O2337TWSUpKkhIFQyVO48aNEwDEsGHDdK53//59YWlpKUqVKiVUKpU0XZ041a1bV2O62pAhQwQA8c0332hM9/HxEQDE7Nmzde4vswcPHghLS0vh5OQkEhMTNeatXbtWABCNGjXSa1tq6qTu9u3bOudnTJz0feSUOMXHx4tq1aoJAOKLL77IcrkJEyYIAOLzzz/P1WsiMhU21RFRlsMRVKlSRWta165ddW5j586dAIAePXronG9vb4969eph165dOHXqFAICAvDgwQPcvHkTANCnTx+tdYoVK4bu3btj3rx5er+WnOQUZ9myZeHt7Y0rV64gKipKq7msffv2OvvrVK1aFQDw4MEDadrjx49x7tw5mJmZ6d0pu0yZMujatSvWrl2LlStXYsiQIdI8dV+gYcOG6bUtAFAqlVAqlQCgV9NedkMDJCYmYuPGjTluIyUlBZ06dcKVK1fQs2dPzJgxI8tl1THFxsbmuF0iOWDiRES5Go7Ay8tL5/Tbt28DAPr27Yu+fftmu40nT54AAO7fvw8AcHFxgb29vc5lK1SooFdc+lLH2axZsxyXffLkiVbiVL58eZ3LOjo6AgBev34tTbt79y4AwN3dXaNfV05GjBiBtWvXYsGCBVLidOHCBRw9ehSurq5ZJq+6JCQkSP93cHDIcfmwsLAs50VHR+eYOAkhEBISgsOHD8PX11fq3J8V9XGLj4/PMTYiOWDiRES5YmNjo3O6SqUCALRp0waurq7ZbsPT09PgcWUVT1bTu3btCjs7u2y3oatCo6uTs6E1bNgQDRo0wMmTJ6UERF1tGjx4MKysrPTelrOzs/T/ly9fSomKsYwfPx5r165FtWrVsGXLlhzHZ1IndsWLFzdqXESGwsSJiAzCw8MD165dw4ABA/SuiJQtWxYA8PTpUyQmJuqsOmV1aw918vDy5Uud89WX+OuKMyoqCuPGjUO9evX0ijOv1NWpR48eISEhIddVpz59+mD+/PmoXbs2Vq9eDQsLC42mO33Y2trCzs4OSqUScXFxRk2cfv31V8ycORNlypTB7t27NZK2rKiHVMgp2SaSC47jREQG0bZtWwDA+vXr9V6nXLlyqFixIgBgzZo1WvOTk5OxYcMGneuqk66rV6/qnK/uy2SIOPPKzc0NtWvXhkqlwtKlS3O1bvfu3eHu7o4tW7Zg2rRpUCqV6Ny5M8qUKZPrON577z0Ab4aLMJZt27ZhxIgRcHBwwM6dO7Ns0szs0qVLAIC6desaLTYiQ2LiREQGMXjwYHh6emLDhg0YN26czkrQ48eP8ccff2hM++yzzwC8GUTx2rVr0vT09HSMGTMGDx8+1Lk/Pz8/mJmZYe/evTh8+LA0XQiBefPmZdkX54svvoCzszPmzJmD2bNnIyUlRWuZO3fuYNWqVTm+Zn1MmTIFAPDll1/qjOnKlSs6kz9LS0t88sknSEtLw6xZswDkrlN4Ri1btgQAHD9+PE/r5+TkyZPo1asXzMzM8Ndff8HHx0fvddUx+fn5GSU2IkNj4kREBmFnZ4edO3fCy8sLM2fORPny5eHr64vevXujc+fOqF69OsqUKaN1g9lPP/0UHTp0wKNHj1C7dm20adMGvXr1gre3NxYvXoxPPvlE5/48PDwwfPhwqFQqtGrVCi1btkSXLl3g7e2NMWPGYPz48TrXK1euHLZu3YrixYtjzJgx8PDwQKtWrdCnTx906NABlStXRsWKFTF//nyDHJfOnTtj2rRpeP36Nbp27YqqVauiZ8+e6NixI6pXr47q1avjxIkTOtf9+OOPpT5CtWrVQvPmzfMUQ6dOnQAA+/fvz9P6OZkwYQJevXqFcuXKYc2aNQgJCdH5yOzs2bOIi4tDgwYNOPglFRrs40REBlO9enVcuHABv//+OzZv3owLFy7g+PHjcHFxQbly5TBmzBh07txZYx0zMzNs2rQJ8+bNw5IlSxAREQF7e3s0bdoUmzdvxtmzZ/Hbb7/p3N9PP/2E8uXLY/HixTh27Bjs7e3RpEkTrF+/Hi9evMAPP/ygc73mzZvj8uXLmD9/Pnbu3IlTp04hOTkZpUuXRvny5dGnTx906dLFYMdl4sSJ8PPzw7x583DkyBFs2rQJDg4O8PDwwNixY7OstpQuXRo+Pj44ceIEPv300zzvv06dOmjcuDGOHTuGq1evSkMnGEp6ejqAN5W6O3fuZLlc5iv21M/z89qICppCCCFMHQQRUVbCwsIQGhqK4ODgbC+VL4pu3LiBKlWqwMnJCQ8ePICtrW2et/XXX3+hW7duGDVqFGbPnm3AKPPm9evX8PDwgKWlJe7cuZPj1XdEcsGmOiIimfrqq68ghMAnn3ySr6QJeDP8QpMmTbBw4UJZDDb5yy+/4OnTp/j++++ZNFGhwsSJiEhGtm3bhgEDBqBhw4ZYt24d3NzcMHbsWINs+5dffkFSUhK+/fZbg2wvrxISEvDDDz+gQYMG6Nevn0ljIcot9nEiIpKRM2fOYOnSpXBwcIC/vz/mzJmj13hI+qhTp47UH8mUnJycpPGbiAob9nEiIiIi0hOb6oiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnKhQ8/LygkKhyPYxd+5cU4eZJ+rXFh0dbepQci0iIgIKhQItWrQwdShUBLRo0QIKhQIRERGmDoUIFqYOgMgQmjRpgsqVK+ucV61atQKOJmchISFYvnw5li1bhpCQEFOHQ0REemLiREXCwIEDi1wCcvDgQaSmpqJs2bKmDoWIiP4fEycimapUqZKpQyAiokzYx4neGhn7DG3duhV+fn4oUaKERt+JJ0+eYN68eQgKCkKFChVgY2MDR0dH1KtXDzNmzMDr16+z3P6rV68wd+5cNG3aFMWLF4e1tTU8PT3RoUMHrFmzBgAQHR0NhUKB5cuXAwBCQ0M1+mNNnTpVZ7y69vXDDz/gvffeg4ODA2xtbVG9enVMmjQJ8fHxWsur9+vl5QUhBBYtWoS6devCzs4OTk5OCAgIwPHjx3W+rpMnT2Ls2LFo0KAB3NzcYGVlBVdXV3To0AEHDhzQ8+jrR30cAGDZsmVo1KgRnJycpOOQ8XWoVCrMmzcPtWrVgq2tLdzd3TFkyBA8e/YMAJCcnIxvv/0WVapUgY2NDcqUKYORI0dCqVRq7VelUmHRokVo0qQJnJ2dYWlpidKlS6N27doYPnx4rvuZJSQkYNKkSahZsybs7OxgbW2NMmXKoEmTJvjqq6+Qmpqqtc7x48fRtm1bODs7w97eHvXq1cPSpUu1jotaxmORlazOoStXrmDKlClo0qQJypYtCysrK5QsWRL+/v5Yv369zm1l7Lf26tUrfPXVV6hatSpsbW21Yjh9+jR69+6N8uXLw9raGiVKlEBgYCB27dqVZaz37t1D//794e7ujmLFisHb2xtffvklkpKSslwnOyEhIVAoFAgLC8OdO3fQt29fuLm5wdraGpUqVcKkSZOQnJyc5fp//vknWrVqhRIlSkjv5f79++PGjRs6l9fn8yXj33HVqlVo0KAB7O3tUapUKfTq1Qt3794FAAghMH/+fPj4+MDOzg4uLi4ICQnBf//9l6djQQYmiAoxT09PAUAsW7ZM72WHDRsmAIh69eqJXr16CV9fX3HkyBEhhBArV64UAETZsmWFr6+v6Nmzp2jVqpWwt7cXAESjRo3E69evtbZ99+5dUa1aNQFA2NraitatW4uePXuKZs2aCScnJ+Hp6SmEEOLJkyciODhYVKpUSQAQTZo0EcHBwdJj8+bNWvHeuXNHY19xcXHCx8dHABCOjo7igw8+EF26dBEuLi4CgKhQoYLWOnfu3BEAhKenpwgODhaWlpbCz89PdO/eXbzzzjsCgLC2thb//POP1mtr1aqVMDMzEzVr1hRBQUGiW7du4r333hMABAAxd+5crXXCw8MFAOHr65vj3yUj9TaHDRsmzMzMRNOmTUWvXr3E+++/L6KjozVeR69evYSNjY1o06aN6NSpkyhdurQAIOrUqSMSExNF06ZNpePTvn174eTkJACItm3bau03NDRUABDFihUT/v7+olevXiIwMFB4e3sLABp/l5wolUpRo0YNAUCUKlVKdOjQQfTs2VO0aNFCuLm5CQAiPj5eY53169cLc3NzAUDUqFFD9OrVSzRt2lQoFAoxatQo6bhklPFYZCWrc2jAgAECgKhSpYoIDAwUPXr0EI0aNRJmZmYCgPj888+1tqX+m77//vuifv36ws7OTrRt21b06NFD+Pv7S8vNnTtX2o6Pj4/o2rWraNq0qbCyshIAxNdff6217atXr0p/P3d3d9GtWzcRFBQkbGxsRKNGjUSjRo0EABEeHp7j8VcLDg4WAMTIkSOFo6Oj8PT0FN27dxf+/v7CxsZGABCdOnXSWk+lUol+/foJAMLCwkL4+fmJnj17Su8TW1tbsXv37iyPdXafL+q/4/jx46Vtd+3aVZQvX14AEB4eHuLZs2eie/fuolixYqJNmzaic+fO0rGpVauWSE5O1vsYkHEwcaJCLS+Jk7m5udi6davOZa5cuSKOHz+uNf3Zs2ciICBAABAzZ87UmJeeni7q1asnAIiAgADx33//acxPSkoSO3fu1Jim/lDPLu6svvR69OghfYE9ffpUmv7y5UvRtm1bAUA0btxYYx31l6z6i/b69evSvLS0NNG/f38p/sx27dolHj58qDX92LFjwtHRUVhaWor79+9rzMtv4uTo6Kjz75DxdVSqVElER0dL854+fSolOjVr1hQNGjTQOD63b98WxYsXFwDE0aNHpekxMTECgChXrpx49OiR1j6vXLkiYmJi9H4Ny5cvlxK0lJQUjXnp6ekiIiJC48vv0aNHwsHBQQAQc+bM0Vj+wIEDolixYgZPnCIiIsStW7e0lr927ZooV66cACBOnDihMU/9N1V/ges6Vnv27BEKhUK4uLiIw4cPa8y7cOGCtO2IiAiNefXr1xcARPfu3UVSUpI0PSYmRvqRkdfECYD48ssvRVpamjTv4sWLws7OTgAQx44d01jvt99+EwCEi4uLOHv2rDRdpVKJKVOmCADC2dlZ632uz+eLOp6SJUuKc+fOSdNfvXolmjZtKp27mc/tJ0+eiMqVKwsAYtWqVXofAzIOJk5UqKk/rLJ6ZPziVi/bv3//PO3r+vXrAoCoX7++xvQtW7ZIv5Rfvnyp17bymjjFxMQIMzMzoVAoxPnz57XWuX//vvRFGxkZKU3PmHBs27ZNa71Hjx5JVafMX/bZmTBhggAgFixYoDE9v4nTN998o3N+xteRORkVQog5c+YIAEKhUIiLFy9qzR8+fLhW1ePkyZMCgPjggw9yFWtWZs6cqTMJysp3330nAIiGDRvqnD9y5EiDJ07ZWbhwoQAgvvjiC43pGRMndQUls/fff18AEH/99ZfO+evXrxcARJcuXaRpR48eFQCEnZ2dRqKrtnnz5nwlTnXr1hUqlUpr/pAhQ3Sea+pEbd68eVrrqFQqUatWLQFATJs2TWOePp8v6teR+f0ihBCbNm3K9tyePXu2ACBCQ0Oz3D4VDHYOpyIhq+EIqlSpojWta9eu2W4rPT0dEREROHbsGB49eoSkpCSINz8yAADXr1/XWH7Pnj0AgI8++gj29vZ5fQl6OXLkCFQqFd577z3UqlVLa37ZsmURGBiIrVu3Ijw8HI0bN9aYb2FhgTZt2mit5+bmhuLFiyM+Ph5xcXFwc3PTmB8XF4edO3fi0qVLiI+Pl/roREVFAdA+JvmV09/IwsICAQEBWtO9vb0BAOXLl0eNGjWynP/w4UNpWpUqVeDg4IBdu3Zh2rRp+Oijj1ChQoU8x16/fn0AwMyZM1GyZEm0b98eJUqUyHJ5df+X3r1765wfHByMn3/+Oc/xZCUxMRG7d+/G2bNn8fTpU6SkpAAAHj16BCDrv2np0qXRrFkzrelPnz7FyZMnYWNjgw4dOuhcVz2u17Fjx6Rp6tffpk0blCxZUmudjh07wsnJCQkJCXq/tozat2+v1T8MAKpWrQoAePDggTTt/v37uHXrFoA3xz0zhUKB0NBQfP755wgPD8fEiRO1lsnp3AWAoKAgrWnqczOnczvjuUumwcSJioTcDEeQXWfaqKgodO7cGZcvX85ymRcvXmg8j4mJAaA7STM09Yd8dl/s6qvxMn4hqLm7u8PS0lLneo6OjoiPj9fqAP/HH3/g888/19mpWi3zMcmv7P5GwJvXYWGh/fGlTlzLly+vcz0HBwcA0HiNDg4OWLZsGUJDQzFp0iRMmjQJ7u7uaNiwIdq0aaOVEP/www+4du2a1rZnzZoFFxcXtGjRAuPGjcOPP/6I4OBgKBQKeHt7o0mTJujYsSM6dOgAM7P/XZdz//59AFn/TfOTxGVl+/btCA0NRVxcXJbLZPU3zepvc+fOHQghkJSUBGtr62z3/+TJE+n/Ob1+dQf48+fPZ7vNrGR1Ljg6OgLQPBfU75mSJUtK8zPL7v0F5HzuZhWT+hzL6tzWde6SaTBxoreOjY1NlvO6du2Ky5cvo3379hg7diyqVasGR0dHWFpaIiUlJccvBLnL+IWtj9OnT+Pjjz+Gubk5ZsyYgQ4dOqB8+fKwtbWFQqHAokWL8PHHH0vVOEPJ7m8E5Pw6cvs6u3TpAn9/f2zbtg1///03IiMjsXnzZmzevBlfffUV9u/fj5o1awJ4U2E8fPiw1jamTp0KFxcXAG+SqyFDhmD79u04evQoIiMjsWzZMixbtgz169dHeHg47OzschVjXqhUKq1pDx48QI8ePZCUlISxY8eid+/e8PLygr29PczMzLBv3z4EBgZm+TfN6m+j3pe9vT26dOliuBeRT7k9F/Irp3MXyD6mgo6Xco+JE9H/u3btGi5cuIDSpUtj8+bNWr/61M1Smal/PeqqQhiaejDM27dvZ7mMep4hBs7csGEDhBAYPnw4xo4dqzU/q2NSGDk5OaFv377o27cvgDeXxw8fPhxbt27FsGHDpGRJ39t+eHl5Yfjw4Rg+fDgA4NSpU+jTpw9OnTqFmTNn4uuvvwbw5u907dq1LIc8yGq6lZUVAODly5c656empkrNbhlt374dSUlJ6Ny5M2bMmKE1P69/Uw8PDwBvKkRLly7VOwFQn6fZDfmgruoamzqWuLg4vHjxQmfVyZDvLyqcmNoS/T/1+D9lypTRWSpftWqVzvXUfYbWrl2bbXNWRuovvbS0tFzF2Lx5c5iZmeHcuXM6my4ePXok9blq2bJlrrati/qYeHp6as17/fo1Nm7cmO99yJWHh4eU3Jw7dy7f26tfvz6GDh2qtT1fX18AwOrVq3Wut2LFCp3TS5UqBSsrKzx79kzn+D579+7VeX5l9zcVQkhjjuVWmTJlUKtWLbx8+VI6B/Whfv179uyRYsto27ZteP78eZ5iyq1y5cpJTXFhYWFa84UQ0nRDvL+ocGLiRPT/3nnnHZibm+PixYtaVYXt27fjp59+0rneBx98gDp16uDhw4fo1q2bVr+R169fY/fu3RrTypUrBwDZ9qXSpXz58ujWrRuEEPj444819qVUKjF48GC8fv0ajRs31uoYnhfqDrTLly/XqGy8fv0aQ4cOxZ07d/K9D1M7e/Ys1q1bp3Ogxe3btwPQnWRkZfPmzVIn/oxSU1OlhCLj9gYMGAB7e3scP34c8+bN01gnIiICv//+u879WFpaonnz5gCASZMmaezv/PnzGDZsmM711H/Tv/76S6MilZ6ejq+++kqj43ZufffddwDeDOyqPnYZCSFw4sQJ7Nu3T5rWrFkzvPfee0hMTMSnn36qMSjlvXv3MGbMmDzHkxfq/X377bcaP06EEPjuu+9w7tw5ODs7Y9CgQQUaV3aqVKmCKlWq4OTJk6YO5e1goqv5iAwiL+M4ZXdptvrSbzMzM+Hr6yt69eolDfY4adIknZeFCyFEdHS0ePfdd6UB8gICAkSvXr1E8+bNNQbAVDt//rwwMzMTZmZmwt/fX4SGhooBAwZojP+SVbxPnz4VtWvXFgCEk5OT6NSpk+jatasoVaqUAHIeADM3xyc+Pl6aXrJkSdGpUyfRpUsXUbp0aeHg4CAdr+DgYI1t5Xc4gqzk9Dpy2u+yZcu04lVf7m5jYyOaNGkievbsKbp27Sr9Pa2srHQOeJgV9TFxcXERrVu3Fr179xYffPCBNIhh2bJlxb179zTWWbt2rTQAZs2aNaVzR6FQiM8//zzL4/LPP/9IA0u+8847omvXrqJRo0bC0tJSBAcH6/ybpqamirp16woAwt7eXrRr1050795deHp6CktLSzFu3Didx1Dfv+nPP/8sLCwsBABRuXJl0a5dO/HRRx+J1q1bS8dg3LhxGutcvnxZOn/LlCkjunfvLtq3by9sbW1Fw4YN8zUAZlafDbrOBSHeDDnQt29fAbwZALNVq1aiV69e0vlgY2Mjdu3apbU9fT5fsju/83Nuq7ebm+NDeceKE1EGP/30E5YsWYI6derg9OnT2LVrF2xtbfHnn3/i22+/zXI9T09P/Pvvv5gxYwaqV6+O48ePY9OmTYiJiYGvr69WX5JatWph48aNaNSoEU6cOIGwsDAsWbIEZ86cyTHGkiVL4tixY/j+++9RoUIF7Nu3Dzt27ICLiwsmTpyI06dP63Vljz6cnZ3x77//YujQoXB2dsbu3btx/PhxBAQE4MyZM/Dx8THIfkypYcOG+OGHH9CyZUs8fPgQ27Ztw759+2Bubo5PP/0UFy5c0DmEQ1ZCQkIwfvx4VKlSBVeuXMGGDRtw/PhxeHh4YPr06Th//rxUcVTr2bMnIiIiEBgYiJiYGGzduhUvX77E77//jjlz5mS5r/fffx+HDx9GQEAAHj9+jJ07d+LVq1f4+eefsWzZMp3rWFhYICIiAhMnTkTZsmVx8OBBREREoE6dOjh+/HiuXqsuI0aMwNmzZzF48GAoFAocPHgQW7Zswa1bt1CnTh3MmzcPI0aM0FinWrVq+PfffxESEoL09HRs2bIFV65cwfDhw3Hw4EGpabsgKBQKrFixAmvWrEHTpk1x+vRp/PXXX3j16hVCQkJw9uxZtG3btsDiIflRCGHgy2GIiMig1OMQ8eOayPRYcSIiIiLSExMnIiIiIj0xcSIiIiLSEwfAJCKSOfZtIpIPVpyIiIiI9MSKk4moVCo8ffoUAKT7fhEREVHBEkLg1atXAAAXF5ccbxfExMlEnj59CldXV1OHQURERP8vNjYWpUuXznYZNtURERER6YkVJxOxtbWV/h8bGws7OzsTRkNERPR2UiqVUgtQxu/mrDBxMpGMfZrs7OyYOBEREZmYPv2N2VRHREREpCcmTkRERER6YuJEREREpCf2cSogSqUy2+dEREQkf0ycCoi9vb2pQyAiIqJ8YlMdERERkZ5YcSogiYmJGs8zjhtBREREhQMTpwLCcZqIiIgKPzbVEREREemJiRPJ3r///osffvgB//33n6lDISKitxyb6kjW0tPT0aFDBzx+/Bi3b9/GokWLTB0SERG9xVhxIllTKpV4/PgxAODmzZsmjoaIiN52TJxI1tLS0nT+n4iIyBSYOJGspaen6/w/ERGRKTBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNYyJkusOBERkakxcSJZy5gsseJERESmxnGcCohSqcz2OenGihMREckJE6cCYm9vb+oQCiVWnIiISE7YVEeyxs7hREQkJ6w4FZDExESN50qlEq6uriaKpvDgcARERCQnTJwKiJ2dnalDKJRYcSIiIjlhUx3JGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnkjVWnIiISE6YOJGscQBMIiKSEyZOJGscAJOIiOSEiRPJGitOREQkJ0ycSNYyJksqlQpCCBNGQ0REbzsmTiRrmZvn2FxHRESmxMSJZC1z8xwTJyIiMiUmTiRrmRMl9nMiIiJTYuJEssaKExERyQkTJ5I19nEiIiI5YeJEssamOiIikhMmTiRrbKojIiI5sTB1AG8LpVKZ7XPSjRUnIiKSEyZOBcTe3t7UIRRKrDgREZGcsKmOZI0VJyIikhNWnApIYmKixnOlUglXV1cTRVN4sOJERERywsSpgNjZ2Zk6hEKJFSciIpITNtWRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGu9VR0REcsLEiWQtc4WJFSciIjIlJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ5HQEREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ6ASUREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnPW3atAmtW7dGiRIloFAoEB0dbeqQ3gqsOBERkZwwcdKTUqlE8+bN8c0335g6lLcKRw4nIiI5sTB1AIVF3759AQCXLl0ycSRvF96rjoiI5ETWFadVq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXry+YgMng2FRHRERyIuuK06RJkxATEwMXFxe4u7sjJiYm2+XDw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHjy6gyMlQ2DmciIjkRNYVp8WLFyM6OhpPnjzBkCFDsl02LS0NgwYNgpmZGY4cOYJFixZh9uzZOH/+PN555x1MnDhRK/EaP348FApFtg8yLVaciIhITmRdcfL399d72UOHDuHWrVsIDQ2Fj4+PNN3JyQkTJ05ESEgIli9fjq+++kqaN3r0aISEhBgwYjI0VpyIiEhOZJ045UZERAQAICAgQGteYGAgAODw4cMa00uVKoVSpUoZJR6lUpmv+fQGK05ERCQnRSZxioqKAgB4e3trzXNzc4O9vb20TF48e/YMd+/exa1btwAAV65cwfPnz1G+fHmUKFFCa3l7e/s874v+hxUnIiKSE1n3ccqNhIQEAG+a5nRxdHSUlsmLbdu2oU6dOujatSsAoF27dqhTpw62bduW521SzlhxIiIiOSkyFSdjCwkJyVV/qMTExGznK5VKuLq65jOqoo8VJyIikpMikzipK01ZVZVevHiB4sWLF1g8dnZ2BbavoowVJyIikpMi01Sn7tukqx/T48ePkZiYqLP/U0FRKpVaD8oZb7lCRERyUmQSJ19fXwDAvn37tObt3btXYxlTsLe313iwmU4/vOUKERHJSZFJnFq1aoWKFStizZo1OHfunDQ9ISEB06dPh5WVFfr162e6AClPWHEiIiI5kXUfp8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgQAWFhYYPHixQgMDETz5s01brkSExODWbNmwcvLyxQvA4B2Z3F2Ds+ZEIJ9nIiISFbylDg9f/4ce/fuxcGDB3HmzBnExsYiPj4exYsXh6urK+rWrQs/Pz8EBgbC2dk5z8EdPXoUy5cv15gWGRmJyMhI6bk6cQKAli1b4ujRo5gyZQrWrVuH1NRU1KxZEzNmzECPHj3yHIchsLN47qlUKq1prDgREZEpKYQQQt+FL168iJ9//hlr167F69evkd2qCoUCxYoVw0cffYThw4ejVq1aBgm4qFAqldIgmYmJiUysdEhOTkaxYsU0pgUGBmLPnj0mioiIiIqa3H4f61Vx+u+//zBhwgQsX74cKpUKLi4uaNeuHRo3bozq1aujZMmS0gCTcXFxuHTpEo4dO4YjR45gyZIlWLZsGUJCQjB9+nSULl06/6+yEMp8FR2vqsuZrmY5VpyIiMiU9Ko4OTk54eXLl2jfvj0GDBiAdu3awcIi55wrLS0N27dvx9KlS7Fz5044OTkhPj7eIIEXNgqFIst5rDjp9uLFC62R4Fu0aIHw8HATRUREREVNbitOel1V16BBA5w6dQrbtm1Dx44d9UqagDcdtjt37ozt27fjxIkTqFevnl7rEQG6K07sHE5ERKakVwa0f//+fO+ofv36BtlOYcWr6nJPV7Mcm+qIiMiUZD0cQVHCprjcY8WJiIjkxigDYCYkJGR7xR2RPtg5nIiI5CZPidOlS5cwb9483LhxQ2N6eHg4KlSogBIlSqB06dIICwszRIz0ltKVJLHiREREppSnxGnevHkYNWoUbGxspGlxcXHo1KkTYmJiIIRAXFwcBg4ciLNnzxos2MKMN/nNPVaciIhIbvKUOEVGRqJ69erw8PCQpq1cuRIvX77Exx9/jOfPn2PFihVQqVT45ZdfDBZsYcab/OYeK05ERCQ3eUqcYmNjUb58eY1p+/fvh7m5Ob777js4OjqiT58+qFOnDo4fP26QQOntw4oTERHJTZ4SJ10DE544cQI+Pj4oWbKkNM3b2xsPHjzIX4RFRGJiosYjNjbW1CHJHitOREQkN3kajsDR0VEjIbp69SqePXuG3r17ay2b3YjZbxMOR5B7rDgREZHc5Kni5OPjg2PHjuHmzZsAgCVLlkChUMDX11djuTt37sDd3T3/UdJbiRUnIiKSmzwlTh9//DFSU1NRt25d1KlTBz/99BNKly6Ndu3aScu8fPkS586dQ40aNQwWLL1dWHEiIiK5yVPi1K1bN0ydOhVpaWk4f/48PD09sWHDBlhbW0vLrF+/HqmpqVpVqLcVhyPIPY4cTkREcqMQ+RjiOyUlBS9evICLi4vWvLt37yI+Ph6VKlWS7jr8Nsuur5c+d2N+Gx05ckQr8XZycsLz589NExARERU5SqVSylP0+T7O173qrKysdCZNAFC+fHmtIQuIcoMVJyIikhve5LeAJCYmajxXKpUcBDMH7BxORERyk+fEKS0tDRs2bMDBgwfx8OFDvH79WudyCoUCBw8ezHOARQWb4nKPncOJiEhu8pQ4PXnyBAEBAbhw4QJy6iLFcZwor1hxIiIiuclT4jR27FicP38elStXxieffAJvb284ODgYOjZ6y+lKklQqFYQQTMiJiMgk8pQ47dixA66urvjnn39QokQJQ8dEBCDrZrn09HRYWLB7HhERFbw8jeOUlJSEJk2aMGkio8qqWY79nIiIyFTy9LPd29sbSUlJho6lSMs84CUHwMxZdhUnIiIiU8hTxWnAgAGIiIjA/fv3DR1PkWVvb6/x4FAEOWPFiYiI5CZPidOwYcPQvn17+Pn5Ye/evVCpVIaOiyjLxIkVJyIiMpU897BduHAhfH19ERQUBAsLC7i7u8PMTDsPUygUuHXrVr6CLAo4AGbuZVVZYsWJiIhMJU+J071799CsWTPcu3cPQgikpqbi7t27OpflZeNvcADM3GPFiYiI5CZPidO4ceNw9+5dNG3aFKNGjYK3tzdv5EsGx4oTERHJTZ4SpwMHDsDT0xP79++HtbW1oWMiAsCKExERyU+ex3Fq0KABkyYyqoyVJUtLS53TiYiIClKeEqdq1arh2bNnho6FSEPGylLGJJ0VJyIiMpU8JU7Dhw/H4cOHcenSJUPHQyTJWFnKmDix4kRERKaSp8SpT58+GDNmDPz8/LBw4cIsr6gjyg9WnIiISG7y1Dnc3Nxc+v/QoUOzXVahULBCQHnCxImIiOQmT4mTEMIoyxZlvFdd7rGpjoiI5CZPiRNvsZJ7HOcq91hxIiIiuclTH6cjR44gMjLS0LEQachYWbKystI5nYiIqCDlqeLUokULtGjRAocOHTJ0PEUW71WXe6w4ERGR3OQpcSpevDjKlClj6FiKNN6rLvfYx4mIiOQmT011Pj4+iIqKMnQsRBpYcSIiIrnJU+I0YsQInDp1Cjt37jR0PEQSVpyIiEhu8tRUV6dOHQwbNgydO3dGSEgIunTpAi8vL9jY2Ohcvnz58vkKkt5OrDgREZHc5ClxqlChAoA3YzQtWbIES5YsyXJZDoBJecWKExERyU2eEicPDw8oFApDx0KkgRUnIiKSmzwlTtHR0QYOg0hbVokTK05ERGQqeeocTlQQsmqqY8WJiIhMhYkTyRYrTkREJDd6JU4PHz40yM4MtR16O7DiREREcqNX4uTt7Y3x48cjPj4+Tzt59uwZxo4dC29v7zytXxQolUqtB2UvY4LEe9UREZEc6JU4BQQEYObMmShXrhz69OmD/fv3Izk5Odt1kpOTsXfvXvTq1QvlypXDrFmzEBgYaJCgCyN7e3uNB+9TlzNWnIiISG70uqpu8+bNOHDgAD7//HOsWbMGa9euhaWlJXx8fFC1alWULFkSjo6OePHiBeLi4nDlyhWcP38eqampEEKgRo0amDNnDvz9/Y39eqgI4XAEREQkN3oPR+Dv74+LFy9i//79mD9/Pvbt24eTJ0/i5MmTAN4MdCmEkJa3trZGhw4dMGzYMCZMABITEzWeK5VKVp1ywAEwiYhIbnI9jlPr1q3RunVrJCcnIzIyEmfPnkVsbCwSEhLg7OyM0qVL47333kPjxo01vuzednZ2dqYOodBhxYmIiOQmTwNgAm++yPz8/ODn52fIeIgkrDgREZHccBwnkq2srqpjxYmIiEyFiRPJljpBMjc3h4XF/4qjrDgREZGpMHEi2VInSObm5jA3N5ems+JERESmwsSJZEudIFlYWLDiREREssDEiWSLFSciIpIbJk4kW6w4ERGR3DBxItlixYmIiOQmT4nTkSNHEBkZaehYiDSw4kRERHKTp8SpRYsWmDx5sqFjIdLAihMREclNnhKn4sWLo0yZMoaOhUgDx3EiIiK5yVPi5OPjg6ioKEPHQqQhY1MdK05ERCQHeUqcRowYgVOnTmHnzp2GjodIkrGpLmPFiYkTERGZSp5u8lunTh0MGzYMnTt3RkhICLp06QIvLy/Y2NjoXL58+fL5CpLeTllVnNhUR0REppKnxKlChQoAACEElixZgiVLlmS5rEKh4Bcd5QkrTkREJDd5Spw8PDygUCgMHUuRplQqs31O2lhxIiIiuclT4hQdHW3gMIo+e3t7U4dQ6LDiREREcsORw0mWhBCsOBERkezkqeJEuZeYmKjxXKlUwtXV1UTRyJ9KpZL+zwEwiYhILvJVcfr777/RvXt3lCtXDtbW1hgwYIA0b//+/Zg4cSIeP36c7yCLAjs7O60HZS1jcsQBMImISC7ynDh99913aNGiBf766y88fPgQqampEEJI852cnDBjxgxs2rTJIIHS2yVjcsQBMImISC7ylDjt3r0bX331FcqWLYv169cjNjZWa5kGDRqgVKlS2LFjR76DpLcPK05ERCRHeerj9PPPP8Pa2hq7d+9G9erVs1yudu3avDUL5UnGxIkVJyIikos8VZxOnTqFBg0aZJs0AUCpUqXYx4nyJGNVKXPncFaciIjIVPKUOCmVSri5ueW4XEJCgsbVUUT6ylxxMjMzkwZdZcWJiIhMJU+Jk6urK27evJnjctevX4eHh0dedkFvucwVJwBSPydWnIiIyFTylDg1bdoU586dQ2RkZJbL7NixAzdv3kTLli3zHBy9vTJXnID/JVCsOBERkankKXEaPXo0FAoFPvzwQ2zZskWrArBnzx4MHDgQlpaWGD58uEECpbcLK05ERCRHeUqc3nvvPcyePRtPnz5Fly5d4OzsDIVCgY0bN8LZ2Rnt2rXDf//9h9mzZ6NatWqGjpneApmHI8j4LytORERkKnkeAHPkyJHYtWsX6tevj6SkJAgh8PLlS7x48QI1a9bEtm3bMGzYMEPGSm+RzANgZvyXiRMREZlKvu5VFxgYiMDAQMTFxeHOnTtQqVTw8PCAu7u7oeKjt1R2FSc21RERkakY5Ca/JUuWRMmSJQ2xKSIArDgREZE85ampLiwsDPfv3zd0LEQSVpyIiEiO8lRx6t+/PxQKBby9veHv7w9/f3/4+fnB0dHR0PHRW0rXcASsOBERkanlKXEKCQnBoUOHcOPGDdy4cQO//fYbzMzMULduXSmRatKkCSwtLQ0dL70ldA1HwIoTERGZWp6a6pYuXYro6Ghcv34dCxYsQMeOHeHg4ICTJ09i+vTpaNWqFYoXL442bdpg9uzZho6Z3gKsOBERkRzleTgCAPD29sYnn3yCTZs2IS4uDidOnMC0adPQokULpKWlYd++fRg3bpyhYqW3CCtOREQkR/lKnDJKTU3Fy5cvpbGc1F9uQghD7YLeIro6h7PiREREppav4QjOnTuH/fv348CBAzh69Chev34NIQQcHR3Rrl07qb8TUW7pGo6AFSciIjK1PCVOPXv2xKFDhxAXFwchBCwtLdGwYUMpUWrQoIH0JUeUF7zlChERyVGeEqf169dDoVCgVq1amDJlCgICAmBra2vo2Ogtlt0AmEIIqFQqmJkZrKWZiIhIL3n65nFwcIAQAufPn0fv3r3x4YcfYvbs2Th//ryh46O3VHYVp8zziYiICkqeKk7Pnj3DyZMnceDAARw4cADh4eHYt28fFAoFXFxc0KpVK7Ru3RqtW7dGuXLlDB0zvQWyG44AeFOR4jhhRERU0PJUcTI3N0ejRo0wefJkHD58GPHx8dixYwdGjhwJNzc3rFu3DgMHDoSnpyeqVq1q6JhN4vvvv0e9evXg4OAAV1dXdO/eHdHR0aYOq8jKbjgCgBUnIiIyDYN0ErG1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3DDELkzu8OHDGD58OE6cOIE9e/bg2bNnaNu2La/wMhJ9Kk5EREQFLV/DEQDA/fv3pSEJDh48iCdPngCAdLVdo0aN8h2kHOzZs0fj+R9//IGKFSviypUrqFWrlomiKrpYcSIiIjnKU8Vpy5YtGDZsGKpUqQJPT08MHDgQa9euxZMnT1CjRg189tln2LlzJ+Lj4xEREZHn4FatWoWPP/4Y9erVg7W1NRQKBcLCwrJd59SpUwgKCoKzszPs7OzQsGFDrF+/Ps8xZCUhIQEAUKJECYNvm7IfADPzfCIiooKSp4rThx9+KP3fw8NDGr+pVatWKF26tMGCmzRpEmJiYuDi4gJ3d3fExMRku3x4eDgCAwNRrFgx9OzZEw4ODti4cSN69OiBe/fuYfTo0QaJKz09HWPGjEFQUBA7vxtJdgNgZp5PRERUUPJUcerUqRMWLFiA69evIyYmBkuWLEGvXr0MmjQBwOLFixEdHY0nT55gyJAh2S6blpaGQYMGwczMDEeOHMGiRYukIRLeeecdTJw4USvxGj9+PBQKRbaPzIQQGDJkCO7evZtj9YvyjhUnIiKSozxVnDZt2mToOHTKze1aDh06hFu3biE0NBQ+Pj7SdCcnJ0ycOBEhISFYvnw5vvrqK2ne6NGjERISovc+hBAYOnQoDhw4gCNHjqBUqVJ6r0u5w4oTERHJUb47h8uFui9VQECA1rzAwEAAb66My6hUqVJ6Jz9CCHz66afYuXMnDh8+DA8Pj2yXVyqV+Zr/tmPFiYiI5ChfidPVq1fx888/Izw8HA8ePAAAlC1bFn5+fhgxYkSBjuEUFRUFAPD29taa5+bmBnt7e2mZvPj000+xdu1abN++HTY2Nnj8+DGAN53DraystJa3t7fP876IFSciIpKnPCdOYWFhGDJkCFJTUyGEkKZHRUUhKioKy5Ytw8KFCxEcHGyQQHOivsrNyclJ53xHR0dpmbz47bffAADNmjXTmB4eHo4WLVrkebukGytOREQkR3lKnE6fPo1BgwYhPT0d7du3x4ABA1CpUiUAwO3bt7FkyRJs374dgwYNQvXq1VGv3v+xd+fxMdz/H8BfGzlEEglCHCFxtc6KK+77rFJVd4tQqqqo0qKH0gM9SNXVyxFn3dQRNxGhiKtu4r5DiJBDrn3//vDb+e5kd5NNZLObeD0fj32wM5+Z+exkduc9789nPlMnWyttDfrBoTliY2PTnR8XFwcvL68XqVKeZmwATGaciIjI2rIUOP3888/QarWYN28eBgwYoJpXrVo1vPnmmwgKCsJ7772HadOm4e+//86WyqZHl2kylVV68uQJChUqZPF66Li4uOTYtvIiYwNgMuNERETWlqXhCPbt2wc/Pz+DoElf//79UatWLYSGhma5cpmh69tkrB/TvXv3EBsba7T/U06Ji4szeJFpxprqmHEiIiJry1LgFBUVZVbH70qVKiEqKiorm8i0Zs2aAQC2b99uMG/btm2qMtbg6uqqerGZLn3GOocz40RERNaWpcDJw8MDN27cyLDcjRs3THbWzm6tWrVCuXLlsGzZMpw4cUKZHhMTg8mTJ8PR0RH9+vXLkbrQi2PGiYiIbFGW+jjVrVsXW7duxe7du9GyZUujZXbv3o39+/ejQ4cOWa7c3LlzERYWBgA4deqUMk03ZlPjxo0xaNAgAM+zEXPnzkW7du3QtGlT1SNXrl+/jqlTp8LX1zfLdXlRaTuLs3N4+phxIiIiW5SlwGn48OEIDg5Gp06d8NFHHyEgIABly5YF8PyuuqCgIOX2/eHDh2e5cmFhYVi4cKFq2v79+7F//37lvS5wAoAWLVogLCwMEyZMwIoVK5CcnIzq1avjxx9/RM+ePbNcj+zAzuKZw4wTERHZoiwFTu3atcOXX36JSZMmYdq0aZg2bZpBGRHB+PHjjY7kba6goKBMPw/O398fW7ZsyfI2yTZkNAAmM05ERGQNWerjBADfffcdgoOD0aJFCzg5OUFEICJwdHREy5YtERwcjG+++SY765qr8a66zMloAExmnIiIyBpe6JEr7du3R/v27ZGamoqHDx8CAIoUKaLKDNBzfARL5hgbx4kZJyIisrZMBU6XLl3C2rVrce3aNTg5OcHPzw89evSAs7MzihUrZqk60kvI2Mjh7BxORETWZnbgNH36dIwZM8bghDV+/HgEBwejWrVq2V65vIR31WUOO4cTEZEtMitwCgsLw+jRoyEicHFxwauvvoonT57gypUruHXrFrp27Ypz587Bzi7LXabyPN5VlzkcjoCIiGyRWZHOrFmzICIICAjAvXv3cOTIEVy8eBHHjh1D+fLlcenSJWzdutXSdaWXCDNORERki8wKnP799194e3vjjz/+UGVOXnvtNfz6668QERw8eNBilaSXDzNORERki8xqqouMjESHDh3g6OhoMK9x48YAgPv372dvzfKYtMMPcDiC9DHjREREtsiswCkpKQkeHh5G5xUsWFApQ6ZxOILMYcaJiIhsEXtzk01ixomIiGyR2cMRXLp0CYsWLcrS/H79+mW+ZnkMhyPIHGMDYDLjRERE1mZ24JT24br6NBqNyfkajYaBEzgcQWYZGwCTGSciIrI2swKnMmXKQKPRWLouRIqMnlXHjBMREVmDWYHTtWvXLFwNIjVjncOZcSIiImtj53CyScw4ERGRLcrUQ34p6ziOU+boMkp2dnZKMzEzTkREZG0MnHIIx3HKHF1GST9YYsaJiIisjU11ZJN0GSX9YEk/iGLgRERE1sCMUw7hOE6Zk1HGiU11RERkDQyccgjHccocXWCkHzgx40RERNbGpjqySbrAyFRTHTNORERkDQycyCYZyzixczgREVkbAyeyScw4ERGRLWLgRDaJwxEQEZEtYufwHMIBMDMno+EImHEiIiJrYOCUQzgAZuYw40RERLaITXVkk5hxIiIiW8SMUw7hAJiZw4wTERHZIgZOOYQDYGZORgNgMuNERETWwKY6sknGhiNgxomIiKyNgRPZJGaciIjIFjFwIpuj1WqV/zPjREREtoSBE9kc/aCIGSciIrIlDJzI5ugHRcw4ERGRLWHgRDbHnIwTAyciIrIGDkeQQ/jIFfOZk3FiUx0REVkDA6ccwkeumM9UxsnOzs5oGSIiopzCpjqyOfrZJP3ASaPRKO+ZcSIiImtgximH8JEr5tPPJuk3zwHPA6nU1FRmnIiIyCoYOOUQPnLFfKYyTsDzQCopKYkZJyIisgo21ZHNySjjlLYMERFRTmHgRDYno4xT2jJEREQ5hYET2RxmnIiIyFYxcCKbY2o4Av33zDgREZE1MHAim2NqAEz998w4ERGRNTBwIpvDjBMREdkqBk5kc8zpHM6MExERWQMDJ7I55nQOZ8aJiIisgYET2RxmnIiIyFZx5PAcEhcXl+57+h9mnIiIyFYxcMohrq6u1q5CrsGMExER2So21ZHN4QCYRERkq5hxyiGxsbGq93FxcfDy8rJSbWwbH7lCRES2ioFTDnFxcbF2FXINczJOAKDVamFnx6QpERHlHJ51yOakNwCmfiDFrBMREeU0Bk5kc9JrqtN/z35ORESU0xg4kc1Jr6mOGSciIrImBk5kc5hxopSUFAwePBjdunVDTEyMtatDRKRg53CyOcw40dq1a/HXX38BAGrUqIHx48dbuUZERM8x40Q2hxkn2rNnj/L/LVu2WLEmRERqDJzI5jDjRHv37lX+f+jQITx69MiKtSEi+h8GTi8xrVaL2NhYiIi1q6KSmYyTiECr1eZY3cjy7t+/j3PnzinvtVotdu7cacUaERH9DwOnl9jAgQPh5uaG77//3tpVUTE345SUlISuXbvC2dkZK1asyLH6kWXt27fPYNrWrVutUBMiIkMMnF5S4eHhCAoKAgB8//33iIyMtG6F9KQ3AKb++z/++APr1q1DUlISvv322xyrH1lWaGiowbStW7faXGaUiF5ODJxeUoGBgcr/k5KS8Pvvv1uxNmrmNtVNnz5d+f/Zs2dx7do1S1eNcoCuf5NGo0HDhg0BAHfv3sWpU6esWS3Kg27evIlBgwZh4cKF1q5KtkhOTsawYcPQrl07zJs3DwkJCdauUp7EwOkldOPGDaxatUo1bc6cOUhMTMzS+o4cOYLLly9nR9UAZL1zeHBwcLbVwRJy412AycnJOZrpiY6OxsmTJwEAfn5+6NWrlzKPzXWUnZKSkvDmm29i3rx56N+/P8LDw1XzY2Ji8N1332HXrl1WqmHmzZ8/H7Nnz8b27dsxaNAgeHt7Y8yYMbh//761q5anMHB6Cc2YMUM5iRcoUADA8w65y5cvz/S6NmzYgLp166JatWq4cuVKttTP3IxT2ve2GjidPXsW/v7+KFiwIEaOHImoqChrV8kkEcHx48cxceJE+Pn5wdHREd27d8+x4CksLEzZVtOmTdG+fXtlXm4InLZu3YrOnTsjJCTE2lXJ81JSUhAfH28wPTU1FYGBgejTpw9u3rxpcvlJkybhxIkTyvuJEycq/xcR9O7dG19//TXatGmDefPmZWfVjXr69ClmzJiB4ODgLF1kJScn44cfflBNe/ToEX7++Wc0bNgQcXFx2VVVErKK2NhYASAAJDY2NtvWq9VqZeTIkTJ//nyj82NiYqRgwYICQJycnGTdunVKPWrWrClarTZT23vrrbeU5adNm5blesfHx8vDhw9FROSbb75R1rl582ZVuY8++kiZB0AmTpwoJUqUEADi7Ows8fHxWa5DdtNqtfLHH3+Is7Ozqs4FCxaUSZMmSVxc3Aut/8KFC7Jt2zZJSUkxmHf+/HnZsWOH2X/PlJQUWbp0qVSqVElVV91r5cqV6S6fkJAg0dHRWfkYKp9++qmyzbVr14pWq5Vy5coJAHFwcJAnT5688DYsJSYmRtzc3JS/8e3bt81edtmyZdK8eXOZPn26JCcnp1s2MTFRHj9+nOnvqi3SarUSHBws33//vVy/ft3s5eLj46Vhw4ai0WikT58+cv/+fRERefTokbz++uvKMfTGG28YXf7o0aOSL18+g+P84MGDIiKyZs0ag3m//fbbi3/gdLRv317ZVrly5WTq1Kny6NEjs5cPCgpSlm/UqJH07dtXHB0dlWljx461YO1zt8yejxk4WYmlAqeff/5ZWe+ECRMMflwDAwOV+e+//75otVqpW7euMm3v3r1mb+vZs2fi4uKiLNuhQweDMlqt1uiJPSUlRYKCgmTAgAHy2muvKT9irVq1kq5duyrr3Lp1q2q5ESNGKPN8fHwkPj5eBg4cqEzbsmWL2fW3pMePH6s+h7FXpUqVlB98Ha1WK+Hh4bJlyxbZt2+fHDt2TCIjIw3WHxERoez7Dh06yOPHj5XlAwMDxc7OTgDIwIED0z3BpqamyvLly6Vy5crp1rV8+fKSmJhodB179uyRokWLir29vXz77beSmpqa5f3m7++vbPPBgwciog6W//nnnyyvOz13796V119/Xdq0aSNHjhzJ0jp++eUX1T7r1q2bWcudPXtWdRKvVauWhIeHG5S7d++ejBo1SgnEnZycxMfHR5o0aSK7d+/OUp2t6cSJE9KiRQvlc+fPn1/Gjx9v1u+h/sUVAClSpIhMmzZNypcvb3DsXrx4UbXss2fPpGrVqsr82rVrK/9v3769xMbGSunSpY1+D2bOnGmRfbF7926j2/Pw8JATJ05kuHxKSoq88sorynL79+8XEZFz584pwZO9vb2cOXPmheu6YcMGadu2rSxatOiF15VZMTExsn//fvn999+N/i5mFQOnXMJSgdPHH3+s+uINGDBAkpKSROR5VsDHx0eZp/sSLV26VJnWsmVLmTZtmvTv3186d+6sXIEZs23bNtW2XF1dlW2JiBw/flzc3NykSpUqyklQRz+AS++1c+dO1XKTJ09W5q1atUpE1FeHw4cPz5b9+CISEhKkSZMmqs8xdOhQuXTpkgwePFh1kmzYsKEkJCSIyPOraP0Mnu6l0Whk6dKlqm306NFDVebVV1+VU6dOyYABAwyW//LLL43WMy4uzuj2GjZsKHPmzJFbt25Jy5YtlekzZswwWMfSpUtVV7UApG3btgYBoTmePHmi7JuqVasq0zdu3Kis+8MPP8z0ejOSlJQkjRs3VrZhb28vkydPNhrwm5KSkiJly5Y12JcbN27McNkOHToYLGdnZyfdu3eXcePGyYwZM+TTTz+VAgUKmPyeFC5cOFMZLn0PHjyQvn37yqeffipPnz5Vzdu5c6fUr19fevXqlW2/U5GRkfL++++LRqMx+llKliwp69evN7n89evXDbK4xvaf7v8jRoxQLf/5558r8/z8/CQ2NlZ8fX2Vafp/j7Zt28rYsWNV616yZEm27AcdrVYrDRo0UNZfo0YN1fZef/31DNexfPlypXzz5s1V88aPH6+al1Gm8tatWzJo0CApVKiQ9OvXT2JiYpR5ixYtUu1bSwRPWq1W5s+fL8OHD5dBgwbJu+++K2+88YbqbwRANmzYkG3bZOBko2JjY1WvyMhIiwROWq1Wpk2bpjrAmjVrJm+++abqh1f/y5iYmCglS5Y0+gNUpkwZVTCkb/jw4QblDxw4oMzv3r27Mv2LL75QpiclJUmpUqWUefny5ZPXXnvN4IsBQPbs2aPa5sOHD2XkyJEye/Zs5QcgJiZG7O3tBXie4s5sE8bDhw9l5syZsmXLlhdu/khNTVV97kKFCsm6detUZU6fPq00LwKQHj16SHR0tDRt2tTkiaBgwYJKU8bhw4fTPWkYe6W9Ur5//77Ur19fVaZRo0ayc+dO1T44cuSIMt/T01OV2ZoyZYrJ7ZUqVUpWrVqlBIXGxMfHy5AhQ6Rjx44yf/58Wb16tdEA6enTp0pw5ujoKOPGjVN+zJOTkyUkJER++eUXuXLlSrp/m5iYGOnfv7/07NlTdeWd9mJD92rcuLFcvXo13XXq6Dd5e3l5qb4/sbGxotVq5b///pMFCxaoLiK2bNmi2mfVq1fP8G+ZP39+ad68uVSrVk3c3d1V32n9v93ixYulV69e8u+//6Zbd/3jtWLFinL06FFJTU2VyZMnq06S77zzzgt9P5KTk+XXX39V1Vn3nX3//ffFwcFBmWZvby/nzp0zuh79i4YBAwYYXETUrFlTjh07pgRXbm5uyvESFhamfCYHBwc5efKkiIjMnTvXYD87OjrKxYsXRavVqoIPT09PpVuBzp07d+TQoUMZ7p/o6GgJDAxU/U7qXxhUrVpVUlJS5Pz581KmTBkBnl84pT0Ok5KSJDIyUrRaraSmpkq1atWUdaS92IyPj1cF9aYCv+joaPn8888NgtIKFSrI8ePHJSgoyCDYtbe3N9iezu3bt6V69epSuHBh6dGjhyxevFiioqLS3T8iIn/++adZv2mTJk3KcF3mYuBko9I7ALIzcNJZuXKlODk5mdxmSEiIqnx6J8GFCxcarF+r1Rq9wv7+++9F5PnJTv8L6OHhofRP0c9wdejQQemXlJiYKDNnzpSiRYsqPxg3b9406/Pqp/zPnz9v1jLx8fHy448/ioeHh7Js8+bN5dixY2Ytb8wnn3yirMvFxcVok4vI8z4W+s2cRYoUUS03btw4GT16tCpz1aZNG9FqtdK8eXNl2pgxY1Q/mroT699//y0zZsxQpmk0Gvniiy9k6dKlsmnTJqlQoYIyz83NTf755x+TP/rvvPOOUnbUqFESFBRkEHQNHjxYtm/frgoagOcBX0BAgOzatctgvYMHDzZ5zP3999+qsv369VPNL1q0qHTv3l0KFSqkOqGlbZbR179/f6Wsk5OTTJ06VRYvXqw6UQ4ePFgVLLi7u8vq1asz/Ls3a9ZMWWbz5s3SunVr1d9Nv2moRIkSEhoaKsnJyaom0mXLlklSUpL89NNPqmNDv84ff/yx3LlzR9luVFSUFC9eXCnzxx9/SEpKiioYdHZ2Nvi+6xhrInJwcFBlQPRf+lnHmzdvytixY2XOnDkZZucOHDhgEBS6ubnJTz/9JM+ePRMRkYsXL0rbtm2V+R9//LHBekJCQlTHgK5f3caNG6V58+YycuRIpe+g/vE1ffp0efz4sSrjrn/iTUpKUvrS6V5fffWVatv6AdrQoUOV6eHh4eLq6ioA5K+//jK5DxISEqRWrVqq9SclJclrr72mTFu7dq1S/vvvv1em62eN7969q1xkFihQQNVEV79+faPf482bNytlvLy85PLly8o8rVYrCxYsEE9PT5PfRycnJ1XQpN8XsmDBgkoAqq9Xr14G67Gzs5PGjRvLlClT5OTJkwZ1ffTokcl6uLm5SYMGDWTw4MEyc+ZMOX36tMl9nVkMnGyUqQPS3D9UVuzbt08KFy6sbKdYsWISEBAg27ZtMyibnJwskyZNkk8++UTmz5+v6mhYpUoVg34rZ8+eVeZXrFhR+X/Lli1FROTvv/82+JzTpk0TrVYrderUUaYZ+0F/8uSJBAUFmfyxN2bq1KnKOgMDA0XkeVYlPDzcoO5arVaWLl0q3t7eRv8eug6nv//+uwQHB8upU6ckIiJCzpw5IydOnJDw8HDZv3+/7NmzR7Zu3SrLli2T6dOnq/pa5cuXz6Bje1obN25UnaR1J//Dhw8rZaKjo1XZOf0gRtfv6MmTJ9KlSxcBnmct9IM1/WYJY6+SJUtm2IfiypUrBs1x+q/JkycrP4B3795VBbH6r5EjRyp/C/3g2dgrbbNTbGysjB07Nt16AM+zF/fu3TO6r9NbDngedIg8/96kzX5+9NFHJrNnx44dU8q9+uqrkpqaKhEREeleuOTLl0/eeOMN5X2DBg1UJ5G4uDg5ffq07NixQxYtWiR//fWX3Lp1y+j29U+KLi4uqs7R+tPDwsJUyyUnJ6uCbmPfB41GozoB2tvby969e+XXX39VggXg+QWHqabC8PBwyZ8/v2q9AwYMMPp3evjwoVLWw8NDdbNHcnKyKshIL0gRETl16pTqu9K7d2/lfZMmTQyCvfnz5yvzfX19DW7euHnzphLQajQaOXr0qFy9elV1sVCpUiWTFyD6vw/6x4vu/3Xq1FEte+fOHSWTXrx4cSXz/+6775o8rjZt2mRyf+g3y+fLl0/69u0rwcHBBpluR0dH+eSTTyQ8PFzV/0v3GjFihCQnJ0unTp2UaaVKlZIbN24o29IPcNN7ValSxWT2t0uXLnLy5EmJiIiQO3fuWPRmCAZONiqnmurSunHjhvz+++9y+PDhTHfa1e/3kbbPgX4n9GnTpilXck5OTpKQkGC074y3t7fs2rVLeZ+Vu/hM0Q/kqlSpIu3atVP6y/j7+ysdfh8+fKhqmgCeXwX17t1blYV50VdGP+o6M2fOVJYpU6aM0eYJ/eYc/deKFSuUMlqtVs6fP29wctdqtTJkyBCTP1rm3sk0atQog+WrV6+uukLWSU1NlS1btkhAQIByB6fu9e6778qpU6dUJ92JEyfKkCFDlMxf2j4a+q5cuaK68nd3d5eePXtKlSpVVCcg/b46Dx8+VGVl2rVrZ9DkMGDAANWx+PjxY4MmoEqVKsmUKVMM/kYBAQFKmTlz5ijT9TMGwPOmUP3vlP7r0KFDZv0dTDGWvcuXL58qw+Hm5qbajv6xV6dOHUlISJDPPvtMmVaoUCHlZosxY8Yo0031TfL09DS4WLhz544q8K9du3aGTYf62cWgoCBl+qxZs5TptWrVMqsPWqtWrQzq6e7ubvS4T05Olp49e0r58uUNgkydH3/8UVlP3bp1jd5UYaxfqH5TYP78+Y3e0bd9+3aD5fRvMFm9erUqQ+jq6ioVK1ZUgqu0TbVpXb9+3WSXDN2re/fuqmbBZ8+eybBhw5T5I0eOVLYRGxururGoUqVK8uDBA4MAd/bs2RISEiKjR49WBYq6V9GiReW///6TM2fOKPvF2dlZFYhZGgOnXMJSncOz06ZNm5Q61qtXT/Wl1G+auHDhgrz33nvK+/Xr1ytX215eXqor62LFiin/X7x4cbbVVavVGu0jpf9j379/f9WPOADp2LGjnDp1SkSeNxUGBgaqmu4y+7Kzs1OaK821YsUKGTduXLqde9NerdapUydTgfDJkydlxYoVEhgYKKNGjZIvv/wyU7c6P3r0SGrXri2urq4SEBAgBw4cMCvoTUhIkBkzZqgya/pZo4CAAFXZQ4cOKU036YmIiJCDBw8qV+E3b95UZUxat24toaGhkpiYqLpC79Chg2i1WgkJCVGamuvVq2d0GAvdcBJpsyXA8wxG3bp1pW7dukrfHA8PD9V3OTU1Vf7880/55Zdf5Nq1ayLyvBP5F198oVpX3759M/y8GXn69KmqqcnV1VW2bt0qCQkJ0qZNG2W6k5OT9O7dW/755x/Vca4fzISFhcmkSZNUwUVycrLRTGLfvn0NMlXvvvuuXLp0SRISElRNuo0aNTLrb3vgwAFlmfr164uIyNWrV1XNl6YCm7Q2bNhgUOfly5dncu/+T2JiotEhO/T7jw4ZMkS1zJEjR1TZxyVLlkhISIgqU2Wq0/b27dtVZfQDNV2GNDk5We7du2fW9/HRo0fyzTffqFoigOeZ2rR3MKf9DCEhIQbbiIyMVF1w1q5dW9Xtw1iAe+nSJfn1119VzdeFCxdWBWHffvtthp8lOzFwyiVyQ+Ck1WpVVw66W56jo6OVK4MKFSqIiMiSJUuUcvpt7sOGDZOwsDCDH5oSJUqYvL09q9J28vXx8VE1I+q/ChUqpNyVl1ZMTIxs3bpV/vzzT/nqq68kICBA+vTpIwMGDJDBgwfLRx99JKNGjZJx48bJ+PHjJTAwUBYvXizbtm1TTpDZ7fHjx6oTVG67/Xz9+vUGAUiVKlWy9dg/ffq0QdCrf0Lz8PBQNXfFx8fLv//+a/LmB52TJ09KvXr1Mgyax4wZY3ZdN2zYICVKlJBKlSqp+iy9iIMHD0qhQoWkQoUKqubXuLg4k82naYPX9ERGRioXJ1WqVJF9+/aJyPN+Vm+++aZqnfb29qq7w0qXLm20ac6YtL87x48fV93dOXjwYLP3SWpqqmqIAnM/a3p27Nih+qy6jIkusHN3d1cyv9HR0ap+VR999JGynjt37kiXLl3Ez89Pzp49a7L+afteAc+z6C8y7MfTp0/l559/lsaNG8vEiRNfaPy7q1evmsxk6YZFMCY6Otro98rX1zfHx+Nj4JRL5IbASeT5wHy6erZs2VLi4+NlxYoVyjRdB87bt28b/eKEhoaKiEjDhg1V07PzjgidmJgYGTp0qHz88ceyf/9+0Wq1kpiYKD/88IPqBNqqVSuT/UVs2dGjR6VVq1YyZcoUa1clS0JDQ5U7qgoUKJAtY8qktXfvXmUQyrSvF711+vLlyxIYGChNmjRRLhw0Go3Y2dlJ7dq1Mz0EQ2pqarb320hNTTXahBUbGytjxoxR3YQAPG++y0zg9uTJE9m/f7/BRY9Wq5XZs2cbrB943uyS2RsuZs+ercqG6P5fpkwZ1e3x5li7dq3Y2dmJv79/tg2gquv35ezsrDTN6TfZ6rJaffr0UabVr18/SxeLP/zwg2p/2tnZydGjR7Plc2SXM2fOGGSxzMmkxsTESKNGjVTLmXMzRnZj4JRL5JbAKTk5WfXD5ejoqNz1BkB27NihlE2bwi5VqpRyVfTPP/+ofkjNuS01O924cUM+//xzmT9//gtdqdGLOX/+vHz66admN7VkRWRkpAQFBUnfvn2VYR/69++fJ0baflHPnj2T5cuXS+vWraVMmTIms65ZFRMTIxMnTlQFrxmNOm9qPcbuLDTWD8gcz549y3BE9syub8GCBargf8+ePUo927dvL6tWrVLe6w8nklmRkZGqoRr0s1a25NChQ0rfRVdXV7MD8qdPnyp90Tp37myV7ykDp1witwROIiLz5s0zegXv6uqquoIaOnSoav7IkSOVeampqcot2pntA0SUVVqtNs88niQ3efDggcyaNUt1YZVZgwYNUv2eZKaJzhpSU1OVZjk7OzvVUBkvmu3Udf739vbOlkcbWUp4eLgMHDjQYPy9jOhubsmo2dxSMns+1ojk4KPPSREXFwdXV1cAQGxsLFxcXKxcI9NEBOvWrUNwcDBCQkJw+fJlAMAnn3yCwMBApdyaNWvQrVs35f2BAwfQoEED5X1SUhKioqJQokQJaDSanPsARJTrHD16FHXq1AEAlClTBqdOnULBggWtXKv0TZgwAd9++61qWteuXbFq1aoX+s1LSkrC9u3bUbduXXh5eb1oNSmNzJ6PGThZSW4KnNK6efMmoqKiUL16ddjb2yvTHz58iKJFi0JEUKZMGVy7do0BEhFl2ZQpU7Bz505MnToVNWvWtHZ1MnT58mVUqFBBee/l5YXTp0/D09PTirWijDBwyiVyc+CUnokTJ2LBggWYOnUqunfvbu3qEBHlqObNm2Pv3r0AgI0bN6Jjx45WrhFlhIFTLpFXAyciopfZpUuX8Pnnn6Nt27Z4//33rV0dMgMDp1yCgRMREZH1ZfZ8bJcTlSIiIiLKCxg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmewzLkKWoD9ge1xcnBVrQkRE9PLSPweb8zAVBk5WEh8fr/zfy8vLijUhIiIi4Pm5Wff4FVPYVEdERERkJj7k10q0Wi2ioqIAAAUKFIBGo8nSeuLi4pSMVWRkJB8W/P+4X4zjfjGO+8U47hfjuF+My637RUSUViBPT0/Y2aWfU2JTnZXY2dmhWLFi2bpOFxeXXHOg5iTuF+O4X4zjfjGO+8U47hfjctt+yah5Th+b6oiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxAEwiYiIiMzEjBMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgZONCg8PR4cOHeDh4QEXFxfUr18fK1euzNQ6EhMT8e2336JixYrInz8/SpYsicGDB+P+/fsWqrXl3L59G9OnT0fbtm1RpkwZODo6onjx4ujatSsOHTpk9npCQkKg0WhMvoKCgiz3ISzE19fX5Odp3rx5pta1dOlS+Pv7w8XFBYUKFULHjh1x7Ngxy1TcgoKCgtL9O2s0GrRq1SrD9eTW42XJkiX44IMPUKdOHTg5OWVY1ydPnmDUqFHw8fGBk5MTfH198dlnnyE2NjbT2962bRuaNWsGNzc3FCxYEC1atMCuXbte4NNkH3P3S3JyMtasWYOAgABUrlwZrq6ucHNzQ7169fDbb78hNTU1U9vNzu+oJWTmeJk4cWK634lr165latsXL15Ejx494OnpCWdnZ9SoUQO//fYbbPm+NXtrV4AM7dmzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHZ7gOrVaLzp07Y9u2bahfvz66du2KiIgIzJ07F7t27cLBgwdRtGjRHPg02WPmzJn48ccfUb58ebRt2xZFixZFREQE1q9fj/Xr12PZsmXo2bOn2etr1qyZ0R8sPz+/7Kt0DnJ3d8fIkSMNpvv6+pq9jkmTJuGrr76Cj48PhgwZgqdPn2L58uVo2LAhdu3ahUaNGmVfhS3Mz88PEyZMMDpv9erVOHPmDNq1a2f2+nLb8fLVV1/h+vXr8PT0RIkSJXD9+nWTZePi4tCsWTOcOHECbdu2Re/evXH8+HFMnToVe/fuRWhoKPLnz2/WdpcsWYK+ffuiaNGi6N+/PwBgxYoVaNOmDVauXIlu3bplx8fLMnP3y+XLl9GtWze4urqiVatWePPNNxETE4ONGzdi6NChCA4OxoYNG6DRaMzednZ8Ry0lM8eLTkBAgNG6e3h4mL3ds2fPomHDhkhISECPHj1QsmRJbN68GUOHDsXZs2cxc+bMTHyKHCRkU5KTk6V8+fLi5OQkx48fV6Y/fvxYXnnlFXF0dJRr165luJ758+cLAOndu7dotVpl+m+//SYAZPDgwZaovsWsWbNGQkJCDKaHhoaKg4ODFCpUSJ49e5bhevbs2SMAZMKECRaopXX4+PiIj4/PC63j4sWLYm9vL6+88oo8fvxYmX78+HFxcnKSypUrS2pq6gvW1PoSExOlSJEiYm9vL/fu3cuwfG49Xnbs2KH8TkyZMkUAyIIFC4yW/frrrwWAjB07VjV97NixAkAmT55s1jYfPXokHh4e4unpKTdv3lSm37x5Uzw9PcXT01OePHmStQ+UTczdL7du3ZLZs2dLbGysanpsbKzUqVNHAMjKlSvN3m52fEctKTPHy4QJEwSA7Nmz54W327RpUwEgwcHByrTExERp0qSJAJADBw688DYsgU11Nmb37t24fPky3nnnHdXVrLu7O7744gskJSVh4cKFGa7nr7/+AgBMmTJFdVX0wQcfoFy5cli6dCkSEhKyvf6W8vbbb6NZs2YG05s0aYIWLVogOjoap06dskLN8oYFCxYgJSUFX375Jdzd3ZXpfn5+6N27N86dO4ewsDAr1jB7rF+/Hg8fPkTHjh3h5eVl7epYTOvWreHj45NhORHB3Llz4erqivHjx6vmjR8/Hq6urpg7d65Z21y1ahUeP36M4cOHw9vbW5nu7e2NYcOGISoqCuvWrcvcB8lm5u6XUqVKYejQoXBxcVFNd3FxwahRowAAe/futUgdrcHc/ZKdLl68iNDQULRo0QKvv/66Mt3R0RHfffcdgP+dx2wNm+psTEhICACgbdu2BvN0TQsZfWGfPXuGQ4cO4dVXXzX4Mmg0GrRp0wZ//PEHjhw5giZNmmRPxa3IwcEBAGBvb/7hHBERgenTpyMhIQHe3t5o2bIlSpUqZakqWlxiYiKCgoJw584dFCxYEHXr1kW9evXMXj6j4y4oKAh79+5F06ZNs6vKVqELAgYNGpSp5fLa8aITERGBO3fuoF27dkaDhEaNGmHbtm24efMmSpcune66MjqGJk6ciL1796Jfv37ZVn9ryMrvDfDi31FbExoaikOHDsHOzg4VK1ZE69at4erqavby6R0vjRs3houLi80GpwycbExERAQAoGLFigbzihcvDldXV6WMKZcvX4ZWqzW6Dv11R0RE5PrA6caNG9i5cydKlCiB6tWrm73csmXLsGzZMuW9vb09hg8fjp9//hn58uWzRFUt6t69exgwYIBqWt26dfH333+jfPnyGS4fEREBV1dXFC9e3GCe/vGSm12/fh27du2Ct7c32rdvn6ll89rxopPe741u+rZt2xAREZFh4JTeuvLKMQQA8+fPB2D8hJ+eF/2O2pq0fQg9PDzw66+/mh0Yp3e85MuXD2XLlsXZs2eRkpKS6SDV0thUZ2NiYmIAQNVcoq9gwYJKmRdZh3653Co5ORl9+/ZFYmIifvzxR7NOYEWLFsUPP/yA06dPIzY2FpGRkVi/fj0qVKiAX375BWPGjMmBmmevAQMGYNeuXYiMjERcXByOHz+Ovn37Ijw8HK1atcLTp08zXEdMTEyeP14WLFgArVaL/v37mx3s5MXjRV92/lakt668cgz9+eef2LJlC1q2bIkOHTqYvVx2fEdtRY0aNTB//nxcuXIFCQkJuHr1KmbOnAmNRoP+/ftjw4YNZq3HnGNPq9Xa5L6xrTCOyEy6E2BoaCjef/999O3b16zlqlatiqpVqyrvXVxc0LlzZ9SrVw+vvfYaZsyYgbFjx6JYsWKWqnq2S3vl5+fnh0WLFgEAFi9ejL/++kvpl/Gy0mq1WLBgATQaDd577z2zl8uLxwtlzaZNmzBs2DD4+PhgyZIlmVo2L31Hu3Tponrv6+uLYcOGoXLlymjTpg2++uorvPnmm1aqXc5gxsnG6KJvU1dmT548MRmhZ2Yd+uVyG61Wi/feew/Lli1Dnz598Pvvv7/wOosXL47OnTsjJSUlU+NC2bIPPvgAALB///4My7q7u+fZ4wUAdu7ciRs3bqBly5YoW7bsC68vrxwv2flbkd66cvsxFBwcjG7dusHLywu7d+9GiRIlsmW9mfmO2rpWrVqhfPnyOHXqlPL3To85x55Go4Gbm1u21jM7MHCyMen1Bbh37x5iY2NN9kfQKVeuHOzs7Ez2J8ioX4Mt02q1GDBgABYuXIjevXsjKCgIdnbZcxh7enoCeD6uTV6Qmc9TsWJFxMbG4t69ewbzcvPxopPVTuHpyQvHS0Z9jzLzt09vXbn5GNq8eTPefvtteHp6Ys+ePShXrly2rTsvHEP6dJ8nPj4+w7LpHS+pqam4evUqypYta3P9mwAGTjZHd8v99u3bDeZt27ZNVcYUZ2dn+Pv748KFCwYDmYkIduzYARcXF9SpUyebap0zdEHTokWL0LNnTyxevDhbO+bqMge2MCBddsjM58mO485WPXz4EP/88w8KFy5s0MzwIvLC8VKxYkWULFkS+/fvNzh5x8XFYf/+/ShbtmyGHcOBvHkMbd68GV27dkXhwoWxZ88eVKhQIVvXnxeOIZ24uDicOXMGLi4uSgCVnvSOl7CwMGVgVptk7YGkSC05OVnKlSuX7gCYV69eVabfuXNHzp07pxq0UCTvDYCZmpoqAQEBAkC6d+8uycnJ6ZZ/8OCBnDt3Th48eKCafuTIEaPlp0+fLgCkYsWKkpKSkm31trRz585JXFyc0enFixcXALJ3715l+uPHj+XcuXNy584dVfkLFy7k2QEwf/nlFwEgI0aMMFkmLx8v2T0AZlxcnJw7d06uX7+umv7o0SNxd3e36QEw9WW0X4KDg8XJyUmKFy8u58+fz3B9SUlJcu7cObl06ZJqema/o9aW3n558uSJXLhwwWB6fHy89O7dWwDIgAEDDOafO3dOzp07ZzA9owEw9+/f/2IfxkI0Ijb8QJiXlKlHrly/fh1Tp05VPXKlf//+WLhwIRYsWKA84gB4np3p0KGD8siVZs2a4dKlS1i7di18fX1x6NChXPXIlYkTJ+Kbb76Bq6srPv74Y6Pp27feeksZNFRXfsKECZg4caJSxtfXFw4ODqhTpw68vb0RFxeHgwcP4vjx4/Dw8MC2bdvg7++fQ5/qxU2cOBGBgYFo2rQpfHx84OLigosXLyI4OBjJycn4/PPPMXnyZKV8UFAQBgwYgICAAINnUek/cqVr167KI1eSkpJy3SNX9FWvXh2nT5/GyZMnTQ5ZkdeOl7lz5yoDlp46dQrHjh1Do0aNlIxJ48aNlWbLuLg4NGrUCP/99x/atm2LWrVq4dixY9i+fTvq1q2LvXv3wtnZWVl3SEgIWrRogWbNmilj8ejoP3JF9wikFStWICoqCitWrED37t1z4NObZu5+OX/+PPz8/JCYmIhevXrh1VdfNViXr6+v6jf32rVrKFu2LHx8fFTPa8vsd9QazN0v165dQ7ly5VC3bl1UrlwZxYsXR2RkJHbu3Ilbt26hevXq2LNnD4oUKaJav24Q5rThxpkzZ9CoUSMkJCSgZ8+eKFGiBDZv3owzZ85g2LBhfOQKZc6hQ4ekffv2UrBgQXF2dhZ/f39Zvny5QTldFsbY1cGzZ89k4sSJUr58eXF0dJTixYvLoEGDzHrUhK3Rfc70Xvr7QPdYgLSPyvjhhx+kRYsWUrJkSXFychJnZ2epVKmSjBw5UnWVnFuEhIRIjx49pGLFilKwYEGxt7eX4sWLS+fOnWXbtm0G5RcsWCAAJCAgwOj6lixZInXq1BFnZ2dxd3eXDh06yNGjRy38KSzn0KFDAkD8/f3TLZfXjpeMvi9p//6PHz+WkSNHSunSpcXBwUHKlCkjo0ePNpoh0j2GplmzZka3vWXLFmnSpIm4uLiIq6urNGvWTHbs2GGBT5l55u4X3WdM75X281+9elUAGDxaJbPfUWswd7/ExMTIRx99JHXr1pWiRYuKvb29uLm5ib+/v/z0008SHx9vdP269Rhz/vx56datmxQuXFicnJykevXqMnv2bFVLia1hxomIiIjITOwcTkRERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5ELzFfX19oNJp0X9OnT7d2NSmbHD9+HPny5cPw4cNV00NCQpS/d3quXbumlNN/HltmxcTEoEiRIqhXr57B88uIbJ3hk1KJ6KWj/0DPtKpUqZLDtSFLGT58OJydnTF+/Hir1sPd3R2ff/45PvvsMyxatAgBAQFWrQ9RZjBwIiIMGjRI9aR3yntWr16N/fv347PPPkOxYsWsXR0MGzYMP/30Ez7//HP06tULTk5O1q4SkVnYVEdE9BL45ZdfAAADBw60ck2ey58/P9555x3cvXsXK1assHZ1iMzGwImIzKLrD3Xt2jX8888/aNmyJQoXLgyNRoOQkBClXHR0NCZMmAA/Pz+4ubmhQIECqF69Or7//nvEx8cbXXdKSgqmT5+O6tWrI3/+/ChatCi6du2KU6dOISgoCBqNxiAjNnHiRGg0GkycONHoOnX9dpo3b250/p07dzBq1ChUrlwZBQoUgJubG+rWrYtZs2YhJSXFoHz//v2h0WgQFBSEq1evom/fvihevDicnJxQvnx5fPXVV0hMTDS5/44ePYqAgACULVsW+fPnR+HChVGjRg189tlnuH79OgBgwYIF0Gg0aNeuncn13LlzBw4ODnB2dsbDhw9NltN3/PhxHDhwAPXr18err75q1jKZoftbZPRKS/c3nT17drbXichS2FRHRJkybdo0zJo1C3Xq1EH79u1x584d5MuXDwBw9uxZtG/fHjdv3kSJEiXQuHFjODg44PDhwxg/fjzWrFmDkJAQuLu7K+vTarXo3r071q9fD0dHRzRv3hyFChXCoUOH4O/vj/feey/bP0NoaCjeeustREdHw9fXF23atEFiYiIOHz6M4cOHY+PGjdi0aRMcHBwMlj1x4gQ+/vhjFCpUCM2aNcOjR4+wf/9+TJo0CWfOnMG6desMlvn5558xbtw4aLVavPLKK+jcuTMSEhJw6dIlTJ06FVWrVkX//v3xzjvvYOzYsdixYwcuXryIV155xWBdf/zxB1JSUtC3b18UKVLErM+7fv16AEDr1q0zt6PM5OfnZ7Kf0oULF3Dw4EHY2Rlep/v5+aFo0aI4fPgw7t69ixIlSlikfkTZSojopeXj4yMAZMGCBWaXzZcvn/zzzz8G8+Pj46V8+fICQL766itJTExU5sXFxUnv3r0FgAwYMEC13KxZswSAeHl5ydmzZ5XpycnJ8uGHHwoAASABAQGq5SZMmCAAZMKECUbru2fPHgEgzZo1U02/e/euFClSRDQajcyZM0dSU1OVeVFRUdKyZUsBIN98841quYCAAKUuX375paSkpCjzTp06JS4uLgJADhw4oFrun3/+EQCSP39+WbFihUE9z5w5o/rcX375pQCQESNGGJRNSkqS4sWLCwA5evSo0c9tTOPGjQWAbN682eh83b7K6JRw9epVpdzVq1cz3O7169elRIkSAkBmzZpltMybb74pAGTx4sUZro/IFjBwInqJ6YIhUy/9oENX9r333jO6rt9++00ASMeOHY3Of/r0qRQrVkzs7e3l0aNHyvQKFSoIAPntt98MlklISFAChewKnMaOHSsAZNiwYUaXu3Xrljg4OEjRokVFq9Uq03WBU+3atVXTdYYMGSIA5Ntvv1VN9/PzEwAybdo0o9tL6/bt2+Lg4CDu7u4SGxurmvf3338LAGnQoIFZ69LRBXVXrlwxOl8/cDL3lVHgFB0dLVWqVBEA8tlnn5ks9/nnnwsA+eSTTzL1mYishU11RGRyOIJKlSoZTOvWrZvRdWzevBkA0LNnT6PzXV1dUadOHQQHByM8PBxt27bF7du3cenSJQBAnz59DJbJnz8/evTogRkzZpj9WTKSUT1LlSqFihUr4uzZs4iIiDBoLuvYsaPR/jqVK1cGANy+fVuZdu/ePZw4cQJ2dnZmd8ouWbIkunXrhr///huLFy/GkCFDlHm6vkDDhg0za10AEBcXh7i4OAAwq2kvvaEBYmNjsWbNmgzXkZSUhLfeegtnz55Fr1698OOPP5osq6tTZGRkhuslsgUMnIgoU8MR+Pr6Gp1+5coVAEDfvn3Rt2/fdNfx4MEDAMCtW7cAAJ6ennB1dTVatmzZsmbVy1y6ejZp0iTDsg8ePDAInMqUKWO0bMGCBQEAz549U6bduHEDAFCiRAlVv66MjBgxAn///Tdmz56tBE4nT55EWFgYvLy8TAavxsTExCj/d3Nzy7B8UFCQyXnXrl3LMHASEfTv3x979+5Fs2bNlM79puj2W3R0dIZ1I7IFDJyIKFOcnZ2NTtdqtQCA9u3bw8vLK911+Pj4ZHu9TNXH1PRu3brBxcUl3XUYy9AY6+Sc3erXrw9/f38cPnxYCUB02abBgwfD0dHR7HV5eHgo/3/69KkSqFjKuHHj8Pfff6NKlSpYv359huMz6QK7QoUKWbReRNmFgRMRZYvSpUvj/PnzGDhwoNkZkVKlSgEAoqKiEBsbazTrZOrRHrrg4enTp0bn627xN1bPiIgIjB07FnXq1DGrnlmly07dvXsXMTExmc469enTB7NmzUKNGjWwdOlS2Nvbq5ruzFGgQAG4uLggLi4ODx8+tGjgNGfOHPz0008oWbIktmzZograTNENqZBRsE1kKziOExFli9dffx0AsHLlSrOX8fb2Rrly5QAAy5YtM5ifmJiIVatWGV1WF3SdO3fO6HxdX6bsqGdWFS9eHDVq1IBWq8X8+fMztWyPHj1QokQJrF+/HpMmTUJcXBy6dOmCkiVLZroetWrVAvB8uAhL2bBhA0aMGAE3Nzds3rzZZJNmWqdPnwYA1K5d22J1I8pODJyIKFsMHjwYPj4+WLVqFcaOHWs0E3Tv3j389ddfqmkjR44E8HwQxfPnzyvTU1NT8emnn+LOnTtGt9eyZUvY2dlh27Zt2Lt3rzJdRDBjxgyTfXE+++wzeHh4IDAwENOmTUNSUpJBmatXr2LJkiUZfmZzTJgwAQDw5ZdfGq3T2bNnjQZ/Dg4O+PDDD5GSkoKpU6cCyFyncH0tWrQAAPz7779ZWj4jhw8fRu/evWFnZ4fVq1fDz8/P7GV1dWrZsqVF6kaU3Rg4EVG2cHFxwebNm+Hr64uffvoJZcqUQbNmzfDuu++iS5cuqFq1KkqWLGnwgNmPPvoInTp1wt27d1GjRg20b98evXv3RsWKFTF37lx8+OGHRrdXunRpDB8+HFqtFq1atUKLFi3QtWtXVKxYEZ9++inGjRtndDlvb2/8888/KFSoED799FOULl0arVq1Qp8+fdCpUydUqFAB5cqVw6xZs7Jlv3Tp0gWTJk3Cs2fP0K1bN1SuXBm9evVC586dUbVqVVStWhWHDh0yuuwHH3yg9BF67bXX0LRp0yzV4a233gIA7NixI0vLZ+Tzzz9HfHw8vL29sWzZMvTv39/oK63jx4/j4cOH8Pf35+CXlGuwjxMRZZuqVavi5MmT+P3337Fu3TqcPHkS//77Lzw9PeHt7Y1PP/0UXbp0US1jZ2eHtWvXYsaMGZg3bx5CQkLg6uqKxo0bY926dTh+/Dh+++03o9v75ZdfUKZMGcydOxcHDhyAq6srGjVqhJUrV+LJkyf44YcfjC7XtGlTnDlzBrNmzcLmzZsRHh6OxMREFCtWDGXKlEGfPn3QtWvXbNsvX3zxBVq2bIkZM2YgNDQUa9euhZubG0qXLo0xY8aYzLYUK1YMfn5+OHToED766KMsb79mzZpo2LAhDhw4gHPnzilDJ2SX1NRUAM8zdVevXjVZLu0de7r3L/LZiHKaRkTE2pUgIjIlKCgIAwYMQEBAQLq3yudFFy9eRKVKleDu7o7bt2+jQIECWV7X6tWr0b17d4waNQrTpk3LxlpmzbNnz1C6dGk4ODjg6tWrGd59R2Qr2FRHRGSjvv76a4gIPvzwwxcKmoDnwy80atQIf/zxh00MNjlz5kxERUVhypQpDJooV2HgRERkQzZs2ICBAweifv36WLFiBYoXL44xY8Zky7pnzpyJhIQEfPfdd9myvqyKiYnBDz/8AH9/f/Tr18+qdSHKLPZxIiKyIceOHcP8+fPh5uaG1q1bIzAw0KzxkMxRs2ZNpT+SNbm7uyvjNxHlNuzjRERERGQmNtURERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDhRnlejRg1oNBo4OTnh4cOH6ZZt3rw5NBoNQkJCcqZymRASEgKNRoPmzZtbuypE2Y7HN+UWDJwoTwsPD8fJkycBAElJSViyZImVa2RbfH19odFocO3aNWtXhYgoV2DgRHnavHnzAAClSpVSvSciIsoKBk6UZ8XHx+Pvv/8GACxevBiurq44deoUwsPDrVwzIiLKrRg4UZ61atUqPHnyBNWqVUOLFi3Qs2dPAOZnnfbu3Yu2bduicOHCKFCgAPz9/bF48WKjZRMTE/Hzzz+jdu3acHNzg6OjI4oXL466detizJgxePTokcEyt27dwvDhw1GxYkXkz58f7u7uaNSoEf744w+kpqaa/TnN6Rui0Wig0WiU90FBQdBoNLh+/ToAoGzZskoZY3287ty5g1GjRqFy5cooUKAA3NzcULduXcyaNQspKSlm1xUAJk6cCI1Gg4kTJ+LGjRsYOHAgSpcuDQcHB/Tv3x8A0L9/f2g0GgQFBeHChQvo2bMnihUrBhcXF9StWxf//POPsr5Dhw7hzTffRNGiReHs7IwGDRpg165dRrcdERGB9957D2XLloWTkxNcXV3h4+ODN954AwsWLMjU5wCAnTt3olOnTvDy8oKDgwMKFSqEihUrok+fPggNDTUon5CQgIkTJ6JixYpwcnJCiRIlEBAQgBs3bqj2iz79fWGM7m+p23c6ycnJWLJkCd59911UqlQJBQsWhLOzM1599VWMGDECd+7cMbo+/X5++/btQ6dOnVC0aFHY2dmp6pCQkIBp06ahfv368PDwQP78+fHqq69izJgx6fYlXLRoEerWrYsCBQqgcOHCaN++Pfbt22eyfHquXbsGjUYDX19fiAj+/PNP1K5dGy4uLnB3d0fbtm3x77//mlw+s99B/X396NEjjBw5EuXLl4eTk5Py/dP/O965cweDBg1CyZIl4ezsjGrVqql+f86fP4933nkHxYsXR/78+VGjRg2sWLEiS/uCco69tStAZCm6H6j33ntP+XfevHlYvnw5fvnlFzg7O5tcdt26dZg1axYqVaqEdu3a4c6dOwgLC0O/fv1w4sQJTJs2TSmr1WrxxhtvYNeuXShYsCCaNGkCDw8PPHjwABEREfj555/xzjvvoHDhwsoy4eHhaN++PR49eoQyZcrgrbfeQkxMDEJCQnDgwAGsW7cOGzZsgKOjo0X2TYUKFRAQEIDVq1cjLi4OXbt2haurqzK/ePHiyv9DQ0Px1ltvITo6Gr6+vmjTpg0SExNx+PBhDB8+HBs3bsSmTZvg4OCQqTpERESgZs2acHR0RKNGjSAi8PT0VJU5duwYhg0bBm9vb7Rq1QrXr1/Hv//+iy5dumDlypWwt7dHjx49UK1aNbRq1Qrnz5/HwYMH0b59e+zZsweNGzdW1nX69Gk0atQIT548wauvvoqOHTsiX758uHXrFkJDQ3H79m0MGDDA7PovXLhQKe/v748WLVogISEBt27dwvLly+Hp6YmmTZsq5ePj49GqVSscPHgQLi4uaNu2LZydnbFt2zZs3rwZb7zxRqb2X0YiIyPRt29fuLu7o3LlynjttdcQFxeHEydOYObMmVi+fDkOHDiAChUqGF1+1apV+P3331GpUiW0bt0ajx49gpOTE4DngXT79u1x6tQpFC5cGHXr1oWbmxuOHTuGn3/+GatWrUJISAh8fHxU6/z4448xY8YM2NnZoXHjxihZsiROnjyJ5s2bY/jw4S/0eQcMGIBly5ahSZMm6NixI06cOIEdO3YgNDQUe/fuRb169VTlX+Q7GBUVhTp16uDx48do0qQJateubVDuxo0byvQmTZrgwYMHCA0NxaBBg/D48WM0atQIbdu2RcmSJdGiRQvl2O7VqxcAKBd6ZIOEKA+6cOGCABAHBwe5f/++Mr1SpUoCQBYtWmR0uWbNmgkAASCTJ09WzQsJCRFnZ2cBIFu3blWm7927VwBIzZo15cmTJwbrDA8Pl6ioKOX9s2fPxMfHRwDIkCFDJCkpSZl3+fJl8fX1FQDyxRdfqNazZ88eASDNmjUza7o+3WdKS1ePq1evGl3u7t27UqRIEdFoNDJnzhxJTU1V5kVFRUnLli0FgHzzzTcmt53WhAkTlPr06dNHnj17ZlAmICBAKfP999+LVqtV5s2YMUMAiLe3txQqVMjgbzly5EgBIK1bt1ZNHzBggLK+tOLj42Xv3r1mfwYRkbJlywoA2bdvn8G8yMhIOXbsmGrap59+KgCkUqVKcvv2bWV6XFycdO7cWfm8EyZMUC2n2xcLFiwwWo8FCxYIAAkICFBNf/Lkifzzzz+SmJiomp6UlCSff/65AJAOHToYrE//OzB79myD+VqtVho1aiQAZODAgapjPjk5WUaPHi0ApEWLFqrlNm3aJADExcVFQkNDVfMmT56sbDO94zitq1evKsv5+PjIhQsXlHkpKSny3nvvCQBp27atarmsfgd1+xqAtGrVSmJiYgzqpH98DxkyRJKTk5V5GzZsEADi5uYmPj4+Bsf29OnTBYBUqFDB7H1AOY+BE+VJY8eOFQDStWtX1fSffvop3R9n3UmjZs2aRufrTgpt2rRRpq1cuVIAyIgRI8yq2+LFiwWAlCxZ0mjQsHr1auXHNSEhQZlujcBJtx+HDRtmdP6tW7fEwcFBihYtqjoBpEd3YilcuLA8fvzYaBldsODv72+w3uTkZClcuLAAkO7duxssGxUVJQDE0dFRdULs0KGDADAIaLKqQIEC4u7ublbZ+Ph4cXNzEwCyZcsWg/l3796V/PnzZ2vglJGSJUuKnZ2dQbCv+w60bNnS6HJbtmwRAOLn56cKCnRSU1OlWrVqAkBOnTqlTG/durUAkLFjxxpdr5+f3wsFThs2bDCYf/fuXQEgTk5OqmMhq99B3b52cHCQy5cvG62T7vguU6aMalmd1157zaxj+/r162bvB8pZ7ONEeU5KSgoWLlwI4H/NdDr9+vWDvb09QkNDcfnyZZPr6Nevn9HpAQEBAICwsDClD0StWrWQL18+zJ8/H7Nnz8bdu3fTrZ+u/1CvXr2Upg99b7/9NgoVKoSnT5/i6NGj6a7L0jZv3gzAdLNBqVKlULFiRaVZMjNat24Nd3f3dMu8/vrrqr5ZAGBvb4+yZcsCADp06GCwTJEiRVC4cGEkJSWp+tr4+/sDAD788ENs27YNz549y1R90/L390dMTAz69euHo0ePQqvVmix77NgxPH36FJ6enmjfvr3B/OLFi6Nt27YvVB9T/vvvPwQGBmL48OF477330L9/f/Tv3x8pKSnQarW4dOmS0eW6detmdLrumOjatSvs7Q17e9jZ2SlNlAcOHADw/DsZFhYGAOjTp4/R9Zr6zpnD3t7e5H4tVKgQEhMTVcfCi34Ha9asiXLlyqVbpxYtWiB//vwG0ytWrAjA9LHt6+sLACb7oJH1sY8T5TmbN2/GvXv3UKpUKbRr1041z8vLCx06dMCGDRswf/58TJo0yeg6dCdmU9MTEhLw8OFDFCtWDOXLl8cvv/yCzz77DMOGDcOwYcPg4+ODBg0aoGPHjujevbuq/8Pt27fT3YZGo0HZsmURHR2tlLWWK1euAACaNGmSYdkHDx7glVdeMXvduhNEesqUKWN0uq4/lqn5bm5uePTokSo4+uyzzxAWFoadO3eiffv2cHBwQI0aNdC0aVP06tULdevWVcqeP38eP/zwg8F6GzdujEGDBgEA5syZg44dO2Lx4sVYvHix0mG+ZcuW6Nu3r6put27dyvAzmzoesiouLg59+/bFunXr0i335MkTo9NN1VV3TIwfPx7jx49Pd90PHjwAADx8+FD5W2T03cqKEiVKmOxjV7BgQURHR6uOhRf9Dlr62AXwwoE9WQ4DJ8pzdJ3Cnz17hmbNmhnM1/0QBgUF4dtvv0W+fPmytB0RUf4/fPhw9OjRAxs2bEBYWBjCwsKwfPlyLF++HBMmTMC+fftQokSJLG3nRaWXCTF32W7dusHFxSXdskWKFMnUutPrnK9jZ5d+Ujyj+foKFCiAHTt2IDw8HFu3bsWBAwdw4MABHDlyBIGBgRg6dChmz54NALh3756StUxLFzhVrlwZFy5cwPbt27F7924cOHAA+/btw+7du/Htt99i3rx5JrMr2cnU3/fzzz/HunXrUKlSJfzwww+oW7cuPD09lSC+YcOG+Pfff1XHsT5Tfx/d9ho3bozy5cunW7eqVaua+zFeSGaOg+yQ08cu2RYGTpSn3L17F8HBwQCeX+Xu37/fZNk7d+5g69atRu9munr1qtFldCNs58+f3yBQ8PLywvvvv4/3338fwPOsxXvvvYd///0X48aNU07EusE4dVfuxui2ryubHt2J8OnTp0bn64YcyIrSpUsjIiICY8eORZ06dbK8HltSt25dJbuUkpKC9evXo1+/fpgzZw66deuGFi1aoHnz5iYDCn329vbo0KGD0mT45MkTBAYG4ptvvsEHH3yALl26wMXFRfk7pjdCu6l5Wf37rly5EgCwYsUKvPbaawbzM9u0qlO6dGkAQOfOnfHpp5+atUyRIkXg5OSExMREXLt2zWhAlZOj12f3d5BeLgx5KU8JCgpCamoq6tWrB3l+84PR15gxYwCYHtPJ1KNZFi1aBOD51bax/h36KlWqhLFjxwIATpw4oUzXjfeyYsUKo+n4devWITo6Gm5ubqhdu3a62wDUJ4GkpCSD+bo+KcboTsqmxmJ6/fXXAfzvJJzX2Nvbo1u3bkqTrv7fKSsKFiyIiRMnwsPDA/Hx8bh48SIAoHbt2nB1dUVUVBS2b99usFxkZKTR6cD//r7nzp0zmCci2LJli9HldGOHpR0SAAC2bduGqKgo8z5UGrpjYtWqVWYFl8Dz/dyoUSMAwNKlS42WMTVGmiVk93eQXi4MnChPmT9/PoD/deI2RdcRddOmTUo/DH1Hjx7FTz/9pJoWFhamNOV88sknyvTdu3cjODgYycnJqvIigk2bNgFQn7y6d++OMmXKKINK6gctV69exejRowE8b/4z1rk0LR8fH1SsWBGPHz/Gjz/+qJoXEhKCr7/+2uSy3t7eAIAzZ84Ynf/ZZ5/Bw8MDgYGBmDZtmtHA7OrVq7niGYBz5szBhQsXDKbfu3cPR44cAWA8yDAmPj4egYGBRo+dffv24fHjx8iXL5+yf52dnTF48GAAz48d/RsIEhIS8OGHHyIhIcHotlq3bg3geWBx9uxZZXpycjLGjh1rciT8ypUrAwBmzpypmn7hwgUMGTLErM9pTOfOnVG3bl0cPnwYAwYMMLoPoqOj8fvvv6uO7ZEjRyr10XUa1/npp59w7NixLNcps7L7O5gTdOPKvUgnesomVrmXj8gCQkJClFuPHz16lGH5WrVqCQCZOnWqMk13K/aIESPEzs5OqlatKr1795ZmzZqJnZ2dAJCPP/5YtZ5ffvlFAEjBggWlefPm8s4770iXLl2UW/3d3d3l+PHjqmUOHz6s3Hbs4+MjPXv2lA4dOii3pLdr185g/J30hh1Ys2aNaDQa5Tbx7t27S+3atUWj0cjXX39tcjiCWbNmCQBxdXWVt99+WwYOHCgDBw6U8+fPK2X27t0rnp6eAkCKFSsmLVu2lHfffVc6duwo5cuXFwBSr169DPe3ju527bS33evL6BZ83d9pz549RucbG2ahRo0aAkDKli0rnTp1knfffVfatm2rjM3VsmVLo7fXGxMdHS0AxM7OTmrUqCHdunWT3r17S4MGDZS/w9dff61aJjY2Vvz9/ZX93alTJ+nevbsUL15cihQpIv369TO5X3TjPDk7O0ubNm3kzTffFG9vbylYsKB8/PHHRocj0D8mqlevLr169ZKWLVuKg4ODtGzZUho2bGh0H2a0b0VEbt++rQwf4OLiIg0bNpRevXrJ22+/LX5+fpIvXz4BYHA7/kcffaTst+bNm0vv3r2latWqYmdnp3yOrAxH4OPjY7KMqSE3svIdNGfoh4yO76we27r1Zmb/kGUw40R5hq7ZrVOnTihUqFCG5XVXbsaa67p06YIdO3agePHiCA4OxuHDh1GrVi0EBQVh+vTpqrKdOnXCxIkTUbduXVy5cgVr165FSEgI3N3dMW7cOJw+fRp+fn6qZerWrYsTJ07go48+Qr58+bBu3Trs27cPNWvWxG+//YZNmzZlatTwt99+G5s2bUKjRo1w8eJFBAcHw8HBAcuXL8c333xjcrkPP/wQU6ZMgY+PD4KDgzFv3jzMmzdPlRFp2rQpzpw5g/Hjx8Pb2xvh4eFYtWoVTpw4AS8vL0yYMAF//fWX2XW1lkmTJuHDDz+Eh4cHDh48iFWrVuHs2bOoV68eFi5ciK1bt2bY/Krj6uqK33//HT179kRiYiJ27NiB9evX4/79+3j77bexa9cug/3u4uKCPXv2YPz48fDy8sK2bdsQGhqKVq1a4ciRI+neVbZixQp89dVXKFGiBEJCQnDw4EE0adIEx44dMzi2dN5++23s3bsXrVq1wt27d7Fhwwbcv38fEydOxJYtWzI90ru+kiVL4uDBg/j999/h7++PCxcuYPXq1cqQA0OGDMG2bdsMsjWzZs3C/PnzUbNmTRw8eBDBwcEoUaIEdu3ahbfeeivL9cmK7P4O0stDI2JmIzUREVnMxIkT8c0332DChAkGz6sjItvBjBMRERGRmRg4EREREZmJgRMRERGRmdjHiYiIiMhMzDgRERERmYmPXLESrVarjNxboEABg6dkExERkeWJCOLj4wEAnp6eGT5HkIGTlURFRcHLy8va1SAiIqL/FxkZiWLFiqVbhk11RERERGZixslKChQooPw/MjISLi4uVqwNERHRyykuLk5pAdI/N5vCwMlK9Ps0ubi4MHAiIiKyMnP6G7OpjoiIiMhMDJyIiIiIzMTAiYiIiMhM7OOUQ+Li4tJ9T0RERLaPgVMOcXV1tXYViIiI6AWxqY6IiIjITMw45ZDY2FjVe/1xI4iIiCh3YOCUQzhOExERUe7HpjoiIiIiMzFwIpt35MgR/PDDD7h//761q0JERC85NtWRTUtNTUWnTp1w7949XLlyBX/++ae1q0RERC8xZpzIpsXFxeHevXsAgEuXLlm5NkRE9LJj4EQ2LSUlxej/iYiIrIGBE9m01NRUo/8nIiKyBgZOZNOYcSIiIlvCwIlsGjNORERkSxg4kU3TD5aYcSIiImtj4EQ2TT9YYsaJiIisjeM45ZC4uLh035NxzDgREZEtYeCUQ1xdXa1dhVyJGSciIrIlbKojm8bO4UREZEuYccohsbGxqvdxcXHw8vKyUm1yDw5HQEREtoSBUw5xcXGxdhVyJWaciIjIlrCpjmwaM05ERGRLGDiRTWPGiYiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimcQBMIiKyJQycyKZxAEwiIrIlDJzIpjHjREREtoSBE9k0/WBJq9VCRKxYGyIietkxcCKblrZ5js11RERkTQycyKalbZ5j4ERERNbEwIlsWtpAif2ciIjImhg4kU1jxomIiGwJAyeyaezjREREtoSBE9k0NtUREZEtYeBENo1NdUREZEvsrV2Bl0VcXFy678k4ZpyIiMiWMHDKIa6urtauQq7EjBMREdkSNtWRTWPGiYiIbAkzTjkkNjZW9T4uLg5eXl5Wqk3uwYwTERHZEgZOOcTFxcXaVciVmHEiIiJbwqY6smnMOBERkS1h4EQ2jRknIiKyJQycyKYx40RERLaEgRPZNGaciIjIljBwIpvGZ9UREZEtYeBENi1thokZJyIisiYGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmkcjoCIiGwJAyeyaRyOgIiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimMeNERES2hIET2TRmnIiIyJYwcCKbxuEIiIjIljBwIpvGATCJiMiWMHAim8aMExER2RIGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmnMOBERkS1h4EQ2jRknIiKyJQyczDRx4kRoNBrVq06dOtauVp7HjBMREdkSe2tXIDepUaMGtm7dqrx3cHCwYm1eDhw5nIiIbAkDp0ywt7dH8eLFrV2NlwqfVUdERLYkzzTVLVmyBB988AHq1KkDJycnaDQaBAUFpbtMeHg4OnToAA8PD7i4uKB+/fpYuXKlyfLnzp1DiRIlUKFCBQwYMAD37t3L5k9BabGpjoiIbEmeyTh99dVXuH79Ojw9PVGiRAlcv3493fJ79uxBu3btkD9/fvTq1Qtubm5Ys2YNevbsiZs3b2L06NGq8vXq1UNQUBAqVaqE27dv4+uvv0bLli1x/PhxODk5WfKjvdTYOZyIiGxJnsk4zZ07F9euXcODBw8wZMiQdMumpKTg/fffh52dHUJDQ/Hnn39i2rRp+O+///DKK6/giy++MAi8Xn/9dXTv3h3Vq1dH+/btsXnzZly9ehWbNm2y5Md66THjREREtiTPBE6tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOHCdNdRtGhR+Pr64urVqy9SbcoAM05ERGRL8kxTXWaEhIQAANq2bWswr127dgCAvXv3pruO6OhoXL9+Hb6+vkbnx8XFpbt8RvPpOWaciIjIlryUgVNERAQAoGLFigbzihcvDldXV6WMzmeffYZOnTqhTJkyuHXrFr744guUKlUKHTp0MLoNV1fX7K/4S4gZJyIisiUvZeAUExMD4HnTnDEFCxZUyujcvHkTvXr1QlRUFLy8vNCsWTMsXrwYBQoUsHh9X2bMOBERkS15KQOnrFi+fHmmysfGxqY7Py4uDl5eXi9SpZcCM05ERGRLXsrASZdpSptV0nny5AkKFSr0QttwcXF5oeXpOWaciIjIluSZu+oyQ9e3KW0/JgC4d+8eYmNjjfZ/ehFxcXEGL8oYH7lCRES25KUMnJo1awYA2L59u8G8bdu2qcpkF1dXV9WLzXTm4SNXiIjIlryUgVOrVq1Qrlw5LFu2DCdOnFCmx8TEYPLkyXB0dES/fv2sV0FSMONERES2JM/0cZo7dy7CwsIAAKdOnVKm6cZsaty4MQYNGgTg+cN6586di3bt2qFp06aqR65cv34dU6dONTk+U1al7SzOzuEZExH2cSIiIpuSo4FTbGwsIiMjER0djUKFCsHLyyvbxjsKCwszGO17//792L9/v/JeFzgBQIsWLRAWFoYJEyZgxYoVSE5ORvXq1fHjjz+iZ8+e2VInfewsnnlardZgGjNORERkTRoREUtuYNu2bVi/fj127dqFy5cvG8yvUKECWrZsibfeeksZtftlEBcXpwSNsbGxDKyMSExMRP78+VXT2rVrh61bt1qpRkRElNdk9nxskYxTamoqfvvtN8yYMQOXL1+Gfmzm6uqqDDAZFxeHiIgIRERE4M8//0SFChUwYsQIDBkyBPny5bNE1awm7V10vKsuY8aa5ZhxIiIia8r2zuFbt25FtWrVMGLECFy/fh1vvvkmZs2ahWPHjiExMRFPnjzBrVu38PTpUzx79gxHjhzBjBkz0LFjR1y7dg0jRoxA9erVlbvb8greVZd5xoIk9nEiIiJryvamOjs7O3h5eeGzzz5Dv3794OnpafayUVFRWLhwIX766SdERUXlqZOkRqMxOY9NdcZFR0ejcOHCqmlNmjRBaGiolWpERER5jdWb6r777jt88sknWXqGm6enJ0aPHo0PP/wQv/zyS3ZXzap4V13mGcs4samOiIisyeKdw8k4dg7P2L1791CiRAnVNH9/fxw6dMhKNSIiorwms+fjl3IATMod2DmciIhsjVUHwLx69SpOnjwJHx8f+Pn5WbMqZIPYOZyIiGyNxTNOGzZswNtvv43Dhw+rpv/888945ZVX8Pbbb6N27dp47733LF0Vq+JDfjOPGSciIrI1Fg+cFi1ahK1bt6Jy5crKtPPnz2PcuHEQEdSoUQMFChTAwoULsXHjRktXx2o4HEHmMeNERES2xuKB0/Hjx1GjRg24ubkp05YuXQoAmDNnDo4dO4bw8HDky5cPf/75p6WrQ7kIM05ERGRrLN7HKSoqCjVr1lRNCwkJgbOzM/r37w8AqFSpEho3bowzZ85YujpWw+EIMo8ZJyIisjUWD5yePXumenxKamoqjh07hvr168PR0VGZXrJkSRw8eNDS1bEaDjeQecw4ERGRrbF4U12xYsUQERGhvD948CASEhLQqFEjVbmEhAQGF6TCjBMREdkaiwdODRs2xH///Yfly5cjJiYGkydPhkajQevWrVXlzp07h5IlS1q6OpSLMONERES2xuJNdWPHjsX69evx7rvvAgBEBLVr10bTpk2VMjdv3sT58+fz9JAEaYcf4HAEGTMWODHjRERE1mTxwKlWrVoIDg7GpEmTcP/+ffj7+2PKlCmqMitXroS7uztatWpl6epYjW44dzIfn1VHRES2hs+qyyEajcbkPD6rzrg9e/agZcuWqmmurq54+vSplWpERER5TWafVWfVR668TDgcQeaxczgREdmaHA2cDh48iJCQENy6dQsiAm9vbzRv3hwNGjTIyWpYBTNKmcfO4UREZGtyJHC6fPky+vXrp4zTpGsd1DVf1atXD4sWLUKFChVyojqUSzDjREREtsbigdOdO3fQpEkT3Lt3DwUKFED79u1RtmxZAMC1a9ewdetWHDx4EE2bNkV4eDhKlSpl6SpRLmEsSNJqtRCRdPuMERERWYrFA6evv/4a9+7dQ9euXTFnzhwULVpUNT8qKgpDhw7F6tWrMWHCBMydO9fSVaJcwlSzXGpqKuzt2T2PiIhynsXvqitVqhQ0Gg2uXLmiesSKvqSkJJQrVw5arRZ37tyxZHVsRmZ78b+MVq5ciZ49expMT0hIQP78+a1QIyIiymsyez62+Mjhjx49QuPGjU0GTQDg6OiIxo0bIzo62tLVoVwkvYwTERGRNVi8vcPb29usUbLj4+PzdP8mjhyeeaYCJN5ZR0RE1mLxjFP37t0REhKC27dvmyxz+/Zt7N69G926dbN0dazG1dVV9eIYThkzFTgx40RERNZi8cBp/PjxqF69Olq2bIlNmzYZzN+8eTNatWqF1157DRMmTLB0dSgXMZVZYsaJiIisJdub6tI+IgMA7OzsEBERgc6dO8PDwwO+vr4Ang9H8PjxYwBAgwYN0LFjR+zatSu7q2QTOHJ45jHjREREtibbA6eQkBCT80QE0dHRRjuBHzhwIE+PzcO75jKPGSciIrI12R447dmzJ7tXSS8pZpyIiMjWZHvg1KxZs+xeJb2k9DNLDg4OSE5ONphORESUkyzeOZwoq/QzS05OTkanExER5SQGTmSz9DNL+oETM05ERGQtOfbAryNHjmD16tW4cOECnjx5AmNPetFoNHn2rjrKPGaciIjI1uRI4PTpp5/il19+UYIljUajCpx07/PyXXWUeQyciIjI1li8qW7VqlUIDAxEqVKl8Mcff6Bt27YAgG3btmHWrFlo0KABRATjxo3D7t27LV0dq4mLizN4UfrYVEdERLbG4hmnP//8E/ny5cOuXbtQsWJFHDhwAADQpk0btGnTBkOHDsX48ePx888/o0ePHpaujtXonrxM5mPGiYiIbI3FM07Hjx9HvXr1ULFiRZNlvvnmG5QoUQLff/+9patDuYh+ZsnR0dHodCIiopxk8YzT06dPUaZMGeW97gQYGxurZGHs7OxQr1497N2719LVsRo+ciXzmHEiIiJbY/GMU9GiRZXn0QGAp6cngOfPqdMXFxeHJ0+eWLo6VuPi4mLwovSxjxMREdkaiwdOvr6+uH79uvK+Zs2aEBEsW7ZMmXbv3j3s3bsXPj4+lq4O5SLMOBERka2xeODUqlUrnD9/Xskwvf766yhcuDB+/PFHdO/eHaNHj0a9evUQFxeHrl27Wro6lIsw40RERLbG4n2cevXqhTt37uDmzZvw9fWFi4sLFixYgF69emHNmjVKudq1a+Pzzz+3dHUoF2HGiYiIbI3FA6fKlSvjr7/+Uk3r1KkTIiIisHHjRjx69AiVK1dGp06dkC9fPktXh3IRZpyIiMjW5NgjV9IqWbIkPvjgA2ttnnIBZpyIiMjW8CG/ZLNMBU7MOBERkbVke+B0584dm1oP5V6mmuqYcSIiImvJ9sCpYsWKGDduHKKjo7O0/KNHjzBmzJh0RxqnlwMzTkREZGuyPXBq27YtfvrpJ3h7e6NPnz7YsWMHEhMT010mMTER27ZtQ+/eveHt7Y2pU6eiXbt22V01ymWYcSIiIluT7Z3D161bh507d+KTTz7BsmXL8Pfff8PBwQF+fn6oXLkyihQpgoIFC+LJkyd4+PAhzp49i//++w/JyckQEVSrVg2BgYFo3bp1dlfNquLi4tJ9T4b0AyQ+q46IiGyBRe6qa926NU6dOoUdO3Zg1qxZ2L59Ow4fPozDhw8DADQaDUREKe/k5IROnTph2LBheS5g0tE9l4/Mx4wTERHZGosOR9CmTRu0adMGiYmJ2L9/P44fP47IyEjExMTAw8MDxYoVQ61atdCwYUPViZEI4HAERERke3JkHCcnJye0bNkSLVu2zInN2aTY2FjV+7i4OHh5eVmpNrkDB8AkIiJbY7UBMF82Li4u1q5CrsOMExER2RoOgEk2ixknIiKyNQycyGaZuquOGSciIrIWBk5ks3QBUr58+WBv/79WZWaciIjIWhg4kc3SBUj58uVDvnz5lOnMOBERkbUwcCKbpQuQ7O3tmXEiIiKbwMCJbBYzTkREZGssHjiFhoZi//79lt4M5UHMOBERka2xeODUvHlzjB8/3tKboTyIGSciIrI1Fg+cChUqhJIlS1p6M5QHMeNERES2xuKBk5+fHyIiIiy9GcqDmHEiIiJbY/HAacSIEQgPD8fmzZstvSnKYziOExER2RqLP6uuZs2aGDZsGLp06YL+/fuja9eu8PX1hbOzs9HyZcqUsXSVKJfQb6pjxomIiGyBxQOnsmXLAgBEBPPmzcO8efNMltVoNMwmkEK/qU4/48TAiYiIrMXigVPp0qWh0WgsvRnKg0xlnBhcExGRtVg8cLp27ZqlN0F5FDNORERkayweONFzcXFx6b4nQ8w4ERGRrWHglENcXV2tXYVchxknIiKyNTn2rLp9+/ahR48e8Pb2hpOTEwYOHKjM27FjB7744gvcu3cvp6pDNk5EmHEiIiKbkyMZp++//x4TJkyAiCjT9P/v7u6OH3/8Ed7e3hg6dGhOVCnHxcbGqt7HxcXBy8vLSrWxfVqtVvk/B8AkIiJbYfGM05YtW/D111+jVKlSWLlyJSIjIw3K+Pv7o2jRoti0aZOlq2M1Li4uBi8yTT844gCYRERkKyyecfr111/h5OSELVu2oGrVqibL1ahRg49mIYV+cMQBMImIyFZYPOMUHh4Of3//dIMmAChatCj7OJGCGSciIrJFFg+c4uLiULx48QzLxcTEqPq10MtNP3BixomIiGyFxQMnLy8vXLp0KcNyFy5cQOnSpS1dHcol9LNKaTuHM+NERETWYvHAqXHjxjhx4gT2799vssymTZtw6dIltGjRwtLVoVwibcbJzs5OeXQPM05ERGQtFg+cRo8eDY1Gg7fffhvr1683yBZs3boVgwYNgoODA4YPH27p6lAukTbjBEDp58SMExERWYvFA6datWph2rRpiIqKQteuXeHh4QGNRoM1a9bAw8MDb7zxBu7fv49p06ahSpUqlq4O5RJpM07A/wIoZpyIiMhacmTk8I8//hjBwcGoW7cuEhISICJ4+vQpnjx5gurVq2PDhg0YNmxYTlSFcglmnIiIyBbl2LPq2rVrh3bt2uHhw4e4evUqtFotSpcujRIlSuRUFSgXSTscgf6/zDgREZG15PhDfosUKYIiRYrk9GYpl0k7AKb+vwyciIjIWizeVBcUFIRbt25ZejOUx6SXcWJTHRERWYvFM07vvfceNBoNKlasiNatW6N169Zo2bIlChYsaOlNUy7GjBMREdkiiwdO/fv3x+7du3Hx4kVcvHgRv/32G+zs7FC7dm0lkGrUqBEcHBwsXRXKRZhxIiIiW2Txprr58+fj2rVruHDhAmbPno3OnTvDzc0Nhw8fxuTJk9GqVSsUKlQI7du3x7Rp0yxdHcoljA1HwIwTERFZW44MRwAAFStWxIcffoi1a9fi4cOHOHToECZNmoTmzZsjJSUF27dvx9ixY3OqOmTjjA1HwIwTERFZW44FTvqSk5Px9OlTZSwn3YlQRKxRHbJBzDgREZEtyrHhCE6cOIEdO3Zg586dCAsLw7NnzyAiKFiwIN544w2lvxMRwIwTERHZJosHTr169cLu3bvx8OFDiAgcHBxQv359JVDy9/dXTohEOsY6hzPjRERE1mbxwGnlypXQaDR47bXXMGHCBLRt2xYFChSw9GYplzM2HAEzTkREZG0W7+Pk5uYGEcF///2Hd999F2+//TamTZuG//77z9KbplyMj1whIiJbZPGM06NHj3D48GHs3LkTO3fuxJ49e7B9+3ZoNBp4enqiVatWaNOmDdq0aQNvb29LV4dyifQGwBQRaLVa2NlZ5d4GIiJ6iVk8cMqXLx8aNGiABg0aYPz48YiPj0dISAh27tyJXbt2YcWKFVixYgUA4JVXXsG5c+csXSXKBdLLOOnmM3AiIqKcluNnngIFCqBDhw4IDAzEokWLMHr0aDg5OUFEcPHixZyuDtmo9IYjANjPiYiIrCNHA6dbt25hwYIFePfdd1G8eHHUqlUL06ZNw7Nnz+Dg4IAmTZrkZHWy7MMPP4RGo8GsWbOsXZU8K73hCAD2cyIiIuuweFPd+vXrlf5NERERAJ73UdFoNKhWrZoyLEGzZs1yxd12mzZtwr///ouSJUtauyp5GjNORERkiyweOL399tvK/0uXLq0ESq1atUKxYsUsvflsFRkZiQ8//BDBwcHo1KmTtauTpzHjREREtsjiTXVvvfUWZs+ejQsXLuD69euYN28eevfune1B05IlS/DBBx+gTp06cHJygkajQVBQULrLhIeHo0OHDvDw8ICLiwvq16+PlStXmiw/YMAAjBgxAtWrV8/WupOh9AbATDufiIgop1g847R27VpLbwIA8NVXX+H69evw9PREiRIlcP369XTL79mzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHq8rPmjULcXFxBtPJMtIbADPtfCIiopySZ+7nnjt3Lq5du4YHDx5gyJAh6ZZNSUnB+++/Dzs7O4SGhuLPP/9UBuV85ZVX8MUXX6gCr/Pnz+O7777DwoULeQt8DmHGiYiIbFGORQHnzp3DkCFD8Oqrr8LV1RWurq549dVX8eGHH2bL2E2tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOFCZfrBgwfx4MEDVKhQAfb29rC3t8f169fx8ccfq5an7MOMExER2SKLN9UBQFBQEIYMGYLk5GSIiDI9IiICERERWLBgAf744w8EBATkRHUQEhICAGjbtq3BvHbt2gEA9u7dq0x76623UKdOHYNy/fv3x4ABA4xuIy4uLt06ZDT/ZceMExER2SKLB05Hjx7F+++/j9TUVHTs2BEDBw5E+fLlAQBXrlzBvHnzsHHjRrz//vuoWrWqQYBiCbphESpWrGgwr3jx4nB1dVXKAICHhwc8PDxU5RwcHFCiRAlUqFDB6DZcXV2zr8IvIWaciIjIFlk8cPr555+h1Woxb948g+xMtWrV8OabbyIoKAjvvfcepk2bhr///tvSVUJMTAyA501zxhQsWFApQ9bBjBMREdkiiwdO+/btg5+fn8kmLQDo378/Zs2ahdDQUEtXJ9tcu3Yt3fmxsbHpzo+Li4OXl1c21ihvMTYAJjNORERkbRYPnKKiotCiRYsMy1WqVAmnTp2ydHUA/C/TZCqr9OTJExQqVOiFtuHi4vJCy7/sjA2AyYwTERFZm8XvqvPw8MCNGzcyLHfjxg2TTWfZTde3Sb8fk869e/cQGxtrtP/Ti4iLizN4kWnGmuqYcSIiImuzeOBUt25dHDhwALt37zZZZvfu3di/fz/q1atn6eoAAJo1awYA2L59u8G8bdu2qcpkF90QDLoXm+nSZ6xzODNORERkbRYPnIYPHw6tVotOnTphzJgxOHPmDOLj4xEfH4/Tp0/j008/VZ77Nnz4cEtXBwDQqlUrlCtXDsuWLcOJEyeU6TExMZg8eTIcHR3Rr1+/HKkLGceMExER2SKL93Fq164dvvzyS0yaNAnTpk3DtGnTDMqICMaPH290XCVzzZ07F2FhYQCg9JWaO3euMmZT48aNMWjQIADPMxdz585Fu3bt0LRpU9UjV65fv46pU6fC19c3y3UxJm1ncXYOTx8zTkREZItyZADM7777Do0aNcLUqVNx4MABPHv2DADg5OSExo0bY/To0Wjfvv0LbSMsLEw12jcA7N+/H/v371fe6wInAGjRogXCwsIwYcIErFixAsnJyahevTp+/PFH9OzZ84XqYgw7i2cOM05ERGSLciRwAoD27dujffv2SE1NxcOHDwEARYoUUZ0MX0RQUBCCgoIytYy/vz+2bNmSLdun7JXRAJjMOBERkTVYLHC6dOkS1q5di2vXrsHJyQl+fn7o0aMHnJ2dUaxYMUtt1malvYuOd9WlL6MBMJlxIiIia7BI4DR9+nSMGTPGICswfvx4BAcHo1q1apbYrE3jI1gyx9g4Tsw4ERGRtWX7XXVhYWEYPXo0UlJSUKBAAdSsWRPly5eHRqPBrVu30LVrV2i12uzeLOUxxkYOZ+dwIiKytmwPnGbNmgURQUBAAO7du4cjR47g4sWLOHbsGMqXL49Lly5h69at2b1ZmxcbG6t6RUZGWrtKNo2dw4mIyBZle+D077//wtvbG3/88YfqTrLXXnsNv/76K0QEBw8ezO7N2jwXFxeDF5nG4QiIiMgWZXvgFBkZiTp16sDR0dFgXuPGjQEA9+/fz+7NUh7DjBMREdmibA+ckpKS4OHhYXRewYIFlTJE6WHGiYiIbFGOjeP0suNwBJnDjBMREdkiiwROly5dwqJFi7I0P68+I47DEWQOM05ERGSLLBI4pX3UiT6NRmNyvkajybOBE2UOM05ERGSLsj1wKlOmDDQaTXavNtfjQ34zx9gAmMw4ERGRtWV74HTt2rXsXmWewOEHMsfYAJjMOBERkbVl+111RNkho2fVMeNERETWwMCJbJKxzuHMOBERkbUxcCKbxIwTERHZIo7jlEM4jlPm6DJKdnZ2ys0GzDgREZG1MXDKIRzHKXN0GSX9YIkZJyIisjY21ZFN0mWU9IMl/SCK0eFEvAAAONhJREFUgRMREVkDM045hOM4ZU5GGSc21RERkTUwcMohHMcpc3SBkX7gxIwTERFZG5vqyCbpAiNTTXXMOBERkTUwcCKbZCzjxM7hRERkbQycyCYx40RERLaIgRPZJA5HQEREtoidw3MIB8DMnIyGI2DGiYiIrIGBUw7hAJiZw4wTERHZIjbVkU1ixomIiGwRM045hANgZg4zTkREZIsYOOUQDoCZORkNgMmMExERWQOb6sgmGRuOgBknIiKyNgZOZJOYcSIiIlvEwIlsjlarVf7PjBMREdkSBk5kc/SDImaciIjIljBwIpujHxQx40RERLaEgRPZHHMyTgyciIjIGjgcQQ7hI1fMZ07GiU11RERkDQyccggfuWI+UxknOzs7o2WIiIhyCpvqyOboZ5P0AyeNRqO8Z8aJiIisgRmnHMJHrphPP5uk3zwHPA+kUlNTmXEiIiKrYOCUQ/jIFfOZyjgBzwOppKQkZpyIiMgq2FRHNiejjFPaMkRERDmFgRPZnIwyTmnLEBER5RQGTmRzmHEiIiJbxcCJbI6p4Qj03zPjRERE1sDAiWyOqQEw9d8z40RERNbAwIlsDjNORERkqxg4kc0xp3M4M05ERGQNDJzI5pjTOZwZJyIisgYGTmRzmHEiIiJbxZHDc0hcXFy67+l/mHEiIiJbxcAph7i6ulq7CrkGM05ERGSr2FRHNocDYBIRka1iximHxMbGqt7HxcXBy8vLSrWxbXzkChER2SoGTjnExcXF2lXINczJOAGAVquFnR2TpkRElHN41iGbk94AmPqBFLNORESU0xg4kc1Jr6lO/z37ORERUU5j4EQ2J72mOmaciIjImhg4kc1hxolSUlIwePBgdOvWDTExMdauDhGRgp3DyeYw40Rr167FX3/9BQCoUaMGxo8fb+UaERE9x4wT2RxmnGjPnj3K/7ds2WLFmhARqTFwIpvDjBPt3btX+f+hQ4fw6NEjK9aGiOh/GDi9xLRaLWJjYyEi1q6KSmYyTiICrVabY3Ujy7t//z7OnTunvNdqtdi5c6cVa0RE9D8MnF5iAwcOhJubG77//ntrV0XF3IxTUlISunbtCmdnZ6xYsSLH6keWtW/fPoNpW7dutUJNiIgMMXB6SYWHhyMoKAgA8P333yMyMtK6FdKT3gCY+u//+OMPrFu3DklJSfj2229zrH5kWaGhoQbTtm7danOZUSJ6OTFwekkFBgYq/09KSsLvv/9uxdqomdtUN336dOX/Z8+exbVr1yxdNcoBuv5NGo0GDRs2BADcvXsXp06dsma1KA+6efMmBg0ahIULF1q7KtkiOTkZw4YNQ7t27TBv3jwkJCRYu0p5EgOnl9CNGzewatUq1bQ5c+YgMTExS+s7cuQILl++nB1VA5D1zuHBwcHZVgdLyI13ASYnJ+dopic6OhonT54EAPj5+aFXr17KPDbXUXZKSkrCm2++iXnz5qF///4IDw9XzY+JicF3332HXbt2WamGmTd//nzMnj0b27dvx6BBg+Dt7Y0xY8bg/v371q5ansLA6SU0Y8YM5SReoEABAM875C5fvjzT69qwYQPq1q2LatWq4cqVK9lSP3MzTmnf22rgdPbsWfj7+6NgwYIYOXIkoqKirF0lk0QEx48fx8SJE+Hn5wdHR0d07949x4KnsLAwZVtNmzZF+/btlXm5IXDaunUrOnfujJCQEGtXJc9LSUlBfHy8wfTU1FQEBgaiT58+uHnzpsnlJ02ahBMnTijvJ06cqPxfRNC7d298/fXXaNOmDebNm5edVTfq6dOnmDFjBoKDg7N0kZWcnIwffvhBNe3Ro0f4+eef0bBhQ8TFxWVXVUnIKmJjYwWAAJDY2NhsW69Wq5WRI0fK/Pnzjc6PiYmRggULCgBxcnKSdevWKfWoWbOmaLXaTG3vrbfeUpafNm1alusdHx8vDx8+FBGRb775Rlnn5s2bVeU++ugjZR4AmThxopQoUUIAiLOzs8THx2e5DtlNq9XKH3/8Ic7Ozqo6FyxYUCZNmiRxcXEvtP4LFy7Itm3bJCUlxWDe+fPnZceOHWb/PVNSUmTp0qVSqVIlVV11r5UrV6a7fEJCgkRHR2flY6h8+umnyjbXrl0rWq1WypUrJwDEwcFBnjx58sLbsJSYmBhxc3NT/sa3b982e9lly5ZJ8+bNZfr06ZKcnJxu2cTERHn8+HGmv6u2SKvVSnBwsHz//fdy/fp1s5eLj4+Xhg0bikajkT59+sj9+/dFROTRo0fy+uuvK8fQG2+8YXT5o0ePSr58+QyO84MHD4qIyJo1awzm/fbbby/+gdPRvn17ZVvlypWTqVOnyqNHj8xePigoSFm+UaNG0rdvX3F0dFSmjR071oK1z90yez5m4GQllgqcfv75Z2W9EyZMMPhxDQwMVOa///77otVqpW7dusq0vXv3mr2tZ8+eiYuLi7Jshw4dDMpotVqjJ/aUlBQJCgqSAQMGyGuvvab8iLVq1Uq6du2qrHPr1q2q5UaMGKHM8/Hxkfj4eBk4cKAybcuWLWbX35IeP36s+hzGXpUqVVJ+8HW0Wq2Eh4fLli1bZN++fXLs2DGJjIw0WH9ERISy7zt06CCPHz9Wlg8MDBQ7OzsBIAMHDkz3BJuamirLly+XypUrp1vX8uXLS2JiotF17NmzR4oWLSr29vby7bffSmpqapb3m7+/v7LNBw8eiIg6WP7nn3+yvO703L17V15//XVp06aNHDlyJEvr+OWXX1T7rFu3bmYtd/bsWdVJvFatWhIeHm5Q7t69ezJq1CglEHdychIfHx9p0qSJ7N69O0t1tqYTJ05IixYtlM+dP39+GT9+vFm/h/oXVwCkSJEiMm3aNClfvrzBsXvx4kXVss+ePZOqVasq82vXrq38v3379hIbGyulS5c2+j2YOXOmRfbF7t27jW7Pw8NDTpw4keHyKSkp8sorryjL7d+/X0REzp07pwRP9vb2cubMmReu64YNG6Rt27ayaNGiF15XZsXExMj+/fvl999/N/q7mFUMnHIJSwVOH3/8seqLN2DAAElKShKR51kBHx8fZZ7uS7R06VJlWsuWLWXatGnSv39/6dy5s3IFZsy2bdtU23J1dVW2JSJy/PhxcXNzkypVqignQR39AC69186dO1XLTZ48WZm3atUqEVFfHQ4fPjxb9uOLSEhIkCZNmqg+x9ChQ+XSpUsyePBg1UmyYcOGkpCQICLPr6L1M3i6l0ajkaVLl6q20aNHD1WZV199VU6dOiUDBgwwWP7LL780Ws+4uDij22vYsKHMmTNHbt26JS1btlSmz5gxw2AdS5cuVV3VApC2bdsaBITmePLkibJvqlatqkzfuHGjsu4PP/ww0+vNSFJSkjRu3FjZhr29vUyePNlowG9KSkqKlC1b1mBfbty4McNlO3ToYLCcnZ2ddO/eXcaNGyczZsyQTz/9VAoUKGDye1K4cOFMZbj0PXjwQPr27SuffvqpPH36VDVv586dUr9+fenVq1e2/U5FRkbK+++/LxqNxuhnKVmypKxfv97k8tevXzfI4hrbf7r/jxgxQrX8559/rszz8/OT2NhY8fX1Vabp/z3atm0rY8eOVa17yZIl2bIfdLRarTRo0EBZf40aNVTbe/311zNcx/Lly5XyzZs3V80bP368al5Gmcpbt27JoEGDpFChQtKvXz+JiYlR5i1atEi1by0RPGm1Wpk/f74MHz5cBg0aJO+++6688cYbqr8RANmwYUO2bZOBk42KjY1VvSIjIy0SOGm1Wpk2bZrqAGvWrJm8+eabqh9e/S9jYmKilCxZ0ugPUJkyZVTBkL7hw4cblD9w4IAyv3v37sr0L774QpmelJQkpUqVUubly5dPXnvtNYMvBgDZs2ePapsPHz6UkSNHyuzZs5UfgJiYGLG3txfgeYo7s00YDx8+lJkzZ8qWLVteuPkjNTVV9bkLFSok69atU5U5ffq00rwIQHr06CHR0dHStGlTkyeCggULKk0Zhw8fTvekYeyV9kr5/v37Ur9+fVWZRo0ayc6dO1X74MiRI8p8T09PVWZrypQpJrdXqlQpWbVqlRIUGhMfHy9DhgyRjh07yvz582X16tVGA6SnT58qwZmjo6OMGzdO+TFPTk6WkJAQ+eWXX+TKlSvp/m1iYmKkf//+0rNnT9WVd9qLDd2rcePGcvXq1XTXqaPf5O3l5aX6/sTGxopWq5X//vtPFixYoLqI2LJli2qfVa9ePcO/Zf78+aV58+ZSrVo1cXd3V32n9f92ixcvll69esm///6bbt31j9eKFSvK0aNHJTU1VSZPnqw6Sb7zzjsv9P1ITk6WX3/9VVVn3Xf2/fffFwcHB2Wavb29nDt3zuh69C8aBgwYYHARUbNmTTl27JgSXLm5uSnHS1hYmPKZHBwc5OTJkyIiMnfuXIP97OjoKBcvXhStVqsKPjw9PZVuBTp37tyRQ4cOZbh/oqOjJTAwUPU7qX9hULVqVUlJSZHz589LmTJlBHh+4ZT2OExKSpLIyEjRarWSmpoq1apVU9aR9mIzPj5eFdSbCvyio6Pl888/NwhKK1SoIMePH5egoCCDYNfe3t5gezq3b9+W6tWrS+HChaVHjx6yePFiiYqKSnf/iIj8+eefZv2mTZo0KcN1mYuBk41K7wDIzsBJZ+XKleLk5GRymyEhIary6Z0EFy5caLB+rVZr9Ar7+++/F5HnJzv9L6CHh4fSP0U/w9WhQwelX1JiYqLMnDlTihYtqvxg3Lx506zPq5/yP3/+vFnLxMfHy48//igeHh7Kss2bN5djx46Ztbwxn3zyibIuFxcXo00uIs/7WOg3cxYpUkS13Lhx42T06NGqzFWbNm1Eq9VK8+bNlWljxoxR/WjqTqx///23zJgxQ5mm0Wjkiy++kKVLl8qmTZukQoUKyjw3Nzf5559/TP7ov/POO0rZUaNGSVBQkEHQNXjwYNm+fbsqaACeB3wBAQGya9cug/UOHjzY5DH3999/q8r269dPNb9o0aLSvXt3KVSokOqElrZZRl///v2Vsk5OTjJ16lRZvHix6kQ5ePBgVbDg7u4uq1evzvDv3qxZM2WZzZs3S+vWrVV/N/2moRIlSkhoaKgkJyermkiXLVsmSUlJ8tNPP6mODf06f/zxx3Lnzh1lu1FRUVK8eHGlzB9//CEpKSmqYNDZ2dng+65jrInIwcFBlQHRf+lnHW/evCljx46VOXPmZJidO3DggEFQ6ObmJj/99JM8e/ZMREQuXrwobdu2VeZ//PHHBusJCQlRHQO6fnUbN26U5s2by8iRI5W+g/rH1/Tp0+Xx48eqjLv+iTcpKUnpS6d7ffXVV6pt6wdoQ4cOVaaHh4eLq6urAJC//vrL5D5ISEiQWrVqqdaflJQkr732mjJt7dq1Svnvv/9ema6fNb57965ykVmgQAFVE139+vWNfo83b96slPHy8pLLly8r87RarSxYsEA8PT1Nfh+dnJxUQZN+X8iCBQsqAai+Xr16GazHzs5OGjduLFOmTJGTJ08a1PXRo0cm6+Hm5iYNGjSQwYMHy8yZM+X06dMm93VmMXCyUaYOSHP/UFmxb98+KVy4sLKdYsWKSUBAgGzbts2gbHJyskyaNEk++eQTmT9/vqqjYZUqVQz6rZw9e1aZX7FiReX/LVu2FBGRv//+2+BzTps2TbRardSpU0eZZuwH/cmTJxIUFGTyx96YqVOnKusMDAwUkedZlfDwcIO6a7VaWbp0qXh7exv9e+g6nP7+++8SHBwsp06dkoiICDlz5oycOHFCwsPDZf/+/bJnzx7ZunWrLFu2TKZPn67qa5UvXz6Dju1pbdy4UXWS1p38Dx8+rJSJjo5WZef0gxhdv6MnT55Ily5dBHietdAP1vSbJYy9SpYsmWEfiitXrhg0x+m/Jk+erPwA3r17VxXE6r9Gjhyp/C30g2djr7TNTrGxsTJ27Nh06wE8z17cu3fP6L5ObzngedAh8vx7kzb7+dFHH5nMnh07dkwp9+qrr0pqaqpERESke+GSL18+eeONN5T3DRo0UJ1E4uLi5PTp07Jjxw5ZtGiR/PXXX3Lr1i2j29c/Kbq4uKg6R+tPDwsLUy2XnJysCrqNfR80Go3qBGhvby979+6VX3/9VQkWgOcXHKaaCsPDwyV//vyq9Q4YMMDo3+nhw4dKWQ8PD9XNHsnJyaogI70gRUTk1KlTqu9K7969lfdNmjQxCPbmz5+vzPf19TW4eePmzZtKQKvRaOTo0aNy9epV1cVCpUqVTF6A6P8+6B8vuv/XqVNHteydO3eUTHrx4sWVzP+7775r8rjatGmTyf2h3yyfL18+6du3rwQHBxtkuh0dHeWTTz6R8PBwVf8v3WvEiBGSnJwsnTp1UqaVKlVKbty4oWxLP8BN71WlShWT2d8uXbrIyZMnJSIiQu7cuWPRmyEYONmonGqqS+vGjRvy+++/y+HDhzPdaVe/30faPgf6ndCnTZumXMk5OTlJQkKC0b4z3t7esmvXLuV9Vu7iM0U/kKtSpYq0a9dO6S/j7++vdPh9+PChqmkCeH4V1Lt3b1UW5kVfGf2o68ycOVNZpkyZMkabJ/Sbc/RfK1asUMpotVo5f/68wcldq9XKkCFDTP5omXsn06hRowyWr169uuoKWSc1NVW2bNkiAQEByh2cute7774rp06dUp10J06cKEOGDFEyf2n7aOi7cuWK6srf3d1devbsKVWqVFGdgPT76jx8+FCVlWnXrp1Bk8OAAQNUx+Ljx48NmoAqVaokU6ZMMfgbBQQEKGXmzJmjTNfPGADPm0L1v1P6r0OHDpn1dzDFWPYuX758qgyHm5ubajv6x16dOnUkISFBPvvsM2VaoUKFlJstxowZo0w31TfJ09PT4GLhzp07qsC/du3aGTYd6mcXg4KClOmzZs1SpteqVcusPmitWrUyqKe7u7vR4z45OVl69uwp5cuXNwgydX788UdlPXXr1jV6U4WxfqH6TYH58+c3ekff9u3bDZbTv8Fk9erVqgyhq6urVKxYUQmu0jbVpnX9+nWTXTJ0r+7du6uaBZ89eybDhg1T5o8cOVLZRmxsrOrGokqVKsmDBw8MAtzZs2dLSEiIjB49WhUo6l5FixaV//77T86cOaPsF2dnZ1UgZmkMnHIJS3UOz06bNm1S6livXj3Vl1K/aeLChQvy3nvvKe/Xr1+vXG17eXmprqyLFSum/H/x4sXZVletVmu0j5T+j33//v1VP+IApGPHjnLq1CkRed5UGBgYqGq6y+zLzs5Oaa4014oVK2TcuHHpdu5Ne7Vap06dTAXCJ0+elBUrVkhgYKCMGjVKvvzyy0zd6vzo0SOpXbu2uLq6SkBAgBw4cMCsoDchIUFmzJihyqzpZ40CAgJUZQ8dOqQ03aQnIiJCDh48qFyF37x5U5Uxad26tYSGhkpiYqLqCr1Dhw6i1WolJCREaWquV6+e0WEsdMNJpM2WAM8zGHXr1pW6desqfXM8PDxU3+XU1FT5888/5ZdffpFr166JyPNO5F988YVqXX379s3w82bk6dOnqqYmV1dX2bp1qyQkJEibNm2U6U5OTtK7d2/5559/VMe5fjATFhYmkyZNUgUXycnJRjOJffv2NchUvfvuu3Lp0iVJSEhQNek2atTIrL/tgQMHlGXq168vIiJXr15VNV+aCmzS2rBhg0Gdly9fnsm9+z+JiYlGh+zQ7z86ZMgQ1TJHjhxRZR+XLFkiISEhqkyVqU7b27dvV5XRD9R0GdLk5GS5d++eWd/HR48eyTfffKNqiQCeZ2rT3sGc9jOEhIQYbCMyMlJ1wVm7dm1Vtw9jAe6lS5fk119/VTVfFy5cWBWEffvttxl+luzEwCmXyA2Bk1arVV056G55jo6OVq4MKlSoICIiS5YsUcrpt7kPGzZMwsLCDH5oSpQoYfL29qxK28nXx8dH1Yyo/ypUqJByV15aMTExsnXrVvnzzz/lq6++koCAAOnTp48MGDBABg8eLB999JGMGjVKxo0bJ+PHj5fAwEBZvHixbNu2TTlBZrfHjx+rTlC57fbz9evXGwQgVapUydZj//Tp0wZBr/4JzcPDQ9XcFR8fL//++6/Jmx90Tp48KfXq1cswaB4zZozZdd2wYYOUKFFCKlWqpOqz9CIOHjwohQoVkgoVKqiaX+Pi4kw2n6YNXtMTGRmpXJxUqVJF9u3bJyLP+1m9+eabqnXa29ur7g4rXbq00aY5Y9L+7hw/flx1d+fgwYPN3iepqamqIQrM/azp2bFjh+qz6jImusDO3d1dyfxGR0er+lV99NFHynru3LkjXbp0ET8/Pzl79qzJ+qftewU8z6K/yLAfT58+lZ9//lkaN24sEydOfKHx765evWoyk6UbFsGY6Ohoo98rX1/fHB+Pj4FTLpEbAieR5wPz6erZsmVLiY+PlxUrVijTdB04b9++bfSLExoaKiIiDRs2VE3PzjsidGJiYmTo0KHy8ccfy/79+0Wr1UpiYqL88MMPqhNoq1atTPYXsWVHjx6VVq1ayZQpU6xdlSwJDQ1V7qgqUKBAtowpk9bevXuVQSjTvl701unLly9LYGCgNGnSRLlw0Gg0YmdnJ7Vr1870EAypqanZ3m8jNTXVaBNWbGysjBkzRnUTAvC8+S4zgduTJ09k//79Bhc9Wq1WZs+ebbB+4HmzS2ZvuJg9e7YqG6L7f5kyZVS3x5tj7dq1YmdnJ/7+/tk2gKqu35ezs7PSNKffZKvLavXp00eZVr9+/SxdLP7www+q/WlnZydHjx7Nls+RXc6cOWOQxTInkxoTEyONGjVSLWfOzRjZjYFTLpFbAqfk5GTVD5ejo6Ny1xsA2bFjh1I2bQq7VKlSylXRP//8o/ohNee21Ox048YN+fzzz2X+/PkvdKVGL+b8+fPy6aefmt3UkhWRkZESFBQkffv2VYZ96N+/f54YaftFPXv2TJYvXy6tW7eWMmXKmMy6ZlVMTIxMnDhRFbxmNOq8qfUYu7PQWD8gczx79izDEdkzu74FCxaogv89e/Yo9Wzfvr2sWrVKea8/nEhmRUZGqoZq0M9a2ZJDhw4pfRddXV3NDsifPn2q9EXr3LmzVb6nDJxyidwSOImIzJs3z+gVvKurq+oKaujQoar5I0eOVOalpqYqt2hntg8QUVZptdo883iS3OTBgwcya9Ys1YVVZg0aNEj1e5KZJjprSE1NVZrl7OzsVENlvGi2U9f539vbO1sebWQp4eHhMnDgQIPx9zKiu7klo2ZzS8ns+VgjkoOPPidFXFwcXF1dAQCxsbFwcXGxco1MExGsW7cOwcHBCAkJweXLlwEAn3zyCQIDA5Vya9asQbdu3ZT3Bw4cQIMGDZT3SUlJiIqKQokSJaDRaHLuAxBRrnP06FHUqVMHAFCmTBmcOnUKBQsWtHKt0jdhwgR8++23qmldu3bFqlWrXug3LykpCdu3b0fdunXh5eX1otWkNDJ7PmbgZCW5KXBK6+bNm4iKikL16tVhb2+vTH/48CGKFi0KEUGZMmVw7do1BkhElGVTpkzBzp07MXXqVNSsWdPa1cnQ5cuXUaFCBeW9l5cXTp8+DU9PTyvWijLCwCmXyM2BU3omTpyIBQsWYOrUqejevbu1q0NElKOaN2+OvXv3AgA2btyIjh07WrlGlBEGTrlEXg2ciIheZpcuXcLnn3+Otm3b4v3337d2dcgMDJxyCQZORERE1pfZ87FdTlSKiIiIKC9g4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGayz7gIWYL+gO1xcXFWrAkREdHLS/8cbM7DVBg4WUl8fLzyfy8vLyvWhIiIiIDn52bd41dMYVMdERERkZn4kF8r0Wq1iIqKAgAUKFAAGo0mS+uJi4tTMlaRkZF8WPD/434xjvvFOO4X47hfjON+MS637hcRUVqBPD09YWeXfk6JTXVWYmdnh2LFimXrOl1cXHLNgZqTuF+M434xjvvFOO4X47hfjMtt+yWj5jl9bKojIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMHwCQiIiIyEzNORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZONio8PBwdOnSAh4cHXFxcUL9+faxcuTJT60hMTMS3336LihUrIn/+/ChZsiQGDx6M+/fvW6jWlnP79m1Mnz4dbdu2RZkyZeDo6IjixYuja9euOHTokNnrCQkJgUajMfkKCgqy3IewEF9fX5Ofp3nz5pla19KlS+Hv7w8XFxcUKlQIHTt2xLFjxyxTcQsKCgpK9++s0WjQqlWrDNeTW4+XJUuW4IMPPkCdOnXg5OSUYV2fPHmCUaNGwcfHB05OTvD19cVnn32G2NjYTG9727ZtaNasGdzc3FCwYEG0aNECu3bteoFPk33M3S/JyclYs2YNAgICULlyZbi6usLNzQ316tXDb7/9htTU1ExtNzu/o5aQmeNl4sSJ6X4nrl27lqltX7x4ET169ICnpyecnZ1Ro0YN/Pbbb7Dl+9bsrV0BMrRnzx60a9cO+fPnR69eveDm5oY1a9agZ8+euHnzJkaPHp3hOrRaLTp37oxt27ahfv366Nq1KyIiIjB37lzs2rULBw8eRNGiRXPg02SPmTNn4scff0T58uXRtm1bFC1aFBEREVi/fj3Wr1+PZcuWoWfPnmavr1mzZkZ/sPz8/LKv0jnI3d0dI0eONJju6+tr9jomTZqEr776Cj4+PhgyZAiePn2K5cuXo2HDhti1axcaNWqUfRW2MD8/P0yYMMHovNWrV+PMmTNo166d2evLbcfLV199hevXr8PT0xMlSpTA9evXTZaNi4tDs2bNcOLECbRt2xa9e/fG8ePHMXXqVOzduxehoaHInz+/WdtdsmQJ+vbti6JFi6J///4AgBUrVqBNmzZYuXIlunXrlh0fL8vM3S+XL19Gt27d4OrqilatWuHNN99ETEwMNm7ciKFDhyI4OBgbNmyARqMxe9vZ8R21lMwcLzoBAQFG6+7h4WH2ds+ePYuGDRsiISEBPXr0QMmSJbF582YMHToUZ8+excyZMzPxKXKQkE1JTk6W8uXLi5OTkxw/flyZ/vjxY3nllVfE0dFRrl27luF65s+fLwCkd+/eotVqlem//fabAJDBgwdbovoWs2bNGgkJCTGYHhoaKg4ODlKoUCF59uxZhuvZs2ePAJAJEyZYoJbW4ePjIz4+Pi+0josXL4q9vb288sor8vjxY2X68ePHxcnJSSpXriypqakvWFPrS0xMlCJFioi9vb3cu3cvw/K59XjZsWOH8jsxZcoUASALFiwwWvbrr78WADJ27FjV9LFjxwoAmTx5slnbfPTokXh4eIinp6fcvHlTmX7z5k3x9PQUT09PefLkSdY+UDYxd7/cunVLZs+eLbGxsarpsbGxUqdOHQEgK1euNHu72fEdtaTMHC8TJkwQALJnz54X3m7Tpk0FgAQHByvTEhMTpUmTJgJADhw48MLbsAQ21dmY3bt34/Lly3jnnXdUV7Pu7u744osvkJSUhIULF2a4nr/++gsAMGXKFNVV0QcffIBy5cph6dKlSEhIyPb6W8rbb7+NZs2aGUxv0qQJWrRogejoaJw6dcoKNcsbFixYgJSUFHz55Zdwd3dXpvv5+aF37944d+4cwsLCrFjD7LF+/Xo8fPgQHTt2hJeXl7WrYzGtW7eGj49PhuVEBHPnzoWrqyvGjx+vmjd+/Hi4urpi7ty5Zm1z1apVePz4MYYPHw5vb29lure3N4YNG4aoqCisW7cucx8km5m7X0qVKoWhQ4fCxcVFNd3FxQWjRo0CAOzdu9cidbQGc/dLdrp48SJCQ0PRokULvP7668p0R0dHfPfddwD+dx6zNWyqszEhISEAgLZt2xrM0zUtZPSFffbsGQ4dOoRXX33V4Mug0WjQps3/tXfvQU1deRzAvwEiYAIoCgbkjWlFhkJbiG5BqaiVddoiCz7oQgF12zqCtV0RqXah3XXXWl+LqLW1QtWFpbUKbtGh2hWcYgtW6aoQFGvAKuD4KkpAXjn7h5MMMa8bDRLw95nJjJ57zsnvXk7gx72Hc2Zgx44d+OmnnzB58mTTBD6A+Hw+AMDKivtwrq+vx+bNm9HR0QE3NzdERERg7Nix/RViv+vs7EReXh6amppgb2+PkJAQTJw4kXN7Q+MuLy8P5eXlmDJliqlCHhDKJGDRokVGtRtq40Wpvr4eTU1NmDlzptYkITQ0FKWlpfj111/h7u6uty9DYygrKwvl5eV4/fXXTRb/QHiY7zfAo39Gzc3x48dRWVkJCwsLiMViTJ8+HUKhkHN7feMlLCwMAoHAbJNTSpzMTH19PQBALBZrHBOJRBAKhao6uvzyyy9QKBRa++jbd319/aBPnC5fvoyjR4/CxcUFAQEBnNvl5+cjPz9f9X8rKyukpqbi448/hqWlZX+E2q9aWlqQnJysVhYSEoKCggL4+voabF9fXw+hUAiRSKRxrO94GcwaGxvx3Xffwc3NDZGRkUa1HWrjRUnf9xtleWlpKerr6w0mTvr6GipjCAB27doFQPsPfH0e9TNqbh6cQzhixAj885//5JwY6xsvlpaW8Pb2Rm1tLXp6eoxOUvsbPaozM62trQCg9rikL3t7e1WdR+mjb73Bqru7GwkJCejs7MRHH33E6QeYk5MT1q5di3PnzqGtrQ3Xrl1DUVERxo0bh02bNmHFihWPIXLTSk5OxnfffYdr165BLpejuroaCQkJOHnyJKZNm4a7d+8a7KO1tXXIj5fc3FwoFAokJSVxTnaG4njpy5TfK/T1NVTG0KefforDhw8jIiICs2bN4tzOFJ9RcxEYGIhdu3bh0qVL6OjogEwmw5YtW8Dj8ZCUlISDBw9y6ofL2FMoFGZ5bcwrjSOEI+UPwOPHj+NPf/oTEhISOLXz9/eHv7+/6v8CgQBRUVGYOHEinnnmGWRnZyM9PR3Ozs79FbrJPfibX1BQEHbv3g0A2LNnDz777DPVvIwnlUKhQG5uLng8HhYsWMC53VAcL+ThfPPNN0hJSYGnpyf27t1rVNuh9BmNjo5W+7+XlxdSUlLg5+eHGTNmYPXq1Xj11VcHKLrHg+44mRll9q3rN7M7d+7ozNCN6aNvvcFGoVBgwYIFyM/PR3x8PD755JNH7lMkEiEqKgo9PT1GrQtlzt58800AQEVFhcG6Dg4OQ3a8AMDRo0dx+fJlREREwNvb+5H7GyrjxZTfK/T1NdjH0KFDhxAbG4sxY8bgv//9L1xcXEzSrzGfUXM3bdo0+Pr64uzZs6qvtz5cxh6Px4OdnZ1J4zQFSpzMjL65AC0tLWhra9M5H0HJx8cHFhYWOucTGJrXYM4UCgWSk5PxxRdfIC4uDnl5ebCwMM0wHj16NID769oMBcacj1gsRltbG1paWjSODebxovSwk8L1GQrjxdDcI2O+9vr6GsxjqKSkBH/4wx8wevRoHDt2DD4+PibreyiMob6U59Pe3m6wrr7x0tvbC5lMBm9vb7Ob3wRQ4mR2lH9y/+2332ocKy0tVauji62tLSQSCc6fP6+xkBljDEeOHIFAIEBwcLCJon48lEnT7t27MW/ePOzZs8ekE3OVdw7MYUE6UzDmfEwx7szVzZs3UVxcDEdHR43HDI9iKIwXsVgMV1dXVFRUaPzwlsvlqKiogLe3t8GJ4cDQHEMlJSWIiYmBo6Mjjh07hnHjxpm0/6EwhpTkcjlqamogEAhUCZQ++sbL999/r1qY1SwN9EJSRF13dzfz8fHRuwCmTCZTlTc1NTGpVKq2aCFjQ28BzN7eXpaYmMgAsDlz5rDu7m699a9fv86kUim7fv26WvlPP/2ktf7mzZsZACYWi1lPT4/J4u5vUqmUyeVyreUikYgBYOXl5ary3377jUmlUtbU1KRW//z580N2AcxNmzYxAGzp0qU66wzl8WLqBTDlcjmTSqWssbFRrfzWrVvMwcHBrBfA7MvQdTl06BCztrZmIpGI1dXVGeyvq6uLSaVSdvHiRbVyYz+jA03fdblz5w47f/68Rnl7ezuLi4tjAFhycrLGcalUyqRSqUa5oQUwKyoqHu1k+gmPMTPeEOYJpWvLlcbGRqxfv15ty5WkpCR88cUXyM3NVW1xANy/OzNr1izVlivh4eG4ePEi9u/fDy8vL1RWVg6qLVeysrLwwQcfQCgU4u2339Z6+3b27NmqRUOV9TMzM5GVlaWq4+XlBT6fj+DgYLi5uUEul+PHH39EdXU1RowYgdLSUkgkksd0Vo8uKysLGzduxJQpU+Dp6QmBQIALFy7g0KFD6O7uRkZGBv7+97+r6ufl5SE5ORmJiYkae1H13XIlJiZGteVKV1fXoNtypa+AgACcO3cOZ86c0blkxVAbLzt37lQtWHr27FmcPn0aoaGhqjsmYWFhqseWcrkcoaGh+N///oeXXnoJzz33HE6fPo1vv/0WISEhKC8vh62trarvsrIyTJ06FeHh4aq1eJT6brmi3AKpsLAQN27cQGFhIebMmfMYzl43rtelrq4OQUFB6OzsxPz58/H0009r9OXl5aX2PbehoQHe3t7w9PRU26/N2M/oQOB6XRoaGuDj44OQkBD4+flBJBLh2rVrOHr0KK5cuYKAgAAcO3YMo0aNUutfuQjzg+lGTU0NQkND0dHRgXnz5sHFxQUlJSWoqalBSkoKbblCjFNZWckiIyOZvb09s7W1ZRKJhP373//WqKe8C6Ptt4N79+6xrKws5uvry4YNG8ZEIhFbtGgRp60mzI3yPPW9+l4D5bYAD26VsXbtWjZ16lTm6urKrK2tma2tLRs/fjxbtmyZ2m/Jg0VZWRmbO3cuE4vFzN7enllZWTGRSMSioqJYaWmpRv3c3FwGgCUmJmrtb+/evSw4OJjZ2toyBwcHNmvWLHbq1Kl+Pov+U1lZyQAwiUSit95QGy+GPi8Pfv1/++03tmzZMubu7s74fD7z8PBgf/7zn7XeIVJuQxMeHq71vQ8fPswmT57MBAIBEwqFLDw8nB05cqQfztJ4XK+L8hz1vR48f5lMxgBobK1i7Gd0IHC9Lq2trWzJkiUsJCSEOTk5MSsrK2ZnZ8ckEglbt24da29v19q/sh9t6urqWGxsLHN0dGTW1tYsICCAbd26Ve1JibmhO06EEEIIIRzR5HBCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIoQQQgjhiBInQgghhBCOKHEihBBCCOGIEidCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIuQJ5uXlBR6Pp/e1efPmgQ6TmEh1dTUsLS2RmpqqVl5WVqb6euvT0NCgqtd3PzZjtba2YtSoUZg4caLG/mWEmDvNnVIJIU+cvht6PmjChAmPORrSX1JTU2Fra4v3339/QONwcHBARkYG0tLSsHv3biQmJg5oPIQYgxInQggWLVqkttM7GXr27duHiooKpKWlwdnZeaDDQUpKCtatW4eMjAzMnz8f1tbWAx0SIZzQozpCCHkCbNq0CQCwcOHCAY7kPhsbG7z22mtobm5GYWHhQIdDCGeUOBFCOFHOh2poaEBxcTEiIiLg6OgIHo+HsrIyVb3bt28jMzMTQUFBsLOzw/DhwxEQEIC//e1vaG9v19p3T08PNm/ejICAANjY2MDJyQkxMTE4e/Ys8vLywOPxNO6IZWVlgcfjISsrS2ufynk7L774otbjTU1NePfdd+Hn54fhw4fDzs4OISEhyMnJQU9Pj0b9pKQk8Hg85OXlQSaTISEhASKRCNbW1vD19cXq1avR2dmp8/qdOnUKiYmJ8Pb2ho2NDRwdHREYGIi0tDQ0NjYCAHJzc8Hj8TBz5kyd/TQ1NYHP58PW1hY3b97UWa+v6upqnDhxApMmTcLTTz/NqY0xlF8LQ68HKb+mW7duNXlMhPQXelRHCDHKhg0bkJOTg+DgYERGRqKpqQmWlpYAgNraWkRGRuLXX3+Fi4sLwsLCwOfzUVVVhffffx9ff/01ysrK4ODgoOpPoVBgzpw5KCoqwrBhw/Diiy9i5MiRqKyshEQiwYIFC0x+DsePH8fs2bNx+/ZteHl5YcaMGejs7ERVVRVSU1Pxn//8B9988w34fL5G259//hlvv/02Ro4cifDwcNy6dQsVFRVYs2YNampqcODAAY02H3/8MVauXAmFQoGnnnoKUVFR6OjowMWLF7F+/Xr4+/sjKSkJr732GtLT03HkyBFcuHABTz31lEZfO3bsQE9PDxISEjBq1ChO51tUVAQAmD59unEXiqOgoCCd85TOnz+PH3/8ERYWmr+nBwUFwcnJCVVVVWhuboaLi0u/xEeISTFCyBPL09OTAWC5ubmc61paWrLi4mKN4+3t7czX15cBYKtXr2adnZ2qY3K5nMXFxTEALDk5Wa1dTk4OA8DGjBnDamtrVeXd3d1s8eLFDAADwBITE9XaZWZmMgAsMzNTa7zHjh1jAFh4eLhaeXNzMxs1ahTj8Xhs27ZtrLe3V3Xsxo0bLCIiggFgH3zwgVq7xMREVSyrVq1iPT09qmNnz55lAoGAAWAnTpxQa1dcXMwAMBsbG1ZYWKgRZ01Njdp5r1q1igFgS5cu1ajb1dXFRCIRA8BOnTql9by1CQsLYwBYSUmJ1uPKa2XoR4JMJlPVk8lkBt+3sbGRubi4MAAsJydHa51XX32VAWB79uwx2B8h5oASJ0KeYMpkSNerb9KhrLtgwQKtfW3fvp0BYC+//LLW43fv3mXOzs7MysqK3bp1S1U+btw4BoBt375do01HR4cqUTBV4pSens4AsJSUFK3trly5wvh8PnNycmIKhUJVrkycnn/+ebVypbfeeosBYB9++KFaeVBQEAPANmzYoPX9HnT16lXG5/OZg4MDa2trUztWUFDAALDf/e53nPpSUiZ1ly5d0nq8b+LE9WUocbp9+zabMGECA8DS0tJ01svIyGAA2DvvvGPUOREyUOhRHSFE53IE48eP1yiLjY3V2kdJSQkAYN68eVqPC4VCBAcH49ChQzh58iReeuklXL16FRcvXgQAxMfHa7SxsbHB3LlzkZ2dzflcDDEU59ixYyEWi1FbW4v6+nqNx2Uvv/yy1vk6fn5+AICrV6+qylpaWvDzzz/DwsKC86RsV1dXxMbGoqCgAHv27MFbb72lOqacC5SSksKpLwCQy+WQy+UAwOnRnr6lAdra2vD1118b7KOrqwuzZ89GbW0t5s+fj48++khnXWVM165dM9gvIeaAEidCiFHLEXh5eWktv3TpEgAgISEBCQkJevu4fv06AODKlSsAgNGjR0MoFGqt6+3tzSkurpRxTp482WDd69evayROHh4eWuva29sDAO7du6cqu3z5MgDAxcVFbV6XIUuXLkVBQQG2bt2qSpzOnDmD77//HmPGjNGZvGrT2tqq+rednZ3B+nl5eTqPNTQ0GEycGGNISkpCeXk5wsPDVZP7dVFet9u3bxuMjRBzQIkTIcQotra2WssVCgUAIDIyEmPGjNHbh6enp8nj0hWPrvLY2FgIBAK9fWi7Q6NtkrOpTZo0CRKJBFVVVaoERHm36Y033sCwYcM49zVixAjVv+/evatKVPrLypUrUVBQgAkTJqCoqMjg+kzKxG7kyJH9GhchpkKJEyHEJNzd3VFXV4eFCxdyviMyduxYAMCNGzfQ1tam9a6Trq09lMnD3bt3tR5X/om/tjjr6+uRnp6O4OBgTnE+LOXdqebmZrS2thp91yk+Ph45OTkIDAzEv/71L1hZWak9uuNi+PDhEAgEkMvluHnzZr8mTtu2bcO6devg6uqKw4cPqyVtuiiXVDCUbBNiLmgdJ0KISfz+978HAHz55Zec27i5ucHHxwcAkJ+fr3G8s7MTX331lda2yqRLKpVqPa6cy2SKOB+WSCRCYGAgFAoFdu3aZVTbuXPnwsXFBUVFRVizZg3kcjmio6Ph6upqdBzPPfccgPvLRfSXgwcPYunSpbCzs0NJSYnOR5oPOnfuHADg+eef77fYCDElSpwIISbxxhtvwNPTE1999RXS09O13glqaWnBZ599pla2bNkyAPcXUayrq1OV9/b2Yvny5WhqatL6fhEREbCwsEBpaSnKy8tV5YwxZGdn65yLk5aWhhEjRmDjxo3YsGEDurq6NOrIZDLs3bvX4DlzkZmZCQBYtWqV1phqa2u1Jn98Ph+LFy9GT08P1q9fD8C4SeF9TZ06FQDwww8/PFR7Q6qqqhAXFwcLCwvs27cPQUFBnNsqY4qIiOiX2AgxNUqcCCEmIRAIUFJSAi8vL6xbtw4eHh4IDw/HH//4R0RHR8Pf3x+urq4aG8wuWbIEr7zyCpqbmxEYGIjIyEjExcVBLBZj586dWLx4sdb3c3d3R2pqKhQKBaZNm4apU6ciJiYGYrEYy5cvx8qVK7W2c3NzQ3FxMUaOHInly5fD3d0d06ZNQ3x8PF555RWMGzcOPj4+yMnJMcl1iY6Oxpo1a3Dv3j3ExsbCz88P8+fPR1RUFPz9/eHv74/Kykqtbd98803VHKFnnnkGU6ZMeagYZs+eDQA4cuTIQ7U3JCMjA+3t7XBzc0N+fj6SkpK0vh5UXV2NmzdvQiKR0OKXZNCgOU6EEJPx9/fHmTNn8Mknn+DAgQM4c+YMfvjhB4wePRpubm5Yvnw5oqOj1dpYWFhg//79yM7Oxueff46ysjIIhUKEhYXhwIEDqK6uxvbt27W+36ZNm+Dh4YGdO3fixIkTEAqFCA0NxZdffok7d+5g7dq1WttNmTIFNTU1yMnJQUlJCU6ePInOzk44OzvDw8MD8fHxiImJMdl1ee+99xAREYHs7GwcP34c+/fvh52dHdzd3bFixQqdd1ucnZ0RFBSEyspKLFmy5KHf/9lnn8ULL7yAEydOQCqVqpZOMJXe3l4A9+/UyWQynfUe/Is95f8f5dwIedx4jDE20EEQQogueXl5SE5ORmJiot4/lR+KLly4gPHjx8PBwQFXr17F8OHDH7qvffv2Yc6cOXj33XexYcMGE0b5cO7duwd3d3fw+XzIZDKDf31HiLmgR3WEEGKm/vKXv4AxhsWLFz9S0gTcX34hNDQUO3bsMIvFJrds2YIbN27gH//4ByVNZFChxIkQQszIwYMHsXDhQkyaNAmFhYUQiURYsWKFSfresmULOjo68Ne//tUk/T2s1tZWrF27FhKJBK+//vqAxkKIsWiOEyGEmJHTp09j165dsLOzw/Tp07Fx40ZO6yFx8eyzz6rmIw0kBwcH1fpNhAw2NMeJEEIIIYQjelRHCCGEEMIRJU6EEEIIIRxR4kQIIYQQwhElToQQQgghHFHiRAghhBDCESVOhBBCCCEcUeJECCGEEMIRJU6EEEIIIRxR4kQIIYQQwtH/AdfmYgIM7O74AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a power spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized power spectrum.\n", + "## 1. We can linearly re-bin a power spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_ps.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_ps = Powerspectrum.rebin(avg_ps, 0.25, method='mean')\n", + "lin_rb_ps = avg_ps.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_ps.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a power spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_ps, log_rb_freq, binning = Powerspectrum.rebin_log(avg_ps, f=0.02)\n", + "log_rb_ps = ps.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Like `rebin`, `rebin_log` returns a `Powerspectrum` or `AveragedPowerspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_ps))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectra of normal-distributed light curves\n", + "\n", + "Starting with Stingray 0.3, we can also get Leahy-normalized power spectra of normally-distributed light curves.\n", + "Let us calculate such a light curve by subtracting the noise level and normalizing\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURfrHv7OJtOQMEg0ICCrBnFAQI4qYAAMm9MzCGbg7sycmTHjGUzGAEVFMiPAzoaeCBEEkg4ASJIcl7e78/mh7p6amqruqunqmZ/b9PA8PM7M9NdXdVdX1rTdULB6Px0EQBEEQBEEQBEFkPXmZrgBBEARBEARBEARhBxJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCAWZrkC2Ul5ejj/++AM1a9ZELBbLdHUIgiAIgiAIgsgQ8XgcW7duRbNmzZCXl1kbGgk8Q/744w+0aNEi09UgCIIgCIIgCCIirFixAnvttVdG60ACz5CaNWsCcG5irVq1MlwbgiAIgiAIgiAyxZYtW9CiRYsKjZBJSOAZ4rpl1qpViwQeQRAEQRAEQRCRCN2iJCsEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AMXgEQRAEQRCVkLKyMuzZsyfT1SCIrKCwsBD5+fmZroYSJPAIgiAIgiAqEfF4HKtXr8amTZsyXRWCyCrq1KmDJk2aRCKRihck8AiCIAiCICoRrrhr1KgRqlevHvnJKkFkmng8jpKSEqxduxYA0LRp0wzXyBsSeARBEARBEJWEsrKyCnFXv379TFeHILKGatWqAQDWrl2LRo0aRdpdk5KsEARBEARBVBLcmLvq1atnuCYEkX24/Sbqsask8AiCIAiCICoZ5JZJEPpkS78hgUcQBEEQBEHkPMuWLUMsFsPMmTOVvzNq1CjUqVMn7fVo3bo1Hn/88Yr3sVgM77//vvJvfPnll4jFYpRIp5JCAo8gCIIgCILIClasWIFLL70UzZo1Q1FREVq1aoUbbrgB69ev9/1uixYtsGrVKhxwwAHKv3feeedhwYIFQapshVWrVuHkk0+2WuZdd92Fgw46yGqZRDQggUcQBEEQBEFEniVLlqBbt25YuHAh3njjDSxatAjPPvssJk+ejMMPPxwbNmyQfnf37t3Iz89HkyZNUFCgnmOwWrVqaNSokY3qB6JJkyaoUqVKpqthhXg8jtLS0kxXI6chgUcQBEEQBEFEnmuuuQZFRUWYOHEijj32WLRs2RInn3wyJk2ahN9//x3//Oc/K45t3bo17r33Xlx00UWoVasWBg8eLHSNHD9+PPbdd19UrVoVPXr0wCuvvJLk2si7aLpWr9deew2tW7dG7dq1cf7552Pr1q0Vx0yYMAFHHXUU6tSpg/r16+O0007D4sWLA50776L53Xff4aCDDkLVqlXRrVs3vP/++0K3z59++gndunVD9erVccQRR2D+/PkV53X33Xdj1qxZiMViiMViGDVqlPT3X3rpJXTs2BFVqlRB06ZNce211wIQu5tu2rQJsVgMX375JYCEu+inn36Krl27okqVKnjppZcQi8Uwb968pN957LHHsPfee1e8nzNnDk4++WQUFxejcePGuPDCC7Fu3Tr9C1jJIIFHEARBEARBRJoNGzbgs88+w9VXX12Rrt6lSZMmGDhwIN566y3E4/GKzx955BEceOCBmDFjBm6//faUMpcuXYqzzz4bZ555JmbNmoUrr7wySSTKWLx4Md5//3189NFH+Oijj/DVV1/hgQceqPj79u3bMWTIEEybNg2TJ09GXl4e+vbti/Ly8gBXIMGWLVtw+umno1OnTpg+fTruvfde3HrrrcJj//nPf2LEiBGYNm0aCgoKcOmllwJwXE+HDh2Kjh07YtWqVVi1ahXOO+88YRnPPPMMrrnmGgwePBizZ8/G+PHjsc8++2jX+7bbbsMDDzyAX3/9FWeffTa6deuG0aNHJx0zevRoDBgwAIAjFI8//ngcfPDBmDZtGiZMmIA1a9bg3HPP1f7tygbtg0cQBEEQBFHJ6dYNWL06/b/bpAkwbZr/cQsXLkQ8Hkf79u2Ff2/fvj02btyIP//8s8Kl8vjjj8fQoUMrjlm2bFnSd5577jm0a9cODz/8MACgXbt2mDNnDv7973971qW8vByjRo1CzZo1AQAXXnghJk+eXPG9fv36JR3/0ksvoWHDhpg7d65W/J+MMWPGIBaL4YUXXkDVqlXRoUMH/P7777jiiitSjv33v/+NY489FoAjsE499VTs3LkT1apVQ3FxMQoKCtCkSRPP37vvvvswdOhQ3HDDDRWfde/eXbve99xzD3r16lXxfuDAgXjqqadw7733AgAWLFiAn376Ca+//joA4KmnnsLBBx+M+++/v+I7L730Elq0aIEFCxZgv/32065DZYEEHkEQBEEQRCVn9Wrg998zXQt/WAudH926dfP8+/z581OEyiGHHOJbbuvWrSvEHQA0bdoUa9eurXi/cOFC3HHHHfjhhx+wbt26Csvd8uXLrQi8+fPno3PnzqhatapvvTt37pxUT8DZqLtly5ZKv7V27Vr88ccfOOGEEwLU2IG/H+effz7+/ve/4/vvv8dhhx2G0aNHo0uXLth///0BALNmzcIXX3yB4uLilLIWL15MAs8DEngEQRAEQRCVHB8jTsZ/d5999kEsFsOvv/6Kvn37pvz9119/Rd26ddGwYcOKz2rUqGGrmkkUFhYmvY/FYknul6effjpatWqFF154Ac2aNUN5eTkOOOAA7N69O5T6eMHW1d3DTcdVlHeH5cnLc6K9WOEt2wScvx9NmjTB8ccfjzFjxuCwww7DmDFj8Le//a3i79u2bcPpp5+OBx98MKUsV6wSYkjgEQRBEARBVHJU3CQzSf369dGrVy88/fTTuOmmm5KEx+rVqzF69GhcdNFFWhtRt2vXDp988knSZ1OnTg1Uz/Xr12P+/Pl44YUXcPTRRwMApkyZEqhMnnbt2uH111/Hrl27KjJrmtS7qKgIZWVlnsfUrFkTrVu3xuTJk9GjR4+Uv7uCetWqVTj44IMBQGufwYEDB+KWW25B//79sWTJEpx//vkVf+vSpQvGjh2L1q1ba2U+JSjJCkEQBEEQBJEFPPXUU9i1axd69+6Nr7/+GitWrMCECRPQq1cvNG/e3Dd2jufKK6/EvHnzcOutt2LBggV4++23KzJJ6ghFlrp166J+/fp4/vnnsWjRIvzf//0fhgwZYlSWjAEDBqC8vByDBw/Gr7/+is8++wyPPPIIAL16t27dGkuXLsXMmTOxbt067Nq1S3jcXXfdhREjRuDJJ5/EwoULMX36dIwcORKAY+E77LDDKpKnfPXVV/jXv/6lXIezzjoLW7duxd/+9jf06NEDzZo1q/jbNddcgw0bNqB///6YOnUqFi9ejM8++wyXXHKJrzCt7JDAIwiCIAiCICLPvvvui2nTpqFt27Y499xzsffee2Pw4MHo0aMH/ve//6FevXpa5bVp0wbvvvsu3nvvPXTu3BnPPPNMRRZN0z3n8vLy8Oabb+Knn37CAQccgJtuuqkiiYstatWqhQ8//BAzZ87EQQcdhH/+85+44447ACApLs+Pfv364aSTTkKPHj3QsGFDvPHGG8LjLr74Yjz++ON4+umn0bFjR5x22mlYuHBhxd9feukllJaWomvXrrjxxhtx3333KdehZs2aOP300zFr1iwMHDgw6W/NmjXDt99+i7KyMpx44ono1KkTbrzxRtSpU6fCNZQQE4vrRKsSFWzZsgW1a9fG5s2bUatWrUxXhyAIgiAIwpedO3di6dKlaNOmjZYYqCz8+9//xrPPPosVK1ZkuipajB49Gpdccgk2b97sGzdHmOPVf6KkDcihlSAIgiAIgqiUPP300+jevTvq16+Pb7/9Fg8//HDFJt5R5tVXX0Xbtm3RvHlzzJo1C7feeivOPfdcEncEABJ4BEEQBEEQRCVl4cKFuO+++7Bhwwa0bNkSQ4cOxbBhwzJdLV9Wr16NO+64A6tXr0bTpk1xzjnnaMcgErkLuWgaEiUzLEEQBEEQhArkokkQ5mSLiyZFKBIEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAh8eWXXyIWi2HTpk0AgFGjRqFOnTqh/uagQYNw5plnSv/O1+Guu+7CQQcdpPUbxx13HG688Uaj+hHhQgKPIAiCIAiCiDyDBg1CLBbDAw88kPT5+++/j1gslqFa6XPeeedhwYIFma5GEn//+98xefJk6+XGYjG8//771sslvCGBRxAEQRAEQWQFVatWxYMPPoiNGzdaLXf37t1Wy/OiWrVqaNSoUdp+T4Xi4mLUr18/09WwRjrvZxQhgUcQBEEQBEFkBT179kSTJk0wfPhwz+PGjh2Ljh07okqVKmjdujVGjBiR9PfWrVvj3nvvxUUXXYRatWph8ODBFW6LH330Edq1a4fq1avj7LPPRklJCV555RW0bt0adevWxfXXX4+ysrKKsl577TV069YNNWvWRJMmTTBgwACsXbtWWjfePbJ169aIxWIp/1xWrFiBc889F3Xq1EG9evVwxhlnYNmyZRV/Lysrw5AhQ1CnTh3Ur18ft9xyC+LxuOIVdeBdNEtLS3H99ddXlHnrrbfi4osvTnH7LC8vxy233IJ69eqhSZMmuOuuu5LOCwD69u2LWCxW8V7EypUr0b9/f9SrVw81atRAt27d8MMPPwAQu5veeOONOO644yreH3fccbj22mtx4403okGDBujduzcGDBiA8847L+l7e/bsQYMGDfDqq69W1H/48OFo06YNqlWrhgMPPBDvvvuu0jWLMiTwCIIgCIIgiKwgPz8f999/P0aOHImVK1cKj/npp59w7rnn4vzzz8fs2bNx11134fbbb8eoUaOSjnvkkUdw4IEHYsaMGbj99tsBACUlJXjyySfx5ptvYsKECfjyyy/Rt29ffPLJJ/jkk0/w2muv4bnnnksSAXv27MG9996LWbNm4f3338eyZcswaNAg5XOaOnUqVq1ahVWrVmHlypU47LDDcPTRR1eU3bt3b9SsWRPffPMNvv32WxQXF+Okk06qsFKNGDECo0aNwksvvYQpU6Zgw4YNGDdunMZVTeXBBx/E6NGj8fLLL+Pbb7/Fli1bhK6Wr7zyCmrUqIEffvgBDz30EO655x58/vnnFecFAC+//DJWrVpV8Z5n27ZtOPbYY/H7779j/PjxmDVrFm655RaUl5dr1fmVV15BUVERvv32Wzz77LMYOHAgPvzwQ2zbtq3imM8++wwlJSXo27cvAGD48OF49dVX8eyzz+KXX37BTTfdhAsuuABfffWV1m9HjYJMV4AgCIIgCILIMN26AatXp/93mzQBpk3T+krfvn1x0EEH4c4778SLL76Y8vdHH30UJ5xwQoVo22+//TB37lw8/PDDScLr+OOPx9ChQyvef/PNN9izZw+eeeYZ7L333gCAs88+G6+99hrWrFmD4uJidOjQAT169MAXX3xRYR269NJLK8po27YtnnzySXTv3h3btm1DcXGx7/k0bNiw4vUNN9yQJIbeeustlJeX47///W+FVe/ll19GnTp18OWXX+LEE0/E448/jmHDhuGss84CADz77LP47LPPlK6ljJEjR2LYsGEVQuipp57CJ598knJc586dceeddwIA9t13Xzz11FOYPHkyevXqVXFederUQZMmTaS/NWbMGPz555+YOnUq6tWrBwDYZ599tOu877774qGHHqp4v/fee6NGjRoYN24cLrzwworf6tOnD2rWrIldu3bh/vvvx6RJk3D44YcDcO7flClT8Nxzz+HYY4/VrkNUiLzA2717N5599lm8/fbbmDt3LkpKStCgQQN06tQJgwYNSjG9AsCkSZPw6KOP4scff8T27dvRqlUr9OvXD8OGDVPqaARBEARBEJWK1auB33/PdC2UefDBB3H88cfj73//e8rffv31V5xxxhlJnx155JF4/PHHUVZWhvz8fABAt27dUr5bvXr1CnEHAI0bN0br1q2T5o+NGzdOcsH86aefcNddd2HWrFnYuHFjheVp+fLl6NChg/I5Pf/883jxxRfx3XffVYijWbNmYdGiRahZs2bSsTt37sTixYuxefNmrFq1CoceemjF3woKCtCtWzdtN02XzZs3Y82aNTjkkEMqPsvPz0fXrl1TrGqdO3dOet+0aVNP91QRM2fOxMEHH1wh7kzp2rVr0vuCggKce+65GD16NC688EJs374dH3zwAd58800AwKJFi1BSUoJevXolfW/37t04+OCDA9Ul00Ra4K1cuRK9e/fG3Llz0aBBAxx55JGoUaMGVqxYga+//ho1atRIEXiPPfYYhgwZglgshqOPPhqNGzfGN998g/vvvx9jx47FlClT0KBBgwydEUEQBEEQRATxsLBE8XePOeYY9O7dG8OGDdNyh2SpUaNGymeFhYVJ72OxmPAzV+hs374dvXv3Ru/evTF69Gg0bNgQy5cvR+/evbUSfXzxxRe47rrr8MYbbySJpm3btqFr164YPXp0yndYy1+m8Lo2qlSrVs3z73l5eSlidc+ePSnHie7nwIEDceyxx2Lt2rX4/PPPUa1aNZx00kkAUOG6+fHHH6N58+ZJ36tSpYrWOUSNyAq8HTt2oFevXpg3bx7uuusu/OMf/0hqRCUlJSkpZmfMmIGhQ4ciPz8fH374IU4++eSKY/v06YPJkyfjqquuyongSYIgCIIgCGtouklGgQceeAAHHXQQ2rVrl/R5+/bt8e233yZ99u2332K//farsN7ZYt68eVi/fj0eeOABtGjRAgAwTfNaLlq0CGeffTb+8Y9/VLhZunTp0gVvvfUWGjVqhFq1agm/37RpU/zwww845phjADgJUn766Sd06dLF4IyA2rVro3Hjxpg6dWpFmWVlZZg+fbr2XnmFhYVJCWlEdO7cGf/973+xYcMGoRWvYcOGmDNnTtJnM2fOTBGXIo444gi0aNECb731Fj799FOcc845Fd/r0KEDqlSpguXLl2e1O6aIyCZZGT58OObNm4fBgwfjzjvvTLmJ1atXT2lkw4cPRzwexyWXXFIh7txjX3zxReTl5WHs2LGYN29eOk6BIAiCIAiCCIlOnTph4MCBePLJJ5M+Hzp0KCZPnox7770XCxYswCuvvIKnnnpK6M4ZlJYtW6KoqAgjR47EkiVLMH78eNx7773K39+xYwdOP/10HHzwwRg8eDBWr15d8Q9wLFANGjTAGWecgW+++QZLly7Fl19+ieuvv74iycwNN9yABx54AO+//z7mzZuHq6++umJTdVOuu+46DB8+HB988AHmz5+PG264ARs3btTeb7B169aYPHkyVq9eLd3aon///mjSpAnOPPNMfPvtt1iyZAnGjh2L//3vfwCcWMlp06bh1VdfxcKFC3HnnXemCD4vBgwYgGeffRaff/45Bg4cWPF5zZo18fe//x033XQTXnnlFSxevBjTp0/HyJEj8corr2idZ9SIpMBzA1wB4Oabb1b6zu7du/Hxxx8DcG4kT6tWrXDkkUcCQODMQgRBEARBEETmueeee1JcArt06YK3334bb775Jg444ADccccduOeee4xdOb1o2LAhRo0ahXfeeQcdOnTAAw88gEceeUT5+2vWrMG8efMwefJkNGvWDE2bNq34BzhGiq+//hotW7bEWWedhfbt2+Oyyy7Dzp07Kyx6Q4cOxYUXXoiLL74Yhx9+OGrWrFmRHMWUW2+9Ff3798dFF12Eww8/HMXFxejduzeqVq2qVc6IESPw+eefo0WLFtK4tqKiIkycOBGNGjXCKaecgk6dOuGBBx6osLb27t0bt99+O2655RZ0794dW7duxUUXXaRch4EDB2Lu3Llo3rx5hRZwuffee3H77bdj+PDhaN++PU466SR8/PHHaNOmjdZ5Ro1Y3DQCM0R++OEHHHbYYWjWrBl+//13zJ49G++99x7++OMP1K1bF0cffTROPvlk5OUl9OmcOXPQqVMnAMCWLVtSglEBYMiQIXjsscdwzjnn4O233w5Uxy1btqB27drYvHmz1GROEARBEAQRJXbu3ImlS5eiTZs22pN1ovJSXl6O9u3b49xzz9WyUOYaXv0nStogkjF4P//8MwBgr732wm233YaHHnooKbjywQcfxMEHH4z3338fLVu2BAAsXboUgJOKVSTuAFT4RrvHyti+fbtvHVWOIQiCIAiCIIhs47fffsPEiRNx7LHHYteuXXjqqaewdOlSoZccET0i6aK5fv16AE7SlAcffBBXX3015s+fj82bN+Pzzz/HfvvthxkzZuDUU0+tyKKzdetWAOIMOi5uitstW7Z4/n5xcbHvv2bNmtk4VYIgCIIgCIKIFHl5eRg1ahS6d++OI488ErNnz8akSZPQvn37TFeNUCCSFjzXWrdnzx70798fTz31VMXfevbsic8//xzt2rXDnDlz8Oabb1ZsXkgQBEEQBEEQRDBatGiRkomUyB4iacFjXSyvvPLKlL+3bNkSp556KgBnU3P2O16uk+5+F35+sdu2bfP998cff+idFEEQBEEQBEEQRMhE0oLXtm1b4WvRMatWrQLgpGEFgE2bNmHr1q3COLwVK1YkHSvDy83TxW9PD4IgCIIgCIIgiHQTSQtely5dKvbZWLdunfAY93M3rq5du3aoXr06APkGk+7nphs/EgRBEARB5AIRTKJOEJEnW/pNJAVekyZNcNRRRwFIuGCy7NmzB1999RUA4JBDDgHg7KHhum2OGTMm5Tu//fYbvvvuOwAIvDcIQRAEQRBENlJYWAgAKCkpyXBNCCL7cPuN24+iSiT3wQOAyZMno2fPnqhbty4++eQTHHbYYQCA0tJSDBkyBCNHjkTNmjWxcOFCNG7cGAAwffp0dOvWDXl5efjoo49w0kknAXBuRp8+fTB58mT069cP7777buD6RWmvC4IgCIIgCFVWrVqFTZs2oVGjRqhevXqF1xRBEGLi8ThKSkqwdu1a1KlTp2IjepYoaYPICjwAuO+++3D77bejoKAAhxxyCJo0aYLp06dj2bJlqFatGt55550Kq53LY489hiFDhiAWi+HYY49Fo0aN8M0332DVqlVo164dpkyZggYNGgSuW5RuIkEQBEEQhCrxeByrV6/Gpk2bMl0Vgsgq6tSpgyZNmggXRaKkDSIt8ABg4sSJePzxx/HDDz9g69ataNKkCU444QTceuut2H///YXfmTRpEkaMGIEff/wR27dvR8uWLXH22Wdj2LBh0k3QdYnSTSQIgiAIgtClrKysYj9hgiC8KSwsRH5+vvTvUdIGkRd4USVKN5EgCIIgCIIgiMwRJW0QySQrBEEQBEEQBEEQhD4k8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AAo8gCIIgCIIgCCJHIIFHEARBEARBEASRI5DAIwiCIAiCIAiCyBFI4BEEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCCTwCIIgCIIgCIIgcgQSeARBEARBEARBEDkCCTyCIAiCIAiCIIgcgQQeQRAEQRAEQRBEjkACjyAIgiAIgiAIIkcggUcQBEEQBEEQBJEjkMAjCIIgCIIgCILIEUjgEQRBEARBEARB5Agk8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQRADmzAE2b850LQgivSxcCKxdm+laZIb584F16zJdC4LIXrZtA6ZNA+LxTNckdyGBRxAEYchrrwGdOgHt2wO7d2e6NgSRHr78EthvP6B168ondCZMAPbfH2jbFti0KdO1IYjso7wcOO44oHt34K67Ml2b3IUEHkEQhCEXXeT8v2oV8Omnma0LQaSLM85w/t+xA3jwwczWJd2cfLLz/9atwPPPZ7YuBJGNzJ8P/PST8/qeezJbl1yGBB5BEIQFyNWEqCxs3Zp4XZkt19TnCUKfn3/OdA0qByTwCIIgLFBYmOkaEASRTqpWzXQNCCL7mD070zWoHJDAIwiCsEBBQaZrQBDpJxbLdA0yBwk8gtCHteA1bJi5euQ6JPAIgiAsQBY8orJArokOJPAIQp9ZsxKvW7XKXD1yHRJ4BEFUGh56CBg4EPj9d/tlkwWPqIyQBY8gCFU2bgSWL0+8p8Wi8KApCUEQlYJp04Bbb3Ver10LfP653fLzaLmMICoVVapkugYEkV3Mm5f8vqwsM/WoDNCUhCCISsGMGYnXkybZL59WIgmicpGfn+kaEER2sWtX8vvy8szUozJAAo8gCMICtBJJEJULWtQhCD14QUfPzfAggUcQRKUg7MkYrUQSlZHKHINHfZ4g9OD7DPWh8CCBRxAEYQFaiSSIygVNTglCD7LgpQ8SeARBVArCtjTQZI+ojFRmC16mXDTjceDXX2lyTGQfZMFLHyTwCIIgLECTLYLIbXhBl6nJ6dChQIcOwHnnZeb3CcIUsuClDxJ4BEEQFqCVSILIbXbvTn6fqT7/2GPO/2PHZub3CcIUsuClDxJ4BEEQBvCr+bQSSRC5zY4dye8piyZB6EEWvPRBAo8gCMKAPXuS39NKJFEZqUwxeCUlye+pzxOEHmTBSx8k8AiCIAzgN2yllUiCyG14C14UJqdkRSSyCbLgpQ8SeARBEAZEJR6HIDJJZbbgRUFc0bhDZBNkwUsfkRV4gwYNQiwW8/y3c+dO4Xd/+uknnHPOOWjcuDGqVq2KNm3a4LrrrsPatWvTfBYEQeQqZMEjiMrBCy8Al18OLFqU/HkmJqcU+0tkM2FZ8HbsAG68EbjjDhKNLgWZroAfRx55JPbZZx/h3/Lz81M+e/fdd9G/f3+Ulpaie/fuaNOmDaZNm4annnoK77zzDqZMmSItjyAIQhVe4NFDhSByj0WLgMGDndcvvZT8t0z0ed5zoLQUKCpKfz0IwoSwLHhvvw088YTz+vjjgeOOs1NuNhN5gXf55Zdj0KBBSsf+8ccfuPjii1FaWornnnsOg/8alcvKyjBo0CC8/vrrGDBgAH744QfEKpNfCUEQ1t2pyIJHELnPnDmJ1/wYkgkXTd5xqbQ0/XUgCFPCsuAtX554vXq1nTKznci6aJrw+OOPo6SkBD179qwQd4Bj6XvmmWdQu3ZtTJ06FRMnTsxgLQmCyAXIgkcQuR+Dl+cxS8pEn+cFHi0sEdlEWBa8bdsSr6lPOOSUwBs3bhwAYMCAASl/Ky4uRp8+fQAA7733XlrrRRBE5rE9EeVdpeihQhC5h9e4QRY8gtAjLAseK/CoTzhE3kXziy++wOzZs7F161bUr18fhxxyCE455RRUqVIl6bitW7di0V8R0N26dROW1a1bN7z22muYMWNG6PUmCCK3IQseQZAFL92QwCOyGbLgpY/IC7xXX3015bOmTZvipZdewkknnVTx2bJlyypet2zZUlhWixYtAABLly71/M3t27f71kvlGIIgcheKwSPSQXk58McfwF57ZbomlRMvARsFgUfjDpFNpMOCR33CIbIumgceeCCeeOIJzJkzB1u2bMGaNWswceJEHHHEEVi1ahX69OmDL7/8suL4rVu3VryuUaOGsMzi4mIAwJYtWzx/u7i42Pdfs2bNgp8kQRBpI+wkK2TBI8Lg5JOBFi2Axx7LdE0qJ14WPHLRJAg90mHBoz7hEFmBd9NNN+H6669Hx44dUbNmTTRq1Ai9evXClClTcMYZZ2DPnj248cYbM11NgiCyBMqiSWQb27YBbk6wIUMyW5fKStQteDSZJbIJvs/E43aezWTBSyWyAk9GLBbD3XffDQCYNWsWVqxYAQCoWbNmxTEy98ltf7WAWrVqef7Gtm3bfP/98ccfNk6HIIg0YXvQ55OskAWPsE0mLES6UAxeeiEXTSKbEfUZG/2ILHipRD4GT0T79u0rXq9cuRItWrRAq1atKj5bvnw5OnXqlPI9Vwy2bt3as3yZiydLGY2qBJFV2O6yZMEjwobaVLQhF02C0EMk5srKgPz8YOWydh0aNx2yzoIHAOvXr6947VruatWqhX322QcAMG3aNOH33M+7dOkScg0JgogatlfbKQaPCBuavGcer8liFCx41EaIbCIdFjwSeA5ZKfDefPNNAI6oa9euXcXnffv2BQCMGTMm5Tvbtm3Dhx9+CAA466yz0lBLgiCiBFnwiGwjG9pUri9sRE3g0bhDZDMyC15QyEUzlUgKvJkzZ2L8+PEo5e5SeXk5XnzxRfzjH/8AAFx//fUoLCys+PuNN96I6tWrY9KkSXjhhRcqPi8rK8PVV1+NTZs2oXv37jjxxBPTcyIEQUQGisEjsg2+zUYxJi/X273XZJFcNAlCjzAseOXl5KIpIpIxeMuWLUPfvn1Rt25ddOnSBY0bN8amTZswZ84cLF++HADQv39/3HnnnUnfa9asGUaNGoX+/ftj8ODBePHFF9G6dWtMnToVS5YsQePGjTFmzBjEcj0qnCCIFMJ20aSHCmEbvk3t2AFUr56ZusjI9XYfNQseCTwimwnDgldSYre8XCGSFrwDDzwQN954Izp27Ih58+bhvffew+TJkwEAZ599Nj7++GOMGTMGBQWp+vScc87BDz/8gLPOOgtLlizBuHHjUFZWhmuuuQazZs2qiNMjCKJyEbaLZq5bMoj0w7dZ1g0pKuR6u/caN6JgwaPJLJFNhGHB48dFWvRwiKQFr02bNngswK6uXbt2xdixYy3WiCCIbIdi8IhsQyTwGjXKTF1kVGaBRxY8gtAjDAseL/DoWewQSQseQRCEbSiLJpFt8JN3suClHxJ4BGEPsuClDxJ4BEFUCsJOskKrhoRtyEUz85CLJkHYgyx46YMEHkEQlYLKZMGLx4H584GlSzNdEyIIJPAyj5c1gCx43mzYkPvtg9AjDAsem0ETsCPw4nGA2XI7KyGBRxBEpaCyxODF48CJJwL77w+0bQtcf32ma0SYkg0CLyrtPizIRdOMd98FGjcGjjoqmtt7EJkhHRY8G32id28n3vnll4OXlSlI4BEEUSmoLFk0//wTmDQp8f7NNzNXFyIY2SDwotLuw4JcNM045xxnov2//wHTpmW6NkRUSEcMXtA+sXIl8PnnTr0uvTRYWZmEBB5BEJWCyrIP3tatye/37MlMPYjg8G2Kd0WKApVZ4JEFT40dOzJdAyIqZIMFL1e2yiaBRxBEpSDsJCtRmeiGEY9AZAbKopl5oi7wqH8T2UQ2WPDyckQZ5chpEARBeFNZYvAoo1juQC6amSdqLpr8uJMNFjyCcMmGLJq58swkgUcQRKWgsmTRJIGXO5DAyzyURZMg7JEN++DlyjOTBJ4lpk8HhgwBZs/OdE0SlJcDjz8OPPJINB8CZWVO3QYMAP75T2DTpkzXiMhlomrBW7MGGDYM+Pjj4HUCSOBlkvXrnbHsvffslBe2wPv6a+Dmm4Fly8zLyPX2FXUXzQcfBB57LPeFNpEbkAUvfRRkugK5Qteuzv9ffumIvSjw5pvATTc5r2vVAgYPzmx9eD75xJlcuBQXOxNdggiDqGbRvOyyhLhbuxZo2DBYvUjgZY7rrwfGjHFeL18OtGgRrLwwBV5pKXDssc7rTz8F5swxKyfXhUXUXDR5gbdggbO43KQJ0L9/+uujQq4krSCCk4598Gxb8MrLszMuLwurHD3WrUu8njEjc/Xg+e9/E6//85/M1UMGv2ocZBWZIPywPRG1leyAtdz98ot5fVx4ERCP0z5U6cIVdwAwdWrw8sIUeGxmwyDtrjILvChY8FxefDG99SAIE7LBgsfXsaQkWHmZggSeBWbNynQNxLCTuiiuoPHp26PoRkrkDvygH1T08IO+jcmejTJEIoCseNkJZdHMPFG34LlE2cKQ622EUCcbsmhmQ+yzChEeErKHbBB4URz8+TTztF8XESb8QyToQ4Df28mGiCKBR7CEuQ+erTaR65P3bLHgRfEZ70KLt4RLNuyDRwKPqGDmzEzXQEy2WfBI4BFhIvKrD0IYFjwbk26RCCCBl52EOdEggadG1LNouuTnp7ceOpDAI1xEVu+oW/BsLqylExJ4FsgGC55tSkqCd0oSeES6KClJHbSDPATKy4PH4MXj8k3JgzxQyIIXDWxMarNB4OV62wrLRbOkRP/78Xjls+DxY2G2xkMRDtlgwePrSBa8SsquXcDcucmfRWVFMywXzSlTnEx/XbsG60gUg0ekg4kTgQYNnKyyLEH6qWiSpVvemWcC9eqllnHBBUCdOuZJE0jgRQMbE9FsEHhRed6FRRgumlOmAI0b6z9DS0vlvxlFLx0X02f7m286Y2Tfvs77M88E6tYF3njDWtWINEMxeOmDBF5A1qxJHbyiYokKy0Xz+OOdycvMmcCHH5qXQzF4RDro3Ts1Xg4I9hAIWt7SpcD48al9YNs2YPRoZ0y5/HKzuokeRrk+CY8iYQg8m9YL0/bPt6Vcb1thCLyePZ1+OmMG8O676t/jt2ZhyUULXv/+zhj5/vvOFlQffOC8HzDAZu2IdJINWTRJ4BEAxA2Jn7RlirBcNFkhJprompQjek8QYRLkISCaaOtM9mQTdRsTeLLgRYMgY6NLmIuHppNuEngJTJ+xrFDbuFH9e17XOhcFHsuKFcHLIDKPbQve7t32vcFI4BEAxA0zKgKPrVtY7hs1aph/lwQekUmCPFSCWvBkE0Mbwdwk8KJBGBa80lJ7C3embcJ2sqKoE6Usml51yXWBt3Vr8DKIzGPbghdGUjESeASAaFvwWMISeEFEGX+dKAaPSCeZtODJjrVh9SGBFw1s3EvRfct0cpTKZsGLUhbNymzB27IleBlE5rFtwRM97yjJikOEh4TsIMoCL4wkK/zqcZBVarLgEZkkkzF4sgcauWhmL/z4FYYFT/Q7Nss2+V6uC7wobXRemS14JPByA9sWvDCed7liwSvIdAWyHVsCb8IEYNw4oFYt4G9/A9q2DV63MJKsbN6c/J5i8IiwiceBl15y4lauvNLefk9BJqZBLXhhumgGdVmJx4FXXnFcoq66CigsDF4nwLlm//kPsGAB0KmTM87ZKtsG27Y59WvfHujTR//7fJsIy4K3Zw9QrVo4ZavAt/NcXzwgF83g2BB4mzYFL4PIPOmw4NE+eA4k8AJiIwZv/XrgjDMS3/v1V+Cjj4LXLYzVxdWrk9+TBY8Im/HjExkla9QALr7YTrlRtODxD5J4XH9xJugDb/Jk4JJLnNd5ecA11+j9voxXXgFuuSXxvmlT4Jxz7JRtg7vvBh55xHm9YAGw77563+fbBFnwcoMoWfAqs4vm+vXByyAyTzoseJRkxSHCQ0J2YOMB/McfyaJw8eJgdXJhO5KtwZ8XeEFWqSkGj1Bh5MjEa3cCboMoxuDxAk93LNmzR5xKXedc2f337r1X7/e9WLQo+f2SJfbKtgHbtj79VP/7YVjwRGOiLYFHWTTVIAtecEjgES7ZaMEjgVdJseGiyZcRRgyfLRdNsuAR6YbtH7bcMwH7Lpo2smjyDxLd/iVzJdGpG3uNbbrf8eNalIWByRicLguerYUwsuCpQQIvODba7Lp1iddR3tSd8CYbLHiUZIUAYMdFk2+MtgReGDF4Ni14JPAIFdjB3+YkxraLps5kT/bbfCpw3f4lexBFUeBFOXbLZCxKZwyeDfiyVd0NK5sFz2uyaMNFU6cMr2sdJdHD19O2wKtVK3h5RGYgC176IIEXkChb8MLYB8+mBY8/TxJ4hAh2clBgMWrYtoumTnmyCQ8v8HT7VzYJvCgLgyhb8MISeKr3gyx4CaJkwYvSfRDt3xiUP/9MvK5ZM3h5RGagffDSBwm8gNiw4IUl8MIIAF+zJvm9TQtekIdAPE4CMVeJootmUAuerK3zDxKy4KUHG94E2WDBY79rOgmnLJoJbIgqncVXr7pEKYadr4v73ta+ucXF5uVkC9kwnzGpYzbsg0cCjwAQbQteGPvgRTEGb88e4JBDgObNgZkzzetDRJOwBF4uWvBsx+DZnDRG1YJ3/fVA7drJn0XZgmd6Tx55xHFtu+cecdmq5ZIFL0GUXDSjLvCuugqoUwcYPTp4+VGON7TBsGFOX2UTjEWNUaOccfPaa/W+l4374GXrNgk53k3CJ8oCj8WWi+aGDcnvoxCDN2oUMG2a48Jx5pnm9SGiSWWy4AWNwZOJCrLgiSkrcyZR/HWOigXPZhbNm28Gdu4E7rxTXLapBa8yCzwb564jzLLVgrdlC/Dcc04fueCC4OVHYewIkwcecPrq9ddnuiZyLrnEGeP+85/gWwRFzYLH14cEXiUlDIFXWmp/ZdCWwOMnF1GIwfv998Tr334zrw8RTciCF7zcKAq8KAgD2YM7yha8sGLwyIInJkoCL1steDt32i0/19tctqEzXoZpwXOfXbYteNna3kjgBSSMLJqAnYd4GElW+LpGIQYvWzsfoQY72EYlyUpYFjy+T+j2LxsCj73GNuN4+XOLwiq8TOBFxYIXRYFX2Sx4YWfR1Lmf2WrBsx1PFoWxg0gg2ntVRpgWPNfV3rbAy9b2RgIvIGEkWTEpQ0TULXiiCZ/JAzPXJxiVnSi6aIZlwVP5HS/YOhQViT/3w+Y1ZomiBU8WPG/Dgrdrl/2JBhDePnhkwRMTJQtetgo822En2TrhViGM5HhhE1Tg2bLguQLPdpKVbG1vJPACEoaLpkkZIsIQeDYteKJztJWVicgdouiiGZYFT+V3VMutUiXxOooCLwoPTZnAs2HBA4K7poVlwSsroyyaqkRJ4GWri6aOAFAhl5/5/LXLBsFHFrxoQgIvIJVd4Nm04Mk+8yNbO1+mWbsWeOghYPr05M83bgQefRT48cfM1Mtl1Srg4YeBRYsSn0VB4H38MfDJJ4n31arplxeWBS+bBF4UJmlhWvAA4P77g42RYQm8PXvMBN6iRU4CCJbycif2me+ruULYWTQrg4umbYG3cSPw+OPAd9/5H7t2LTBiBDBrlt062MJ9zv3yi/M+bOunKeXlwKuvAmPGpLb7TMXgTZsGfPut87qoKPEsjseDPV9yZRHLYkRL5aSyCbygMUJeZQFmD6koTBSzkVtuAV55Bahb19n+wnXpu+66RCrrrVszt+dQ//7AV18lf5ZpF81ly4DTTkv+rHp1px9EwYJnw0XT1ljBUxktePff77SPf/5TvzwgvPjs3bvNsmgedVTqXqjl5UCvXsDChc5Ede3a4PWLElGy4GWLwOPraSLwvK7ttm3ATTc5rzdscJ5hMi64APj8c+d1aWl4C1imnHOOI1JuuUW8n++OHcmLdZniww+Biy92Xtepk/y3TFjwdu8GTj458b64ODVBmOl2Grnihk4WvIBUNoEXRQteNrgwRJFXXnH+37gRmDs38Tm7T9GCBemtEwsv7oDMJ1mZNCn5fdWqiTrligUvLOGVTRY8E9dKmRj/17/0y3IJKwbP1ILHizvAuY8LFzqv//wzeN2iRtgWPHLRFKM6Ds2Y4f13V9wB0Ux371qgAOf+2pxj2eTeexOvhw9P/lsmYvA2bQLWrUu8P+us5PlBkOcYuWgSAMLLopktAm/HDvOHnK0YvGztfFHi55/Fn9t2rQlKpl00mzRJfl+9eqJOUbDgseWaWvDCmihmkwXPxDPBayJmOkaG5aK5e7d5DB5PFIR6mHhdFxvnTi6aamXI0OlbUV8M3rPHbp4Dm7ALhvwCWCYseOx39t4beP755PlBkP4g6mfZOM6RwAtIZc+iCZitdsfj9iYvYWwHkevw137mTPFxUfH/d8m0iybfPnfvTriBRMGCx9aBLHj+yASeyaq510Rs1Sr98gASeFGAXDT1SafA0yHqbVXkOh0VC17VqonXtgWeyTOHLefAA525n609XEXfjcKCpC4k8AJS2V00AbMVJtkkJWgMXtT866MK69oAyAPQyYKXDH89tm2LrgXPVOBVJguezGXLtgXPNMFDNgi8KNzHMMkWF80o3YeoCrwoiWARu3fbzXNgEy+BFzTJSlALnrvIyrpoBrnXtrdyyBQk8AIiE2c6A3+2CzyTFSbZ+ZEFT4943GySsXp18vuZM8XlZMqCJxtMoybwgGhZ8LLJRdPtt5l0m0qXBU9mIffDVgweP2ERCTzTCUzYVhG/9qHSfoK0sbAteOSiqVaGDfbsSbSF3buDb2MC2B2/RC6aZMHzL8d9BodpwYu69VcECbyAiBrCM88Ahx2mPnikQ+DZapyih5FNC15QgWeaNSkbWbIEaNtWr6258AJvwwbg999Tj8uUBU/2ULP5MDXpE6LrESULXja5aJaVARMmAI0aAZddFs5v+pGuGDxTC56tLJqi1Ou6WTRl7Zv/3OZE6KqrgAYNnAx+IqZOBZo3dzLbysaGCy902hifIEkV2wKPr2dlcNE0EVJhxOB17gzsuy9www1AzZpODPXll+vXzeW995z2ecMN5mWwiPplFC14fJ0yHYOXDoFHFrxKiKxh/vijE/SpQjoEno3GWV4uHkxNVphI4AVn4EAnbb9OW3PhBR4ALF6c+lmmLHgy1zmbg6xJWfz1OOqo6FrwouSiGY+LLXgnn+y4C7/0ktOW041NC57XJNbNMqmLLRdNvhwTF01ZGwprz6g1a4DnnnMWn/r0ER/Tq5cT3/jxx8Cnn6b+fdYs4PXXnTZ24olm9bDtohnENbYyZdEMQ+CtX+885558MuFp9eKLTiZpE/r1c9rnk08CW7aYlcEictGMigWvsDDxeuvW5L9FxYJny0WTBB4BwPum//GHWhnpyKIZZjA4xeBlhu+/T7xeuVLvu6J056Jrb8OFxQTZxFt3kPVq90EteFWrOhPQKFnwbLho8sfasJqWlaWWw/8OP2lIBzYteO61r1YNGDIEuPXWxP5cmzYZVS9SAk/2d77d2xIaKvdg8+bEa9GYxi4amLZj21k0+fLIRVOtjDCx8ZyzIcSibMFj56T8/JQseNHEaFep8vJyTJ06FZMnT8b06dOxZs0abNy4EXXr1kXjxo3RtWtXHH/88ejevTvyctyk4tUwVTeIzhYXTdmDKEoxeDne3KTUqKF3vMiCJ2qHmXq42BJ4XpOEoDF4b70FdOhgZsFTPTYTWTRFE1BWLJog6u/8mJSJ+Fmvjc5LS/X2XXSvcfXqwIgRzuuxYx3rgE2BZzLxDVPgmWyYroJu/xQJuA0bwq2HjUy8ZMETk84JtY1rZ2POFuUsml4iOGiSlTAseEHajy0Rmmm0BN7atWvx/PPP47nnnsMff5mn4oJRddy4cQCAZs2a4aqrrsIVV1yBRo0aWahu9PBqRFESeDYGy3RY8IKuTldWgVe9ut7xIoFnK0OqDWQTb91BNkyB5wqoqFrwbAm8XbvCEXh8naIk8ADn2tesqV6Wez7sKnKdOs7/mzY547HuOWaDBY+fvNsSGjbif8MWeCZWwSCCOFsteCbzmTBcNIP+lhc2npWifhkVC55Xf8yEBU807wtzH7ycteDt2rULDz30EB588EGUlJSgoKAAXbt2xRFHHIGOHTuifv36qFWrFjZv3oz169djzpw5+O677/Dzzz/j9ttvx/Dhw3Hbbbfh5ptvRhV21pEDZIvAC9NFk2LwMk9YFrxMrR7asuDZXn1n+6UreqIag2fLRXPXLj2hI0LFgpcJvAReSUlwgVe7tvN/ebnzW7rXMRsEnulxfthwmzONrWKxPYZURoEXZhnp3otQhi0XTV6wZoMFLyoxeOSimYySwGvXrh2WL1+OTp064dJLL8XAgQPRoEED3++tW7cOr732Gl5++WXccccdeOmll7BkyZLAlY4SXoOLqntPtgg82cQi0zF47HnaEHh//OFkxzr9dKBVq+Dl2eLTT4FvvwWaNQMuuij5bzquZAC5aJqUBUTfgheGi6YNS4qKBU+XqVOdJBqnnAJ88AFw3HFA+/Z6ZciS+QDm115kwQMcK56uwItSFs2wBN6nnzoJKg47zMmW2acP8PXX+olpRJacP/9MvNYdI11E7TQWM9+ihr9/OvczTBfNr78GPv/cyQp50UWJ+FET0inwwvRO0sGWBY+38kfFghemwAsag+eOuZRkJRmlIa9atWp455130K9fP63CGzRogJtuugk33XQT3nnnHdxxxx1GlXS55ZZb8PDDDwMA7r33XvzrX/8SHjdp0iQ8+uij+PHHH7F9+3a0atUK/fr1w7Bhw1CsalZTxOumqzYIWw9xnnS5aGY6Bs+2i+agQc6DbtQoYNq04OXZ4OefnYmsy6pVyX/XvW6qSVay3YKXDoGXaxa8MASeqH0GSa+/ZQtw+OHJ59W4sbPVh06iJT8Lng7udZMJvM2bgRYt9MrMhhg80+MA4Icfksc1ALjuOvXv+8GOc/XqmZUhugd5ec7nuWLBW7kS6NEjcT5z5zoJpExJp8BL5295YcuCx89hssGCF5UYPLLgJaM0Hf7ll1+0xR3POeecg19++cX4+9999x1GjBiBmE8Qw2OPPYZevXphwoQJ6NixI04//XRs3rwZ999/P7p164Z169YZ10GEjQE3Wyx4svMxcaWx6aLJ1suGwPv8c+f/n36yk/rYBnzX+fnn5Pe67UVkuYiSBc/WNgm23au8LHg6K/qqY4PufQ3DRdNW8gC/39GZZH3/fer316zR769+MXg6uPVhV5F5C54uue6ief/96seawHoquO6yuvDnc+ONCStLrgi8BQuSz2XOHPOygtZFt4yoCDxbFryoZtGMsgWPkqyIUZoO28qEaVpOSUkJBg0ahKZNm+KMM86QHjdjxgwMHToU+fn5+Pjjj/HVV1/h7bffxuLFi3HCCSdg/vz5uOqqq0yrLyTKAo8t17YFjzWEBhV47ETUZPLCfifoNgn8BJ0XUpmCH0D5iazudRO1zWyw4GU6yYpXDB6gXr+wJi8yF80g7qNhuWgGSa8vs8bo3NN43K4FT8VFU5dcF3g619jvvEWLK6wFzzQZh3udunRxLFuPPpro81Fy0RRtRaIK3z+DjvuV0UUzrG0SssGCF8UYPHLRzJJ98IYNG4aFCxfi+eefR22PZbjhw4cjHo/jkksuwcknn1zxefXq1fHiiy8iLy8PY8eOxbx586zVzYZPfFgCj/192zF4QQUee35sBkiTTsnWK+haBH8uM2cGK88W/ADKx9DpTBLice8BjB0kKQYvGS8LHmBf4MXj5uIs22LwdOoo6+c646ZoMsUSRgyeLiTwEujej3g8eZw0eaay/a+w0InxjMUS7S9KFjyVv8vgr03QcZ8seGaINjonC55/OeSiKcZoOrx8+XKMHz8eK7ndlX/55Rf06NEDdevWxcEHH4zPXV+3AHz55ZcYOXIkLrroIpzCO+sz7N69Gx9//DEAYMCAASl/b9WqFY488kgAiW0cbBBlgceWa9tF06YFjxV4QS14QVOtsxvnAk4ShyjAD6C//578Xqe9yNql215YYRA1C14UXTRZsREk7tb2sTazaAbFtgVPdqxOP/Cy3gF2LHjseqQtgZdLMXheSW54dO/Hli3JzyaTZ6ookQMQTRdN3bJYstmCFxWBRxY8NdK1Dx5Z8AwF3iOPPIK+fftiOzM6b9++HT179sRXX32FzZs3Y9asWejTpw8W6qbCYti2bRsuvfRSNG7cGI8//rjnsQsWLEDJXz2hW7duwmPcz2fMmOFZ1vbt25X+AZXXRZPNBhdU4LEp/k0EHnutglrw+ElYVC14W7cmv9e5brJ26X7OCgOy4CWTbgseoHdvszmLZtQEXhQseGFl0XQ3cvf7LZ2/6x4H6Ak8v/vBuyfyXg4mz1S2jbL3NYoumoA9gZdNFryouGhW5hi8oElWyIIXDkbT4a+//hr77rsv2rVrV/HZmDFjsGbNGpx55pmYOXMm7rnnHuzatQtPPfWUceX+/ve/Y+nSpXjmmWdQ1ydn79KlSwEAderUQU1JLuoWf6Uwc4+VUVxc7PuvWbNmAOwIPNFx2eSiaTIBZMuqVk38uUlZ+flO5su2bYEBA/QfwPwkbM4cs8F/5EigeXPgxRf1vyvCrz3YEHhuW2YFnsrq4axZwL77AmefbWfTWSA9Ak+1T7zwgnMv//Of7LLg2RJ4n37qbBdyww3qZfCoWPCCWBm9fkeGbQueXxZNctFMReca694P2wKPtQ6QBS9YPVSeE5XVgsf37yhY8OLx7LPgUZIVQ4G3atUqtG3bNumzCRMmIBaLYeTIkejcuTP+9a9/oV27dvi///s/o4pNnDgRzz33HM4//3yceeaZvsdv/cukUcNjx2d3i4QtFlMjZosFL2oumrIYvKACDwD69QOWLgXeeAP48ku9svhJ2M6dTgppXa6/3tlP7/LL9b8rwm8A1blufnsQsm1FZfXw9NOBRYuAsWOBCRPU6+GFrSQrNrYxGTzYuZfXXitOshK2BS/TLpqPPgosXw48+aR4/0QVomjB87Me2c6iybt/65TJkksCL0wLHrsHHmD2TGXPRWTBS7fAS6cFL8hiXWUUeCaWNv5+RtWCV1rq3faiGINHLpqGAm/jxo2ox6Ux+/7779GhQwc0b9684rNOnTqlxOmpsHnzZlx22WVo2LAhRo4caVLFQGzbts333x9//AEg2gKP/f1scdEMmmSlrMyZjLosWqRXlmiV3W+lPx34DaA2Y/DYtqKyerhiReK1iRgWYWubhLBcNPPyEhP5sC14mXbRZDEdl2xb8GwIPL+2rTOuyWK1wrDgZSoGL4y2HWYMHj9u796tL1qi5qKZLgtePB7MNdtGW8o2F00TS5uoX0YxBs9vLIyKBY9cNJNR2uicp0aNGviTWR5btmwZVq1ahdNPPz258IIClBr0nBtvvBErV67EW2+9hQYNGih9x3XL3O7xxNj214hfq1Ytz7K8rIAuZX/dba8BPpMCj9+Ty7aLJnuJMp1khb1W/LXUFWfZKvBsumiy11B39dDSjiqRctFkce8DK56iasELQ+CZYtuCZ8NF069t64xrMiFgS+BVqZJoe7lkwRMdu/fewOLFqZ/rjkWiMaS01MmGqYrsvua6iybgXO+qVc3K86uHynWrDBY8/n7u2RPNLJp+8w8TgZefnzj/MPbBIwueocDr0KEDpkyZgj///BMNGzbEmDFjEIvFcPTRRycdt2LFCjRu3Fi7/HHjxqGgoABPP/00nn766aS/uVscvPjii5g0aRKaNGmCN998E61btwYAbNq0CVu3bhXG4a34y9TgHmuDqFrwgqQgl5ENLpr8eeqsEANiN6pcE3jssQUFifvq/q9rwWOJmsCz4aLJIhJ4UY3Bs+WiaVoXlihm0bRpwZMJgeJip32UlwdLspKrAk+EbCckv/vFL7aKxpDdu+0IvFx30QSc6+2T+sC4HjYteF7HqVpYTa4bX7aJpU3FRTMbLHgmSVYKCsSLyrrlAGTBk2Ek8C6++GL873//Q7du3dClSxd88sknqFmzJvr06VNxzM6dOzF9+nQcf/zxRhUrLS3FV199Jf37smXLsGzZMrRq1QoA0K5dO1SvXh0lJSWYNm0aevTokfKdadOmAQC6dOliVCcRURV4/G/bjsGz6aJpU+Dx571hg15ZUbXg+bUHUxfNKlVShV1lseCZDNjudQ7bglevXqLtRslF06R/Avb3wbMh8Pzats6qtJelp3ZtYOPGYBa8qlWdtP+AnSyaoomkLYGneh9lk2+Zg43uWCRa3Nu9O9n7xI/K6qIJBLMcpdOC53VNwvCokJVtw4IX1Ri8MFw0CwsT3wvDgkdJVgxj8K644goMGjQIK1aswAcffICqVavipZdeSrKajR8/Hjt27MAxxxyjXf6mTZsQj8eF/y6++GIAwL333ot4PI5ly5YBAIqKinDqqacCcDJ68vz222/47rvvAAB9+/bVrpMMGxNIURnvvQf88INZnUS/nS0umiYDrZeLpk5SiClTgJdfTv1cV+CJrvX//gd88IH5oBOWiybrgjN3LjBmTPL93LVLr85z5gCjRwdPrZ+OJCtBXDRZ61gYFjzWMz1KLpqlpcCCBcBrr+mtLEfRRdOmBU+WjANIuGkGFXii39Itx2XcOIDPf5ZuC56sj4dtwVNlzx4nUZdLZcqiCTjX+7PPgEmT9MpauBB45RXvY9JlwVMd90yeyzJL25o1wKhRqUl+VH7300+Bjz5K/mz7duDHH/XrZ5MwBJ5IjM2aBbz9tlo/Za9dkCQrv/wCvP46sG6d81xbtCiYBS/IvN02RgIvFovhpZdewm+//YYff/wRv//+O84666ykY/bbbz+MGzcOF110kZWKqnDbbbchFovh5ZdfxgQmnV9JSQkuu+wylJWVoV+/fth///2t/aZXww66AnXUUckJLHTgf9u2i2ZRUWKSGyULXllZsvuoqsBbvBg4+mhncObRFXj8tV64EDjiCODMM4F33tEryyUsF0124vj668DAganH69zfRx4BLrjA+d+UeDy6Fjx3NTVsC56pwGPPKQwXzW3bnH5y0UXAv/6lXqbogc232XS7aIYVg1fA+cWwAs80yUdBQaKd2XDR3LAhdWxMt8CTCV6ZwPO7X3zfE40hOtfuhReAoUMT721Z8LLFRXPSJOCkk4BevdQFxp49zvjg99xNVwxeGC7zsrLd9nnGGcAllwD9++uXMXs28PXXqccdeijw++/6dbRFWBY89rN164CDDgLOO8/J2KxaDmDuorl9u9NeL7wQaNjQea4dc4z4fFTbkm7m9jAJ5FDVokULdOvWrWL7AZaDDjoIZ5xxhlEMnildunTBiBEjUFZWhlNOOQU9evTAeeedh3322QeTJ09Gu3bt8Oyzz1r9TfaBwafEDyrwSkuBl14yq1cYFjz2fAoLE+IgyjF4IsEmwkt46Qo8/r4/8UTi9YUX6pXlEpYFjxUqMkxiAHQm/zxbt8rPJ9MCz3X7CjsGjxV4Nu6tLQvelCnA2rXO68ceUy9TNIHk23Q2Z9GUufIBCYFXWhps83R3QmRD4ImIisCrXj31GgL+90slwZZO+7jmmuT3tmLwbLloip4lNgXe998nXs+YoVbOb7+pPXPTlUXT628HHaT/WywyC55rwZk82b8MnTHv11/Vj7VNWDF4LmVljoeTy803q5cDJPqmbpKVOXMc93mWVasSzzgW1Xs1Z47acenASODl5+fjsssu8z3uiiuuQAG/nBkyN910Ez7//HP07t0bP//8Mz744AMUFxdj2LBhmDp1qnJWTlXYScottzjuaS7p9CH3K9O2i2ZBQTCBF6YFj429ULXgNW0q/5tuohavB7hpdwhrmwSVLGmmMQCm+yh53TObSVaCTM6iasELW+CpTvR4VAReLmbRBIJl0mQFnjt25LrAKyxMfia4+N0v2wKPJ6wsmuXl6uWw53jppY5L2wUXyMtWRXRd2IRjqs8A1edbuix4st+ZMAG44Qb93/L6XRv74PGwXhim8c82SIcFT/fZbsOCJxuDRO1BtX6zZ6sdlw6MpptuPJzqsTYZNWoURo0a5XlMz5490bNnT6u/K4Nt2Pn5QPfuifeZFHhhu2iGJfCCxuDxq7wbNjj3yM9S5ZUcJKgFj79uJvhNTGzE4MkwzeL122+AScJarxXgdFvwZMNX2BY81k3NRPjEYuYB517HzpypXg6LqP3yn5kK2cMPd2JcZb8jI90WPMCZUDRrpl6ue56sBc+GO5nXb5n+Xfc42eSqqAioVs2x5LOk24LHE5aLJuDUXSVBFT+p7dwZqF/fu2wVRNfFTeoDqD8DVCf6mY7B69bNEXm6v+X1uyUl+u3L7zqccIITlwfY2RvZFJsCz+0z/PPJhsDTfebJFpNVsj6L2LoVWLrU/7h0YSnnnZiSkhIU6uQkzkJ4gWeyD4dXQ1y/3qxeldVFU4TI3O5VH56gAi8dFjzTGDwVF01TC96sWWbf87Lg6bbjoAJP9nvsymoYFjx22DQR72zMFmDPgvfLL4nX7dqplyk6B1sumuz4EUULHivWTS14BQXBXDRVnkVREXjZYMGz6aIp+0yEqJ3ZyBzoJ/BUnwGq1zddWTRlfysoCL5nmsiCFzRenyfo3MgW6bDg6fYlPwueyj3VEXgqfevnn/2PSSehCbxNmzZhypQpaOrl+5YDsA07L89s0PA6TicLpFeZNix4UXTRLCvzX0VViQnwGqB0B23+HNjrY7rekUkXTa/VW69rb2rtiZKLpqxvhm3BM518sBafMAQeiywZhogwXTRNx4+wsmjKkqwAwVw0K0sMXmGhY8HjybQFL6wsmrLPRPgJPFMLnqhN5bIFr7DQvsArKbEv8Nh+EHWBp2rNlsXgZcJFUzbXME2yYjrnCQtle0Lbtm2T3r/77rv4UpIuprS0FKtXr0ZZWRmuvPLKQBWMOuwDIz8/MfADdlagVJOE+JW5eTOw337Av/8NnHOOWZkyF023c7Pn7octgadyvIpItinwvHzzo2DBsxmD51WvMCx46XbRlB0TZgxeXl7yQoCJ8AliwQsj85xoYh0kmyB7LDsJiqIFL1ti8Gyl4Fc9jo3xYomKBS8WS560humiqXrN/NzSMh2DpyrwMp1FMwwL3qZNwAEH6JWRKxa8eNw5F5X5TZgxeLr3VDa/NhV4pnOesFCebrr7zQHONgnbtm3DNo+Zb1FREc4880zcf//9gSoYdXgXTXY134bAM7XgicpcuBA491zz5BcygRePO4MP67bmB3vdgsTgqTyw163Tqw/guJ/Nn++8Dirw2LKjIPBk2yTI8Fq99fqbe/10SZfAU5lkqAg82xa8GjWS20mUXDRNjgP09zXS+W1TF81MxeCpEo8nxupctOCxFiIWNwaPR9eCJ9voXJWqVZOFTVhJVgB7Lpo2BR4bAxllC56Jl0YYAg9IjRv1W/j2az+mY5ttVMbCXbv85zfsmBZlC56pi+aiRf7HpBPl6ebSvyIH4/E42rZti7PPPhsPP/yw8NiioiI0bNgw7Rk0MwFvwTPZaNFP4Olax3R+Wwf2IcTG4AHOAKAj8NiHb9264t/QrVOQY/gH0xtvAF26OK9tumhmY5IVr7K9Vnb5h50qNpOsmKbQdpH1o6AxeF6/zQu8dLpouiuxOr+lgsrkxIaLZtQteDKrlUqZuZZkRTauRMWC5yXwbMfgmVjwwhZ4LLlkwcvLMw+nUf1d9hivsIxscdFUua+7djnPLi9Y40IYMXiZTrKSSREuQnm62apVq4rXF198MY4++uikzyor7CQgjCQrrl93zZp69bIRc8fDW/BYK8bOnUCtWuplsQ9fdgIUhsBTuRZsx5w0CTj4YGeSUVKiv00Cf99tCDx3gOXdhlxMY/BUkqx4XWOvlV1dYeziDrr5+cGTBaXDRTMMC16mXDR1rq+pwJO14XS7aEbdgsePt7lmwZMdZyMGb/du8XXSFXgsUXDRZM8xbBdNFlULnur1teEy7KI7xrvXKx0Cb8+eYAIvW1w0ATURKFqgAMKx4OkkWWnbFjjpJODpp533omtt0+qcLoymmy+//LLtemQtNpKs+DWcNWv0BV4YDU3mognoJ1phRVMQgWfLMsDeR3fyXlxsFjgdpsCrV0+cWTVMF01TC15QgdewYeoKW7pdNFWSrNiOwbPhomlqwTMVWX6w/ZS3jLhQFk3vMoPE4EUxi6aXwAtqwZONPTrtgx+rK5uLJkuULXi6XhrpFnhe6Ai8qLhoVq0qHht1BV5eXmIRNxP74O3aldjkvEmT1HGbx+aiRLowyqK5YsUKvPrqq5jvEWQzb948vPrqq1i5cqVx5bIBtgObWvD8jjOJw/NqaKYDBVtPkYumDu4DuKgoWAyeyoMxiMADgrtosmUHzaLJ7nkEJFwFTV00VSx4Xu3Fa2V3zx79tlZennDRbNIk9e/pdtHMhAWvuDi4i6apBS8dAk9kndEtz4aLpp9VQif1dxhZNGUumiqZg73KkhEVgVdUJF540rHg2RB4/P1n72sQC142umhGOQZPdxHP7UfpctH0IltcNNn5HTuesaj0LV6Uuf3IlgVP556y22c1aeK/+J6NFjwjgTdy5EhccsklnpuYx+NxDBo0CE+7Ns8chU+yEiQGT7aC8MorwKhR5pMDHl2XQ8BJmDF+fOJ9UAue+wAuLjbf80v1eJWOyd5HVzS5/uRRyqLJW3KbN3f+D3ObBFMLHqDf1jZsSNTPhsBLh4sm22/Hjw/+4M+kiyZ7XL166sf6wVvwRFAWTe8yTdsEX5aMqAi8wkLxszDdFjz+/tuKwTNx0YzHgcmTgR9/TK0DWfD0/hYlC55OkhUTgVdSAowda56N3YXtC7LtcUwteO7ntvfB27zZOXdZkj3WcGJL4OWEBW/ixIlo37499t9/f+kx7du3R4cOHTBhwgTjymUDoiyabmOzJfD++1/gkkuAiy9Wr5fXb+sKlk2bnIQj7CaONgUee95hCLygFrwdO4JlIQzqoum6MLB1c3FFaKZcNP1WdnXbGvsgClvgBZlksElWWAvegw8CL7wQrF516kTDRfPAA9WP9UNF4Jlu5RCWBW/PHjNhzI/jtWolXPpsCTyT/UL9iJLAyxPMTEwteOyENIgFL5Mump98AvTsCcydm1ofsuDp/U6UBF7YFrybbgLOPhvo3Vv/uyyswLcp8MK04I0c6Zz76aeLv88KvMaN/V00g2TdzhTGLpr77LOP73H77LMPVqxYYfITWQk/4JoIvNtuc17XqpX6kJs2Tb0uXg1Nd9L9zjupA7wtF83iYudhaZpAwFYMHlsOL/AAPUuUVxZN0cTFD9666A5Y555rdt1sJlnxW9nVbWts5s1atYDRo5P/rjuhSoeLJv9guPpq7zLjcXmbzM93RGKmXDTZ44qLgVNP9f8tFWy7aKbDggeYTVj59pCXl0hAZSMGD8htgVdUJB4ndSbL7LjDWqJV20c8nnrv+Xh79zhdTFw0Tzst9bMwBJ5s8UXVgqd6fTOZRTObBF7QGLznn3f+nzUrWAzfkiWJ161bi49RGZNkFjwTgSdKOCTK5P799+Lv84vJ5KL5FyUlJagme0ozVKtWDVtNc6VnIfwqgonAu+8+4MsvgeXLgQULnAmua8nQEVE2LXiiThPEgldenhBMrogyFXhhuGiKBJ7ONeOvPftdk1U4vm5vvw383/85rrvsdVOdbOi6aJrG4AHB4hcLC4H+/YEffkg8VNh9dFQI6qKpkmRFV7TLJjennuq4QrdpkzkXTT6W7M03gcGD/Y/1g72vskWFdAq8eDzRdr22oFEd17wEHpBw09TZJoG/F0EseNmWZEV0T/zaMNuv2AU5E4EnEvbsVCbdLpoiwnDRlFlnomzB013ECyMG7+STxYnwohSDZ5r0LB4HZs50XjdtCrRoIT5O5Z7KLHi2kqyIkjPJIBdNCU2bNsVM9457MGvWLDRq1MjkJ7KOWCzxUAoi8PLzgWOPdQbavfcGBgxwsgkC5jEhPLodXTQhCyLwduxITNLTIfCCumgCehY8/vdYQWJD4FWtCvTo4fzPim/V9pauLJpAsPhFd6J3yCGJWEMgmLssi62Nzv1cO1TrdOCBTp8H7LhoBk3+kp/v9IETT/Q/1g/3HHjXUZZ0umju3p3ol17bu9gSeO7EmWLw/I+TuWj69VebFjzRfWcFnm0XTZNxKgwLXrVq4gXdKMfg6V67MCx4hx8udmm3acELKvBMci8AwMqViWyTBx0ULIbapgVPlHBIZncSlc0LPBtZNHPCgnf00UdjwYIFGDt2rPSY9957D/PmzcMxxxxjXLlsgm0cugKPnZSJcCeTO3eqWy/CFnhBXDTZgcYVUe5DRdeNIAyB59bF1ILnVScTNwmR+HQxWdW3mWQlbAuei4k1yu/YMLJoqiBrj2w5Nlw0Y7HkGAcV2ONEEyHRb6ngtvuiIvk4Z2rBMxF4bLvlBR5rPVId13hrG49rwdu1y1w0VqYYPBMLnorAU71uonvElmnbRdOrXosXiz8Pw4JXVCTfg1DlXCtrDF5Bgdj6GTTJiqn7uQhTCx5ryznwQLsCL10WPNF94GPwyIL3FzfccANisRguuugiPPHEE0lumFu3bsUTTzyBiy66CHl5ebj++uutVTbKBBF4rFuVCLdDlZfbGfR0O7ootT9vwdNJKc7+vpskJMwYvEy7aLKYrMKJ4gNdMi3wbFvw2N9i+4OpwAvLRZNd5bZlwQsq8OLxxEPP/T67QqpbN5sCz72vMuuMbnlBXTTZdssLPLbf23bRBNSteBSDl0ymLXhsmem04MmcpcKw4PHbFrGoPOOzIYtmGC6aBQXi7QOCWPDy85OfM5ly0WTbn5cFz8RFk30+yTZBVy0LkFvwbAi8SpNkpUuXLhg+fDh27NiBIUOGoF69emjZsiVatmyJevXqYciQISgpKcF9992HQw45xHadIwnbIN3XJi6aIkwsZTYteLJVMFMLHvv7UXHRZB/8bl3CEHiLFwP77ee4HP7jH2rliayLLiYCTyUeiiWdMXi8i6YLO+HTmVSlw0UzDAuezn197TXHtbNZs8Rn7lji/j9jBnDWWf4TMN5Fk68Li85+bKzAs+2iqSPwPvgA6NoV+M9/Ep9li8DLNQuerE5hWvBsuWiaWvBGjkxNHAV4X7NZs8SfhyXwZJNklTg81etr2h5FY62pBc9kSyvZ7+bniwVekBi8oHG3PCrP4p9+Ag49FLjzzsRnbPsLYsGbPh3o3j3xnrXg/fab0zfYv/mhY8ET1c1NslKnjnNO5KLJcPPNN+P9999H586dUVZWhpUrV2LlypUoKytD586d8d577+E2NyVkJUC0+p5JgWfTgicaWIK4aIoEXlRcNKtUSUwu2ImeTnIEvzotXAj88QcwfLjaJvZeLpqs4FO9dum04On6/Weji6ao33qJR1l7FHkBeB3vcvvtTpYzti2JJjHjxiULGxE6Lpr88V6491VmnQHMLXiFhYk6+vWBM890Jhr335/4LB0Cj3XfUh1L+DLZNqebtTiKAs/LRVO0LqxjwduyJfHalsA77rjEa7YNq4q8eByQOTR5jbELFog/t+WiyXoGeVnwbGadNbXgHX642nEu6XTRtG3BY7OLq5Tlh8q878gjnb0W77nHSfQHOIm/AKdt7LuvucA79thEmUCyBY/H1ILHzt9YvCx4bhLDXHTRNNx22aFPnz7o06cP1qxZg+V/3bmWLVuicePGViqXTdhw0UyXBS/IpNslKhY82y6arGBi8wOtXateJ52Hxdat4v3eRHUD7LtoBt0mIeoxeEEteLLv+1nwtm6VZ6Sz7aIpsgi539fdakXHRdM9XmVvR7efelnwTAVeQYHTb0tLzeJU+Ox3YQg8E1cr/hwbNEi81xmP+LJMj0mni+b55wNffOEkeJg3D1i2zOmv8XhiAscLK/YesCnQ99or8dpU4J15ZmILIyB5EllerjYh9Rq3vK6ZrM62LHhseywqkj8TVCx47LOqXj3ggAOAr79OPU53weHoox3Pl0MOAb79Vr0s0RifLS6apaVmC7gyVJ7F7P1bvx5o2TLxvdq1nTZn6qLJ/z5rweMxFXixmGOB5tsqfx+2bUvUx5UrtE2ChMaNG6N79+7o3r17pRR3QHYJPBsWvIIC8xXlKLposhY8F1Z4qVjadH5P51jbAo9/oPu5Q3g9WHI9Bk/FgidaMfSy0ui6aPq1EdF95100Xfwstjoumip1c1GJwTO1zLoCj/0dHdJhwTOJn+PLZMcjVsDolvX1187EjSeIO5lOOX7HuW3khReATz9Ndj1mRR1fH/Y9O16z52oi8G691bF+swsBJi7jXr/tdc38LP7pEni6Frxp04ALLhAfp7u4NnEi8N//iseibLbg+Xl62HTL1n0Wu9fHve+uZTdIkhWWvDz5OZkKPEDsYsz/Dr8HnspvVpoYPCKVMLNomiQzsemiKSrLtotmLgk8nXNQOdYryUpQF01+vzQR6bTgyWLwMuWiqZJkRWRB84qz0nXR9GsjovJELpqAv8VW10XTRODZtuCxyQhMVrltCDyR5ZPFZIsDXuCxa6c645GoLFE7iIoFj5/Ey7b74CdcIoFXpUpimyHATOCJJrQmLppe/djrb34LQkFjydhrUlQk3iYB0I/Bq1JFXpbu2CvzSOCPU/mddGbRDLpoEkTg8XNFXc8t9/q4990VTjYF3qpV8r/5IRN4Ihdjvm4igZeLLppKAu+xxx7D7oD24d27d+PRRx8NVEaUSUcWTSBaFrwwYvB00+Xa2ujcbd7sxMd0QhWmBc9GkhWbAi9MC162JFn588/Uv5sIPFMXTVn/BIJZ8MIQeF4WY1PLLGvBsyHw3My+gFnad1F/MumnXha8yiTw2OvJ9lkvC547gWvcOPlcbQk83kVTBRMRB8j7hS0LHi/wbFnwqlSRl6VrwZN5JADRyaIp2k8z6D54QVw0+bHLNIumqgVPV9x4ibiwLXj8Hngqv5mzLppDhw5Fu3bt8NxzzyVtiaDC5s2b8Z///Af77rsvbr75ZqNKZgOiyZnu3lPpSrLy6adOog9VbAm8JUuAKVO8LXiy35MhG/TYB4upBa9+/cQ90XGJirqLpixBhQxdCx5bXpRj8Gy5aIrioYIKPFWLjyyTpWxCJMuQJ/otmy6atmPwZC6ambLgkcCzdxy/iKVrwSstTSy6NGmiN0leuhT46qtkMZMOC14mXTRVBZ5uDJ6XwNOZLOfnJwS1qG/ZsOCZWF54gSc616ACz6YFz8SbZs+exHm6zw7ZPTWx4MkIIvBEFjz22u3ZAzz/fOK9zRi8rLTgjRs3Dnl5efjb3/6GJk2a4IILLsDLL7+MefPmIc6NbvF4HL/++iteeukl9O/fH82aNcP111+PwsJCjBs3LpSTiALZFIO3dq0T/KwqWlSyaPqt7v35J9ChgxMs/dpric+DCjzZsewqvI6IYicDeXmJzp9JF80wY/BULHi6MXjshDnTMXhhuWiy90F0DWxa8Excu0wteGG4aMbjiXLD2AcvCi6a2RSDJxN4Jq7AYRwX1IL3558J0aUj8DZscNLAH3ecE+/l4ifwbMTgBXHRDLI/Il+vdFnwdAWei66Lpuje2NomgR8rRQthQQVekHvLtzcTgcfe8zBi8GSEacG77Tbgs88S7225aLpJoKKEksA744wz8Ouvv+Khhx5CgwYNMGbMGFx++eXo2LEjioqK0KBBA7Rt2xYNGjRAYWEhDjjgAFxxxRV466230LBhQzz00EOYO3cu+vTpE/b5ZAyRwCsv13MDS5fAA5zOr6q3RR03Ly958PZzZXr55cQxc+YkPhcJPJ1J2rJl4s/ZVRy/axGPi100gYTAW7NG/UFu24IXdgxeEAue6KHPJiPIdAye1/VlU6nLkP0We93vuy/17zZj8ExW901j8EQWvKACj7fK2tgHz6aLJrsYBIRvwVMdH3jX7Fq1Es8CXQsef71Ek9GdO82297B9nGoMnkzg8e5Xqs+W0aMTe9393/8lPk+Hi6aXdUzUL2KxRB1M2haLzRg8ts3KrFqAnoumbKHPxdRFMxbT37NYVD+3jt27O/vbyo4R4XcdYrHE+afbgldWlnzP/WLwvO6DSPjk5QEXXSQ+PswYvO+/T7yuUsXZFxUQty2dfh416x2gkWSlqKgIf//737F06VKMHTsWF1xwAfbaay+UlZVhw4YNWLZsGTZs2IDy8nLstddeuPDCC/Hee+9hyZIlGDp0KIpko0aOIJuc6Zh1ZRMfk2yVKgOWn7uWi2hgicX0Yhtkbl7u5MokjTgAzJwp/pzt5H7XwktAuas7ZWVO2mAVsikGz2vCrVKuqD2yk4RM74PHnuu4cU572Wcf573KJFnFgtetGzB1KnDvvYnP0uWi6ZeFjL+3ooyfsrq541hQF01+AmnDgmfTRZMfB6PiosmvnsdiifEoqIum6J7G48mbefOw9+f994Fhw/yP80LVRVNmwZO5aLLWzcaN1RfBZOcehotmw4bAG28k3uuOF+w1CbpXmk0LHrtQGovZSbLiJ/BMXTTZ1zYEXlER8MMPwNlnJz7XseCddx4wYEDqMaZjmw0XTVsWPFHbycsDnnsOOPfc1L+FacFjr/ns2YntsEQLmWz79WuzURR42vvg5eXloW/fvujbty8AYP369VizZg02b96MOnXqoFGjRqhfv771ikYdr9V3rwkSa9ZNpwUPUBuwAfkgpWPB41fJXYK4aMbjwKxZ/r9nQ+ABzqSKzcgmozK5aIraYyzm3NcNGzKfZIXtB4ceCjRt6tzTRYucrQx27vR2W1SJwQMckcfep6DbJITloqmT1c2Wi6aqBc+Gi2ZZmfNPZYLgwt//sLNoqvZTdvXcnVw1bux4Laxb55Tj9Wxh4QWe7J5u2qS2f+OppyZvWiz7LS/SZcFjz1V3LAPsWfDY3+7bF2jbNvFeV+DJFoNsCDzZIpCOBc8dH21b8Gxm0XRf79plR+ABjgXvtNOAd9913usIvJ49xQs3phnGbQg8HQue1zUU/XZenlPW2WcDb7+d+jc/2GunE4PHuv7uu2/ic5nAc6+j37gWtQQrQMCNzgGgfv36lVLQ8ZhmwBNNqHhsJ1lx8XqosERV4C1bJnezY3/Pr2N6CSg+7qVTJ/96pTPJSqZdNEXtMS/PjsCzvQ+eWwZ/T1u1kn9fVeAByfsgpSuLpm2Blw4XzTCzaLq/JxJ4skmlDYEXRgweuwDnTq7Ytvvnn8l7xOnUz0vgyfoD3zaCWmJVXJX59yoxeLzAcy1Ju3d7j5EybwNRXzdZcOL7gep4IeoXYVrwZPdVJwbPT+DZtOCZumiyZdsSeHz5OgJPFhtrS+DpetOUlelZ8HQzt7vtTHTOKn3K1IInaleAuG1luwWP9sGzhEn8DOA/MQDCs+CpCjwVVxo/gSebUPDbJADqQoW13vGrvjouml4ukCZbJWRbFs0gLpqi++5a8IDMx+CJFlB0shGquGi6sJaPoDF4qi6afmUFEXi2XDT5jZRtZ9HMy1OLs5KVnw6BZxInJbLgmWbS5Osnuwcq7dbNahiWwOPRzaIpSoGu4uYmyoYLhOOiqSPw/Cx4QVLp898pLLSTRTMqFjyvJCvsa5sCL8j8z8v6r3tvdZOs8HVNhwVPVp6uwGPHM78YPNm2ZH6eF9lowSOBZ4lcFngqFjy/wUd0HWKxxKBhIlTY+Ds3UNbFVOD5uWiqkM6Nzm24aIZlwQOcVUMdl0qbMXhPPQV88knivXuerGhfvhy44AKgXz+xNVglyYpLWBa8IC6a/IQoEy6a/ATSZhZNV2yoTHJl14qfYLDW/6jE4IkseF7j0bRpQI8ewGOPAVdcAbz5ZnL9ZM8aFddir02n2eP8UD1O14LHx+ABagJPlpk0jCQrhYXJC0K6Lt02LHjjxztZrdlYQK8kKzoWPLeMyhSD56JzP3grlFccmF9Z8+cDxx/vxJj3758aU+on8Pixjhd4QWLwdAWeSvsIasHj25KfwMvGJCuBXTQJh6gJvHS4aLoDUmmpvwVPVEaNGomOafKQmj8/8fqgg5KzI9ly0XQDcAH5Ci+PbQseO8jatuAFicGLx8XtsUcPYO7cxDE7dshddHlUYvBUBtJdu4Drrkv+TOSiedttzv6MANCmDfDII8nfEd2fggLx5NZtz+XldmPwgrhoih7aXqTDRdNmFk23bioCz8SCp2K1AMIReH4WvBUr5N898kjnOnz5ZerfvBZ1VBYm0i3wgsTg6Qg8mWAOY5sEN5lJtWrO+JgJF80zznD+nzIluV4yi6RKX+CzUQex4LnnUplcNL1Ehl9ZI0cCX3zhvF68OPVa6Qq8srLkuZErnGRjh6mLpg0Lnk4MnsyCRy6ahBTTGDzRhIonqhY8IDGAmwg8VjyZPKRYn/IGDZL/ZiuLJrsaZBLjZuNYVljySV6CxuAFcdHcsycxGejWzUm80KuXs20AO0nWcdNUicFTGfxF7VHkoumKOwCYMCH1O6J+JJu0sJYkr/sq6ythZNHkV90z7aJpy4LHP6SDCDz+frIh5SpbabD1AcK14LVvn/js55/l3/UaC/xi8GREzYLn56JZXJwa4+117U0FnqmLJpCw4mXSRZPF1j54NmLw3Oc7uzgYRpIVvzJkhCHwvMYOv7LWrUt+v2BB8ntbFrxYzBGTBx4I3HRT8vEyomjBU3HR1BF45KKZw2SLBe+VVxLuJUFj8AB1gScqg51omzyk2N/kV210smiqbkOgWi/bLpqs6xB7zYDMumiybbFuXeCjj4CJE51Ji6nAsxWDJ7O8AanX0EXkTqQj8AC1fZVkfVg2hphsgux+X1fgiVw0vRYAMhWDx7vZ2HTRZBeLTMZIUX/SeSa4iCZXBx6Y+Ey2RYwfQWPwssWCx7pi+03kS0tTJ8guYbloAgm37nRvkyCrs5fA87PgifaTNbXglZUlxkn2WZINLpq2Y/BUt0ng52C//Zb83i9cQiTwRItMAHDttc74c9ppycfLyLQFj62bjosmWfAIAHYEns0sml7Z/9yNqL3cyFi8HhpuBzCx4LEPYJOHFDvg8Z26SpVEpw/iohnUBdLGse6EpUqV1BTmmXTRZNuiVxyTqQXPtsBz2wPb7lhEAk9UjpfAU5kwyPow+5BiXwdx0QxiwXOveV5esMm8agxelFw03XusKvDSZcGrUyeR5fLnn/XiW9n62bDgBRXqYVjwdu1KnAO7kONnBfnzT7klzpYFj3fRBBICb+tWefsPw0VTZpkOYsETnZ+pBY/1zvETeIC8H4g+j6qLpiwGT9WCx497fEiJGy4hQ+SiKVpkYlHd81mUwTNTFjwdF01KskIASJ8Fz09IicplKShQWzVkUXHR9FtdEpUhegD7/R6LyD/cpahIffBW3YYg0wLPTfnNEsRF001QYcOC5xXHpJOeOUyB51471jWYRdWCJ0scACSupVcdVQReLJY4/yAumkFi8GSr0jrlAeHsg2fTRZNvuwUFaq5zovoA4cbgAU68MeAsnLAuxqpEwUWT3f/VDx0LnszbwW+S7JWwxlYMnpcFD5CLLj8XzVgs0eZU25bsPnslWfGz4ImeozL3br9rxi4Kss8S3TbnJ44zLfD4TJBeY0d5ufd1U5kbej2LdSx4Lmx9o2zBM3XRzPYkKyTwLJFOF83ly/3dc7xct8IQeCYWPC8XzUWLEok6ZLi/WVCQ+iCpUkVtss2W436PxcRFU+dh4fcA2LMn4Tokci0M4qKp4oLnVa6qwPOz4O3Z4wT679wpj8HTnVD5uRXXq5f6uQ0LXhAXTX7y4p5/kCya/LUy9SiQTdRUHmq8i6btLJpuuS6ffuq0J15AqGQDBpLHSD8vh7lznU16f/op8VmYFjwg2U2T3SpGlSi4aOrca9UsmqtXA++/n3gfpsCz7aIJyK+9n4smoO7G5/dbpha8eBz44YfEe7cMPsOtC3/vSkudPus+K2QCT3dxSDQ+ifIluN/fswf45htvT6lFi5z4tnQnWfErT0XgeT2LVWPwWFQteFGMwSMXTU3i8TheeeUV3HTTTXj88cexXXdnxSzGxkbnKgJvyRKgQwfg4IOBjz9WK5eF3X9n5041l890xOCxg9jcuUC7dkDHjsmZMXnYgG6+c1apojbZBsLdhsAPv7r9+Wfitci1MIiLZlQE3t/+5qTr7ts33Bg8FpFYthGDF8RFU/bA8SrLLwZP9XjR32WLVjrlAenPovmvfznt6bHH/Osqqk9+fmKM3LJFPoGfMsUZo847D/j88+Tv89iKwQMSFjzALA7PK+5WJfsr67rrdZwXOgJPdR+8zZuBG25IvNeJwfMSeH4bnQdJsqIi8PysUGx5Nix4JjF4H38MnHhi4j1bhspG1v/4h9NnjzvOuZ66Ak/HvZWFbxdXXAEccwxw7rni43/9FdhvP2d+Mn16ajn8a5sxeIC3gFcRePzWCV7f5zc6Fwkn1XPNtAWPrVtYWTRzxkVzxIgRqFevHr5wc7L+Rd++fXHppZfiySefxNChQ3HkkUdih0rqpRzA1IInm1CxsAPkd98lzOy33iovV3bZ2dVpQC0Oj39oXH554nUYMXiPP57ovLKBFkgMdqLEDazoC5JkJdMumqJNe1mCuGi619zPRdMkBk9H4L34ovP/hAnhuWgedljyez4bKWBX4AV10QTsuGjyZMJFM4x98PiHdJcuqcd8841/+W67vfhi5//993fq546R8bjcdY4v3yVsC17r1onXqlu3sIgseO77TFjwvFye2boB3hY8HtECoszNbeNGcRn16onP08Y2CYC5BU82VoQp8LymcoMHJ7/3E3j8vXv4Yef/n35y5jdhumiy1ld2jhCPO0noAODDD8XlXXNNQtDPmZNaDhDMgte7dyJ+fcQIvfJUnv8bNsj/ZmLBs+GiKfIOycYsmjljwfv000+Rn5+PY445puKzL774AuPHj0fDhg1xww03oHPnzpg9ezZGjRplq66RJl0umixeD0bZAM4LPBU3TbZzPPdc8sq4O3iXl+tPRGUWPPY6eO31xFrwvARelJOs+JWpI/DCctEsKxOvUtsSeKK6AfYEXvXqzqa+LGwfEP2eqByXbHLR5LHtopmpGDzemnTuuY4V4Z57Esfw7UR0rdx2+9RTwFtvJfaRUhkjZROqIG5WLOzkiu1fOoH/IkSWAp1sjukWeKoxeDw6Md6yMYp1h2XJdhdN2cJutWpmFrxVq8T1AdQseCxeAk937PC7N2w/ULmPMoFkK8lKcbFjGRw3LrGPq00XTTZGlcckBs+Gi2YsljqWpCMGT3ej80oj8BYsWICOHTsin7lC7777LmKxGN544w08+uij+Prrr1GrVi2MHj3aWmWjTLqyaLJ06CAvV/awYF00vY5jYTvHwIHJAy47eHs9XHRi8EQdVISXwGOtekGSrIS9TUImLXhue/Oz4AHicwpD4LH3wpbAu+CCVIudqsAzTbKSLhdN2wJP5lEQRJSpxuAFcdHMywNOOcVZYZfVzcuCV1zsiES3jwUReLYteNWqia0OgL5bUCwmTqxkIvCCtAkVzxXR372yaPLYEHisOyyL7X3wAD0XzbAseFWrysc3mQXPbxHMzzOCPz9e4Pntgycqw+9zF92+JBO5tpKsAI4L6JlnJsqx6aLp5YocNIumqQWPf+3+th/pzqLpN97kjIvm+vXr0axZs6TPpkyZggYNGqBHjx4AgJo1a+LII4/E0qVLg9cyCwjTgldQIB7Y+JT5LF4WPJWHCovMbQtIHsi9BhjRdZC5aPLuMrJVJ1ULni2BlwkXTfbcRTF4Nlw0/SZYQPoEHhu2ayvJikjsiPqOqFxdC55NF80gMXi2XTR1f5+Fd9EMI4umi9eKspfA47Et8ILE4PETK93FDtF3vQSeTLDYtOCpLGy6mFrwRDF4svqlw4Ln56IpsqrJXErDisGrUkXfgjd/fupnOha89euT/7ZtW7hJVoIslqgIPNvzP5sWPB2Bp2LBs+GiyZfj4rdwYhKDF4+Ti6Yv5eXl2Mm0hu3bt2Pu3Lk48sgjk46rW7cuNng5/eYQYSZZicXEExGvzq7qoqkbgyfKVuniNcB4uUfx5fICT5YpzpaLpujBK3ofdRdNXQujqoumrGz2ftvaB48VeLYseKKBW2TBE51jOjc6N1mVT5eLpt+k3wt+/Agji6aL19jrNwaxRMGC504m+YmV3/PFS3C4dePr6J5vebm4v4omRl730W9yJkumJMI0Bk9nn9UgFrwwXTRl5xiWwKta1TsGT3RfRc9n9rnlF4PHL+Bu26a/D56pBY8tj792ovsqE3im+xJGXeClYx88/rVKefzfVS14IoupS1CBlzMWvJYtW2LGjBkV7ydOnIiysrIUgbdx40bUE+Ujz0Fk7ky9e3unslbp4IB4IuI1oQ/DRVO04THbAXQFnqwcviPJMsWxSVaCZNH0suC5e8UBmcmimUkXTXagDGLB00mm6x7Lt7VsEXhBXDRNLHiytsbvl+hi6qKpK/B27QIuuwwYNCh58ixKiMT+hupkWbYK67WibGrBky2CpctFk59Y+Qk8r3FAtqjDWrRlliS+DJnA448XoeOiqZpFk4ftp6YCr317/zrZyqJ5992JGFAX2Vgnew5v2QKcdBLw2mvedTEReIB47BI9n3/9NfHaz4LHiw4vC15YSVaAVBdUUTvxSl7nkimBp/L8d6/1jBnAyScDL7yQ+JvIRTMdWTQB8bn79W8TF00vzwHVLJqvvupcux9/TD42Zyx4J510EpYvX46rr74aH3zwAYYNG4ZYLIZTTz016biZM2eiZcuWVioadWQumvE4cMYZ8u+pPuh0LHjxuLcFr27dxHuVLGzu74hWWoNY8Fi8VnFF++GVlSU6lCwGT9VFkx3ERNfZrVsY++D5HcveH9EG3TYEnkpyn3S5aLrH8u0hUwIvnS6aNmPw3M9r1kz+PF0C7+OPgZdecrLSsWHYXhY8QO3exuPhu2iquLFnyoLn1xe8xmH3u+3aJT7r2tX/fEX9ibXSex3v93c22kPUNkwteCx+11+2CCWLR7OVZIUf02+7Lfm9qgs2e36ffQZcdJH3FkgmMXiAWODMm5f6GZu12M+CpyPwbCRZkQk8/jnl98xjsZVkRYTNGDzXWjpsmJO1+vrrE+fkZcHLzxfP0VRdNMOw4MmscV5JVrzmBSpJVnbvdrZ1mjAhOaGXSn0zgZHAGzZsGJo0aYJnn30WZ511FhYsWICBAwdi//33rzhm+vTp+OOPP3DEEUdYq2yU8doz6rff5N8LYsGTDR4lJfLGVlDgBPG6zJ4t/00X2Wo5oJ5khe/8EyYkv/cSeCIvX97qFsRFkxVRDRqk/t0dYDMRg8eep2hlKsxtEtg2JyqbfSDwD3FVgcffG/dYr9W1TFvwvCZAbj1lmUcB+YPYxEVT1n7c73z+ObD33v7H898Dku+prsBj+xQ7AfSKwVOpH+DtZsNeQxUXTZlYt51FUzfWx51MAPoWPK+Jnju5Pecc59+BBwJvvJE8tvgtdLi/f9RRwOmnO99t08b72nuVd8ABzkRz//2Bb79NPdYkBu+NN5Lf68Tg3XOPcz7spuledQoSg9e2bfIWA3w2Stl15C30oufnL7/I62JqwRO5KLLPgaOPdrYsueMO77qZWvDC2gfP/V0Wnee4aQye11jmoiIY4/FE+xJ5+rjtZfVq59ipU533O3cmtoHxisHjEz25qLpoiuodlgWvalXHGs7i3gcvg4rfuF1e7jzX3D7A7lHMlx0VFMLoU2nSpAmmT5+O559/HmvWrMEhhxyCCy+8MOmYX375BWeccQbOOussKxWNOiqbAotQDTbXcdH0crssLAT22ccZxHft8nYfdbFtwVuyxHmA8vWSITofFYGn6qLJxgCIBkfd+AYdF02/Y1n3WD/LgO0YPFsuml4Cj6+ze1/59mA7yUrYFjzA6dui306Hi6Z7LoceCixYoN4XZPGorMDLz0+MW7Ly2HNk+68NC57XmBmLJepny0UzExY8L9eoIALPrXNeHvD224nP/RaKRNe8oCB5+5HevYGJE+X1YuH75xNPyI/VzaL5wgvA+ecnf6bqolmtGnD77c4/L2y5aALO1kNffAEsXJg6VqoKF9Gi06xZjnVWhJfA82qfIgseey8nTPBekHAxteDZcNGU1U3FgieDrVcmXDTZPtuiReo1bdnSMTSsXQssX568aO4KFq8smrLM5qpiVvQ3P4GnY8Hj28UddwB9+wKdOzvvTV008/OdssvLne+yc0XRxvBRw0jgAUDjxo1xu8coeOGFF6aIvlxGlmTFjzAseF4Cr6DA+XfAAc6mogsWOOZzL3cb2wJPVI6XVUQUE8JvTh4kiyY7GIrcIDPpoun+pkwA61rwRMkSwnDRdFf84nE9gecSFRdN0xg897s2BJ6bSU80uVF54OflJe6FqcBjKSpKTPRUBB7/3aAWPD+39oKCZBdur7KzQeDpZtH0Godlf/MbR1Syq+pYLnSytepa8ET9U1XgeT0HWWy5aLq4IkbVisT/puj5IItdB+RxpVWrei/AiCx4fovUos/Y+ouSrGQii6apwCsokJdpQ+CpPOPZfl27tvOPvcetWjkCr7wcmDw5+bvuWONnwROh6qIp+ht7zURtztSC5yLq87oWvPx8558r8Ni5Ij+WRtGCZ+Sieemll+Kll17yPW7UqFG49NJLTX4i67BhwQtD4Mn8jN3sYPE4MGeOdx29BJ5JkhVROboWPHag87Pg+QkCt9M2aOBdt0y4aHpde0Bf4LGDoo6Lpq7Ay8tLTJaiKPBE2yTYzKLJ14FFNQZPZZNVFYEHqC92qFjw2HrpnqOfBU9X4MkeyqKyskngsRNpXQue1zggmzT5eQJkUuDpWvCCCDxWTHhhYsHzWjxxx8o9e5KPUxUuoueDl3eOyTYJgL8FT2YF4bEdgxeGiybfTlTi74DkfSYzYcGrUiXVE6lVq8Trzz5L/pstC57Xtfbby9G2BQ/wF3j8fZPF/7LzSC+BF0ULnpHAGzVqFKZMmeJ73LfffotXXnnF5CeyjrAFnmjQVRF4fBJTt9Gz6Z+9VvoAOzF4bF39gll5VFw0+TLZJCte2fni8cQKomifObcsILMuml7WFBcVgSe6DyoWPL8YPNFEOYjAM43Bmz3bsUibWPBE90I0wVLZ6Fz2XUDfgierm9dvyASel1CcMSO5bux5ihYGvH7fS+B5jXNBXTTZz2xtk2Aji6ZrRRXVS0RYLpoyct2CpxqDZyLwbFrw2LoA6sJFJvBE4rO8XNymq1Rx2ihfFttHRBY89nr6Jclh6+DCCzyTjc51kqywsO2CTwTClykbB7zGoPnz5fv4AmpJVtj7UVLieF7x95+fD/FzmRYtEq/5/AcyC96ePeFa8MKKwXMR9XkV936WSinwVCkrK0Oe13KtB6NHj8ZFF12EAw88EI0aNUJhYSFq166NQw45BMOHD8c2j1njpEmTcMopp6BBgwaoVq0a9t9/f/zzn//0/E5Q/ASeSpICW9sksIKofv3kv7l1Yzdw9RN4Nlw02fPUddHcssV/QPNy0eR/ny/bHdhE8XdsfTNhwfNz0XR9xNljVX8vzG0SALnbEYtNC95TTzk+9127JrcP0fnVqqVWl6AumiJMBJ5fMhUeXQte375OcoR33kl8JuuTQQReUZFdC57XpuJBXDSrVUucpw0LHqA3jnjtPxXERVOGbYHnd442LHiy/iVqt15WENZSoSrwwnLRBJLHS1XhIjrnzZuBZctSP9+2TVxnty/w/ZP1dhBZ8NiMtn6JOPjvAN4WvPz85PE2ky6aOgLPvb/btzv5BmT7z+kmWenfH+jWDbj44uRj+PkQO5cpKgKaNk28d5OquLhtnx83du5MXL+gMXhRtOB5PTvYct2yy8uT7yM/TuaMi6YqCxcuRG2RL5QCzzzzDF5//XWUlpaiS5cuOOecc9CtWzfMmTMH//jHP3DwwQfjjz/+SPneY489hl69emHChAno2LEjTj/9dGzevBn3338/unXrhnXr1gU9LSF+Ak+2f4qqBa9TJ+d/NkbMxILn1m2ffRKf8Zm7eNIRg+e32S0/KOkkWQHkg4XfPnNs3YLE4MkGyKAumkDi4a4r8Nwyw4jBAxKTFq998FQFnsqK+XXXOf/Pnw/873+Jz1UGcllddJOsBHHRlGXR9CqLvS+sN/zVVycf5yfwPv449TP29226aNqMwQvLRTMWSywC6FrwZIJFR+B5WfD82lgYAk9m2WVht9/5/Xfv37NhwbPlosmK6TBdNG0KPBULHgCsWJH6mWw8lvUFdjHMy4In69deMXjxOLBxY/Lf2I3Oi4uTBZkNF80LLhDXjb8ufDvx2nqKh70fO3YAjz/uXz+VGDy3b7Nbz7Cfu8fzAs9rtzKZBY89X1lsqqpnjZ8FLxMxeCrxouzzKqeTrNzDbfowc+bMlM9cSktL8csvv+C7775Dz549jSo2YsQI7Lvvvikbpa9fvx5nnnkmpkyZgqFDh+INJh/yjBkzMHToUOTn5+PDDz/EySefDAAoKSlBnz59MHnyZFx11VV49913jerkhV+Sle3bxZN81Syad94JdOgAdO8OHHyw8xCWTRTYCYnMRZN9CKq6CWZS4G3alDyB0EmyAsgflH4ZNN3ygWAumjVrih+OQV003b/t3GnuoimboAR10XQnLbt2Ob8rusey8w8ag8dmCVN1mbZtwQsag6diEWE/v/hi4NRTnUWgffcVl6Wzyihz0WQ/tx2DFxUXTcBpv+vXyyfEmbLgeWUK9aqXF34CjxUd/N6KLm7GOsBxDzzySPnvhWnB0xV4sngvL0wseF4xeLoumipJVgDx4oSs/akIPK8YPBXLrot7Xjt3pp4La8Hj70eQLJr33ONkemXdFXUseKYCD5CPh7oxeDK8LHhVqiT3TR5ZDB5rC2HnXiyxWCLLpK6Lpp/1MgwLnt+zg69H9erqLppRtOApC7y77roLsVgM8b9mgzNnzsRMH9++GjVq4A52QxQNDj30UOHn9evXx/33349jjjkGE92czH8xfPhwxONxXHLJJRXiDgCqV6+OF198EW3btsXYsWMxb968pD37bOBnwdu2DWjYMPVzVQte9eoJs3xRkbfAU7Hg6cRueQ3gJklW/JIQiOAHV5UkKyqTbR0L3p49jhgSuaGwiH6ruFjsi2/TgqcycRRNrFQEXhALHuBMklUzV7J1c9EVeOzEJp0CT6We7nWrVi15wmTiosl+XqUKINuVxkvgySaoYbho2rbgheWiCfi7GMv6m58lI2gMnvsbokyhQDgWPBURxMZ1+22/E6UYPBOBF2YMHrugENSCJxIlQQSeVxZN2X30iq8S9S0vgRfERfP88+ULX6K68GXqCDz+M9kzw5bA4+dDbAxelSpOkhU+s6aLzILHCjwvR7yCAuf3vdyJRXMMvzlhGDF4ui6aXgJv9+7k+WBWW/DuuOOOCoF3zz334KCDDsIZZ5whPLaoqAh77bUXevfujUaivPMBKfjrLlRhes3u3bvx8V9+RgMGDEj5TqtWrXDkkUfim2++wbhx4zBs2DCrdWIbi6ixySYJqgKPxc9l0KbAi8fVLXgqG53L/PS9LFRA6uDq56LJTyRVXDRlSVb4bIZ+ExKZwFM9lsUvBg8I7qIpE3i2YvAAp/3rCLygFjyvTLIyVF00gyRZKS9P/E6NGt4CT9dF06uNeIkL2fWUuWgGsVL6xeDZyJBqw0UTSHYxFm1TkSkLHuA9qQpD4LGiQ+au5YYRAOqJu4DMZ9FUOTeeqLloysYkkSiRlSkTIX4xeH4uml7WGdG8aOtWfQueiqXTTwSEacFTcS2VnZvf3Ajwt+DFYk7eha+/Tv2uzIK3fn3itejZ7eKORbqZTNnrKzr3dGfRBFLvU7VqyQKPvSaAc95uv8lqgXfXXXdVvHYF3p133hlGnTzZunVrRV369OlT8fmCBQtQ8ldL7datm/C73bp1wzfffIMZM2ZYrxfbMESrJGEIPBULHp9kxRVXqhtks/Wz4aIpm4T6rVLx19Qvi2Zenn0LHuBcK78Jiei+yGLwgrjHuugIPL9spix+Fjz2HqgIPBFRF3i2XTTZa+aVPIMvS8VF01Tgicpms4cB+jF4srHAhgUvnS6aLiUlqZPNMAWenwXP635myoJXs6YT271okZPNtqxMzeJi24Knm2QlXS6aNrNoqrpopsOCZ+Ki6WXBW78+cd42LXh+FpswBd7WreLv6iZZkeGXZAVwLOwigSez4KkKPNmCmovK5+mKwdPds7F69UTZ27al3kdW4GW1iyZLueqIZoGJEydizJgxKC8vx5o1a/C///0PW7duxUknnYQHH3yw4rilS5cCAOrUqYOakiCBFn85X7vHytjulRVCcgzbOUV5XGQTXNUsmiw6Ao+34Lm46ZD5fXd4/CaQYQq8goLE9dG14Lnfd7ERgwfIr/natcAttwD77Sd+KMsefl6DArsxtV8MHmCeRdMkBm/48OQNU0Wix6bAYwfw2bOB884DzjgDEBjrAZi5aJaWplpqbLloTpwIPP98cvYz3loQNIumqcBTsVLasuD5xeANHAh89ZU45uOnn5x2x7oCpsNFE3Ae7Pff74ztjzziTHplbdcv3bkNC57XHp82BN6HHwKvvgrcfDNwyCHqIujAAx2Bt2MHsHAhIIuEyPYYPB0XzV27gBtvBL75Rlwf/ndtJlmxLfC8smjqJFnxsuCxi66qAu+884Dly5OT0LG/I/tuWAKP/y3Zd01dNPkxxivJitsfWAs7i8yCx14PPwseoJfJFPB30QxqwXMzYJaXm2fRZC14fDIgwLnurtzIagteppg7d27KXnoDBgzAo48+mpShc+tf0rqGh49F8V+jxRY+JaPkOB3YBsampHVRieNQnYj6TejZya2X73RRkb/A83sQ68bg+WWYY9lrr0SaZ68YPFGSFUDN6rN2beK1zJtYZaPRIUNSM1ux8BPWWCxZwInw21rCJagFTzZBkVnwfvkF+Mc/kssR3Ve2K+oKPK8YPPc6v/22I/JEXV7Fgrf33sDixcmf7dmTPEHUzaIpEz+9ezv/jx2b+IyfuHu5aMquk+pE2abACzMGb/Zs4L77gBEjUv92yCFOW2WvYTpcNAHgpZcccQk47e2xx/STmejE4HltdO5Xlo0kK65zzLvvOvdeR+C592fOHDsCz0YWzTBj8PxcNF97DXj22eS68GEKQffB03HRjLoFj/0NfmyXxb/v2uX0SbePuugIPN46w7cTnW0S+Cmm7LsqAk/UJsvLkxcj+Ri8hg0TC+SuAOnQQVy+zILHoiLwZG1VZXGyWzfg55+T/+63cKLi3sq7suu6aLIxeCLYOW8ULXiBtkn4448/MHr0aDz00EO45557hP/uvffeQBW88cYbEY/HsXv3bixatAgjRozAp59+ig4dOuBrkb05Q7CNYMAA4Ljjkv8um+Cy1r4GDdR+y28l2G10VaoEFwa2LHhu45fVR/SA2muvxOuwLHjsw0SWHU5lou0l7gAnyPm664DmzYHPPkvUzWs1n/0tWwKPfxB4IRN4S5YkHycrRyU+08RFk0W2VsM+rGUTj3HjnD2KvOoTRhZNFz+Bx06sZC4+YblohiXw/GLwAODRR8Wfix74QV00vSzj7OSSFZWjRjn/6wopHQue3yJdmC6aIgcWVRHUunXitWAXowqy3YKn46L5ww/yurjIFsO8Elf4lQmIhYWsTJnAY8cpkyyaujF4LPz94AUee94//pj6fT8XSLbd888Svp3I+pXourFZnIFgFrwTTgCOOir1c/Y+8vOhwkJg2DAnr4C7fdDhhwPnngs0a5Y8xrpzIK/xLAwXTfb6PvxwsmcGENyCB6SOuboumqwFTwR73XPKgjdkyBA89dRTKPvrrOLcMpabkCUWi+H2228PVksAhYWF2HvvvTFkyBAceeSROPzww3HBBRdg/vz5qFatWoVbppd7pbvReS3RLseC47zYsmULmjVrVvGebQSFhcAXXwAvv5zYm0pWpEqSDx6/iYLbUf0mUyr7u+kIPJVydFw00yHw2ImobOKu4qLpR5UqziD2xBPOQ6qgwCnLSwSwv6XioqmS5ZO/boC+iyY/2Ktct7AEHjuoutlleWQTj06dHAveaacBn3wiro9ukhWdWEF+dZo/R3ZiL5sgZMJFM0wLngxZGw3qounVV9jJJTv5c7+TLoEnmlyF6aIpckVSFUGsa5goa7CLTmiCrgUvHTF4OhY8PqOoqH5RdtFkP/fKommyD56uwOP5808nLGLtWuc6888/PysP++zixTB/nWTXTeRC7bWnHIuKFapqVce9t7wc6NnTmVu69XHbkui5fs89wN13J65HLAa89ZZzjebMSRzvinavcckviyYQzEWzXj1g+nTgyiuBF15wPgsagwekjrlBsmiKyEmB9+ijj+Lxxx9HLBZD79690b59e1/RZJNDDz0UHTp0wC+//IJp06bh6KOPRuu/lg43bdqErVu3CuPwVvy162drdplRgJebp0sZdzdFjYCtgkx3qiT54PFLi88KPK/GmU4Lnp/AY/2lXZo3T7w2EXg6Keu9Jp4qLpp83Xnc68QmudmxQ13gqVjw3O94CRDeVx/Q3yaBrzO/WimqV1gCj32QFheL6+JlIYjFvOuZSQseO7HPJYHnZ8EDnPvIxg/ruEfpuGh61UUm8ERuUSrobLfC3m+RwAvTghdE4LGLlOyzjSfbLXiqMXilpY7bsawuot81cdEMU+Cx1zPTFjyeggJnX+DPPnOSgvz+e/LCsJ+FjG33pgJP5ELNIxu/VZKsuOTlyRebRQIPEI8xsVhynV3R7iXwwnDR5D939/d0UbXgqRgxgmTR9CqffQZE0UXTSOC9+OKLKCgowMSJE3Ec74uYJlwRtvavIKp27dqhevXqKCkpwbRp09CjR4+U70ybNg0A0KVLF+v1EXVOlSQTKkk+eFjLm2iioGrBU9k/za9D6Ao8r4e5u2G3i6oFr6jI39zuNxH1isVREXjVq3s/rPgJcxgumu53vASeyEVTd5sE1ZWqIAJPlBVVBNteatTQF3hA5gSeX5IVFYGnG4PHx24A6XfRVLHgzZoFsEO4TCz49Xv2XEXnaWLBy8uT70HnBV8vr+ugKvCibMGzJfB0s2jqPgvYc1PdJkHVRXPhwtS+oCPwVF00w4zB87Pg2Y7BY/ETePn5jmvfZ58572fN0hN47FjOu2jy1172rJJlyGYJ4qLJImvHooVbL0Rut5l00eTLAtQteF5zXH4hzCSLZjZb8Ixi8BYvXoyjjjoqY+Ju3bp1mPWX38N+++0HwNl779RTTwUAjBkzJuU7v/32G7777jsAQN++fa3XSdTIVASe+xCsUUN99ZDfl41HV+AFseCxg8mcOfKHh18MnuhvIgvepk3OKp3fRudAOAJv9uzkssrLgQUL/FfxeFHg1m3TJuAvw3IKJha82bO9B0ZTF810CzwTC57OBIPFq566SVb4FciNG+Wuanyb0RV4GzY4fcFFxYLn1osliAWPLysed/qDyGPBXaFVseDx+6jJxIJOvw/iosn2m/x8M1dtlYUiF/Z+i9yjvCZVQZOs8Isk8Xjy/fR6TtWvn6ib7J6Vlia7iNneB090TzPloinaD9BP4IW90bluDJ6fBS9IFk32XEUL3KoCz4W/3joCz89iF8SCt3Wr+LrrCjz2Pq9YkbA66sTWA+FY8Nws1PPnJ/cJFRdNF78M1oCTpXf3bj0L3urVjjtvkCyaInIyyUrNmjXRVJQq0hJz587F6NGjsVOwDLxgwQKcc8452LVrFw477DB0YnK/3nbbbYjFYnj55ZcxYcKEis9LSkpw2WWXoaysDP369cP+stReATC14LkPQVXrHeA/UciUi+Z33wHHHit+4Kns58b/rWHDxGebNzsdtGVL599XXyXXQfSbOi6aXoMiO/k57zzgzDMT7/v1A9q1c+rmBV++e17r1jkJWJjmWoFqDB573Y44ArjwQvmxNmLwVAeydAs8Wb0yZcH77TdnkeKv3VlS8NsHz0vg/fGHUy7r/qUq8FRcF00teLff7vQHUVIY93sqExlVgefnZmNL4LHk5ZmJKBOBV62ad1bIMFw0eYG3e7e6lSs/P5GNWLaw0bcv8PTTife2LXgiMpVkhY+/A/Ri8Gzsg8eP70FcNE0seKL+LrLgiXIQqAi8Aw9MvOfHDT8XSK+xPEgMnghRQjCVGDwW9j536eI8A/78U+6iKYO34LmeHSKKirwXwFlvggEDnMy5N96Y+LtNC94TTwD77usknXGvnaqLZosWjvjk6y37faCSWvCOPvroCgtaGKxduxYXXHABGjRogKOPPhr9+/dHv3790L17d7Rv3x5ffvkl2rdvj7feeivpe126dMGIESNQVlaGU045BT169MB5552HffbZB5MnT0a7du3wLJuv2CKiVVY/gbdrV8IdRjXBCuA/cU6nBY8fTP73P2+3EF2B58YxbtnipEHeutXp+PwebMXFiY54xhnO/2FY8ADg448TK2fvvy//HovMggc4D+CTT079jokFDwAEBuwKdAQeu8rnNZANHOhfr7AEHlsv2QPYpgWvbl3vxRj2tyZOdB6esnoFcdH8979TJ1umAk/FRfOppxKvr7lGXta//y2vg1s//jzdLSRY+AyMpi6abFsVnefRR4vLBeSTy1gsfQJPtnJu6qJ5ySXiz70EXkmJnghy+8eaNamTtM2bgY8+Sv7MdgyeCK9r77fnoAjVGDxVC55uFk3VbRLKylKt6SoC79ZbE6979EiUz6+5x+OJusjuY//+4noByecqshn4tbW8PGfC78J7w+gkWeEJYsG74YbUz0TzIhWRwiLaQP2++/QFXlFRYpGipMTfeue1EMZ6E7hT8iefTPxd5o7tZvdk8bPgucJx6lTHU4T/Dg97vXbtcjKLiuoi+6xqVW+Bxz4HoijwjGLw7rjjDhx22GH473//i8svv9x2ndCxY0f8+9//xjfffIN58+ZhxowZ2LNnD+rVq4cTTjgBZ511Fi655BJUEbTkm266CZ06dcKIESPw448/Yvv27WjZsiWGDRuGYcOGSTdBD0rnzqmf+e0Dxu7BlkkLnhtPIjpWJwbPhZ9gsKtDfjF4bLn77ZcYPHftklvJXBfNn38G/u//Eg+UsAQe4PyW1+SQRxaD54VJDJ5Laan4N3R89dn2K3NFaN7cEd5+9Qoag5dpC15BgfPQOvRQb5cctp6yxCAuOklW+LJ4V6lYTC0WATCz4F1yidNHGjUCunb1/q4Mt0z+Xl5wgbPyW1zsWMSB1IelbRfNoUOBc85JTuTCI7NUmVrwdOIz3fstE3heLpoigdeiBXDbbWqLMXwM3o4diedXfr7/BNJdrCwtdcQiu/0Pv9cVYH8fPBFe117XvY2vk5eLpmgdXDSWFxY6v71rl1zguXunAuoWPMARFqxQUhF4d9wBtG3rzGvcPdV2707tlypJQvbe23kuz5oF3HRT8vfYc2Vj51xUYiILCpzjtm9PnWfpJFnhCRKDd889zvzl1VcT22SIngfudVDNLCzbc499Jqm04VjMqff27U7/No2/Y+ski7tm78FFFzmZQGvVcvY15dGJwXN/T/W5B/hvrs4en5/v/1yNuoumkcDbsmULhgwZgiuvvBITJ07EaaedhpYtWyJPciWOOeYYrfIbNmyIf7A7KWvSs2dP9OzZ0/j7JjCeohX4WfBMMmgC3gIvHk98pmrBc8sRNXhdCx6Q2tFVN+xmf6tjR+dY96Gzc6f8QeqeR4cOyZt5+rloxuNqAk/0EJg5U7w3jQyZi6YXutsksGzZIp686iRZYR+u7D1lr+VNNzkTAL96BbXgqSRZsSHw+P7knmudOsDf/uZdDv9bssB6Fz+B57VNAj/x8WtPMrdF0XtAvCDhuv56ZVT1QmbBq1nTsbp7lStz9zN10bzmmtQ9EHlk1oP8/HAteKWlCRdXWXpy3Y3Ou3cHrr5arW48rAWvuNh7NR9I3SqBFXgii1amLXi61g9AzUVzzRrxwoRsLC8uThV47DlWqeKdnZaldu2EoNi8OVk8yfose+7VqwODByfey9qbarKcHj2cNugKPJEFTyTwVF1mXYHHWyt1YvB4gljwatVy+tuKFQmB52XBUxV4on4aj+snWQGcem/f7m/B89oiAfDvv2wbKSoSW3RdVGLwvL7Dw18vdislv2eHbEGSJeoumkYC77jjjqvY527s2LEYy+4CyxGLxVAaRWlrGdFKEzuBsynwvCakvChQFXi7d4tFjk6SFRd+BVnV1ZC9Hm7gNCvwVB5MLH4r5m5QMPs7IkR1njVLr0N7uWjKMHXRBJyHiUjgiSYzsgmKioumqkVWNiGWPVhMYvDCdNE0WWH1E3h+++DVrJlYtefL4sWhn8DTddH0Ks9LLPIUFyfGPlkMnnsuXuXadtFU6X+qMXiFhWpJV1QFHhur4+eiCaRmRRVZ8PwmfV5/Zy14KhNuPpNmx46J9yKLVqZj8EwEnoqLpiyKRda3atRwUv3LLHiFheoCr3HjhMDjxw7dGDwguMADxNeMPVc2qZqLqsArLnY8omQWvFhMvDARdgyeX6IsWwLPxArt1tsrjADwt+D51d3Glihe6Ag8dislv2eHrsCLoswxEnjHHHMMYn7LeJWItm3Fn+fnO52Ij2FwsWHB4yekqlYf/u8qE3BVgcc/hFSFCosbOM0KPC8XTRFemQP5euoKvJkz9Tq0icAL4qIpExc6kxn2msgsZSouwID/no08UUuyonK/ALsumnl5zurppk3BLXhBXTT5ern7Pvr1gTZtEolg3DL583QXErzKte2iaVPg1arlTMz9UBV4flskAKlimL1ftgUeb8Hzw2urBJsWPB0XTVWBp2r9UHHRFJ0rIO8z7rWVCbwqVcTJi4DUejdpkohRClPg6WSBFHnUsOfarFnqd3QEHl8e4O8CqSPwZM8qL5f9dAk8k0UKt94lJXZcNGWoLggD4Vvw2Hvl9+yQLUjWrZtwY89JC96XX35puRrZDbtCyVNc7HQgUdpw1u1IJ8mK18OK7ahFRd6Nzk/g/f47MGhQ4r2oc4p0vpfAU50ouxY8d7AqKwNWrhQfKxvQ/CwNQQTeTz8Bf/+7/Ds8qi6apaVO/EM8DrCezUEF3tq1wJ13Jic40MmiKXPRVBV4YcbgvfkmMGmSPLmEicCLx4H770+0uTAseH4CD3Aerq7A+/xzYPRoJ9Cc/67fOdoUeG55u3c749rNNzsPzrvuSj2udeuEwPOz4LHllpY69/P2252J8rx58nrwsOVv2+Zcr3r19BeabAs81Rg8FYHHlxW2wHOfXyYCb80ap2106pS8PYJLOix4XtfeROCpuGiyFrxGjRIx96K5AJC4ttu3J6yy7DmqZlIGku9BNljwatQQe5zoCjzX04dPQiQTAV5iSMXTAdC34LnjWtWqiTJVk6yIrrGpwLNlwZPdd3ePZtUFYf7vNix4fN3Y2HVTF82WLRMCz30OvPACEFL+xkAYCTwimeOPl//NdR0QrbylQ+B5dRK/Cfi//pWclUrV+mYag8fiJq1hHzq//SY+Vvbg85tQsYOibgweAPznP/Lv+JUhGxRfeAEYPtx5za4A68bg8Q/1q68GeE9q93syC7SKBS+oi2ZQC97vvwPXXiuvA2Am8CZOdNq/3+97/ZZstd2Fb3MygQc49/PEE53XY8c6iwAstl00VQXe3LnOPwDYZ5/U45o0cc5z587EhEJmwWPLLS11MtQ+/LB3PfxWYW++ObGowZ5TUAsee81q1fIvC1C34LGWXxWBxwsdE4Hnl6TDbTO6Au/334ErrgA+/FB+fKZj8Nw+X1ioPtFWcdH85Rfn/4ICJzHRp58670VbDQDJ13bHDkf0sH21bdtEdtn27ZO/K3LRdOGfBbr74AF2BJ6XBa+4WNzWdQUe4AhkN27Mz0Lm1S9s7IPHnpPrgfSf/6SOa0EseIB5DB7gnJdof0MXvxg8Wd3Lypw2YboIoLJfK/8dv7qxfc/PYCHzOGnVKrF4s2uXs/UCG68aJYy2SSASHH64d/C624lEvvMqsRYivFzfeIHnleHLbwI+alTye9ngwq/cm7povvaaE3d0/fWJ68E+dGQub5lw0dRFxUWztNSx0Liwe+MFteCJwmTdOt16q+MSyyedyKQFjz9fWfJb1w3JC1OBp1OGC3s9vPoekNrmRNfS7QdsH9q2LbXfp9NFky/P5Z13Uj+rVs2xdNesmUhS42fBc+vEb5UgQiSu2LqxFmu2rancz2rVxB4KIgueCmG6aLKI+pRf+8jLk18T1jVeZcK9336J17Nne4s7wG4WTdl4pOKiqWr54Osk6+fuZLJmzeT76GfBAxLCh723V1wBHHmkE6vG9zW+v7LWMH7ybmLBk2Vt1XHRFFk9WQueqK2LchuMHOn0ufvvT3zmt4+gDRdNEwseu+jlCv5XXkk9LhMummy9RXv0ufj1eVn/deuk46LpZcGT9RsvgccvsrLzGL+s8TILHpsxf9cuYMYM+e9nGiML3tdff611vG4WzWxiwgTvyZA7aIpWVU02WAW8Y/BsWvC8fpflzjudjutaPEwFnpsune2wXg8dl3S7aFar5r3iJYJvI6LrsGWLPEOdrRg8Fve61ajhDFLxePI1Y6+rTOCly4Inm+iqbOpsIvD43wuSxlrldwFvCx5PFAWeaKypUgW4917g7rsT5+dnwXPrxJ7ja685lqFevZK/K7o+KvdKZdEmFnPGZX6SEAWBp+py6KJyTYqKxG2B3c5H1YLnuiSqbJdr04InK8u2wFNx0WQ3AGeFiqrAa9w4+RyrVgWmTElNqgN4j5dez2OWsC14bsr58vLEebGuv3xbr1ZN3G6vvdZZVGevQToEnkkMXps2jsDfujXRF0SCMBNJVth6e8WLe50f4C3weCu033l6WfBMBJ6X67yo3vz8GUitc5cuide7dqlb/TOBkcBzs2iqUFmyaMpwB83S0tS9ydgGayrwwnTR5PEawNlBK0gMHt9ZVASeqYumqsDjy2/QIHVDVT/4QUJ0HTZtkg8WQV00RbAPAlGWsfz8hItF0CQrQWPwqlUTZysM2m4BcT15t5QwBB7/IBYNqTL3GL49+1kLw3DR5BHVwe1XbLtWteCx9axVSyx2RJ+p3APV+1Sjhj2BF1YMnoqLpgpFRWL3QdaCp7IvWSzmeAR8/rk8MRZLOix4KoJY1bWNr5Os77ECj23jKi6aIgueew6iZ4RomwQXVYHndR9Ukqyo9ClX4LmJlNy6FRc7YwWbxt6rrfHXQLbnsNtGMhWDl5fnWHy+/dYJMdm4UXxeQZ4vNix4XgLP6/wAed3dOtnKoilKVAh4C6x16+R/UxV4bD3q1Usek3NS4MmyaJaXl+O3337Dir9mv4cffjgKbfi3ZTFsZ9u1K7lRsQ1W5cHpoirwCgvNBV55udPZ2AHc61bK3PkAsxg8UbkiiorkVq+wXDRr1/YXeO6mtS4qAm/zZnsWPL8Mjm4d/aha1WmnmXbRjMWc684P2GFZ8FTulwjVBzWgJvBULXiy1U2XTFnwRP3KxIJXWCheSRYJYNWJpgqihTde4KkuzplY8GQC38s7IYjAE6FrwQOcJFmff652bDZa8FRi8GQWPBmqAk+ElwWPbw+yxQWvNXsVC57K2Jef73ynrEy8wF2nTqK96Sx68zF4Lulw0fSzcB10kCPwAODnn8VtQXU8UonBi4oFzx0jbWXRlAk8r3bn5Xoq+p4oc/nChYnPOndOvr67d/vvC5pJjASeXxbNn3/+GYMGDUKNGjXwySefmPxEzsALH9FKU9Wq5q5dboPctCmRoIA9zkvg8a6eGzc6jbd6dce0zXcwr87iJfBMtkkQlSvCayIaloumSrykn8ATXQcvC14YLpoqK9YigWcy6eCF3IYNTtmqAg9wrjsv8PyEjV8dAXF/4ttwOix4InJR4PHXkn3vJfBEK8kmLpqFheoPZdkkk223fivc7O+6pNtFUwXZPdeNwQMS29yoYDOLporAW7vWsaK59829l+ly0ZQhEngmi2mAmYtmUIGns7BSXi4OUbEh8HRcNG0kWfHr/2xfmDnTvotmeTkwdarzOi9PvSxbFjy/GDxbWTRNLHheqFrwFi1KfNapU6rRRrY3ZRQIxbjYuXNnvPfee5gyZQoe9kuDluN4CR+dvYVY+InCggVO4HXz5smZJnVcNKdOBZo2dVLAbtgg3nfKK6FFpgSe10PZloumicDzS6Ahc9HMRAyeF+w+hC5BLXgzZzp7HrVoAaxaJf6uTODxyAZ9Fr+Jh0iIelmhg/wWi4rADkPg8RNjWy6aomukYsETlcsLvIIC8UqyiYumzj0Sjc2lpcntWdX7Il1ZNEWLJn4uvIBdgeduc6OCqQVP9GxTEXhTpjiZ8Pi9rGwnWZG5aMoIy4KnKvBU+yWLroumey/LysQCj02mpbpwwn4f0BN4BQXy87YRgwck94WZM4O5aIqei2+9lairThtm6+21eO93fjZdNE0seGELPJYDDkgVeDKX6ygQmvdo69at0b17d7z66qth/URWoCLwdNwzgdSJwjXXOI1syxYnA6VLURFwxBGJ91demVwO24D//nensa5fDzzwQPIWDi6XXCKvk6rA05lc8eWKYDO28ei4aHoNjHxH90sbDACPPAKcdVbifatW8rq5ZDIGz6VBA+f/vfZy/vcTeCZJVgYNctrahg3yDFSiuCbRZNdvKwLA/+GpYsHz8uXX+S2WIBY8/qESJAbPxIInmmiIJkAqFjwWWQyeyIKXlycWHH73wLbAYzdoPvlktd/1WjBYtizxulEj8THpdNFks5mqjH2A97jMkw4LHv/5unXAY48lxy/pxODpWvDOOCPxOb/FiYvIu8dU4LHt1ut53KFD4rXXfr7ub8fjyeer66LJWvDYMczt2+x5qCxKuJgKPEA+DrPnFo/L+6yfEGX7wu+/iwVT0G0SRL/lh6rAC2rBs5VF00TgsVsdef2WC9s33PFg2LDEZ336pO45qptwL50YuWiq0rBhQ/z4449h/kTkCcOCx2+TwMZIsBaRoiJngvDFF85E+vLL5eWwbNqUbMHr3BkYMgQ46ih5ndIZg/fEE8DSpc7fLr1U/t2wXDT9JjnPPedkAz35ZODQQ4Fjj00d1GUumpm24P3vf04K7vPOc96LBF7QJCsqCWrYVMQuYVnwVASeSrIIld9iCSLwVM6bxbbAE01SVAWeiqWgrMw/Bq9OHXF/CduCt2dPqgVv2jRg0iTvRTAVC148nsi217y5ePNnIL0umuzihup+ra4brMok3WYMnso2CS7btjnXzq1jmDF4bds6GbfnzUt9DrsEcdHkz0/1efz00473zuGHez/X+PbmthVdF03WgieKG2PPQyc3n0zg+SVZcX9bNEln+6hXXfwsXGy/cuMPeWyFALzxhlo5fL28PECCZNEEMptF89ZbncXiW25J/ZuqBe/WW51xuHt3J0Mw226jbsELTeDt3r0bU6dORXUdO3sOIhtoy8uTUwTrwLuUyR5MbgM97jjnn+zvPHl5yQLvn/8Ezj3Xu07pdNHs1St1o1cRmXDRPPHExKaXDRqIBxa+bi5RiMHbZ5/kFStW4MXjzqQtqIumSjpt0ebrphY8PxcOFYHn5VLHki6Bp3LeLLYFnmhYF12jIBY8ftwoLExkdQXU3BdF6IxBKgKvqMjZyLprV/XflbWn5csTfdcrji2sLJp+sJuY+1FQoNZvbGbRVHHRdKlWzSw5BV8nFRdNAOjd2/knQ5QoRFVA8fdO9XncsKHjveOHrL2ZZNEEnHsn2pxbtBm6CkEseLJ2z14nr2zNOgKIt/67BE2yAjiLyirzIhdVgWeaRdMkyYptC15xMXDzzcBtt6WW55dkxb0+tWsn9xE+yUqULXjWXTS3b9+OadOmoV+/flixYgV69Ohh+yeyCtlAy6r+oDF4fgJPhuzv+fnJAk/loZ5Ogad6vfweFqbbJHitdKq6+YgGFy8Lnle5MmugHzoxeG5aa0B90sH+TUfg7b+/+p5wXjGm7m/5JdRQEXiq2HbRlLU1mwLPJAZP1YInKkc1mYPItZv9XZVNwL1+QwWR+zwv8FTHNBWBx+4b5xXHJvNOKC317xMybAs81euSjiya+fmp7a5aNbP9wwB9F00VbMbg2X4ey8YPkyyagNyCp+rGzCPbJiGIiyZ7nbwWKnTaLz+uiY7xwut++QlNnkxY8DIVgye6x34WPNm1zqYYPCMLXr5Ca4zH46hTpw7uu+8+k5/IGWQDrekm50D4Ao+34Km45bDnya8g247BU41ZzIQFT1XgieqzaZN81VLXgrdli1OWSXA5C99+CwvVLXixWGJfIx2BJ1uFVEluw6PS3mwKPNX2HYupPdSzyYInEniisr0mbl4xeECytcTUgmfbRVO1z6sIvJkzE69VLXjsdVLZF1KGynmoumgC9gSejRg8tz7s9bFlwRMJvPLyRFsNIvDCcNE0eR6rCLwgFjyRwFP1mgDCj8HTqQtPXl5i/78wBZ6us1zYFrwoZdEUueGaJFlxy3KJegyekQUvHo9L/xUUFKBVq1a4/PLLMX36dLRr1852nbMKmfAJIvD4GDyZOAliwWOTrJha8H76yUkA8/33ib/pWvBEg6/q9YqywBO5UW3aJHev0hV4gHfgtOpkRtR+dVwu3LrNnAnccIMTZK5iwROhmuCBxVTgmbq5qU6YqlRRS9WfTTF4opVMkVD2urZuPcvLxaup7Gey9hC2i+a6dcA//pF4r9rnVawTqhY8tqyrrwYmT3Zem7ZbwP88atTQe1aFacGbPBkYM0avLP5veXliN0EV2Enl1KnOPfjpJ+f9s88mu+anw4LH151dwLMREy9ru0GyaIqsp6YWPNN98Njf5lG14KnALlyJFmFsxOAFseB5PU9MLXhDhzoxnmHvg2dqwVN10eRhP//iC6e/RxUjC165qQ9IJSRsC55KDJ4MFRfNKlXEGQ152Dq453n44akDY1AXzcJCMzdI2xudy1Ctm2jiu2mT3HJkIvA2bQLq1hX/zUTguXXTWZFj6/bkk8Avv/gP8occIv48Gyx4qg9q1esv63uZdtEUreqKFhRE9fc6d/b6sSujIoGXDhdNlbHZpgVvzhzn/+rVgb33lpfFnuNPPwE9ezr3VSbwmjf3r5/feei4ZwLq11k38UJ5uXO+IryyCPJj6K5d5hY8dnHm5Zed/197DfjkE+Bvf0s+Nh0Cj7+GsZgzdpeURMtF08+Cx94/NsOnH34WPL8kKyJkMXhsHLAqBQVOGblowZO1y8WLnQX+M8/0P9YlLAueaGwT1aVDB2D6dOc1n/mc/Z5rkQX0YkXTTWjbJBAOMoHHdqig2ySEIfDcPYLq11ezNIjOUzSQBRV4OmLYlgUvjBg8kYAoKZFP0HS3SXDLA8wsNC6i+6rqNiT6ncmT5d8pLgaOPx447TTx38MSeKKJN39/3nvP3u8BiT77wAPONbrzTvFx+flikcQ/7D75RL1eKhY8v34qWtXl63TkkcBJJ6Ue16GDk266Rg3gww/l9WQFnui6mlrwoiDwZBNEN1trs2ZqyWhYdu5MHj86dnSSaBxwgDPR0qmfCB33TL/yTjrJ6QOXXuq/FQ4/6RMtJBQUOFu7jBypXp9du8xj8ESTym3bgHHjxHVTIYiLJgBcd51zDs8957wXZUAGwhN4QbJoun3o9tudBFtNmgBPPaVWN0B87eLxxP3Veb67yCx4uvM1QB5b7NK6tVo5UYzB82uX77+vfmymY/Bee80ZMzt0AG66Sa+8KGJkwSPUCcOCx7to2hZ4sVgiSYfqpNrL558laAyeTYHHPmB0LHheA14QF80dO+QTPxMLnjtBFt0PWxY8nS0IXEQuKvvv77hxetUrUwJv2zazuE8v3PO89VbnQeLVburUSZ3Usg/k9evl6fRF9QorBo9l4EDnYSlbHPrgA6cdiFzLXNh7IGr/snsStosmj4mLpmiSF48nNjn3a+uic9yxI7lvHXww8OKLiS0L/LBtwfO6zpde6kz8VMYhftLHbgTvsnSpUz8dK1cQC55sUimaKKfDggc4HhIPP5w4D/f/MGPwbGXRdOtapw6wcKFTrmk/Za+da2Xxure6Lpo1aojboBd+As8r3pYlExY8mwtmQSx4JtskuKi6aHboAKxc6T9mFhVFO/bOJZDAW79+PV544QV88cUX+P333wEAzZs3x/HHH4/LL78c9evXt1LJbCYdLpqyTmMq8EpKEp3JVODJUken04IXloumTiyEDJkFT+b9bCLwXAuebYEXxIIHiFfiior865QJF81YTO/Bqepqw/6mX5upU8dJny9DRXymI4smS/XqetlLXWQWPFH79/JA8CJTFjy/Badt2xL936+ti86R9wCoUkUvriydAq+wUH0M4id9ogzBRUX+95UfB3fvtuOiySIa21TbW7Vqib0DTQQekHwOMguezRi8IFk0ZdZTNymJDkVFTtllZYlrp/p8102yortIzX6HP28Xr3hbUTkiworB80PnekTdggeojZm6Aj9TGAu8iRMnon///ti0aRPizGx+7ty5mDRpEh5++GGMGTMGJ554opWKZiui2DTAbhZNmQ+wqcBjN3VWnVTz5ynL5pYLLpphCbwdO+TC2MRFMywLnkmSFRaZwPMjExa8qlXVrB86vwfoTSb9ksuo9Kl0W/BMJkH89/wEnuwa2lxxVhHPtlw0WeFiasEzFSxAemPwdJ4D/KRPJPBUxAVvAeAteKZJVrx+A9DLrFujhjM+mrho8rhjt1dW63S7aPpZ8EyJxZy5webN9gSeLAZPV3wC0bfgsWNt1arJC5x+6LTLqMfg5RpGp7hw4UKcddZZKCkpQefOnXHJJZdg778iwpcsWYJRo0Zh5syZOOusszBjxgzsu+++ViudTfAT5D17nP9tCjxZwL6pwGMzaKpOqvPznXq55yfbGySowNPxf+cfShs3OufjDlqmFjyTTVN5RC6aJSXyAdVvNVxEWBY80yQrfL38juPJlMCz/XuA3oTG67xVV7vTkUVT9ns66MTgyeqYDS6aYQg8kQVPB/48XIuIi80YPNNVf5kFT6UP8NfcVpIVliACD3Da27Zt+hudi1CJwTPJ3mgri6ZNgQckBN6CBU75NgUe+zoMgae6eGIzBk9WVrVqiWunMrbZdNEUWfB27Uq2zHp9R4aqi2auYZRk5YEHHkBJSQnuuusuzJw5EzfccANOO+00nHbaabj++usxffp03H333SgpKcGDDz5ou85ZBTuwbN7sBLzXrw989FHi86AxeFEQeEDyA0Xmn5zOGDy2Az/5pHPdzz8/8ZnqA4Cvc5gWPJMsmjK3Ti8Lnmo9RRbooC6aIiulSn2CBLd74eWiqSvwbGfRBLz7YNAVeMBeFk2TevHoxOBFxUVT1cLrF4PHChc/q63oHHkLno5FSnR8mzbJ7227aKpiy4LHYzvJCiCum0l7M3XRZHHHLt7Lx217BQVmbTeMLJq6bVUE21c7d052o7OZZEXHo8PFb5sE1TLDsuCxsNfKtsDT3Qfvzz+BFi2Apk2B+fPNygT0XDRzCSOBN3nyZLRr1w533HGH9Jjbb78d7dq1w6RJk4wrlwuwnWX8eGd1ac8eYMKExOdBY/BkiTn8OqdssFi7NvFaZ+8xVuDJLHi6q0xBBB7/W/E48Pbb4kQaXg8AtpxDDrEj8G67LfWzPXvM9sFr2FD8eTpi8ExcNEWobMURi+mvnua6BS9okgTReyBaFjzWSjlkSOLvvXub/bbOZNJvvCksdCYfKoTtollSYi5YgNTr0r178nudtPWAPYGnYsEzFXimViTZYtOGDamfBRF4Nlw0geTzdNuezj2w5aLpnl9JiZMcysWGBY/dYmHu3MTekICeBY8VYy5svzrmmMTrSy5Rq5uXBc8rW6OsHBFBYvBk5ai0EZsumvxizt13OyKPTTLGi2HbMXgqnHqq+XfTidEprl69Gv369fM9rkuXLhg7dqzJT+QM7MAis7QE3SbBtgWPHXhtW/B0V4GDCDyZS9HOnc41VBV4+fnAd985qeivvNKOi+agQc5DrkYN4M03kx9GuuVWqwZ89RUwaZIjlG6+2fk8HVk0TSx4Ijp1Ujtu+nTgnXecLIzunmFeqAzisVjCHS2owDNJsuKHDQseW69si8Fjz/HOO52MoQccAOyzj9lv64whfsd+8olZhtWwYvBY63hQgffgg87WA+vXO2Jadr116ugSxIInSnBg4jYXJMmKbLxytxdiMRF4u3enLt4G8X7ZuTPRZ90xzobA03XR7NQJ+P575/W0aYnPbQi8J54Avvkm0Y9++CHxNx2BV7euIypkFrzWrR0PrOnTna0pVJAJvHvuSV608iMdFjy2L6k8p3T2BNSNwRMlF2vcOLFPM5AZF82RI53n0GuvmZeRDowewzVq1MBa1swjYe3atahh4leVQ7ADi0yIheWi6TeA2457UrHg6cZxBBF49eo5Awo/AO3cCdSsmZjE5+X5DzyHH+78A5KT0PDoJFy44Qbn9fjxasd7ccwxzj92vzYvC57qwz2oBU/1d1SDzA880Pm3eLGawNPZQJYVeO7EL+oWvEy5aPqtFttw0XQFHvtZrVrAP//pXYbfPdcZQ7weX4MGyTfcFuHnoskKF9MsmuxkR3fSzE+UWrQAHnpIrwyWdMbg2bDg6Sy6NG0KNGgArFuX/LktF03AicOzKfBcbAo8XRdNdpyfOjXx2obAa9PGWeTs1s15byrw6tTxFniFhY4FR8eK414bVuA1buzs+6dDWPvgBTlGJwNnkCyaLo0a6Qs820lW2rRx9mmMusAzctE86KCD8PXXX2P27NnSY37++Wd89dVXOEg1/2uOwg4sog1ageglWWGxbcFr1Ei9PLZMF51rlZcnFpTuwy4MNzyTia3KyptquWxZXhY8mTWZJ10WPN1hQvWeybKS8rj13L3buTYqG+SKyEaBF1ULnnvvdPuUTQteUZFarIoKUc+iKXs+mZINMXhBkqyIxizReGMq8LZts+eiKRJ4pskxgrhoysZ5WxtHd+yYuE5LliQ+14nBc+viJfB0EcXgmcQdpsOCx7Zh2wIvSBZNF34OmQkXTUB/3p4JjATeFVdcgT179qBnz554+umnsY25w9u2bcNTTz2FXr16oaysDIMHD7ZW2WyEHVi2bhUfk6kYvLAE3q5dYgtevXr6Azk/oOleqzAEng0XTRaVlTedvZRcvCx4QQRe0CQrIv5KwquM6j1TdR9x2xkfBxmFJCtecbC5HIPnkkmB53V8EPGfjiyaumMRGz9mkrGWJ50xeCYumkGSrADqXgc6wowXeGFY8GzG4Om6aHbuLP7cRpIVwDnn9u3Fn8vQjcEzqavIRTOIUBSRDRY8kyyaPPycLlNZNPPyzBLupBMjgXf++efjwgsvxJ9//onrrrsOtWvXRqNGjdCoUSPUrl0bN9xwA/78809ceOGFOO+882zXOatgBxbZ3nC5YsFzO1F5uXg1WDf+DkjtQLoev6LfDNOCZzL4q2QkVB1IeAvet98mXEFZZIMnT7qSrOhO0MIUeKqxmSJUJ2HpjsFj6zVvHnDrrcCPPzrvReOHX7npyKJpWpbfg1t3DJEdH6Rt+GXRNHHR3LEjmGBhBV69enrfFZHOffBMJlpTpiTHP+leL9W44SAWPF0XSBZ+7C4pAe67D/jjD+ezTLho1qwpXsyzZcEDxMJbR+CxzwIXWxY8NnuoSTnZbsHTyaI5fLgzf+GxJfBsZNG02W7DwEjgAcArr7yCp59+Gm3atEE8Hse6deuwbt06xONxtG3bFs888wxGjRplsarZid8kID8/2MrLjh3REXjsuYqyienG34nQFcMqAk+3k9oWeDbjmdiytm8Hjjoq8UBnMbHguQ8m2y6aum67fL28UBV4rItmOgSeTpurW1f+NxOBN3asE1t16KHOe9E18jsPsuAF80bws+D5ZS8OYx88dnyWWVp0SGcMng10r1e7dmrH2XDRNMkgzAu8ESOSY74ykUUTELtp2pwoi8o3EXjxeOL62xJ4gDh5lCrpiMFjBZ5KHdks3n7jho4FDxDPIxs08P6OCFH7MrH689iyPIdFoFO86qqrsGjRIqxYsQLff/89vv/+e6xYsQILFy7ElVdeaauOWY3fBHHQIP3Vx9q1ExOA+fPDFXgm2yQA4mxiJhY8HhsCz50EuddNt5PadtG0aQ1hy+ITALBExYJXrVrynpCqpMuCpzvxCMNF88ADga5dxX9TbRte/Ya/Ruef72/lSkcMnmlZlcFFU2UfPN22e889zmStQQPgP//R+66IsGLw2GQ0sRhw2WVq5bz5pvfv6o7dhxwC9Ojhf5xO+2W3i9m8OdFOTPoTP3bzu1qZuskGcdEEgGbNUj+zKfB0y+f7kmjbHHaOFcRFE0hcP9sxeLptxJYF71//cuZZdesCr7/ufaxODJ4MfsHTJMlKfr4d90q+XeXlOVbyqGDBSAk0b94czZs3t1FUzuG61/HB13fcAVxxhZOGWpdYzFkp+eYbYMUKuTXGdB88FlOBJ1p5iYrA45OF6A6MXgNKGBY8nTLZsrwS3QYReLYseG+9BZx2mr5rCV8vHnfLA0D9PNPtoqkzocnPdzLOzZ+fGl+i+nsywcBmDgWcfutlMXRJRxZN07JsZtH0Oj4sF828PP86yix4bJ10J83NmztpyfPy7KxMhx2Dt88+Tqr6mjXVyjnvPOCUU4C2bcWLXyZZRydPBgYPBv77X/lxOs8Xtp9u3pwYv0wEHns+ojhs20lWVBe3RG3bpsATle/VV/nFFtG5sq7PtmLnbMfg6WIrBq9hQ+C335w5rp9o0smiKYN/lplY8GxdR/b69OsHvPyycx3+9S875QdF2YI3depUjB8/HgsXLvQ9dsGCBRg/fjymsRudVFJiMfHgsvfeZuLOhXVD+P138TF+ndNve4CqVfUmMVG04HklWTEVeLGY/DtRsuB5bedgy4IXRODVqWMm7vh6ef0tqjF4uhOaWAyoXz/1c9W2IRN4fJImVZfsdFrwouqiaduC51qm6tTxnyipbHRuMhZVrWrP7chWDB57LUpLEwKvTh11cedSs6a875mIjFgs1WWMx1TgbdqUaCcmCSF493q+Hply0RT1J5uubroCj19s8bPgZVLgBU0Movv7qvelqMjpP35l2rDgRVXg7d6tPx6FjdJprlu3DieccAJq1qyJmTNn+h5ft25dXH311SgpKcGSJUtQx0ZKriymSpXUbQNMV7hd/DJ4uZs3+1FUJJ8E6962bIvBC7I6mp9vln1QRFgxeF4WPFtZNP0GV6/rESTNsJ/A277deZ3uGDxVv37TyTePatuoVUvsScAKvIICdbcVv/qTwEtFNQZPZdwNw0XTNrYseG78mZu8yx27TKcVNgUeYLcvyASeDRdN/pmViSyaQGp/KiiwEw8lKx+IpsAzeQbYzNoYiznnwp+/rosmX6YXujF4InivMhOBZ0sos9eHHXujglK3ev3117Ft2zbcfffdaMhGVEpo2LAh7rnnHmzatAmv+znlVgJEg0vQFSu/fcOKitQGAz8Liw5+FjyTZBo8uhYfmcCLx4M9PNNpwdMps7AwMXh5Zbey4aKp4sfuVXfdbIayenn9TdeCV1aWvBijO4kH1NqTyWQyiMDLy0uO73HZvdtsXyy/+27TRVO3f2aLiybbzuJxPYEXRpIV29iMF3IncewGx7ko8NjJ66ZNwRYh+bHbpgXPzd5tw0XTdju1KfDcZ57NGDzR72QK/lzy8pLnBraTiOhk0ZRRp07ytcukBY8tV5YlP5MoCbxPPvkENWrUwMUXX6xc8IUXXoji4mJ8ZJJBIccIMjGTwW7oKULHtC7DtgUvyITeRbdjygQea8HKtMCzacGLxdSyadlw0VS5bl51D9OC56Ir8IDk/SqjJPBEK92m1gEX3oJni1yy4IWxTcLnnzvuPA884LwvKUncB5W4Z9E55qoFD0g863QS0ciQXRfTyWw6LHhBXTR37ky95qYxeKtXO3GMTZoACxbolxd1gceeR6tWzlwmKjF4tuHbbmFh8HP1woYFr06d5HJMkqyE4aKZtRa8OXPm4NBDD0Whxt0uLCzEIYccgtmzZxtXLlcIQ+BVrQq0aSP/u+rDystnWCfBilsnF5HA69BBrzyXww9PvNaN4xOd386dwTaQBeQP3DAseK1a2S0PAK66Sq0sdnLr7m0YZNLBEpbAYwWuLMMsD3vfggo8letiGu/D10dnHPETeDYf5lEWeLoLTaJ9u4BgLpqAs1AybJjzev36xOcqSW5EbSxqFjyv+6A7dogmcfvso1eGS5QteHySlZIS57XJOBSWBe/xx4GVK51n/HvviY/xgh/3bVuJdAVenz6J18OGpT5vJ06MTgyebUQCb+jQxPuBA+3+nq0YPF2BF5aL5rXXJl5HceMApS65YcMGNDHIkNG4cWNMmTJF+3u5RhgCD/CeIKsOmh07AosXi/+mu0LK1odN8NGvH3Dxxf7B6DLefBN44gmgd299F81YzMk2et55if3gbAi8sC14Z57pDEq1awM33RS8PJfBg52FgUsuUS+ruNhx91yzxvnMteCpDJJeAitIaK7XZCxXLXiAUx930gfYEXgmLpp+RCmLptt+2fc6DBrkxLOOGwfMmZP4XLdtyPpLPJ7oW4DaIpbMghc0yYpNZPfNzSytA3/tOnRQX6TikV2XqAm8desS2T5N4tfDEniy2G7VSTO/wGJ7IUK0gOPVV486CnjuOUe03nqrE7/9zDOJMYPfa9iWi2am+6eoDoWFwPXXOwtFdesCp55q9/dsZNGsWjW57aqMJWG5aF54oTN2l5cDF1xgp0ybKJ1mlSpVsN3NWqBBSUkJqmR6GTEChBGDJyvXhU+mIOOgg4Dx48V/CyLw2AHx6aeDxd+1bOls0mqKO4CffrrzPmoCTyRaL7oI6NtXvyxZeS7/+hfQooVeeU2aAIsWpQo8lesm80uvVi3Ygz3bXTRN+38QC57IIh81F03RBCDoPni1agUTeMXFzh5xjRsnr9iaJOBxk4WwbN6cHFtmKvCiZsGTtU2TtsFP/J54Qt/DxCXKFrxq1RKJLxYuTDzHbQg8fiw0FXhBjgHCd9EsKnLqwp6vX18dPDjxukYNYOTIxCLorl2566LJ16GoyLlWt98ezu/ZsOC5yWFcVJ7xYQm8vDzgllvslBUGSi6aTZo0wc8//6xd+M8//2xk+cs1wrLgeQ1a7ITBC69kLUEEHotKTFjYeD3sMu2iKbo+JsLCq7wg5bpdeNOm5GunMhjLBF7QxLqqLpqq2UJtCrywXDSB1PrYjMHLVRdNPrmMqbjmyzVpG6JzWbMmebxWmcxncxZNG+nhgzxTohyDF4sl+qmu6Ofhn3l80i3TGLwgxwDhC7xYLPU3dPsqW6dduyqXi2aY2IjBA/QFnmij88qA0uU84ogjsGzZMnz33XfKBX/77bdYunQpjjjiCOPK5QqZEHiqeG23QAJPTtgWvCD31suCF0TgAc5kVMdFUybwTFffXVQteKqw982NNTQtK2wXTRabMXi56qIpyh5qAl8PW21j9erctODJ2pNJ2+Anfqb7ZwLy62LaZm1vGSIaG4MKvG3bUjc7t23Bi0oWTdFvkMATk26BZyOLJiDeysKLsCx4UUdJ4A0cOBDxeByDBw/GZnc3Vg82bdqEwYMHIxaLoX///oErme1EWeC1bi3/mw2BV1gYjc4UZYGXLRY8wJmI6giCTFvwVMmmGDyWqMbgRcmCZ2vz2TAFnq0YPFbgZTrGJ6oWPNl1Md1jzLbAE/XToAKPTeLjomPFCNOCF0Y7DSrw+OyIlSkGLyzy8vz7mKoFj99yxg8SeB707NkTJ5xwAubOnYuuXbti/PjxiAuCvOLxOD744AN069YN8+bNw3HHHYcTTzzReqWzjXTF4LVvr1+GV4eyIfCCrLTaJF0umiZlia5RkFVNr2tuUj/WZUzXgifLCBimwGvaNPFaYdtOAMkPNtaCZ3If0umiGVTgsXtZRdVFM+g+eGEJPJN7qOKiqTKZl2XRzIYkKzZi8MKw4JmSDoEXNAbPTdbCwlv0vLAp8MJOsgIEtxLy+5tFPQZP9TnHw7dd22MG25ZtWoF1LXj8glAUrKfpQFEvA2+++Sb2228/LFmyBH379kWDBg3Qq1cvDBw4EAMHDkSvXr3QoEEDnHXWWViyZAn23ntvvPXWW2HWPWtIlwWvaVPgjDOc1w8/rF7Oyy+LP9d1oxMJvCi4ZwLJ12rXrnAseGeeabaqL7pGLVvql+NVHgD072+2Ss1b8HSSrNx2m/jhE6bAu/Za5/pVrQq8/75aeWx/XLUq8bpePf26hZlkhRcrmdwH7913nQdy1672HqBRtuDZiMFTcdFUSUglKmf37sTm6UVF5hYpW0TVgiea7F9xhXl5fueTKQse2+7ZMc2Fj8nzwubknC8rDIHHi0jde5BNLppVqgAffGD23TAseM8/74w9vXoB++6b+FylfYgMDq1bJ/Z9fued1HqqxOB17JhsADnnHP/v5ALKzb5+/fr48ccfce211+KNN97Axo0bMXnyZMT+eoq4Fr28vDwMGDAAI0eORJ2gs7gcISyBxw+MhYVOKu+1a/VW/AYNctLh3nuvkz3KhSx4cvjvTJoEHH+8Wd3cyZhrFG/e3HxLCUB8zWfPdgY5E2QumqoWvOXLnY2d2f2GwhR4tWo5WT+3bVPbUwxIftCtWJF4bTKxCtNFk190yaSLZr9+TnuoW9e5Tq64MCnL63tBBZ6tiVQ6YvDq1FErV3Z93Y3AMx1/B2RPDN7Spd6hCn5E1UWTHStWrkz9O7vdih82LXg86bDg6S52eAm8KLlofvMNcMAB5s/TMATeFVc4i90NGgDHHZf4XEWI8XOK555zspnm5QEbNybmRboWvIIC4OefgV9/deYHunsLZytaXbJWrVp49dVXcffdd+Ojjz7CtGnT8OdfG541bNgQXbt2xWmnnYa2bduGUtlsJV0umu7+QibuHA0bpq6K6g4aov1nomLBYwfsMFw0mzQxXzFnxR3gndlUBdE1b9vWvH4yC57qim3VqqlWiTAFXmGh809V3LnfcWEFnklfYq+Lm/Kcx3RSw1+3oNsk7NqVuJ8mD3f3gcu3uUwKPL5d2rJkheWiycbgqU7kZX1v40bzutkmWyx4QSd7UXXRrF49sV0A63buorPzVbYLPF28YvCiZMErKgr2LA3LRdP12mEXYlSEGL+Q07Jl4jqxi966Ag9w7kGnTmrH5gpGXbJNmza47rrrbNclZxENYGG4aAYtk+/cZMGTw3/HZtCuV2ZTFfhrHosFmxDxMXgmLn18Ww0q8LwmBSb3QtR36tQxm3ywv1+7tjj+xbSvBhF4omtuw+oGpLY5my6aQffBUw3c94M/J5NyReeyeHHCXU51Ii+7Jm6CoEzH3wHhxeBVqRLsnvLXJugCQNhZNGvUMBMs7pYLovEHsC/wdJK2sAtf6UiyogtvwYtqDJ7ttms7Nk133sG3Idl91E2yUlmx9OgjvEhXDF5QkcFPZnUn4SIxFxULXtgCz+a+KrYteMXFwR4ErPXNxIIH2Bd4sZhcfJncT9Ekw3QLT/b3ZSn6TSeo/HULGoPHTvKCjB9RsuDxZdiy4NlYxBGVsWBB4rVqm/OrSy5b8II+U7ItyUqQrYS9xlnbMXg658m2gagLPNaNHbBjgTYthyfqAk93gZ9/Lsruo4kFrzISSYG3Z88eTJ48GTfffDO6d++OOnXqoLCwEE2aNEGfPn3w8ccfe35/0qRJOOWUU9CgQQNUq1YN+++/P/75z39im86IZpF0CbygZbKDWlGRfoxJXl6qm2ZULHgFBYnBIwwXzShb8ESuszpUqZJINqKbZMWFb0tB98ETleli0g9E3zGdWLFtQ3aepg9m2xY8Ng4nyPjBt7lMCjx+khCWBS+MMoK6aLpEQeDJ2oDJ/WC/E/SZQgLPIZMumuw1U4nN0sW2BY8VEbaSstkQtlEXeEEteLK5i26SlcpKJAXeV199hZ49e+KRRx7BypUrcdRRR+Gss85Cw4YN8eGHH+K0007DlVdeKdyq4bHHHkOvXr0wYcIEdOzYEaeffjo2b96M+++/H926dcM6mb9CiKQzBi8I7KBWp47Z4MEPrEHFhS1iscT1iqIFr2vXxOu99w5WFi8qgj7sAKBZM+f/lSv1kqy42Lbgicp0MbkXNgVe8+bO//Xryy14KpkSRQQReKK6sAIvVyx4/Lh1+umJ19dco18n03qI8Lsubj8LWk4UBJ7segke275UJgsen8KgXTu977N4jbPXXqtejugc+PFE10XTJQwLjG2B504ba9QwmxfZdNE85JDE6yDJgYDUtmvb44oseJklkgIvLy8P/fr1w9dff41Vq1bho48+wltvvYXZs2fjzTffRH5+Pp5//nm89tprSd+bMWMGhg4divz8fHz88cf46quv8Pbbb2Px4sU44YQTMH/+fFx11VVpPx/RRNSGS1+YAs/UwsJ3SJPg8LCwKfD4+xf0fr78MnDZZU62yaBl8dkybQg8NziZjUXItMCTTdRMHsA2Bd6//+1kEnv99dRyu3VzMt2apu4PIvAKCoBPPkne+sGWi2aUYvB4TjgBeOIJYMgQ4P77zctJh8BTTQKQzQLPBJsWPNvbR9gWeIcfDjz4IHDKKcCllwJ33GFeN9E4e9RRwN//Dtxyi3o5onNo0cL/GBlhT9BNMtyysPd0/XonThYwz0RtU+C98w7wt785/9evb1aGC992bc/XKAYvs0RS4B1//PF49913cfTRR6f87bzzzsOgQYMAAK+++mrS34YPH454PI5LLrkEJ598csXn1atXx4svvoi8vDyMHTsW8+bNC7X+PLJsl7bLDToRYju76QSc75BB3EtsE6YFL+i179QJ+O9/gZ49g5UDAJ07J7+3IfBEbqOZTLIiKjMINmPw9t/f2QvopJNSH1jPP++kkDYlSAweAJx8cvK+l7lowRN9//rrgREj5BZVFWy4Yfudi2r8rd/iSpSTrJhgU+Cxi1Q2sC3wYjFHfH38MfDii8GyfIrG2bvucvbJ1fGuEZ3DXnslv9dZ8GPLs30/ALuL3VOnJl6bxsfbdNFs2RJ4+mng7LPNvu9VB9sCL6gFT/Z99nqSi6acSAo8Pw4++GAAwAomn/nu3bsrYvMGDBiQ8p1WrVrhyCOPBACMGzcuDbVMwE9EbT18w3bRNCEbBZ6JxSzMJCtBqV07+f7ZcLsQPdh0zjlohlYRNgWeqO/YeNjZtvQG2QfPhb0XuRiDxxOlGDyv69KwYW4lWZHV0WRxkxUBQccz2xNC2wLPJiJPHJMFPxWBp9PPwo7Bs7nYzdbPND4+zI3Og8C3XdvztaAWPNnzkmLw1MhKgbdw4UIAQNOmTSs+W7BgAUr+mq1069ZN+D338xkzZoRcw2RsC7GwyrUh8PhVwWwQeFFw0bTNPvskXrt7bAUhqAWPn9Rlg8Cz0XZtt5MgLpou7EM9G1w0ozARAsxix3i8rvFBB6mLn2wQeDbv265diddBLXi2XbqiLPBE42xYAk9HuIftohn0mufliduvTQteFMa1sAVeUAueDIrBUyODQ48Zq1evxqhRowAA/fr1q/h86dKlAIA6/9/efYdHVaV/AP8OIY0kJEAACSR0gkIEgQAKSFcEBBErgsDPdVdZLIhKs2BDFxQXEJfVRbDAojQFUeoCElCKsAqi9BZ6TaUleX9/vDvJJJkkU+5kJne+n+e5D2HKmXPLOfe895x7blQUIoq4wSX2f4PGrZ8tSoYD00s58hkrfwrw/OUePE8+B88IDRoA27bp39b7B9xxww26L22DRXeCFSOCM18domnL1wO8r77K+9usQzSNYp091h3FrYszkyuV1BDy5QDPlUDZNsBztwePAZ7z6dg737k6URTg+wEeoGWoYN5cfVC2r9ZrvtaD5+hFAgZ4jilTPXhZWVkYOHAgUlJSkJCQgL/85S+576X97wmvYcUMLA//X82Wmppa7O+Eh4eXuMQ4Ot0ZSi/Ac7dSs03PqElWfLEHLytLgzwrX5hF02i2VxrdOREXlSbg/XUui0M03R0uaEQgVVSD1Mghmq6upycmWTGKEcd7cevizL1WBRtCBfPmywGeK4wM8GybCJUquZcWUPJx4WsBniszWxdch/Bw90Zh2DafjNgHBbk6iZWtgvVk/fqup+upxyS4y9fuwXOU7eQy0dGe+Q0zKFMB3hNPPIE1a9agSpUqWLBgAYJ8oYQ4wFP34BU8ibt7Qm3TRu8DCQjIP7W4M8pCDx7g/tA0Tz4HzwjDhul0/eXKAdOnG5OmO7OmAcCf/6z/2lyXcYu9AM/VtO2VHXdnKAOM78Er2LB3twfPVq9ezqdlZdvodmcSKaOudFuPAyMnTb7xRp0FFdAJkVxRcP0GD9ZtVbky8Kc/OZfWvffqv6+8UrietT6qw5uMvAfPNsBzN3gdNkwbhQEBwJIl7qUFlLw+vhTghYXln0XXUfaeT+ZOgDd9utbfoaE6+ZHR7r5bAzKLBVi0yLU0Ch5ncXGu58dXe/AK5sHo9porF2H79dN/i5s9dvRoPY4DA4Evv3Qtb/7Ax5qlRXvmmWcwc+ZMVKpUCatWrUKjRo3yvW8dllnc0Enrg84rljCVmiMPRE9NTXW4F6+sDNGMiAAOHQLS0lzveSsY4PnClWQrIwM8X+/Bi4gA9u0DLlwwrrFXcN86u84zZgCjRgF16xqTH9v9ec89wOTJrj8XqGDZqVDBmAsxnr5X06gA7/33806srrC9UutOg9aohtA//qHHmrvPibJlsQA//gicOOF6Y6/g+nXvro9uiIhwvndg/nzg6FFdx2+/1XxZuXqvkJE81YPn7jmlYkXg8GH3znPO8Oa5oWAQdvPNrvWuG92DV6+eHq8irgWcJQkMBH77DTh7tvC9go4qeJy5Mxu1rwZ4Bc8Fpf2MSHsWLACOHCm+nVCpktZ96em+1Ynga8pEgDdy5EhMnToVUVFRWLlyZe4smrbq/O9MfunSJaSlpdm9D88662adEs76xQ3ztMp24oYMo3varDwROIaFufdwciOm5PcU2/1gG8MbEeAZNVOfkUJDjb2SX3DfujL9d8GH+LrD9vgPDHQvcPTELJ+A5wM8V9Kzd9K96Sb38mHbg+cLAZ7FYtyFBFvly7t3Jb/gugQFOf5w84LKlcsLYAs2cnw5wHPlHjzb+2yMaIS6e54rTnBw/oDUl3rwjJokxN0AD/DM0ExbwcGuB3fW79vyhwDPF9IvV86xutuTZdgsfLBZmt+LL76IyZMnIzIyEitXrixyhsz4+HhU+N9l5G3W2SUKsL7eokULz2S2CKX1mARfGyboazw5RNMfuNuDZzTb/enusV/wZFtWAjzbhqSj7NU/7l6Yse3Bc6fhYm/7mKleK7guRp0LCvZExccbk647PNWA9aVRIfYUHCDkSwGeUdP8GxHg+TpPB3i+cIeRJ55BaMsX1tGf+XSAN3r0aEyaNAmRkZFYtWoVEhMTi/xsUFAQev3vJpK5c+cWev/IkSPYtGkTAKCfO2ORXFBWhmgawYnJRUud7fYyugfPH/hygGfEw7BteSrAM7qn15Xy5okAz9d68HyVpwK8gkGFL2wzI+/Bs8UAz3EFJ0tztQevYD3mDwFewbJpxh68Cxc8m74vrKM/89kA76WXXsLf/vY3REVFlRjcWY0ePRoWiwWzZs3C8uXLc1/PzMzEY489huzsbPTv3x+NGzf2ZNYL8acA73+TmQJw/0RuNAZ47nF3iKbRjAzwCp7MXZ1FtiBP9+D5SoDna/fg+Sp7QzSNcO5c0b/hLf7ag1ew7vBmPVmwXDdt6lo6Bc/l4eHuz2bq6/xhiObFi55Nnz143uWTzdQlS5bgrbfeAgA0aNAA04uYBjA6Ohrvvvtu7v9btGiB9957D8899xx69uyJjh07olq1atiwYQNOnjyJ+Ph4zJgxo1TWwZY/BXh33gl8+KH+PWKEd/NSkO32sn1SBodoOqbgeHdvb4Oy2INnxDZ74IG859c5cN2rEE/34LmzL3y1IWQUT/Xg9esHzJmjf48bZ0ya7jLyHjxbvh7g+VIPnsWiowZycvT/Rt2zFB7uexdwjeYPQzS7dAH+/nf9++mnjU/f9tEvTZoYnz4VzycDvAs2/cbbtm0r8p662rVr5wvwAGDEiBFISEjAe++9hy1btiAjIwNxcXEYM2YMxowZU+RD0D2pYEXhqcckeLtHBdDpiV9+Wa8ov/66t3OTn20FnZKS9zd78Bzjaz14tse/P92DN326NiLj4/XRJs4qaz143j7OjOSpAO+ee4AXXgAyM3UKcV/gqf3GAM85y5frYz2efda4NK2B4urVwMyZwFNPGZe2r/B0gOcLE9L17p3XXpswwfj0o6OBL74AVqzQ36HS5ZOnziFDhmDIkCEuf79bt27o1q2bcRlyU7lyeiK33tBq1BXpgvfz+MKVbovF9wI7K9sK9dKlvL8Z4DmG9+A5zxMBXnQ08PHHrn+/4LpaLO4Pt+I9eI7x1BDNgABg4kRj0jJKUfvN3+7B83Y92b27Lkayngu6dtXFjAoeZ+70fvpqgFca7bVHHtGFSp/P3oNnNkY2RotipoaQJxgZ4Hn7pO0NZg7wSusxCb7wOA2LJf/2Cgtzv9HtyVk0zVSveaoHzxd5qn7w9QDPtiwA5hzK6AvBiad5epKVgscJkdF8oLnhH2wbo546qZupIeQJHKLpHl8boumvPXhGsK2DjGisGdWDZ7EU3kZmqtf8KcAritnvwTP75COAfwR4nhyiGRbmGxf7yNx4iJWS0ujB83aD29dxiKZ7fLkHz5/uwTOC0QGeUffg2fu+mcqap4Zo+hNfD/AKTn5mRgzwnGPvOYJEnsYAr5RwiKb32Vaqtg+I5hBNx5i5B6+0hmj6ynFju72M7sFzd18UPK7MVK+xB6/wPWrOMmomSE/xh8a7P6wjAzwq6xjglRIGeN5XVKXKHjzHFLxnwNvBSvv2mqdy5dy/0b9g2fHUc/B88X4cIxobwcFA5876t7sTOhQsWzfc4F56vsTfA7zy5fMeo+OMWbP03/r1gU6dDM2SIaxPcmrSBGjZ0rt5KQ3+EKAYeQ+evQfFE3maHzZTvaM07sHzx6DDGQzw3FPwngFvB3jVqgHHjulD6+Pi3EurtIZo+orr1/P+NqqxsWIFsHcvcNNN7qVje5zVrWtcsO0L/HmI5t69QESEawH7kCHAbbcBsbG+WfcOG6bPFKtTB9i40du58Txf70U1AnvwqKzzwarSnGwrC0/1tLl787rZGRng+WrDvTT5QkOrcmVd3OVvAZ71kS2AcY2NwEBjHmZ78WLe382auZ+eL/HnHryaNd2bObBRI+Py4gmNG+u/vlAvepo/BCienmSFyNM4RLOUlMYQzexsz6RrFuzBM5avBi+uKLgunhqi6Ss8EeB5QvPm3s6Bscx8f2FJ/GVd/WE9fbnOMErBAM+d2VHZg0fewACvlDDA876irpoxwHONmbZBwXvjjJoJz1cDPNshmr58NdlsAV7But+fpkr31bJgNAZ45lAwwHOnrDLAI2/wo9OLd5XGPXgM8IoXGmp/kgsO0SRPKQvHiS8/t8vsQzT9ib8Es/4Q4PnyRSGjGNlOY4BH3uAnVa73eaoHz7YBVL++cemaUbly9k9MrjS6fHE2xNJ2+bK3c+D7ykKA52v3gdne/1i7ttey4RH+HOD5C7PuY9s2jD8EeEY+b5EBHnkDA7xS4qkAb9Ei4L77gL//HWjQwLh0zcpexcoAzzVXrng7B8ZauhS4+25g3Trj0iwLAZ6vPTj666+BXr2AJUvMV878oXfH1qZNQJ8+wMKF3s5J6THrPt6wQffl3LnmDWJtMcCjss4Piqlv8NQQzXr1gPnzjUvP7IwK8Mh8PXi9e+tipLIQ4PlaD17HjrqYkb/VNbfeCnzzjbdzUbrMGuC1auVf+9LIIcUM8Mgb2INXSkpjkhUqmb2KtSw0wn2F7XFsth48TygLx5avBXhm5m8Bnj/iPjYH24mo3MUHnZM3MMArJQzwfAOHaLqHAZ5zGOCRLdb95ucvk8mYnZEBXsH2gj/cw0jex6qolDDA8w0couke2xkXzTZE0xMY4JEt1jXm568X/8zGyACvIPbgUWlggFdKGOD5BgZ47qlSJe/vshC8eFtZuJpfoYK3c+A/WNeYH+tFc/DkfmSAR6WhDDQ/zME6aUBAANC+vXfz4s8Y4Lnns8/034AA4K23vJuXssBXG3tffKH/Vq0K9O/v3bz4E189Hsg41asDzZvr36+/7tWskBseeSTvkS0LFhibNgM8Kg1s2paSli2Bfft06t3YWG/nxn8xwHPPLbcA+/drL3RcnLdz4/t8tUH/yCNAkya6D335QedmI+LtHJCnWSxAUhKwe7fOPEllU0QEsHcvcOoUkJBgbNoM8Kg0sGlbivicOu/jg87dV7++t3NQdvhqgAfk9TJQ6cnJ8XYOqDSEhQGJid7OBbmralVdjMYAj0oDh2iSXylYsVosZeM+KSqbfDnAo9LHAI+IGOBRaWDTlvxKwYqVwzPJkxjgkS0O0SQiBnhUGhjgkV9hgEeliQEe2WIPHhHx0TRUGhjgkV8xKsC76aa8v1u2dD0/ZG4M8MhW3bp5fzds6L18EBGRuTHAI79infbYytUAr1Ur4NVXgV69gK++cjtbZFK8v5NsxccDEyYAd90FLF3q7dwQUWlZsQLo0gWYP9/bOSF/YRHhXQGuSE1NRWRkJFJSUlCxYkVvZ4cc9NNPwK235v2/alXgzBnv5YfMbcUKoEePvP+ztiUiIjInX4oNeH2Z/EpkZP7/8x48IiIiIjITBnjkV4waoklERERE5IsY4JFfYYBHRERERGbGAI/8SkhI/imKGeARERERkZkwwCO/YrHk78VjgEeeZLF4OwdERETkbxjgkd9hgEdEREREZsUAj/yO7UyafE4ZEREREZkJm7fkd2x78C5f9lo2iIiIiIgMxwCP/I7tsyczMryXDyIiIiIiozHAI78TEZH3d3q69/JB5sdJVoiIiKi0McAjvxMenvc3AzzypNjYvL+rV/dePoiIiMh/MMAjv2Mb4GVney8fZH6NGwOvvAK0bw+sWuXt3BAREZE/YIBHficszNs5IH/y2mvAhg1AQoK3c0JERET+gAEe+R3bHjwiIiIiIjNhgEd+hwEeEREREZkVAzzyOwzwiIiIiMisGOCR32GAR0RERERmxQCP/E7XrkC1avr3pEnezQsRERERkZHKezsDRKUtNBTYuhXYvRvo3t3buSEiIiIiMg4DPPJLcXG6EBERERGZCYdoEhERERERmQQDPCIiIiIiIpPw2QBvz549mDZtGoYMGYKEhASUL18eFosFb775ZonfXb16NXr27Ino6GiEhoaicePGGDduHNLT00sh50RERERERN7hs/fg/eMf/8CUKVOc/t7777+P5557DhaLBR06dED16tWxYcMGTJgwAQsXLkRSUhKio6M9kGMiIiIiIiLv8tkevKZNm+L555/HnDlz8Pvvv2PQoEElfmfHjh0YOXIkAgICsGzZMqxfvx5fffUVDhw4gK5du2LPnj144oknSiH3REREREREpc9ne/D+9Kc/5ft/uXIlx6Jvv/02RARDhw7FXXfdlft6hQoVMHPmTNSrVw8LFy7EH3/8gcaNGxueZyIiIiIiIm/y2R48Z127dg3Lli0DAAwYMKDQ+7Vr10a7du0AAIsXLy7VvBEREREREZUG0wR4e/fuRWZmJgCgVatWdj9jfX3Hjh2lli8iIiIiIqLS4rNDNJ116NAhAEBUVBQiIiLsfiY2NjbfZ4uSkZFR4u858hkiIiIiIqLSZJoALy0tDQAQFhZW5GfCw8MBAKmpqcWmZf0cERERERFRWWKaIZpERERERET+zjQ9eNZhmcUNnbQ+6LxixYrFpuXIA9FTU1MRExPjRA6JiIiIiIg8yzQBXp06dQAAly5dQlpamt378I4dO5bvs0UpbpinVXZ2ttN5JCIiIiIi8iTTDNGMj49HhQoVAADbtm2z+xnr6y1atCi1fBEREREREZUW0wR4QUFB6NWrFwBg7ty5hd4/cuQINm3aBADo169fqeaNiIiIiIioNJgmwAOA0aNHw2KxYNasWVi+fHnu65mZmXjssceQnZ2N/v37o3Hjxl7MJRERERERkWdYRES8nQl7tm/fjmHDhuX+/8CBAzh37hxq1aqFmjVr5r6+ePFi1KhRI/f/77//Pp577jlYLBZ07NgR1apVw4YNG3Dy5EnEx8cjKSkJ0dHRbucvNTUVkZGRSElJKXHSFiIiIiIiMi9fig18dpKV1NRUbN68udDrycnJSE5Ozv3/1atX870/YsQIJCQk4L333sOWLVuQkZGBuLg4jBkzBmPGjCnyIehERERERERlnc/24Pk6X4rSiYiIiIjIe3wpNjDVPXhERERERET+jAEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSpg3w5s+fj06dOqFSpUoICwtDs2bNMHHiRFy/ft3bWSMiIiIiIvIIUwZ4zz77LB544AFs3LgRrVu3Ro8ePXD06FGMGjUKXbp0weXLl72dRSIiIiIiIsOZLsD7+uuvMWXKFISHh2Pz5s1YsWIFFi5ciH379iEhIQFJSUl4+eWXvZ1NIiIiIiIiw5kuwJswYQIAYPTo0WjRokXu69HR0fjwww8BAB988AFSUlK8kj8iIiIiIiJPMVWAd/z4cWzduhUAMGDAgELvt2/fHrGxsbh69Sq+++670s4eEXnbiRPA9u3GpXflCvDdd8D+/calSVQWrF5tbFnyZSLA1av6d2YmsGwZsHOn9/KTnQ0cOADk5HgvD0SuOnwYmDMH+OILLU9GuXIFuHbNuPTKOFMFeDt27AAAVK5cGXXr1rX7mVatWuX7rCGWLgUGDwYGDNCK/9gxwNkewg0bgPHjgUmTgKNHjcnXlSvASy8Bo0fnnZzclZEBfPIJ8PzzwIwZQHq662ldvAi88ALQqxfwl78Ahw65ntYffwDr1umJ2F0imjdfqyiys4FTp4DUVP2/iG6zixddS+/IEWDVKiApSY8VKxHg55/1t7wpPV3zcfEisGQJ8M03ru3fixeBt98Gpk4FmjYFWrYE3n3X9XwdP67bbcYMoEkTPX6bNwf27HEunZUrgbFjgR07gKFDNb3sbGD+fC1f69e7tr6bNwN/+pOuZ5s2wNy5zn1fROuxuXONqzcAPcZmzgRefRX49NO8dTt92rWGak6O1kci+Y9fZ4gAv/4KfPUVcOGC5m/hQtfWW0SD/Sef1Lr8+++BFSuAX34BXJ3cKztbj42oKD3OkpJcSwfQhtSSJcDZs3mvLVgAPPqo5tER16/r8TVxItC9ux5fP/2k+fz5ZyAry/l8XbuWt73T0/X/ly5pmleuaCBTXDk4dUqPg6KcOZN/nZ118SLQrh1QuTJQq5YuvXvruv/+u2tpXroEvPOOHmvOlvHVq7Uea9AAuOkm4K9/1fO8u3ML5OTotjRqdNP27UC/fsDf/qZpnzwJLFrkXNk6eRJ47TVd5337gMmTtc48cwbYuhU4d67kNHJygE2bgLQ03ZfJyZqHX3/Vxd0g+ehR9+pJEd1Wtsfw2bNaJ5086V7ejLZvn+Y1K0vzu3ix8+3VAwf0+B04EBg0SNvNrrbbLlzQevbjj7V+jIgA6tYFfvvNtfRsvf8+cMcdwBtvuN7G8jYxkalTpwoAad68eZGfefrppwWA3HfffUV+Jj09vcTlxIkTAkBSvv1WxGIR0UM0b4mKEvnuO5HDh0VycorP+Jo1IuXK5f9+XJzILbeI9Okj0revyAMPiMyeLbJ7t8iGDSIHDhSfZmamfs+aXo0aIt26ibz4osikSSKffiry++8i6enFpyMikpUl8t57Ir17F17PypVFXn5Z5NKlktNZuVLkww9Fli/X9GJjC6e1apVur927RdatE9m3r+jtd+WKyIIFIv/3f3n7oEcPkUceEalSRSQmRt8rKW/Z2SKbNun61a+v28qap2bNRMaOFVm6VD/niKwskRdeEKlZU+Ttt0Xmz9dtf9ttIu++KzJihMjw4bqujvjjD5HJk0WqVs3LV8OGIpUq6d/h4SKzZpV8nFmlp4v065d/21etKnLXXSK33irStKm+Vr68yKBBIufPF53WiRMio0aJVKumeUpM1G3Ytq3ISy+J/Ppryfm6dk1kyxaRjAzddpMni7RvLxIaWvh4mzSp+LSuXs3bT8eOicyYoXkrmA6g++XECZHVq/VYKyqff/ubSK1aIk8+KfLMM7pd7KUHiDz6qMhHH2n5K84nn9ivNwouvXqVXEb/+1+RkSNF/vpX+2UUELn7bpF//rP4Y/j6df337bfz1xu33SYSGSnStavI4MEiTZqI3HijlonipKWJJCfrdt25M++4si4TJmg5sFhEEhJETp4sPj1bZ86ING+u6YSE6L+33iqyeLHI999reba3P/fuFXnlFa1zv/hCy7e97VWlipbT334rPh979ujv7dghMnBg0fsxPFzrpi++cLycXrum28c2nYAAzdfMmbrfi5KRIfLNNyJHjoj8/LPIwoUiN92Ul06DBiJBQXn/j4zUc0Jxx9rZs/a3V1CQyM0359WXZ844tn4HDujxHRycl5ZtmbA9JyYkiKxfXziNzz7Tz9WuLfLLL1qOk5K0fD39tL5uTeP++3Ud7MnJEdm+XcvutGmaztSpekwVVz6ffNKxdbXauFHkqad0e1vTeOwxkW3b9HyclVX4O+fOibz6qshDD2l9XFReunfX/X74sNZ99tKyXd+dO0WWLdNtsny5SJ06eWl17ap1Z9euIrffrueX4uq0I0dE1q4VWbJEz7kFz+133JG3zv365S8DOTma3x9+EDl1Ku/13bvz58neEh2tnyvOkCHFp9Gkif6+iMjlyyKbN+t5xJ6sLC13e/ZoXfr443ntvdtu0zJ+991a1iZP1jaKtV4taj88/HBeXho1EqlePX95iInR9t/x47p/MzLsp3X1qpb5mTNFFi3SPK5YocfMO+/oOfbsWV2H06e1Liy4nr//LjJ+vJ4TrflbvVqP2Xbt7G+/4GCR118vvl7LydHjY/RorQsLptG4sW6vBx4QadVK2w0lSU8XqVvXfp5iYrStO3hw4fPU+fP6W6+9JjJ0qEjr1nqc3XyzSL16Is8+K/LVV/nTu/HGvO2ekpL/OLW1ebOkdO4sACQlJaXkdfAwi4iId0NM40yYMAHjxo1Du3btkFTElc5x48ZhwoQJuOOOO7BixQq7n7FYLA7/ZgqAiiV9qH594IkngGHDdFjHpk1ASIheAVm1Sq/ku+KRR4AhQ4BmzfRqw/XrQKdOmuY//uFYD1RgoF5xvvNOzUelSnpV5bffgB9/1KuyW7eWfAUjMBCoVw/o0AF48UW9urhmDbBxI1Czpl71/de/HFuvqCi9wml1ww1At276Gzt36nrVqQNs26ZD7krSrJnmKTUVuPVW/T8AnD8PTJig+bL2ipWkYUMgIAAICwPatweqVtWr4leu6FXFiAjN35EjjqUHaE9L27bAAw8A5cvrvsvJAXr00N6cpUsdSyc0VLd7w4ZA375A//66fXbu1HX99lu98rZ7tw6RcFTt2sBbbwE9e+rxkZoK3HefHh+O9OAmJOjV/pgYoGtX/e01a3Rda9XS7f/HH0B0tKa/b1/x6bVvr71lrVoBL7+s5WnjRl235cuBihWB2Fjgv/91fB0B4MEHtRctMlLzM3Wq9mI5emzYat1ar0x+843ul5tu0qv1CQl6rDhT5uvU0SuJ5cvrFetu3XR55hlgyxbtAXPUI4/o95KTtVeiWjXt2Rk6VPOXne14WuXL68iFlBRdx8cf19ELEydqOn/8ofskPFzLhCP1UUSE1pfvvKO9oi+/nHc1Nj1de09vukmvApdU9lu21O199KiWiyZNgFdecb6HokUL/e7OnXqlfsgQrZ+2btWeBWcNH64jNXbv1vWNi9O6+/Bh7UnbskX3z4YNJfc89ekD3Hyzrmvv3lo3LVoEPPecayNBoqOBe+7R7bt/vx4jCQmat4UL9Yp5ScqVA2rU0DLYqBFw9916pb9+fT0uli/XujI52bm8RURoecrO1vz85z/Av//tXBpBQXqlv21bPVcmJwN792oddOCAc2lZvfWW1td9+uj/V6/W/zdqBEyZoueCs2cdq0eqVtXt1bcvcNtt2qN2//1alpxVsaLWGy+8ACQm6rGblKR1yLvv6rndGVWqAB98oHnbs0frjZo1tc7829+0Keyohx4Cnn5a8zNzZv7RD4mJuv0czV9goLYZKlfW80t8vJ6f69bVHroRI0pOo2ZNoHNnPaZOnNB998orwO2363EsoueC557TY9cZFSpo+YyPB0aN0v+PHq3b79QpPXc5IyBAz/FRUVq31qmjx9aPP2r964zoaK2PRozQkRVTp+b1aFasqPW6o+eX/v313Hb2rNYZNWvqvmneHPjoI8fbMYC2+aZN03U8eVLPI6GhwA8/6DETFaXHR8HhneXL2x9FUKmSlqcHH9QeYVfKer162ma3bo82bbQ9GR2dV1//9htSAUQCSElJQcWKJUYHnuXtCNNIb731lgCQdu3aFfmZsWPHCgC54447ivwMAIeXFNsrjNOmFb5K7cxSt672PgUH61KwV89Xlrg47YkbNKjo3oziejlsl06dtEeyZ09j82iv98e6dOsm8v772tNk7/2ICO1BsvYQ+NLStq1IfLz+Xa1ayVeYi1sqVNBeH2tPoCNLvXp6ta24zzi670taYmP1qpptT4Onlxtu0KW4z4SEiAwYoFcjf/xRe2KNWueQED0+//zn/Ff5nV0GDtQrjUVddbUuUVHFv+9IL6MzS9Om+XtVjDpO3KkrY2Ly/g4P154e214lZ5eXX9Yr5s8/LzJunPa8FHdMObKN331X0yvus6GhzpVlX1wsFr2Cf+utxpT78uVFWrQQCQx0L50KFXSkwp//LPKf/+T13HhradRIexnbtcs7HxS3VK6c19Nd3BIfX3SviLeXsDDtCTQirSZNtJwX106wLlWquH/8uLrYjibyhaVmTZHOnY053732msh99xmTr//7Px21ceyYlg1nv1+5ctHb35FjxGZJwf9iAx/owYO3M2AkrwzRDAkRadNGhyhYZWaK/OUvGrzcemvJJ/Bq1XQYwcWL+v1r17T7/8oV7Qo+eVLk2281oHrkEU27pIMuMFAbed9/L9KypTZYRo8WmTNHl/HjdaiEoyfR6tW1gTFlinbvWx06pN3qjhaCjh11mNuUKfmHVmRnazd/lSoiFSvqsJCnn9Zhg7aVq8Wiw5Ss/+/USeTzzzUf48drUDZxom67LVs0WCspTyEhOqxi2rTCQxaOHdMhD9ZhfgEB2ggsaZ82aqRDZgIDtVG7dKlWaN266dCXgkOviluionS445YtmqecHB0uYB0SMX9+yQ31gkt8vA4rExE5elQbCo0b553cn3xSX+/cufh0atfWhs/x49rwWb5ch6ScPCnywQf5h4U5ulSrpulYXbmiQ2fuucf5tKpX1+FNe/bokJQDBzS9f/9bh7p16aLDykran82a6ZDpRx7RIVAF7dunJ5gFCxwLzGJjdUjc4MH6//vv12Pv2rW8NH/9VY9vR06mAwbo8KgnnxR58828YUEXLmi5uP12x7dZcLDI3/+ux9e1a1ov/fKLpnHPPboNhw4tOZ0KFfSCRJ06OgR4xAjdj6mpeRfCmjUTmT5dP1evnv3hO9YlICB/4NWggciuXbqely+L/Otfuq+ffbbk/Vm3rg5/X79e1/PcOR2eZx36fv681lGtWhWfTni47sMbb9T8vftu4WPDWmZnzXKuYRQRIdK/vw5tsjp8WM8Fo0Y5Vw5iYrRuXL1a0zh3TvMzcaLuj8WLdXhZcWkEBuqw/7179dhMS9M0Hn9c66ekJD2PtWxZ9LBo62LdDgkJeo775hvdd8nJeet68aLWK+fPl5ye9bxwzz1at06erLcEWIeXJydrvopLo1MnvfD3/vuaxiuvaJ178qRuL1u//eb4ubNiRb2YGBqq33nmGc1bSooOv584Ubfh3XdrmbGXRtWqWk5uv13r7u3b8+dn1y49Bq3lolcvPZcWl68aNfRCZrlyWh4+/VSP0+xs3a/Nm+uQ8xUrCg/pt7f07atl/O23dZvt26dp7dyp+6VdO/uNb4tFpEMHHapqOwS4RQu9UHLpkg77tQ4ffvddrWMff1zroSZNtI4prmz16qV5+/vf8w9dPXpU22/OlKXatfPql9hYrXevXNH8Wc8D//63nk+bNct/AamoZdgwka1bRfbv12Pj44/zhgSePattvtat9RgNCys6nVtv1eP3lVe07rjzTr3g9N57msadd+r69uql7ZOC26zgMR0erp/997+13rAO8T98WId9p6frcenIdgsO1vNU69aaZlqanvPWrxf58kttR5Z08djeMnhw/rJw5YrI3Lna3urTx/5xUbGitk+2bs0/LH32bK3nrLenXLqk5cJ6ATEmRvNfTHsr5eabxVcCPFMN0Vy6dCn69OmDKlWq4FwRN9/ee++9WLx4MZ5//nlMmjTJ5d9KTU1FZGSkY92wv/0GvP663jQbFKRd4TVr6pClxEQdMujEsFAAOrnG0qU6scjXX+vwtyFD9EbrcuX0xvmEBP2siL5eoULhdPbs0aEHZ89qN/ahQ9oFfcst2v3ctq12jUdFabpFEdGhTx9/rMMKz5/XG2k7dtT1jIrS4RMNGxa/XiKFt8WRIzqsp3p1HeoXFKTDJIKCdEhLcU6f1gkjjh/XIV5ffpl/+GSDBjpcrohJeXJdvKiTYbRurcMiNm/WYXLp6UCXLjqMq1MnXcfr13U4EaBDFkJC7Ke5a5cON6pbVyc7WLYMCA7WbV6lig7LiYgAHn5Yh4kU59w5HY6SmKjDvD75RPdtYKAOZczO1qES16/rEI9HHtHtZ2W73dPTdR2tr69dq8O+duzQYY+ZmXpMLFumw1qKc/UqMH26DntJT9ehEQ0b6n60WHTIV1ycHicnTuj2qls3f95sHT2q+69pU91mkybpsIlWrTT9oUN1iNns2brPnnlGh5qU5OhRHW64bp0O0UxM1GHLfftqPhs0KDkNqx07dAhUgwY6LOfRR3X7V6+ux0yLFjosOjRUh8McOaLbICDAfnrp6TosJS1Ny/D8+TosNT5ef8c6PLok27frkLYDB3QY7K5dWqYbNtThcy+8oOWlTRsd9lOSLVu0PNWvr/n6+GM9BseM0WO2WjUdKmXP5ct6zNaqlb+8Z2XpBDGffqr/79IF+PxzHbJjsej22r5dy0nTpkXXSV99Bfzzn8BddwH33qtDhI4f12F0995b9La25+BBrWurV9e6PClJj7HGjfW4q1JFP1dcWbdauVKHMqWn6z5r3lzzFRSkx339+lrv1q+vx0T58kWn9dFHuj9jY7VM/vqr/lunjk7S07evDgELC3OsDIjocZWcrOeOunV12FFmpq5706Z59ZojMjJ0+Ndnn2mZCg3V73/yiZavAwf0N4KDS05rxQotRzVqaN1Rtaoe/2lpeoyEhOg+jYwsOo0rV3SIp/XWiDNntCxah8N37+74ugE6hHXLFt2X27YB8+ZpmW/bVuums2e1Pvr4Y83b9et6LiyqTABaLtas0ePt8GHdNk2aaH0RF1d8frKy9Pxdv76Wi6tXtRwtWKBlPTJSz+tBQZruG29oGU1P1zwV1wYR0WNq8mQti92765DI3bt1O7zwguaxJFev6jDIffv0nB4crEPmbr457zOnTuk+iYkpOT1bKSlaNlNSdNmwQddtwAC9/aGouiInR7fRyZM6PDY6Wmd33LFDy1dGht6mYK3LBwzQzx48qPu6uDJqlZysdc+OHbqd77lHy8bVq9oWTEhwvA24c6fuhyZN9LdPn9Y6rXZt3Z/O2LVLh43u3at5ePll3Rdz5uj26tev+OPVKilJz98tW2p9MWuW1kOVKun56sABPVf37FlyWrNn63HbpImWm6go/TclRYfMdu2qvzVxov7WBx/osViU9HTdtvPm6XDYkBDgqaeAG2+0//lTp/S4rFQp77WMDM2DtX6/ckUnl8rK0nZWhQp6Hk1ORurttyOyZk2fGKJpqgAvOTkZsf9rCB88eNDuTJpxcXE4duwY5s6di4cfftjl33IqwLM6flwbY84WwpJYG37ONFr8lYhWkMuWaRA6cqQ2Glxx7Jgut97qfIBeVmVn6wk9Kkobfb7A3kUBV9M5e1ZP8MVdzHBWUpLeL/D44/YvsnjL/v3a6CvpIokzjNoXp09rQODtexg84cwZbeC2besfdbb1gpG1qWHWutL22M/K0ka9IxdKypKUFN2X/nDcAnoB8swZDe7cPW6vXtV7yJo2db3NQT7PpdjAQ0wV4AFA69atsXXrVrz55psYN25cvveSkpLQoUMHBAcH4/Tp04gs7mpfCXxpJxIRERERkff4UmxgqufgAcDYsWMBAO+88w622zyE9fz58xg2bBgAYPjw4W4Fd0RERERERL7IdD14APDMM89g6tSpCAwMRNeuXREWFoY1a9bg0qVLaNeuHVatWoXQ0FC3fsOXonQiIiIiIvIeX4oNTBngAcBXX32F6dOn47///S+uX7+O+vXrY+DAgRgxYgSCiprAwQm+tBOJiIiIiMh7fCk2MG2A52m+tBOJiIiIiMh7fCk2MN09eERERERERP6KAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmUR5b2egrBIRAEBqaqqXc0JERERERN5kjQmsMYI3McBzQUZGBqKiogAAsbGx3s0MERERERH5hNOnTyMyMtKreWCA56bjx48jPDzc29nwOxkZGYiJiQEAnDhxAmFhYV7OkX/h9vc+7gPv4z7wPu4D7+M+8D7uA++z3Qc1atTwcm4Y4LktMjKSBckLAgICcv+uWLEi90Ep4/b3Pu4D7+M+8D7uA+/jPvA+7gPvs90H5cp5f4oT7+eAiIiIiIiIDMEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUlYRES8nQkiIiIiIiJyH3vwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQAPwPz589GpUydUqlQJYWFhaNasGSZOnIjr16+7lN7PP/+M+++/H9WrV0dISAjq1q2Lp556CmfOnDE452Xb9evXsWbNGrzwwgtITExEVFQUAgMDccMNN6BPjtehegAAF9pJREFUnz5YtmyZ02mOHz8eFoul2OWPP/7wwNqUXUOGDClxm125csXpdFkOHHP48OESt791+eGHHxxKk+XAvj179mDatGkYMmQIEhISUL58eVgsFrz55pslfnf16tXo2bMnoqOjERoaisaNG2PcuHFIT093OT/79+/HkCFDUKtWLQQHB6NWrVoYMmQIDh486HKavs7ZfZCTk4NNmzbhlVdeQfv27VGlShUEBgYiOjoa3bt3x5w5c+DKXHGzZ88usYwsX77c3dX1Sa6UA0/WKf5WDlzZ/o6eIz777DOH8+GvZcDdtmdZOReUd/mbJvHss89iypQpKF++PLp06YLw8HD85z//wahRo7B06VKsXLkSoaGhDqe3YMECPPzww8jKykJiYiLq1q2Lbdu24YMPPsD8+fORlJSEBg0aeHCNyo7169eje/fuAIAbbrgB7du3R1hYGHbv3o2lS5di6dKl+POf/4wZM2bAYrE4lXazZs3QvHlzu+9FRka6m3VTateuXZHHZkBAgFNpsRw4Ljw8HIMHDy7y/d27d2Pr1q2IiIhAy5YtnUqb5SC/f/zjH5gyZYrT33v//ffx3HPPwWKxoEOHDqhevTo2bNiACRMmYOHChUhKSkJ0dLRTaW7cuBF33HEHMjMz0aRJE7Rv3x67du3Cp59+igULFmD16tVo27at03n1dc7ug4MHD6Jdu3YAgMqVK6NVq1aoVKkSDh48iNWrV2P16tWYN28eFi5ciKCgIKfzU79+fbRv397uezVr1nQ6vbLA1XIAGF+n+GM5cGX7F3eOOHr0KNauXQuLxYKOHTs6nR9/KwPutD3L1LlA/NjixYsFgISHh8vPP/+c+/rZs2clISFBAMjIkSMdTu/48eNSoUIFASD//Oc/c1/PysqSgQMHCgBJTEyUnJwcQ9ejrFqzZo30799ffvjhh0LvzZs3TwICAgSAfPrppw6n+eqrrwoAefXVVw3MqbkNHjxYAMisWbMMSY/lwFh33XWXAJDHH3/c4e+wHNj38ccfy/PPPy9z5syR33//XQYNGiQA5I033ijyO9u3bxeLxSIBAQHy3Xff5b6ekZEhXbt2FQDSv39/p/KRkZEhMTExAkDGjBmT770xY8YIAImNjZXMzEznVrAMcHYf7N+/X7p06SLff/+9ZGVl5Xtv3bp1EhYWJgDktddecyofs2bNEgAyePBgV1elzHKlHHiiTvHXcuDK9i/Ok08+KQCke/fuTn3PX8uAq23PsnYu8OsALzExUQDIm2++Wei9DRs2CAAJDg6WS5cuOZTeCy+8IACkW7duhd5LS0uTyMhIASDLly93O+/+4LHHHhMA0rVrV4e/w4at84wO8FgOjJOcnCzlypUTAPLTTz85/D2WA8dYj/3iGlb333+/AJA//elPhd47fPhw7v75/fffHf7d6dOnCwBp1KiRZGdn53svOztbGjVqJABkxowZjq9MGeXIPijOG2+8IQCkfv36Tn3PXxu39jiyDzxRp7AcKHfKwOXLlyUqKkoAyLx585z6LsuAfUW1PcvaucBv78E7fvw4tm7dCgAYMGBAoffbt2+P2NhYXL16Fd99951DaS5evLjI9MLDw9GnTx8AwKJFi1zNtl+55ZZbAADHjh3zck7IGSwHxpk9ezZycnLQpEkTtGnTxtvZ8TvXrl3LvR/D3vFcu3bt3OGD1uPeEdbPPvTQQyhXLv9puFy5cnjwwQcBsIw4gueJsovlwH0LFy7EpUuXULlyZdxzzz3ezo4p2KtTyuK5wG/vwduxYwcAHdNft25du59p1aoVjh07hh07duDhhx8uNr20tDTs378/93tFpff555/n/jYVb9++fQCAGjVqOP3d7du3Y/To0bhw4QIiIyNxyy234O6770ZERITR2TSNtWvXYufOnUhLS0OVKlXQunVr9OzZE8HBwQ6nwXJgrNmzZwMAHnvsMZe+z3Lgnr179yIzMxNA8cfzhg0bnDqerZ8tLk3bz1HR3DlPADq5wUsvvYQzZ84gPDwcTZs2RZ8+fZy+j8ZfGFmnsBy475NPPgEADBw40KlztS2Wgfzs1Sll8VzgtwHeoUOHAABxcXFFfiY2NjbfZ4tz+PDh3L+LStOZ9PzdqVOnchu3/fv3d/r71htlbUVGRmLq1Kl49NFHjcii6dibfatGjRr45JNP0KNHD4fSYDkwzvr167F//34EBQVh0KBBLqXBcuAe6zEaFRVVZAPW2eM5LS0N58+fB1ByGTl79iwyMjIQFhbmVL79RWZmJqZOnQrAtfMEoBMcbNy4Md9rISEhGD9+PEaNGuV2Hs3GqDqF5cB9hw8fxtq1awG4fhEQYBmwVVTbsyyeC/x2iGZaWhoAFLuxwsPDAQCpqakOp1dcms6k58+ysrIwcOBApKSkICEhAX/5y18c/m79+vUxYcIE7NixAxcuXMCFCxeQlJSE3r17IyUlBYMHD8acOXM8mPuyp1mzZpgyZQp27dqF1NRUnD59GitXrsRtt92GkydPok+fPli3bp1DabEcGMd6ZdaVK6ksB8Yw+jxhm2Zx6VrTdCZdfzRs2DAcOnQIMTExGDt2rFPfveGGGzBu3Dhs3rwZZ8+eRWpqKrZu3YpHH30UV69exejRozFhwgQP5bzsMbpOYTlw36xZsyAiaNWqFW6++Wanv88ykF9xbc8yeS5w+q49k3jrrbcEgLRr167Iz4wdO1YAyB133FFiehs3bhQAAkCuX79u9zMrV64UABIUFORyvv2B9QbXKlWqyJ49ewxL96mnnhIAUrVqVbl69aph6ZpVTk6O9O3bVwBIs2bNHPoOy4ExUlJScmcitZ2tywgsB3lKmtxgzpw5AkBq1qxZZBofffRR7k3yjjh+/HhuGdm3b5/dz+zduzf3MydOnHAo3bLK1QkmXn/9dQEgISEhkpSUZGie3nvvvdxJ1k6dOmVo2r7I3YluXKlTWA7yuLL9s7OzJS4uTgDIhx9+aHie/K0MiBTf9iyL5wK/7cGzdrFmZGQU+RnrQwsrVqzocHrFpelMev7qmWeewcyZM1GpUiWsWrUKjRo1Mizt8ePHIyAgAGfPnsXmzZsNS9esLBYLXnvtNQDAL7/84tAkBiwHxpg3bx4yMzNRq1Yt3HnnnYamzXLgOKPPE7ZpFpeu7QNzWU4Kmzx5Ml555RUEBwdj8eLFuZMbGOWZZ55BdHQ0rl69ipUrVxqathm5UqewHLhn9erVOHr0KEJDQ+1O+uEufysDJbU9y+K5wG8DvDp16gAofuYt63vWzxandu3auX8fPXrU7fT80ciRIzF16lRERUVh5cqVuTMZGaVy5cqoVq0aACA5OdnQtM3qxhtvzP3bkW3GcmAM6/DMIUOGFJpZy10sB46zHqOXLl3KN5zGlrPHc0REBCpXrgyg5DISHR3N+44KmDZtGkaOHImgoCAsXLjQ4fuDnREQEICGDRsCYBlxhCt1CsuBe6zniP79+7v0gPmS+FMZcKTtWRbPBX4b4Fl34Pnz54u8IXLbtm0AgBYtWpSYXsWKFdGgQYN833MnPX/z4osvYvLkyYiMjMTKlSuLnFHIHdnZ2UhJSQEAziLoIOsNwIBj24zlwH27d+/G5s2bYbFYMHToUMPTZzlwXHx8PCpUqADA2OPZ+lmWEedMnz4dTz/9dG5w16tXL4/9lrXuYxkpmat1CsuBay5cuICvv/4agHuTq5TEH8qAo23Psngu8NsAr1atWkhMTAQAzJ07t9D7SUlJOHbsGIKDg9GzZ0+H0uzXr1+R6aWnp+fOPHXvvfe6mm1TGj16NCZNmoTIyEisWrUqd78YbcmSJcjMzITFYvFIAGlG8+bNA6CBW3x8vEPfYTlwz8yZMwEAnTt3Rr169QxPn+XAcUFBQblBhL3j+ciRI9i0aROAvOPeEdbPzps3Dzk5Ofney8nJwZdffgmAZcTWjBkzMHz48Nzgrnfv3h77re3bt2Pv3r0AgNatW3vsd8zC1TqF5cA1c+bMwdWrV1G/fn107NjRI7/hD2XAmbZnmTwXOHXHnsksXrxYAEh4eLj8/PPPua+fO3dOEhISBICMHDky33cWLVok8fHx0qVLl0LpHT9+PHdihI8++ij39aysLBk0aJAAkMTERMnJyfHcSpUx48aNEwASFRUlW7Zsceg706ZNk/j4eBk0aFC+148cOSKff/65XL58udB3Fi9eLJUrVxYAMnDgQEPybgY7duyQb775ptCEKNnZ2fKvf/1LQkJCBIC89NJL+d5nOfCMa9euSbVq1QSAzJkzp9jPshy4z5HJDX7++WexWCwSEBAg33//fe7rGRkZ0rVrVwEg/fv3L/S9zZs3S3x8vMTHxxd6LyMjQ2JiYgSAjB07Nt971sm9atWqJZmZmW6sXdngyD746KOPxGKxSFBQkCxdutThtIuqpzIyMuSDDz6Q1NTUQt9Zv3691KlTRwBI+/btHV+RMqykfeBOncJyUDJnJ1lp3ry5AJC33nqrxM+yDNjnStuzrJ0L/DrAExF5+umnBYAEBgZKjx49pH///hIVFZU7w2bBjTpr1iwBILVr17ab3ldffSUBAQECQNq0aSMPPvig1KtXTwBI9erVi5wpxx998803ubMDtWrVSgYPHmx3KRhkv/rqqwJAOnbsmO/1HTt25AbsHTp0kIceekj69u0rDRs2zP2dzp07S1paWimupW+zXuSoVKmSdO3aVQYMGCA9e/bMnZ0LgDz88MOFAkCWA89YtGhR7knHXmPKFsuB837++Wdp06ZN7hIdHZ17ArV9veBsZZMnTxYAYrFYpFOnTvLAAw9IjRo1BIDEx8fL2bNnC/3W2rVrc7e3PUlJSbkXQpo2bSoPPfSQNG3aVABIWFiY/Pjjjx7ZBt7m7D7YsWOHWCwWASCNGzcu8jwxePDgQr9VVD118eLF3BkC27ZtKw888IDce++9udsfgCQkJJh25kZX9oGrdQrLQWGu1kMiItu3bxcAEhAQIMePHy/xt1gGCnO17SlSts4Ffh/giYh8+eWXcvvtt0vFihUlNDRUmjZtKu+8847d6X5LatiKiGzbtk3uvfdeqVq1qgQFBUnt2rXlr3/9q99MNeso67YsaSm4rYtq2J47d05GjRolXbp0kbi4OAkLC5PAwECpUaOG9O7dW+bOnSvZ2dmlt4JlwMGDB+XZZ5+V9u3bS82aNSUkJESCg4MlLi5O7rvvPlm2bJnd77EceEbv3r0FgAwbNqzEz7IcOM/2RFvccujQoULfXbVqlfTo0UMqV64swcHB0rBhQxkzZozdK+AFf6so+/btk0cffVRiYmIkMDBQYmJi5NFHH5X9+/cbtco+x9l94Ojn7W3nouqpq1evyssvvyx33XWX1K1bVyIiIqR8+fJStWpV6datm/zzn/809SNEnN0H7tQpLAeFuVMPDR8+XABIz549HfotloHCXG17WpWVc4FFRARERERERERU5vntJCtERERERERmwwCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERE5DMsFovTS6dOnQAAnTp1gsViwbp167y6DkaYMmUKLBYLFi5c6HIaKSkpqFKlCtq0aQMRMTB3RETky8p7OwNERERWgwcPLvTaqVOnsGLFiiLfb9y4scfzVZrOnj2L8ePHIzExEf3793c5ncjISIwZMwYvvPACPvvsM7vbjoiIzMcivKxHREQ+bN26dejcuTMAFNsTdfToUWRmZiIuLg4VKlQorewZbvjw4Zg+fTqWLVuGnj17upXWlStXEBcXh/Lly+PQoUMIDg42KJdEROSrOESTiIhMIS4uDo0bNy7Twd2lS5cwe/Zs1KxZEz169HA7vZCQEAwYMAAnT57El19+aUAOiYjI1zHAIyIiUyjqHrwhQ4bAYrFg9uzZ2LNnDx588EFUq1YNYWFhSExMxDfffJP72c2bN6NPnz6oWrUqQkNDceutt2LNmjVF/ubly5fx3nvvoW3btoiKikJISAji4+Px4osv4vz5806vw6xZs5CRkYFBgwahXLnCp+irV69i0qRJaNmyJSIiIhAUFIQbbrgBiYmJePHFF3HhwoVC3xkyZAgAYPr06U7nh4iIyh4GeERE5Be2b9+Oli1b4pdffkHXrl3RrFkzbNu2Df369cOCBQvw9ddfo0OHDkhOTkbXrl0RHx+Pn376CT169EBSUlKh9E6cOIE2bdrg+eefx759+5CYmIiePXvmBmGtWrXCkSNHnMrj119/DQDo1q1bofdycnLQq1cvvPjii9i/fz86dOiA++67DwkJCTh79iwmTZqEo0ePFvpe8+bNUbVqVWzZsgUnT550Kj9ERFQGCRERkQ9bu3atAJCSTlkdO3YUALJ27dp8rw8ePDj3+2+++abk5OTkvjd16lQBILVq1ZJKlSrJZ599lu+7zz77rACQbt265Xs9JydH2rVrJwDksccek9TU1Nz3rl+/LiNHjhQA0rlzZ4fXMzMzU4KCgqRcuXL50rNav369AJBbbrnF7vtbt26Vc+fO2U27T58+AkA+//xzh/NDRERlE3vwiIjIL7Ru3Rpjx46FxWLJfe3JJ59E5cqVkZycjG7dumHQoEH5vvPSSy8BAH744Qdcv3499/UVK1Zg48aNaN68OWbMmIGIiIjc98qXL4+JEyeiadOmWLt2LXbt2uVQ/n777Tdcu3YNtWrVypee1enTpwEAHTp0sPt+q1atUKVKFbtpN2nSBID2YhIRkbkxwCMiIr9w11135QvuAA3G6tatCwB2Z6ysUqUKKleujGvXruW7p27ZsmUAgP79+6N8+cJPHCpXrhxuv/12AMCmTZscyp81gCsqSGvRogUCAgLwySefYPr06U4Nt7Smaf0NIiIyLwZ4RETkF+Li4uy+Hh4eXuz71t6yK1eu5L528OBBAMDLL79c5APYP/zwQwD6XDtHpKSkAAAqVqxo9/369evj/fffx/Xr1zF8+HDExMSgTp06ePjhhzFnzhxcu3atyLStaV68eNGhvBARUdnFB50TEZFfsDcrpTPv28rJyQEAtG/fHvXr1y/2s9bhkSWJiooCAKSmphb5maeeegoPPPAAlixZgqSkJCQlJWHevHmYN28eXn31VWzYsAE1atQo9D1r8FipUiWH8kJERGUXAzwiIiInxcbGAgD69u2L559/3pA0q1WrBgAlPl6hevXqePzxx/H4448DAP744w/83//9H3788UeMHj0an376aaHvWNOsXr26IXklIiLfxSGaRERETrrrrrsAAPPnz4eIGJJmkyZNEBQUhOTkZKSlpTn8vcaNG2PUqFEAgP/+9792P2Od6KVly5Zu55OIiHwbAzwiIiIn9e3bF4mJidiyZQuGDh1q9z67ixcvYsaMGcjKynIozdDQULRt2xY5OTnYvHlzoff/85//4Lvvvss3mycAiAi+/fZbAEDt2rXtpv3jjz8CALp06eJQXoiIqOziEE0iIiInlStXDl9//TV69eqFTz/9FAsWLECzZs0QFxeHa9eu4eDBg9i5cyeys7MxZMgQuzNt2nPPPffghx9+wKpVqwo97PzXX3/FiBEjULFiRbRo0QIxMTG4fPkytm/fjiNHjiAyMhKvv/56oTR37NiB8+fPo3Xr1nbvzyMiInNhDx4REZELYmJi8NNPP2HGjBlo3bo19uzZgwULFiApKQkA8MQTT2DFihUICQlxOM2hQ4ciLCwMX3zxBbKzs/O9d/fdd2P8+PFITEzEwYMHsWjRIqxbtw6RkZEYPXo0du3ahebNmxdKc/bs2QCAv/71ry6vKxERlR0WMermASIiInLb8OHDMX36dCxZsgR33323W2lduXIFsbGxCAwMxKFDhxAcHGxQLomIyFexB4+IiMiHvPrqq4iKirI73NJZ06ZNw7lz5/D2228zuCMi8hPswSMiIvIxU6ZMwbPPPov58+fjvvvucymNlJQU1KtXDw0aNMBPP/0Ei8VicC6JiMgXMcAjIiIiIiIyCQ7RJCIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJvH/mxYVFivF7zcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_norm = (long_noisy - long_noisy.mean()) / long_noisy.max()\n", + "err = np.sqrt(long_noisy.mean()) / long_noisy.max()\n", + "\n", + "long_lc_gauss = Lightcurve(long_times, long_norm, err=np.zeros_like(long_norm) + err, dt=long_dt, skip_checks=True, err_dist='gauss')\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10, 6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue', label='Original light curve')\n", + "ax.plot(long_lc_gauss.time, long_lc_gauss.counts, lw=2, color='red', label='Normalized light curve')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 46520.67it/s]\n", + "200it [00:00, 39276.19it/s]\n", + "200it [00:00, 43715.71it/s]\n" + ] + } + ], + "source": [ + "avg_ps_gauss_leahy = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8, norm='leahy')\n", + "avg_ps_gauss_frac = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='frac')\n", + "avg_ps_gauss_abs = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAASmCAYAAAAzqZ8jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1/8H8HfC3ojIcIED98AW98CN0lq1blsVq63Wqv22tba1tto9ftpph62tWK2ttnXWrQVUHLgXDhzgQBEBGWGT8/sj5pKQAAETEvD9ep77QO489+Ym95PPOfdcmRBCgIiIiIjKJDd3AYiIiIiqAwZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRFQh/v7+kMlkCA8PN3dRdPTu3RsymQyRkZHmLgoR1UAMmoiIiIgMwKCJiIiIyAAMmoiIiIgMwKCJiEwuJycHixcvRpcuXeDu7g57e3s0b94cc+fORUpKis78BQUFWLVqFZ555hm0aNECrq6ucHBwQPPmzTF79mwkJiaWu82TJ0/i6aefhqenJ+zs7NCqVSssXrwYQgit+YKDgyGTyfDHH3+Uuq7PP/8cMpkMo0ePNmh/w8PDIZPJEBYWBoVCgbfeegtNmzaFnZ0dfHx8MGnSJNy6davU5WNiYjB69GjUrVsXtra28PLywpAhQ7Br1y6984eFhUntzM6ePYsxY8bA19cXVlZWWLhwIQDt9l6HDh3CE088gdq1a8PFxQXBwcHYt2+ftL7t27ejX79+qFWrFpydnTFgwAAcP37coH0nqtEEEVEF+Pn5CQBi+fLlBs1/69Yt0bZtWwFAeHh4iP79+4vhw4dL6/H39xfx8fFay9y4cUMAEG5ubqJLly5i1KhRIjQ0VNStW1cAEHXq1BFxcXE62woODhYAxJtvvilsbW1Fy5YtxdixY0VwcLCwsrISAMTLL7+stcw///wjAIhu3brpLX9RUZHw9/cXAERUVJRB+7x8+XIBQAwbNky0a9dOuLu7iyFDhoihQ4cKLy8vAUD4+fmJ+/fv6yz7008/CblcLgCIDh06iHHjxolu3boJAAKAWLhwoc4ykyZNEgDE888/L+zs7IS/v78YPXq0GDJkiFi0aJHWsZkzZ46wtrYWHTp0EGPGjBGBgYECgLCzsxPR0dFiyZIlQi6Xi27duonRo0eLZs2aCQDC2dlZ7zEnepQwaCKiCqlI0KRUKkX37t0FADFlyhSRkZEhTSsoKBCvvfaaACD69OmjtVxGRobYuHGjyMvL0xqfn58v3nrrLQFAhIaG6mxPHRgAED/++KPWtD179giZTCasrKzEjRs3pPGFhYXSPh0/flxnnZs3bxYARLt27crdXzV10ARAhISEiPT0dGlaamqqFKh8/PHHWsudPn1aWFtbC5lMJn777TetaVu3bhW2trYCgNi5c6fWNHXQpA4Yi4qKSj02MplMrFy5Umvaq6++KgCI5s2bC2dnZ7F7926t4zNixAgBQEydOtXgY0BUEzFoIqIKqUjQtG3bNgFABAYGioKCAp3pRUVFok2bNgKAOHPmjMFlqFu3rpDL5VpBmBDFgcHTTz+td7lBgwYJADoByeeffy4FdiWFhIQIAGLp0qUGl08dNDk5OYnExESd6X/++acAIPr27as1fsqUKWWWf+bMmQKAGDBggNZ4ddDUrFkzUVhYqHdZ9bEZNWqUzrSUlBQp6Hr99dd1ph87dkwAEI0aNSp1n4keBWzTREQms2XLFgDAiBEjYG1trTNdLpejV69eAIADBw7oTD916hS++OILzJo1C8899xzCwsIQFhaGwsJCKJVKXL58We92hwwZond8y5YtAUCnPdHUqVPh6OiI1atXIy0tTRp/+fJl7Ny5E+7u7nj22WcN2GNtQUFB8PX1Nbgc6v6lwsLC9K5vypQpAIB9+/ahqKhIZ/qwYcNgZWVVZplCQ0N1xnl4eKB27dqlTg8ICAAAg9qSEdVkut9iRERGcvXqVQDAO++8g3feeafMeZOTk6X/FQoFJkyYgPXr15e5TEZGht7xDRs21Dve1dUVAJCbm6s1vlatWpgwYQKWLl2KX375BXPmzAEAfP/99xBCYPLkyXB0dCyzLMYohzqIatSokd7lmjRpIi2XkpICLy8vren+/v6VLpOzszNSUlL0TndxcQEA5OXllbt+opqMQRMRmYxSqQQA9OjRQ7rgl6Z169bS/2+99RbWr1+PFi1a4NNPP0XHjh3h6ekJW1tbAEC3bt1w8OBBnTvh1OTyiifRZ8+ejaVLl+KHH37Aq6++itzcXCxfvhwymQwvvfRShddX2XI8DAcHh3LnKa9MVV1mouqEQRMRmUyDBg0AAEOHDpWyN4ZYu3YtAGDNmjVo166dzvS4uDjjFFBDq1at0L9/f+zevRvbtm1DYmIi7t+/j8GDB5cb8BlLvXr1cOXKFVy9ehVt2rTRma7O3Nnb28PDw6NKykRExfiTgohMZvDgwQCAv/76q9SskD6pqakAAD8/P51pO3bswL1794xTwBJefvllAMCSJUvw3XffAQBmzpxpkm3p07t3bwAo9bl+v/76KwCgZ8+eetuIEZFpMWgiIpMZOnQoOnbsiJiYGEyePFmr3ZJaWloafvzxRxQWFkrj1A2lv/32W615L168iOnTp5usvKGhoWjatCm2b9+OU6dOoUmTJlLgVxVefvllWFtbY8OGDVi1apXWtJ07d2Lp0qUAUKGsnalNnDgRLVq0wJIlS8xdFCKTY9BERJXywQcfoEuXLqUOx48fh1wux4YNGxAYGIgVK1agUaNG6N69O8aNG4cRI0agQ4cOqFOnDl588UWtoGnBggWQyWR455130K5dO4wbNw79+vVD27Zt0bhxY3Tr1s0k+ySXy7UySzNmzIBMJjPJtvRp27YtvvvuO8hkMkyYMAGPP/44nnnmGfTo0QODBg1CXl4eFi5ciIEDB1ZZmcpz/fp1XLx40WTZPyJLwvwuEVXK1atXpTY2+qjvbKtbty4OHTqE8PBwrFmzBqdPn0ZMTAw8PDxQt25dTJ8+HU899RTs7e2lZZ9++mlERUXhvffew6lTp3DlyhU0btwYCxcuxJw5c0waNISEhAAAHB0d8dxzz5lsO6V54YUX0L59eyxatAj79+/H6dOn4ebmhtDQULz88ssYMGBAlZeJiFRkoiINDYiIarj58+fjo48+wgsvvCBVhxERAQyaiIgkt2/fRqtWrZCRkYGzZ89KbauIiABWzxER4c0338StW7ewe/du3L9/H9OnT2fAREQ6mGkiokeev78/rl+/Dh8fH4wZMwaffvop7OzszF0sIrIwDJqIiIiIDMAuB4iIiIgMwDZNVUypVEr9mTg6OlZpHzBERESkTQiB7OxsAICnp2eZz19k0FTF7t27B29vb3MXg4iIiEpISkqCl5dXqdNZPUdERERkAGaaqpijo6P0f1JSEpycnMxYGiIiokebQqGQaoA0r9H6MGiqYpptmJycnBg0ERERWYjy2hmzeo6IiIjIAAyaiIiIiAzAoImIiIjIAGzTZGIKhaLM10RERFQ9MGgyMWdnZ3MXgYiIiIyA1XNEREREBmCmycSysrK0Xmv2B0FERETVB4MmE2M/TERERDUDq+eIiIiIDMCgiSzWueXLETl4MO6dP2/uohAREbF6jixTQXY2vKZMQWshEHXzJoLPnDF3kYiI6BHHTBNZpMxbt1BHCACA0+3bZi4NERERgyayUEV5edL/cqXSjCUhIiJSYdBEFqkoP1/6n0ETERFZAgZNZJGYaSIiIkvDoIkskrKgQPpf9qBtExERkTkxaCKLpJlpsmKmiYiILACDJrJIzDQREZGlYT9NJqZQKMp8TfppBk1WDJqIiMgCMGgyMWdnZ3MXoVrSagjOoImIiCwAq+fIImllmtimiYiILAAzTSaWlZWl9VqhUMDb29tMpak+lJr9NDHTREREFoBBk4k5OTmZuwjVEts0ERGRpWH1HFkkrUyTGctBRESkxusRWSRRWCj9z0wTERFZAgZNZJHYpomIiCwNgyaySJptmtjwjoiILAGDJrJIQiNoYqaJiIgsAYMmskjMNBERkaVh0EQWSTPTZGXGchAREakxaCKLpHn3HDNNRERkCRg0kUUSrJ4jIiILw6CJLJJmpgkAlCVeExERVTUGTWSRSgZNhbm5ZioJERGRCoMmskia1XMAUKTR2SUREZE5MGgii8RMExERWRoGTWSRdNo0lcg8ERERVTUGTWSZmGkiIiILw7u5TUyhUJT5mvRjpomIiCwNgyYTc3Z2NncRqidmmoiIyMKweo4sEzNNRERkYZhpMrGsrCyt1wqFAt7e3mYqTTVSVKT9Mi/PTAUhIiJSYdBkYk5OTuYuQvXETBMREVkYVs+RZWKmiYiILAyDJrJMzDQREZGFYdBElqlEpknJx6gQEZGZMWgiy1QyaGKmiYiIzIxBE1kkGds0ERGRhWHQRJapRNBUsodwIiKiqsagiSxSyUwT2zQREZG5MWgiy6RUar9kmyYiIjIzBk1kkZhpIiIiS8OgiSxSyaCJbZqIiMjcGDSRRWKmiYiILA2DJrJIshJtmphpIiIic2PQRBapZNDEhuBERGRuDJrIIjHTREREloZBE1kkecmG4GzTREREZsagiSySTAit16JEEEVERFTVGDSRRWKmiYiILA2DJrJIJTNNJZ9FR0REVNUYNJFFkpdsCM6754iIyMwYNJFF0gmaePccERGZGYMmskg61XMMmoiIyMwYNJFFsiqZaWKbJiIiMjMGTWSRdDJNbNNERERmxqCpHJ988gmCgoLg4uICb29vjB49GvHx8eYuVo1nxbvniIjIwjBoKkdUVBRmzZqFw4cPY/v27UhNTcXgwYNRyDY2JiVnmyYiIrIw1uYugKXbvn271uuff/4ZjRs3RmxsLNq1a2emUtV8Jds0MdNERETmZvJMU2FhIc6ePYs9e/bg77//xp49e3D27FkUGekiuGrVKkybNg1BQUGws7ODTCZDeHh4mcscOXIEoaGhcHd3h5OTE7p06YK1a9catL309HQAgIeHx8MWncrATBMREVkak2SasrOzsXLlSmzYsAH79+9Hdna2zjyOjo7o0aMHhg8fjmeffRaOjo6V2tb8+fORkJAAT09P+Pr6IiEhocz5IyIiEBISAnt7e4wdOxYuLi74559/MGbMGNy4cQOvvfZaqcsWFRVhzpw5CA0NRf369StVXjIM2zQREZGlMWqm6f79+5gzZw7q1auHGTNmYMeOHcjOzoaPjw9at26Nrl27olWrVvD29oZCocCOHTvw4osvol69enj99ddx//79Cm9z2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eaUGXUIITJ8+HdevXy83k0UPT+fEZKaJiIjMzGhB048//oiAgAB88cUXsLW1xezZs/Hvv//i3r17uHXrFk6fPo39+/fjzJkzSExMxL1797Bp0ybMnDkTNjY2WLx4MQICArB06dIKbbd///7w8/MzaN7//vsPV65cwfjx4xEYGCiNd3Nzw7x585Cfn48VK1boLCeEwIwZM7B7927s2bMHderUqVAZqeJ0Mk0l2zgRERFVMaMFTTNmzEDdunXx999/49atW/jyyy8RGhqKWrVq6Z3fw8MDTz75JL7++mskJibir7/+gq+vL2bMmGGsIumIjIwEAAwcOFBnWkhICADV3XKahBB46aWXsGXLFvz3339o0KBBmdtQKBTlDlS+km2aZMw0ERGRmRmtTdPKlSsxfvx4yGSyihfC2hojRozA008/jdWrVxurSDri4uIAAAEBATrTfHx84OzsLM2j9tJLL+GPP/7A5s2b4eDggDt37gBQBX22trY663F2djZByR89OicmM01ERGRmRguannnmmYdeh0wmM8p6SqO+883NzU3vdFdXV2ketR9++AEA0LNnT63xERER6N27t/ELSQCYaSIiIsvDfprKIUq2rSlHVlZWmdMVCgW8vb0fpkiPhJInpoyZJiIiMjOT9dPUpUsX/P777yiwoGeGqTNMJbNJahkZGaVmoQzl5ORU7kDlsyrxWsYuB4iIyMxMFjTFxMRg4sSJaNCgAd555x3cunXLVJsymLotU8l2SwBw584dZGVl6W3v9DDYELxySgZNbNNERETmZrKg6c8//0SPHj1w9+5dfPzxx2jUqBFGjRqlc3daVQoODgYA7Ny5U2fajh07tOYxFmdnZ62BVXOGsSnxmtVzRERkbiYLmkaPHo2oqCicOXMGzz//POzs7PDPP/+gb9++aNeuHZYuXaq3p3BT6tevHxo3bozVq1fj5MmT0vj09HR8/PHHsLW1xcSJE6u0TKRLqafRt5zVc0REZGYyUdGWzpWUkZGB8PBwfP/997h06RJkMhlcXV0RFhaGGTNmVLpabNmyZdi/fz8A4MyZMzh+/Di6d++Opk2bAgB69OiBqVOnSvOX9hiVhIQELFq0qMzHqFRGyeo4zYbgWVlZbOOkR35WFmxdXLTGHapbF10soIqXiIhqFoVCIXUXVN51ucqCJk27d+/GkiVLsGnTJshkMshkMgwcOBCvvfYa+vXrV6F1hYWF6e3FW23SpEk6jz2JiYnBggULcODAARQUFKBt27Z49dVXMWbMmMrsToVU5M15VOWkpsKhdm2tcYd9fND59m0zlYiIiGoqiw6aFAoFfvvtN3z33XeIjY0FAFhZWaGoqAgymQyDBw/G77///tB3sVkqBk3ly0xMhEu9elrjYry80CkpyUwlIiKimqoi12WTtWkq6dKlS5g9ezbq1auHmTNnIjY2Fn379sWGDRtw//59/PTTT/D398e2bduMXkVmTrx7ruKUerqpYJsmIiIyN5NmmoQQ2LRpE7777jvs2bMHQgg4ODjgmWeewezZs9GmTRut+RUKBdq3b4/MzEwk1ZCsQlmPlWGmSb+UixdRu0ULrXHHPDzweEqKmUpEREQ1VUUyTSbrEfyzzz7Djz/+iOvXr0MIgQYNGmDGjBl4/vnn4eHhoXcZJycn9OjRAytXrjRVsaga0JtpYpcDRERkZiYLmt566y0AQPfu3fHyyy9j+PDhsLLS6bJQR5s2bdCrVy9TFavKlXysCh+jUr7C3FydcQyaiIjI3ExWPRcWFoaXX34ZHTp0MMXqqy02BC/frYMHUa9bN61xZ5yd0TYz00wlIiKimsoiqudK3uZPZKiivDydcbKq7xmDiIhIS5XdPUdkKH1tmqxYPUdERGZmskyT2uHDh7F7927cunULuXraqgCqO8x++eUXUxfFLPT1CE5l05dpkjPTREREZmayoCk/Px/jxo3Dhg0bAKi6HyhNTQ6a1PWkZDi9d88xaCIiIjMzWdD0wQcfYP369XBycsKECRPQsmVLuLq6mmpzVIMwaCIiIktksqDpjz/+gKOjIw4fPoxWrVqZajMWj10OVJwyP19nnBWDJiIiMjOTBU03b95EcHDwIx0wAWCXApXATBMREVkik909V6tWrVJ7/iYqCzNNRERkiUwWNPXv3x+HDx8uswE4kT7MNBERkSUyWdD0wQcfIDU1FQsXLjTVJqoFhUKhM1DZ9GWarBk0ERGRmRmtTdNvv/2mM27y5Mn48MMPsX37djzxxBNo2LAh5HL9cdrEiRONVRSLwi4HKk4UFuqMYy+sRERkbkZ79pxcLodMJtMZr169vmmaioqKjFEMi1PWfvPZc/od/fBDBL3zjta4dABuzDYREZGRmeXZcxMnTiw3MHoUscuBimOmiYiILJHRgiY+oFc/ZpIqTm+bJjOUg4iISBN/wJPF0ZdpsjJDOYiIiDQxaCKLo6/LAWaaiIjI3KrkWnThwgVcvHgRGRkZpfbbVFPvnqNKKKVNk7KwEHJrhk9ERGQeJr0CHTp0CC+88ALOnTtX6jxCCMhkMgZNJNGXaQKAovx8Bk1ERGQ2JrsCXbp0CQMGDIBCoUDXrl2RlJSEa9euYezYsYiLi8PJkydRVFSE4cOHw9XV1VTFMLuSnVmyc0sD6Mk0AaqgycbRsYoLQ0REpGKyoOmzzz6DQqHA999/j+nTp2Py5Mm4du0afv/9dwDAuXPnMHHiRMTFxeHgwYOmKobZsXPLitPXEBwACnNzq7gkRERExUzWEDwiIgJNmjTB9OnT9U5v3bo1/v33X1y5cgUfffSRqYpB1ZAoo3qOiIjIXEwWNN2+fRtt2rSRXltZqW4az9e48Pn6+iI4OBjr1q0zVTHMLisrS2tISkoyd5Esniild/iivLwqLgkREVExk1XPOTg4wFqj0a6LiwsAICkpCQ0aNJDGu7q64saNG6Yqhtmxc8tKYKaJiIgskMkyTfXq1cP169el102bNgUArfZLQggcP34ctWrVMlUxqBpipomIiCyRyYKmzp07IzY2Fjk5OQCAQYMGAQBeeeUVbNmyBWfOnMGLL76IK1euoGPHjqYqBlVHGpkmzfCptK4IiIiIqoLJgqbQ0FDk5ubi33//BQA0adIEL7zwAm7fvo2nnnoKgYGB+Omnn2Bra4sPP/zQVMWg6kgj06SZW2KmiYiIzMlkbZqefvppFJTIDHz33XcICAjAX3/9hdTUVLRs2RLz5s1D69atTVUMqo40uhzIl8ng+KAXeWaaiIjInKq0e2W5XI5XX30Vr776alVulqobjUxTvkwGPAiamGkiIiJz4gN7yfKUyDSpMdNERETmZPJMkxAC27Ztw4EDB5CcnIzOnTvjueeeAwAkJycjLS0NTZo0kfpxItLMNBXI5dJrZpqIiMicTBo0nTp1CmPGjEFcXJz0YN6CggIpaNq1axcmTJiADRs2YMiQIaYsitnw2XOVoJFpKpQXJ0OZaSIiInMyWfXczZs30b9/f1y6dAmDBw/G559/DvGgbYrasGHDYGNjg40bN5qqGGbn7OysNXh7e5u7SJZPqZT+1Qqa2LklERGZkcmCpo8//hgpKSn46quv8O+//2LOnDk68zg6OqJ9+/Y4cuSIqYpB1ZBMM9OkUW3LTBMREZmTyYKm7du3o0WLFpg9e3aZ8/n7++P27dumKobZ8dlzlaCZadJ4FA8zTUREZE4ma9OUmJiIoUOHljufTCZDRkaGqYphdnz2XMXJNBqCF2lkmoRGBoqIiKiqmSzT5OTkhOTk5HLnu3btGjw8PExVDKqONIMmGxvpf1bPERGROZksaGrbti2OHTuGe/fulTpPQkICTp06hccff9xUxaBqSKZRPadk9RwREVkIkwVNzz77LDIzMzF16lRkZ2frTM/Pz8eMGTNQUFCAZ5991lTFoGpIVkqmidVzRERkTiZr0zR58mT8/vvv2LRpE1q0aIFBgwYBUPXdNHv2bGzatAnXr19H//79MWbMGFMVg6ohzaBJaFbPMdNERERmZLJMk5WVFTZv3oxx48bh1q1bWLZsGQDgxIkTWLJkCa5fv44RI0Zg3bp1pioCVVNa1XO2ttL/zDQREZE5mbRHcGdnZ/z+++945513sHXrVly9ehVKpRINGjTA4MGDERgYaMrNUzWlGTQJzaCJDcGJiMiMTP7sOQBo0aIFWrRooXfatm3bkJycjIkTJ1ZFUagakGtUz4GZJiIishAmq54z1Pvvv4/JkyebuxhkQTQzTbCzk/5lpomIiMzJ7EETUUmlBk3MNBERkRlVSfXco0yhUJT5mnTJNYMme3vpX2aaiIjInBg0mZizs7O5i1DtaAZNMmaaiIjIQrB6jiyOTAjpf7mDg/Q/gyYiIjInZppMLCsrS+u1QqGAt7e3mUpTPWhlmjSCJjBoIiIiM2LQZGJOTk7mLkK1oxk0ydnlABERWQijBU3vv/9+pZa7efOmsYpANYT8QfVcIQCZxmNUmGkiIiJzMlrQtHDhQshksgovJ4So1HJUc2kFTdYapyiDJiIiMiOjBU29evVi8ENGoQ6aiqBdPQfNnsKJiIiqmNGCpsjISGOtih5xVg/aNDHTREREloRdDpDFUWealDIZM01ERGQxGDSRxWGbJiIiskRGC5oSExMtaj1UfVkx00RERBbIaEFTQEAA3nzzTaSlpVVq+dTUVMydOxcBAQHGKhJVU+qgqUgmg1yzywEGTUREZEZGC5oGDhyIzz//HPXr18ezzz6LXbt2IS8vr8xl8vLysGPHDowbNw7169fHokWLEBISYqwiUTWlPimV0L57TsagiYiIzMhod8+tX78eu3fvxiuvvILVq1fjjz/+gI2NDQIDA9GyZUvUrl0brq6uyMjIQEpKCmJjY3Hq1CkUFBRACIE2bdrgiy++QP/+/Y1VJKqmmGkiIiJLZNTHqPTv3x9nzpzBrl27sGTJEuzcuRMxMTGIiYkBAMhkMgiNh7Ha2dlhyJAhmDlzJoMlklg9+FuyTRMzTUREZE4mefbcgAEDMGDAAOTl5SE6OhonTpxAUlIS0tPT4e7uDi8vLzz22GPo1q0b7OzsTFEEqsa0GoIz00RERBbCpA/stbOzQ9++fdG3b19TboZqGHWmqUgu1840aTzIl4iIqKqxnyayOOpIvmSmidVzRERkTgyayOJotmmy0qi+ZdBERETmZNLqOQIUCkWZr0mbUCq1Mk1WrJ4jIiILwaDJxJydnc1dhGpFWVhYnGmSy7UzTQyaiIjIjFg9RxalKD9f+l8pl2u1aZKzeo6IiMyImSYTy8rK0nqtUCjg7e1tptJYvsLcXKgr5JhpIiIiS8KgycScnJzMXYRqRTPTJNimiYiILIjJquf27t2L6OhoU62eaqgijecVKq2stDJNcgZNRERkRiYLmnr37o133nnHVKunGqqsTBODJiIiMieTBU21atVC3bp1TbV6qqE0M01CLoe1vb30Wqbx3EIiIqKqZrKgKTAwEHFxcaZaPdVQWnfPWVkx00RERBbDZEHT7NmzceTIEWzZssVUm6AaqGSmiUETERFZCpPdPdehQwfMnDkTw4cPR1hYGEaMGAF/f384ODjonb9hw4amKgpVI8qCAul/IZdDJpejCKpHq8hZPUdERGZksqCpUaNGAAAhBH755Rf88ssvpc4rk8lQWFhoqqJQNaKVabJS9Q1eCAZNRERkfiYLmho0aACZTGaq1VMNpZVpehA0qfsBt2L1HBERmZHJgqb4+HhTrZpqsJJtmgBVpglgpomIiMyLz54jiyI0q2kfZJqUDzKWDJqIiMicGDSRRdFXPcdMExERWQKTB0379u3D6NGjUb9+fdjZ2WHKlCnStF27dmHevHm4c+eOqYtB1YRm9VzJTJMVgyYiIjIjkwZNH374IXr37o2///4biYmJKCgogNC48Lm5ueGzzz7DunXrTFkMqkY0q+d0GoIzaCIiIjMyWdC0bds2vPvuu6hXrx7Wrl2LpKQknXk6deqEOnXq4N9//zVVMaiaUWr0CK7ONBWp2zSZo0BEREQPmOzuua+//hp2dnbYtm0bWrduXep87du35+NWSKLZpqlk0MRMExERmZPJfrwfOXIEnTp1KjNgAoA6deqwTRNJtDJN1qqYXmrTZI4CERERPWCyoEmhUMDHx6fc+dLT06Fkp4X0QFldDjDTRERE5mSyoMnb2xuXL18ud76LFy+iQYMGpioGVTP62jQx00RERJbAZEFTjx49cPLkSURHR5c6z7///ovLly+jT58+pioGVTNamaYH1XNFD3oGN1kDPCIiIgOYLGh67bXXIJPJ8PTTT2PDhg06D+Tdvn07pk6dChsbG8yaNctUxaBqRl9DcGaaiIjIEpgsaHrsscewePFi3Lt3DyNGjIC7uztkMhn++ecfuLu744knnsDdu3exePFitGrVylTFoGpGK9NkYwOgOGiyBiDY/o2IiMzEpF3fvPzyy9i6dSs6duyInJwcCCGQmZmJjIwMtG3bFps2bcLMmTNNWQSqZoRGmyaZOtMkLz5NlSUylkRERFXF5M1EQkJCEBISgpSUFFy7dg1KpRINGjSAr6+vqTdN1ZAoKip+oc40aQRNhbm5sLK1repiERERVV0ny7Vr10ZQUBA6depUrQKmdevWYcCAAfDw8IBMJkN8fLy5i1Sj6cs0iQfVcwBQpHl3HRERURUyWdAUHh6Omzdvmmr1VUahUKBXr154//33zV2UR4NGpklWSqaJiIjIHExWPffcc89BJpMhICAA/fv3R//+/dG3b1+4urqaapMmMWHCBADA2bNnzVySR4NmQ3CZukdwzTZNmnfXERERVSGTZZrCwsLQoEEDXLp0Cd9//z1GjBiB2rVro0uXLpg/fz4iIyNRYIQL4KpVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl370GWhhyc0zgl1pkkw00RERBbAZJmmX3/9FQAQFxeH3bt3Y9euXYiMjERMTAxiYmLwySefwMHBAT169MCAAQPw2muvVWo78+fPR0JCAjw9PeHr64uEhIQy54+IiEBISAjs7e0xduxYuLi44J9//sGYMWNw48aNSpeDjESzeu5Bpkkw00RERBbA5A3BAwIC8OKLL2LdunVISUnB4cOH8dFHH6F3794oLCzEzp078cYbb1R6/cuWLUN8fDySk5Mxffr0MuctLCzE888/D7lcjr179+Knn37C4sWLcerUKTRr1gzz5s0rN+gi09KqnlO3abIq7tayKC+vystEREQEVOHdcwBQUFCAzMxMqa8mdS/h4iEexNq/f3/4+fkZNO9///2HK1euYPz48QgMDJTGu7m5Yd68ecjPz8eKFSsqXRYyAj1tmjQzTbx7joiIzMXk/TSdPHkSu3btwu7du7F//37k5uZCCAFXV1c88cQTUiPxqhAZGQkAGDhwoM60kJAQAEBUVNRDbUOhUDzU9EdeeUETM01ERGQmJguaxo4di//++w8pKSkQQsDGxgZdunSRgqROnTrByqpqnyYWFxcHQFVlWJKPjw+cnZ2ledRSU1Nx/fp1XLlyBQAQGxuL+/fvo2HDhvDw8NBZj7OzswlK/gjRaNMkf9CJpdA4T9imiYiIzMVkQdPatWshk8nQrl07LFiwAAMHDoSjo6OpNmeQ9PR0AKrqOH1cXV2ledQ2bdqEyZMnS6+feOIJAMDy5csRFhZmmoI+yvRlmtimiYiILIDJgiYXFxdkZmbi1KlTeOaZZ9CzZ08MGDAA/fv3R/v27U21WaMLCwurUHCUlZVV5nSFQgFvb++HLFUNpi/TxLvniIjIApgsaEpNTUVMTAx2796N3bt3IyIiAjt37oRMJoOnpyf69euHAQMGYMCAAahfv76piqFFnWEqmU1Sy8jIQK1atR5qG05OTg+1/CNPT6YJmtVzbAhORERmYrK756ysrNC1a1e88847iIqKQlpaGv7991+8/PLL8PHxwZo1azB16lT4+fmhZcuWpiqGFnVbppLtlgDgzp07yMrK0tve6WEoFAqdgcrANk1ERGShqqzLAUdHR4SGhuKLL77Ab7/9htdeew12dnYQQuDSpUtVUobg4GAAwM6dO3Wm7dixQ2seY3F2dtYaWDVXDs2g6UE/Tcw0ERGRJTB5lwMAcPPmTanbgT179iA5ORkApLvqunbtWhXFQL9+/dC4cWOsXr0as2fPlvpqSk9Px8cffwxbW1tMnDixSspC+smYaSIiIgtlsqBpw4YNUnsmdXWYEAIymQxt2rSRuh4IDg5+qLvqli1bhv379wMAzpw5I41T98nUo0cPTJ06FQBgbW2NZcuWISQkBL169dJ6jEpCQgIWLVoEf3//yu+0HiUbhrMheDn0ZZo0G4Iz00RERGZisqDp6aeflv5v0KCBFCT169cPXl5eRtvO/v37dXrxjo6ORnR0tPRaHTQBQJ8+fbB//34sWLAAa9asQUFBAdq2bYvPPvsMY8aMMVq51NgwvGL0ZZpgXXyaaj5mhYiIqCqZLGgaNmyY1MWAsRtXawoPD0d4eHiFlunUqRO2bdtmmgLRw1EqpX/ZpomIiCyJyYKmdevWmWrV1UrJu+V491zZNDNNVnZ2qn80Mk1s00REROZSJQ3BH2V8rErFyMrJNAkGTUREZCYm73Lg/PnzmD59Opo3by7ddt+8eXO8+OKLOH/+vKk3T9VMeZkmtmkiIiJzMWmmKTw8HNOnT0dBQQGEENL4uLg4xMXFYfny5Vi6dCkmTZpkymKYFe+eq5jyMk1s00REROZiskzTsWPH8PzzzyM/Px9PPPEE1q9fj9OnT+P06dPYsGEDhgwZgvz8fDz//PM4evSoqYphdk5OTjoDlU6ur8sB9V8w00REROZjskzT//3f/0GpVOKXX37B5MmTtaa1adMGTz31FMLDw/Hcc89h8eLF+OOPP0xVFKpGNDNN1vb2qnFs00RERBbAZJmmffv2ITAwUCdg0hQWFobHHnsMe/fuNVUxqJrRWz3HTBMREVkAkwVN9+7dM+hBvC1atMC9e/dMVQyz4wN7K4aZJiIislQmq55zd3fH9evXy53v+vXrcHNzM1UxzI5dDlSMXE+mSaaZadJo80RERFSVTJZp6tixIw4cOID//vuv1Hn+++8/REdHo3PnzqYqBlUzcn2ZJo0uB8BMExERmYnJgqZZs2ZBqVRiyJAhmDt3Ls6dO4fs7GxkZ2fj7NmzmDNnDoYMGSLNW1NlZWVpDUlJSeYukkXTDJqsHjx7TsY2TUREZAFMVj0XEhKCt99+Gx999BEWL16MxYsX68wjhMA777yDgQMHmqoYZscuBipGptGfl95ME4MmIiIyE5P2CP7BBx9g69at6NOnD+zs7CCEgBACtra26Nu3L7Zu3Yr33nvPlEWgakarTdODYImZJiIisgQmf/bcoEGDMGjQIBQVFSElJQUAULt2bVhp3BFFpCZ/kGkqAKAOlZhpIiIiS2D0oOny5ctYt24d4uPjYWdnh8DAQIwePRoODg7w8vIy9uaohlEHTUXQCJo0Mk3g3XNERGQmRg2avvrqK8ydOxdFJS5s77zzDrZu3Yo2bdoYc3PVQsl+mdhPU9msHlTPaeaT5JpBEzNNRERkJkYLmvbv34/XXnsNQgg4OTmhefPmyMjIwNWrV3Hz5k2MGDEC58+fh1xu0mZUFof9NFWMZqZJjZkmIiKyBEaLYJYsWQIhBCZNmoQ7d+7g6NGjuHTpEo4fP44mTZrg8uXL2L59u7E2RzWUOmhSymTF45hpIiIiC2C0oOngwYOoX78+li5dqnWbfbt27fD1119DCIFDhw4Za3PVBvtpqhh10KRVPfegvyYAzDQREZHZGK16LikpCaGhobDVvMA90KNHDwDA3bt3jbW5aoP9NFWMlZ5Mk9bdcwyaiIjITIyWacrPz4e7u7veaa6urtI8RGVRB01FmtVzGoG4jEETERGZyaPVKpssnrr3LqXGODkbghMRkQUwapcDly9fxm+//Vap6RMnTjRmUaiakjPTREREFsqoQVN0dDSio6P1TpPJZKVOl8lkDJoIQPEJWerdcwyaiIjITIwWNDVs2BAyjQsdqbBzy4qRMk0a/XlZ2dlJ/zPTRERE5mK0oCk+Pt5Yq6pR2LllxZSXaZIplSAiIjIHNgQni6JuCK7ZpomZJiIisgRGf2AvacvKytJ6rVAo4O3tbabSWD71CSmYaSIiIgvDoMnE2Lml4YRSWZxpYpsmIiKyMKyeI4uh1HiuHDNNRERkaRg0kcUozM2V/leWlmli0ERERGbCoIksRpHGY3a0giaNzi3lDJqIiMhMGDSRxdDMNInS7p5j0ERERGbCoIkshrKgoPh/Kyvpf2aaiIjIEjBoIotRWqbJ2t5e+p9BExERmQu7HDAxPkbFcIZkmmQPHrNCRERU1Rg0mRgfo2K4orw86X/BhuBERGRhWD1HFkPz7jnNoElubQ11qCRnpomIiMyEmSYT42NUDFdapgkACgHYgpkmIiIyHwZNJsbHqBhOs02T0GjTBADqh6cw00RERObC6jmyGFqZphJBk/oBK1YMmoiIyEwYNJHFKCvTxDZNRERkbgyayGIoNRqCo2Sbpgf9NlmxTRMREZkJgyayGAZlmqqwPERERJp4DSKLoRk0oWSbJnWmidVzRERkJgyayGJoVs/pZJoeBE1s00RERObCoIkshigsLH5RsssBZpqIiMjMGDSRxdBqCF5Kpkl7LBERUdVh0EQWQ6tNk7V2v6vMNBERkbmxR3ATUygUZb6mYsw0ERGRJWPQZGLOzs7mLkK1odWmqUSmSR008YQlIiJzYfUcWQxRRpcDzDQREZG58Ye7iWVlZWm9VigU8Pb2NlNpLJuyjExT0YMewm2qskBEREQaGDSZmJOTk7mLUG0IzTZNJYIm8SDTBKiCK7k1T10iIqparJ4ji6HZpklWsk2TxrPoCnNzq6xMREREagyayGKIMroc0AyaijQzUkRERFWEQRNZjLIyTZrVc8w0ERGROTBoIothaPWcVieYVOPErliBY7VrY+/48eYuChGRFgZNZDnKyjSxTdMjI//ll/F4aiq6//EHks+dM3dxiIgkDJrIYmhlmmy0OxdQavTbxExTzZWTmoqW6ekAVH1yXfz2W/MWiIhIA4Mmshxs0/TIu/jbb7DTeC3bvt1sZSEiKolB0yOoMDcXOamp5i6GDlFUJP1fMtMkSmSahFKp3Rkm1Qj3N27Uet3i+nXeLUlEFoNB0yNGcfcu4jw8YF27No4sXGju4mjTqHYrs01TdjYO+fmhwMYG0S+9VGXFI9NzO3lS63VtIXDh99/NUxgiohIYND1ijs6YgZY5ObAB4PHJJ5aVrSkj06TZpuna/PnoevMm7ADU/fnnqiodmVheRgZa3L+vMz555cqqLwwRkR4Mmh4hRfn58Neo/miSn4/jn35qxhKVoBHAyUsETdDINHU7dEj6v1FBARL27DF50cj0Lv7+Oxwe/H/C3V0aX/vIEbOUh2q2guxsRPbujcigIOTqCdaro0t//43jHh7YFxCAc8uXm7s4NRKDpkdIzNtvw69kZumrryq1LmVhIU4tWYKkEtUpD8XANk22JRaL//5745XBBKpjm5zC3Nwqz0Kmrl8v/Z81bBgu26mahLfKykJqXFyVloVqvujBg9E7Kgq9jx3DoZAQrWlCqUT0jBmIGjECeRkZZiphxSgLCyF79lk8lpaGnpcvo/Vzz+GcszOiZ8yAUCrNXbwag0HTI8T5xx+l/7Me/A1KScHlTZsqvK69I0ei/axZkD3+ODJu3jROAcvINGm2aQIAzU4HnKKijLN9I0u5eBEH69dHkZ0dDtWti6tbt5q7SGVKjYvD/uefx6G6dZHn4ID7tra4uGZNlW3f+fhx6f+Gzz6Lm23aAFB1PXBhyZIqK0dlRY0di4P16zPzWUVK+945+uGHONCwIY5//nmpy8b+9ht67N0rve4YE6PVJ9iBmTPR/YcfELxuHU43aVIlN84c/7//Q9TYsbh99Gillo95+20E5OVpjWutUKD7Dz8gqn9/YxSRAEBQlcrKyhIABACRlZVltPVm3r4tDnt5iQt//ql3+ukffxQCEAIQF+3tRcTQodLrqBYtKry9S3Z20vKH3nyz0uVWJCeL+/HxQgghIrp0kdZ54ssvteaLbNNGmiYAEdG7t7hhZSUEIHIBkZWUVOkymMLxRYtEolyuVeaCB8f69rFjD7Xu+wkJ4tCbb0rHTWfaW2+JjFu3DF7fla1bxX4/P1GgUVb1cMrFRSiLispc/u6ZM+XOU558hUJkPthmolwulEVF4thnn0nl2NekyUOt39RiV62SynrJzk7kZWYavGzEk0+Kox4eYv/06eUex5y0NJFx69ZDH29LcfbXX0VEnz6lfm+VJjIwUAhAnHZ2Fhf//lsIIURRQYGI6NVLeh/SZDK93ws5aWkiTuP7S/pOCQoSQghxPz5eJJX47B718BCK5OSH3+FSnPr+e1Gk8T1xoH59cfLbbw1+n5VFRSLWwaF4Xx57TJzXeJ0HiCtbtpis/NVdRa7LDJqqmCmCpoKcHBFTp44QgMgAxJEPPtCZ52DdusUXoClTRPqNGyL9wetsQKRcumTw9m7s36/1hRLZrp3OPEUFBaIwL09nfF5mpoiaMEHsa9xYXLKzE4UP1hFTp4446OsrrfPkt99qLRfZrp007YaVlchOSRFRrVoVB27z5hlcflMqzMsTEV27Sl+A+ob7gDj76686y97Yt0/ELFggTnz5pTi3YoVIiIjQ+dIsKigQp1xchADELSsrcW7FCmla7KpV4taDQDLB2lrcOXGizLJe3b5d7Pf3l96D0oaDr7+ud/nslBQR3bChEIA47+Agrm7fXvED9sCZZcuk7e338xNCCJGbni6yHoxLkstFUUFBpddflpPffivOOTqKvU2biuTY2EqtY1+jRtoX4AEDDFru6Mcfay13rFYtvcfx5oEDIqplS5H3YD4FIK5bW4vj7u6qY1fN3DxwQPU+P9ifIkDsDQgQSadOlbvs8UWLtI5ZPiAiunQRh728dM7dqLFjdZaP6NhRK8DN1jimSadOici2bfV+Do67u4vM27eNfiyURUXipKur3m3ua9LEoMApZuFCaZlYBwehLCoSyqIiEdGpk9a59bDBdmFenojo27fMH+imlHLpkjjx5ZcicuRIvdeXymLQZMFMETTdj48Xp52dtTIaeydOlKZf2bpVuojfkctFbnq6EEKIyA4dpGX2NmsmIgYMENENGojoBg1EYkxMqduLHDNG64MdZ2enNf3Y55+LvAdZipK/ziK6dy/zAq0eTi9dqr3cgAHStANz5gghhDj8zjsPlS0zNmVRkVYgp/6FGr9nj4jo318KUgUg7spk4npUlLRsRGio/i/Nxo21vuiiZ83Smp4NiP0zZojo//1PKEose8HeXtxPSNBb1v0zZojcEvPfk8lExOOPi1Pffy8OvfWWNP6qjY3IVyi0lr934YLWOacO2KNnzqzUsdPc/6hx46TxmhdCU3xJx+/ZI9JkMmkbSXK5iHnvvQqt4/axY1Iwox5yABG/e3eZyxXk5OjNeOQ+eN8juncXkaNGiajWrXXWrznclstF6uXLldr/tKtXxb4mTUTEY4+J9Bs3tKad/vFHcdLVVRz09RVpV69Wav0lZSUliYgePaRApeSQAYiIp54qdfmCnBytLLe+QfNHwGVbW61gWzOjkwuIS+vWaX0PxtSpIy2fBYjo2bPF/RKfZ2Nn+WLee0/rvbyrcT4KQFVLUAZlUZHWZ/Hg3LnSNEVysrhubS1NM+TzeXzxYnHKxUUkyeUiatw4aX8LcnK0At1kmUxc27nzofZdn5y0NBERGioi27YVewMCxH4/P3HUw0PcLpH9e5gfaSUxaLIgWVlZWkNSUpLRgyYhVL/6NbNJAhD7/f3FSVdXrWoXzV/ACRERpWZEYurUKXVb6qyW5qD5C1GdCRGAiBw1Shqfefu21hdQPlQZCnV2RHMomYlJvXxZRHboIKLGjpU+xFlJSSLnwfy3rKwq/GWWefu2iBo/XhyYM8coWQzNwC4fEBGhoVrrvXfhgjjh5qb1hZ56+bKqWqCMi0D0rFlCCFXmJUHjC9CQi8YJNzeRk5YmlUFZVCQiQkJ0g6WQEK1f0cqiIq2yar6P8bt3i2s2NqVuP6p583K/TE99/7046uEholq3FmeWLdMKji5v3izNpxmgX7WxEYfefFN6n1MuXRLRM2eKvZMmlVsdduHPP8WR2rVFRFCQVHWpSE4WF+zt9e5DZJs2BlfHaP4Q0PxiV/+yLyooEKe++07sf/FFrXVGjholzRtnZ6d1cSttSIcq4xFnZ6cVhEc3aKD13u2dPFlEN2wozoWHl1n2/f7+0jrira3FmWXLhLKoSEQ+/bTI11j/YS+vh/qMKIuKRPSsWTpV1vdkMhHZtq3W94IAxIFXX9W7nsgRI6R5zjk6iojgYK2AMkUmE8c++0zr3FVn3jNu3RLxGsc4YtAgIYQQSadO6fzgEIDqcyJUVYiagfX+6dO1ylSYlydOfvut3urykmLee09EPfOMVG1YVFCgVY124JVXRG56uojo3Vsat69xY531pF29Kq3j2OefS/NesrPTeZ80f1zekctL/SF18a+/RIynp+73T4MGIvXyZdU5VmJavLW1uHv2rN71nfjyS3FXJhM3rKxEZJs2Iua997S+i0pTWqav5KD+8WwMDJosiPqN0DcYM2gS4kHq9LHHSj3J7gM6v0hLBlqag75f9pqBitYH68EvmFuHDmmNv25tLQpycoQQ2l94+/38pA9QTlqaiHjqKZHy4IupADC4mkTzQ37xr78MWiZfoRBRY8dqtVuIdXDQaUdVEfumTtXa75JfrGqply+LK7a20nzJJX5VRjVvLiI6d1Z9UWpcCJJOnRKRw4dL4467u4uo5s113oe9TZuKi3//rbXeI7Vri6gJE0TMwoUiqmVLne2V1v7pXHi4NN9dmUyc+u47EdWqlcjQWP62XC5Off+9Vnk1j2nE4MHi3oULWuu9sX+/SC2x35rb0Qx+75w4oTPvSVdXcdLVVSs4POTjU2q6/n5CgripEZhft7YWJ778UitguGpjo/Nj4JKdnYjbsKHM9z07JUXce1C+fEBc27lTamsnAHGgXj2tbV+ysxNXtm4VqZcvS+e7AMSZn38WiuRkEdGli04GUOBBBqZbN63Pb+KRI1rHJnrWLFGQk6OV7cwExKnvv9db9lPffaeznfwHx1ffexPRp4+07L0LF0REz54i4sknpcx1aa5s3aoVxAio2thEPP64lMFKjo1VZYsfTD/h5qaznnsXLmgFL2d+/lkIIcTlzZvFgXr1xEFfXyl7e3DuXGm+GE9PIYTQOkdPOztrnS8lf7hctrXVCsQ1s0FJGoFHXmamOOrhIQRUQVxZgeW+KVN0zoPo//1P6/OiXj47JUXa15wS39ua36OJJTJT6h9YJR3y8Sn+jggI0Ape0q5eFVEtW5bZpCAL2u+dZvB51slJp+2YIjlZ63OguZ5DPj4iavx41bWihAtr1pTaXOCeTCaOu7uLyHbtRNSECeLmgQOlHuuKYtBkQaoyaFKLfPpprQ/AZVtbEfH443ovACmXLomIoCAR0a2biJ41S0T07Fn8AdT49ap2aN48rfVKH8RmzYQQqkatJU/26JkzRWFentYHTd14U9P9hASxd/LkUr/k9e6rxheI+pdhyqVL4lx4uN6L6OH588vMkhzy8RGRo0aJw/Pniwtr1oj43bvF5c2bxcW//hKxK1eK00uXihNffSWOfvyxiP7f/0TkqFEioksXrV/l6l+wpUmIiNBJwRcCImrCBK35NH/ZxXh6ShdnAYjYVatUGYFRo0Q+VIFmxNChUsBx9tdfpYbVpQ0RAwaUm51Tt1nSN1yys9P64to7ebLeX+y35XIpoM3LzBRnnJxKXeeBevV0ynDhzz9LvZBrDlGtWundn70BAWUulwmIuI0bVdWr48Zp7YPiwftS2nHaO3GiNO9+f38hhBAxCxaUub0MqLJQJZdTy7h1S1z8+29x9OOPxb4pU8TesDCdwFN6fzSqa9NkMnGkdm2d7aWjOMBQK8zL08pw6Mv2Cqh+3KgvYkWAiFm4UOybMkX7XHRwKDWzePPAAZ1zPaZOHb3zK4uKtL5T4jZu1JquGfCXd2NAYV6eVuYuIjhY63gkRERozZ8cG6v1eTm+eLHOOjXbXEa2by+URUU6Pxb0LSeEEOdXr9apkswAtDJvRz78UGsZdWN3AYjIYcOEEKrqZH0/WgVUgX9pPxxu7N+vFfjclstFxJNPin1Tpui8PzesrMS+adPEgTlzdDKAOQ/OgVuHDmmV/bCXl/TjWAih1SC/rCHG01MKnEtmtyO6dBGX1q0TCRER4t6FCya9+YFBkwWpquq5ks4sWyb2Tp6s8+VQnuyUFOlDVAjofLlp/ho88Mor0gc4wdpaCCHEOUdHnQ/GBXt7VWPiB6+PengYazdV+/dgvVdsbcVhLy8pgIl1cJDaRmXcuqUK7EqU7WDduloXj4cdItu2NejDfWbZMuninAPtdghq9y5c0PlC03eRvXv2rN5G30c//lhv4JSH0jNh+o5vyfY0mVAFKPqqI24fOyYinnxS5zy4D9UdkZrtRxKsrcXeiRO1vihLa3SuLCoSB+fO1Qp4L9vaiqgWLbQD1n79tJbTrJpIh/4sSsmqoCtbtuhU2x2rVUtETZigVQ2tLCrSal+j2ShfM+DNf3BR0dcWJwsos/2gIfQFtnkPzn/N469ZvqixY6Vp5x0cVFVC3btLP7buo/iu2IiBA6V5S8tGZABi37RpWuXKSkrS+mzFW1urAsoyRD79dPFnSeMGk3MrVkjbTgfKvclBCKFqG6WnrKWd+/umTlUFE8HBeqff2L9f+swWAnqzq/qq0lIvX9aqVs/QU6YTbm463xuXN2/W+m5TFhVpZdbjra2l74cCoNxjGzV+fJnfXRmAiHjiCa0s1PWoKOmznAPtwO7i339rBVX7GjcWRQUF4npUlHRdyAfEufBwcXDuXFVD/xLVs+rv6ZRLl0T07NnSuGs2NuVmMI2JQZMFM1WXA8ak+SUZ1by5NF5ZVCT9usgGhCI5WRx3dy++sGjUrcc6OGhdODU/LBVtaFsezeoufcO+Ro20slwCquotdbupwrw8sXfyZHFHzwe6IsN+f/8K3dFxbsUKEdmhg9bFrCTNagYBVePVG/v2GbyN5NhYEbNggYgaP15E9OwpItu2LbdhaUmRTz8t8h5cXKPGjdNpMFyaazt3amWV8krsR+zKldK8tw4dEle2bi13nXmZmeJceLhWI+v9L76odYwieveWqsA039O9EyeKooICETlsmPSrP6JbN73byU5JEVGtW+u8x0VQddlx1slJK7A66eqqtbwiOVlEhIaKqAkTpCxRVlKS7l12GlVelZV6+bLWr/77UGU8Sn4+cx6co4ffeUeravDUd99J6zqzbJmI6N9f6yYFZVGRVpZFPRyoX1/ns3fYy0tcWLNGFBUUqLKGGhd4Qxqrp129KgUm96HqSiQ3PV0r4IwIDTXouNyPj9f50VDyB0dFabZb1Dwn1GXOArSqu4sKCrSqfc84Oaka35c4D0r7TGq1K2zfXvo/US6XtnM/Pt7gu/piV67U2yTjQL16pQbveZmZImbBAr3fO8cXLdKqTo5s107rXIl4/HGt+YsKCkTsypUiok8frR+EF+3ttbKd5QWAxsagyYJVh6DpfkKC9AsiDxCJR44IIVQpZumkftBQPKJfP2mcZmo9YtAg1S/4Eh/OknezGENE585a27hlZaX3riQB1a+pvWFherNBiuRkcXzRIrF38mQR0bu36s4Nf3+xt2lTEdWihYhs00ZEPPaYiOjcWUT06CEiQkPFvilTRMzCheW2fXkYmneslPwSsnRZSUl6bxzQbFhuDPruPtSsjoipU0frPb979qxBd+MdmDNHb9sMnYuOgY1SlUVFImrsWJEmk4mTrq5G6/vnxFdfifsPPl+a1VpZSUk67YkqE0TcT0iQApd4a2sp45B5+7bY27Spzno1fzClQ7eqrSya1al7w8JERNeu0utYBwedOznLotmoOMHautRG0IbKTU8XV0tU70c89ZRWgL03LEyaP6JvX2l8skwmteNRFhWJqGeeUTWd6NGj1O1Fz5z5UOdbaeI2bhR7AwLEcXf3h/4Re3DuXL3tkO7I5WX+wLqyZYvOHXGa15aqxKDJglWHoEkIofVFFdW6tchXKLS+ANT9n2h2mqk5XI+KEoV5eTpfMCXb7RhDVlKSiGzbVkS2aydOfvutKCooEAU5OSLy6ae10sennZ1F/J49Rt++qd2Pjxf7/fzEfn//CnVaaSnyFQpVGxT1F379+kZvn1CyTxrNIU0me6gORZVFReLcihUiont3rYxH4YMfFQfq1dNqz2EIU/Q5VVRQoHe9mbdvi4igIK3skvoHREWOS3ZKijj1/fd674CKnjVLb7sodTuoijj766/S8jesrKQLch4Mv9lD7eaBA+K2XC6SZTK9faNVxtFPPpGqCtXV8Zo3Taizjmd//VW6c7kQUPUvVUG56ek6N4vEeHpaXOemJW+EEdCtrtUnfvdurRsl8mDcrgQMxaDJglWXoOnu2bNaDRczAK0ARN0AOF+h0KmjP+PkJK0nasIErV9a2SkpVbofSadOiYgePUTU2LEVvrCR8SiLikTUhAkiom9fk/asfGHNGhExeLA4Uru2UEBVDVhaO6lHTW56uoiePVsc9fAQN62sVHduGVFOWpqIHD5cq9rF0Ko0TSV7t5bW1b9/pcpVmJdn0K3uFXHym2/EwblzpSBVWVSkld2++NdfWj8YS2snZQjNzjgN6f/LXDTv7jXkSQJqN/btk9oqlmyTWFUYNFmw6hI0CSFUVUF6frlfsLfXmq9k9UvE0KHStNz0dClVH/XMM1W8B/Qoy8vMNGmARvpl3r4t9k6aJA7MmVPpjIjmjy11dZ+l/+jRrCLWDBzPODlVqEqxpOtRUVKfXBEDBxqxxMa3b9o0EdWihdSkw1C56eni2s6dZsugVeS6LBNCiMo+t44qTqFQwNnZGQCQlZUFJycnM5eodHkZGYh5+WXIIyLQ9MYNeD94Uvbe8ePR6/ffpfkihw5Fb42H/t6OiYFvx47S69z795F58ybqPHgAKxFRWbLu3IHS1xeuAPIA3NiwAU2HDjV3scqUdPIkanfoAGuNcdkAkrZvR6OQkIda99Vt25B+/jw6vPrqQ62H9KvIdZlBUxWrTkGTJqFUIn7XLhTl5qLJkCGQyeXStItr1qD52LEAgFOurmifnm6uYhJRDXFo7lw4LF2KnGnT0OXzz81dHIPEeHuj09270uuoMWMQ/OefZiwRGYJBkwWrrkFTWYRSiX2tW8P/8mWkffkl2s+cae4iERFVuUNz56LL//0fAOBo7dp4/O5drR+YZJkYNFmwmhg0ERGR6gdkVJ8+sLp9G602b0bt5s3NXSQyQEWuy9alTiEiIiKDyeRy9I6KMncxyISYNyQiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAHsEr2KaT61RKBRmLAkRERFpXovLe7Icg6Yqlp2dLf3v7e1txpIQERGRpuzsbOk5dPqweo6IiIjIADJRXi6KjEqpVOLevXsAAEdHR8hkskqtR6FQSJmqpKSkMp/K/CjhcSkdj41+PC768bjox+OiX3U+LkIIqRbI09MTcnnp+SRWz1UxuVwOLy8vo67TycmpWp2gVYXHpXQ8NvrxuOjH46Ifj4t+1fG4lFUlp4nVc0REREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYOeWRERERAZgpomIiIjIAAyaiIiIiAzAoImIiIjIAAyaiIiIiAzAoMnCHDlyBKGhoXB3d4eTkxO6dOmCtWvXVmgdeXl5eP/99xEQEAB7e3vUrVsXL7zwAu7evWuiUpvOrVu38NVXX2HgwIFo2LAhbG1t4ePjgxEjRuDw4cMGrycyMhIymazUITw83HQ7YUL+/v6l7lPv3r0rtK7ff/8dnTp1gpOTE2rVqoUnn3wSx48fN03BTSg8PLzM91omk6Ffv37lrqe6njOrVq3CtGnTEBQUBDs7u3LLmpGRgVdffRV+fn6ws7ODv78/Xn/9dWRlZVV42zt27EBwcDBcXFzg6uqKPn36YM+ePQ+xN8Zj6HEpKCjAP//8g0mTJqFly5ZwdnaGi4sLOnfujB9++AFFRUUV2q4xP6OmUpFzZuHChWV+LuLj4yu07UuXLmH06NHw9PSEg4MD2rdvjx9++AGWeo+atbkLQMUiIiIQEhICe3t7jB07Fi4uLvjnn38wZswY3LhxA6+99lq561AqlRg6dCh27NiBLl26YMSIEYiLi8OyZcuwZ88eHDp0CHXq1KmCvTGOb7/9Fp999hmaNGmCgQMHok6dOoiLi8OGDRuwYcMGrF69GmPGjDF4fcHBwXq/qAIDA41X6Crm5uaG//3vfzrj/f39DV7HRx99hPnz58PPzw/Tp09HZmYm/vzzT3Tr1g179uxB9+7djVdgEwsMDMSCBQv0Tvv7779x7tw5hISEGLy+6nbOzJ8/HwkJCfD09ISvry8SEhJKnVehUCA4OBgnT57EwIEDMW7cOJw4cQKLFi1CVFQU9u7dC3t7e4O2u2rVKkyYMAF16tRBWFgYAGDNmjUYMGAA1q5di5EjRxpj9yrN0ONy5coVjBw5Es7OzujXrx+eeuoppKenY/PmzZgxYwa2bt2KTZs2QSaTGbxtY3xGTaki54zapEmT9Jbf3d3d4O3GxsaiW7duyMnJwejRo1G3bl1s2bIFM2bMQGxsLL799tsK7EUVEWQRCgoKRJMmTYSdnZ04ceKENP7+/fuiWbNmwtbWVsTHx5e7nl9//VUAEOPGjRNKpVIa/8MPPwgA4oUXXjBF8U3mn3/+EZGRkTrj9+7dK2xsbEStWrVEbm5uueuJiIgQAMSCBQtMUErz8fPzE35+fg+1jkuXLglra2vRrFkzcf/+fWn8iRMnhJ2dnWjZsqUoKip6yJKaX15enqhdu7awtrYWd+7cKXf+6nrO7Nq1S/qu+OSTTwQAsXz5cr3zvvvuuwKAeOONN7TGv/HGGwKA+Pjjjw3aZmpqqnB3dxeenp7ixo0b0vgbN24IT09P4enpKTIyMiq3Q0Zi6HG5efOm+O6770RWVpbW+KysLBEUFCQAiLVr1xq8XWN8Rk2tIufMggULBAARERHx0Nvt1auXACC2bt0qjcvLyxM9e/YUAMSBAwceehvGxuo5C/Hff//hypUrGD9+vNYvWDc3N8ybNw/5+flYsWJFuev5+eefAQCffPKJ1i+hadOmoXHjxvj999+Rk5Nj9PKbytNPP43g4GCd8T179kSfPn2QlpaGM2fOmKFkNcfy5ctRWFiIt99+G25ubtL4wMBAjBs3DufPn8f+/fvNWELj2LBhA1JSUvDkk0/C29vb3MUxmf79+8PPz6/c+YQQWLZsGZydnfHOO+9oTXvnnXfg7OyMZcuWGbTNv/76C/fv38esWbNQv359aXz9+vUxc+ZM3Lt3D+vXr6/YjhiZocelXr16mDFjBpycnLTGOzk54dVXXwUAREVFmaSM5mLosTGmS5cuYe/evejTpw8GDx4sjbe1tcUHH3wAoPh6ZklYPWchIiMjAQADBw7UmaauSijvg5qbm4vDhw+jefPmOh8AmUyGAQMGYOnSpTh69Ch69uxpnIKbkY2NDQDA2trw0zguLg5fffUVcnJyUL9+ffTt2xf16tUzVRGrRF5eHsLDw5GYmAhXV1d07NgRnTt3Nnj58s698PBwREVFoVevXsYqslmoA4CpU6dWaLmaeM4Aqv1KTExESEiI3gChe/fu2LFjB27cuIEGDRqUua7yzqGFCxciKioKEydONFr5zaEy3znAw39GLdHevXtx+PBhyOVyBAQEoH///nB2djZ4+bLOmR49esDJyckig1MGTRYiLi4OABAQEKAzzcfHB87OztI8pbly5QqUSqXedWiuOy4urtoHTdevX8fu3bvh6+uLtm3bGrzc6tWrsXr1aum1tbU1Zs2ahf/7v/+DlZWVKYpqcnfu3MHkyZO1xnXs2BF//PEHmjRpUu7ycXFxcHZ2ho+Pj840zXOmOktISMCePXtQv359DBo0qELL1sRzBij7O0c9fseOHYiLiys3aCprXTXlHAKAX3/9FYD+C31ZHvYzaolKtht0d3fH119/bXBgXNY5Y2VlhUaNGiE2NhaFhYUVDlJNidVzFiI9PR0AtKpHNLm6ukrzPMw6NOerrgoKCjBhwgTk5eXhs88+M+jCVadOHXz66ac4e/YssrKykJSUhA0bNqBp06b48ssvMXfu3CooufFNnjwZe/bsQVJSEhQKBU6cOIEJEybgyJEj6NevHzIzM8tdR3p6eo0/Z5YvXw6lUomwsDCDA52aes6oGfP7oqx11ZRz6KeffsK2bdvQt29fhIaGGrycMT6jlqR9+/b49ddfcfXqVeTk5ODatWv49ttvIZPJEBYWhk2bNhm0HkPOP6VSaXHHx3LCNyIDqC98e/fuxfPPP48JEyYYtFzr1q3RunVr6bWTkxOGDh2Kzp07o127dvjmm2/wxhtvwMvLy1RFN4mSv/YCAwPx22+/AQBWrlyJn3/+WWqH8ahSKpVYvnw5ZDIZnnvuOYOXq6nnDFXcv//+i5kzZ8LPzw+rVq2q0LI17TM6fPhwrdf+/v6YOXMmWrZsiQEDBmD+/Pl46qmnzFQ602OmyUKoo+3Sfo1lZGSUGpFXZB2a81U3SqUSzz33HFavXo1nn30WP/7440Ov08fHB0OHDkVhYWGF+n2ydNOmTQMAREdHlzuvm5tbjT1nAGD37t24fv06+vbti0aNGj30+mrKOWPM74uy1lXdz6GtW7di5MiR8Pb2xn///QdfX1+jrLcin9HqoF+/fmjSpAnOnDkjvedlMeT8k8lkcHFxMWo5HxaDJgtRVr3/nTt3kJWVVWrbA7XGjRtDLpeX2nagvDYMlkypVGLy5MlYsWIFxo0bh/DwcMjlxjl9PT09Aaj6rKkpKrJPAQEByMrKwp07d3SmVedzRq2yDcDLUhPOmfLaGlXkvS9rXdX5HNqyZQuefvppeHp6IiIiAo0bNzbaumvCOVSSep+ys7PLnbesc6aoqAjXrl1Do0aNLKo9E8CgyWKob6vfuXOnzrQdO3ZozVMaBwcHdOrUCRcvXtTpnEwIgV27dsHJyQlBQUFGKnXVUAdMv/32G8aMGYOVK1catQGuOltgKR3NGUNF9skY556lSklJwcaNG+Hh4aFTrfAwasI5ExAQgLp16yI6Olrnwq1QKBAdHY1GjRqV2wgcqJnn0JYtWzBixAh4eHggIiICTZs2Ner6a8I5pEmhUODcuXNwcnKSgqeylHXO7N+/X+p41eKYu6MoUikoKBCNGzcus3PLa9euSeMTExPF+fPntTojFKLmdW5ZVFQkJk2aJACIUaNGiYKCgjLnT05OFufPnxfJycla448ePap3/q+++koAEAEBAaKwsNBo5a4K58+fFwqFQu94Hx8fAUBERUVJ4+/fvy/Onz8vEhMTtea/ePFije3c8ssvvxQAxOzZs0udpyafM8bu3FKhUIjz58+LhIQErfGpqanCzc3Noju31FTecdm6dauws7MTPj4+4sKFC+WuLz8/X5w/f15cvnxZa3xFP6OWoKxjk5GRIS5evKgzPjs7W4wbN04AEJMnT9aZfv78eXH+/Hmd8eV1bhkdHf1wO2MCMiEs9AEvj6DSHqOSkJCARYsWaT1GJSwsDCtWrMDy5culRxYAqqxMaGio9BiV4OBgXL58GevWrYO/vz8OHz5crR6jsnDhQrz33ntwdnbGyy+/rDdVO2zYMKlDUPX8CxYswMKFC6V5/P39YWNjg6CgINSvXx8KhQKHDh3CiRMn4O7ujh07dqBTp05VtFfGsXDhQnzxxRfo1asX/Pz84OTkhEuXLmHr1q0oKCjAW2+9hY8//liaPzw8HJMnT8akSZN0niul+RiVESNGSI9Ryc/Pr3aPUdHUtm1bnD17FqdPny61a4qads4sW7ZM6oz0zJkzOH78OLp37y5lSnr06CFVVSoUCnTv3h2nTp3CwIED8dhjj+H48ePYuXMnOnbsiKioKDg4OEjrjoyMRJ8+fRAcHCz1s6Om+RgV9aON1qxZg3v37mHNmjUYNWpUFex96Qw9LhcuXEBgYCDy8vIwduxYNG/eXGdd/v7+Wt+78fHxaNSoEfz8/LSevVbRz6i5GHps4uPj0bhxY3Ts2BEtW7aEj48PkpKSsHv3bty8eRNt27ZFREQEateurbV+dUfLJcONc+fOoXv37sjJycGYMWPg6+uLLVu24Ny5c5g5cyYfo0LlO3z4sBg0aJBwdXUVDg4OolOnTuLPP//UmU+dfdH3ayA3N1csXLhQNGnSRNja2gofHx8xdepUgx4dYWnU+1nWoHkM1F38l3z0xaeffir69Okj6tatK+zs7ISDg4No0aKF+N///qf1y7g6iYyMFKNHjxYBAQHC1dVVWFtbCx8fHzF06FCxY8cOnfmXL18uAIhJkybpXd+qVatEUFCQcHBwEG5ubiI0NFQcO3bMxHthOocPHxYARKdOncqcr6adM+V9Zkq+//fv3xf/+9//RIMGDYSNjY1o2LCheO211/RmhtSPlgkODta77W3btomePXsKJycn4ezsLIKDg8WuXbtMsJcVZ+hxUe9jWUPJ/b927ZoAoPO4lIp+Rs3F0GOTnp4uXnrpJdGxY0dRp04dYW1tLVxcXESnTp3E559/LrKzs/WuX70efS5cuCBGjhwpPDw8hJ2dnWjbtq347rvvtGpKLAkzTUREREQGYENwIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCJ6RPn7+0Mmk5U5fPXVV+YuJhnJiRMnYGVlhVmzZmmNj4yMlN7vssTHx0vzaT5fraLS09NRu3ZtdO7cWedZZESWTvfpp0T0SNF8MGdJrVq1quLSkKnMmjULDg4OeOedd8xaDjc3N7z11lt4/fXX8dtvv2HSpElmLQ9RRTBoInrETZ06VeuJ7VTz/P3334iOjsbrr78OLy8vcxcHM2fOxOeff4633noLY8eOhZ2dnbmLRGQQVs8REdVwX375JQBgypQpZi6Jir29PcaPH4/bt29jzZo15i4OkcEYNBFRudTtn+Lj47Fx40b07dsXHh4ekMlkiIyMlOZLS0vDggULEBgYCBcXFzg6OqJt27b48MMPkZ2drXfdhYWF+Oqrr9C2bVvY29ujTp06GDFiBM6cOYPw8HDIZDKdTNjChQshk8mwcOFCvetUt9Pp3bu33umJiYl49dVX0bJlSzg6OsLFxQUdO3bEkiVLUFhYqDN/WFgYZDIZwsPDce3aNUyYMAE+Pj6ws7NDkyZNMH/+fOTl5ZV6/I4dO4ZJkyahUaNGsLe3h4eHB9q3b4/XX38dCQkJAIDly5dDJpMhJCSk1PUkJibCxsYGDg4OSElJKXU+TSdOnMCBAwfQpUsXNG/e3KBlKkL9XpQ3lKR+T7/77jujl4nIVFg9R0QGW7x4MZYsWYKgoCAMGjQIiYmJsLKyAgDExsZi0KBBuHHjBnx9fdGjRw/Y2NggJiYG77zzDv755x9ERkbCzc1NWp9SqcSoUaOwYcMG2Nraonfv3qhVqxYOHz6MTp064bnnnjP6PuzduxfDhg1DWloa/P39MWDAAOTl5SEmJgazZs3C5s2b8e+//8LGxkZn2ZMnT+Lll19GrVq1EBwcjNTUVERHR+Ojjz7CuXPnsH79ep1l/u///g9vvvkmlEolmjVrhqFDhyInJweXL1/GokWL0Lp1a4SFhWH8+PF44403sGvXLly6dAnNmjXTWdfSpUtRWFiICRMmoHbt2gbt74YNGwAA/fv3r9iBMlBgYGCp7ZIuXryIQ4cOQS7X/X0eGBiIOnXqICYmBrdv34avr69JykdkVIKIHkl+fn4CgFi+fLnB81pZWYmNGzfqTM/OzhZNmjQRAMT8+fNFXl6eNE2hUIhx48YJAGLy5Mlayy1ZskQAEN7e3iI2NlYaX1BQIF588UUBQAAQkyZN0lpuwYIFAoBYsGCB3vJGREQIACI4OFhr/O3bt0Xt2rWFTCYT33//vSgqKpKm3bt3T/Tt21cAEO+9957WcpMmTZLK8vbbb4vCwkJp2pkzZ4STk5MAIA4cOKC13MaNGwUAYW9vL9asWaNTznPnzmnt99tvvy0AiNmzZ+vMm5+fL3x8fAQAcezYMb37rU+PHj0EALFlyxa909XHqrzLwbVr16T5rl27Vu52ExIShK+vrwAglixZoneep556SgAQK1euLHd9RJaAQRPRI0odCJU2aAYc6nmfe+45vev64YcfBADx5JNP6p2emZkpvLy8hLW1tUhNTZXGN23aVAAQP/zwg84yOTk5UpBgrKDpjTfeEADEzJkz9S538+ZNYWNjI+rUqSOUSqU0Xh00Pf7441rj1aZPny4AiPfff19rfGBgoAAgFi9erHd7Jd26dUvY2NgINzc3kZWVpTXtjz/+EABE165dDVqXmjqgu3r1qt7pmkGToUN5QVNaWppo1aqVACBef/31Uud76623BADxyiuvVGifiMyF1XNEj7jSuhxo0aKFzriRI0fqXceWLVsAAGPGjNE73dnZGUFBQdi6dSuOHDmCgQMH4tatW7h8+TIA4Nlnn9VZxt7eHqNHj8Y333xj8L6Up7xy1qtXDwEBAYiNjUVcXJxOFdmTTz6pt31Oy5YtAQC3bt2Sxt25cwcnT56EXC43uAF23bp1MXLkSPzxxx9YuXIlpk+fLk1Tt/2ZOXOmQesCAIVCAYVCAQAGVeeVdft/VlYW/vnnn3LXkZ+fj2HDhiE2NhZjx47FZ599Vuq86jIlJSWVu14iS8CgiegRV5EuB/z9/fWOv3r1KgBgwoQJmDBhQpnrSE5OBgDcvHkTAODp6QlnZ2e98zZq1MigchlKXc6ePXuWO29ycrJO0NSwYUO987q6ugIAcnNzpXHXr18HAPj6+mq14yrP7Nmz8ccff+C7776TgqbTp09j//798Pb2LjVw1Sc9PV3638XFpdz5w8PDS50WHx9fbtAkhEBYWBiioqIQHBwsNeQvjfq4paWllVs2IkvAoImIDObg4KB3vFKpBAAMGjQI3t7eZa7Dz8/P6OUqrTyljR85ciScnJzKXIe+zIy+Bs3G1qVLF3Tq1AkxMTFS8KHOMr3wwguwtbU1eF3u7u7S/5mZmVKQYipvvvkm/vjjD7Rq1QobNmwot/8ldVBXq1Ytk5aLyFgYNBHRQ2vQoAEuXLiAKVOmGJwJqVevHgDg3r17yMrK0pttKu1xHerAITMzU+909W38+soZFxeHN954A0FBQQaVs7LUWanbt28jPT29wtmmZ599FkuWLEH79u3x+++/w9raWqu6zhCOjo5wcnKCQqFASkqKSYOm77//Hp9//jnq1q2Lbdu2aQVspVF3m1BeoE1kKdhPExE9tMGDBwMA1q5da/Ay9evXR+PGjQEAq1ev1pmel5eHv/76S++y6oDr/Pnzeqer2y4Zo5yV5ePjg/bt20OpVOLXX3+t0LKjR4+Gr68vNmzYgI8++ggKhQLDhw9H3bp1K1yOxx57DICqSwhT2bRpE2bPng0XFxds2bKl1GrMks6ePQsAePzxx01WNiJjYtBERA/thRdegJ+fH/766y+88cYbejNAd+7cwc8//6w17n//+x8AVQeJFy5ckMYXFRVhzpw5SExM1Lu9vn37Qi6XY8eOHYiKipLGCyHwzTfflNr25vXXX4e7uzu++OILLF68GPn5+TrzXLt2DatWrSp3nw2xYMECAMDbb7+tt0yxsbF6Az8bGxu8+OKLKCwsxKJFiwBUrAG4pj59+gAADh48WKnlyxMTE4Nx48ZBLpfj77//RmBgoMHLqsvUt29fk5SNyNgYNBHRQ3NycsKWLVvg7++Pzz//HA0bNkRwcDCeeeYZDB8+HK1bt0bdunV1Hhb70ksvYciQIbh9+zbat2+PQYMGYdy4cQgICMCyZcvw4osv6t1egwYNMGvWLCiVSvTr1w99+vTBiBEjEBAQgDlz5uDNN9/Uu1z9+vWxceNG1KpVC3PmzEGDBg3Qr18/PPvssxgyZAiaNm2Kxo0bY8mSJUY5LsOHD8dHH32E3NxcjBw5Ei1btsTYsWMxdOhQtG7dGq1bt8bhw4f1Ljtt2jSpTVC7du3Qq1evSpVh2LBhAIBdu3ZVavnyvPXWW8jOzkb9+vWxevVqhIWF6R1KOnHiBFJSUtCpUyd2bEnVBts0EZFRtG7dGqdPn8aPP/6I9evX4/Tp0zh48CA8PT1Rv359zJkzB8OHD9daRi6XY926dfjmm2/wyy+/IDIyEs7OzujRowfWr1+PEydO4IcfftC7vS+//BINGzbEsmXLcODAATg7O6N79+5Yu3YtMjIy8Omnn+pdrlevXjh37hyWLFmCLVu24MiRI8jLy4OXlxcaNmyIZ599FiNGjDDacZk3bx769u2Lb775Bnv37sW6devg4uKCBg0aYO7cuaVmWby8vBAYGIjDhw/jpZdeqvT2O3TogG7duuHAgQM4f/681D2CsRQVFQFQZeiuXbtW6nwl78xTv36YfSOqajIhhDB3IYiI9AkPD8fkyZMxadKkMm+Hr4kuXbqEFi1awM3NDbdu3YKjo2Ol1/X3339j1KhRePXVV7F48WIjlrJycnNz0aBBA9jY2ODatWvl3mVHZClYPUdEZIHeffddCCHw4osvPlTABKi6WOjevTuWLl1qER1Jfvvtt7h37x4++eQTBkxUrTBoIiKyEJs2bcKUKVPQpUsXrFmzBj4+Ppg7d65R1v3tt98iJycHH3zwgVHWV1np6en49NNP0alTJ0ycONGsZSGqKLZpIiKyEMePH8evv/4KFxcX9O/fH1988YVB/R0ZokOHDlL7I3Nyc3OT+mciqm7YpomIiIjIAKyeIyIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoomrJ398fMpmszOGrr74ydzErRb1v8fHx5i5KhUVGRkImk6F3797mLgrVAL1794ZMJkNkZKS5i0IEALA2dwGIHkb37t3RtGlTvdNatWpVxaUpX1hYGFasWIHly5cjLCzM3MUhIqIKYNBE1drUqVNrXPCxZ88eFBQUoF69euYuChERaWDQRGRhmjRpYu4iEBGRHmzTRDWeZhuhjRs3om/fvvDw8NBqK5GcnIxvvvkGoaGhaNSoERwcHODq6oqgoCB89tlnyM3NLXX92dnZ+Oqrr9CjRw/UqlULdnZ28PPzw5AhQ7B69WoAQHx8PGQyGVasWAEAmDx5slb7q4ULF+otr75tffrpp3jsscfg4uICR0dHtG7dGvPnz0daWprO/Ort+vv7QwiBn376CY8//jicnJzg5uaGgQMH4uDBg3r3KyYmBnPnzkWnTp3g4+MDW1tbeHt7Y8iQIdi9e7eBR98w6uMAAMuXL0fXrl3h5uYmHQfN/VAqlfjmm2/Qrl07ODo6wtfXF9OnT0dqaioAIC8vDx988AFatGgBBwcH1K1bFy+//DIUCoXOdpVKJX766Sd0794d7u7usLGxgZeXF9q3b49Zs2ZVuF1Zeno65s+fj7Zt28LJyQl2dnaoW7cuunfvjnfffRcFBQU6yxw8eBCDBw+Gu7s7nJ2dERQUhF9//VXnuKhpHovSlHYOxcbGYsGCBejevTvq1asHW1tb1K5dG/3798fatWv1rkuznVp2djbeffddtGzZEo6OjjplOHbsGJ555hk0bNgQdnZ28PDwQEhICLZu3VpqWW/cuIHnnnsOvr6+sLe3R0BAAN5++23k5OSUukxZwsLCIJPJEB4ejmvXrmHChAnw8fGBnZ0dmjRpgvnz5yMvL6/U5f/880/069cPHh4e0mf5ueeew6VLl/TOb8j3i+b7uGrVKnTq1AnOzs6oU6cOxo0bh+vXrwMAhBBYsmQJAgMD4eTkBE9PT4SFheHu3buVOhZkAoKoGvLz8xMAxPLlyw2ed+bMmQKACAoKEuPGjRPBwcFi7969QgghVq5cKQCIevXqieDgYDF27FjRr18/4ezsLACIrl27itzcXJ11X79+XbRq1UoAEI6OjmLAgAFi7NixomfPnsLNzU34+fkJIYRITk4WkyZNEk2aNBEARPfu3cWkSZOkYf369TrlvXbtmta2UlJSRGBgoAAgXF1dxVNPPSVGjBghPD09BQDRqFEjnWWuXbsmAAg/Pz8xadIkYWNjI/r27StGjx4tmjVrJgAIOzs7cejQIZ1969evn5DL5aJt27YiNDRUjBo1Sjz22GMCgAAgvvrqK51lIiIiBAARHBxc7vuiSb3OmTNnCrlcLnr06CHGjRsnOnfuLOLj47X2Y9y4ccLBwUEMGjRIDBs2THh5eQkAokOHDiIrK0v06NFDOj5PPvmkcHNzEwDE4MGDdbY7efJkAUDY29uL/v37i3HjxomQkBAREBAgAGi9L+VRKBSiTZs2AoCoU6eOGDJkiBg7dqzo3bu38PHxEQBEWlqa1jJr164VVlZWAoBo06aNGDdunOjRo4eQyWTi1VdflY6LJs1jUZrSzqEpU6YIAKJFixYiJCREjBkzRnTt2lXI5XIBQLzyyis661K/p507dxYdO3YUTk5OYvDgwWLMmDGif//+0nxfffWVtJ7AwEAxcuRI0aNHD2FraysAiPfee09n3efPn5feP19fXzFq1CgRGhoqHBwcRNeuXUXXrl0FABEREVHu8VebNGmSACBefvll4erqKvz8/MTo0aNF//79hYODgwAghg0bprOcUqkUEydOFACEtbW16Nu3rxg7dqz0OXF0dBTbtm0r9ViX9f2ifh/ffPNNad0jR44UDRs2FABEgwYNRGpqqhg9erSwt7cXgwYNEsOHD5eOTbt27UReXp7Bx4BMh0ETVUuVCZqsrKzExo0b9c4TGxsrDh48qDM+NTVVDBw4UAAQn3/+uda0oqIiERQUJACIgQMHirt372pNz8nJEVu2bNEap/5CL6vcpV3wxowZI1287t27J43PzMwUgwcPFgBEt27dtJZRX2DVF9mLFy9K0woLC8Vzzz0nlb+krVu3isTERJ3xBw4cEK6ursLGxkbcvHlTa9rDBk2urq563wfN/WjSpImIj4+Xpt27d08Kctq2bSs6deqkdXyuXr0qatWqJQCI/fv3S+MTEhIEAFG/fn1x+/ZtnW3GxsaKhIQEg/dhxYoVUnCWn5+vNa2oqEhERkZqXfhu374tXFxcBADxxRdfaM2/e/duYW9vb/SgKTIyUly5ckVn/gsXLoj69esLAOLw4cNa09Tvqfrire9Ybd++XchkMuHp6SmioqK0pp0+fVpad2RkpNa0jh07CgBi9OjRIicnRxqfkJAg/cCobNAEQLz99tuisLBQmnbmzBnh5OQkAIgDBw5oLffDDz8IAMLT01OcOHFCGq9UKsWCBQsEAOHu7q7zOTfk+0Vdntq1a4uTJ09K47Ozs0WPHj2kc7fkuZ2cnCyaNm0qAIhVq1YZfAzIdBg0UbWk/qIqbdC8aKvnfe655yq1rYsXLwoAomPHjlrjN2zYIP1CzszMNGhdlQ2aEhIShFwuFzKZTJw6dUpnmZs3b0oX2ejoaGm8ZrCxadMmneVu374tZZtKXujL8tZbbwkA4rvvvtMa/7BB0/vvv693uuZ+lAxEhRDiiy++EACETCYTZ86c0Zk+a9YsnWxHTEyMACCeeuqpCpW1NJ9//rneAKg0H374oQAgunTponf6yy+/bPSgqSxLly4VAMTrr7+uNV4zaFJnTkrq3LmzACD+/vtvvdPXrl0rAIgRI0ZI4/bv3y8ACCcnJ60gV239+vUPFTQ9/vjjQqlU6kyfPn263nNNHaR98803OssolUrRrl07AUB89NFHWtMM+X5R70fJz4sQQqxbt67Mc3vx4sUCgJg8eXKp66eqw4bgVK2V1uVAixYtdMaNHDmyzHUVFRUhMjISBw4cwO3bt5GTkwOh+mEBALh48aLW/Nu3bwcAjB8/Hs7OzpXdBYPs3bsXSqUSjz32GNq1a6czvV69eggJCcHGjRsRERGBbt26aU23trbGoEGDdJbz8fFBrVq1kJaWhpSUFPj4+GhNT0lJwZYtW3D27FmkpaVJbXLi4uIA6B6Th1Xee2RtbY2BAwfqjA8ICAAANGzYEG3atCl1emJiojSuRYsWcHFxwdatW/HRRx9h/PjxaNSoUaXL3rFjRwDA559/jtq1a+PJJ5+Eh4dHqfOr27s888wzeqdPmjQJX3/9daXLU5qsrCxs27YNJ06cwL1795Cfnw8AuH37NoDS31MvLy/07NlTZ/y9e/cQExMDBwcHDBkyRO+y6n67Dhw4II1T7/+gQYNQu3ZtnWWGDh0KNzc3pKenG7xvmp588kmd9mAA0LJlSwDArVu3pHE3b97ElStXAKiOe0kymQyTJ0/GK6+8goiICMybN09nnvLOXQAIDQ3VGac+N8s7tzXPXTIfBk1UrVWky4GyGs7GxcVh+PDhOHfuXKnzZGRkaL1OSEgAoD9AMzb1F3xZF3X1XXeaFwM1X19f2NjY6F3O1dUVaWlpOo3df/75Z7zyyit6G1CrlTwmD6us9whQ7Ye1te7Xljpobdiwod7lXFxcAEBrH11cXLB8+XJMnjwZ8+fPx/z58+Hr64suXbpg0KBBOsHwp59+igsXLuise9GiRfD09ETv3r3xxhtv4P/+7/8wadIkyGQyBAQEoHv37hg6dCiGDBkCubz43pubN28CKP09fZgArjSbN2/G5MmTkZKSUuo8pb2npb03165dgxACOTk5sLOzK3P7ycnJ0v/l7b+6sfupU6fKXGdpSjsXXF1dAWifC+rPTO3ataXpJZX1+QLKP3dLK5P6HCvt3NZ37pL5MGiiR4aDg0Op00aOHIlz587hySefxNy5c9GqVSu4urrCxsYG+fn55V4MLJ3mxdoQx44dw7Rp02BlZYXPPvsMQ4YMQcOGDeHo6AiZTIaffvoJ06ZNk7JwxlLWewSUvx8V3c8RI0agf//+2LRpE/bt24fo6GisX78e69evx7vvvotdu3ahbdu2AFSZxaioKJ11LFy4EJ6engBUgdX06dOxefNm7N+/H9HR0Vi+fDmWL1+Ojh07IiIiAk5OThUqY2UolUqdcbdu3cKYMWOQk5ODuXPn4plnnoG/vz+cnZ0hl8uxc+dOhISElPqelvbeqLfl7OyMESNGGG8nHlJFz4WHVd65C5RdpqouL1UOgyZ65F24cAGnT5+Gl5cX1q9fr/NrT10VVZL6V6O+7IOxqTu6vHr1aqnzqKcZo1PMv/76C0IIzJo1C3PnztWZXtoxqY7c3NwwYcIETJgwAYDqFvhZs2Zh48aNmDlzphQoGfooD39/f8yaNQuzZs0CABw5cgTPPvssjhw5gs8//xzvvfceANX7dOHChVK7NShtvK2tLQAgMzNT7/SCggKpqk3T5s2bkZOTg+HDh+Ozzz7TmV7Z97RBgwYAVJmhX3/91eCLv/o8LatbB3U219TUZUlJSUFGRobebJMxP19UfTG0pUeeun+funXr6k2Pr1q1Su9y6jZCf/zxR5lVWJrUF7zCwsIKlbFXr16Qy+U4efKk3uqK27dvS22s+vTpU6F166M+Jn5+fjrTcnNz8c8//zz0NixVgwYNpMDm5MmTD72+jh07YsaMGTrrCw4OBgD8/vvvepf77bff9I6vU6cObG1tkZqaqrf/nh07dug9v8p6T4UQUp9iFVW3bl20a9cOmZmZ0jloCPX+b9++XSqbpk2bNuH+/fuVKlNF1a9fX6p+Cw8P15kuhJDGG+PzRdUXgyZ65DVr1gxWVlY4c+aMTjZh8+bN+PLLL/Uu99RTT6FDhw5ITEzEqFGjdNqJ5ObmYtu2bVrj6tevDwBltp3Sp2HDhhg1ahSEEJg2bZrWthQKBV544QXk5uaiW7duOo3AK0PdWHbFihVaGY3c3FzMmDED165de+htmNuJEyewZs0avZ0obt68GYD+AKM069evlxrsayooKJCCCc31TZkyBc7Ozjh48CC++eYbrWUiIyPx448/6t2OjY0NevXqBQCYP3++1vZOnTqFmTNn6l1O/Z7+/fffWpmooqIivPvuu1qNtCvqww8/BKDqtFV97DQJIXD48GHs3LlTGtezZ0889thjyMrKwksvvaTV4eSNGzcwZ86cSpenMtTb++CDD7R+mAgh8OGHH+LkyZNwd3fH888/X6XlKkuLFi3QokULxMTEmLsojw4z3bVH9FAq009TWbdfq2/vlsvlIjg4WIwbN07qyHH+/Pl6b/0WQoj4+HjRvHlzqfO7gQMHinHjxolevXppdW6pdurUKSGXy4VcLhf9+/cXkydPFlOmTNHq36W08t67d0+0b99eABBubm5i2LBhYuTIkaJOnToCKL9zy4ocn7S0NGl87dq1xbBhw8SIESOEl5eXcHFxkY7XpEmTtNb1sF0OlKa8/Shvu8uXL9cpr/qWdgcHB9G9e3cxduxYMXLkSOn9tLW11duZYWnUx8TT01MMGDBAPPPMM+Kpp56SOiisV6+euHHjhtYyf/zxh9S5Zdu2baVzRyaTiVdeeaXU43Lo0CGp08hmzZqJkSNHiq5duwobGxsxadIkve9pQUGBePzxxwUA4ezsLJ544gkxevRo4efnJ2xsbMQbb7yh9xga+p5+/fXXwtraWgAQTZs2FU888YQYP368GDBggHQM3njjDa1lzp07J52/devWFaNHjxZPPvmkcHR0FF26dHmozi1L+27Qdy4IoepWYMKECQJQdW7Zr18/MW7cOOl8cHBwEFu3btVZnyHfL2Wd3w9zbqvXW5HjQw+HmSYiAF9++SV++eUXdOjQAceOHcPWrVvh6OiIP//8Ex988EGpy/n5+eHo0aP47LPP0Lp1axw8eBDr1q1DQkICgoODddqOtGvXDv/88w+6du2Kw4cPIzw8HL/88guOHz9ebhlr166NAwcO4JNPPkGjRo2wc+dO/Pvvv/D09MS8efNw7Ngxg+7gMYS7uzuOHj2KGTNmwN3dHdu2bcPBgwcxcOBAHD9+HIGBgUbZjjl16dIFn376Kfr06YPExERs2rQJO3fuhJWVFV566SWcPn1abzcNpQkLC8Obb76JFi1aIDY2Fn/99RcOHjyIBg0a4OOPP8apU6ekTKPa2LFjERkZiZCQECQkJGDjxo3IzMzEjz/+iC+++KLUbXXu3BlRUVEYOHAg7ty5gy1btiA7Oxtff/01li9frncZa2trREZGYt68eahXrx727NmDyMhIdOjQAQcPHqzQvuoze/ZsnDhxAi+88AJkMhn27NmDDRs24MqVK+jQoQO++eYbzJ49W2uZVq1a4ejRowgLC0NRURE2bNiA2NhYzJo1C3v27JGqs6uCTCbDb7/9htWrV6NHjx44duwY/v77b2RnZyMsLAwnTpzA4MGDq6w8ZJlkQhj59hciIjIKdT9D/JomsgzMNBEREREZgEETERERkQEYNBEREREZgJ1bEhFZKLZlIrIszDQRERERGYCZpiqmVCpx7949AJCe40VERETmIYRAdnY2AMDT07PMRwExaKpi9+7dg7e3t7mLQURERCUkJSXBy8ur1OmsniMiIiIyADNNVczR0VH6PykpCU5OTmYsDRER0aNNoVBINUCa12h9GDRVMc02TE5OTgyaiIiILER57YxZPUdERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNZLkOHgQ++gi4e9fcJSEiIuJjVMhCKRRAaChw/z4QFweEh5u7RERE9Ihjpoks04kTqoAJAP77z6xFISIiAh7xoOnLL79E69at4ezsDHd3d/Tt2xeHDx+Wpq9btw4DBgyAh4cHZDIZ4uPjzVfYR83Ro8X/37gBJCWZryxERER4xIMmPz8/fPHFFzh16hQOHDiApk2bIiQkBCkpKQAAhUKBXr164f333zdzSR9BmkGTvtdERERVTCaEEOYuhKXIyMiAm5sbIiMjERwcLI0/e/Ys2rZti2vXrsHf3/+htqFQKODs7AwAyMrKgpOT00Otr8Zq2RK4cKH49cKFwIIFZisOERHVTBW5Llt0pmnVqlWYNm0agoKCYGdnB5lMhvByGgQfOXIEoaGhcHd3h5OTE7p06YK1a9eWu638/Hz89NNPqFWrFtq2bWukPaBKycgALl7UHsdMExERmZlF3z03f/58JCQkwNPTE76+vkhISChz/oiICISEhMDe3h5jx46Fi4sL/vnnH4wZMwY3btzAa6+9prPMvn37MHjwYOTk5MDHxwe7du2Ch4eHqXaJDHHiBFAyAXr0qGqcTGaeMhER0SPPojNNy5YtQ3x8PJKTkzF9+vQy5y0sLMTzzz8PuVyOvXv34qeffsLixYtx6tQpNGvWDPPmzdMbdAUFBeHkyZM4cOAABg8ejNGjR+PevXum2iUyhGZWSR0k3bkD3LplnvIQERHBwoOm/v37w8/Pz6B5//vvP1y5cgXjx49HYGCgNN7NzQ3z5s1Dfn4+VqxYobOcg4MDmjZtis6dO2PZsmWQy+VYvnx5pcusUCjKHagcmkHT4MH6xxMREVUxi66eq4jIyEgAwMCBA3WmhYSEAACioqLKXY8QAnl5eZUuh7oxGT0EdXBkbw9MnAhs3Vo8ftgwsxWLiIgebTUmaIqLiwMABAQE6Ezz8fGBs7OzNI/aG2+8gaeeegr169dHamoqvv/+e9y8eRMjRowAAKSmpuL69eu4cuUKACA2Nhb3799Hw4YN2e7JVNLSgMuXVf936AB07Vo8jZkmIiIyoxoTNKWnpwNQVcfp4+rqKs2jlpiYiLFjx+Lu3bvw8PBAx44dsW/fPrRs2RIAsGnTJkyePFma/4knngAALF++HGFhYXq3k5WVVWY5FQoFvL29DdqnR9Lx48X/BwUBDRoAdeoAycnAkSNsDE5ERGZTY4Kmyli5cmWZ08PCwkoNjkrDfpcekmY26fHHVQFSUBCwbRuQmgrExwONGpmteERE9Oiy6IbgFaHOMJXMJqmpO64kC6cZNAUFqf527Kh/OhERURWqMUGTui1TyXZLAHDnzh1kZWXpbe9EFkYdFDk6Ai1aqP5XB0+a04mIiKpYjQma1I892blzp860HTt2aM1DFurePVX1GwA89hhgZaX6//HHi+c5cqTKi0VmkJkJFBWZuxRERFpqTJumfv36oXHjxli9ejVmz54t9dWUnp6Ojz/+GLa2tpg4caJ5C2lKmzerAg43t+LB0REoKFANubmq6ZcuqYbMTKBJE6B5c9Xg5KS6SBUWAnZ2QOPGgJ8fYK3nFElJAQ4dAk6eVDXS7ttXtS6ZTNVQ+/Zt4MwZ1fYDAgBvb9W03FzVnXGXLwNZWaptqS+M9vbA1avF29DMLtWtqxoSE1VB04svAtevAwoFEBgIdO8OdOummqegAMjPV63XwQGwsSluOK5UqrarUADZ2UBOjmqQy1VldXBQDVZWqnHyEr8pNHspF6J4UCpV+5Kaqgr8UlJUj4LJzFRtLydHdUzV63d1BTw9VYObm2qe9HTg/n1V2QFVma2sVMe3bl3A11e1jYQE1ft4507xulxdVfNnZKgGhQJwcQFq11YNzs7a+5OZqdpeenpx+XJzVUN+fvExdHAAGjZUnQcNGqi2kZ8P5OWptqG5Djs71TZdXFTH0tZWNajHu7mp3mMhVNtPSlIdK7m8eN5r14CdO1XDxYuqZbp1A3r2VAXRzs7F75NSWXxuy+WAh0fxvpa8USA3V3VOJiWpjqmzs+p8l8lUNxjcvasqi7W1aprm4OKi+mtvrzqX9J0Tt2+rPlMXL6reex8foF491WBrqzpm+fmqMquPkbOz6ny5cUN1LqekqPbLyUm1j+ptyeWqbeTmFp+v6psh5HLVfF5eqvPD11c1Xv2+5OSojqGHB1Crluq90JSdrdr+zZuqz4t6n+3tVe9vZqZqsLVVbcPLS7We3FzVsgpF8fF0cVEtV/LYFxWp9jM1Vftzl51dPOTlqcrm6KgavLxUz550d9deV36+qoPbGzdUQ1KSqmxOTqpBiOLPQG6u6pzV/H5LTlZ9bu7cUb1niYmqvzIZ4O+v+s6rX191B+/Nm6pt5OWpylGrlmqoW1c1T926qmOflaV679LTVeNr14ZeRUWq+e7eVZXN2Vn1uXVwUJXn2jXV5/r+fdU+2durBj8/oHXr4vdWCNWxTExUrVP9XZWZCVy5ohri41Xz2dkVf/7q1VOVr1694s+ivb1qefX7oFAUvzc5OcXnhPp8zclRHZu0NNVx8fBQfYepv2fU30OA6rsqMVH1fhUWqo5VycHauvi7QX2dyckpPidzc4u/c5VKVXk0hwEDVNuvYhb9wN5ly5Zh//79AIAzZ87g+PHj6N69O5o2bQoA6NGjB6ZOnSrNX9pjVBISErBo0SK9j1GpaiZ7YO/TTwPr1xtnXWrW1qoPrbu76n8bG9UXT8nnwgGqL6hmzYCzZ1VfZpqcnVVfODdv6j4epTSrVgHPPFP8etgwYOPGiu+DlZXqi7ioSPVlQOajvmg/RD9o5bKxUV2IrK1VQ36+6kJkLHK5ar2agXhBgfHWb0rW1qr3wNZW9Tk05nEBVMdG/cPA3l510UtNVR2jyqhbV/Vj7P59VXBjSU9qkMlU55r6R45a3bpAu3aqHzvqAO3OHVXZH+ZS6+amCkwSE1XH1RJZWakCKRsb1T5X5H13cVEtl5pq+DLR0aofVUZQoeuysGCTJk0SAEodJk2apLPM4cOHxaBBg4Srq6twcHAQnTp1En/++WfVF74UWVlZUvmzsrKMt+K+fTVzH9V7sLMT4vp17f0LDzd/uThUzWBlJURQkBBeXuYvCwcOHCxz2LvXaJfPilyXLTrTVBOZLNO0b5+q6kadmk9PV/0i0UyH1qunygY1a6ZKpcbFqbJGly+rfjFZWakGhUKV5r18WfU3O7u4Gs3GRlVV0q2b6q62+Hjgv/+A/ftV2/PwUE0PDFRlFOLiVENamupXo3r7Hh6qbVlbqz4C6uqH/HxVdV/37tr7JwQQGalaT4MGqsHGBjh8WPWL4/BhVbnVVT1yeXGqWaHQrnpRV4GofxUrlcXz5uaqXqvTwWrqzIJm9YNMVlxNYmWlyqap09Xu7sVpbQcH1bFQbyM9vbgaLz1dNY+7u3YVlhCqDEZSUnFVgpWVKvPn56f6RZufX1wdIYRqeVdX1b5lZKjWn5Ki2qYQqn0SQrU9dRWuunzq7ICtbfH5kpVVXB2YmKjaT3XK38FBex15ecXVOdnZxVV8ubnF1YH376vK4O2tqoKpU0e7ys/FBejTRzW4uqrKevmy6ty+elW76kBdrWdjo0r/q/c1JUW1rsJCVRmsrVXVZXXrqv4KUVxFW1RUXA5Pz+JpWVnF+6IeNKstCwu1zwNfX9U53by5at/Uz0lMTFTtr/qcVH3oVevLyFAdu4YNVUOdOtrVXoWFxe8XoHpv1O+RlVXxtJyc4nPkzh1VudTvi7296rirq1QUiuJjrVSqjon6s2RrW7zvOTna1TJ5eapqpbt3Ve+hvX3xZ0hd5a1ZFa0ebG1V+6U+vurqVfVnT/2/rW3x50OhUFVXxsYC586pMg+2tqpjrK6mb9hQVWZ1lbVCoRqA4upqGxtVldfFi8CFC6r1+/io3h9v7+Iq77p1VefBtWuqc+zWLdV3U4MGquosR0fVPqelqc6txMTi6sG8vOLPu7Oz6lw9c0Y1r5q67N7equPg5aXad/V5pVCoxjVqpKoi9PQsfo+yslTfnepjkZlZXM1Wt65q3ervKXWTiiZNVH/VxzQ3V3UO3LqlyvTfvKnapvr7tqio+L10cir+LlA3U9B8bx0ciqspbW1V701Kiuq7TF0Fm5qqWne9esXH0N6++PNTcsjM1K7yUy/XoIHq/NP8zrW2Lr5GWVkBI0eq5jeCilyXGTRVMZMFTaYmhOoLSh0glJSXpzrx1e2XiIgehhCqC7y6/Vl1IIQqQMnIUAVptWpVn7I/wipyXa4xDcHJxNR1+KWxs1N9SRARGYNMpsrgVCcymSq7QjVWjelygIiIiMiUGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGeCRDpo++eQTBAUFwcXFBd7e3hg9ejTi4+Ol6QsXLoRMJtMagoKCzFdgIiIiMptHOmiKiorCrFmzcPjwYWzfvh2pqakYPHgwCgsLpXnat2+P27dvS8OOHTvMWGIiIiIyF2tzF8Cctm/frvX6559/RuPGjREbG4t27doBAKytreHj42OO4hEREZEFsehM06pVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl1r0PbS09MBAB4eHtK48+fPw9fXF02bNsXkyZNx586dSu8PERERVV8WnWmaP38+EhIS4OnpCV9fXyQkJJQ5f0REBEJCQmBvb4+xY8fCxcUF//zzD8aMGYMbN27gtddeK3XZoqIizJkzB6Ghoahfvz4AoHPnzggPD0eLFi1w69YtvPvuu+jbty9OnDgBOzs7o+4rERERWTaZEEKYuxCl2b17NwICAuDn54dPP/0Ub731FpYvX46wsDCdeQsLC9GiRQvcvHkThw4dQmBgIABV9qhTp06Ij4/HpUuX4Ofnp7OsEAIvvPACoqKiEB0djTp16ugtT3JyMho2bIhVq1ZhxIgRldonhUIBZ2dnAEBWVhacnJwqtR4iIiJ6eBW5Llt09Vz//v31Bjn6/Pfff7hy5QrGjx8vBUwA4Obmhnnz5iE/Px8rVqzQWU4IgRkzZmD37t3Ys2dPqQETANSpUwf+/v64du1ahfeFiIiIqjeLrp6riMjISADAwIEDdaaFhIQAUN0tp0kIgZdeeglbtmxBVFQUGjRoUOY20tLSkJCQAH9//1LnUSgUZa6jvOlERERkmWpM0BQXFwcACAgI0Jnm4+MDZ2dnaR61l156CX/88Qc2b94MBwcHqZG3h4cHbG1t8frrr2PIkCFo2LAhbt68iXnz5qFevXoIDQ0ttRzqFB8RERHVLDUmaFLf+ebm5qZ3uqurqzSP2g8//AAA6Nmzp9b4iIgI9O7dGzdu3MDYsWNx7949eHt7Izg4GCtXroSjo6MJ9oCIiIgsWY0JmiqjvDbwf/75Z4XXmZWVVeZ0hUIBb2/vCq+XiIiIzKvGBE3qDFPJbJJaRkYGatWqZfJy8G44IiKimsmi756rCHVbppLtlgDgzp07yMrK0tveiYiIiMgQNSZoCg4OBgDs3LlTZ5r6eXHqeYiIiIgqqsYETf369UPjxo2xevVqnDx5Uhqfnp6Ojz/+GLa2tpg4caL5CkhERETVmkW3aVq2bBn2798PADhz5ow0Tt0nU48ePTB16lQAqgfrLlu2DCEhIejVq5fWY1QSEhKwaNGiMvtXIiIiIiqLRT9GJSwsTG8v3mqTJk3SeYBvTEwMFixYgAMHDqCgoABt27bFq6++ijFjxpi4tIbhY1SIiIgsR0WuyxYdNNVEDJqIiIgsR4159hwRERGRpWDQRERERGQABk1EREREBmDQRERERGQABk1EREREBmDQRERERGSASnVuef/+fezYsQN79uzB8ePHkZSUhLS0NNSqVQve3t54/PHH0bdvX4SEhMDd3d3IRSYiIiKqehXqp+nMmTP4+uuv8ccffyA3NxdlLSqTyWBvb4/x48dj1qxZaNeunVEKXN2xnyYiIiLLYfTOLe/evYu33noLK1asgFKphKenJ3r37o1u3bqhdevWqF27NlxdXZGeno6UlBScPXsWBw4cwN69e3Hv3j3I5XKEhYXh448/hpeXl/H2tBpi0ERERGQ5jB40ubm5ITMzE08++SSmTJmCJ554AtbW5dfsFRYWYvPmzfj111+xZcsWuLm5IS0trQK7UvMwaCIiIrIcRu8RvFOnTjhy5Ag2bdqEoUOHGhQwAaqH6A4fPhybN2/G4cOHERQUZNByRERERJaGz56rYsw0ERERWQ4+e46IiIjIyEwSNKWnp5d5Zx0RERFRdVOpoOns2bP45ptvcOnSJa3xERERaNSoETw8PODl5YXw8HBjlJGIiIjI7CrVpumFF17Ar7/+imvXrqFBgwYAgJSUFDRu3BiZmZnSfHK5HEeOHEGHDh2MV+Jqjm2aiIiILIfJ2zRFR0ejdevWUsAEACtXrkRmZiamTZuG+/fv47fffoNSqcS3335bmU0QERERWZRKBU1JSUlo2LCh1rhdu3bBysoKH374IVxdXfHss8+iQ4cOOHjwoFEKSkRERGROlQqaMjIy4ObmpjXu8OHDCAwMRO3ataVxAQEBuHXr1sOVkIiIiMgCVCpocnV11QqGzp8/j9TUVHTr1k1nXplMVvnSEREREVmISgVNgYGBOHDgAC5fvgwA+OWXXyCTyRAcHKw137Vr1+Dr6/vwpSQiIiIys0oFTdOmTUNBQQEef/xxdOjQAV9++SW8vLzwxBNPSPNkZmbi5MmTaNOmjdEKS0RERGQulQqaRo0ahYULF6KwsBCnTp2Cn58f/vrrL9jZ2UnzrF27FgUFBTrZJyIiIqLq6KGePZefn4+MjAx4enrqTLt+/TrS0tLQpEkTqf8DYj9NRERElqQi12Xrh9mQra2t3oAJABo2bKjTLQERERFRdcUH9hIREREZoNKZpsLCQvz111/Ys2cPEhMTkZubq3c+mUyGPXv2VLqARERERJagUkFTcnIyBg4ciNOnT6O8JlHsp4mIiIhqgkoFTXPnzsWpU6fQtGlTvPjiiwgICICLi4uxy2Zy69atww8//IBjx44hLS0N165dg7+/vzQ9IyMD8+bNw8aNG5GSkoKuXbviu+++Q4sWLcxXaCIiIjKLSgVN//77L7y9vXHo0CF4eHgYu0xVRqFQoFevXhg6dChmzZqlM33q1Km4dOkS1qxZA09PT3z99dcYMGAAzp8/zzsCiYiIHjGV6nLA2dkZgwYNwt9//22KMlW5s2fPom3btlqZppycHLi4uGDLli0ICQkBACiVSvj6+uLDDz/E888/X6ltscsBIiIiy1GR63Kl7p4LCAhATk5O5UpXAatWrcK0adMQFBQEOzs7yGQyhIeHl7nMkSNHEBoaCnd3dzg5OaFLly5Yu3ZthbddWFiIoqIiODg4SOPkcjlsbW0RHR1d4fURERFR9VapoGnKlCmIjIzEzZs3jV0eLfPnz8dPP/2EhIQEg55hFxERge7du2P//v0YPXo0pk+fjjt37mDMmDFYvHhxhbbt4uKCzp074/3338fdu3dRUFCARYsW4ebNm7h9+3Zld4mIiIiqqUoFTTNnzsSTTz6Jvn37YseOHVAqlcYuFwBg2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eUhISKjQ9letWoWcnBx4e3vDwcEB27dvx6BBgyCXs3srIiKiR02lr/5Lly6Fg4MDQkND4eDgAH9/fzRu3FhnaNKkSaUL179/f/j5+Rk073///YcrV65g/PjxCAwMlMa7ublh3rx5yM/Px4oVKyq0/aZNmyI6OhoZGRlITEzE7t27kZaWhkaNGlVoPURERFT9VeruuRs3bqBnz564ceMGhBAoKCjA9evX9c5bVf00RUZGAgAGDhyoM03dkDsqKqpS63ZxcYGLiwuuXr2Ko0ePYuHChaXOq1AoylxXedOJiIjIMlUqaHrjjTdw/fp19OjRA6+++ioCAgLMfgt+XFwcAFUj9ZJ8fHzg7OwszaOWmpqK69ev48qVKwCA2NhY3L9/Hw0bNsT/s3fncVFV///AX8O+b6IsouCCS6bihhooigvmUrmkaCpoWlpqn7SyTNP2LJcy0zRSXLK0XDI3XAGRVFxzS5EEFwRFkGXY4fz+8Df3yzgDDDDjDPh6Ph73oXPvufe+7507c9+cc+ZcJycn7Nu3D0ZGRmjevDkuX76Mt956C4MGDcKAAQPKjUPf54GIiIh0o1pJ08GDB+Hp6YkDBw7A3Nxc2zFVS2ZmJoBHzXHq2NnZSWUUdu7ciQkTJkivBw0aBABYu3YtQkNDkZGRgTlz5uDOnTto0KABxo4dW2EtExEREdVd1Uqa8vLy0Lt3b4NJmKorNDQUoaGh5S4fPXo0Ro8eXaVt5uTkVLhcLpfDxcWlStskIiIi/atW0vTMM88gPT1d27HUiKKG6fHaJIWsrCw4OjrqPA4OVklERFQ3VevXc9OnT0dUVBQuXryo7XiqTdGX6fF+SwCQkpKCnJwctf2diIiIiDRRraRp7NixeOeddxAYGIhVq1aV+8u5JykgIAAAsH//fpVlERERSmWIiIiIqqpazXPGxsbS/994440Ky8pkMhQXF1dnN1XSp08fNG3aFJs2bcKMGTOksZoyMzPxxRdfwMzMDOPHj9d5HERERFQ3VStpqsozfqvxPGBJWFgYYmJiAAAXLlyQ5inGZPL398ekSZMAACYmJggLC0NQUBB69uyJ4OBg2NraYuvWrUhKSsKiRYukh/ESERERVZVM1CSr0bHQ0NAKR/EOCQlReYDvyZMnMX/+fMTGxqKoqAht27bFzJkzMWrUKB1Hq5mqPE2ZiIiIdKsq9+VqJU3R0dEwNjaGn59f9aN8SjFpIiIiMhxVuS9XqyN4r169MG/evOpFR0RERFQLVStpcnR0hLu7u7ZjISIiIjJY1UqafHx81I6HRERERFRXVStpmjFjBuLi4rB7925tx0NERERkkKo15ECHDh0wbdo0DB06FKGhoRg+fDi8vLxgaWmptnzjxo1rFCQRERGRvlXr13OKwS2FEJDJZBXv4AkNbllb8NdzREREhqMq9+Vq1TQ1atSo0mSJiIiIqC6pVtKUmJio5TCIiIiIDFu1OoITERERPW2YNBERERFpQKOkKTk5WSs709Z2iIiIiJ40jZImb29vvP/++8jIyKjWTtLT0/Hee+/B29u7WusTERER6ZtGSVP//v3x9ddfw8PDA2PHjsWBAwdQUFBQ4ToFBQWIiIjA6NGj4eHhgUWLFiEoKEgrQRMRERE9aRqP03Tw4EG8/fbbuHTpEmQyGUxNTeHj44PWrVujXr16sLOzQ1ZWFh48eIDLly/j/PnzKCoqghACzz77LJYsWYK+ffvq+ngMHsdpIiIiMhxVuS9XeXDLAwcOYPny5di/f79SbZNMJkPZTZmbmyMoKAjTpk1jslQGkyYiIiLDodOkSaGgoADHjh3D2bNnkZqaiszMTDg4OKBBgwbo2LEjnnvuOZibm1fvCOowJk1ERESG44kkTVQ9TJqIiIgMR1XuyxyniYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgD1UqaoqOjcezYMW3HQkRERGSwqpU09erVC/PmzdN2LEREREQGq1pJk6OjI9zd3bUdCxEREZHBqlbS5OPjg/j4eG3HQkRERGSwqpU0zZgxA3Fxcdi9e7e243mitm3bhn79+sHJyQkymQyJiYlKy5cuXYo2bdrAxsYGDg4OCAwMxIkTJ/QTLBEREemVSXVW6tChA6ZNm4ahQ4ciNDQUw4cPh5eXFywtLdWWb9y4cY2C1BW5XI6ePXvixRdfxPTp01WWe3p6YsmSJWjevDkKCgrw7bffIigoCAkJCahXr54eIiYiIiJ9kQkhRFVXMjY2BgAIISCTySregUyG4uLi6kX3hFy8eBFt27bFjRs34OXlVW65rKws2NvbIzIyEgEBAdXaV1WepkxERES6VZX7crVqmho1alRpsqQNGzduxNGjR3H69GlcuHABhYWFWLt2LUJDQ8tdJy4uDvPnz0dsbCyKiorQtm1bzJw5EyNHjqxRLIWFhVi9ejUcHR3Rtm3bGm2LiIiIap9qJU2P9/3Rlblz5yIpKQnOzs5wc3NDUlJSheWPHDmCoKAgWFhYIDg4GLa2tti6dStGjRqFW7duYdasWVWO4ejRo3j++eeRl5cHV1dXHDhwAE5OTtU9JCIiIqqlDHpE8LCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06VKnc+fOOHfuHGJjY/H8889j5MiRSEtLq+4hERERUS1l0ElT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX5RgsLS3RvHlzdO3aFWFhYTAyMsLatWurvB0iIiKq3WqUNB09ehQjR46Eh4cHzM3N8eqrr0rLDhw4gDlz5iAlJaXGQWoiMjISANC/f3+VZUFBQQCAqKioGu9HCIGCgoJyl8vl8konIiIiqn2q1acJAD777DPMnz8fZX98V/b/9vb2WLhwITw8PPDGG2/ULEoNKAbb9Pb2Vlnm6uoKGxsblQE509PTcfPmTSQkJAAALl++jIcPH6Jx48ZwcnLC7Nmz8cILL8DDwwPp6elYsWIFbt++jeHDh5cbh6IHPhEREdUt1app2rt3Lz766CM0bNgQW7ZsQWpqqkoZX19f1K9fH7t27apxkJrIzMwE8ChZU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dOwEAycnJCA4ORosWLTBw4ECkpqbi6NGjaN26tQ6PhIiIiAxRtWqavvvuO5ibm2Pv3r1o06ZNueXat29v0I9bCQ0NrXD4gg0bNlR5mzk5ORUul8vlcHFxqfJ2iYiISL+qlTTFxcXB19e3woQJAOrXr4/Y2NhqBVZVihqmx2uTFLKysuDo6KjzODhYJRERUd1UreY5uVwOV1fXSstlZmaitLS0OruoMkVfJnU1WykpKcjJyVHb34mIiIhIE9VKmlxcXHD9+vVKy129ehWNGjWqzi6qTPFYk/3796ssi4iIUCpDREREVFXVSpr8/f1x7tw5HDt2rNwyu3btwvXr19G7d+9qB1cVffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+/BOJhYiIiOqeavVpmjVrFjZv3oxhw4Zh1apVGDx4sNLyffv2YdKkSTA1NcX06dOrHVxYWBhiYmIAABcuXJDmKcZk8vf3x6RJkwAAJiYmCAsLQ1BQEHr27Kn0GJWkpCQsWrSowofxEhEREVVEJsoOrlQF3333HWbOnAng0ajZeXl5sLGxgUwmQ3Z2NoQQWLZsGaZNm1bt4EJDQyscxTskJATh4eFK806ePKn2gb2jRo2qdhzaVJWnKRMREZFuVeW+XO2kCXjUV2j+/PmIi4tTGtiyXbt2+Oyzz1RqoIhJExERkSF5YkmTwoMHD3Djxg2UlpaiUaNGcHNzq+km6ywmTURERIajKvflaj9Gpax69eqhXr162tgUERERkUGq1q/nwsPDcfv2bW3HQkRERGSwqtU8Z2RkBJlMBm9vb/Tt2xd9+/ZFYGAg7OzsdBFjncLmOSIiIsOh8z5NEydOxOHDh3Hz5s1HG5HJYGRkhE6dOklJlJ+fH0xNTat5CHUXkyYiIiLD8cQ6gsfHx+PgwYM4cOAAIiMj8fDhw0cblclgaWkJf39/9OvXD7NmzaruLuocJk1ERESG44n/eg4AhBA4deoUDh48iIMHD+LYsWMoLCyEkZERiouLtbGLOoFJExERkeGoyn25Wh3B1SkqKkJ2djays7ORlZUlJUpaysmIiIiI9KpGQw6cO3cOBw4cwMGDBxETE4P8/HwIIWBnZ4dBgwZJ/ZuIiIiIartqJU3BwcE4fPgwHjx4ACEETE1N0a1bNylJ8vX1hbGxsbZjJSIiItKbaiVNW7ZsgUwmQ7t27TB//nz0798fVlZW2o6NiIiIyGBUqyO4vb09srOzATx6WG+PHj3Qr18/9O3bF+3bt9d6kHUJO4ITEREZDp0/RiU9PR0nT56Ufil35MgR7N+/HzKZDM7OzujTpw/69euHfv36wcPDo3pHQURERGRAtDLkQG5uLiIjI3Hw4EEcOnQIFy9elJa1aNECV65cqeku6gzWNBERERkOvYzTpHD+/Hn88ssvWL58OfLz8yGTyVBSUqLNXdRqTJqIiIgMh86b58q6ffu2NOzAoUOHcP/+fQCQflXXvXv3mu6CiIiISO+qlTTt2LFD6s8UHx8P4FGSJJPJ8Oyzz0pDDwQEBPBXdURERFQnVCtpGjZsmPT/Ro0aSUlSnz590KBBA60FR0RERGQoqpU0vfTSS9IQA97e3tqOiYiIiMjgVCtp2rZtm7bjICIiIjJoWntgLxEREVFdVqOk6cqVK5gyZQpatmwJGxsb2NjYoGXLlpg6dSrHZiIiIqI6pdrjNIWHh2PKlCkoKiqCuk2YmZlh1apVCAkJqXGQdQnHaSIiIjIcVbkvV6um6fTp05g8eTIKCwsxaNAgbN++Hf/88w/++ecf7NixA0OGDEFhYSEmT56MU6dOVe8oiIiIiAxItWqagoOD8fvvvyMsLAwTJkxQWyY8PBwTJ07EqFGj8Ouvv9Y40LqCNU1ERESGQ+ePUWnYsCFcXV1x+vTpCst17twZd+/exZ07d6q6izqLSRMREZHh0HnzXFpaGlq3bl1puVatWiEtLa06uyAiIiIyKNVKmhwcHHDz5s1Ky928eRP29vbV2QURERGRQalW0tSlSxfExsbi8OHD5ZY5fPgwjh07hq5du1Y7OH3z8vKCTCZTmb755ht9h0ZERERPWLWSpunTp6O0tBRDhgzBe++9h0uXLiE3Nxe5ubm4ePEi3nnnHQwZMkQqW1vFxcXh7t270rRp0yYAys/eIyIioqdDtcdpmjdvHj7//HPIZDK1y4UQmDdvHj7++OMaBWhIXnnlFdy+fRtRUVHV3gY7ghMRERkOnXcEB4BPP/0Ue/bsQe/evWFubg4hBIQQMDMzQ2BgIPbs2aPzhGnjxo14/fXX0blzZ5ibm0MmkyE8PLzCdeLi4jBw4EA4ODjA2toa3bp1w5YtWyrdV2ZmJrZv317uEAtERERUt1Xrgb0KAwYMwIABA1BSUoIHDx4AAOrVqwdjY2OtBFeZuXPnIikpCc7OznBzc0NSUlKF5Y8cOYKgoCBYWFggODgYtra22Lp1K0aNGoVbt25h1qxZ5a7766+/wtjYGC+//LK2D4OIiIhqgSo1z12/fh3btm1DYmIizM3N4ePjg5EjR8LS0lKXMZbr4MGD8Pb2hqenJ7766it88MEHWLt2LUJDQ1XKFhcXo1WrVrh9+zaOHz8OHx8fAI9qkHx9fZGYmIhr167B09NT7b58fX3Rtm1b/PzzzzWKmc1zREREhkMnzXPffvstnnnmGXzwwQdYtWoVli1bhokTJ6Jly5a4ePFizaOuhr59+5ab5Dzu8OHDSEhIwJgxY6SECQDs7e0xZ84cFBYWYt26dWrXvXTpEuLi4tg0R0RE9BTTqHkuJiYGs2bNghAC1tbWaNmyJbKysvDff//h9u3bGD58OK5cuQIjo2p3kdK5yMhIAED//v1VlgUFBQFAuR2816xZA29vb/j7+1e6H7lcXqPlREREZJg0ynKWL18OIQRCQkKQkpKCU6dO4dq1azhz5gyaNWuG69evY9++fbqOtUbi4+MBAN7e3irLXF1dYWNjI5Upq7i4GBs3btS4lsnGxqbCycXFpWYHQkRERHqhUdL0999/w8PDA6tWrVJq62vXrh2+++47CCFw/PhxnQWpDZmZmQBQ7gjldnZ2Upmydu/ejbS0NIwfP16n8REREZFh06h5LjU1FQMHDoSZmZnKMkWT1b1797QbmYF48cUXUVJSonH5nJycCpfL5XLWNhEREdVCGiVNhYWFcHBwULvMzs5OKmPIFDVM6mqTACArKwuOjo413g9/DUdERFQ3GW7PbS1T9GVS128pJSUFOTk5avs7EREREQFVGNzy+vXrWL9+fbWWG0J/oICAAHz55ZfYv38/goODlZZFRERIZYiIiIjU0WhwSyMjo3KfMVfpDmQyFBcXV2vdqtBkcMuWLVvizp075Q5uefXqVXh5eek0Tg5uSUREZDiqcl/WqKapcePG1U6adCksLAwxMTEAgAsXLkjzFGMy+fv7Y9KkSQAAExMThIWFISgoCD179lR6jEpSUhIWLVqk84SJiIiIaq8qPUbF0ISGhpY7ijcAhISEqDzA9+TJk5g/fz5iY2NRVFSEtm3bYubMmRg1apSOo32ENU1ERESGoyr35VqdNNVGTJqIiIgMh06ePUdERET0NGPSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk2V2LZtG/r16wcnJyfIZDIkJibqOyQiIiLSAyZNlZDL5ejZsyc++eQTfYdCREREemSi7wAM3bhx4wAAFy9e1HMkREREpE+1vqZp48aNeP3119G5c2eYm5tDJpMhPDy8wnXi4uIwcOBAODg4wNraGt26dcOWLVueTMBERERUK9X6mqa5c+ciKSkJzs7OcHNzQ1JSUoXljxw5gqCgIFhYWCA4OBi2trbYunUrRo0ahVu3bmHWrFlPKHIiIiKqTWp9TVNYWBgSExNx//59TJkypcKyxcXFmDx5MoyMjBAdHY3Vq1dj8eLFOH/+PFq0aIE5c+ZUmnQRERHR06nWJ019+/aFp6enRmUPHz6MhIQEjBkzBj4+PtJ8e3t7zJkzB4WFhVi3bp2OIiUiIqLarNY3z1VFZGQkAKB///4qy4KCggAAUVFRNdqHXC6v0XIiIiIyTE9V0hQfHw8A8Pb2Vlnm6uoKGxsbqYxCeno6bt68iYSEBADA5cuX8fDhQzRu3BhOTk4q27GxsdFB5ERERKRvtb55rioyMzMBPGqOU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dO3UbLBERERmUp6qmqTpCQ0MRGhqqcfmcnJwKl8vlcri4uNQwKiIiInrSnqqkSVHD9HhtkkJWVhYcHR1rtA9ra+sarU9ERESG6alqnlP0ZXq83xIApKSkICcnR21/JyIiIqKnKmkKCAgAAOzfv19lWUREhFIZIiIiorKeqqSpT58+aNq0KTZt2oRz585J8zMzM/HFF1/AzMwM48eP11+AREREZLBqfZ+msLAwxMTEAAAuXLggzVOMyeTv749JkyYBAExMTBAWFoagoCD07NlT6TEqSUlJWLRoEby8vPRxGERERGTgZEIIoe8gaiI0NLTCUbxDQkJUHuB78uRJzJ8/H7GxsSgqKkLbtm0xc+ZMjBo1SsfRPvr1nGIsp5ycHHYcJyIi0qOq3JdrfdJU2zBpIiIiMhxVuS8/VX2aiIiIiKqLSRMZrDfffBNubm7YvXu3vkMhIiJi89yTxuY5zdy8eROenp4AAD8/P6mzPxERkTaxeY5qvVOnTkn/P3v2LIqLi/UYDREREZMmMlBlk6bc3FxcuXJFj9EQERExaSIDdfr0aaXXZZMoIiIifWDSRAZHCKGSJDFpIiIifWPSRAYnMTER6enpSvOYNBERkb4xaSKDoy5BOnfuHAoLC/UQDRER0SNMmsjglE2anJ2dAQCFhYW4ePGivkIiIiJi0kSGp2zSNGHCBLXziYiInjQmTWRQSktLpV/ONWzYEEOGDJGWMWkiIiJ9YtJEBiUhIQGZmZkAgM6dO6NDhw4wMnp0mcbFxekzNCIiesoxaSKDUrY2qXPnzrCxsUHr1q0BABcvXkReXp6+QiMioqcckyYyKGWTpk6dOgF4lDwBQHFxMf755x+9xEVERMSkiQyKuqSpS5cuapcTERE9SUyayGCUlJTgzJkzAIDGjRujQYMGAP6vpglgvyYiItIfE30HQE9WSUkJbt68iezsbDRt2hQ2Njb6Dkly7do15OTkAFBOlNq1awcTExMUFxfj1KlTKCwsxJ07d5CTk4OWLVvCzMxMXyGTluXl5SEmJgZxcXFo2LAh/P390bRpU8hkMn2HRnVQcXExhBAwNTXVdyhak5ubi9LSUpibm8PExISfHS1j0lRHTJs2DQcOHIC9vT3s7Oxgb28PKysrFBUVoaioCPn5+UhMTMT169eVRtZu2LAhWrZsCWtra5SUlKCkpARmZmZo2rQpmjdvjubNm8PBwQEmJiYwMTHB/fv38ffffyM2Nhbnzp1DgwYNEBgYiMDAQLRo0QIXL17E6dOnceHCBVhZWcHb2xve3t5wcnJCQkICrl69iuvXryMnJwfFxcUoKSkBAFhYWEAul0txlU2aLC0t8eyzz+LcuXO4dOkSLCwsIISQ1uvSpQuee+45uLu7o6ioCIWFhSgpKYGlpSWsrKxgZWWFkpIS5OTkICcnB3K5HLm5ucjLy0NeXh6MjIxgZWUFS0tLWFpawtjYGEZGRtKv9hQU+xRCKE2lpaUoLi5Geno60tLS8ODBA2RlZSE7Oxs5OTnIy8uDubm5tH07Ozs4OzvD2dkZ9vb2yMnJQWZmJh4+fCi9NzKZDCYmJqhfvz7c3d3h5uaG4uJiJCUlITExESkpKbCwsICdnR3s7Owgk8mQlZWFrKwsyOVy2NnZoV69eqhXrx5sbGyk4xFCIDs7G5mZmcjMzIRcLpfOQ35+PgoLC6VrxsLCAo0bN4anpycaNWoEmUyGwsJCFBQUQC6XS9vIycmBhYUFbG1tYWtrCysrK5iZmUmTra0t7O3t4eDgAAC4d+8eUlNTkZaWBiMjI6ncjRs3EB0djfz8fKXz7ubmho4dO8LGxkZ6n0pLS6U4jYyM4OTkJB2vpaUlTExMYGpqisLCQty9exfJyclITU2FsbExbGxsYG1tDZlMhvv37+PevXtIS0uDiYkJbGxslCZbW1vY2NjAwsICZmZmMDU1hYnJ/31tKv4IuXr1Kq5evYoHDx7A1dUVHh4eaNiwoRRDYWEhSktLpXNkY2OD9PR03Lp1Czdv3sSDBw9gaWkJa2trWFlZwdTUVOk9y8/PR35+PvLy8lBaWgojIyPIZDKYmZmhQYMGcHNzg5ubGwBI70t+fj7s7e3h6OgIR0dH2NjYwNzcHGZmZhBC4M6dO7h16xZu376NkpIS6XgVn0XFNWxubo4GDRqgQYMGcHR0RH5+PuRyOeRyuXQ+FcekuMYtLCyQn5+PtLQ03L9/H+np6dLnruyUl5eHgoICmJubS++ti4sLnnnmGTzzzDNo1qwZHj58iOTkZNy9exe3bt2SptTUVJiZmcHa2hrW1tYQQkifgfz8fDRq1AgtW7ZEy5YtYWtri9TUVKSkpCAlJQV3797F3bt3cf/+fchkMnh4eKBp06bw8PBARkYGbt++jVu3biE/Px8ODg7SOXR3d4eHhwcaNWoES0tLPHjwAA8ePEBmZiYaNWqEdu3aoW3btqhfv760r5SUFNy7d0+a8vPzpevA0tISKSkpuHHjBhITE/Hw4UOYm5vD3NwcFhYW8PT0RJs2bfDMM8/A2dkZycnJuHXrFpKTk1FSUgJjY2MYGxsjOzsbCQkJSEhIwP3796XrUyaTwdbWFg0bNoSHhwc8PDxgb28PCwsLWFhYwMjISHovFN8Fivel7DVhY2ODvLw8ZGRkICMjAwUFBXBycoKzs7P0uXNycoKTkxPMzMyk83fnzh0UFxfD1NRU7WRrawsHBwc4ODjA1NRU6ZrMy8uTvnNLS0ul+5NiWrVqFdq2bVuNu2UNCXqicnJyBAABQOTk5Ghtu4MGDZK2WxemiIgIpeN77bXX9B4TJ06cOHEyjOno0aNau39W5b7MmqY6wsLCAvb29sjKypKy88eZm5ujefPmaNGiBezs7BAfHy/9dVwdTk5OePjwIUpLS6u1vrGxMUxMTCCEUKr96tatG3r16qVUdtasWTh27BjS09PRqFEjNG7cGKampjhx4gT++++/au1fl0xMTKS/Ji0sLFBYWCj9FZednV3j7ZuZmZX7LD5LS8sqDc1gZmYm1Q4oalNMTU2Rk5OD5OTkcq8nBVNTUxQVFVUp/vJ4eHigf//+6NmzJ27duoWYmBjExsZq5ZzpmqmpKZydnXH//n0UFxdXaV0HBwepNqkiJiYmMDY2VqrhrM0UNV8FBQVVfrZkvXr1UFxcjNzcXOn6U9S+mpqaVnjtmpqawtXVFe7u7igpKcGNGzeUvgdNTU3RsGFDWFlZ4eHDh8jIyND5cCeWlpZwdnZWqs2t6ueqYcOGaNq0qXRO8/Pz8fDhQ9y5c6fODddS3ftOTclEZd+IpFVyuVzqR5STkwNra2utbr+0tFRqOsnLy1OqCq1Xrx6MjY1V1snIyEBRUZFU1SuXy3H9+nVcv34d//33H3Jzc1FcXCw12XTp0gXdu3dHkyZNkJmZiejoaBw+fBh37txBmzZt0LFjR/j4+CA/Px/x8fG4fv06MjIy0LRpU7Rs2RItWrSAo6OjStz5+fkoKCiAg4NDldrh7969i5MnT0Iul0s3fSMjI6kZITc3V6npRdEEomhKKC0tVaqWLi0tlaqDH49D8Vomk0mTkZERjI2N4ejoKFVXW1lZlRtvcXExMjIypGp9GxsbODg4SNXm4v83+xUVFSE1NVVqXjI2Noanpyc8PT1Rr149CCGQk5MjJcr29vZSU1xhYSHS09Px4MED5ObmSjdZIYTUXGZvbw9ra2u114RCYWGhVM1uZGQkNR1YWlpK2zA3N0dJSQnkcjmys7Olm1hhYSHy8/ORnZ2Nhw8fIjMzE6WlpXBxcUGDBg1Qv359pSY/GxsbNGvWTOWcl5SUIC0tTek9MjIykq7r4uJiqZkkPT0dBQUF0vVqYmIi3RxdXV2lc5aTk4OSkhIpDsX5lMvlyMnJkZpWs7OzkZ2dLTVbFhYWqiQqbm5uaNmyJTw9PWFiYoLS0lLcu3dPakJRND8CUNqmvb09GjdujIYNG8Lc3Fz6HCg+b4r3C4DUnPL4e1VcXIx79+7h7t27SElJgUwmU3pfMjMzpSaV3NxcKTkpLS2Fu7s7GjVqBA8PD5iZmUnnJS8vT6lZpqCgAPfu3cP9+/fx8OFDWFhYSJ+h0tJS6XgU6yomc3Nz1K9fXzq/iuZVxWfPyspK6XhKSkqQm5uLmzdv4vLly7h8+TISExPh5OQEd3d3aWrUqJHSOVNcpzKZTKlvUn5+Pq5fv45///0X+fn5cHV1haurK1xcXFCvXj2V5vesrCzcuXMHTk5OqF+/vsryvLw8qXns1q1bKCgokD7vNjY2uH79Oi5cuIALFy4gKytL2p+bm5t0zTdo0ACWlpbSOZPL5ahfvz6aNGmCBg0aKF37paWl0rm4dOkSsrKypGY2d3d36XOn6L/k5eUFS0tLtZ9jIYTU7CiXy6UEvaSkRHovy743im4KZT8LFhYWUjOlmZmZ9B2WlpYmfdcoPn9lmwMtLCykpvTHp+zsbKUmP3d3dzRu3BiNGjWCra0tgP/7zlXcnxSToolaG6pyX2bS9ITpOmkiIiIizVXlvswhB4iIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wGfPPWFlB2CXy+V6jISIiIjK3osre0gKk6YnLDc3V/q/i4uLHiMhIiKisnJzc6VHqqjD5jkiIiIiDfCBvU9YaWkp0tLSAABWVlbVfkqzXC6XaqpSU1P54N//j+elfDw36vG8qMfzoh7Pi3q1+bwIIaRWIGdnZxgZlV+fxOa5J8zIyAgNGjTQ6jatra1r1QX6pPC8lI/nRj2eF/V4XtTjeVGvNp6XiprkymLzHBEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGOLglERERkQZY00RERESkASZNRERERBpg0kRERESkASZNRERERBpg0mRg4uLiMHDgQDg4OMDa2hrdunXDli1bqrSNgoICfPLJJ/D29oaFhQXc3d3x2muv4d69ezqKWnfu3LmDb7/9Fv3790fjxo1hZmYGV1dXDB8+HCdOnNB4O5GRkZDJZOVO4eHhujsIHfLy8ir3mHr16lWlbf3yyy/w9fWFtbU1HB0dMXjwYJw5c0Y3getQeHh4he+1TCZDnz59Kt1Obb1mNm7ciNdffx2dO3eGubl5pbFmZWVh5syZ8PT0hLm5Oby8vPDuu+8iJyenyvuOiIhAQEAAbG1tYWdnh969e+PQoUM1OBrt0fS8FBUVYevWrQgJCUHr1q1hY2MDW1tbdO3aFStXrkRJSUmV9qvNz6iuVOWaWbBgQYWfi8TExCrt+9q1axg5ciScnZ1haWmJ9u3bY+XKlTDU36iZ6DsA+j9HjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrEq3UVpaihdffBERERHo1q0bhg8fjvj4eISFheHQoUM4fvw46tev/wSORju+//57LFy4EM2aNUP//v1Rv359xMfHY8eOHdixYwc2bdqEUaNGaby9gIAAtV9UPj4+2gv6CbO3t8f//vc/lfleXl4ab+Pzzz/H3Llz4enpiSlTpiA7Oxu//fYbnnvuORw6dAh+fn7aC1jHfHx8MH/+fLXL/vjjD1y6dAlBQUEab6+2XTNz585FUlISnJ2d4ebmhqSkpHLLyuVyBAQE4Ny5c+jfvz9Gjx6Ns2fPYtGiRYiKikJ0dDQsLCw02u/GjRsxbtw41K9fH6GhoQCAzZs3o1+/ftiyZQtGjBihjcOrNk3PS0JCAkaMGAEbGxv06dMHL7zwAjIzM/HXX3/hjTfewJ49e7Bz507IZDKN962Nz6guVeWaUQgJCVEbv4ODg8b7vXz5Mp577jnk5eVh5MiRcHd3x+7du/HGG2/g8uXL+P7776twFE+IIINQVFQkmjVrJszNzcXZs2el+Q8fPhQtWrQQZmZmIjExsdLtrFmzRgAQo0ePFqWlpdL8lStXCgDitdde00X4OrN161YRGRmpMj86OlqYmpoKR0dHkZ+fX+l2jhw5IgCI+fPn6yBK/fH09BSenp412sa1a9eEiYmJaNGihXj48KE0/+zZs8Lc3Fy0bt1alJSU1DBS/SsoKBD16tUTJiYmIiUlpdLytfWaOXDggPRd8eWXXwoAYu3atWrLfvTRRwKAmD17ttL82bNnCwDiiy++0Gif6enpwsHBQTg7O4tbt25J82/duiWcnZ2Fs7OzyMrKqt4BaYmm5+X27dvihx9+EDk5OUrzc3JyROfOnQUAsWXLFo33q43PqK5V5ZqZP3++ACCOHDlS4/327NlTABB79uyR5hUUFIgePXoIACI2NrbG+9A2Ns8ZiMOHDyMhIQFjxoxR+gvW3t4ec+bMQWFhIdatW1fpdn766ScAwJdffqn0l9Drr7+Opk2b4pdffkFeXp7W49eVYcOGISAgQGV+jx490Lt3b2RkZODChQt6iKzuWLt2LYqLi/Hhhx/C3t5emu/j44PRo0fjypUriImJ0WOE2rFjxw48ePAAgwcPhouLi77D0Zm+ffvC09Oz0nJCCISFhcHGxgbz5s1TWjZv3jzY2NggLCxMo33+/vvvePjwIaZPnw4PDw9pvoeHB6ZNm4a0tDRs3769ageiZZqel4YNG+KNN96AtbW10nxra2vMnDkTABAVFaWTGPVF03OjTdeuXUN0dDR69+6N559/XppvZmaGTz/9FMD/3c8MCZvnDERkZCQAoH///irLFE0JlX1Q8/PzceLECbRs2VLlAyCTydCvXz+sWrUKp06dQo8ePbQTuB6ZmpoCAExMNL+M4+Pj8e233yIvLw8eHh4IDAxEw4YNdRXiE1FQUIDw8HAkJyfDzs4OXbp0QdeuXTVev7JrLzw8HFFRUejZs6e2QtYLRQIwadKkKq1XF68Z4NFxJScnIygoSG2C4Ofnh4iICNy6dQuNGjWqcFuVXUMLFixAVFQUxo8fr7X49aE63zlAzT+jhig6OhonTpyAkZERvL290bdvX9jY2Gi8fkXXjL+/P6ytrQ0yOWXSZCDi4+MBAN7e3irLXF1dYWNjI5UpT0JCAkpLS9Vuo+y24+Pja33SdPPmTRw8eBBubm5o27atxutt2rQJmzZtkl6bmJhg+vTp+Oabb2BsbKyLUHUuJSUFEyZMUJrXpUsX/Prrr2jWrFml68fHx8PGxgaurq4qy8peM7VZUlISDh06BA8PDwwYMKBK69bFawao+DtHMT8iIgLx8fGVJk0VbauuXEMAsGbNGgDqb/QVqeln1BA93m/QwcEB3333ncaJcUXXjLGxMZo0aYLLly+juLi4ykmqLrF5zkBkZmYCgFLzSFl2dnZSmZpso2y52qqoqAjjxo1DQUEBFi5cqNGNq379+vjqq69w8eJF5OTkIDU1FTt27EDz5s2xdOlSvPfee08gcu2bMGECDh06hNTUVMjlcpw9exbjxo1DXFwc+vTpg+zs7Eq3kZmZWeevmbVr16K0tBShoaEaJzp19ZpR0Ob3RUXbqivX0OrVq7F3714EBgZi4MCBGq+njc+oIWnfvj3WrFmD//77D3l5ebhx4wa+//57yGQyhIaGYufOnRptR5Prr7S01ODOj+Gkb0QaUNz4oqOjMXnyZIwbN06j9dq0aYM2bdpIr62trfHiiy+ia9euaNeuHZYtW4bZs2ejQYMGugpdJx7/a8/Hxwfr168HAGzYsAE//fST1A/jaVVaWoq1a9dCJpNh4sSJGq9XV68Zqrpdu3Zh2rRp8PT0xMaNG6u0bl37jA4dOlTptZeXF6ZNm4bWrVujX79+mDt3Ll544QU9Rad7rGkyEIpsu7y/xrKyssrNyKuyjbLlapvS0lJMnDgRmzZtwtixY/Hjjz/WeJuurq548cUXUVxcXKVxnwzd66+/DgA4duxYpWXt7e3r7DUDAAcPHsTNmzcRGBiIJk2a1Hh7deWa0eb3RUXbqu3X0J49ezBixAi4uLjg8OHDcHNz08p2q/IZrQ369OmDZs2a4cKFC9J7XhFNrj+ZTAZbW1utxllTTJoMREXt/ikpKcjJySm374FC06ZNYWRkVG7fgcr6MBiy0tJSTJgwAevWrcPo0aMRHh4OIyPtXL7Ozs4AHo1ZU1dU5Zi8vb2Rk5ODlJQUlWW1+ZpRqG4H8IrUhWumsr5GVXnvK9pWbb6Gdu/ejWHDhsHZ2RlHjhxB06ZNtbbtunANPU5xTLm5uZWWreiaKSkpwY0bN9CkSROD6s8EMGkyGIqf1e/fv19lWUREhFKZ8lhaWsLX1xdXr15VGZxMCIEDBw7A2toanTt31lLUT4YiYVq/fj1GjRqFDRs2aLUDrqK2wFAGmtOGqhyTNq49Q/XgwQP8+eefcHJyUmlWqIm6cM14e3vD3d0dx44dU7lxy+VyHDt2DE2aNKm0EzhQN6+h3bt3Y/jw4XBycsKRI0fQvHlzrW6/LlxDZcnlcly6dAnW1tZS8lSRiq6ZmJgYaeBVg6PvgaLokaKiItG0adMKB7e8ceOGND85OVlcuXJFaTBCIere4JYlJSUiJCREABAvv/yyKCoqqrD8/fv3xZUrV8T9+/eV5p86dUpt+W+//VYAEN7e3qK4uFhrcT8JV65cEXK5XO18V1dXAUBERUVJ8x8+fCiuXLkikpOTlcpfvXq1zg5uuXTpUgFAzJgxo9wydfma0fbglnK5XFy5ckUkJSUpzU9PTxf29vYGPbhlWZWdlz179ghzc3Ph6uoq/v3330q3V1hYKK5cuSKuX7+uNL+qn1FDUNG5ycrKElevXlWZn5ubK0aPHi0AiAkTJqgsv3Llirhy5YrK/MoGtzx27FjNDkYHZEIY6ANenkLlPUYlKSkJixYtUnqMSmhoKNatW4e1a9dKjywAHtXKDBw4UHqMSkBAAK5fv45t27bBy8sLJ06cqFWPUVmwYAE+/vhj2NjY4K233lJbVfvSSy9JA4Iqys+fPx8LFiyQynh5ecHU1BSdO3eGh4cH5HI5jh8/jrNnz8LBwQERERHw9fV9QkelHQsWLMCSJUvQs2dPeHp6wtraGteuXcOePXtQVFSEDz74AF988YVUPjw8HBMmTEBISIjKc6XKPkZl+PDh0mNUCgsLa91jVMpq27YtLl68iH/++afcoSnq2jUTFhYmDUZ64cIFnDlzBn5+flJNib+/v9RUKZfL4efnh/Pnz6N///7o2LEjzpw5g/3796NLly6IioqCpaWltO3IyEj07t0bAQEB0jg7CmUfo6J4tNHmzZuRlpaGzZs34+WXX34CR18+Tc/Lv//+Cx8fHxQUFCA4OBgtW7ZU2ZaXl5fS925iYiKaNGkCT09PpWevVfUzqi+anpvExEQ0bdoUXbp0QevWreHq6orU1FQcPHgQt2/fRtu2bXHkyBHUq1dPafuKgZYfTzcuXboEPz8/5OXlYdSoUXBzc8Pu3btx6dIlTJs2jY9RocqdOHFCDBgwQNjZ2QlLS0vh6+srfvvtN5VyitoXdX8N5OfniwULFohmzZoJMzMz4erqKiZNmqTRoyMMjeI4K5rKngPFEP+PP/riq6++Er179xbu7u7C3NxcWFpailatWon//e9/Sn8Z1yaRkZFi5MiRwtvbW9jZ2QkTExPh6uoqXnzxRREREaFSfu3atQKACAkJUbu9jRs3is6dOwtLS0thb28vBg4cKE6fPq3jo9CdEydOCADC19e3wnJ17Zqp7DPz+Pv/8OFD8b///U80atRImJqaisaNG4tZs2aprRlSPFomICBA7b737t0revToIaytrYWNjY0ICAgQBw4c0MFRVp2m50VxjBVNjx//jRs3BACVx6VU9TOqL5qem8zMTPHmm2+KLl26iPr16wsTExNha2srfH19xddffy1yc3PVbl+xHXX+/fdfMWLECOHk5CTMzc1F27ZtxQ8//KDUUmJIWNNEREREpAF2BCciIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmoqeUl5cXZDJZhdO3336r7zBJS86ePQtjY2NMnz5daX5kZKT0flckMTFRKlf2+WpVlZmZiXr16qFr164qzyIjMnSqTz8loqdK2QdzPu6ZZ555wtGQrkyfPh2WlpaYN2+eXuOwt7fHBx98gHfffRfr169HSEiIXuMhqgomTURPuUmTJik9sZ3qnj/++APHjh3Du+++iwYNGug7HEybNg1ff/01PvjgAwQHB8Pc3FzfIRFphM1zRER13NKlSwEAr776qp4jecTCwgJjxozB3bt3sXnzZn2HQ6QxJk1EVClF/6fExET8+eefCAwMhJOTE2QyGSIjI6VyGRkZmD9/Pnx8fGBrawsrKyu0bdsWn332GXJzc9Vuu7i4GN9++y3atm0LCwsL1K9fH8OHD8eFCxcQHh4OmUymUhO2YMECyGQyLFiwQO02Ff10evXqpXZ5cnIyZs6cidatW8PKygq2trbo0qULli9fjuLiYpXyoaGhkMlkCA8Px40bNzBu3Di4urrC3NwczZo1w9y5c1FQUFDu+Tt9+jRCQkLQpEkTWFhYwMnJCe3bt8e7776LpKQkAMDatWshk8kQFBRU7naSk5NhamoKS0tLPHjwoNxyZZ09exaxsbHo1q0bWrZsqdE6VaF4LyqbHqd4T3/44Qetx0SkK2yeIyKNLV68GMuXL0fnzp0xYMAAJCcnw9jYGABw+fJlDBgwALdu3YKbmxv8/f1hamqKkydPYt68edi6dSsiIyNhb28vba+0tBQvv/wyduzYATMzM/Tq1QuOjo44ceIEfH19MXHiRK0fQ3R0NF566SVkZGTAy8sL/fr1Q0FBAU6ePInp06fjr7/+wq5du2Bqaqqy7rlz5/DWW2/B0dERAQEBSE9Px7Fjx/D555/j0qVL2L59u8o633zzDd5//32UlpaiRYsWePHFF5GXl4fr169j0aJFaNOmDUJDQzFmzBjMnj0bBw4cwLVr19CiRQuVba1atQrFxcUYN24c6tWrp9Hx7tixAwDQt2/fqp0oDfn4+JTbL+nq1as4fvw4jIxU/z738fFB/fr1cfLkSdy9exdubm46iY9IqwQRPZU8PT0FALF27VqNyxobG4s///xTZXlubq5o1qyZACDmzp0rCgoKpGVyuVyMHj1aABATJkxQWm/58uUCgHBxcRGXL1+W5hcVFYmpU6cKAAKACAkJUVpv/vz5AoCYP3++2niPHDkiAIiAgACl+Xfv3hX16tUTMplMrFixQpSUlEjL0tLSRGBgoAAgPv74Y6X1QkJCpFg+/PBDUVxcLC27cOGCsLa2FgBEbGys0np//vmnACAsLCzE5s2bVeK8dOmS0nF/+OGHAoCYMWOGStnCwkLh6uoqAIjTp0+rPW51/P39BQCxe/dutcsV56qy28GNGzekcjdu3Kh0v0lJScLNzU0AEMuXL1db5oUXXhAAxIYNGyrdHpEhYNJE9JRSJELlTWUTDkXZiRMnqt3WypUrBQAxePBgtcuzs7NFgwYNhImJiUhPT5fmN2/eXAAQK1euVFknLy9PShK0lTTNnj1bABDTpk1Tu97t27eFqampqF+/vigtLZXmK5KmTp06Kc1XmDJligAgPvnkE6X5Pj4+AoBYvHix2v097s6dO8LU1FTY29uLnJwcpWW//vqrACC6d++u0bYUFAndf//9p3Z52aRJ06mypCkjI0M888wzAoB49913yy33wQcfCADi7bffrtIxEekLm+eInnLlDTnQqlUrlXkjRoxQu43du3cDAEaNGqV2uY2NDTp37ow9e/YgLi4O/fv3x507d3D9+nUAwNixY1XWsbCwwMiRI7Fs2TKNj6UylcXZsGFDeHt74/Lly4iPj1dpIhs8eLDa/jmtW7cGANy5c0eal5KSgnPnzsHIyEjjDtju7u4YMWIEfv31V2zYsAFTpkyRlin6/kybNk2jbQGAXC6HXC4HAI2a8yr6+X9OTg62bt1a6TYKCwvx0ksv4fLlywgODsbChQvLLauIKTU1tdLtEhkCJk1ET7mqDDng5eWldv5///0HABg3bhzGjRtX4Tbu378PALh9+zYAwNnZGTY2NmrLNmnSRKO4NKWIs0ePHpWWvX//vkrS1LhxY7Vl7ezsAAD5+fnSvJs3bwIA3NzclPpxVWbGjBn49ddf8cMPP0hJ0z///IOYmBi4uLiUm7iqk5mZKf3f1ta20vLh4eHlLktMTKw0aRJCIDQ0FFFRUQgICJA68pdHcd4yMjIqjY3IEDBpIiKNWVpaqp1fWloKABgwYABcXFwq3Ianp6fW4yovnvLmjxgxAtbW1hVuQ13NjLoOzdrWrVs3+Pr64uTJk1Lyoahleu2112BmZqbxthwcHKT/Z2dnS0mKrrz//vv49ddf8cwzz2DHjh2Vjr+kSOocHR11GheRtjBpIqIaa9SoEf7991+8+uqrGteENGzYEACQlpaGnJwctbVN5T2uQ5E4ZGdnq12u+Bm/ujjj4+Mxe/ZsdO7cWaM4q0tRK3X37l1kZmZWubZp7NixWL58Odq3b49ffvkFJiYmSs11mrCysoK1tTXkcjkePHig06RpxYoV+Prrr+Hu7o69e/cqJWzlUQybUFmiTWQoOE4TEdXY888/DwDYsmWLxut4eHigadOmAIBNmzapLC8oKMDvv/+udl1FwnXlyhW1yxV9l7QRZ3W5urqiffv2KC0txZo1a6q07siRI+Hm5oYdO3bg888/h1wux9ChQ+Hu7l7lODp27Ajg0ZAQurJz507MmDEDtra22L17d7nNmI+7ePEiAKBTp046i41Im5g0EVGNvfbaa/D09MTvv/+O2bNnq60BSklJwU8//aQ073//+x+ARwMk/vvvv9L8kpISvPPOO0hOTla7v8DAQBgZGSEiIgJRUVHSfCEEli1bVm7fm3fffRcODg5YsmQJFi9ejMLCQpUyN27cwMaNGys9Zk3Mnz8fAPDhhx+qjeny5ctqEz9TU1NMnToVxcXFWLRoEYCqdQAvq3fv3gCAv//+u1rrV+bkyZMYPXo0jIyM8Mcff8DHx0fjdRUxBQYG6iQ2Im1j0kRENWZtbY3du3fDy8sLX3/9NRo3boyAgAC88sorGDp0KNq0aQN3d3eVh8W++eabGDJkCO7evYv27dtjwIABGD16NLy9vREWFoapU6eq3V+jRo0wffp0lJaWok+fPujduzeGDx8Ob29vvPPOO3j//ffVrufh4YE///wTjo6OeOedd9CoUSP06dMHY8eOxZAhQ9C8eXM0bdoUy5cv18p5GTp0KD7//HPk5+djxIgRaN26NYKDg/Hiiy+iTZs2aNOmDU6cOKF23ddff13qE9SuXTv07NmzWjG89NJLAIADBw5Ua/3KfPDBB8jNzYWHhwc2bdqE0NBQtdPjzp49iwcPHsDX15cDW1KtwT5NRKQVbdq0wT///IMff/wR27dvxz///IO///4bzs7O8PDwwDvvvIOhQ4cqrWNkZIRt27Zh2bJl+PnnnxEZGQkbGxv4+/tj+/btOHv2LFauXKl2f0uXLkXjxo0RFhaG2NhY2NjYwM/PD1u2bEFWVha++uortev17NkTly5dwvLly7F7927ExcWhoKAADRo0QOPGjTF27FgMHz5ca+dlzpw5CAwMxLJlyxAdHY1t27bB1tYWjRo1wnvvvVduLUuDBg3g4+ODEydO4M0336z2/jt06IDnnnsOsbGxuHLlijQ8graUlJQAeFRDd+PGjXLLPf7LPMXrmhwb0ZMmE0IIfQdBRKROeHg4JkyYgJCQkAp/Dl8XXbt2Da1atYK9vT3u3LkDKyuram/rjz/+wMsvv4yZM2di8eLFWoyyevLz89GoUSOYmprixo0blf7KjshQsHmOiMgAffTRRxBCYOrUqTVKmIBHQyz4+flh1apVBjGQ5Pfff4+0tDR8+eWXTJioVmHSRERkIHbu3IlXX30V3bp1w+bNm+Hq6or33ntPK9v+/vvvkZeXh08//VQr26uuzMxMfPXVV/D19cX48eP1GgtRVbFPExGRgThz5gzWrFkDW1tb9O3bF0uWLNFovCNNdOjQQep/pE/29vbS+ExEtQ37NBERERFpgM1zRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNVKe1b98eMpkM5ubmePDgQYVle/XqBZlMhsjIyCcTXBVERkZCJpOhV69e+g6FSOt4fVNtwaSJ6qy4uDj8888/AIDCwkJs3LhRzxEZFi8vL8hkMiQmJuo7FCKiWoFJE9VZP//8MwCgYcOGSq+JiIiqg0kT1Um5ubn49ddfAQAbNmyAjY0NLly4gLi4OD1HRkREtRWTJqqTfv/9d2RlZeHZZ59F7969MWrUKACa1zZFRUWhf//+cHJygpWVFXx9fbFhwwa1ZQsKCvDNN9+gU6dOsLW1hZmZGVxdXdGlSxe89957SE9PV1nn9u3bmD59Ory9vWFhYQF7e3v4+flh1apVKCkp0fg4NekLIpPJIJPJpNfh4eGQyWRISkoCADRp0kQqo65PV3JyMmbOnInWrVvDysoKtra26NKlC5YvX47i4mKNYwWABQsWQCaTYcGCBbh58yZeffVVNGrUCKampggNDQUAhIaGQiaTITw8HFevXsWoUaPQoEEDWFtbo0uXLvjzzz+l7Z04cQIvvPAC6tevD0tLS3Tv3h2HDh1Su+/4+HhMnDgRTZo0gbm5OWxsbODp6YlBgwZh7dq1VToOADh48CCGDBkCFxcXmJqawtHREd7e3hg7diyio6NVyufl5WHBggXw9vaGubk53NzcEBISgps3byqdl7LKngt1FO+l4twpFBUVYePGjXjllVfQqlUr2NnZwdLSEi1btsSMGTOQnJysdntl+/UdPXoUQ4YMQf369WFkZKQUQ15eHhYvXoxu3brBwcEBFhYWaNmyJd57770K+w6uX78eXbp0gZWVFZycnDBgwAAcPXq03PIVSUxMhEwmg5eXF4QQWL16NTp16gRra2vY29ujf//++Pvvv8tdv6qfwbLnOj09Hf/73//QrFkzmJubS5+/su9jcnIyJk2aBHd3d1haWuLZZ59V+v75999/MWbMGLi6usLCwgLt27fH5s2bq3Uu6Mkx0XcARLqg+HKaOHGi9O/PP/+M3377DUuXLoWlpWW5627fvh3Lly9Hq1atEBQUhOTkZMTExGD8+PE4d+4cFi9eLJUtLS3FoEGDcOjQIdjZ2aFHjx5wcHDA/fv3ER8fj2+++QZjxoyBk5OTtE5cXBwGDBiA9PR0NG7cGC+99BIyMzMRGRmJ2NhYbN++HTt37oSZmZlOzk3z5s0REhKCP/74A3K5HMOHD4eNjY203NXVVfp/dHQ0XnrpJWRkZMDLywv9+vVDQUEBTp48ienTp+Ovv/7Crl27YGpqWqUY4uPj0aFDB5iZmcHPzw9CCDg7OyuVOXPmDKZNmwYPDw/06dMHSUlJ+PvvvzF06FBs2bIFJiYmGDlyJJ599ln06dMH//77L44fP44BAwbgyJEj8Pf3l7Z18eJF+Pn5ISsrCy1btsTgwYNhbGyM27dvIzo6Gnfu3MGECRM0jn/dunVSeV9fX/Tu3Rt5eXm4ffs2fvvtNzg7O6Nnz55S+dzcXPTp0wfHjx+HtbU1+vfvD0tLS0RERGD37t0YNGhQlc5fZVJTUzFu3DjY29ujdevWaNeuHeRyOc6dO4fvv/8ev/32G2JjY9G8eXO16//+++/48ccf0apVK/Tt2xfp6ekwNzcH8CiJHjBgAC5cuAAnJyd06dIFtra2OHPmDL755hv8/vvviIyMhKenp9I233rrLSxbtgxGRkbw9/eHu7s7/vnnH/Tq1QvTp0+v0fFOmDABmzZtQo8ePTB48GCcO3cOBw4cQHR0NKKiotC1a1el8jX5DKalpaFz5854+PAhevTogU6dOqmUu3nzpjS/R48euH//PqKjozFp0iQ8fPgQfn5+6N+/P9zd3dG7d2/p2g4ODgYA6Y88MkCCqI65evWqACBMTU3FvXv3pPmtWrUSAMT69evVrhcQECAACADiiy++UFoWGRkpLC0tBQCxb98+aX5UVJQAIDp06CCysrJUthkXFyfS0tKk1/n5+cLT01MAEFOmTBGFhYXSsoSEBOHl5SUAiDlz5iht58iRIwKACAgI0Gh+WYpjepwijhs3bqhd7+7du6JevXpCJpOJFStWiJKSEmlZWlqaCAwMFADExx9/XO6+Hzd//nwpnrFjx4r8/HyVMiEhIVKZzz77TJSWlkrLli1bJgAIDw8P4ejoqPJe/u9//xMARN++fZXmT5gwQdre43Jzc0VUVJTGxyCEEE2aNBEAxNGjR1WWpaamijNnzijNe+eddwQA0apVK3Hnzh1pvlwuFy+++KJ0vPPnz1daT3Eu1q5dqzaOtWvXCgAiJCREaX5WVpb4888/RUFBgdL8wsJC8cEHHwgAYuDAgSrbK/sZ+OGHH1SWl5aWCj8/PwFAvPrqq0rXfFFRkZg1a5YAIHr37q203q5duwQAYW1tLaKjo5WWffHFF9I+K7qOH3fjxg1pPU9PT3H16lVpWXFxsZg4caIAIPr376+0XnU/g4pzDUD06dNHZGZmqsRU9vqeMmWKKCoqkpbt3LlTABC2trbC09NT5dr+9ttvBQDRvHlzjc8BPXlMmqjOmT17tgAghg8frjT/66+/rvCLWXHD6NChg9rlihtCv379pHlbtmwRAMSMGTM0im3Dhg0CgHB3d1ebMPzxxx/SF2teXp40Xx9Jk+I8Tps2Te3y27dvC1NTU1G/fn2lL/+KKG4qTk5O4uHDh2rLKBIFX19fle0WFRUJJycnAUC8/PLLKuumpaUJAMLMzEzpZjhw4EABQCWZqS4rKythb2+vUdnc3Fxha2srAIi9e/eqLL97966wsLDQatJUGXd3d2FkZKSS6Cs+A4GBgWrX27t3rwAgfHx8lBIChZKSEvHss88KAOLChQvS/L59+woAYvbs2Wq36+PjU6OkaefOnSrL7969KwAIc3NzpWuhup9Bxbk2NTUVCQkJamNSXN+NGzdWWlehXbt2Gl3bSUlJGp8HerLYp4nqlOLiYqxbtw7A/zXNKYwfPx4mJiaIjo5GQkJCudsYP3682vkhISEAgJiYGKnPQ8eOHWFsbIw1a9bghx9+wN27dyuMT9FfKDg4WGruKGvYsGFwdHREdnY2Tp8+XeG2dG337t0Aym8qaNiwIby9vaWmyKro27cv7O3tKyzz/PPPK/XFAgATExM0adIEADBw4ECVderVqwcnJycUFhYq9a3x9fUFAEydOhURERHIz8+vUryP8/X1RWZmJsaPH4/Tp0+jtLS03LJnzpxBdnY2nJ2dMWDAAJXlrq6u6N+/f43iKc/58+exZMkSTJ8+HRMnTkRoaChCQ0NRXFyM0tJSXL9+Xe16I0aMUDtfcU0MHz4cJiaqvTuMjIykZsnY2FgAjz6TMTExAICxY8eq3W55nzlNmJiYlHteHR0dUVBQoHQt1PQz2KFDBzRt2rTCmHr37g0LCwuV+d7e3gDKv7a9vLwAoNw+Z6R/7NNEdcru3buRkpKChg0bIigoSGmZi4sLBg4ciJ07d2LNmjX4/PPP1W5DcVMub35eXh4ePHiABg0aoFmzZli6dCneffddTJs2DdOmTYOnpye6d++OwYMH4+WXX1bq73Dnzp0K9yGTydCkSRNkZGRIZfXlv//+AwD06NGj0rL3799HixYtNN624uZQkcaNG6udr+h/Vd5yW1tbpKenKyVG7777LmJiYnDw4EEMGDAApqamaN++PXr27Ing4GB06dJFKvvvv//iq6++Utmuv78/Jk2aBABYsWIFBg8ejA0bNmDDhg1S5/jAwECMGzdOKbbbt29XeszlXQ/VJZfLMW7cOGzfvr3CcllZWWrnlxer4pqYN28e5s2bV+G279+/DwB48OCB9F5U9tmqDjc3t3L71NnZ2SEjI0PpWqjpZ1DX1y6AGif1pDtMmqhOUXQAz8/PR0BAgMpyxZdgeHg4PvnkExgbG1drP0II6f/Tp0/HyJEjsXPnTsTExCAmJga//fYbfvvtN8yfPx9Hjx6Fm5tbtfZTUxXVgGi67ogRI2BtbV1h2Xr16lVp2xV1xFcwMqq4Iryy5WVZWVnhwIEDiIuLw759+xAbG4vY2FicOnUKS5YswRtvvIEffvgBAJCSkiLVVj5OkTS1bt0aV69exf79+3H48GHExsbi6NGjOHz4MD755BP8/PPP5daqaFN57+8HH3yA7du3o1WrVvjqq6/QpUsXODs7Swn8c889h7///lvpOi6rvPdHsT9/f380a9aswtjatGmj6WHUSFWuA2140tcuGRYmTVRn3L17F3v27AHw6K/bY8eOlVs2OTkZ+/btU/urpRs3bqhdRzFytoWFhUqS4OLigsmTJ2Py5MkAHtVWTJw4EX///Tfef/996SasGGhT8Re7Oor9K8pWRHETzM7OVrtcMaxAdTRq1Ajx8fGYPXs2OnfuXO3tGJIuXbpItUrFxcXYsWMHxo8fjxUrVmDEiBHo3bs3evXqVW4yUZaJiQkGDhwoNRNmZWVhyZIl+Pjjj/H6669j6NChsLa2lt7HikZeL29Zdd/fLVu2AAA2b96Mdu3aqSyvanOqQqNGjQAAL774It555x2N1qlXrx7Mzc1RUFCAxMREtcnUkxyVXtufQXq6MN2lOiM8PBwlJSXo2rUrxKMfOaid3nvvPQDlj9lU3uNW1q9fD+DRX9nq+nOU1apVK8yePRsAcO7cOWm+YjyXzZs3q62C3759OzIyMmBra4tOnTpVuA9A+QZQWFioslzRB0UdxQ25vLGWnn/+eQD/dwOua0xMTDBixAipGbfs+1QddnZ2WLBgARwcHJCbm4tr164BADp16gQbGxukpaVh//79KuulpqaqnQ/83/t75coVlWVCCOzdu1fteoqxwR7/2T8AREREIC0tTbODeozimvj99981SiyBR+fZz88PAPDLL7+oLVPeGGi6oO3PID1dmDRRnbFmzRoA/9dhuzyKTqe7du2S+l2Udfr0aXz99ddK82JiYqTmm7fffluaf/jwYezZswdFRUVK5YUQ2LVrFwDlG9fLL7+Mxo0bSwNGlk1Ybty4gVmzZgF41OSnriPp4zw9PeHt7Y2HDx9i4cKFSssiIyPx0Ucflbuuh4cHAODSpUtql7/77rtwcHDAkiVLsHjxYrVJ2Y0bN2rFM/1WrFiBq1evqsxPSUnBqVOnAKhPMNTJzc3FkiVL1F47R48excOHD2FsbCydX0tLS7z22msAHl07ZX8skJeXh6lTpyIvL0/tvvr27QvgUVJx+fJlaX5RURFmz55d7gj3rVu3BgB8//33SvOvXr2KKVOmaHSc6rz44ovo0qULTp48iQkTJqg9BxkZGfjxxx+Vru3//e9/UjyKDuIKX3/9Nc6cOVPtmKpK25/BJ0ExblxNOsyTlujlN3tEWhYZGSn9vDg9Pb3S8h07dhQAxKJFi6R5ip9bz5gxQxgZGYk2bdqI0aNHi4CAAGFkZCQAiLfeektpO0uXLhUAhJ2dnejVq5cYM2aMGDp0qPRzfnt7e3H27FmldU6ePCn9tNjT01OMGjVKDBw4UPrZeVBQkMr4OhUNLbB161Yhk8mkn4K//PLLolOnTkImk4mPPvqo3CEHli9fLgAIGxsbMWzYMPHqq6+KV199Vfz7779SmaioKOHs7CwAiAYNGojAwEDxyiuviMGDB4tmzZoJAKJr166Vnm8FxU+yH/9pfVmV/cxe8T4dOXJE7XJ1Qym0b99eABBNmjQRQ4YMEa+88oro37+/NPZWYGCg2p/Qq5ORkSEACCMjI9G+fXsxYsQIMXr0aNG9e3fpffjoo4+U1snJyRG+vr7S+R4yZIh4+eWXhaurq6hXr54YP358uedFMY6TpaWl6Nevn3jhhReEh4eHsLOzE2+99ZbaIQfKXhNt27YVwcHBIjAwUJiamorAwEDx3HPPqT2HlZ1bIYS4c+eONESAtbW1eO6550RwcLAYNmyY8PHxEcbGxgKAyk/u33zzTem89erVS4wePVq0adNGGBkZScdRnSEHPD09yy1T3rAa1fkMajK8Q2XXd3WvbcV2q3J+SDdY00R1gqKpbciQIXB0dKy0vOIvNnVNdEOHDsWBAwfg6uqKPXv24OTJk+jYsSPCw8Px7bffKpUdMmQIFixYgC5duuC///7Dtm3bEBkZCXt7e7z//vu4ePEifHx8lNbp0qULzp07hzfffBPGxsbYvn07jh49ig4dOmDlypXYtWtXlUYDHzZsGHbt2gU/Pz9cu3YNe/bsgampKX777Td8/PHH5a43depUfPnll/D09MSePXvw888/4+eff1aqCenZsycuXbqEefPmwcPDA3Fxcfj9999x7tw5uLi4YP78+fjpp580jlVfPv/8c0ydOhUODg44fvw4fv/9d1y+fBldu3bFunXrsG/fvkqbXBVsbGzw448/YtSoUSgoKMCBAwewY8cO3Lt3D8OGDcOhQ4dUzru1tTWOHDmCefPmwcXFBREREYiOjkafPn1w6tSpCn89tnnzZsydOxdubm6IjIzE8ePH0aNHD5w5c0bl2lIYNmwYoqKi0KdPH9y9exc7d+7EvXv3sGDBAuzdu7fKI7iX5e7ujuPHj+PHH3+Er68vrl69ij/++EMaVmDKlCmIiIhQqaVZvnw51qxZgw4dOuD48ePYs2cP3NzccOjQIbz00kvVjqc6tP0ZpKeHTAgNG6aJiEgnFixYgI8//hjz589Xef4cERkO1jQRERERaYBJExEREZEGmDQRERERaYB9moiIiIg0wJomIiIiIg3wMSpPWGlpqTQar5WVlcqTromIiOjJEUIgNzcXAODs7FzhswGZNOmYXC5Xen3v3j00bdpUT9EQERFReVJTU9GgQYNylzNp0jEbGxt9h0BERERawKRJj1JTU2Ftba3vMIiIiJ5acrkcLi4uAB51m6kIkyYdS01NVXotl8ul5jlra2smTURERAaisn7GTJp0TJG9EhERUe3GIQeIiIiINMCaJh2rqHmOiIiIag8mTTrG5jkiIqK6gc1zRERERBpgTZOO5eTkKL0u+9NGIiIiqj2YNOkYhxQgIiKqG5g06djjj1F5/DURERHVDkyadIyPUSEiIqob2BGcDNaJEyewcOFC3L9/X9+hEBERsaZJ19gRvHoKCwsxePBgpKWl4ebNm/jhhx/0HRIRET3lmDTpGDuCV09GRgbS0tIAAFevXtVzNEREREyadI4dwasnLy9P7f+JiIj0hUmTjrEjePUwaSIiIkPDjuBkkJg0ERGRoWFNk46xI3j1MGkiIiJDw6RJx9gRvHry8/Ol/zNpIiIiQ8DmOTJIrGkiIiJDw6SJDBKTJiIiMjRMmsgglU2UiouLUVxcrMdoiIiI2KdJ5zhOU/U8XruUn5/P4RuIiEivmDTpGG/01fN40pSXl8dzSUREesXmOTJIZX89B7BfExER6R9rmnSM4zRVj7qaJiIiIn1i0qRjHKepepg0ERGRoWHzHBkkJk1ERGRomDSRQWLSREREhoZJUwUWLFgAmUymNHXu3FnfYT0VmDQREZGhYZ+mSrRv3x779u2TXpuamuoxmqcHfz1HRESGhklTJUxMTODq6qrvMJ466ga3JCIi0qda3Ty3ceNGvP766+jcuTPMzc0hk8kQHh5e4TpxcXEYOHAgHBwcYG1tjW7dumHLli3llr9y5Qrc3NzQvHlzTJgwASkpKVo+ClKHzXNERGRoanVN09y5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWLKXyXbt2RXh4OFq1aoU7d+7go48+QmBgIM6ePQtzc3NdHtpTj0kTEREZmlpd0xQWFobExETcv38fU6ZMqbBscXExJk+eDCMjI0RHR2P16tVYvHgxzp8/jxYtWmDOnDkqSdfzzz+Pl19+GW3btsWAAQOwe/du3LhxA7t27dLlYRGYNBERkeGp1UlT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX4Tbq168PLy8v3LhxoyZhkwbYEZyIiAxNrW6eq4rIyEgAQP/+/VWWBQUFAQCioqIq3EZGRgaSkpLg5eVVbhm5XF7hNipbTo+wpomIiAzNU5M0xcfHAwC8vb1Vlrm6usLGxkYqo/Duu+9iyJAhaNy4MW7fvo05c+agYcOGGDhwYLn7sbGx0W7gTykmTUREZGiemqQpMzMTwKPmOHXs7OykMgq3bt1CcHAw0tLS4OLigoCAAGzYsAFWVlY6j/dpx6SJiIgMzVOTNFXHb7/9VuV1cnJylF6z5qnqhBBMmoiIyOA8NUmToobp8dokhaysLDg6OtZ4P9bW1jXextOuqKgIpaWlSvM4uCUREelbrf71XFUo+jI93m8JAFJSUpCTk6O2vxM9eeoSJNY0ERGRvj01SVNAQAAAYP/+/SrLIiIilMqQfqlLkJg0ERGRvj01SVOfPn3QtGlTbNq0CefOnZPmZ2Zm4osvvoCZmRnGjx+v9f2mpqYqTf/995/W91HXMGkiIiJDVKv7NIWFhSEmJgYAcOHCBWmeYkwmf39/TJo0CcCjB++GhYUhKCgIPXv2VHqMSlJSEhYtWlTh+EvV5eLiovVt1nVMmoiIyBDV6qQpJiZGZRTvY8eO4dixY9JrRdIEAL1790ZMTAzmz5+PzZs3o6ioCG3btsXChQsxatSoJxY3VYxJExERGSKZEELoO4i67N69e0qv5XI5mjZtCuDR8AT8tZ2q2NhY+Pn5Kc1r1KgRbt68qaeIiIiorpLL5dLwQJXdl2t1TVNtwOa5qmNNExERGaKnpiM41R5MmoiIyBCxpknHHh8hXC6Xs/apEuoSJA5uSURE+saaJjI46pKmkpISFBUV6SEaIiKiR1jTpGN89lzVldcUl5eXB1NT0yccDRER0SOsaSKDU15THPs1ERGRPrGmScfYp6nqyiZH5ubmKCgoUJlPRET0pLGmiQxO2eTIyclJ7XwiIqInjTVNOsY+TVX3eNJ09+5dlflERERPGmuayOCwpomIiAwRa5p0jH2aqq5sR3BHR0fp/0yaiIhIn5g06RifLVd15dU0cYBLIiLSJzbPkcFh8xwRERki1jTpmFwur/A1qSqbHLF5joiIDAWTJh3jr+eqjjVNRERkiNg8RwanbHLk4OCgdj4REdGTxpomHeOv56pO0eHb3NwcVlZW0nwmTUREpE9MmnSMv56rOkVyZGlpCUtLS5X5RERE+sDmOTI4TJqIiMgQMWkig8OkiYiIDBGTJjI45SVNHNySiIj0iX2adIzjNFWdIjliTRMRERkSJk06xnGaqqaoqAglJSUAAAsLC1hYWEjLmDQREZE+sXmODErZxIg1TUREZEhY06RjHKepapg0ERGRoWLSpGMcp6lqHk+a2DxHRESGgs1zZFAeT5pkMpmUODFpIiIifWLSpKGpU6dCJpNh+fLl+g6lTis7rIAiWVI00TFpIiIifWLSpIFdu3bh77//hru7u75DqfMer2kq+y+TJiIi0icmTZVITU3F1KlTsWHDBpiamuo7nDqvoqSJg1sSEZE+1eqkaePGjXj99dfRuXNnmJubQyaTITw8vMJ14uLiMHDgQDg4OMDa2hrdunXDli1byi0/YcIEzJgxA23bttVy9KQOa5qIiMhQ1epfz82dOxdJSUlwdnaGm5sbkpKSKix/5MgRBAUFwcLCAsHBwbC1tcXWrVsxatQo3Lp1C7NmzVIqv3z5csjlcpX5pDvqkqayHcGFEJDJZHqJjYiInm61uqYpLCwMiYmJuH//PqZMmVJh2eLiYkyePBlGRkaIjo7G6tWrsXjxYpw/fx4tWrTAnDlzlJKuf//9F59++inWrVsHI6NafZpqlYpqmoQQKCws1EtcREREtTob6Nu3Lzw9PTUqe/jwYSQkJGDMmDHw8fGR5tvb22POnDkoLCzEunXrpPnHjx/H/fv30bx5c5iYmMDExARJSUl46623lNYn7aro13MAm+iIiEh/anXzXFVERkYCAPr376+yLCgoCAAQFRUlzXvppZfQuXNnlXKhoaGYMGFCufup7IG8fGBvxSqqaVIsd3BweNJhERERPT1JU3x8PADA29tbZZmrqytsbGykMgDg4OCgcnM2NTWFm5sbmjdvXu5++IDemtEkaSIiItKHWt08VxWZmZkAHjXHqWNnZyeVIf1h0kRERIbqidQ05eTkIDU1FRkZGXB0dISLi0utrJFJTEystMzjD+itjcepT0yaiIjIUOksaYqIiMCOHTtw6NAhJCQkqCxv3rw5AgMD8dJLL0l9inRJUcNUXm1SVlYWHB0da7wfPqC3ZirrCM4BLomISF+0mjSVlJRg5cqVWLZsGRISEiCEkJbZ2NhITWByuRzx8fGIj4/H6tWr0bx5c8yYMQNTpkyBsbGxNkOSKPoyxcfHo1OnTkrLUlJSkJOTA19fX63vNzU1Vem1XC5H06ZNtb6fuqKicZoeX05ERPQkaa1P0759+/Dss89ixowZSEpKwgsvvIDly5fjzJkzKCgoQFZWFm7fvo3s7Gzk5+fj1KlTWLZsGQYPHozExERp1O2IiAhthaQkICAAALB//36VZYp9Kspok4uLi9LEhKlibJ4jIiJDpbWkaeDAgXj48CEWLVqEO3fuYPv27XjjjTfg4+Oj8sw2MzMzdOzYEdOmTcOff/6JO3fu4Ouvv8aDBw8wcOBAbYWkpE+fPmjatCk2bdqEc+fOSfMzMzPxxRdfwMzMDOPHj9fJvklzTJqIiMhQaa157tNPP8Xbb78NKyurKq/r7OyMWbNmYerUqVi6dKnG64WFhSEmJgYAcOHCBWmeYkwmf39/TJo0CQBgYmKCsLAwBAUFoWfPnkqPUUlKSsKiRYvg5eVV5dhJu5g0ERGRodJa0vThhx/WeBtWVlZV2k5MTIzSKN4AcOzYMRw7dkx6rUiaAKB3796IiYnB/PnzsXnzZhQVFaFt27ZYuHAhRo0aVeP4qebKJkUcEZyIiAxJrR7cMjw8HOHh4VVax9fXF3v37tVNQGqwI3jV8DEqRERkqPSSNN24cQP//PMPPD096/xz3FxcXPQdQq2iSIrMzc2lByUzaSIiIkOgsxHBd+7ciWHDhuHkyZNK87/55hu0aNECw4YNQ6dOnTBx4kRdhUC1kCIpKpsoMWkiIiJDoLOkaf369di3bx9at24tzfv333/x/vvvQwiB9u3bw8rKCuvWrcNff/2lqzD0LicnR2l6vLmOlFWWNHFwSyIi0hedJU1nz55F+/btYWtrK8375ZdfAAArVqzAmTNnEBcXB2NjY6xevVpXYVAtoy5p4uCWRERkCHTWpyktLQ0dOnRQmhcZGQlLS0uEhoYCAFq1agV/f39cunRJV2HoHZ89VzWKmqSyiRKb54iIyBDorKYpPz9f6ZEoJSUlOHPmDLp27QozMzNpvru7O1JSUnQVBtUy7NNERESGSmc1TQ0aNEB8fLz0+vjx48jLy4Ofn59Suby8vDr9kNucnByl13K5nL+oK0dRURFKSkoAMGkiIiLDo7Oapueeew7nz5/Hb7/9Jj2qRCaToW/fvkrlrly5And3d12FQbWIutHAH/8/kyYiItIXndU0zZ49Gzt27MArr7wCABBCoFOnTujZs6dU5tatW/j333/r9LAD7NOkOSZNRERkyHRW09SxY0fs2bMHAQEBaN26NUJDQ7Fr1y6lMlu2bIG9vT369OmjqzCoFlH3CBXg0QOeZTKZShkiIqInSacjgvfp06fChGjWrFmYNWuWLkPQO/Zp0lzZMZjK1i7JZDJYWloiNzeXSRMREelNrX72XG1Qlzu5a1t5zXOK17m5uRzckoiI9OaJJE3Hjx9HZGQkbt++DSEEPDw80KtXL3Tv3v1J7J5qiYqSJkVzHWuaiIhIX3SaNCUkJGD8+PE4fvw4gEedwQFI/VO6du2K9evXo3nz5roMQ6/kcnmFr+n/VFbT9HgZIiKiJ0lnSVNycjJ69OiBlJQUWFlZYcCAAWjSpAkAIDExEfv27cPx48fRs2dPxMXFoWHDhroKRa/46znNldcRHGDSRERE+qezpOmjjz5CSkoKhg8fjhUrVqB+/fpKy9PS0vDGG2/gjz/+wPz58xEWFqarUKiWKK8jeNnX+fn5EEJItZVERERPis6GHNi7dy/c3d3xyy+/qCRMAODs7IyNGzfC3d0de/bs0VUYepeTk6M0paam6jskg6VJ8xwAdgav4+7evYv33nsPhw8f1ncoRERKdJY0paenw9/fX+k5c48zMzODv78/MjIydBWG3llbW6tMpJ6mSROb6Oqu4uJiDBo0CN988w0GDBiA06dP6zskIiKJzpImDw8PjTo95+bm1tn+TIaoqKgICxYswMiRI3Hx4kV9h6NE06QpOzsbS5cuRXBwMC5cuPDE4iPd+/7773H27FkAj67V0aNHq4x1RkSkLzpLml5++WVERkbizp075Za5c+cODh8+jBEjRugqDCojMzMTAwcOxMcff4zff/8d/v7+iIqKqvb2zp8/j7S0NK3Fp2nS1KdPH8ycORObN29GUFAQ7t+/r7UYtK2oqAj//fcfCgsL9R2KxgoKCpCQkIDs7Ownut+bN29i3rx5SvPi4+Px1ltvPdE4aqK4uFjfIRCA0tLSSstcvnwZwcHBePHFF3Ht2jWV5SdPnsS+fftq1Wd3+/btaN++Pfz8/DB58mQsXboU0dHR0i/XSQuEjuTm5oru3buLFi1aiL/++ktl+a5du0TLli1F9+7dRW5urq7CMDg5OTkCgAAgcnJytLbdv/76SwwfPlz8/vvvas/nrVu3RNu2baV9KyYzMzOxZcuWKu9v3rx5AoBwc3MTycnJKstLS0vLXffevXsiNjZW7Ny5U6xZs0asWrVKHD9+XMyePVuKa+/evUrrTJw4USV2xTRgwABRUlJS5WPQlVu3bolVq1aJoUOHCltbWwFAmJubi27duom33npL7NixQxQXF6usl5eXJ5KTk8X9+/fFw4cPRX5+vtrtX716VXz55Zdi3759oqCgQJpfWFgoIiIixOLFi0V0dHSF74EQQhQUFIjTp0+L1atXiylTpojnnntOuLm5CZlMJgAIExMTsWDBAlFUVFTuNq5evSrWrl0roqOjKyyniRdeeEF6T1966SVhY2Mjvd68eXONtl2RwsJCERMTI86fP1/pOSvP3bt3RY8ePYSFhYV4++23RXZ2tkbrFRcXi+XLl4uRI0eKhQsXiuPHj4vCwkKVckVFReKff/4R69evFz/99JPYuHGj2Lp1q1bOuz4UFRWJs2fPihUrVoiZM2eKVatWiQsXLmj0OS4pKRHff/+96Nq1qwgJCRFr1qwR//33n7hw4YL49NNPRadOnYRMJhOhoaFqP0Pp6elixowZwtjYWLq+7OzsxLZt24QQQqSlpYlx48ZJy5ydncXbb78tLly4oPXzoHDt2jURFBQkGjRoILp37y4mTZokli5dKu7cuaPR+iUlJdJ3srqpb9++IiEhQSux3rp1S5w9e1Yv111xcbFIS0sT165dK/f7sTqqcl/WWtLUu3dvlcnPz0/IZDJhZGQknJycRMeOHUXHjh2Fk5OTMDIyEkZGRsLPz08EBgZqKwyDk5OTozSlpqbqJGkaOXKktF0bGxvxyiuviNWrV4vPPvtMvPbaa8LNzU1a7uTkJHr16iW9lslkon///uK5554TrVq1En5+fuLAgQPl7mvXrl1KH8gXXnhB6Wbz119/iYYNG4p+/fqJ27dvS/NLS0vF559/LkxMTMr9cCumyMhIpX2++eabSsufeeYZ4eLiIr3++uuvq3S+SktLRUJCgvj999/F7t27RVpaWpXWV7e96OhoMXToUCnpqGhq0qSJ+P7770V6err4888/xciRI4WFhYVSGWNjYzFixAhx48YNaR8//vijsLS0lMrY29uLsWPHivHjxwsHBwel9Tt06CDCw8OVvlwKCwvFvn37RGhoqLCzs6s0TgDCz89PiqGgoEBcuHBBLFy4UHTo0EGpnKOjoxg9erT4+eefxdGjR8WdO3fKTUJu3LghlixZIlauXCkOHTok1qxZI23H1dVVZGRkiPDwcKXj/OSTT8T+/ftFRkaGSE1NFXFxcWLr1q1i586dIi8vr8L3Jzk5Wfz4449i/fr10o2ooKBA/PTTT8LLy0tp3+PHjxcbN24U9+/f1+i9v3r1qtI2AAgPDw+xY8cOUVRUJBISEsT+/fvFjh07lLaZkJAgevTooXK+ra2tRZs2bUSXLl1EQECA6Nq1q9J7/vjUpk0bERERIW23qKhIREREiFWrVomrV69WGHtUVJTo3r276NGjh/j000/FqVOnRG5urti7d6+YOnWqaNmypfDz8xN//PGHSkJTWlqqcZL58OFDsW/fPjFv3jwRGBgorK2t1R6LnZ2dGDNmjHjw4IHa7Vy/fl307NlTo+sWgOjTp4/IzMwUQjy69pcvXy7q1atXbvnx48eL+vXrl7t84MCBIikpSSkmuVwujhw5IrKysio8B6WlpeLEiRMq18Gvv/6q9AdC2cnBwUGcOHFCZTsXLlwQJ0+eFP/++6+4ceOG0h8c5U2WlpZi0aJFapOdwsJCcfz4cfHdd9+JV155RTRv3lzUr19fDB8+XKxZs0YkJSWJ3377TfTr10/6fvP09BRLliyRzu/jkpOTxaeffiref/99sWLFCrFr1y7xzz//iIyMjAqvmxMnTojBgweL9u3bizZt2oiWLVsKLy8vYW9vr3Q8586dq/B8V4VekiaZTFbtycjISFthGJyKLmJtJU3FxcUqX9rlTU2bNhVXr14VhYWFIjQ0tNxyxsbG4vvvv1e5uJOSkoSTk5NK+V9++UUIIcTff/+tdPN3d3cXp06dEkVFReK1117T+MsuLi5Oab8bNmwQAISRkZGYPXu2yMvLEwcOHFCqFfnzzz9FRESEWLFihfj888/Fnj17xMOHD4UQj75ozp07JxYuXCgGDhwonJ2dVfbp7e0txowZI6ZPny4++OAD8dlnn4mvvvpKfPHFF+Kzzz4Tn3zyiViwYIH46KOPxIcffijeffddMX36dDF58mTRuXNntcfh7OwsBg0aJLy9vTU+9scnCwsLMW/ePDF06NBqb8PKykrUr1+/0kTJxcVFdO3aVQwePFjlL3Fvb2+leZpMlpaWYuDAgeKXX34ROTk5Ijk5WbzxxhvC1NS03HUUtUqlpaVi9OjRGu2nQYMGYv78+SIlJUXpusnPzxcLFy5UuSk988wzwtPTs8JtymQy0a1bN/HJJ5+Iffv2iStXrqjU4h4/frzCm/Dj58vIyEj4+/uLt99+u9zEobrToEGDxJQpU1Su7V69eolff/1VKbHMyckR06dPL/e41c1v166d+Pnnn8X8+fNFr169hIWFhXBwcBAjR44U4eHhKude8X0wZMgQYWRkVKVjadeunUhNTVX6jlu2bJmwsrLSaP2y571Dhw5i3bp1Kp9BKysr8cknn4hRo0ap3Ya9vb146aWXhJmZmdJ8W1tbsXLlSpGcnCw+/PBD6fvQy8tLJaFSXMeHDh1SSpAV18HLL7+stG1114Stra2IiYkRQjxK0AMCAso9biMjI7Fo0SKRlZUlTpw4IVatWiUaN26sVMbJyUkEBgaKmTNnio8++kgEBgZqfF7VTba2tuJ///ufuHbtmnS8GzZsEI6OjuWuY2NjI5555hkxYcIEqVY8Pz9fvP/++xpfK0eOHCn/plhFekmaIiMjazTVVRW96dqsaSoqKhL79+8Xr776qkqNg2IKDAxU+iIqLS0VH330kTA3N5fKPP4X7euvvy41FxQWForu3btLy9q0aaP0QYyNjVX7V5qlpaXw9/dXmhcaGio++eQTsWLFCvH999+LkJAQ8cwzzwiZTCZ8fHxUmihKS0tFTEyMiI+PV5o/d+7cCs+xTCYT7dq1U6qV0vXk5uYm5s2bJ06ePKn01/mDBw/En3/+KYKCgtSu5+zsLIYMGSIGDRokgoKCKvyLd8KECeKVV15RSoJsbW3F6NGjxdKlS8tN4spOdnZ2Ijg4WCxZskRERUWp/MUYGxsrmjRpUuE2OnfuLBYsWCBGjhxZaUJmZWVVYY0JAPH8888rJeoPHz6s8Cbx+GRmZia6d+8uRowYIaZPny6aN2+u0Xr9+vUTgwYN0ujmYW9vLxwcHISDg4PSzbldu3YiJiam3Pe3vMnLy0ts3bpV/Pjjj2LMmDHC09NTWFtbKyUvzZs3l5rwfvrpJ7Fs2TKxcOFC0bVrV433Y2xsLLy9vcXgwYNF06ZNNVqnqslO8+bNRXBwsPjyyy9F7969yy3n4eEhRo4cKZYsWSL27t0rvvnmGzFs2DCl2oTWrVuLO3fuiKNHjwofHx+Vc7Z//34RHR0tPv30U9G/f38xYMAAsWzZ3I8xngAAT2VJREFUMpGUlCRiY2PV/nGnmEaPHi1u3bolfbd89913SjXgQ4cOlWokHzx4IJYtWybc3d2VtqEuufT29hZ3795V+gxpWjM2btw4kZ2dLTIzM8WJEyeUWgOsra3FW2+9pfRd/fjk6OioVOOokJWVJaZPn65RDbhiMjc3L/c+0qRJE9GnTx+1ywYMGCAGDRpUpWtGcd20atVKaZ6pqamwtrYW9vb2on79+qJFixaia9eu4vnnnxevvPJK7a9pIvWeVPNcWQUFBWLXrl3i+++/F1u3bhUnT55U+1egQlZWlrh3754oLCwUxcXF4v3331e6eJ2cnES7du2Uvri8vLxEenq6UrNg2Q9lr169hJ+fn8qHw9TUVKqVKi/2qvQrKSoqUtvEUdlUr149MXDgQPHRRx+Jt99+W3Tv3l3lL8qqTh06dBDr169X6mdUnvPnz4uQkBDRunVrMXr0aLFr1y6VRPHhw4di1qxZSl/mTk5OYseOHUrn69ChQ+LAgQNKzXClpaXi2LFjYty4ccLX11e0adNGNGnSRHh4eIiXX35ZbNu2rdImLSGEyMzMFCEhIcLMzExYWlqKDh06iNGjR4uFCxeqJLCFhYXiyJEjYunSpWL69Oli4MCBKjeasjeBOXPmiJUrV4q3335bDB48WIwaNUrphlP2WK5fvy42btwopk2bJvz9/cWAAQPE66+/Lj777DMxatSoSmvAZDKZeO2118TcuXNFt27dpGRgwIAB4u+//5b2lZ+fLw4fPizee+898eyzz2r83vfu3VupVvPXX38Vvr6+on379mLYsGHi3XffFTNnzhQtW7ZUWm/SpEnlNuuUlpaKvLy8Cvt8lpSUiI0bNwoPDw9pm5aWlmLkyJHik08+ES1atKgwbktLS7F06VKRkJAgVq5cKV544QXxzDPPiNDQULFt2zaRnZ0t9uzZI3x9fVXW9fT0LPfG+vjUsGFDMW3aNPHrr7+Kmzdvlns8V69eVToWdYnPG2+8oVGfscuXL4tGjRoprRsQECBOnjyptvyJEyfE1KlTlT5fZWVkZIhXX31VJR4TExPRoEED6XWbNm3EqVOn1NZgtWrVSsyYMUMpQbC0tBRr1qxR+d6Ty+Wif//+as+nl5eXeOONN8TYsWPFCy+8ICZPniyuX79e4fmIjY0VL7zwglJXDcXUqFEjMXbsWLFixQpx+vRp6V5w7Ngx8cEHH4iAgAAxbtw4cejQIekPwUuXLonJkydXmMiNHj1a7N27V4SFhYmPPvpIhISEiMDAQOHt7V3ueqampuLzzz9/on2mmDQZMF11BNe29evXl5tEmJqaSl889+7dU2kOeOaZZ0RGRobIz88XY8eOlebb2dmJw4cPaz3WlJQUMX78eDF8+HAxe/ZssXr1avHLL7+I6dOnCx8fHyGTyYS1tbUYPHiw+P7778XVq1fVJmb5+fni0qVL4sSJE+LQoUPizz//FNu3bxd//vmn+Ouvv8SuXbvE3r17RUREhDhw4ICIiooSJ06cEP/8849ITEysdifiyly5ckWMGzdOhISEKPURe5IKCgqq1dm+pKREREVFiddee004OjoKCwsLMXPmTHHv3j2txnfz5k3x3nvviYYNG6pcrz179hRnz55VKv/w4UON+rElJSWJn3/+WXzwwQdizJgxws/PT7Ro0UKaWrduLd55550qdUq9du2a+PHHH0VUVFRVD7Nccrlc/PTTT2Lz5s1KCUVpaak4cuSICA0NFT4+Pko1aX5+flKTSmVKS0vF3r17xbx588T69eulZqiioiIRExMj5syZI7p3767SL8/b21v8/PPPGv0hofDff/+p7W7Qvn17ER0dXaXzcuvWLTFgwADRo0cPsWvXLq18Rg8cOCBatmwp6tWrJ9577z1x69YtcfPmzQqbe1u2bCl++eUXpR+AXLt2Taxdu7bCDtp5eXli8ODB0naMjIzEzJkza3zvSElJEfv27RNbtmwRiYmJNdrW/fv3xcKFC5WOv0GDBlLH+vLI5XKxceNGERgYKK3XoUMH8c8//9Qonupg0mTAakvSJMSj/hr9+vUTjRs3lvqgyGQysXr1aqVyv/32m3RMLi4uUqdhIR592a5evVq8+uqr4tKlS0/4CB7Jzc2tlb8wqmuKioo0qt2qqfz8fJGYmCiOHTsmzpw5o7NktjYqKSkRN2/eFPHx8To5L4WFheLcuXNi7dq1Ys+ePWp/JaqJmzdvSn2QnJycxMqVK6u9LV1Q1wn++vXrKjWr9evXFytXrqzR909BQYF4//33xfDhw1U6hRuS4uJi8ddff4lvv/22yj+suXHjhjh48KDaX44+CVW5L8uE0O0ADqdOncIff/yBq1evIisrS+14ETKZDIcOHdJlGAZDLpdLD/HNycmpNSOECyHw4MEDyGQy1KtXT2XZwoULERMTgy+++ALt2rXTU5REVFfI5XIcPXoUXbt2haOjo77D0ciVK1cwaNAgJCcnY8aMGfjwww9hb2+v77CoElW5L+s0aXrnnXewdOlSKVGSyWRKSZPitUwmQ0lJia7CqLalS5ciLCwMSUlJMDExQceOHfHll1+ia9eu1d5mbU2aiIiockVFRRBCVPgIMTIsVbkv62xE8N9//x1LlixBw4YNsWrVKvTv3x8AEBERgeXLl6N79+4QQuD999832Adzenp6YsmSJTh//jxiY2PRvHlzBAUF4cGDB/oOjYiIDJCpqSkTpjpMZzVN/fr1Q2RkJC5fvgxvb29MmDAB69evV6pRmjdvHr755hscP34cPj4+ughDq7KysmBvb4/IyEgEBARUaxusaSIiIjIcBlHTdPbsWXTt2hXe3t7llvn444/h5uaGzz77rFr72LhxI15//XV07twZ5ubmkMlkCA8Pr3CduLg4DBw4EA4ODrC2tka3bt2wZcuWSvdVWFiI1atXw9HREW3btq1WvERERFR7mehqw9nZ2WjcuLH0WlFdmZOTI2V0RkZG6Nq1a7UfGjt37lwkJSXB2dkZbm5uSEpKqrD8kSNHEBQUBAsLCwQHB8PW1hZbt27FqFGjcOvWLcyaNUtlnaNHj+L5559HXl4eXF1dceDAATg5OVUrXiIiIqq9dFbTVL9+fTx8+FB67ezsDABITExUKieXy5GVlVWtfYSFhSExMRH379/HlClTKixbXFyMyZMnw8jICNHR0Vi9ejUWL16M8+fPo0WLFpgzZ47apKtz5844d+4cYmNj8fzzz2PkyJFIS0urVrxERERUe+ksafLy8lJKQjp06AAhBDZt2iTNS0lJQVRUFDw9Pau1j759+2q87uHDh5GQkIAxY8Yo9Z+yt7fHnDlzUFhYiHXr1qmsZ2lpiebNm6Nr164ICwuDkZER1q5dW614iYiIqPbSWfNcnz598NlnnyExMRFeXl54/vnn4eTkhIULFyI+Ph6NGzfGH3/8AblcjuHDh+sqDElkZCQASL/iKysoKAgANGomFEKgoKCg3OVyubzC9StbTkRERIZJZ0lTcHAwkpOTcevWLXh5ecHa2hpr165FcHAwtm7dKpXr1KkTPvjgA12FIYmPjwcAtR3TXV1dYWNjI5VRmD17Nl544QV4eHggPT0dK1aswO3btytM8hT9tYiIiKhu0VnS1Lp1a/z0009K84YMGYL4+Hj89ddfSE9PR+vWrTFkyBAYGxvrKgxJZmYmAJQ7OqudnZ1URiE5ORnBwcG4d+8enJyc0KVLFxw9ehStW7fWebxERERkWHSWNJXH3d0dr7/++pPebbVs2LChyuvk5OQovWbNExERUd3wxJMmfVHUMD1em6SQlZWllecbcbBKIiKiuklrv55LTk42qO08TtGX6fF+S8CjX/Hl5ORUOBAnERERPd20ljR5e3vj/fffR0ZGRrXWT09Px3vvvaezxEXx2JP9+/erLIuIiFAqQ0RERPQ4rSVN/fv3x9dffw0PDw+MHTsWBw4cqPCn+QBQUFCAiIgIjB49Gh4eHli0aJH0839t69OnD5o2bYpNmzbh3Llz0vzMzEx88cUXMDMzw/jx47W+39TUVKXpv//+0/o+iIiISPe0+sDegwcP4u2338alS5cgk8lgamoKHx8ftG7dGvXq1YOdnR2ysrLw4MEDXL58GefPn0dRURGEEHj22WexZMkS9O3bV+P9hYWFISYmBgBw4cIFnDlzBn5+fmjevDkAwN/fH5MmTZLKl/cYlaSkJCxatEjtY1RqSiaTlbuMD+wlIiLSr6o8sFerSZPCgQMHsHz5cuzfv1+ptkkmk6Hs7szNzREUFIRp06ZVKVlSCA0NVTuKt0JISIjKA3xPnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVXn/mmDSREREZLj0njQpFBQU4NixYzh79ixSU1ORmZkJBwcHNGjQAB07dsRzzz0Hc3NzXe3eINy7d0/ptVwuR9OmTQEwaSIiItI3g0maiDVNREREhqwqSZPOHthLREREVJc8NYNb6ktqaqrS67LNc0RERFR7MGnSMRcXF32HQERERFrA5jkiIiIiDbCmSccef4CvXC5n7RMREVEtxKRJx/jrOCIiorqBSZOOyeXyCl8TERFR7aCzpCk6OhrGxsbw8/PT1S5qBcXYD0RERFS76awjeK9evTBv3jxdbZ6IiIjoidJZTZOjoyPc3d11tflagx3BiYiI6gadJU0+Pj6Ij4/X1eZrDXYEJyIiqht01jw3Y8YMxMXFYffu3braRa0gl8tVJiIiIqp9dFbT1KFDB0ybNg1Dhw5FaGgohg8fDi8vL1haWqot37hxY12FolfsCE5ERFQ3yIQQQhcbNjY2BgAIISCTySoOQiZDcXGxLsLQu4qOvbKnKRMREZFuyeVyqYKjsvuyzmqaGjVqVGmy9DRgR3AiIqK6QWdJU2Jioq42XauwJomIiKhu4AN7iYiIiDTApImIiIhIAzpPmo4ePYqRI0fCw8MD5ubmePXVV6VlBw4cwJw5c5CSkqLrMIiIiIhqRKcP7P3ss88wf/58lP2BXtn/29vbY+HChfDw8MAbb7yhy1D0hg/sJSIiqht0VtO0d+9efPTRR2jYsCG2bNmC1NRUlTK+vr6oX78+du3apasw9M7GxkZp4i/niIiIaied1TR99913MDc3x969e9GmTZtyy7Vv356PWyEiIiKDp7Oapri4OPj6+laYMAFA/fr163SfppycHKVJXY0bERERGT6d1TTJ5XK4urpWWi4zMxOlpaW6CkPvOE4TERFR3aCzmiYXFxdcv3690nJXr15Fo0aNdBUGERERkVboLGny9/fHuXPncOzYsXLL7Nq1C9evX0fv3r11FQYRERGRVugsaZo1axZkMhmGDRuGHTt2qDyQd9++fZg0aRJMTU0xffp0XYVRY19++SU6d+4MW1tbuLi4YOTIkXxEDBER0VNIJsoOnKRl3333HWbOnAkAsLS0RF5eHmxsbCCTyZCdnQ0hBJYtW4Zp06bpKoQaGzBgAEaPHo0uXbqgoKAA7777Lu7cuYMLFy7AxKTqXcKq8jRlIiIi0q2q3Jd1mjQBQEREBObPn4+4uDilgS3btWuHzz77DIMHD9bl7rXuxo0baNq0Kc6fP4927dpVeX0mTURERIajKvdlnT9GJSgoCMePH8e9e/dw8uRJHD9+HHfu3MG5c+e0kjBt3LgRr7/+Ojp37gxzc3PIZDKEh4dXuE5cXBwGDhwIBwcHWFtbo1u3btiyZYtG+8vMzAQAODk51TR0IiIiqkV0+hiVsurVq4d69eppfbtz585FUlISnJ2d4ebmhqSkpArLHzlyBEFBQbCwsEBwcDBsbW2xdetWjBo1Crdu3cKsWbPKXbekpATvvPMOBg4cCA8PD20fChERERkwndU0hYeH4/bt27ravCQsLAyJiYm4f/8+pkyZUmHZ4uJiTJ48GUZGRoiOjsbq1auxePFinD9/Hi1atMCcOXPKTbqEEJgyZQpu3rxZaU0WERER1T06S5omTpwIT09PtGrVCtOmTcOOHTuQlZWl9f307dsXnp6eGpU9fPgwEhISMGbMGPj4+Ejz7e3tMWfOHBQWFmLdunUq6wkh8MYbb+DgwYM4dOgQ6tevr63wiYiIqJbQWfNcaGgoDh8+jGvXruHatWtYuXIljIyM0KlTJ/Tt2xd9+/aFn58fTE1NdRWCisjISABA//79VZYFBQUBAKKiopTmCyHw5ptvYvfu3YiKiqp0IE65XF6j5URERGSYdJY0rVmzBgAQHx+PgwcP4sCBA4iMjMTJkydx8uRJfPnll7C0tIS/vz/69etXYV8ibVE8GNjb21tlmaurK2xsbFQeHvzmm2/i119/xV9//QVLS0vpOXlOTk4wMzNT2Y6iBz4RERHVLTrvCO7t7Q1vb29MnToVQgicOnUKBw8exMGDB3Hs2DHs378fBw8efCJJk+KXb/b29mqX29nZSWUUVq5cCQDo0aOH0vwjR46gV69e2g+SiIiIDJLOhxwoq6ioCNnZ2cjOzkZWVpY0SriOh4qqESGE2qm8hCknJ0dpohr45BPAxweIidF3JERERLqvaTp37hwOHDiAgwcPIiYmBvn5+RBCwM7ODoMGDZL6Nz0Jihqmx2uTFLKysuDo6FijfXCwSi3Jzn6UNJWUAEuWAP7++o6IiIiecjpLmoKDg3H48GE8ePAAQgiYmpqiW7duUpLk6+sLY2NjXe1eLUVfpvj4eHTq1ElpWUpKCnJycuDr6/tEY6JyZGc/SpgAID1dv7EQERFBh81zW7ZswYMHD9CuXTts27YNGRkZiIqKwrx589C9e/cnnjABQEBAAABg//79KssiIiKUypCe5eX93//z8/UXBxER0f+ns6TJ1tYWQgicP38er7zyCoYNGyYNJKkvffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+vFb3mZqaqjT9999/Wt1+nVU2aSr7fyIiIj3RWfNceno6Tp48Kf1S7siRI9i/fz9kMhmcnZ3Rp08f9OvXD/369avRI0nCwsIQ8/87Cl+4cEGapxiTyd/fH5MmTQIAmJiYICwsDEFBQejZs6fSY1SSkpKwaNEieHl51ei4H+fi4qLV7T01mDQREZGBkYkn9NO13NxcREZGSqNqX7x4UVrWokULXLlypVrbDQ0NVTuKt0JISIjKY09OnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVSuGishksnKXVfY05adadDSgaCr18ABu3dJvPEREVCfJ5XJpjMXK7stPLGkq6/z58/jll1+wfPly5OfnQyaToUTR6beOuXfvntJruVyOpk2bAmDSVKGICGDAgEf/r1cPSEvTbzxERFQnVSVp0vmQAwBw+/ZtadiBQ4cO4f79+wAg/aque/fuTyIMvWDzXDWV7fzN5jkiIjIAOkuaduzYIfVnUjyaRAgBmUyGZ599Vhp6ICAgAFZWVroKg2qrx/s0CQFU0NRJRESkazpLmoYNGyb9v1GjRlKS1KdPHzRo0EBXuzU4j48KLpfLWfukibJJkxBAYSFgbq6/eIiI6Kmns6TppZdeQr9+/dC3b1+1D8glqtDjTXJ5eUyaiIhIr3SWNG3btk1Xm65VFJ3LqIoeT5o4wCUREenZE31gL5HGHk+S2BmciIj0TOdJ05UrVzBlyhS0bNkSNjY2sLGxQcuWLTF16tRqj81Um+Tk5ChNqamp+g6pdlDXPEdERKRHOh1yIDw8HFOmTEFRURHKDgcVHx+P+Ph4rF27FqtWrUJISIguw6DaiEkTEREZGJ0lTadPn8bkyZNRUlKCwYMH49VXX0WzZs0AAP/99x9+/vln/PXXX5g8eTLatGmDzp076yoUvWKfpmpi0kRERAZGZ0nTN998g9LSUvz888+YMGGC0rJnn30WL7zwAsLDwzFx4kQsXrwYv/76q65CodqISRMRERkYnfVpOnr0KHx8fFQSprJCQ0PRsWNHREdH6yoMvWOfpmpi0kRERAZGZ0lTWloaWrduXWm5Vq1aIa0OP1fM2tpaZSIN8NdzRERkYHSWNDk4OODmzZuVlrt58ybs7e11FQbVVqxpIiIiA6OzpKlLly6IjY3F4cOHyy1z+PBhHDt2DF27dtVVGHonl8tVJtIAB7ckIiIDo7Okafr06SgtLcWQIUPw3nvv4dKlS8jNzUVubi4uXryId955B0OGDJHK1lWKsakUE587pyHWNBERkYHR2a/ngoKC8OGHH+Lzzz/H4sWLsXjxYpUyQgjMmzcP/fv311UYVFsxaSIiIgOj0xHBP/30U+zZswe9e/eGubk5hBAQQsDMzAyBgYHYs2cPPv74Y12GoHf89Vw1sSM4EREZGJ2OCA4AAwYMwIABA1BSUoIHDx4AAOrVqwdjY2Nd79og8Ndy1cSaJiIiMjBaT5quX7+Obdu2ITExEebm5vDx8cHIkSNhaWmJBg0aaHt3VFcxaSIiIgOj1aTp22+/xXvvvYeSkhKl+fPmzcOePXvw7LPPanN3VJcxaSIiIgOjtT5NMTExmDVrFoqLi2FlZYUOHTqgWbNmkMlkuH37NoYPH47S0lJt7Y7qMiHYp4mIiAyO1pKm5cuXQwiBkJAQpKSk4NSpU7h27RrOnDmDZs2a4fr169i3b5+2dldrcJymalA3JhOTJiIi0jOtJU1///03PDw8sGrVKqXOz+3atcN3330HIQSOHz+urd3VGhynqRrUJU0c3JKIiPRMa0lTamoqOnfuDDMzM5Vl/v7+AIB79+5pa3dUl6mrVWJNExER6ZnWOoIXFhbCwcFB7TI7OzupzNMmJydH6bVcLmdtU2WYNBERkQHS+ThNTzuO01QNTJqIiMgAaTVpun79OtavX1+t5ePHj9dmKFSbMWkiIiIDJBNCCG1syMjICDKZrHpByGQoLi7WRhhat23bNqxcuRKnT59GRkYGbty4AS8vr2pvTy6Xw8bGBsCjpjvWRKkRHQ0EBCjPc3cH7tzRTzxERFRnVeW+rLWapsaNG1c7aTJkcrkcPXv2xIsvvojp06frO5ynA4ccICIiA6S1pCkxMVFbmzIo48aNAwBcvHhRz5E8Rdg8R0REBkhrQw7oy8aNG/H666+jc+fOMDc3h0wmQ3h4eIXrxMXFYeDAgXBwcIC1tTW6deuGLVu2PJmAqXLqEqT8/EcjhRMREelJrf/13Ny5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrCcUOZWrvFqlggLAwuLJxkJERPT/1fqaprCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06aInoLykiU10RESkR7U+aerbty88PT01Knv48GEkJCRgzJgx8PHxkebb29tjzpw5KCwsxLp163QUKWmsvEemMGkiIiI9qvXNc1URGRkJAOjfv7/KsqCgIABAVFRUjfZR2QN5+cBeDZRNjmxtgexs1flERERP2FOVNMXHxwMAvL29VZa5urrCxsZGKqOQnp6OmzdvIiEhAQBw+fJlPHz4EI0bN4aTk5PKdhRjPfy/9u48Lqqq/wP4Z5B9dUEFRUEU08jEQvTJBXHDzFITRX1UcMktt0wzTcMWS0vTXLKFR7EUwzSXRB9cEn3AXEpcUlQ0JFcSF5ABEZjv74/zm4Fhtjs6wwz4fb9e9wVz77nnnnvnLt8599xz2RMoHxzVrs1BE2OMMatQ5W/PGSM3NxeAuB2njbu7uyqN0o4dO9CmTRtEREQAAF555RW0adMGO3bsMG9hn2YVgyZt4xljjLFK9lTVND2O6OhoREdHS05f8QW9XPP0GDhoYowxZoWeqqBJWcNUsTZJKS8vD7Vq1XqiZfBrUUygfHBU/vvgoIkxxpgFPVW355RtmSq2WwKAW7duIT8/X2t7pyeRnZ2tNvz1118mzb9aKv/0HNc0McYYsxJPVdAU+v8vgd2zZ4/GtKSkJLU0plK/fn21wd/f36T5V0u6bs/p6oqAMcYYqwRPVdDUrVs3+Pv7Iz4+HidPnlSNz83NxSeffAJ7e3uMGDHCcgVkAt+eY4wxZoWqfJum2NhYpKSkAADOnDmjGqfsk6ljx44YM2YMAMDW1haxsbEIDw9H586d1V6jkpWVhcWLF8PPz88Sq8HK44bgjDHGrFCVD5pSUlI0evFOTU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGVlq5mR7K4MjGBnB31xzPGGOMWUCVD5ri4uIQFxdn1DwhISHYvXu3eQpUQXZ2ttpnuVzO7ZoMUbZdcnISgxIHTYwxxiyoygdN1q5+/fqWLkLVowyOHB05aGKMMWY1nqqG4KyKUAZHXNPEGGPMinBNk5lV7CFcLpdz7ZMhHDQxxhizQlzTxKwPB02MMcasENc0mRm/e85IRLobgnPnlowxxiyIa5qYdSkqKvufG4IzxhizIlzTZGbcpslI5QMjJycROGmbxhhjjFUyrmli1qVi0MQ1TYwxxqwE1zSZGbdpMlLFoMnOTvQMrlBw0MQYY8yiuKaJWZeKQZNMVlbbxEETY4wxC+KaJjPjNk1GKv+EnLI9k5MTIJdz0MQYY8yiOGgyMxcXF0sXoWqpWNNU/i8HTYwxxiyIb88x68JBE2OMMSvFNU1mJpfL9X5mFegLmrhzS8YYYxbEQZOZ8dNzRtIXNBUViafobLiClDHGWOXjqw+zLtqCpvIdXHJtE2OMMQvhmiYz46fnjKTr6TmlwkLA2blyy8QYY4yBgyaz46fnjKTv9lzF6Ywxxlgl4ttzzLpw0MQYY8xKcdDErAsHTYwxxqwUB03MunDQxBhjzEpxmyYz436ajCSlIThjjDFmARw0mRn302QkQzVN3OUAY4wxC+Hbc8y6GOqniWuaGGOMWQjXNJkZ99NkJG7TxBhjzEpx0GRm3E+TkThoYowxZqX49hyzLuWDIm4IzhhjzIpw0MSsi7Kht0wG2NuL/zloYowxZgU4aDLgyy+/hK+vLxwdHdGxY0ecOnXK0kWq3pRBkZOTCJyU/1eczhhjjFUyDpr0iI+Px6xZs/DRRx/hjz/+QLNmzRAeHo68vDxLF636Kh80KXHQxBhjzApw0KTH0qVLMX78eIwYMQKBgYGIjY1FSUkJ4uPjLV206ouDJsYYY1aqSgdN69evx7hx4xAcHAwHBwfIZDLExcXpnef48ePo3bs3atasCRcXF7Rv3x6bNm3SSPfo0SOkpaWhe/fuqnG2trbo0qULfvvtN1OvClMyFDRx55aMMcYspEp3OTB37lxkZWXB09MT3t7eyMrK0pv+wIEDCA8Ph6OjIwYPHgw3Nzds2bIFkZGRuHr1Kt5++21V2pycHJSWlmr0qVSvXj1cvnzZLOvDUBYUle/Qkju3ZIwxZgWqdE1TbGwsrly5gtu3b2P8+PF605aUlOCNN96AjY0NDh06hG+//RZLlizBqVOn0Lx5c8yZM8dg0MXMjIhvzzHGGLNaVTpo6t69O3x9fSWl/fXXX3H58mUMHToUQUFBqvEeHh6YM2cOHj16hHXr1qnGe3p6okaNGsjOzlbL559//oGXl5fO5cjlcoMD06GoqOx/DpoYY4xZmSodNBkjOTkZANCzZ0+NaeHh4QCAgwcPqsbZ29ujTZs22L9/v2pcSUkJkpOT8a9//UvnclxdXfUO/AoVPbT1Bl7xfw6aGGOMWUiVbtNkjIyMDABAQECAxjQvLy+4urqq0ii99dZbGD16NF588UW88MILWLx4MWxtbTF06NBKKfNTh4MmxhhjVuypCZpyc3MBiNtx2ri7u6vSKA0dOhS3b9/GnDlzkJ2djeDgYCQlJcHd3V3ncrS9oLfiZ39//8dZhepP2ytUAMDWVgwlJRw0McYYs5inJmh6XFOnTsXUqVMlp6/4gl5XV1dTF6n6Kt+dQPnaJeXnBw84aGKMMWYxT02bJmUNU8XaJKW8vDydtVCskui6PVf+MwdNjDHGLOSpCZqUbZkqtlsCgFu3biE/P19reydWifQFTcrbddy5JWOMMQt5aoKm0NBQAMCePXs0piUlJamlYRbCNU2MMcas2FMTNHXr1g3+/v6Ij4/HyZMnVeNzc3PxySefwN7eHiNGjLBcARkHTYwxxqxalW4IHhsbi5SUFADAmTNnVOOUfTJ17NgRY8aMASDeGxcbG4vw8HB07txZ7TUqWVlZWLx4Mfz8/CyxGkxJ19NzQFnQVFwMlJYCNWpUXrkYY4wxVPGgKSUlRa0XbwBITU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGmqWM2rog4A4udTD09JxSYSHATyVWX9u2AVOmAK+9BqxYAchkli4RY4wBqOJBU1xcHOLi4oyaJyQkBLt37zZPgaoKIkAut77AQ8rtOWU6V1fx2hUHh8opG6scN28CUVFAXh6wahXQogUwaZKlS8UYYwCeojZNlmJ1r1FJTweefRaoWxf4/HMRQFkLqUHTkSNASAjg5gYsX145ZWOVY9o0ETApzZgBnD5tseKwak4uB+7ds3QpTIcIOHcO+Ptv6zq3VyMcNFUXDx6IQZ+DB4GXXgLOnxe3wt55R1ykFArjl5eTA7z7LrB582MVVyupQdNrrwHHj4v2TW+9Bfx/Gzark5cnbjUtWABs2gRcuWK9JzIi4OpV4NAh4IcfgI8/BtauVX+Jsrnt3i22U3lFRcCQIVXjAYBLl4AtW4CCAuPmIxK93TPpiIDMTHEOqCgjA/jxR3GO0qWgAPjgA/Hj0csL+PJL9WPz7l1g+nRR67l7t2hHaW7Z2cCBA48f8MjlwODBQGAg4OsLuLuLH5cTJohtxUxCRmStZ/Hq4Z9//lH7XP41Kvn5+Ro9iD+2L78UQcwrrwCRkeKvs3PZ9Ph4YORI4NEjzXkHDgS+/hrIzxcnizp1gEaNdC+ruBgIDQV++0183rcP6NatbDoRkJIC+PsDDRuqz1tQAKxbJ2q8cnLEUFICPP+8ONnt2iXS7dkD9OhRNt+4ccC332ovj7c3cOqUOAFa2r17QFwcsGOH2AYVL4b16gFdu4o2O+Vf/PzgAZCYCNy4AdjZicHVFejVC/D0LEunUABffCECmzZtgNdfF9tJJgP27gV+/hn480+gbVuxjBYttJfz4UMgKQlITQX++AM4cQK4f18zXevWYt959lnNaRcuiIvTb7+J77pPHyAsTDPglaKgQJzsr1wRn7/9VtyeO3VKfJ44UXw2h//9D0hIEDWXPXsCHToA9vbG5bFlC/Dvf4sgr0kT4KuvxHdnyMWLwOjR4nsICgI6dxZDQIA4fp2dxXd14oT4nk6dEp+dnMRQt66Y/8UXH2vVAYhtbmeneayWlABnzojzQePGj59/RdnZYp/57TdRa3zpEtC8ufhB969/AZ06Afo6Gr54ERg1SmwzFxcxX5cuImjYtk3UtABAgwZiH3/uubJ5iYCffgJmzhTBSXmRkUBsLPDf/wJvvgmUP3c3bCgCqIkTNbfTkyIS5+933ikLAl1dxTE3bpxYV0MyM4F+/XTXyjo7ix9CU6YYfojm0SORT24u0K6dejOOW7eADRvEtnn1VXGsmKPN4b17YlklJSJgLSoS4+7eFcO9e8D48SY758vlctXbOwxel4mZFQCdQ35+vukW1L49kTj8xODiQhQWRhQYSOTurj7t5ZeJVq0iqlFDfXz5YexYoqIi7ct6+231tH5+RA8eiGkKBdGYMWK8gwPRhg1l82VnE7Vtq3uZ5Yf//U/3MmvUIJo7l6h7d/V1Ki2Vtq3u3SPas4fo44+JXn+daNgwohUriH7/nejRI6M3PRERXbhANHEikbOztPUDiF56iWj1aqIhQ4icnLSn8fAgWrZMlOvaNaKuXTXTuLgQublpnz88nGjdOqLt24n27RN/o6I09wl9g6Oj2F9+/51o/XqiOXOIgoK0p3VyEt/LxIlES5YQbdtGlJOjvq0KCogWLyYKCSEKDSV64w2ifv3K8ggLE/vRuXPq26VlS6KRI4m++oroyy+Jpk8nioggGjqUaNcu3d9/SQnRd9+JZb38sijXqVNEBw/q3p6vvCLWOTPT8He/YgWRTKaZz+DBRBs3Ei1YIModGSnKfvWqKOvy5bq/d2MGmYwoOpro+nWxn+zeLT536UL0wQdiedo8eCC+J2U+zz4rjrO4OKIRI4jq1CmbFhFBdPp02bw3bxL9/LNYllyuf/v884/Y/lFRRM2aGV4fDw+ivXs18yktJVq6VOyPUrdNzZpEhw6J+Q8fJurQQX16xXNg7dr683NzE8escl8rKRH7+NixYlvok5lJNG1a2X7w999Ed+8S9e2rf5nvvy+OB6VLl8Qx+NZbRDExRJ98ov5dubkR9e5N5O+vuV+2bUuUmCjOxUrZ2USbNxNNnSquIw4OZent7Yl69CBauFCUs+L2attW7OPFxerrqlCI805goLg+dO4szrOzZ4vtt3On2J8ePlSfr6CAaMYM/dcm5XDsmP7tbYT8/HySel2GyZbKtKqUoKmkhGjSJKJ69QzvaGPHlu3gO3fqv8iHhhLdvq2+rO3btad9800x/eOPNafNmyeCCn9/6Se7ixfVl5uWRuTjQ9SuXdnBcvMmUf36ZfMMHSouFp06ET33HNHw4UTffEN09izR/v1Es2bpvtgrBzs7Ik9PcaAHBhK1bk3UqpX4v2VLomeeIQoIEOvi4yPSurpqz6tpU/G9rF8vTny9eomTuLEXRUAsu/yJ0dSDt7cIFKZNE0Hahg1inU2Rt60tUZ8+4uS6ejVRgwa609rbE50/X/a9f/ON9OW0aCHyv3KlLOBPSSF64YUnK3/LluKC//77RGvWiABt924xVPwB0bixtDwbNlT/XLOm9sDLmMHFRfs+YmND9NprRN9/LwLfvDxxPPj5Gb+M7t2JmjdXH+fgIILzZcvEsam8EF69Ki7EhgJDbceEg4M4PymdPk3UsaN6mkaNNLejTCYCo9aty8Y5Oopjr+IywsNFYL51q/YfEX37EiUkiG1X8SIeGioCuIAA9e2ckKB5fs7MFD8MbG01l1Hx3DF4sDhWKp4rZ80S5+3PP9cfNAYEiHVSundPnJu1pW3QQL38TzL4+Ihzf3a2+HH3yivS5vPwIJowgej4caIjR8QxLHWZSUkGL41ScdBkRfLz89WG7OxsyV+O0YqLRW3CmDFEtWqVnXyaNhW/3r/7Tv0XC5HYWSMixC/uiAhxcSj/S6NJE3HyOnuW6MwZ9RPcjBnqQde0abp3cDu7sv8bNiT673+JMjLEQZ2TIz5/9BHRwIFEixZpX7+KZScSv0if9GJjysHFRQRK5U9c5T18SLR2rWZAUqeOOHnEx4sgKy5OBIDaltGwoagp27mTaNQoESx7eorvbscOolu3RG2Kvouiu7tIv3070Y0b2staUCDWRVcebduK5Vy4IC48o0cTeXk92fb76CPN73z1alErVX4fkjJ4ekpL16yZCIbWrxc1LI+7DrNnixqIuDjjAtxJk4jy80Wtwy+/EL37rjiGhw4VNXD9+okfHlu3itqJ/HzxYyYri+iLLx4/EFcOzs5i+9rYqI93dRWBQ/kfJlIGe3sRtGj7vuztRVAzc6ZYn5s3xfd87RrRTz+JQEaZ1s5O1FZMmqRZtqlTRQ2XQiHOI2vWiLS3bon8HjxQz6v80KKFOE7Kn08uXhQ/tABxPG3apD79xo2yGnR9g62tyJtInNcmT9YeLFUcatdWDxKJRBBaPk3FALHi8PLL4nyqTUqK9IAkIIDo3/8WP7AbNVKf5u0t9vPYWO0/QO3sNGu9H2f/tLcX+/+YMUTjxxNNmSJq1ZYtE9/zL7+IGkwTMSZo4jZNlcyoe6dPoqRE3JOuXdv4e85Hjoj749nZutMMGCDaBqxYAUydqjn9009FO4mZM8VhoPTcc6JhpY+PcWXS5/33gY8+Uh9Xo4buxpsvvCDaQbRrBwQHi/ZER46INhZnz4q2Xfn5YrxCAdjYlA01apT9b28vOuF0dBRtMPr3B954A6hZ03CZiUR7i+PHRVuW8HDt7WiOHxftEI4cEZ/79RPtLurUMbyM0lLRNuz8edFmSC4XbSZeegl4+WXNDkR1+e9/ge+/F21oWrQQQ+vW2tu5EIn2Dn/9BVy+DKSlifZC16+rp+vXD/jwQ9F2LiNDDM7OQN++uvfXwkKR38mTop1F48Zi/j//BJYuFQ866PL886LdSL16og3evn2ibdDw4aKhuW253leIRNuhxETRxu7IEf0PS8hk4inO8l0j5OQA69eLthhNm4qhtFTk+csvon1S48bAf/4DdO+uO28pcnJEo+bVq0UXHK++KtrnPPecKENsrGgrp01oqChD06bAnTuiXdylS6JNXJcuIr+CAtHGbOFCcU6wsxPTO3cW7Ut27xYPEeji5CSOi8hI0fZKXzchxcXiO0lI0D69aVNRXimvvHr0SLQH2rBBfK5fX+xzo0apf9/l0x89KvZtd3ftee7bJ9ZF2fYOEG0Ua9cueyjG3h6YPBlYs0b9yTx3d/HgSni4OC6V+0FoqGijqK0d6ddfi4bc5clk4pw7YIB42CQvT6xb58762ysVFQFbtwLHjolj6ORJcY5TfpedOwPt24t1USISx9fhw2J/7dGjbNsRiYdwli4Fdu5UP88DooH9N9+IB3fkcrGPZGWJv1evivPSzp2aD060bSvahWprR2kmxlyXOWgyM7lcrvFZ2e2AWYOmJ3X1qriApaVpTvP3Fw1TPTzExSQ0VDR6Vho7VhzsMploED10qDhowsLEQauvkefjIBIX9oKCsguUvb04IaWkiBOhu7s44Hv0sI4G48ZQKESAJZOJE25V6+xRoRBP5f34ozjBT5smnuoxtbQ00Wg9M1MECdeviwv2tGniQve4vcjn54s8s7LEcPt22bQaNUQAGhxsXJ7374tGzHZ2j1cmXXkqg/jySkqAX38VF8kLF8RQVARER4sLso3Eh6gfPhTbwddX/SETIvFj48ABEeT//ru4ILq7i0By6lTjjrnSUhHYfP992ThnZ2DuXBF0SA32AbHvrV8vzj/Dh5umb7r8fGDxYhGsjh4tHsgoLQVGjBD7X0XOzsDbb4uy16qlPu3hQxFE6jum16wBxowR2zkwUASN7do9+Xoo63Wkfv/6ZGaKc35srAikhw0TP1LKB2Da5OWJJ2bXrhU/nN56S/zQ1hbUmhEHTVZEpudgsOqgCRC/7H/8UZwAb94UFyJbW/H0VvlfARkZorakoEA8MfTLL+o7/c2b4omW0NBKPxgYYxZQWCiCgce9ICsU4mmy//xHPAm8cKFpa6fNobgYGDRIPMGnFBUluhx50ifu0tJE7e2rrxr/ZGdlKioSwbul+yM0EgdNVqRKB03GOHtW/JIdONC6D2rGWNVBVLVqVouKgHnzxA/MadOMr4FkFsFBkxWpsrfnGGOMsaeAMUET3ysxMw6KGGOMseqBgyYz01bTxBhjjLGqh4MmM3M1xdMajDHGGLM4fmEvY4wxxpgEXNNkZvn5+WqfyzcEZ4wxxljVwUGTmXFDcMYYY6x64NtzjDHGGGMScNDEGGOMMSYBB02MMcYYYxJwm6ZKVr4Ddu6ziTHGGLOs8tdiQy9J4aCpkhUUFKj+56foGGOMMetRUFCgt39Fvj3HGGOMMSYBv7C3kikUCuTk5AAAnJ2dIXvMN3iX7+8pOzubuzb4f7xddONtox1vF+14u2jH20W7qrxdiEh1F8jT0xM2Nrrrk/j2XCWzsbFBvXr1TJqni4tLldpBKwtvF91422jH20U73i7a8XbRripuF6mvPOPbc4wxxhhjEnDQxBhjjDEmAQdNjDHGGGMScNDEGGOMMSYBB02MMcYYYxJw0MQYY4wxJgEHTYwxxhhjEnDnlowxxhhjEnBNE2OMMcaYBBw0McYYY4xJwEETY4wxxpgEHDQxxhhjjEnAQZOVOX78OHr37o2aNWvCxcUF7du3x6ZNm4zKo6ioCB9++CECAgLg6OiIBg0aYOzYsfjnn3/MVGrzuX79OpYtW4aePXuicePGsLe3h5eXFwYMGICjR49Kzic5ORkymUznEBcXZ76VMCM/Pz+d69SlSxej8tqwYQNCQkLg4uKCWrVqoU+fPjhx4oR5Cm5GcXFxer9rmUyGbt26Gcynqu4z69evx7hx4xAcHAwHBweDZc3Ly8P06dPh6+sLBwcH+Pn5YebMmcjPzzd62UlJSQgNDYWbmxvc3d0RFhaG/fv3P8HamI7U7VJcXIwtW7YgKioKLVu2hKurK9zc3NCuXTusXr0apaWlRi3XlMeouRizz8yfP1/vcXHlyhWjln3x4kUMGjQInp6ecHJyQuvWrbF69WpY6zNqtpYuACtz4MABhIeHw9HREYMHD4abmxu2bNmCyMhIXL16FW+//bbBPBQKBfr27YukpCS0b98eAwYMQEZGBmJjY7F//34cOXIEdevWrYS1MY0VK1Zg0aJFaNq0KXr27Im6desiIyMD27Ztw7Zt2xAfH4/IyEjJ+YWGhmo9UQUFBZmu0JXMw8MD06ZN0xjv5+cnOY8FCxZg7ty58PX1xfjx4/HgwQP8+OOPeOmll7B//3506NDBdAU2s6CgIMTExGidtnnzZpw9exbh4eGS86tq+8zcuXORlZUFT09PeHt7IysrS2dauVyO0NBQnDx5Ej179sSQIUOQlpaGxYsX4+DBgzh06BAcHR0lLXf9+vUYPnw46tati+joaABAQkICevTogU2bNiEiIsIUq/fYpG6Xy5cvIyIiAq6urujWrRtee+015Obm4pdffsHEiROxa9cu7NixAzKZTPKyTXGMmpMx+4xSVFSU1vLXrFlT8nLPnTuHl156CYWFhRg0aBAaNGiAxMRETJw4EefOncOKFSuMWItKQswqFBcXU9OmTcnBwYHS0tJU4+/fv0/Nmzcne3t7unLlisF81qxZQwBoyJAhpFAoVONXr15NAGjs2LHmKL7ZbNmyhZKTkzXGHzp0iOzs7KhWrVr08OFDg/kcOHCAAFBMTIwZSmk5vr6+5Ovr+0R5XLx4kWxtbal58+Z0//591fi0tDRycHCgli1bUmlp6ROW1PKKioqoTp06ZGtrS7du3TKYvqruM3v37lWdKz799FMCQGvXrtWa9v333ycANGvWLLXxs2bNIgD0ySefSFrm3bt3qWbNmuTp6UlXr15Vjb969Sp5enqSp6cn5eXlPd4KmYjU7XLt2jVatWoV5efnq43Pz8+n4OBgAkCbNm2SvFxTHKPmZsw+ExMTQwDowIEDT7zczp07EwDatWuXalxRURF16tSJANDhw4efeBmmxrfnrMSvv/6Ky5cvY+jQoWq/YD08PDBnzhw8evQI69atM5jPd999BwD49NNP1X4JjRs3Dv7+/tiwYQMKCwtNXn5zef311xEaGqoxvlOnTggLC8O9e/dw5swZC5Ss+li7di1KSkrw3nvvwcPDQzU+KCgIQ4YMQXp6OlJSUixYQtPYtm0b7ty5gz59+qB+/fqWLo7ZdO/eHb6+vgbTERFiY2Ph6uqKefPmqU2bN28eXF1dERsbK2mZP/30E+7fv4/JkyfDx8dHNd7HxweTJk1CTk4Otm7datyKmJjU7dKwYUNMnDgRLi4uauNdXFwwffp0AMDBgwfNUkZLkbptTOnixYs4dOgQwsLC8PLLL6vG29vb46OPPgJQdj2zJnx7zkokJycDAHr27KkxTXkrwdCB+vDhQxw9ehTPPPOMxgEgk8nQo0cPfPPNN/j999/RqVMn0xTcguzs7AAAtrbSd+OMjAwsW7YMhYWF8PHxQdeuXdGwYUNzFbFSFBUVIS4uDjdu3IC7uzvatm2Ldu3aSZ7f0L4XFxeHgwcPonPnzqYqskUoA4AxY8YYNV913GcAsV43btxAeHi41gChQ4cOSEpKwtWrV9GoUSO9eRnah+bPn4+DBw9ixIgRJiu/JTzOOQd48mPUGh06dAhHjx6FjY0NAgIC0L17d7i6ukqeX98+07FjR7i4uFhlcMpBk5XIyMgAAAQEBGhM8/LygqurqyqNLpcvX4ZCodCaR/m8MzIyqnzQ9Pfff2Pfvn3w9vZGq1atJM8XHx+P+Ph41WdbW1tMnjwZn3/+OWrUqGGOoprdrVu3MHLkSLVxbdu2xcaNG9G0aVOD82dkZMDV1RVeXl4a08rvM1VZVlYW9u/fDx8fH/Tq1cuoeavjPgPoP+coxyclJSEjI8Ng0KQvr+qyDwHAmjVrAGi/0OvzpMeoNarYbrBmzZr48ssvJQfG+vaZGjVqoEmTJjh37hxKSkqMDlLNiW/PWYnc3FwAULs9Up67u7sqzZPkUT5dVVVcXIzhw4ejqKgIixYtknThqlu3LhYuXIg///wT+fn5yM7OxrZt29CsWTMsXboU77zzTiWU3PRGjhyJ/fv3Izs7G3K5HGlpaRg+fDiOHz+Obt264cGDBwbzyM3Nrfb7zNq1a6FQKBAdHS050Kmu+4ySKc8X+vKqLvvQt99+i927d6Nr167o3bu35PlMcYxak9atW2PNmjX466+/UFhYiMzMTKxYsQIymQzR0dHYsWOHpHyk7H8KhcLqto/1hG+MSaC88B06dAhvvPEGhg8fLmm+wMBABAYGqj67uLigb9++aNeuHZ5//nksX74cs2bNQr169cxVdLOo+GsvKCgI33//PQDghx9+wHfffadqh/G0UigUWLt2LWQyGUaNGiV5vuq6zzDj7dy5E5MmTYKvry/Wr19v1LzV7Rjt37+/2mc/Pz9MmjQJLVu2RI8ePTB37ly89tprFiqd+XFNk5VQRtu6fo3l5eXpjMiNyaN8uqpGoVBg1KhRiI+Px7Bhw/D1118/cZ5eXl7o27cvSkpKjOr3ydqNGzcOAJCammowrYeHR7XdZwBg3759+Pvvv9G1a1c0adLkifOrLvuMKc8X+vKq6vvQrl27EBERgfr16+PXX3+Ft7e3SfI15hitCrp164amTZvizJkzqu9cHyn7n0wmg5ubm0nL+aQ4aLIS+u7737p1C/n5+TrbHij5+/vDxsZGZ9sBQ20YrJlCocDIkSOxbt06DBkyBHFxcbCxMc3u6+npCUD0WVNdGLNOAQEByM/Px61btzSmVeV9RulxG4DrUx32GUNtjYz57vXlVZX3ocTERLz++uvw9PTEgQMH4O/vb7K8q8M+VJFynQoKCgym1bfPlJaWIjMzE02aNLGq9kwAB01WQ/lY/Z49ezSmJSUlqaXRxcnJCSEhIbhw4YJG52REhL1798LFxQXBwcEmKnXlUAZM33//PSIjI/HDDz+YtAGusrbAWjqaMwVj1skU+561unPnDrZv347atWtr3FZ4EtVhnwkICECDBg2QmpqqceGWy+VITU1FkyZNDDYCB6rnPpSYmIgBAwagdu3aOHDgAJo1a2bS/KvDPlSeXC7H2bNn4eLiogqe9NG3z6SkpKg6XrU6lu4oignFxcXk7++vt3PLzMxM1fgbN25Qenq6WmeERNWvc8vS0lKKiooiADRw4EAqLi7Wm/727duUnp5Ot2/fVhv/+++/a02/bNkyAkABAQFUUlJisnJXhvT0dJLL5VrHe3l5EQA6ePCgavz9+/cpPT2dbty4oZb+woUL1bZzy6VLlxIAmjJlis401XmfMXXnlnK5nNLT0ykrK0tt/N27d8nDw8OqO7csz9B22bVrFzk4OJCXlxedP3/eYH6PHj2i9PR0unTpktp4Y49Ra6Bv2+Tl5dGFCxc0xhcUFNCQIUMIAI0cOVJjenp6OqWnp2uMN9S5ZWpq6pOtjBnIiKz0BS9PIV2vUcnKysLixYvVXqMSHR2NdevWYe3atapXFgCiVqZ3796q16iEhobi0qVL+Pnnn+Hn54ejR49WqdeozJ8/Hx988AFcXV0xdepUrVW1/fr1U3UIqkwfExOD+fPnq9L4+fnBzs4OwcHB8PHxgVwux5EjR5CWloaaNWsiKSkJISEhlbRWpjF//nx88cUX6Ny5M3x9feHi4oKLFy9i165dKC4uxuzZs/HJJ5+o0sfFxWHkyJGIiorSeK9U+deoDBgwQPUalUePHlW516iU16pVK/z55584ffq0zq4pqts+Exsbq+qM9MyZMzhx4gQ6dOigqinp2LGj6lalXC5Hhw4dcOrUKfTs2RMvvPACTpw4gT179qBt27Y4ePAgnJycVHknJycjLCwMoaGhqn52lMq/RkX5aqOEhATk5OQgISEBAwcOrIS1103qdjl//jyCgoJQVFSEwYMH45lnntHIy8/PT+28e+XKFTRp0gS+vr5q714z9hi1FKnb5sqVK/D390fbtm3RsmVLeHl5ITs7G/v27cO1a9fQqlUrHDhwAHXq1FHLX9nRcsVw4+zZs+jQoQMKCwsRGRkJb29vJCYm4uzZs5g0aRK/RoUZdvToUerVqxe5u7uTk5MThYSE0I8//qiRTln7ou3XwMOHD2n+/PnUtGlTsre3Jy8vLxozZoykV0dYG+V66hvKbwNlF/8VX32xcOFCCgsLowYNGpCDgwM5OTlRixYtaNq0aWq/jKuS5ORkGjRoEAUEBJC7uzvZ2tqSl5cX9e3bl5KSkjTSr127lgBQVFSU1vzWr19PwcHB5OTkRB4eHtS7d2/6448/zLwW5nP06FECQCEhIXrTVbd9xtAxU/H7v3//Pk2bNo0aNWpEdnZ21LhxY3r77be11gwpXy0TGhqqddm7d++mTp06kYuLC7m6ulJoaCjt3bvXDGtpPKnbRbmO+oaK65+ZmUkANF6XYuwxailSt01ubi69+eab1LZtW6pbty7Z2tqSm5sbhYSE0GeffUYFBQVa81fmo8358+cpIiKCateuTQ4ODtSqVStatWqV2p0Sa8I1TYwxxhhjEnBDcMYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhijDHGGJOAgybGGGOMMQk4aGKMMcYYk4CDJsYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhi7Cnl5+cHmUymd1i2bJmli8lMJC0tDTVq1MDkyZPVxicnJ6u+b32uXLmiSlf+/WrGys3NRZ06ddCuXTuNd5ExZu00337KGHuqlH8xZ0XPPvtsJZeGmcvkyZPh5OSEefPmWbQcHh4emD17NmbOnInvv/8eUVFRFi0PY8bgoImxp9yYMWPU3tjOqp/NmzcjNTUVM2fORL169SxdHEyaNAmfffYZZs+ejcGDB8PBwcHSRWJMEr49xxhj1dzSpUsBAKNHj7ZwSQRHR0cMHToUN2/eREJCgqWLw5hkHDQxxgxStn+6cuUKtm/fjq5du6J27dqQyWRITk5Wpbt37x5iYmIQFBQENzc3ODs7o1WrVvj4449RUFCgNe+SkhIsW7YMrVq1gqOjI+rWrYsBAwbgzJkziIuLg0wm06gJmz9/PmQyGebPn681T2U7nS5dumidfuPGDUyfPh0tW7aEs7Mz3Nzc0LZtW6xcuRIlJSUa6aOjoyGTyRAXF4fMzEwMHz4cXl5ecHBwQNOmTTF37lwUFRXp3H5//PEHoqKi0KRJEzg6OqJ27dpo3bo1Zs6ciaysLADA2rVrIZPJEB4erjOfGzduwM7ODk5OTrhz547OdOWlpaXh8OHDaN++PZ555hlJ8xhD+V0YGipSfqerVq0yeZkYMxe+PccYk2zJkiVYuXIlgoOD0atXL9y4cQM1atQAAJw7dw69evXC1atX4e3tjY4dO8LOzg7Hjh3DvHnzsGXLFiQnJ8PDw0OVn0KhwMCBA7Ft2zbY29ujS5cuqFWrFo4ePYqQkBCMGjXK5Otw6NAh9OvXD/fu3YOfnx969OiBoqIiHDt2DJMnT8Yvv/yCnTt3ws7OTmPekydPYurUqahVqxZCQ0Nx9+5dpKamYsGCBTh79iy2bt2qMc/nn3+Od999FwqFAs2bN0ffvn1RWFiIS5cuYfHixQgMDER0dDSGDh2KWbNmYe/evbh48SKaN2+ukdc333yDkpISDB8+HHXq1JG0vtu2bQMAdO/e3bgNJVFQUJDOdkkXLlzAkSNHYGOj+fs8KCgIdevWxbFjx3Dz5k14e3ubpXyMmRQxxp5Kvr6+BIDWrl0rOW2NGjVo+/btGtMLCgqoadOmBIDmzp1LRUVFqmlyuZyGDBlCAGjkyJFq861cuZIAUP369encuXOq8cXFxTRhwgQCQAAoKipKbb6YmBgCQDExMVrLe+DAAQJAoaGhauNv3rxJderUIZlMRl999RWVlpaqpuXk5FDXrl0JAH3wwQdq80VFRanK8t5771FJSYlq2pkzZ8jFxYUA0OHDh9Xm2759OwEgR0dHSkhI0Cjn2bNn1db7vffeIwA0ZcoUjbSPHj0iLy8vAkB//PGH1vXWpmPHjgSAEhMTtU5XbitDl4PMzExVuszMTIPLzcrKIm9vbwJAK1eu1JrmtddeIwD0ww8/GMyPMWvAQRNjTyllIKRrKB9wKNOOGjVKa16rV68mANSnTx+t0x88eED16tUjW1tbunv3rmp8s2bNCACtXr1aY57CwkJVkGCqoGnWrFkEgCZNmqR1vmvXrpGdnR3VrVuXFAqFarwyaHrxxRfVxiuNHz+eANCHH36oNj4oKIgA0JIlS7Qur6Lr16+TnZ0deXh4UH5+vtq0jRs3EgD617/+JSkvJWVA99dff2mdXj5okjoYCpru3btHzz77LAGgmTNn6kw3e/ZsAkBvvfWWUevEmKXw7TnGnnK6uhxo0aKFxriIiAiteSQmJgIAIiMjtU53dXVFcHAwdu3ahePHj6Nnz564fv06Ll26BAAYNmyYxjyOjo4YNGgQli9fLnldDDFUzoYNGyIgIADnzp1DRkaGxi2yPn36aG2f07JlSwDA9evXVeNu3bqFkydPwsbGRnID7AYNGiAiIgIbN27EDz/8gPHjx6umKdv+TJo0SVJeACCXyyGXywFA0u08fY//5+fnY8uWLQbzePToEfr164dz585h8ODBWLRokc60yjJlZ2cbzJcxa8BBE2NPOWO6HPDz89M6/q+//gIADB8+HMOHD9ebx+3btwEA165dAwB4enrC1dVVa9omTZpIKpdUynJ26tTJYNrbt29rBE2NGzfWmtbd3R0A8PDhQ9W4v//+GwDg7e2t1o7LkClTpmDjxo1YtWqVKmg6ffo0UlJSUL9+fZ2Bqza5ubmq/93c3Aymj4uL0zntypUrBoMmIkJ0dDQOHjyI0NBQVUN+XZTb7d69ewbLxpg14KCJMSaZk5OT1vEKhQIA0KtXL9SvX19vHr6+viYvl67y6BofEREBFxcXvXloq5nR1qDZ1Nq3b4+QkBAcO3ZMFXwoa5nGjh0Le3t7yXnVrFlT9f+DBw9UQYq5vPvuu9i4cSOeffZZbNu2zWD/S8qgrlatWmYtF2OmwkETY+yJNWrUCOfPn8fo0aMl14Q0bNgQAJCTk4P8/HyttU26XtehDBwePHigdbryMX5t5czIyMCsWbMQHBwsqZyPS1krdfPmTeTm5hpd2zRs2DCsXLkSrVu3xoYNG2Bra6t2u04KZ2dnuLi4QC6X486dO2YNmr766it89tlnaNCgAXbv3q0WsOmi7DbBUKDNmLXgfpoYY0/s5ZdfBgBs2rRJ8jw+Pj7w9/cHAMTHx2tMLyoqwk8//aR1XmXAlZ6ernW6su2SKcr5uLy8vNC6dWsoFAqsWbPGqHkHDRoEb29vbNu2DQsWLIBcLkf//v3RoEEDo8vxwgsvABBdQpjLjh07MGXKFLi5uSExMVHnbcyK/vzzTwDAiy++aLayMWZKHDQxxp7Y2LFj4evri59++gmzZs3SWgN069YtfPfdd2rjpk2bBkB0kHj+/HnV+NLSUsyYMQM3btzQuryuXbvCxsYGSUlJOHjwoGo8EWH58uU6297MnDkTNWvWxBdffIElS5bg0aNHGmkyMzOxfv16g+ssRUxMDADgvffe01qmc+fOaQ387OzsMGHCBJSUlGDx4sUAjGsAXl5YWBgA4Lfffnus+Q05duwYhgwZAhsbG2zevBlBQUGS51WWqWvXrmYpG2OmxkETY+yJubi4IDExEX5+fvjss8/QuHFjhIaG4t///jf69++PwMBANGjQQONlsW+++SZeffVV3Lx5E61bt0avXr0wZMgQBAQEIDY2FhMmTNC6vEaNGmHy5MlQKBTo1q0bwsLCMGDAAAQEBGDGjBl49913tc7n4+OD7du3o1atWpgxYwYaNWqEbt26YdiwYXj11VfRrFkz+Pv7Y+XKlSbZLv3798eCBQvw8OFDREREoGXLlhg8eDD69u2LwMBABAYG4ujRo1rnHTdunKpN0PPPP4/OnTs/Vhn69esHANi7d+9jzW/I7NmzUVBQAB8fH8THxyM6OlrrUFFaWhru3LmDkJAQ7tiSVRncpokxZhKBgYE4ffo0vv76a2zduhWnT5/Gb7/9Bk9PT/j4+GDGjBno37+/2jw2Njb4+eefsXz5cvznP/9BcnIyXF1d0bFjR2zduhVpaWlYvXq11uUtXboUjRs3RmxsLA4fPgxXV1d06NABmzZtQl5eHhYuXKh1vs6dO+Ps2bNYuXIlEhMTcfz4cRQVFaFevXpo3Lgxhg0bhgEDBphsu8yZMwddu3bF8uXLcejQIfz8889wc3NDo0aN8M477+isZalXrx6CgoJw9OhRvPnmm4+9/DZt2uCll17C4cOHkZ6eruoewVRKS0sBiBq6zMxMnekqPpmn/Pwk68ZYZZMREVm6EIwxpk1cXBxGjhyJqKgovY/DV0cXL15EixYt4OHhgevXr8PZ2fmx89q8eTMGDhyI6dOnY8mSJSYs5eN5+PAhGjVqBDs7O2RmZhp8yo4xa8G35xhjzAq9//77ICJMmDDhiQImQHSx0KFDB3zzzTdW0ZHkihUrkJOTg08//ZQDJlalcNDEGGNWYseOHRg9ejTat2+PhIQEeHl54Z133jFJ3itWrEBhYSE++ugjk+T3uHJzc7Fw4UKEhIRgxIgRFi0LY8biNk2MMWYlTpw4gTVr1sDNzQ3du3fHF198Iam/IynatGmjan9kSR4eHqr+mRirarhNE2OMMcaYBHx7jjHGGGNMAg6aGGOMMcYk4KCJMcYYY0wCDpoYY4wxxiTgoIkxxhhjTAIOmhhjjDHGJOCgiTHGGGNMAg6aGGOMMcYk4KCJMcYYY0yC/wPWC9k+PSFAWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.plot(avg_ps_gauss_leahy.freq, avg_ps_gauss_leahy.power, lw=2, color='red', zorder=10)\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.plot(avg_ps_gauss_frac.freq, avg_ps_gauss_frac.power, lw=2, color='red')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.plot(avg_ps_gauss_abs.freq, avg_ps_gauss_abs.power, lw=2, color='red')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the Leahy normalization, being normalized by the variance, yields *exactly* the same result in the Gaussian and the Poisson case, while the fractional rms (that depends on the mean count rate) and the absolute rms (that depend on the variance and the mean count rate) change." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Pulsar/Phase Dispersion Minimization.html b/notebooks/Pulsar/Phase Dispersion Minimization.html new file mode 100644 index 000000000..375f8f6c8 --- /dev/null +++ b/notebooks/Pulsar/Phase Dispersion Minimization.html @@ -0,0 +1,346 @@ + + + + + + + + Phase Dispersion Minimization in Stingray — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
# %load_ext autoreload
+# %autoreload 2
+# %matplotlib notebook
+
+import numpy as np
+from stingray.pulse.search import phase_dispersion_search
+import matplotlib.pyplot as plt
+import seaborn as sb
+import matplotlib as mpl
+mpl.rcParams['figure.figsize'] = (10, 6)
+
+
+
+
+

Phase Dispersion Minimization in Stingray

+

Phase dispersion minimization (PDM; Stellingwerf (1978)) is a method to search for strictly periodic signals in constant light curves (white noise only). Like Epoch Folding, it relies in folding a light curve at a given trial period, splitting the folded light curve into phase bins, and evaluating the resulting profile.

+

Epoch Folding evaluates how much the means in each phase bin deviate from the global sample mean, given the variance of the measurements. A periodic signal will generate a maximum in the Epoch Folding periodogram across many trial periods. In contrast, Phase Dispersion Minimization evaluates the variance in each phase bin and compares this to the global sample variance \(\hat{\sigma}\):

+

\begin{equation} +\theta_{\mathrm{PDM}} = \frac{1}{\hat{\sigma}} \frac{\sum_{ij}(x_{ij} - \bar{x}_j)^2}{N - M} \; +\end{equation}

+

for \(N\) measurements in the light curve split into \(M\) bins, and \(\bar{x}_j\) the mean of measurements in bin \(j\).

+

If a periodic signal is present in the data at a given trial period, the PDM statistic should have a minimum at that period.

+
+

Simulate a dataset

+

Let us simulate a simple data set: we create a sinusoidal light curve and add Poisson noise:

+
+
[2]:
+
+
+
def sinusoid(times, frequency, baseline, amplitude, phase):
+    return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))
+
+
+
+
+
[3]:
+
+
+
from stingray import Lightcurve
+
+period = 1.203501
+mean_countrate = 50
+pulsed_fraction = 0.2
+bin_time = 0.01
+obs_length = 300
+
+t = np.arange(0, obs_length, bin_time)
+
+# The continuous light curve
+counts = sinusoid(t, 1 / period, mean_countrate,
+                  0.5 * mean_countrate * pulsed_fraction, 0) * bin_time
+
+counts = np.random.poisson(counts)
+
+lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],
+                dt=bin_time)
+
+
+
+
+
+

Pulsation search with Phase Dispersion Minimization

+

Let us assume we have already an estimate of the true period, for example because we found a candidate in the power density spectrum with a period of ~1.2. We search around that period with the phase dispersion minimization.

+

The first thing we need to do is fold the light curve: for every data point, we convert the time of that bin to its corresponding phase. We then split the resulting phase-folded light curve into \(M\) phase bins, where \(M\) should strike a balance between generating enough bins to accurately represent the structure in the phase curve, but also few enough bins that the number of measurements in each bin is meaningful.

+

In regular epoch folding, we calculate the mean flux (or counts) within each bin as a useful statistic. Let’s do that first, because it gives us a nice visual representation. Note that when using a light curve (rather than event arrival times) in fold_events, you need to use set the weights keyword to the array of fluxes or counts:

+
+
[4]:
+
+
+
from stingray.pulse.pulsar import fold_events
+from stingray.pulse.search import plot_profile
+nbin = 16
+
+ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts)
+_ = plot_profile(ph, profile)
+
+ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts)
+_ = plot_profile(ph, profile)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png +
+
+

As you can see, folding at the correct period (blue line) generates a profile that looks approximately sinusoidal, whereas folding at a different period (orange line) does not.

+

For Phase Dispersion Minimization, we are not interested in the mean in each phase bin, but rather the variance in each phase bin, which we’d like to minimize, not maximize. We can also calculate that using fold_profile, using mode="pdm" (the default is Epoch Folding, mode="ef"):

+
+
[5]:
+
+
+
ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts, mode="pdm")
+_ = plot_profile(ph, profile)
+
+ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts, mode="pdm")
+_ = plot_profile(ph, profile)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png +
+
+

As you can see, this looks very different, and not quite as easily recognizeable. What you see here is the nominator of the second term in the PDM Equation written in the introduction.

+

We’d now like to try calculating this profile for a number of trial periods, and then calculate \(\theta_\mathrm{PDM}\). Our null hypothesis is that there is no variation in the data except for measurement noise (e.g. Poisson statistics as we have here, or Gaussian noise). This is implemenented in stingray.pulse.search.phase_dispersion_search.

+

For the frequency resolution of the periodogram, one usually chooses at least the same frequency resolution of the FFT, i. e., \(df_{\rm min}=1/(t_1 - t_0)\). In most cases, a certain degree of oversampling is used.

+

Let’s do that:

+
+
[6]:
+
+
+
# We will search for pulsations over a range of frequencies around the known pulsation period.
+df_min = 1/obs_length
+oversampling=15
+df = df_min / oversampling
+frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)
+
+freq, pdmstat = phase_dispersion_search(lc.time, lc.counts, frequencies, nbin=nbin)
+
+
+
+
+
[7]:
+
+
+
# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, pdmstat, label='PDM statistic')
+#plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')
+plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('PDM Statistics')
+_ = plt.legend()
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png +
+
+

A dip is definitely there at the frequency we expect it to be.

+

Unlike the Epoch Folding statistic, which follows approximately a \(\chi^2\) distribution, the PDM statistic was shown to follow a beta-distribution (Schwarzenberg-Czerny, 1997).

+

We can use this beta-distribution to calculate the significance of a peak found in the PDM periodogram, or to set a detection threshold. In stingray, this is implemented in the stingray.stats module, using stingray.stats.phase_dispersion_detection_level and stingray.stats.phase_dispersion_probability:

+
+
[8]:
+
+
+
from stingray.stats import phase_dispersion_detection_level, phase_dispersion_probability
+
+# number of trials (the number of independent frequencies)
+# we searched over
+ntrial = int((frequencies[-1] - frequencies[0]) / df_min)
+
+# number of time bins in the light curve
+nsamples = len(lc.time)
+
+pdm_det_level = phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=ntrial)
+
+# ---- PLOTTING --------
+plt.figure()
+plt.axhline(pdm_det_level, label='PDM det. lev.', color='gray')
+
+plt.plot(freq, pdmstat, color='gray', label='PDM statistics', alpha=0.5)
+
+#for c in cand_freqs_ef:
+#    plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)
+#for c in cand_freqs_z:
+#    plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)
+
+plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')
+plt.xlim([frequencies[0], frequencies[-1]])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('PDM Statistics')
+plt.legend()
+
+
+
+
+
[8]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f8680267130>
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png +
+
+

Let’s also calculate the significance of the deepest dip:

+
+
[9]:
+
+
+
min_idx = np.argmin(pdmstat)
+
+pval = phase_dispersion_probability(pdmstat[min_idx], nsamples, nbin, ntrial=ntrial)
+
+print(f"The probability of the minimum at {freq[min_idx]} Hz is: p = {pval}")
+
+
+
+
+
+
+
+
+The probability of the minimum at 0.8313536003155265 Hz is: p = 4.221416326686607e-15
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Pulsar/Phase Dispersion Minimization.ipynb b/notebooks/Pulsar/Phase Dispersion Minimization.ipynb new file mode 100644 index 000000000..4f875520e --- /dev/null +++ b/notebooks/Pulsar/Phase Dispersion Minimization.ipynb @@ -0,0 +1,333 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import phase_dispersion_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Phase Dispersion Minimization in Stingray\n", + "\n", + "Phase dispersion minimization (PDM; Stellingwerf (1978)) is a method to search for strictly periodic signals in constant light curves (white noise only). Like Epoch Folding, it relies in folding a light curve at a given trial period, splitting the folded light curve into phase bins, and evaluating the resulting profile. \n", + "\n", + "Epoch Folding evaluates how much the means in each phase bin deviate from the global sample mean, given the variance of the measurements. A periodic signal will generate a maximum in the Epoch Folding periodogram across many trial periods. In contrast, Phase Dispersion Minimization evaluates the *variance* in each phase bin and compares this to the global sample variance $\\hat{\\sigma}$:\n", + "\n", + "\\begin{equation}\n", + "\\theta_{\\mathrm{PDM}} = \\frac{1}{\\hat{\\sigma}} \\frac{\\sum_{ij}(x_{ij} - \\bar{x}_j)^2}{N - M} \\;\n", + "\\end{equation}\n", + "\n", + "for $N$ measurements in the light curve split into $M$ bins, and $\\bar{x}_j$ the mean of measurements in bin $j$.\n", + "\n", + "If a periodic signal is present in the data at a given trial period, the PDM statistic should have a *minimum* at that period.\n", + "\n", + "## Simulate a dataset\n", + "\n", + "Let us simulate a simple data set: we create a sinusoidal light curve and add Poisson noise:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 300\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "\n", + "counts = np.random.poisson(counts)\n", + "\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pulsation search with Phase Dispersion Minimization\n", + "\n", + "Let us assume we have already an estimate of the true period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the phase dispersion minimization.\n", + "\n", + "The first thing we need to do is *fold* the light curve: for every data point, we convert the time of that bin to its corresponding phase. We then split the resulting phase-folded light curve into $M$ phase bins, where $M$ should strike a balance between generating enough bins to accurately represent the structure in the phase curve, but also few enough bins that the number of measurements in each bin is meaningful.\n", + "\n", + "In regular epoch folding, we calculate the mean flux (or counts) within each bin as a useful statistic. Let's do that first, because it gives us a nice visual representation. Note that when using a light curve (rather than event arrival times) in `fold_events`, you need to use set the `weights` keyword to the array of fluxes or counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCOklEQVR4nO3de3wU9b3/8feQbDYJhiUByUVDxApBLrVcPBC0IiWEi4C3ipZKuUlRKzQKWhGRYBUqVaAHvNT+UDgg4LGA1eoBQSXK4aIEsCKIUhGhEKNtSAiEJCTz+4PD1jUJkM18s7vZ1/Px2MeDnfnud74zLJ/hvXOzbNu2BQAAAABwVJNADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChoqqqSocPH1ZcXJwsywr0cAAAAAAEiG3bOnbsmFJSUtSkSe3Hrwhb5+nw4cNKTU0N9DAAAAAABImDBw/q4osvrnU+Yes8xcXFSTq9QZs1axbg0QAAAAAIlOLiYqWmpnozQm0IW+fpzKmDzZo1I2wBAAAAOOflRdwgAwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jN/1apV6t+/v1q2bCnLsrRz585qfZSVlWnChAlq2bKlmjZtqqFDh+rQoUM+bQoLCzVixAh5PB55PB6NGDFCR48eNbdiAAAAAMJeQMPW8ePHdcUVV2jBggW1zr/qqqv0u9/9rtY+srOztXr1aq1YsUIbN25USUmJBg8erMrKSm+b4cOHa+fOnVqzZo3WrFmjnTt3asSIEY6vDwAAAACcYdm2bQd6ENLpe9SvXr1aN9xwQ7V5X375pdq0aaMdO3boRz/6kXd6UVGRLrzwQi1ZskS33nqrJOnw4cNKTU3Vm2++qf79+2vPnj3q0KGDtmzZoh49ekiStmzZooyMDH366adKT08/r/EVFxfL4/GoqKiI52wBAAAAYex8s0FIX7OVl5eniooKZWVleaelpKSoU6dO2rRpkyRp8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvkI6bOXn5ysqKkrx8fE+0xMTE5Wfn+9t06pVq2qfbdWqlbdNTWbNmuW9xsvj8Sg1NdXZwQMAAABo1EI6bNXGtm1ZluV9/90/19bm+6ZMmaKioiLv6+DBg0bGCgAAAKBxCumwlZSUpPLychUWFvpMLygoUGJiorfN119/Xe2z33zzjbdNTdxut5o1a+bzAgAAAIDzFdJhq1u3bnK5XFq3bp132pEjR7Rr1y716tVLkpSRkaGioiJ98MEH3jZbt25VUVGRtw0AAAAAOC0ykAsvKSnRvn37vO/379+vnTt3KiEhQa1bt9a//vUvffXVVzp8+LAkae/evZJOH61KSkqSx+PR2LFjNWnSJLVo0UIJCQmaPHmyOnfurMzMTEnS5ZdfrgEDBmjcuHH64x//KEn65S9/qcGDB5/3nQgBAAAAoK4Ceuv3DRs2qE+fPtWmjxw5UosWLdKiRYs0evToavOnT5+unJwcSdLJkyd1//33a9myZSotLVXfvn31zDPP+NzQ4l//+pcmTpyo1157TZI0dOhQLViwQM2bNz/vsXLrdwAAAADS+WeDoHnOVrAjbAEAAACQzj8bBPQ0QiAQbNtWaUWlkb5jXBFnvcslAOD8mKzVEvUaQMMgbCGs2Latnz63WXkHCs/d2A/d0+L1yp0Z7MABoB5M12qJeg2gYYT03QiBuiqtqDS68952oNDoL7EAEA5M12qJeg2gYXBkC2Fr28OZio2KcKSvE+WV6v7Yekf6AgD8m5O1WqJeA2hYhC2ErdioCMVG8U8AAIIZtRpAKOM0QgAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMhADwCoiW3bKq2odLzfE+XO99lQy4hxRciyLCN9A4A/QrlWm1wO9RrAGYQtBB3btvXT5zYr70BhoIfil+6PrTfTb1q8Xrkzgx04gKAQ6rVaol4DMI/TCBF0Sisqje+8u6fFK8YV4Vh/Ma4IdU+Ld6y/mmw7UGjkF2QA8Eco1mqJeg2gYQX0yNZ7772n3//+98rLy9ORI0e0evVq3XDDDd75tm1rxowZev7551VYWKgePXro6aefVseOHb1trr32WuXm5vr0e+utt2rFihXe94WFhZo4caJee+01SdLQoUM1f/58NW/e3Oj6of62PZyp2Chnd7SS86d4WJalV+7MMHY6jalfXwHACaFSqyXqNYCGFdCwdfz4cV1xxRUaPXq0br755mrzZ8+erTlz5mjRokVq166dHnvsMfXr10979+5VXFyct924ceP06KOPet/HxMT49DN8+HAdOnRIa9askST98pe/1IgRI/T6668bWjM4JTYqQrFRoXG2q2VZITNWAHBSKNVqiXoNoOEEtNIMHDhQAwcOrHGebduaN2+epk6dqptuukmStHjxYiUmJmrZsmUaP368t21sbKySkpJq7GfPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venq6w2sFmMPF3AAQGkzUa2o1EHqC9med/fv3Kz8/X1lZWd5pbrdbvXv31qZNm3zC1ksvvaSlS5cqMTFRAwcO1PTp071HvjZv3iyPx+MNWpLUs2dPeTwebdq0qdawVVZWprKyMu/74uJip1cRqDMu5gaA0GCiXlOrgdATtDfIyM/PlyQlJib6TE9MTPTOk6Sf//znWr58uTZs2KBp06Zp5cqV3iNhZ/pp1apVtf5btWrl08/3zZo1Sx6Px/tKTU2t7yoBfuFibgAIDabrNbUaCD1Be2TrjO//emPbts+0cePGef/cqVMntW3bVt27d9f27dvVtWvXGvuoqZ/vmzJliu677z7v++LiYgIXAoKLuQEgNJiq19RqIHQFbdg6cw1Wfn6+kpOTvdMLCgqqHe36rq5du8rlcunzzz9X165dlZSUpK+//rpau2+++eas/bjdbrnd7nqsAeAcLuYGgNBAvQbwXUF7GmGbNm2UlJSkdevWeaeVl5crNzdXvXr1qvVzn3zyiSoqKrwBLSMjQ0VFRfrggw+8bbZu3aqioqKz9gMAAAAA9RHQn15KSkq0b98+7/v9+/dr586dSkhIUOvWrZWdna2ZM2eqbdu2atu2rWbOnKnY2FgNHz5ckvT3v/9dL730kgYNGqSWLVtq9+7dmjRpkrp06aKrrrpKknT55ZdrwIABGjdunP74xz9KOn3r98GDB3MnQgAAAADGBDRsbdu2TX369PG+P3ON1MiRI7Vo0SI98MADKi0t1d133+19qPFbb73lvdNgVFSU3n77bf3hD39QSUmJUlNTdd1112n69OmKiPj3wxVfeuklTZw40Xtnw6FDh2rBggUNuKYAAAAAwk1Aw9a1114r27ZrnW9ZlnJycpSTk1Pj/NTUVOXm5p5zOQkJCVq6dKm/wwQAAACAOgvaa7YAAAAAIJQRtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGBAZKAHAMNsW6o4Ya5/V6xkWeb6B4BwQb0GgEaHsNWY2bb0Qn/p4FZzy0jtKY1Zww4cAOqDeg0AjRKnETZmFSfM7rgl6eAWs7/EAkA4oF4DQKPEka1wMXmfFBXrXH/lJ6QnL3OuPwDAadRrAGg0CFvhIipWimoa6FEAAM6Feg0AjQanEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwAaDduWKk6Y698VK1mWuf4BIFxQrwE0EMIW4ATbll7oLx3cam4ZqT2lMWvYgQNAfVCvATQgTiMEnFBxwuyOW5IObjH7SywAhAPqNYAGxJEtwGmT90lRsc71V35CevIy5/oDAJxGvQZgGGELcFpUrBTVNNCjAACcC/UagGGcRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jPftm3l5OQoJSVFMTExuvbaa/XJJ5/4tCkrK9OECRPUsmVLNW3aVEOHDtWhQ4d82hQWFmrEiBHyeDzyeDwaMWKEjh49anjtAAAAAISzgIat48eP64orrtCCBQtqnD979mzNmTNHCxYs0IcffqikpCT169dPx44d87bJzs7W6tWrtWLFCm3cuFElJSUaPHiwKisrvW2GDx+unTt3as2aNVqzZo127typESNGGF8/AAAAAOErMpALHzhwoAYOHFjjPNu2NW/ePE2dOlU33XSTJGnx4sVKTEzUsmXLNH78eBUVFWnhwoVasmSJMjMzJUlLly5Vamqq1q9fr/79+2vPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venp6w6wsAAAAgLAStNds7d+/X/n5+crKyvJOc7vd6t27tzZt2iRJysvLU0VFhU+blJQUderUydtm8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvoI2bOXn50uSEhMTfaYnJiZ65+Xn5ysqKkrx8fFnbdOqVatq/bdq1crbpiazZs3yXuPl8XiUmppar/UBAAAAEF6CNmydYVmWz3vbtqtN+77vt6mp/bn6mTJlioqKiryvgwcP1nHkAAAAAMJZ0IatpKQkSap29KmgoMB7tCspKUnl5eUqLCw8a5uvv/66Wv/ffPNNtaNm3+V2u9WsWTOfFwAAAACcr6ANW23atFFSUpLWrVvnnVZeXq7c3Fz16tVLktStWze5XC6fNkeOHNGuXbu8bTIyMlRUVKQPPvjA22br1q0qKirytgEAAAAApwX0boQlJSXat2+f9/3+/fu1c+dOJSQkqHXr1srOztbMmTPVtm1btW3bVjNnzlRsbKyGDx8uSfJ4PBo7dqwmTZqkFi1aKCEhQZMnT1bnzp29dye8/PLLNWDAAI0bN05//OMfJUm//OUvNXjwYO5ECAAAAMCYgIatbdu2qU+fPt739913nyRp5MiRWrRokR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3s/MnTtXkZGRGjZsmEpLS9W3b18tWrRIERER3jYvvfSSJk6c6L1r4dChQ2t9thcAAAAAOCGgYevaa6+Vbdu1zrcsSzk5OcrJyam1TXR0tObPn6/58+fX2iYhIUFLly6tz1BxFifKT0k65WB/leduBACoMyfrNbUaAM4toGELocu2bZ25l2O3x9arVNEBHQ8AoGbUawAInKC9QQaCW2mF+V80u6fFK8YVce6GAIBama7X1GoAqB1HtlBv7z/QR7EXOH9r/BhXxDmfqQYAOH8m6jW1GgBqR9hCvcVGRSg2iq8SAAQ76jUANCxOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMiAz0ANAIVJyQyg18lVyxkmU53y8AhCsT9ZpaDQC1Imyh3mL/0N5Mx6k9pTFr2IkDgEOM1GtqNQDUitMI4R9XrD6samd2GQe3nP4VFgDgP9P1mloNALXiyBb8Y1m6pXy6YlSmvIczFRvl4Fep/IT05GXO9QcA4cxUvaZWA8A5EbZQD5ZKFS1FNZWcDFsAAIdRrwEgEDiNEAAAAAAM4OcthB/bdv76gnKuVwAAR5mo1RL1GkCDImwhvNi29EJ/6eDWQI8EAFAbajWARoLTCBFeKk6Y3Xmn9jz9zBkAgP9M12qJeg2gQXBkC+Fr8j4pyuEdLQ/3BABnmajVEvUaQIMgbCF8RcWevjMX0FBMXYMi8R9HNF7UajQ0k7Vaol6HGcJWqKlLAeAiYCB4mL4GJbWnNGYNO3DTuGkD0Lg1xPWC1OuwQtgKNRUnpJkpgR4FgLoyfQ3KwS2nl8ERAHO4aQPQ+DXE9YLU67BC2KqjUS98IFdM4P5xuKtO6r/q+Jk9rg6a9v92OvoLSpVte//8i4UfKKKJc31/dx1/sfADlTWJDom+TfnumMf9v/dUZjk35krbVoxOqlRux/8e4cvn77HVCsf+Ht32Sf2p4DZJofOdDlXuqpP6r6/N/icslOo1tbo6U/WaWt1wTNVqiXrd2FSUHj+vdoStEFNmufWLxFfPq61t2/r062P65liEdOyo0XGhYZwp0o6Klj6saqcn7HmS2IE3hDIr2rmdbJUz3aBunP5PGPW68XG8XlOrG5yjtVqiXocpwlaosazz3sFXVtn6pqzU6HAucEeKH9jMKrPc+tTVQe0rdhtbxpVNPpNbZTqlGGPLABoTp/8TRr1uHEzXa2o1EHoIW2Gia+vmamLgQswmlmRxgadZlqXpLZ6S2y5zvOvIqlK98M3PHO8XgP+o1yHMUL2mVgOhi7AVJppYFud4h7I6HNGsi8rvXMsBIDhQr0OcgXpNrQZCV5NADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAv8LW9u3b9fHHH3vf/+Uvf9ENN9yghx56SOXl5Y4NDgAAAABClV9ha/z48frss88kSV988YVuu+02xcbG6pVXXtEDDzzg6AABAAAAIBT5FbY+++wz/ehHP5IkvfLKK7rmmmu0bNkyLVq0SCtXrnRyfAAAAAAQkvwKW7Ztq6qqSpK0fv16DRo0SJKUmpqqb7/91rnRAQAAAECI8itsde/eXY899piWLFmi3NxcXXfddZKk/fv3KzEx0dEBAgAAAEAoivTnQ3PnztXtt9+uV199VVOnTtVll10mSfrzn/+sXr16OTpAAMD5cdsnpSrn+y2z3JJlOd8xAIQp6nX48CtsXXHFFT53Izzj97//vSIj/eoSAFBPfyq4zUi/n7o6aHqLp9iBA4BDqNfhw6/TCC+99FL985//rDb95MmTateuXb0HBQA4P2WWW5+6OhhdRvuK3XLbZUaXAQCNHfU6PPl1GOrLL79UZWVltellZWU6dOhQvQf1XceOHdO0adO0evVqFRQUqEuXLvrDH/6gK6+8UpI0atQoLV682OczPXr00JYtW3zGNXnyZC1fvlylpaXq27evnnnmGV188cWOjhUAGpxlaXqLp4zsXN32SWO/vgJA2KFeh6U6ha3XXnvN++e1a9fK4/F431dWVurtt99WmzZtnBudpDvuuEO7du3SkiVLlJKSoqVLlyozM1O7d+/WRRddJEkaMGCAXnzxRe9noqKifPrIzs7W66+/rhUrVqhFixaaNGmSBg8erLy8PEVERDg6XgBocJalMiva+X4NXE8AAGGNeh126hS2brjhBkmSZVkaOXKkzzyXy6VLLrlETz31lGODKy0t1cqVK/WXv/xF11xzjSQpJydHr776qp599lk99thjkiS3262kpKQa+ygqKtLChQu1ZMkSZWZmSpKWLl2q1NRUrV+/Xv3793dsvAAAAABwRp2u2aqqqlJVVZVat26tgoIC7/uqqiqVlZVp7969Gjx4sGODO3XqlCorKxUd7fsLQExMjDZu3Oh9v2HDBrVq1Urt2rXTuHHjVFBQ4J2Xl5eniooKZWVleaelpKSoU6dO2rRpk2NjBQAAAIDv8uuarf379zs9jhrFxcUpIyNDv/3tb3X55ZcrMTFRy5cv19atW9W2bVtJ0sCBA3XLLbcoLS1N+/fv17Rp0/STn/xEeXl5crvdys/PV1RUlOLj4336TkxMVH5+fq3LLisrU1nZv8+pLS4uNrOSAAAAABolv+/T/vbbb+vtt9/2HuH6rhdeeKHeAztjyZIlGjNmjC666CJFRESoa9euGj58uLZv3y5JuvXWW71tO3XqpO7duystLU1vvPGGbrrpplr7tW1b1lluizlr1izNmDHDsfUAAAAAEF78uvX7jBkzlJWVpbffflvffvutCgsLfV5O+sEPfqDc3FyVlJTo4MGD+uCDD1RRUVHrjTiSk5OVlpamzz//XJKUlJSk8vLyauMqKChQYmJircudMmWKioqKvK+DBw86t1IAAAAAGj2/jmw999xzWrRokUaMGOH0eGrVtGlTNW3aVIWFhVq7dq1mz55dY7t//vOfOnjwoJKTkyVJ3bp1k8vl0rp16zRs2DBJ0pEjR7Rr165a+5BO33TD7XY7vyIAAAAAwoJfYau8vFy9evVyeiw1Wrt2rWzbVnp6uvbt26f7779f6enpGj16tEpKSpSTk6Obb75ZycnJ+vLLL/XQQw+pZcuWuvHGGyVJHo9HY8eO1aRJk9SiRQslJCRo8uTJ6ty5s/fuhAAAAADgNL9OI7zjjju0bNkyp8dSo6KiIv3qV79S+/bt9Ytf/EJXX3213nrrLblcLkVEROjjjz/W9ddfr3bt2mnkyJFq166dNm/erLi4OG8fc+fO1Q033KBhw4bpqquuUmxsrF5//XWesQUAAADAGL+ObJ08eVLPP/+81q9frx/+8IdyuVw+8+fMmePI4CRp2LBh3tP/vi8mJkZr1649Zx/R0dGaP3++5s+f79i4AAAAAOBs/Apbf/vb3/SjH/1IkrRr1y6feWe7wx8AAAAAhAu/wta7777r9DiAGrntk1LVudvVqT8AgKOo1QBQM7+fswU0hD8V3BboIQAAzoFaDQA18yts9enT56ynC77zzjt+Dwgos9z61NVB7St2G1vGp64OKrO4tT8A+ItaDQDn5lfYOnO91hkVFRXauXOndu3apZEjRzoxLoQzy9L0Fk/JbZcZW0SZ5Za4vhAA/EetBoBz8itszZ07t8bpOTk5KikpqdeAAEmSZanMig70KAAAZ0OtBoCz8us5W7W5/fbb9cILLzjZJQAAAACEJEfD1ubNmxUdzS9cAAAAAODXaYQ33XSTz3vbtnXkyBFt27ZN06ZNc2RgAAAAABDK/ApbHo/H532TJk2Unp6uRx99VFlZWY4MDAAAAABCmV9h68UXX3R6HAAAAADQqNTrocZ5eXnas2ePLMtShw4d1KVLF6fGBQAAAAAhza+wVVBQoNtuu00bNmxQ8+bNZdu2ioqK1KdPH61YsUIXXnih0+MEAAAAgJDi190IJ0yYoOLiYn3yySf617/+pcLCQu3atUvFxcWaOHGi02ME0ACqbFuVVc6+bNsO9GoBQKNiolZTrwFz/DqytWbNGq1fv16XX365d1qHDh309NNPc4MMIETtPHhUpTrpaJ8XuCPVITlOlmU52i8AhCsTtVqiXgOm+HVkq6qqSi6Xq9p0l8ulqqqqeg8KQMNw9EF7NSgpO6UqfiwFgHoxXasl6jVgil9Htn7yk5/o17/+tZYvX66UlBRJ0j/+8Q/de++96tu3r6MDBGDOd3/B7No6XmWWMw8lr7Jtbf/qqCN9AUC4M1WrJeo1YJpfYWvBggW6/vrrdckllyg1NVWWZemrr75S586dtXTpUqfHCKABRFiWIpo4dPoIB7gbHbd90sjfa5nlljhtCThvjtZqiXrdCJmo19Rq//kVtlJTU7V9+3atW7dOn376qWzbVocOHZSZmen0+AAAQeBPBbcZ6fdTVwdNb/EUO3EAcIiJek2t9l+dTgN+55131KFDBxUXF0uS+vXrpwkTJmjixIm68sor1bFjR73//vtGBgoAaFhlllufujoYXUb7it1y22VGlwEAjZ3pek2t9l+djmzNmzdP48aNU7NmzarN83g8Gj9+vObMmaMf//jHjg0QABAglqXpLZ4ysoN12yeNHS0DgLBjqF5Tq+uvTmHro48+0hNPPFHr/KysLD355JP1HhQAIEhYlqMX43txnQgAOMtEvaZW11udTiP8+uuva7zl+xmRkZH65ptv6j0oAAAAAAh1dQpbF110kT7++ONa5//tb39TcnJyvQcFAAAAAKGuTmFr0KBBeuSRR3TyZPUnl5eWlmr69OkaPHiwY4MDAAAAgFBVp2u2Hn74Ya1atUrt2rXTPffco/T0dFmWpT179ujpp59WZWWlpk6damqsAAAAABAy6hS2EhMTtWnTJt11112aMmWKbNuWdPrJ5v3799czzzyjxMREIwMFAAAAgFBS54cap6Wl6c0331RhYaH27dsn27bVtm1bxcfHmxgfADQs2zZ2q3MAgIMM1GtqNZxW57B1Rnx8vK688konxwKgEaqybSO3jm1inT6q7ijb1qP/nKT0it3O9ouzctsnjXxHyiy35PR3BGjEqNc4G2q1f/wOWwBwPrZ/ddRIvxe4I9UhOc7RHbjbLjO+4/7U1eH0jgVeph6Y+amrg6a3eKpR78QBJ1Gv/41aXR212j+ELQCOa2Kd3rmWlJ0ytoySslOqsqUIQ7V5XKsVRh7m29h/wTtfZZZbn7o6qL3B/yy1r9gtt11m5qHMQCNBva4Ztfo0anX9EbYAOM6yLHVIjlOV7XzfVbZt7NfX7yqzolXWpHEW/qBgWZre4ilj18eZ+gUWaGyo1zgranW9EbYAGGFZlplfMQ2cL44AsSwzv2TyHQHqhHqNs6JW10udHmoMAAAAADg/hC0AAAAAMIDTCAGYYeh5VZW2rRidVKm4SxQAOIJ6DRhD2ALgPNPPP4mWPqxqpyfseZK4WxQA+I16DRjFaYQAHNcQz6u6sslncsv5X2IBIJxQrwGzOLIFwCinn38SWVWqF775mWP9AQBOo14DziNsATDK6eefVNoGHgYDAKBeAwZwGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgFu/AwhZbvukIqosR/sDADiPeo1wRdgCELJ4WCYAhAbqNcIVpxECCCllcuvDqnZGl/Gpq4PKLLfRZQBAY0e9BjiyFXJs21bVeT6QvYont6MxsizdUj5dMSpT19bxirCcOy3ljDLLLRnoF41HpW2r8nyL8XmgXqNRol4DhK1QU2VL2w4UBnoYQIBZKlW0yqxoRTRhJ4uGYX8nEG3/qlClig7gaIBQQb1GeOM0wjBwgTtS1DcAqJ+qBlgG9RoAGheObIWYJpbUPS2+zp+xOMQOAI75UWpzVTSJcbxf6jUANC6ErRBjWZYi2A8DQEA1sSxOiQIAnJNl21yVez6Ki4vl8XhUVFSkZs2aBXo4gDPKj0szU07/+aHDUlTT4O5X0onyU+rwyFpJ0u5H+ys2it+M8D2Gvn8nSooU+2Tr03+e/JViL/A40i9wTgZrKvUaAWPye90AzjcbcM0WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADAj6sHXs2DFlZ2crLS1NMTEx6tWrlz788EPvfNu2lZOTo5SUFMXExOjaa6/VJ5984tNHWVmZJkyYoJYtW6pp06YaOnSoDh061NCrAgAAACCMBH3YuuOOO7Ru3TotWbJEH3/8sbKyspSZmal//OMfkqTZs2drzpw5WrBggT788EMlJSWpX79+OnbsmLeP7OxsrV69WitWrNDGjRtVUlKiwYMHq7KyMlCrBQAAAKCRC+qwVVpaqpUrV2r27Nm65pprdNlllyknJ0dt2rTRs88+K9u2NW/ePE2dOlU33XSTOnXqpMWLF+vEiRNatmyZJKmoqEgLFy7UU089pczMTHXp0kVLly7Vxx9/rPXr1wd4DQEAAAA0VkEdtk6dOqXKykpFR0f7TI+JidHGjRu1f/9+5efnKysryzvP7Xard+/e2rRpkyQpLy9PFRUVPm1SUlLUqVMnb5ualJWVqbi42OcFAAAAAOcrqMNWXFycMjIy9Nvf/laHDx9WZWWlli5dqq1bt+rIkSPKz8+XJCUmJvp8LjEx0TsvPz9fUVFRio+Pr7VNTWbNmiWPx+N9paamOrx2AAAAABqzoH+U95IlSzRmzBhddNFFioiIUNeuXTV8+HBt377d28ayLJ/P2LZdbdr3navNlClTdN9993nfFxcXE7gAIMScKD8l6ZRDfVUq1pGeAADfVddaHeOKOOf/9YNF0IetH/zgB8rNzdXx48dVXFys5ORk3XrrrWrTpo2SkpIknT56lZyc7P1MQUGB92hXUlKSysvLVVhY6HN0q6CgQL169ap1uW63W26329BaAQBMsW1bZ3bB3R5br1JFn7X9+YrRSe1xpisACHv1qdW7H+2v2KigjzGSgvw0wu9q2rSpkpOTVVhYqLVr1+r666/3Bq5169Z525WXlys3N9cbpLp16yaXy+XT5siRI9q1a9dZwxYAIDSVVpi/02yMK8L4MgCgMWuIWh0Mgj4Srl27VrZtKz09Xfv27dP999+v9PR0jR49WpZlKTs7WzNnzlTbtm3Vtm1bzZw5U7GxsRo+fLgkyePxaOzYsZo0aZJatGihhIQETZ48WZ07d1ZmZmaA1w4AYNL7D/RR7AXNnOms/Lj05Ok/hsrpKwAQCupaq0PpB6+gD1tFRUWaMmWKDh06pISEBN188816/PHH5XK5JEkPPPCASktLdffdd6uwsFA9evTQW2+9pbi4OG8fc+fOVWRkpIYNG6bS0lL17dtXixYtUkRE6PxFAQDqLjYqwsFTTYJ+lwkAIcnZWh1cgn6thg0bpmHDhtU637Is5eTkKCcnp9Y20dHRmj9/vubPn29ghAAAAABQXchcswUAAAAAoYSwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AAPDXifJKI/3GuCJkWZaRvgEgHFGvEa4IWwBCVvfH1pvpNy1er9yZwQ4cABxCvUa44jRCACElxhWh7mnxRpex7UChSivM/AoLAOGCeg1wZAtAiLEsS6/cmWFk53qivNLYr68AEG6o1wBhC0AIsixLsVGULwAIdtRrhDtOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGcC9OAAhxtm0bfahnjCtClmUZ6x8AwgX1OvwQtgAghNm2rZ8+t1l5BwqNLaN7WrxeuTODHTgA1AP1OjxxGiEAhLDSikqjO25J2nag0OgvsQAQDqjX4YkjWwBQgxPlZnZWJk/x2PZwpmKjIhzr70R5pbo/tt6x/gDABBP12vTpeNTr8EHYAoAamNppmTzFIzYqQrFRlHUA4cVEvTZ9Oh71OnxwGiEA/J8YV4S6p8UbXQaneABA/Zmu19RqOIVIDQD/x7IsvXJnhpEdLKd4AIBzTNVrajWcRtgCgO+wLItTOwAgBFCvEQo4jRAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwABu4QIAOKcT5WaeNxPjijD20FAACEcm6jW12n+ELQDAOZl67kz3tHi9cmcGO3EAcIiJek2t9h+nEQIAahTjilD3tHijy9h2oNDIQ6QBIJyYrtfUav9xZAsAUCPLsvTKnRlGdrAnyiuNHS0DgHBjql5Tq+uPsAUAqJVlWYqNYlcBAMGOeh2cOI0QAAAAAAwI6rB16tQpPfzww2rTpo1iYmJ06aWX6tFHH1VVVZW3zahRo2RZls+rZ8+ePv2UlZVpwoQJatmypZo2baqhQ4fq0KFDDb06AAAAAMJIUB9rfOKJJ/Tcc89p8eLF6tixo7Zt26bRo0fL4/Ho17/+tbfdgAED9OKLL3rfR0VF+fSTnZ2t119/XStWrFCLFi00adIkDR48WHl5eYqIiGiw9QEAAAAQPoI6bG3evFnXX3+9rrvuOknSJZdcouXLl2vbtm0+7dxut5KSkmrso6ioSAsXLtSSJUuUmZkpSVq6dKlSU1O1fv169e/f3+xKAAAAAAhLQX0a4dVXX623335bn332mSTpo48+0saNGzVo0CCfdhs2bFCrVq3Url07jRs3TgUFBd55eXl5qqioUFZWlndaSkqKOnXqpE2bNtW67LKyMhUXF/u8AAAAAOB8BfWRrd/85jcqKipS+/btFRERocrKSj3++OP62c9+5m0zcOBA3XLLLUpLS9P+/fs1bdo0/eQnP1FeXp7cbrfy8/MVFRWl+HjfZw8kJiYqPz+/1mXPmjVLM2bMMLZuAIDTTpQ7f6viWEd7BABQq/0T1GHr5Zdf1tKlS7Vs2TJ17NhRO3fuVHZ2tlJSUjRy5EhJ0q233upt36lTJ3Xv3l1paWl64403dNNNN9Xat23bZ30K9pQpU3Tfffd53xcXFys1NdWBtQIAfJfTz3CJ0UntiXa0SwAIe9Rq/wR12Lr//vv14IMP6rbbbpMkde7cWQcOHNCsWbO8Yev7kpOTlZaWps8//1ySlJSUpPLychUWFvoc3SooKFCvXr1qXbbb7Zbb7XZwbQAAZ8S4ItQ9LV7bDhQaXw4AwD/U6voL6rB14sQJNWnie1lZRESEz63fv++f//ynDh48qOTkZElSt27d5HK5tG7dOg0bNkySdOTIEe3atUuzZ882N3gAQK0sy9Ird2aotMLZ01IkSeXHpSf/vRwAgH+o1fUX1GFryJAhevzxx9W6dWt17NhRO3bs0Jw5czRmzBhJUklJiXJycnTzzTcrOTlZX375pR566CG1bNlSN954oyTJ4/Fo7NixmjRpklq0aKGEhARNnjxZnTt39t6dEADQ8CzLUmyUid1QUO/aACCkUKvrJ6jXcv78+Zo2bZruvvtuFRQUKCUlRePHj9cjjzwi6fRRro8//lj/9V//paNHjyo5OVl9+vTRyy+/rLi4OG8/c+fOVWRkpIYNG6bS0lL17dtXixYt4hlbAAAAAIwJ6rAVFxenefPmad68eTXOj4mJ0dq1a8/ZT3R0tObPn6/58+c7PEIAAAAAqFlQP2cLAAAAAEIVYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwCAcHOivDIo+wIA/JvT9ZV6HZ4IWwDQwLo/tj7QQwAAnAO1Gk7gNEIAaAAxrgh1T4s31n/3tHjFuCKM9Q8A4cB0rZao1+GGI1sA0AAsy9Ird2aotMLMaSQxrghZlmWkbwAIF6ZrtUS9DjeELQBoIJZlKTaKsgsAwYxaDSdxGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHcagXAaeUngrMvAMC/OV1fqdeAUYQtAKc9eVmgRwAAOBdqNRBSOI0QCGeuWCm1p7n+U3ueXgYAwH+ma7VEvQYM4cgWEM4sSxqzRqowdBqJK/b0MgAA/jNdqyXqNWAIYQsId5YlRTUN9CgAAGdDrQZCUlCfRnjq1Ck9/PDDatOmjWJiYnTppZfq0UcfVVVVlbeNbdvKyclRSkqKYmJidO211+qTTz7x6aesrEwTJkxQy5Yt1bRpUw0dOlSHDh1q6NUBAAAAEEaCOmw98cQTeu6557RgwQLt2bNHs2fP1u9//3vNnz/f22b27NmaM2eOFixYoA8//FBJSUnq16+fjh075m2TnZ2t1atXa8WKFdq4caNKSko0ePBgVVZWBmK1AAAAAISBoD6NcPPmzbr++ut13XXXSZIuueQSLV++XNu2bZN0+qjWvHnzNHXqVN10002SpMWLFysxMVHLli3T+PHjVVRUpIULF2rJkiXKzMyUJC1dulSpqalav369+vfvH5iVAwAAANCoBfWRrauvvlpvv/22PvvsM0nSRx99pI0bN2rQoEGSpP379ys/P19ZWVnez7jdbvXu3VubNm2SJOXl5amiosKnTUpKijp16uRtU5OysjIVFxf7vAAAAADgfAX1ka3f/OY3KioqUvv27RUREaHKyko9/vjj+tnPfiZJys/PlyQlJib6fC4xMVEHDhzwtomKilJ8fHy1Nmc+X5NZs2ZpxowZTq4OAAAAgDAS1Ee2Xn75ZS1dulTLli3T9u3btXjxYj355JNavHixTzvre7cqtW272rTvO1ebKVOmqKioyPs6ePCg/ysCAAAAIOwE9ZGt+++/Xw8++KBuu+02SVLnzp114MABzZo1SyNHjlRSUpKk00evkpOTvZ8rKCjwHu1KSkpSeXm5CgsLfY5uFRQUqFevXrUu2+12y+12m1gtAAAAAGEgqI9snThxQk2a+A4xIiLCe+v3Nm3aKCkpSevWrfPOLy8vV25urjdIdevWTS6Xy6fNkSNHtGvXrrOGLQAAAACoj6A+sjVkyBA9/vjjat26tTp27KgdO3Zozpw5GjNmjKTTpw9mZ2dr5syZatu2rdq2bauZM2cqNjZWw4cPlyR5PB6NHTtWkyZNUosWLZSQkKDJkyerc+fO3rsTAgAAAIDTgjpszZ8/X9OmTdPdd9+tgoICpaSkaPz48XrkkUe8bR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3jZz585VZGSkhg0bptLSUvXt21eLFi1SREREIFYLAAAAQBiwbNu2Az2IUFBcXCyPx6OioiI1a9Ys0MMBANSm/Lg0M+X0nx86LEU1De5+ASAchXhNPd9sENTXbAEAAABAqArq0wgBAKiX8hPB2RcA4N/qWl9dsdI5HvMULAhbAIDG68nLAj0CAMC51LVWh9Bph5xGCABoXFyxUmpPc/2n9jy9DACA/0zX6iDBkS0AQONiWdKYNVKFodP+Quj0FQAIWvWp1SH0gxdhCwDQ+FhWyJxiAgBhKwxqNacRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGRgR5AqLBtW5JUXFwc4JEAAAAACKQzmeBMRqgNYes8HTt2TJKUmpoa4JEAAAAACAbHjh2Tx+Opdb5lnyuOQZJUVVWlw4cPKy4uTpZlOd5/cXGxUlNTdfDgQTVr1szx/vFvbOuGwXZuOGzrhsO2bjhs64bDtm44bOuGY3pb27atY8eOKSUlRU2a1H5lFke2zlOTJk108cUXG19Os2bN+MfXQNjWDYPt3HDY1g2Hbd1w2NYNh23dcNjWDcfktj7bEa0zuEEGAAAAABhA2AIAAAAAAwhbQcLtdmv69Olyu92BHkqjx7ZuGGznhsO2bjhs64bDtm44bOuGw7ZuOMGyrblBBgAAAAAYwJEtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYMuSZZ55RmzZtFB0drW7duun9998/a/vc3Fx169ZN0dHRuvTSS/Xcc89Va7Ny5Up16NBBbrdbHTp00OrVq00NP6TUZVuvWrVK/fr104UXXqhmzZopIyNDa9eu9WmzaNEiWZZV7XXy5EnTqxL06rKtN2zYUON2/PTTT33a8b2uWV229ahRo2rc1h07dvS24Xtd3XvvvachQ4YoJSVFlmXp1VdfPednqNX+qeu2plb7r67bmlrtv7pua2q1f2bNmqUrr7xScXFxatWqlW644Qbt3bv3nJ8LlnpN2DLg5ZdfVnZ2tqZOnaodO3boxz/+sQYOHKivvvqqxvb79+/XoEGD9OMf/1g7duzQQw89pIkTJ2rlypXeNps3b9att96qESNG6KOPPtKIESM0bNgwbd26taFWKyjVdVu/99576tevn958803l5eWpT58+GjJkiHbs2OHTrlmzZjpy5IjPKzo6uiFWKWjVdVufsXfvXp/t2LZtW+88vtc1q+u2/sMf/uCzjQ8ePKiEhATdcsstPu34Xvs6fvy4rrjiCi1YsOC82lOr/VfXbU2t9l9dt/UZ1Oq6q+u2plb7Jzc3V7/61a+0ZcsWrVu3TqdOnVJWVpaOHz9e62eCql7bcNx//Md/2HfeeafPtPbt29sPPvhgje0feOABu3379j7Txo8fb/fs2dP7ftiwYfaAAQN82vTv39++7bbbHBp1aKrrtq5Jhw4d7BkzZnjfv/jii7bH43FqiI1GXbf1u+++a0uyCwsLa+2T73XN6vu9Xr16tW1Zlv3ll196p/G9PjtJ9urVq8/ahlrtjPPZ1jWhVtfd+WxrarUz/PleU6v9U1BQYEuyc3Nza20TTPWaI1sOKy8vV15enrKysnymZ2VladOmTTV+ZvPmzdXa9+/fX9u2bVNFRcVZ29TWZzjwZ1t/X1VVlY4dO6aEhASf6SUlJUpLS9PFF1+swYMHV/s1NdzUZ1t36dJFycnJ6tu3r959912feXyvq3Pie71w4UJlZmYqLS3NZzrf6/qhVgcOtdo8anXDo1b7p6ioSJKq1YPvCqZ6Tdhy2LfffqvKykolJib6TE9MTFR+fn6Nn8nPz6+x/alTp/Ttt9+etU1tfYYDf7b19z311FM6fvy4hg0b5p3Wvn17LVq0SK+99pqWL1+u6OhoXXXVVfr8888dHX8o8WdbJycn6/nnn9fKlSu1atUqpaenq2/fvnrvvfe8bfheV1ff7/WRI0f0P//zP7rjjjt8pvO9rj9qdeBQq82hVgcGtdo/tm3rvvvu09VXX61OnTrV2i6Y6nWko73By7Isn/e2bVebdq72359e1z7Dhb/bZfny5crJydFf/vIXtWrVyju9Z8+e6tmzp/f9VVddpa5du2r+/Pn6z//8T+cGHoLqsq3T09OVnp7ufZ+RkaGDBw/qySef1DXXXONXn+HE3+2yaNEiNW/eXDfccIPPdL7XzqBWNzxqtVnU6sCgVvvnnnvu0d/+9jdt3LjxnG2DpV5zZMthLVu2VERERLVUXFBQUC09n5GUlFRj+8jISLVo0eKsbWrrMxz4s63PePnllzV27Fj993//tzIzM8/atkmTJrryyivD+lel+mzr7+rZs6fPduR7XV19trVt23rhhRc0YsQIRUVFnbUt3+u6o1Y3PGp1YFCrzaJW+2fChAl67bXX9O677+riiy8+a9tgqteELYdFRUWpW7duWrdunc/0devWqVevXjV+JiMjo1r7t956S927d5fL5Tprm9r6DAf+bGvp9K+ko0aN0rJly3Tdddedczm2bWvnzp1KTk6u95hDlb/b+vt27Njhsx35XldXn22dm5urffv2aezYsedcDt/ruqNWNyxqdeBQq82iVteNbdu65557tGrVKr3zzjtq06bNOT8TVPXa0dttwLZt216xYoXtcrnshQsX2rt377azs7Ptpk2beu828+CDD9ojRozwtv/iiy/s2NhY+95777V3795tL1y40Ha5XPaf//xnb5v//d//tSMiIuzf/e539p49e+zf/e53dmRkpL1ly5YGX79gUtdtvWzZMjsyMtJ++umn7SNHjnhfR48e9bbJycmx16xZY//973+3d+zYYY8ePdqOjIy0t27d2uDrF0zquq3nzp1rr1692v7ss8/sXbt22Q8++KAtyV65cqW3Dd/rmtV1W59x++232z169KixT77X1R07dszesWOHvWPHDluSPWfOHHvHjh32gQMHbNumVjuprtuaWu2/um5rarX/6rqtz6BW181dd91lezwee8OGDT714MSJE942wVyvCVuGPP3003ZaWpodFRVld+3a1ef2lCNHjrR79+7t037Dhg12ly5d7KioKPuSSy6xn3322Wp9vvLKK3Z6errtcrns9u3b+xTCcFaXbd27d29bUrXXyJEjvW2ys7Pt1q1b21FRUfaFF15oZ2Vl2Zs2bWrANQpeddnWTzzxhP2DH/zAjo6OtuPj4+2rr77afuONN6r1yfe6ZnWtIUePHrVjYmLs559/vsb++F5Xd+aW17XVA2q1c+q6ranV/qvrtqZW+8+fGkKtrruatrEk+8UXX/S2CeZ6bf3fSgAAAAAAHMQ1WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgCEtQ0bNsiyLB09ejTQQwEANDKELQBAozdq1ChZliXLsuRyuXTppZdq8uTJOn78eKCHBgBoxCIDPQAAABrCgAED9OKLL6qiokLvv/++7rjjDh0/fly33nproIcGAGikOLIFAAgLbrdbSUlJSk1N1fDhw/Xzn/9cr776qnd+Xl6eunfvrtjYWPXq1Ut79+71zvv73/+u66+/XomJibrgggt05ZVXav369T79P/PMM2rbtq2io6OVmJion/70p955tm1r9uzZuvTSSxUTE6MrrrhCf/7zn42vMwAgsAhbAICwFBMTo4qKCu/7qVOn6qmnntK2bdsUGRmpMWPGeOeVlJRo0KBBWr9+vXbs2KH+/ftryJAh+uqrryRJ27Zt08SJE/Xoo49q7969WrNmja655hrv5x9++GG9+OKLevbZZ/XJJ5/o3nvv1e23367c3NyGW2EAQIOzbNu2Az0IAABMGjVqlI4ePeo9kvXBBx9o0KBB6tu3r+666y716dNH69evV9++fSVJb775pq677jqVlpYqOjq6xj47duyou+66S/fcc49WrVql0aNH69ChQ4qLi/Npd/z4cbVs2VLvvPOOMjIyvNPvuOMOnThxQsuWLTOz0gCAgOOaLQBAWPjrX/+qCy64QKdOnVJFRYWuv/56zZ8/X7t375Yk/fCHP/S2TU5OliQVFBSodevWOn78uGbMmKG//vWvOnz4sE6dOqXS0lLvka1+/fopLS1Nl156qQYMGKABAwboxhtvVGxsrHbv3q2TJ0+qX79+PuMpLy9Xly5dGmjtAQCBQNgCAISFPn366Nlnn5XL5VJKSopcLpckecPWmfeSZFmWJKmqqkqSdP/992vt2rV68sknddlllykmJkY//elPVV5eLkmKi4vT9u3btWHDBr311lt65JFHlJOTow8//NDbxxtvvKGLLrrIZ0xut9vsSgMAAoqwBQAIC02bNtVll13m12fff/99jRo1SjfeeKOk09dwffnllz5tIiMjlZmZqczMTE2fPl3NmzfXO++8o379+sntduurr75S796967saAIAQQtgCAOAcLrvsMq1atUpDhgyRZVmaNm2a94iVdPoUxS+++ELXXHON4uPj9eabb6qqqkrp6emKi4vT5MmTde+996qqqkpXX321iouLtWnTJl1wwQUaOXJkANcMAGASYQsAgHOYO3euxowZo169eqlly5b6zW9+o+LiYu/85s2ba9WqVcrJydHJkyfVtm1bLV++XB07dpQk/fa3v1WrVq00a9YsffHFF2revLm6du2qhx56KFCrBABoANyNEAAAAAAM4DlbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADDg/wOZVCSCE2gOPQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 16\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, folding at the correct period (blue line) generates a profile that looks approximately sinusoidal, whereas folding at a different period (orange line) does not. \n", + "\n", + "For Phase Dispersion Minimization, we are not interested in the *mean* in each phase bin, but rather the *variance* in each phase bin, which we'd like to _minimize_, not maximize. We can also calculate that using `fold_profile`, using `mode=\"pdm\"` (the default is Epoch Folding, `mode=\"ef\"`):\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIOCAYAAABOCBf1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFgUlEQVR4nO3de3QU5f3H8c+QbDYJhjWBkosGxIIol1puPwhaEblfvVWk1BxARNSfUBS0IiLBKlSqgAXvBw3l6s8KVquCoIJSLkIAK4IgihgKMVZDQiAkIZnfH5StaxIgm3myu9n365w9J7vz7DPPDLvf5bPPzKxl27YtAAAAAICj6gV6AAAAAABQFxG2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAZEBnoAoaK8vFyHDh1SXFycLMsK9HAAAAAABIht2zp69KhSUlJUr94Z5q/sAFq3bp09cOBAOzk52ZZkr1ixwmf5a6+9Zvfu3dtu2LChLcnevn17hT66detmS/K53XzzzT5tfvjhB/uWW26xGzRoYDdo0MC+5ZZb7Ly8vGqNNTs7u8J6uHHjxo0bN27cuHHjFr637OzsM2aIgM5sHTt2TJdffrlGjhypG2+8sdLlV1xxhW666SaNHj26yn5Gjx6tRx55xHs/JibGZ/mwYcN08OBBrVy5UpJ0++23Kz09XW+++eY5jzUuLk6SlJ2drQYNGpzz8wAAAADULQUFBUpNTfVmhKoENGz169dP/fr1q3J5enq6JOnrr78+Yz+xsbFKSkqqdNnu3bu1cuVKbdq0SZ07d5Ykvfjii0pLS9OePXvUsmXLcxrr6UMHGzRoQNgCAAAAcNbTi+rEBTIWL16sRo0aqXXr1po4caKOHj3qXbZx40Z5PB5v0JKkLl26yOPxaMOGDVX2WVxcrIKCAp8bAAAAAJyrkL9Axm9/+1s1a9ZMSUlJ2rlzpyZNmqRPPvlEq1evliTl5OSocePGFZ7XuHFj5eTkVNnvjBkzNG3aNGPjBgAAAFC3hXzY+vG5XG3atFGLFi3UsWNHbdu2Te3bt5dU+fSebdtnnPabNGmS7r33Xu/908dlAgAAAMC5qBOHEf5Y+/bt5XK59MUXX0iSkpKS9O2331Zo99133ykxMbHKftxut/f8LM7TAgAAAFBddS5sffbZZyotLVVycrIkKS0tTfn5+fr444+9bTZv3qz8/Hx17do1UMMEAAAAUMcF9DDCwsJC7du3z3t///792rFjhxISEtSkSRP98MMP+uabb3To0CFJ0p49eySdmq1KSkrSl19+qcWLF6t///5q1KiRdu3apQkTJqhdu3a64oorJEmXXXaZ+vbtq9GjR+v555+XdOrS7wMHDjznKxECAAAAQHVZtm3bgVr52rVr1b179wqPDx8+XJmZmcrMzNTIkSMrLJ86daoyMjKUnZ2tW265RTt37lRhYaFSU1M1YMAATZ06VQkJCd72P/zwg8aNG6c33nhDkjR48GDNmzdP559//jmPtaCgQB6PR/n5+RxSCAAAAISxc80GAQ1boYSwBQAAAEA692xQ587ZAgAAAIBgQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMCAyEAPAKhttm2rqLTMSN8xrghZlmWkbwAIJyZrtUS9BlA7CFsIK7Zt69fPbVTWgTwj/XdsGq9X70jjAxwAasB0rZao1wBqB4cRIqwUlZYZ/fDeeiDP6DexABAOTNdqiXoNoHYws4WwtfWhnoqNinCkr+MlZer46BpH+gIA/JeTtVqiXgOoXYQthK3YqAjFRvEWAIBgRq0GEMo4jBAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADAgoGHrww8/1KBBg5SSkiLLsvT666/7LF++fLn69OmjRo0aybIs7dixo0IfxcXFGjt2rBo1aqT69etr8ODBOnjwoE+bvLw8paeny+PxyOPxKD09XUeOHDG3YQAAAADCXkDD1rFjx3T55Zdr3rx5VS6/4oor9Mc//rHKPsaPH68VK1Zo2bJlWr9+vQoLCzVw4ECVlZV52wwbNkw7duzQypUrtXLlSu3YsUPp6emObw8AAAAAnBYZyJX369dP/fr1q3L56UD09ddfV7o8Pz9f8+fP18KFC9WzZ09J0qJFi5Samqo1a9aoT58+2r17t1auXKlNmzapc+fOkqQXX3xRaWlp2rNnj1q2bOnsRgEAAACAQvycraysLJWWlqp3797ex1JSUtSmTRtt2LBBkrRx40Z5PB5v0JKkLl26yOPxeNtUpri4WAUFBT43AAAAADhXIR22cnJyFBUVpfj4eJ/HExMTlZOT423TuHHjCs9t3Lixt01lZsyY4T3Hy+PxKDU11dnBAwAAAKjTAnoYoSm2bcuyLO/9H/9dVZufmjRpku69917v/YKCAgIXzsnxkrKzN/JDjCvijK9ZAED1UK8BmBbSYSspKUklJSXKy8vzmd3Kzc1V165dvW2+/fbbCs/97rvvlJiYWGXfbrdbbrfb+UGjzuv46Boz/TaN16t3pPEBDgAOoV4DMC2kDyPs0KGDXC6XVq9e7X3s8OHD2rlzpzdspaWlKT8/Xx9//LG3zebNm5Wfn+9tA9RUjCtCHZvGn71hDWw9kKeiUjPfwgJAuKBeA6hNAZ3ZKiws1L59+7z39+/frx07dighIUFNmjTRDz/8oG+++UaHDh2SJO3Zs0fSqdmqpKQkeTwejRo1ShMmTFDDhg2VkJCgiRMnqm3btt6rE1522WXq27evRo8ereeff16SdPvtt2vgwIFciRCOsSxLr96RZuTD9XhJmbFvXwEg3FCvAdSmgIatrVu3qnv37t77p8+RGj58uDIzM/XGG29o5MiR3uVDhw6VJE2dOlUZGRmSpNmzZysyMlJDhgxRUVGRevTooczMTEVERHift3jxYo0bN8571cLBgwdX+dtegL8sy1JsVEgfmQsAYYF6DaC2BLTSXH311bJtu8rlI0aM0IgRI87YR3R0tObOnau5c+dW2SYhIUGLFi3yd5gAAAAAUG0hfc4WAAAAAAQrwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABgQ0bH344YcaNGiQUlJSZFmWXn/9dZ/ltm0rIyNDKSkpiomJ0dVXX63PPvvMp83VV18ty7J8bkOHDvVpk5eXp/T0dHk8Hnk8HqWnp+vIkSOGtw4AAABAOAto2Dp27Jguv/xyzZs3r9LlM2fO1KxZszRv3jxt2bJFSUlJ6tWrl44ePerTbvTo0Tp8+LD39vzzz/ssHzZsmHbs2KGVK1dq5cqV2rFjh9LT041tFwAAAABEBnLl/fr1U79+/SpdZtu25syZo8mTJ+uGG26QJC1YsECJiYlasmSJxowZ420bGxurpKSkSvvZvXu3Vq5cqU2bNqlz586SpBdffFFpaWnas2ePWrZs6fBWAQAAAEAQn7O1f/9+5eTkqHfv3t7H3G63unXrpg0bNvi0Xbx4sRo1aqTWrVtr4sSJPjNfGzdulMfj8QYtSerSpYs8Hk+Ffn6suLhYBQUFPjcAAAAAOFcBndk6k5ycHElSYmKiz+OJiYk6cOCA9/5vf/tbNWvWTElJSdq5c6cmTZqkTz75RKtXr/b207hx4wr9N27c2LuOysyYMUPTpk1zYlMAAAAAhKGgDVunWZblc9+2bZ/HRo8e7f27TZs2atGihTp27Kht27apffv2lfZRWT8/NWnSJN17773e+wUFBUpNTfV7OwAAAACEl6A9jPD0OVg/nX3Kzc2tMNv1Y+3bt5fL5dIXX3zh7efbb7+t0O677747Yz9ut1sNGjTwuQEAAADAuQrasHX60MDThwNKUklJidatW6euXbtW+bzPPvtMpaWlSk5OliSlpaUpPz9fH3/8sbfN5s2blZ+ff8Z+AAAAAKAmAnoYYWFhofbt2+e9v3//fu3YsUMJCQlq0qSJxo8fr+nTp6tFixZq0aKFpk+frtjYWA0bNkyS9OWXX2rx4sXq37+/GjVqpF27dmnChAlq166drrjiCknSZZddpr59+2r06NHeS8LffvvtGjhwIFciBAAAAGBMQMPW1q1b1b17d+/90+dIDR8+XJmZmbr//vtVVFSku+66S3l5eercubPeffddxcXFSZKioqL03nvv6amnnlJhYaFSU1M1YMAATZ06VREREd5+Fy9erHHjxnmvbDh48OAqf9sLAAAAAJwQ0LB19dVXy7btKpdblqWMjAxlZGRUujw1NVXr1q0763oSEhK0aNEif4cJAAAAANUWtOdsAQAAAEAoI2wBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGSgBwCzbNtWUWmZsf5jXBGyLMtY/wAQLqjXAFD3ELbqMNu29evnNirrQJ6xdXRsGq9X70jjAxwAaoB6DQB1E4cR1mFFpWVGP7glaeuBPKPfxAJAOKBeA0DdxMxWmNj6UE/FRkU41t/xkjJ1fHSNY/0BAE6hXgNA3UHYChOxURGKjeKfGwCCHfUaAOoODiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AoDK2bauotMzxfo+XON8nAIQrajUAnBlhC0HHtm39+rmNyjqQF+ihAACqQK0GgLML6GGEH374oQYNGqSUlBRZlqXXX3/dZ7lt28rIyFBKSopiYmJ09dVX67PPPvNpU1xcrLFjx6pRo0aqX7++Bg8erIMHD/q0ycvLU3p6ujwejzwej9LT03XkyBHDWwd/FZWWGf/w7tg0XjGuCKPrAIC6jFoNAGcX0JmtY8eO6fLLL9fIkSN14403Vlg+c+ZMzZo1S5mZmbrkkkv06KOPqlevXtqzZ4/i4uIkSePHj9ebb76pZcuWqWHDhpowYYIGDhyorKwsRUScKtDDhg3TwYMHtXLlSknS7bffrvT0dL355pu1t7EBYytGxVLJMTn6z11yUjE6oSK5neuzElsf6qnYKOc/aGNcEbIsy/F+AcB/oVuvqdUAULmAhq1+/fqpX79+lS6zbVtz5szR5MmTdcMNN0iSFixYoMTERC1ZskRjxoxRfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59tHv3bq1cuVKbNm1S586dJUkvvvii0tLStGfPHrVs2bJ2NjYQbFt/jZqmjvX2Sk8423WspN3R0pbySyS7j7Od/3g9URGKjeJoVwB1XIjXa2o1AFQuaK9GuH//fuXk5Kh3797ex9xut7p166YNGzZIkrKyslRaWurTJiUlRW3atPG22bhxozwejzdoSVKXLl3k8Xi8beqs0uOnPrgN6lRvr1R63Og6AKDOo14DQJ0UtF9D5eTkSJISExN9Hk9MTNSBAwe8baKiohQfH1+hzenn5+TkqHHjxhX6b9y4sbdNZYqLi1VcXOy9X1BQ4N+GBInjv/tcsfUbONffsQLFPnWpY/0BAE6hXgNA3RG0Yeu0nx6rbdv2WY/f/mmbytqfrZ8ZM2Zo2rRp1RxtEHPFSlH1neuv5KRzfQEA/ot6DQB1RtAeRpiUlCRJFWafcnNzvbNdSUlJKikpUV5e3hnbfPvttxX6/+677yrMmv3YpEmTlJ+f771lZ2fXaHsAAAAAhJegDVvNmjVTUlKSVq9e7X2spKRE69atU9euXSVJHTp0kMvl8mlz+PBh7dy509smLS1N+fn5+vjjj71tNm/erPz8fG+byrjdbjVo0MDnBgAAAADnKqCHERYWFmrfvn3e+/v379eOHTuUkJCgJk2aaPz48Zo+fbpatGihFi1aaPr06YqNjdWwYcMkSR6PR6NGjdKECRPUsGFDJSQkaOLEiWrbtq336oSXXXaZ+vbtq9GjR+v555+XdOrS7wMHDqzbVyIEAAAAEFABDVtbt25V9+7dvffvvfdeSdLw4cOVmZmp+++/X0VFRbrrrruUl5enzp0769133/X+xpYkzZ49W5GRkRoyZIiKiorUo0cPZWZmen9jS5IWL16scePGea9aOHjwYM2bN6+WthIAAABAOApo2Lr66qtl23aVyy3LUkZGhjIyMqpsEx0drblz52ru3LlVtklISNCiRYtqMlQACF62bfaS3q5YiR+WBYCao16HnaC/GiEA1BkmPmRtW3q5r5TzqbP9/lhqF+nWlXyAAwgPpgIR9TosEbZCTXUKAD9eCQQP25Ze6iNlbw70SKove9OpeuLk5chDlan/hFGvgeAQyrVaol4HIcJWqCk9Lk1POaemsYaHAqAaSo+b/fBOaiuNdPjbzJLj0hPNnesv1Bn8Txj1GggSpmu1RL0OM4StMLCl/BK1dvFRDgSNifukKIffkxynb14t/CeMeg0EERO1WqJehxnCVqhxxUoPHjqnpsdLTqrDo2tUJLd28aYGgkdULId4hDqH/xNGvQaCELUaDiBshRrLqsYb/6SKFG10OAAQlhz/Txj1GgDqonqBHgAAAAAA1EWELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYEBnoAQA4d8dLyoz0G+OKkGVZRvoGgHBkol5Tq4HQQ9gCQkjHR9eY6bdpvF69I40PcQBwiIl6Ta0GQo9fhxFu27ZNn376qff+3/72N1133XV68MEHVVJS4tjgAJz6JrNj03ij69h6IE9FpWZmzQAgXJiu19RqIPT4NbM1ZswYPfDAA2rbtq2++uorDR06VNdff71effVVHT9+XHPmzHF4mED4sixLr96RZuQD9nhJmbHZMgAIN6bqNbUaCF1+ha29e/fql7/8pSTp1Vdf1VVXXaUlS5boH//4h4YOHUrYAhxmWZZiozjqFwCCHfUawI/5dRihbdsqLy+XJK1Zs0b9+/eXJKWmpurf//63c6MDAAAAgBDlV9jq2LGjHn30US1cuFDr1q3TgAEDJEn79+9XYmKiowMEAAAAgFDkV9iaPXu2tm3bprvvvluTJ09W8+bNJUl//etf1bVrV0cHCAAAAAChyK+Dii+//HKfqxGe9qc//UmRkRynDAAAAAB+zWxdfPHF+v777ys8fuLECV1yySU1HhQAAAAAhDq/wtbXX3+tsrKKlzUtLi7WwYMHazwoAAAAAAh11Trm74033vD+vWrVKnk8Hu/9srIyvffee2rWrJlzowMAAACAEFWtsHXddddJOvUbEsOHD/dZ5nK5dNFFF+nJJ590bHDB6On39ym6/nmBHsY5KS0r9/497/19ckX4NZFZuZJjuuc/fz6/7ispqr5jXRsdN3ywr2tPZFmRxv7n77nv79PJiJiAjudchOKYTTK5P0KxXlM/ag/7uvaEat0L1XGHshPHCs+pXbXC1unf1mrWrJm2bNmiRo0aVX9kQF1l24osP2Gs+5P1oiXLMtY/UOt4zyBQeO0B5473S434denA/fv3Oz0OILTZtm7+9DalHP2nsVX8K+5y/V/bF+t0QUIY4T2DQOG1B5w73i815vd12t977z299957ys3N9c54nfbSSy/VeGBAKIksP2G0EEnSBUc/UWT5CQ4NQJ3AewaBwmsPOHe8X2rOr7A1bdo0PfLII+rYsaOSk5Nl1dEkWpktX/8gV0xxoIdxTsrKbe/fH+//QRH1nPt3iiwr8v699UCeTkY4N71sctySJNuW23b239Bt/3f7RzdepmIr2tG+X8wdKknasv8HFddzrm/j+xpe7h8dguH0v6MpJsf8475D5T1jcn+EYr0OxVothWa9plbXnlCs1ZK5cYdira4tpUXHzqmdX2HrueeeU2ZmptLT0/15OhA4tq1Hvp+glqW7jK2i2Ip2tmCUn70JEMp4z6CCWqjVEq89oDp4v/jHr8vZlJSUqGvXrk6PBTDObRcb/fD+3NVKxZbbWP8AEA5M12qJeg2gdvg1s3XbbbdpyZIlmjJlitPjAWqN09Phkk59cIfRYbUAYJqJWi1RrwHUDr/C1okTJ/TCCy9ozZo1+sUvfiGXy+WzfNasWY4MDjDJ8elwAIDjqNUAQplfYeuf//ynfvnLX0qSdu7c6bMsnC6WAQAAAABV8StsffDBB06PAwAAAADqFL8ukAEAAAAAODO/Zra6d+9+xsMF33//fb8HBAAAAAB1gV9h6/T5WqeVlpZqx44d2rlzp4YPH+7EuABUwm2fcPR3KcpsWzE6oSJx+WMAcJKT9ZpaDYQuv8LW7NmzK308IyNDhYWFNRoQgKqd/qV1R0VLW8ov0eP2HElc4AYAnOB4vaZWAyHJ0XO2brnlFr300ktOdgmEvWLLrc9drYyuo1O9vXKr2Og6AKCuM12vqdVA6PFrZqsqGzduVHQ0v4UBOMqyNLXhk3Lbzn/ARpYX6aXvfuN4vwAQlgzVa2o1ELr8Cls33HCDz33btnX48GFt3bpVU6ZMcWRgpx09elRTpkzRihUrlJubq3bt2umpp55Sp06dJEkjRozQggULfJ7TuXNnbdq0yXu/uLhYEydO1NKlS1VUVKQePXromWee0YUXXujoWAFjLEvFlvNfZJTZtuN9AkBYM1CvqdVA6PIrbHk8Hp/79erVU8uWLfXII4+od+/ejgzstNtuu007d+7UwoULlZKSokWLFqlnz57atWuXLrjgAklS37599fLLL3ufExUV5dPH+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sRERGOjhcAAAAAJD/D1o+DjUlFRUV67bXX9Le//U1XXXWVpFMX4Xj99df17LPP6tFHH5Ukud1uJSUlVdpHfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59amVbAAAAAISXGl0gIysrS4sWLdLixYu1fft2p8bkdfLkSZWVlVU4DywmJkbr16/33l+7dq0aN26sSy65RKNHj1Zubq7PGEtLS31m3FJSUtSmTRtt2LDB8TEDAAAAgOTnzFZubq6GDh2qtWvX6vzzz5dt28rPz1f37t21bNky/exnP3NkcHFxcUpLS9Mf/vAHXXbZZUpMTNTSpUu1efNmtWjRQpLUr18/3XTTTWratKn279+vKVOm6JprrlFWVpbcbrdycnIUFRWl+Ph4n74TExOVk5NT5bqLi4tVXPzfE1wLCgoc2SYAAAAA4cGvma2xY8eqoKBAn332mX744Qfl5eVp586dKigo0Lhx4xwd4MKFC2Xbti644AK53W79+c9/1rBhw7znWt18880aMGCA2rRpo0GDBumdd97R3r179dZbb52xX9u2ZVlV/07FjBkz5PF4vLfU1FRHtwsAAABA3eZX2Fq5cqWeffZZXXbZZd7HWrVqpaefflrvvPOOY4OTpJ///Odat26dCgsLlZ2drY8//lilpaVq1qxZpe2Tk5PVtGlTffHFF5KkpKQklZSUKC8vz6ddbm6uEhMTq1zvpEmTlJ+f771lZ2c7t1EAAAAA6jy/wlZ5eblcLleFx10ul8rLy2s8qMrUr19fycnJysvL06pVq3TttddW2u77779Xdna2kpOTJUkdOnSQy+XS6tWrvW0OHz6snTt3qmvXrlWuz+12q0GDBj43AAAAADhXfoWta665Rr/73e906NAh72P/+te/dM8996hHjx6ODU6SVq1apZUrV2r//v1avXq1unfvrpYtW2rkyJEqLCzUxIkTtXHjRn399ddau3atBg0apEaNGun666+XdOoy9aNGjdKECRP03nvvafv27brlllvUtm1b79UJAQAAAMBpfl0gY968ebr22mt10UUXKTU1VZZl6ZtvvlHbtm21aNEiRweYn5+vSZMm6eDBg0pISNCNN96oxx57TC6XSydPntSnn36qv/zlLzpy5IiSk5PVvXt3vfLKK4qLi/P2MXv2bEVGRmrIkCHeHzXOzMzkN7YAAAAAGONX2EpNTdW2bdu0evVqff7557JtW61atTIyUzRkyBANGTKk0mUxMTFatWrVWfuIjo7W3LlzNXfuXKeHBwAAAACVqtZhhO+//75atWrlvQx6r169NHbsWI0bN06dOnVS69at9dFHHxkZKAAAAACEkmqFrTlz5mj06NGVXizC4/FozJgxmjVrlmODAwAAAIBQVa2w9cknn6hv375VLu/du7eysrJqPCgAAAAACHXVClvffvttpZd8Py0yMlLfffddjQcFAAAAAKGuWhfIuOCCC/Tpp5+qefPmlS7/5z//6f19K4QPt31CEeWWY/2V2bZidEJFcjvWJwDA2XpNrQaAs6tW2Orfv78efvhh9evXT9HR0T7LioqKNHXqVA0cONDRASL4vfTdb5zvNFraUn6JHrfnSHIuyAFAOHO8XlOrAeCMqhW2HnroIS1fvlyXXHKJ7r77brVs2VKWZWn37t16+umnVVZWpsmTJ5saK4JIsdzaUn6JOtXba2wdnertlVvFOqkYY+sAgLrOdL2mVgNA1aoVthITE7VhwwbdeeedmjRpkmzbliRZlqU+ffromWeeUWJiopGBIshYlm4qmaoYFat9k3hFWM59oxlZXmRmtgwAwpGhek2tBoCzq/aPGjdt2lRvv/228vLytG/fPtm2rRYtWig+Pt7E+BDULBUpWsVWtCLqOXvOFgDASc7Xa2o1AJxdtcPWafHx8erUqZOTYwGAwLNtue1ix7t12ycc7xMAwpqBek2thtP8DlsA6pZy21ZZubPfVNezTh1mHDJsW498P0EtS3cFeiQAUCkTtVqiXgOmELYASJJ2ZB9RkZz9Ru88d6RaJceFzAe42y42/sH9uauVii0ulQ3APyZqtUS9/ilqNZxC2ALCWLV+1dwPhcUnVW5LEaHx2e1jdONlKraiz96wmoottxQi/5kBEBxM12qJev1T1Go4hbCFGiu3bancuf7qcdJ1rfnxN5jtm8Q79mFVbtva9s0R799Ovj5OM33IS7EVreJ6zoctIJCcfD9Sq2uPqVotUa8B0whbqLHTRdopMTohUTNrXYRlOXdVyR99WDv9+jgt1A55AYKBk+9HanVgOFqrJeo1YFhtzEyjDqpnnSqextdjfA0woTZeH6cPeQFwZrXxfqRWhy7qNWAWM1vwi2VZapUcZ6R4uu0TUu5/14PQY/L18eNDXgCcnan3I7W6bqBeA2YRtuA3y7KMnEgbUc6Hdl1g6vVh4nwCoK4z8X6kVtcd1GvAHGb+AQAAAMAAwhYAAAAAGMBhhACAs3LbJxw9JMhtO/+jrAAAZ+s1tbrmCFsAgLN6MXdooIcAADgH1OvgwmGEAIBKFVtufe5qZXQdn7taqdhyG10HANR1pus1tdp/zGwhqHHoEhBAlqWpDZ+U2y42topiyy1x2fCQR60GAsxwvaZW+4+whaDGVDgQYJalYis60KNAkKNWA0GAeh2UOIwQQYdDlwAg+FGrAeDsmNlC8OHQJQAOKbNtlZXbjvWFH6FWA3BIdWt1PevUj3GHAsIWghNT4QD8ZP8oFG37Jk9FcqaWxOiETndlE7xOoVYD8FNNanXHpvGKCI2sxWGEAIC6xcHrNAR0HQBQl4VLHWVmCwBQZ/0y9XyV1otxpC9XeZH0nSNdAQB+pLq1ul6IzGpJhC0Apti2kXM5ymxbMTqhInHSPM6unmUpwqFP5Xp2CH26A9VBvUaAOVmrgw1hC4DzbFuPfD9BLUt3mek/WtpSfoket+dIqpvFGQBqBfUaMIpztgA4zm0Xm/vg/o9O9fbKLXNXQQOAcEC9BsxiZguAUaMbL3P0amWR5UV66bvfONYfAOAU6jXgPMIWAKOKrWgV13Puw5vfOgIAM6jXgPM4jBAAAAAADGBmK8TYtq1z/YHtcr5RAgAjym1bZedajM+xPwBA3UPYCjHltrT1QF6ghwEAYW1H9hEV6USghwEACHIcRhgGznNHhtSPvwFAMKqND0zqNQDULcxshZh6ltSxaXy1n2NZfHoDQE38uI62bxLv6FXbTqNeA0DdQtgKMZZlKYLPYUCS5LZPKKLcuTeE2+awMJybCMtSBFNQwDmjXiNcEbYAhCx+vwUAQgP1GuGKc7YAhJRiubWl/BKj6/jc1UrFltvoOgCgrqNeA8xsAQg1lqWbSqYqRsVq3yReEQbObym23BLnzQBAzVCvAcIWgFBkqUjRKraiOW8GAIIa9RrhjbBVTZ0uSlB0/fMCPQzAEZFlRdK3p/7u1CxBJyNigrpfSSotK/f+1tz/NEuQK4KjofETJcek3FN/dmwaL0XVd6Rbk69r4ExMvvao1wgYQ7W6tpw45taKc2jHqx4AAAAADCBsAQAAAIABhC0AAAAAMCDoz9k6evSopkyZohUrVig3N1ft2rXTU089pU6dOkmSbNvWtGnT9MILLygvL0+dO3fW008/rdatW3v7KC4u1sSJE7V06VIVFRWpR48eeuaZZ3ThhRdWezz/e01zNWjQwLHtAwKq5Ji06dSfY69p7tzx0qb6lXS85KSeWfulJOnua5orNiroyxhq2fHCfGnLqb/HdLtYsed5nOnY4OsaOCOTrz3qNQLEWK2uJQUFBXrwHNoF/czWbbfdptWrV2vhwoX69NNP1bt3b/Xs2VP/+te/JEkzZ87UrFmzNG/ePG3ZskVJSUnq1auXjh496u1j/PjxWrFihZYtW6b169ersLBQAwcOVFlZWaA2CwAAAEAdF9Rhq6ioSK+99ppmzpypq666Ss2bN1dGRoaaNWumZ599VrZta86cOZo8ebJuuOEGtWnTRgsWLNDx48e1ZMkSSVJ+fr7mz5+vJ598Uj179lS7du20aNEiffrpp1qzZk2AtxAAAABAXRXUYevkyZMqKytTdHS0z+MxMTFav3699u/fr5ycHPXu3du7zO12q1u3btqwYYMkKSsrS6WlpT5tUlJS1KZNG2+byhQXF6ugoMDnBgAAAADnKqjDVlxcnNLS0vSHP/xBhw4dUllZmRYtWqTNmzfr8OHDysnJkSQlJib6PC8xMdG7LCcnR1FRUYqPj6+yTWVmzJghj8fjvaWmpjq8dQAAAADqsqAOW5K0cOFC2batCy64QG63W3/+8581bNgwRUREeNtYlu8vktu2XeGxnzpbm0mTJik/P997y87OrtmGAAAAAAgrQR+2fv7zn2vdunUqLCxUdna2Pv74Y5WWlqpZs2ZKSkqSpAozVLm5ud7ZrqSkJJWUlCgvL6/KNpVxu91q0KCBzw0AAAAAzlXQh63T6tevr+TkZOXl5WnVqlW69tprvYFr9erV3nYlJSVat26dunbtKknq0KGDXC6XT5vDhw9r586d3jYAAAAA4LSg/8GDVatWybZttWzZUvv27dN9992nli1bauTIkbIsS+PHj9f06dPVokULtWjRQtOnT1dsbKyGDRsmSfJ4PBo1apQmTJighg0bKiEhQRMnTlTbtm3Vs2fPAG8dAAAAgLoq6MNWfn6+Jk2apIMHDyohIUE33nijHnvsMblcLknS/fffr6KiIt11113eHzV+9913FRcX5+1j9uzZioyM1JAhQ7w/apyZmelz3hcAAAAAOCnow9aQIUM0ZMiQKpdblqWMjAxlZGRU2SY6Olpz587V3LlzDYwQAAAAACoKmXO2AAAAACCUELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGBAZ6AEAAGrGtm0VlZYZ6z/GFSHLsoz1DwDhgnodfghbABDCbNvWr5/bqKwDecbW0bFpvF69I40PcACoAep1eOIwQgAIYUWlZUY/uCVp64E8o9/EAkA4oF6HJ2a2AKCO2PpQT8VGRTjW3/GSMnV8dI1j/QEATqFehw/CFgDUEbFREYqNoqwDQLCjXocPDiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAyIDPQAACCY2LatotIyY/3HuCJkWZax/gEgXJis19RqOIWwBQD/Ydu2fv3cRmUdyDO2jo5N4/XqHWl8iANADZiu19RqOIXDCAHgP4pKy4wGLUnaeiDP6MwZAIQD0/WaWg2nMLMFAJXY+lBPxUZFONbf8ZIydXx0jWP9AQBOcbJeU6vhNMIWAFQiNipCsVGUSAAIdtRrBLOgPozw5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvmxEjRsiyLJ9bly5dfPopLi7W2LFj1ahRI9WvX1+DBw/WwYMHa3tzAAAAAISRoP4a4PHHH9dzzz2nBQsWqHXr1tq6datGjhwpj8ej3/3ud952ffv21csvv+y9HxUV5dPP+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sREc4dJgQAAAAApwV12Nq4caOuvfZaDRgwQJJ00UUXaenSpdq6datPO7fbraSkpEr7yM/P1/z587Vw4UL17NlTkrRo0SKlpqZqzZo16tOnj9mNAAAAABCWgjpsXXnllXruuee0d+9eXXLJJfrkk0+0fv16zZkzx6fd2rVr1bhxY51//vnq1q2bHnvsMTVu3FiSlJWVpdLSUvXu3dvbPiUlRW3atNGGDRuqDFvFxcUqLi723i8oKHB+AwHUyPESZ68U5XR/AIBTqNcIV0Edtn7/+98rPz9fl156qSIiIlRWVqbHHntMv/nNb7xt+vXrp5tuuklNmzbV/v37NWXKFF1zzTXKysqS2+1WTk6OoqKiFB8f79N3YmKicnJyqlz3jBkzNG3aNGPbBqDmuGIUAIQG6jXCVVBfIOOVV17RokWLtGTJEm3btk0LFizQE088oQULFnjb3HzzzRowYIDatGmjQYMG6Z133tHevXv11ltvnbFv27bP+EN1kyZNUn5+vveWnZ3t2HYB8F+MK0Idm8afvWENdGwarxgX53MCQE1Qr4Egn9m677779MADD2jo0KGSpLZt2+rAgQOaMWOGhg8fXulzkpOT1bRpU33xxReSpKSkJJWUlCgvL89ndis3N1ddu3atct1ut1tut9vBrQHgBMuy9OodaUZ/bDLGFXHGL2MAAGdHvQaCPGwdP35c9er5Tr5FRET4XPr9p77//ntlZ2crOTlZktShQwe5XC6tXr1aQ4YMkSQdPnxYO3fu1MyZM80NHoAxlmXxmyoAEAKo1wh3Qf3qHzRokB577DE1adJErVu31vbt2zVr1izdeuutkqTCwkJlZGToxhtvVHJysr7++ms9+OCDatSoka6//npJksfj0ahRozRhwgQ1bNhQCQkJmjhxotq2beu9OiEAAAAAOC2ow9bcuXM1ZcoU3XXXXcrNzVVKSorGjBmjhx9+WNKpWa5PP/1Uf/nLX3TkyBElJyere/fueuWVVxQXF+ftZ/bs2YqMjNSQIUNUVFSkHj16KDMzk9/YAgAAAGBMUIetuLg4zZkzp8Kl3k+LiYnRqlWrztpPdHS05s6dq7lz5zo8QgAAAACoXFBfjRAAAAAAQhVhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAA4L6R40BAMHheEmZkX5jXBGyLMtI3wAQjkzUa2q1/whbAICz6vjoGjP9No3Xq3ek8SEOAA4xUa+p1f7jMEIAQKViXBHq2DTe6Dq2HshTUamZWTMACBem6zW12n/MbAEAKmVZll69I83IB+zxkjJjs2UAEG5M1Wtqdc0RtgAAVbIsS7FRfFQAQLCjXgcn/kUAAAHl9Mncx0vKFOtojwAAarV/CFsAgIBy+hCVGJ3Q7mhHuwSAsEet9g8XyAAA1LrauPjG6fUAAPxDra45ZrYAnFJyPDj7Qp1k8uIbKjkmPfHf9QB1itP1lXqNM6BW1xxhC8ApTzQP9AgQZsydzM1HG+owajVqGbW6ZjiMEAhnrlgptYu5/lO7nFoHAMB/pmu1RL0GDAmPSAmgcpYl3bpSKjV0GIkr9tQ6AAD+M12rJeo1YAhhCwh3liVF1Q/0KAAAZ0KtBkIShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAZGBHgAAhJvjJWVB2RcA4L+crq/U6/BE2AKAWtbx0TWBHgIA4Cyo1XAChxECQC2IcUWoY9N4Y/13bBqvGFeEsf4BIByYrtUS9TrcMLMFALXAsiy9ekeaikrNHEYS44qQZVlG+gaAcGG6VkvU63BD2AKAWmJZlmKjKLsAEMyo1XAShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1GHr5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvG9u2lZGRoZSUFMXExOjqq6/WZ5995tNPcXGxxo4dq0aNGql+/foaPHiwDh48WNubAwAAACCMBHXYevzxx/Xcc89p3rx52r17t2bOnKk//elPmjt3rrfNzJkzNWvWLM2bN09btmxRUlKSevXqpaNHj3rbjB8/XitWrNCyZcu0fv16FRYWauDAgSorM/cbCgAAAADCW1D/iMDGjRt17bXXasCAAZKkiy66SEuXLtXWrVslnZrVmjNnjiZPnqwbbrhBkrRgwQIlJiZqyZIlGjNmjPLz8zV//nwtXLhQPXv2lCQtWrRIqampWrNmjfr06ROYjQMAAABQpwX1zNaVV16p9957T3v37pUkffLJJ1q/fr369+8vSdq/f79ycnLUu3dv73Pcbre6deumDRs2SJKysrJUWlrq0yYlJUVt2rTxtqlMcXGxCgoKfG4AAAAAcK6Cembr97//vfLz83XppZcqIiJCZWVleuyxx/Sb3/xGkpSTkyNJSkxM9HleYmKiDhw44G0TFRWl+Pj4Cm1OP78yM2bM0LRp05zcHAAAAABhJKhntl555RUtWrRIS5Ys0bZt27RgwQI98cQTWrBggU87y7J87tu2XeGxnzpbm0mTJik/P997y87O9n9DAAAAAISdoJ7Zuu+++/TAAw9o6NChkqS2bdvqwIEDmjFjhoYPH66kpCRJp2avkpOTvc/Lzc31znYlJSWppKREeXl5PrNbubm56tq1a5XrdrvdcrvdJjYLAAAAQBgI6pmt48ePq1493yFGRER4L/3erFkzJSUlafXq1d7lJSUlWrdunTdIdejQQS6Xy6fN4cOHtXPnzjOGLQAAAACoiaCe2Ro0aJAee+wxNWnSRK1bt9b27ds1a9Ys3XrrrZJOHT44fvx4TZ8+XS1atFCLFi00ffp0xcbGatiwYZIkj8ejUaNGacKECWrYsKESEhI0ceJEtW3b1nt1QgAAAABwWlCHrblz52rKlCm66667lJubq5SUFI0ZM0YPP/ywt83999+voqIi3XXXXcrLy1Pnzp317rvvKi4uzttm9uzZioyM1JAhQ1RUVKQePXooMzNTERERgdgsAAAAAGHAsm3bDvQgQkFBQYE8Ho/y8/PVoEGDQA8HAFCVkmPS9JRTfz94SIqqH9z9AkA4CvGaeq7ZIKjP2QIAAACAUEXYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMCAy0AMAAMCYkuPB2RcA4L+qW19dsZJlmRmLwwhbAIC664nmgR4BAOBsqlurHzwkRdU3MxaHcRghAKBuccVKqV3M9Z/a5dQ6AAD+M12rgwQzWwCAusWypFtXSqWGDvsLocNXACBo1aRWh9AXXoQtAEDdY1khc4gJAIStMKjVHEYIAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChwrZtSVJBQUGARwIAAAAgkE5ngtMZoSqErXN09OhRSVJqamqARwIAAAAgGBw9elQej6fK5ZZ9tjgGSVJ5ebkOHTqkuLg4WZbleP8FBQVKTU1Vdna2GjRo4Hj/+C/2de1gP9ce9nXtYV/XHvZ17WFf1x72de0xva9t29bRo0eVkpKievWqPjOLma1zVK9ePV144YXG19OgQQPefLWEfV072M+1h31de9jXtYd9XXvY17WHfV17TO7rM81oncYFMgAAAADAAMIWAAAAABhA2AoSbrdbU6dOldvtDvRQ6jz2de1gP9ce9nXtYV/XHvZ17WFf1x72de0Jln3NBTIAAAAAwABmtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYcuQZ555Rs2aNVN0dLQ6dOigjz766Izt161bpw4dOig6OloXX3yxnnvuuQptXnvtNbVq1Uput1utWrXSihUrTA0/pFRnXy9fvly9evXSz372MzVo0EBpaWlatWqVT5vMzExZllXhduLECdObEvSqs6/Xrl1b6X78/PPPfdrxuq5cdfb1iBEjKt3XrVu39rbhdV3Rhx9+qEGDBiklJUWWZen1118/63Oo1f6p7r6mVvuvuvuaWu2/6u5rarV/ZsyYoU6dOikuLk6NGzfWddddpz179pz1ecFSrwlbBrzyyisaP368Jk+erO3bt+tXv/qV+vXrp2+++abS9vv371f//v31q1/9Stu3b9eDDz6ocePG6bXXXvO22bhxo26++Walp6frk08+UXp6uoYMGaLNmzfX1mYFperu6w8//FC9evXS22+/raysLHXv3l2DBg3S9u3bfdo1aNBAhw8f9rlFR0fXxiYFreru69P27Nnjsx9btGjhXcbrunLV3ddPPfWUzz7Ozs5WQkKCbrrpJp92vK59HTt2TJdffrnmzZt3Tu2p1f6r7r6mVvuvuvv6NGp19VV3X1Or/bNu3Tr97//+rzZt2qTVq1fr5MmT6t27t44dO1blc4KqXttw3P/8z//Yd9xxh89jl156qf3AAw9U2v7++++3L730Up/HxowZY3fp0sV7f8iQIXbfvn192vTp08ceOnSoQ6MOTdXd15Vp1aqVPW3aNO/9l19+2fZ4PE4Nsc6o7r7+4IMPbEl2Xl5elX3yuq5cTV/XK1assC3Lsr/++mvvY7yuz0ySvWLFijO2oVY741z2dWWo1dV3LvuaWu0Mf17X1Gr/5Obm2pLsdevWVdkmmOo1M1sOKykpUVZWlnr37u3zeO/evbVhw4ZKn7Nx48YK7fv06aOtW7eqtLT0jG2q6jMc+LOvf6q8vFxHjx5VQkKCz+OFhYVq2rSpLrzwQg0cOLDCt6nhpib7ul27dkpOTlaPHj30wQcf+CzjdV2RE6/r+fPnq2fPnmratKnP47yua4ZaHTjUavOo1bWPWu2f/Px8SapQD34smOo1Ycth//73v1VWVqbExESfxxMTE5WTk1Ppc3Jyciptf/LkSf373/8+Y5uq+gwH/uzrn3ryySd17NgxDRkyxPvYpZdeqszMTL3xxhtaunSpoqOjdcUVV+iLL75wdPyhxJ99nZycrBdeeEGvvfaali9frpYtW6pHjx768MMPvW14XVdU09f14cOH9c477+i2227zeZzXdc1RqwOHWm0OtTowqNX+sW1b9957r6688kq1adOmynbBVK8jHe0NXpZl+dy3bbvCY2dr/9PHq9tnuPB3vyxdulQZGRn629/+psaNG3sf79Kli7p06eK9f8UVV6h9+/aaO3eu/vznPzs38BBUnX3dsmVLtWzZ0ns/LS1N2dnZeuKJJ3TVVVf51Wc48Xe/ZGZm6vzzz9d1113n8ziva2dQq2sftdosanVgUKv9c/fdd+uf//yn1q9ff9a2wVKvmdlyWKNGjRQREVEhFefm5lZIz6clJSVV2j4yMlINGzY8Y5uq+gwH/uzr01555RWNGjVK//d//6eePXuesW29evXUqVOnsP5WqSb7+se6dOnisx95XVdUk31t27ZeeuklpaenKyoq6oxteV1XH7W69lGrA4NabRa12j9jx47VG2+8oQ8++EAXXnjhGdsGU70mbDksKipKHTp00OrVq30eX716tbp27Vrpc9LS0iq0f/fdd9WxY0e5XK4ztqmqz3Dgz76WTn1LOmLECC1ZskQDBgw463ps29aOHTuUnJxc4zGHKn/39U9t377dZz/yuq6oJvt63bp12rdvn0aNGnXW9fC6rj5qde2iVgcOtdosanX12Latu+++W8uXL9f777+vZs2anfU5QVWvHb3cBmzbtu1ly5bZLpfLnj9/vr1r1y57/Pjxdv369b1Xm3nggQfs9PR0b/uvvvrKjo2Nte+55x57165d9vz5822Xy2X/9a9/9bb5xz/+YUdERNh//OMf7d27d9t//OMf7cjISHvTpk21vn3BpLr7esmSJXZkZKT99NNP24cPH/bejhw54m2TkZFhr1y50v7yyy/t7du32yNHjrQjIyPtzZs31/r2BZPq7uvZs2fbK1assPfu3Wvv3LnTfuCBB2xJ9muvveZtw+u6ctXd16fdcsstdufOnSvtk9d1RUePHrW3b99ub9++3ZZkz5o1y96+fbt94MAB27ap1U6q7r6mVvuvuvuaWu2/6u7r06jV1XPnnXfaHo/HXrt2rU89OH78uLdNMNdrwpYhTz/9tN20aVM7KirKbt++vc/lKYcPH25369bNp/3atWvtdu3a2VFRUfZFF11kP/vssxX6fPXVV+2WLVvaLpfLvvTSS30KYTirzr7u1q2bLanCbfjw4d4248ePt5s0aWJHRUXZP/vZz+zevXvbGzZsqMUtCl7V2dePP/64/fOf/9yOjo624+Pj7SuvvNJ+6623KvTJ67py1a0hR44csWNiYuwXXnih0v54XVd0+pLXVdUDarVzqruvqdX+q+6+plb7z58aQq2uvsr2sST75Zdf9rYJ5npt/WcjAAAAAAAO4pwtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAMLa2rVrZVmWjhw5EuihAADqGMIWAKDOGzFihCzLkmVZcrlcuvjiizVx4kQdO3Ys0EMDANRhkYEeAAAAtaFv3756+eWXVVpaqo8++ki33Xabjh07pptvvjnQQwMA1FHMbAEAwoLb7VZSUpJSU1M1bNgw/fa3v9Xrr7/uXZ6VlaWOHTsqNjZWXbt21Z49e7zLvvzyS1177bVKTEzUeeedp06dOmnNmjU+/T/zzDNq0aKFoqOjlZiYqF//+tfeZbZta+bMmbr44osVExOjyy+/XH/961+NbzMAILAIWwCAsBQTE6PS0lLv/cmTJ+vJJ5/U1q1bFRkZqVtvvdW7rLCwUP3799eaNWu0fft29enTR4MGDdI333wjSdq6davGjRunRx55RHv27NHKlSt11VVXeZ//0EMP6eWXX9azzz6rzz77TPfcc49uueUWrVu3rvY2GABQ6yzbtu1ADwIAAJNGjBihI0eOeGeyPv74Y/Xv3189evTQnXfeqe7du2vNmjXq0aOHJOntt9/WgAEDVFRUpOjo6Er7bN26te68807dfffdWr58uUaOHKmDBw8qLi7Op92xY8fUqFEjvf/++0pLS/M+ftttt+n48eNasmSJmY0GAAQc52wBAMLC3//+d5133nk6efKkSktLde2112ru3LnatWuXJOkXv/iFt21ycrIkKTc3V02aNNGxY8c0bdo0/f3vf9ehQ4d08uRJFRUVeWe2evXqpaZNm+riiy9W37591bdvX11//fWKjY3Vrl27dOLECfXq1ctnPCUlJWrXrl0tbT0AIBAIWwCAsNC9e3c9++yzcrlcSklJkcvlkiRv2Dp9X5Isy5IklZeXS5Luu+8+rVq1Sk888YSaN2+umJgY/frXv1ZJSYkkKS4uTtu2bdPatWv17rvv6uGHH1ZGRoa2bNni7eOtt97SBRdc4DMmt9ttdqMBAAFF2AIAhIX69eurefPmfj33o48+0ogRI3T99ddLOnUO19dff+3TJjIyUj179lTPnj01depUnX/++Xr//ffVq1cvud1uffPNN+rWrVtNNwMAEEIIWwAAnEXz5s21fPlyDRo0SJZlacqUKd4ZK+nUIYpfffWVrrrqKsXHx+vtt99WeXm5WrZsqbi4OE2cOFH33HOPysvLdeWVV6qgoEAbNmzQeeedp+HDhwdwywAAJhG2AAA4i9mzZ+vWW29V165d1ahRI/3+979XQUGBd/n555+v5cuXKyMjQydOnFCLFi20dOlStW7dWpL0hz/8QY0bN9aMGTP01Vdf6fzzz1f79u314IMPBmqTAAC1gKsRAgAAAIAB/M4WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAz4f8yKY8XX6ew7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, this looks very different, and not quite as easily recognizeable. What you see here is the nominator of the second term in the PDM Equation written in the introduction.\n", + "\n", + "We'd now like to try calculating this profile for a number of trial periods, and then calculate $\\theta_\\mathrm{PDM}$. Our null hypothesis is that there is no variation in the data except for measurement noise (e.g. Poisson statistics as we have here, or Gaussian noise). This is implemenented in `stingray.pulse.search.phase_dispersion_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used.\n", + "\n", + "Let's do that:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, pdmstat = phase_dispersion_search(lc.time, lc.counts, frequencies, nbin=nbin)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADr80lEQVR4nOydeXxU1fn/P3f2yZ6QnYQQdgQEBGRRRFxAUEtdsfZr3Vu1/bWUVlvcili1aqXUqrgVZXGhlaptXYAKKgiCICL7DoGQkH3P7Pf3x51z5tw7ezJJJuR5v168SGZuZu7M3DnnPOfzPJ9HkmVZBkEQBEEQBEEQBBEX6Lr6BAiCIAiCIAiCIAgfFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEEYauPoGzGY/Hg9OnTyM5ORmSJHX16RAEQRAEQRAE0UXIsozGxkbk5+dDpwutlVGQ1oGcPn0ahYWFXX0aBEEQBEEQBEHECSdPnkRBQUHIY7o0SPvyyy/x7LPPYvv27SgrK8P777+PH/7whyH/5osvvsDcuXOxZ88e5Ofn44EHHsA999yjOmbVqlV45JFHcOTIEfTv3x9PPPEErrnmGtUxL730Ep599lmUlZVh2LBhWLRoESZPnszvv+2227B06VLV34wfPx5ff/11xK8vOTkZgPJBpKSkRPx3BEEQxFlCczPw/PPq2375SyAxsWvOhyAIgugyGhoaUFhYyGOEUHRpkNbc3IyRI0fi9ttvx3XXXRf2+GPHjmHmzJm4++67sWLFCnz11Ve47777kJWVxf9+8+bNmD17Nh5//HFcc801eP/993HjjTdi48aNGD9+PABg5cqVmDNnDl566SVccMEFeOWVVzBjxgzs3bsXffr04c93xRVX4I033uC/m0ymqF4fS3FMSUmhII0gCKInotcDZrP6tpQUCtIIgiB6MJGUQUmyLMudcC5hkSQprJL2u9/9Dv/+97+xb98+fts999yDnTt3YvPmzQCA2bNno6GhAZ988gk/5oorrkB6ejreeecdAIoidt5552Hx4sX8mKFDh+KHP/whnnrqKQCKklZXV4cPPvigza+poaEBqampqK+vpyCNIAiiJ9LcDDz7rPq2+++nII0gCKIHEk1s0K3cHTdv3oxp06apbps+fTq2bdsGp9MZ8phNmzYBABwOB7Zv3+53zLRp0/gxjM8//xzZ2dkYNGgQ7r77blRUVIQ8P7vdjoaGBtU/giAIgiAIgiCIaOhWQVp5eTlycnJUt+Xk5MDlcqGqqirkMeXl5QCAqqoquN3ukMcAwIwZM/DWW29h3bp1eO655/DNN9/gkksugd1uD3p+Tz31FFJTU/k/Mg0hCIIgCIIgCCJaup27ozaHk2VrircHOkZ7W7hjZs+ezX8ePnw4xo4di6KiInz00Ue49tprA57bvHnzMHfuXP47Kw4kCIIgCIIgCIKIlG4VpOXm5qrULgCoqKiAwWBAr169Qh7DlLPMzEzo9fqQxwQiLy8PRUVFOHToUNBjzGYzzNoCcYIgCIIgCIIgiCjoVumOEydOxNq1a1W3rVmzBmPHjoXRaAx5zKRJkwAoDo1jxozxO2bt2rX8mEBUV1fj5MmTyMvLi8VLIQiCIAiCIAiCCEiXKmlNTU04fPgw//3YsWP47rvvkJGRgT59+mDevHkoLS3FsmXLAChOji+88ALmzp2Lu+++G5s3b8bf//537toIAL/61a9w0UUX4emnn8asWbPw4Ycf4n//+x82btzIj5k7dy5uueUWjB07FhMnTsSrr76KkpIS3m+tqakJ8+fPx3XXXYe8vDwcP34cDz74IDIzM/36rREEQRAEQRAEQcSSLg3Stm3bhqlTp/LfWT3XrbfeijfffBNlZWUoKSnh9xcXF+Pjjz/Gr3/9a7z44ovIz8/H888/r+qxNmnSJLz77rt4+OGH8cgjj6B///5YuXIl75EGKPVm1dXVWLBgAcrKyjB8+HB8/PHHKCoqAgDo9Xrs2rULy5YtQ11dHfLy8jB16lSsXLkyouZzBEEQBEEQBEEQbSVu+qSdjVCfNIIgiB4O9UkjCIIgvJy1fdIIgiAIgiAIgiDOdihIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAii27LzZB0abM6uPo2YQkEaQRAEQRAEQRDdku0najDrxa9w/z93dvWpxBQK0giCIAiCIAiC6JZsPVYLADhZ09rFZxJbKEgjugUffleKdfvPdPVpqPi2pBbbT9R09WkQBEEQBEH0WPaVNQAAbE53F59JbKEgjYh7Khpt+NW73+GON7dhy9Hqrj4dAMDRyibc+PJm/N/rW9HicHX16RAEQRAEQfRI9pdTkEYQXUJFg53//OuV36G+tesLQ59bcxAuj4xWpxun62xdfTrdHlmWIctyV58GQRAEQRDdCLvLjSOVzQCAVgrSCKLjOFnTgqv/thH//f40v622xcF/Pl1vw3NrDnTFqXG+P1WHj3aV8d8rGpQgzeX2dNUpdWs8HhnXLt6Ea17aBI+HAjWCIHoeHo+MMw204UcQ0XK4oglu79qBgjSC6EBWbDmBXaX1+MXbO2B3KV+22ha1crbndENXnBrnhXWHVb+XN9iwbv8ZDPvDaqzafqqLzqr7cqq2FTtK6vDdyTrUCAE5QRBET+HB93dh/JOf4fMDFV19KgTRrdhX1sh/tjk9Z9VmLwVpRFyRZDLwn/+7U1GrapuVhXuyWbmv2d61NWCHK5sAAL3TrACUIO3zA5Wwuzz4Ok5q5roTR6qa+M/ssyYIgugpbD5SjXe/OQkA+GRXeRefDUEonKxpgbMbZAjtL1Nv3Ntd8X/OkUJBGhFXOIUdkCVfHYMsyzzdsXe6EhQ1d7FRR4O3Jm5IbjIA4Ey9DSU1Lcp9XdBIsauD1vZy1JtLDvirpgRBEGczDpcHj3y4m/++5Zj/Rl9JdQueW3MA1U12v/uIsxO3R8bznx3CFwcru+T5P91dhsnPrMdL64/w2+JVodpf3qj6/WxKeaQgjYgrRGeePacbsO1ELeq8C/eC9AQAQLM9ui9gi8OFWS9+hcf+syfiv/nqcBVe+vywn5mFLMvcuGSQN0grb7DhJAvSWjs3YFqzpxzD56/Gss3Ho/o7t0fGx7vKUF7f9TUQRyp9SloNKWkEQfQgPt5VhsMVTchINEGSgOPVLX61aYs+O4i/rTvM1Tbi7Gf1nnIsXHsQv3zHV/rRmfzneyWTadORKgDAz9/+Fhf/+fO4dLNmzo4MCtIIooNodai/XFuP1XAlrYApaVEqRztP1mPnyTq88dVxrNkTWSrJ/H/vwTOfHsDOU/Xq83O64XQrgdvgHG+QVm/DyVqlgWJnK2mbjlRDloHtJ2qj+rsvDlbgvre+xaPCDm5XcVQI0uqoJo0giB7EqVplg+/yoTk4Jy8FAPzS5neerAMAlNadXY16AxGvak1n85E3SKpvdeKLA52rpsmyzNsdHa1qhs3pxie7ylBS06LKfIkHqprsqGpyQJIAq1EPwH8d2Z2hII2IK9gOiEEnAVACoFqupClBmt3licpJUQyc/vDvPWiKIMir86plFZodTaaiGXQSijMTAQD7yhvh8OZAd3aQdqJaGTDrokwTLK9X0mb2lXe8CcuRyqaQQaQ46JNxCEEQHc3rG45iyrPreYDUlTTYlPkoNcGI8cW9AABbjtXw+5vsLhytUsZI7XwULff/cyeueemrLlFmIuFoZRNGLVjT5Q7OXU2Lw4XP9p/hv3/43ekQR8eeI5VNqGpS5uLKRjt2ldaDxc6NtvhS0o5U+DwCUq1GAGdXrzQK0oi4ggVpfb0BUHmDjasrLEgDokt5bBD6qpXV2/Dql0fDn4eDOUuqgwYWDKVajchNtQAAD9CU5+rcAeyEN80y2t5xLGWhtLZVdf7R8smuMtzw8qaAO7zl9Tbc9sZWXPrcF7hu8SaVYsZotDlR0eirs4g22BQfh31mW45W4ydLtvIAliAIQuT9HaU4Ud0SdQZCR8Dmp2SzAeP7ZQAAVzEAYE9pPVjW/ZmGttekybKMD74rxY6SOuzSZIi0h+9O1mHh2oMxCfy2Ha9Fg82Fj4UWNz2R9fsrYXN6uFna//adQWMbN4BLqlvw5Mf7omrvsPlojer31bt9GUhtPY+Ogm1g9MtKgtXkVdIoSCOIjsHOgrReSpB2psHG65Syki0w6ZVLNhrzkAbNzs/3p+pCHi/LMv+Sa40sWDCUmmBEr0QTvIIfp9Hm7LR0DbdHxqkab5plmCDN45Hx1Cf7cOeb38Dp9vAg1yODm560hXe+OYlvjtfivzv9d/oe/2gvPhfSNE7V+gdy2tSJttSkNdqcuOBP6zDjr1+i0ebEA6u+x5cHK7F884moH4sgiLOfMm8tblftuD/64W7c/sZWuD0yVyZSrEac31cJ0o5UNmPbcWWhvKvUF1C1p4+azenhqfr7vEYLsZirFvxnD57/7BDW729/64CqZiUILalp6dF9Rz/apcynN0/ogwHZSbC7PPh0d/BSjfoWJ1bvKQ+44fr3jUfx6pdHo6pb16bbrt4rBmnxpaSxzd9+mYmwULojQXQsLDgqzlRMQsrrbVxdSU8wIsGsfAmjqUtjAUxRL+UxT3tVn093l+PF9Yd5E0SGw+3ht2mVNB6kWY0w6HXISjar7vfIQFMnFdaWN9jg8E5kdSGCNFmW8ciHu/HKF0fx2f4K7DndoCr+PV7VdsWp3vv+HDyjVsk8HhmbjygDfYJ3dyvQOR6tUv9dWyz4T9a0osHmwvHqFvzota9xoloJOr+P4W4xQRBnBzanm28G2ZzqRW17sgoipdHmxLLNJ7D+QCVOVDfzFPkUqwHpiSZcPDgLAHDz61vw0fdlqiCtqsne5uBFTMXfX9aA7SdqMeTRT/G3zw61+bV4PDLvUVVa134Tqmpvip3TLfM6756GLMtYv1/Z3LxyRB6uHJEHQKk/D8aza/bjZ8u344PvSv3uY1kuxyKc58V6tH7ejKaTNb7PIpJykc6Eva7+WYmwGpWQhtIdCaKDYDsgLN2xssnOB4X0BBMSvX3UohkoWGA1NFcpyi6tbYUsy3jgvZ14dvUBPK+ZpMRdGG3QIAZpAJCbYvF7vnCqVqwoqfYpYPWtTj8nSofLgyUbj+GHL23CW1tK+O1NNpfq/Tte3Yz6FicOV/inI4aDvR+HKtQWuIcqmlDT7IDVqMfEfr1Ux4owJa1XogmAf1AcCaKqurvUV2O3q7Q+6ILmb58dwkXPrG/XzjRBEN0P0dGWpegdrWzCL97+FoMf+QRvfnWsQ59ftAuva3UK6Y7KnPLizefhsqE5cLg8+PXK7/DV4Sp+vEcGqtvogCuOv/vLG/Gvb0/B4fLgb+sOt9mQpKSmhW+sVjS2fywVMykCpcf3BGxOD39P+2cloX92EoDQpjF7Tivz3skAWTHl3jnuRHVkGTNHKptR1eSA2aDDD0f39rs/7tIdKyndkSA6jVbvzmbvNCv0Oonn4uskJR0kyZuj3RKFnM12EIfkKW6MzQ43jlQ28TTI59cdUk2E4hdcm+7YoAnScgIGaW3baSqta8XP3/4WV/1tQ0Q1ZiU1vp0xt0dGs+Y9+eC7Uiz4717sPFnHjVgAoMnuVL1/x6ubce9b2zHtL1/gsCbYCgcP0s40qVJnWK+fsX3T0StJCcACBa/Mfn9MUTqAtvVJ0wbsGYkmJJkNaHW6ceBMIx7+YBcWrj2oOuZfO0pRUtOCrcfUufehsDndfoFwZ7N27xksXHOgy8+DILorZUKQZnN6UFbfihl/3YD/fl+mOOWW1HXo84uNd+taHKp0RwBINBvwyi1jcPHgLDjcHm7gwDIS2rqxJI6/+8saeKaDw+3BX/93MNifhUS0Pq9sR70co0roAxdvLoKdhZjlYjXqke+tfS+rDx6ksWyYQOUCrI7xRHVLRPPGjhKlTnNkQRrvBSvSGEdKmtPt4eUa/bISubsjKWkE0UGwL1eS2YBsIZUw1WqEXich0ZvuGI2SxoKmnBQLV2y+OuxLHZBl4KH3d/HfW6JR0lIDBGlt2Gn64mAlLnvuC3z0fRl2lzbweoRQaHfGtPb1bJK7bGg2vvr9JZgySEmjabK7Vemi247XYtORanhktRIVDlmWeaDb6nSrdvpYTvv44gykJZgCnh8AHKlQznFsXxaktUFJ876WgnQrLhuajaeuHYFzC1IBAC+uP4wVX5fg+c8O8WvL45FR6k2lqYqwOez2EzUY+uineGHd4ajPL5b88aO9eH7dYXznteQmCCI6xMWuzelGSXUL7EKaY0fUs9hdbny6uww2pxt7ywQlrcXJ54tki4HfrtdJePKaEXxTMj/VgoFeRaWt5iHivNTscHPDBQB4b/spVb/KSBFVQdEAClAW0NHC0h0B/1R4QFGKzqZ6I8aZBhueW3MAZfWtfP1hNeqh00nIS1MM08rrbQFrCOtbnHxzU2u85XJ7+BzXZHdFVPO901uzP7IwFf2yEv3uj6eatJKaFrg8MhJMeuSmWKgmjSA6Gvblshj1KpUq3bvQT/ROWlHVpLGcf4sRvb0OkRu9yhlbzB+vbuEyvirdMYS7I6BW0vpkKDVvbUl3/Pd3p1UK3ukAqQ1PfrwPYx5fy4OhE5rUBq36xhYj5xdnICfFwif8JptaSRMn2mjSXprsLlU938EzyuMoOe1KkDmhXy/+XrGUzL2nG9Bsd8Hh8vCFwcR+mfwYbY1g2PPwThqDcpLx+q3jMH1YLs4tSAMAfLzLV/DMJqgzjb5aPnFREIoVX5dAloHn1h7slLqVYLDP+HQM6j8IIl6IZId/3f4z2Hs6+pYhjTanKkDRKmna1KiOsKd/Z0sJ7lnxLZ74aB/2qZQ0J99EZEoaIz/NikeuGgoAmDwwC9neuaatSlqg7IzhvVNw0aAseGTgf3vPBPgrhW3Ha/DS54f9goT9ZWKQ5juvTYerMPwPq7Hi6+jMm6qbfYHeEY2SdriiEZOfWY/73toe1WN2B97aUoK/rTuMZZtP8LmZKac5yWboJKVOL9Cm4nHBxVi7XqlqckD8amnXDIFgtdwjC9NQmJHgZ47WFEdBGtuILs5MhCRJvj5pzrPHdIaCNCKuYBOm1bszwkhL8KaCmNoQpLX6CrPzU5Ug7WtvqsfIgjRketPxjle1qM4BCOHuqAnSEk16bkyidZOM6By9iwijXhkRtUXYtc0OvPnVcVQ3O7DxkFJUrM0/r9ecKwv08r07cSxIa3a4g7pjBgoOg6Gd9A94g7TDFU2obnbAYtTh3II0vvioa3Him+O1mPn8Bjzw3vc4UtkEl0dGssXAU1FlOfp2AkxVZQE8AIwqTPU7jk1wosskuy3cIjFPUEzXH2i/i1lbYRsI5cJCzeX2YNep+qiD256K2yP7fXcqGm34+VvfYt3+4AtVomPweGRcu3gTpv/ly6AbIEcrm3DHm9vw0+Xbonpsh8uDaX/5Epf8+Qs+tqmUNJfbLzWqI3bhD3s3o/698zQOCJtiZwTzpxRBSWPMHtcH/5t7Eeb/YBjPLGlrr7RAafiT+mdiqHfsLQ/xuI9+uAfPfHoAmzWuf2zMB9RK2sbDVbC7PPjiYORNmGVZVitpmiCNKZBfHa7usD5vdpcbmw5XtUkFbA/MgKu22cHnZmaSZtDr+DrjdL3/ZyQGaVqlTPuZloSpS7M53XwTYWRBGswGPQrSlXWNxWvKEU81adzZMUtRmakmjSA6GB6kGfWqVEI/JS3MRHroTCPe+OoYXG6PL0gTlDSWV903MxH9MpUvOEuvECfpuhaHavdQG6SxhtYDcpL5bW1R0tju1GBvDrg2//w/35/mk/lx70DL0h1Zmow2uGFqS543MGXvXaPNhZYgfeaiUdK0z3fI6/C4w1vTMbowHSaDDmmCknbAW8Pw5cFKvis+NDcFRr2OL1KiteFn7QSSvJMaoOwCamELAHGBXtVkR2WjHeOf/AyP/WdP0OcQlcdV209FdX7BkGUZ//r2VMTqgMcj87QscTf9lS+P4uoXNuLtLdRyIBL+vOYAJj+zHmv2+FTWhWsO4qNdZXjli/A9FInYsvt0PXaU1OHAmcagDnTM4fBUbWvYVPfjVc2Y96/vcabBhoNnGlFWb0NVkx1z3v0Obo+sNg5xevwcHm0dEABUNSpjT32rU7WAZPU0kuTbgNQyIDsZVpMvs6TN6Y7e8VpURib278U3QytCPO5p73wkBgQtDpfq97oWJw+eWHCgVf2avBkUgc/PBZcw11Y12VUKaKU3CHS4PdwoI9Y8+K/duPn1LXhtQ+eOA+yaaLL75uYEo+96YJuEZQHmZ7a5DPinO2rf/3DmIfvKGuB0y+iVaOJ9aVma7Uhvdko8uTty0xDvOoxq0giiA3F7ZD6AW7XpjoksSIvMgv+PH+3DY//Zi3X7K7iylWI1oneaVXVccWYCD7TYAkFckHtkdQ62Nkg7r08a/nrTKDx3w0iuGLWlJq3RrvzN4BzFgVKraImBwfEqxY2Rncvw/FTVuQHKe8kmSvaakyw+FZLt1uk1uQztUdJYumOlV51ig7yY7ljpDZQa7S7853ulFwwLTNMFh8dojDHYa0kSlLTcFAtffLDeeoGVNAe2n6hBRaMdXxwIvusrXm/rD1S0qZ+blu9O1mHuP3bi/vd2RnS8uLgTF5rsut14uAoej4y5K7/Db/+5k8xFgsDMYnZ7F/4na1rwnvf71dZm6kTbYXbjgDoIEDkoKDbh1ICXvziCd7aexEvrD/PPGAC2Hq/BS+sPq1KFbS43/16xzS4WtDndnpipBpVBal9ZkJZsNkCnzSvTkJOiKGln2uiiyMbrc/KVOUavkzCubwafZ7WqC5uLHS4P/16UCmPnoTNNkGXFmZeNsSyQYsEBSy2tb3HiiY/24rwFa/Hj178OeH6sR1qyxVePLqpplYJS920HNSFf9a0yDizZ2LEOn1rYmqPZ7uLGIQnCpiPLhgm0iapNdxTHfa3qeqIm8PeLwVIdzy1IhSQp1+PcaYNw9+Ri3DqpL4DY1KRtP1GLqX/+HJ/ubl/TcraxzmrnqCaNIDoQcffDatIjN9VnHJLO0h1ZXVWYII3lth+taubHplqNfLBj9O2ViOIsdZCm3YWpEfK8te6OkiRh1qjeGJCdhBQLU9ICn9vxqma8uP5wwAGkkStpyq6VuJA4eKYRO4WeX8erW/hgm5Vs5rtsYh+yykY73B4ZBp3Ee7klCaYrbFIY4E0TGJavbk8QCey9YGYshyua4PbI3CCEBV2qIE2YaFkqDEt1ZGrph9+VYvTja/HJrsgG8EDpjpIk4U/XjcCcywZixohcAD7raq2SxoK2ULtv4vXmdMv4bF/70+L2etNKygOksARCFaQJky8LIHedqsehiib8a0cp3tt+yq+QvzshyzKOVzXHPNCUZZm3mmAL55c+P8x38Ota2x98E9Ehpg+fCBKkHSj3mUiUhFloMkOMbSdqueLCFnFvbDrOVSEAsDvdfDxm4w/7/f9e34JJf1oXdfp1ICo130VWb8QCTm09WiCy26ukeQPOS4bk4NIh2bjv4v5IMhsEhc43puwvb8CI+avx7Or9qjoxMUhgzo5D81L4HMPGHDamVTXZ4XR7cPfybXhtwzE43B5sO1EbcA5kmQ69Ek388xJt+MX3cEcHOHCK88I4b1PxzoLNPc12N5+bRWWVrVvKwqQ72l2egPMEm6PDKWk7vYZUYibKsPxUPHTlOXydEYsgbcnGYzhW1Yzf/2tXm3qjMtjrYxvCPEgjJY0gYo/4xTIbdMhJFmvSlEGGW/AHSddjsIFO3IFNthj4lxlQ0j4K0kMraYC6GJcraQn+k2qKVTm3QEpai8OFnyzZimdXH8B720/63e9Ld1SCpfIGG+/x9dH3SrDC0g5OVDfzxcfA7CR+LuJigk2mOSkWrpaJAS4LOm6/oC8GZifhkavOAaCkkZbUtOCGlzeF7RfEnm9Y71SYDTrYXR6U1rbyOj5WR5iWEDhIY+tvZvPLAvEVX5egrsWJRz4Mnn4owoIUUUkDgIsHZ2POZYP4IqSqMXBNGnuvbCEMQdj7xTa7Y6GkMWfLQD3uAiEubMQFFTu30/U2fCQEtpE2L41H5v97Dy7+8+cq4xe3R8Y/vjnZJhc6Rk2zg1+3FQ121Lc48c9tPpWalLTOpabZwd3kAF8qtxZxHA+30GSBz76yBq6a/mLqAKRajahpdqg+Y9E4hI0/LGVvd2k9Gm0ubm/eHpiKbzYoS66x3iCApd0nW8IHaWw+bG9NWlayGX+/bRx+M22w8rgprNbNzsehb47V8JoylqoJqJW0Y940uwHZSchM9j0G4AskZVn5vNjnYDboIMuBx6Zq73vUK8mM4kw21/k+a1GN/LYk9kqauFnAPqfOQpXuyNwdTT4lLS+EDb/2+hTr6NnnwILOcN+d77izY5rffewaba+67BBqFetanHhu7YE2P1Y9N3JT1oesmTUFaQTRAbQK1rOSJCEnUE2ad+BqCmJ8oX0sVieVYNLDqNeplLSC9ASYDDqez3ysUtm5137B2U6PLMtcrUoNsPPpU9L8B7FnPj3AU1v2lftcENmkyHan+mUmwqCT4PbIfFeSTWizRuVDJylB5Lr9yoRybkGaSqlisME8P833HrIgpr7FyVNZrhiei7Vzp2BCv17I8O62vbbhKL45XovXNvgHaS63B3/4cDc++r6MP19GgpEHQpVNNv5+sc+MnV+Lwx1wkhmUo053ZIgtGELRHEBJE2G7iFxJq/VNVDanhysrkShp2d6FUjR9+oLBgg1XgB53gdCmO7JrR0zFFN3UgqkS8U6rw42lm5XX8e43vibsXx+txgOrvsejH+5u82OLtuMVjXYcq27m5jWAdyf6LEqViXe+PFipdp8LcM22OFx87ARCO9TZnG6+u+6RfcYW5xak4dIh2QGPZ9/7NEFJk2UZLd7b26scNAsL78dnDceUQVn4yYQi1TGBTEO0sGCqutnRJodZn8ux+rnYmOZwe/gCn22mldXZUNnkCwpFJY1lTGQmmfhYXdloU20CAr6emSkWA4b3VlLzA220VDX7lDT2fRTHPHGDr6zeFrJvWFtgc6r2eRmnvX1M2+IwGg425rQ4fOmOiaZA6Y7qAF2030/2zn+iMsU288YVK0FaVZNdNV8crmjCPcu3Y19ZA9wema81zslL8TtHdt002V3tynDYeqwGTXYXrx97a0uJykwnUjwemW9ysA1yFtjazqIxnII0Im6wOdU7SLkqC35loZ8QxILf5nTjgfd2YrXXDIBNioe8zZlZAJWeYOSDQ19vcNanVwIkSdnVrGyyo1UTALJBsNnh5g56AYO0IDVp3xyvwZubjvPfD1c0ocXhwmULv8DPlm+H3eX2OXxZjdwwhdWHsf/7ZibywZrVT51bkOoL0oQdNK2zI+AL0kSr5ARVSoXyvEy5K61r9Xst207UYunmE3jy432q+jzWsLqqycGVR/aZibvEWseugnQrvz8jQR2k9fcqh+EIlO4okplk9p6bHS63xy9lhOXhh2pWzZROltYTi506caESSUqVGDzYXR7+N82CqiwqfMeqQu+axiusVhHwGfMAPjWiPe0HjlT43vOKRhsvxB+YncQbvlPKY+fxuVe9GOftk3g8wDXLNtoYoWrSSgIEcAkmPYozE3H5OTl+99ldHj7vsPHK5vLA7vLw4LEtNcYi7Lq1GvW4YWwBlt5xPk+xZ0SS7pieYOLuv8Fq3EKhradmmAw6vpHF0hTZ41c3O1Tq2ZkGGw8QeTuaBDFIs/uZVXztbcfSNzORp9cHCtJqWLpjkpkrWWIwyoI0Nn9/e6IuwlcenlaHmzf3BgJbuC/bfAIffV+GZ1fvj9nzMth6pUlId7SKc7PX/EtrHMJSHbOTzXyuFzN/2GcxKCeJZ7SI35EF/92LT/eU460tJ1DX4rPr76XZMAV8Ne0euX2blP/zlgpcPTIPUwdnQZbVAXIwXlx/GI9+uBsf7ChFq8ONRruLny+7plm6Y0eY/3QVFKQRAalvdeK5NQe4yhAL3B4ZD76/Cx/sKFXdvvNkHdbtP6NydgSURTfbHWIqS7B0x01HqvCPbafwt3WHAPgWtKwInO20SJLEHR6LvZb5is2sctuxyma/BXhlox0vrj+MTd7eaia9jp+jCNtp0takPbtakfNHeVMIjlQ04dsTdThS2YzP9leojk8yG/hgy+x22e5l7zQr+vZSJncW1J1bkKpKJ2RonR3F944pdEa9BJOQ1sEmAjFdQrvDJdpYsxqCVKsRvRK9u7xNvnQitjOt10n8vdGmFg3J9e3YaZU0R4QDbSB3RxExgCyrt8HtkWEy6LihCnvfPLJSbxb4OZiSprzOljBKbjhaHe6Au9Ih/0ZzXTLFIFh9ZndV0t7e4lPPxACU/dyWhucMcXFY1eTgqmp+mpV/jyjlsfNgvbCuO68AgOIiqLVXZ2oYUxZCmR8ESk0cmpcCvU7CRYOy+HjHgh2b02ccwsYft0dWZUO0xa1XhAUXmckmbsaQrtmQSo5ASdPpJK56lbdBReJKWoCAkNeleTfwRKfH3aU+5cgj+wI5tpmRZjXy86potONMvTZIU4Kfvr0S0T9bmb+0PdAAXx15ZpLPiIRdC26PjBrv/RcNUnpqfi+kybaXbSdqVA3NAykxbOzYdKQ65mq7rybNZ+olKml5aSxTxa4KXFmQ1rdXIh+/AqU75qRYeMbK594N3sMVjfjSm3ZY1ejgG3xpCUYY9P6hgdWo56UTbVWXZVnGZ942J5cOzcH4fr0AALtK60L+3eGKRjy7+gCWbT6BOSu/wyMf7ubfS4tRB7NBz88RIOMQogfw752n8bd1h2O6a7TlaDXe3lKCOSu/4wPC4YomzHrxK9zx5jZej8D6cQDAZefkIDvZjKHexXww45CaZuUL29Dqgsvt4UEMQ9w9LGRBmrBLz2z4j1U1++0SvbnpGJ5dfQBzVn4HQJnk2GQrEkhJ23ykGluP1cCk1+G5G0cCUHYn2Q6y2yPztI0kswF6ncSDh9N1rXC6PXw3rHealfdiA4CMRBN6p1lV6Y7Prt6Pn7/9LR+8ewvpjuy98zXLVC8MtKYqgLrRNYCAqUQpViPvNVfdZBeUNN9CRFvDd/XIfADA6D5p/DbtwiXSlB6e7hjEwpopadVNdr4oL0izIjvFP50ymELG0iqyeJDWvkngWFWzKs0rWiUN8C2WtD3v2AK0O9ak7T3dgO+8xesA0GT3vS8sMG5Lw/PSulbUtzhVSq7bI/MFqPg9oiCt82AL/YE5yUg06SHLwMkadQBy0DsGXTxYSVc8XWcL2seK1dwMEFT44fm+uWPyAGWB3ydDGUdtLjdaHcpjieOPyiwqRkpaVpJvvNGmHKZEUJMGgI//rJ41GnjT7ADPxZ0jNUoaAHwvOGQCwKk65T2uE2qP2Vha0Wj3c4lkQWrfXgnoz5S0AJu/onGI2ciCNOWzqW62wyMrNcHneq3g26ImBkNbYxxoHmAmJnaXhweesYI9X6vTzbM2EoQgrVeiCSZvPZ+oVLJgOi/Nwq9ftuFnc7r5vJKTYsENY5SNkBVfn4DL7cEbXx3nj1PdbOfvgTajhSFJEt/oFcflaDhU0YSTNa0wGXSYPDAT53rTX78/VR/67zRq+tHKJv7axOvZ1yeNmlkTZznMZEH75bG73Kq+YdEgBk7vbC2By+3Bb/7psx9ng6BYMPuX2aOwed6lfJHPdpe0C1P2hW1xuHgtgYj4Rf7FJQNw07hCzBrVm98mmoewXS22m8d2o9jCPNUaOBgI1Cdt0f8OAgBuOr8Q/bOSeAD24U5fShdLP2ADIEs7PF3XivJ6Gzyyci6ZSWaupAE+m1z2vKdqW/DS50fw0fdlvDBXVNK0u7XiTh0Av/YEALC/TJ1/L+6S7vc2FxXTHSub7PyzSBcCMzFITrYY8LsrhuAvs0fizguL+e3pmkBOG2gHI1y6Izu3mmYHd/DqnW7l6p+IPcC1I8uyn5LW3p06bbqPthF5ILQLBzZZa1XlaecobpYnqltQ0WjD4//d69e8OV4RAzRAvRnDvn+yHJ26UdloxyV//hyXLvzcb9OBPZ+ipKkXOUTssLvcuH7xJty6ZKsqpbiu2TdWFHnHNq0CzDaDLhyYCYtRB7dHVqXgiTCV7bKhOTwLY1hvX2P7n17UD4UZVtwwthCAkmnBxvsUiwFs761GaKoczK03UriSJgRpBqEvJHvuSGCZB9rrOBwej8yDzUCp+izFns11Yv2XaNoC+MxD2DifZvWlO1Y02oI2xe6bmciDtKNVTX7riCrBOMSnpHlU55ORaOa10+1VOEXYOJPC2zCox1SX26NKExRNRmKBOJ+w9yFB41acrymDAKDaEGVKMAu2WABnMSrX2tUj85GeYERpXSte33gM//rWl9FU3exT0jICpDoy2BqioY1K2tq9iop2Qf9eSDAZ+HfzVG1rSDMuNl8WZlj5a9Q6bQPUJ43oQTA5mzUCBZQLf8ozn+Om1wL3OQmHqIws33wCj/1nL7d8BXyDjzaVUOzllRikJo1NGE12V8AFtJjiMaYoA3+67lxVeh0L0o5X+5S0PEGFEgk0yQG+QLDR7oLHI2NfWQO2eFW0ey/uD8BXZyVOgtqm1PmCksbek7w0C3Q6SaWksV0o5mxU2+Lk6gz7X1THtEFMgub33oLzJVtQBFPSAF/QIKY7HqtqBpt704QduTSr7+esZDMSzQZcM7qA55ADwOg+6UgyG3jahl3YDWuwOfH/3tmB5ZuPQ0swd0cGOzeXoJwUZiQgK9l/MtI2tmWvk72m9ihp9S0+F0dtkFbXBiXtTIOS+sKC2UE5yrX14/F9oNdJaHW68dt/fo+/bzyGJWGcOuMFbYDfZPMP0oDoUh6PVjbB7vKgqsnBU0zZ9c0WXvlpVv6ckXwWRHS8/20ptp2oxRcHK7m7qtPt4Qp1WoIJfTOVsU10eJRlmY9Bg3OTuQIWrJ8aG0v7ZSVy59pLBMOQ8f16YcMDl/D6NNE4xGrS87lHVNICudm9teUEfv72txGpbKw3ZJbGCEkcHyOpSQN8TrjM/j5Smhy++p1AqZU8jbLBBo9H5nM+AK5as/GVfYdUShp3nvSlO4qZKgBQ1CsRBelWmPQ62JweVSsEwGfs1CvJBJM3fc2hCdKyk81hW920BbbRxcYF7YbYydpWVSr8uv0VMW0PIj4fK0fQbqKyDVexplp0Uk7XpGuzuTonxQJJkmAx6nHT+X0AAH/6ZD9anW4hy8TBr3lt2YEIqx9vamOQxlrXXDpU+f6lWo38OgmVvsoyIMYWKQYookuvuB4L1SftSGUTdnSAK2hHQ0EageVfn8DlC79Q7baLkw+zez9V24LyBhu2Hqtp006FmPNd3mDDcsGJDvANPpYA9V6MJB6kqZ+f7arYnIEbkIbbqWQTaE2zg3/B81P9lSUgeJDGJj9ZVibFb44rBdPj+2XwAZYVTouw9z1JE6SV1tn4RMZUrr6ZopKWFvJ8lMfyd3dkaIM2MaCbPU5JjThQ3qiajMoD9OgRlTRWw5hkNqjq3cRzFNN+RHJTLfj+D9Pw5+uVtFAWfMiyjN+v+h7/2Xkaz64+oDofj+CMGExJMxl8u9ZsB3RQdpJqZ5sRqOCYTUg6SdnJBaJX0v7xzUmMXLCG271razIiSXfUKsTlDTbVZsXfbx2Ht+4aj0kDMvn1wmoOukvPNPY+sA2DRuH1iYY+0QRp2vqJZLOB9wVk5KdZ+GYHpTvGFo9HxqtfHuW/7zmtZGeISkiKxRBQSTtdb0Nlox16nYQhucn8mEAGIYC6RmfutMFYO3dKwO85m2PEvlIWo57fLjrkBVINXlh3GB99X4aFaw6Ge/k8wNAGaWLmQKTpjqyn5H7NuBwO9l6bDbqA8yurSatosKGu1RmwNvfcAmVTsLS2VVXLlyqkO1Y12Xkt9SiNjXvfXgkw6HU8GNeOgcyCPzOAcYj4HgZyM24vLDOHqUja9Q3L8unbKwEmvQ6nalvb1QpExOn2qN5vbpCiSd/nrRIE4686UUlL8Clpp+ta8cTH+wBA1Xbo/yYU8XT4S4dkY9kd5wNQ3kumvAUyDWEwdbotNWlVTXbs8G7KXzrUt3HCrqtdIVIej3hT98d6DYYabC4e1IsbHL50R9/n9/mBCtz48mZc+twXeOw/e6M+766GgjQCr284ikMVTdhwqIrfJk6gu7056eJO9um6wOkm1U12zHphI5Zs9N+5t2tqjLKSzXj5/8bgqnPzVI8ZyJSDwRbirU43XvniCK5bvAn1rU5VilJlo/8CLlQgA0BVdMu+4GLQIk44wR7LYtTzyaW+xYlvTyi7Nuf1SefHDAjgWMgWHGyXSqxJY6kl7Fz6ZCTAbNBBr5NwbiFT0tTnw3amEkx61X1mg4472AH+O3ViQHfj2EIY9RKa7C5VXzFtUTigTNJsIcQC7TRN6qI4kGoXKyI6ncQXEWyCfmtLCe+X1WBzqQIOMXAJpqQBvh1S9lrG9s0IOBkF2nwQ0ykTvOYkLc7IJylZlvHaBmWR+r7XNIcFs0wZjSQw0Bazn6m38XMzG3QozEjABd6aG1FxBdTpW/EMD9K817u4Yyu2KahtdqKqyY5Nh6vCLla1i7l+WYl+7R16i8Yh5O4YU9bsPaNqfcA2/ZhimWwxKIv3Xv5K2nbvGDosPwUJJgOKvEpaoH5PDm+fRsD/+tdiEYIAdl1ZjT4lrVoM0jTXj6g0Ldt8nM+PwagSgg+RVEFJi8Q4BAAGZidDJykL8Whqsnj9TpC5KzdVObfyBptf420GmwNL61r5e6LXSUg2G9Ar0QSDToJH9n1mIwt8aabJFgMPgFjK4/bjNfjuZB1kWYZLsP9n9VeAzziEvdasZHPIfqRtha1t2GajdhOOKTnD8lMxpkiZz2PVUFs751QGUdLYvFkljOVssyotwcgVsLL6Vly3eBN2nqxDWoIRcy8fzI/vnWbFuz+diBV3jsfrt47FkNxk3vvzsDfoDK2ktb0mbf3+Csiy8l0WyzBGsLq0IN8jWZZx1Dtfntcnnacks3VToHRHtoZze2Tcs2I7th6vgU5STGm6WyokBWk9nNK6Vj7hMfckQD0ABg7SAuedbz5ajZ2n6vH3AEEa+3Jcfk4O3rprPP736ym4Yngu3wFiC3yrKXiQJhbTPv/ZIWw/UYutx2pUC7GqAJNXuHQSseiWDdCi6cYtE4p4OllakMJa8XkabE586x3EzyuKNEhTBsCCdCv0Ogn1rU5s8TYBZYtWi1GP134yFq/eMoanmJgMOtX78qdrR+D8vhm4ZUKRyuBEkiSV2qQ1DslOtuAXUwfgl5cORFEvX/0ASzdye+SACwNRSWNoTUDEoC3QzraIb4JWgrSFa5XdajaZiDUSbBGv10kqwxkt4vklmvQYkpvMG7CKBEp3ZIFQstmABO8kEE26457TDTjknWS2l9SiwebkO7MsgI/IOMT7/WGNTcsbbHwHWBugalON2uOI2Jk08CBNWWQ3qZQ0dbrj/f/ciZtf38IXhUEfU7OYm9C/l8o0xmpUNjN4ulAzKWmx5M1NylzAamp4kKZpet8nw6uSCUradm82AlsYs0wCpsaJlNa1wiMrNTjheiyKalK997thMeq5YYVaSVNfD/WC0uSRgUc/3B1yoyCYkpYmzEmRpjtaTXpel8xqgiOBpQYG22Bkc8mZBntEQZrYL1SSJBj0Op5WymqLRhSk8jG7b69EPhexeeX5dYfxwxe/wm/+uRPvfHMSgGJ6lJZg8lPSmMoTTkk702DDvSu2hx0TtLCMhF5CuqP4mR6tUsbrflmJfPwNVUMVDdqAkM172nUQmzfFz4d9hxQlTXlftp2oRVm9DdnJZvznFxfy7w5jTFE6LhyYCUmSoNNJfK5mZi6hlDSW7dMWJe2zfUoWy2VD1a0wWEZQsHTHyiY7Gu0u6CRlXmPfG+bkKmZJiRu8bo+MZoeLz+lfPjAVr986LmSmVjxCQVoPR+wNUhWkWHoXD9J8twVX0pTHKK1rVU10gDD4GPW4YEAmNwNhg0uLsKMZDFENYjug1YJZBYCAk0y4dBJfkObkj1uQ4duNnTwoEzeMUYrNhwuF6P7PowwYx6qaefAlqnBikMYCK/ZeslSCBJMB53ldDzd6bf9FU4+LBmXxnG4Gm7iSzAaM7ZuBf9wzEfNmDvU7P3ExnxjAsv630wdj7uWDACjW1YDPPKSqyR7QVU+sSWNolbTUCJU0AKoJWrFeVq6jsX2VfPSDZ5pQ0WDDu1tL+AIq0aQP6LjJEAPD0X3SYfAasWixOd34+8ZjOP+J//F0FpWSZgrcAiIUq749xX92uDxYuOYg7C4PclMsfBexPgL1hn0/2CLtjJDuqE31LOqlDtKCLSjqW50xra2IBKfbg3X7zwTcCdemO7YIvQnF8aeuxcnbQ4RLO2KPefP4PtjwwFT8dtpgvigFFAVZkiSubJCSFjscLg/frJo7TdnRZ5t+9dzCXXnf2RhXJjRq3+6tIWELzckDFaX4m+O1ftc0W7SJAUEwxIUaCzisJj0shkBKmnpByjaqEkx6WIw6fFtSx8dp5dxq8PSn+/HO1hKcrmsNqqS1Jd0R8KU8RtMAOFgjawYzDqlutvMUe/F8jXqJzwen63wmD2KgectEdYPu3mkJfKwX0/Qn9Vds1yVJ2Xj717eleOQDpUH9zy7qD71O8tuoqxQcMtl71eJw+7l8Lt10HJ/sLsfizw+He0tUsLE10xugaNuxsNTMflmJXBGMWZAWRNnRjuk+Jc23vhGNQ9jmMRvOZ47IQ2FGaEUZ8G1gMrVQu8EqktzGIM3p9mDDISX1XhukDctPgU5SNggqApjOMCfTgvQEWIx6rvSx1OZAShqgzOVsE9ek16EgPfx7EY90aZD25Zdf4uqrr0Z+fj4kScIHH3wQ9m+++OILjBkzBhaLBf369cPLL7/sd8yqVatwzjnnwGw245xzzsH777/vd8xLL72E4uJiWCwWjBkzBhs2bFDdL8sy5s+fj/z8fFitVlx88cXYs2dPm19rvLLpiG9yqQ6ye3iqthV1LQ6VenAqWJAmPMbu0/XYfqIGC9ccgM3p5qkLZoP6stMqU6F2OrRqEHtOVZAWUEkLnU7CggqXR+ZBXnFmIu6fPhgLZg1DdrIFd00uxvrfXoxrR/cO+jhsR3Sdd9doYHaSahDJSDTxHeWLB2cBADelEFNepgxS7mMDrmjqEQj2HKP7pKmMVrQkhVDStPTLVNd/MKWT5bSzn61GPdITjBDXRdqBPpogTZygRbMZZpRy6EwjHnx/F37/r114y1vXGCrVEVAraSyvPVO4jZ17q9ONNXvKUdFo50XObKBPshj47makfdKcbg/+43XyZDuwy7zmJz8Ylc8n/EiUNKZEs1SuqiYHX0BqvxPMYMCXxuvwC8bWH6jAqAVr8NfPDkX0WmLFv787jTve3IY/e/sHimjTHQFfkCymO1Y123Gm0d+JLhBigXlhRgKMerXSwlKJ2YLzbKtJO17VjD+vPhCzRWU0HDzTCIfLg2SLAVcMz4UkKfWRlY121DarlbQcb8qd3aWkvjXbXdjnVYtYkFbUKxHD8lPg9shYu7dc9VwsUDonT11vGAi9TuLjGLs+rEY9/37XhjAOYddb7zQrbhqnGDEs/vwIAKX29KZXv8biz49g3r92YfqiL7kLq1bda0u6IwAMzlFe374ozEPCpTtmeBtly7LSBgNQpytmJpmRl2qBXifB6ZZxyJvNILZWuaB/JlfwWWpZrrfWra+QfjppQCY2PDAV3z06DS/9eAz/HG6ZUITfTFM2CM1BjEOyks2q90qbispSEKPt76pV0gB18MQCmH6ZSTxIqO7gIE27Wa1V0mRZVhmHaF0ZpwqGOaFgf8dqwEO5OyaZveZoUQZph840odnhRrLFvx440eyrRz1wxn/jQVQxAV+LAJYBlqIp6WC0Ot3CJmb3Us9EujRIa25uxsiRI/HCCy9EdPyxY8cwc+ZMTJ48GTt27MCDDz6IX/7yl1i1ahU/ZvPmzZg9ezZuueUW7Ny5E7fccgtuvPFGbNmyhR+zcuVKzJkzBw899BB27NiByZMnY8aMGSgp8TVRfeaZZ7Bw4UK88MIL+Oabb5Cbm4vLL78cjY3RWd/GM7Is42tBSasWghs2+LEBdM/phohq0sSUyd2lDbhu8WY8v+4wPtldxt36zJq0tPRE9cQRKt0R8M/Vrmqyo17Y7WTtA0TjinA7lUrRuI4/HqAMkj+fOgA/mdgXgBIgFmcmQhciCGLGIP/y1h6J9WiMV24Zi1duGYMJ3kaOjGThHKcMUg+wgXqYibAgSJvaoCVJmOC076OWHCGtDvD15WLNYdnzsnQXMTDT2umntSlIc6vyx0cU+HqqsPpJVogczDSEISp9zCFK3ClmxdU2p5tf5wfK1UpaktnA1c9gE6uWb47VoKrJgV6JJvx86gAAvqB81qj8gL25Hnp/F254eZNfU18WGIrXwqla1r5B/VlO6t8LT183gheGO92yyoQDAF7+/AhkGVj0v84N0pgzXaA+bkzFykr21aWw919MCzpY3sgVtqow9XaBUr3EdEcWEAZqCn82sHDtQbyw/jD+ue1kpz83a+FybkEqkswGvojfc7qeK1hsk85s0PONk7L6Vuw8VQe3R0Z+qkVVwzJjuNJigtWpAspc9smuMgDAdO/94WCBANu7EOeAajGrRLMgrRLqo+6+qB8MOgmbjlTjzje/wQOrvofbI+OiQVno2ysBjTYXV2RCKmkRpjsC4ZW0Q2ca/erkAtmVi+h0En+P2cbtgOwkPt5lJplh0Ot40MVSVsVxXaeT8OPxStCalawcz1oGjNBknxRmJCDVasQVw3Pxr3svwKLZo/DYD4ZxBVSrpFUJQZpBr+ObcuJn4/bI2OlNmSupaYmq9sjXXsfI5zb29w02J//M+2Ul8nRAlim0/OsT+EpQUqMlmAlVOCWt1enmQWx6okl1PVmNeowvzojo+XtprstILPijrUljzaqH56cGXD8N9GYYHTzjH1yzAJmlybIgmV0bKZprkH2HWx1uPueFWx/EM10apM2YMQN//OMfce2110Z0/Msvv4w+ffpg0aJFGDp0KO666y7ccccd+POf/8yPWbRoES6//HLMmzcPQ4YMwbx583DppZdi0aJF/JiFCxfizjvvxF133YWhQ4di0aJFKCwsxOLFiwEoA/6iRYvw0EMP4dprr8Xw4cOxdOlStLS04O23347pe9CVlNS0cCcmwDcxeTy+Bd0IQb1oERZ5wYM03+T2b6EXWLPdzb9ULKWE4aekGcIEaZovXFWTQ5UuViE0z2REMglq1Z9wwWIg7p8+WJXTfV5Rmt8xIwpSMX1Yrt/ziWrQsPwU1eMwFSYY04flIivZzE1YgqGqSQszcOVyxy/l/WQ7wvmpVn6f+L6K56v9TCNxd2SI6Y7MbdGol/iEv7esgV9LbKESbhBmiz+9TsIobyppqtWIif16YXSfNBR7m5nbnR6++8Zq35oDBGlOtxy0oa4Iq+cb1zcDFw3M4rcPyE7COXkpfCeaBQYej4yV35zEN8dr+UKIwRp0im0KmMqpff2SJGH2uD44tyCNn3NtswNfHKzkyl5/IfU2nBoVS5iFdyBlh/WLS7WaePovUzLF3oh7hf59gc7d7ZH5pkKgpqdZSWK6o7I4Zd/H7lK/FymsPidY/6qOhC3OWN3JsHxlPtlzuoHXgokLfW4zXmfD9uNe4yXNxtOMEcoYt+lIFb9edp6qx+l6GxJMep6FEA5tDavFqPNZ8AvXZpPdBZfwXRdVnd5pVt5v87P9SvbEvRf3x9Lbx+HFH5/HFfoks8FvPhFTwqNR0oZ6x8FDZ5r8AhGn24PrX96MG17ejCa7CztKanHBn9bhzU3HAYTerJzo3TRkC+WsZDNPg2TjJ8vo4EGaZpy/6fw+mDkiF7/wbkg9cvU5+Oc9E/1S3ERGFKTih6N7qxbvodwdAQSsSztQ3siDLY8cvE1DINjYkiC0YWDBEzMAU1Q8n2JV3ezAvrIGPPLBbty7YrvqGomGYEFaQpCatOpmh8poxaiXkGjSI8Vi5DWAFwzoFXHtlbYGLVSQltLGdEdWMnNuQeBSkcHezI9DAZQ0ls6uVdIY2o0H9vnZXe6w7Xm6A92qJm3z5s2YNm2a6rbp06dj27ZtcDqdIY/ZtGkTAMDhcGD79u1+x0ybNo0fc+zYMZSXl6uOMZvNmDJlCj8mEHa7HQ0NDap/8QyrR2M7MNVeFUzsqcL60jTZ1U2iw9WkAcA+YSFl0El8QvFT0vyCo9CXpXZBeqq2JaCFbb9M3yI0nLsj4D/hhKqNC0Z2igV/vmEk/z2UsqUdDMWJWqeTcJF3sZGZZA474N5xYTG+eegyDMhODnmcqLiEU9JytUqa9//cVAufrMX3VUwp1CppYjAXrqif7aI63B5e9Gs26FGcmahypwR8u2nhBmG2+Buen8KPlSQJb989Hv+6dxJ/L2wuN5+wD1U0qjYstAutSMxDmFpUnJWIwgwrV21+OCpf1YicLTZrWhxweRWioxqLajaZW016fu0EC9JE2LGVjXbcu2I7fvnuDtS1OFTXt5j23NEwBz5tkCa+16lWI1d92a6tuJg5I7SCCJTe/Ph/92LCU5/hm+M1AVUEUUljGyCBVM3uTkWDjQfF1Z3k8FnRYMOsF7/CP7456VPSvJt9LNVp7+kGQUnzfS5szClrsPFG49oxtH9WEgblJMHplnlLDaaiXTIkO+LFqVmzGWg16mFmFvyaQF00sNE2p/7VpQMxNC8FVwzLxX//34X43RVDIEkShuWn8nTIQNkDbL6xGvUw6iNfirFxxOH24Atviw1GaW0r6lsVh+Jjlc34eFcZSutauattqLT/qUPUwW1Wspm3oWHnX+Adv9jmmHZeTTIb8NKPx+AWb/ZJktmAcX0zQmafBMIszAF2l08RYe85N+gSgrQdJ9VmIYcCqDLBYDXGiWaDr9eWN13u0Q+VMhcWaLJ5rqbZwcffBpuLq3jREiwrQxukZSSaoJMU5bemxcGVvLQEEzcBYddUpKmO7HFD/S4iGodEU8u8y9ufNFg9/8AcZd2ibZwO+II0pqRlJEUWpLU6PBSkdTbl5eXIyVHvyOTk5MDlcqGqqirkMeXlSmpEVVUV3G53yGPY/6GOCcRTTz2F1NRU/q+wsLANr7LzYJanbPCpaXbA7ZH5wGcy6LgU3qhpEn26Tml6qSVY3UOr06ekaSdH7YI+XHCk/cJpF7MsHSAjyYTpw3IwqjAtrBIV6Dy0g2SkTB2SzdM3QgVNWnONZM0uJ6tZYztIsSApCiWN9c6pb3XC5nRz+/2cFAtPD1QHab6FiNbGlw38Sq+x4JMAAJj1vjQkpqJYjDqYDDpVAbpIuJzziwZl4XdXDMET14xQ3S5JEm/0CXjTHb0Tts3pwcnaFpU5h0mv4+kwkfRK40FapmJm8LsZQzB9WA7+b4JSZM9UhEbvbn2FEHwc1RhitHpt/61GPd/9PFmjLL6SQtQXsvd7b5mSsizLSiAiLg42Ha4O9ucxhwcNzeo6OWXiV35OtRr5tdrk/TyCBcWB3FzZzu3Ok3W8vlbb9JRtimjTHe0uT7ezaQ4GSwcGfJtwHc3qvWew82Qd/vDvPXwxz1KVmfnEgTONPBgWPxdWr1tW14qDFY2qvxEZXagEbqdqW5RUx93KvDxzROhMAhGtkiYah2j7hInmIVpVp0+vBHzyq8l4+ZYxfovQ+6cPxrRzcnDPlH5+z5/pTcHWzjvhkCQJ04cpKZ2f7lavR0T16ERNM45VqVsVaOcYkQsGZKrqjZlSCPjcH9nmHKtf0s5hsYKnOzrdqnGWbaYxRUdU0rSW+IcrmuByewKuU7SolDTvJrHN6cYTH+9DSU0LeqdZMW/mEABQ9SM7I6jTXx5s20ZX8CBNPabrdRLv01nZaBecHX2fwfRhOSjMsOKKYZGl/ALqeVvrFK0l2VuTtvFwFc5/8jMs9Sq0oXC6PXzDXpv2ymDO2YfONKnmhLoWB5/jWJ21VknTqsMWoSShUagn7650uzPXujaxD1RrNa49RntbrI4RmTdvHubOnct/b2hoiOtAjX1xLhiQiX9uPwWPrHwp2ISUYjHyHfpmuwtOve/L63B7UNVsV7mkAb4gTSf5am8AZcEbC+MQwD940taQsILeBKMeT94yNuRjiWgVvfZYtf4whLkII5SSBgBXn5uPBpsL5/eNLLc8EkTFRVvHpCXFYoDVqEer043yepugpJn5xCKmKmWGSHfMS7XgjguKkZlsgiHMrrGotLKifRbYD8pJwuGKJuh1ksppMly6o8mgw70X9w96v0XcfRPS6g6UN/JAMdligCRJSDDq0Wh3RWQewoI0ZsLyg5H5+MHIfH6/qDA22Fw4IzQq1boWBlLSTkagpLHr+nuhWWir063qu/ZVJylpNqeb15CxHlUsGBMNHEwGX90Je/+Dvd+B0h2ZElLZaFcZh4jMGpWPzUeqca7XfTXJbIBBJ8HlkVHX4kRuavctNmeIC9fOUtLKvEE4GyN6JZr4Yp+loJfUtPCNM3GsyPUqN0crm7n6MzBA2xIxTbi8wYaSmhYYdBLf2IoE7fhuMeiDZnGIRlqi02A4MhJNePUngeegYfkp+OlF/YKmgIVi5ohcLPnqGP637wzsLjcfH8X+cSeqW1SNwYHQG6DJFiPG9c3AJm+GTXayBbdO6otWpxs3jC0AoDb0AdTjfyzhxiFuX7Nxo17icwf7Loufyw6vE+j44gxsOVaDw5VNuP3Nb7C/vBHrfjMlZIDKNoASzQb+HtW3OrHS2xrgmevP5cEAq29usrv4+Asogct15xXgk91luGViUVhjLkagzT7WC1VLVrIZVU2K8Q4LQMTvz1PXnhvRc4qI6Y69Ek0h17hisFPZaMfSTcdx66S+IR9fNA8K1r+wODMRep2ERrsL5Q02nvmy0ztnFWcm8tep3QBODbLJrzYO6XahDqdbKWm5ubl+SlZFRQUMBgN69eoV8himimVmZkKv14c8JjdX2YUIdUwgzGYzUlJSVP/iFY9H5rucw3unCCmPDr4wTrEaVHUhrZoGvtpeaR6PzBdHIwXbeUCrpKkvuxSLQTUghasFY4s3rUsQgy3eo1XCxF1BneR/nrFGGxRqgzSdTsItE4p4vnYsSBaVtDCTiCRJyEnxNTllQVpOigWzRuVjUv9euHGcbxNC3JHT7nZJkoRHrz4H9108IOw5moQgji2wWeA2yJsWMa5vumrR3d50BrarXtfqUG0uHKpo8is+9jk8uvHO1hLc/NrXGPP4Wu7ayLA53Vw10vYtYxiFIvj6VicqVUqaJt3R6WthwXZUGyNwr2IB3S4hSGtxuHm9H6A4uJYEaBAca0o1adJik21tMCUWqTtcHj91g9Foc/kpX2yX+UyDTXC2U18jf/zhCHz2m4tV6a+iG+bZAFu4AuENVmKFNhV+REEqX/jlpyk9IB0uD59/xIV+vrc35eaj1ZBl5drVGhsAPiWlodXls4NPMEW8MAbUQZrJoFNMB4LUQ6uCtCB9z6JFp5Pw4MyhuOrc/PAHazivTzqyk81otLlUKriopB2vasYJbxAxb8YQTBmUFbZm+RIhTS4r2Yxz8lPw/I9Gc/c9rctwqJ6h7YEpaU63jGavki5+XimamrT6Fie3yb9hrDInrd9fgQ2HqlDZaA+YRifCFvNiTdqZBhvcHhmS5KvXU57bt17ZJ/Sq++5kHX702td46pP9eN9rHBYJgZS0YEGF2NC6jtvvty9QFjeLQ9nvA/5rlEhqKZmJzYjeqUEDQLNBzzdwRPOQnd5MANFpNENjNBc83dHtM/2KYlyIN7pVkDZx4kSsXbtWdduaNWswduxYGI3GkMdMmjQJAGAymTBmzBi/Y9auXcuPKS4uRm5uruoYh8OBL774gh/T3TlZ24IWh1tJIeuVyCfCqkY7d0wSlbQmu9sv3Ug7Gde1OvkC9+bzlVx8NoDYnG7B3VE9EUqSpJqow6U7sibEUweHzrsOl86nRRygrMbQfbdigcWoV73WzsibFgf/xAgGLpbyeKbBxtMdc1Ms6J+VhLfvnoBJ/TP5sWJNWnvSYHQ6ideescURWzz9eHwRrh6Zj9/PGIrCDN+Cob07ZWwBoFUbDpQ3+uW1s+D/aFUz5v1rFzYdqUZ1swMffV+m+lu2YEqxGEKmePpqodTpMyeqW1RqYatXSbKa9H7F3pHUpB2q8C0obJo0IkDp79TRsHo0hpiCpw3S2PvdaHOFTS0VUx49HpkvYE7X2VTObeE4m+rSXG6PSj2tabZHlPrVXpgZFUtNGyM43Br1Op4qzQyeVDVpQoo1oO4rKSIqKfUBatsiQdyEY+NwsA1CMd0xWN+zzkSnk3AFd7n0jTuikrb1eA0cLg+Megl3XliMpXecHzDgFbl0aA4kb0p6oJ5qWiVNq2LECvGzERV2/ry8Jk35XJgxyoDsJJ55Iq5XQqnILreHbyAnmgx8fcLqXpPNBlVNnST5GkCLBkZuj8w3oU5pxrlQBBrbgq2BmIFLZaMdNc2+RtbtQWxF0ysp9GP17ZWo2pywu8KbpbAxKFiqIyOQeQgP0oRNf/H16nWSX209+w7bnG6eKt+d0x27NEhramrCd999h++++w6AYtjx3XffcSv8efPm4Sc/+Qk//p577sGJEycwd+5c7Nu3D0uWLMHf//53/Pa3v+XH/OpXv8KaNWvw9NNPY//+/Xj66afxv//9D3PmzOHHzJ07F6+//jqWLFmCffv24de//jVKSkpwzz33AFC+hHPmzMGTTz6J999/H7t378Ztt92GhIQE3HzzzR3/xnQCbAdoUE4SDHodX/RVNTt4TVqKpni/WdPAV7vgYvb7yRYDrh9TgN2PTcct3tobsU+athYAUE+w4YK0uyf3w6NXnYO7L+oXchepPUqatZN2XsTFe6h0jFihdncM//6wQv4dJXVodrhh0ElB2wGINvfalIRoYZN0o1CTBig7iX/70WiMKkxDodCcst1KGm9iq06dO3imUWXBD/iujeMaC3lt2u0x3gA1KWTALzqVVQipew63h1vsA74dV0VJiz5IE9fnrQ43fzy2/ugM9chPSWsOrqT5xh4XWrwqvkFodCsiqkSNNhd/rYeFlNFIvl9MGYikuXi8c+BMI1qdbq6ee2Rf4+aOhG3eLbppNOZffQ7uuLBYdX8fTYNdcdzVji2BUh0BwTjC5gxrLx8MUZlhc06wFHe2WeRye3g6fXuVtPbCasm/PhZYSWMBW2F6QtgUc0ZxZiLeuG0cXr91bMAxS/v5dFS6o/gdZ5+vSkmz+MbM0rpWLP5CaV79q0sHone61S8LJlSPQLH/YoJZraQBgZ2h2XqJPa72Oo3GLZeNw+JaJlhmhGjDzxtZt3OuzRDn7TABX6LZgI2/m4r37pkIIDLzLGYAFMw0hDEwW91aQpZl/rejhCBNnPtSvCUIIqLxCzOdonTHNrJt2zaMHj0ao0ePBqAET6NHj8ajjz4KACgrK1P1LisuLsbHH3+Mzz//HKNGjcLjjz+O559/Htdddx0/ZtKkSXj33Xfxxhtv4Nxzz8Wbb76JlStXYvz48fyY2bNnY9GiRViwYAFGjRqFL7/8Eh9//DGKior4MQ888ADmzJmD++67D2PHjkVpaSnWrFmD5OTYpZ51JaxXEbM15/auTXY+ISVbDLxuqdnu5umOrJZAu+Biu1UsrznJbPAVcToEJS1ASok4OFjCBFdZyWbccWExUq3GkDuD0bozqpS0MA6TsaKtNsxtJdkSnZLGdrbX7lUaOw/KSQ66kGE7cswSuD2wSZqnOwa4ZgqE1Jv2Pp+2PxILXI5WNnNVRaukiQEU4G9LfFRTjxYMMUg7o7FJF+vSxJo07Y5nqPrCQBNvi9PN0yfZd1+7CdMR+G/s+AdpbFGUKKRas8VAgkmvWswwNbVKWBSJwSZ7/GSzIWSTdwZ77LNBSdvmtbAf1SeNjzPVAUxWYonY+mB47xTcdkGx3wJJW5eSavVdn6LrJhAiSBMW6YEMSCJB3CxkP/vXS6tdBGtaHJDlyAyQOhqmLpysaeWmX2KNFCNYHVAwLh6cHbC/J6AsgMXgtKPSHQ06ibcvCKyksT5pTvzpk/2wOT04vzgDV52bB71OQr8s9XVTE2IDitW6GnQSTHqdEKTZvc/lf11pP/u5lw9C/6xEXDBASYsUg7S6Fgd+84+dQXupsXFdVGaDbRJnCQ2tY5XumGb1WfdHck2bDXq+4RWuLruy0c7bNWj7wmphpQzbS2pR3+rEqdpWVDc7YNRLKvMgMSgNFEBbhHRHNqcld+MgrUvP/OKLLw5p4/nmm2/63TZlyhR8++23IR/3+uuvx/XXXx/ymPvuuw/33Xdf0PslScL8+fMxf/78kI/TXWGmIcwxhy36qpsc3A44xWLkHeab7C4YvM5PA7KTUFZvw4ZDlahosCHbu5BnCyLxi84UilZBSQtU65WmSTWMlF6JJhxmz2XUcct2IHzNlRaxqXaCsXOVNKNe6vAaOEAdmEWiNLJ0RxaQh0pZKM5MhMmgw8Ds0MpRJLAgzbeL6v/eFAo78kntVCHZwM6u4cKMBFQ3OdBkd/F6BqbssPeNvSeFGVacrGn1V9IEZ8dQiE2UmZLGruWjlc24RDEVC62kReDuKGJz+IxDMpPMqGi0R2SE0l60gW0oJY3Xw9pdKovsVKsRZxrssBh1GJSdjJM1rSob/kCKYKTNglnAUHsWBGms4fvE/r1wuq4VdS1OVDU5MDB4WXW7qWqyw+WRoddJfqZSjKIM9fdB3KhSGlqbeUohs+bWkiKkuwUzhgmHWH9mCZLumJtiQV2Lk5cAsMV3ryRzREF/R5JqNaI4MxHHqpqxq7Qe/TIT4XTLMOqVYIMpRKyeLFb0TrPy96GjlDRJUuZDm9PDP19x85Z9/hUNNt4H8NGrzuHzzvjiDOwra0CfjASU1LSoal+1sIV8gkkpcWDXAFfSAswtWhv4yYOyMGNEHtYfqMBXh6tVQdprG45i1benUFLTjAsGZGofio/rmUlmHKpQNuWCbTqKShpbp7U3UNbpJGQkmlDV5Ih444HNgeE29jYcUlpEDO+dElZ5HlOUDotRh6OVzZj+ly+5CdDQvBTVxnCyYPAU6DtvZc2snb6aNFLSiG4Ha7J7jneHgqWqVTf7lLQUq0GwwfYtlK4emY9UqxFHKpvxgxe+UllqA2r53Jcf7AlqwQ+od4OiCdLE3SfW04URfbpj5GperGAqR7LF2OE1cIA6NzuSgStX07pgRAgnsl5JZqz/7cV456cT2n6CXtg14kt39P881OmOsVHSWNCg9PdRdpOZYQVPd/SeC1OF+noXQdqmt2KPtFCIdVAV3oXB2CKlroIVwzvdPuOMBJN/kBYq3TPQxNvicPkWB8k+tzItXx2uwl1LtwXcoW8LbKxghjQh0x1ZTZrgpGk16fl3Jj/V6lu0qHau/QOsSBfwLEvgZG1sXm9X4XR78PVRJQ1u8oAsnnHQHhv+ZZuP46lP9oXcWGWfb26KJWgQIyo7SWaDX48wsV1KMCVNVFLaGqSJtdFsntIah7BNKmampe2R1tWwTbNdp+p86Y0ZCegjBGZ9o1TSwiGah0S6+dEWmIEUD9KETUz2We88VQ+PrGzWikZiv7tiCD6dMxk3j1dq40OlO7Kxhc2HbK5hRlkBlTRhrZBk9q2TWA9Qttnmcnvw3vZTAHxjuRaupAlBTLAN5syASlr71Uw2R0SaOsneq1anW1U3reXzA0qQFkmD+dxUC966awKKMxNR3mDDu15nzZEFaarjJEni5xk4SBNq0mzhjbXiHQrSeiDNdhcf0AdrlLSqJqEmzWJU2WCzupD+WUn48OcX8C/Te9uUQYgNhKKpgfiF4UFaAFVEHBzCuTuKiGlf2nz5aB4HUA92Ce2w34/uOdVOdh2Nqk9aFEoaI1zxb+80a8Cdx2jRpjsGCtJU6Y4xMg5hjaQTTQa/XU9tuiNzN+0rLIjElMdIlbRUwVGQKUIT+yupIaxXmuheaDHqVfV/QLiaNP/Po9Xps7ZmrROaNUHayZoW/Pj1LfjfvjPcijoSmuyuoAYVLLAd0TsNgG9jBwhUk+ZV8bXpjt7Xk5dm8S1awihpkS7gB3r79RyOohFuPLLzZB2a7C6kJxgxLD+FpyK31YZflmU88dE+vPLFURyu8L0320/U4tcrv+NBfJn3OxGqL6Wo7AT6XNjfplgMQXff2RjT0Orkqmd70h2DGYewzQRmUBErZ8dYwez7d56q5/VofXsloo9gqlQUZvyJFtbQWuvKHGtYEM3THQMoaQ7vmmJIXrJqk9Nq0mNIbgoPPqoDBGm7S+uxavsprgYlajbhmJobLt0xR0jRZddFTbMdbo+MLw9V8rTJmmafI6OIT0kT1h9hlLTKJju/7tub7gj4vpNFGZEF9OL5BcvAcHtkrqRdHMbkjTGmKB0f/3Iy7p8+mAe804b5S/8sSA601mCGcY02F2+n01nrq46AgrQeCKtHy0428x1W3yQuKmk+45BWYVciwaRH38xEbufLdmd5uqMw2LCJ0OZ084VmIJtjMeUlmv5kKiUtTb0wiKTmSkSl5nWWkuYd7DvD2VF8Hr0usvRKUUkz6KSYtgMIBdtFbeB90vzPtUBQ0mIVpDESzHoeKGmfg9ULsIau2clmPmmx861vcfLvQ98w6UaszuD7U/VcLZvQT1HSDpxphMvt4butkrc1RLom8AodpPkvKFsdLp7uyDY6moTUFYfLg1+8s4P/rk3lDEZpXSvGPL4Wv/nnTr/7nG4P351mi0txh9tnAKG8FpWKz4M0A1e881OtfNyqUgVp/ueqtd8PBnMTPFjRGFIxindYquOkAZnQ6SRfpkQba9KaHb5NtqOCYc5zaw7g/R2lmPzMethdbm4aEsxcCFAbhwRyZGRB2sCc5KDZBWyR7pF9RiVRK2kB0h21adWsJpd9r5lBTSQ90jqDc70qw65T9bwnWlGvBFUgHG78iRampHVUPRqDzQFMGQ/k7shgtfVatAYfDLdHxl1Lt+E3/9zJFWeWYsiuAfb1DzR2iJvD4hzZK9HMe8RWN9v9NrcCqWmBatKCKT/smLoWpy/lNAafwx9/OByv3DIGFwZIxwyE2MctmHnI96fqUNviRLLFgNGalkyhsJr0+PnUAdj4u0uw9aFLMXmgvwrHguRASi73V2h2+JQ0suAnuhPfnqgDAFUTzV7Che1rZm1QDRZs8cMueKY8sQGwOoCSJjrthFTS2lqTJgyWeantU9KUlMO2/W1b8aU7ds4g0icjAZcOycYtE4oiSq/MTjbz9ySUaUisYddIqHRHq0nprSJJvsVUW9E+fqLZgKG5KarAPVlTk8bISDKpjAwAX7pcZpI5bAB5frESkLHaioxEE84tUMwe6lqc2Hq8hu+2JnhbQ5gNelUxdKggP9Xqu64ZrU5fnzSfcYjyXsuyjD/8ew+3PwZ86V7h2FNaD7vLg52n6vzuK6+3wSMriy9WJC7ucNe1+vpdAUKfNJsv3THBpOcT/rjiDGR56560hfpaIl3A989KgiQpi6BAu+/dhY1ek4LJ3kUXz5Ro42uqFf5OdDVlJiEA8PQnB3C6XgmY8tKCfx+tJj3fJQ8UpA3wXhuhVHuLt+E54PuuxUJJ80t39C7A2QZCvClpw/JToJOU1DzWhFpR0pRAWK+T/Gzz28sArymHNhU+1rA5IFA2hVZBGRJk8zAjSJC29VgN3zBixhYsxVC7/gh0XYnrFTHbRK+T+KbY4YomfLavAoCvdcFRwQiqosGGykY7H9vFwN8apCY+zWrk7WkCuUK2lZwUC6YPy1W1GgiFJPnMwbQZGIyN3o2iyQMzI3YXFTEZdEHrWjNCpDtytbHR5nNmJiWN6E5sO6H0QxrjrXsBfIFVdZNDpaSZDXpVc2HAF8Cw3XyWXsQs+DOCBWnO4MYhbKDR6yQY9ZGnUIhpX9rJKNqaNL1O4l/6aJ0h28p5fdJh1EsY1zcj/MExQKeT8PfbxmH+D4ZFdLxRr+PvcbhUx1iirUcIFNgDwN9vG4e37hwfcuc+EiyaazLRpIdOJ3E1TVQe/YK0BJNf3x6W/iX2cgvGsPxU1WI1O9kMo16HaecoaR4f7yrzmYYIzy2mCIfKudfrJL8C/0abi6t2PEjzBkJ/33gM72wtgU4CrhzB1PLIFvds19sWYHeVpSRmp5i5AlYTQZ80UUlLNBlww9hC7Hx0Gm4cWygoaQ7sK2tAfYuzXemOFqOeL3DDNcCNRz7YUYrrF2/Ct94m1hcOZEFa+5Q08T0Vbd7FhfOSr45h3X71ojQYTN1Js/qrADeOLcDL/zcGv758UMjHYAt11pOqPRb8XEkLYBwCgBuHHKtSFtnarI2uItFs4OovCzZG90lDP28dbJ+MhIAtK9rDxP698Mx15+LJa4bH9HG18GyKAEGa9rMW3f9ExFp7kf9+f5r/fNT7mbIxVLtBG8qCH/DfIGQbEF8cqITLI6Mww8qbhDMV2uZ0Y/qiL3Hl8xt4IJGaYOTqVLDxXKeTMHmgWu2K9rqPFWzzMZiSxupThwZROdsDS0vvH6DeW3TA1PY47Y5QkNbDkGWZ79iP7euz2WWTeJPdxXcL2SSoHTDYIpXtJtV6myqyeoeMADVp9jDGIWz3PNom0mIet1jQLJ5nNLDX1Ja/bQsjClKxa/50/Gba4E55vraQm+oN0kKYhsQarbtjoGsGUJSPSRGmaIQikJIGABO9zbqTzL5+LNpJPD3RxFNi2AZHCQvS0sPn+Ot1Ei4QmoIzt9SZ3gDp091n+GQjnqf4PQvnZMrTQ7w7iuLOsmgcUtlox1Of7AcAPHTlObh+TAGAyHuoseNsAZqciv2s+A63UCOlteBnu5+NNidfCLD3ntXxsV3TY1XNmPHXDfjp8m1c8RfVjmgWMsysQqy96i788aN92HaiFrKspMyylGBWd1jVxpo0MYX0qJCyxT4z1maC1Tprsxq09PGaWQRqhmw26HHF8Nywnxn7zrG6pGibWYsbM6zliqikGfU+g4JGm1PVt0lrZtCVsPpOnaSkrZ1bkIbxxb0w57KBeHxW7AMpSZJw47hCDMju2NR3s6Yu2aoKqnV8M1cnBW96zkovbE4PV+Ndbg8+2V3OjynxXrNsDNXOBQFr0oKkOwK+cYep2YNzUnjQzJS0wxVNqG1R3HxZP80Ek56rU6EyeRbdNFq1CdIWlSoWsDVSIMMpQNh064CG5z+fOgD//X8X4rrzCvzuY+9/RYOdO5xSkEZ0G05Ut6CqyQGTXqdSRlIsBr4wruBBmrc2RCMVs8GSLbR8ShpLd/R3d2y0ObkpQyAlrTBDSVvLSYkujUTsk6YtVm9LyiKb6DtLSQOiq8HrCm6bVIzxxRmYMTy3056TBWVskA1kwR9L/II074Q9dXAWTAadasdOayqTkehT0rTpjpEoaQBUu6NsJ3ZS/0ykWAyoarLji4PKhC9uHrDdXKtRH7aAn6XkDPHuOLPvqiT5HqfZ7sKp2ha4PTLyUy2444K+fJEaysJahDVLbg2wu8rUiBSLkY8RzQ5frWq9xgBCtOBnQarWmjpTk3b23ck6fq6DBfv2aFzo2OLzUDczD/F4ZK5M/uNnE/HWXT6XVfY+tVVJqwuipLHA+3czhqiOD6c0XTIkGya9LmzvpFBoF8/tUtIM/otjq1HPvxsVjXYcONOI2hYnTAZdUOWmK/jJxCJM7NcLr94yFv83Qen1qtdJmHPZIK6kdkfYHFAfoA2LJPmyXvplJQWdQxNNvkwgtom86Ui1apOKm0UxJU3zWIHGDrVxSOAgjSmbQ3KTed82tsEhbgA12n2p3CyYCFVDlWo14uNfTcZ15xVg/tXnBD2uo/EpaWGCtA5Q+ox6HYb3Tg2YnsmUtEYheOzOFvzd98yJNrHNq6IN763uPSFJEqYMyuJNiwGhqawwYFiNev7F4EpaiwOyLPNgTWUcwqzUhS9MoNS13mlWvHXX+Khri7KSlX41OknZvWVFu3pvY8poYa+ps2rSugPXjyngikpnoQ3kA5nNxBJtEJjgnbAL0hOw7jdTVMXZWtUqI9GkcpsDlAazQGRKGgDVYooFaSaDDtOG5eK97afw/g7FQdUaQEmLZAJ64Ioh+N/eM8hLs2DrsRre3NVq1PO/b7a7+cSalqA0pOeF9xEqaWwx3+p0Q5ZllSrOXWOtBqRYfb1ualscyEm28DEiVaOkKUX43vPVvPfJZgMuGpSFigYbjlY1w+7yYPfpegBKDSXbzW6LknaoonulOzY5XGCmmucWpKoCdzGdvS2Ii9ozDUpPPbNBzz+zsUXpuPycHD5/hEt3nDkiD5efk+Nnvx8N2rqk9gRp3IJfGAcSTAb0yUhAfqoFp+tteGn9EQDA8PyUmKcQtoeRhWkxaXsSb2gdfv2CJ4sRVU2OkAGzJCk9wMobbKhpdqAwI4FfozkpZu68CAg1adp0xwAOgmJNWrB0R8ag3GSV0uz2yAHHFotRz50Jw60/Uq1GPHfjyJDHdDRsXRisV1q94BLemaRYDTDpddzYyxChSVq80n3PnGgT2731aGMD1ED9ZGKR6nf25RJNLRIC1MTYnB5UNNp5jYvKOMSkdkoCgqeuTeqfyXecIiXJbMCi2aPwl9mjYDXp+cCREGXaJIPtAPeKE/eunop2ERSsJi1WaHdixfSIgvQE1e/aCTTNauQbGv5KWmRBWkF6ArfqFyf5S721DCzoU6U7JjFn0PAB7KjCNPx2+mBeA8QW3Rajnu8gNzv8GwOL3/FA6pgWlvoMgKc3M1gqKOsJmC4EDo02Fx8jxLpQFmdUNipF/to0ZEmSsOyO8/HpnIvQ3zt2MLMZ0UwgGiWNmZp0t3RHpkSaDDq/67mXsLsstnOIFK1j5vGqFpWZTIrViHsv7q88l6Ash6I9ARp7zlC/h0NcuPFm1sL7xpobXzJU+Q7+x1vHNLpPOoiOh30+gepxAd/nHcw0hKE1D2G1ptOHqTNDtO6OjEDXslGvw5DcZCSbDTyVkaE1lRmck4zeaVaYDUrgcKq2JeDYYjVGpqTFC2zeEJU0t0fm7VdEb4PORJIk1WeQZDF0Sg/ajoKCtB7GtuOKkjamyH+iuaB/pl/eN6DeqU8QFoRiKsHeMkXaT7UaAxZkM4x6Kea9Va4emY+rzs1XnWtCG5sX/r9LBuLxWcNw7ejeMTs/Ino6X0nT1l0GnyTFQCHVaoRBr+MTUYPNCY9H5mYGkSppAPD/LhmA4b1TMF1IKz1P8z0NlO4YTSoHq70Rd6fZgkCWgTKvWx9L+1WlC0XQCJk5NALwCwYahXRH8fxrmh1chU8w+Vz7JEniixa24x2qVlTb+HiQGKRFsZvbP1tZdFU1OUI2wY03QqUXpVgMvIanLa9J65h5rKqZP1+CSQ+jXofz+qTjjdvH4e+3jeuURVGqYI1uMfoHpuFQKWncgt9fXbt0iGLgwzYRRkVhJ060Hf+NOvXnO6J3KiQJYW3jmbMpU+NZ/0ptqi1TsSKpSQOAVfdOwuf3X4xkzdgiBggGnYTizETovP8DSsrjoUBBmkmP/5tQhAn9MjBJ0/4lHmFzJGvdYne5cfnCL3D9y5sA+KevdyZiGnx3CHhDQUFaD8LmdPPBYXSfNL/7dToJN4/vw39nE62qAbJgDStJEl/M7fXmX/vVhWkGvGAqWqxgwVk4I4Vg5KRYcMvEvt06h/lsQDtBd3Tdnnb3NJQ6ZQ0QKLH6zfpWFyqb7HC4PEoKbhQucNeeV4D//r/JKtOFnBQL8oXvlPjczJUxmvYNzNqZLTgtRp1XMVB+1/acYulCgFolC0adoLi0aoI0Md0RULfwOOatc+qjUR7ZAqiCK2nBX6s2SCvOTOSBSTSmEgkmA2+U3p3UNPb+ap08AXhTV5XrpaoNdWl+Slp1c8CgcOrg7E4LYsTAuy0LQVGdZ+OLuDnENgQm9u+lmscCzZ1E7NFu1GnXEo/9YBi2PXQZRoa53nzjlwPNdhevuR9fnKFqTcJNO/xq0gKPOYlmQ8CMG9FKv19WIp/LmOK2u7SeG+yIJBgNuH5MAd796USVc2+8wpU0b8rz4YomHK1qxrcldWiyu/zS1zsT8TPozo2sAQrSehRst1qvk4I245x7+SBcNjQHD1zhcxsMlerFBkAWpGmt0I16He/rAQQ2DYkl7Fw70/iDiD3aesKOvm5Mep1qwg6tpPnuY5Opz4Lfye3381Kt7U7pAoBRwqJQDFYvGZKNK4bl4q4L+0X8WNrvr9Wb0sV2G0/XKcGQOLHytMQIlDTRBVKbHsmMQ1jgle01CSqta8URbzCkTR1i7q1sYRWq1YDo8GbQSUixGPDLSwbi2tG9URxlQ18WpJV5+351B8IV6rPFSrAaEkAxH3G5/Z05WZ80pgaISlpXWYCLaVRtOQe1auZTb9mGjVVw+7vAq9ZkJZtj3neMCIx2o047p+t0UkRlCRmJPiWNqWi9Ek3olWRWmZwFqkmzGHVRbyxnCzVqgwX7edZmZ+nm43B7ZL+/Y6Uh3QX2fjFzL9H19XhVs1/6emciqpndfcO9e10VRLtgO+HpCcag6SiJZgNev3Us7rt4AL9NDNK0iySupJUFVtIA9WTY0YtttvvZWRb6RMegrUHraCVNkiRVSmWoYEBVl+lVg8SatGidHcMxutCX8ig+d1qCCS/fMgaXefupRYL2e8EWPuz1MiVNXAD30ri4hiIiJc0bLLDarwPljbx/UH9NTSrbJWcTfqjNF9Y7B1DGJUmS8P8uHYiFs0dF3KSVwdTMsnobWh1u/OrdHfh4V1lUj9HZhAua2KLX7gocpHk8Mn7w4kbM+OsGv0CNffZMRTpe1cx7AnZ2zQmjvUqa+H23BkjRF11crzpXaYdx4YDMbl3f0p3wz6Zo29rBl1Zt50FaX+9mA2svAwR2d2yL6YUYIAwWxqQfjMyHQSfxNhjDe6fwmlud5L8xGe9o3R3FIO2It9WAVWg635lQkEZ0S1hdgehUFwniRW41qi94tkvFBr9wQVpHL7aTInRHIuIbk179+XW0Bb/2OUIN7GqHRWUSTxVq0qJ1dgyHqKS1VyHW/r2FB2nK62UNSMX0wPQInQFbHW6VWYjNqV7oN2oKyYfmKUHavrKGoEqaNrUs1OdS1CuRq/bRjnFamK12eb0Nnx+owIffncbLXxxp12N2NOGCNLZB5gjQww5QzG52lzbgUEUTyhtsqvtY8M1MM45Xt3S5kpaqUtKi/7wtAdIdAd93RNzQmDUqHyvuHI/5Vw9ry6kSbUCrYLV17MvwqmU1gpLGFGHRmTFQn7S2XNuJJj0/10FCG5BeSWZcPDib/35OXgrPPIq2P2w8wNJDmTLPmoIDvoCtq8YGMUhLpiCN6C4wG+30KJsLBnN3VB5LPTkGamJqFWT8jt5V4cYhFKR1a/yKxju4lhFQT86hio3Fa4stAEQLfpbuGKmzYziG56fy4KPdQZopcJDGNjcCLbwjVdK092uNQxo0xiHMOvtoVTMOeB3XtEraeRonvVCbL0a9ju+QRzvGacn1pmKW19t4Y/KWCNwtuxJtM3AtPiUtcJC2z5sNAfjSSxnssx2Wr3xmVU12XtvW2RbbDLFWqG01aYE3D7nTo3CtSZKECwdmdkhjXiIwfkpaG+d0Md3xuCZIE3ucMSWtvUGaJEkYV5yBZLPBz/jp+jE+Q7IB2Uko8jZ117YW6Q4k8NYtyrjO1DMAPDOiy4I0oQ1UqKyY7gAFaT0IVvytDazCkRgi3dEvSAtglCCmlWgdmmIN2w3r7o4+PR0/d8dOUdLEdMfIatK4kpbAgjRXzNMdrSY9hnhVp/ZO5togj6c7ah5XVZPGDT5CG4fUacwl/GrSWpkFv/JcuSkWpFqNcHtk/rfaFhx9MhJUjWPDbb4w85D2Kmm53s2m8gYbd+qMpAVBVxJeSVPeu2BK2t4yX++mCqF/lM3p5gFq/8wk/t1kgXWX1aS1O93RN6ZYA6Tk00Zf1xIrh1/m7ljT7ODBQyglTZXu2MZr+43bxuHrBy/l5k6MqUOyeZbCoJxkFHlrZa3drB4NEJQ0hwuyLOOYkO54zKuqBTNd6WhUFvzm7r2x0v2uDKLN1DUzJS26BUxSiHRHrQtRfkAlrfNq0pgrH6U7dm86290RCOzsFgiL0WcywmvSvIGHw+3BnlJFkSjOjK7nXyiuGJYLSfIpGW1F+z5qa9IYaUL6WEaSr6YjFFqbdr+aNJs6iJAkiac8Akpz2SRNcCxJEs4TUh7Dbb6w9CJtr6JoyfWmbZ9psOGUN+gOVssVL0RekxZeSasUHCBZAK3XSUixGnhK+36h7UpXkBpT4xD/n7ujunE24Wcc0sY5nfWdPF3Xynuk8SBNKM9gY4vYJqit17ZeJwXc6DMb9Hj+ptH4f5cMwOSBWSjyZlt0R6MzX02aG2ca7NxABAAP2LpOSfN9rpH0EY1nKEjrQbB0x7TE6L44Kgt+P3dH9WPlBqpJM3RekDahn2KXrO2BQnQv/NMdO36oYosAvU4K+XySJPFJlak8SWYDLwJvtLtgNepxTl77AiqRX1wyEDv/MA0XDcpq1+NoXxt7zdoFhTi5ZiREZsGvtWkX0x0dLg+vURMVkCGC+5k21ZEhNg8Ot1D7vwlF+OlF/XD35MgdLwPBApGKRju3y9bW2MUbkdekBQ42VUGaUJPGUh3TrIoZC0tpP8ZTmrommBFVjmhaLDBUKY4G/59JSetaYlWT1icjAeOLM+B0y1wR7tvLP0hj7XvE8T2lA+zbLxqUhd9MGwy9TuJjXlcFM+2BBbXNdheOCqmOgM/xsatMhTKTxXTH7r3ZQkFaD4LtiGZEq6SJNWl+7o6+x+qVaAqoeFhUSlrHTnyXDs3B7sem4+qR+R36PETHog2SOjpNFvAtzhJN4Yu42cDPgjRJklQT0nlFaTGvv4xV7Y/aYjqCIC1CC36xkTWgDtKYaQigHk/EQFZrGsIYHYWSlpVsxoMzh/Kd8raSmWSGXifB7ZF5ipS2xi7eaGiHktZgc/K0TkBdk8aCNJY1wQJY5iLeVXVaYq10Wxa5ep2E3mlWJJj0PCUO8H0/KEjrWmLl7ihJEh656hye/ZCfauGfsZjuKI4tbFzs6ODp4sFZ+PVlgzBv5tAOfZ6OgK0Fmx0uHKlqDnhMVwWfCSYDFxeSunmftO599kRU8Mk22po0YfBK0CyWxYAvkIoGAFaVi1bH7wvoo7TbJuKPrqlJU54jkp23uy4sxrcltRjeO5Xflmo18o2Q8/vGr5KbYNSjDsp5WjXGIQAgSeoFMG8G2xJlTZoQ1DDTkCSzQfX9HCKkOwZT0kYVpiE9wQirUd8p1wGgjCHZyWaU1fsUJZe3h5ghTq2yuZIWJGgKVZO2X6hHA9RBWh2vZVYeV1t33FXGIUa90oi9xeFu82LwX/dNgs3pVn3nLxuag72nGzC+OH6/wz0Bsz52Ke/De6fi+vMK8M/tp9Bf6KdYkJ6AVKsRiSa9xu1T+bmjlSCDXodfXTawQ5+jo2Drwha7mytpA7OTcKjCp6p1pUKYlWxGk93ll0Lf3ejeZ09EBWtIGm1qiNrdUVOTJgRpgZwdAW2fNNqdJMIj7qJKndRDhvdHimAH/WdT+vvdJi5Wzy/OiN2JxRiLqv7GG5gK3+sUi1HVV4wFaXUtDrg9ctBNEDa+MFodvmBA2yONMSgnGTpJUWW0piGMBJMBa+dOgV6SOtWmOifFogrSAMDm8iAp3oO0MOmOgZQ0lupoMepgc3pQ0eh73TXN6tYt2nG+KxdiGYkmtDhaVeYy0SC6+zFuHt8HN4/v095TI9qJ2CtTktqf8v7wlecgxWpUZdlYTXqs/fVFMOh1qrGFpzt2wzTEziJRUNKY5f644oy4CdIG5SThWFUzT23trsTnbEN0CGwnPNoJTdxl1KY7pgs1afkBnB0BjXNWJ+2EE90bs6aOsTMW51o7+mhhTlZGveTX3yueSAiY7hjcdppt6nhkXyAgYne5UdVkR53mPpvLjeomO9btP8NNQ7SLHotRj0uGZCMzyYxRBWlBzzkzyexnUtTRBOr5GK8pj7Isc7UybE2aO3iQNtFbyyu6OzJDGJY1oR3nu3Ih9uDMobh7cjFGCIo2cXYgbsxZDO3vI5aaYMQjV52DUYVpqtuzUyx+ayK25ok266gnwTb2bE4PDnkNWc7vq96c7Mqx4c83jMR//9+FGKn5vLsbpKT1IGrb3Mzat4DTqgxJZgOMeglOtxyhkkZBGhEeUUnrDGdH5XmY9XbbhkU2IY0sSOu0c24L4qZJoMBUq7Qb9TqkWo2ob3Wiptnht6B54L3v8cmucuSkKi5qGYkm1DQ70Opw49F/78FH35fhuvMKAKhVecZrPxkLl0eGMc4UqkAqS7wGaU12F9zeIrGwNWma12BzurHhUBUAYMqgLKw/UImqJjtXTdnmHjOcyk2JHyVt5og8zByR12XPT3Qc4oZuZ7s1/2LqAKzeU44LB2R26vN2J8QN+9PejINJA9Qpwl05NiRbjKpyhO5KfM2KRIfhdHvQ6N1pjVZJMxv0fFdLa8EvSRIP+oIpaZTuSESLdhe1M2DXZlvdoFhPnPH94jfVEVBbi1sDGIcEmliZjXVJjbpAXJZlrNtfAYfbg5M1ivEEU6BsTjdv7P3loUoAgeuXJEmKuwANCFxjG68Oj0zhNBl0QTcIgilpr284itK6VuSmWHDtmAJI3vRTluaorWXWjvOUEkZ0BCa9kJbdyZtel52Tg2dvGEmtfEJg0utgEFLfe6dZkZ1sUW3E0djQfuJvZiQ6BFb8LUlt291gDjmBurcXe3N+B2Yn+90HaHfu6ZIjwiPuonZWimyg1L9o+OlF/TDnsoG468L22b93NKKRT6A+aYEm1jFFig3+10drVLefqm3lmz8Mpqi3Ot28Fq3Sa0TRnSbt7pTuGK4eDRCVNF+QVlbfihfXHwEAzJs5BCkWI3olKgE5q0ur5f01jfw52HVjDhEUEkR76Io5gIgcSZJUmVVDvU69YgPv7thaIN6gK7+HwOoKUizGNrkf3jqxLyYPzFT1NWI8/6PRePenE3BOkEa7YmBGShoRCV2hpLGef2yRGi0F6QmYc9mgTq+dihYxnZP3SRNuSwswsU7sr6SxbDpSpbp9r9BbiyEqadoatkDpjvFKoHTHeG1oHUmQxsZeu6CkvbOlBK1ON8YUpeMHXkMFppoyh8fSOqaQKsG3JEnc4bE7Bd1E90KcA7pjs+eegJgmz9Z/YqYWBWntp/vMmES7YKkrbXXBCmUTm5tqCWq/D6jzyakmjYgEdU1a51wzs8f2gSwDs0b17pTn6yosAWrSwqU7MkOJPacbUN/i5Dbve0838L9hgQIbC1ocbm5mwegqu/a2ICppSWYDmuwulWNlPBGuRxoQWEljgdjUwVncmCE7xYy9ZUBlgx2yLKPEm7Ja1CuB/11eqgVHK5tpEUZ0GOIcQEFafJIgBmleJa0XBWkxhVbMPQRe/N0FjUdFJYTSFohIULs7ds4EnZpgxM+m9A+54XA2IC54AvVJC1iTlmJB/6xEyDLw9bFqfjtT0n56UT8UpFv5PwCoanJwMwsGc8DsDuSlWtEr0YTsZDP6ZioBSrdOd9T716Qx181kIXj2KWk2VDbaYXN6oNdJyE/zGYYwVY0WYURHYe4C8ygiOhKFDfhhXiWtlzfdMVR9LBE53WfGJNpFXRsbWccCi6nzF9xE90bcRaXAPraoLfj9G3gH28iZ2L8XjlQ246vDVeiflYiC9ASupI0pSsdPJhZBr5Pw9VEliKtosPk9RndS0kwGHVb/+iLoJAn3rNgOQGkrEI9ElO5o9Hd3ZPWEYvCcnaxsUlQ02nHCq6Llp1lU5i753o0MCtKIjqIrHH6J6GCp88lmA9+cy0xS1pg0NsQGCtJ6CDVdGKRZyYKfiBLaRe04rKpm1pEpaQAwqX8mVnxdgmWbT2DZ5hMY3SeN1ysNzUvhagz7vKo1za0BtWLTHWBF8Ow1xZu7oyzL+P5UPW+6HbWS5g3uks2CkpbiVdIa7DhR7U11zFA3hD3PayQzLEgdMkG0F3FDl1wW4xO2uTc0L4WnS7N0RwrSYgMFaT0E5u6Y3hXpjkZacBPRIRaNU2AfWwKlO1qMOui81uvBzCAm9uuFRJMezQ5FidlRUgdAsV4WJ+RQ9SPdKd1RxOK9BuMt3fE/35fhl+/s4L+HMvIwez8XsSbNp6T5/i4ryZfuyOrRCjN89WgAcPHgbGx98FJkJbfNZIcgwqFS0mgOiEuYK7BoGscMl9rqf0Co6Z4zJhE13Ea5C744pKQR0aLTSbxJOgX2scVq8jcOkSQJSWYDGmwupFkDjxHpiSb895eTUd/qxKEzjbj/ve8BwM/VVft5mfQ6rt50p3RHEZ+SFl9BWkm1um9d22vSfEuBPl6DkINnmngdmmgawsgO4H5JELFCXCuQkhafTB6YhfX7K3DF8Fx+29Qh2bj9gr6YPiw3xF8SkUJBWg9B25C0M7FQkEa0AZNeB6fbTb31YgyrSZMk9ffxZ1P6Y29ZAwbnBu53CADFmUra26jCNGw6Uo33d5Rigtf5kaFV0s4tSMW2E7UAupcFvwh7TXZXfKU7MlUzN8UCs1GHyQMzgx7La9KEurqGAErakNwU7ta5fn8FAKBPhn+QRhAdCVnwxz/XjynAdef15qmOgLLe+8PVw7rwrM4uuueMSURNbZemO4rujjTYEpFhNiqpdWQ2E1vY99Fq1Ksm159PHRDV4/z5hpG4ZWIRRvROVd2u3fUuzEhAXpoVJ2ta/NLmugtsoyDelLRWb5B2/ZgC/Hb64JDHciXNG2janG7+sxg863USJvXvhU92l/MgkII0orMRsylo3RC/iHMIEXsoSOshpCcoVtK9kjq/hoD6pBFtgS0qSUmLLUxJa+/utF4n4bw+6X63a9MdU61GzP9B995Zjdd0x2a7ooRFkg5m4UqaEpixejRJApJM6qXApAGZ+GR3Of+9T4B0R4LoaMwGPZxuFylpRI+FgrQewuu3ju2y57aQUx/RBljhuIWUtJjCbJM7qs5DG1SHMrPoLpjj1N2xxat0JUbwWZr0yjFMPWP1aElmA3Q69W74Bf19KazpCcZuW0tIdG9MBh1gB6y0UUf0UChIIzocUtKItsCuFeqTFlvOLUjFlSPyMLF/r/AHtwGT3ucUCZwdVszxmu7Y4lDUsARz+KncHERJCxSAFWcmIj/VgtP1NvTpleh3P0F0BmwOoM1doqdCqx+iw7EY9NziO6mbGgcQnY+JJugOwajX4cUfn4f/m1DUIY8vSZIqPemsCNK8am5rnAVprGYsISIlTfk+uT0yXG6Pr0dagDFZkiRMGqCYkFA9GtFVsDmA3B2JngqtmIkOR6eT8LcfnYcWh4vSZoiIoXTH7ovF6OundlYEaXGb7qioYYmmyJU0QLHhD9QjTeTOC4txqKIJPzq/MAZnShDRQ0oa0dOhII3oFC4/J6erT4HoZrCFZ2IEqVxEfCEuqlLOAvXcEsC+Ph5oaYOSBih1aawmLdjnMzQvBR/+/IIYnCVBtI2cFAsOnmlCXir15CN6Jt1/9iQI4qzkvqn90adXAqYMzurqUyGiRExPSu2Cth+xJl7dHVvsLEgLP5Ub9DrodRLcHhl2lweNPEjr/p8PcXby7PUjcfBMo1+bD4LoKXR5TdpLL72E4uJiWCwWjBkzBhs2bAh5/IsvvoihQ4fCarVi8ODBWLZsmep+p9OJBQsWoH///rBYLBg5ciQ+/fRT1TGNjY2YM2cOioqKYLVaMWnSJHzzzTeqY2677TZIkqT6N2HChNi8aIIgwjKpfyaevGYEkkhJ63acdTVp3DgkvtIdm7lxSGTpYGKvtIZW5W+7a4Nx4uwnN9WCiwZlUS8uosfSpaPzypUrMWfOHLz00ku44IIL8Morr2DGjBnYu3cv+vTp43f84sWLMW/ePLz22msYN24ctm7dirvvvhvp6em4+uqrAQAPP/wwVqxYgddeew1DhgzB6tWrcc0112DTpk0YPXo0AOCuu+7C7t27sXz5cuTn52PFihW47LLLsHfvXvTu3Zs/3xVXXIE33niD/24ymTr4HSEIguj+iDb8Z0WQZog/JU2WZd7MOpKaNECpS2t1umF3uX1K2lnw+RAEQZyNdKmStnDhQtx555246667MHToUCxatAiFhYVYvHhxwOOXL1+On/3sZ5g9ezb69euHm266CXfeeSeefvpp1TEPPvggZs6ciX79+uHee+/F9OnT8dxzzwEAWltbsWrVKjzzzDO46KKLMGDAAMyfPx/FxcV+z2s2m5Gbm8v/ZWRkdNybQRAEcZbA0gONeumsaERr8aZv2uKoJs3h9sDl7XMQrZJmd3nQYCMljSAIIp7psiDN4XBg+/btmDZtmur2adOmYdOmTQH/xm63w2JRF5BarVZs3boVTqcz5DEbN24EALhcLrjd7pDHMD7//HNkZ2dj0KBBuPvuu1FRURHyNdntdjQ0NKj+EQRB9DRYYJZqNZ4VqUo+JS1+0h1ZPRoAJEQYCIu90piSlkw1aQRBEHFJlwVpVVVVcLvdyMlRu/7l5OSgvLw84N9Mnz4dr7/+OrZv3w5ZlrFt2zYsWbIETqcTVVVV/JiFCxfi0KFD8Hg8WLt2LT788EOUlZUBAJKTkzFx4kQ8/vjjOH36NNxuN1asWIEtW7bwYwBgxowZeOutt7Bu3To899xz+Oabb3DJJZfAbrcHfU1PPfUUUlNT+b/CQrIuJgii58GMQ86WVLp4bGbN6tFMBh0M+sim8kA1aWQcQhAEEZ90uXGIdpdVluWgO6+PPPIIZsyYgQkTJsBoNGLWrFm47bbbAAB6vbIo+Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOmT17Nq688koMHz4cV199NT755BMcPHgQH330UdDXMm/ePNTX1/N/J0+ebOvbQhAE0W1hytPZUI8G+NI37XGkpPnq0SJPJzV7Pxe7YMFP6Y4EQRDxSZcFaZmZmdDr9X6qWUVFhZ+6xrBarViyZAlaWlpw/PhxlJSUoG/fvkhOTkZmZiYAICsrCx988AGam5tx4sQJ7N+/H0lJSSguLuaP079/f3zxxRdoamrCyZMnebqkeIyWvLw8FBUV4dChQ0GPMZvNSElJUf0jCILoaTAl7WwL0hxuD9zeOrCuptkRuf0+gzWId7jCN7MmCIIgupYuC9JMJhPGjBmDtWvXqm5fu3YtJk2aFPJvjUYjCgoKoNfr8e677+Kqq66CTqd+KRaLBb1794bL5cKqVaswa9Ysv8dJTExEXl4eamtrsXr16oDHMKqrq3Hy5Enk5eVF8SoJgiB6Hhbj2Rak+eaXeEl5bLF77fejUtJ8TblJSSMIgohvunR0njt3Lm655RaMHTsWEydOxKuvvoqSkhLcc889AJT0wdLSUt4L7eDBg9i6dSvGjx+P2tpaLFy4ELt378bSpUv5Y27ZsgWlpaUYNWoUSktLMX/+fHg8HjzwwAP8mNWrV0OWZQwePBiHDx/G/fffj8GDB+P2228HADQ1NWH+/Pm47rrrkJeXh+PHj+PBBx9EZmYmrrnmmk58hwiCILof+WmKMVNRRkIXn0lsYOmbgBKkJcZB774WpqRFcS5MSbM5PWiyU00aQRBEPNOlM83s2bNRXV2NBQsWoKysDMOHD8fHH3+MoqIiAEBZWRlKSkr48W63G8899xwOHDgAo9GIqVOnYtOmTejbty8/xmaz4eGHH8bRo0eRlJSEmTNnYvny5UhLS+PH1NfXY968eTh16hQyMjJw3XXX4YknnoDRqExWer0eu3btwrJly1BXV4e8vDxMnToVK1euRHJycqe8NwRBEN2V2eMKUZiegPH9zo62JTqdBJNeB4fbA5srPurSeCPrKFocsJq0mmY7ZG/WJilpBEEQ8UmXj8733Xcf7rvvvoD3vfnmm6rfhw4dih07doR8vClTpmDv3r0hj7nxxhtx4403Br3farVi9erVIR+DIAiCCIzZoMfUIdldfRoxxWz0Bmnxku7IjEMi7JEG+NIdq5ocABRlzXIW9LEjCII4G+lyd0eCIAiCiHdYMBNvQVpbjEOqGpVWMimkohEEQcQtFKQRBEEQRBh8vdLiI92xPcYhlU0sSKN6NIIgiHiFgjSCIAiCCIOV90qLDyWtPRb8LN2R6tEIgiDiFwrSCIIgCCIMPN3RFR9BWqvXOKQtNWmnalsAAJlJ5tifGEEQBBETKEgjCIIgiDAwG/54SXdsj5LGGlnnpFpif2IEQRBETKAgjSAIgiDCYOY1afGhpLU42lKTpj42L4WCNIIgiHiFgjSCIAiCCIPP3TE+lDSfu2PkQRpT0hikpBEEQcQvFKQRBEEQRBhYkNYaL0qanfVJizzd0awJ0vIoSCMIgohbyNqJIAiCIMJgMcRHuuP3p+rQZHeh2ZvuaG2HkpZL6Y4EQRBxCwVpBEEQBBEGSxxY8Hs8Mm5dshWNNhdvCZAYhXGItiYtl5Q0giCIuIWCNIIgCIIIA29m7eq6mrQzjTbUtjgBAI1taGYtKmmJJj2SqZk1QRBE3EI1aQRBEAQRBqZctTq6Tkk7WdPqd1t07o6+KZ9MQwiCIOIbCtIIgiAIIgxWb1phSxcGaSU1LX63RWMcIippZBpCEAQR31CQRhAEQRBhYIpVq9PVZedwMkCQ1mYljUxDCIIg4hoK0giCIAgiDMxFsSuVtJO1gYK0tlnwk5JGEAQR31CQRhAEQRBhSIiHIM2rpDETE7NBB71OivjvRXdHst8nCIKIbyhIIwiCIIgwMKv7eDAOuWxojnJOUdSjAeqatNxUa+xOjCAIgog5FKQRBEEQRBh86Y5dU5Nmc7pR3mADANwwthAAkJVkjuoxxHRHUtIIgiDiG+qTRhAEQRBh6Op0x9K6Vn4eFw3MxMv/dx76ZiZG9RgmlQV/dAEeQRAE0blQkEYQBEEQYejqII3Vo/XJSIAkSbhieF7Uj5FmNSHBpEeCyYDMRArSCIIg4hkK0giCIAgiDNYurkljQVpBekKbH8Nq0uPfv7gQZoMOuigMRwiCIIjOh4I0giAIgghDglFR0hxuD1xuDwz6zi3pPlmrpDsWZrTP8GNAdlIsTocgCILoYMg4hCAIgiDCYBWaRrc4O19NK6n2pTsSBEEQZz8UpBEEQRBEGMwGHViGYFekPNY0OwAAWclUS0YQBNEToCCNIAiCIMIgSRISvHVpXWEeYnMpz5kgKHoEQRDE2QsFaQRBEAQRAV3ZK42pdxYDBWkEQRA9AQrSCIIgCCICmIrVFemOTEmzkJJGEATRI6AgjSAIgiAiwGrsul5prQ4PAFLSCIIgegoUpBEEQRBEBHRlQ2u711HSSkoaQRBEj4CCNIIgCIKIAGYc0ursgpo0b5BmMdK0TRAE0ROg0Z4gCIIgIqCrlDSn2wOXRwZA6Y4EQRA9BQrSCIIgCCICuso4xCY0z6Z0R4IgiJ4BBWkEQRAEEQFWb7pjs72zgzQP/9lsoGmbIAiiJ0CjPUEQBEFEAE937OSaNJtQjyZJUqc+N0EQBNE1UJBGEARBEBHQ1emOFiOlOhIEQfQUKEgjCIIgiAiwdpFxCEt3tFKQRhAE0WOgII0gCIIgIiDB2DVKWispaQRBED0OCtIIgiAIIgJYn7QWR1fVpFGQRhAE0VOgII0gCIIgIqCr0h2pkTVBEETPg0Z8giAIgogAbhzi7BrjEKpJIwiC6DlQkEYQBEEQEdB1xiGU7kgQBNHT6PIg7aWXXkJxcTEsFgvGjBmDDRs2hDz+xRdfxNChQ2G1WjF48GAsW7ZMdb/T6cSCBQvQv39/WCwWjBw5Ep9++qnqmMbGRsyZMwdFRUWwWq2YNGkSvvnmG9Uxsixj/vz5yM/Ph9VqxcUXX4w9e/bE5kUTBEEQ3Q5Wk9b5FvyKuyOlOxIEQfQcunTEX7lyJebMmYOHHnoIO3bswOTJkzFjxgyUlJQEPH7x4sWYN28e5s+fjz179uCxxx7Dz3/+c/znP//hxzz88MN45ZVX8Le//Q179+7FPffcg2uuuQY7duzgx9x1111Yu3Ytli9fjl27dmHatGm47LLLUFpayo955plnsHDhQrzwwgv45ptvkJubi8svvxyNjY0d94YQBEEQcQtvZk3GIQRBEEQH06VB2sKFC3HnnXfirrvuwtChQ7Fo0SIUFhZi8eLFAY9fvnw5fvazn2H27Nno168fbrrpJtx55514+umnVcc8+OCDmDlzJvr164d7770X06dPx3PPPQcAaG1txapVq/DMM8/goosuwoABAzB//nwUFxfz55VlGYsWLcJDDz2Ea6+9FsOHD8fSpUvR0tKCt99+u+PfGIIgCCLuYDVhXWccQkEaQRBET6HLgjSHw4Ht27dj2rRpqtunTZuGTZs2Bfwbu90Oi8Wius1qtWLr1q1wOp0hj9m4cSMAwOVywe12hzzm2LFjKC8vV52b2WzGlClTgp4be+6GhgbVP4IgCOLsgClpdpcHbo/cac9LzawJgiB6Hl0WpFVVVcHtdiMnJ0d1e05ODsrLywP+zfTp0/H6669j+/btkGUZ27Ztw5IlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGQAgOTkZEydOxOOPP47Tp0/D7XZjxYoV2LJlCz+GPX805wYATz31FFJTU/m/wsLCtr05BEEQRNyRaDbwnzsz5dFGFvwEQRA9ji4f8SVJUv0uy7LfbYxHHnkEM2bMwIQJE2A0GjFr1izcdtttAAC9Xtlh/Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOifbcAGDevHmor6/n/06ePBnx+0AQBEHEN2aDDmwK6EzzELLgJwiC6Hl0WZCWmZkJvV7vp0xVVFT4KVgMq9WKJUuWoKWlBcePH0dJSQn69u2L5ORkZGZmAgCysrLwwQcfoLm5GSdOnMD+/fuRlJSE4uJi/jj9+/fHF198gaamJpw8eZKnS7JjcnNzASCqcwOUlMiUlBTVP4IgCOLsQJIkJHRBXRrVpBEEQfQ8uixIM5lMGDNmDNauXau6fe3atZg0aVLIvzUajSgoKIBer8e7776Lq666Cjqd+qVYLBb07t0bLpcLq1atwqxZs/weJzExEXl5eaitrcXq1av5McXFxcjNzVWdm8PhwBdffBH23AiCIIizF6vXhr8zgzRydyQIguh5GMIf0nHMnTsXt9xyC8aOHYuJEyfi1VdfRUlJCe655x4ASvpgaWkp74V28OBBbN26FePHj0dtbS0WLlyI3bt3Y+nSpfwxt2zZgtLSUowaNQqlpaWYP38+PB4PHnjgAX7M6tWrIcsyBg8ejMOHD+P+++/H4MGDcfvttwNQdkvnzJmDJ598EgMHDsTAgQPx5JNPIiEhATfffHMnvkMEQRBEPMHMQ1qdnVeT1sr7pFGQRhAE0VPo0iBt9uzZqK6uxoIFC1BWVobhw4fj448/RlFREQCgrKxM1TPN7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Jj6+nrMmzcPp06dQkZGBq677jo88cQTMBqN/JgHHngAra2tuO+++1BbW4vx48djzZo1SE5O7vD3hSAIgohPfL3SqCaNIAiC6DgkWZY7z0e4h9HQ0IDU1FTU19dTfRpBEMRZwDUvfYUdJXV45ZYxmD4sN/wfNDcDzz6rvu3++4HExIifc9YLG7HzVD3+futYXDo0eF00QRAEEd9EExt0ubsjQRAEQXQXEnlNWmemO1JNGkEQRE+DgjSCIAiCiJBEsxIoNdk7M92RatIIgiB6GhSkEQRBEESEcCXN3hVKGk3ZBEEQPQUa8QmCIAgiQhLNSpDW3IlBGhmHEARB9DwoSCMIgiCICEnwpjs2U580giAIogOhII0gCIIgIiTJ1LlKmsvtgdOtmDCTkkYQBNFzoCCNIAiCICKEpzt2kpJmc3n4z6SkEQRB9BwoSCMIgiCICGHujp2lpLFURwAwG2jKJgiC6CnQiE8QBEEQEcKUtKZODtLMBh10OqlTnpMgCILoeihIIwiCIIgI6exm1tzZ0USpjgRBED0JCtIIgiAIIkJ8FvydVJPGGlkbKEgjCILoSVCQRhAEQRAR0tk1adTImiAIomdCoz5BEARBREhiJ1vwU480giCIngkFaQRBEAQRISzdscXphscjd/jztTooSCMIguiJRB2ktba2oqWlhf9+4sQJLFq0CGvWrInpiREEQRBEvMHSHWXZl4rYkbA+adTImiAIomcRdZA2a9YsLFu2DABQV1eH8ePH47nnnsOsWbOwePHimJ8gQRAEQcQLVqMektcJvzNSHm0OqkkjCILoiUQ96n/77beYPHkyAOC9995DTk4OTpw4gWXLluH555+P+QkSBEEQRLwgSZKvLs3RGUoaWfATBEH0RKIO0lpaWpCcnAwAWLNmDa699lrodDpMmDABJ06ciPkJEgRBEEQ80ZkOj9w4hCz4CYIgehRRB2kDBgzABx98gJMnT2L16tWYNm0aAKCiogIpKSkxP0GCIAiCiCd8vdI6PkhrdSg1aWaqSSMIguhRRB2kPfroo/jtb3+Lvn37Yvz48Zg4cSIARVUbPXp0zE+QIAiCIOIJX7pjJwRpXiUtgdIdCYIgehSGaP/g+uuvx4UXXoiysjKMHDmS337ppZfimmuuienJEQRBEES84Ut37ISaNG+QRu6OBEEQPYuog7T6+nqYTCY/1WzAgAEwGKJ+OIIgCILoVnRmQ+sWr1pHxiEEQRA9i6jTHW+66Sa8++67frf/4x//wE033RSTkyIIgiCIeIXVpDV1Rk2ak/qkEQRB9ESiDtK2bNmCqVOn+t1+8cUXY8uWLTE5KYIgCIKIV1i6Y0snWPC3OsiCnyAIoicSdZBmt9vhcvnvHjqdTrS2tsbkpAiCIAgiXunMdMdWpzfdkZQ0giCIHkXUQdq4cePw6quv+t3+8ssvY8yYMTE5KYIgCIKIV7gFf2e4O5KSRhAE0SOJ2unjiSeewGWXXYadO3fi0ksvBQB89tln+Oabb7BmzZqYnyBBEARBxBOd6e5INWkEQRA9k6iVtAsuuACbN29GYWEh/vGPf+A///kPBgwYgO+//x6TJ0/uiHMkCIIgiLihc5tZk7sjQRBET6RNnvmjRo3CW2+9FetzIQiCIIi4pyuaWZOSRhAE0bOIKEhraGhASkoK/zkU7DiCIAiCOBvxWfCTuyNBEATRMUQUpKWnp6OsrAzZ2dlIS0uDJEl+x8iyDEmS4HZ3/KRFEARBEF0Ft+DvFHdHZU5NoCCNIAiiRxFRkLZu3TpkZGQAANavX9+hJ0QQBEEQ8UxnWfA73R443TIASnckCILoaUQUpE2ZMoX/XFxcjMLCQj81TZZlnDx5MrZnRxAEQRBxhs+Cv2MzR2xO3+NbKEgjCILoUUTt7lhcXIzKykq/22tqalBcXByTkyIIgiCIeMVnwe+CLMsd9jysHk0nAWZD1NM1QRAE0Y2JetRntWdampqaYLFYYnJSBEEQBBGvMCXN5ZFhd3k67HlEZ8dA8y5BEARx9hKxBf/cuXMBAJIk4ZFHHkFCQgK/z+12Y8uWLRg1alTMT5AgCIIg4glWkwYoalpHpSK2kLMjQRBEjyXiIG3Hjh0AFCVt165dMJlM/D6TyYSRI0fit7/9bezPkCAIgiDiCL1Ogkmvg8Pt6RwljYI0giCIHkfEQRpzdbz99tvx17/+lfqhEQRBED0Ws1EJ0kRzj1hjc1Aja4IgiJ5K1DVpb7zxhipAa2howAcffID9+/fH9MQIgiAIIl4xG5TAqSOVtBYK0giCIHosUQdpN954I1544QUAQGtrK8aOHYsbb7wRI0aMwKpVq2J+ggRBEAQRbzC3RUp3JAiCIDqCqIO0L7/8EpMnTwYAvP/++5BlGXV1dXj++efxxz/+MeYnSBAEQRDxhsWoTJ8dme4oujsSBEEQPYuog7T6+npkZGQAAD799FNcd911SEhIwJVXXolDhw5FfQIvvfQSiouLYbFYMGbMGGzYsCHk8S+++CKGDh0Kq9WKwYMHY9myZar7nU4nFixYgP79+8NisWDkyJH49NNPVce4XC48/PDDKC4uhtVqRb9+/bBgwQJ4PL4d0dtuuw2SJKn+TZgwIerXRxAEQZx9dEa6Yyu5OxIEQfRYIjYOYRQWFmLz5s3IyMjAp59+infffRcAUFtbG3WftJUrV2LOnDl46aWXcMEFF+CVV17BjBkzsHfvXvTp08fv+MWLF2PevHl47bXXMG7cOGzduhV333030tPTcfXVVwMAHn74YaxYsQKvvfYahgwZgtWrV+Oaa67Bpk2bMHr0aADA008/jZdffhlLly7FsGHDsG3bNtx+++1ITU3Fr371K/58V1xxBd544w3+u+hoSRAEQfRczJ2qpEU9VRMEQRDdnKhH/jlz5uDHP/4xkpKSUFRUhIsvvhiAkgY5YsSIqB5r4cKFuPPOO3HXXXcBABYtWoTVq1dj8eLFeOqpp/yOX758OX72s59h9uzZAIB+/frh66+/xtNPP82DtOXLl+Ohhx7CzJkzAQD33nsvVq9ejeeeew4rVqwAAGzevBmzZs3ClVdeCQDo27cv3nnnHWzbtk31fGazGbm5uVG9JoIgCOLsx9KpSlrUSS8EQRBENyfqkf++++7D5s2bsWTJEmzcuBE6nfIQ/fr1i6omzeFwYPv27Zg2bZrq9mnTpmHTpk0B/8Zut/updVarFVu3boXT6Qx5zMaNG/nvF154IT777DMcPHgQALBz505s3LiRB3aMzz//HNnZ2Rg0aBDuvvtuVFRURPz6CIIgiLMXpqTZO0FJSzCRkkYQBNHTaNPIP3bsWIwdO1Z1G1OlIqWqqgputxs5OTmq23NyclBeXh7wb6ZPn47XX38dP/zhD3Heeedh+/btWLJkCZxOJ6qqqpCXl4fp06dj4cKFuOiii9C/f3989tln+PDDD+F2+ybS3/3ud6ivr8eQIUOg1+vhdrvxxBNP4Ec/+hE/ZsaMGbjhhhtQVFSEY8eO4ZFHHsEll1yC7du3w2w2Bzw/u90Ou93Of29oaIjqPSEIgiC6B0xJs3WCkmYh4xCCIIgeR0RB2ty5c/H4448jMTERc+fODXnswoULozoBSZJUv8uy7Hcb45FHHkF5eTkmTJgAWZaRk5OD2267Dc888wz0emUS++tf/4q7774bQ4YMgSRJ6N+/P26//XZVbdnKlSuxYsUKvP322xg2bBi+++47zJkzB/n5+bj11lsBgKdUAsDw4cMxduxYFBUV4aOPPsK1114b8PyeeuopPPbYY1G9foIgCKL70ZlKGrk7EgRB9DwiCtJ27NjB0wl37NgRkyfOzMyEXq/3U80qKir81DWG1WrFkiVL8Morr+DMmTPIy8vDq6++iuTkZGRmZgIAsrKy8MEHH8Bms6G6uhr5+fn4/e9/j+LiYv44999/P37/+9/jpptuAgCMGDECJ06cwFNPPcWDNC15eXkoKioK6WA5b948VRDb0NCAwsLCyN4QgiAIotvQKX3SHCzdkYI0giCInkZEQdr69esD/tweTCYTxowZg7Vr1+Kaa67ht69duxazZs0K+bdGoxEFBQUAgHfffRdXXXUVr41jWCwW9O7dG06nE6tWrcKNN97I72tpafE7Xq/Xqyz4tVRXV+PkyZPIy8sLeozZbA6aCkkQBEGcPbAURFLSCIIgiI4gauOQO+64A42NjX63Nzc344477ojqsebOnYvXX38dS5Yswb59+/DrX/8aJSUluOeeewAoytRPfvITfvzBgwexYsUKHDp0CFu3bsVNN92E3bt348knn+THbNmyBf/6179w9OhRbNiwAVdccQU8Hg8eeOABfszVV1+NJ554Ah999BGOHz+O999/HwsXLuTBYlNTE377299i8+bNOH78OD7//HNcffXVyMzMVAWUBEEQRM+kM5S0FocLAGAhJY0gCKLHEbVxyNKlS/GnP/0JycnJqttbW1uxbNkyLFmyJOLHmj17Nqqrq7FgwQKUlZVh+PDh+Pjjj1FUVAQAKCsrQ0lJCT/e7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Ji//e1veOSRR3DfffehoqIC+fn5+NnPfoZHH30UgKKq7dq1C8uWLUNdXR3y8vIwdepUrFy50u91EwRBED0P1sy6Y/ukKQFgAilpBEEQPY6Ig7SGhgbIsgxZltHY2KiyuXe73fj444+RnZ0d9Qncd999uO+++wLe9+abb6p+Hzp0aNiauClTpmDv3r0hj0lOTsaiRYuwaNGigPdbrVasXr065GMQBEEQPReLseOVNBvvk0ZBGkEQRE8j4iAtLS0NkiRBkiQMGjTI735JksjZkCAIgugRmDuhmXWL05vuSEoaQRBEjyPiIG39+vWQZRmXXHIJVq1ahYyMDH6fyWRCUVER8vPzO+QkCYIgCCKeYEpah6Y7OrzpjqSkEQRB9DgiDtKmTJkCADh27BgKCwv93BEJgiAIoqfQGUqajdwdCYIgeixRG4cwU4+WlhaUlJTA4XCo7j/33HNjc2YEQRAEEafwZtaujlHSZFnm7o5Uk0YQBNHziDpIq6ysxO23345PPvkk4P1ud8elfhAEQRBEPOBzd+wYJc3h9sAjKz9TkEYQBNHziDpncc6cOaitrcXXX38Nq9WKTz/9FEuXLsXAgQPx73//uyPOkSAIgiDiio5W0mwOX/BH6Y4EQRA9j6iVtHXr1uHDDz/EuHHjoNPpUFRUhMsvvxwpKSl46qmncOWVV3bEeRIEQRBE3MCaWXeUksacHY16CUY91YATBEH0NKIe+Zubm3k/tIyMDFRWVgIARowYgW+//Ta2Z0cQBEEQcQizxe8oJa3V2yON7PcJgiB6JlEHaYMHD8aBAwcAAKNGjcIrr7yC0tJSvPzyy8jLy4v5CRIEQRBEvMGUNHsHKWmt5OxIEATRo4k63XHOnDkoKysDAPzhD3/A9OnT8dZbb8FkMuHNN9+M9fkRBEEQRNzBFK6O6pPGlDTqkUYQBNEziTpI+/GPf8x/Hj16NI4fP479+/ejT58+yMzMjOnJEQRBEEQ8wpW0DuqTxpQ0SnckCILomUSd7rhgwQK0tLTw3xMSEnDeeechMTERCxYsiOnJEQRBEEQ8IjazlmU55o/PlDSy3ycIguiZRB2kPfbYY2hqavK7vaWlBY899lhMToogCIIg4hmL0Td9doSaZvM+psVAQRpBEERPJOogTZZlSJLkd/vOnTuRkZERk5MiCIIgiHjGLARPHRKkkZJGEATRo4m4Ji09PR2SJEGSJAwaNEgVqLndbjQ1NeGee+7pkJMkCIIgiHjCqJcgSYAsA3anG7AaY/r4NherSaMeaQRBED2RiIO0RYsWQZZl3HHHHXjssceQmprK7zOZTOjbty8mTpzYISdJEARBEPGEJEmwGPRodbo7REmjPmkEQRA9m4iDtFtvvRUAUFxcjAsuuAAGQ9TGkARBEARx1mA26rxBWuxt+MndkSAIomcTcaTl8Xjg8XgwZcoUftuZM2fw8ssvo7m5GT/4wQ9w4YUXdshJEgRBEES8oZh6OGHrgIbW7DGpmTVBEETPJOIg7c4774TRaMSrr74KAGhsbMS4ceNgs9mQl5eHv/zlL/jwww8xc+bMDjtZgiAIgogXzEbWKy32Shprkk1BGkEQRM8k4orkr776Ctdffz3/fdmyZXC5XDh06BB27tyJuXPn4tlnn+2QkyQIgiCIeIM3tO4QJY2MQwiCIHoyEY/+paWlGDhwIP/9s88+w3XXXccNRG699Vbs2bMn9mdIEARBEHEIqxezUU0aQRAEEWMiDtIsFgtaW1v5719//TUmTJiguj9Qk2uCIAiCOBvpHCWNgjSCIIieSMRB2siRI7F8+XIAwIYNG3DmzBlccskl/P4jR44gPz8/9mdIEARBEHEIa2jdMUoaGYcQBEH0ZCI2DnnkkUcwc+ZM/OMf/0BZWRluu+025OXl8fvff/99XHDBBR1ykgRBEAQRb7B6sQ5R0qhPGkEQRI8m4iBt6tSp2L59O9auXYvc3FzccMMNqvtHjRqF888/P+YnSBAEQRDxCFPSOqKZNVPnrCYyDiEIguiJRNWR+pxzzsE555wT8L6f/vSnMTkhgiAIgugOMAt+Vj8WS1qZkmYgJY0gCKInQlt0BEEQBNEGOkNJs5goSCMIguiJUJBGEARBEG2Auzt2hHGIg4xDCIIgejIUpBEEQRBEG+B90jrAOMROFvwEQRA9GgrSCIIgCKINdKiS5g3SSEkjCILomVCQRhAEQRBtwGccElslzen2wOWRAfhs/gmCIIieRcTujv369YvouKNHj7b5ZAiCIAiiu2DpIOMQ0S2S0h0JgiB6JhEHacePH0dRURFuvvlmZGdnd+Q5EQRBEETcY+bNrGOb7shSHSXJl1JJEARB9CwiDtLeffddvPHGG1i4cCFmzJiBO+64AzNnzoRORxMIQRAE0fNgSpotxkqa3Zs+aTHoIUlSTB+bIAiC6B5EHGHdeOON+OSTT3D48GGMGTMGv/71r1FQUIDf//73OHToUEeeI0EQBEHEHR2tpFmpRxpBEESPJWoZrHfv3njooYdw6NAhvPPOO9iyZQuGDBmC2trajjg/giAIgohLOqqZNatJs1CqI0EQRI8l4nRHEZvNhvfeew9LlizBli1bcMMNNyAhISHW50YQBEEQcYuFuzvGWElzeIM0UtIIgiB6LFEFaVu2bMHf//53rFy5Ev3798cdd9yBVatWIT09vaPOjyAIgiDikg5T0ly+mjSCIAiiZxJxkDZs2DBUVFTg5ptvxoYNG3Duued25HkRBEEQRFyT4FW6mu2umD4uU9KoJo0gCKLnEnGQtm/fPiQmJmLZsmVYvnx50ONqampicmIEQRAEEc8kmZUpNNZBmt3lTXekRtYEQRA9loiDtDfeeKMjz4MgCIIguhWJLEhzuOHxyNDpYmOXz5U0amRNEATRY4k4SLv11ls78jwIgiAIolvBlDQAaHG6Vb+3B2bBb6YgjSAIoscSdS6FLMvYtm0b3nvvPaxatQrffvstZFlu8wm89NJLKC4uhsViwZgxY7Bhw4aQx7/44osYOnQorFYrBg8ejGXLlqnudzqdWLBgAfr37w+LxYKRI0fi008/VR3jcrnw8MMPo7i4GFarFf369cOCBQvg8fiKv2VZxvz585Gfnw+r1YqLL74Ye/bsafPrJAiCIM4uLEYdmHgWy5RHm7eZNSlpBEEQPZeotv3Wr1+PO++8EydOnOCBmSRJKC4uxpIlS3DRRRdF9eQrV67EnDlz8NJLL+GCCy7AK6+8ghkzZmDv3r3o06eP3/GLFy/GvHnz8Nprr2HcuHHYunUr7r77bqSnp+Pqq68GADz88MNYsWIFXnvtNQwZMgSrV6/GNddcg02bNmH06NEAgKeffhovv/wyli5dimHDhmHbtm24/fbbkZqail/96lcAgGeeeQYLFy7Em2++iUGDBuGPf/wjLr/8chw4cADJyclRvU6CIAji7EOSJCSaDWi0udBkdyEnRo/Lm1lTkEYQBNFjiVhJO3z4MK666ir07dsX//rXv7Bv3z7s3bsX//znP1FQUICZM2fi6NGjUT35woULceedd+Kuu+7C0KFDsWjRIhQWFmLx4sUBj1++fDl+9rOfYfbs2ejXrx9uuukm3HnnnXj66adVxzz44IOYOXMm+vXrh3vvvRfTp0/Hc889x4/ZvHkzZs2ahSuvvBJ9+/bF9ddfj2nTpmHbtm0AFBVt0aJFeOihh3Dttddi+PDhWLp0KVpaWvD2229H9RoJgiCIs5eOMA+xO8k4hCAIoqcT8QywaNEiTJgwAevWrcOsWbMwePBgDBkyBNdeey3Wr1+P8ePH4y9/+UvET+xwOLB9+3ZMmzZNdfu0adOwadOmgH9jt9thsVhUt1mtVmzduhVOpzPkMRs3buS/X3jhhfjss89w8OBBAMDOnTuxceNGzJw5EwBw7NgxlJeXq87NbDZjypQpQc+NPXdDQ4PqH0EQBHH2wsxDmmIYpJGSRhAEQUQcpH3++eeYM2dOwPskScKcOXOwfv36iJ+4qqoKbrcbOTnqBJGcnByUl5cH/Jvp06fj9ddfx/bt23lt3JIlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGX+c3/3ud/jRj36EIUOGwGg0YvTo0ZgzZw5+9KMfAQB//mjODQCeeuoppKam8n+FhYURvx8EQRBE94M7PNrdMXtMGxmHEARB9HgiDtJKSkowYsSIoPcPHz4cJ06ciPoEJEltWSzLst9tjEceeQQzZszAhAkTYDQaMWvWLNx2220AAL1emcz++te/YuDAgRgyZAhMJhN+8Ytf4Pbbb+f3A0ot3IoVK/D222/j22+/xdKlS/HnP/8ZS5cubfO5AcC8efNQX1/P/508eTLi94EgCILofiSZY9/QupWMQwiCIHo8EQdpTU1NSEhICHp/QkICWlpaIn7izMxM6PX/v717D4uq2v84/hmG4SYo3hBUEvBelndLLZUy76bWUUrzhlaW/so6ZVqW5DHLCrMsOWmKZp20smMd8xJ60kwrlPIcTVNTESWIo3lJkduwf3/obBkBhRgE5P16nnke2bP2nrWnncsv37W+y5ovM5WWlpYvg+Xg7e2tRYsWKT09XYmJiUpKSlJISIj8/PxUq1YtSVLt2rW1cuVKnT17VocPH9bPP/8sX19fhYaGmtd56qmnNHnyZN1777268cYbNXz4cD3++ON66aWXJEmBgYGSVKy+SeenRFatWtXpBQC4dlXxKIXpjlmONWkEaQBQWRWruuPu3bsLne7nmG5YVB4eHmrbtq3i4uI0aNAg83hcXJwGDBhw2XNtNpvq168vSVq2bJn69esnNzfneNPLy0v16tVTdna2VqxYoSFDhpjvpaen52tvtVrNEvyhoaEKDAxUXFycWREyKytLmzZtcipSAgCo3EqlcEjOhTVpHhQOAYDKqlhB2h133FHgnmgWi+WKUwEL8sQTT2j48OFq166dOnbsqPnz5yspKUnjxo2TdH76YHJysrkX2r59+xQfH6+bb75ZJ06c0OzZs7Vr1y6naYrff/+9kpOT1apVKyUnJysqKkq5ubmaNGmS2aZ///568cUXdd111+mGG27Qjz/+qNmzZysyMtK8n4kTJ2rmzJlq3LixGjdurJkzZ8rHx0dDhw4t1j0CAK5dVUohSDMzae5k0gCgsipykHbo0CGXf3hERISOHz+u6dOnKyUlRS1atNDq1avVoEEDSVJKSoqSkpLM9na7XdHR0dq7d69sNpvCw8O1detWhYSEmG0yMjI0depUHTx4UL6+vurTp4+WLl0qf39/s83cuXP13HPP6ZFHHlFaWprq1q2rhx56SM8//7zZZtKkSTp37pweeeQRnThxQjfffLO+/PJL9kgDAJguVnd0YeGQC5k0Lw+CNACorCxGQakxuMTp06dVrVo1nTp1ivVpAHANeuvf+/Xal/sU0S5Ys/5yU/4GZ89Kr77qfOypp6QqVQq95h3RG3Xgf2e17MFbdEtYTRf3GABQVooTGxR5wnt6errGjx+vevXqKSAgQEOHDi32OjQAAK4ljjVpZ7JcN90x40J1RwqHAEDlVeQgbdq0aVq8eLH69u2re++9V3FxcXr44YdLs28AAJRrpbEmLYPNrAGg0ivymrRPP/1UCxcu1L333itJuv/++9W5c2fZ7XanPcgAAKgsSqO6oyNI87JR3REAKqsijwBHjhzRbbfdZv7coUMHubu769dffy2VjgEAUN65unCIYRg6RyYNACq9IgdpdrtdHh4eTsfc3d2Vk+O63x4CAFCRuHq6Y5Y9V7kXynl5EqQBQKVV5OmOhmFo1KhR8vT0NI9lZGRo3LhxqpKnStWnn37q2h4CAFBOuXq6Y2ZOrvlnpjsCQOVV5CBt5MiR+Y7df//9Lu0MAAAVSRXP89muM67KpOUJ0jysBGkAUFkVOUiLjY0tzX4AAFDhODJpmTm5yrHnyr2EgZUjk+ZhdZPFYilx/wAAFRO/pgMA4E9yrEmTpLMuKB7iyKR5ujM8A0BlxigAAMCfZLO6yeNCQPVHZnaJr+cI0jwI0gCgUmMUAACgBC4WDyl5Ji0z5/w1yKQBQOXGKAAAQAm4sngImTQAgESQBgBAiVTxcF0ZfoI0AIBEkAYAQIm4cq+0TLNwCBtZA0BlRpAGAEAJOCo8umK6YyaZNACACNIAACgR12bSKBwCACBIAwCgRMwgLct1+6SRSQOAyo1RAACAEnDldMcs+4UgzcrwDACVGaMAAAAl4HuhBL9LpjtmXygcYqNwCABUZgRpAACUAJk0AICrMQoAAFAC3h7ns16OLFhJOK7BmjQAqNwYBQAAKAGvC1MT07NckUmjuiMAgCANAIAS8bmQSTuX7brqjgRpAFC5MQoAAFAC3jZHkOaC6Y4EaQAAEaQBAFAiZpDmiumO7JMGABBBGgAAJeLtwumOmQRpAAARpAEAUCJmkJZV8umOF9eksU8aAFRmBGkAAJSAY7pjBpk0AICLMAoAAFAC3nlK8BuGUaJrZeZQgh8AQJAGAECJOKY75hpSlr1kUx4pHAIAkAjSAAAoEcdm1pKUUcJ1aeZ0RyvDMwBUZowCAACUgM3qJpvVIklKzy5ZGX6zcIiNwiEAUJkRpAEAUEIX90orWfEQx3RJMmkAULkxCgAAUEKu2ivNLBxiY3gGgMqMUQAAgBJyVRn+LNakAQBEkAYAQIl5mWX4XROkUYIfACo3RgEAAErIx8M1a9IyzSCNwiEAUJkRpAEAUEKuWpPGPmkAAIkgDQCAEnNFdUd7rqGcXEMS0x0BoLJjFAAAoIS8PdwllSyT5siiSWTSAKCyYxQAAKCEvC+UzCdIAwC4QpmPAvPmzVNoaKi8vLzUtm1bbd68+bLt3377bTVv3lze3t5q2rSp3nvvPaf3s7OzNX36dDVs2FBeXl5q2bKl1q5d69QmJCREFosl32v8+PFmm1GjRuV7/5ZbbnHdjQMArhlmCf4STHd07JHmZpHc3Swu6RcAoGJyL8sPX758uSZOnKh58+apc+fOeuedd9S7d2/t3r1b1113Xb72MTExmjJlihYsWKD27dsrPj5eDzzwgKpXr67+/ftLkqZOnar3339fCxYsULNmzbRu3ToNGjRIW7duVevWrSVJ27Ztk91+cSDdtWuX7rzzTg0ePNjp83r16qXY2FjzZw8Pj9L4GgAAFZyXR8lL8GfmKRpisRCkAUBlVqaZtNmzZ2vMmDEaO3asmjdvrjlz5ig4OFgxMTEFtl+6dKkeeughRUREKCwsTPfee6/GjBmjWbNmObV55pln1KdPH4WFhenhhx9Wz549FR0dbbapXbu2AgMDzdeqVavUsGFDde3a1enzPD09ndrVqFGjdL4IAECF5mMr+Zo0yu8DABzKLEjLyspSQkKCevTo4XS8R48e2rp1a4HnZGZmysvLy+mYt7e34uPjlZ2dfdk233zzTaH9eP/99xUZGZnvN5cbN25UQECAmjRpogceeEBpaWmXvafMzEydPn3a6QUAuPZ5e7huTRrr0QAAZTYSHDt2THa7XXXq1HE6XqdOHaWmphZ4Ts+ePfXuu+8qISFBhmFo+/btWrRokbKzs3Xs2DGzzezZs7V//37l5uYqLi5On332mVJSUgq85sqVK3Xy5EmNGjXK6Xjv3r31wQcf6N///reio6O1bds23X777crMzCz0nl566SVVq1bNfAUHBxfjGwEAVFSuKMGfZb8QpFkJ0gCgsivzkeDS7JVhGIXOxX/uuefUu3dv3XLLLbLZbBowYIAZXFmt5wfIN954Q40bN1azZs3k4eGhCRMmaPTo0eb7l1q4cKF69+6tunXrOh2PiIhQ37591aJFC/Xv319r1qzRvn379MUXXxR6L1OmTNGpU6fM15EjR4r6NQAAKjAvW8k3s868cK6nrcyHZgBAGSuzkaBWrVqyWq35smZpaWn5smsO3t7eWrRokdLT05WYmKikpCSFhITIz89PtWrVknR+vdnKlSt19uxZHT58WD///LN8fX0VGhqa73qHDx/W+vXrNXbs2Cv2NygoSA0aNND+/fsLbePp6amqVas6vQAA1z4fxz5pZNIAAC5QZiOBh4eH2rZtq7i4OKfjcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379r1if48fP64jR44oKCioCHcHAKhMHGvSMkqUSXMUDiFIA4DKrkxL8D/xxBMaPny42rVrp44dO2r+/PlKSkrSuHHjJJ2fPpicnGzuhbZv3z7Fx8fr5ptv1okTJzR79mzt2rVLS5YsMa/5/fffKzk5Wa1atVJycrKioqKUm5urSZMmOX12bm6uYmNjNXLkSLm7O38NZ86cUVRUlO655x4FBQUpMTFRzzzzjGrVqqVBgwaV8rcCAKhoHNMdS1KC35FJo7ojAKBMg7SIiAgdP35c06dPV0pKilq0aKHVq1erQYMGkqSUlBQlJSWZ7e12u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyMl+/rFardu7cqffee08nT55UUFCQwsPDtXz5cvn5+ZXKdwEAqLjM6Y5UdwQAuECZBmmS9Mgjj+iRRx4p8L3Fixc7/dy8eXP9+OOPl71e165dtXv37it+bo8ePWQYRoHveXt7a926dVe8BgAA0sXqjiWa7phzoXAIQRoAVHqMBAAAlJC3K6Y7kkkDAFzASAAAQAl55dnMurBZGleSSZAGALiAkQAAgBJyrEkzjIvBVnE5zmO6IwCAkQAAgBLyyhNY/dl1aUx3BAA4lHnhEAAAKjp3q5s8rG7KsucqPcsuf5+in3vsTKY+3/Gr/ncmUxIl+AEABGkAALiEt4dVWedyi12Gf+o/d2ntT6nmz2TSAACMBAAAuICjwuO5YlZ4jNvzm9PPHlaGZgCo7BgJAABwAW+PC0FaMTNpzQL9nH72tDE0A0Blx0gAAIALeP3JTFqDms4L2MikAQAYCQAAcAGfP5lJy7E776vmaaNwCABUdgRpAAC4gGNNWnFL8GfZnfdV8ySTBgCVHiMBAAAu4FiTdiYzp1jnZV2y+TXVHQEAjAQAALhANW+bJOnUuexinXdpkObmZnFZnwAAFRNBGgAALuD/Z4O0S6Y7pp3OcFmfAAAVE0EaAAAu4O9zIUhL/3OZtEYBvvL3sanvTUEu7xsAoGJxL+sOAABwLXBMdzz5J4O0mYNuVNsG1WVluiMAVHpk0gAAcIFqPh6Sij/dMfNCkObh7kaABgCQRJAGAIBLmJm0PxukUXofAHABIwIAAC7gKBxyutjVHc/vq0bpfQCAAyMCAAAu4CgccjI9q1jnOao7ehKkAQAuYEQAAMAFHNMdz2bZlX1JWf3LcRQOIUgDADgwIgAA4AJ+XjZZLtT9KGrxkBx7rnKN839muiMAwIERAQAAF7C6WeTneX5nm6KW4c+7kTVBGgDAgREBAAAX8S9mGX7HVEeJ6o4AgIsYEQAAcBFH8ZBT54pWPMQRpLlZJHeCNADABYwIAAC4iLlXWhGnO+bdyBoAAAdGBQAAXMQRpBV1uiMbWQMACsKoAACAixQ3k5ZlZtKspdYnAEDFQ5AGAICLXFyTVrzqjuyRBgDIi1EBAAAX8ff+c9UdCdIAAHkxKgAA4CIXpzsWr7ojhUMAAHkxKgAA4CLVij3d0S6JIA0A4IxRAQAAFzEzacWc7kh1RwBAXowKAAC4iKNwyOniluAnkwYAyINRAQAAF3EUDjmZni3DMK7YniANAFAQRgUAAFzEMd0xJ9fQ2Sz7Fdsz3REAUBBGBQAAXMTL5mZmxYpS4dEswW9jM2sAwEUEaQAAuIjFYpGfp7sk6WxmETJpdjJpAID8GBUAAHAhrwtZsYzsYkx3ZE0aACAPRgUAAFzIy3Z+aC1OkOZJkAYAyINRAQAAF3Jk0s4VJUizk0kDAORX5qPCvHnzFBoaKi8vL7Vt21abN2++bPu3335bzZs3l7e3t5o2bar33nvP6f3s7GxNnz5dDRs2lJeXl1q2bKm1a9c6tQkJCZHFYsn3Gj9+vNnGMAxFRUWpbt268vb2Vrdu3fTTTz+57sYBANckb3O6Y+4V21LdEQBQkDIdFZYvX66JEyfq2Wef1Y8//qjbbrtNvXv3VlJSUoHtY2JiNGXKFEVFRemnn37SCy+8oPHjx+tf//qX2Wbq1Kl65513NHfuXO3evVvjxo3ToEGD9OOPP5pttm3bppSUFPMVFxcnSRo8eLDZ5pVXXtHs2bP11ltvadu2bQoMDNSdd96pP/74o5S+DQDAtaA4a9Iyc863IZMGAMirTEeF2bNna8yYMRo7dqyaN2+uOXPmKDg4WDExMQW2X7p0qR566CFFREQoLCxM9957r8aMGaNZs2Y5tXnmmWfUp08fhYWF6eGHH1bPnj0VHR1ttqldu7YCAwPN16pVq9SwYUN17dpV0vks2pw5c/Tss8/q7rvvVosWLbRkyRKlp6frH//4R+l+KQCACq14QRrTHQEA+ZXZqJCVlaWEhAT16NHD6XiPHj20devWAs/JzMyUl5eX0zFvb2/Fx8crOzv7sm2++eabQvvx/vvvKzIyUhaLRZJ06NAhpaamOvXN09NTXbt2LbRvAABIFwuHFGlNGoVDAAAFKLNR4dixY7Lb7apTp47T8Tp16ig1NbXAc3r27Kl3331XCQkJMgxD27dv16JFi5Sdna1jx46ZbWbPnq39+/crNzdXcXFx+uyzz5SSklLgNVeuXKmTJ09q1KhR5jHH5xenb9L5APH06dNOLwBA5eL1Z9akEaQBAPIo81HBkb1yMAwj3zGH5557Tr1799Ytt9wim82mAQMGmMGV1Xp+UHzjjTfUuHFjNWvWTB4eHpowYYJGjx5tvn+phQsXqnfv3qpbt26J+iZJL730kqpVq2a+goODC20LALg2eRdnnzQ2swYAFKDMRoVatWrJarXmy0ylpaXly2A5eHt7a9GiRUpPT1diYqKSkpIUEhIiPz8/1apVS9L59WYrV67U2bNndfjwYf3888/y9fVVaGhovusdPnxY69ev19ixY52OBwYGSlKx+iZJU6ZM0alTp8zXkSNHrvxFAACuKX9mnzQyaQCAvMpsVPDw8FDbtm3NyooOcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379nU6HhoaqsDAQKe+ZWVladOmTZftm6enp6pWrer0AgBULsXKpLEmDQBQAPey/PAnnnhCw4cPV7t27dSxY0fNnz9fSUlJGjdunKTzmank5GRzL7R9+/YpPj5eN998s06cOKHZs2dr165dWrJkiXnN77//XsnJyWrVqpWSk5MVFRWl3NxcTZo0yemzc3NzFRsbq5EjR8rd3flrsFgsmjhxombOnKnGjRurcePGmjlzpnx8fDR06NBS/lYAABWZJ5tZAwBKqEyDtIiICB0/flzTp09XSkqKWrRoodWrV6tBgwaSpJSUFKc90+x2u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyssC+TZo0SefOndMjjzyiEydO6Oabb9aXX34pPz8/l38PAIBrR3EKh2RmO9akFbxuGgBQOVkMwzDKuhPXqtOnT6tatWo6deoUUx8BoJL4x/dJeuafO3Xn9XW04J7m0quvOjd46impShVJUvhrG3Xo2Fl99FBHdQitUQa9BQBcLcWJDZhfAQCAC/2ZwiGsSQMA5MWoAACACzkKh2QWZboj1R0BAAVgVAAAwIW8ilM4JOd8G4I0AEBejAoAALiQF5tZAwBKiFEBAAAXcqxJK1omjTVpAID8GBUAAHChopbgz7HnKvdCfWWmOwIA8mJUAADAhbyLON3RUTREIkgDADhjVAAAwIWKuiYtK2+Qxpo0AEAejAoAALiQI5OWk2so2174lEdH0RA3i+ROkAYAyINRAQAAF/K0XRxaL5dNu1g0xFrqfQIAVCwEaQAAuJCnu5sslvN/vlzxEDayBgAUhpEBAAAXslgs8rqQHcssQiaNIA0AcClGBgAAXMyxV9plpzuykTUAoBCMDAAAuJijeMi5nKKsSWMoBgA4Y2QAAMDFHGX4My+7Ju18AMd0RwDApRgZAABwMc8i7JXGmjQAQGEYGQAAcDFvc03aZfZJy2FNGgCgYIwMAAC4mGO6Y8Zl1qQ5SvDn3VcNAACJIA0AAJfzLsJ0x3MX3vO2uV+VPgEAKg6CNAAAXKwohUPOZV0I0jysV6VPAICKgyANAAAX8ypWJo2hGADgjJEBAAAXc2xmfe4yQVqGGaSRSQMAOCNIAwDAxczpjjlXnu7oxXRHAMAlCNIAAHCxohQOcVR+JJMGALgUQRoAAC7mZe6Tdpk1aVm5F9oSpAEAnBGkAQDgYhcLhxQ+3ZE1aQCAwhCkAQDgYkXZzPocQRoAoBAEaQAAuFhRMmkUDgEAFIYgDQAAFytK4RAyaQCAwhCkAQDgYo7CIZnskwYA+BPcy7oDkOx2u7Kzs8u6G8AV2Ww2Wa38gxK4kmJl0jz4fSkAwBlBWhkyDEOpqak6efJkWXcFKDJ/f38FBgbKYrGUdVeAcsvzQpD2vzNZ+vrg/3R93aqq5evp1MYRwFGCHwBwKYK0MuQI0AICAuTj48M/elGuGYah9PR0paWlSZKCgoLKuEdA+eXIpJ1Mz9YPSSd06ly2+res69TGUTiE6Y4AgEsRpJURu91uBmg1a9Ys6+4AReLt7S1JSktLU0BAAFMfgUIE1/BWzSoeyrFnSZLOZObka+Oo/EgmDQBwKSbClxHHGjQfH58y7glQPI5nlnWUQOH8vGzaOuV2LY5sL0k6e0mQlmPPVZb9fJBGJg0AcCmCtDLGFEdUNDyzQNF4ulsVWNVLkpSeZZdhGOZ7GTkX90/zZp80AMAlCNIAACglNXw9JEm5huG0sbVjPZokebozFAMAnDEyAEWwePFi+fv7l+gaISEhmjNnjkv6A6Bi8HS3ytP9fKYsPevilMe8e6SRnQYAXIogDcUyatQoWSwWWSwW2Ww2hYWF6cknn9TZs2clSYmJieb7FotFfn5+uuGGGzR+/Hjt37/f6VqLFy+WxWJR8+bN833ORx99JIvFopCQkD/dV4vFopUrVxb7vIKCqYiICO3bt69I5xcW0G3btk0PPvhgsfsDoGKr4ukI0i5mzy7ukcZURwBAfgRpKLZevXopJSVFBw8e1IwZMzRv3jw9+eSTTm3Wr1+vlJQU/ec//9HMmTO1Z88etWzZUhs2bHBqV6VKFaWlpenbb791Or5o0SJdd911pX4vReXt7a2AgIASXaN27doUigEqIR+P84WUz+bJpFF+HwBwOQRp5YhhGErPyrnqr7yL2YvC09NTgYGBCg4O1tChQzVs2LB8GauaNWsqMDBQYWFhGjBggNavX6+bb75ZY8aMkd1+8bfJ7u7uGjp0qBYtWmQeO3r0qDZu3KihQ4deth9ZWVmaMGGCgoKC5OXlpZCQEL300kuSZGbgBg0a5JSRO3DggAYMGKA6derI19dX7du31/r1681rduvWTYcPH9bjjz9uZgOl/Nmx//znPwoPD5efn5+qVq2qtm3bavv27dq4caNGjx6tU6dOmedHRUWZfcqboTt58qQefPBB1alTR15eXmrRooVWrVpVlP8EACqQKheyZemZF//uu7iRNcMwACA/9kkrR85l23X98+uu+ufunt7T/E3vn+Ht7X3Fcuxubm567LHHNGjQICUkJKhDhw7me2PGjFGXLl30xhtvyMfHR4sXL1avXr1Up06dy17zzTff1Oeff66PPvpI1113nY4cOaIjR45IOj+1MCAgQLGxserVq5e5n9eZM2fUp08fzZgxQ15eXlqyZIn69++vvXv36rrrrtOnn36qli1b6sEHH9QDDzxQ6GcPGzZMrVu3VkxMjKxWq3bs2CGbzaZOnTppzpw5ev7557V3715Jkq+vb77zc3Nz1bt3b/3xxx96//331bBhQ+3evZt9x4BrUIGZNDNI4/95AEB+Zf4rvHnz5ik0NFReXl5q27atNm/efNn2b7/9tpo3by5vb281bdpU7733ntP72dnZmj59uho2bCgvLy+1bNlSa9euzXed5ORk3X///apZs6Z8fHzUqlUrJSQkmO/nXXvleN1yyy2uuelrSHx8vP7xj3/ojjvuuGLbZs2aSTq/bi2vVq1aqWHDhvrkk09kGIYWL16syMjIK14vKSlJjRs31q233qoGDRro1ltv1X333Sfp/NRCSfL391dgYKD5c8uWLfXQQw/pxhtvVOPGjTVjxgyFhYXp888/lyTVqFFDVqtVfn5+CgwMVGBgYKGf3b17dzVr1kyNGzfW4MGD1bJlS3l4eKhatWqyWCzm+QUFaevXr1d8fLw+/fRT3XnnnQoLC1O/fv3Uu3fvK943gIrFp4A1aXkLhwAAcKkyzaQtX75cEydO1Lx589S5c2e988476t27t3bv3l3geqSYmBhNmTJFCxYsUPv27RUfH68HHnhA1atXV//+/SVJU6dO1fvvv68FCxaoWbNmWrdunQYNGqStW7eqdevWkqQTJ06oc+fOCg8P15o1axQQEKADBw7kK/bQq1cvxcbGmj97eHiU3peh84P17uk9S/UzCvvc4li1apV8fX2Vk5Oj7OxsDRgwQHPnzr3ieY5plQVVMouMjFRsbKyuu+46M9v11ltvXfZ6o0aN0p133qmmTZuqV69e6tevn3r06HHZc86ePasXXnhBq1at0q+//qqcnBydO3dOSUlJV+x/Xk888YTGjh2rpUuXqnv37ho8eLAaNmxY5PN37Nih+vXrq0mTJsX6XAAVTxVHJi0zfyaNwiEAgIKUaZA2e/ZsjRkzRmPHjpUkzZkzR+vWrVNMTIy5tiivpUuX6qGHHlJERIQkKSwsTN99951mzZplBmlLly7Vs88+qz59+kiSHn74Ya1bt07R0dF6//33JUmzZs1ScHCwUwBWUBVBx9qrq8VisZRo2uHVEh4erpiYGNlsNtWtW1c2m61I5+3Zs0eSFBoamu+9YcOGadKkSYqKitKIESPk7n7l76FNmzY6dOiQ1qxZo/Xr12vIkCHq3r27Pvnkk0LPeeqpp7Ru3Tq99tpratSokby9vfWXv/xFWVlZRboHh6ioKA0dOlRffPGF1qxZo2nTpmnZsmUaNGhQkc739vYu1ucBqLgKyqSdyzq/ZxrTHQEABSmz6Y5ZWVlKSEjIl/no0aOHtm7dWuA5mZmZ8vLycjrm7e2t+Ph4c01UYW2++eYb8+fPP/9c7dq10+DBgxUQEKDWrVtrwYIF+T5v48aNCggIUJMmTfTAAw8oLS3tsveUmZmp06dPO72uRVWqVFGjRo3UoEGDIgdoubm5evPNNxUaGmpmNPOqUaOG7rrrLm3atKlIUx0dqlatqoiICC1YsEDLly/XihUr9Pvvv0uSbDabU5ESSdq8ebNGjRqlQYMG6cYbb1RgYGC+6ZceHh75zitIkyZN9Pjjj+vLL7/U3XffbQb9RTn/pptu0tGjR4tc1h9AxeXIpBVYgp8gDQBQgDIL0o4dOya73Z6vOESdOnWUmppa4Dk9e/bUu+++q4SEBBmGoe3bt2vRokXKzs7WsWPHzDazZ8/W/v37lZubq7i4OH322WdKSUkxr3Pw4EHFxMSocePGWrduncaNG6dHH33UaX1b79699cEHH+jf//63oqOjtW3bNt1+++3KzMws9J5eeuklVatWzXwFBweX5Cuq0I4fP67U1FQdPHhQn3/+ubp37674+HgtXLiw0OIYixcv1rFjx8y1a1fy+uuva9myZfr555+1b98+ffzxxwoMDDSnrYaEhGjDhg1KTU3ViRMnJEmNGjXSp59+qh07dug///mPhg4dqtzcXKfrhoSE6Ouvv1ZycrL5XOV17tw5TZgwQRs3btThw4e1ZcsWbdu2zdzvLSQkRGfOnNGGDRt07Ngxpaen57tG165d1aVLF91zzz2Ki4szM4IFrZ8EULH5XJjSeC4rR7kXpn2zJg0AcDllXjjk0vVJhmEUuGZJkp577jn17t1bt9xyi2w2mwYMGKBRo0ZJkvkP/zfeeEONGzdWs2bN5OHhoQkTJmj06NFOgUFubq7atGmjmTNnqnXr1nrooYf0wAMPKCYmxmwTERGhvn37qkWLFurfv7/WrFmjffv26Ysvvij0XqZMmaJTp06ZL0elwcqoe/fuCgoK0o033qjJkyerefPm+u9//6vw8PBCz/H29lbNmjWL/Bm+vr6aNWuW2rVrp/bt2ysxMVGrV6+Wm9v5xzo6OlpxcXEKDg42s3evv/66qlevrk6dOql///7q2bOn2rRp43Td6dOnKzExUQ0bNjQLjuRltVp1/PhxjRgxQk2aNNGQIUPUu3dvvfDCC5KkTp06ady4cYqIiFDt2rX1yiuvFNj/FStWqH379rrvvvt0/fXXa9KkSUXK4AGoWLw9rLJIMiTt++0Pvbc18eI+aaxJAwAUwGIUd5MsF8nKypKPj48+/vhjp3U8jz32mHbs2KFNmzYVem52drZ+++03BQUFaf78+Xr66ad18uRJ8x/nkpSRkaHjx4+rbt26mjx5slatWqWffvpJktSgQQPdeeedevfdd832MTExmjFjhpKTkwv93MaNG2vs2LF6+umni3SPp0+fVrVq1XTq1ClVrVrV6b2MjAwdOnTIrGwJVBQ8u0AxnD0rvfqq5n99UOkXSvC/0+EetWgSpG2JJzSua0NN7l202QMAgIrtcrHBpcosk+bh4aG2bdsqLi7O6XhcXJw6dep02XNtNpvq168vq9WqZcuWqV+/fk4BmiR5eXmpXr16ysnJ0YoVKzRgwADzvc6dO5t7WDns27dPDRo0KPQzjx8/riNHjigoKKiotwgAgKSLUx4d9qT8IYnNrAEABSvTUoJPPPGEhg8frnbt2qljx46aP3++kpKSNG7cOEnnpw8mJyeba8X27dun+Ph43XzzzTpx4oRmz56tXbt2acmSJeY1v//+eyUnJ6tVq1ZKTk5WVFSUcnNzNWnSJLPN448/rk6dOmnmzJkaMmSI4uPjNX/+fM2fP1/S+Q2Po6KidM899ygoKEiJiYl65plnVKtWrSJX7wMAwKGKp7uOnbm4pvnMhXL8rEkDABSkTIO0iIgIHT9+XNOnT1dKSopatGih1atXmxmtlJQUp/2r7Ha7oqOjtXfvXtlsNoWHh2vr1q1O5fMzMjI0depUHTx4UL6+vurTp4+WLl3qtAda+/bt9c9//lNTpkzR9OnTFRoaqjlz5mjYsGGSzq852rlzp9577z2dPHlSQUFBCg8P1/Lly+Xn53dVvhsAwLWjuo9Nh49LHu7OmTPWpAEAClJma9IqA9ak4VrEswsUw4U1aeey7DpyIl1ZObka7Herznmc/3/nlb/cpCHtKm8lYACoTCrEmjQAACoLbw+rmtTxUzVv570lme4IACgIQRoAAFdJVYI0AEAREKQBAHCV+Hq6yy3PVqCsSQMAFIQgDQCAq8TqZlFgtYtrOb3IpAEACkCQBgDAVVTX39v8M/ukAQAKwugA5DF//nwFBwfLzc1Nc+bMKevuALgG1at2MUhjTRoAoCAEaSi21NRU/d///Z/CwsLk6emp4OBg9e/fXxs2bCjrrhVo8eLFTvvkFeb06dOaMGGCnn76aSUnJ+vBBx8s/c4BqHTqVr843ZE1aQCAgpTpZtbIwzCk9PSy+3wfH8liuWKzxMREde7cWf7+/nrllVd00003KTs7W+vWrdP48eP1888//6mPz87Ols1mK/Lx0pCUlKTs7Gz17dtXQUFBBba5mv0BcG2q5+9j/plMGgCgIARp5UV6uvTqq2X3+U89JVWpcsVmjzzyiCwWi+Lj41UlT/sbbrhBkZGR5s9JSUn6v//7P23YsEFubm7q1auX5s6dqzp16kiSoqKitHLlSj366KOaMWOGEhMTZbfb5ebmppiYGK1Zs0br16/Xk08+qRdeeEH/+te/FBUVpZ9++kl169bVyJEj9eyzz8rd/fwjfPLkSU2aNEmfffaZTp06pUaNGunll1+Wr6+vRo8eLUmyXAhCp02bpqioKKf7Wrx4sdkuLCxMknTo0CEtXry4wH6ePn1aTz31lFauXKmMjAy1a9dOr7/+ulq2bGle8+WXX9brr7+u9PR0DRkyRLVr19batWu1Y8cOSVK3bt3UqlUrp2mVAwcOlL+/vxYvXixJysrK0tSpU/XBBx/o5MmTatGihWbNmqVu3bqZ/Z44caKWL1+uiRMn6siRI7r11lsVGxvrFGguWrRI0dHR+uWXX1SjRg3dc889euuttxQZGam0tDStWrXKbJuTk6P69etr5syZTv9NAbhGPX8KhwAALo/pjiiy33//XWvXrtX48eOdAjQHx5RCwzA0cOBA/f7779q0aZPi4uJ04MABRUREOLX/5Zdf9NFHH2nFihVm4CKdD6IGDBignTt3KjIyUuvWrdP999+vRx99VLt379Y777yjxYsX68UXX5Qk5ebmqnfv3tq6davef/997d69Wy+//LKsVqs6deqkOXPmqGrVqkpJSVFKSoqefPLJfH2PiIjQ+vXrJUnx8fFKSUlRcHBwof3s27evUlNTtXr1aiUkJKhNmza644479Pvvv0uSPvroI02bNk0vvviitm/frqCgIM2bN6/Y3/no0aO1ZcsWLVu2TP/97381ePBg9erVS/v37zfbpKen67XXXtPSpUv19ddfKykpyekeY2JiNH78eD344IPauXOnPv/8czVq1EiSNHbsWK1du1YpKSlm+9WrV+vMmTMaMmRIsfsL4MocmTR3N4s83RmGAQD5kUlDkf3yyy8yDEPNmjW7bLv169frv//9rw4dOmQGOkuXLtUNN9ygbdu2qX379pLOZ4mWLl2q2rVrO50/dOhQpwzO8OHDNXnyZI0cOVLS+UzX3/72N02aNEnTpk3T+vXrFR8frz179qhJkyZmG4dq1arJYrEoMDCw0D57e3urZs2akqTatWs7tb20n//+97+1c+dOpaWlydPTU5L02muvaeXKlfrkk0/04IMPas6cOYqMjNTYsWMlSTNmzND69euVkZFx2e8urwMHDujDDz/U0aNHVbduXUnSk08+qbVr1yo2NlYzZ86UdH4K5t///nc1bNhQkjRhwgRNnz7dvM6MGTP017/+VY899ph5zPHfoFOnTmratKmWLl2qSZMmSZJiY2M1ePBg+fr6FrmvAIqufg1vPdglTDWqeJgZfgAA8iJIQ5EZhiFJV/xHxZ49exQcHGwGaJJ0/fXXy9/fX3v27DEDhAYNGuQL0CSpXbt2Tj8nJCRo27ZtZuZMkux2uzIyMpSenq4dO3aofv36ZoDmapf2MyEhQWfOnDGDOodz587pwIEDks5/B+PGjXN6v2PHjvrqq6+K/Lk//PCDDMPId1+ZmZlOn+3j42MGaJIUFBSktLQ0SVJaWpp+/fVX3XHHHYV+ztixYzV//nxNmjRJaWlp+uKLL8ptERjgWmCxWPRMn+Zl3Q0AQDlGkFZe+PicXxdWlp9/BY0bN5bFYtGePXs0cODAQtsZhlFgIHfp8YKmTBZ0PDc3Vy+88ILuvvvufG29vLzk7e2d77grFdSfoKAgbdy4MV/bolSRdHBzczMDX4fs7Gynz7FarUpISJDV6rxuJW+W69JCJhaLxbxuUb6bESNGaPLkyfr222/17bffKiQkRLfddluR7wMAAACuRZBWXlgsRSrcUZZq1Kihnj176u2339ajjz6aL3g5efKk/P39df311yspKUlHjhwxs2m7d+/WqVOn1Lx58X973KZNG+3du9dcR3Wpm266SUePHtW+ffsKzKZ5eHjIbrcX+3Mv15/U1FS5u7srJCSkwDbNmzfXd999pxEjRpjHvvvuO6c2tWvXdloLZrfbtWvXLoWHh0uSWrduLbvdrrS0tD8dNPn5+SkkJEQbNmwwr3upmjVrauDAgYqNjdW3335rFlABAABA2WDFMopl3rx5stvt6tChg1asWKH9+/drz549evPNN9WxY0dJUvfu3XXTTTdp2LBh+uGHHxQfH68RI0aoa9eu+aYyFsXzzz+v9957z6zuuGfPHi1fvlxTp06VJHXt2lVdunTRPffco7i4OB06dEhr1qzR2rVrJUkhISE6c+aMNmzYoGPHjim9hFsddO/eXR07dtTAgQO1bt06JSYmauvWrZo6daq2b98uSXrssce0aNEiLVq0SPv27dO0adP0008/OV3n9ttv1xdffKEvvvhCP//8sx555BGdPHnSfL9JkyYaNmyYRowYoU8//VSHDh3Stm3bNGvWLK1evbrI/Y2KilJ0dLTefPNN7d+/Xz/88IPmzp3r1Gbs2LFasmSJ9uzZY679AwAAQNkgSEOxhIaG6ocfflB4eLj++te/qkWLFrrzzju1YcMGxcTESDo/3W7lypWqXr26unTpou7duyssLEzLly//U5/Zs2dPrVq1SnFxcWrfvr1uueUWzZ49Ww0aNDDbrFixQu3bt9d9992n66+/XpMmTTKzZ506ddK4ceMUERGh2rVr65VXXinRd2CxWLR69Wp16dJFkZGRatKkie69914lJiaaWwxERETo+eef19NPP622bdvq8OHDevjhh52uExkZqZEjR5oBbGhoaL5sV2xsrEaMGKG//vWvatq0qe666y59//33Tuv9rmTkyJGaM2eO5s2bpxtuuEH9+vVzqg4pnQ88g4KC1LNnT7NICQAAAMqGxbh0UQxc5vTp06pWrZpOnTqlqlWrOr2XkZGhQ4cOKTQ0VF5eXoVcAdcSx95webcbKC/S09NVt25dLVq0qMC1f3nx7ALFcPZs/j0wi7gvJQDg2nK52OBSrEkDKrHc3FylpqYqOjpa1apV01133VXWXQIAAKj0CNKASiwpKUmhoaGqX7++Fi9eLHd3/koAAAAoa/yLDLhKoqKiFBUVVdbdcBISEpJvGwAAAACULQqHAAAAAEA5QpBWxshioKLhmQUAAChdBGllxGazSVKJ9+wCrjbHM+t4hgEAAOBarEkrI1arVf7+/kpLS5Mk+fj4yGKxlHGvgMIZhqH09HSlpaXJ399fVqu1rLsEAABwTSJIK0OBgYGSZAZqQEXg7+9vPrsAAABwPYK0MmSxWBQUFKSAgABlZ2eXdXeAK7LZbGTQAAAAShlBWjlgtVr5hy8AAAAASRQOAQAAAIByhSANAAAAAMoRgjQAAAAAKEdYk1aKHJv+nj59uox7AgAoE2fPSpmZzsdOn5bs9rLpDwCgzDhiAkeMcDkWoyit8KccPXpUwcHBZd0NAAAAAOXEkSNHVL9+/cu2IUgrRbm5ufr111/l5+fHRtUoltOnTys4OFhHjhxR1apVy7o7qER49lBWePZQVnj2cLUYhqE//vhDdevWlZvb5VedMd2xFLm5uV0xSgYup2rVqgwYKBM8eygrPHsoKzx7uBqqVatWpHYUDgEAAACAcoQgDQAAAADKEYI0oBzy9PTUtGnT5OnpWdZdQSXDs4eywrOHssKzh/KIwiEAAAAAUI6QSQMAAACAcoQgDQAAAADKEYI0AAAAAChHCNIAAAAAoBwhSAOugnnz5ik0NFReXl5q27atNm/efNn2H3zwgVq2bCkfHx8FBQVp9OjROn78uFObFStW6Prrr5enp6euv/56/fOf/yzNW0AF5epnb8GCBbrttttUvXp1Va9eXd27d1d8fHxp3wYqoNL4e89h2bJlslgsGjhwYCn0HBVdaTx7J0+e1Pjx4xUUFCQvLy81b95cq1evLs3bQGVnAChVy5YtM2w2m7FgwQJj9+7dxmOPPWZUqVLFOHz4cIHtN2/ebLi5uRlvvPGGcfDgQWPz5s3GDTfcYAwcONBss3XrVsNqtRozZ8409uzZY8ycOdNwd3c3vvvuu6t1W6gASuPZGzp0qPH2228bP/74o7Fnzx5j9OjRRrVq1YyjR49erdtCBVAaz55DYmKiUa9ePeO2224zBgwYUMp3goqmNJ69zMxMo127dkafPn2Mb775xkhMTDQ2b95s7Nix42rdFiohgjSglHXo0MEYN26c07FmzZoZkydPLrD9q6++aoSFhTkde/PNN4369eubPw8ZMsTo1auXU5uePXsa9957r4t6jWtBaTx7l8rJyTH8/PyMJUuWlLzDuGaU1rOXk5NjdO7c2Xj33XeNkSNHEqQhn9J49mJiYoywsDAjKyvL9R0GCsF0R6AUZWVlKSEhQT169HA63qNHD23durXAczp16qSjR49q9erVMgxDv/32mz755BP17dvXbPPtt9/mu2bPnj0LvSYqn9J69i6Vnp6u7Oxs1ahRw6X9R8VVms/e9OnTVbt2bY0ZM6bU+o+Kq7Sevc8//1wdO3bU+PHjVadOHbVo0UIzZ86U3W4v1ftB5UaQBpSiY8eOyW63q06dOk7H69Spo9TU1ALP6dSpkz744ANFRETIw8NDgYGB8vf319y5c802qampxbomKp/SevYuNXnyZNWrV0/du3d3af9RcZXWs7dlyxYtXLhQCxYsKNX+o+IqrWfv4MGD+uSTT2S327V69WpNnTpV0dHRevHFF0v1flC5EaQBV4HFYnH62TCMfMccdu/erUcffVTPP/+8EhIStHbtWh06dEjjxo3709dE5VUaz57DK6+8og8//FCffvqpvLy8XN53VGyufPb++OMP3X///VqwYIFq1apV6n1Hxebqv/dyc3MVEBCg+fPnq23btrr33nv17LPPKiYmplTvA5Wbe1l3ALiW1apVS1arNd9v8NLS0vL9ps/hpZdeUufOnfXUU09Jkm666SZVqVJFt912m2bMmKGgoCAFBgYW65qofErr2XN47bXXNHPmTK1fv1433XRT6d0IKpzSePZ+++03JSYmqn///uY5ubm5kiR3d3ft3btXDRs2LKU7QkVRWn/vBQUFyWazyWq1muc1b95cqampysrKkoeHR+ndFCotMmlAKfLw8FDbtm0VFxfndDwuLk6dOnUq8Jz09HS5uTn/r+kYGAzDkCR17Ngx3zW//PLLQq+Jyqe0nj1JevXVV/W3v/1Na9euVbt27Vzcc1R0pfHsNWvWTDt37tSOHTvM11133aXw8HDt2LFDwcHBpXMzqFBK6++9zp0765dffjF/MSBJ+/btU1BQEAEaSk+ZlCsBKhFHOeCFCxcau3fvNiZOnGhUqVLFSExMNAzDMCZPnmwMHz7cbB8bG2u4u7sb8+bNMw4cOGB88803Rrt27YwOHTqYbbZs2WJYrVbj5ZdfNvbs2WO8/PLLlOBHPqXx7M2aNcvw8PAwPvnkEyMlJcV8/fHHH1f9/lB+lcazdymqO6IgpfHsJSUlGb6+vsaECROMvXv3GqtWrTICAgKMGTNmXPX7Q+VBkAZcBW+//bbRoEEDw8PDw2jTpo2xadMm872RI0caXbt2dWr/5ptvGtdff73h7e1tBAUFGcOGDcu3D9XHH39sNG3a1LDZbEazZs2MFStWXI1bQQXj6mevQYMGhqR8r2nTpl2lO0JFURp/7+VFkIbClMazt3XrVuPmm282PD09jbCwMOPFF180cnJyrsbtoJKyGEaeOSwAAAAAgDLFmjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAAAAAMoRgjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAIBrRFZWlho1aqQtW7a49LqrVq1S69atlZub69LrAgAKRpAGACiXRo0aJYvFku/1yy+/lHXXyq358+erQYMG6ty5s3nMYrFo5cqV+dqOGjVKAwcOLNJ1+/XrJ4vFon/84x8u6ikA4HII0gAA5VavXr2UkpLi9AoNDc3XLisrqwx6V/7MnTtXY8eOLZVrjx49WnPnzi2VawMAnBGkAQDKLU9PTwUGBjq9rFarunXrpgkTJuiJJ55QrVq1dOedd0qSdu/erT59+sjX11d16tTR8OHDdezYMfN6Z8+e1YgRI+Tr66ugoCBFR0erW7dumjhxotmmoMyTv7+/Fi9ebP6cnJysiIgIVa9eXTVr1tSAAQOUmJhovu/IUr322msKCgpSzZo1NX78eGVnZ5ttMjMzNWnSJAUHB8vT01ONGzfWwoULZRiGGjVqpNdee82pD7t27ZKbm5sOHDhQ4Hf1ww8/6JdfflHfvn2L+S1LiYmJBWYtu3XrZra56667FB8fr4MHDxb7+gCA4iFIAwBUSEuWLJG7u7u2bNmid955RykpKeratatatWql7du3a+3atfrtt980ZMgQ85ynnnpKX331lf75z3/qyy+/1MaNG5WQkFCsz01PT1d4eLh8fX319ddf65tvvpGvr6969erllNH76quvdODAAX311VdasmSJFi9e7BTojRgxQsuWLdObb76pPXv26O9//7t8fX1lsVgUGRmp2NhYp89dtGiRbrvtNjVs2LDAfn399ddq0qSJqlatWqz7kaTg4GCnbOWPP/6omjVrqkuXLmabBg0aKCAgQJs3by729QEAxeNe1h0AAKAwq1atkq+vr/lz79699fHHH0uSGjVqpFdeecV87/nnn1ebNm00c+ZM89iiRYsUHBysffv2qW7dulq4cKHee+89M/O2ZMkS1a9fv1h9WrZsmdzc3PTuu+/KYrFIkmJjY+Xv76+NGzeqR48ekqTq1avrrbfektVqVbNmzdS3b19t2LBBDzzwgPbt26ePPvpIcXFx6t69uyQpLCzM/IzRo0fr+eefV3x8vDp06KDs7Gy9//77evXVVwvtV2JiourWrVvge/fdd5+sVqvTsczMTDPrZrVaFRgYKEnKyMjQwIED1bFjR0VFRTmdU69ePaeMIQCgdBCkAQDKrfDwcMXExJg/V6lSxfxzu3btnNomJCToq6++cgrqHA4cOKBz584pKytLHTt2NI/XqFFDTZs2LVafEhIS9Msvv8jPz8/peEZGhtNUxBtuuMEpMAoKCtLOnTslSTt27JDValXXrl0L/IygoCD17dtXixYtUocOHbRq1SplZGRo8ODBhfbr3Llz8vLyKvC9119/3QwGHZ5++mnZ7fZ8bceMGaM//vhDcXFxcnNznnDj7e2t9PT0QvsAAHANgjQAQLlVpUoVNWrUqND38srNzVX//v01a9asfG2DgoK0f//+In2mxWKRYRhOx/KuJcvNzVXbtm31wQcf5Du3du3a5p9tNlu+6zpK2Ht7e1+xH2PHjtXw4cP1+uuvKzY2VhEREfLx8Sm0fa1atcwg8FKBgYH5vkc/Pz+dPHnS6diMGTO0du1axcfH5wtCJen33393ukcAQOkgSAMAXBPatGmjFStWKCQkRO7u+Ye3Ro0ayWaz6bvvvtN1110nSTpx4oT27dvnlNGqXbu2UlJSzJ/379/vlD1q06aNli9froCAgD+1/kuSbrzxRuXm5mrTpk35MlwOffr0UZUqVRQTE6M1a9bo66+/vuw1W7durZiYGBmGYU7DLI4VK1Zo+vTpWrNmTYHr3hyZwtatWxf72gCA4qFwCADgmjB+/Hj9/vvvuu+++8wqhF9++aUiIyNlt9vl6+urMWPG6KmnntKGDRu0a9cujRo1Kt+Uvttvv11vvfWWfvjhB23fvl3jxo1zyooNGzZMtWrV0oABA7R582YdOnRImzZt0mOPPaajR48Wqa8hISEaOXKkIiMjtXLlSh06dEgbN27URx99ZLaxWq0aNWqUpkyZokaNGjlN0yxIeHi4zp49q59++qkY39p5u3bt0ogRI/T000/rhhtuUGpqqlJTU/X777+bbb777jt5enpesR8AgJIjSAMAXBPq1q2rLVu2yG63q2fPnmrRooUee+wxVatWzQzEXn31VXXp0kV33XWXunfvrltvvVVt27Z1uk50dLSCg4PVpUsXDR06VE8++aTTNEMfHx99/fXXuu6663T33XerefPmioyM1Llz54qVWYuJidFf/vIXPfLII2rWrJkeeOABnT171qnNmDFjlJWVpcjIyCter2bNmrr77rsLnIZ5Jdu3b1d6erpmzJihoKAg83X33XebbT788EMNGzbsslMuAQCuYTEunXgPAEAl0q1bN7Vq1Upz5swp667ks2XLFnXr1k1Hjx5VnTp1rth+586d6t69e4GFTUrif//7n5o1a6bt27cXuJk4AMC1yKQBAFDOZGZm6pdfftFzzz2nIUOGFClAk86vdXvllVdcXib/0KFDmjdvHgEaAFwlFA4BAKCc+fDDDzVmzBi1atVKS5cuLda5I0eOdHl/OnTooA4dOrj8ugCAgjHdEQAAAADKEaY7AgAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA58v/IU4x99KRSKgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, pdmstat, label='PDM statistic')\n", + "#plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A dip is definitely there at the frequency we expect it to be. \n", + "\n", + "Unlike the Epoch Folding statistic, which follows approximately a $\\chi^2$ distribution, the PDM statistic was shown to follow a beta-distribution (Schwarzenberg-Czerny, 1997). \n", + "\n", + "We can use this beta-distribution to calculate the significance of a peak found in the PDM periodogram, or to set a detection threshold. In stingray, this is implemented in the `stingray.stats` module, using `stingray.stats.phase_dispersion_detection_level` and `stingray.stats.phase_dispersion_probability`:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTVklEQVR4nOzde3hU1b0//vfMZJLJ/UIgFy4hIFdBQLAI1CptRUE9eGnF6rHev1rt85XyrbZUOIfSVo71wFGr4BUUaI/0KUc9PbUqttYjgtxEucnNhCSEhJAQEnKfy/79kd/arL1n75k9t8wkeb+eh0cz2ZnZc9trfdbns9ayKYqigIiIiIiIiBKCPd4nQERERERERBcwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBMIgjYiIiIiIKIEwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBJIU7xPoy3w+H06dOoXMzEzYbLZ4nw4REREREcWJoig4f/48iouLYbcHzpUxSIuhU6dOYejQofE+DSIiIiIiShBVVVUYMmRIwGPiGqT97//+L55++mns2bMHNTU1eOutt3DjjTcG/JuPP/4YixYtwsGDB1FcXIzHH38cDz30kOaYzZs3Y+nSpfj6668xcuRI/OY3v8FNN92kOWb16tV4+umnUVNTg4svvhjPPPMMrrjiCvX3d999N9544w3N30yfPh2fffaZ5eeXmZkJoPuNyMrKsvx3RETUR7S2As89p73t//5fID09PudDRERx09zcjKFDh6oxQiBxDdJaW1sxadIk3HPPPbjllluCHl9eXo558+bhgQcewMaNG/Hpp5/i4YcfxsCBA9W/3759OxYsWIBf/epXuOmmm/DWW2/h1ltvxdatWzF9+nQAwKZNm7Bw4UKsXr0as2bNwksvvYS5c+fi0KFDGDZsmPp41157LdatW6f+nJycHNLzEyWOWVlZDNKIiPojhwNISdHelpXFII2IqB+zMg3KpiiK0gPnEpTNZguaSfvZz36G//7v/8ZXX32l3vbQQw/hyy+/xPbt2wEACxYsQHNzM/7617+qx1x77bXIzc3Ff/7nfwLozohdeumlWLNmjXrMuHHjcOONN2LFihUAujNp586dw9tvvx32c2pubkZ2djaampoYpBER9UetrcDTT2tve+wxBmlERP1QKLFBr1rdcfv27ZgzZ47mtmuuuQa7d++G2+0OeMy2bdsAAF1dXdizZ4/fMXPmzFGPEf7xj39g0KBBGD16NB544AHU1dUFPL/Ozk40Nzdr/hEREREREYWiVwVptbW1KCgo0NxWUFAAj8eD+vr6gMfU1tYCAOrr6+H1egMeAwBz587F73//e/z973/HypUrsWvXLnz7299GZ2en6fmtWLEC2dnZ6j8uGkJERERERKHqdas76ms4RbWmfLvRMfrbgh2zYMEC9f8nTJiAadOmoaSkBH/5y19w8803G57b4sWLsWjRIvVnMTmQiIiIiIjIql4VpBUWFmqyXQBQV1eHpKQkDBgwIOAxInOWn58Ph8MR8BgjRUVFKCkpwbFjx0yPSUlJQYp+gjgREREREVEIelW544wZM7BlyxbNbR988AGmTZsGp9MZ8JiZM2cC6F6hcerUqX7HbNmyRT3GSENDA6qqqlBUVBSNp0JERERERGQorpm0lpYWHD9+XP25vLwcX3zxBfLy8jBs2DAsXrwY1dXVWL9+PYDulRyff/55LFq0CA888AC2b9+O1157TV21EQAeffRRfOtb38JTTz2F+fPn45133sGHH36IrVu3qscsWrQId955J6ZNm4YZM2bg5ZdfRmVlpbrfWktLC5YtW4ZbbrkFRUVFOHHiBH7xi18gPz/fb781IiIiIiKiaIprkLZ7927Mnj1b/VnM57rrrrvw+uuvo6amBpWVlervS0tL8e677+InP/kJXnjhBRQXF+O5557T7LE2c+ZMvPnmm1iyZAmWLl2KkSNHYtOmTeoeaUD3fLOGhgYsX74cNTU1mDBhAt59912UlJQAABwOB/bv34/169fj3LlzKCoqwuzZs7Fp0yZLm88RERERERGFK2H2SeuLuE8aEVE/x33SiIjo/9dn90kjIiIiIiLq6xikERERERERJRAGaURERERERAmEQRoREREREVECYZBGRERERESUQBikERERERERJRAGaURERERERAmEQRoREREREVGE3G43zp8/j2hsQ80gjYiIiIiIKEKHDx/Gnj170NLSEvF9MUgjIiIiIiKKgKIoOHfuHACgvb094vtjkEaWdXZ2orKyEl1dXfE+FVMdHR2oq6uLSpqZiIiIiMiKtrY2eL1eAFD/GwkGaWTZyZMnUVZWhv3798Pn88X7dPx4vV588cUXOHToEJqamuJ9OkRERETUT8gljtHoJzNII8s6OjoAAOfPn8exY8fifDb+qqqq1HNsbW2N89n0D8xYEhEREXX3jwVm0igmOjo6sGfPHpw+fVpzu9vtVv+/pqYGDQ0NPX1qpjo6OlBZWan+3NnZCaA7iGAgERtnz57F1q1b/T4nRETUMzweDzweT7xPg4jAII16QENDg5otky/+IkhLSUkBgKisXBMtFRUV8Pl8sNlsAC5k/Q4dOoTt27ezEYuB+vp6eL1enD17Nt6nQkTU77jdbuzevRs7duxgG0cUZ4qisNyRYk9E/x6PBzU1NertYsGQtLQ09feJQpQ35ufnA+jOpCmKgvr6enR1dbH8MQbEa5rIC8kQEfVVx48fR0dHB9xuNxobG+N9OkRR0dHRkZDrHgTT3t6uyZ4xk0YxIX+wqqqq4PP5oCiKGpSlpqb6HRdvIsuXmZkJoDtI6+joUEsd4xlQKoqSUK9VNCiKogZpchksERHFXn19vabU3ChIUxQFlZWVDOAoIJ/Ph/LycnXp+HhqamrCZ599pln3oLdMWZFLHQEGaRQj8ghGV1cXampq4PF41C+Ky+UCEF7goygK9u3bhwMHDoQ0UtLV1YWysjLTfSfEuWRkZADoDtLa2trU38czkDhw4AC2bdsWVsZJURScOXNGnWOXKLq6utTXnEEaEVHPKisrA3BhYNIoEGtqakJZWRmOHDnSo+dGvUtNTQ0qKirw1VdfxT0gqqurA3Dh83zu3Dls3bpVU9WVqESQZrd3h1YM0igmxAcrKSkJQPeXRHTEk5KS4HQ6NceForOzE2fPnkV9fb1moY9gampqUFlZiZMnT/r9TlEU9fzS09Nhs9mgKIpmGf54ZdIURUFjYyO8Xm9YJZeNjY04ePAgjh49GoOzC5/8XLq6uuJ+YSci6i8URVEHLMeOHQubzYb29na/QUzRBory//6Ii4cFV1tbC+BC/yyexON3dHTA6/XizJkzvWbuu5iPlpWVBYBz0ihGRPAl5p51dHSoWSCn06kGb+EEPnLWpaKiAs3NzZb+TjyWUUZJPg+n04nk5GQA2pHFeAVpnZ2d6hc1nHMQz1efRo8lEViKxVeMyFnKvljOSURUWVmJHTt2JFwlg5iCAHRXtohOoT6bJtpXRVGiMne4oqIiIV8PMz6fD7t27cK+ffvifSoJq62tTdO/iGfGSj/Q0NbWpgY+ibQGghkxeC2+j8ykUUyID1Z6ejqA7kBBBFdOpxMOh0NzXCjkL5qiKJYzROKxjErrxG0OhwN2u10tx5QvPPEqyYu05FK8XnJ5YSROnDgRsNT01KlT+Oyzz/Dll1/iwIEDpvejzwpG0gHwer3qc/P5fDhy5AgqKirCvj8iomiora1Fe3u7piojEYi2xGazwW63Izc3F4A2SFMURTMIGo3Aqq6uDu3t7THZfifYlIZwtLe3o62tDY2NjSzLNyGyaKK/19DQEHFA39DQgIqKipAzmPpBhtbWVrWvkehBWldXl9/aCAzSKCZEB15k0rq6utQLfLQyaWLxkZaWFkspYfFhN7p4iPMQZZhiiwCjY3paqEFaR0cH9u3bh6qqKgDaL7l8X+E6efIk6uvrDTOYLS0tOHr0qPpeB2os9UFauA2goijqEtIdHR04deoUampqUF5envAXZSLquxRFUasJEmGluaqqKnz++edwu93qtTEpKQk2m00N0s6ePatmHsSqj0I0gjTxuPIAaLRKCaurq1FZWRnSNIhg5P5CNNrPvkZRFHXxmZKSEmRlZUFRFDVwM+N2u1FfX2/6vTh69CjKy8tDrgASJY1iK6WzZ8+qn7lE7w+Iz5fL5VL7oix3pJgQgUFKSoo6AVJc+JOTk6OSSUtLS1PvR6zCWFZWZjpCZyWTJoJHkUkzOqanyYFOsHNoa2vD3r17cfbsWXXuXTSDNJ/Pp77+RnvciQukPApkdJGRV3YUr3m4r6/X60V7ezvcbjcOHz6syaBZLYUlIoo2j8ejXv/010FFUXo0cFMUBVVVVWhubkZTU5PfwGRWVhbS0tLg9Xrx+eef4/Tp037Xz0Dl61aJ67xoPw4cOIDPPvssKvctOvTRuC9BDtK4DY+/8+fPo7OzEw6HA/n5+SgsLASAoPO/ysrKcODAAXWRD5nP51MHBEJ5zcU0CwAYNGgQAGj6g4kepInnmp6eHlEfWY9BGvkRHyyHw6FmpcQFVJ9JC3UUTW5cRDDV3t6Os2fPorKyEgcOHDBcBlbeu03fOMqlmEDiZtLMzuHs2bM4dOgQ9uzZo17c5Ocr35eiKDh//nxYHQT5vgIFaQUFBQHPubOzE16vFzabTa29Drc8Qr6IyQvUAAhYYtTS0oLt27f3ihWfiKj3kYMFcZ3yer2oqqrC9u3b8dlnn/XYXNyuri71Gut2u/0GJm02G6ZMmYLc3Fz4fD4cPnwYp06d0txHpJk0edCupaUFHR0dqK+vR2dnp7rSZLhEuxaN85QxSAtMfI7S0tJgt9vVksdggbJ4r4yqbeT3L5TS1ebmZni9XiQlJal9EPn7FU5/syfJQRpXd6SYMgrSRLAhz0kLZ9UkOaASJY8dHR3q/SuKgoMHD/pdJOQPuz5r0xPljl6vFydOnMCOHTtQX19v+e+CZdK6urqwb98+1NXVwev1ajYK1y/I0draitraWuzZsyesOVvy4+uDNK/XqwZFeXl5ATNk4r1KTU1VF2kJN5Nm9L4MGDAAANQR44MHD/p1OBoaGtDZ2YkzZ86E9HiJuMjJmTNncOLEiYRugIj6G7kNEsHJ/v378fXXX6tBUzSzPoHo51fL5Y6C0+nEJZdcgkGDBmlWNxYDaZEGP/r55KIkH+ieqxbJvD15Pk80FjiR71dgkOZP7usBF6qQAq0GqiiK2gcwavflz1ko1T/i85OTk6NupaR/3EQoOzYjnqtcJcYgjWJCfBEcDof6pRVfWLncEQg9+JEbFzmTJl9A3W43jh8/rvm7QEGaPpMmlzuKQDCScse2tjbs3LkTJ06cQHt7u2YDUT35wub1ejWNuNE5iCDO6XRiypQpmDp1qubv9eWO4rHDaRDl96q1tVVzwTt37hwURYHL5UJqaqr6Whqdswjw0tPTIw7S5NLa4uJiDB06FCNGjADQPbJWXV2NM2fO+M1TEK9bqB2PI0eOYPv27QnVYB87dgwnTpxIqHMi6u+MMmn672gsO41dXV2or6/XZJkAbZAmrtOCzWbD6NGjNW2gKB2LZpAGXFgFUPQHjh07FvZAkzxo6PF4/Dq34b7OVuakdXR0JHTnP9qqq6vVgWZ9kJacnAy73Q5FUUw/L/KK1UYBdaRBWnZ2tqZiS5bIJY9G5Y7R2P6BQRr5McqkCU6nEzabLeyRArlMwyiTNnjwYAD+85Hki6hZkCa+1PI5i1HESFLlZ8+eRWdnpzqZ1Wz0tKKiAp9++qn6ZdUfZxTIiGPS09ORnZ0Nu92uPo7H49FclDo6OtRS0HBGcOXHl/fZAS6sqpSbmwubzeYXpLW1tanvtWhQMzMz1ePCHf2UOxujR4/GyJEjkZaWhqSkJPh8PjVjqB/ZE+ce6uOK7Fx1dXVY5xsL4jXoqVF5ot7Eakfn7NmzYW9VYtQpNcqkiWuguEbHMisv5v3U1NT4BWn6Nk+WlJSEcePGwWazIS0tLWqZNH37JV6TcePGwW63o6WlJWB5m6IoqKysNJzOoH/f5HM9efIktm7dGtbApNw+yNk6+XE/++wzHDt2LOT77o06Oztx7NgxHD58GMCFtkf052w2m9p/MmuPgi2Gpi93tPLdlVcizc7Ohs1mU0svxXnJ55to5M+WnEkDIr9GMEgjP+JDJS9nL4hOebgrPJrNSRNf/IEDBwLwv6DKH3R9x1yfSUtKSlJrgsUiGJGUuYn7F42dUUPk8XhQWVkJj8ejTnYVz0l8YQMFaeK1sNls6murz6TJF7twNifVP748einmo+Xl5QGAJkg7f/48du7cqV7YRYOakZERtXJH+aImz3UTHQFFUTSfNfEeuN1uzTFWH+/06dMJccGXSziMOom9ZT+iRCcGJfSfkTNnzuDAgQMJ8VkgY4cPH8a2bdsCDsiIVXH37dsX1mCcmGd24sQJzX0KYl8y8V0V171YBmlisM8oSDMqd5RlZ2dj+vTpmDJlitrpjnRDa6PvSFJSEgYMGKApkzPT1NSEsrIyw2139OX38v00NDTA5/P5Lc9uhf4zo8+EisDvzJkzPVJu3tbWFtdrumin9dMp5PZX7pcZCRakyd8beYXUQMTiYXa7XS11FFM/kpOT1c9wol6n5ZUdHQ6HGlQCDNIoyuRNMs0yaeJ3gLUP4NmzZ9VVgOQRQHExaGtrU798mZmZfvPg9I8TbE6aGEEEugOrSEdhxN+Ji4c+wwV0d/rFOYrzFv8NlM0TF0I5GBavrVz2IX/pAeORX6vPQxANo9vtVs81JycHwIXX0uPxqB2EhoYGuN1u9ZwzMjIizqSJ56fvbGRnZ/sdKx7D4/FoHk8sB/zpp58GnaMmXgOv12u4MlUkRIYulIBV/lzry6t27dqFPXv2cK5aFJw8eRI7duzQLDTT1dWFw4cPo76+PqR5ptRzurq6cPr0abjdbsMMjCBG4eUsU7D7PXLkiHrdEwNrJ06cUK8h+u+jXM0RzSW2A50j0D0oJj8nK0EacGEp8OTkZLX9iGS+l5wpEETlRbDsi/w7o8ES0caItk9u28T/6+/byhwl8XzF+Znt7+nxeGJebt7e3o7du3dj//79MX2cQOT2Rh4Elj9Hoi8SjUya/ngzIljOzMxUB9hFfysjIyOibZ96glzqCCCiajM9BmmkIV/0jII0MYIYypfm0KFDOHToEDo7Ow0zaeKCLUYhRCMgLyZiZU6afKEZN24cxo8fj6ysLE3AEQ7xdykpKep96UeL5IUtxHmLYEYEaUbnoM+kyc9DDgbl1L+4iIW66ae86TdwIUgTDZXT6fTLlLrdbvWi6/P51OeZkpKC5OTkgHPXrDDKpAEXgjS73a5+5sR56huPzs5ONDQ0wOPxBOzIyQMQQPfG3dEMgE6ePIljx46FtM+P/LmWG7euri54vV50dXWhpaUFXq8XX375pWakn6wTnws5I1FRURFwaw+KPzl4DtTZkzMxVjqF1dXVqKmpQVlZGXw+n+ZzcfjwYb+Mh8/n03xXxXVPXvUxmlk1RVH8AioRaAWak2bEahAVjDyQKtoHUXlhlkmTr7ni+egHGOV9WMV+b+Jn+Vh5z7qTJ09i+/bt+PTTT02fk8/nU7/X4n71nw35PAK1HdFw5swZ+Hy+uO7Xpl8tMVAmzWqQpm9DxWsq7tNKP0WejyYUFhaipKQEI0eOjHqQ5vP5sG/fPhw8eDAqfQB9kAZceP6RDuQwSCMNOXNjs9n8MjwiQLA6SiDvzSVvrpmUlASHw6F2wIELI3Tigy4++PoPebByR3EfYsJ0sL28RJBldpE2WuxEvoA1NTVpRuHEUvniYiZPJNWfQ6AgTW74Rdmmy+VSs12hNrjiscXft7S0QFEUw9dPDr7k11vM5RLnI5c71tXVYdu2bSHtbxYok1ZaWopx48ZpNlUH/C/68iprgT6P8gXeyhyKUIWzhHSgTJrQ3NyMhoYGNDY2oqqqqs9l1vQL7MSC+H6K96atrU0zsMIgLTHJQVqg72qoQZr4PJw7d05dRCkpKQnZ2dnwer2oqKjQXC/kTJrdbtd0wBRFwa5du7B79+6ofTeNOr9isC/YnDQjcsljJOcEdLcNw4YNQ25urjo9wej+vV4vduzYgS+//NLvd/L3Xbx3qampatsvjpUDCXHbkSNHcPz4cXUgy6zdFudrs9nUNk+fLevpIA3wHyzsSXJfyixIk9cKMKL/fumvneI1Fa95KJk0OUhzOBwoLS1Fenp61IO0c+fO4ezZszhz5oy6J20kxHOW+3HRWoafQRppyPPRRMpWfEHkTrzVL41+dUJxkRD3JS4IwIUgTZ9J03/Ig5U76gXLpFVVVeHo0aM4dOiQ4cXTbEVKQay4KPb2EOV4ovGRywL1i3eIL7f8OshBpXi9iouLkZ6ejuHDh2sCxXPnzmHXrl2WAiPxPMTFUzT2ciZNkM9XP+opnpN8nNiMvKurK+hGmEbnpO9s2Gw2lJSUYODAgX6ZNKMgTdwWaNRKztqJ1zCayz2LDkAoHX75fOXXWf6sNjc3q/MxRHatr1AUBQcOHMCOHTv83tdz586Zbm4fCjkIFK+dPthlkJZ4PB6PZh6S1UyalYEXcYzH41FLYDMzMzFs2DAA8CuFljNpDodDM0jpdrvR0dGB9vb2qHUixbVArm4QWSuPxxOXIE2+Vg8bNgyTJk3yW6xLv7JfZ2cnzp07B5/Pp7luye+ReF/lOc7iWH3Zo6IoajAl2kyzMkVxH8nJyX59Cv0xQHegEKvgqaOjQ5Otjdc2MPpyR6NKlkCZNHmqgQhC9GsHBMte6sntt1x1JIt2kCZ/v8vLyyPObhoNdLPckWIiUPpbznpZ/QDKv5cbUv2+HMCFDJo+kxYoSJMbT7MgLVAmrbm5GeXl5QC0G4bKF+tgmTTxBZcnUNfV1amjs/KS9vJFRjQ6NpvN8LWVG6j09HRcdtllKCws1ASKVVVVaG1tNd3UuaGhAUePHtWUfohSRfEYgTJp+vlfgsik2e129fWVy1GsMit3lAUL0jo7O/02ATciZ+2iuY+JuB/x/MOdkyZP7Jdvb2pq0nRW+9JS/SIAVRRFc30QwduBAwciDqDk10t8TsRtoiPBIC3xnD17FoqiqN9VUaGgJ1+3xXGByFUOAFBbWwugu4OYm5uLpKQkv8eRqxrsdrtmlFxfQhYN8lyqiy66CHl5eSguLlZ/L641Vsodxf0A0cmkGQWGRuWU+syZ2SbH4n7lBSKM5qH5fD7N/RQVFQGwFqSJc9a3TfI5yXOzo00/59WojXS73Th06FBYC6RYFUq5o7zUviBen5SUFMOBTrnU0WyhNUVRcPz4cXWfPfH+yf0kvWgGaT6fT30/XC4XfD5fxKt7GiUKWO5IMSHvkSaIC6fVTNrp06dx9OhRv7lkohMmlvEHAmfSxBw2fUdav2gEoJ2oqWeWSfN6vX7Zs9bWVrS3t2Pbtm0oKyvT/J1ZkCYv/iHOXQRNYjlZo0yaXOooLwwiXltxwZM7BeJ48bhGc21kZWVlOHXqFM6ePatpZOXAR24k9eegz6QJ8maT+gtrKBcls3JHmVmQJj4758+fV99DK5m0WARp+n3+rNI/vlzmI3R0dBgOCvQFcqmJ/FqIMulwFsjR0783Pp9P/QyJwQYGaYlHdKSKiopgs9lMs8j6lQGDfT86Ojo013xxzRCLFogSPkDb0ZLbRvn2QPOlwyU+8ykpKSgoKMAll1yiyaoJ8cikGXWkjeak6YM0+b0z2j/U6XT6naf+fEUA43Q61dI4syBN/K3Y+wswD1LEdSBWJY/6Ba2M2p3Tp0+jrq7Ob4/YaDJbOETuOzmdTvX1MlsEJC0tzbBPI39uRfvc2dmpedy6ujqcPHkSZWVlmukWcv9DL5pB2rlz5+DxeNTN34Huz5WV++7s7MSRI0dQXl6OhoYG9TrCTFo/4vF4UF5eHrPR8vLycnUEQ1AUBadPn9bshRUsSAv0ASwvL8epU6fQ3NxsGKQZrSQEXAjOxIpUgHZ/LkGUl5SXl6sX+6SkJL8VEAWzTFpVVRU6OjrgcrnUEfXW1lbU19fD7XarpVZy515fry2XcaSmpvqVVYjRJKNzMJqPJh+rn4AryMGJvMmqPkCRl7+VS3Hk11cO0owyafLvxWuUnJysuaBGEqRZyaTpG27RwRaNtFzqaWVOWqyDtFAaErMgLdB59ZUgrb29XdN50c8BEiLt+Opfr7a2NvU+GaQlLvGdysvL06wErCfaFXE9CLY5sbgPeeALuHCtFnOZgQtVHfpyx57KpOk7rpEGaZHM/bSSSZNL6PRBmVm5o1GQ1tXVBZ/P5xckiFL6tLQ0zfw1o++v/BqK90vec0/83uFwYMCAAQD892eNBo/Ho865CrS/nvi8t7a2xuwabxakyu+pvBaB/vMiB2lG2+/IQZr8forrvNgrT/y/PN2ip4I0cS4DBw5EWlqa2p+y8t6LBYcqKiqwf/9+VFdXawJN+XXknLQ+qq6uDhUVFWoWJ5o6OztRUVGBr7/+2m+Vs6+++gpHjhzRlHQIAwYMgN1uVzvpQOAvjbwXh37kBtA2NOILoh8llIMd/d40Ho8Hx44dQ0VFhZqmDlT2YXSuXV1darA6YsQIzaic+LJ2dXVpsoH6TJocBIm5e/LyxMCFhl8edTp+/DgOHTqk2VtDpi931Acw+uOB7guePrCXOxBiHxJxLnKQFmhOmnjNbDabOudOZAcF/cU1lpk0r9ervi7iPZPfV6tz0mIZpOmX6w5E//ji82T0vRLflb4SpOk3FI9mkCa+D0bfC/H9lr+vDNISjzzCbjanCLgQpIl2KtjeTOI+8vLy1OuOy+VSrzM5OTnq9U88rr7c0SyTFu05aWZb4OjPIxj59Qt33lWgTJo8d90oC9bS0qK5Jppl0uQqG3lBKEFk0tLS0pCUlGS4XY8gd/7l10m/L6U+6xNt8qrK4nyN2gf5OhWrLUGsZNIA83lp8sCy0fY74vfieQ4ePBjAhTnADQ0Nmucp9z96Ikjz+XyaIA240Eezslm6PtHQ2tpquOorwExanyU+sM3NzYZ18ZGQ/16MZjQ2NqrLend0dBh+aQcMGIArrrhC7aTLv9efk9xomS1LLHfIs7KyMGTIEIwaNUpzjDwvTdxHSkqKegEXWS6j7JyeUbnjiRMn4PV6kZmZiYEDB6qP19LSon5Z5aWOxWOIi5eYICuXOsr7swHaTZnFObS2tuLkyZOoq6tTV5cLlknTPzc5EyTTl/3IF1g502ZW7mgUpAmi7Gb8+PG46KKLNL+LRibNapAmZ07l5W6FeM1J0wcCVjv9wcod5ddFNHhi4KKsrMxSw5KoxLmLz79ZkBbOQin19fXYtWsXjhw5or434j2XH1cePOlrq2b2FjU1Nfj00081n2X9qrOBgjQx4JiRkRHwOEFcs9PT09WBHpFRBbqv28OHD0dqaqqaVQu0cEgsyh2tZNKsZtGA7qDGbrfD6/WGvaJtsMVK9B17OeARAyPyYhPi+y6/z/J2AfJcY7ndFc8H8J+/LjPKpAEX2if595Fu0xOIlcFB/WBSrII0K6s7AuZBmj6glm8D/Fc5LC4uhsPhQGtrK2pra/22kDHrf+hFK0iTSx3FAmqij2YlkyYP8ADalVb101I4J62Pki9c8hekpqYGW7dujejLK18Yzpw5g5qaGnz11VfqbfJqgvovrb6U0OxLI39hjTZ9lv9W3O9FF12kKTEBtCN/cuc62AqORvSlhm63W50zNnLkSNhsNnWOVUtLi2FZhvgCyvt2yXOFxEicHKTJS++L85NXPhSvjVmQFui9kOfyiQuGfl6afiRT/K289YHZnDT9BUdsiDpo0CC/0V2RYRUXPf1F6dSpU9i/f7/hZyGUhUPkDUdTU1P9zsPosY0eKxpBmn5j8nCDNP356rcSGDBggLqwjBgk6erqQmVlJSorK2OSce8p+s1xo5lJE5/32tpavyWh5SBNvhYl6kapfZnH48HXX38Nt9utrpILdL//4vslZzz1wZfH41Gv0XKQFigQkUu2Bg8ejOTkZHURCmHw4MGYPn26JpMmX4/FtdFKJs3r9WL//v2aLR+CsZJJCyVIk9s4s/nLgVhZoCvQfDJ5mX39XqP6Trp8P+IYeWl2IPQgTWwpJJ6LfH4pKSlBt+mJhFmZrP5c9duuxCKrZ2V1R8BakBas3BHo/oyKBW+OHDmClpYWOBwO9bPY05k0OYsmPg/ytIlAA3Uej0d9PUSfp6uryzTDHKiPEcrAI4O0OHG73di7d6/fxrfyB16O7MXysJGs/KPvEB45cgRdXV1qh1+eXxWsjMLsA6hfjtXoA2plRSrxJXe73ZqLXDhBmn6UTLyWaWlpasfN5XL5zVEALjT2RvPoxLLL8m1Op1M9Vm5YxG1GFwGzckezn/WPJzrv+sbXaN8tMVoZrNxR/7NRQCQMGjQI3/rWt1BYWAhA+zmrr6/H0aNH0dDQYDjAYKXcUZ5vKO4jPT3d8D23Mict0nLH5uZmfPrpp2qprVxXL39urRCPL56fPpOWnp6OyZMnY/LkyZqGUZTqxqIh7yniOYrrTzSDNH1jnpKSonbs5JIdeXVSljz2vJMnT6rvlXz9kkvEHA6HaZAm2khRrmilJFj8LjU1FXl5eZg5c6Y60KUnrhOKoqjnKZcZWpmTdvbsWXWVXatznqKdSQMuZAvDCdL0FSVG9EGaUUdUfo/a29sN9+mUVx4W9xFpkAZAE1jL5ynmT+mfZ7QYVXDo+2Li/NPS0tTnGotsmlmFgr6PYbbQjFEmTUwLqaioUPuncp9myJAh6mufmZmJyZMnq++b2SCxXjSCNEVR1NdUXhxIDKZ7vd6Aa0GI64Zcfh1oz0KjgLyxsRH79u3Dzp07LZ83g7Q4OXPmDJqamgLOyzBaECFYqUJ5eTn27t1r2Pk0yswMHjwYl156qfqBEh0Yo4BFJn9pTp06hT179qirMcrPJVi5oxn5AmAWpA0ZMsTv+EDnKr5MYgUnEaAB3Z1ko/I58cWUz1lePES/+Ic8Yik3LPrzy8/P97s//fma/Sw/XnZ2tpqu1y8eYtSBF/clN4RmI0Hyz4EuoIA28ybOobW1VZOp1ZdjyvP9Ag0KyEGluMjm5ubCbreHVGoZrUyaqK8/ffo0fD6femF3uVyGpXuBiMfXz4mQG/bs7Gy/lU/F73vrnmlyp1c8d7POrniO58+ftzwfTx9wpaen+w00yAMdRn9DseV2uzWLWMnzlvQdd3nFX/lzor+WByt3lLcU0c8fNiK3g3LgaLZwiNFnSL4OHzlyJGj5k6IofoM+QqAFm4KRq0VCJV87zRbokhcnkbM0+mPkQU59xhS48L0Uq+fJ0waA7vdEHCNPU2htbdVsoRMsSDNaoj+U+cRWWRkcFG1Ienq6uohJLFaalB9X/lzq21/9isqAtgRZLhF1u904duwYysvLoSgKCgoKNH2rlJQUTJ48GRMnTsSll16KzMxMS4PEMrm/GW5Z+rlz5+B2uzWljkB3/0IMYAQaRJHfI6OF1cwyafLn6dChQ+rWIlYxSIsTUfYmRiEEs0ya+HIFW53p1KlTfvsqCeLDkpaWhqlTp+Ib3/gGRo0apRkVkRfCCES+2Jw8eRLnz5/XLPMufhduJk2+AMgdefHlTkpKQmlpqXoewTIxwIWLpbj46Ufn5GXlBREUGy1q0tzc7FfuCACjRo3C6NGjNaM1+uc8ZswYDBgwAIMGDQq6YpfRe1FcXIwBAwaom1s7HA74fD5N58Tos6IvKZGXow43kyboG0Ex7088H33nQP5sBAvcxfsu7ltcZI0WLTG7AEZjTlpXV5caKHq9XjQ3N6sj0/LFO9RMmuhs6BcO0b/3+o6lvtyqt5Bfn2Bz0sRo5d69e/HFF19YauDE/YvvdG5urt9nWF60SH9OFHunTp2C1+tVvzfyXnn6jo/cRskDlWZBmn6hCkEeDbcyWGgWpMkdMP3ApJ7c0W1tbUVFRUXAxxTHy1u3CNHKpIXa0bWyeba8DL+86JW+bF7OpBm9pqLdFO+tHNgB3d9bESjKpdK7du3C9u3bcerUKZw6dcpvwbFAmbRgZc/Nzc04cOBAWJULVsod5RJc8VxjWXoJaFe31AfeRpk0OYCVqzo6OzvVvQZHjx6NsWPH+t1fVlaWWroPQFMqGUq5o6IoYQfRYgPr/Px8v/MzWilaTw7SxLl6vV7TIFPfx5D3qp08ebLl82aQFgc+n08NouQRZUB7gZAbGnG7fo8X/f2KD4HRh01enSozM1PT4Qs1SJOzU+ICI48qiHOONJMmFugQ5y2+HHl5eXA4HOpcAnnid7D7Eh0BeTQFgCaTpt+IUT5nURpz9uxZv3JHcT/FxcWaC4H8Bc7MzITT6cTEiRMxfvx4vwuGlXLHtLQ0TJw4ERkZGZqRIDkQMmpQ9CUlQlJSkl/2NJRMGmA+Uilq0ltaWqAoCs6fP4/6+npN+VCwzK38+PJ8NPFf/cTw2tpabNu2TfM9iEYmraamRvP9O3v2rDqXRmyEC4QepMmdDXlwQ/9dMRr9N8umxXuOldfrRUNDg+FrLL8XRqVG+iCtvb1dLce28rzEMaWlpZg+fTqGDBnCTFqCEW3g4MGD/SbvG41O6+fJeDwedYBEXMszMjKQkpKifvb05M6wFTabTbPYBRD6ZtbiOiyeY1VVld+85/LyclRWVqKxsVGzv5e+bYgkSJMXDwl1Kf5AKzsKcsde7njLbaMccMlBmn4xMXkAVQRR4hj5vXM4HOp7L1b2PHr0qFqKPnToUPVab9Y+iQXJAl27y8vLUV9fH9K8QsHK4KBZlibajCptjPoXchAizlX+/MtVTSJ4c7lc6p6GwYj7F9d1IPBnSz7HcNo1s1JHwcoKj3JJqhzYGlVbAf7ljvJ7blS1ZSauQdr//u//4oYbblA7tG+//XbQv/n4448xdepUuFwujBgxAi+++KLfMZs3b8b48eORkpKC8ePH46233vI7ZvXq1SgtLYXL5cLUqVPxySefaH6vKAqWLVuG4uJipKam4qqrrsLBgwfDfq4y/f5h8pdR/gDKI4tyNG725TXKwp05c0Yd5TBbiAK48AUJ9MWVybX68vMwy6TJH2ArmTS5rEI+p+LiYhQUFKC0tBRA98If06dPN51ToH9sMXHUaOEJEeikpaWpI/BGX0DREZCzGEbL4svk56wPDgOdr9HPRozKfERDLGcIxX3JI5f68zN63HAyafImsTabTZ14u2/fPhw4cED9jFpZRlp+fHkrCHGxlzOZooPW1dVluA9XuHPSFEVRF5wR51BTU4OWlhZ1i4JwM2nyMtFyCar+vRfvZUpKimZPIb3a2lps3bpVPd94qK6uxv79+/32ZQS0I/PieQcK0uROpZXOi3z/YuSdQVr3Z6usrCyi/bKiQQzWAN0dJP18KStBmpjoL5cZi8WNAGgWIhFE4BZoUE9PfD7NMmnByh3lwaqsrCz4fD41m9bY2Ig9e/ao2+58+eWXOHr0KADjgbFAK/AGY7fb1c5hqPPSrGTSjFZl1GfB5ExaR0eHaanYsGHD/O5X/FcfYE+cOBHf+MY3cMUVV2D48OHq7SUlJRgxYoT6s9w+KYqiCYblc9AHAT6fT22rwtm/1qjdkYMleWVHOUsTiyBN/qwG6g/K12XxOhllt2VGGSoz8mrXQPDtJOQgOpwgTQwI2O12w/6XuB60t7eb9glE3yo9PV0zBUPcHiyTFsqgtCyuQVpraysmTZqE559/3tLx5eXlmDdvHq644grs3bsXv/jFL/B//+//xebNm9Vjtm/fjgULFuDOO+/El19+iTvvvBO33norduzYoR6zadMmLFy4EE888QT27t2LK664AnPnztUs4vHb3/4Wq1atwvPPP49du3ahsLAQV199dViTbvXkFf4AaOqo9WU64uIgf3DMGlj5S33+/Hl0dnbi4MGDOHz4sGblRqMPiPjAiaAr2IfI6AulH+WWM2nyyIGVoEMu9ZCze2lpaRg3bpx6odevdGh2X+LCfvz4cQD+pY7itvHjx2P8+PGaUSL9OdtsNs2cMv0+LEbsdrt6AQsWpFnJpOnJpSaAtiZffjyz7JhRgx9pJk1+7cTrX11drX7GxaiVlc+D/Pjy85GDNPnxxedQzixGmklrampCR0cHkpKSMGbMGAAXGq6BAweaLktcW1uLHTt2GDbwckOp3w9O3C7Lzs7GmDFjMHHiRMPVtQRxnRIDNPEgXnujebRyg2/U+Bpl0gQrJUdGI//6z7t+5dX+EKRVVVWhsrISJ0+ejOt5iK1VHA4H0tPTw8qkGc0tBqAupNTQ0OBX2SGCNP1qwoHoM2mBluAPlElLSUlRBxdPnTqFr776Cvv27YPH40FmZqbapojvjdHAWCSZNACGFRcyMcClLymzmkmz2Wzw+XyaUkX5eejnpJmViuXl5althjhe9Ink+WnAhX6B2DrhkksuwYQJE1BaWqoJGuT2Qd5yQ55CAfhfB1paWtT3OJz5fGZbNwhinqXoy8irGYtB+fLy8qhcn4zaO7P+hT5Y1C/woS/HNcpQmZEzdeLnYAFeJEGauK5kZmaa9n/FORm9xx6PR/0ei76seO5mmTR9QG5lkTQjcQ3S5s6di1//+te4+eabLR3/4osvYtiwYXjmmWcwbtw43H///bj33nvx7//+7+oxzzzzDK6++mosXrwYY8eOxeLFi/Gd73wHzzzzjHrMqlWrcN999+H+++/HuHHj8Mwzz2Do0KFYs2YNgO4O7jPPPIMnnngCN998MyZMmIA33ngDbW1t+MMf/hDx8zYL0uT5NGKkXnTsrARp+iyWvCeF+MIDxgGY2SiAGaPRgECZNKPSymD0cxCsbtxpRNRJ6+c06Q0aNAgZGRmG5YAyOUgLlkUDLozwpqenBw3SxDL5QiiZJnllLTHp2mwBk1CCtEgyafKSu3K5iLgYWnl+ZkGa2JA2Pz/fsOMkSizF7UD4QZr4Lubk5MDlcmlG40XZrdFo7OnTp9He3h5wdUt9kGaWSbPZbCgqKtJ8RkVQV1VV5beEf3Nzc9zKHsW5GI0Iy50+o/kG+vdFHhwzG2Hu7OyEoiiaEnL94Ir4HMvf2f4UpInOc7xXBRUDNFlZWZpybTHibRSkyfNogQvlkvrraUZGBtLT06EoiiaTfubMGfh8PqSnpxvOPzZjFKSFUu4ol9Xl5OQgJydHXXhILLQwZcoUTJgwQdPRDZZJCydI0w/+6lVVVWH//v1qEF9TU4PPPvtMDW4DPaacpRBZTH25Y3JyshrMyZVC+vbHZrNh9OjRyMnJUVcNHjVqFKZMmRKwagbobhPk9lk+P0BbjeR0OtXbzTJpcgmcvJesVXK7YzQnTXwnxUCjXEUkFtepqKhAeXl5SI8b6FxkZu2v2WqdRtnc5ORkv+A5kECrlpqJRpAW6BwDLawj2n55/qJ+kNRqJq1XBWmh2r59O+bMmaO57ZprrsHu3bvVF8rsmG3btgHo/qDt2bPH75g5c+aox5SXl6O2tlZzTEpKCq688kr1GCOdnZ1obm7W/NPr6upSPwTyXgvAhTfRZrP5TaaXv1xmKzzqOy9yqZPcmEQjSAP8P2yB5qSFmkmTz8nKCoDBZGVlYfTo0erPwQKlYIt5ZGdnq7cFy+QJ48aNw2WXXRbya2vl9dKPMov/pqSkaM5Pvi/5QhmoQxCsFEEwC9Lsdrt6AZRHaK1sRC7Iq3npA7ZZs2ahsLDQMJMmT0yONJMm16QDF+Ymulwu9fNk1OEXjZxRJs1o5dKurq6ApSiC3EjU1tbi66+/VgdmxP1Gum1HJMR1yiioMip3BIyvd4A2SDMKMM6fP4/t27fjyJEjmtde/z02Ko/tL0Gax+NRv3PxWBW0ra0Nu3fvxpkzZ9S2UQwgOZ1O9T05f/58wEyayDyYzS0GLmTT5CBNBA4FBQWWy7IA/86WfD3UzynXrw4or3IosgUXXXQR0tLSMHDgQFx66aUYN26ceu0aNWqUej00GhiTB0dDLXcELvQ5zp07Z/o9kv9bW1uLjo4O9RoS7DFFkCleA6NyR7n6RTyO0f3m5ORg8uTJ6vVWrHQbynsnMwrS5NfYLJOmX2Ux1JLHQOWO7e3tanWPeO3kDFVXV5d6Ha2vrw97ZUMhGpk0oyAtlFJH8Xfy8VYqdSJZ4VEeFDIj+ihG769cjioEWtQH8J+TZmVPWCO9Kkirra1VL75CQUEBPB6POkptdowo+6mvr4fX6w14jPhvoGOMrFixAtnZ2eq/oUOH+h0jGqf09HTNXhGAtuOi/0DKF34r5Y56Pp8vqpk0o2MCZdJcLhdyc3ORk5MTciYtlHMKpKioCGPGjMHo0aNDmkMGGE8KFUvlWp2EHgr58ULNpMn19vogLZxMmhj5DMas3FGUNOmFkv7Pzc3FqFGjMG7cOL/fiXMzK0ESC/DIgY/RPKhg5Jp0oHuOSV5eHkaNGqWeg76hl9+LYEGavsZdvj8jckMu7ls8rny9MFpAIdY8Ho9m83g9ucE3mm+g70zIHUqj65zcuQy0XHh/zqTJGYF4BGmnT59GS0sLjhw5onZ85U6TXIoXrNyxtbUViqLA6XQaBjMicBMd3I6ODvUxQyl1BPzbS/2KhfrPjXxNkedTi2tORkYGvvGNb+Diiy/26zQmJydj3LhxyMnJMTxPeS5MOEFaamqqGhiL1e5k4tojXjf9VgbBrtX6DJYcpMlZK3FboCAt2owG8YzmZevXBRDfG/F7UZ1hdZVBs3JHn8+HgwcPwuPxICsrCyUlJerfyAGSXJEQTrmlYLbysdV974y+k/n5+XA6neriYFbpSyVDCdJOnjyJbdu2WR589Hg8avsYbiZN9NvlDHywaqs+Ue4YDn2jKz508u1Gx+hvi9YxssWLF6OpqUn9ZzRhXlyU9HtFANoSILkTqe+wBAvSjDI78ghfoIVDBCsTG/Ujfl6vV9OZks89KSkJkyZNwuTJky2PuOi/BJEGaUB3oGblghLsCwh0L1oyYsQIDB48OOLz0gs3SBNz0eT92+QsTShBmugoyJOxA9FPzDbKpIlzkll5fjabDYMHDw5YpiQ/vj5I02/GKl9ArY7K6TNpKSkpuOSSS9RgHfDv8MsBY1tbm99jyaPz8opX4rZA3xWjhtxoJalQ92WJBv1CH/rH189x0QfNgYLnQJm5zs7OgIscDBw4EMnJyQHfs75KzgjEI0iTV2XUr3gIaBc/ChSkud1uTafJ6DtitjdmVlaWpfJ0mdEcYbl91L+WRnv8WZlzIwwYMACTJ082rdAYOXIkhgwZEtLiJzIx+KxfWMXn82mCM7nsVJx7sGAqOTnZb2XGrKwsFBcXaxbxEM/NbPuXWJDbB6O+kFEmra2tDR6PB3a7XQ2aW1tbcfz4cWzdutXSvo1m5Y5NTU1oaWlBUlISxo8fr/lMydckuU/V0NCAtrY2VFZWhlx2aRZUhjsnDehePXPWrFkhlQ/r7x8IrdxRZNr104bMiD63y+UKOG1DDtL07ZUI1M3m9xv9HK1yx9CLmuOosLDQL5NVV1eHpKQktdE1O0ZcmMTclUDHiBro2tpada6J/hgj+kmyRuQgTbyJwTJp+i+jWbmj+PsBAwb4TQyXg7RAC4cIoWTScnNzUVdXB5/P57evRrgpXiD6mbRIHtvoi5WcnKxZhSqajBqPQMR8G7GylpxJA7pXumpsbNR0ioJdJO12O8aPH2/5nPXL4MuL0Ih9Vbq6ujBkyBC1xMPq87NCvijqt7KQRzP1c/68Xi/OnTuH2tpaNDc3IzMzExMmTNB0quQscaDMqTwaK2fRgO4OSXt7u+bvjTJpRts+BHosuSE3CtLECGy4nbpw6K9Rbrdb83nTB1JJSUmaVS3F+Yu5KzKjMi1xf3IAYPSZLigo8LuG95cgTc6kicGDnrym6gcX09PTNZ9xo/2z9HOwkpKSNAuAmC1lrV8eXNyf1dJ0mb69FIMnDofDL2sPGJc6W5nTa9XAgQNDWqTB6O+PHTumbgAtXkP5OytvE5SSkoIRI0bg9OnTmsENM/n5+epnTQSn8lQDwH+grqeDNCFYJk3eU1VcP+Wtd5qamoJW0hhN1/B6L+yvlZGR4fd6iGulvAIm0N0HPXXqFLq6uuB0OjX902Dka6rD4QjaN9OvHmxl0+lQBJtuoadvD60GqVbmowEX5gSKwQrxvsolp2b9J6PzkwNyuSy6T5c7zpgxA1u2bNHc9sEHH2DatGnqB8fsmJkzZwLofmGnTp3qd8yWLVvUY0pLS1FYWKg5pqurCx9//LF6TLhEKlU/8R/QRtriDTdqBDo7Ow1HReQvfXZ2NpKTk9ULsJxdiFa5ozj/rKws00ZInmwdqkQP0mIp1EwaoC1PkDNpADBkyBBMnDjRb2NRo/8Pl1kJkDj/iy66CMXFxSguLg7r+Vl9fKPVufQXSPlcvV4vDh06hPr6enR1daGhocEvkyNGTEVm0oz8vPSjoIC25FFRFMM5aVb3KpQ3E9Vn0sT1QZyPfl5FrOk75Ppsg74TblbuaJT1CJRJA0Kb6yifg7y4Ul/j9Xr9Vibu6Wya+EyIzo9+hd1gmTTgwjVOfJ7NRvD1mxNbWULejNlqu0ZlkOLxBCsb9fY0p9OpBltyNk2fFRKBcFpaGgoKCnDJJZdY6qAPHDhQDQTMnrc+WI5XJs0sewVAXYwJ6B6INgpmrXyHzOakBVoxU7xu4jsrzrOtrU19TLPBejNyW2Ol/ZXbF8B8gYxwhZpJE/MRxWcn2kGazWZT32O55FEMOOgHlaxm0gDt+92ryh1bWlrwxRdf4IsvvgDQvWDHF198oS6Fv3jxYvzwhz9Uj3/ooYdQUVGBRYsW4auvvsLatWvx2muv4ac//al6zKOPPooPPvgATz31FA4fPoynnnoKH374IRYuXKges2jRIrz66qtYu3YtvvrqK/zkJz9BZWUlHnroIQDdb9bChQvx5JNP4q233sKBAwdw9913Iy0tDbfffnvYz1fe5DFQkKZfllrcnpKSon5ZjUaT5QZh8uTJmD59utrJCZZJCycgKi0txUUXXYTCwkLTi7EYBY9GkBbK3hKR0tdM94YgTZ6zIS4ygUaOQ71IBiNnnuSOirh90KBBGD16NOx2u+liJpHQZ6aF9vZ29fsiHkvOpnV0dPh9N8yCtGCjpmJ1LnEfwYI0+dytlNjK5MybfgVL/aqqPZ0lMsqkGf2sD9L05y8HafLCEfrsmnz/4jW2+pnWd+j7IrGnmDxHqCeDNLnKYsKECRg1apRfGbXRZ1X/HRDnLt5/s0yafp5jJB1Ms2BMf12WyzGFWGTSokFk4uR5PWZBWqjZR5fLhYkTJ/oNCuqPkfV0kGaU3dKXO544cQIdHR1ISUlBcXGx4bXfynfIbFXhQAMH4touAgyXy+UXZIS6QqvR3DjxsxE5kyZvDxWvTNrAgQPxzW9+U13rwcq1Wp5TaGX1SaN5aeLv9YNK8jkbrXauD9LCnZMW13LH3bt3Y/bs2erPixYtAgDcddddeP3111FTU6PZu6y0tBTvvvsufvKTn+CFF15AcXExnnvuOdxyyy3qMTNnzsSbb76JJUuWYOnSpRg5ciQ2bdqE6dOnq8csWLAADQ0NWL58OWpqajBhwgS8++67mombjz/+ONrb2/Hwww+jsbER06dPxwcffBBRyZAYFUlPT4fD4VC/BGIPM6MVz/STXB0OB9ra2tDe3u538dTXv8u182Z12IKYZG91nzSg++I9ZMgQ9TEFUVImf4l6WyZNPH4kI7CRCLXcEbhwUW1ubjac86EXiyBNlAvIn1mjuRipqanq9yFar634zIrvgfgedXZ2Gu7JJsqVREAh5oKKEhP5+2W0upMZUZIVLJMmjwSGE6QZvWf6Scrynjs9KVgmTT+KbCWTlpWVhY6ODrV0RH7+8v2bLettRgzIiDk4iZT1iBbRGc/OzlYzrz0ZpInvgRigMerwiu+AOC/93C9A+3mQR76NyN/DaAZp4mf97SkpKWhtbU34TBpwYW6NKAUX/QrgQomxeB7hLIwVbJn8eGfSBLNyx/Pnz6tZtNGjR6vXp7S0NE0wG0qQ5nA4NNfnQJk0fVbP5XKhqKgI5eXlyMzMxOnTp/0e+/Tp02hqasJFF11k2H+TK6lCyaSJaq5oB2mhLhwCaLOAVjJpTU1N8Hg8SEpKstR3F0FaY2Mj3G43nE6naZBmtMqlTO4PRTL1J65B2lVXXRVwQvvrr7/ud9uVV16Jzz//POD9fu9738P3vve9gMc8/PDDePjhh01/b7PZsGzZMixbtizg/YRCLnUEtIGR2+02LHcEtCtEOZ1OtLW1oaamBtnZ2ZqlgI0mdupXEwKMAzDRUZEbyFDIjymeV6RBWiwWDgn18c02Kow1OeNjdcK56MCIEdCMjIygS7gnJydDUZSodSLERUl8Fs2CfbmRjtb7qs+kORzd+7N1dnaqk4yNGicRUMirj4WbSRP3IwI9OVhubm42DNLEHJdQP+9GDYM+E6XfNLSniMBXdLrNyh3lOWmAf5Amf07S0tLUYKqzs1Pz/I2yF6F8Z8X9dnV1WQrEexvx+R8wYIC6EnJPBmly+XWg61laWlrAuS9ykCZvYG9EfA/lapRwOphm5Y7628UgmdHqjomWSRPz5zs7O3H+/Hnk5OSo17jc3FzNogyxWL1YH5DHK0iTPz9yJk2sWTBw4EDNPDzxOg0YMMBvs3Qj+sFxeXsaK5k0ISUlRZ2L2NjYiNOnT2sGAN1uN44cOQKfz4cBAwYYzh00y6SZXSdFQOTxeDT7w0WrrxDuILF+QY5AxLXO6hYBubm5sNlsOH/+PHbu3Ilhw4ap/fZAmTSz8zcK0npVuWN/Iy8aAmiX05U3sBXLUosPoxykiYmiZ86cweeff67ZD0qQPzBGm26aNWxGf2eV/gMrXwSCrVJnJhEyaeJxw92bJVziixzKY4uOgGgIrNRgT5s2DZdddlnUSkn1QY6VIC2WmTT9pvBGjZMcUJgtIhFKJs1oQQ8xstze3u6X7RLnrc8cBHtd9CW5wIVOgbxPEWCeSauursahQ4eiOhdLURS1Uy4+g3JAIA8YGa3uKJ+/vtxRXyIuHs+osxRKwy9ep1DnefQGcvlzXl6e4WsYrrKyMr9FqszOATCeYyiTA4JgQVqwFeXkTnckFRFmmTR9yZjRtSNRM2nAhe9mU1MTFEVRgzR9Bz8WQRpw4b00ypjGglFfyCiT5vV61TJD/ZYCI0eOxLRp09QKomDfIX21hFG5Y6A5aYL8udcvjQ90L3Inrplm+7jJwaLV6RTiPMT1Q7/oViQiDdKCVYcoiqIGaVYWvAG6P+uTJk1CWloa3G43vv76a78ycUHOSAYKdIHIyh0ZpPUgfZAGaCdn6hsSfWYgKSkJAwcOxKRJk+B0OtHa2qpu1imPSMmdevlDEiiTJv5W/E2oQYn+CxeNhSH0QWNPB0r6UqyeJF6zUB5bP1prpQZbZNOiRb94h9l731OZNH3ZTbBMmj6jI/5f3KfVTBoAv0yaw+FQV3gEjFf9MsqCB2L03smdxECZtNOnT+PYsWOoq6sLeWGRQBuKijljNptNvdbpN7kHtA2+2Wq2+iDNqIMiX9tkoXx3Am1k2tuJrEh2dra6yioQeZDW2dmJyspKHD9+XPOe+Xw+HD58WLMoRTyCNLl8LZJSLbMBR7kdlTu+4vOt368y0YjMQHNzM9xut/oeyh1au90es3MXbUBPZNEA4zlpZoNiRn014EJ1RrDvUGNjo7onr3gced6SPLBkdJ0yWzAH8C9DVBQF1dXV6u/NtgUIdeEQ+XHlEvJo9cPE+5+amhrSfVotd2xtbUVHRwfsdnvQ8ltZTk4Opk2bhlGjRqmDsmarqRptbSSTA8p+sQR/b6ZfNEQwy6QB3W9mV1eXJpMGdKdkBwwYgNraWr/lUc1KpoLtkyY/bjijWvpyR/0IUjjE5G+Px9PjWTTgwnOKR5CmD9St0HeArARp0ZZImTSHw4G0tDSkpqYaLmsvXls5kyYCD/1eOUB3g2XlXOUFPeROWnp6Opqbm9Hc3Iz09HTTIE10aK0+lj6wMArS9KOO58+fx5EjR9SfQ+mwd3Z2YseOHRgwYAAuvvhiv9/LHXKjzozcOdFvAi4HaWJbCcHs/szOPZTOX6CNTHs7Uf4sOirRCtLkv29ra1M7tGI7i9raWnV7HKtBmnxdMHr/5M9DsKy2USYt0jlpZgsuyJk0uWRXtLmJnEmTy7BTU1ORkpKiztdNS0uL2eCovMl1T9Dv4wlo30O5vyF+Z7Zoinxd9fl8fisb79u3DwAwceJEzePIjycPDprdvyB/b8Rca7EvbVtbm2YOsNlAU6gLh8jnEepiTFa4XC5MmjQp5O+G1UyayKLl5uaG3H+02+0YPHgwiouL1e0OjCQnJ6O9vd20rU5JSUFbW5tme5mQzyWkoylsYvKhfp6QUZCmT6HqgzT938n/1X/g5RR/KJm0UMUikybfbzyCtHhm0rKzs5GVlRXSPijyZplJSUlh7QkUKatBmhjRN5qLFS45awxceN/kUTSjz6X83THKpIkgzerrKUos6+vrNSuzivOoq6vTnGckmTSjxkM8H7kcQx40aW9vx/79+zXZp1BWf2xpaYHP5/Nb0l2+f6D79QoUpBmtnqovRUpOTobL5VKzaPq9ewKdeygdCtHhb21t7fGNv2PJ6/Wqi4aIDIl+ae1w6YM0o9u/+uordaErIPJMmnzdCLYQgPh7eTXQSDNp+qyafLt+dUB5bmQ82q9gMjIyYLfb4Xa71WuSyGqI9yFWpY7Ahe9cT2UZg63uCGjbB7ON0sVx4nf668/p06ehKAoURVEHfcTjyJnYQAMH+lJ2/WskVxTU1NQAuPD91l/DxEB/qAuHyI8jrvXRHmyQtzawSm7nA12rxeCUvmQ1FGKgMFifOVAQB3S/B71ydcf+RDSU8o7lgPZNNJtMbxSk6evfjRYNkf8m2D5p8t9GI0iTvzyRBDmRBI6REvty6CeM9gSn04lLL700pL+x2WxwuVxoa2tDVlZWj5eHAtbLHW02GyZNmhTV1fTMlsDNy8tTy0ECjSDKC4fIDa8cdFiRk5MDh8OheQ2SkpJQUFCAEydOoLGxUdNoGn2vAeuZNPlv5ayBUQlWZ2cnvvzyS3WBjMzMTE1G3gp5HyEjcvbQKEgzWsTBKJMmOkKXXXaZuoCOHGC0tLQgJSVFswKaPKIcynVHZAzEtgnBgolE5/F4cPz4cTQ1NcHn86mZXCB6mTSjbLN4bPn/Dx8+rL4vwb5DYmERRVFMO6+TJk2Cx+MJet3QzzkVq62FSv6bQFk1/XdN3lsxEdntdmRmZqKpqUnt6Iu2Li0tDefPn4/pIjr5+fkYPXq0OqgVa8HKHYELi80A/qWOMnmhta6uLk0QJRYdAWC48JjdbtdcO82uU/Lq0vogTSxq1tXVpSYASkpKcPbsWfh8PnR0dCA1NRWKomD37t3w+XzqgK/VhUOA7razsrIyooV3ok0+X6/Xa3r+Vt7HSKWnp6O+vt50MEMOpuUkTCirLTOT1kPEnI9AQZr+iyC+SEYdXvF34ndmqyRZXd3R6HFDEatMWiQlmJHKyMjAN7/5TYwYMaLHHztc4qIQj1JHwHomDei+wOm/D5EwGxXNycnRZBjNjpczaZEEaXa7XdPxEO9Jamqq2gk6ffp0VOakie+Hy+VSz13OpOlXwiorK1Mb8EsuuSSsfdTEsWaLjcjXMXkwSV9KKr8XRkGaXCIk3j/xWjY0NGD37t3Yv3+/en/61f5C6VDY7Xb1tegLJY8NDQ2ora1VP7vFxcXqoI3cdkSSNTQL0sTt+fn5sNvtaG5uVj+TwQIWebNas/cvPT3d0sCZ+HtxbuHOpwm33FG0+fEY5LNKbieKi4vVPahKSkowdOjQkCo5QmW321FcXNxjFR9G8/ODZdICMRrsaGlp0Vw/jBasMhocDHT/ycnJhts9ABeWmLfZbMjIyNBsCC/+K/qWclbPav8sJycH48ePV783iRCkydlIs2BH3kIiludcUlKCqVOnoqCgwPD34j2Ur48sd0xAnZ2damNpFqTJpUNmK8YYjbhbLXcMtk8acKETGk75gTzKrS/viEaQFq9ykUQsUwmkuLgY2dnZpheNWLOaSYvlYwtyJ1+UgsgjXkaNpb6jBVwI0kIp/ZEn38vfJ/G+WAnSrGSCxH2npaUZLpwi7kN8/8VzGTFiBFJSUvyuI1bImTSjTr48Yiiej9xoGpX5yPMMzEqRAGjuD+ieTyNGTJOTkzWvdagZ/L60eIh4P3NzczFjxgzNHqDidTdbFTPUxwCMg7T09HR1FTzAv3NoRgR3kQY3+gGXcDtrVssd5QEJt9ttur9SIikqKkJOTg7GjBmD0aNHq88pLS0NI0eOTMi5dOGyUu4of0aCZWCMgjQ5iwZc+F4E+gwFq2wy6o+J28SiQOnp6bDb7Zqybfm/wIU+Zihz0gBg0KBBuOSSSzBgwICYBu2hCLZ4iNw2xXK6ishGmw3+iPdJ3oMw1IQDyx17gLhYZ2Zm+n1gRGmUvNmn0ag/ELjcMZSFQ8w+JLm5uZgwYULYWZiUlBQ19R/pHmlCvIO03kbspRIvoWTSok3/GZF/Hjt2LEaMGBFwVUmjhUPk1RhDGfE1C9IGDhyIY8eOobW1VV3mWX6NQs2kDRw4EG1tbRg4cCCOHz+uOXd9Y2y0yl04pW/ysT6fz+885UyZmP8gVsh0Op1Byx0DTbBOT09Heno6kpKS1I2DxfVVzFcSE7lDzZpkZGTg9OnTfSKTJl5DsRCEzG63a/aFC7cjrs+kiRU95fe3oKAA1dXV8Hq9QfdIE0aMGIHhw4dHfO3QB2XhBmlWyx1FSWlra6vmc5TIQVpaWhomT54c79PoEVbKHeUFu4INyumrmQCoq22LfdSM5iGZlbeb3b9R9ln8TgxQiQEmfZAmX8vk66o4H6urZufm5vZYWaoVYjqBWZAm79Maz76jfjXicNolZtJ6gFmpI9D9JZVHJ4xGl41+1pesBAvS5AuJWeNns9mQn58fdqM9atQojBgxQg08zZ5HKMQFqi+N6PVl8QzSzBpcwHilLiuZNDloCGVuSXJysjoSK3eSnU6n2tiJic2RzElzOBwYMWIEMjMzDTNp8jL3RnvzGHU0gpGPNSp51Adh+kAw0MIh+vM3er6XXXYZpkyZonZM5CBNvNbhdMhFB6cvBGnBskfRmJcmfw7kwQw5SHc6nWoJXSiZ6GhcN/Tfn3BH1K1m0oALS3VXVFQAMA6SKT6sVBWJ70ugRUP0x8rXNdEZ11eymH1uAn0mxfXNaNBc/5kSx+rLHY2qAuTBu946+G22wqN4XxNlDp1ZfzwUzKT1gKamJjgcDtP5N0OGDEF1dTUURTGcpyEYdeZEGZHZfixGCyHEquOclZWlXlCiNSetoKAAiqJEtEIP9Rx9kNaTjUCgQY1gx4sRN7lESu54imWpQzF8+HCUlZVh0KBBmttzcnJw9uzZqJQ7Gj0feRRR3C4CNH3jJXc0RCYkGPla4vV6/RpC/Sq1Zll//WR6sWBEoCBNlpGRgXPnzmk2xhbXv3A65KKj097eDq/X22s7MIC1IK21tTVqQRrQ3TEUm8DKj11SUgKXyxXV+adWxCKTFmhOGtAdpJ04cUJ9DRI5i9bfWCl3FANrVvbV0g90yFu16AckzD43gT6TBQUFyMnJCVjuKBhl0uTVJWV2ux0ZGRkYMGBA3OauR8qo3LGsrAwnT57E1KlTI9q8Ppr0QVo458MgrQd0dHQEnOzscrkwaNAgnD59OuBIur5TI8qI2tvbTUf79QsHhLvCVaiilUlzOBwYPHhwNE6JeoD+s5UomTQj+uBI7JMjeL3esEodhQEDBmjKHgX9dSCShUNkRvvEAf77LQL+WS4x2GOlI6sP0sx+L15Ls86M3JERr73b7VZLeII9f/3Kc8nJyZqALVRiY/euri60trb22g4MEHwkORqZNHkxkI6ODvV91T+2zWZDYWFh2I8TLv33Pxpz0oKVPqalpSEtLU19LRikJQ79AKJ8m5Cfn4+ZM2da+qzov0Mia5Wenu7XDwun3FGs1hzosQURpIktFMQWKUbbbIiFmMQebr2Rvl8LdJea+nw+NDc3q+9rvDNpcmk5EF6QxnLHHpKUlBTwDSotLUV2djaKi4s1fyMzS82LCaFOp9PvmHh1mqOVSaPexWzxjp4QSSZNnvsoZ59D3SPNiszMTNPR+aSkJHVltVAbGH0mTV/SIm/oLTJmcs2+1ZLHUMsdxahvR0cHvF6vGoTpR5tFx0OM/gZr0PRBmtPpxMCBA5Gbmxv2wI54n+Wl/HujYJ0Co/0AjSiKYrqKpz5bJDqpiTKKrV+UoScyaTabTTMnuKezh2ROzqQJZosTWako0JeKy4NPgRZPs1ruaOWxAe3KvjabTf3Mff31137H6s+lt9KXO8oDqkYrpceTnPUM57VnkNZDgs2pcrlcmDJliqY0KlinU3wAxQIERqMuwYK2WIlWJo16l0TKpIUSpOm3kACgZqmB6AZpdrtdk6XRn2dpaSlGjhwZ8v2K+9EvECQacBF46DsGoWRVfD6fpmOvz6TJ8z3E44hR3vPnz6sdebHIh0x09sPNpIlyx0mTJhlmMK3QT/SuqqrC8ePHe90G18HKHfWfFTOHDh3C9u3b/QJ4uWRMdArb2to0tydCBynUOZ5GQgnSgO7V8MRWAom6R1p/ZNQ2RbKXqH5OmpxJA7T9sXDKHQOx2+3q9VO/VYAY6JcXrAu0YFZvpC93lFeXNdpzOJ4imcIAMEjrMeF8GYNl0vTL9ydSkMZMWv8UzyBN/zkLpdzRqDPndrtjEqQB2jKoaL1GZoM64r8i+NFfi0JZPESfedEHaeI+5AVLxDyPlpYWv46MTJ91sBJky+9LNIICcQ3t6OiAz+dT5zkYlQ0lsmAjyUZZBT2fz4f6+nq43W7NFjHAhY6pzWZTBxza2to0n49E6CDJ5xDrJfiF9PR0TJkyBZdccklEQQBFV7TbJv3ibfoybrPtQPSVE5E+vj5IGzBggCYwSE9P73NBmj6TZhakJcJAUSTbwgAM0npMLII0/WadRkFavMrPmEnrn+JZ7thbMmmANkiL1mtkFqTpM2lmCypYyaTpAzl9kCYvGiI6qGlpabDb7fB6vaivrwdgHKQFmqtnRnRQ9PMJwyVn0jo6OtQMmtlSz4lIzmaZvSZWgjSx+AAAvyBV7gSJdkcuOQpnqelYkD/r4XbYbDabpjxYCNTGZWVl9dgmzWRNtNsm+fPU3t6ufkdEkBbLTBpwYVBLXzVgt9s1K4bLm1yL3/d2+jlp8iqWLHeksISzhHywckf9fRoFafqFQljuSLEU73JHuWMYaSZNXpAnFkGaONdYB2lWM2lWgjT9MfpOvn5lR6D7GiSCKXnzVb2UlJSQR3zF/TidzqgEBXImTQQcQPCywEQiB9KRBGly9swsSEtOTobDcWEjZzGfMBE6R0B0MmmA/3cJMA/YKDHprw+Rvmc2m029doptlpKTk/3m4uofKxpz0gBg5MiR+OY3v2m46bYcpKWnp2uCtL7wWdWXO+qDNJY7UsgizaQZ1U/r79Os/t3sAhFLcrlTX7gokDXxzKTJjy+PfpsJlklrbGwEEN7y+8E4HA7k5eXB4Qi+aWoo9ynTz0nTzxUTQil3DJZJM2scRUdCZGaMgjQg9AyjCP6itY+inEmTg7TelEmTR5HNvgORBmkiWBffFdH2iL9JhM4REJ05aYB2OwuBA5G9SywGrMX1oqamBoB2MSSzIC1ambRA1QMulwvjxo3DyJEj+0W5oxykdXZ29qlyx8S4kvYD4XxYxOpUPp/P8Iulv0+zTTPjkUkDuvcaaW5ujlonlBJfPDNpwIU9wRwOR9AgzWzlN3EhFaOjYvPpaJswYQK8Xm/UOrTByh2Fnih31D+GfrTXLEjLyclBbW2t5vwDGTBgAEpKSqL2Holgw+12axr+3phJC/S5CjVI03829J0gl8uF8+fP9/lMmtVyR0pMoj8FROc9Ky4uxpEjR9TvinxdkwfNYzEnLRh5Q21xXvLgeW8mZ9LkFYOB7muaGFRKhOtQJNvqAAzSeky4Hxaxx5HRl9lKuSMQv8Zk/PjxAPzLDKjvineQps8eBSIaLK/Xa5hJE2IVpEVrHpVglsU0m8sqRJJJs1LuCGiDtJSUFNPnLWfSrL6HpaWlQY+zSiyd7fV61SAd6F2ZNCujyMGCNJ/P5zc6HegxRNsjr96ZCMR5RDpHzuVyob29XZORYLlj7xPt96ywsBC1tbXqSopWMmnR2BYiVMnJyRgzZkzEK1omCnlOmliTwel0qvNxxaBSImT0mUnrJcItxwlUMqgf/Tf7AMSj3BFgcNYfxbvcMdQS22HDhqGlpUUzAqr/HsUqSIu2YOWOQiwzaWZZHLF4iM/nM82iAd2d4fT0dLS3t5tWBsSay+VCa2trr52TZmXSfLAgraWlRbPtQKA5acCFIE38TSJ0joAL5xFpZ/jiiy9GR0eH3wIM+fn5cLvdUSu3pdiKdlWRzWbD6NGjsXv3biiKorm2paSkIDk5GYqixCWTpifPU+vt5HJHecVgfZl6IgwWibJz/efAqsS4kvYDkWTSAPNNF4VA+7HEq9yR+p/elEkDgJKSEr/b5O9qenp6r+mABVs4RIhknzR5o2xRaiIzCxDE4iHByp9tNhumTJkCr9cbtwY2JSVFk0UCemcmLZJyR1G+lZmZifPnz8PtdsPn86l/ZzYnTUiEzhFw4bMd6fkkJSX5LXUOdJcsU+8Ri+xneno6xo8fj5aWFr+tVaZNm2b6uHa7nRnYMMnljuJanZaWBkVRNEFaIgwW2Ww2pKeno7W1Nax9E+P/DPqJWARp8n0GevPjlUmj/ifeQVo0FquRL+y9JYsGhD8nTXRkvV6vpiMuE8GXCABEtsnn80FRFJw9exaZmZmm5Y5A9xyJlpYWDBw4MODzCFQV0BOMrqW9KZMWjXJHEaTl5eWp73NnZ6da7mdW7igkQucI6P7+FhcXB/3MUf8QqxLVgQMHGn7GjAb4xOMmykBGbySXO8qZNLnSw+FwJEx/95JLLoHb7Q6rOiQxrqT9QKQbaRpdUGw2G5xOJ9xut+VMGkduKJbiXe5otApbqOTval8I0oLNSROLrCiKgq6uLr9ricfjwY4dO/wGhVpbW+H1enH27Fns378f+fn5pitIAsDgwYMxePDg8J9gDzFqSHtTJi3SckePx6NulZCZmYmUlBR1Hyh9kCY6ofrXLFE6oA6HA6NHj473aVCCSISqoszMTBQXF/vtC0nWyUGanPWXN7VOlGsQ0H2dDLciJzHCzD4uKSkp7AtCoEwaYD6SKWMmjXpKomTSIhnJFxdTm83WqxrScOek2Ww2tZMtN3JCU1MT3G432tra1N+L4+WVtZqamhJqE9Fw9ZVMWrjljmVlZejq6kJqairy8vIMy2H15Y767Gdvfv+p70qEAWsxj01efZFCI19r3G63Wk4f6Z5kiYg99h4QSYMVLEgTI5tG9fICgzTqKfLny8peZbF6/EgaYLES1sUXX9yrLvRWVnfU7xUk5OTkALiwN5xMXopdEIGMz+dTgwIRyAG9u4Hs7Zm0SModz507h1OnTgGAuhqcvHec+BvxepiV3Pfm95/6rkQI0ihy+lUq09PTYbfbA67S3Fuxx94DIvmwDBo0CJmZmRg0aJDh78eMGYNJkyYFHPFPhBQ/9Q/6z1pPB2niuxbpYh9FRUXIz8+Pxin1GP0eOEZZRbMNjvPy8gBALXOTBQrSvF6vZh5AoDlpvYUcbIjPU2/KpEVS7lhZWQmg+/MvAnd9kCYm5jscDs37bPS6ESUS9oX6DvnaI7Z46YtBWu9tSXuRSD4sWVlZmDp1qunvrdS6ctNN6inxbgSHDh2K5OTkPrXccCjsdrua5RDBmMie+Xw+02uRmHvX2tqKjo4OzZLq+pX+7Ha7ej9er1cNCmS9uYGUM2kZGRlobGzslZk0q+WOiqKonxURiMmLIJgFaWlpaZqAn0EaJTpm0voOh8OhXuuMgrTePFAo41BCD4h3g8VyR+op8W4EU1JSMGzYsLh/5+JFLnGUO9DB9otyOp3IysoCoC157OrqQldXF2w2G8aMGYOkpCRkZWWpjyOXO8p6cwNps9mQmZkJu92uvia9JZOmKEpI5Y6A9rkZZUL1QZooaZU3dga0QRo7wJSI4t0+UfTI7x8zaRSReH9Y4p3doP6Dn7X4MlvR0cqyz3l5eWhubkZDQwNyc3Nht9vVLFpaWhoyMjIwffp0OBwONZuiL3cEzOe99SaTJk2Cx+PBuXPnAPSeOWkiMwaEFqTJm8Pq/zZQJk0mgjSzklqieGP71HeIgSS73a5uIi5ft+Ld744WBmk9IN4fFmbSqKfInTOOVPa8YBtYB8pw5eXl4cSJE6ivr0d9fT0cDoc6V01klMS1TFxHjModk5KSen0nXaxWGGw/sUQi9jMDggfKYr6ooijq38gLgsifE3l1R0VRTDNpIvsYaBEronji1I++Q7x/GRkZ6rVOlOK73e5eXc0h6xvPIsElUpDGCxPFkjz/iQMCPU98v81Wegx0LRJ7YomMidfrxZkzZ9TfGd2fUbljvK930STvx5PI2trasGvXLjU4tpLNEvMXRZAmB9tGQZoopTTLpKWkpGDGjBlsYyhhsdyx7xDvn75tSklJgdvtjnjxsETBIK0HxLvTwhQ/9SQGafETLJMW6Fpks9lw6aWXor29HS6XC3v37lUDNrMgDbjQuRcLi/SVEUwg8H5iiUTsVWel1FEwC9L08xntdjtSU1PR3t6OxsZGdY80fSbN6uMSxQv7Qn1HXl4eGhsbNYscAcCIESNw9uxZdXXa3q7vtKYJLN4NF8sdqSdFY68yCo9ZkFZcXAyPxxN0W4GUlBR1DtKECROwd+9eOBwOteZfMLqO5Obm9rkgrbdk0sT5JScnw+FwmG7ZItMHoIGW7s/NzUV7eztOnjypPk5fep+pf2Amre8oKipCYWGhX8VAXl6eWqbfF/Aq2wPiHaRx9Ih6klnJHcWe2WsfTsOVmZmJyy67zHB+k1zWKh530KBBOH36tN/IZm/WWzJpIsDKyMjAJZdcYulvzII0o+BrwIABOHXqlLqQjFEWjSjRsS/Ut/T2uc9WMEjrAfEO0jgnjXoSM2nxE+3XPlBn3OFwqB18p9OJjIwMzJgxIyqPmyh6WyYtlPddH6QF2l8tJydHE5Tr56MR9QbMpFFvw6GEHhDvERuWO1JPkldaop4lOtg90QGR3994D0TFin7T50QVjSAtULmjw+HQzPFgJo16IwZp1NuwF9UPMMVPPYlBWvwMGjQIeXl5KCwsjPljyZ2cvjo/STxHRVF6RZAWyvsQSrkj0F3yKDCTRr2R+MzbbLZ+USpHvV/fbFlJQ963iKNHFGssd4yftLQ0y3OSIiW/v309kwYgoVcsjXW5IwDNnEZm0qg3YttEvQ2DtH7A4XBg3LhxQTc4JYoGZtL6h/5Q7ihG3BVFgdfrTdiMobx8vlWhZtJSU1MxePBguN1uZtKoV2KQRr1NYrY4FHVWlmQmigazZeCpb+kP5Y5iYEveTywRxXpOmjBq1KhwT5Eo7sT2IuK/RImub7asRBQ3Q4YMgcPh6FNLsZO//lDuCHQ/T6/Xm9ArPEYzSOurATdRWloaJk2axHJd6jXiXo+0evVqlJaWwuVyYerUqfjkk08CHv/CCy9g3LhxSE1NxZgxY7B+/XrN791uN5YvX46RI0fC5XJh0qRJeO+99zTHnD9/HgsXLkRJSQlSU1Mxc+ZM7Nq1S3PM3XffrZa6iH+XX355dJ40UR+WlZWFMWPGIDk5Od6nQjHUH8odgd6xV1o0Fg4JNieNqC/Izc2Fy+WK92kQWRLXq/GmTZuwcOFCrF69GrNmzcJLL72EuXPn4tChQxg2bJjf8WvWrMHixYvxyiuv4LLLLsPOnTvxwAMPIDc3FzfccAMAYMmSJdi4cSNeeeUVjB07Fu+//z5uuukmbNu2DVOmTAEA3H///Thw4AA2bNiA4uJibNy4Ed/97ndx6NAhDB48WH28a6+9FuvWrVN/ZqeTiKhbfyh3BHrHXmk9MSeNiIh6VlwzaatWrcJ9992H+++/H+PGjcMzzzyDoUOHYs2aNYbHb9iwAQ8++CAWLFiAESNG4LbbbsN9992Hp556SnPML37xC8ybNw8jRozAj370I1xzzTVYuXIlAKC9vR2bN2/Gb3/7W3zrW9/CRRddhGXLlqG0tNTvcVNSUlBYWKj+k1e3IiLqz/pLuWNvyqTFek4aERH1nLgFaV1dXdizZw/mzJmjuX3OnDnYtm2b4d90dnb6palTU1Oxc+dOtVTD7JitW7cC6G6IvF5vwGOEf/zjHxg0aBBGjx6NBx54AHV1dQGfU2dnJ5qbmzX/iIj6ImbSEkckQZpYFCWckkkiIoqduAVp9fX18Hq9KCgo0NxeUFCA2tpaw7+55ppr8Oqrr2LPnj1QFAW7d+/G2rVr4Xa7UV9frx6zatUqHDt2DD6fD1u2bME777yDmpoaAEBmZiZmzJiBX/3qVzh16hS8Xi82btyIHTt2qMcAwNy5c/H73/8ef//737Fy5Urs2rUL3/72t9HZ2Wn6nFasWIHs7Gz139ChQyN9mYiIEhLnpCUGsT0AEFqAJQI6n8+nZtFCvQ8iIoqduC8cot/1XVEU053gly5dirlz5+Lyyy+H0+nE/PnzcffddwO40OA8++yzGDVqFMaOHYvk5GT8+Mc/xj333KMZYdywYQMURcHgwYORkpKC5557DrfffrvmmAULFuC6667DhAkTcMMNN+Cvf/0rjh49ir/85S+mz2Xx4sVoampS/1VVVYX7shARJTRm0hKDoihQFAVA+OWO8pw2s/aXiIh6VtyCtPz8fDgcDr+sWV1dnV92TUhNTcXatWvR1taGEydOoLKyEsOHD0dmZiby8/MBAAMHDsTbb7+N1tZWVFRU4PDhw8jIyEBpaal6PyNHjsTHH3+MlpYWVFVVqeWS8jF6RUVFKCkpwbFjx0yPSUlJQVZWluYfEVFfJAKCpKSkPt2xT/RMmpwFizRI68sZUSKi3iZuQVpycjKmTp2KLVu2aG7fsmULZs6cGfBvnU6nuhfTm2++ieuvv15TegMALpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvGx4jNDQ0oKqqCkVFRSE8SyKivklcc/t6xz7RM2nivOx2e0jBslGQ1pczokREvU1cr8iLFi3CnXfeiWnTpmHGjBl4+eWXUVlZiYceeghAd/lgdXW1uhfa0aNHsXPnTkyfPh2NjY1YtWoVDhw4gDfeeEO9zx07dqC6uhqTJ09GdXU1li1bBp/Ph8cff1w95v3334eiKBgzZgyOHz+Oxx57DGPGjME999wDAGhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abburBV4iIKDGJxZf6+sawiZ5JC2fREED7vLhHGhFR4onrFXnBggVoaGjA8uXLUVNTgwkTJuDdd99FSUkJAKCmpgaVlZXq8V6vFytXrsSRI0fgdDoxe/ZsbNu2DcOHD1eP6ejowJIlS1BWVoaMjAzMmzcPGzZsQE5OjnpMU1MTFi9ejJMnTyIvLw+33HILfvOb36gjwg6HA/v378f69etx7tw5FBUVYfbs2di0aRMyMzN75LUhIkpkmZmZmDRpEtLT0+N9KjHVWzJpoQZYzKQRESU2myJmHFPUNTc3Izs7G01NTZyfRkTUC1VUVKC8vBxFRUUYM2ZM6HfQ2go8/bT2tsceA6IU3J49exb79u1DRkYGpk2bFtbfDRw4MLLnSEREloQSG8R9dUciIqJEleiZNHllxlAwk0ZElNgYpBEREZngnDQiIooHBmlEREQmEj2TFo0gjZk0IqLEwyCNiIjIRG/JpEWycEhnZyeA7r0+iYgoMTBIIyIiMtEfMmkM0oiIEg+DNCIiIhOJnkmLxsIhXV1dAC7sfUdERPHHII2IiMhEX8+kyT9zThoRUeJgkEZERGQi0TNpkc5JE1wuF2w2W9TOi4iIIsNhMyIiIhOJmklrbGxEUlJS2Jk0fUDG+WhERImFQRoREZEJOZOmKEpCZJs6Ozuxb98+OBwOdR5ZOEGa3W5XM4Scj0ZElFhY7khERGRCDn4SpeSxtbUViqLA4/GgpaUFQOhBmv5vGKQRESUWBmlEREQm5LlbiVLy2N7e7ndbOEGa/NxY7khElFgYpBEREZkQZYFAYgdp4azMKAdpzKQRESUWBmlEREQBJNriIcykERH1fQzSiIiIAhBZKgZpRETUUxikERERBZBImTRFUdQgLSMjQ709kiAtOTnZb980IiKKL16ViYiIAkikIK2jowOKosBut6OgoABAd7AVztYAIjDjfDQiosTDII2IiCiARArSRBbN5XIhNzcXQPiliiJIY6kjEVHi4WbWREREASRikJaamoqMjAxMmDAh4iCNmTQiosTDII2IiCiARAzS0tLSAAD5+flh35cIzuS5bURElBgYpBEREQWQiEFaampqxPc1fPhwDBgwANnZ2RHfFxERRReDNCIiogASKUhra2sDEJ0gzeFwICcnJ+L7ISKi6OPCIURERAEkSpCmKAo6OjoARCdIIyKixMUgjYiIKIBECdLcbjcURQHAFRmJiPo6BmlEREQBJEqQ5vP5AIS/LxoREfUeDNKIiIgCSJQgTTy+WDqfiIj6Ll7piYiIAki0IE2cDxER9V0M0oiIiAJIlCBNlDsySCMi6vsYpBEREQWQKEEayx2JiPoPXumJiIgCSJQgjZk0IqL+g0EaERFRACIo8ng86hL48cBMGhFR/8ErPRERUQBy5kpks+KBmTQiov6DQRoREVEAclAUz5JHru5IRNR/MEgjIiIKwGazqSWGiRCksdyRiKjv45WeiIgoiERYPITljkRE/QeDNCIioiASIUhjJo2IqP/glZ6IiCiIRAjSmEkjIuo/GKQREREFkQhBGhcOISLqPxikERERBZGUlAQgMYI0ljsSEfV9vNITEREFkQiZNJY7EhH1HwzSiIiIgkiEII2ZNCKi/iPuV/rVq1ejtLQULpcLU6dOxSeffBLw+BdeeAHjxo1DamoqxowZg/Xr12t+73a7sXz5cowcORIulwuTJk3Ce++9pznm/PnzWLhwIUpKSpCamoqZM2di165dmmMURcGyZctQXFyM1NRUXHXVVTh48GB0njQREfUqiRCkMZNGRNR/xDVI27RpExYuXIgnnngCe/fuxRVXXIG5c+eisrLS8Pg1a9Zg8eLFWLZsGQ4ePIhf/vKXeOSRR/DnP/9ZPWbJkiV46aWX8Lvf/Q6HDh3CQw89hJtuugl79+5Vj7n//vuxZcsWbNiwAfv378ecOXPw3e9+F9XV1eoxv/3tb7Fq1So8//zz2LVrFwoLC3H11Vfj/PnzsXtBiIgoISVCkMaFQ4iI+g+boihKvB58+vTpuPTSS7FmzRr1tnHjxuHGG2/EihUr/I6fOXMmZs2ahaefflq9beHChdi9eze2bt0KACguLsYTTzyBRx55RD3mxhtvREZGBjZu3Ij29nZkZmbinXfewXXXXaceM3nyZFx//fX49a9/DUVRUFxcjIULF+JnP/sZAKCzsxMFBQV46qmn8OCDD1p6fs3NzcjOzkZTUxOysrJCe3GIiChhVFRUoLy8HEVFRRgzZoz1P2xtBaQ2CwDw2GNAenrI57Bt2zZ0dXVh6tSpyMzMDPnviYgovkKJDeKWSevq6sKePXswZ84cze1z5szBtm3bDP+ms7MTLpdLc1tqaip27twJt9sd8BgRxHk8Hni93oDHlJeXo7a2VnNuKSkpuPLKK03PTTx2c3Oz5h8REfV+iZBJY7kjEVH/Ebcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTAwDIzMzEjBkz8Ktf/QqnTp2C1+vFxo0bsWPHDvUY8fihnBsArFixAtnZ2eq/oUOHhvfiEBFRQkmEII0LhxAR9R9xv9LbbDbNz4qi+N0mLF26FHPnzsXll18Op9OJ+fPn4+677wZwoQF99tlnMWrUKIwdOxbJycn48Y9/jHvuuUcz8rhhwwYoioLBgwcjJSUFzz33HG6//Xa/0clQzg0AFi9ejKamJvVfVVWV5deBiIgSV7yDNJ/PBzE7gZk0IqK+L25BWn5+PhwOh19mqq6uzi+DJaSmpmLt2rVoa2vDiRMnUFlZieHDhyMzMxP5+fkAgIEDB+Ltt99Ga2srKioqcPjwYWRkZKC0tFS9n5EjR+Ljjz9GS0sLqqqq1HJJcUxhYSEAhHRuQHdJZFZWluYfERH1fokQpOnPhYiI+q64BWnJycmYOnUqtmzZorl9y5YtmDlzZsC/dTqdGDJkCBwOB958801cf/31fuUfLpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvq8eUlpaisLBQc25dXV34+OOPg54bERH1PfEO0uTHDVTRQUREfUNSPB980aJFuPPOOzFt2jTMmDEDL7/8MiorK/HQQw8B6C4frK6uVvdCO3r0KHbu3Inp06ejsbERq1atwoEDB/DGG2+o97ljxw5UV1dj8uTJqK6uxrJly+Dz+fD444+rx7z//vtQFAVjxozB8ePH8dhjj2HMmDG45557AHQ3gAsXLsSTTz6JUaNGYdSoUXjyySeRlpaG22+/vQdfISIiSgTxDtLkRUMYpBER9X1xDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTnqMU1NTVi8eDFOnjyJvLw83HLLLfjNb34Dp9OpHvP444+jvb0dDz/8MBobGzF9+nR88MEHXPaYiKgfineQxkVDiIj6l7juk9bXcZ80IqK+obOzE9u3bwcAXHnlldazWVHaJ625uRmff/45XC4XLr/88pD+loiIEkOv2CeNiIiot5AX65AX8egpIpPGRUOIiPoHBmlERERByMFRPEoeWe5IRNS/8GpPREQUhM1mUwM1j8fT448vLxxCRER9H4M0IiIiC5KSutfaYiaNiIhijVd7IiIiC5hJIyKinsIgjYiIyIJEyKQxSCMi6h8YpBEREVkQz0wayx2JiPoXXu2JiIgsiGcmjeWORET9C4M0IiIiC0SAxIVDiIgo1ni1JyIiskBk0rhwCBERxRqDNCIiIgsSIZPGII2IqH9gkEZERGRBPDNpLHckIupfeLUnIiKyIJ6ZNJY7EhH1LwzSiIiILOAS/ERE1FNCvtq3t7ejra1N/bmiogLPPPMMPvjgg6ieGBERUSLhEvxERNRTQg7S5s+fj/Xr1wMAzp07h+nTp2PlypWYP38+1qxZE/UTJCIiSgSJkEljkEZE1D+EHKR9/vnnuOKKKwAAf/rTn1BQUICKigqsX78ezz33XNRPkIiIKBHEM5PGckciov4l5Kt9W1sbMjMzAQAffPABbr75Ztjtdlx++eWoqKiI+gkSERElgnhm0ljuSETUv4QcpF100UV4++23UVVVhffffx9z5swBANTV1SErKyvqJ0hERJQIRCbN5/NBUZQee1xFUZhJIyLqZ0K+2v/Lv/wLfvrTn2L48OGYPn06ZsyYAaA7qzZlypSonyAREVEikLNYPVnyKLJo+nMgIqK+KynUP/je976Hb37zm6ipqcGkSZPU27/zne/gpptuiurJERERJQq73Q673Q6fzwePx6Nm1mKNQRoRUf8TcgvT1NSE5ORkv6zZRRdd1GMNFhERUTw4HA74fL4ezaTJpY42m63HHpeIiOIn5HLH2267DW+++abf7X/84x9x2223ReWkiIiIEpEYjOzJxUO4/D4RUf8TcpC2Y8cOzJ492+/2q666Cjt27IjKSRERESUiESjFI5PGII2IqP8IOUjr7Ow0HEF0u91ob2+PykkRERElonhm0riyIxFR/xHyFf+yyy7Dyy+/7Hf7iy++iKlTp0blpIiIiBIRM2lERNQTQl7p4ze/+Q2++93v4ssvv8R3vvMdAMDf/vY37Nq1Cx988EHUT5CIiChRxGNDa25kTUTU/4ScSZs1axa2b9+OoUOH4o9//CP+/Oc/46KLLsK+fftwxRVXxOIciYiIEoIod2QmjYiIYimsNfMnT56M3//+99E+lz6rq6sLXV1d8T4NIiKKkKIo8Hq96OjosHZd7+qCQxfQebu6AKfT8mN2dHTA6/VCURS2JUREvVgo13BLQVpzczOysrLU/w9EHEcXrFy5Ei6XK96nQUREPczZ1YWZn36quW2bzwd3cnKczoiIiOKlo6PD8rGWgrTc3FzU1NRg0KBByMnJMdxMU1EU2Gy2Hi0BISIiIiIi6mssBWl///vfkZeXBwD46KOPYnpCfdH/+3//jxlGIqI+4PTp0zh69Chyc3MxYcKE4H/Q2gqHbun8mYsWAenplh/z66+/xqlTpzB06FAMHz48xDMmIqJE0dzcjH/7t3+zdKylIO3KK69U/7+0tBRDhw71y6YpioKqqqoQTrP/SE5ORjJLW4iIej2XywWHwwGbzWbtuu52A7oFPxzJyUAIbYLNZoPD4UBKSgrbEiKiXiyUa3jIqzuWlpbizJkzfrefPXsWpaWlod4dERFRrxGPzay5BD8RUf8TcpAm5p7ptbS0cHEMIiLq07iZNRER9QTLS/AvWrQIQHfZxdKlS5GWlqb+zuv1YseOHZg8eXLUT5CIiChRxCOTxiCNiKj/sRyk7d27F0B3Jm3//v2amsrk5GRMmjQJP/3pT6N/hkRERAnC/v8vAiJKEHsCgzQiov7HcpAmVnW855578Oyzz3K1QiIi6ndEoOTz+UzL/6NNBGl2e8gzFIiIqJcK+Yq/bt06TYDW3NyMt99+G4cPH47qiRERESUaOVDqqWwaM2lERP1PyEHarbfeiueffx4A0N7ejmnTpuHWW2/FxIkTsXnz5qifIBERUaKIR5DG1R2JiPqfkIO0//3f/8UVV1wBAHjrrbegKArOnTuH5557Dr/+9a+jfoJERESJwmazqSWOPbXCIzNpRET9T8hBWlNTE/Ly8gAA7733Hm655RakpaXhuuuuw7Fjx0I+gdWrV6O0tBQulwtTp07FJ598EvD4F154AePGjUNqairGjBmD9evXa37vdruxfPlyjBw5Ei6XC5MmTcJ7772nOcbj8WDJkiUoLS1FamoqRowYgeXLl2tGRe+++261MRb/Lr/88pCfHxER9S3yvLRYUxSFmTQion7I8sIhwtChQ7F9+3bk5eXhvffew5tvvgkAaGxsDHmftE2bNmHhwoVYvXo1Zs2ahZdeeglz587FoUOHMGzYML/j16xZg8WLF+OVV17BZZddhp07d+KBBx5Abm4ubrjhBgDAkiVLsHHjRrzyyisYO3Ys3n//fdx0003Ytm0bpkyZAgB46qmn8OKLL+KNN97AxRdfjN27d+Oee+5BdnY2Hn30UfXxrr32Wqxbt079OZRdwomIqG/qyRUe5WwdgzQiov4j5CBt4cKFuOOOO5CRkYGSkhJcddVVALrLICdOnBjSfa1atQr33Xcf7r//fgDAM888g/fffx9r1qzBihUr/I7fsGEDHnzwQSxYsAAAMGLECHz22Wd46qmn1CBtw4YNeOKJJzBv3jwAwI9+9CO8//77WLlyJTZu3AgA2L59O+bPn4/rrrsOADB8+HD853/+J3bv3q15vJSUFBQWFob0nIiIqG8TQVpPlDvKj9ETK0kSEVFiCLnc8eGHH8b27duxdu1abN26VW2sRowYEdKctK6uLuzZswdz5szR3D5nzhxs27bN8G86Ozv9snWpqanYuXMn3G53wGO2bt2q/vzNb34Tf/vb33D06FEAwJdffomtW7eqgZ3wj3/8A4MGDcLo0aPxwAMPoK6uzvLzIyKivqknyx3l+WgM0oiI+o+QM2kAMG3aNEybNk1zm8hKWVVfXw+v14uCggLN7QUFBaitrTX8m2uuuQavvvoqbrzxRlx66aXYs2cP1q5dC7fbjfr6ehQVFeGaa67BqlWr8K1vfQsjR47E3/72N7zzzjua0cif/exnaGpqwtixY+FwOOD1evGb3/wGP/jBD9Rj5s6di+9///soKSlBeXk5li5dim9/+9vYs2cPUlJSDM+vs7MTnZ2d6s/Nzc0hvSZERJT44lHuyFJHIqL+xVKQtmjRIvzqV79Ceno6Fi1aFPDYVatWhXQC+pHBQJuDLl26FLW1tbj88suhKAoKCgpw991347e//a3agD377LN44IEHMHbsWNhsNowcORL33HOPZm7Zpk2bsHHjRvzhD3/AxRdfjC+++AILFy5EcXEx7rrrLgBQSyoBYMKECZg2bRpKSkrwl7/8BTfffLPh+a1YsQK//OUvQ3r+RETUu/RkkMZFQ4iI+idLQdrevXvVcsK9e/dG5YHz8/PhcDj8smZ1dXV+2TUhNTUVa9euxUsvvYTTp0+jqKgIL7/8MjIzM5Gfnw8AGDhwIN5++210dHSgoaEBxcXF+PnPf47S0lL1fh577DH8/Oc/x2233QYAmDhxIioqKrBixQo1SNMrKipCSUlJwBUsFy9erAlim5ubMXToUGsvCBER9QoiYOrJOWkM0oiI+hdLQdpHH31k+P+RSE5OxtSpU7FlyxbcdNNN6u1btmzB/PnzA/6t0+nEkCFDAABvvvkmrr/+es0GowDgcrkwePBguN1ubN68Gbfeeqv6u7a2Nr/jHQ5HwFHRhoYGVFVVoaioyPSYlJQU01JIIiLqG1juSEREsRbywiH33nsvzp8/73d7a2sr7r333pDua9GiRXj11Vexdu1afPXVV/jJT36CyspKPPTQQwC6M1M//OEP1eOPHj2KjRs34tixY9i5cyduu+02HDhwAE8++aR6zI4dO/Bf//VfKCsrwyeffIJrr70WPp8Pjz/+uHrMDTfcgN/85jf4y1/+ghMnTuCtt97CqlWr1GCxpaUFP/3pT7F9+3acOHEC//jHP3DDDTcgPz9fE1ASEVH/wyCNiIhiLeSFQ9544w3827/9GzIzMzW3t7e3Y/369Vi7dq3l+1qwYAEaGhqwfPly1NTUYMKECXj33XdRUlICAKipqUFlZaV6vNfrxcqVK3HkyBE4nU7Mnj0b27Ztw/Dhw9VjOjo6sGTJEpSVlSEjIwPz5s3Dhg0bkJOTox7zu9/9DkuXLsXDDz+Muro6FBcX48EHH8S//Mu/AOhuDPfv34/169fj3LlzKCoqwuzZs7Fp0ya/501ERP1LPJbg11d/EBFR32ZTFEWxcmBzczMURUFubi6OHTuGgQMHqr/zer3485//jJ///Oc4depUzE62t2lubkZ2djaampqQlZUV79MhIqIoOHbsGKqrq1FSUqKZ72yotRV4+mntbY89BqSnW3qsyspKlJWVoaCgAOPGjQvzjImIKBGEEhtYzqTl5OTAZrPBZrNh9OjRfr+32Wxc2ZCIiPo8ru5IRESxZjlI++ijj6AoCr797W9j8+bNyMvLU3+XnJyMkpISFBcXx+QkiYiIEkU8yh0ZpBER9S+Wg7Qrr7wSAFBeXo6hQ4eyPp6IiPolETBx4RAiIoqVkBcOEYt6tLW1obKyEl1dXZrfX3LJJdE5MyIiogTE1R2JiCjWQg7Szpw5g3vuuQd//etfDX/fE+UfRERE8cLVHYmIKNZCvuovXLgQjY2N+Oyzz5Camor33nsPb7zxBkaNGoX//u//jsU5EhERJQyWOxIRUayFnEn7+9//jnfeeQeXXXYZ7HY7SkpKcPXVVyMrKwsrVqzAddddF4vzJCIiSggsdyQiolgLOZPW2tqKQYMGAQDy8vJw5swZAMDEiRPx+eefR/fsiIiIEgyX4CciolgLOUgbM2YMjhw5AgCYPHkyXnrpJVRXV+PFF19EUVFR1E+QiIgokYiAiUvwExFRrIRc7rhw4ULU1NQAAP71X/8V11xzDX7/+98jOTkZr7/+erTPj4iIKKGw3JGIiGIt5CDtjjvuUP9/ypQpOHHiBA4fPoxhw4YhPz8/qidHRESUaOIRpHF1RyKi/iXkq/7y5cvR1tam/pyWloZLL70U6enpWL58eVRPjoiIKNH01BL8iqIwk0ZE1E+FHKT98pe/REtLi9/tbW1t+OUvfxmVkyIiIkpUPbUEv6Iofo9JRET9Q8hBmqIosNlsfrd/+eWXyMvLi8pJERERJSqRSVMURRNIRZucqWO5IxFR/2J5Tlpubi5sNhtsNhtGjx6tCdS8Xi9aWlrw0EMPxeQkiYiIEoUcMHm9XiQlhTy92xKRqbPZbAzSiIj6GcstyzPPPANFUXDvvffil7/8JbKzs9XfJScnY/jw4ZgxY0ZMTpKIiChRyAFTLEseOR+NiKj/shyk3XXXXQCA0tJSzJo1K2Yjh0RERIlMZLZ8Pl+PBGnMohER9T+WIy3RGF155ZXqbadPn8aLL76I1tZW/NM//RO++c1vxuQkiYiIEokI0mK5wqMIAJlJIyLqfywHaffddx+cTidefvllAMD58+dx2WWXoaOjA0VFRfiP//gPvPPOO5g3b17MTpaIiCgROBwOeDweljsSEVFMWK6h+PTTT/G9731P/Xn9+vXweDw4duwYvvzySyxatAhPP/10TE6SiIgokfTEhtYsdyQi6r8sX/mrq6sxatQo9ee//e1vuOWWW9QFRO666y4cPHgw+mdIRESUYHoiSGO5IxFR/2U5SHO5XGhvb1d//uyzz3D55Zdrfm+0yTUREVFfI4K0WM5JYyaNiKj/snzlnzRpEjZs2AAA+OSTT3D69Gl8+9vfVn//9ddfo7i4OPpnSERElGBEdouZNCIiigXLC4csXboU8+bNwx//+EfU1NTg7rvvRlFRkfr7t956C7NmzYrJSRIRESWSnpyTxiCNiKj/sRykzZ49G3v27MGWLVtQWFiI73//+5rfT548Gd/4xjeifoJERESJhuWOREQUSyHtSD1+/HiMHz/e8Hf/5//8n6icEBERUaJjuSMREcUSh+eIiIhCxHJHIiKKJQZpREREIWK5IxERxRKv/ERERCFiuSMREcUSgzQiIqIQsdyRiIhiiUEaERFRiHqi3FEEgCx3JCLqfyyv7jhixAhLx5WVlYV9MkRERL0BM2lERBRLloO0EydOoKSkBLfffjsGDRoUy3MiIiJKaD0xJ40LhxAR9V+Wg7Q333wT69atw6pVqzB37lzce++9mDdvHhsPIiLqd3oik8aFQ4iI+i/LEdatt96Kv/71rzh+/DimTp2Kn/zkJxgyZAh+/vOf49ixY7E8RyIiooTSk0vwM0gjIup/Qk6DDR48GE888QSOHTuG//zP/8SOHTswduxYNDY2xuL8iIiIEg7LHYmIKJYslzvKOjo68Kc//Qlr167Fjh078P3vfx9paWnRPjciIqKEFOtyR0VRoCgKAGbSiIj6o5CCtB07duC1117Dpk2bMHLkSNx7773YvHkzcnNzY3V+RERECSfW5Y7y/TJIIyLqfywHaRdffDHq6upw++2345NPPsEll1wSy/MiIiJKWElJ3c1nTwRpNpstJo9BRESJy3KQ9tVXXyE9PR3r16/Hhg0bTI87e/ZsVE6MiIgoUYnsltfrhaIoUQ+k5JUdGaQREfU/loO0devWxfI8iIiIeg2RSVMUBT6fL+oliVw0hIiof7McpN11112xPA8iIqJeQw6ePB5P1IM07pFGRNS/hTxEpygKdu/ejT/96U/YvHkzPv/8c3UFqnCsXr0apaWlcLlcmDp1Kj755JOAx7/wwgsYN24cUlNTMWbMGKxfv17ze7fbjeXLl2PkyJFwuVyYNGkS3nvvPc0xHo8HS5YsQWlpKVJTUzFixAgsX75cs0qXoihYtmwZiouLkZqaiquuugoHDx4M+3kSEVHfYbPZYjovjXukERH1byGt7vjRRx/hvvvuQ0VFhRqY2Ww2lJaWYu3atfjWt74V0oNv2rQJCxcuxOrVqzFr1iy89NJLmDt3Lg4dOoRhw4b5Hb9mzRosXrwYr7zyCi677DLs3LkTDzzwAHJzc3HDDTcAAJYsWYKNGzfilVdewdixY/H+++/jpptuwrZt2zBlyhQAwFNPPYUXX3wRb7zxBi6++GLs3r0b99xzD7Kzs/Hoo48CAH77299i1apVeP311zF69Gj8+te/xtVXX40jR44gMzMzpOdJRER9j8PhgMfjgcfjifp9s9yRiKh/sykW02DHjx/HpEmTMH36dDz66KMYO3YsFEXBoUOH8Nxzz2H37t3Yt28fRowYYfnBp0+fjksvvRRr1qxRbxs3bhxuvPFGrFixwu/4mTNnYtasWXj66afV2xYuXIjdu3dj69atAIDi4mI88cQTeOSRR9RjbrzxRmRkZGDjxo0AgOuvvx4FBQV47bXX1GNuueUWpKWlYcOGDVAUBcXFxVi4cCF+9rOfAQA6OztRUFCAp556Cg8++KCl59fc3Izs7Gw0NTUhKyvL8utCRESJb9euXWhtbcWkSZPMt6JpbQWkNgsA8NhjQHp6wPuuq6vDoUOHkJOTg8mTJ0fnhImIKK5CiQ0sD9E988wzuPzyy/H3v/8d8+fPx5gxYzB27FjcfPPN+OijjzB9+nT8x3/8h+WT7Orqwp49ezBnzhzN7XPmzMG2bdsM/6azsxMul0tzW2pqKnbu3Am32x3wGBHEAcA3v/lN/O1vf8PRo0cBAF9++SW2bt2KefPmAQDKy8tRW1urObeUlBRceeWVpucmHru5uVnzj4iI+iZR7hjLTBrLHYmI+ifLQdo//vEPLFy40PB3NpsNCxcuxEcffWT5gevr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj171Llxa9euhdvtRn19vXrMqlWrcOzYMfh8PmzZsgXvvPMOampq1Pv52c9+hh/84AcYO3YsnE4npkyZgoULF+IHP/gBAKiPH8q5AcCKFSuQnZ2t/hs6dKjl14OIiHoXEUCx3JGIiKLN8tW/srISEydONP39hAkTUFFREfIJ6Pd/CbTfzNKlSzF37lxcfvnlcDqdmD9/Pu6++24AFxrLZ599FqNGjcLYsWORnJyMH//4x7jnnns0o5GbNm3Cxo0b8Yc//AGff/453njjDfz7v/873njjjbDPDQAWL16MpqYm9V9VVZXl14GIiHqXWC4cwtUdiYj6N8tBWktLC9LS0kx/n5aWhra2NssPnJ+fD4fD4ZeZqqur88tgCampqVi7di3a2tpw4sQJVFZWYvjw4cjMzER+fj4AYODAgXj77bfR2tqKiooKHD58GBkZGSgtLVXv57HHHsPPf/5z3HbbbZg4cSLuvPNO/OQnP1HnwRUWFgJASOcGdJdEZmVlaf4REVHfxEwaERHFSkirOx46dMi03E+UG1qVnJyMqVOnYsuWLbjpppvU27ds2YL58+cH/Fun04khQ4YAAN58801cf/31fg2Zy+XC4MGD4Xa7sXnzZtx6663q79ra2vyOdzgc6shlaWkpCgsLsWXLFnVFyK6uLnz88cd46qmnQnqeRETUNzGTRkREsRJSkPad73zHcE80m80WtBTQyKJFi3DnnXdi2rRpmDFjBl5++WVUVlbioYceAtBdPlhdXa3uhXb06FHs3LkT06dPR2NjI1atWoUDBw5oyhR37NiB6upqTJ48GdXV1Vi2bBl8Ph8ef/xx9ZgbbrgBv/nNbzBs2DBcfPHF2Lt3L1atWoV7771XfT4LFy7Ek08+iVGjRmHUqFF48sknkZaWhttvvz2k50hERH0TFw4hIqJYsRyklZeXR/3BFyxYgIaGBixfvhw1NTWYMGEC3n33XZSUlAAAampqUFlZqR7v9XqxcuVKHDlyBE6nE7Nnz8a2bdswfPhw9ZiOjg4sWbIEZWVlyMjIwLx587Bhwwbk5OSox/zud7/D0qVL8fDDD6Ourg7FxcV48MEH8S//8i/qMY8//jja29vx8MMPo7GxEdOnT8cHH3zAPdKIiAgAyx2JiCh2LO+TRqHjPmlERH1XbW0tDh8+jLy8PFxyySXGB4W5T9rBgwdx5swZjBo1CoMHD47SGRMRUTzFZJ+0trY2PPLIIxg8eDAGDRqE22+/PeR5aERERH1FT2TSWO5IRNQ/WQ7S/vVf/xWvv/46rrvuOtx2223YsmULfvSjH8Xy3IiIiBJWLBcOYbkjEVH/ZnlO2n/913/htddew2233QYA+Od//mfMmjULXq+XI31ERNTvxDKTxtUdiYj6N8tDdFVVVbjiiivUn7/xjW8gKSkJp06dismJERERJTJm0oiIKFYsX/29Xi+Sk5M1tyUlJcVkBJGIiCjRyUvwR3sNLmbSiIj6N8vljoqi4O6770ZKSop6W0dHBx566CGkS6tU/dd//Vd0z5CIiCgByQGU1+tVg7ZoYCaNiKh/s9yi3HXXXX63/fM//3NUT4aIiKi3sNvtsNlsUBQl6kGayKQxSCMi6p8styjr1q2L5XkQERH1KjabDQ6HAx6PBx6PR1NpEimWOxIR9W8coiMiIgpTLBYPURRFnePGTBoRUf/Eqz8REVGY5MVDokVk0QAGaURE/RWv/kRERGGKxV5pDNKIiIhXfyIiojDFotxRBGk2mw02my1q90tERL0HgzQiIqIwxTKTxiwaEVH/xRaAiIgoTLHMpDFIIyLqv9gCEBERhYmZNCIiigW2AERERGGK5eqODNKIiPovtgBERERhYrkjERHFAlsAIiKiMLHckYiIYoEtABERUZiYSSMiolhgC0BERBQmZtKIiCgW2AIQERGFSQRpzKQREVE0sQUgIiIKkwjSRGAVDQzSiIiILQAREVGYmEkjIqJYYAtAREQUJjmTpihKVO6TQRoREbEFICIiCpMcSEUrm8YgjYiI2AIQERGFiUEaERHFAlsAIiKiMNlstqjPS2OQRkREbAGIiIgiEO0VHhmkERERWwAiIqIIMJNGRETRxhaAiIgoAgzSiIgo2tgCEBERRUAEUwzSiIgoWtgCEBERRSDamTRxPwzSiIj6L7YAREREEWC5IxERRRtbACIioghwdUciIoo2tgBEREQRYCaNiIiijS0AERFRBGIVpIn7JSKi/odBGhERUQS4uiMREUUbWwAiIqIIsNyRiIiijS0AERFRBLhwCBERRRtbACIioghEM5OmKAqDNCIiYpBGREQUiWgHaQKDNCKi/ivuLcDq1atRWloKl8uFqVOn4pNPPgl4/AsvvIBx48YhNTUVY8aMwfr16zW/d7vdWL58OUaOHAmXy4VJkybhvffe0xwzfPhw2Gw2v3+PPPKIeszdd9/t9/vLL788ek+ciIj6hGgGaXLJJIM0IqL+KymeD75p0yYsXLgQq1evxqxZs/DSSy9h7ty5OHToEIYNG+Z3/Jo1a7B48WK88soruOyyy7Bz50488MADyM3NxQ033AAAWLJkCTZu3IhXXnkFY8eOxfvvv4+bbroJ27Ztw5QpUwAAu3bt0jSmBw4cwNVXX43vf//7mse79tprsW7dOvXn5OTkWLwMRETUi0VzdUc5SLPZbBHfHxER9U5xHaZbtWoV7rvvPtx///0YN24cnnnmGQwdOhRr1qwxPH7Dhg148MEHsWDBAowYMQK33XYb7rvvPjz11FOaY37xi19g3rx5GDFiBH70ox/hmmuuwcqVK9VjBg4ciMLCQvXf//zP/2DkyJG48sorNY+XkpKiOS4vLy82LwQREfVascik2e12BmlERP1Y3IK0rq4u7NmzB3PmzNHcPmfOHGzbts3wbzo7O+FyuTS3paamYufOnXC73QGP2bp1q+l5bNy4Effee69fg/iPf/wDgwYNwujRo/HAAw+grq4u4HPq7OxEc3Oz5h8REfVt0VzdkYuGEBEREMcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTY3ifb7/9Ns6dO4e7775bc/vcuXPx+9//Hn//+9+xcuVK7Nq1C9/+9rfR2dlp+pxWrFiB7Oxs9d/QoUNDeEWIiKg3kjNp8sIf4WCQRkREQAIsHKLPXimKYlrisXTpUsydOxeXX345nE4n5s+frwZXopF89tlnMWrUKIwdOxbJycn48Y9/jHvuuUf9vd5rr72GuXPnori4WHP7ggULcN1112HChAm44YYb8Ne//hVHjx7FX/7yF9PnsnjxYjQ1Nan/qqqqrL4MRETUS4n2RVEUBmlERBQVcWsF8vPz4XA4/LJmdXV1ftk1ITU1FWvXrkVbWxtOnDiByspKDB8+HJmZmcjPzwfQPd/s7bffRmtrKyoqKnD48GFkZGSgtLTU7/4qKirw4Ycf4v777w96vkVFRSgpKcGxY8dMj0lJSUFWVpbmHxER9W1yQBXpvDQGaUREBMQxSEtOTsbUqVOxZcsWze1btmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9BcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXdd0PNtaGhAVVUVioqKLDw7IiLqL+RFPhikERFRNMR1Cf5FixbhzjvvxLRp0zBjxgy8/PLLqKysxEMPPQSgu3ywurpa3Qvt6NGj2LlzJ6ZPn47GxkasWrUKBw4cwBtvvKHe544dO1BdXY3Jkyejuroay5Ytg8/nw+OPP655bJ/Ph3Xr1uGuu+5CUpL2ZWhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abborxq0JERL2Nw+GAx+NhkEZERFER1yBtwYIFaGhowPLly1FTU4MJEybg3XffRUlJCQCgpqYGlZWV6vFerxcrV67EkSNH4HQ6MXv2bGzbtg3Dhw9Xj+no6MCSJUtQVlaGjIwMzJs3Dxs2bEBOTo7msT/88ENUVlbi3nvv9Tsvh8OB/fv3Y/369Th37hyKioowe/ZsbNq0CZmZmTF5LYiIqPcSQVqkKzwySCMiIgCwKZHOciZTzc3NyM7ORlNTE+enERH1YTt37kRbWxsmT56sHRRsbQWeflp78GOPAenphvdTW1uLw4cPIy8vD5dccknsTpiIiHpcKLEBh+qIiIgiFK0NrZlJIyIigEEaERFRxBikERFRNLEVICIiipAIqhikERFRNLAVICIiihAzaUREFE1xXd2RiIioLxBBWrirO7a2tuLcuXNqkMcgjYiof2OQRkREFKFIM2nHjx9HY2MjUlJSADBIIyLq79gKEBERRSjSIM3tdgMAOjs7ATBIIyLq79gKEBERRSjSIE1fJskgjYiof2MrQEREFKFIV3dkkEZERDK2AkRERBGKdOEQBmlERCRjK0BERBQhljsSEVE0sRUgIiKKkAjSPB5PWH+vD9LE/RERUf/EII2IiChCTqcTQHhBmqIozKQREZEGWwEiIqIIiSBNLKUfCkVR/G5jkEZE1L+xFSAiIoqQnEkzCroCkbNoBQUFcDqdSE9Pj+r5ERFR75IU7xMgIiLq7ZKSLjSnbrcbycnJlv9WDtLGjh0LALDZbNE7OSIi6nWYSSMiIoqQzWZTA7VQSx5FkGaz2dR/RETUvzFIIyIiioJw56WJII3z0IiISGCLQEREFAXhrvDIII2IiPTYIhAREUVBuJk0sdAIgzQiIhLYIhAREUUByx2JiCha2CIQERFFQaQLhzBIIyIigS0CERFRFDCTRkRE0cIWgYiIKAoYpBERUbSwRSAiIooCru5IRETRwhaBiIgoCphJIyKiaGGLQEREFAUM0oiIKFrYIhAREUWBvLqj2PvMCgZpRESkxxaBiIgoCkQmDQhtXhqDNCIi0mOLQEREFAV2ux0OhwNAaCWPDNKIiEiPLQIREVGUhLPCI4M0IiLSY4tAREQUJeEsHsIgjYiI9NgiEBERRQmDNCIiiga2CERERFHCII2IiKKBLQIREVGUyMvwW8UgjYiI9NgiEBERRQkzaUREFA1sEYiIiKIkkiDNZrPF5JyIiKj3YZBGREQUJaLc0ev1Wv4bZtKIiEiPLQIREVGUiM2sGaQREVEk2CIQERFFiQi0ROBlBYM0IiLSY4tAREQUJcykERFRNMS9RVi9ejVKS0vhcrkwdepUfPLJJwGPf+GFFzBu3DikpqZizJgxWL9+veb3brcby5cvx8iRI+FyuTBp0iS89957mmOGDx8Om83m9++RRx5Rj1EUBcuWLUNxcTFSU1Nx1VVX4eDBg9F74kRE1OeIQItBGhERRSKuLcKmTZuwcOFCPPHEE9i7dy+uuOIKzJ07F5WVlYbHr1mzBosXL8ayZctw8OBB/PKXv8QjjzyCP//5z+oxS5YswUsvvYTf/e53OHToEB566CHcdNNN2Lt3r3rMrl27UFNTo/7bsmULAOD73/++esxvf/tbrFq1Cs8//zx27dqFwsJCXH311Th//nyMXg0iIurtRCaN5Y5ERBQJm6IoSrwefPr06bj00kuxZs0a9bZx48bhxhtvxIoVK/yOnzlzJmbNmoWnn35avW3hwoXYvXs3tm7dCgAoLi7GE088ocmK3XjjjcjIyMDGjRsNz2PhwoX4n//5Hxw7dgw2mw2KoqC4uBgLFy7Ez372MwBAZ2cnCgoK8NRTT+HBBx+09Pyam5uRnZ2NpqYmZGVlWfobIiLqvTo7O7F9+3bYbDZceeWVQGsrILVZAIDHHgPS09Uft27dCo/Hg2984xtIS0vr4TMmIqKeEkpsELdhu66uLuzZswdz5szR3D5nzhxs27bN8G86Ozvhcrk0t6WmpmLnzp3qnjRmx4ggzug8Nm7ciHvvvVfdo6a8vBy1tbWac0tJScGVV15pem5EREQiG6YoCqyOgTKTRkREenFrEerr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj17oCgKdu/ejbVr18LtdqO+vl49ZtWqVTh27Bh8Ph+2bNmCd955BzU1NYb3+fbbb+PcuXO4++671dvE44dybkB3gNjc3Kz5R0RE/YcodwSszUtTFIVBGhER+Yl7iyCyV4KiKH63CUuXLsXcuXNx+eWXw+l0Yv78+WpwJRrGZ599FqNGjcLYsWORnJyMH//4x7jnnns0Dafstddew9y5c1FcXBzRuQHAihUrkJ2drf4bOnSo6bFERNT3yG2ElXlpcraNQRoREQlxaxHy8/PhcDj8MlN1dXV+GSwhNTUVa9euRVtbG06cOIHKykoMHz4cmZmZyM/PBwAMHDgQb7/9NlpbW1FRUYHDhw8jIyMDpaWlfvdXUVGBDz/8EPfff7/m9sLCQgAI6dwAYPHixWhqalL/VVVVBX8hiIioz7DZbCEtwy8HcgzSiIhIiFuLkJycjKlTp6orKwpbtmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9xcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXed5vbS0lIUFhZqzq2rqwsff/xxwHNLSUlBVlaW5h8REfUvoSzDLwdpgSo1iIiof0mK54MvWrQId955J6ZNm4YZM2bg5ZdfRmVlJR566CEA3Zmp6upqdS+0o0ePYufOnZg+fToaGxuxatUqHDhwAG+88YZ6nzt27EB1dTUmT56M6upqLFu2DD6fD48//rjmsX0+H9atW4e77roLSUnal8Fms2HhwoV48sknMWrUKIwaNQpPPvkk0tLScPvtt8f4VSEiot7M4XDA7XZ3B2AmpfaCPB+NQRoREQlxDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTmax/7www9RWVmJe++91/DcHn/8cbS3t+Phhx9GY2Mjpk+fjg8++ACZmZlRfx2IiKjv0JQ7hhCkERERCXHdJ62v4z5pRET9z549e3D+/HlMnDgRA1yugPuktbS0YPfu3UhOTg5a6k9ERL1br9gnjYiIqC8KZ+EQZtKIiEjGVoGIiCiKwlk4hEEaERHJ2CoQERFFkcikWdknjUEaEREZYatAREQURSx3JCKiSLFVICIiiiIRcDGTRkRE4WKrQEREFEXMpBERUaTYKhAREUURFw4hIqJIsVUgIiKKIi4cQkREkWKrQEREFEUsdyQiokglxfsEqLshd7vd8T4NoqCcTqfaASUiY1w4hIiIIsUgLY4URUFtbS3OnTsX71MhsiwnJweFhYWw2WzxPhWihBROJo3fJyIikjFIiyMRoA0aNAhpaWlspCmhKYqCtrY21NXVAQCKiorifEZEiYmZNCIiihSDtDjxer1qgDZgwIB4nw6RJampqQCAuro6DBo0iKWPRAY4J42IiCLFViFOxBy0tLS0OJ8JUWjEZ5bzKImMcQl+IiKKFFuFOGOJI/U2/MwSBcYl+ImIKFJsFYiIiKIolHJHRVEAMEgjIiIttgrUp5w4cQI2mw1ffPFFzB9r2bJlmDx5cswfh4h6F3nhEBGEmWEmjYiIjLBVoJDcfffdsNlssNlscDqdGDFiBH7605+itbUVwIUgSfzLzMzExRdfjEceeQTHjh3T3Nfrr78Om82GcePG+T3OH//4R9hsNgwfPjzmz+mqq67CwoULY/44RNQ/iEyaoihBgzSRbWOQRkREMrYKFLJrr70WNTU1KCsrw69//WusXr0aP/3pTzXHfPjhh6ipqcGXX36JJ598El999RUmTZqEv/3tb5rj0tPTUVdXh+3bt2tuX7t2LYYNGxbz50JEFG1ywBWs5FH8niulEhGRjEFaAlEUBV1dXT3+L9hIr15KSgoKCwsxdOhQ3H777bjjjjvw9ttva44ZMGAACgsLMWLECMyfPx8ffvghpk+fjvvuu0/TaUlKSsLtt9+OtWvXqredPHkS//jHP3D77bcHPZedO3diypQpcLlcmDZtGvbu3et3zKFDhzBv3jxkZGSgoKAAd955J+rr6wF0ZwY//vhjPPvss2r278SJEyG9HrJ169Zh3LhxcLlcGDt2LFavXq3+bsaMGfj5z3+uOf7MmTNwOp346KOPwn5MIkosdrtdXWAn2OIh4vcM0oiISMZ90hKI2+3GihUrevxxFy9ejOTk5LD/PjU1Nehy7Ha7HY8++ihuuukm7NmzB9/4xjfU391333341re+hWeffRZpaWl4/fXXce2116KgoCDgfba2tuL666/Ht7/9bWzcuBHl5eV49NFHNcfU1NTgyiuvxAMPPIBVq1ahvb0dP/vZz3Drrbfi73//O5599lkcPXoUEyZMwPLlywEAAwcODOt1eOWVV/Cv//qveP755zFlyhTs3bsXDzzwANLT03HXXXfhjjvuwNNPP40VK1aoHbhNmzahoKAAV155ZViPSUSJyeFwwOPxMJNGRERhYSaNIrJz50784Q9/wHe+852gx44dOxYA/DJVkydPxsiRI/GnP/0JiqLg9ddfx7333hv0/n7/+9/D6/Vi7dq1uPjii3H99dfjscce0xyzZs0aXHrppXjyyScxduxYTJkyBWvXrsVHH32Eo0ePIjs7G8nJyUhLS0NhYSEKCwvD7iz96le/wsqVK3HzzTejtLQUN998M37yk5/gpZdeAgAsWLAAp06dwtatW9W/+cMf/oDbb7+d81GI+hh58ZBAOCeNiIiMMJOWQJxOJxYvXhyXxw3F//zP/yAjIwMejwdutxvz58/H7373u6B/J8oqjfbZuvfee7Fu3ToMGzYMLS0tmDdvHp5//vmA9yfmuckbgs+YMUNzzJ49e/DRRx8hIyPD7++//vprjB49Ouh5W3HmzBlUVVXhvvvuwwMPPKDe7vF4kJ2dDaA7Q3f11Vfj97//Pa644gqUl5dj+/btWLNmTVTOgYgSh9Vl+FnuSERERhikJRCbzRZR2WFPmT17NtasWQOn04ni4mLLQd5XX30FACgtLfX73R133IHHH38cy5Ytww9/+EMkJQX/aFqZS+fz+XDDDTfgqaee8vtdUVGRhbO2RnS0XnnlFUyfPl3zO7nzdccdd+DRRx/F7373O/zhD3/AxRdfjEmTJkXtPIgoMYjMWKAgTVEUljsSEZEhBmkUsvT0dFx00UUh/Y3P58Nzzz2H0tJSTJkyxe/3eXl5+Kd/+if88Y9/xIsvvmjpPsePH48NGzagvb0dqampAIDPPvtMc8yll16KzZs3Y/jw4aaBX3JysqVNZwMpKCjA4MGDUVZWhjvuuMP0uBtvvBEPPvgg3nvvPfzhD3/AnXfeGdHjElFiEkFXoHJH+XcsdyQiIhlbBYqJhoYG1NbWoqysDP/93/+N7373u9i5cydee+010xHj119/HfX19erctWDEXK777rsPhw4dwrvvvot///d/1xzzyCOP4OzZs/jBD36AnTt3oqysDB988AHuvfdeNTAbPnw4duzYgRMnTqC+vl7tOI0dOxZvvfWW5ee8bNkyrFixQl2MZP/+/Vi3bh1WrVqlHpOeno758+dj6dKl+OqrrzQrWP7whz+MS7krEUWflXJH+XfMpBERkYxBGsXEd7/7XRQVFWHixIn4+c9/jnHjxmHfvn2YPXu26d+kpqZiwIABlh8jIyMDf/7zn3Ho0CFMmTIFTzzxhF9ZY3FxMT799FN4vV5cc801mDBhAh599FFkZ2erI9c//elP4XA4MH78eAwcOBCVlZUAgCNHjqCpqcny+dx///149dVX8frrr2PixIm48sor8frrr/uVd95xxx348ssvccUVV2j2gqusrERNTY3lxyOixCWuL4HKssWAkLxkPxEREQDYlFA3ySLLmpubkZ2djaamJmRlZWl+19HRgfLycpSWlsLlcsXpDIlCx88uUXCHDh1CXV0dRhUXY/Af/qD95WOPAenpaG1txa5du+B0OjFr1qz4nCgREfWYQLGBHjNpREREUWZlCX4uv09ERGbYMhAREUWZlTlpXH6fiIjMMEgjIiKKMitL8HP5fSIiMsMgjYiIKMpE4HX+/HmcPXsWbrfb7xiWOxIRkRm2DET/X3t3Hldzvv8B/HU67YuypE6kRSj7kowiNRNlzXLJviTGDBczY5s7Lo1JY4sGU3cYlTGuZYRxQ6SxLxPRDGqUFDI1/SwJaVGf3x9u3+uoKDp18Ho+Hucxzvf7+X6/n8+7M+ec9/ksXyKialaapOXm5iI3N7fclWLZk0ZERBVhkkZERFTNjI2NIZPJXjg3jXPSiIioIpq1XQEiIqK3TZ06deDq6op7GRnIBfDkyZMyZdiTRkREFWFPGhERkQrIZDJoa2sDKL8njXPSiIioIvxkICIiUhEdHR0AT4c2CiGU9nG4IxERVYRJGlElREREwMTE5LXOYW1tjeDg4GqpDxG9GTQ1/zer4PneNA53JCKiijBJoyoZP348ZDIZZDIZtLS0YGtri1mzZuHRo0cAgPT0dGm/TCaDkZERWrVqhalTpyIlJUXpXBEREZDJZHBwcChzne3bt0Mmk8Ha2vqV6yqTybB79+4qH1deMuXj44Pk5ORKHV9RQnf27FlMnjy5yvUhojeXTCaTErXn56UxSSMiooowSaMq8/LyQmZmJq5du4aAgACEhIRg1qxZSmUOHTqEzMxM/PbbbwgMDERSUhLatWuH2NhYpXIGBgbIzs7G6dOnlbaHhYWhSZMmKm9LZenp6aFhw4avdQ5TU1Po6+tXU42I6E1R0QqPnJNGREQV4SeDGhFCoLi4uMYfz8+TeBkdHR2Ym5vD0tISI0eOxKhRo8r0WNWvXx/m5uawtbWFt7c3Dh06hC5dumDixIlKX1Q0NTUxcuRIhIWFSdsyMjJw5MgRjBw58oX1KCwsxLRp06BQKKCrqwtra2t8/fXXACD1wA0aNEipRy41NRXe3t4wMzODoaEhOnfujEOHDknndHNzw/Xr1/HJJ59IvYFA2d6x3377De7u7jAyMkKdOnXQqVMnnDt3DkeOHMGECRNw//596Xh/f3+pTs/20OXk5GDy5MkwMzODrq4uWrdujaioKADA9evX0b9/f9StWxcGBgZo1aoV9u3b99K/DRGpn4qSNM5JIyKiinAJfjVSUlKC48eP1/h1u3fv/lpfEvT09FBUVPTCMhoaGpgxYwYGDRqE+Ph4ODk5SfsmTpwIV1dXfPPNN9DX10dERAS8vLxgZmb2wnOuXr0ae/bswfbt29GkSRPcvHkTN2/eBPB0aGHDhg0RHh4OLy8vqX0PHz5Enz59EBAQAF1dXWzcuBH9+/fHlStX0KRJE+zcuRPt2rXD5MmTMWnSpAqvPWrUKHTo0AGhoaGQy+VISEiAlpYWnJ2dERwcjAULFuDKlSsAAENDwzLHl5SUoHfv3njw4AF+/PFHNG3aFImJiVI9p06disLCQhw7dgwGBgZITEws9zxEpP443JGIiKqq1nvSQkJCYGNjA11dXXTq1OmlScq3334LBwcH6OnpoUWLFvjhhx+U9hcVFWHRokVo2rQpdHV10a5dO0RHR5c5z61btzB69GjUr18f+vr6aN++PeLj46X9z869Kn2899571dPot0hcXBz+/e9/44MPPnhpWXt7ewBP5609q3379mjatCl27NgBIQQiIiLg6+v70vPduHEDzZo1Q7du3WBlZYVu3bphxIgRAJ4OLQQAExMTmJubS8/btWuHDz/8EG3atEGzZs0QEBAAW1tb7NmzBwBQr149yOVyGBkZwdzcHObm5hVe28PDA/b29mjWrBmGDh2Kdu3aQVtbW7qJbenx5SVXhw4dQlxcHHbu3ImePXvC1tYW/fr1Q+/evaXzu7i4oE2bNtI+V1fXl8aEiNQPhzsSEVFV1WpP2rZt2zBz5kyEhITAxcUF3333HXr37o3ExMRy5yOFhobi888/x/r169G5c2fExcVh0qRJqFu3Lvr37w8AmD9/Pn788UesX78e9vb2OHDgAAYNGoRTp06hQ4cOAIB79+7BxcUF7u7u2L9/Pxo2bIjU1NQyiz14eXkhPDxcel56vxtV0dDQQPfu3VV6jYquWxVRUVEwNDTEkydPUFRUBG9vb6xZs+alx5UOqywdQvgsX19fhIeHo0mTJlJv19q1a194vvHjx6Nnz55o0aIFvLy80K9fP/Tq1euFxzx69AhffvkloqKi8Oeff+LJkyd4/Pgxbty48dL6P+vTTz+Fn58fNm3aBA8PDwwdOhRNmzat9PEJCQlo3LgxmjdvXu7+6dOn46OPPsLBgwfh4eGBIUOGoG3btlWqIxGph5claexJIyKi59Xqz3crV67ExIkT4efnBwcHBwQHB8PS0hKhoaHllt+0aRM+/PBD+Pj4wNbWFsOHD8fEiROxdOlSpTL/+Mc/0KdPH9ja2uKjjz6Cp6cngoKCpDJLly6FpaUlwsPD4eTkBGtra3zwwQdlvmSXzr0qfdSrV081gfgvmUwGuVxe44/ykqYXcXd3R0JCAq5cuYL8/Hzs3LmzUotqJCUlAQBsbGzK7Bs1ahTOnDkDf39/jB07VmnZ6op07NgRaWlp+Oqrr/D48WMMGzYMf/vb3154zOzZsxEZGYnFixfj+PHjSEhIQJs2bVBYWPjS6z3L398fly9fRt++ffHLL7+gZcuW2LVrV6WP19PTe+F+Pz8/XLt2DWPGjMHFixfh6OhYqUSYiNQP56QREVFV1VqSVlhYiPj4+DI9H7169cKpU6fKPaagoAC6urpK2/T09BAXFyfNiaqozIkTJ6Tne/bsgaOjI4YOHYqGDRuiQ4cOWL9+fZnrHTlyBA0bNkTz5s0xadIkZGdnv7BNBQUFyM3NVXq8jQwMDGBnZwcrKytoaWlV6piSkhKsXr0aNjY2Uo/ms+rVq4cBAwbg6NGjlRrqWKpOnTrw8fHB+vXrsW3bNkRGRuLu3bsAAC0trTJfio4fP47x48dj0KBBaNOmDczNzcsMv9TW1i5zXHmaN2+OTz75BAcPHsTgwYOlXtfKHN+2bVtkZGS8cFl/S0tLTJkyBTt37sRnn31W7muUiNQf56QREVFV1VqSdvv2bRQXF5dZHMLMzAxZWVnlHuPp6Ynvv/8e8fHxEELg3LlzCAsLQ1FREW7fvi2VWblyJVJSUlBSUoKYmBj8/PPPyMzMlM5z7do1hIaGolmzZjhw4ACmTJmC6dOnK81v6927NzZv3oxffvkFQUFBOHv2LN5//30UFBRU2Kavv/4axsbG0sPS0vJ1QvRGu3PnDrKysnDt2jXs2bMHHh4eiIuLw4YNGyr8QhIREYHbt29Lc9deZtWqVdi6dSv++OMPJCcn46effoK5ubk0bNXa2hqxsbHIysrCvXv3AAB2dnbYuXMnEhIS8Ntvv2HkyJHSr9mlrK2tcezYMdy6dUt6XT3r8ePHmDZtGo4cOYLr16/j5MmTOHv2rHS/N2trazx8+BCxsbG4ffs28vLyypyjR48ecHV1xZAhQxATE4O0tDTs379fmj85c+ZMHDhwAGlpaTh//jx++eWXcu8nR0Tqr/Q9Twih9H7DOWlERFSRWv9keH6onRCiwuF3//znP9G7d2+899570NLSgre3N8aPHw/gfx+C33zzDZo1awZ7e3toa2tj2rRpmDBhglJiUFJSgo4dOyIwMBAdOnTAhx9+iEmTJikNs/Tx8UHfvn3RunVr9O/fH/v370dycjL27t1bYVs+//xz3L9/X3qUrjT4LvLw8IBCoUCbNm0wb948ODg44Pfff4e7u3uFx+jp6aF+/fqVvoahoSGWLl0KR0dHdO7cGenp6di3b5/0hScoKAgxMTGwtLSUeu9WrVqFunXrwtnZGf3794enpyc6duyodN5FixYhPT0dTZs2lRYceZZcLsedO3cwduxYNG/eHMOGDUPv3r3x5ZdfAgCcnZ0xZcoU+Pj4wNTUFMuWLSu3/pGRkejcuTNGjBiBli1bYs6cOdKXtuLiYkydOhUODg7w8vJCixYtEBISUunYEJH60NDQkD7XCgoKcP36dRQWFkrzdNmTRkREz5OJqt4kq5oUFhZCX18fP/30EwYNGiRtnzFjBhISEnD06NEKjy0qKsJff/0FhUKBdevWYe7cucjJyVH6NTI/Px937tyBhYUF5s2bh6ioKFy+fBkAYGVlhZ49e+L777+XyoeGhiIgIAC3bt2q8LrNmjWDn58f5s6dW6k25ubmwtjYGPfv30edOnWU9uXn5yMtLU1a2ZLoTcHXLlEVPHoELF+OjIwMPHnyBDKZDNeHDUOj5s2lH/JcXV3Zm0ZE9A54UW7wvFr7VNDW1kanTp0QExOjtD0mJgbOzs4vPFZLSwuNGzeGXC7H1q1b0a9fvzIfcLq6umjUqBGePHmCyMhIeHt7S/tcXFyke1iVSk5OhpWVVYXXvHPnDm7evAmFQlHZJhIREQH437y00t9FHz58KO2r6uJNRET09qvVJfg//fRTjBkzBo6OjujatSvWrVuHGzduYMqUKQCeDh+8deuWNFcsOTkZcXFx6NKlC+7du4eVK1fi0qVL2Lhxo3TOX3/9Fbdu3UL79u1x69Yt+Pv7o6SkBHPmzJHKfPLJJ3B2dkZgYCCGDRuGuLg4rFu3DuvWrQPw9MPT398fQ4YMgUKhQHp6Ov7xj3+gQYMGSr1+RERElfH8kMbSJO1VVtglIqK3X60maT4+Prhz5w4WLVqEzMxMtG7dGvv27ZN6tDIzM5XuX1VcXIygoCBcuXIFWlpacHd3x6lTp2BtbS2Vyc/Px/z583Ht2jUYGhqiT58+2LRpk9I90Dp37oxdu3bh888/x6JFi2BjY4Pg4GCMGjUKwNMPzYsXL+KHH35ATk4OFAoF3N3dsW3bNhgZGdVIbIiI6O1RuhJu6X9LVyTmfDQiIipPrc1JexdwThq9jfjaJaqC/85JKykpwePHj6Gjo4NTLi4o+e+9EvX09NClS5dariQREdWEqsxJq9WeNCIioneBhoYGDAwMADydn1b4zHYiIqLn8dOBiIioBun9txcN4HBHIiIqH5M0IiKiGvTsMGEmaUREVB4maURERDXo2Z40DnckIqLy8NOBiIioBrEnjYiIXoZJGtEz1q1bB0tLS2hoaCA4OLi2q0NEbyEmaURE9DJM0qjKsrKy8Pe//x22trbQ0dGBpaUl+vfvj9jY2NquWrkiIiKU7pNXkdzcXEybNg1z587FrVu3MHnyZNVXjojeOVw4hIiIXoZL8KsLIYC8vNq7vr4+IJO9tFh6ejpcXFxgYmKCZcuWoW3btigqKsKBAwcwdepU/PHHH690+aKiIukmr5XZrgo3btxAUVER+vbtC4VCUW6ZmqwPEb2dtLW1oaGhgZKSEs5JIyKicjFJUxd5ecDy5bV3/dmzgf/ew+dFPv74Y8hkMsTFxUn3/AGAVq1awdfXV3p+48YN/P3vf0dsbCw0NDTg5eWFNWvWwMzMDADg7++P3bt3Y/r06QgICEB6ejqKi4uhoaGB0NBQ7N+/H4cOHcKsWbPw5Zdf4j//+Q/8/f1x+fJlWFhYYNy4cfjiiy+gqfn0JZyTk4M5c+bg559/xv3792FnZ4clS5bA0NAQEyZMAADI/puELly4EP7+/krtioiIkMrZ2toCANLS0hAREVFuPXNzczF79mzs3r0b+fn5cHR0xKpVq9CuXTvpnEuWLMGqVauQl5eHYcOGwdTUFNHR0UhISAAAuLm5oX379krDKgcOHAgTExNEREQAAAoLCzF//nxs3rwZOTk5aN26NZYuXQo3Nzep3jNnzsS2bdswc+ZM3Lx5E926dUN4eLhSohkWFoagoCBcvXoV9erVw5AhQ7B27Vr4+voiOzsbUVFRUtknT56gcePGCAwMVPqbElH1kMlk0NXVRV5eHnvSiIioXPwJjyrt7t27iI6OxtSpU5UStFKlQwqFEBg4cCDu3r2Lo0ePIiYmBqmpqfDx8VEqf/XqVWzfvh2RkZFS4gI8TaK8vb1x8eJF+Pr64sCBAxg9ejSmT5+OxMREfPfdd4iIiMDixYsBACUlJejduzdOnTqFH3/8EYmJiViyZAnkcjmcnZ0RHByMOnXqIDMzE5mZmZg1a1aZuvv4+ODQoUMAgLi4OGRmZsLS0rLCevbt2xdZWVnYt28f4uPj0bFjR3zwwQe4e/cuAGD79u1YuHAhFi9ejHPnzkGhUCAkJKTKMZ8wYQJOnjyJrVu34vfff8fQoUPh5eWFlJQUqUxeXh5WrFiBTZs24dixY7hx44ZSG0NDQzF16lRMnjwZFy9exJ49e2BnZwcA8PPzQ3R0NDIzM6Xy+/btw8OHDzFs2LAq15eIKqd0yCOTNCIiKg970qjSrl69CiEE7O3tX1ju0KFD+P3335GWliYlOps2bUKrVq1w9uxZdO7cGcDTXqJNmzbB1NRU6fiRI0cq9eCMGTMG8+bNw7hx4wA87en66quvMGfOHCxcuBCHDh1CXFwckpKS0Lx5c6lMKWNjY8hkMpibm1dYZz09PdSvXx8AYGpqqlT2+Xr+8ssvuHjxIrKzs6GjowMAWLFiBXbv3o0dO3Zg8uTJCA4Ohq+vL/z8/AAAAQEBOHToEPLz818Yu2elpqZiy5YtyMjIgIWFBQBg1qxZiI6ORnh4OAIDAwE8HYL5r3/9C02bNgUATJs2DYsWLZLOExAQgM8++wwzZsyQtpX+DZydndGiRQts2rQJc+bMAQCEh4dj6NChMDQ0rHRdiahqShcoev79j4iICGCSRlUghADwv2GDFUlKSoKlpaWUoAFAy5YtYWJigqSkJClBsLKyKvcLiqOjo9Lz+Ph4nD17Vuo5A4Di4mLk5+cjLy8PCQkJaNy4sZSgVbfn6xkfH4+HDx9KSV2px48fIzU1FcDTGEyZMkVpf9euXXH48OFKX/f8+fMQQpRpV0FBgdK19fX1pQQNABQKBbKzswEA2dnZ+PPPP/HBBx9UeB0/Pz+sW7cOc+bMQXZ2Nvbu3au2i8AQvS1MTEwqtaARERG9m5ikqQt9/afzwmrz+i/RrFkzyGQyJCUlYeDAgRWWE0KUm8g9v728IZPlbS8pKcGXX36JwYMHlymrq6urtFKaKpRXH4VCgSNHjpQpW5UvXRoaGlLiW6qoqEjpOnK5HPHx8WWGRD3by/X8QiYymUw6b2ViM3bsWMybNw+nT5/G6dOnYW1tje7du1e6HURERERUvZikqQuZrFILd9SmevXqwdPTE99++y2mT59eJnnJycmBiYkJWrZsiRs3buDmzZtSb1piYiLu378PBweHKl+3Y8eOuHLlijSP6nlt27ZFRkYGkpOTy+1N09bWRnFxcZWv+6L6ZGVlQVNTE9bW1uWWcXBwwJkzZzB27Fhp25kzZ5TKmJqaKs0FKy4uxqVLl+Du7g4A6NChA4qLi5Gdnf3KSZORkRGsra0RGxsrnfd59evXx8CBAxEeHo7Tp09LC6gQERERUe3gwiFUJSEhISguLoaTkxMiIyORkpKCpKQkrF69Gl27dgUAeHh4oG3bthg1ahTOnz+PuLg4jB07Fj169CgzlLEyFixYgB9++EFa3TEpKQnbtm3D/PnzAQA9evSAq6srhgwZgpiYGKSlpWH//v2Ijo4GAFhbW+Phw4eIjY3F7du3kfeatzrw8PBA165dMXDgQBw4cADp6ek4deoU5s+fj3PnzgEAZsyYgbCwMISFhSE5ORkLFy7E5cuXlc7z/vvvY+/evdi7dy/++OMPfPzxx8jJyZH2N2/eHKNGjcLYsWOxc+dOpKWl4ezZs1i6dCn27dtX6fr6+/sjKCgIq1evRkpKCs6fP481a9YolfHz88PGjRuRlJQkzf0jIiIiotrBJI2qxMbGBufPn4e7uzs+++wztG7dGj179kRsbCxCQ0MBPB1ut3v3btStWxeurq7w8PCAra0ttm3b9krX9PT0RFRUFGJiYtC5c2e89957WLlyJaysrKQykZGR6Ny5M0aMGIGWLVtizpw5Uu+Zs7MzpkyZAh8fH5iammLZsmWvFQOZTIZ9+/bB1dUVvr6+aN68OYYPH4709HTpFgM+Pj5YsGAB5s6di06dOuH69ev46KOPlM7j6+uLcePGSQmsjY1Nmd6u8PBwjB07Fp999hlatGiBAQMG4Ndff1Wa7/cy48aNQ3BwMEJCQtCqVSv069dPaXVI4GniqVAo4OnpKS1SQkRERES1QyaenxRD1SY3NxfGxsa4f/8+6tSpo7QvPz8faWlpsLGxga6ubi3VkGpS6b3hnr3dgLrIy8uDhYUFwsLCyp379yy+domq4NGjsvfArOR9KYmI6O3yotzgeZyTRvQOKykpQVZWFoKCgmBsbIwBAwbUdpWIiIiI3nlM0ojeYTdu3ICNjQ0aN26MiIgIaGryLYGIiIiotvEbGVEN8ff3h7+/f21XQ4m1tXWZ2wAQERERUe3iwiFERERERERqhElaLWMvBr1p+JolIiIiUi0mabVES0sLAF77nl1ENa30NVv6GiYiIiKi6sU5abVELpfDxMQE2dnZAAB9fX3IZLJarhVRxYQQyMvLQ3Z2NkxMTCCXy2u7SkRERERvJSZptcjc3BwApESN6E1gYmIivXaJiIiIqPoxSatFMpkMCoUCDRs2RFFRUW1Xh+iltLS02INGREREpGJM0tSAXC7nF18iIiIiIgLAhUOIiIiIiIjUCpM0IiIiIiIiNcIkjYiIiIiISI1wTpoKld70Nzc3t5ZrQkREteLRI6CgQHlbbi5QXFw79SEiolpTmhOU5ggvIhOVKUWvJCMjA5aWlrVdDSIiIiIiUhM3b95E48aNX1iGSZoKlZSU4M8//4SRkVGN36g6NzcXlpaWuHnzJurUqVOj137bMbaqxfiqDmOrWoyv6jC2qsPYqhbjqzpvYmyFEHjw4AEsLCygofHiWWcc7qhCGhoaL82SVa1OnTpvzAv3TcPYqhbjqzqMrWoxvqrD2KoOY6tajK/qvGmxNTY2rlQ5LhxCRERERESkRpikERERERERqREmaW8pHR0dLFy4EDo6OrVdlbcOY6tajK/qMLaqxfiqDmOrOoytajG+qvO2x5YLhxAREREREakR9qQRERERERGpESZpREREREREaoRJGhERERERkRphkkZERERERKRGmKS9IUJCQmBjYwNdXV106tQJx48fr7Ds+PHjIZPJyjxatWollSkqKsKiRYvQtGlT6Orqol27doiOjq6JpqilqsQXADZv3ox27dpBX18fCoUCEyZMwJ07d5TKREZGomXLltDR0UHLli2xa9cuVTZBbVV3bC9fvowhQ4bA2toaMpkMwcHBKm6Beqvu+K5fvx7du3dH3bp1UbduXXh4eCAuLk7VzVBL1R3bnTt3wtHRESYmJjAwMED79u2xadMmVTdDLaniPbfU1q1bIZPJMHDgQBXU/M1Q3fGNiIgo93tFfn6+qpuidlTx2s3JycHUqVOhUCigq6sLBwcH7Nu3T5XNUFvVHV83N7dyX7t9+/ZVdVNenyC1t3XrVqGlpSXWr18vEhMTxYwZM4SBgYG4fv16ueVzcnJEZmam9Lh586aoV6+eWLhwoVRmzpw5wsLCQuzdu1ekpqaKkJAQoaurK86fP19DrVIfVY3v8ePHhYaGhvjmm2/EtWvXxPHjx0WrVq3EwIEDpTKnTp0ScrlcBAYGiqSkJBEYGCg0NTXFmTNnaqpZakEVsY2LixOzZs0SW7ZsEebm5mLVqlU11Br1o4r4jhw5Unz77bfiwoULIikpSUyYMEEYGxuLjIyMmmqWWlBFbA8fPix27twpEhMTxdWrV0VwcLCQy+UiOjq6ppqlFlQR21Lp6emiUaNGonv37sLb21vFLVFPqohveHi4qFOnjtJ3i8zMzJpqktpQRWwLCgqEo6Oj6NOnjzhx4oRIT08Xx48fFwkJCTXVLLWhivjeuXNH6TV76dIlIZfLRXh4eA216tUxSXsDODk5iSlTpihts7e3F/PmzavU8bt27RIymUykp6dL2xQKhVi7dq1SOW9vbzFq1KjXr/AbpqrxXb58ubC1tVXatnr1atG4cWPp+bBhw4SXl5dSGU9PTzF8+PBqqvWbQRWxfZaVldU7naSpOr5CCPHkyRNhZGQkNm7c+PoVfoPURGyFEKJDhw5i/vz5r1fZN4yqYvvkyRPh4uIivv/+ezFu3Lh3NklTRXzDw8OFsbFxtdf1TaOK2IaGhgpbW1tRWFhY/RV+w9TE++6qVauEkZGRePjw4etXWMU43FHNFRYWIj4+Hr169VLa3qtXL5w6dapS59iwYQM8PDxgZWUlbSsoKICurq5SOT09PZw4ceL1K/0GeZX4Ojs7IyMjA/v27YMQAn/99Rd27Nih1HV++vTpMuf09PSs9N/sbaCq2NJTNRXfvLw8FBUVoV69etVaf3VWE7EVQiA2NhZXrlyBq6trtbdBXakytosWLYKpqSkmTpyosvqrO1XG9+HDh7CyskLjxo3Rr18/XLhwQWXtUEeqiu2ePXvQtWtXTJ06FWZmZmjdujUCAwNRXFys0vaom5r6TNuwYQOGDx8OAwODaq2/KjBJU3O3b99GcXExzMzMlLabmZkhKyvrpcdnZmZi//798PPzU9ru6emJlStXIiUlBSUlJYiJicHPP/+MzMzMaq2/unuV+Do7O2Pz5s3w8fGBtrY2zM3NYWJigjVr1khlsrKyXvlv9rZQVWzpqZqK77x589CoUSN4eHhUa/3VmSpje//+fRgaGkJbWxt9+/bFmjVr0LNnT5W1Rd2oKrYnT57Ehg0bsH79epXWX92pKr729vaIiIjAnj17sGXLFujq6sLFxQUpKSkqbY86UVVsr127hh07dqC4uBj79u3D/PnzERQUhMWLF6u0PeqmJj7T4uLicOnSpTLfidUVk7Q3hEwmU3ouhCizrTwREREwMTEpM4H6m2++QbNmzWBvbw9tbW1MmzYNEyZMgFwur85qvzGqEt/ExERMnz4dCxYsQHx8PKKjo5GWloYpU6a88jnfZqqILf2PKuO7bNkybNmyBTt37izT8/4uUEVsjYyMkJCQgLNnz2Lx4sX49NNPceTIEVU1QW1VZ2wfPHiA0aNHY/369WjQoIHK6/4mqO7X7nvvvYfRo0ejXbt26N69O7Zv347mzZu/kz+gVXdsS0pK0LBhQ6xbtw6dOnXC8OHD8cUXXyA0NFSl7VBXqvxM27BhA1q3bg0nJ6dqr7cqaNZ2BejFGjRoALlcXuZXhOzs7DK/NjxPCIGwsDCMGTMG2traSvtMTU2xe/du5Ofn486dO7CwsMC8efNgY2NT7W1QZ68S36+//houLi6YPXs2AKBt27YwMDBA9+7dERAQAIVCAXNz81f6m71NVBVbekrV8V2xYgUCAwNx6NAhtG3bVnUNUUOqjK2Ghgbs7OwAAO3bt0dSUhK+/vpruLm5qa5BakQVsf3rr7+Qnp6O/v37S8eUlJQAADQ1NXHlyhU0bdpURS1SLzX1vquhoYHOnTu/Uz1pqoqtQqGAlpaW0o/kDg4OyMrKQmFhYZnvb28rVb928/LysHXrVixatEh1jahm7ElTc9ra2ujUqRNiYmKUtsfExMDZ2fmFxx49ehRXr1594fh8XV1dNGrUCE+ePEFkZCS8vb2rpd5vileJb15eHjQ0lP/XKX1zFUIAALp27VrmnAcPHnzp3+xtoqrY0lOqjO/y5cvx1VdfITo6Go6OjtVcc/VXk69dIQQKCgpes8ZvDlXE1t7eHhcvXkRCQoL0GDBgANzd3ZGQkABLS0vVNEYN1dRrVwiBhISEd+qHM1XF1sXFBVevXpV+WACA5ORkKBSKdyZBA1T/2t2+fTsKCgowevToaqy1itXE6iT0ekqXJN2wYYNITEwUM2fOFAYGBtJqjfPmzRNjxowpc9zo0aNFly5dyj3nmTNnRGRkpEhNTRXHjh0T77//vrCxsRH37t1TZVPUUlXjGx4eLjQ1NUVISIhITU0VJ06cEI6OjsLJyUkqc/LkSSGXy8WSJUtEUlKSWLJkyTu9BH91xragoEBcuHBBXLhwQSgUCjFr1ixx4cIFkZKSUuPtq22qiO/SpUuFtra22LFjh9KyxQ8ePKjx9tUmVcQ2MDBQHDx4UKSmpoqkpCQRFBQkNDU1xfr162u8fbVJFbF93ru8uqMq4uvv7y+io6NFamqquHDhgpgwYYLQ1NQUv/76a423rzapIrY3btwQhoaGYtq0aeLKlSsiKipKNGzYUAQEBNR4+2qbKt8bunXrJnx8fGqsLdWBSdob4ttvvxVWVlZCW1tbdOzYURw9elTaN27cONGjRw+l8jk5OUJPT0+sW7eu3PMdOXJEODg4CB0dHVG/fn0xZswYcevWLVU2Qa1VNb6rV68WLVu2FHp6ekKhUIhRo0aVuY/UTz/9JFq0aCG0tLSEvb29iIyMrImmqJ3qjm1aWpoAUObx/HneFdUdXysrq3Lj++x9Ft8V1R3bL774QtjZ2QldXV1Rt25d0bVrV7F169aaao5aUcV77rPe5SRNiOqP78yZM0WTJk2Etra2MDU1Fb169RKnTp2qqeaoFVW8dk+dOiW6dOkidHR0hK2trVi8eLF48uRJTTRH7agivleuXBEAxMGDB2uiCdVGJgTHEBEREREREakLzkkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiIiIiEiNMEkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiOgtUVhYCDs7O5w8ebJazxsVFYUOHTqgpKSkWs9LRETlY5JGRERqafz48ZDJZGUeV69ere2qqa1169bBysoKLi4u0jaZTIbdu3eXKTt+/HgMHDiwUuft168fZDIZ/v3vf1dTTYmI6EWYpBERkdry8vJCZmam0sPGxqZMucLCwlqonfpZs2YN/Pz8VHLuCRMmYM2aNSo5NxERKWOSRkREaktHRwfm5uZKD7lcDjc3N0ybNg2ffvopGjRogJ49ewIAEhMT0adPHxgaGsLMzAxjxozB7du3pfM9evQIY8eOhaGhIRQKBYKCguDm5oaZM2dKZcrreTIxMUFERIT0/NatW/Dx8UHdunVRv359eHt7Iz09Xdpf2ku1YsUKKBQK1K9fH1OnTkVRUZFUpqCgAHPmzIGlpSV0dHTQrFkzbNiwAUII2NnZYcWKFUp1uHTpEjQ0NJCamlpurM6fP4+rV6+ib9++VYwykJ6eXm6vpZubm1RmwIABiIuLw7Vr16p8fiIiqhomaURE9EbauHEjNDU1cfLkSXz33XfIzMxEjx490L59e5w7dw7R0dH466+/MGzYMOmY2bNn4/Dhw9i1axcOHjyII0eOID4+vkrXzcvLg7u7OwwNDXHs2DGcOHEChoaG8PLyUurRO3z4MFJTU3H48GFs3LgRERERSone2LFjsXXrVqxevRpJSUn417/+BUNDQ8hkMvj6+iI8PFzpumFhYejevTuaNm1abr2OHTuG5s2bo06dOlVqDwBYWloq9VZeuHAB9evXh6urq1TGysoKDRs2xPHjx6t8fiIiqhrN2q4AERFRRaKiomBoaCg97927N3766ScAgJ2dHZYtWybtW7BgATp27IjAwEBpW1hYGCwtLZGcnAwLCwts2LABP/zwg9TztnHjRjRu3LhKddq6dSs0NDTw/fffQyaTAQDCw8NhYmKCI0eOoFevXgCAunXrYu3atZDL5bC3t0ffvn0RGxuLSZMmITk5Gdu3b0dMTAw8PDwAALa2ttI1JkyYgAULFiAuLg5OTk4oKirCjz/+iOXLl1dYr/T0dFhYWJS7b8SIEZDL5UrbCgoKpF43uVwOc3NzAEB+fj4GDhyIrl27wt/fX+mYRo0aKfUYEhGRajBJIyIiteXu7o7Q0FDpuYGBgfRvR0dHpbLx8fE4fPiwUlJXKjU1FY8fP0ZhYSG6du0qba9Xrx5atGhRpTrFx8fj6tWrMDIyUtqen5+vNBSxVatWSomRQqHAxYsXAQAJCQmQy+Xo0aNHuddQKBTo27cvwsLC4OTkhKioKOTn52Po0KEV1uvx48fQ1dUtd9+qVaukZLDU3LlzUVxcXKbsxIkT8eDBA8TExEBDQ3nAjZ6eHvLy8iqsAxERVQ8maUREpLYMDAxgZ2dX4b5nlZSUoH///li6dGmZsgqFAikpKZW6pkwmgxBCaduzc8lKSkrQqVMnbN68ucyxpqam0r+1tLTKnLd0CXs9Pb2X1sPPzw9jxozBqlWrEB4eDh8fH+jr61dYvkGDBlIS+Dxzc/MycTQyMkJOTo7StoCAAERHRyMuLq5MEgoAd+/eVWojERGpBpM0IiJ6K3Ts2BGRkZGwtraGpmbZjzc7OztoaWnhzJkzaNKkCQDg3r17SE5OVurRMjU1RWZmpvQ8JSVFqfeoY8eO2LZtGxo2bPhK878AoE2bNigpKcHRo0fL9HCV6tOnDwwMDBAaGor9+/fj2LFjLzxnhw4dEBoaCiGENAyzKiIjI7Fo0SLs37+/3HlvpT2FHTp0qPK5iYioarhwCBERvRWmTp2Ku3fvYsSIEdIqhAcPHoSvry+Ki4thaGiIiRMnYvbs2YiNjcWlS5cwfvz4MkP63n//faxduxbnz5/HuXPnMGXKFKVesVGjRqFBgwbw9vbG8ePHkZaWhqNHj2LGjBnIyMioVF2tra0xbtw4+Pr6Yvfu3UhLS8ORI0ewfft2qYxcLsf48ePx+eefw87OTmmYZnnc3d3x6NEjXL58uQpRe+rSpUsYO3Ys5s6di1atWiErKwtZWVm4e/euVObMmTPQ0dF5aT2IiOj1MUkjIqK3goWFBU6ePIni4mJ4enqidevWmDFjBoyNjaVEbPny5XB1dcWAAQPg4eGBbt26oVOnTkrnCQoKgqWlJVxdXTFy5EjMmjVLaZihvr4+jh07hiZNmmDw4MFwcHCAr68vHj9+XKWetdDQUPztb3/Dxx9/DHt7e0yaNAmPHj1SKjNx4kQUFhbC19f3peerX78+Bg8eXO4wzJc5d+4c8vLyEBAQAIVCIT0GDx4sldmyZQtGjRr1wiGXRERUPWTi+YH3RERE7xA3Nze0b98ewcHBtV2VMk6ePAk3NzdkZGTAzMzspeUvXrwIDw+Pchc2eR3/93//B3t7e5w7d67cm4kTEVH1Yk8aERGRmikoKMDVq1fxz3/+E8OGDatUggY8neu2bNmyal8mPy0tDSEhIUzQiIhqCBcOISIiUjNbtmzBxIkT0b59e2zatKlKx44bN67a6+Pk5AQnJ6dqPy8REZWPwx2JiIiIiIjUCIc7EhERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqZH/B5kQnyGaY1xiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.stats import phase_dispersion_detection_level, phase_dispersion_probability\n", + "\n", + "# number of trials (the number of independent frequencies)\n", + "# we searched over\n", + "ntrial = int((frequencies[-1] - frequencies[0]) / df_min)\n", + "\n", + "# number of time bins in the light curve\n", + "nsamples = len(lc.time)\n", + "\n", + "pdm_det_level = phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=ntrial)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(pdm_det_level, label='PDM det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, pdmstat, color='gray', label='PDM statistics', alpha=0.5)\n", + "\n", + "#for c in cand_freqs_ef:\n", + "# plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "#for c in cand_freqs_z:\n", + "# plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's also calculate the significance of the deepest dip:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The probability of the minimum at 0.8313536003155265 Hz is: p = 4.221416326686607e-15\n" + ] + } + ], + "source": [ + "min_idx = np.argmin(pdmstat)\n", + "\n", + "pval = phase_dispersion_probability(pdmstat[min_idx], nsamples, nbin, ntrial=ntrial)\n", + "\n", + "print(f\"The probability of the minimum at {freq[min_idx]} Hz is: p = {pval}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.html b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.html new file mode 100644 index 000000000..e13f446f9 --- /dev/null +++ b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.html @@ -0,0 +1,821 @@ + + + + + + + + Simulate a dataset — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
# %load_ext autoreload
+# %autoreload 2
+# %matplotlib notebook
+
+import numpy as np
+from stingray.pulse.search import epoch_folding_search, z_n_search
+import matplotlib.pyplot as plt
+import seaborn as sb
+import matplotlib as mpl
+mpl.rcParams['figure.figsize'] = (10, 6)
+
+
+
+
+

Simulate a dataset

+

Let us simulate a pulsar: we create a sinusoidal light curve and use Stingray’s event simulator (in Eventlist.simulate_times) to simulate an event list with that light curve.

+
+
[2]:
+
+
+
def sinusoid(times, frequency, baseline, amplitude, phase):
+    return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))
+
+
+
+
+
[3]:
+
+
+
from stingray import Lightcurve
+
+period = 1.203501
+mean_countrate = 50
+pulsed_fraction = 0.2
+bin_time = 0.01
+obs_length = 3000
+
+t = np.arange(0, obs_length, bin_time)
+
+# The continuous light curve
+counts = sinusoid(t, 1 / period, mean_countrate,
+                  0.5 * mean_countrate * pulsed_fraction, 0) * bin_time
+lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],
+                dt=bin_time)
+
+
+
+
+
[4]:
+
+
+
from stingray.events import EventList
+
+# use the light curve above to simulate an event list for this pulsar.
+events = EventList()
+events.simulate_times(lc)
+
+
+
+
+
+

Pulsation search with epoch folding.

+

Let us assume we have already an estimate of the pulse period, for example because we found a candidate in the power density spectrum with a period of ~1.2. We search around that period with the epoch folding.

+

Epoch folding consists of cutting the light curve at every pulse period and summing up all the intervals obtained in this way. We get an average pulse profile. In this example, where the pulse was plotted twice for visual clarity. If the candidate pulse frequency was even slightly incorrect, we would have obtained a much shallower pulse profile, or no pulse profile at all.

+
+
[5]:
+
+
+
from stingray.pulse.pulsar import fold_events
+from stingray.pulse.search import plot_profile
+nbin = 32
+
+ph, profile, profile_err = fold_events(events.time, 1/period, nbin=nbin)
+_ = plot_profile(ph, profile)
+
+ph, profile, profile_err = fold_events(events.time, 1/1.1, nbin=nbin)
+_ = plot_profile(ph, profile)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png +
+
+

Therefore, typically we try a number of frequencies around the candidate we found with the power spectrum or other means, and search for the frequency that gives the “best” pulsed profile. How do we evaluate this best frequency? We use the chi squared statistics.

+

We use a flat pulsed profile (no pulsation) as model, and we calculate the chi square of the actual pulsed profile with respect to this flat model:

+
+\[S = \sum_i\frac{(P_i - \overline{P})^2}{\sigma^2}\]
+

If there is no pulsation, the chi squared will assume a random value distributed around the number of degrees of freedom \(n - 1\) (where \(n\) is the number of bins in the profile) with a well defined statistical distribution (\(\chi^2_{n - 1}\)). If there is pulsation, the value will be much larger. Stingray has a function that does this: stingray.pulse.search.epoch_folding_search.

+

For the frequency resolution of the periodogram, one usually chooses at least the same frequency resolution of the FFT, i. e., \(df_{\rm min}=1/(t_1 - t_0)\). In most cases, a certain degree of oversampling is used.

+
+
[6]:
+
+
+
# We will search for pulsations over a range of frequencies around the known pulsation period.
+df_min = 1/obs_length
+oversampling=15
+df = df_min / oversampling
+frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)
+
+freq, efstat = epoch_folding_search(events.time, frequencies, nbin=nbin)
+
+# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, efstat, label='EF statistics')
+plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')
+plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('EF Statistics')
+_ = plt.legend()
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png +
+
+

A peak is definitely there. Far from the peak, the periodogram follows approximately a :math:`chi^2` distribution with :math:`n - 1` degrees of freedom, where \(n\) is the number of bins in the pulse profile used to calculate the statistics. In fact, its mean is \(n-1\) as shown in the figure.

+

But close to the correct frequency, as described in Leahy et al. 1983, 1987 the peak in the epoch folding periodogram has the shape of a sinc squared function (whose secondary lobes are in this case barely visible above noise).

+
+ +
+

Thresholding

+

When can a peak in the EF or \(Z_n^2\) periodogram be considered a pulsation?

+

Since both the EF and \(Z_n^2\) of noise follow precise statistical distributions (\(\chi^2_{\rm nbin}\) in one case, \(\chi^2_n\) in the other), we can use the inverse survival functions of these statistical distributions to find the peaks that are not expected by noise.

+

In Stingray, the thresholds are defined in stingray.stats.fold_detection_level and stingray.stats.z2_n_detection_level respectively.

+

The ntrial parameter should be set to an estimate of the statistically independent frequencies in the periodogram. A good estimate can be

+
+\[N_{\rm trial} \sim (f_{\rm max} - f_{\rm min}) / df_{\rm min} =(f_{\rm max} - f_{\rm min}) (t_1 - t_0)\]
+

, where \(f_{\rm min}\) and \(f_{\rm max}\) are the maximum and minimum frequencies of the periodogram, \(df_{\rm min}\) was defined above and \(t_0\) ans \(t_1\) the start and end of the observation.

+

Moreover, the stingray.pulse.search.search_best_peaks helps finding the best value for nearby candidates.

+
+
[8]:
+
+
+
from stingray.pulse.search import search_best_peaks
+from stingray.stats import fold_detection_level, z2_n_detection_level
+
+ntrial = (frequencies[-1] - frequencies[0]) / df_min
+z_detlev = z2_n_detection_level(n=1, epsilon=0.001, ntrial=len(freq))
+ef_detlev = fold_detection_level(nbin, epsilon=0.001, ntrial=len(freq))
+
+cand_freqs_ef, cand_stat_ef = search_best_peaks(freq, efstat, ef_detlev)
+cand_freqs_z, cand_stat_z = search_best_peaks(freq, zstat, z_detlev)
+
+# ---- PLOTTING --------
+plt.figure()
+plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.')
+plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray')
+
+plt.plot(freq, (zstat - nharm), label='$Z^2_1$ statistics')
+plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)
+
+for c in cand_freqs_ef:
+    plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)
+for c in cand_freqs_z:
+    plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)
+
+plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')
+plt.xlim([frequencies[0], frequencies[-1]])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Statistics - d.o.f.')
+plt.legend()
+
+plt.figure(figsize=(15, 5))
+plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')
+plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)
+
+plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')
+plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.', zorder=10)
+plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray', zorder=10)
+
+for c in cand_freqs_ef:
+    plt.axvline(c, ls='-.', label='EF Candidate', color='gray', zorder=10)
+for c in cand_freqs_z:
+    plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)
+
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Statistics - d.o.f. (Zoom)')
+
+plt.ylim([-15, ef_detlev - nbin + 3])
+_ = plt.xlim([frequencies[0], frequencies[-1]])
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png +
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png +
+
+

Note that the side lobes of the sinc squared-like shape are producing spurious candidates here. For now, we do not have a method to eliminate these fairly obvious patterns, but it will be implemented in future releases

+
+
+

Fit peak with Sinc-squared and Gaussian functions

+
+
As we saw earlier, if the pulse frequency is stable during the observation, the peak shape is a Sinc squared function. Therefore we fit it to the peak with the function stingray.pulse.modeling.fit_sinc.
+
We have two possibilities:
+
+
    +
  • if obs_length is the length of the observation. If it is defined, it fixes width to \(1/(\pi*obs length)\), as expected from epoch folding periodograms. The other two free parameters are amplitude and mean.

  • +
  • if it is not defined, the width parameter can be used.

  • +
+

On the other hand, if the pulse frequency varies slightly, the peak oscillate and the integrated profile is a bell-shaped function. We can fit it with a Gaussian function (stingray.pulse.modeling.fit_gaussian) with the standard parameters: amplitude, mean, stddev.

+

We also provide the user with the constrains fixed, tied, bounds, in order to fix, link and/or constrain parameters.

+
+
[19]:
+
+
+
from stingray.pulse.modeling import fit_sinc
+
+fs=fit_sinc(freq, efstat-(nbin-1),amp=max(efstat-(nbin-1)), mean=cand_freqs_ef[0],
+            obs_length=obs_length)
+
+
+
+
+
[10]:
+
+
+
# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, efstat-(nbin-1), label='EF statistics')
+plt.plot(freq, fs(freq), label='Best fit')
+plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')
+plt.axvline(fs.mean[0], label='Fit frequency')
+
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('EF Statistics')
+plt.legend()
+
+plt.figure(figsize=(15, 5))
+plt.plot(freq, efstat-(nbin-1)-fs(freq))
+plt.xlabel('Frequency (Hz)')
+_ = plt.ylabel('Residuals')
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png +
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png +
+
+

On the other hand, if we want to fit with a Gaussian:

+
+
[11]:
+
+
+
from stingray.pulse.modeling import fit_gaussian
+
+fg=fit_gaussian(freq, efstat-(nbin-1),amplitude=max(efstat-(nbin-1)),
+                mean=cand_freqs_ef[0], stddev=1/(np.pi*obs_length))
+
+
+
+
+
[12]:
+
+
+
# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, efstat-(nbin-1), label='EF statistics')
+plt.plot(freq, fg(freq), label='Best fit')
+plt.axvline(1/period, alpha=0.5, color='r', label='Correct frequency')
+plt.axvline(fg.mean[0], alpha=0.5, label='Fit frequency')
+
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('EF Statistics')
+plt.legend()
+
+plt.figure(figsize=(15, 5))
+plt.plot(freq, efstat-(nbin-1)-fg(freq))
+plt.xlabel('Frequency (Hz)')
+_ = plt.ylabel('Residuals')
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png +
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png +
+
+
+
+

Phaseogram

+

Let us now calculate the phaseogram and plot it with the pulse profile. We do that with the functions phaseogram, plot_profile and plot_phaseogram from stingray.pulse.search

+
+
[13]:
+
+
+
from stingray.pulse.search import phaseogram, plot_phaseogram, plot_profile
+from matplotlib.gridspec import GridSpec
+
+# Calculate the phaseogram
+phaseogr, phases, times, additional_info = \
+            phaseogram(events.time, cand_freqs_ef[0], return_plot=True, nph=nbin, nt=32)
+
+# ---- PLOTTING --------
+
+# Plot on a grid
+plt.figure(figsize=(15, 15))
+gs = GridSpec(2, 1, height_ratios=(1, 3))
+ax0 = plt.subplot(gs[0])
+ax1 = plt.subplot(gs[1], sharex=ax0)
+
+mean_phases = (phases[:-1] + phases[1:]) / 2
+plot_profile(mean_phases, np.sum(phaseogr, axis=1), ax=ax0)
+# Note that we can pass arguments to plt.pcolormesh, in this case vmin
+_ = plot_phaseogram(phaseogr, phases, times, ax=ax1, vmin=np.median(phaseogr))
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png +
+
+
+

Examples of interactive phaseograms

+
+

First: shift the rows of the phaseogram interactively

+
+
[14]:
+
+
+
def shift_phaseogram(phaseogr, tseg, delay_fun):
+    """Shift the phaseogram rows according to an input delay function.
+
+    Parameters
+    ----------
+    phaseogr : 2-d array
+        The phaseogram, as returned by ``phaseogram``
+    freq : float
+        The pulse frequency
+    tseg : float
+        The integration time for each row of the phaseogram
+    delay_fun : function
+        Function that gives the delay (in seconds) for each row of the
+        phaseogram
+
+    Returns
+    -------
+    phaseogram_new : 2-d array
+        The shifted phaseogram
+
+    """
+    # Assume that the phaseogram is repeated twice in phase
+    nbin = phaseogr.shape[0] / 2
+    ntimes = phaseogr.shape[1]
+
+    times = np.arange(0, tseg * ntimes, tseg)
+    phase_delays = delay_fun(times)  # This gives the delay in units of time!
+
+    delayed_bins = np.array(np.rint(phase_delays * nbin), dtype=int)
+    phaseogram_new = np.copy(phaseogr)
+    for i in range(ntimes):
+        phaseogram_new[:, i] = np.roll(phaseogram_new[:, i],
+                                       delayed_bins[i])
+
+    return phaseogram_new
+
+
+def interactive_phaseogram(phas, binx, biny, df=0, dfdot=0):
+    import matplotlib.pyplot as plt
+    from matplotlib.widgets import Slider, Button, RadioButtons
+
+    fig, ax = plt.subplots()
+    plt.subplots_adjust(left=0.25, bottom=0.30)
+    tseg = np.median(np.diff(biny))
+    tobs = tseg * phas.shape[0]
+    delta_df_start = 2 / tobs
+    df_order_of_mag = int(np.log10(delta_df_start))
+    delta_df = delta_df_start / 10 ** df_order_of_mag
+
+    delta_dfdot_start = 8 / tobs ** 2
+    dfdot_order_of_mag = int(np.log10(delta_dfdot_start))
+    delta_dfdot = delta_dfdot_start / 10 ** dfdot_order_of_mag
+
+    pcolor = plt.pcolormesh(binx, biny, phas.T, cmap='magma')
+    l,  = plt.plot(np.ones_like(biny), biny, zorder=10, lw=2, color='w')
+    plt.xlabel('Phase')
+    plt.ylabel('Times')
+    plt.colorbar()
+
+    axcolor = 'lightgoldenrodyellow'
+    axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)
+    axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)
+    axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)
+
+    sfreq = Slider(axfreq, 'Delta freq x$10^{}$'.format(df_order_of_mag),
+                   -delta_df, delta_df, valinit=df)
+    sfdot = Slider(axfdot, 'Delta fdot x$10^{}$'.format(dfdot_order_of_mag),
+                   -delta_dfdot, delta_dfdot, valinit=dfdot)
+    spepoch = Slider(axpepoch, 'Delta pepoch',
+                     0, biny[-1] - biny[0], valinit=0)
+
+    def update(val):
+        fdot = sfdot.val * 10 ** dfdot_order_of_mag
+        freq = sfreq.val * 10 ** df_order_of_mag
+        pepoch = spepoch.val
+        delay_fun = lambda times: (times - pepoch) * freq + \
+                                   0.5 * (times - pepoch) ** 2 * fdot
+        new_phaseogram = shift_phaseogram(phas, tseg, delay_fun)
+        pcolor.set_array(new_phaseogram.T.ravel())
+        l.set_xdata(1 + delay_fun(biny - biny[0]))
+        fig.canvas.draw_idle()
+
+    resetax = plt.axes([0.8, 0.020, 0.1, 0.04])
+    button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
+
+    def reset(event):
+        sfreq.reset()
+        sfdot.reset()
+        spepoch.reset()
+        pcolor.set_array(phas.T.ravel())
+        l.set_xdata(1)
+
+    button.on_clicked(reset)
+
+    sfreq.on_changed(update)
+    sfdot.on_changed(update)
+    spepoch.on_changed(update)
+
+    spepoch._dummy_reset_button_ref = button
+
+    plt.show()
+    return
+
+
+
+
+
[15]:
+
+
+
# f0 = 0.0001
+# fdot = 0
+# delay_fun = lambda times: times * f0 + 0.5 * times ** 2 * fdot
+
+# new_phaseogr = shift_phaseogram(phaseogr, times[1] - times[0], delay_fun)
+# _ = plot_phaseogram(new_phaseogr, phases, times, vmin=np.median(phaseogr))
+
+
+
+
+
[16]:
+
+
+
interactive_phaseogram(phaseogr, phases, times, df=0, dfdot=0)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png +
+
+
+
+

Second: overplot a line with a pulse frequency solution, then update the full phaseogram

+

This interactive phaseogram is implemented in HENDRICS, in the script HENphaseogram

+
+
[17]:
+
+
+
class InteractivePhaseogram(object):
+    def __init__(self, ev_times, freq, nph=128, nt=128, fdot=0, fddot=0):
+        import matplotlib.pyplot as plt
+        from matplotlib.widgets import Slider, Button, RadioButtons
+
+        self.df=0
+        self.dfdot=0
+
+        self.freq = freq
+        self.fdot = fdot
+        self.nt = nt
+        self.nph = nph
+        self.ev_times = ev_times
+
+        self.phaseogr, phases, times, additional_info = \
+                phaseogram(ev_times, freq, return_plot=True, nph=nph, nt=nt,
+                           fdot=fdot, fddot=fddot, plot=False)
+        self.phases, self.times = phases, times
+        self.fig, ax = plt.subplots()
+        plt.subplots_adjust(left=0.25, bottom=0.30)
+        tseg = np.median(np.diff(times))
+        tobs = tseg * nt
+        delta_df_start = 2 / tobs
+        self.df_order_of_mag = int(np.log10(delta_df_start))
+        delta_df = delta_df_start / 10 ** self.df_order_of_mag
+
+        delta_dfdot_start = 2 / tobs ** 2
+        self.dfdot_order_of_mag = int(np.log10(delta_dfdot_start))
+        delta_dfdot = delta_dfdot_start / 10 ** self.dfdot_order_of_mag
+
+        self.pcolor = plt.pcolormesh(phases, times, self.phaseogr.T, cmap='magma')
+        self.l1,  = plt.plot(np.zeros_like(times) + 0.5, times, zorder=10, lw=2, color='w')
+        self.l2,  = plt.plot(np.ones_like(times), times, zorder=10, lw=2, color='w')
+        self.l3,  = plt.plot(np.ones_like(times) + 0.5, times, zorder=10, lw=2, color='w')
+
+        plt.xlabel('Phase')
+        plt.ylabel('Time')
+        plt.colorbar()
+
+        axcolor = 'lightgoldenrodyellow'
+        self.axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)
+        self.axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)
+        self.axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)
+
+        self.sfreq = Slider(self.axfreq, 'Delta freq x$10^{}$'.format(self.df_order_of_mag),
+                       -delta_df, delta_df, valinit=self.df)
+        self.sfdot = Slider(self.axfdot, 'Delta fdot x$10^{}$'.format(self.dfdot_order_of_mag),
+                       -delta_dfdot, delta_dfdot, valinit=self.dfdot)
+        self.spepoch = Slider(self.axpepoch, 'Delta pepoch',
+                         0, times[-1] - times[0], valinit=0)
+
+        self.sfreq.on_changed(self.update)
+        self.sfdot.on_changed(self.update)
+        self.spepoch.on_changed(self.update)
+
+        self.resetax = plt.axes([0.8, 0.020, 0.1, 0.04])
+        self.button = Button(self.resetax, 'Reset', color=axcolor, hovercolor='0.975')
+
+        self.recalcax = plt.axes([0.6, 0.020, 0.1, 0.04])
+        self.button_recalc = Button(self.recalcax, 'Recalculate', color=axcolor, hovercolor='0.975')
+
+        self.button.on_clicked(self.reset)
+        self.button_recalc.on_clicked(self.recalculate)
+
+        plt.show()
+
+    def update(self, val):
+        fdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag
+        freq = self.sfreq.val * 10 ** self.df_order_of_mag
+        pepoch = self.spepoch.val + self.times[0]
+        delay_fun = lambda times: (times - pepoch) * freq + \
+                                   0.5 * (times - pepoch) ** 2 * fdot
+        self.l1.set_xdata(0.5 + delay_fun(self.times - self.times[0]))
+        self.l2.set_xdata(1 + delay_fun(self.times - self.times[0]))
+        self.l3.set_xdata(1.5 + delay_fun(self.times - self.times[0]))
+
+        self.fig.canvas.draw_idle()
+
+    def recalculate(self, event):
+        dfdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag
+        dfreq = self.sfreq.val * 10 ** self.df_order_of_mag
+        pepoch = self.spepoch.val + self.times[0]
+
+        self.fdot = self.fdot - dfdot
+        self.freq = self.freq - dfreq
+
+        self.phaseogr, _, _, _ = \
+                phaseogram(self.ev_times, self.freq, fdot=self.fdot, plot=False,
+                           nph=self.nph, nt=self.nt, pepoch=pepoch)
+
+        self.l1.set_xdata(0.5)
+        self.l2.set_xdata(1)
+        self.l3.set_xdata(1.5)
+
+        self.sfreq.reset()
+        self.sfdot.reset()
+        self.spepoch.reset()
+
+        self.pcolor.set_array(self.phaseogr.T.ravel())
+
+        self.fig.canvas.draw()
+
+    def reset(self, event):
+        self.sfreq.reset()
+        self.sfdot.reset()
+        self.spepoch.reset()
+        self.pcolor.set_array(self.phaseogr.T.ravel())
+        self.l1.set_xdata(0.5)
+        self.l2.set_xdata(1)
+        self.l3.set_xdata(1.5)
+
+    def get_values(self):
+        return self.freq, self.fdot
+
+
+
+
+
[18]:
+
+
+
times_delayed = events.time + 0.5 * (events.time - events.time[0]) ** 2 * 3e-8 / cand_freqs_ef[0]
+ip = InteractivePhaseogram(times_delayed, cand_freqs_ef[0], nt=32)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png +
+
+

An evolved implementation of this interactive phaseogram is implemented in HENDRICS (command line tool HENphaseogram)

+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb new file mode 100644 index 000000000..9f8ed18fa --- /dev/null +++ b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb @@ -0,0 +1,910 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import epoch_folding_search, z_n_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulate a dataset\n", + "\n", + "Let us simulate a pulsar: we create a sinusoidal light curve and use Stingray's event simulator (in `Eventlist.simulate_times`) to simulate an event list with that light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 3000\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.events import EventList\n", + "\n", + "# use the light curve above to simulate an event list for this pulsar.\n", + "events = EventList()\n", + "events.simulate_times(lc)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pulsation search with epoch folding.\n", + "\n", + "Let us assume we have already an estimate of the pulse period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the epoch folding.\n", + "\n", + "Epoch folding consists of cutting the light curve at every pulse period and summing up all the intervals obtained in this way. We get an average pulse profile. In this example, where the pulse was plotted twice for visual clarity. If the candidate pulse frequency was even slightly incorrect, we would have obtained a much shallower pulse profile, or no pulse profile at all." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHlElEQVR4nO3de3wU9b3/8feQbG4ISwgmISVEPGq4eilRCMd6OYmAgqitpRSboiKKVRELVvFS0cMp1iNiBRWlKFXUtFSweDkRUgH1xz1ACxXRVkWohKgNGyEhWZL5/UFZXXPb3ex3r6/n45HHg+x8Z/OdYfLZvGe+8x3Ltm1bAAAAAICg6hTuDgAAAABALCJsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGK4OxAtmpqa9Nlnn6lLly6yLCvc3QEAAAAQJrZt66uvvlJOTo46dWr9+hVhy0efffaZcnNzw90NAAAAABFi79696tWrV6vLCVs+6tKli6RjO7Rr165h7g0AAACAcKmpqVFubq4nI7SGsOWj40MHu3btStgCAAAA0O7tRUyQAQAAAAAGELYAAAAAwICwhq2ZM2fKsiyvr+zsbEmS2+3WHXfcoUGDBqlz587KycnRT3/6U3322Wde71FfX69bbrlFPXr0UOfOnTVmzBjt27fPq011dbVKSkrkdDrldDpVUlKigwcPhmozAQAAAMShsF/ZGjBggPbv3+/52rFjhySptrZWW7du1b333qutW7dq2bJl+uCDDzRmzBiv9adOnarly5ertLRU7777rg4dOqTRo0ersbHR02b8+PHavn27ysrKVFZWpu3bt6ukpCSk2wkAAAAgvoR9gozExETP1axvcjqdWrVqlddr8+bN0znnnKNPP/1UvXv3lsvl0qJFi/T888+ruLhYkrRkyRLl5uaqvLxcI0aM0K5du1RWVqYNGzZoyJAhkqSFCxeqsLBQu3fvVn5+vvmNBAAAABB3wn5l68MPP1ROTo769OmjcePG6aOPPmq1rcvlkmVZ6tatmySpoqJCbrdbw4cP97TJycnRwIEDtW7dOknS+vXr5XQ6PUFLkoYOHSqn0+lp05L6+nrV1NR4fQEAAACAr8IatoYMGaLnnntOb775phYuXKjKykoNGzZMX375ZbO2R44c0Z133qnx48d7pl6vrKxUUlKS0tPTvdpmZWWpsrLS0yYzM7PZ+2VmZnratGT27Nmee7ycTicPNAYAAADgl7CGrYsvvlg/+MEPNGjQIBUXF+v111+XJP3ud7/zaud2uzVu3Dg1NTXpiSeeaPd9bdv2mvO+pfnvv93m22bMmCGXy+X52rt3r6+bBQAAAADhH0b4TZ07d9agQYP04Ycfel5zu90aO3asPv74Y61atcrrgcLZ2dlqaGhQdXW11/tUVVUpKyvL0+bAgQPNftbnn3/uadOS5ORkzwOMeZAxAAAAAH9FVNiqr6/Xrl271LNnT0lfB60PP/xQ5eXlysjI8Go/ePBgORwOr4k09u/fr507d2rYsGGSpMLCQrlcLm3atMnTZuPGjXK5XJ42AAAAABBsYZ2NcPr06br00kvVu3dvVVVVadasWaqpqdGECRN09OhRXXnlldq6datee+01NTY2eu6x6t69u5KSkuR0OjVx4kRNmzZNGRkZ6t69u6ZPn+4ZlihJ/fr108iRIzVp0iQ99dRTkqTrr79eo0ePZiZCAAAAAMaENWzt27dPP/7xj/XFF1/oxBNP1NChQ7Vhwwbl5eXpk08+0YoVKyRJZ555ptd6q1ev1gUXXCBJmjt3rhITEzV27FjV1dWpqKhIixcvVkJCgqf9Cy+8oClTpnhmLRwzZozmz58fkm0EAAAAEJ8s27btcHciGtTU1MjpdMrlcnH/FgAAABDHfM0GEXXPFgAAAADECsIWAAAAABhA2AIAAAAAA8I6QQYQbWzbVp270ef2qY6ENh+eDQDoGOoygEhG2AJ8ZNu2rlywXhV7qttv/G8FeelaOrmQD3YAMIC6DCDSMYwQ8FGdu9GvD3RJ2rKn2q8zrgAA31GXAUQ6rmwBAdhyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMoBIRNgCApCWlKC0JH59ACBSUJcBRCKGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYAAPpAAMq21o9KldqiNBlmUZ7g0AgLoMIFQIW4BhBbPKfWuXl66lkwv5YAcAw6jLAEKFYYSAAamOBBXkpfu1zpY91apz+3a2FQDgH+oygHDgyhZggGVZWjq50KcP6dqGRp/PsgIAAkNdBhAOhC3AEMuylJbErxgARArqMoBQYxghAAAAABjA6R3EJNu2/Rpnz4xTAGAWdRlAPCJsIebYtq0rF6xXxZ5qn9dhxikAMIe6DCBeMYwQMafO3ejXB7rEjFMAYBJ1GUC84soWYtqWe4qVlpTQ6nJmnAKA0KIuA4gnhC3EtLSkBGaeAoAIQl0GEE8YRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMRwdwDwlW3bqnM3ttuutqH9NgCAjvG1JkvUZQDxi7CFqGDbtq5csF4Ve6rD3RUAiHvUZADwDcMIERXq3I1+f6gX5KUr1ZFgqEcAEL8CqckSdRlA/OHKFqLOlnuKlZbU/od1qiNBlmWFoEcAEL98rckSdRlA/CFsIeqkJSUoLYlDFwAiATUZAFrHMEIAAAAAMICwBQAAAAAGELYAAAAAwAAGWSOo/HnuisTN0oFiPwPwFfXCPH/3scR+BuIFYQtBE8hzVwry0rV0ciEfOH5gPwPwFfXCvECfOcZ+BuIDwwgRNIE8d2XLnmq/zwbGO/YzAF9RL8wL9Jlj7GcgPnBlC0a099yV2oZGFcwqD2GPYhP7GYCvqBfm+fLMMfYzEF8IWzCC566EBvsZgK+oF+axjwF8G8MIAQAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMYMochF1tQ/vPGfGlDQAgONqrudRkAPANYQthx/NGACCyUJcBIDgYRoiwSHUkqCAv3e/1CvLSlepo+4GRAAD/BVKXqckA0DaubCEsLMvS0smFqnP7NxQl1ZEgy7IM9Sr8GFIJIFwCqcuxXpMlhlQC6BjCFsLGsiylJXEIfhNDdwCEE3W5OeoygI5gGCEQZgypBIDIwpBKAMHC6SsgzBhSCQCRhSGVAIKFsAVEAIbuAEBkoS4DCAaGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1rA1c+ZMWZbl9ZWdne1Zbtu2Zs6cqZycHKWmpuqCCy7Q3/72N6/3qK+v1y233KIePXqoc+fOGjNmjPbt2+fVprq6WiUlJXI6nXI6nSopKdHBgwdDsYkAAAAA4lTYr2wNGDBA+/fv93zt2LHDs+yhhx7SI488ovnz52vz5s3Kzs7WRRddpK+++srTZurUqVq+fLlKS0v17rvv6tChQxo9erQaGxs9bcaPH6/t27errKxMZWVl2r59u0pKSkK6nQAAAADiS2LYO5CY6HU16zjbtvXoo4/q7rvv1ve//31J0u9+9ztlZWXpxRdf1A033CCXy6VFixbp+eefV3FxsSRpyZIlys3NVXl5uUaMGKFdu3aprKxMGzZs0JAhQyRJCxcuVGFhoXbv3q38/PzQbSwAAACAuBH2K1sffvihcnJy1KdPH40bN04fffSRJOnjjz9WZWWlhg8f7mmbnJys888/X+vWrZMkVVRUyO12e7XJycnRwIEDPW3Wr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAAAAB8FdawNWTIED333HN68803tXDhQlVWVmrYsGH68ssvVVlZKUnKysryWicrK8uzrLKyUklJSUpPT2+zTWZmZrOfnZmZ6WnTktmzZ3vu8XI6ncrNze3QtgIAAACIL2ENWxdffLF+8IMfaNCgQSouLtbrr78u6dhwweMsy/Jax7btZq9927fbtNS+vfeZMWOGXC6X52vv3r0+bRMAAAAASBEwjPCbOnfurEGDBunDDz/03Mf17atPVVVVnqtd2dnZamhoUHV1dZttDhw40Oxnff75582umn1TcnKyunbt6vUFAAAAAL6KqLBVX1+vXbt2qWfPnurTp4+ys7O1atUqz/KGhgatXbtWw4YNkyQNHjxYDofDq83+/fu1c+dOT5vCwkK5XC5t2rTJ02bjxo1yuVyeNgAAAAAQbGGdjXD69Om69NJL1bt3b1VVVWnWrFmqqanRhAkTZFmWpk6dql/96lc69dRTdeqpp+pXv/qV0tLSNH78eEmS0+nUxIkTNW3aNGVkZKh79+6aPn26Z1iiJPXr108jR47UpEmT9NRTT0mSrr/+eo0ePZqZCAEAAAAYE9awtW/fPv34xz/WF198oRNPPFFDhw7Vhg0blJeXJ0n6xS9+obq6Ov3sZz9TdXW1hgwZopUrV6pLly6e95g7d64SExM1duxY1dXVqaioSIsXL1ZCQoKnzQsvvKApU6Z4Zi0cM2aM5s+fH9qNBQAAABBXwhq2SktL21xuWZZmzpypmTNnttomJSVF8+bN07x581pt0717dy1ZsiTQbiJO1DY0dmg5ACC4qMsAol3YH2oMRIqCWeXh7gIA4BuoywCiXURNkAGEWqojQQV56e03/IaCvHSlOhLabwgA8Bt1GUAs4coW4pplWVo6uVB1bt+HoqQ6Etp91hsAIDDUZQCxhLCFuGdZltKS+FUAgEhBXQYQKxhGCAAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGJAY7g4g8tm2rTp3Y7vtahvabwMA6DjqMgBEB8IW2mTbtq5csF4Ve6rD3RUAgKjLABBNGEaINtW5G/3+QC/IS1eqI8FQjwAgvlGXASB6cGULPttyT7HSktr/sE51JMiyrBD0CADiG3UZACIbYQs+S0tKUFoShwwARArqMgBENoYRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMSAx3B+An25bcta0vd6RJlhW6/gBAPGmvBn8bNRkA4hphK8rYDYdlzf5Oq8sbew1RfcnrPn24pzoSZPFHAL7Btm3VuRt9bs8xhLhi27KfGSFr70afV/GnJkv8TqE56jIQ3QhbUabO3ai0NpYn7NuowfetUJ1S2n2vgrx0LZ1cSFGGpGMf6FcuWK+KPdU+r8MxhHhiNxz2K2hJ/tVkid8peKMuA9GPsBVtHGnqd+SZZi+nqV4VKTf69VZb9lQfC29JHAY4FuT9+UCXOIYQX755smvwkSdVq+RW2wZSkyV+p+CNugxEP34To0xqUqIqHris+YKGw9LDx/5ZcU+xlNS51feobWhUwaxyz7/b0t5yxKYt9xQrLSmh1eXfPIaAePTmL0Yq7YSurTfwoyZL1GW0j7oMRCfCVpSxLKuVs1Vfv5aWlCj5eEaLwoyWpCUlcFYUaEP7vyOB1WSJuoyWUZeB6MTU73Eo1ZGggrx0v9YpyEtXqqP1M2oAgMBRlwEgNnGKJA5ZlqWlkwuZ3QgAIgR1GQBiE2ErTrU+HBEAEA7UZQCIPQwjBAAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHciQvAONu2/ZplTWKmNQAwyd+6TE0GAkPYAmCUbdu6csF6Veyp9mu9grx0LZ1cyIc7AARZIHWZmgwEJmKGEc6ePVuWZWnq1Kme1w4dOqSbb75ZvXr1Umpqqvr166cnn3zSa736+nrdcsst6tGjhzp37qwxY8Zo3759Xm2qq6tVUlIip9Mpp9OpkpISHTx4MARbBaDO3eh30JKkLXuq/b4aBgBoXyB1mZoMBCYirmxt3rxZTz/9tE4//XSv12+77TatXr1aS5Ys0UknnaSVK1fqZz/7mXJycnTZZZdJkqZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoISFBkjR+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oUCc23JPsdKSEtpsU9vQqIJZ5SHqEQDEt/bqMjUZ6JiwX9k6dOiQrrrqKi1cuFDp6eley9avX68JEyboggsu0EknnaTrr79eZ5xxhrZs2SJJcrlcWrRokebMmaPi4mKdddZZWrJkiXbs2KHy8mOFYdeuXSorK9Nvf/tbFRYWqrCwUAsXLtRrr72m3bt3h3x7gXiWlpSgtKTEdr7aDmMAgOBpvy5Tk4GOCHvYuummmzRq1CgVFxc3W3buuedqxYoV+uc//ynbtrV69Wp98MEHGjFihCSpoqJCbrdbw4cP96yTk5OjgQMHat26dZKOBTan06khQ4Z42gwdOlROp9PTpiX19fWqqanx+gKiWW1Do2objrbxxfAQAAgl6jIQ+8I6jLC0tFRbt27V5s2bW1z+2GOPadKkSerVq5cSExPVqVMn/fa3v9W5554rSaqsrFRSUlKzK2JZWVmqrKz0tMnMzGz23pmZmZ42LZk9e7buv//+QDcNiDgMAwGAyEJdBmJf2K5s7d27V7feequWLFmilJSUFts89thj2rBhg1asWKGKigrNmTNHP/vZzzxDBFtj27bXbDktzZzz7TbfNmPGDLlcLs/X3r17fdwyIHKkOhJUkJfefsNvKMhLV6qDYSMAYAJ1GYgvYbuyVVFRoaqqKg0ePNjzWmNjo95++23Nnz9fLpdLd911l5YvX65Ro0ZJkk4//XRt375dDz/8sIqLi5Wdna2GhgZVV1d7Xd2qqqrSsGHDJEnZ2dk6cOBAs5//+eefKysrq9X+JScnKzk5OVibC4SFZVlaOrmQZ6kAQISgLgPxJWxhq6ioSDt27PB67ZprrlHfvn11xx13qLGxUW63W506eV98S0hIUFNTkyRp8ODBcjgcWrVqlcaOHStJ2r9/v3bu3KmHHnpIklRYWCiXy6VNmzbpnHPOkSRt3LhRLpfLE8iAWGZZltKSImLiUQCAqMtAPAnbb3qXLl00cOBAr9c6d+6sjIwMz+vnn3++br/9dqWmpiovL09r167Vc889p0ceeUSS5HQ6NXHiRE2bNk0ZGRnq3r27pk+frkGDBnkm3OjXr59GjhypSZMm6amnnpJ0bOr30aNHKz8/P4RbjJhg25K71vf2jjSJs5EAYA51GUAEi+jTKqWlpZoxY4auuuoq/etf/1JeXp7+53/+R5MnT/a0mTt3rhITEzV27FjV1dWpqKhIixcv9jxjS5JeeOEFTZkyxTNr4ZgxYzR//vyQbw+inG1Lz4yQ9m70fZ3codK1ZXywA4AJ1GUAES6iwtaaNWu8vs/Oztazzz7b5jopKSmaN2+e5s2b12qb7t27a8mSJcHoIuKZu9a/D3RJ2rvh2HpJnc30CQDiGXUZQISLqLAFRI3pf5eS0lpf3lArPXxK6PrTFobYAIgH1GUAEYiwBQQiKS06zooyxAbxij9m4w91GYhscVqXCVtALIuHITZxWrzRBv6YRSSjLjdHXY59cVyXCVtAvIimITa+iuPijTbEwx+ziA3U5WOoy7EvjusyYQuIF9EyxMYfcVy84aNY/GMWsYO6fAx1Ob7EWV0mbAGIDXFWvOGjWPxjFogW1GW0JM7qMmErFjX4OE6aMdKIJXFWvBFFfK3JEnUZsYW6DBC2YpKvZ4kYI414xQkJhJI/Z+6py4hX1GXEKMJWrHCkHfuQ3rvB93UYI414xQkJmBZITZaoy4hf1GXEKMJWrLCsY8XHl6lWGSONIKptaOzQ8pDhhARCyZ+aLFGXEVTUZSByELZiiWVRfI7jGR8hUzCrPNxd8A0nJBBq1GRv1OWQoS4DkYOwhdjDMz6MS3UkqCAvXVv2VPu8TkFeulIdCQZ75QP++AXCg7psHHUZiEyELT9d/cwmOVKjuygkNx3Rc//+908XbVJ9p5Sw9ifYkpuO6LkD/j/j46cL1rS5L/zZb5Gyj032uZN17IPaV50sadzT7Q8VaWyyPf/+6aJNSujU+h9apvZzpPz/ITCmjvvExjq98O9/T3quQkcTUoPSX3/7EY2oy4H1IxLqsj81WaIuo2XR+LvaHnfdYZ/aEbYQ0yZllqreauMX2j6ihVXjQtij2GFZlhI44QzAT9Rlc6jLQOQhbCGm1VspbZ8RaQpdXwAA1GUA8YWwBQBom20r2a73uXm9lcx9NgBgEnU5ahC2AACts2098OU05bvf83mV9x39dV/GHD7YAcAE6nJU6RTuDgAAIleyXe/XB7ok9XW/59cZVwCA76jL0YUrWwAAnzCxAQBEFupy5CNsAUCsMDyGn4kNAMBP1OW4R9gCgFjAGH4AiCzUZSjAe7a2bt2qHTt2eL7/05/+pMsvv1x33XWXGhoagtY5AIBvGMMPAJGFugwpwCtbN9xwg+68804NGjRIH330kcaNG6crrrhCS5cuVW1trR599NEgdxMA4CvG8ANAZKEux6+Armx98MEHOvPMMyVJS5cu1XnnnacXX3xRixcv1ssvvxzM/gEA/HR8DH+rX2184AMAgo+6HL8CClu2baup6dgdd+Xl5brkkkskSbm5ufriiy+C1zsAAAAAiFIBha2CggLNmjVLzz//vNauXatRo0ZJkj7++GNlZWUFtYMAAAAAEI0CCltz587V1q1bdfPNN+vuu+/WKaecIkn64x//qGHDhgW1gwAAAAAQjQKaIOOMM87wmo3wuP/93/9VYiKzyQMAAABAQFe2Tj75ZH355ZfNXj9y5IhOO+20DncKACJFsn1EyU3tf8m2w91VAIgL1GVEk4AuQ33yySdqbGxs9np9fb327dvX4U4BQKTwdSrejxP/Q/dlPCyp/QdR1lvJPLASAAJEXUY08StsrVixwvPvN998U06n0/N9Y2Oj/vznP6tPnz7B6x0AhEG9laz3Hf3V14+HUfY5+g89d+AKn9q+7+iv+zLm8MEOAD6iLiNa+RW2Lr/8ckmSZVmaMGGC1zKHw6GTTjpJc+bMCVrnAMQI21ayXe9T00bbVqqOqE7JhjvVBsvSfRlzfOyzrfu/nK4+R//h89v3db+nZLue56oACB8f63JE1GSJuoyo5VfYOv5srT59+mjz5s3q0aOHkU4BiCG2rQe+nKZ8P85GKkXa3HSafm0/Kl+GfxhhWT5/6N7ZY75PfwAk20d8Hv4CAMb4W5cjoSZL1GVEpYDu2fr444+D3Q8AMSrZrvcvaP3b2Z0+ULLqdVSpBnoVZL7+AdBkvisA0J5A6nJU1WSJuoyIEfA87X/+85/15z//WVVVVZ4rXsc988wzHe4YgNgzKbO03Q+/xKY6PfP5j0PUIwCIb+3VZWoy0DEBha37779fDzzwgAoKCtSzZ09Z3EwIhJaPY+2T7SMBvX2yfcSns33+zt5Ub6WovlPbYauRqXoBRBs/7kuNtrpMTQY6JqCwtWDBAi1evFglJSXB7g+A9gRyD5SffB2/zuxNAOJeCGqyRF0GolVAYauhoUHDhg0Ldl+AsGrvrGGgZyODLZCx9u87+h8729mGQKbVNT17U7J9RAlNrf/BECn/JwDMiIa6HOh9qdFYl9urycfbAPhaQGHruuuu04svvqh777032P0BwiYaZyPy5R4oycdhJX5Mqxuq2Zu4TwBeDA+fReSJtrrsa02WorMuU5PRDHW5XQGFrSNHjujpp59WeXm5Tj/9dDkcDq/ljzzySFA6B5gWyFlDX85Ghoov90D5JQJmb6pXsjY3naazO33g8zqR9H8CQ0I0VAvhF811Oeg1WQp7XQ6kJkuR838Cg6jLPgkobP31r3/VmWeeKUnauXOn1zImy0BU8eshicf4e/Mx/GRZ+mHDfUpVvb7bO10JPuxr/k9in6nhs4hA1OXIEkBNlvg/iQfUZd8EFLZWr14d7H4A4ePHQxIRKpbqlKJ6K0UJnfiwhregDp9FZKIuRxhqMtpGXW5dwM/ZAgAgHIwM1QIABIy63LqAwtaFF17Y5nDBt956K+AOAQAAAEAsCChsHb9f6zi3263t27dr586dmjBhQjD6BQAAAABRLaCwNXfu3BZfnzlzpg4dOtShDgEAEA7tPdMpMY6nLgaAcGitLkfTvV9BvWfrJz/5ic455xw9/PDDwXxbAACMi7ZnOgFArGutLv8065WomUSnUzDfbP369UpJiY4NBwDg+DOd/LG56TTVK76mLgaAUAmkLkeygK5sff/73/f63rZt7d+/X1u2bNG9994blI4BsaK9oUnHRdMlccSO9o7P5ACHzvl63EthPvb9eKZTo21r66fVqlOyCvhdjWrUZUSycNflsB/3PtTlaHpWV0Bhy+l0en3fqVMn5efn64EHHtDw4cOD0jEgVvg6NOl9R3/dlzGHD3aElKmhc/68b9iPfR+f6dTYZKtOjN6IBdRlRLJw1+WIOO5j6Fl7AYWtZ599Ntj9AGLK8Uvgff14snpf93tKtutjprggcgVyfL7v6N/umcRA3lfi2EdoUJcRySKpLnPcB1eHJsioqKjQrl27ZFmW+vfvr7POOitY/QKimx9Dk5LtI9yYj9Dy4/g8zqdhJX6+L8c+Qoq6jEgWAXWZ496MgMJWVVWVxo0bpzVr1qhbt26ybVsul0sXXnihSktLdeKJJwa7n0D08fUSuI/3tQBBZWqIhj/vy7GPUKMuI5KFuy5z3BsR0GyEt9xyi2pqavS3v/1N//rXv1RdXa2dO3eqpqZGU6ZMCXYfAQAAACDqBHRlq6ysTOXl5erXr5/ntf79++vxxx9nggwAAAAAUIBXtpqamuRwOJq97nA41NTENUgAAAAACChs/dd//ZduvfVWffbZZ57X/vnPf+q2225TUVFR0DoHAAAAANEqoGGE8+fP12WXXaaTTjpJubm5sixLn376qQYNGqQlS5YEu48AIpiphy8CAAJDXQYiR0BhKzc3V1u3btWqVav0/vvvy7Zt9e/fX8XFxcHuH4AIxzSxABBZqMtA5PBrGOFbb72l/v37q6amRpJ00UUX6ZZbbtGUKVN09tlna8CAAXrnnXeMdBRA5Dj+kER/+PLwRQBAYKjLQGTy68rWo48+qkmTJqlr167NljmdTt1www165JFH9L3vfS9oHQQQgUw9fBEAEBjqMhCR/Apbf/nLX/TrX/+61eXDhw/Xww8/3OFOAYgCph6+CAAIDHUZiDh+ha0DBw60OOW7580SE/X55593uFMAgH+zbZ/OVHPDOwCEgI81WaIu4xi/wtZ3vvMd7dixQ6ecckqLy//617+qZ8+eQekYIogfhUViWEJHtDeDlKcN4oNt64Evpynf/V64e4JIQ10OGWb2gwc1GQHwK2xdcskl+uUvf6mLL75YKSnel6nr6up03333afTo0UHtIMIsgMLyvqO/7suYwwd7AJhBCt+UbNf7/aHODe9xgLocUtRlHBdITZaoy/HOr7B1zz33aNmyZTrttNN08803Kz8/X5ZladeuXXr88cfV2Niou+++21RfEQaBFJa+7veUbNczbtxHx2eQ6ssf1WjDpMxSn36nuIIR+6jL5gVSl6nJ8cXXmixRl+OdX2ErKytL69at04033qgZM2bItm1JkmVZGjFihJ544gllZWUZ6SjCr73Ckmwf4QxgIAKYQUqieMebeitF9Z34QxneqMuGMLMf2kFNhq/8fqhxXl6e3njjDVVXV+vvf/+7bNvWqaeeqvT0dBP9QwRpt7C0c68R2sAMUgACQF02iLoMIAj8DlvHpaen6+yzzw5mXwAAAAAgZgQctgDAtCbb9unMfCfr2HBmIBC2bavJbr9dk+1DIyCG+VqTJeoyOqa9uhxNxxdhC0DE2vrpQZ/anZCcqP49u0RN4UXksG1b7+3/Sofqj4a7K0DE87UmS9RlBM6XulyQl66EKDm0LNvmVJ0vampq5HQ65XK51LVr13B3p2MaDku/yjn277s+k5I6h76tSZHSDwTEtm39cMF6bdlT7dd67z0wQmlJEX7+yN9jM9aP5QioL7UNR9X/l2/6tU5BXrqWTi4M7h+R1GVEqEBrshSDdTnWj+MI+YzypS5HwrHlazaI8N8AAPHGsiwtnVyoOndju21rGxpVMKs8BL1CPNhyT7HSkhLabZfqSOBsPeKGPzVZoi4juFqry6mO9mt1pCBsxbuG2o4tBwywLCvsZ6wQf9KSEiLjuKMuI8JQkxEuEVOXOyC6e4+Oe/iUcPcAAAgY30RdBhBuvtTceKrLHRAxYWv27Nm66667dOutt+rRRx/1vL5r1y7dcccdWrt2rZqamjRgwAD94Q9/UO/evSVJ9fX1mj59ul566SXV1dWpqKhITzzxhHr16uV5j+rqak2ZMkUrVqyQJI0ZM0bz5s1Tt27dQrmJkcORJuUOlfZu8H2d3KHH1gMAE+I9YFCXAUSSeK/JQRQRYWvz5s16+umndfrpp3u9/o9//EPnnnuuJk6cqPvvv19Op1O7du1SSsrXDxmcOnWqXn31VZWWliojI0PTpk3T6NGjVVFRoYSEY+M5x48fr3379qmsrEySdP3116ukpESvvvpq6DYykliWdG2Z5PbjjIQj7dh6ABAsBIyvUZcBhFsgNVmK3bocJGEPW4cOHdJVV12lhQsXatasWV7L7r77bl1yySV66KGHPK+dfPLJnn+7XC4tWrRIzz//vIqLiyVJS5YsUW5ursrLyzVixAjt2rVLZWVl2rBhg4YMGSJJWrhwoQoLC7V7927l5+eHYCsjkGXF3iw6AKILAcMbdRlAOAVSk6XYrstB0CncHbjppps0atQoT1g6rqmpSa+//rpOO+00jRgxQpmZmRoyZIheeeUVT5uKigq53W4NHz7c81pOTo4GDhyodevWSZLWr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAQZMcDhq9ffKADgDn+1mTqcrvCGrZKS0u1detWzZ49u9myqqoqHTp0SA8++KBGjhyplStX6oorrtD3v/99rV27VpJUWVmppKQkpaene62blZWlyspKT5vMzMxm75+Zmelp05LZs2fL6XR6vnJzczuyqQAAAADiTNiGEe7du1e33nqrVq5c6XUP1nFNTU2SpMsuu0y33XabJOnMM8/UunXrtGDBAp1//vmtvrdt217PQGnpeSjfbvNtM2bM0M9//nPP9zU1NQQuAAAAAD4LW9iqqKhQVVWVBg8e7HmtsbFRb7/9tubPn6/Dhw8rMTFR/fv391qvX79+evfddyVJ2dnZamhoUHV1tdfVraqqKg0bNszT5sCBA81+/ueff66srKxW+5ecnKzk5OQObSOCzLZ9G0fMVKQAYJ6vNVmiLgOIW2ELW0VFRdqxY4fXa9dcc4369u2rO+64Q8nJyTr77LO1e/durzYffPCB8vLyJEmDBw+Ww+HQqlWrNHbsWEnS/v37tXPnTs+kGoWFhXK5XNq0aZPOOeccSdLGjRvlcrk8gQxRwLalZ0ZIezeGuycAAGoyAPgkbGGrS5cuGjhwoNdrnTt3VkZGhuf122+/XT/60Y903nnn6cILL1RZWZleffVVrVmzRpLkdDo1ceJETZs2TRkZGerevbumT5+uQYMGeSbc6Nevn0aOHKlJkybpqaeeknRs6vfRo0fH70yE0chd6/+HOlORAoAZgdRkiboMIO6Efer3tlxxxRVasGCBZs+erSlTpig/P18vv/yyzj33XE+buXPnKjExUWPHjvU81Hjx4sWeZ2xJ0gsvvKApU6Z4Zi0cM2aM5s+fH/LtQZBM/7uU5MOHNVORAjHFtm3VuRt9bp/qSGjz3lwEia81WaIuAzGGuty+iApbx69YfdO1116ra6+9ttV1UlJSNG/ePM2bN6/VNt27d9eSJUuC0UVEgqQ0nkUDxBnbtnXlgvWq2FPt8zoFeelaOrkw7j7YQ46aDMQl6rJvwv6cLQAA2lPnbvTrA12Stuyp9uuMKwDAd9Rl30TUlS0AANqz5Z5ipSUltLq8tqFRBbPKQ9gjAIhv1OXWEbYAAFElLSlBaUl8fAFApKAut45hhAAAAABgAGELAAAAAAzgeh/Cx7aPPavFFw0+tgOihS/HNMc9Qs3XusyxiVjU3nHNcY8AELYQHrYtPTMisIdiArHg4VPC3QPAG3UZ8Y66DAMYRojwcNcG9oGeO/TYQzGBaORIO3YM+4vjHqEQSF3m2ES0C6Quc9zDD1zZQvhN//uxh2L6wpEmxdGD8BBjLEu6tsz34bPHcdwj1HytyxybiHaB1GWOe/iBsIXwS0qTkjqHuxdAaFgWxzsiH3UZ8YS6DIMYRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMSw90BAABMqW1o7NByAEBwxVtdJmwBAGJWwazycHcBAPAN8VaXCVswo6G2Y8sBIECpjgQV5KVry55qn9cpyEtXqiPBYK8iAHUZQJjEc10mbMGMh08Jdw8AxCnLsrR0cqHq3L4PRUl1JMiyLIO9igDUZQBhEs91mbCF4HGkSblDpb0bfF8nd+ix9QAgiCzLUloSH3HUZQCRIl7rcvxtMcyxLOnaMsntx1AUR9qx9QAAwUddBoCwImwhuCxLSuoc7l4AAI6jLgNA2PCcLQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAxLD3QEAQOywbVt17ka/1kl1JMiyLEM9AoD45m9dpiYHF2ELABAUtm3rygXrVbGn2q/1CvLStXRyIR/uABBkgdRlanJwMYwQABAUde5Gv4OWJG3ZU+331TAAQPsCqcvU5ODiyhYAIOi23FOstKSENtvUNjSqYFZ5iHoEAPGtvbpMTTaDsAUACLq0pASlJfERAwCRgrocHgwjBAAAAAADCFsAAAAAYABhCwAAAAAMiJiwNXv2bFmWpalTp7a4/IYbbpBlWXr00Ue9Xq+vr9ctt9yiHj16qHPnzhozZoz27dvn1aa6ulolJSVyOp1yOp0qKSnRwYMHzWwIAAAAAChCwtbmzZv19NNP6/TTT29x+SuvvKKNGzcqJyen2bKpU6dq+fLlKi0t1bvvvqtDhw5p9OjRamz8esrK8ePHa/v27SorK1NZWZm2b9+ukpISY9sDAAAAAGEPW4cOHdJVV12lhQsXKj09vdnyf/7zn7r55pv1wgsvyOFweC1zuVxatGiR5syZo+LiYp111llasmSJduzYofLyY1NX7tq1S2VlZfrtb3+rwsJCFRYWauHChXrttde0e/fukGwjAAAAgPgT9rB10003adSoUSouLm62rKmpSSUlJbr99ts1YMCAZssrKirkdrs1fPhwz2s5OTkaOHCg1q1bJ0lav369nE6nhgwZ4mkzdOhQOZ1OTxsAAAAACLawTrZfWlqqrVu3avPmzS0u//Wvf63ExERNmTKlxeWVlZVKSkpqdkUsKytLlZWVnjaZmZnN1s3MzPS0aUl9fb3q6+s939fU1LS7PQAAAABwXNjC1t69e3Xrrbdq5cqVSklJaba8oqJCv/nNb7R161ZZluXXe9u27bVOS+t/u823zZ49W/fff79fPxcAAAAAjgvbMMKKigpVVVVp8ODBSkxMVGJiotauXavHHntMiYmJWrNmjaqqqtS7d2/P8j179mjatGk66aSTJEnZ2dlqaGhQdXW113tXVVUpKyvL0+bAgQPNfv7nn3/uadOSGTNmyOVyeb727t0bvI0HAAAAEPPCdmWrqKhIO3bs8HrtmmuuUd++fXXHHXeoZ8+eGjFihNfyESNGqKSkRNdcc40kafDgwXI4HFq1apXGjh0rSdq/f7927typhx56SJJUWFgol8ulTZs26ZxzzpEkbdy4US6XS8OGDWu1f8nJyUpOTg7a9gIAAACIL2ELW126dNHAgQO9XuvcubMyMjI8r2dkZHgtdzgcys7OVn5+viTJ6XRq4sSJmjZtmjIyMtS9e3dNnz5dgwYN8ky40a9fP40cOVKTJk3SU089JUm6/vrrNXr0aM/7AIgPtm2rzt3YfsN/S3Uk+D2MGQDgO+oyYl1YJ8gIhrlz5yoxMVFjx45VXV2dioqKtHjxYiUkJHjavPDCC5oyZYpn1sIxY8Zo/vz54eoygDCwbVtXLlivij3V7Tf+t4K8dC2dXMgHOwAYQF1GPIiosLVmzZo2l3/yySfNXktJSdG8efM0b968Vtfr3r27lixZ0sHeAYhmde5Gvz7QJWnLnmrVuRuVlhRRpRIAYgJ1GfGAIxVA3NlyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMmIVYQtA3ElLSuCsKABEEOoyYlXYpn4HAAAAgFjGKQQAMaG2oe3ZrNpbDgAILuoyQNgCECMYyw8AkYW6DDCMEEAUS3UkqCAv3a91CvLSlepo/SZsAEDgqMuAN65sAYhalmVp6eRCHogJABGCugx4I2wBiGqWZRmdwcrXewr4YwEAjqEuA18jbAFAG3y956AgL11LJxfywQ4AhlGXEU24ZwsAviWQew627Kn2a9gMAMB31GVEK65sAcC3+HPPQW1DY8zPuGXbts/7IlBMEQ2gLdRlb6brsi/rUZd9Q9gCgBaYvucgWti2rSsXrFfFnmqjPyfW/zAC0HHU5WNCUZepycHDMEIAQKvq3I1+f6D7Oo0zU0QDgP9M1eVAarKv7x3POD0AAPDJlnuKlZbkW4jy5YZ0pogGgI4JZl0OpCb7+t7xjLAFAPBJWlJC0IfwMCwIAAIX7LpMTQ4+hhECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABieHuAAAgOGzbVp270ef2qY4EWZZlsEcAEN+oyyBsAUAMsG1bVy5Yr4o91T6vU5CXrqWTC/lgBwADqMuQGEYIADGhzt3o1we6JG3ZU+3XGVcAgO+oy5Ai6MrW7Nmzddddd+nWW2/Vo48+KrfbrXvuuUdvvPGGPvroIzmdThUXF+vBBx9UTk6OZ736+npNnz5dL730kurq6lRUVKQnnnhCvXr18rSprq7WlClTtGLFCknSmDFjNG/ePHXr1i3UmwkAfvF1CEptw9dtttxTrLSkhDbbFswqD0r/ACCe+DMskLoMKULC1ubNm/X000/r9NNP97xWW1urrVu36t5779UZZ5yh6upqTZ06VWPGjNGWLVs87aZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoIeHYQT1+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oQBi2jc/WIPBtqUfLliv9/bX+LVeWlKC0pIiorwDQFgFsy4HWpMl6nI8C/v/+qFDh3TVVVdp4cKFmjVrlud1p9OpVatWebWdN2+ezjnnHH366afq3bu3XC6XFi1apOeff17FxcWSpCVLlig3N1fl5eUaMWKEdu3apbKyMm3YsEFDhgyRJC1cuFCFhYXavXu38vPzQ7exAGJaJJyVLMhLV6qj9bOnABBPqMsIt7CHrZtuukmjRo1ScXGxV9hqicvlkmVZnuF/FRUVcrvdGj58uKdNTk6OBg4cqHXr1mnEiBFav369nE6nJ2hJ0tChQ+V0OrVu3TrCFoAOSXUkqCAvXVv8HJfvj/49u/77hmnf+sON1QDimem67E9NPt4f6nL8CmvYKi0t1datW7V58+Z22x45ckR33nmnxo8fr65du0qSKisrlZSUpPT0dK+2WVlZqqys9LTJzMxs9n6ZmZmeNi2pr69XfX295/uaGv8vGQOIfZZlaenkQqM3NPNBDQC+M12XqcnwR9jC1t69e3Xrrbdq5cqVSklJabOt2+3WuHHj1NTUpCeeeKLd97Zt2+uXoKVfiG+3+bbZs2fr/vvvb/dnAYBlWVE7Fr+9+xmCfR8aAIQCdRmRImxHYUVFhaqqqjR48GDPa42NjXr77bc1f/581dfXKyEhQW63W2PHjtXHH3+st956y3NVS5Kys7PV0NCg6upqr6tbVVVVGjZsmKfNgQMHmv38zz//XFlZWa32b8aMGfr5z3/u+b6mpka5ubkd2mYAiDSRcD8DAOBr1OXYErbnbBUVFWnHjh3avn2756ugoEBXXXWVtm/f7hW0PvzwQ5WXlysjI8PrPQYPHiyHw+E1kcb+/fu1c+dOT9gqLCyUy+XSpk2bPG02btwol8vladOS5ORkde3a1esLAGLB8fsZ/MEN3gBgDnU5dlm2bdvh7sRxF1xwgc4880w9+uijOnr0qH7wgx9o69ateu2117yuQnXv3l1JSUmSpBtvvFGvvfaaFi9erO7du2v69On68ssvvaZ+v/jii/XZZ5/pqaeeknRs6ve8vDy/pn6vqamR0+mUy+UieAGIev48K0biHgUAMI26HF18zQYRO5h13759nocQn3nmmV7LVq9erQsuuECSNHfuXCUmJmrs2LGehxovXrzYE7Qk6YUXXtCUKVM8sxaOGTNG8+fPD8l2AEAkiub7GQAgFlGXY1NEXdmKZFzZAgAAACD5ng3Cds8WAAAAAMQywhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGJIa7A9HCtm1JUk1NTZh7AgAAACCcjmeC4xmhNYQtH3311VeSpNzc3DD3BAAAAEAk+Oqrr+R0OltdbtntxTFIkpqamvTZZ5+pS5cusiwrJD+zpqZGubm52rt3r7p27RqSnxmP2M/msY9Dg/1sHvs4NNjP5rGPQ4P9bF649rFt2/rqq6+Uk5OjTp1avzOLK1s+6tSpk3r16hWWn921a1d+QUOA/Wwe+zg02M/msY9Dg/1sHvs4NNjP5oVjH7d1Res4JsgAAAAAAAMIWwAAAABgAGErgiUnJ+u+++5TcnJyuLsS09jP5rGPQ4P9bB77ODTYz+axj0OD/WxepO9jJsgAAAAAAAO4sgUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsh9sQTT6hPnz5KSUnR4MGD9c4777TZfu3atRo8eLBSUlJ08skna8GCBc3avPzyy+rfv7+Sk5PVv39/LV++3FT3o4I/+3jZsmW66KKLdOKJJ6pr164qLCzUm2++6dVm8eLFsiyr2deRI0dMb0pE82c/r1mzpsV9+P7773u141j25s8+vvrqq1vcxwMGDPC04Vj29vbbb+vSSy9VTk6OLMvSK6+80u461GT/+bufqcv+83cfU5MD4+9+pi77b/bs2Tr77LPVpUsXZWZm6vLLL9fu3bvbXS+SazNhK4R+//vfa+rUqbr77ru1bds2fe9739PFF1+sTz/9tMX2H3/8sS655BJ973vf07Zt23TXXXdpypQpevnllz1t1q9frx/96EcqKSnRX/7yF5WUlGjs2LHauHFjqDYrovi7j99++21ddNFFeuONN1RRUaELL7xQl156qbZt2+bVrmvXrtq/f7/XV0pKSig2KSL5u5+P2717t9c+PPXUUz3LOJa9+buPf/Ob33jt271796p79+764Q9/6NWOY/lrhw8f1hlnnKH58+f71J6aHBh/9zN12X/+7uPjqMn+8Xc/U5f9t3btWt10003asGGDVq1apaNHj2r48OE6fPhwq+tEfG22ETLnnHOOPXnyZK/X+vbta995550ttv/FL35h9+3b1+u1G264wR46dKjn+7Fjx9ojR470ajNixAh73LhxQep1dPF3H7ekf//+9v333+/5/tlnn7WdTmewuhgT/N3Pq1evtiXZ1dXVrb4nx7K3jh7Ly5cvty3Lsj/55BPPaxzLrZNkL1++vM021OSO82U/t4S67Dtf9jE1ueMCOZapy/6rqqqyJdlr165ttU2k12aubIVIQ0ODKioqNHz4cK/Xhw8frnXr1rW4zvr165u1HzFihLZs2SK3291mm9beM5YFso+/rampSV999ZW6d+/u9fqhQ4eUl5enXr16afTo0c3OsMaTjuzns846Sz179lRRUZFWr17ttYxj+WvBOJYXLVqk4uJi5eXleb3OsRw4anJ4UJfNoSaHFnXZfy6XS5Ka/f5/U6TXZsJWiHzxxRdqbGxUVlaW1+tZWVmqrKxscZ3KysoW2x89elRffPFFm21ae89YFsg+/rY5c+bo8OHDGjt2rOe1vn37avHixVqxYoVeeuklpaSk6D//8z/14YcfBrX/0SKQ/dyzZ089/fTTevnll7Vs2TLl5+erqKhIb7/9tqcNx/LXOnos79+/X//3f/+n6667zut1juWOoSaHB3U5+KjJoUdd9p9t2/r5z3+uc889VwMHDmy1XaTX5kTjPwFeLMvy+t627Wavtdf+26/7+56xLtD98dJLL2nmzJn605/+pMzMTM/rQ4cO1dChQz3f/+d//qe++93vat68eXrssceC1/Eo489+zs/PV35+vuf7wsJC7d27Vw8//LDOO++8gN4zHgS6PxYvXqxu3brp8ssv93qdY7njqMmhRV02g5ocetRl/918883661//qnfffbfdtpFcm7myFSI9evRQQkJCswRdVVXVLGkfl52d3WL7xMREZWRktNmmtfeMZYHs4+N+//vfa+LEifrDH/6g4uLiNtt26tRJZ599dtyederIfv6moUOHeu1DjuWvdWQf27atZ555RiUlJUpKSmqzbbwfy/6iJocWdTm0qMnmUJf9d8stt2jFihVavXq1evXq1WbbSK/NhK0QSUpK0uDBg7Vq1Sqv11etWqVhw4a1uE5hYWGz9itXrlRBQYEcDkebbVp7z1gWyD6Wjp05vfrqq/Xiiy9q1KhR7f4c27a1fft29ezZs8N9jkaB7udv27Ztm9c+5Fj+Wkf28dq1a/X3v/9dEydObPfnxPux7C9qcuhQl0OPmmwOddl3tm3r5ptv1rJly/TWW2+pT58+7a4T8bXZ+BQc8CgtLbUdDoe9aNEi+7333rOnTp1qd+7c2TMrzZ133mmXlJR42n/00Ud2Wlqafdttt9nvvfeevWjRItvhcNh//OMfPW3+3//7f3ZCQoL94IMP2rt27bIffPBBOzEx0d6wYUPIty8S+LuPX3zxRTsxMdF+/PHH7f3793u+Dh486Gkzc+ZMu6yszP7HP/5hb9u2zb7mmmvsxMREe+PGjSHfvkjh736eO3euvXz5cvuDDz6wd+7cad955522JPvll1/2tOFY9ubvPj7uJz/5iT1kyJAW35Nj2dtXX31lb9u2zd62bZstyX7kkUfsbdu22Xv27LFtm5ocLP7uZ+qy//zdx9TkwPi7n4+jLvvuxhtvtJ1Op71mzRqv3//a2lpPm2irzYStEHv88cftvLw8Oykpyf7ud7/rNZXlhAkT7PPPP9+r/Zo1a+yzzjrLTkpKsk866ST7ySefbPaeS5cutfPz822Hw2H37dvXq1jGI3/28fnnn29LavY1YcIET5upU6favXv3tpOSkuwTTzzRHj58uL1u3boQblFk8mc///rXv7b/4z/+w05JSbHT09Ptc88913799debvSfHsjd/68XBgwft1NRU++mnn27x/TiWvR2f/rq1339qcnD4u5+py/7zdx9TkwMTSM2gLvunpf0ryX722Wc9baKtNlu2/e87yAAAAAAAQcM9WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgDEtTVr1siyLB08eDDcXQEAxBjCFgAg5l199dWyLEuWZcnhcOjkk0/W9OnTdfjw4XB3DQAQwxLD3QEAAEJh5MiRevbZZ+V2u/XOO+/ouuuu0+HDh/WjH/0o3F0DAMQormwBAOJCcnKysrOzlZubq/Hjx+uqq67SK6+84lleUVGhgoICpaWladiwYdq9e7dn2T/+8Q9ddtllysrK0gknnKCzzz5b5eXlXu//xBNP6NRTT1VKSoqysrJ05ZVXepbZtq2HHnpIJ598slJTU3XGGWfoj3/8o/FtBgCEF2ELABCXUlNT5Xa7Pd/ffffdmjNnjrZs2aLExERde+21nmWHDh3SJZdcovLycm3btk0jRozQpZdeqk8//VSStGXLFk2ZMkUPPPCAdu/erbKyMp133nme9e+55x49++yzevLJJ/W3v/1Nt912m37yk59o7dq1odtgAEDIWbZt2+HuBAAAJl199dU6ePCg50rWpk2bdMkll6ioqEg33nijLrzwQpWXl6uoqEiS9MYbb2jUqFGqq6tTSkpKi+85YMAA3Xjjjbr55pu1bNkyXXPNNdq3b5+6dOni1e7w4cPq0aOH3nrrLRUWFnpev+6661RbW6sXX3zRzEYDAMKOe7YAAHHhtdde0wknnKCjR4/K7Xbrsssu07x58/Tee+9Jkk4//XRP2549e0qSqqqq1Lt3bx0+fFj333+/XnvtNX322Wc6evSo6urqPFe2LrroIuXl5enkk0/WyJEjNXLkSF1xxRVKS0vTe++9pyNHjuiiiy7y6k9DQ4POOuusEG09ACAcCFsAgLhw4YUX6sknn5TD4VBOTo4cDockecLW8e8lybIsSVJTU5Mk6fbbb9ebb76phx9+WKeccopSU1N15ZVXqqGhQZLUpUsXbd26VWvWrNHKlSv1y1/+UjNnztTmzZs97/H666/rO9/5jlefkpOTzW40ACCsCFsAgLjQuXNnnXLKKQGt+8477+jqq6/WFVdcIenYPVyffPKJV5vExEQVFxeruLhY9913n7p166a33npLF110kZKTk/Xpp5/q/PPP7+hmAACiCGELAIB2nHLKKVq2bJkuvfRSWZale++913PFSjo2RPGjjz7Seeedp/T0dL3xxhtqampSfn6+unTpounTp+u2225TU1OTzj33XNXU1GjdunU64YQTNGHChDBuGQDAJMIWAADtmDt3rq699loNGzZMPXr00B133KGamhrP8m7dumnZsmWaOXOmjhw5olNPPVUvvfSSBgwYIEn67//+b2VmZmr27Nn66KOP1K1bN333u9/VXXfdFa5NAgCEALMRAgAAAIABPGcLAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAb8f4lIUwygpTlNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 32\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/period, nbin=nbin)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/1.1, nbin=nbin)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Therefore, typically we try a number of frequencies around the candidate we found with the power spectrum or other means, and search for the frequency that gives the \"best\" pulsed profile. \n", + "How do we evaluate this best frequency?\n", + "We use the chi squared statistics. \n", + "\n", + "We use a flat pulsed profile (no pulsation) as model, and we calculate the chi square of the actual pulsed profile with respect to this flat model:\n", + "\n", + "$$\n", + "S = \\sum_i\\frac{(P_i - \\overline{P})^2}{\\sigma^2}\n", + "$$\n", + "\n", + "If there is no pulsation, the chi squared will assume a random value distributed around the number of degrees of freedom $n - 1$ (where $n$ is the number of bins in the profile) with a well defined statistical distribution ($\\chi^2_{n - 1}$). If there is pulsation, the value will be much larger.\n", + "Stingray has a function that does this: `stingray.pulse.search.epoch_folding_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgRUlEQVR4nOzdd3xT9foH8E92mu49oJQCZU8BWSp7CSIXFefFvVAUgQuX6+9qXaBcBQQUr14FLig48Sqo7CFLoMgolF2gQEspbdORNPP8/kjOaUNbSNu0aZvP+/XK60WSk5NvQ5tznvM83+crEwRBABEREREREblN7u0BEBERERERNTQMpIiIiIiIiKqIgRQREREREVEVMZAiIiIiIiKqIgZSREREREREVcRAioiIiIiIqIoYSBEREREREVURAykiIiIiIqIqUnp7APWB3W7H5cuXERgYCJlM5u3hEBERERGRlwiCgMLCQsTFxUEurzzvxEAKwOXLlxEfH+/tYRARERERUT2RkZGBpk2bVvo8AykAgYGBABwfVlBQkJdHQ0REdaq4GFiwwPWxl14C/P29Mx4iIvKqgoICxMfHSzFCZRhIAVI5X1BQEAMpIiJfo1AAGo3rY0FBDKSIiHzczab8sNkEERERERFRFTGQIiIiIiIiqiIGUkRERERERFXEOVJEREREVCOCIMBqtcJms3l7KEQ3pVAooFQqa7zsEQMpIiIiIqo2s9mMzMxMGAwGbw+FyG06nQ6xsbFQq9XV3gcDKSIiIiKqFrvdjvT0dCgUCsTFxUGtVtf4Kj9RbRIEAWazGVevXkV6ejqSkpJuuOjujTCQIiIiIqJqMZvNsNvtiI+Ph06n8/ZwiNzi5+cHlUqF8+fPw2w2Q6vVVms/bDZBRERERDVS3Sv6RN7iid9Z/tYTERERERFVEQMpIiIiIiKiKmIgRURERETUgDRv3hzz58+v9uuXLl2KkJAQj43HVzGQIiIiIiKf8thjj0Emk5W7jRgxQtqmefPm5Z5v2rRptd4vOTkZXbt2rfLrKgt49u3bh2eeecatfVQUdN1///04efJklcdDrti1j4iIiIh8zogRI7BkyRKXxzQajcv9N998E08//bR0X6FQ1MnYbiYyMrJGr/fz84Ofn5+HRuO7mJEiIiIiIo8RBAEGs7XOb4IgVGmcGo0GMTExLrfQ0FCXbQIDA12ev1EAs3XrVtx6663w9/dHSEgI+vXrh/Pnz2Pp0qV44403cOjQISmztXTpUgDA3Llz0alTJ/j7+yM+Ph4TJ05EUVGRtL/HH38cer1eel1ycjKA8lmm5ORkNGvWDBqNBnFxcXjppZcAAAMGDMD58+fxyiuvSPsAKs50/fTTT+jRowe0Wi0iIiIwbtw46bmPP/4YSUlJ0Gq1iI6Oxr333lulz7qxYkaKiIiIiDzGaLGh/Wvr6vx9j705HDq1d05trVYrxo4di6effhorV66E2WzG3r17IZPJcP/99yM1NRW//fYbNm7cCAAIDg4G4GjBvWDBAjRv3hzp6emYOHEipk+fjo8//hh9+/bF/Pnz8dprr+HEiRMAgICAgHLv/d1332HevHlYtWoVOnTogKysLBw6dAgA8MMPP6BLly545plnXDJr11u7di3GjRuHV199FcuXL4fZbMbatWsBAPv378dLL72E5cuXo2/fvsjNzcXvv//u0c+voWIgRUREREQ+Z82aNeUCkxkzZuCf//yny/3/+7//k+7PmjVLyvaUVVBQAL1ej9GjR6Nly5YAgHbt2knPBwQEQKlUIiYmxuV1kydPlv6dmJiIt956C88//zw+/vhjqNVqBAcHQyaTlXtdWRcuXEBMTAyGDBkClUqFZs2a4dZbbwUAhIWFQaFQSJm1yrzzzjt44IEH8MYbb0iPdenSRdq/v78/Ro8ejcDAQCQkJKBbt26V7suXMJAiIiKfJggCMvONCA9QQ6OsH/MfiBoyP5UCx94c7pX3rYqBAwdi8eLFLo+FhYW53P/b3/6Gxx57TLofERFR4b7CwsLw2GOPYfjw4Rg6dCiGDBmC8ePHIzY29oZj2LJlC2bNmoVjx46hoKAAVqsVJSUlKC4uhr+/v1s/x3333Yf58+ejRYsWGDFiBO68807cddddUCrdP80/ePBgpRmroUOHIiEhQdr/iBEj8Je//AU6nc7t/TdWnCNFREQ+beOxbHyzPwPLdp3H6ewibw+HqMGTyWTQqZV1fhPn/7jL398frVq1crldH0hFRES4PH+jluFLlizB7t270bdvX3z99ddo3bo19uzZU+n258+fx5133omOHTvi+++/R0pKCj766CMAgMVicfvniI+Px4kTJ/DRRx/Bz88PEydOxB133FGlfdyo8URgYCAOHDiAlStXIjY2Fq+99hq6dOmC/Px8t/ffWDGQIiIin5aWVQAAMJitWHP4MtJzir08IiJqqLp164aZM2di165d6NixI7766isAgFqths1mc9l2//79sFqt+OCDD9C7d2+0bt0aly9fdtmmotdVxM/PD2PGjMGCBQuwdetW7N69G0eOHHF7H507d8amTZsqfV6pVGLIkCGYM2cODh8+jHPnzmHz5s03HVdjx9I+IiLyaVn6EkQBUMhksAkCzl4tQqK3B0VEtc5kMiErK8vlMaVSWWn53o2kp6fj008/xZgxYxAXF4cTJ07g5MmTmDBhAgBIzSQOHjyIpk2bIjAwEC1btoTVasXChQtx1113YefOnfjkk09c9tu8eXMUFRVh06ZN6NKlC3Q6XbmSuqVLl8Jms6FXr17Q6XRYvnw5/Pz8kJCQIO1j+/bteOCBB6DRaCr8+V5//XUMHjwYLVu2xAMPPACr1Ypff/0V06dPx5o1a3D27FnccccdCA0NxS+//AK73Y42bdpU+XNqbJiRIiIin5apNwIAmoU7Tk6yC03eHA4R1ZHffvsNsbGxLrfbbrutWvvS6XQ4fvw47rnnHrRu3RrPPPMMXnzxRTz77LMAgHvuuQcjRozAwIEDERkZiZUrV6Jr166YO3cu3nvvPXTs2BFffvklZs+e7bLfvn374rnnnsP999+PyMhIzJkzp9x7h4SE4LPPPkO/fv2kzNLPP/+M8PBwAI61sM6dO4eWLVtW2r59wIAB+Pbbb/HTTz+ha9euGDRoEP744w9p/z/88AMGDRqEdu3a4ZNPPsHKlSvRoUOHan1WjYlMqGrT/UaooKAAwcHB0Ov1CAoK8vZwiIioDo145xeM+HUFhrSLxsa0K1DIZXhuzSdQBQV6e2hE9V5JSQnS09ORmJgIrVbr7eEQue1Gv7vuxgbMSBERkc+y2wVk6h0ZqKahflAr5LDZBZy5yqYTRER0YwykiIjIZ10rNsNstQMAArUqRAZqAADHLhd4c1hERNQAMJAiIiKfdTnfMT8qQKOEQi5DVJCjvCMtk4EUERHdGAMpIiLyWWIgFah1NLGNYkaKiIjcxECKiIh81iUpkFIBAKKDHIFUWmYhbHaf78VEREQ3wECKiIh81uX8EgClGakQnRoqhRxGi40L8xIR0Q0xkCIiIp91+bqMlFwmQ5Dz31n6Eq+Ni4iI6j8GUkRE5LMu613nSAGATq0AAFwr5sK8RERUOQZSRETks65vNgEAfs5AKqfI7JUxERFRw8BAioiIfFKJxSYFS2I5H1AmI1XEjBQRVU1JSQkee+wxdOrUCUqlEmPHjvX2kKgWMZAiIiKfJM6B8lMpoFGWHg5LAylmpIioamw2G/z8/PDSSy9hyJAh3h4O1TLlzTchIiJqfApKLACAEJ0SMkEmPe6ndhwaOUeKqGauXr1a7dcGBATAz8+vwudycnIgCK7LE0RGRlZp/wMGDEDnzp2h1Wrxn//8B2q1Gs899xySk5OrO2QAgL+/PxYvXgwA2LlzJ/Lz82u0P6rfGEgREZFPKjJZAQA6tRIoEzPpVJwjReQJUVFR1X7tokWL8MILL1T4XLt27ZCTk+Py2PWBlTuWLVuGKVOm4I8//sDu3bvx2GOPoV+/fhg6dGi1xky+h6V9RETkkwwmG4DSUj6RH7v2EfmEzp074/XXX0dSUhImTJiAHj16YNOmTd4eFjUgDKSIiMgnFZsdGSl/jWtxBudIEfmGzp07u9yPjY1FdnZ2hdv+/vvvCAgIkG5ffvllXQyR6jmvBlLNmzeHTCYrdxNTuYIgIDk5GXFxcfDz88OAAQNw9OhRl32YTCZMmjQJERER8Pf3x5gxY3Dx4kVv/DhERNSAFDszUuKcKJHOed9gtsHgDLaIqPFRqVQu92UyGex2e4Xb9ujRAwcPHpRuY8aMqYshUj3n1TlS+/btg81mk+6npqZi6NChuO+++wAAc+bMwdy5c7F06VK0bt0ab7/9NoYOHYoTJ04gMDAQADB58mT8/PPPWLVqFcLDwzF16lSMHj0aKSkpUCgUFb4vERGRGCQFXFfap1LIoFHKYYQjK6UL43RiouqoLLvjjoCAgEqfS0tLq9acqJrw8/NDq1at6vQ9qf7z6tHh+g4r7777Llq2bIn+/ftDEATMnz8fr776KsaNGwfAMSkwOjoaX331FZ599lno9Xp8/vnnWL58udRicsWKFYiPj8fGjRsxfPjwOv+ZiIioYZAyUhrXQEomkyE8QI18A3Ct2Iz4MJ03hkfU4FW1k567IiIiamW/nnLs2DGYzWbk5uaisLAQBw8eBAB07drVq+Miz6s3l9nMZjNWrFiBKVOmQCaT4ezZs8jKysKwYcOkbTQaDfr3749du3bh2WefRUpKCiwWi8s2cXFx6NixI3bt2lVpIGUymWAylU4iLigoqL0fjIiI6iVpjpS6fPVCmL8aZwxmLspLRFV255134vz589L9bt26AaheZ0Gq3+pNIPXjjz8iPz8fjz32GAAgKysLABAdHe2yXXR0tPTLmZWVBbVajdDQ0HLbiK+vyOzZs/HGG294cPRERNTQFJdtf36dMH81cNXMhhNEjdTWrVvLPfbjjz96ZN/nzp3zyH6o/qs3Xfs+//xzjBw5EnFxcS6Py2Qyl/uCIJR77Ho322bmzJnQ6/XSLSMjo/oDJyKiBslgdpT2+VcQSIX7awAAOWyBTkRElagXgdT58+exceNGPPXUU9JjMTExAFAus5SdnS1lqWJiYmA2m5GXl1fpNhXRaDQICgpyuRERkW8RF+S9fo4UAIQFOLp5MSNFRESVqReB1JIlSxAVFYVRo0ZJjyUmJiImJgYbNmyQHjObzdi2bRv69u0LAOjevTtUKpXLNpmZmUhNTZW2ISIiqojUtU9TQUZK58hIcY4UERFVxutzpOx2O5YsWYJHH30USmXpcGQyGSZPnoxZs2YhKSkJSUlJmDVrFnQ6HR566CEAQHBwMJ588klMnToV4eHhCAsLw7Rp09CpUyepix8REVFFpK59qooyUmoAjq59REREFfF6ILVx40ZcuHABTzzxRLnnpk+fDqPRiIkTJyIvLw+9evXC+vXrpTWkAGDevHlQKpUYP348jEYjBg8ejKVLl3INKSIiuiGx2URlXfsAIIelfUREVAmvB1LDhg2rtB2kTCZDcnIykpOTK329VqvFwoULsXDhwloaIRERNUZSs4kKSvvEQIqlfUREVJl6MUeKiIioronrSOkqykjpHIFUbrGZa78QEVGFGEgREZFPutE6UsE6R9c+q11AsTNzRUREVBYDKSIi8jlmqx0WmyPTpKugtM9PpYBa4ThE6o2WOh0bERE1DAykiIjI54itz4GKS/tkMpmUlco3sOEEETUsn376KeLj4yGXyzF//nxvD6fRYiBFREQ+R1yMV62UQ6Wo+FAY7OcIpJiRImqcsrKyMGnSJLRo0QIajQbx8fG46667sGnTJm8PrUJLly5FSEjITbcrKCjAiy++iBkzZuDSpUt45plnan9wPsrrXfuIiIjqmtixr6LFeEUhYiBlYCBF1NicO3cO/fr1Q0hICObMmYPOnTvDYrFg3bp1eOGFF3D8+PFq7ddisUClUrn9eG24cOECLBYLRo0ahdjY2Aq3qcvxNGbMSBERkc8pMlXesU8kZqTymZEicp8gAMXF3ru52WVz4sSJkMlk2Lt3L+699160bt0aHTp0wJQpU7Bnzx5puwsXLuDuu+9GQEAAgoKCMH78eFy5ckV6Pjk5GV27dsUXX3whZbYEQYBMJsMnn3yCu+++G/7+/nj77bcBAD///DO6d+8OrVaLFi1a4I033oDVWlpqnJ+fj2eeeQbR0dHQarXo2LEj1qxZg61bt+Lxxx+HXq+HTCaTlgi63tKlS9GpUycAQIsWLSCTyXDu3LlKx6nX6/HMM88gKioKQUFBGDRoEA4dOuSyz3fffRfR0dEIDAzEk08+ib///e/o2rWr9PyAAQMwefJkl9eMHTsWjz32mHTfbDZj+vTpaNKkCfz9/dGrVy9s3brVZdwhISFYt24d2rVrh4CAAIwYMQKZmZku+/3iiy/QoUMHaDQaxMbG4sUXXwQAPPHEExg9erTLtlarFTExMfjiiy/KfU6ewowUERH5HIPJuYZUBR37ROIcKZb2EVWBwQD861/ee/+//Q3w97/hJrm5ufjtt9/wzjvvwL+CbcXyOUEQMHbsWPj7+2Pbtm2wWq2YOHEi7r//fpcg4PTp0/jmm2/w/fffQ6EovTjz+uuvY/bs2Zg3bx4UCgXWrVuHRx55BAsWLMDtt9+OM2fOSGV3r7/+Oux2O0aOHInCwkKsWLECLVu2xLFjx6BQKNC3b1/Mnz8fr732Gk6cOAEACAgIKDf2+++/H/Hx8RgyZAj27t2L+Ph4REZGVjrOUaNGISwsDL/88guCg4Px73//G4MHD8bJkycRFhaGb775Bq+//jo++ugj3H777Vi+fDkWLFiAFi1auP9/AuDxxx/HuXPnsGrVKsTFxWH16tUYMWIEjhw5gqSkJACAwWDA+++/j+XLl0Mul+ORRx7BtGnT8OWXXwIAFi9ejClTpuDdd9/FyJEjodfrsXPnTgDAU089hTvuuAOZmZlSFu6XX35BUVERxo8fX6WxVgUDKSIi8jniGlL+msozUiF+jrWk8lnaR9SonD59GoIgoG3btjfcbuPGjTh8+DDS09MRHx8PAFi+fDk6dOiAffv2oWfPngAc2Zbly5dLAYvooYcewhNPPCHd/+tf/4q///3vePTRRwE4MkZvvfUWpk+fjtdffx0bN27E3r17kZaWhtatW0vbiIKDgyGTyRATE1PpmP38/BAeHg4AiIyMdNn2+nFu3rwZR44cQXZ2NjQaDQDg/fffx48//ojvvvsOzzzzDObPn48nnngCTz31FADg7bffxsaNG1FSUnLDz66sM2fOYOXKlbh48SLi4uIAANOmTcNvv/2GJUuWYNasWQAc5YaffPIJWrZsCQB48cUX8eabb0r7efvttzF16lS8/PLL0mPi/0Hfvn3Rpk0bLF++HNOnTwcALFmyBPfdd1+FAaenMJAiIiKfI64h5X+DOVJsNkHUOImLbMtkshtul5aWhvj4eCmIAoD27dsjJCQEaWlp0kl8QkJCuSAKAHr06OFyPyUlBfv27cM777wjPWaz2VBSUgKDwYCDBw+iadOmUhDladePMyUlBUVFRVLgJTIajThz5gwAx2fw3HPPuTzfp08fbNmyxe33PXDgAARBKPdzmUwml/fW6XRSEAUAsbGxyM7OBgBkZ2fj8uXLGDx4cKXv89RTT+HTTz/F9OnTkZ2djbVr19Z64xAGUkRE5HPERXZvNEcqRCrtY/tzosYkKSkJMpkMaWlpGDt2bKXbiXOdbvZ4ReWBFT1ut9vxxhtvYNy4ceW21Wq18PPzc/MnqJ6KxhMbG+tSpihypzugSC6XS8GpyGIpvQBlt9uhUCiQkpLiUvoIuJYnXt/8QiaTSft157OZMGEC/v73v2P37t3YvXs3mjdvjttvv93tn6M6GEgREZHPMbiRkQrhHCmiqtPpHPOUvPn+NxEWFobhw4fjo48+wksvvVQuwMjPz0dISAjat2+PCxcuICMjQ8pKHTt2DHq9Hu3atavy0G655RacOHECrVq1qvD5zp074+LFizh58mSFWSm1Wg2bzVbl973ReLKysqBUKtG8efMKt2nXrh327NmDCRMmSI+VbcYBOEoIyzaFsNlsSE1NxcCBAwEA3bp1g81mQ3Z2drUDm8DAQDRv3hybNm2S9nu98PBwjB07FkuWLMHu3bvx+OOPV+u9qoKBFBER+RyptO8GzSaCxK59nCNF5D6Z7KbNHuqDjz/+GH379sWtt96KN998E507d4bVasWGDRuwePFipKWlYciQIejcuTMefvhhzJ8/X2o20b9//3Jle+547bXXMHr0aMTHx+O+++6DXC7H4cOHceTIEbz99tvo378/7rjjDtxzzz2YO3cuWrVqhePHj0Mmk2HEiBFo3rw5ioqKsGnTJnTp0gU6nQ46NwLHygwZMgR9+vTB2LFj8d5776FNmza4fPkyfvnlF4wdOxY9evTAyy+/jEcffRQ9evTAbbfdhi+//BJHjx51mbs1aNAgTJkyBWvXrkXLli0xb9485OfnS8+3bt0aDz/8MCZMmIAPPvgA3bp1Q05ODjZv3oxOnTrhzjvvdGu8ycnJeO655xAVFSU15di5cycmTZokbfPUU09h9OjRsNls0ly02sT250RE5HPE0r4bZqQ4R4qo0UpMTMSBAwcwcOBATJ06FR07dsTQoUOxadMmLF68GICjtOzHH39EaGgo7rjjDgwZMgQtWrTA119/Xa33HD58ONasWYMNGzagZ8+e6N27N+bOnYuEhARpm++//x49e/bEgw8+iPbt22P69OlSFqpv37547rnncP/99yMyMhJz5syp0Wcgk8nwyy+/4I477sATTzyB1q1b44EHHsC5c+cQHR0NwNEF8LXXXsOMGTPQvXt3nD9/Hs8//7zLfp544gk8+uijmDBhAvr374/ExMRyWaMlS5ZgwoQJmDp1Ktq0aYMxY8bgjz/+cJl/djOPPvoo5s+fj48//hgdOnTA6NGjcerUKZdthgwZgtjYWAwfPlxqbFGbZML1RY0+qKCgAMHBwdDr9QgKCvL2cIiIqJbN/OEwVu7NwNShrTGpd1z5ds1/+xvOGgQM+mAbAjVKHHljuHcGSlTPlZSUID09HYmJidBqtd4eDtWB5ORk/Pjjjzh48KC3h1KOwWBAXFwcvvjiiwrnopV1o99dd2MDlvYREZHPKXKuI6W74RwpR/vzQpMVVpsdSgWLOIiI6iO73Y6srCx88MEHCA4OxpgxY+rkfRlIERGRzxGbTQTcYB2pIG3pIbKgxIowf3Wtj4uIiKruwoULSExMRNOmTbF06VIolXUT4vDyGhER+RxxQV7dDZpNKBVyBDozVvkGtkAnIgIcpX31rayvefPmEAQBGRkZN1xrytMYSBERkc8pNonNJirPSAFAMFugExFRJRhIERGRzxEzUjdqfw4AwWILdAZSRER0HQZSRETkcwymm7c/B0oX5S1gIEV0Q2wCTQ2NJ35nGUgREZHPERfk1alvXNoX4udoMMFFeYkqplI5LjYYDAYvj4SoasTfWfF3uDrYtY+IiHyKIAhSaV+ARgnAVum2QWJpHwMpogopFAqEhIQgOzsbAKDT6SCTybw8KqLKCYIAg8GA7OxshISEQKG48QW1G2EgRUREPsVktcPurOjQaZSAtfJAKoTNJohuKiYmBgCkYIqoIQgJCZF+d6uLgRQREfmUImdZHwDoVArAWvm2pc0m2P6cqDIymQyxsbGIioqCxcKLDlT/qVSqGmWiRAykiIjIp4iNJnRqBeTyG5cghTgDKT1L+4huSqFQeOTklKihYLMJIiLyKe4sxisK0CpdXkNERCRiIEVERD5F7Nh3s8V4AcBP5djGaLHX6piIiKjhYSBFREQ+pdjsXEPKjYyU1hlIlZgrb0hBRES+iYEUERH5lKpkpKRA6gad/YiIyDcxkCIiIp9SuhjvzTNSUmkfM1JERHQdBlJERORTDM6gyLEY741pVY7DpNHCQIqIiFwxkCIiIp9SJGWk3Gg24dymhIEUERFdh4EUERH5FINZnCPlfmmfxSbAamPnPiIiKsVAioiIfEqxc0HeqjSbAIASKwMpIiIqxUCKiIh8SlWaTWiUpYdJNpwgIqKyGEgREZFPqUqzCZlMJpX3cZ4UERGVxUCKiIh8SrHZ/WYTABtOEBFRxRhIERGRTyldkPfmGSkA0CrZAp2IiMpjIEVERD6ltNmEm4GUlJFiswkiIirFQIqIiHyK1P7c3dI+5xwpZqSIiKgsBlJERORTipwZKXe69gGlLdDZtY+IiMpiIEVERD5FzEi507UPALv2ERFRhRhIERGRz7DbBan9uc6NBXmB0owUAykiIiqLgRQREfkMQ5lgyN/t0j527SMiovIYSBERkc8wOFufy2WlAdLNsNkEERFVxOuB1KVLl/DII48gPDwcOp0OXbt2RUpKivS8IAhITk5GXFwc/Pz8MGDAABw9etRlHyaTCZMmTUJERAT8/f0xZswYXLx4sa5/FCIiqueKnWV9/molZDKZW6/xY/tzIiKqgFcDqby8PPTr1w8qlQq//vorjh07hg8++AAhISHSNnPmzMHcuXOxaNEi7Nu3DzExMRg6dCgKCwulbSZPnozVq1dj1apV2LFjB4qKijB69GjYbLx6SEREpcTFeN2dHwVwjhQREVXMvQLxWvLee+8hPj4eS5YskR5r3ry59G9BEDB//ny8+uqrGDduHABg2bJliI6OxldffYVnn30Wer0en3/+OZYvX44hQ4YAAFasWIH4+Hhs3LgRw4cPr9OfiYiI6i8xkHJ3MV6A7c+JiKhiXs1I/fTTT+jRowfuu+8+REVFoVu3bvjss8+k59PT05GVlYVhw4ZJj2k0GvTv3x+7du0CAKSkpMBisbhsExcXh44dO0rbEBERAZA69rnbaALgHCkiIqqYVwOps2fPYvHixUhKSsK6devw3HPP4aWXXsJ///tfAEBWVhYAIDo62uV10dHR0nNZWVlQq9UIDQ2tdJvrmUwmFBQUuNyIiKjxKxJL+9RVKe1zHCpZ2kdERGV5tbTPbrejR48emDVrFgCgW7duOHr0KBYvXowJEyZI210/IVgQhJtOEr7RNrNnz8Ybb7xRw9ETEVFDU9XFeAEuyEtERBXzakYqNjYW7du3d3msXbt2uHDhAgAgJiYGAMpllrKzs6UsVUxMDMxmM/Ly8ird5nozZ86EXq+XbhkZGR75eYiIqH4rMomL8VYhkFKztI+IiMrzaiDVr18/nDhxwuWxkydPIiEhAQCQmJiImJgYbNiwQXrebDZj27Zt6Nu3LwCge/fuUKlULttkZmYiNTVV2uZ6Go0GQUFBLjciImr8xHWk/KtU2sf250REVJ5XS/teeeUV9O3bF7NmzcL48eOxd+9efPrpp/j0008BOEr6Jk+ejFmzZiEpKQlJSUmYNWsWdDodHnroIQBAcHAwnnzySUydOhXh4eEICwvDtGnT0KlTJ6mLHxEREVBmHSl27SMiohryaiDVs2dPrF69GjNnzsSbb76JxMREzJ8/Hw8//LC0zfTp02E0GjFx4kTk5eWhV69eWL9+PQIDA6Vt5s2bB6VSifHjx8NoNGLw4MFYunQpFAr3rzgSEVHjV1yNjBTnSBERUUW8GkgBwOjRozF69OhKn5fJZEhOTkZycnKl22i1WixcuBALFy6shRESEVFjUWwWF+Rl+3MiIqoZr86RIiIiqksGk7iOFNufExFRzTCQIiIin2FwBkO6KizIq2VGioiIKsBAioiIfEaJs2GEX1XmSKlLu/YJglAr4yIiooaHgRQREfkMMaskzntyh7bMtiYrW6ATEZEDAykiIvIZ4jwnbVUCKWXpoZIt0ImISMRAioiIfIaUkapCaZ9SIYdaIXd5PREREQMpIiLyGSXVKO0DAA079xER0XUYSBERkc8QS/OqGkhxLSkiIroeAykiIvIJgiBIgZC4NpS7Sjv3MZAiIiIHBlJEROQTzDY77M7u5doqzJECymSkzOzaR0REDgykiIjIJ5SUCYKqPkeKGSkiInLFQIqIiHyCWNanlMugUlSxtE/Frn1EROSKgRQREfmE6izGK2KzCSIiuh4DKSIi8glix76qzo8CShfwNTGQIiIiJwZSRETkE5iRIiIiT2IgRUREPqG6i/ECpVksg5mBFBEROTCQIiIin1CT0j5mpIiI6HoMpIiIyCeUlvZV/dCnU4vrSDGQIiIiBwZSRETkE2o0R4qlfUREdB0GUkRE5BOkOVLVKO3TqZiRIiIiVwykiIjIJ0hzpKqRkdKplQAAg9nq0TEREVHDxUCKiIh8Akv7iIjIkxhIERGRT6hJICU1m2DXPiIicmIgRUREPqHEXP05UsxIERHR9RhIERGRTxCzSTWZI8VmE0REJGIgRUREPsFosQOoWWkfm00QEZGIgRQREfkEY01K+1Qs7SMiIlcMpIiIyCeUeKDZhMlqh90ueHRcRETUMDGQIiIin+CJOVJl90NERL6NgRQREfmEmpT2aZSlh0uW9xEREcBAioiIfERNSvvkcpn0OnbuIyIigIEUERH5iJosyAuU6dxnYec+IiJiIEVERD5CCqTU1Tv0cVFeIiIqi4EUERH5BLEkrzrNJoDSjBRL+4iICGAgRUREPsBuF2CyVn9BXgDwc3buY0aKiIgABlJEROQDSqylwU91uvYBgE5alJdzpIiIiIEUERH5gLLleFolS/uIiKjmGEgREVGjJzaa0CjlkMtl1doHm00QEVFZDKSIiKjRk9aQqmZZH1AmI2VhIEVERAykiIjIBxjNNWs0AQA6qdkE50gREREDKSIi8gE1XYwXKM1miUEZERH5NgZSRETU6ImBVHXXkAJKu/YZLcxIERERAykiIvIBYqe9msyRYrMJIiIqi4EUERE1eiUeLO1jIEVERAADKSIi8gEeKe3jOlJERFQGAykiImr0PFLap2LXPiIiKsVAioiIGr3Srn3VP+zpWNpHRERleDWQSk5Ohkwmc7nFxMRIzwuCgOTkZMTFxcHPzw8DBgzA0aNHXfZhMpkwadIkREREwN/fH2PGjMHFixfr+kchIqJ6zBNzpLggLxERleX1jFSHDh2QmZkp3Y4cOSI9N2fOHMydOxeLFi3Cvn37EBMTg6FDh6KwsFDaZvLkyVi9ejVWrVqFHTt2oKioCKNHj4bNxgMdERE5iKV9WnbtIyIiD1F6fQBKpUsWSiQIAubPn49XX30V48aNAwAsW7YM0dHR+Oqrr/Dss89Cr9fj888/x/LlyzFkyBAAwIoVKxAfH4+NGzdi+PDhdfqzEBFR/eSJBXl1aschk80miIgIqAcZqVOnTiEuLg6JiYl44IEHcPbsWQBAeno6srKyMGzYMGlbjUaD/v37Y9euXQCAlJQUWCwWl23i4uLQsWNHaZuKmEwmFBQUuNyIiKjx8kwgJWakrBAEwSPjIiKihsurgVSvXr3w3//+F+vWrcNnn32GrKws9O3bF9euXUNWVhYAIDo62uU10dHR0nNZWVlQq9UIDQ2tdJuKzJ49G8HBwdItPj7ewz8ZERHVJ9IcKQ+U9tkFwGS1e2RcRETUcHk1kBo5ciTuuecedOrUCUOGDMHatWsBOEr4RDKZzOU1giCUe+x6N9tm5syZ0Ov10i0jI6MGPwUREdV30hypmmSkyryW5X1EROT10r6y/P390alTJ5w6dUqaN3V9Zik7O1vKUsXExMBsNiMvL6/SbSqi0WgQFBTkciMiosarxOLIINWktE+pkEOtcBw2DezcR0Tk8+pVIGUymZCWlobY2FgkJiYiJiYGGzZskJ43m83Ytm0b+vbtCwDo3r07VCqVyzaZmZlITU2VtiEiIvLEHCmgtLyPGSkiIvJq175p06bhrrvuQrNmzZCdnY23334bBQUFePTRRyGTyTB58mTMmjULSUlJSEpKwqxZs6DT6fDQQw8BAIKDg/Hkk09i6tSpCA8PR1hYGKZNmyaVChIREQGemSMFOBpO6I0WBlJEROTdQOrixYt48MEHkZOTg8jISPTu3Rt79uxBQkICAGD69OkwGo2YOHEi8vLy0KtXL6xfvx6BgYHSPubNmwelUonx48fDaDRi8ODBWLp0KRSKmh0siYio8RAzUjWZIwWUZrQMZmuNx0RERA2bVwOpVatW3fB5mUyG5ORkJCcnV7qNVqvFwoULsXDhQg+PjoiIGgsxg1TT0j4xECth1z4iIp9Xr+ZIERER1Qajh0r7NCrHYdPEZhNERD6PgRQRETV6JR5qNqFVMiNFREQODKSIiKhRs9jssNgEADUPpJiRIiIiEQMpIiJq1ErKBD1iIFRdGqXj9cxIERERAykiImrUxPlRMllpIFRdYrMJZqSIiIiBFBERNWolZkf2yE+lgEwmq9G+xEDMxIwUEZHPYyBFRESNmtFDjSYAZqSIiKgUAykiImrUPLUYL8CMFBERlWIgRUREjZq0GG8N15ACyizIy4wUEZHPYyBFRESNmqfWkAKYkSIiolIMpIiIqFGrjTlSzEgREREDKSIiatTE0j6tB0r7mJEiIiIRAykiImrUSjNSNT/kaZTMSBERkQMDKSIiatQ8OkdKxYwUERE5MJAiIqJGzZNd+8SMFAMpIiJiIEVERI2aJ9eR0jozUiztIyIiBlJERNSoebJrHzNSREQkYiBFRESNmifnSDEjRUREIgZSRETUqHGOFBER1QYGUkRE1KhxjhQREdUGBlJERNSoGS2O7JFn2p8zI0VERA4MpIiIqFEr8Whpn+OwabbaYbcLNd4fERE1XAykiIioUfNk176y5YFmG7NSRES+jIEUERE1ap6cIyVmpADAZGEgRUTky6ocSC1btgxr166V7k+fPh0hISHo27cvzp8/79HBERER1ZQnu/apFHIo5DIAQImVDSeIiHxZlQOpWbNmwc/PDwCwe/duLFq0CHPmzEFERAReeeUVjw+QiIioJjy5jhRQmpViRoqIyLcpq/qCjIwMtGrVCgDw448/4t5778UzzzyDfv36YcCAAZ4eHxERUY14co4U4CgRNJhtzEgREfm4KmekAgICcO3aNQDA+vXrMWTIEACAVquF0Wj07OiIiIhqQBCE0jlSas9MC2ZGioiIgGpkpIYOHYqnnnoK3bp1w8mTJzFq1CgAwNGjR9G8eXNPj4+IiKjaTFY7BGeXck+X9jEjRUTk26p8ee6jjz5Cnz59cPXqVXz//fcIDw8HAKSkpODBBx/0+ACJiIiqS5wfBXima1/Z/TAjRUTk26qckQoJCcGiRYvKPf7GG294ZEBERESeIpb1qRQyqBQeLu1jRoqIyKdV+aiyZMkSfPvtt+Ue//bbb7Fs2TKPDIqIiMgTxNbnnspGAYDGua8SZqSIiHxalQOpd999FxEREeUej4qKwqxZszwyKCIiIk/wdMc+gBkpIiJyqHIgdf78eSQmJpZ7PCEhARcuXPDIoIiIiDxBnCPlyYyUlhkpIiJCNQKpqKgoHD58uNzjhw4dkhpPEBER1QdiQwityjPzowBmpIiIyKHKR5YHHngAL730ErZs2QKbzQabzYbNmzfj5ZdfxgMPPFAbYyQiIqoWsUU5M1JERORpVe7a9/bbb+P8+fMYPHgwlErHy+12OyZMmMA5UkREVK+IwY6YRfIEZqSIiAioRiClVqvx9ddf46233sKhQ4fg5+eHTp06ISEhoTbGR0REVG2mWshIaZTMSBERUTUCKVHr1q3RunVrT46FiIjIo0ozUp4s7WNGioiI3AykpkyZgrfeegv+/v6YMmXKDbedO3euRwZGRERUU2LXPo1Hm004gjKTlRkpIiJf5lYg9eeff8JisUj/JiIiagjEYEdbCxkpMUgjIiLf5FYgtWXLlgr/TUREVJ+VriNVG80mmJEiIvJlVT6yPPHEEygsLCz3eHFxMZ544gmPDIqIiMgTameOlLO0jxkpIiKfVuVAatmyZTAajeUeNxqN+O9//+uRQREREXlCrWSkVMxIERFRFbr2FRQUQBAECIKAwsJCaLVa6TmbzYZffvkFUVFRtTJIIiKi6pDmSHlyQV6p/TkzUkREvsztQCokJAQymQwymazCtucymQxvvPGGRwdHRERUEyZmpIiIqJa4HUht2bIFgiBg0KBB+P777xEWFiY9p1arkZCQgLi4uFoZJBERUXWUONd68uQcKQ0zUkREhCrMkerfvz8GDBiA9PR0jB07Fv3795duffr0qXEQNXv2bMhkMkyePFl6TBAEJCcnIy4uDn5+fhgwYACOHj3q8jqTyYRJkyYhIiIC/v7+GDNmDC5evFijsRARUeNgsoilfZ7LSGmZkSIiIlSj2URaWhp27twp3f/oo4/QtWtXPPTQQ8jLy6vWIPbt24dPP/0UnTt3dnl8zpw5mDt3LhYtWoR9+/YhJiYGQ4cOdekaOHnyZKxevRqrVq3Cjh07UFRUhNGjR8Nm45VCIiJfJ2akPDlHSlqQ18JAiojIl1U5kPrb3/6GgoICAMCRI0cwZcoU3HnnnTh79iymTJlS5QEUFRXh4YcfxmeffYbQ0FDpcUEQMH/+fLz66qsYN24cOnbsiGXLlsFgMOCrr74CAOj1enz++ef44IMPMGTIEHTr1g0rVqzAkSNHsHHjxiqPhYiIGpfS9ueez0iJQRoREfmmKh9Z0tPT0b59ewDA999/j7vuuguzZs3Cxx9/jF9//bXKA3jhhRcwatQoDBkypNz7ZGVlYdiwYdJjGo0G/fv3x65duwAAKSkpsFgsLtvExcWhY8eO0jYVMZlMKCgocLkREVHjYxLnSDEjRUREHlblQEqtVsNgMAAANm7cKAUxYWFhVQ5IVq1ahQMHDmD27NnlnsvKygIAREdHuzweHR0tPZeVlQW1Wu2Sybp+m4rMnj0bwcHB0i0+Pr5K4yYiooZBzEhpPdlsokxGShAEj+2XiIgalioHUrfddhumTJmCt956C3v37sWoUaMAACdPnkTTpk3d3k9GRgZefvllrFixwmVNquvJZDKX+4IglHvsejfbZubMmdDr9dItIyPD7XETEVHDIXbW03i02YQjKBMENpwgIvJlVT6yLFq0CEqlEt999x0WL16MJk2aAAB+/fVXjBgxwu39pKSkIDs7G927d4dSqYRSqcS2bduwYMECKJVKKRN1fWYpOztbei4mJgZms7lck4uy21REo9EgKCjI5UZERI1PbWSkdGXKBI1mzpMiIvJVbq8jJWrWrBnWrFlT7vF58+ZVaT+DBw/GkSNHXB57/PHH0bZtW8yYMQMtWrRATEwMNmzYgG7dugEAzGYztm3bhvfeew8A0L17d6hUKmzYsAHjx48HAGRmZiI1NRVz5syp6o9GRESNjMnq+QV5lQo51Ao5zDY7DBYbQm/+EiIiaoTcCqQKCgqkrM3N5kG5m90JDAxEx44dXR7z9/dHeHi49PjkyZMxa9YsJCUlISkpCbNmzYJOp8NDDz0EAAgODsaTTz6JqVOnIjw8HGFhYZg2bRo6depUrnkFERH5ntJ1pDyXkQIAnUYBs8EOo9nq0f0SEVHD4VYgFRoaiszMTERFRSEkJKTC+UfivCRPrt80ffp0GI1GTJw4EXl5eejVqxfWr1+PwMBAaZt58+ZBqVRi/PjxMBqNGDx4MJYuXQqFwrMHTSIialhsdgFmm+fbnwOO8r58WFBsYmkfEZGvciuQ2rx5M8LCwgAAW7ZsqbXBbN261eW+TCZDcnIykpOTK32NVqvFwoULsXDhwlobFxERNTzmMo0gPJ2R8lM79mfgHCkiIp/lViDVv39/6d+JiYmIj4+vsJseu98REVF9IXbsA2ohI6V2HD6NFpb2ERH5qiofWRITE3H16tVyj+fm5iIxMdEjgyIiIqqpEmejCaVcBqXC04EUM1JERL6uykeWytZoKioquuF6UERERHWpthpNAGUCKc6RIiLyWW63P58yZQoAx7ylf/7zn9DpdNJzNpsNf/zxB7p27erxARIREVVHSS20PheJpX0Gdu0jIvJZbgdSf/75JwBHRurIkSNQq9XSc2q1Gl26dMG0adM8P0IiIqJqEBfj1XhwMV6RlJGyMCNFROSr3A6kxG59jz/+OD788EO314siIiLyBrHZhKZWMlIs7SMi8nVuB1KiJUuW1MY4iIiIPMrkbH+urYWMlJ9U2sdAiojIV1U5kAKAffv24dtvv8WFCxdgNptdnvvhhx88MjAiIqKaEDNStTNHyhGcsf05EZHvqvLRZdWqVejXrx+OHTuG1atXw2Kx4NixY9i8eTOCg4NrY4xERERVJpX21eYcKWakiIh8VpUDqVmzZmHevHlYs2YN1Go1PvzwQ6SlpWH8+PFo1qxZbYyRiIioyqTSvlrs2lfMOVJERD6rykeXM2fOYNSoUQAAjUaD4uJiyGQyvPLKK/j00089PkAiIqLqMEmlfbWXkWJpHxGR76pyIBUWFobCwkIAQJMmTZCamgoAyM/Ph8Fg8OzoiIiIqqm0/Xktdu1jaR8Rkc+qcrOJ22+/HRs2bECnTp0wfvx4vPzyy9i8eTM2bNiAwYMH18YYiYiIqsxkrc2MlOPwaWQgRUTks6ocSC1atAglJSUAgJkzZ0KlUmHHjh0YN24c/vnPf3p8gERERNUhZqRqI5Dyc2akis0s7SMi8lVVDqTCwsKkf8vlckyfPh3Tp0/36KCIiIhqqrRrXy22P2dGiojIZ1X56KJQKJCdnV3u8WvXrkGh8PxVPyIiouoocZb2aWohI+XPBXmJiHxelQMpQRAqfNxkMkGtVtd4QERERJ5gstRe+3O/Ms0m7PaKj4tERNS4uV3at2DBAgCATCbDf/7zHwQEBEjP2Ww2bN++HW3btvX8CImIiKqhRFxHqhYX5HW8j01qPkFERL7D7W/+efPmAXBkpD755BOXMj61Wo3mzZvjk08+8fwIiYiIqkGaI1UbGaky5YIGMwMpIiJf5PY3f3p6OgBg4MCB+OGHHxAaGlprgyIiIqopUy1mpORyGfxUChgtNjacICLyUVW+hLZlyxaX+1arFSUlJS6lfkRERN4mZqRqo/054CjvM1psbIFOROSj3K53+OWXX7B8+XKXx9555x0EBAQgJCQEw4YNQ15enscHSEREVB2mWmx/Drg2nCAiIt/j9tHl/fffR0FBgXR/165deO211/DPf/4T33zzDTIyMvDWW2/VyiCJiIiqSirtq6WMlNgCnaV9RES+ye1AKjU1FX379pXuf/fddxg6dCheffVVjBs3Dh988AF+/vnnWhkkERFRVZWW9tVuRqrYxNI+IiJf5PbRpbCwEOHh4dL9HTt2YNCgQdL9Dh064PLly54dHRERUTWVONeR0tRCswmgtAW60cKMFBGRL3I7kIqLi0NaWhoAoKioCIcOHUK/fv2k569duwadTuf5ERIREVVDibV2M1I6zpEiIvJpbh9d7r33XkyePBnLly/H008/jZiYGPTu3Vt6fv/+/WjTpk2tDJKIiKiqTJbanSMlrh3FQIqIyDe53f789ddfx+XLl/HSSy8hJiYGK1ascFmUd+XKlbjrrrtqZZBERERVIQhCmYxU7Zb2GThHiojIJ7kdSOl0unLtz8u6fn0pIiIibymx2CEIjn+LTSE8TWp/zjlSREQ+qXYKx4mIiLzIUGaRXD+2PyciolrAQIqIiBodcd6SRimHQi6rlfdg+3MiIt/GQIqIiBodsSW5rpbK+srum6V9RES+iYEUERE1OmJGSuysVxukdaRY2kdE5JMYSBERUaMjzpGqrUYTQNn25yztIyLyRW4HUs2aNcO1a9ek+4sWLUJBQUGtDIqIiKgmjObaL+0Tm1gwI0VE5JvcDqQuXrwIm630YPGPf/wDOTk5tTIoIiKimhBL+2qrYx9Quj5ViXPhXyIi8i3VLu0TxAU6iIiI6pk6yUipHYdQceFfIiLyLZwjRUREjY44b6k2m01olGJGioEUEZEvqtIR5j//+Q8CAgIAAFarFUuXLkVERITLNi+99JLnRkdERFQNYkvy2mw2wdI+IiLf5nYg1axZM3z22WfS/ZiYGCxfvtxlG5lMxkCKiIi8ri5K+7QqR1GHkRkpIiKf5HYgde7cuVocBhERkedIzSbqICNlttphtwuQy2W19l5ERFT/cI4UERE1OtKCvKramyOlLdMR0GRleR8Rka9xO5C68847odfrpfvvvPMO8vPzpfvXrl1D+/btPTo4IiKi6jBKzSZqMSOlLD2EsuEEEZHvcTuQWrduHUwmk3T/vffeQ25urnTfarXixIkTnh0dERFRNdRFaZ9SIYdK4SjnYwt0IiLf43Ygdf26UVxHioiI6iuxAURtZqQAQKtk5z4iIl/FOVJERNToiF37/FS1G0hpnPsX34+IiHyH24GUTCaDTCYr91hNLF68GJ07d0ZQUBCCgoLQp08f/Prrr9LzgiAgOTkZcXFx8PPzw4ABA3D06FGXfZhMJkyaNAkRERHw9/fHmDFjcPHixRqNi4iIGra6KO0DSlugs7SPiMj3uN3OSBAEPPbYY9BoNACAkpISPPfcc/D39wcAl/lT7mratCneffddtGrVCgCwbNky3H333fjzzz/RoUMHzJkzB3PnzsXSpUvRunVrvP322xg6dChOnDiBwMBAAMDkyZPx888/Y9WqVQgPD8fUqVMxevRopKSkQKGo3QMoERHVT6WlfbXXtQ8ouygvAykiIl/j9hHm0Ucfdbn/yCOPlNtmwoQJVXrzu+66y+X+O++8g8WLF2PPnj1o37495s+fj1dffRXjxo0D4Ai0oqOj8dVXX+HZZ5+FXq/H559/juXLl2PIkCEAgBUrViA+Ph4bN27E8OHDqzQeIiJqHAx10LUPKC0dNHGOFBGRz3E7kFqyZEltjgM2mw3ffvstiouL0adPH6SnpyMrKwvDhg2TttFoNOjfvz927dqFZ599FikpKbBYLC7bxMXFoWPHjti1axcDKSIiH1XnpX3MSBER+ZzarXlww5EjR9CnTx+UlJQgICAAq1evRvv27bFr1y4AQHR0tMv20dHROH/+PAAgKysLarUaoaGh5bbJysqq9D1NJpNLKWJBQYGnfhwiIqoHxOYPtd61T2w2wUCKiMjneL1rX5s2bXDw4EHs2bMHzz//PB599FEcO3ZMev76hhaCINy0ycXNtpk9ezaCg4OlW3x8fM1+CCIiqjfMVjusdscSHTpV7V4v1LD9ORGRz/J6IKVWq9GqVSv06NEDs2fPRpcuXfDhhx8iJiYGAMpllrKzs6UsVUxMDMxmM/Ly8irdpiIzZ86EXq+XbhkZGR7+qYiIyFvKtiJnaR8REdUWrwdS1xMEASaTCYmJiYiJicGGDRuk58xmM7Zt24a+ffsCALp37w6VSuWyTWZmJlJTU6VtKqLRaKSW6+KNiIgaB4PF0WhCKZdBrazdw5zUtY/tz4mIfI5X50j94x//wMiRIxEfH4/CwkKsWrUKW7duxW+//QaZTIbJkydj1qxZSEpKQlJSEmbNmgWdToeHHnoIABAcHIwnn3wSU6dORXh4OMLCwjBt2jR06tRJ6uJHRES+pa4aTQClXftY2kdE5Hu8GkhduXIFf/3rX5GZmYng4GB07twZv/32G4YOHQoAmD59OoxGIyZOnIi8vDz06tUL69evl9aQAoB58+ZBqVRi/PjxMBqNGDx4MJYuXco1pIiIfFRdNZoASkv7TCztIyLyOV4NpD7//PMbPi+TyZCcnIzk5ORKt9FqtVi4cCEWLlzo4dEREVFDZDDXzWK8ALv2ERH5sno3R4qIiKgmxMV4xbK72iTNkWIgRUTkcxhIERFRo1KXpX0apdi1j3OkiIh8DQMpIiJqVOqy2QQzUkREvouBFBERNSoGS91lpKSufVZmpIiIfA0DKSIialSMzjlSddlsghkpIiLfw0CKiIgaFbG0T1snzSbEOVIMpIiIfA0DKSIialSMdVjax4wUEZHvYiBFRESNijcW5GXXPiIi38NAioiIGpW67NqnUTIjRUTkqxhIERFRoyJlpOpgjpQYrDGQIiLyPQykiIioUTF4o2sf258TEfkcBlJERNSoFJucGSlNHcyRUjoOo2arHTa7UOvvR0RE9QcDKSIialQKTY6MVKBWVevvVbbFusnK8j4iIl/CQIqIiBqVwhILACBQW3elfQA79xER+RoGUkRE1KgUljgyUkF1EEgp5DKoFDIAbDhBRORrGEgREVGjIQgCipylfQGa2i/tA7goLxGRr2IgRUREjYbRYpOaPtRFaR9QNpBiaR8RkS9hIEVERI2GWNYnlwG6OliQFwC0Kseh1MiMFBGRT2EgRUREjYYYSAVolJDJZHXynlqlI2AzMZAiIvIpDKSIiKjRKO3YVzfzo4Cyi/IykCIi8iUMpIiIqNEQM1J1NT8KKC3t4xwpIiLfwkCKiIgajdLW517ISLG0j4jIpzCQIiKiRqPI5CjtC6jTjBS79hER+SIGUkRE1Gh4p7TPEUixax8RkW9hIEVERI1GgTcCKaU4R4qBFBGRL2EgRUREjUaRFEjV/Rwptj8nIvItDKSIiKjRENufB2jqLiMlLvxrMDOQIiLyJQykiIio0Sjt2ld3gZQYtBWZrHX2nkRE5H0MpIiIqNEQg5m6LO0TOwQWMpAiIvIpDKSIiKjR8EZpnxi0ifOziIjINzCQIiKiRsMb7c/FoE0M4oiIyDcwkCIiokaj0AulfWLQxjlSRES+hYEUERE1GmJWqC4zUlIgxdI+IiKfwkCKiIgaBYvNjhKLHYC3SvsYSBER+RIGUkRE1CiUDWTqstmE2LWvyGyF3S7U2fsSEZF3MZAiIqJGQSyt06kVUCrq7vAW5JyPJQiAwcJFeYmIfAUDKSIiahQKvDA/CgA0SjmUchkAdu4jIvIlDKSIiKhREEv76rKsDwBkMllpeR/nSRER+QwGUkRE1CgUeaH1uUjMghUwkCIi8hkMpIiIqFHwRutzUYDGEbxxLSkiIt/BQIqIiBoFsbQvyBsZKQ1L+4iIfA0DKSIiahTEbFBdz5ECSrNgbDZBROQ7GEgREVGjYDA7259rFHX+3lKzCZb2ERH5DAZSRETUKBjMjjWc/FR1H0iVZqQYSBER+QoGUkRE1CiUOBfD1am9kJFyNptgIEVE5DsYSBERUaNgdGaktF7MSBWZOEeKiMhXMJAiIqJGwejMSPl5ISMVyDlSREQ+x6uB1OzZs9GzZ08EBgYiKioKY8eOxYkTJ1y2EQQBycnJiIuLg5+fHwYMGICjR4+6bGMymTBp0iRERETA398fY8aMwcWLF+vyRyEiIi/z5hwpsVMgS/uIiHyHVwOpbdu24YUXXsCePXuwYcMGWK1WDBs2DMXFxdI2c+bMwdy5c7Fo0SLs27cPMTExGDp0KAoLC6VtJk+ejNWrV2PVqlXYsWMHioqKMHr0aNhsNm/8WERE5AXenSPFQIqIyNfU/WIbZfz2228u95csWYKoqCikpKTgjjvugCAImD9/Pl599VWMGzcOALBs2TJER0fjq6++wrPPPgu9Xo/PP/8cy5cvx5AhQwAAK1asQHx8PDZu3Ijhw4fX+c9FRER1Tyzt884cKUezCZb2ERH5jno1R0qv1wMAwsLCAADp6enIysrCsGHDpG00Gg369++PXbt2AQBSUlJgsVhctomLi0PHjh2lba5nMplQUFDgciMioobNWC/an7PZBBGRr6g3gZQgCJgyZQpuu+02dOzYEQCQlZUFAIiOjnbZNjo6WnouKysLarUaoaGhlW5zvdmzZyM4OFi6xcfHe/rHISKiOiYFUl4s7StiaR8Rkc+oN4HUiy++iMOHD2PlypXlnpPJZC73BUEo99j1brTNzJkzodfrpVtGRkb1B05ERPWC0YtzpMSMVLHZBptdqPP3JyKiulcvAqlJkybhp59+wpYtW9C0aVPp8ZiYGAAol1nKzs6WslQxMTEwm83Iy8urdJvraTQaBAUFudyIiKhh8+YcqQBt6ZRjzpMiIvINXg2kBEHAiy++iB9++AGbN29GYmKiy/OJiYmIiYnBhg0bpMfMZjO2bduGvn37AgC6d+8OlUrlsk1mZiZSU1OlbYiIqHGz2wWUWOwAvDNHSqNUQK1wHFIZSBER+Qavdu174YUX8NVXX+F///sfAgMDpcxTcHAw/Pz8IJPJMHnyZMyaNQtJSUlISkrCrFmzoNPp8NBDD0nbPvnkk5g6dSrCw8MRFhaGadOmoVOnTlIXPyIiatxKrKXLXXhjjhTgKO+7Vmx2Npzw88oYiIio7ng1kFq8eDEAYMCAAS6PL1myBI899hgAYPr06TAajZg4cSLy8vLQq1cvrF+/HoGBgdL28+bNg1KpxPjx42E0GjF48GAsXboUCoV3DqZERFS3xEYTAKBVeue7P8AZSLHhBBGRb/BqICUIN5+QK5PJkJycjOTk5Eq30Wq1WLhwIRYuXOjB0RERUUNROj9KDrn8xs2IaktpC3QGUkREvqBeNJsgIiKqiRKL99aQEunUjkDKUCY7RkREjRcDKSIiavAMXlyMVyS2XS82MyNFROQLGEgREVGDJ86R0nqp0QRQGkgZmZEiIvIJDKSIiKjB8+ZivCKW9hER+RYGUkRE1ODVjzlSjvc2sLSPiMgnMJAiIqIGr7Rrn/cCKT8pkGJGiojIFzCQIiKiBq8+NJvwZ2kfEZFPYSBFREQNntjgwbtzpFjaR0TkSxhIERFRgyfNkWKzCSIiqiMMpIiIqMGrD3OkmJEiIvItDKSIiKjBqw9zpNhsgojItzCQIiKiBq+kHqwjJTab4IK8RES+gYEUERE1eGLwUh/anxeztI+IyCcwkCIiogbPWC+aTTjemxkpIiLfwECKiIgavPowR4rrSBER+RYGUkRE1OBJ7c/rQWmfwWyD3S54bRxERFQ3GEgREVGDVx9K+/w1pe9dYmVWioiosWMgRUREDZ6xHpT2aZWl783yPiKixo+BFBERNXhSIOXFjJRcLpMCOYOJgRQRUWPHQIqIiBo8Yz2YIwWUlvcZLGyBTkTU2DGQIiKiBq8+zJEq+/7FzEgRETV6DKSIiKhBs9sFlFjsALyfkdKpHC3QuZYUEVHjx0CKiIgatLId8rydkdKJpX1mlvYRETV2DKSIiKhBK5v9Kds5zxt0ZdaSIiKixo2BFBERNWji/CitSg65XObVsejUjtI+BlJERI0fAykiImrQSupJxz6gbEaKpX1ERI0dAykiImrQjOb60WgCYGkfEZEvYSBFREQNmpj90Xq50QTA0j4iIl/CQIqIiBo0vdECAAjSqrw8ktKMlJGlfUREjR4DKSIiatDyDY5AKsxf7eWRlFmQlxkpIqJGj4EUERE1aLkGMwAgROf9jJS/mgvyEhH5CgZSRETUoOUVOwKpMF19ykixtI+IqLFjIEVERA1anjMjFVoPSvv82WyCiMhnMJAiIqIGLbfYMUcqtB5kpEqbTTCQIiJq7BhIERFRgyZmpML8vT9HiqV9RES+g4EUERE1aFJpXz3ISLHZBBGR72AgRUREDZrYbKI+zJESM1KcI0VE1PgxkCIiogbLZheQb6w/c6T8NWIgxdI+IqLGjoEUERE1WHqjBYLg+Hd9WEdKp3KU9llsAiw2u5dHQ0REtYmBFBERNVji/KhArRIqhfcPaTpnRgoACkuYlSIiasy8f9QhIiKqJmkx3nowPwoAVAo5gv0cmbHcYpOXR0NERLWJgRQRETVYucX1p2OfKNwZ1OUUmb08EiIiqk0MpIiIqMHKN4iNJrw/P0oUHuAIpMQgj4iIGicGUkRE1GDlGupP63NRuL8GAHCtiKV9RESNGQMpIiJqsKQ5UvWptC+ApX1ERL6AgRQRETVYefUxIxXgzEix2QQRUaPGQIqIiBqs3OL6sxivKMKZkbrGjBQRUaPm1UBq+/btuOuuuxAXFweZTIYff/zR5XlBEJCcnIy4uDj4+flhwIABOHr0qMs2JpMJkyZNQkREBPz9/TFmzBhcvHixDn8KIiLyFjEjFeZfj5pNSHOkGEgRETVmXg2kiouL0aVLFyxatKjC5+fMmYO5c+di0aJF2LdvH2JiYjB06FAUFhZK20yePBmrV6/GqlWrsGPHDhQVFWH06NGw2Wx19WMQEZGXiIFUSD3KSElzpFjaR0TUqCm9+eYjR47EyJEjK3xOEATMnz8fr776KsaNGwcAWLZsGaKjo/HVV1/h2WefhV6vx+eff47ly5djyJAhAIAVK1YgPj4eGzduxPDhw+vsZyEiorpX3xbkBVjaR0TkK+rtHKn09HRkZWVh2LBh0mMajQb9+/fHrl27AAApKSmwWCwu28TFxaFjx47SNhUxmUwoKChwuRERUcNiswvINzrmSIXUp3WknKV9eqMFZqvdy6MhIqLaUm8DqaysLABAdHS0y+PR0dHSc1lZWVCr1QgNDa10m4rMnj0bwcHB0i0+Pt7DoyciotqWU2SCIAAKuUwKXuqDYD8VFHIZgNLSQyIianzqbSAlkslkLvcFQSj32PVuts3MmTOh1+ulW0ZGhkfGSkREdedKQQkAIDJAIwUu9YFcLpNKDXO4KC8RUaNVbwOpmJgYACiXWcrOzpayVDExMTCbzcjLy6t0m4poNBoEBQW53IiIqGHJ0jsCqeig+pONEoX7c54UEVFjV28DqcTERMTExGDDhg3SY2azGdu2bUPfvn0BAN27d4dKpXLZJjMzE6mpqdI2RETUOIkZqeggrZdHUl4EF+UlImr0vNq1r6ioCKdPn5bup6en4+DBgwgLC0OzZs0wefJkzJo1C0lJSUhKSsKsWbOg0+nw0EMPAQCCg4Px5JNPYurUqQgPD0dYWBimTZuGTp06SV38iIio/vv1SCaC/VTo2yrC7ddkOQOpmOD6F0iFs3MfEVGj59VAav/+/Rg4cKB0f8qUKQCARx99FEuXLsX06dNhNBoxceJE5OXloVevXli/fj0CAwOl18ybNw9KpRLjx4+H0WjE4MGDsXTpUigUijr/eYiIqOp2ns7B818eQKBGicPJw246D1aUpXdke+pjRkpsfpHDQIqIqNHyaiA1YMAACIJQ6fMymQzJyclITk6udButVouFCxdi4cKFtTBCIiKqTTa7gLfWHAMAFJqs0Bstbi+um11Yf0v7SjNSLO0jImqs6u0cKSIiavy+3Z+B41mF0v2qZHDEZhMx9TCQkhblLWZGioiosWIgRUREXrH5+BUk/3zU5bGqtAsvnSNVH7v2iaV9zEgRETVWDKSIiKjObUq7gqf/m4ISix0D2kSiW7MQAO4HHgazFYUlVgD1s7RPbIBxOb/EyyMhIqLawkCKiIjq3L+3nYXNLmBMlzh8NqEHYp2Bh7td7sSyPn+1AoFaVa2Ns7riQ3UAHIGh0Wzz8miIiKg2MJAiIqI6pTdYkHLBsZD634a3gUohr3Ip3JWC+tuxDwCC/JQI1Dj6OV3KN3h5NEREVBsYSBERUZ3aduoqbHYBSVEBiA9zZG7EBWzdD6Tqb8c+wNF1tqnzZ8vINXp5NEREVBsYSBERUZ3acjwbADCobZT0WESgo8udu1376vNivKKmoX4AgIt5zEgRETVGDKSIiKjO2OwCtp5wBFIDywRSVS3tE+dI1deMFFA6TyojjxkpIqLGiIEUERHVmT8v5CHPYEGgVonuCaHS45FSRqqqpX31r/W5KD7MkZHKyGVGioioMWIgRUREdcJktUnrRg1pFw2VovQQJM6RcrdrnxhI1cfFeEVNnRmpi8xIERE1SgykiIioTry/7gRSLxUgVKfC30e2dXku3BlIGcw2GMzWm+5LnEsVGdgAMlKcI0VE1CgxkCIiolr37f4MfPZ7OgDgX/d2KTe3yV+tgFblOCTlFN48KyWWAIqZrPpIzEjlGywoLLF4eTRERORpDKSIiKhW/ZaahRnfHwYAPNu/BYa0jy63jUwmK22BXnzjeVIGsxUG5yK3EfU4IxWgUSJU51gsuLrlff/dfQ59Zm/CwYx8D46MiIg8gYEUERHVGpPVhr//cBh2Abi/Rzz+PqJtpduK5X05hTcOpMSMlVYlh79a4bnB1gIxK1WdhhOHL+bjzZ+PIVNfgg/Wn/D00IiIqIYYSBERUa3Zcvwq8g0WRAdp8M5fOkImk1W6bWSAe2tJXS1T1nej/dUH4jypqmak8g1mTP76IKx2AQDw+6kcnMgq9Pj4iIio+hhI+bjUS3rM3XASJRabt4dCRHUk32BGkenmDR084X8HLwEA7u7aBErFjQ854lpS127SAr0hzI8SiWtJncp2Pwj6Ykc6bp+zBWevFiM6SIPbkyIAAJ/9fhaX841YtPkURi/8Hd+lXKyVMRMRkXsYSPm4N38+hgWbTuG31CxvD4WI6oDeYMGQudsx9qOdEAShVt+roMSCTccdi+/e3TXupttHuLmWVEMKpG5zBkG/HMly64LVoYx8vLnmGApLrGgbE4jPJvTA5CFJAIDvUi6i77ub8f76k0i9VIB5G07W+v8hERFVjoGUD7Pa7Dh8KR8AcP4a2/NSzekNFhy+mO/tYdANbEi7gpwiE05nFyFTX1Lu+Z8PXcavRzI98l6/HcmC2WpHUlQA2scG3XT70mYTNy7tE+dIiYv41md9W0agSYgf9EYL1h+7ctPtt5xwBJ6D2kbhl5duR+emIbilWSgGtImUtunUJBh+KgUu5RuReqmg1sZOREQ3xkDKh53KLkKJxQ4AuJTPQIpqRhAEPLlsH8Ys2oktziwE1T+/pZYGSSevuJabnc4uwqSVf+LFlX9Cb6h5u26x9GxstyZuzWWKDXbMJzp4IR82e+WZloaUkVLIZbine1MAjhbwN7P95FUAwND20ZDLHZ+ZTCbDksd6IvWN4Tg76078POk2KbBad5TVBERE3sJAyoeVzRxUtzUv+Y7z14rxztpjSM8prvD5HadzsP98HgDg0+1n63JojYrRbMP5axV/xjVVZLJi+6kc6f7p7CKX579xnujb7AKOZRZg37lcDPjXFuw8nYOqOnWlEHvP5ToCiVuauvWaAW0iEapT4VK+EetvECA0pEAKAO5zBlI7Tufg4g0W59UbLFKb8ztaR7o8J5PJEKBRSsHVsA6OFvLrj2UhLbMA/zt4CUbzzUsHbXYB9hsEqaL953Ix84fDdTaXjogarm/2Z+CjLafd+m5pbBhI+bBDF/XSvy/l1zyQyikyYeo3h/D7qas13hfVP4s2n8Znv6dj7Ec7setM+RPrj7aclv69++w1HM9iyVF1TP/+MAa8v1X6jC9cM6DAQ4u5bj6eDbPVLt0/daU0kDJb7fi+TPOCY5kFWL77PM5dM2DVvptnUq63cq/jNYPaRiEmWHuTrR20KgUe6Z0AAPh8R3ql2zW0QCo+TIceCaEQBGDP2dxKt9t5Jgd2AWgZ6Y8mIX433OegNtFQymU4eaUIoxb8jpdXHUSfdzdh5d4Llb7mwjUDur6xHtO+PXTTMf9r3Qms3JuB79zIonmT2WrH/w5euum8OiKqHZfzjZjx/WH8a90JLN52xtvDqXMMpHxY2YxUZn5Jja8kvLM2Dd8fuIgP1p+s4ch8w6a0Kxg+bztSL+lvvnE9cNgZeOuNFkz4fK90op9vMGPJznTsOZsLlUKGWxPDAABLd57z1lAbrCKTFetSsyAIwIo953EoIx+D527F8ytSPLJ/sawvMcIfgGsnuY1pV3CtzNyktMwCpDgzjMcuV+13tMRiw/cHHEHZQ7c2q9Jr/9o7ASqFDPvP51W6CK3YHj0ioP7PkRK1jAwA4DjpqIxY1nd9NqoiwToV+rQMBwDYBcdnkW+w4B+rjyC3kjlmPx++jEKTFT/8eQl70ysP6ABH6TfgCKjrs1m/pOHlVQcx57fj3h4KVdPhi/l4Z+0xtzKq9YndLtywBBlwzEX3dEOYBZtOYeYPh2/63p50o/f64cBFiD/i++tPYOsJ3yrtZyDlo0osNhzPLD2JMtvs0tos1fHnhTys/tPR5vhEVqFPpnerasnOczhxpRD/+b3+l8EZzFbppPu2VhGw2gW8+NWfmLv+BHrN2oQ3fj4GALi3ezz+NrwNAGD1n5eQb7hx0wBy9fvJqzDbHBmjjceyMfvXNFhsAvam58Jqs9/k1Tdmswv43VnW93z/lgAcJ8viQV4s62sbE+gYy6mrUqb6bE4xDGb3S7zWH7sCvdGCJiF+bgUFZUUFaTG6s6PDn9g6/Xrigr0RgQ0jIwUAcc4MU2WBlN0uYFsVAikA+Med7TCmSxyWPXEr/vjHELSKCoAgAH+cvVbh9mKgBgBzfjte6QnetSKTFIylZVbetv3klUJpzN5w9LIe/919DgAqDbrrK0EQkHeTpiq+4v31J/HZ7+n48o/z3h6K2y7nGzH2453onLwOf/v2UIUVGPkGM4bN3447F+zwSNUP4Dh3m7fxJFbuzZAudNW2N38+hlve2oDNx8s3yxEEAd86KxlaRPpDEIAnlu5D8k9Hyy1jkXI+F+cqmRrQkDGQ8lHHswphtQsI91dLJSTVmSd19LIeH6w/4VIqYrTYcCGXzStuxGYXpAP/puPZMJptmPnDEST/dLTCFslLdqZj2a5zdTvIMtIyC2AXgMhADT6b0AMd4oKQW2zGgs2nYbLa0To6ANOGtcbrd7VHj4RQtI0JhMlqx/8OXvbamBuiDWmlByqzzS6VgVlsAs7X8G/q5JVCFJZY4a9W4K4ucVDIZSgsseJKgQkWmx1/ON9r2jBHIHyloPQgKAio0mKwB5wH+OEdYqCQV33B3MHtogBUXAZXYrGh0Dlvp6GU9gFAbIijvLGyE6p953KRqS9BgEaJPi3C3dpnu9ggLHiwG/q3joRCLkM/Z4ZqdwWBVJHJKp14iRm/zZU0hTlVZu7ciSuFFQbxJRYbHvx0Dx79Yi/SvJC1stsF/PPHVIjX7M5cLYbJ2nAyGh9uOoVub23wuav3FbngnBN6syxpfZGWWYC7P9qJwxf1KDbb8G3KRTz6xd5yFyYWbzuDs1eLkZZZgPGf7PZIEJGRa5CyP9tO1v7vjiAI+OHPi9AbLXjmvylYc9j1mL43PRfnrxngr1bg++f64q4ucbALwNJd59B79iZMXuVoXLT/XC7uWbwb936yu0oX5RoCBlI+Sizr69Q0WAqkqnrFxG4X8NSy/Vi4+TTOXC2GTq1AszDH4pOcH3Njp7OLpEnchSVWTP/+MFbuvYClu85hwhd7XebEnL1ahDd+PobXfzqKDC8FqEecZX2dmwTDT63Av//aHdFBGgT7qfD+fV2wbvIdeHFQErQqBWQyGe7vGQ8AWLUvA5fyjZj1S1qjvBLlSTa7IHU7HNY+utzzp664H8hUZN85x0nKLQmh8FMrkBBeulBsWmYBjBYbgrRKDGwbhUCtstzrq1LiddRZCtixyc1bnlektzOQSMssKHfVXpwLo1bIEVTBOOsr8Xu2opbzAPCjM/s2smMMtCpFtd6jT0vHmlW7zpQPpHafuQarXUBCuA6P90sEAHz1h2M+ld5owcJNp3Dbe5vx5s/HXAIps9WOsznF0BstLhd5fk3NlEpBt3ghGDiWWYADF/Lhp1IgQKOEzS5IzVMEQcBHW07jp0OuJ30HLuTh632VzyEDHJmGrEr+jzylxGLDEmfp88a0m7fEb8zsdgGXnZ/3vnO5DaKa5fX/HcXVQhPaRDvWeZPLHBeeylb1XCkokcrbIwLUuJRvxJtrjtX4vcs2e9p+0lFhcOpKocvc1+pIyyxwlui5fv5nc4qR7+zgarULmPLNIeQWm5FdUIIZ3x3GpJV/AgBGd45DqL8aCx/shhVP9kKX+BBYbAJ+PHgZ/1h9BP9adwKA4/tbnD/bWDCQqmdMVhuOXtbX+iKLhzKcJ8ZNQ9AkVMxIVe0k/cglPTL1JdCpFZg+og2+ebYPejnnxxyv5Or1+WvF+L8fj3gtIKgvDlxwTcn/7Dzgy2SOKzwTPt8rXbXZUGbtmcquIAOO13mqfABwHOxn/nAYc9efwBHnWjUdmwQDAJqG6rB12kDse3UI7u3etFxr67Fdm0CtkCMtswBjP9qJT7efxfvrT1RrHGarvcZBRH0nCAI2pl1BnsGCYD8V3hrbESqF4zMVS+3KNoa4GaPZhuHztuOpZfulx/adc/zO9Wzu+BtNigqQ9rvf+Vz3hFAo5DK0K7PmkxgAHLvsXiBltwtSOVj7uOoFUhEBGml8f6S7BgVl50e501K9vihb2nf993uJxYY1hx3z1/5yS5Nqv0fvFmGQyRwXarILXIMB8er1HUmRuNfZRfD3UznIKTLhLx/vxAcbTuJinhH/3X0Of15XMrT+aBZue28zJny+V3rsyz2lAcnvJ6ve1bGmzjmzGB3igqSAXSxXP3AhD/9adwJ/+/aQdIKZbzDj0S/2Ysb3RyotiSqx2DBqwe8Y8eH2Wm1esTHNUfoKAEfd/Luq764UVC/4zCk2Sf9HeQaLSxBfH124ZsDec7mQyYAlj/fE0PbRaB7umHN6Mqt07As2nYLJakf3hFD859GeABy/lzU9tyu75ueRS3q8++txDJ23vUZzBG12AU8s3Ycp3xwqdxFGrC64pVkI2sUGwWy1Y/3RLMzbeBJf789AdqEJWpUcE/omSK+5LSkC/3uhH1Y+3RsKuQxrj2TijzLZxk+3n2lQ2eObYSBVj5itdnROXo9RC3a4lNXUBjEj1aVpMJo6A6lLVSzt2+S8kta/dSQmDmiFjk2C0TbW9YB2vSU7z2HFngs37MjlC8Qvpy5Ng6XHIgI0+O65PgjRqXAwIx+TvvoTVpvd5YplZYHUr0cyMf7fu/HiVwc8Mj67XcCUbw5i5d4MLNh8Gr86mxR0alI6Xj+1AmplxV8hof5qDO8YAwC46pzP8vupnGpNjp238SSGztsuzZfJLTZ7rItdfXCtyISRH/6OZ5c7GkoMahuF6CAt/vNoTyx++Bbc3dVxYl2VE4w/M/Jw4kohNqZdwakrhRAEAfucBzIxkGodHSjtVzyx7OF8ruziuQ/1cjSLcDcjlZFnQJHJCrVCLjVYqA6xkcL15X0NcX4UAMQ6OxcazDbpJFq05Xg2CkusiA3Woneie2V9FQnRqaX/u+vL+8Sr13e0jkTr6EC0igqA2WbHpK/+xNmrxQj3VyM6SAOrXZCCOjHjt3DzaRSWWLH3XC7OXC3CiaxC7D+fBzGO3X8+t1rlOhabvdoT5jNyHcerpqF+aBvjPO44KyF2nnb87CarXcqOfvb7WRSWOMZ4qJL5VGevFiPPYEG+weLShdTTvt1f2h0zLbPgpp/BrtM5Uka5vhEEAf9YfQS9Zm3CrF/SKt3OarMju7B8sHU53/WxvekVz+9zZxxzN5zEF7V8biHOBb+tVYR0cUT8Lj3hvOB3/loxvnZ2Op0+vA3axQZCKZch32DBZX0Jtp28in+tOw5LNea9nrtuaYxPnF3yvjtwsVr7A4Dtp65KmfId1y118afzb6VH8zCM7hzreK+Ui/jJWbY/e1wn7Ht1CDrEBeN6fVqG44UBLaX7f+2dgJggLa4UmPB9SsXzXxsiBlL1iFopl8ptjmVWv5NbYYkFzy1PwYo9FU/cLDJZcfqq46Ssc9OQapf2bUhznNQPaVdahtTOefW8stI+MS3tjZr6+kTMSD0/oKV0svLCwJbonhCGzx/tAY1Sjk3Hs8tdPd199lq5ExaD2Yq3nCUDqZf0NW5KoDdaMO27Q/jlSOk6PgZnN6VOTct/WVbmYecJeESABoEaJfRGCw6V6RTpLrHc7buUi7haaMLA97dizMIdFc4l85a1hzOxu4JyKnf8dOgyjmcVQq2UY0SHGLwypDUAxwWKkZ1ipczM9Yvn3kjZBgG/pmbhYp4RWQUlUClk6BofAqD04L/tRLZ0tbBHQiiA0kAqIkCN4c71io5nFrp10itmrlrHBEClqP4hRizvu/5zbWitz0ValQLh/o4ug9efPIqTte/u2kRaJ6q6+joD0F2nSz+3cznFuJBrgEohkwLUOzs5TorEgGviwFa4y9nkQ2x4MrKjYxtTmbKhdUezsHzPOQCOEtT4MD9YbII0x85dZ64WYeD7WzHyw+3VCqbECor4MB3axYrHHcfvfdnlGVLO5yGnyCSV0gGotFNq2ZPUL/dccKnSsNrsuO+TXbh70Y5qn7ACQJa+RFoiRK2Qo8Rix9mrlV8kuVZkwqNL9mLC53tRXAtrehnM1ht+/uk5xbhjzhbM21BxN97Pfj8rlYh+uv1shYtOC4KAZ5enoPesTS7dgoHyF3D/qGSe1Dtrj+HBT/egsJKLaMcyC7Bg0ym8ueaYRxYTr4g4XwgAxpXJHLd2nveccJ73zN1wEla7gP6tI9GrRTg0SgVaOb/HUy/pMf27Q/hoyxkpKKsK8Xc09rolJfINlmqt9we4LhR+/Ty1shkp8Ttj//k8FJttaB6uwwM94xGoVVW67xcHJaFHQihigrR4eUgSnrzNUVb80yEGUlRLxBOYsmU0NruAE1mFbqeE/3fwMn47moX/+zEV/y7T0/+bfRlYufcCUi/pIQhAXLAWkYEaqbTvZhkpg9mK3GIzBEHApXwj0jILIJcBA9tGSdu0cX6hnM81VPilLzahOHHF/Z+nvisocUykdMeRi3psSruCM1cdX4Y9m4fhX/d1wfMDWuLhXo7UePeEMHz4QFcAwPcHLsIuOMpX4sP8YLbapautoo+3nJFqzC02oUaLK+85ew2DP9iKHw44vuTeHdcJMUGOL+yoQA2ig9xbDwhwnAh//UxvrH3pNtze2jF3Y9uJm3f4strsmP1LGr7ZlwGD2SoFELvPXMOSnenQGy04d80gXfGrbXa7cMPgNOV8Hl746gAeX7q3Wpmy9UcdGcfpw9vgk792RzPnxRSRGPCczSl2O0gu+/3xy5FM6Wp2R+ccN8BxASQuWIvL+hLkFJmgUsjQxRlkDW0fjW7NQvBc/5ZIjAiAViWH0WIrdzW0wvd2XiTpEOt+0F0RsUz4xJVCZOpLf6dLA6mG0/pcVFHnvrNXi6RM8/ge7i1cfCP9Wjn+1racyJbmm2x3nrh3TwhFgMZx4WaU86QIAEJ1Kjx4azwGlfkuB4C7usRJ/xbju+/2X8Q3+xwnk4/1TcRtrSJd3sMdp7MLcf+/9+BinhEnrxRVqZGJKMP5PRcfqkMbZ0YqLbMQRrMNB87nS9sduJCHz7afhcFsg875u59aSTv/svNPzDY7Fmw6Jd3ffuoq9p3Lw6GL+govagiCewsd/3zoMuwC0LN5KDo7L0zdqLzvYEY+LDYBRoutWheibuTXI5no+fZG3P/v3ZUej38+dBkXcg34cNOpch1mj17WY/avjpKyW53Z7FdXp+LP60rXvz9wCZuOZ8MuOALxsi7lO84JxMBgb3puubGcv1aMz35Px+6z11yyeWWVvXBwpEyg/O9tZ3Dv4l0eCa4OXMjD+WsG6NQKDO8QIz3eRspIFSEts0Camyd2sAUgZWz+d/CSVHG0+kD5YOJqoQl7zl6r9P/jXI7j85rQpzkAQKdWYIizOY+YSa6K3GKzy/SBwxfzpTb0RabS42+3ZqFIjPB3Kfse3zP+puXVaqUc3zzbB7v+PggRARoMaOP4vnD8Xtfsom99wUCqnhH/2Mp+sU779hCGz99e4aKYW05kY9SC312u2pa9KjH71+NYsOkUvt53AdO/P4yZPxyRrh6J2YWyGanK/njzis3oM3szbnlrA7q8sR4PfLobgOPAHOZfekITHqBBZKAGglD+CrrNLkhX+PINFqnkqzrm/HYcL3x1oMbZF094dXUq7v1kt7RGT2UOX8zH3R/twJPOeSvNw3UID9BgeIcYzBjR1qVMbkTHWDzXvzQlPrR9NAa1cXxZlm1BWlhiwWfOg5tW5Xj92RxHqdY/Vh/BztM5bgesRSYrXvn6IHKKzGgZ6Y+vnuqFB25thtfvag+ZzJEhqapeLcIRHaSVXuvOydaPBy/j39vP4tUfj2DP2WtSVy6rXcC/t5ceyD/eevqGWamMXANe+19qjebjWWx23PvJLvR9dzMuXDOgxGLDdykXXX63v9jpKCUpsdjx65GqHcjyDWbsdQY5QytoMAE4Spe0KjnMVrvb3TDLZnyPZxVi0WZHmZJY1gc4SjNn3tlOut+xSbDU5CDUX43VE/vhqdtbQCGXSaVT7mSSxSCuuvOjROEBGulEc/y/d0vvLQYdzZ1rYTUkcc7OfZfLBIZLnd04B7eNQosalEKK+rQMR6BGiexCk5T5rmh9qtbRAdJV8if6JUKnVqJH8zAp0GoS4odbEkKk8r2XBicBcAT0ZpsdtyaGoXeLMNyR5LxI4mYbdLtdwMQvD7jMQfozo+ptnMVjSdNQP7SODoBM5giy1x3NgtlmlwK/vel50rHz1VGO3/fT2UUVrlkkNsQZ6DzZ++HAJSnoLTtB/ugl178DQRBw3ye7MeD9rZVmTETrjzkCidGd49DB+Tdyo7UEy5Yh/nkh3+U5QRDwytcH8cKXB6qc1fv3tjN4/ssDKDbbpDXbikxWbDx2xWX+Stm28m+vTcN/fj8rHVMcxxfH79WqZ3pjWPtomG12PLs8RZozdbXQJFVMAOUzHmJ2dmTHWKiVcmQXmqSmIaKyF82W7zlfYcBatiRNDDhLLDZ8uOkU9p/Pw1YPdLgTy2OHtIuGTl3a6KZNjDjf1PFdKwjAqM6x0pxiANL/9a+ppYHknvRr5ZZDmPz1n3jg0z0Vduk1WW3Sd8d9PZri/fu6YPmTvfDU7S0AOIJUsftvRb8Pv5+66vL/BzjWgLLYBHRsEoTYYC0sNkH63jiUkQ+74PguEC+ijurkCCAVchnuvcW9Cz9yuUzKtLeMDECwnwolFrt0nltYYsHQudvw5NJ9bu2vvmk4LY/qQE5ODkymqp/cBwQEwM+v4lXoc3LcP5EFgFiNGTaDHgdPmVFc3BZbzuil9O/HW0/jvu5NoVTIkZubiwKDCVOW7UROkRnPfJaFlU/3RkSABtsPn4GtxIqh7aKxIe0K/vU/11/OH/caINfo0LlpCIDSq6QGsw1H0i8jQCXDTwcvY3C7KMQEO57bdOwKcq85vkTyDECe87uwb5MoXL3qLFNQqxEcHIy2MYG4WmhCWmYhujVzlArp9Xqcy85HSWG+NI49x9LRp2UEbHYBn24/i27NQtC7RTjOZhdh19kcPNCzGZQKOVQqFUJCQqTXnb1ahI+3OjJt4zuHo3206xV80Yo956BVKTC2axMoKygxUigUCAsLq+CVQHFxMQyGm5+0llhs+HXfCdisdny/Kw3do5WQyWTILFHh0SV7MXVYazzcKwGCIOCtNcdgNZughRlGix2DbgmTPruKPNotFAdPKpFyPg+3NVXjUr4NywBsOJaNt8cKUMhl2HbyKkxWOxJCVGgRLMfGtGwcOnUBG45dwZFLBVi+5QjaxARibNc43NYqArHBfhWWDoWHh2P+hpPI1JegWZgOaybdDj+1AmazGT1ilFj9eEeEB2huON6KhIaGQqlUSidwhzLykVdsRqBGjry88idPNruA+Wv2w2YwwAbg/f/tg81QJjsLQKuUIzQkBFcKTFi19wIec3YgAwC73Y5r1xxX8178734cuJCPtPSL+Pjh7m6NNygoCBpNacnY5zvSccB58vL0p5sQoFVib7pj3H1ahuPBnvFYu/eEdND6alsqBjUv/11Q2XfElhPZMBflo1VkAHR2A65erfh3Lt7PiuP6Quw7fg6BKA24dDod/P1dAwqz1Y7T2UWwGQvRPEyLc9cMOHVBjxCdCiNa+rn8H/aKVaJLuAwHMvLRPixEek6r1SIwMFDark10IA5m5OPklSLk5+fDYqn8ZPHgqQuwGUyI1ZjL/b6I3xEV0ev1MJtdO/S9OrAJXv76Ks5d1GPc3F8xc2Q77Dt+Hiq5HAMSSn8fr/+OKKuwsBAlJTeZCF9cDF2xa7bNcPUqFCZTjb8jygqCETaDHifPXwb6NIfeYJGusIslL0ajEUVF1Z9wHxkZicHtovDjwcv4NTULnZuGYNeZaxCsFnQMk7n8n/xjUBPsPJWDse0Cpcd7xiiwMe0amsYqUazPwwMdg3H+mgHP3J6IbSevSifzk4ckQSaToUezIMhLCnHqvB47jpyVqhIqs/1kNtLSLyFArcDwjjFYfUyPPy/kSxl5kdVqrfA7AnAEY+cuZsFms0NnL0axXkCcxoILuQYs/OUAbIZCjOjeEhtPXJMCtqahfnigZzPMXXcC2Tk52HX0rHQMFJ04dxE2gx6DmjdDXq4MKefzsWBtCib0ScCGA6dgswuQq3VIvazHeMSXvu6KY86YzaDHqu2pGNut4hPMa0Um/JF2DoIA3BIlh6XICptBj5QT52EcnFjhd8TBi3rYDI5Aa+eRsxjfsfTv51BGPr7b6QhSbo9XY3C78hdjKvqOSL2kx7u/HYfNWIioABWyC034YsMhXMg14EBGPronhGDu+K4I0CixLy0dNqMVvVuEYc/ZXLzx7R5sP3wGCx7pJZUQ90wIhVwuw9z7u2Lcxztx/HwWHl+8EUseuxXzN55E7rUcxAZpkVlQgpTjhci43EK6aHPq/GXYDHqEK0vQI0qBHemF+DU1C0nOLI/VZpdKX+2mYpy+oMfPe4+jr7NDJeD4ztuVehY2ZwnqnqPpGN8xGNtPZqMw33GycvD0JWm+6fXc+o4AcODEedgMerQIiJb+XhQKBRLCQ6BWyGEw27DWeTHthQGtXL4j4pzndiKZzLGsxPKth/FEP0cgVGC0YGdqOmx2AW99/wf6tIxw+XsSW5/r5DbYDXr0b6YB4CjNDJUbkZNrxoqtjovqPaMVuLVFOM7lFCEuxHGO9OynW1FosqFbsxB0TwhDvsEszQV8uFcCdp7IxP8yr2DTgVNoHSxg859nYDPo0ba5Vvp5ByRo8aXGjDuSIiEzFeLq1dKLiuHh4ZDLy59rmc1m6PWlP3uHUOD3a3psOXgKTbTNsWrvBRw/dwnHzwGHb4tGbLDr34F4HnG9G31HuCM4OBhqdfnKBvE8orDQzUy5QIJerxcAVPu2aNGiSvcdERFR7f2+9LeZQtc31gkJM9ZItzWHLguCIAjt27ev9n4Duo0SEmasEX4/eVUa54Of7hYSZqwRYtrcUu393nvvvYIgCMJ7v6YJCTPWCK98/ae0/3vvvbfa++3fv7/LZzr7lzTp8xg87pFq77d9+/aV/r+9/vrr1d5vRESE8Pr/UoWEGWuEIR9sFQRBENYeviwkzFgjRI14vka/ax1f+01ImLFG2Jd+TRAEQZj01QEhYcYa4cG/z63Rfn8/fEZoMXOtkDBjjbDl+BXpc9iyZUuN9puamirta+jcrULCjDXCDwcyhNTU1Brtd+ailULCjDVC2//7VUi9lC+9R3Z2do32+3TyAmHnacffxYVrxUKb//tFSJixRmj1j7U12m9l3xHPr9gvyP2Cqr3fv7/6f4IgCMK1IpPw1R/nhbfXHBV2n8kREmasETSRzaq934kTJ7qM87PtZ4SEGWuE51fsF/r371/t/YrfERXx5HdEWRMnTrzp63WA8Pp1Nx1q7ztCGxgiCIIg/HdXupAwY40wfN42wW63C4IgCIsWLarR75ogCMJvqZlCwow1Qt/Zm4Sdp64KCTPWCC3u/78a7Tc7O1v6Pbjvk13SeGv6HRH7xEfCwPe3CIIgCKmX8oVn/rtPGPj+FuHr9TtrtN/kT74Rxiz8XTpWLN56WhAEQbh//m812m/E3X8Xxn280+V3YfHW00LCjDU12u/ChQul/VmsNiEjt1iw2+1ClzfW1eg7YtSjkwSL1SZcyjMIs39JE3acuircu3inkDBjjRDWpEW19zvmwceE4fO2CQkz1ggbjmZJYz+XUyToEjpVe7+6Nv2E4fO2Sftb5/xdvuXN9ULbPkOrvd+YNrfU6Duispv4HSF+Fgkz1gj3OH8/avIdIfcLEobP2ybYbHZpnBuOZgkJM9YI7e+dXKPftSU7zgqCIAiv/XhESJixRhg6d6tgsdqEl2Z9XKP9ZmdnV/j5evI8oqyankds2bKlwv1efx6h1+sr/d0RBEFgaV89tv5oFvIMFrSPDcLzzs4nn24/A0EQYLEJNd5/2cYBb97dASqFDHmGmq+0LtboV6Ws7EbOXi2WVq+32Oz4LqW0RjqvhnXPnhhfRcTU+KnsIlzON+J95xoK/VpVvTyuLHGh0t9Ss2C22qX1W8S5LdU165djsNkF3NkpBgPaRN38BdUgTlz/oYK68Koa3DYKtydFwGix4ell+z3Wqnj1n5fx0sqDsNsFzNtwEiUWO3olhmGxmxmtqiix2NyaM3Yjf17Ix5bj2eg9exNm/nAEn/2eLq3roVFWby2iiohXh09WoQU7VU6sutnvnMh9Z6dYj7Zy7986Ejq1ApfyjdKyA2XnNlTXo32b4717OuHjh2/x6HjPXi3G5zvSMWrBDqw7egVnrxZj5vdHarTPrs2CcYuzeYpaKcf4Ho4Mkic+h2OXXTvteWJR3fScYhSZrM71vLbgtve24K01acg3WFCTT3rH6Rw8vnQfxn60E59sO4OH//MH9p3Lg59KUaPOl5fzjVIJXtky3oRwf0QFuj+X9noymaMc+ezVItjtgtSV7p7uTZFYg3Jeg7MMPFNvrLCss6bKZo7+2iehxvsTP4fTZRqRiHNUw/1r1mjnWGYBTmcXYrmzIVnyXR2gVMjROqrmpcW+iIFUPSa2o/zb8DZ48rZEqJVyHLqox47TOeUWqayqpChHnaqoVVQgni8zJ6cmuieEQqOU40qBCWeuFuF/By8hq5prTABAdmEJXvvfUSzdmY5fjmS6nDTn1uBzOJ1dhFav/oqnlu2TOhYWlljw9ppj0pyC6io7x+399SdwNqcYARolbmtV/dbGgGPuFAD8djQLe85eQ2GJFREBGmkdi+o6cqkA/moFXhvdoUb7uZF7nPXUO07nlFsbqKoUCjkWPXgLWkT447K+BP/5Pd0TQwTgmGeRelkvtZ2fNrwNhlQyf6kmdp+5hmKzDfIanJAeOJ+Hqc61csTufuLcQ00lremro3W0Y9/ncophbQALZtZ34hwPcf5J1xpeCLmeVqWQmgCJpameCCBUCjnu79nMox0Tmzjnjb291lGiNrxDNPq0CIexhl05g/3UGOFsCPDQrc2kubw3Kz28GbXC0XglPcdxgltYYpHWYauJFX+cx5APtuGDDSel46U4/1JRg+6XCrkMv5/KQXahCXHBWiidpd0TB7SU/l0dZ646vguC/VTlOsjFBFc/kBKDhF9Ts/BdykUcuJAPf7UCT/RLhL+m+rNRTBYb/jh7DXfM2YI7/rUF645mVbv1fkXEpkARAWqM6Bhzk61vTukskTuYkY/953LRZ/YmLHZOaQj3r7xLnjuOZRZg7eEs2AVgQJtI9HVe/I5sYEtK1BecI1XPtYoKQP/WkZDLZXi4VzMs2XkOyT8drdE6On1bhuGD+7uWe3ziwFZYEKzF+Ro2Q9OqFOjRPBQ7T1/D/I2nsOZwJq5WsgBiVST/XDphdUi7KGxMy5ZW3K4OQXDMydmYlo1dZ7ahX6sIHM8qQEauEfkXqj9eq01w+YIWMzB3dYmFJrNma5P0bx0JrUqOi3lGac2Ooe2jILfV/POdOqxNjQ6AN9MsXIdbE8OwNz0Xyf87WuP9BetUeHlIEl5edRBbjmfj7yPbYlOZ7kPVER2oQREc6+YUlFgRolPhFuc8v5rYfSYHL1z32HrnWNVKOarb1NhssyO32Iz2sUFY/UJfzPz+CH5wzqn0ZCAVE6RFoEaJQpO13ORoqjq7IOBqoUlaXLPLdXN1PGHK0NZQyWWw2ATEBmvRsgbzrmpTu9hgXM1xfB+3jQnERw/dAqtdQPcjqah6DzJXvVqEY///DUGornQeRIcaNkFpGqrFFQCplwrQKioQO0/nwGoXkBjhj4oXHHGP1SYgq8AxR/WVoUn4Ysc5qfucUi5DdS8Z3nNLU6SF+aFNdBDm3t8F+cUWpGUVYGi7aHxSg/GKVTHtY4PKZSdr8t0TE+z4fD/ZWtpxePKQ1h45Nr3323FYbI6/vWeXp0Auc2TQ4ktq3lZ+TJc4/HIkE0/dnuiRagCFM8g9lJGP30/lSBfWAUcjnpo4mVUEtcKRRS3b5KghLXBen8iE2qptakAKCgoQHByMM2fOuEywdpcnm00AjsYOf/v+MGRKDd57oCcevNWxHk9usRn952xBockKm7EQtzQNwn8e6ym9zmy14621R+GvVmLGiLaV/lFcP5G8LHEi+c+HLuP1n46iXUwgRneOxb/Wn0S/luFY+NAtlY677ETyj7eexpzfTkjP2U3FEGyOL6t/3dsZ//djKkxWO14a3AoLNp1G83AdgrRKHL5UgGZhOgRqFDjqnMgqkyswpGsLbD6eDaVchgFtIvHePZ3R773NMBQVQbBZEKhR4J2/dMJLqw5K7xmqU2HDK/0rbK6QX2xGscUOpS4IyT8dlUpsAEeHmuLiIlzTO048ZDJgfPemOJVdJF3dvaVZCK4UlOBSfgluTQzFG2M6YOSHOyCTAeNuaYof0woRH+YnLRoJAD9M7It2kdoaTyR/bnkKfivTQnbFk73Qs1kgCgoKMHTeNlwrchxylzzWA13iKw4CBEHA5rRs/O/gJew9l4dbWsdj5TN9yjXluH6SaFVdP0n0m/0ZmP7dYQh2G+wljs/h0792x8dbTuPgRT0e6dUMU4Y5WsbuTb+GiV8ewJP9EvH8wFYu+xUnieYbzLjlrQ2wC8CPL/TD/f/eCUOBHvd2b4KZI9tBJpPhwrVi/GXxLgiCo4WzGOP6qxUoNtvQLEyHqcOS0Do6CLsuFGPWutID+F1d4rDwwW4A4FajjQ83ncKyXefQu0UYPn64O9JzinDP4t2QqbTY+9qd0smA3S6g1+xNuFpowodjW0pr/1TF5uNX8LfVJ+Cn02HNpNuQFB2ITL0RA9/fihKLHSsndECryOplKiv6jvjLxzvx54V8aO1GFJeUntYF+ylRUGKF+DUXpFVi45T+FTZ4qWqzCXd5pNnERx+5PGR44QUogoI82mzCbhfQ993NMNvsmDG2J95ffxItIvyxedoAaRtPNJuoiMlkQkFB9dfvu9lE8nM5RZjyzSFoVAq0jg5Aj4QwvP7TUYToVNj4Sn/8ePAS3l6bhhYR/vj2uT7S8WntcT2S1zqOFd882we3OtveP/b5bmw6lI4ZI9ogt8iMz3ako3/rSMy7vyve/Okofjx0Gc/d0RLP9G9R4XhvNJF82ZYjWPnHBaRlFaJ5uA4/TOyHz7afxeJtZ3BXl1i8MaZjpZ/DvG0Z+Gp/Jp6+PRGvjmqP6d8dwjf7L+Lxfs3xRPdwvLTyT+l4opLLsfLpXigoseBkdhGahenQuWmwS8c3wHHsXrE/C4GB/niiXyK0KgX2pudi/L8d3XGTh8YjUKvA5K8PIVCjwOtjOuCjLWdw/loxljx+Kzo1CcaTS/fiz4zS7+pX72yHe7o3hU6ng06nq/B8IDc3FzZbxZm/+ZtO4r+7HKHhzy/2Q5PQ0qZOf/l4Jy7kWyDX6PBEv0S8dld7l9fm5+cjJf0qnlq2H7cmhmGR87zBbhcwZtEOXNaX4L7uTXF7UgReWnUQraMDseqZ3gAAgxV4aNkRqUqkdXQA1r50O1QKOfR6Pf44fQVPLtsPtUIOs80OpVyGefd3QY/mYdAoFfg+5SLecV5kjA3SYtHD3TDntxPYe14PudaRWR/QJhK7zlyD2dmcYkirQMy+29HR8VxOEeZvPI0Hbm2KGd8dRqHJ9fN5ol9zvDgoSbpfk6ZVBUZHtzqLs6z+lyNZuCU+BP95rCc2pl3BzF/Oo31sEDL1RuQZLJjQJwE6tRLP3dYUlpLKL2iJfx8AMKFPAlYfuIhCkw0D20RiX3oujMrSEr6t0wZIHVDF74hzOUV4/aejGNY+Bg/3dr9M0d1mEwCwKe0KPvs9HZ2bBmFs16ZoHxeECZ//gdTLBXjz7g4Y3bl06QVvNpto2bIl9Ho9goIqvwDDjFQZERERN/ywqrvPqhrQNRB+GzIQplPjL91Ku8yE+avx/MCWmPPbCSj8AjHl7p7lDpqfPFWzEiTxZGR0r0C8ufEiThYAOy9ZoNAFo2/HFpUepK93W6sIzEFpICXXlJ7QdWudgM6t9DhwIR9LUnKh0AXj9s7NMLhtFJ7/8gCm3NUJJ68U4rje0eo6IVyHzx/tgaOXC9AsXIcg5+JvbaIDccji+CLs3TYKY/u0w5IDuTh80fEHe0fnWERHVzzfp+yP8c2zffBnRh7+vJAPm13Ag72aobDEijm/HUdciB8eurUZ4sN0uJxvxKgFv6PEYsf8x26H0WzDnHXH8Xz/lujYIhx9OyTij/Rc/JjmCAAf7dMcH248hUKTFS0j/dEtPgQymazSoNtdLw5qhWvFJrSNCcKozrHSwqWRkZFok9AEf6TnQq2Q47ZOLaXOSBV5ICoKD/Tv6OhEJav4apRarXb7/9wdd3aKxZs/H0ORCUhsGosLuQak5go4li+DQheMiSNvQWSY44A9KjISRzq3RIBaWekipSE6NbonhGLfuTy88OUBmKzALW0S8K9HSoPCyMhIjOieI2WA2kYF4FR2EUoAKJTAjL90wxjnejnawEKXQGpAmXbR7nwOzw7zx5eH8rAvywa94IcLBhMUOkfgsOVENkZ2jMG3+y8iKkiDq4UmBGiUGNEjqVpXMMdHREChC0F8qJ80hyk22A/Ln+yFjFwD+rSv+ZpEZSVFBeDPC/kokftBofPDp3/tjpNXCjGqcxzeWnNMaks+rFsTxMZU/XuosgCrpgIDA29+gUynA67rbOYfGVnuMZfn/f3LdUNzx4ierbH2cCY+2uL4Pbt+fqOfn1+NvyMqotFoPPq3LBK/IyIjI/H766UdNC02Oz7YnolCsw05Ng3WnTFAoQvGQ/3bIiqq9Ht5pCYQS/ZkYHiHGCmIAoCOTcOw9VQuLhpVSM8zQ6ELxp7LFsj8gnDNroVCF4y2iU2q/DPJ5XI8PrgLxvRqi+5vb8TFEkAbGIIcmwYKXTA6tIi/4T67JpTgq/2Z0kK/4ppBw9rHID4uHN+9MgJf7EjH0l3n8MLAVujVwXEhdOhNxjXjLte/mVsTw/D07YnYcfoa7u7dFiE6FRS6EHSND0HzCH+M7dMOVwtNaOoMcCaOvAXPrTggvf7uPm0RGXzj36PKAgAAeHFkANacKEZssBZdkpq5HB/u6NxSWkalomUOQkJCMLhbCH5v3gRh/mqXwPGDCXfgkc//wA9phThTpIBCF4zEplEun/m2vw3A3nO52H8uD3d3jZMW9g4ODsagroEIX3sO+QYLFHDMnRrbpzSQe7B/CNLygY5xwfhrnwRoVQp0Pm3E/iuOMkmtSo7FD3eHWinH4Yv5uGfxLmw8XYiJRiVuaRaK6WvSsfOSGbt/PAu7IgARESr4a5TS+ow92zV3+3fuZt8RkQD6d2mJLSeuYt0ZIxS6YIzr1x6RkZG4QxUA/HJeWpcvQKPEP0e3L13kPLDy+UyDb0nCz6cc86n+OrAT4mKi8f76E3hqaFeUbD4tLbnRJMQPCWXWLRS/IyIjI/FLu8QK910dFZ1HPBAZiQfucL1g0b9LK6Tln0FaHvC4G5+xUqmsle80uVyOyMhIlw6+NxyHx0dANRYTrMWaSbchUKssdyL8RL9E7D5zDZEBGmn9jtoQFahFh7ggHL1cIK003q1ZiNuv7xAXjGA/FfRGCx68NR7fpVyUSgGahenw95Ht8PB/9sDgnPTZu0U4BreLxsm3RwJwXG0X1wwa2dExEbvsmgyAo+b/kDNo6tE8FDKZDC8ObIVnlqcAcARz7pDLZeieEIbuCaUHlSCtCh8+0M1lu7gQP6x75Q5YbIK09tbSx2+Vnn9rbEeMWvC79HPemhiGAW2j8POhy3jw1mYeS5t3bBKMb5/rW+FzLSID8Ed6Ljo0CbphEFWWogZ18lUVoFFi1TO9UWC04FhmAd5em4blu8/DZheQEK5DfJhrK/ugG6yYLhrYNgr7zuVJVzBfHNiqXDbkqdtbSIHUP0e3x5Kd6dhy4iraxgRidJmFSVtGBiAmSCvNUejfpmpf0vFhOgxuG42NaVfww4GL0BtLS083H8/G9pNXXdYRGdAmstplIDKZDPd2Lx8s9Wwe5rJelKeIcwAAR6nf0PbRGOacg/JY3+ZSIDWkghbMVOr+HvFYezhTmgPUpWntBJDeplLI0atFODYfz8bHW8/gwIV8KOQy/OUW1xbU0UFabPvbwHKvF0vwDmbkS5PsrXYBP/55SVpP7frvi6oID9CgSYgfLuUbkXqpQFqM92bzTfu0DIdSLsOBC/l4ctl+lFjs6NI0GL1bOP7mFHIZnr6jBZ6+o+JMWVW8Oso10zO2zIVVjVIhBVEAMLR9DJqG+uFinhHtYoPKtZCuqthgP2ye2h8alaLcsat3i3ApkGoXW/lFirLjE92WFIFH+yRg2e7z0hpZ139fKRVy9G0Z4dLivOxzA1pH4seDjgD2uesyksF+5Y/d4jpPgKM8XlyUvFuzUNzbvSm+2X8R76xNw/+NaoctzgZAYuXCwDZR0KgUWLlX/Hk9e7F9ZKdY6T2nDWuNCc5GFXHBWkQEaKQ54X1bhpcGUTdxR+tIhPur0SoqAG2iA9EmOhBP9EuEn1qBzcezpUCqb8vwelXO17tFGD7ZdqbcOmL1HQOpeqrsSUtZWpUCy5/sVSdjmDykNT5YfwJ5BjMSwvyrdHKmkMvw6p3tsPNMDmbe2Q5XC83YmHYFkYEa+KkVuDUxDO+M7YTp3x+GTAb0SnTdd4/mYVDIZbDZBYwqc6JbVtkvNHFV9SHtonFr8zCkZRVgUFvPd5+7UTei1tGBePaOlli05TT8VAq0iw3CG2M6YESHGI9MPnXHgDaRWLn3QqWfWX0gBsQa5wLCBc76dHcD3+sNahsllZG2jg7A4Ar+33s2D8XzA1rCYrXj9qQI5yK3J/DCwFYu2S6ZTIbbkyLwbcpFdG4aXK1J9Xd1icXGtCvYlJbtEqRuP3kV5usWkBYDkYYgqcx30qB2US4H4NuTItCvVTiuFJikleupYv1aRUgn8EDNO27WZ7e1isDm49lYe9gx22l4h2i3O7qJmY7jWa5rufxr3QmYrI6SrhbVLF0VdW4ajEv5Ruw4fVWqZOjU5MaBbXyYzjGfeNMpKRCYNCjJ6yekCrkMLw1OwvTvDmN8D89koyubi9O7RRjUSjm0Srm0qHNV/H1kOwhwzKUa0TGmyvNQ7+7aBD8evIy7usShVdTNp2OUPZ8a1t71O/eVoa3x06HLSDmfhwc/2wPA8XsqBth3dYmD0WLDyr0X4KdS1Lix0/XGdm2Ci7kGdG8e5rLovUwmQ9f4YGxMc1ygur21+9+rYf5q7Pz7IMhlMun3Ugweywa+t9Xixfjq6N0iHJun9q9Rd0ZvYCBFlRraPtplImJVje8Zj/E9HS1nx/doio1pV9CxTBnA+J7x0sm0uGq2KEirwgf3dUGewYyOTSq+AiQeaNVKudTKXS6XYflTt8JmF8rVodeFFwe1Qr7RjI5xwVAp5AjzV2NU57oLaoZ3iMH+/xuCcP/ydb/1TYe4YKgUMimDV91Aqk10oDQf7bn+LSssA5TJZJgxoq10v0VkABY/UnFL87/2ScDus9fw9O3Vu6I8oHUUFHIZTlwphHhuJTZqAICBbSLxSO8EXMg1uGTD6rukMidMQ9q5BqsymQxfPtW7rofUICnkMtzTvSkWbDoFlUJWYWlUY1H2RG1Iuyi8d09nt18bH6pz+bvpkRCKw5f0MDnntSSP6VDj7oGdmgbj19Qs/HeXIyueFBWAZuE3z3K9OLAV1h/NwvGsQrSLDZKWpfC28T3iMaRdNEJ1NevqdjNRgVqseqY31Ap5tTLqfmoF3ry78nloNzOwbRQ2vHKHW/9XgCOQ8lcrYBdQ7v8qNtgPnzzSHRO/PCBVyEwb1gbxYTqcuVqEDnHBKLHYMKJDDLo2C/F4BYdaKZfmBV+vS9MQKZDqn1S1C1SVVaS0jy29UNCnGnNza5NWpUCLyIbXgp2BFNWJYR1i8OVTvcpdvapspXHAtYyhIt2bheLxfs3ROjrQ5cvck+vnVJVWpcDbYzt57f0BeLQ1cW3SqhRo7yzPlMlQYRmHO2QyGRY/3B2pl/Qucwqrq3PTEOyYMajarw/WqdAjIRR/pOdCEBxlcAPaRGLVPkc7zOf6t0SvFvXrAOaO2GAteiSEoqDEUu3/K3J46NZmWLX3Am5rFeHV76va1jo6EDNGtIVKIcMT/RIrnetYEblchnaxQVIZ0sC2UUiKDsCqfRl4fXR7PFKFSfCV6dwkBACkYM3dZQ7USjkWPdQNH6w/ief6t/R6NqqssDq6iOaJbqY1kVRJ1U5F/r+9+w+qus73OP46HBQUEAkUQRAxSkrbVIi7uIpYRCWbOU6bo+YvsF1TbzjOmja21pjlJLq5atBmSmyaWEntvU4xMi4o2jQoSqvhZiBusmGt2aorCgqf+0eXsx5B5fDrwOn5mPnOeD7n8/38OPP2wJvP9/v5enm4a/tvYiX9eF/t9eIH91X2r3+upR8eVdydAba2hwT/mHR4drPqjWlt/yzBW2m4Z/D2Pl7NThpv5e7gXpo4vL/69PJo1fO+8B/s2qf/7Np3q505ALStF//nC7396UndG+KrP88f5ezhtJk395brlY//Jkl6ZGg/TfmvAZq2qUj3DfTTe7+J7VS/eDnKGNOlx9+kixeltDT7skWLbrrZRGu55OfYxhq+HyRp+69/ruiBt+mH6to2+2PRueorunf5LtvrHU+PVFSYcxME4Fr/+/k3iuzn41DiiLbR3NyAB/ICcJonokM10L+nZrfwMrrO6oFrNlwYPqC3Rt/RRzueHqm3pt/X5X957urj7yz4HG+t4bLHblaL7g398bKqtlxx9+3ZTQP//y/9Ad7d2/zByEBrPXpvMElUJ8elfQCc5u7gXipoYseurm5QgJci+/nob6cvKHbQj5fB8ZduwDGjIgLk7eGuMYP7NHsXUkfdE9JbJ7+v1v2RfTt0B1MAroFECgDamMVi0aaZ96nybLVtIxQAjgnu3UMHn0+QezsmOPPG3i5jjP77moesAkBzkUgBQDvo37uH7XljAFqmvVaiGkT266UNU0a0ax8AXJfL3COVnp6u8PBweXp6KioqSoWFhc4eEgAAAAAX5RKJ1Pbt27VgwQItXbpUhw8f1ujRo/XII4/o66+/dvbQAAAAALggl0ikfv/73yslJUWzZ8/WXXfdpbVr1yo0NFQZGRnOHhoAAAAAF9TlE6na2loVFxcrMTHRrjwxMVGffvppk+fU1NTo/PnzdgcAAAAANFeXT6TOnDmjuro6BQbaP5E8MDBQp0+fbvKclStXytfX13aEhoZ2xFABAAAAuIgun0g1uP7hhjd7avxzzz2nc+fO2Y5Tp051xBABAAAAuIguv/15QECArFZro9Wn7777rtEqVQMPDw95eLTd09EBAAAA/LR0+RWp7t27KyoqSnl5eXbleXl5GjlypJNGBQAAAMCVdfkVKUlauHChpk2bpujoaMXGxurNN9/U119/rTlz5jh7aAAAAABckEskUpMmTdL333+v5cuXq6qqSkOHDtXHH3+ssLAwZw8NAAAAgAtyiURKkubOnau5c+c6exgAAAAAfgK6/D1SAAAAANDRSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA5ymedItYYxRpJ0/vx5J48EANDhLl6Uamrsy86fl+rqnDMeAIBTNeQEDTnCjVjMrWr8BFRWVio0NNTZwwAAAADQSZw6dUohISE3fJ9ESlJ9fb2++eYb+fj4yGKxOHs4+Ak4f/68QkNDderUKfXq1cvZw8FPBHEHZyH24AzEHVrKGKMLFy4oODhYbm43vhOKS/skubm53TTbBNpLr169+HJHhyPu4CzEHpyBuENL+Pr63rIOm00AAAAAgINIpAAAAADAQSRSgBN4eHjohRdekIeHh7OHgp8Q4g7OQuzBGYg7tDc2mwAAAAAAB7EiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFJAC6Snpys8PFyenp6KiopSYWHhTetv3bpV9957r3r27KmgoCDNmjVL33//ve39jRs3avTo0fLz85Ofn58SEhJUVFRk18bVq1f1/PPPKzw8XD169NCgQYO0fPly1dfXt8sc0fm0ddzl5OQoOjpavXv3lpeXl4YNG6Z33nmn1f3C9Tgj9lauXKn77rtPPj4+6tu3ryZMmKAvv/yyXeaHzslZ33kNVq5cKYvFogULFrTVlOBqDACHZGdnm27dupmNGzea0tJSk5qaary8vMzf//73JusXFhYaNzc384c//MGcOHHCFBYWmiFDhpgJEybY6kyZMsW8/vrr5vDhw+bYsWNm1qxZxtfX11RWVtrqrFixwvj7+5udO3eaiooK8/777xtvb2+zdu3adp8znK894i4/P9/k5OSY0tJSU1ZWZtauXWusVqvJzc1tcb9wPc6KvYceeshkZmaao0ePmpKSEpOUlGQGDBhg/v3vf7f7nOF8zoq7BkVFRWbgwIHmZz/7mUlNTW2vaaKLI5ECHBQTE2PmzJljVxYZGWmWLFnSZP20tDQzaNAgu7J169aZkJCQG/Zx9epV4+PjY7KysmxlSUlJJjk52a7exIkTzZNPPunoFNAFdUTcGWPM8OHDzfPPP9/ifuF6nBV71/vuu++MJLNnz55mjhxdmTPj7sKFC+aOO+4weXl5ZsyYMSRSuCEu7QMcUFtbq+LiYiUmJtqVJyYm6tNPP23ynJEjR6qyslIff/yxjDH69ttv9cEHHygpKemG/VRXV+vKlSu67bbbbGWjRo3S7t27dfz4cUnS559/rn379mncuHFtMDN0Zh0Rd8YY7d69W19++aXi4uJa3C9ci7Nirynnzp2TJLvvRbgmZ8fdvHnzlJSUpISEhLaZEFyWu7MHAHQlZ86cUV1dnQIDA+3KAwMDdfr06SbPGTlypLZu3apJkybp8uXLunr1qsaPH6/169ffsJ8lS5aof//+dl/iixcv1rlz5xQZGSmr1aq6ujq9/PLLmjx5cttMDp1We8bduXPn1L9/f9XU1MhqtSo9PV0PPvhgi/uFa3FW7F3PGKOFCxdq1KhRGjp0aNtMDp2WM+MuOztbhw4d0oEDB9p+YnA5rEgBLWCxWOxeG2MalTUoLS3VM888o2XLlqm4uFi5ubmqqKjQnDlzmqy/atUqbdu2TTk5OfL09LSVb9++XVu2bNG7776rQ4cOKSsrS6tXr1ZWVlbbTQydWnvEnY+Pj0pKSnTgwAG9/PLLWrhwoQoKClrcL1yTs2Kvwfz58/XXv/5V27Zta5P5oGvo6Lg7deqUUlNTtWXLFrufv8ANOeWCQqCLqqmpMVar1eTk5NiVP/PMMyYuLq7Jc5588knz+OOP25UVFhYaSeabb76xK09LSzO+vr7mwIEDjdoJCQkxGzZssCt76aWXzODBg1syFXQh7R1310pJSTGJiYkt7heuxVmxd6358+ebkJAQc+LEiRbMAF2Rs+Luww8/NJKM1Wq1HZKMxWIxVqvVXL16tZUzg6thRQpwQPfu3RUVFaW8vDy78ry8PI0cObLJc6qrq+XmZv9fzWq1Svrxr2sN0tLS9NJLLyk3N1fR0dHNboftz11fe8bd9YwxqqmpaXG/cC3Oir2G1/Pnz1dOTo7+8pe/KDw8vKXTQBfjrLh74IEHdOTIEZWUlNiO6OhoTZ06VSUlJbb2ABvn5XBA19SwJeumTZtMaWmpWbBggfHy8jInT540xhizZMkSM23aNFv9zMxM4+7ubtLT0015ebnZt2+fiY6ONjExMbY6r776qunevbv54IMPTFVVle24cOGCrc6MGTNM//79bduf5+TkmICAAPPss8923OThNO0Rd6+88orZtWuXKS8vN8eOHTNr1qwx7u7uZuPGjc3uF67PWbH39NNPG19fX1NQUGD3vVhdXd1xk4fTOCvurseufbgZEimgBV5//XUTFhZmunfvbkaMGGG3He+MGTPMmDFj7OqvW7fO3H333aZHjx4mKCjITJ061e4ZUWFhYUZSo+OFF16w1Tl//rxJTU01AwYMMJ6enmbQoEFm6dKlpqampr2ni06ireNu6dKlJiIiwnh6eho/Pz8TGxtrsrOzHeoXPw3OiL2mvhMlmczMzPacKjoRZ33nXYtECjdjMeYm650AAAAAgEa4RwoAAAAAHEQiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFIAAAAA4CASKQAAAABwEIkUAAAdrLa2VhEREdq/f3+btrtz504NHz5c9fX1bdouAKAxEikAQKvMnDlTFoul0VFWVubsoXVab775psLCwvSLX/zCVmaxWPTRRx81qjtz5kxNmDChWe3+8pe/lMVi0bvvvttGIwUA3AiJFACg1R5++GFVVVXZHeHh4Y3q1dbWOmF0nc/69es1e/bsdml71qxZWr9+fbu0DQD4DxIpAECreXh4qF+/fnaH1WpVfHy85s+fr4ULFyogIEAPPvigJKm0tFTjxo2Tt7e3AgMDNW3aNJ05c8bW3sWLFzV9+nR5e3srKChIa9asUXx8vBYsWGCr09QKTu/evfX222/bXv/jH//QpEmT5OfnJ39/fz322GM6efKk7f2G1Z7Vq1crKChI/v7+mjdvnq5cuWKrU1NTo2effVahoaHy8PDQHXfcoU2bNskYo4iICK1evdpuDEePHpWbm5vKy8ub/KwOHTqksrIyJSUlOfgpSydPnmxy9S8+Pt5WZ/z48SoqKtKJEyccbh8A0HwkUgCAdpWVlSV3d3ft379ff/zjH1VVVaUxY8Zo2LBhOnjwoHJzc/Xtt9/qiSeesJ2zaNEi5efn68MPP9SuXbtUUFCg4uJih/qtrq7W2LFj5e3trb1792rfvn3y9vbWww8/bLcylp+fr/LycuXn5ysrK0tvv/22XTI2ffp0ZWdna926dTp27JjeeOMNeXt7y2KxKDk5WZmZmXb9bt68WaNHj9btt9/e5Lj27t2rO++8U7169XJoPpIUGhpqt+p3+PBh+fv7Ky4uzlYnLCxMffv2VWFhocPtAwCaz93ZAwAAdH07d+6Ut7e37fUjjzyi999/X5IUERGhVatW2d5btmyZRowYoVdeecVWtnnzZoWGhur48eMKDg7Wpk2b9Kc//cm2gpWVlaWQkBCHxpSdnS03Nze99dZbslgskqTMzEz17t1bBQUFSkxMlCT5+flpw4YNslqtioyMVFJSknbv3q2nnnpKx48f13vvvae8vDwlJCRIkgYNGmTrY9asWVq2bJmKiooUExOjK1euaMuWLUpLS7vhuE6ePKng4OAm35s8ebKsVqtdWU1NjW31ymq1ql+/fpKky5cva8KECYqNjdWLL75od07//v3tVt4AAG2PRAoA0Gpjx45VRkaG7bWXl5ft39HR0XZ1i4uLlZ+fb5d4NSgvL9elS5dUW1ur2NhYW/ltt92mwYMHOzSm4uJilZWVycfHx6788uXLdpfdDRkyxC55CQoK0pEjRyRJJSUlslqtGjNmTJN9BAUFKSkpSZs3b1ZMTIx27typy5cv61e/+tUNx3Xp0iV5eno2+d5rr71mS9gaLF68WHV1dY3qpqSk6MKFC8rLy5Obm/0FJj169FB1dfUNxwAAaD0SKQBAq3l5eSkiIuKG712rvr5ejz76qF599dVGdYOCgvTVV181q0+LxSJjjF3Ztfc21dfXKyoqSlu3bm10bp8+fWz/7tatW6N2G7YP79Gjxy3HMXv2bE2bNk2vvfaaMjMzNWnSJPXs2fOG9QMCAmyJ2vX69evX6HP08fHRv/71L7uyFStWKDc3V0VFRY0SRUk6e/as3RwBAG2PRAoA0KFGjBihHTt2aODAgXJ3b/xjKCIiQt26ddNnn32mAQMGSJJ++OEHHT9+3G5lqE+fPqqqqrK9/uqrr+xWYUaMGKHt27erb9++LbofSZLuuece1dfXa8+ePY1WihqMGzdOXl5eysjI0CeffKK9e/fetM3hw4crIyNDxhjbJYeO2LFjh5YvX65PPvmkyfuwGlbchg8f7nDbAIDmY7MJAECHmjdvns6ePavJkyfbdpfbtWuXkpOTVVdXJ29vb6WkpGjRokXavXu3jh49qpkzZza6fO3+++/Xhg0bdOjQIR08eFBz5syxW12aOnWqAgIC9Nhjj6mwsFAVFRXas2ePUlNTVVlZ2ayxDhw4UDNmzFBycrI++ugjVVRUqKCgQO+9956tjtVq1cyZM/Xcc88pIiLC7pLEpowdO1YXL17UF1984cCn9qOjR49q+vTpWrx4sYYMGaLTp0/r9OnTOnv2rK3OZ599Jg8Pj1uOAwDQOiRSAIAOFRwcrP3796uurk4PPfSQhg4dqtTUVPn6+tqSpbS0NMXFxWn8+PFKSEjQqFGjFBUVZdfOmjVrFBoaqri4OE2ZMkW//e1v7S6p69mzp/bu3asBAwZo4sSJuuuuu5ScnKxLly45tEKVkZGhxx9/XHPnzlVkZKSeeuopXbx40a5OSkqKamtrlZycfMv2/P39NXHixCYvObyVgwcPqrq6WitWrFBQUJDtmDhxoq3Otm3bNHXq1JteXggAaD2Luf4CcwAAOqH4+HgNGzZMa9eudfZQGtm/f7/i4+NVWVmpwMDAW9Y/cuSIEhISmtwMozX++c9/KjIyUgcPHmzygcgAgLbDihQAAC1UU1OjsrIy/e53v9MTTzzRrCRK+vHeq1WrVrX5FuUVFRVKT08niQKADsBmEwAAtNC2bduUkpKiYcOG6Z133nHo3BkzZrT5eGJiYhQTE9Pm7QIAGuPSPgAAAABwEJf2AQAAAICDSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA4ikQIAAAAAB5FIAQAAAICD/g/+OXq14vok5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, efstat = epoch_folding_search(events.time, frequencies, nbin=nbin)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat, label='EF statistics')\n", + "plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A peak is definitely there. \n", + "Far from the peak, the periodogram follows approximately a **$\\chi^2$ distribution with $n - 1$ degrees of freedom**, where $n$ is the number of bins in the pulse profile used to calculate the statistics. In fact, its mean is $n-1$ as shown in the figure. \n", + "\n", + "But close to the correct frequency, as described in Leahy et al. 1983, 1987 the peak in the epoch folding periodogram has the shape of a **sinc squared function** (whose secondary lobes are in this case barely visible above noise)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Z-squared search\n", + "The epoch folding statistics has no information on the actual shape of the profile. \n", + "\n", + "A better method is the **$Z^2$ statistics** (Buccheri et al. 1983), which is conceptually similar to the Epoch folding but has high values when the signal is well described by a small number of **sinusoidal harmonics**. \n", + "\n", + "$Z^2_n = \\dfrac{2}{N} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^N \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^N \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Where $N$ is the number of photons, $n$ is the number of harmonics, $\\phi_j$ are the phases corresponding to the event arrival times $t_j$ ($\\phi_j = \\nu t_j$, where $\\nu$ is the pulse frequency).\n", + "\n", + "The $Z_n^2$ statistics defined in this way, far from the pulsed profile, follows a $\\chi^2_n$ distribution, where $n$ is the number of harmonics this time.\n", + "\n", + "Stingray implements the $Z$ search in `stingray.pulse.search.z_n_search`.\n", + "The standard $Z^2$ search calculates the phase of each photon and calculates the sinusoidal functions above for each photon. This is very computationally expensive if the number of photons is high. Therefore, in Stingray, the search is performed by binning the pulse profile first and using the phases of the folded profile in the formula above, multiplying the squared sinusoids of the phases of the pulse profile by a weight corresponding to the number of photons at each phase.\n", + "\n", + "$Z^2_n = \\dfrac{2}{\\sum_j{w_j}} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^m w_j \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^m w_j \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Since the sinusoids are only executed on a small number of bins, while the epoch folding procedure just consists of a very fast histogram-like operation, the speedup of this new formula is obvious. Care must be put into the choice of the number of bins, in order to maintain a good approximation even when the number of harmonics is high. As a rule of thumb, use _a number of bins at least 10 times larger than the number of harmonics_." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDqUlEQVR4nOzdeXwU9f0/8NfsfWSzuS8JJEBAbiggigcoh6hIrf7E1rbi0apfTwoWtX5rg7XQ0gpUrFr9qlisxVbFesuh4oECgtw3JJw5yLn3zu7M/P7Y3YGQBLLJJptkX8/HI48H2Z2d+SyEzL7m/f58RlAURQERERERERG1mCbeAyAiIiIiIupqGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIoqSLt4D6AxkWcaJEydgs9kgCEK8h0NERERERHGiKAqcTify8vKg0TRfd2KQAnDixAnk5+fHexhERERERNRJHD16FD169Gj2eQYpADabDUDoLys5OTnOoyEiog7ldgNPP93wsQceAKzW+IyHiIjiyuFwID8/X80IzWGQAtR2vuTkZAYpIqJEo9UCRmPDx5KTGaSIiBLcuab8cLEJIiIiIiKiKDFIERERERERRYlBioiIiIiIKEqcI0VEREREbaIoCoLBICRJivdQiM5Jq9VCp9O1+bZHDFJERERE1GqiKKKsrAwejyfeQyFqMYvFgtzcXBgMhlbvg0GKiIiIiFpFlmWUlJRAq9UiLy8PBoOhzVf5idqToigQRREnT55ESUkJioqKznrT3bNhkCIiIiKiVhFFEbIsIz8/HxaLJd7DIWoRs9kMvV6Pw4cPQxRFmEymVu2Hi00QERERUZu09oo+UbzE4meWP/VERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIi6kPHjx2PmzJlx30eiY5AiIiIiooTz4YcfQhCEZr+mT58e0+O1Nrg09bq3334bv//979t03Gj2QU3j8udERERElHAuv/xylJWVNXhMkiTcdttt+P777/Hb3/42TiM7t7S0tE6xj0THihQRERERJRyz2YycnBz1KzMzEw899BC+//57fPrppxgyZEhU+3vzzTcxZMgQmM1mpKenY+LEiXC73QCAW2+9FWvXrsVf//pXteJVWlqKjz/+GJdccglSUlKQnp6OqVOn4uDBg+o+m3vdmVWm5o7d3OuBhpUqWZbxpz/9CX379oXRaETPnj3xhz/8oUXvLZGxIkVEREREMaMoCrwBqcOPa9ZrIQhCq14rSRJ+9rOfYdWqVa0KUWVlZfjJT36CBQsW4Ec/+hGcTie+/PJLKIoCAPjrX/+Kffv2YfDgwXjiiScAAJmZmdi0aRNmzZqFIUOGwO124/HHH8ePfvQjbNmyBRqNptnXtfTYLXk9ADz66KN48cUXsWjRIlxyySUoKyvDnj17WvTeEhmDFBERJTRZliH6fDAaja3+EEZEp3gDEgY+/kmHH3fXE1fCYoj+o60kSfj5z3+OVatWYc2aNRg6dCgA4OjRo/j5z3+OyspK6HQ6/Pa3v8WNN97Y5D7KysoQDAZx/fXXo1evXgDQIIzZ7XYYDAZYLBbk5OSoj99www0N9vPSSy8hKysLu3btwuDBg5t9XTTHPtfrnU4n/vrXv+KZZ57BjBkzAAB9+vTBJZdc0qL9JzK29hERUUI7evQoysvLcfz4cXg8nngPh4g6UCRErVy5EmvWrMGwYcPU53Q6HRYvXoxdu3Zh9erV+NWvftVsO9uwYcMwYcIEDBkyBDfeeCNefPFF1NbWnvP4Bw8exM0334zevXsjOTkZhYWFAIAjR460+D209tgRu3fvht/vx4QJE9pl/90ZK1JERJTQXC4XrACCwSAqKyuRlZUFS7wHRdSFmfVa7HriyrgcNxqREPXJJ580ClEAkJubi9zcXABAVlYW0tLSUFNTA6vV2mhfWq0Wq1atwrp167By5UosWbIEjz32GNavX6+Go6Zce+21yM/Px4svvoi8vDzIsozBgwdDFMUWv4/WHjvCbDa36/67s7hWpAoKCppcbvLee+8FEOqxLS4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHYvH2yEioi7I5/MBCF19BsCqFFEbCYIAi0HX4V/RtOZKkoRbbrkFn3zyCVavXo3hw4efdfvvvvsOsiwjPz//rO/74osvxty5c/H999/DYDBgxYoV6vMGgwGSdGruWHV1NXbv3o3//d//xYQJEzBgwIAmKz1nvi7aY5/r9UVFRTCbzVizZk2r31uiimtFauPGjQ3+YXfs2IFJkyap/acLFizAwoULsXTpUvTr1w9PPvkkJk2ahL1798JmswEAZs6ciffeew/Lly9Heno6Zs+ejalTp2LTpk3QaqO7MkFERIlFURQ1SNlsNtTW1sLv98d5VETUnmRZxi233IJ33nkHb775JnJzc1FeXt5gm8zMTPVzZHV1NW655Rb83//9X7P7XL9+PdasWYPJkycjKysL69evx8mTJzFgwAB1m4KCAqxfvx6lpaVISkpCWloa0tPT8cILLyA3NxdHjhzBI4880mjfTb0ummM39XqN5lQtxWQy4eGHH8acOXNgMBhw8cUX4+TJk9i5cyfuuOOOFr23hKV0Ig8++KDSp08fRZZlRZZlJScnR/njH/+oPu/z+RS73a48//zziqIoSl1dnaLX65Xly5er2xw/flzRaDTKxx9/3OLj1tfXKwCU+vr62L0ZIiLq9ERRVNZ++KFSMmOGIv7mN0rJjBlKyYwZSqCuLt5DI+oSvF6vsmvXLsXr9cZ7KC327bffKgDO+lVbW6soSuiz56WXXqr84x//OOs+d+3apVx55ZVKZmamYjQalX79+ilLlixpsM3evXuVCy+8UDGbzQoApaSkRFm1apUyYMAAxWg0KkOHDlU+//xzBYCyYsWKs75u3LhxyoMPPtiiYzf1ekVRGuxDkiTlySefVHr16qXo9XqlZ8+eyrx581r83rqis/3stjQbCIrSOdYuFEUReXl5mDVrFn7zm9/g0KFD6NOnDzZv3owRI0ao2/3whz9ESkoKXn31VXz66aeYMGECampqkJqaqm4zbNgwXHfddZg7d26Tx/L7/Q2uODocDuTn56O+vh7Jycnt9yaJiKhTcTqd+P6rr1D45pvIyM7Djn2HkG7VIfUPf0Bqjx7xHh5Rp+fz+VBSUoLCwkKYTKZ4DyemFEXBzTffjP79+6O4uDjew6EYO9vPrsPhgN1uP2c26DSr9r3zzjuoq6vDrbfeCgBqiTU7O7vBdtnZ2epz5eXlMBgMDULUmds0Zf78+bDb7erX2fpdiYio+/J6vQBC86NW7arAzgoPKh0+uFyuOI+MiOLt66+/xhtvvIF33nkHw4cPx/Dhw7F9+/Z4D4s6kU6zat9LL72Eq666Cnl5eQ0eP3PioKIo55xMeK5tHn30UcyaNUv9PlKRIiKixBKZHxVUBJRUOWERtHD6gnA4HHEeGRHF2yWXXAJZluM9DOrEOkVF6vDhw1i9ejV+8YtfqI9Fbhp2ZmWpsrJSrVLl5ORAFMVGK5ycvk1TjEYjkpOTG3wREVHiiQSpY3V+KABERQuXPwin04lO0vlORESdVKcIUq+88gqysrJwzTXXqI8VFhYiJycHq1atUh8TRRFr167F2LFjAQAjR46EXq9vsE1ZWRl27NihbkNERNQcr9cLRVFwsDoUqALQwBeU4XB7uXofERGdVdxb+2RZxiuvvIIZM2ao9/AAQi19M2fOxLx581BUVISioiLMmzcPFosFN998MwDAbrfjjjvuwOzZs5Geno60tDQ89NBDGDJkCCZOnBivt0RERF2Ez+fDsVovHH4ZBp0eRp0WQb8WlU4/HA5Ht5s8T0REsRP3ILV69WocOXIEt99+e6Pn5syZA6/Xi3vuuQe1tbUYM2YMVq5cqd5DCgAWLVoEnU6H6dOnw+v1YsKECVi6dCnvIUVERGelhO8hVVLlhh0CBmbbIEoyyiucqHP6WJEiIqKzinuQmjx5crN96IIgoLi4+KxLTppMJixZsgRLlixppxESEVF3JIoiFEVBvTeAJGiQnWyCGJRxokJApcMPURTjPUQiIurE4h6kiIiI4iGy9HmtCJwHwGbSQafVQIaASieDFBERnR2DFBERJSSfzwdFUVDlCXVFJJv1SDLqIEOAyx9EVb07ziMkIqLOrFOs2kdERNTRfD4ffAEZ7mDovoM2ow56rQbJZiMAoKSyPp7DIyKiTo5BioiIElIwGITDF0AQGlgMobY+ALBbQkGq1umJ5/CIiKiTY5AiIqKEFAwG4fAGIENAsvlUp7vZqAcAuL1+yLIcr+ERETWroKAAixcvbvXrly5dipSUlJiNJ1ExSBERUUKSJAlOXxCSIiDZpFcfNxv1UCDAG5AQCATiOEIiai+33norBEFo9DVlyhR1m4KCgkbP9+jRo1XHKy4uxvDhw6N+XXOBZ+PGjbjzzjtbtI+mQtdNN92Effv2RT0eaoiLTRARUUKSJAkOXwAyNLCZTp0OLQYtgtDAI0rw+/0wGo1xHCURtZcpU6bglVdeafDYmf/fn3jiCfzyl79Uv+8s9ynNzMxs0+vNZjPMZnOMRpO4WJEiIqKEFGrtC4Zb+05VpCwGLYKKFh4xyCXQiboxo9GInJycBl+pqakNtrHZbA2eP1uA+fzzz3HBBRfAarUiJSUFF198MQ4fPoylS5di7ty52Lp1q1rZWrp0KQBg4cKFGDJkCKxWK/Lz83HPPffA5XKp+7vttttQX1+vvi5yb9Uzq0zFxcXo2bMnjEYj8vLy8MADDwAAxo8fj8OHD+NXv/qVug+g6UrXu+++i1GjRsFkMiEjIwPXX3+9+tyzzz6LoqIimEwmZGdn4//9v//Xmr/ybocVKSIiSkih1r4AJOgbtvYZdAhCA68oMUgRtYKiKHGZX6jRaNSg0NGCwSCuu+46/PKXv8S//vUviKKIDRs2QBAE3HTTTdixYwc+/vhjrF69GgBgt9vVMT/99NMoKChASUkJ7rnnHsyZMwfPPvssxo4di8WLF+Pxxx/H3r17AQBJSUmNjv3mm29i0aJFWL58OQYNGoTy8nJs3boVAPD2229j2LBhuPPOOxtU1s70wQcf4Prrr8djjz2GZcuWQRRFfPDBBwCA7777Dg888ACWLVuGsWPHoqamBl9++WVM//66KgYpIiJKSJFV+2TFgOTTW/v0WgQUDTwBBimi1pBlOS4ftC+99NKoWu/ef//9RsHk4Ycfxm9/+9sG3//v//6v+v28efPUas/pHA4H6uvrMXXqVPTp0wcAMGDAAPX5pKQk6HQ65OTkNHjdzJkz1T8XFhbi97//Pf7nf/4Hzz77LAwGA+x2OwRBaPS60x05cgQ5OTmYOHEi9Ho9evbsiQsuuAAAkJaWBq1Wq1bWmvOHP/wBP/7xjzF37lz1sWHDhqn7t1qtmDp1Kmw2G3r16oURI0Y0u69EwiBFREQJyeMPwB+UIUGArUFFSougXwMxGIDb64vjCImoPV1++eV47rnnGjyWlpbW4Ptf//rXuPXWW9XvMzIymtxXWloabr31Vlx55ZWYNGkSJk6ciOnTpyM3N/esY/jss88wb9487Nq1Cw6HA8FgED6fD263G1artUXv48Ybb8TixYvRu3dvTJkyBVdffTWuvfZa6HQt/5i/ZcuWZitWkyZNQq9evdT9T5kyBT/60Y9gsVhavP/uikGKiIgSjqIoqHOHQpLNbIBBd2rKsFGngRLQAgigmveSIoqaRqPBpZdeGpfjRsNqtaJv375n3SYjI+Oc20S88soreOCBB/Dxxx/jjTfewP/+7/9i1apVuPDCC5vc/vDhw7j66qtx99134/e//z3S0tLw1Vdf4Y477ohqxdD8/Hzs3bsXq1atwurVq3HPPffgz3/+M9auXQu9Xn/uHQBnXXjCZrNh8+bN+Pzzz7Fy5Uo8/vjjKC4uxsaNGxN+CXUuNkFERAlHlmXUe0Jte9kpDa+qCoKApPCHijoGKaKoCYIArVbb4V/xmh91uhEjRuDRRx/FunXrMHjwYLz++usAAIPBAEmSGmz73XffIRgM4qmnnsKFF16Ifv364cSJEw22aep1TTGbzZg2bRqefvppfP755/jmm2+wffv2Fu9j6NChWLNmTbPP63Q6TJw4EQsWLMC2bdtQWlqKTz/99Jzj6u5YkSIiooQTWvo8CADIS7EC7obPJ1mM8DkBh5utfUTdld/vR3l5eYPHdDpds+17Z1NSUoIXXngB06ZNQ15eHvbu3Yt9+/bhlltuAQB1MYktW7agR48esNls6NOnD4LBIJYsWYJrr70WX3/9NZ5//vkG+y0oKIDL5cKaNWswbNgwWCyWRi11S5cuhSRJGDNmDCwWC5YtWwaz2YxevXqp+/jiiy/w4x//GEajscn397vf/Q4TJkxAnz598OMf/xjBYBAfffQR5syZg/fffx+HDh3CZZddhtTUVHz44YeQZRn9+/eP+u+pu2FFioiIEk4wGITLF4QEDXJSTI2eT04KfVBxuL1QFKWjh0dEHeDjjz9Gbm5ug69LLrmkVfuyWCzYs2cPbrjhBvTr1w933nkn7rvvPtx1110AgBtuuAFTpkzB5ZdfjszMTPzrX//C8OHDsXDhQvzpT3/C4MGD8c9//hPz589vsN+xY8fi7rvvxk033YTMzEwsWLCg0bFTUlLw4osv4uKLL1YrS++99x7S09MBhO6FVVpaij59+jS7fPv48ePxn//8B++++y6GDx+OK664AuvXr1f3//bbb+OKK67AgAED8Pzzz+Nf//oXBg0a1Kq/q+5EUHiGgMPhgN1uR319PZKTk+M9HCIiamdOpxN/WvYhvj/hwrSxo3HXhrcbPP9IwSTsObATl/TNwMyfTYtq0jZRIvH5fCgpKUFhYSFMpsYXJYg6q7P97LY0G7AiRURECUeSJHhECbKiQYrF0Oj5NJsREjTwcgl0IiJqBoMUERElnGAwCF9AggQBaU0FKasRQUUDD2/KS0REzWCQIiKihCNJErzhIJVqbbw8cJrVgCC08DJIERFRMxikiIgo4QSDQXgDEmRokGppHKTSrQYEoYFHDEZ1PxciIkocDFJERJRwxEC4tU8RkGo1Nno+LcmAoKKBV5QQDAbjMEIiIursGKSIiCjh1IXvDyULAuzmpipSxlBFiotNEBFRMxikiIgo4dR7/AAAs8EArUZo9Hya1QAJAiRZgcPDm/ISEVFjDFJERJRw6t2hIJVkbrxiHwCY9FoY9KHn6lwMUkRE1BiDFBERJRyHNxSkbM0EKQCwWUJzp+rd3g4ZExERdS0MUkRElHBc3tC8J5u58UITETZL6E73DjcrUkTUtbzwwgvIz8+HRqPB4sWL4z2cbotBioiIEo4rXJGyW5oPUvZwkHL7uNgEUXdUXl6O+++/H71794bRaER+fj6uvfZarFmzJt5Da9LSpUuRkpJyzu0cDgfuu+8+PPzwwzh+/DjuvPPO9h9cgtLFewBEREQdLRKOks8SpJKtJpwE4PGLkGUZGg2vPRJ1F6Wlpbj44ouRkpKCBQsWYOjQoQgEAvjkk09w7733Ys+ePa3abyAQgF7feCXQ5h5vD0eOHEEgEMA111yD3NzcJrfpyPF0ZzwrEBFRwvH4QzfZTU0yNbtNitUEQIAvwHtJEbWYogBud/y+FKVFw7znnnsgCAI2bNiA//f//h/69euHQYMGYdasWfj222/V7Y4cOYIf/vCHSEpKQnJyMqZPn46Kigr1+eLiYgwfPhwvv/yyWtlSFAWCIOD555/HD3/4Q1itVjz55JMAgPfeew8jR46EyWRC7969MXfu3Aa/X+rq6nDnnXciOzsbJpMJgwcPxvvvv4/PP/8ct912G+rr6yEIAgRBQHFxcaP3tXTpUgwZMgQA0Lt3bwiCgNLS0mbHWV9fjzvvvBNZWVlITk7GFVdcga1btzbY5x//+EdkZ2fDZrPhjjvuwCOPPILhw4erz48fPx4zZ85s8JrrrrsOt956q/q9KIqYM2cOzjvvPFitVowZMwaff/55g3GnpKTgk08+wYABA5CUlIQpU6agrKyswX5ffvllDBo0CEajEbm5ubjvvvsAALfffjumTp3aYNtgMIicnBy8/PLLjf6eYoUVKSIiSjjeFgSptCQjJAjwiRICgQAMhuYXpiCiMI8H+POf43f8X/8asFrPuklNTQ0+/vhj/OEPf4C1iW0j7XOKouC6666D1WrF2rVrEQwGcc899+Cmm25qEAIOHDiAf//733jrrbeg1WrVx3/3u99h/vz5WLRoEbRaLT755BP87Gc/w9NPP41LL70UBw8eVNvufve730GWZVx11VVwOp147bXX0KdPH+zatQtarRZjx47F4sWL8fjjj2Pv3r0AgKSkpEZjv+mmm5Cfn4+JEydiw4YNyM/PR2ZmZrPjvOaaa5CWloYPP/wQdrsdf//73zFhwgTs27cPaWlp+Pe//43f/e53+Nvf/oZLL70Uy5Ytw9NPP43evXu3/N8EwG233YbS0lIsX74ceXl5WLFiBaZMmYLt27ejqKgIAODxePCXv/wFy5Ytg0ajwc9+9jM89NBD+Oc//wkAeO655zBr1iz88Y9/xFVXXYX6+np8/fXXAIBf/OIXuOyyy1BWVqZW4T788EO4XC5Mnz49qrFGg0GKiIgSiqIo8ImhIJWWZG52u1SLAUFFA29ARiAQ6KjhEVE7O3DgABRFwfnnn3/W7VavXo1t27ahpKQE+fn5AIBly5Zh0KBB2LhxI0aPHg0gVG1ZtmyZGlgibr75Ztx+++3q9z//+c/xyCOPYMaMGQBCFaPf//73mDNnDn73u99h9erV2LBhA3bv3o1+/fqp20TY7XYIgoCcnJxmx2w2m5Geng4AyMzMbLDtmeP89NNPsX37dlRWVsJoDLU5/+Uvf8E777yDN998E3feeScWL16M22+/Hb/4xS8AAE8++SRWr14Nn6/li/AcPHgQ//rXv3Ds2DHk5eUBAB566CF8/PHHeOWVVzBv3jwAoXbD559/Hn369AEA3HfffXjiiSfU/Tz55JOYPXs2HnzwQfWxyL/B2LFj0b9/fyxbtgxz5swBALzyyiu48cYbmwycscIgRURECUWWZfjEUCtNhq35ilSqRY8gNPAFJAYpom5ECbf/CULjm3Gfbvfu3cjPz1dDFAAMHDgQKSkp2L17t/ohvlevXo1CFACMGjWqwfebNm3Cxo0b8Yc//EF9TJIk+Hw+eDwebNmyBT169FBDVKydOc5NmzbB5XKpwSvC6/Xi4MGDAEJ/B3fffXeD5y+66CJ89tlnLT7u5s2boShKo/fl9/sbHNtisaghCgByc3NRWVkJAKisrMSJEycwYcKEZo/zi1/8Ai+88ALmzJmDyspKfPDBB+2+cAiDFBERJZRAIABvQAIgIO1sc6QsBkjQwMs5UkTdSlFREQRBwO7du3Hdddc1u11krtO5Hm+qPbCpx2VZxty5c3H99dc32tZkMsFsbr5CHgtNjSc3N7dBm2JES1YHjNBoNGo4jTj94pMsy9Bqtdi0aVOD1kegYXvimYtfCIKg7rclfze33HILHnnkEXzzzTf45ptvUFBQgEsvvbTF76M1GKSIiCihuHwigrICCRqkJxmBoL/J7VKtegQVDXyBACtSRC1lsYTmKcXz+OeQlpaGK6+8En/729/wwAMPNAoYdXV1SElJwcCBA3HkyBEcPXpUrUrt2rUL9fX1GDBgQNRD+8EPfoC9e/eib9++TT4/dOhQHDt2DPv27WuyKmUwGCBJUtTHPdt4ysvLodPpUFBQ0OQ2AwYMwLfffotbbrlFfez0xTiAUAvh6YtCSJKEHTt24PLLLwcAjBgxApIkobKystXBxmazoaCgAGvWrFH3e6b09HRcd911eOWVV/DNN9/gtttua9WxosEgRURECaXaEertFzRaWAxaoJliU6rFEGrtC0rw+3kvKaIWEYRzLvbQGTz77LMYO3YsLrjgAjzxxBMYOnQogsEgVq1aheeeew67d+/GxIkTMXToUPz0pz/F4sWL1cUmxo0b16htryUef/xxTJ06Ffn5+bjxxhuh0Wiwbds2bN++HU8++STGjRuHyy67DDfccAMWLlyIvn37Ys+ePRAEAVOmTEFBQQFcLhfWrFmDYcOGwWKxwNKC4NiciRMn4qKLLsJ1112HP/3pT+jfvz9OnDiBDz/8ENdddx1GjRqFBx98EDNmzMCoUaNwySWX4J///Cd27tzZYO7WFVdcgVmzZuGDDz5Anz59sGjRItTV1anP9+vXDz/96U9xyy234KmnnsKIESNQVVWFTz/9FEOGDMHVV1/dovEWFxfj7rvvRlZWlroox9dff437779f3eYXv/gFpk6dCkmS1Llo7YnLnxMRUUKpcXsBACaD/qxzJFIsekjQQFEAp6fpqhURdU2FhYXYvHkzLr/8csyePRuDBw/GpEmTsGbNGjz33HMAQq1l77zzDlJTU3HZZZdh4sSJ6N27N954441WHfPKK6/E+++/j1WrVmH06NG48MILsXDhQvTq1Uvd5q233sLo0aPxk5/8BAMHDsScOXPUKtTYsWNx991346abbkJmZiYWLFjQpr8DQRDw4Ycf4rLLLsPtt9+Ofv364cc//jFKS0uRnZ0NILQK4OOPP46HH34YI0eOxOHDh/E///M/DfZz++23Y8aMGbjlllswbtw4FBYWNqoavfLKK7jlllswe/Zs9O/fH9OmTcP69esbzD87lxkzZmDx4sV49tlnMWjQIEydOhX79+9vsM3EiRORm5uLK6+8Ul3Yoj0JyplNjQnI4XDAbrejvr4eycnJ8R4OERG1ow827sWL/12LFLsdS399U+jeM2cu1xxeQvmSx99ChlyNB67+Aa4YG/0VaKLuzufzoaSkBIWFhTCZmp9zSN1HcXEx3nnnHWzZsiXeQ2nE4/EgLy8PL7/8cpNz0U53tp/dlmYDtvYREVFCqXOFWvssRv05tgQsJiPgARyeli/1S0REHUuWZZSXl+Opp56C3W7HtGnTOuS4DFJERJRQ6sNtembTuW+wm2QxQPYALi9b+4iIOqsjR46gsLAQPXr0wNKlS6HTdUzEYZAiIqKE4vaFVuAzG85dkUq2mFAHwMU5UkREAEKtfcXFxfEeRgMFBQWNlmDvCFxsgoiIEoovvAKfuQWtfcnW0L1LPH5/XE7SRETUeTFIERFRQvGJoYqUqQUVqVSrKfwa3pSX6Gx4oYG6mlj8zDJIERFRQvGJoUBkMZ57jlSK1QgJGngDEm/KS9QEvT50QcLj8cR5JETRifzMRn6GW4NzpIiIKKH4w4GoJUEq1aKHpGjgY5AiapJWq0VKSgoqKysBABaL5az3ZyOKN0VR4PF4UFlZiZSUFGi12lbvi0GKiIgSij8Qrki1YNW+VKsBEgT4ArJ6U0wiaignJwcA1DBF1BWkpKSoP7utxSBFREQJRQzPkbKaWjBHymKAHG7tY5AiapogCMjNzUVWVhYrt9Ql6PX6NlWiIuIepI4fP46HH34YH330EbxeL/r164eXXnoJI0eOBBAqv82dOxcvvPACamtrMWbMGPztb3/DoEGD1H34/X489NBD+Ne//gWv14sJEybg2WefRY8ePeL1toiIqJMKhBeNSDK3pLXPABkCfIEggxTROWi12ph8OCXqKuK62ERtbS0uvvhi6PV6fPTRR9i1axeeeuoppKSkqNssWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTedIjIqJGIqvv2VoQpFIsesgQWJEiIqJG4lqR+tOf/oT8/Hy88sor6mMFBQXqnxVFweLFi/HYY4/h+uuvBwC8+uqryM7Oxuuvv4677roL9fX1eOmll7Bs2TJMnDgRAPDaa68hPz8fq1evxpVXXtmh74mIiDq3YDAUiGxm4zm3TbUaICsCJFmBx8+WJSIiOiWuFal3330Xo0aNwo033oisrCyMGDECL774ovp8SUkJysvLMXnyZPUxo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrchIiICgEBQgiyHglRyC4KU1aCFRhM6VdZ7/O06NiIi6lriGqQOHTqE5557DkVFRfjkk09w991344EHHsA//vEPAEB5eTkAIDs7u8HrsrOz1efKy8thMBiQmpra7DZn8vv9cDgcDb6IiKj7c3hE9c82y7mDlCAIsBhDi1LUn/ZaIiKiuLb2ybKMUaNGYd68eQCAESNGYOfOnXjuuedwyy23qNudeT8CRVHOeY+Cs20zf/58zJ07t42jJyKirsbhDVWVNIIGJkPLToEWkx4BP+DyMkgREdEpca1I5ebmYuDAgQ0eGzBgAI4cOQLg1H0JzqwsVVZWqlWqnJwciKKI2traZrc506OPPor6+nr16+jRozF5P0RE1Lk5w0FKp9O2+KahJn0ocHlEzpEiIqJT4hqkLr74Yuzdu7fBY/v27UOvXr0AAIWFhcjJycGqVavU50VRxNq1azF27FgAwMiRI6HX6xtsU1ZWhh07dqjbnMloNCI5ObnBFxERdX/OcFVJp295Q4bREGrt83GxCSIiOk1cW/t+9atfYezYsZg3bx6mT5+ODRs24IUXXsALL7wAINTSN3PmTMybNw9FRUUoKirCvHnzYLFYcPPNNwMA7HY77rjjDsyePRvp6elIS0vDQw89hCFDhqir+BEREQGA2xeqSOm1LT/9mSJBihUpIiI6TVyD1OjRo7FixQo8+uijeOKJJ1BYWIjFixfjpz/9qbrNnDlz4PV6cc8996g35F25ciVsNpu6zaJFi6DT6TB9+nT1hrxLly7lTeGIiKgBd7giZYiiImUOz6XyBYLtMiYiIuqa4hqkAGDq1KmYOnVqs88LgoDi4mIUFxc3u43JZMKSJUuwZMmSdhghERF1F65WBCmLMbStX2SQIiKiU+I6R4qIiKgjefyhIBWZ99QSZqMBAOBnRYqIiE7DIEVERAnDG64qmfQtD1KR+0gxSBER0ekYpIiIKGGoFSljy4OUNbytGJDaZUxERNQ1MUgREVHCiCxhbm7hzXgBwGoKtfYFgqxIERHRKQxSRESUMCJLmEfmPbVEkilUkQoEg1AUpV3GRUREXQ+DFBERJQx/OEhZomntM0cqUjKDFBERqRikiIgoYYjhBSMi4aglbOFtRUmGJHGeFBERhTBIERFRwvCH5zlZo2ztUyAgEGSQIiKiUxikiIgoYQQjFSlTy4OU1aCDDAGiLEOW5fYaGhERdTEMUkRElDAiK+/ZzMYWvybJGApSQUlR51gRERExSBERUcIIhu8FlRTFHCmrUQdZEQAALh+DFBERhTBIERFRQpBlGUE5VJFKtrS8ImXQaSBoQqdLl09sl7EREVHXwyBFREQJweUTEVm93G5teZACAL0udANft5dBioiIQhikiIgoIdR7/OE/CbBGcR8pANDrtAAAt5+tfUREFMIgRURECcEZDlJarQ6CIET1WoM+VJHyMEgREVEYgxQRESWEyPwmXbi6FA1jOEi5OUeKiIjCGKSIiCghOD2hEKQPh6JosCJFRERnYpAiIqKE4PaFWvv0+ujmRwGnKlJe3keKiIjCGKSIiCghRNryjProW/tMhlD48onBmI6JiIi6LgYpIiJKCF5/KAQZWlGRMhtCFSkfK1JERBTGIEVERAkh0pZnbMViE2YjK1JERNQQgxQRESWESDWpdRWpSJBiRYqIiEIYpIiIKCH4w9UkkyH6VfvMxtBrxIAU0zEREVHXxSBFREQJwRcIt/a1Yvlzi9EAAPAH2dpHREQhDFJERJQQItWkyAp80bCaQq8JBBikiIgohEGKiIgSghhofWufNbzYhBhkax8REYUwSBERUUIQw215kRX4opFkNgJgRYqIiE5hkCIiooQQqUiZ29DaF5RYkSIiohAGKSIiSgjBcFuexRR9kLKZDOo+FEWJ6biIiKhrYpAiIqKEEGhDa5/NHA5SsowA50kREREYpIiIKEFE2vKs4aXMo5FsMap/dnjFmI2JiIi6LgYpIiJKCEFJBnBqvlM0jHotNELolOlikCIiIjBIERFRAlAUBVIwUpGKPkgBgFanBQA4vf6YjYuIiLouBikiIur2xKAEWQlVpJLM0bf2AYBeGwpSLn8gZuMiIqKui0GKiIi6vdPb8ZJMrQtSkYqU18cgRUREDFJERJQA3OHwIwgamAy6Vu1Drwu9ziNyjhQRETFIERFRAnD5QvOatNrWn/Z04dY+L1v7iIgIDFJERJQA3P7QPaQiYag1DPpwRYpBioiIwCBFREQJwOMLtePpdK1r6wNOBSlfOJQREVFiY5AiIqJuL1JF0ulaX5HSR4KUyIoUERExSBERUQKIzGvStyFIGcNBys8gRUREYJAiIqIE4BEjQar1rX3G8Gp//gBb+4iIiEGKiIgSQKQiFakqtYZJrwfAIEVERCEMUkRE1O35xFD4aVNrX7giFWCQIiIiMEgREVECiCwQYWzlzXgBwGQIVaREBikiIgKDFBERJYBIO54x3J7XGuZIkAoySBEREYMUERElgEhFytSGOVIWYyhIBRikiIgIcQ5SxcXFEAShwVdOTo76vKIoKC4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHevot0JERJ2YGJAAAKY2tPaZw0EqGJRiMiYiIura4l6RGjRoEMrKytSv7du3q88tWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTIUk80RERUUhkXpPR0PrWPqvJAAAI8vxCREQAWn9pLlYD0OkaVKEiFEXB4sWL8dhjj+H6668HALz66qvIzs7G66+/jrvuugv19fV46aWXsGzZMkycOBEA8NprryE/Px+rV6/GlVde2aHvhYiIOid/uB3P3JYgZQwHKVakiIgInaAitX//fuTl5aGwsBA//vGPcejQIQBASUkJysvLMXnyZHVbo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrdpit/vh8PhaPBFRETdVzBckbKY2jBHyhwKYZIkQVGUmIyLiIi6rrgGqTFjxuAf//gHPvnkE7z44osoLy/H2LFjUV1djfLycgBAdnZ2g9dkZ2erz5WXl8NgMCA1NbXZbZoyf/582O129Ss/Pz/G74yIiDoTMVxFMoerSq2RFGntk2XIshyTcRERUdcV1yB11VVX4YYbbsCQIUMwceJEfPDBBwBCLXwRgiA0eI2iKI0eO9O5tnn00UdRX1+vfh09erQN74KIiDq7yLzZyMp7rWE16gEIkGRFXQWQiIgSV9xb+05ntVoxZMgQ7N+/X503dWZlqbKyUq1S5eTkQBRF1NbWNrtNU4xGI5KTkxt8ERFR9xVZstzShjlSFqMOMkIX6dw+MSbjIiKirqtTBSm/34/du3cjNzcXhYWFyMnJwapVq9TnRVHE2rVrMXbsWADAyJEjodfrG2xTVlaGHTt2qNsQERFJ4da+JHPrW/sMWg0UgUGKiIhC4rpq30MPPYRrr70WPXv2RGVlJZ588kk4HA7MmDEDgiBg5syZmDdvHoqKilBUVIR58+bBYrHg5ptvBgDY7XbccccdmD17NtLT05GWloaHHnpIbRUkIiJSFAXB8JymyBLmrSEIAnQaLRRJgsvH1j4iokQX1yB17Ngx/OQnP0FVVRUyMzNx4YUX4ttvv0WvXr0AAHPmzIHX68U999yD2tpajBkzBitXroTNZlP3sWjRIuh0OkyfPh1erxcTJkzA0qVLodVq4/W2iIioE/EHJUCJBKnWt/YBgFanRVACPKxIERElvLgGqeXLl5/1eUEQUFxcjOLi4ma3MZlMWLJkCZYsWRLj0RERUXfg9JwKPbY2VKSA0L0Pg37A42dFiogo0XWqOVJERESx5vKHgpRWo4Fe17ZuBb0udP2RQYqIiBikiIioW4u04Wm1mnPePuNcIkHMyyBFRJTwGKSIiKhbc4cXhtDFYO6sQR+qSPlEzpEiIkp0DFJERNStRYJULBYhirT2+cRgm/dFRERdG4MUERF1a55w9Uivb/v6SqcqUmztIyJKdAxSRETUrXn9oeqRPgYVKaMhFKT8rEgRESU8BikiIurWIivsRdry2sKoD92Hyh9gkCIiSnQMUkRE1K1FVtgzxKC1zxSuSIkMUkRECY9BioiIurXIfCaDvu2tfSZDqCIlBjhHiogo0TFIERFRtxZpwzPGoCJlNoaDVFBq876IiKhrY5AiIqJuLbLYRGR+U1tYwkEqwNY+IqKExyBFRETdmhgMteFFVtxrC7PRAAAIsCJFRJTwGKSIiKhbiyxVbopBkLKE50hJEoMUEVGiY5AiIqJuLTKfKbJQRFtYTKF9BKUgFEVp8/6IiKjrYpAiIqJuLbLCnjmmQUpmkCIiSnAMUkRE1K1FKlJmY9tb+5JM4TlSksz2PiKiBMcgRURE3VowHKQs4YUi2sJq0EOBgICkMEgRESU4BikiIurWAmpFqu2tfWaDFjIEBGUZwSCXQCciSmQMUkRE1K1FAo81BkHKEg5SigJ4/AxSRESJjEGKiIi6tWC4Bc9qikFFSq+FrAgAAI9fbPP+iIio62KQIiKibktRFEiSDACwmoxt3p9GI0CrDZ063f5Am/dHRERdF4MUERF1W15RggahZcqTYlCRAgCdLrT6n5etfURECY1BioiIui2nTwTUINX2VfsAQK/VAgC8IitSRESJjEGKiIi6LbcvNI9JpxWg02ljss/IfrjYBBFRYmOQIiKibsvtC1WNdFodBEGIyT4N4SDlE7nYBBFRImOQIiKibitSkYosEBELel2ktY835CUiSmQMUkRE1G1FVtbTaWPT1gecqkhxjhQRUWJjkCIiom7LEwlS4ZX2YsGoD63+5xc5R4qIKJExSBERUbcVCVKGGC00AQAGfXiOVICtfUREiYxBioiIui1vOEjpY1mRMoT2JbK1j4goocUsSE2cOBG9e/eO1e6IiIjaLDKPyaCPZWtfaF/+ICtSRESJrEVnlm3btmHw4MHQaJrPXT/60Y9QVVUVs4ERERG1lU9t7Yt9kBIDnCNFRJTIWnRmGTFiBMrKypCVlYXevXtj48aNSE9Pb7DNvffe2y4DJCIiai1fOOwYDbGbI2U2MEgREVELW/tSUlJQUlICACgtLYUsy+06KCIioliIrKxnjGFrn8kQWrVPZGsfEVFCa9GZ5YYbbsC4ceOQm5sLQRAwatQoaJu5J8ehQ4diOkAiIqLW8gdCrX3GcPiJBbUixSBFRJTQWhSkXnjhBVx//fU4cOAAHnjgAfzyl7+EzWZr77ERERG1SaQiZTLEriJlDoeyYJCtfUREiazFZ5YpU6YAADZt2oQHH3yQQYqIiDq9SNUopkHKGNpXgBUpIqKEFvWZ5ZVXXmmPcRAREcWcGG7tMxsMMdunxRiuSEkMUkREiSxm95F69tln8cQTT8Rqd0RERG0WqRqZY1iRskaCVJALLxERJbKYBam33noLS5cujdXuiIiI2iwQCAcpUwwXm4gEKZkVKSKiRBazS3Rr1qyJ1a6IiIhiIhBuv7MYY9faF6lISZIERVEgCELM9k1ERF1HmypSiqJAUZRYjYWIiCimIivrRcJPLFjD1S1JVnhTXiKiBNaqIPWPf/wDQ4YMgdlshtlsxtChQ7Fs2bJYj42IiKhNgmpFKvZBCgDc/kDM9ktERF1L1K19CxcuxG9/+1vcd999uPjii6EoCr7++mvcfffdqKqqwq9+9av2GCcREVFUJFmBLMvQAkgyx661z6TXQRAEKIoCty+ANN4NhIgoIUUdpJYsWYLnnnsOt9xyi/rYD3/4QwwaNAjFxcUMUkRE1Cl4xCA0CLWfJ5liF6QEQYBWo0VQCrIiRUSUwKJu7SsrK8PYsWMbPT527FiUlZXFZFBERERt5fYFIECBIMS2tQ8AdDpN+BhiTPdLRERdR9RBqm/fvvj3v//d6PE33ngDRUVFMRkUERFRW7nCIUev0UCr1cZ037rw/jx+LjZBRJSoog5Sc+fOxeOPP44pU6bg97//PZ588klMmTIFc+fObdMNeefPnw9BEDBz5kz1MUVRUFxcjLy8PJjNZowfPx47d+5s8Dq/34/7778fGRkZsFqtmDZtGo4dO9bqcRARUffg9oXa7nQ6LTSamN02MbzPUGe8h619REQJK+ozyw033ID169cjIyMD77zzDt5++21kZGRgw4YN+NGPftSqQWzcuBEvvPAChg4d2uDxBQsWYOHChXjmmWewceNG5OTkYNKkSXA6neo2M2fOxIoVK7B8+XJ89dVXcLlcmDp1KiSJN0okIkpkkbY7nTa2IQoA9LpQRcrLihQRUcJq1Q15R44ciddeey0mA3C5XPjpT3+KF198EU8++aT6uKIoWLx4MR577DFcf/31AIBXX30V2dnZeP3113HXXXehvr4eL730EpYtW4aJEycCAF577TXk5+dj9erVuPLKK2MyRiIi6noi1aJYt/UBgD68T1+AFSkiokQV+8t0Ubr33ntxzTXXqEEooqSkBOXl5Zg8ebL6mNFoxLhx47Bu3ToAwKZNmxAIBBpsk5eXh8GDB6vbNMXv98PhcDT4IiKi7iUSpHS6dghSkYqUyIoUEVGiilmQmjhxInr37h3Va5YvX47Nmzdj/vz5jZ4rLy8HAGRnZzd4PDs7W32uvLwcBoMBqampzW7TlPnz58Nut6tf+fn5UY2biIg6P58YClJ6XauaL87KoI+09rEiRUSUqGJ2dvnRj36EqqqqFm9/9OhRPPjgg1i5ciVMJlOz2wmC0OB7RVEaPXamc23z6KOPYtasWer3DoeDYYqIqJuJVIv07dDaZ9CHTp9+VqSIiBJWzILUvffeG9X2mzZtQmVlJUaOHKk+JkkSvvjiCzzzzDPYu3cvgFDVKTc3V92msrJSrVLl5ORAFEXU1tY2qEpVVlY2ea+rCKPRCKPRGNV4iYioa/GFQ057tPYZwlUuX5BBiogoUcVtjtSECROwfft2bNmyRf0aNWoUfvrTn2LLli3o3bs3cnJysGrVKvU1oihi7dq1akgaOXIk9Hp9g23KysqwY8eOswYpIiLq/iJBytAOrX1GVqSIiBJei84ukVXzWuLtt99u0XY2mw2DBw9u8JjVakV6err6+MyZMzFv3jwUFRWhqKgI8+bNg8Viwc033wwAsNvtuOOOOzB79mykp6cjLS0NDz30EIYMGdJo8QoiIkos/kA4SOljX5GKBClfgEGKiChRtShI2e129c+KomDFihWw2+0YNWoUgFCbXl1dXVSBqyXmzJkDr9eLe+65B7W1tRgzZgxWrlwJm82mbrNo0SLodDpMnz4dXq8XEyZMwNKlS9tluVsiIuo6TgWp2FekTIbQOUZkkCIiSlgtOru88sor6p8ffvhhTJ8+Hc8//7waViRJwj333IPk5OQ2Debzzz9v8L0gCCguLkZxcXGzrzGZTFiyZAmWLFnSpmMTEVH3ogapdpgjZTKETp9igDd/JyJKVFHPkXr55Zfx0EMPNaj4aLVazJo1Cy+//HJMB0dERNRakWqRsR0qUka9PnQMLjZBRJSwog5SwWAQu3fvbvT47t27IctyTAZFRETUVpGKlNEQ+yBljlSkgqxIERElqqjPLrfddhtuv/12HDhwABdeeCEA4Ntvv8Uf//hH3HbbbTEfIBERUWsEwiHH1A4VKbMxVJEKsrWPiChhRX12+ctf/oKcnBwsWrQIZWVlAIDc3FzMmTMHs2fPjvkAiYiIWiPSdtcuFSljuCIlsbWPiChRRX120Wg0mDNnDubMmQOHwwEAbV5kgoiIKNaC4YqUOTyfKZYsBn2DYxARUeJp02U6BigiIuqs1Na+dqhIWSKtfRKDFBFRoop6sQkiIqKuIBKkIvOZYkmdIyXJUBQl5vsnIqLOj0GKiIi6JUmKBKnYV6SSwkFKAwW+AFesJSJKRAxSRETULUXa7syGdpgjFQ5SAhR4RC44QUSUiNoUpI4dO8Z7RxERUaejKIpakbK0Q2ufTqeFTiNAAwVeLoFORJSQ2hSkBg4ciNLS0hgNhYiIKDb8wVMX+aztEKS0Wi30Wk2oIuVnRYqIKBG1KUhxgi0REXVGvoAEDULnqPZYbEKj0UCvDZ1C3b5AzPdPRESdH+dIERFRt+MRg9BAgVYjwKiP/WITGo0GunCQcvnEmO+fiIg6vzYFqd/85jdIS0uL1ViIiIhiItRup0CnEaDVamO+f0EQoAvv1+NnkCIiSkRtukz36KOPxmocREREMRNpt9NpNNBo2qf5QqeLBCm29hERJSK29hERUbfjFUPhRq/TQBCEdjkGgxQRUWJjkCIiom4nEm40Gm27BSm9LtTU4WWQIiJKSAxSRETU7USClE7Xfqc5vZ5BiogokTFIERFRt+MVQ/d20rfDQhMRhnBFyicySBERJaKog9THH3+Mr776Sv3+b3/7G4YPH46bb74ZtbW1MR0cERFRa0SqRHpd+wWpyLLqfgYpIqKEFHWQ+vWvfw2HwwEA2L59O2bPno2rr74ahw4dwqxZs2I+QCIiomj5AqGKlE4X+3tIRRjCQSpyLCIiSixRn2FKSkowcOBAAMBbb72FqVOnYt68edi8eTOuvvrqmA+QiIgoWr4OaO0zGvQAAL/IIEVElIiirkgZDAZ4PB4AwOrVqzF58mQAQFpamlqpIiIiiqdIu51B335ByhQOUmKArX1ERIko6orUJZdcglmzZuHiiy/Ghg0b8MYbbwAA9u3bhx49esR8gERERNFSK1Lt2NpnMoTnSAWkdjsGERF1XlFXpJ555hnodDq8+eabeO6553DeeecBAD766CNMmTIl5gMkIiKKViTcRBaEaA/mcEUqEGRFiogoEUV9hunZsyfef//9Ro8vWrQoJgMiIiJqK38wVJFqz9Y+szEcpFiRIiJKSFFXpD788EN88sknjR5fuXIlPvroo5gMioiIqC3E8Ep67VmRshgNAIBgkItNEBEloqiD1COPPAJJanz1TZZlPPLIIzEZFBERUVtEgpShPVv7whWpYBPnRCIi6v6iDlL79+9Xlz8/3fnnn48DBw7EZFBERERtIYbb7cyGdqxImRikiIgSWdRBym6349ChQ40eP3DgAKxWa0wGRURE1BaBcLgxtWOQsoZb+6QggxQRUSKKOkhNmzYNM2fOxMGDB9XHDhw4gNmzZ2PatGkxHRwREVFrBMLzlkx6fbsdw2YOBSlFkRCU5HY7DhERdU5RB6k///nPsFqtOP/881FYWIjCwkIMGDAA6enp+Mtf/tIeYyQiIopKIFwlMrZnRSocpDRQ4Ba54AQRUaKJ+gxjt9uxbt06rFq1Clu3boXZbMbQoUNx2WWXtcf4iIiIohYMBymLsf0qUmaDHhpBgKwocHlF2MPBioiIEkOrLtUJgoDJkydj8uTJsR4PERFRmwUlCToAZmP7VaQ0Gg10Gg1ESYLLJ7bbcYiIqHNq0Rnm6aefxp133gmTyYSnn376rNs+8MADMRkYERFRayiKogYpi6H9KlKCIECr0wKSBDeDFBFRwmlRkFq0aBF++tOfwmQyYdGiRc1uJwgCgxQREcWVKMkQFAUQTt3rqb1otVoAgIdBiogo4bQoSJWUlDT5ZyIios7GK0rQCAqA9p0jBZwWpPyBdj0OERF1PlGv2vfEE0/A4/E0etzr9eKJJ56IyaCIiIhayxuQoIECrUaAUd9+c6QAQK8L7Z9Biogo8UQdpObOnQuXy9XocY/Hg7lz58ZkUERERK3lFSUIUKDTCGrFqL1EgpSXQYqIKOFEHaQURYEgCI0e37p1K9LS0mIyKCIiotbyiEFooECn0UCjifo0FxW9PhTUGKSIiBJPi3seUlNTIQgCBEFAv379GoQpSZLgcrlw9913t8sgiYiIWsodDjV6rdDuQcoQbh30igxSRESJpsVBavHixVAUBbfffjvmzp0Lu92uPmcwGFBQUICLLrqoXQZJRETUUm5fJEhp2r21LzIHy8+KFBFRwmlxkJoxYwYAoLCwEBdffDF0uvadwEtERNQaapDSaZtsRY8lgz60KqAvEGzX4xARUecTdc+DzWbD7t271e//+9//4rrrrsNvfvMbiCLvo0FERPEVae3T6dq3GgUApnBFSgywIkVElGiiDlJ33XUX9u3bBwA4dOgQbrrpJlgsFvznP//BnDlzYj5AIiKiaEQWftB3QJAyGkIVKT8rUkRECSfqILVv3z4MHz4cAPCf//wH48aNw+uvv46lS5firbfeivX4iIiIohK5p5OhA1rQTeEgJQakdj8WERF1Lq1a/lyWZQDA6tWrcfXVVwMA8vPzUVVVFdW+nnvuOQwdOhTJyclITk7GRRddhI8++qjBsYqLi5GXlwez2Yzx48dj586dDfbh9/tx//33IyMjA1arFdOmTcOxY8eifVtERNRNeH2hNnNDO9+MFwDMxtAxAkG29hERJZqog9SoUaPw5JNPYtmyZVi7di2uueYaAEBJSQmys7Oj2lePHj3wxz/+Ed999x2+++47XHHFFfjhD3+ohqUFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6j5mzpyJFStWYPny5fjqq6/gcrkwdepUSBKvDhIRJSKPGGqzi9zjqT1FKlIBtvYRESWcqIPU4sWLsXnzZtx333147LHH0LdvXwDAm2++ibFjx0a1r2uvvRZXX301+vXrh379+uEPf/gDkpKS8O2330JRFCxevBiPPfYYrr/+egwePBivvvoqPB4PXn/9dQBAfX09XnrpJTz11FOYOHEiRowYgddeew3bt2/H6tWro31rRETUDfjC93QyhlfUa08WkwEAEAjy4h0RUaKJuu9h6NCh2L59e6PH//znP7fpfh2SJOE///kP3G43LrroIpSUlKC8vByTJ09WtzEajRg3bhzWrVuHu+66C5s2bUIgEGiwTV5eHgYPHox169bhyiuvbPV4iIioazoVpNq/tc9iDIW1IIMUEVHCidlZxmQytep127dvx0UXXQSfz4ekpCSsWLECAwcOxLp16wCgUbtgdnY2Dh8+DAAoLy+HwWBAampqo23Ky8ubPabf74ff71e/dzgcrRo7ERF1Pr5wa5/Z2HEVqaDE1j4iokTToiCVlpaGffv2ISMjA6mpqWe9wWFNTU1UA+jfvz+2bNmCuro6vPXWW5gxYwbWrl2rPn/msRRFOecNFs+1zfz58zF37tyoxklERF2DGF74ITJ/qT0lmULHkCSpRecnIiLqPloUpBYtWgSbzab+OZYnCoPBoM6zGjVqFDZu3Ii//vWvePjhhwGEqk65ubnq9pWVlWqVKicnB6Ioora2tkFVqrKy8qzztR599FHMmjVL/d7hcCA/Pz9m74mIiOLHH65IdUSQshqNAICgJDNIERElmBYFqRkzZqh/vvXWW9trLABC1SS/34/CwkLk5ORg1apVGDFiBABAFEWsXbsWf/rTnwAAI0eOhF6vx6pVqzB9+nQAQFlZGXbs2IEFCxY0ewyj0Qhj+ORHRETdS2QFPUtHBKlwRSooy5AkCRpN1Gs4ERFRFxX1HCmtVouysjJkZWU1eLy6uhpZWVlRLTv+m9/8BldddRXy8/PhdDqxfPlyfP755/j4448hCAJmzpyJefPmoaioCEVFRZg3bx4sFgtuvvlmAIDdbscdd9yB2bNnIz09HWlpaXjooYcwZMgQTJw4Mdq3RkRE3YAYDlImY0csNqGDAgFQFHj8Adg7YKVAIiLqHKI+yyiK0uTjfr8fBoMhqn1VVFTg5z//OcrKymC32zF06FB8/PHHmDRpEgBgzpw58Hq9uOeee1BbW4sxY8Zg5cqVapshEGo11Ol0mD59OrxeLyZMmIClS5e2aQVBIiLqugKSBC0Aqym6c1JrWAw6yBCghQK3LwB7UrsfkoiIOokWB6mnn34aQGjxh//7v/9DUtKps4UkSfjiiy9w/vnnR3Xwl1566azPC4KA4uJiFBcXN7uNyWTCkiVLsGTJkqiOTURE3VMgEIQWgMXU/tUhrUYItfPJMtx+sd2PR0REnUeLg9SiRYsAhCpSzz//fIOKj8FgQEFBAZ5//vnYj5CIiKiFJFmBLMuAACQZ278iBQA6rRaSHITHF+iQ4xERUefQ4iBVUlICALj88svx9ttvN7p3ExERUbx5xCC0CLWgd0RrHwDodVpIAcDtZ5AiIkokUc+R+uyzz9pjHERERG3mESVoBBkaQeiQG/ICoYoUAHgYpIiIEkqrljQ6duwY3n33XRw5cgSi2LAnfOHChTEZGBERUbTc/iA0UKDXCtDp2n/VPiBUkQIAr8ggRUSUSKI+y6xZswbTpk1DYWEh9u7di8GDB6O0tBSKouAHP/hBe4yRiIioRU4FKW2Hrd4aCWxef7BDjkdERJ1D1HcOfPTRRzF79mzs2LEDJpMJb731Fo4ePYpx48bhxhtvbI8xEhERtYjbH4QABXqtpsOClIEVKSKihBR1kNq9ezdmzJgBIHQVzuv1IikpCU888QT+9Kc/xXyARERELeXy+QEAeq3QcUFKHzqOX2RFiogokUQdpKxWK/z+0IkqLy8PBw8eVJ+rqqqK3ciIiIii5PaGqkI6nQ6CIHTIMQ260KIWPlakiIgSStRzpC688EJ8/fXXGDhwIK655hrMnj0b27dvx9tvv40LL7ywPcZIRETUIpGb4kYWgOgIxnBFyhdgRYqIKJFEHaQWLlwIl8sFACguLobL5cIbb7yBvn37qjftJSIiigdveAlyfQet2AcARkPoWGztIyJKLFGfaXr37q3+2WKx4Nlnn43pgIiIiFrLo1akOjBI6cNBihUpIqKEEvUcqd69e6O6urrR43V1dQ1CFhERUUeLLEEeqRJ1BFP4WGJA6rBjEhFR/EUdpEpLSyFJjU8Wfr8fx48fj8mgiIiIWiPS2mfowIqUyRBabEIMsiJFRJRIWnymeffdd9U/f/LJJ7Db7er3kiRhzZo1KCgoiOngiIiIouELhIJUR1akzGqQYkWKiCiRtPhMc9111wEABEFQ7yMVodfrUVBQgKeeeiqmgyMiIoqGL7zgg1Gv77BjmsOhLciKFBFRQmlxkJJlGQBQWFiIjRs3IiMjo90GRURE1Br+8L2czMYObO0zhkJbgBUpIqKEEvWZpqSkpD3GQURE1GaRlfOMho6rSFkYpIiIElKLF5tYv349PvroowaP/eMf/0BhYSGysrJw5513wu/3x3yARERELSWGg5SlQ4OUAQCaXIiJiIi6rxYHqeLiYmzbtk39fvv27bjjjjswceJEPPLII3jvvfcwf/78dhkkERFRS0SClNnYkUEqPEeKQYqIKKG0OEht2bIFEyZMUL9fvnw5xowZgxdffBGzZs3C008/jX//+9/tMkgiIqKWiCz4YDF1XJBKMoUrUmztIyJKKC0OUrW1tcjOzla/X7t2LaZMmaJ+P3r0aBw9ejS2oyMiIopCZAlySwdWpKzh0CYrMudJERElkBYHqezsbHWhCVEUsXnzZlx00UXq806nE/oOXG6WiIjoTJGKlDVcJeoI1tOqX67wDYGJiKj7a3GQmjJlCh555BF8+eWXePTRR2GxWHDppZeqz2/btg19+vRpl0ESERGdS0CSoYRv1ZFkNHbYcU16HTSCAABw+8QOOy4REcVXi5c/f/LJJ3H99ddj3LhxSEpKwquvvgqD4dQVv5dffhmTJ09ul0ESERGdi0eUoIECoGGVqL1pNBpoNVrIUhBuHytSRESJosVBKjMzE19++SXq6+uRlJQErVbb4Pn//Oc/SEpKivkAiYiIWsIjBqERZGg1gnqT3I6i1WkQkAAPgxQRUcKI+oa8dru9ycfT0tLaPBgiIqLWcvslaKFAr9U0utjX3nTh43lEtvYRESWKFs+RIiIi6szcPhECFOg1QtyClNsf7NDjEhFR/DBIERFRtxBZMS8uFSld6HhertpHRJQwGKSIiKhbiKyYp9NpodF07OnNoAt1yjNIERElDgYpIiLqFlzeUJDS6zq2GnX6Mb0iW/uIiBIFgxQREXULXrUi1fE3hzfoWZEiIko0DFJERNQtuP3hipQ+6gVp28ygD1Wk/KxIERElDAYpIiLqFiIVKYM+DhWpcBXMF2CQIiJKFAxSRETULXjDFSmjoeMrUsZIRYpBiogoYTBIERFRt+ATQ/OT4lGRioQ3BikiosTBIEVERN2CPxykTAZDhx/bqGeQIiJKNAxSRETULUQqUmZjx1ekzOGKVIBBiogoYTBIERFRtxAJMWZTx1ekTIZQeBODDFJERImCQYqIiLoFMRCqSFmMHR+kIlUwMSB1+LGJiCg+GKSIiKhbiFSkrHGoSEVa+4JBBikiokTBIEVERN1CMBiuSMUjSIWrYAGJrX1ERImCQYqIiLoFSQpVg2xmY4cf22piRYqIKNEwSBERUZenKAqC4YUerHEIUpbwkusBBikiooTBIEVERF1eMBhEUJIBxKciZTOHgpQky5BkpcOPT0REHY9BioiIujyPX4SsKFAgIMnc8feRsoWPqYEMl5/zpIiIEgGDFBERdXkurwgAkKCBNbyCXkeymIzQagRooMARHgsREXVvDFJERNTlOb3+0B80Gui0HX9q0+l0MIaP6/T4O/z4RETU8eIapObPn4/Ro0fDZrMhKysL1113Hfbu3dtgG0VRUFxcjLy8PJjNZowfPx47d+5ssI3f78f999+PjIwMWK1WTJs2DceOHevIt0JERHHkDgcpnbbjq1EAIAgCdPrQsesZpIiIEkJcg9TatWtx77334ttvv8WqVasQDAYxefJkuN1udZsFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6jYzZ87EihUrsHz5cnz11VdwuVyYOnWquhQuERF1b+5wO51O1/HzoyJ0ulCQYkWKiCgxxOfSXdjHH3/c4PtXXnkFWVlZ2LRpEy677DIoioLFixfjsccew/XXXw8AePXVV5GdnY3XX38dd911F+rr6/HSSy9h2bJlmDhxIgDgtddeQ35+PlavXo0rr7yyw98XERF1LLc/XJHSaeM2BoM+FOJcXgYpIqJE0KnmSNXX1wMA0tLSAAAlJSUoLy/H5MmT1W2MRiPGjRuHdevWAQA2bdqEQCDQYJu8vDwMHjxY3eZMfr8fDoejwRcREXVdHl8AAKA3xK8iZQi39jFIERElhk4TpBRFwaxZs3DJJZdg8ODBAIDy8nIAQHZ2doNts7Oz1efKy8thMBiQmpra7DZnmj9/Pux2u/qVn58f67dDREQdyOMPtfYZ9fELUsZwiHP5GKSIiBJBpwlS9913H7Zt24Z//etfjZ4TBKHB94qiNHrsTGfb5tFHH0V9fb36dfTo0dYPnIiI4s4XDlKGThCkPD4uf05ElAg6RZC6//778e677+Kzzz5Djx491MdzcnIAoFFlqbKyUq1S5eTkQBRF1NbWNrvNmYxGI5KTkxt8ERFR1+Xzh1r7jHFs7TMbDQAAb7jNkIiIure4BilFUXDffffh7bffxqefforCwsIGzxcWFiInJwerVq1SHxNFEWvXrsXYsWMBACNHjoRer2+wTVlZGXbs2KFuQ0RE3ZtfDIUXszF+QcoSPrZXZEWKiCgRxHXVvnvvvRevv/46/vvf/8Jms6mVJ7vdDrPZDEEQMHPmTMybNw9FRUUoKirCvHnzYLFYcPPNN6vb3nHHHZg9ezbS09ORlpaGhx56CEOGDFFX8SMiou7NHwgFKZPBELcxRCpSPpEVKSKiRBDXIPXcc88BAMaPH9/g8VdeeQW33norAGDOnDnwer245557UFtbizFjxmDlypWw2Wzq9osWLYJOp8P06dPh9XoxYcIELF26FFpt/JbBJSKijiOGw4sljhUpq9kI4FR1jIiIure4BilFUc65jSAIKC4uRnFxcbPbmEwmLFmyBEuWLInh6IiIqKsIBIMAALMpfhUpqykUpEQGKSKihNApFpsgIiJqLUVR1CBljWOQsplDxxYDwbiNgYiIOg6DFBERdWmSJCEQlAGcqgrFQ1K4tY9BiogoMTBIERFRlxYMBhGQZCgQYDXFb45UsiUUpIISgxQRUSJgkCIioi5NlmUEJBkyBFgM8VtkyG4NBSkpGIQsy3EbBxERdQwGKSIi6tIkSUJAUiBDgNUYvzWU7BYTAEBWFLi8vJcUEVF3xyBFRERdWihIyZAVTVwrUkkmPRQIAIB6jy9u4yAioo7BIEVERF1aJEhJEGAxxK8iJQgCtLrQ8R0ef9zGQUREHYNBioiIurRgMAgxPEfKGseKFADow0HKySBFRNTtMUgREVGX5gsEoSgILTYRxzlSAKDXh1YNdHoZpIiIujsGKSIi6tLc4YUdZAgw6+NbkTLoQ0HOxSBFRNTtMUgREVGX5vKFgpReq4VWI8R1LIZwRcrt46p9RETdHYMUERF1aS5fAABgjONCExEmI4MUEVGiYJAiIqIuLRJaTAZ9nEdyagweBikiom6PQYqIiLo0jz8IoHMEKbPRCADw+hmkiIi6OwYpIiLq0jzh0GLuBK19FlMozPn8gTiPhIiI2huDFBERdWnecGgxG+NfkbIaDQAAv8ggRUTU3TFIERFRl+YNhxZLOMTEk9Ucau3zBRikiIi6OwYpIiLq0nxiaI6UpRNUpJLMoTAXYJAiIur2GKSIiKhL84UrUlZTZwpSUpxHQkRE7Y1BioiIujR/IFSRspri39qXHG7tE4OsSBERdXcMUkRE1KWJ4dY+mzn+FSmbJRSkAkEJsizHeTRERNSeGKSIiKhLE4ORIGWM80gAezhI+YMyJIntfURE3RmDFBERdVmKokAMt/YlmeIfpFIsBigQIMkKPD7elJeIqDtjkCIioi5LlmWIwVALXbIl/q19VoMOMgQAQJ3HH+fREBFRe2KQIiKiLkuWZYhSKEhF2uriSaMRoNPpAAAOBikiom6NQYqIiLqsYDAIMShDgYBkc/xX7QMAoz4SpNjaR0TUnTFIERFRl+X2BSArCiQISDLq4j0cAIAhEqS8rEgREXVnDFJERNRlRcKKAg0sBm2cRxNiNITmarm8rEgREXVnDFJERNRlOcNhRa/TQhCEOI8mxGQIVaRcrEgREXVrDFJERNRlOcJBKtJO1xmYwxUpN5c/JyLq1hikiIioy3KHg5SxMwYpfyDOIyEiovbEIEVERF2WqxMGKYsptHogb8hLRNS9MUgREVGX5faHg5ShMwWpUEXKy4oUEVG3xiBFRERdltsXCiumcDtdZ2A1hipSXpFBioioO2OQIiKiLssTrvqYO1GQspmNAACfGIzzSIiIqD0xSBERUZcVaZ8zGztPkEoyhypSPlakiIi6NQYpIiLqsiLtc5bOFKTCi02IAVakiIi6MwYpIiLqsnydMEglW0OtfQxSRETdG4MUERF1WZF5SNZwFagzsFtCYwkEg5BlJc6jISKi9sIgRUREXZYvEKpIWU2dpyJlt5gAAAIUuLngBBFRt8UgRUREXZYYDipJnagiZTUZoNUI0EJBvZcLThARdVcMUkRE1GWJAQkAYDMZ4zySU7RaLYxaDQAF9R5/vIdDRETthEGKiIi6rEAwVJGyWTpPRUqj0cCg1wIA6t0MUkRE3RWDFBERdUmSrCAghStSnShICYIAg14HAHCwIkVE1G0xSBERUZfk9AWggQwAsJs7T2sfABh0oSDl9IpxHgkREbUXBikiIuqS6jwiNFBg0Gpg7kT3kQIAoyFckfKyIkVE1F0xSBERUZdU7fQCAEx6LXThClBnYdSHgp3bx4oUEVF3Fdcg9cUXX+Daa69FXl4eBEHAO++80+B5RVFQXFyMvLw8mM1mjB8/Hjt37mywjd/vx/3334+MjAxYrVZMmzYNx44d68B3QURE8VATDlJ6vR4aTee6LmgyhIKU08MgRUTUXcX1zON2uzFs2DA888wzTT6/YMECLFy4EM888ww2btyInJwcTJo0CU6nU91m5syZWLFiBZYvX46vvvoKLpcLU6dOhRSegExERN1TrcsDADAaOldbHwC11dDtZ5AiIuqu4toLcdVVV+Gqq65q8jlFUbB48WI89thjuP766wEAr776KrKzs/H666/jrrvuQn19PV566SUsW7YMEydOBAC89tpryM/Px+rVq3HllVd22HshIqKO5XD7AAAmY+dZsS/CEglSPt6Ql4iou+pcvRCnKSkpQXl5OSZPnqw+ZjQaMW7cOKxbtw4AsGnTJgQCgQbb5OXlYfDgweo2TfH7/XA4HA2+iIioa4kEKXMnuhlvhMUUCndeP4MUEVF31WmDVHl5OQAgOzu7wePZ2dnqc+Xl5TAYDEhNTW12m6bMnz8fdrtd/crPz4/x6ImIqL05PaEgZTGZ4jySxqzhipRXZGsfEVF31WmDVIQgCA2+VxSl0WNnOtc2jz76KOrr69Wvo0ePxmSsRETUcdzeUJCyWTpfRSrJHK5IsbWPiKjb6rRBKicnBwAaVZYqKyvVKlVOTg5EUURtbW2z2zTFaDQiOTm5wRcREXUt3vBCDjZL56tIpYTDHRebICLqvjptkCosLEROTg5WrVqlPiaKItauXYuxY8cCAEaOHAm9Xt9gm7KyMuzYsUPdhoiIuidv+B5NdmsnDFJJoTH5xCCCkhzn0RARUXuI66p9LpcLBw4cUL8vKSnBli1bkJaWhp49e2LmzJmYN28eioqKUFRUhHnz5sFiseDmm28GANjtdtxxxx2YPXs20tPTkZaWhoceeghDhgxRV/EjIqLuyR+ef2RPMsd5JI2lWE0QBECjyKj1BJBp63zth0RE1DZxDVLfffcdLr/8cvX7WbNmAQBmzJiBpUuXYs6cOfB6vbjnnntQW1uLMWPGYOXKlbDZbOprFi1aBJ1Oh+nTp8Pr9WLChAlYunQptFpth78fIiLqOGI4SKUmWeI8ksYMeh1MOi1cooIat8ggRUTUDcU1SI0fPx6KojT7vCAIKC4uRnFxcbPbmEwmLFmyBEuWLGmHERIRUWckyzICgdBCDunJna8ipdVqYdZroRMVVLv9AGznfA0REXUtnXaOFBERUXPq3T7IigJAQEZyJ6xIGQwwG7TQCRJq3Vy5j4ioO2KQIiKiLqfK4QEAKIIWFkNcmyuaZDAYYNZroYWMaqc33sMhIqJ2wCBFRERdTq0zFKT0Bv057y0YDzqdDqZwwKsOj5WIiLoXBikiIupy6tyhKo/BoI/zSJomCAKs5tAS6HUMUkRE3RKDFBERdTn1Lh8AwGTovKvhWcyhsUVCHxERdS8MUkRE1OU4PKFwYjEZ4jyS5iVbQ6sJOty+OI+EiIjaA4MUERF1OU63HwBgMZniPJLm2cNByu1lkCIi6o4YpIiIqMtx+ULhJMnSeVv7UpNCQcrj9cd5JERE1B4YpIiIqMvx+kLhJNnSeStSaeH7W/lE/1lvPk9ERF0TgxQREXU5Xp8IAEi2dt4glZFsBQAIsgSHLxjn0RARUawxSBERUZfjF0NBKjIPqTOyWc0waDXQQ0atW4z3cIiIKMYYpIiIqEuRJAmiGAAApIWrPp2RwWCASa+FXpBQ5eI8KSKi7oZBioiIuhSfzwdfQIIEDdKSOm9rn8FggMWghQAF1U7eS4qIqLthkCIioi7F5/PBF5QhKlqkWPTxHk6zNBoNTIbQ+Krq3XEeDRERxRqDFBERdSm1Tg8CkowAtMhI6rzLnwOAyRQaXy0rUkRE3Q6DFBERdThJknDs2DH4/dHPHaqocwIANFo9rEZdrIcWU1ZzqPWwzuWJ80iIiCjWGKSIiKjD7du3DwcOHEBpaWnUr62qC7XJJXXiFfsiksL3uap3syJFRNTdMEgREVGHqq2tRUVFBYDQfKdo1ThDQcpmtcR0XO0hsjy7yxP9+yQios6NQYqIiDqMLMvYt2+f+n1rWvvqnaE2uVRb5w9SqbZQkHIySBERdTudu7mciIi6DVEUsXPnTni9Xmg0GsiyDFGM7ka1iqLA5Qm1yaUnJ7XHMGMqO8UGAHB62NpHRNTdsCJFRETtThRFbNq0CfX19dBqtRgwYAAAIBgMQpblFu8nEAjA7QsAEJCV2nlvxhvRIyMZACD6/fAFpDiPhoiIYolBioiI2pU/KOHD9buwcvsxlLkkjBw5EhkZGdBoQqegaKpSfr8fbjGIADTITu78i01kpdqg12pgECScqGNVioioO2FrHxERtZsDlS7c/OK3SPEcg0UQ8f5hQJdTjRtH5cNgMMDn88Hv98NkMrVof36/H25/EAFFiyxby14TT0ajEUkmPWrdfhyprEPvzM7fjkhERC3DihQREbULMShj5hvfo87pRoZRRl6KGbWSEb9+cxv+teEIDAZDaLsoKlI+nw9uUYIILbKSO/fNeAFAEARYLaHK2fGq+jiPhoiIYolBioiI2sVf1+zDjuMO9DAHcfOYnvjlhMG49ZK+AID5H+5GEFoA0QUpp9sDX0CCqGiRZev8QQoAbEmhuVwVtc44j4SIiGKJQYqIiGJuX4UTz31+EAAw4wdpSDLqkJmZiUevHoCirCQ4fEF8vr8GQHRB6mT4ZryKVg+7WR/7gbeDNFuona+6nkGKiKg7YZAiIqKYe+GLQ5AV4Mrz09DLJgAAMjIyoNUImDWpHwDgg50n4RWlqO4lVe0I34zXbIIgCLEfeDvITA0Fqdrw2ImIqHtgkCIiopiqcPjw3y3HIUDB1fmhpc3tdru6oMSUwTkYlJcMVwDYfKQ2qopUnTMURlK6wM14I3LT7AAAl8cT55EQEVEsMUgREVFMLV1XioCkYHyuDLs2AK1Wi379+qnPC4KAu8b1QQBaHKx0tThIKYoCh8cHAEhL7jpBqkdWCgDA6/FCUZRW7+dItQe/++8OPLj8e6zZXQFJbv2+iIio7bj8ORERxYzbH8Rr3x5GtsaJS3JDLW3nn38+rNaGN88d3z8TsqBFjUdERa2rRfsOBAJw+0M3481M7jrLiBdk2aFAQECSUOVwIdNui3ofC1fuxd8+P6iGp/9uOYHzc2z4990XIdnUNeaKERF1N6xIERFRzHywrQxWsQYDrF70zrSid+/eyMzMbLRdskmPIfnpAID95XUtqtSIogiPX0IQGmQld/57SEVYjXpo9KGl3o9URL8E+sqd5Xj60wOQZRlX9wjgtv4KUkwa7Cl34n9X7GhTlYuIiFqPQYqIiGLmzW/3I0fjxKDz7OjTpw969uzZ7LbjBuQCEFBa5W5Re9+pm/FqkNlFlj6PsJrD95Kqji5IVbn8ePTt7QCAXwyzYPrgFIwrTMKfr+4JrUbAu1tPYMX3x2M+XiIiOjcGKSIiion9FU6cKCuDRhBwyZDeZw1RADBhQDaC0OBorQf17nMvxCCKItxiEIEucjPe0yXbwveSqnFE9brH/7sD1W4/fpAJjMk+9bglUIcHL+8DAPjtOztwuJorAhIRdTQGqTgrKytDTU1NvIdBRN1MIBCAJEkdeszl6w8jVeNFYYYV5/fudc7t+2YlwWo2QZIVrN9fec7tRVGE0xdEUNEguwu19gFAWnhOV3VdyytSO47X47PtR9BfV4Wf9NNBp9EgPz8fJpMJgUAA0/qZcGHPZJgD9Zi79APs2buvvYZPRERNYJCKI7fbjb1792LXrl3scSeimPH7/Vi/fj22bNnSYccUgzLWbDkALWQMK8hESkrKOV8jCALOz0sFAHxzoOKc25+sd8EbkBAQtOid0XUWmwCA7MwMAEB9XT28Xm+LXvP06n0o1NZiRI4R2XYzevTogd69T1X6SktKcHNvH/oYnaiprcNbX25r8b6JiKjtGKTiqK6uDgAQDAYRCATiOxhKaIqioL6+vsMrGNQ+KisrEQwG4XQ6m5x7JEkSDh8+DLc7du1gq3dXQO+vR5JRh0uGFrX4ZrnDeoUCxqaSk5DPsZz3kZOhtrg0mxVmg7ZtA+5gvbJT4VBMqPeIOHHixDm333XCgS93H4dRE8SYPhm48MIL0bdvXwiCgJycHHUVxGSTHlcNL4Bf0WPT4Vps23+4vd8KERGFMUjFkcNxqleeVxEpnsrKyvD9999j9+7d8R4KxUBFxanqTlNh6ciRIygpKcHBgwdjdsz/fHsAVsGPgXl2nJeX2+LXDS3IhFGngeR1YcuxurNue6LaCQDIT49++fB4659tQ5VsRZXbj7KysnNetHj28wNI1vjQL8uGvj1yYDAY1Oc0Gg1GjRqFSy65BOPGjcOt103Eefk9ICsKVqzj/2Eioo7CIBVH9fWneuUZpKi9HD9+HMePH2+2fVSSJJSWlgIAqqqq4HK17J4+FD2v19vuVT+3293g3/DMf09ZltWKiMPhUKuR69evb/V8zWO1HhwqDVVCLh7cG0ZjyxeC6JGXi4KMJCQJfnyyueSs21bUhd5LYZa9VeOMp96ZVng1JrgCGlQ7vaisbH5OmMsfxMpdFbALPozslYqMjIxG2wiCAJ1Op1b+7p0yAgoE7D1+EttLylBVVYX6+voWt41H015+7NgxHDlypMXbExG1N5/Ph3379sW006IlGKTiRBRF+Hw+9fvT/9xWFRUV2Lt3L2RZjtk+qWvy+XzYv38/9u/fj23btjXZQnrs2LEG7V/8gNQ+nE4nNmzYgO3bt6uPeTyemAer06tRQOOK1ImycvXfOxgMwufz4fjx4/B6vS1qOWvKfzaUIEXwIj/VghED+kT1WpPJhMF9QwtTbN2zv9ntFEVBjSO0sl/f3NRWjTOe9FoN+mTaUK1YUO3ynzW0rtldASUYwHlWICvZhPT09HPuf0RBBgrysqEowD8+WIsdO3bg+++/x8aNGxtctGvK0aNH8cUXX6CqquqcxwkEAjhw4AAOHToU0/NWR5AkCeXl5QgGg/EeChHF2KFDh3DixAls3bq1Q383MUjFyZkntlhVpFwuF/bs2YOysjJUV1fHZJ+JzOFwYMOGDV12ZcXT20dra2uxefPmBh+iKysrcfToUQBAfn4+gND8Go/n3EtRU3QqKiqgKArq6urgdDpRUVGBDRs2xLS9TlEUtdKRlZUFAKh3OHG0xoN1B6ow643vcdffV2HJpwfw0peH8P2RWjidTnW+ptPpjPqYkqxgzaa9EKBgRN9cJCcnR72PK8cMgkYQ4HPVY1tJeZPbBAIBVLv9AID+eSlRH6MzGJCbDJ+iQ5XLf9YT/fvbypAs+NAvOwnJyckN2vrO5ifjBgMADlQ44A4o0Gg08Hg82Lt3b7OvURQFJ06cgKIo2L9//zmD/enBvDU/L/GiKAp2796NPXv24PBhziNLBH6/H/v37+9ygb8piqK0qGrcXguXybKMXbt2qZ8XOtq53r/f78fJkycBhAoV27dv77C1Bxik4iTyAVev1wOITUVKURTs27dP/WFji1bbHT9+HB6Pp8ueeCM/Z+np6TCZTPB6vdixYwdKS0uxbt067Nq1C8FgEFarFb1791avfMfrl2V3dXrAAUJVwEOHDgE4tehMLLjdbvh8Pmg0GvTq1QtHazxY/PF2XLbgU9z8f+vxyZZS6GU/ggpwxKvH2n0n8Y9Pt6rh2u/3t+jGuKf7dHcF4KmFSa/FpFEDWzXurNRk5GSHbpK0ZnPTH/pPVDvhC0iQoEHf7OjDWmfQP8cGv6JDlUts9ne+wxfA2r0nYdf4UJRta1E1KuKCAQXIzslDmWTDVn8mLrzwQgChymdzx/N4POqFPL/ff86K9OnnlbMFKUVRcPLkyU7zIfbkyZNqxe1cFbquIBgMsuvkHCJt7ZHftV1VTU0NvvnmG3zzzTfYv39/sxc6q6qq8OWXX2LPnj0x/9mor69HZWUlDh061OEV3UAggG+++QZbtmxp9vxUVlYGRVFgtVphMBjgdruxYcMGHDt2rNF4fT4famtrYzY+Bqk4ifwij1w1bktFyufz4fDhw9i1a1eDCkRXulrYGUWqB0Do38vn86GmpgZbt25t9j9hZWUlSkpKOs1y9qf/nA0dOhQ6nQ4OhwOlpaWQZRlmsxn5+fkYOnQoBEFQq1IVFRVcSTKGHA4HRFFU57NUVFTA7w9VV2LZ3hf5uUxJScGa/XV4+/syeMUgknQyeqSacU0/G24anY9HrhuNH47pDwD4akcJ1h86Vb2O9vfG6+v2QwcJg89LwXm52ed+QTMuHFQAANh64HiTz+8rqwMAJFstMOm71op9Eefn2CBCiyqXH4FAoMkPJKt3VUCRRBQkKUi3GpCZmdni/Ws0Gtx4xWiUy8lY/t1xBKFRK4TNVdUjnQuRqtfRo0fPGn5aGqTKy8uxc+fOTrGAjSiK2L//VNuoy+XqNL+jW0MUxQ6/vUFXFAkctbW1Xfbf+8iRI9i2bRtEUYQoijh+/Dh27NjRaDtJkrBv3z7Isozy8nJs27YtpoEn8nepKEpMQ0hL1NTUQBRF1NfXY/PmzY3a1U+f99uzZ08MGTIEFotFbUNet24ddu/ejUAgAFmWsWXLFmzdurVFrcwtwSAVB7Isqyeg7PBVWFEUW/1hau/evSgpKVHLmpF9Op3OLvvLozPw+Xzqh10AOHHiBHbv3o3a2lps27at0XwSSZLUtpHO0FYpy7L6oSc5ORkmkxkZPfviSK0PJTUi6ozZyO07GH369FEXB7Db7UhKSlJ/Gbvdbhw8eLDB3wNF7/R2u8iy1aeL1eTYSPAvdQIPvrEFLlmHoqwkfPg/o/HVw1fgJ8PTkWs3o/C8bNw1cRAuLQp9SP/mUDV2HA+F7miCVGmVG1sPlUMQgIv694BG0/pTyjUji6ARNKhzurDtcOOFGA5VhN5bRrKl1ceIt/NzkiFDgyqPhKAkNxlYVnx/HOkaD4qykpCamgqLJbr3e/n5WeiZZoHDF8Q7359AWloagOaDVOTDREFBAVJSUiDLMo4fD4XZyO+BDz/7Gn/7zyf4+2d7sWrrYZRUueH2B9VzTDAYbHD+UhRFrWrX19dHXeWMtciFIavVCq1WC1mWG1zVdzgcTbY11tXVoays7Jz793g8HXrh6cSJEwgEAnA4HPzdfBaR/1+BQKDDFyCIBZfLpVbTcnNzMXhwqHW3qZ+3I0eOQBRFGAwGaLVa1NXVxXS+8+n/XyK/M2J5EbCurq7ZYHN614bP51PvvRoMBrF//35s2rQJoihCr9cjMzMTNpsNo0ePRr9+/WCxWCDLMioqKrBnz54GF4oOHToUk8/IujbvgaIWOfno9XrYbDbodDp10ndTH7LORhRF9epAz549YbfbkZKSgsrKSgQCAYii2OQKWoqi4PDhwzCZTMjJyYnJ++puzmz/iPxS0mg0kGUZ+/btQyAQQK9eoYny1dXVajm9qqqqyZW2Tt+3wWCA2WyO6Zgj/66BQACZmZnwBYI4Wifiv//dg8/2nUSdJwANZMgQABwCcAjD81PQI9UMQRBwQUEqLszJhsvlwtGjR3H48GH1Q1K/fv1aPS6fzwetVqu2siYSn8+nXuSw2FOxpzqInfsPw2A0IiMlCXaNCKfTFfXcoj179qC+vh4jRoyAwWBQK6j13gDmrT0CRRHwg945uLK3AaIvdMKLVKxTUlJgMpkwujAd/qCEDSU1eHuXA1ajFmlpjnMc+ZTXvj0MiyCiIM2KXrktb0FrSnqyGT1z0lFadhIfbtyPob2yGjx/pCr0/zE3restfR6RnWxEikUPn1+LGneovS8p6dSNhQ+edOHL/ScxSOfBwNwM5OXlRX0MrUbALRf1wpMf7MbfvziISXcMBxC6Ki/LcoOwK4pig/ZfvV6Puro6VFZWonfv3tiweQs++u4Ath2vg6IAR6V69NDWQ4ACQQB6pFhQpctCRrASJpMJI0eOhCAIqKmpafDBq7q6Grm5LV8SP9YiY8nMzERtbS3q6+vhdDrV8+3+/fvhdDphMpnUqrzf78e2bdsgyzKsVmuz/z99Ph82btwIk8mEUaNGQatt32rp6VffgdDniZaukinJCk7UeZFrN0Gn7dzX0SVJgizLrT5nKIrSoNOntra2wf+1riAS4jMyMtC/f6iDwGQywefzwe12qzc993q96oWLoqIi9aJuLNvGz/z/XF5ejj179iAjI0MNeK0VCATU/2ujR49u9Dk48j769++P/fv3qyvTVlVVqRd9gNBn4MjvN0EQkJeXh9zcXNTV1WH79u2orq5WL3ILggCPx4OKioo2fwZmkIqDyInLbrdDEASYzWY4nU54vd6og1QkwdtsNvTu3Vt93GKxwO12N/tL1uPxoLS0FBqNBllZWW26ktxdRf7z5ubmory8XL1yMXDgQLhcLpSWlqKkpASCIKBnz54N5sBUVVU1+tBy+nM7duyA1WrF6NGjYzZeRVGwZ89e7Dp4GEdqPDhQI6Ks2oFa2YQSKRTwdBoBvdJtsJv18Adl7CpzYMvROmw5Gnqv7209AaMO+HFPH8YU2GExhH5FVFdXQ1GUFt9k9XSiKGLjxo0wGAy44IILIAgC/H4/dDpdu3/oiCdZlrFt2zZsO3gC247V4YRTxDcfu6AAyBAkuBQJaZoyZGlceP67WkwZOwL3XdEXRt25/04kSVIXr6isrESPHj3gdDrh8Yt4b3sFKrwpGNbDjv+Z1Aulhw7C7XarS2EbjUaYTCYIggCbzYaLektw+2X896gOn+ysQE5qEoa04N+63hPAG98dRa4QwND8zFYtMnGmCwf0QmnZSWzce7TRz9uxqlClrEcXvIdUhCAI6J9tQ8URbZPzpP6xrhTJgh/9M8zIsFvOejHmbH58QU/835clOFztwUvry3Fpsl6tYEQ+fAGn2vpsNhuMRiPS09Oh0+ngdHux8K0vsWHHPviCClyKEYPStTjfrEVQtKLGG8Qxp4yjtR688N5XGJRtwhXnZ8PhcMBut+PYsWMAoF4kbEuQikwyb8s5KvKB2mw2IxgMor6+Xq3Wi6KoVmHr6urUIFVSUqJeGHM4HM3+fEduIRD5MFtQUNDqcbZEdXV1gwqfw+E4689JpcOHCocH2/YfwdLNtdh/0oNUix6XFmUizWpAqsWAHw7PQ0FGdJ892pPX68WWLVsQCAQwbNgw2O3N3+5AFEXodLpGPx9nVklra2vVf9vWUBQFhw4dgtlsbtUFjmhFVpgEgPPOO099PCkpCT6fD06nU/2/fPDgQciyjNTU0K0SIj/vLpcLsiyrK7IWFBS0OpieHqSCwaC6gE1VVRX8fn9Ut7w4U1lZmfp/rba2tsHnYL/fr76fzMxM1NTU4OTJkygrK1MvUBYWFobCkFaHTYdrEJBCn9Xc/iA8ogSNIEDSpcHoqYBRp0VycjIyMjJw6NAhlJSUtPkzMIPUaWLRflBZWYnKykr06dOnyWqDPyihqiZUQYr8YjaZTHA6na2alBv5QTqzj95ms6mpvalfspH/FJEWh652paYjRCpSGRkZEEUR1dXVSElJQXp6OjIyMiAIAkpKSnDo0CH1KiwQqlgFg0HU1dWpbTURgUAA+/btAxBq55IkKSZh4lB5Hf727tc4fPwEglLDUrXdnow7B/fGhPOz8INeqdCfdiWy0unDZ3sq4fZL8IhBvL+tDHvKnVhZKmLPiVKMH1yAQVkG+P1+uFwu2GzRf4itq6uDJEnwer2oq6uDTqfD5s2bYbfbMWzYsFaFs/YmiiLKy8uRl5cHna51vya3HjiKv6/chnKHH27FgArZBgUCCtItuLB3T0iygrKycvirPVACfiz59AA+2lGOP90wFCN7nX15b7fbrQb7iooK9OjRA8crTuKd74/jYL2ANKsRz/5sJGyaAEoB9e8dAFJTU9W/c5vNhvr6elx3QV9sl1zwVlTjvc1HcemFXiRZz95S9uzaA3D5AshP0aBXuqVVPxtnmjC8N95euxlerwvflVRjdO/Q765Khw9HqxywC8CAHmnn2EvnNiA3GUcPa3HS2XDlPocvgDc3HUO2xo3hPTOQk5PT6pN7klGH3183GL/8x3d48csS/OCabBgQQE1NTYMgFbkQF1nQQqPRQDDb8a8vNqHWEzofmuxZ+NXVI4GTp1aXtNls8AtGfLZ5DzYdrsX+ShdO1Png1tlw5egBapdE//79sXPnziarYS3h9/uxfft2+P1+jB49usWrF57p9CAV+X8TCU+ntzzW1dVBURS4XC71QyzQcPXTM53+AfPIkSPIycmByWRSH6utrcWOHTvQt2/fmFTlIlfgI5WJ5sbm9AXw+/d34d/fHUOuxoFsjRMeOQmAHbWeAN7deqqqtXjNPlzSNwPD81MwtEcKLu+f2aqKlSzLEAThrL/TKyoqUFJSgr59+zb52cTv92Pr1q1qy+L27dsxYsSIJi8yR9rs09PTG1VFIv+3BEFQq/XN/QyWlpaipqYGgwcPbvZnrL6+HkePHoUgCMjOzm73i4CVlZWQJAlms7nB/9mkpKQG93usra1FVVUVBEFA37591YvzkYsYbrcbhw4dUv9PFhUVRT2WYDCo/nukp6erF1YjKioq0LNnz1a9z8iqoRE1NTXo0aOH+n3kc1hSUhJ0Oh1ycnJw8uRJnDhxAl5RwsEaPzb5PTj+7W6s3l0Bh6+5eWEKCnV1OD8F6D9wCC5Ns0Cn18Pv9zf5WS0a3SZIPfvss/jzn/+MsrIyDBo0CIsXL8all14a1T7ODB0ejwdGo7FF/2G8ooQjNW7s3LITLo8Xn20vRbUhFwfrgqhxi7BILnj8fuyu12GgtgLpZg10+wX0ynEhQ6mDxuPAftcROHe5ISuAQaeByx9EnUeEVqOBQSugxhNAvcuDbLsF56VZUV3vgef4LsiSAudBA3pkOlGQbkFBhhUpCF11aG6+w+m//F0uV7cOUl6vF4qitGiuQWQi5eltAXa7HWazGQaDAb169VJPEr169YIsyzh8+LC6hHXkl17kasmZ/zkPHjzYILC73e5WX8mvdvnx1YEqfL3tAPYfOABFlgAIqNSkY3C6BuenAIWZVlw+9oIGv4hPl2Uz4abRp34B3nt5X6w7WI15H+zC7vKT2PCdF9N6eTCx0IyqqqoWf1g+cuQIFEVBz549G7RIRk4Obn8ARw6dwPdVAspFA47VemHQaWA363Feihn5aRb0SregZ5oFVmPsfk35AhLe23oC6w5WY/ORWgQlBWaDFvmpZvTLsWHywBz8oGcK9u7di+rqavh8vqhbGhVFwfvbyvDM21/DLPlQr0nGZSMH49pheSjKssFuOXVF0OXqgw0bNuJQtQ/P79HhQKUL/+/5dbh1bAF+fWV/tSJ4ptP/XzudTpRV1+Gp975HVb0PiiED/7j9ApyXYoaimGC329UVlwA0+FnIzc1FbW0tCgt64plCC+57uhQn6r14YsUmzL/5Emg1TX8gKqv3YunXpTAhgEv6psGg1zf48NhaGal29MlJwe7jNfjnl7sxunfod/j728qgg4Rcuwk9M7vezXhPN7JXKt7/Roe9FU44XKd+D/9741HIoheFdhk90yxtvuo9aWA2rhmSiw+2l+HZb8pxz3AzTp48icLCQgiCAEmS1A9XkfPe1qN1eOTDw0j3i0gy6nDZ+TmYMW0ijEYDNm4sV+eZJCUl4Ty7HaIjA32zkvDRzpOoc3ux9NPt2HigHBfnm9G313nIyMiAwWCAKIpRf1hxu93Ytm2b+gGutrZWnf8bDUmS1H2YzWb1fB5ZcOL0ICVJElwuF/btPwB/UEKKLQler7dFQUoQBMiyjEOHDmHgwFOrV5aWlqrVhaaCVOQDaUsuKEUuRgGhD8Tbt29XpwpEXq8oCj7ZWYHfv78Lx+tC57Bcs4wUnQEX97DjlzdMwu4yJzYfqYVHDGLnCQc+33sSX+6vwpf7Q8G6MMOK+y7vix+NOA+aZn4HnPkejhw5gtLSUuTm5p71d+bx48fh8/mwc+dODB48uNGqlLt374bP54PZbIZer4fD4cC2bdvwgx/8oEHVIxAIYPfu3VAUBdXV1QgGgw0uekXO3zabDT6fT21jPfNc6Pf7cfjwYXVeX58+Td8HL1K9VRSlQTXI7/dj586dyMnJiWmlKhIucnNzG/xsRD6rRX5+Dxw4AADIy8tTw2ak26C2tha1tbXqz0x5eTl69+7d6DNt5O+nuc8ikb9LvV6P3NxcVFdXQ6fTISsnF5t37sfOb3fh2MY6HDjpgkGnQZJRB0UBBAHItZvRK92CIefZMfg8e6OFgiLn2eYCb2TsdrsdvoCEbZUBbD3uRFW9B3srnDgSSEKFfGpVxowkA1IsoVb3JKMOJr0WCkIX40qqgZIq4KMvjmHxF8dwvtmJoakKDnlNmHLRMOSltG6qRbcIUm+88QZmzpyJZ599FhdffDH+/ve/46qrrsKuXbuiSsmnfziJ9H+mpaVh6NChjbatqqrCN1t3Y4fTjLWlHuyvdEEvizhfd6q9S0I5Dkup0EFGT20t9ADSkAIdJNR5ZWw76IRy0IV0wY18bR0cSh0OSc2vhpIqeNBLWwsHgN3QQlIEGIUgPIoB+ypqgf2nXmsVRFyYXI/8jFqsq7EgO9mELJsRfbKSkJ1satA77HQ629wjWlZWhoqKCgwaNKhTzYORJAmbNm2Coii48MILzzm2o0ePNlgqNTKHTafTqT3KpysoKIDP51NvgpqVlQW73Y6ysjJUVVWhX79+6i9Bt9utXuU0Go3w+/3weDywWq04dOgQjEYjcnNzmxyjyx9EjUvE4Ro3vjpQha/2V2HnCQfMENFPVwUBCvIyU/HzyWNwQf98BAMivvvuO/U9tJQgCLi4bwbeu/9SvPRVCRZ8sgdfHHHjWFkF+h12444fZaJv1tlDd21trfp3mJ6ergYpRVGwaU8pNh+uwcGTTigK4FfKsUfKgoKmT9aCAFzQw4KL87S4aswQFOVFfyNWWVawq8yBz/dWYvm6/UjxlcGtGHBECu0rVfDieKUOn+014O9rD2FIlhFj7XXomWYFhHL06dOnxVcf95Q78OT7u/H1gUoM0XlwXooZT908AX3yml55zWKxQKvVoG+mGR9M/AEWrCrBW5uP4ZWvS7FqVwX+eP1QXFLU+Krt6b+r3P4g5rz0CRwOB0w6DZ762VgMPi8UNgRBQP/+/bFx40b1A9vpHyTObC+9+ZJ+eOOLbfhy1zH8+s2t+PP/G9ZkmPrLJ/vgD8q47DwzCtKNsNlsMaksCoKAy4f1xu7jNSjZvwdb9vbAsH4FeP/7w7AIAfTPyYz5vMKONmVwDp62WeHx1OGbfWX4wfChqHT68Nc1+5GjdWF4z1RkZ2fH5H0WTxuEDaU12FblxcpdlbhmSDacTieSk5PVKpHJZILVasXKneV4YPn38AWAvmlJuGFYFgb37wujMXSFPiMjo0GQinygy0424clbJ+PlD77G5tIq7D1Sjv1HNRgVzELvIhnp6enq78OWBilFUbBjx44GCynU1dW1KkhFKhOR3+ORNrCTDi9e/XIf9u3cCbdPhCcI6CDhhY1V8DtrEZSBOksPDDfXwG7SYZsvFSMKMjEgNxlJp13cifyd9OrVC6WlpaisrETPnj2RlJQEp9Op/v5zOp1NVkRKS0tx9OjRc7awAacWrUlNTUVaWho0Gg0kSYLH44HFYsFXB6rwzKcHsL4kFA57plmw4IYh8B/bqf7/t+iAi/qk46I+pwLM+h37sX7nIZwQMvDJnmqUVLkx+z9bsXRdKX47dSAuKGz+302SJOzYsUMN5WVlZejZsyeMRiOqq6tht9vVc5okSaitc6Da5YNblLB/zbco6N0b/Xv3RI7dDA1OrZQ7ZMgQ6PV6fP/99/B4PNi2bRtGjBgBnU6n3uolclFSURTU19c3CGWRf3ez2Qyz2YyKigq1q+R0x48fV/9uTpw4gV69ejXZhXB64K6vr1f3c/z4cTgcDgSDwZgFqdPbTQOGZKw7WIWgpKDWI+J4tQPOw9UQhBq8d8AHZ8URGPR6ZHkzkVJRgiSjFkXZNlgtVqC2FseOHVPfnyRJOHnyZIPPe4qiYOvWrfB6vRgwYECT/8ciFwssFgsM1mScUFKwdp8Laz/eg344AQ0UnJRrYBCCqJRtcCuNq3omBJCh9SElOxfDe6ZheH4qhvWww3Ui1Abco0cPlJeXN2pBPl5ZjT1lDvy3VINVrx2Cyx/EeRonMjUuKBCQmZWDyQUZSLUaMLZPOi4oSGs2/B+t8eDL/VX4Yt9JfH2wChU+LfZV1mJLxR48sbYafbOScGnfNPTVVqEoOxn9i/q26N+rWwSphQsX4o477sAvfvELAMDixYvxySef4LnnnsP8+fNbvJ9IqdTtdqvtVzU1Naivr4fZasPG0hpsPlyLrYer4Ti2J7TSHjQoCWZAgh49TQHYtDpIegsykozINAYxxaqD1aiDolhg0GqQZjNBltLghQGB1AIcqHShsroaSpUfOr0BY/N7QKfRQHRWw2xNRqrdBlkJtQQaHcehCxjh8AXg8gVhMWhhNepgz+4BvT0TR6o9KK12o7TKg0MnHah2B1DtPonXDu5EEKc+CA45z47RtnrYdQHk2c2wn7acrSzLKC0tRXp6Oux2OyRJwrFjx5Cdnd3sFedgMIgDBw6o/0nP9sukvLwckiQhNze3Q+Zl1dTUqEuAVldXq79AAoEAvv/+eyQnJ+P8888HELrqUlpaCuBUb39kefrmRD6o+v1+NZAajUbodDoEAgHU1dUhNTX0gT1yEozc0+n48eNwu90NVsk6eKgEgskGt9aKco+Ag9U+fFtSg0MnG684JEDBBale9E1LweA+PfHD8aPVv1Ot0YgLLrgAiqK0qgVBoxHwy8t646I+6Xjyve3wHqvD7qOVuGbRGlw+sAf+Z3wfDMtPafS6SB95RFlZGQ6dqMaO43XYd9ILX/jE51EMyLZqUGDWYkxOMvLz8yHJMmrcARyr9eBojQdHajyo84hwnCjBp2VBvP3dYRgyemLywBxMHpSNIefZm/3w7g9K2H6sHh9sL8N7W8tQ5fJDgIL+2pNINQkYm2vGgD7Z0Moi6us1oROUO4BPj8lwVNVgfY0X60tqYNBqsHyPiAsH98H4/lnNziOodPrw9Jr9eH39EcgKkKkTcVFhCsYNPA+9c5ufv6DRaNT5jFpJxFPTh2Ha8Dz85u3tOFbrxc9eWo9L+mbgl5f1xmVFGer7dTgc8IoSttcA3+89DG9AQpJBh1snDsMPejc8EVosFhQUFKCkpARms/mslaNLB+bDUXMS/95eh7c3H4ckK3jqxmEN2nxeXVeKtzaHTn43Dc+AIEW/UMbZXD56CN75rhQnKquw4rONEMUAKsuOI0sLjCzq0eWr53qtBjdd1BvvrzmOb/eX486ghCfe24WAz4t+qQoG5SW3uk3mTJk2I57/2Uj8+IVvsLE8CJuxCnnnlSM5OVlt60tJTcOSTw9g0ep9UBRgXL+s/9/enUfHUZ154/9WVe/7KqmlVmu1ZFmWbMvGYAM2BA8EzDZMBiYQNpPkEOCN+TGTEELekMlCTkIyyRACM0mI44EESIhh8hI2D2NjY2K8L7KErNXa91ar963u7492FWpLsiVZcsvm+ZyjY6tV6q571V11n7s8F0/esBrR4GjamhKn0ynvp6fX66HX65GVlQWO45CXk4V/WrMYC5zN+LBpCPuHePxqVyfe/XgYD1+eC5PI5CnvZ7oeiSJD04lOdA2OICryUJhz4Os9AQhDmKAv64ykTkNBqcLbtb3YWteH9sYOJCJBeMU+WPkwkuDRLxrg4oMAUg1wr6hD+6gIbTAGDRfE6+21GGWpz45Vp4TDoIZOyaOC74bHqoU6VwU/p0XziW78v+PbETPmwRLrgyLiB8elOoX+NnIYCo0OPMdB4DloFDz0I81w6AV0dHRMOZCS6t1oNKK7fwib36/H6w1BHO9L3cvVCh5fXlOM+9eWIBEJ4mDHJ9OwfD5f2lKAZDKJmLcX1dlqXJ2jx7duWoL/+lsbntvWjKNdPtz6n39DjceCu1cX4u8WZY8bJW9tbYXX6wXP81Cr1fJ6nEQigfbOTviiwKg2B3UDcRzv6AXvPYEYExBkKli4MHCkC6NMgzbRhiITjxUGH9wOE7J9CZRla1FdXS2nvD527Biqq6vh8/kwMDAAjuNgMpng8/ng9XonDKQ0Gg0Uai3qmtvReLARWxrjGA7FMBiIYcgfhsHXimgshiTj4DQo8Up9GC1hLeJJES6LFiaNAkjEYQm0waRVwKRRwid2Q2vNhl2vkv8mUga7s5nyF0+KqOsexZHmDrQ1DqDZm8D2t0+99zNUKbwQICKJYQgQ0S2a0N/RlnaUXYjgUnsYxQ49nCYNss16KLhUopKxgVQwGJQ/Iw0NDdDr9WnX2KTIcKx9AIdOeNEU8ON/Xu1FLPnJHlVJnRFFxiQuMqpgNxig1hmhyCoGB4Z4NIKeoIiWgSCGTzRAjIXQ2cPjxe4AXtzdDgsXRrl6BDaDBrFmJazJEWiTAWzrPICYzoG6zmFw/am2eG0CSEBAjkmDpW4bXIk+LC0rxPpLp748IN+mw+0Xe3D7xR4kkiL2tfRj245dODEcQsuwiKb+AEYG+uAWRsBzHJip+8xPCoBj53l+7FgsBp1Ohz/96U/4+7//e/nxjRs34tChQ3j//ffP+BzSAtl33nkHn/nMZ/C3PXvRM+SDL5yANxhFX1SBd3s08EdTDXIP74WND0HgORTa9ajId+CaNasw0N6I0dFRlJWVIScnB01NTfLwrMPhSJtX6na7UVqainYTiQQ++ugjxONxuN1ueYdmo9GI5cuXA0g1UHft2oVEIoHq6moolUpEIhEkk8kJF8r5QnG8+s776B70wqvKQm9Mjd7RCFoHg2AMWKzogQKpD4PDqEXx4uXIMmmgT/qRGO6CxaDDZZeuwmB3O7q6uuB0OlFZWTmu7hhjaGnrwMfHjyOeFKGzOGDOKUBfbw/CoSA8BUWwGjUwaZTgklEcPXgAPJfqJfLku2EymWA0Gs8YVIkiQzQhIhxPwhuKYTQcTwWY8SQ6vWEMBKIIx5KIiyKEkzcpnuMQG+pA3O9FUhSRUBnA2zwwaBRAyIfoUAcUPIes0ipYDFrE+tsQDY5CZzAjt7gcjIkQBAU4DuA5LnUzROqGCHDguVQgdXJCBTgw8LwAjgN6TrRisL8XapMNakc+fKEYepuPIRwOIap3IRiJQRzphp9pEEwwKKJ+hOIMiWT6/N4keAyKevSKBmiUSjiMKlxUaMOaBU54lH6MDvZCqVRi5cqVczoS+N/v7cKO2hPY2cejX0yNcK0ssuGayhysLrGj2KmHWiFgcHAQ+w4eRr8/io7hEFoGQxgKRBBjCviYBm5VCAuyjLjxipVwW9Q4fvw4OI5DdXW1HHCOdbC+CTv21aJ5IIBObxgNCTuCLDW9w2XWYG2ZE4UOPWx6FRJJhvbhEPafGMbhzhEYkwEkwWOEaaFXCVjrElFpjmOx23ZyGmSKlA6ZMYZIPInm/gDah0Oo9XJQxkZTI77JVMNjiduMdRXZSDKGQCSBQDSBj3v9ONyZymoGANdV5eC2Eg4sMgqPx5OWBGYi9fX16OvrQ2FhYWoT3Y4OtJ7owP/28HjxkBdJkUGFBKrtPK5aaEe2KxeH9+/BsW4fjkSzUK4YgFOvwJc+uxKXLK2Y8KYiZfoymUynDXp8Ph8OHjyIluEontyXREJkWF/lwqOfXQibQYXXDnbhif+uhciAr11TjpUGL4LBIBYvXjzjxAgT2dU4gH/e9D9wKwLIMWvR4Q2j0KbFv264ftJpqmclGASeeir9sa99DZhm8p+p8oej+PKPX0Q4nkTIWorjA2F4hBE8dLEdlSX5E15rz8Yre9vxgy17USwMweMw4fPXX4WB5qNoH/Tjf/q0ONSfSqX8+ZX5+O5Ni9PWUUoYY/J6pZqamnENRum9o1AoEDQX4dv/rx59o1EADJfoh1GRpUHNkiqUFuRBreCREBnCsST6Tt6XPmodxrFuH4YDUSzg+qDiEugWTRgS9ahS9ILjGHzGYpj1auSqYshRhGA36VBRUQGP04RskwY6pQCRMQwFY+j0hvFx7yjqGlsx1N2OJr+AprgFAJDL++BSBJFr1iLPqoXT6UR2bh76muvB8xzsehUuWrkCHaMMh2uPYaC/D90JAz4aVGDA/8komQoJLFL0gYHD4YQLaiRQoRgAwNAtmuHiR1MNSghQIomOpAVD7JP3lIGLolRIBbQqhYCguQilLisqXCZUuEwoyzYg26gBz3MIBoPYu3cvkiKgyluID1tHcKSuASFvHwaSenSKFuhUAm5dkY8vXl4Eu4aDRqMZN8siLy8vbZ2MNPsGSN3PLr74Ymg0GgwGovjZlh043NiFkMgjwNTwCyZ8ZmEWrsjjUem2IsdmxpEjh8EYQ+GCCvSMhHHg8BH0+mPo94UwFIwhKTKI4NCStEPPxeDiR5FQGSGa8mDnA+D8/QhG42iLm8FzDHm8Dz6mRWvSBqXAwa5Xo9SqwBKdFzlGFRZXVSERGEZgZBh5eXmwWq04duwYtDodckoq0dQfQPNAAG3H6zA87MWxkAGdERUWK3ohQERT0oHAyXuIjQvBI3gRYwJ6RRM8ghcJCDiWyE6bJSHNGkqAhwIikuBxNJEDsyKJGp0XJq0SOqUAZXYxjCYTjBoljBoFDGoFonERwVgq6YGU/CAUSyAYSyIUPflvLAGER+EPBHAipkc2H4CLH4VX1KETNhTadVApBFi0SuSYNdAFOoFoAFqVAmadGkJOOTp9UQQiCXhDMdR1j8IXDGOx4pN1fm1JG5YaA8g1a5BfvhhleU4UOw1go/1ob091kCSSIuKcEmbPQtT1+LG7ZQgftQ7DHu+HhQujSzRjQDSg2KnH+ioXrqtywW3gcPToUajVavj9/tSslksvRWdnJ9ra2lBSUgKHw4Hdu3fDH0lglNOjLWHB4fYhxHsbATGBXtGIXtEk/z2ke24u70MWH4DZbEZl1RJcVZGFZfnWKU03naqPPvoI4XAYBaULUTcs4m+7P0J7/whGI3F0hBU48G/3wefznfa+ed4HUt3d3cjLy8OuXbuwevVq+fEnn3wSmzdvljOLjBWNRtOmDIyOpnre/vGxZ9Av2GBhfiQgoCVhw4KT06Yakw5o9SZc6tGgEAPIMWux5uIadLS1IBKJwGQyyfOoL7nkErnXt7+/H5FIBG63G42NjXI6y8rKyrReISmT26mk5woEAti3bx8EQcBll102pQi8paUF7e3tyM7ORkVFRep1AlG8d6wbHx/eh5FgDCeGwxCZiPpENqJQoFAYTvUSATiRtKJA4YNBxYNxPJo5NxQsBqvowyAzIsCUCMUSKOP6oOZSAUCYKXE86USVogc8GEaZBi1JGwAOTi6APOGT9TIcByh4HhwvICLoERL0iEANTuABxhBLMkTiIiLxJKKJyXfp5iFCiSSiJ9eFGbkINFwCg6IOixV9EE4GjCI4HE3kgIGXg2EAaE9akQCPYmEIDBw+Tjjl55opPRfFAmEQSfCoTeRAgzjKFQMQwaE2kQMtF8cCYRAxlgq8lEiiKemAyDhkqSIo1DPYtYBVq4LLokFJjhXVlRXy1Bip0QJg1huxE+nu7sbx48cRSHDYPmzG64e6kBRFsJNb0fEcYNMq4E72AskoBkQDHHwQHBgEnkNRfi6uWVkJfqgVep1Wzt5XV1eHgYEBCIKApUuXpk1DjMVi2LNnDxKJBLRaLbyjAXQFgP1BM7YfH0Q4lgAPhuQp2+FxYMjnR+BWR5Fv12PdFZdhZYEFB/fvk+srGAyitbUVarUaVVVVUKlU6OzsREdHKluc3W5HWVk5/rJ1O04MBnA4YsPf2kNIiJNfLpd5LHj0swuxwmPGhx9+CFEUsWLFijOOoHR1daGxsREcx8Fms8lz8dVqNXJLF+N37+7FseMtci9gkKmg52KIQwCXXYb7LnbhsmIrnI6zSz8OpDp1PvjgAwBA2FqCr/7xqJwBSeA5JEURHBj+aWUBnriuDLt37wYArF69esaJACbCGMPNz3yA4Z522PlUj+z1y0tx381Xzk1yknMcSAHAU//1F+w63ouGhBNhqHBfWQKXF5tRVVU1bt3IbHj9YCd+99q7gJiAV9TByofk65NFp8ITN1TipqW5Z1W/AwMD0Gq1MBgMGI3E8ey2ZvxxXweU4SG4+FEEmBpNSQcABhfvh50P4kTSCj/7ZJRUakwplEp49QWwG7TQ+Fox6g/gRNKKLD4ALffJHjpRpkBz0o7YJBNs3PwIHHwQfaIRCks2rl3swmUlVmTzAQwPDiAajaKqqgo2mw0ffPABkslk2pR+6dpntVqxZMkSjEbi6BwOYyQUQ//gII7V1qJlJIkmloWkyLBY70exPgEFzyOaECEqNYBKj+ToAJjWDNGUiyRjSIpAZLALQ/09GI2kyiM1KAHAwQWg4+IY5ozQaPVwsBGYkiMYiKvQmky9PyxcGIXCMBwWIy6/5CJcvyQPQe8Aent7EQqFkJWVhWQyiaGhIbmNotfrsXTpUvh8PthsNhw5cgQjIyPyGpXc3FyUlZUhEolg9+7dCEYTONLpw8e9o+gM8eDBoOdSMwukTsZhUYvWhBUAwyKhH6qT7YEhUQ+rGig2ATl2M/IdJpiFGJYtrpAz0UnZbzUmG3p8ERxv60RTWIcP+ziEYp90eEmN6jBTQsMloBI4tHE5iIg8ylg3RIg4Gs+RZ99UCKl2iRQ4lapGscAYh92Zjaz8Yli1ApJ9TVAiieKSYlidOdi5628IhSMoKV8Ii9WBbl84Ffz0tsLv88LLWxAY7oU/FMO+oBVWLgQn/8mMns6kBYNMDxUSiEOYdMr6qXiIWKzoBQ+GfmU2qq0iclRxFJWU4MbVVbDq06+tzc3NcrrzsZ3yEsYYWgaD+O93tuNE/wgGQ0l8GLCjQPDCwoXRLxrQLaZGP8sUA7AqEhjgLNDFR6A4JdgEgCXqQRRbFViwcBE+s7QE5dkTT+WWgpLKyko0NjbK+1q5XC55NFun02HlypVoaGhAZ1c3AkkBQlYJQjERvmAYQy1HITJA48iHNtwPj1WDS1Ysm5NrIgAcP34c3d3dcLvdMJvNOHYsNQ12NJLACW8EG++48YyB1AUxtQ8Yv1DzdKmaf/jDH+Jf//Vfxz0ejCdg4VPzUoMqGxbmZqFUrYGdC+Hu/Czc+JnVOHjwAAIBK3Jzc5GXkwWLUY8DBw7IQZTBYEibOjN2alh+fj56enrAcdy4IXyHI5WlSVpDIy3QHRoaQl5enjzP2mQyTflGZ7fb0d7ejuHhYTDGMDg4CMYYrq2wIzvshEqlQpJT4GBzN2rUWRiMqyH2+hCOqhCMJZEPH8BEBKInU8Am/HAJfghcBA4E4UvYYeSSUPMJiOCgETjoFAwVagEupgbHAdaECE0iiMaoASakgtce0QQGwMDFoGNxKJJx8PERGDACPTgwpEZ+RpkG3qTp5A2SwcxFYOXDCCtNUGiMEDjAzIVQpArCqAQUNjsUGh3EgRYwkUNSycDHTRAUSigEHjxL4DJbDoKcFhiIgU+qkRBFFHMahGMJiGENfLwRRUobGANExsBOvpdS/57yfzCczNgpPy4ydvI4FbQIQK9gMBvUMAs8TEkTVEYL1uQUwagC4t0fQ63goVLw0KgUWLFyFcx6NWw6FXg+tXB5aGgITU1N8p4mWVlZyM7OlheYZmdnz3kQJb1Oc3MzDEjim+s8uKlQxN6P23EkYsb+rjD80TiM0X6AiyIBAUpzNsqsYZQYRRQ69KhatPDk+9gKtVotj0BWVFTIUyCbm5uxdOlSAKkRlPr6eiQSCRgMBlRXV+Ojjz5CiTKJ61fn46e3LsXr//s3tHYPoF/lwkhcgC7mg1WIIN+sRLYuCxadEhzHYaFDgZHhVHAipYe12+2wWCzQ6XTySF5xcbGcEcjlckGlUqGy2A2noR/rs7PhzC/GXw51o7bLB61KgEGjgFGtQLZJg8sXOJFjTn3u+/r6IIoitFrtlLYzcLlccjIIKYgSBAHRaBTermaszeNxSXYx6gbjONEzCJExqBUqXLKoCLdcdcmsBhYKhULOBnaJx4Bn/6EMf9xxBHv7gaAo4BJzEEtz9fjSuiJ5apjZbJ7VIApIXc9/cftyvH4wC+HeVmgQwd+vXTYvMzzO1JWVecg1KWF2FcFgMkHsTXX6zeY0ybFuXuaGIVqDN3cfw1AwhmCUg8Vqw/9ZXIa7VhXAYZh5+mLJ2M5Bk0aJb1y7EP/f3y3A1qNd2L17N7q8IbBkHOpkEGYuAgXPw6Fj0GbnYHmBFTUeC4bb6sElHShbUCpPLWxsdOB4ywn4IkmEolqEEoAXRngH++APhqCOjOBQ1A6cbLjyHJBj0qA024hypQCH0oSa6kVYUVGc9h5ipSVIJBLyNcDpdKKvr0/eGxD4ZI3p6OhoKjmQXo9FuanjO9RhWCIO3DxmxkYkEkFtbS14nofRaEReXh5CoRBqa2tPNiJT2eUYY/jooyAiEQ2MFhtOdPUgEOcwairC8RPd8PcMwBeOw8rC8IfVUHIxxCBiRNTCYVDj8gUOXFpsgdF/AmqeQS0M4OMjfWkbtfb398vl9Xg8qK2tRTAYxP79++V9K6U1XuXl5fj444/R29uLgoICOSNwjsOK6kXlaG1tRc9ICMf7/Gjo5zAcSkKFBKKMQ0fiZPBnUMNlzUWRKoA8pwVXXXYxckxqfPTRRydTkYsAFGntH6vVmkrIEfYjT6+ErdiOL1dXw2S2oN8fxYA/isOdI9j5cS/ivQ1QR+OIJhi8CRUGkhwABr+ggI6LwaaIw+awoNSphzsahU2vxKpLVqEw24xEOIDDhw9DEASsXl2MlpYWdMVUUKvVuGhRSWr93NJSdHZ2IssgYtECh7xP0YhDALPbsWLFCjQ1NWFkZATfKynFsYZmDI0GEWIKBAJBJNRmhDkNooPtCIsCRpQ28GojdGoF9CoFdGoBOpUAnUoBvUqQH2dhH0a6U49XlhbIKe6XLSuFWT/+2ip1znEcl5bhTsJxHEqcBlyzrAgDAwPIyspCXuEC7DjagtraWgxHRNTGjegYGoWOxRBNAO0JFdy8Gk5lFKVGHrYsJ6r1PhSYlbCo9OA44OKLF5527abNZkNXVxdaW1vl9WuxWCxtY2BpM+G+vj4IPIe1NdVpswwaXOzkgEMIMBtgNBrPKqPemVgsFnR3d2NwcFBeB5eVlQVuYAClbGqbbJ/3gZTD4YAgCGmpSoHUBWSyhamPPfYYHnnkEfl7eURquRtWswlWox6Xrb4EPM8jEolgz549EMUEPv64HoFAAIIgyHtF6PV6LFq0CEePHgWA00bNOp0OVVVVYIxN2PAoLS2FQqGAyWRCNBpFc3MzBgcHkZeXJy/AnM60FpPJJK/V6erqkhvf0vx7nU4HrVaL6mgIHk+qQX7gwCgEQUAymURCFBGOJRFJAKKYhM2Zg5HBPnmKG89zUAo8VIINhZ58DA4OIBaLwWazYXhYC51OJy9SXLRoEY7V1SGZFFFdswIqtQaxRGq0adjrRX9/P/y+EcRjMTCkghEFz0GpVMBiNkOl4BEc9UEhpKbs5eTkwO/3IxjkAUgXFRFqdRwR69iF/Sbk5qZ6Wbu6upCTY0RhYSF27/5kB21pg13AiosvvnjWFrNLvUYGgwHRaBTxuC5tJPLDDz/ZD8RsNqMkO70BxfM8nE6nfKPp7OyU0+sDqRGLmaQynQlBEJCTk4Ouri7U1dUhmUigxmPBLYUeFBQU4HB9I5pbWqFUCKipWQZ3lh39/f2oq6uTyzf237FlXLhwIXbv3o2RkRF5TxApZTLP8ygrK4NKpYLH40FraytOnDiBUqUSLk0SrmIb7HYDCgoKcODAAeDkSCLP8zCbzfB6vXJWIOCTht5EnRlA6jMxthGVn58v13lRURE2XFYEINXzPjIygpKSknHTUk9dx3AmPM+joqICZrMZXV1dyM/PB8/zqK+v/2QjwtJiXLOuEHV1dfLzFxWd3ejBZKR9SgKBAEzxIdyx1IbPJZKIizz0ylRHTndnhzyqf+rWC7PFY9fhq+vKIYoLEI/Hz2qfkvlIp9Uiz6JFSa4eGo0Sx/o46PX6OZ2ie/myCrgtGnkth8fjmVI207OhVgi4fpkHhcpROfgGLPIIiCAIuPTSZeB5Hl6vF6MsDkGpSMtwZzaboVcrTmbwVKO6uho2mw3RaBS7d+8GYwzVNRcBvAK9vd3IsVths1oAALt370YkEsGCXPu4zwvHcWn1XVZWhpKSkrTHDAaDfE/cu3cvLBaLvG2DdH8b22Eibcw7lpS8IBQKydnlAoEAIpEIeJ7HksWLEAn6YYvHYbEEsVQlIFFUCLVag4ERvzwjQ6NW4dLVq2DVq+WyhEJZOHr0aFqKd4/Hg0AgICdS4HkeNptNvidL10MpiLLZbMjOzkZPT4+c5lvqHM7Ozobb7YbVakV9fT1K85z4l0WLwCuUaOvqg1KdutdbdMpUhjTG0NfXB6vVKn9m8/Ly5Ma0QqFIqy+pnZJIJOT1zEajEQqBR65Fi1yLFkvyLbhrVSGOH7ehu7sb8aSILE8JDBY7lDyPvq4T6O/pgifPharFlSdH01LTzBZ7Un93prbInUT79++X/3bl5eXy38fpdKKzsxNDQ0Pw+/1ps4RMJhP0ej3MZjNGRkZworUFOgWDKcuEBQsWoL6+Xl6m4Msem7wrBJVKhYqKigmnrwNAXZ0X/dbU53BgYECuh8lmM0hr2G0222nXvEpLRTweDww6JdZftAC2xCDi8Tgeq16McDiCw8c04FU6lFRUIRkYQk97K+x2O/Lz83H48GH5uQRBOGNmVimQkupWqUztXycNbEjt0c7OToiiCJVKNe4+vGDBAkQiETl5ydhMyXNBalNLnwlBELBgwQK542QqzvtASqVSYfny5di6dWvaGqmtW7fipptumvB31Gr1hDdlp1EDvVaJ0uJCuXGk0WhQWFiIlpYWuYcmPz8/LRCy2+0oLy+fNL3pWKcLtBQKhTxEGwqF0NzcjJGREXkDQWB8Q/R0pKlC/f39chAFQN4sUafTwWAwoKenB36/X57zbrVa5ZSiFr0ShYWFqfTe0RE4jakMXYIgYGRkRL5AFxUVIhIJY3h4WI7q3W43QqEQOjs70dDQAA6AQa+D05I+LOyx64FSNxhjiEajYIwhkUh8svdBLIh4DFArBfkiJgXOPM+joKAAfr8fg4ODiEQiUKlUyM7Oloe+pT2furq6MDQ0JF+cjEYjYrGY3CC02WyzmhFMOgcpiYlSqUzrWdHr9XIgdboAWXpfZGdno6urC16vF/F4HAsXLpzxHkczkZubi66uLvkiD0De5NU/1Ae7QY3y8nK4slLvcSmpBs/zpx2Z0Wg0MBgMCAQCctAzNDQEnudRVVUl99Dn5eWho6MDoVAI9fX18u8PDQ3JFzyHwwGXyyUHr1IgJW32N93RO6PRCKvVCq/Xi46ODixYsACMMXnagtFoTFu4G4/H03q1porjOOTl5cnTXRhj6OzshN/vh81mk4O70tJSOYHKXI1cSPuU9PX1IRwOg+M4qBUC1Eg10sLhcNrm03MVSEmkRewXGula4/P55GvQdK7vM6FWq+XkOudaQUFBKqmKIECn0yE/Px9Hjx5NS40uJd3JyclJu7aNvT5mZ2fL11G1Wg29Xo9AIIBkNASe59HfeQIj/T245JJLAKRnbzsTnufHdYxwHIfKykp0dXVheHgYIyMjCAaDMBgM8nXnTMGoSqWSG/F+vx9Wq1UOKm02m3yNb2hokDtPjEYjli1bBp/Ph1AoBK1WC6PROC7Q1ul0qKmpQVtbG3Q6nZzISZrSF4lE5Aa+1WqVM8WWlZWhsbERgUAAeXl54DgOBQUFOHLkCLq7u+VrpvT5NhgMWLFiRdq9u7wwD6fiTnZ0jpWfn4+uri4kk0mYzelJgjiOg9VqldtXGo1m0s6E/Px89PX1QavVoqokX/5bWZR5CA73YWhwAAMDA/J7R9p4XHqd/Px8NDY2yg19l8uVdk82mUzybCApiLJarSgpKYFer0/rgBNFEYIgoLS0VB61lFKSS88tzU6IxWJoaGjARRddJLez+vv75e0IpJkIAOT7q16vnzRxhUKhwLJlyyb82Vhmsxk1NTXy91LnbHd3N7q7u1M5BlQKFBbmojDbCL8O6O1ow+joJ50eVqtVDiDPFNBYLJ90kACpGSfHjh2Tp8tyHIfBwUG5DSo9NhbP86isrER9fT0UCsWcTemTqFQquN1ueaprdnY2VCrVyQGB4TM/AS6AQAoAHnnkEdx5551YsWIFVq1ahV/96ldob2/H/fffP63n4bjU4sxTLwJSWsZQKASlUjnhUKrL5ZqVzfYkOp1O7j1qa2tDLBYDz/PTbjxJgdRY0gVSujADqZTV0k3BarXCaDRiZGQEHo8HDodD3icJSJU1JycHgUAg7cNuNBrT3nhWqxVOpxM9PT3yDuN2+/heQYlU/5Lq6moEAgH4/X5Eo1E4nU4YDAZ5hMBmsyErK0vuzTpw4ABCoRDKy8vlD2g8HpcDQ6kRKJXFarUikUjICUHG7h4+G/R6PdxuN4LBoFwXYy+Mer1e7nWZykij0WjEwoULp7XvyGzS6/WwWCxyJkKv14vR0VF4vV4kk0moVKq0z44gCLjooovOuEEjkLpZBwIB9PT0pE01GduDp1Ao4Ha70dbWhng8Dp7nYbFYMDw8jEgkIvckSY1ulUol3xSBmU9By8/Ph9frRU9PDwoLCxGPx+XnlFLJer1eRCIROWmFlNVspqTGmzTNUKo/lUqFJUuWpO1jMtvG7lMCpD6zbrcbo6OjyM3NRV1dnfw5N5vNF2SQcy5kZWXhxIkTGBoakutwrgOpTDIajbj44ovTHpNSow8NDUGv18sNylMzv6pUKmRlZSEUCo1bD2I0GuX7hHRvi8ViGBwclN/LPM+f1fRTm80Gm82Gw4cPy9c9vV6flhb6TKT9jEZGRmAwGOSgUepwyc7OhslkQlNTk5yKWgp+JhvJkCiVynGzEwRBwMKFC9HQ0CDf2woLC2EwGOB0OqFQKFBTU4NoNCoHmdK9X0q9bTKZ0j7fM73nKJVK5Ofno62tbcKOl7GB1Om269BqU+trTw14TaZU5teOjg40NDTIf/dTR1Dy8vLgdDrh9XoRjUbH3fM5joPT6URXV5fcuVFaWpp2LbdarXC73eB5Hm63GyqVSh5Zldo5ZrMZ5eXlKCsrQywWw4EDBxCJRNDe3o6ioiI5sEomkxgeHkYymYRarYbBYJA/A7OxwflEsrOz5alsUpml96A0+ppIJOTO6tzc3Cl3lgmCAIvFAq/XC61WC6vVKs8kycvLkzu8x7YHJ6JQKFBVVXW2RZ2yU68pAKY1nfCCCKRuu+02DA0N4bvf/S56enqwePFivPnmm2lTdKZi6dKlsNvt43qkeJ5HeXk5GhoaJt1jYC44HA60t7fL0ftUstudauybobi4OO0CodPpYDQakZubK/dOSL+j1WrTNjSWghDpQjNRUDf2g6/RaOSLs3QBPfV8zkRK73rqBSUrK2tcb790U5CyOErlHftcCxcuxMGDB9P20+E4Dt3d3dBqtbM+D1faaXwy0nlKKVyn87yZUlFRAZ/PB4fDgQ8//BCJREJeRDpRkDzVVLBOpxOtra3ydBKj0TjhiI40KiWl0He73dizZ4+8+e+pN32bzSbfEGa6lsxqtcojZn19fWllkjogjhw5krbT+2yM0mg0mrT005KJPhOz6dQA0Ol0wmKxyIGbx+OZ0agbSTe2Y0IaNbmQA6mJjA2kpE4Ii8UyYSfE2E1uxzIajfKsirGbnUsLyIHU/Ws2rpvS/lvSnkXS6MFURrvsdjsGBgbkUfVEIgG9Xp92rdBqtbPagLRYLGnBq7ShqoTn+bRzl0alpNGY2RxtLigomHQblbH33jNd2ybruCkqKoLP58Po6Ohpl0JIM1YmIwVSQCroOPW9ONF9neM4GAwGeeaQdF3kOA5qtRqlpaU4duwYOjo64HQ65W1gAMj/Op1O6HS6OQ+kTCaT3J5Tq9WoqKgY1xaROkele+h0SJu8u91ucBwHj8cDt9s9ri0gjUTOV9PpqLwgAikAeOCBB/DAAw+c1XMYDIZJP6RmsxkrV648q+efrtzcXHnaB2NsRiMmKpUKxcXFCIfDcLvdSCaTcsNXuoAuWJBagzAwMACNRjPhhc5qtSIcDsNut0867D72gz/2TSgNx0s3ybkibbY4GbPZDI/Hg/b2dvmCIfV86HS6cx6gWK1W8DwPu91+VntPnEtqtVq+SVgsFgwODsrBz9kMwY8dgQVSN8WJ/h5KpRLl5eUYGBhAYWGh3BMbCAQmDDrsdvtZB1LSVJWmpib09/en9T6Looja2tq0IAo4vwMMjUYj965K78+xzGYzHA4H/H7/nE/ru9CNXf862ZTzC5nVagXHcYhEInJG24lmfJyO1Anl8/nkESkA8hQ8YPK1JtMlBbqjo6NyZ4LUi38m2dnZ6O/vx/DwsDz6UlxcnNGOsYnY7XaYTCaEQqFZ/XxzHDdpwDl2evdM2wjSlLCWlhZoNBrY7fYZBSNmsxlarRbRaFReCz8VUiAldTaP5XA45FkcBw8elN+nZWVlaG9vRyQSkaeUSeYqkJJmOwwNDSE3N3dce04KpIDU53O6bZOsrCx5uqr0emNnLUnMZvM5XZowXUqlckrTJ4ELKJC6EGk0min/IU9n7OaOLpcL7e3taQsHOY5DRUUFjEbjpPNgpQV/EzVWJWq1Wp5KNbanQRAEeW71udiE93QKCwuRTCah1WrlD/Fcz8GdjFarxerVqzNeJzNlNpvTpgecbe+StOGn2Ww+7XOdOiJ5ug2gbTabfGM8m/VvTqcTTU1NqY1wTy7qlm780vfV1dWIRCJQKBRzvoB/Lo3tXR17Qxz788WLF2fo7C4sDocDarUa0Wh0WhlZLxRjpwJJiWWm2+Gh0+nGJAxKjfRptVoMDqYW1ev1+jPu5TZVUtAWDoflUYupBhvSrIh9+/YhFovJyQLmG47jsHTpUoiieE4bupWVlQiHw2e19lMaYTkbHMehpqYGyWTyjMkVxpKSBdlstnHTSDmOw6JFi1BbWyuPWlksFrhcLmRlZSEajcojXx6PB9FodE5nHRgMhkk7F8aOis+083Gy941SqZRHw+bje/9UU+2AoUDqU0aj0aCmpmbcHGOe59MCrlNNNUNcaWkpvF7vuJvLfBlx4Xn+nGW6m4r53CNzJmN7Di0Wy1n/jT0eDxQKxZSz3U2FIAiz0hmhVqthNpvh8/nk9MIlJSVyViOr1Xpe3BimKisrC6Ojo7O+bpCk4zgORUVFaGhoGLc299OiuLgYPT09yMvLm9G6Qp7nU/tWnRwZt1gsyMrKwuDgIEwmE6qqqmYtE6KUcS4YDMprCKcz+qxSqbB48WJ5rcx8DZwnSrox1862s2s2KZXKab9nnE4nFi9ePOn0XKVSiSVLlshJtEpLS+VMdmPbAbMV9M+UyWQCz/PyfoqzraCgAH19fRfU9e78bcWRGZvLno6J1i+RC9PYtMCzccEVBOG0I56Z5nQ65d5Eo9EIi8Ui965NZwrI+SAvL0/eNoDMrZycHGRnZ39q63o21vxJm80CqUDKbDZj9erVUCqVs16vJpMpbcrgdBv/JpOJRnQvQBzHnXEEh+f5066bng8UCgWqq6vBGJuTqcY5OTkXVBAFAOfnnCJCSMZJmwEaDIZPRfA89iYpTYFdunQpVqxYcUEmCfi0Nuwzger67Ey0PlelUs1JvY6devZpuO6RTx+LxTKvE0HMNzQiRQiZsaKiIhQVFWX6NM4JjUYjZ1kbu4/Npy1BACHzjdVqlTezn8sNjYH0NSSUbIUQQoEUIYRM0aJFixAIBC6o9VCEnO9UKhVWrVp1Tkb2tFotCgoKIAjCvFnTQwjJHAqkCCFkiqQdzwkh88u5SmgkJQghhBCA1kgRQgghhBBCyLRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh06TI9AnMB4wxAMDo6GiGz4QQQsg5FwwC0Wj6Y6OjQDKZmfMhhBCSUVJMIMUIk+HYmY74FOjs7ER+fn6mT4MQQgghhBAyT3R0dMDtdk/6cwqkAIiiiO7ubhiNRnAcl+nTmZbR0VHk5+ejo6MDJpMp06dzQaG6nTtUt3OH6nbuUN3OLarfuUN1O3eobudOJuuWMQa/34/c3Fzw/OQroWhqHwCe508bbZ4PTCYTfYDnCNXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3cyVbdms/mMx1CyCUIIIYQQQgiZJgqkCCGEEEIIIWSaKJA6z6nVajzxxBNQq9WZPpULDtXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3fOh7qlZBOEEEIIIYQQMk00IkUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIJVhzz77LIqKiqDRaLB8+XLs3LnztMf//ve/x5IlS6DT6eByuXDvvfdiaGhI/vmvf/1rXH755bBarbBarVi3bh327NmT9hyFhYXgOG7c14MPPjgnZcyUTNRtIpHAt771LRQVFUGr1aK4uBjf/e53IYrinJQxUzJRt36/Hw8//DAKCgqg1WqxevVq7N27d07Kl0mzXbdbtmzBihUrYLFYoNfrsXTpUrzwwgtn/brno0zU7Y4dO3DDDTcgNzcXHMfh9ddfn4uiZVwm6vaHP/whLrroIhiNRmRlZeHmm29GQ0PDnJQv0zJRv8899xyqq6vlzVBXrVqFt956a07Kl0mZuuZKfvjDH4LjODz88MOzVaR5IxN1+53vfGdc+zYnJ2dOygcAYCRjXn75ZaZUKtmvf/1rVldXxzZu3Mj0ej07ceLEhMfv3LmT8TzP/v3f/521tLSwnTt3ssrKSnbzzTfLx9x+++3sl7/8JTt48CCrr69n9957LzObzayzs1M+pr+/n/X09MhfW7duZQDYtm3b5rrI50ym6vb73/8+s9vt7I033mCtra3sT3/6EzMYDOznP//5nJf5XMlU3d56661s0aJF7P3332eNjY3siSeeYCaTKe2Y891c1O22bdvYli1bWF1dHWtqamI///nPmSAI7O23357x656PMlW3b775Jnv88cfZn//8ZwaAvfbaa3Nd1HMuU3V7zTXXsE2bNrHa2lp26NAhtn79eubxeFggEJjzMp9Lmarfv/zlL+yvf/0ra2hoYA0NDeyb3/wmUyqVrLa2ds7LfK5kqm4le/bsYYWFhay6uppt3LhxroqZEZmq2yeeeIJVVlamtXP7+/vnrJwUSGXQypUr2f3335/22MKFC9k3vvGNCY9/6qmnWHFxcdpjTz/9NHO73ZO+RiKRYEajkW3evHnSYzZu3MhKSkqYKIrTOPv5LVN1u379erZhw4a042655Rb2hS98YbpFmLcyUbehUIgJgsDeeOONtOOWLFnCHn/88ZkUY146F3XLGGPLli1j3/rWt2b8uuejTNXtWBdqIDUf6paxVCchAPb+++9P8czPD/OlfhljzGq1st/85jdTOOvzQybr1u/3swULFrCtW7eytWvXXnCBVKbq9oknnmBLliyZ2UnPAE3ty5BYLIb9+/fj6quvTnv86quvxocffjjh76xevRqdnZ148803wRhDX18fXn31Vaxfv37S1wmFQojH47DZbJOex4svvogNGzaA47iZF2geyWTdXnbZZXjvvfdw/PhxAMDhw4fxwQcf4LrrrpuFkmVepuo2kUggmUxCo9GkHafVavHBBx+cZanmh3NRt4wxvPfee2hoaMCaNWtm/Lrnm0zV7afBfKpbn88HAJPe785H86V+k8kkXn75ZQSDQaxatersCjVPZLpuH3zwQaxfvx7r1q2bnQLNI5mu28bGRuTm5qKoqAj/9E//hJaWltkp2CQnQjKgq6uLAWC7du1Ke/wHP/gBKysrm/T3pKliCoWCAWA33ngji8Vikx7/wAMPsJKSEhYOhyf8+SuvvMIEQWBdXV0zK8g8lMm6FUWRfeMb32AcxzGFQsE4jmNPPvnk2Rdqnshk3a5atYqtXbuWdXV1sUQiwV544QXGcdxpX/d8Mpd1OzIywvR6PVMoFEytVrPnn3/+rF/3fJKpuj0VLsARqflSt6IoshtuuIFddtllZ1egeSbT9XvkyBGm1+uZIAjMbDazv/71r7NTsHkgk3X70ksvscWLF8v3uAttRCqTdfvmm2+yV199lR05ckQe7cvOzmaDg4OzV8AxaEQqw04dBWKMTToyVFdXh69+9av49re/jf379+Ptt99Ga2sr7r///gmP//GPf4yXXnoJW7ZsGdeTL3n++edx7bXXIjc39+wKMg9lom5feeUVvPjii/jDH/6AAwcOYPPmzfjJT36CzZs3z17B5oFM1O0LL7wAxhjy8vKgVqvx9NNP4/bbb4cgCLNXsHlgLurWaDTi0KFD2Lt3L37wgx/gkUcewfbt22f8uuerTNXtp0Gm6/ahhx7CkSNH8NJLL81KeeabTNVveXk5Dh06hN27d+MrX/kK7r77btTV1c1q2TLtXNdtR0cHNm7ciBdffHHSttmFIhPv22uvvRb/8A//gKqqKqxbtw5//etfAWDu2mFzEp6RM4pGo0wQBLZly5a0x7/61a+yNWvWTPg7X/jCF9jnPve5tMd27tzJALDu7u60x5966ilmNpvZ3r17Jz2HtrY2xvM8e/3112dYivkpk3XrdrvZM888k/bY9773PVZeXj6Tosw78+F9GwgE5N+79dZb2XXXXTeTosw7c123Y913333s6quvnvHrnm8yVbenwgU4IjUf6vahhx5ibrebtbS0zKAE89t8qN+xrrrqKvblL395imc/v2Wqbl977TUGgAmCIH8BYBzHMUEQWCKROMuSZd58e9+uW7du3Hqt2UIjUhmiUqmwfPlybN26Ne3xrVu3YvXq1RP+TigUAs+n/8mk3njGmPzYU089he9973t4++23sWLFiknPYdOmTcjKyjrtWpXzUSbrdrLnuVDSn8+H961er4fL5YLX68U777yDm266aabFmVfmsm5PxRhDNBqd8euebzJVt58GmaxbxhgeeughbNmyBf/7v/+LoqKimRZj3ppv790L6f2dqbq96qqrcPToURw6dEj+WrFiBe644w4cOnTogphlMZ/et9FoFPX19XC5XFM9/emZk/CMTImUGvL5559ndXV17OGHH2Z6vZ61tbUxxhj7xje+we688075+E2bNjGFQsGeffZZ1tzczD744AO2YsUKtnLlSvmYH/3oR0ylUrFXX301LfWj3+9Pe+1kMsk8Hg979NFHz01hz7FM1e3dd9/N8vLy5PTnW7ZsYQ6Hg339618/d4WfY5mq27fffpu99dZbrKWlhb377rtsyZIlbOXKladda3W+mYu6ffLJJ9m7777LmpubWX19PfvpT3/KFAoF+/Wvfz3l170QZKpu/X4/O3jwIDt48CADwP7t3/6NHTx48IJMLX+u6/YrX/kKM5vNbPv27WnXjVAodO4Kfw5kqn4fe+wxtmPHDtba2sqOHDnCvvnNbzKe59m777577go/xzJVt6e60NZIMZa5uv3nf/5ntn37dtbS0sJ2797Nrr/+emY0GufsfkaBVIb98pe/ZAUFBUylUrGampq0tK133303W7t2bdrxTz/9NFu0aBHTarXM5XKxO+64I20fnYKCAgZg3NcTTzyR9jzvvPMOA8AaGhrmsngZlYm6HR0dZRs3bmQej4dpNBpWXFzMHn/8cRaNRue6uOdUJur2lVdeYcXFxUylUrGcnBz24IMPspGRkbku6jk323X7+OOPs9LSUqbRaJjVamWrVq1iL7/88rRe90KRibrdtm3bhO/tu+++ey6Les5lom4nqlcAbNOmTXNZ1IzIRP1u2LBBfk2n08muuuqqCyqIkmTqmjvWhRhIMZaZur3tttuYy+ViSqWS5ebmsltuuYUdO3ZszsrIMXaa8TJCCCGEEEIIIePQGilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIIYQQQqaJAilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIOcdisRhKS0uxa9euWX3eN954A8uWLYMoirP6vIQQQsajQIoQQshZueeee8Bx3LivpqamTJ/avPWrX/0KBQUFuPTSS+XHOI7D66+/Pu7Ye+65BzfffPOUnvf6668Hx3H4wx/+MEtnSgghZDIUSBFCCDlrn/3sZ9HT05P2VVRUNO64WCyWgbObf37xi1/gi1/84pw897333otf/OIXc/LchBBCPkGBFCGEkLOmVquRk5OT9iUIAq644go89NBDeOSRR+BwOPB3f/d3AIC6ujpcd911MBgMyM7Oxp133onBwUH5+YLBIO666y4YDAa4XC789Kc/xRVXXIGHH35YPmaiERyLxYLf/e538vddXV247bbbYLVaYbfbcdNNN6GtrU3+uTTa85Of/AQulwt2ux0PPvgg4vG4fEw0GsXXv/515OfnQ61WY8GCBXj++efBGENpaSl+8pOfpJ1DbW0teJ5Hc3PzhHV14MABNDU1Yf369dOsZaCtrW3C0b8rrrhCPubGG2/Enj170NLSMu3nJ4QQMnUUSBFCCJlTmzdvhkKhwK5du/Cf//mf6Onpwdq1a7F06VLs27cPb7/9Nvr6+nDrrbfKv/O1r30N27Ztw2uvvYZ3330X27dvx/79+6f1uqFQCFdeeSUMBgN27NiBDz74AAaDAZ/97GfTRsa2bduG5uZmbNu2DZs3b8bvfve7tGDsrrvuwssvv4ynn34a9fX1+I//+A8YDAZwHIcNGzZg06ZNaa/729/+FpdffjlKSkomPK8dO3agrKwMJpNpWuUBgPz8/LRRv4MHD8Jut2PNmjXyMQUFBcjKysLOnTun/fyEEEKmTpHpEyCEEHL+e+ONN2AwGOTvr732WvzpT38CAJSWluLHP/6x/LNvf/vbqKmpwZNPPik/9tvf/hb5+fk4fvw4cnNz8fzzz+O//uu/5BGszZs3w+12T+ucXn75ZfA8j9/85jfgOA4AsGnTJlgsFmzfvh1XX301AMBqteKZZ56BIAhYuHAh1q9fj/feew9f+tKXcPz4cfzxj3/E1q1bsW7dOgBAcXGx/Br33nsvvv3tb2PPnj1YuXIl4vE4XnzxRTz11FOTnldbWxtyc3Mn/NnnP/95CIKQ9lg0GpVHrwRBQE5ODgAgEong5ptvxqpVq/Cd73wn7Xfy8vLSRt4IIYTMPgqkCCGEnLUrr7wSzz33nPy9Xq+X/79ixYq0Y/fv349t27alBV6S5uZmhMNhxGIxrFq1Sn7cZrOhvLx8Wue0f/9+NDU1wWg0pj0eiUTSpt1VVlamBS8ulwtHjx4FABw6dAiCIGDt2rUTvobL5cL69evx29/+FitXrsQbb7yBSCSCf/zHf5z0vMLhMDQazYQ/+9nPfiYHbJJHH30UyWRy3LH33Xcf/H4/tm7dCp5Pn2Ci1WoRCoUmPQdCCCFnjwIpQgghZ02v16O0tHTSn40liiJuuOEG/OhHPxp3rMvlQmNj45Rek+M4MMbSHhu7tkkURSxfvhy///3vx/2u0+mU/69UKsc9r5Q+XKvVnvE8vvjFL+LOO+/Ez372M2zatAm33XYbdDrdpMc7HA45UDtVTk7OuHo0Go0YGRlJe+z73/8+3n77bezZs2dcoAgAw8PDaWUkhBAy+yiQIoQQck7V1NTgz3/+MwoLC6FQjL8NlZaWQqlUYvfu3fB4PAAAr9eL48ePp40MOZ1O9PT0yN83NjamjcLU1NTglVdeQVZW1ozWIwFAVVUVRFHE+++/P26kSHLddddBr9fjueeew1tvvYUdO3ac9jmXLVuG5557DowxecrhdPz5z3/Gd7/7Xbz11lsTrsOSRtyWLVs27ecmhBAydZRsghBCyDn14IMPYnh4GJ///Ofl7HLvvvsuNmzYgGQyCYPBgPvuuw9f+9rX8N5776G2thb33HPPuOlrn/nMZ/DMM8/gwIED2LdvH+6///600aU77rgDDocDN910E3bu3InW1la8//772LhxIzo7O6d0roWFhbj77ruxYcMGvP7662htbcX27dvxxz/+UT5GEATcc889eOyxx1BaWpo2JXEiV155JYLBII4dOzaNWkupra3FXXfdhUcffRSVlZXo7e1Fb28vhoeH5WN2794NtVp9xvMghBBydiiQIoQQck7l5uZi165dSCaTuOaaa7B48WJs3LgRZrNZDpaeeuoprFmzBjfeeCPWrVuHyy67DMuXL097np/+9KfIz8/HmjVrcPvtt+Nf/uVf0qbU6XQ67NixAx6PB7fccgsqKiqwYcMGhMPhaY1QPffcc/jc5z6HBx54AAsXLsSXvvQlBIPBtGPuu+8+xGIxbNiw4YzPZ7fbccstt0w45fBM9u3bh1AohO9///twuVzy1y233CIf89JLL+GOO+447fRCQgghZ49jp04wJ4QQQuahK664AkuXLsXPf/7zTJ/KOLt27cIVV1yBzs5OZGdnn/H4o0ePYt26dRMmwzgbAwMDWLhwIfbt2zfhhsiEEEJmD41IEUIIITMUjUbR1NSE//t//y9uvfXWKQVRQGrt1Y9//ONZT1He2tqKZ599loIoQgg5ByjZBCGEEDJDL730Eu677z4sXboUL7zwwrR+9+67757181m5ciVWrlw5689LCCFkPJraRwghhBBCCCHTRFP7CCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSa/n+Tg6GQYMqD2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHFCAYAAADPBC+gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7gkV30m/FZ17r45zNzJQRoJSaOEJIQCWSTbAgMOYLyA8a4NayzCencdP+O0rO39vF6Dl8/GCYwxeNckmxyMckBhokaa0eQ7c2duDt19O1XV90fVqT5dXeFUru573ueZZ253VzhVdeqE97zv7ycoiqKAg4ODg4ODg4ODg4ODg4ODg4ODwzPEuAvAwcHBwcHBwcHBwcHBwcHBwcHR6+AkGwcHBwcHBwcHBwcHBwcHBwcHh09wko2Dg4ODg4ODg4ODg4ODg4ODg8MnOMnGwcHBwcHBwcHBwcHBwcHBwcHhE5xk4+Dg4ODg4ODg4ODg4ODg4ODg8AlOsnFwcHBwcHBwcHBwcHBwcHBwcPgEJ9k4ODg4ODg4ODg4ODg4ODg4ODh8gpNsHBwcHBwcHBwcHBwcHBwcHBwcPsFJNg4ODg4ODg4ODg4ODg4ODg4ODp/gJBsHBwcHBwcHBwcHBwcHBwcHB4dP9BTJ9sADD+Dee+/F1q1bIQgCvvzlL3f8/p73vAeCIHT8e+lLXxpPYTk4ODg4ODg4ODg4ODg4ODg4Ngx6imSrVCq48cYb8YlPfMJymze84Q2YmZnR/33961+PsIQcHBwcHBwcHBwcHBwcHBwcHBsR6bgL4AZvfOMb8cY3vtF2m1wuh6mpqYhKxMHBwcHBwcHBwcHBwcHBwcHB0WMkGwt+8IMfYNOmTRgZGcErXvEK/MEf/AE2bdpkuX29Xke9Xtc/y7KMxcVFjI+PQxCEKIrMwcHBwcHBwcHBwcHBwcHBwZFAKIqCtbU1bN26FaJobwjtK5LtjW98I37yJ38Su3btwunTp/Fbv/VbePWrX42nnnoKuVzOdJ+Pfexj+J3f+Z2IS8rBwcHBwcHBwcHBwcHBwcHB0Ss4f/48tm/fbruNoCiKElF5AoUgCPjSl76EH//xH7fcZmZmBrt27cLnP/95vPWtbzXdxqhkW1lZwc6dO3H+/HkMDQ0FXexAMT09jdOnT2PTpk24+uqrMTs7i+effx4jIyO4/vrrQz//6dOnMT09ja1bt2L79u144oknIAgC7r777tDPzREvjh07hvn5ef3zLbfcgmKxGGOJkoUzZ87g/Pnz2LJlC6688sqO306ePImLFy8yv6eSJOGRRx4BANx5551IpVKhlJkjuTh8+DCWl5dx1VVXYWxsDI899ljH7+Pj41hYWMCePXscO/0goSgKHnroIQDA7bffjmw2ix88P4vf/scHcdNwA+97w0245ppr9O3r9XpXP0Hq92cfO4sT1Tzed8swbrhyB5rNJpaXl3H11VfbqtHd4Jbf/SauEmbwrpfuwhvueVXoavX3/vHnsV5bx4d+6h7cfvUO222fOXkJf/S5b6CQzeJv/us7Qy0XEyoV4M/+rPO7++4DSqV4yqPhs4+dwX//xvO4dzfwI1cWmer8Pz5xFn/wtefwo7tF/NiVeWzbtg179+4NtFy/+s+H8K+HZvCfXrcPP3eXeuxTp07hwoULzOcjfcP27duxZ88eXLx4ESdPnsTExETHe+QE0l6k02m0Wi39eCw4e/Yszp07BwC49dZbUSgUmM+bVFy4cAGnTp3C5OQktmzZgkOHDiGfz+O2226Lu2iJBhnHDA0N4cYbb4y7OByMWFxcxNGjRwEAxWIRt9xyS8wlSiZIW0eP0y9fvozjx49jdHQU+/fvt93/qaeeQrVaxf79+/Hss89CluXY2kzSVwCAKIq46667Ii+DVzzxxBOo1+soFouoVqvYvXs3duywHi8tLS3hyJEjjnX72WefxcLCAvbu3Ytt27Z1/HbgwAGsra0BAO6++25XY8HV1VXs2LEDy8vLGB4ett22r5RsRmzZsgW7du3CiRMnLLfJ5XKmKrehoaHEk2wDAwMolUoYHBzE0NAQ1tfXUSqVMDAwEEnZi8UiSqUSRkZGMDw8jJI2+E76fePwj1KphPX1df3zwMAABgYGYixRsmB8N2mMjY1hZWUFExMTTO+Koij6uzUwMIBMJhNKmTmSi1KphGazieHhYYyMjOj1gWB4eBi1Wi2ytp9AlmW9LMPDw8hkMmiIq0jlShgayqJUKnWUp1aroVQqQRRF/XtyjMGBEtJSFqlsHoODg2g2m2g2m4FdkywrUNJ5ZNIFDA6qxwybZMsXS2gpQDZfdLyGQqmMTK6AbD6XjD40lQKMY6OhodhJtoHBIYi5IrJ5xbKNNSKVK0HMFVEqpVAq5TE8PBz4PR4aGoKYW9Hq/pD+3fLyctd7YAXSb5DxZ6VSQalUQrHoXH+Mx2k2m8hms2g0Gkz3iKBUKunv9ODgYF8sni0tLaFUKmF4eFgfq+ZyCXnPEgxSF1jrL0cy0Gw29XfYbduxkZDL5VAqlTA6OqrfIzKPZqnzhUIBgiBgZGQEIyMjqNfrKBQKsdzv1dVV/ZkLgtBTz7xYLCKdTmN0dBSCICCfz9uWn9Rvp35tamoKtVrN9H4Ui0XIsgxA7eecbJ9mYBk/9jXJtrCwoKtJ+hFEhEgeNPk/KnGiJEkAgFQq1VHZFEXh8ez6HMY6Rn9uNpsQRXFDK66M7yaNqakpNBqNrpUVK9DHIJ0Cx8YCee6CIHQNBgRBiK29pd97Uq6lSgMKgEKme9Bi9l6Qv3PpFEQoqLekjmsKqj9rSO13JyWKkdwzck+aLef3VrJpMzjaELX7I2vVgqV+NCV1m5RWJb0MqJ2QTavHrFPPmpyHtQ4b3w/Sh5KxFivIcdyeH+jsY3rU6NIFs7Fqv1xbmODjjd4EXbd5PbdGo9EAAGSzWf07N+0DeT9SqRQymQzq9TqazWYIJXWG8Zn30jyclJ08B6d7SI+H7UCEH+Vyues3uk+VZTmUMQHQYyRbuVzGCy+8oH8+ffo0Dhw4gLGxMYyNjeGjH/0o3va2t2HLli04c+YMfv3Xfx0TExN4y1veEmOpw0NSSDbRMGHppZebwxuMdYw0eq1WC4899hgKhQJuvfXWOIqWCNiRbLlcDvv27XN1PFEUIcsyHzBtUNCTZkJAke/inDjS5yNlWKqqA9d8JmVJxpu+F2kRAlSSIiySjZw1nQpnQGVEShS0czuTJLJM7k2oRep5kHsquSLZ1P4prd3bMAbUOY1ka1Akm9s6TPpRUj7yv1uyw/iecZLNfKzKYQ/y/PulHmwUcJKNDYTM8Uqy0e0KcZjERbIZ0UvzcLckm3ERyQpE2VepVLqINLqfkyQJ6XQ4dFhPkWxPPvkkXvWqV+mfP/KRjwAA3v3ud+OTn/wkDh8+jM985jNYXl7Gli1b8KpXvQpf+MIXMDg4GFeRQ4XdhCUK0Cw+Dd6o9z+sJs/1eh2SJKFcLvdUIx8Wgrp+QrLxleWNCbMFFSPxRm8Xdbnosi1VG1AgIJ8RmUg2Qqjl0iJESGiERbK1ZAhQj5WJiGRzpWQjBMsGbzOdkNLrBfs+LY1kI489jH7JTMnmtg4nTcnWL/0NV7J5A3n+/F71LvizswZRspmFYPGiZAPiI9ns3EVJh1clmxPJls/nkUqlIEkSqtVqR0gjo5ItLPQUyfbKV77StuJ861vfirA08SMpSjajXZSj/2GlZKMbKxITxgmNRoNpu15C0AS4V0UDR3/ATOFiNtCIk2QjWKo0NbuoOyVbNp2CgBbqzXBINkJ+pMTo7LUp7dm0JBaSjdtFWSCK7u2iDU32FqaSLasRYmYkG2u7bXw//Lb7XMmmgp4Mc5KNHZxk601wJRsb7OyiTqCdJUlQsnGSrRuCIGBgYAArKysol8sdJFtUi0nRLOdyhIK4lWx2dlGO/oZVg06vDrB0NpcvX8YjjzyCixcvBlvAmMFJNo4gYTX5Jn/HHZONJsUWKbuoEVaxNARBQC4jQoSCRlgx2TQlWxwkW5PJLqr+L4CTbHYgajTZRb0gdtFUmHbRTLdd1K2SLGi7qBclWz9O0LmSzRs4ydb74M/OHLIs6+0CrWRjbR/oNjkJSjYjemmuEBbJBrTjslUqlY7zGe2iYYGTbD2MOJVsjUZDzy6ZyWQ4ybbBwKpkcwJp+MwCU/YyOMnGESSM5BQ9uEhCTDa6ni9rdtFC1lrJZpa8IZsWIQiKHpPNuI9fEPIjFWGiiJTG6jRbzoM4SWEL5rvR4S3xQWdMtlDsoiliF20/a792Ua/vNbeLdoIm2Qj4ONUZnGTrTdDPq1/e4aBBVGyCIHTE42Jtc2liRhCE2Em2flKytVot23rLmvgAME9+YDw2V7JxmMJqIh/Fy/XCCy+g1WphYGCgKzVuL73cHN4QlJKtXwdxQZNsbm1HHP0F46SZrldJiMlGl2dRs4uyxmQjn0NPfNBSEx/Eo2Rjie9CnnGoRep5pHS7qBslm3ZvI1ay+SXZ4lCy9aNdlCvZvIEnPuh98GdnDjrpgVm2c1YlG2lTOMnmDXQ5aUVhq9Vy3IelHy8WiwCgi4KAbuUaJ9k4TGG16hk2FhYWMDs7CwC4+uqr9QkRH7xsHASlZCPH6TfyKCwlG3+3NibslGxxkmzGcimKgmXNLuomJptKsqUgQkHdYBcNCg1Jit4uqqmbWgxKNkIacR2bPUjiAy9KtjDtokTJ1pC8k2xGG4xfJZuXes5JNg6Cfl0E7Xf0o+U7aNglPQDYlWykrY6bZDOiV+ZU9H2mY9uR52MGN3ZRolK0S3TASTYOU8RhF5UkCSdOnAAAbN++3TRzK2/U+x/kGRP7hZmSza6RJOjXQRy3i3IECePKnZFkM24XV7nW6i20ZEW1i7om2UQIUNBoyaEQh3VNyZYWo6Ox0iTxAcN7yxMfsMGY+IAFhGQTBfYVcLfQs4s2k5P4gNtFVdCLATy0CTv6dXzW7zCSbPz5dYNWotFwk/iA3j9ukq0flGysikA3JJtZhm6jko3HZOMwRRyJD86dO4darYZ8Po89e/Z0/MYnBxsHxsm1XyVbr3QIrOAkG0eQYI3JFjWM9Xy5or7z+bSIdKp7eOFEsqlKtj7KLuoiJpscQ3/eiyBKNuLAdaVk06pkGPc4l1YH87SSzS3JZbdw6iV5Ac8u2okwFLL9DE6ycfQrrIgatzHZzJRscbwvnGQzByHZ6GywXMnGwYQ4lGwrKysAgJ07d1quAPTKy83hHVZKNrckmxk51w/gJBtHUKAn2FZKtqTEZFvSrKJDhYxpeZztoiHHZBOizi6qto8thphsRMkmchLAFiQmm5t6QWKykRFLKDHZiJLNR+IDq+yibo5Bb8tjsqmg2x2uZGMHJ9l6E71KuEQJu0zngLuYbAB7PLGo0CtzBT8kG8s4juYpCDHKSTYOJsShZCPnNPOxc5Jt48A4GSCf3SY+4Eo2NnCSjQMwj7+ZJJJtUSfZsqblsXsvchnVLtqUZEiyEl7igwjVLETN12KwI7TtoqEWqedB7KJEMOZGyRamXZSQbGEkPgDctf2cZLMGJ9nY0a/js40GPm7shlXwfK9KNlEU9b/jINl6lVg1lpOFZHOT+IAeH5Pnwu2iHEyIQ8lmJ9PkJNvGQVBKNp74gA08u+jGBf3Mk65kW/ahZMumRJ0EqTblUEg2IFq7KCHZmpLzeyvzmGxM0BMfgJ0AaJNs6ucw7nHWhmTzGpPNLyHk1y7aL/2NVbvDx6r26Jfnv9HQq4RLlPBrFzWL6RZngrJefeZGlTFt77SCG7so0B2XjSvZOJgQB8lmRx5wkm3jwEiyeVWy9asdISwlW7/dJw5nGOX0QPISH5Byra6rK4UD+bRpeexINlEUkNNimK03pOBJNknWsouK0ZFsZGWbiWRjt0BsZJDqznBLdegEq36MEBMftLpJcbd2UXpM52WBhSvZOmHWhhq/5+hGv47PNhr48+uGE1HjVskGJGsOnIQysMCKxwiSZDNmGDUq1zjJxmGKOOyiXMnGAVgP4unGqtFoONaFfrUjcLsoR1Cgn3nSEx+U6yrJVsqmTbd3ioOST6v/VxrBT/QbVHbRRNpFSZvKOTZb6Eo2rVqw1A9CfIlimHZRLfFBAHZRvxM3TrKZgyc+cAdOsvUmelXVFCXsFvxYYKZki3MObDxnr8wVrEIk2N1DrmTjiARJU7IZt+HoX7Ao2RRFcfS688QHbOAk28aFWdDupMRkM5JmhGQr5uztolYWDUKyrTdaIWQXVduiSO2imrpJYnhvZZ74gAkk8YHsol6oxJeCFLpJ6qBgpmTzG5MN8Nb2e+1/FKUzi2m/9Dc88YE30CQbv1e9A06yOSPo7KI0kkCy9coz96NkY+3fjCQbj8nGwYQ4lWx2dlGO/geLkg1wtoxyJRsbOMm2cWHW5iYtJhspT7lGlGydsRqN21utHhM1UIWKyRYUVCVbtNlFM7pd1Pm5SDH0570IQrKRW8qqZBOgIJXqJqmDQhCJD8ze9SjtosZz9Fu/TMBdF87g96Z/wJ9lN8KIyZakdiUJZWCBsc9j6bPcJD4AuJKNwyPiVLJxu+jGhpWSzS3J1u9KtqDASbaNC7M2N6kx2SrELuohJhvQJioq9RBispHsohH6MUn7yBKTjVwmJ9nsoSvZZPZ60WjJENG2moapZGtIclc9d5v4wOz99vIeuN23V9UQTohjrNzr2CiEaz+iX9/jIOEUusJPTLY40G920TASH1hlF+UkG4cprCYsPPEBR9iwWik3Nl5cycazi3L4g5OSLUkx2dYIyZbLMm1PoJNsGU0RF0Lig7qW+ECMUsmmxWSTXCQ+4DHZ7EHstG5jsglQkA5RyUZINnI+wDvJFbRddKMr2eIYK/c6+rUubETwcWM3nNRQvaZk61Vi1csCSFAx2TKZTMf3YYCTbD0Mq8oZJnjiAw76+Vop2UhdYFWy9VudCcsu2m/3icMZLEq2uO2iRiVbMefNLkqIikoY2UU14iOOxAeSzJD4QOZ2URYY7aIsqLck1S6qxeQK0y4KqGo2IFi7qNUxms0mzp07h3q9rn8XlF20XyfnfKzqDE6y9S56lXCJEk52USfw7KLBwIuSjdx71mdllV2UfM+VbBymSFrigyQ1MBzhgX6+Vkq2XC4HQM0wynKsfhvM85hsHEHBrC4lJfGBsWwk8cGgS7sogR6TrR584gPaLhqZkk27HonB2kgC+fPEB/YwJj5gqR/0sw/DKgoA2RSlZGu6J9nM+lX6b6u2f3p6GqdOncKFCxe6jsVjsqngdlH36Ne6sBHBn103WGKysaipkqpk65W5glXbbFX+Wq2GWq0GACiVSkzncFKycZKNwxRBT+RZwJVsHCxKtnw+D4Ar2TjJxuEXZm1uUpVsenbRrLeYbETJtlaXA7+megyJD4iSreUiuyhXstnDrV1UURTUWzJE7dmHRbIJgtARl418B7C12/R1uFGyVSoVAO14M2bH2egkmxH8HXMGV0P1Lvizc4ZTTDYnJE3J1qvP3Lgg5LQwtLCwAAAYHh7WSTInWGUX5SQbhy2iXp2zGgTabcfRfzAj2ayUbKwx2fqVPOIkG4df2MVpAjpXUmMn2bTsogP5jGl5HGOy6YkPwlGyAdAtg1HATUw2nl2UDW4THzQ1X6kQMskGALlUZ4ZR+lmyxvgx7ufU9lerVcvfuV1UBVeyucdGIVw3Aviz64ZVTDbWNjvpSrZeeeZulWyEZBsfH2c+h5WSzWgjDQOcZOthRK1koyu9nZKNo79hZmvxqmTjiQ/YwEm2jQunxAe0ki1qGMtW1hMfpE23dybZ1MHQWqPVtY9fxGEXTadJTDZ2JRu3i9qDZAglMdmc6ke9pSkOhPDj8RElm35OF5l/reyidpMORVGwvr7esb/VcVjQj8SK2eIwJ9mc0Y91YaOgVwmXKMESk83uviVNyWZEr8wVrGKymd3DVquFpaUlAMDExATzOYzZRbldlIMJSVOyJamB4QgPVjHZFEXRGytWJRttF+2nesNJNo6gYLbimsSYbJKsoNpQB56DOXMlm5NFgyjZyrUQEh9IMgAl0sQHWWKnZ4jSr8dk4+lFbUFeA4mxXuiqsiiUbGnvSjar3+0mHevr613kGreLOoOPVZ3Bxxq9i16NzxUlWDJU9qKSrdfaNiuSzazOLi0tQVEUFAoFFAoF5nNwuyiHJ1hN5DnJxhEm6HpHN4h0Q0WUbKyJD4x/9zqCJtncxPbh6C+4UbLFRbKJoogKpT4rebWLZrSYbI1W4ERYoyVDEJKrZGtnFw21SD2PduID9bNTnSfx0TJiZ58VBrI+SDb6PWe1ixIVG/271SIYC/rRLmo3bu2nMUfQ2CiE60YAf3bdCCMmG0GcJJvbNj9uuBEL0VZRN2M4oy3UqGTjdlEOU1hVzrBgNQgk4CTbxgBd7+hnTg/KWJRsRvVaP9WbsJRs/XSPONhgpmRLGskmCAIqmlU0kxJ0RY+xTE5xUMh+ayEo2eotKfLEBxmyguoi8D23i9pDt4syxmQjmT5J3Qrz2RO7c92EZHMirJzeDbP3gMRjs/qdZxc1h909lWUZhw8f7sjWuhHBLYe9C/7snNFvMdkIes31wqpkUxTFUzw2gE3JFtYz4yRbDyMuu6jVIDUJDQxH+LBSstErO9lsFoDamFk19v0saY/CLrq2toa1tbVAjs+RXDgp2ZKS+IAkPSjl0pZqIdaYbORY9D5+QcdkiwoZNzHZOMnGBGKnVRS2MANEyZZLdQ7iw4CZko11XGT1bthNmmiSzUzJxu2i7mOyra6uYmFhAdPT09EUMKHox7qwUcGfXTf82kWTFpOt35RsxvZndXUVzWYT6XQaw8PDrs7hlPiALkfQ4CRbD8NuIh9GhWFplMI6N0dy4KRkE0UR6XRa/81KzdbPg7iwSTZZlnHgwAEcOHCgr8hJjm44KdmslMVRoINk05RsA7m05Wqw03tBSApJAdZb3aSBHxB1UZRKtqyuZHO+Bp5dlA1EyaZAAEvNIEq2bIQkG0l8ALBPvJzsS6xKtiDtov3QJ9uRbHbb98O1+0E/1oWNAq5kc4Zd4gOnNpue75gp2eJAv5BsVuUnKraxsTHXfbgx8YFRyQaEJ/LgJFsPI2q7KFeycQBsSjZBEPRVAiuSrZ8HAmGTbM1mE5Ik2SoFOfoDZnWJHpC4UcuEWTY/JBv5nBYFpEQBCgQ9iUJgSjZJjtwums1oiQ9Y7KI8uygT6MQQMpOSTa1H2XT4JFtOJ9naz9utks1YPlYlmxk55LZd6Gd1OQ27+8JCslUqFRw+fLivleScZOsf8GfXDatFDRpW941+N5KiZCNIil2U1YLJqmRbWVkBoJJsbkFINlImMyVbWHHZOMnWwwh6Iu8EJyUbX4HfGHBSspEGjVhGWZVscXcKQSIKks14Lo7+hFm7S94x8n8SSLYKRbKZbWPcngY9wMqlRCgAKvWASTbKLhpdTDbtvWW4Bs3VyBMfOIDYfRWollEn6DHZNMFBmM/eaBelz+fVLmo16Wg2mx39gNEu6ibpgvEYpF3ph77FrV3UzHZrxOzsLBYWFnD58uUgi5oocJKtd7FRyHI/sFrUAJz7CPp+JiUmW5KUbLIs44knnsCBAwcct2VVshmTFbiBkUyj+7mwScm08yYcSYWdkk1RlMAHk1zJxgF0rgBZKdmAdmNolWGUK9nYYZxoEdkz/R1Hf8KsLhWLRUxOTmJwcNB02zjKtqbFURvIe1eyASpREYqSrSUjhYjtoul24gOnPllRCJnKWTY7pDrqlnP9qJPsohHYRe2UbE7ttJWywmrSQavYAKDelPAn334eDz0/g7fvqmFqpOi6ntOTD0mS+qpPpuFXyWaM7dOP6OfxWb+DPztn2IlGnOay5P03hurgJJuKRqOBWq2GWq3muK0VySYbxkys4arMQJ6Toigd81FRFJFKpSDLMifZOLrhRLKFfT4jOMm2McCqZCMk20ZTspmtnPsF3bEoisKVbBsIZpNvQRBw3XXXdXyOA3TZiJKtZLCL0mAh2XKaxbJcb6GI4Op3vSWjBAXpGEg2QVHjsqVT1ueVuF2UCfQYm8kuqhFeWTGKmGypjnPS5wvaLrq+vg5AfXeev7SK7504j8fLY8iihQfqq/jp23d7TnyQTqfRaDT6ok+264/9kmz93PdyJVv/gD+7bvgh2czisbHsFwWSYBelz+28uMgW9sovyZZKpdBqtTrmTqIo6sfjdlGOLiTVLsob9P4GPRmgG3Rj/XAi2fp1tS1skk2W5Q4lW7/cNw5z2NkaCOK2i4qiqMdkG/QRkw1Q1UAKBJRDsIsCQEoQI4zJpj4zQVDQlOyvQ9bvTejF6ml0JD5gsYtqzz0jhh+7NpvyH5ONNfEBUbKdWm7h64dnsLrexLaRAjIpAdPL67i4vN6xL8t71M92UVbFCfnObpLKYintdXCSrXfRr2ProEC3h2b9AauSzSxpgt1+YSJJSjYjyWYHKyWb8Th+SDag3acRJRuJZxw2KclJth6FXZwJ4+9Bn5Mr2TY2rJRspOPxqmTrl3rjRLI1WjK+dmgG3zg8g0dOzuPUXNnxmHYkWz+oDTiswRKgN26STRAErFFKNqsyOWVQBAjJBlQawa4sqokPoo7JpinZtPPbgZBsXMlmj46YbGBXskViF80EH5PNahJASLYXFtX+9bqtQ/juR16BH7t+CwDg0VOLvuyiLGXuVdjdFxYCzY+SjZXwjBv9Oj7biODPrhP0/bDrD3pJydYvJBvdNpuRbF7HbmYkG/09t4tydCAMtYwTWJlk3qD3N+hGka4LhPgh3zklPrAKbNnrcHo3P/mDk/if3z3e8d3/+Mkb8RO3bLc8Jh1TQJZlbhfdQOgFJVtQiQ8AEpMNWKtLQD6Ya5JkBZKsQBCjzS5KEh8IUNB0Itm4XZQJgiCAhK1jU7Jp2UW11ydMki2v2UVrrTZB7DYmG6s6gpBsC3X1970TRRSyKbzrjl34zaPP4IW5Cp6/1M5+6WTbocsQ9sQjSnhVstm1O36UbAcPHkSj0cCtt94aal30C06y9S64ks0eVtlBCXpRyUZgtijTarU6nEdhIyiSzWyB1q+SjcydyGeuZOMwBVeyccQFMyUb0E2ycbto97tSb0n4+8fOAACu2TKEzUM5AMD9x+ccj0t3BtwuunHgZgUvTpKtXOsk2cz6AyvCsFPJlgIg6PbTIK6JKIuIki0qpFIp/XyOJBsDmcqhgtxTNzHZtFB/od7fYlY9yTqlwnQbk41FyaYoih6T7VJF3W9Qe+92jRexb1JNiPKXD57uOr4d6JhsrPskHWbXwEKyWf0O+FOyLS8vo1qtWiaESgr64dlzqODPshN0W2pnF3Xa36hkI0iSkq3ZbOLRRx/FoUOHIiuLG5LNOL6l55Vmx/Haf5M+zahk4zHZOEzhpJYJ4yVnjcnG0d9wUrIZ7aJWg8mNkPjAiG8cvoT5cgNTQ3l89QN34Y9+4kYAwNELK47HpTsebhfdOHCjZIsaHSSbFkNtIN9JslltbwViF12rBReTjbbvRalkEwQBKUGACAXNlhPJov7PlWzOEAWBOSYbefbpCGKyFTSSrdpot89BxWSj2/n19XUoigJRFDG9RmIhti2et+4ehQLga4dnsFxtdBy/Wq1icXHRtAz9bBd1q2Sz+h3wrmSjtw9rUhcUuJKtd9GvLpGgQBM7/R6TrVarQZIklMvOYWmCLgvgXPfM+j3jNRAHD/2bWxjtouRz2KptTrL1KJyUbGGekyvZNjZYlWxk5YAmhMyOY/W5V2FHgH/60TMAgHfevhOZlIj9W4cAAKfmK1irmSv+COiOh9tFNw5YiKkk2EXLdbVO2sVkY7GLqtlFg1WyEcugKCgQhehISXUhQj2XY0w2mdyb0IvV89DjsinO9cOY+CAKJVu10W0XZV3Rt8ouSu9PVGypbA6rGhk9QJFsm4by2D1egqwAp+YqHfsfPXoUhw4d0o9hVoZ+Itnc2kVZVBhBEGRJJz44yda76NexdVBwWrj0m100ThiVz3FkQvZjFwW6r4E1hp4djHZRo5KNk2wcHbCquGFOtpxsS5xk2xgwNoqkkbJSslmRbP06iLMiEg5NL+OZc8vIpkS84/adAIDxgRy2DucBAM9eXLU9LreLbkywrOAlgWSraEq2wUBINi0mG4Ii2dpqJqvV6zBAlGwCFDRa9hNziQz8EzBQTzpIhlEZznVDt4tGEJPNzC4aRuKDWq2mnkdOQYaAXFrUEzuQ4+wcL0EBMF+udxyPrOSbhXHox5hsduBKNmv06/hsIyEJQfCTCFZXVj8o2chcIcq23C/JZryPTjH0WGClZON2UQ5TWKmJojin14aJoz9gFajS2PEQJZssy6YNWL9K2q0mS59+5CwA4Edv2IKJgZz+/XXbhgEARzySbP1y3zjMEbeSbW1tDSsr5nZmeuGFKM+IXZTANcmmBY9fqwUYk03qzDAZKclGYrI5kGzt/pWTbE4QRUHNLsqkZFPve1obtoRrF1XrfsXELurFNkN/NiNoVmsSFKhxEBWlMz7d1HABgIDZcqddlJTDrDxcyRYdyZb0fpuTbL0LK8KFQ4XfJH69lF2UVrJFVa6glWxOMfRYYJVdlCvZOEzhZkAW9jmjODdHcsCqZKM7IDM1W78O4szek4VyHf9y6CIA4F137OrY/npCsjnEZaM7A24X3TiIM/GBoig4ePAgDh48aEuUi6Kok2ylrPuYbPTnvLY/sZ8GQrLpaibRsmxhQBRFPRNmw2Gl1G+K+o2Etl2UPfFBOgolW8Z74gMnuyjdX5K/l6otAAIG8xn9HOQ8WzSF9GK5AUluf29HEJklPuj1/sWs/HbvGAvJFoQFK+lKNm457H3wOZk5WF1ZVkiiko3Ayi4KRFcuLyQbfS+NC1NOMfRYQOaj5H7wmGwctmBRNwQNv+w/R3/ASslmjMkmCIJtXLZ+VbIR0O/mlw9cRKMl44btw7h552jHdvu3qXHZ3JBs3C66ceCkIAbC6wcURUGr1XJUo9LZRQfz/uyieY2oWA0h8UGcSrZa04Fk0y6T20WdQRIfyAxVox6DXdRLTDYvSrbF9RZktDP6yrKsbzdSzGK4kIGkKFio1HXCzMyCYywDvUDWL/1LkDHZuJKNI8ngSjZ7+HVl9aKSDYiuzWFZqDD+bpf4wG/SA6C9cGQ8B1eycZgiyUo2jv6Gk5KNbgjt4rL16yDO7D351pFLAIAfv2lb1/b7t6pKtpNz5Y6sdEaQ+2rM1pr0wTqHP7AonMJq950mhfogSAHWNRLJb+KDvB6TzfpdcIs47aKENGu27N9TmRAcvB91RErrYtwo2VIRJD4ohECy2SnZFitNKBB0izZ9PwRBwLVbhqBAwNyaSrI5qRrMJo+93i8HbReliUw/JFvSlWz9Oj7bSAibQOhVbKSYbHGQbGZ9lRXs2mfjYoafvttIiPKYbBy2cCK8wnjJ/TZMHP0BJyUb3Zi5UbL1S70x3p/5ch0/PLsIAHjddZu7tt80lMfkYA6yAhybsY7LRo5nJNn65b5xmMOtki3I+uA04STfrVMqrVIuZboNYE0Y0p9JXKtaU9Ztbn6vqd7stAxGSrJpjBArySbwmGyOSAlqTDYmJZtGsKaE8NX/Ra3u0u8Da0w2q/GV2f7k74UqUY9220UFQcC1W4fU5AcayeY0+elHks0Mfkk2u99ZkXTiox/j820UcCWbPfzOZZOoZCPoVbto2Eo247Mix+J2UQ5TsCgCojqn8dy8Qe9vWCnZCOjPhGSzy2Rm9blXYbw/3332MhRFjb22fbRouk87Lps1yWalZOPvW3/DbayusEg2OyXbukZiZVOinrjAjZKNRj6jqXLQDlrvFyQeWjoGAitNyHGHa5FlMjEKvUg9D5IcQoEzAdsmWMNXsrXtou1FJdaJrpOSzexdnK80AAgYKmQ7vifHUZVs0JVsTpMfY0w2lnInHUEr2fxMWntRycaJmt4Fn5OZg3VMxZVs3hBW4oMwSDZuF+UwhVXFDfMl50o2DsBayUawEZVsCwsLegZG4/351lHVKvp6ExUbwf6tznHZuF10Y8Ktki2Mcxv/Nn5HSDY6s6hd4gOrwan6m6DFmBL0eFp+24Z24oNo7aIAdCUbM8nG7aKOUK2fAliqBbEKk14pCrtorSnrzzMMuyiZOM2V1cUrOyUbIGCuXIcsy8xKNvoe9Xr/Ynffo1ayOS1aJAmkrFzJ1nvgSjZ7OI2pnMYHSVSysZBsvaJkM97HMEg2bhflsAWLIiDqc3KSbWPAjZLNTUy2pA86rdBsNnHkyBEcOXIEQOf9Was18fALCwCA1183ZXmM6zQl22EGkq1er3d8z9+3/gZLWx+FXdROyVZpkHhs7YGM15hsgiCglEtBQdti6dsuSjJMRhyTDWiTZk3JwS4ITrKxIiWoBJvMYCWua9ZNEsctXLtou/4TyyjruMjJSm18F+stCZWGus9wMaN/T79jV0wOQBRUsvri8jqzkk0Uxb6boHtJfGDW5m00JRsn2XoPnGSzR1gx2QiSahftdSWbn76bK9k4XMFpshLGSx4WyZb0wQZHJ5xIto2mZKvXVStOs9nsmuT84Pk5NCQZeydKuHLTgOUxiF30xGzZMgsht4tuTLCs4sUVk42UbV0j2QZyma4yeSPZ0lAg6CqkoJRsUcdkA9rPrelkfSUTI06yOUK3i7pRsglk3/CGvfl0u+8jyQ/cKtmsFq2M5M9arQUZAoYLGeQy3YkPACCbFjExmAMAHL+8Zksg0XZSURT7ZtHUTilht73xb4KNFpMtzPeFI1z0yzscNPoxJpsZsaooSk9mFzXGIQ0juyh5djwmG4cp4lCysVZ0Nw3M6uoqHnroIZw5c8ZP0TgihJNdlDUmW7+QbDSBaCTZvkmsovunbN/VLcN5jJWykGQFH/r8Abztk4/gbZ98BAvltmqN20U3JuJUstGwV7JpdlFD0gNjeZhJNi2AfDMokk3qjMsVZb+ZIiSbg5JNkqPv03sVJPGBojjXDUKwioKz7dovRFFAQcuOu24g2bxkWaM/G5VsZY1k2zKcN92GfDc1lAcAHL+0ZksQ0Z9pkq0f+5e4Eh9wJRtHFOBKNns4KaP8ZheNA1aLNHHbRb30e8Z6yxIyxQlcycbhCklWsrlBuVyGoihYW1vzVTaO6ODGLmqnZOsXuyh9bZIk6fenJSv4wXOzAOytooB6L/drarZvHr2Ep84u4amzS/j2s5c7tgH6h5zkYIPdgNBpkugXrHbRapMo2axjshnjRdGwsos2Wp2DLK8wBr+PlmTT7KJOMdmUzu05rEGUbDJL4oNWdEo2gEp+0Gx1nM+rXdSoTADUfmat3oICdYGGnigY37Gp4QIA4MSsvZKN/txPdlGWmD9m21v9HpRdNOnjHU6y9T7CJhB6FU6kTS8q2QiM8TR70S4ahpItrphsaedNOJKIOEi2MBIfGJlqjuTDOBmwS3xgF5OtX8giK5Lt7GIVlYaEqaE8btAINDv859ddjc2DOWwZzuPIxVV8/7lZPH+pTT4nMf4DR/gwGxCu1pp408cfwpWbBvCpd90ae+KDSl0j2fL2dlHjb2afBaGd+KCpDXyCU7KZnz9M6Eq2FtuKrshJNkeo8dUYEx/oSjb1c9jPvpBNAZXg7KJ0eWVZRiqV0pRsTcgQsWWkAEFY149hSbJdtleyGTOTJmHCGATs2h8vSrWg7KJJVrLR9ahfyNaNBP7s7OHXldUL2UXJd3Er2byQbMZ6GwTJZiUG4XZRDlPEYRdlVbJ5eZF5J9A7CFrJ1uurbVYk28XlGgDgtj1jTBPn67cP449/8kZ85HVX40eu3wIAeO7Sqv47S6wejv6DmcLlgeNzOLNQxXePzeIHx+c6fo9FyabHZLNOfGBmZTP7LIoiSpoiriEFcy3tmGyi6fnDBMku2nSYVPPsouxo20VZlGwSAAUpdE9CwgBRshntol4mG0D3pAmgYrIpArZSdlFayUawZUQl2S6v1rBSaYcfsFKyEYKt3+yiXpTATko2t+gVJRtdTq5k6130C1EeNFgFI077J0nJZkWyGcPZRIGwEh/46bsFQeh4XkYlGyfZODrAlWwcccHYmBtVKPRnlphsvT6Io6+NJtlmVtUJzYumBl0fk+zz3KU1S4VDNpsF0Lv3jYMNZs//kZML+t//67snoChK6CSbrZKtYW0XdUuyCYKAoh6TLZj+Ic7EB4TYaznEZFN4dlFmiKJKsskM1aLRkiGgbcMNm2QraHXXqGRzGsQ7ZRelt5FlGeU6iclWMLWUkv3ymRSGCxkIUHByrq2MtlKyGWPV9Hr/ErRddCPEZKOvsdfHZxsRXMlmj7BjskV9v63GVnHZRZ3aULNt7drnoJKw0CSbsZ8Lqz3mJFuPol+UbJxk6z3YKdnogMkAm5Kt1wdxVkq2GU3Jds0W9yTblZsGIArAcrWJ2TWVrDN2MMSK26v3jcMZkiSZDjAepUi2A+eX8eCJ+ViVbIRkK+W6I1AYB0qAcxIHoogLOvFBHPHOUlowMK5kCw5psV3XnZVsMgQokakYSyQmW8NdTDY7u6jx3ZYkCWu1FhSGxAeCIGgkGzC7uq7/bqVkMy6e9WP/EldMNhpJVrIZ4/MB/VkP+hWcZLOHVVtL4NQ+GAUCLPtFBUEQTGN0Ar1nFzUq2fz23XSGUTMlWxj3h5NsPYo4lWxOFZ036P0NY92j64Ox0yGNmizLXYNKY0fldtD5/PPP49ChQ7HXN7Psoi1Z1smxF00NuT5mPpPC7okSAFXNBlgr2ZI8WOfwB5IQJpvN6qTqzMo6Ts9XIArAT926HQDwv753Qt8nKiUbPdgs2yjZzPZ3TnygHqcekJKtriVmSEcUl4tGOyab/TXI+sCfk2xOUIlIASy1oqGRbFEp2YK2iwLdE4EOJdtIwXSiQPfP5H1aXGvbRc3eZ/pcSZgwBgE7pYQZwozJ1mtKNnrC3uv1YCOCPztz+HFl0e9tEpVsdDmMDqI47KJeFNxG9bcTKcoKMyUb/R0n2Th0OKnKwqgsfth/p2PyTqB34KRko0GvHBjVbH6UbIqiYGZmBouLi2g0Gi5KHzzMlGxLlSZaCjCUT2PLcN7TcYll9HktLpvxXed20f4HIdmGhob0509UbNdvH8GvvO5q5NIinjq7hLOL65bH8QonJRtBtc5uFzVayultyd/kOMTmGbSSLQ6SreWkZOMkGzNSul3UXskmyQpasgJR28es7gUNK7uoUx22W8Skj6EoCmpNCU1JNlWyWZFsAhQsVmpd5zN+NpJsvb6IY3bfk2AXTfJ9pcf6/UK2biQY24Ak17U44CfxgZnKkyAJ7wrdxxnnXL2mZAvTLmpUstHnCRI9RbI98MADuPfee7F161YIgoAvf/nLHb8rioKPfvSj2Lp1KwqFAl75ylfi6NGj8RQ2ZDgp2aI8ZxDn5h1478BOyWbW6VjFZfOjZAsqw1cQMIvJNqcpBq7ZMuT5vbh6s6qAs1KyRWUXlSQJ9XrdeUOOwLG6qhKsQ0NtNSSJx3bH3nFsGsrjHS/ZCQB4TPs+KiUb/Q6u6dlF2Ug2I6xisjUCU7LFGJONJD5wyC5K4otxu6gzUrpd1H47QtISJVvYKjYAKGY0JVszmOyi9HdEEb5WUydPw8Uc8pmUbeIDQRB0C+typb0gZfU+91tMNoKgYrIFZRftBSWbWdINjt5Bv73DQYE1JpsZ6HhsUTrJ7GB0CZDnbiVsCBt+STYjORxmTDb6vGG0yT1FslUqFdx44434xCc+Yfr7H/3RH+FP/uRP8IlPfAI//OEPMTU1hde+9rW6GqCfEKddlCvZNjbslGxGuyhgHZfNWJ/c1IE40lJbwUzJNl+uQ4FKsnnF1bqSLV676KFDh/DYY4/FrhjciDCSbIqi6Eq2O68YBwD8/N17AABnF6uoNlqhvQ9Wdm8AWKur74BdTDY3JFtJi8kWFMlGCI9MKgYlW4pNyaaTLJxkc4QotEk2u7phJNmieO4FQ0w2VjUJy/tBAlmv1ZoABEwNqSppsz6UXgQbyKUhAFiuOmcX3Uh20biVbEm9t3Rd6Jd6sJFgJOz5s+uEH1eWVWZRs+NHhSTbRZOqZKP7Oa8hi1jQUyTbG9/4Rvz+7/8+3vrWt3b9pigK/vRP/xS/8Ru/gbe+9a3Yv38/Pv3pT6NareJzn/tcDKUNF06qsjjOyUm2jQE3SjbAmmQzKtm8kmxxw4xkWyjXAQieMosSkH1PzJbRkuSOe5tOpyMbQK2vr6sWpVrNeWOOwFCv13UF4eCgWhfOLVZxYXkdmZSAW3ePAgB2jBWxf9sQZACn5iqhKdnsSLaKpmQbZLSLGhG2XbSmx2SLnmQjAfebjCRLHMkZeg3ELupUL+ot9bmnBEAUwo/HBrRjshG7KGs7baeuoI8hyzLWtHhsW0cLHfs42UVpks1JybYRrGZRK9mMx07quDdMku2LT0/jS89MB3KsXoOiKDh8+DCOHz8eyfk4QWqOIGKyme2bhPudBLuoUxtqti1L4oOgSDajCtF4viDRUySbHU6fPo1Lly7hda97nf5dLpfDK17xCjzyyCOW+9Xrdayurnb86wX0i5KNgHcCvQO3SjZia3Qi2dw0cElXss2VG1AU4EU+lGw7x4ooZFJotGScWah2kWxRdeicCI8HpC8aGBjQ3xGiYrt5x6huqQSA1107BUUBTs2VAy2D3WCJ/lzWlGxmdlHj9mxKNvU4tcBINrL6HJ+STZKcAgBHv3DWqyCJD2QHJVtdqz+5tNBhowkTfhMfsNhFV9ebkAFsHy12/W5FsgHAarXRpQ4g6Fe7qFslm5vEB1bbsCKpBCZN+AbZHq1Um/iV/3MQH/mng5gvb7wQFLVaDQsLC7h48WKo7xVXstmD1S7qVskWV99tZRftJSUb3e8Z73/Q2UWNfSz5vOHtona4dOkSAGDz5s0d32/evFn/zQwf+9jHMDw8rP/bsWNHqOUMCv2mZOPoHQSlZPOT+CApJJsxa6okSViqNFSrkCDgqs0Dno8tiu39n7+01nFvM5lMZEoDq0kZR7iwjcemWUUJXn/dFAABZxerKNc6B1Z+wKJkEwRBzy5aygajZCPHaThk5GRFTVM0ZWJIfJDR7aIOSjZwJRsrUiLUxAewVwORhBe5CMlVr4kPWN4PRVEgSZJKsikCdowVu343O08pm4IAleitWxDX/W4XpWFXD+zaPKB7IuZnvJskRT4NeuIbZD04s1DRiHHgwLll38frNRgXZMMCJ9ns0W9KNiu7aBJisnkJkxC2ks1IkHIlmwuYrZ7bdai/9mu/hpWVFf3f+fPnwy5iIIhTyeY0UOV20f6GnZLNjmTrx8QHZitFZxdUNdHkYL5DbeQFV1MZRun3Lkq7KH9H44FZPLZHDPHYCK7aPIDRUhaSrOCxUwuBlYFFyaagrRQb9Jj4gAYdk60uBaNkI6qiVCyJD9RrcSLZSJPGY7I5gzXxAUl4kUt3qrPChNEuyroYwmIXJYs6K+tNKBCw04ZkoxfB0ikRQ/kUBEFBRVOdbpTsogRhxGSz2sYKVsRm0hCWXfTcYlX/+5nzS76P12ugSQ8jARIGOMlmDjvVsNl2NFiUbBvZLmpc6PGyuGTse1iflxPMMorS33OSzQZTU1MA0KVam52d7VK30cjlchgaGur41wtwmrCE8TI5VXRuF90YsFOyeUl80Msx2YzXJEkSzsyrA8ntWrwcP7h6qp1hNG67aFInBP0IWZb1hD2kT3rs1CLmy3UUsynctHOkY3tBEHRr8oPHZwMrB4uSrUm9ikElPiAx2eot2VKd4wZEvZOOQclGYrI5k2yKtj0n2ZwgCp0x2azqB1GyZbWmM1K7aLPVcU4/dlG6rZdlGas1NSYbIdnMVuKN/fNYKQMRim7t3mhKtqBINj9KNqdjJQVRkGwHzi/7Pl6vISqSzVjn+ditE6xKNjMkWclmFD7EYRd1uwhhp2Qzzj24ki1G7NmzB1NTU/jOd76jf9doNHD//ffjzjvvjLFk4cBJyRblOf2cm6tkeg9ulWysMdl60S5qRrKdXVSVbNu0eDl+QJIfPH85frsof0ejQ6VSgSzLSKfTKBRUsvYzj54BALzl5m3IpbvJbJLJ9uGT83rCAL9gUbLplry0qFsjge7+wE6pYxWTTVaAluyfZDMmPogSaU1FJTm8py3t93Sqb4ZloUFVsgkMSjb1uecy3X1VWChk1HeTJAMJwi5KTwJWKnXUmhJkCNgxxpb4AADGSlkIUPRybZSYbGaIKybbhleyLbRJtoPnVyDJ/Ve37BCXkg3oz/fYK8KOyZZUu2hUSjY352RRsoWR+IAGj8mmoVwu48CBAzhw4AAANdnBgQMHcO7cOQiCgA996EP4b//tv+FLX/oSjhw5gve85z0oFov4mZ/5mXgLHgLitIsGqWTjE/jeQ1hKtl5MfGBGsp3TlGwkXo4fEJLt3GJVV+MA0dlF6UlbUicE/QjaKioIAmZW1vHtZy8DAN51x27TfXaOlVDMplGpS3j8dDCWUTslG/nclNRtBgwqNj8x2QhRoUBAoyX7ruMqyabEZBdlU7KRCWeGk2yOSJFBOLOSLToFIwkR4DbxAQsJLcsyLi6r/Uspl9HP5ZT4AADGilmIACoNeyWbcb9eH5sFrWQLkmRLupKNtp4FUQ/OLlb0v8v1Fk4GnKgn6YhaycZJNnP0W0w24/nJ/0TJFqWiMclKttHRUQwMDOjOR4Iw7aL+AgZFjCeffBKvetWr9M8f+chHAADvfve78Xd/93f4L//lv2B9fR3/8T/+RywtLeH222/Ht7/9bQwODsZV5NDAGt8myPOxKtm4XbS/4VbJ5hSTzQtZlJTBqfGaGq0WLixXMQFgx1jJ9/HHB3KYGMhhvlzHqfn2KnCUdlEC/o5GB0Kykb7rHx8/B0lW8JI9Y3qcPiNEUcAVkyUcPqfg20cv42X7JgMtk9UKZVMjh+jMooB3kk0URYiigFI2BUUCmpJ/km2dKNlSnVa4KEBIMzslm0TUegIn2Vggippd1GE7EpMtG2FMtgKJyabZRd0q2eyyiyqKopNsYwM5/Xe7c5DfRouqXXSjxWSzu+9mbZpbu6ifsiT13tJ1MchxxvnFdQDAYC6NtXoLz5xbwlWb+29+ZgWuZEsG/IQ+SrKSzTgnI3UsnU6j2WwmjmSz4hXCSnyQzWZx6623dn3P7aIaXvnKV+oPhf73d3/3dwDUh/TRj34UMzMzqNVquP/++7F///54Cx0Solay0ccLQ8nG0TvgSrY2yDXlcuqEZ3alCklWkE2LmKAmQX6wa1xVxF1YqenfRWUXtVMycYQHOh5boyXjc0+oCXnedccuy30EQc02KAB4dmY1kHLYPX/yW13LAFqySPJhJNnsVoDpv4lltOGTZFMUBbWmDAExxWRjSHzQpH5LcZLNESkLAteIWGOyuUx8wGoXvaSRbOMDef13s7GXsX8eLWY0u6i5ks34fvabXZRVyUYjaCWbEUlZLDQiDLtooyXj4opKsr1hv6ok2Whx2eKKyUZ/x8FO2vSKks3KLkquk4TsiaJcVos3TrBrn1mTLnoFt4tydCEOJRtBkEo2bhftPbhVsoURky0p2UWNJNuFxSoEKNg0kAtsskwSKFxcruvfRWkXNfubI1zQ9eobR2YwX65j02AOr79uynIfOmHAJYqQ9QO7508+1zQb81AhOLsooNpPFQhotvzFZCM2awEK0qk4SDb1XHZKtgZFsmVSPPGBE4iSzSmkE4lNmInwuRuzi7K0005OAfpduqwRFRODbZKNzS5KlGxsMdnitj4FBTu7qBEsBJqfxAe9omQLg2SbXqpCUdT34zXXqMnonjm37OuYvQZuF00GWGOy2e1rJiggSIpdlIAIHZKoZCOwU7I5KQ/9givZOLoQtZKNrnxe2H8n8A6gd2CnZLOzi4aVXTRRJNtSBQKAzcP5wCZ020Y0ko0iTqKyi3IlWzygJzmffewsAOAdL9npaCUcyKchQMHsWi2QesGiZKtplrzhQqbjd2P9d0uyFXNqu+BXyUYsg6qSLQ67qHodkmR9Dc2WqrQD2mXksIb6GrQTH1jVj3pL7SdITLYo7aLrTQmKojC1005OAXoScHlVI9mG2tmr7RIfEIwUMxAE99lF+7Hdt3omLJ+dtrGDcdteULIR+O1PSGbRnWNFvFjLjn388ppeHzcCoraL0m1AFO/x7OwsTp48mfj5XL/FZLMTPgDxKtm8kGxhJT6wQpgx2fhorkcRp13UClzJtjFg16Db2UUlSepamaD3MRvAWiEpg1MjyXZ5ZR0CFEwNBUiyaUq26eWafsw47KL8HY0ObQJLwg/PLAEAfvq2Hbb7CIKgWzabkoLFSiOwcgA2JFvLnmTzqmQrZTUlm0PCACeQeGwpUdCyUkZMsunZRa3bLJI8QhQEiCJXsjmB2S6qK9nUz9HYRdNamVQC2i3J5qRkm9dItsnBNslmpmQz7jtS0JRsjZZpX9uv2UXtlGxuSTZ63BHE/UnKOMaIMBIfEJJtx1gRm4by2DZSgKwAh6aXfR23lxCHXTRK4ufUqVM4f/48KpWK88YxwWlBA+jdmGzGchAQki0KotXNIoSTks1oF+VKNo7IELVd1KzTNcJPWXp9ILeRYJWFDLBXsgHtgQXdmNGdlReSLc66QxIf5HI5NCUZC+U6RCiYClDJtn1Ui8m2tI5CoQBRFJHP5yO3i/ajoiGpIPf63JI6oR4tZrB1pGC3CwRBJZHGiur7dnm1brs9C1jsousOSjYWks1sP9UuCt/ZRWsayVbIxDPcyaQ1JZuNt5EQiSnRun/laEO3izpsR6zC2VSESrZMuz+rNlpMiyFOJJseyFqSsFBW3+upETYlG/l/uKiqXCVZQb0lbzi7KA2vJJvZuKUf7aK0PSswkm1BJdl2aVnXb9LUbBspLlvUSjYgWrKcjMuTWq8BNleWXyUbDUVRcODAAZw4ccJTed2gX+yiUSvZOMnG0YW4lGx2lZwr2TYG3CrZBEHosoyaKdkA9kYuKSQbrWSbXatDVhSMFlIYyKUDmywTu+iF5XXceOONuO2222Kxi/J3NBrQE+WzWja2PRPOmWpJfRjXEm5cXvUfl41FyUYCvBtJNuN2rpVsASU+qGmWwXy6TR5EG5ONECROMdkUcBEbG1iVbIRk0x59JM89JQrIaSesNiSmdpp+t+zej4VyHbIsIyUKHTHZWBIfpAUBJY1oLtdbzHbRfmn3WZRsThNEMu5IpVK+xrvG4yUNZjHZ/OIssYtqiZxu3jECYGPFZet3JVsvzOec2loafpRs+vhofR3Ly8uYmZnxXGYn9JtdlCaG6XsZFskW5jvCSbYeR1STBRYVgt9BR5IbZo42jA2ek5IN6I7LZiXZ7lW7aCaTweVV1Z63Zywf6ESeJD4o11tYlwQUCurnqO2iSV6d7CfQ9/zMgkqy7Z0cYN5/vJQFAFwKmGSzmpA6KdmM+7OTbCkt8YFfJZtaPkKyRY1synmVtCmpMdm4ko0Nqu23HZPNCoRkIyLGKJRsAJVhtCkxJz4ArAlgcozLK+sQoWAon9Gz1tK/2yU+kGVZt5NX6t2W0X6NyWbX7nhVsgWl8ErqvQ0j8cF5KiYbANysKdn+7blZ/MaXDuPC8rqv4/cC4lCyRUmymYWDSRpYSLaglWxWxwoKSbKLuskuatU20/eWnuuFNTbiJBtHF6JWsrHINftt5ZPDHG6VbECbZCP2Stpy6oVkS1p20XQ6jRnNnrd9RFUYBNUh5DMpTAyoxMn0UnsgyrOL9ic6STZ1YuJKyaaRbEEo2WhYKtmaJLuovV3ULqOXdUw2/0o2orQrZKNPegC07aKKolhaRpstBRDaCi0Oe5DYeuRuWtUPPSZbhIkPgHZcNqOSzaqcTouYpNxzazWVZCtkOvpaFruoJEkoaclESIZRO5KtX2KymcGvXdQr+dTLSjY/9UBRFJxbVON0EZLtph2jeOP+KbRkBf/w+Dm88o//DX9x/0mfJU8uFEXpeN5cyRYPzKzQRtiNEViUbPR5aOIxrPti1eYTxEmysS4u0aA/0+8JV7JxRAanQVlYdlHWCQrr+fkkvvdg16C7VbIZibpetYum02lML2sk27BKcgQ5mactowRmHXrQ4Eq26EHf51PzKsm2NyaSza59Jp+rTXO7qFEJ49SHGNuTUi4NRVFVXkHYRXPpeEk2UYBlEoeGpmTjSQ/YQEg2mzB3ANokWzrihBdEyUbHZLMDa7a7+bUaREHBcD7dsS1L4gOVZFP7YZLRkW5r+tUuatbusI6bjX0ebRe12oelLFbHTwqCTnzw2NOHsEO6BFFQ9EROKVHAJ3/2Fnz+F16KO/aOoykp+NSDp/wXPqEwkmpREaxRvcc0iZTkNsOvYIRVyWZ2L8J+363somT+FSXRavWZhtXCK1eyccQOFgY4SLhpmABOsvUz7JRsrCSb3wF9Ekg2WZb1ciyvS1hab0EQgE2DKtkQ5LtIkh/QSjb6+GF13vz9jB70fT41XwbAZhdtk2xq/bu0Ek1MtmrD3C5qTIvulmQbyKUBCGi2/K0A15vdMdmiRCZF2kRFi73WDT3xQcTx4noVotBJslnVj7pGsEaZXRSg7KKUkg2wbqfdKNkETclGXwu7kk3N2Futd4dt6He7KI24lGxGJFXJZqb28XOdZy9cQkFoYsdQBrl0pwLopXvH8al33woAmC83sFJtej5PkmEk2Vqt7riIQcFMyRble5zksaKdop7Ars67VbJFMYZOol3UbZgEGvRnmtTkJBtHZIjaLsqiZPP7AiS5YeZow07JZmUXJY28lZLN7UAgCYNTetB0ZKYMCQLGilmkEHw9Jqu/F0zsogBXsvUTyH2utWSs1SQIArBLCxZtB/IOjelKtmiyi1YtEh+QtoC8q/TEzQzGtqCYSwVjF42ZZMtqk0oBQLNlT7JxJRsbjHZRKxAlm5ZcNDKSraAr2SSmdpqVgF5YU7NXD9uQbMbvCAjJJkNAudGdBdA4+ew3u6iZks1JWWZl7wwq8UFS+9SgycTlqhqvdvto3vT3gVwaU0Pqbye1haV+A+16ANT7GfbiKB2OJez3OCkhXJwQtZLNrI0NGk7uoijbciMJ6YVkA6iM2tp7E2bfzUk2ji64tW/6hRv2H+BKtn6Gse6lUim9IXeKyWZUsnkd0CdByUYPmg5Or0CBgKmhfCjvZtsuWtW/i9ouyt/PaEDu85K2or91uIB8xvy9MsNoUSW7osguKisK1lvmSjbyThtJNndKtgDsolrMuLjsoqIoqgkNoKApmV9HU8suyhMfsEEn2RzsSfWYY7IZlWxW5XSa+JHvF8ptki3lMvGBJEkYyKVUko0hJttGsItGrWQzLjQkYbHQDKGRbCPWi0VXbFJDIpyc7W+SLZfL6fc0iuQHUdpFzf5OGpwW+8y2pWGnZDPbN267KJmfRXF++hx+STa63wLc9d2KouD7z13GP/3wPJ69uGoZpsN4rjDqbTrwI3JEgriUbGHaRTl6A2Z20RtuuEH/2wzGxAfG+uSm3tKWGNZ9wkAnybYMCQI2D7dXaoO1i6okW5x20aSuuvcbOkk2AXsnneOxAd0x2RYqDTRaMrI+smo6KdnqTRnka2PiAyslm9N7ocdky6rWtkbL30S0RpRsmXhINkEQIAqCqmSzisnW0rKLcoKNCW27qP390pVs2isQ1bMvWMRk86Nka0oyKvUmsgCTXdT4m24XVQSs1a2VbP1mF7WDW5LNr5KNIJVKQZblxN7bIEk2RVGwsq6O+6yUbABwxeQAHn5hASfnKp7Ok3TQ48V0Oo1ms4lWq4VcLhfoeYxqVk6ydcJt6CMaiqIkMiabnV2UbqviINlYsoua3UtRFCFJkmslW70l4de+eBhffPqC/l0uLeJ9r7gCH37tVab7hHl/uJKtRxG1ks2tXdRLI5vkhplDhZUdZWRkBCMjI5b7sSrZWBo54+pvXPWGEIapVBoHzi9DVkTd8gAErGQb7U58AIRv6emVgVM/gbwDi5qSjSXpAUArwFLIaqzC7Jo/NZvx+Rs/11sSFAgoZVNU7DEVfmOyqfGj/NtF41ayCYKgK9msYrI1JDLYjLJkvQtS1RTYK9nI/U6DXb0QBIqa8pQkBXEaxDu9G6IoYmW9CQEKilkB+Uyq41pYlWylrGYXrbcsF6v6Lbto2Eo2L2Uh46GkK9mCIGkURcHqOlFlW5NspJ87OdffSjZCstHfhQlOsnXCT0w2+rOVks24bxT3xc4uSivZwiwDQdB2UdJGWj2vZy+u4vNPnMNDJ+ZxbGYV7/zU4/ji0xeQEgXctnsUg7k06i0Zf/XgKbQsxl9cycbRhaiVbCzsPw1uF+1PWJFsTrCKyeZFyZaUgSm5lkvlBtZqLWzKpjA+0F6VDMMuulxtolxv6Va6sAdQdqtw09PTSKVS2LJlSyjn3qgg93yh0gSQZUp6AHTWt01DOUwvrePyak1PmuGnLASyLHeQZ7WmDAXdVlHAvZLNSLiXcur+zVYwMdly6e4BaBRgUbI19dhh3C7KAreJD4iYM47EB4BaB8xUZgROEz9RFLGqkWyjhbT+HYFdTDaaZCtqdtGWopLPPLtoJ1hjsvm1i7KoPOKEmcLEaz04NbuG+bIaH9SOZLtik9rPneIkmykURUG1WkWxWLTtI+JSsm2EmGz03MMutizd1kcRk40+t7FsRpKNHsOFAWMbF6ZdVJYV/Lu/fhwLlUbH94P5NP78Z16Ml181CUlWcNPvfhtrtRaenVnFDdtHuo4T5oISXzftUcRlF+VKto0NryQbaXCtlGxu5LpJUbKRazk4vQYAuGHHqB4rCAh2Mj+Yz+hExgUTy2jU2UVbrRZeeOEFHD9+nL+3AYM8S5VkA/a4VLIpiqIrKoNIfkDDWB9qGolhtIoC/mOykUyIfpVsxuyiUUMURaQEkvjA/DqakmYX5YkPmNCOyWa/HbGLktsaXeIDdRJNkoI4DeKdwnEIgoBqQ4IAYFAjn+mJkpld1IxkS4siippllKjZjPv1G8lmBr9KNr+JD4wLEElDUHbRbxyewVs/+QjqLRnDhQz2TtrEZNMWk84uVB1jKPUi/JJs58+fxw9/+ENcunTJ1Xmjsgr2imDCqa0FnBOjCIJg21abnY/eP2jY2UXT6bTvubkbRJn44MxCBQuVBtKigCsmS8imRVy7ZQhf+o934eVXTarlEAXcumsUAPDE6UXTcnAlG0cXoraLsirZnFZsjeiVhplDhVeSzWiP8GNNSRLJpigKnjy3CqCIl14xAaC9Chv0u7ltpICV9SYuLFdx9dRgxzmiVrLRz1GSJP35cviHoqgJBcjqHCvJRu9PYgNeWgnOLgp0r1bXmzJkCIEq2dq2V9Xk15T8ZWGr6Uq25NpFeeIDdyAkG7mb1ko2ohDsJDfCRpHKLgo4t9MsdtH1pgQBCgqZzj6T/tvOLkowkMtiod5EtdHS3yv6/YoyJlsU41gnu6iiKMykW1DkU9KVbEFc518/dBq/96/PIgUZ2yYK+JHrt+hhDMwwNZRHMZtCtSHh3GJVJ936BX5JtmpVTXq1vr5uu11cSrZemcu5cWXZKVmtYGcXjSO7KL0gEGYZjMePQsl25OIqAGD/tmF8+Zfu6mjLady2Zwz/9vwcnjyzhH//su5yhPmOcCWbBZLcSADJVLKx/G51XOPfHMmEX5LNaBc1dgq9ZhedWalhttJEKZvCi3eNd/weOMlG4rJRSra4YrJFKYHfaJBlGavrTbRkIJsWdauwE+j6tnmQKNmCJdmslGwjRWuSjUz8nSxx4+PjyOfzKJVUUpEo2WTFmpxiQRJisomiQ+IDEpONE2xMEPX+wn47PfFBxEq2tl1U7e+c+jend0MQBKw3JKQsSDYzJZvxN4LBYgYygEpdMrU0RRWTTVEUHDhwAE899VTkYz+r++xEsvlNfGBmF3XaP45xsd/YcwDw1w+eAgD8u9t34q0v3q4l3bC+FlFsJ/npxwyjfkk242KVFYy/RxVbsVfmcn5isrFkFjXuG6WN1souSpOtvUKysSjZjl5YAQDs3zZkeRwAeMnuMQDAD88smpaHk2wcXYhLycZKsiW5keXwjiDsovSE2zigZ+kAnOKmRIVms4njl9cgQcRrr92MQq6TaAj63dQzjC7HYxe1ItY4yRYsFEXBUrUJBQL2jJcgMloIO+yiw2pswKBJNjMlm+KgZCP7OfVZ+/btw+23365PQEjweKBNVnjBehKUbIKqZLOMyUbZRbmSzRm6ks1ELUCDKNnIQDc6u6i5ks0p8YFV+YiSTRRkFLT3glXJZsRQPgsFgqmSjZ6MhT2WkyQJKysrKJfLoQaAt1Oy0b8D3ePcoJVsRpKNPqYZ1tfX8dhjj2F6epr5HEHAKvEB67XKsoLZNTVUwXvv3k3Zu+33J+q1fswwGhXJRoPHZOuGn+yivapkA6IjW71kF/WuZNNItq3DtmW6fvswsmkRC5UGTs13ty2cZIsBSW4kgPiUbCx2UTfn75XVDw4VXsldMqggA7UglWxx1ZtGs4UTl8uQFBH33ri1a3UrDLsoAEybxGSLU8mWFGVhv0CWZSxXG1DQXtlnAV0XNmsx2S6FrGRTs4uaJz6g+wpJkpjaDvo3URR0YqzW8F7HiF00G2PiA3WSaUOyEcUVj8nGhJRrJRvb+CUo6Eq2pruYbHZKtpquZOsm2cxIIyu76FAxCwWdSjZaoWU8ZlgTQ5Kdmy5zGHC6t2Z9nNXz8qtkI6Dvs13/ubKygnq9joWFBdfn8AP6PnhpLxerDbRkBYIAjFEqZ3aSLflKNrfPPQ4lG7eLdoNlLhukki1Kks1YBqCbZIsqNl/Y2UUVRcGRC227qB1y6RRu0hIe/NAkLhsn2WJAkhsJIHolm1u7KCfZ+hNe6x3dKbVara7VJDcD+qSQbCcuLaPSaCGfy+Bl+yZDJ9m2x2wX5Uq2aKAq2RpQ4D4eG9mfkGyzPhMf+FGyqTbJ9kCJdaGGRk4LIO9HyVbTiJZcKh4lmyiKanZRoU36GEHIN24XZYPoMiabgGhJtkKmM/GBX7toR0y2bKqL/DCLuWNPspkr2czUcWH1LVGRbGawUrI5kWxBKdlEUWSa9JLforw/9CKosZ6xloMoqMdLuY6Fg34h2WZmZvDwww9jZWWFeR+aZDMmAmOBFyUb4I1A8DKm65W5XBDZRb2SbHHZRc3KFRbMiEgvi0tOdtHppXWsrDeRSQnYt9k5fuNte0YBAE+c4SRbIpDkRgKIXsnmJvGB1/Mn/Z5zeCfZBEHosozSx/GT+CAuHDyrri7fuW8TsmkxApJNzcx1wcQuGqeSjZNswUJVsjUhQ3BFstH1bYpSsvmpG05KtlrTWskGmMcecvNeENUOUaN5ga5ki4lkI0o2NfGB+bNoSAoEqOQRt4s6I6MFWXMK1VdvSQCU2GKyuU184GQXBYB8JtW1Hf3Z2B4b69NIMQcFAiqNdj9sZskJu2+JU8nmpGoLS8lGb2tUapghDpLNGJ/PC8lGrKKbBnOuSIYrNrVjsiV5PrC0tIRWq4Xl5WXmfXpFybaysoKHHnrItUW510g2PzHZ3BB0UYyV7dTLUSvZgiLZnOyiRzWr6FWbB5FLOyc0uo2Ky2Z1Lk6yRYgkNxJAfHZR1gkAV7L1J/woKOkMo1ZKNi8kWxz1RlEUHLu4DAB4zXVbAXSvboVlF51bq+vEQRJisiWF9OwXKIqC5WoTCuDbLlptSFire1eBOSrZWqqSbciBZGO1ixqRy3Ta7rxAzy6aic8uqic+sFWyKboNksMeZFDdkrvVAjQaLRmilrUViINk60x84BSTzc4uSt4BomQz/k7gpGQbKeV0u6hRyRaXXTTqhRonJZtVPKGgsovSi45JU7IFQbLNaQrqTUPuSLbd4yUIArBaa+nZtZMIch1uSLKgSDa374rb93htbU1d6HNBIBqPn+S5XBDZRXvRLhp2e04QlZJNt4o6xGMjuGXXKEQBOL+4jksrnWFUwrw3nGSzQJSNRLPZdH2+qO2iYSnZOMnWW2BNgGEGemBhpWTrlcQH8+UGao0mBAG4fe8kgO53I+h3c6SY0SdvM1onEVd20SgGDhsVkiSpKhMIOlnGArrtLWRTGMqr79usz7hsNIzPnRBYVko2M7uom/cir9nu6kHEZBNjVLIJcEx8AAApMfry9SJyWobNlg0JQUhgIQaSzSrxgVe7aFNWdKtxIZMyXdAxrvxbkWyjpZxuFzWqLaK0i9IEQ9RKNrPfge77YDXJpu+TFyWb0UpvhbhJNrpeuSkHsYtuHsy7GuPnMyns0BT7Sc4w6pZkUxRFf85RKdm8uEQAdBHvrOiVuZyTahiwbiu8EHRRjpXt7KJxJT6wO6cfJZue9EDLLOqEwXwG12xRtzWq2biSrY9RLpfxyCOP4MSJE672S6qSjU8Q+ht+yF3aLmq12t4rSrbpxQpSkFHKplHMZwGEr2QTBAGbBtWskfPlesc5oiDZeEy2aFCutyDJChRFwMRAjnk/Y13Qkx+seI/Lxqpkc7KLeiXZCFlRa/qIydZUyxx34gMBcCTZeEw2NpCEGC0L+y0ANLXfRLSztkb17It6LEF3iQ+sJm8r69pqvqAmAzHbzrgab0WyjZVykBU1Xl1NU9rZ2UXtyu0HcdtFzfpOJ7soPYH0axdNqpLNri66tou6VLIBbfV2kjOMkuug67AdaDLNC8lGk3Ru7KKA+zFiv5NsUcdki0Lhl3S7qBcFt7G8xoWNIxdUku06h6QHNKwso2ESkJxks0BUjUS1WoWiKFhdXXW1H1eyccSBoOyixoGcG7luEuyJ5+fV93Ugn0EmoxIMYZNsADCpkWxza50kWxQydCvCLQnPo5+wXFGfbS6TQj7jHGvCCPKcpob9Zxh1JtkkKEqYMdnUNiOImGwkjlfU0BMfoB2I34hGS43JluIx2ZjQtouqn83GDg2pnfQgLQqRqdiATruooijMMdmsnv1yVZ2M5zOpDhUUDeM5rEi2gXwGKS0+4aLW1tjZRe3K7QdxJj4AzMeqRruoVfsXhF2URclmpoYJG2ahPNxe6+ya2ue4jckG9EbyA7dKNrIdIWfdkmxeiBovC9j0ufqdZIsqJttGs4uakfR+lGwE9PFm1+qYLzcgCsA1U2xKNqBNsj11dsn0XJxkixBRNRKkwrOuiBAkXcnGSbb+RBAkm5mSzU/igzjqzcUFjWQrFfVriINki9ouarY6x5VswWK5qsaiGcybE1dWMNY3omS7HCDJRn+WZKJkcybZPNtFdSWbd5KNxLKKK7uoIAhIiwIAxTm7qBht2XoVRMlmpQwEgLr23ElMtjhINqIYc1IROE38ltfV8WEx06lKoMF6fel0GsMFVX1tJNmslGxhtPFxKtnMfqf/DjvxQS/EZPOjZLusxWSbdGkXBdok23OX3AkPooRXko2Mgcn/iqK4Xlh2axeNimTrp5hsQSjZCDaqXZTOoOyFZLMLv0NUbFduGtDdDiy4cYeqenv+0lrHmJKTbDEgqkbCbWNt3I9l4BAEWGNx+amsSW6YOVQ42VrsYJZd1E/ig6g6DTNcXloDAIwMFPXvIiHZBsyVbFGQbPRnTrKFhxVCslkQV1botouqdSVIko1+1tW6Okm2S3xAqzW8xHMkSjY1S6Q31JNgF9VUdHWLfr4pyaqSjavYmJDXYrI1bRIfECVbNtWpHIoCxC4KqJZRJxWBU7+6UG0CEJDPqr+bTfKsFlzNFAFDGsm2rAWXN5s8eo07xookKtmcYrKZKdncgD5e0mOyGe21bspBxiebPdhFb9+rqk0ePbnQFaA8KfBLstHvGcsx3JBsRnAlWyfczGGCVrLFaReNSsnmRu3rhmSjP7tNekCwbaSA8VIWLVnBsZk2ic9JthgQNclGT0Lc7Gc1sAoarA0TV7L1N4Kyi1op2dys6pHjxYH5FdXKMD48oH9njPnTb3ZR+jzcLhoeCMlmRVxZwdj2TmlKthkfExU7JVul3rawZVLm/UJQMdnqHpVskqzoZEsmRiVbSmvfrK5Dzy7K7aJMIHbRpk1MNkKu5tPWxFRYSIkCstp5q03J14o+AD3bcMGFks2eZMtox7VWspmVL0jErWQzu9d2dlFadeRVyUafu5eUbG6uVVGUtl10yJuS7SV7xiArwBd+eN5V2aOCX5LNrWU0CCUb6xix30k2N0SZEX5jssVhFyX1LA4lm1O7YbfwamcXJUkP3MRjI8e8fru6z2FNDUefi3brBAVOslkgarso4M4ymlS7qHF7L+fgSC6Csov6UbIZ48fEUW+W16oAgE0jnSSbVUyboKCTbOXo7aL05ygl8EnCzMwMLl26FOo5VtaJki3raj/jO7RluAAAvtQA9ko2dXIwkLMmu/3GZCtqx/ZKstEKuGwqPiVbWrOBEuLHiAYJ0s8JNiboiQ9kxXJg3FaydVtoogCxjK43Wo4TXSeV52KlARmCLcnmRsk2UiJKNrUfsUp8EOYiTtzZRe1ispmp+Oh74DUmG10WN0q2KGF2D9y0mUvVpk5+Tw64V7IBwM+8ZCcA4As/PAdJTt68gCbZWK7JSLLRf7sl2dzWCa/Ch34n2fopJpvx3GZKtqgTH7DEcvSiZHvwxBx+8PwsAODG7e5INgC4YfsIAODg+W6SLQxwks0CUSvZAHeWUT9khxdEkfiAI/nwU+/M7KJeVtuMSrY46tBaRSXZtox1Bt0MeyJnpWSLimQzW+XcKCSbJEk4fvw4nn/++VCvmSjZhovuSDYCnWQbIUq2dc9lMU64OpRsDXVRqGQTO853TDafiQ9IdkcAyIgx2kW1czcs+vhGS+KJD1yAKNkURY17ZgZCaOa0dY/ISbYMSX7ArmSzKuNipaEq2TTijsUuavW9KIoYLqj9CCH0zRIf0OUJY9E2iXZRO5KNJjr8kmxAcrOL+lWyERXbWCmLbFr0RDK8Yf8URooZXFyp4f7js8xljwpu521BkmxulWxu32Eeky2YmGxRkmzGZ55OpyGKov4//VuYY1d6wYtuI71kFzXrt545t4Rf/Pun0JQU/OgNW3DLrlHXZbxhG1GyLZueiyvZIkIcJBurko2uyElTsrmdIPTK6geHiqDtoqQD8JL4IC6Sbb0hoVFXSa4dk50rKWEr2SYsYrJFJUM3W+XcKHZRQhQpihLqNa9pQc6HPSrZCLZqSrb5csNXTDPAfBW0rWSzJtlotYYTkWAGogZqeCx/rUXisYkgtycWJVvKyS6q2dT4iIwJOS0mmwKgRakkaTS0dzSXjkfJVsh2k2xeJhsAsFhtQIGgZxv2axcdKWkkW7WTZLM6RtB9rCzLkU3K3YyVze6Dsc8jk8eg7KL9FpNtVkt6sElbEPQyxs9nUnjbi7cDAD73+DmmfaJEL5BsBDwmWydYxiFBKtmiaOeMx02lUrjppptw0003eSZb/ZbDTUw2lv5semkdP/d3P0S1IeFl+ybwP3/qJk9juRs09dsLs2U95Akn2WJAkkk2Gr2uZKOR5IaZQ0XQdlHjRMANyRZljB0aF5aryAgSsikRk5Rd1FimMO2i8+U6ZFmJ3C66kZVsUV3zak2d+I4Uc672M75DI8WMbqvzahklxzKzZlcbGsmWd7aLelWy6XZRrySbRmrlKUVFHEoxZ5JN618FrmRjAanXgBp3z6z9qxOCVds0eruoWnfpxAdW7bSThWmp0oCiCDpx59cuOqbZRVc0Qt/MLkrvG3T/YhzrRjXxo2GnZKP7cTOSzWp/1rLQdlG7vsRMDRM27OyiLOUgiXYmfZBsAPAOzTL6/edmcXHZuxo7DCSZZCPwMrYGOsd4XlWaSZ7LuY3JRl9LUpVsxnMDwNDQEAYG2vOTKOyiRku9n1ikxu/+9/2nsFxt4sYdI/j/fvYWPeapW2waymNqKA9ZAY5eXO06V9D3h5NsFoiqkfASk40uW1KVbF7soklumDlUBGUXtVKy9YJd9PzcCgQoGMhnkMt1EiFhk2zjmgKhJStYXm9GbhfdyEq2qJQX5ZqmZCv6S3wgCAK2jqhqNq/JD4wTLvoe1DQr5kDeWnHnOyabRlQ0fNpFC9lUvCSbaK/Ia7Rk3S7K4QxBIIkFBLQs/KI6ydZDSjZHu6gHJZvZdqNaP7LmYBcNSykdJclGYHU/3NpFjdn6vJJsfatk0zOL5rv2cXMdV24awO1aAoR/ejJZCRCSTLL5WcAGvI9zemUu5zbLuZPS1Ygk2EVZyhUG6OsLOibbidkKAOB33nQdSjZxgFlA1GyHppe7zs+VbH0Gt421cZ+oSDbWhomTbP2NoOyiXgcCiqJ0TQiirjcXFtTVj4Fioes+hE2yZdMiRjXyZW6tHrldlCvZuv8OGmsayUYmwm5BP7Mtw/7ishmVHR12UU3JZpcF1beSjZBsLW/3myjg8plUrP1LWgu+b6XII9lFeeIDduTSIhQAkmSR+EBXssVDshV1kq3la7IBdCc+YInJZqdka5NsTciyYjl5DEspHYeSjWWsbEeyBalko4+TtJhsfpVsJJSFH7sowZtu2goAeOrskqv9woZbB1IcSjYCPySbm3FOr8zlws4uShAHyWaHKJVshGALimSrNSUsVNX37IrJku9ytkm2lY7y2pXVKzjJZoEk20XtSLaw4LTSarU9R38hKLuokbRlJYsUpT2hikvJNrO4BgAYGih2/RY2yQZ0Jj+IK7soJ9nCueZaU9IthaMe7aI0SIbRi8vBKNno+lDTSLbBEBMfFAjJJnm73zUt+H0+HbOSTQvUb6XIa8dk43ZRVpDkB45Ktpiyi5a0usuiZLNbxFQUBUtaTDY3dlGr72mSTVZURbTV5DGsiYeRWIhjvGh1r8lvxmsPQslGn7tflWzELhoEyXbFpGp3O7dYdbVf2IhTycYyRgbcj63Nju9mnNMriQ9Y5rJWyqakxmQzntvutyhINtaFCFa76HK1CUURMDmYsx1vsoJkGCVKNpayegUn2SzQqyQbt4tyhIkg7KJ+Eh/Qg424YrLNL5cBAGND3SsqXtPeu4FOspVrkdtFzQb93C4aHBYrDQhQkBIFDNooxMxgVheCUrKZkQTrhGSzKadZ4gM37wWxBTSakqd7rsdky4T/Xtoho8Vks1LkNSVuF3ULXclmEZON3Gvy6KMm2Qa0uluusyvZzMq4Vm+hKSme7aJmJFsuk0Ihk4IABXNrdcfEB71sF3WjZDMqMejv4ojJ1otKtqDsogCwa1xdyJxeWtfjViYB9DNLml3UCLcLsV6VV70yl2NxZfVaTDaWsVWUiQ9YM5qyKtnIItPeCf8qNgC4XsswemahihVNIcdJtogRVSPhtrEG4mnAwkp80CsNM4eKIJRsQLuuu7WL0gGao+g0zLC4psYGMCY9ACJSslEZRqO2i3IlW/ffQWK+XIcABYVMyjUpYEqyjagTnTASHxACy45ko22mbmOhAG2STVYUXZnkBuvNbrtoPDHZ1GfZtCCkyQSSK9nYoWYYFdCyeBd1ki0uJRtFsvnJLrpUUeOmZdIpPYGG38QHgiCgmG2TbFaJD/rJLmqEk13USslmvEde7aJJVbKZ1UV3JJumZBvyr2TbPJhHNi1CkpVEJT+IU8nmdA+tlGzcLqrCT+IDL1bTjWgXDVrJtlRtQAawNwCrKACMlrLYOaYS+IcvtC2jdmX1Ck6yxQw/SjZ6tY0gKUo2P+fgSC78TFRpYqzRaOjf0f87dQBmA92o681qWbUuTI0Odf3W73ZRHpOt++8gsVBuQIAazykIkm1rwHZRs8QHQyHaRUu5tJpxEwpW191n39btojGTbJk0UbJZJz4AwGOyuUAunbJVspH4d1nR2R4UBkjW3XKt5bgYYkdAL2okG4lPCJgrKViVbKmU2raUcmkIUEkRp8QHvUyyEbiJyWZmFzXeI792UTdKNq/n8QI7IoGF4Lm8SmKy+VeyiaKgT4bPLgRvGV1YWEC5XHa9n9t5G4/JlhywCkYIaEWaVTtJI+l20TDL4NahxKpkW642NSVbt7DBK/S4bBeWO8rASbaIkFS76EK5ju8cnYGiKLYvVNDl50o2DsAfyQZ0Zhilj+NWyZZKpWKZLMuygmpVXVHdPmlNsoVZNppki9ouajZw2Ih20bBItjlNyVbMpj3XITMlm1e7KIG5ko0kPnDOLuqVZBNFETmNoFr2RLK17aKxKtm0+9C0tIsqgGYT5ko2NpB6YRWTjRCX6ZgSHwyaKNm82EUJyVbKtclsr0o2Qh4JgoBSNr2h7aJm57Yj2YwLfH7toixKtjjGx36UbKvrLf29mwwgJhsA7CIkW8Bx2Wq1Gg4fPoyjR4+63teNkk1RFFObYb8p2XohJpuiKLZtLYFZW0FfXy9mF+1pJZuW+GdPQHZRALhRi8v2w9OLTGX1Ck6yWSAOuygLyfaBzz2Dj/zTQRy+sOJYMYOEWyUbJ9n6E34nqvRKHsDu3SegV5KiWJkxYq5cg6i0IAjA9onhrt8jJdnKPLtolIhiELlQbkCEPyUbjS1DqpJtqdrUCSc3sFOykQQNdtlF/cZkEwQB+UwKAtTVTLeoJcQu6qRka0oyBAFIcYKNGYRks1aydcZkizqGJ1GyrdX82UV1ki3vjmQz+55WGBRzKYhA39tFrcAak804WY4ju6jb8/iBGeHKeq3EKjpcyCCf6V6Y8XINO7W4bOcWKq73tcP6urrwRFwVbuCWZCOg76lxwdkOvUCy9cJcji6X27ks/QySSrLZIey5An1s1rrHomRTFDU5jwIhMLsoALzy6kkAwMMvLGC11gxtPpl23qQT9XodTzzxBM6cOYNqtYrJyUncfPPN2LNnT6AFixtxKNlarZatQu3Q9DIePbWAHBQcml7BzbvGu7YJq6KwxtOJg/jgiA5Bk2zkOG4TH8RFsp2bX4MABaVcBgPFQtfvkZBsA6o6iWcXjRaRxmTLuldqmr0PQ4U0itkUqg0JMys11yuBxomlPuCUFTQkCSkAwwxKNrNjsUAl2UQIgoTlqvvJECHZCnGTbETJZqJakWVFVWOJQMRiq55GLqPaRVuSvZItE5OSjSQ+qLhIfGAak02r9wMOSjYrFZrZNmpMNk3JVq5DHorWLkrb58i4NyxY3Vuz+0O3UcY2z0ql4QUsSjZadUOXI2zYKdmc0LaKtjNjB6ZkC9guSsg1L2XySrLR9zFquyjLmIW2RLLuY1aupM7/WNVogHrf6HeQfv/d2DKjHCuzKNnCfDZBKtnIMcr1FpqSDFEUsENrC4LAvs2DuHLTAF6YLeP7x2YxFRIJyUyyPfLII/j4xz+OL3/5y2g0GhgZGUGhUMDi4iLq9Tr27t2LX/iFX8D73vc+DA4OBlrIOBAHyUZkxUYiguBTD54GAAhQJ2MzWocWBdxOkLiSrT8RlF2UwO2qsJnsPsp6Mz2nBsksFfKm96Df7aJWSja7xYF+QTQx2dp20SBisgmCgC3DeZycq2Bmed0zyUYnMADQER9tqMhGshnLyQJBEJBPpyCg6dEumqyYbGZ20SZZwAJPfOAGqpJNcIzJlo4ru2iePfGBXTiOBRMlG8t7ZWYXpZVspZya+GB2pQZ5yt4uGpaSLZvNRkayGeE1JlsY2UXN+s+4Fq+CULKRpAfGfTyRbONqn3UuYLsoIdm8jF+CJNlIUiC79okm2ZzqhbGfc0OuWI33WNALczm3JBvQrWRzUkTbKdnCHqfHbRe1Uvt6UXCT75Y0B8OO0ZKepT0ovHH/FD7+/RfwjSMzeO9VMdpF3/zmN+MnfuInsG3bNnzrW9/C2toaFhYWMD09jWq1ihMnTuA3f/M38b3vfQ9XXXUVvvOd7wRayH6G8YFaWUYvLK/j64dnAAD7t6mxoJ45t9y1XS8p2axUMhzJhZcMgTSclGxuEh/EMRm9tLgKABgsma+oBLHK7QRCsi1Vm3o8oqizi/oZjCUJK+tNfOfZy6jU3a0mh6dkayc+CCImGwBsHdGSH3jIMGqlZFtZb0KEgmxKRDZtHwSYRWFjt39O8/ut+LCL5qiYbHGA3KOmJHf3+ZQSi9tF2dGOydZ9TwE6Jpt7BWUQoGOy+VKyaSQbncWXRclGYEaytWOyAfPldrtgpWQLKyZbNqsS9FG8m1YkZBwkG30co2KNwHjPk6BkcybZ1IX/zVrSA+M+3kg2zS66WA30HtBzLa/P0Hgcp+3pe0q/a05xbY2/uymvnzlZ0DHZZFnGwYMHcfr0aebjBgmz95t1H69xyel7sVHsokEq2ZYqDdUquim4pAcEb9g/BQD4wfNzaMrmcxu/YFKyve51r8P/+T//R+8Qjdi7dy/27t2Ld7/73Th69CguXrwYaCHjQFQdmrHCW62K/O1DpyHJCu66chz/8a6t+ON/eAHPzqxiZb2JYZuYOEHAbGBgBT/kAifZko8kKdnisIvOLq8BAEYHzUm2KJRsI4UM0qKAlqxgtaa2F3Eq2cjnqGMeBYHf/soRfPnARUwM5PDB11yJt79kp+VqWRTxcebLdaQExRPJZvU+TA2pE55LHpIfWCnZiKosl3Ymu0VR7Lh3bq9LjcmmYHndg120RdtFO5OtRAlSp0QoqLdkPV4RQKvbFIhcycYMkl3UMvGBpJFs2ue4lGz+Y7Kp79pgPgNA/dtr4oOOmGzZFARBwUK5BqBgetwwLEayLOv9eBQkm5Nd1GwSHBbJRp+b7i/NlExxkWx+lGyXV1XCdjJAJdv20SJEAag2JMyV63rWUr+gY7E5KcloGK/BKcyP1TUTS7Isy2i1WshkrOdxxnkhy/m8xGQzG9exguU5V6tVLC0toVwuxxJiyo1IwKuSjcBKyRam6yNpdlE/2UXJd8tVlWQLMukBwbVbhrBrvIizC1WcmK1gz3Aq8PvD1Kr80i/9kiXBZsR1112H1772tb4KlQREvWpEQFZFFEXBkQsreGG2jJmVdXz+h+cBAP/+ZXuxf+swxktZNCXgy89c6Ng/DOLBaiXGDFzJ1t/wS7JZKdlYV1nMUmhHWW8WVtTgu5Mj5qsqUZBsoihgYoCo2aIl2YwTDoJezDDakmR877lZACq59VtfOYrX/+kDuuXFiGhisqlKtkJAiQ8AYEuASjZy3UsV1daazziTgVbqGBYIgoCcpgLzkvhgvZEMu2iOItXqBstoUyODRAAiJ9iYkcuIgGKT+ECzChPOPGqSrZQlSjbnoMp2KonFiqoOGnSR+MDq7w4lW06Nyba23kBLkk3VHWGMJ2nlDyEW4hj7xW0Xpe+1WX/Sy0q2TQEq2bJpEVuG1T7sXIBx2YwkGyvMroE1Q6zx/WKJy6YoSmRKtrBJNisnRFRgVaMB3c/Kq5LNzz1lBcvYJkolGyvBy6RkqzahANg7GbySTRAEXc125OKqbVm9wteoo1wuY3V1teNfvyBuku1//+AkfuzjD+GeP7kfd3zs+yjXW9i3aQCvvErNiHH9tmEoAP7xiXOmZfVafifZutsGxu+5OZKFsEi2Xkl8sFJWB3mbR4dMfy+VSshmsxgZGQm1HG3LaDuuSBiwUjJFMXAIGwenl7FWa2G4kMHvvvk6jJeyODVXwd89fMZ0+7BJNllWsKiRV6VsOjAl29ZhdcIzs+xOyUYfhzx/8h0hvFgSNPgl2fIZUVOyebCLakq2fLpblRElUqIIQSBKts4JE1FcpWIK0N+ryKdTUCBYKtnWNatwJiaSbVBTstWaMogj2IuSjcSkGaISjJipKcyUR1bbiKKIXFpERhQgAqjUJds4b0G2d2SMm8lkIpn4OY1ZzMgBOhxFWHZR2kpvdv1xLUL7ismmKdmCTHwAtC2jQSY/CJJkY0leYFb/yHjYjqRjqRtmvyVRyUaOF9dcz7hoaAevSjY7u6jZ5yDAckzjHOvi8jp+/M8fxl/cfzKwMgVpF23HZGtADknJBgA/sn8LAOD5S2tomYTz8AvXo47Tp0/jR3/0R1EqlTA8PIzR0VGMjo5iZGQEo6OjgRYuTkRNspFK2Ww2sVCu43//2wsA1Ng8BB+8Zx8EQc148qItQ0inRDx3aQ1Pnl3St/Ezgfj20Ut40W99E3/z0GnTMqrqulV8/7nLlvfHj5KNI/lw00mZIQy7aFRotGQsr6mDvG0T5iRbOp3GHXfcgWuuuSbUshCSbTFAJVu1WsX09LRpJitj/Bhj59iLJNsDx+cBAHdfOYF33bEbv//j+wEA//TktK4uohE2ybZUbUBWoCvEgkh8ALSVbDMelGwEZko2QCU6wifZUhDgLSZbXSNa4layiaKItHYPicKKgMRkywjtbTmcQWL1SZK5kq3aiDfxQSnXXlAiCTi8TDYWtZhsQ0XvSjbjYhb5briQhggFK7WmbZy3IMdqhJCgSbYwx4JuxqphK9mM5ybHMiNZelHJdnFZ7WNIHFDjPl77TZ1kCzD5Aa2o9EomESWmkxINsCfZ7PY3qxssJBuBmzGaH5KNJZxGUpRsXuyiXpRs9FjZWIYwwGIXJef/3OPncOD8Mj72jefw375+LJBnYpwvsCq4rZRsLVnGaq0JRRGwdzIcku2G7cPYNlJAvaXgzEKwcR8BF9lFCd75zncCAP7mb/4Gmzdv7tv4IVGvGmWzWdRqNbRaLfz5v51EpSHh+m3D+Mov3YV6S0a9JWGk2I5fkc+kcMP2ERw+BfzF/adw2+4xAN47/oVyHb/6xcOot2R8/Psn8DO379TjxsyvreP+52fxwlwFD35L7eT+8G3X46dv29l1HG4X7W+ErWRzyvQUp5LtwRNzkKUmhrJpXL11zHK7KNrESc0uulhpYmcpmHtw+vRpzM3NIZvNYtOmTQA6lWzNZlPPhEWQTqfRbDb151JrSvhvXz+GW3aN4s03bfNdpjDxwIk5AMDLr5oAANxz7WZMDOQwX67je8cu4w3aChdB2DHZSBbBYkb0lWWyi2QjSjaXJJu9kk0taz7DFpONwIs6j/RDKz6yixay8ZJsgiCoz1SLyUZDJXSV2GyNvYpcWoQCQLKYtKw3iJItHoVgJiUinxFRa8qoaGVxyi5qrJtNSdbr/XAhh4UV66Dddu8ZWZw1xsoZzqchripYXTcn2cK0i0ZFshFYWWFphB2TzdgG2SnZei0mW0uScUlTsm2zINm8XsPOMS3D6ELF0/5GKIrSoWTzqkbMZDJoNpu2yQ+CItno2KYs5U2yki0uuBkD+FWy0fvSSIpd9FtHL+m/ferB0yjXW3jp3nE8fXYJ5xar+M+vfxGu3WouJrCCVRvpRcEtiiJWqk0oCpBJp/Q5T9AQBAGvu24zHnzsPM4uVOIn2Q4dOoSnnnoKV199daAFSRqiXjUiJNvMUhmffUyNv/Zf3nA1RFFAIZtCWuie4N29bxKfO72M7x67jOOX13DV5kHm8x65sIJNQzk9dsLv/Muz+orpUrWJrxy4gJ++bScURcGHPv8M6heXoUCdKEiygk/82wt424u3I20RJNzL/eMkW/IRNMnmNhsnPeAwlilsfPXABYhQcNXmAWQzrpvOQNFWsjWAUjAdNxko0gM+KyUbARlkkvN/9rGz+Myj6r9yvYV33r7Ld7nCwEq1iYPnlwEAL9unWvAzKRE/det2/O8fnMTnnjhvS7KFMVCaX6sDUHT1cmAx2TSSbWW9iWqjhWKWre7Sz9k4GVzRSTZnxR09KPVGsml20Wrd1b5A2zKYS6egyHEr2QSIArrtoi0ZIhRuF3UJEquvZRGTrdrUFFMxkpcDuQxqzTqqTXObPdDZphrLSGzZggAMFrJYMNmGgKVeG/tbVckmY3U9XrtoFEo2K5ItSiWbcVtjGAYavaZkm12rQ5IVZFJCeHbRgJRsJFkBgRcySRAE5phqZHsjyPNnIdnIgqaiKLbltSJyk0Cyxa1k8zJ/8atkszpekGA5Jl0PTs2VcWK2jLQo4Fff+CL8wdeP4R+fOI9/fOK8vv3yehNffP+dru5V0HZREiphfDAX6rjt1l1jeOAxAbNr9cCfj+tRx2233Ybz5887b9jjiLpDI7LjLz91Dg1Jxp1XjOPuK1WFxfT0NB5++GHMz8937LNpKI/XX6sG7fuL+08BYOsMP/f4OfzYxx/CK/7oB/jE90/ga4dm8NWDFyEKwI/ftBUA8LcPn4GiKPj64Us4cG4Z6ZSAN920HU/+xj0YL2VxfnEdXz3YnUWWK9n6G35JNivrGH08u449LrvoekPCd49dhgAFV00Nxp5Js02ytROl+IVZvDVayUZ+o38n30uShKYkd1jNf+NLR/D5J875LlcYeOTkPGQFuHLTQIe15e2aOvfBE3M4bxjQh06yVdSkB4Rk80JIAd11YTCfwaBmXSN2HhaYkWzkuyWKZHOCb5KNJD7wpGQjdlExViVbOp1GShSQgtylZGtIKskmCpxkc4Oc5gOVrGKyaeqxOBWCJC7buoNdlMBYN8l7NlLI6AuaVn2PlV2U/mxUsg3lM0hBwWqEdlFCsqXTaU9EVVCwI9nCjsnWa0o2ljJc1GJ+Tg3nIYrmah7vSjaVZAsq8QGtYgPiI9ncKNm8ujeSqGSLe67nRslG4CUmm5kbIAl20W8dvQwAuOOKcfz7l+3Fn739ZkwMZHHj9mG8587dyGdEPHNuGfcfn3N1fq/ZRa1U1GSRaWIgmIzCVrhu6xAUqAnQmq1gk7i5HnX81V/9Ff7wD/8Qn/70p/HUU0/h0KFDHf/6BXHYRRfKdTx5WiXS/usbXqS/MCShRLlc7iibIAh43yuvAAB85cAFXDAJbH1heb3j+8dPLeD/+coRAOoq///49nH80ueeBgD8h5fvxe+8aT8KmRSeu7SGHxyfw8e+cQwCFNy6awwv2jKE0VIW//5lewEAf/5vL0A2DHC9rBBYfeZIHoJUspnFiqHPYQY6u2iUA/TvHruMWqOJ4UIGU0P5xJBs82V1sBgkyWY16SCf6Y6U7rj/9dBFXFypYWIgh/fcuRsA8GtfOoyvHOjMgJwEEKvoy/ZNdHy/c7yIl+2bgKIAn/9hJ0EYhZJNgKIrzYKKyQYAW0aIZZQ9+YHdAFG3izIkaKDfFS/XRIi8cq2FlkmsPDvUEhKTLZvNIi0KyEDqjsnWkiFoSjYrKyBHN3IZUU98YFbnVZJNQVqwHsiHjQGN3K7YKNno74zPnrgLRovZromLEU52UaA7+/VQIYMUVEuqnZItLLtoGCSeEaxKNnpSTL+HxsUn4/33UvYkk2xelWxknkFbRY37+FWyLVQaKNedkww4ISiSLaiYbHaJD2hyh+V9MZ7Pj/AhrJhsrOUJGn7son6VbGGSbG7sooqi6FbR112ninTuvXErnvzN1+IrH7gbH33TdfhZzYHyP797wtVzCjK7KADMafObicGC6e9BYedYEfl0CpKs4GxAlnQC16OOubk5nDx5Ej/3cz+H2267DTfddBNuvvlm/X8OdyCVLJvN4tD0ClKQ8bprN+PGHSP6NqQBN06CBUHATTtGcMfecbRkBX/14KmOSn1+sYrX/cn9eNkffh8f+acDeOTkPN7/D0+jJSv4sRu24H+9/SZsHlIn63smSvjwPVdhuJjBT9yyHQBw3+eewfTSOjYN5nDLrlH92D/70p0Yyqdxcq6Cb1K+blImuoxe7gVHchE0yWb2t109iCsm278cvIgUFFy1eTCWpAtGEJKNxPEKouMm95ZVySaKYoeSjahpf+6u3fjte6/Fe+7cDUUBfv9rx7oscnFCURQ96cHLNasojXe8RFWzGRMghB+TjZBswSrZAGBq2H3yAzsl29q6Wu8KWWey2W9MNqJYEqBgteZugqXHZKNItjiQzWaREgWkBbnrXWhKCkQAKUGIhQjqVRC7qGRpF5UgAEiLnQRTlNBJtrr6zM0sRGbvGcESIdlKWdMFKRpulGxtu2gGKUHG6nqrb2OyWR3b7txh20WNzyNJiQ+8xmQjJNvWEEi2wXwGYyU1JnUQk2BjDLWNomRz2i/KmGy9RrJ5UbLR12tHqPsFy70k519db+DA+SUAwOuu3Wy67S++4grkMyIOnl/GD1yo2YK0i56aK+O5y6qw6Kop9lBYXiCKAraNqkT+ydm1YI/tdof3vve9uPnmm/Hoo4/i1KlTOH36dMf//YKoV40gpvHcpVWkIeNdd+zu2MaOZAOgq9k+/8R5zK3V9W0+9o1jqDQkyArwxacv4Gc+9TgWKw1cv20Yf/wTN+LNN23D9/7TK/HHP3EDPvcfbtcVA++5Sz3/mrZi9IFX7UUm1VatDOYz+Lm79gAAPv79FzrulZ9VE47kI0i7qHEQxxL/xayjC7seraw38YPn5yBAwdUJsIoCwMQAUbIFbxf1omR78swCnru0hmI2hZ+9fRcEQcCv/8g1mBrKY26tjq8c6LaWx4VT8xVcWF5HNiXi9r3dCSzuuWYzxktZzK3V8TSVuTl8JZtqFy1kUr4UTWZ1YStJfuDTLqor2XSSzTm+mx+7qHruNtFGFHSsSJaSTUTaxC7alNpKNk6ysYMkPmhZvIvVhgQBCjIpewVYmCAZRkniA8Bewd9tF1Xb99FiW/Vl1f/YXZ8ZySYIgm4XrTRakEy6EJY+2S2izi5KYPXeG0k0sm2YJBuB3cQ7LqeHnZLNDhdDVLIBwVpGg7aLsiQ+MIObmGysJJuVko0FUcVkiwtxKdnosXKY94BFyXZyrgwBwM07R7B5yNyGOTmY03mIP/3OceYyG+cLfki2P/zmc5AUVQB0xaZwSTYA2DGuJlc5NVcO9LiuRx1nz57FH/7hH+L222/H7t27sWvXro5/ceKjH/2o3jmSf1NTU56OFXWH9uT5VdRbMkYLIu64YrxjGyeS7eX7JnDjjhGsNyX85leOQJIVnJ6v4OuHL0EUgD/96ZvwiqtUxcbkYA5/+a5bdAXCQC6Nn7x1B7YMtzvGKyYH9O1v3DGC116zueN8gKpWKWVTODazih8832a6/ZBscTfAHM4IS8lGf2ZRstExU8LGt45eQkOSsW+yiImBXCJINhJYuNyQUG9JoZNsZko2QRD077/89DQANabZcFG1UGTTIn5OI+w/9cCpLmt5XHhQW5m7dfeoaRKAbFrUlcTHL7dXtcIm2RYqdYhQUMw5WzDNYLcPGUxdXnNPshknnIqiYFWb/LMkUfAbkw1QSTIB7uOyJSUmWyaTQUoUkBEk65hsYjxqq14FHZPN2P5JsqInlCAkWxzPncRkq9StFRx2dlESk220mNXrRhAx2cjf+YyIYlr9bWm9W00VZky2pCU+MC4qhEGyGc+dxMQHnpVsS+GSbEEmPzCSbF7ViElUshl/o8/rNG7hSjbrffzEZBMolXpcdlFy/lOzZQhQ8Prr7LmRX3j5XhQyKRycXmFWswWVXfSHZxb1uHF3XzkRyQIZIfFjJ9le/epX4+DBg4EWIkhcd911mJmZ0f8dPnzY03Gi7tC+eUy1L103NQABhgGjwcZltlLxZ2+/CUP5NI5eXMX9z8/iG0dmAADvvH0Xfvzmbfj0e1+C73z45fjmB1/WQahZ4aNvug5vffE2/MlP3Qigk50GgJFiFu98qUqq/sUDJ7v293L/OMkWPOr1um28B9ZjLC4uAghPyUZ/tuuE4ojJ9q+H1HfpnhepxHMS1CalXBrjpSwUCFipNgPpuO0SH9gp2S6v1nDkwjJSooD33r2745jvuH0nBnJpnJgtuw6iGhYOTa8AAF66d9xym32bBwAAxy+3O9ywSba5spb4gCFjpxns3odNWlgAonRmgdkAEQAaLQkVTeUcGcmWTgFQsFJlJ9kURUGt1baLei1DECAx2dKQUWt0TqiakgxRULhd1CVy2jNtmUiwqto9VpVsQqSLMjSIXXSNUrJZkSdmz562i46OjmLHjh3Ys2eP6bnckmyEPN88qC6KLJq8W/1gF7WC8R4ZFYVGgtFqAukGVnZRFpItKtgp2eyeE0mqE4ZdFAB2ESVbCCRbmHZRAjuSjTUmmxtlqdk7H6ZdlIUUDqoueIVXmy3ArmSjz0UvSLM+u3q9jlOnTqFW8+Y6sIIoiqg1JZxfWocAOJJsEwM5vP0lOwCoTjgWBGEXVRQFf/C1YwCAm3aOYXwgFw3JpinZzsxXAhUEuC75vffeiw9/+MP46Ec/in/+53/GV7/61Y5/cSOdTmNqakr/NznZHXOHBVEq2cq1Fh4+tQwAuGbrUFeD7aRkA4Bd4yX86dtvAiDg0IUVXF6pYSifxodfe5W+zb7NgxgfaKfWtsOeiRL+5KduwhWTA5bEynvu3I20KOCxU4s4NL3csQ1XssWPRqOBxx57zDPRTHDixAkcOnQI8/Pzvkk2Wv3kRclm1SiHBVlW8NQZlWC8Y+8ogOSoTXZPlKCgre7xcx8URdEHc05KNqME/vFTixCh4M03bsV2La4BwVA+g3doHfVfPpCMcAJntJguV0wOWG5zlSZPt1KyhVHnZpbXIUDBYN6fks2sbJNauz/rgmSjj0uXZ1mLHScIbHZRPzHZCHIZUVOysdtFm5KiZ57MJcAumhIFCFBQa3SSGdwu6g2qXVQwVbLpmUWFeO/rgKZkK1OxBK3GPWb1kthFR4oZpFIpXHHFFRgeHjY9F0viA6OSDQAmimoZFyrWJFsYdtGosot6UbIlwS7aS0o2RVFCjclGH3fGJMGbWwQVky2oxAdR2UWjUrJZlbGXlGzGbaKyi87MzODcuXO4cMF9wjCn6zo5V4asKNi3qYg9EyXH4735pm0AgO8du6z3qXYwJj5gzS5Kl/sbRy7hwPllFLMpvFpz0UXRf08N55FOCai3JJwOMPmB65K/733vw/T0NH73d38XP/mTP4kf//Ef1/+95S1vCaxgXnHixAls3boVe/bswdvf/nbHOHH1eh2rq6sd/wB3clw/UBQFxy6tQlIEbBktYbSY7egA6MmvHckGAK9+0Wa8V4uVJgD48Guv0oOF+oHxxSHYOlLAm27cCgD4C20C7WfQxEm2YFGr1aAoCqpVfyt/ZEXl8uXLgUxUycDCC8lGd3RRTJZPzVdQaUjIZ0TsGFGJiqSQbLvGi1DQTnPtl2QjcKNkO79cw6n5MkRBwS+9+krTY//cXXuQFgU8emoBhzUVWZw4q8V0IfYTM1y1WSXZTsy2lWz0anPQKoN6S8Ksll10MJ/xNagwV7KpdtH5AJRsS5U6REFBLp1CKuVczqDsogD0us6CGpVgIG67qCiKSGntXq3eSRQ2W4pmF+Ukmxu0Y7KZKdnUZ1/KiF31N0roiQ8aLUtCxWp8BbRjEI4Wncdxdko2AjPiZLyovlskvqfZ9kGOzaJOXmR1bCsSzUhOhGkXTWLiAy9KttVaS8/6GZZdlJBsF13EFbUCUbJ5yfiYdLuoEWaEsRXIfSDl8kOyOW3TKySbWyWbX7soed52cf6MYLkuQRBw5KK6aHzvDVuZjnvj9mFsGymg2pDwg+dnHbcPQsn29cOqc+jdd+7GUCHbcbwwkU6lMDmQgwAFRy4EN09xXXISk8fsn19bml/cfvvt+MxnPoNvfetb+NSnPoVLly7hzjvvxMLCguU+H/vYxzA8PKz/27Fjh+05Ll68iEceeQRra/4zUJAJ67GLq1AA3LBTtS/RDS79txPJBgA/f/ce3Lh9BDdsH8bPanbOIMoJmFf0//DyvQCAbxyewfnFqievu9VnDn8wi7HlBeS9XlhY0OtjECSbF7soXfejGKCTxva6rcOAQdUVN3aPq0q2lar/DKNWK4xGJZuRZCMJDW7fPWqpDNs6UsC9Ghn/v753wnMZg8BaralnZLUj2a7cNABBABYrDcyXVWIqTLvoJS3rZz6jxknyo2QDut8Jko12bq3O/L4Y3zVy/KVqAykoyKdFfSXfDn4THwiCgHxahADFHcmmxWMTBCCbipdkA4BUWr1X9Xon0dmQZAjg2UXdwi676Lr27IlNOK77SmKylesty/7K1i6qk2zO75mbxAf03yMFtYyzlW6VaNB9rLH/iNIuyqpkMyPZjKoUs/1ZYDxHkmOyuSHZSNKDsVK2K+N08CSbfyUbIdlyObVfjCLxgVm/4zbxAQvpbXY+VoLHzLnAil5QshHEQbKxqoLJPiwWZOM+djg5V8b0cg2iIODe69li1QuCgB+7YQsA4F818oulHH5ItsPanOvuKydM1ZhhQRAEbBrMQwBw9OJqYMftqxHdG9/4RrztbW/D9ddfj3vuuQdf+9rXAACf/vSnLff5tV/7NaysrOj/zp8/D8C6UiwsLKDZbGJlxR/TWWtK+NdDF/AvBy9isdpALpPCDTvUTHd0g+2WZEulRLzqRZvw5pu26gF//cJupfWaLUN42b4JyArw1w+d9mUX5QgWZjYIL6BjdRFy2U+j59UuGscAnTT4128b7ogHlwToSrYA7KJWKi1jp0knPri81sCjp5cAAD96vXkqcIJfetUVSIkCvnvsMh45Oe+5nH5BVGwTA1kM5q0nroVsCjs06+vxy2sddQ8Ivs4Rq83UUK7LnskKu30mBtQVwYYkMxNVVpPOpXIdacjIZ1KRkWw5LfHBiovEB/VmOx6bIAixk2zpDCHZDEo2PfEBJ9ncIJdR75VZdlGiZCtkusmlKKHHZKtZK9ns6mU7u6g/JZsZyUa+G86p311ejYZkI4iqD7e6v1Ykm9kEkX5m/W4XNSN9na7VKumBcR9/JJuqxl6rt7Bac5cAx1geQrLl8+oxg1CyuSESCGjFmFUZglB+RqFkcxuTLQ5EqWSj93GjZCO/uxEtsVzX/31qGgoE7BovYnyA3eH2I9erJNv3j83qsU6t4FfJtlxt6GP0/VuH9eNE0X8LgqAvRseqZAOA+++/H/feey+uvPJK7Nu3D29605vw4IMPBlaooFAqlXD99dfjxAlr9UQul8PQ0FDHP8C6Uhitm14wt1bHa/7f+/HBf3wGp+ZV7+97796LwaLa4Psh2fwMWmq1Go4cOdJFINqttALAL778CgDAF354Xk9V7+X8cTfA/QZj5+AVZo19XEo2s/OHSrJp9sb924aZswtFhd1aoM4gSDYvSrbvHpuFrAjYt2kAU4P2sR6v3DSId96+EwDw+/96TI+VFTXaVlHneBRXackPTlwud93boJVsxAIzpSUo8JP4AOiuC7l0CiOaGmauzGYZNfYzpEzL6w2kBYmZZPMbk00QBMouyh6TbV3PLNquu17LEAQyGY3obJqTbFzJ5g75TAoKBLRsYrIVM9EN0s2g20UpJZsbu6iuZGMI++GWZCN/DxGSzcRKHnRGPCNZFaWSzQosSragSDYC4/NIEsnmScm2QuKx5bt+C4pkK2bTuqJzxodllCbEglKyGeuI1fZGkP0Ba1LFb0w2gP099kqysRJqcSvZvIwBglCyuYnJ5kXJZjy3EZKs4ItPT0MBcO2WIVf1/Ybtw9g+WsB6U8K/PWefvMyKZDM7n1HpB7RFDbvHixguZkz7rbCgKtnadtGg6qfrkn/2s5/FPffcg2KxiPvuuw8f+MAHUCgU8JrXvAaf+9znAilUUKjX6zh27Bi2bNkS2DGNSQi84ItPT+PC8jomSlnctnsM/+6lu/Dh115tGkTTLcnmB3Nzc5ifn8exY8dMG0Or89115Th2jxex3pRwbMY5pp3xuFafOfwhaLsojSBINrdKNqsBeliQZQVHL6qN/g3bk0qyCSjXJTQl65VQFjiRbEYlW60p4elzy5Ah4rY9Y0zn/tA9V2Ewn8azM6v456emPZfVD9SkBwp2jTiTQ/s2t5Mf+AkIzAJigSFkZdB2UYBKfrDqjmQzHn+l2kAaMgoelGxeycN8RrOLulCyEbtoPt05uI2NZMuq96rZMJJsCoSYA/T3InLaczWzi5IVd/Ls4ybZyvWW5STLahFTkhVduTni0i5qrOOTk5MoFAr6IjK9TSmrvdc1WY+rZdwmqLEZ3W5GFfKBVclmF5NNlmU0WjIePbWI09rCeBB2UTvyw8v4uFqt4sKFC577J6PSkMBRyWaR9MC4Dz2x9oItw/4to0TEkE6nO0gyVtDPkCa+rEgRu2OTY9jt3wtKNlaSLSjC1Su8KNkIoorJRvbxomSzwgMn5nB5tY58Jo29kwOu2gdBEPCjmmX0a4cv2m7rNW4l2e6QJmq4fvtIx3GiItnGB3LIiGqMyekl/7Z0wAPJ9gd/8Af4oz/6I3zhC1/Afffdhw9+8IP4whe+gP/+3/87fu/3fi+QQnnFr/zKr+D+++/H6dOn8fjjj+MnfuInsLq6ine/+92ujxWmku1rmrf5A6+6AnddOYHxgZylv59+0YzZ/4JWspFrqtVqmJmZ6freqqILgoBbd6tW12Mza8zn5yRbuKBXaL3eW3pfekIdhF3UWJ+cYhbQ1xDFAJ0kPShkUrhiciBxJNtwMYORYkZPfhCUko0mZ82UbIqiYLHSgKSondKmwTzTgGCslMV9r94HAPjjbz+PSt39Sp1fnF2oYEKoYNP6OVy+fNl2W1rJFhXJtmnQu5KNhlld2KSp5ObKbCoAqwkhIdnymWhisgFAXou/5cYuWtPsokYlW1wgSjZj/J5Gi9hF4yODehGEZAPUe0ijHZMtZrsolV3UrV10db0JUmVHCu6UbEbs2rULt99+O7LZ9nFIeXLpFPKZFGQIOL/YmSQp6D6W9BNkkSzsPtyJ4DDb1opke/LMIh49tYhf/eLhrv1Zy2/cLujEB6dOncKJEyewuLjIVB67c5rVJ0uSjdEu6heExLvgg2QjVtFMJsNMfNCg64nVvM1qezN4IdlY4xYTcCVb5zmjsIvS6ka6rQuTZLO6rv/7pLqoff32EaREwfW9/7Hr1ZjK33/O3jJqXKiwU+8Z53NA2zl0w7bhjv2j6L9FUURKFLBtVG1jiMCCoNFoYGlpyfW9c13yU6dO4d577+36/k1vehNOnz7t9nCBYnp6Gu94xztw9dVX461vfSuy2Swee+wx7Nq1y/WxnEg2r0kezi1UcWh6BaIA3HPtJv17QWing/ZjF/UD+prPnj3LROoR3LJrFABw7BI7yWZ3fg7/CKJDo+v55s3tuFthKNmc5NRRr4IfvrAMALh26xBSopA4kg2gkh+sN3zdB/o5mx3HqGRbqjagANg2VtS/Z8G77tyFXeNFzK3V8dnHznour1ecWaiiILQwUsygXC7bbrtvk6Zkm13rau+DrnNk0jA5qE6C/SrZzOBVyWacdK6sN5ASZOQijMmWJzHZPCQ+SIpdNKcRHC3DZKwpyRC4XdQ1cukUyFvYlDrbHz0mWzpmko3EZLNJfGBlF13UrKKDuTSyaefyu7Vl09sM5zO2JFvQdlFjXNYoxn5OSjajopD+vdmS8OzMKmQAT5xe7Ery5XZRmewbdOIDMndwk5nQ6hxulGxkkYiFZPPzrLdpdlQ/SjZCsmWzWd8kG8CWIZTe3gin/YOwi4atZDMjZ5OsZGNBECQb3aa4JTqDsouuVJv4zrPqgvKLd40xlcGI/duGsHOsiFpTxjcOX7Lczo2SzZRkIzGwt6skW6FQ6Pg/TJAy7NbmNE+dXer4/bnnnsPBgwcd5w1GuB557NixA9/73ve6vv/e977nmJkzbHz+85/HxYsX0Wg0cOHCBfzzP/8zrr32Wk/HCkvJ9q+a3PKOK8YxVuxMTxsEyeZn0ELvQ+4hfV67gduLd6ok23OX1iCb2Deczue1zBzWCKJDo8mFqal2RpogSDYrJZtVWY0riMbvg8bhadX6fL22qpJMkq2oK9mCsoua2YyNMdmWKk3IELBjbKBrfzvk0im8+47dAIBHT1lnfQ4LZxcqECFjpJB1HMRcuWkAogAsV5uYXesc1AetZNNJtgHvKcud3olNQ+oEZc4k9hLLcUmZVl3aRYOJySZCAFzZRdsx2ZJhF83lNJKtZZ34IEltS9KRSQkgj7JhIMEJyUaefVz3dcAku6gVeWJ850n8wZGS8zsG2MdkMwN9vqFCGgqA8waLDGscIVZ4tRN5hdlEzvjZSLKZKdkeOzWPcr0FBep3X37mgq8xCItd1AvJZrwWt7C6X6x2UaICsTom4K/vDCLDaNQkm1O/Q/Znicnm9X30o2RzO5ezK2PQ4ya3iFrJRp/PbUw2SZJcK2TNruvp80toSDL2TJSwTUvm5aW9+qlbtwMA/uqh045zNC8k23y5jgvL6xAE4LqtaliDvXv34iUveQnGx8ddldcLSFlftEVdXH/wRGeCNpIV3pgd3gmuR/L/6T/9J9x33314//vfj7//+7/HZz/7Wbzvfe/DBz/4QfzKr/yK28MlFlaVwi/J9rVDqg3zx27Y2vViBKlk80OykWCg586dQ7PZ7HpxzLBv0wAGc2msN2XMV7zF/OEIFvT99Vpf6ZXnUqmEgYEBddKb7w5wywpSz40TH6eBgNUAPSwcoTKLAskk2XbpSrbg7KJmA3VzJZuAnVoCATfKXqJ6PXB+OdI2oNpo4fJqHSlBwUgx41jmfCaFndqq1snLax2/sQ4+WaAoij5pICSb37ptVjZdycZIsllNOlfXG5FnF1XVaAqWqw3IjEkzjEo2P2UIAnmtX5UMk7GmpPDEBx4gCALS2v1qGu2iJCZbKl4l22BOfT8UBSBFtFpcNNbLpQp7ZlHj/m6VbEMFVck2vRSNki0qks0OrCSbLMv41wPqgvNQXn0WX3zmgutFTCeFuBF+SDa/4z3jQqZdfWq0ZL1PcYrJZvbZbPulpSVTNZ5Osq14T3xAjpvNZj3Vb5Z5m932RkSpZGO1KtIJGdzUOyeHSVKUbG7GAEGTbKzPAGAfV9vdy6PaPObG7cOeSGWCd96+C4VMCsdmVvHQC/Ndv5MFeMAbyUZUbHsnShjMZ/Tvi8Wi67J6gU6ybR6EIKiCocur7XbGa4xz1yOP97///fj85z+Pw4cP40Mf+hA++MEP4siRI/jCF76AX/zFX3R7uMTC7EbSFZ61kl64cEFXhJ2er+DoxVWkRAGvv26qSyFG4mUEoWTzAnLcyclJlEoltFotTE9PMynZRFHATTtHAAAzKzXfSrowIcsypqenUalUIjlfXAjSLko6+BtuuAG33nqrL5Jt06ZN2L17d5eN242SjWV7P5BkBUcudkqXk0iy7Z4oQlH8x2Qza9vslGzL1QZkCNg54U7JBgDXbBlCNi1iudrEmYWq8w4B4ZxmhSplReQzKSY5Pkl+cHJWJdncDj5ZsFRtotaUIQjAuKZa8apks3sn9JhsHkk2Uqa19SbSAntMNjpJiVeSLZdWlWyyApQd0sgT1LWYbIWE2EXzmpJNbnW+qw1JhgC1D+UkmztktFh9RpKNKNlyMdtF8xk1zgsA1CVzAsRqfEUyi44wkmxuFaOdSrYMZEXA+cWNo2QzbmOV+KBSa+HBE2pWvbfesgOFTAqn5yt6kG7jeVgQlpKN7OM38YGT6o/G5dUaFEWNkThukgXXLcm2srKCgwcP4vjx412/BalkCyImG9CetzUa5pmv/ZBstLDDT+ID1vfYaOemv7MDK8kWd0w2AreLEDRhxtqX0KQTfV9Y1YSA+7BUZtd15ILqyNm/bdjXosloKYufvk11K/7lA6e6fjdblLc7XxfJRuKxaUkPogYp60AupQsrHjjezqYaGckGAG95y1vw0EMPYWFhAQsLC3jooYfw5je/2cuhEosgSDZJknDixAmcOHECkiTha4dUq+idV4xjrJS1XBGhG2u64SUvOgvJ5ofkEkURu3fvBqDGuSOkn1Pj8uKdo1Ag4NIyG8nmtvMNCktLS3jhhRdw8uTJSM4XF4JYNaIDFQPqgKJUKvkqVzqdxu7du7tWKJw6AKuVpDDqzen5MqpU0gOg+14kAUTJpip8grGLOinZWpKE5fUmFAB7JlUSys1gIJsWsV+Tgz9zbslzmd3izLxKsk1qRBZLmUnyg9NzahwGevAZVL0jQaMnB3JIi97JKBr2SjZviQ/I/+VaEykozEo2oDsGk1ukUyIKGZJ4gc0yWmslKyZbIa8p2SS5YyGNJD7g2UXdI5PSlGyGmGzEKpyNWckmCIIel63e6m5X6c/GMhKSbYwhsyg5l9uyEQzlzZVsfpQPZjD2oVGSbEZYKdmMZXvizAIkScLEQA57Jgfwhv1q2IwvPdPOtOd2vGsk2ewSH/hR3biF1RjL7jlNU0kPzMrqdpxP7Fi1Wnc/tVWLyXZppQaJUdFshJld1E39M/YjxPljZSNz6nfsEh/Q8z0/SjavdlGWfeht+knJRl8HfQ/8xmRjUXISuFWymZJsmljguq3DvhdNfv7uPRAF1Up5bGa14ze6rCwxN43tm55ZVCO4ogZd1pfvmwTQaRmNlGQDgKeeegqf/exn8Q//8A945plnvB4msQiCZKMbzVarhX/VraJbOs5hjMnWarUsgx/SNqWgJwv0cScmJlAqlSBJEi5dusR0vhfvGoUCYGZlPdFKNnJPvQSW7CXQ9zMIu2jYcOoArCb9dvt4BWnwr9OSHgAJVbKNl6BAwFq9hRqjwscMTjHZ6Gczt6oOcFOpFLaNlrr2Z8HNO9uW0ahwdkFVrk4U2+2sE67SlGxnNJLN7eCTBSSezdaRArMlwQp2bXRQSrZqrQZoJBt9P+zgx+JN9hkqqOdaZiTZ1omaKSEx2fKZNFoQ0ZKVDpKtKckQBG4X9YKMRqI1jCQbickWM8kGtJMfkDJaKZS6lWxqHWFVsrm1i9L3ZLigZqk+v1i1XFwJAklMfEBAytCUFHz0q0fxNw+fwam5Mh45OQ8BCq7bOgRRFPGWm7cBAP7l8IxO9Hgl2ewSH9DkittzeL2fXpRsF6n+y+6YVp+ttje7J5sG80iJAlqy4jq2KEHQMdnCVLIZiQuvSiTW94wef7i5N72iZIuLZPNqF2Wdo1rdy+VqQyfBr9XaL1IGRVGwsLDgKknKjrEi3ni9yl98yqBmI3WVrgMs2UXJtiTR3A3bE0CyXaWSbA+9MK+HJ/GqEnY98pidncWrX/1q3HbbbbjvvvvwgQ98ALfccgte85rXYG5uzvkAPYIgSDZ6m3Pza3ju0hrSmlWUPodRyQa0LaNGJtuJZAtCyUZeEqJmY5343bRjBIAanLpcc35x41KyeWWkew1B20XDhlPdjTImG4kPsJ9aVUkiyTZazCCrKXUuLHu3Xtop2egBgqIomNHOMzVU0O1abmOU3axZy585t+y5zG5BrKljRbXMLKuEJMPo2YUyFEVxbaNgAZ2ZzS8RZPcOTQ6oKoDVWkuPV2YHM5KtKclQJHXgN1DIMZMXfpRsOsmmBZFfXjefzBhR0+yiSVGy5TIiWkoKLVnpmJDRiQ84yeYOTnbRuJVsAByVbFaKJZL4wE1MNje2bHqbwXwaMgRUGhLW6q2ubXo1JpsZsWX8bOzv/vXwDP7ukTP46sEZfPXgRUwvVpFNAS+aUiepd105gU2DOdfhDsyukcUu6oZk82sX9aJks8ssarYPK9Fjdg0pUcCUlsDngkfLqF+SzSrMj1+SzWw8Qis/nQgsu/O5VbJ5Jdno0BBOSrY44IdkqzUlnJqvwOkS6GPHbRc9elFVm+0aL2K4kOm4poWFBRw+fBgnTpxwdY5ffPleAMBXD17EJSo2otn8iKUuiKKIy6s1XF6tQxRUMjAO0GW9eecIBnJpLFYauhIwMiXbL//yL2N1dRVHjx7F4uIilpaWcOTIEayuruK+++5ze7jEwuxG0qwyS+WntzmqsbTXbBnSVybNYkAYg2jGpWQDoKvZCJzON1zIYJcWCP3covPgI26Srd8RhDQ7SoukU6fOomRTFAUnT57E5cuXfZXloKawoldVkkiyCYKA8ZKqUJpmeOesQLdVZiQbfa8vaSTbttFCR71w814RQv7YzCoT4RMEiJJtpGAfaJjG3skSRAGo1Fso11uuB58saCsB8oEp2cze96FCGtm0elwWFYDxGIIgoNaUkIGElCiglGeb/APBkGyDOXdKtmpTfb7FTMp2sh0VcukUWhAhGUi2RosnPvCKrIVdVCfZYo7JBrQzjNZa5godo6OBYLGikWyM2UUB877RCvT5MikRJS3Y9GVq4hRVTLY4xmTGtlKWZU25tggAePlVkxgpZAAouOdFm1DIqtkdU6Kgq9l+eGapQ7Hi9twsJJubZ2CnAmOBFyXbhYCVbE5E4TYfcdkURelIfBCEko3VLmoFFiWbG+Wn2W9cydZ5TrcWbFmW8c0jl/DlAzP41IPd8choONlFw0x8YLwukrxt/9ZhvRykDCsr6m9W5LAVbtg+ghfvHEFLVvDtZy/p35u5nlhINkFox2Pbt2kQxSybOyJo0H1RJiXijivUjKYPHJ/reJahk2zf/OY38clPfhLXXHON/t21116LP//zP8c3vvENt4frKXiJyUbw/MwygHZqWsB8cGVMfuCWZAtKyUb+p4PTswxUr982AgA4v5jcpAIbUcnWC3ZRt0o2GmSf9fV1nD9/HsePH/f8fGtNSVey3bprTD9+Ekk2ABgf1FZ2l4JRshnfD8Ew+Z9b1Ui2saJnZde2kQImB3PIKXV8++EnTeOvBI2zmupguNBWsjnVkXwmhf3bhiFCwbnFqqvYGqy4EKCSjcBqoO0mw6iZkq3WlJERZOTSKb2vYkEgSjZiF11nI9nWamrfOZjPJKKtz6VFNJVUF8nWlGQIPCabJ1jHZFOffVa7nclQsnmzi7Iq2QB312k83+Yhlby4vNpuG+i2Loh3KMlKtsVKHd999jIUqLGH/usbr8F77tqD//6W6/FLr9zbUe6fv3sPCpkULqzU8MJs2RUBRqMflGykX90+Gr5dFGjHZZtZcU+ySZKkHzeMxAd212bV99nFZDOOOd2MPfwo2dzYG437sSrZ4iTZWEBfx8HzizizUIEM4C8eOIVK3XqB1skuylr/Af920SOaku26bUMdZZNlGeVymak8NMhzfp3mxvvesVn9N69KNkEQ9LAx18dkFSXlANrlIpbRB07M+yKHXY88ZFk2DXacyWT6SiFkdiP9kGwvXNYquwnJRjeGxuQHXkk2q2uwg9lxSaZRgI1cIPa68z2gZEvCxCtMBKlkizImmxclGwEpryRJrldoCJ45t4ympGDzUA47xgod5waSR7JNaMTJxRDtovS9ntfSWm8bHXAlg6chCAJu3jGCCaGCE2cvhh5qoNaUcHFlHQIUDGvKErJC6YRXXDUJEQrOLlRdr/Cy4GIIMdms3ne3cdnoY9JKtgJjZlECcj1+yI6hnHq+lSrbe72qkXGD+XQylGwZEU2IaMmyiV0UEMVkJVXpBViRbImyi+pKNvNxR1B2UfoYbpVsgiBg87Da111arXV8byynH8RJshlhnAz/2XePo9qUsGW4gP/8+qv13/MZsWtBfNNQHv9Bs009/MI8Gi12+z19bnribby/Xkg2r2oL4/5ulGyn59UF9b2T5gmxglaytTOMul+YI/MpQRA8xzizItkURbFMXkBvb0RYSjb6fKzvmRfllfGc/aJko7f5ay3+mAIBi5UG/v6xs477WZFsYSjZzMoMAEctlGyKoqBSqXSdzw6nTp3CQw89hHK5jNe8aBMA4NFTC6hqsaDtSDa7mJOCIODJs6p6+JZdo0xlCQNGEvQVWvKDp88uYaXaHi+HTrK9+tWvxgc/+EFcvNjOrHPhwgV8+MMfxmte8xq3h0ssgiDZ6G1Ozaok27Vbh7t+NyPZms2maaMdpV2U/H3ttddi27Zt2LRpk+MxCBM9s7yOy6v2nWBcJJvfgUivIEiSLYpJCquSzckuSkA6Ebd44rTa4L9kz7h+DrPMOUnBxCAh2byntTdr24wDJ3IvFsrqeXaMq9lh7TKk2eGmnSMQBQWXV2qu93WL6aUqFAUYzKVQyLSfH8tK4SuumoQgqEo2CKKngbkdLmiTha0BxmSzAlGyzTFkGDVTsq03JWQEyVVmUSComGzqMVjtom0lW0JINgu7qK5k43ZR18ho9uemgeQgiQ/Iqx7nfSU255qDkq07uyhJfOCezHY7iUylUtisxbqix210mYIYL0WdXZTA7n4oioJnZ1bx5JlFpEQB77lrD/KZzkyOZosfv/DyvShm01heb+KLT533VBY7Jbgfki0qJVul3tJJ2b0TA7ZlsvpsVQYrpfkWjWTzEpPNeE+DULKJYnvBycwyGjXJZoYkxmTrFZJNT34iAHddqRIvn3rglE4uWe1nbDdYx430726VbPR1rdWaOKUR4ETcQ55prVbTxyCsdX91dRWyLKNSqeDKTQPYPlpAoyXj4RcWAJjPFVnqgqS0E6Ddtjs+ks1Y1p3jRewaL6IlK3j8ZHeWUVa4Hnl84hOfwNraGnbv3o0rrrgCV155Jfbs2YO1tTV8/OMfd3u4xMKsUtAV3o2SrVJvYaWiBvW7Zstg1znoF4O2i9KEGvk+aiUbAJRKJezbt49pUrVrfADjpSxasox/99ePY6nirDqIaqBFsFGUbL1mF2VVsplNJMxItmrVm7Lrh2c0ko1q8I0BaJOESc0uenHJO8nmpGQj/zdaMqp1dfK3c0wdVNtlSLPDzTtGIULBzMp66CroM/NqXdg9lu94fizk3k07RjCQFVFrSji/tB6okq3WlDBfVgfm2yglm1+SLQglm9nzrzUlpCDHQrINuLaLEiVbZznjI9nMEx80JC0mmygkjsBPOnLEaiV11neiZMtojzoJdtH1pvnintm4S1EUfew0WgpfySaKIjZrbcPlCJRsUWUXZRkrK4qCB0+ok+hdY0VsGy12/W5GhA7k0rh7X3vSveaQ7MtOYQRYk2xuLIJ+7aJOJISxDETFNl7KYtiCDDYe041dzmzbbZpd1Muioh/7pbFMZvM2M/cEK8lml/ggKCVb2CRb0pVsBG5Itq88cwECFFy9eRCvvmYzdo4VsVBp4LMWarYg7aJuY7LRODazBgDYOpzHuLa4Ssq2trZmu68Z6HmzIAi6mu37z13uKCs9hmHJLnp5tYZaU8ZoMYMrJs2J+ihgVm9frrXvj7zQJtlCV7Lt2LEDTz/9NL72ta/hQx/6EO677z58/etfx1NPPYXt27e7PVxiEYSSjWw/u1ZHSlCwd3KgI6ifWcdN20VpUo98H7WSzS1SKRFvumkbBnNpHL9cxnv+9gmULfzrxuvnJFuwCFLJlqSYbGb1MyiSrSXJePrcEgDgtj1j+vdJjccGAJOaAmGhXOuyTbHCKSYboL6ny9UGRMgoZlIY1mxMXkmnG7YPIyUoWKu3sLDmnSBkwRkt6cHO0XzH93QbqyiKaTrzdErEDVpMiyMX1wJtr0h2pmI2hZFixrRPcAOnd4hkGPUTkw1QLVRRk2yDml3UrZJtKCFKtnwmhaaZkq0lQxR4dlEvyGTU+9UwTEbWtWQq6STEZMsTks2cADHr18r1FlqyWmfHQrKLsijZ3NicWGAkjoJWyrkBff0PnZiHAAU7x4pd99BKyQYAN+8cxWgxi6VqA//4xDnb85ldn9X9pSforEo2+veolGynHKyi9D6s/abT4vBWH4kPjGqbIJRsQDAkm5lqiXxn7D9dq2lc3nu3JJuXmGxxgGWO+2/PzeLG3/k2/us/H8LXD83gybOLEKHgtt1jSKdS+MCrrwQA/OUDp7BiMhZJil2UJD24blvbPUfKQLt8WJ+JcY71Kp1km+1oI83sombnIZ/PL6rv8a27x2IVMJiSbFpctkdPtcPZhE6yEbz2ta/FL//yL+O+++7DPffcA0VRcO6cfSfTS2Ah2VgbrLm1GlKQO+Kx0eewsouSBjadTne8oFEr2dxiuJDBO16yA6PFDA5Or+D9n33KtsHlSrZwECTJlqTsonaWGL8k29GLq6g2JAwXMrhqU1t1mmSSbbiQRVoUoCgKZjzEKQHMLUxmSqbFagMiFIyWsl0DVbcDglIujalBdXBKYlaGBaJOvGpT52SALvPx48fx8MMP6wFhaRCS7fDF1UAnnXRmNkEQAmuDw1SyAXCtZJuamsLY2BhTyAErELvoqs/EB3Er2QCgWmvff24X9Q6SXdSoZNPtoqL6rONst3Ulm0VMNjNinRDJubSIQpa97G7qT7eSTSXZLq12tg1B2uOtYrIB4YzHWMbKjZaEJ84sQgCwc7xkamW1Ip/SKRE37xyBAOAbRy6BBcaymPWf9L3wQrJ5vZdW98uSZJtT+8o9E87x2IIm2ZaqTf09Z4WVks1IcK6srFha9czukV2GUac+nXYCGK83KCUby5jFqNjsRyWb07NYqzXxq188hJX1Ji4s13B8dg0CgJfvG8f4QA6iKOItN2/DzrEi5ssNvP5PH8C/PT/bcQwzdSp9X6Kyix65qJJs+6kQVU5zJpZyke1funcchUwKl1frOHpx1TYmm9l5yOezWvz2OK2igPm79dK9Y0iLAi4srusxUkMj2VKpFD74wQ9aVpDZ2Vns2bPH1cmTDCeSDXB+Wcj2c2t1iFC6SDazFUx6RYTsb0WyebkGlu39TELIvuOlLD7z3tuRz4h48MQ8vv3sZct9op5YbBSSrdfsol6UbMZ9/JJsJB7bbbtHIYrdtsIkkmyiKGIon4EgqLHHvMDYtpmRbKIoYqnSjhNE3luvdlEA2KEpy87MdxNbQUGSFTx6Uo0b8eIdnW0wPYhZXVWJvuXl5a5jXKfZ/F+Yq1gqUryAJtnoY/pVslnBf3ZRbyTb0NAQbrjhBj2JjhvodtEssYuyJT5o20XTgfRtfpFLq4kPAKBWa2eiUxMf8OyiXpDR2h5awasoih4vJwlKtkGiZGvYx2Sj6+aSh6QH9DHcKtlokm3WEEs3SOVuEkm2M/NlNFoyJkoZjBYzrpRsgiDgiskBCIKaMMkuDrFVWczIDPpvVpItyPGelZLNiHbSA+d4bF7scmbXMZTP6HEOL7rMMGoVk40e7ywvL+OZZ57BiRMnbMsXtJINME90Z1VeK1gpJp32o+/1Ro3J9v9++zgur9axa7yI//z6q3HnFRN47TWb8P5XXAFAi7+XEvG/3/li7Jko4dJqDT/3tz/Er3/pMGTZmlR0cz+9KNnM7uXRC+p4dv+29pjXrB/0qmTLZ1K468oJAKr6zy4mm9l5yDt3llKyxQmzejuYz+DFu0YhaInPjL+zgHnkoSgK/vZv/xave93rsLi4aLlNP8MryTa7VkcKSgejDISvZHMLv/GAjPtev30YP3+3Srz+j289D0nufsnofaJWsvU7glSyJTEmm9lv9HUaLdcseOIMIdk6G/wkk2yCIGCokIEABdMe47KZWZjMlEx0xjs/lguCqSF1cHrRIznIgqMXV7Baa2Ewl8a+yWLHb3SbTqyiZgkzRosZjJeykBQBJ+fcZWWyA7G8kDgzfskgp7bUi5KNPjYh2QqZVMfkIEzoJJuLxAeSrKCiqRySQrKlUyIUMQVAQEuW9frWbKlKNpEr2VwjSxIfUCRbvSWDDDVSonWfERVKGiFQ1d4dqxV9um4uavHY3CQ9ANwlPqDvSSqVwtRQ20pOj9XCtIuGTbLZgZz7xKy6wHP91uEOxQkryVbKpbF/q7oIY7eYbHV9ZotURsLDbn+z4wcdk81ayaaRbBEq2QDvllErJRt9rvV19ZhWi7TGe/T3j53FR7/2PFbWm7YkmxUEoR2L02qO6SVRiFslG/2bW5t4rynZzHB4egWfefQMAOD33rwfL941hpfsGcPP3L4TY0W1DSf3ZP+2YXz9vpfh5+/eA0EAPvf4OXz/OVXRZqVk8/Ieu52/kHPXmhJe0FSm+03sojRY2wozccprrlGdCd+jSDYrJZvZ4tJStYlyXUIuLXbxI1HDqt6+4qpJiCTxmcnvTmAeeQiCgO985zuYn5/HrbfeiiNHjlgWsh9gdiOtVhmsIEkSak0JK+tNpAQZ11rYRc1isvWqXdRYUX/h5VdguJDBidkyvvTMBdvzRU2y9TspHESHlvSYbMa6atzXjZpNlhU8SUi2PeYkWxInwYIgYCifhgDgvEeyisUuKopih8LCqGTzkiF0shQ+yUayH92+dxww1A/SxipKO5OzGckmyzJ2jZegQMBzl8r6d35BJglbh4NVslm9Q5NaJtr5ct105ZWGuZLNW0w2P9BJtlybZHNqz8q1dl9N20XjHqOQDKN08gNCEHElm3tk0+rzbFEkG20h035OROKDqkNMNjO76JiLpAeAPyXbxEAWoqAS1AuVesdvZuX2AqvsokB8SraTs2QyOtjxPW3vcmqXSYDsbx91toy6UbI5KYNoBEGyuYnJpiiKbhe1iskWFsm2xWPyA7v6R85FtjGLzwp0ztv+7flZ/D9fOYKDFyv4/nOznuyigHVcNuOY16td1K2SzS3JxhKTjR5TOpUlLFg9i3pLwm98+TBkBbj3xq14+VWTjiR7IZvCb/3YtXjXS3cBAL6pvftOJFuYSjZy7qMXVyDJCiYHc9ikjfnMrtt4PpZz0Nu/6mqVZDs4vYxlrc9wYxe9uLwOBWpyMbJgFhes7Lwv3zcJAQrOL1UhyYrrttWVkm3Pnj149NFHcdttt+GOO+7AF7/4RVcn63W4VbLJsqwrBsaLaYwYpP92suNWq6U38m5INj8Ig2QbLmTw/leqUtv/+Z3jqLe6G42oEx+YNRb9iCAGXUmOyQbY20UBdyTbC3NlLFWbyGe6V1WSrGQTRTESJRsgYEmb/I2Wsh3ki9kxWDBeUoma1fWGrpILGo9o6bfvunLcMuYJPZGqVqtd9UiWZeweL0FWgGcvrXUMvPyA2EW3jaokW9hKtgnNLtqSFZ0wZT2mKIp6QHm3dlE/IOcvaXbRhiTrZJ8VVjWraD4jIpsWE9PWq3HZREiyrJNsLUkLbi0mk8RPMjJpYhdtP1+iGMumRJ1UT4JdtNqwj8kWpF2UBcaYbOmUqLcPl1faZAFrLCEW2IWfiOMdrdRbuKxZDskiuJuYbGSbl+1TbVOPnlwwDYZOjkPvQ8BKsjkhiEVVN0q2ubU6Kg0JogDsHAuOZGMhGbZpSjYSNJ0VVjHO6POSbcxUafR2l1dr+OA/PgNFAVpI4exCBQfPzpvuYzyXEaQ8ViSbFyUbDdaYbGTbsJRsccNYvx84PocPf+EAbv297+LQ9AoG82n81o9d07GN3fsPAG+8fgsA4LvHLqvxVannTM+fWNpRIxHp1S564PwKAJW8MlM0Au04gn5ItqnhPF40NQhFAZ6fUc9pJNnsSFeVZBO6nENxwKqc120dwmghjUZLxszKenhKNoJCoYAvfOEL+PVf/3X89E//NH77t3/b7SF6AmY30otdlJBs24ZzXb+bKXPS6bT+mciWU6mUJ5ItCUo2AHj3HbuxeSiHC8vr+Nzj7eQYXMkWLoJYNerlmGyAO5KNxGN78c7RrlWVJJNsbbsocH4xvJhsC5UGmpKMTErESKEdk80ryaYoCjKiGmNFgILnLq057+QS9ZakJz2468qJruskg1p61brVanUNsGVZxtaRPFKpFFbWW1iuNgNSsqkxfIKKyUZg9Q5lUqKujnGKy2Z8/p120XRkJBtBISMipcVJXHFIfkAnPQCC6duCQC6tZhhtSe1MtpKuZGOfUHOoaCc+aL/X61o8tnxGDOx98oMBLStutdEm9GmYk2zt2Jdu4MYuSm9D+jWzDKNhx2QLc/znpGQ7v1SFAODaLUN6nC+3dlFAtftftXkALVnB9583t4xaXZ9Z4gMWZZDd8aNQspGwCTvGipYqFDOSzU3gd6ttSaKFUy5juRrHs2ZkEr3wZkZyKIqCpiTjf3z7OFZrLdy8cwQ/e6cqJPju0Qso15pd25NzWcFKyWZcWI5CyeZlXGck6MzOZdXuxQFBEPDE6UW862+ewJeeuYC1egubh3L4k5+6CZsGOzPQO5Fst+0ew3gpi+VqE0+cXmSyi1pdu/F7FrsovQ8594HzywBUko0GXf7BwUHTc1rBqh68RHP9nNCSlxnnSE4kGwDcGnPSA8C6nKIo4JadIwCAcwvdC/BO8Dzy+LVf+zV85StfwZ/92Z/hLW95C9bWgp8gxYmgSbatQ90rklbKHDJ5IQRBVDHZgpyI0PevkE3hg6+5CgDw1w+d7tqWJz4IB71mFw06JhvATrKtVJv49CNnAHTHYwN6gGTLh69kO7+kTrw2DeYgUtY2r3ZRcs6JgRxEKDg2s+qp7HZ4+uwyak0Zk4M57Ns00FVGK2uI0TIqyzLSKRFXbh6EDAEXPaxoGaEoSlvJNhKsks0OxD7gFJfNTMlY05TIA4VsIP0EC+jzDBfUvtGZZGsnPQASRLJlRMiaXZQMoAnJlk6lYi9fr4FM7luU9ZmQWcVMKhkkm1YHyxaJD8wWj5Yq4Sc+MCrZAFAZRrtJtjBistFljYNkO6cFs37ZvgnTRQVyDBby6fXXTQEAvnXEOi6bWVnM7i8LaWFEECSbGyUbIbis4rEZj8d6HSwk2xVaogUSE44VZuM4K5INMLeMKoqaSOns4jomBnL45DtvwQdfdw2GCxlUak382fee69oe8GcXNZJsri1rLmKy+SHZnJRLdp+jAF3OJ06rYURu3DGC//u+O/Dor74Gr712s74tq5ItJQr6ft88csmRZKPLYVU+ArdjanLugxrJduP2EdPfATUZFV1GJ1jNsch86dSsOn5nIegBYKFcw/J6EwoEvHhX/CSb3WLSizWS7exiiCSbWQPxIz/yI3j88cfx/PPP45577nF14qTD7EZ6iclGJjKbB7tXJK0aX0KyESWbW7uoH2WJ3XFZYOXBfvNNWyEKwPTSur5KaqZki6Lh3SgkWxCDrijtok6DMLsVOgJjZ2gWX8uIWlPCf/jMkzgxW8bmoRx+5vadXdskmWRT7aJqTLbLazVTS7YTWGKyndMIvKnhvH5e+n+3dYxsPzmYDY1k062iV4xDEAT9OZJrMlOyAeYkGwBct20ECgRcWqn5nnQuVBpotGQIQntyG3ZMNqAdl82tkm29JYMcdqCYt9otcHgj2TqVbGbHigO5tAhJESDJCiRJ0lQRap0k1kcOdmTTxGbVHZOtmO2eSMcBEpOtISloyd3Z4c0Wj3S7qMuYbF6VbG2STWsbKJItDLtoVCSbE84tViEICu7eN9FFdtKTLieSDYBOsv3g+GxHXEACq/G1XeIDNyRbEIuqbpRsp+fsM4vS2wetyCMx4E7PVxxji9IIgmRrSjKenVmFogAfe+v1mBrOo5jL4NXXqLbBzz18Cicut0Unbki2IBIf2I2TwyLZWJSXSVCy0ffm4LRqb7z3hi24dfcYRNGcWKb3s+pHXr9fI9iPXoIsK13320iyWd1Ts3Ambt4XQE2aQ4L0X799uOO3IJRsxu2Jku3SShX1lsSsZDt6Qb3/W0YKGMpH64owg927dfN2lZCcXathzWHsaYSrmGxmuOqqq/D444/j+uuvd3XipMNOycaq3FhvNLGoDZYmSt2VyGwFE2iTbLWaOtBxS7J5VZaESbKVcmm8aEqtqE+fXer4nSvZwgF9fX4HXUlQsrEM0Mn/pZI6CKvV7MkQSVbwoc8fwBNnFjGYS+PT732JTniYnTuJJJsgCChkUsinBShK24LICkVRTAd3xvbgjLbqvyUgko2cc2IgB1EIxy768AsqyXanlmqcnJOOfQl0D6aNCkiy33VbR6BADbjsd9J5QSMtNw3mdEVOUEo2u/ed1O8Zh6DRxrIQC1suLaKQczf59wP6moZYSba6+vtQ0pRs6RQkSsnWkhWIUMuWSWDbknTo2UWpd5HEZCtmzWPRRA1CsikAmq3uWI5mdZMkPhh1aRf1qmQj/dqUjZItiPGS2aJdXEq280vrKNdbSItqTCA7ax4L+XTd1iFsGymg1pTxnWPdajar60tS4gN3SjaVZNsTg5Jt+2gRmZSAekvGxRV29b5Z/XNLsh29sIxaU8JIKYtXXT2pf3/tjnHsnRiAoLTwW1850jUm9aNkMyN+rWD2G8t+G03Jdlgj2W4wqL0IWJVsAHDnFeMYzKUxu1bHM+eX9X3NYrIBzm4dGm7m8Sp5uAxAJaLJoqTxmkRRRLFYtD2vsVxWSrbNQ3nsHi9CUBRcXK5ZkmzGaz6ikWxX2JD0UcKufRopZjAxkIOiAM/OLLs6LvPIQ5ZlbNq0yfS3wcFB/Mu//AtOn+62AvYqzBoEUkkICebU+Jy4tApZUTBcyKBIxQcxnsPY+JIJIPk9apLNz4DUriO5WZNcPn1uyXKfKJVsUZ0vLrBc5/r6Oo4ePWpp905SdlG7em/sAHK5HFKpFBRF0RWhZvi7R87gm0cvIZsS8ZfvulUngo1IspKNDGwmNNXDtMtMnfT9JoM9o5KtUm9hZkWdeE0NFzoGU37topODql30+UtrHVkC/WKt1tRXK++yINnIZzK4JddkpWS7YccIZAhYqDRcr2gZcdFgFaXPE1ZMNgDYPa4Ork4v2Ks8je8bIW9HCtlI47HR7QIZNDolyWgr2ZJGsomQ0VayNSUZokD6+eS1LUlHlgQMN8kuWsp0EzlxICUKKGZTUCCg0epWspnaRSNIfGCuZCMx2cLJLpokJduT2mLvtpE88plUVxvhlmQTBAFve/E2AMD/+u7xrr7Mqg0KimRjIaecYLXwb0qyOWQWpbenlTxBXEdKFLBrXIvL5sIyarZYakeymSU/IDbDl++bRDrVrg/ZbBavuHoSpTTw2KlFfPXgRQBsfU8YiQ/M3m8WJZuR0OunmGzknEuVBi6t1iAKamB7M7gh2XLpFF59jcqPfOto2zJqVPi5meMYiTqnayL7HTi3DAC4yYQ8zOfV9n1oaKjjHXBD4Jtte9vuMYhQw5+wK9nUcl652fz+Rw27ZyPLMnZp4+bnZtyJAQJd3tu5U7VZ9QNxYbwGuqKTCZojyaYFAtwzXoIgCI5BLQmME5h+ULIBakB5AHhaawTMrj9qkq2fwbKyOTs7i7m5OczMzHT9Rte1KJQAQSrZ6JUau7hs3zqipt3+z6+/GndcMW65XZJJNnI/JgYJyeYuLht9v61ItkPTK5AhYDCXxkAu7XoAZwZyT4cLGeRSapKCMw7Ejxs8cXoRkqxg93hRJ7LIOUlmJaOSjcSpqFQqpu/P2EAem4fVY5H23StIPLatFMkWhZJtt6Y8ODPPRrIRXNQyDo4UM5EnPSDlGXFrF80lLPFBRoQE4f9n773j5DjK9PGne/LmpF3tanelVZYsybYkW84BG2MMGEwOd6QDzoCPYO5M+h1gc0c+DHyPeBw5nAFzJBvOARsnybayZGVpFVabc57Yvz96qrempqq7uqdnpkfa5/PRR7Mz3VXV3dVVbz31vO+LRCqlJ9hIpEBaNO8uah/BQHpxyonJFkm7i9rJ0JgvlIf8SEFBNJkULjYz3EXTMdnsJj4g76XM+8lTsjVVixMfuEmysRnogMIr2Xak7dDFdWXcY+2SbADwrmuWoqYsgOMDU7h/Zxe3TSKSjZf4wKmSjZ6/7cDK3iO/xxIpnEnbGWZKFCdKNllFHokFR8g+GfDsOJYQMVOyjc3EDTe369c0ZfwWDAZRHQngDRt118F/e+AgxmfjUs/BS4kPOoem8eKv/g2PHxnI+N4MTpRsxQBpw5F+vc8sb6xAeVppzMIOyQYAN6fdxf+SXlMA9olL+j6KiFfROQREyXZRWtRCo7y8HJs2bcIFF1xgS9xiRbJd2lEHVdHQPTKTdY945PrYdBynh/RnsHJhpWndhQL9vHkE8eJ0BuXDvWO2+rLUynnNmjX4xS9+IUxpTHD06FG8973vxRe/+EXpBngVIpJNURRjQDQbfDRNw4m0X/7i9GTAy+BHyqRhRrLRPtolR7KlgxvuOzuWsaNbaCWb1YBxrkBGyUaO4fVl+rtCKtlkJiD2HN4xViTbVDRhqCpvuqCJewyBl0k2cg/q0y7pdjOM8p4zS+bvPjOKlJYdj43+7FTJpigKGiqCUAAcsLlLZAaiYqMTWYiUbDTJpih67DZ6vqONrJVNulGQK8lGlGFuKtlkxu4laQUAcf8VgX3fzqaVjNUFJtl4SrZxC5Jt3KuJD/w+JDXVULLFkinDXZRWRcxDDiGS+CBDyaYvSsr8mQubYqIy5DfcRUWLz0wlm95/62zGZGtvb8eKFSvQ1GQ+n7H1sTHZ+s6RmGyi917TNDzfqc/9bbWZmZ1zIdmqwgHccf1yAMC9Dx81sjGbtSUf7qIyx/Mgq2Q7PTyNZEpDedBnJNIxa5NTd1Ezm4LEgjthsVlEwywmG2mXGcn24L4eJFIaGspDWeQi2bh7yZoGLG0ox8BEFPc+fERq7nEzJhsPMkS5pmnoGpnGD585haP9k/jFc10Zfd8MpRaT7UifTvCIXEXZc2TssmtXLUDIr+L08DSG0+O36PlZCQlonsGuXS1KekBQWVmJQCAg5b7K+5333LZ01EOFhr6JWSSYonj94fmTwwB0pXZteeHi+5rB7P1MpVJoqQnD71MwPhPH0X75dYqU9fHNb34T9957L5qamvCGN7wBX/7yl/Hzn/8c999/P77//e/jzjvvxKWXXoqLL74Y1dXVeN/73ifdAK+C7UiETfb5fFID1tH+SUzMxuBXFWMSt/K3JyALQIJzRcm2pL4MdeVBxBJ64FCCYsVkA85tkk2GTCTf8/oyTSwXYnFq5U5gR8kmQ7I92zmEREpDW13EcD0QoSRItrTqwa6SjRc3glWy7To9Ag0Kl2TjBW62Uy8wl2H0kIvJDw5062XR7gBWSrZgMIhIRB+vaZdRWoGxMu1SfLxffgedh+4iK9mGp2KWijC6TNKviuUuCjhPfOAdkk3NiMkWT2pQoMGnKp4cW7yOUIDYOlRMNqJkC2TGFiomKsJ+aJqCaCJbycbagbPxJGbS5EyNTXfRYDCIRYsWGQs0M/A2SkhMtpHpuJFAx62YbPScUmx30eMDUxia0u1zEmPUDSUbAPzdZYuxqCaC3vFZI2M5ewwNs8QHTskp3t8yECnZWLueqMc6FpSbjqm5kmymSrYF9t1Fc43J9r87z0KBhtXNlVn3yAjzk0zg7ldeAAD48TMnMTSpK8BlSDY3sos6VbK9cHYUf9jdDZKzo3ssit7xuZjGyZSGY/0T3DKcKNmKSrL1E5KtWngsj4Qym0vKgn6jPLKB6lTJpqqq9Dqevo9dI7MYmY4j6FOxutlcIeamkq21NoyqkL55uL870y7m9YfnTg5DhYbW2ogn5mfA/H6kUin4fSpaa8qgYC7Wswykru5FL3oRnn/+eTzwwANYuHAhfvGLX+COO+7AW97yFnzmM5/B0aNH8da3vhVdXV34whe+YLjclDroG006Okt4ifDXg33pTlSGcChTNcGWb6Vk8/l8QoUJD8Uk2XjlESiKgovbagDoyQ+KpWQ7H0k2q0Gddx9EQTvzBSdKNvY3HskmyjD61FE9tsZV6XhdZvAyyUbGo/q06uGMzZhsNIHEI/MBYNeZ0TTJFsmok/5s16injyckm5sZRklZa1vmDCmekk3TNMOYDgQCRtIMHsmmqirWNOvlnRycRDyHGHI8d1G3lGxm41pFyG9kGDVzGWXfty4Sk80DSrZRKyXbDF/JVmwYMdmS6ZhsCV3J5lMVzxibpQSS+IDnLhpKK9m8MGZXRwLQAMzGrbOLkqQHPlUxEnfkA/Q8Su5RdSRg3NP+dFw2t9xF6fOLrWTbemIIGoDm6gh8amb9vAytoizrvLaHAz58+MUrAQDffOwYjg/wF50EvPtLt8Wpks3J87JSshF0GkkPzIOWOyHZZOxWYM5dtNOGks1uTDaaZDszPK2TAwqwamGlUBwRi8Vw9YoF2NJRh5Q2pywys6HzEZONhtU7fKx/Ep/63T7Ekiksb6zAS9ctRAoKDvdOGOf82wMHcONXn8B/P9WZdb5Mf/WCko3Ue7jXWslm110UAC5Oh0TqHstMPsaSbFaiB6fuorvO6OrcNS1VCFmEn3BKfIuObU3bsTvOjGXVw573bKdOsi2q8SbJJtqwaK8vgwINzxwfli7X1tVdccUV+PrXv45du3ZhZGQEs7Oz6Orqwh//+EfccccdqKmpsVNcSYFeZMsYHY8f7gOgYUlDeVYmOwLRrlGpK9nMyBLiMrrzdHFINlb+7JXFVz4gc51mJBvPIMknclGyEdB9qqJCNwCnpqa4fZHsRlxZ4iQbuQe1DpVsItcUci9HZxIYmIhCURXDNcQNd1H6eJL84KBL7qKj0zGDxKJ39FglGxkPaJKNVUCyRlZbXTlCfhXxZNJ2EFQavMQHbm10WI1rHRILFLots/EkeseLE5Mtg2Qrs6tk86C7KBRKyZYm2ZR5ks0JuIkP0iqwiN87Srb68iA0KJiJJ4SLTdI3Byb096yuPJjX/sobwxVFMdRsxGXULXdRerwvtpJt24khAApaayPcDTr6f/o3GZINAG67eBFWL6zE+GwCt3z9SXz3b8eRoDwDaFi5i7JtEMENkk1WyXYsrQRaapJZlC4vP0o23b47OzpjJDuxgpm7KI9ko0NG/HqHHmNv2YJyVIYDWc+R2BTRqP7+3rK+GcBcjCwZks1K5SpzD+0q2WbjSdzxi52YjsbRUh3BP163HK+/pA0agCN9E4gnkjg5OIWfbj0FAPjqw0cy3MnZOr2uZJuYTWB0Jo6AT8EaE7WXI5ItLSI5y9jgskq2XN1F93bpG8sXmSj0eO2yO7awSCaTaEl77G0/Ncqtg1zbZDSB/WfHoEDDohJSsgG6N56CuaQ5MvDG1XkUPCUbTbKJOv/4bBy7T+lMZ0d9eVb8H7Z8KyVbKZFs9Pm8F5MMQrvSQWfJ8YUytLww0BcKVhJf+nszd9FCk2xOYrLxDOVwOAy/3w9N07JcRvvHZ3G4bwKKAlyx7Bwh2SL6pDwwEc2IBWMFnmKRHmdODur3rrW2DAFf9sLVqbsoq2RToKF3fNYI+p0LiDt6e10ZqsJz4ym5VnqMTSaTpko2+t1RVRV+vw/N1RGo0LD9lPyOFo3ZeBJD6evkxWTL1V3UCh319ki2M8PTSGkKQn4VkYCvaIkP5N1FiZLNY+6iATUrJpsCDeo8yeYI/JhshGTLXNgUE3XlIWhQMB1LCg140jfJApaQXfkC/S7Q94jEZetNt8Mtd1HeZg7djkIp2TRNw7NpJVtrbVmWDcQj2QhkSTafquCH77gE16xcgGgihc//+RA+fN9uJDhzpFuJD9xQCsko2TRNw6FefXPJjKSg25APJVtdedBIDCKrZrMi2dhNeGIXjM3E8cOndQXXZR11xjXRoJVsmqbhJelA+CcHJzEVTZjOPSLblyV3nL6LZrb1Z/90AId6J1BbFsDLNjQjEgzgquUNqIoEMR1L4ljfOO595IihFp6OJfHFPx/ittPsObsR0zFXaJqGvvFZaNDViGZqr1yUbH0T0QwvB1l3X5rktqtkUxTFNOkBD7IbKFaCjWQyiUU1EWhQsP30CA71znmksP1h56kRJFMaFlQEUBkOeGJ+BuRIttqyIGoifsTZwHMm8MbVeRT0jbYTk+3po4NIpVJ6UL+KkKW/vRnJpqqq8Y+cY7VgcKoscWshYjYRXNhWA1XRd5+Gp7JjFeSb9PKKZLkQkDFWzJRsIheJfIGnoqJhNyYbrWabmMhUHD19XFexXdBSJRVcutD3wg5ImyJBHyrSmZLsqNno+0q/u+RedqYzfi5rnHMNccNdNCNjs19FW62+qDxITdBOQeKxrW3ODF1Au/3T4zIZm1mSjTW6yaKnpSYMBcAOGztaNIiKrTzoQ1UkO6NrPt1FASrDqEk2V/pd6hycQgp6PDZFUYruLiqrZKvynJJNdxcl2UXjSQ2qMu8u6hTBAHEXzY7JFvIQyVZfEYQGnQAU2SCknYTcImRXvsDbKAGARkPJlh93UVmiyg3w3vtj/ZMYnIwhFFDRVD2naDZTshHYaXtzdQQ/fscl+PJrN6A86MP+s2M4MzwtVLKdGpwy1NdOSLZCKdniiSSOpJO6rV5oHhrILsnGzrdW12BkGB2Ui4/Ks+NoooFdMxGS7QdPdWJiNoGVTRVYl47xKiLZSDkLq8O4uL0GCvQ+54RkY59Hrko2tvwH9vbg58+ehqIAH3jRMpSnM8cHfCpuWKOThI8f7scf9nQDAD5323oAwG93nTWShrF1el3J1jcehQZFKukBOUeWZFtYHUZzdRgpjZ88xo67qKySjZyTTGnYn858K3ttTsYW0VqxvjyIhsoIZuMpvPpbz+Av+3sAZF/zc536xvTK9HrCC/MzIEcQK4qCFY3mLvIsvHF1HoWVkk00ATx2uB8qNCypL4fP5xO+LKIJze/3Gw+bnHuuKNnKQ36sSk/MR3onpM6JRqPo7e11ZSfECwN9oVCq7qKi9pj1Tx7JBuiZdIBsko3EY5NxFdU0rSSUbJqmBxIFgC4bcdno58wjOkn2ruWNcwY1/Qycjjfs+7x6oT55PXvCmTqMxgEjHttcm9nnSNodj8czFG6RSASKMpdhlG6nklYcNVdHoEDDDiq2pB3Q8dh4/TlXJZtVmzoadJdY2Zhsp4amoUEx3DWLnvhg2l7iA15ZxYDuLqor2VKpFGLxBBRgPvGBQxAlQiqlLzIAYCauP/uwl0i28iBSUDATF5NspG/2GyRbcZRsrLtoKZNsPGw9oc/9F7fXws/ZVOLFZCMQjR+itiuKgtdtbsPLN7QA0De/2DJ8Ph9Gp2P42iOHcfO9T2DPmVGh6s8MbpJsZkq2k4NTiCZSiAR8aK8rky7PDkFEYEmykQyjEskP6LWTSMnG2jCJRAIjk1H8IB2H7EM3rjR+4z1Hsl4jLqMvXacTVccHnJFsTmKy8Z4hj9w5MzyNj92/FwDw3muXGeQhOfbm9Xqf7RmdhqYBL9vQjDdvacfrNrUCAD71+/34xbOn8ZX/O4wH93YjmdI8H5NN0zT0T+jj2oZF5i6VTpRsAHBRWw0ABT1jYpJNxlvHrl3dOx5FNJFCQ0XQ0o2bbZcdlaxoragoCt5y2RJctbwB07Ekbv/ZTnz1ocNZ5z3bqY+/yxfoY4cX5mcCmb67fIHcvSXwztV5EDySze/3m7pHpVIaHjs8oJNsDWWmsk+zCY0sYgpFsvF28pzCSoK6MS1lJWlw6QmYh87OThw6dAgDAwM5tcusTbIYHBzEoUOHPCF9NoMsmci6StAoNLFkpWi0G5MNgKFkm5yczDjmqWN6X7p6+QLLdtH3xosLYfp9IyTbmRyVbGSc0TQNp4f1spY3uatkY4+/ND0uPH4k9/ecp2RjFWlkbJ2Z0a+PGDaqqhoZRqenp7MWPKqqYmF1GH4F6BmbtR0DD6DisdVmu4qSupzArpLtxOCU5dgA6GpGDYrhniOTvdAtiJRsZtc45y7qTSUbIYSisQRUaFAVbxmbpYKg4e6jIZZ24SBKtqCXSLYK3V2UuLLyVOakb/YWiGQTKdmIgs7tmGxWJFs+bCree78tTbJt6ajPaJuVko1HeMmOt1uW1kFBdqwmUu7JoWlAS2EimsDf//ezODEwkVWnnYUw728ZyJAJh/v0uXXVwkqoqvl4mivJZrWGIbFFTwxYK9lEdhxNQPFs3v9+8igmogmsXliJmy9YaDqXEDUbUcC95IKFUKCha2QG4zNitz83STaz8olNF0ukcMcvd2EimsCmxbW488Urs0jmC9tqUB0JGNmvP5JO5vEvN69CRciP/WfH8Yn/3Yf/fOwY/ri3G/vOjnleyZZKzbmLWqm96Odrh2S7uL0GGoA+imRj3X1lYrLZdRc9PaxvrF+2tF7azpF1P5ZRsgFARSSIH73jEvzDVR0AgG/89Rh++MwpRBN6mITZeBJ70okRlqY3er20ppIh2ToaymAx7GWg+NaHh+FEybbj9AgGJqKoDKlYVBsxVbKZxd8pNMlGI59KNgDYmPZb39s1Ck3TLCdgMmHRQUgBYHR0FGfOnLE1WOe6m3Lq1Cn09vZieDh3tU0+IWtwke/NBs5CLVLoenjtNZPBWynZJicnjd+OD0yibzyKoF/F5iW1lu2i3yMvTQgE9ETZWqtPXHaUbLyYbMQYG59NIJpIIehT0VI9t2tNPyva7dLO+8SOT5sX6zuLe7tGjbT3ThBNJI3AzLSSjX2O5FnOzurGEK0gpoMY8+KiBHwqWtPurc+ftD8WnE1n6mzhJD0Ach+DLUm2dEy2idkEhgUx8DKVbFOIQ0VzcwuWLFlSULKK7pOE5EukNINMYZFMaZhK/+Y5ki2gQoOCRPrxzMbj89lFcwCJyQbo7z0wR7KFfd4h2erKdXdR0jaeMoC0k7hp5jsmG43MmGx6vb1j+YvJRqMQ7qL030QpffnyRoMUmZ6eNrUveO2mf7dq+6XpOF79E1HEkpnHqqqKM8PTUKEhEvBhfDaBL//lEA73TuD08Awmo8mMTXA712oXZhv/5LsjkvHY2PJk7pVdonDZAvkMo2T+Zzf1eUo2n0+POzoTS+KX24iKbQVUVTGdS9i14eL6crRUh5HSNDyTJnd54K0pecIHGULaqh9rmoavPHQYe86MojoSwDfedDH8PjXr/fT5fFjbXAUVGl6/uc1QDTZWhvG5V6/HhW01eNHqRly7coGu6j85jERKjqjg/V4IDEzMGvbsiiZztz+nSraL22uhQd+Atfv86LnArrsoIdkuX1ZvdngG3FKy0WsIv0/Fv758Lf7jdRci6Fexv3sc9z1/Bt9+7Bhu+I+/IZZMoakqhLq0LeeF+ZlApu+G/CouaDFXQdLwztV5EPSNlo3J9sBe3Q/56uX18KdVbHaVbMDcjgg5l1enHZJN0zQcPXoUPT09ltea60LEyih70epGlAV9ODM8Y0yOZi87S6AQHD16FMePH89QKVkh14GenE8W5l6FXSWbmXKsGMSSrJKNPZ59pyIRnehOpVJG8oP/e6EPAHDJklqEA9bX5sR1o5Dgu4vaV7KxY5umaRia1ONXLF1QDr8/e/cXmCPZaGPETr0EtWUBrGmugqYBTx4dlC6HxdG+SSRSOiHTXD23UGXJRNJu8i7TLpBmJBu530vq9XtNYkzYAS+zqMzYbgXZ88IBH1rS98YsLhspU09+oWDDBauxZMkSR23LFZqmL0IDafJEFJdtcnZunvVc4oP0OxTX9L6ku4vOJz5wioDfB1VRoACIppVsRC0W9BDJ1lBBsotmK9nYvkkUZE3V+XcXbWhoQGVlpTHeAXMkW/+EuzHZRJt2hXAXJXV0jcxgaCqGgE/B+tZqI/7m5OQkd9PbLZKttbYMTZUhpDQNp5jxVtP0TTEVGv77bZtxUVsNpqMJ/Hl/Dz7623245RtP4ht/PYrPPXAAV37hr7j9pzvw060ncXxgMqPefCvZDJItrWRbw8Q75SHfJBvtLmr1DHibieRvUhdLsh3sGUc0Fsea5irctHZh1jWx4F0jccN8ysSm4cXC5Snbc1WyAcBjh/rwvSdOAAC+9NoNhg3C20y8ZEkdXn1xC+6+dW1Gebde2ILfv/9K/ODtl+C7f78J1WE/JqIJPH64X1rJVgxsT2+IXrKk3kjiJYJTkm1dSzVURcFULIGJaCKjLDsx2WSVbICe+Kc7vXF7+VL7JJvVeyarZKPXiq/Z1Ipf/ePlqIoEMDwVwx/3nMXZ0RlEAj7cfu0yW/e0UJAh2TRNwzfeeJF0ma5d3Y033oilS5e6VZwnYFfJlkppeHCfTmJds0Lv6GaMNLuDSUOkZKPLsEOyTU1N4ezZs+js7LS81nwr2WrLg3jr5UugYG5XUYZkY+83GXzsKPZyJdnI8STmgldhl2TziruomUHvRMmmKJnJD6ZjCSO+xqsuWiTVLi/HYwNYd9G0km3Yfkw2npJtaCoGDcDKpkquiyh7noxBQMC+t8lkEteu1N13/5aDy6gRj625KqOvsM+R/E/cRWVJNvL/4vS9zoVka6mZW0jzFiR2YccIJy6jnYP8vkLKiCc1dI/p7V1cby8ehRugr0lRFMNldFQQl2087Soa8qsI+jON2uKTbCRQv/53bF7JljN8ad+NaJy4i+pjkJdINqJkiydTiCdT3ODuWSRbnhMfAMC6deuwcePGjPeCLLrPjswgkUy57i7KzqOFULKROvZ26a5KqxdWIeT3GbYBSXID8EMhsJ/Ztstg/SKdbDnOxA871K/HOCsLqtiytB4/fueluHZlPZqqwqgI6/1G0/SM1GdHZ/CXF3rxr79/ATf8x99w+ef/ijvv243/3dWVkWEXcDcmG/0dUbJZJT1gy3PiLmp1DYvrddetiWgCAxbqd5EdJyLZgsEgukam4UcKr754keEaa5dkI2r650+OYCrKt494Xhx0GaztIXMPeXZyNJHEx36zBwDw9iuWGBlQ6XrpulRVweL6cvhN/OPCAR9etEq32361owvpSAieU7KNTsew58woAOBNW9otj3dKskWCPjRV62MoUQOzJJuMu6gdJVv32CwSmoamqpDhQi0Dt5RsorH9orYa3PWS1VjVVIkXr23E99+6Gbs+9WK848qOkibZFthQmUtd3d69ey0Hu9tuuw1ve9vbpCsuNdAx2XiEFwBsPzWC/okoKsN+XNiqD6xOlWwikk2GDOORbKRuK5mqWbmykDHK3n11B0J+FX0Ts0baYbYd7HeiXS47g/X5omST3RE0U7IVI6Om2aAvE5ONtxtNJz/42bZTGJqKob2uDLddfG6QbPTYsCQd50BmZ5eAfs6skm14MgYNClY2VQh39WmDwA7Jxuuj16WNtSeODCCVcmaEWWUWJc/RTMkWDoeN39j3gPzfWhOGouhxzUgwXVkYiQ+qs5VsubxvTkg2UfIDUkbf+Cw0DagM+VEvkYnXbbDveJVFhlFe0gPPkGzpbJjxlN4OomSbJ9mcQVGU9AJQM9xF55Rs+jFeuK8VIT+Cfp8Rl40376qqitl4EiNp8rhQ7qLsO7GoJoJIwIdYMoVTw9N5dxd1q3wZ7E3bmhtadXcfNpM0kB8lGwCsb+WTbNtP6m1aUlcGn6pvIrzpkja86dJ2/OQftuCxj1yPd129FO+/fhnue89l+OebVuLypfUI+lX0js/it7vO4sP37cHDB3ozys2Hki2aSBrEwaqFztxFzdplV8kW8vuMjUWr5AciIoC2eehjfD4/usdm4UfScPdlr4kF7xoXVARRFQ4gltKEoSV4JBtP2c5ugsqC3P9j/ZMYmY5hSX0ZPn7L6oxjRJuJbFt4uGxpHSIBH86ORvHM8SGjjTSKrWz7+bOnkUilsKAihM1L6qxPSMMuyQbASAjCutzbcReVDfukaVp6U13B5TbisdHtsnoWsipR3hqppjyEl65vxh3XL8eNa5sM76FSJtnsQOrqLr74YgwO6lLXpUuXYmgo27f8/e9/Pz796U/bqtzrsKtke2Cvnub4prULkY656zgmW11dHXw+H2pr9ZhRdnbReIkZikGymXXG+ooQblzTCAD4313djpRsxSDZzlUlm1fcRd1WsgFzJNvw6Lghk7/j+uXwW8jFCbxOstH3oKOhHD5VwUQ0YQTQtoK5kk3v5ysYJRs7Rjgh2egYKeTvTYtrURnyY2gqhn3pdOR2wcssStfHkmzkXbarZAv6FWM3//nOEen2pVIaetLSfjrxgZtEkMy41lFvHs+GlNE9pt+fxQ1lRSGp2He8xpJk07+vCs8lZ/CCqwow5y4aSzcnFotDVebdRXOBT1WgKJS7aNx77qKKoqC+XHcZnY4lubaLoigYSLtoBv2qodgsNFRVwfJGXeF1tG/CNXdR3qLq1NCU4ZZaSCUbIdnoxEhWJJusckmEdek4PqeHpzEbn1sLbDupzx0k/ACQea8iIT8q0hscW5bW444XrcAv33MZ9n76Jvz8XVvwsg3NAIBnT2S6Izq5n1Zz0OBkDICGRTURqf6Zb3dRAFiajstG4rCKILLjaOKDPmZgOoHZeBIVAeACJks5fR6vLPYaCemy9Tg/LhuPhOTZZTLzr6h9iqLgSO8EVGh4zcZWYy4iEIXFoH8Twa8qRsD/X+3o4pKAxVSyRRNJ/OiZkwA0bFxcKzUn8AgxaZItbVvZVbI5dRftGpmBBuCKZQ1S7SOQHb+cuIta1eFlks1sHMoLyVZTU2O4GZ48eTLnybZUYIdkS6Y0PLhf30l62YaFGcc7UbLV19fjqquuQmOjTkQ5Idl4SjYrssWsXFnIsuMvuWAhAj4Vxwemsnb3aPB2dsy+N0OuuynkeK8r2dwg2YpBLtlVshGw10EfQwzpZw51YXAyira6CG7bKKdiA0qHZEulUgj5fYZc/HDarcMKNJlK3/9kMoVhyl3UbFc/FyUbOTeVSiHgU3Hlct1QePywfZdRTdNwsJtPsrGkMfs86YyZMjHZUqkUtqR3uO0kPxiciiKWTEFVMjMIFlrJ1tEgSbKlVXdLiuAqSoO0hyzuxi2VbNkkW9GVbP5MJVs8kYQKzCvZHGJOyZad+CCQftReua/EZXQmPqdkY9UqZGNkYVW4qH2VBAU/2jeZN5JtZCqGl/+/p/CV/zuCWeqeuAm6zFRKw/6zhGSrAQCUlekbB4lEwkiwlS8l28KqEMqDfsRTGnadHgWguzbvThN/7bX8uUBURzjgw5XLG/DRl+iKpCO9ExnkXT6UbIMTUSgAVkuo2Og258tdFJhzWz2Y3lwTQeSZQa9XaFvv6KA+761qLMvYkDWbS3hrH03T0FoXgQbg6ePWcdlIG6w8N2TWcjRm4imcHpmGAuAVF7Zk/c6KPqzCt7B1bmitQVnQj1NDMzjcO+EpJdsf9/SkExL6s2xZEejNXwLZuYR4CfRNzCKWSGWRbKJrd+IuOjUbN+YNO0kPSD1m7WHbJTrWzOtJVEcxPKWsIKNkszuuSl3da17zGlx77bXo6OiAoijYvHkzli5dyv13LoG+0XTiA55SbPvJYf0lDvtx1fIFmdk2HMRkA+R30VhYkWxmBIYbhp3si1sV9mP9ompoAHacGhGewyOC6OvIRclmF6SuWCzmabLZrruoWUy2Qg6CTpVsZseUlZUhpSl4vnMIISTw/uuWWwY9peF1ko2duFdSCyQZ0MYcff/7J2aRSGnw+1S015WZxqexs+tGQO4rUZCRdhCX0ceP9EuXRdA1MoOJaAJBn4plCzKzR4mUbAQ8JRu9+OLFRbkk7XbwrI24bCRAbVNVOKMfukEE2TnXcBcd4rsWk+/Opndji0WysfNJtZWSLZpWskU86C5KlGzpqTmeSLuLzivZHMOnphMfxFNIpjRD0UZy2nhl3K6vCKWVbAlh3KVCxmMzw4pGnUQ50j8p5eYnA5Y0+PmzpzAxm8B0PImzIzN5XXQrioLOoSlMRBMIB1SsSCv1VFVFJBLJOpb3OVeSDUA6MZFixPF8rnMYsSRQFQ6gKuw3VTGJ6mivL8OqpkpompaxYZKPmGyDk2mSTSKzKNtmJ0o2mXjLRGV2QJJkk43JdrBPj1W6oiGzf5itlXjXqGka2mrLoGkKXugex+g0P5s3a/vy6pEh2XjHAsDhvkloGrCupcKY+2nw1qN2SLZwwIc3bVmsk4nHBhGNZz67YinZNE3D95/UPVg2La5NK5+dkWyy9sOCyjBqy4JIpjQc6B6zrWSj3UWtbOrdZ0aQ0jRUhYNoSysmZSE7tlsp2cy8nkpJySYiQa2u3wx+60OA733ve3j1q1+NY8eO4QMf+ADe/e53Gy5Y5zJESjZex3wgnfDgJRcsRNCv5qxkY0F2FXh++ixokk3TNGOnjq5XhpxwCjtG2dIF5dBOjqN3XOwywCOCnMo33YrJBugqF9ZA8wrcULIVw11URslm111UURQcGIxhOpZAR7UPr97YaqtNXifZ2PdtZVMlHtzXi8N9cko2mkylF39nR3Qjc1FtWZZh4qaSjZBbpB3Xpkm23WdGMTIVQ62NOGA7T+tk/cqFFVlEqijxAQFNsvn9fvh8PiSTSSMxAi/T8+YlNQCAQ73jGJuOo7rM2oXm7AhJesA33gulZGuv04NGT8eSGJiIopGJAZWlZLMRUNdNiEi20Rn+YoWnZGPLKhZITDZCsiXSiQ9U1VvGZqlAUZS0yiSBaCJluIoCQECVd7EqBOrLgxjUIIzJBsy5FzUVKB6bCHMbNRPChYdd0PNMNJHEj7eeSv+ioGtkOq9KNkVRjHhsF7RUZyiTKioqjMzjpH0EbpNsi2oj0Hon8GznEIAVePrYIFLQx2JFUZBKpTLmYVkF2IvXNuF3fzuDEwOTRtbPvCjZJqMAglJJD+g206ooGZKN3AOZayCK9UM9E0imNCMRiqhsGZJNVVXs7Z5EFYCOev68aIdkKw/5saShHAcG49h2Yhg3r1uYda6IZBP1x1QqxbVJRe17oUe3B29a25R1jqg+OyQbALx+cxse2N2FiekRPH6oD5s38ttVSBXbC93jONQ7gXBAxYWLqqXPY58lTXjLnHtRWw0eO9yPXV1jSGmAT5GPyUYr2VKpFHfNTrAjbfM6sc94/TUej2NgYAALFizI2gBnjyWQcRdlyyjG+tIKMko23u9mkCLZAODmm28GAOzYsQMf/OAHz1uSze/3c0mfRw/qqotb1i/M+I2Oyca+LHbVY+zkKwLdaclATLPxZkRWIZVsmqahvlzfsR2ZjiOWSEmTbE6ZZbdisgHeJtlkr9OMZCsGuSSa1NkdfwIZki2Z0vDoMX2X81Xr6oyMg7LwOslGG6+apmFVkz42H5Uk2XiTXSqVMsiVttryjHrYz0BuMdnYiby5OoKVTRU40jeJ504OZ2TAssLf0i6mxOWUV5+Mkg3Q1WzT09MGycYLCLygIoSlDeU4MTiF7aeGccMavgFLYy6zaObY4aaSTWZcC/pVLKqN4MzwDDoHp4QkW9fILAAFS+rt7ZK6BfZ+WCrZCMkW8qKSTe870fTwFqOUbF4dX7wOP1GyJZJGZlHyPVD8Z05AYrLNxJNZC2lCppD4ZIVKeiDCyvQccmJgysgW6JaSzefz4fe7uzEwEYWiABqAM3lWsgFz8djWMwttkvyAIF9KNk3TY5lBm8DzJ4fxrh9vx/6zY9CgGAoUM4LFimT7/d+AU0PTSKRS8Kuqo/tpPk4qGJyMQQGwxqaSza67qN/vN7xFzAgGQFdYRwI+zMSTODk0laVgJ7CjZBuaSqB/KonagILmyky7QIZk461VLllSiwOD/dh6fFCKZOMpy+wo2WicGZ7G6eEZhFUYsbBZuEGyhYN+vOOqJfifh3rw18P9eOv4rGFX0OUTAUghQNbm16xYgKB/yrI/iWBnE0xRFKxtqcIzxwcxMh3HXw/148VrmyyJZrpv0f00mUxm2asEO9MxHe1kFSXgtefs2bM4efIk4vE4Fi9enPW7U5JNVIaXNhdFbZUVrfBg++p++MMfnhcEGyBWsrEDz8BEFGdHZ6AowKUd9VnHsy8LW75sJzMLPC46jtTHKtlYuLkIsZOxJBL0oaYsAA3A0FTU80o2+ngvx2WzYuLZ48zcRb2gZLNScJqRbA+90IuT4ymEAz6sq/fZfuZejB1AgzXEVxCSrX8SMhk6Ra4pPYRkS5MrhVKyAcCF6Zg5+20kP0imNDx+RCfZrl+VbUjaUbIBcxlGWZKN3U0mmceek3QZJZlFF+VByUYg28c7GvQFyQlBXLZEMoW+yXTiA6+4i5bpysaxGX5fG08nPvBmTDa9z0WJki2RTCvZ5t1FnUBRFEO5Ek2kjMyikYAPOn1T/GdOUFcRNLKLihbSXlGy0RlGe9JeBm6RbIqiGO5b7756KTToCqkxgRtdLshUsulzyYVtxSPZ6sqDaK6JIJ7U8MjBvnQsJQWL0wtkXr+QqWP9omrUlvkRS6ZwZngmoyxZ0ItJ3rWOzcQRT6YQ9CvSoQPskmxsnFar4wHdXZy4r77QLXYZtYrJRpNshwemkNBUNFWGoSXlPZDMCIXNS/S14dOC5AdsGCKRks3qPvLa98e93dCgYFFNRJghPBeSjX63X7S6Cc3VYcQTKXzlocNZ7XJLGSuLRw/1AQBuWNNoyw5gj7FLsgV8KtYtqoYGBf/91ImMMkT3k76P9LsvsqtHp2M43Kv3+Y4F7inZAD0kEtsu9lgCszUS73nT5XnJ7uHdD7PQRTJw7eq+9a1v4Z577nGrOE+AJiDoXTg2QCWRoS9fUIGKUGb8NRLniJzDI7vsKNkIzM6hWXAeySYb78op7Ero2+vKQXbJvEyysYy2lzOMyjLvNDnFHuOlmGxWSjb2OPr7/3ryBMa0MC5sr0MiNmtkSpZFqSjZAP2+LakvQ9CnYjqWNAgdM7BjFSmHkGyL07vsZvddNkgrr16eJJ1kf7OTYXRv1yiGp2KoDPuxaXGtsD47SjYgm2RjSU2DZJNMfkCuiWTwo8sCCheTDQCWphd3Jway4/dpmoaxmTg0TSesGirk3XbzAYNkk1Wyhb2rZEs3EYlEAqqizSc+yAFG4oN4ykh6UBb0eeaZEzSUh4zsoqJNIRLAuqm6uCQbnWH0xKDuSukWybbv7DiO9E2iIuTHHS9ajpYa/Vpf6JYf62UxZztqRvnrF9VkHEMSIxHki2Qjx3/spWtw33suw2desRZvvKQNn7ttPSrCwXQ77cdk049TjDmTjOVOSDa6nSxISJelDWXSmdndINmkXEbTLrIHJEg2GSXbgZ5JJKCipTaCRCLB9fjg3SMzAmnTkjooip4FtZ+T+V3GXZSuV7bPaZqGP+zuhgZg1cIqS4InFyUbsSGvXrEAgIZf7+gyEnCx5ReCZOsfnzXIdRLrF3BGstmZR8ixF7XVQFEUbDsxjBe6x2zFZAOs7eqnjg1Cg66Sro7Yt8/MlJd2PMfsKtlkwl4VA54m2e6//3786Ec/cqs4T4DcSLqD0yQbISb2GGnBa4zjRKoJuiwn7qIEVueYkWz5VrJZ+Z2zdbbXlelKtkk+acXu7rFl2zEmcpF9ssd6mWRj+5YVyWZWhpeVbFbuojtODWPn6VH4fX7cfOlaAMDp06dtPXevk2ysssrvU4209kckXEZ5Bn0imUT/hG4ILq6vyKon30q2dWmXnn1dY9LP6rG0q+g1KxZwE1tYKdlY0o2QbKxxSC8YUqkULmqrAaBnN0taKAdn40ljU+aSJZlEoN35gAe7BvgyspDmZHfWNA0j03FoULC0obxoxlCWko2QbALli5ezi4bT0fhn0109mUxCgQZVmSfZnIAo2ebcRdNKNg+SbHXlQaQAobsoAGPx3VRZ3MQHAIzkACSYfq6L4kQiiRMDk/jJtjMAgDdc0oaqcABrmvWx/oCNDRW76J2IYjaeQkXIb2wsEIRCoYy5IF8x2cgxoYAPW5bW4+1XduALr9mAN29pz9q4583JVtiwSCeajg3q8e3skmxW6hJCAIvcMXmwS7KR39jQFVZYK5H8QGTP0nM5uf8v9E4iCRWLaiLQNC0jcRx7Hq8sHilRUxY0kjRsPZGtZpNJfCCqgwY77v1+dzcO9eqxFVc0VgjPc4NkI8+5pSaCDYuqoGnAf6TVbOyzLQTJ9tdDuqvohW01aKyc27gohJIN0Df6SPzC/36q03JtzD47q+QHT6Q9N9rrndlnZqSSHVGL2VrRrA4741shYNZWdp0lC9esukcffRQnTpxwqzhPgCXZWFUaoN/sPWdGAWTK0NlOx1uE5kvJRtdbTJLNahAlv7fVl6dJNu8r2WiUgrsoLxMuDTOy0osx2Whjjfc724+/94Q+Jt128SJcsKIDqqpiYmICo6Oj0m0qBZKNnbxXLdTdJ2SSH9Bj1dxiL4pkKoWATzViargZk41eBPCUbGuaq+BTFQxNxdAzJveePX5YN6joHUsaTpVsBLzxN5VKYXE6JsxsPIWTQ3y3S4K9XWOIJzUsqAyhnckEZeaqIwvbJFt6wXlcoGQbSRNZTuJ9uAX2fbdSso3PeNldNK1kSwKp9OJNBeaVbA6hKAr8qgpAzyo6G/eukq2echdl5ys1HUOLEBkLi6xkA2CEHTg+kLuS7S/7e/Cp3+/DH/Z04/TIDCrDfrzjyiUAgNVEhdSTPyXb6SH9GtYtqoKqZpMWtMuoHSUbW49MW3gwUzHRY7pZGSsaKxD0q5iIptAzNmubxLAikE6l3VAJUWSnTLtKNlZVbwU3lGyapiGZTGIymsDZ0SigKGhLh1MgLnS5kGyKouDKZXqs2GeOyZNsdpVs9Pf9E7P49B9eAADcsKYJ4YBPylVR1CYReM/5hjWNUBXgoQN92HNm1NVwGLJ4JB2P7YbVjZbPjoUbJBsAXLpUdxP+094ekLw8VkQnOd9MyaZpGp44MggFGhY7jJdr5sppZ41tV8nm1RA8soRgwZRsVoP+uQIzBUQyOadMuNCGko2+d27HZOPVJ+su6kantysH1gNqKxia9HZMtlJSssnuGpnJgIsxEFop2awk3PRkf7BnHA8d0OMxvOvqDgSDQTQ3NwPQ1WyyKIaizy7Yd26lkfwgmzxhwTNse8f0RUldeRA+X3YsslxJNvo95CnZwgGfoaSQcRntn5hzC7hWkmSjn6ff78/qS2YkG218+lQFK9Ok5kGTnXQAeD7tUnrJktqs+vKpZJucnMS+ffswOZnZH4iS7czIDGKJ7LFxdDoGDXOx24oB9ppqyqzcRQnJlu0uWmyQ7KJJKEimNEPJNk+yOQdRss3GaSWbP2Mu8ALqy0PQAEzHExl2IKC3cXw2gdm4/g4WOyYbMKdkOzowp2Rz8h5tPT6EO36xC0OTswj5Vbzq4lY8+IGr0VqrLwzXNFdBUfSEMEQ97TZODuvzGW2j06BdRvPpLsqWSWAWj0u2//oUXWWW1BQ8cWQAiYR86Aa6Tt5GZpyK9ba+ACSbQil7ZUJQrF5YBVUBBiejwj4kG5Ota3gaKShYs7AKlRH9PSTxqWRJNt76RFEUXL5MJ1yeODpgbAjw2kGfJyLZZMjHT/7vfozNxLFuURWuX92UdQ003IrJRtq3oCKE2y5uBQB85aHDWdeT7zl5Np7E08f00DB0PDbSTrtwSrK11pahpTqMWCKF/Wn7UNZdlOcBR3C0fxK947MI+VS01kRcU7KxG0Bse3nPzWytyOuvxSBcZWDV1oKRbD/5yU+wfv16RCIRRCIRbNiwAT/96U+dFOVpsEo20uHpgeT00BRGpuMI+OaCb9LnsL7VvEXo+a5ka68rBxRgOp7E8FQ2ccUj2czIITPkshtbSko22fgHovtIK428pGSz2tUj/0/Hknj/z3dC04CbL1ho7Mq3tbVBURSMjIxgYkIu+6bXlWxA9n0jJBuJh2EGeqwi97NndBYKNNSXB43v3FSy0UYDnX2ZBokxI5P8gGQVXb+oOsMtgFcnj2RjVWyAHMlG+tva9Nh/qMf8fm9Pk2ybF9dl/ebmRgf7vvf29mJoaAh9fX0Z3zdWhlAe9CGZ0nB6OFOFp5NscWia4iiorlsQuovOxMFL7EHcRas8qGQLpgnrlKYimdKQSibm3UVzgK5k059pNJEysouWBXyuvk9ugCjZEkkNM+l20ovTvrSKrToSMNyKiwkjw+jQtPGe2V0Ynxmexvt+vgOJlIaNbdV419VL8e5rlxvZNAGgMhJEQ3kICoBtJzLjWqZSKZw4ccKW8pwGae/JtMvr+tZq7nFEyWa2ieeWuyhvDKLnb9r2Ygkvs3o0TcOVyxsQ9PvROz6LRw/2CY+1274D3eOIJvXkUW21kazfZcq04y5qV8kWCfoMtbVIzSYbk+34wCRSUHD96gWGXeCWkm1LRz3qy4PoGZvFvz9wUNgO+n+nSraHD/bj4QN9CPgUfPm1FyLgN/dq4Y2XuSjZNE3Dh25cgYBPwZNHB3E4TTAVyl106/EhzMSTaK4OY21zVUGVbOx5ZON3x6kRAO64ixJX0QvbauD3OXO7lHUXtVpvO43J5pW5mcATSravfvWreO9734tbbrkFv/rVr3Dffffh5ptvxu233457773XbnGeBrmRpIPz4jbs69JfmrXNVUbmMMBayeYk8F8uJBsvqymNfJBssoRWKOAzMt6cFMQGYssrhpKN505pJwZVIcFTspk9d95ntoxCQNR3RP2TR7JpmoYvPXQEJwan0Fwdxudevd44PhwOo7FRzzzZ09Mj1abSJNn0nfljA5OWccJoMpWU0zc+AwX6wpDc43wo2VRVFbo0rydx2SRItsfTJNv1q/np6QH+ZglpN49kI9lFCcyMTxJ341CvWUwYDdvTRtYlS8QkmxtKNhZkkcDuiCqKgqXpGDvH+rNJtpG0ko2NY1QMsCRbSgMmY9n9zcuJD/w+FX5VQRIKEikNyXTmunklm3P4fHMk24yHEx+UBX1p11Y9KxyQubAlJNtCD6jYAKC1NoJwQEU0oRmqUTublJPRBN714+0YmY5j/aJqvGFzKwI+lUsatNWVQYGGrcczkxINDw/j9OnTjkPRaJre9tPDM1AU4FLOuAvMkWwiQoP3G/27HZKNB5Zko7+XJdlSKT3m3M0bFgEA/rC7C2fSCj4ZmC189XlLQUt1GHZeJ6dKNiuSTdO0LE+StS26vSCKyybaNKbrmYnF0Tk0haSm4KXrmm2TbLxNbfoeRII+/MfrLwQA/HTbKTy4ryfrXCuSTUYJlkil8PVHjgAA/ulFK9JqUfG6jCZ2c018QD/ntroyvPGSdgDAA/u6oWlawZRsj6RJ5hetboSiKLbrc8tdVFEUXLNCJ9meOzUKQJ5kM3MX/VuaZNu8uEa6XaJ28tbTbsVkM3NJ9dqayhMk2//7f/8P3/72t/HFL34Rt956K175ylfiS1/6Er71rW/hG9/4ht3iPA2Rkg2Y6zgvnB0FkJn0ALCOyeZEukrXb4dkS6VSwheGoJhKNkVR0FSl7451DvJjA7HlFdNdVFEUY/L1qpqNN4hZkWz0vaEH9UIu/kQTsNXOB91H9pwZxV8P9cOvKvjPN29EHZOyvLa2FsBc1kgrlALJxk6WbbVlCAdUxBIpnLKIE8abRHpGp3WSrTyUVyUbTbKxhoRs8oN4MoUnjqZJNoGrKF0+/RzJZx7J5vP5MuK2iWKyAbrLEwAcNFGyHemfwMRsAmVBH9ZQqmcCN3b3RGMvWSTwxv5laZXaCWbsnYnNud8t8UBMNnJN4YAPwXRss7HpbJfROXdR7ynZAD0uWxIKkknNUAj5FO/t6pYCFIUkPtAQpdxFwx4k2RRFQUWa+B1JK/bpNvamY082VhU/6QEAkAyjGoChKZ0UtEOyfe7BgzjcN4EFlSF8762bkOZCuURWa1od9cSRQUONCABTU/rcRdz1nIAk/7mso96IL8qiqqoKFRUVaGhoyGobgRnJZgdm5EwymcwYu+2QbOS3K5YvwKKaCOLJFD75u/3SNq7Z+7L95DA0AM3pRACycEqy0e6ivD7X1dWFrVu3oru72/jOKi6bjJLtWO8YEkkNzbVluKClCsGgbjuyJBvPpZZ8Tx/Hu9brVjXi9muXAQA++pu9hn0mItmsNpZZaJqGY/2TGJqKo7k6jPdetyyjfKt1gF2Sjd6Q5z3nO160HOGAilODkzg+MFkQkq1rZBr/94JOst24JttNNt9KNnbcuGJ5A3yqgtPDM+mM7fxrZ5+5yDaejSfxXOdc6BFee+20Mxclm6Zp54ySzYwQpMdiO/Og7Svs6enBFVdckfX9FVdcIa0MKRWwJBtvwUUyIm1gZOgyMdnYsqzgVMnGLnzzrWSTHUTp31tqdCOLyPrpY6yYdTsd3g2STVVVw5XMq3HZeNJvO0o2nrFTCDhVshEc6hnDk8cGASj4xC1rsGlxbVYd5NnJGu6lQLKx75yqKljRqBM5R0zistETJNk9no4l0pl+NSysDnOVbOx9p10+Zd5HnnqO3cVf01wFv0Tygx2nRjAxm0BdeTBrs4MG7zmaKdmATJdRM+OTJJo4OzojjBX2/EldxbaxvRZ+TvZTN5Vs7LtO5gDejihRsrEZRonrfn1FCBUhf9Z5hQLvfoiSHyRTGqbSRAtNspmVVWiEAj6koCKRShkqU5/f54m2lSKIu+iR3gkjEybtLuql+1oezsyMS8+z/RP6++YVJRsArGysBKBgeNoeyZZKafhzEhYhJwAAzs5JREFUWqXzpdduQHN1xNT9rbW2DBUhH86OzuBdP95uxKsiG2GE5LALTdNwpHcCGhS84sIW4XGqqmLz5s1Ys2ZN1ve8z3TbST0ybaHP4dXDzp9OSDa/34cb1jQhoOouZawLrggiUkfTNGPuaskzyUbbrWZJuwj5evLkSWNOu8Aiw6gVyQYAh9NK9BvWNmdspvNINh7MSDb6nI/ctBKbFtdiIprAx+7fl9GOXN1FAX1jEgDeeEm7kWndjDBj+xz72Ypko9vGtq+pKoz3XL0UCoCnjg4ihfyOx08dHcQr/t9TGJyMoqU6bMTBKxbJpigKqiMBbGyvgQYFp4ampF12Rc/62c5hRBMpNFeHjQRaTuY5M+WlrJLNyuuplEg2q7Y6IYhtX+Hy5cvxq1/9Kuv7++67DytWrLBbnKdhpWRLpTRjUL6orcb4jV4simKyOVGylQrJZldSqSgKmtMk2ylOXCACN9xFeQME/Xl8fFxKylsqJJtVKnQRyVYsYsmuko3ua3891IffbO9CMqXhxWubjOxlLMjupOyzKyWSjX7Gc8kPxOoq3q559+gsVADNVWGEA3OLf7MFB31vZNRsPCUbPVkD6eQH6Wswcxl9LJ1V9NqVC+BTxeOXmZKNzTRKYEWykfZWRwJYlB7DDgmMfCMe25Js4hdw1/Cwp2TTSTY2w6hOtOrp4YsJ3nxSkybZxhmSbXJ2ru950V0U0JVsGhSkoMwp2TxmbJYKFEVBWVB/d7d2DuGn204B8Ka7KABDyTbGcRclSjYvJD0gWJ4OOzA0le0uZ4YXuscxMh1HRciPq5br6jBRcGxFURD0q/inFy1HedCHZ44P4faf7UA0kTRINuKRYRddIzMYmIzCpyp46bqFts8vlLsoTSiJ4rFZlUFvXNWVBw03sr/slxM/8DZmAeDU0DQGJ6PwqSqaKu2pLJ0q2azcRcl3sVjMULMRNXnn4FSGGpLArP8BQCKZwsn0HPiSC/QEWcQucEqy8X4DgIBPxb2vvwgAsK1zCGMz8azrFT0Pq/vYPz6Ls6MzUFUVb7ikTeo8UfgiN0g2APjHa5ehKuzD6Ewcjx8ZNG1/LvjxMyfx1h88a7io/+r2y7PiW8rOB26SbIBun+ok27S0u6jomZF4bMQNlddeO+3MRclm5fV0LpFsBXEXvfvuu/GpT30KN998Mz772c/i3/7t33DzzTfj7rvvxj333GO3OE+D3EheTDafz4fh6RhiiQTKgz5DDQBkdk6rmGx2Xgy3SLZCuYvaCZZJlGynh6ZAB7N2m2QzU7J1d3dj586d6OrqMj1XURQjXpPX3UXtKNl47qKFHgSdKtl2nBzG7T/diaSWwsrGSnz6FRcI+zIhThKJBFfZw6J0STZ9TDpsQrKxY5WqqugenUmnBdffSZ6SjWf4mQVpFdVLK9nY9gDA+kW64WyW/ODxQ9bx2AB+n3ZLyQbAcAE9JEg2sT2tBuDFYwOKqWRLu4sOTGWcR5RsTtPDuwXeNREl2yhDso2nXUVDftVwKQWczbf5QijdLk1RkSTqEw+PLV7HmuYqXL+6EZd31Bsk+7LGCk+SbIT4JQpMuo0kJltTtXdItpVpNXT/hD0l25PH9DH5sqX1hpJGFIeHPJ+lDeX44TsuRSTgw+OHB/DR3+zF9PRcTDEnarZn0tkF17ZUoZYJGyEDN0k2Xpls2TTJRqtZ7KjAyJy2rkV/dv/3Qh94CWJYiMZIEke0ta4Mfp+aVyWbrLsoXcaZM2eQTCaxoDKExsoQNI0ftsEqJtup4WnEkilUhvy4eHF9xrEs8WVFsrHH885pry9DR0M5NA3YcWrYNSXbztP687pmRQMWUmOJDGnJErt2STYREVEe8uOmtNvmH/b0YCaWtNWPZHCkbwL3/OkAUhrwuk2t+OW7LsHCyrl3Ptf5IHeSrREpDTgzMo1Ekn8/2XfQkmRbuSCn+8hbb/FINrP1NrEpRV5PZnXMk2wcvOY1r8Gzzz6LhoYG/O53v8Nvf/tbNDQ04LnnnsNtt91mtzhPw0rJ1jc2CxUa1rdWZygoeJ1OpGSz08nONSUb/fuCqjB8qoJoPIWzozPcY2ilixmzbgYzko0om2jDjndsKSnZrPzIRfexWIEp7SjZEskUnj85jF9vP4OvPnwYsWQKaxZW4iXrFiIYELu3+Xw+47qsXEY1zTzegFfAe8ZkZ3dP16jwPHYHU1eyzUBRNLTXyZNsgL24bLyMpvT3BCT5wd4uPsl2dnQGh/smoCq6USmCpvGz5UYi+jWWlfGJJDr5gVlMNmAu+cFBjpLt7OgMzo7OwKcqGapnGm7GZKOhaZqpkq2joRyKoi/8SewlABhJf15cZCUbAY9kY91FeUkP6HO9YNSRBEkpTTHcRedJNmdQFD0m24WtNfj5u7dg+ydvxG/fdwXedGm7N0k2osCczo7J5rXEB4CeuQ4ABiZjmI3Lq8meTKtVrlk5NybLkAaXdtTh+2/bDFUB/ri7Cz0jc+pauySbpmnYelxfjG5Zyt/YsEI+lGx2STbZeljvhaUN5SgP+tA7Pou9EsmDRGMkUWB3pIUE+STZ6DbQcepExwGZara5OK6jWeeI7DjStmP9el9b3lQFn8DF0q6SzcpjiSTieLbTPsnGexenYwnsT9tKr93cato2GqK63FKyAcBFbdVYUBHCZCyFp48NukqyaZqGz/7pAJIpDTetbcIXX7Me+/fswnPPPSf97Fi4pWQj513QUoXasiBiiRTODPPjJLPvIO9edo/O4Gj/JFQFhkqY11477eStA2WVbFZrRd6arlgiDit4gmQDgE2bNuFnP/sZduzYgZ07d+JnP/sZLr74YidFeRqWJNv4LBQAFzJxgHgdSBSTrRBKNnaSyjfJZtdvWVEU+FUVdWVBAFqGEoQtw2oAsIIZyUZ+E5EE9ADodSUb/TxFz4MmLdnfi+0uaqVkiyVSeN13t+L//fWYTl4oCt6ypR23XtisB8I26ceKoki7jIpiVXgNvPu2cXEtVAU4MzyD7lF+kgeW7IomUuifiEIB0F6bGetBURSUl5cjEAgY94+GHZKNnphpFVyWki09tu4/y09+8Ngh3VV0Y3stasrESgV6DKT79NKlS3HxxRdnBbwmoJVsvMQ3dJuM5AccJdu240MAdEOrXBDfLF9KNvp58IzlcMCHRTURVCqzeG7vIePcEUPJVpF1TiFhpmTLJtn0v6uYeGxeIlxCgfTiESpSxsLYu2OLl0E/T03TUFsexMb2WgQoxY0XnjlBVUQfT0g/pZULfeP6+9bkkcQHALCgMoSlDeVIafrmi4ytNR1LYEda/UQvAmWVOVcub8BL1zUjhLlyAPsk24GecfSMzcKvKtjY7h2SjQeaUDJT3cqowAzvGQW4Lq3u/r8Xei3bJ6r3+TTJtswlks2MsLHrLlpdrZNqRM1GYmPvTSdLokUNZmSABgUn0q6iq9JZSkk76PqsxhTWLrAi2Qj5++yJ4SxS0YmS7Y97uhFLJlETCWBLR6ZNI6MMdBL/jbdRyz9HwzUrFyAFBfu7x/Dzbae4iYuc4PHDA3jy6CACPgWffJkeV3F2dhaxWCxL2FJoko18VlUFly3X3TtPDPDjJLNt5N3LJ9NJvi5sq0F1WSCneY5nx1op2VhYrRWtiCsvQZZksxO6wFtX6FHwBmcNuu+/Ci1LmWAWYJu88PPuotkTcH1FEIqSGdNIxJrnSrLxXm6WVDVrr9eVbPqOqIanjg3ioQN9+O3OLrz6m0/hS385ZClVBorvLmqlZPvxMyex6/QoIgE/Lu2ow3+8/kL8+23rjZCqVv1Y9vmJyBmvgTdZVoT8xs4uMZRZsPf1QM8EUpqGypAP1RF9zKLv5caNG7Fly5aclWxsvaJd69ULK43kB8cHsnf/Hk/HYyOuoslkEocPH8bQ0FDGcaK4ET6fD9XV1cL+YsdddHXaXfRI74ShUAKA5zqH8Zk/vABAX0CK4KaSjW4X/TxEY9uyBRVoU8dwovMkxsb0BcpI2gAuZmZRgP8uV5dZKdkySTYvGXXEXXRn17jRXr/fu2NLqcKbJFtmLMG58VrBwKT3Eh8Aunu7BgVnR2ekFhfPdg4jlkxhUU0EHemxgyY5ZBby77lmKUJKAod7JwxCUjZzNcEf9ujqpo6GckSCzhK3eMFdVLYeVsmWSqVw8wV6HLr/298r7VlC1ztMzbtLG/KvZLPrLtrc3IxwOIxYLIahoSFDebm7axT79u3D1q1bEYvFLONGnR6ZQTSRQnnQn7Gp5KaSjYdLO3SSbf/ZMUSTmQIC0RrRbNP8x8+cAqAr+lQmPm2+lWxWLo6pVAptdWV49zXL4FMVHO4dxy3feBJ7zowKy+Yhnkzhqw8fwau++TR+9HQnxqbj+LcHDgAA3nFlBxbXl3PXh8Um2QDgiuW6G/Lx/gkpsQvvXj5BVMLpeGy5KALdULJZrRXPRZLNDly7whtvvBFLly51qzhPgO1sdIfY3TWOiWgCtWW+rFhAPFKumEq2UnAXVRQFTVVhKAB+9MxJw3VChmSzwyqzz4Y3eIiMOV5Mtmg06qrsWRaapuH5k8N4+EAfYons6+8bm8FvdnThB0+fwq4zYzg9PI3OwSl86/HjeOePt2N8Vk8jPT4bx+HeCUQTSe7A4kUlW//4LL7+6FEAwN9dvhhXLGtAbXrRLduPZTOMitwavQbRfdvSMeeOwAP7nHef0V0NWmsjxjH0dft8PmGSAPK9kzh3IiVbOODDNSt1Y+I//3o047fZeBJPH9PJtOtX6WPwyMgIenp6cOrUKWF9dp6jHZJtSX05wgEVM/EkTg3pC5PHD/fjrT94FhPRBC7tqMP7rlsmrMuNMZjNhsZ+Fo2VS+uCCCoJDE/pO7/9E1EkkikoCtBW5w2SjadkG2V2wiei+t8id1EvvMP15Xqf2nlmDJNRfa4JCd6peZiDVbLR8NIzJ6hOq20nZjMTH3SPzSKZ0lAR8qO+wjtKNgC4pKMOKehuSjK21lNH9UXg1SsauO+ujPvbhW012NhShpSmYdfpUQD2lGyplIY/7tZJNpIAyAkK5S7KS3yQK8mmaRquW7UAQZ+KE4NThjukCDxShygJlzdWGK7O+STZaKLPLLsobbcQNdvs7KzhVXRiYAp9g8NIJpOYmJiwJNmO9uvz9bIF5Rn2Dbv555Rko6+fRmttGRbVRJBIaTjSN5VxbXaVbA8d6MOBnnEEfQouaMneOJRRBjpRsrHkrOgc8vctGxbhDZvbUFsexNnRGbzhe1vx6ME+Yfk0Tg1N4bXf2YpvPHoUu8+M4jN/PIBL/v0RHB+YQn15EHe8aHlW3bKEJw9W77/d865d2aRvGk9GsYtDLlrFZEumhRMADLuYV6fddoqUbLx7JyLZnCjZvCZc4M1FPHWtnb7kGsl222234W1ve5tbxeWEb33rW+jo6EA4HMamTZvw5JNPOiqHVTbRN/jhg7qC4hUbmrOyl8go2UTyXDOcayQbfbyiKFi/qBpL6sswNBXDB365C4lkKmtCyFXJxjNE2N+s3EWJu6GiKNA0zZKocRvPnhjCG763Da/7zla8+yfbce2XH8MPn+7EycEpbD0+hB881Yn/73/3oXtsBuGAD5cva8CL1zbh4y9dhUjAhyeODOBV//k0Xv2tp/GDpzrx5/09+P2ubkTj2YqXQg+CMkq2L/z5ECajCVzUVoNrmYlGth/LuouWQjw2QGxAXdqh75w9e2Io6xz6eHL+zvTEv6g6bHtMyIeSDQDufPFKAMDv93TjUO+cyvW5zmHMxJNoqgoZSQdEscecPkcRycabjH2qglXpBd3+7nF892/H8e6fbMdsPIUXrW7ET955aRb5Q8ON3T3Sr+kFqYySra1Cv57RaX3X/3j/JAAN1eFARgKBYsCMZGOziw6nsyBWRfhKNi8QLp96xVrcdfMqXLOyCcsXVGD9omoj3tE83IMnSbaI/n5OMu6iR9MEyCVLak0zJBcDWzp0JVvfeBTTUeuxnbgzXU1lvjMjOURz/s1r5lQ+s/GkLZJtW+cQusdmURZU0zEnnd3TQruLplIpjI/rcxwdD1Sm/ezCNZVKoTIcwJVp9YyVyyhvTfLMcX1Bf8mSOkeqPfodlFmgyrqLsrY4oM95deVBtNVFoCCFnlE9tvLs7GxWeIrMOjUc7tPfv6WNFVxxhF0lm504YGQjdH/3OPdcmfclldJw78NHAACbFtciEsy2c8w8jNwg2WSUbKSOxqow3nN1B65duQCz8RTe89Md+NXzZ0zruH9HF275uq58qwr78b7rlmFJfRliac+cD794JarS9hWPJMl1PnBDyVZTHsKKpkoo0PCLbaeyzrMiLPd0jWJsJo6qsB8Xpl2jc7kuXp+wo2qjfzvX3UVlNwpYuHaF73//+/HpT3/areIc47777sOHPvQhfPKTn8SuXbtw9dVX46UvfSlOnz5tuyyRku3xwwPoGplF0KfipjXZGe3MYrI59Q9ny/Oyu6gs28vu8vh9Ku588QqUB314tnMYX3/0qJSSzU6HZ5+lE5KNqJqIEUSMokLgM394AW/43jY81zmMoE9FQ0UQPWOzuPuPB3DdVx7Hm/5rG+750wHMxJNorg7jc6/egBvWNOGClmrcdvEi/Pr2y7GwKowTg1PY1zUKRdHJge6xGXzt4SNCYrlQsFKydQ5O4be7zkJRgLtvvSDjOZJ/gPvuol4n2UQG1CVLagEAxwemMDiZfa30c06mNOxOB81tqQ7llWSTVbIBuuvDy9Y3Q9OAr/zfYeP7v6bjsV2/qtFoo4hkc7pz5vP5UF5eDp/PlxGHTjTGkeQHd/1mDz7/50OIJzXcemELvvv3m7I2Y1i4qWSLxWJGeTJKtgVh/fvhqRhSqRQ6B/VFR01Z0DMkBY9kY91FSaiB5Qxp5WRTK19oqYngfdctx1su78DLL2zBDWuaEJh3F3WEUlOykbiRk2klOWnjkfQi/7Kl9UVrmwittRFURoJIaRoOdI+aHts7NosjfZNQFBjkDsB3AyQQLVw6agJoqAhhIuHD3q4xWyTb/+48CwC4rKMO/hziHRZKyUbbPf39+ry2YMEcSenUXRQAXpJ2Gf2LJMlGt++ZtFL8quV8VaIVnCrZZN1FFUXJmPMAYENrDfxIoXdM94aZmZkxteN2d41ifDaJkF9FW20ZN/ZqvtxFgTmX0T1nM0k2O8TXg/t7cKh3ApUhPzYvruW20Wxdlou7qEh9xdbFzsEhv4rvv20zXrOxFcmUhrvu34tvP348q/zx2Tg++D+78ZFf78FULIlLl9Thzx+6BnfdvBp//ch1+O+3bcaXXrsBb7603bReAjvzgVMlm6gMIiYBgAf2dWfZL1aEJckqetWKBmNcc6LQY9vGI5Xoz6K5FZBXsonUYV6CWYy6giY+8DK++tWv4h/+4R/wrne9C2vWrMHXvvY1tLW14dvf/jb3+Gg0ivHx8Yx/BCKS7dt/O44UFKxbVI1IIPsWminZkkndLa+YMdkKpWSTjclGn7OwKozPvXo9AOA/HzuG5zqHuOeYDaJmkHEXlYnJBswZQX19clLnXLGvaww/euYkFAV4y5Z2/O2u6/DUR1+Ef3vVOiyuL0PQr+/aXrW8Aa/ftAiv29SGpupIxvNYt6gav7/jSvzDVR341MvX4F1XLcUrNrRAUYA/7+/Bj585aRwLeEvJNjYdx0+36WT5Gza34cK2GuHxbpFsXpU1sxAZUDVlQaxeqKurnue4jNLXd6RvAhOzSQR8KhoqQrbHKDeUbKIx486bVsKnKnjkYD92nBrGiYFJPJJ2MaDd9clCzK6k3QwkDh3PjYRtL1HUzcZTqAr78aXXbsDX33gRAhILPTcMD7LgAObuBZv4gDdeVvv0Y8dnE5iNxQ2SrbYsUHSSgveO1whisu1LZ9G7IG3IEnhJyUbA60/zcI6SINnKdZItmUxhKpa2BTUNh9Puapcv8x7JpiiKobTcb5KpGoDhyrRhUXVGIhqzsY33fmuahpmZGWxeXIspLYBdp0cwPi2XZGomlsSf9+uE0hXLGjLqsAs3STZemWzZExMTmJqagqIorpFsN65tgqoA+8+O4+QgP6shfTxpS//ELA736Ul8Ll9WXxCSTVbJRh/Hhki4KE2ykZAzNMnGe4YPvdAHDQqW1JfDpyo5kWyixAdm/Y+QbAd6JjK8d2RJtmRKw9ce0UNp/MPVHcLNPJn7ybYzFyUbex5P4BDwqfjK6zbgvekwGl/8yyF8/ZG5sCBPHBnAS7/2JP6wpxs+VcFHXrwSv3zPZVhUE0mXpeCGNU14/ea2jBh0vHWdk/nADXdRtozm6jAaKkKIxpP4351dGedZuYsSku2aFZkePGw9sjAjlejPItEDYG1bWxFXXoKV6s7JGCgVCOTVr361dIG//e1vpY91G7FYDDt27MDHPvaxjO9vuukmPPPMM9xzPv/5z+Puu+/m/saSbD6fDztPj+C5zmG0+1VsbK+1jBdAQBvUhGgDzm2STbYjsoPyKy9ahGeODeG+7Wfw//56FHesy85MlKuSzYxkI3Ex2AGAHQCbmppw+vRpDA0NIR6PZyxw84Ev/uUQAOBVFy3Cv9+23vj+7y5bjL+7bDE0TTPadujQIfT29nJl+k1VYfzry9ciGo1i69YulIf8uGr5AnQeSuKzDxxEY1UYq8u9lV30UM847nv+NPqiIbRU1+NfXrIq43daFQDIu4vKxmQrFZKNNx5t6ajDod4JPNs5jJeub874jZ5Atp8aQQpAc3UYqqoY115IJZtZYP7XbmzFfdvP4E3/9awRhzDoUzOSCeSDZPP5fFnnie73i1Y34btPnMDF7TX4zCsuQKONIOZujMFk0RGPxxGPxxEMBrMUIKlUKuN6UqkUEJ9F0K8ilkjh59tOYteg3oaa8uIr2Xj1N6TjVnWNTBvj3mw8abjdrWdINi8p2Qh4bknzsAezvulFki0SDCDgU6FowNBkFKlUCgMTUUzHkqgM+bE2naHYa1i6oALHzgD7z44Kj9E0Db/errt8XbUiM8GL2aKKtwiLx+NIJpNYubAStWeAmfFePLK/Gxs3rLNs68MH+zAZTaC1NoIVjeXo7h7LG8lG4JaSjWSrr6ury1gzWNnUtP3D2rYNFSFcs3IBHj88gJ9sPYVPvWKtVPu2pjNir22uQl15EIMukWzke959yNVdFNDj+QUUPsnGG2cfOtALH/Q+zh6Tq5KN/Z6HjoZyNFSEMDMVRe/4LCoryjPqFBFf5Pc/7DmLY/2TqI4E8M6rOrDr2R7T88yUbLJ2Dg12buWRbGb9U1EUfPTm1agM+/GlvxzGvY8cwdhMHKeHp/BIOixTW10EX3/jxdjYXitsB+962Daw7bOCGyQbu24narbHRzX8/NnTeNsVS7KeDc9ddGw6jt3pcC50PLZc5jkr5aUdJdv5lPjASkBEQ+oKq6urjX9VVVV49NFHsX37duP3HTt24NFHHzUCUBYLg4ODSCaTaGpqyvi+qakJvb18qfTHP/5xjI2NGf/OnJnzC+cp2b6TlrNesXwBKsJ+7s3mDej0JJNIJBwZ/U5JNvYl8Kq7KP3dP79kFcIBFQfOjuHU0LRxTr5INk3TsP/sKB492IfBySiXKGDvUXl5OSoqKqBpGgYGBqTb4ARPHR3EU8f0FNUkRhUL3uRmxr7Tf29sr8GNaxYgmdLwvp/vxK+eOwVN0wo+CNKD2IHucfxu11l8/sGD+Mwf9mM6nkRbXRn+9/1XGsGhRbtmdpRsZv3nXCDZjLhsHCUbPTY81zkMQEFLepfQ7piQTyUbAHzwxhUIpYmggE/Blcvr8fU3XoSK0NxihM3eTOD2cxRNtu31Zdj68RvwrbdsskWw0WXlOgaz7jNW4QKmpqaQSqXQUq0/9wf2nDWMuVoPuIvyxq/VC6sQDqgYmY4bAb0PpbO61pcH0Vydee/nlWznPkpByaaqKsqCPijQcKhXzzDXNTIDDQouydG1MZ9Y0aiTf4d6xhEXZCe/f+dZPNs5jHBAxRsvac/4za6SbXpat/nKIhH8/ZUrAABPHu7F8JR1/FuiDrnt4kU5P3s3lWxmx7DzUmNjZhgaGZKNLYsmNt5xZQcA4FfbzxjZWlmwz+jptCqRdvu1ug5Ru3gkm9XxZnFaeUo2Mt+tW1SFgJLCZDSByWgCs7Ozwvn/WP8kTgxMQVVVLGkoyzrGLXdRs36oKAq2LK1DSlNwdmQma41jpWT73hOdAPSMvFXhgPDemtlYovvjlpKNPl80173vuuX45C1rAAA/eLoTjxzsh19V8M4rO/DgB66WJtjY+nKJyea2ko28B6ubKxEJqDjaP4nt6eQivDbS9//p44NIaXoSEmKj0+c4gZl4xex7O0o2nq1crHBEVrAi2ZwkPpBSsv3whz80Pn/0ox/F61//enznO9/JIHLe9773oarKG7tw7Esk2jUB9MU2HdyaPQ+Yu8mnh2fwcNpF6daLFiE22mc6YLGkmN/vN3boCqVk07S5wPyBQEBIKri5CHFDQr+gMoS/27IYv3jqMJ7tHMLi+jIoisJ96e2wyjzJ8jPHBvGVhw5j5OxxVCuzODk4hcu2TKN1QTDjXB4x2tTUhMnJSfT19aGlpUW6HXagaZqhYnvLlsVoqyuTOgfING7MBkpFUfChG5ajqnYMP3i6Ew/s7UbPAmD9bDlOxStQHvSja2Qap4amcWZ4GqeGp3F6eBpBn4qrVzTg+tWNuGp5A8pDUkOKEKqqkyj/9cQJPNB91vh+oZrE0sZyvP3Fa9BUlR0Q2KmSTdM0Q/HDQ6mQbGY7LJd06MbJod5xjE3HUV02p7gkxyc14LFD/dAAtDP9ywtKNkCPZfXb912B3rFZbFlan0GuEeRDycaDk8nWCm6prYLBIKanp41xn1WyJZPJDNUtCZHwsg3NONo3iYPjfvz1bAplfh8aK0OeISnoex1MK8mfOT6EZzuHsaKp0nAVXbcoO7Oa15VsXmpXqUFRlLyr892CoihY3liBrpPT+O7fjuNLNzXpakwouNyD8dgImmsiCAd8iM8m8UL3OC5qq8n4fXgqhn9/4AAA4IM3rMyyUcwWVTx7cWZmBgAQiURwQ3szHnoqhK7xBL79+DF88mV8JRYADExE8UQ6u+mrLl6E5Eh3Rh124SbJxiuTV7aqqmhoyFQCWtVDz/s0eU9Uy9esaMCyBeU4PjCF3+zoMkg3GvT7ommakbn7iuWZLrf5JNmcKNlod1FN01AW9GNpXQjxUaBvbBYVIb/Rn9j5nySDWN5YiZDfl3UM3QbaxrQi2ewSO1s66vDo3tM4OTSFK5lMpqI4aZqm4WDPOA72jCPoU/F3WxZz28L+zbv3ViRbrjHZeCQbrx3vvmYp/D4Fn3vwIK5Y1oB/ffkaLG+0nx3YS0o2tj5VVRHy+3DLuoW4b1cffrbtFC5ZUsdtI/3MSHgUnqsorx477RQp2ay+B6xD6vDWBaWuZLMzBtq+wh/84Af453/+5yxXhzvvvBM/+MEP7BbnKhoaGuDz+bJUa/39/VnqNhmwJNsvnz8DTQNevLYJbfW6tJi3KBQNWHRny3dMNvpYmmQD+B3ETYNUVlJppmQDgPdcuxQhv4KesVmcHp7OKNOJko0nWX5wXzfe/P1nsfP0KIKqgvKgHxPRBD5x/24kknxSir5HZMdxbGzMmMjdwGw8iQf39eAnW0/i0394AfvOjqE86DNSVFtBhn1n/1YVBZ96xVp89fUXIuTT02V/94lOvOOHz+P1392KO3+1B19/9Ch+u+ssdpwawcBEFGdHZ/A/z5/BP/50BzZ+9mHc/tMd+MOebuFuqRUmZhP47c4uHOkbR9Cv4pIltXjzlnb84zVL8fILW1AWynTJdUqy8XZAeSgVks3McGmsDGNpQzk0DXj+ZKaajfSTg72TmIwmsKimDC01+SfZnCjZAOCClmrcsKaJS7ABhSfZ7BD8VnBrDGbdZ6yUbIRkCwX8WNtShTuuX4atH7sB/3D1UstkDYWAyLAhsWyIQnN/FyHZsjf7vEi4zCvZ3AXdP+zMBYWEqurkcEBVsPP0KPafHUX3qK5k82LSAwK/34eW6jAURePG9vz3Bw5iZDqO1Qsr8a6rswkcx0q2sjKEQkFcsawBPiWFH289hZ4xsZ31xz3dSKY0XNhajWULKnLeBJEl2WRgNgbRZdfX19tWFPGUbEAmAfL2NLH242dOIpUSb7SrqorTw9M4OzqDgE/BpWkCQPZaeW10QrKZJUPikWypVMqY55c36Eqf3rTL6NTUlFEujYcO6MTFeoo0Fm1+2CHZ7BI7N65pgt/nQ8/YLI73TxjXw2szXcfvdusb0devXoDqsoDpuOdEySazmWh2jewaWqbMd1zZgQP33Iwfv/NSRwQbW7aIKLILN9xF6d9ev7kVAPCnvT04w6xvWZKtf3wWf9itbxjcsn5hRnm52Dbss5BVstGwsq2JnUPCMNHlec3u4Y2zNNnthGSzLTtJJBI4ePAgVq3KjIl08OBBVxccThAMBrFp0yY8/PDDuO2224zvH374Ybzyla90XG4qlcLkbAIP7u8D4Mft1y6Dqma+FOzxQHanozOMOtlZt0uyqaqKVCplLLLoyYhFPkg2q47ImxDo7xorw3jVRYuwa3c/nj0xjPa6Mu5gYIdkIyCB3v9nzwSAarzp0nbc0tKE/sEh/M/zZ7Dz1DC+/H+H8fG0fJk+n75HoVAItbW1GBkZQX9/PxYvztxNcoKZWBJv/v427Do9mvH9u69ZasQisoIVgWn296s3tqJ8aiW2vtCJZqUWJ2fDmErHOGmvK0N7fRna68qwuK4cw9MxPHaoH3891I/Tw9P4ywu9+MsLvVAVYNXCKmxeXIvXbGrN2Pk+2jeB7z/ZiYqwHxvba3FBSxVGpmM4PTyN7z+yF77xWZQHI/ifd1xmSMSPHz+OM2fOCPunXZIN0J9dPB5HNBpFRUUF95hSI9lEY/CWpXU4MTiFbSeGcOPauQ0Hcvzzp0YB6Gomn28wY/OgEEo2M9cQOxCRbG5P6vkg2dxqI0se85RsNAjJVl1djZGRESSTeqY1n6pkLY6KAVH9hGR7rnMImqZhf7dOsrHx2ABvGnXzSjZ3wFOyeZVkUxQF5SE/tnTU4tAR4IdPdUJJpBAJ+rC2xRueIDwoioJFtREo/TF852/HURXx47Wb2jA6HcMvnzuN+3d2QVGAz796PTfJi5nawUrJFggEsLi+DO01IewfTOIr/3cE//H6C7PKmY4l8F9PngCg2zC8OuyCjo3EK8POosvsGPr9Z11FZeoR9Xf6+9dsXIQv/+UQTg5N47HD/bhhTRO3DEVRDBXbxW21hneCzLWeOHEC3d3d2LRpEyKRiG0lG328bOIDn89nrHXi8Tj8fj+W1IVwEDDisk1O6iEF6P53amgKe9JhES5srUV0cjTrGPq5EDUbfS9YOEl8AOgq/Tduacf253rwxJF+/F1KsyTZkskUfr9LJ15uu3iRafn0eWZKNivXVB7YtSx51rRNLqtkI5BJFGUGnhLJS0o2AFjVVIGrVzTgyaOD+N4TJ/DZV63j3ksAeGBvNxIpH65btQCb06Q3QS7koZWSzY2YbPT7lEwmjXeV/c0LyIeSzTbJ9o53vAPvfOc7cezYMVx22WUAgG3btuELX/gC3vGOd9gtznXceeed+Pu//3ts3rwZl19+Ob73ve/h9OnTuP32222XRW5kMpnErjMjiCWDuHRJHTYtrkVPjz5429kVYDOMAvlTspH66fYVSslm15XKjAh686Wt2Ld3N7rHZnCgexwXXJD90svWQ9+L44PT+L8XeqGgDG+/Ygk+/Yq12LNnD5IVIbx4bROO7I7iu0+cgKIo+OANKxAJzt1L9h41NTVhZGQEfX19aG9vz+keJpIp/NMvd2HX6VFUhv24clkDqiMBLKqN4D3XLJUuh26rSFkoGlABoLk6hOtWN2L16tVYuDBz54TFtSsX4NOvWIsDPeN4YG8P/ry/F52DU4aU/efPnsKHb1yJ912/HI8d6scH/2cXpmL6O/Lf6Mwoq0KJ4qIyP950xZKMGAxWBgd7zTIIhUKYnJw0zTB6rpBsV69YgF8+dwa/292Nf7l5leEakUwmEUuksLtrDEAVXrGhBWMnMzP6yt5PehPBCuzzNNu1loWmacKYbG7H5JJV69qB20o2mZhssVjMWNCSzQJ6MeEFiOaGje21CPgU9I1Hcax/EkfSmfDWcUi2eSXbuQuz3Wf6dy+APOerl9fj58dGMTwVQ70KrG6uhk/1TjtZqKqKtc3VaO0dx46RGD56/z58+/Hj6B6dRSyt+H/b5UtwsSBukl0lGxmTysrK4Pf7oSgKrlrRgIeG4rh/ZxduvagF167MdJv6zt9OoGdsFq21EbzhkraMMp32AXKenaDesmXSILa5z+dDXV1d1u9W9bALQbKQpcf6sqAfb7q0Hd994gR++PTJLJKNLoPEY7uCiscmc639/f1IJBKYmJjIItloyFyHnRjSwWAQs7OziMfjiEQiaKvS58Ce8Rg0TTOUkbQd9/kH9RAs165cgJryEPp0Hi4rljaBzLrNqZINAG6/djnev/N5DE1G8ZvtZ9BqYfMe6BlD7/gsqsJ+XLeqMaM+Xp25KNnM7BzeNbIkG289kk8bw8vuovT1v++65Xjy6CDu234G/3TD8qw2KoqC3rFZ7D4zCkWpx10vWS1Vp9122lWy8Ug2s+yiPp/PSMIYCAQ8uekJ8O16Hslmx+63TbJ95StfwcKFC3Hvvfeip0fPYtLc3Iy77roLH/nIR+wW5zre8IY3YGhoCPfccw96enqwbt06PPjgg44URqQjzcQS2Hd2DCkswO3X6USH2aJQxOzylB75JtloFQMdh4pFMZVsZjtcdeVBXNRei+0nh/HwwT5EK07iw7cucKRkI4vHo/2T+PXhQZSnNFzUVo1/ffnajN3wlU2VeNPmenzn+RF852/H8cc93fjgDSswNtSL7lMD8HXFsaBtmRHYvKGhAYqiYHp6GrOzs4hEImbNML0f//r7F/DIwT6E/Cp++PZLsnYt7JQF2HMXFbH3MlAUBRe0VOOClmrcdfNq9I3PYvvJETy4rwcP7OvBfzx8BA/s68HhvgloGnDpkjqsXFiBXadHcaRvAg0VIbTVlmFZjYrLqyvRUMGPh2c2YdntwyQWo4y7qNcmAxZWg/+L1zZhYVUYveOz+OOeHrx2U6txfOfgFGYTwOL6MqxbVIWtp8VEphnYTQSz8/KhZKONYNIf2LHIbSWbm4aiW4YH6y5K/idjHN1HJiZ0YqqsrMw4z+kmUL4gmk/CAR8ubK3B9lMj+MnWU4gnNdSUBbCoJnv8dZtkdQPzJFv+4HWSrSrsx2s2tmLrTt318oKWbGLYS1BVFZGgD/9+2zo81efD1x89ipPphFQbWqvxli3teO2mNuH5dkg2TdMylGyKosczbq6O4C2bm/Cj53vwsfv34qEPX4PKsE5OdY3oMe4A4JO3rHHNzd1Nks1sTI1EIli9ejXC4bC02s+sbB7JBgBvvWIJvv9UJ546Nogdp4axaXFdVhkA8MxxkvRgLjacVRsSiYSRHZXM46ySjSVfWMiSbGx/CgQCmJ2dNWy5+jIf/KqCkbgPp4ansaRez9hJ7u3W40OGx8UnblkDjHUbZbMkGyEIZJRsVsogM9RWhHFpRz2ePDqAex8+hM9dGYLKqYv8/dRRPdnayzY0S/V3Mxsxl8QHvLlVdB9ooiKfMBNhFJtko/v1ZUvrcHF7DXadHsUPnjqJy8uy7+XTxwahQMNtFy3iqp1zsdXYPsEj2cz4AvocMyECTbLR53jN7vGEkk1VVdx111246667DDcTryQ8IHjf+96H973vfTmXQyaD5zuHEEuksLyxCtendwyc7ArQSg/yOd8kG328bIyDXCHL9soYwpqm4cpl9dA0DTtOjeDn206iNx7Ca9qTGcfI4G+H+/CrZ0+jfzKG8VQlOqpDeM/VS40dZLqcN1/Sio2rl+LuPx7A2dEZ3HX/XjSqE2hRxzGciuI3J57AZ1+5Dq+4sAV+vx/l5eWYnJzE5OSkI5Lt7OgM/v2BA3hwXy8UBfj6Gy92TLDR12K2cyRDsjntD01VYbxsQzNetqEZL9rRhX/9/X4c6tUX9H9/2WJ86hVruZLw8fFx7Ny5U6iyM+sndokUQiqcD0q2gE/FW69YjC/95TD++6lOvGajnnktlUrhSN8ENCh4xYaWjP5CYJdkA2DsWImQDyUb6xZJw23SyMsx2Wh3UVrdFwwGEY1GM4hMeg7nJZ/wEkHBG+cv7ajD9lMj+M0OPaPgek7SA/pcLxl18+6i7qCUlGx0W9973TI8t2sPAGBda00RW2UNY5xWgHddvRS3XbwIjx7qx5qFVVjfak0Q2iHZotEoUqkUFEVBOKxvZAYCASQSCfzjNYvx1+NjOD08jc89eAiff/V6ALoqKZrQF603r5tT3ntJyWZ1jJXHgFkZPAUMkD0/LaqJ4HWbWvE/z5/Bvz1wEL997xVZxx4bmMLIdBxlQX0Tg8DqWkncM4BPspH/zUg2+njRHMvbUGU3llLJBFYvrMKjXSn8ZX8v3nhJG2rKglBVFcmUhnv+pCfpeMuWxVi1sBJHJ+aeL0/NlSvJJtP/VFXFhW3V2HNmFPsmZrH1+ASuXFbPVbIlkils7xwGUIFXXTTnKiqjZOPdexFRIrOWEynZ6N9ESjarzVin8JKSzcwFV1EUvP+65XjXT7bjZ9tO4eKrAggF5gjm7adGcGZkGn41jA+/eCW3rlw2eq1IYR5Rzx4ns0by+/2IxWIlT7I52VzP6Qqrqqo8R7C5CU3T8PjhPmw/pe82vv+GFVmTrp2YbDx30XzFZGPr9/v9ph2kGEo2+ngzIkhRFFy9YgGuX90In6LhV9u78MiBueQWVgvdZErDvz9wAHf8fCcGJqMI+Hx43eY2vHZTG4L+zMCmxjnJJG66YCEevvMa3HH9clzQUoVLFtdiY3st2urLMTodxz/9chfe/4udmJiNGzG9aENDBrPxJL72yBHc8B+P48F9+s7aZ1+5LsNQdIJc3UXdHARfs6kVf/qnq/DKi1rw5dduwGdftU4Yc8HMsOK1h6eCtKtkO5dINrN37s2XtiMS8OFgzzi2ntBdQidmojg5NIUUVLz8wuaMsghk7yc9CVm5jIqUbG6SbLz+7JZB50Q2bgW3lWyxWCxjriH9nadko0k2mcVEIWGmdCZx2Wbien/iuYoC80q28w35dEXKBfQ4t6ShHG+7YgmuWbHAcYDvQoG1z+orQnj95jasb61GNBrFyZMnHSvC2bJJOaHQXGZjsnHgRwpffM0GAMAvnzuNt/7gObz9h8/hgX09UBXg06+4wHS8sAs7JJsde9dpO2QUYPT/vOPvfPFKlAV92HV6FH/a22N8r2kaZuNJ/OdjuiLwxWubMuxjqzmaxD2jjxGRf3aUbGbqdrZ/kI2lWCyG61YtQNvCeszGk/jD7m7MxpPw+Xy47/kzONgzjqqw3yAu6Odr5jIpS7Kx90jmmSuKgoDPhyuXN0CFLu544exYVt9TVRXHBiYxE09iUU3EyEwJmPf3XNxFzcrl2eZeUrLlEpONhtM52kzJBgAvWt2IVU2VmIzG8WznkHFO/8QsvvLQEQDAFcvqszI2W9UjA/b5WinZeP1BlmQD4HmSjXd9uSrZvHWFHsPgZBT/fN8uaJq+Q/6yDXM7Bk4GLLqjOXnh7ZJs9PEkrgVgTrK50ell2V4ZtRV9fy9srcEHb9Czaz59dADHByYt65mYjePdP9mO/3qyEwo0XNxWg9uvW47Xb9YJNtHuN3mGZUE//vklq/DAB67GP9+0EtesXID/72Vr8cEbVsCnKnhgbw9e+c2nMRrT208bGlbX/uC+HtzwH3/D1x45itl4Cpd21OGP/3QV/u6yxVJlWJUPmLPvZqSb28qPpQsq8PU3XozXbRa7lABiI0y0SOYZuXZJtnMpu6gZ6VNTFjTcRP/7yU4kkin89UAvkikNLbXlWNWkL/ScKtkA+eQHIiVbLu6ibJ357M9eVrLRu/qEeFRVNWOTh4D8HgwGM56BV0k2FpuX1IEOZcVLesAzEr0Aet7zUrtKDWZKNp4yt5hg27qpvQYbF9d6qo08mI13Z8+excmTJ3H27Fnh+XaUbLw5l5Ao8Xgcly+rx1sv122kJ44M4PHDutvcm7e0Y00zf9M/VyWbFakiAzfcumSVbGbPq7EqjH+8ZhkA4It/OYTZ9AZFIpnCn/f3om8ihra6CO6+9YKM8+hnwANt+5op2UTXwdpwomug/6bdRUnbyPzl96m49y2XozLkx/B0DD/fdgr/8JOd+MT/7gMAfOjGlagrD2aUA+RGsrG2tt1nrqoqVi2sxDuuaAcAPHKoD4+l+zegJw371mPH8dALfVCg4daLWqAKYjma2coscnEXdapksyo3F3hJySZ6DnNjooIP3rgCCjTsPD2C508OI5HScMfPd2FoKo768iBuXJOdDIXAzXHFSslmRrKZ3R/W9vRqGB4rJZsTks22u+j5gtlYEt9+7BjGZ1Q01YZx3apG7gvHWxSKOhDtLupkZz0XJZvP5zNVXxRDycaTNvOUbDSuWt6Ad05H8OyzvXjohV686dJ2NIXmMm5ORRP425EB7O0aw/GBSeztGkXfeBQhv4p/f/kFqJ89i1AoYPoyAXySgBwb8Pvw4Rcvx/WrG/Hen+3AiYEpfOA3B/HWVQqWpXxYm9KEE5+maXjq2CC++dgxbDuhKyRbqsP4+C1r8PINza4Z2zIEptnfxdppcKpkc0KynU/uogTvuHIJfrrtFB491I9rvvQYyia7UaEAL1q70HJBIQMiC7ciywqhZBMtut2Al2Oy0VmkSYycQCDAdcklz4FWOnuZZGPdSypCfqxbVI29XWMAgHWc2Fb09XrheggURY81FY/HPT++lALy+b67BXacc5v8zxfMxmcyf5qN+WZxe+yQbMQu+9eXr8WWjnpMxRJIpTQE/SpuWd+cVXau/UBWyUbqMqvHDbcuq7JlSDYAePc1HfjFc6fQNTKDzz94EJcvq8cz20/h1NAUAr5afPfvNqOmLDMurhXJJusuSn/PuwbSflEICd66gVZvk/b5fD4sqq/EbZuX4JfbTmAimsBIMg4giGtWLsDfXz63me22ki0Xki2ZTOJ913Rg8sxhHOgZxwfv24OOv55Az9gMRqfjaFIn0KxqWL+oCrdfu8zy3vCug0UuiQ/sxmQTtddN8OaCYpFsPCUi28Zb1jfjzhtX4NHHe/D0sUE89V/PYk/XOBaG/HjZhhYEffkdV2SUbKK1pF0lm6aJM+cWG/MkWwHxw62dGPfXozpSi1s2NCMYyLxVxVCykd0dEq/CCsV2F5VdMNshglKpFD5+y2r80+Hd6B2dxO92nUVLfSUeGTqAk4NTePLYIGKJzHobK0P4r7duxpIqBbt2nRVKlum6zEg2cu5FbTX44z9dhff/fCe2dw7gkYO9eORgH/7l8Qmsa63Fdasacd2qBSgP+nFqaBqHesfxP8+fwbF+fccv5Ffxj9cuw3uvXYZI0N1FlkxGFDNlW7EGQbtKNoJclGzxeBypVIp7rTJBPb0A2Xdu6YIK3LC6EY8e6kf32Cw2lqnY0lqPN17KNzjtKkFklGz0s3JTyWZGsrntLuhlJZvP5zMCzZKsavT4zyPZyDnkdy+RFFY735cuqcPerjFURwJoq8uOh+lVJRswl5zIa+0qJZjN5V7ovzRyXYQXC2bzC1GCmy083FSyAXqM0ZdtyCbV3IZdks1OmU7aIaqDvb9W9kBZ0I+P3LQKd/1mL3689RR+vPUUOnzDqFaAO160ghtg3Yxk0zTNFslmFmaHXAdLbvHOJd/RbSP9kXzXsbAWb7ykDSPTcaxZswYXLGtDdSSQ8Rzoz2ZEk5Ud4QbJBuj378Y1TZiNJ7G7N4WDPePpcoBLO+pxVVMNLly5BNURcdxbq7bRyLeSTaQsLgTJxm5o2EE+lGwi2/H2a5dh6vQL2HZiCHu6xgAo+MQta1A10y3V9lzGFdE9Yvu8FQklAo/7sDqnGPAcydbV1YWWlhbP3Sg3oGlAa20Et9+yAamB40JVWiFjspHjnZJsMrtIxVCymQ26vJc+4FNx64XN+NkzJzA6E8dg1yj2n+w0jllSX4arVjRgRWMlljdW4KK2GpSH/BgZGQEgflnskmwA0FARws/etQXffOwY9u2cwOjkNLR4FNtODGPbiWF84c+HssopD+ox4f7hqg5LP3un4MnuS03JRhtWVko2+hjZPkyIh1QqhWg0yk1YUWpKNpnB/1OvWIvKsB9bltajLXEWiVgUoeDcrrWZgWAFGZKNJtLcVLKxdfJcBtzqz3Y3EmTg5jsXDAYxMzNjkGy0ko2+/+Se0SSb15RsNHj9+4Y1Tfj+U524anmD5eaJ166noqIip4zU85hDKSrZvBgrkAez+cUINi+hdrFDsrHhTui6ZJFrP6ipqUFlZaUwKYEdwsBNty6rsmXsgddsbMULZ8dwsHcCmqahamYWGxZU4rrVTdzjzUi22dnZjHnFSUw2ljyjnz/PFqQX/bwQCeS7cDiM+ooQ6itCWNVcnaXQA/KjZHOy8UvqSiQSUFUFL79wEa6/fiUqQn4014SxqCaC0YFeHD9+3FINKCrbTBhi5SliNr+axWTjERX5hNvuonY3m81saDNByZZ0jNkDx334pxctxzWrFmD3bnOSLZdxxU5MNitxipndyvPio7/3CqxINiceLDmRbGvXrsXu3buxdOnSXIrxJN5++RKsW7MSixZVY+eAWPJpZ8DKVclGl5kLyZZvd1G6I4oGZhZmCiUapO3lQRVv3rIYxwcmEUspuLJxKarCAdy4pgkrGsu5g6IVI21FsokM4oBPxYduXIm9jbMYHBxCZEErjkwE8Njhfmw9PgRNA9rqIlhSX46rVjTgtZtajdTz+YLV7oPV38Uy/lmjle2zZhOW3T6sKAqCwaCR+v1cINlkSJ/F9eX42hsvBgA8/fQZAOJMh/kg2Xg70Wbu97IohruoF5VsgL4gmpmZMdQFPCWbpmkZ7qL0u+TmdeUKq4Xs5cvq8eAHrkYrR8UGiOPBeAFr165FPB43VLXzsI9SVbLxFL1ehdl4R8bdQirZZJGrUiYYDGLTpk3C352QbE4gq2Rj51Pe85qcnISmaaisrMTdr1xnfL9nzx6MjIwI+yLtsssq/9lYxLm4i5Jxmi6fro/3btOJD1glG23Xiew4t0k20k674xBNRgB6aJpXXNiSccyY5Aafla1M/27lLkrOkx1rvaRkc4Nkszs+O1GyEfHM5csa8OG3XoWQ34exsbGMtvPg5rjCa5PVWlLmvtLrAq+G7wD4/baoSrZ8vSBeQFnIn3WDaYiIJPocdsDKNSYbXa8Tkq3Q7qJW4A28Mko2cs8rwn5c2FYDVVVxzTVrjON3794NALjooosy2iI7WAD8xb6VQVxRUYHh4WHUhzS8bf0SvO2KJUgk9YHTJ4jRli/wdh+s3EW9pGRj22N1750YNIDuMjo7OyuMy3Yukmw0aJKFoFBKNrpvmimDZSHjLupWf3Y7JpvbC26yi08r2Vgik91RpJ81eX5eMIJk2sBzbyLwKuEC6M96nmDLDU4N/2KAnd+82k4WZrFSZdxFZbOLiuxnpyQbW0c+4QUlG7m/Zs9r9+7dSKVSuPLKKzPusVX7aBshkUgYcwwwF4+NeAaISDazeVPk8speB28up5VspD+S7+yQbLyNGDuxSkUkmyxoJRv9N68Ou+s4M2WglbuoqD5ALiabyP7KF4fAU7KxbbMDu+fQx5upA2nQ73DI7zM91o02suXz+qtIyWZXkEF78RVa1WgHInIYcE6yeXv7rMiQIdkA8QstUrLl6i4K5KZkKyTJZrZoliHZeEaCGVmUTCYxNjaGsbExofuYm+6iNCoqKgBk7ur5fWrBCTYgs62y7qK0wqVYO+xWhpWbSjZgLi4bj2QzMz68BjOVqgj0LlUxlGy8Ot1UsvHGZa8q2eh30Y020oGgAf25sEQm/YzImEjqJs/Ba0aQE6O8WBsG8ygevEpesfNbqbiLiuYX2paVcRc1S3xAl8kem6uSLV/314kqJ58kG6sY4z0vsslPkuIQWI2TiqJkKMZoEJu3srIyoyw7Sjb2XaBtV9ouMFOyaZqGmZmZjO9okk10bXRsWPb52IlVmiuJLkOyyYgleBDZ1vQ5Zko20fvtdSWbqC/KoJBKNpn7yIMb5D0px66STdZu5SnZvGiPseMmGyey4CTbJz7xCdTV1eVShKdhpkoTDT70ZHC+uovmYnjIEEFmJBv9W64km6gtontUXl4OQN/Vy9fkIUIikcgwQHNxFzUjivMNUd8RkX684+30YbMMo16OHcDCCelDj1XFUrIRuKFkY+u0u9tmB26TbG5L6MkCg/6bXbCwrqL0osZrSjYnxg2BVwmXebiDc0HJ5sUFBw3Rwp62OczeTRl3UVKGmyRbISA7NuViE1rVIXIXZY+n53yWZJN5Z0TPgSjZqqqqMuqxQ7Lx3gXePMvrS6o6l42UtIW0NRwOG8dZKdl4vxfSXZSdo3nnyfQ3GSUbAS9GLg+yKkpeG0UqxUKQbDyiTxb5INmsBCVOSTYnsFJeWinZZNeKpUay8TaOaDvUjt2f01V+/OMfR01NTS5FeBpmSjberj+Q+aKw55ABTNM0x4sYpySbz+crmLuoaDCXqVOGZDNrP/2byH3MyiWRfOax+mx7aZSVlUFV9RTcrAGTT2iahu3bt+P555/P2rVx4i7KsveFhGggE/XPXJVsxADjkWxmhLnXwLqvy4AOei8yCgqtZOO9d7KQicmWD3dRNwxFt4lt2pUH4CvZeItZNjmC10iKXJRsXruWeeQPXiXZ2PnNq+1kIdpUoBVNbpNs9LF0PDA7Y0Ah7q9s2W4oTmSJDtHzom0a1uaRGSd5JFsikTDUY7mQbLw+wtt8E91HNkQC+TsQCKCsrAyBQCBrXiTIF8nG+94M+XQXFdnWvPAdVudY1WmmZBO1z03w+kuxSDaRF5xoPWZGVsrWKQt2Lcxb8/JUiHaVbHSoLLPQAcWGGTlMczoFU7Kd6zAj2ejvrHZZCOgBnExSxVCy5Ztk45Vr9ZuV2oqebM2UeLko2cwMEvpYMzl9WZmeLZQNBJtPEOl/LBZDPB7PIpzsuosWOzAlr71Wux9OSTYzd1GahCiVRRAgPwHIBLu1e91s4F4ezIxp+ne7KEbiA8AdNZvb7xy7mKCVbKy7KI9k85KSDcht57tU1ELzcIZSUrIBme0tFQJYtNAulJKNjQcmi0KSbLJjUz5JNpYUYJ8Xfe9Ym0dmnOSRbEQ5FgwGjU1L4kbshGTjERQyJBtpGzmW/K0oCjZt2oQtW7YIlVpkg5y4u9KwQ7LRvzkh0XMl2azAO9cqJIoVseAkJlshlWxecxe1Ej04VbLlMq6QcnhrQt7YbZdkKxUlG9vX3ei33rtKD8GKZOPtslgFeGVTkRcjJlsh3EXtyCrp40Xt4pFsVi+9DMnGq0t0vsw9InHZiOFRCNBkILvTa+ZHbqVkM3su+YQdw4q3c+g2yebFyYCFE9KH9G96AQPkX8nGM+roepyQVqnUXLBlQjDxNj+8SrK5TQSx7qK0ko3nLkog465SDOTSjlIhMuaRG0qFZOMt2r0+x8i4i8rEZJMh2URKZ9Z29gpkF175VLKJFoOFULIRW7eiokIY9kGGZOO9C3aEDOzGEv23z+fLsnNohMNhXHnllVi9enXWb05JNicbv3ZINifrON79tCLZ7BK8vHPskK1uwEzJ5gS5jM/ss7ASPTgl2XJtG0/JxvZhEXnKlsWCR7J5MQRPPshhb8/sRYbbSjZgrmM5VbI1NjaivLxcyk23WNlF6XJkGXhZJZvICOOpsESB0GV9y3Mh2QqpZKMNJzoQMWBOeLJGFXsvimX4m6kMRTHZnKoCCMkWi8Wy+l6pJD0AnJFU+VSy2V1wKYqSRQLZAf2u0kGQCdzu03Y3Eqzg9vgro2QzcxedV7LNo1RgtmHmlf5LI5dFeLFQKHdRerOEnZeckGxeUrK5QSjYVbKJbBrAPSUbsXXLy8szNml4KhcZJZsVyWalZBP9bQWRx4Jdko0XSqIUlGyi5y569wl4/cZLSjYR0SeDfCjZRPfTaUw2UT1220oLWESiFrYO3hqeBzJ2a5pm2reLDVG/zYUc9t5Vegi0dN0uySZamLOGgt0XY+HChbjkkksyMuaIUEx3USuJMfu9qG1WLz1bnoySjUfq0efR8T9E54tAkh8Ui2SjdwoAva1WOydsPy62nNeJks3pgiUYDEJRFGialpUxq9RINrsTQD6UbDJtsCL3nJBWZDylyaR8K1tyaS8Lt985M5KN3P9SchclyIVk89q1zMNdlJqS7eTJk559z1iIxjo33EWBzHlDND94NfmB3Xk3H0o2EclmpmQTZRe1q2Qj8djKy8szNsPpukSLVF52Wrp+O0KGXEk2EewqT/OtZMtFLOEVJRt7rtvwEslmJgygIUNW8pDrXMcjhcmaQDYmm1XddN8i66xSItmsFMJmsH2Vf/nLX/DUU08Zf3/zm9/ERRddhDe/+c0YGRmxW5ynkQ8lG915gfwaV8VyF6XLkWXgZQceEbPOk6/aickmQ7LZUbKRGGmFgKySzereigaWQsOOko2AniDstFtRFIOQYI3OUiLZAPukTz6UbDKTkOhZsiSQHRCjXzTO5WO8dZNkc3v8pRPdAOaJD2iSNRc1YT6Ry853scezeeQXpaZkI/1wYGAAmqbB5/MJA7J7BaJxPZ8km4hEKXUlWz5INqfuonbV3rxnQOymcDicYUtYkWzJZBLbtm3D7t27hfXzbALRfaTfIdpzJ1cU012Ud16+lGxWJJvIzvFiTDae7ce2TQaFVLJZkZWyghW7oOuQVbLZJdkUZS5UVqmQbDz+pyBKtn/5l3/B+Pg4AGDfvn34yEc+gltuuQUnTpzAnXfeabc4z0OGZGNJDtHxQLZqJJ8djdSlKEpBs4vS5VhJjNk6RUQQ/dLTk7EZyWaWXVSGZLOb+ICcS9Rso6OjwuPchCgmGyHYRM+CvbdmO4qFRCFjsgHiDKNejh3Ag13SJx9KNisFKyA26mRcTUWglWy8idAJAWsFLyvZFEUxxjFVVY1/dF285yBj5BcDuRjlXiZc5uEeSkXJtnjxYtTV1aGtrQ1r1qzBpZdeahovygvgqR2ATHdRpzHZ2PLdVLJ5kWTLpQ6rsu0o2VKpVMZGshMlm6ZpBskWCoUy7E26bB7JNj09jXg8jrGxMaGgwam7qJukNc8F1i7JZrcuGffqQinZZL2S7CjZ8j0ue0nJJlqzsPfTjKy0W6cd8PqrrJLNzlqR9K9SINkI2PdQZn3DwvbM3tnZibVr1wIA7r//frz85S/H5z73OezcuRO33HKL3eI8DR6zS4O3KJSNyUaQz8EmEAhg6dKlBsGWy+BsF7ISY6vjeS+9rCKtGEo2AKitrcXU1BRGR0fR2NhoeqxdJJNJxONxgxgi39Gf2YFP1l3Uq0o2M5VaLruGBKLkB6WmZLMrZea5CwLuKNmcqBpyUbKRawkEAkb5+V50e1nJBugLjWg0aqj7WJWambvouZj4wItG3TxyR6kp2RYuXIiFCxcWuxm2wIbmIPfVrpJN9Dx4SrZ5d1H5OkQkG3s8O7dGo9GsGKZ2lGx0LFtCsqmqimQyaUmy0b/H43FuH7GzxqKJNbdcRdk2sIoWHmg7zKmSTfQ3XZbZOk6mbQRWm8myfc9LMdl4pGwuc4Kb7qJWSjaR/U2Pu7zzciXZZGKysba1nc1rv9+PaDRaMiRb0ZRswWAQ09PTAIBHHnkEN910EwCgrq7OULidKxDtrhDwFoWyMdkI8m0Etre3Y9GiRRl1FcJd1A7jSzPkonbR5bnhLsqWL0OyybL2JClFPtynX3jhBWzbts2IgwGIlWxWAwNPJUh/X6xBkJ2ERKpHGvMkm/1dFp67IOCOks2MeCqGki0fRIuXlWzA3KKDVrSRuujFLM9ddF7JNo9SgZlydf6ZuwP6Poq8BczeTSubwsxliUBkl5nBi0q2fJBsIsUFOzex947YPLL2E5lT4vE4NE0zzg+FQkadZhs19HXQfYeUR7dddB3FUrLJkmY8O6xQJJtVfby2ySrZrLySnCjZyPexWAz79u3D4OCg8JrsgGf7eV3JZnYfecdbfW+3rU6UbHbuaSm5iwL8+O9O7FDbSrarrroKd955J6688ko899xzuO+++wAAR44cQWtrq93iPA0rks2Jkq2Q7qIszBbhbrsI2lGy8V5e9jgrH3EeIeMkuyit+HCqZKupqYGiKJiZmcHs7GyG6ixXTExMAACmp6eN5Bdm7qL0/1Y7J15VstHtnleyieHUXdRMXZsPJZvITVWkZCPP1qw/0jHZyGcZwzwXeF3JRhYd5D7TbuEixQj7DLxGUjgxKIvt/j6PwmOeZHMXoo1JmeyiZkp0AjM1BUGpK9lyWQzbVbKJbD52biWunnS5Mko28pzoeGwEZhs1IpItFotJu4sWWslWjJhsor/pspyIJZy4i8oSvGYkm+iZkd9HRkYwNDSERCKBhoYGbj124JaSLR8km5OYbPTvMnXaAU/Awltvn28km5mSzQ5sX+V//ud/wu/34ze/+Q2+/e1vGyqpP//5z7j55pttN8DLcKJks4rJVkh3URa8wZ/AbaPUbCKwahsNu4EYZZRsPOUc/RsZDEQkm9Xg4Pf7UVlZCcDduGypVMowTOi2idxFrfzIvUqy2VGy8SYhpyTb+Zr4wIz4d0qymbWBJsR49bLn7t+/H9u2bTN1I7XKLpoPoqVUlWykPh7ZyW4ceYWkkF3IplIp9PX1cRf/XjTq5pE75pVs+QdtM9ExHXljLAuzTTK6fCDTrhHZynbGWy8p2djj3axDFCLEimSjlWwy7VPVudie8Xg8Ix4bfQxgTbLJuIvaUbLR81gxlWxukmy883JRdfPO9YKSjZTNbnQ7BW8uyOV+2bUdSDKbYDAoPY5ZxWSTJdjtgqci5inZeBstduxEUiax1b24rpIl2ezMQbaVbO3t7fjTn/6U9f29995rtyjPIxclm1fcRUV1aZrGfYFLScmmKErWgpo+30lMNppkEyU+kLlHNTU1GB8fx8jIiGvxV+gJiEfsAuZKNpl7S//vNSUbjxx1Q8kmSnxQaiQbOwFEo1Hs3bsXLS0txmYIjXwo2USxe3j1ypJso6OjSCaTmJmZMbL3isrkuYvK7tLbhdeVbCQBS1lZWVbZyWSS27+LuQlkBtl29Pf349ChQ2hubsaqVasAeI8wnEd+ME+y5Rck1hZ5n0SJpVjQ46PoeZDveRkprc41QyH7gaySLR8kG7sQtorJFolEMDMzY9g8MkQoaUcgEEA0Gs0g2ewq2egNY8Add1FVVeH3+5FIJEpWyWYWH5f9jtcXclGyybhy88B7blZKNpHIgWS8zfV9NSPZ7JRdVVWFnp4eVFVV2apfURRccskl3PpkRQ8sZNbSTsDrr3aVbLIx2Wh4cdOTXCO5F7Ljqhlsk2wPPvggfD4fXvKSl2R8/9BDDyGZTOKlL32p3SI9C9qlxoxk48Vkk3UXLaQRyGOi2b/dao9VZ5T9nn3pgcxJwUzJRgxCdmKRJdmcxmQD9OQHp0+fxujoqCuTBiBHsvESH4jYdyslW7EWKCIlm1l7ciHZyC4scVlgFaqlQrKx9210dBRTU1Po7+/nkmz5VLIB1iQbawiLYrKx5C8PtDqO7e+yu/R24XUlW2NjI8rLyzNINp/PZ4wRPJJVZie9GJDdvSeLvnkl2/kDXh+dJ9ncBzuu0u8Y4A7JRo9JZhtqXoJsu3JptyzRIatkKysryyDZ7MyRNMlGzueRbHZistEJFHgkm+waKxgMIpFIeELJJns8ry7R33RZhVKy2e17vHOsNv7p/2OxWIYy0gl4whe2bTJYuHAhFixY4GgNICJ67bqL0qSPGXJVstGEmkjJxtZhp3/LEMheAH2/3YjJZvsqP/axj3HddlKpFD72sY/ZLc7TsFKyueEuWsiOZiY9LbSSjT1WVm0FyJNsQCZRxhsseIy8lbuozD2qqqqCoiiIRqOYmZlBKpVCT08PpqamLM8VgSbZRO6ivMQHVjsndKwmwLtKNjODgz7ebh+m1U/0wqFUSTZyH0j7Re9gvpVsIvLJjpKNNi5kSDaekk1mkecEXleyKYqCiooKoTLALPGB1yA7n5D3N9/x+ObhPcwr2fILdn6hx1zA2p2Mt0gj4JFsomPsLHAK0Q/stisfSjbZjVUy5hOVM6tkk7H56Nh4ucRkY91Fec/KjpIN0DeWwuGwbeWRGbwak81tJZtTd1EyDjhRsvFsNDdcRt1SsgHu20Si5ycSNzghOe2AHtfN1ttmSjaZuktByQZk3u+ikGxHjx7F2rVrs75fvXo1jh07Zrc4T8OKZHMj8UEhjUC6LhkW3Y26ZP34RfXyXnoyOZuRZeyxdFuslGxWiQ9kBgefz4fq6moAQHd3N3bu3InDhw/j0KFDlueKwCOAeJ+tdo0I2OthlT9ei8nG6yO5GDR0GbzkB1aEudfA3jfSf0UTQiGUbDzYIdl4xiAPZjHZ6HZ41V20UOpRWmVQSu6iBFbGDS/pRbE3DeaRX8wr2QoDdrwj9giZO60IICs3RCB/JFs+IdvHcumTsgttdmPVTMkGzLnn2WkbIdlisRiXZDOLyUbPzTKJD+yusZYsWYLLLrssZyUUDbskG4+0sFuX6G+6bjOSTQS3lWxERADAiEPNO0d033g2mhskG4+U9cqcYKVkE3kT0PdoaGgIR44cyeiTTsEjlWjb3Gy97SQmG4FX7bGik2zV1dU4ceJE1vfHjh0zdkfOJZjFWDOTMns1Jpss4eJGXbx62PqsjuftgvKUbCKXMickmxtKNkB3GQWArq4uTE5OAoAxITmBrJJNNgguO4CUspItF5IN4GcYLVUlG7lfxVCymRH55Dsrck9EspkR9rIx2dxEPpRs+X7n6Dbznr9XSTZZ46ZQmWXn4T3MK9nyC3a8I+8acc0TkQrFJNnYc/MB2XblMg/ZVbNYxWQjJBuJjeZEyTYzM2OUR5NaTtxF3Uh8kC/Q1+M1JZuoP9hRslmtWc3snJGREQA6wUa7R3pJyWYn7EwhYLXWlVGynTx5Et3d3RgYGMg6Lpf28PqCjJLtXInJBsiRbHZsfttXeeutt+JDH/oQjh8/bnx37NgxfOQjH8Gtt95qtzhPIx9KtmIvYuy+4E4hGyDQSm3FC7poR8lGT+S8Z2NGsomyZ8neo5qaGuMzIdwSiUQWeScL2Zhs7MBn9czpPmnV5wuBQsdkA+Z2YukMo6VGsrETgBnJxou/wJbDfpaF2btP9323SDa6z/NisvHGEDdQiko20mZ6XKSfg9djsllhXsl2/mFeyVYYsHYEedesVEMyYxvPtrOqXwaF6Ad2SbZc2iKrFhTNTbSKnJCjRM0m2zZCppCN40AgwN2oseMuahWTrZgkGy8ERqFINjPvDVIHDav6eCRBLko2QrKR9Y3oHJF3De86aBvcKXgbLl6ZE6xEDzIkGzl2bGws5+ui+4SsqMXJPT2XSLa8Ktm+/OUvo7y8HKtXr0ZHRwc6OjqwZs0a1NfX4ytf+Yrd4jwNWZLNTky2Ync03iBLdxi3BiC7O28y5B9Phi5SYRHwlGy8xTaPZKOfP6/NVqiqqsLSpUuxevVqbNiwwSjX6U6NbHZRUXwOGfUiTb4UazKyI0nmKafOdyUbuW9m7qJ0nzGLE+nkXpq9+2aBrc3ihbDf06Bjgvh8PqG7qNtjbSkq2cizpl3Pee45BMU2SAl4xl1/f39WjMt5Jdv5B954M//M3YfIXZQOMi9SL9Pn88Au6NxWsuUTdtvl9pxKf8/afOw4SN9f2uYZHh4GYE2YAtkkG+0qCpi7i8oo2axItkJvmtD18K6JBe/eu6lk44kEZMHbAHVKsmmaZpBsdXV13HOLpWTzsruoSA1lR8lGPpPEem60h17vitbb5xPJRq+F2c0LO7CdXbS6uhrPPPMMHn74YezZsweRSAQbNmzANddcY7tyr8OKZDNzF/ViTDZAbxer0MonyWYVk83qe3rxyd5vN2OysYOLoijGbpvP58soV/ZFUxQF7e3txt+hUAiJRALRaNSRa7WMuyj9m9WuZqkp2cx2t+njzneSTUbJRr9DZrunTpVsdJZbGqLMorz2m32mvyPhC8gzzMUQsINSVrKRBTJLdpYKyTY1NYUDBw6goqICmzdvNn4zU7J55VrmkX94ZUF1LkHkLkoTM7y5RmYDgVWynWuJD3K1sa3OYa+TR6bQY6Lf70coFMLExARmZmbQ1dUFAGhpabFsC5vogiXZZJRsNMFGjuW5l3pByUbXw2uj6Hg3lGyyNi/7t6g+s41Mu+6iU1NTiMViUFU1K9GErJKNt27Ld+KDYkPk6SEaJ82UbNPT01l2by7tYdfbdOzeXGOysf3Lq+sqGSWbHdgm2UhFN910E2666SYnp5cM2E7Hwsxd1GxXwOfzSQ3W+YAZK+5me2QNolyUbGYvPYHIXZSdCOl6yDMirp2hUMiVexQOhzE1NSWUQ8fjcfT19aGpqSmLhNA0TSrxASmHbic7KbP3jN0ZK5SqRgSWoJUdyN1Wslm9y16DHZJNlHyALgfIn5LNrF6Reo2nUt2/fz9GR0ehKAqWLVuWUb/d/mMX54KSzWp30WskBblPZIyjY1zSm0e8RZlXd07nkRvmlWyFATuuypJsbsVkM6vDjWOdwi7Jlo86ZNxF6XlVVVWDHOvq6kIsFkMoFEJTU5NlW1jblFW/ycRkI/OPqqqGzUlsL68p2cjaI5VKSa3beKRFoUg2K/D6kZX3lajvERVbTU2NJTFUTCWb12KyWYke7CjZgLn75fS6RKQSa4/z+p0d26rUlGy08jfvJNs3vvENvOc970E4HMY3vvEN02M/8IEP2G6EVyFLstlRspHzipW5UCQjZ3/PFWZxmejveUSQ6DgnJBut+KKfJVsf2x6/35+xu+ZE+s2CR+TQOHPmDE6fPo14PI6Ojo6M3+iYFex1uU2yeUXJJjOQ09eWS7vZZ8O6VpQC2Heb9BEeCSTjlsN+dtoOGjIkm4hYo/u5pmnYu3cvxsfH4fP5sG7dOiMuiGiXtBTcRQulZCNjhNXuYrENUgLRMyU7rT6fj7uhQn/2yrXMI//wyoLqXAI7L/PcRfNJsjlRsrHn5gN22+X2xhX9PatkI3GWFEXJmPMVJTujemtrq9QcyZJsTtxFSd8JBALGBrIsyVaMd5uQbDJ151vJRiNXJRt9TXaVbKJ4bHT9Vt4EIiUbvU5xAhEhxWtDoSF6l+3EZHNz80DUX2XW23b6d6mQbPQ8R1ziSaKYvJFs9957L97ylrcgHA7j3nvvFR6nKMo5R7IRmLmL8haCZh3I7/cbk0yhX3ge+VUMJZto4CMvOns+UZgB5tlFyfGEJKPjUolINh6ZymYYdeMeEaNGpGQj3/N+Z4k5npJNUXQXVzpGFf0/oN8ntg/QO3U8P/RCw44Sibe74uT5EEORpJKnn3epkGxeUbKZEexm9Zopg9nP0WgU4+PjUBQFF110UUb6eBFJ62UlW6HeOVbJVmoSfgK2L5SVlQlJtnkl27mNeSVbYcASN+R9Ixmd6Q06GjIkN0uyWW2oyaIQ/cCukq0QJBtvY5XdWKMVaH6/H83NzVJtsSLZZLKV80g2dnMY8BbJRqNQJJvI5iXvm4hkk2kbYB6bV3QOoD+P0dFRAHIkmx0lG6DP6Wy/kgV7X/JtB9oFq3Q0Ez0A4vvPIlclG7v2Y989eg1OYOee0mGYyN9eBLmWmZkZxGIxKIqCioqKjN/sQIpk6+zs5H4+n2BXyWa2WKEXmIV+4fPNirP1WC1ArZRsvECMMrHVgsEgEokEN0YP+yx5k2E+SDYyaYiUbOR72i2U/S0cDmN2dtZwjaLbHgwGEY1GLZVs7Gd68KQN5WJNRrkq2RwNhH6/QTRGo9GM99erkwEL9r7JxGTLp5KNVy/pm06UbLzNDL/fn0Gw8erPF4FVyko2kbsobcAXoj2yEO2gAvq1lJWVZYybtAFb7PFsHoXBPMmWX9DjHe2aHQgEjPg9vDFfZlGVbyVbPmGXZMtHHWYBull7gEeytbS0cOdkHtwg2djYrHQCG6+5i/LqskuyyYKdf81cOEWktln7RBux9PpKVBZd1/j4OFKpFILBIDe+tJXiSUTWEORKstHwmrsojwAnn9nf6b+t1uy5kmzs2o+nqhTZ1jJ1K4qeVJAVgXgN5FrGxsYAABUVFcaYxiMarWD7Ku+55x5MT09nfT8zM4N77rnHbnElAdEAxO7skc/0bzzQk1CxSDbRzlC+lGzJZBLbt2/H8ePHs+qk/6d/Y4/jTXQiQoa4MPBc5tjr5JFsbPBWN+6RlbuoDMlGZKtkQKQJXlK+Gclm9dzpgbYUlGw0cllMK0qm+wTrWlEKYA0os+yihYjJ5ra7qKyhzdY/r2SbA0uy8RazxZyfRLAi2YDsYNrs8/eqUTeP3MDro15ZUJ1LoN9Bevyg50jeXGPHXZTgXEt8wDvezTrY62S9F4BsAjMSiRg2dGtrq3RbVFXNeD6imGxs29nPgG4HsKSdV91FaciQbLLupWZ12Y2TZlWfiCQxE4XwPBNoV1FeXW4o2ZxCRPR7ZU7gvZv0ZzskW662Ol0GfY9oJRtdvsgOk7WtSkG8wJJsoqQesrB9lXfffbfhp0pjenoad999t93iSgKizkB3GHZnwMpdlKDQL7yZu6ibbWHrmZqawuTkJPr6+izPFQ0mdph1K5KNrc9KyeaGGoJWsvEmR2K4ypBswFw8ItIuYqzwdgqsnjttGBSbZCuGkg2AkGQrFbCkf7GUbDLuorLZRUVJEMzaz9afLyVTKSrZWJfcUiHZCHhGORkbrUg2r13LPNzFvJItv6DHO9pVFDAngbxAsuUTbOwiq3bkg2Rj5zjWpgOy58xgMIj169fjwgsvzIirJwPy3H0+n63kOey1BwKBLFuAPsYrSjY7sUp5pIXbJJuZjSVTtqhP8MDre4QDqK6uljpHJKrgbZoBuZFsPHvMSySbjKCEdzx9LLlG0f130h7a1pZVstm9p/RY4XWSjYRtKjjJRssbaezZswd1dXV2iysJWA10wFxmM5kJgHQ0N5VjsjBjxd1sC0/JRv/thpLN7KUnRgPrLkrO4RFtdDvYxagb94i0iTZSCRKJhFFXPB4XTjqhUChDZUdPkjKp063uLbubUQywhoBsTLZcyRRCgk5NTZUkycbuoIoMGMBcUZYryWa2IHAr8YGMks3pbpssSlnJRmAWGw8ovkFKkIuSrdibBvPIL+aVbIWBDMlmFpOtGCSbqHw3QdzlJiYmhMfkSvbJKtl4yhaWUKHH/Lq6OkcLdfLcw+Gw5bOzItlYgk+0Oex0Ye8GnLqLyhxvVle+lGx2SDazzU+Ri7GVko1tL/ndyttHBl5XsvEIcEBsp5rZPnQ8PKfXxWuLXSXbuUiyEeRKssk54WNOFqooClauXJlRUTKZxOTkJG6//XZblZcKzAY6EsfJTrB02r+30DB7ufNBsrGDuYi0EtVt5qZpR8nGDmAsqccSNOQ4lhzMZWBQVRXBYNDIpEQbF+ykQlKqs7+HQiH4/X5DxUbaRe8omqVOLyV3UVmSRFEU7jO0i5qaGvT29mJ0dBQ1NTWmdXoRtEHKy6pLwyz2Ta4SdDPyyS13UTPFMNvX82VclbKSTfQ34I4Lgttg20Hfc1l3Ua9cyzzyg3klW35Bj6tsZlEzZY3MvMyz7UTHOFGy5bMfkEXYxMSEUIRAIx9KNt51krUJu9HtxsYhee68uFl2STbe5jnvcyqVgs/nKymSLVclmxVZ5lTJZqdPmCmpZEhA3n0Q2fiRSATRaNR1JRu7Pi822DULIK9kyxfJRm9i2/UcO1dJtkAgkDXG5Y1k+9rXvgZN0/DOd74Td999d8buRzAYxJIlS3D55ZfbqrxUYBVfjcTGMguuT4NWshUahXIXFb2MMoE6nSjZ2PJp1ZjIBZIMdLxJIB9KNkA3SmKxGGZnZzMCttsh2eiEGzTJxk6UVu6i9ABJ38dik2x2lGw0cn1GhFibmJgwjVnlVdD3jZ4wgWwFstlOpFeVbLzPMoqHUnAXLZaSrVTcRc0MTSt30WKPZ/PIL+aVbIUBbUOQmExkAWI25stsUOZbyZZPlJeXQ1EUJBIJzM7OIhKJZB2Ta3+0unbeHOfENVAWtJKNhR13Ub/fz02+wyuLkGzFGM8LSbLJxK1yqmQT9QmZd9OOyy7vHtDHizbNIpEIRkdHDVc9J6DXRLRIwktzAkuAA/Ix2ehzysrKEAqFEI1GpROX8NoCIGvNYNbnnXqJkDbSa3evgW5XZWWl1AaQGaSfytve9jYAQEdHB6688krHD7QUYXZT6Q7K+jSLQHe0QoM3OOdj8BHtmIhILRr0CyxLsrEvPd0/4/G4bZLNKdFjBZEcmkeyEWiaJnQXJeDFxuAZN1YEphuKsFxRLCVbOBxGJBLBzMwMhoeHAZQuycbGh2FJtnwq2XhGGYFMdlFCHiuKIiTZzIxDduxxQ4XKw7mgZCsVd1ECljgF5pVs5zsKZdOc7yDj3dTUlEGyNTc3AzAf870Qky2f/UBVVVRUVGBiYgITExOmJJtTyCrZeBur+SDZamtr0d/fn6GkIbCrZDOL6UY2gGn7rlSUbDSJ4lTJ5pRks2qbHSUbb4PeipwTkWxWSjY6brVTsB46ojYUEzzbUWSnijaNyW/r16/HzMwMd9yRAatkI+vqfLqLennDk74W1lWU/V0Gtq+0srISBw8eNP7+/e9/j1e96lX4xCc+wQ3YXqoQ7aawoBVPtLpChmQrxsvOM4YKqWQj37GTgdkLTH7nvfTsBEAbdHTyAjJo85JO0O0h5YncRd0i2didGvbdoReMdIy2YDCY4RbKi8lGYBafA/Cuuyg7AVnde/bacnlGRM1WiiQbfR94SjYa+VSymbkOyWY15Y0bTpVs+TLKz1UlmxcNILO5QTYmmxeM63kUBvMkm/sg4wIh2Orq6lBRUQHAnARyi2QjkCWsCql4I4ux8fFx0+Ny7Y9WJBtv7s4HydbU1ISrrroKDQ0NWb+5GZON/ruYyuRiuYtakVgynkG8su30Cd67bWZ/seewpBCvTFrJBuhzulO7iu4fuRKe+YKdjSGrdXFFRQUWLFiQc1tEIZMIzEQtsveU9Bcv2pgEdNuKQrL94z/+I44cOQIAOHHiBN7whjegrKwMv/71r3HXXXfZLc6zsEuy0e6iVh2omDHZCu0uyg7m9HeiOnmDiayPOE2WEUl7IpHA6OgogMyXxmwyFLmL5jo4iHZqzJRs5LdgMAhVVTOUbPQkKSO7Fz133mRUrIFQNAFbtcdNks1M6eVV0M/YimQzuz66P+SiZOPtspplFzXL1kx/R3+WiclWCu6ihTIA2ftVKko2th103yLjICHZ2Odf7PFsHvnFvJKtMGDvZXt7u/E515hsMuS/EyUbe26+QEJ/iJIf5Nofza6dt0kMIGOTmf7fLZvGjAASqeHZ6/f7/abZRel6SkXJRr8LuZBstB3GwkrJJnue08QHdtxFybzME5+w67ZQKGQc41S0I/LQ8dKcYHZPZUk2s/5hBzwlG/0/fRxbn9OYbF62xYquZDty5AguuugiAMCvf/1rXHvttfjFL36BH/3oR7j//vvtFlcSkB2AZPzbgfPDXdRMySbaVbBi7HmTrxkhQ+5zPB7H2NgYgDkSha2PbU++JnYrd1FicPBINnIurWSjd5RkdhB5z50mMEtZyebGM2LdH0qRZBO5i9KQzQ6Vi5KNJZ9owsxKQceL4Uifb2YclqK7aKHUVjKJD7xMsvHmE0AfI0mfJ+PkvJLt/MI8yZZf0ONnZWVlRlzmQijZ6GNkiLZCuojRJJuICMsFZu0XXSdraxYyY7qIZGP7QCAQgM/nM1VvlRrJxltXOKlLJkyR3fJFqsB8Jj6YmZkBoKvUrJRsiqLknGGUF2vaaySb1XrM7Fi37RmWZMunkq2USLaysjLLdYoMbF8pvQh/5JFHcMsttwAA2traMDg4aLc4zyKfSrbKykpUVFSgsbHRhZbaA09mnI9FiCgmG/mONzmYqRXY3TFSh9lLT16Q2dlZTE5OAsgk2XjtEZFsbt0jomRj3UXJhELcL8xINrrPmSnZStVd1K6SzU2SLRgMoqyszPi7VEm2XJRsQG4km2jBRerkqVLJeaL3TvTZTMlWKHdRp8Y0jUKprey6i3rBIAXMN2AAGOM7kE2yzSvZzm2YqeG90n/PBdDvT3t7O3cTj7fhIPP+idRLZsd4CWVlZUZQ/qmpqazf861kY48D5sZBYktabay5CdFGDU/JpihKhppNRLKR9p8v7qKyddDIh5KNfbdpTwkZm5ysdegkGaK1nqqqwpA6sqDL8irJxtugtesu6tZ1sO+XjJLN6QZ2KZFsPBUb/bssbF/p5s2b8W//9m/46U9/ir/97W942cteBgDo7OxEU1OT3eI8C1mSje6gMrsCgN7RNm/ejI6ODhdaag+FdhcVKdnY43jn2CHZePEayMRNyN+ysrKM+A+8nVHyHU1k8X53Ctrw4QXvJjuiNMlGPrMkWz7cRWmSrViTkVMlm+hvu6DVbKVEstHvQi4x2QA5Q0+mHTTM4rGx9VqRbGbGoWhMyBfJxrbNCYqlZCsVd1ECkZKNLGwDgYAnlA/zKDzmlWz5BRkrIpFIViyu813JpiiKpctoLu2Qub9A5j0uppJNhmQjBBuQGT5CRLgWczw38xJhwbN/nJBsMu9Lrko2J4kP6DrtKtlE7aftn1yTH/CUbLT3lBdgpmSTJdncIqpYJZuo/7mhZKuurkZFRYWnuaKqqiooiiKMc2f3vtve0vja176Gt7zlLfjd736HT37yk1i+fDkA4De/+Q2uuOIKu8V5FnaVbHTig1JgaQtFsoliK8m4izoJxEifQ4xCnqsoW5+oLrfVEGQRmEqlEI1GEYlEkEqljLgFPJLNzF2UIBd3UZrApMssFSUbi1zbXVNTg7NnzwIoLZJN1l2U3onMh5JN5MpgllmUPTcfSrZ8uYuS9uTSV7ykZPMiySarZOORbKUwL8/DOeaVbIVBfX09lixZgoaGBiER4gbJxttQZY+xS7IVApWVlRgdHcXExISRddWttsgq2Wh40V2U/kwTa6LNb7qs8y3xgROSTXZDOpfEB7QdJpP4wEzJxrPRSL8l5Jxd0GXxvA28MCfwlGyyMdny5S7KlstrR65tCQaD2Lx5c+6NziNaWlqwcOFCSwJZFrZJtg0bNmDfvn1Z33/5y18uqQWpFeySbLTrnpeNed4uSz4GH9boYuszcxcVseS8ic4s/hJZzJPv6BgibH1W7qJu3SNF0WMOzMzMGCQbMYJUVTVcFWmSjUxSPCUbgVvuol4g2YqtZKPJ2FIa0+h3wUzJZhUbjS4rFyWbyF00F5JN0zQoimIrJlu+VGLkvaFJeqcolAFY6u6iBPNKtnmwmFey5ReqqmLJkiXc32SUVjLEBGC9cBfVY4ZC9AMzJVsh3EVpOw6YI668qmSjSTbymd44J/DCeG5nTsyV2Mmnko3eoJdds5rZZFY2uRMlG3HT6+npQWNjY1acZCuIPHS8NCeYrcesYrK5fR1sW/KpZCsV2FFdW5aVa2MIwuEwN2NcqUKWZKMHoFLYMS+Wu2gu2UV5C372O95gzfZHMyWbiGRz210UyN5hpJVqxDBKJBIGqUAWkISAYydKwFrJxiMjvUqy2VWyuU2yBQIBIzZeIeKXuAVZJRv5TaQYIL/R/zttBw2zzKKic9kyZPpEoZRsvPY6RaHmjnMl8QH5n/QlshFBMjADc6RsoVSC8ygO5pVsxQdv0UhgV8nmFslWSHdRYC6Gz+TkpHA+yAfJJrq/tJ0po153E7LuogTE7uXdH9F4XiySzWoeKaSSTWQfieoLhUIIhULQNA3j4+OOlGw0MWeHZKOVbHR72Tm6vr4eCxcuBAAcOHDAdmw2+n3g3ScvzAl21uH5tmdFpJ6ZerMQtrVXkReSra6uzohrVVtbi7q6OuG/cwVOlGyyMdmKCd5knY8XhR3ceIoU+jj2M90u3kvPI9noa6KVbIC+i0KMDrY+3kKMdgOm/3djgGaTHxDVWjAYzIhTEYvFEIvFDDc7QrKJEh+wkx5v902kIGRJNnZXtJDI1ahyo93Lly9HS0tLSY1p9PM2I9lkAiAXW8lG2sgq8tjvZWKy5dMod4tkK4aSzefzcesrJZKNNdxZJVuhF9rzKDzMbJr5Z14YmLmLytiXsvY2W6aXEAqFEAgEoGlaRiIWoHBKNrY9wJydaJXsyE3komQTlcWO58VyF7V6hm6RbGbniN43mfeCePSMjY05SnxghzSnY0+L3EXZOVpRFKxYsQIVFRWIx+N44YUXbNlX9D2fdxe1hkg5arXepv/3wj0tFOxeq5RM49577zWk0Pfee+95cUPtKtnsZBctJsxkqoVSsokmAqsX2OqlZwPA0ot5XlZRGSVbPjLUmSnZFEVBMBhENBpFLBYzDCOSvQrIdBcl7SULZp/Pl6FUYq+VvR7yG0tuFPMdZ+sutJIN0PsLr894GfR1E2KWgKdkkzGsciHZ3E58wPue1ycK5S7Ka69TFGruIO+6WQw5L28Ssc80HA5nuGcFAgGjn9HqcuD8MgTPd5yPxn8x4URpxTsfMFeyKYqStTAXodAEu6IoqKiowMjICKanpzOy0+VKCrIqEvpv0fxGQogkEgnMzMwYbfByTDYZJRuvrHyjGCRbLu6iZvXV1NSgv79fmmQT2VN2iLlQKCS8hzzi1OfzYd26ddixYwcmJibQ3d2N1tZWYX00eIkPvEay2RG75JvYEq2feM8r34RfKcCujS5Fsr3tbW8zPr/97W+3VcG5ALPBhN5lKYWYbIVyFzWLySab+MAOycabgOlJ3IwwsSLZ3B6gCck2PT0NIDuxAU2ykWPKy8uN82l3UVZ5R4wqtq1mz4OejMi5xezDdN2ivkIjHyRbKYK+b2Ykm4ySrbGxEZqmCdNYy7TDiZJNpCAlkAnYyxpWpeAuWkgDkJBsVvH4CtUeGdhRstF9p1jKh3kUDvNKtuKjECQbDbskW6HAzl8sclWyAdkkm9n8FgqFkEgkDDuSbmM+Yddd1EzJxgvJIzo2X3BCsrHzj926ZD2oaMiMe7SSjTwDJ4kP7MStouOxsWWKNsLC4TCam5tx+vRpW0kQ6PfBqyQbz24slruoEyWbVZvPZdi9VttPyefzob+/P+v7oaEhT++A54LzxV20UEo2WZKNZcntKNkURcmYxNmkB+y5bHvoZyhD9NgBIfzGxsYQj8e5JBugS61JPDYSI4xuWyKRyCIb6HabuYvyJNpAdhrnYoA1IIuhZCtF0M+RTpwB8JVsZmRXe3s7LrnkEkdxNkULrlyzi/K+N4vJRtrgdXdRmT7uJnhjBe93wDvvkkjdyoYAoN1F6TmZV8Y8zl2cj8Z/MSFSL9PfmT0LWZLNSsFjVXa+IWqfW+6idstmN3RVVS3oHMO2S6Rkq6iogM/nMzymaIiUbIWEHZItVxdFGeKLl/xMFmVlZfD7/UilUoadKKNkc+IuSsBuhvHWXrzzrEhrHuh7zhuXvDAn8NZjdkm2fCnZeCSbSMmWzw1sr8Lufbcd1Vs0yEWj0Yw0zKUOngqIB94ui5c7HG/QySfJxipP2Lp554gGE95kLZrQFEVBJBJBMBhEJBLhBt3kGS48Qo9+tm7co7KyMlRUVGBychIDAwMZMdno/2mSTaRkY0k2msDg3S9Zd1GvkGy0QlT23nthEi0WVFXNiL9CwFOy5WszQEQ8uekuatZPRSRtMUi2ZDJp6z4XSskGlCbJxs4NJNEBuf+imGxenpPnkRvmlWzFh5sx2WRINhkUow9YkWy5lssry2x+Y0m2QgkA7LqLhkIhXHHFFZZKNh6BUggU0l20oaEBra2taGpqEh6Ti5JNURRUV1djaGgoqzzR8XT5MmsEKyUbXZ7ZMxVdpxnodbhbngZuQxSOCLAm2dy2Z0XuqfMx2fjIG8n2jW98w6jg+9//foayJplM4oknnsDq1attVe5lyJJsvCD0XjboC+UuKhoYyHdmdYpYclklG72IvOyyy4TXxTuXJvQURTEmFbcXa42NjZicnER/f79QyRaNRk2VbACydqJEJBv73L2uZCP3Ph6Pc+8Be7zZ3+cTRNduV8nmRhtE7qJOsov6fL4MZZKZapjuu8V0Fx0dHcWePXvQ0dGB9vZ2YRmFdoEhdZSyuyg91geDQSOJjIhk88p1zCN/mCfZigczhZld5UsusaiKDav2udEfRQSeyF0UKDzJZlfJxp5DwwtCBjsbT7w+YFfJtnz5cstjAHvkEw07JJtIcOC2u6gZwWrnOnmkHX2+F+YEEVkFyMdkK6S7qEjJdj7GZMsbyXbvvfcC0G/ud77znYyXMhgMYsmSJfjOd75jq3IvgyzyATklW6klPsi3QcqSOnaUbKJ2yZJsTgw23j0gSQTysVhrbGzEiRMnMDo6apTJkmyjo6PQNA0+ny/DLYp3TU7dRdn76AWSjdSfTCYxNjYGQJebs65hBPMk2xzY50Zi9NHvXL6VbDy1LGBfyUa/d36/P2Mjw46SrVjuopOTk9A0DePj46ZlODXGnaIU3UUJeDuoZiRbKczJ88gNZht1Xuu/5ypEYz79nZtKNhmSzYtKNqdtMVOyybiLkphWXiLZZDf5vLBpUkglmwxyUbIB2TGqZd9Nep1lR3Eqche1arMTd1Fe4gOvuYvmomTLt7vovJLNHHkj2To7OwEA119/PX7729+itrbWXssKgCVLluDUqVMZ3330ox/FF77wBdtlyZJs9CBQSjHZCuUuSiYaehBJpVLcQIpWL7DVS2+X4beaDPM5uYfDYVRVVWF8fDzD9Yn+nxhG5eXlWfeJTnAAOHcXZe+tF7KL0vWPjIwA4MfUY48V/X0+ge37JNsi+/7xjnW7DSIlmx2SjcDv9yMajWYlIjFLfMCWU2iSjbdLyUOhDcBzyV1UUZQM8n1eyXb+Yl7JVjyYkUvFJtkKCSuSLddyeTC7v2RsLPTaxImSTQSeTVAKJFs+5x9RTDbZflZRUZERZsEJyeZ1JZvIXdQLcwK7HjNrX77VY7ko2fLpJeJV2L1W2/5Cjz32mN1TCop77rkH7373u42/RS5mVpBVQ/ESH3i5wxXaXZSOqUXXx6szF5LNiWpBlmSjn62b96ipqclQudCLQza2Ia8PE5Ud21aRkk3kLsoOnl5SsgG6mg8wJ9lYeGESLRZ4SjYg833Pt6EqWmjkSrLxvhf1U2JAFtNdVJZk47k35BM8Qp6Gl91FCVh3UUC/Lp/PN69kO88wr2QrPkQbK7Iq3VxItomJCZw6dQpLly5FWVmZadmFQj7cRcnGvxMlG0GxY7LRdrsTkq1Yi3qnSjbZc+zCKlaZVX2qqqKqqgqjo6Pw+XyW7ybpe/R6zg5pztoasmq/c13JxluPFVrJJhOTja1rXskmD0dBebq6uvCHP/wBp0+fzspi99WvftVJka6hsrISCxculD4+Go0aMbEAGKSHLMlGTwBeISjMwJsA8q1k4wUv59VlxdiLJmtyjt3rsFLB0QN8Pib3BQsW4OjRowAyjSGWZKOTHhAQZQ9pJ7kWKyVbqZBspD0kI+W8kk0OrHFjRqrn6xnzDBuaqJYh2dhNC/pdpA1L0TXwxp9iKdmsDMRC785bKdkURcnY5fYCzMYvMl6SRdu8ku38QqFsmnmIIaPgypeSrbe3F4ODgygvL0dHR0dW3YXsA1b34Xwh2URKNp/Ph5UrV0JRFOm2eGE8t0OyFUI9JYrJZuf+VFdXGySbFei+Z1fJFolEhO3Jt5KNZ4t6ASJ3UZl1sdv2u4ySbd5ddA55J9keffRR3Hrrrejo6MDhw4exbt06nDx5EpqmYePGjXaLcx1f/OIX8dnPfhZtbW143eteh3/5l38xzXr6+c9/HnfffXfW97KTfqkp2XiDTj5eFHpxzw6QqVTKuG9OlWzsd7KDPw/FcBcFdDKttrYWIyMjpiSbSMlm9Zl3b63cRb0i/6XrDwQC3B1qgnmSbQ4sSVyMBSiP2CMqNivjWqRCEn0vuga6v5eKkq1Q71xFRQUGBgZMVd6hUAgzMzPSaoNCgSUuVVU1xk4eyXY+BuY931Aom2YeYogWs7JJXXIh2XguV8WCDNnodtlmdi9R9xIbPF/Jjnj1ErDvYEtLi62yvKBMduoumi84ybrJoqamBqdOnZKa48mmm2xYJPoesfHY6N/zoWTjqcJ46rZiwkpQ4vTYXNpCIOMuSnA+2ld5J9k+/vGP4yMf+QjuueceVFZW4v7770djYyPe8pa34Oabb7ZbnKv44Ac/iI0bN6K2thbPPfccPv7xj6OzsxPf//73hed8/OMfx5133mn8PT4+jra2NttKNppM8nJMtkK7iwL83RazOkWMvWxMtlyUbIUk2QCgtbUVIyMjGYFIWcOIp2QTEWu0EeXEXZR3bjFAt6eqqsr2Mz1f4QWSjVcn7SpqVi8vxiVLssmMs7mMC3ZQikq29vZ2tLS0mBrX69evRywWEyYbKTTMNmBqamoQiUTQ2NgIwBvuRfMoHHjv4DzJVlhYEUBWi1tZe9tsPmPHWS8p2djf3SzbSgUTCoUKnl3UzZADpaZkMyNK3IJVTDaZ+mpqarB8+XJUVlZaHsvzDLCjZDP73YokBuyRifSYw84NXpkP3FCy5Ytk460JrZRs55N9lXeS7eDBg/jlL3+pn+z3Y2ZmBhUVFbjnnnvwyle+Eu9973vtFmmKz3zmM1ylGY3nn38emzdvxoc//GHjuw0bNqC2thavfe1r8cUvfhH19fXcc0OhkOVCQiYmGzDn2ublDleoRTddFjsRiBadbP1mSjbeS+80JhuvLrqcfMVkA4D6+npcffXVWW0OBoOYmZlBOBzm7j7S39lRssmSbMWejOj7wWZCYiFroJ8PoK+fJrR4O//5VrLR77lMPDb2XB7JJqsY5ilci0WyeU3JpijW8XDKyspM1aOFhmg3V1VVhMNhbNmyxTiWR9QWezybR/7A20CaJ9kKC1FMNlmbTFbJRmCHZCsknBBhuZZtNcYVg2RzM3mOF5TJhCTWNM1TJFsuSjZFUdDa2ip9LOCMZMtFyeaWu2gu9ykfsENW5ZvYEgksCElJh3din9v5OM/ave+2Sbby8nIjFlRLSwuOHz+OCy64AAAwODhotzhL3HHHHXjjG99oesySJUu431922WUAgGPHjglJNhHs7KyRwbeUSLZ87/pakWy8Ou0QQWYkm1tKtnzHZGProUFINp6KjT1HpGTj3VvRzonXlGx0/VZJD3jXeb7CjpIt3zHZREo2M4hiXLqhZPOqu+g8EWQNqw0YGvNKtvMLZu/g/DtVGDglgNjzAXk3NAKrcbYYSjYW+XQXtRrjaBFBqZNsxRzPVVVFMpn0BMlGJ7RKpVJZJLfb9YnsMhFklWxWpB3pR8SOk7kus8QHXpkPvKRkY+87u86m+5doDPLKfS0E8q5ku+yyy/D0009j7dq1eNnLXoaPfOQj2LdvH377298apJabaGhoQENDg6Nzd+3aBQBobm62fa4dko0MvqTjzbuLZt4zN0k20UvvZAK2IuiKKVMncdlEJJtIySbrLspeL3vPir0opdtllSF4nmSbA339dF8ohruoW0o24j7Nfi9j5OX73XXDXXSeCLKGSMkmS7Kd7+PCuQzRggWYf+6FAm/MB+THNrskW6m5i+ZTyWZVNh3j91wh2YrxXpMQLlZ1m6mR3GwLQTKZFCpJ3YITJRsRn7ihZAP065SJKUiPOV51F7Vjz9g5Npe2EJh5jPH6gZttKQXknWT76le/isnJSQC6K+fk5CTuu+8+LF++HPfee6/d4lzD1q1bsW3bNlx//fWorq7G888/jw9/+MO49dZb0d7ebrs8WZINmBt8ZY8vJsyMlHy9KKIMOFZt4w0mLCmUTyUbLVUu9OTe3NyMWCwmzJTrNPGBrLtosfswqb+qqspWW86nwZ4HVsnGW3jmuy/zDD6i8s3VXVRWyVaK7qLne9+VAeumwBsbRH1oHucmRCpt+rd55BeFche1Q7IVAyIijP3dzbJl3EUJSj0mWzHHc3bNIQL7ez7GIFpwkEgkssI/5FPJJpP4AADa2toQi8W4SjYCK9KO/k72/abtqVJTsnnBXZS3Buatt+lx6Hyyr/JOsi1dutT4XFZWhm9961t2i8gLQqEQ7rvvPtx9992IRqNYvHgx3v3ud+Ouu+5yVJ4ddYzXVEBm4O045stdlOxkuKVkA7Il27Rxl4uSzcpdtNCDdF1dHerq6oS/i4i1UCgEv9+flaFUtBDxKslG2mPlKkofy34+H8GSbDyiJ999mbcYkE0KI0Oy2VGyecFdVDbxQbHfOS/DjpuCF2L4zKNwmFeyFR9WBJDV2MZTT8jWU0pKtnyW7SV30XyRbMXckPISyQbMbaLSIoZ83R+7SjYgkyswK8/KVZKIWGTjqtHt8yrJZrUe4x2bL3dRs7Ufuz6kjz1f59mCkGzPP/98Voyz0dFRbNy4ESdOnLBbpCvYuHEjtm3b5lp5NIljdVPZicvLi6VCuYuS8uyQbGx7eMaDGbPuNPGBaCHulVgQPJglPrj00kuFxK9ooDbzyy8GFixYgJmZGTQ1NVkeO0+yzYF+jn6/3zBMeO97vvoyj3iS3f20ItloY0tG8VBMd1Heov//b+/ew6SozvyBf7t7LgwzzDAyDDPcZIBEBRW5hF2MCq4sXoiXh42XaBQF9THKIz7mokZXTRTdiGxcNZpdg0A0EW/ok6AiPCwIumtUhEWDj4qAtxVdg3Jnruf3h79qTtdUdVd116lzqur7eR4fmZ6erqru06dOvfW+5zhhJlth8nsjv9de736b0m9T8Bhk06/YLCv73wP+M9msbSR14YNCry0H2byU2wVBDo6oyGRjkO2bz7K9vT2USf3ltudlTjavrwcUPkdbiRVejzNKmWwmlovmy2STyZ+HKe9rGPy2e9897rZt2xwbe2trKz799FO/L2csq9F4ufNjf47Jc7LlG6SoSDG20pllXlPp85VwOp3wij0OE8tFC3HLZAPQLYsNKJxybFomW3Nzs+e5FBlkO8h+sZLvzn+YmWx+Mxrsq4j6zWSLUrkoA0GFuZUp5MtkAw7OBZj0fiHO3G4gUXicKiTkn8MoF1VRoumXWyAsyH2JQrko0L3qpJTXAfTf7PYaZLOeo3qc5bTCqKptBl2y6zWTDfjmONvb2z2Xi8rfB3k8mW8bYXO7MeQnky3IclG5vXqZk03ed1Pe07Aoy2T705/+lP33iy++mFPG1dnZiZUrV7qu8hlFbhk+TkzLAsrHaTCkOsXYutCx7myVWi4q/1/+nd87LIU6eqfVRU35bN0y2dwU6tRNC7IVy5TPRxd7uWiYQXWLUx/jN8jmZU62uJSLmta3mMgpY1l+3Om5gHmDawpevnMbP/dwuM3J5rXvDSLIFoVyUZWZbG7vcXl5efYiOswgm5VpVep5N2qZbNZzVWeYWZ+lPYlBBafzbyltyU8Fkj1QVoj8fTA1k81P4MzLdXEQ++OncgxI7s1hZUG2s846K7uB6dOn5/yuvLwcQ4YMwbx583xt3GR+gmxyZ+OlvFSnsMtFgYOdY3l5ebcgm9Pz83Um9s+llAsq+Xn5Anq6T+5O7G2uEPuJqlC5aJQ6TmayHWQvF9WRySbvgxDfLLvuNQAuB7blv3GaH9HrxZiuclFmsgXP/nm6BdnsWdR8b+PLT1YAqeEWAPLat5WVlSGdTmcDQn624/VmRhgKBcKCeG27Qu09lUqhqakJe/bsQc+ePUveD6+GDRuGnTt3olevXiW9jtx2gihVLHU/vGayOf07SFHOZLN4zWSztu31Na3Xc8uw1a2UTDYV16Ju7ZWZbN0pC7JZb2hLSwtef/11NDQ0+NuziComyGYy+8WnyrRmeyablX3lVu7jpTOx3usgIuuFLsSdykVN+XzzlYvme75bkC3KmWwMsh3kJZNNdVu2B69TqVRJc7JlMpmiM9l0zskmB9ms98EJgwKFOd35zvd+WUE2ZrLFn/1Cit+n8AURZBs7dqzn7JioZbLZfx/ka3t5jw877LCit1ushoaGQK4TnYJspmeyhTEmta6nwp6TLehy0UKv5xRMzMetAkLerm5+AmdhZbJZ/GaymfKehkVZkM2ydetWv38SSX4y2ewXtiZzugBWfffDHmQrpVx04MCBqKioQH19fbffFZvJ5nbhFqdyUfvdoDgF2WSmfD66mJbJ1tXVlQ142H+X72+FyJ1g1y34Vuh15IGZrnJR699u7zcz2Qpzyjr2MicfM9niT+4zVGeukjO3jBE/F2LV1dWet+MnyBamQplsKoJscW/v8nHpnGPTGm+YEmQLM5NN/n4HvfBBoX3ON8Zyki+TzZTviFsmm59y0SDHNPJr5ctkk5n2nobF7/F6/pT+8pe/4IUXXsh57Pe//z1aWlrQ2NiIyy+/HK2trb42HgVxy2Szl3LJ/w96390y2dzKRb3sV9++fTFy5Mjsa8kdaSlzstkfk1/HxCBb0JlsUZpX0I6ZbAfZg8RObTysOdnk7foNsgG5ARI5aOY3k81pv4LiJ8jmxrS+xUSFso7tTJ3wmIJnD+rz+xS+Uudk88rpMy1Ulm9CJluQ5aJumWxxbe+pVPcJ7Fku6jwnm6rAsvz9jkomm3xtaN+ubn6yr/1kvZW6P0Du51BVVQUA6NGjR/Z59n03PeYRNL/H6/nZt956KzZu3Jj9+a233sLMmTMxefJkXH/99fjzn/+MO++809fGTVZsJpvpDc7pAjisOdnkIJvT/ti373W/Sg2yue2PyXOylZLJ5nQhEuVMNgbZDjKtXNT63gQVZPM7J5spmWz57sKa1reYyG+5CjPZksN+45BBtvCVWi5aynZYLlr6RPSms/fnLBfNH3xSmckW9MIHXjPZSln4wL5d3ew3JfJdu4ZdLir/e8iQIRg7diz69u3b7fdJvYGpLJNtw4YNOOmkk7I/L168GH/3d3+Hhx56CNdeey3uvfdePPHEE742bjI/QTa/WUU6OV0AhxVkKy8vz26v2HLRfNvxe7HqFGRzCpiaOCebfEfBT5ANcL7bzyBbPJhQLirvh5dBhExu13KAxGnhAy9BFtXzlQSZyRal75wuzGQjO/uYhkG28DmNpeSfdQTZdCiUyaYyyBbn84cJmWwVFRU5/8/HrfwuSE5zsqme+ifom5Z+Mtm8fr/l60BTK3TsUxy0t7cDOHiNLAujXNQtky2dTqNXr14sF5X4PV7Pc7J99dVX6NevX/bnl156Caecckr25+985zv4+OOPfW3cZMUGMEw/0VkXsfLFiuqO2eKUyWbfN3l/VGeyWdwy2Uyeky2VSqGiogKtra2eT/rW526t8Gq9jvx/+flRZMrno4ufTDaV75VbiruX/jSdTqOzszM78LBnslnfcy+ZbPlKB4IQRJAtqYMVP5jJRm6siym3LG1Sj5lsyNmWjnLROPdx9qwtHd/tAQMGoKqqCn369Cn4XN2ZbEELujIgyEy2Xbt2YdeuXRgwYED2Gsf6O1Mz2ewVZW1tbQCcA7hhZLL5qcYrNqklLpRlsvXr1y+76EFbWxvefPNNTJgwIfv73bt3O0Zhoyqu5aJAOF9ap9fzu/CB1y9xsemrfspFTRy4H3HEETj88MOz9fKFyCflQnOyRaEdW9zuwiSRPUjsNDAP4+RoDz75uRBwCpA4lYt6mZNN9Z1v+x1JmddyUWayFWYflNofs2MmW7LI53ITz9Vx5zYnW9DnmnxBNrd/mxBks/8+yNfWmd0VFhPKRcvKytDY2OjpRmEY+5dvTjZV13LytoJqy6Vmsr3//vvYvHkzdu3alX1NaxumBtns84j6CbKpnpPNb+VYnPsdJ8qCbKeccgquv/56rF27FjfccAN69uyJ448/Pvv7jRs3YtiwYb42brKePXvm/D+fKGWyAd2/JGEF2QqVi1r8Bv+KTSV3K3Fwel0To/a9e/dGU1OT5+fnC7KZejLyguWiB1lt1gqw5bsoUdlXuQ0MigmyZTKZnIs4+fFC21cdZLEPlmTMZAuO06DcS5CNAcxkMP2GWNwVyuBSmckm97u6S0Z1louaPlVNKUwoF/UjbplsTmOyINoyUPi7Ueg4rYoHK1AljzVNbSdBZLKFUS6a77lJHbf6fd89l4vefvvtmDZtGiZOnIiamhosWrQop0E8/PDDmDJliq+Nm6xv374YMGAAKisrCz7XXqJlOqscS1cmm1PWh/x8v51JsV/6QiVl8h0Uax9M7bS98BNki9JxMsh2kBxkA5wDyWGWi1rb9TM4tmfB2QdLchmp19cIK8gm9//MZAuOU3mJl8/f/vcUT04ZpfzMw2P/fqrKdiiUySb3wSZlsrFctDQmZLL5EcaYNMw52YKuDPCTyVaoXNT6+46Ojm79v6nJA9a+WcdvjWl1lYuWkslmynsaFr/H6znI1rdvX6xduxY7d+5ETU1Nt2DSk08+iZqaGl8bN53fMjwgGie6sMpF3eZkA5y/oPbtq56TrVBnIQ/c49ChOAXZ3IKHUWjHTqL8+QTByha1bg7oLhctZk42+3PsQbZiMtlUtWf7YEnmNZONQQHvvAZRGGRLFmay6SV/33QH2XTSkckWleyuUkQtMzmMhQ+cMryCCOY6CXqOU6ebZoUy2dy+29bj7e3tOcdvcpANQM640cpk87LwgepyUWay5acsyGapq6tzfPyQQw7x+1KxEdUgW9jlonKQzemuhP2Ohd8gm98TsNcgm599MRkz2eKvpqYGI0aMQHV1NQD3gLr8OxXsg6hiykXln1Opg5Obe/meh1Uuau2HXFJu8VsuGqXvXNj83Pl2+h3f23hjkE0vp/IvQF3f5iXIZlImm/33pUhyuajF9O92mOWi8jxpqrap6qZlEJls1uNWJpv8dyYH2azxbFtbW3a/dZWL+gkKq7qBEhXKg2zUXdQWPrDfFdIRZHMKbFm/t04afoNsbj8X+jsvQTa/r20iBtmSobGxMftvt++6/DsVnC56vW7TLUBiDUq8vFZY5aLWtgoF2byUi7LtunO6iGcmG1kYZNOrUJAtqM+iUCabqQsfsFy0NFHrz8MMslnjeSszSsU2VWWyAYX7iHyZbHImnD3IZt2Ydduubta+tLa2Avjm+jffNad1rCrLRb18rmHewDaR3+ONb68cIvkOUhTuJoVVLmp/PXkC83xBNuvL63d1UUuxmWxOHXKcMiLyBdmAcFLcVYvqfqtiQiab32Xf8wXZZCaUi8qvzUw2dZjJRvnI53IG2cLndNEMqFv4QJa0clH76ybh/BG1/jyMIJtT0oIq1jF4marDz+sBhcc/+RY+kI+7o6Mj52fTy0Wt47WCbE5ZbED3fVZZLuonyMZyUW/M7qkiImqZbGGVi7qVfQHOHWaxmWyl3q3I11mYfCfEr0JBNj91+SZhJps7+6DfPggJY7vy96uYIJvVbv0MtMMuFwXyB9mYyRYMzslGTpjJppd8QauyXDTfTSN5e/LvTMhks/8+qNeWjzcKN/iLFbX+PIwxqfye+J1ix6+gSwT9ZLK5ja+A3OtIeU42qz+KQpDtwIEDALwF2VRnsvl5zaQG2fy2/ehcSRssanOy6SgXledVAvyVi3qdiFHelp/9y9dZ2AcuUe5Q/ATZonScUd3vMOjKZJO/534HZl4z2bwE2cK4y89MNvX8DMqB6GU+UGnkMQ2DbHqYFmTTIYxMNrcgW5z7uKj152HsXyqVyjsvW5CCfv/l70GhaoNiMtncMrNMOifYy0WdFj2Qnwd4X13dL7cxdr79SWqQjZlsGrBcNP92gO5f4ijMySbvr9/XNpHXclGnCUNNxiCbu3zf9bAz2YIMshVqo2HPySZvy+I1yMagQGF+ykucfsf3Nt6YyaZfviBQUJ9FVDPZVM3JJmdqx7m9R60/D2tMag9AhTX1T5ABHq+ZbF6CbPYAlMntpJhyURMy2cK8gW0iBtk0YLlo/u0AB08GXstF/XQmKjPZonZyz8drJlsU2rCbKH8+KoQVUHfbbpCZbH5uZoRZJlBquWhSByt+MJON8mGQTT/7eApQNyebW5DN1IUP7L8P6rWTsLIoEL1xeFhBNvs81kEEc534mQ/XCz83zfItfFAok83kclFrX/yUi6o6v/m59mMmG4NsoZPLIKMwmA+rXNQp+Oglkw1wDwQ5KTWTLd/fRS2Amo8cZHN6/6MaZGMmmzv7wDysE6Pcx/hdfMBtQO3nu6jyzqsdM9nU81Ne4vQ7vrfxxiCbfvZxJcByUYvqctGojdn8itpNE12ZbKq2GfR4ys9NM7lfsX+/5eP2kslm0jnB2sf29nYA3oNs9r8PQimZbCa9p2FgkE2TKAXZdJSL2icvd/qCptPp7O+d7kp42Y68DT/757Yd+Y5N1DsTr5lsUTtOBtncuX3XVfdTTuWiXu9+2ue4dAqyFXqtMIMszGQLVzGZbOwX4k0e+DPIpkcYQSCWizLIBpj/3Q47yOZ3ih2/VAbZCo1J5bGefRxl/75bASu3hAGT2o19X9yCbPJzVS1cVkwmWxiLipkolfJXmh/vnjlEVkcQhbRtHeWiXmvk7SWjXv6m2LtcfjPZot6Z+JmTLaqi/hkFTVe5aFALH3j5txPTykWZyVYaP+UlTr+Lcp9GhTGTTT+nC0HVQbZCF91hC7tc1G+WeFRFrT8P67oh36IAQVLx/nsdo8lBDftx2r//VpDNbf9MOifY99Ft4QNAfZCtlIUPTP8uqsAgmwa1tbXIZDLo2bOn7l0pSE6/VbkaV75MNqfnAM5BNlUX1F7uziQpyMZy0fjRVS7qlMlWTJDNbeVmv3OyhV0uKver1s9ukpp274ef8hLA7DvYFDz7mAbgZx62fJlWQX8WfspFdbSDsMtFo3BzvxRR68/DGpO6zclmeiabk3yBMbfFD+w/t7W1Zf/G+r+p1wfFZLLJx6sik43lot74Oeaywk8hL0aMGIGurq5InOzkk7V8wg76y5JvTja3bRaTyRbUCaBQuWjUgk92TkE2pyBi1I7TKRuPvqErk00+EZcyJ5uXgFu+7bv9HCS3TDZZvt+FVcIbZaUG2fjexhsz2fRzmpMtqQsfWNsvlNlWzGuzXNT873bY5aJhZ7IFcZ2bSqU8X39mMpmcuaQt9p/tQTbgm303sbTR/p76KRf1W7JYSDHlogyyeRPvnjlEqVQqEgE2IPdLojLI5iWTzS6IIFuxmWwsF41muaipd6pM4HZRovozdpqs1mv/6KVE1PQ52fzMyZPkwYof9ru5XPiALAyy6ed0rlFVLmoxdeEDwLnPZ7locaJ20yTsIFvU5mTz+5pumWxeykVNPQ/I+1hWVpb3+FUHtvxkslmSPG5lkI3yciqtAMIJshUKbDHIpk5cFz6QRXnfVdCdyVZquWhQc7KFXS5a6I6rjJls/ngZ3NmDsHxv441BNv3sF4Ly2DJpCx/I2w9qX1guepDp3+2w9s+eyaZqHsIwgmxezuf5VhcFnDPZTL0JL+9Lviw2+bmqMvKKmZMtyeNWP8ecvHeHQisXLSZLSg6yFbO6qJ80Wi+dfFxXF3V6b+NQLhr1zyho9hNiWHefVC984HdONmayRZ/9Ip6ZbGRxys7nZx4ue7mo3B/qDLKFya3NBbEv+W7mRG3M5hcz2ZzZ52RTtc0wFj7I95puZbFu5aJuyREmnRPkffQaZFP1ffeTYBHm2NpUgwcP9vxcs3sqUiKsclGni2I/c7J53S8/GS75tl0ok830E3shcmDC6Y4Iy0Xjx4RMtqDmZPPzXYxSuWiS7wj64adkImoXZVQaZrLp53ZDR/5d0Nvw0s+akMkWxL44BRqSWi5q+nc7rAoYuU10dnbiwIEDAAoHbfyyH0NQc7J55TbvrVu5qNN1jd9tqibvS76VReXnqrohW1dXh0wmg/r6+oLPZZANaGpq8vxcLnyQQG4rcYWRyea1XNTqLOW/9bMdv/vn9LP99aLemcjHYgUxmckWb24XJao/Y3lQ4LddxaFc1OtcQVwN0btSMtko3tzGNBSefDd0wgqyxblc1D7/FsByUVOFNSaV28SePXsghEBFRQV69OgR6HZU37RKp9OeykW9ZrJFoVy0mEw2VeWidXV1OO6445jJpgBHognkVC6q4osiv6bfhQ/kIJvfctFi9s/tb+MUZEulUt0GanEIssmi/hkFTVcmWykLH8jP8/JvJ1EpF1Uxb1Fc+Rlo2vtt9gvxxkw2/exBcBWlTX6CbDoUCrKVwinQwHJRM4UdZOvs7MTOnTsBALW1tUoTJoDgy0W9VivZg2zWz9b74HQT2dQgm7wvustF7fvj53mmfxd147uTQGHNX+KlFNEtDdm6I+Fl34rNZLNz+ts4zckGdJ9A1Eu2oelMPYmawK2EJ8xy0SQufOAnk83CtuuN30w2DgLjj0E2/dzmZNMVZNPVDuz7GNS+sFz0INO/22GNSeU52awgW11dXeDbUR1kK/R6bgsfWD9XVlZ6em2T2k0pc7LpPA5msvkT756ZHIVVWuE0J1sx5aKmZLLFYSBjzwCKQyYbg2zudJWL6l74ICpzsqmYHDyu/Aw0TR1Ykxph3Tgkd243dHQH2cLmFGSz/64YTpPcJ7FcNArnSR3lort27QKgJsimeuGDQu9RoXJRe5AtrplsqspF/WCQzR/OyZZAOspFvU6qX2qQjXOy5RfHIJssDp9RkOzfdR0LH5iQyWZqkE3XhWAU+QmyWSWiQohI92fkDTPZ9Asza9ppcQX5caf9Cku+TLZSsFz0G1H4Xoe98IF1vZROp1FTUxP4dtwqjoJ6Ta8LWdm/79Z3wR6kMjWwJpOP2e/CBzq/7wyy+RPvnpkc6SgX9bu6qJ8BWrEnNC+dRVzLRS1On5H1GURFFE6outjfj7DLReVMNq8DsyAy2aJSLioPmth28/P7mUa1/J38Y5BNP/uFoIqsaftnmsRyUbmNm3DRHYaoBdnC2kf7OKhXr15K2oLqOfGCzmRzuyYwqe1EtVzULu59T6midTVNgdBRLup1TjZ7gMfLF5iZbN7lC7INGDAAqVTK1/LEJjD1JGoC+f0I8wLUaeGDMDPZTC4X7ezsxNdff436+noGBHzwewc1nU6js7OTg8AE4Oqi+pk2J5suqspF5bFbZ2cnysrKEjknWxSONawxqf16qba2Vtm2ZGHPyea28IH1fbcHqdzai0nnhGLKRU0IsjGTzR/zeysKnI5yUbc52ezsJw0v+xVWkC0KJ/dC7EE2+ZiqqqowbNiwbneFTMcgmzv5/ZC/76rbclDlolFYXdQ+AALyB9k+/PBDvPXWW9i+fXtiMhFUYCYbWZjJpp+pc7LFJZNNzna2VodPypxsqVQqUv15WGNSa1oEi4r52Jy2o2tOtmIWPjD1+sB6D8vKyjxPf2JCUJ1BNn84sk8gHeWiXjPZ7GVTfoNsLBfNL18mWxzE7XhKJX/fwszykC96/Q4M3AZzpczJFka5aL45eOTBYWtrKwBgz549DAj4UEwmm/x/ii8G2fSz32xQkXVRTJAtbPmCbKWyl80l6SZNlPrzMINs8pheZSabn+k6vAgik836uayszPX1TA2yWftSKItNfi4z2aLH/N6KAhdWaYVTJluhIFsqlcrJZjMpky0OnUkcg2xB32GLKzmrTPXn7pTJ5nVgJt+1DmpONpMy2aznHThwwIhBU1T4DZxGKfOBShPWjUNy5xYACyOTzelGh/1vwqKqXBToHmQzIbMlLFHqz8O8brDaRFVVlaeATbGs47BntZX6evZ/OymUyZbJZFyvG029hrM+q6qqqoLPNTnIloS+pxScky2BwioXdbpA9rKdsrKy7Go5KjPZ8r2OxdQOulhxD7LF4XiCZA2IdK0uKi984OdknMlk0NXVVVImm3Xc8v6o4DeTzbowOnDgQGjlu3HATDZy4zQHJM8F4dI5J5t1vohzuSjwzdi4tbW1WyZb3MtFgWgF2cIck1qfvapSUYvK82mh1yy08EE6nUZ5eXnOKqsWU68PevfujZEjR6JXr14Fn2svFzUpyGbSe2oiBtkSSEe5qNdMNgC+M9mKnTfNS0ReHrzE4WKNQbbkcQqyqW7LpSx8ID+32Ew2ADlBNpXH66U8iJlswfMaZON7G3/y99uEC5EksveDYQfZ2tvbjV34gOWipYvSTZMwx6TW9ZLqRQ+s4wjq/ffzHjktLgXkZnK6XTeaen2QSqXQt29fz88FzPi+M8jmj/m9FQVOR7monxOk3Fn6XV3Uz3GwXDQexySL2/EEIazMVbdtFlPS4tRfZDKZ7JyNXoNsTv8Omt/VReU5i9ra2nJeg9yxXJTcyG2BgWs97BeCYQfZ5G3KvzMhk83+u2KxXDQa3+swAzuDBw9GY2MjGhsblW5HZZCt1Ey2fOWiUWgvhZhcLhqH91clZrIlkPWlaG1txYEDB3IeC5LVMVoXx07bCSKTzU9nnW/bTtuKW2cdxyBb3D6joMmD/rBO0k4Tkfv5blZWVmL//v05q0alUimMGDECXV1d3VYhdtuHMC5CvGQuyBd/8r/37duX8xrkjuWi5EZuC8xk08OtXFTF5+AWZFORPeaXynJRt0y2JJWLRqE/D7PvaWhoQENDg/LtWO97UG2tmEw2Ochmr8xwS86IQ6KESeWidlH4PurEIFsC1dbWoqKiAm1tbdi8eTMANV/aiooKHHbYYSgvL88+pqJcVGUmWyr1zSTsXV1dRnVsxWKQLXmcMtlUnxitbXZ0dGQf8zM4O+KII7Bv3z7U1NTkPO5nMBl2Jpv1/splqnKprkUOsu3fvz/nNcgdM9nIjXyeNvFCJAncsszCXPjAqVzUhEw2FeWiYZ7PTRCl/jyOY1ITMtmc5ra1/l6+zoxCuagfLBeNrvj3zNRNWVkZxowZg549eypPqW9ubs65MPZbLqoyky3f68jc5pOLojgG2WRxO54g6CwXtQ+EvKqsrER9fX0g+2D/d9Dk1/Zy8Se/J8xk846ZbJSPyXf7k8AeXFJZLmqxZ3LJmdNxLhft6Ogo+twaVVEKssUhe8ou6POpn/GZPbgM5I6p8mWyxTHIxnLR6Ih/z0yOevTogdGjR2dXpJHvAqikOpPNb7molw44Sif3QuIYZIvDSVQlHUE2p++5rosdp/1RtR1rEJSvjImZbMFgJhvJ7CVF/NzDZb8Q1DEnm/yYLmGVi9qDDHEXpZsmcRyTBp3JJvN6Lgecg/ipVMr1ujEOAU97n8IgW3SwXDTBysvLMWrUKHzxxRfo3bt3KNv08gUtZXVRv194e2lXvtePQ2fCIFvyyCfosO6E+S3tUyGswZXTANBrkI0BAe/8vkdRuiij0tnnBON3Klxuc7KFHWTr6upCOp02KpMtqH2xxsZykM0KMsRdlMbhcRyT6pyTTd5mZ2dndmoAeb+itrqoHyaMpy0m7UsUMMiWcOl0Gk1NTaFur5BSVhdVWS4a1Q5aJp+s4nA8QDxOoirpnJPNomNiZlPLRZ3mDeJApTD75+m1XJR9QjJ4yZInddzKRYP8HOznsnyZbHFf+MCE+ZnCFKWbJnEck+qck80631ur1ZeXl3db1CoJ5aJuP4fJpH2JAvN7K4oVkxY+sD/fraOP0sm9EHkwGofjsWOH350J5aI62lpY5aLy69vLRe3ZHfZFEJz2lZz5/TyrqqoAfDM1AsUfg2x6uWWZqZyTTd6GvVzV7W9UcwqyBRUQk4NsYaycbZIo3TSJQ2DHTmWQzct7ZF/8wD4fYxIWPnD7OUwm7UsUMJONQqWiXLSUi+kkz8kWh+MB4nESVYnlouEdb75yUesurJOkXCiVwu/3vLm5GbW1taiurla5W2QIBtn0CnNONqD7TaN0Op2T4RXHclGnTDYdWeI6RGkcHod5wOx0Lnwgb9caQ+UrF5X3MQ5jKxPG0xYG2fyJfuujSFG9umgpmWxuf1tRUdFtv6Iqjid/BtnyYyZbeEE2t0w26zE5y8LqV8LYv7jxOo1ATU0N39uE4OBfrzDnZLO2I5/P3DLZwpYvk43losWLUkVJHMekQWeyyby8pj2TLV+5KDPZ1DFpX6Ig+lEDihSTVhe1/63btlpaWtC7d280NDT4em0TpdPp7KShcekcM5kMMplMYiYA9suEOdl0B9nCKhfNVyolB9nS6TR69OiBtra2UPYvDuIwWCZ1mMmml9ucbGFmssnbNSWTTQ62BVUu2tHRkbhy0cbGRuzevRv9+vXTvSsFxbHv0bnwgbxdeyab9TjnZAuffHODnDHIRqGyvpT5BkClrC6qIshWVVWVnd8nDjKZTOyCbGPGjGGQzYWOTDb768d54QP59QutemcPsu3atSuU/YuDMIOmFD0MsullzyTr6OgAoK7vdwuymbbwgZxZx3LR4tXU1GDUqFG6d8OTOAR27FTOyeblNe1BdHsQP5PJZK8tmcmmThzezzBFZqQ6Z84cHHvssejZsyd69+7t+JyPPvoIp59+Oqqrq9HQ0ICrr746mylA5ij0xZSDJX5XF1VRLho3cVot1VJdXR2rQGiQdMzJBuifFyPM0uhCCx9Yj9mDbE77Ss6S2FeTdwyy6WUPLlljb7ksPqhtWNvJl8nm9DdhCCOTLYnlolESx3NV7969kclkUFdXF8jrBZXJJs/VZ42p5EUQ4jBFjgmVIZY4tm2VIpPJ1tbWhrPPPhsTJkzA/Pnzu/2+s7MTU6dORd++ffHyyy/jb3/7G6ZPnw4hBO677z4Ne0xurHJFwPlLmkqlUFZWhvb2diPKReMmjkE2cqcjk82+Dd3lomFnssn9m3V31SmTLaz9i4Mk9tXkHYNsesmZZEII5UE2a1vW46aWiwaZyWZVeSRxddGoidu0LE1NTejXr19gx1NsJpvV7p3a/1FHHYX29nZUVlY6bieqnwUz2aIrMkG2X/ziFwCAhQsXOv5++fLl2LRpEz7++GP0798fADBv3jxcfPHFmDNnDmpra8PaVSrA6+IHxQTZSvnSJ6XDYJAtWXTMyWZtQ+eFgHXcYcwbke8Cz3of5NVF0+m060CQCuOFJdkxyKaXfJ6x+jsg2CCbtR3rXGa/mQHoD7JZ7JlsQZyH5NLQ9vb2bo+ROeTxR1yoOhY/mWz2clG5/ffs2TPva0f1szA1yMZxWGGxeYf++7//G0ceeWQ2wAYAJ598MlpbW7Fu3TrXv2ttbcWuXbty/iO1vHR6fgJBQWWyJaXDYJAtWUzIZNNxIRDmamRuJULyhZV8UZjJZFgu6lMcBsukjkkXIkkkB7msLDZrQSIV2yk0J5sVhAp7Vfh854JSye+ldXw8d5gpjkG2IPm99rJKQK1277VcmuWiweI4zJ/Y9M7bt2/vtupMfX09KioqsH37dte/u/POO1FXV5f9b9CgQap3NfG8dHrWwEh1JlsSOwwG2ZJF15xsugPYYQ5y82VRyL9juWjxdLcnMhsz2fSSg1wqSkUthYJs9oUX5PmZwuBWLhpEn5VKpbLjN65MbbampibU1dVxrmAXfq+97EE2r1UScTgPmHQDKYnXzKXQ2jvfeuut2YsQt//eeOMNz6/n9IHbVxqxu+GGG7Bz587sfx9//HFRx0LeeS0XBbx9iVWvLho3DLIlixzkCbtc1OnfYQkzyOa2sp09w0K+4MpkMtmBIy+UCktiX03eMcimlxxc0h1kE0JkL8Z1BdksQWePW+M3louabfjw4Rg9ejTP7S6KzWSz+havq+vGYdzAIFt0aZ2TbdasWTjvvPPyPmfIkCGeXqupqQl/+ctfch776quv0N7e3i3DTVZZWZkzNw6p5+Xi1wqy+T1BMchWGINsyWKfkBpIViabieWi1j716NHD89yTdBAvXMiOQTa95H7OCgCFFWSTV6Tv6urKZrEB+stFg84etwfZ2BdSFPm99rL6Er/lonG4xjO1XJR9T2Fag2wNDQ1oaGgI5LUmTJiAOXPm4LPPPkNzczOAbxZDqKysxNixYwPZBgVDXnLZTX19Pb744gtPC1ZYF7KFshbd/tbp33FmDdLYQSaDrnJRuX3pnJMtzGO1l4um0+mc39lLHOrr67Fnzx7U1NQo38eoS2JfTd4xyKaX05xsKrLIvGSyWUE2FXPC+dk/+f9B7QfLRSkOSs1k81ouGsc52Uw5DlP2w2SRWV30o48+wo4dO/DRRx+hs7MTGzZsAPBNSm5NTQ2mTJmCESNG4MILL8TcuXOxY8cO/OQnP8Fll13GlUUN46VD7devHxobGz1/ia0gGzPZCmMmW7K4XZSEtV0g/uWifjPZrO9gS0sLBg8eHHq2RRQlsa8m7xhk08uUOdl0lora9w8IPpPNOlcwk43iopg52Vguqkcc3s8wRWZkf/PNN2PRokXZn0ePHg0AWLVqFSZNmoRMJoPnnnsOV155Jb773e+iqqoK559/Pu6++25du0wuvGaY+PkCDxw4EPv27cuZTNyLJHYYDLIli1t5TVjbDWt7btsP81j9LHxg/Z4BNm90tycym0kXIkkkv98qg2yWfJlsulYWtfbF2j/5/0Fnsrn9TBQFfs/nVl/S0dHhOJbysp2onhNMLReN6vsZpsiM7hcuXIiFCxfmfc7gwYOxdOnScHaIiqYiw2To0KElv0ZSOgwG2ZJFVyab7oUPdJSL+ln4gPzh4I7yYSabXvL73draCkBtJhvg3M/K5aJxzGSzB9V4LqEo8ns+lwPm7e3tnsdSLBcNFm92+sN3iEJn0hcziR1GfX09evXqlXdBEIoPe5aV/FgY2wVYLmo9xiBbMPj+kR2DbHo5BdnCnJNNPs8lKZONfSFFkd/xYSqVyikZ9TonWxzOA6YG2eLw3qoWmUw2io8wM0wKSWKHUVVVxcVAEkRXkE33wgdhlou6LXxgv/jzOjCk7pLYV5N3cchYiDL5/Q97dVG3clETMtmCzh5nuSjFQTHn84qKCrS3t+dksnFOtnDF4f0ME4NsFLowM0wKYYdBcWe1ayvAAyRjTrYwg/n5LqycykV5YeSf7vZEZmOQzTyqg2xyKabcz5pYLspMNiJnXtuwvMKo1+9VWVlZ5Oe+5Zxs0RXdVkeRZdKggJ0ExR3LRcPL2vO78AF5x8Ed5cMgm15WX2f1fZlMRsnNBC+ZbNYNJZPKRTknG9FBxZzPiykXLS8vx9FHHx3pG5umZrKx7ymMQTYKnYnlovLFMFGcmFAuqjOTLYzBld9MNg5O/GOQjfJh+9BPDrKpyiLzEmQzMZON5aJEBxUTrLEyY/2UiwLfzEMdZSYF2WSm7IfJONKn0Jn0xTSpdJVIBXuQLawAj/yd0nEh0KdPHzQ2NmLAgAHKt2V/j7nwgVp8/8iOmWz6yZ+BilJRwNvCByYF2YJe+MCence+kKKolEw2P+WiccBy0ehiJhuFztRMNqI4ss/JFlZb151WXlFRgREjRoSyLTlbTf4/Fz4IDgd3lA+DbPrJ73uYQbZ0Op3TB5u0uqjqTDaeSyiKihkfykG2oIPXJjMpk43jMH/i3zrJOCYF2Swm7QtRkOxZVmG1dd3lomFiuah6uoO2ZDYG2fTTFWSLwuqiqhY+YLkoRZ2f1UUB4MCBA9nHkjAWMDXIloT3vlR8hyh0Jn0xrQ7DpH0iClJSM9nC5HfhA14Y+cc7qJQPg2z6ye+76gCXW5Cts7Mze64zKcjGTDaig4q59rK+z62trdnHktD+TQ2y8TxbWPxbJxnHpBJNk/aFSAVdc7Ixk42ZbEFKUtCW/GOQTb8w52QDnG9mtLW1ZX9vUrmoqkw2tnWKomKuvawgmzXnYjqdTkT7twe2GGSLDo5UKXQmlYsyyEZxp6tcVL5TGffvFxc+CFfc2xP5x8G/fmGWi3Z1dTnezLCCbGVlZVraQZiZbEk4t1I8FZPJZu9TkjKOMuncZtK+REEyWigZxaSOkUE2ijsTgmxx53XhAwbZisfBHeXDTDb9wp6TTX7M3gfrKBW19kXeD5WZbJx2gKKqmGsve2ZqUtq/SWMfVhT4w3eIQmdSYMukfSFSQdecbNYJOAkn4nyZbPLFH1cXLR4Hd5QPg2z6yZ+BqiCXva+1HrP3CTpKRa19AcLLZCOKomJuwqZSqZx+JSnt39SxD8+zhZnzaVFisFyUKDy65mRjJlv3TDbr8aTcgQ2SSXdzyTxsH/qFXS4qP2Y/z5iWyRZUm0yn04m6gUXx5vd7IfcrSWn/Jp3bTNqXKEhGCyWjWJ2krkGQjEE2ijtdKxNZA6AkBJS8LHxgTdYLJGdwGCRT7+aSGeTvGs/nesg3VlT1+25BNvtnbkqQzfp/kH2W9d4m4dxK8VRsoDjpmWwmnNt43eydnnxqSrTa2loceeSRqKmp0b0rWewsKK50BdmSmMmWb+EDq1RUfj4Vh/01OUmn0+jq6mL70MR63ysqKpR9BlErF1UxF2omk0F7ezvPIxRZtbW16NOnDxoaGnz9nRxkS0qQ2bQbjKlUCkIII/bFdAyyUehSqZTvjlWVJAUCKJkYZFMvXyab9Tsrk80p64IKM22gSebhHXa9rO+lyiwyp4V8TC4XVZnJxn6QoiqTyeCoo47y/XcsF9V/buN51rtktFAiF+wsKO7sbTusgYk1GKqsrAxlezp5WfiAix6UxrSBJpmH5aJ6yZlsqtkzxEzNZAt64QOA5aKUXCwX1X9u43Wzd8xko0RjZ0FxZx+IhNXWDznkEIwcORK1tbWhbE8n+8IH9iwL4GAmGy+MimPaQJPMwyCbXmEE2Zwy2YDu5zlTMtlULDjETDZKKpaL6v/O87rZOwbZKNHYWVDc6SwX7du3byjb0s3PwgcmDJKiju8hOWGQTS+dQTbTFz4Isk1aWXrsBylpWC6q/9yWpKlgSsV3iBKNQTaKO13lokniZeEDFRkNSWLaQJPMwyCbXlVVVQCA6upqZdvIF2STP3dTykVVZrIlJZOHyMJyUf3nNl43e8dMNko0dhYUd7oy2ZJEvrCyLq6sxxnkDIZpJRNkHgbZ9BoyZAgaGxu1BNmAbz5/a+7LOGeysVyUkiqJQTbArBU9ed3snf5Pi0gjq8PWNSAjUo1BNvXkTDZ7kM0+KDJhkBRFpt3NJfNw8K9XOp1GTU2N0ve/UJDNYkqQzWk/S1VXV4d0Oo26urrAXpMoCuRy0SRlcpp4bjNpX0zFTDZKtL59+0IIgfr6et27QqQEg2zquWWypdPpbu93kgaGQWImGxXCTLb4yxdkky9EdfWzbplsQfZZjY2NaGhoYD9IiSOXgSep/ZsUZOOcbN4xyEaJlk6n0dTUpHs3iJRhuaJ6LBcNlwkDTTKP9d3idyy+vGSylZWVae8jVGayAWzjlEypVArl5eVob29P1HfApCAbb2Z5l5wWSkSUQMxkU08e7FkXVQDLRYPEclEqhIP/+PMSZNM5/UcYmWxESWaVjCapKsCk7LFBgwahb9++LFf3gJlsREQxxiCbevJ7ak287fQ7wIxBUhSxXJQKYZAt/rxmsuki74+c2cw2SRSMyspK7N27V+v3PGwmZbI1NTWxAsyj5LRQIqIEYpBNPadMNqtUlJlswWAmGxVi0oUIqWX1s3J/alImm8VpP4moeEOHDkVdXR369Omje1dCw3NbNDHIRkQUY8ykCpeVyeY2KOL7XxyTyiXITMxkiz8vCx+YEmRjJhtR8GpqalBTU6N7N0LF8U808dMiIooxZrKpJy9wYL/44+qiwbDetySViJA/PXv2BABUVVVp3hNSJWrlosxkI6JSMZMtmjhaJSKKMQbZwpFOp9HZ2dktk43losGorKzEEUcckZ30mMiuf//+qK+vZ5AtxqKy8AHATDYiCgaDbNHEIBsRUYyxXDEcXjPZ+P4Xr1+/frp3gQyWSqWy2WwUT/luGlkB+B49eoS6TzJ5f7q6uhhkI6KSsVw0mhhkIyKKMWayhcMa/DCTjYhIjXzns5aWFtTX16OhoSHs3XLcH+uGC8B+n4iKx0y2aGKQjYgoxhhkCwcz2YiI1CqUydbY2Bj2LnWTSqVy5mOzHiMiKgaDbNHE0T4RUYwxyBYOK3jGhQ+IiNSIwvnM2icrqxngzRUiKh7LRaOJnxYRUYwxkyoc9gsrZrIREQUrSkE2OZONiKhYzGSLJo72iYhiLAoXJXGQr1zUaQU8IiLyJwrnM/sNl3Q6beR+ElE0MMgWTRztExHFnHxi5klaDbeFD+Tf2f9NRETFM/F85nbDhYioGAyyRRNH+0REMccgm3r5LqyYyUZEVLoolN/bzwUm7iMRRYfVh7AviRauLkpEFHMM8qiXL5NN/jcXPiAiKk4Uy0VN3Eciio7+/ftDCIFDDjlE966QDwyyERHFHDPZ1MuXycZyUSKi0kUpyMZyUSIKQp8+fdCnTx/du0E+cbRPRBRzcmCHA3418mUvMJOQiKh0UQqyyQsfEBFRsrDnJyKKOWayqWddSDGTjYhIjSgF2ZjJRkSUXBztExHFHDOp1GMmGxGRWlEMsrHPJyJKHvb8REQxx0w29fJlsnHhAyKi0kUpyMaFD4iIkotBNiKimGOQTT0vCx+kUim+/0RERYpSkI2ZbEREycWen4go5liuqJ71vuYrF+V7T0RUvCgF2ZjJRkSUXBzxExHFHDPZ1MuXycYgGxFR8Ew8nzGTjYiI2PMTEcUcg2zq5ctesC6yeLFFRFQ8ZrIREVEUcMRPRBRzDLKpZwXQhBAAmMlGRBQ0+/nLxD41X1YzERElg3lnJyIiChTnZFMvX4aF9Z5zZVEiouJFKZON5aJERMnFnp+IKOaYyaae/UJK/pmZbEREpYtSkI3lokREycURPxFRzDHIpl6+iz8G2YiIShelIBsz2YiIkisyPf+cOXNw7LHHomfPnujdu7fjc1KpVLf/fvvb34a7o0REhmGQTT0v5aK82CIiKl4Ug2wm7iMREalVpnsHvGpra8PZZ5+NCRMmYP78+a7PW7BgAU455ZTsz3V1dWHsHhGRsRhkU88eQGMmGxFRsKIUZLPKRdnvExElT2SCbL/4xS8AAAsXLsz7vN69e6OpqSmEPSIiigZr0G9l+FLwuPABEZFaUQqyMZONiCi5IhNk82rWrFm49NJL0dLSgpkzZ+Lyyy/PexeptbUVra2t2Z937twJANi1a5fyfSUiCsPevXuxd+9epNNp9m2KWO+xZc+ePdn3es+ePdi7dy/27dvH95+iYe9eQBobAQB27QL+f3YOkQ4dHR3d+tnKykqNe9RdvnMBERFFl9WXCyEKPjdWQbbbbrsNJ510EqqqqrBy5Ur8+Mc/xpdffombbrrJ9W/uvPPObJacbNCgQSp3lYiIiCg6/uVfdO8BERERkVa7d+8uOCVZSngJxSly6623Oga4ZK+//jrGjRuX/XnhwoW45ppr8PXXXxd8/Xnz5uGXv/xlNjvNiT2TraurCzt27ECfPn2Y4i3ZtWsXBg0ahI8//hi1tbW6d4c0YTsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLUtCCGwe/du9O/fv+B8m1oz2WbNmoXzzjsv73OGDBlS9Ov//d//PXbt2oXPP/8c/fr1c3xOZWVlt1Rzt9VLCaitrY3Ul4HUYDsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLEteF1UU2uQraGhAQ0NDcpef/369ejRoweDZkREREREREREpFRk5mT76KOPsGPHDnz00Ufo7OzEhg0bAADDhw9HTU0N/vznP2P79u2YMGECqqqqsGrVKtx44424/PLLjZsUlYiIiIiIiIiI4iUyQbabb74ZixYtyv48evRoAMCqVaswadIklJeX44EHHsC1116Lrq4uDB06FL/85S9x1VVX6drlWKmsrMQtt9zCgGXCsR2QhW2BLGwLZGFbIAvbAgFsB3QQ2wJZktAWtC58QEREREREREREFAf5l0UgIiIiIiIiIiKighhkIyIiIiIiIiIiKhGDbERERERERERERCVikI2IiIiIiIiIiKhEDLIlxAMPPICWlhb06NEDY8eOxdq1a/M+/w9/+ANGjRqFnj17orm5GZdccgn+9re/ZX//0EMP4fjjj0d9fT3q6+sxefJkvPbaazmvMWTIEKRSqW7/ccVXfXS0g46ODtx0001oaWlBVVVVduXfrq4uJcdI3uhoC7t378Y111yDQw89FFVVVTj22GPx+uuvKzk+8i7otrBkyRKMGzcOvXv3RnV1NY455hg88sgjJW+X1NPRFtasWYPTTz8d/fv3RyqVwrPPPqvi0MgnHW3hzjvvxHe+8x306tULjY2NOOuss/Duu+8qOT7yRkc7ePDBB3H00UejtrYWtbW1mDBhAl544QUlx0fe6RorWO68806kUilcc801QR0SFUlHW7j11lu7xRSampqUHF8gBMXe4sWLRXl5uXjooYfEpk2bxOzZs0V1dbX48MMPHZ+/du1akU6nxb/927+JLVu2iLVr14qRI0eKs846K/uc888/X/zmN78R69evF++884645JJLRF1dnfjkk0+yz/niiy/EZ599lv1vxYoVAoBYtWqV6kMmB7rawe233y769Okjli5dKrZu3SqefPJJUVNTI+655x7lx0zOdLWFc845R4wYMUK89NJL4v333xe33HKLqK2tzXkOhUtFW1i1apVYsmSJ2LRpk9i8ebO45557RCaTEcuWLSt6u6Serrbw/PPPixtvvFE8/fTTAoB45plnVB8qFaCrLZx88sliwYIF4u233xYbNmwQU6dOFYMHDxZ79uxRfszUna528Kc//Uk899xz4t133xXvvvuu+PnPfy7Ky8vF22+/rfyYyZmutmB57bXXxJAhQ8TRRx8tZs+ereowyQNdbeGWW24RI0eOzIktfPHFF8qPt1gMsiXA+PHjxRVXXJHz2OGHHy6uv/56x+fPnTtXDB06NOexe++9VwwcONB1Gx0dHaJXr15i0aJFrs+ZPXu2GDZsmOjq6vKx9xQUXe1g6tSpYsaMGTnPmzZtmvjhD3/o9xAoIDrawr59+0QmkxFLly7Ned6oUaPEjTfeWMxhUADCaAtCCDF69Ghx0003Fb1dUk9XW5AxyGYGE9qCEN/crAUgXnrpJY97TkEypR0IIUR9fb343e9+52GvSQWdbWH37t3iW9/6llixYoWYOHEig2ya6WoLt9xyixg1alRxO60By0Vjrq2tDevWrcOUKVNyHp8yZQr+67/+y/Fvjj32WHzyySd4/vnnIYTA559/jqeeegpTp0513c6+ffvQ3t6OQw45xHU/Hn30UcyYMQOpVKr4A6Ki6GwHxx13HFauXIn33nsPAPA///M/ePnll3HaaacFcGTkl6620NHRgc7OTvTo0SPneVVVVXj55ZdLPCoqRhhtQQiBlStX4t1338UJJ5xQ9HZJLV1tgcxjUlvYuXMnALiOLUkdU9pBZ2cnFi9ejL1792LChAmlHRQVRXdbuOqqqzB16lRMnjw5mAOiouluC++//z769++PlpYWnHfeediyZUswB6aChsAehejTTz8VAMQrr7yS8/icOXPEt7/9bde/s0r6ysrKBABxxhlniLa2NtfnX3nllWLYsGFi//79jr9//PHHRSaTEZ9++mlxB0Il0dkOurq6xPXXXy9SqZQoKysTqVRK3HHHHaUfFBVFZ1uYMGGCmDhxovj0009FR0eHeOSRR0Qqlcq7XVJHZVv4+uuvRXV1tSgrKxOVlZVi/vz5JW+X1NHVFuzATDbtTGkLXV1d4vTTTxfHHXdcaQdERdHdDjZu3Ciqq6tFJpMRdXV14rnnngvmwMg3nW3hscceE0ceeWR2LMlMNr10toXnn39ePPXUU2Ljxo3ZrMZ+/fqJL7/8MrgDDBAz2RLCnj0mhHDNKNu0aROuvvpq3HzzzVi3bh2WLVuGrVu34oorrnB8/l133YXHHnsMS5Ys6ZalYpk/fz5OPfVU9O/fv7QDoZLoaAePP/44Hn30Ufzxj3/Em2++iUWLFuHuu+/GokWLgjsw8k1HW3jkkUcghMCAAQNQWVmJe++9F+effz4ymUxwB0a+qWgLvXr1woYNG/D6669jzpw5uPbaa7F69eqit0vh0NUWyDy628KsWbOwceNGPPbYY4EcDxVHVzs47LDDsGHDBrz66qv40Y9+hOnTp2PTpk2BHhv5E3Zb+PjjjzF79mw8+uijrteXpIeOfuHUU0/FP/3TP+Goo47C5MmT8dxzzwGAudeTmoJ7FJLW1laRyWTEkiVLch6/+uqrxQknnOD4Nz/84Q/F97///ZzH1q5dKwCI//3f/815fO7cuaKurk68/vrrrvuwbds2kU6nxbPPPlvkUVCpdLaDgQMHivvvvz/nsdtuu00cdthhxRwKlciEPmHPnj3ZvzvnnHPEaaedVsyhUIlUtwXZzJkzxZQpU4reLqmlqy3YgZls2pnQFmbNmiUGDhwotmzZUsQRUBBMaAeyk046SVx++eUe956CpKstPPPMMwKAyGQy2f8AiFQqJTKZjOjo6CjxyMgv0/qFyZMnd5sfzhTMZIu5iooKjB07FitWrMh5fMWKFTj22GMd/2bfvn1Ip3ObhpVpIoTIPjZ37lzcdtttWLZsGcaNG+e6DwsWLEBjY2Pe+ZtILZ3twO11urq6ijoWKo0JfUJ1dTWam5vx1Vdf4cUXX8SZZ55Z7OFQCVS2BTshBFpbW4veLqmlqy2QeXS2BSEEZs2ahSVLluA///M/0dLSUuxhUIlM6xPYb+ijqy2cdNJJeOutt7Bhw4bsf+PGjcMFF1yADRs2sApCA5P6hdbWVrzzzjtobm72uvvhCj2sR6GzltqdP3++2LRpk7jmmmtEdXW12LZtmxBCiOuvv15ceOGF2ecvWLBAlJWViQceeEB88MEH4uWXXxbjxo0T48ePzz7nV7/6laioqBBPPfVUzlK6u3fvztl2Z2enGDx4sLjuuuvCOVhypasdTJ8+XQwYMEAsXbpUbN26VSxZskQ0NDSIn/3sZ+EdPOXQ1RaWLVsmXnjhBbFlyxaxfPlyMWrUKDF+/Pi8c7uRWirawh133CGWL18uPvjgA/HOO++IefPmibKyMvHQQw953i6FT1db2L17t1i/fr1Yv369ACD+9V//Vaxfv158+OGH4R085dDVFn70ox+Juro6sXr16pzzyL59+8I7eMrS1Q5uuOEGsWbNGrF161axceNG8fOf/1yk02mxfPny8A6ecuhqC3ack00/XW3hxz/+sVi9erXYsmWLePXVV8X3vvc90atXL2PHjQyyJcRvfvMbceihh4qKigoxZsyYnOXQp0+fLiZOnJjz/HvvvVeMGDFCVFVViebmZnHBBReITz75JPv7Qw89VADo9t8tt9yS8zovvviiACDeffddlYdHHuloB7t27RKzZ88WgwcPFj169BBDhw4VN954o2htbVV9uJSHjrbw+OOPi6FDh4qKigrR1NQkrrrqKvH111+rPlQqIOi2cOONN4rhw4eLHj16iPr6ejFhwgSxePFiX9slPXS0hVWrVjn2HdOnT1d5qFSAjrbg1A4AiAULFqg8VMpDRzuYMWNGdpt9+/YVJ510EgNsBtA1VpAxyGYGHW3h3HPPFc3NzaK8vFz0799fTJs2Tfz1r39VepylSAmRJ0+PiIiIiIiIiIiICuKcbERERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIqEYNsRERERKRVW1sbhg8fjldeeSXQ1126dClGjx6Nrq6uQF+XiIiIyAmDbEREREQBuvjii5FKpbr9t3nzZt27Zqz/+I//wKGHHorvfve72cdSqRSeffbZbs+9+OKLcdZZZ3l63e9973tIpVL44x//GNCeEhEREbljkI2IiIgoYKeccgo+++yznP9aWlq6Pa+trU3D3pnnvvvuw6WXXqrktS+55BLcd999Sl6biIiISMYgGxEREVHAKisr0dTUlPNfJpPBpEmTMGvWLFx77bVoaGjAP/7jPwIANm3ahNNOOw01NTXo168fLrzwQnz55ZfZ19u7dy8uuugi1NTUoLm5GfPmzcOkSZNwzTXXZJ/jlPnVu3dvLFy4MPvzp59+inPPPRf19fXo06cPzjzzTGzbti37eytL7O6770ZzczP69OmDq666Cu3t7dnntLa24mc/+xkGDRqEyspKfOtb38L8+fMhhMDw4cNx99135+zD22+/jXQ6jQ8++MDxvXrzzTexefNmTJ061ee7DGzbts0xa3DSpEnZ55xxxhl47bXXsGXLFt+vT0REROQHg2xEREREIVq0aBHKysrwyiuv4N///d/x2WefYeLEiTjmmGPwxhtvYNmyZfj8889xzjnnZP/mpz/9KVatWoVnnnkGy5cvx+rVq7Fu3Tpf2923bx9OPPFE1NTUYM2aNXj55ZdRU1ODU045JSejbtWqVfjggw+watUqLFq0CAsXLswJ1F100UVYvHgx7r33Xrzzzjv47W9/i5qaGqRSKcyYMQMLFizI2e7DDz+M448/HsOGDXPcrzVr1uDb3/42amtrfR0PAAwaNCgnW3D9+vXo06cPTjjhhOxzDj30UDQ2NmLt2rW+X5+IiIjIjzLdO0BEREQUN0uXLkVNTU3251NPPRVPPvkkAGD48OG46667sr+7+eabMWbMGNxxxx3Zxx5++GEMGjQI7733Hvr374/58+fj97//fTbzbdGiRRg4cKCvfVq8eDHS6TR+97vfIZVKAQAWLFiA3r17Y/Xq1ZgyZQoAoL6+Hvfffz8ymQwOP/xwTJ06FStXrsRll12G9957D0888QRWrFiByZMnAwCGDh2a3cYll1yCm2++Ga+99hrGjx+P9vZ2PProo5g7d67rfm3btg39+/d3/N0PfvADZDKZnMdaW1uzWW+ZTAZNTU0AgAMHDuCss87ChAkTcOutt+b8zYABA3Iy9oiIiIhUYJCNiIiIKGAnnngiHnzwwezP1dXV2X+PGzcu57nr1q3DqlWrcoJylg8++AD79+9HW1sbJkyYkH38kEMOwWGHHeZrn9atW4fNmzejV69eOY8fOHAgp5Rz5MiROYGt5uZmvPXWWwCADRs2IJPJYOLEiY7baG5uxtSpU/Hwww9j/PjxWLp0KQ4cOICzzz7bdb/279+PHj16OP7u17/+dTaYZ7nuuuvQ2dnZ7bkzZ87E7t27sWLFCqTTucUaVVVV2Ldvn+s+EBEREQWBQTYiIiKigFVXV2P48OGuv5N1dXXh9NNPx69+9atuz21ubsb777/vaZupVApCiJzH5LnUurq6MHbsWPzhD3/o9rd9+/bN/ru8vLzb63Z1dQH4JlhVyKWXXooLL7wQv/71r7FgwQKce+656Nmzp+vzGxoaskE8u6ampm7vY69evfD111/nPHb77bdj2bJleO2117oFEQFgx44dOcdIREREpAKDbEREREQajRkzBk8//TSGDBmCsrLuQ7Phw4ejvLwcr776KgYPHgwA+Oqrr/Dee+/lZJT17dsXn332Wfbn999/Pyd7a8yYMXj88cfR2NhY1PxnAHDUUUehq6sLL730UrcMM8tpp52G6upqPPjgg3jhhRewZs2avK85evRoPPjggxBCZMtY/Xj66afxy1/+Ei+88ILjvG9Wpt7o0aN9vzYRERGRH1z4gIiIiEijq666Cjt27MAPfvCD7CqYy5cvx4wZM9DZ2YmamhrMnDkTP/3pT7Fy5Uq8/fbbuPjii7uVRP7DP/wD7r//frz55pt44403cMUVV+RkpV1wwQVoaGjAmWeeibVr12Lr1q146aWXMHv2bHzyySee9nXIkCGYPn06ZsyYgWeffRZbt27F6tWr8cQTT2Sfk8lkcPHFF+OGG27A8OHDc8pcnZx44onYu3cv/vrXv/p4177x9ttv46KLLsJ1112HkSNHYvv27di+fTt27NiRfc6rr76KysrKgvtBREREVCoG2YiIiIg06t+/P1555RV0dnbi5JNPxpFHHonZs2ejrq4uG0ibO3cuTjjhBJxxxhmYPHkyjjvuOIwdOzbndebNm4dBgwbhhBNOwPnnn4+f/OQnOWWaPXv2xJo1azB48GBMmzYNRxxxBGbMmIH9+/f7ymx78MEH8f3vfx9XXnklDj/8cFx22WXYu3dvznNmzpyJtrY2zJgxo+Dr9enTB9OmTXMsYy3kjTfewL59+3D77bejubk5+9+0adOyz3nsscdwwQUX5C1ZJSIiIgpCStgn7yAiIiIi402aNAnHHHMM7rnnHt270s0rr7yCSZMm4ZNPPkG/fv0KPv+tt97C5MmTHRdmKMX//d//4fDDD8cbb7yBlpaWwF6XiIiIyAkz2YiIiIgoEK2trdi8eTP++Z//Geecc46nABvwzVxvd911F7Zt2xbo/mzduhUPPPAAA2xEREQUCi58QERERESBeOyxxzBz5kwcc8wxeOSRR3z97fTp0wPfn/Hjx2P8+PGBvy4RERGRE5aLEhERERERERERlYjlokRERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIq0f8Dz052/mBNPmoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "nharm = 1\n", + "freq, zstat = z_n_search(events.time, frequencies, nbin=nbin, nharm=nharm)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, 15])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Thresholding\n", + "\n", + "When can a peak in the EF or $Z_n^2$ periodogram be considered a pulsation?\n", + "\n", + "Since both the EF and $Z_n^2$ of noise follow precise statistical distributions ($\\chi^2_{\\rm nbin}$ in one case, $\\chi^2_n$ in the other), we can use the inverse survival functions of these statistical distributions to find the peaks that are not expected by noise.\n", + "\n", + "In Stingray, the thresholds are defined in `stingray.stats.fold_detection_level` and `stingray.stats.z2_n_detection_level` respectively.\n", + "\n", + "The `ntrial` parameter should be set to an estimate of the statistically independent frequencies in the periodogram. A good estimate can be \n", + "\n", + "$$N_{\\rm trial} \\sim (f_{\\rm max} - f_{\\rm min}) / df_{\\rm min} =(f_{\\rm max} - f_{\\rm min}) (t_1 - t_0)$$,\n", + "where $f_{\\rm min}$ and $f_{\\rm max}$ are the maximum and minimum frequencies of the periodogram, $df_{\\rm min}$ was defined above and $t_0$ ans $t_1$ the start and end of the observation.\n", + "\n", + "Moreover, the `stingray.pulse.search.search_best_peaks` helps finding the best value for nearby candidates." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfrA8c9sTyMhISQBAgQpEiBURRAFpIqIYME7hdDOcuhFuiKCNEHxqFIsh4AooqLwO8vRguChggjYAEGBiCUcIiWkbf/9sdmRTd0N2d2QPO/Xa1+vnZnvzDw7Isuzz7coTqfTiRBCCCGEEEIIr2mCHYAQQgghhBBCXG0kkRJCCCGEEEIIH0kiJYQQQgghhBA+kkRKCCGEEEIIIXwkiZQQQgghhBBC+EgSKSGEEEIIIYTwkSRSQgghhBBCCOEjSaSEEEIIIYQQwke6YAdQGTgcDn777TciIiJQFCXY4QghhBBCCCGCxOl0cunSJerUqYNGU3LdSRIp4LfffiMxMTHYYQghhBBCCCEqiZ9//pl69eqVeFwSKSAiIgJwPawaNWoEORohhKh6rHYH7x48DcBdbeMBPLb12uD0NLfaHby79xT2nTsB0AJ3cRr9Y/+AsLCgxFSSws8wWM9MCCGquqysLBITE9UcoSSSSIHana9GjRqSSAkhhB/kWmzM2XocgCFdGgN4bIcagvN1lGuxMWfnz8A16r4hxguE1qhR6RKpws8wWM9MCCGqi7KG/MjfwkIIIQJOoyj0axWvvg9qHM1jsX1/lK3O6KDFIYQQ4uojiZQQQoiAM+m1LL+/fbDDcMVxdwty520m2SyJlBBCCO9JB2shhBBCCCGE8JFUpIQQQgghxBVxOp3YbDbsdnuwQxGiTFqtFp1Od8XLHkkiJYQQIuByLTaSp20B4PDMPkGdbCJ51k4g+N0MhbhaWSwWMjMzyc3NDXYoQngtNDSUhIQEDAZDua8hiZQQQgghhCgXh8PByZMn0Wq11KlTB4PBcMW/8gvhT06nE4vFwu+//87Jkydp0qRJqYvulkYSKSGEEH5n0Gp4dXgH9b3F7ghyREWt0P2AUXFioPLFBkWfoRCVgcViweFwkJiYSGhoaLDDEcIrISEh6PV6fvrpJywWCyaTqVzXkURKCCGE3+m0Gm65Nk7droyJVFdtFqFK5YvLrfAzFKIyKe8v+kIES0X8mZU/9UIIIYQQQgjhI6lICSGE8Dur3cGmg78CMLBt3SBHU7yN9hgMOBioPYc+2MEUo/Az1Ev3PiGECCpJpIQQQvid1e5g4oZvALgtJSHI0RRviq0hALdpz1faROryZyiJlBBCBJf8LSyEEEIIIUQxfv75Z7p160ZycjIpKSm88847wQ5JVCJSkRJCCCGEEKIYOp2ORYsW0aZNG86cOUO7du3o168fYWFhwQ5NVAJSkRJCCCGEEKIYCQkJtGnTBoDatWsTHR3NuXPnfLpGt27dGDNmTMUHF+R7CUmkhBBCCCFENfTRRx+hKEqJr8GDB3u0//LLL9U1s/xNEqKrg3TtE0IIIYQQ1U737t3JzMz02Ge32xkxYgQHDx5k6tSp6v4//viD1NRU/vWvfwU6TFGJSUVKCCGEEEJUOyEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrUCwGw2M2jQICZPnkznzp1LvWZOTg6pqamEh4eTkJDA/Pnzi7RxOp3MmzePRo0aERISQuvWrdmwYYN6fPjw4ezatYvFixer1bGMjIxyfcbS7vXSSy9Rt25dHA7PhcgHDBjAsGHDynW/6kYqUkIIIfzOoNWw7L526nugyHaw4pp+c23s//d/aLVaaoSHYcBR9olBUNwzFEJUDLvdzpAhQ9i2bZtHEuV0Ohk+fDi33HILQ4cOLfM6EydO5OOPP2bjxo3Ex8fz5JNPsn//fnWcFcBTTz3Fe++9x4oVK2jSpAmffPIJQ4YMITY2lq5du7J48WKOHTtGy5YtmTlzJgCxsbHl+lyl3euee+4hLS2Njz/+mB49egBw/vx5tmzZwvvvv1+u+1U3kkgJIYTwO51WU2T9qMqwnpROq+G6Wk7CzL+4duSCpXbtSvnlWNwzFKIycjqd5FntAb9viF6Loig+n2e32xk6dCjbtm0jPT2dlJQU9dinn37KW2+9RUpKCps2bQJg7dq1aqJ1uezsbFauXMlrr71Gr169AFizZg316tVT2+Tk5LBgwQJ27NhBp06dAGjUqBG7d+/mpZdeomvXrkRGRmIwGAgNDSU+Pt7nz+PtvdatW0ffvn1Zt26dmki98847REdHq9uidEH9rmjYsCE//fRTkf2jR49m2bJlOJ1OZsyYwcsvv8z58+fp2LEjy5Yto0WLFmpbs9nMhAkTePPNN8nLy6NHjx4sX77c4w+tEEIIUZL8/HzCcE1zbLPZyM3NJTTYQQlxFcuz2kmetiXg9z08sw+hBt/+aetOorZu3Up6ejqtW7f2ON6lS5ciXd9Kcvz4cSwWi5q0AERHR9OsWbM/Yzx8mPz8fDXRcrNYLLRt29an2Mvizb3uv/9+HnzwQZYvX47RaOSNN97gL3/5C1qttkJjqaqCmkjt27cPu/3PXyy+++47evXqxT333APAvHnzWLBgAatXr6Zp06bMnj2bXr16cfToUSIiIgAYM2YM77//PuvXrycmJobx48fTv39/9u/fL38IhBCikrDZHWw59D8A+rSIA/DY1gWpq5rVZmfXqVwijfUICw8nPzub7uYz1ApKNKUr/AyD9cyEqCrcSdSWLVuKTaIABg0axM6dO+nRo4fHOKbiOJ3OMu/pTso+/PBD6tat63HMaDT6EH3ZvLnX7bffjsPh4MMPP+S6667jv//9LwsWLKjQOKqyoCZShft7Pvvss1xzzTV07doVp9PJokWLmDJlCnfeeSfgKo/GxcWxbt06HnroIS5evMjKlStZu3YtPXv2BOD1118nMTGR7du306dPn4B/JiGEEEVZ7A4eWXcAcP1qDHhsByspyDVbWPKdHWoW/IJcEzr+7z1sNlul695X+BlKIiUqqxC9Vv3/PND39Zbdbic1NZUtW7awfft2jzFMl0tLS2PkyJGsWbOmzGs2btwYvV7Pnj17qF+/PuAac3Ts2DG6du0KQHJyMkajkVOnTqn7imMwGDyKDeXhzb1CQkK48847eeONN/jxxx9p2rQp7du3v6L7VieV5nvCYrHw+uuvM27cOBRF4cSJE5w+fZrevXurbYxGI127duWzzz7joYceYv/+/VitVo82derUoWXLlnz22WclJlJmsxmz2axuZ2Vl+e+DCSGEKEKjKHRMilbfB4vFbObaSND//jvfGlw/7jmcTi5dukTNyMigxSXE1UxRFJ+72AWSw+EgNTWVTZs2sWHDBhISEjh9+rRHm9jYWLRaLd27d2fnzp1eXTc8PJxRo0YxceJEYmJiiIuLY8qUKWg0f/7oERERwYQJExg7diwOh4MuXbqQlZXFZ599Rnh4uDpbXsOGDdm7dy8ZGRmEh4cTHR3N8uXL2bhxI+np6V7F4+297r//fm6//XYOHTrEkCFDilxn6dKlPt23Oqk0f8o3bdrEhQsXGD58OID6BzouLs6jXVxcnDqu6vTp0xgMBmrWrFmkTeH/IS43d+5cZsyYUYHRCyGE8IVJr+WthzqV3dDPnDYLT7bRUG/TF9xiuA2A37PM1MjOpmYZ5wohrk779u1j3bp1APTr16/YNufPnycqKsrnaz///PNkZ2czYMAAIiIiGD9+PBcvXvRoM2vWLGrXrs3cuXM5ceIEUVFRtGvXjieffFJtM2HCBIYNG0ZycjJ5eXmcPHmSs2fPcvz4cZ/i8eZet9xyC9HR0Rw9epT77ruvyDXKc9/qotIkUitXruTWW2+lTp06HvsLz77idDrLnJGlrDaTJ09m3Lhx6nZWVlZAVqkWQghRueTn5wNgc/75nZFttklPBSGqsI4dO3o1nqk8wsPDWbt2LWvXrlX3TZw40aONoiikpaWRlpZW4nWaNm3K559/7rFv+vTpTJ8+vdT7F66eeXMvrVbLb7/9VuJxb+5bXVWKDtY//fQT27dv529/+5u6zz3dY+HK0pkzZ9QqVXx8PBaLhfPnz5fYpjhGo5EaNWp4vIQQQlQ/7kTq14t/dvfONtu4dOmS3/6hJYQQomqoFInUqlWrqF27Nrfddpu6Lykpifj4eLZt26bus1gs7Nq1S11Vun379uj1eo82mZmZfPfdd2WuPC2EECJ4ci022s3aRrtZ28i12IIWx/lLOTzymYPR9W5V95ltDrJy8jzG0gohhBCFBb1rn8PhYNWqVQwbNgyd7s9wFEVhzJgxzJkzhyZNmtCkSRPmzJlDaGio2n8zMjKSUaNGMX78eGJiYoiOjmbChAm0atVKncVPCCFE5XQuxxLsEMjPN3PJCuhN6j6bU8uZS2aysrIwmUwlnyyEqPL69OnDgQMHyMnJoV69emzcuJHrrrsu2GGJSiLoidT27ds5deoUI0eOLHJs0qRJ5OXlMXr0aHVB3q1bt6prSAEsXLgQnU7H4MGD1QV5V69eLWtICSFEJaLXanj+7hT1vdXu3QKX/uR0OjEXdO0DGHr2GxS7HafTye+X8itdRarwMxRC+N+WLYFfWFhcPYKeSPXu3bvEfuiKopQ5wM1kMvHCCy/wwgsv+ClCIYQQV0qv1XBPhz8n9akMiZTFYvH4/rlDOYsGGwedcCbLjMUS/IrZ5Qo/QyGEEMEV9ERKCCGECIa8vDyP7XCTjgitDgcKZy5VvkRKCCFE5SKJlBBCCL+z2R188sPvANzcJDbI0bjk5+d7VKS+DYklUq/BxkmyzTbOXswJYnRFFX6GOuneJ4QQQSV/CwshhPA7i93ByNVfMnL1l1gqQbc+cCVS+bY/Y5moac6D9maEhoUAcPLMxZJODYrK+AyFEKI6k0RKCCFEtWSz2biUby2yv0aIEYDzl3IDHZIQQoiriCRSQgghqiWbzUZWXtE1rEKMegBy8sw4HFL5EUIIUTxJpIQQQlRLdrudbHPRRMpk1ONEIc9qx2otWrESQgghQBIpIYQQ1ZTdbiermK59oXoNNjTkWuyVbi0pIYQQlYckUkIIIaolm83GpeK69hm02Jxaci02mQJdCCFEiSSREkIIUS25uvYVrUiFGHTY0JBnsUsiJYQQokSyjpQQQgi/02s1zLyjhfoeKLIdaO5Z+8Jsefxd+Y0wow4tUEOvwerUkGutXIlUcc9QCFG5DR8+nAsXLrBp0ya/30tRFDZu3MjAgQP9fi/hIn8TCyGE8Du9VkNqp4akdmqIXqspsh0MuWYrVrsDvcPGg8azjNCdIVV3hhoG1xgpi81BTl5+UGIrTmV4ZkJUFcOHD0dRlCKvvn37qm0aNmxY5Hi9evX8GtfOnTtRFIULFy749T6iYkhFSgghRLXjdDq5kONKkiJCDBh0fyYmRp0Gp1ULWPlD1pISosrq27cvq1at8thnNBo9tmfOnMkDDzygbmu12oDEJq4O8pOWEEIIv7M7nHx+/A8+P/4HdoezyHagORwOLuZacDohJCyET20RfGqP4HN7BA4UwkNCALhQiRKpYD8zIaoao9FIfHy8x6tmzZoebSIiIjyOx8bGlng9u93OuHHjiIqKIiYmhkmTJuF0ev6/6nQ6mTdvHo0aNSIkJITWrVuzYcMGADIyMujevTsANWvWRFEUhg8fXu7P9+uvv3LvvfdSs2ZNYmJiuOOOO8jIyABgy5YtmEymIpWvtLQ0unbtWu57VjeSSAkhhPA7s83OX1/Zw19f2YPZZi+yHWiuqc9tOFA4luXgftu13G+9lr9ar8WMhvBQ16/SWTmVp2tfsJ+ZEN5yOp1YLJaAvwonLYE2f/58Xn31VVauXMnu3bs5d+4cGzdu9Gjz1FNPsWrVKlasWMGhQ4cYO3YsQ4YMYdeuXSQmJvLuu+8CcPToUTIzM1m8eHG5YsnNzaV79+6Eh4fzySefsHv3bsLDw+nbty8Wi4WePXsSFRWl3g9cfy++/fbb3H///eV/CNWMdO0TQggRcAoKTWqHq+8DzWazkV2QSNU0aYnOz+Y4IerxGuGh5F+CrJw8nE4nihL4GIW4WlmtVubOnRvw+06ePBmDweB1+w8++IDw8HCPfY8//jhTp0712H7qqafU7Tlz5pCWllbs9RYtWsTkyZO56667AHjxxRfZsmWLejwnJ4cFCxawY8cOOnXqBECjRo3YvXs3L730El27diU6OhqA2rVrExUV5fVnKWz9+vVoNBr+9a9/qX9/rVq1iqioKHbu3Env3r259957WbduHaNGjQIgPT2d8+fPc88995T7vtWNJFJCCCECLsSgZdu44HUfsdvt5FvtoCg8fH0dhu7dRLK5vXo8OiyEM7gmpLDb7eh08nUpRFXTvXt3VqxY4bHPnci4TZw40aN7Xa1atYq91sWLF8nMzFQTJACdTkeHDh3UStnhw4fJz8+nV69eHudaLBbatm17JR+liP379/Pjjz8SERHhsT8/P5/jx48DcP/999OpUyd+++036tSpwxtvvEG/fv2KdG8UJZNvBiGEENWO3W4n12LH4dQQFVr0F+zoCCN2NOQVTIEuiZQQ3tPr9UyePDko9/VFWFgYjRs3LrVNrVq1ymzjLYfDAcCHH35I3bp1PY4VnuSiIu7Vvn173njjjSLH3OO8rr/+eq655hrWr1/P3//+dzZu3Fhk8g1ROvlmEEIIUe3YbDbyrXbsKEQXl0iFGbE5NeQWLMobGhoahCiFuDopiuJTF7uqIDIykoSEBPbs2cPNN98MuP6e2b9/P+3atQMgOTkZo9HIqVOnSpzQwf3c7PYrGwfZrl073nrrLWrXrk2NGjVKbHfffffxxhtvUK9ePTQaDbfddtsV3be6kckmhBBCBFyexU6vBbvotWAXeZbgTDaRZ7VjdSrMSD/B7eZkj+PRYQZsaMmzVK5FeYUQFcdsNnP69GmP19mzZ8t9vccee4xnn32WjRs38v333zN69GiPWfEiIiKYMGECY8eOZc2aNRw/fpyDBw+ybNky1qxZA0CDBg1QFIUPPviA33//nezsbACWLl1Kjx49vI7l/vvvp1atWtxxxx3897//5eTJk+zatYvHHnuMX375xaPdgQMHeOaZZ7j77rsxmUwAfPHFF1x77bX8+uuv5X4e1YEkUkIIIQLOiZMfzmTzw5lsnAR+pi2bzUae1Y4DDb9cNHtMNAEQE2bAhoZciw2r1Rrw+IQQ/rd582YSEhI8Xl26dCn39caPH09qairDhw+nU6dOREREMGjQII82s2bNYtq0acydO5fmzZvTp08f3n//fZKSkgCoW7cuM2bM4IknniAuLo5HH30UgLNnz6pjm7wRGhrKJ598Qv369bnzzjtp3rw5I0eOJC8vz6NC1aRJE6677jq++eYbj9n6cnNzOXr0qPz9VwbFGey5IiuBrKwsIiMjuXjxYqnlTyGEEOVjsTlY9elJAEbcmITN4SB5mms2q8Mz+xBqCGxP85MZPzH2X1s4aw/lF6drYPV47S8YFCcjtP/j6P1/Y/TqnTQMMTM7tQcNGjQIaHzFKfwML19EWIhgyc/P5+TJkyQlJanVDCGuBqX92fU2N5AxUkIIIfzOoNPwUNdr1G2bxRHEaOBCwfpQDkXBXRAbpfsfoYorrpgwo6siZa08XfsKP0MhhBDBJT9nCSGEqHYu5poBCClhQHx0mAE7CnaHk6zcyrMorxBCiMpDKlJCCCH8zu5w8t2vFwFoWTcyyNHAxRxXIhUWYoCCPOlbRygmxUlLJQeTXotBbwA7XMiuHIlU4Weo1cgiwUIIEUySSAkhhPA7s83OHcs+BVxjooItK8+VSEWY9Lj79t1rbQ7AYeN+QoGIUCNcgos5eUGK0lPhZxjocWVCCCE8Sdc+IYQQ1U52nmvcU3hIyYtgRoS6Bh9n5VSOipQQQojKRRIpIYQQ1U52QUUqMrTkRCqyIJHKya8ck00IIYSoXCSREkIIUe24k6OIUipSNcJciVSu2YLDEdxZBoUQQlQ+kkgJIYSodnLNrkUmo8JLTqSiwkyAQr7Vjs1mC1BkQgghrhaSSAkhhKh28goSqZphJS8gGh1uxI5CvsWO1WoNVGhCCCGuEpJICSGEqFacTif5loJEKrzkRKpmqAGbU0Oe1SGJlBBCiCJk7lQhhBB+p9NoeKxHE/U9UGQ7UBwOB/kWV1e92jVCeOzmBth3fwaKghYnuoLp0GuG6rGhId9aOSpSxT1DIYQQwSOJlBBCCL8z6DSM7dXUY1/h7UCxWq3kWe2AQlxkKGO7JsEXG4q0iwo1YEdDXiUZI1XcMxRC+NfPP//M0KFDOXPmDDqdjqlTp3LPPfcEOyxRSUgiJYQQolrJzrdgczixoyEm3Ag2c7HtaobpsTk15FutlaIiJYQIPJ1Ox6JFi2jTpg1nzpyhXbt29OvXj7CwsGCHJioB6RsghBDC7xwOJ8f+d4lj/7uEw+Essh1If2S5FthVNFpMOg3HzuTwvd3E93YTxxwm3OHUDDW4uvbZ7JjNwV9LKpjPTIjqKiEhgTZt2gBQu3ZtoqOjOXfuXHCDKtCtWzfGjBkTtPOFVKSEEEIEQL7NTu+FnwBweGYfAI/tUEPgvo7O5eQBYDLoMdsd9H5pH9BKPX7YuJ9QICpUjx0NTidcyi2+ahVIhZ9hIJ+ZEFXRRx99xG233Vbi8XvuuYe3335b3f7yyy9xOBwkJiaW637dunWjTZs2LFq0qELOe++999Dr9eW+hi/ni+LJ38JCCCGCIjrMEJT7nst2VaRCja5/QESH6nHm5nIez39QGHVa9Do9OOBCQfIlhKg6unfvTmZmpsc+u93OiBEjOHjwIFOnTlX3//HHH6SmpvKvf/0r0GGWKDo6OqjnC+naJ4QQIghCDToOTO3Fgam9Al5ZuXBZIhVq0HFg/I18avym2LahJteCvVm5+QGLTwgRGCEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrkq1WazmUGDBjF58mQ6d+5c6jU3bNhAq1atCAkJISYmhp49e5KTk8Pw4cPZtWsXixcvRlEUFEUhIyMDgM2bN9OlSxeioqKIiYmhf//+HD9+HKDU8wp3zfP13oXPdzgcPPfcczRu3Bij0Uj9+vV55plnyrx+dSYVKSGEENXKxYJueiGmsiti4aEGHLmQnRf8rn1CXC2cTmfBzJiBFaLXoihKuc612+0MGTKEbdu2eSRRTqeT4cOHc8sttzB06NBSr5GZmclf//pX5s2bx6BBg7h06RL//e9/cTqdLF68mGPHjtGyZUtmzpwJQGxsLAA5OTmMGzeOVq1akZOTw7Rp0xg0aBBfffVVqedVxL0vN3nyZF555RUWLlxIly5dyMzM5Pvvvy/z+tWZJFJCCCGqlZx81wx8IYayxwbUCDVxAciuBGOkhLha5FntJE/bEvD7lnfsoN1uZ+jQoWzbto309HRSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblMjMzsdls3HnnnTRo0ADAo53BYCA0NJT4+HiP8+666y6P7ZUrV1K7dm0OHz5My5YtSzyvIu7tdunSJRYvXszSpUsZNmwYANdccw1dunTx6vrVlSRSQgghAi7famfYq18AsGbk9Zj02sDdu2AGvhCj3hXHawexm5sU27ZGWAgXgFyzGafTWe5fu4UQlZM7idq6dSvp6em0bt3a43iXLl1wOBxeXat169b06NGDVq1a0adPH3r37s3dd99NzZo1Sz3v+PHjTJ06lT179nD27Fn1fqdOnaJly5Z+vbfbkSNHMJvN9OjRwy/Xr6okkRJCCBFwDqeTvSfPqe8DKd/iqkiZDHpXHD9dBGoU27ZmmIlTQL7FtSivzHAlRNlC9Fp1ds5A39cX7iRqy5YtxSZRAIMGDWLnzp306NGDDRuKLtx9Oa1Wy7Zt2/jss8/YunUrL7zwAlOmTGHv3r0kJSWVeN7tt99OYmIir7zyCnXq1MHhcNCyZUssFu+XXSjvvd1CQkL8ev2qSiabEEII4Xc6jYYHb27Egzc3QqcJ7ldPvsUGQKjRc4zUCO1pHtRmouPPxC4qzIgdDXlWe9AX5a1Mz1CI0iiKQqhBF/CXLxVju91OamoqW7ZsYfv27epaUYWlpaXx2muv+fTZb7zxRmbMmMHBgwcxGAxs3LgRcHWvs9s9x4798ccfHDlyhKeeeooePXrQvHlzzp8/79GmuPMq4t6Xa9KkCSEhIaSnp5fr+tWVVKSEEEL4nUGn4cl+zdVtm8W7rjL+YC5IiAonUhN1vxKqeMZVM1SP3akhvxIkUoWfoRCifBwOB6mpqWzatIkNGzaQkJDA6dOnPdrExsai1Wrp3r07O3fu9Oq6e/fuJT09nd69e1O7dm327t3L77//TvPmrv9vGzZsyN69e8nIyCA8PJzo6Ghq1qxJTEwML7/8MgkJCZw6dYonnnjC47rFnacp9GNKee59OZPJxOOPP86kSZMwGAzceOON/P777xw6dIhRo0aVef3qShIpIYQQ1YrZWlCR8mLWvpphBuwo5FsdXv0iLISo/Pbt28e6desA6NevX7Ftzp8/T1RUlE/XrVGjBp988gmLFi0iKyuLBg0aMH/+fG699VYAJkyYwLBhw0hOTiYvL4+TJ0/SsGFD1q9fT1paGi1btqRZs2YsWbKEbt26qdct6bwrvXdhU6dORafTMW3aNH777TcSEhJ4+OGHvbp+dSWJlBBCCL9zOJz8esG1qG3dqNL74vubpWCMVJjJc7zTr04DJqeDuopF7fdeM9SAo6BrX7ATqcLPUKORiS+EKI+OHTv6Zdru5s2bs3nz5hKPN23alM8//7zI/p49e3L48GGPfZfHV9J5l1fKynPvwpU2jUbDlClTmDJlSpHzy7p+dRX0Tta//vorQ4YMISYmhtDQUNq0acP+/fvV406nk+nTp1OnTh1CQkLo1q0bhw4d8riG2WzmH//4B7Vq1SIsLIwBAwbwyy+/BPqjCCGEKEG+zc5N8z7mpnkfk28LbkJitbkqUuEhnhWpXpZW3GRpTf5lX42uREohvxIkUpXpGQohhAhyInX+/HluvPFG9Ho9//nPfzh8+DDz58/3KKXOmzePBQsWsHTpUvbt20d8fDy9evXi0qVLapsxY8awceNG1q9fz+7du8nOzqZ///5B/9ITQghR+dgKEqmIkLK79kWF6nGgVIqKlBBCiMolqF37nnvuORITE1m1apW67/I+n06nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPAF5//XUSExPZvn07ffoEfvpNIYQQlZetoJoTEWIss23NMAMOp4Ld4STXHNzJJoQQgdenTx8OHDhATk4O9erVY+PGjVx33XXBDktUEkGtSP373/+mQ4cO3HPPPdSuXZu2bdvyyiuvqMdPnjzJ6dOn6d27t7rPaDTStWtXPvvsMwD279+P1Wr1aFOnTh1atmypthFCCCEArDY7DocrkarhRSIVZtCqs2NdzDX7NTYhROWzZcsWfv/9d3Jzc/nll18kiRIegppInThxghUrVtCkSRO2bNnCww8/7DFfv3sqyri4OI/z4uLi1GOnT5/GYDAUWVn58jaFmc1msrKyPF5CCCGqvqzcPxe4jAgtO5FSFIVQo2tSiou53i+OKYQQouoLatc+h8NBhw4dmDNnDgBt27bl0KFDrFixgtTUVLVd4QXWnE5nmYuuldZm7ty5zJgx4wqjF0IIcbXJynNVlTSKBpNBR5617HFPoSY9VjNk50kiJYQQ4k9BrUglJCSQnJzssa958+acOnUKgPj4eIAilaUzZ86oVar4+HgsFkuRVaAvb1PY5MmTuXjxovr6+eefK+TzCCGEqNwuFSRSOp22zB/k3Ex612+OuRYZIyWEEOJPQa1I3XjjjRw9etRj37Fjx2jQoAEASUlJxMfHs23bNtq2bQuAxWJh165dPPfccwC0b98evV7Ptm3bGDx4MACZmZl89913zJs3r9j7Go1GjMayu3QIIYSoGFqNwtAbGqjvgSLbgXCpoKqkK0iOtBqFoR3qYD9wEFDQKk60eK4vYzTouQTkB3myieKeoRBCiOAJaiI1duxYOnfuzJw5cxg8eDBffPEFL7/8Mi+//DLg6tI3ZswY5syZQ5MmTWjSpAlz5swhNDSU++67D4DIyEhGjRrF+PHjiYmJITo6mgkTJtCqVSt1Fj8hhBDBZdRpmTWwpce+wtuBkJPvqkjptbo/47q1KXz3fyWeYzK4xkjlB7kiVdwzFEIIETxBTaSuu+46Nm7cyOTJk5k5cyZJSUksWrSI+++/X20zadIk8vLyGD16NOfPn6djx45s3bqViIgItc3ChQvR6XQMHjyYvLw8evTowerVq9FqtcH4WEIIISqpnIKKlEHv/ddfiMHVNt9q80tMQgghrk5BTaQA+vfvT//+/Us8rigK06dPZ/r06SW2MZlMvPDCC7zwwgt+iFAIIcSVcjqdnMtxJTHRYa6FcC/f9na80pXKLpRIueNyOlzbigLR2Lg8mlCj65jZEtxEqvAzDNQzE0IIUbygJ1JCCCGqvjyrnfaztwNweKZrofTLt0MNgfk6yjW7EhFjQXe9PKud9gs+A9qqbQ4b9xN62TkhRlfiZw5yRarwMwzUMxNCCFG8oM7aJ4QQQgRSXkFVyaTXe32Oex2pYCdSQgghKhf5OUsIIUTAhRp0ZDx7W8Dvq1akCpKjUIOOjKndyJ03n2Rz+2LPCStoa/FizSkhhBDVh1SkhBBCVBvuKcxDfOgWF2Zyde2z2qQiJYSoHBo2bMiiRYvKff7q1auJioqqsHiqK0mkhBBCVBvuKczd4568EW5yVaSsNhtOp7OM1kKIq8Hw4cNRFKXIq2/fvmqbhg0bFjler169ct1v+vTptGnTxufzSkp49u3bx4MPPujVNYpLuu69916OHTvmczzCk3TtE0IIEXD5Vjvj3v4KgAWD22DSB2a5CnNBIuUe95RvtTNuwyFslqQSzwkLcVekHDidTpktT4gqom/fvqxatcpjn9Fo9NieOXMmDzzwgLpdWZbWiY2NvaLzQ0JCCAkJqaBoqi+pSAkhhAg4h9PJR9+e5qNvT+MIYJXHUjBhhDs5cjidfHTkd7Y6o0s8J6KgrcXuwG6XcVJClMXpdGK32wP+8rVibDQaiY+P93jVrFnTo01ERITH8dISmJ07d3L99dcTFhZGVFQUN954Iz/99BOrV69mxowZfP3112pla/Xq1QAsWLCAVq1aERYWRmJiIqNHjyY7O1u93ogRI7h48aJ6nns5oMJVpunTp1O/fn2MRiN16tQhLS0NgG7duvHTTz8xduxY9RpQfKXr3//+Nx06dMBkMlGrVi3uvPNO9djy5ctp0qQJJpOJuLg47r77bp+edVUlFSkhhBB+p9Uo3NWunvre7ghOFzlzwTinsGK69g3UnEULaPGMLdykx4mC1eZKpPQ+zPhXkQo/QyEqK4fDwX//+9+A3/emm24KWsXIZrMxcOBAHnjgAd58800sFgtffPEFiqJw77338t1337F582a2b3ctYRAZGQmARqNhyZIlNGzYkJMnTzJ69GgmTZrE8uXL6dy5M4sWLWLatGkcPXoUgPDw8CL33rBhAwsXLmT9+vW0aNGC06dP8/XXXwPw3nvv0bp1ax588EGPylphH374IXfeeSdTpkxh7dq1WCwWPvzwQwC+/PJL0tLSWLt2LZ07d+bcuXNB+e9bGUkiJYQQwu+MOi3zB7dWt3ODtLitzV2RMhVNpObofyJUcRTZH2bQ4UDB4nDgcBQ9HiiFn6EQ4sp88MEHRRKTxx9/nKlTp3psP/XUU+r2nDlz1GrP5bKysrh48SL9+/fnmmuuAaB58+bq8fDwcHQ6HfHx8R7njRkzRn2flJTErFmz+Pvf/87y5csxGAxERkaiKEqR8y536tQp4uPj6dmzJ3q9nvr163P99dcDEB0djVarVStrJXnmmWf4y1/+wowZM9R9rVu3Vq8fFhZG//79iYiIoEGDBrRt27akS1UrkkgJIYSoNtwz70WEGMto+adwoyuRstkdmC1WQkPLPkeI6kyj0XDTTTcF5b6+6N69OytWrPDYFx3t2c134sSJDB8+XN2uVatWsdeKjo5m+PDh9OnTh169etGzZ08GDx5MQkJCqTF8/PHHzJkzh8OHD5OVlYXNZiM/P5+cnBzCwsK8+hz33HMPixYtolGjRvTt25d+/fpx++23o9N5/8/8r776qsSKVa9evWjQoIF6/b59+zJo0CBC5S9DGSMlhBDC/5xOJ7kWG7mW4M58ZytYCyo8pGhFKtepIdepoXB4YUYdDqerK112vtXvMZaksjxDIcqiKAparTbgL18nggkLC6Nx48Yer8KJVK1atTyOlzZl+KpVq/j888/p3Lkzb731Fk2bNmXPnj0ltv/pp5/o168fLVu25N1332X//v0sW7YMAKvV+79rEhMTOXr0KMuWLSMkJITRo0dz8803+3SN0iaeiIiI4MCBA7z55pskJCQwbdo0WrduzYULF7y+flUliZQQQgi/y7PaSZ62heRpW8gL0sK2DocDm8NVkaoRWrQi1cHSlmRze/IKfTUadBqUgl+6s/Mt/g+0BJXhGQohSte2bVsmT57MZ599RsuWLVm3bh0ABoOhyGQ1X375JTabjfnz53PDDTfQtGlTfvvtN482xZ1XnJCQEAYMGMCSJUvYuXMnn3/+Od9++63X10hJSSE9Pb3E4zqdjp49ezJv3jy++eYbMjIy2LFjR5lxVXXStU8IIUS1kJ1vUatNkWHed+0D0Ot0YLWQkxe8REoIUbHMZjOnT5/22KfT6UrsvleakydP8vLLLzNgwADq1KnD0aNHOXbsGKmpqQDqZBJfffUV9erVIyIigmuuuQabzcYLL7zA7bffzqeffsqLL77ocd2GDRuSnZ1Neno6rVu3JjQ0tEiXutWrV2O32+nYsSOhoaGsXbuWkJAQGjRooF7jk08+4S9/+QtGo7HYz/f000/To0cPrrnmGv7yl79gs9n4z3/+w6RJk/jggw84ceIEN998MzVr1uSjjz7C4XDQrFkzn59TVSMVKSGEENXCxVxzwTuFMKNvM+/pda6ZwHLMwevaJ4SoWJs3byYhIcHj1aVLl3JdKzQ0lO+//5677rqLpk2b8uCDD/Loo4/y0EMPAXDXXXfRt29funfvTmxsLG+++SZt2rRhwYIFPPfcc7Rs2ZI33niDuXPnely3c+fOPPzww9x7773ExsYyb968IveOiorilVde4cYbb1QrS++//z4xMTGAay2sjIwMrrnmmhKnb+/WrRvvvPMO//73v2nTpg233HILe/fuVa//3nvvccstt9C8eXNefPFF3nzzTVq0aFGuZ1WVKE7paE1WVhaRkZFcvHiRGjVqBDscIYSocnItNpKnbQHg8Mw+AB7boQb/d5A4fOoMT768Ca1Wz7szRhSJS21n3E/opPFw2UDv++a9Q27WeR66vQu3dkz2e6zFKfwMA/HMhChLfn4+J0+eJCkpCZPJFOxwhPBaaX92vc0NpCIlhBCiWnCPb9LpfF9nxqh3JS05QRwjJYQQonKRREoIIUS1cCnXlQTp9b5XcgwF5+RK1z4hhBAFJJESQghRLeTku8ZI6fW+jY+CPytSeRZJpIQQQrhIB2shhBB+p1EU+rWKV98DRbb9zd0tz6j/s2ufRlHo1zwW+/dHQQEtoKHo0GGTwZV85VtsAYm1OMU9QyGEEMEjiZQQQgi/M+m1LL+/vce+wtv+lmd2JUGGyypSJr2W5Xe3gOc/KvXckIKJHfKDWJEq7hkKIYQIHunaJ4QQolpwd8szlmOyiRBj8CtSQgghKhdJpIQQQlQL7mqSoRxjpELUrn0yRkoIIYSLdO0TQgjhd5VhHSlzQTXJdNm9ci02kmftBK5T9x027ie00LkhRtc5Fqvdv0GWQtaREkKIykUqUkIIIaqFfGtB175yTH8eajQAYLZJ1z4hROU0ffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBFwIXot+5/qyf6nehKi933MUnm4q0nuGfjUOMZ1Zrfh61LPDTO5zrFaJZESoioYPnw4iqIUefXt21dt07BhwyLH69WrV+p1s7KymDJlCtdeey0mk4n4+Hh69uzJe++9h9NZdEZQf1q8eDGrV6+u0Gvu3LkTRVG4cOFChV73aiX9AoQQQgScoijEhBsDek+LtWjXPkVRiAkzkKuUniCFFUw2YbEFr2ufEKJi9e3bl1WrVnnsMxo9/16aOXMmDzzwgLqt1Zb8w8+FCxfo0qULFy9eZPbs2Vx33XXodDp27drFpEmTuOWWW4iKiqrQz1CayMjIgN2rupKKlBBCiGrBUtAtzz0Dny/CQ1z/uJKKlBBVh9FoJD4+3uNVs2ZNjzYREREex2NjY0u83pNPPklGRgZ79+5l2LBhJCcn07RpUx544AG++uorwsPDAXj99dfp0KGDeu377ruPM2fOqNdxV33S09Pp0KEDoaGhdO7cmaNHj3rc79lnnyUuLo6IiAhGjRpFfn6+x/HCXftycnJITU0lPDychIQE5s+fX+QzlBZbRkYG3bt3B6BmzZooisLw4cMBcDqdzJs3j0aNGhESEkLr1q3ZsGFDGf8Frn6SSAkhhAg4s83O1E3fMXXTd5gDVOVxV6RCLuvaZ7bZmfqfY8y0lt5dx921z2aXipQQ3sq12Hx+2ewO9Xyb3UGuxUZ+oUleijsv2BwOB+vXr+f++++nTp06RY6Hh4ej0xVMWmOxMGvWLL7++ms2bdrEyZMn1YTkclOmTGH+/Pl8+eWX6HQ6Ro4cqR57++23efrpp3nmmWf48ssvSUhIYPny5aXGOHHiRD7++GM2btzI1q1b2blzJ/v37/doU1psiYmJvPvuuwAcPXqUzMxMFi9eDMBTTz3FqlWrWLFiBYcOHWLs2LEMGTKEXbt2ef0Mr0bStU8IIUTA2R1O1u75CYDJ/a4NyD1tBQlbqOnPRMrucLL2y9+AuFLPjTAZ1Gs4nU4URfFbnEJUFe5ZJn2x7L523JaSAMCWQ//jkXUH6JgUzVsPdVLbdHnuY87lWDzOy3j2Np/v9cEHH6hVIrfHH3+cqVOnemw/9dRT6vacOXNIS0srcq2zZ89y/vx5rr227L/PLk+IGjVqxJIlS7j++uvJzs72iOeZZ56ha9euADzxxBPcdttt5OfnYzKZWLRoESNHjuRvf/sbALNnz2b79u1FqlJu2dnZrFy5ktdee41evXoBsGbNmiJjvsqKLTo6GoDatWur3RRzcnJYsGABO3bsoFOnTuq5u3fv5qWXXlI/Q1UkiZQQQgi/0ygK3ZvFqu8dAR50DWAto2vfzZqLaHGioWhsESEFiZTDgdVmx1COmf+uVOFnKIS4Mt27d2fFihUe+9yJgtvEiRM9qkW1atUq9lruiSS8+ZHl4MGDTJ8+na+++opz587hcLiqcKdOnSI5OVltl5KSor5PSHAll2fOnKF+/focOXKEhx9+2OO6nTp14uOPPy72nsePH8disaiJDrg+a7NmzcoV2+UOHz5Mfn6+mqC5WSwW2rZtW+qzuNpJIiWEEMLvTHotq0Zcr24HoyuOu1teWMFU5oW9qP+RUMVR7LEaoX8OQM/Ks1ArCIlU4WcoRGXnXjPOFwbtn6NO+rSI4/DMPkV+ONj9ePcrjg0gLCyMxo0bl9qmVq1aZbYBiI2NpWbNmhw5cqTUdjk5OfTu3ZvevXvz+uuvExsby6lTp+jTpw8Wi2eVTX/Z4uHuBM2d2PjKmxkDfYntcu6YPvzwQ+rWretxrPDkHVWNjJESQghRLbjHXoSZfJ9swqjXolFcX5nZeSX/g0II8adQg87nl+6yREqn1RBq0GEqtERCcecFm0aj4d577+WNN97gt99+K3I8JycHm83G999/z9mzZ3n22We56aabuPbaaz0mmvBW8+bN2bNnj8e+wtuXa9y4MXq93qPN+fPnOXbsmLrtTWwGg+uHKPtl40WTk5MxGo2cOnWKxo0be7wSExN9/mxXk+D/yRNCCCH8zOl0Yre5K1K+J1IAWp0Wh9XBpTxzRYYmhAgSs9nM6dOnPfbpdLoSu++VZc6cOezcuZOOHTvyzDPP0KFDB/R6Pf/973+ZO3cu+/bto379+hgMBl544QUefvhhvvvuO2bNmuXzvR577DGGDRtGhw4d6NKlC2+88QaHDh2iUaNGxbYPDw9n1KhRTJw4kZiYGOLi4pgyZQoazZ+JqzexNWjQAEVR+OCDD+jXrx8hISFEREQwYcIExo4di8PhoEuXLmRlZfHZZ58RHh7OsGHDfP58VwupSAkhhPC7XIuN5lM303zq5qB067PY7DicropUeEjxXfvam9vQPL8duc7ivxr1BevHZJut/gmyDMF+hkJUNZs3byYhIcHj1aVLl3Jfr2bNmuzZs4chQ4Ywe/Zs2rZty0033cSbb77J888/T2RkJLGxsaxevZp33nmH5ORknn32Wf75z3/6fK97772XadOm8fjjj9O+fXt++ukn/v73v5d6zvPPP8/NN9/MgAED6NmzJ126dKF9+/bqcW9iq1u3LjNmzOCJJ54gLi6ORx99FIBZs2Yxbdo05s6dS/PmzenTpw/vv/8+SUlJPn+2q4niDPQyy5VQVlYWkZGRXLx4kRo1agQ7HCGEqHJyLTZ1Bi/3uInLt/3dNeePrFxGzXsdgPXTRqqL8l4el9th435CJ42HsDCP/UOffYNL2Tmk3dOLW1oH/h8HhZ9hZejOJER+fj4nT54kKSkJk8kU7HCE8Fppf3a9zQ2kIiWEEKLKy8l3VZEURaMmUb7S69zJl4yREkIIIYmUEEKIaiA73zWuSast/9eerqBrX16QuvYJIYSoXCSREkIIUeXlmF1jitzJUHm4147KlURKCCEEkkgJIYSoBnLzXd3xdLryjytyJ1L5ZpnoQQghhCRSQgghqgF3FUmnK39FSu9OpCxSkRJCCCHrSAkhhAgAjaLQMSlafQ8U2fYn97gmfaFESqModGwQieOnn0FR0OBEQ/GT2RoLEilzkBKp4p6hEEKI4JFESgghhN+Z9FreeqiTx77C2/6Ua3EnUp5feya9lrdS28Lz28u8hrFgtj+zNThd+4p7hkIIIYJHuvYJIYSo8twVKXdVqTxMej0QvERKCCFE5SKJlBBCiCov3+JKfgp37fOFuyJllURKCCEEkkgJIYQIgFyLjXazttFu1jZyLbYi2/7mniDCWGgx3lyLjXbzP6Vtfhva5rehXX4bcp3FfzWaDK6KlCVIiVSgn5kQ4uoyffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBEQ53IsnMuxlLjtT+7ueMaC7nkeceVaOY+e8+g5R9HjbiHuRMoWvCQmkM9MiKps+PDhKIpS5NW3b1+1TcOGDYscr1evXqnXzcrKYsqUKVx77bWYTCbi4+Pp2bMn7733Hk5n8RPZ+MvixYtZvXp1hV5z586dKIrChQsXKvS6VyuZbEIIIUTAmXRato69WX3vb+6KlKnQGCmTTsvWh64j79VV3GFtWeo1Qo2uRMoaxERKCFFx+vbty6pVqzz2GY1Gj+2ZM2fywAMPqNvaUhb1vnDhAl26dOHixYvMnj2b6667Dp1Ox65du5g0aRK33HILUVFRFfoZShMZGRmwe1VXQa1ITZ8+vUimHx8frx53Op1Mnz6dOnXqEBISQrdu3Th06JDHNcxmM//4xz+oVasWYWFhDBgwgF9++SXQH0UIIYQPNBqFpnERNI2LQKPx/1TeFqsdAFOhrn0ajULT2mE00ZjLvEZIQSJls9krPkAhRMAZjUbi4+M9XjVr1vRoExER4XE8Nja2xOs9+eSTZGRksHfvXoYNG0ZycjJNmzblgQce4KuvviI8PByA119/nQ4dOqjXvu+++zhz5ox6HXfVJz09nQ4dOhAaGkrnzp05evSox/2effZZ4uLiiIiIYNSoUeTn53scL9y1Lycnh9TUVMLDw0lISGD+/PlFPkNpsWVkZNC9e3cAatasiaIoDB8+HHD9m33evHk0atSIkJAQWrduzYYNG8r4L3D1C3rXvhYtWpCZmam+vv32W/XYvHnzWLBgAUuXLmXfvn3Ex8fTq1cvLl26pLYZM2YMGzduZP369ezevZvs7Gz69++P3S5fdEIIIVzc45qMhpK77pUlzGQAwCbfL0J4xT0e0peXze5Qz7fZHeRabORb7WVeN9gcDgfr16/n/vvvp06dOkWOh4eHoytYfsFisTBr1iy+/vprNm3axMmTJ9WE5HJTpkxh/vz5fPnll+h0OkaOHKkee/vtt3n66ad55pln+PLLL0lISGD58uWlxjhx4kQ+/vhjNm7cyNatW9m5cyf79+/3aFNabImJibz77rsAHD16lMzMTBYvXgzAU089xapVq1ixYgWHDh1i7NixDBkyhF27dnn9DK9GQe/ap9PpPKpQbk6nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPwJVJJyYmsn37dvr06RPQzyKEEMI7FpuDZR//CMAj3Rtj0Pn3dz1zQXe8kEKJlMXmYNmuk1itCWVeI8xYkEhJRUoIryRP2+LzOcvua8dtKa7/H7cc+h+PrDtAx6RojzXUujz3cZGxghnP3ubzvT744AO1SuT2+OOPM3XqVI/tp556St2eM2cOaWlpRa519uxZzp8/z7XXXlvmfS9PiBo1asSSJUu4/vrryc7O9ojnmWeeoWvXrgA88cQT3HbbbeTn52MymVi0aBEjR47kb3/7GwCzZ89m+/btRapSbtnZ2axcuZLXXnuNXr16Aa5/Vxce81VWbNHRrkXBa9eurXZTzMnJYcGCBezYsYNOnTqp5+7evZuXXnpJ/QxVUdATqR9++IE6depgNBrp2LEjc+bMoVGjRpw8eZLTp0/Tu3dvta3RaKRr16589tlnPPTQQ+zfvx+r1erRpk6dOrRs2ZLPPvusxETKbDZjNv/ZjSMrK8t/H1AIIUQRNoeDxek/APBQ10YY/NxBwlZQkQo1eX7t2RwOFn/yE1D0F+TCQkNcSZjdbsfpdKIo/u+SKITwn+7du7NixQqPfe5EwW3ixIke1aJatWoVey33RBLe/L1w8OBBpk+fzldffcW5c+dwOFxVuFOnTpGcnKy2S0lJUd8nJLiSyzNnzlC/fn2OHDnCww8/7HHdTp068fHHHxd7z+PHj2OxWNREB1yftVmzZuWK7XKHDx8mPz9fTdDcLBYLbdu2LfVZXO2Cmkh17NiR1157jaZNm/K///2P2bNn07lzZw4dOsTp06cBiIuL8zgnLi6On376CYDTp09jMBiK9GeNi4tTzy/O3LlzmTFjRgV/GiGEECXRKAop9SLV944Az15lKagihRRUlYrTUslBA2goPrZwd9c+hwOHw1HqoHN/KPwMhajsDs/0vWeQQfvnjyp9WsRxeGafIn/edz/e/YpjAwgLC6Nx48altqlVq1aZbQBiY2OpWbMmR44cKbVdTk4OvXv3pnfv3rz++uvExsZy6tQp+vTpg8XiWWXTXzbLqDtBcyc2vvJmxkBfYrucO6YPP/yQunXrehwrPHlHVRPUROrWW29V37dq1YpOnTpxzTXXsGbNGm644QagaGbvza+AZbWZPHky48aNU7ezsrJITEwsz0cQQgjhBZNey78f7aJuB3pMg3vcrHvmveK8bfieUKXkf6SEGfWAgt3hJN9iJSwksIlU4WcoRGUXariyf2bqtBp02qLV6iu9rj9oNBruvfde1q5dy9NPP11knFROTg5Go5Hvv/+es2fP8uyzz6r/9vzyyy99vl/z5s3Zs2cPqamp6r49e/aU2L5x48bo9Xr27NlD/fr1ATh//jzHjh1Tu955E5vB4PpB6fK5CJKTkzEajZw6dapKd+MrTtAnm7hcWFgYrVq14ocfflDHTRWuLJ05c0atUsXHx2OxWDh//nyJbYpjNBqpUaOGx0sIIUTV5Z6yPPQKJpsINepw4PqRLidf1nIS4mpnNps5ffq0x+vs2bPlvt6cOXNITExUe1wdPnyYH374gVdffZU2bdqQnZ1N/fr1MRgMvPDCC5w4cYJ///vfzJo1y+d7PfbYY7z66qu8+uqrHDt2jKeffrrIzNaXCw8PZ9SoUUycOJH09HS+++47hg8fjkbzZyrgTWwNGjRAURQ++OADfv/9d7Kzs4mIiGDChAmMHTuWNWvWcPz4cQ4ePMiyZctYs2aNz5/talKpEimz2cyRI0dISEggKSmJ+Ph4tm3bph63WCzs2rWLzp07A9C+fXv0er1Hm8zMTL777ju1jRBCCGEv6NoXHlJy176yGLQanIokUkJUFZs3byYhIcHj1aVL+au+NWvWZM+ePQwZMoTZs2fTtm1bbrrpJt58802ef/55IiMjiY2NZfXq1bzzzjskJyfz7LPP8s9//tPne917771MmzaNxx9/nPbt2/PTTz/x97//vdRznn/+eW6++WYGDBhAz5496dKlC+3bt1ePexNb3bp1mTFjBk888QRxcXE8+uijAMyaNYtp06Yxd+5cmjdvTp8+fXj//fdJSkry+bNdTRRnoJdZvsyECRO4/fbbqV+/PmfOnGH27Nns2rWLb7/9lgYNGvDcc88xd+5cVq1aRZMmTZgzZw47d+7k6NGjREREAPD3v/+dDz74gNWrVxMdHc2ECRP4448/2L9/v9f917OysoiMjOTixYtSnRJCCD/Is9jpucA1De72cV1x4lRn9Do8s49fu+o4nU4GTVsJTgdLHruX+rF/LlKZa7GpcdTBjAJsN35HyKTxEBZW5FqDnl6N025h1qjbaZVU9kx/FanwMwwxBLZroRDFyc/P5+TJkyQlJWEymYIdjhBeK+3Prre5QVA7mf7yyy/89a9/5ezZs8TGxnLDDTewZ88eGjRoAMCkSZPIy8tj9OjRnD9/no4dO7J161Y1iQJYuHAhOp2OwYMHk5eXR48ePVi9enXABwELIYQomRMnv17IU98HktlmB6dr7FOYqeSufb/hGhRdWnRanRabHXKDUJEK5jMUQghRVFATqfXr15d6XFEUpk+fzvTp00tsYzKZeOGFF3jhhRcqODohhBBVwaXcP5OeCFP5u/aBa+1DmxlyzdYrDUsIIcRVrlKNkRJCCCEqWrbZlUhpNRr0uivrraDXuX5/lERKCCGEJFJCCCGqNHc3PK1Wc8WL6LoTsTxJpIQQotqTREoIIUSVlpPvSnp0FTB21qB3VaTyS1mcUgghRPUgiZQQQogqzZ1IVcQkRO6uffkBXlBYCCFE5VP5loYWQghR5SgoNKkdrr4Himz7S25B9UivL/qVp6DQpFYojrN/gOL6dbG0aP6sSAW+a19xz1AIIUTwSCIlhBDC70IMWraN6+qxr/C2v+SZXdUjfTEVqRCDlm1/vx6ef96raxkL1rsyB6EiVdwzFEIIETzStU8IIUSV5p5hz90t70oY9a51qMxW6donhBDVnSRSQgghqjT3DHuGYrr2+cpUUJGySCIlhBDVnnTtE0II4Xd5FjsDlu4G4N+PdgHw2A4xXPlEECVxj2cy6IveI89iZ8CKL3Dkt1THSP3bcJiQEq5lMrgqUhZr4MdIFX6G/nxmQgghyiaJlBBCCL9z4uSHM9nqe6DItr+4u+EZi6lIOXHyw9lcIAR3GKVFE2IsSKRs9gqOsmzFPUMhhH/9/PPPDB06lDNnzqDT6Zg6dSr33HNPsMMSlYQkUkIIIQLOqNPy5gM3qO/9yT3ZhHt8U5E4hrYm/823GWFrVua1QgsSKat07ROiWtDpdCxatIg2bdpw5swZ2rVrR79+/QgLCwt2aKISkDFSQgghAk6rUeh0TQydrolBq/HvVN4Wm6sbnnvGvSJxNKxJR222V9cKMRoAsAahIiWECLyEhATatGkDQO3atYmOjubcuXPBDaoU3bp1Y8yYMSVue3OO8J4kUkIIIao091TlpmISKV+FFoyRstslkRLiavfRRx+hKEqJr8GDB3u0//LLL3E4HCQmJpZ63dOnT/OPf/yDRo0aYTQaSUxM5Pbbbyc9Pd2fH6dY7733HrNmzarQa0ri9Sfp2ieEECLgrHYHb35xCoC/Xl8fvdZ/v+u5xzO5J4ooEse+X7HYYr26VqjJdQ2b3YbT6URRZGFcIa5W3bt3JzMz02Of3W5nxIgRHDx4kKlTp6r7//jjD1JTU/nXv/5V6jUzMjK48cYbiYqKYt68eaSkpGC1WtmyZQuPPPII33//vV8+S0mio6MDer/qRipSQgghAs5qdzDt/w4x7f8OYbU7/Hov9wx7ISUkUtM2/8Bse32vrvVnIuXA6ZQJH4S4moWEhBAfH6++YmNjmTBhAgcPHmTHjh20atUKALPZzKBBg5g8eTKdO3cu9ZqjR49GURS++OIL7r77bpo2bUqLFi0YN24ce/bsUdtt3ryZLl26EBUVRUxMDP379+f48ePq8W7dupGWlsakSZOIjo4mPj6e6dOne9wrJyeH1NRUwsPDSUhIYP78+UXiKVw98uac0mIbPnw4u3btYvHixWrlLiMjAwCn08m8efNo1KgRISEhtG7dmg0bNpT6vK52kkgJIYTwOwWFulEh1I0KQSGwVRx3RSrEWHonjDqYqYu51OjCTQVjpOyOgHfvC+YzFKKqs9vtDBkyhG3btpGenq4mUU6nk+HDh3PLLbcwdOjQUq9x7tw5Nm/ezCOPPFLsZBRRUVHq+5ycHMaNG8e+fftIT09Ho9EwaNAgHI4/f1has2YNYWFh7N27l3nz5jFz5ky2bdumHp84cSIff/wxGzduZOvWrezcuZP9+/eXGqM355QW2+LFi+nUqRMPPPAAmZmZZGZmql0dn3rqKVatWsWKFSs4dOgQY8eOZciQIezatavUmK5m0rVPCCGE34UYtHz6xC3qdq4lcLPe2QoSqdCCiSJKst34HaFK6dWxMIMeJwpWuxO73Y6+mJkA/aXwMxSisivt/3ONomC6bG23K20begVjIO12O0OHDlWTqJSUFPXYp59+yltvvUVKSgqbNm0CYO3atWqidbkff/wRp9PJtddeW+Y977rrLo/tlStXUrt2bQ4fPkzLli0BSElJ4emnnwagSZMmLF26lPT0dHr16kV2djYrV67ktddeo1evXoAr8apXr16J9/T2nLJiMxgMhIaGEh8fr7bJyclhwYIF7Nixg06dOgHQqFEjdu/ezUsvvUTXrl3LfCZXI0mkhBBCVGlWtSJ15UlPiEGLAwWbw4HNJlOgC1Ga5GlbSjzWvVksq0Zcr263n7WdPGvxVd6OSdG89VAndbvLcx9zLsfi0Sbj2dvKFaM7idq6dSvp6em0bt3a43iXLl08qkSlcXf39Wbs5PHjx5k6dSp79uzh7Nmz6j1OnTrlkUhdLiEhgTNnzqjnWywWNWkB13ioZs1KXsbB23O8ia2ww4cPk5+fryZobhaLhbZt25b6LK5mkkgJIYSo0twJT1gFJFKhBYmU0wm5Zhvh4Vd8SSFEkLiTqC1bthSbRAEMGjSInTt30qNHjzLH+zRp0gRFUThy5AgDBw4ste3tt99OYmIir7zyCnXq1MHhcNCyZUsslj8TxMIVb0VR1KSmPGM0vT3Hm9gKc8f14YcfUrduXY9jRqPR51ivFpJICSGE8Lt8q53BL30OwNuX/bIcCLaCsUxhptITqcGWa9EAbxuOYCqhTYhei8OpgAK55pL/UeEPhZ/h5V2dhKiMDs/sU+IxTaGqzf6pPb1uu/vx7lcWGK4kKjU1lS1btrB9+3Z1rajC0tLSGDlyJGvWrCnzmtHR0fTp04dly5aRlpZWZJzUhQsXiIqK4o8//uDIkSO89NJL3HTTTa7PtHu3T/E3btwYvV7Pnj17qF/fNVnO+fPnOXbsWInd6Lw5x5vYDAZDkTGiycnJGI1GTp06VWW78RVHEikhhBB+53A6+eaXi+r7QHE6ndjtDjRAmKn0X0W/c7r+0eMoZSIHjUZBq9WAA3LM1ooMtUzBeoZClJcv45b81bY4DoeD1NRUNm3axIYNG0hISOD06dMebWJjY9FqtXTv3p2dO3d6fe3ly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs2aNYmJieHll18mISGBU6dO8cQTT/j0GcLDwxk1ahQTJ04kJiaGuLg4pkyZgkZT8jxy3pzjTWwNGzZk7969ZGRkEB4eTnR0NBEREUyYMIGxY8ficDjo0qULWVlZfPbZZ4SHhzNs2DCfPt/VQhIpIYQQVVaexY4GV9IRXkZFyls6nQ4sFvLMMkZKiKvRvn37WLduHQD9+vUrts358+c9ZtnzVlJSEgcOHOCZZ55h/PjxZGZmEhsbS/v27VmxYgUAGo2G9evXk5aWRsuWLWnWrBlLliyhW7duPt3r+eefJzs7mwEDBhAREcH48eO5ePHiFZ3jTWwTJkxg2LBhJCcnk5eXx8mTJ2nYsCGzZs2idu3azJ07lxMnThAVFUW7du148sknffpcVxNJpIQQQlRZl/ItoCZSpc/a5y29VosVyLMEtiIlhKgYHTt29Os6cAkJCSxdupSlS5eW2KZnz54cPnzYY9/lMRVXBXPPGugWHh7O2rVrWbt2rbpv4sSJHm0KX8ebc8qKrWnTpnz++edF4lMUhbS0NNLS0oocq6pkHSkhhBBVVk6+axyTTqug01XMmCL3dXKlIiWEENWaJFJCCCGqrJx8V9VIp9V5NSWxNwwFiVR+KTNYCSGEqPqka58QQogqy12R0mor7ndDfUEilWcpfs0bIUTV0adPHw4cOEBOTg716tVj48aNXHfddcEOS1QSkkgJIYQIiOgwQ6nb/uCeWU+nLblbX3SoHmduLkAp8/X9yaAmUoEfIxWIZyaE+NOWLSUvKiyEJFJCCCH8LtSg48BUzxXvC2/7Q647kdIV/3UXatBxYPyN8PzzXl/TWLBIptkS2DFSxT1DIYQQwSNjpIQQQlRZ7kTKUEETTQAYChbCzbdK1z4hhKjOJJESQghRZeUVJFL6EipS5WEsWAzUItOfCyFEtVZh3yw9e/bkxIkTnDhxoqIuKYQQoorIt9oZ9uoXAKwZeT2Ax7ZJX3EVo8u5xzEZ9MV/3eVb7Qx77SCO/GagKGhwssZwDFMp1zQWXMtsC2xFqvAz9NczE0II4R2vEqlvvvmGli1botGUXMAaNGgQZ8+erbDAhBBCVB0Op5O9J8+p74Ei2/6Qr3btK/7rzuF0sveni0AN97q9OMqYcsKdSFmsgR0jVdwzFEIIETxeJVJt27YlMzOT2rVr06hRI/bt20dMTIxHm0ceecQvAQohhKh6DFoNy+5rp773l/yCZMdoKL56Y9BqWHZXMub/e59xtmu8umaIITiJlBBCiMrFq2+vqKgoTp48CUBGRgYOh8OvQQkhhKjadFoNt6UkcFtKAjo/JlLumfWMJXTt02k13JZcm77aC15f02RwzdpnCXDXPiGEEJWLVxWpu+66i65du5KQkICiKHTo0AFtCWtyyBgpIYQQlYXZ6uraZyxIfiqCWpGSREoIIao1rxKpl19+mTvvvJMff/yRtLQ0HnjgASIiIvwdmxBCiCrKZnew5dD/AOjTIs5vVSl3RcpkKP7rzmZ3sOXwGcz2KK+vGVKQlNls0rVPCCGqM69n7evbty8A+/fv57HHHpNESgghRLlZ7A4eWXcAgMMz+/gtkXJXjUpKpCx2B4+8exjwbnwUQIjRdS2rVKSEEKJa83n681WrVvkjDiGEEFVcSBCm67YUdO0LMRjKbBuCd4lRqLGgImUPfCIVjGcohBCieBW2jtTy5cs5e/Ys06ZNq6hLCiGEqCJCDTqOzOqrbudaAtMtzl01CimhInW5/cavCFXKnkwpzJ1I2QI78VLhZyiEECK4Kqwvxbvvvsvq1asr6nJCCCHEFbNaCxIpUwVONuFOpBzStU+Iqu7nn3+mW7duJCcnk5KSwjvvvBPskEQlUmEVqfT09Iq6lBBCCFEhrAXd70KNZXft85a7ImW323E6nShK6Qv4CiGuXjqdjkWLFtGmTRvOnDlDu3bt6NevH2FhYcEOTVQCV1SRcjqdOGV1dSGEEGXIt9oZseoLRqz6gnxr4Co57pn13MlPaR62NmaEpQn5ztITo7CC6pbd4QzoorzBeoZCVGcJCQm0adMGgNq1axMdHc25c+eCG1QpunXrxpgxY0rc9uYc4b1yJVKvvfYarVq1IiQkhJCQEFJSUli7dm1FxyaEEKKKcDidfHz0dz4++juOAP4AZ1MrUmUnUp84IvnYEYUD7xIpgByz9coC9EGwnqEQVdVHH32EoiglvgYPHuzR/ssvv8ThcJCYmFjqdU+fPs0//vEPGjVqhNFoJDExkdtvvz0ovbfee+89Zs2aVaHXlMTrTz537VuwYAFTp07l0Ucf5cYbb8TpdPLpp5/y8MMPc/bsWcaOHeuPOIUQQgif2B1OHA4HWiA8pOK69pn0OhRFwel0kpNvJVpWAxHiqtS9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOUJDo6OqD3q258rki98MILrFixgueee44BAwZwxx13MG/ePJYvX86SJUv8EaMQQgjhs1yLDQ2uyk24qeISKUVR0Gpc05AHsiIlhKhYISEhxMfHq6/Y2FgmTJjAwYMH2bFjB61atQLAbDYzaNAgJk+eTOfOnUu95ujRo1EUhS+++IK7776bpk2b0qJFC8aNG8eePXvUdps3b6ZLly5ERUURExND//79OX78uHq8W7dupKWlMWnSJKKjo4mPj2f69Oke98rJySE1NZXw8HASEhKYP39+kXgKV4+8Oae02IYPH86uXbtYvHixWrnLyMgAXEN+5s2bR6NGjQgJCaF169Zs2LCh1Od1tfM5kcrMzCz2D1Hnzp2LZPVCCCFEsOTkW1Fwoijede3zhU6nKbiHpUKvK0RVkmuxlfgqPM7vStteKbvdzpAhQ9i2bRvp6elqEuV0Ohk+fDi33HILQ4cOLfUa586dY/PmzTzyyCPFTkYRFRWlvs/JyWHcuHHs27eP9PR0NBoNgwYNwuH4c1mFNWvWEBYWxt69e5k3bx4zZ85k27Zt6vGJEyfy8ccfs3HjRrZu3crOnTvZv39/qTF6c05psS1evJhOnTrxwAMPkJmZSWZmptrV8amnnmLVqlWsWLGCQ4cOMXbsWIYMGcKuXbtKjelq5nPXvsaNG/P222/z5JNPeux/6623aNKkSYUFJoQQQlyJ7IIkR6/RoNVW7EK2uoLr5ZoDN9mEEFeb5GlbSjzWvVksq0Zcr263n7WdvBImUemYFM1bD3VSt7s89zHncjx/xMh49rZyx2m32xk6dKiaRKWkpKjHPv30U9566y1SUlLYtGkTAGvXrlUTrcv9+OOPOJ1Orr322jLvedddd3lsr1y5ktq1a3P48GFatmwJQEpKCk8//TQATZo0YenSpaSnp9OrVy+ys7NZuXIlr732Gr169QJciVe9evVKvKe355QVm8FgIDQ0lPj4eLVNTk4OCxYsYMeOHXTq5Ppv1ahRI3bv3s1LL71E165dy3wmVyOfK1IzZsxg2rRp9O3bl1mzZjF79mz69u3LjBkzmDlzZrkDmTt3LoqieJQfnU4n06dPp06dOoSEhNCtWzcOHTrkcZ7ZbOYf//gHtWrVIiwsjAEDBvDLL7+UOw4hhBBVQ06+q9udTqdFo6mwZRMLrun6HTJXuvYJcVVzJ1Fbt24lPT2d1q1bexzv0qULDoeDr776Sn0Vl0QB6kzW3iyJcPz4ce677z4aNWpEjRo1SEpKAuDUqVNqm8sTOnDNIHjmzBn1fIvFoiYt4BoP1axZs1Lv6c053sRW2OHDh8nPz6dXr16Eh4err9dee82jy2JV43NF6q677mLv3r0sXLiQTZs24XQ6SU5O5osvvqBt27blCmLfvn28/PLLRf7AzJs3jwULFrB69WqaNm3K7Nmz6dWrF0ePHiUiwjW6d8yYMbz//vusX7+emJgYxo8fT//+/dm/f3+F/wIphBDi6uHudqfTVmwSBaDXub5f8qQiJUSJDs/sU+IxTaFkY//Unl633f149ysLrIA7idqyZUuxSRTAoEGD2LlzJz169ChzvE+TJk1QFIUjR44wcODAUtvefvvtJCYm8sorr1CnTh0cDgctW7bEYvmz0qbXe3ZJVhRF7fpXnuWHvD3Hm9gKc8f14YcfUrduXY9jRqPR51ivFuVakLd9+/a8/vrrFRJAdnY2999/P6+88gqzZ89W9zudThYtWsSUKVO48847AVf5MS4ujnXr1vHQQw9x8eJFVq5cydq1a+nZ0/U/4Ouvv05iYiLbt2+nT5+S/wcWQggROKEGXZGuN1fSFccb7mpRaT+qhRp0ZEztBs8/79O19QXXzLcGriJV3DMUojILNXj/z0x/tS2J3W4nNTWVLVu2sH37dnWtqMLS0tIYOXIka9asKfOa0dHR9OnTh2XLlpGWllZknNSFCxeIiorijz/+4MiRI7z00kvcdNNNAOzevdun+Bs3boxer2fPnj3Ur18fgPPnz3Ps2LESu9F5c443sRkMBux2z26YycnJGI1GTp06VWW78RWn4n+m89EjjzzCbbfdpiZCbidPnuT06dP07t1b3Wc0GunatSufffYZAPv378dqtXq0qVOnDi1btlTbFMdsNpOVleXxEkIIUbW4EymdruJ7J6gVqQoY5C6ECCyHw0FqaiqbNm3i9ddfJyEhgdOnT3u83IlC9+7d1V5Q3li+fDl2u53rr7+ed999lx9++IEjR46wZMkStUtdzZo1iYmJ4eWXX+bHH39kx44djBs3zqfPEB4ezqhRo5g4cSLp6el89913DB8+vNRuzN6c401sDRs2ZO/evWRkZHD27FkcDgcRERFMmDCBsWPHsmbNGo4fP87BgwdZtmyZV0no1erKU/oCPXv25MSJE5w4ccLrc9avX8+BAwfYt29fkWOnT58GIC4uzmN/XFwcP/30k9rGYDBQs2bNIm3c5xdn7ty5zJgxw+s4hRBCXH3yLa5ESq+rsK86lUHv7tonY6SEuNrs27ePdevWAdCvX79i25w/f95jlj1vJSUlceDAAZ555hnGjx9PZmYmsbGxtG/fnhUrVgCg0WhYv349aWlptGzZkmbNmrFkyRK6devm072ef/55srOzGTBgABEREYwfP56LFy9e0TnexDZhwgSGDRtGcnIyeXl5nDx5koYNGzJr1ixq167N3LlzOXHiBFFRUbRr167IBHVVSYV9uwwaNIizZ8963f7nn3/mscceY+vWrZhMphLbFR6w53Q6yxzEV1abyZMne2TXWVlZZa5SLYQQovzyrXbGvf0VAAsGtwHw2DbpK75q5K4W6Uvp2pdvtTNuwyHs5mtAAS2wQH+Ckr+VXAx619enOYAVqcLP0B/PTIjqoGPHjuUaY+SthIQEli5dytKlS0ts07NnTw4fPuyx7/KYdu7cWeQc96yBbuHh4axdu5a1a9eq+yZOnOjRpvB1vDmnrNiaNm3K559/XiQ+RVFIS0sjLS2tyLGqqsISqUceecSn9vv37+fMmTO0b99e3We32/nkk09YunQpR48eBVxVp4SEBLXNmTNn1CpVfHw8FouF8+fPe1Slzpw5U+qCaUajsUoPfBNCiMrG4XTy0beungL/vMf1hVx4u6LlFyQ5pXXtczidfHTkdyCagrV7+Scny7y2oaDKlW8LXCJV3DMUQggRPEEbI9WjRw++/fZbj+kkO3TowP33389XX31Fo0aNiI+P91h4zGKxsGvXLjVJat++PXq93qNNZmYm3333XZkrTwshhAgevVbDzDtaMPOOFuj9MKse/JlIGUrp2qfXapjZtwlPaUue1rc4xiBUpIQQQlQuXlWk3LPmeeO9997zql1ERIS64JhbWFgYMTEx6v4xY8YwZ84cmjRpQpMmTZgzZw6hoaHcd999AERGRjJq1CjGjx9PTEwM0dHRTJgwgVatWhWZvEIIIUTloddqSO3U0K/3MFsLEqlSusDptRpSr6tL7se/M9te3+truxOpfKskUkJUZX369OHAgQPk5ORQr149Nm7cyHXXXRfssEQl4VUiFRkZqb53Op1s3LiRyMhIOnToALi66V24cMGnhMsbkyZNIi8vj9GjR3P+/Hk6duzI1q1bPWZPWbhwITqdjsGDB5OXl0ePHj1YvXq1rCElhBDV3J+JVMVPNmEyuL5jLJJICVGlbdmyJdghiErMq2+XVatWqe8ff/xxBg8ezIsvvqgmK3a7ndGjR1OjRo0rCqbwgDhFUZg+fTrTp08v8RyTycQLL7zACy+8cEX3FkIIETh2h5MvTp4D4PqkaLSa0icRKg81kSpljJTd4eSLjPPk28N9urapYB0bi9VeRkshhBBVlc8/07366qvs3r3bo+Kj1WoZN24cnTt35nkfFzUUQghR/Zhtdv76yh4ADs/sUyELbBbmrhYZS6lImW12/rr2a6CZT9c26vWuewRwsgkhhBCVi88jfG02G0eOHCmy/8iRIzgcjgoJSgghhLhS7oqU0Q9JWoi7ImWTipQQQlRXPn+7jBgxgpEjR/Ljjz9yww03ALBnzx6effZZRowYUeEBCiGEuPqF6LUcntlHfZ8XgC5x1oIkx+TlGKkvDQcJVRyEUPaPgiFGV0XKFsCufYWfoRBCiODyOZH65z//SXx8PAsXLiQzMxNwLTw2adIkxo8fX+EBCiGEuPopiuKX7nulcXe787YiFao4CFW861kRYiyoSNkD17UvGM9QCCFEyXz+G1mj0TBp0iQmTZpEVlYWwBVPMiGEEEJUNFtBRSqkYDxTRQo16D3uIYQQovq5op+2JIESQgjhDbPNzpPvfQfAnDtbltG6Yqhd+7ys4jxpbYAWmKPPwFhG21B31z574BKpws/QWMpshEIIIfzPP8vJCyGEEJexO5y8e+AX3j3wC3aHMyD3dCdS7vFMZdnkqMW7jlrYKXsqdnWMlN2B0xmYzxOMZyiEEKJkkkgJIYSokux2dyJV8eOKwgsSKQ1O8q0yY60QQlRHkkgJIYSoktzd7kIMfhgjVZBIKTjJtchaUkIIUR1dUSL1yy+/yNpRQgghKh2n06lWpEK97NrnC51Oi06joMEZkKnchRBCVD5XlEglJyeTkZFRQaEIIYQQFcNs+/NHvjA/JFJarRa9VuOqSJmlIiVEVfXzzz/TrVs3kpOTSUlJ4Z133gl2SKISuaKO44EaYCuEEEL4It9qR4PrO8rbySZ8odFo0Gs15Fnt5ORbK/z6QojKQafTsWjRItq0acOZM2do164d/fr1IywsLNihiUpAxkgJIYSocnItNjQ40WoUjPqKn2xCo9Gg07q+QrPzLRV+fSFE5ZCQkECbNm0AqF27NtHR0Zw7dy64QZWiW7dujBkzpsRtb84R3ruib5cnn3yS6OjoiopFCCFEFRWi17L/qZ7qe6DIdkVydbdzotNo0GpLvn6IXsv+cZ1xLl0GgKJACGWP/VUUBV3BdXPNgUmkinuGQojy++ijj7jttttKPH7PPffw9ttvq9tffvklDoeDxMTEUq97+vRpnnnmGT788EN+/fVXateuTZs2bRgzZgw9evSosPi98d5776Gv4EXJu3XrRps2bVi0aFGFXvdqdEWJ1OTJkysqDiGEEFWYoijEhHsuc1t4uyK5u9vpNBo0mpI7XyiKQkyYATS+j3PS6dyJVGC69hX3DIUQ5de9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOURAoe/iVd+4QQQlQ5eRZXcqPXaVCUshfYLY9AJ1JCiIoVEhJCfHy8+oqNjWXChAkcPHiQHTt20KpVKwDMZjODBg1i8uTJdO7cudRrjh49GkVR+OKLL7j77rtp2rQpLVq0YNy4cezZs0dtt3nzZrp06UJUVBQxMTH079+f48ePq8e7detGWloakyZNIjo6mvj4eKZPn+5xr5ycHFJTUwkPDychIYH58+cXiadwtz1vzikttuHDh7Nr1y4WL16MoigoiqJOPOd0Opk3bx6NGjUiJCSE1q1bs2HDhlKf19VOEikhhBB+Z7bZmbrpO6Zu+g6zzV5ku6K5kxuNRltqImW22Zn6n2M8aanPk5YGTLXWx+z0LvHS61ydOvIClEj5+5kJUZ3Z7XaGDBnCtm3bSE9PV5Mop9PJ8OHDueWWWxg6dGip1zh37hybN2/mkUceKXYyiqioKPV9Tk4O48aNY9++faSnp6PRaBg0aJDHskJr1qwhLCyMvXv3Mm/ePGbOnMm2bdvU4xMnTuTjjz9m48aNbN26lZ07d7J///5SY/TmnNJiW7x4MZ06deKBBx4gMzOTzMxMtavjU089xapVq1ixYgWHDh1i7NixDBkyhF27dpUa09Ws4kfgCiGEEIXYHU7W7vkJgMn9rgUosl2R3ImUTlf674V2h5O1X/4GxKn7Jut+8eoeen1gE6ninqEQlVlpi1VrFAXTZWP9rrRtqKH8/6S12+0MHTpUTaJSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblfvzxR5xOJ9deW/b/n3fddZfH9sqVK6lduzaHDx+mZcuWAKSkpPD0008D0KRJE5YuXUp6ejq9evUiOzublStX8tprr9GrVy/AlXjVq1evxHt6e05ZsRkMBkJDQ4mPj1fb5OTksGDBAnbs2EGnTp0AaNSoEbt37+all16ia9euZT6Tq5EkUkIIIQJOp9HwWI8m6vuKllfwDy19KRNNqHHc3ADr7s9Z7qjj0z0MBRWpfIt07ROiOMnTtpR4rHuzWFaNuF7dbj9re4mLW3dMiuathzqp212e+5hzOZ6TvGQ8W/KkEaVxJ1Fbt24lPT2d1q1bexzv0qWLR5WoNO5lgbzpTnz8+HGmTp3Knj17OHv2rHqPU6dOeSRSl0tISODMmTPq+RaLRU1awDUeqlmzZqXe05tzvImtsMOHD5Ofn68maG4Wi4W2bduW+iyuZj4nUps3byY8PJwuXboAsGzZMl555RWSk5NZtmwZNWvWrPAghRBCVC0GnYaxvZr67fruKpFeV3oiZdBpGNs1idy977Hc7Fsi5Z5W3SyJlBBXJXcStWXLlmKTKIBBgwaxc+dOevToUeZ4nyZNmqAoCkeOHGHgwIGltr399ttJTEzklVdeoU6dOjgcDlq2bInF8meCWHi2PUVR1KSmPGu5enuON7EV5o7rww8/pG7duh7HjMaqO0mOz4nUxIkTee655wD49ttvGT9+POPGjWPHjh2MGzeOVatWVXiQQgghhC/yra6KlE7nv44XhoJEyn0vIYSnwzP7lHhMU6hqs39qT6/b7n68+5UFhiuJSk1NZcuWLWzfvl1dK6qwtLQ0Ro4cyZo1a8q8ZnR0NH369GHZsmWkpaUVGSd14cIFoqKi+OOPPzhy5AgvvfQSN910k+sz7d7tU/yNGzdGr9ezZ88e6tevD8D58+c5duxYid3ovDnHm9gMBgN2u2f1MDk5GaPRyKlTp6psN77i+PwNc/LkSZKTkwF499136d+/P3PmzOHAgQP069evwgMUQghR9TgcTn78PRuAxrHhaDQVO7Nevpdd+xwOJz+eySHP4fsvpkaD69dicyljO4SoznwZt+SvtsVxOBykpqayadMmNmzYQEJCAqdPn/ZoExsbi1arpXv37uzcudPray9fvpzOnTtz/fXXM3PmTFJSUrDZbGzbto0VK1Zw5MgRatasSUxMDC+//DIJCQmcOnWKJ554wqfPEB4ezqhRo5g4cSIxMTHExcUxZcqUUpd78OYcb2Jr2LAhe/fuJSMjg/DwcKKjo4mIiGDChAmMHTsWh8NBly5dyMrK4rPPPiM8PJxhw4b59PmuFj7/STQYDOTm5gKwfft2UlNTAVcWnpWVVbHRCSGEqJLybXZ6L/wEcP1qfaX/MCrM3d3OUMbCtfk2O71f2gcU3++/NKaCRMpila59QlxN9u3bx7p16wBKLAKcP3/eY5Y9byUlJXHgwAGeeeYZxo8fT2ZmJrGxsbRv354VK1YAoNFoWL9+PWlpabRs2ZJmzZqxZMkSunXr5tO9nn/+ebKzsxkwYAARERGMHz+eixcvXtE53sQ2YcIEhg0bRnJyMnl5eZw8eZKGDRsya9Ysateuzdy5czlx4gRRUVG0a9eOJ5980qfPdTXx+ZurS5cujBs3jhtvvJEvvviCt956C4Bjx46VOlOIEEIIEShqRcqPXftMBcmfuYQB8kKIyqljx47lGmPkrYSEBJYuXcrSpUtLbNOzZ08OHz7sse/ymIqrgrlnDXQLDw9n7dq1rF27Vt03ceJEjzaFr+PNOWXF1rRpUz7//PMi8SmKQlpaGmlpaUWOVVU+f8MsXbqU0aNHs2HDBlasWKEOKPvPf/5D3759KzxAIYQQVz+TTst/J3VX3+f7eR0kd3LjnhDCG9sM32LCgQnvZugKKahIWW2BqUgVfoZCCCGCy+dEqn79+nzwwQdF9i9cuLBCAhJCCFH1aDQKidGhAbuf2eaqSJXVte9ydRULoYp3SRRAiLEgkQpQRSrQz1AIIUTpfE6kPvroI7RaLX36eM7EsnXrVux2O7feemuFBSeEEEKUh6VgJj1fKlK+CjUaALDZZLIJIaqqPn36cODAAXJycqhXrx4bN27kuuuuC3ZYopLweRXEJ554osiUh+CaAcXXGUeEEEJUDxabgzkfHWHOR0ew2Lyv+pT7flZ3Rcr7ROp5W13mWOthcXo3g6C7ImUr5jvRHwL9DIUQsGXLFn7//Xdyc3P55ZdfJIkSHnxOpH744Qd1+vPLXXvttfz4448VEpQQQoiqxeZw8PInJ3j5kxPYHIFIpFzJTYgPswGussfzsj0BG94lUqGmwCZSgX6GQgghSudzIhUZGcmJEyeK7P/xxx+LLDwmhBBCBIO1ILkxVfC06pcLK+jaZ/fzxBlCCCEqJ58TqQEDBjBmzBiOHz+u7vvxxx8ZP348AwYMqNDghBBCiPKwFoxbMun1frtHRIgrkXI67djsUiESQojqxudE6vnnnycsLIxrr72WpKQkkpKSaN68OTExMfzzn//0R4xCCCGET6wFVSKjPytSBYmUBic5FplwQgghqhufv2EiIyP57LPP2LZtG19//TUhISGkpKRw8803+yM+IYQQwme2gkQq1Oi/ilSIQY9GUXA4nWTnWYgsSKyEEEJUD+X6qU5RFHr37k3v3r0rOh4hhBDiitnsdnRAiNF/FSmNRoNOo8Fit5Odb/HbfYQQQlROXn3DLFmyhAcffBCTycSSJUtKbZuWllYhgQkhhBDl4XQ61UQq1OC/ipSiKGh1WrDbyZFESgghqh2vEqmFCxdy//33YzKZWLhwYYntFEWRREoIIUQRJp2WrWNvVt8DRbYrisXuQHE6QflzradS43roOhyvvgqARgET3k8codW6Ys8NQCJV3DMUQggRPF4lUidPniz2vRBCCOENjUahaVyEx77C2xUlz2JHoziBssdIaTQKTWuHgTa/XPdSEymztVzn+6K4ZyiEECJ4fJ61b+bMmeTm5hbZn5eXx8yZMyskKCGEEKK88qx2NDjRahSMev+NkQLQ61zXD0QiJYQQonLxOZGaMWMG2dnZRfbn5uYyY8aMCglKCCFE1WKxOVi47RgLtx3DYnMU2a5IeRY7Ck50GkWtGJUa166T/NNSh39a67LQWgeLU/H6Xu5EKi8AiZQ/n5kQomp5+eWXSUxMRKPRsGjRomCHU2X5nEg5nU4UpeiXzNdff010dHSFBCWEEKJqsTkcLE7/gcXpP2BzOIpsV6Rciw0NTnQaDRpN6V9zNoeDxZ/8xFJHXZba67DYXhcbPiRSeleiFohEyp/PTIjq6PTp0/zjH/+gUaNGGI1GEhMTuf3220lPTw92aMVavXo1UVFRZbbLysri0Ucf5fHHH+fXX3/lwQcf9H9w1ZTXfR5q1qyJoigoikLTpk09kim73U52djYPP/ywX4IUQghRtWg1CkNvaKC+r0g5BUmNXquUmUhpNQpDO9TBeuAg6x1xPt/LUNB1MM8iXfuEuJpkZGRw4403EhUVxbx580hJScFqtbJlyxYeeeQRvv/++3Jd12q1otcXHZtZ0n5/OHXqFFarldtuu42EhIRi2wQynqrM64rUokWLWLBgAU6nkxkzZrBw4UL19eKLL7J7926WLVvmz1iFEEJUEUadllkDWzJrYEuMFTwDXU6+O5HSlNm1z6jTMuvWpkzT/1Kue7nHYJlljJQQLk4n5OQE7+V0ehXm6NGjURSFL774grvvvpumTZvSokULxo0bx549e9R2p06d4o477iA8PJwaNWowePBg/ve//6nHp0+fTps2bXj11VfVypa799aLL77IHXfcQVhYGLNnzwbg/fffp3379phMJho1asSMGTOw2Wzq9S5cuMCDDz5IXFwcJpOJli1b8sEHH7Bz505GjBjBxYsX1cLG9OnTi3yu1atX06pVKwAaNWqEoihkZGSUGOfFixd58MEHqV27NjVq1OCWW27h66+/9rjms88+S1xcHBEREYwaNYonnniCNm3aqMe7devGmDFjPM4ZOHAgw4cPV7ctFguTJk2ibt26hIWF0bFjR3bu3OkRd1RUFFu2bKF58+aEh4fTt29fMjMzPa776quv0qJFC4xGIwkJCTz66KMAjBw5kv79+3u0tdlsxMfH82rBrKz+4HVFatiwYQAkJSVx4403otP5dwCvEEIIUR5qIqXTFtsVvSIZCn7RzbfaymgpRDWRmwvPPx+8+0+cCGFhpTY5d+4cmzdv5plnniGsmLbu7nNOp5OBAwcSFhbGrl27sNlsjB49mnvvvdcjCfjxxx95++23effddz1+vHn66aeZO3cuCxcuRKvVsmXLFoYMGcKSJUu46aabOH78uNrt7umnn8bhcHDrrbdy6dIlXn/9da655hoOHz6MVqulc+fOLFq0iGnTpnH06FEAwsPDi8R+7733kpiYSM+ePfniiy9ITEwkNja2xDhvu+02oqOj+eijj4iMjOSll16iR48eHDt2jOjoaN5++22efvppli1bxk033cTatWtZsmQJjRo18v6/CTBixAgyMjJYv349derUYePGjfTt25dvv/2WJk2aAK75Fv75z3+ydu1aNBoNQ4YMYcKECbzxxhsArFixgnHjxvHss89y6623cvHiRT799FMA/va3v3HzzTeTmZmpVuE++ugjsrOzGTx4sE+x+sLnbCgiIoIjR46o2e7//d//sWrVKpKTk5k+fToGg6HCgxRCCFG1OJ1OzuW41l6KDjNUaMLj7tqn86LS5Y4jz1m+HwdNBRUpi1UqUkJcLX788UecTifXXnttqe22b9/ON998w8mTJ0lMTARg7dq1tGjRgn379nHdddcBrmrL2rVr1YTF7b777mPkyJHq9tChQ3niiSfU4kSjRo2YNWsWkyZN4umnn2b79u188cUXHDlyhKZNm6pt3CIjI1EUhfj4+BJjDgkJISYmBoDY2FiPtoXj3LFjB99++y1nzpzBaDQC8M9//pNNmzaxYcMGHnzwQRYtWsTIkSP529/+BsDs2bPZvn07+fneLxlx/Phx3nzzTX755Rfq1KkDwIQJE9i8eTOrVq1izpw5gKu74Ysvvsg111wDwKOPPuoxI/js2bMZP348jz32mLrP/d+gc+fONGvWjLVr1zJp0iQAVq1axT333FNswllRfJ5s4qGHHuLYsWMAnDhxgnvvvZfQ0FDeeecdNXAhhBCiNHlWO+1nb6f97O3kWe0Ve23znxUpr+JY8BldLK3LdS+jwVWRMktFSoirhrOg+19ZP+AcOXKExMRENYkCSE5OJioqiiNHjqj7GjRoUCSJAujQoYPH9v79+5k5cybh4eHq64EHHiAzM5Pc3Fy++uor6tWrpyZRFa1wnPv37yc7O5uYmBiPmE6ePMnx48cB1zPo1KmTx3UKb5flwIEDOJ1OmjZt6nGfXbt2qfcBCA0NVZMogISEBM6cOQPAmTNn+O233+jRo0eJ9/nb3/7GqlWr1PYffvihRyLrDz7/BHfs2DG1X+Q777xD165dWbduHZ9++il/+ctfZIpFIYQQQeVe08kQgC7opoJEylLByaAQwn+aNGmCoigcOXKEgQMHltiupJmqC+8vrntgcfsdDgczZszgzjvvLNLWZDIREhLi5Scon+LiSUhI8Oim6ObN7IBuGo1GTU7drJdV6R0OB1qtlv379xcZt3p5tajw5BeKoqjX9ebZpKam8sQTT/D555/z+eef07BhQ2666SavP0d5+Pwt43Q6cRRMu7p9+3Z1YFdiYiJnz5716VorVqxgxYoVZGRkANCiRQumTZvGrbfeqt5rxowZvPzyy5w/f56OHTuybNkyWrRooV7DbDYzYcIE3nzzTfLy8ujRowfLly+nXr16vn40IYQQfmLUafm/R25U35tt/ks88vJdXQYNPi7G+5b+CCbFiRHvpxYPMbruYbX5v2tf4WcoRKUUGuoapxTM+5chOjqaPn36sGzZMtLS0ookGBcuXCAqKork5GROnTrFzz//rFalDh8+zMWLF2nevLnPobVr146jR4/SuHHjYo+npKTwyy+/cOzYsWKrUgaDAbu94v7ubNeuHadPn0an09GwYcNi2zRv3pw9e/aQmpqq7rt8Mg5wdSG8fFIIu93Od999R/fu3QFo27YtdrudM2fOlDuxiYiIoGHDhqSnp6vXLSwmJoaBAweyatUqPv/8c0aMGFGue/nC50SqQ4cOzJ49m549e7Jr1y5WrFgBwMmTJ4mL823q2Hr16vHss8+qf6DWrFnDHXfcwcGDB2nRogXz5s1jwYIFrF69mqZNmzJ79mx69erF0aNHiYiIAGDMmDG8//77rF+/npiYGMaPH0///v2LzXqFEEIEh1aj0DoxKiD3yrW4utm513jyVitNLqGKb+szuStS1gB07QvkMxSi3BSlzMkeKoPly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs+ePUlJSeH+++9n0aJF6mQTXbt2LdJtzxvTpk2jf//+JCYmcs8996DRaPjmm2/49ttvmT17Nl27duXmm2/mrrvuYsGCBTRu3Jjvv/8eRVHo27cvDRs2JDs7m/T0dFq3bk1oaCihXiSOJenZsyedOnVi4MCBPPfcczRr1ozffvuNjz76iIEDB9KhQwcee+wxhg0bRocOHejSpQtvvPEGhw4d8hi7dcsttzBu3Dg+/PBDrrnmGhYuXMiFCxfU402bNuX+++8nNTWV+fPn07ZtW86ePcuOHTto1aoV/fr18yre6dOn8/DDD1O7dm11Uo5PP/2Uf/zjH2qbv/3tb/Tv3x+73a6ORfMnn8dILVq0iAMHDvDoo48yZcoUNQnasGEDnTt39ulat99+O/369aNp06Y0bdqUZ555hvDwcPbs2YPT6WTRokVMmTKFO++8k5YtW7JmzRpyc3NZt24dABcvXmTlypXMnz+fnj170rZtW15//XW+/fZbtm/f7utHE0IIUQXkF6zpZAzAGimhJtcES1Y/VtiEEBUvKSmJAwcO0L17d8aPH0/Lli3p1asX6enpapFAURQ2bdpEzZo1ufnmm+nZsyeNGjXirbfeKtc9+/TpwwcffMC2bdu47rrruOGGG1iwYAENGjRQ27z77rtcd911/PWvfyU5OZlJkyapVajOnTvz8MMPc++99xIbG8u8efOu6BkoisJHH33EzTffzMiRI2natCl/+ctfyMjIUIsj9957L9OmTePxxx+nffv2/PTTT/z973/3uM7IkSMZNmwYqampdO3alaSkpCJVo1WrVpGamsr48eNp1qwZAwYMYO/evR7jz8oybNgwFi1axPLly2nRogX9+/fnhx9+8GjTs2dPEhIS6NOnjzqxhT8pzsKdGsspPz8frVZb7sW97HY777zzDsOGDePgwYOYTCauueYaDhw4QNu2bdV2d9xxB1FRUaxZs4YdO3bQo0cPzp07R82aNdU2rVu3ZuDAgcyYMcOre2dlZREZGcnFixepUaNGueIXQghRMovNwapPTwIw4sYkbA4HydO2AHB4Zh9CDRU3nmncqh2cOP4jt7RpTNrdt5TaNtdiU+MYr/0Fg+JkhPZ/GCZN8OpX9fRvMnjh7a1EhYex+on7KyT+khR+hgadz7+FClHh8vPzOXnyJElJSZhMpmCHIwJg+vTpbNq0ia+++irYoRSRm5tLnTp1ePXVV4sdi3a50v7sepsbVNg3V3n/5/n222/p1KkT+fn5hIeHs3HjRpKTk/nss88AinQXjIuL46effgLg9OnTGAwGjyTK3eb06dMl3tNsNmM2m9XtrKyscsUuhBDCOzaHg7n/+R6AoZ0alNH6yuQXdO0LMfr2w958u2ts7VDtGbxdyMNdkbLZ/d+1r/AzNPjeqUQIIaokh8PB6dOnmT9/PpGRkQwYMCAg9/UqkYqOjubYsWPUqlWLmjVrljpd5Llz53wKoFmzZnz11VdcuHCBd999l2HDhrFr1y71eOF7lTSDii9t5s6d63W1SgghxNXFUjDxg3v8kj+Fm1z3sNvtXn0/CSGEqHinTp0iKSmJevXqsXr1anQBmLUVvEykFi5cqE7usHDhwgr9ojAYDOo4qw4dOrBv3z4WL17M448/DriqTu4VisE1L7y7ShUfH4/FYuH8+fMeVakzZ86UOl5r8uTJjBs3Tt3OysryqY+mEEKIystcUJEKRCIVVrCIpc3ukERKCFEtTJ8+nenTpwc7DA8NGzYsMgV7IHiVSF0+68Xw4cP9FQvgqiaZzWaSkpKIj49n27Zt6hgpi8XCrl27eO655wBo3749er2ebdu2MXjwYAAyMzP57rvvSh2AZzQa1RWchRBCVC3uGfRCA5FIFVSkbA4HdrsdjUa62wkhRHXhc91Lq9WSmZlJ7dq1Pfb/8ccf1K5d26f57Z988kluvfVWEhMTuXTpEuvXr2fnzp1s3rwZRVEYM2YMc+bMoUmTJjRp0oQ5c+YQGhrKfffdB0BkZCSjRo1i/PjxxMTEEB0dzYQJE2jVqhU9e/b09aMJIYSoAiwFiZTJ6P+uHaFGHU4UcDrJNVuJDMBMgUIIISqHci3IWxyz2YzB4O3wXJf//e9/DB06lMzMTCIjI0lJSWHz5s306tULgEmTJpGXl8fo0aPVBXm3bt2qdjMEV1dDnU7H4MGD1QV5V69eLWtICSFENWW129ECYSbfvpPKI9Sgw4GCFic5+VYiw/1+SyEqJYfDtzXYhAi2ivgz63UitWTJEsA1+cO//vUvwsP//Law2+188sknXHvttT7dfOXKlaUeVxSlzH6YJpOJF154gRdeeMGnewshhKiarFYbWiDU5P/qkFajuLrzORzkmC1+v58QlY3BYECj0fDbb78RGxuLwWCQsYKiUnM6nVgsFn7//Xc0Go3PhaDLeZ1ILVy4UL35iy++6FHxMRgMNGzYkBdffLHcgQghhKi6jDotbz5wg/oeKLJdEewOp+tXRgXCjWV/ORp1Wt4c2hrHm2+B4lql3ohvv1LqtFrsDhu5+dZyRu2d4p6hEMGm0WhISkoiMzOT3377LdjhCOG10NBQ6tevf0VjW71OpE6edC0C2L17d957770iazcJIYQQJdFqFDpdE+Oxr/B2Rci12NDi6oLuTdc+rUahU8OaoLtU7nvqdVrsVsgx+zeRKu4ZClEZGAwG6tevj81m82msvBDBotVq0el0V1w99XmM1Mcff3xFNxRCCCH8JddiR6M40CiKzwvylpeuoIdGrp8TKSEqM0VR0Ov16GXCFVGNlGtKo19++YV///vfnDp1CovFs0/4ggULKiQwIYQQVYfV7uDNL04B8Nfr6wN4bOu1FTNteI7ZhgYneq3i1YKMVruDN/f9it1aGxTQAn/V/o4v/xTUF3Szy7P4N5Eq/Awr6pkJIYQoH58TqfT0dAYMGEBSUhJHjx6lZcuWZGRk4HQ6adeunT9iFEIIcZWz2h1M+79DANzdvh6Ax3bFJ1Jar2ZvtdodTNv8A9BA3Xe39qxPiZQ7Ycsz23yM1jeFn6EkUkIIEVw+/y08efJkxo8fz3fffYfJZOLdd9/l559/pmvXrtxzzz3+iFEIIUQVo1EU+rWKp1+reDQVOMNXjtmGghO9VuNVIqVRFPo1j6W3cq7c9zQEqCIlhBCicvE5kTpy5AjDhg0DXL/C5eXlER4ezsyZM3nuuecqPEAhhBBVj0mvZfn97Vl+f3tM+oqbgS473wyAXqt4lUiZ9FqW392CRYaT5b6noSB+s8W/FSkhhBCVi8+JVFhYGGaz64uqTp06HD9+XD129uzZiotMCCGE8FFOnqsqVBGzMXnLoHN1BMyXipQQQlQrPo+RuuGGG/j0009JTk7mtttuY/z48Xz77be899573HDDDf6IUQghhPCKe1FcfQDXWTIWVKTyrVKREkKI6sTnRGrBggVkZ2cDMH36dLKzs3nrrbdo3LixumivEEIIUZpci43kaVsAODyzD6GGck0iW0RewRTkei9m7FPjmLUTaF/uexoLYpeufUIIUb34/M3VqFEj9X1oaCjLly+v0ICEEEKI8spVK1IVk5h5w6gvSKSkIiWEENVKuRKpffv2ERPjubr6hQsXaNeuHSdOnKiw4IQQQlQNBq2GV4d3UN9b7A6/3Mc9BbmxHBWuFbofMCpODPgWm6ngXhar3ed7+qLwMxRCCBFcPn/TZGRkYLcX/bIwm838+uuvFRKUEEKIqkWn1XDLtXHqtv8SKVfXPkM5KlJdtVmEKr7HZTK4Jpuw2PxbkSr8DIUQQgSX1980//73v9X3W7ZsITIyUt222+2kp6fTsGHDCg1OCCGE8EW+1ZVIlaciVV4haiLl34qUEEKIysXrb5qBAwcCoCiKuo6Um16vp2HDhsyfP79CgxNCCFE1WO0ONh109VoY2Lau3+6TXzDhg1Gv9/ncjfYYDDgYqD2HL2eHFCRtNj9XpAo/Q7107xNCiKDyOpFyOFzdHZKSkti3bx+1atXyW1BCCCGqFqvdwcQN3wBwW0qC3+5jLljLKcToe0Vqiq0hALdpz/uUSJmMrtZWP1ekCj9DSaSEECK4fP6mOXmy/Ku/CyGEEP7knjnPaPC9IlVeoQFKpIQQQlQuXv+ctXfvXv7zn/947HvttddISkqidu3aPPjgg5jN5goPUAghhPCWpSCRCg1oImUAKHYiJiGEEFWX14nU9OnT+eabb9Ttb7/9llGjRtGzZ0+eeOIJ3n//febOneuXIIUQQghvuBOpEGMgE6mCMVKSSAkhRLXidSL11Vdf0aNHD3V7/fr1dOzYkVdeeYVx48axZMkS3n77bb8EKYQQQnjDPeFDqClwiVS4qaAiJV37hBCiWvE6kTp//jxxcX+uX7Fr1y769u2rbl933XX8/PPPFRudEEII4QP3FOShAaxIhRUkbQ6nQ8ZJCSFENeJ1IhUXF6dONGGxWDhw4ACdOnVSj1+6dAl9OaabFUIIISqKuyIVVlAlCoSwy6pf2QULAgshhKj6vJ61r2/fvjzxxBM899xzbNq0idDQUG666Sb1+DfffMM111zjlyCFEEJc3QxaDcvua6e+B4psXymr3YHT4QAFwo1G7+O6Kxn7/7kWndcqYMDh031Neh0aRcHhdJKTb6FmmMnn2L1R3DMUQggRPF4nUrNnz+bOO++ka9euhIeHs2bNGgyGP3/xe/XVV+ndu7dfghRCCHF102k1RdaPquj1pHItdjQ4Ac8qUZlxJdeGD8+X+74ajQatRovDbiMn338VqeKeoRBCiODxOpGKjY3lv//9LxcvXiQ8PBytVutx/J133iE8PLzCAxRCCCG8kWuxoVEcaDWKukhuoGh1Gqx2yPVjIiWEEKJy8XlB3sjIyGL3R0dHX3EwQgghqiab3cGWQ/8DoE8L18RFl2/rKqCrWo7ZjhYneq2myI99pcZ1+Ax2W03A1bWvj+a8z1+OuoL75VosPp7pvcLPsCKemRBCiPLzOZESQgghfGWxO3hk3QEADs/sA+CxXSGJVL4FBSd6jeJ1ImWxO3jk3cNAY3XfYeP+cidSOWabj2d6r/AzlERKCCGCSxIpIYQQAadRFDomRavvK4J7xjxfKlIaRaFjg0jsP/3Ml9Qo9711Otf98mTWPiGEqDYkkRJCCBFwJr2Wtx7qVHZDH+Tku7rV6XRaNBrvqjUmvZa3UtuSO28Hyeb25b63Qef6OpVESgghqg/pFyCEEKJKyM5zJVJ6nXfVqIrkvmeexX9d+4QQQlQukkgJIYSoEvLUilTgF4c36KUiJYQQ1Y107RNCCBFwuRYbXZ77GIDdj3cn1HDlX0c55oKKlN77a+VabHSZ/ylOc8oV3dugd1WkzFKREkKIakMSKSGEEEFxLqdipwp3V6QMet8qUudyrcCVVbEMBVWwfKskUkIIUV1IIiWEEMLv9FoNz9+dor632h0Vfo+8goqUsZzVrWd0GRhwoMfp87lGd0XKj4lU4WcohBAiuCSREkII4Xd6rYZ7OiSq2/5IpPItrvFJvlak3AZp/yBUKV9c7uTN34nU5c9QCCFEcMlPWkIIIaoEc0EiZTIYAn5vo97/iZQQQojKRSpSQggh/M5md/DJD78DcHOTWL/cw12RCjGWryK1y14Do+LkZs1Fn78cQwoqUlY/JlKFn6FOuvcJIURQSSIlhBDC7yx2ByNXfwnA4Zl9/HIPdxITYipfRervtiYAHDbu9/nL0WRwJW8Wm/8SqcLPUBIpIYQILvlbWAghRJVgsboqUqHGwHftc1fBLFZ7wO8thBAiOCSREkIIUSW4K1Jh5axIXQl31z6bTRIpIYSoLiSREkIIUSXYbAUVqWAkUgVVMKtdJpsQQojq4v/bu/P4SMo68eOfqr670+l07nsymcx9nzDcLJeIIsvuD1ddRWHdVdGFH67Xuqv81MVdEGUVZV0XEWUFL0RFBUbkhuGY+57MJJnJfafvu+r3R6eL9CSZyTmdGb7v12tek+5UVz/1pLuqvs/xfSSQEkIIcVZIpdK9QW6H7bS/t8suPVJCCPF2I4GUEEKIM56u6ySHEz24chBIOYdTrickkBJCiLcNCaSEEEKc8ZLJJMnhRX5z0SPldqQDqZSmkdL00/7+QgghTj9Jfy6EEGLWWUwqX3nPcuNnYNTj6QjH4mi6jo5CnmPi60hZTCpfecdCUlv+BAqYAAuTD4Tcw++pohGMJfFMogwTNVYdCiGEyB0JpIQQQsw6i0nlQ5vrsp478fF0BCNxAFKouKwTv7RZTCof2lgFz/VM6/2ddhsmVQFNxx+Jz1ogNZN1JoQQYnqkSUsIIcQZLxCJpX9Q1ZwsVGs2m7ENv28gHDvt7y+EEOL0y2kg9fWvf52NGzfidrspLS3luuuu49ChQ1nb6LrOHXfcQWVlJQ6Hg0suuYR9+/ZlbROLxfjUpz5FcXExLpeLa6+9lra2ttN5KEIIIU4ipem8erSfV4/2k9L0UY+nKzQcSJlNkxtokdJ0Xm0Z5OWkm5dTbl5NuUlNoTiKomC2pN/bN0uB1EzXmRBCiOnJaSD1/PPPc8stt7B161a2bNlCMpnkyiuvJBQKGdvcddddfPOb3+S+++7jjTfeoLy8nCuuuIJAIGBsc9ttt/HrX/+aRx99lJdeeolgMMi73vUuIxWuEEKI3IolU7zvB1t53w+2EkumRj2ertDw0D6zeXJD6mLJFO/7yS4+kFzCBxJLeF9iCbEpXhrN5nQgNVs9UjNdZ0IIIaYnp3OknnzyyazHDz74IKWlpWzbto2LLroIXde59957+eIXv8j1118PwEMPPURZWRk//elP+Yd/+Ad8Ph8PPPAAP/nJT7j88ssBePjhh6mpqeFPf/oTV1111Wk/LiGEECenoLCwNM/4ebpCseEeKbNp8uUodqL19XMUx7TKYLWkg7hgRIb2CSHE28GcmiPl8/kAKCwsBKC5uZmuri6uvPJKYxubzcbFF1/MK6+8AsC2bdtIJBJZ21RWVrJixQpjmxPFYjH8fn/WPyGEEKePw2piy+0Xs+X2i3FYJxf8jCUcTQBgsU6uR8phNbHl45v4nW3/tMtgHR7aJ4GUEEK8PcyZQErXdW6//XYuuOACVqxYAUBXVxcAZWVlWduWlZUZv+vq6sJqteL1esfd5kRf//rX8Xg8xr+ampqZPhwhhBCnUTiWHtpns8x8tryJsg0HccGoBFJCCPF2MGcCqU9+8pPs3r2bRx55ZNTvFCV72Ieu66OeO9HJtvnCF76Az+cz/rW2tk694EIIIXIuOhxIWedAIBWOxnNWBiGEEKfPnAikPvWpT/Hb3/6WZ599lurqauP58vJygFE9Sz09PUYvVXl5OfF4nMHBwXG3OZHNZiM/Pz/rnxBCiNMnEk9xxTef54pvPk8kPv3ECdFYemifbZJD+yLxFFfc/zrvji2bdhkcNmt6n8PDDIUQQpzdchpI6brOJz/5SR577DH+/Oc/M3/+/Kzfz58/n/LycrZs2WI8F4/Hef755znvvPMAWL9+PRaLJWubzs5O9u7da2wjhBBibtHRaewJ0tgTRGf6qbxj8XTw4rBNLpDS0WnsC0870QSAc/i9I3HpkRJCiLeDnGbtu+WWW/jpT3/Kb37zG9xut9Hz5PF4cDgcKIrCbbfdxp133snChQtZuHAhd955J06nk/e///3GtjfffDOf/vSnKSoqorCwkH/6p39i5cqVRhY/IYQQuWVWVb5w9RLj56Smzej+Y4l0IGW3Wqe8j0+b2rAqOuYpBnaZHqlofHZ6pE6sQyGEELmV00Dq/vvvB+CSSy7Jev7BBx/kwx/+MACf/exniUQifOITn2BwcJBzzjmHp59+GrfbbWz/rW99C7PZzA033EAkEuGyyy7jRz/6ESbT9DNBCSGEmD6rWeUfLl5gPE7GZzaQig8HL85J9kiNdLO5G6cy9XK5HDbgrd6xmXZiHQohhMitnAZSun7qVj9FUbjjjju44447xt3Gbrfzne98h+985zszWDohhBBnikQyCYDDPvUeqely2dOBVHyWAikhhBBzS04DKSGEEG8PKU1nb3t6rcAVVZ4Z3beu60Yg5ZpGILVHc2JXdFYoIaYynsHtSL93PJGcchlO5sQ6NKnTX8hYCCHE1EkgJYQQYtbFkine892XAdj/latmdN+pVIpEMj0kL9MrNBXvTSwFYL9tG84pvD5veGjfbAVSJ9ah0yqXcCGEyCWZrSqEEOKMlkwmSaQ0dBRc9tytI5XvTAdSydTsBFJCCCHmFgmkhBBCnNE0TSOR0tBQcFpzl2TI40oHUqlkEm2GsxIKIYSYeySQEkIIcUZLpVIkUjoaCi5b7oa7eZx2ADRdJxiRtaSEEOJsJ4GUEEKIM1o6kNLQdDWnPVJ5dgs66QQQvnA0Z+UQQghxekggJYQQ4oyWCaRSKDlNwKAoCiZz+v394VjOyiGEEOL0kEBKCCHEGS2ZTBIfniPlymGPFIBlOJAKSCAlhBBnPcmdKoQQYtaZVZVbL1to/AyMejxV0UQSXSedbGKSc6TMqsqtF80j9dIroCiY0DFz6sXix2OxWIhFIwQiMx9IjVWHQgghckcCKSGEELPOalb5v1csynruxMdTFRpO7KCh4LBMrkfKalb5vxfPh9d/OSNlsVrSl9XgLARSY9WhEEKI3JEmLSGEEGe0YDQdSFlMJkyqktOyWC3pdaxCUcnaJ4QQZzvpkRJCCDHrNE3nSG8QgIaSPICsx+o0AqBgNAGAbQqJJjRN50hPCC2VTl2uKtCgRKfcymi3zV4gdWIdTqfOhBBCTJ8EUkIIIWZdNJniym+9AMD+r1wFkPV4Otn2MkGL3WqZWrm+/waw0nhuv20bzimWJVOG8CwEUifWYS4zFAohhJBASgghRI4Uuqwzsp9wLAlMLZACKHRa0MNhBpna60dy2GwARGIytE8IIc52EkgJIYQ47ZxWM9v/9YoZ2Vd4OGhxTKGHxmk1s/3T5xO+6x6WxdZPuyxOezoYi8YS096XEEKIuU2STQghhDijRYaDFodt+j1K0+WypXvZYnEJpIQQ4mwngZQQQogzWmQ4aHHaZmao4HS4HOmhfdGEBFJCCHG2k6F9QgghTrtoIsWNP3wdgIdu2oR9kus/Ze0rnp4j5ZxCj1Q0keLGH+8gFVs45fcfKc+RDuYSEkgJIcRZTwIpIYQQp52m67zWPGD8PB3R4R4pl33ygZSm67x2zAfkT6sMGW8FUqkZ2Z8QQoi5SwIpIYQQs86sqvz9RfXGz0lNm7F9xxLpHimXfXpD+z5i6sKCjpmpB3b5w0P74smZ75E6sQ6FEELklgRSQgghZp3VrPLP71xqPE7GZy6Qig8P7XM7ppds4jPmdpzK9MrldqYDqUQyhaZpqDMY8JxYh0IIIXJLmrSEEEKc0eLJTCBly3FJwDMcSMWSGqmUDO8TQoizmQRSQgghZp2m6bQOhGkdCKNp05sTNZKu68SHh/bl2acXSLXrVlo1K9MpXoHTio5CStMJR2d2Ud7ZqkMhhBBTI4GUEEKIWRdNprjwrme58K5niSZnrqdG0zTiyfRwvHzn9Ib2XRFfyYXx1USncWl0Wc1oKAAMhWPTKs+JZqsOhRBCTI0EUkIIIc5YmqYRT6UDqcywulxSVQWzOT392D/DgZQQQoi5RQIpIYQQZ6xkMkk8qaGjkO/I/YK8ADZLJpCa2aF9Qggh5hYJpIQQQpyxQtEEmq6TQiHPNjcS0VozgVREeqSEEOJsJoGUEEKIM1YmWNFRcVpNOS5Nms2anqsVjEiPlBBCnM0kkBJCCHHGCgwHKxazCUVRclyaNLs13SMVlB4pIYQ4q0kgJYQQ4ozlHw6kMsPp5gLHcI9UaIbTnwshhJhb5s6VRwghxFnLpCp88Nx5xs/AqMdTERoOpGxTDKRMqsIHN1SS2r4DUDApOiamt0aTEUjFEtPaz4nGqkMhhBC5I4GUEEKIWWczm/jqdSuynjvx8VQEpxlI2cwmvnr1Itj7m2mXJcNpT2cPnOkFeceqQyGEELkjQ/uEEEKcsUKx4UDKOnfaBZ32dI9UZIZ7pIQQQswtc+fKI4QQ4qyl6zoDoXTQU+hK99iMfDzVRBGhaDpYsQ8Pp5tquXQtfTlUFCgkyXQGzrls6eOLxGc2kDqxDudKcg0hhHi7kkBKCCHErIskUqz/2p8A2P+VqwCyHjun2KMUHu71cUwxkIokUqz/5ivAWuO5/bZtOKe0tzS3wwZANJ6cxl5GO7EOp1pnQgghZoYM7RNCCHHGygyfc9imFkjNhjxHukcqOsM9UkIIIeYWac4SQghx2jmtZlr+/Zpp7yczfM45xUDKaTXT8q+XEL7rHpbF1k+7PAB5w8km4omZ7ZESQggxt0iPlBBCiDNWdJqB1GzId6WH9kkgJYQQZzcJpIQQQpyxMvOQXMO9QHOBx5kuSyKZRNOmtyaVEEKIuUuG9gkhhDjtookUt/98JwDfvGENdotpivtJ90i57FPrkYomUtz+y30k4/On9PqxeJx2ABR0QvEk7imWTQghxNwmPVJCCCFOO03X+cOeLv6wpwtNn3qvTXy4Rypvij1Smq7zhwO9PK0XTrkMJ3LZrZhUBRM6vogknBBCiLOV9EgJIYSYdSZV4a/WVRs/p2ZoyFs8kQLAbbdNe1/XqX2YABPTK5vJZMJmUglrKXzhGNXe6SRTH7HfE+pQCCFEbkkgJYQQYtbZzCbuuWG18Tg8Q2ssJZLp/bid058jdaflGE5Fm/Z+VFXFajERTqTwhWLT3l/GiXUohBAit2RonxBCiDNSStNJpIZ7pGYgkJopiqJgtaTbKf3hmQukhBBCzC3SIyWEEGLW6bpOZHgYnmOKiSVOFIgmUEn3IHkc0x/aF9bTbYsONKY7cM5qTl9eA5H4NPf0lhPrUFFkeJ8QQuSSBFJCCCFmXSSRYtmXngJg/1eumpF9DoXjqOhYTSqOGVhHakN8LQD7bduY7qwmm3W4Ryoycz1SJ9ah0yqXcCGEyCUZ2ieEEOKM1B+IAGC3mDCb51ZQYbOkA7tQdOZ6pIQQQswtOQ2kXnjhBd797ndTWVmJoig8/vjjWb/XdZ077riDyspKHA4Hl1xyCfv27cvaJhaL8alPfYri4mJcLhfXXnstbW1tp/EohBBC5MLAcCBlsVhQ1bnVLmi3pgOpQFgCKSGEOFvl9MoTCoVYvXo1991335i/v+uuu/jmN7/JfffdxxtvvEF5eTlXXHEFgUDA2Oa2227j17/+NY8++igvvfQSwWCQd73rXaSGJyALIYQ4Ow0GwwDYrHNvwdvMUMNQTAIpIYQ4W+V0LMTVV1/N1VdfPebvdF3n3nvv5Ytf/CLXX389AA899BBlZWX89Kc/5R/+4R/w+Xw88MAD/OQnP+Hyyy8H4OGHH6ampoY//elPXHXVzIzDF0IIMff4Q1EA7La5k7Evw5kJpKKyIK8QQpyt5tZYiBGam5vp6uriyiuvNJ6z2WxcfPHFvPLKKwBs27aNRCKRtU1lZSUrVqwwthlLLBbD7/dn/RNCCHFmyQRSjhlYjHemOe3p4C4Sk0BKCCHOVnM2kOrq6gKgrKws6/mysjLjd11dXVitVrxe77jbjOXrX/86Ho/H+FdTUzPDpRdCCDHbAuF0IOW023NcktFcwz1SkbgM7RNCiLPV3EpzNIYT18nQdf2Ua2ecapsvfOEL3H777cZjv98vwZQQQswiVVF458py42dg1OPJCkXSgZTbOfUeKVVReOfSElIHD4ECJkBFn/L+MvIcwz1SMzi0b6w6FEIIkTtzNpAqL09fLLq6uqioqDCe7+npMXqpysvLicfjDA4OZvVK9fT0cN555427b5vNhs0294aCCCHE2cpuMfG9D6zPeu7Ex5MVGU7k4HZOvUfKbjHxvb9eDnf/YVplOVHBcHA3k8kmxqpDIYQQuTNnh/bNnz+f8vJytmzZYjwXj8d5/vnnjSBp/fr1WCyWrG06OzvZu3fvSQMpIYQQZ77I8BpNHtfcG9pXkJcuUzSeJJnSclwaIYQQsyGnPVLBYJAjR44Yj5ubm9m5cyeFhYXU1tZy2223ceedd7Jw4UIWLlzInXfeidPp5P3vfz8AHo+Hm2++mU9/+tMUFRVRWFjIP/3TP7Fy5Uoji58QQoizU2x4/pEnz5HjkoxW4LKjKKDqGoPhBCVuGQUhhBBnm5wGUm+++SaXXnqp8Tgzb+nGG2/kRz/6EZ/97GeJRCJ84hOfYHBwkHPOOYenn34at9ttvOZb3/oWZrOZG264gUgkwmWXXcaPfvQjTCbTaT8eIYQQYwvHkyz70lMA7P9KemmKkY+d1slfjuLDgZQ3zzm9cn31OWCj8dx+2zamvsc0q8WM3WwiGNcZCMVnJJA6sQ6nUmdCCCFmTk7Pwpdccgm6Pv6kXkVRuOOOO7jjjjvG3cZut/Od73yH73znO7NQQiGEEHORpmkkEulEDkX5c69HymQy4bCYMMd1+kMxwH3K1wghhDizSHOWEEKI085hMbHtXy43fp4sXyiKpuuAQnH+1PuPHBYT224/j8h993NBfPWU93Miq9WKw2rCHI4xGJK1pIQQ4mwkgZQQQojTTlEUivKmPtytzx8GQFdM0xripigKRS4rYSU55X2MxWq14rCYMKHRH4jM6L6FEELMDXM2a58QQggxnsFAOpCyWC2nXFswF8xmM/bhAK9/uKxCCCHOLtIjJYQQ4rSLJVN87YkDAPzLu5ZiM09ueN9QKN3LY7Vapl+OPx4mkaie1n5OpCgKLkc6BfqQBFJCCHFWkkBKCCHEaZfSdH6y9RgAX3jnkkm/3heMAmC3Ti8bXkrT+cmbHUDZtPYzFqcjXbZM0CeEEOLsIoGUEEKIWacqCpcuLjF+1k6SsXUi/OF0cOK0W6ddtoyLVB8mdFSmV7aMfFc6m6A/FJ2R/Z1Yh0IIIXJLAikhhBCzzm4x8eBHNhmPw/HpJXcIhGIAOO32ae1npP+yHMGpaDO2P89wIBWKzEwgdWIdCiGEyC1JNiGEEOKME4ymg5M85/QXup0t3rx0IBWOxHJcEiGEELNBAikhhBBnnEg0HZzkO2euR2qmFQ6vbxWNx066+LwQQogzkwRSQgghZl04nmTpvz7J0n99ctrD+gAi0TgA+a6ZC6TWx9awNLqOsD4zl8bifBcAipbCH53+Mc90HQohhJgemSMlhBDitIgkUjO2r1g8HUhl5iHNhAiTS8F+Km6XA6tJJZ7UGAzF8Timl6odZrYOhRBCTI/0SAkhhDijpFIp4vEEAIXDvT5zkdVqxW4xYVFS9AVlnpQQQpxtJJASQghxRolGo0QTKVKoFObN3TlSVqsVp9WEgk5/QNaSEkKIs40EUkIIIc4o0WiUaFIjrpsocE5/uNxsUVUVuzVdvj5fKMelEUIIMdMkkBJCCHFGGQyESaQ0Epgozpu76c8B7PZ0+QalR0oIIc46EkgJIYQ47VKpqSdN6B4KAKCaLLhscztnksuRHno4FAznuCRCCCFm2ty+AgkhhDgrqIrCOfMLjZ8PHznCYq+KzWZFVZRJ7atvKD1MLm8GMvapisI58zxox1pBUVDRUZm5NZ/yhte58oWm3yN1Yh0KIYTILQmkhBBCzDq7xcTP/mEzAIODgwz19/KFcxx4vV7slsmlHR8IpAMpt8s5M+X60Fq4+0/T3tdYMunZg+HotPc1sg6FEELkngztE0IIcdpomsbhw4eNx7HY5NOC+wLpYXJe9/QDqdnmdacDqcAMBFJCCCHmFumREkIIcVrE43H27dtHJBJBVVU0TSM+vLDuROm6TjCcHiZXlJ83G8WcUWUFbgACYUk2IYQQZxsJpEaIx+OTvqgLIYQ4taFghMvufRld17nnYicNC+fznv/ZDcALq0Lk2SeWxjwejxOIxAGFIrd92ufscDzFpfe8BNE1ACjA8+Yd2OJxsEw/tXqZJ90jFY/F8Icikx7GOKqs33wRgGdvvxCnder7EkIIMb6JXlskkBrhnnvuwW6fu4s7CiHEmSilK3SlXAQSSwB48aWXePGllwgm1gHwzW9+E4uiTXh/HclCEjh57fkt9L88MK2yJXSVweg64K2g6ZVXXmGbniRhtU5r3wC6DirlWJUUd9x1Lx516oHfW2WFb3zjG5OqMyGEEBMXjU5sOLbMkRJCCDFrhjQ7v4iupClVZDx3NFmIGY3rbHu5zrYXM5MLCBKYSOgmnEpi2uUzo/HX6g6+vOfH097XWBQl/R4KOmF9+oGZEEKIuUPRdX3m8ryeofx+Px6Ph97eXvLz83NdHCGEOCvEkxrv/cHrNHYOstbRz2uRMuN3X712KYvNfQQCAZYuXUpxcfGE9tne3s4XfvwMXXEb3/34NSwsnYF5UqEQsXvuZWVyEwB7zK9j+/Rt4HJNf9/Abd/7NR19Pq6/7Fz+5vwlU95POJ5izdf+DMDOf/kLGdonhBCzxO/3U1JSgs/nO2lsIEP7RrBarVhnYCiHEEII+M9nD7KvM0C9I8kNG2t47YW3hrXd/XQj/3NtOSZTGF3XJ3zujcYTRBMacd1EVWHezJyzEwmSJhMk0w9NJlN6vzN0PfC48+jo89HnC0+rvMlMAQGr1YLVKpdwIYSYDRM9V8tZWAghxIw73B3g/ueOAnDjukLyrADpQGpBiYujvSHueqGLKpfCLdUTT4HeO7wYr26y4HFMPxlEPKnx3eebSSQqpr2v8RS6071m/b7ArL2HEEKI00/mSAkhhJhx//1CE5oOVy0pZJ5byfrdp/6iAYA3u5L85miCcGTiayz1+4cX43XYURTlFFufWlLT+M8XjvE9rXLa+xpPiTcdSA0Ol10IIcTZQXqkhBBCzKhuf5Tf7GxHQeedNelEEh6Ph1XV6R6kq5aXs7S8iQNd6R6aeGLimeyGAulgpGAWFuNdoYRQAZWZnTpcUegBIBgOT2s/qqKwqtpj/CyEECK3JJASQggxo370SguJlM6lFRoeUwKTycTKZYv57ca3kjfcdOF8PvOL9DpS8fjEsu/puo4/nO69Ksyf+UDq59aDOGchpXh1aQEAkXAEXden3JPW44+xtqaAoUiCl4/0ccniUkyqBFRCCJErEkgJIYSYMaFYkoe3HqNMDXBBRXpI25IlS3CdkAHvwoVvZenrGQpOaN+JRIJQLAEolOTPQLa+06Su1IOOQiKVos8fpMTjnvQ+vvn0Ib773FFSWrq37Dc7O1hS7ubnH9tM/gQXMxZCCDGzZI6UEEKIGfP73Z244gMsdUWoL3FRX19PSUnJqO1G3vwf7fYxkZU44vE44ViKJCql+WfO4ukumwXVks4AdbzbN+nXP72vi2//+QiapvHO6gQfWaxTYFc52BXgX369d0J1J4QQYuZJICWEEGLG/HJrI+VqgOVVHhYsWEBtbS0AkXiK8//9z5z/738mEk9lveZYf4h4/NTzpGKxGKFYkoSuUuK2zXjZL4+t4PzoKiL6zF8aXQ4HAO39kwuk+oIxvvDYHgA+vNLBa31WfntM5WtXVmNSFX67q4Nf72if8fIKIYQ4NQmkhBBCzIjG7gAdnZ2oisIFK+uNIApAR6d9KEL7UAT9hGQObYMRfKFTJ2KIx+OE4kkSmCjNn/lAqgMb7dhmONVEWr47PbSxe8A/qdd96Td76Q/FWFcCG0qgP6rTH9VxJHzceukCAP718b0c65eMgEIIcbpJIJVjnZ2dDAwM5LoYQoizTCKRIJVKnXrDGfToa8fwqhHmF7tYUj9vwq9LaTqvNfaccrt4PE4gmiSpq5SdQUP7AAqH53T1D028R2pvu49n9xxnsbmP9y0yY1bfumQnEwmuXWTn3Np8HAkf/+9Hv+fgocMzXm4hhBDjk2QTI4TjSczx5Kk3nCGhUIi9+w9gNpvZdO7mGVkTRQgh4rEYO7Zvw263s3rtutPznkmNZ3Y0UoDG8tpirM48wiPOp+P9nPHS4S4uW7vgpO/R3ucjkkiRUEyU59vH3M9kjbWPREpLP2+ZueuB11sIwNDgEAO+APbhoX4n860th5hvGmRFmYPCPBsFxWVAU7qMmkbjkaPcMC/Bz3oCDAxq/OKFXXyivALHBPYthBBifBO9vii6zFLF7/fj8Xioue3nqLaZT6k7nmIlRLVpCIC9yXKSmE7bewuRTcelJIjoZjTpqD7jlapBKtV0z8dY5xYFjVI1xJBmJ8bMZXxbaOrDpcTo1PLp1iaemW6lqYMe3X3K18w3DeBRIrSlCujTXSfddjpueeVRfrjhOiLWme31qjf1k69E6dHy6NA8p9zeQYLF5h50FPYly7L+jgvVHlxqOm18VLegADYlMem6F0IIMZoWC9N67w34fD7y8/PH3U7umHLIpbw1udqmnL6eMCFOVKSEWWjqZd5wYC/ObF4lYvxsH+PcUq4GqVD9VJkmN1/nZOwkcCkxdBT6tck3SLmV2Cm3MZMeqpg4Qy9dfVo6+CtSwyicer2qfDW9ZpZft40Khhu1EnYnK9iZrORgqpRuLT10cOTfXgghxOySHine6pHq7O0/adQ507a98TrRaPpCuXDRYkrLyk7be4u3j86ODkCnvKJyzOGjqVSKbW++QWI4a9rqtevIyztz1ug5k0QjESxWKybT7PU+h8MhdmzbZjyum19PVXW18VjTNN58/TUSiYQxrDjg99N4+DD1DQ14vd5Jv2f7UIS/+8/f4FXC3HL1Os7fuGZ0ueJJNnztGQDe/JfLAIzHf1nhp7k3wPp16/j0u0a/NuPfHvwt+1r72LB+HbdfM/52kzGyXBm7zG9g+fT/BdfM9XolUhrrv7aFRXRz8+Yq1q1aRll5xZjbhmJJzv+PZ6nTu/nwxjI2r1tBWXnFqDp0Wt8anb/reD///qPfoio6X/jQNVTmmTFbLLjd7gkNG5/MQsEd7e1oukZ1dc2EthdCiNkWi0Zpa22lvLJy1LqFU+H3+6koKTplj5TMkRrBaTVnXZhmUzweJ5WIYzENt6ymEjP23t3d3QwNDbFw4UJU9cxsuRUzIxqN0tqSnlMR9A2xbNkyLJbsoVzHjrVDKml8Fvu6Oihdtuy0l/VsFwgE2LNzOx6PhzVr1gAQDoex2WwzGlh1tfW/dV4BUvFo1rmlrb0DPfP31jVULclAbzepRIzB3m6qykav+XQqT+w4ToESocbr5JyVi8Y8lykoLCxNB+gua/ozmHm8osFLc+9e9h0+itO6Ycz30HWdoUA6s9/SqqIZO18qKCwsdqL19YOSHqZhNak4rGaY4etBQ4mb/p4AvkiCcMCPs3bsQGTL/m70ZIKqfKgscFBVXobVah5Vhw7rW5+bzQ1l1FWWcayji1889SLXrCgHwOl0snjxYjye8YcStra20tTUxPLlyykuLh53O0gnMWk71gxAbWUFdvuZk/QjlUrR29tLcXExZrPc/ghxNmk5cpz+3h4CvkHWrVs37XNTcoLnfzmT5IjPl525KRKZmeEYwWCQgwcPous6hYWFYy6EKSbO7/dz8OBBGhoaKCwszHVxJs3vf2vo1uDgINu3b2ft2rVYrVaSySQDAwO0trYCUFNTQ2trKz09PdTV1eF0nr75gm8H3d3d6WBgaIhAIEA4HObAgQNUVlayaNGiGXkPXdfp6UlnvystLaWnpwefP0DrQJjWgTC/3NbKoX27selxXFYT6+Z5WbYswNDQEJAO9iYrpek8s+0QZnTWNlSM23LnsJrYcvvFWc9lHvcM+vn91n1Egz52N3exan75qNcnEgn6Q+nhf4srCyZdzvE4rCa2fHwT3H33jO1zPEsr8vlzdw99wZgxGmEsT+zuJF+Jsqgsj/z8fKxW61tlPaEOR3rfxSv490e6ONLtJ7S4DLfNRDgc5tChQ2zatGnM1+i6TkdHB7qu09jYiNfrPWlgHwq9lWY9EAicMYGUruscOHCAvr4+ampqWLDg5IlNxJkvFotx/PhxampqzpjP6Xgyg8dO1Ws8mZ7lydA0jYMHD+J2u6mpOf090ac6/lgsRm9vL5DuqNizZw9r1qwZ1XA8G6S7IkcyN7iZP/LJLqoTpes6hw8fNj5wwWBw2vt8u2tvbyccDnPs2LFcF2VKMp+zoqIi7HY7kUiEvXv30tLSwiuvvML+/ftJJpO4XC7q6+spKioCMIIrMTNGBjgAbW1tNDWlewozQcxMCIVCRKNRVFVl3rx5tA6EuffJPVx01595//+8xlM7W7BoMZI6HI9YeP5wLz/+8y5jMdxYLDahhXFH+vOBbggPYreYuGLD1HoyS735lA8PbX5m+6Ext+noDxBNpEih0lB2+oZgz6TF5W5iupm+YHzcc74/muD5Q7141CgLy9zGd3IiNi2to6y8ks6Um12xEs4991wg3fM53vuFw2GjIS9z43kyI68rJwu8dV2nt7d3Rq5tM6G3t5e+vj5gdEPmmSiZTKJpp55n93bW3t5Oe3u7ca49Uw0MDPDqq6/y6quv0tjYSDg89pp7fX19vPjiixw8eHDGPxs+n4+enh6amppIJk/vnP5EIsGrr77Kzp07x70+dXZ2ous6LpcLq9VKKBTi9ddfp62tbVR5o9Eog4ODM1Y+CaRyJHMiLy0tBabXIxWNRjl27Bj79+/P6oGYSuuyeEum9wDSf69oNMrAwAC7du0a90vY09NDc3Mzc2Xq4cjP2apVqzCbzfj9flpaWtA0DYfDQU1NDatWrUJRFKOlqbu7m0Qikcuin1X8fj/xeNxoTevu7iYWS/euhMPhGVvvKfO5LCgo4JnGIR7b0UkkniTPrFHtdXDNIjfv3VjD56/byHvOWQzAS3ubea2p39jHZM8bP32lETMpVlQVUFUx9Xme5y6vA2DXkfYxf3+4cwiAfJcTu+XMzHC6pNxNHBN9wRiJRGLMG5I/7e9GT8Wpy9MpclknNapAVVX+z19spEvL59E320miGj2E461X2N+f/ttner1aW1tPGvxMNJDq6upi3759HDhwYMLlny3xeJzGxkbjcTAYnDPn6KmIx+O89tpr7Ny5M9dFmdMyAcfg4OAZ+/c+fvw4u3fvJh6PE4/HaW9vZ+/evaO2S6VSHD58GE3T6OrqYvfu3TMa8GTqUtf1GQ1CJmJgYIB4PI7P52P79u1ZveKQ7i3r6OgAoLa2lpUrV+J0OkkkEhw5coRXXnmFAwcOkEgk0DSNnTt3smvXLqNhZbokkMoBTdOMC1DZcCtsPB6f8s3UoUOHaG5uNro1M/sMBAJn7MljLohGo8bNLkBHRwcHDhxgcHCQ3bt3G1/cjFQqxcGDBzl27Jhxc5JLmqYZNz35+fnY7Q6Kaxs4PhileSDOkK2MioYVLFiwAJvNBoDH4yEvL884GYdCIY4ePZpVD2LyRg63G2sS7IkXhqnKBP4tAbj1ZzsJamYWlubxh49v5KXP/QXvW1NEhcfB/Koy/uHy5Vy4MH2T/mpTP3vb00H3ZAKplr4Qu5q6UBTYvLj6pHMyI/EUV3zzea745vNE4qlRj69ZvxBVURkKBNl9bPTivE3d6WMrzp/ZIaeReIor7n+dy6IruCy2gitiK4jos3NpXFKej4ZKXzhFMqWNGbD8ekc7RWqYhaV5eL3erCG2J9bZWC5dUkptoRN/NMnjOzqMIcnjBVKZm4m6ujoKCgrQNI329nQwmzkP/OHZl/nuL57i+88eYsuuYzT3hQjFksY1JplMZl2/dF03erV9Pt+kezlnWqZhyOVyYTKZ0DQtq1Xf7/fT2Ng46ho8NDREZ2fnKfcfDodPa8NTR0cHiUQCv98v5+aTyHy/EonEjJ1jT6dgMGj0plVUVLBixQpg7M/b8ePHicfjWIeTGQ0NDZ2yd3kyRn5fMueMmWwEHBoaGjewGTlqIxqNsn//fuO809jYyLZt24jH41gsFkpKSnC73WzcuJFFixbhdDrRNI3u7m4OHjyY1VDU1NQ0I/fIMkcqBzIXH8twRiWz2UwymSQajU4600g8HjdaB2pra/F4PBQUFNDT00MikSAejxs3ySPpus6xY8ew2+2Ul4+ejyBGD//InJRUVUXTNA4fPkwikWDevHlAumU3053e19d30knbPp8Pq9U64wtnZv6uiUSCkpISookkrUNxfvObgzx7uJehcAIVDQ2F9MKeTaypKaDa60BRFDbVeTm3vIxgMEhrayvHjh0zbpKmM48nGo1iMplOy3jluSYajRqNHE6Pl4P9SfY1HsNqs1FckIdHjRMIBCedMfTgwYP4fD5jzlumB9UXSXDn88fRdYV19eVcVW8lHk1f8DI91gUFBdjtdjbOLyKWTPF68wCP7ffjspkoLJx4SvSHtx7DqcSpK3Qxr+LkQ9B0dBp7gsbPQNbjonwHteVFtHT28oc3Glk1rzTr9cf70t/HisKZXSNJR6exLww4GC4Ws9X8VJZvo8BpIRozMRBKD+8bmSHzaG+QFxt7WW4Os6yimMrKytFlPaEOT2RSFT60eR5f+/0Bvv/CUa64eQ2QbpXXNC0r2I3H41nDfy0WC0NDQ/T09FBfX8/r23fyxzePsLt9CF2H1pSPapMPBR1FgeoCJ33mUoqTPdjtdtavX4+iKAwMDGTdePX391NRMXaGwtMhU5aSkhIGBwfx+XwEAgHjetvY2GjM98r0ysdiMXbv3o2mabhcrnG/n9FolDfeeAO73c6GDRtmNSMnZLe+Q/p+Yqxr/FhSmk7HUIQKjx2zaW63o6dSKTRNm/I1Q9f1rJE+g4ODZ1w22kwQX1xczOLF6REEdrudaDRKKBSioKAASI9oyjRcLFy40GjUnclh4yd+n7u6ujh48CDFxcVGgDdViUTC+K5t3Lhx1H1w5jgWL15MY2MjoVCIYDBIX1+f0egD6XvgzPlNURQqKyupqKhgaGiIPXv20N/fbzRyK4pCOBymu7t72vfAEkjlQObC5fF4UBQFh8NBIBAgEolMOpDKRPBut5v6+nrjeafTSSgUGvckGw6HaWlpQVVVSktLJbvfGDJf3oqKCrq6uoyWi2XLlhEMBmlpaaG5uRlFUaitrc2aA9PX1zfqpmXk7/bu3YvL5WLjxo0zVl5d1zl48BD7jx7j+ECYIwNxOvv9DGp2mlPpAM+sKswrcuNxWIglNfZ3+tnZOsTO1vSx/m5XBzYz/E1tlHPqPEZmtP7+/ilPYo3H47zxxhtYrVY2bdqEoijEYjHMZvOs33TkkqZp7N69m91HO9jdNkRHIM6rTwbRgWIlRVBPUah2UqoG+a83B3nHeWv55F80YDOfuk5SqZSRvKKnp4fq6up0AotYnN/t6aY7UsDqag8fv2IeLU1HCYVC+Hw+dF3HZrNht9tRFAW3283m+hShmMZvWs08ta+bcm8eKyfwt/aFE/zszVYqlASrakomHQjazCYe+ei5xs8A5y6dR0tnL28cah31eWvrS/eUVRfNbCBlM5t45IOriT7ycz6SXDyj+z6RoigsLnPTfdw05jypH7/SQr4SY3Gxg2KP85QZ9MbzN5tq+Z8XmznWH+aB17q4MN9i9GBkbr7grWF9brcbm81GUVERZrOZQCjCN3/1Iq/vPUw0qRPUbSwvMrHEYSIZdzEQSdIW0GgdDPPfv3uJ5WV2/mJJmbGUSFtbG4DRSDidQErXdXRdn9Y1KnND7XA4SCaT+Hw+o7c+Ho8bvbBDQ0NGINXc3Gw0jPn9/nE/336/37hpb21tpa6ubsrlnIj+/v6sHj6/33/Sz0mPP0q3P8zuxuP8aPsgjb1hvE4LFy4sodBlxeu08p41ldQVz94C15MViUTYuXMniUSC1atXnzTjZDwex2w2j/p8nNhLOjg4OK0kCbqu09TUhMPhGNXAMRtSqRRdXV0AVFVVGc/n5eURjUYJBALGd/no0aNomobX66W4uNj4vAeDQTRNIxKJ0NHRQV1d3ZQD05GBVDKZ5NCh9FzWvr4+YrHYhIP5sXR2dhrftcHBwaz74FgsZhxPSUkJAwMD9Pb20tnZaTRQzp8/Px0MmcxsOzZAIpW+VwvFkoTjKVRFIWUuxBbuxmY2kZ+fT3FxMU1NTTQ3N0/7HlgCqRFmYvhBT08PPT09LFiwYMzehlgyRd9Augcpc2K22+0EAoEpTcrNfJBOHEfvdruNqH2sk2zmS5EZ4nCmtdScDpkeqeLiYuLxOP39/RQUFFBUVERxcTGKotDc3ExTU5PRCgvpHqtkMsnQ0NCoTH+JRILDhw8D6eFcqVRqRoKJpq4hvvvblznW3kEyld1S7fHk8/cr6rlsSSnr5nmzUmP3BKI8e7CHUCxFOJ7kid2dHOwK8HRLnIMdLVyyoo7lpVZisRjBYBC3e/I3sUNDQ6RSKSKRCENDQ5jNZrZvT6cBX7169axkGJqueDxOV1cXlZWVU06TvOtIK99/ejdd/hgh3Uq35kZHoa7Iybn1taQ0nc7OLmL9YfREjO/8+Qh/3NvFf/zVKtbPO/laTqFQyAjsu7u7qa6upr27l8d3tHPUp1DosvG9v12PW03QAka9A3i9XqPO3W43Pp+P6zY1sCcVJNLdz++2t3LhuRHyXCcfQve9548QjCaoKVCZV+Sc9GfDpCpsXpDdi3XZmnoee347kUiQN5v72VifPnf1+KO09vnxKLC0emazZ5pUhc11XsKmIJyGOdRLK/JpPWaiN5Cduc8fTfDLbW2UqSHW1BZTXl4+5Yt7ns3MV69bwUd//CY/eLGZddeUYSXBwMBAViCVaYjLJLRQVRXF4eGRF7YxGE5fD+2eUv7vO9dD71HjdW63m5hi49ntB9l2bJDGniAdQ1FCZjdXbVxqjJJYvHgx+/btG7M3bCJisRh79uwhFouxceNGYx7XZI0MpDLfm0zwNHLI49DQELquEwwGjZtYyM5+eqKRN5jHjx+nvLw8K0Pc4OAge/fupaGhYUZ65TIt8JmeifHKFogm+OoT+/n5m21UqH7K1ABhLQ/wMBhO8Ntdb/Vq3fvMYS5oKGZNTQGrqgu4dHHJlHqsNE1DUZSTntO7u7tpbm6moaFhzHuTWCzGrl27jCGLe/bsYe3atWM2MmeG2RcVFY3qFcl8txRFMXrrx/sMtrS0MDAwwIoVK8b9jPl8PlpbW1EUhbKysllvBOzp6SGVSuFwOLK+s3l5efT19RkNAYODg/T19aEoCg0NDUbjfKYRIxQK0dTUZHwnFy5cOOmyJJNJ4+9RVFRkNKxmdHd3U1tbO6XjzGQNzRgYGKB6xLqHmfuwvLw8zGYz5eXl9Pb20tHRQSSe4uhAjG2xMO1bD/CnA934o+OdxHXmm4dYUgCLl63kwkInZouFWCw25r3aZJw1gdT3vvc97r77bjo7O1m+fDn33nsvF1544aT2cWLQMZk1XiLxFMcHQuzbuY9gOMKze1rot1ZwdCjJQCiOMxUkHItxwGdmmambIoeKuVFhXnmQYn0INeynMXicwP4Qmg5Ws0owlmQoHMekqlhNCgPhBL5gmDKPk6pCF/2+MOH2/WgpncBRK9UlAeqKnNQVuygg3eow3nyHkSf/YDB4VgdSkUgEXdcnlM47M5Fy5LAAj8eDw+HAarUyb9484yIxb948NE3j2LFjHD2avsnInPQyrSUnfjmPHj2aFbCHQqEpLwLdH4zx0pE+Xt59hMYjR9C1FKDQoxaxokhlSQHML3Fx6Xmbsk7EI5W67bx341snwFsubeCVo/3c+fv9HOjq5fU3I1w7L8zl8x309fVN+Gb5+PHj6LpObW1t1hDJzMUhFEtwvKmDHX0KXXErbYMRrGYVj8NCVYGDmkIn84qc1BY6cdlm7jQVTaT43a4OXjnaz/bjgyRTOg6riRqvg0Xlbq5cVs662gIOHTpEf38/0Wh00kMadV3nid2d3PfYyzhSUXxqPhetX8G7V1eysNSNx/lWi2AwuIDXX3+Dpv4o/3XQzJGeIH/9X6/w4fPq+MxVi8ddK2nk9zoQCNDZP8Q9v9tBny+Kbi3mxzdtoqrAga7b8Xg8RsYlIOuzUFFRweDgIPPrarlvvpNPfruFDl+Er/x6G19//wWY1LFviDp9EX70cgt2ElzQUIjVYpmR9MLFXg8Lygs40D7A/754gI316XP4E7s7MZOiwmOntmT81ukzwfp5Xp541cyh7gD+4Fvn4Z+/0YoWjzDfo1Fb6Jx2q/cVy8q4ZmUFv9/Tyfde7eITaxz09vYyf/58FEUhlUoZN1eZ696u1iE+/4djFMXi5NnMXLSknBuvvRybzcobb3QZ80zy8vKo8niI+4tpKM3jj/t6GQpF+NGf9/DGkS7Or3HQMK+K4uJirFYr8Xh80jcroVCI3bt3Gzdwg4ODxvzfyUilUsY+HA6HcT3PJJwYGUilUimCwSCHG48QS6YocOcRiUQmFEgpioKmaTQ1NbFsxDp8LS0tRu/CWIHURNNaA0ZjFKRviPfs2WNMFci8Xtd1ntrXzVef2E/7UPoaVuHQKDBbOb/aw0f/6goOdAbYfnyQcDzJvg4/zx3q5cXGPl5sTAfW84tdfPLSBv5ybRXqOOeAE4/h+PHjtLS0UFFRcdJzZnt7O9FolH379rFixYpRWSkPHDhANBrF4XBgsVjw+/3s3r2bdevWZfV6JBIJDhw4gK7r9Pf3k0wmsxq9Mtdvt9tNNBo1hrGeeC2MxWIcO3bMmNc3Xlr8TO+trutZvUGxWIx9+/ZRXl4+oz1VmeCioqIi67ORuVfLfH6PHDkCQOWIRWgzow0GBwcZHBw0PjNdXV3U19ePuqfN1M949yKZurRYLFRUVNDf34/ZbKa0vILt+xrZt3U/bW8McaQ3iNWskmczo+ugKFDhcTCvyMnKKg8rqjyjEgVlrrPjBbyZsns8HqKJFLt7EuxqD9DnC3OoO8DxRB7d2ltZGYvzrBQ400Pd82xm7BYTOunGuOZ+aO6DP77Qxr0vtLHEEWCVV6cpYucdm1dTWTC1qRZnRSD1s5/9jNtuu43vfe97nH/++Xz/+9/n6quvZv/+/ZOKkkfenGTGfxYWFrJq1apR2/b19fHqrgPsDTh4viVMY08QixZnifmt4V0pujiW8mJGo9Y0iAUopAAzKYYiGruPBtCPBilSQtSYhvDrQzSlxs+G4lXCzDMN4gcOYCKlK9iUJGHdyuHuQWh867UuJc65+T5qigd5ZcBJWb6dUreNBaV5lOXbs8YOBwKBaY8R7ezspLu7m+XLl8+peTCpVIpt27ah6zrnnnvuKcuWWZgyIzOHzWw2G2OUR6qrqyMajdLd3Q2kkwl4PB46Ozvp6+tj0aJFxkkwFAoZrZw2m41YLEY4HMblctHU1ITNZqOiomLMMgZjSQaCcY4NhHjpSB8vNfaxr8OPgziLzH0o6FSWePngleewaXENyUScN9980ziGiVIUhfMbivndpy7kgZeaueupg7xwPERbZzeLjoW4+S9LaCg9edA9ODho1GFRUZERSOm6zraDLWw/NsDR3gC6DjG9i4OpUnTGvlgrCmyqdnJ+pYmrz1nJwsqT99SMRdN09nf6ee5QD4++0khBtJOQbuV4Kr0vrxKhvcfMs4esfP/5JlaW2jjPM0RtoQuULhYsWDDh1seDXX6+9sQBXj7Sw0pzmKoCB/e8/zIWVI6dec3pdGIyqTSUOPj95eu4a0szv9rexoMvt7Blfzf/fv0qLlg4utV25LkqFEvy2Qeewu/3Yzer3PO357GiKh1sKIrC4sWLeeONN4wbtpE3EicOL33/BYv42Qu7eXF/G5/55S7u/uvVYwZT33jqMLGkxkVVDuqKbLjd7kn3LCZSGo+8np53+L5NtVhMKoqicOnqeg60D9DceJCdh6pZvaiOJ3Ycw6kkWFxeMuPzChMpjUfeaCeePD1r7r1jRTnfdrsIh4d49XAn69asoicQ5T+faaTcFGRNrZeysrIZOc47rl3O6y0D7O6L8PT+Hq5ZWUYgECA/P9/oJbLb7bhcLp7e18U/PrqDaAIaCvP4q9WlrFjcgM2WbqEvLi7OCqQyN3Rl+Xa+9uEr+eHvX2Z7Sx+HjnfR2KqyIVlK/UKNoqIi43w40UBK13X27t2blUhhaGhoSoFUpmcicx7PDAPr9Ud46MXDHN63j1A0TjgJZlL89xt9xAKDJDUYclazxjGAx25md9TL2roSllbkkzeicSdTJ/PmzaOlpYWenh5qa2vJy8sjEAgY579AIDBmj0hLSwutra2nHMIGbyWt8Xq9FBYWoqoqqVSKcDiM0+nkpSN93PfnI7zWnA4Oawud3PVXK4m17TO+/04zbF5QlNUb/NreRl7b10SHUsxTB/tp7gvx6V/s4kevtPCv71rGpvnj/91SqRR79+41gvLOzk5qa2ux2Wz09/fj8XiMa1oqlWJwyE9/MEoonqLxma3U1dezuL6Wco8Dlbcy5a5cuRKLxcKOHTsIh8Ps3r2btWvXYjabjaVeMo2Suq7j8/mygrLM393hcOBwOOju7jZGlYzU3t5u1E1HRwfz5s0bcxTCyIDb5/MZ+2lvb8fv95NMJmcskBo53DRhzeeVo30kUzqD4Tjt/X4Cx/pRlAF+dyRKoPs4VouF0kgJBd3N5NlMLCxz43K6YHCQtrY24/gyC1KPvN/TdZ1du3YRiURYunTpmN+xTGOB0+nE6sqnQy/g+cNBnn/yIIvoQEWnVxvAqiTp0dyE9NG9enYSFJuiFJRVsKa2kDU1XlZXewh2pIcBV1dX09XVNWoIcntPPwc7/fymRWXLw00EY0mq1AAlahAdhZLScq6sK8brsnLegiI21RWOG/y3DoR5sbGPFw738vLRPrqjJg73DLKz+yBfeb6fhtI8LmwopMHUx8KyfBYvbJjQ3+usCKS++c1vcvPNN/N3f/d3ANx777089dRT3H///Xz961+f8H4yXaWhUMgYfjUwMIDP58PhcvNGywDbjw2y61g//raD6Ux7qDQni0lhodaewG0yk7I4Kc6zUWJL8g6XGZfNjK47sZpUCt12tFQhEawkvHUc6QnS09+P3hfDbLFyXk01ZlUlHujH4crH63Gj6ekhgTZ/O+aEDX80QTCaxGk14bKZ8ZRVY/GUcLw/TEt/iJa+ME29fvpDCfpDvTx8dB9J3roRXFnlYaPbh8ecoNLjwDMina2mabS0tFBUVITH4yGVStHW1kZZWdm4Lc7JZJIjR44YX9KTnUy6urpIpVJUVFSclnlZAwMDRgrQ/v5+4wSSSCTYsWMH+fn5LFmyBEi3urS0tABvje3PpKcfT+ZGNRaLGQGpzWbDbDaTSCQYGhrC603fsGcugpk1ndrb2wmFQllZso42NaPY3YRMLrrCCkf7o2xtHqCpd3TGIQWdTd4IDYUFrFhQy3su2WjUqclmY9OmTei6PqUhCKqq8NGL6tm8oIiv/W4PkbYhDrT2cM23nuHSZdV8/JIFrK4pGPW6zDjyjM7OTpo6+tnbPsTh3gjR4QtfWLdS5lKpc5g4pzyfmpoaUprGQChB22B68djjA2GGwnH8Hc38uTPJY28ew1pcy5XLyrlyeRkrqzzjL86XTLGnzcfv93Tyu12d9AVjKOgsNvXitSucV+Fg6YIyTFocn09NX6BCCf7cpuHvG+C1gQivNQ9gNak8ejDOuSsWcMni0nHnEfQEonz7mUZ++tpxNB1KzHE2zy/g4mVV1FeMP39BVVVjPqMpFeeeG1Zz7ZpK/vmxPbQNRvjbB17jgoZiPnpRPRctLDaO1+/3E4mn2DMAOw4dI5JIkWc18+HLV7OuPvtC6HQ6qauro7m5GYfDcdKeowuX1eAf6OXne4Z4bHs7KU3nnv+zOmuYz0OvtPCr7emL33vXFKOkJp8oA9IBzJd+sw+Av15fbQw5vXTjSh5/s4WOnj5+/ewbxOMJejrbKTXB+oXVM957nkhpfOnJRmBqQ1Mmy2JSee/mep54pp2tjV38fTLFV363n0Q0wiKvzvLK/CkPkzlRidvGf/3tev7mv1/lja4kblsflVVd5OfnG8P6CryFfOfPR/jWnw6j63DxolLufPd5xEL+rDklJSUlxnp6LpcLl8tFaWkpiqJQVV7K31y0goUlR3nlSD/b+lX+++U2nj44wG0XVpKv6caQ91OdjzRN58ixNtr7hohpKmZPOb6uY2DqZ4y2rFPKNBqaLFae3NvFlv3dHG9sJRkNMah141UjpFDp0fKoUENA+gZ8UHNy3K/hCMWxKyEeP74Xv57+7nidForzbDgtKkvVDmq9DmyVVgKKg6PHOvjd4eeIu6soiHdjjgZQlHSj0KtDuzDbnaiKgklVsJtVXENHKXaZaG1tnXAglal3t9tNR08/Dz1/gMcPhTjcnb6W28wqf39RPR+7eAHJaIgdrW8Nw/L5fFlTAVKpFPHBLlaV2biy3MW/vGc1P361hfufPcqedh83fP9V1tUWcON5dVyxrGxUL3lzczODg4OoqorNZjPm4ySTSY63teGLgd9Rzv7eBIdbu1AHjxHXTYR0KwVKBHa349fttGiFzM9X2ZDno7o4nzJfkkVlDlatWmWkvN63bx+rVq3C5/PR29uLoijk5+fj8/kYHBwcM5Cy2+2YbQ72Hz1O445GHmtMMBCO0xeM0x+IkOdrJhaPk9IVSvIs/OxAhKaIg0RKo6LAQb7dDMkEBcEW8h1m8u0WfFoHDm8ZRS6r8TfJZLCbzpC/REpjf4ef3UdbaWns5ehgkueePPHar7PSPIgJjRQDmNDo0PLpaW3J2qrIFOX8ogj1xS5K8u2UeVyYlXSikpGBVCgUMr4jhw4dwuVyZZ1jU5rOvuO97Dw2yJFggD/9sot46q01qlJON/PdKTa6rRTl5WFzujGX1qOgk4hF6QxpNPWGGDh2CC0epq1T5eGOIA9vPU6BEmGxbYjCPDvxoxa8qSEcqSDPtm0n7ixmf9sASk/6XnxvEpKYKM+3s6a6kIpkN2sW1XHN+ROfHlBT6OT959Ty/nNqSaY03mzq4dkXXubYQJimAY0jPUGGerupNg2hKgp6fsepd8pZEEjF43G2bdvG5z//+aznr7zySl555ZVJ7SsQCJBMJtm+azddvjC+SJLBUIzfHXyOpzvtBGLpG/JadZBCNY5JVVhQ5OQ9NU6uumgzvccb8fv9LFq0iPLyco4cOWJ0zxYXF781rtRsZnF1JQ0N6YtlMpnktddUEokE1dWu4RWawe3WWb8+PZ5V13VefrmPZNLEqlWrsFgsRKNRUqnUmBPlfOEEv3zqeTr6Bqm3euiK2+jyR2nuC7Gn3Ydu7sRM+stQvL+H+g4bpfl2XKkAyYF2CvKcXHD+Zvo6jtPe3k4wGGT58uWj6kzXdY61duAPx0ikNPa2dNEatdHd1UkkHKJ23ny8bjv5dgtKKsaevftRFWg5dpzammry8/Nxu92nDKo0TSeW1IgkUgyG4/gjiXSAmUjRNhihNxgjEk+R0DRMwxcpVVGI97eSCAyS0jSeaQ6jFtaSZzdD2EesvxWzqlDao1KQ5yDe00IsFMCZ56GyajFmXaMtbqa9qR9VUdIXQ9IXRFBQlXQgpQBK0Tw8RTpHB+IoSpyoKY++/i4GdzZiK67BF47TdfQAkUiYWJeFULQPbaiDwI5+QkkdcyxAOKGTTGWP702hEtFcKORht1godlvZWFfIRQtLqLUE8Pd1YbFY2LRp3ag6nImewRVVHh792AX85hmFF/Yeo6M7wpP7unhyXxeb5hdy1fJyzltQRH2JC5vZRH9/P70DQ/QEYrQOhGnaepz+YJS4bsan26m2JllY6ubaSzZRXWDj8OHDKIrOquUFRsA50o4DR3jhzSRHe4OogxEO9fRzX3eQ+549QoXHzsWLSqgrdlHospJM6RwfCLPt2AC72oZwp4KkUBnSHbisJi6u0FjuKWRFdeHwMMgQmMBb4qZW01il61xan+Joj4njA2b2DioQ99N0vI0nm2Pwu/2srvZw+dIyUrpOMJokGEtysCvArrZ0VjOAd64s570LFPSon/KyslOe5PPy8oz5jEVFRcy3R7jzfBt/7nTw8M5BXjrSx+tHulhVpHLZkiLKKirZtaOFfR0+dsdKWWzWKXFZ+eg7NnHumqVjvl9NTQ0mk+mUAU9eXh6Lyty832LlzjdT/GZnes7d596xhMI8K7/e0c7/+106+PnMVYsptQ8SCk2s11NBoWp46ISCMm7WOYvFwgeuvpBPP/gnzB0++p9+nSI1Qo3XwcolE2shnKpKYunv86y+C7z33HqeeeEVApEY1/zn8xzujVBrCnHZ0lLKxkmRD6PrcCLWz/PytetW8G+PvcGO1n76/7Cd96leeo91cLwvwL3b4+zsSadSft+mGr7ynhXpoLYkuxfC5XJRWFhILBYzeiBHDmErKyujoqOD955Tx7s88/nS7w7Q0h/mtscbOdc1wNJSO4PmwzTMq8JmVklqOpF4iu7h69JrzQPs6/AxEIyxUOnGqiTp0PLp16KsNHeh7OngK6+G8bhsVFrjlJvDFOU7Wbp0KbUl+ZTl23FaTGi6Tn8oTttghINdfvY3NtPfcZwjARNHEuk5xZWqQoVZYZVXocpbRElJCWWVVXQfPYCqKhS5rGzctIFWv86uvfvo7emmOunitT4zvYEYg+EEg+EEVpIoZh8HOv3ctXs7NpIsNfcBOh1aiArVn76hxISFFK1NjfTrb/1t85QYDaZ0QGs1txDa0kNDhZelFfksrchnUVkeZW47qqoQCoXS82o1OOJX+PGug+zef5zwYDe9KRdtWgFOq4kbNtTwdxfOp8iuYLeaaO3Ozj47NDSUFUj19vYaSRm6u7upq6vjE5c0cMOGGr712AvsamxnqL2ff/t5G5835fMXS0q5pEplebWX8kKP0eNRU7+IzqEIe4/s5k8Ht9HjC9MfipPSdDSO0pQqwqXEqVBBsTpx5lfhVoMogR5MsRg+LYw/oHMoFOD1riT37HoRi0mhyGWjwWtmtXOI8oEwmrOQZHAAXdeprKzE6/Xi8/noHxjA0h/iSE+Qo71BWg4fYmBgkH3PDdAWtbLC3IUJjSOpMEE9PUSwUAlTa4oS1010afkkfYMkfa0cSJahoxgZMtOjhnwkUTGjkdrXw61P9+Mxp1jnHCTfYcFpMfHn3m248/Nx2y247WbybGZiCY1QPJ30IJP8IBxPEoqnCMeG/48nIeInEAxyLO6iTA1SofoZ1JyY1PS8WqvZRIHDQrnHjjMIxII4rGY8Thum8sW0+WIEo0kGw3H2d/jxhVIcH+jn+EC6N6klVcgad5BKj53XBqwsqiqhviQP3d9rfBbiiSQvvr4DT+0S9ncG2NrUz2vNAxQleihQIrRrHuJaHvUlLq5ZWcE7V1ZQnaewZ88ebDYbgUAgPaplQxVtbW20tHRx+coFFBfPZ+vWIIFoEr/ioiVZwK7j/SS6uoklNXYMmOjqGxr+e/gI6xEOpyJUqj5K1fSwvr9fuYjLlpaytsY7oeGmp2I2qZy7sBxloJpIJMLnGpawf0Dj1a2vcbzHgj+aoLWr99Q7AhT9DF9oqKOjg6qqKl5++WXOO+884/k777yThx56yMgsMlIsFssaMuD3p1ve/s8X7qPHVEiBHiCJiaZkIQuHh001popxuPI5v9ZOHb2UexxcdM46WluaiEaj5OfnG+Oozz33XKPVt6enh2g0SnV1NY2NjUY6y+XLl2edzDKZ3E6U2VcwGOTNN9/EZDJxwQUXTCgCb2pq4vjx45SVlbF06dL0+wRjPLOvg4O73mQoFOfYQARN1ziQLCOGmTrTQLqVCDiW8jLP7CPPqqIrKkeVasx6HK/mo093E9QthONJFind2JR0ABDRLRxOlbDS3ImKjl+305QqBBRKlCBVprdO6ooCZlVFUU1ETS7CJhdRbCgmFXSdeEonmtCIJlLEkuOv0q2iYSFFbHhemFuJYleS9GlOVpi7MQ0HjBoKe5Ll6KjDwXD6BHM85SWJSr2pHx2Fg8kSY19T5VJiLDT1kUJlb7IcOwkWm3vRUNibLMehJFho6iOum1AUsJDiSKoYTVcotUapc+kUOcDrsFJRYGdBuZdVy5caQ2N8Ph87duwAYMWKFVPO7jVRHR0dHD58mGBS4bkBD4/vbCelaejDS9GpChQ6zFSnuiAVo1fLo1gNoaBjUhXm11Ry1ablqP3NuJwOI3vf/v376e3txWQysWbNmqwb8ng8zuuvv04ymcThcDDoD9IehG0hD88d7iMST6KikzphOTwFnRp1iGpbjJoiF5dfcgGb5hWwY9ubRn2FQiGam5ux2WysXLkSq9VKW1sbra3pbHFFRUUsWrSY3255jmN9QXZFC3n1eJikNv7pcm1tAZ97xxI21Hp45ZVX0DSNDRs2nLIHpb29ncbGRhRFobCw0BiLb7PZqGxYwY+efoN9h5uMVsCQbsWlxElgQilbxM3nVHBBvZeS4pOnH5+IZDLJSy+9BEDEu4B//PkeIwOSSVVIaRoKOn+zaR5ffucitm7dCsB555036UQA4XiSZV96CoD9X7kqq6Vb13Wuu+8lBjqPU6SmW2Tftb6Bm6+7dMaTk2SVw7YNpzJ8rvnMZ2CSWVQn4+4f/5aXD3dxKFlCBCs3L0pyYb2HlStXjpo3MhMe39HGj379NGhJBjUnXjVsnJ8KnFa+/O7lvGdN5bTqt7e3F4fDQV5eHv5ogu89e5Sfv9mKJdJPheonqNs4kioGdCrUAEVqiGMpLwH9rV7S9M3UIGaLhUHXPIryHNh9zfgDQY6lvJSqQRzKW2voxHQzR1NFxMdpF65WhyhWQ3RrbswFZVy9ooILFngpU4MM9PUSi8VYuXIlhYWFvPTSS6RSqawh/Zlzn9frZfXq1fijCdoGIgyF4/T09bFv716ahlIc0UtJaTorXAHqXUnMqkosqaFZ7GB1kfL3ojs8aPmVpHSdlAbRvnb6ezrxR9PH06W56dLSjR3FShCnkmBAcWN3uCjWh8hPDdGbsNKcSn8+CpQIdaYBigvcXHjuRt61uorQYC9dXV2Ew2FKS0tJpVL09/cb9ygul4s1a9bg8/koLCxk9+7dDA0NGXNUKisrWbRoEdFolK1btxKKJdnd5uNgl5+2sIqKjktJjyxQFFAVhQHNQXPSC+gsM/VgHb4f6NdceG1Qnw/lRR5qivPxmOKsXbHUyESXyX5rzy+k0xflcEsbRyJOXulWCI9YKy19Ux0koluwK0msJoUWpZyoprJI70BDY0+i3Bh9s9SUvi85kiomqNtosPpZ6E5QVFJGaU09XoeJVPcRLKSoX1CPt6ScF19+lXAkyoLFSyjwFtPhi6SDn65mAr5BBtUCggNdBMJx3gx58SphStS3RvS0pQro011YSZLANO6Q9ROpaKwwd6Gi02MpY5VXo9yaYP6CBVx73kq8ruxz69GjR41059XV1TQ0ZDcw6bpOU1+I3zz1HMd6hugLp3glWMQ80yAFSoQeLY8OLd37ucjci9ecpFcpwJkYwoxm1FnGalsf9V4zC5cs4y/WLGBx2dhDuV977TUikQjLly+nsbHRWNeqoqLC6M12Op1s2rSJQ4cO0dbeQTBlwlS6gHBcwxeK0N+0B00He3ENjkgPtV47525YOyvnRIDDhw/T0dFBdXU1Ho+HffvSw2D90STHBqPc+oFr8fl8J22EPON7pDJO/KOeLFXz17/+df7f//t/o54PJZIUqOlxqSFrIUsqS2mw2SlSwtxYU8q1f3EeO3ZsJxj0UllZSVV5KQVuF9u3bzeCqLy8vKyhMyOHhtXU1NDZ2YmiKKO68IuL01maMnNoMhN0+/v7qaqqMsZZ5+fnT/hCV1RUxPHjxxkYSLfe9PX1oes6Vy8toixSgtVqJaWY2XG0g3W2UvoSNrQuH5GYlVA8RQ0+0DWCseEUsMkAFaYAJiVKMSF8ySLcSgqbmkRDwW5ScJp1ltpMVOg2FAW8SQ17MkRjLI980sFrp5aPDuQpcZx6AnMqgZoYIo8hXCjopFuE/bqdwVT+8AVSx6NE8aoRIpZ8zHY3JgU8Spj51hBuC5gLizDbnWi9TeiaQsqioybyMZktmE0qqp7kgsJyQooDeuOoKRtJTaNesROJJ9Eidnyqm/mWQnQdND3dZq4b/5/wMzrDGTuN5zVdH97OioMgLrOOJ8+Gx6SSn8rH6i7govL5uK2Q6DiIzaxiNavYrWY2bNqMx2Wj0GlFVdMTl/v7+zly5IixpklpaSllZWXGBNOysrJZD6Iy73P06FHySPHPl9fynjqNNw4eZ3fUw7b2CIFYAnesB5QYSUxYPGUs8kZY4NaoK3axctmS4c+xF5vNZvSeLV261BgCefToUdasWQOkh5geOHCAZDJJXl4eq1at4rXXXmOBJcW7zqvhnhvW8PifX6W5o5ceawVDCRPOuA+vKUqNx0KZs5QCpwVFUVhSbGZoIB2cZNLDFhUVUVBQgNPpNHru6uvrjYxAFRUVWK1WltdXU5LXwzVlZZTU1PPbnR3sbffhsJrIs5tx28yU5du5cGEJ5Z709767uxtN03A4HBNazqCiosJIBpEJokwmE7FYjMH2o1xcpXJuWT37+xIc6+xD03VsZivnLpvP9ZedO6OBhdlsNrKBnVubx/f+ahE/f2E3b/RASDNxrifEmkoXH718vjE0zOPxTDmb2ngUReE771/P4ztKiXQ1YyfKX168dk5meJyqS5dXUZlvwVMxn7z8fLSudKPfVJPPnMp1a6vJi63jD1v30R+KE4opFHgL+dSKRXxo8zyK86aevjhjZONgvt3C569ewv+9YiFb9rSzdetW2gfD6KkEtlQIjxLFrKoUO3UcZeWsn+dlXW0BAy0HUFLFLFrYYAwtbGws5nDTMXzRFOGYg3ASBnEz2NdNIBTGFh1iZ6yITF+iqkB5vp2GMjeLLSaKLfmsW7WMDUvrsz5DesMCksmkcQ4oKSmhu7vbWBsQ3upt9fv96eRALhfLKtPbt9oiFESLua6kxBixEY1G2bt3L6qq4na7qaqqIhwOs3fv3uGbyHR2OV3Xee21ENGoHXdBIcfaOwkmFPz58zl8rINAZy++SAKvHiEQsWFR4sTRGNIcFOfZuHBhMefXF+AOHMOm6thMvRzc3Z21UGtPT49xvLW1tezdu5dQKMS2bduMdSszc7wWL17MwYMH6erqYt68eUZG4PJiL6uWLaa5uZnOoTCHuwMc6lEYCKewkiSmK7Qmh4O/PBsV3krmW4NUlRRw2QXnUJ5v47XXXhvu9dIAc9b9j9frTSfkiASoclkorC/i71etIt9TQE8gRm8gxq62IV482EWi6xC2WIJYUmcwaaU3pQA6AZMZpxKn0JygsLiAhhIX1bEYhS4Lm8/dTF2Zh2QkyK5duzCZTJx3Xj1NTU20x63YbDY2LluQnj+3poG2tjZK8zSWLSw21ikaKjahFxWxYcMGjhw5wtDQEF9d0MC+Q0fp94cI62aCwRBJm4eIYifWd5yIZmLIUohqc+O0mXFZzThtJpxWE06rGZfVZDyvR3wMdaSfX94wz0hxv3ZtAx7X6HNrpnFOUZSsDHcZiqKwoCSPq9bOp7e3l9LSUqrqFvLCnib27t3LQFRjb8JNa78fpx4nloTjSSvVqo0SS4wGt0phaQmrXD7meSwUWF0oCpxzzpKTzt0sLCykvb2d5uZmY/5aPB7PWhg4s5hwd3c3JlXh4nWrsuatHarQhzscwuDJw+12Tyuj3qkUFBTQ0dFBX1+fMQ+utLQUpbeXBn1ii2yf8YFUcXExJpMpK1UppE8g401M/cIXvsDtt99uPDZ6pNZX4/Xk43W7uOC8c1FVlWg0yuuvv46mJTl48ADBYBCTyWSsFeFyuVi2bBl79uwBOGnU7HQ6WblyJbquj3nj0dDQgNlsJj8/n1gsxtGjR+nr66OqqsqYgDle9rWx5OfnG3N12tvbjZvvzPh7p9OJw+FgVSxMbW36hnz7dj8mk4lUKkVS04jEU0SToGkpCkvKGerrNoa4qaqCxaRiNRVSV1tDX18v8XicwsJCBgYcOJ1OY5LismXL2Ld/P6mUxqp1G7Da7MST6d6mgcFBenp6CPiGSMTj6KSDEbOqYLGYKfB4sJpVQn4fZlN6yF55eTmBQIBQSAUyJxUNmy1B1Dty0ng+lZXpVtb29nbKy93U1dWxdetbK2hnFtgFL+ecc86MTWbPtBrl5eURi8VIJJxZPZGvvPLWeiAej4cFZdk3UKqqUlJSYlxo2trajPT6kO6xmEoq06kwmUyUl5fT3t7O/v37SSWTrKst4Pq6WubNm8euA40cbWrGYjaxbt1aqkuL6OnpYf/+/cbxjfx/5DEuWbKErVu3MjQ0ZKwJkkmZrKoqixYtwmq1UltbS3NzM8eOHaPBYqHCnqKivpCiojzmzZvH9u3bYbgnUVVVPB4Pg4ODRlYgeOtGb6zGDEh/J0beRNXU1Bh1Pn/+fG66YD6QbnkfGhpiwYIFo4ZUnjiP4VRUVWXp0qV4PB7a29upqalBVVUOHDjw1kKEDfVcdXkd+/fvN/Y/f/70eg/Gk1mnJBgMkp/o5wNrCvnrZIqEpuKypBtyOtpajV79E5demCm1RU7+8fLFaNpCEonEtNYpmYucDgdVBQ4WVLqw2y3s61ZwuVyzmqznwrVLqS6wG3M5amtrJ5TNdDpsZhPvWltLncVvBN9QYPSAmEwmzj9/LaqqMjg4iF9PYLKYszLceTweXDbzcAZPG6tWrTKGGW7duhVd11m1biOoZrq6Oigv8lLoLQBg69atRKNRFlYWjfq+KIqSVd+LFi1iwYIFWc/l5eUZ18Q33niDgoICY9mGzPVtZINJZmHekTLJC8LhsJFdLhgMEo1GUVWV1SuWEQ0FKEwkKCgIscZqIjm/DpvNTu9QwBiRYbdZOf+8zXhdNuNYwuFS9uzZk5Xivba2lmAwaCRSUFWVwsJC45qcOR9mgqjCwkLKysro7Ow00nxnGofLysqorq7G6/Vy4MABGqpK+Kdly1DNFlrau7HY0tf6AqclnSFN1+nu7sbr9Rrf2aqqKuNm2mw2Z9VX5j4lmUwa85ndbjdmk0plgYPKAgerawr40OY6Dh8upKOjg0RKo7R2AXkFRVhUle72Y/R0tlNbVcHKFcuHe9PSw8xW1Kb/7rqtwGgk2rZtm/G3W7x4sfH3KSkpoa2tjf7+fgKBQNYoofz8fFwuFx6Ph6GhIY41N+E06+SX5rNw4UIOHDhgTFPwlY1M3hXGarWydOnSMYevA+zfP0iPN/097O3tNephvNEMmTnshYWFJ53zWl1dTSwWSyc/cVq4ZuNCCpN9JBIJvrBqBZFIlF377KhWJwuWriQV7KfzeDNFRUXU1NSwa9cuY18mk+mUmVkzgVSmbi2W9Pp1mY6NzP1oW1sbmqZhtVpHXYcXLlxINBo1kpeMzJQ8GzL31JnvhMlkYuHChUbDyUSc8YGU1Wpl/fr1bNmyhb/8y780nt+yZQvvec97xnyNzWYb86Jc4rbjclhoqK8zbo7sdjt1dXU0NTUZLTQ1NTVZgVBRURGLFy8eN73pSCcLtMxms9FFGw6HOXr0KENDQ8YCgjD6RvRkMkOFenp6jCAKMBZLdDqd5OXl0dnZSSAQMCZJer1eI6VogctCXV1dOr13bIgSdzpDl8lkYmhoyDhBz59fRzQaYWBgwIjqq6urCYfDtLW1cejQIRQgz+WkpCC7W7i2yAUN1ei6TiwWQ9d1ksnkW2sfxEMk4mCzmIyTWCZwVlWVefPmEQgE6OvrIxqNYrVaKSsrM7q+M2s+tbe309/fb5yc3G438XjcuCEsLCyc0YxgmTJkkphYLJaslhWXy2UEUicLkDOfi7KyMtrb2xkcHCSRSLBkyZIpr3E0FZWVlbS3txsnecBY5DXQ301Rno3FixdTUZr+jGeSaqiqetKeGbvdTl5eHsFg0Ah6+vv7UVWVlStXGi30VVVVtLa2Eg6HOXDggPH6/v5+44RXXFxMRUWFEbxmAqnMYn+T7b1zu914vV4GBwdpbW1l4cKF6LpuDFtwu91ZE3cTiURWq9ZEKYpCVVWVMdxF13Xa2toIBAIUFhYawV1DQ4ORQGW2ei4y65R0d3cTiURQFAWb2YSN9E1aJBLJWnx6ooFUNJHihu+/CsDP/2HzhMuTmcR+OtwQX4IK/Nx6gOkncz+5zLnG5/MZ56BTnd9PrMMTUwmfis1mM5LrnG7z5s1LJ1UxmXA6ndTU1LBnz56s1OiZpDvl5eVZ57aR58eysjLjPGqz2XC5XASDQVKxMKqq0tN2jKGeTs49N73Y88jsbaeiquqohhFFUVi+fDnt7e0MDAwwNDREKBQy5jYCpwxGrVarcRMfCATwer1GUFlYWGic4w8dOmQ0nrjdbtauXYvP5yMcDuNwOHC73aMCbafTybp162hpacHpdBqJnDJD+qLRqHGD7/V6jUyxixYtorGxkWAwSFVVFYqiMG/ePHbv3k1HR4dxzsx8v/Py8tiwYUPWtXtxXRUnUoYbOkeqqamhvb2dVCqFx5OdJEhRFLxer3F/Zbfbx21MqKmpobu7G4fDwcoFNcbfqsBSRWigm/6+Xnp7e43PTmbh8cz71NTU0NjYaNzoV1RUZF2T8/PzjdFAmSDK6/WyYMECXC5XVgOcpmmYTCYaGhqMXstMSvLMvjOjE+LxOIcOHWLjxo3GfVZPT4+xHEFmJAJgXF9dLte4iSvMZjNr164d83cjeTwe1q1bZzzONM52dHTQ0dFBPB7HaTVTV1dJXZmbgBO6Wlvw+99q9PB6vUYAeaqApqDgrQYSSI842bdvnzFcVlEU+vr6jHvQzHMjqarK8uXLOXDgAGazedaG9GVYrVaqq6uNoa5lZWVYrdbhDoGBU++AsyCQArj99tv54Ac/yIYNG9i8eTP//d//zfHjx/nYxz42qf0oioLdbh91EsikZQyHw1gsljG7UisqKmZksb0Mp9NptB61tLQQj8dRVXXSN0+ZQGqkzAkyc2KGdMrqzEXB6/XidrsZGhqitraW4uJiY50kSB9reXk5wWAw68vudruzPnher5eSkhI6OzuNyaxFRaNbBTMy9Z+xatUqgsEggUCAWCxGSUkJeXl5Rg9BYWEhpaWlRmvW9u3bCYfDLF682PiCJhIJIzDM3ARmjsXr9ZJMJo2EICNXD58JLpeL6upqQqGQURcjT4wul8todZlIT6Pb7WbJkiWTWndkJrlcLgoKCoxMhIODg/j9fgYHB0mlUlit1qzvjslkYuPGjadcoBHSF+tgMEhnZ2fWUJORLXhms5nq6mpaWlpIJBKoqkpBQQEDAwNEo1GjJSlz0221Wo2LIkx9CFpNTQ2Dg4N0dnZSV1dHIpEw9plJJTs4OEg0GkXTNHRdN7KaTVXm5i0zzDBTf1arldWrV2etYzLTRq5TAunvbHV1NX6/n8rKSvbv3298zz0ez4SDHE3X2d3mM36ei/YOJwLQZj3dRDrQPnbsGP39/UYdniqQOhPqcDxut5tzzjkn67lMavT+/n5cLpdxQ3li5ler1UppaSnhcHjUfBC3221cJzLXtng8Tl9fn/FZVlV1WsNPCwsLKSwsZNeuXcZ5z+VyZaWFPpXMekZDQ0Pk5eUZQWOmwaWsrIz8/HyOHDlipKLOBD/j9WRkWCyWUaMTTCYTS5Ys4dChQ8a1ra6ujry8PEpKSjCbzaxbt45YLGYEmZlrfyb1dn5+ftb3e6rXHIvFQk1NDS0tLWM2vIwMpE6WuMbhSM+vPTHgzc9PZ35tbW3l0KFDxt/9xB6UqqoqSkpKGBwcJBaLjbrmK4pCSUkJ7e3tRuNGQ0ND1rnc6/VSXV2NqqpUV1djtVqNntXMfY7H42Hx4sUsWrSIeDzO9u3biUajHD9+nPnz5xuBVSqVYmBggFQqhc1mIy8vz/gOTHaB84kqKyszhrJljjnzGcz0viaTSaOxurKycsKNZSaTiYKCAgYHB3E4HHi9XmMkSVVVldHgPfJ+cCxms5mVK1dO91An7MRzCjCp4YRnRSD13ve+l/7+fr7yla/Q2dnJihUr+MMf/pA1RGci1qxZQ1FR0agWKVVVWbx4MYcOHRp3jYHZUFxczPHjx43ofSLZ7U408sNQX1+fdYJwOp243W4qKyuN1onMaxwOR9aCxpkgJHOiGSuoG/nFt9vtxsk5cwI9sTynkknveuIJpbS0dFRrf+aiEI/HjYtafX191r6WLFnCjh07stbTURSFjo4OHA7HjI/Dzaw0Pp5MOTMpXCez31xZunQpPp+P4uJiXnnlFZLJpDGJdKwgeaKpYEtKSmhubjaGk7jd7jF7dDK9UpkU+tXV1bz++uvG4r8nXvQLCwuNC8JU55J5vV6jx6y7uzvrmDINELt3785a6X0mhrvZ7fas9NMZY30nZtKJAWBJSQkFBQVG4FZbWzulXjeRbWTDRKbXZDIjDs4GIwOpTCNEQUHBmI0QIzMEjuR2u41RFSMXO89MIIf09WsmzpuZ9bcyaxZleg8m0ttVVFREb2+v0aueTCZxuVxZ5wqHwzGjN5AFBQVZwWtmQdUMVVWzyp7plcr0xszksN158+aNu4zKyGvvqc5t4zXczJ8/H5/Ph9/vP+lUiMyIlfFkAilIBx0nfhbHuq4rikJeXp4xcihzXlQUBZvNRkNDA/v27aO1tZWSkhJjGRjA+L+kpASn0znrgVR+fr5xP2ez2Vi6dOmoe5FM42jmGjoZmUXeq6urURSF2tpaqqurR90LZHoi56rJNFSeFYEUwCc+8Qk+8YlPTGsfeXl5435JPR4PmzZtmtb+J6uystIY9qHr+pR6TKxWK/X19UQiEaqrq0mlUsaNb+YEunBheg5Cb28vdrt9zBOd1+slEolQVFQ0brf7yC/+yA9hpjs+c5GcLZnFFsfj8Xiora3l+PHjxgkj0/LhdDpPe4Di9XpRVZWioqJprT1xOtlsNuMiUVBQQF9fnxH8TKcLfmQPLKQvimP9PSwWC4sXL6a3t5e6ujqjJTYYDI4ZdBQVFU07kMoMVTly5Ag9PT1Zrc+aprF3796sIArO7ADDbrcbrauZz+dIHo+H4uJiAoHArM2PersYOf91vCHnZzOv14uiKESjUSOj7VgjPk4m0wjl8/mMHinAGIIH4881maxMoOv3+43GhEwr/qmUlZXR09PDwMCA0ftSX1+f04axsRQVFZGfn084HJ7R77eiKOMGnCOHd0/1HiEzJKypqQm73U5RUdGUghGPx4PD4SAWixlz4SciE0hlGptHKi4uNkZx7Nixw/icLlq0iOPHjxONRo0hZRmzFUhlRjv09/dTWVk56n4uE0hB+vs52XuT0tJSY7hq5v1GjlrK8Hg8p3VqwmRZLJYJDZ+EsyiQOhvZ7fYJ/yFPZuTijhUVFRw/fjxr4qCiKCxduhS32z3uONjMhL+xblYzbDabMZRqZEuDyWQyxlafjkV4T6auro5UKoXD4TC+xLM9Bnc8DoeD8847L+d1MlUejydreMB0W5cyC356PJ6T7uvEHsmTLQBdWFhoXBinM/+tpKSEI0eOpBfCHZ7UnbnwZx6vWrWKaDSK2Wye9Qn8s2lk6+rIC+LI369YsSJHpTu7FBcXY7PZiMVik8rIerYYORQok1hmsg0eTqdzRMKgdE+fw+Ggry89qd7lcmWNTpiOTNAWiUSMXouJBhuZURFvvvkm8XjcSBYw1yiKwpo1a9A07bTe6C5fvpxIJDKtuZ+ZHpbpUBSFdevWkUqlTplcYaRMsqDCwsJRw0gza67t3bvX6LUqKCigoqKC0tJSYrGY0fNVW1trrNU2W/Ly8sZtXBjZKz7VxsfxPjcWi8XoDZuLn/0TTbQBRgKptxm73c66detGjTFWVTUr4DrRRDPENTQ0MDg4OOriMld6XFRVPW2Z7iZiLrfInMrIlsOCgoJp/41ra2sxm80TznY3ESaTaUYaI2w2Gx6PB5/PZ6QXXrBggZHVyOv1nhEXhokqLS3F7/fP+LxBkU1RFObPn8+hQ4dGzc19u6ivr6ezs5OqqqopzStUVTW9btVwz3hBQQGlpaX09fWRn5/PypUrZywTYibjXGYBbZhc77PVamXFihXGXJm5GjiPlXRjtk23sWsmWSyWSX9mSkpKWLFixbjDcy0WC6tXrzaSaDU0NBiZ7EbeB8xU0D9V+fn5qKpqrKc40+bNm0d3d/dZdb47c+/ixJTNZkvHWPOXxNlpZFrgmTjhmkymk/Z45lpJSYnRmuh2uykoKDBa1yYzBORMUFVVZSwbIGZXeXk5ZWVlb9u6nok5f5nFZiEdSHk8Hs477zwsFsuM12t+fn7WkMHJ3vzn5+dLj+5ZSFGUU/bgqKp60nnTc4HZbGbVqlXouj4rQ43Ly8vPqiAKJJASQkxRZjHA/v7+t0XwXFxcbCwjkBkCu2bNGhKJxIzNwZhLZuPGvvCExSVPfJwrhU4L+vD8vFyEM5Op67lSZ3PJWPNzZ3qR6Iz8/HxjPtfb4bwn3n5mcy772UgCKSHElM2fP5/58+fnuhinhd1uN7KsjVzH5u2WIGCqnFYz2//1iqznTnycC06rme2fPh/uvjvXRTmlsepQpIfWZhazn80FjSF7DokkWxFCSCAlhBATtGzZMoLB4Fk1H0qIM53VamXz5s2nZXikw+Fg3rx5mEymOTOnRwiROxJICSHEBGVWPBdCzC2nK6FRJkGIEEKABFJCCCFOg2gixY0/fB2Ah25Kr8k38rHdkpvMntFEiht/vAMtuhgUBRWdh6yHmXji49PnxDrMVZ0JIYRIk0BKCCHErNN0ndeaB4yfgVGPc1auYz4gH4aLoeUk5cSpjVWHQgghckcCKSGEEKed1aTy3fevM37OaTn+ahmx3/yO25MLclYOIYQQZx4JpIQQQpx2ZpPKNasqcl2MdDmWlRJ+Yojbk7kujRBCiDNJ7poBhRBCCCGEEOIMJT1SQgghTrtkSuOpfd0AXLW8DHOOhvclUxpP7e8hlirIyfsLIYQ4c0kgJYQQ4rSLpzRu+el2APZ/5aqcBVLxlMYtv9oPyPwoIYQQkyOBlBBCiNPCMcfTdTtI5boIpzTX61AIId5OJJASQggx65xWMwe++g7jcTg+9zI7bLPtxKlouS7GuE6sQyGEELklySaEEEIIIYQQYpIkkBJCCCGEEEKISZKhfUIIIWZdNJHi4w9vA+D+v12f49KM7WOJBkzo3G85gj3XhRnDiXVol/lSQgiRUxJICSGEmHWarvPsoV7j57noBc0DgIaS45KM7UyoQyGEeDuRoX1CCCGEEEIIMUkSSAkhhBBCCCHEJEkgJYQQQgghhBCTJIGUEEIIIYQQQkySBFJCCCGEEEIIMUmStQ/Qh7Mf+f3+HJdECCHOTuF4yvjZ7w9k/c7vD5C05iaV98hyZfhjMZJ+P6RG/y6XTqzDXNWZEEKc7TIxgX6KDKmKfqot3gba2tqoqanJdTGEEEIIIYQQc0RrayvV1dXj/l4CKUDTNDo6OnC73SjK3Fw/ZDx+v5+amhpaW1vJz8/PdXHOKlK3s0fqdvZI3c4eqdvZJfU7e6RuZ4/U7ezJZd3quk4gEKCyshJVHX8mlAztA1RVPWm0eSbIz8+XL/AskbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ0+u6tbj8ZxyG0k2IYQQQgghhBCTJIGUEEIIIYQQQkySBFJnOJvNxpe//GVsNluui3LWkbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ8+ZULeSbEIIIYQQQgghJkl6pIQQQgghhBBikiSQEkIIIYQQQohJkkBKCCGEEEIIISZJAikhhBBCCCGEmCQJpHLse9/7HvPnz8dut7N+/XpefPHFk27/v//7v6xevRqn00lFRQUf+chH6O/vN37/gx/8gAsvvBCv14vX6+Xyyy/n9ddfz9pHXV0diqKM+nfLLbfMyjHmSi7qNplM8i//8i/Mnz8fh8NBfX09X/nKV9A0bVaOMVdyUbeBQIDbbruNefPm4XA4OO+883jjjTdm5fhyaabr9rHHHmPDhg0UFBTgcrlYs2YNP/nJT6b9vmeiXNTtCy+8wLvf/W4qKytRFIXHH398Ng4t53JRt1//+tfZuHEjbreb0tJSrrvuOg4dOjQrx5druajf+++/n1WrVhmLoW7evJk//vGPs3J8uZSrc27G17/+dRRF4bbbbpupQ5ozclG3d9xxx6j72/Ly8lk5PgB0kTOPPvqobrFY9B/84Af6/v379VtvvVV3uVz6sWPHxtz+xRdf1FVV1f/zP/9Tb2pq0l988UV9+fLl+nXXXWds8/73v1//7ne/q+/YsUM/cOCA/pGPfET3eDx6W1ubsU1PT4/e2dlp/NuyZYsO6M8+++xsH/Jpk6u6/drXvqYXFRXpTzzxhN7c3Kz/4he/0PPy8vR777131o/5dMlV3d5www36smXL9Oeff15vbGzUv/zlL+v5+flZ25zpZqNun332Wf2xxx7T9+/frx85ckS/9957dZPJpD/55JNTft8zUa7q9g9/+IP+xS9+Uf/Vr36lA/qvf/3r2T7U0y5XdXvVVVfpDz74oL537159586d+jXXXKPX1tbqwWBw1o/5dMpV/f72t7/Vf//73+uHDh3SDx06pP/zP/+zbrFY9L179876MZ8uuarbjNdff12vq6vTV61apd96662zdZg5kau6/fKXv6wvX7486z63p6dn1o5TAqkc2rRpk/6xj30s67klS5bon//858fc/u6779br6+uznvv2t7+tV1dXj/seyWRSd7vd+kMPPTTuNrfeequ+YMECXdO0SZR+bstV3V5zzTX6TTfdlLXd9ddfr//t3/7tZA9hzspF3YbDYd1kMulPPPFE1narV6/Wv/jFL07lMOak01G3uq7ra9eu1f/lX/5lyu97JspV3Y50tgZSc6FudT3dSAjozz///ARLfmaYK/Wr67ru9Xr1//mf/5lAqc8MuazbQCCgL1y4UN+yZYt+8cUXn3WBVK7q9stf/rK+evXqqRV6CmRoX47E43G2bdvGlVdemfX8lVdeySuvvDLma8477zza2tr4wx/+gK7rdHd388tf/pJrrrlm3PcJh8MkEgkKCwvHLcfDDz/MTTfdhKIoUz+gOSSXdXvBBRfwzDPPcPjwYQB27drFSy+9xDvf+c4ZOLLcy1XdJpNJUqkUdrs9azuHw8FLL700zaOaG05H3eq6zjPPPMOhQ4e46KKLpvy+Z5pc1e3bwVyqW5/PBzDu9e5MNFfqN5VK8eijjxIKhdi8efP0DmqOyHXd3nLLLVxzzTVcfvnlM3NAc0iu67axsZHKykrmz5/P3/zN39DU1DQzBzZOQUQOtLe364D+8ssvZz3/b//2b/qiRYvGfV1mqJjZbNYB/dprr9Xj8fi423/iE5/QFyxYoEcikTF//7Of/Uw3mUx6e3v71A5kDspl3Wqapn/+85/XFUXRzWazriiKfuedd07/oOaIXNbt5s2b9Ysvvlhvb2/Xk8mk/pOf/ERXFOWk73smmc26HRoa0l0ul242m3WbzaY/8MAD037fM0mu6vZEnIU9UnOlbjVN09/97nfrF1xwwfQOaI7Jdf3u3r1bd7lcuslk0j0ej/773/9+Zg5sDshl3T7yyCP6ihUrjGvc2dYjlcu6/cMf/qD/8pe/1Hfv3m309pWVlel9fX0zd4AjSI9Ujp3YC6Tr+rg9Q/v37+cf//Ef+dKXvsS2bdt48sknaW5u5mMf+9iY299111088sgjPPbYY6Na8jMeeOABrr76aiorK6d3IHNQLur2Zz/7GQ8//DA//elP2b59Ow899BDf+MY3eOihh2buwOaAXNTtT37yE3Rdp6qqCpvNxre//W3e//73YzKZZu7A5oDZqFu3283OnTt54403+Ld/+zduv/12nnvuuSm/75kqV3X7dpDruv3kJz/J7t27eeSRR2bkeOaaXNXv4sWL2blzJ1u3buXjH/84N954I/v375/RY8u10123ra2t3HrrrTz88MPj3pudLXLxub366qv5q7/6K1auXMnll1/O73//e4DZuw+blfBMnFIsFtNNJpP+2GOPZT3/j//4j/pFF1005mv+9m//Vv/rv/7rrOdefPFFHdA7Ojqynr/77rt1j8ejv/HGG+OWoaWlRVdVVX/88ceneBRzUy7rtrq6Wr/vvvuynvvqV7+qL168eCqHMufMhc9tMBg0XnfDDTfo73znO6dyKHPObNftSDfffLN+5ZVXTvl9zzS5qtsTcRb2SM2Fuv3kJz+pV1dX601NTVM4grltLtTvSJdddpn+93//9xMs/dyWq7r99a9/rQO6yWQy/gG6oii6yWTSk8nkNI8s9+ba5/byyy8fNV9rpkiPVI5YrVbWr1/Pli1bsp7fsmUL55133pivCYfDqGr2nyzTGq/ruvHc3XffzVe/+lWefPJJNmzYMG4ZHnzwQUpLS086V+VMlMu6HW8/Z0v687nwuXW5XFRUVDA4OMhTTz3Fe97znqkezpwym3V7Il3XicViU37fM02u6vbtIJd1q+s6n/zkJ3nsscf485//zPz586d6GHPWXPvsnk2f71zV7WWXXcaePXvYuXOn8W/Dhg184AMfYOfOnWfFKIu59LmNxWIcOHCAioqKiRZ/cmYlPBMTkkkN+cADD+j79+/Xb7vtNt3lcuktLS26ruv65z//ef2DH/ygsf2D75mioAAACtBJREFUDz6om81m/Xvf+55+9OhR/aWXXtI3bNigb9q0ydjmP/7jP3Sr1ar/8pe/zEr9GAgEst47lUrptbW1+uc+97nTc7CnWa7q9sYbb9SrqqqM9OePPfaYXlxcrH/2s589fQc/y3JVt08++aT+xz/+UW9qatKffvppffXq1fqmTZtOOtfqTDMbdXvnnXfqTz/9tH706FH9wIED+j333KObzWb9Bz/4wYTf92yQq7oNBAL6jh079B07duiA/s1vflPfsWPHWZla/nTX7cc//nHd4/Hozz33XNZ5IxwOn76DPw1yVb9f+MIX9BdeeEFvbm7Wd+/erf/zP/+zrqqq/vTTT5++g59luarbE51tc6R0PXd1++lPf1p/7rnn9KamJn3r1q36u971Lt3tds/a9UwCqRz77ne/q8+bN0+3Wq36unXrstK23njjjfrFF1+ctf23v/1tfdmyZbrD4dArKir0D3zgA1nr6MybN08HRv378pe/nLWfp556Sgf0Q4cOzebh5VQu6tbv9+u33nqrXltbq9vtdr2+vl7/4he/qMdisdk+3NMqF3X7s5/9TK+vr9etVqteXl6u33LLLfrQ0NBsH+ppN9N1+8UvflFvaGjQ7Xa77vV69c2bN+uPPvropN73bJGLun322WfH/GzfeOONs3mop10u6nasegX0Bx98cDYPNSdyUb833XST8Z4lJSX6ZZdddlYFURm5OueOdDYGUrqem7p973vfq1dUVOgWi0WvrKzUr7/+en3fvn2zdoyKrp+kv0wIIYQQQgghxCgyR0oIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghTrN4PE5DQwMvv/zyjO73iSeeYO3atWiaNqP7FUIIMZoEUkIIIablwx/+MIqijPp35MiRXBdtzvrv//5v5s2bx/nnn288pygKjz/++KhtP/zhD3PddddNaL/vete7UBSFn/70pzNUUiGEEOORQEoIIcS0veMd76CzszPr3/z580dtF4/Hc1C6uec73/kOf/d3fzcr+/7IRz7Cd77znVnZtxBCiLdIICWEEGLabDYb5eXlWf9MJhOXXHIJn/zkJ7n99tspLi7miiuuAGD//v28853vJC8vj7KyMj74wQ/S19dn7C8UCvGhD32IvLw8KioquOeee7jkkku47bbbjG3G6sEpKCjgRz/6kfG4vb2d9773vXi9XoqKinjPe95DS0uL8ftMb883vvENKioqKCoq4pZbbiGRSBjbxGIxPvvZz1JTU4PNZmPhwoU88MAD6LpOQ0MD3/jGN7LKsHfvXlRV5ejRo2PW1fbt2zly5AjXXHPNJGsZWlpaxuz9u+SSS4xtrr32Wl5//XWampomvX8hhBATJ4GUEEKIWfXQQw9hNpt5+eWX+f73v09nZycXX3wxa9as4c033+TJJ5+ku7ubG264wXjNZz7zGZ599ll+/etf8/TTT/Pcc8+xbdu2Sb1vOBzm0ksvJS8vjxdeeIGXXnqJvLw83vGOd2T1jD377LMcPXqUZ599loceeogf/ehHWcHYhz70IR599FG+/e1vc+DAAf7rv/6LvLw8FEXhpptu4sEHH8x63x/+8IdceOGFLFiwYMxyvfDCCyxatIj8/PxJHQ9ATU1NVq/fjh07KCoq4qKLLjK2mTdvHqWlpbz44ouT3r8QQoiJM+e6AEIIIc58TzzxBHl5ecbjq6++ml/84hcANDQ0cNdddxm/+9KXvsS6deu48847jed++MMfUlNTw+HDh6msrOSBBx7gxz/+sdGD9dBDD1FdXT2pMj366KOoqsr//M//oCgKAA8++CAFBQU899xzXHnllQB4vV7uu+8+TCYTS5Ys4ZprruGZZ57hox/9KIcPH+bnP/85W7Zs4fLLLwegvr7eeI+PfOQjfOlLX+L1119n06ZNJBIJHn74Ye6+++5xy9XS0kJlZeWYv3vf+96HyWTKei4Wixm9VyaTifLycgCi0SjXXXcdmzdv5o477sh6TVVVVVbPmxBCiJkngZQQQohpu/TSS7n//vuNxy6Xy/h5w4YNWdtu27aNZ599Nivwyjh69CiRSIR4PM7mzZuN5wsLC1m8ePGkyrRt2zaOHDmC2+3Oej4ajWYNu1u+fHlW8FJRUcGePXsA2LlzJyaTiYsvvnjM96ioqOCaa67hhz/8IZs2beKJJ54gGo3yf/7P/xm3XJFIBLvdPubvvvWtbxkBW8bnPvc5UqnUqG1vvvlmAoEAW7ZsQVWzB5g4HA7C4fC4ZRBCCDF9EkgJIYSYNpfLRUNDw7i/G0nTNN797nfzH//xH6O2raiooLGxcULvqSgKuq5nPTdybpOmaaxfv57//d//HfXakpIS42eLxTJqv5n04Q6H45Tl+Lu/+zs++MEP8q1vfYsHH3yQ9773vTidznG3Ly4uNgK1E5WXl4+qR7fbzdDQUNZzX/va13jyySd5/fXXRwWKAAMDA1nHKIQQYuZJICWEEOK0WrduHb/61a+oq6vDbB59GWpoaMBisbB161Zqa2sBGBwc5PDhw1k9QyUlJXR2dhqPGxsbs3ph1q1bx89+9jNKS0unNB8JYOXKlWiaxvPPPz+qpyjjne98Jy6Xi/vvv58//vGPvPDCCyfd59q1a7n//vvRdd0YcjgZv/rVr/jKV77CH//4xzHnYWV63NauXTvpfQshhJg4STYhhBDitLrlllsYGBjgfe97n5Fd7umnn+amm24ilUqRl5fHzTffzGc+8xmeeeYZ9u7dy4c//OFRw9f+4i/+gvvuu4/t27fz5ptv8rGPfSyrd+kDH/gAxcXFvOc97+HFF1+kubmZ559/nltvvZW2trYJlbWuro4bb7yRm266iccff5zm5maee+45fv7znxvbmEwmPvzhD/OFL3yBhoaGrCGJY7n00ksJhULs27dvErWWtnfvXj70oQ/xuc99juXLl9PV1UVXVxcDAwPGNlu3bsVms52yHEIIIaZHAikhhBCnVWVlJS+//DKpVIqrrrqKFStWcOutt+LxeIxg6e677+aiiy7i2muv5fLLL+eCCy5g/fr1Wfu55557qKmp4aKLLuL9738///RP/5Q1pM7pdPLCCy9QW1vL9ddfz9KlS7npppuIRCKT6qG6//77+eu//ms+8YlPsGTJEj760Y8SCoWytrn55puJx+PcdNNNp9xfUVER119//ZhDDk/lzTffJBwO87WvfY2Kigrj3/XXX29s88gjj/CBD3zgpMMLhRBCTJ+inzjAXAghhJiDLrnkEtasWcO9996b66KM8vLLL3PJJZfQ1tZGWVnZKbffs2cPl19++ZjJMKajt7eXJUuW8Oabb465ILIQQoiZIz1SQgghxBTFYjGOHDnCv/7rv3LDDTdMKIiC9Nyru+66a8ZTlDc3N/O9731PgighhDgNJNmEEEIIMUWPPPIIN998M2vWrOEnP/nJpF574403znh5Nm3axKZNm2Z8v0IIIUaToX1CCCGEEEIIMUkytE8IIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJun/Axictv5U3X1UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwkdX0//lcdXX3MvefsBbsLy7EggoAIiKACUYyiaGLEBNBvIgpGECMRTeJiFKIYBEXJTxOBaFA8ozFBWEhEcQWWBRbYi4U92d3Z2dmdo6fvqvr8/qj+1FT39N3V18zr+XjwYHamj+qr6lPvfh+KEEKAiIiIiIiIiIiIaqa2egOIiIiIiIiIiIg6HYNsREREREREREREdWKQjYiIiIiIiIiIqE4MshEREREREREREdWJQTYiIiIiIiIiIqI6MchGRERERERERERUJwbZiIiIiIiIiIiI6sQgGxERERERERERUZ30Vm9Au7FtG/v370dPTw8URWn15hARERERERERUYsIIRCNRrF48WKoaulcNQbZ8uzfvx/Lli1r9WYQERFRmwsEAvjc5z4HAPjSl76ETCbT4i2qz0x7PERERER+2rt3L5YuXVryMgyy5enp6QHgPHm9vb0t3hoiIiJqNVsIrHtuK0ZGRnDKsUuxcsUKAEAmk8Fdd90FANi4cSOWLFniy/3996O/w/fXvYzR4GL8+sY/8uU2K+F9PPtu+BRGEAQALEIK6nWfALq6mrYtAPC3d/8Ye0YmcdkfvQl/8vpjGn5/thA4MJ4CACzqC0JlRQMREREBmJiYwLJly9x4USkMsuWRJaK9vb0MshERERHiaRPXPDgCAPjt2Qvd9UE6nXYv09XV5du6IRiOIBAMIxjx7zYr4X08gWAYb0+dDgDYHNyASG9v04Ns4XAXAkELRrA5z0M8beLttz4OANj8hT9CxOAymYiIiKZU0lKMgw+IiIiISrBt2/25q6u74GWEEL7dn5W9P6VMz4+ZTvY8sSyrxVtCREREVJnZvXojIiIiKiOZTLk/h0LBgpfxM8gmg3qaOrvLFWW5pukJchIRERG1MwbZiIiIiEowTdP9uViZgL9BNue2yk2vmunk4zct/55bIiIiokbqmNXbmjVroChKzn+Dg4Pu34UQWLNmDRYvXoxwOIwLLrgAmzZtauEWExER0UxgV1Cu2IhMNn3WB9mymWwWM9mIiIioM3TU6u2kk07CgQMH3P9eeOEF929f+cpXcPvtt+Ouu+7C+vXrMTg4iIsuugjRaLSFW0xERESdrpKeYP72ZHNuq5LmujPZVCYbe7IRERFRZ+ioIJuu6xgcHHT/mz9/PgBnYXvHHXfgc5/7HC677DKcfPLJuO+++xCPx3H//fe3eKuJiIiok1l2c4M8djZgp2kdtUzznarIwQfMZCMiIqLO0FGzybdv347FixcjGAzirLPOwi233IKVK1di586dGBoawsUXX+xeNhgM4vzzz8e6detw9dVXF73NVCqFVGqqofHExAQCgQAymUzOKHsiIiKandKpJN68VEMoFIJtmkjDCfqYpoljjjkG8Xgcpmn6sm4QQsA0M1BhQ1VEU9cipmnida97HZDJABtfwOXaQQCAjex2BAJN2xYAznMAG2Ym3ZTnwTZtXP76pdmfp15nIiIimt0ymUzFl1WEn/UNDfTggw8iHo/juOOOw8GDB/HFL34RW7duxaZNm7Bt2zace+652LdvHxYvXuxe5yMf+Qh2796Nhx56qOjtrlmzBjfffPO03xEREREREREREa1Zswbj4+Po7e0tebmOqUN4+9vfjve+9714zWtegwsvvBD//d//DQC477773Mvk9y4RQpTtZ3LTTTdhfHzc/W/v3r3+bzwREREREREREc1oHVUu6tXV1YXXvOY12L59O9797ncDAIaGhrBo0SL3MsPDw1i4cGHJ2wkGgwgGgzm/+9KXvoQDBw6gp6fH9+0mIiKizvLKK69g2659WLR4MU494Rj3CzwhBLZs2YKhoSEsX74cK1eurPu+TNPEff/5ENZuPojw0pNwz4fPqvs2KyWEQCKRAGIxhL79HYxll4kDMKFcfx3Q1dW0bQGAr/5wLZ5+aS9OOWk1PvveNzT8/oQQGI075SADkcCsHzxBREREjmg0WnHFY8cG2VKpFLZs2YLzzjsPK1aswODgINauXYvTTjsNAJBOp/HYY4/hy1/+ctW3nclkEAgEYBiG35tNREREHSZtAdc/lgKwE5u/cBwihrN8SqfT+MUvfgEAWLFihS/rBkVRAEWDDRWq3ty1SDqdxp133gkAuA4q3pBy1lSbgxsQMQygyesiXQ/AhgpTKE15HuJpE2/48iMAgM1f+CP3dSYiIqLZLVBFX9qOWT38zd/8Dd75znfiqKOOwvDwML74xS9iYmICV155JRRFwfXXX49bbrkFq1atwqpVq3DLLbcgEong8ssvb/WmExERUQezrPLTRf1qcSuEcKeL6urszqTSso/ftjmAgIiIiDpDxwTZXn31VXzgAx/AyMgI5s+fjze84Q144okncPTRRwMAbrzxRiQSCVxzzTUYHR3FWWedhYcffpgln0RERFQXyy4cZDMMA1dccQV2794NTdN8uS8hBIQABBRoWnNb5xqGgc9//vNALIb4V/65qfddiJp9Tk27I2Z0EREREXVOkO2HP/xhyb8rioI1a9ZwMigRERH56tXDsaJ/8/Zn84M3k02b5ZlsuuoEGZnJRkRERJ2iY6aLEhEREbXCY9sOuj+PJzI5f2tEkE0IwIbiBplmKzUbZLQYZCMiIqIO0TGZbERERETNtmskhq37xwAsAADsOBTDor4wAGcS6G9+8xtMTk5i/vz5vtyfbdsty2QzTRM///nPAdPEHzX1ngvTskFGy2KQjYiIiDrD7P6KlIiIiKiE/++3r0DBVJbaK8OT7s+2bWPXrl0YGRnxraTRKRfN9mRrcpDNtm1s3rwZm196Ce0Q1pI96VguSkRERJ2CmWxEREREBRycSOKnG/ZhFWwsNpIYShvYMVK4P5vfPdkEWtuTTYfAe9URAICG1gwekEG2ZpWLaqqC975uqfszERERUbUYZCMiIiIq4F9/twNpy8LR84J4+yIdd7wgmhJkEwIQAtBbGOgxFIF/Nna27P6B5g8+COoa/vlPX9uU+yIiIqKZiUE2IiIiojzJjIX7n9wDBQJnLh9AUNdgw8T2g9GCl/c/k6355aLtZqpctDWZdERERETVYk82IiIiojz7xhKIpS30GCqOnhNBVygAGwoOjCcRTWamXd7fTDYBtDjIJgQQFyriQoVPD61q7uCDJgXZhBCIp03E06ZvrycRERHNLgyyEREREeU5OJ4EAAz2GsjYCq77TQqAE/Ta7hl+4LepwQet7QuWgIrVqdOxOnU6Ei1aLk6Vi1pNub9ExsLqf3gIq//hISQyzblPIiIimlkYZCMiIiLKMzThBNkWdhvT/vbywelBtkYMPmhlT7Z2oOssFyUiIqLOwiAbERERUR4ZZFvQHZj2t5cK9GXzffABFLdccrbSVA0Ag2xERETUOWb36o2IiIioAFkuOq9AkK1QuWgjMtm0Wb5K0zUnk88WzZkuSkRERFSvWb58IyIiIppOZrLNixQIsjUwk822bWayZTV78AERERFRvWb36o2IiIiogIMTKQDAnIg+7W/7C0wY9TuTDWBPtoDulIsKZrIRERFRh2CQjYiIiCjPwWwm20A4N8g2PzsI4eW8ktHG9GSb3UE2PVsvK5jJRkRERB1i+tezRERERLOYZQsMR51MtoGwhkNjwBuP7kJvbw9GY2kcmjyC7cOTeM3iHhx77LEYGxvz7b5ze7I1N8imqipWr14NmCYCW1/CJeoR5/doTZBLlos2qyebqii45DWD7s9ERERE1WKQjYiIiMjj8GQKli2gKkC3oWJcU/D5C5dg1apVWPPLTfjDjiPYfjAKXV+GSy65BBs3boTqU/+0qSCb0vRyUV3X8Sd/8idALAZsuw3fMl5p6v3nc8tFm5TJFgpo+NYHT2/KfREREdHMxHJRIiIiIg859GB+TxDIZlFpmhPwWbWwG8DUhFElm/Hkf7lo8zPZ2o0sF7V9em6JiIiIGo1BNiIiIiKPoXEnyLawNwTLsgBMBdlWzOsCAOw5EgfQmCCbnQ20zfYgW8DtycbBB0RERNQZWC5KRERE5CGHHsggW8oUOP/uFwG8iF9cey4AYCyeQTqdxh133AEAeOtb3+rLfTtBNgAtGHyQTqdx6623AgCuEypOTTmlk5uDGxBp6pY4tCZnssXTJlb/w0MAgM1f+CNEDC6TiYiIqDrMZCMiIiLykOWig55MNqk/EgAAjMXTsDy9wvwtF3UGHzS7J1u7CWSzB0WTBh8QERER1Ytf0RERERF5DI07k0UH+0KwrGjO32SQzRZAwgQ++tGP+jr4wLZt2AIQUNzpms0SCATwN3/zN0A8Dtx1d1Pvu+D26Nly0WzgUeHETyIiImpzzGQjIiIi8sgvF/UKaCp6Qs53lKOJDLq6umAYhm/37c1k05q8SlMUBV1dXeiKRNAO4Sw9m8mmAGjSgFEiIiKiujDIRkRERORRqlwUAOZ0OUG10Vi6QYMPWpPJ1m7k4AMFAhmLJaNERETU/lguSkRERORxMDtddLAviOFD04NsAxEDuw/HMTKRwCMbf4fh4WEcf/zxvty3O10Uze/JZpomHnroIcA0cV5T77mwgD6VyWYxlY2IiIg6AINsRERERFmxlIloygTglIvuN81plxmQww9iKWx77jkAwKpVq3y5f6dcVGayNTfIZts2nn76aQDAuW1QMKp7MtlMi0E2IiIian8MshERERFlyX5sXYaG7qAO27ahKMD5q+ZBVRWoioIBWS6ayLjX87dc1LktrYWN/jUIvFkdAwCoaE2Ay/Bkspl248tFVUXBm4+f7/5MREREVC0G2YiIiIiyZD+2hX1T/dgMTcF3rzoDWrYR/5zIVE82ye8gmwCgaa0L9AQVgXuM7S27fwBQVRWqosAWAmYTerKFAhru+dDrG34/RERENHPN7o66RERERB4Hiww9UD1DCNxMtnhukM2PQJt38EGze7K1G0VRIBPK0ub03nhERERE7YZBNiIiIqKsofEUAKcfmwyy6bruThEFpqaLjnmCbH6RwToBNL0nW7tRVdUtmW1GJhsRERFRvRhkIyIiIsqSmWzeIFtGqDjx73+NE//+14inTQzIctF4Jue6fmeytbInW1yoODH5OpyYfB3iojXLxWZnssXTZs7rTERERFQt9mQjIiIiyhoal+WiQTfIpmkaEpmpIM+crsYF2WzbdieM6i3syQYACWgtvX9FUbJlunbTMtm8rzMRERFRtZjJRkRERJQlBx8MegYfaFrucmlOVwDA9HJRPzPZAAWaymWawnJRIiIi6iBcvRERERFlFSoXlVNFpf5suehEsjHlorIn22wffABMBdkyFjPMiIiIqP0xyEZEREQEJ8B1KDp98MG0IFs4kL389Ov7sQ2yJ5vawp5s7UJVnKUqg2xERETUCRhkIyIiIgIwmTJhOrWamNNlTAXZ1Nwgm66p6MsG2rz8C7JlM9la3JOtHSjZbD6L5aJERETUARhkIyIiIgIwlh1kYOgqQgENpulMmMzPZAOmhh94+RtkU6CxXNQtF02bDLIRERFR++N0USIiIiIA4wknyCbLQWUmm65rOGvFHABwSzgHIgHsgYKeeYugmQkAPvZkA1rSk01RFBx99NGAZUHb8yrOUiYAACrqf1y1UrPDH6wmlIuqijLtdSYiIiKqBoNsRERERJgKsvXlBdkiwQAeuPrsnMvO6TJgQcWiM9+GpandsCzL10w2oPmBnkAggKuuugqIxYDbbsMDwW1Nvf9CmjldNBTQpr3ORERERNVguSgRERERPJlskdwgW6Fy0YHshNHReNoNBPnBmS7qDD5gT7apTDbTal02HREREVGlGGQjIiIiwlRPtvxMNl2fnvg/kO3JNhqbCrL5kclm27Y7+IA92aay+ZpRLkpERERUL5aLEhEREcFbLuoE0GRgJ20Dr/vHtQCAx//2zYgYOgYiBnRYSD/7CzymCpx11lk+Bdk8mWxqc78LTafTuPPOOwEh8FdCxVtSpwAAHg8+j0hTt2SKmg00ZppQLhpPm3jjl/8PwNTrTERERFQNrh6IiIiIAIwl0gCmZ7JpqoYjsXTOZed0OZdRrTQy2SQrP4JslnCCSQKA1oLm+/F4PPuTgiMINP3+87mDD+zmTBfNf52JiIiIqsEgGxERERGAiSKDD4r1ZDOhYkv/G/CXJ2lQVdWfTDa395gCrck92QKBAD72sY8BiQQC372vqfddjKo4QbaMyXJRIiIian8MshERERGh+OADtUCQbU6XAUDBgbSBnp4IEomEP5ls2YwtWwB6k3uyKYqCBQsWALEY4uUv3hSyXLRZmWxERERE9eDgAyIiIiIUH3xQMJMtO/jgiM+DD6aCSQoHH8BbLsrpokRERNT+mMlGREREBM/gg0j5INuciAEVNo4xd+Oll0awePEin4Jszm20oiebZVn43e9+B6TTOL2p91ycDLKZLBclIiKiDsAgGxERERFyM9ls24adzSrTtOmJ/73hAHRF4LTAAbzyCrBo0aC/mWzKVKlks1iWhcceewwAcCraI4tOY7koERERdZCOLRe99dZboSgKrr/+evd3QgisWbMGixcvRjgcxgUXXIBNmza1biOJiIioY8jBB/3hgJvFBgABXccpS/twytI+qNnsMk1V0BvKnb7py+ADGdhTW7tEUyFwihLDKUoMKlpXqikHHzQjyKYqyrTXmYiIiKgaHZnJtn79enz729/GKaeckvP7r3zlK7j99ttx77334rjjjsMXv/hFXHTRRdi2bRt6enpatLVERETU7kzLRjRlAnAy2dLpNABA13VEggH88uNvnHad/i4DiE39289MtmZnseULKQK/DG5u6TYAU8HGZvRkCwW0gq8zERERUaU6LpNtcnISH/zgB/Gd73wHAwMD7u+FELjjjjvwuc99DpdddhlOPvlk3HfffYjH47j//vtbuMVERETU7iaSpvtzXziAZDIJAAiFQkWvMxAxcv7tTyabcxsyg2u2UzUn2GhaLBclIiKi9tdxK7hrr70W73jHO3DhhRfm/H7nzp0YGhrCxRdf7P4uGAzi/PPPx7p164reXiqVwsTERM5/RERENLuMxZ3Mte6gDl1T3SBbMBgsep2BiL/lokIIN2Or1Zls7WIqk42DD4iIiKj9dVS56A9/+EM888wzWL9+/bS/DQ0NAQAWLlyY8/uFCxdi9+7dRW/z1ltvxc033+zvhhIREVFHcSeLhp3AWSqVAuBksiXSFi683RkI8MgN5yNsONNG/c5kE0K4t9HqnmwJoeLNqZMBAI8EX0S4Rdshh040o1y02OtMREREVKmOyWTbu3cvrrvuOnz/+98vWbqh5DWqFUJM+53XTTfdhPHxcfe/vXv3+rbNRERE1Bnyg2zeclEBgX1jCewbS0B4hgD0NyDIJmNJrS4XFQD2IYh9CLZw7MFUsNFuwuCDYq8zERERUaU6JpNtw4YNGB4exumnn+7+zrIs/Pa3v8Vdd92Fbdu2AXAy2hYtWuReZnh4eFp2m1cwGCxZCkJEREQznwyy9Udyg2wly0W7Ajjo+be/mWwsFwXgTvm02JONiIiIOkDHZLK99a1vxQsvvIDnnnvO/e+MM87ABz/4QTz33HNYuXIlBgcHsXbtWvc66XQajz32GM4555wWbjkRERG1u1LlosX0hwNF/1aLnEy2FpeLtgtNc0o2rSZkshERERHVq2My2Xp6enDyySfn/K6rqwtz5851f3/99dfjlltuwapVq7Bq1SrccsstiEQiuPzyy1uxyURERNQhxuJTmWy2becE2cwi1+kO5i6j/CkXdW5D15jJBgC67MlmsXyTiIiI2l/HBNkqceONNyKRSOCaa67B6OgozjrrLDz88MPo6elp9aYRERFRG5OZbL3hANJpZ9KooigIBAIwM4UnW+Y3xvenXBQAlJYPPmgXcsqqLThdlIiIiNpfRwfZfvOb3+T8W1EUrFmzBmvWrGnJ9hAREVFnkplsfeFAztCDUsOTwgF/M9kAwBZOy332ZHPITDa7CdNFiYiIiOrV0UE2IiIiIj+4gw/CRk6QDQAUKFi1oNv9WYoENYzaIYRUp1+YX+WirQqyKYqC+fPnA7YN9dARrFISzu+bviVTNDXbk60J5aLFXmciIiKiSjHIRkRERLPeeMIpEe0LB9x+bHKyaNjQsPaG86ddpycSwn+mTsbxoQm8TdN8CrIBAkpLerIFAgFcc801QCwG3HYb1gZfbPo25JPPgy0aP/ig2OtMREREVCk2/CAiIqJZz81kiwSmZbIV02U431WmTP8y2eRtaCXKVGcTzS0X5XRRIiIian8MshEREdGsJ4Ns3p5sMpOtGDn4wLQByxY+ZrKxJ5ukq+zJRkRERJ2D5aJEREQ063kHHxzIlovKTLZE2sK77nocAPDLj7/RDa4FFBvvDr6IAGwk0/N9zGRT3OBSM2UyGXznO98BbBt/LlS8N70aAPBLYzPCTd8ah645z3UzMtmKvc5ERERElWKQjYiIiGa1ZMZySz57wzp25pWLCghsH550f5Z0VcGA6lw2Y9kdn8kmhMChQ4cAADYUbBdOaK2VOWRuuWgTerIVe52JiIiIKsUgGxEREc1qslRUUxWEtamsqXLlorqu47dYjVB6HCcLxbdMNiGUlgTZdF3HlVdeCSQS0H/446bffyG6KjPZGPQiIiKi9scgGxEREc1qMsjWG9LdyaKGYUAtU7KpqirixhzEUybMGdCTTVVVLF++HIjFEG/6vRema+zJRkRERJ2Dgw+IiIhoVpP92PojRsWTRSXZt8u/clHZk42DDwBA15znoRnlokRERET1YiYbERERzWpuJls44GaylSsVBQDLsrDcPoBJdQxps9u3IFurMtksy8KGDRuAdBonNv3eC5OZbPU+t5VImZb7czPuj4iIiGYeBtmIiIhoVhuLpwEA/eFAVZlslmXh6PhLQABIm4t86snWunJRy7Lw4IMPAgCOQ3tk0jVzuugTrxx2f37+1XGcfcy8ht8nERERzSwsFyUiIqJZTWay9RUJsilQsKQ/jCX9YShFgk+mj+WiAq0ZfOClAFiCFJYg1dJwm5wuKprQk+1/tx5yf/7PZ/c1/P6IiIho5mEmGxEREc1qEwnZk61wuWjY0PD7z7yl5G2YVv1BIJnJBqDlPdnCio3fh55v6TYAgNGkclHbFnjspakg2/+8OISbLz0ZoYDW0PslIiKimYWZbERERDSrjZXJZKtExvJruqjsycYlGuApF23w4IMX9o1jOJpCl6FhSX8Y0aSJhzYNNfQ+iYiIaObhCo6IiIhmNXfwQVBFJuP8XH2Qza9yUWTLReu6qRkjoDcnk+2RLQcBAOcfPx/vPX0pAOAnG15t6H0SERHRzMNyUSIiIprVxuJOYK1LswETMAwDuj61REpmLPzp//cHAMCPrj67YAmhX5ls8jZancmWFArel3ZmjP7I2ILqQo7+kZlswnaeG0VpTBnt2s1OkO2FV8ex41AMAPD4yyPYP5bA4v5wQ+6TiIiIZh5+T0pERESzmsxkCysmACASieT83RYCz786judfHYddJJBm2v5msrW6J5sNBc+LLjwvumC3cPRBIJvSZ4v6g5jF7D0Sx9ahKBQAe0cT2DoUxRlHD0AI4OccgEBERERVYJCNiIiIZjUZZAtlg2zhcPWZS6bvPdlaG2RrFwFd9mRrXJDt0Wyp6OuOHnB/957TlgAAfvnc/obcJxEREc1MDLIRERHRrCani2oiDWB6Jlsl0j70ZAMAIcAgm4fuZrIBtt2Y4QePbBkGALzl+AXu785cPgcAsOtwrOH94IiIiGjmYJCNiIiIZrVo0slgUywn2FZLkM30bfCBANqgXLRd6A0uF81YNp7ceRgAcP4J893fz+81AAAp03Z79hERERGVwyAbERERzVrJjIW0ZQMQgJkCUFuQzc/BB0Iwk00K6CoElIYF2YajKWQsgYCmYPmcqdc9qGuY2+UE2g6MJ32/XyIiIpqZGGQjIiKiWUtmsQUVC7oCqKqKUKj6WZr+ZbK1x+CDdqGrKgScMlrTtHy//YMTTgBtQU8Iat5zPtgXyrkMERERUTl6+YsQERERzUzRpFMKOMcQUBQF4XAYijI9wDUnm9WUzwiGEE1mkPEpyCZvIz/g0yyRSMSJaMWSmIPWl0nqmgIBBYBAxvK/J9vBbJbawt4ggNzXeVFfCJv2TzCTjYiIiCrGIBsRERHNWjKTrd9wgluFSkUjho5n/v6iab83DAPvuuKj+MA3HsFr1HEfM9nQkkw2wzDw6U9/GojFgNtuwzOh55q+Dfl0VQbZgIzlfybbUDZLbbAvNO11XtjrZLINjSd8v18iIiKamVguSkRERLOWDLL1BYoH2UrpMpzvKzO2f4MPBBRoKpdogNObTj6rDclkm3D68C3omV4ivChbLjrEclEiIiKqEFdwRERENGvJctFu3QnghMPhqq4fMTQIwMdy0dZlsrWjgKpCCOe5aGRPNtl/zWuwz3kvsFyUiIiIKsVyUSIiIpq1ZCZbl+b8v1AmWzJj4crvPgUAuO/Dr0cooAEAMpkM/usnP8CbjMPYb/UgY9aXaSUz2YDW9GTLZDL4j//4D8Cy8F6h4C/TxwEA7jNeQvWjIPyhqgqyMbaGZLINZQNog72haa/zoFsuyiAbERERVYZBNiIiIpq1JpIZaLARUouXi9pC4MmdR9yfJSEEXt27BwtU4IDVjVSdmVZTmWytmS4qhMDu3bsBABYUPCl6AQA2WptVpyoqIACzAT3ZDkaz00V7g7BsO+d1HmS5KBEREVWJ5aJEREQ0a0WTJoIwEdRVGIYBXa/8+0dd1/G+970PT5pHw4aCtA9BNqcnm9OLrNnk43nfO9/ZVt/CymmvZp2ZgoUc9GSyxeNTAw6EJ8gWTZqYTJm+3zcRERHNPAyyERER0awVTZoIKiYMXat66IGqqjjppJMwqs8FoCDtU7moM/ig+UE2+XhOOv74tlogqjLIZvsbZIsmM4ilncDowt4QUsmpjLVMxkR3UEdP0Ak3smSUiIiIKtFOaygiIiKipoomMwgpJgxdrTrIJoWMAAD4kskmq1FbEWRrV0p20qrf5aJysmhPUEdXUEcqnXL/ZppO5prMZjvIklEiIiKqQDtVAxARERE1lcxkC+rhqoNstm1jy5YtWKyMIgbhS082WS7aip5s8vEglcLRTb/34mS5aL2DJfLJwNnCbCAtlUq7f8tknKmzg30hbB+e5IRRIiIiqgiDbERERDRrRVMZhLI92aoNspmmiZ/85Cc4DsBGLETGlyAbWlYuKh8PAFzX4mEHXqqqwgZg+Txd1A2y9QYBIKdc1JRBNnfCaAJERERE5TDIRkRERLNWNGkioFgwdBXBYLDo5cIBrext+dWTDWiPctEw/J/mWQtVVWADyPjck23IDbJlM9nSKRjZl9m0nHLRRZwwSkRERFVgkI2IiIhmrWgig14IBHWt6GTRiKFjyz++rext1VvOKHuytapc1Cui2NgSeqal2yC5gw/qzBTMJyeLyiAbzDS+fVEXAECH81oO9oUBcPABERERVYaDD4iIiGjWmkymoUDA0FVoWvlstVLSdTbmz50uyiWapLqDD/wuF3UGHQz2hiCEQCo1Nfhgqiebk93InmxERERUiaoz2VKpFJ566ins2rUL8Xgc8+fPx2mnnYYVK1Y0YvuIiIiIGiaWcoIpwUD9QTbfMtlE6zPZ2okMslmW8PV2veWimUwGQkzdvhtk63Uy2ThdlIiIiCpRcZBt3bp1+MY3voH//M//RDqdRn9/P8LhMI4cOYJUKoWVK1fiIx/5CD760Y+ip6enkdtMREREVLeUacEyTUAHIqGgO8UyXzJj4WPf3wAAuPvPT0eoSH+2TJ2ZVlM92RSoLQ6ypYSCqzPHAgDuDryMUAu3Rb4upu1zuahn8EEymUTaErjrOSeb7eaLnEmjsifbyGQaKdNCUK8vEEtEREQzW0W1CJdeeine9773YcmSJXjooYcQjUZx+PBhvPrqq4jH49i+fTv+7u/+Do8++iiOO+44rF27ttHbTURERFSXaNKEBid7KRIMFL2cLQT+b9sh/N+2Q+5ggkIypp2TDVWLdunJZkHB/9n9+D+7H3aLJ41qbiabf+Witi0wHM2Wi/aFkEqlIATw/CELzx+ykEo7mWz9kQAM3bn/4YlU0dsjIiIiAirMZLv44ovx4x//GIZhFPz7ypUrsXLlSlx55ZXYtGkT9u/f7+tGEhEREfktmjShKTYMXYURKB5kq1TGcoJsxTLiysntycZyUUlm9dWbKeg1EkvBsgUUBZjXHcTBA4dz/p7JONNFFUXBor4Qdh+OY2giiWVzIr5tAxEREc08FQXZrr322opv8KSTTsJJJ51U8wYRERERNUM0mYEGgaBWfz82YCrIVqupIFvrM9naiezJZtv+BdlkVtq87iACmopkMrfnmmma7s+DvU6QjcMPiIiIqJyqBx94TU5OTlvw9Pb21rVBRERERM3glIs6mWy6XteSCACQsYQPQTbn51b3ZGsnMqvP9DHINpQNmA32Oj3XvJNFAcDMDj4AnHJS5zoJ3+6fiIiIZqaq58Pv3LkT73jHO9DV1YW+vj4MDAxgYGAA/f39GBgYaMQ2EhEREfkumsxAU2wEdc2XIJtp15/JJrLlosxkm6KqTpahnz3ZhjxDDwBMy2SzbRuW5QxamAqysScbERERlVb1ivKDH/wgAOC73/0uFi5cWHPfESIiIqJWmsgOPvAvk82P6aLO4AP2ZJsinws/g2zDbpCtcCYbAGQyGWia5ma7DU0wk42IiIhKq3pF+fzzz2PDhg04/vjjG7E9RERERE0hy0WDuh892RRkzPrLReX1dbXqYoMZS/Zk87VcdGKqXNS2baTT6WmXkX3ZFmUz2diTjYiIiMqpOsh25plnYu/evQyyERERUUeLJjNQK8hkixg6dv3TO6b93jAMfP7zn8eG3aN45js/QcaHclEbyE4XrflmaiYfD2Ix4LbbsCu0vvkbUYDMZPNz8MFQdvDBwt6Qm8UWNjTsvPUSrF+/HvF4HJlsX7bBvjAA4CCDbERERFRG1Uu4f/3Xf8WXv/xl3HfffdiwYQOef/75nP8a5e6778Ypp5yC3t5e9Pb24uyzz8aDDz7o/l0IgTVr1mDx4sUIh8O44IILsGnTpoZtDxEREXW2aNKEptQ/+KArqEHAn+miIjtdVGMmm0tze7LV/tzmc8tF+6aCbMFgEIqiIBAIAMBUkC1bLnowmoJl+7cNRERENPNUvaI8dOgQXnnlFXzoQx9yf6coCoQQUBTFbRLrt6VLl+Kf/umfcOyxxwIA7rvvPlx66aV49tlncdJJJ+ErX/kKbr/9dtx777047rjj8MUvfhEXXXQRtm3bhp6enoZsExEREXWuaDIDDaLuwQeRgA4Bxbfpohx8kMvtyWb7t8Y8mA2yLegJIpmMAwBCISeYJoNsslx0fk8QmqrAsgVGJlNuHzciIiKifFWvKD/84Q/jtNNOww9+8IOmDj545zvfmfPvL33pS7j77rvxxBNPYPXq1bjjjjvwuc99DpdddhkAJwi3cOFC3H///bj66qubso1ERETUObw92UoF2ZIZCzf86DkAwO1/eipCASezyjRN/PznP0cqY0GBQMYSdTXnd4JsTpCuFYMP5OOBaeISoeDTmZUAgNsDO9DKsJKWrZ21fCoXtWyBsYSTpTa3y0BidBQAoGgBXPMfGzAxEcUVxwk3k01TFSzoCeLAeBJD40kG2YiIiKioqoNsu3fvxi9/+Us3o6wVLMvCj3/8Y8RiMZx99tnYuXMnhoaGcPHFF7uXCQaDOP/887Fu3ToG2YiIiGiaqGe6aKnBB7YQ+J8XhgAAX/2TqUw127axefPm7L8WAQASGRPdNW6PDLK1arqo9/FcBAX/Y88BAHwVO5u+LV5y8IFfpZoTiQxkwmF/xMDYkFMuqhtB/M8LzmP9i1URN8gGOL3bDowncWA8idcu82UziIiIaAaqOsj2lre8BRs3bmxJkO2FF17A2WefjWQyie7ubvz85z/H6tWrsW7dOgDAwoULcy6/cOFC7N69u+RtplKpnLHtExMT/m84ERERtZ1oyunJVi6TrRhN0/D2t78dQgBP/9fzAGzE02bN2+P0ZAOEUFoSZJOPB+k0tLX/2/T7L0b2p/Nr8MFo3Jkk2mVoMHQVyaRTOhoKBXMuJ8tFAWfC6HN7gaHxhC/bQERERDNT1SvKd77znfjkJz+JF154Aa95zWvcvhXSu971Lt82Lt/xxx+P5557DmNjY/jpT3+KK6+8Eo899pj79/zSVdknrpRbb70VN998c0O2l4iIiNpXNJFGTwXTRYvRNA2vf/3rnZ//exNg20ima+8bJsshBQCtSe04vNzHE4sh3kZBNl3zO8jmZKgNdBkAMDX4wMgNsnkz2Qb7nBJROZWUiIiIqJCqV5Qf/ehHAQBf+MIXpv2tkYMPAGe0vMygO+OMM7B+/Xrceeed+Nu//VsAwNDQEBYtWuRefnh4eFp2W76bbroJN9xwg/vviYkJLFvGOgAiIqKZbjKZQa8Pgw8AIKCryKSBWB2ZbKZneqahc7qoNNWTzZ9y0bFsJttAxAmyyUy2YCi311pOkC3bh42ZbERERFRK1StKv75F9IMQAqlUCitWrMDg4CDWrl2L0047DQCQTqfx2GOP4ctf/nLJ2wgGgwgGgyUvQ0RERDNPPOUEW4IBze37VQ3btrFnzx4AgK4qyABIpOoJsslMNgUBrflBNvfxJBKY1/R7L05rUCZbfySAWCwGy7KgKAqCQSPncoUy2Q6MJ33ZBiIiIpqZ6vvatok++9nP4u1vfzuWLVuGaDSKH/7wh/jNb36DX//611AUBddffz1uueUWrFq1CqtWrcItt9yCSCSCyy+/vNWbTkRERG0mY9nIZExAByJBo6Zp6aZp4r777gMAGMGVSABI1JXJNlUuGtBaM11UPp7r0Pz7L0b3uSebN5NtZGTE+XlgYNrwi9yebGEAwMEJBtmIiIiouJqCbI899hi++tWvYsuWLVAUBSeeeCI+/elP47zzzvN7+1wHDx7EX/zFX+DAgQPo6+vDKaecgl//+te46KKLAAA33ngjEokErrnmGoyOjuKss87Cww8/jJ6enoZtExEREXWmaNKErjjlh5FQoMylyzOyAZpEpva2GWY2iBTQ1JqCfjOVli3l9aslyagbZAu4Qbb58+dPu1wmk3H7+8py0QPjyYp6/hIREdHsVHWQ7fvf/z4+9KEP4bLLLsMnPvEJCCGwbt06vPWtb8W9997bsMyxf/u3fyv5d0VRsGbNGqxZs6Yh909EREQzRzSZgQobAU2FESgdZAsHNGz+wh+5PxcSyPZQqyeTzcpmsgX0wvfRTGHY2Bzc4P7cSoFskE34FmRzykD7DCAajQIA5s6di0D2dbZtG+v/8HsATjZbIBDAgl6ntUjKtDEWz7hDE4iIiIi8qg6yfelLX8JXvvIVfPKTn3R/d9111+H222/HP/7jP7I8k4iIiNpeNGlCg0CwgsmiiqIgYpS+jAyM1VUums1k09XWZ0kpChBpcXBNkq+PbVuwbbum/nlesly0S8QBAH19fTAMJ2gmX2dd12FZlhtkCwU0zO0ycDiWxo79h/DaFQvrHpZBREREM0/Vq5QdO3bgne9857Tfv+td78LOnTt92SgiIiKiRppIZqDBhqGr03px1UIOKkika8+2mspk42RRLyeYpcAWIqdPWq1GY04mWyATA1C4VFQG0LzDDxb2hjCgxPH8xuewY8eOureDiIiIZp6qV3HLli3Do48+Ou33jz76KJYtW+bLRhERERE1UjRpQlPsijLZUqaFT/1oIz71o41ImYWDaEY2yJbK1BYEEkJMZbL5EPSrV1oo+FR6BT6VXoGUaG1mXUBTYUGBLeBPkC2ehg4LmpkAAMyb58xS9b7OUKcH2Rb1hTBXjWMyaSKRSNS9HURERDTzVJ3n/qlPfQqf+MQn8Nxzz+Gcc86Boih4/PHHce+99+LOO+9sxDZSBRKJBFKpFPr7+1u9KURERG1PlosaulY2yGbZAj995lUAwD+++6SClwkGZLloHZlstjOIwWiDTDYTCn5qO8Gnf8Tulm6LpqmwhArb9ieTbSyeQZ+SRCjQi56eHoRCzlAD7+v8p8csBpAb1BvsUnFYSWEyZfqyHURERDTzVB1k+9jHPobBwUH88z//M370ox8BAE488UQ88MADuPTSS33fQKrMpk2bMDk5iTe84Q3uYpGIiIgKi2bLRSvJZKuELPFM1jhdVAjhBtkCbZDJ1k4CquJ7JtsSNYlQYMDNYsuna9Mz2eZqTvbaZCrj26RTIiIimllqWlW+5z3vwXve8x6/t4XqkEqlAADpdJpBNiIiojK8gw/86MlmyMEHdZSL2kIG2VqfydZONFWBBdWXnmyJtIWUaaNLTyMUUDFnzpyCl9OzE2dlkE0IgS7L6eE2mWQmGxERERVW81e3GzZswJYtW6AoClavXo3TTjvNz+2iKtnZPi4iu0AnIiKi4qLJDFTFGXzgRyZbMBtk8yWTrQ3KRduJrjlBNuFDkG00O1lUV5w+enKqaL5AXpAtGo0irDqv7WTKZCYbERERFVT1qnJ4eBh/9md/ht/85jfo7++HEALj4+N485vfjB/+8IcFJzRRYwkh3MWeDLYRERE1k23bOHjwIAYGBjoio9rtyab5E2QzstlwqRp7sjlBNudnZrLl0lUVlvCnXHQ0noYCgXBAhaIoRbMY5XtC3t/Q0BC6QxqiIoRgKg3LsiCEgKK0digEERERtZeqV3F//dd/jYmJCWzatAlHjhzB6OgoXnzxRUxMTOATn/hEI7aRyvBmrzGTjYiIWmFkZATbtm3Dzp07W70pFXGCbP71ZAsa9ZeLTg0+YE82L93HctGxeAZqNsgGAKpaeCkcCEz1ZMtkMhgeHkZ3MIARO4KUaSNt2sxmIyIiommqXlX++te/xiOPPIITTzzR/d3q1avxzW9+ExdffLGvG0eV8WavMchGRESt4O0N2gkmkpmKp4tWIpQNjKXqKRcVAgJKW0wXbSeaO/ig/iDbkVgaKmyEAhoURSkeZNOdctHx8XGsW7cOQgh0R0KwjW4Ia9QtGfXjvUNEREQzR9UrA9u23T4VXoFAgKWKLcIgGxERtZrM6umU41A0aUJT7IoGH4QDGjb83YXuz1IgEMDf/M3fAADWPvkCACBRR5DNdjPZWhNkcx9PPI7wXd/EhuCzAIAwWru+C2gqTKH6Ui46Fk9nM9m0aa+793UO2E7QWK6xurq6cOyxx2LhE8/DPqKwLxsREREVVHWQ7S1veQuuu+46/OAHP8DixYsBAPv27cMnP/lJvPWtb/V9A6k8b5CNgU4iImoFGfzolONQNJFGN0RFgw8URcHc7mDB33d1dQEAwobzBWR9PdmcTLZW9WTzPh4owFy0xwRNd7qoLdxBBLUajTsZjKECQTbv6yyEgeXLl8O2bSxYsADd3d0AgEV9IRw+rHDCKBERERVU9SrurrvuQjQaxfLly3HMMcfg2GOPxYoVKxCNRvGNb3yjEdtIZXi/Se2UDAIiIppZOm0Az2QyAwXCv55s2R5fSbPeclFn6iVNCWgqLKiwfJouqiqFg2xeiqJg+fLlWLlypRtgA4DB3hBsqMxkIyIiooKqXlUuW7YMzzzzDNauXYutW7dCCIHVq1fjwgsvbMT2UQVYLkpERK3WaUG2eMrpHRcK6EX7ckkp08IXf7UFAPB3f3wigtn+a6Zp4qGHHgIAzFm4xLlsprapk1OZbECgReWi7uMxTVwgFPyTuQwA8Hf6XkzP42seQ1dhQYFl+zf4IBSYXiZc7HX2GuwL4TkomExlGGQjIiKiaWr+6vaiiy7CRRdd5P5bCIG9e/fiqKOO8mXDqHIsFyUiolaTwY9O+LInY9lIZ0xAB8LBQNmAmGULfO+J3QCAmy45wf29bdt4+umnAQB/fKkTkLKFQMp0GutXY2q6qNKyTDbv4zkXCr5nLQQA3KS/2pLtkQxNhSVUX4Jso25PNn1akK3Y6+y1UGayJS2WixIREdE0Fa/iNE3DddddVzSIMzw8jBUrVvi2YVQ5ZrIREVGrdVIm22TShK44x8tI2Kj5djRNw/nnn4/zzz8fIcP53lKBQLyGvmzeTLZWDT5wH8/ZZ6O6EGFjyUw2Oxtkq2et4/Rks8uWixYzr9uABQXJjMVMNiIiIpqm4lWcEAL33HMPLr74Yhw5cqToZaj5GGQjIqJW66TBB9GkCQ02ApqKYIGJ6ZXSNA0XXHABLrjgAhiBAHRNgQIglqo+w0kIAVsICNG6nmzu4zn33DYMsjk92ZwprLW/x+R00ZBRW5BtIGLAFgoSDLIRERFRARWv4hRFwdq1azEyMoIzzjgDL774YsHLUPMxyEZERK3WSZlsE0mnL5eh+TP0AHDWQEa2t1s9mWxo4XTRdmXoKmwoMLNvrXrKNEdjzuCDcIGebJWY02XAgopEhuWiRERENF1VmWwrVqzAH/7wB5x55pk4++yz8bOf/ayR20YV8n6T2gknN0RENPN0Uk82mclW72RRIQSGh4cxPDwMwBlYoEAglq4tk63V5aLu4xkZQTu9ik5mn4K07WxjrcEt07IxkTSzgw9qzGTrMmBDQcq0kGGQjYiIiPJUvYoLh8N44IEH8NnPfhbvf//78fnPf74R20VVYCYbERG1khAiJ5Ot3Y9F0WQGmmLD0GvLZpIymQzuvvtu3H333bAsCwFNhQIgnqqnJ5uCgNaaygD38dx7LzIt2YLCZPmsKVTYovZMtvGE86g02AjptQXZ+sMBWFAgBDART9e0HURERDRz1fxV6U033YRf/OIX+PrXv473vOc9iEajfm4XVYFBNiIiaiWR7ZXl/Xc7czLZRN2ZbF6K4gTHas1kA5zJpK3MZGtX8vmwUN+E0dG4E2SLGCpUVakpyKZrKsKG08dvPJ6saTuIiIho5qp4ZVmo39oll1yCJ598Eu9+97tx4YUX+rphVDlvkI3lokRE1Gz5QY/2D7JlsuWiWkVBtpCu4Xc3vtn9uRBFUdyMq3gd5aKA0rLBB14h2PidsdH9uZWmgmxKXUG2sWzmWW/QeQ3zg2yVvM4A0B02gCgwmWAmGxEREeWqOMhWbMF83HHH4cknn8Tll1+OvXv3+rZhraQEgoinLeg1fhPdbLGUiZTpvD7xtFXT4p6IiKhWiUTaPQ4BwGQyjUAdUzsb7UgsDUUIqKqKjFArOm7O7TYAAElzqhQ07bleyhJQFBVCCIzGMlUfi+MpEylLwBJORlsrjuXex5OEgrmKmf1ZBdIWEGjd+kJV4LxWpo1oIoWeGp6foXEn8ywcUJEyBdL29IBoodc5XyRoIDmh4PBkkmsuIiKiWaCaoVaK8PHr5j179uCoo47y6+ZaYmJiAqfc8rtWbwYRERG1OR0W/iL8LADge4nTYKL2/m7tYKY9HiIiIiK/7P7yH2N8fBy9vb0lL+drPYIMsLV7mQgRERERFceVHBEREVH1KioXPfHEE/H3f//3eN/73gfDMIpebvv27bj99ttx9NFH4zOf+YxvG9lse25/L/bvP4De3p5Wb0pFtr+0HUNDQwCAhQsX4rjjj2vxFhER0WxyeOQwNm/e7P779DPOQCQSLnmdDRueQTwWwwknnoD58+c3ehNzfPJHz2HH5hdw0XH9+ODb3oiBOQMlLx9Pmzjji48CAJ7+u7ciYjjLp3Q6jTv/2cn8+p+PnILvr12P3+1O4Pw3vA43vu2Eqrbp0KFD+ML31mLnhMCNH7gYbzq+uc8JkPt4Hjc24uz06wAATxvPIvLJTwBdkaZvk3Tel/8PWvwwrjurHycfezRWHbeq6tu4fe1L+Nff7cSfH2PivBW9OOWUU9DX3+f+vdjrnO8rv3oeGzZswGnL5+IzV76rtgdEREREHWNiIopFX67sshUF2b75zW/ib//2b3Httdfi4osvxhlnnIHFixcjFAphdHQUmzdvxuOPP47Nmzfj4x//OK655pp6tr/lRCaFiKEVXVy1G0MDgrozmCKoKx2z3URU2MTEBI4cOYKjjjoKqtr6BuhE5UQ9xyEACFVwLNJhIagrCGrNP24l0jYCio1uQ0NPJFjV/UcM3b287hkI0BsJIRJQEVBspC1R9WMK6SoUIaAoQHco0JJjuffxhJWpXLaIYiNiaEAL1xehgIYUFGgKoCt2Tc9PLOX0T+s1FAR1Bd1ho+jteF/nfPN6w9AUATOTQTigFRwORkRERDOHaVTeQqOiFcpb3vIWrF+/HuvWrcMDDzyA+++/H7t27UIikcC8efNw2mmn4YorrsCf//mfo7+/v9btphp5J4qyVJeo8+3YsQNjY2Po7u7GvHnzWr05RGXlT3usZNK1vE4rpmJHkxnoioChq74NaAgEAjA0FTpsxFM1ThcVAgKqO02Tphi6ijhUWKL26aKjsQwAJwgMTJ8uWqm53SEAQDJtwrbtmm+HiIiIZp6qvgY855xzcM455zRqW6hG3hOUVpysEJG/UqkUAKd0i6gTWFbuxKVyxyLbtt3rtCTIlsigGzaCugpd9yc7S9M0BDQVmmIjVsUEKkkIAct2vigLaMyMymdoKiyosOw6gmzxNABRd5BtoDsEQEEiY8GyLAbZiIiIyMWvSmcA78kNM9mIOl8m42Rb1HoiSdRs+UG2csci7+VbEWSLJ51Atp9BtkAggICuQIONeCpT9fVlkE1AYSZbAYZef5BtPJGBgqnS5toz2YKwoCCRtrifJiIiohxcxc0ALBclmjls23ZP2mSwjajdVVsu6n1vtyTIlnKyRMNBw7d+Wrquw8gGbRKp6rNQp8pFnawtymXoKkyhwLJFzfvGaNKEChtB3Xmdas5kixiwPZlsRERERBJXcTMAy0WJZg5vsIIZEtQpqi0X9b63m33cMi0b6bRz/13h4hPTq6UoCoKG098tWWOQzbYFhAAz2QoIaEpOJlstXyrG0iY0CBi6AlVVaw6wzukyYAsVKdNGKs0vQ4iIiGgKx1DOAMxkI5o5vBkazGSjTlFtJlsrg2yTKROa4txnVyhY0XVCuoaHP/km92cpEAjgYx/7mPtzKOgE7WoJvMhMNkBBoEWZbO7jSSTQ89178LDxAgAghNZ/gWfoGiwobt86y7KqLvWNpZwgW0BTC2axFXud8/WFA7CyAbrRWBLz5la1GURERDSDMcg2AzDIRjRzMMhGnajanmytDLJFkyZ02NC1qcyzclRVwXELe6b9XlEULFiwwP13JOQE2dI1BNls2872ZGtdJpv7eGIxQAGOU5It2Y5CDE2FgAIbznvLNM2qgmwp00LGEgjAmSpbKMhW7HXOp6kKgoEAkEljbLJ9niMiIiJqPdYjzAAcfEA0c3gnirJclDqFfK/K8rt2zmSLJp1spqCm+Tb0QHKDbDUEyE3LOX6LFmaytbOgrgJQYGeXrtXuH2MpZ62kKsUz2aoRCToB2tEYg2xEREQ0xbfV5YUXXogdO3Zgx44dft0kVYg92YhmDmayUSeSX/YEAgGk0+k2D7JloCk2jComi6ZNG9/8v5cBANe++Vg308yyLPzud78DAJx33nlu+amwTWQsu6pgWdrzhVmrBh+4jyedxllCwb+YiwAA1+oH4F/3utq4z3nNQTbn8hFdgaooBYNsxV7nQiIhA6lJYDyWqmo7iIiIaGaraHX5/PPP4+STT4aqFl9svOc978HIyIhvG0aVY7ko0czhDazJ5t5+TT8kapTOCrKZ0GAjqKsIBCorFzVtG3c+uh0AcPX5K2FgKsj22GOPAQDOOeccdIWdIJsGgXjaQl+48mBZxnSeh1aWi3ofz6lQcKe1BABwtT7U8iBbQMtmSdYYZJvMBtm6DOf6hYJsxV7nQrqCBkYBjMcZZCMiIqIpFQXZTjvtNBw4cAALFizAypUrsX79esydm9vl9dprr23IBlJpQoicwBqDbESdzRtks20btm3XXdZE1Ggy4CGDVuWORfnv82aKpjLQs0G2estFVVXFGWec4f4cDhrQVAW6bSOeNtEXriyIBwCZbKBSURRoamsC6+7jMU2oz2xsyTYUIwOPJpznptZMti7DuX69+9Xu7GTaaKL6SbJEREQ0c1W0uuzv78fOnTuxYMEC7Nq1iyWJbST/teBrQ9TZ8ktETdNkkI3amhAiJ5MN6ICebIqAodffk03XdbzjHe9w/x0IBBDQVOiW7fYAq5TMZNO01mWuuo8nFkO83YJs2f2gJerLZIvoxTPZqtGTDbJNJpjJRkRERFMqWl2+973vxfnnn49FixZBURScccYZRRcn7MnWXPknJ8xkI+ps+UG2TCaDYDDYoq0hKs87fKdjgmywYegB3wcfBAIBBFQFGmwk0lUG2axskK1Ea47ZzM1kE7VmsjmvRyTgTyZbb8TZL08mmclGREREUypaXX7729/GZZddhpdffhmf+MQn8Fd/9Vfo6Sk/4pwaz3tyAzDIRtTpCgXZiNqZ5SlzlEGreoJsW7duRTwex6mnnlqyF2ytJpKZbJBNq7gnWzFCCMTjcQBAJBKBrusI6Co02IilqwsCmdkgWysni7qPJ/uY2kn9QTbn8mHduX69762+bJAtxiAbEREReVT8Fe7b3vY2AMCGDRtw3XXXMcjWJpjJRjSzyKCaqqqwbbvqE0miZpPvUU3T3MBFuWNRqSDb8PAwbNtGMplEJBLxeWtlJpvwpSdbJpPBV7/6VQDATTfdhEAgAENToSsZxKsMssmebK3MZPM+nuvQXgNXgtkgW8auLcgmy0XDPmWy9XWFAADxFL8IISIioilVr+TuueceBtjaCHuyEc0cQgg3yBYOhwEwk43an8xk03XdDbLVmskmhHD/3ajjmdOTzYbhQ5Atn9uTDdX3ZJOZbHoLM9namZwumqkzky2k+xNkG+h2MtkSbRhkGx8fx7Zt23j8ICKiGSl/+GO78W11+a1vfQsjIyP4h3/4B79ukiogT0IURWn7NxvRbGLbNnbs2IG5c+diYGCg4uvIz3QkEkEsFmMmG7U9GWTTNA2K4gQwSgXIhBBFg2zFfvZTNJGGVuV00aCu4RfXnuv+XIyu6whoChSIqssI02Z79WQLwsYvjM3uz61mZIOP6WyQLb9dRjmT2czCkFY8yFbp6wwAc7KZbMk2DLLt3bsXIyMj6Ovrw+DgYKs3h4iIyFebNm1CPB7H6aef3pYD4nxbyf30pz/Fvffe69fNUYXkSYh8czHQRtQexsbG8Oqrr2L79u0VX8dbKiqHHTATgdqdDJhVmslmWVbOccp7WW/gpFFBNtmovpogm6YqeO2yfrx2WT80tXgZpaZpCGSDM9VOnTTt9spk0xTgtWoMr1VjaOHAU5eRfV4zlvPeqfb9ITPZgtmXvNCivNLXGQDm9DjZxqZlugHSdiE/R9UGIomIiNqdEAIjIyOIx+OIxWKt3pyCfFvJPfroo5ws2gLeMh2JQTai1pOBh3g8XvGJjgyoBQIBtyE7M9mo3Xkz2SrpyZb/nm52Jls86QS/QkbA98EKiqK4n115P5UyzfYKsrUbOfhABtmqXevI8t1gNrZWd7loVwiKAqgQGI2nEI/HsW3bNiSTybpu1w+NLrkmIiJqFe95VTsccwupq1xULnBkeQg1n1xAMchG1F68JzeTk5Po6+sre51CQTZmslG7qzaTrVCQTQgBRVGaFGRLwwAQCRkVXydt2rjn9zsBAB86d4Ub8CnEyH52qy0XlZlsgTYpF00LBfdYCwEAH9IOovJnqzHkc56uMcgmBx8Y2ae3UJCtmtc5ENAR0jUkMhaOTKZxeGyfO7TjxBNPrGrb/MYgGxERzVTedWS7BtlqWsn9+7//O17zmtcgHA4jHA7jlFNOwfe+9z2/ty3HrbfeijPPPBM9PT1YsGAB3v3ud2Pbtm05lxFCYM2aNVi8eDHC4TAuuOACbNq0qaHb1Wr55aIAg2xE7SA/yFYJb5BNBs4ZZCPA2a+/8MIL2LJlS6s3ZZpqe7LJxZEMJANTx61mlIvKRvWRULDi65i2jVsf3IpbH9zqBsOKCRrO40pWG2STgw/09vji0oSCW81luNVcBrMNJo0acvBBzZls5YNs1bzOmqYhHHBuY2QijtHRUQDAoUOHWp6BzCAbERHNVDMyyHb77bfjYx/7GC655BL86Ec/wgMPPIC3ve1t+OhHP4qvfe1rjdhGAMBjjz2Ga6+9Fk888QTWrl0L0zRx8cUX59ThfuUrX8Htt9+Ou+66C+vXr8fg4CAuuugiRKPRhm1XqzHIRtSevCc3le6D0mnnpJzlopQvnU7j8OHDOHjwYNv1WZLv0WrLRWXfQaBwUKARAQLLFkilnSBbVxWZbNUIGs7tJtLVBdkyMsimtl8D33ZQbyZbLO18bgIlgmzVUBQFoaCznx4+POp+IWLbNoaHh2u+3VQqVfd+Xz43DLIREdFM0wlBtqrLRb/xjW/g7rvvxhVXXOH+7tJLL8VJJ52ENWvW4JOf/KSvGyj9+te/zvn3PffcgwULFmDDhg1405veBCEE7rjjDnzuc5/DZZddBgC47777sHDhQtx///24+uqrG7JdrVYoyMZFFVHrMZON/OQNrFmW1VaTlLy9QaspF/VmssnLNzqTbTJlQstOyuwOV57JVg0ZeElVGWSzZJCNPdkKMrLv+Yxd3+AD3acgG+D09QOAQyMjmNs3Nel9aGgIixcvrvr2TNPEk08+iXA4jDPPPLPm7WImGxERzVTeIFsikWjhlhRX9UruwIEDOOecc6b9/pxzzsGBAwd82ahKjI+PAwDmzJkDANi5cyeGhoZw8cUXu5cJBoM4//zzsW7duqK3k0qlMDExkfNfJ5ELKFVVK8ogIKLm8J7cxGKxik52ig0+4GeavMGndstuLDT4oNT73fs+zy8vbXQmWzSZga7Y0FQF4WBjMtnC2Qy9VKq6APlUuSiDbIW4mWxmPeWiAoFs5asfQbZwNqA6MeaUii5duhSKomBiYgLxeLzq20smk7Btu+JjRjEMshER0UyVn8nWjudJVa/kjj32WPzoRz+a9vsHHngAq1at8mWjyhFC4IYbbsAb3/hGnHzyyQCAoaEhAMDChQtzLrtw4UL3b4Xceuut6Ovrc/9btmxZ4za8AeTJjaqq7slKO77RiGYbb1BECFHRiOlCmWy2bfNEido6yOYdfFBNTzZv5luh8rZGHMuiSSeTLairOQOD/CQHKqSrzEJtt8EH7WaqXNR5nmoZfKBAIJDt7eZHkC2SDdQmspNkFy5c6H75W2rtWYz3/V9PFjODbERENFN518FCCLfdTjupeoV588034/3vfz9++9vf4txzz4WiKHj88cfx6KOPFgy+NcLHP/5xPP/883j88cen/S1/0qmcWFbMTTfdhBtuuMH998TEREcF2ryZbJWc3DTKrl27MDk5iZNOOonTZokw/XMYjUbR09NT8jreIJtsIi+EQCaTaavyQGo+74Ki3YJshTLZKunJJoNslmU1rVzUCbIJBHWt4UG2aoMkbiYbP+sFGdky2lQNPdmEEIilnNdeButUH4KZXaHskIuMjUAggK6uLgwODuLw4cMYGhrCihUrqloTed//mUwmp29hNdiTjYiIZqr8dXAymaz5eNkoVa8w3vve9+LJJ5/EvHnz8J//+Z/42c9+hnnz5uGpp57Ce97znkZsY46//uu/xi9/+Uv83//9H5YuXer+fnBwEMD0bw6Hh4enZbd5BYNB9Pb25vzXSbw92VpVLiqEwJ49ezAyMlJTeQTRTCQ/m/IEq5K+bPlldBx+QFKnZLJV25Mt//LNKBfVFBuGrub0hPNTV7bXm2lWF2SzssGjAMtFCzKyU1fl4INq3h/JjA1bACoEApqaMwm3HrLkOGVa6O/vh6IomDt3LgKBANLptDtxtFLez3k938wzk42IiGaqQkG2dlPT17inn346vv/97/u9LSUJIfDXf/3X+PnPf47f/OY3WLFiRc7fV6xYgcHBQaxduxannXYaAGeB8thjj+HLX/5yU7e1mQplsjU7yObNQuCCjsghPwvd3d2IRqMVTRj1BtkAJ2iRTqc5/IDaOshWbU+2UkG5xgfZTOiwq85kC+oafvBXb3B/lnRdx5VXXun+DEwNVDDN6qbAynLRVg4+cB9PIoGuHz6AHwS2AgCCaP2xXQ4+SJvVl4tOZoceaIpTLlosM7jY61yMnFCbMm0MDAwAcNZj/f39OHToEOLxuFs+Won8TLZaCCGYyUZERDNW/jq4HYcfNKZWogGuvfZa3H///fjFL36Bnp4eN2Otr68P4XAYiqLg+uuvxy233IJVq1Zh1apVuOWWWxCJRHD55Ze3eOsbpx3KRb3ftnJBR+SQn4W+vj5Eo1G3kXWxEiVZFgpMBdmYyUZSOwfZ5PZ4s4NqDbI1vlw045QMatX1ZNNUBWcfM3fa71VVxfLly3N+1xMOAQCsqjPZsj3ZWhhkcx9PLAYowNla+S8HmmWqJ1v15aJysmi34ayVigXZir3OxXTLIFtmKsgGTAVcve/nSviRydboQHUn27JlC+LxOE477TRfyoWJiKj55DrSMAyk0+mZk8lWyIUXXogdO3Zgx44dft1kjrvvvhsAcMEFF+T8/p577sFVV10FALjxxhuRSCRwzTXXYHR0FGeddRYefvjhsn2QOlk7DD5gkI1oOvlZ6OrqgqZpsCwL8Xgc3d3dBS/vDZx4M9mA+hpg08xQqiebZVk5x4Bmk8eh/EEGxXqitjKTbaIJgw96upxMNtuyYFk2tAqDZjKTzWhhkK2dySCbaedma1VCZrJ1ZUeL+hVg6Q47QbZJU0EoFHJ/L2+/FUE27/PCQVhThBA4ePAgAKe0KBKJtHiLiIioFnId2d3djSNHjszsINt73vMejIyM+HVz01SyUFAUBWvWrMGaNWsath3txpvJ1qqebAyyEU3n/Wz29PRgbGwMk5OTRYNsMpDmDTwwk42kYplsyWQSTz31FBYsWIATTjih6dvlnX6b3+eqWJCt0Hu9qYMPFBuGrlXVky1j2fjBU3sAAB94/VFutpllWdiwYQMAp5WGpmnoi4Sz1xKIpdLojYQK3eQ0biZbC3uyuY8nncYpQsGPrPkAgA9oh9CYDnaVk0E2AcCyBRSleCA3nzeTDSg+WbTY61xMf7cTqDmUCeRsh7z9at/DfpSLMpOtMK5ViYhmhlkVZLv22mv9uimqQqGTGwbZiFrPG2Tr7u7G2NgYotGoO6QlX36pKMBMNppSLMgWjUZh2zYmJiZasVk526Xres7xp1h5dEt7siXS0OAMPqgmky1j2fiHX2wCALzv9KU5QbYHH3wQAHDqqadC0zREgjoEFCgQGI+lKg+yuT3ZWjdd1Pt4joOCfzCPBgC8TxtpfZBNk0E2BaYtoGvlJ8hLsbTznosEygfZCr3Oxaw4agl2WwOYMIPIWLZ7eXn7LBdtH1yrEhHNDHIdKasVU6lUxeuBZumYnmxUGHuyEbWn/CAbAMRisaKXLxRkkz8zyEbFgmzyvdGqfW+hlgVSoW36zdaD+M8Ne7F6cS/ObVGQDYBv5aKqqmL16tXuz4CTVa9qAQgrjWg8AaCvotsybSdAabQwk819PKYJdev2lm1HIQEt+0UinEw2oPIvFSdTzvs0ki0XLRZkq1Z/Vwijwslmm0hkMLfbKRVuZbkog2yFpVIp92eW0RIRdS65Do5EIlBVFbZtI5lMIhwOl7lm81S0wrzssssqvsGf/exnNW8MVY/lotQqQ0NDSCaT05p+k8MbfJA7/VLpzKWCbCwXpXJBtladNHqz0gAnwKQoSsGeWUIIfPFXL6J7LIZdh+N45Mh6fPjkAEJoXrloLOF8BkOG7ktfLl3X8Sd/8ifTfq/pGkwLmIxXHiiRjzfQwkw29/HEYohv/eeWbUchiqLA0FRkLAFbVBdkk+Wi5TLZqqWpCnqCOqIpExNJ0w2y+ZHJVs90UYlrsilcqxIRdT4hRM7aMxgMIpFItF2QraIVZl9fn/tfb28vHn30UTz99NPu3zds2IBHH30UfX2VfVtL/imUycYgGzXDyy+/jF27drVlHXw78H42ZUPsVCpV9DPCclEqpdjgg3bJZPMGLfKz06TnXx3H3pEoNFWBoqp4avcobnvoJRyJpZqWyRZLOsercNDw/ba9dN35HE9WsX90e7IFOPigGENXa8pkk0G2sM+ZbADQG3Ze6/HE1H7aj55s6XS6pvUcM9kK82ay8Xkhoplk9+7dePnll1u9GU2R36akkkSGVqgok+2ee+5xf/7bv/1b/Omf/in+5V/+JeebumuuuQa9vb2N2UoqqlCpDstFqdG83yJkMpmcqWrk8PZLNAzDTWdOpVIFv2mRnyNmslEhxTLZ5M+t2vfK+88PslmWNW2bfv7sPmgQOHZ+N95y8lLc+TwQPTiGPYfjOL1ZmWypNDQAkVCDg2zZz24sUXkmmwwcGS3MZGt3hq4CKQVWNvZU6XtEThcN6f4H2XpCzlJ6okCQrZ5MNiEELMuquqyZQbbCuFal2UIef6sZ7kOdbdeuXRBCYNmyZQgGg63enIaS605FUXISGToyyOb13e9+F48//njOAkXTNNxwww0455xzcNttt/m6gVRau2Wysc/F7OB9nas9iZgt8j+boVAI8Xi8aDozM9molHbtyeYNJkuFvvDJWDb+a+N+6IqNExb1Ym5PGG86rhu/OrgHo/FM0zLZEsk0ugF0hf1ZhKbTadx6660AgJtuugmG4QTvjOznOJ5MFb1uPqsNerJ5H891aJ8GwpIcfpB9qqrPZGtAkK2vQCabHz3ZAOf1qDfI1m7NoFuFQTaaLZ599lkkEgmcffbZvvQepfbmbc8xG87JvKWi8vwKaL8gW9UrOdM0sWXLlmm/37JlCw9aLeA9wWlFTzYhBBcus5B3Jz4bdui18AbZALgHgUQiMe2ypmni8OHDAJwmnpI3k40B7NktP8NLvr+8Pdla8R4pVS7q3Z7fvnQIh2NpzI1oOHpOBLquY+X8LthQMBpPNy/IlnKer+5QY7/pNQw95/4qIaeLBnRmshUTyAbJrCqDbHLwQVBrXLnoRNLfclGgtuEHhXohEstFafaIxWKwLCvnPU8zl3d/NhvOyfJ7AZc6v2qlqsPbH/rQh/DhD38YL7/8Mt7whjcAAJ544gn80z/9Ez70oQ/5voFUWqsz2fIzbLhwmR28rzNLGacTQkwLspXqGbBv3z6YpolIJIK5c+e6v5cHEBlU8fPEkDpL/sLJsiyoqpqzD25Fxkr++9z7s3c/8bNn9wEALlg1F6rqlMAdM9ANAQWjsakgWyPLRTOWjYyZAVSgJ1JdkM3QVHz3qjPcn8sJBZzPbjJdQ5BNa4+sIwM2vht4yf25HbiZbNnNqTaTLag5ly+2L632dQYKZ7LVWy4qh4fUksWc/7mxbduXIR+djl8I02wh94t8n88Os626SJ53ykSEju7J5vXVr34Vg4OD+NrXvoYDBw4AABYtWoQbb7wRn/rUp3zfQCou/0S+FT3Z8r9l5Q59dpht35pUy3vAK5fJZpom9u7dCwA4+uijc4IkmqblnGwxyDY7yd5MXqZpIhAI5JyEt+JkulAmW/6xaCKZwdrNBwEAbzp2LjA5jEAggKXZTLZoykQ8Nb3s1e/jSTRpQoPz2ewOV9eTTddUvOWEhRVfPphd/CXSlX8JYbvlou3xOdcV4C3aeKs3I4d8buQ7o9L3SDwtg2ylM9mqfZ0BoDeUzWRLTL3W9ZaLhkIhJBKJmjLZCgXZZjtWXdBsMdsCLjT7zsmKZbKl02mYptk2JdJVr8ZVVcWNN96Iffv2YWxsDGNjY9i3bx9uvPFGngA2mfdDpapqS8pFGWSbnVguWlr+ZxMo/k2LN4ttwYIFOX9TFIXDDyjnM+Z9P9i2nfO+aMX+t1wmmxAC//rbHUibNo5d0I1l/U5wS9d19EcMdGcDFEPjiZzby//ZD+OJDHTYMHQVQaOxgw/CQWeRl6omyCacx9suQbZ2JPvVWVVmssnBB0b2bdronmzeTLZq1mTeIBtQWz9OBtmm41qVZgvv/obv89lhtgVW84NsgUDAPccaGxtr1WZNU9dX3r29vZwo2kL5J/KtKBflwmV2Yrload6DnPxcFmrMaVkWXn31VQDTs9gkDj8gbwmZbKxvmua0z1679WTbPxbHB//1SXz9f52x8pe//ij38vJ9vWTA6UE4NBbPuT3A/+PJRCIDDTaCmlr1N50Zy8aPn96LHz+9Fxmr/HbJctFUFZ9buw0GH3hlhIIfm3PxY3MuMqI9SliD2RJO+S6pvFzUuYaRfZsWC7JV+zoDQG84O120QE+2arbRW50gTxj86MnGdRmm9aZinzqaqWZbVlMrmaaJeDze6s2Yda95fpANAObMmQMAOHLkSEu2qZD2WMlRTeSHSo6wZbkoNQsz2UorVMbtzUyQB4j9+/cjk8kgHA5Py2KT5EGEwczZyxvI8r4f2qEnZrFMtuFoElf/+9NY98phhAIq/u4dJ+Kqc5ZPWxwt7u8CABwcT0wb3uD3MIeJZAaqIhAMaDUF2T79k+fx6Z88X1HwJRJygqGpTOWfWzldtF0GH2Sg4NPmSnzaXIlMm0wancpkc56ranuy6UrpnmzVvs7AVCbbRIFMNqDyY6T38+stf6kWM9mm41qVZgtmslUnHo/jiSeewL59+6q+7gsvvICnnnqq5YG2Ts5km5iYwJNPPomRkZGKr1MoyDYwMAAAGB0d9XcD68AgWwfLP7lpZbmot0E7zXzMZCvNO/VX0nXdLfWT2WxyoujSpUuLNqxnkI3ka9+OQbZiPdm27J9AKmPhNUv68Ovr3oS/PG8lVFWZdvmlc5xMtoMTiYKLQz8f00TChAqBoK42vHddV7YMttIgmxDCHXwQbJMgWzuSQyFqLReVQTY/e7ZM9WSb+jwqiuLu0ys96fFejuWi/mKQjWaLTg64tMLw8DCSySR27txZ9fMVi8UAOIGiVurkTLYjR44gkUhgaGio4usUCrL19/dDURQkEom2mTLKIFsHyw+ytbJcVC4IuXCZHTp5h94MhbJ7gNzhB5ZluQdm+Q1MIQyyUSdmsh2OpaFC4C/ecDSWz+sqevmj5jp/OzSRLLj9vgbZkhkozQqyBasPsmWTs9iTrQQ3ky37XFX6/nAy2URDgmx9kek92YCpQHKl2+j9nMuycJaL+iO/XJTPCc1UDLJVJxqNAnDWVHKgYyW8PXFlsK1VOvk1l9s7OTlZ8XUKBdl0XXdbmLVLNltdq8xXX32VB6oWkm/MVgbZ5MIlGAwC4MJltmC5aGnFgmze4QcTExOwbRvBYND9fSEMspG3j1mpIFs79WQ7PJmGAoFVC7tLXl4G2Q5PpmCaU8e0RrQ/mEhksplsWhMy2bJBkqoy2ZzXLxhgkK0YGYCUQbZK3vO2LRBLW9Ag3Ey4hmSyJXNfa+/wg0oUCrIxk80fMlhZbeCTqNM0cnjQTOQN7uzbt6/idZR339zqIFsnJz7IbU8mkxVve6EgG9B+fdnqWmWuXr0au3bt8mlTqFrFMtla0ZNNZuiwmezswHLR0irJZJMTcGSKczGcLkqdlskWT9uIpU0oisCqhT0lL794oAuqosC0LOzPDj/wTsv2O5NNBRAMND6TrSckB1RUuGi0bNhCDj5gkK0YIzv4wKyiJ1s8kw3ewoahqTnvLz94p4t6t0feRy1BtvwpwtVgkG06+YUwqy5opuvkrKZmS6fT7r5B13UkEgm3jUsl15VaHWTr5Nfcuy+u9HksFmTz9mVrh318XasMBlRaq516snHhMrt08rcmzVBJJptMZ+7v7y95W8xko3YOshXKZDsw7vQcXNBtoDuoF7y8/GwEAzr6wwGoENh1KOreVkOCbAkzWy7a+Ey27nA2E6nCIFvaczlmshWXXy5ayXpHDj0IKAKaqhQdelArOV3UsgXi6anXsZ5MNl3X3S9fqi0Zzf/MVLsmnIlre65Vabbg4IPKyVLRSCSCxYsXA3Cq9CrhXX+lUqmWrtE7+ZzMu731Btl6enoQCARgWZb72rYSe7J1sPzm6s0uF7Usy/1wcOEyu7BctLRymWyxWMw9AJTqxwYwyEa5gw/k/r5dgmyF3uv7J5xvhpcNhIpeXj4OVVUx0GVAgcDukUn3dw3LZFOa05OtJ5INsllWRcdkb5BNljTSdEFdZrI5/67k/SGHHvQEnTJkP0tFASAc0NzXbLzAhNFaerIpilJzyWg9Pdksy8L69euxdevWqu6z3ckgm/yii2tVmqk6Oaup2WSpaHd3NxYvXgxFUTA2NlZRf7D8Lz9amc3Wya+5n5lsiqK451SlSkaFEBgbG2v4c1XXSuOzn/2sW/9KzdfqclG5g1FV1V0McuEyO7BctLT8bB1JLvC9pSsy8FYMg2xUrCdb/sl0u/Rk2zfmZLItHZjea7BQBnZ/JABVSWD34UkcsyD3c+N3TzYFoqZyUUNT8c3LX+f+LOm6jve9733uz1Jv2OlTmjad5siy/K+YlBtkU1o6XdR9PKkUIr/4Jb4ZeBkAYKA9ju1T00UrLxeVmWzdhvO6lQqyFXudS1EUBb2hAA7H0phIZrAYzvu+nkw2wGkVkEql6s5kq+YzFIvFEI/Haxq40K6EEMxko1mDPdkqJ7/s7unpQSgUwvz58zE8PIyhoSEce+yxJa+b/+VHLBZDX19fw7a1lE7OZKs2yCaEKBpkA5zEheHhYRw5cgQrVqwoeBuHDh3C5s2bsWTJEqxatarGLS+vriDbTTfd5Nd2UA1aXS4qFy2GYTQk64DaV/4OXQhRsq/YbFMsky0YDEJRFPczWi6LDWCQjYqXi7ZD76VC7/W9o8749CV90wPI+YEEVVUxJ5vJtvdwDFig5QTs/M1kM2sefKBrKt5xyqJpv1dVFSeddNK03/eEAgAU2EIglsygv0yQLZNNzVIVpaX7UvfxxGKAArxDa48pXZKRl8lWyXpHZrJ1BcoPPSj2OpfTF3aCbOPxqROvenqyAag5k62e/YI8zsyk47pcqyqKwiFdVTJN082spM7QyVlNzebNZJP/Hx4ermi9zUw2f3i3t5IMQu/lCx3LZfJXNBpFPB5HJBKZdpl4PJ7z/0ZhuWgHa/V0UQbZZi/vTk4IMSN7uNSjWJDNu8gHyvdjA6YOIrVMmaOZoVxPNvm7dujJJoRwg2yL84Jstm27+wrvl0MDEQMqBPYdibm/a0i5aDyd7cnW+HLRrqAOG84xOZoonxWUcier8mS2FEOWS4tqMtmc57aSIFutesLTJ4zWUy4KTA29aWYmmzy5nEnHdZk57l2rzpTH1kjj4+N4/PHHOeCuw3RywKWZMpkMkkkn676nxxnQVM26Q+6XZRCnlUG2mZLJlslkyh7v5DGq2ACjYDCIuXPnAgD2799f8DbkfTT6vIpBtg5WrFyUQTZqtPzXmVlWufL7TnnJklGguiAbn+PZy9uTrVCQrZXZGfnHoZHJNCZSFhQFGOwNFrwskNtLdCDiZLIdnkwiY9mNG3yQzD5fNQTZTMvGfz9/AP/9/AGYVm45zqZNm7Bp06acbVUUBYHsY4wmywdJMmbhEvNmcx/Ptm1IC+C/rQH8tzUAs01iErVkssWqyGQr9jqX0xtybrNQT7Z6M9mqDbLV05PNe9LRaSdrxXCtWhtZStcODcSpchx8UBmZNRUOh91jQjX7B7mvlBUpk5OTLQved3JgNf+5LhesLFUqKskhFkNDQwWfD/naMchGRRUbfNDsnmyGYTT9vqm18l/nTtupN1qxTDZgqidMJBLJyWorxpulxM/X7FQok807eEa+j5q9wBNCTAsMbD8YhRAK+kIB6Hlv//wgFOB8RsKGhnBAg6bYGI2lG5bJNimDbIHqy0XTlo1r738G197/DNKe4ItpmvjJT36Cn/zkJ9MC4Xq2t9pkRZlscp/R2kw29/H8138hDhXXZo7FtZljkW6T5aIbZMuOF61m8EF2CGjJ6aLFXudy+mQmW6J9ykWrzaQDcr/MmSnHdblWDQaDDLJVQb4X+Fx1lk7OamomGTyWpaJAdefRcr8ivyw3TbNlvSw7+TWX2yuPd34E2ebMmYNQKATTNDE8PDzt795Mtkaum9tj1UQ1aceebDOpxICKy9+Je0tMtm/fjn379rVis9pGqSBbb28vAGDevHkV3Zb3QMJsttmp0OADSVEUt6ys2SdD3n29fK9vOxiFDQVzu4NFg/HeHj/yev2RADQIjCUyDQmypU0bqYzz+Qnqqm89hhRFwdFHH42jjz562m0aAee1qqRcVPZk05TWLsvcx7N0KdqxcNXIDj7I1JDJFtYaVy7amw2y+ZnJVm+5aC1l5DMxyFaoXJSBo/IYZOtMzGSrjMxkk6WiQG2ZbKFQyK1QaVXJaH4mWyedh8vnWr4OfgTZFEVxs9kKlYzK167RyQtVr+Z+/etf4/HHH3f//c1vfhOnnnoqLr/8coyOtleD3JmuHctFvdtFM1exk+dEIoF9+/bh5Zdfruh9YNs2Dh8+PGMW81KpINvg4CBOO+00LF++vKLbUhTFPelikG128p585/ehCAQCLTtx9H5u5Ta8dHASAgrmdBlFe0N5t18et/rCAWiwMZ7INKRcNJp0JosCQMjQfQuyBQIBXHXVVbjqqqumTRANZINssVT5TKS0LBfVWhvach/Pn/0ZSo9qaI2pctHqp4tmKzobEmRzM9mS04NstfZkq7VclEG2XMxkqw2DbJ2pk0sHm6lQJlul+wfvxOJAIODeRquCbO0wBKtW8j0qExD8CLIBwKJFi6CqKqLRKCYmJnL+5j2mNjL7sOog26c//Wl3Y1944QV86lOfwiWXXIIdO3bghhtu8H0Dqbhigw+a8eGKxWLuDio/yNZJEXSqTbEgm9xZCSEqmtqyf/9+vPDCC9i7d6//G9lCpYJsiqKgr6+vqnI1efLOINvslH/y7V1c6LreshNHeX+KorjbsP1gFALA3G5j2rEg/5jlvW5f2IAOGxMNymRzJos6WWx6iXJBPwWzr1Osop5s7ZHJ1u5qCrKls2XV2Ze9IZlsIVkuOn3wQbWZbPK9X2s/Tvmc1FIu6i1N7aQTtVKYyVYbBtk6EzPZyjNNE4mEM6CpUJCt3HHFmy1mGAa6uroAtEcmG9BZwdVCmWylnv9Kg2yBQADz588HkJvNZtt2zjG1kX3Zql5p7Ny5E6tXrwYA/PSnP8Uf//Ef45ZbbsEzzzyDSy65xPcNpOJaUS4qhMD+/fvxyiuvwLZtGIaBvr6+nKwA7tRnvmLlot5vBGKxWM7BqxA52UcugmeKQsGEenD4wezmHXwAOO8H77eorZqYV2iy6LaDUahQMLdrerlosYEgTpAtAE2xMRZ3MtnkbfsWZEtkspNFq+/HVqug4TzOeCWZbO5z2Y5Fmu1DThfN2JX3ZJOZbEHNuU4jM9nGfezJ5u2/WA1msuXi4IPaMMjWmTq5P1ezyFLRYDDoZgwDlWeyyX2KzLpvdZCtU/tke1tMdXd3Q1EUWJaFZDKZMyTOq9IgG+BUDh08eDCn0jI/qNZWQTbDMNwMlUceeQRXXHEFAKfJXH46HjVWK8pF9+zZg507dwJwXvPjjz/ezbJRVZXN2WcJ7yLeNE13h+7dWU1OTmLhwoUlb0fuLGda8KhUJlstGGSb3bw92bz/B1pbLpr/Pj84kUI0aaJfUzHQFaioXFT+uy/bk228YZlsGagQMGqYLFpKOp3GnXfeCQC47rrrchbsweyxsaIgW7ZcVPOpjLVW7uMRAn/V0i0pTGayZbLnEJWsd+TgAyP7spcafFCr3uxUBT/LRb1tAoQQFZc4M8iWSz6m/C8kqnlOZyMG2TpTfiYb3+fTySCZHEQmVRtkk8d7b5CtFc93PROlW8l7jNE0DV1dXZicnEQsFvMlyBaJRAA4r5d8Xdo6yPbGN74RN9xwA84991w89dRTeOCBBwAAL730EpYuXer7BlJxrZgueuTIEQDAsmXLsHLlypwdCYNss4d8jQ3DyAmy5WeylSOvN1MW8xKDbOQXIcS0fX1+kK1V053zgwLbDjotBJb0h6FnjwelLi+pqor+cAA6bERTJiyh+B9kS5hQFIGgz0E2AEVL40OG8zolUpWXizYry66UqcfTfidmU0G26nuyBdTGZ7JN1DH4oNTn3LbtioOD9UwX9Z5wzJTjsnyPKIoyreqiEQHXmYJBts5UKODC93muYoGaStdScj8pk0zC4TAURYFt20ilUtOCd43WqZls3u2WGYEyyFZsOFw1QTbDMKAoittDLxgMTuvB1lZBtrvuugvXXHMNfvKTn+Duu+/GkiVLAAAPPvgg3va2t/m+gVRcKzLZ5Ad3YGBgWqSeafizh3wf5PcKy89kq/R2OuWAUKliZXG1YpBt9sr/pg9o30y2nYecz/zRc7sA2EW/XS2UyRYxNAQ1AWEDh+MZzAs3JpOt1nLRgKbitved4v5cibAhM9nKf24zMpOtwttuhgAEbtN3uD+3g4A7XbTyIFs0mc1kyy5ZSi3Oa3mdAW9PNv/KRb3vU9M0Kz6eyOeEmWwO734nf0gXgw/FMcjWmQoFXPg+z1UsUFNrJpscUOZNOmimTu3J5t03K4riPp+lznWqCbLJ20ylUkilUggGg+2dyXbUUUfhV7/61bTff+1rX/Nlg6hyrejJlt8byItBttnDm8kGoGC5aDqdRjqdzimfyjfTg2x+Z7I18mBA7Ul+NrzDBYplsrW6J9v+cafH4mB/BMBkVZlsiqJgTljD4ZiFgxMpLMiWX/jbkw0IBmrLZAtoKv7kjGVVXScUdF6nZLr85zZjZUv81PbJHgsoAn+iH271ZuQI5mWyVfL+mMhOljWyAbpyQbZqX2egcE+2estFFUWZ1pKhErWWiwohcu5nphyXi2WycUhXcUKInCAbSw47R6eWDjZTuSBbuX2DXIvX0s+tETo1k62WYT/VBNkAp++eDLIBze3JVvVK83/+53/w0EMPTfv9ww8/jAcffNCXjaLKFJsu2oxMNgbZZrdiQbb8NNxKRzF3ygGhUiwXJb8U+mKjXTPZ9o0507oG+yIFt6dUJhsA9IWd/cnBaKphPdkaUS5aTCSbyZZMV5LJJrNf2yeTrR3JwQfVTBcdT2SgwnYDdI3pyea81rG0BdPKzWSuNZPN+3Oxfb8QAqOjozn3UWu5aP59zJTjcn6QjWvV8vJfewYkO0enZjU1U36fW6naTDZZzVPNdRuhU1/z/GNVJcfMWoJswNSAPfnayderrYJsn/nMZwo+eNu28ZnPfMaXjaLKFCsXbeQHvNiOqVn3T60nv9UEipeLyvdHuZJRZrJVhkG22avQPrdde7LtzwbZFvWHCm5PqUw2AOiLOPuT/ePpxvRkq6Nc1LRs/O/Wg/jfrQfdIEo54WA2yFbBIi4tAzNt0JNNMgXwv1Yf/tfqg9km59iyJ1u6ip5sEwkTGgSCAc2dBldMLa8zAPSGpj6TE8ncwHglx7dCvReB8hNG9+zZg40bN2Lfvn3u72rNZMs/2Zgpx+ViVR9cqxY3UwOuswEz2cqrpFy01LGFmWz+yN83lzvXiUajbvKGDJ6Vkx9kk6+dHIrQVkG27du3Y/Xq1dN+f8IJJ+Dll1/2ZaOoMvkLskaXixZbBEpcuMwO3te3WCbbwMAAgPKZbAyyVYZBttmrUGCqbTPZRmWQzVm8VNOTDZgquds33n6ZbGnLxofvfRofvvdpNyBWTlfQ2T+mqslka6MgWxoqPpw5Dh/OHId09cvFhqh28EHatJHIWNCymWzlsthqeZ0BQNdUdBnObcu+bJWesAGFey96fy607xdC4MCBAwCARCLh/s7dpiqDbDMxsCKniAJTXwRzrVpe/nuBz1Xn6NSASzOVC7IBpY8thTLZahk045dOzWTLr8gr9cWUbdvYunUrhBCYP3++GyQrp1gmW1sG2fr6+rBjx45pv3/55ZfdEbbUHM0efFBsEShx4TI7eF9fbyabbdvugUsG2arJZJtJ5Qh+B9nyMwZp9ihVQgbkBtla2ZMtZVoYjjqLmCX9hctFy2ayhWUmW7IBmWxOX65ae7LVoivbDD+dKf+5NWXGIstFS5KDD1IVlotOJLPZ1aoTYG3EZFEpvy+b931e7n3s7b3o7X1VKpMtGo0imUzm/N17P/WWi860tVylQbbx8XH3hGy2munvhZmsUwMuzVRuuihQ+j2fP/gAaI9MNrn9nfKaF5uoXehcZ9euXYjFYggEAli1alXFPSKLZbLJmFVbBdne9a534frrr8crr7zi/u7ll1/Gpz71KbzrXe/ydeOotGaXi8o3vbenhVerTvSoubzfPHhPALw7xf7+fgBAPB4v+n6wbTvnvTqTFnH5387Uq9CBZ/fu3di9e7cvt0/tq1N6sh0cdxYwQV3F3B6nXNSbRZJ/eS/57/5skGLvWMr349lE0oSq1F4uWouubI+5SoJsU4MPGGQrxc1kM0VOdn0xMuDVY6juIIFGkX3ZZGDP+z4rd9LjDUAXCrIVOuk4dOiQ+3OhSZDyupWuyWZiuaj3+aikXDQej+PZZ5/F5s2bS97uTF/nMsjWuVguWl4lmWylnrd2KxfNnyjdKfvu/DVhsUy2iYkJ7NmzBwBw3HHHlRyol69YJps3yNao/XnVq7nbbrsNXV1dOOGEE7BixQqsWLECJ554IubOnYuvfvWrjdhGKqLY4AOgMQuAUkMPvNvBHfrM5v3mwbtD9KZPh8NhaJoG27YRj8cL3k7+TnQmZWk1ulw0nU5j586d2LlzZ8ccTKk2pXqyybHx7dCTTQ49WNIfLrpQLRZ8lv/uDQegKEA8bWM0GxzxfbpoEwcfdMtMNrP8ZzTjNsvnBL9SgtljjoACW5Rf68ggW29w+mRev/XmZbJ5v5CsJsjmVeykQwiB4eHhnOtbtsDwRGLadWd7uahUSSabzAyU/y9kdHQUf/jDHzAyMuLnprYVBtk6FzPZyiuVyVauKsxbtdMugw/kfcrtafVrvnv3buzfv7/s5SqdLrpr1y4AwIIFCzB//vyqtiUUcr70TaVSEEJM68kGNC6brerVRl9fH9atW4e1a9di48aNCIfDOOWUU/CmN72pEdtHRXi/wc3/dk7+3e9x26WGHnjvnwfjmc37vvP2i5E7KdmIvaurCxMTE4jFYgVLyfMPAq0+KPil0GezXt4DjxAiJ3BpWVZDpuVReyh08h0Oh6EoCiKRSEun5Xnf5/uPOCf3i/OCbIUy2YqVi2qqgp5gAHZGwdB4Ouc69WrFdNGekPNtayb7uS11TM5kA3GayiBbKTKTTQCwbFG+XFQG2YwmBNmyQdWJxNQJgvyyqdJy0fzPRrGTjomJCaRSKZiWjc0HJrBr0xE88othJJNJXHFsBuetml/1fkHeh2EYSKfTM+KYXG2QrVDZbb7Dhw8jnU7jyJEjmDdvnp+b2zYYZOtcxaZ605RCFQKSqqqwLKvo8ybPdfIzo5nJ5kilUti5cydUVcWiRYtKrntKTRf1rplkFtrg4GDV2yOz3oQQSCaT7nNjGAZ0XXfPX6vJjqtUTasNRVFw8cUX4+KLL/Z7e6hC3oUDM9momYqVi+b3KOju7sbExAQmJyexYMGCordT7N+dyvvZK/RZORRN4XtP7EY8ZSIYUNEXDuDPXn+Ue4JWiLfsJz87cKY8b1RYof2uYRg444wz3G8t26Enm5wsurg/VLSvSblyUcDpa2VPKjgwkcQg/MxkMzGQnTDZtEy2bLmoAoFkxkbYKB4Ml5Ms2ZOttKkgm1JRkE1mlXUbueUojdAb1nPuU95fJpPxPZNNZrE9uz+O328bRkromLCCCELg6V1HkLaAs86aynCt5ItXeeIZDAZnTJDN26tIPv5Smb/yd6Ueu1zr1LJvikajsCzLbanRrhhk61zMZCtNCFEyaaRckM1btePdp7ZrJlsjkm5KkUHISo47xaaLynOd/ME/3szBSimKgmAwiFQqhWg06t6fpmkIBAI5SSJ+qyjI9vWvfx0f+chHEAqF8PWvf73kZT/xiU/4smFUWqHmtvknNn4vJhlkI6BwuagQwv2mQe4EZfZasQmjM7E0BSjcA0Y6EkvjA995Ai8P5w6E2DeawM2Xnlz0NlXV6SckhIBpmu4kOWDmPG9UWLH9rjc7tB0y2abKRaey6/IzeMoNPgCyQTYo2DeWwmC3P49JTpicqzY3k607ZEBRAFUIRFOZ0kE2mz3ZKqGpCjRVgRCAVUFPtomkc5zpNpz1USMz2QYiTlB1NJ52f1dqWppXNZls3lLRF0edx3Xq0l7c8o5z8Pyug/jPtcN4Zu84PvvzF/HHCwVUVXFPdkzThGmabgmNlzzRCAaDbjCo0+VPFgUqz2QrdoLoPYms1vPPPw/TNHHOOefUdMLYLAyydS72ZCvN+94udDwo136j0NADoD0z2SzLwvr169Hb24vVq1c3ZVu8z69lWSXXW/nlovl9TPODbLUev2WQTQ7jkwHSQCCARCLR2iDb1772NXzwgx9EKBTC1772taKXUxSFQbYm8X6I87+dAxqT0VAqvRZgkG22KFQuCsAN/MgDT7kg20zNZCv02QSccrUrvvskXh6exGBvCJeethiHJ9P4yYZX8eMNr+KGi493p9Plk2npmUwGmUyGmWyzSLn9LtD4oTfFFOrJtrg/VHSbKspkiwQgAOwbT+J0n4JsUdmIHgJGjUG2gKbiC5ee5P4saZqGt7/97e7PXpqmwdBU2KZALGUBPcVvP2Nmv4nWW1v67T6edBqhtY/iC7ozXMV5VdpDQFMgzMoy2WS5aFegsiBbsde5EvN7nAbLh6JTkykb0ZNtbGzMOSlQNWw4aOJYBTh7xQBOO2oAxw7oSOwfxK82jeDnGw9g+ckmTlnaD9u2oaoqnn/+eUSjUZx99tnTThK9mWyVbHMnKBVkK/TeqSQDpNZMNm8/oFQqxSAbNQQz2UqT721VLbwWKHcu622NU831GqlYJtvk5CSSyWRDJ2jm8+47yj0X+eWi8lxHfhlkGAZs2y7brqoceUyTmWzy2Cefr5YG2Xbu3FnwZ2od78mKN8gms11YLkqN4v3mQTZetyzLDbLJnZZsKplMJt0FfqHbKfbvTlXos5lIW/h/967Hi/smMLfLwPf/8iwcu6AbQgi8uG8cW4eieGD9HnzkTccUvV0ZZDNNk0G2WaSSxUUj971bt26FZVlYvXr1tBPOnJ5snsEH8neyr4ZUSSZbf5ezGHp1LAks8ecxyWymSECFWmQ6djkBTcUVZy+f9ntN0/D617++4HVkkC1lmogmSi/iTNt5nrQWZ7K5jycWAx55BFfow+Wv1GSGpkKY1fVki1QRZCv0OldiQTbINhydappf6fCBajLZ5InCETOApKWgu0tHT1B1S2xOGOxFwtbw4vMCG/eO4TVL+tz7j8ViEEIgkUjMiiBbocB+JZls8udC+4paM9m871UZqGtXDLJ1Lm/gwrKsGfE59lOl/cWLHVs6KZNNVhjl9zhrpPxMtlIK7Z81TYNpmjnZeFK9QTZvJhsw9Ro2KshW9WruC1/4QsFpgYlEAl/4whd82Sgqr9iUtkZmNJTbMbUqm4Kaq1ijSjmNy/sNgXyveMsbpdkQZJO+8KvNWL9rFD0hHf/+/16PYxd0A3A+Mx8+dwUA4L51u92+TIXI5zKTyeRMPpspzxsVVu7LDaBxPdls28bQ0BAOHTpUcBHiPQ7tH3Pek4s9QTZ5G97b8/4tf/sBYE6Xkwm354hze348JjfQki3XbFa5qKZpCGR7iEUTpU+q5eAD9mQrz9C1qnuyhbMfn0aWiy7ocd673ky2astF89+bha4vP4vbR5KwoGDpgDMIxVueffryuQgHdIzEMtg3lnD/VujEJf925QmJqKAct91VWy5aaH+Vf3u1Btm8l29mZkktGGTrXPkBF752ucqVHlaaydZOQbZimWwyyOb9XaNVk8lW6LiX/8WSfL41Tas5SCiPafmvXaMz2apezd18881uJNArHo/j5ptv9mWjqLxyJyvMZKNGKdaoUgZ+5E5LURSEw84Jd6HA/EzqyZZOp93Hk3/QeHjTEH7w1B4oCnD3B0/HSYv7cq77rlMXY06XgX1jCTy06WDR+5DPczQaLZgdRDNTtUE2P/f9hfqpFfr7ZNrpeQYAg32hnG2qtifbnG7n+iOxNNKm7fZGqsdEMjebqZYgm2UL/OGVw/jDK4dh2bkTU3ft2oVdu3ZNO/YpigIjW/4ZTaRQituTrcVBNvfx7NmDjAD+YPXgD1YPrPapFkVQVyufLpp97UMVZrIVe50rMd/NZPOvXLRQJps8Idg8FIOAgmVzIu5l5HswYuh492lLYEPB83vHYdt2zm3kH3+9v/P2a+v09Zx38IFUTSZbPjnhu9j1S+nETLZKMzGpfbTTpMl2VG+QzTv4oJrrNVK5TDbv7xrNG7CqNJPNe9zL/2Kp3n5swFSQTZKvXdsF2YqlG27cuBFz5szxZaOovEJvTGBqIdFJQbZ0Ot30qXhUu/wgUv77wXvgkSWjlWSyFVr0dwLTNPHkk09iw4YNAHKDkMPRJD7zsxcAAH913kq8cdW8adcPBTT8+VlHAQC++3unHD9j2UibuZ8j+bzKUiGJC6iZrZqebIC/CzzvbRX6fMr33qFJZ9E5vyeIUCB3EE+1mWyRoI7ekA4bittLre4gW8LZ9rAxvblupVKmhQ985wl84DtPIGVOfeZM08R9992H++67b9pzpCiK22NtMln6pNqUPdlaHGRzH8+PfoQYVHwgcwI+kDkBqeqXiw3jTBhVKhp8IDPZgtnNLzcQqtjrXAlZLjoWz7jXrbdctFgmW8aysXU4DkDBUXN73MvIz4qqqrji7KMhoODlQ5M4OJ4oe/LjneAmP7+dfnzxPh9SpUG2Qn/3PoezIZNNZnwwyNY5mMlW2mzNZGvWOVa95aL5Xyw1IsjWdplsAwMDmDNnDhRFwXHHHYc5c+a4//X19eGiiy7Cn/7pnzZkI2m6YicrjQyyVTr4oJr7Hh8fx7p167Bjx476N5Caoli5qOQ98MhMtplcLhqLxdyedN6x36qq4tM/fh5HYmmcuKgXn7r4uKK38edvOBoBTcGG3aM4+fMPYdXnHsSpX3gY24amAmryADMxMZFz3U593qgyxcr0hyeSSKSnp9o3KshWKpPtYNQJIMlSUe82Fcq6LBVk0zQNi/vDEFAQTZnTtqMWbiabXnuQrRhFUTB//nzMnz+/4BeQhsxALRNks9okk819PHPnovHdW2pjaCpsUWlPtmyfMS33xLMR+iMBBDTnWRvJBp79nC4qH2smk8GB8SSSloJFfSHMzZap5h9/TlzUi6UDEdhC4Gcb9pYMsnlLSQOBQMXb3e5qnS5a7O/eDLTZkMnGIFvnyV+jd/pn2G/lgjaVThdt50w2WQHg3c+0IshWy5dLMymTreItvuOOOyCEwIc//GHcfPPN6OubKnkyDAPLly/H2Wef3ZCNpOnKBdka2ZPNz0w2OXmy2ARKaj/5J8r5Oz7vgadUuehMCbJ5A4ipVMp9/289OInHXkogqKu4889ORbDE1MAFvSG87/Rl+MFTezCZDSzE0xbuXbcTt152CoDiqf+d+rxRZQrtd7cOTeA931yHrqCGez/0epy0uNf9W6PKRUtlsskg25L+qTKz/OOBt5S1VLmoqqoY7Ath69AEJpM+BdlkX66A/0G2QCCAa665pujfjYDzuY0nyw0+kNNFWxtkcx9PLIb4V/65pdtSTEBXgCp7sgXUxgfZFEXB/O4g9o8nMTyRxJL+cMUnusWqE+S/5edHURRkMhm8OhqHCRVvWDkXup5GOp2eFmQDgDNXzsN/bYjil8+9isvPXOzebv7n2ftvXdenNZ/uVNWWi5b7YsGvTLZ2DrIJIRhk62DMZCut0oSRckG2dsxk8x7fLMtqeU+2dslky3+t8jPZGrU/rniLr7zySgDAihUrcO655zZ0oVLMb3/7W9x2223YsGEDDhw4gJ///Od497vf7f5dCIGbb74Z3/72tzE6OoqzzjoL3/zmN3HSSSc1fVsbrVxGQCPLRWtNsS1EXpYHgc6Rv1P0Hqjk+GWpknLRQCCATCZT9QFAZpD19vaWv3ADeQOI6XTafX6e2DkKIISrzl2O4xb2lL2dL1x6Ej541lGIGBp2HY7hw/c+jV8+tx9/947V6Arq0z53wWAQqVSq40+CqDhvHyXvyfYX/mszEhkLiYyF9/9/f8C3rzgDqqrmND736/6lUplsQxPZTLa+6Zlshfbx5TLZFvUFACiYTPtzfHD7cum192SrVTAbZIuVC7Jlh57oLZ4u2gkMTYWNyjLZxhMZKBAIapX1ZKvX/N4Q9o8n3eEH9fZk8/7bNE0YhoFMJoN9owmYogdnr5wLTR12byM/qHTS4n787ws6Xoml8PTOQ5BHomLtGmRz6ZmSBeN3uaj3ZKza58b7Xm3nclHv42KQrfOwJ1tplZaLFjq2eAeftEsmm/cLzFJBtnbMZCs2XRSYnsmW/3xXQ1VVGIYxLQuxbcpFpZ6eHmzZssX99y9+8Qu8+93vxmc/+9mGfzMTi8Xw2te+FnfddVfBv3/lK1/B7bffjrvuugvr16/H4OAgLrroomk9jGaCVpSLNiKTrdYGstQ6pcpFvb1cgKlMNu9gAEn+W6bxVrMQEELgueeew7PPPtvyXm7eAKIMso0nMth20BkQ88HXH13R7QQ0FScv6cPK+d148/ELsHJeF2JpC796fj+A6QuCnp6pPjyNZNt2W58QzGQHDx6EEAKGYbifk4c3H8S6Vw7D0FWccfQAYmkLV93zFLYPO++3ZvVk804ePDDhLOSWDEwF2fKPRd73aakgm6qqWJQdnhBNWtO2oxayZDDUgHLRcoLZiabxVJmebFZ79GTrBG5PNrt0TzbbFogmM9Bgu5nE5Xqy1Wt+d+7wg3p7suUHvIQQSKTSGJpIwspmsuX/HZh6jxsBDUfPjUABsPnVMfd2ix2P5UlHpcHBdleoXLRUxUe5wQezIZNNvhdUVWU2VAdikK20enqyecv22yWTzXu+r6qqezxIJpMtGZJWTSZboeNeIzLZgNyS0fxMNm+7BD9VvZq7+uqr8dJLLwEAduzYgfe///2IRCL48Y9/jBtvvNH3DfR6+9vfji9+8Yu47LLLpv1NCIE77rgDn/vc53DZZZfh5JNPxn333Yd4PI7777+/odvVCjOlXJSZbJ2nVLlo/jcNuq67O7P8bDZ5O/Lv1ezgTNNEJpPJKWtolULloi/uG4eAgvNWzcNRcyNV36aiKHj/mcsAAD94ai+A1gXZXnjhBfzhD39o65OCmUgIgd27dwMAjjrqKCiKgpRp4Zb/cb7k+qvzVuA//uosXPKaQWQsgV89P4TRWLphQbZCPZykfeNOQKFQT7b8fbyqqtN6lxULsk341JNtNO68dxuRyZbJZPCtb30L3/rWtwoGo4PZfWI8VTpQ7fZka3G5qPt47rkH7RpaN3Stoumik2kTtgA0CAR1J2BQqG+enxb0Fg6y1ZrJBuSedGQyGRwYS8KygQW9ESybk1uSmr82dD5PYagQ2D40Nu3+JPnelfc1UzLZ6pku2siebHL90o68J7V+Bw6e3HEYT+084sttdaL9+/fj0KFDDb2P/NJBnl/lqifI5t1PFvuysJVBNu+XMvltejpl8EEjerIBuUE2ea4qM7eBxmSzVb2ae+mll3DqqacCAH784x/j/PPPx/333497770XP/3pT/3evort3LkTQ0NDuPjii93fBYNBnH/++Vi3bl3R66VSKUxMTOT81wmK9e9oZLlovXXshcjtbNfFBk1Xqlw0/5sdoHhftnqCbPUsdP0khJhWLprOmNi0fwI2FHwwOzW0Fpe9bil0VcFze8ewdWgi5wBjGEZNz1stJicnYdt2wZJfapyDBw8imUwiEAhg0aJFAIB7f78Luw/HMb8niGsuOBZBXcM3PvA6nHvsXKRtgYc2DSFd5UTEUkplsnnfd/vGkgCAJSWCbKWCCNPLRZ3bmfApk+1IzNlfRBrQk00IgUOHDuHQoUMFj2Nhw/ncJtKlF7im5Vw30OBMq3Lcx3P4MNr1qGxoKkR2umiptYPsxRfSnYESjc5iA6YmjPpVLur9nWVZyGQy2H0kBgsK3nDsvGmZbvlBJUVRsKg/BAUCu4YnYNvTM0uB6ScyMyXIVqpctNB7p9A0ZC/viZgo8/4rd9vt+tw2Ksg2MpnCX/zbU/jAd57ArpHZ14c5mUzipZdewpYtWxp6zsNMttLKtT4qlaxSbOgB0LogW34rjmJBtlZkslWawd3onmwAEAqF3NuR96coSkNLRqteaXpLRB555BFccsklAIBly5ZhZGTE362rwtDQEABg4cKFOb9fuHCh+7dCbr31VvT19bn/LVu2rKHb6ReWi1KrlCsXzVesL5t8P9VSLurtM9DKAK23B5v89xM7RhBPm+gJGXjriQtLXLu0+T1BXLTauf4D6/dO63XXrJOg/CAJNZ4QAnv27AHgHFs1TcOm/eP4+qPbAQA3/tHx6ApmT4ZVBV/9k9fC0DUMTSTx3cf9m9RcSSabgIJDk9Oni+YvVIsds/J/JwcfAMBYwp9MNhlkCwVqz2TTVRU3vf0E3PT2E6rqmxYKOvvERJlMtnYsF9UhcJO+Fzfpe6G3UcjN0JWcTLZixwA59KA/VHhITyG1vs7SfDfI5gSe6y0XBaZnsu0aicEUKt58/IKc6xTLZJvbZaDbUGFaJkZiKfe2vPLLRSvd7nZXz3TRcuWixW6j3LZI7Zod3qgg2/9tHUbasmHZAv/y2Ct1316nkWtg27aRTCYbdj/5A4Y6/TPsNz8y2QolFLRDJhuAlmayCSHK7kO9CiUM5Z/b5GdZ10qea+afp8rXsi2CbGeccQa++MUv4nvf+x4ee+wxvOMd7wDgZJLlB7haIb8UQE5jKuamm27C+Pi4+9/evXsbvYm+aGWQrdaxx4WwXLTzlCoXrSaTLX96VTUHgHbJZMt/TKlUCo9scoL6566aX/cJsywZ/dkz+2CJqf1YK4JsrS7LnU0OHTqEeDwOXdexePFi7Dg0iSu/+xRiaQtnrZiD975uac7lF/WF8cevXQIA+N66XXhmz6gv21EqyCb/Hcs4lwkFVAxEphYv+dki1WWyOUG2pCmQMi2fgmzC7clWS8mgoau4+vxjcPX5x2R7glUmbDjPSTJdegGXymYghozWZrJ5GYrA1foQrtaHYChtFGSTmWx26Ux42YuvN1h5kK3W11la0OO8d/0sF/Xext6RKA7H0rAVDW86bn7O3739grxBNkVRcPzCbuiwcWA8WXB7ZmomW6G1sl/losUuU25bpHbtddqoINujW4bdn3/6zKvYNza7suO9XzQ3MshWqFyU1UJT6hl80M6ZbHJfL/fd+YkNzVjD599HLYMPGp3J5i0bBRo7/KDqFcQdd9yBZ555Bh//+Mfxuc99DsceeywA4Cc/+QnOOecc3zewUoODgwAwLWtteHi4ZPAvGAyit7c3579OUGy6aKN6snkzGJnJNruVKhctdOCRQTY/M9naJcgmH5N8DvYfieLFfWNQFOD8bJZBPc5bNR+L+kIYT2Swfs+4+/tmBdm8i7NOP9nqJK+++ioAYOnSpRiezOAv/u0pjEymsXpRb3aS6PQg0WuXDeCEwR4IYeNra1/yZTtKlYvKv0VTzvtiSX+4ZLZINZlsXUEdvSEdNoDJpFnXZ1wIgdF4GgqAcAPKRcuJBGWQrfgCN23asLKZbF1G7RO0ZgtDV91MNqB4kE1msvUalQfZ6pVfLlrJftr77X+5TLYnXnECFcvm9aAvnJt1ViyTDQCOX9gNDTaGxgoH2WZqT7ZqMtm869xCfwfqy2TLv+xsymRLmRZ+t93pRbZ0IIyMJfDtWZbN5l0DN7L9RqFJk81aJ3dCMK+eTDb5mW3HTDa5j8sPstVyjlWrUm1F8nn3t83oyTZ37lwsX74cK1euzPl9WwXZTjnlFLzwwgsYHx/H5z//eff3t912G+677z5fN64aK1aswODgINauXev+Lp1O47HHHmtp8K9Rip2wNKonm/eDUi7IVkuPCgbZOkd+sLXU4AMgt1zU24Ovnp5s7VIuKg9ifX19AIDfbxuCAoEVc7uxoDdc6qoV0VQFbznBCdat2zHm/j4cDjctyCZ1+slWJ5EZkvPmzcP/u+9p7BtLYOW8Lvz7/3u9e2KdT1VVnLF8DhQIbNg96pYf1qOSTLbRbLbQ0oHcAR/FerJVEmQDnNJTAQXRVH1BtmjKRMYSUCAQDmhFt6EcyxbYuHcMG/eOucGdSsggWzpTPMgWS039LdJGmWyWADbaXdhod8Fqo3MnJ8hWQSZb0lk0d1eRyVbr6yzN9wTZbFtU1JPNW/JaLpPt6VecQMXJy+a4f/f2XsrvySbv/7iF3dAVGwfGnWNWsXLR2Rxky/93/mMXQvhaLjqbMtme3HEEsbSFBT1BfPm9pwAAfrh+L4ajjcvoajfNDrJ59yXN+Bxv27YNTz31VFvvM7zD0ppVLppOp5uyTs9PfJDvA3kO1opMtlKP2/s8NWO6qKqqWL58+bRkqrYKshUTCoUKnmD7aXJyEs899xyee+45AE6J6nPPPYc9e/ZAURRcf/31uOWWW/Dzn/8cL774Iq666ipEIhFcfvnlDd2uViiWVdaoclH5JlcUpegJCjPZZof8k+VKBx/IfjJA7kmFvE7+t8iltEsmmwyG9Pf3I5rMYOuBMeiwceaKAd+abJ+3yikJ+t3LI+5z1dXV1fQgG8tFm0e+ppuGJrHlwAQihobv/eVZmNcdLHodt/dSUEM8bWHLgWjd2+E9jhTLZDscc36/cn5Xzt+L9WSrpFwUAAb7QrCh1J3JdiTbL67LUKFrtWeypUwLl37z97j0m793Szsr0SUz2UoE2SZTJhQAuqZA19snyJaCikvTq3FpejVS/i0X62Zo2emiZQYnycEH3cb0Y1Uxtb7OkvyMmrbAWCJTUV+kcl9iypOLWDKFrQecUvDTl8+bdp1SmWzHzItAg42xRAbxtFm0XDS/J1s7nzBXoppy0VITlIHck7BaJjfO5ky2R7ccBAC85YQFOOeYuXjdUf1ImTb+6cGt2DkS64gMqHo1O8imqmrFg1f8MDIygkQigVisfYdaeKszaqnKqrZc1DRNPPnkk3j22Wfr2/ASimWySV1dztqsFZlspfYb+QMbJO+xxxsUbVSMSe7LGxFkqygsOGfOHLz00kuYN28eBgYGSvYzOXLkiG8bl+/pp5/Gm9/8ZvffN9xwAwDgyiuvxL333osbb7wRiUQC11xzDUZHR3HWWWfh4YcfRk9PT8O2qVXK9WTzO/BQbuiBd1tqWXTIoEstvXKouaodfKCqKkKhEJLJJBKJBAzDyNkRewNzlmVVdALcLkE2uVDq7u7GM3vGYdkCqxeEsagv7FtJ2tnHzIWqAK8cimHeUasxN6y5zyfATLaZxrsIfHizk7Vy4YkLcyZ3FqIoChRFwUmLerBvZwpP7z6C1yztq3tbpGKZbCOTGQAGVs7LDbLlZzaXKhctlGWyqC+M3VAQrTPIdjg79GButl+cfJ6apSvk7N/SGbPoMc4JsgkYmspjYAWcXmmKOymzXJCtS3ee02aUixq6ijldBo7E0hiOJrFioHypjveLq0KvvzzGvrB3FLAs9EYCOHp+77S/W5bl/pwfZDNUgfldARyOpXFgPIljDD3n/chy0eL7OMl7gq2qKkyzun1TJw8+qOd9MDExgXWbdgMA3nriQiiKgr9+yyp86N71+Nkz+/CzZ/ZhIBLAxy44Bh950zH1P4A2JIRoWpDNm82qaRps227KOlm+R9o5acJ77lHsfLbUeXQlmWze89lUKgXLshCLxRp2jluqhQ/Qvpls8m/5azLvFxjePqONOn43ckBIRVv8ta99zQ1Ufe1rX2vZIvCCCy4o+W2HoihYs2YN1qxZ07yNapFWlYuWepMX2sGU491OBtk6Q/57r9zgA8DJZksmk4jH4+jr68sJ2spv22zbGWlfybcV3sVpq74B9S6akkLDhlejUAGct9I5+fEryNYXDuDUZf14Zs8Ynj2QxPvPPApAbkq4bdsN6TNVzZQg8od8noUQePBF59v/d5yyqOz15Ou/erAHD+9M4endo/jQuSvq2pZKerINT6YBGFgxrzvn795m7EDpL2rkIksI4QmyhWALBbE6y0VHs0G2OdkgWzP7sQFAd7a8V4FAImMhYkw/hsZSJhTFaehP5Rmas04ws7v+Yu8P2ZMtEmhekA0A5ncHnSDbRArHznNOcErtp8t9iSm3e+OeI9AUGyvmdeUcayvJZEun01jUF8bhWAYHxpI4Zn43TNN0j7f5JTnNzIBppHqCbMUy2QKBQE1VGLN18MH//mEDuuL7EdEX4Y3HOhmYFxw/H1+49CT84rn9eGHfOEbjGfzzwy/h8rOORnewOZ/TZsqfRJ9MJht2zuN9z2uahkwm0/DPsbcSpROCbLquF33u681kk9fVNC1nPSd/57dymWytCLLJ9VwlmWz52+v9t2wNVKqKrl6N7KVX0Z7syiuvdH++6qqrfN8Iql65wQeNCrJVkskGoOKdiXc7GxUoIH+Vmi5aLEAWiUQwOjrqBqXy30/y27ZKFgJCiJyebK06oMtFkqqq+I/1B5CwVKzsC2FxT+5Jih/OWzUfz+wZw2+3j0wLsgGN++ywXLT55PN8cDKD/RMZdBkazs9OESxFvv4nLOoBMIKndx2pexFfLpPNtgUOZYNYK/LKRWUQQC5KS2Wyyd97M3EW9YUggLp7sh3Jbl9/RAdQWaasn8JGAIoCqEJgMmUWDLJFUyYAAUNnJlsl5NRP2XaweE8257MUzj7lzQqyLegNYtvBKA5FU9PWRbUE2TRNgxACm/c57QiWz+vKOdYWCrLl92RLpVJY1BfCc/sncWBiKgs6P8g2G8pFi2WqlPu3t+m5DJDVkskmT0A7KZOt1n2wEALbD4wCEDh7eR/C2Z6TiqLgirOX44qzlyNt2vijO36LnSMxrN08hPectrT0jXYgbxN6md2UyWSKfjFdK28rFm+5aKPXyZ1S9VBJf69KpouWymQDpgfZ5H03IshWKpNN1/WWDD4wDMN9nxdTqiJPPneyYqdUUNTrSCyNXz63D7/YuB+TSRPzuoOY1xPEZactwZtPKDyMrpHHuqpXHJqm4cCBA1iwIHdjDx8+jAULFrT1h2smaedyUXn/lexMyk1yovZSqEGzpmk45phjoChK0QOX7Msme5gVCrJV+m2b90RCblMryEVTRtHx70/sxlyh4szlA9NObvzwpuPm4c5Ht+P3L4/AsgU0VXFLi+QQiUacQJZaOO3fvx+appWc3kzVk8/zSwdjAAxcuHohQoHy+1L5fjt2XgS6quDgRAqvjiawbE6kzDWLy3/9vUE727YxkcwgYykI6ioW9YZyrpsfZCt3DJFBNm+5qNOTLeNLuehAuDVBNl3XYWgqVFtgMmliQYHuFbFsTzaWi1bGDbKV6ckmM9lCTQ6yyeEHw9kgW7n9dCWZbCOTaUQTKXRpAssGwmWDbAUz2fpDMIWK/eNpWLaYdgIo7yv/NjuZn+Wi3ky2Wkrj5GWDwSCSyeSMz2RLmzYe23YQm/dPAADOO3ZewcsZuop3vnYxvv7odvzXxgMzOsjW1dUFRVFy2qdUwjRNHDlyBHPnzq04UCODFUDjP8fe22/nc7lqqrIKBd3l9QslFHgz8vMHPgHOaygDXn4qlclmGMa0HmeNXGPIfYc3mFxMqWFYhYJs+YQQ+OsfPIvHth1Cd0hHd1DHrsMxZDxTmrYPTwIA/nfLQfz2xjdjboG+xo0MRFe92iy2mEmlUr5H5Km4ckG2Rg0+KLVz99ZVV/pmzc9ko/ZWrFHlsmXLsHRp8YWRDLLJHWb++ym/tKyU/G9/W/W+icfjsG2BH2w4iGjSxOK5PTjGk83j58n8a5f2oyeoYyyewYv7xt3fN3oBVSzIlslk8NJLL2Hr1q383PpMLoQ2DzmLg0teU75UFJja9wc0BSctcXqxbdg9Wte2lDoJtSwLo/EMbChYMa8Lqpq7cKslkw3IHXwgoGCy3nLRuDfI1vxyUU3TnCAbbMRShT+nk9mMK2ayVUaW1cq1dNkgm+r8vdHDuaSpIJtzvCu3ny51siGvf2A8ARUCRw8EoWtqwSCbt39NoSDbQMSAYQSQsoCRyZR7vPWePOYH2Rq5f5+YmMDY2FjDbh8oHWTLf99UWi5qGEZdg77kifZMzmT79z/swplfegRXf+9pjMbT0FQF5x4zp+jl3/XaxQCA3750yC3xn0lkkC0UCiEUCuX8rhJ79uzB5s2bsX///pKX875O3hK7Rq/TOiXIVk0mW7FM1lIJBcWmqnvv22+lMtmCwWDOtjY62OrNZPNuWyGlhmHJbZZVS4We7w27R/Gr5w8gmjJxYDyJ7cOTyFgCr1nSh5vfdRL+4y/Pwp1/dipOGOxBLG3hW795peB2tEUm29e//nUAzpvrX//1X9HdPdV/xbIs/Pa3v8UJJ5zg+wa2SrtPuin25mx0T7Zy36DIbIRKd7LMZOss3p1QNSer3kWF/EYfqO1bc2+pKNC6900ikcC6HYexaTiDLiOMT1x0DJJHhty/+3kyr2sqzjl2Lh7adBC/234Ir13WD8B53kxz+qQ4vxQrF/VOic1kMg35dm62siwLB8aTGE2YFZeKArmLuzOPHsDGvWN4evcRvPu0JTVvS/5nyzTNnKa0Y/G0G2TLJxdZmUwm5yS+2DGku7sbmUzGDcgvyk4XTZk2JpO1n3Qdzk4X7WtRkE1VVRi6E2SLpgpnrriDDxhkq4iRncBqZt+exY4BcvBBQG1s4+R8C3qc492hqHOsKtffrJJMtsOTaeiwsKDb+VxVm8kmMxiWzunGK0OjGJpIuvfr3bc3K5PNtm1s3LgRQgice+65DSmjkvcDFJ4umt8/uNrBB4UuU8m2yOOlHJxQbJ+USCSwceNGLFu2DEuW1L4fr1axIFulWTC2LfDVh7ZhImliUbeB0+YPYPXiXsztKh7kPnZBN1Yv6sXmAxN48MUhXH7WUf48mAaptkWHDKiFw2EIITA2NlZVkE1WgZQLzHrP/VRVbVomW6ecy9UTZPMG2Uv1c7Msy32+mxFkK5XJFgwGc/pee9dwjSCfo0pKVEt98SofQ6lMtu/+ficA4N2nLsaH37gCEwkTC3uDWLUwt1xgIGLgiu8+he/9YTc+/MYV04aItbwnG+AMPACcF/Nf/uVfpqUjLl++HP/yL//i+wa2SqcE2Zrdk63ch5OZbDOb931XzcmgDLJZlpUTFJL7Efm+qmQhkL/IaNVndcMrQ3h61xGkRT++/L5TsHyBiq0NCrIBTl+2hzYdxG+3j+Djb1kFoPEnQsUGH+QH3Bhk849pmtg+PAkLKi6qsFQUyD1xPGP5AP718Z14eldjM9nG4hkIoGCQLRAIuKUTMtDm3c58J510Uk6PqK6g7vTvMYEjk6mC16nEkZhz3b5QfUE2XVVx3VtXuT9Lmqbh/PPPd3/Op2kaApoKVbGKZ7Jly0UDbVAu6j6edBrB3/8B12n7AAA62mdNFMgOPrDKTBd1MtkEAkrlmWzFXudqLPCUiwLls8Iq6ck2MpmCodiY123klIF5r+f9AqtY24Kj5/dg+9A4Do5PBdm8ZZD5J2qNOrbE4/GcIF+jgmylMtmA3NYm8vXRdb3g5FC/MtnkSXq5L6nGxsaQTCZx6NChpgXZhBBFm8NXGmTbMRLDRNJEKKDioevPwzNPPwWg/HvpXacuxuYDE/jlxn1tHWTbt28fXn75ZZxyyikYGBio6Dr5QTZgKoBQCfnlcrnn0Lsv9GayVfo5zmQy2L17NwYHB3OSacqZSZlsxc5jSw09kEplsjX6y/BimWzydzLI1kiFMtmK7TdKZXCXy2R7dTSOX7/onG999IJjcMJgL4o5b9U8nL1yLv6w4zDufOQlfOV9r835e1tksu3c6UQM3/zmN+NnP/tZxTuWTtWsnYQQAuPj4+jq6qqqlKEde7J5t6eWTLZ2D2xS+ZKvYjRNg2EYSKfTSCaT095P1ezk2qFcNGPZ+OlTOwAAf/y6o/HHpyzG6GhuQMPvk4bzVjn9TJ7ZPYrJlInuoN6yctFCWW3kD8uysOPQJGxoFZeKArn73tOPdspyth2MYjyRQV+4tjK5UkE227YxGk/DhlYwyKYoitv8Np1Oly2J8zZpluZ2h5AZAw5PVn4yku9I3Hl/9oV0IFV7kM3QVXzyouOm/V7TNFxwwQVFr6dpGoK6ChUCk0Uy2dyebG2QyeY+nlgMWLcOnwyULk9qBTl9MGWWDrJNJDNOhqBW+XTRYq9zNWS56EhekK3WTDYZZAME5nYHc4Jh+deT++P8TDbpmIV9eOiFfRiaSLr78UInj40+tsRiMffnRh7DqwmyefstFQqyFcpkq6Unm6o65b7pdBrpdLpokK2W4Qr18r7e+Z+XSrO3ntnjrIVOWdoPTan8i/R3vnYx/unBrXhy5xEMjScx2BcqeflWGRsbgxDi/2fvvOPjuMr1/53ZqlXvsmRbcu8l7nHi9B5CElJIAiGUJECol3YD3Hvpl8uF5PKjBEJCSAIBQiBAeiXVsR333m1ZktV7WW2f3x+zszo7O7s7u1pJa/Dz+eQTS9qdOTNz5pz3POd5n5fu7m5Ta2GxEr1IsqWiZNPbLiQ6lwaRjDfbh9rb22lqasLn8zF//nzT7TtVKtGPpvCBSLIn++54posmU7KBer3jUWVW9GTTEM+jPVG6aDIl2283nCCkwFkzSxMSbKDely9fNof33fcOf97axJ3nTGemYI6bVZ5sr7322j89wQbjN6n19fWxY8cODh48mNL34i1YsiFdNJXzn1aynVpItlBOBE3N5vF44nqynSpKtq31Xfh9PnJsFr505WIgduLNtJKttjSXmqIcAiGFXU29wPh6sokBwmmSbezQM+ihb9hPUJFYM6PU9PfEDZbyfAd1pS4UBbY3pK9mM0oX1aAp2UJITC+PJdlg5J3wer0JA6p4KAmb1GZCyVbgNCYdxhqyLKtKNhQGEyjZQDld+MAkCl0qGeT2q/fTaA7wBoJ4/CGshHCEycuxUkvpEU/JFm+cTvZudAz58QZCyJJESa49ZkNWJKiTkWyzJxURUiR63D76h71R3zEi2TQlQqYhkmxjufCLV13UaENab2qeqPBBOp514mJYTKePB9Ezb7ygnVPrU+J4ZLYd2xt6AThjalFKaYQ1RTmsqC1GUeCZXdlH7mvQrsMsSSaSGzk5ORFLBLPfFyvRJntXtLalq0jV+mOqfoGnmpLNTBG/TCjZ4sXQmYRZJdtYtkGDEcmWbN5LpGQzuuduX4A/vNsAwEfWTjPVrmVTi7lkfiUhBf7v5cNRf0sn9d8s0krMbWpq4qmnnqKhoSHmRbz33nsz0rCJxngNEhpL29/fn9L3srHwgdie0+mi/5xIZ6Gswel00t/fH6VkO1U92dbvPQEo1JQVku9SA6axJtkAlkwp5GTvMLua+lg7o2xcSTZR9i1O1Nlq3nyq4kibWtiiLD+HAqd5BZp+7F1eW0J9l5st9T2cN8e4dHkyJFKyeXwB+j1+QoqLaWXGaSVi8YN0VLCleTm0AT1D6ZNsPUPqoiHfYWUwxfOLCIUUjnSoxShmludFCj0oikJHRwcA5eXlMSSZpmSTUOhzG78rg95g1ijZItczPEypAkcVdXNkpuRJfVd2jFCUo/Yrt0/tU0bxTv+wOkbZJAWHVY5Rf8VDvOecCjQl26A3gNsXGLWS7XC7SkiVuOxYZMlwkaelA8UrfKChrMBFcZ4TxT3MkZZ+5kw3VmiIbRmL6tUTqWQDY/9gPckWb5GdbrqoXskmHtMIE0myac9bSzkMhUIpkGzqxs6yqcVx1fDx8N6l1Ww50cMv3zjKJfOrmFqafnXssUKqJJu2ztP8sbQNZ7/fb8ojy+fzRfqxWSWb/v03++y0558qGXOqkWyjKXxwqirZ9O0ZC+j9HBONG8mqi4oQn9eT207S7wlQW+rigrnmY9svXjKHl/a18dyeFuo7h6gLZ2CMZZGflGOmV199lTlz5nDfffdxzz338Nprr/Gb3/yGhx56iB07dmS8gROF8RoktE7m8/lSUoTEIztO5XTRbB6YT0NFuumiEK1ky0S6qDZ5TES/2Xtc3WWdUzuSzieaBMPYkGyLJxcBsLOxFxhfTzbxZ3Gs+ldSsh08eDBl1XGqOB4uOT41DnEVD3oV8co6VXH+7vHutNuSSMnW1q8aMbucdopdxmSgSLKZnUNElIUN5HvTJNm8gWBYJQZ5DvW86b6XnkCQS/7vTS75vzfxBKIr7f7iF7/gF7/4heG7YLFYcIR99frcxtcxGElrnHiSLXI9Dz/MADKX+BZxiW8R2UOxQVG4vw371Uq8RnOAVlm0wCElrAanR7znnAryHFZyws+8Y8CbVEWQ7N042D5ECIlSg6IHGuLFgvr+brVaqStXU2UOhwl9I7WA2A/HYn7RjNxh4kg2/bm1f4skm0huiCTcaDzZTgUlm/i+pHKtg94Ah9oGADhjSmpKNoDrl09m/qQCOgd9fOihTXSNQsU8VtD6gVbIKxnEVFFQ763Wx8wQdeLGsllPttEq2VKN606VtVwmCh+k68k2EUo2bZzRrne8lGzieigdBbf++VitVpp63PzH33bz7af3AXDbmXUpbYLNqcrn/DnlKAo8+PaxyO/1xV0yiZSjpq9+9at88YtfZM+ePTidTv7yl7/Q2NjIueeeyw033JDRxk0kxmuQEM8jBh2JoFVEguwrfHBayfbPjUykiw4PD2eEZNOON97pokPeAO2dXQCsnjtizisGzjBWJFshALua1MXReCrZwHiX81+FZPP7/bS0tNDS0jKmgUp9p7pAmVaen+ST0dCPvWumq6mmOxp7Gfal1z/0QZDYz9r71MVBdZErLjE0WiVbeYH6jvcNp6eW7B5Sv2eVJXKsxqRDJuByuXC5jBUXkiSpBRyAviFjb7mhLFKyQfh6cnKSf3CCoJFs/hD4g4qxks0T9uJzqM87Fc/b0UKSJCoKRlJGk6kIkpJsrQOEkCkNp0+bIdniKdlsNhszKlQPm2MdagaF0eJRTK/N9PwSDAajyIXxThcVfzZSWonzuPZ3Le7QCNt/FSUbpBbX72rsJaSoqZ8VBc6UFU4uu5WHP7KSmqIc6rvcfPThzbh9Y0sMpAoxFVCfWWEEPckm/ttM8QOxj6RKsk2Eku1U92QTxSri3HKqKNlsNht2u52cnJzIODMe6aKias1qtSZViCWKCfXz2Uv7Ozjvh6/zu40N+IIh1s0q46ZVU1Ju453nzADgiS1NEQJfPFemx9qUo839+/dz2223AepNHB4eJi8vj29/+9v84Ac/yGjjJhLjrWSDaPl8Iohty1ZPttNKtn9OjDZdFBJ7spmZALSgRjveePeb9YdasCp+8p025tVWRf1trEm2RTWFSBKc7B2OUkiMF8kmVoPT8K9EsmkYy0ClsUtVsk2vSGzmqodexVxb6qKqwIkvGErbl007ltavxevu6FcXB5OL46fzjFbJVpGvLkTipVkmg0ayFefa425MjRZ2u50vf/nLfPnLXzYMviVJwmlXA9141zGgVRfNApItcj2f+hTxlxITixybBbtFBiQ8gaBhvKMp2SaCZAMoDxNi7f2jV7IdaBkgqEiUpaBkS0SyzapSN2vqw2mx8RQaYzW/6DeUJ0LJZsaTTfy7vgJrppRs2Uqyif0plWvVih4sqy2O+Y7ZflRR4OTRj62iyGVjZ1Mf//vC2KrHU0Wq4ohEJFuqSrZkz2C0nmza89enUifDqZIuakYwIo6Z4tySrYUP9GSVLMusWrWKFStWRPrBeKSLitcnkmzpbC6JzycUUnjg7RMEQgpnTi/lj3eu4bcfW43LnrqFwZrpJSyeXIg3EOLRDSeA2EI4mUTK0WZubm7kha+urubo0aORv3V2dmauZROMiSDZzCrZxO+Mt5LttCfbvzZGky4q7tyl68kWDAYjn5koku3d/erAPKWyLGZRIpp9jgXJlu+0MaNcTSPc1dSbFSTbv4onW7zCD5lEv8dP16AadM+qTI1k04+9kiSxZrpaZXTjsa602qNPnxL7WeeA2s7JpfHTWrX3IV0lW0W4ulz/KEm20lz7qMau0SLHod6/gTiKvKHThQ9SgiRJFLpsKIDHb0yy9YdJtjy7+rwz7SmWDJVhFWZbv2dUSjZfIMTRjkGCyJTlm1eyJUoXnVVVgCxJDAx7ae3zxF08jpVXjX5DeSLTRcW+Iz4H7fN6iwTtHmVKyZZt6aJGJEQq1xopejClKOY7qVzHjPI8fnj9EgCe2dVCKDT+Ba7iQXyPzZBkmSTZzCrZ9CR7qiSb/t/JcKqQbKmkiwKGSrZ000XHKk43GuNEkgvGR8km3lszGxFmlWyNPW56hoOU5Nr57cdWRbI00oEkSdx5znQAHt1Qz7AvGNXWTD+jlKPNNWvWsH79egCuvPJKvvjFL/K9732Pj370o6xZsyajjZtIZKuSzeMPcqClL2JAbmZ3LhMYq8IH4ucmokrkaaSG0aSLih5qWmCh9SezuyzaJCcGqePdbw6caAVgwbRJMX8bayUbwBLNl62pb9w92f7V00U1jFWgsvdkPxYUCpw2ivKcKX3XaNGoBSMbj6Xny6Yn2cTr1qT2U0uNK4tCdHXRdJRsVYXqQsQXCNLnTr2fRZRsrokl2VxhJdugJ17hg0BWpYueCijKsaEg4fUbGytHSDbbSArNeKK6SH1/T/YOj2pH/1jnIIGQgt1mJd+hzpOpKNn0/clms5HrtFOaa8eCwo7G3riLx7GaX/Sxbraki4pKfT3BqL9HoyXZzCjZtDlnLLyC4sGoL5q9VkVR2B72izVSsqW6Ljl3djn5Diudg152hCuqZwqKonDo0CFOnjyZ8nfF60iXZBPtU5IhFSVbPE+2VNNFIbXY7p+VZNOuRVGUU0bJZoTxVLKZFU8karf4fA63qZtMly2swmoZffx22YIqppa46HH7+ePmhqg2TLiS7d5772X16tUAfPOb3+Tiiy/m8ccfp7a2ll//+tcZbdxEYrwnNEiuZOse8nHtfe9wwy/eYcPRLsOOeaqli55Wsp1aGE26qCzLEaJNCxpS9WTTvqdVaRLbNB7oHPDQ19cLwNr5dTF/1yZfIwI8U1gyRfNlyw4l22mSLXPY29yHjEJFviNl5Y3R+zBaXzZ9uqjYz3rC/mK1CQo0jNaTLddpJ99hRUbhaOdgao1nhGQryRs7ks3v9/Pwww/z8MMPx30Xcp2aks3474Oaki0LSLbI9fzxj2Tzm12URMmmpYvm2tS/jTfJVlOkLqhP9gwnNZ1OFF8daFE9GisLXVGeO3roxwujdFFZlpFlGavVSlWhExmFnU29/5Lpook82SwWS8zf9fdorAsfKIoS1V/Ga00ymnTRE11uuod82K0y8ycVxHwn1X5kt8qcO6ccgFf2taX03WTo7++nubmZ+vr6lL+bSrpoKBSKPGMx02GslWyjTRfV/zsZTgXrH0VRTKWLivG7di2BQCByb7Ot8EG8MU7EeBQ+0JNsydRhiea9SL8NV/sOIvGeRbHChnRgtcjcEVaz3fPSIU50DY3ZXJdytDl9+nQWL14MqOa49913H7t27eLJJ5+ktrY2o42bSEyEks3r9cZ9AbqHfHzgwU3sb+lHRuHd+m52NPXHfG6iCx+kqqQ7TbKdWhjtQlXbvdOQKskmGo+OVV9PhDf3NmAhRHFeDnWTYiXLWhCVDglpFmKF0bGSOGswS7KdqirU5t5hHnr7OO8c7UxKQonXPFb3e8/JPiwolOc7Uu5DRmPvaH3Z4inZet0+PGEzajMkm1gBMpWxQ5ZlinPtSJLC0fb0SbbSMfRkUxSFEydOcOLEibjvQa5TvQ+DnliTbF8ghC8QQpLIinTRyPU0NZHNb3Vhjh0FCU/AWOXT71H7p8sa7UkzXqgJexWOVsl2oFUl2SYJ3ofperJpaTwWi4XKAicWQuxs6EmaLjpWSrbxsHzQe1RpSESyaWSk+Dtt7MuUkk0sfGDUf/XqtfFek6RDsm1vVOeYhdUF2K2xsUk613Dx/EoAXtmfWZJtYEB9r9KJX1JRsomfFe+pRrJ5vd6k90VUOyZTNer7eyr9NBQKRT2vdJVs8cYLRVE4evQora2tpo+bSYgxXKqCEe0ZiEVPjKBXDor3fSKVbOOdLiqeM510Ue0YjT1uPP4gRblOVk0ryVhbb145hZV1xQx6A3z2D9tRGJsswJSjjunTp7N582ZKS6MXmL29vSxbtoxjx45lrHETifGa0PTncbvdFBQU0DHg5S/bmggEQ+TYrfx5axP7W/opy3Nw2ewy9uxq54W9bcza08plC0fM18ciXVRcIGVSySZWSTX7ndOYWIwmXRTUoLqvry/yc6qebCLJNhFKtq2HmgCoq640XAzr/VrGAvMm5WOzSPS4/XQMqUHQRFYXBTUYSyShz0YEgiFuf2QL+1rUzQqbRWLVtBJ+eP0SqotiKyuOh5JtT3M/DilERYEzZZLN6H2QJIkzZ5Ty1+0n2Xisi7Uzy1I6Zjwl29GOQWQU8hxW8nMccb+vqWZSCW713y9x2Tne7eFoh7nCQCKi00VHN3ZZZTni5WFN8Rh5To2kDOLxB3HaRu6B6seGmi6aBSSbCCsKd1paIv/OJiRVsoXTi3PCt9qskm00z1lERMnWOzol28FWdXyaUpoPGCvOjL5r5MkmVpqrLHAiSwp7T/YQmpWDHK6aaXTMTM4vwWAwUlExPz8/yqN1LBCPXE+mZNMvELXxX6/SSFfJJtpdBIPBmHuv7yvjTbKl48m27UQvAMumFkd+N1qF03mzK7DIEofaBjnRNURtAnuCVKCRbIDh/Y8HPcnl8XgIhUJx5xX9fKzBZrMhyzKhkFqhNCdBNWdRyaatm+LNE/r+nso7rO9zmfZkc7vdNDY2YrfbqaqqMvzMWEK7HpFEjwf9Wjqe2lePZJ5siZ5dukhFyaa1R1EUNhzroq401zDeTQeZTBfVvnu4Ta2sfdmiSRlJFdVgtcj8+KYzuPzHb7KzqY/X8hXOqs3L+FyUMslWX19v2Aiv15tWbnu2YiKUbKDu8DUNwu2PbKa5L7q0c1megz/euYZSm597u+rZ0uTmc3/czgMfWsE5s1VJdbrposGQwq/ePMZD64/z4bV1fOr8mSNt8vg41jFIj9vPS937sVlk7jp/ZsTYV0Qq59d/5jTJlv0YTboojI2Sbbz6Tb/Hz4GGZgCWzqwx/Exubi6yLONyxa+4OFo4rBbmTSpgV1Mfh9qHKCMzi6Cenh5aWlqYOXNmhFQRn7dWdEKfxgIjJJuiKLxztIuqQmekQEO24pENJ9jX0k+ew0qew0prv4f1R7q47aF3+fMn1lLoig6mxppkc/sCHO0YZJFldOmi+nF1zfSSMMmWmi+buAmiL3xwpG0ACYWSXHvSYNVut0fdr1SVbEW5diQUjnaMQsmWZycUGkr5/CLsVpmvXTEvre/mOu3IkoSMQt+wP4pkGwyTbHYZZFkaU4I+Vdglha/Zmia6GYYoyrGhKBIev3EVvO5wsQxn+DUyS7KN5jmLqClWFy7dQz584eaNRsk2tSwPvKpSKBnJJvYh/cIe1EVQaa6dHAt4vD46BmRqSvJi+t5YkGyais1ms42Lki2VdFFxvhtrJZt2Di2dMNtItnSUbJvr1TnmjDgkWzr9qNBlY1VdCRuOdfHK/nY+dva0lI9hBJFkCwQCKZFsGiRJQlEUPB5P3JhPfOZiH5QkiZycHIaGhhgeHo5LsgUCgZj7lojU0/f3VPqpUVxnFmZINrFy6UTAjB+bBn08Ja49zHxPI2ONfI0zbV2QjpLt/jeP8T/PH0CW4JL5VXxwTS25Dgtt/V78wRAXzK0g15FaDBovXTRef0hWXTQYUjjaMUQQiSsXVafUFjOoKcrhB9ct5pOPbeP1Q51MzZdZOFFKtqeeeiry7xdffJHCwsLIz8FgkFdffZW6urqMNm4iMd4Tmsvlwu128/b+k3zj9U7cviDTy3JZNa2EYbebHH8fH770DGZW5NHV1cX5cyoYCHazv0lVY9z3gWVcNL/SVArd9oYefrO+nhybhbNmlVFb4uLbz+xj6wk1gPvhi2q57E+dP5MTXUPc9egmbF3NKEjsDKgDzD8OtvO7j62O2VVKVZqc6OfTyD6MR7poop0eI0+28UhVVBSFr/xpJ37PMEVOG+vmTzX8nMPhYM2aNWOemrRkchG7mvo40DrE2SWZCVoaGxvp7u6muLiYSZNU7wPtuHa7neHh4SiiDdTr9Xq9kZSL/35uPw+8dRyAC+dWcMc501k9rSSr1DkArX0e7n1JHee+fuU8blo5hcPtg3zo1+9yuH2QO367hUc/uiqKDBnr6qL7W/pRFIUCh0yuw5oRJRuM+LJtb+xh2Bckx27uuOJx9Omih9tUdU1Jrj1pO+12e8S3Rr/QSAZNySYDR9sHkn5ej64oJdtA5JjjDYvFgsMqIwcVet3+qA0qteiBgtM6MQb9pyoKc1Qlm9dvnD7VMaDOFbnh2zne6aIFTpW8H/QG6BhU+6HRuCEuxPTvUp/bT0uf5n2YT/vJnghBo0cikk0jc0SFgSxL1JbkcKA1xImuIeoqi2OOORZ2BNpYoG1IQfalixop2VJdQBpBT4DYbLbI/KknWSaKZEvXk61z0BshhLWq1vrvpHsNF82vVEm2fW0ZIdkCgUCUl1q63mMulytCkpkh2fRwOp0MDQ1FlJ1G0GJeq9Uaib0SKe/0/X28lGxmnvNEVMsVkYpIIJ4nY6okm35uCgaDGZ/jU1Wy7TnZxz3h+DekwAt7W3lhb3QK77xJBTz8kZWGYpp4yLSSrbFbTRV12nMymioq4vJFk7h51RTe3drJhqNdXHLWBCnZrrnmGkB9iLfddlvU32w2G3V1ddxzzz0ZbdxEYrxJtvz8fLYfa+NPuxtwB0s5e2YZP//AMgpzbOzfv5+2Ng85gUGgNLyLIfGBNXV49qsvyCd+t5Uf37SUtZPVF0JRFNoHPPz3s/tp7fewbGoxi2oKeXpXM8/tHnmZHt/SGPl3nsPKxfMr+ev2k/zwxYM09Qzz7K5mvJ5hluVYmFyaz9mzZvDsrhbqu9xc/8sNPPrRVcwLG5xC6umiIk6TbNmP0aaL6gNJvaRdO0e8AGKi0kUffOs4L+9rYakdrlg0icL8+Eq18UibXDxZ3eTY1zqYMZJNu7diYCV6cg0PDxMIBCJ/lyQJp9OJ1+vF5/Pxraf38fA79eG/wasH2nn1QDvvXVLNPTcuwZZBqfdo8Z1n9zHkC3LG1CLev2IKkiQxuzKfhz+6kht+sYF3j3fzxT/t5Ge3nBEJXMZaybbnZH+k6AGkrhaNp+ycWuJiUqGTlj4P2xp6OMtkyqh4HH266LEw4VWa50hKmolmz6mOG6onmw1QaOx24w+GUupHPYInW2hodBsEoZDCyV7Vf6emKAdZNk8WOp1OnDYLTm+AXnd0NcFBbwArIewWKeKXlS0IKdCoqM++RvKlbuI7hlDTRaW46aIqyaaQk6KSbTTPWYQkSdQU5XCwbYC2AT9WjMfpeJ5NAAfb1PesutBJoctBe4LriEeyaT+HQqGodFFQPRvtrX7qOz1cbDBvjaWSTSTZsiFdVCQ7xXSyZOmiqbRdv6gUSTY9JlrJlmq66DtHuwB1cV6aNzLmm/HqSoaL5lXwnWf28W59N31uf4zKPFUMDkarotNJi9QyFoaGhnC73TEWShqSkWyQ2NdNjHm1Kt2J7uNoCh+MdbqomKo4FmmTyZCKSCCeJ1sq6aLiPbHZbPj9/jGJHc1cl/Y+e3x+/uvxHfiDCpcuqOQLF8/hkQ31vLCnlRybhYoCBw1dbva39PO++97hkY+uZGZFvql2pFv4wKjdHYM+1h9Tx5SFk4uxpDkPm8HnL5rNB7btpLlvmIMt/VRWVmbs2KZjplBILZM+depU2tvbIz9r+eQHDx7kPe95T8YaNtEY7wmt2Q0v7WvFQYD3r5jCbz6yksIc9WXWBmCxnDeA3WblZ7ecwdVLqwmEFD79++1879n9DHoCHO8c5D0/eZu/7Whm47Fu7nv9KJ98bBvP7W5FkuD65ZO5Y9005k0qQJbgrJmlvPD5dfzf+5fybxfNBuAP7zbQ7wmwpCafD6yu5boVU/nypXN54hNrmTdJ9Y17//0b2BEu2Q2jU7Kdqubp2YxM3VO9iWcm0kU1E2aIHmQTBQMTkS666VgX//PCAawEOWd2OZNL8yZ8IbxkShGgkmyhUKwkPR1o44tRsCSSLOJEarPZUBSFn76yn4ffqUeS4PvvW8Q/vngeH1g9FZtF4qmdzXz2D9vxB7ODRH/rcAfP7mpBluC71yyMWkTPrSrg/g8tx2aReHZ3C68f7Ij8bayVbHtOqpVFy/PVdyQdQgpi3wdJkiJqtk3hoMUMxOPoPaWOdaiL/7J8Z9JAWSSd0yEO8xxWbBaZYCjEia7Eldz0yGR1UU8gyLr/fY11//sankBq71t+fj5Om4xL8tGrqzA66A1gIYTdKkeNidkADzLrfEtY51uCJ6soNih02VVPtkAsyaYoCh0DXmQUcsJqVLNKttE8Zz20lNGWAbUfajGzCHG81ffNQ2GSbXZVfqT9Zki2eKotcfEjSRJ1Zbk4pAAt/cP4Q7H9LplxdToQSbaxOL4eZtNF9WTnWKSLGinZwDgtT/+78UqxSzdddP3hTgDOnhlNNmVCyVZbmsvsyjyCIYXXD7WndQwRYqoopKfYslgspiqEJpp3tO+bUbI5HA5T74ueVBYzPpKtBzKVLpqMVBHbOZ7IBMmWipJNJJH02QCJ4PV6U7o/ZpRsWt9582AbR9sHKM938P33LWZOVT7/fe0itv3nxay/+wL+etdZ/O1TZzG9LJeTvcNc94sN7G3ui3tcEekWPtDHhdsberjqp2/T0q9aa6ybkznSywiVBU6W1qpKuad3NCb5dGpIOWo6fvw4ZWWpmSefijAziGUCwWCQfo+fbzx3jGBIYW65k+9cPT9qtz4eySbLMlaLzL03LuXDa+uQJHhhXxuPbKjnkfXHaR/wMqsij+9cs5Ablk9mTmU+ly6o5PnPreNHNyzh61fO5/nPrePQdy/nsdvXMDlcveqzF87ksxfOwmaR+OCaqfz0piXkOUfSl8rzVW+4FbXF9HsC3Prgpkiq6WklW/YgEAiwadMmDh48OKrjHDlyhPXr19PT0zPqharD4YjZYQN1ctAbcxpBlGyPR7poMKRw95O7CYYUrpxfxuKawihlzkRhRnkeJbl2Bn0hTvYOR6VwpgNFURKSbKInl7jYkGQrL+xp5aU9LUgS/O91i7l51VSmleXyvWsXcf+ty7FbZJ7f08qnHtuGLzDx7/gj75wA4ENn1rGgujDm72tnlPHBNWql7D9vHfGjGmsl247GXiyEIn5sqZItid6HZbVqKth2YUMkGaLmmfC7qSgKgx4frWGlT3l+csNcMShNhziUJCmcMpqaL1sopNATVo2VuEZPso0G+fn5OK0WnFKA3sHoCqODngBWKYTdIp9OFU0BRTmaki02XbR/OIAvGMJKiFy7JW6K5VhDK37Q0j+iXtTPb+JCTP/OH9ZItsp88vPzsVgslJQYp80kU7LByDiuKSYLnDZqC60oChzqjCUKxkvJNhHpovpNOj3JlqzwQToEoZGSTTy2iFMpXVRRFN4+opJseqV0Jkg2gAvnqQvt1w5knmRLhUwSn6GWImqGZDOaz7VNZ7Mkmxn1ZDwlW7LvQeaUbPEIPaMsifFEKjFAJgofGKWfJ7unra2tbNiwISWPe7OebIfbBtjR2ItMiB/dsISSXGPCcEqJiz9/ci1nTC2ib9jPXY9tY8CT/B3JRLrom4c6eP+vNtI+4KU0z8lNK6dQUzL2/s4XzlMLcaw/0kH7QPz3MVWYjjY3bdrE888/H/W7Rx99lGnTplFRUcGdd94ZVQHlVEe8AaCpqYn169fHDNKpotft461DHWyt7+Lv20/SOhSkJN/FZQur8HpGBuxgMBh5ufX57JFUO1nim+9dwFOfOpvFk4vwB0OEQgpXLanmb586i1vX1PLDG5bw4r+dw/23rmBuVUFUW8SKHZqE9wsXz2bPty7lu9cswhKeG8TBujDHxiMfXcXqaSUMeAN86Neb2FzffdqTLYugeT10dZlXrxihp6eHYDDIvn37IsFAugtVSZIiJJV+0WMmoBcDwPEI0F/Z38bxziEKnFY+fd40JEnKiiqaFlnionkVhJAixMNo7oOosDDakdSuWUwXDSHxk9ePcbBtAIcc4sfvX8oNK6ZEHfeCuZXc/6Hl2K0yL+1r47aH3qVrcOLmCbcvwFuHVXXaTaumxP3c9csnA/DyvrZIet9Ykmzt/R4Otw9ikRRqinPSIgT0XiAizggrH3c29hIKmSNjxR1xsT2HW/qxSUFcNgsFucn9OkarZJMkieJcGxKkRLL1DfvRLrU4d2JJNofDgcOhFnDo7oveFR7SKdlOwxy06qJeg8IHHYPqPFXkVDciJ4q81JRszb2euAvkRObPh9rU/j6rIg+Xy8XZZ5/N9OnTDc9llN6n/1m8D9r5FlSqbdzdElu9N9Mkm6IoEUWIWdIgE+eE+PdE+7ue7NSPp+OtZDuV0kUbut2c7B2OVOgWYeR5lw7Whcm7d452jXpjVVu/paIu0iD2E02JJvq76RGv/wGmlHCpKtn0pJ5I3ie7Tj2RlK6SLV4bzaSUjiUSEZ566Pu8/v038z2xrySrMK1B24To7+9P2kYNZpRsu0/28/xelaD+8JqpnBsulhgPJbl2fvPhldQU5XCiy83dT+5O+t6lWoFZny6q+Tr7AiEunFvBnefNoshlH5e4aEZFPpMKnYRCIR7b2JCx45qONr/5zW+ya9euyM+7d+/mYx/7GBdddBF33303Tz/9NN///vcz1rCJRrzO1NnZSSAQoLe3N+1jb2/o4ewfvMaHHtrE6wfb6RryUZLr5NZ1s7Fb5chLBtGDr15poh+0F00u5P5bV/DeJdVct6yGn9y0NKXqIH19faxfv54jR46gKAoOazTzrg8Ccx1WfvORlaydUcqQL8iHH3o3YjR9Wsk28dD6yWgDWC0o9vv9kb45GlWAtnuXKsmmKEqkj4hKn7FUsj341jEAPrCmFitqu7JByQZw6YIqlWRrHzSsYpQKxGDKTLpoSFH49foGtjUOYLPIfOa8aVy91Lji6vlzKnjwQyvItVvYcKyLq376NruaetNu62jw5qFOfIEgs4pkZlfE3x1bUF3IvEkF+IIhnt7VEuOvkelFoeZnM7cyF6fNktb7JQZY+ndiTlU+DqtMvyfA8a7YxbQRRFJK9Ao73NaHUwpQkmsnNzc30SGA0SnZtO8Uu8IVRtvNtR1Gih4UONV004kk2SRJwulS+1tff/QGXcSTzXpayZYKinLsqpItEEsqt4eLHpTnqvHPRJGXmpLtZO9w3EVWIpLtcPuIkg3MpQNBfEJJvA/av6cXq+/ntqaBGAI+0ySbqLi22WxZlS6qj6vFaw8Gg/iDIfae7KNzKGD4fTOIp2QzWninQ7J5PB7a2trSjoniFeFIRoZqKrYzphbjske/a5lSsi2rLcZulWkf8KZVaVpDIBCIrKuKiooivzMLo3RRzSst0ecTebKJm5d6GPkQp6JkA0xliWjt0LfLDMTYXEM2k2yppItq91NPICX7nrhxbbFYTJNs2j1KpG7UI9l1NfcOc/ujW/CFYFppLp+9YIap4xa57Pz0ljOwyhLP7mrhsU2JyadUlGxin9E+99bhTg60DuCyW7j3xqXkOu1RxxtLWCwWlk4pRkbhsU0n8I7SKkKD6Whzx44dXHjhhZGf//jHP7J69WoeeOABvvCFL/CTn/yEP/3pTxlpVDYg3gCg7SqkwvCL6HX7+PTvtzPoDVBTYGdGeR4r6kr40yfXUlNWBETviogvWjwlmwiLxcL08jzmVuWlnG7U29tLIBCgqamJvXv3xpA0RkGgy27l17etZMmUIoZ8QZ7Y2hzVxkQ4TbKNLcTnl27QFQqFIn1d7G+jWahqE7h+4EwW0Iu/Hw8l247GXjbX92CzSHx4bV3k3c8GJRuoaRkuu5U+b4j2gfhBnhkYqbTESVCfLnqyZ5hDHW6sNhvXnlHDrLLEaYPnzC6P+Dw093m4/pcbeDvs4TKeeGlvKxXyIOtKBmlpaUn4WU3N9uetTaNKozADbZGyYqqavjoaJRvEvhM2i8zCGvXYO02mjMYopsNtOt7eTw5+SvLGh2STJImS3DDJlsLiKuLHFk6JmEiSDSAvXyXZ9Kbbg94AltPpoilDMz/3B0N4/dFjn1ZZtMyl9tmJVrKd7BmOO7/Fi6+6h3x0hquSzkywIaAhkSdbVVUVBQUFEVJB/HxlvkpCdw4F2NcSrZ7INMkmxhLjMYeLaWtmSTbtmsW/e7w+ntvVwov723n/AxvpGfKl5HUltkdsS6aVbEeOHGH//v10d3ebao8eogo6lXTRd46om0RnGxTVMZNGaAZOm4UVYdsDbVMqHWjjr8PhiKR7pkOyaT5bWhwbT42WbL2m9YF43x+tJ5t2Hkh+ndrfNfLQ7DrXqD1GvzuV0kUzqWQTSbZkY6n291QyAxMp2byBIB97ZAsdA15K83O4bFEVSsj8eL5sajFfuWwOAN9+Zh+b6+OPLakUPhDHAe1zD4RFDe9fOYVC18gmzHiQbLIsM7Mij1KXjc5BH3/dFp2u29DQwLvvvhshvU0f1+wHe3p6oiouvPHGG1x22WWRn1euXEljY2YN4yYSRgOAoigpk2wejyfyHUVR+NITOznZO0xtqYu/3nUmVy2p5pzZFdSV5UUWLMmUbIkGitGoe8Rr7uzsZOfOnfh8PkP5uIgcu4V/D7+EL+xtZcDjz/p0UY/H809P6mVi10jrc5IkMXv27MjvR7NQ1SbwVJVsYlVLUQI/Vs9RU7FdtbiaygJnVJpLNsBps3DenPKImi3TSjZxDNGnix5uGyCIzLo5VVQX5ZgaD2dV5vO3T5/FBXMr8AVCfPfZfeNqfusPhnj1QDs5+JlRnhdDduhx9dJqrLLEzsZeDjb3Rv0tkySboii8EybZltaoqfzpBBXiO2l0X5eGU0Z3pEmyaW063jEQVrI5UibZ0iUPi3NHPNnM9plsI9kK89Vn6xnSkWweVclmO61kSwn5DiugzgFD3ujxRyPZSnISFwsYa0wOK9la+z1IsvFCN575s1b0oKYox1RGQiIl2+TJk1m2bJlhuqhVlplS7CKAzBuHOqK+l2mSLRMpl6nAaCGn/1nvyaYn2YLBIPe8sJ/jXUMEkWnsHubTf9iGKPozu6msJ0AyTbJpMUq61j36jUwNiZ5TKKSw/qjmxxZbYVP/nWR9KRQKUV9fb2jJs3aGevz1R9LfoNOOm5+fb1pdpG8fjCi8k6V8Jpt3khU/MCLZxlrJprUpEAiYmm+N+o3RuU5FJZueZEtFyWZEsplVsnm9XtP3KNF1Pb2zhf0t/ZTk2rl17TQcVkvK4/ntZ0/nonlq3H7bQ+8aFtASU+rN+FbqC/7sa+7nrcOdWGSJj541DYDKykpyc3PjVu7NJCwWCxZZ4pL5FQD874sHoyrBt7W14Xa7U0rjhRRItsrKSo4fPw6oA/m2bds488wzI38fGBj4pwoQ47HwehPEZMfYunUrW7ZsIRQK8eBbx3llfzt2q8zPb1mGyxZd/UVbsIiLP3Hg1ga8eEEZZIZkKyoqwmq10t/fz/bt2yPtSbRAOnN6KaumleANwpb6HtNBR6KfxwoDAwNs3LiRQ4cOjcv5JgqZSG8Ty1ZXVVVRV1dHSUkJBQUFSb4ZH6WlpTgcjpgCKmaVbPpdkrHoN009bp7f0wrA7etUD5xsU7IBXDK/ipCi+rJlmmQT32FRyebx+jjSPkgQmYsWVsd8PxEKnDbuvXEJeQ4rB1oHeHX/6E2MzWLz8W76hv0UOSUmFTmTyvHL8hycN0edcJ/eocrktfsgpgKMFvVdbpr7PNgtMnOrVMVKuumiiYjnJaMk2bQ2NXYN4pT8lJpMF7VarTGVzlKBLMsU5diwSDDgCdBh0tNvhGRTSfGJJtlKitUx0+f1RL2rQ75wuqjltCdbKpBlKUI+DXqMSbbinPHbCTdCWZ4Du0UmpMCgL9bzUvxZ/86PFD0wZ/qciGQzgnhP6spcBBQLrx9sN/xMpjYV9J5PY1FYQYQYG6SSLvragXY2Hu+hpW+Yl/e28Oct9QCcP3cSLruF9Ue6+J8XRgpKpRrvjpWSTV8JNVWIfVG8X4lItn0t/fS6/eQ5rCyeXBTz91Q307u7u6mvr+fo0aMxf1sbVsptPNZN0KS3qB6jJdn0acV5eer7GW/xnWze0TI7jEi6dDwMjXzHzL5n+nRR8XeJIN6TRH3lVK0uKhJm40WyAaZVU/GUbIqi8NDbKm9zx7rplBdEKzeHh4dNjSuyLPHTm5dx9swy3L4gH/7NZjbo1KR6KwBI3O/EfirLckTUcMWiSUwpUdtZUVHBypUrI4rTsYT23M6dXcrsyjy6h3z8QBjjjQrDmTqu2Q9edtll3H333bz11lt89atfxeVysW7dusjfd+3axYwZ5vJ8TwUYdTxxd8jMwOPz+fD7/fj9fo619vCDFw4A8F/vmc/CmsKY4EobrL1eb+SBigtBzS/BjJItnQWg1p7CwkKWLVuG0+lkeHiY9vb2qHYaQZIkPn/hLBRgT3Mffe7kg8NEKdk0pWAis9J/BmSSZNOIpbq6OhYvXjyqhWpeXh5nnnkmVVVVUb9PJmmPl86hT0Ho7OwcdWGS36yvJxhSOGtmKfOrw4vjLFOyAZw/twIkma4hHyc60/cpESdzIy8/kWTbd7IHtz+Iy2Fj7SxV3ez3+00HTUUuO7eeqVbv/OlrR8bU9FrES/vaAJhfmYMsSaY8LyIFEPY0EwwpKQefZqClii6rLcIqxabqpIJE479W/GB/Sz8ef/J7bqRkCwRDdPf2I6NQlu+M7Hgna5M2fqSrZLNaZGqK1Htv1peteyisZsodIUa146UDiyxx65pabl1Ti0WOXoCuWLGCFStWJDx2SUEufix4/IGo8WnAE04XzRIlW+R6li7FhsKtljZutbRhYfwXRcmQ61Tv16A3+l3USLZCR6zhfzLEe87pQJYlqsP9ts9jTIDEJdna1fFc82NLfq7U7BzE89WV5uJHZltDb9S9NJtmZhZ6km2slWzicc2QbF2DXn755nE+8vBmfvTSYR7f3MiftzZiQWHtjFIuXDCJe29cCsBv3jnBlhM9hn5UydqiVwcbkWz6ezXeJJuIRM9Jm7/WTC/BZontd6nG+dp1GxEMi2sKyXNY6Rv2s685NUWJhkwp2bR7pG04p0uyJVKyafdAkiTTHoZG6aJmr1P7u91uT+ndF+9JojZOdLpooiIUeoixVCAQYF9zP09uP8melsRxdiZJNrO+bPH62Kbj3exr6cdpk7l51ZSoZ9rV1cWmTZs4cuSIqXPk2C08eNsK1s0qY9gf5CMPv8uB1pE+r/VVsQ8kVsCOtLmlb5indqpWU3esm2aqPZmG1mZJUfjuNYsA+MO7DWw9oabH6u26zMJ0tPnd734Xi8XCueeeywMPPMADDzwQpeh46KGHuOSSS1I6eTYjGclmRrkhThJ/3HiMQEidqD+weioQO6FZrdbIIk5Tj+l3N/x+f8JBOx2fCA3iQOlyuVi2bBn5+SMBXrIF0pkzSlk8uZhgSOGNg21JzzdRnmz6tNt/VowFyTaWSCZp1xfgMDJ693g87Nmzh507d6b9fFv7PPxu4wlgRMUmpopnk5KtMMdGXYX6jr5l4p2LByNPNqPACWDrcZV0Xz2zHJdTJRxFqbgZfOzsaThtMiebmnjs7y/R09OTdtvNQFEUXtrbCijMKh0JapONkRfMraAsz07fkJcdjT1RgW6mFp5aquhZM8pM75bGQ6KgZnJxDqW5dvxBJcZ7yQhGSrYet58cyYfDKlNWlG/a91N7Z9JVsgHUlqjPzawvW0ufGqBWFjgNU7VShcNq4TvXLOQ71yyMFAUC9VldeeWVXHnllQmfW1GODbdix+MPRZFsQ94AVpSsIdki13PRReRKCt+xNfAdWwMOKQtJNod6v4b0Sraw2jHfHq0YMoN4zzldaL5sPcPGhYjiERtauugskySbWJzEzHspnq8gx0ZlYS7BkMKOht7I78U5ORPKk1Srz40WZpVsiqLw+43H+f27DRzrGibXbmHupALyHVZsElyxoIKVdSXYbDYuW1jFv12kWme8cbiLl/e14fYmXw8kU7Lp769IeGjtTIbRkmzxipwlIk5eO6DGA2tnxPqxiW2K93O8NhitsawWmdXh6qXvHE09ZVQsepCJdFEYIdkGBgaSkglG0NZ8RoSKGHOKFW9TTRdNVclmtVoTEsB6iGOYWSXbqZQu+st/HOSlfa0c7xrmlgc28drB+BkY8Ug2s3GjeI/Mpn3HU7L9Zr2qYnvfsslRVTqDwWDE3ku0p0qEzs5Ojhzcz303L+HsmWV4/CG+/MQuAkH1nhqtFc2kDsuyzP1vqPzImuklhmrY8YD43FZNK+GG8Ab71/+6B69vhHcZMyVbeXk5b731Fj09PfT09HDttddG/f2JJ57gG9/4Rkonz2YYDQDiIJgKyeYPhnhxl9qhb183LUZtIE5ompptcFD1ntHOKZZgjlddVPxcOtAPQHa7naVLl0byoUXCzQiSJPGxMCmx+Xg3tz30Lu8ej2+SOFFKtnQZ6VMNpxrJZjZdVL9LAiPPUmuvtlOTDv7fq4fwBkKsqC3mvHCZa9GbIptINoCFk1Uz4PVH0k+9TJQuqqUASJJEMKRwoEl9p8+dUxUxsNYfIxnK8hzcsqqWfNnLpmOd9PX1pd12M9jb3E9zn4c8m8SUYjWoFVMx4sFulfn3y+ZikUJsPNZNnyeY0RSqYEhhQ9jfYu3MsrgLbrNIlEItSdJIyqiwkI4HIyVb95CPXMlHaa4jMleZwWiUbNqcNjVFkq2xR11MTSl2GapIxhuFOTbcig1vIBhFsg16A1hOp4umhTyner/iebLlhUm2ibyvWoXRnmF1vDCtZGvTlGzm3zOjuTEe9JVGV4TJiy0nug0/kwnFcTwl21ini4qp9BrERdXze1r53QZVvb6guoiXv3Au9960jI+tm87/XreQj6+rRZKkyP347IUz+eZV85EkiX0t/dz56Ga6kqSxi+lRepLNqDr4RJBs8TZ54hEn7f0e3g0boV+yoBIjpBrna22P5wd2pubLlkbxA22+t1qtUUULUold9Osvl8uF1WolFAoZEhZmlWxG6aKiHxskJjs1JPJkS9YvRBI8UeVbPYxItlPVk23YF+S53S1sbeilqcfNI+uPc/8bhwEozHUy7A9yxyNbeGJLo2H/NCLZZFkedyVbY7c7kr3xkbV1wEj/6e/vp7e3N+Z8idDU1ERnZyfugT7uvXEJBU4ru0/28cBbIzZiYFzoKlG66IA3yGObVFHDZy6YZaotYwH9+vOrV8yjyGXjQOsAj6w/FvncmJFsGgoLCw0D5ZKSkqxbfI4GZpRsyXb2tM/vb+nH7/NSW+rivNkVkb8bBVciyeb1elEUJcpcM5mSTRxYUx3EjMg7i8XCokWLOOussygpKUl6jJXTSlk2tRiLrPDGoQ5uvH8DH/7Nu/S5YycxfRWj0yRbZnGqkmzJ0kW1ycqor4vPVEtzTgVHOwb505YmAO6+fG7kHNq7bLPZJmyRHg+LwyTbodb+iA9VqtCTbGIKjEawWSwWGnvcBPw+XDYLy+rUnetEvjKJcOc503HKCid7h9nTGJ+MzwQ0ZeI504uxCiktYhBTX1/Phg0bYtLIr18+mUVVufiDIf6w5WRGSbZ9zSN+NksmF8ZVEphFMmWIVvxgZ1Nv0mMZKdm6h3xYCFFi0o9NQ7yKwmagnX9KkUaymdt5bexWn+OUksyQbIqi0DXopWvQGzX3K4rC0NAQQ0NDCWOCIpc9TLKF6BVSiwa9QaxZlC4auR63m5ACXYqVLsXKBFjoJEV+OF3UrUsXbQ+TbOFM4ZTua7znnC5qilQ/mc4htY1mlGxdg166hsxXFtWQCskmns9ms0UqN249MaIqFj2WMjHexfNkG03VyUQwk/Xh8Qf4zjP7kCWFFbUl3HXBLKqLcqLGUn3BBkmS+PBZ07hpVS1Om4U9Tb184U87E15DPK8s7Tzi/CmSbhrBkixeFX1Cxytd9Pk9rSgKnDG1iMnFsb5JRh7SZtVURsQjqFXVQd3I9wVSi+H12QhGc3kwGOTo0aNJ0z9F1WiilNFUlGz6/qMn2cbSk01vXJ+Oki2ZJ9tEp4smexb7mvu56mdvc9dj2/jJP47y561NvLyvFQsK584u5zMXzuXaM2oIhBS+/OddnP2D1/jPv+2Jqrg52uqi4n0xS7IZEauPvFOPosC6WWURNbTWhs7OERWo2ecgrpsrCpz811ULAPi/Vw5xpH0woZLNaHzXzvv6oU78QYV1s8oi7/ZEQN9vS3LtfO3yeQD84rVDDHjSy4DLrtViFiEZyRZvAhDh8/lQFIWdjb3YCfKhM+uQBY+PZCSbtrPhdDqjqvsZKeA0JKswlwiJjms2SLVYLJwzu5yPr5vOLaunYrfIvH6wg2vvW099Z/Ti6DTJNrY41Ui2dNJF9YU+xGfa1dWVcrB570uHCIYULppXwYq6EVJZH+xkE0rznZTnOZBReOtwR/IvGEAfSOl34UC974fbBpBQmFmZh9Oh9gmtb6RKslUVOlk+RZ38/7GvOa12m8Hupj4e36IqiW9aEe0DKAYxra2teL1eTp6MLt0tSRIfWjMFiyyxrWmAfa3qOJYJ9YVWlW3N9BKsFnnUSrZknpypVBg1VrJpPmepkWxTpkxh+vTpVFdXm/6OBu38k4s1T7bkSrZgSOGkpmQryTFUkaSKYX+Q5d99heXffYVhwdPO7/fzox/9iB/96EcJ34ECpxW3os6jvf2DkbFp0KMSl9lCskWu57776EdmufcMlnvPYDgLw0WNZBvyjdx3fzAU2WwI1z1I6b7Ge87pQksX7RhS22hGyXYorGKbUpKDy26emDbagEr2WVDvz/Jadb7b3tAbZSqfyU2FeEo2GJt4LF4alfi7f+xvo6XPQ2WenTXTSyLPQYxL41UWnFGRz/XLJ+O0SrxxqINHN5xI2hb9At9ok0q812aVbOLfM50uGo84eXZXCwBXLppkeDxxDWLWW06cV43G0zmV+ZTk2hn2B00X8dGgj2e15ykSlB0dHTQ2NhoWXhDbL8syxzoGufPRLXzl74fZ39KfFsnmcDiQJCnKkkRDPFJ6LDzZxPs+GiWb2YqS2VL4IBhSaOx28+Bbx7jmvvUcaR+kLM/BrMp8il12qgrsfO2yWZwxtRinw8Y9Nyzh0+fPVO1Oeof57cYT3PDLDbwQLpQmHlt8n9JRsplNF9Vf14DHz+Ob1Zj3o2ePeJwZbXKajWP1GS7XLavhvDnl+AIhvvLnnQyHY2lxjSSOI0abSx0DXrY3qe/MVy6da6odYwUjIvr65ZNZUVuMz+/njYMdMX83g+yLmrIERgOAvsMne1l8Ph+NPcN0DfnIsyncsGJy1N8TkWxutzuiqMjJyYnaVTCrZEuXZBuNUifiU+C08N/XLuLvnz6L6kInxzqHuOa+9VGMv57UO02yZRb63bl0kM3pohC/Qpj2O3HHJhm21Hfz7O4WJAm+dOmcqL+N531IFRaLhdrSXGRCkYkgVeiDWaMCK0EkjoQJjlkVI34mWjBmthKSiDNq1B3gPY3dtA+Y27VLBYqi8M2n96IocM3SamaVRRv1ayRbMBiM/Lu9vT1mbCjPtbKitoSAIvPXHS34g6GMLDrXa35s4R28sfRkA1gS9rs40eWmJ4nqMZ6SDVIn2RwOB1OnTk2LRNLOX1OoBm/NfcNJCze09XvwBUNYZYlJhTkZmdtGC6tFxuV04FOsUb5sw94AEsrpdNE0kBdRso30h67BsAGzLGEL+8hN5H3VCh+0DxpXJzOa1w63hyuLVpjzY9MwGiXbnKp88h1WBr2BKEPrTJJsekVY1GJ3DFJGE5FssizTPeTjnSPqnPmhNVOxWuSYexgKhWK85MRjlOU5uOtc1Sblv5/bH6kKq0e8MSgRyZaMtBAh3r/xSBdt7fOwOZxafOViY5JN/LxIaCWC2HYjkk2WpUjK6BuHUstWiEeyiefV1nmaZY8ewWAQbyDI7zY1csn/vclL+9o46YYX97by6Bv7GdKpapPNPZIkxfVl078vZhVp2nE1mPmedi7N+y0VJZu4losXg+gLhEy0kq1jwMu1961n3n++wLr/fY3vPrsfXyDEhXMreOnfzuG71y7mtrV1fO+ahZw9Q92AUDNZJL506Ry2/+clPPThFVw8X02TvvvJXbT2eaKes3bvzJJsevFOukq2xzY1MOANMKM8l3NnlUc+J475qVZ21pNskiTx39cuIs9hZVtDL+sPqSSjuEZKlFkXCoXYcLSTkCJx5eJJLJpcaKodYwWjfivLEt+9diEOWeFIxyDHOgZPk2yZQjIlGyQffHw+HzvDOy0rp+RR4IxeYBilZzocDqxWq5qyEPaUysnJidpVGM900VShN5OdN6mAv336LJZMKaLX7ecTv92K2zciB4eRiW68djb+VUi2U1XJZjZdFGKVO/pn2taWvBhAfecQX3piJ+//1UYArj2jhrlVBVGfyWYlm0qyuZBRePNwB6E0StvrxzIjxeyWE714AyGKXXZqinNiSLZUlWzBYJDSXCuTCp3ISpAnwmm6mcTfdzSz9UQPLruFuy+fF0MEakGMmCLq9/vp7o5OXw0EAqysK6a80EXPcJBdTb2jXnR6A8HIpoOeZBsLTzaAQpeN6WUqObYjScqofp5RJJmecNp/eaFr3N4F7R3Pc1gozLGhKFDflThlVEsVrSnOwSJLY0qy2e12vvGNb/CNb3wj6ThZ5LIxjA2PPxjpcx6v2ieddlvazz2TiFzPl75E9m0pRCM/J0yy+UbeRc2PrSzXRjAYvUidCEwOp4u2DvgNMyCMlWypFT3QkC7JZrfbscgSS6cWAdEpo5ks9KJX5ohm7mMRjyWLlV8/2I4SUrhwbgVLJqtzvv4eBoPBGLJDg/aZa5ZO4tzZ5XgDIT73xx14A7HxVjzCz2j+FEk9s/cnkySbGSXbc7tbUBRYUVvMpELjKtN6dZT+d0ZIRrIBXBImNp7d1ZLSukEfz4o+e3qSLRgMGiqJfP4gT+1o5pndrQRCCufPKeeD6+YiSbC/qZNrfvoG+4XCQmbmHo1k0/uy6RWUZvpCup5sYh/Xqpkm+44GM4UP9MeZaJLtgbeOsb2hF19QVZHPrszj21cv4MHbVlCSa49aWxiR7Dl2CxfMreTntyxjUU0hvW4/X3xiR5StghHJJqom47VPg2YZlQj6ok4ef5Bfv636pH3i3BlR2XNi+ydNUolxs2tDo3VzdVEOd50/A4BntjcSCIViSLZ4ZN6uxh6OdQ6BJPHFi2ebasNYIl4751YVcN0Z6r16/WAHHl9qY+tpki0OjFh4bcA1a/R9uLWXY52q8mNpdV7My2I0oUmSFFGzaRX3nE5n1K5CMjIs3UVvonRRszBKV63Id/L4nWuoLXXRNeSL+CPpzzdWvhx6iIPFREiWxwtmSDa3282uXbviGs+fKko27Tlqn9FUNj09PQkVVk/tbObCe9/gz1ubCIYULphbwX9cOT/mc9muZKsuysFllegc9JmqHClCUZTIWKEFFnolm8cf5PVDKiG0oq4YWQhO0x1vtM8vqinCKgX5/aaGqDSl0WLIG+D7z+8H4FPnz6Sq0BlDlmokm96wuLW1NaatVovMB86cRhCJLfU9DLrNSfnjYduJXjz+EOX5DmaFfZfG2pMNiCyktaqm8aBfHBzrdBNSFBxWmUmlhaMqspMKxDllWpggPJ7El60hTLJNLVEJjmxQsgEU5djxKRa8AVU56Q0EI0SQy5l9Y0u2oyBHvWfDgnqkY1B9pyvyRwiRiVSyVRU6kSTwBhXcvmDMYjNRuuisFPzYxGOkWvhAG8NXhFNGt9T3xHwukySbeO6xJNkSKdnePtpNQ7cbmwW+cdWCmOcgKsgSKdm08/zw+sUUu2zsa+nn1gffjfFHTaZkE++vSK6kQ7Klu6maSrros7vDqaJxVGzi5zOtyLtwXiUOq0x9l5u9zebjHaM4Tt+/xXhxcDDWmuBPm09wsncYp83KIx9dxW8+sop/v2IBN6+dRZ7DSltXL9f8fD2PbToR420bD5rndjwlm9ZGM+qjdD3ZIlVdQ/DX7U24/UrU7xPByJMtWVXZiSTZ3P4Qv9/UAMDPbjmD/d++jJf+7Vw+dGZd5L6J73a8dHFQi2P9+Kal5NgsrD/Sxa/XH4/xWRT7PyQXEog/J7v/+qrFf97aRMeAl+pCJ1cvrYn6rEjW1tTURL5vhsiLJ2T4yNppVBY4GHR72N3UF7NGMuoPiqLw8NtqOvbqGWVML09tnhsLJBpnb1xWTYHTRr/Hz7O7Tsb8PeFxM9K6f0Lob7SYpqmRYIkWld5AkL9vPYGiwPxJBRS7bDG7IvFILe34WsdPRckGIxNIqulbmViIxFPSOW0WPnX+TAB+9eYxhn0jJeHF6x+PgVcctP7VSbb29na6u7tjSAXtO9r3sqHwgVEAqB8Ytf/n5uZGzGjjFUDodfv4xt/3EAypppt/+9RZPPThlZTkxl5rtivZLLLEvEnquPHGodRSRsX7rV2f+OxlWebxzY30eoMUOG3MrSrAYrFE3vV0Pdm08Wl2ZR55NomTve6U0z8S4XcbT9DWrxac+VjYl0J7jlrf0H7WSLaioiJA9fMTx0/t2q5YPJmyghyG/UFe2JPaZKtHJFV0RmkUuQlj58kGcNE8VQWgmlYnN+rW3rH1x9SF97Sy3JRSRUcL8R3XVHjHOpMo2cJ+bJoZd9aQbC4bPix4/CE8Hg9D4aIHALnO7Btbsh1adoBb8GRr71ff6QrXyMJ0Ip+73SpTme8kiEy/xx938SluNmoph7NTVLJpihgz85Q+XRTUDRSIVrKZVSCZgV7JBmNbYTQeyeYPhvh/rx4BYFVdMVNLXTGb12aUbCJxVFHg5OcfWEa+w8q79d1c/fO3o1JHU1GypUOy6e1B0omlzaaLNvcOs/VED5IEV8TxYxM/n8wQX4QZJVuew8r5c9Qics+EfeHMQJvTxfcjnpINYkm2329qYP2RDtVS5LK5nDt7JBVv8bRJ3LJ6KmdNzcEbCPH1v+7hs3/cgT98XDNKtmQkm5l3JV1PtpPdg7xxsIMfvnyEf3t8J9945gD+4AjBHAopHO80Lu5jRsmWTSTbC3vaGPQGmF2Zx5WLJmGRjdPJte/Ee/81zCjP47+uUjfnf/jiQQbC9gUiySaqupKRbBaLJXKuZL5sUSm4Ctz/pkpe3XHOdOzW6D5XVFREeXk5s2bNilrTJRt7E1WFzbFb+PxFs7FKQd493o1Pib6XRuT6Pw60c6i1D6tF4j1LpyQ893hBn4UnwiopnDtHfddf29/KkXZjSwDD42auif9c0N9osSqNmUXlfa8doXdwGJfdwnlzK6OOoSHegkoj2TTolWxmjDSNzpcMmUwXhdiX8dozaphSkkPnoI/HNp2I/F2c0MebZPtnThk1Q7Jp12806GsBiSzLaS/6U0GyYD5Ruqi+8IEsy1RUqEFYW1ubYWBwz0uH6HH7mVOZz28+vDJiCm+EbFeyAcyvCpNsKfqyGZVtF4P0EBL3v3GUkCKxvK4YiywZqiBSJfUj57XIzJ9UgJUQj21sSOkY8RAMKfwuXBb8rvNm4LRZotpYWKj6P2gVvTSSrby8nPz8fBRFiSJntfcjx+ng+hW1ALy0pzlScSgdaEUP1goVlcbakw3gvDnlOG0yTT3DCVUA4rukKApvHlaVjDPK8yaOZCsPk2xJlGyN46hkCwQCPPHEEzzxxBNJd50Lc2z4FAsefzBMsgWwEsJmkbHbJ77oAQjX89RTjF67NLYocIWVbL6ROUNLFy0PlxbNhmISU0pyCCoSfW5/UiVb56CPHrcfSUqtsihAbW0tS5YsobKyMuln9emiAEumFCFLcLJ3mJY+lajOlJJNnFPEZzKWnrzx3vvHNp6gvsuNy25hVV1RpH1ie0TSM5mSTTvP2hllPHnXWqaWuGjsHuaqn73Nx3+7hT9tbqQ7rLBMxZMtXSWb0c9mkCxdVFO9PBdWsa2sK6GywBn3eEYkWybSRQHes0Ql957d3Wx6s1xfXRQSk2yiwv2dI51846k9yCicOb2M1dOjKyEWFhbislu5c001X79iHlZZ4umdzTwfvleZSBdNpfCBWSXbsC/ID188wEce2sD2xh7cAZAlONI5zCv72vD7/fS5/XzgwU2c/6PX+cTvttKvi3vMKBb148dEFT4IhhT+ukMttHXHuulxFflmPBlF3LRyCmfPLMMfVNgQ3pDUv09mLXFkWY5LvOoh3sfn9rTS2D1MSa6dm1ZONbymBQsWMGnSpJT8MBORbADXnVFNucvKsD/IY+9GFzHT971gSOF/XziIhRBLpxRTXhBblXgikEjsEwgEmFGex4zyPFAUvvP0ftPHPU2yJYARyeZwOJLmqh9qG+D+1w8hoXDenArKikcWdCLMkmyikk0k2eIRH+mSbJlIFxU9NvQvrs0i86nzVDXb/W8ew+uP3eExm6ueLkKhUNIB458FZki2yMBn8HeRWBqP1LBMFj6wWCxUVFQgyzIDAwMxVZ/2nOzjsTAJ862rF2C1JB4Ks13JBjCnQiUgtjb0xARBiSCqC8RnoN3TLSd6aO7zkJ/jYMEkVQFmRLKlq2QDWFhTiJUQ/zjYHiFIRoM3DrXT2D1MYY6N9y4ZkczrlWxaAKX5Y+Xm5lJVpVYg1dSd4phhtVo5b14VJS47Hp+f36yvT6t9/R4/u5rUFO2zDEi2sfJkA3DZrZEdeK0ilhHEBdL+lgEaez1YZYm6cVayieq8aWXq3KjZMMSDli46pSQn8l0YG5ItFAqxb98+9u3bl3Q+KXJpJFsIr9fLgCegVha1ZEdlURCu59Ahsn121JRsHr+YLhqugJsTvbCZSMypyieERMegN6mSTauYOL0slxx7auOAxWKhuLg47XTRPIeVeeExXksZzRTJJloSJJrDMwkjwqHP7efHrx4mhMSa6aXYZCkqHcoo5dZoQzhe22dV5vO3T53FmuklePwhXtzbxlf+sotbf72JXrcvrpJty7EOXj/YTiikRCln0iXZ0nleydJFtfNolQuvWpK4WrRIGqSTLpooprhgbgU5NguN3cORuTQZEqWL+v2qZ6JRuujTO5v58G824w8qLKkpYGVdccw90mKKwcEBbl83jXtuXALAy3tbOdkznPCdjCfcSEfJlihdVN8nXt7XxkX3vsHPXzuKEgoxuSiHT54/iz/eeSaSZOFg2wDP7Wzi2vvWs+GY6hH+4t423vvTt9lzso8Bj5/WPg+DwyNWStmuZDvYOkD7oI/KAkdMOqWIVJRsoN7vz100C1D9bsUNWO1YZoUEFovF9Dpeu48K8Ms3jgHwkbV1SecOcRxORV1q9NlQMMDaGaUoSPz0jeNc/4t3eGzTCfrc/pj+8NTOkxxsG6DALrGitjhr4p5EpKP2Xp47pxyHRV1jmT5uZpr3zwmxM4mL7ERVV/zBEF/58y4IBplelsv8mmJcLpWpNUuyuVyuqFQsUTqa7emikJgsed+yydQU5dAx4OWlveoCL5n5bWNjI2+//XaMb5hYEdAsRmu+2dHRwf79+8cktSGT0BssJ1OyGd2H8VZviQO+UXuMAsB4hQ9kWcZut0d29JuaRkz1QyGFbzy1l5AC711SzZrppQnbJQZe2axkK8qxMr08l2BIYf1h81VVjUg2bZxRFIUX96mKrisWV0fIyEyQbOLnS3LtrKkrRFHgf54/kNJxjPDoBpVAvWH55EiwIT5Hp9MZCWKGhoYi40hubi4VFRVIksTg4CBDQ0NR7bRardhtNlZPL8WCwgNvHaPXnXpV1U3HugmGFKaV5VJTNEIEjXajw+yC7PKFqgrg+T3xU23Ed+nFva0EkaktzcVmkSdMyRbxZEuWLjoGSjaLLHHdsslct2yyYXqJGRTl2PFhwesP4vP5GPB4sUqq8XK2BJsirChcJ3dyndyJheyzVigMK9l8/hCBoPqMNSVbcY76rFO9r5l4znrMn1RIEJnOAS+BQCCKBNdnEGwJF0NZWVeSkXPHg1G6KKhG9jCSMpopkk1vrK5hvNNFf/qPw/S6/cyoyGNhtboBLm6kJPK1M0OygTqf/eGONTz96bP5/EWzqC11Mejx886RrpjjWq1WjnYM8tBbR/jwbzZzyY/f5JW9qkrar0imLAAgMyRbMiUbwNb6Lg63D5Jjs3D10sQkW6rpovrYL1FM4bJbuWCemq2g+cMla4t2T+Ip2fRrpuHhYR544zCf+cN2fMEQly+s4vrlNVFrlkh7XC4sFgvBYJChoSGuXlrDdcsmAwov7GlhyBu/f8cTbmRKySaSO4qi0Njt5vZHNnPHo1s42TtMTVEOX7l4Jtctn8ySqaWsmlbCZy6aA8DGox0c6xyiutDJj9+/lJqiHOq73Lznp2+z6Jsvseb7r/LFP+1gf0t/1pNswWCIbSd6UJD48NppMemUIsT3LpEnm4iVdSWsnlZCICQZFo9JNpaK8V+qSrb9LQMcaB0g32HlQ2fWJfyOvl2jVbL5fD5mVuSxcHIJsiSx5UQPX//rHlZ+7xV+t6mRI+2D7Grs4cltTfzoxUMAXDqvHKfNkjVxTyIeQnteBU4bF8wpj/luIpwm2RJAvNFaRxeVbEYTwD0vHWJHYy9FDonz51bgcDhiTLY1xEvPlOWRRYz2oo02XTQUCrF7927q6+vjXqtRLn86SDQR2K1ypBrJHzY1sL+lP2oCNlJg9Pb2EgqFYtVIe/awadOmlIi20ZJsDQ0NtLW1xfX5yhYkm+D0v0+mZBsPiBOYUXtSKXyg/V4z9+zo6IikBv74lUORipNfu2Je0naJgVc2k2zBYJDzZqtBZyq+bNr1GSnZWvo8NPf5cNktXLxwJKAWJ0ZxvEnlfdIHtB8/uxaLLPHs7hZe2Ze8Kmw8nOgailz/B9fUxpxPq5ylja1aFWe73Y7NZsNms0W82Xp6emIWh1arldmVedQUOhjwBLjv9aMpt1HzY1s7Y4TgNarElirMkmwXzKvAZpE42jEU5RskQk+y+bEwu7qEwsLCcX0PxHdcI9l63X56hozJTY8/SHuYaJmSQU82h9XCPTcu4Z4bl+CwpkeCFubYCCLjCarjVd+AGwsKdoucFYorPeySwj3249xjP45Dyj6STVOySSj0e9T3VCPZCp3pkWyZeM56zK8uUJVsA94o1RTEzmtbwouz5WGya6wgxl2iQnt5mNzTKh9nqrqokR+bePzxSBdtH/BENmDuvmIBzrAPYldXV0zsoCdSrFZrjAot0XgrSRKLJhfy+Ytmc/+ty5ElONQ+QEN3dEpgSJJ581AHFkJqml77IA+9dZRfv32cO367jQvvfYtfvnGUe148wFU/fZsPPLiRT/5uK3f/ZRc/efUwT25rYm9zX0ZJNv1YJEkjZN/j76qWDlctmRR5/+JBJA3MkKnxSKZ4eE/YD85MlVFx/hevTyQ+RDGF3W5nb3Mf//f8HgA+vLaOn92yDBnjdZIkSZECBtq5vnX1AsrzbAx4A/z4H0fitk2vpoNYBT2YI0WM1nHiO/bL149w0b1v8Mr+dmwWiU+eN4OXv3AOSycXRFUVveXMacybVICFEEtqCvjbp87imjNqeOYzZ3Ph3IrIsWUJQqEgL+5t5dndrXGf80RXF1UUhWd3naRzyIvTZuGW1bHplCLEuMNMuqiGz1wwCwWJPSf7GPJGCwPMpoumqmTzBUK8eUSNYz9z4UwKXebmPLMbHGZINkmSeN/KOjZ89UK+dsVc5lbl4wuG2Hmyn2d2NfPFx7fzhT/t5GTvMJUFDtZOLwKyQ2muwUzfXVVXlFJBotMkWwIYKdmcTmdcku21g+388g11wfXli2aQ77Rht9sjizmznmwwkjKqDdpG50xGsomL2IGBAbq6uqIUPfGudbT+W8kmgptWTuWapdWElBAv7m3l+T2tCYOVeL5hQ0OqCafexyARRusLoH2/t7c3pe+NN8z6c+jTLEWMN8mWKNVY/F2iymR6JVBeXh7FxepipaGxkf/42x5+Eg527r58LlWF8f1ENIx32myqEN83zZzzlf3tEWVHMoiLH3HHMxgMsq+5HwW4ctEkcp2xu7+g3hftOaRCeOtJtilFdu5YNx2A//z7Hga96S3qfrdRLThz7uxy6spGFFeiH4skSZFxubtbXUyK6iyNZOvt7Y0JsLTF1sVzVYLs4XfqOdlrfgwCeCfsx2aUKirLctr9zKzqocBp4+zwuZ+PkzKqHaO138uB1gFkWeaGy89j6dKlabUtXYjveI7dQnX4nY2XMtrUo6rY8h1WisLB5limi6YCNfiVGAqq7egfGlY92axS1uzonkqwWi04rDKgRBSlGsFaYI9V3U4U5lTmgyTh9oeiKozq0xQ9/iC7w6lvK8ZYySZJEnPnzmX27NlRc/yaaSVIEuxt7qex253xdFGxnzf3DtPjHqn2nmnoVT2PvFOPLxhi2dQizp9byaRJKknT0tKScBNP327935O1fW5VAZeEVVfP7I4mhB7f2kLfsJ9ip8yGr17I16+Yx6R8G7IkEVBkAoq6cdA75GX3yT7WH+ni+T2t/HFzI/e+fIgv/GknV/7kbZ7aHh3bZ1LJpl2rxx/kpX3qfHHzqsQkBUSPu2bI1HhpWvFw/twKXHYLJ3uH2dbQm/Cz8eI4UUUmfsbuyOGdI13kSH4+df4MvnHVfCyylFBtrl/75DmsvH/5ZGRJ4h8HO3ntgPHmvNi3tOcmPj99uqgoitAjkSfbzsZe7nlxP95AiDOnl/L859bx75fNxWW3xqi17HY7l8yv5P0rJvOHO1dTEfbeK8618+sPr2TXNy/hwHcu48j3ruDcmWos9Ms3j/PE1pMxGwniPdEwniSboij859/3sPVEN5IEX7l8HoU5iefbVNNFNZw1s5SaEheBkMK2cFphOiRbKkq2LfXdDHqD1Ja6uG1tXdI2ajCrZEuWLiq+N5UFTu48ZwYvfP4cnv/cOi6YV0WB00Zlvp21M0q5edUU7r91BYTUc2ZT3BNvjIoah5QQ37t2oeljnibZEiBeuqiRtLelb5gv/mknAB86s5aVtWp+vkiy6V+WRIN1RUUFdrud8nJ10WwUKCZLFxVJPe3cycgWMC53ngqSvbgWWeLeG5dy+QI1le/37zbybtj/w+gF1o6jrwo6UvXG/GA92t0UrS09PT1ZXZnULMmWTUo2SDwJJUoXNSp8oGHy5MkEgiHuf34bf9hUjyTBd65eYFpSnc1+bBD9vq2dUUpprp3OQa9pNVs8T7Zhn59D7QOEkLh++WTD3V+I3sFNhWTTk1d+v5/PXTiLqSUuWvo8/OjFg6aPpWHYF+RPW9TFxofOrI36m74/a+Oy5sempfXDCMnW19cXszjU2ltb7GTN9BJ8gRD/9/Ih021s7/dwqG0QSYIzhVTleH44qcCMJ5uGkZTRxCTbhmMqCblmegklec5xJ5r1xOG0JMUPRvzYXDHfHQ3JpigKbl8Aty+Q9thfFA7sB/1quwaG3FikEHZL9qRNiFAUcCsybkUmG6c7WZZx2ixIEvQOqyoQTcmWb1fvcar3NRPPWY8cu4VpZXkEkWgf8BrOuxaLhT0n+/AFQ5Tm2qkrHXtD6IqKCqqro1P+KgqcEQL+L9uaMlZdVD/ev36wnfN+9Drff+EAvW7fmKeLDnkD/DasYrvzHDWbQvPf7OnpiaoEqEH8d6IY3Ewc+cE1U7DKEkc6hnh1v0q2NPW4eXC92qYLZpdSke/gjnOm8x9XzOEzF8zkL3et4+nPrOPWNbV8eO1UfvPhlfy/m5bynasX8G8Xzeb9K6awMlwR9vF3T0T6PmTWk0271n0t/QQCQeZNKkhYKEpDqumi+jYnI9mcNguXLlCf4eObExdNMqosCvGVbG+fGGTIF2BynsxnL5xlai4x2iSeVOjgjKlFKMB3nt2H32DzUyQh9SSbWMldLMYRb2wy8mSTJIm2AR9vHlbT/r986Rx+f8dqZlaMVC828n+TZZnqohxkJbbNBU4bTpsFWZa4anEVa6aXEkLi9+828sKeVoZ90c9uokg2RVHtYX63sQEZhYvnVXHl4vhebBq0ZymqC81s2EiSxMXz1T65s7GXph53TDGVTJJszb1utjX0oABfvXxeSurreKSSvm+ZUbJB7Fpx3qQCrl8xlY+ePY37P3gGv79jDd9/32KWTilKibgcLyRLF9X+Nj9sM2DqmJlp2j8nkpFs4gTwlT/vonvIx4LqAr52xbyoTie+LEZeHEYTWklJCWvXrqWsrCzyGXFQN/IE0CAq2bTzaWovox0G8VpHo6LQYEaCKssS7185hTPDA/PbR7oIhozbZkSyiTs5qQRnoyXZtM/7fL6UFHTjjVNRyQbxCVrRY85s4QMNrvxC/r6ni6PtfVRZh/n5Lcu41STBBtldWRSiJ26bReaaM9QA4s9bjVWresQj2bYc78IXCFGen8OqaSUJFxwayZbKO6HdV01B5vP5yLFb+O9rFwHwyIZ69rfEr35phF+9eYy+YT+Ti3M4b05F1N/0ZKk+2BaVbPn5+ciyrFbWCntBiko2UO/Rv182F1AXowdazbX1naOqrH9BdQHFubFl1DNBspkZ1y6eX4lFltjf0k+9gceZdoy3w2kI2mJmvKG/pumR4gfGJFtjOB1LK3ogfnc0JNuwP8j8/3qR+f/1IsP+9AiBorCHWH+YZBtyq0o2u1XKCsWVHsPIzPcuZ753OcNZGC5KkoTDKiOh0Of2M+QLRp6Ny6be41TvayaesxHmVxcSVCQ6B41JNlmWo1JFJ1I1/b5l6hzy5LaTY5Iu+vrBdu787VZ8gRDeALx9uHPM00X/uLmRfk+AaWW5XDxf3eDNycmJKN21eDKekm20JFuJy87SqcUoSNz95C4+9vBm7nh0K0MBmFycw6yK3KhYV5IkcnPsVBbmUJrnoLrQyflzK7h6aQ23nlnH5y6axQ+uX8yfPn4mF82riKTsBeJkfphBourWsiyzp6kPCYVbVk811T9FdXYq6aIiwZEMHwin/f19R3NcCwEwriwKxiSbH5k/71I3Ka9aUBJFXMSz+QFj0iIUCrFqWgmFOQ6OdQxF0pX10Ht9G/mAmakIaaRk6xz08tcdrYQUhUvmlXPXeTNinp+eBBdTR5P1pVAoxJrppXz+4rlIsszBtgF+/PIhGrpGilhpx9BvjI81/r6jmUc3nECS4IqFVcyvLjAVB+j7YKI1tx4LaoqYVppLIKTwtx3Npv0tjdJFfT5fwvHl568eJhBSmFqSy6ULkleVFmG03uro6OCtt96io2NkaHrNcQAAmU9JREFUkz4ZyZZIiGA0RqaagjteMLofiqLE5R7MIPuipixCpGqHoiQsfLCtoYe3Dndis0j87JZlOG2WqIW51vFCoVDUpJHqoireYKuHaCyrtUNkw836XaULsxLUUCjEiroSCnNsDHiDHO8cMp0uKv57PEk28Vw9PeYrjIw3TnWSLdFzMpMuGklf9Ae587dbeadVwWaR+eTyfFZWpTaoZ7uSTbsfGoF+/fLJALyyv43uBEGnhniFDzaEUxrPn1sZUxFOPzHGK0Fv5rwauaX9fPasMq5YVIWiwANvHTN9vENtA/zstcMAfPnSOTGm5fGUbBpEkk2WZQoL1d0qLdjQK9kAFlXnc/lCta33vGROzfbMLrXE+VkzyqJ+n2iBYxapLPqKc+0RJd1zBgUQQqEQg94Ae1tVzzZtYTre0KvzIsUPkijZtKIHkD3polr6aq9XvRb3sCdMsmVn4YNshyRJqpIN6B32RZQ8uXYLtvCjzkRMkwnMn1RACJmOcPEDiM5mkCQpUtFzrIseJMOlC6rItVto6Hazp0VNyx4tyeb1+ege8vHGke4IwbZ2RinIMkc6VGPsTCOyEasoPPT2cQBuXzctam7QUkY1iGNEptJFtbasqC0m32mjc9DHqwfaw57EFi6YV4UkSYYES7JzSJLE99+3mEKnhc5BL5vCyuNUlYFGFVZFNPYM0+324bLJSQseaBCPl0q6qDY36wshGGF5bTHzJhXgDYR4Ymtj3M/Fi2eNCh88t7eTTo9MWZ6D2aW2SD8S71Eikk1PSjisFu46fyYAP37lEF2DsT5bekIrHsmWzBJC78nWMeDlk7/bSq8nSInLzt2XzTYkSI3Ol6jInwjtet+3fAr/e/1SXHYLbX3DvPfnb7MpXJVU+4x2neOhZGsf8PCNp/YC8LkLZjGvSt2gS4Vk06Av2JLsu1cunsTUEhfeIHzk4S1sa+hJqbqoWFk4ni/b+iOdvLy/FUmCSxdOSnljxoj41jzQRUukdJVs2rXojyHOJdkU9xiNtVqxEBGpjK2nSbYE0G60KBcVlWyaOfgvw8bXVy+tiSwAxE6nVToEY7LLbBAodsZEg4QkSTEpo+LiN5mSbbQwa2SrKAoWWeLcORUoSOxt7jOtZEuWIx4PoyHZ9Ax2Nvuy6Xfbkg3qRgrHiUwXTUQS6hWdYJwu2jno5fZHtvDW4U7c1nw+cN4iphTnsHfvXlpbjVPkjHCqKNlA7d/zJhWwsKYAf1Dh7ztOJv2+EcnW3j/M4bZ+JAkuDEvf46WLQupKNnEnS1Syafh4OJ3n6Z3NtPUnT0ENhhT+/S+78AcVLpxbwXuXxC4C9GRpIpINRlJGte9p468Y6AYCAb54iVqF65X9bZGqlvGwvaGHV/a3I0tw48op0deQgY2OeAG43+/n5MmTMcHyexarC8yndxqTbEfaBggpEsumFjGpMCfmM+MBfeCjpYvGqzDaKKSLasgaki2cLtrjVd8Bj8eDRQphs5wm2dLBCMmm0Ov2R0i28nxH1jxzDfOrCwiGix/olWwWiwVFGfHwWV43tkUPksFlt3JF2FT+md1qEZp0SbbGbjef/+N2Pv27LTy6oZ4H1zfgC4S4bEEVj3x0FefMVi1RfrfhOMFQZtUtWh/Y2djHyd5hSnPt4YqPIygrK4t698YqXTQUCuG0Wfj6lfO5/9blfP99i/jypXP49W0rmFSsLv71BIs4JydSUJTnO7h5pXpdm+p72dnUa0oFJkJ8vkZzkGasfsn8iqQFDzQYpYuaUbI5nSO2BMmuQ5KkiDXE7zY2EIrTh8yQbF6vl36Pn6d2d+DFytmzygkFg5EYQLz/8VJq9deo3YNrlk1hQXUBA54A3312f4xnrhklW7xziBCVbM/sauaS/3uDzfU9WK0Wrlw8CUec8MLofGaVbOI4tmRqMbesqmVqsZNet59bf/0uf9t+ctxJNkVR+Ppf99A37GdhTQGfPG965G9m5gQ9YZXK5qcsy1gtMlctqWZKSS6D3gC3P7IFt199NsmUbFqMmaj4gccf5D/+tgcJWFJTRE1x6vYCRmt1I0/AVDzZ9DDqr2JqfrbMz5CYEBTbmUrfzZ6ry0JoN1KsLKqvTHOwuZeX96tByCfOHXmJ46kmxME61SDQrJJNa6t4PnHxazQ4jwXJlozt1SaDi+ZXEUKivmuI9v7YRXq2KNn058lmXzatrVr/M+PFp5fIZlO6qJE/BRiniwZDCk9ub+b8H73O20c6cdktPPyRVVx93qqIB8uBAwei5NCJkO1KNnFM0u7TDctVAueJLclTRrUJz263R46z+VgnMmp1xsowuWImXdSsJ1sgMOJ3pHmhicH0kilFrKorwR9UeOSd+qTHe+SderY39JLnsPLdaxca7ujpPVlEkk1UKGvQSDYN8SqSzazI4+yZZSgK/DGJL8yPXlJ95q5fPpkZ5dEVisbSk62xsZHDhw9z8mQ06XrZwiqs4ZTRI+3RVUZDoRCH2wdRkCIL7omA/h2fEU4XPd41ZLgob8hikq0gTLJ5Qha8gRA+rwcLIRzW7Kwumu2QZRmnVVaVbG4/7QPq+JOVJNukAoLI9A77GBxW5xRxcXqsc4juIR8Oq8zCFDxfxgrXhRXRz+/rwB8MmVIViej3+PnOM/u48J43+NuOZoJB1c5gZlUhn71wFj+95QxsFpnrlk/FYZU50TXEX3QWB16vl82bN3PihHGKXTIoioI/GOLZsO/kbWvrcNqix1dZliNxgT4lLJPpotqYXJzr4NIFVdy8aiqfOn8m582piLKgEdOTRCWbeAwjLKrOZ2F1IT7FwmsH2vnxSwci74MZGKV2athc382htiFkSYqQeWaQauEDcQ5MpKIKBoP09PREjnX10mrynVYaut1xvWiTkWx+vx+Px8vLe9sYCkqsnFbKgqkqATw4OBjT9lTSRQFsVgvfuGoBAH/dfpL3/PRt3j3eHfmc3oYoHsmW7D6GQiFCisL3ntvPp3+/nR63n/mTCvjUBbMpzXPEXQuMRsmmVyzmOa187Kw6rlhUhS8Y4vOP7+DpHU0oijJuJNvfdzTz8r42bBaJH92wBKscu25IBCMlm1lo37VZZG5ZU8ecyny6h3z8ZoMaH5pJFwUS+rLd/8YxjncOUZZr48yZpWnNc0brLe3fRll3kL6SzYjIy7aNRaPxXExrNcttRB0zg+37p4N2o/WLbDFX/TdvH0FR4KJ5lVEmkvFINqMCBJlWsonn9flUQ1lRJTLW6aJmywJr93dKSS7TynJRFHh5b6zCKJNKNv1kkczw0agdWupcIBCITL7ZBj3JFs+Lz2hwhWgSJBsKH8RLpROVO96A6iP22MYT/OS1owx4AiysKeDxO89k9fRSJElizpw5kfSQ5uZmU23KdiUbxN63q5dWY7eoRsV7m/sSflevZAsEQ2w82oGMopZw15m2iufTICrZzBDP2j21Wq2G1ZABPrZuGgCPbWrA7Yu/k9rY7eaH4SIJd18+N67iSu/JIiqMxaIHGjRfNg3i+Ku/31o5+Mc3NxkaG4Mq7V9/pAubReKzF86K+ftYpotq45Q+WCty2SNKEr2abWDYR3PfMCGFCSXZ9Oq8muIcbBYJXyBEs66qq6IoNPWEPdmKs49kc9os5Ngs+LDg9Yciff60ki09SJKEI6xke/NQO8/vVuOHinxnQu+kiUB5voM8px1FgaPtqn+jGHdtqVcX3EsmF2G3TnybV9WVMLk4h35vkKMdqaWMKorCHY9s4ddvH8cXDHH2zDI+c940PnneDH76gZV84eLZ2CzqNRblOlg1rRQZhf/42x7u/suuyPlaWloYGhoyPVfrEQqFeHV/G619XsrzHTHFcDRMmjQJWZYj85iGTKaLJhqDRIJFVKzpSbZkqZYXzqvgiqVTscgS+5p7ufzHbxn6bcb7PsSuARRF4YcvHiSExILqAiaZqMiuP2aqhQ+sVquh97WGEydOsHPnTnbv3k0gEMBlt0Y2Fh/dUG94bDNKtvWHWmjscWO12vj++xaRl6du6AwNDUVdDxgXiNMvwsUCBZIksWpaCffcsIQil40DrQPceP8GfvDCAcBcuiiYU7K9fqCdZ3a1YpHVWONvnzqLqWX5UccVIRLoYj83o2TT+yVr7ZMlhZ/dvIyPh8UnL+1p5tldLQQx/86kir5hP49tOsGNv9zA5x/fAcBnL5jF3KqCpASpHvrPpKpk0+C02/jv96k+w8/tbaepxx33furTtePFxsc7h/j560cA+NR5M3BYLSmniortNFJuxROyGK2ZU00XzUY/NkisZBPH4n95ku2+++5j2rRpOJ1Oli9fzltvvZXWceKRbKDe8EFvgJd2q8oAUYoaDI6UaNerJrRFTqovPKRGsolKNv3CKtuUbJIksXq66k/00r6WKLm3GHCMtZKtq6uLt99+m/Z24zLb4gCoqVyyNWVUT7KJvxMRT8kmkiDjuUiJ13eMAkBFUegc9HO4bYDHNtVz9g9e46kdTXS7fRTm2Pn++xbx90+dzaLJI6oASZKoqVFNnfv7+00RQtmuZINY0qfIZY94aCVSs4VCoSgZv8ViYWdTH26Pn2KXlVmVeZHnb5RGoEFT+YZCoZiAwAgisSeqLcX+eNG8SmpLXfQN+2MUDhoUReFrf93NsD/Iqmkl3LJqatxzGj1HbVzWp4pCtC8bGO/wavfu4vmVlOc76Bz08vK+NsN2akTgB1bXMtlA2j+WhQ+0CqpGz+aqJeGU0V3NUe/D/pZ+FAUWTC6iumhiUkUhVp1nkSVqS41TRnvcfga96jswuTizhQ8yhSKXjQAy3qCCL6C2y2k37/dyGiOQJCmiDtze2Muzu1WiWFSyZYsnG0BNSbgyblg1Gk2yZUeqqAZZlnjfssmAxJ5mlfQyG2v9ZdtJNh3vxmW38MhHV/G721czKd+GLGxQj5xHZumUIhZV5+MLhvjj5kYuuvcNvvbX3bS2qbGY1+s1TfCJeHFvKwdaB5BkmZ/fsixSeEQPl8vF8uXLWbJkSdTvzaaLmrkvWn80es9FQklvtC5+PhnJJkkSly6ezM2rplJTYKdryMfnH98Rd+NHRDwl9VuHO3n3eDcWWWbVtJKULVbAfLqouNGUiGTT1jQ9PT3s2LEDn8/HrWEC9fVDHZzoiiUWk5Fs7f0e1h9W+9tXrljAjPK8SFygzZ96D0U99NdotM67bvlkXvviedwcjlV+8fpRdjf1mU4XTaZke/NQB7tO9iFJEj+9+Qy+cPFs7FY54bosXqqwGSWb2A6RZAuFQsiyxFcvn8f/XrcYuwxHOgb5nxcP0zHgzXgW0Ob6bi669w2+/tc9vFvfTaHs4b1z8vjEeTOi2ilJkqm5NlMkm8ViYXltMR9YPZUQMq/ub8fjM76f+hgwnhH/f/5tD75AiHWzyjhnVqlhe80gkZLNrKglmSAjkTos2zYWjdoaL3Xf9DEz2L6swOOPP87nP/95vv71r7N9+3bWrVvH5ZdfTkND4jQeIyQi2Ww2G5uPd6OEgqysK2Z57YhRrTaYixLpeEq2eIO1EcSXPFngKDLgE0WyJeuI4jmX1ZVgt8q09Q6zIWyUqT+GaEA4FiRbb28vwWCQrq4u/deiziOSbNla/CAQCBAMKRzpcLOvZYDtDT3c949D/ONAW8QLQq9uMyLZxlu9Fa/wgT4APNI+wBU/eZsv/2UXz+5u4dmdzXQMeCl0Wjl7ZhlPfupsbl41Ncb8HlRCxWq1EgwGkyoRQ6FQVDpltsJIAfj+sOfXHzc30NpnnDYiBvQWiwVPUGFLfTeyFOKC2WVYheBYDJSNFkramGPGl03sX+IYKJJAFlniY2erarZfv30cj0Glv79sO8lbhztxWGX+532LkCTo7OyMGfNCoVDk3ojPMT9f3d0VyTQRYspoIiWbzSJz4wo1jeb3m6LnmsZuN996eh87GnvJsVm46/wZhufKRLqokSdbMBiM3A+jYPmieZU4rDL9nW28+NbmyDhwoEVVQF4yf2KqimowCnymh71Pj3VEv79aqmhlgSMqLSyTSu3RojDHBkgc7fYy4FGfh9ORvWNLNkOSJOZNyueieZV8ZG0t588pZ2VdMdcvn5xVxKqGKaWqMuZERyzJplWgW5klJBvADcsnY5UljncP09gdX4Ehos/t5/vP7QfgsxfO4tywUjaeesFisWCRJT59/gz+/IkzuWheJYoCf9l0lCc3HY2khGtEh1nsbOzlt2GrgeuWT2bVtMTFJHJzc2M20jJd+EB/TP2x/X5/FLmiEQJmzqP1JYfDQVmegw+vnUq+08qOxl5++urhpO2Lt5GpWRysnVlGvtOWUrydauEDIyWbUZ8T2zA4OMi2bduoKbBx7uxyFAUefOs43d3dNDU1RdRkersIDRaLhaACz+9pJRhSmFFRwE2r64DYFM5kY4r+GuOJKYpz1U3ga8IFJP7nhf0xMUUyks3oOTy6oZ63NKLw8nlRCvRElS3Fd1NcjyYz6tf/LZ5i8caVU7j97DryHFYa+3w8tukEP331ED9/7Qgne835+GrwBoK8drCdB986xhuHOuge8vHIO/Xc/KuNdAx4qSt1cfdlc/jeeUVcNx0kJfpZmJ0PMpEuCiPP6yuXzaXQ5aDH7eOtQ7EbsRD7Dhrdy6d2NvP2kU7sVpnvXrMw8vt0NukSpXKaTRcVPYvNFgPJVpItmeouHSVbdmn1MoB7772Xj33sY9x+++0A/PjHP+bFF1/kF7/4Bd///vdTOpbWmfSEg6IovLS/k51NvVgpilSN0SB+Xuv42sBuRLKZRTrpol6vN2bRmyhddKKUbDl2G3Mq8zneCHc8uoXPXTiLj5w1DcXAm8tms4268IHVaiUQCBh6J8QjCcRnppV97+vrC+/YjE8g7/EH2XC0iy0nutl6oochb5BFkwtZOqWIqgInQ94A/R4/W3YfoqHhBE0+F8WyGysh9u+T8FJPWZ6D9y6pRkKh52gTbl+QGRV5zFvgpyB8noki2ZIVPrBarfxt+0m+9tfduH1BplhlKvIdzKsoZ80Z8ynsOwpKiEJXfNWZJEkUFBTQ3d1NX19fhGgxgnYfJIMd+GyCUQC1blYZK2qL2XKihx+/coj/uW5xzPfEyU6SJP64+STD/iBlLieLJxfg83ojfVuSJGbNmoXf7zfsFzk5OXg8HlO+bPrz2u12vF4vfr8/yivt+uWTufflQ9R3ufnAg5v41a3LKc1Tn23HgJfvPLMPgM9fNJvp5Xn09PSwZ88eiouLo1QJWiAgy9HeVzNmzKCqqiqSFqKHWZIN4KaVU7nv9aO8faSTLfXd1He5eWFPC68eaEfbtP3EuTOoyDdOt8kEEWS08yyOZ0YkW77TxgUzi2k+0sSWQw2sXDCDoD2X5h51UXvxwolLFQXjQDNe8YNGg8qikCG/O0niikVVkX+L7Zs/f35UWxOhNE99d1451EO+pI4vLmf2qGQj1xMIYDtwiCtkNY1RJvv8RyVJwirLLKwp5Oyz50W92xsa0iPZ4j3nTKC2LJ93gcauaGVYY4+HY51DyBIsm5o9JNuUEhc3r5rK5s1trD/SyZXnJTfT/9FLB+ka8jGzIo+PnqVukugV0yLE93tFXQkP1pXw0t5WvvWHNzjUPkBwt8Lli6oYGhqioKAAM+gcVCsqKqEQMyvzuDzNMSyZki0VZUOiRX60L5gn5nyyLCf1xBNJNoA8m8T3rl3EZ/+wnZ+9doRzZpezIkHVWiO7ghf3trKrqY8cm4VLFk7CO9CTUrxtpGTLlCcbwLRp02hpacHj8dDe3s7Hz53OG4c6+NOWBtYVdmOXQuTm5pKbmxtZbxjFca8f7qLH7SPPYeWqM6bGbCZqbUi2TtKvfcRrNSJBvnjJHJ7b3cr6I13sWlhAHsmVbEb3UVEU/u/lQ/zkH0dYZIXV00q5cUV0YSUzSrZUCD0NerP+eEREVb6Nm1dN5fkGheaGQdr6hvnhiwe556WDXDy/kg+dWcfaGaWG98ntC/DGwQ5e2NvKP/a3M+A1JvuvWlLND65bhE1SWL++KeJvaLVaUybZRlv4QIN2DwtzbHzl8vk8/LcmNh7p4JldzbxncXSBrngkm/b7vmE/33lG3cD4zPkzqS3NpaWlP6XrEpFMyaYoCpIkJSTZkq0VE6WkZtuaKpmSTbvWVFSY/1Qkm8/nY+vWrdx9991Rv7/kkkt45513DL/j9XqjKnf09/dH/q033LfZ1FLO33t2Py/tbadEho+cOZXz51TEtAOiO10iJZtZpFv4IBUlWyZ2+s2SbPoJeM30Uuq9Ht5qDfL95w/wxNYmfnjN3KjvGJFs6SjZ7HZ7DMmmHSceSSBOJrm5udhsNvx+P42NjdTWGnt9ZBLHOga5/ZEtHNMtLHef7ItRz9TIfZTLIfJz7EwrsOCSQ8woruT144N0Dnp5aP1xLIRYZFWP1drv4YUHNvCJS5Zw9dKaCVey6Z+p3x+godvN3/f389cTaurgWTNL+fLaWfS2N1NdXc2sWdW88cbhqOPEQ2FhYYRkmzw5vpGvEWGejTAifSRJ4qtXzOW6X2zgT1sa+djZ05hVGU0oimRXr9vHwxsaqAPWzihGY4bEe6n52RkhJyeHnp6elJVs2vm9Xm9MOqPLbuW+DyzjE7/dytYTPVxz33q+8Z4F9A77eXJbU6Ry1B1h/7aBAVUhoq/GFO85yrKckGTNz8+PEPJ6uwCIvt9TSlycO7uc1w92cP0vN0QdZ92sMm5dUxtJ4TVCJjzZNLJwcHAwQv6LCpB4qbxnV0s8cUThUOsAHb2DvNvWDyhUFTiZXBybSjueMFLnRZRsurHwxbCn55yq6GeaCQLTabNw3weWx/zearVyww03mD7OZy+YRY7NCn0BrB61j8+smnijew2R6xkagoM/5D770YluUlwkMoVPd+Mw3nPOBKaHfXube9SiHZo6/y87mgEb154xOW5K40ThMxfO5MPbttHa7+H1A228b218omZHYy+/26QWKfj21Qsi3nIiUWLGY+qSBVV0rKngyXf7OdgxTGBHMxVVNQnnHw2+QIi7freN5j4Py4sdXLygMO1N0LEofJAoXdTtdkcyKbSNXLPn0VuEBAIB3rukmtcOtPPX7Sf5/OM7+NunzqIsz5jQ14+RHn+Q7z6rLuhvXzeN4lyF1oHUNrXHKl1U+1xeXh5VVVXU19czODjImXNqWDK5kH1NXWw52s7amWV0dnZGjmWktnl5XxtbTvTjkFTVdlH+yAZNPCVbvHlEf42ietHouU8pcXHrmbX8+u3j/PqdBj57hiOGZNMTEfoY2RcIcfeTu3hym2pddOb0EtZMK46b7mikZEtGsiVSsOrvifZ/TUGoXXcwGCTXYeW/rp7P1h0yx3t8FPYVsfFYNy/ubePFvW3MrMjjQ2fW8r5lk+kc8LL+aCdvHurgjUMdePwj/a4i38GSKUUcaR/keOcQVlni7svn8rGzpyFJUtQaTk94pjIWaOQ2jF7JBnDlkhq2byliZ1MvX3x8ByW5dtbOKItpazwl2w9fPEDnoJfp5bncGfa6SzSumG2nEQGmZTpZLJaYdFXxuSZbKxptRGSrJ1ui+5Fu4YPsusJRorOzk2AwSGVl9EKmsrKS1tZYQ32A73//+3zrW98y/JvWKbQOIcsW/uvve/ntxhNUyzLnz6ng8gXlMd9LRLIFg0H8fn9aAWC6hQ/MKNkymVphVlIpDg6SJJHrsPKt985na7eN/3n+AEfaB7n9kXf5/BJLpFKckSljOko2u92O2+0mFArRN+xnW0MPm7Y10dPVwcyKPFaFdz9E6P0Ypk+fzsGDBzl+/Dh5eXmUlpaabkeqeOdIJ598bBt9w37K8hycP6ec5bXFFOTY2NnYy/bGXvqH/eQ5rOQ5rUy32ZmRV8zapfPo7OhgaGiIJUvm8v38Ql4/2M4r+9vIs0HRgPqMttT3UD/g4ct/3sV/P7efq6ZZmJXrxZIfpL3fg80iM+BRVXL9Hr/672E/VovE5GIXU4pdVOQ7kA3SM1OB1WpFURQOt/bxcvNhuoe8dLv9HKuvxzbUQXfIhSQV85kLZvG5C2fR1NhAL7Hl7ZP1Yy09sK+vL2rC0ONU8GOD+AHU8toSLl1QyYt72/jBCwd58LYVUX+PGK/bbPzsH0fo9wYpK3IwuyJPGPfMjQnaGGeGZNOn4CYKqNfOKOPJu87iow9vpqHbze2Pbon8zSJL/OC6xVjDJtp67xQN6T5HWZZZvHgxPp8vajyPF3x+9KxpvH5QrW62sKaAC+ZU8N6lNcysMFbKicgIEeR0RkjBoaEh8vPzo0g2TVEinsPr9VJlHcZmken3+Lnt1xvoVHJZZCHKk2+ioPdkA5gdJou31PfQPuChIt/Jyd5hng9XEbxlVfSmRyYIzExh9fRSVk8v5cSJco4fPw5kl5LtVIWeZMtGT7YppXlYLRKBQIA3D3VQ5whypH2QQ+1DOG0lfPnSORPdxBhU5Ds5Z04lG/ef4JH1R3nv6jmR8VaDoig8sbWJbz61F0WB9y6pjlo86pXLIowWYcPDw9TkSVy9tIYHtg9xoruHHzy9gx9MmmLoZyniW0/v5d36bvIdVj534VRCg10ZIdnGo/CB5vHrcrmYPn3E5znZeUTrD22O0wjcb129gC0numnsHuaDD27iD3esoTg3dkGsV/s+8OYxmnqGqSpw8snzZtBUf8z0tWoQ1znxyBejNpgl2SwWS9TGkiRJfPK8Gfz7Y63sbOplRV0JXV1dkdhcTwS093v497/sohSJtbXFTC11xdgCie1KN100Uf/79Pkz+dOWRg51DLG/xcdyV/RaJxEpHQopfOYP23hxbxsWWeI7Vy+kxnPc8P4mIgjipe+lomTTE0Pa9VsslqjiCDabjRy7hSWTC7jr/WdyuG2ARzec4C/bmjjSPsh//X0v33p6X0zl8MnFOVy+sIrLFlZxxpTiyFqj3+NHliTyHCP3yUiZNVqSbbRKNu0Y584px+0LsLs5wMcf3cofP76GBeFq0vE82UKhENsbengsLKb43jWLcFij+9polGxif9WTYVqRPxHacwXzJNuplC4ajxA8nS4ahn5wSbSI/upXv8oXvvCFyM/9/f1MmaLKbEWSLaQo3PvqUR7f1Y0kwR3nzmSaw204ARh1OovFgt1uj3ikjZeSTVtsgboAE88tYqLTRcXz3rBiCpfMr+LO325hT30rf9vRyqULqphdmZ80XzzZ+USSrd/j51dvHOVPh/YTDClMs3RRKHk42DbAP7re5mvvPSPKNF//zCZNmsTAwADNzc3s27eP5cuXG1YpTBXBkMIzu5p5aW8bbl8AbyDEu8e7CYQUlk0t4v5bV1CePxIIGFX+27t3Lx0dHdgFs8ZgMIjdKnPJgiouWVDF8PAwmzapPjDzJxVw0JPHb7b30zno5fX97eyS3TRv6ac9ZM7P0G6RqSnOYXJxDlNKVOJtSkkOZ0wtpkYwTu8e8vHW4Q4cVgsVBQ7Kch14AkEGPH52HWnjnc0N1A/A4WB35DtVsodau8y50yu46aLVkUlJXIDrvSESIT8/H0mSIu+jvqqYhlOhsigk3qX88qVzeWW/Sqy+e7w7yptGe48OdQzz4NsnAYmzZpYhSVJCDxkjiBVGk0Ek9yB6U8AIMyvy+NunzuJrT+5mf2u/2seKXbx3SXWkL4BxFTDxuOmQpUYpSvHu9zmzy3np386hMMdGZYH5KmzisUbryZafn09PTw+Dg4Pk5+dH7okGn88X1d8bGhqwyLB2RinbTvTQMRwCRcFqkZhdmZ81JJsY+CydUsSSKUXsbOzlJ68e5rvXLOLRd+oJhhTWzihlfnX0M8smTzYNYlp0NpB/pyK0DTqxih9Ekw4T3X9F2G02Zpbn0dvi4+O/28q3zivl7SOdBHFy5zkzqEqhcuN44uKF1ew80sSRniG+88w+3rdsMgtrCukf9rO/pZ/HNjVEik6snlbCt967IOr7idKDjN7vjg51o2LJjBp+NL+Un/zpJXoHBrnm5+/wyw8uM0x7VBSFX7xxlMc2NSBJ8P9uXkqV3EfzYHoqDzBf+CBTSjbtmAsWLDCM9+OdR5zvtDlOewcKnDYe/ehqbrx/AwdaB7j1oU08dvuasDdk7DGsVivNvcOR6oVfu3IeLrvV1LW63W56enqorq6OFEKCaEN87RhGY7E4BybyZBM/p42jQ0NDhEIhLp5fxf1FVrwDIXaf7GN5rUx3txpLinGcLxDii0/spHvIx4LSXM6cEUvEifO8GGOmmi6aaAwqzrVz13kz+fELu3n1QBuSxcLq1eYKH/zkH4d5cW8bdovM/bcu57w55bzxhkqGxiPZjO5nsqIQZtNF9ddqpITSnqv2PsyqzOc71yzky5fN4cmtTTy64QTHOoewWSTOmFrM2hmlXDSvkgXVBYbvToEzdkwxSm9Ml2TTkAmSTZIkbFYrly6ootFmZeOJAT744CYe/ehqFk0ujHsvD7b08e31TSgKvG9ZTaSvwuiUbPr+qn/OWl/R/96IZIsXW4vWVRoXk60kW7LU1nQKH/xTRXZlZWVYLJYY1Vp7e3uMuk2Dw+GI2zkihQ98Pl7a28rfm3KQJRv33LiE1ZUyhw4dMk2ygRpUa4v6dHZZxQ6Z7Hua0ahoep2bmxuXZBuLdNFUCh/oJ/BCl41HPrqKL/1uPU1HO3h+Twv7m/vptldy1erCtNJFQ6EQw74ALX3DvNrgZ9+ReloDuQRDhdSVulhdGCJH8bC7uZe9jV1c9bO3mVuVz7pZZSybWkx3RysdTT04e6Goxs3UUhczZ85kaGiIvr4+9uzZw4oVK9IO6r2BIC/tbeP/vXqYI+2xhvzXLK3mf65bHGXoHQ/iojJZxU4Aq0Xm6iXVfPyyFbxztItnX99Ec5sPR8CO5FMzB3NsFvKdVgpybOr/nTZ8gRBNvW6aez34giGOdw7F+CQBLJlSxEVzK9h1so/XDrQTCBnntOdLHmZYvNgtdq5aWE1tiYsil408byel0iAzptUxXSBVxH4jVg9K9gwsFgv5+fn09/fT19cXl2Q71ZVsoBJUN66Ywh/ebeAzf9jG43eeSV043c7vV5WJv97UBuTxwTW1zCztTYmw1KDdw1Q82cwo2TSU5Nr55a3x07gURYmotmLTjTM7qSe637N1KblmkSkiKC9P9aYbGBhg0qRJMYbhfr8/8qy8Xi8tLeri+KIzZnLG1C6KSkqxFU/i2N7tFORMfJq00eJOkiS+evlcbvrVRv7wbiM3rZzK799VNwO0YhkiMkFgun0B5v/XiwDs+/aluOxqH/D5fBG/169+9aumCXmRZMumYFO8ns8pMku96ju3z7GV0W8hZR4ayab3KNKQ6nwc7zlnAhaLhYvmVeKhlyNNIe77x2FKZT8FrgI+fs705AeYIOTnOFhZV8Lxgx4e2XCCRzacwG6VI9VxAayyxL9dPJtPnDsjpuBQovHXaGGjkWzl5eVUVFRw06op/H1HMwd6h7nx/g3ccc50/u2i2ZFYaNAb4N//vCtC9H3pkjlcMLeSAwfUTcR0xzBxsWvUjzKlZBPHjNmzZ8dUuzZLskmSFDGv1zaVLRYL08py+f3tq7npVxvZc7KfD/16Ew/ctiLKH1Scf/77uf14/CFW1ZVw1eJJptqgKAp79uzB7XbjdDopLS01jPG1cxmNxSLRZ8aTzWKx4HA4YtTbV8wt4tnN7Wxr6GFaWS62NtVoXrvPrX0e7npsK9saenFYZT5y9nRkr2o1YaRk09qRjKjR3yOzxM5Hz65jR30HbUfaeXF3M52uvZxfbJxSpx1r09EOfvyKutb97rULOX9uRUIPuESEWbw4Nx0lm7jxEQwGsdlsMf0TYvtRgdPGh8+axofOrON41xCTCp1pj72ZVLJpSDddVH8+i8WC1RLk3usX8ck/7WNnYy83P7CRhz680lAVuPtkH0/t76MnUMriyYX855Xzo443ms0k/dhrRLLpBQziOWGk78SLexwOR6Q/+Hw+HA5H1nqyJVOy/cuni9rtdpYvX87LL7/MtddeG/n9yy+/zNVXX53y8UKhEO8e7+K37xynY8ADch4/u3kZVyyaFAkCUiXZ+vv78Xg8MXJQM0hFyaaZiWuqEkmSyM3Npaura8zTRUejZBM7t9Nm4b+unMd9T7ayo6mX411DvPn0br7/2kk+NjfEnBJb1G5ZPLT3e/jbjpM8va0BS+dRFCRaQ/lMkhXmV+Xxk6vPZHltCdu2baO/v59ltUW83iLz5CEPB1oHONA6ABynQh6gWu6nOzTE/2wcYnZlHpfMr+LyBVOxuQ9E/DTKy2NTiI0QDCnsa+5n/dFO1h/pZHN9d8R3oMBp5ba1dUwpceGwylQWOFk9rcR0sGiGZNPft2AwiNUic87scvKHaujry2PBggWUlZURDCkxKSIiAsEQLX0eGnvcNHUP09jjprHbzfEuN7uaetnZqP6nYW5VPk6bhY4BL11D3jCBZ6PS6WRNocyyaRWcf84Zkc8fPOinpcUd876Ifk2p9uHCwsIIyVZVZVxBcTQKqPFEItIH4CuXzmFLfTeH2we5+YGNPH7nmUwtdTHs8fH87hb6vDYW1RTyn++Zz7bN76ZFsmmkgVYhLdHOXzwlWyKSLRm8Xm9UQKX3A4HMKZmS3e90kKmURs1jbmBgAEVRInOAthAR73FTU5OqdigooLKykq6uLpRggOlluXQ4jatFjTeMPNkA1kwv5YK5FfzjQDsfeuhdBjxqu/UeqZCdSrZ4i7nTSA1aSo9IrKUzfo0HrFYrVovM+1dUY63MYfN2lQS6ZVUduY7sDcetVitnTC2iqNzJhk4bG491MeBRx766YgeLS+G2C5ewfJpx7JPIg0e/sPF4PBFvzbKyMqxWK2WF6kZRYauTv+zp4f43jvHq/nZW1pUgSbDxWBfHOlRvpv+4ch63ra0DElf0NAOtbfqqixoypWTLzc1l0qRJ5OTkGMYiZkk2zcrEarVG5mFtnJlVmc/vbl/NzQ9sZGdTH+/96Xruv3U5S6YUAeGsF2+AB9+u55kDXmQJvvHe+ZH2JmtDX19fZENH22gTYzItzk9UwMFMuqi46NeeS15eHr29vRH19twyO286rDQM2/ndxhMsqC5gYU0hbruXg9tP8t1n99E56CPfaeUnN59BjdRLc3Msyabdy0AgEOXhHG8eSUfJBuCwWvj5B1fyw0dOsul4Fw+vP0Z9UQ+rpxWzSo4+14A3xOG2Af64T90Yve3M2kiRg0SbC+ko2cys5YzuiSzL4XTWUNT3RUWjPkYb+a7EjPLk9hqJMBYkWypxmXgv9H3FarXi8/lw2SQeu301tz+ymY3HuvnQQxu5a46f+ZPysVgsnOwd5ocvHKT+SBuK4uA9iyfxw+uXkGOPPl4mlWz6vqERy/GsGCB5to8kSTidToaHhxkeHsbhcCScDyYSiQofnE4XDeMLX/gCt956KytWrODMM8/kV7/6FQ0NDXziE59I6Th7m/t4pfkwTx31s8jqwWGV+ekNK7h4gbqrk0jKnIhkAzWdSlMSjFV1UVAnC22Bpe32QPZUFzVXeUjhvLkVLJlaxN7mfoZaZA4PeHlqWxtTCqysnl5CkUchr6WfQW+A+s4hTnS5aev30Dvsp2vQy86mPoIhBSd+5lqh0OVkbk0FC/ILWDlvGvNqS6LOne+08Ymza/jaDVNZf7SLtw51cKhtgHIJioMhesjnZKvEobZBDrUd4WevHWF1WYBFRX52dexk6sx5VOQ7mFLiYlKhE4ss4fYF6R32c6htgL0n+9jV1Mem4930DUcHEGV5Dj64ZiofPXuaoQzaLNIl2TToS3pbLYkHcKtFVlNES1wwI/pv7QMeXtzbxvrDndSWubhu2eS4ap+hoSE2b96MXqwXT4lilC5q9p0qLCyksbGRvr6+uJ9JtkuTLUhG+hTn2vn9HWu46VcbONoxxI33b2BqiYv+lqM4gx7s9lzu+8AyHFZLzP0zez+1wNjv9zM8PJywoEA8JVu8dFEz0KdFBoPBmDEv0yRbKpNtMmSqjdp9HxoaYnh4OFIAQUsjFe+x5gFUU1MTlbKbTal2enN7MZj898vm8vrBdrqH1Gv6yFl1Mb6QosppLII6m83Gl770pci/zULc4c2mYDNyPW43/OwXE92cpND6g7gQSEXVPJ6I+FKFQvzvdYv5udTFYF8PFy6Y2Aq+yaDFAWunF/PRK+YSDCmc6BqiosBJW9MJGhsbKZWGgMQkm5l0US1mdblckTEpNzcXr9fLFy+o49IzpvO1v+7mSPtglOK/qsDJzz+wjOW1IwUDRrMAFdsW7/0U449EtjTi9Rn1R0mSmDMnvh9fKiSb1l6NZBMxb1IBT35yLXf+ditH2ge54f4N3LJqKjl2C+62E+w71sgJfz6Qx2cumBVlxaA9u3hK9ebm5si/tTnGKP1N8wXVQx/DxSPZxHugXa9Isvn9foJ+H+9bPpnnW3NpP7aP3Sf72H2yj5PBPjqUk5F78csPLqO2NJdjx0b6kVHKpLY5ZVbJlg6xY7VaOHt2BWV5dpr2S3QNenhudwuPN2ygotDFoDdA16CX0EA7VfIA3lAuq6aV8B/vGVE2iWNgKkq2eJvJ6SjZtH+LJJsYvyeazzMFo0yndGIasW2ZSBcVfw4GgxQ5rDz8kVXc9dg2XjvQxj8OtLHxWCfPdxTxzJ42HEE3M6xw6bwKvnTzGYb3KpOebEZKtqiMp/C7kArJBkRINm3syNZ0UaP+fjpdVIf3v//9dHV18e1vf5uWlhYWLlzIc889l3L1xzcOdTBgC2GT8llUU8jZsysjBBtEl9zWIxnJ5vF4In9LZUGlkVHaoikZxAEzJycn4YCZyXTRdAofxAsitGMUu+ycPbOMG8+bwpstEi+80kbbgIendjYTwMKe18WUKG2iGRmQlk0t4ur5xZT78igtzKempoYjR45EnU9sr8fjoTTPwXuXVPPeJWqZ5aNHj9LY2MiUKVO4Z9JUXj/UztM7W3jjUDvbOsHb2wN0s3/rEN7wq6WlTehNPDXkO1SicO2MMs6aWcbsyryMTDqppovqf47nB5EOKvKd3LqmllvXJH8H4+22xVP5GKWLmp1sNK8tt1v1VjQa8P9ZlGwA5fkO/nDHGm761UaOdQ7R2u9hjsWP027hq1cujhQX0XtIpNIfc3JykpJsoVAoRi6eCSWbPi1yPEi2TCrZMpHSCOo8owW5muI6JyfH8B5rJLLL5Yry2MhWkk3v5TOnKp/rlk3mia1NFObYuG55bKVgcVwbCyWbphJP53sOhwOPx5NVwaZ4Pe4kn80GJCLZsqH/ihDnN1mWWDezhN5eGZs1exSWRtCPdxZZYnpYbXIkrDpLtEGSCslmlLqWm5tLd3c3Q0NDXLJgFivqSvjr9pMMeQMoCrjsFt63rIZSXeVMkWxNB9p1x1tAmvEZ05CJKoCpkGxgPD/VluTwxJ2r+PJf9vLK/jYefqcegGmWbgqlEDMrC/jltWtYNrU46ntagQH9Zhaoz16ba7SfxfZq7ddM1I2uQ7+Y16ClrOlV6eJxxeIHg4MqYTappIBfXbGGv7wU4rXd9XQP+ahw5FLlKmRlnVpkRFMFif1SH+vZbDY8Ho+pgnXiIjwdX0ibzcasynyeOGsuj7+0nu0NvezocnO0a8TntlKWKM21s3BSGV+4YTk2SzRppSEVT7Z4m8ni2iEeIWYUW+n7q155qMHsWjZVZFO6qJGSDUaeg9Nm4f5bl/Pw20d5660O+j3+cLVpiZVTinjvlFymTSqNO26MpZJNJNn0KkQN+g1zI+Tk5NDT0xPZ9NW+n01xDxiPs0bpov/SJBvAXXfdxV133TWqY9SVuiivLueK1QtwtxyJ8k+BaA8hcfDR8o4httOJnkVaEJsqq65JTc18T1/d1AzJlkklWzw5sNE5k5FsGiQlxMfOnkn18HE2HO2kqWcYf0iiDAdOm0xdiYtpUjtFLjuV0+dS5LKzoLqQaWW5dHZ2smdPe5TsUzyf+G+j3TpxsCl02bh6aQ1XL62h1+3jud2tHNy/h+GBPsqwcMybS1PPML5gtGdJbamLhTWFLKguYEVdCYtrChOmYaaL0SrZMkmypQLtfFqAoids46WLmjGl1cNut+NyuXC73fT39xtWh/1nUbJpqChw8sePr+EPmxqpKXJi7ThEgVNmzfyayGeMgiWzyMnJiaTEx4M2aYn+HGOlZNP/O1tJNn0KzGigFT/o7e2lLexFI6pCxAWQ9m+n0xm1iEm1suxYItlC9iuXzaXH7eeqJZMMPVy0Z5RtqiaAadOm0d3dTVFR0UQ35ZSFUTpxtpJsoh9ROurriUK8BbqiKBFSI9GmaiKSTb+QN4qftXhZG+NLcu2G3ot6jDZdtKSkhNra2riV41Mh2TLpnaSHvh8lel5bt24lGAzyi1tW8tcdLRxoHUBBgS6ozglx1blnUFUVTbDByDPwer0xm5Ktra1RBI+eZBM9psTfi9Daqq0H9ESbdj59aiwYk2za71bMmUqpXf3O0qVLDcda8Vz6WE9c65lNF9WUjak+80g8RIA100tZMb2MW4pmqimxDgsFThsFoQGaG45TXl5Oia5KrBlPNv26LNGaVbyeeP3bKO6OR7IZFcAYC2SaZBP7Wirf074rwmg9ZrPI3Lp6CtODdRzpGGJysJorF03izCk57NixI+F9ytS4YuS9JhLL8Ug2M3OYmMUnxv/ZNu/pn42+Ku7pdNEM4opF1dTW1jCpLIfdLbHBgfizfgLQJhv9d0QlW7rBlc1mM02ypaJkG4t0UUgceIgMfDzfHf3PGrPuslu4cN5IMYtzzz03UrVk/fr1AKxZWhVFjhrlVsfzcRkeHo4hCOM9syKXnVtWT6VrZi67d+/GarWydu1aQKJjUCVpCpw2nDZ5zEzEjx8/TigUYsaMGTFtTVXJJu40jDfJJt7bYDAYeU7J0kXFNqfyThUWFuJ2u+nt7Y0JpEXFVbYr2RLtUupRke/kcxfNCr8rR4Ho6xsNySZOpvEg+rFp74Oosko3hUCvZEs1EEgFmSbZjFJgRgONZNPuSW5ubuRZakGORiCLCxpNKa2RpNlAUuh3vvUoz3fw4G0r4n5/rImMQCDAiy+qRvmXXnppSmNmZWVl3KJME4XI9QQCrJvoxphAork8G/qvCLEP6lUC2Yx4453X6438LtFC0Ex1UYi/4NeqthupqBIhE+mi06bFJ/NEk/dkhEE2KNn8fn9kThgY6OfGlVMif9u6VfXCizd+Wa1WHA4HXq+XoaGhCFmlKEqkeE5ZWRmdnZ1xlWyJFqn6GE+W5YgiWyT1jN4Zl8sV8QHTFHWakr6srIzjx48D8TdLxc0+/ZghWgOZTRfV2pmOkg1G4qc8p4OLltZEfaalxRs5vh6JSGV9bC32Ea2d8dJFte8kItmM4ka9Qkojq4wqQmcSiUi2dMiyVBVXqSjZxHZaZImFk4v5+FnLACLelIlInUwo2bTjGCnZ9M8Oogt7mNnIEAVGeiuibIJ+nBXvR7pKtuyKQLIMoVAorkGfNgFAdPqNqADQv1zaABYKhSKDaKrBldYOM99LR8mWyXTReOfSn1NUGOgHXX2wLL70IrTviX/TL7rFQC+Zkk189vHaokdJSUmkckpHRweyLFFZ4KSywEmOPbWdkFQQDAY5cUL1RdHKJI9GyaYfWMYT4u6Gka+Cvj2jKXwAKskGGPqyiSTEqbIISmQqrId2faLXgHgsSH080CbTRCSbkbxcC2Li+bUkg6IokQWYUVrJWJFs6bZXD7GvZ4IY0HbxNbhcrhiPG41I07zBtGI54t+yhaRItshMhEwpBOMhFAqxZcsWtmzZMmY78+OJyPXs2MGpcDWJ0kWzbdwWVfvBYPCUJ9k01RCkr2TTK1vipYtqx0nFUmC06aJmYHZsyoTiZLQkm3ZvYcSPU3+MROOkXlGoHWd4eBiLxcLkyWq6vs/nM1RyJVqkGp3fyJctHqmjta2/vx8YmQNdLhfl5eUUFxfHrSKvbQ5qZK4I0Roo2RpAluVRxaTaucRiRXokuoeJCBdx7BH7hUaIiuIDDeLaLN77bTTWxvP6Ejfz4l1DJiC2VSSExHObQTJPxmTfA3NKNvHnRPfRCJnwZNPOn8iTzUjJZnZz2EjJlm2pohD7bLS2agSjGY9CPbIjgs5SiESLUYcwKn6QKD9ZluVI4KBNUqkGV+LEkQzpeLJlYlFlpjOKuxiJ0kX1OywiySY+E+084vnikWxG6aJiQKC1XU8UJAvcJUmiulr1bzt58qThZ8YCYuDk8XhiBr5kJJt+d8Jo52I8YdTeeIsRkZxNR72g7cYODAzEBKSiH1u27bjooU+tMAONSNGnwo9Gyaa9p4nSPvWVRbVzGm1amIVWWVSSpEggPZYkm/huZELNZpQCMxro/fCM0kW1cUN8/tlOsqWz852pZy9LEufPKef8OeXIWT4eZAoWFM6Xezlf7kVmbFQHo0WmPdnG+jlr/XD//v2Rd/FUIdn0MUSqJJvRYlXMZAgGg4ZKNovFEhmnUlGzjTZd1AzMEgbZoGQzQ7Il6otGvmytra2AqsrV5l7R11Nsv/46urq6IqSYkUWJEckWL6tBv7Gk/SxJEgsWLGDJkiVx731eXh6LFi1i3rx5MX9LJV1U/NtolGza/Gv0viQivZKRykaxdTLf4WRFnlLxZDOTNpwJZCpdVLuPmSTZEinZ9N81c59GM67oSVT9uyUSy0brZu1vyaw4tHHB7/dHbe5nG+Ip2bS2nk4XzTCSkWxGxQ+SsbQ5OTl4vd60g6uZM2cyZcqUmIWxEfQkmzZwj3W6qHYcI2bcCGYKH9jt9ggLLnZ8zRTVSN6pJ8kSkWzieV0uFwMDA3g8nojSSWxLomdWVVVFfX09/f39dHV1xfXySBeackbsX3qSTdytE1VY8XZOtBRkvZJtoireGSnZxipd1Ol04nQ68Xg89Pf3U1JSEvnbqeLHBiPEtjZRmmnzWJBsZqpuxtuIsNlskUVWvB3neNAI9ZycnJi0EvHfmVrMan5ymrJitOnEmVZbaZsq2nFzcnIi74eRkk1DtpNso1GyjfbZO20WfvORVaM6xqkGh6TwG/vhiW5GQmTak22sn7PD4cDv90fU0+Lma7ZCXBiK6fxmSbZEMYUW/2mkRDx/qNzcXDweT1SqYjKMNl3UDMwuvDKhOEmVZNO3SYwVBwYGolIAzRTe0SvZFEWhu7sbgIqKisjcqyhK1LmM0kU9Hg+7d+/GZrOxdu1aw/MbCRnijeciyWaz2VKK2yRJihuri23QX4cRxGscbbpoJpVs2vH0VWeTxbnJBBNmyCH9szUaszNZaTRT1UUzkS6qP18qSjbxPsa7P6MVyGgWIeJ63el0MjQ0FJMuqj+n2djKarVGKpNqKbDZVFFdg/huiemz+gzC0+miGYLoyWT0kumVAZCcZEu0oDUDSZJMEWygBnNlZWVUVVVF5ROPdbqoeJxkEmMwV/jASMlmdE3pKtnE72mBhJ6kMzOgOByOiGT+6NGjGd+p2bdvHxs2bIgylhf7n97vL5HcW2ubnpSYaJJNHyCKef/6ey+qGNKdbLSAXb+ze6pUFtWQqk/YWJBsZuTURko28We9ki0QCEQF7EbQgv7c3NyUlJCjgdECIF2MBQmoLTo0qwC9792ppGSL59lpBpmq2noa2QkjJVumNw0ziblz5zJ9+nRmz57NwoULWbVqVVYuOEToCxJpMEOyGS1W9BDjsUQkG6SmZMumdNFsU7IpihIhes0W3hGfgVb0wu/3Y7FYKCgoQJblGDWWGIOKi1St72jVyI3ObyRkiNdOkWTLy8vL2DNPJV0Uoq8x3XRRra8kItmM3rdkys1ESrbRkmxmlGzx0kXdbjcbNmygoaHB8BypIlNKtrFIF02mZIsXf8d790e7kSD210jF03BMmCxdNJV5Vts415Sr2axkA2O7sNPpohlGIk82MF4UpkqyjWUQKEkSCxcuZO7cuUB0B9Gn3WQyXVQ8V7KBQWtnOumiIllm5CeWCskmXr9o0ijC7IBSW1uLzWbD7XZnNG00GAzS1dVFKBSKDFQQq2TTD9bJdk60yTVbSLZExKmRNyJEe2OlupjWSLaenp6o359KSjaIJSeDwSAHDx6M7DTrMdYkW7zUPo281qvV4pFsO3fuZNOmTQnTSLV3XTNA1toA0QuITBItmSx+MBZEkJYyqlkL6H3vjLyP9BtH2UJSmF3IDg4OsnHjxkhVVRgbgvU0sgdGqcSZjmcyiby8PKZOnUp1dTVlZWWmN00nEqLXlDZWBQKBqBgp0YZqItIARt5NUVGv39zS5otkGy4ixiNd1Ky6Ids82WBkY9Gst5LL5UKSpMjGlxYzFRUVRdqYaKNGvA6RLB0cHDSdLhpvPNcIQIhNHR0NjNJFzZBso1GyaUiULpqukg2i+4VRHCDCrGDCKG7Ux/D6dFGtvX19ffh8Ppqbmw3PkSqMSLZ0xoJ0STaNkJJlOea7yex7jDzZxL/rMdq5TmyPqGSD+Omi2r1MJbbSxm+NXM92kk1Mn9Wni6ZiW5J9EUgWIVm6qJGSLZ5KQ8NolWyjQaIXNtM7v6ko2RJVF9UTQeJOp1G1D/F8mk+TBpEwTcTIx6uQmIo0dvr06QCcOHECr9dLd3c3R48ejVFLpYL+/v7Iy/3/23vzKLuqMv3/OXeseUjNqaQqCQlkIiEJhA4iQ5tGJYosRFQQA0G6FViGZTshCraKLg20NqJ0N0JIgwKKyM8VBMkXE6aWjgTSGINAyEASk0DIUMOt4da9+/dHep/ss2ufc8+594z3vp+1WFRunbpn2mefvZ/9vO9r5WSTJ+yFOvWwOtn4cYj3Rh48qMJFi3WyiQM9IPpOtoMHD2Lfvn2mq4NmIlsphQ/49laVo8TQThHVgJqvlufzectiClZONvFYvBDZiskhJ+OFENTZ2Ynq6mp0dXXp382fjWw2q7z/sqAcFpHC7uDmnXfewfDwMN5++239M7dCcTOjY5j1jScw6xtPIDPqTlXZsJNhMcwaXohZwwuRYeFoCzJuFz6oxPtcCFVBItHFBphPAsV3qtn94M8375PEHJ3yNk7crH6Gi9oV2cLgZGtubgZwXGSzW3gnFosZKr1ykY1/H3D8HcLf1yqRLZfLGRbB3RDZEomEPqaQc5KWgqq6qFW/Ukq4qPyOcupkKyUnWzFONrEasEocMgsXNZt/DQ8PjzM3FINbTra2tjbU19ejvb3d0f5jsRjmzp2LuXPnmoaL2nGymc2Nc7mc/ny5UUGZf6fKySbeOzNzip33LP9OfrxhFNlkw49ZuCg52VyiGJHNTk42ET9FNlmlFfE7XFTsGOw42cQXgJgU1MrJBhiFMjtOtng8bupkc3KNOjs7UVdXh7GxMfzxj3/EK6+8gt27d+Ovf/1rwb81QxToxBXJUp1sYRPZ5OO1cvmIE6xihWKel00MnwCi62Tj14u3XzOnlSonF+COkw0wH5Tx/doR2URHnJmYxRgzONmsnJBhDxd185mrq6vD6aefjra2Nv0z8Z1l5WTjhKXghxMnG2Avh08xDGVzGMraH2CVA0OIYwjhdQG6XfgAqMz7XAj5/cKfNe4aMnMvi+MJs/6E3yc+XjMrHAY4E9n8cDQ6DRcNg5Oto6MDwPG8bOL7p1CfL1bx5OMlMZetlZNNFF/MnGzF5mQDjuWs7u7uRmtrq+U5OKFYJ1sxC79OnWzy81aMk63QYrKZKAQcK1wxODhoSE8hHyNQuPCB+N2lGBE4bolszc3NWLRoUVGi7YQJEwzPBccsX6JZu1Y9+3/961+xceNGHDp0yDUnmxgNJLYFUUQtdF+tkMf7YU2RIGoKciSj3fybhu9z+fjKijDmZCsFs6qfpeSzMqNQY5RXXMycCuLLnx+7KLJZOdkAY8ionZxsopNtZGRk3OoBYO+eaZqGGTNm6P9OpVLQNA3Dw8OWjhwrRAFIFABlwc2uyCYLmLwdWLV5P5Bf6lYChMrJVswzpcrLFnUnG28XqoG5uELlZrioKJirBmX8mVLllrSq1iz/zMnlcti3bx/GxsagaZpBZFM9226KRmF3sqng1ziTySgHVGF3somLIlu2bBkXjs8nbnaq0RHlgdlKPxCe9lsOyJNDLrLx4lBm7mU7i3b82XRbZKtUJ5tKGBHzcDY2NhoWFnk/amfiy0W2ffv2IZ/PI51OGybQsshmFkYoO9mc5mRT9ectLS2YMWOGq889PwbRdBFkuKhVtEAxOdmKLXyQy+Wwbds2ABhXjM9pTjbxu8MksnmBEycboJ5L85yI27dvLznvpHh/+TGlUimlu7iUnGxm4/2wocpRx4/VbmoAERqBWFAoJ1sxIpvYeAH/B/6qDlNsMH6Fi8ovA7NBhPgQ83ugEtmcONmSyeS41SBRoEkmk+MEPXHVyO49a2xsxKJFi7Bw4UIsWbIEDQ0NAMxfIkeOHMHGjRuVv5fzsJmFi4phdaqKKKrVfrGtih1t0OGiZvkcRMQXSykTK5XIVi5ONtULgZ8br/ojUorIJv696tkX87HJgwLVgNpMcAOAHTt24I9//CNef/11AMdCRGKx8dV0vRKw3HSy+SUE8bYs5sUQ9xlWkU0WUvr6+nDw4EHs2LFD79PEHFFeOdmI8BG1nGxRRX6/cEFbVYFdxM54Qp7QqRa2oiyyiW0zKCebGO6YTqf1Mc9f//pXXWTr7e0teCzcscTHnc3NzYbra8fJlslk9MU2/l1cdFOFiwbZn8fjcf04+bgpyHBRq4gkp042MdzTbDHZzHm1e/duDA8PI51Oj2s3Zk41ft3k97mXIpsq73aQuOFk4z8PDAzo1TrdzMnG58GAOnLMDSdbWEU28fk1m0s7+j73Dq38EN0xVk42J4UPNE0zdGZhE9ncDhcVv7uvr09/SckvAzMLtCh+ySKbKJaZTaj5i1uuniR2SHKooeiy4fsSr5eTzqy+vh4NDQ3QNM00wT5n7969yGQyyuSf/f39hmspXkf+M7+WfPArr2rK56EKEQiDyOYkXFS8F3y7UkQ2HrYgvnCiKrLxdqGa+JjlYwPME6/axUpkM8vHBlgXkpF/Hh4exq5duzA2NoaqqipMmzYNJ598snL/Xg3KvXCyef3M8WvMB2by/Q+ryCYLKWLydd6mxPAjXkEV8O/aEsHgdk42Qo34fhHD/err6w3jBxknIlu5houWupBdrMgmzmH4eICPm/mYh4ssJ510kp6/0wqxwABgzMcGjJ8XqXKy8fdPTU2NnuONL/yIz6xTJ5sXaJpmKBoEBB8uapbD2mlONlF4deJkGxoa0nP9nnDCCQXdV07CRUuJ9gGM8zlx32ER2cTraacitmourepn3czJJi6+W4WLOnnPptNpwzGGVWTj53L06FEcPXoUmqbpfVxRfberR1emiGGWIqpY/UIiG2CcYPr9wFuJbGKSRbf3MzQ0hJdeeglbtmwx7FN2sgFQdjyiyMb/VhUuyjsJHkPPO2uxE5dFNlWoIb9H/O/Fa1TsPROTzaps3jwclA9ARPjqDv8OHu4nTib5Ocsim9nKl3gPVJbhoJ1sTsJFgePPXjGDLzkvm7hiGZXJuRMnm5XIJp6vl042GSfhouLq6+mnn46enp5xlu4oOdn8DhflExp59Vp0DPN/hwGr8BLu8BVFNtGdTE628saLnGzEeMQwp6GhIeTzecTjcVRVVVmG0TgR2cRwJbNtwupks1psEdumn4UPgPGLbrzPb2pq0o9l1qxZtgQ2/vdiX2omssnHLv7Mj6m2tlZ3xqkq0KoW3oII/zeraq+ilHBRea5p9syYpeOxGy7Kr6FYRM5JiOmuXbuQz+fR3NxsyPkq/02hcFF5IYxTiptNlRbHi5RIxSLeU5UYaMfJptrWbSebKsKlFCebnCImrPMqfo67d+8GALS3t+vzlWLm/zQCsYFZMtBkMql/zsUOO/mseEMrRbApFlWH6UX+EpXIJv7fzMkGqG2x8uQPUBc+4P/nglMmkzHcF279Fu+nmPCRfx8fiPCXkBsTtYaGBsRiMYM1njM8PKzva2hoaNzEnQtwLS0t+nUYGRkxVLPlHQH/btGaXei+h0lkK1YkKcXJBhxP3rt79+6CZc3DiCiycTce4FxkK/XFbWaHB44//3z1WvV3ZsKaSnzjuQ5F5D7Bq0G5m042v8NFeZtQ3X9xkhT0gJRjR2STqx3y+0IiW3mjcnWEZUJVTojvFz4JrqurMx1fcJzkZONESWTjaUAOHDhgWv1YPGYvRDZVOJ58T+QxTVVVFebNm4eFCxfqhRDsoGma7marq6sbd6+sRDb5PtfU1BgS5gNqkU1cCA+iP5fnc1b9iipPsJN+SNyX2TNjJmrbDRfl19BO3mEzJxsAdHV1KfclRybZrS7K5zBuimz8s7C8E0Qnop0waHk8KwqGPT09+nal5mQT0w4lEgmlq7IUkQ0wjjfD7mTj90a8xuLv7UIjEBtYhX7y342OjhomW3ZEtiAG/VZONjePR+4Y+AM8NjamXFWQRS/AaPtVKet2nGzc7SXn1pMrmsrXQLyv4nmUco1isZiev0R+iYhFDQCjm010uTU1NRlCWcWBk1wiWRX2Z3bfVckegxbZxJAw8XMR8T6Weo96enoQi8Vw5MgRPWQ3KqGigHESJObsE583jpcimxvhoqqKoionm6qfJSebOfL1Ug2uwyiyWeVwUTnZAHv9hxNimobTp07A6VMnICa8rzRNQ29vL3p7e0NTjbUU9POZNAlxMJyu9eF0rQ8xqAWEoFE52UpZODS7z5UOf7+8++67esJz7mIqVWST75NbOdn8mFh3dHQgmUxieHgYb7/9tnIbUfzww8kGmKePEK9tc3OzLhI6gf+NqnqiPGayGk+oRDazdBXyoomf41P5vWn1LlE52Zzccycim9OcbPLY2k7eYdW+xEVOFaq5lfhdZuGiLS0tANTRPnYRnwUxjD0sIhugXog2m4dbLTBOmjQJdXV1iMViyrG8Hfj38zE176OcONnsXlM+7he/K2yIx9XW1jYuPN7pcYfTrxcCxAtpJZilUimMjo5idHRU/5tCZbDDKrJ56WQTVXIxFp1fJ/5gixVz5DwWViKbPKFOpVJIp9MYGRnB0NCQLprIZab5S0DuLGSbultuv6amJhw+fBiHDx9Gd3e3/rkssvX19ekDWF55KZFIoLa2Ful0GgMDAxgZGdGvXyqVsqwSWei+h8nJZlb4wOx45FWhYu9RVVUVJk+ejF27duGdd94BEF0nm1hxFjh2r8XrYifBNOBuTjbGmL5fK5GNi+uJRKJg6KhqkEc52cyRr1fUnGyq8JLBwUGMjY3pIht/j7g9KatKxvHQPy0Z93kymcQVV1xR0neHCf18BgeBVavwUPq1oA/JErltAKUtHJrd50qHPz/8OWtvb9dX+c3C14DiRDY3nGylhmjaJR6Po7u7Gzt37sTu3bvR3t4+bn+ljrGtzl0u3MVJJpMYGRnB8PAw6uvrXXXn9/b2oqamRumA4/MfVeiifP61tbWWeci4kSGbzWJsbAzpdDr0TrZSwkUBoxHA7BzN2kMhUa8UJ5tqLGYnnJW73sR5htmi2YQJE7B371693arGiYUQ3/difuUwiWzxeBzZbNZWuKhZ6C03GCxYsAC5XK5oQ4DsZOPPr9vhosDx8WZYXWyA8VxUhWDIyeYSTkQ2AAa3VKEGxBPFqkKmvMbvcFE5Vx3fn+plYJZUkX+fnXBR0bXAr++BAwdw4MABAMCUKVOU+zNzsrkdcmSWl010qgFGJxt3vTU2No4ryqBysnEKiWziOYVJZHMqkshtoJR23NPTY3hZlYOTDRg/GOPtRiWyiIM7N51sw8PDYIwhFouZintyzpZSnGxeh5fwfcsJbIuBnGzWmK18c9555x2MjY1B0zSDixmgcNFyh3Ky+YM4Hujo6MCsWbP06+tnuKi4EGtFqSGaTuju7kYsFsPAwICysFWpYatWIpt4zcXryN1mfGzppsiWTCYxceJE0+gCs3eIuL2maaiurkYqlTJsb1ZhM8jwfyc52dwKF7UyaxRystnNyVaMk01cwDKb64rX4NChQwCMOQDNxJpUKqW/v4sNGTWb14TpnaCq/ms3J5vs1IvH4yXNU2SRTZ4Di9uZzdHtPotcNI2CyNbS0jLOZSv+3i7Bt7aQIj6IVoMDVbhooQZfXV2N008/HXPnznXhSJ2hWnH0IlzUysnGQ0bF4xF/VllRVcq6KlxUXMXgIht3sXV0dOgdOGBcTSnkZHPrGtXX1yMejxucF2KOtkmTJgEwF9kAuCayqZxsYhGPoEU2u5Nk+aVZyj2Kx+OYNm2a/u9ycbLJ4ip/Hs0s5nKCWieYDQDFogeqwaP4jPPnThbZ5DDSMDjZgNJDRv3KySYPbqLmZFOFTADAvn37ABwLP5Kr25HIVt6QyOYPTU1NSKfT6O7uxsyZMw19uJvhoqqoBXkbO242sT143Q646ARAr7oo4qWTTbzm4vfz8aIXIlshzN4h4s/V1dX6v/m4XJWnWk7LELSTrVAubbecbHaeF6fhouL4amxsTB8HWs1ZZfebONYxE0vEedm7774L4HgoqHj8crXweDyuGxG2bduGXbt2KfsUK8TvEo8jTO+EQqYHkVLdY3aPRXSyif/nuJGTraWlBd3d3Zg6dWrpB+4REydOREdHB6ZPn678vdP2E3xrCylOnWyiyGZHpRUrMvlJGMJFRZHNyskmC1/iQ89VfPFlI+dwk6u4yg+2lZPNq4mapmn64IevePJBUG1trf6C4UUNRkZG9JUg/pLigySx8AEPjxVRiWxivjuVyCaKM0FNSsWXuippqoxZ4vti6ejo0FeB5Xj8MCNeN7kEujg4t1M51Q0nmyw8WeVj48jitiiyic93GHKyiY6/UkNG/Zo4iINpMaeo2TZhGJAC5uElXCTkedlqa2sNEwlV314smdExLPz2Oiz89jpkRo+37dHRUaxatQqrVq0yvOeiin4+P/kJjrAYFg6fgoXDpyDDwtEWZFSFD0pxNZvd50qnuroaS5YswYwZM8a9c+XxhYhTkU1VzEbexqnI5keuxEmTJkHTNBw5cmRchXg/nGxiDirguMjW399vWHjzW2Qzy7EmRvJwx4h8DoBRGDILjfUa8T1ZqE8pVWQTnWyF9uG08EF1dTWqq6uRz+exZ88eW21CHk/xsY5VXi0xz5dYtE3+vVz5M5FIYNKkSWhoaEAul8OOHTuwcePGcUWNrChXJ5tX41lZ8OTfK4dty3nMxWOxe01jsRhmzJihzOUYFurr6zFr1izTeQo52VxC7KS8ENmCwq9wUbljkKsEqjq8QlZU8aHnP4svG/GcRCcbcMzOL7s2xM7Fyskmi3elwoW0/fv3I5fL6S+hxsZGxONxXdjp6+vD/v37wRhDQ0OD/rmZk00Ow7NyssmhuLLIViivoJfwY+Ev30I5leR2W2o71jQN8+bNw/z58/Xw3Sgg3m85Cbx4v8WiB2b3mLexYgbkdpxsZsir1rJ4JX9eyMnm9rNb6HiLxa+cbKKgnk6nlfdfvOdhGJAC5jnZeF/KqaurM9wTs1CqYjk0OIpDg+OFtEwmM65idJTJZDLI/N/zeghJHEJ4xzRu52QDzO8zocbNcFEzV41YNMCOyOZnuChw7J2pSvchHkupTjZVESOzd0dVVZX+Hj906JC+XVicbOICJhfZVG3Ey/7cLuJxFbqHboaLFjoeeXxUKCebpmm62WD37t36mMxJuKidea6c9qO2ttYw/xKvkXxPk8kkFixYgNmzZ+t5tffv32+6L5lCIlsYihM5cbJ5nf5E/h7etsT7K5tagqz0GzROz5UKH5hQjJON/xw1kS3IcNFinWyyyCbmEuOdAa+6Eo/HlQkMrZxsciiYm0JkR0cH3nrrLQwODmLbtm36Kg1feayvr8fg4CD6+/v1XHI8FAE4PkgaHR3Vj5t/xl9K4rmIP8urIfycVCJbUIjHnc1m9cmrXZHNjXacSCTGTeDDDs9pls/nxznZxPttVVmUM3PmTAwODhrCq+1SSGSzykUpDx5l8SqbzaKqqsqWkw0wDuK8GAhYFT/IZDLYunUrent70dbWZvodfq/Op1IpDA0Nmd7/MDrZzN4NjY2NOHDggP55bW2t3p+KiYXFfH9uk0wm8bnPfU7/Oero5zM0hOQ9a4I+nIJQuGjwuBkuajXhj8VihgmzFYXyU3kBP0enDqNCyC4+8d9W77empibs379fr3oqpljxEjsimzgO4FVORbcTRw5xBAqHbLqNLDhYUap7io+5rMZeYjSLiJ0239bWhrq6Or2gmvh9KkSRx04+NtX+5fsqiuWqe6ppGtrb2zEyMoI333zTkUNcFJ3lcFTVsQWB7GTj1xYwNw0U6x4rhJmop5pvl5qTrRygcFGXsJuTrZjCB0Gishl7GS4qd8yA+ctHXqW0Er74NRYdc/KKXiqVwqJFi7Bo0SLLHB+qnGxiXhBRzHKjM0mlUpg9ezaAY7mE+KqnKLIBx3LJDQ8PI5FIGCbpPJxCvK68HYoTZztONp7vLkwim3g8u3fv1gVsfn1U24uE4SUaFPy+8Rc2f05U4aJWA6tUKoXm5uaiJgVmEy6n4aLic8nbNXeWWjnZ5AmIly4xKyfboUOHMDAwoAvlZoh/68dghR+z2f2PgsjGr1kymTQkpzVzsnl5XfmEQFVVMIro59PaiiicDYlswWOVI8qpyGb1XlKFTeZyORw8eNB1YasYzML43HKyqb7bqo/jYyaeF8uvHLN2Ch+ITrZEIoGFCxcqF8P97s9VOAkXlVPY2PkbkcbGRpx55pmWeasKiWxWbV7TNEPeYcCekw04dk525rny/ZFFNtXcS9U/iCYWu6icbOL8MwzvBCvTQ1A52TiqnGxy+hhystkn+NYWUuw62cTCB1buirDgV7io7DATB8CFnGxySJDdcFFV7i7Zpixi5WQDjBN+tzuT5uZmw0s0nU7rL04usvEXQ0dHh2G/mqYZBktibqViRDbx/2EQ2YDjx8uLVkyZMsX02nvhZIsqch4F3h5U+Yq8usdyoly+f+6gsyuy8fYvngdfzZZFRBE5V2NQTjbVAEqFH24rEVVfISKGiodhQAqY52SLx+N6/sREIoFUKqV0PlRyn1DuuJ2TjXCO2cKK6NAoNVwUUItsu3fvxpYtW/SxgrhvwF+RzSx3WqmCnypUi2NHZOP7D4PIxv+zGgeIiP25X2kVZIrNyVasm7JQuhZ+H+Uq8nbbWXNzsx7aLCa0V8EX4oFjczenTrZkMqm/o+XfF0rnUarIxvcTNpFN5WQD1A5NeQHDbfeY2fxJ5d702lUXBcjJ5hJOc7Jls9nIimxehovm8/lxHaSYk63UcFErJ1shrJxsgLciGwD09PToKzxieeu6ujrDdenq6hr3t+IEWUwUbFdkk89HXoENWmQTHVnV1dXo7Ow03Va8VmLelkpEvG/pdNpR7ge3UO2TDwbjcety4+Lggw+MEomEUnyzGhyKxxBUTjazSpgyfq8GTpgwAbFYzDQcWtM0NDQ0IB6PW4YU+4nVCio/j8bGRsOCg1/Oh1wuhw0bNmDDhg0F73UU0M/n+ecRhbMxE/UBElf9wkxks+vSdRIuCqid2WaCg58TQDMhzA1nZTEiW3V1teF6BiGyiccVi8WwYMECLFiwwPaz6fU43A5OcrKpngW32yB/L8tONrvCMnez8Xd9IcRzciqyTZgwwTTaxMwcwZEL0NnByskWlvlBofmYaltysoUDysnmEk6cbDx0j+cciqrI5uaLQPwuOT/U2NjYOJFM/LnUwgd2H4JinGxuXiNN0zB79mzs378fra2thuOqq6tDf38/GhoaDOFQHHHyKw6cinWymXW0QSEez5QpUwqutKl+rkTE+1ZVVWUaXgP4K7KJRQ+sBjkqMS2ZTBo+t7OYEY/Hx4Wc+u1ksyuy+e226u7uxsSJEy3vw/z585HL5QLvBzhmLudEIoH6+nrMmzdPDz/y2/mQy+Xw9NNPAwDOOOOMyA84xfM5JQIBo7IrgDEWiMBSyZiFSYrPn1V/U4rIxvchL3QEES5qFjbrhquuGJGNV7N/5513AATvZAOgHM9aEYZwUZ63OJfLFdy3qs9xux/i95GPceT3o539NTQ04PTTT7c1X43H4/r1dyqyqfLs2Q0XldOH2DkvcTzF7xX/LCzvA/mdZdWu/Q4X5f/maXvEcaB4LOJ7NupjHieQyOYSdnOy8ZVzMW9X1EQ2LwQk8bvkFcZiCx+oHno5LBWIjpONf193d/e4z1tbW9Hf34+enh7l34mDJZXIJtuOzVZOwiqy8f3X1dWhvb3dcluznB+ViOxkkwVrwHuLdyGRzQrxmRPzbqnEN7sVsYJysjkNF/Wz7Raa7PkVumoXeXAnXzOxJLxXk7KYpmHepEb950ogBoZ52qD+cxgxC70BiuvjKvE+l0ohJ1uh8YT4fDrNySbnaZQ/D1O4qN9ONuBYlESYRDanqBZNghjnJZNJ5HI52042jhfuKe7iz+fzGBkZ0cdVToVlu071RCKBkZER2yKbpmmora3F6Oio4d3MUc29VPdUNLFks1lb7dfKyRaWMY0TJ5vXIpt8TeTc56KwrLpvbh5LFHAc+u3RcUQeUXwodFFTqZQhJDJqIpsXoRWiIKaqdKhyzxVysgHHOgAzZd2pI6SQk020KvsdftLT04OJEyeatiU5XJRTXV2N7u5uQwgpYO5kk8NFOUGLbE1NTTh69ChOOOEEW9Z3TlheokEhO9m4wB10uCjvH62EMcAokKicbGNjY7adbPwY/HCyuREuGvQzF2ZUfTWgvqdihT/eVty491XJOH573Zklf0+UqNIYfpveGvRhWGLmCgCKex9U4n0uFTMHl12RzUsnW5jCRf12sgEwFIzyS2SLx+NIJBIYGxsr+fqHwckGjE9RYwYX1bxsfzwv89DQkEFk80pYVpkZCs1zFy5caPhbEVV1UbPtuIlldHS07EQ2J042O4JcMVjltJbNLOK2YlXYMITg+gU52VyCNyY7gpk4KBArI4YRv8JF+b5yuZw+0edipJmTzSq5NYevqMgPP3B8Ih8lJ5sZYm4hFWZONk3TMGPGjHHby2FtYQ8X7e3txeTJk221SXKyHUd2svFnQrXy74fIxhiDpmm2Ky+L7bRQTrYwOdlKCRetxLwWTlENygH1Oysej+uTHDEXIFGemDnZxITdhLeU6mQTBQw7YWh2nGxhqi4apJOttrZWH3vX1NQUvX+n1NTUoK+vr+S8nmLORf6eDcrJZmffPIrE64iBqqoqDA0NGSKFvGrzTnOyiX+jwm64KHB83mi3+IH4ffznsIlsch7RIHOyiYYY8djEn1UCs3hNK+k9SyKbSzgR2cRtuL01rIgPLJ8Ae/Uy4PsSqwpykc3KySbn3RG3qa2txeDgoD5YEH/n1LVgNyfb6Oho6CbCZjnZzJCr9JgVPuAELbIB9tsj5WQ7juxky2QyAILJycb3lUgkbA/MzBxrovjmxMkmCvpBOdl4/2LWNqkCZmHEd4PYflXvWk3T9DYXlmrJhHeIzyBjzLNFQ8KcUkW2VCqFGTNmFBw/O3GyhSlcNKjCB8Cx858/fz5GR0d9LWQzd+5cg8uqWMS2w/vzIEU2O/dQFC286of4uF8sfuCVe64Ykc0Ks/e5CquFTBVRdrJZ5fPzstiA2F5Vc2AxTxsnSME7SChc1CV4Y7IzOBcdFWEOFQXUE2CvnC28MYr5mI4ePWo7J5vquE466ST09vbqSa75qpEYGuTUycYdN+JngPeFD0pBFNYKheCJ2/PQ17A72ZxA4aLHkZ1sQRQ+EO+BU5FNPH6xkIxTJxs/BnH100uRTTUAlEN0zdomhYsWxsnKN3CszWSzWVedbEOjOSz912MFAf7fF85Gdar8B5dDLIZzR+YCAP5fegtKmy57g9gOzBbwnFCJ97lUzBxcTvLkqnLTyhTjZAtDuKgbDiOz77ZzjWtra/Uxs1+kUilbY9NC8EWTsbGxQJ3JTkU2ThAim1dONjmNR7E4SfMjGwRk8vm8IV+bSmST9xs0opON55sTPxfxQ2Qzy0Hf1taG/v5+vYK7ON+uVJGNnGwuUWy4aNhFNm7t5CsIosjm1eoH/37uPhNzsjkpfMC/Ux4sxOPxovLv8O8VJ8gqFT+bzYauiko8HtdzbtlZKZQTpYa98IETKFz0OGYim5852UT7uWzXL9Q/xmLHq3iZiWxOnGx8W68s7aLzjjuDObKwaXa8YXPJhhG7iZI5/Dlwc1LGwLD3yJD+cyXAAOxFWv85jPAiHXzCVuqCWCXe51Ip1clml0Iim9gHB1ld1E8nmxuiR9hJJpOBi2xtbW04cuQIWltbC27rR3SFSmTzOiebuK9Snmmn4aKAucj2l7/8Be+++y4WL16Mmpoag2gnX/uwiGz8enLndX9/PwB15V2znGxunov4PIk/t7e3jys8RyKbs/MNR4sLIbyxNzQ0FNxWFNncWLnxGnlA5HW4KIeLQYXCRa2cbCpk14pTJ5u4Aiq+nOTy0XaOxU9OPvlkzJ8/31YIgKZphpdV2AsfOIGcbMcRcygkEgmlw8APV6bcxziZCPBt+IBaFNny+bwhx2Oh/buZ+F4Fv95i2ANHdc1VkMhWGDEnm53rxdsLXdvKQAwZpXBR/5HzcHL8ENlUC0jiNkGIbHJ/76WTzc6iU9Th7SfI8P+mpiacdtppaGpqKritH042Pu5X5WTzai7HFz75on2xOHmfFxLZBgYGAAB9fX3jwk/D6mSTI8q4yFZfXz9uW7/CRTl2i9Twvj0s19QvKFzUJVpbWzF58uSyc7IBxx4occXXaycbR0y6KlYmkbd3WkVFjrsv1skm5/gRJ/ZhFNmchgCk02kMDw8rnWzyvY+SyEY52Y5TW1uLWCymVxSTX9BiziIv23IikdBzGTLGbFek4tsMDw/rA0YuFnIHLh9oO3GyeZl/TnTRiM+N2eRPhnKyFUbM4WLnesn9F13b8ob3N6LIRvfcP8T3bj6fH5dzyA8nG9+fuPAhH5vXkJPNG6K2aFJu4aKyM7zUtuYkXNQqJ5sYajk0NDSu8nhYRTYx2mN4eFi/rionm9eFDwBncyjVvLmSoHBRF7HbkciFD8KOLGZ5NSiVvy+dTusTZVUiSv7S4Ksldh03xQpEhRR5cQJttq8oIb6U5XsuhtwA0WjHHAoXPU46ncaSJUvGVQOSn3XA22sl9jFiDkanhWT4v8VS7pwwONmA4xP8bDZrcJU6dbJFSdj2G6fhonIbomtb3qgKkET5XR01ZGeGXyKb7CAW73+YwkW9crI5XcCKKlFbNPEzXJQbJuLxuOc52dwW2YDCfYSVk000QGQyGUNfEGaRDThe/fTIkSMAjkV6qa6ruMDo1SI5/65EIlGw7ZDIRuGivhNFJxvgfbio/KKJx+N6R8o7TPGB5uGkXGSz25nIvy/FySbCJ/bFfHcYUYWLqgYDPLllVKBwUSNihTazVTDAv3BR8fmys095sMWfQflzq4mbnyKbmJdNhMJF3UPlZLO6/1GblBGlIYpsYStSVAmIYwaV6OWlyCYi9sFBhIuaFYDwyskmunuiMPcolqiNw/1wsonpQLibzeucbG4twovXpJBYYyWyiZ8NDQ2NqzweZpGNH9vhw4cBqENFgfEuYS/DRe18Z6WLbE7bUHhaXIQRJ7VReNGZOdm8DBdNpVJ6lSBAXVKZi2w8zMzuYLnYfGLyoFC1H/F+Rk18khGdbKqO2slqRpggJ5s5VvkcvLzHspMNKM4ZDBx/nsXPeX9SaP9+FCwxqzBK4aLuId5rO9crapMyojREoZtysgWDSmDyWmQzK7QAhCtc1CsnmxgqGqUxm1Oi1p/7IbIBx8f03GHmdU42ThAim1iATv5b4JiTTR4bhFlk433i0aNHAdgT2bxKhyDO/QpR6TnZKFw0AMRQpiiLbF6Gi8puFL5vOQeaWKrbaeED1X6tkAclqr8T72fYX+yFEEU2VTlyJx1tmCAnmzlmlYm8bssqJ1sxIpuYYNdJWH6x7tZiICeb9zgZlAPeTMo0aJjRXqf/rH+uaWhra9N/jjr6+eTziL1zCDO0Y87yMJ+Z6GSTXbxOMbvPhDXxeBzZbNZXJ5ssZoU1XNRrJ1sU5h2lEDVnsl95gquqqpDJZHQnm9fhopxS25umaXrqIN6ezfoIcV/ZbNYQOSaKbPl8Xo+CEtPgiIRpfiAvSpiJbNzcIVb0FP/eDfh1ISdbYZyabaI1mw4xnZ2dePfdd00flDAhToDz+bwvqx+8Y5Q7UvllUF1djf7+/nHWX7v7Ue3DDDsdcDmJbKLtWlXwIKoiGxU+MMcsXNTr6yTm5HE6ERDbn/iz7GSzoljhvRhU+aB4/gwO5WQrDfE9YWdw5yS02C7VqTjWfeHscZ8nk0lcc801JX9/WNDPZ3AQWLUK69Jbgj6kgojPoNkEyy5m95mwRl68BYJ1sgVZXZSPq/m+/XCylTPkZFMjFz/wS2Rz43nmIpvZPsTtkskkstksRkdHTUU2AHqVTv5dokDF/x0W5GuoKnrAkUU2LlK6RTFOtkoV2QBnzzTNSF1i2rRpOO200yIxUZJFNo4fIlsh+y5PHC6KbE4LH9g9DzsTcfHlHnUBx6rwgfhzFNqwCIWLmmMVLuolbjnZ7PxstX+zf7uJqvqV1eRPhpxshRFXD4NyshHhhXKyBY+qyE4hl0qx+3DiZAsiXBRQV0At5VhUImaliGxRc7IFJbJ5nZON40Z7c7IQapaXTRbZBgYGxn2XX/fCKeJx1dTUWPaRqrGPFyKbEydbJY9bnZxzeFoc4Rt+iWzi95klL1c52YBj8fV28ymJv3eST6xSnWz5fF5/KZeDk43CRc0xqy4adZGtkJPNT5FN5WSTJ39mTjYxkX/U+xev4c85b09U+IDgiM8g5WQLBlkEEvtDt56/qISLAuOrgJZ6LPydx8duwHHRodxFtqhVixbbgZftT8zJxiOAABiqnLuBWTGqUpCvkVV/bVdk40428XjDKrKJx1goAs5r9xh30dmJxPMzSiSsTJ482fa24e6pCE8QB0Piqq+Xqx9m4aLyA8tFtsHBQdNtrPbjSGG20VmIk/modybxeFzPeccHauXmZAvTSzQMmIWL+imy8QlGMeGiUXCyqQof2BXZxO2i9tz5TSwWG1et1gzZgezGu21oNIcL7ngOAPDb685EderY/rPZLO666y4AwNVXXx35Ca9+Pvk8PsVi+OjobADAb1NbUR3wsZmhEtmKfebN7jNhjZnI5mYhpWLCRf12ssm5ptw6Ftm1BFSuky3s4zy/hB0upo2MjGDnzp0AgPb2dtdFNq+dbIWcWWLxAxH+71QqhdHRUeWCZVhFNvG4rEJFxW29EtlaWlrwnve8x1G4qNm/K4Guri7b29KovgJROdm8eFCKzckGOBPZxN87mahWmpMNODZQGxsbU4ZSlIPIVg73yE3kHDF+iWxigRO+z1KdbGK7DJOTTVX4QJ78mYls4ueVOFhxgpPVXNnd7AYMDG+8PaD/rH/OGN555x3956gjnk8eGt5gx97JYT4zN51sZveZsEZe0HE7HxsQficbcHwxQCWylXIsosjG871Visgmj8PDlFtLhV8Lv7xNDA0NIZPJAACmTJni+n78ENms4Pszc7I1Njbq7yz5+8IqspXiZPPiPOzeUzsFA4njRGs2TbiCSmTz4kFRVRctlJONi2yiGFDoheqlk62ccrIBx17KZgJmQ0MD9u3bh4aGhiAOrWgoXNQcOXwlCCcb72OKrS6q+jzKTra3334bb7zxBubOnWvoF8M+cQgaJ2EKYrJkPwTl5cuX6z9HHf18hoaQePBXQR+OLShcNHisnGxu4cTJFiaRzY38cFxQyefzGBsb0/s3oPxFNrPwv7Did0423r46OjpQU1Pj+n7kc3CjvYnPZaE+olC4aENDQ+RENvG47Ips/PyDfAYoXNQZ0R8REo4xCxf1aj+AfSdbKpUyVIOxc1xuOdkKiWzl0JnIDiDxnLq6utDe3h658yQnmzni9RBFNr+qi+ZyOX3iY3dgxgUnxlikcrKJEz4rke3gwYPIZrPYu3evntuB2m1hnK6gJhIJX0S2WCzmiXsgKPTzGRxEJuiDsYkodFPhg2AIQmSzcrIFJbbKeVDFYym1uigX1kZGRgwiW6H3YdTRNE1PdRKFd6Vfwo6YAkbTNM/eQ5qmIR6PO45KsMLJuN1MZOP/rqurM8wboyCy8X6xpqam4PmHqaIniWzOCE+LI3zDr3BRO4UP5P1qmmbIJ2DnAXbLyVYp4aIi5dBhkpPNHLHUd1BONqer7XxALf+NEyebnEjXy/Pl32238AG/HocPH/ZkIlquyM92oWtm5p4myg/eFvzs4wgjsrjkp5ONT8LD4mQD1IUPSh2fyHnZKsXJBhxvR1F4rv3ME8znSx0dHXokkBeI6WTceKbcENlEkVk89yiIbM3NzZgwYQJ6e3sLbut1TjYnUE42Z9DIvgLhD2hfXx927Nhh+MxN+EuRh+6In3FUnXV1dbWeX8DOA1xs/p1KdLLJIls5nBMVPrCGh694HR4uIgpPxUwE0uk0stmsYYU+kUggnU4jn8+Pa8cqzFY23UblZLPKycavRzabxdGjRz0/vnLB6YKAX5OyXC6HTZs2AQAWLVoU+Xupn8/oKGYFfTA2Ed/7fCJG7wJ/CdLJlk6nDYnPxd+FQWRz61jS6TQGBgb0vGyVJLIlk0kMDw9Hon/1U9iZNGkSDhw4gKlTp3q6H35ObrU1JxFIfJ9iSg6xMnsymURNTY2eCsfs+ofpnZBMJjFv3jxb25KTLbqQyFaBNDQ0oKGhAX19fXrJYy86n3Q6jalTpyKVSumDC7siG8fOA1ysY0Xet+oaiDb1MHXQxSKHFZTDOVG4qDXc5h+Ek01ceXQy2ZoxYwaOHDmCxsZG/TNN03DqqacCsC++q6pNuQ3/bl5RThb3xLB8wDhQ5HlEqN0Wxungzmxhx21yuRwef/xxAMApp5wS+Xspns+JiEaeQDGcibt8yuHdFiWCLHwgOtl4UQC33GNOka8D4I2TrZh8p1EmSk42P0W2zs5OdHZ2eroPwFuRzYmTTS76wY9JnDea5fCL6juBRLboQiJbBZJIJLBgwQL09/dj3759OHjwIFpaWjzZl2yFLVT4AHAushXrZOMhZYXcLslkMjK5IAohO4DKIdk6hYtaI05M/BbZ+OQikUg4ujeNjY0GgY3jZIBXbBi5U8TvzuVyhj4llUphaGjIVGRTrbwSapyGKbg9KdOgobupWv+5EtAAdGNE/znMJBIJQw7IYt8FlXif3SDIwgfiuCaXyyGRSIQqXNSttCyiyCZWGqyE94dfiyZuEFb3VCmoUniUgvhc2l0wA6BHOPD2z8NXoxYu6gR+3LxPI5EtOoS/t/o/brnlFjz22GPYvHkzUqkUjhw5Mm6bt956C9deey3+8Ic/oLq6GpdeeiluvfXWsk8KWgyapumOtpNOOsm3/Tp1sjktfOD0gbdTZIFPlMuhMxEHo+VS0ZCcbNaIuXL8LnzACWKl3S+RTRTrc7kcksmkIUHw0NCQ7rDI5/Pj8rUB0Zg4BI08KC/Ud9XV1QGAa9XWqlNxPP/Vv3flu6JCtZbH81WvBH0YtkgkErqLDSj+ma/E++wGfopsjDG9P+X74H3w2NgYEolEqMJF3VrcUolsleBiA6KVY7MchB2ZIMNFxaIfo6OjBpGNH4/4ni9XkY0TJpEtqtfULyIzsh8dHcXHPvYxLFmyBHffffe43+dyOSxbtgxtbW147rnn8O6772L58uVgjOHHP/5xAEdMqChU+ADwz8km799sX7W1tTh69KgnpbH9JplM6qEU5dI58vsmJ7snjiGGr/jtZOOUs8jGv1+8vnIYE/+MTzx5gZehoSFfjq8ccCqmd3Z2orGx0dNk0ER4kPsYehf4iyyyiU4TtxDvqVwtm/fBvI8NKlxUFtkYYySyuQBP8G8nH2vQlIOwIxNkuCjfbzabNeS0BY6PscrZySZfHxLZokNkRLZ/+Zd/AQDce++9yt8/+eST2Lp1K3bv3o2JEycCAG677TZcccUVuOWWW9DQ0ODXoRIWxGIxg3tMtcqYTqcdCUGlTKbt2LqnT5+OyZMnl8VkTdM0pFIpjIyMlM3EPpFI4MQTTywbZ57bBBEuGovFDHlxKkFky2az+gRPlStHrrQ6YcIE7N2715fjKwecrHwDx/q6clgYIexhZwGP8A65uigvXiVWi3drHwAMruB4PI5EImHog4MOF+XXQUwV4IXIVimROt3d3aipqUFTU1PQh1KQckxhwp9jt+ZBTkW2VCqFTCaj5/mVReZkMqkLceIzUQ4iW1idbDTnKkxkRLZC/PGPf8TcuXN1gQ0A3v/+92NkZASbNm3Cueeeq/y7kZERQ4hBX1+f58da6SQSCcsKYLFYDOl02nYlIaeTL7O/NdtXLBYrC4GNw0W2qL5wVIjPPWFEHPT7VV0UgD7pAYIV2fxwOMoVRmWHBQ/VFd0dzc3NushG4aKFCTosfDibwyX/8UcAwC//aQmqkuUvjA4zDRePHqsx+svUq3BPLnEft0S2SrzPbiA62UZHR/VxNQ/bdgNN0/TFG9nJxu8/F9lKzc1XLGZ549x4D3HxIJfL6S7oSnGyxWIxz3JHu41YiKVcxtm9vb1obGxEc3OzK9/ndN7G2z7vV+SxpaZpmDNnDoaHhw3CPols7hL0OCxqlM3Ifv/+/ejo6DB81tzcjFQqhf3795v+3fe+9z3dJUf4g50Hs7q62rbI5rWTrdxIp9Po7++nDrJCCCJclO8jDCKbHwKWHColipkqkS2ZTKKpqUmfMNKzWBgniZK9IM8YXtlzVP+5EshDwyusVv85zLglslXifXYD8T3Dq9bX1NS43v/GYjF9wUh2sgHHK4xyEcpvN6tcXVR855bq+kgkEnq1+4GBAQCVI7JFjYaGBgwMDLjq5AySeDzuqsjpVKyprT32HuLFolRjS5XLsRzmeGEK0SSRzRmBtrhvfvOb+sqU2X8vvvii7e9TvcB4uV8zbrjhBhw9elT/b/fu3UWdC2EfPhji91gF71DtDCBKmXxVYofBQw6i+sIhnBFEuKi8jyAmAvy8/TxXWWQTK7/JIlsikdArqNJEqTCV2FcT9pHFHGoj/iL2c1xkq6+vd30/4vtM7GdFkW1kZAS5XG5c1UE/kJ1s3FHnVnvk4zcS2cLNvHnz8Hd/93fkUjfB6byNO2J5u+fRUIXafzk42cKaky2q19NPAn36r7vuOnziE5+w3GbKlCm2vquzsxP/8z//Y/js8OHDyGaz4xxuIul0OhKJNMsJ/tKxekB7enpQVVVlee84fCA1PDzs+F5WYofBbdeVcr6VThDVRYHSCpK4uf8gRDY5XJR/Jq++nnjiiTh48CBaW1s9P8aoQyIbYQXlZAsWlZPNzVBRjtmikSiy8XxwNTU1gVcXdXthK51OY3BwUA+bI5EtnPCQUUKN03BRbrzIZDLI5/O2oyTKQWSjcNHoEqjI1tra6trkYsmSJbjllluwb98+dHV1AThWDCGdTmPRokWu7INwB9HJZkYqlcKkSZNsf+f8+fMxNjbmeMARdAhSEPDVZUoKXhmIIg9PBl0JTrYgRTY5XJT/TlV2vqenx/PjKwdKyb1JlD9ym6CEzP4iPp9Hjx4Ltw3KycZDyoIY4/ghsomQyEZEEadiTTqd1kOlBwcHixLZovpOIJEtukRmpPrWW2/h0KFDeOutt5DL5bB582YAxyo/1tXV4bzzzsPs2bNx+eWXY9WqVTh06BC++MUv4uqrr6bKoiHDjpPNKcXmPahEJ1tzczMWL15cVsUcCHN4u+aDEoBENq/2JVcXLeRkI+xTiQsihH1EkY1XNyb8Qxw/8X7Qa5HNrPAB/zxIkU12Nbu1MEAiG1EOOBVrNE1DXV0djhw5goGBAdtjqVQqBU3TkEwmI/tOIJEtukRGZLvpppuwZs0a/d8LFiwAAKxfvx7nnHMO4vE4HnvsMVxzzTV4z3veg+rqalx66aW49dZbgzpkwgSx6l/Q8A6jkgblmqaRi62CkEU2P6ptAsGLbHwy4kc6gELVRflnfPJJEyPn0OCOsEIUMah9+I9YURE4JnB5cR9UTjY5XJTna+IhZn7it5ONp/8giChRjDO9GJEtkUhgwYIFkX4nUE626BIZke3ee+/Fvffea7lNT08P1q5d688BEUXjhZOtWESRjSDKEf5C5oMSv17QQYtsra2tmDNnjl5cwEvsFD4YGxsjJ1sJhEFkm1CrntCW26JFTU0NwBgwOIwJyBb+gxAgO9lKwew+E9aIIpsXLjbAnpNNzMnmN3J1Ua8KH3DoXUJEEdHUYLe/5jke+/r69OfLjsgc9Wg2crJFl8iIbET5YCcnm1/4WYGQIIKAt3G+ul8pIpumaWhra/NlX8XmZCPsE/TgriaVwEvf+Idxn6dSKXzpS1/y/Xi8Qj+fwUFg1Sq8VLU56EOyhVsim9l9JgojPpd+iGwqJ9vQ0JAubFVCTjbKT0lEEXHuZXcuyEU2XlglFotVhEFCPEdN0wKdOwc9Dosa5d86idARRpGtEjpqojKRw0X9auv8OU8kEqF41r3EyskmhpLye0ATI+eIbYiuHyHjppONKA5x0uVFZVHg+L0dGxvTC/mI/SyvulldXR1IOzAT2bzIyRblPFNEZcOfEyfPhVwtuFLavyxskcgWHWgkQvhOGMNFqbMgyhU5Kb/fTrZKcG3J11iVky2bzeqfV8I1cRsa3BFWiJMPah/BID6jXjvZeF8LGJ1snKBCuL12sonuaHqPEFGlmLlXLBYz5FmslPYvXqOg322iky4Mc/iwQ8vBhO80Nzejvb3dt1AuK8jJRpQ7QeVzqKSJgJ1wUe6wAMiJVQxBi2zD2RyW37MRALBmxWJUJY+Lpz//+c8BAJdddlnk27t+PrkcPso0fGb0RADAmtTrKK6Gtz9omoZEIoFsNlvS+9zsPhOF4c+lV0UPALXIxu+9SNAim1wEx63roWka0uk0MplM5PsaonKpr69HbW0t2tvbHf1dXV0dBgYGAFTG2BIIfuwjE4vFkMvlQnEsYYdG+oTvxONxzJ49O+jDAEBONqL8CUpkq6+vh6ZpaGpq8mV/QSJXF1UVPhgeHgZQOSEObhP0QDPPGP5nxyH9Zw5jDLt27dJ/jjri+eSg4X/YsaTReYS/zbohspndZ6Iw/Ln0ysUGqNMfqES2ICqL8uMBvCt8AIBENiLyJJNJnHbaaY7/TgxDr5T2H7aKniSy2YdENqKiIScbUe4EVf67rq4OZ555ZkW8iEUnG2NMGS7KnWyVMjB0m6BFNjMSiQQuvvhi/eeoo5/PyAgS/1+0qrWHKRVFJcLzhXlZ0Vl2svG+gIttXOgO2snmVbgocPw626msSBDlRCWGi4qLsmEY+5A5xT7RHxESRAnwwYpcsYkgyoUgy39XyktYFtnEz+VrUCkDQ7cJa+GDWCyGOXPmBH0YrqGfz+AgMoimyFYp/U7YmDp1KpqbmzFhwgTP9mFWyEcMFwaCE9l42/Oq8AEANDQ0YP/+/Z4VlyCIsFKJTjZN0xCPx0PjHiORzT7hGakSRAC0tbVh3rx5aGhoCPpQCMITZJGNXB7uI06s+KQKMDrZOJUyMHSbsDrZiPBATrZgSSQSaG1t9XQfZk42vv9sNot0Oh2YEO+Hk62rqwsTJkygxWGi4kgmk0in0xgZGakoJ2eYQjRTqRSGhoao/7EBiWxERaNpmqerrgQRNEE62SoF8ZqOjo7qP/MVSBES2YojbHlJOPl8Hq+++ioAYNasWaE6tmLQz2dkBL1BH4xDSGQrf2SRTbzX/P4H5WIDjh8PYwyMMU9ysmmahqqqMJchIQjvaG5uxv79+wPLuxgEYXKPzZo1C4ODg+SktQGJbARBEGVMUDnZKgkxHxAPV4rH40qRLUyhjlGCX7dUKhWqwhFjY2N4+OGHAQA33HBD5FfXxfNZGYFiByJceKAV9vJFDheVnWxAcEUPAKPol8vlPHGyEUQlc+KJJ2LKlCkVJTSHSWSrqqqqqGtfCjTaJwiCKGPIyeYPPFSJO9n4dZdFNXKyFUc6ncbMmTMDFVCqk5X37FQjV3ijkDBp0iTU1NSU7E6vxPscFeRwTPH9xid+XlY3LYR4PPl8Xj9Oeu8ShDvEYrGKE3nCJLIR9iGRjSAIoowhkc0f4vE4stnsuITcFC7qHp2dnYHtuyaVwKvf/kBg+w+CGi2PV6teCvowbBOPx9HW1lbSd1TifY4SVjlGp02bhpaWFrS0tPh9WDqapo1zNQPkYCYIonj4OJLG79GCElcQBEGUMSSy+QO/rrKTjU+6OCSyEQRBFIfV+yyZTKK1tTXwcHL5XSC/AwiCIJxATrZoQiIbQRBEGaNpWmiTxpcTfPAj5wqS87KRyEYQBFEcUaiWrcobRyIbQRDFQk62aEL+ZYIgiDInFotRbhiPMXOy8d/xKnMkskWT4WwOn7t/EwDgzk8tQlUF5O0aYRr+KTsdAHBnchsqIQtOJd7nKBEFZzY/Rv4uCOMxEgQRHXp6epBKpdDa2hr0oRAOIJGNIAiizBFFHhrwe4PsZJNFNg6JbNEkzxjWv/aO/nMlkIOG9fkmAEA+YpVGi6US73OUiKKTjfKxEQRRCo2NjWhsbAz6MAiHhO/tRBAEQbiKmeBDuAefSMnhovLPNOEiCIIojig52VTvAoIgCKIyIJGNIAiizCGRzXsKhYsCxwQ2ys1DEARRHFFyslG4KEEQROUSvrcTQRAE4SpmrirCPfh15WG5KpGNQkUJgiCKJwoim1kRHIIgCKJyCN/biSAIgnAVqi7qPfJESiVskshGEARRPBQuShAEQUQBmm0RBEGUORQu6j3ydRWvOc/DRiIbQRBE8UTBySaHi1IeToIgiMqDen4J9n/VpPr6+gI+EoIgCHcYGhrC4OAgYrEY+vv7gz6csiSTyWBwcFD/9+DgoP4e4b+rq6ujd0tEyYzm9J/7+voxljKGhAFAf39/5IVU8XwGRkb0n/tGRjDW1wfkcqo/KxvM7jMRDrLZrKGfzWQyoetT5XdBGI+RIAiCcA7vy5mN6uMas7NVBbFnzx5Mnjw56MMgCIIgCIIgCIIgCIIgQsLu3bsxadIky21IZJPI5/P429/+hvr6eqoCJ9DX14fJkydj9+7daGhoCPpwiICgdkBwqC0QHGoLBIfaAsGhtkAA1A6I41BbIDhRbQuMMfT392PixIkF0xVQuKhELBYrqExWMg0NDZF6GAhvoHZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4UWwLjY2NtrYLX8ZQgiAIgiAIgiAIgiAIgogYJLIRBEEQBEEQBEEQBEEQRImQyEbYIp1O4+abb0Y6nQ76UIgAoXZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4ldAWqPABQRAEQRAEQRAEQRAEQZQIOdkIgiAIgiAIgiAIgiAIokRIZCMIgiAIgiAIgiAIgiCIEiGRjSAIgiAIgiAIgiAIgiBKhEQ2giAIgiAIgiAIgiAIgigREtkqhJ/+9KeYOnUqqqqqsGjRIjz77LOW2//85z/H/PnzUVNTg66uLlx55ZV499139d/fddddeO9734vm5mY0Nzdj6dKl2Lhxo+E7pkyZAk3Txv137bXXenKORGGCaAdjY2P4+te/jqlTp6K6uhrTpk3Dt771LeTzeU/OkbBHEG2hv78f119/PXp7e1FdXY0zzjgDf/rTnzw5P8I+breFRx55BKeeeiqamppQW1uLU045Bffdd1/J+yW8J4i28Mwzz+DDH/4wJk6cCE3T8Oijj3pxaoRDgmgL3/ve93Daaaehvr4e7e3tuPDCC/Haa695cn6EPYJoB3feeSfmzZuHhoYGNDQ0YMmSJXj88cc9OT/CPkGNFTjf+973oGkarr/+erdOiSiSINrCN7/5zXGaQmdnpyfn5wqMKHsefPBBlkwm2V133cW2bt3KVq5cyWpra9muXbuU2z/77LMsFouxf/u3f2Pbt29nzz77LJszZw678MIL9W0uvfRS9pOf/IS9/PLL7NVXX2VXXnkla2xsZHv27NG3efvtt9m+ffv0/9atW8cAsPXr13t9yoSCoNrBd77zHdbS0sLWrl3LduzYwX71q1+xuro69qMf/cjzcybUBNUWLrnkEjZ79mz29NNPszfeeIPdfPPNrKGhwbAN4S9etIX169ezRx55hG3dupVt27aN/ehHP2LxeJw98cQTRe+X8J6g2sLvfvc7duONN7Jf//rXDAD7zW9+4/WpEgUIqi28//3vZ6tXr2ZbtmxhmzdvZsuWLWM9PT1sYGDA83MmxhNUO/jtb3/LHnvsMfbaa6+x1157jX3ta19jyWSSbdmyxfNzJtQE1RY4GzduZFOmTGHz5s1jK1eu9Oo0CRsE1RZuvvlmNmfOHIO28Pbbb3t+vsVCIlsFsHjxYvbZz37W8NnMmTPZV7/6VeX2q1atYtOmTTN8dvvtt7NJkyaZ7mNsbIzV19ezNWvWmG6zcuVKdsIJJ7B8Pu/g6Am3CKodLFu2jK1YscKw3UUXXcQ+9alPOT0FwiWCaAuZTIbF43G2du1aw3bz589nN954YzGnQbiAH22BMcYWLFjAvv71rxe9X8J7gmoLIiSyhYMwtAXGji3WAmBPP/20zSMn3CQs7YAxxpqbm9nPfvYzG0dNeEGQbaG/v5/NmDGDrVu3jp199tkksgVMUG3h5ptvZvPnzy/uoAOAwkXLnNHRUWzatAnnnXee4fPzzjsP//3f/638mzPOOAN79uzB7373OzDGcODAATz88MNYtmyZ6X4ymQyy2SwmTJhgehz3338/VqxYAU3Tij8hoiiCbAdnnnkmnnrqKbz++usAgP/93//Fc889h/PPP9+FMyOcElRbGBsbQy6XQ1VVlWG76upqPPfccyWeFVEMfrQFxhieeuopvPbaazjrrLOK3i/hLUG1BSJ8hKktHD16FABMx5aEd4SlHeRyOTz44IMYHBzEkiVLSjspoiiCbgvXXnstli1bhqVLl7pzQkTRBN0W3njjDUycOBFTp07FJz7xCWzfvt2dE/OCAIQ9wkf27t3LALDnn3/e8Pktt9zCTjzxRNO/4yF9iUSCAWAXXHABGx0dNd3+mmuuYSeccAIbGhpS/v6hhx5i8Xic7d27t7gTIUoiyHaQz+fZV7/6VaZpGkskEkzTNPbd73639JMiiiLItrBkyRJ29tlns71797KxsTF23333MU3TLPdLeIeXbeHIkSOstraWJRIJlk6n2d13313yfgnvCKotyICcbIETlraQz+fZhz/8YXbmmWeWdkJEUQTdDl555RVWW1vL4vE4a2xsZI899pg7J0Y4Jsi28MADD7C5c+fqY0lysgVLkG3hd7/7HXv44YfZK6+8orsaOzo62MGDB907QRchJ1uFILvHGGOmjrKtW7fi85//PG666SZs2rQJTzzxBHbs2IHPfvazyu1/8IMf4IEHHsAjjzwyzqXCufvuu/HBD34QEydOLO1EiJIIoh089NBDuP/++/GLX/wCL730EtasWYNbb70Va9asce/ECMcE0Rbuu+8+MMbQ3d2NdDqN22+/HZdeeini8bh7J0Y4xou2UF9fj82bN+NPf/oTbrnlFnzhC1/Ahg0bit4v4Q9BtQUifATdFq677jq88soreOCBB1w5H6I4gmoHJ510EjZv3owXXngBn/vc57B8+XJs3brV1XMjnOF3W9i9ezdWrlyJ+++/33R+SQRDEP3CBz/4QXz0ox/FySefjKVLl+Kxxx4DgPDOJwMS9wifGBkZYfF4nD3yyCOGzz//+c+zs846S/k3n/rUp9jFF19s+OzZZ59lANjf/vY3w+erVq1ijY2N7E9/+pPpMezcuZPFYjH26KOPFnkWRKkE2Q4mTZrE7rjjDsNn3/72t9lJJ51UzKkQJRKGPmFgYED/u0suuYSdf/75xZwKUSJetwWRq666ip133nlF75fwlqDaggzIyRY4YWgL1113HZs0aRLbvn17EWdAuEEY2oHI+973PvaP//iPNo+ecJOg2sJvfvMbBoDF43H9PwBM0zQWj8fZ2NhYiWdGOCVs/cLSpUvH5YcLC+RkK3NSqRQWLVqEdevWGT5ft24dzjjjDOXfZDIZxGLGpsGdJowx/bNVq1bh29/+Np544gmceuqppsewevVqtLe3W+ZvIrwlyHZg9j35fL6ocyFKIwx9Qm1tLbq6unD48GH8/ve/x0c+8pFiT4coAS/bggxjDCMjI0Xvl/CWoNoCET6CbAuMMVx33XV45JFH8Ic//AFTp04t9jSIEglbn0D9RnAE1Rbe97734c9//jM2b96s/3fqqafisssuw+bNmykKIgDC1C+MjIzg1VdfRVdXl93D9xffZT3Cd3ip3bvvvptt3bqVXX/99ay2tpbt3LmTMcbYV7/6VXb55Zfr269evZolEgn205/+lL355pvsueeeY6eeeipbvHixvs33v/99lkql2MMPP2wopdvf32/Ydy6XYz09PewrX/mKPydLmBJUO1i+fDnr7u5ma9euZTt27GCPPPIIa21tZV/+8pf9O3nCQFBt4YknnmCPP/442759O3vyySfZ/Pnz2eLFiy1zuxHe4kVb+O53v8uefPJJ9uabb7JXX32V3XbbbSyRSLC77rrL9n4J/wmqLfT397OXX36ZvfzyywwA+9d//Vf28ssvs127dvl38oSBoNrC5z73OdbY2Mg2bNhgeI9kMhn/Tp7QCaod3HDDDeyZZ55hO3bsYK+88gr72te+xmKxGHvyySf9O3nCQFBtQYZysgVPUG3hn//5n9mGDRvY9u3b2QsvvMA+9KEPsfr6+tCOG0lkqxB+8pOfsN7eXpZKpdjChQsN5dCXL1/Ozj77bMP2t99+O5s9ezarrq5mXV1d7LLLLmN79uzRf9/b28sAjPvv5ptvNnzP73//ewaAvfbaa16eHmGTINpBX18fW7lyJevp6WFVVVVs2rRp7MYbb2QjIyNeny5hQRBt4aGHHmLTpk1jqVSKdXZ2smuvvZYdOXLE61MlCuB2W7jxxhvZ9OnTWVVVFWtubmZLlixhDz74oKP9EsEQRFtYv369su9Yvny5l6dKFCCItqBqBwDY6tWrvTxVwoIg2sGKFSv0fba1tbH3ve99JLCFgKDGCiIksoWDINrCxz/+cdbV1cWSySSbOHEiu+iii9hf/vIXT8+zFDTGLHx6BEEQBEEQBEEQBEEQBEEUhHKyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEARBEARBEARRIiSyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEESgjI6OYvr06Xj++edd/d61a9diwYIFyOfzrn4vQRAEQRCEChLZCIIgCIIgXOSKK66Apmnj/tu2bVvQhxZa/vM//xO9vb14z3veo3+maRoeffTRcdteccUVuPDCC21974c+9CFomoZf/OIXLh0pQRAEQRCEOSSyEQRBEARBuMwHPvAB7Nu3z/Df1KlTx203OjoawNGFjx//+Mf4zGc+48l3X3nllfjxj3/syXcTBEEQBEGIkMhGEARBEAThMul0Gp2dnYb/4vE4zjnnHFx33XX4whe+gNbWVvzDP/wDAGDr1q04//zzUVdXh46ODlx++eU4ePCg/n2Dg4P49Kc/jbq6OnR1deG2227DOeecg+uvv17fRuX8ampqwr333qv/e+/evfj4xz+O5uZmtLS04CMf+Qh27typ/567xG699VZ0dXWhpaUF1157LbLZrL7NyMgIvvzlL2Py5MlIp9OYMWMG7r77bjDGMH36dNx6662GY9iyZQtisRjefPNN5bV66aWXsG3bNixbtszhVQZ27typdA2ec845+jYXXHABNm7ciO3btzv+foIgCIIgCCeQyEYQBEEQBOEja9asQSKRwPPPP4//+I//wL59+3D22WfjlFNOwYsvvognnngCBw4cwCWXXKL/zZe+9CWsX78ev/nNb/Dkk09iw4YN2LRpk6P9ZjIZnHvuuairq8MzzzyD5557DnV1dfjABz5gcNStX78eb775JtavX481a9bg3nvvNQh1n/70p/Hggw/i9ttvx6uvvop///d/R11dHTRNw4oVK7B69WrDfu+55x68973vxQknnKA8rmeeeQYnnngiGhoaHJ0PAEyePNngFnz55ZfR0tKCs846S9+mt7cX7e3tePbZZx1/P0EQBEEQhBMSQR8AQRAEQRBEubF27VrU1dXp//7gBz+IX/3qVwCA6dOn4wc/+IH+u5tuugkLFy7Ed7/7Xf2ze+65B5MnT8brr7+OiRMn4u6778Z//dd/6c63NWvWYNKkSY6O6cEHH0QsFsPPfvYzaJoGAFi9ejWampqwYcMGnHfeeQCA5uZm3HHHHYjH45g5cyaWLVuGp556CldffTVef/11/PKXv8S6deuwdOlSAMC0adP0fVx55ZW46aabsHHjRixevBjZbBb3338/Vq1aZXpcO3fuxMSJE5W/++QnP4l4PG74bGRkRHe9xeNxdHZ2AgCGh4dx4YUXYsmSJfjmN79p+Jvu7m6DY48gCIIgCMILSGQjCIIgCIJwmXPPPRd33nmn/u/a2lr951NPPdWw7aZNm7B+/XqDKMd58803MTQ0hNHRUSxZskT/fMKECTjppJMcHdOmTZuwbds21NfXGz4fHh42hHLOmTPHIGx1dXXhz3/+MwBg8+bNiMfjOPvss5X76OrqwrJly3DPPfdg8eLFWLt2LYaHh/Gxj33M9LiGhoZQVVWl/N0Pf/hDXczjfOUrX0Eulxu37VVXXYX+/n6sW7cOsZgxWKO6uhqZTMb0GAiCIAiCINyARDaCIAiCIAiXqa2txfTp001/J5LP5/HhD38Y3//+98dt29XVhTfeeMPWPjVNA2PM8JmYSy2fz2PRokX4+c9/Pu5v29ra9J+TyeS4783n8wCOiVWF+MxnPoPLL78cP/zhD7F69Wp8/OMfR01Njen2ra2tuogn09nZOe461tfX48iRI4bPvvOd7+CJJ57Axo0bx4mIAHDo0CHDORIEQRAEQXgBiWwEQRAEQRABsnDhQvz617/GlClTkEiMH5pNnz4dyWQSL7zwAnp6egAAhw8fxuuvv25wlLW1tWHfvn36v9944w2De2vhwoV46KGH0N7eXlT+MwA4+eSTkc/n8fTTT49zmHHOP/981NbW4s4778Tjjz+OZ555xvI7FyxYgDvvvBOMMT2M1Qm//vWv8a1vfQuPP/64Mu8bd+otWLDA8XcTBEEQBEE4gQofEARBEARBBMi1116LQ4cO4ZOf/KReBfPJJ5/EihUrkMvlUFdXh6uuugpf+tKX8NRTT2HLli244oorxoVE/v3f/z3uuOMOvPTSS3jxxRfx2c9+1uBKu+yyy9Da2oqPfOQjePbZZ7Fjxw48/fTTWLlyJfbs2WPrWKdMmYLly5djxYoVePTRR7Fjxw5s2LABv/zlL/Vt4vE4rrjiCtxwww2YPn26IcxVxbnnnovBwUH85S9/cXDVjrFlyxZ8+tOfxle+8hXMmTMH+/fvx/79+3Ho0CF9mxdeeAHpdLrgcRAEQRAEQZQKiWwEQRAEQRABMnHiRDz//PPI5XJ4//vfj7lz52LlypVobGzUhbRVq1bhrLPOwgUXXIClS5fizDPPxKJFiwzfc9ttt2Hy5Mk466yzcOmll+KLX/yiIUyzpqYGzzzzDHp6enDRRRdh1qxZWLFiBYaGhhw52+68805cfPHFuOaaazBz5kxcffXVGBwcNGxz1VVXYXR0FCtWrCj4fS0tLbjooouUYayFePHFF5HJZPCd73wHXV1d+n8XXXSRvs0DDzyAyy67zDJklSAIgiAIwg00JifvIAiCIAiCIELPOeecg1NOOQU/+tGPgj6UcTz//PM455xzsGfPHnR0dBTc/s9//jOWLl2qLMxQCu+88w5mzpyJF198EVOnTnXtewmCIAiCIFSQk40gCIIgCIJwhZGREWzbtg3f+MY3cMkll9gS2IBjud5+8IMfYOfOna4ez44dO/DTn/6UBDaCIAiCIHyBCh8QBEEQBEEQrvDAAw/gqquuwimnnIL77rvP0d8uX77c9eNZvHgxFi9e7Pr3EgRBEARBqKBwUYIgCIIgCIIgCIIgCIIoEQoXJQiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgS+f8Bv9KnmU9JJM4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import search_best_peaks\n", + "from stingray.stats import fold_detection_level, z2_n_detection_level\n", + "\n", + "ntrial = (frequencies[-1] - frequencies[0]) / df_min\n", + "z_detlev = z2_n_detection_level(n=1, epsilon=0.001, ntrial=len(freq))\n", + "ef_detlev = fold_detection_level(nbin, epsilon=0.001, ntrial=len(freq))\n", + "\n", + "cand_freqs_ef, cand_stat_ef = search_best_peaks(freq, efstat, ef_detlev)\n", + "cand_freqs_z, cand_stat_z = search_best_peaks(freq, zstat, z_detlev)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.')\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, (zstat - nharm), label='$Z^2_1$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.', zorder=10)\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray', zorder=10)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', color='gray', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, ef_detlev - nbin + 3])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the side lobes of the sinc squared-like shape are producing spurious candidates here. For now, we do not have a method to eliminate these fairly obvious patterns, but it will be implemented in future releases" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fit peak with Sinc-squared and Gaussian functions\n", + "\n", + "As we saw earlier, if the pulse frequency is stable during the observation, the peak shape is a **Sinc squared function**. Therefore we fit it to the peak with the function `stingray.pulse.modeling.fit_sinc`. \n", + "We have two possibilities:\n", + "\n", + "+ if `obs_length` is the length of the observation. If it is defined, it fixes width to $1/(\\pi*obs length)$, as expected from epoch folding periodograms. The other two free parameters are `amplitude` and `mean`.\n", + "+ if it is not defined, the `width` parameter can be used.\n", + "\n", + "On the other hand, if the pulse frequency varies slightly, the peak oscillate and the integrated profile is a bell-shaped function. We can fit it with a **Gaussian function** (`stingray.pulse.modeling.fit_gaussian`) with the standard parameters: `amplitude`, `mean`, `stddev`.\n", + "\n", + "We also provide the user with the constrains `fixed`, `tied`, `bounds`, in order to fix, link and/or constrain parameters.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_sinc\n", + "\n", + "fs=fit_sinc(freq, efstat-(nbin-1),amp=max(efstat-(nbin-1)), mean=cand_freqs_ef[0], \n", + " obs_length=obs_length)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/sElEQVR4nOzdeXhTddrG8e/pkqQ7lKWlUhYVVAQVUVFcAGVTURlnBh2dUUcddVwZdXAc39G6weiMgOLuKDio4O64C6jgAgqi7Pu+tZSldE2TNDnvH+fk0ACFFrrn/lxXL9vkJDlBaHLneX7PzzBN00RERERERESqLaahT0BERERERKSpUZASERERERGpIQUpERERERGRGlKQEhERERERqSEFKRERERERkRpSkBIREREREakhBSkREREREZEaUpASERERERGpobiGPoHGIBQKsXXrVlJSUjAMo6FPR0REREREGohpmhQXF5OVlUVMTNV1JwUpYOvWrWRnZzf0aYiIiIiISCOxadMm2rdvX+X1ClJASkoKYP1hpaamNvDZiIhIfSorKOK0cbMBmOP+hUTDhNtvh6SkBj4zERFpCEVFRWRnZzsZoSoKUuC086WmpipIiYhEmbggxLgTAUh1e0g0QpCaqiAlIhLlDrbkR8MmREREREREakhBSkREREREpIYUpERERERERGpIa6RERERE5LCYpklFRQXBYLChT0XkoGJjY4mLizvsbY8UpERERETkkPn9fnJzcykrK2voUxGptsTERNq1a4fL5Trk+1CQEhEREZFDEgqFWLduHbGxsWRlZeFyuQ77U36RumSaJn6/n+3bt7Nu3Tq6dOlywE13D0RBSkREREQOid/vJxQKkZ2dTWJiYkOfjki1JCQkEB8fz4YNG/D7/Xg8nkO6Hw2bEBEREZHDcqif6Is0lNr4O6u/9SIiIiIiIjWkICUiIiIiIlJDClIiIiIiIk1Ip06dGDdu3CHffuLEibRo0aLWzidaKUiJiIiISFS55pprMAxjn68hQ4Y4x3Tq1Gmf69u3b39Ij5eTk8NJJ51U49tVFXjmzp3LDTfcUK372F/ouuyyy1i5cmWNz0ciaWqfiIiIiESdIUOGMGHChIjL3G53xM8PPfQQf/rTn5yfY2Nj6+XcDqZNmzaHdfuEhAQSEhJq6WyilypSIiIiIlJrTNOkzF9R71+madboPN1uN5mZmRFfLVu2jDgmJSUl4voDBZgZM2Zw2mmnkZSURIsWLTjzzDPZsGEDEydO5MEHH2TBggVOZWvixIkAjBkzhh49epCUlER2djY333wzJSUlzv398Y9/pLCw0LldTk4OsG+VKScnhw4dOuB2u8nKyuL2228HoF+/fmzYsIG//OUvzn3A/itdH374Iaeccgoej4fWrVtz6aWXOtc9++yzdOnSBY/HQ0ZGBr/5zW9q9GfdXKkiJSIiIiK1xhsI0u3+L+r9cZc+NJhEV8O8ta2oqGDYsGH86U9/YvLkyfj9fubMmYNhGFx22WUsXryYzz//nOnTpwOQlpYGWCO4n3rqKTp16sS6deu4+eabGTlyJM8++yx9+vRh3Lhx3H///axYsQKA5OTkfR77nXfeYezYsUyZMoXjjz+evLw8FixYAMB7773HiSeeyA033BBRWdvbJ598wqWXXsp9993HpEmT8Pv9fPLJJwD89NNP3H777UyaNIk+ffqwa9cuvv3221r982uqFKREREREJOp8/PHH+wSTe+65h3/84x8RP//f//2f8/OoUaOcak9lRUVFFBYWMnToUI466igAjjvuOOf65ORk4uLiyMzMjLjdiBEjnO87d+7Mww8/zJ///GeeffZZXC4XaWlpGIaxz+0q27hxI5mZmQwYMID4+Hg6dOjAaaedBkB6ejqxsbFOZa0qjz76KJdffjkPPvigc9mJJ57o3H9SUhJDhw4lJSWFjh070rNnzyrvK5ooSImISFSraTuQiBxYQnwsSx8a3CCPWxP9+/fnueeei7gsPT094ue//vWvXHPNNc7PrVu33u99paenc8011zB48GAGDhzIgAEDGD58OO3atTvgOXz99deMGjWKpUuXUlRUREVFBeXl5ZSWlpKUlFSt5/Hb3/6WcePGceSRRzJkyBAuuOACLrroIuLiqv82f/78+VVWrAYOHEjHjh2d+x8yZAi/+tWvSExMrPb9N1daIyUiIlHt6+Xbne/XbC9pwDMRaR4MwyDRFVfvX+H1P9WVlJTE0UcfHfG1d5Bq3bp1xPUHGhk+YcIEZs+eTZ8+fXjzzTfp2rUrP/zwQ5XHb9iwgQsuuIDu3bvz7rvvMm/ePJ555hkAAoFAtZ9HdnY2K1as4JlnniEhIYGbb76Zc845p0b3caDBEykpKfz8889MnjyZdu3acf/993PiiSeye/fuat9/c6UgJSIiUW3FtiLn+88X57JuR2kDno2INGU9e/bk3nvvZdasWXTv3p033ngDAJfLRTAYjDj2p59+oqKigieeeILTTz+drl27snXr1ohj9ne7/UlISODiiy/mqaeeYsaMGcyePZtFixZV+z5OOOEEvvzyyyqvj4uLY8CAATz++OMsXLiQ9evX89VXXx30vJq7Bg1S+5vPbxgGt9xyC2C1W+Tk5JCVlUVCQgL9+vVjyZIlEffh8/m47bbbaN26NUlJSVx88cVs3ry5IZ6OiIg0QduKfBE/r1VVSiQq+Hw+8vLyIr527NhxSPe1bt067r33XmbPns2GDRuYOnUqK1eudNZJhYdJzJ8/nx07duDz+TjqqKOoqKhg/PjxrF27lkmTJvH8889H3G+nTp0oKSnhyy+/ZMeOHZSVle3z2BMnTuTll19m8eLFzv0kJCTQsWNH5z6++eYbtmzZUuXze+CBB5g8eTIPPPAAy5YtY9GiRTz++OOAtZbsqaeeYv78+WzYsIH//ve/hEIhjjnmmEP6s2pOGjRIzZ07l9zcXOdr2rRpgNXrCfD4448zZswYnn76aebOnUtmZiYDBw6kuLjYuY8RI0bw/vvvM2XKFL777jtKSkoYOnRotdK7iIhIXqE34uf8Yl8VR4pIc/L555/Trl27iK+zzjrrkO4rMTGR5cuX8+tf/5quXbtyww03cOutt3LjjTcC8Otf/5ohQ4bQv39/2rRpw+TJkznppJMYM2YMjz32GN27d+f1119n9OjREffbp08fbrrpJi677DLatGnjhJvKWrRowUsvvcSZZ57pVJY++ugjWrVqBVh7Ya1fv56jjjqqyvHt/fr14+233+bDDz/kpJNO4txzz+XHH3907v+9997j3HPP5bjjjuP5559n8uTJHH/88Yf0Z9WcGGYjWmU7YsQIPv74Y1atWgVAVlYWI0aM4J577gGsTw4yMjJ47LHHuPHGGyksLKRNmzZMmjSJyy67DICtW7eSnZ3Np59+yuDB1VvoWFRURFpaGoWFhaSmptbNkxMRkUZp0COfsNIuQt0yawoeQtz08fPEp6Y07ImJNAHl5eWsW7eOzp074/F4Gvp0RKrtQH93q5sNGs0aKb/fz2uvvca1116LYRisW7eOvLw8Bg0a5Bzjdrvp27cvs2bNAmDevHkEAoGIY7KysujevbtzzP74fD6KiooivkREJPqEQiZ5RX7n5/jYGIIhU0MnRETkoBpNkPrggw/YvXu3M2IyLy8PgIyMjIjjMjIynOvy8vJwuVz77EJd+Zj9GT16NGlpac5XdnZ2LT4TERFpKnaW+vFXhJyf2yS7AVi6VR+wiYjIgTWaIPXyyy9z/vnnk5WVFXH53qMsTdM86HjLgx1z7733UlhY6Hxt2rTp0E9cRESarK27I9dHtUm12juW5SpIiYjIgTWKILVhwwamT5/O9ddf71wW3n1578pSfn6+U6XKzMzE7/dTUFBQ5TH743a7SU1NjfgSEZHos0+QSnYBqkiJiMjBNYogNWHCBNq2bcuFF17oXNa5c2cyMzOdSX5graOaOXMmffr0AaBXr17Ex8dHHJObm8vixYudY0RERKqyZa8g1TbVau1blltMMNRoZjGJiEgjFNfQJxAKhZgwYQJXX301cXF7TscwDEaMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx4MGDCgoZ6SiIg0EVt3l+PBRzlWS19agov42Bi8gSDrdpRydNvkBj5DERFprBo8SE2fPp2NGzdy7bXX7nPdyJEj8Xq93HzzzRQUFNC7d2+mTp1KSsqekbRjx44lLi6O4cOH4/V6Oe+885g4cSKxsbH1+TRERKQJ2rrbyxWxX/EsvwIgxjBI9cQDkFdYriAlIiJVavAgNWjQIKraysowDHJycsjJyany9h6Ph/HjxzN+/Pg6OkMREWmuthZ6uSZ2gROkCHhJdFkfxO0s1ca8IiJStUaxRkpERKQh+Aq20p0Ney7YtY4EO0jtKPFXcSsRkdqVk5NDRkYGhmHwwQcfcM011zBs2LCGPi05CAUpERGJSuWBICeWzyHGqNQVsXPVnopUiSpSIs3VNddcg2EYzlerVq0YMmQICxcurLXHyMnJ4aSTTjroccuWLePBBx/khRdeIDc3l/PPP58nn3ySiRMnOsf069ePESNG1Nq5Se1QkBIRkaiUV1jOgJifIy8s2ECStUSKnapIiTRrQ4YMITc3l9zcXL788kvi4uIYOnRovZ/HmjVrALjkkkvIzMzE7XaTlpZGixYt6v1cpGYUpEREJCoVlxRzdsyiyAtDftpUWPsXao2USPPmdrvJzMwkMzOTk046iXvuuYdNmzaxfft255gtW7Zw2WWX0bJlS1q1asUll1zC+vXrnetnzJjBaaedRlJSEi1atODMM89kw4YNTJw4kQcffJAFCxY4Va/KFaawnJwcLrroIgBiYmIwDAMgorXvmmuuYebMmTz55JPOfVU+B2k4DT5sQkREpCGE8peRYPjZarSCSt19KRU7Aa2REjlkpgmBsvp/3PhEsINITZWUlPD6669z9NFH06pVKwDKysro378/Z599Nt988w1xcXE88sgjTgtgTEwMw4YN409/+hOTJ0/G7/czZ84cDMPgsssuY/HixXz++edMnz4dsLbt2dvdd99Np06d+OMf/0hubu5+z+3JJ59k5cqVdO/enYceegiANm3aHNLzlNqlICUiIlHJLLIrT7GtIbTnck/IegOoipTIIQqUwais+n/cv28FV1K1D//4449JTra2OCgtLaVdu3Z8/PHHxMRYDVtTpkwhJiaG//znP06laMKECbRo0YIZM2ZwyimnUFhYyNChQznqqKMAOO6445z7T05OJi4ujszMzCrPITk52Wnhq+q4tLQ0XC4XiYmJB7wvqX9q7RMRkahkFG8FoDiuZcTlrgo7SKkiJdKs9e/fn/nz5zN//nx+/PFHBg0axPnnn8+GDdYkz3nz5rF69WpSUlJITk4mOTmZ9PR0ysvLWbNmDenp6VxzzTUMHjyYiy66iCeffLLKqpI0T6pIiYhIVIotsSpSJXGRLTKxFSUAlPmDlPkrSHTppVKkRuITrepQQzxuDSQlJXH00Uc7P/fq1Yu0tDReeuklHnnkEUKhEL169eL111/f57bh1roJEyZw++238/nnn/Pmm2/yf//3f0ybNo3TTz/98J6LNAl6dRARkagUX7YNAK+7FRTvudzwl+COi8GLVZVKTNdLpUiNGEaNWuwaC8MwiImJwev1AnDyySfz5ptv0rZtW1JTU6u8Xc+ePenZsyf33nsvZ5xxBm+88Qann346LpeLYDBYK+dWm/cltUetfSIiEpXc3nwAvJ7IipThL6Vtkr2XVKna+0SaK5/PR15eHnl5eSxbtozbbruNkpISZ4relVdeSevWrbnkkkv49ttvWbduHTNnzuSOO+5g8+bNrFu3jnvvvZfZs2ezYcMGpk6dysqVK511Up06dWLdunXMnz+fHTt24PMd+rrLTp068eOPP7J+/Xp27NhBKBQ6+I2kzilIiYhIVEr0WUGqwtO60qUxgEmnhPA6KQ2cEGmuPv/8c9q1a0e7du3o3bs3c+fO5e2336Zfv34AJCYm8s0339ChQwcuvfRSjjvuOK699lq8Xi+pqakkJiayfPlyfv3rX9O1a1duuOEGbr31Vm688UYAfv3rXzNkyBD69+9PmzZtmDx58iGf6913301sbCzdunWjTZs2bNy4sTb+COQwqV9BRESiUrLf2ismmNh2z4XuJPB66ewuBlI0cEKkmZo4ceJ+93XaW2ZmJq+++up+r0tNTeX999+v8rZut5t33nnnoI8xbNgwTNOMuGzvc+vatSuzZ88+6H1J/VJFSkREok+gnMRgEQChpErjhOOtUcjt463rdmgEuoiIVEFBSkREok+xNaK43IwnNrHSInK3tUC+XcxuQCPQRUSkagpSIiISfYqt0ed5ZjpJnvg9l7tTAGhDAaA1UiIiUjUFKRERiT72ZrzbaElCfOyey+OtilTL0E5AU/tERKRqClIiIhJ97IrUNrMlia5KQcquSKUErCC1Q619IiJSBQUpERGJPkV2RcpsSVJEkLKGTSSUW6PR1donIiJVUZASEZHo46yRaklC5SDlsoKUy2uNRt9V6t9nLLGIiAgoSImISDSyp/ZtM9NJdFXaUtEOUjH+YhIopyJkUuoPNsQZiohII6cgJSIiUccsCgepliRUDlKxLohxAdA+thCAQm+g3s9PREQaPwUpERGJPqXWGqjtpEUOmzAMcFmT+zp6SgHYXaaBEyLStLz44otkZ2cTExPDuHHjGvp0mi0FKRERiS7BCgx/CQDe2BTiY/d6KYz3AJDhsgZNqCIl0jzl5eVx2223ceSRR+J2u8nOzuaiiy7iyy+/bOhT26+JEyfSokWLgx5XVFTErbfeyj333MOWLVu44YYb6v7kolTcwQ8RERFpRsoLnW9DrrR9r49zA5AR7wWgsExBSqS5Wb9+PWeeeSYtWrTg8ccf54QTTiAQCPDFF19wyy23sHz58kO630AgQHx8fLUvrwsbN24kEAhw4YUX0q5du/0eU5/n05ypIiUiItGlfDcAxWYCbrdr3+vjrIpU6zgrSO1WRUqk+kwTSksb7quaUzZvvvlmDMNgzpw5/OY3v6Fr164cf/zx3Hnnnfzwww/OcRs3buSSSy4hOTmZ1NRUhg8fzrZt25zrc3JyOOmkk3jllVecypZpmhiGwfPPP88ll1xCUlISjzzyCAAfffQRvXr1wuPxcOSRR/Lggw9SUVHh3N/u3bu54YYbyMjIwOPx0L17dz7++GNmzJjBH//4RwoLCzEMA8MwyMnJ2ed5TZw4kR49egBw5JFHYhgG69evr/I8CwsLueGGG2jbti2pqamce+65LFiwIOI+//nPf5KRkUFKSgrXXXcdf/vb3zjppJOc6/v168eIESMibjNs2DCuueYa52e/38/IkSM54ogjSEpKonfv3syYMSPivFu0aMEXX3zBcccdR3JyMkOGDCE3Nzfifl955RWOP/543G437dq149ZbbwXg2muvZejQoRHHVlRUkJmZySuvvLLPn1NtUUVKRESiix2kikgkybWfl0E7SKXHlgFq7ROpkbIy+Ne/Gu7x//pXSEo64CG7du3i888/59FHHyVpP8eG2+dM02TYsGEkJSUxc+ZMKioquPnmm7nssssiQsDq1at56623ePfdd4mN3bPm8oEHHmD06NGMHTuW2NhYvvjiC37/+9/z1FNPcfbZZ7NmzRqn7e6BBx4gFApx/vnnU1xczGuvvcZRRx3F0qVLiY2NpU+fPowbN47777+fFStWAJCcnLzPuV922WVkZ2czYMAA5syZQ3Z2Nm3atKnyPC+88ELS09P59NNPSUtL44UXXuC8885j5cqVpKen89Zbb/HAAw/wzDPPcPbZZzNp0iSeeuopjjzyyOr/PwH++Mc/sn79eqZMmUJWVhbvv/8+Q4YMYdGiRXTp0gWAsrIy/v3vfzNp0iRiYmL4/e9/z913383rr78OwHPPPcedd97JP//5T84//3wKCwv5/vvvAbj++us555xzyM3Ndapwn376KSUlJQwfPrxG51oTClIiIhJdvLsBKDKTSHLH7nu9HaRaGFaQ2q3WPpFmZfXq1ZimybHHHnvA46ZPn87ChQtZt24d2dnZAEyaNInjjz+euXPncuqppwJWtWXSpElOYAm74ooruPbaa52f//CHP/C3v/2Nq6++GrAqRg8//DAjR47kgQceYPr06cyZM4dly5bRtWtX55iwtLQ0DMMgMzOzynNOSEigVatWALRp0ybi2L3P86uvvmLRokXk5+fjdlstzf/+97/54IMPeOedd7jhhhsYN24c1157Lddffz0AjzzyCNOnT6e8vPyAf3aVrVmzhsmTJ7N582aysrIAuPvuu/n888+ZMGECo0aNAqx2w+eff56jjjoKgFtvvZWHHnrIuZ9HHnmEu+66izvuuMO5LPz/oE+fPhxzzDFMmjSJkSNHAjBhwgR++9vf7jdw1hYFKRERiS52RaqQJJLcVVekUrGm9qkiJdK8hDfZNgzjgMctW7aM7OxsJ0QBdOvWjRYtWrBs2TLnTXzHjh33CVEAp5xySsTP8+bNY+7cuTz66KPOZcFgkPLycsrKypg/fz7t27d3QlRt2/s8582bR0lJiRO8wrxeL2vWrAGsP4Obbrop4vozzjiDr7/+utqP+/PPP2Oa5j7Py+fzRTx2YmKiE6IA2rVrR36+NWE1Pz+frVu3ct5551X5ONdffz0vvvgiI0eOJD8/n08++aTOB4coSImISHSxh00UmYmRo8/D7Kl9yaY12a/Qq/HnIs1Jly5dMAyDZcuWMWzYsCqPC691Otjl+2sP3N/loVCIBx98kEsvvXSfYz0eDwkJCdV8Bodmf+fTrl27iDbFsOpMBwyLiYlxwmlYILDnA6hQKERsbCzz5s2LaH2EyPbEvYdfGIbh3G91/myuuuoq/va3vzF79mxmz55Np06dOPvss6v9PA6FgpSIiEQXu7Wv0DxwRSoxFA5SqkiJVFtiorVOqSEf/yDS09MZPHgwzzzzDLfffvs+AWP37t20aNGCbt26sXHjRjZt2uRUpZYuXUphYSHHHXdcjU/t5JNPZsWKFRx99NH7vf6EE05g8+bNrFy5cr9VKZfLRTAYrPHjHuh88vLyiIuLo1OnTvs95rjjjuOHH37gqquuci6rPIwDrBbCykMhgsEgixcvpn///gD07NmTYDBIfn7+IQeblJQUOnXqxJdffunc795atWrFsGHDmDBhArNnz+aPf/zjIT1WTShIiYhIdKnc2neAYROeimJAa6REasQwDjrsoTF49tln6dOnD6eddhoPPfQQJ5xwAhUVFUybNo3nnnuOZcuWMWDAAE444QSuvPJKxo0b5wyb6Nu37z5te9Vx//33M3ToULKzs/ntb39LTEwMCxcuZNGiRTzyyCP07duXc845h1//+teMGTOGo48+muXLl2MYBkOGDKFTp06UlJTw5ZdfcuKJJ5KYmEhiNYJjVQYMGMAZZ5zBsGHDeOyxxzjmmGPYunUrn376KcOGDeOUU07hjjvu4Oqrr+aUU07hrLPO4vXXX2fJkiURa7fOPfdc7rzzTj755BOOOuooxo4dy+7du53ru3btypVXXslVV13FE088Qc+ePdmxYwdfffUVPXr04IILLqjW+ebk5HDTTTfRtm1bZyjH999/z2233eYcc/311zN06FCCwaCzFq0uafy5iIhEl4NWpKxF166KIus4VaREmp3OnTvz888/079/f+666y66d+/OwIED+fLLL3nuuecAq7Xsgw8+oGXLlpxzzjkMGDCAI488kjfffPOQHnPw4MF8/PHHTJs2jVNPPZXTTz+dMWPG0LFjR+eYd999l1NPPZXf/e53dOvWjZEjRzpVqD59+nDTTTdx2WWX0aZNGx5//PHD+jMwDINPP/2Uc845h2uvvZauXbty+eWXs379ejIyMgBrCuD999/PPffcQ69evdiwYQN//vOfI+7n2muv5eqrr+aqq66ib9++dO7ceZ+q0YQJE7jqqqu46667OOaYY7j44ov58ccfI9afHczVV1/NuHHjePbZZzn++OMZOnQoq1atijhmwIABtGvXjsGDBzuDLeqSYe7d1BiFioqKSEtLo7CwkNTU1IY+HRERqUtvXQ1LP+CBwNW0Pvc2rjs5g26PfQvAUvc8Er07IG4ioaRkjix+iRR3HIseHNzAJy3SOJWXl7Nu3To6d+6Mx+Np6NORepCTk8MHH3zA/PnzG/pU9lFWVkZWVhavvPLKfteiVXagv7vVzQZq7RMRkegSbu0zk+iwv4pUfAKYEBMoJY4Kin1QEQwRF6smDhGRxigUCpGXl8cTTzxBWloaF198cb08roKUiIhEl3BrH0kk728fqVg3VFjfplLGLlIpKq8gPclVf+coIiLVtnHjRjp37kz79u2ZOHEicXH1E3H08ZqIiEQXuyJljT/fz4ttTAy4rJG8WW5r08ndZRqBLiICVmtfY2vr69SpE6ZpsmnTpgPuNVXbFKRERCS62PtIWRvy7qciBeBpAUA7j886VgMnRERkLwpSIiISPUKhPUHKrGL8OYAnDYDMeLsipSAlIiJ7UZASEZHo4S8GMwRAEVWMPwdIsIJUW5cVpIoUpEREZC8KUiIiEj3sapTPjMeHi0RXFa19bitItY4Nr5FSkBIRkUgKUiIiEj0qTewDSK6qImW39rWMLQMUpEREZF8KUiIiEj0qTewDSDxIa19LoxTQsAkREdmXgpSIiESPvSpSifFVtfa1ACAVK0jt9mr8uUi06NevHyNGjKjx7fLy8hg4cCBJSUm0aNGi1s9LGh8FKRERiR6VJvYlumKJiTH2f5wnFYAks8Q6Xq19Is3KNddcg2EY+3ytXr2a9957j4cfftg5tlOnTowbN+6g9zl27Fhyc3OZP38+K1eurMOzl8aifrb9FRERaQzs1r5Ckva/GW+YvUYqIVgMQKm/oq7PTETq2ZAhQ5gwYULEZW3atCE2topK9UGsWbOGXr160aVLlyqPCQQCxMfHH9L9S+OjipSIiEQPu7WvyEysejNecDbkdVdYQcobCNXxiYlIfXO73WRmZkZ8xcbGRrT29evXjw0bNvCXv/zFqVrtT6dOnXj33Xf573//i2EYXHPNNQAYhsHzzz/PJZdcQlJSEo888ggAH330Eb169cLj8XDkkUfy4IMPUlGx5wObVatWcc455+DxeOjWrRvTpk3DMAw++OADAGbMmIFhGOzevdu5zfz58zEMg/Xr1zuXzZo1i3POOYeEhASys7O5/fbbKS0tjTjvUaNGce2115KSkkKHDh148cUXI57b5s2bufzyy0lPTycpKYlTTjmFH3/8kfXr1xMTE8NPP/0Ucfz48ePp2LEjpmnW5H9Hk9TgQWrLli38/ve/p1WrViQmJnLSSScxb94853rTNMnJySErK4uEhAT69evHkiVLIu7D5/Nx22230bp1a5KSkrj44ovZvHlzfT8VERFp7CpVpKrcjBecYRPxAStIlfuDdX1mIs2GaZqU+Svq/asu3ri/9957tG/fnoceeojc3Fxyc3P3e9zcuXMZMmQIw4cPJzc3lyeffNK57oEHHuCSSy5h0aJFXHvttXzxxRf8/ve/5/bbb2fp0qW88MILTJw4kUcffRSAUCjEpZdeSmxsLD/88APPP/8899xzT43PfdGiRQwePJhLL72UhQsX8uabb/Ldd99x6623Rhz3xBNPcMopp/DLL79w88038+c//5nly5cDUFJSQt++fdm6dSsffvghCxYsYOTIkYRCITp16sSAAQP2qepNmDDBaZ1s7hq0ta+goIAzzzyT/v3789lnn9G2bVvWrFkTsUDv8ccfZ8yYMUycOJGuXbvyyCOPMHDgQFasWEFKSgoAI0aM4KOPPmLKlCm0atWKu+66i6FDhzJv3rxDLs+KiEgzVGmN1AErUm5rjVS83zq+vEJBSqS6vIEg3e7/ot4fd+lDgw/csruXjz/+mOTkZOfn888/n7fffjvimPT0dGJjY0lJSSEzM7PK+2rTpg1ut5uEhIR9jrviiiu49tprnZ//8Ic/8Le//Y2rr74agCOPPJKHH36YkSNH8sADDzB9+nSWLVvG+vXrad++PQCjRo3i/PPPr/ZzA/jXv/7FFVdc4VTXunTpwlNPPUXfvn157rnn8Hg8AFxwwQXcfPPNANxzzz2MHTuWGTNmcOyxx/LGG2+wfft25s6dS3p6OgBHH3208xjXX389N910E2PGjMHtdrNgwQLmz5/Pe++9V6NzbaoaNEg99thjZGdnRyTZTp06Od+bpsm4ceO47777uPTSSwF49dVXycjI4I033uDGG2+ksLCQl19+mUmTJjFgwAAAXnvtNbKzs5k+fTqDBw+u1+ckIiKNmB2kikms1hqp2EAxYOJVRUqk2enfvz/PPfec83NSUlKdPM4pp5wS8fO8efOYO3euU4ECCAaDlJeXU1ZWxrJly+jQoYMTogDOOOOMGj/uvHnzWL16Na+//rpzmWmahEIh1q1bx3HHHQfACSec4FxvGAaZmZnk5+cDVrtgz549nRC1t2HDhnHrrbfy/vvvc/nll/PKK6/Qv3//iPfzzVmDBqkPP/yQwYMH89vf/paZM2dyxBFHcPPNN/OnP/0JgHXr1pGXl8egQYOc27jdbvr27cusWbO48cYbmTdvHoFAIOKYrKwsunfvzqxZsxSkRERkD7+1NqDUTKh6M14Al/WGyjBDePDjDWhxuEh1JcTHsvSh+n//lVDVdgZVSEpKiqiu1JW9A1ooFOLBBx90igSVeTye/bYo7t0mFxNjrc6pfGwgEDldNBQKceONN3L77bfvc38dOnRwvt97+IVhGIRC1rrQhISE/T6nMJfLxR/+8AcmTJjApZdeyhtvvFGtCYfNRYMGqbVr1/Lcc89x55138ve//505c+Zw++2343a7ueqqq8jLywMgIyMj4nYZGRls2LABsGb2u1wuWrZsuc8x4dvvzefz4fP5nJ+Liopq82mJiEhj5bOn8OGhjesAb7riE51vkymnMOCp6zMTaTYMw6hRi11j53K5CAZrryp98skns2LFiipDXLdu3di4cSNbt24lKysLgNmzZ0cc06ZNGwByc3Od98Dz58/f53GWLFlyWGHxhBNO4D//+Q+7du2qsip1/fXX0717d5599lkCgcB+A2Jz1aDDJkKhECeffDKjRo2iZ8+e3HjjjfzpT3+KKLPCvincNM2DLmA70DGjR48mLS3N+crOzj68JyIiIk2D39oXqsT0kHSgilRMDListRNJhpdA0KQiqMl9ItGoU6dOfPPNN2zZsoUdO3Yc9v3df//9/Pe//yUnJ4clS5awbNky3nzzTf7v//4PgAEDBnDMMcdw1VVXsWDBAr799lvuu+++iPs4+uijyc7OJicnh5UrV/LJJ5/wxBNPRBxzzz33MHv2bG655Rbmz5/PqlWr+PDDD7ntttuqfa6/+93vyMzMZNiwYXz//fesXbuWd999NyLYHXfccZx++uncc889/O53vztoFas5adAg1a5dO7p16xZx2XHHHcfGjRsBnMV6e1eW8vPznSpVZmYmfr+fgoKCKo/Z27333kthYaHztWnTplp5PiIi0sj5rCBVSsKBh03AniBFOQDlFQpSItHooYceYv369Rx11FFOJehwDB48mI8//php06Zx6qmncvrppzNmzBg6duwIWG1777//Pj6fj9NOO43rr78+Yj0VWO14kydPZvny5Zx44ok89thjzmj1sBNOOIGZM2eyatUqzj77bHr27Mk//vEP2rVrV+1zdblcTJ06lbZt23LBBRfQo0cP/vnPf+4zzO26667D7/dHDNWIBg1adz3zzDNZsWJFxGUrV650/iJ17tyZzMxMpk2bRs+ePQHw+/3MnDmTxx57DIBevXoRHx/PtGnTGD58OGCVORcvXszjjz++38d1u9243e66eloiItJY+cNBynPw1iN3MpTsCVJef/DA66pEpMmYOHFildfNmDEj4ufTTz+dBQsWHPQ+w3s8VVbVSPbBgwcfcB1/165d+fbbbw/4eGeeeSYLFy484OOdeuqpTJ06tcr7qLznVNjeLYIdO3bknXfeOeC55Obm0r17d0499dQDHtfcNOgrwl/+8hf69OnDqFGjGD58OHPmzOHFF190NgIzDIMRI0YwatQounTpQpcuXRg1ahSJiYlcccUVAKSlpXHddddx11130apVK9LT07n77rvp0aOHM8VPRESEUBACZQCUmp6DhyK7IpUe54cAlAc0uU9EpLKSkhKWLVvG+PHjefjhhxv6dOpdgwapU089lffff597772Xhx56iM6dOzNu3DiuvPJK55iRI0fi9Xq5+eabKSgooHfv3kydOtXZQwpg7NixxMXFMXz4cLxeL+eddx4TJ07UHlIiIrKHPbEPoIQEEg80bAKcINUyzqcgJSKyH7feeiuTJ09m2LBhUdfWBw0cpACGDh3K0KFDq7zeMAxycnLIycmp8hiPx8P48eMZP358HZyhiIg0C3ZbX5AYfMQfeNgEWK19QFqs3dqnICUiDaiqNsGGNHHixAO2STZ3DTpsQkREpN7YgybKjATAOHiQcoWDlLVdRnlAwyZERGQPBSkREYkOfmsPqTKs0bxJB2vtsytSKTFWkFJFSkREKlOQEhGR6BAefW5am+sedGqfXZFKMewg5VeQEqlKY2w7EzmQ2vg7qyAlIiLRodJmvEC1p/YlG/Y+UqpIiewjPj4egLKysgY+E5GaCf+dDf8dPhQNPmxCRESkXthT+4pC1j6CiQfbkNdu7UvGCyhIiexPbGwsLVq0ID8/H4DExEQMw2jgsxKpmmmalJWVkZ+fT4sWLQ5ryreClIiIRAeftUaq1FkjVb2KVKIdpLRGSmT/MjMzAZwwJdIUtGjRwvm7e6gUpEREJDqEW/vwEGOAJ/4g3e1ua79CBSmRAzMMg3bt2tG2bVsCgUBDn47IQcXHx9fKfrMKUiIiEh2cYRMJJLniDt5+ZFekPGZ4jZTGn4scSGxsbK28ORVpKjRsQkREooNdkSrDc/D1UeCskfKErAXJWiMlIiKVKUiJiEh0qDS176Cb8QK4kgBwh+zWPo0/FxGRShSkREQkOoRb+/AcfNAEgMtaI+UKWhUprZESEZHKFKRERCQ6OMMmEkh0Vb+1Lz5YBphq7RMRkQgKUiIiEh2cYROeg2/GC86wiRhCJOBTkBIRkQgKUiIiEh38e/aRSqxOkIpPBKzJfkn41NonIiIRFKRERCQ6OBUpN0nVae2LiXEGTiQZXo0/FxGRCApSIiISHfylgFWRqtbUPnDa+5Ip19Q+ERGJoCAlIiLRwRk24aleRQqcgRNJeLVGSkREIihIiYhI8xcKQsAaY15qVnONFDgVqSSjXGukREQkgoKUiIg0f3Y1CsL7SFW3ImXtJZWsipSIiOxFQUpERJo/e9BEBbH4iCexOhvygjNsItHQ1D4REYmkICUiIs2fXZEqNxIAg4TqVqScYRPW1D7TNOvoBEVEpKlRkBIRkebPDlJeIwGAhPiaDpsoB8BXoRHoIiJiUZASEZHmL7yHFB4APNUNUs6wCS+ARqCLiIhDQUpERJo/f3gzXrsiVcNhE6mGD0DrpERExKEgJSIizZ9vzx5SUIPWPrsilRprtfZpcp+IiIQpSImISPPnLwagKOQGahKkrKl9yapIiYjIXhSkRESk+fOXAlBsBylPfDVf/uzWvhRDFSkREYmkICUiIs2fvwyAMtMOUtVdIxWfCFj7SAF4/ZraJyIiFgUpERFp/gJWRaqsxmukrCCVgBWkVJESEZEwBSkREWn+7IqUFzdxMQbxsdV8+Yu31kgl2PtIaY2UiIiEKUiJiEjzF9jT2lftahQ4FSmPqWETIiISSUFKRESaP3+4tc9d/fVR4KyRcptWRcqnICUiIjYFKRERaf4Ce1r7alaRslr73GY5BiFVpERExKEgJSIizZ//EFv77IoUgAc/ZX4FKRERsShIiYhI8xc4vNY+gER8qkiJiIhDQUpERJq/8NQ+00NCdTfjBYiJgbgEABIMH15VpERExKYgJSIizV94al9N10iBM7kvEZ9a+0RExKEgJSIizV+lqX0JNWntA2cvqURUkRIRkT0UpEREpPkLT+0z3XgOsSKVYPgo81fU9pmJiEgTpSAlIiLNW7ACgn7gEFv74sOtfeVq7RMREYeClIiING/2xD44hH2kwNlLSlP7RESkMgUpERFp3uyJfSFi8BF/CGukKrf2KUiJiIhFQUpERJo3e32UP8YDGIe8RkrDJkREpDIFKRERad7siX0+wwNwCGuk9rT2adiEiIiEKUiJiEjzZleknCBV09Y+l1r7RERkXwpSIiLSvNkVKe8hV6T2tPb5KkKEQmatnp6IiDRNClIiItK8hfeQwg1wCGukrNa+BMqt+9HkPhERoYGDVE5ODoZhRHxlZmY615umSU5ODllZWSQkJNCvXz+WLFkScR8+n4/bbruN1q1bk5SUxMUXX8zmzZvr+6mIiEhj5d+zGS8cQmtfuCJl+ADU3iciIkAjqEgdf/zx5ObmOl+LFi1yrnv88ccZM2YMTz/9NHPnziUzM5OBAwdSXFzsHDNixAjef/99pkyZwnfffUdJSQlDhw4lGNQLnYiI4OwjVRoOUoc4tS85xtrUV5P7REQEIK7BTyAuLqIKFWaaJuPGjeO+++7j0ksvBeDVV18lIyODN954gxtvvJHCwkJefvllJk2axIABAwB47bXXyM7OZvr06QwePLhen4uIiDRCdkWq1HQBhz61L9mwglRZQJP7RESkEVSkVq1aRVZWFp07d+byyy9n7dq1AKxbt468vDwGDRrkHOt2u+nbty+zZs0CYN68eQQCgYhjsrKy6N69u3PM/vh8PoqKiiK+RESkmbLXSJWE7CDlquFLn12RSopRa5+IiOzRoEGqd+/e/Pe//+WLL77gpZdeIi8vjz59+rBz507y8vIAyMjIiLhNRkaGc11eXh4ul4uWLVtWecz+jB49mrS0NOcrOzu7lp+ZiIg0GvbUvmI7SNV42ESlqX2g1j4REbE0aJA6//zz+fWvf02PHj0YMGAAn3zyCWC18IUZhhFxG9M097lsbwc75t5776WwsND52rRp02E8CxERadTsilRx6FDXSO3ZkBdUkRIREUuDt/ZVlpSURI8ePVi1apWzbmrvylJ+fr5TpcrMzMTv91NQUFDlMfvjdrtJTU2N+BIRkWaqlqb2eZwgpTVSIiLSyIKUz+dj2bJltGvXjs6dO5OZmcm0adOc6/1+PzNnzqRPnz4A9OrVi/j4+IhjcnNzWbx4sXOMiIhEOXtqX1l4H6m4Q6tIeUx7HylVpEREhAae2nf33Xdz0UUX0aFDB/Lz83nkkUcoKiri6quvxjAMRowYwahRo+jSpQtdunRh1KhRJCYmcsUVVwCQlpbGddddx1133UWrVq1IT0/n7rvvdloFRUREwhWpMty442KIiTlwe/g+7IqU2ywHTLX2iYgI0MBBavPmzfzud79jx44dtGnThtNPP50ffviBjh07AjBy5Ei8Xi8333wzBQUF9O7dm6lTp5KSkuLcx9ixY4mLi2P48OF4vV7OO+88Jk6cSGxsDT9xFBGR5imwp7UvwX0Irw321L4YQrgJ4A0oSImISAMHqSlTphzwesMwyMnJIScnp8pjPB4P48ePZ/z48bV8diIi0iz497T21XjQBDj7SAEk4NMaKRERARrZGikREZFaFwi39nkOLUjFxkGsNTo9ER9ef6g2z05ERJooBSkREWneKk3tq/EeUmH2OqkEw4c3oIqUiIgoSImISHNXaWpfjUefh1XaS0rDJkREBBSkRESkuas0te+QWvvAqUgpSImISJiClIiINF+hEFR4gcNs7XOFW/vKtY+UiIgAClIiItKc2YMm4DBb++Irt/ZpjZSIiChIiYhIc1YpSJXjIiH+EF/27IpUoqHWPhERsShIiYhI82XvIRWI8WASc9hrpBLwaUNeEREBFKRERKQ5sytS/pgEADya2iciIrVEQUpERJqvgDVowhfjATj8qX2GT8MmREQEUJASEZHmzG7t8xmHG6SsipYbP2X+CkzTrJXTExGRpktBSkREmq9wRQoXwGFM7duzj1TIBF9FqFZOT0REmi4FKRERab7sNVLluAEOfx8pfABq7xMREQUpERFpxuyKlNcOUoe7Riopxg9AmSb3iYhEPQUpERFpvuyKlNe0W/sOc41UUkzAuj9VpEREop6ClIiINF92kCo17YrUYa6RSjLU2iciIhYFKRERab7s1r4yuyJ1yGuknPHndmufv+Lwz01ERJo0BSkREWm+7IpUSSgeOPzWvgQ7SJVrap+ISNRTkBIRkebLrkg5QeowW/s89tQ+n4ZNiIhEPQUpERFpvuyKVHGwdipSHtMKUqpIiYiIgpSIiDRf/nBr32GOP3clAeA2ywFVpEREREFKRESas732kXLHH+LLnl2RcqsiJSIiNgUpERFpvirtI2UY4I47vCAVS5A4KlSREhERBSkREWnG7IpUOS4S4mMxDOPQ7sceNgGQiA+fKlIiIlFPQUpERJqvSq19h7w+CiDWBYZ1ew9+VaRERERBSkREmrFAKWC19h3yZrwAhuFUpRIMVaRERERBSkREmjOnIuU59D2kwsKb8uKnXBUpEZGopyAlIiLNV3jYhL1G6rA4QUoVKRERUZASEZHmLFyRMg9zjRQ4e0klGD5VpEREREFKRESaqWAFBP2AVZHy1FprnypSIiKiICUiIs1Vhdf51prad5gveeFhE1ojJSIiKEiJiEhz5bfWR5kY+IivvTVSmtonIiIoSImISHNlD5oIxHgAoxam9oUrUgpSIiKiICUiIs2VPWjCClIc3j5SoNY+ERGJoCAlIiLNkxOk3ABq7RMRkVqlICUiIs2T3drnM2o3SHlUkRIRERSkRESkuXKClNXad9hrpOx9pBK1RkpERFCQEhGR5soOUuVYFanDXyO1Zx8pVaRERERBSkREmid7jZSX2mrts4dNGH5VpEREREFKRESaqXBFynQBtdDa56yR8uGvCBEKmYd3fyIi0qQpSImISPNkV6TKwkGqlipSifgA8AdVlRIRiWYKUiIi0jz5rYpUiVlba6T2tPYB+AIKUiIi0azGQerVV1/lk08+cX4eOXIkLVq0oE+fPmzYsKFWT05EROSQ2a19paF4oPZa+xLsilR5hQZOiIhEsxoHqVGjRpGQYL2YzJ49m6effprHH3+c1q1b85e//KXWT1BEROSQ2K19JaFabu1TRUpERIC4mt5g06ZNHH300QB88MEH/OY3v+GGG27gzDPPpF+/frV9fiIiIofGrkiVBO2K1OEGKVe4tU8VKREROYSKVHJyMjt37gRg6tSpDBgwAACPx4PX663dsxMRETlUdkWqyG7t87gOc1lweI0UqkiJiMghVKQGDhzI9ddfT8+ePVm5ciUXXnghAEuWLKFTp061fX4iIiKHxq5IeWttat+e8eegipSISLSr8cdzzzzzDGeccQbbt2/n3XffpVWrVgDMmzeP3/3ud4d8IqNHj8YwDEaMGOFcZpomOTk5ZGVlkZCQQL9+/ViyZEnE7Xw+H7fddhutW7cmKSmJiy++mM2bNx/yeYiISDNhB6myWpvaZwWpOILEUaGKlIhIlKtxRapFixY8/fTT+1z+4IMPHvJJzJ07lxdffJETTjgh4vLHH3+cMWPGMHHiRLp27cojjzzCwIEDWbFiBSkpKQCMGDGCjz76iClTptCqVSvuuusuhg4dyrx584iNPcwXTRERabrs1r5y3MTHGsTHHm5rX5LzbSI+fKpIiYhEtRq/qkyYMIG33357n8vffvttXn311RqfQElJCVdeeSUvvfQSLVu2dC43TZNx48Zx3333cemll9K9e3deffVVysrKeOONNwAoLCzk5Zdf5oknnmDAgAH07NmT1157jUWLFjF9+vQan4uIiDQj4dY+XIdfjQKIjQfDuh8PfspVkRIRiWo1DlL//Oc/ad269T6Xt23bllGjRtX4BG655RYuvPBCZ2hF2Lp168jLy2PQoEHOZW63m759+zJr1izAaicMBAIRx2RlZdG9e3fnmP3x+XwUFRVFfImISDNjV6S8pvvw10cBGEalTXlVkRIRiXY1bu3bsGEDnTt33ufyjh07snHjxhrd15QpU/j555+ZO3fuPtfl5eUBkJGREXF5RkaGs/FvXl4eLpcropIVPiZ8+/0ZPXr0YbUiiohIExAOUrVVkQJrnZS/mARVpEREol6NK1Jt27Zl4cKF+1y+YMECZ/BEdWzatIk77riD1157DY/HU+VxhmFE/Gya5j6X7e1gx9x7770UFhY6X5s2bar2eYuISBPhLwXAixtP/GGujwqz95JKpFwVKRGRKFfjV5bLL7+c22+/na+//ppgMEgwGOSrr77ijjvu4PLLL6/2/cybN4/8/Hx69epFXFwccXFxzJw5k6eeeoq4uDinErV3ZSk/P9+5LjMzE7/fT0FBQZXH7I/b7SY1NTXiS0REmpnwsAmzNitSVpDyGKpIiYhEuxoHqUceeYTevXtz3nnnkZCQQEJCAoMGDeLcc8+t0Rqp8847j0WLFjF//nzn65RTTuHKK69k/vz5HHnkkWRmZjJt2jTnNn6/n5kzZ9KnTx8AevXqRXx8fMQxubm5LF682DlGRESiUCgIQWu/pzLcuONqqSJlj0BP0NQ+EZGoV+M1Ui6XizfffJOHH36YBQsWkJCQQI8ePejYsWON7iclJYXu3btHXJaUlESrVq2cy0eMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx77DK8QEZEoYlejINzaV7sVKa2REhGRGgepsK5du9K1a9faPJd9jBw5Eq/Xy80330xBQQG9e/dm6tSpzh5SAGPHjiUuLo7hw4fj9Xo577zzmDhxovaQEhGJZvboc4ByXLjjajlIaWqfiEjUq1aQuvPOO3n44YdJSkrizjvvPOCxY8aMOeSTmTFjRsTPhmGQk5NDTk5OlbfxeDyMHz+e8ePHH/LjiohIM2MHqUCMBzBw19awiYjWPlWkRESiWbWC1C+//EIgEHC+FxERadTs1r6KWGsqrKe2K1L42R5QRUpEJJpVK0h9/fXX+/1eRESkUYqoSFF748/DFSlDFSkRkWhX41eWa6+9luLi4n0uLy0t5dprr62VkxIRETksfitI+Q0rSNXeGqlKrX2qSImIRLUaB6lXX30Vr9e7z+Ver5f//ve/tXJSIiIih8Vu7fPXdkXKlQRYrX2qSImIRLdqT+0rKirCNE1M06S4uBiPx+NcFwwG+fTTT2nbtm2dnKSIiEiN2K19PsMNUIvjz/dUpMpVkRIRiWrVDlItWrTAMAwMw9jv2HPDMHjwwQdr9eREREQOiR2kygkHqdpaIxUef66KlIhItKt2kPr6668xTZNzzz2Xd999l/T0dOc6l8tFx44dycrKqpOTFBERqZG9glRdrJFSRUpEJLpVO0j17dsXgHXr1tGhQwcMw6izkxIRETks9hqpOqtIaR8pEZGoV+NXlmXLlvH99987Pz/zzDOcdNJJXHHFFRQUFNTqyYmIiBwSO0iV4QJqc41Upda+gIKUiEg0q3GQ+utf/0pRUREAixYt4s477+SCCy5g7dq13HnnnbV+giIiIjXmLwWgzAy39tXuPlIefJRXqLVPRCSaVbu1L2zdunV069YNgHfffZeLLrqIUaNG8fPPP3PBBRfU+gmKiIjUmF2RKjWtipS7litSifhUkRIRiXI1/ojO5XJRVmYt4p0+fTqDBg0CID093alUiYiINCh72ERpKB4AT20Nm3Dtae0rrwhimmbt3K+IiDQ5Na5InXXWWdx5552ceeaZzJkzhzfffBOAlStX0r59+1o/QRERkRqzK1IloXBFqnaHTXjwYZrgqwjV3vorERFpUmr8yvL0008TFxfHO++8w3PPPccRRxwBwGeffcaQIUNq/QRFRERqzK5IFQftYRO1Pv7cD4DXr3VSIiLRqsYVqQ4dOvDxxx/vc/nYsWNr5YREREQOmx2kSsKtfbVWkbKCVLwRJJ4KygJBWtbOPYuISBNTrSBVVFREamqq8/2BhI8TERFpMHZrX3FFOEjVVkUqyfk2AR9ef0Xt3K+IiDQ51QpSLVu2JDc3l7Zt29KiRYv9bsZrmiaGYRAMqs1BREQamF2RKgqvkaqt8eex8WDEghnEg59Sn17zRESiVbWC1FdffUV6ejoAX3/9dZ2ekIiIyGHzW0HKa9byhryGYQ2c8BeTYPgo0xopEZGoVa0g1bdvX+f7zp07k52dvU9VyjRNNm3aVLtnJyIicijs1j4vtbwhL1jrpPzFJOLDG1Brn4hItKrxK0vnzp3Zvn37Ppfv2rWLzp0718pJiYiIHBa7ta8cF3ExBnGxtRikwntJoYqUiEg0q/ErS3gt1N5KSkrweDy1clIiIiKHxa5IlZme2t/nKbyXlOGnTGukRESiVrXHn995550AGIbBP/7xDxITE53rgsEgP/74IyeddFKtn6CIiEiNhIIQ9AHgxVV7o8/DnL2kfJRpap+ISNSqdpD65ZdfAKsitWjRIlwul3Ody+XixBNP5O677679MxQREakJu60PrDVSrWtrM94wuyKViI+ygCpSIiLRqtpBKjyt749//CNPPvmk9osSEZHGyW7rMzHwEY+71itSau0TEZEaBKmwCRMm1MV5iIiI1A5/KQChuATAwFPrFanKrX0KUiIi0arGQQpg7ty5vP3222zcuBG/3x9x3XvvvVcrJyYiInJI7IpURaw1AKn210iFp/b5KdL4cxGRqFXjV5cpU6Zw5plnsnTpUt5//30CgQBLly7lq6++Ii0trS7OUUREpPrsIBWMsYKUu44qUonakFdEJKrVOEiNGjWKsWPH8vHHH+NyuXjyySdZtmwZw4cPp0OHDnVxjiIiItVnD5sIxFqBp9YrUvY+Uh58lGqNlIhI1Krxq8uaNWu48MILAXC73ZSWlmIYBn/5y1948cUXa/0ERUREaiQcpGLCrX11M7UvAT9etfaJiEStGgep9PR0iouLATjiiCNYvHgxALt376asrOxANxUREal7TpByA+COq8t9pFSREhGJVjUeNnH22Wczbdo0evTowfDhw7njjjv46quvmDZtGuedd15dnKOIiEj12Wuk/EYdV6QMH14FKRGRqFXjIPX0009TXl4OwL333kt8fDzfffcdl156Kf/4xz9q/QRFRERqxK5I+eo6SOGn1K/WPhGRaFXjIJWenu58HxMTw8iRIxk5cmStnpSIiMgh81tBqtxwAXXb2qeKlIhI9Krxq0tsbCz5+fn7XL5z505iY2v5Uz8REZGaslv7yrHXSNVZa59fa6RERKJYjYOUaZr7vdzn8+FyuQ77hERERA6L3doXDlK1vyFv5LCJUGj/r4siItK8Vbu176mnngLAMAz+85//kJyc7FwXDAb55ptvOPbYY2v/DEVERGrCrkiVhYNUbW/I60oCrCAFUF4RJNFV4055ERFp4qr9m3/s2LGAVZF6/vnnI9r4XC4XnTp14vnnn6/9MxQREamJQCkAZSF7jVRdVaQMv/U4fgUpEZFoVO3f/OvWrQOgf//+vPfee7Rs2bLOTkpEROSQhStSphWkar0i5UztsypSGjghIhKdavwR2tdffx3xc0VFBeXl5RGtfiIiIg3GDlIl4SBV68MmIitSGoEuIhKdqt3v8OmnnzJp0qSIyx599FGSk5Np0aIFgwYNoqCgoNZPUEREpEbsYROlwboaf25VpOIIEk+FJveJiESpar+6/Pvf/6aoqMj5edasWdx///384x//4K233mLTpk08/PDDdXKSIiIi1WbvI1USigfqbkNe0F5SIiLRrNpBavHixfTp08f5+Z133mHgwIHcd999XHrppTzxxBN89NFHdXKSIiIi1Wa39hUHw0GqlitSsfFgWOHMg59Sn1r7RESiUbVfXYqLi2nVqpXz83fffce5557r/Hz88cezdevW2j07ERGRmrJb+4qc1r5arkgZRqVNeX14A6pIiYhEo2oHqaysLJYtWwZASUkJCxYs4Mwzz3Su37lzJ4mJiVXdXEREpH7YQaqwripSAC7r9S7R3pRXRESiT7VfXX7zm98wYsQIJk2axJ/+9CcyMzM5/fTTnet/+uknjjnmmDo5SRERkWoLV6Qq6miNFOyZ3KcgJSIStao9/vyBBx5g69at3H777WRmZvLaa69FbMo7efJkLrroojo5SRERkWqz10gVVlgvcXUTpKyKlMfwU6Y1UiIiUanaFanExEQmTZpEQUEBy5Yt4+yzz464/uuvv+aee+6p0YM/99xznHDCCaSmppKamsoZZ5zBZ5995lxvmiY5OTlkZWWRkJBAv379WLJkScR9+Hw+brvtNlq3bk1SUhIXX3wxmzdvrtF5iIhIMxGsgKC9v5PpBiDBVccVKa2REhGJSnXQOF597du355///Cc//fQTP/30E+eeey6XXHKJE5Yef/xxxowZw9NPP83cuXPJzMxk4MCBFBcXO/cxYsQI3n//faZMmcJ3331HSUkJQ4cOJRjUC5uISNSx2/oAyrGGTSTUYUUqUePPRUSiVoMGqYsuuogLLriArl270rVrV2eD3x9++AHTNBk3bpwzXr179+68+uqrlJWV8cYbbwBQWFjIyy+/zBNPPMGAAQPo2bMnr732GosWLWL69OkN+dRERKQh2G19JgY+4nHHxRAbY9T+41Rq7dP4cxGR6NSgQaqyYDDIlClTKC0t5YwzzmDdunXk5eUxaNAg5xi3203fvn2ZNWsWAPPmzSMQCEQck5WVRffu3Z1jREQkitgVKTM+ETBIrIu2PlBrn4iIVH/YRF1ZtGgRZ5xxBuXl5SQnJ/P+++/TrVs3JwhlZGREHJ+RkcGGDRsAyMvLw+Vy0bJly32OycvLq/IxfT4fPp/P+bmoqKi2no6IiDQkuyIVjLWCTqKrjl7mwvtI4Vdrn4hIlGrwitQxxxzD/Pnz+eGHH/jzn//M1VdfzdKlS53rDSOyJcM0zX0u29vBjhk9ejRpaWnOV3Z29uE9CRERaRzsilQw1gPU0aAJ2LOPlOGjzK/WPhGRaFTtINWhQwd27tzp/Pz000/XSiXH5XJx9NFHc8oppzB69GhOPPFEnnzySTIzMwH2qSzl5+c7VarMzEz8fj8FBQVVHrM/9957L4WFhc7Xpk2bDvt5iIhII2AHqQo7SNV1a59HwyZERKJWtYPU5s2bIybh/f3vf2fHjh21fkKmaeLz+ejcuTOZmZlMmzbNuc7v9zNz5kz69OkDQK9evYiPj484Jjc3l8WLFzvH7I/b7XZGroe/RESkGbBb+wJ2a1+dTOyDiNa+8kCobh5DREQatUNuHjdN87Af/O9//zvnn38+2dnZFBcXM2XKFGbMmMHnn3+OYRiMGDGCUaNG0aVLF7p06cKoUaNITEzkiiuuACAtLY3rrruOu+66i1atWpGens7dd99Njx49GDBgwGGfn4iINDF2RSpgWHtI1cewifIKVaRERKJRgw6b2LZtG3/4wx/Izc0lLS2NE044gc8//5yBAwcCMHLkSLxeLzfffDMFBQX07t2bqVOnkpKS4tzH2LFjiYuLY/jw4Xi9Xs477zwmTpxIbGwdvXiKiEjj5beClN8JUnU1bCIJgATDR7mm9omIRKUavcL85z//ITk5GYCKigomTpxI69atI465/fbbq31/L7/88gGvNwyDnJwccnJyqjzG4/Ewfvx4xo8fX+3HFRGRZsquSJXH1PGwCacipdY+EZFoVe0g1aFDB1566SXn58zMTCZNmhRxjGEYNQpSIiIitcpeI+Wj/lr7vKpIiYhEpWoHqfXr19fhaYiIiNQCO0h57SBVdxUpe9iE4ccfCBEKmcTEHHhrDhERaV4afB8pERGRWhMoBcBrugBIjK+jNVKu8NQ+a3N3X4Xa+0REok21g9QFF1xAYWGh8/Ojjz7K7t27nZ937txJt27davXkREREasSuSJWZdd3aFxmkNHBCRCT6VDtIffHFF/h8Pufnxx57jF27djk/V1RUsGLFito9OxERkZqwh02U2hWpOh82YfgBNAJdRCQKVTtI7b1vVG3sIyUiIlKr7PHnpaF4oD4rUmrtExGJNlojJSIizYfd2lcStCtS8XVdkfIBJl6/KlIiItGm2kHKMAwMw9jnMhERkUbDbu0rCtV1a59VkYojRDxBtfaJiEShao8zMk2Ta665BrfbWsBbXl7OTTfdRFKStbt75fVTIiIiDcKuSBUHw619dTS1zw5SYLX3adiEiEj0qfYrzNVXXx3x8+9///t9jrnqqqsO/4xEREQOlV2RKqywXt7qbI1UbDwYsWAG8eDHpzVSIiJRp9pBasKECXV5HiIiIofPDlIFFVZFqs5a+wzDqkr5i0k0ylWREhGJQho2ISIizYfd2lcYqOOKFFTalNePV0FKRCTqKEiJiEjzYVekSuxhE4nxdbRGCvZM7sOn8eciIlFIQUpERJoPex8pb11vyAvOwAmP4Vdrn4hIFFKQEhGR5iEYgFAAgDLcxMUYuOLq8GXOrkgl4tP4cxGRKKQgJSIizYO9PgqgHHfdVqPAqUiptU9EJDopSImISPNgBynTiMFPXN0OmoCI1j6fWvtERKKOgpSIiDQPgVIAQrEJgFF3m/GGVRo2oal9IiLRR0FKRESaB7siFYyzA058/VSkEvFp2ISISBRSkBIRkebBDlIVMR6gjveQgj37SBl+rZESEYlCClIiItI82HtIBWKtIFX3wyasypdHFSkRkaikICUiIs2DvYdUoL4qUs7UPj/lFapIiYhEGwUpERFpHuyKlN8IB6n6GTaRaKgiJSISjRSkRESkebDXSPkMNwCeOh82kWQ9jlr7RESikoKUiIg0D3ZFqtwOUnXf2hcef+5XkBIRiUIKUiIi0jyEgxT1HaR8mtonIhKFFKRERKR5sIdNeE0rSNX51D6X1dqXaJSrIiUiEoUUpEREpHkIlAJQGq5IaUNeERGpQwpSIiLSPPjtIBUKt/bV8dQ+V7L1OIZP489FRKKQgpSIiDQPdmtfUThIueu6tS9ckSrHXxEiGDLr9vFERKRRUZASEZHmwV8CQGEwHoAUT3zdPl54jRQ+AHwVau8TEYkmClIiItI82FP7CgLhIFU/rX0eI0AsQU3uExGJMgpSIiLSPNhrpMJBKrWug5Q9bAI0cEJEJBopSImISPNgr5HaaQepZHcdt/bFucGw1mElKEiJiEQdBSkREWke7DVSJfawiTpv7TMMZ51UklGu1j4RkSijICUiIs2D3dpXhocYAxLrekNeiBg44VVFSkQkqihIiYhI82APmyjFTbI7DsMw6v4x4/eMQPcpSImIRBUFKRERafpM06lIeU1P3Y8+D6vc2qfx5yIiUUVBSkREmr6AF7A2xC3FXffro8LsEejWsAmtkRIRiSYKUiIi0vTZ1SgTg3JcpNZbRcpq7bOGTagiJSISTRSkRESk6bMn9lXEejCJIbneKlJWa58qUiIi0UdBSkREmj570EQg1qoQ1VtrX7y9RopyTe0TEYkyClIiItL02a19/hgPUI9BKlyRMrQhr4hItFGQEhGRps8OUuVGAkD9T+3T+HMRkaijICUiIk1fOEjhBiDZXb8VqUTKKfMrSImIRBMFKRERafrsIFWG1dqXWs+tfYmGjxJfRf08poiINAoKUiIi0vQFrCBVaobXSNVTa1+8Pf4cH8UKUiIiUaVBg9To0aM59dRTSUlJoW3btgwbNowVK1ZEHGOaJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr86mIiEhDsitSJaYLqM/WvvCGvOWUlCtIiYhEkwYNUjNnzuSWW27hhx9+YNq0aVRUVDBo0CBKS0udYx5//HHGjBnD008/zdy5c8nMzGTgwIEUFxc7x4wYMYL333+fKVOm8N1331FSUsLQoUMJBtWvLiISFfzW+PPioLVGqv6m9oU35PVRXB6on8cUEZFGoZ5eafbv888/j/h5woQJtG3blnnz5nHOOedgmibjxo3jvvvu49JLLwXg1VdfJSMjgzfeeIMbb7yRwsJCXn75ZSZNmsSAAQMAeO2118jOzmb69OkMHjy43p+XiIjUM3tD3qKQVZGq76l9iZRrjZSISJRpVGukCgsLAUhPTwdg3bp15OXlMWjQIOcYt9tN3759mTVrFgDz5s0jEAhEHJOVlUX37t2dY/bm8/koKiqK+BIRkSbMbu3bXWEFqPqrSFmtfYn41NonIhJlGk2QMk2TO++8k7POOovu3bsDkJeXB0BGRkbEsRkZGc51eXl5uFwuWrZsWeUxexs9ejRpaWnOV3Z2dm0/HRERqU8Bq7WvsL5b++xhE4lGOcUKUiIiUaXRBKlbb72VhQsXMnny5H2uMwwj4mfTNPe5bG8HOubee++lsLDQ+dq0adOhn7iIiDQ8u7XP22D7SPko8VcQCpn187giItLgGkWQuu222/jwww/5+uuvad++vXN5ZmYmwD6Vpfz8fKdKlZmZid/vp6CgoMpj9uZ2u0lNTY34EhGRJsweNlFqekh0xRIXW08vb3aQSjD8GGaIsoCGHImIRIsGDVKmaXLrrbfy3nvv8dVXX9G5c+eI6zt37kxmZibTpk1zLvP7/cycOZM+ffoA0KtXL+Lj4yOOyc3NZfHixc4xIiLSzDkb8rrrr60PnCAFkIAm94mIRJMGndp3yy238MYbb/C///2PlJQUp/KUlpZGQkIChmEwYsQIRo0aRZcuXejSpQujRo0iMTGRK664wjn2uuuu46677qJVq1akp6dz991306NHD2eKn4iINHNOkPLUX1sfQJwHMADTmtxXXgFp9ffwIiLScBo0SD333HMA9OvXL+LyCRMmcM011wAwcuRIvF4vN998MwUFBfTu3ZupU6eSkpLiHD927Fji4uIYPnw4Xq+X8847j4kTJxIbG1tfT0VERBpSwApSpaan/kafAxiGNbnPX0ySUU6RBk6IiESNBg1SpnnwRbmGYZCTk0NOTk6Vx3g8HsaPH8/48eNr8exERKTJsCtSXty0rs/WPrDa+/zF1sAJ7SUlIhI1GsWwCRERkcMSHjaBh9T6rEgBuOwR6OHWPhERiQoKUiIi0rSZ5p7x56a7ftdIwZ4R6IaGTYiIRBMFKRERadoqygGrVbwUD4nuel4fG19pLym19omIRA0FKRERadrs9VEAXlwkxNdzkLIrUkmUU6zWPhGRqKEgJSIiTZvd1uc3PJjEkOhqmCCVYPgUpEREooiClIiING32oAlfTAIAngasSJX4tEZKRCRaKEiJiEjTZrf2lRseABIaqCKVaGiNlIhINFGQEhGRpi08sS8cpBqsIuVVa5+ISBRRkBIRkabNDlJlWK199b9GKgXQsAkRkWijICUiIk2brxiAEhpojZTbClIphletfSIiUURBSkREmjY7SBWbDdTa504Gwq19GjYhIhItFKRERKRpCwepUAMNm7ArUsmGlxK19omIRA0FKRERadrsIFVkB6l6XyMVDlKUU+oPEgyZ9fv4IiLSIBSkRESkabOHTRTaQar+95EKBykvgNZJiYhECQUpERFp2uyKVEGwodZIhVv7ygEFKRGRaKEgJSIiTZvPqkiV0lBrpKxhE8mGVZHSwAkRkeigICUiIk2brwiAEtMefx7XMBWpeCpwEdDACRGRKKEgJSIiTZu9RqqYBDzxMcTEGPX7+K5k59tkvNqUV0QkSihIiYhI02avkSo1E+p/fRRATCzEJwGQZHgp8wfr/xxERKTeKUiJiEjTZgepEhooSIGzTioFL6V+VaRERKKBgpSIiDRt9rCJEjx46nvQRJi9TiqJcryqSImIRAUFKRERabpCQQiUAtawiXrfjDfMtWdyn1r7RESig4KUiIg0XfagCYDSBm3t27Mpb5la+0REooKClIiINF32+qhgTDx+4vE0dJBSRUpEJGooSImISNNlr48KxFpT8xq6IpVEuYKUiEiUUJASEZGmy65I+e0g1WBrpOwglWKotU9EJFooSImISNPlt4KUL1yRauBhE0motU9EJFooSImISNNlV6R8MQkADb9GSsMmRESihoKUiIg0XXaQKjMSgYZfI6VhEyIi0UNBSkREmi572ITXsCpSDb1GKlkb8oqIRA0FKRERabrsilQpVkWqwVr7Km3IW6rWPhGRqKAgJSIiTZc/HKQ8QAMOm3DGn3tVkRIRiRIKUiIi0nTZFali02rta+g1UilaIyUiEjUUpEREpOmy10gVm3ZFqpFsyBsKmQ1zHiIiUm8UpEREpOmyK1KFoQZu7QuvkcILmJRXqColItLcKUiJiEjTFQ5SQTfQ8BWpeCOIm4Da+0REooCClIiINF32sImCisZRkQJ7U16fgpSISHOnICUiIk2XXZHa1dAVqZgYJ0wlGeWUBTQCXUSkuVOQEhGRpsseNrGrwgU0YEUK9kzuw0upKlIiIs2egpSIiDRd4YpURQNP7YM9FSntJSUiEhUUpEREpGkKVkCFF4ASs4HXSEGlvaTKKPOrtU9EpLlTkBIRkaapvND5tphEADxxDRikPGkApFKmqX0iIlFAQUpERJqm8t0AhFzJBInFEx9DTIzRcOeT0AKANKNUQUpEJAooSImISNPk3Q1A0GVVghp0fRSApwUAaZSqtU9EJAooSImISNNUXgBARWMJUqpIiYhEFQUpERFpmuyKVCA+FQBPQw6agD0VKQUpEZGooCAlIiJNk71GyhtnTctL9cQ34MngVKRSKcWr1j4RkWavQYPUN998w0UXXURWVhaGYfDBBx9EXG+aJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr8VmIiEiDsCtSpYa1f1N6kqsBT4aIilSpKlIiIs1egwap0tJSTjzxRJ5++un9Xv/4448zZswYnn76aebOnUtmZiYDBw6kuLjYOWbEiBG8//77TJkyhe+++46SkhKGDh1KMKgXMRGRZs2uSBXZQapFYgNXpOzx52mUakNeEZEoENeQD37++edz/vnn7/c60zQZN24c9913H5deeikAr776KhkZGbzxxhvceOONFBYW8vLLLzNp0iQGDBgAwGuvvUZ2djbTp09n8ODB9fZcRESkntkVqULT2kMqPbGBK1KVhk2UqrVPRKTZa7RrpNatW0deXh6DBg1yLnO73fTt25dZs2YBMG/ePAKBQMQxWVlZdO/e3Tlmf3w+H0VFRRFfIiLSxNgVqV1BK0i1bCStfdqQV0QkOjTaIJWXlwdARkZGxOUZGRnOdXl5ebhcLlq2bFnlMfszevRo0tLSnK/s7OxaPnsREalzdkVqe4UdpBpJRSrR8BHwlTfsuYiISJ1rtEEqzDAid6k3TXOfy/Z2sGPuvfdeCgsLna9NmzbVyrmKiEg9sitS+QE3AOlJDbxGyp2GifXaE+MrbNhzERGROtdog1RmZibAPpWl/Px8p0qVmZmJ3++noKCgymP2x+12k5qaGvElIiJNjNcKK7l+D9AIKlIxMYRc1ij2eL+ClIhIc9dog1Tnzp3JzMxk2rRpzmV+v5+ZM2fSp08fAHr16kV8fHzEMbm5uSxevNg5RkREmim7IrXFawWoBl8jBYTsdVLxAa29FRFp7hp0al9JSQmrV692fl63bh3z588nPT2dDh06MGLECEaNGkWXLl3o0qULo0aNIjExkSuuuAKAtLQ0rrvuOu666y5atWpFeno6d999Nz169HCm+ImISDMUCoLPCiuby63WvgavSIE1cKJoI+4KBSkRkeauQYPUTz/9RP/+/Z2f77zzTgCuvvpqJk6cyMiRI/F6vdx8880UFBTQu3dvpk6dSkpKinObsWPHEhcXx/Dhw/F6vZx33nlMnDiR2NjYen8+IiJST8r3tM7tNpOARrCPFGDYAyeSQiUEgiHiYxtt44eIiBymBg1S/fr1wzTNKq83DIOcnBxycnKqPMbj8TB+/HjGjx9fB2coIiKNkt3WF4pLpII4UjxxjSK0xCRaU2TTjFKKyytIbwTthiIiUjca/lVHRESkpuzR5xWuNIBGE1hiEqzzSaOUXaW+Bj4bERGpSwpSIiLS9NgVKV+81erdKNZHgbMpb5pRyo4Sf8Oei4iI1CkFKRERaXrsipQ31tq+omUjWB8FOJvyWhUpBSkRkeZMQUpERJoeuyJVGpMMNI7R50BERWpniVr7RESaMwUpERFpeuyKVDHWxL70xtLaF65IqbVPRKTZU5ASEZGmx65IhUefN7aKVCql7NSwCRGRZk1BSkREmh67IrUrmAA0omETdkUq1ShjpypSIiLNmoKUiIg0PXZFaocdpNKTGsmwifAaKUoVpEREmjkFKRERaXrsilR+wApSLRpNRcrakDfZKKegpLSBT0ZEROqSgpSIiDQ93l0A5Po8QOPZkBdPGiYGAMGSnQ18MiIiUpcUpEREpOkp2Q7Aep81bKJFY9lHKiYWM7EVAG7fTvwVoQY+IRERqSsKUiIi0rSEQlBqBantoTRiYwxaJbkb+KT2MJLbAtDaKKSgTOukRESaKwUpERFpWrwFYAYB2EkabZLdxMYYDXxSexhJbQBoTSE7tCmviEizpSAlIiJNS2k+AIH4NALEkZHaeKpRAFSqSGlyn4hI86UgJSIiTUuJFaTKXOkAZKR6GvJs9pVkBalWRpE25RURacYUpEREpMF9tiiXWat3VO9ge31UYaw1ajwzrZEFqWSrta+NKlIiIs2agpSIiDSo71fv4M+v/8yNk+ZhmubBb2BXpHaRBjTeipS1RkpBSkSkuVKQEhGRBhMMmTz88VIAin0VFHoDB7+RvUYqP5QKNMIgFbFGSq19IiLNlYKUiIg0mLd/2sTyvGLn52pVcOw9pLYEUgDIbGxBKjy1zyhkZ6kqUiIizZWClIiINIivlm8j56MlEZdVa1y4XZEKb8abmdY4p/a1ooidxd4GPhkREakrClIiIlLvvly2jT/9dx7lgRD9jmlDzw4tgOoGKasitdmfDDTC1r7E1gDEGSFKdldzgIaIiDQ5ClIiIlLvXpi5lmDI5OITs3jpqlNoZ0/eq9aUO7u1b4eZRpIrlhRPfF2eas3FuQh5WgAQU7Ydrz/YsOcjIiJ1QkFKRETqVWFZgHkbCwD46+BjiI+NoVWS1Z530IqUaTqtfTvMtMZXjbIZlQZObNld1sBnIyIidUFBSkRE6tXMVdsJhky6tE0mOz0RgNbJ1QxS5YUQtKpWO2jEQcoegd6GQjbt0jopEZHmSEFKRETq1dfLrYrSuce2dS5rneICqjG1z14f5YtNxoer8W3GG5a8Z3Lf5gJVpEREmiMFKRERqTfBkMmMFVaQ6l8pSFW7tc/ejLckriXQCAdNhCXtae3bVKCKlIhIc6QgJSIi9eaXjQUUlAVI8cTRq2NL5/I2TkXqIEHKXh9VYLQAICO1kY0+DwtXpChk0y5VpEREmiMFKRERqRe+iqCzb9SA4zKIj93zEhReI3XQqX32xL7tZirQCDfjDbMrUq2MIjarIiUi0iwpSImISL349xcrWLyliJaJ8fzt/GMjrmtlB6kyf5Ayf0XVd2JXpPKCVpBqk9JYK1L2sAljN5u0RkpEpFlSkBIRkTr39k+beOnbdQD86zcn7rO2KckViyfeeknaUXyAqtTujQCs87cA9lSyGp209gC0N7azuyxAcXmggU9IRERqm4KUiIjUqc8X53HPuwsBuPGczgw4Jn2fYwzD2DMCvfQA66R2WWFsdYW9BqmxVqRadgIg3SghhbJDa+8LBfnvrLWcMfpL5m/aXaunJyIih09BSkRE6oyvIsjf3ltIZ7Ywq8X9/G1OH3ikLXx4GwQjqzTh9r4dxQcIUgVWkNpgZuCJjyHJFVtn535Y3CmQZIW9Dsa2mg+c+OU1gqM7ctXUnnxYfg3fffBCHZykiIgcDgUpERGpM18v386R3iW8536QrPLVGJhghuDn/8Lk34F/T8Bok3yQvaR8xc4+UhvNDFonuzEMo86fwyFr2RmAjsa2mlWkvhsL/7uF2EAxAG2MIm7dOYr8qWPr4ixFROQQKUhFucVbChkzbSXlgWBDn4qI1JPdZX5KfAcY6FCLvvppES+7/k0aJXBEL7j9F7h8MsQlwOpp8PWjzrHhvaR2VjUCvWA9AH5XC4pJbLzro8LSw0Eqn1X5xdW7zZqvYXoOAM9VXMTg+Ff4InkYAG1n5bDz5//x9FerGDr+W96Zt7kOTlpERKpLQSrKPfTRUp76chWfL85r6FMRkXpQWBZgwJhvGPbM95imWaePVVQeoN/af9PSKMHbqhtc/RGkHwnHXgC/nWgd9OMLsHMNAK0PtpeUvT6qKMEa5NDog5RdkepgbOPTRXkH/8AqFMT78d8A+G/FQP7X+gb+dfV5tP7NGF6pGAKA/38jeGHqfBZvKWLstJV1/v9QRESqpiAVxSqCIRZu2Q3Ahp0azyuHr7AswMLNuxv6NOQApi3bxo4SH6vzS8gtLN/n+o8WbOWzRbm18lgLp73BBTE/ECQGz6+fBVfSniuPGQJHD4BQAKY/AFBp2EQVrX32+qidriOAPZv4Nlp2RaqrazuF3gBTl2478PG/vEZCwXJ2m0nM7fxnPr39bE5o34KTO6bzQ+dbWBfKoJ2xi8fT3iUhPpYtu70s3lJUD09ERET2R0Eqiq3KL6E8EAJgy24FKTk8pmly3atzufjp7/l6eX5Dn45U4fPFe0LSym2R7War80u4bfIv3Dr5FwrLDnNcdzDAUfP/CcD87D9gZPXc95hBj4ARA8s+gi3zaJeWYB2/cTfB0H4qLXZFKjcmE2g6Faku8TsAawR8lYIBmDEagKcqLqVPjy7ExFjrvwzD4IVrzybjDy8BcL7vc67oZP2/+2KJuglERBqKglQUq1w5OKTRvBJVNuws5dFPlrJuR+l+r/9u9Q5+2lAAwIvfrK3PU2tWvP4gG3bu/8/4cJX4Kvhm1Q7n59X5JRHXv2W/0Q+GTJbmFjF3/S76/etrvl+9g5ra9u0E2gW3stNMpf3FD+z/oLbHQY/fWt//+AL9jmlDy8R4tuz2MnV/AcGuSG00rc1uG3+Q6gRAim8bLgJ8t3oHm6vanHf5J1Ccy3YzjUnBgZzTtU3E1YZhkNilL3QbBphcH3gNgKlL81iWW8T/5m/B6z/4WtdgyCS0v5C6l5/W7+Le9xbW21o6EWm63vppE898vbpav1uaGwWpKLZgc6Hz/Zbdhx+kdpT4uOutBXy7avth35c0Pk9/tZqXvl3HsGe+Z9aafd9YP/P1auf72Wt3sjxPLUeHYuS7C+n37xnOn/HGnWUU1dJmrl8tz8dfEXJ+XrVtT5DyV4R4t9LwgqW5RUyavYH1O8uYMvcAlZT9qfDhnvUEANNbXUlGm1ZVH9v7Ruu/i9/DU76D35/eEYCXv1u377F77yHV2INUcluIT8LAZPARfkwTfli7a//HzpsAwJRgfzq0SeOIFgn7P+7c/wMjlnZ5MzgtdiUrt5Vw4VPfcseU+Zzxzy+ZPGdjlaezcWcZJz04lbvfXnDQU//XFyuYPGcT7xyoitYI+CtC/G/+lqrX1YlIndq628s97y7kX1+s4LmZaxr6dOqdglQUq1yRyt1dftifJDz6yTLe/XkzT0xdeZhnFh2+XLaNwWO/YfGWwoMf3AgstIN3oTfAVS/Pcd7o7y7zM+H7dfywdhfxsQandbY2W534/fqGOtUmq8RXwReL8zBNeO2HDSzYtJvzxszgz6/Nq5X7D7f1dW5trVWqPElu+rJt7Ky0NmlZbhHz7Arj0q01+zsamPsqLfx55JktyTz35gMffEQvaH+qtVZq3kT+cHpH4mMNftpQELkJbTAAhVbQW1beGoDWyY18jZRhOFWpnsm7AetNxz52roG1MwhhMKWi/z7VqAitu0DP3wPwUPI7gEnItP4sdpcF+Pv7i9hVxRqzjxZupdhXwXu/bGHOuioCnW2VXa1cmtu4PxAZ9eky7pgyn8c/X97QpyKHaOHm3Tz6ydJqVVQbk1DI3H8LciUVwVCtD4R56stV3PvewoM+dm060GO99/Nmwk/x31NXMGNFdLX2K0hFqfJAkOW5e95E+YMhth/GJ3q/bCzg/V+2ALAirzgqy7s1NeH79azYVsx/vm38bXBl/grnTfdZR7emImRy6xu/MGbqCnqP+pIHP1oKwG96ZfPXwccA8P4vW9hdVsXQANmvb1duxx+0KkbTl+Yz+rNlBIImc9btoiIYOsitDywYMvnWbuv7c9+jAOvNcvhFPtzWd2xminUuq7Y7leq1O0op81ezxSvgJTjzcQBei/8tZ3XLPvhtTrOrUj+9QtvEGIaekAXA/+Zv2XPM7o1gBiHOw4rSRABapzTyihQ4Ayc6x1pvLvYbpOxq1OyYnmyhzYGDFEDfeyDOw7G+xdxz1GZevfY0fvz7AI5um4xpwo9rd+73Zt+s3NMt8Pjny6t8g7ezxOeEsWW5VY9tX7mtmJkrG64DYcnWQv47ez1AZOhuAkzTpKCqoSpR5t9TV/LSt+t4/ccNDX0q1bZ1t5dhz37PCTlf8Ne3F+y3A2N3mZ9B477hgqe+q5WuH7Deu42dvpLJczY5H3TVtYc+WsrJD0/jq+X7DssxTZO37U6GI9skYZpw7cS55Hy4ZJ9tLOZt2MX6KpYGNGUKUlFqeV4xFSGTVkkup4XkUNZJLdlayBNTV0S0ingDQTbu0vCKAwmGTOeF/8vl+Xj9Qe59bxE5Hy7Z74jkCd+v49VZ6+v3JCtZlltEyIQ2KW5euuoUjs9KZVepn6e+Wo2vIkTXjGTuHtSVBy7qxikdW3JsZgq+ihD/m7+1wc65KZq2bM8LlT8YctrAAkGTDYf5b2rltmKKyytIcsVy0YlZxMYYFJdXsK3IRyAY4kf7se4eZAXhbUV7XgRN0/qApFrmvoynfDubzdb4elxJbEw1NsztdgkkZ0BJHiz7kPOOs9ZARbTB2SPSQy06UuSzQmWjb+0DJ0i1D1mhcJ83VBU++OV1ACaU9yfZHccZRx6gFRIg7Qg47QYA/lzxGn2PbkVsjMGZR1m3m72fIFXiq3DeeIUrfl9VMRRmVaW1cyu2Fe83xJcHgvzuxR+4+pU5LGuAqlUoZPKPDxYT/sxuzfZSfBVNp6Lx5Jer6PnwtKj79H5/NtprQg9WJW0sluUWcckz37NwcyGl/iBvz9vM1a/M2eeDiedmrmHt9lKW5RYx/PnZtRIiNu0qc6o/M1fW/d8d0zR575fNFHoD3PDfeXy8MPI1fc66XWzYWUaSK5Z3b+rDRSdmETJh4qz1nD76S0ZMsQYX/bR+F79+bja/eX529T+UayIUpKJUuK2vR/s9vfg1/cQkFDK5/tWfGP/VatZsLyXRFUuHdOuTYq2PObDV+SXOIu7i8gpGvruQyXM2MnHWeq56ZU7Empi120t48KOlPPDhEjY1UEBdZLf1nXBEGgmuWF74Qy8yUt2kJcTz79+eyBcjzuHWc7vgiY/FMAwuO9WqQkyZu4ktu72M+nRZs/wkqjYFQ6Yz7XBQt4x9rl+1rZpBpgpz11tvUk7u2JIEVywdW1n/VlflF7MstwhvIEiqJ47+x7YlxRO3z+2r1eLlK4bvxgDwZMWlHJfdunonF+eCU661vv/xBU63g8Sy3KI9n9pvnAWAt3UPAFyxMaTu5zwbHXtaYbvCXwD2HTm/9EPw7mJ3fFu+Dp3E+d0z8cTHHvx+z/oLuNNg2yJY8h4AZxxl/XnPWrNvkJq9ZicVIZOOrRL545lWuHvjR2s9VaE3wPgvV3HWY1/x0EdLI4KUvyLE2h2lFHoDER/yfLY412kF/boBwsDS3CJ+3ribhPhYkt1xBEOmMzzFNE2e+Xo1Hy6IfNP388YC3pxb9RoysCoNefvZFqA2lQeCTLBbn6cvO8hI/GYuFDLZav95z12/q0l0szzwvyVsL/ZxTEYKL111CjGG9cFT5a6ebUXlTnt762QXW3Z7eejjpYf92JWHPX2z0uowWLWtOGLt66FYlltkt+hF/vmv3VHKbnuCa0XI5M63FrCr1E9+UTn3vLOQ2yZbv9eGnpBFyyQX43/Xk9eu682J2S0IBE0+mL+Vv7+/iH99sQKw1tJPntO4113WlIJUI+OrCLJka2Gdb7K4YJP9xrh9C45oGa5I1exN+qItheQWlpPoimXkkGN468Yz6G2vj1lexafXG3aW8n8fLGqwQNBY/LwxsiT/kf2CbxjWJzxXvTzH+dRmWqW9Z6r6BBms29VW+wBYL/b3vreQMVNXsMjeq6b7EWkAtG+ZyIy7+zP3vgH8pld7DCOy6jDspCNwxcawLLeIYc98z4vfrOXfU1cc0nn4K0KHHSIaO9M0mb5sGwVlAdIS4nl4WHfiY60/03CrXeXBEAfj9QcZPPYbrn/1J+eyueutv3OndrL+jfZP28YjcS/T7X8XctyE45jh+guvJowldvVUumUmO7cLf9CydGs1gtR346BsJ+vNdrwXPJtuWanVPmd6/RFi4mHzHFoXLqFLW+scflxnh4J13wKwo+0ZgPXmZO+/d41Sp7MBSC5YRguK2brbG/n7/adXAHg90I8gsfzq5COqd7+J6XDmbdb3Xz0MFX5OPzIdw7A+qMkvigwD4U+vz+nSht/0sjY0/nbVDgrWzeebMVcyYOav+LTsCq756RJ6fH8bg2PmYmC9OZu6JI+zHvuKq16e49zf6z/sCSTfrqz5VMfDtd6uYhyflUr3I6y/Z+F29Z83FvCvL1bw17cXOG8wd5f5ufqVOdzz7qIqW6LKA0EufOpbhjz5TZ0Or5i+bBuFXuvN6ZLq/LtqArYVHVr43FHqc/4fFZQFIkJ8Y7RxZxlz1u/CMGDCH09lYLcMOrWy1pyuzNtz7k99uQpfRYheHVvyn6tPBay/l4f73q7ynp+LthTyz8+WM3DsN4e1RjAYMrl24lzufGvBPh/C/Gz/Wzm5QwuOa5eKvyLE1CV5jJ2+kjd/2kR+sQ9PfAxX9eno3OasLq353y1nMvlPpxMbY/DJolx+rFRtfPGbNU2qenwwClKNiL8ixAk5U7nwqe8i2mrqQrgidWL7NNrbQWpLDVv7vrQ/SevbtQ039zua7kekcWy7yBe0vU34fj2v/bBx/xO5okj4l9OJ7dOcy1onu3nnpjNokRjP/E27ue2NX6gIhiI+sawqSH22KJfhL8zm1jd+rpXzC4VM7nxrPpPnbOKpr1bzmT2koMcRe843wRWLK27/v0JaJrkY3N3a62d7sfV3+dtVOw5pcezY6SsZOPYbZ73MrlJ/rU2xawx2lvg4/8lvuXGSNVDi3GPbkpHq4T9Xn8pzV57MJSdZb6xr8gbjl00FrNhWzPRl21i1rRjTNJlrv5Cd2aYc3ricf2y+gd/HfUmrkhXEB8voFLONnt7Z8MZwniy8nW7GegCu6N0BqEZFavcmmP00AKMDlxMbG89RbZIPfJvKUjLg+F9Z3895kTPsNrUf1u6C8iLYan3yuTGlF9BE1keBNbmvzXEAnB6zjDJ/0HkTTf5y2DiLkBHLf8vPoV2ah9M7H6Str7Lef4aktlCwHn75Ly0SXXSzfwfv3d4X/vT6nK5t6JqRQs82Jv+KeYqWr/blosAXHBeziVTDSwcjn5OKZ/KCayxfeu6ht7GM8V+tpri8gjnrd7Fmewkr8or5aUMB4Rz704Zdh9SuEwiGDnnB/KZd1utV+5YJHJtpv+7YnRDfr7aeu68ixBJ7UMpL366luNw6xwVVrKdau72UgrIAu8sCEVNIa9vbP+2Zjrkst+igfwazVu9wKsqNjWma/P39RfQe9SWjPl1W5XEVwRD5xfuGra27Iy+bs27/6/uqcx5jpq3klTp+bxFeC37W0a3Jsj9k6pphfdi1wv7Ab8POUt60J52OHHwMx7VLIS7GYHdZgK2F5cxcuZ1/fbGcwCGse12/19YYz9tT8t75efMh3R/AN6u2O5Xy7/ba6uIX+9/KKZ3SGXpCO+ux5m3mQ7ttf/SlPZh73wCOz0pjb2cc1Ypb+h3l/PyH0zuSmephW5GPd+dt2ef4pkpBqhFxxcU47TZLcw99kltxeYCbJs3jtR/2v3CzxFfB6u3Wm7IT2rc45Na+acusN/UDjtvThnSc/el5Va194bJ0Q/TUNybhitSf+x3ltCfd0v8oenVM5+WrT8EdF8OXy/P3+fR09tqd+7xhKfNX8LDdMrB4S+FhDyUo9Aa4+50FfLpozz4+ZfY0pR7t9/1lWZUr7TfgrZPdpLjjKPQGWFBpUmR1hdvd3pm3me3FPvr/ewYXj/9uv2vJGsonC3OZvZ92qur4cMFWlucV44qLYcjxmfxlQFfA+oDi/B7tnMrM3pvnHkjlAQGfLc5jc4GXvCIvv4n7jpM/uQBWfoZJDB8FT+dvcSP5bew4LvP9g63d/gTuNDK9q/nA9Q/uSPyCwd2s9UrLc4sP/IZv+gNQUc7O1qfyRegUumYmEx9bw5eY3jdZ/138LudY8yasP9eNs61BEy07s8W0gkaTWB8V1vkcAPq7rU+NnTePPzwDwPyE09lGOpecdISzCW+1uJOh70jr+5mPg6+YPnYAnbV6z9/H9TtK2birjPhYwwqoG2YxyTeCS2JnETQNPg2extQTn+T549/gd/77eLbiYgrNRI5kC5Ndj/BXXsWN1cb3xZI8Jv2wHrBaULPTEwgETWeNXXWt2V5C/3/P4PwnvzmkMBXuoMhOT+S4duHXHevvfeXtGeZtKGBHic9ppQOqnJRa+U3q6z9sjOjSqAiG+O3zs7jk6e8O+Q0rQF5hubNFiCs2hvJAiLXbq/6QZGeJj6snzOGql+dQWgd7epX5Kw74579uRynnPP41Y6ftfxrvS9+udVpEX/xm7X43nTZNkxsnzeP0UV9GTAuGfT/A/bGKdVKPfrKU3734A8VVfIi2NLeIp75cxUMfLz38zcSrEF4vBHBppcpxV/t9zwr7fc+YaSupCJn07dqG3ke2wh0Xy9H27/HFWwoZ+c4Cnvl6jRPKaiL8d7Rdmifi8t1lgUPa7w8iNwrfe51a5YrUBT2sIPXThgJK/UE6tUrk8lOzSfHEV3nft57bhVM6tiQz1cMdA7pw3VlWW/GHCxSkGp1nn32Wzp074/F46NWrF99++21Dn9IhCX+aWLmNJhgyWZFXXO2S8P/mb+XzJXn83weLeaHSTP+35m5i8pyNLN5SiGlCVpqHNilup7XvYBWpMn8Fu0r9mKbJlt1eluUWEWNA/2PbOsccY/9C2bCrbL+/9MNDKFZsq/7zaeyKyq2FlNWxaHMhXy7bxprt1i/DUzul86/fnsif+x3Flb2t0nivjuk8eflJALz782ZCptW+kp2egL8i5HzaGvbs12ucHvNA0DyszZV/WLuT856YwXs/W7/k/nlpDzJTrV/YbVPcZKR6DnTzCKcf2Yo3bzidT24/i7O7Wms3Zq44+ISvimCI0Z8u4625myjzVzgBYvaanUz4fh2F3gDrd5Y5n/jVtVDIPGA4nbehgFve+Jk/TpxzSJWyqUusiuM9A4/k+bO9dFj6PLx3I7w+HF4fzumLc7g29jPcOxZTUc12iMq/Pz5dlMuCFat5Ln4c/457FsNXBEf0wnfD94xOHMmUkpOYW9qWn2O6kf6rx+D2n/EffQEuI8hfQq9y5Hd3kRZfgTcQ3OfTUMeid2Dxu4DBp1m3AQbHt6t+6Ha072WNQw/66bP7I8D6XVGy/Evr+s7nOC1XjX70eWWdrfa+M2KWAPbkvsLNMH8yAI8WDABg+Cnta37fJ19tjVgv2QafjuTMo61/a1+vyHfWm3xjv3Hv1bElyQtfhVcvItm/nTWhdvzK/xD3xf+Vsy78PSf07M3s0PE8XnE5Z/meIu/oy4gxTK6P+4yPXffRw1jLOz9t5q251pvJa/p05qyj20Q8RpXCz/eTuyn57+Vse/ZCRpY8zrCd/2Hr7LfAW7MJZJvs33PZLRM5xq5ILcstxusP8vOG3c5xP28s4KVv1lLmD5LostaeLa5inH/l9Sf+YIinvlzl/PzNqu3MXV/Ags2F+/1QwzSrt9HxRwu2EjLh1E4tOcH+YOpA7X3zN+0mEDTxBoKH9EHUgXy2KJdTH5nOZS/MrvL1+KMFW9m4q4wnv1y1z4TZJVsLGf2Z9eHAaXbL8H3vL+aXvVrX3/15C18uzydkWkG8si27rfcE4WAwZ92ufc5lw85SXvp2HbPX7oyo5lVW+YODRZWC8gsz1/Cb52bVSrj6eWMBG3aWkeiKZfDxmc7lxzgVqRKW5RY5a/PCE2wBp2Lzv/lbnI6j93/eN0xsL/bxw9qdVf7/WL/D+vO66oxOACS6YhlgD+f5eGFujZ/TrlJ/xPKBhZt3O2PoS3x7Xn97dmhJ59ZJHNduT7v28FOzD9pe7YqL4a0bz2DW386ldbKbfsdYvy+sv9eH96FvY9EsgtSbb77JiBEjuO+++/jll184++yzOf/889m48cCLShuj8D+2yr9Y7357AYPHfbPfTTG/XpHPhU99G/FpeOVPJUZ/tpynvlzFm3M3MvLdhdz73iLn06NwdaFyRaqqf7wFpX7OGP0VJz88jRMfnMrlL84GrBfm9KQ9b2haJbtpk+LGNPf9BD0YMp1P+HaXBZyWr0Px+OfLueWNnw+7+lIb7nt/Mb95frazR09VFm7ezSXPfMd19rqVTq0SaZXsZvDxmdwz5NiINrkh3dtxU989JfGB3TI49xjrl2XlEaTF5QFesl/cPPHW7dfuKGHehgL+/v4ivl+9o9qBtcRXwV/enM+OEj9HtUnijet7c/lpHXjgom4YhlUhqaneR7YiI9Xj3Pagb7aAD+Zv5YVv1nLfB4v4Ye1OZypXRcjkhW/2vJA/O2P1AatSm3aVcf//Fh/WerxAMMTvn53OtaNfYvuPbxGY+yo/v/tvcr+ZACunws41TPzOagEqD4T4bFHNXsh2l3gxNnzHqLj/cM3swTDxQvjyQVg4BVZ9Aau+IHnpG9wfP4n/xd2LOf5k+ObfUHTgaYiVK77Z+V/TZ+pQzo+dS9CItTZ0vXYqnqxu3HvBcc5x3Y9Is4YcJLXGdeUbcP6/wIglZtFbvON+mAx27b+SvGstfDTC+v6cu5lRZJWSarQ+qjK7KpW48FV6HmGtPdj6yzTrus7nOO2tney9sJqEjmcCBh2Cm2jDbrYWeuH7pyAUYF1yT+aZx3DesW05siatkGFxLrjkWTBiYMEbnFk6jRR3HPnFPqfy/c3K7cRTwf/xEnxyJ4QqMI+/lDvSnmSheRTXntmZRFccp3RKJ9ltVchTW7QidfizXBv4K/lmC7rEbOF91/1cvPtVQkE/p3VO5/Qj0zmni/0hyf7GoPvLYMEUmHABjD0ePrgJ5r5E8trP6GPO5+LY2dwc9yHZ026Af3WByb+zQrn/4INpwq8l7Vsm0DUjGcOwFrJ/sSSPuGAZvWOWc3HMLLLXTME/ZwIXx8xi3Ble2rCb1fkl+92zKDwQp7/9Zu+9n7c44+orL5BfsiXy34Fpmvz2+dn0+/eMKismYVOXWkFi6AlZHG//GznQXoKV2xB/2bg74jrTNPnLm/O55fWfa1zVe2HmGv78+s+U+oPOnm0lvgqmL90WsX6l8lj5Rz5Zxn++Xeu8plivL1a76JQbTmdQtwz8wRA3TprnrJnaXuxzOiZg34pHuDp7fvd2uOJiyC/2OUNDwip/aDbphw37DayVW9LCgbM8EOTJL1fx04YCZtTChLtwe+yA4zJIdO0ZdHOMvaZ01bZinv5qNaYJF57QzllTDDj/rz9bvCdI/rBu5z7bIYx48xcuf/GH/U7p9VUErd8dwG9Pac+/f3sik67rzfVnHwlYITU8/Xd/fx++XbU94v8fWHtABYIm3Y9IpV2ah0DQdH5vLNi0m5BpvUcMf4h6YQ8rQMbGGPzm5Op98BMTYziV9qPaJJOWEE95IOS8zy0uDzBwzEyumzi3WvfX2DSBkUcHN2bMGK677jquv/56AMaNG8cXX3zBc889x+jRoxv47Gom/OYjvB7h44VbnfLvszNW89te7Ymz22VKfRXc885C8ot93PLGz3x6+9m0SXE7iwUv7NGOTxblMmavknz405IT2rcAcPp8y/zW2PKWSS7e/mkz53fPdK77Ye1Op6+/qLyCIrvXvPKnMmHHZqawvdjHstxienZo6VyeW+glENzzD3h5XjFtUz0EQyZPfrmK0zqlc1aX1qyy9ya5pk8n57lWtnZ7Cc/OsCptf+zTiVPsT8L29p9v15LgiuWyU7L3ez+1oTwQZJr9wvjZ4jyGdLdK34s2F3L1hDncNagrV/buiGmaPPzxUkKm9QlSmT/IxSdmHfC+7x7UleV5Rfy4dheXnHQEG3eV8ersDUxbms8jw0xiYwxmrtyOryJkf1KUwqeL8li7vZRPFq3ml427eePHjRyflcplpxzBuZ2TyPL4rV9oRgwYsRDvAXcqGAbjpq0kt7CcDumJfHzb2STYn96e36Md3/y1P20OtCYlFALvLijOhdIdUFFuf/kg1sVAl5s3jZUUbU6iYNcxtGzZCvbzSVYwZPLsDCuYBIIm47/as04hjgqOMHdwTHw+x7i206JsK5tfmcjRLQzrjZcZhISWkNgKMyGdTxb4WZGfwuPbujH+T+fv9/H2EfDCtiWw5WfY+jPFq37gtdL1xBgmfGYdcvJeN/mXGc9Vrs4sCB3F1u9PgqN/By06VP14wQprAt3SD3Ev/IA34u03oOVAYmvodBa0O8Fa+2KGoDiPud9PpZt/EUmF663BAl8/CkcPhJP/AF0GW2+mbf6KEKvzSzjW2EhO4jucHvwJTFhFB5Iue4msY093jh16Qjsmzd7AnPW7nI2UAevce98AbY+Ft66mi3cVH7vv44clJdDjpj3PLXchTLkC/MXQoQ/0/RtLHpsJHEaQ6jYMvrgPinN58YyfGFtcQVe/FaA/Lz2anzduwRUb4wxMaBIS0yGzB+Qt5I64d/FvSYLlrwLwcOEFAE7LyyHpdCb0/RvMGEX8JyO4t91f+Pv6E/lscR4ntG9B/ppfmOJ6ke5bVwEGnPcPjLPu5JHNhXy9PJ8/nWO9EXPFxXBO19Z8uiiPo9smk+iK48gzLuWRbaczNnkSccs+YETce1wUM5tA139gmKfR5+jWuGJjWLu9lKVbi+jWLsVaz/bLJCsU+cKhw4AjerEh+QT+szhEKC6RPkfEUbhxEeclrSXDtwFWfGp9xSVAl4HWWPyug8GdEvF0Q6E9lffsFi4Sdy3jltTvOaJ0KSd+vI5F7g3EGvZrTfizNhfwIwzyQJ7ZEt9rp5BwdG/IOtmarJiY7lRcf3Vye7yBID+s3cXL363jxnOOdAK8Gz/5a36GxJ+sDxFKd1C0M49bt64hjgoKJ7QlJaMtuJIhNQtadISWHaFFB3bQgp/sVqmB3TL4bpX1O/ZAFakFm3bRht20NXYTWLYOMjpAqALMEOt2eslfsIXdZjLfzjXpd3I3iE846F+XxVsK+ac9nCAz1UNeUTlT5mxi3Y5S5qzfxemdW/Li77qRYpaQt2ElbTA55cgMZqwt4pFPljJ3/S6evbKX00J8aseWxMQYjLnsJC599ntWbivhptfm8e5NfXhh5hoKvQGOaJHAlt1eFmwqpDwQdCZThv8/dm6TxFlHt+ar5fl8tjiPLnaVpyIYcvYpAqtq+O3qHREf7PkrQhEBLRw+v1+9w2lLr/b2DQcQ/iDpxOwWEZd3bJWEKzaGMn+QT+wP027pd3TEMeEgFc4whmF9/8H8LdxsH1voDThbPoz6bDlnHNXa6fKBPaPPk91xtEpyOb8DgyGTtilu8ot9TJ5jfVA+qFsGfY5uzdrtJbRvaS0ZueX1nykqr6Bnhxb06pjO7jK/sxbwyt4d+XHtTj6Yv5Uf1+7kzKNbO3+mPTvseb6/6ZXN2/M2c96xGbStQYdKWEyMwSkdW/Ll8nx+Wr+Lk7Jb8N7PW1iVX8Kq/BK27PY6H+43FYbZxPur/H4/iYmJvP322/zqV79yLr/jjjuYP38+M2fOPOh9FBUVkZaWRmFhIamph/jiX0u8Ux/h1W+WESSGK844isk/baXYbxD4//buOz6KOn/8+Gu2Z1M2vfcCgdATSuhdEAuHHhwioqB3qNzh8T3bT0899fRsp2e9syGnHNjQO/FAkA4WepMeCBBISCM92WyZ3x+bLFmSCAmBAPd+Ph77CLs72ZlZJjPz/nzen/cHLQ403JweQ1q4GRw21h/IY8uRfPQ40OIg2k9H71g/vt19ApNOZXzXUI4WlLHnRDEKKt5mLwqqVGpVLTZ0jOwSQ1SQH2j1fLotjyPFVuJDLVidGg4V1tA1woebe4aBw8ba/XlsP1pA13Az3SO9Ka+sxGmrJc5fj8ZpA0ctOFw/s4pqOFBUS1iAH70Sw0FrAJ2RE+UOFu0swF63/sGdIumXHMae3DK+2JyNxaBy98BYPv7xMBVVVQxP9iU5QAe2uptyWzXYa8gpKuNkWS0OVUt8iC9Bfmb2F1QTHmghxN8COiPFVg2f7SzEih5/X196JIYTGehHkJdSd4NfCw6r66e92tVyaqt71FaBrdK1PhTQ6FwPbf1Po+tipfcir1rDikPlVGNA1XkxY3gXNAYzS3bnsu1IPhE+Wu7oG8GRk/l8v+84vhoro1J80Tuq0drr1lVbUbfeulZYncn10HuhGn1xGnzRellwGHxZsKOEIoeJCf06EhPoyxfbTrD7ZCmDE3wwOyrIOn6CzgFOKkqL8KUSf6UKXyrxperMjcXZNDrsRn+OVBk5rfqQGBNDcEgYmPzBy9+1LfWcdlcKTnUxVJ2Gynwoz3M9nC1IndB5gW84+Ea4igz4RoA5iL2nqvj39hMogEWpIEw5TTinSTaVEFCbh05pXQ+kQ+eFNjARghIhMBG8Al375bBCdQmUHseZvxfy96JRG7dUF6gWctQQilVfHIoOL2oIppR4JQ8vpYlJNb1DXClqYV1c36HqhKpiKNgHOZug6kwPcqlq5ljoCLqOmeGq8KZt3L71+4+3s3RbFq92O8rwqm/Q5vxw5k2DL7WxgzioRpFrNZLmW0XRTyvposkGwKZqWaC9ngF3vkhSZONexfyyGj7edJypmXH4m5tIlzudTfF7NxNYUZfmFJXhCvbKTsK+xa5jNzAJpn1FsS6EXk+5eo92PTH6Z3Pnf9b6V1xjrgBVo0dx2vjQPpI/2l0l0m9Od7XGtpWq02V0fs6VDr7HuAWz4oT77wfvNuz12vdf1IW3oKBiR4cOO6cC0umbO4fUcD+WzB50YVUInQ74bDrs+RKAdY4uZBlSuT6iBMvxlegUJ6rBF+Wmd6HjmGY/5vusIu7652aeuCGtUbC68rO36LbrGYKVuht/n3DoMJovsg0cPlXCyIhqutt2QmmD7An/WOg5FXrcApZoJv79ezZmF/ObIYn0TQhk+gebSQzxZuXUMAq+/xfqrs8ItTfocdUaITrDFYj6hILOi4qy03y1bhMpmhOkG3NQbI17natM4WQ5QsitMaCgkhakEEkhzpLjaGjiPOIfx6rSMA7bghiX2Y1yh46Pf8wmQGelt38FztNHiVYKiKTI1bDSCnaNkaP2QEqMEaR378Epgpj7/XGMeg33jUhBsZZDZT7OinzspafQVxfgKM9D19T2NsfkT6kumIPVvlQZQ/ALCqNbfAQVTj0/5lSTHGRg44EcikrK6BqsoVOAk12HjmJRKrFQiV/dT4PSdG+/XdVQgRdGnwBO1BgotBlJio4kJDgETBZKVC/e3VhIpV1hcq9QVu7OwWGr5oZOFnYcOo7WXklmtBF/rRWs5eQXFmF0VuKjteNUtFTbFZwaHf6+fmDwptRh4KdCBzatGX9/f/YUOggKDGB0jyQweIPOi2MFJXzywyGMig0jNgIMDn7ZLZgdR06SX1yCGSvhZidJ/lrX+UrRuO5LNDrXz7p7FAzeoDe7ftb9e2e+jTKbwoDEAN5afZCyqlom944iLsDkvifBXsPyHdlYa6owUkuol0r3cJPrell3/2BXdKw5VIIdLbXoiAkN5KdTVsxmM+MzElH0Jg4U2fh42yn3+SHKV8vt/aLROO3gqOVYfglr9uYQZlYY3TGg7r7L9cgpsXKosBo0WipskBRmweJtZnVWKfGhAcSG+vOf3YXUomNQaiTpieH896dCNmcXEeGrYXq/aPbkFLN23wliLHrGdQ7miy1Hsdba6J/oT0KA0bU/9Q9FcTXGKhrQaM80zipK3fOz39O4n285Vsr6w6dJCvFlXFown248TGVVNQbsDEjwI75TBvSf1aq/sbZ0vrHBFR9InTx5kqioKDZs2ED//v3drz/zzDPMmzeP/fsbl1y2Wq1YrWfSysrKyoiJibksAimeT4KqS19KVvxvsKlanCjoFCcaVBTa+M/fO8TVq1IXaKI1uE70NWWUlhSh1JTgp7Q+1a5G1aMGJmIMTWHJSRO7inXovHz5zahu+JqMUH0ataqQbzbuxlyZQ4I2n0g1v/kgsgnF+BGQ3JdlJZF8fDIEXXQ6E4emc+c/N+Nj1DFvem9CfU386as9rNibS4KSx2uDHJz8aT2h5T/RRXsUbRPBmAevAOwdrmXWthhW1nbi03uHNmrlbOj99Ud4cvEejDoNiSE+WPP2MVG7hqle3+Fta7rIhR0t2s7Xsyry16R1S2/R+LazrdtznK3/eoy7dV9hwDNgVpOGU3bd21gCQliyK5e752913Rj/39BWrw9VhVXPwNrnAaiOH8mA7DsprnHdUC6ZPcgjV/9CXZJACvhp0V9I21mXJZEwhAd19/PxrjLmjOrA70akXPgKnE5Y8xys+Uujt3b6DqLbjDddgU0r2RxO/vPjPsaWfYJ5+/tQ03RKmqo1stE0gAX2ITz225kE+riOva3HTjPhze/QaxXWPzgcvVbjDrz/eF3nuhQwlTTlKDcYNjHNsg1TWfa5N8zoR21Yd360JvBpXhj7tCksmDOe11cdYu6GbAw6DT88PIJAbwOvLtnGurUrmRZXxHXBeXByOxRnnXMVDZWq3vhFd0YJTgafMD7aVcH2Ii02VYu3YuWBYdH4a6rIO55FWW4WcdoCjFV5rgaVVnCqCoVYyFf9SYwIocap4Gc2suNoEWZnOQFKBQFUYFTatsiCAw02VYtBsaNp62uFEM1JGgFTF7X3Vpx3IHVVpPYBjVryVFVttnXv2Wef5U9/+tOl2KyW6/sbvtlygBPF5ehwoMPOsJRAArwUVuw+gaqq9EkK5VipnQMF1QT7+TCqaxRHimtZsrcQOzrsqobhnSPpGR9ypjdFUcBh46ecQpZsP0a4t4Zbe0e4e5Fw2tl9vJD9uSXocGBQnNhUhf4dwgnw8ebTbXnUODWMT4/H39e7rhVHf6Y1R6t3zQGj1WOz1fLMf3agcdZy96BoCkvKMWCnsLScn44XYTGo2GprCTErDE8JYM2BfAprwKbqsFH/0GIwmenbIYrPdhRhRc+YHvGYzN68uyEHBRUtTpKCjJh1kJVfihEbYWa4s18E3+w4Sl5xKRlRZrTOGsrKK6ioqsKq6qhVddSix6k1UO3UEhEUyLBu8Vh8/ahWTCzeW4pda2JCnxSMei07jxby7tqDlFdVc9eAWMorKli+MxsfTS3+OjtqbRX+ejuKvZreUSY6BmpZsjsPK3pqVS2xIf7sKrBj13rx65HdMHr5uNI+DHUtX/q61i+Dq/vd1QNX7Wrtspa7Sj9bS6GmjKycPDb8dJhQYy09Yyx8l1WEUadlTPdYCu1ezNtWShlmSlVvOsRGMWtcbzBZwGTBrvdl1aEy/t+XP1FYYUWnUZg5MAp/tYLP1u8kUl/JS9fHEkA51JS4empqSlzHSD1F4+qpMge4enW8Q1zpK77hrlQ0XRM9GnVKi6oY/MIqvBQr798Uw9tff0e/EBu/6WmGijy27s3iUH45Rr2Ga9LC+XR3GcdtfpwikGemjabUFEOu05/0eFdVsoFVNl56cwOHCyuxFyfx0NhUAN5bd5inS/ZiNmj55K5Mxry1lhDHKd4Y40+QNYdl678nydfJgHhvcithV6GTw7X+bKsIZKczkVwC+c/Qgdz/7o+UOe18em0/escHsmT2IAK9De6A5J3b0vl2bz6nK2vpnBHN/vDruOuTHSRYtHx7SwDak1tcN2g1Za7vzcvf1XMT0Q2i0ll38DRLf9xEmJ/Ro6x8Uyb3iWX9oUJW7stnb24ZOk0Uf7FP5s3aKXTVZpNm3UGauRS1poRTagCH1CiC03/BgxP6M7x1ZyIPyVHBTLXfzGfO4XxzfS2bNnyL3i+UroPGc+8GE+uf38i/7urH8rpS/fXj+VpNUWD4IxDeBU5uw2vw/Tx3yJUuNKxjaJsGUZeSNeM3PLwlnzhTNTOn/I0fXt4AQI+fCaJbRKOBYQ9Dl5v47JO5kLebg84ovnOmMePGCXTzP885qpqh12q4qX9n4AkY+TBkrYQTW3CU5PDvnac4bvcnscdQ5p6IZGuuq6c2c28+k3q7grd/1o37uLFHlPvvKD7ITHZRFU9/7RpHc01aOGXVwTx7OJ43yn7Fj7+OwSt/B+TvdfWE26o5Uq7hP1kOCO7A7CkTICgFg0bDIKCP3YHT6ZqeYUxaOHM3ZHNLn1j3WN4OMRH8VU2luNKbvlMyXSnL1SUc2fUdH/x7KcmGYqZ2t4CtivwqJz/kVFNrjsA/KoUhvdMZ9v5Rcmw+fHvjEJJDfSmvsfHEquXYnSpJId5kFVQSRgcmpccwau0aymvsKAoMTLBw4uhBwtQC/jo6gAjnKSjP5fusQo4XV6PTgF3nzVGrD0X4UahaOKUGcEoNIDo6FkWrY8vR0/id0lFWYyfMz8ipGisBZj39k4P5eudJJnezMKO7F4/P/5YYXSk3JWvYeSgbvdOKWbHir7dTbtNSrerpFBtGz+RoMPmz+lgt/9pZRmBwKE//aiCL9lbyxPKTVGEEFO4YEM/j41LBVs03Ww/y/H82EWaworeVE2aw8tx18Sg1pa40zpoyKsuKWLknt+4aqKNDVDAZHWLZmmdj0Z4yokJDuPuaHlQrXkz6YDcVePGf+0biY1C4/+MtbD9ayF2ZEYQYbHy4dg+Bulr+ODoOi7aWD1bvprqyjGtSfInwcrA/J59jZQ4q7FoykiLYkVfDyUqVrnHhrM2uxKE1UWrXU42ROdd2509LD+Nr1PHrATH0ivJGq9bdA9lqXJko9dkptZUcyS1gy6ET6LAT4mcmt6wWk17Hdd2jXD0tOi9XerzOxHdHK/nmQCk6oxcPXd8DvdHsuvdy2l3XUKedf244xL4TxfSONvOLrsF8ufkwOYUlZMZ6kx5l5uttR7BZq+kXb+FgQQ15FQ56JYbhazax8uBpapw6Sm0aeiaEMbhTlKu3Vld3D6aq4LRTXFHFK8v2YlSc6BUHGqcNg2LDgAMDNvTYCfNWiPHTkZV3miBfLzJTwkGjQ9UaWHGgmMPFtdjRYkNLv6RQ+iaFnrmXrO9tAlfDgOpw/XQ6GjxXz3re8H0ndoedhT9k41RVfMxe5Fe5MqbyK514m83M7DXigs5Tl9oVH0gFBwej1WrJy/OsBJOfn09YWFiTv/Pwww8zZ84c9/P6HqnLwpAH2G3d7x4bkhzqw6+mDkajUdjs9RNzN2STVOTN8eJqah1OPvllJkpCIIlA4Vc/uUu8TrhmKDQxGLuzqrI7/rirqMVZN2/JNgefLdlHargvK7KK+M+Ok8wKTWZ0WhgP/bgBi5eeaeNHnXOsiR44sOMHNhwq4lRxBIt35qJRoFdsAJvtp7k1I5aPfjiGsUrDd2OHM23Lt01/UAV0z7eww+Fq9Zy/pf6NCEZ2CmXp3ny8SrQoClQ5HPib9ZSU2yisiOOT0zlU2x0sGX+m5bqowsqnW3JYsiuXnSdKUeuLCuaBuVjLgORg9uWVcbzYH4APCyDIR8u6g1rAdZP+449aHM4QrI44cAA20GsVHhyRytNf76Wn6s8DGan8dluD1Ku6+gOTe8VgHNTtZ7+7c4msdfDMnmXUVDpJLfFln62cyT1juHZ8N7xqbLyxeZl72f/XORVizhSs0AGju3iTkRDEH7/czde7cnl9bX3ueSwTR3cmoPcFjNM4h9ggM30SAtl4pJipiwqwO5NZm6Mw9c7RrD9YyK9XuP6D507tjaljKFvs2/hy+0mSQ33w7jAEb6DhqDKLWc/skSnMXridVfvyeWhsKkt25fLnurlM5ozqQJcoCzf1TuCf32t48XAIPqYkvqpNgSKY/4u+/HbBNoorXTd8Bp2G6EAvKKzktZWHKKux42/W06tunN/ZN++KojCq85lzzLVdI3hq8R6OlNpYWRnPqMy+ALyx6hBmg5Y7Bnh+t8vqKiWN6hx2zpLXXgYt79yWwcvLD7BiXz5/uiGNx/69m3155WwgltMRXfi/e/vz8Oe7WFQ3pvK5mLYbQxTuZ8LXqOO4NZBXTifydmE4FILxWA1We5V7P+sHzY/s3PS5t8U63+h6AKM6e/P9Q8OxmFuZLngZiPL3YoFjBNpqhZuqVffkmt3rxqu2mZAO9Jz4CK+tOIjNodLXYnKXLm4zOiN0HAsdx6IFtii7mP/jMdgMcCbddf2hIib1jqWsxuYeaH9rvzOTd/aKDSC7yDX2IzXclzdu6YXdqTLwuVUUVljZY4ugQ2oH5hZlM2lYDGF+Jr5eeZCX9x/g5qhoCOnosVlGndb9776JQWx+dCQBDVJW6yvlZRVU0u/ZFTw8NpU7ByWy29iDeQ6VjNAApo53ZbeEAjectduhEU5yjpWw+0QZyaG+bDhUiN2pkhDszb3DkpnzyQ7+sTaLb37Ko7zGTpC3gaLKWtYdLgVCMUYkEz5koPs62qPWwT/mb2H1/gKohdhAM78flcL767Pd1efGxgRi0GnYcvS0e3xyfeW3sV0jmNw7lq935vLp7nJ05gA2OLsyMimU3rf1RnO0mPs+3k7HMD/+Oqk7JZU29uaV0b1TGNSddwb2dVKQfIKhHUPR+RoZF2TnqXUroG5dPWMDXDfQRh96pnUi698nyapL6smMDELJ6EdD3sDiDzfzTV1F0hU3D4EQH7zzyvlo11q8CrVMSxxJzulqdqrV+Jl0+IS5zo+9emn4NHsXT23RAUbKnb14ZGQnLANd4/jySvbx9zVZ7DdGcqrEyvf5rh75YB8DS24ezOZv9vPx5uMoh1338xO6RfH9oUIKyq0U7fRnq10Pdli+DDSKjbggb+bdMYzYuqlnGnp5wTb+Y6tLM63r+B+eFMp1N/ZutGxMcRWbP9rCnYMS0Pds+tzbyVLMv5fsY+r4LhDhh8Mrhxc/3UFKhQ/v9svg3nWr0WkUtt86mvUrDvKPtYeZEhBLWY2dryrPpLu+1KM7NDNGNBBY9eNK9zxrWo2Co25sulaj4HCqGCo0dLH4sdVWwp+HdCGzrmKwAvSpsfHMGxs4XFDpmmh34gjwbr6BtDV0wBfHvnNN7VLmmgZgwZR+PPGP73GUq1wfNZwLa/K5tK74qn0Gg4H09HSWL1/u8fry5cs9Uv0aMhqN+Pn5eTwuJ50b3LDNGJjgvsn67fAUfI06sgoqqXU46RMf6DFA/OGxnZjQK4rbMuOIb+KkAK6bv0m9Yz2qydQz6bU8cUMav+oT6x7IueZAgXsegZ6x/uedw19fgre+HKdTxT3IdmByCCa9Bqv9zCDSpBBvetUNaEwI9nZPVLsjx3UhGV5XYl2nURjZKZTnbuqGSa+h2uagqtaBn0nHyxN7ADDv+6NU2xwEeRvcZUnBVVFw5pAk/j1rIFsfHcXqPwxl8W8HkhEXQFWtg+V7TnG82DXQMcjbwJ7cMtYdLERRYFpmHH0TAqmqdWC1O+mTEEhMoGtAZJ+EQMbVTVS3/XgJX+10nfDq36/3y4wLD9a9DFqGdqib16du8Oy4rq7wwtek9ygIkR4X0PgDgEBvA6/f0pO3pvRiWMcQjDoNfRICuS0zrsnl21L9mAt7XUUhh1NlZ04pb9dV47tzYALD6nozJvaOQaPAtV0aFzSpN6RDCBrFVSJ7+/ESfv/JdlQVbu0X6x68P31AAooCq/YX8PXOMxej33y4heLKWhKCvXn/9gzW3j+MqXXfQX052EEpIWjPc14fk157puX9+2zANVfOC9/s509f7SGv9MzEk06n6p5oeVTn5vevIa1G4Q/XdGTJ7EH0SQjk96Nc800ZdRr+9qseGHVa7h/T0V29sVsb3pwrikJymKsy1fwG89NZ7U78zXoUxTXh8ukqGxYvPRnNHHsXKtTP5HGjfKUJ8TFi1GlwOFU+3uQaFJ4Y7H1RgsOkEB9e+VVP3pjSi0ev69zs5NltZcbABJJCvEmL9OPm9GheqhvDtuFQIU6nytc7c7HanaSE+nhMRN5wIPuTN3ZBp9Vg0ms9SoO/s/Ywf11+gEe/3A2cmYw3JqDp61xDwT5Gj7/hSH8v/jqxO12jLDicqntwfn3FvnNVg6y/dtZP9FtfhGJoxxCu7RpBZmIQVbUO9uSWYdBqWPjrfnw2M5Onxnfhoxl9+fzuTI/rqJdBy9tTM/jd8GQeGNORZb8fzC96RvPH6zq7l+ke40+/RFdPvJ9Jxz+mppMc6oNGgYkZMXSNttA7PgC7U+XDur/P4amuxoz0uEDW3j+Md6dl4GfSExtk5pq0cI/GG51Wwy8zYtzXD2+jzj0RN0DPBj2moX4mEkPOfEfN9Q7/ZkgSOo3CkA4h7om5U0J9iA7wotrm4Nn/7nNPuRLV4P9xbJdwovy9KLfaKbfa6RDmw+0D4t3vj6gr9b1kdx7fHy5Cp1H44I7ebHhoOCG+RneKtFpXbe7e4cnu+4CtdVUPh3YMwaDT4FRdxSv+svTMRMKHCyq4c95m1h0sYPX+xpX+6ucsO1tMoJmvfzeIXzQTRIFrupPP7+7v/s5Gdg5Dr1U4mF/BK9+6xqD2ig3Ax6hz78e2YyWsr6t2e1tmHDOHJHFd959vFOmfGOz+94yBCe65Kkd2CsXXqKPW4XR/FwOSgj1+18+k593bMugZ68/916QS0MZBVL27BiXSKcKPW/vF8vnd/UmPC3BnZvx4uOl09cvVFd8jBTBnzhymTp1KRkYGmZmZvP322xw7doyZM2e296a1Ss/YAAw6DYFmA7/oeSYuD/Q2cPewJJ5f6hr3de9wz6owBp2Gv9YFExeqft6fXSdK3XNv9Io9/5ujgcnBPE/j8WngCpQ6R/ix9ViJe56OvolBjEgN5e75W5k1LJkDp8rdQVRckJn3pmXw08kyYoPM+NUNYO8Y5uteJiM+kKEdQ+gWbWFn3WuZSUHNtvQHeBvcJ4hPfpPJtuOn2XasBIdTZXLfWMpr7Dy/dB+R/l7c0ieWmEAzJ0uqGffqOmpsTp67qRvVtQ6e/2Yfdw9JIsLiRd+EQH48UuwuLz8tM56/fXuQcqudpBBvj4vRhZg1PJmiSiup4X6M6xbhvsCC66asoNyKQatpcqbxeoqiMLZrBGO7RuBwqmiUxumxF8O1XSN48qs9VFjtxAaaOVZcxbqDBe7Z06f1j3cv2z8pmO2Pj8bH0Pxpyt9sID0ugE3Zp7l3/lZqbE66x/jzxPVp7v2JD/ZmVKcwlu05hVN1XcwP5ldQUTfP2e9HdXDfdAxK8byoDG1hyfcpfWP5x9os1h0s5FB+hUfp4FX78xnbJZxPN+cQ6mekoNyKj1FHv8Smq06ey+jOYbz4y+7EBHi5K1xFWLz4cEZfjhdXtXn6W0qoD9uOlVBZVwXr7anpHDhVzrhukTy1eI/7hnJ4auhFq5J5pdNoFEZ2DuPrnbm8sco1LufnxsZdSRJDfFjRYFyczeHksX/vpriylr15Ze5JP29Oj/Y414xOC+fd9Ue4Ji3co2Gwc4QfK/fls+dkmXt+p1X78imssHK8Qenz1pjQK5ohHUJIf/pbDhdWUl5j40hdxb6EcwVSdefV+ol+66vgju4cjkmv5aM7+/L++iN88F029w5Ldv9tNlddFlzX7jmjPXvW+iQEctegBNYfKmJYx1D8zXpemdSDHjH+xAd7M7RjCAXlVndFthkDE9iUfWb+pmGpZ85drTm3394/noUbjxNhMTX6nvslBnG4bi7E5qpz9ooNYPX9Qz2mR9FoFP4yoRu3vvcjH/5wlJ11PW5R/mfGb/qbDay5fygbs4vZnH2aG3tEekzs3TPG35V9Ujcv1PieUQxtkEo8rlsEPx4pokukhamZcZj0WjqE+brLo5v0Gt6ako5Bp2FnTgk3vfUd/92Vx9Zjp+kVG8BTi/ewan8BK/e5rhcBZj3eRp27umBbnlctXnoGJgezan+BuzpzfaNs/XmhvoKzj1HHH6/rfF6TnGcmBfFx3d/bhF5RWLz0vLhsP1P6xnG60sbGunkvo/y9iGui0T0xxIcv7hlwwfv3c8Z0CWfMWY2k/RKD2H68hB8OFzHhPEurXw6uikBq0qRJFBUV8eSTT5Kbm0uXLl3473//S1zcxW9hvxjCLSYW/3Ygviadu0RovekDEvg+q4gQH6N7/o6LIdTXRFqkHz+dLHPPNN6w5fBc0iItWLz0lFbbmNwnhs+25LhLn8cGmnlobCemvPuDuzRpv8QgRnQK48DTYwHXXEn1cwaN7RKBoiiNetE6Rfg1CKQCUBSFWcOS+fWHrhSxgcnn9/1oNArpcYGkx5250PmZ9PztVz09lov09+Kb3w/G5lDd5Tk/uKOP+/2nxndh3Kvr3PvZJyGQoamhfLXjJJP7xLZZoNIlysKnM5vubU0M8eHHI8WkRfk1Onaac749Lm3Bx6hj4a/7UVZtY09uGU9/vZcPvz+Kw6kSF2QmJtDzpO53HlXfhqWGsin7NCfq5uOYNSy50Y38nYMS3al0f7yuM3M3HGHV/gJSw325rkHKU1KIj7scMMCQji0LpGICzYxIDePbvadYtDXHPWUAuFqu1x4o8JhHZGjHkFb3sCiK0mQJ8N7xgfT+mZu21urQoHc33M/EqM5hjK6b/uD2/vHuQGpkpzZK67tKTcqI4euduVTXzYHWsHfmaqLXauibGMTKffm8uTqLrcdK0GoUftHLM2knzM/EmvuHNfr9+nLR24+XuMuS250qX2474Z7Y/ezzRUsE+RjdJbl3nzgTrMUH/XwglZkUhE6jsPVYCTPmbXY13kRb3A0iWo3CXYMT3SXlL8Qj4zp7PB/foGHVqNO6gyhw9WxHB3iRc7qaThF+RFgurIR0hMWLlf83BKNe2+ja1S8xyN1g2FwPDeCxffUGpgQzLTOOed8fdZcpP/t8pdNq6J8UTP+kxtdwnVbD0A4hfLndFcDOHOL5PVu8Gl+76+d5AlcWQ/3UHj1jA7g5PZpPNufw56/38ui4TqyqmzS+fhqmYR1DMeq17p7Ltm6gGts1wr3OP4zu4M4MibSYCPYxuicg758UdF5BFLjm9QryNpAc6kPHMF86hvkyfUACXgYtK/fluwOp/klBl6QB9Xz1Swzk72uyGs0jdrm7KgIpgHvuuYd77rmnvTejzTS8aWnIpNfy4Yy+l2Qb7hvZgZeW7ed0VS1xgd4tujnTahQeubYTG7IKefjaThSU1/Lt3lOE+BrxMmjpkxDIn8d35YHPd7qmrEnw/OyM+EB3Pu+4ZnL7G57Q6mdVH9kpjD7xgezNK3OnA7alUN/mK591CPPlN4OTeH3VIbz0WjpF+PGnG9IYk9a45eViGdoxhAUbjzX7nV0O6gNiY10KWn3O//kGvmcbnhrq7qXtEObDiCb+33vHB3D30CRsdieDUoKJDvDCpN/PvcOSPXotFUVhUEown27JoVu0hWCfn5k7qxnXd4/g272nWLE33yNIXXuggNqzJpAe3cQ8bJerlAbnpOGdQj0uwINSghmQHMSpMqt75nrRtAHJwe4beLh6eqSaUj8v0Nd1Kd7XpIX97Dm0ofqejn1nzf/zwjf7sdqd6DSKR4pZa3SLtnCipJr1hwrcmQznKvwSE2jmnmHJvLrioDsQ+O3wlHa/IdVqFH43IoUHPtvJxIy2ac0Paub81y/RNWbLpNOQHNrySaQfGtsJFVda8pgu4S3KdgFXsZIvt5/k+u6RJIc2H8jVa3g/NfqsVOrfj+rAf3acZMvR00x+xzW2+Zq0MHeAfX33SKptDhZsPIaXXnvOQLulxveIIqe4ivT4QI+5sRRFoUeMhW/3uhqoBrUgOyLQ28CGh4ajURT3cVkfPDYMfAdexMb41uiXGMTK/xtyzl7hy81VE0iJtjeqc5jHYPqWmtg7hom9XeOCJmZE8+3eU3RpkAYwsXeM+2b67NLMfiY9L/2yO6eraukS1XQLUP2F1qDT0LWuVVejUfjwzj44nKrHzOOXyqzhyZRU19Il0oJeqyHQ2+Duqr8UrkkLZ/OjIwm6SHnNbSkt0oJeq7h78FobSHUM8yUm0IvjxdXMHJLUZDqnoig8OCbV/TwxxIe3bk1v8vOmZsbx/eEi7hrUuhbloR1C0WoU9p8qd9dl8TXqKK9LJRzWMYRb+8VxrLjKozfscpfS4IZpZCfPYFVRFObf2e/sXxFN0GoUbkqP5tUVB9FrldZPXHwFaHijVj+29XzFBJg9/m4y4gLYeaIUq93VGPHEDWmtauhoqGu0hSW78/jnd65e8ZRQnyaLDpxt1rBklv2Ux768cjpF+LnH7bS3iRkxjOwURsBFLsgS6mti4a/7YdBqWtWj7mXQ8uSNXVq9/mGpoSz//eDz+r8CVyDlbdDiVGn0fxVh8eLvt6Zzz/yt7gyZP4zuSEygmayCCtIiLdTYHIxJC6dHrH+bZ3A0ldZZr3u0vzuQGpLSsgaq5jJSOkecaSjITApqcpn2YtJrSQxpeWDe3iSQEpfE6LRw5t/Zt1Hr1Y09mq/N0jCNoSnpsQHcMSCeDmG+Hifz9hyMbtJreXp813ZbP3DBNxeXikmvpXNdeqai0GQax/lQFIW3pqSz+0Spx5jC1uoW7c/6B1tfNNxidhVb+PFIMarqSoMb2jGEhZtcOeszhyTRN/HyuoCdjwiLiYy4AMpqbK3+vxIut/SJZeHGYwxMDr6ii2ecS4cwXx4ck4peqzB9QMI5q1M2pNEodIrwc6chDUsNJSXMh4WbjvP4dZ09Kv+1VrcofwB3sHa+1SYNOg2v39KTl5YdYOaQpHbvjWoo8BI1orW0F6mtpTSTtdMUb6OOj3+TCdDkpONDO4ay8Nf9eOSL3QzuEOz+7Ppxxia9lr9Pbbrh7WKqHzOYFOJ93kHjuXSO9GNCzyhC/Izn3Tssfp4EUuKSGdDKHofmaDQKj1+f1qafKS6tnrEB7MgppVuU5YIql3WJsjRZibK9jOgU6jG2cFy3CBZuOk7v+ACPAfVXEkVR+Ozu/j87R584P+EWEz/+vxH/E9/j3UOTzr1QMzpHngmkMuICmDkkif8b3bHNGovOTuNryfi+5FDfZnu1xeXnXNeHbtH+fPXbgZdoa85P38QgXpvck9Tw8w8az0WrUfjrpB5t9nniKih/LoS4ck3MiCE+yMydrUyju1yNaHBD1jPWn0EpIXx+d3/eva33FX/zfKVv/+VCvsdzq0971GsVuse40qrassfdYta7pwoJ9jG03cTIQrSR67tHtqj3TVx60iMlhGg3nSP9WN1Exa4rXWKwN6nhvuzLKyezbk6P5ub1EkI0bWByMD5GHUM6hpx3FdKW6hrtT3ZRFcNTQy9pBVMhxNVBAikhhGhjiqLw3u29ySmuchdCEUK0TKS/F5sfHYnuIgY49w5LQlVVfjs85aKtQwhx9ZJASgghLoIofy/3fGNCiNa5WD1R9VLD/Xj9ll4XdR1CiKuXjJESQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkjX3htwOVBVFYCysrJ23hIhhBCXWlVZGU5rFQBl1GBXVCgrA4ejnbdMCCFEe6iPCepjhOYo6rmW+B+Qk5NDTExMe2+GEEIIIYQQ4jJx/PhxoqOjm31fAinA6XRy8uRJfH19URSlvTdH/A8oKysjJiaG48eP4+fn196bI/5HyHEn2osce6I9yHEnWktVVcrLy4mMjESjaX4klKT2ARqN5mejTSEuFj8/Pzm5i0tOjjvRXuTYE+1BjjvRGhaL5ZzLSLEJIYQQQgghhGghCaSEEEIIIYQQooUkkBKiHRiNRh5//HGMRmN7b4r4HyLHnWgvcuyJ9iDHnbjYpNiEEEIIIYQQQrSQ9EgJIYQQQgghRAtJICWEEEIIIYQQLSSBlBBCCCGEEEK0kARSQgghhBBCCNFCEkgJ0QpvvvkmCQkJmEwm0tPTWbdu3c8uP3/+fLp3747ZbCYiIoI77riDoqIi9/vvvPMOgwYNIiAggICAAEaOHMnGjRs9PsNut/Poo4+SkJCAl5cXiYmJPPnkkzidzouyj+Ly09bH3aJFi8jIyMDf3x9vb2969OjBhx9+eMHrFVef9jj2nn32WXr37o2vry+hoaGMHz+e/fv3X5T9E5en9jrn1Xv22WdRFIX77ruvrXZJXG1UIUSLLFy4UNXr9eo777yj7tmzR509e7bq7e2tHj16tMnl161bp2o0GvVvf/ubevjwYXXdunVqWlqaOn78ePcyt9xyi/rGG2+o27ZtU/fu3avecccdqsViUXNyctzLPP3002pQUJC6ePFi9ciRI+qnn36q+vj4qK+88spF32fR/i7Gcbdq1Sp10aJF6p49e9RDhw6pr7zyiqrVatWlS5e2er3i6tNex94111yjzp07V929e7e6fft2ddy4cWpsbKxaUVFx0fdZtL/2Ou7qbdy4UY2Pj1e7deumzp49+2LtprjCSSAlRAv16dNHnTlzpsdrqamp6kMPPdTk8i+88IKamJjo8dqrr76qRkdHN7sOu92u+vr6qvPmzXO/Nm7cOHX69Okey02YMEG99dZbW7oL4gp0KY47VVXVnj17qo8++mir1yuuPu117J0tPz9fBdQ1a9ac55aLK1l7Hnfl5eVqSkqKunz5cnXIkCESSIlmSWqfEC1QW1vLli1bGD16tMfro0eP5rvvvmvyd/r3709OTg7//e9/UVWVU6dO8dlnnzFu3Lhm11NVVYXNZiMwMND92sCBA1mxYgUHDhwAYMeOHaxfv55rr722DfZMXM4uxXGnqiorVqxg//79DB48uNXrFVeX9jr2mlJaWgrgcV4UV6f2Pu7uvfdexo0bx8iRI9tmh8RVS9feGyDElaSwsBCHw0FYWJjH62FhYeTl5TX5O/3792f+/PlMmjSJmpoa7HY7N9xwA6+99lqz63nooYeIioryOIk/+OCDlJaWkpqailarxeFw8Oc//5nJkye3zc6Jy9bFPO5KS0uJiorCarWi1Wp58803GTVqVKvXK64u7XXsnU1VVebMmcPAgQPp0qVL2+ycuGy153G3cOFCtm7dyqZNm9p+x8RVR3qkhGgFRVE8nquq2ui1env27OF3v/sdjz32GFu2bGHp0qUcOXKEmTNnNrn8888/z4IFC1i0aBEmk8n9+scff8xHH33Ev/71L7Zu3cq8efN48cUXmTdvXtvtmLisXYzjztfXl+3bt7Np0yb+/Oc/M2fOHFavXt3q9YqrU3sde/VmzZrFzp07WbBgQZvsj7gyXOrj7vjx48yePZuPPvrI4/orRLPaJaFQiCuU1WpVtVqtumjRIo/Xf/e736mDBw9u8nduvfVW9eabb/Z4bd26dSqgnjx50uP1F154QbVYLOqmTZsafU50dLT6+uuve7z21FNPqR07dmzNrogryMU+7hqaMWOGOnr06FavV1xd2uvYa2jWrFlqdHS0evjw4VbsgbgStddx98UXX6iAqtVq3Q9AVRRF1Wq1qt1uv8A9E1cb6ZESogUMBgPp6eksX77c4/Xly5fTv3//Jn+nqqoKjcbzT02r1QKu1rV6L7zwAk899RRLly4lIyPjvD9Hyp9f/S7mcXc2VVWxWq2tXq+4urTXsVf/fNasWSxatIiVK1eSkJDQ2t0QV5j2Ou5GjBjBrl272L59u/uRkZHBlClT2L59u/vzhHBrvxhOiCtTfUnW9957T92zZ4963333qd7e3mp2draqqqr60EMPqVOnTnUvP3fuXFWn06lvvvmmmpWVpa5fv17NyMhQ+/Tp417mueeeUw0Gg/rZZ5+pubm57kd5ebl7mWnTpqlRUVHu8ueLFi1Sg4OD1QceeODS7bxoNxfjuHvmmWfUZcuWqVlZWerevXvVl156SdXpdOo777xz3usVV7/2Ovbuvvtu1WKxqKtXr/Y4L1ZVVV26nRftpr2Ou7NJ1T7xcySQEqIV3njjDTUuLk41GAxqr169PMrxTps2TR0yZIjH8q+++qrauXNn1cvLS42IiFCnTJniMUdUXFycCjR6PP744+5lysrK1NmzZ6uxsbGqyWRSExMT1UceeUS1Wq0Xe3fFZaKtj7tHHnlETU5OVk0mkxoQEKBmZmaqCxcubNF6xf+G9jj2mjonAurcuXMv5q6Ky0h7nfMakkBK/BxFVX+mv1MIIYQQQgghRCMyRkoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghLrHa2lqSk5PZsGFDm37u4sWL6dmzJ06ns00/VwghRGMSSAkhhLggt99+O4qiNHocOnSovTftsvX2228TFxfHgAED3K8pisKXX37ZaNnbb7+d8ePHn9fnXnfddSiKwr/+9a822lIhhBDNkUBKCCHEBRszZgy5ubkej4SEhEbL1dbWtsPWXX5ee+017rzzzovy2XfccQevvfbaRflsIYQQZ0ggJYQQ4oIZjUbCw8M9HlqtlqFDhzJr1izmzJlDcHAwo0aNAmDPnj1ce+21+Pj4EBYWxtSpUyksLHR/XmVlJbfddhs+Pj5ERETw0ksvMXToUO677z73Mk314Pj7+/PBBx+4n584cYJJkyYREBBAUFAQN954I9nZ2e7363t7XnzxRSIiIggKCuLee+/FZrO5l7FarTzwwAPExMRgNBpJSUnhvffeQ1VVkpOTefHFFz22Yffu3Wg0GrKyspr8rrZu3cqhQ4cYN25cC79lyM7ObrL3b+jQoe5lbrjhBjZu3Mjhw4db/PlCCCHOnwRSQgghLqp58+ah0+nYsGED//jHP8jNzWXIkCH06NGDzZs3s3TpUk6dOsXEiRPdv3P//fezatUqvvjiC5YtW8bq1avZsmVLi9ZbVVXFsGHD8PHxYe3ataxfvx4fHx/GjBnj0TO2atUqsrKyWLVqFfPmzeODDz7wCMZuu+02Fi5cyKuvvsrevXv5+9//jo+PD4qiMH36dObOneux3vfff59BgwaRlJTU5HatXbuWDh064Ofn16L9AYiJifHo9du2bRtBQUEMHjzYvUxcXByhoaGsW7euxZ8vhBDi/OnaewOEEEJc+RYvXoyPj4/7+dixY/n0008BSE5O5vnnn3e/99hjj9GrVy+eeeYZ92vvv/8+MTExHDhwgMjISN577z3++c9/unuw5s2bR3R0dIu2aeHChWg0Gt59910URQFg7ty5+Pv7s3r1akaPHg1AQEAAr7/+OlqtltTUVMaNG8eKFSu46667OHDgAJ988gnLly9n5MiRACQmJrrXcccdd/DYY4+xceNG+vTpg81m46OPPuKFF15odruys7OJjIxs8r3Jkyej1Wo9XrNare7eK61WS3h4OAA1NTWMHz+ezMxMnnjiCY/fiYqK8uh5E0II0fYkkBJCCHHBhg0bxltvveV+7u3t7f53RkaGx7Jbtmxh1apVHoFXvaysLKqrq6mtrSUzM9P9emBgIB07dmzRNm3ZsoVDhw7h6+vr8XpNTY1H2l1aWppH8BIREcGuXbsA2L59O1qtliFDhjS5joiICMaNG8f7779Pnz59WLx4MTU1Nfzyl79sdruqq6sxmUxNvvfyyy+7A7Z6Dz74IA6Ho9GyM2bMoLy8nOXLl6PReCaYeHl5UVVV1ew2CCGEuHASSAkhhLhg3t7eJCcnN/teQ06nk+uvv57nnnuu0bIREREcPHjwvNapKAqqqnq81nBsk9PpJD09nfnz5zf63ZCQEPe/9Xp9o8+tLx/u5eV1zu248847mTp1Ki+//DJz585l0qRJmM3mZpcPDg52B2pnCw8Pb/Q9+vr6UlJS4vHa008/zdKlS9m4cWOjQBGguLjYYx+FEEK0PQmkhBBCXFK9evXi888/Jz4+Hp2u8WUoOTkZvV7PDz/8QGxsLACnT5/mwIEDHj1DISEh5Obmup8fPHjQoxemV69efPzxx4SGhrZqPBJA165dcTqdrFmzplFPUb1rr70Wb29v3nrrLZYsWcLatWt/9jN79uzJW2+9haqq7pTDlvj888958sknWbJkSZPjsOp73Hr27NnizxZCCHH+pNiEEEKIS+ree++luLiYyZMnu6vLLVu2jOnTp+NwOPDx8WHGjBncf//9rFixgt27d3P77bc3Sl8bPnw4r7/+Olu3bmXz5s3MnDnTo3dpypQpBAcHc+ONN7Ju3TqOHDnCmjVrmD17Njk5Oee1rfHx8UybNo3p06fz5ZdfcuTIEVavXs0nn3ziXkar1XL77bfz8MMPk5yc7JGS2JRhw4ZRWVnJTz/91IJvzWX37t3cdtttPPjgg6SlpZGXl0deXh7FxcXuZX744QeMRuM5t0MIIcSFkUBKCCHEJRUZGcmGDRtwOBxcc801dOnShdmzZ2OxWNzB0gsvvMDgwYO54YYbGDlyJAMHDiQ9Pd3jc1566SViYmIYPHgwt9xyC3/4wx88UurMZjNr164lNjaWCRMm0KlTJ6ZPn051dXWLeqjeeustbr75Zu655x5SU1O56667qKys9FhmxowZ1NbWMn369HN+XlBQEBMmTGgy5fBcNm/eTFVVFU8//TQRERHux4QJE9zLLFiwgClTpvxseqEQQogLp6hnJ5gLIYQQl6GhQ4fSo0cPXnnllfbelEY2bNjA0KFDycnJISws7JzL79q1i5EjRzZZDONCFBQUkJqayubNm5ucEFkIIUTbkR4pIYQQopWsViuHDh3ij3/8IxMnTjyvIApcY6+ef/75Ni9RfuTIEd58800JooQQ4hKQYhNCCCFEKy1YsIAZM2bQo0cPPvzwwxb97rRp09p8e/r06UOfPn3a/HOFEEI0Jql9QgghhBBCCNFCktonhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC30/wHG+7bFMIkjUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyDUlEQVR4nOydeZxcVZn+n1t7V/W+dyedpLMHsrElbLLI4gajMrihM4I66oiOgKMj48xvcGaEcWcUcVxRQRRFUFT2PUAgIZB9TzpJJ+l976qu/f7+uPc999StW1t3VVd15/1+PvnQdFdX3a66955znvO8z6uoqqqCYRiGYRiGYRiGYRiGYZhJYyv2ATAMwzAMwzAMwzAMwzDMTIdFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKOIp9AKVGPB7HyZMnUVFRAUVRin04DMMwDMMwDMMwDMMwTJFQVRVjY2NobW2FzZbeq8Yim4mTJ0+ira2t2IfBMAzDMAzDMAzDMAzDlAidnZ2YO3du2sewyGaioqICgPbmVVZWFvloGIZhGIZhGIZhGIZhmGIxOjqKtrY2oRelg0U2E1QiWllZySIbwzAMwzAMwzAMwzAMk1WkGDc+YBiGYRiGYRiGYRiGYZgpwiIbwzAMwzAMwzAMwzAMw0wRFtkYhmEYhmEYhmEYhmEYZoqwyMYwDMMwDMMwDMMwDMMwU4RFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKsMjGMAzDMAzDMAzDMAzDMFOERTaGYRiGYRiGYRiGYRiGmSIssjEMwzAMwzA5EY7G8Y/3bcEvXzlS7ENhGIZhGIYpGVhkYxiGYRiGYXJi2/FhPLazG9975kCxD4VhGIZhGKZkYJGNYRiGYRiGyYkhfxgAMOAPYyIcK/LRMAzDMAzDlAYssjEMwzAMwzA5MTwREV+fGJ4o4pEwDMMwDMOUDiyyMQzDMAzDMDkxEjBEtuNDgSIeCcMwDMMwTOnAIhvDMAzDMAyTE8MTYfE1O9kYhmEYhmE0WGRjGIZhGIZhcmI4wcnGIhvDMAzDMAzAIhvDMAzDMAyTIwmZbCyyMQzDMAzDAGCRjWEYhmEYhskROZONy0UZhmEYhmE0WGRjGIZhGIZhckLOZDM3PojH1ek+HIZhGIZhmJKARTaGYRiGYRgmJ+RMtt6xEELRGADgk796HZd++3lMhGPFOjSGYRiGYZiiwSIbwzAMwzAMkxNyuaiqAl3DQQz5w3hydw+ODgRwqG+8iEfHMAzDMAxTHFhkYxiGYRiGYbImEotjLBQFANT6XAC0XLY3O4fEYwb9YcvfZRiGYRiGmc2wyMYwDMMwDMNkzajUWfS0lkoAWi7blqOGyDYUYJGNYRiGYZhTDxbZGIZhGIZhmKwZ1kW2So8D8+q8AIATQxN44+iweAw72RiGYRiGORWZUSLbiRMn8JGPfAR1dXXwer1Yu3YttmzZIn6uqipuu+02tLa2oqysDJdccgl27dpVxCNmGIZhGIaZXVDTg2qvC3OqywAARwcD2No5LB4zxCIbwzAMwzCnIDNGZBsaGsIFF1wAp9OJxx57DLt378a3v/1tVFdXi8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGyseAfOMAzDMAwzixjWS0GrvU7MrdFEthf292EiYnQUHeRyUYZhGIZhTkEcxT6AbPn617+OtrY23HPPPeJ7CxYsEF+rqoo777wTX/nKV3DNNdcAAH75y1+iqakJ999/Pz71qU9N9yEzDMMwDMPMOsjJVlVmiGzDUrdRABjyR5J+j2EYhmEYZrYzY5xsjzzyCM4++2y8733vQ2NjI8444wz85Cc/ET/v6OhAd3c3rrzySvE9t9uNiy++GK+88koxDplhGIZhGGbWQZls1V4X5tZ4E362sMEHgDPZGIZhGIY5NZkxItvhw4fxwx/+EEuWLMETTzyBT3/60/inf/on/OpXvwIAdHd3AwCampoSfq+pqUn8zIpQKITR0dGEfwzDMAzDMIw1I1QuWuZEQ7kbLrsxnbxihTYP4+6iDMMwDMOciswYkS0ej+PMM8/E7bffjjPOOAOf+tSn8A//8A/44Q9/mPA4RVES/l9V1aTvydxxxx2oqqoS/9ra2gpy/AzDMAzDMLMBw8nmhM2moKXaAwBQFODS5Y0AWGRjGIZhGObUZMaIbC0tLTjttNMSvrdixQocO3YMANDc3AwASa613t7eJHebzK233oqRkRHxr7OzM89HzjAMwzAMM3uQM9kAiFy2ZU0VaKvVykeH/BGoqlqcA2QYhmEYhikSM0Zku+CCC7Bv376E7+3fvx/z588HALS3t6O5uRlPPfWU+Hk4HMYLL7yA888/P+Xzut1uVFZWJvxjGIZhGIZhrJEz2QBgbrUmrJ0xrwa1+vfCsTj84Zj1EzAMwzAMw8xSZkx30Ztvvhnnn38+br/9drz//e/Hpk2b8OMf/xg//vGPAWhlojfddBNuv/12LFmyBEuWLMHtt98Or9eL6667rshHzzAMwzAMMzuQM9kA4IYLF2B4IoxPX7wQZS47PE4bgpE4hvxhlLtnzFSTYRiGYRhmysyYmc8555yDhx9+GLfeeiv+8z//E+3t7bjzzjvx4Q9/WDzmS1/6EiYmJvCZz3wGQ0NDWL9+PZ588klUVFQU8cgZhmEYhmFmD3ImGwAsb67Ej/7ubPHzWq8LJ0eCGPSHRfkowzAMwzDMqcCMEdkA4KqrrsJVV12V8ueKouC2227DbbfdNn0HxTAMwzAMcwpBmWwkspmp8ekiGzc/YBiGYRjmFGPGZLIxDMMwDMMwxSUWVzEapMYHLsvH1Pq07w/5WWRjGIZhGObUgkU2hmEYhmEYJivGghFQ01DqLmqmRm9+MMgiG8MwDMMwpxgssjEMwzAMwzBZQaWiPpcdLof1NFI42bhclGEYhmGYUwwW2RiGYRiGYZisMJoeWJeKaj/THG6D/si0HBPDMAzDMEypwCIbwzAMwzAMkxXDujstVakoYDjZhtnJxjAMwzDMKQaLbAzDMAzDMExWjEyk7ywKcCYbwzAMwzCnLiyyMQzDMAzDMFlBmWzpRDZzJtvLB/tx/T2b0DkYKPwBMgzDMAzDFBEW2RiGYRiGYZisIJGtqix1JpvhZNMe+8PnD+H5fX14bGdX4Q+QYRiGYRimiLDIxjAMwzAMw2TF8ITmTsvWyRaNxfHmsSHtdwPcCIFhGIZhmNkNi2wMwzAMwzBMVoxQuWiaxgckwMXiKl4/OgR/OKb97gSLbAzDMAzDzG5YZGMYhmEYhmGyYjiLxgcepx0+lx0A8PTuHvH90WC0sAfHMAzDMAxTZFhkYxiGYRiGYbJiWG9mkC6TDQBq9JLRZ/b2iu+xk41hGIZhmNkOi2wMwzAMwzBMVmTTXRQwmh909PvF91hkYxiGYRhmtsMiG8MwDMMwDJMVvWMhAEBDhTvt48jJJjPKIhvDMAzDMLMcFtkYhmEYhmGYjIyHohgPablqTZWetI+tlZxuboc23WSRjWEYhmGY2Q6LbAzDMAzDMExGekaDAIBytwPlbkfax8pOtvMW1QHQykVVVS3cATIMwzAMwxQZFtkYhmEYhmGYjPSMaCJbU2X6UlEAqPUaIttblzcCAKJxFYFwrDAHxzAMwzAMUwKwyMYwDMMwDMNkpGeMRLb0paJAopPtgsX1cNgUAMBokEtGGYZhGIaZvbDIxjAMwzAMw2Ske0RretCchchWq4tsNV4nFtb7UFWmZbRxh1GGYRiGYWYzLLIxDMMwDMMwGaFMtsYsRLaz5tdgTnUZPrx+PhRFMUS2AItsDMMwDMPMXtKn1jIMwzAMwzAMDJGtOYtMtqZKD17+8lvF/1foIttoMFqYg2MYhmEYhikB2MnGMAzDMAzDZIREtmwy2cxwuSjDMAzDMKcCLLIxDMMwDMMwGekZ1TLZmqpYZGMYhmEYhrGCRTaGYRiGYRgmLfG4it4cuouaqfRoCSUssjEMwzAMM5thkY1hGIZhGIZJy2AgjEhMBQA0VmTOZDNDTrZRFtkYhmEYhpnFsMjGMAzDMAzDpIXy2OrLXXDac58+ssjGMAzDMMypAItsDMMwDMMwTFqm0vQAACo5k41hGIZhmFMAFtkYhmEYhmGYtIimB5MU2YSTLcgiG8MwDMMwsxcW2RiGYRiGYZi0dI9MzcnG3UUZhmEYhjkVYJGNYRiGYRiGSYvRWTT3pgcAi2wMwzAMw5wasMjGMAzDMAzDpIWcbM2TzWTzUOODaN6OiWEYhmEYptRgkY1hGIZhGIZJS74y2SYiMYSj8bwdF8MwDMMwTCnBIhvDMAzDMEyeUFUVm48MzrqyyKl2F63wOKAo2tez7b1hGIZhGIYhWGRjGIZhGIbJE68eHsT7/m8jvvLwjmIfSt4IR+MY8IcBTD6TzWZTUO52AGCRjWEYhmGY2QuLbAzDMAzDMHniQO8YAOD40ESRjyR/UNMDl92GWp9r0s9DJaOjQRbZGIZhGIaZncxYke2OO+6Aoii46aabxPdUVcVtt92G1tZWlJWV4ZJLLsGuXbuKd5AMwzAMw5xS9I9p2WUT4ViRjyR/UB5bY6UbCtV8TgLuMMowDMMwzGxnRopsmzdvxo9//GOsXr064fvf+MY38J3vfAd33XUXNm/ejObmZlxxxRUYGxsr0pEyDMMwDHMq0TeuCVL+8OzpojnVPDbC6DDKIhvDMAzDMLOTGSeyjY+P48Mf/jB+8pOfoKamRnxfVVXceeed+MpXvoJrrrkGK1euxC9/+UsEAgHcf//9RTxihmEYhmFOFfrGtOyy2eVk00S25imKbKJclEU2hmEYhmFmKTNOZLvxxhvxrne9C5dffnnC9zs6OtDd3Y0rr7xSfM/tduPiiy/GK6+8kvL5QqEQRkdHE/4xDMMwDMNMhn7dyRaYRSJbr14C21AxuaYHBJeLMgzDMAwz25lRIttvf/tbvPHGG7jjjjuSftbd3Q0AaGpqSvh+U1OT+JkVd9xxB6qqqsS/tra2/B40wzAMwzCnDH2UyRaJIR5Xi3w0+WFwXHPn1ZdPvukBAFR5DZFtJBDBlx7chlcO9U/5+BiGYRiGYUqFGSOydXZ24vOf/zzuu+8+eDypyxXMgbyqqqYN6b311lsxMjIi/nV2dubtmBmGYRiGOXVQVVU42QAgGJ0dbrYBv/Y31fqm5mSr9DgAAKMTUfzs5Q787vXj+OHzh6Z8fAzDMAzDMKWCo9gHkC1btmxBb28vzjrrLPG9WCyGF198EXfddRf27dsHQHO0tbS0iMf09vYmudtk3G433O6pTRoZhmEYhmHGQ1GEonHx/4FwDF7XjJlqpWTArznZ6qbqZJPKRV/tGADA+WwMwzAMw8wuZoyT7bLLLsOOHTuwdetW8e/ss8/Ghz/8YWzduhULFy5Ec3MznnrqKfE74XAYL7zwAs4///wiHjnDMAzDMKcCVCpKzJbmBwN6uWidb2oiW6Uusr3WMYCjAwEAmjDJMAzDMAwzW5gx26sVFRVYuXJlwvd8Ph/q6urE92+66SbcfvvtWLJkCZYsWYLbb78dXq8X1113XTEOmWEYhmGYU4h+XYwiZkvzg0HhZJtiuagusg0FDPeaPzQ73iOGYRiGYRhgBols2fClL30JExMT+MxnPoOhoSGsX78eTz75JCoqKop9aAzDMAzDzHLkPDYACIRnvksrGIkJt1ntFJ1sVC4q42cnG8MwDMMws4gZLbI9//zzCf+vKApuu+023HbbbUU5HoZhGIZhTl1mY7koudicdkU0LpgsssjmdtgQisYxHo5mbFLFMAzDMAwzU5gxmWwMwzAMwzCljNnJ5p8FIhvlsdX6XFMWwio9hsh21epWAICqzp6yWoZhGIZhGBbZGIZhGIZh8sBsLBcd8Gt/U61v6p3Yq8qcIJ3uQ+vaxNdcMsowDMMwzGxhRpeLMgzDMAzDlAqzuVy0vnxqeWwA4HLYcOs7lmNkIoKz5teg3OXAWCiK8VAUjVN+doZhGIZhmOLDIhvDMAzDMEwe6NNLKz1OG4KR+Kwog5TLRfPBJy9aJL72uTWRjTuMMgzDMAwzW+ByUYZhGIZhmDzQrzvZ5tV6AQATkZkvHg3oTra6PJSLmvG57QAgupcyDMMwDMPMdFhkYxiGYRiGmSKqqqJvPFFkmxWZbPrfVJeHclEz5W6toIJFNoZhGIZhZgsssjEMwzAMw0yRsVAU4WgcANAmRLaZ72QbFE62AohsHk1k48YHDMMwDMPMFlhkYxiGYRiGmSLU9KDc7RCC1GxofNDvz28mm4zPxU42hmEYhmFmFyyyMQzDMAzDTBHKY2uocKNMF49mh5ONykXzn8lG5aLsZGMYhmEYZrbAIhvDMAzDMMwU6de7cNaXu+B1aYH+s0Fko+6ihSgX9XEmG8MwDMMwswwW2RiGYRiGYaZI31gQAFBf7pZEtpktHk2EY0IoLETjAxbZGIZhGIaZbbDIxjAMwzAMM0XIydZQ4UaZc3Y42Qb0UlGX3SZKO/NJBTc+YBiGYRhmlsEiG8MwDMMwzBTpH9cEKc3JpolHM73xgegsWu6Coih5f36f7vjzh2b2+8QwDMMwDEOwyMYwDMMwDDNF+hIaH+hOtsjMdmhRHlshOosCXC7KMAzDMMzsg0U2hmEYhmGYKZLoZNNEtpnuZBvwF1ZkK2eRjWEYhmGYWQaLbAzDMAzDMFNkNnYXHZCEw0JATjbOZGMYhmEYZraQ/xRbhmEYhmGYU4h4XBXlovXlbrid2h7mRCQGVVULkmc2HQwW2snmYScbwzAMwzCzC3ayMQzDMAzDTIGesSDCsTgcNgUtVR749MYHqgoEI/EiH93kGZAaHxSCcnayMQzDMAwzy2CRjWEYhmEYZgp09PsBAG21XjjsNpQ57eJngfDMFZCoXLSuwI0PuLsowzAMwzCzBRbZmJLhpQP96BkNFvswGIZhGCYnjg4EAADz67wAAJtNgUcvGZ3JuWxULlrnK0wmW7nu+AvH4ghFZ+77xDAMwzAMQ7DIxpQE248P4yM/ew1f+N22Yh8KwzAMw+TEkQHNybagzie+59UFpInIzBWPqJlDbYHKRX1uw/HHbjaGYRiGYWYDLLIxJQGV2pwcnijykTAMwzBMbhzRxzBysgEQJaMzOW+MnGz1BXKyOew24fibye8TwzAMwzAMwSIbUxIM6RN5/wzOrmEYhmFOTahcdEG97GTTRLaJGVouGghHhQuvUE42wGh+wB1GGYZhGIaZDbDIxpQEg4EIACDA5SIMwzDMDEJV1RTloprINlMz2Qb0UlGXwwafy57h0ZPHxx1GGYZhGIaZRbDIxpQEspNNVdUiHw3DMAzDZEfPaAjBSBx2m4I51WXi+2Ukss3QTDZy582tKYOiKAV7HZ+eXTfGIhvDMAzDMLMAFtmYkmAwoIlscRUIReNFPhqGYRiGyQ5ysc2pLoPLYUyrROODGRqD0KH/Xe2SO68QlLOTjWEYhmGYWQSLbExJQE42gCfaDMMwzMzhKJWK1ieKUWUzvFyUmjmY/658U+5hkY1hGIZhmNkDi2xMSTAoiWwzdUHCMAzDnHocoaYHUmdRAPA6WWTLBp9ofDAz3yeGYRiGYRgZFtmYkmAowCIbwzAMM/MgMWq+qaySxKOZ2l10+spFNTFyPMhONoZhGIZhZj4ssjFFR1VVDPkj4v/9MzS/hmEYhjn1SOVkm8nlotFYHJ2D+t9V783w6KlBjQ947GcYhmEYZjbAIhtTdALhGMIxo9lBgEtGGIZhmBmAqqopM9moXHQiMvPEo5PDQURiKlwOG1qryjL/whQwykVn3vvEMAzDMAxjhkU2pujIeWwA72YzzHShqiqe2dOD3tFgsQ+FYWYkfWMhBMIx2BRgbk2iGEVONv8M3DiiUtH5tV7YbEpBX6uCGx8wDMMwDDOLYJGNKTpyHhsABFhkY5hp4dm9vfj4L1/Hv/1xZ7EPhWFmJFQq2lpdBrfDnvAzr14GORPLRaer6QFgONlYZGMYhmEYZjbAIhtTdJKcbDNw159hZiKbjgwCALZ2Dhf3QBhmhnKESkUtmgN4XTO3XLRDF9nap1FkG+PGBwzDMAzDzAJmjMh2xx134JxzzkFFRQUaGxvxnve8B/v27Ut4jKqquO2229Da2oqysjJccskl2LVrV5GOmMkWdrIxTHHYfXIUANA7FsJoMJLh0QzDmDEcX8nNAWZy44N04mG+oe6iHBXBMAzDMMxsYMaIbC+88AJuvPFGvPrqq3jqqacQjUZx5ZVXwu/3i8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGysiEfOZGLQn7i4Zycbw+TO60cGcdX3N2DL0cGsHq+qqhDZAOBg73ihDo1hZi3HhyYAAG01ySKbcLLNRJEtjXiYb0R3UR77GYZhGKag/OLlDjy5q7vYhzHrmTEi2+OPP47rr78ep59+OtasWYN77rkHx44dw5YtWwBoC8Y777wTX/nKV3DNNddg5cqV+OUvf4lAIID777+/yEfPpGPIz042hpkqf9x6AjtPjOL2R/dm9fie0RAGpGuPRTaGyZ0BfwgA0FDhTvqZd4Y62SKxODp18XA6ykXLPdxdlGEYhmEKzYGeMdz259343G/e5PV2gZkxIpuZkZERAEBtbS0AoKOjA93d3bjyyivFY9xuNy6++GK88sorRTlGJjsG9XJRh97BzD/DFiQMUwoM6Y7QLUeHsPPESMbH7zqZ+JhDLLIxTM70j2njV315sshW5pyZjQ+OD00gFlfhcdrQVOEp+OuVc+MDhmEYhik4h/q0uX4oGseGA/1FPprZzYwU2VRVxS233IILL7wQK1euBAB0d2u2x6ampoTHNjU1iZ9ZEQqFMDo6mvCPmV7IydZSrU3mZ2JpDcMUG7mByL0bj2Z8PJWKkrjNTjaGyR1ystWVu5J+ZpSLzizxSJSK1vlg0+8PhYQaHwTCMcTiasFfj2EYhmFORTr6A+LrZ/b0FPFIZj8zUmT77Gc/i+3bt+M3v/lN0s8UJXFCqKpq0vdk7rjjDlRVVYl/bW1teT9eJj0kDsypLgMwvbvZW44OoWtkYtpej2EKhdxA5E/bTmDY1FDEzC5dZLt4aQMA4GAfi2wMkwuxuCrGrwYLJ5tXD/QPRGJQ1ZkjHnX0T1/TA8BwsgHc/IBhGIZhCsXRASPL/tm9vYjzxlbBmHEi2+c+9zk88sgjeO655zB37lzx/ebmZgBIcq319vYmudtkbr31VoyMjIh/nZ2dhTlwJiUkDszVg6Onq7TmQM8Yrv2/V/Dpe7dMy+sxTCGh66jc7UAwEsfvXz+e9vG7urRy0XefMQcA0DkYQDDCLlKGyZahQBg0P63xWTnZNPFIVbXSjJmC6Cw6DXlsAOB22Iy4CC4ZZRiGYZiCQJtoANA/HsbW48PFO5hZzowR2VRVxWc/+1k89NBDePbZZ9He3p7w8/b2djQ3N+Opp54S3wuHw3jhhRdw/vnnp3xet9uNysrKhH/M9ELdRefW6E62adrJ3nh4AKoKHB0MZH4ww5QwqqpiKKBdR9efvwAAcN9rR1PuUI1MRNA5qDk4L17SgEqPA3E1cfBlGCY9A+OasF3jdcJpT55OlTnt4uuZJB7RfaB9GjqLAloFgo9z2RiGYRimoBwd0Na882q18Z1LRgvHjBHZbrzxRtx33324//77UVFRge7ubnR3d2NiQlsoKoqCm266Cbfffjsefvhh7Ny5E9dffz28Xi+uu+66Ih89kwpVVUVZm3CyhabHTbP12DAATXBguywzkwmEYwjrTpmPnr8AFR4Hjg4E8MaxIcvH7+nSSkXnVJehyuvE4sZyAJzLxkwfP3nxMK794SsYDUaKfSiTpn+c8tiSS0UBwG5T4HZo06yZ1Pygd1T7u1r1CIfpgEpGx1OM/9s6h/HjFw8hGps5jkAm/+w4PsJCLMMwBWcmRTxky0Q4hu7RIADghgsWAACe3t1bxCOa3cwYke2HP/whRkZGcMkll6ClpUX8e+CBB8RjvvSlL+Gmm27CZz7zGZx99tk4ceIEnnzySVRUVBTxyJl0jIWiiOoCl8hkmyYn25udwwC0Up4xnrTNWPyhKJ7b1ytEplMRKhV1OWyoL3eJnLUX9vdZPp7y2E5v1Zy7LLIx083PXurA60eHsOWotRA8EyCRrd6i6QEhmh/MoFJsup/UeFP/XfnGp+fXjQetx+JbfrcVtz+6F691DE7bMTGlxcsH+3H1XS/hX/6wvdiHwjDMLOaBzcew+qtPYvOR2TXeHB3UXOpVZU6894w5sNsU7OsZQydXdBWEGSOyqapq+e/6668Xj1EUBbfddhu6uroQDAbxwgsviO6jTGlCnUW9Ljtq9Uyb6djxH/KHE0rjRgIz101xqvP9Zw/ihns244HXT908xSG95LrG64SiKLhkWSOAdCKblsd2emsVAElk4+YHzDQwHoqK3dSxFKLKTKBfLxdN5WQDjFy2meJkU1UVwxPa/aSqzDltr+sTTrbk8+FIvx+H+rTxesCfvqELM3t5cpeWucyxBkwpMx6KcnXMDOfF/f0YC0axIcUceqZidA73otrrwlnzawAAT+zqTvdrzCSZMSIbMzuhzmw1XpfY8Z+OUgBz0OPIBItsM5XDujC0r3u0yEdSPMzOk4uW1AMAth8fEW4bIh5XseO4JrKdZnay9bDIxhSew5KYOzbJctFbHtiK9//fxqKWDw7o15ZVZ1GiTB/XAjOka+ZExCg9t2rmUCjqfNp7+JftJ5PKdJ7bZ5SzcKngqctLB/sBYEaXmDOzm+6RIM7+76fwud+8WexDKRlC0Rhe2N83o6pNqLqJNgNnC0f0PDZqanTV6hYAwF3PHUTv2Oz6W0sBFtmYokLiQK3PJXayQ9E4YgXeBXpTz2Mjhid4d3ymQs6GE0MTRT6S4mEW2RorPTitRRPQNhwwduK2dQ7jvXe/jAO947ApwKo5mpNtSaNWUt/R7+fMI6bgHEoQ2XIXTWJxFQ9vPYFNRwaL2riGGh/UpRGjRLnoDHGyDeuubqddgc9lz/Do/PHpixfCYVPwl+1d+NXGowk/e26fcQ8rJZFtU8cg/vfpAwWfrzBA18iEcDNy5QFTqhzoHUMwEp91ZYZT4euP7cNHf74Jn7z3dUSynF9GY3H85MXD2N8zVuCjs2ZcF/K7R0MZHllcekaDeOf/bsBvNx3L6vHkZJtfp4lsH1o3D6e1VGI4EMF//GlXwY7zVIVFNqaoUGfRGp/hZAMKv+v/pikQnp1sMxdyQ54cPnV3YajsulZa7F+8TM9l0xeov3zlCN5z98vYdnwE5W4H7rhmFZqrPAC0PESP04ZwLI7OU1isZKaHQ71GuddknGyjExGQ2WmwiOWDmRofAEaHUasyyFKEBPuqMhcURZm21z17QS1ufecKAMB//3W3aNoSCEfx6uEB8bhSeR9D0Rg+8+st+O7T+/HigdlVUlSKvHSgX3w9xuV4TIni1xu3DPjDLL5DGyN//Zq2afL8vj78y4Pbs7p2/7qjC197dA/+8b4tRWlAQONMz0hpryue2dOL3V2j+J/H9yKYRe7rkYHEzuFOuw3ffN9qOGwKHtvZjb9u70r5u/5QVDQqZLKDRTamqAhxwOuE22GD3aZN6guZXxOPq9imNz2gZgvDvDM6Y6GF7onhiVnZDSgbBgMkVhsZSpfozQ9ePNCP7ceH8d9/3Q1VBd69thXPfuFifOCceeKxNpuChfXc/ICZHmQnW6qg+3QMSRO9gfHi7TT36+NXusYHlXqu2b89vBNff3xvUvl2qUFjYY13+vLYiI9dsADvWtWCSEzFjb9+A8OBMF45OJBQZlQqTrbHd3aLTL6jOWSE9YwG8dMNh6d1Y6+j349//v22hOtupvHyQUNkU9WZneWYT1RV5TKvEoIMArG4mjBOnarc83IHQtE45lSXwW5T8NCbJ/D1x/dm/D2qNjrU5y9Ksxual5R6uSjNf4YDkaxy1Y70a85/crIBWjbzZy5ZBAD4f3/aieND1tUB1/3kVVz6redZaMsBFtmYojJIZW4+bdd8OnLZDvf7MRqMwuO0YX17LQB2ss1UQtGYmGyPh6IYPUUn3sMW3QDPnF+DcrcDg/4wbrhnMyIxFW8/vRl3fmAtGis9Sc+xSM9lOzyDF2KMNT947iDefueLRXV9yeRSLhoIR/H3P9+EX208Ir43LN2vixmE3z+W2cn2j5cswtKmcoyFovjh84dw9fdfKmmHA4ls1UUQ2RRFwdevXY2F9T50jQTxL3/Yjmf1PDZ9/w3jodIou73vVaOk9cRw9u7fHzx3EP/91z0Jv19ofrXxCB7cchz3bpy+18wnqqripYMDCd/jXDaN/33mANZ97Rk8s6en2IfCINEgUOobKoVmLBgRpf//ftVp+PrfrgYA/OjFwxm7We44MSK+/vVr2ZVC5hPKZBuZiGTlECsW8vznNxlKRifCMSEatksiGwDc+NbFWN5cgQF/GB/88atJY1rvaBDbjo9gKBDBVt2kwmSGRTamqBhONk0c8E1DJzYqFV09pxp1ugOBRbaZiVk0OFVz2eQGIoTTbsMFi+sAaANxU6Ubd1yzKmUJWLsehEp2cmb28NvNx7C3eyzBDVIsorG42E0FkFEYf/ngAF7c34efvdQhvifvpA6OF0dkU1UVA/7MjQ/OnFeDxz9/EX7y92fDYVPQNRIs6d1xcl9Ue6ev6YFMuduB733oDDjtCp7Y1YPf612jz1+kNXMpBSfb3u5RbD5iRE4cz2HcIafwdDqGj+ph1ydzEANLiX09Y+gfD6HMaXSh5zmbxmuHNZePLEowxUOOuukbO7VFtl+/dgxjwSgWN5bjytOacO1Zc8U8sytNGWY0Fseuk8b5/PjOrmkVLFVVTRhnuku4ZFQW2V49PJh2k/zooDa3r/Q4kjbR3A47fnHDOiyo8+L40AQ++OONCeOFfH/Z212cnLyZCItsTFER4oA+cfK6C+9kIxX+jHnVqNJLeThId2YyYFpg5+IoIDYeGsB//GnnjOn+Z4VofOBLHDgvWdYovv72+9am7RZIGQ2H+1hkm01EY3F06XmFx4rYJIA4PjSBsBR+nCmTjXa8ZTFNLu8vlpPNH44hGNH+jro05aKAVo59xWlNaNXjCUp5M4DEi2KUixIr51ThX96+HAAQialwO2y4fIV2LysFkY1caPQe5TLudOqlONO5mXFUf62eEhZ300F5bOvaa0WTERbZNOiz5ciT0sAvOW1PZZEtGImJjbFPX7wINt2KTPEJo2mu30N9fgQjcfhcdqyZW4VITMXvXz9e+IPWmYjEIJvNS3lTjMpF3Q5Nznlgc2fKx9LmZnu9z3KzvbnKg9988lzMr/Oic3ACn/+t0SF354lR8fWertGk32WsYZGNKSpyd1GgcE620WAE33piH67+/ku4X7fUrm2rRpW+W8/dRWcm5gU27byMBCK4/p5NeOiNzAPzt57ch19uPIqn9/QW5BingyFqIGJyn1y1ugVvXd6I/7j6NFy4pD7tc7TrmWzsZJtd9IyFENVnjEelz1ZVVRwfCkx7jqE5FypTuSi5hMZCUYSi2rgwVAIiG01uy5x20Rk7E5QBmirzpBQgd3mxnGzExy5ox0V6ruT5i+pESW6xGx+MBSN4+I0TAIAbL10MIHsnWzQWFw16yF1WaOJxVTSzSeceKWXIgfuWJfViYzTdIv1UIRiJoUsXADgnqTSYiHC5KKA5n/rGQqgvd+Hda1vF9ys92liZTiTffnwYAHD6nCp85Nz5AID7Nx2dtmYn5pzYUt6cIKPKB89pAwA8uOV4QoapDM3/5ptKRWVaqsrwq4+tAwBsPjIk5gMJTrYudrJlC4tsTFExl7mVUSZbnl1F9248irueO4gdJ0agqprAdqE0YeNd0ZmJOfScHAV/3dGF5/f14T8e2ZXR+UAL3lJe+GZiyCKTDQAqPE78/PpzcMMF7RmfgzIaekZDJeEWYfKD7Jo6Ii3sf7OpExd+/TncO43ZUIAhsrXqnW3HQhmcbNJ1SW6NkRJofECh95lcbDJza0rfyTZUxEw2GZtNwfc+uBY3Xb4E/+/q01GuC5n5nhvkymM7uuEPx7CwwYf3na0tbAb94ayc0F0jQZHHN+gPT8u8o2csKBZdfeMhRGLWC7BShkpzz1tUx3M2CW2TRPt6iJ1sJYE8dzqVnWxH9GYwy5sr4bQbUkM21+9OXdBZNacKV61uRaXHgc7BCbxyaCDl7+STMdP8t5TLRWkecu1ZbWiscGPAH8aL+627XdMG+oL61CIboIlwS/SM5tc6tPdcLt891DcuNjyZ9LDIxhSVIVNXRJ8usgXyHG5MN/xrz5qL1/71MvzxxgtQ4XGiWr/hs9V+ZpKqXHSnPiCMBaN4+M0TKX8/EoujV58IUUndTMTsCJ0MVV6n+H12s80eZPH4mCSyvXxIc4dMt/X/UK92bq2dVw0geycbYFzvcuODYjVzIJdCfZo8NjNzSGQr4WysEd3VXV1WXCcboLnpbrp8KdrrfcIt6C9y4wNabFyxoglVZU7hzMhGODWXax+bBjeb/BqqOvMW/uFoXLgX51Z7RbkZi2xIyLZkJ1tpMBHmclHAcOou0GNICFEumiYmglxTq+dWocxlF1UYB3qnx0FldrKVarloXOpg21TpxvmLtAzmgxa5bIf6xrFBL7tfUOdN+rmZ8/Tn2nhoAP3jIXSNBKEoWmZqNK5Oa6boTIZFNqZoxOOqmBhQ4wNvgXarqUzi/EV1aJI6K3LpwcyGSsXmmLKOdknW5l9tPJKyJK5nNCh2grtGSnfhm44JKRsqXeZaNtDg29HPIttsQRapukeDolPWgR5twjrdi1Vysq1tqwagiWyprk9VVXFcEiZIUJNdG/1FanxAgl99Tk427frKJSh/uhEbX0V2spnx6XmtxS4XpQUMdWOek8NnahbZKIg6F1RVTVjIZ+Ko6TVLdcGYCtkh6HXb2ckmIW+GsZOtNJDXLsUam0oB4ZoylSZmun6jsTh26xt/K+dUATAqNKbrHDePMcUoF/3DluP45hN708Z5jExEhDO6xueS5hfyxoqK+187hqu+9xKOD02g1ufCW5Y0ZHz98xZqItsrhwaEs7C93oeVcyoBAHu4ZDQrWGRjisZoMCLCJatFd1HdyZbnTDbK6qLgaYJKYoZ5wjYjoVKxVfpgfHJ4ApFYHHv07jcOm4L9PePYeNjaZi5n1JycoU422sly2hVx/UwWkcvGItusweyw6RwMIByNiwYXxRPZagAAsbgqRGIzoxPRhNIN6uYpuzaGAuFpy2qRmZSTrbr0nWzDRe4umgpRLlpkkY2cmIsatHsllQBnEzfQaRbZJuFku+OxvVjz1Sextzs7B6r5NXtKuPTJClrwuhw2OO22rJww+SQUjeG2R3bhmT090/J6uSCfP0PsZCsJAuxkA2Ccm+b8L8PYYH0fP9g3jmAkjnK3Q0SYkMg2XW5Ns7t+ustF43EV//6nnfjBc4eSMmxlaD5UVeaE025DW602FnUOGvOLZ/b04l8f3oGJSAwXLK7DX//pQjRUZJ6znKuLbAd6x/H8Pq38dNWcKixv1kS2vdz8ICtYZGOKBrkSKtwOuPTOKF7R+CB/E2lVVcWiprUqUWSjG34gHEsZFsmULuRkW92miWy9YyHsPjmKcDSOCrcD79fDQH/5yhHL35dbVJ+coU42OdfQqmNQLixs0CY1h1lkmzUcH05cZB8ZCKCj3y+aIUynyDboD4vd6JVzKqE3HEvZYbTTJFzQuS6X98fi6rQtuGVI4J9sJlsxhMFsGC6RTDYzVC4aCMeK9t6NBSPCCbbYLLJlIZySk43mHZPZzNh8ZBDhWBxbjw1n9XizkDfTmh+QaEEiq+GEmR6xdVPHIH7xyhHc9udd0/J6uSC7FMeCUURnYN7ebCNBZDtFGx+oqio52Uzlop70TrbtxzXX1OmtlaIjqTBDTJOTjTZyKvQogJ5R7XMMR+P4/jMHEvLJCkH3aFCcR/TaVphzYa2cbJSpdvWaVtz7sfVoMa2BU1Hjc2FFiyao/e51rWPpytYqrGipAADsyXKT51SHRTamaIiwdqnEjUpC8pm7MugPIxSNQ1GApqpEBb/C4wTpEtkuNntGg0m7w0xxoIXu4oZyeJza7eyp3dqO82mtlbj+/AXie1ZOA9m9NhyI5FSGU0we3HIc//z7bQhFY2LiYW56MBnI2k+Lv76xEG767ZvYcnRwys/NFAcqY6Pdy6MDfuzrMaz+qXaUC8FhfVd2TnUZvC6HWDiPpshlM1+z1OnK3A26GGU5/aJcNHsnW3OVBzYFCMfiJdl5TlVV4erOx/0kn5RLHVyL1fyA3J/15W5U6Qs/o2NsZpGNunxeuFjLGJqMk41cFoNZujpI2KPjLOVOeVaQk43mhtl0J8wn9DqdgxNFy39MxVFTdipXZBQf2Wk76A/PyEYjU2XQH8ZYMApFAdpqE0W2TBE9O6U8NqJalItOz/VH95zFeiRAz2gQ8biKB7ccx7ef2o/bH91T0NeXN1/SuSHpflTnI5HNGIuozJSiX9a11wrRMluoZJQEv5VzqoTwtqdrbNo7089EWGRjisagn5oeGJP5QjjZaOe2odwNtyOxnM5uU1Dhzn7Spqoq3n3Xy3jn9zaIbCOmeIiFboVbLCKe3N0NQBsQljZV4PxFdYirwO9fP570++YctpngZgtGYviPP+3Eg1uO45k9vWKxRc1DpkK73nWIBub/e+EQ/rj1JH74/OEpPzcz/cTjqnBrUijuscEA9ncbItt0Otmo9IEckxX6rnZKJ9tg4vVIztVhfexw6JPGYix++4WTLXuRzWm3oVnPBO0swVy2sVBUZLyUmpPN7bDBrn/exWp+QOfv4kajBCqXnD3anHuLHuQ9mQYzdK0MZiksk8i2rr0WwAx0sumftc+V6GSbrhxdOQR9x4nCOlhyIRKLi3OONoq5gVfxMUfdlJowOx1QF/OWSg88zsQ1V2UZbayld7JRHhtg5INO1/lNIlt7vQ+KAkTjKgb8YbyiN4vq6CtspcfhLEU24ab3aXOQlqoyKAoQisbF2oieq91UtpsN1PyAOH1OJZY2VcCmaOf1qVwOnS0ssjFFg1wJtdJknjKl/Hl0FFGpaEu1tU2WdklGJjIPhoFwDN2jQYwFo+hNY+Nlpgd5J4fy9vb3aAshCui89qy5AIBHtp1M2nkx57Bl22H0ub29WH/703ghRavsQvLywX5xfbx+ZEjkVOTFyaZ3ghoKRDDkD+Ov27sAzNymEKc6vWMhRGIq7DZFLLKPDgQSnWzBSN7K73rHgvj0vVuw4YD1dUGiGTkmqRwjVYdRcrLRRgg5AyinbZ5eijJQBFcYCX65ND4ADFGmFHPZSLz0OG1Ji6NioyhG5mSxmh9QRzXKYwMSS4DTMR6KivGKuuX1joVy3lDMxck2FoyI1zxngXb9z7TGB4aTrUgim3Sube8cnpbXzIYTQxOIxVV4nDa06fcU7jCaHf3jIfQW6Dowi2ynohBBDktzHhuQvvFBJBYX3c5Xz60W36c1mtnBXijoHlvjdQmnes9oEK91aBUdXaPBgsYLJTjZ0sxtzOWiLocNLWITL4BoLC42dtobchfZ1rXXikiPBXVeVHqc8DjtYjN+Tzc3P8gEi2yznHs3HsH7f7QRv9l0rNiHksSgRbkodRcN5HESTU6OOdUey5/n0q1KtoJzd6viEghHMaG7CevK3WKxQ6xs1XbCrjy9GR6nDR39/qSdaBKPnHZtJDmZ5cL3gc2d6BkN4bm9vVP6GybD4zu7xddbjg4amWxT7CwKaE5Sctr84Y3jYkFWqODXUDSGHcdHSjafaqZDIlVLlQcL9aYWRwf8orMoAKgqEpoLTIUnd/Xg8V3d+MmGDsufk4umuUo7xyqFk8369cntRbvaA/6wuO8qirE7O1BEJ1su5aIAMCdLUaYY0CKm1EpFielufvDnbSfxkZ++JhbkhpMtWWTrHw+ldbfTYqfG68TcGq+Yd5g7jqYjGouLRfxQFuc8PXetzyWOebpDvKcKfdZeXWCtzDBfy7T47RsL5VTmJN+btpeQk43y2ObX+sTYzx1GMxOMxPCu723AO/53Q0GyPEk0pw2kU1FkIycbbdrKpBPJD/SMI6TnKc+XykyFk80/XcK69jo+tzEf3nhoQHyWqpr9WmEydEgiW386J5ufnGzGeC07q08MTyASU+GWxLdcqCpz4nR9HSU7C5eLklHOZcsEi2yznONDE9jUMYhDvak7lBQLw8kml4vm38lGCztz0wMil1DNcRbZSoYBfRfH7bDB57InfL4epw0LdbdBuduBy1c0AQD++ObJhOeggZIGkmzKRVVVxetHhwCkFgcKRTQWx1NSl7NdJ0fF31Cbp4UxTYx+/KJRIjrgDyMUzX+J1nee3I+r73oJf9nRlffnZgy31NyaMsyvMyZftECjMqN8uUJI8O1OcR11j+quYl1kKxdONuvXJ5FwTVu1eH66T1d6nGis1ASugWnOZIvE4uI4chXZculGOd3QIp0WQqWGb5pFth+/eBgvHezHfa8eBWDtZKsqcwrxL13JKAlelFFEgeBH+rM/D8ZNeU+ZOKYvdufVesU11z0anFFZOiRaJDc+iCT9HVuODmHlbU/gh88fsnyuv2w/iXO+9jR+siH7+IMEJ9vx4VwOvaCQW2henRfV+nvCHUYzs/HQAHpGQxjwh/HsnvxuksbjqhDBabwtZPODrZ3D+NlLHSW3SZnOyUYba/5wLCmvjvLYVs6pSsgPIyfbWCg6LRl3VCJe4XagSRen/rTtRMJjzE2Z8klHlk42UckjzUHk+QU9z4I6X855bMTfrGkFALGGAoDTWrjDaLawyDbLoXDeUgxEtXLg+AqQyZapXDTTzqiMnAXDIltxkZ0kiqIIhwigDQJ2aVB5z9o5AIA/bz8pMocmwjGxqDxrfg2A7MpFjw4ExGunEgcKxWsdgxgORFDrc6Gxwo1oXBUlq/nKUGrXHU+9ph20QpRHU9liobs1narQon9OtRfNlR64HDZE4ypUVXO3NOiTs3zdy2iRl8otY3aypSsXVVVVlJeu0UOQh/xhUdZf7XWiVh87Bv3T6xagscumQCxws4WyI0uyXDSPpeeFgES26SgXjcdV4Vx7YlcPIrG4aFQgO9kURTFKRtN8pp0mkY0WoObw+nTI10k25aIk7M2r9QpBOhyNz6jsrnHKZDOJbNG4KpzsxKuHBxCOxkV2kpkX9mljJeU+ZYMs6PaMhkqmcQSJswvqvFJmFYtsmZA3KR/N8+ZeUNqIpOu7kE62rzy8A//1l91i07dUEE62umQnG435QPLm3vYTwwCAVVLTA0C75s0N6k4OT+Bjv9iMFwsQ2ULjS7nHgWa9Wd7OE4mCkjkvNl9EY/EEd3O684fKRWsTnGxG8wMS2ai8czJ8/MJ2bPjSpXj32lbxvSX6+HeowNl0swEW2WY5NFkuxcGXFmS1vmQnWyCPwcaZykVpkcROtpkFLXTp/GmVRFTZ2gwAFy1tQLXXib6xEDYe0lpaU6moz2XH8matLXU2TjZ5QjPd2UBUKnrlaU0iY4dafNfmoVwUANoli3+lx4FWXRApRGA2fYbmbDwmP5Bbam5NGWw2BfOkEoylTeV5zzcid/JoMJrUqVdVVSG+UQmGENksrqNBf1gsoul6HgqEhWut2utCrR74O93loiSy1/rcOe8Q5xKUP93QGFhqTQ8IUS46Dd1FT45MCFfKvp4xvLCvD9G4Cq/LLlxhhNFhNLW7oVMSvADJyZZDh1FZZBvKonRKlBTWeeF22MUYMZOaH9CGK+XxeV120fDEPAejst5UztY93dpCORfHl/nelItAV0hkt5DRfZHnpOlQVRXPSCLb8/v78jqHo014RYHIySukyEb3lFLLWaRzc4GFuOOw21J2Fd+hC1mrTPN3u00RDjhayz66owvP7u3Fz16yjqaYCkJkk8pFCRKYCuVkOz40gajkTMyq8YGUCzu31phfCCfbFEQ2m01BW60XimLMc8jdV4od0ksNFtlmObkISNONcLJJu+a+AkyiyZ3UkqJclDPZZiYDptDPObLI1po4SLscNrxzVQsA4E9bNds3LTRaqsuEQJfN4mPL0UHx9XSWi8bjKp7YpYlsb1vZLNx3RL7cJ+RkA4C3nd4snBeFaH5An2FXCbp6ZgMk5NDuppxzsqypIqd7XzbIizzzxH8sFBWiheFkS91dlPLYmird4vFxFcJNVF3mFE0HprtclFwkTZW5lYoCiZlspVa2R+JDdck62ajxQeG7ix40RWzc/fxBAFqpqLzgABLdA6kQ5aI1U3GyGdfJeCiasYTf7J6jBWOpuLGywdz4QFGUlNUHdM8ZsHC2RmNx0RQpG4FSvL4+xrsd2nJpR4mUjJKAuqDOV9Kb6aXEzhOj6BkNweuyY16tF+FoPOtc3V9tPIIP//TVtNULJAiXOe1orNDGhkIJEcFITIhU2eQzThfDASPSQd7Uk7Gad8hND8wiG2Bs/NAcg+5hudw/s0V2sjVJIpvLbhPlk505ZGnmQof+91AMxWAgjGiKEtlB0XzJolx00CgXXTgFkc2K+gojpqPU5jClBotss5zpLBcNR+M55TbRzdLSyZanTLZILI6eMT2TLWV30RxEtjCLbKVCvwj91G74zVUeUSJ6Wmtl0uPfrQ+Oj+/sRigaEw7HliqPcCacHM688N18xHCyTWe56JudQ+gdC6HC7cD5i+pw9gKTyFYAJ9u7VrcYWT4FdLLNJGfFTILC9UnYkTNSljYbIlu+AqDlRZ75fKH/rypzwqvHAqQrFyVXUFuNF067DZX6Yw/3awvlmoRy0eldZFCJyrkL6zI8Mhm6niYisZJzntDiqKZEnWzTmclGIhs1xXnj2DAAYJFFlzbRMTaNyEai8TxRLqr99+gknWxAZrGInpvE9eYCupILhd8ksgFyeHri+0Gu7kF/8uLvcL9fNEXIxclGC24ab7dlcLLFpiEfKxZXRd7e/DovanyT30y/d+MRXHP3yyUl1BSKp3UX21uW1OOq1dqm62M7M5eMxuMqvvvUfrx8cEBUQlhB6xavy4EGXYjIxsmmqipufWg7vvj7bVmLFnJ8x3SPf+kgZ25TpVuM82asRPL9PWMIR+Oo8DjEvVFGuDX1v5Wu9eNDE3nPaZMz2Zol1/LatmosadKdbIUS2fQSzDPnVcOmaE0WrD7faCxuuYamTZzjwxM4rD/XZDqLpoMaLYRj8SQ3IpMIi2yznOna4QqEo7jw68/i/T96NesQTqPcz5jQ00QqEI7lRSHvHglCVTUnU10KESIXNweXi5YO5F4hN4vTbsNNly3Bh9a1iWBOmXMW1KKp0o2xUBQbDw2IEsXWKsPJFgjHkibuMsOBcILDYTqdbPe8fAQA8NYVjXA77FjRUokyp138PF8L4/l1Pixs8GF5cwUuWFyP5qrsXX65MBGOiXLA7tFgwuKEd8emTjyu4rguJBvuGblctCKnPMpskEUjs1vGXCoKZHCyDSa68Cjc91CvNnGs9rqEwG7lXCkUqmrkIF68tCHn3/dILodSa34wLJxspSmyTWd3Ucpj+9sz50I2rsl5bMScDM0stHxBcpUlCt4nRyay3pwcCyVeJ+kW19FYXGTEzatLFNlKrbwsHdQEi8pFgdQ5ulQuGompSYs/uROelQiXClpwn7+oHgCw48RIyt/9wXMHsearTxY8Y7R7NIhwLA6nXUFLlUcqF819nv/r147hjWPDeCWNeDRbIJHt8hVNorLhub19GTOg9/eOibGtP41rWpQ2u+3CXZRN44P+8TB+s6kTv99yPOusTjIPAKXV8CJd0wOCNszkmApqerBqTlWSUxiQOozqv0P3sGhczXunz4RMNmm+sn5hrdhQ6SxQ3MMR/f1b1Fgu5jzmfGTAyORUlMQqluYqD2yKZnqhc2lBms9iMnicdlToYzGXjKaHRbZZjtw5s5AL10O9fvSOhbCtcxivdmQerKOxuJggVVt0F43FVYQytGLPBlESWOVJmZ1TVaa9fq7lovnKMWImh9FZxzh/PnfZEtxxzWrLz9pmU3CZ3iHnqd09ovyxpdoDj9PIq0mXy7ZFz2OjAcYqS6oQvHFsCH/Z3gVFAT510SIAmqi4Vu+6COTPyea02/D0zRfjkc9eCKfdVjAnmyyMxOIqevVJ48HeMZz5X0/hB88dzOvrnWr0+0MIR+OwKcbiep4ssjUWoFxUWvSbF/LdpqYHgDHZTutk0104dH2Sk62qzCmu/UF/eNo6rO3vGUf3aBAepw3r2msn9RxyyWgpMWwxJpcS09n4gDZTzltUhzOk+6zcWZTIVC7aNxZCSL8WaUOnvtwFr8sOVc3+PDBfJ4YTeAK3/G4rdkguq5PD2saFy2FDU4V2zYly0VniZJPvW/G4mrAYHTAt/nZLIlsoGk9qmpAKOtfOWVALp13BoD+c8nN+fGc3xkNRvH6ksEH0JGTMrfHCYbdJjQ9yv49TnuV0N4/JB/5QFO++6yX8z2N7Mz62a2QCu06OQlGAty5vxOmtlWirLcNEJCYaYqRCdq+lExUok63MaRdOtv4snGxyN0lzmXoq5E2s6c4kTYfckCMVVtcvZR1alYoCyYaRXunvzyXXMhvoPlvudqBJmq+sb68T85FBf7ggmz2iWUGdTzSmshJqhUnF60po8qbN2Y2qrQq3QxgR8kldkaI6Zhosss1yqnUBKRpXxY5gIZBv+H/YciLNIzXk8lW5O5tsL85HySjtcLSmyGMDjBt+Nm4/OQtmeIJvLsVEDh/PlitO00S2p/f0iF0eWvS0iFKa1AseKhW9cIm2q51rifRkUFUV//2X3QCAa8+cm1AKSyUsDpsihL98YLMpcOkZNKLEKM/uB7MLg5yFz+/rw1AgIrLzmMlBC8HmSg+cdu2zPL2lEk67ojU98Drz6mSLxOIJorNZlJU3PIh05aKdpjw5mmSTk6DG6xTfi6vT10H7+X1ahs95C+vgkZykuVCqzQ/IrZFrx9TpYrqcbKqq4oC+2F3cWI63nd4sfmblZCOnaO9YCEEL8Yby2Fqry8S1qCiKlJGWncCRJLLpc5YHXz+Oh944gf978ZD4GWX7zK/1ik0ner1838sLiZXIRuK8fN8a8IcTAsPNwsOerrGE/8+2xI5EtlqfC8v0Bkk7TiQ71eRutIXOQD6R4t6Yq6NJVVWxMVJsoSaud0rPJbpgy9EhbDs+gp9sOJwkqpp5eo923z5zXg3q9I7071ypudke1RtKpeLVw9mJbLRm8bmNctHRYNTyniBzZFIim3EcpVTqm5WTzSKmQjjZ5lqLbLROG9INI/LffyyPuWzanF4zeJS7HahwO7BuQS0WNfhw9oIaVJU5xf2nEM0PhMjW4Esr1A5YdBYl6L5Az2PlDJwq5NRkJ1t6WGSb5ZS57CKwtZA3Ytm6/NjOroyTYBK0qsqccNiN09BuU+Bxav+fj4m0WUixwshky/x640EuFy0VzI0PsuG8hXXwuuzoGQ1hU4fWwIAEWNr9OZGm0yU1PbhkmVEmVuiS0Ud3dOONY8Moc9rxz29blvAzan5Q43MVZCAF8ud+eGTbSXz3qf3CUWue1JO4SZPMw33+gguYs5FXDvXjB88dxE83HAZgCDoA0FjpwWOfvwj3/8O5AFJnG00G88IyqVx0VBf9EkS21OWiciYbgKRy/2qvCy6HkdU2XU6MqZSKEtSkJdvSoOmCxuV8uWLzDZUM+gvc+GDAr4V3K4rmXHv7ymYoiua0n2eZF+QUgvExi6wec9MDgkK1e8eyu7eaBQia09HzH5IW6B264LNQyuOha29mOdkM4YKw6opsvt+YHRZyuSiQnRCmqqoQ2So8DqyaUw3AEARkukeDQmQp9AYsbVjQ3EUOhc+lYmV0IiqEyWLnet39/EF89Oeb8J0n92f9O3TMsbiKR3ekz1Z7TRfKLpXmbm9bqYnnz+/rFXl9ZuJxFa91GM2u0ots2rniddlR6XHApa9tMgkRHZJIdKAnO5FNvmek+uxGJiIFyw5LBZU7pitRNDvZwtG4EMEzO9kiGAtFE5yo+XSyyetOn9sBRVHwu0+fh6duvlhsqpGbjSIt8kUwEkso8RS5fhbnT79FZ1FCnvPlu1SUMJxsLLKlg0W2U4Bcgv0ni7yrEAjH8LjFztATu7qx+6Q20Rn0Jwc2EuRmy4eTjRburdWelI8xbviZczq4u+jUSdUpJ1eo3LA+Byebx2kXi2ParWrRz405+n9TdboMRWMi9PicBbViwTdeQJEtEovj649rpRCfunhhQqcjALhgcT2uPWsuPn/ZkoIdAzmPeseCk/7sYnEVX/7DdvzvMweEQ2Rw3Oxk0953cgNE46rI35pNBMLRvGeIEEP+MP7+Z5vwzSf24dEd2j14oSn0dnFjudiFtHKETBazEzhluah0DpMzyUqopmBnKteoLTeLbNp9m3JLpqNswR+KYvMRbcF18bLGST8P5XLJZUKlwExpfFDoclES+ufWlMHjtGN+nQ8/v/4c/Pz6c+B2JLsXFUUReYfHLBZ8tBgzd9uj7rTZdvs0jzW0uCZH5JEBvyibFo4IqVt0cxZu7VKDmk2Vu4333arczCxUynEE/eMh9I2FoChGLmU2olIwEhdZoeVuB5brTrb9FkKI7EAaKbCTTY66AIzy7nAOZbBA4ntUzLKvkUAEP3pR2xTankP3Vnmj7pFtJ9M+lj7vNukaXDu3GvXlLowFo2LT1cze7rEEQbZ/LF0mGzU+sENRFMOJlOG9lZ1sB3rH0jzSQG58kMrB+Pc/34RLv/V8QmlloaGSbXkzzYxZJN/fM4ZwLI5KjyNlR1KjuUc46e/J1GH0SL9fbI5lgsYWj9MmXMcAEiJoaLMk3wJm52AAqmqUeIpcP6tMNhGXk7z+SXCy5bmzKGFkDpaOi7IUYZHtFCCdlfzxnd1467eeF+LXZKGdUVr4/OGN4wk/33J0EJ+6dws+8+stAIwbhNVknnLZ/BnCSM0cHwokdZkR4fZZONkiMTXjBGVc7i5aYp3hZgLfemIf1nz1SRzoyW4iYWY4EEZHvx+qqlpmsmUDlYwSwslWnT7g/0DPOMLROGq8TrTX+yQXTuEWfNuPj+DYYABVZU588qKFST932m341vvW4CPnzi/YMdSVu+GwKYir2YX4WnFkwC8moORQSlUueqjPmDDt65nafakUuf6ezbjoG88VxMV0uH8c0biKCo8DN1ywALdcsRQ3X7E05ePzmclm7pRpdst0WWSyiXJRk2gSjMTEZJcmc1ZONvn701HutPHQACIxFfPrvFOavFJjll0nU4eoTzexuCqcUpRTWmpMV7koCSZLGivE9y5d1pi2mywtDo+mc7LVJs5DaNOkeyS3clHa4KF7KJUtBSNxkSl6WF+4L6xPdrKNBqOYKGB8SD4hJ5scJVJp4WQzv4fyJg652NrrfMJFmk1pJTWaIBfj0ibtfLAal2hzKNvnngonhhOdbD6XXXTBzaVjsTwGT2fzGDM/2XBYnNu5uJJk9/LmI0Npx1Qa46qkUnibTcFly40IESs26g442pBKNwcSjQ/0c7U+yw6jHQki23hWY4IszA/5kx2MsbiKXSdGEI2rec8sS8dIFhs1RuMD7f3aIZWKpqrIMMpFw0nl9Zn+vs8/sBUf/fkmUYmSDtH0wJ36+Ok+nu9yUbpnL6j3JYi0VuePqOTJVC5aIJHN2NxkJ1s6WGQ7BTAyx5IH359uOIzD/X48/ObxpJ+ZmQjHUk7MqFz0789bAEAbmOROW+RsOzIQwGgwIiYhVk42GqACOZSEPLu3Bxd+/Tlc/I3ncM/LHeI4T2ZRLlrmNCYomUoI5Mn9WCg6bWHbs4Vn9/bCH44l2O9z4SM/ew2Xfut5fPXPuxGJae+91TmUjkuXNYqg0GqvE2X6goUcW6lcRuQWmF+nDYBGnlThxNY3j2kZcOcsqEnZDr3Q2G2KWAxOtsOoLOKTmEaiCGW/dY1MYNAfTpj47+2anBhbqkRjcbx5bAjRuIptncN5f35azJ/eWon/uPp0/NNlS5LcjzJWZVeThT43w/kYSrg/krMtIZRXF6rN2YZ0bjjtipiQm69zmsTXTqPI9vx+LddnKqWiALCipRJ2m4L+8bBl57BiMDoRAa3TSrW76HQ72azy11Ixr1ZbzFjlA3WamngQjVSKn2W5KI018/QSoMFAGNFYPOG+TJsUcrYPUeF2iE3MmeJm84tFb/rGB0nlotL9gMafFS2VYtM5GycbOQfLXVrZGGWydQ5OJAm9spOt0PmQ5LYnJ5uiKGLTIZtsYUJ+D4pVLjroD+OelzsS/j/bTR/zMf85jZuN5vZVprxJ2nR9anePpbhFTQ/erpeWpmtkIARh3XXZoG8ApxPZ4nFVlFgCmpCezZggn+/hWDwpc7tnNChKgaerSZucy5queU6VqbqKyq9XpigVBRLLRckVv0ByD8fSrMUO6pv6z+i5fOmQy8NTUahyUcN9rN2zDSekhcimC8x1FpU88jhTKJGNzm2rY4vE4vj1a0envVS5FMmLyBaLxbB161YMDRW2ow4zOapNrY+JQDiKrfpCb1+GHIBQNIa33fki3vW9DZbZBbSzcOa8apy3sA6qCjz0hhZcrqoqntpt7BId7B2XnGwW5aLu3J1su05ok6iTI0F89c+7ccHXn8X3nzkgAmJb01iXFUXJusOoPLFS1cLncaUbOGYiNDHItjxGpn88hJ365/yLV44A0CbeuYaP1/hcOFvPMpMbYrRmcLLRLinthNMgPFrAc+DNY8MAgDPm1RTsNbKheYodRuU8HHoO2oVeobt6ukaCONyXeB/a2z27RLbOoQkhDpv/1rw8f4qytFRYBRBPFlrcLWmqgKJo5b600A1GYmKRY1UuCiTeS2l3tM7nFjvb5pwwauozHTuq+3vG8MXfb8MDmzsBTF1k8zjtWKx3qbTKdyoGtPFV7nYklMmUEiSy5epyzxVyJS226CSaClEuarGwoMVGqnLRbMu56BqZrz/PkD+MrpFgwjzhcN94QraPvMhSFEWMc6WWB2hFLG5UF5A4CEibA9J9i8pF6Wfy4o/GnxUtFaLsLBvHF4km5ZLQTwvfA6aAetnJVvhy0eQKjcl0GE1wshWp7OtHLx6CPxzDyjmVwrWcqfyPoGMmZ/AjW1OLbCMpOidfsLgeHqcNJ4YnkppjxOIqNnVoItvVa1oBaJvrqRoZGOeqdr40VFBjk9TXd89YEMFIHHabIu4P2eSymYU4c+a2fH1PV7SNLOZVphGpKj2J1y/9vSuaK1P+jiyy0abE2rZqOO0KwrF4UjwFMR6KCgHypYP9Gf+G8WCyqG+GRCwykqiqmpX7MBKLY+OhgZTnz359vksRHw1pykVF4wPLTDbjvrCg4E625PvGozu68JWHd+Jrf91TkNeeSUxqJnXTTTfhZz/7GQBNYLv44otx5plnoq2tDc8//3w+j4/JA+LmZLoJbz4yJHY69mdYzO48MYpjgwEc7vcLd40MDSJNlR68/5y5AIDfbDqGSCyOQ33jCXbegz3jYkBI52TLpZyBFnNnz69BW20ZBv1hfPup/WJXpSWNkw0Aqsq018w0QRk3uesKOXg9/OZxrLrtCTy3L/Puy0wgGImJz2kyjigSnOp8LjEATrY1Ne1KynlVhsg2YelQJIfbHH0AK9cnCrKrYvvx4Zx2kjPxhn6tnVkiIttknWyyyEblTDTBX6l3Sz05PCEWKrRQ2jfLRLaOfmPyLJfF5otjKRbzqZAdIVMtW6RFq5wlQuMCCatlTjsqy4zJq92mWOayWTU1kcsibIohctP3C+XEeHxnF6787ov4/ZbjiMRUXLa8EW9ZMjWRDQBOn6Od97RxUGxEZ9ESdbEBcrloYUsdadG3KCcnm3W5aCgaEwtAs5OtaZLdReVcMXOH2sN9fhyjbB+PI6mciI7TSgwsNQKSmGrV+GAkoVxUe49JcJHvBySerGipRC3Fp2Rxv6ByUXnBvYxKRrsTr9uDUn5oIctFR4MRMeeQNwmrJ9FhVHb7DQXC016Z4Q9F8atXjgIAbrliKdrrtXMz26xK+ow/cu58OGwKdneN4qBFplkkFhfvmblzcpnLjgsXa/dzc8nonq5RjAajqHA7cN7CuoyNDGgTngRhEjvSCdr0t7bVlGFFi3ZuZcplC4Sj4l5AYpbZyX1iaPpFNjJyVHgcCQ3tzJiv34N9mZ3DRnOPsMija6kuE/loR1OcM7LAuePESMbrfszCOWtGzmTrGpnA2+/cgA/++NWMc6jfbjqGD/3kVfzfC4csf07z/TVt1QCAhorUTkj6vOst1tBzqsvwoXVt+ORFC5Ocm/kiXXdRcg4XovvqTGNSItuDDz6INWvWAAD+/Oc/o6OjA3v37sVNN92Er3zlK3k9QGbqVKVwspENGtBKedLtvsnC2oYDibsBoWhMDHZNlR68c1UL6std6BoJ4sldPXhyd+LAdaB3TLSet+piNplMNrrhvGNVC577wiX43w+uFZOh1ipP2hsmYExQcnGyZfP4qfDkrh4EwjG8Kn1OMxk5qDWdIypVuD4NQJetaMRfPnch3rmqGZ+5dPGkjuXvzp2Pr713Jb78juXie00VbthtCiIx1TJ3w+yKNJeL7u8Zw9/c9TLe/YOX81LO1DUyga6RIOw2BWvaUtvop4MWkR00OffDbklk6zKVi1I3qf7xsFgMXamXcHSPBvMqWhabw5KwVggnm5H9lJvIlk0eZSboc6r1uoRbja5zEmdbqjxJmStWZdd0bsihvvKGTFWZUwQRG12uCnOe/PzlIwCACxfX46HPnI+fXX+OKHGeCitbtfN+58nScLKNTKR2l5cKPt3lXshy0bFgRIhiuZWL6u6GwYkEZ9mJoQmoqjavMQteonPzaDArkZuukflULuoPJ8RyAFouI91bFurZPlbHORNENhJTHTYFbumaIydMYrmoNmafpm/a0P0gFI2JzZsVLZVizjmYxbgiXC2SK0fksnUnOtfkxebIRKRgghWNn3LUBWA42SabyRZXM5e57jwxkjFfLBfePDaMiUgMc6rLcOmyRtEJ8Uh/ducmHf+iBh8u0t3F9248mvS4BIeVhehA8w2zyEbNEM5eUAOH3SY2dVM1MpAbHwCGyGa+RmXob22v94kMSLNL0gzNpcucdjHWp3Oy5cOpng3DWW7UyCKbHBFibtIkQ88ZisZFeW1zpUdsOKTKZZOzYVUVeCXDeoqueV+aNSN9rv5wDB/68avY1zOG1zoGM64Hd+vzWysReWA8JP6GM9u0TfWGciND0+x+E25/i8YHiqLgjmtW41/fuSLt8UyFdPMuKp3P571ipjKpmWJ/fz+amzUnyKOPPor3ve99WLp0KT7+8Y9jx44deT1AZupQWY3ZpbXxUKJYtj/N7skbCSJbYpcWupBcdhtqvE64HXZct14LYv/FKx14WhfZTtcnP/tlJ5vFhJ5yetJ18TFjlBe54LDb8O61c/DY59+C3/zDubj3E+sz/r7cYTQdJLJRplchRTa6Eedi/y9l5AyYVNbuf//jTpz5X09ZinBvHDVcXQvqfbj7w2fh/We3TepYHHYbPrx+fkKra4fdJvKkrCZF5MCao/9OpSfRgbNfz304OhDA1/66e1LHJfPG0WEAwPLmiqLlsRGiXDRLx4XMwHgowanRZXKyLWwoh8epDUVk51/dVi3CZXMtGQ1FY3jojeMFz22aDIcSRDZ/3kPvU5WlpcLrssORp3uZiADwuUQZHF3n3aPaZ26VD1fhsXKyGfdzQs4ekUt+jEy2/E/ohgNhbNHvO3dcsyqvjlLKn9lVKuWi/pnjZAtH40lNjvIFXaMNFe6cXACt1WVw2LTSJdk9IYTvGm+S4EWlh6FoXISAp8PsZBsKhNGpb/7QpuLhPr8I0LbK42mTxMB8sbVzGN96Yl/ePxPaaKVujYSRJWm8Z1QuSk42uh909PsRjauo9DjQUuUxGoFlk8lm4WoxOowa49Ih3aFM96u4mtzMxUw4Gp+UEEfzEDnbEkhdsZIOs/s3Xcl9R78fV33/JXziV69n/fyZoHvr2QtqoCiKKG2Ty0VfPtiPvd3Wbl9jM8aFj1/YDgD49WvHkjawZIeV3ZYcrH/p8kYoitZoqjsh31B7ntP1DZFMjQwC4nzVzhcSY9Jld5G7fUG9D0uaNFH/YIZyUaNyyC3GP/NnKc9hp8vJRuun6gyNc+TGJSTIzKkuSzvPLXc7xFyFKq+aKt1iw+HoYAonmynv8qWD6buMjoeMcyUVHqcdjfq5IIt7mbL0qBrGak1HlTqLGnzCGFNZ5hDuSbNTkf4/10zqfEFONqvyabpu+sdDsy7yKFcmJbI1NTVh9+7diMViePzxx3H55ZcDAAKBAOz23PKRmMJjZDUYF+loMCI6utCkIV1pFi34AWC7yXJLC+jGSiM/5yPr58FhU7D5yBDe0G8en754EQA9k4060FjcIFbpZTRbTGWpA+OhlJM4q06TNpuC8xbVYVEWuSrVWXbZo0kX7UBbPf6+V49m1UgiHfG4aohsGYQ/GVVVsfPESEKIeKkgC2upnGzP7+/FaDCaIOoCmrtt+3HtfD1zfuFKJylvzVyCA0hONj1s2Chz084BeUfnN5s68exe625V2VIqpaKAMaGfjJON3GllTgrc1lwb1P2t1ucSZS804VrU4MOyJu0+sLcrt3K6n73UgVt+tw3ffWp/zsdaaORy0bFQdNLdWq0IRoyytGxFNkVRxIR3qhNxudywSXLoAEbnvxaLbEyjS6+Fk00aH8pcdiHGykKQnNWSb57f14dYXMWypoqs3YHZQo6bkyPBkujQRW4HK6dHqSC7CwrVYZQWcLnksQHaxhstqo9KCy8SwazOH4/TLs7lTM0P4nFVdDen6zsSU0Up/sXLNCdP10gQu/Rynfb65L8h3042VVXx+d++ibueOyg2VPOFVdMDwBDZJiIxIbiSu4iuq0G/Vv54SC/jXNxYDkVRxJwzG8eXlci2VJ8vy5s/NG6taKkULqZ0DuxAOIqLvvEcrvvpqxmPwYxo5mW6lxrlotnfB1Mt3K3YpTtudxwfTpkplSuv690eKSOXnGwdush2qG8cH/nZa/jgj19Nes1ILC7GrFqfGxcsrsdblzciGlfxP4/tTXhsJodVQ4Uba+ZWA9BEPaJD6vYIpC+RAwwnGzluaRO3ezSYskKjQ3KykXN2f+9Y2g04EnMaKz1CZDGXCctz2GwE/HyQq5MtrmoRK0Dm0ny5ucdJff3QWOkRzQ+OpnA/0tyDPrsNB/rTvrcUCZSp+onu55Ueh3ju3gyb0EJks5hrWc33U3UYHQtGxIYL/Xy6qfRYC4DBSEyMLXG1eA1VSoVJiWw33HAD3v/+92PlypVQFAVXXHEFAOC1117D8uXLM/w2M91YNT7Y3DGIuKp1Z7lkWSOAxJ05mZPDE+ge1crWFtR5oarAy5ILTs5jIxr1slFi9dwqvGVJPQDNxnxC32Wp9SXfjNe11wEAthwZFAPTlqODWH/7MymDFPvHp6bq08073SQjEosjpDd9IDHGvDAd9Ifxb3/ciS/+fntCptyvNh7BtT98JevSt+7RoHitXBaPrxwawFXffwkf/8XreXfJTBVZWBsPRS27cpJ70RwUu7d7DBORGCo8jpwXP7lAkyKzyCbnyc2t1h5TYcpko4UyCQFfenDHlAYYMejOr570c+SL5iptIJ9MJhstAs9fpF3XoWgcPaMhsdNf53Mldf9d3FhuiP8p7kupIMfjq4cLX2a94UAfNh/JvlMulYuSKeNwHnPZTgxrZWk+lz2n+6CVK2Qy0L2txqJclMTZZkuRLdnJ1p+iFILcbHKuTrU3PyKhFVQ+dNmKxrw/d7nbgYX64m3nyeLnslG5cFmOjWSmE6fdJkp18+FU3do5jFt+tzVB5KTree286pyfj7p+HpNcFZncpU0V1k1lgpEY/vXhHbjtkV0ANFcXDekNFW7xOe04bnTmow3VF/drbg2r8qt8i2xvHBsWouJkMztTQZ+x17TgrfA4xD10ZCIiRAenXRGbqlT+SK6Khfr3c8lksxTZdLdR/3hInDf0GosafOLelG7edrB3HN2jQbx6eDAhdy4bqFzUPGZabaZnYtDk/k03XyE3VlzNLpg/E7G4iq36BjxtnC7QM9mO6OLWSwf6oarae/nojq6E3ydRyaYY48Gt71gOu03Bk7t7Esb/bBxWFFshl2qauz2KctEUjiUShcuceuODcjdcDhticTXltUGljwvqfFjUUA5F0f7edGsRec2VqltuMRof0OtkcgC7HTYh0JCbMZt5vVm8a6r0CCfbkRTNMui9eteqZjjtCo4PTSRsgpixKhG34gPntGF5cwXuueEcMVdN1+BCVVUhso1YXKM03z/LZCKwck/u16+/psrc3Nb5RFEUYWqRr4ejAwHI5rVTvWR0UiLbbbfdhp/+9Kf45Cc/iZdffhlut3YS2O12fPnLX87rAU6Gu+++G+3t7fB4PDjrrLOwYcOGYh9SUbFq7U116ectqseyZu3mlsrJRhf/ipYKXL5Cyy7YsN9KZEtcEF1/wQLx9eUrmlDtdUktiVPnvyxrrkCFxwF/OCaynB7cchzRuCoyEmTicVUMuPUW9enZ0Kgfe1+anQh555xap5sHL5ooR+NqwiT25y914PWjQxnzAAi5Zj+XAZI61b10sF90dy0VzJMM86IiEI6KhZ65nJTOwbVt1SKLqRDMqbF2stGExecygtvN3UX79UnODRe0Y0ljOfrHQ/jH+7ZYduPNRCgaEx1zz2grvpOtWXea9YwGcy5xIZFtTVu1uD53d2nnqd2moKrMmeBwqvA40FDuxnI9BNjc8Svz62mP39s9llPzlFzpGpnA9fdsxt/97LWsFvxjQWMxSLuV+RTZ5Dw2c1laOvLnZNMXMl4nmkR5cXImm5lsGx8AxiaKPG6kikOYKuFoHC/oYsXlemZPvjldX9iVQofRUES7T9EmQamSz+YHX39sLx564wR++lKH+B6JbOsW1Ob8fPP0End57D82QNeldfMlmnvIC7SxYAR///NNuP+1Y/jFK0fQOxoU14fTruWT0bVA19jcmjIhJNFjrctFjQ3CfHTB/OObxjwj3yXbgRA5gxIXvDapYcrIRES8d40VHrgcNrHwHBgPSQKY9t5Qd9HBQDjjRqTVgtvrcgihkha7h3qN4PYqmm+nuZ/Kc6F0C34rRLlotdnJZp29nA5yk9OmSDpHrRxividF+WYu7O8Zw1goCp/LLkqdyck2FNDOTVko+63e2ZkYkNYQNCdc0lSBD56jRYh87a97xOdrdBZNLUiIUk09NmciHBOfE22GGOuX7JxsNpuCuWmqI2JxVdwf2ut98DjtWXUYFU62Crelk00WdIDpz2TLJPzIDnqa22eTf1lj+vwayt2idP7oQMDyeqYy8vZ6n5h3mSOPZMYtmp1Y8f6z2/D4TRfhrPm1onRULhc9NhDAn7edFMc0OmF0OTW7TaOxOLZ1WlfqNJQnNz8gQwzlQxYLkcsm3fcPmvIE81mtMROZ9Gzq2muvxc0334y5c+eK7330ox/Fu9/97rwc2GR54IEHRAOGN998E295y1vwjne8A8eOHSvqcRWTaovW3huFyFYnLtT9PdYWZSoVPXNejQgX3XCgTzxWlItWJA76Z7RV40K9PfZVqzVX2xLTjdTKcWG3KThHn+Bu6hhEPK7i6T29+msl7xSMTERE3fdkQ5tJIExXU08LaZfDJhwV5oWpfEMhoSwcjYuSkVSDs5nDksiWy+JRPv6vPbonq93a6cIsqpmFNLnc0my7lvPYCkmqblByZ1ESMIwyN11k09/71uoy3HXdmahwO/BaxyC+/ND2nF2Fu06OIhyLo9bnEpOIYtJY4YaiaOVJ6XZYrSCh/LSWSlFqSx0Va7xagL3c/VfbzVUSsm+yFfZGAhHx2cXiqihxKQQbDvQjFlcRjMSzcrPR/aC+3ChNyWfzg1zz2AirTn2Tge5TtT5XQqC7/F/rTLbE6wgwJm3m7sE0XlRJk236eiISy1sZE6CJLWPBKOrLXVirf175hqIRCnmeZktQjxhwO0rXyQbkr/lBMBITkRTk/OodC+LIQACKMrlYgvm1lCkll4umvy7pWqGxe9AfxnU/eS1hQ/HE8IS4Pio8TiiKkjR3mltTJsQAwkpk87qM8qapdn8LR+P48/aT4v/z3XyEMtnK3cnnpHDgBiPoNW30Gou/sNjIWKS7+miOGI7GhSiSCjrHKkwLbnnODBg5fosayiUnW+r3ojtBZMtto0U42UyZbLl2F1VVYywngSnd2N4pCcf56PpNDqYz5tWITpQ+t0MIWR0D/gSRbVPHYMJ4OZgik+rmK5bC5bBhx4kRkZdFY1O6UngSecjJRs6oaq9TlBgb5aKZGh8Y58ucNM0PTg5PIByLw2W3CWcirZGsuqQSsrGhxiKTbcAfRjBibO6OTrOTLZtczyp9s5rWj9mIbHIWa53PBZfDhrk1XtgUbfy3ck3RtdZU6RHVVObmfTLims/gZJNpEOtH47r+8kPb8bnfvImXD2rnsLkRhZxVlq5Sx0rYpetvWZFFNnE9SPnpSSLbKe5ky/os+t73vpf1k/7TP/3TpA4mH3znO9/Bxz/+cXziE58AANx555144okn8MMf/hB33HFH0Y6rmIid/okIVFXFcCAiFr7nLaxDhccBm6Kp631jITSaFkJyrfi69lq4HDacHAniUJ8fixvLxQ3fXAqkKAp++tGzMRGOiYFgSWO5cHPZFKNLlJl17bV4dm8vNnUM4qz5NeJCHfCHEYrGEhYCNDGo9Dgm3fWNSjbS2X39Uq1+qoVpX4JtVhukjw0GxA01lc3cTIfkcMklk00W2Qb9Ydzx2B5849o1Wf9+ISFRzaZoJQdmZ5s8iJgFuTdMZQWFwth1TJwQGXlsxsSWdrrGKZNNaqm9rLkCP/jwmbjhF5vx0BsnMKe6DDdfvjRrF54hKlbn5EoqFE67DQ3lbvSOhdA9Esw6ByIUjRl5Na2VaK70YDtGhHOHJshyvgw5DhbU+eBy2BAIx3B8aALzshAbzTvsWzuHcfYkHCnZ8JI0UXvlYD8uXZa+pJBEtoX1PlHGdThF2/nJQDviuYps1MAjV5Ftx/ER/Hn7SXzurYvhcznE4q7G64JNP2eTu4smu3kqLbqLksNCbnYAGJM6uWFOhdsh7imjExF48lTuSKWily5rLJh7VnQYPVH8ctGZ4mTzucjJNjWRbcvRIeEy3nVyFH1jIbx+RLvvLmuqmFQZDt2jEpxsGTr+mvML/+exPdhxYgR1Phe8bjs6BydwcjgoBCRa/Ml5tm6Hdn9eKC3QmirdKTvkzastQ/94CMcGA6IBx2R4YX9fwiZgtpuI2UJzLqtA9KoyJ44PTWBkIpKwkAa0BfjhPj/6ZSebvoj3uuxwOWwIR+MY9IfTdhFMVTq2vLkCT+/pwd7uMYSiMTHXW9xYLpxy6TZH5blPqq6IqX+XGh8kzrdzzaYMhGMikmRJYwU2HOhPWy4qO7GsGhGoqoqndvcgHItjYX052ut9Cd1Pw9E4fvnKEVy6vBGLG8uFyGae07XX+dA3FsKTu7oxFIigzGnH2QtqsOFAPx54vRO3vkPrmJgq+L2+3I25NWU43OdH90gQ7fU+IysszTVNnT2PDQYQjMSMPLY6Q6im8Sdz4wPj76YIkk4LJxu9xrw6r2jIsLixAk/v6U3bYVTetHLYtPu1/NmdML1WIcpF43EVt/xuK+bUlOGLb9NiokhYztT4AEgWPLMS2aTfoWvd5bBhTk0ZOgcn0NHvT1q/GpnhHjFvpXxnK2gzI5OTTYbWj70WJZ27To7gwiX1CY3fVFWb75Bo+GaaSp0Gi3NOONmai+xk0+dn/ZKT7VAfi2wyWZ9F3/3ud7N6nKIoRRPZwuEwtmzZklSyeuWVV+KVV16x/J1QKIRQyDgJRkeLP9nNN7SrEIurGAtF8WandkEvavCJm86Ceh8O9/mxr2cs4SYVjMTELvsZ86rhcdqxvr0WGw70Y8OBvgSRzVwuCmjBvvKiZ7GkvFdLNm8z5GTbfGQQi3Yn3nx7R0MJE9Z0rYyzpbEys8hGOxw+t13swph3iOQbCu2EyaWf2Vpn5YD0YCSOYCQGj9OO/vEQPvCjjXjP2jn43GVLkn6PdnQ/et58/HLjUfzu9ePwuhz4zKWLkpyG0w1NhJc1V2JP12iSkCbvDsoh0LQYALRBqJDQhOjE0ARUVRUCl3CySSKbubsonYeUoXDR0gb817tX4l8f3oHvP3sQT+3uwRfftgxvXd6YUTijTkNnlEDTA6KlyoPesRBODE9g1dzsFmYHe8dFZ7fWKo8QKSmYW4hsspOtUZvUOuw2LGksx66To9jdNZKdyGZqkvBm53BWx5kr8biaEJAsl4Hf9ewBPLqjG9963xoRwg0YboeFDYbIZp6QTIVMi/lUVEmdvrLlYO84PvzTVzEajKKxwo33ndUmcjiqvU5xzx8NRjEajIj7XjaZbKqqitJrc7no3503H4FwFO85Y474nk0vOR4KRDA8EUmaZE8GVVXxjO6eLlSpKGB0rTs2GMBIIJLg0JtuyAXoKXEnm1EuOjWR7RVTd/UNB/rE4mtd++SEeXPe2UjACKhuq0klsiWWi5J4/633r8HDb5xA5+AETgwHxMKdrpda6VyZqzus5Qw2KxebfJxvHBueci4bNXhqr/eho9+f0uEzWVI1PgAkB24ggh593mWIbNp7uuvkKALhGBw2RXw2iqKg1utC92gQw4EI2tJ81GNizmdyskku6wM944irmtivdaTNLHbJC+5cnGyqqorQ91SZbNk62UiUcTtswsGfyokYi6sJG497usYS5kcA8PrRIXzy3i3i/10OG+65/hxcsFhzD/385Q78z2N7cc/LHXj85ouMzqImkW1+nRebjgzi91u0c+vsBTX4u3PnY8OBfvxhy3F84YplcDlsGBTz/mRBp7HCjcN9fuEsysZhVV/uQrXXieGAluMnb4oZj8myXFQSheemcbLJeWwEXcMdaTbgjHJRY6xLENn0+Wqtz4VBf7ggTrbD/X78cetJ2BTg5suXwmG3iVLlbMYxeROj1ufKKkdW3liQ15vza33oHJxA59AE1kuPV1VVnAPNVR5RUTLoDyedv4RVDmMmzHFDwUhMnCO0yXzSVB0zHDBENmEisJjvWzU+IJFteZFFtvoKymRLdrItbizHwd7xBHffqUjWW5YdHR1Z/Tt8+HAhjzct/f39iMViaGpKnBQ3NTWhu7vb8nfuuOMOVFVViX9tbW3TcajTiiZ0aR/1SCCCfd3aRXBaq7FQJtup2Qa+6+QIIjEVdT6XmKSQ5ZbyaoTIloWIs1TarTDX18usmlMFj9OGoUAE97+WWOprLjMUnUWn0MqYbpKjwWjKHCea8PlcDjGIpHOy0SApC2bZqvrm3U16nVcODeBQnx//98Ihy9IoGnzfsaoFn9Bbmv/ilSO46BvP4a5nDxStGUI0Fhc3WxLKzE42OQ+kR/oZubqWNJYXPOSzucoDm6KF88sLhuPDyU62pHLR8eTz8Lr183Db1aehwu3A3u4xfPyXr+Orf96d8ThKqbMoIVql57Ao2K2Laae1VkJRFLH7TpNAWgy1SvkycjfgM/Tw8ZcOprb3y5DIRhN3ClaeLLG4annN7O0ew4A/DLfunN3dNYohfxjDgTC+9+xB7O4axYd/+qr4+wGjNHRhg0+UBHQOBvLWCZh2ygtdLjowHsINv9gksgi3HR8RCzuvyw63w45Kj0MEs3/wR69C1RehVvdocR3pWSjjoahwGJmdbGvbqvHDj5yVJCRW57nD6KuHB3FsMACXwybGu0JQ5XWKjKxdXcUtGRUiWwk3PgAMwWOq5aIkjNMi+IX9RhOTcybpfqVrbzgQwchERIhYDRXuBFePjLHBF8LJ4QmcHNGaTK1bUCvGm5PDQZGrVOHWrpda6dqg62FRgsiW2hmSj+YHIxMREePxMX2ukW8nm7yxaYY6Pv5m0zExXyCRrVYXXjbrJbfz6rxw2o3ljiixyyBIpRL5aL68tXMY7/nBywA0p5zWATGz2JXgZEvRFdGKAX8Y4WgcipJcek/3QDk+JR3yvNkqW0mmZzSISEyFw6ZAUbTfNW8YU4ZYhduBSo8D4Wgc39E7fEdjcdy78SgArTPkLQ9sw7FBrSzb3GCEPleaK5+7sA6XLm9EQ4Ub/eNhPKM7jFOViwKG+ETPIUS2NA4rRVGwVHezHewdF2XGsljdoIsKVpvl8bhqlIu6ZSdb6kw2o7GCMZ7NFdd86k7uvcKdJWeyGWMfOdlOa9E2+fzhGCIpuptOFjq+uGrMfbNxDBJyFdMiiwYtVsgiqXz+pxIyB/1hRGLatdBQ7hbziXAsnnL8GJ+Ek43ONzIHyKWhtJF6YjhxvSPfH4wmZ6lFti593ds/HkL/eBiKkp37r5DU6+8n3TficRWH9fXuuQu1MfRUd7KVdl3AJDGr06kUawC49dZbMTIyIv51dnZaPm6mI1vJD5DVVLpAzRkTBOWxnTGvRryH1I1046EBBCMxccNvsnApmFkiOdnS7Vy4HDYhMIxMRGC3KWJik+SASjPYZkuF21gUplLe/VKtfspyUWnwpVyWRCdb5l3GSCwuJr9kIafXoXJTfzgmcvVkekUAsBtfedcK/PoT67G2rRrBSBzfenI/vv/swYyvXwj6xkOIq4DDpmClnkNkdg3KeSD+cEwMgtv0Ft/TITi5HDYxeMsDNk0oaDAHZAdOBMGIcbxmR+X1F7Rjw79cik9dvBAA8MuNR9JmmnSNTKBLX2itaZt8KU++oclmuh1WM1QWukKf7JmdTHTNymWE8sThrcu1e81ze/uyEoipDP7957RBUbTJzmQH+XA0jmvufhnv+N8NossxQS628xfVYWlTOVRV62b6hzdOCIFoKBDBdZLQZkyoy9FQ4Ua524G4apR5TgVVVUVmTiGdbKFoDP/wq9fROTghnDU7jg8nlIoC2hhMn/XurlF4XXZ8/drVls5ls5ON3BRelz2lMJHqb8ils14qqKsjAFx71lzLUrV8Qjle5nFtugnOkHLRfDjZxoIR4Vr7wpVLAQDP7+sTIv1kRTaf28g7OzYQMNyl0rhhhsab3tEgXj9qNJnyuR0iz+nE8IThsCAnmy/RyQYA82p9Ys5gzmeToXtE5xREtmf39iAcjWNpUzku0oXofGeyUfmdz+Ia/Mwli+Bx2vBaxyCe2KVtopO7pV4fV+gzXmTKORKurwz5oqnymRY2+FDudiAWVxGNq1jU4MM/XbY44bnTbVpMNpON8tioa6UMCRCqmuiUI1RVxeM7u4VTkkSqGp9LiA+pPj86T+bUlKFd32wzz2Fo8/tv1rbi6Vsuhstuw5ajQ9h8ZBBP7+nFieEJlLu1rrBUir+sqSIpMsbswDxvUR2cdhuu0d3Lz+3ThF2jXDS5gsUcRE/jQqZN2sV6Nt2BnnHhMmuXBKCGcu1aHQtGkza5g9JmmVwuSteauYQTMNZbcpk35dN2jQQt5zzjoag4L5sqPVJ5cliIqyTyyE4nOfM0H8jnMM3lDcdg5rWY/FlkKxbJmduNliJb4ntMpaL15Vp+W5nLMJwM+a2vT7/pPpsN4nwbDUFV1YTjONg7ntSIAjAalPSPh8Ra0apS57QWbQ2w68QIRiYi4pyZV+st+NwkE8LJpq97TwxPIBiJw2lXRJdUFtkmyfHjx3H33Xfjy1/+Mm655ZaEf8Wivr4edrs9ybXW29ub5G4j3G43KisrE/7NRuiGNhQIY78eqCkLXsv0m/E+U0ebrXq51Znzq8X3ljSWY051GULROJ7Z0yss9Vah1mZqfS7hZsjUpEAu2Vi3oFZY9M2LEZHfM4VyUUVRpLIN65vCuFQ6IBZ1pry0Pkmg6xoJYiIcS+ggaM5ks9px7NQz3MqcdjE5px0ieaf4yd2J57k/ZHSvaaz0QFEUXLC4Hg9/5nz827u0HIvvPLUfv37tqOXfV0jkzJRWaRIhY94Fp9+h92/ZNFmjrZofnLAoF6VB2B82AldddpsoI5Wp9rpw6ztW4J2rmqGqwLee3Jfy9UnYXt5cUfRBVIYmv7nkiG3Qxaj1+rVsLnEhkc3nduBD69rwttObxCQeAM5bWA+3w4YTwxPY15M+bDkai4scjHULaoVbbNskS0Yf2XYS246PYG/3GE6adiHp77pgcT3OX6QtMF8+1I/79WvrS29fhjVt1RgOaF0Ce0eDRvlJgy+htOtQHjqMDgUi4v40N82C3opU3UUP9Y3jXx/ekTBJemp3D944NoxKjwP3fnwdAM11S5PEGmnhT+fLqjlV+MvnLsQ7V7VYvj452cgZR7uiVmVAqZhMZ71U3Pn0AXT0+9FU6caX37F8ys+XCcP5Mj3h1KkQjQ9K3smmHZ8/x87Bw4GwWOhs6hhELK5iQZ0XV61uRbnbgZGJCOKq1n3Tqqw5W+QOo5maHgCJjQ9e1510Z8/X7pdzdIfviSG58UFyJhvFHLgcNtEoh8rurY9x6k42ErAuXNwghMWJSEwIY/lgPEV3UUD7m2+8RBO26FwQ5aLlhmMFsBDZLMLiLV9fuFoSxRmn3YafX38OvvbelXjhi5fgmS9cgrcu19YYRrdj6+dWVTVhDntyJJh1wxajs2jyPd5pt+GcBdrCVu74CmgbB196cDs+fd8WfPyXmxEIRxMyzehem+r9IJd0W41XdP3ea+r63S1lxTVWevC3Z2mi2P89fwi/eEXr3vv3583Hxy5oF79zloVzR2705HXZsUrPDFytN5+hMT5dBUuDED209znbMsYlovnBmLQpZlxHlWUOuHRHpLlJBOUHKkpiyT2Nx10jEwluslhcFU57WVwht38gHMPoRPK1RH+Tz2VHudsh1lGUSQoYYtP8Om9CF958clIScklgHZY6jGdCFtnM12cqEjPZkp285k0DueswQYJyKhfr2BTKRSf0zXZ5g340GEX/eDhJZKPOzuQAXVDntRSB59V5saSxHNG4ihf292F/d2l0FgWQJM6Ta29BnU9snHN30UnwzDPPYNmyZbj77rvx7W9/G8899xzuuece/PznP8fWrVvzfIjZ43K5cNZZZ+Gpp55K+P5TTz2F888/v0hHVRrIFnaqmV7alOxkO2Dq5Ed5bKvnVIvvKYqCS5ZpXUZ/u1kr5aQbfjbQrkUm59k6aTf5itOaxOCT1JWSFmVTcLIBmXPZ/BYi24hpYWRW7Y8NBhKdbGMhsTv17N4eLPnKo3hQz54g5MHdKIPSbmKyEPXU7p4EkY527cyfhaIo+MRbFuJzb9UmpP/+x50iS6WQPLLtJB56Q3sdQ2RzG5+jabfVnOdCkwnxfmRpKZ8qc0wt12NxY1KcWC5qvMckMtSVu9Lmrd1yxTLYFO2zo0wSM6VYKgoYk80jWYpsx4cCONznh92m4Hw9l8Uc1iwLKXdcsxo/+ruzE9xOZS67yHR5dm9v2tc73O9HOBqHz2XHvFqvmLhunYTIFo+r+NELh8T/y+7WUDSGTR2ai/QtSxpw/qI6AMAftpzAoT4/ypx2/N2583Hvx9dhWVMF+sdDuP6ezUnZQAuFaDn1XDZaLDdXenIu95O79Ml88/F9uP+1YwnvAwXDX3PmXJw1v1aUOlK3Lnnj5L/esxL/+8G1+MM/np+wU2+GriNqINKfoulBOqpT3I9zZcfxEfxkgxZ58bX3rErZmCef0Hs2kgcX3lSYzeWiqqri2v/biIu/+Rye3t0jSkXPW1QPp90mrmFg8i42gsrqNx7uFy6ldO7S+nIXFAWIxrXgeMAQH+ZUa793cmRCNAahc1Ke78h5b//vqtPwiQvb8ZYlDSlfk/ItTwxNJLl0s4VEluUtFfBKDhE5n4fY2jmMezceyaqMUYbmXN4UjtZ/uGhhgoApykVNc8GFprlDrTe9EEakW3Cva6/Fh9fPF583UZVB8B/whxGOaSWfPv3vytZR2EWxFSlE4A+eMw8A8MDrnWIe3zMaxAd+/KrIOAtF49jTNYpBad5cJ0oOw5afkZH3WYZlTZoRwdxkqMtUsvvJixZBUYBn9vbi1cODsNsUfOTc+fji25aJz4M2qGTkfLKzF9SKMl/qgErOoIEUuZ2AIXr0JpWLZhLZtHXQlqPDQsSTj0dRFPF65rm+aHrgtCfMYRrK3XA7bFqzL2mzbn/PGPzhGHwue4Jg4nHaxfl70sKR2GvKH3TabWIMJeFIbArXlIlN33znssl/S+9oEPG4mvX7DGiCJZGtk012yDVn5WRLzgunjcBBi9JoVVWTHMPZ4HU5RAfi3rFQ0nEc6htPynWme4+cGZeKt67QKjqe3dMjjDDF7iwKJGcUkrawqKHcMkvuVGRSItutt96KL3zhC9i5cyc8Hg/+8Ic/oLOzExdffDHe97735fsYc+KWW27BT3/6U/z85z/Hnj17cPPNN+PYsWP49Kc/XdTjKjY0kd9xfATBSFzf8TQGjwV1XtHJjwZUfyiKo/rXK1oSL2jqpEdZSdm42AgqHcsUUH3GvBqUOe2wKZrIRq+RLLKlHmxzwdzlywztlpa7HML9MRaKJoiSdEOhG+7OEyMJHWfCsbjYnXpmTy/iKvDTDYk5hrKoZHZoyEJU/3gYWzsNoUbs2qR4X2+5Yik+tG4e4ipw8wPb8O0n9yUcez4ZGA/hpt++iVt+tw2dg4GE7oItldogMxSIJOzgDpidbPrAbRVAW0jk5geA9plGYirsNiXhPHc77KJko0NfTGU6Bxc3luN9Z2m5j994fK9lOQB1GjrDlFVSbCgrpXcslNUCl4SXM9qqxcKwqdIDWYPMpsT7UlEyml5ko1Kv5S2VsNkUkfViFtlODE/gu0/tT5sf9OzexO5e8jW85egQgpE4GircWNpUjvUL60QLeQD4mzWtqPA4Uelx4gcfPhNel12Usc6rNbKBSHg6nAcnG92zc81jA6wz2WJxFRsPa0LEJt1dAyRnh9Dmy4YDWj6nPAmeU12Gd6+dk7HjM50b5OSiXdH6nJxs1EF7akLVHY/tQSyu4uo1rQVteCBTMk42KhedZIfu6WIy5aJdI0Ec7B1HJKbiM79+A3/aehIAhLh28TJDkFo3RZHtbN1NdN+rx/DbzVr8SDqRzWG3icUKjZMkslFW5XAggu4RfW5BTjbpWpPdq5csa8S/XXVaQgaZmaYKD1x2G6JxNclRng2qqgqR5bQWLW/TqtMcYJSY//ufduGelztyeh0SLlJt4HqcdvzH1acB0LqW02LaPA6ndLJlENkmk89ULUrXra9n2rCrL3eLjcOjWUYGpGp6QLxzVQsqPA50Dk7g5UP9CEVjuOGezdjWOYyqMqdwam0/PpJQbknvR1y1Fh6P6+PL3LROtsQO0u31PrxjZbP4+ZWnNaG1ugwepx2//eS5uOu6MxJ+TvjcDlF+R7lOgCZ2OWwKxkNRdI0Es8pkEyIbZYVlqJ4hIY/mBlYdeoWwkCSyaeN/man6QFEUUfYtO5youdWatmpR4k3QZqRV2S/N8+UO7yKXTX9PTuivM6fam9KpPlXMTraxUFQ0PzJ3DrViUuWiklM+MZPNK45D3jSgqiRZwKLy4kGLctFAOAaakle4c9tgayBhdzRZZNvXPSbWrdQMi8Z7ka+XJtP88hXaXOS5fX1iLjldlT3pqJccsLG4KqoyFjcaIptVafWpxKRmU3v27MFHP/pRAIDD4cDExATKy8vxn//5n/j617+e1wPMlQ984AO488478Z//+Z9Yu3YtXnzxRTz66KOYP39+UY+r2NBEnoJ9FzWUJ9zYHXabCMmkDKy93WNQVa3e3FyKef7iOrjsNnFDykVk+8dLFuELVyzF352b/jMpc9nxq4+vwy9uWIe2Wq/YuehJEZg/lUw2AGgy5TiYoXIN2cmmtWLWvh+MxETJ01n6RJvyI+rLXWJHieyzZMHf2z0mdgAAoxxvYb0vyaFh/luf2NUjfo+OWx58ZRRFwX+/ZyU+dZGWDfb9Zw/iup++in/+/Tbc/MBW/GnrCcvfy0QoGsMPnjuYUJa35eiQGHCf3dsrBpjmKg8qyxxi11sWNGlxLZftdo0GEYpqNf5zUkws8415QkS7gs2VnqTJEImpHfrgUp9FyfLnL18Cl0PLknl+X1/Cz0LRGHae0AbRUnOyVZU5xaBKbjbKArMSC1/UG6PIjgqn3SZakgPZXbOUy7bl6FDaDB2afNCGADnZth0fThCTf/j8QfzvMwfSLvj+T3JvAYarEjDy2C5cXA9F0TpbUkkLoDW7IBY3luP2964S/y+XnuSzw+hk89gAa5Ft98lR8f87T4xgPKQ1hKF8uTN1AXOl/nfTvSddM5tUtNf7YNPDtHtGg5LDInsnW5XFwnbjoQHL3Mp07NVLMegeOR3Qwi/broCFIhSlTLbZ52STx6ZwLC4W0efpIttF0j3q7CmKbB88Zx6+8s4VqPA4xPwoVWdRQnZayF2YNbFe+3v39Yzq36NMNmuRLRtsNkX8zmRy2XpGQxgOaFm5tECmrtpm8eGv27vE5uN3ntqfNtDdjBzRkYrLVjThq39zOu64ZpUoPTffO8zB6kYmW2rhIRqLi42TXFwtJFilcskZG44esdF9xCKX7a/bu0SmKUHvndkRTpS57Hivnl32202d+M6T+7G7axS1Phce+ewFuHpNKwBts92IWXHBabeJe6hVyahc9ryiWVsnHOwdTxA0SGSTBY1PX7xIfP3R8xeIrxsrPLhqdatlRiegjfk+lx3vWGlEDLgcNjF+7u8Zk8pF02SyjWq5ZqJcNIP401jhTqhQsOrQS3Mg8yadyA+0aNJBIpAsvqSrWCCh0hyWf6hvXDit5feZBPcBfxhjwYhYh8ypKROCFznVx4IRPLu3J2dXqZnETLaQcMqVOe1ZjSG0uVbmtKO1Krv7l9y4olG6Z1JGYcy0adBtUS5KXZllJ9sTu7px17MHxDlltyk5Z5MaOYBBSeTU/q5XDvUjrgJOu3G/pPkVOdnkMcDMGW3VqPY6MTIREWNZKYhstZI4PxQI4xA52Rp9qHA7RGOwU9nNNimRzefzIRTS3rTW1lYcOmQsSPr7s+sCV0g+85nP4MiRIwiFQtiyZQsuuuiiYh9S0aG24jv1RZJcKkqsmastmChrY49YtCbn1HldDqyXdpnS3SDMNFV68LnLlqQUg2TOWVCLi5ZqE+DmqsTdXsJwPkw+k42OC0hcUMsYnaa0DnqiY6sUYAlok4HV+uKTOrC21/vEJJRuOPKu1qM7usTXR6zKRSeoXFT777VnzQWgDQ4kcPQKa3RqwdNuU3DrO1fgW+9bA5fdhlcPD+LBLcfx8Jsn8IXfbcsp1J74v+cP45tP7MMXH9wmvieXQj6zt1fa5fToXSaTc9mo7JfE3p7RoBCv5tV64UizM59PzJlssvXeDE3IqCwoG2GgtboMN+gTzq/+eVdCd8ldJ0cRjsVR63MlZJOUCuZctge3HMdbvvEcfvRiohszGosLl+tFSxNLQuQ8mWzerznVZVjeXIG4Crx4oC/l4/boO+t0v1rWVAGP04axYDQhR4524HdJnT8D4Sg+/9s38el7t+DWh3bg9aNDcNltYqddFt4pM++8hUaJ2Xl62cvprZVYPTexWcV7zpiDD63ThDe5exRNtqj8ZSpQ84TJONlosiuLbK8cMsbxuKpdz9uPDyMaV9FU6RaTR/Pfmk3gsZkyl128FzuOjxjlolPIZAuEo7jhF5vwkZ+9lvWifiIcE5PsTKJIPqEFf746o06W0AwrF83FybZNn9Nce9ZcXK6X3qxoqRRzhrZaL774tmX43FsXZ93pLhV2m4J/uGghnv/nS3D9+QvwrlUtltlTMnJn9rNMIh8JbpTdQ/lgc2rKUOFxoK22bFIbjG0WuWyqquIHzx3E1/66O+09ieaGC+t94nyhZgNyVpWqqvi5vpnh1islvvrnXVkfI7mDrIQLmY+evwAfOMfY3JDvHfXlrqT7Um0WmWxy5l+m15epljYtrCoFKCajudKDBfoYb3aybT8+jBvvfwMf+NFG0ZUaMOZLqZxsgFEy+sSubvxYF2T+55pVmF/nwyqa458YSXKC1Vl8fkTnoJ7JVuvF3Joy+Fx2hGNxMV8cD0VFaa0s/qyeW42vvHMFbrliqchlzYbb37sKW/79iiSRi5xm+7rHxKZEOifbaFDLniNBKVNWmKIowu0HWHfoNZfIEZTJVmZx/2yzcLIZrvDqpMeTg7VLGrt+93on3vW9Ddh5YhSVHgdukLLtZCcbzVerypwodyc3afv+swfxsV+8jv95bE/yG5ADXabGB6KzaJYbbSQwr55blVJsNVNfrs2LFzb4RGdLQN800K+JTuk9tloTWTnZbn1oB7715H78w69eBwC9QUd2x0QI96TkZKNYJYonaKkqSypVp7llOiebw24T1WOAJtYtqJvaOJUPHHabmL8cGwyIvPfFDRVQFMXIRmSRLTfOPfdcvPyy1rb6Xe96F77whS/ga1/7Gj72sY/h3HPPzesBMvmBLgQabKxCEylYdLvuZEsnsgFGl1EgNyfbZGnWhZnesWDC5CWdbTwXGk2ND0aDEXz055vwu9e1kg+/aVfVPHiReNZQ7haldeRyW1hfLhw8feMhxOOJHWj+ut0Q2WjisqDel+DQUFVVuOD+9sy5cDlsODoQEGVtfeJmnVm4uPasufjTZy/AF9+2DP/y9uU4a34NonEV33xib9Jjo7E4frrhsKUrpH88hB+/qIns+3uM3AFZZHv10IBw69B5Qq5EEt9icVV8jqe3ahPBntEgOvS8KqsdxUIhZ7LJXYGsnHS0c07lotmWuH3usiVoqnTjyEAAP5EEqjeO0u5mdc6D/HRAAzsJwdTVTRasAM09NhaMotrrFPcVQs6TyVZIoZLRZ/akLhk1369kdy653FRVFdeL3B3tiV3d+NPWk3h8Vzd+s0nLmbzmzDlJTi3AEF0XSOfkxy9sx3vWtuJr711l+bl97T0r8ccbL8A/vMVwSC2sL4fDpmAsGBVlQJNFlIvW5e72pHtMMBIXgu/L+rVOO5GbOwbxhl7ecqbUaXpla6LIVjsJJxtgOOJ2nBhJCOTOFprYk+O3aySIYCSOWFzFw6YQ8FRQaY7XZU/Iiyk0NSXiZDMy2Uq9XFRvfBDKvgSF5jRnz6/BXdedif+4+jR8+31rEh5z46WL8YUrl+XtvltX7sZtf3M6fvDhMzOWTMsRD2ebBDkad8hpSBs7XpcDz3zhYvzls2+Z1DFbNT/4zaZOfPOJffjJho60JYxUKirPDUl8kGMfXj86hJ0nRuF22PCLG9bBblPwxK4ePL27B9kgnGw5NgCq8bpELMFCC6Ekm2uOXtvlsMHtyF5ko0y2uGrd0VEu+UzlZKO5lj8cw433v4lgJIaDveM4oDf/SeVkA7RytNVzqxCNq1BV4EPr2nDl6dpmETmuD/WNi8+d7rP034HxMF452I/1tz+Nx3Z0IRiJCUdQW00ZbDZFNCHbo4+hNI+rcDuSSmv/4aKF+KfLluR0jtpsiqXYT5lpm48MCpeolXu6sswhrjmqEnE7bFltINBrAEB7ffJmS6qsKUMQtm7SARhOtuFAWMREnNGWLMCbm4P1jAZx60M7EIzEccHiOjxx80UJzRJqpfJnijmh+4Z5E43mSfe8fCShgiYXRoORBCdxz2hQGAEyuQWJ01or8ftPn4fvX3dG1q/rsNvwxE0X4bHPvyVJmJtjkcvWI/LO5OqJRCdbIBwVaw9ysudSHk7QuqtzKCDmixfrBhG6D7RWe8T9gcpFjZif9Os2qugAtHtapjFluqD7/sd/sRnDgQiqypxi05Rz2SYpsn3nO9/B+vXrAQC33XYbrrjiCjzwwAOYP38+fvazn+X1AJn8YN5dWGJRA7+mzVjoRGNxadFqbUu9VMoxyZSvlg8aK9xQFCASU0WWRixufJ23TDb9xvzUrh68sL8P//e8JiKZSxfIujxiykurr3AnLMABLV+tQSqn6B8PIRyNw6ZouxL7esZwoGcMgXBUDKwL6xMz2cZCUYT1ifb8Oi8u0EtdXtBLDo1OOtk5+la0VOLGSxfjHy9ZhNvfuwo2BXh0R7fYYSPuffUo/vuve/Cpe19PKtH5/jMHEnZ8X9zfh1A0hu16mUOFx4FwLC5EGJocNovMCe2YhwJhxFWtMxNlfnSPBoUDaTpFNprgBMIxDAUiSZMWGVrwUMlNtudguduBf32n1vH1rucOit+nnI4zSqxUlKAMmY5+P2JxFZs6tPJzc57eC/uN7pvJeSPa+6gomTsME5fpE4wX9vdZugN6x4LoGwtp549ko1+uLwL36veyvvGQuF67RoJClCH37rkLa3H9+Qvw/rPn4gtXLkvaiYvHVSHG0G4zoE0m7vzgGZYt2AFt0bC2rTphYuRy2ERWEB3fZJlKJluFxyEWpKMT2j1ms/65Uunrpo5By/KWKq9TuDGAxI6HuUCLv10nR8S5lIszWXT00yf6cinLH7Ycz8op2GVy204X1SXiZAvqY0sugkIxIMEl23LReFzFDv36Xj23Gh6nHTdc0C6ycUoBOcTb7HozO6jlcrbGCk/GjompMItsO0+M4DbJZZbOfbBHanpA1IkyOkO4opL8954xB+ctqsMnLtTcN+m6a8uYNzazxW5TxNhi1WW11peFyEbdXHN8bbfDLho1WGVEymWVtGllFjQ3HzHmYHu6RvHJe7fgvT94GaPBKBbUeVNufBMf1u/b7fU+/PtVp4nv15drLmRVhdhsIgeb0WE0hDufOYCe0RDueGyvcF95XUYg//LmxHHVqlS0EJA54DV9fKr2Oi0rHBRFEfNgEiazdVgtacrWyZb42YrGBxZNOkRp9lDiPK+93mc5ZtI8mTZ4d50cQSyuYlGDD/d+bL2YQxFWTja6b4jGRnoWNP08Glfx33/dnfTa2dBlKmOl8nH59bLhnAW1aR1cVnicdssxyqokl3IsE8pFTU42OnddDpu4FipyKA8naP1IGcBelz0peqC1ukzcl4ZFuWhmJxsAXLS0AQ59Lr20BEpFCbpvDAUiqC934efXn4My/Rqga/BU7jA6KZFt4cKFWL16NQDA6/Xi7rvvxvbt2/HQQw+d8tlnpYrZLm/lZFtYX45ytwPBSBz7esaEqn9aigG9vd4nStrmVBdeZHPabaK8jG6Mw4GwtKM1RSebyHHQbgg7dKGocyiAWFyF3xTCm9bJZrLyttf7xODcNx4Sg21LVZnIrPrz9i785MUO/W9xotrrSnBoUNZJudsBj9MuFrvk0jF3HcqFZc0VIpD/jkf3iEXpkD+MO58+AECz3v9Wd/kAWonkr1/T/v+CxZrg9+KBPuw8MYJwNI46nwt/e+bchNdpNolsJAxSyW+N1yXErN7RkNRpNbtg1HzgcdqFuHJiaEJMdKxKNOhciMS09ysXYeBv1rTi3IW1CEbi+Mofd8IfipZsZ1FioVQuuqdrVGR/DJgmnBSEf9GS5O5hNIGsLnMmCXCpWD23GoqiXWtWYdUv6qLeiuZKeCXXAy1GaMPgYE/izu1e3ZFBi/D3n92G2/7mdHzj2jVoqHAbkwT92ur3a00wtJDtqd/zRIi05KqTGRgPZcxOicTiQvibTCabzaaI83jQH8bWzmFMRGKoL3fhI3pu5tbOYbyu53may1tWSU7FyZSLAobItuPEiDiXctk0qTIJVbLIdrjfL1x46Uh3nRcSdrLlRq6NDw73+zEWisLjtFnGZJQCFLfhddkTNgmA5POxIk8db+le8cyeXtzyu6248f43xCYekFwOJ2NV5WAuozs+FMDjOzWnM5W2Udn8sSxz4AKh1O6gTNCC2dz0AJCajfgjKQX48VBk0q+drvkB3atbqoxy0eNDAfHeq6qKLUe1e+3Nly+Fomibl2OhKNYtqMWD/3h+RkfW+85qw/c/dAZ++8lzE8ZDAAn5oYCxMULiw5ajQ2Lz7NhgAPe8fASAVkJPmw/L9Otovz6e0t9UaJGNBDByBqVzO9PYTceYrfizOKFc1CKTLYVwQJvN6UQ2EoAyNbcyO9lofnB6q3VpJY0h/eNhPLZDu+ZIRCdX9shEJKEyAwCe39eXsaGUFfR501x9ZCIi5vLZipn5hjqdU5OOSCwuImgSGx8kOtnIpTm3pgy///R5uGhpA66X8gOzhZxolFs7t0Yr45fP0daqMmlNp5eLUuODDE62qjKn6HxtHiOKyfxa7Ro5raUSf/rshQmbROxkm6TIxsw85JbKbofNcjFmsyliAP7r9i4EwrGEsFEziqLgG3+7Gp+8aCEuWzE9ndjI9kuLKCotqvY603bTygZy442HohgPRUXobCSmuVfGTRM+c9eePqnxQI3XCCwGNHFCvuHQYNtWW4Z3rdLCXe969gC++/R+AMZkVHZomLOKTp+jl8KdTBTZsnWymbn5iqXwOG3YfGQIv9p4FKqq4s6n92NkIiIWXj97qQORWByqquJ/HtuLaFzFxUsb8M9XLgOgdZR89bA2QTtrfg0uW2FYnBXF2K0xd08i90qdz5XQ5ZXKTKfTyQYYk6LfbD4muixauYTMCx5zg5B0KIqC/3r3SjhsCl7c34dLvvU8ukaCsNsU4SotNUjs7Ogbx6uHjfLhASlEdiRghLNSnqJMiy7I51IO6HJIHfhMu6gARPmRuSPkiuZEEeuAqTxiX88YYnFVOC3NGWN0vvbp7taTw0aQ7lTvN4ARXrvPQmQ70DOGc772dELWoRUnhycQVzVxpGGSuZS0sPjvv+4WAul5i+qxUN8cCMfiGApE4LLbRDk3sVpatE2m8QGgLdYVRdsR78gh35AwN4gxd6B+cMvxjM8hO9mmE5p0B8KxhHzG6URVVUlkK3EnW44iG5WKrmytmrZcz1yha+ripQ1Jx2h2UFdOwmVhxTkLajCnugwTkRgeeuMEjg4EMKe6TGRNphLZgpGYyAmjEHxAdrJpv/fItpOIq1oHV7rPkaATCMcSOs5FY/Gkz1NVjY3NXDLRCHrNMy3y8GjsCcfiCU58mbFJdBYlqtII58L1VelBQ4UbZU474qrhMDrU58dQIAK3wyaahNkUzZ123yfWZ7WRZ7MpuHpNq+VG0CrTGFdnymT7sx5dQq4Zik+Q1wzkpNnfk1guWuh7J3UYJerSzCFovn1Az4mSQ/PTQeeNy26znPOlanwwQeeqRWmz3P1yIhxLiF6wgt7H7hEtGofmB6nC7kk4+uv2Lmw8PIAyp12sIaqkxgcD/jCCkTgUBbjhggUAgC8+uB23PrQD9248kjajUIbGyqVN5SKDjo4x2/c535idbH1jIaiqdh7XSpt/JCabyzWbKjxY2FCOX31sHT64bh5yhc63qL4pSsezWBL5W6vLDAF+IgK/vtYEstu0/X9Xn4br1s/DR9aXjpnpC29bim+/bw0e/MfzksaqhvLE+fOpyKRmHDabDXa7PeU/pvSQHQaLG8tTOkhW64v73+uLkmVNFWknpusX1uFf37kiLwvObGiu1C7ibpMDaqp5bIA2maIJVffIRELO1LGBgNT4IIWTbdxora0oiigZVRRgXp3XKBcdD4nywLk1Xlx+WhNcdptYKP/PNavwxbdpopXs0DCXUZ3Won1WB/vGEYzERMhnph2RVDRXefDJi7RuUP/xyC7c8IvNuE93qv3ww2ehvtyNrpEg/rztJL779AE8trMbNgX4l7cvx+q5WvebsWAU9716FIAmsq1rr4VP39mr87lFuVyTKZONdgXryl36+6cNVhS4u3CKYdS5QgPk/a8dQyAcwwWL6xLayRNmW3m6SZ8VS5oqcM8N52BerVeItMubK5J2n0uF+XVeKIrmaiSXAmC08Aa0vJ64qgnI5rIGQGsYsKSxHNeYXI6ZaE3R1j4YiYmGCFeYxH5aDHSNBDEcCIsJN03U93aP4VDfOCYiMXhd9iTHJF2zA/4worG45HbKz2JieRqRbceJEcRVI6cvFXKp6GTLHO+4ZhXKnHZsONAvOquev6gOiqIkBFafPqcySYRZmSCyTe4+7HM7hOOEHB3Z5hsCxvg2FooiEouL+wrtqv5l20kEIzEEwtE0Xf/IYTK9TrZKjxM0HI8UqWQ0ElNFN2hPiZeL0j131CLvygoS/M3ZkKXEqrlVeO6fL8F33r826WeFcrLVlbvxwhcvwW8/eS4+dkE7Llhchx/93VmivDKV++BAzzjiqiaoN5k6/AHGnGyX3iX7EilWpNLjEHNP2eV1wy8249w7nklY5AcjcXFO5prJBgDfvHYNnrr5Iksho8xpF3mTqTpWU+ZfLp1FCdpskJvJAJpwKDcvUBRFVINQLhu52Nbo8QKffesS7Prq2/G1967KSw6TvJFktykis4tEUhrH//2q0+CwKeIzIKcQoK0LAK3KIxCOGt3jCxwbY970T+9k046FGoZkW1bdUlWGr//tKvzvB9davt+i8+fQRMKmCJ0vXgtBuL5cczSpKvDeu18WTrZUIltTpQeKondC9ofE/CCVg4nG3bDe7fVr710pNs6MctGImL80VrhxyxVLMae6DP3jIfxm0zH8+5924Z9/n35Dj6CGDC3VZeIesC/Hstx8M9fUXEKOz5HdfyRI0nqKSkqn6sI0l3vS8cjl6nIm28hERFw3Xpc9KzF/RUslbn/vqklHBBSCxgoP/vasuZZrFnayTVJke/jhh/HQQw+Jfw888AC+/OUvo6WlBT/+8Y/zfYxMHpAdBsssSkWJNfpElC6KVHlsxYKcbKLMUHfQ1OfgekgHCVQbDw2I9u0AcCQbkU1ysgFGSPzcmjK4HXaj8YHkZJtbU4aqMic+f/kSXLi4Ho989kJ8cN08sViWHRr9QmTTBtSmSjdqfS7E4iq2Hx8Ri46p5ON9/rIl+OLblsFhU/D8vj7E4iquPK0Jly5vFDtftz2yC997Rish/erfnI7TWithtym4cLFWGkiTyLMX1MDtsItyWHmXU+zUmcTS+nJ3QlkwoA1Ak3XnTRZ5R+bas+binuvXWYrNZpEtm465Zt6ypAFP3nwRbrp8CarKnKJzbCnikdqtvy6JP3HV6JZE12aqtux15W48dcvFuPHSxTm9drPpnCE2Hh5AIBxDU6UbK+cklrZXepxisrO3e0yUjrxFL2Pd2zUqSkVXtlYlbT7U+Vyw2xSoqlaKke+SwmW6E+RQ33hCqRZgNHTpGgmmzRSbSh4bsby5Et98nxYBQaXPF+gdU89ZYCwErBYFK+dUwuWwaZkmU8jFTFXGlA2yu2d0IiLuQe9Z24o51WUYC0Xxnh+8jLVffQpn/tdTlqImuRStshcLic2miLFkqEgiW1BaLLpLvFzU7DjPBHUWLVV3MNFe7xNZNjLm83Eyok8qHHYbzl1Yh/939Wn49SfOxco5VcJ9kMrJRk0PljdXJoj65OKm6oJdJ7X3nTYDAc29TXNRWVDbfGQQY8GocB0CRuaeoliX4GWizGXHkhRzXUVRhEDz3af2Y1PHYFLWJ5WL5prJBqTOWRwKREQDC5prilw2PRrjdT2PTW6AYXVeTJZVpk0REiBkwaq+3IXr1s/DO/UqCyCx43JduRv15ZpodLB3XMpkK/y9U85Mq00z72+sSDwfq3PICvvAOfPwDulvl1lQ50Wdz4VQNC6yXAE5ky35fFEUBd/9wFrU+lzY2z0Gf1jb1EvlTHPabUaQ/mBANChI7WQzPrsPnN2WsIFJIurohJEv3FpdhgqPE4/+01vw/Q+dIcojra4DK4RQXOURG+a5ipn5huZ5XaNBhKNx0cCuySSe0TkzGtQ25HosOpBOBrO5ge7bcrn6nOoy4fSjaycfr12qsMg2SZHt3e9+d8K/a6+9Fl/72tfwjW98A4888ki+j5HJA5XSAJNq4gEkl0tlClidbminjG7y+eosSjTpuxFPm7oYHh30S40PtAlPukw2ACJvg7pbyTccymSjicuNly7GfZ9Yn5SVJzs0SFwgJ5uiKCIv7/l92vF6nLZJTQoJu03BjZcuxh9vvADLmytQX+7GV96lBfR/5Nz58LnsQsy75Yql+LvzFojflUsDXQ6bcLhctUabrMjZfiJ3bSyk29gTXXpyN6D2et+0d9p82+lNmF/nxRfftgzfvHZ1yh1ks8g2WSePx2nHTZcvxdb/d0VCa/ZSRN5J9rns4j2gyazocpvniQPtIJ80lYuKUtEVTZbniZzLRpOaq1a3AtDyWmhhZy6jATQBhETt3rFg3oWY1ioPKjwOROOqKI0m6P0MReNpQ/GPSa7YqXDV6lZ8+mLNyTqv1iucC+va68RjzKHsgOas+cX15+BnHz17Sg5M2RGXa/m/w24T5+GwlA/TUlWGvz1zDgBNZA3HNHeMubkLIDnZpiFf1Eyxc9modE9RjI6ypUq52yE+azl7z4pwNC4yS9eUsJMtHY0Vbjjt2n3NpkA4wwtFfYV2LqZaGKXqOm8EYIcxEojgiB7mb24wIYK/9XM9EI4iGNGEJ8pgBaSmBy5HQcZ/upc99OYJvP9HG/G537yZ8HNRLjoJUbOqzPp6pntMfblLhLfP1ztYbtIzL2nz6uwF1i6nqVLtdYkNGdl5L29s/u2Zc+G02/DxC425iDlihrpw7usem9ZSe7n7Z7rKAbPokUsgfzoURcF6varh1UNGZEYgTSYboJWCP3HTRbhcd9ufv6gubSYtzXdeOjCAaFxFhduRct6xpKkCtT4XzphXja+++/SEn8nOKdEUQX+eKq8TV69pxb+9awXKnHaMh6I43J+542iXJKqSQESmhGKVizaUu+F22KCq2nUml4HKVJU5RaOn4UBEKt+e2kZ+hdshSmcBYz62SMr4a6kug8thE/dwasoxmc35mQCLbHnOZFu/fj2efvrpfD4lkyc8Tru4AaQL/51TXZYwcJWayCbndQFIyimb+vMbTjYA4j070u+3cLLpZSuiXDTRyfaOVS1Y3FgunEly6ZmxME6/WJcdGod6tQmonMlBE9jn9Q6jjRX56Yy3ck4VHr/pImy89a2izXxVmRMf0yddH7ugHZ97a6IT6WJJZFs9p0pMIq9a3Yrffeo8/Ksu1gHaTuj8Oi9UVQvaFWHn+rknD4zTnccGaN09X/jipbjx0sVp30+5dKeqzDnlco7pFhMng/x5nL2gVuy4kvNBNODI88TByCkxykVVVcXTe6zz2AjKZXv54AAG/WEoCnDF6U1w2hWMh6J4UhfpzE4qgsoAekdDeXeyKYqSsmR0UGom0ZVGTOjMg5ON+OLbluF/rlmFH1x3pjgXlzdXYG5NGbwuuwjeNXP+4nrhWJ0s8vs/mU0T2T0iypeqPPjkxYvw6YsX4barT8PbTtfOEStxhgTU6S4XBeRjL47IFopQZ1HbjLgHyZlF6djXPYZwNI6qMqcoy5tp2GyKcPGWuwsjOMkYDZqsz8W9emdRc5VDjdcFm6I5NF4+pDWiaanyJF3LJLJRAxu5ac4RWWRL060xH9z5gbX41cfW4eo12obLSwf7E35u7iafC6mcbFZdON+1qgWK3tn9kW0nhdB41jzre20+oA0l+bOR59DvP0drgrWmrRrvXNWMOp8LZ5pC+slVdaB3POF+W2jkjehsykWJfJYxnqvnFlKXU8AQ2dKVNjdUuPGTvz8Lf7zxAnznA2vTvgYJYc/pG+jLmitSXvtVZU5svPWtePDTyU0xhJMtGBUVNOaOxQ67TYy/b1o0CRr0h/GZX2/BK/p1fZI6rFd5kj7zYpWLKoqS0GCC5oXm7sJ2myJcjYP+cN7OXUVREoRdOpbTWyrhsGnHRmtHMk/s65ndTja5u2g2Hd5nI3kT2SYmJvD9738fc+eWbqnTqc7atmqUux1Y21ad8jGKoiS42eRg21Kg2TS5pg4xuQTOp4NudpRtQMH9+/UcEsCYdFGXoUN941BV1XDw6N9f0VKJp2+5WEziaEIQk7LGMnUDlB0aB3Wni5xVdLoustFufdMUd2PMmN0kN1++FC9+8VL8v6tPSxrwmyo9QjA4y7QLu669NmknkRbsmzoGhUBDn6Ns8V5YBJEtW2QnWy4ZUjMZWWQ7d2Gd+MzIVdozxWzAVDSLTDZjYb3zxCh6RkPwuuwisNvMcn2j4IX92mR1bk0ZKj1OYeOn57NysgFS1+GxUEJnuHyxzNScgRiQyqm6RxNz6GTyUS5K2G0KPrhuXsJ7YbMp+P2nz8NfPndhQXdcT2utFDvMkyn/px30/vGQuJ80V3lQ7nbgy+9YjusvaBela72mIN7RYEQsqvOVt5cLhpOtOOWilC1U6k0PCCpLM+czmtmmu1RXz62aEeJhKmjBna88tnSI7FgL94GqqqJc1LwBa7cZJZgv7tc2/aw609f4Ekuj5fvc4QQnm56JNgVnfjocdhsuWtqAr/6N5vwZmYggEjNK9sd1J9tkKgNSZbKdHEkW8lfPrcbf6V2cKRNraVN5QcvuztDXALKwsLSpAu9c1YxPXrQwocTtrg+didf/7fKkOTaJXduPD4uxv9CZbNrrGseWbnPdPFZVTbLKwAoS2V4/OihiHmgTPlNpr6IoWNtWLcSvVNAcg+5hqUpFCbfDbumMkytuyMk212KTkMrpt0kl28TvXu/Eozu68R9/2qXlCtKGVHVZUpRLLmW5+YbcY0/t7sGGA/3afOac5CYGdJ8a9IfzVi4KJDadI5GtsdKDB//xfNz38fXiZ/SZ7NfnfNMdhzNd0PUZialpqzFmM5MavWpqahImLKqqYmxsDF6vF/fdd1/eDo7JL7/6+DpMRGIZb+5r2qrx3L4+zKkuK6mARSB5B9vsgJoq5hK3q1a34C/bu8TuopwPcv6iethtCvZ2j2F316goeUjV/clpt6HW5xITEqddyerGTg0Fjg5YONlMk1jz7l2+sdkUzEvjCLjx0sX44fOH8IGz2zI+17r2Wjy45Tg2dQyKsF2RNyc72aa56UEuyAuAfAm9pY78eZy7sFaUW9K1KFqS5/lcNLe1B4Cn9N3Ki5Y0pBQISPilrDEqN1neXCGErXK3A+111ucZiYW9Y0GcGDZCq/MF5bLt6x5N+P6g1LE1nZPtmF6Wle66nCrT4e4qdzvQXu/D4T7/pJzJtIN+oGcMqqrdX2tNCyvahKC8FoIWDVVlzqI0HakWJXRFymTTx65Sb3pAtJga5wDAPS934OWD/fjyO5ZjcWMFDvaO43/17NAzUgSMzxRahchW+HNTZMfq7gN5rt83FsJwIAKbYnQklqkvd6N/PCxEttNbLUQ2EpT1eZB8n6Pwf8AQLayC5PMJlY+pqlbeSeMWOekmI/KJrvAmZ2p3ik2af37bMjyxq1vcl86aXzgXGwB8cN08TIRjYgMY0ETSuz98VtJjbSlKGpc1a5//Fr281e2wTYuLab7eYTQaV9N2oDZv8uVT/FnSWC7m8tuPD+PsBbWiXHIynXCtaNGveTIApWp6kIlKveImFldFeaLV/GVtWw2ADmzrHEn62V59E/9A7zhePTwo/tYWKZONKOaakSIu7tWbr71jZbOlkaHW58KhPj/6x0Oi8iIfLky6d5Q57QkuS7OxhTYaqDQ33+aIUsHtsKPa68RwIIK+8VBOObuzhUmN2N/97ncTBl6bzYaGhgasX78eNTUzezIzm3HabVnl3Fy+ogl3PXsQV6QovyomdEMfC0XhD0XFLmi+y0UB7UZ58dJGMQEDEvNBan0urG+vxSuHBnDfq1oXzgq3I+1OVkO5W4hsrdVlaTMZiOoyFzoxIUSCemnXo73eB7fDJsJ0i13bf/Wa1oSJWzqoa+H248NikVlnmcmWury52MjOglPFybasqQJ2m4IKjwMr51SJa4+6NfWMFcjJJi2safFHi7lUpaKANikvc9rFxHCJvjhc3lIJbD0JQFsMplpMNOgTp+NDE8Ihlc9w/OUpnGxyMHiqsriRQERkJLZNMZOtFFg1p2rSIhvtDu/R38emSk/SZ9qUoszwZAEcirlQ7HJRymTzlHjTA4IWRCelz/H7zx7EoD+MDQf68ZlLFuPeV4+ifzyE5c0V+JjetGemQvebTBuk+YA28cLROMZC0YTXJDf9vFqv5aYGXbf0uZjz2ACjoQnllfVL5aLUsdHtsAuRazKdRXPBblNQ49UEk0G/IbJNKZPNa93IpMuiXBTQPtfbrj4d//jrNwAkNpspBOVuBz532ZIpPQdlO9O8tKUqP1ElmXA5tGYdm48Mpo2+qfO5YVMgKlDylckGQHTdfmxnN149PICzF9QaonCeztdW0zmyfJLRPWVOO5x2BZGYiqO6691cLgoYTrY9XaMIRmIJ17c8N6Hu4zVeJzxOu0W5aPHmweRko037T1600PJxJIAd6BlDLK7CphibC1OB1l9zasrSXgskwtO1U2hzRDFpKHdrIttYKClz/FRgUneD66+/Ps+HwZQSK+dUYcu/X1HwgN3JUOFxwueywx+OoXs0KBb2+Wp8IN/sTmutRJlL66ZINmvzLtXbTm/GK4cG8Mc3TwDILHLVV7iwTzPfZMxjI8y7g7KTzWG3YXlzheigNpNq++fVetFY4UbvWEiU2pJQJTsKUzmMSoHKhHLR2bkbZaa1ugz3XH+OCKen3eR+anxQICeb3NZ+wB9GrdclcszOMOXFyNhtCpY2V2Bb5zAAw4Ehl1+YG77IkJWfHHtlTnted+xp4tE1EsRIICIWaHIZVSonG5WKNlS489qBrlhcc+ZcbO4YxBWnNef8u/SZ0DlhVbpEDllzuWhXARyKuVAjFuXFEtkok21mnEPmfMaRQESI0qFoHN99ej8Azel93yfWF3Xhlw8W6u7h6dhEK3PZUe52YDwURf9YKEFkO9SnOc3kckIZ8xh4emvyfVWc68LJZpzzcVXLmFzcWJGUgVtIyJUk52COT+H1ya1nLhcVZXYWYv7bVzbjuvXzsLljEJcua8z5NaebSo8TLVWelMJhIfn59efAH4qmdcbYbQrqyt1ibplvl925C+t0kW0Qn31r5sYHudJiGosmK1Aoita9un88LMwCVpuEc6rLUF/uQv94GLu7RkUn8XA0LhpGAcAL+sYmudutGgsUC3lNta69FqtTNLuh9eJuPV+yvtwNRw6NllJB669Mm7Bmt99sLRcFtDHrQO/4Kdv8IOvRY/v27Vk/6erVqyd1MEzpUMwbZSaaqjw43OfH7pOjYiGaL4FDdrJREOi8Wq8ksiVeMlee3oT/eGSXcMnUZ7hZyrsl2TpPzJ+F2TF1WmuVENlm0s1aURSsa6/FX7Z3ie/R5zhft3g3V3pKrmRZRnaypStdmG3InWTrJSdbIBzFmL44ybcF3uWwoV6fNHePBOEPRTERicHlsGFBBiF2hSSy0Q68XH6xKk3nQbqmDugTzZbq/O7YV5U5MadaE/L39YxhXXut5iLRnRRAaidbPvPYSoGLlzbglVsvm9Tv0u4wlfY3WSz66JzsHw8jEosLZzdlexUjjw0wdv+Llck2U51stMCnMsOGCjduvGQR/ufxvVjWVIFf3LBuVpSovHNVC0YCEVy6fHrEl/pyF8ZDUfSNhbBQEtQO6ffARRalokDiGFjhdlhuJJrzB2WRDQAO9/l1kU0XLaZJZAOMZgyAkck2qXJRC2eqqqrYr5frWY1XiqLg9veuyvm1isnSpgpDZJvGDV6XwwaXI/N13VghiWx57npJuWxbjg7hUJ/R/KEQTrbWKs+U1mSVHqdwjFZ6HJbZjoqiYM3cajyztxfbOoeFyHaob1x0NwUg5nc0VsoVCw6bUlRzhrym+uRbrF1sgHG9U6fkfAnEV57ehMd2duFD69LH5ZhLl80xRbOJq9e04sx5NZbxAqcCWd8N1q5dC0VRRIeIdIuMWCw29SNjmBTMqS7D4T5/Qsv1QjjZVuoi2/w6LzYe1rqNmidcLVVlWNtWja36Aj7TTnODRTBmJuTB1e2wJR2DXJKR7xK9QrNeEtk8TpvYBVzYUI47P7A2Y2OIYiOXkuSrZHmmQSW+A+NhkcdW5rQXxIHQUuVB31gIXSNBnBimjLXyjGXXckg3DfbNlR7MqS5D71gwqXOaDE2A0u0CT5VlzRWayNY9inXttUmOJjng/QfPHUQgHMU/X7kMnUOzS2SbCrSwpVKRFouJa63PJUpnesdC4rMsZmdRwBAeilYuqjc+cM+Qxgf0OdHClkS29jofrr+gHR84Zx7cDlvKEvCZhtthx/UXtE/b6zVUuHFkIJBQygloC24AWJzKyVYhdaZvrbRcJxgiG5WLJjoc6LM0nGyFPyfrpCB0QjjZJlEuWi2FzcfiKuw2Rau88IdhtylJTSNmKsuaK4SzqblI9850NFa4sUv/Ot+btXIu2zvu3IBwLI76cnfGBgXZUl/uFmPVVJ+zUlpDzEmzub+2zRDZCHKGL2+pwII6H36/5TgAQ5jyOI3crWqvs6gNZpY1V2BBnRfNVR68Nc2GBN2DyDyRrwqgRQ3leOSzF2Z8XI3JWT3T1m258KF1yY0nTiWy3rbs6OjA4cOH0dHRgYceegjt7e24++678eabb+LNN9/E3XffjUWLFuEPf/hDIY+XYXDjpYtx9vwauBza6dtc6Um6aU2WMpddCGEUVjlf2nW0Eg7evtIobcpU1y877rIVkGSbe325O2kQk5sfzLTa/nPajYDfOl/i3/aeM+bgrPmlnfHoc9lB67hTpVzUDC1QBhI6NSWfp/mAdsu7RibE5C+bCSh1y5xf5xXXsKIouPfj6/D7T58vsjysMLtDWwuwmFikl4N19Gui2cC4WWTTcuj6x0P45hP78IPnDuHVw4PCyVbqYvR08P/bu/f4qOo7/+PvmUlmcr+QQEggEDAqICoYikVQwCKIeGHtesMiiLIPqqy4rnhZrfrogmwFfnXFaq2rlEqrttVt+8BKod4AV6WgWBSVgiAgiQjkRi6T2/n9MTknM7kRMmduyev5eMzjkUzOnPkO4UzOfM7n0vpKf3tXpx0Oh/Ueaf5flaTDZZHNZMvsoIdTuFiDD2IkyGb+bsuq61VT12hlLxZk+46DRLerxwTYIsH8W/Ztq7Lqlky29jOH/acCtzf0QGrbk631ZErzd3kiTD3Z/Nfk/75bGUQmW1aKRymeODUZLUGKT7/2Zc2c3i8lZo6zk/EvYYxUP8vOmO/1Dkf3psR2xul0WH2F6xqbdN6gDP3h9gtsu7jodDqs97nu9mMzBQTZOvkbd27zZ54dfkE2c5rwsP5pmjl6gHW//wUp89iNdAVUQrxLb909Sb+59budvv+3viAezixMKTDgmxjvsv3/JqJHl3+zgwcPtr6+5ppr9MQTT+iyyy6z7jvnnHOUn5+vH/3oR5o5c6atiwT8fXdoln7/wwvkbWjUFyWV6p+W0KUBAl315A2jVVJRa2W8DPab2te6XFTy9WX7r9c/lxSaTDb/NPf2musPz02V2+VUo2EoN0IfErvrjH6pSk+MV3lNfUwODnA4HErxxKmitiEm128HM5PNf1JTqIK9/hNGzamaXZm6dd6gTK245tw2KetDO8jI8Nc6eBqKvl0tGVW+YI/5wXNgZqIOldaouq5Rld4GfXq4ZQLpmv/bbzUHJ5OtbcPljq5O56R59HVZjY74BdmKrcEHkcnGyIh0JptZLhoXG+WiaQlxSnK7VN3cm3W/FWSL3v6dsSQ7paWs2lTlbbAGGnTUk83/w2vryeemlp5svoCyGdgqKsjUa36T3KvDWC7aXiab2U8trRuBA5fTodGDMrT5H0e1/UCpRuSl6ZPDvpYe7Q2DiFVn+gXZwtmTravMDKH0xPiQBN2vHZOvv+0/ruu+k687p5zRpcFyp6IgK1kHj9doZDu9DU9FekCQreO/cWZv2v3HqlVWXaeMJLc+L27JZPvu0Cz1bS7B9d9Pv7QEfV5SGRW9Lx0Oh052fbd1Uka4/+/6l4v2C9EFaUSHbr0j7Ny5U0OGtE1dHzJkiHbt2hX0ooCu8MS5dM7ADNvr2c8fmqWrRrVcsfH/ANveVaoh2cnWycbJroj4B9m63JOtVSZba0nuOD1zU5F+Nuu8sEwfs5PT6dB3CnxXA2M1E2zimf2Ul55gW5lArDGDi5W1DTpU6gtWhCr9vb/fdMgvmvvbdLUh8D8XDWwzSr0r3HFO64OhpJAEss0SDrN8wewNNCAj0TpBLimv1afNH9QkacOuEu382vc9Qba2ja07yqww/w9901zabBiG1VcoFFmKXdHSw6neaskRTuZ06ljJsHE4HH592Wq0rzngHs1DcmKJeZ7iX8r5ZfPQg+wUd4cfpv3/hrc39EBqae1xwtuguoYmK7A1pjlr3Qyymdk0dvf27GxN5loqa+utctHulpKZPa227z8uSfqkOZMt2IBJNCnsl2IFNMKdDdQVZhZ66x5Ydpk8rJ+2PXiJFk8bZnuATZIeunyEHrp8hKad1fH09K7wH9DV3mRRU0aSW0OaL1SYx9/nfplsLqdDS2eO1JXn5ukSv4nuOSH+d7Zb6/7J4R4Y5//+2XpwBHqWbr0rDB8+XEuWLFFtbcuVYK/XqyVLlmj48OG2LQ6IBoGZbO1/CFn2/bM194ICXXZ2bqf7MjN8PM1N3LvC/w9XR4+ZfGa/gLLVWDLxjGxJsZuF8MT1o7T53ovbbSbbG6QlxCuu+SqxeUIWqkw2M3Cy/1iV9WFsWP/QZwb4v55Q9GRrk8nW/OE2K8Vtvebi8lork83h8E3iK2suLyTI1vYEv6MTZ/N3afbzOl5VZwWZctIjE+g3r6w3NBnWh/twirXBB5L/hFEy2ezWUi7aEmTb863vokZn2b+5Vp8mZ4eNrtMS4q0WC2XVdTpW5XsOszXENxVe/W3/ce38ulxul1PTR3Z+TmWHPlbLA2/zGnzvDakJcd0u/xtT0BxkO1AqSdYFErPXb0+Q6HbpqnPzdGZOalReZDSzzmP1Au7pOamaN2FI0JMvAzPZOj9XMEtgX/3wax2vqrMuRpm/36ln9dcTN4wOqOoxL3hE85Ayf5nJrVpLhDnI5n/Rtm8P7seGUygX9ffzn/9cV1xxhfLz83XuuedKkj7++GM5HA6tW7fO1gUCkZaaEK+sZLeOVdW1Wy4q+a5amlcuO3N6vxTdMDZfp/VN6XL6uv9VD//Gwj3F9WMHaWBmUkB/tljicDjk6sXZ3k6nQ32S3TpS6bWmNYUq+8As5/v7oXI1NhlKT4wPS6ZDvzSPlTkXynLRY1V1qqlrtDIq+iS7VV3XqM9LKlVSXqNdzUG2H5w/WC+8/5UkX6ZdLE0VDpXWJ/gdl4sG9mQzs9iyUzzyxEUmkyvR7ZInzilvQ5PKquvDHrD3WkG22Mhkk6T+ab5j5rPiCqu0z/+CGLqvvUy2vUd8gczOpsT1S0vQY98/R32S3VbP3NacTocyknwN4w+V1Vj9AIf2TVFmUrxKq+ut9htTz8qxbahVZ8zMFrOE1XxPCKbP2Kj8DDkd0sHjNfqsuMLaZ08qF5Wkx68fLcMworLk7aIz+mrR907XxDP7nnzjHsy/5PlkfUdnjxusl/52UK/tLNaFp/sugA/qk9RpsPmqUXna/lWprhvT+VTNaNE6k61/mC+u+Z+rcO7Ws3UryDZ27Fjt27dPa9eu1eeffy7DMHTddddp1qxZSk7mSiJ6nkFZSTpWVaeUIJvwOp0OLbv6nFN6jH8ZVOs/Dj1BvMupyZ1MAkL0y0rx6EilV3ubS4pCVS5qfugxJ0iemZMalpN7/zLvUDR4Tkv0ZUyc8Dbo67IaHbOCbB7rtf7jmxNW9t6/fq9Qb35+RF+X1Sg/M5Em7wq8Wp+d0vGHfDMoa07CNbMHO2sIHQ6ZSW6VVNSqtLou7IMsamOsXFRqOQ7f/9JXjpeT5lFSGJrk9wZmCwD/nmzmZNGO+rGZrv3OyT9oZyTF63hVnfY0D1LwxDmV7HZpSHaySg+UaftXvuyvcE2mMzNbzPddMyAWzMTM1IR4ndk/TZ8VV+hX7/kuiAzNTg7J1O1Ii8YAm+Q7t/y3S86I9DIiLiCT7SS9oM/KS9f4wiy9u+eYFew+Wd/bwn6p+s387wa/0DBJdLuUEO+0AvzhLhf1/32E+7kRXt1+t09KStK//Mu/2LkWIGqdlZemjw6UnfQPVCgElIty1QNRyGwcbQaEQtVnovUJSbhKVMwSw6xkd0gCEQ6HQ3kZCdr9zQkdLquxMtmykt1yNX+AefOLI5J8wYV+qQm6adxgLXv9c53eL/rKdCLBE+eymuF3duJqloaUtMpki9TQA1NGUnxzkC38E0ZjbfCB1FKiZJbhFdCPzTb+5aJmlpIZEOssk62r+iS59aWqrGmlWcluORwOFWQn68MDZZJ82TPjhmYF/VxdYWWyVdepqclQifmeEOQH4KLBGfqsuEJ/+OhrSdJZPahUFLHDDOq445wBE4A7Mv/CoXp3zzEr6BzsdNNolJXsG4CU7HaFPXPc/1yFTLaerctBtj/96U+aPn264uPj9ac//anTba+88sqgFwZEk8XThmnymf100RnhTztPa5WhAUSb1iPRQ5XJ5m7uZWiWMZ0RtiCb7/WEolTUNCAjUbu/OdEqk82txOagntl4/KzmcqNbJgxRWmK8JhRmh2xNsSYjMV7VdY2dZhv2a1Uu+vdDviDN0L6RDdJkRnDCqBlk88RgJltzXN9q2I3gmZm7dY1NqqhtULLbpf3HfO8/p9lwnJgtMMzsuD7Nfz+G+v0Or/tOftgydM1MtsYmQxW19X6ZbMEF2cYM7qO17x9QTfPxdVYPKxVFbDBLrrua9T7xjL46MyfVapExPAr77QUrMzleX5fVKCdCU3Ezk9yqrqshk62H63KQbebMmSopKVG/fv00c+bMDrdzOBxqbGy0Y21A1EhPjNf3hgc34ae7EuJdVilZqBrKA8FoXcZs98Rff3kZCVaQ7WRlDHYZPShDDoesSbihYGbJfl0amMnWkBg4bXJE83S6OJczbOVUsSI9ya3D5bWdnria5aKVtQ2qrmvQ+18ekyR9N0xZMx0xP+iXRSSTzVc244mhTLbWmYcMPbBPQrxLqZ44VXob9G2lV8edDtU3GkqMd9kygbdP8//1PVYmm++YNH+HLqdD1xQNDPp5usoT1/J6j1XVqaTcV0IebGsAc5iDqSdNFkXsGDM4Uz+cdFqXM0MdDoduvXCIFv/+75J6ZiabeVErUlNxb71wiDb/42ib9wj0LF0OsjU1NbX7NYDQe3DGcO0/Vm3LVWTAbv6ZbAnxTqWGsO9M/7QE/V2+7KMzcsIVZMvUhw9eEtAf0W55fhNGrcEHKS3loqaRZEN0yCyt7+zEOTUhXslul6rqGrX9q1J9XVajOKcj4ie76Ym+Y6g0gplssdiTzVTA0ANb9U31qNLboKMnvKqs9U28Hdo32ZbsMvMD7oHj1ZJa2g1MKMzWsP6punhYv5BeqGlPnxS3Kr0NKq2qsy2TbWBmovql+vqVSmSyITLiXE7de+mwU3rMlaPytPaDA3K7HD1yern5nhOpINvN44fo5vFDIvLcCB/bPgmVlZUpIyPDrt0B8HM9GSuIYv5lzDlpCSFthGx+uM5NTwhoIBtqmSGecmdOGD1YWm0FWvzLRU309enYmf1T9d6XxzRyYOf/RjlpCfryaJX+8NFhSdI5A9M7nBwdLplJEcxki8HBBxlJ8dZEVolMNrtlp3j05dEqHT3h1aFSX2bXyYYedJX5XmqW+poXaTKS3Fp/50W2PMcprynJra+OVetYVZ1VSh5sn0aHwxe8f/2TEg3ISAz53xDALp44l/54+/hILyNkzMqBwfTyRAh1qzbgJz/5iV5++WXr+2uuuUZ9+vTRgAED9PHHH9u2OABA9PMvFw11I1cz4ytcQw/CZWDzSd9nxZUymj98Zia5lZoQb02ky0iKV16EeojEggdmDNdf77pIk07SO9PsGfiXT0skSeNOi2ypqNSS3RPZTLbYKRd1OBwB2WyD+/BhyU7Zqb7/j99WerVtv2/apx1DD6SWgLKpTxRMTTczWw6X1VjDR4LNZJNa3lvOoywMiBq3Thiqpf80UnPHF0R6KejBunVG9cwzzyg/3zeme+PGjfrrX/+q9evXa/r06Vq8eLGtCwQARDf/ctFQl/lcOSpP00f21w8nnhbS5wk3M3h4wusrzUpPjFe8y/cn2vywd1ZeWkizBGNdvMupwn6pJ/03MktEzH/rSPdjk2SVIkdiuqiZDZYQFzuZbFLLcZGbnqBEd2ytPdr1bZ4w+qv3vtJfP/tGDodsG/xkBpRNWVGQ4WU2h991uEKSlOR2KS0h+OzWG8YO0qP/dLYenDE86H0BsEdmsls3nj84rNUQ6H269RekuLjYCrKtW7dO1157raZOnaqCggKdf/75ti4QABDdslPCl8mWm56op39QFNLniIR+qQmKczrU0FxD5f/BMzc9QXuOnKBxtk38ByPEuyLfj02K7HRRbwz2ZJNayvkKKPmxnfmevu+ob6rofZcO06j8DFv23bpssvV06kgwJ5x+2hxk659uT9uDeJdTs86n3QcA9DbdymTLzMzUwYMHJUnr16/XlClTJEmGYTBZFAB6maxWPdlw6lxOR0B5Uh+/D6KTzuynhHinLhkRmQnHPY1/tuW5AzOU5I5sPzapZboo5aJdZ5ZYn9aPIJvd+vpdLPmn0QP0LxcNtW3frTPZ+kRBJpt5UeMfRyolBT9ZFADQu3XrzPLqq6/WrFmzdPrpp+vYsWOaPn26JGnHjh0qLCy0dYEAgOiW5I5TYrxLNfWNIc9k68kGZCRaTcb9P3jeMmGI5owbrDhXbAVBopX/RLFoKBWVfE3fpQgNPqiPvcEHkjT7u4NV32joRjKFbDeyecDKqPwMLbv6bFvL1Fv3ZPPPhI4UM/BX3+jLJO6fFtzQAwBA79atINtPf/pTFRQU6ODBg3rssceUkuJrhlpcXKzbbrvN1gUCAKJfdqpbB4/XRGwkek8wIDNR2uf7unUJFQE2++SktXyoj4ahB5KU0dwbprK2QQ2NTWH9fdc2xGYmW7+0BN03fVikl9EjjRyQrs33TFb/9ASrN6Rd0hPj5XDIGvASFZlsrd5vyWQDAASjW0G2+Ph43X333W3uv/POO4NdDwAgBt35vTP07t6jGlPQJ9JLiVkDMlqyJ6Lhg2dPNTAzSQ6H5HY5dd6gyPdjkxTQgLmspj6s2T1muagnxgYfILTy+ySFZL9xLqfSEuJVXlMvT5xTSVEwtKL1hFM7JosCAHqvbl+eeuGFFzRhwgTl5eXpq6++kiQ9/vjj+uMf/2jb4gAAseH7RQP1/64dJXdcbGXDRJPAIFvkS6h6qv7pCXr8ulF69qYxUTOV0hd48F33DOfwA8MwrHJRT4xlsiF2mRcRslM8UTExufWEUzLZAADB6NYZ1dNPP6277rpL06dPV1lZmTXsICMjQ48//rid6wMAoFfI8wuytf7QB3tdNWqALjqjb6SXEcCculgaxr5s3oYm6+tY68mG2JXR3JctWjJ2W088JZMNABCMbgXZVq1apWeffVYPPPCAXK6Wk7IxY8Zo586dti0OAIDeYkAm5aK9mTn8oLQqfJls3nq/IBvlogiTPs3/11v3QouUZLcrIAub3qIAgGB0K8i2b98+jR49us39Ho9HVVVVQS+qtf379+uWW27RkCFDlJiYqNNOO00PP/yw6uoCT0QPHDigK664QsnJycrOztYdd9zRZhsAAKIRPdl6N3PqYjgnjHqbhx44HVK8K/Jle+gdzIBytLzPORwOK3vY7XJGzboAALGpW4MPhgwZoh07dmjw4MEB97/++usaPny4LQvz9/nnn6upqUnPPPOMCgsL9cknn2j+/PmqqqrSihUrJEmNjY2aMWOG+vbtqy1btujYsWOaM2eODMPQqlWrbF8TAAB2Soh36ewB6frqWJUKspMjvRyEmTlhtKwmfBcHzX5sCfGuqOiNhd4hL8OXKeZ/YSHS+iS7VVxeq/7pCRwLAICgdCvItnjxYt1+++2qra2VYRjaunWrXnzxRT366KN67rnn7F6jLr30Ul166aXW90OHDtUXX3yhp59+2gqybdiwQbt27dLBgweVl5cnSVq5cqXmzp2rpUuXKi0tzfZ1AQBgp9//cJxq65uU4unWn2fEMKtcNIyZbLXNmWz0Y0M4zb2gQOmJ8fqn0QMivRSLmb1GPzYAQLC6dRZ/8803q6GhQffcc4+qq6s1a9YsDRgwQKtWrdKFF15o9xrbVV5erj59+ljfv/feexo5cqQVYJOkadOmyev1avv27Zo8eXK7+/F6vfJ6vdb3FRUVoVs0AACd8MS55KE3Vq+U2RxkC+d00dr65iAbU4ERRlkpHt164dBILyOAGWRjsigAIFjdPquaP3++vvrqKx05ckQlJSXaunWrPvroIxUWFtq5vnbt3btXq1at0oIFC6z7SkpKlJOTE7BdZmam3G63SkpKOtzXsmXLlJ6ebt3y8/NDtm4AAID2ZCb7ykVLq8KYyeZXLgr0ZuZ058F9kiK8EgBArDulIFtZWZluvPFG9e3bV3l5eXriiSfUp08f/exnP1NhYaHef/99Pf/8813e3yOPPCKHw9Hpbdu2bQGPOXz4sC699FJdc801uvXWWwN+1l4PBcMwOu2tcP/996u8vNy6HTx4sMvrBwAAsENLuWj4M9k8BNnQy80bP0T/cdkwzR0/JNJLAQDEuFMqF/2P//gPbdq0SXPmzNH69ev1b//2b1q/fr1qa2v15z//WRMnTjylJ1+4cKGuv/76TrcpKCiwvj58+LAmT56scePG6Re/+EXAdv3799cHH3wQcF9paanq6+vbZLj583g88ng8p7RuAAAAO0ViuqhVLhpPuSh6t76pHv3LRadFehkAgB7glIJsr732mlavXq0pU6botttuU2Fhoc444ww9/vjj3Xry7OxsZWdnd2nbr7/+WpMnT1ZRUZFWr14tpzPwhHDcuHFaunSpiouLlZubK8k3DMHj8aioqKhb6wMAAAgHqydbOKeLNjSXi9IHEAAAwBanFGQ7fPiwRowYIck34TMhIaFNyWYoHD58WJMmTdKgQYO0YsUKffvtt9bP+vfvL0maOnWqRowYodmzZ2v58uU6fvy47r77bs2fP5/JogAAIKqlJzb3ZKuuP2mrC7u0lIuSyQYAAGCHUwqyNTU1KT4+3vre5XIpOTnZ9kW1tmHDBu3Zs0d79uzRwIEDA35mGIa1ltdee0233Xabxo8fr8TERM2aNUsrVqwI+foAAACCkdk83bCuoUk19Y1KcndrAPwp8ZLJBgAAYKtTOoMzDENz5861epjV1tZqwYIFbQJtr776qn0rlDR37lzNnTv3pNsNGjRI69ats/W5AQAAQi3Z7VK8y6H6RkOl1fXhCbLRkw0AAMBWp3QGN2fOnIDvf/CDH9i6GAAAgN7I4XAoI8mtbyu9Kq2q04CMxJA/Z8vgAzLZAAAA7HBKQbbVq1eHah0AAAC9WmZSvL6t9IZtwmhtfXO5KEE2AAAAW1AfAAAAEAUymieMllaHZ8Iogw8AAADsxVkVAABAFMhonjBaVhOmTLaG5nJRBh8AAADYgiAbAABAFMhszmQrqwpXJhvlogAAAHYiyAYAABAFMpJ9mWylYevJxnRRAAAAO3FWBQAAEAWsTLaw9WQjkw0AAMBOBNkAAACiQGaSmckWniCbt7knmyeO00EAAAA7cFYFAAAQBVqmi4anXNRLJhsAAICtCLIBAABEAbNctDzc00XpyQYAAGALzqoAAACiQEaYy0WtwQdxZLIBAADYgSAbAABAFDCDbOU19WpsMkL+fObgAw/logAAALYgyAYAABAFMhJ95aKGIVWEoWTUymSjXBQAAMAWnFUBAABEAXecUymeOEnhKRltCbKRyQYAAGAHgmwAAABRoqUvWxgy2RqYLgoAAGAngmwAAABRwpwwWhbiTLamJkN1ZpAtjtNBAAAAO3BWBQAAECXMTLayEGey1TU2WV+TyQYAAGAPgmwAAABRIqM5ky3UPdmq6xqtrwmyAQAA2IMgGwAAQJTIbM5k2/5VqTbu+kZffnsiJM9T3jy9NNUTJ5fTEZLnAAAA6G3iIr0AAAAA+GSneCRJr39Sotc/KZHDIb199yQNzkq29XnMIFtaYryt+wUAAOjNCLIBAABEiWvGDNT+o1U6UunVRwdKVVXXqL3fnrA9yGYOVkgnyAYAAGAbykUBAACiRG56ov7fdaO09tbzNXpQpqSWrDM7mfs0By0AAAAgeATZAAAAopCZZRaKSaNmkI1MNgAAAPsQZAMAAIhC6c1ZZiHJZKsmkw0AAMBuBNkAAACikJllFoogWxmDDwAAAGxHkA0AACAKZZhBthCWi2Ykum3fNwAAQG9FkA0AACAKhTSTrZqebAAAAHYjyAYAABCFzH5pZSEIslUwXRQAAMB2BNkAAACiUFpIe7LVSSKTDQAAwE4E2QAAAKKQ2S+tLIQ92QiyAQAA2IcgGwAAQBRKby7lrKipl2EYtu6bnmwAAAD2I8gGAAAQhczponWNTaqpb7Rtv7X1jfI2NElqCeQBAAAgeATZAAAAolCS26U4p0OSvX3ZzH25nA6leuJs2y8AAEBvR5ANAAAgCjkcDqucMxRBtrSEODkcDtv2CwAA0NvFXJDN6/Vq1KhRcjgc2rFjR8DPDhw4oCuuuELJycnKzs7WHXfcobq6usgsFAAAIEhmOaedww/MIFtGktu2fQIAAECKuRqBe+65R3l5efr4448D7m9sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVodUCAAB0Xygy2cyAXRpDDwAAAGwVU5lsr7/+ujZs2KAVK1a0+dmGDRu0a9curV27VqNHj9aUKVO0cuVKPfvss6qoqIjAagEAAIJjDj8oD0UmG0E2AAAAW8VMkO2bb77R/Pnz9cILLygpKanNz9977z2NHDlSeXl51n3Tpk2T1+vV9u3bO9yv1+tVRUVFwA0AACAahCaTrS5g3wAAALBHTATZDMPQ3LlztWDBAo0ZM6bdbUpKSpSTkxNwX2Zmptxut0pKSjrc97Jly5Senm7d8vPzbV07AABAd5l908pq7OsxW2H1ZCPIBgAAYKeIBtkeeeQRORyOTm/btm3TqlWrVFFRofvvv7/T/bU3IcswjE4nZ91///0qLy+3bgcPHgz6dQEAANghLRSZbM37IpMNAADAXhEdfLBw4UJdf/31nW5TUFCgJUuW6P3335fH4wn42ZgxY3TjjTdqzZo16t+/vz744IOAn5eWlqq+vr5Nhps/j8fTZr8AAADRwOybForpogTZAAAA7BXRIFt2drays7NPut0TTzyhJUuWWN8fPnxY06ZN08svv6zzzz9fkjRu3DgtXbpUxcXFys3NleQbhuDxeFRUVBSaFwAAABBCoZwuSpANAADAXhENsnXVoEGDAr5PSUmRJJ122mkaOHCgJGnq1KkaMWKEZs+ereXLl+v48eO6++67NX/+fKWlpYV9zQAAAMEy+6bZGWQjkw0AACA0YmLwQVe4XC699tprSkhI0Pjx43Xttddq5syZWrFiRaSXBgAA0C2hyGQrtwYfuG3bJwAAAGIkk621goICGYbR5v5BgwZp3bp1EVgRAACA/UIZZCOTDQAAwF49JpMNAACgp0n3Kxdtamp7gfFUGYbhl8lGkA0AAMBOBNkAAACilJltZhhSpbch6P2d8DaosTlYRyYbAACAvQiyAQAARClPnEuJ8S5JUnl18CWj5mRRT5xTCc37BQAAgD0IsgEAAEQxO/uy0Y8NAAAgdAiyAQAARDGzd1pZTV3Q+6IfGwAAQOgQZAMAAIhiaWSyAQAAxASCbAAAAFEsozkgVmZDTzaCbAAAAKFDkA0AACCK2dmTzQzUpSe6g94XAAAAAhFkAwAAiGJm/zTKRQEAAKIbQTYAAIAoZmWy2VIu6huewOADAAAA+xFkAwAAiGJ2louSyQYAABA6BNkAAACiWHqSr39aWXMWWjBKq3xBNjLZAAAA7EeQDQAAIIq1ZLI1BL2v0mqzXJTBBwAAAHYjyAYAABDFMqyebMFnspnTRTPJZAMAALAdQTYAAIAoltYcZKuotS+TLZNMNgAAANsRZAMAAIhiZrnoCW+DGhqbur2f2vpGeRt8j6cnGwAAgP0IsgEAAESx1IQ46+vKILLZzCy2OKdDKZ64k2wNAACAU0WQDQAAIIrFu5xKdrskSeU19d3eT8tkUbccDoctawMAAEALgmwAAABRrqUvW/eDbGVWPzZKRQEAAEKBIBsAAECUM/uyBZXJVm1mshFkAwAACAWCbAAAAFEuLaE5k60m+J5sGUwWBQAACAmCbAAAAFEuzYZMNspFAQAAQosgGwAAQJRLS/RNAw2mJ5tZLppJJhsAAEBIEGQDAACIcvb0ZKNcFAAAIJQIsgEAAES5lp5swZSLmplslIsCAACEAkE2AACAKEcmGwAAQPQjyAYAABDlzMEHFbXdny5KJhsAAEBoEWQDAACIcnZmsmUmk8kGAAAQCgTZAAAAolxagm+6aGU3g2yNTYYVoMsgkw0AACAkCLIBAABEufSk4DLZKmrqZRi+rzMSyWQDAAAIBYJsAAAAUc6aLlpbL8OMlp0Cs1Q0xRMndxynfwAAAKHAWRYAAECUM3uy1TcaqqlvPOXHl1ZTKgoAABBqBNkAAACiXJLbJZfTIUmqqDn1CaPlNc1DD5IoFQUAAAgVgmwAAABRzuFwtJkwuvwvn2vO81vV0Nh00seXVpHJBgAAEGoE2QAAAGKAOWG0orZeTU2Gnt28T+/s/la7vzlx0seaPdnIZAMAAAidmAqyvfbaazr//POVmJio7OxsXX311QE/P3DggK644golJycrOztbd9xxh+rq6iK0WgAAAPtYmWzV9TpS6VVdgy+D7YT35OWjZfRkAwAACLm4SC+gq1555RXNnz9fjz76qC6++GIZhqGdO3daP29sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVwZUDAAAELy2xZcLowdJq6/4T3vqTPtbMZMsgkw0AACBkYiLI1tDQoEWLFmn58uW65ZZbrPvPPPNM6+sNGzZo165dOnjwoPLy8iRJK1eu1Ny5c7V06VKlpaWFfd0AAAB2SfPvyXa8JchWWdv1TLZMMtkAAABCJibKRT/88EN9/fXXcjqdGj16tHJzczV9+nR9+umn1jbvvfeeRo4caQXYJGnatGnyer3avn17h/v2er2qqKgIuAEAAESbtISWINuB4/6ZbCcPstGTDQAAIPRiIsj25ZdfSpIeeeQRPfjgg1q3bp0yMzM1ceJEHT9+XJJUUlKinJycgMdlZmbK7XarpKSkw30vW7ZM6enp1i0/Pz90LwQAAKCbzJ5sFTUNOni8xrr/RBcy2UrpyQYAABByEQ2yPfLII3I4HJ3etm3bpqYmX2PfBx54QN///vdVVFSk1atXy+Fw6He/+521P4fD0eY5DMNo937T/fffr/Lycut28OBB+18oAABAkNISfV0+ymta92TrSrkomWwAAAChFtGebAsXLtT111/f6TYFBQWqrKyUJI0YMcK63+PxaOjQoTpw4IAkqX///vrggw8CHltaWqr6+vo2GW7+PB6PPB5Pd18CAABAWKT7DT44RLkoAABA1IlokC07O1vZ2dkn3a6oqEgej0dffPGFJkyYIEmqr6/X/v37NXjwYEnSuHHjtHTpUhUXFys3N1eSbxiCx+NRUVFR6F4EAABAGJg92Y6e8Kq4ota6/2TlorX1jaqt91UFZCRTLgoAABAqMTFdNC0tTQsWLNDDDz+s/Px8DR48WMuXL5ckXXPNNZKkqVOnasSIEZo9e7aWL1+u48eP6+6779b8+fOZLAoAAGKemcn2RUmlDKPl/pNlsplZbHFOh1I9MXHqBwAAEJNi5kxr+fLliouL0+zZs1VTU6Pzzz9fb775pjIzMyVJLpdLr732mm677TaNHz9eiYmJmjVrllasWBHhlQMAAAQvrTnIVl3XGHD/SYNsVS1DDzrrUwsAAIDgxEyQLT4+XitWrOg0aDZo0CCtW7cujKsCAAAIDzOTzRTndKihyVDlScpFzaEHGfRjAwAACKmIThcFAABA16QlBF4bLeyXIqkr5aK+TLbMJPqxAQAAhBJBNgAAgBiQ1iqTbXiur+fsyQYfFJfXSJJy0hJCszAAAABIIsgGAAAQE+JdTiW5Xdb3w3NTJZ08k+3A8WpJUn6fpNAtDgAAAATZAAAAYoV/XzYrk83boKYmo6OH6KAZZMskyAYAABBKBNkAAABiRFpC2yCbJFXVdZzNdrDUVy6a3ycxdAsDAAAAQTYAAIBYYWayZSbFKyvZrTinQ5JU5W1sd3vDMHSolEw2AACAcCDIBgAAECPSEn0TRvP7JMnhcCileeLoCW99u9t/e8Kr2vomORxSXgaZbAAAAKFEkA0AACBGmBNGzay0FI8vyFbZwYTRg8d9paK5aQlyx3HaBwAAEEqcbQEAAMSInLQESdJpfZMltQTZOpowapWKMlkUAAAg5OIivQAAAAB0zbzxQ5SV7Nb3zxsoSUo1y0U7zGQjyAYAABAuBNkAAABiRN9Uj269cKj1vVUu2kEmm1kuytADAACA0KNcFAAAIEalJPh6tHWUyXbAymRj6AEAAECoEWQDAACIUSfryXaQnmwAAABhQ5ANAAAgRqV4XJLaD7I1NDapuLxWEuWiAAAA4UCQDQAAIEaleHzlopXtlIsWl9eqscmQO86pfqmecC8NAACg1yHIBgAAEKNSmqeLVrWTyWZOFh2YkSin0xHWdQEAAPRGBNkAAABiVGonPdnoxwYAABBeBNkAAABilJnJ1t500YPHayQxWRQAACBcCLIBAADEKHO6aGVnmWwMPQAAAAgLgmwAAAAxyspk89a3+ZnZk41yUQAAgPAgyAYAABCjrJ5s7ZWLljaXi5LJBgAAEBYE2QAAAGJUSyZbgwzDsO6va2jSt5VeSdKATHqyAQAAhANBNgAAgBiV3JzJVt9oyNvQZN1/vKpOkhTndCgjMT4iawMAAOhtCLIBAADEqGR3nPX1Cb/hB0dP+LLY+iS75XQ6wr4uAACA3oggGwAAQIxyOR1KdrskBfZlM4Ns2SmeiKwLAACgNyLIBgAAEMP8+7KZjp7wlYtmpbgjsiYAAIDeiCAbAABADEvxtBdk82Wy9SWTDQAAIGwIsgEAAMSwlATfYAP/ctFjZrloKkE2AACAcCHIBgAAEMNS281kay4XTaZcFAAAIFwIsgEAAMQws1y0sp1yUQYfAAAAhA9BNgAAgBhmDT6oZfABAABAJBFkAwAAiGEtgw/qrfuOkckGAAAQdgTZAAAAYpgVZGvOZGtqMnSsypfJRpANAAAgfAiyAQAAxDCzXNTsyVZeU6/GJkMS5aIAAADhFDNBtt27d+uqq65Sdna20tLSNH78eL311lsB2xw4cEBXXHGFkpOTlZ2drTvuuEN1dXURWjEAAEDotc5kM4ceZCTFK94VM6d6AAAAMS9mzrxmzJihhoYGvfnmm9q+fbtGjRqlyy+/XCUlJZKkxsZGzZgxQ1VVVdqyZYteeuklvfLKK/r3f//3CK8cAAAgdFKbM9mq6nxBtm+bg2xZyWSxAQAAhFNMBNmOHj2qPXv26L777tM555yj008/Xf/1X/+l6upqffrpp5KkDRs2aNeuXVq7dq1Gjx6tKVOmaOXKlXr22WdVUVER4VcAAAAQGmYmW0WNL8h27AT92AAAACIhJoJsWVlZGj58uH71q1+pqqpKDQ0NeuaZZ5STk6OioiJJ0nvvvaeRI0cqLy/Pety0adPk9Xq1ffv2SC0dAAAgpAZkJkqS9h+tkmEYVrkoQTYAAIDwiov0ArrC4XBo48aNuuqqq5Samiqn06mcnBytX79eGRkZkqSSkhLl5OQEPC4zM1Nut9sqKW2P1+uV1+u1vifrDQAAxJLT+qbI7XKq0tugQ6U1fplslIsCAACEU0Qz2R555BE5HI5Ob9u2bZNhGLrtttvUr18/bd68WVu3btVVV12lyy+/XMXFxdb+HA5Hm+cwDKPd+03Lli1Tenq6dcvPzw/JawUAAAiFeJdThf1SJEm7iiusTLYsMtkAAADCKqKZbAsXLtT111/f6TYFBQV68803tW7dOpWWliotLU2S9NRTT2njxo1as2aN7rvvPvXv318ffPBBwGNLS0tVX1/fJsPN3/3336+77rrL+r6iooJAGwAAiCnDc9O0q7hCuw5X6Cg92QAAACIiokG27OxsZWdnn3S76upqSZLTGZh453Q61dTUJEkaN26cli5dquLiYuXm5kryDUPweDxW37b2eDweeTychAIAgNg1PDdVkvSZXyYb5aIAAADhFRODD8aNG6fMzEzNmTNHH3/8sXbv3q3Fixdr3759mjFjhiRp6tSpGjFihGbPnq2PPvpIb7zxhu6++27Nnz/fyn4DAADoiUbk+s51PiuhXBQAACBSYiLIlp2drfXr1+vEiRO6+OKLNWbMGG3ZskV//OMfde6550qSXC6XXnvtNSUkJGj8+PG69tprNXPmTK1YsSLCqwcAAAit4c1BtoPHa/RNRa0kqS9BNgAAgLCKiemikjRmzBj95S9/6XSbQYMGad26dWFaEQAAQHTITHarf1qCSipqVd9oSJKyKBcFAAAIq5jIZAMAAEDnzL5skpQY71KyJ2aupQIAAPQIBNkAAAB6ALNkVJKyU8liAwAACDeCbAAAAD2Af5AtK5l+bAAAAOFGkA0AAKAHCMhkY+gBAABA2BFkAwAA6AGGZCcrId53apfN0AMAAICwI8gGAADQA7icDp2Z4xt+QCYbAABA+BFkAwAA6CHGnZYtSRrmN2kUAAAA4cFsdwAAgB7i36eeoe+fN0CF/VIivRQAAIBehyAbAABADxHvcur0HLLYAAAAIoFyUQAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA0AAAAAAAAIEkE2AAAAAAAAIEgE2QAAAAAAAIAgEWQDAAAAAAAAgkSQDQAAAAAAAAgSQTYAAAAAAAAgSATZAAAAAAAAgCARZAMAAAAAAACCRJANAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIMVFegHRxjAMSVJFRUWEVwIAAAAAAIBIMuNDZryoMwTZWqmsrJQk5efnR3glAAAAAAAAiAaVlZVKT0/vdBuH0ZVQXC/S1NSkw4cPKzU1VQ6HI9LLAdCBiooK5efn6+DBg0pLS4v0cgB0AcctEHs4boHYwjEL2M8wDFVWViovL09OZ+dd18hka8XpdGrgwIGRXgaALkpLS+MEAogxHLdA7OG4BWILxyxgr5NlsJkYfAAAAAAAAAAEiSAbAAAAAAAAECSCbABiksfj0cMPPyyPxxPppQDoIo5bIPZw3AKxhWMWiCwGHwAAAAAAAABBIpMNAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA1ARDz11FMaMmSIEhISVFRUpM2bN3e6/a9//Wude+65SkpKUm5urm6++WYdO3bM+vmzzz6rCy+8UJmZmcrMzNSUKVO0devWgH00NDTowQcf1JAhQ5SYmKihQ4fqxz/+sZqamkLyGoGexu7j9tVXX9WYMWOUkZGh5ORkjRo1Si+88ELQzwugRSSO22XLluk73/mOUlNT1a9fP82cOVNffPFFSF4f0NNE6m+tadmyZXI4HLrzzjvteklA72IAQJi99NJLRnx8vPHss88au3btMhYtWmQkJycbX331Vbvbb9682XA6ncZ///d/G19++aWxefNm46yzzjJmzpxpbTNr1izjZz/7mfHRRx8Zn332mXHzzTcb6enpxqFDh6xtlixZYmRlZRnr1q0z9u3bZ/zud78zUlJSjMcffzzkrxmIdaE4bt966y3j1VdfNXbt2mXs2bPHePzxxw2Xy2WsX7++288LoEWkjttp06YZq1evNj755BNjx44dxowZM4xBgwYZJ06cCPlrBmJZpI5Z09atW42CggLjnHPOMRYtWhSqlwn0aATZAITd2LFjjQULFgTcN2zYMOO+++5rd/vly5cbQ4cODbjviSeeMAYOHNjhczQ0NBipqanGmjVrrPtmzJhhzJs3L2C7q6++2vjBD35wqi8B6HXCcdwahmGMHj3aePDBB7v9vABaROq4be3IkSOGJOOdd97p4sqB3imSx2xlZaVx+umnGxs3bjQmTpxIkA3oJspFAYRVXV2dtm/frqlTpwbcP3XqVP3f//1fu4+54IILdOjQIf35z3+WYRj65ptv9Pvf/14zZszo8Hmqq6tVX1+vPn36WPdNmDBBb7zxhnbv3i1J+vjjj7VlyxZddtllNrwyoOcKx3FrGIbeeOMNffHFF7rooou6/bwAfCJ13LanvLxckgL+JgMIFOlj9vbbb9eMGTM0ZcoUe14Q0EvFRXoBAHqXo0ePqrGxUTk5OQH35+TkqKSkpN3HXHDBBfr1r3+t6667TrW1tWpoaNCVV16pVatWdfg89913nwYMGBBwonDvvfeqvLxcw4YNk8vlUmNjo5YuXaobbrjBnhcH9FChPG7Ly8s1YMAAeb1euVwuPfXUU7rkkku6/bwAfCJ13LZmGIbuuusuTZgwQSNHjrTnxQE9UCSP2Zdeekkffvih/va3v9n/woBehkw2ABHhcDgCvjcMo819pl27dumOO+7QQw89pO3bt2v9+vXat2+fFixY0O72jz32mF588UW9+uqrSkhIsO5/+eWXtXbtWv3mN7/Rhx9+qDVr1mjFihVas2aNfS8M6MFCcdympqZqx44d+tvf/qalS5fqrrvu0ttvv93t5wUQKFLHrWnhwoX6+9//rhdffNGW1wP0dOE+Zg8ePKhFixZp7dq1AefNALqHTDYAYZWdnS2Xy9XmityRI0faXLkzLVu2TOPHj9fixYslSeecc46Sk5N14YUXasmSJcrNzbW2XbFihR599FH99a9/1TnnnBOwn8WLF+u+++7T9ddfL0k6++yz9dVXX2nZsmWaM2eOnS8T6FFCedw6nU4VFhZKkkaNGqXPPvtMy5Yt06RJk7r1vAB8InXc+vvXf/1X/elPf9KmTZs0cOBAm18h0LNE6pjdvn27jhw5oqKiImu/jY2N2rRpk5588kkr+w1A15DJBiCs3G63ioqKtHHjxoD7N27cqAsuuKDdx1RXV8vpDHy7Mv/YG4Zh3bd8+XL953/+p9avX68xY8Z0eT9NTU3dei1AbxHK47Y1wzDk9Xq7/bwAfCJ13JrfL1y4UK+++qrefPNNDRkypLsvA+g1InXMfu9739POnTu1Y8cO6zZmzBjdeOON2rFjBwE24FSFdcwCABgt48mfe+45Y9euXcadd95pJCcnG/v37zcMwzDuu+8+Y/bs2db2q1evNuLi4oynnnrK2Lt3r7FlyxZjzJgxxtixY61tfvKTnxhut9v4/e9/bxQXF1u3yspKa5s5c+YYAwYMMNatW2fs27fPePXVV43s7GzjnnvuCd+LB2JUKI7bRx991NiwYYOxd+9e47PPPjNWrlxpxMXFGc8++2yXnxdAxyJ13P7whz800tPTjbfffjvgb3J1dXX4XjwQgyJ1zLbGdFGg+wiyAYiIn/3sZ8bgwYMNt9ttnHfeecY777xj/WzOnDnGxIkTA7Z/4oknjBEjRhiJiYlGbm6uceONNxqHDh2yfj548GBDUpvbww8/bG1TUVFhLFq0yBg0aJCRkJBgDB061HjggQcMr9cb6pcL9Ah2H7cPPPCAUVhYaCQkJBiZmZnGuHHjjJdeeumUnhdA5yJx3Lb391iSsXr16lC+VKBHiNTfWn8E2YDucxhGJ3mkAAAAAAAAAE6KnmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAECSCbAAAAAAAAECQCLIBAAAAAAAAQSLIBgAAAAAAAASJIBsAAAAiqq6uToWFhXr33Xdt3e+6des0evRoNTU12bpfAACA9hBkAwAAsNHcuXPlcDja3Pbs2RPppUWtX/ziFxo8eLDGjx9v3edwOPSHP/yhzbZz587VzJkzu7Tfyy+/XA6HQ7/5zW9sWikAAEDHCLIBAADY7NJLL1VxcXHAbciQIW22q6uri8Dqos+qVat06623hmTfN998s1atWhWSfQMAAPgjyAYAAGAzj8ej/v37B9xcLpcmTZqkhQsX6q677lJ2drYuueQSSdKuXbt02WWXKSUlRTk5OZo9e7aOHj1q7a+qqko33XSTUlJSlJubq5UrV2rSpEm68847rW3ay/zKyMjQL3/5S+v7r7/+Wtddd50yMzOVlZWlq666Svv377d+bmaJrVixQrm5ucrKytLtt9+u+vp6axuv16t77rlH+fn58ng8Ov300/Xcc8/JMAwVFhZqxYoVAWv45JNP5HQ6tXfv3nb/rT788EPt2bNHM2bMOMV/ZWn//v3tZg1OmjTJ2ubKK6/U1q1b9eWXX57y/gEAAE4FQTYAAIAwWrNmjeLi4vTuu+/qmWeeUXFxsSZOnKhRo0Zp27ZtWr9+vb755htde+211mMWL16st956S//7v/+rDRs26O2339b27dtP6Xmrq6s1efJkpaSkaNOmTdqyZYtSUlJ06aWXBmTUvfXWW9q7d6/eeustrVmzRr/85S8DAnU33XSTXnrpJT3xxBP67LPP9POf/1wpKSlyOByaN2+eVq9eHfC8zz//vC688EKddtpp7a5r06ZNOuOMM5SWlnZKr0eS8vPzA7IFP/roI2VlZemiiy6ythk8eLD69eunzZs3n/L+AQAATkVcpBcAAADQ06xbt04pKSnW99OnT9fvfvc7SVJhYaEee+wx62cPPfSQzjvvPD366KPWfc8//7zy8/O1e/du5eXl6bnnntOvfvUrK/NtzZo1Gjhw4Cmt6aWXXpLT6dT//M//yOFwSJJWr16tjIwMvf3225o6daokKTMzU08++aRcLpeGDRumGTNm6I033tD8+fO1e/du/fa3v9XGjRs1ZcoUSdLQoUOt57j55pv10EMPaevWrRo7dqzq6+u1du1aLV++vMN17d+/X3l5ee3+7IYbbpDL5Qq4z+v1WllvLpdL/fv3lyTV1tZq5syZGjdunB555JGAxwwYMCAgYw8AACAUCLIBAADYbPLkyXr66aet75OTk62vx4wZE7Dt9u3b9dZbbwUE5Ux79+5VTU2N6urqNG7cOOv+Pn366MwzzzylNW3fvl179uxRampqwP21tbUBpZxnnXVWQGArNzdXO3fulCTt2LFDLpdLEydObPc5cnNzNWPGDD3//PMaO3as1q1bp9raWl1zzTUdrqumpkYJCQnt/uynP/2pFcwz3XvvvWpsbGyz7S233KLKykpt3LhRTmdgsUZiYqKqq6s7XAMAAIAdCLIBAADYLDk5WYWFhR3+zF9TU5OuuOIK/eQnP2mzbW5urv7xj3906TkdDocMwwi4z7+XWlNTk4qKivTrX/+6zWP79u1rfR0fH99mv01NTZJ8waqTufXWWzV79mz99Kc/1erVq3XdddcpKSmpw+2zs7OtIF5r/fv3b/PvmJqaqrKysoD7lixZovXr12vr1q1tgoiSdPz48YDXCAAAEAoE2QAAACLovPPO0yuvvKKCggLFxbU9NSssLFR8fLzef/99DRo0SJJUWlqq3bt3B2SU9e3bV8XFxdb3//jHPwKyt8477zy9/PLL6tevX7f6n0nS2WefraamJr3zzjttMsxMl112mZKTk/X000/r9ddf16ZNmzrd5+jRo/X000/LMAyrjPVUvPLKK/rxj3+s119/vd2+b2am3ujRo0953wAAAKeCwQcAAAARdPvtt+v48eO64YYbrCmYGzZs0Lx589TY2KiUlBTdcsstWrx4sd544w198sknmjt3bpuSyIsvvlhPPvmkPvzwQ23btk0LFiwIyEq78cYblZ2drauuukqbN2/Wvn379M4772jRokU6dOhQl9ZaUFCgOXPmaN68efrDH/6gffv26e2339Zvf/tbaxuXy6W5c+fq/vvvV2FhYUCZa3smT56sqqoqffrpp6fwr+bzySef6KabbtK9996rs846SyUlJSopKdHx48etbd5//315PJ6TrgMAACBYBNkAAAAiKC8vT++++64aGxs1bdo0jRw5UosWLVJ6eroVSFu+fLkuuugiXXnllZoyZYomTJigoqKigP2sXLlS+fn5uuiiizRr1izdfffdAWWaSUlJ2rRpkwYNGqSrr75aw4cP17x581RTU3NKmW1PP/20/vmf/1m33Xabhg0bpvnz56uqqipgm1tuuUV1dXWaN2/eSfeXlZWlq6++ut0y1pPZtm2bqqurtWTJEuXm5lq3q6++2trmxRdf1I033thpySoAAIAdHEbr5h0AAACIepMmTdKoUaP0+OOPR3opbbz77ruaNGmSDh06pJycnJNuv3PnTk2ZMqXdwQzB+PbbbzVs2DBt27ZNQ4YMsW2/AAAA7SGTDQAAALbwer3as2ePfvSjH+naa6/tUoBN8vV6e+yxx7R//35b17Nv3z499dRTBNgAAEBYMPgAAAAAtnjxxRd1yy23aNSoUXrhhRdO6bFz5syxfT1jx47V2LFjbd8vAABAeygXBQAAAAAAAIJEuSgAAAAAAAAQJIJsAAAAAAAAQJAIsgEAAAAAAABBIsgGAAAAAAAABIkgGwAAAAAAABAkgmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAEKT/D6cEChxA6XkvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fs(freq), label='Best fit')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fs.mean[0], label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fs(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On the other hand, if we want to fit with a Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_gaussian\n", + "\n", + "fg=fit_gaussian(freq, efstat-(nbin-1),amplitude=max(efstat-(nbin-1)), \n", + " mean=cand_freqs_ef[0], stddev=1/(np.pi*obs_length))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3sElEQVR4nOzdeXhU5d3/8feZmcxMNhLCFiJhUcGFRRFXbAUVFBWVYotLW7Vq1bqVqg/Wx1ZjW7Hyq4qCS7UKilV8qmLdBVxQRGWTfRXCnhCWkHX2Ob8/zsyQEAJJSDJJ5vO6rlwwMyfn3MOSmc987/t7G6ZpmoiIiIiIiEid2eI9ABERERERkdZGQUpERERERKSeFKRERERERETqSUFKRERERESknhSkRERERERE6klBSkREREREpJ4UpEREREREROpJQUpERERERKSeHPEeQEsQDofZsWMH6enpGIYR7+GIiIiIiEicmKZJWVkZOTk52Gy1150UpIAdO3aQm5sb72GIiIiIiEgLsXXrVrp161br4wpSQHp6OmD9YbVr1y7OoxERkebmr/Ty4j/eAOC3916NM8Ud5xGJiEi8lJaWkpubG8sItVGQgth0vnbt2ilIiYgkIL/DiduVDFivBQpSIiJyuCU/ajYhIiIiIiJSTwpSIiIiIiIi9aQgJSIiIiIiUk9aIyUiIiIiR8Q0TYLBIKFQKN5DETksu92Ow+E44m2PFKREREREpMH8fj8FBQVUVlbGeygidZaSkkLXrl1xOp0NPoeClIiIiIg0SDgcJj8/H7vdTk5ODk6n84g/5RdpSqZp4vf72bVrF/n5+fTu3fuQm+4eioKUiIiIiDSI3+8nHA6Tm5tLSkpKvIcjUifJyckkJSWxefNm/H4/bnfDtrxQswkREREROSIN/URfJF4a49+s/tWLiIiIiIjUk4KUiIiIiIhIPSlIiYiIiIi0Ij179mTixIkN/v6pU6eSmZnZaONJVApSIiIiIpJQrr/+egzDqPE1YsSI2DE9e/as8Xi3bt0adL28vDxOPvnken9fbYFnwYIF3HzzzXU6x8FC15VXXsm6devqPR6pTl37RERERCThjBgxgilTplS7z+VyVbv9l7/8hd/+9rex23a7vVnGdjidOnU6ou9PTk4mOTm5kUaTuFSREhEREZFGY5omlf5gs3+ZplmvcbpcLrKzs6t9tW/fvtox6enp1R4/VID58ssvOf3000lNTSUzM5Ozzz6bzZs3M3XqVB5++GGWLl0aq2xNnToVgCeeeIL+/fuTmppKbm4ut912G+Xl5bHz/eY3v6GkpCT2fXl5eUDNKlNeXh7du3fH5XKRk5PDXXfdBcDQoUPZvHkzf/jDH2LngINXut577z1OPfVU3G43HTt2ZPTo0bHHnn32WXr37o3b7aZLly78/Oc/r9efdVulipSIiIiINBpPIMSJD37a7Ndd9ZcLSXHG561tMBhk1KhR/Pa3v+WNN97A7/czf/58DMPgyiuvZMWKFXzyySfMnj0bgIyMDMBqwf3000/Ts2dP8vPzue222xg3bhzPPvssgwcPZuLEiTz44IOsXbsWgLS0tBrXfuutt3jyySeZPn06ffv2pbCwkKVLlwLwzjvvcNJJJ3HzzTdXq6wd6MMPP2T06NE88MADTJs2Db/fz4cffgjAwoULueuuu5g2bRqDBw9m7969fP31143659daKUiJiIiISML54IMPagST++67jz//+c/Vbv/pT3+K3R4/fnys2lNVaWkpJSUljBw5kmOOOQaAE044IfZ4WloaDoeD7Ozsat83duzY2O979erFX//6V373u9/x7LPP4nQ6ycjIwDCMGt9X1ZYtW8jOzmbYsGEkJSXRvXt3Tj/9dACysrKw2+2xylptHnnkEa666ioefvjh2H0nnXRS7PypqamMHDmS9PR0evTowcCBA2s9VyJRkBIREQEwTQiUW7+KSIMlJ9lZ9ZcL43Ld+jj33HN57rnnqt2XlZVV7fb//M//cP3118dud+zY8aDnysrK4vrrr+fCCy9k+PDhDBs2jDFjxtC1a9dDjuGLL75g/PjxrFq1itLSUoLBIF6vl4qKClJTU+v0PH7xi18wceJEjj76aEaMGMHFF1/MpZdeisNR97f5S5YsqbViNXz4cHr06BE7/4gRI/jZz35GSkpKnc/fVmmNlIiICEDxRihYCqvejfdIRFo1wzBIcTqa/Su6/qeuUlNTOfbYY6t9HRikOnbsWO3xQ7UMnzJlCt9++y2DBw/mzTffpE+fPnz33Xe1Hr9582Yuvvhi+vXrx9tvv82iRYt45plnAAgEAnV+Hrm5uaxdu5ZnnnmG5ORkbrvtNs4555x6neNQjSfS09NZvHgxb7zxBl27duXBBx/kpJNOYt++fXU+f1ulICUiIhL0QHmR9ftN38R3LCLSag0cOJD777+fefPm0a9fP15//XUAnE4noVCo2rELFy4kGAzy+OOPc+aZZ9KnTx927NhR7ZiDfd/BJCcnc9lll/H000/z5Zdf8u2337J8+fI6n2PAgAF89tlntT7ucDgYNmwYEyZMYNmyZWzatInPP//8sONq6zS1T0REZP1nYEbeaOxeE9+xiEiz8Pl8FBYWVrvP4XDUOn3vUPLz83nhhRe47LLLyMnJYe3ataxbt45rr70WINZMYsmSJXTr1o309HSOOeYYgsEgkyZN4tJLL+Wbb77h+eefr3benj17Ul5ezmeffcZJJ51ESkpKjSl1U6dOJRQKccYZZ5CSksK0adNITk6mR48esXN89dVXXHXVVbhcroM+v4ceeojzzz+fY445hquuuopgMMjHH3/MuHHj+OCDD9i4cSPnnHMO7du356OPPiIcDnPcccfV+8+prVFFSkREZNWM/b/fuQbC4fiNRUSaxSeffELXrl2rff3kJz9p0LlSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954g5NPPpknnniCxx57jH79+vHvf/+bRx99tNp5Bw8ezK233sqVV15Jp06dmDBhQo1rZ2Zm8uKLL3L22WfHKkvvv/8+HTp0AKy9sDZt2sQxxxxTa/v2oUOH8p///If33nuPk08+mfPOO4/vv/8+dv533nmH8847jxNOOIHnn3+eN954g759+zboz6otMcz6Nt1vg0pLS8nIyKCkpIR27drFezgiItKcvCX4xx/HMxsvAOD2nu/jvHsxZPWK88BEWj6v10t+fj69evXC7XbHezgidXaof7t1zQaqSImISGJbPwvCPkhKBmekS9bOlfEdk4iItHgKUiIiktj2bbZ+dbWDJAUpERGpGzWbEBGRhGZGuvWZtiQMe5J1Z5GClIiIHJoqUiIiktB27tgCwI6yIOWmM3KngpSIiByagpSIiCS0QMlOADwhO2v3Rrr17d0I/so4jkpERFq6uAapnj17YhhGja/bb78dANM0ycvLIycnh+TkZIYOHcrKldU/JfT5fNx555107NiR1NRULrvsMrZt2xaPpyMiIq2Q07cbgKDhIICDClsmmGHYsz6+AxMRkRYtrkFqwYIFFBQUxL5mzZoFwC9+8QsAJkyYwBNPPMHkyZNZsGAB2dnZDB8+nLKystg5xo4dy4wZM5g+fTpz586lvLyckSNH1mkXaBERkRT/XgBcLqv97W4yrAcqdsdrSCIi0grENUh16tSJ7Ozs2NcHH3zAMcccw5AhQzBNk4kTJ/LAAw8wevRo+vXrxyuvvEJlZSWvv/46ACUlJbz00ks8/vjjDBs2jIEDB/Laa6+xfPlyZs+eHc+nJiIirUHQT7ppfTiXnpoCQFEw2XrMUxyvUYmISCvQYtZI+f1+XnvtNW644QYMwyA/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIiknjCkY59AdNOeoobu81gr5lmPVi5N44jE5FEkpeXR5cuXTAMg3fffZfrr7+eUaNGxXtYchgtJki9++677Nu3j+uvvx6AwsJCALp06VLtuC5dusQeKywsxOl00r59+1qPOZhHH32UjIyM2Fdubm4jPhMREWkt9u3aDsBe2uG020lzOiiJBimPgpRIW3X99ddXW5/foUMHRowYwbJlyxrtGnl5eZx88smHPW716tU8/PDD/POf/6SgoICLLrqIp556iqlTp8aOGTp0KGPHjm20sUnjaDFB6qWXXuKiiy4iJyen2v2GYVS7bZpmjfsOdLhj7r//fkpKSmJfW7dubfjARUSk1dpbZAWpEiMDw4BUl4N9RDblVUVKpE0bMWJEbJ3+Z599hsPhYOTIkc0+jg0bNgBw+eWXk52djcvlIiMjg8zMzGYfi9RPiwhSmzdvZvbs2dx0002x+7KzswFqVJaKiopiVars7Gz8fj/FxcW1HnMwLpeLdu3aVfsSEZHEU7HHClKepCzAClLFqCIlkghcLldsnf7JJ5/Mfffdx9atW9m1a1fsmO3bt3PllVfSvn17OnTowOWXX86mTZtij3/55ZecfvrppKamkpmZydlnn83mzZuZOnUqDz/8MEuXLo1VvapWmKLy8vK49NJLAbDZbLFCQNWpfddffz1z5szhqaeeip2r6hgkflpEkJoyZQqdO3fmkksuid3Xq1cvsrOzY538wFpHNWfOHAYPHgzAoEGDSEpKqnZMQUEBK1asiB0jIiJSG+8+68O6QHIHAFJddkoiQSqsipRIw5gm+Cua/8s0Gzzk8vJy/v3vf3PsscfSoYP186CyspJzzz2XtLQ0vvrqK+bOnUtaWhojRozA7/cTDAYZNWoUQ4YMYdmyZXz77bfcfPPNGIbBlVdeyT333EPfvn1jVa8rr7yyxnXvvfdepkyZAhA77kBPPfUUZ511Fr/97W9jx2hZSsvgiPcAwuEwU6ZM4brrrsPh2D8cwzAYO3Ys48ePp3fv3vTu3Zvx48eTkpLCNddcA0BGRgY33ngj99xzDx06dCArK4t7772X/v37M2zYsHg9JRERaSXCZdZmvGZqJygBt8OO17Dan/tKd5Ecz8GJtFaBShifc/jjGtv/7gBnap0P/+CDD0hLsz44qaiooGvXrnzwwQfYbFadYfr06dhsNv71r3/FKkVTpkwhMzOTL7/8klNPPZWSkhJGjhzJMcccA8AJJ5wQO39aWhoOhyM2y+pg0tLSYlP4ajsuIyMDp9NJSkrKIc8lzS/uQWr27Nls2bKFG264ocZj48aNw+PxcNttt1FcXMwZZ5zBzJkzSU9Pjx3z5JNP4nA4GDNmDB6Ph/PPP5+pU6dit9ub82mIiEgrZKu09oqyp3eO3edM6wBetEZKpI0799xzee655wDYu3cvzz77LBdddBHz58+nR48eLFq0iB9//LHa+04Ar9fLhg0buOCCC7j++uu58MILGT58OMOGDWPMmDF07do1Hk9H4iDuQeqCCy7ArKUUaxgGeXl55OXl1fr9brebSZMmMWnSpCYaoYiItFUu3x4AkjP3r6u1p2aBFxy+fXEalUgrl5RiVYficd16SE1N5dhjj43dHjRoEBkZGbz44ov87W9/IxwOM2jQIP7973/X+N5OnToBVoXqrrvu4pNPPuHNN9/kT3/6E7NmzeLMM888sucirULcg5SIiEi8pAetIJXe8SjAWpvgTO8AeyApWA6hANiT4jhCkVbIMOo1xa6lMAwDm82Gx+MB4JRTTuHNN9+kc+fOh2xMNnDgQAYOHMj999/PWWedxeuvv86ZZ56J0+kkFAo1ytga81zSeFpEswkREZHmVuYNkGWWAJDV6ajY/clpWYTNyBYanuKDfauItAE+n4/CwkIKCwtZvXo1d955J+Xl5bEuer/85S/p2LEjl19+OV9//TX5+fnMmTOH3//+92zbto38/Hzuv/9+vv32WzZv3szMmTNZt25dbJ1Uz549yc/PZ8mSJezevRufz9fgsfbs2ZPvv/+eTZs2sXv3bsLhcKP8GciRUZASEZGEtLO4jPZGOQAp7fdP7evQLpkS7SUl0uZ98skndO3ala5du3LGGWewYMEC/vOf/zB06FAAUlJS+Oqrr+jevTujR4/mhBNO4IYbbsDj8dCuXTtSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954o8Fjvffee7Hb7Zx44ol06tSJLVu2NMYfgRwhw6xtgVICKS0tJSMjg5KSEu0pJSKSIJavXk3/N88kiI3wvdt55tHXAOh68Xmc/uklHG0rhN98DD20nYZIbbxeL/n5+fTq1Qu32x3v4YjU2aH+7dY1G6giJSIiCSlYZnXsKzXagW3/y2HHVCf7opvyqiIlIiK1UJASEZGE5K+w1kd5bNUXxXdIdVFsRtodexSkRETk4BSkREQkIYW8VpDyHRCkstL2V6RMVaRERKQWClIiIpKQQpVWkPI7agapYtMKUr7S3c0+LhERaR0UpEREJCGFvWUABBxp1e532e1UOjIA8JUpSImIyMEpSImISEIy/KUABJPSajwWcmVav5bvac4hiYhIK6IgJSIiiclnVaRCzvQaD4WTswCtkRIRkdopSImISEKy+63NeM2DVKRskSBl9ypIiYjIwSlIiYhIQrIHrYoU7poVqaR2Haxf/fuacUQiItKaKEiJiEhCSgpUAGBz19y13pXe0fo1WNqsYxIRaQwvvPACubm52Gw2Jk6cGO/htFkKUiIikpCcoWiQyqjxWHpGewAcZhCC/mYdl4g0j8LCQu68806OPvpoXC4Xubm5XHrppXz22WfxHtpBTZ06lczMzMMeV1payh133MF9993H9u3bufnmm5t+cAnKEe8BiIiIxIMrEqTsyTUrUpntMvff8JeDI6uZRiUizWHTpk2cffbZZGZmMmHCBAYMGEAgEODTTz/l9ttvZ82aNQ06byAQICkpqc73N4UtW7YQCAS45JJL6Nq160GPac7xtGWqSImISEJyh60glZRasyKV1S4Vj+m0bkS6+4lI23HbbbdhGAbz58/n5z//OX369KFv377cfffdfPfdd7HjtmzZwuWXX05aWhrt2rVjzJgx7Ny5M/Z4Xl4eJ598Mi+//HKssmWaJoZh8Pzzz3P55ZeTmprK3/72NwDef/99Bg0ahNvt5uijj+bhhx8mGAzGzrdv3z5uvvlmunTpgtvtpl+/fnzwwQd8+eWX/OY3v6GkpATDMDAMg7y8vBrPa+rUqfTv3x+Ao48+GsMw2LRpU63jLCkp4eabb6Zz5860a9eO8847j6VLl1Y759///ne6dOlCeno6N954I3/84x85+eSTY48PHTqUsWPHVvueUaNGcf3118du+/1+xo0bx1FHHUVqaipnnHEGX375ZbVxZ2Zm8umnn3LCCSeQlpbGiBEjKCgoqHbel19+mb59++JyuejatSt33HEHADfccAMjR46sdmwwGCQ7O5uXX365xp9TY1GQEhGRhJRiVgLgTMms8VjHNCcVuK0bke5+IlJHpgl+f/N/mWadhrd3714++eQTbr/9dlJTU2s8Hp0+Z5omo0aNYu/evcyZM4dZs2axYcMGrrzyymrH//jjj/zf//0fb7/9NkuWLInd/9BDD3H55ZezfPlybrjhBj799FN+9atfcdddd7Fq1Sr++c9/MnXqVB555BEAwuEwF110EfPmzeO1115j1apV/P3vf8dutzN48GAmTpxIu3btKCgooKCggHvvvbfG2K+88kpmz54NwPz58ykoKCA3N7fWcV5yySUUFhby0UcfsWjRIk455RTOP/989u61Opb+3//9Hw899BCPPPIICxcupGvXrjz77LN1+nOu6je/+Q3ffPMN06dPZ9myZfziF79gxIgRrF+/PnZMZWUl//jHP5g2bRpfffUVW7ZsqfYcn3vuOW6//XZuvvlmli9fznvvvcexxx4LwE033cQnn3xSLXh99NFHlJeXM2bMmHqPt640tU9ERBJSqlkJBrhTM2s8lpXqpMR009EoJVBZiibAiNRDIADjxzf/df/3f8HpPOxhP/74I6Zpcvzxxx/yuNmzZ7Ns2TLy8/NjYWTatGn07duXBQsWcNpppwFWtWXatGl06tSp2vdfc8013HDDDbHbv/71r/njH//IddddB1gVo7/+9a+MGzeOhx56iNmzZzN//nxWr15Nnz59YsdEZWRkYBgG2dnZtY45OTmZDh2srqOdOnWqduyB4/z8889Zvnw5RUVFuFwuAP7xj3/w7rvv8tZbb3HzzTczceJEbrjhBm666SYA/va3vzF79my8Xu8h/+yq2rBhA2+88Qbbtm0jJycHgHvvvZdPPvmEKVOmMD7ybyUQCPD8889zzDHHAHDHHXfwl7/8JXaev/3tb9xzzz38/ve/j90X/TsYPHgwxx13HNOmTWPcuHEATJkyhV/84hekpdXc4qKxKEiJiEjCCQf8JBtWEwl3+kGaTbiT2EEyABXl+8hszsGJSJMyI5UrwzAOedzq1avJzc2NhSiAE088kczMTFavXh17E9+jR48aIQrg1FNPrXZ70aJFLFiwIFaBAgiFQni9XiorK1myZAndunWLhajGduA4Fy1aRHl5eSx4RXk8HjZs2ABYfwa33nprtcfPOussvvjiizpfd/HixZimWeN5+Xy+atdOSUmJhSiArl27UlRUBEBRURE7duzg/PPPr/U6N910Ey+88ALjxo2jqKiIDz/8sMkbhyhIiYhIwqko30d096jU9PYQrv643WbgtVlBylNeoiAlUh9JSVZ1KB7XrYPevXtjGAarV69m1KhRtR4XXet0uPsPNj3wYPeHw2EefvhhRo8eXeNYt9tNcnJyncbfUAcbT9euXautVYqqS3fAKJvNFgunUYFAoNp17HY7ixYtwm63VzuuarXowOYXhmHEzluXP5trr72WP/7xj3z77bd8++239OzZk5/+9Kd1fh4NoSAlIiIJxxsJUh7TidvlIuDx1TjGb0+BEPgqtJeUSL0YRp2m2MVLVlYWF154Ic888wx33XVXjYCxb98+MjMzOfHEE9myZQtbt26NVaVWrVpFSUkJJ5xwQr2ve8opp7B27drYup4DDRgwgG3btrFu3bqDVqWcTiehUKje1z3UeAoLC3E4HPTs2fOgx5xwwgl89913XHvttbH7qjbjAGsKYdW1SaFQiBUrVnDuuecCMHDgQEKhEEVFRQ0ONunp6fTs2ZPPPvssdt4DdejQgVGjRjFlyhS+/fZbfvOb3zToWvWhZhMiIpJwvOX7AKgwkmud3hOwW2+ufBUlzTUsEWkmzz77LKFQiNNPP523336b9evXs3r1ap5++mnOOussAIYNG8aAAQP45S9/yeLFi5k/fz7XXnstQ4YMqTFtry4efPBBXn31VfLy8li5ciWrV6/mzTff5E9/+hMAQ4YM4ZxzzuGKK65g1qxZ5Ofn8/HHH/PJJ58A0LNnT8rLy/nss8/YvXs3lZWVR/RnMGzYMM466yxGjRrFp59+yqZNm5g3bx5/+tOfWLhwIQC///3vefnll3n55ZdZt24dDz30ECtXrqx2nvPOO48PP/yQDz/8kDVr1nDbbbexb9++2ON9+vThl7/8Jddeey3vvPMO+fn5LFiwgMcee4yPPvqozuPNy8vj8ccf5+mnn2b9+vUsXryYSZMmVTvmpptu4pVXXmH16tWxtWhNSUFKREQSjr9iHwCVRkqtx4STrMcCHrU/F2lrevXqxeLFizn33HO555576NevH8OHD+ezzz7jueeeA6ypZe+++y7t27fnnHPOYdiwYRx99NG8+eabDbrmhRdeyAcffMCsWbM47bTTOPPMM3niiSfo0aNH7Ji3336b0047jauvvpoTTzyRcePGxapQgwcP5tZbb+XKK6+kU6dOTJgw4Yj+DAzD4KOPPuKcc87hhhtuoE+fPlx11VVs2rSJLl26AFYXwAcffJD77ruPQYMGsXnzZn73u99VO88NN9zAddddFwuZvXr1qlE1mjJlCtdeey333HMPxx13HJdddhnff/99tfVnh3PdddcxceJEnn32Wfr27cvIkSOrdf0DKxx27dqVCy+8MNbYoikZ5oGTGhNQaWkpGRkZlJSU0K5dzY0ZRUSkbVk95z+c8MVNrLUdw3EPLsZf6eWZR14F4PYHrsWZ4uaLp27g3OK3WdrzBk66/sk4j1ikZfJ6veTn59OrVy/cbne8hyPNIC8vj3fffbdaq/eWorKykpycHF5++eWDrkWr6lD/duuaDbRGSkREEk7QY6178tprb4trOK3HTK8qUiIiLVk4HKawsJDHH3+cjIwMLrvssma5roKUiIgknJDHWvfktx+82xaAzW319TO1Ia+ISIu2ZcsWevXqRbdu3Zg6dSoOR/NEHAUpERFJONEqU8BRe5CyR4KU4a9oljGJiLQGeXl55OXlxXsY1fTs2bNGC/bmoGYTIiKSeHzW1L6go/apfUnJ1rx4e1AVKRERqUlBSkREEo/PqkiFnLUHKVeqFaSSgkfWYlhERNomBSkREUk49oAVpExneq3HuFMzAHCGFKRERKQmBSkREUk49oA1Xc901d7WNiXdClJuU0FKRERqUpASEZGE44gEKZu79iCVmt4egBTTQzic8FsuiojIARSkREQk4TiDVic+4xBBKq1dJgApeCnzBptjWCIi0oooSImISMJxhawg5UiuPUg5k631U04jxL5ybcorkiiGDh3K2LFj6/19hYWFDB8+nNTUVDIzMxt9XNLyKEiJiEjCcYetIJWUUnuQokpHv7KSfU08IhFpTtdffz2GYdT4+vHHH3nnnXf461//Gju2Z8+eTJw48bDnfPLJJykoKGDJkiWsW7euCUcvLYU25BURkYTjNj0AJKVk1H6Q3YEXF258VJTta56BiUizGTFiBFOmTKl2X6dOnbDb7Q0634YNGxg0aBC9e/eu9ZhAIEBSUlKDzi8tjypSIiKSWEwTF34AklNq30cKwGdLBqBSQUqkzXG5XGRnZ1f7stvt1ab2DR06lM2bN/OHP/whVrU6mJ49e/L222/z6quvYhgG119/PQCGYfD8889z+eWXk5qayt/+9jcA3n//fQYNGoTb7eboo4/m4YcfJhjcvxZz/fr1nHPOObjdbk488URmzZqFYRi8++67AHz55ZcYhsG+ffti37NkyRIMw2DTpk2x++bNm8c555xDcnIyubm53HXXXVRUVFQb9/jx47nhhhtIT0+ne/fuvPDCC9We27Zt27jqqqvIysoiNTWVU089le+//55NmzZhs9lYuHBhteMnTZpEjx49MM2236RHQUpERBJLyI+dMADuwwUpewoA3oqSJh+WSFthmib+YLjZv5rijfs777xDt27d+Mtf/kJBQQEFBQUHPW7BggWMGDGCMWPGUFBQwFNPPRV77KGHHuLyyy9n+fLl3HDDDXz66af86le/4q677mLVqlX885//ZOrUqTzyyCMAhMNhRo8ejd1u57vvvuP555/nvvvuq/fYly9fzoUXXsjo0aNZtmwZb775JnPnzuWOO+6odtzjjz/Oqaeeyg8//MBtt93G7373O9asWQNAeXk5Q4YMYceOHbz33nssXbqUcePGEQ6H6dmzJ8OGDatR1ZsyZUps6mRbp6l9IiKSUEx/JdGX95TU2jfkBQjaUyAAvko1mxCpq0DI5Jkvfmz2695+7rE4HXV/8/7BBx+Qlrb/w5SLLrqI//znP9WOycrKwm63k56eTnZ2dq3n6tSpEy6Xi+Tk5BrHXXPNNdxwww2x27/+9a/54x//yHXXXQfA0UcfzV//+lfGjRvHQw89xOzZs1m9ejWbNm2iW7duAIwfP56LLrqozs8N4P/9v//HNddcE6uu9e7dm6effpohQ4bw3HPP4Xa7Abj44ou57bbbALjvvvt48skn+fLLLzn++ON5/fXX2bVrFwsWLCArKwuAY489NnaNm266iVtvvZUnnngCl8vF0qVLWbJkCe+88069xtpaKUiJiEhC8XnKcQMB005qSvIhjw0lpYIXApWlzTM4EWk25557Ls8991zsdmpqapNc59RTT612e9GiRSxYsCBWgQIIhUJ4vV4qKytZvXo13bt3j4UogLPOOqve1120aBE//vgj//73v2P3maZJOBwmPz+fE044AYABAwbEHjcMg+zsbIqKigBruuDAgQNjIepAo0aN4o477mDGjBlcddVVvPzyy5x77rn07Nmz3uNtjRSkREQkoVRWWkHKg5O0pEMvKjeTrE+rg14FKZG6SrIb3H7usYc/sAmuWx+pqanVqitN5cCAFg6Hefjhhxk9enSNY91u90GnKB44Tc5ms1bnVD02EAjUuM4tt9zCXXfdVeN83bt3j/3+wOYXhmEQDlvTn5OTD/1hk9Pp5Ne//jVTpkxh9OjRvP7663XqcNhWKEiJiEhC8VZY0/R8uGhnO8wbL5cVpExveVMPS6TNMAyjXlPsWjqn00koFGq0851yyimsXbu21hB34oknsmXLFnbs2EFOTg4A3377bbVjOnXqBEBBQQHt27cHrOrRgddZuXLlEYXFAQMG8K9//Yu9e/fWWpW66aab6NevH88++yyBQOCgAbGtUrMJERFJKD6P1bHKZ7gOf3BkLymbX0FKJFH17NmTr776iu3bt7N79+4jPt+DDz7Iq6++Sl5eHitXrmT16tW8+eab/OlPfwJg2LBhHHfccVx77bUsXbqUr7/+mgceeKDaOY499lhyc3PJy8tj3bp1fPjhhzz++OPVjrnvvvv49ttvuf3221myZAnr16/nvffe484776zzWK+++mqys7MZNWoU33zzDRs3buTtt9+uFuxOOOEEzjzzTO677z6uvvrqw1ax2hIFKRERSSg+jxWK/HUJUi6rGUVSqLIphyQiLdhf/vIXNm3axDHHHBOrBB2JCy+8kA8++IBZs2Zx2mmnceaZZ/LEE0/Qo0cPwJq2N2PGDHw+H6effjo33XRTtfVUYE3He+ONN1izZg0nnXQSjz32WKy1etSAAQOYM2cO69ev56c//SkDBw7kz3/+M127dq3zWJ1OJzNnzqRz585cfPHF9O/fn7///e819tq68cYb8fv91ZpqJIK4T+3bvn079913Hx9//DEej4c+ffrw0ksvMWjQIMCa+/nwww/zwgsvUFxczBlnnMEzzzxD3759Y+fw+Xzce++9vPHGG3g8Hs4//3yeffbZaov0REREAAKRaXoBm/uwxxpOa22DgpRI2zJ16tRaH/vyyy+r3T7zzDNZunTpYc8Z3eOpqtpasl944YVceOGFtZ6rT58+fP3114e83tlnn82yZcsOeb3TTjuNmTNn1nqOqntORR04RbBHjx689dZbhxxLQUEB/fr147TTTjvkcW1NXCtSxcXFnH322SQlJfHxxx+zatUqHn/8cTIzM2PHTJgwgSeeeILJkyezYMECsrOzGT58OGVl+1vRjh07lhkzZjB9+nTmzp1LeXk5I0eObNT5rCIi0jYEvFYoCtgPH6Rsbqsi5VSQEhGpoby8nAULFjBp0qSDNrVo6+JakXrsscfIzc2ttpFX1XaJpmkyceJEHnjggdjCtVdeeYUuXbrw+uuvc8stt1BSUsJLL73EtGnTGDZsGACvvfYaubm5zJ49+5BpX0REEk/QZ62RCtUjSLnCClIiIge64447eOONNxg1alTCTeuDOFek3nvvPU499VR+8Ytf0LlzZwYOHMiLL74Yezw/P5/CwkIuuOCC2H0ul4shQ4Ywb948wOqRHwgEqh2Tk5NDv379YseIiIhEhWJB6vALoh3J7QBwK0iJSJyZpsmoUaPiPYxqpk6dis/n480336yxbioRxDVIbdy4keeee47evXvz6aefcuutt3LXXXfx6quvAlBYWAhAly5dqn1fly5dYo8VFhbidDpjrR8PdsyBfD4fpaWl1b5ERCQxhH1WKDIdhw9SSW6ra5/T9DXpmEREpPWJ69S+cDjMqaeeyvjx4wEYOHAgK1eu5LnnnuPaa6+NHXfgJmSmada470CHOubRRx/l4YcfPsLRi4hIa2QGPNavdQpSVrMJNz4CoTBJdjW7FRERS1xfEbp27cqJJ55Y7b4TTjiBLVu2AJCdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZgD3X///ZSUlMS+tm7d2ijPR0REWj7TH5mml1SHIJVsVaSS8eEJqIGRSG1q604n0lI1xr/ZuAaps88+m7Vr11a7b926dbE++r169SI7O5tZs2bFHvf7/cyZM4fBgwcDMGjQIJKSkqodU1BQwIoVK2LHHMjlctGuXbtqXyIikhiMSEXKcKYc9tgkt3VMsuHH61eQEjlQUlISAJWVWkcorUv032z033BDxHVq3x/+8AcGDx7M+PHjGTNmDPPnz+eFF17ghRdeAKwpfWPHjmX8+PH07t2b3r17M378eFJSUrjmmmsAyMjI4MYbb+See+6hQ4cOZGVlce+999K/f/9YFz8REZEoI2gFKVsdgpThtCpSKXjZp4qUSA12u53MzEyKiooASElJOezyC5F4Mk2TyspKioqKyMzMPKImGXENUqeddhozZszg/vvv5y9/+Qu9evVi4sSJ/PKXv4wdM27cODweD7fddltsQ96ZM2eSnp4eO+bJJ5/E4XAwZsyY2Ia8U6dOTcjuISIicmi2UCRIuQ4fpKLT/9z48QbCTTkskVYruhQjGqZEWoPMzMzYv92GimuQAhg5ciQjR46s9XHDMMjLyyMvL6/WY9xuN5MmTWLSpElNMEIREWlL7EGv9asz9fAHJ1lhy2UE8fh8QPqhjxdJQIZh0LVrVzp37kwgEIj3cEQOKykpqVEKLnEPUiIiIs3JEbaCVLQj3yEl7a9a+SvLgY5NNCqR1s9ut2s2kCQU9XEVEZGEsj9I1WFqn8NFGGu9R8Bb3pTDEhGRVkZBSkREEoozEqSckdbmh2QY+Aw3AAFvRVMOS0REWhkFKRERSShO0weAK6UOQQrwGy5AFSkREalOQUpERBKGPxjGjRWk3HWpSAF+m9W5L+RTRUpERPZTkBIRkYRR6Q+SjB8Adx0rUkGbVZEKK0iJiEgVClIiIpIwKvwhkiMVqTp17QOC9mhFqrLJxiUiIq2PgpSIiCSMCq8ftxHZ5yapDl372B+kTL8qUiIisp+ClIiIJIzKiioNI5KS6/Q9YUfkuICnCUYkIiKtlYKUiIgkDG9llSDlqG+Q0tQ+ERHZT0FKREQSRjRI+XCCrW4vgWZkCqChipSIiFShICUiIgkjuheUP9KJry7MyBRAW1AVKRER2U9BSkREEobfYzWMCBjuun9TpCJlC6oiJSIi+ylIiYhIwghE9oIK2usepIxIkLKHFKRERGQ/BSkREUkYQa8VpEL1CFI2l7XflCPkbZIxiYhI66QgJSIiCSO6qW7IXreOfQA2l1WRcqgiJSIiVShIiYhIwgj7rSAVdtS9ImWPVKSSwqpIiYjIfgpSIiKSMKJBKtrSvC4ckSDlVJASEZEqFKRERCRh2KKb6ibVfWpfkjsNAJfpa4ohiYhIK6UgJSIiCcOItjCvR0UqyW1VpFx4MU2zKYYlIiKtkIKUiIgkDFukYYRRnyCVnA5AMj4CIQUpERGxKEiJiEjCsAetdU7RTnx14Uq2KlLJ+PAEQk0yLhERaX0UpEREJGE4Ig0jbM56NJtwR4OUH6+ClIiIRChIiYhIwohuqmuvR5AynFaQSjF8eHyBJhmXiIi0PgpSIiKSMKJ7QdkjVaa6fdP+0OX1VDb2kEREpJVSkBIRkYThjLQwT3LVJ0jtb5Xu95Q19pBERKSVUpASEZGE4A+GcRMJUvWpSNns+HACEPBUNMXQRESkFVKQEhGRhOAJhPYHqeR6BCnAZ7gACPjKG31cIiLSOilIiYhIQvAGQiTjB8BRj/bnAH7DDUDQq4qUiIhYFKRERCQhePwhkiMVKSOpfhUpv01BSkREqlOQEhGRhOAJhEg2rIpU1QYSdRGIBKmQX0FKREQsClIiIpIQrDVSDQtSIbsVpEyfgpSIiFgUpEREJCF4fMHY1L6qe0PVRdBuBa+QT/tIiYiIRUFKREQSgtfrxWGErRv1rEiFHdbxZkAVKRERsShIiYhIQvBXbRRRz4pUOHq839OIIxIRkdZMQUpERBJCILK+KYQN7En1+l4zUpEyApraJyIiFgUpERFJCKFIRcpvc4Nh1O+bo1MBg95GHpWIiLRWClIiIpIQgpGKVCCyuW59GJGpfbagKlIiImJRkBIRkYQQjHTcC9pd9f5emysapFSREhERi4KUiIgkBNMfDVL169gHYHda32MPK0iJiIhFQUpERBJCOBKkwvb6T+2zu1KtX0MKUiIiYlGQEhGRhBCtSIUaUJFyRIJUkoKUiIhEKEiJiEhiCFh7QJmO+lekktzWGqkk09eoQxIRkdZLQUpERBKCEem4Z9ZzM16AJLdVkXIqSImISISClIiIJAQjUpGK7QlVD87kNABcpo9Q2GzMYYmISCulICUiIgnBFl3f1IAg5Uq2KlLJ+Kn0BxtzWCIi0krFNUjl5eVhGEa1r+zs7NjjpmmSl5dHTk4OycnJDB06lJUrV1Y7h8/n484776Rjx46kpqZy2WWXsW3btuZ+KiIi0sLZglZFynDWf2qfMzK1z2348PhDjTouERFpneJekerbty8FBQWxr+XLl8cemzBhAk888QSTJ09mwYIFZGdnM3z4cMrKymLHjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSC52IiOzniFSkbA0IUtHwZVWk9PoiIiLgiPsAHI5qVago0zSZOHEiDzzwAKNHjwbglVdeoUuXLrz++uvccsstlJSU8NJLLzFt2jSGDRsGwGuvvUZubi6zZ8/mwgsvbNbnIiIiLZcjspmu3ZnagG+2pgO68VPhCzTmsEREpJWKe0Vq/fr15OTk0KtXL6666io2btwIQH5+PoWFhVxwwQWxY10uF0OGDGHevHkALFq0iEAgUO2YnJwc+vXrFzvmYHw+H6WlpdW+RESkbUuKBil3/StS0XVVDiOM16u9pEREJM5B6owzzuDVV1/l008/5cUXX6SwsJDBgwezZ88eCgsLAejSpUu17+nSpUvsscLCQpxOJ+3bt6/1mIN59NFHycjIiH3l5uY28jMTEZGWJilstS6Pbq5bv2/eH768norGGpKIiLRicQ1SF110EVdccQX9+/dn2LBhfPjhh4A1hS/KMIxq32OaZo37DnS4Y+6//35KSkpiX1u3bj2CZyEiIi1dIBTGFdkDKronVL3YkwhFXjL9nvLGHJqIiLRScZ/aV1Vqair9+/dn/fr1sXVTB1aWioqKYlWq7Oxs/H4/xcXFtR5zMC6Xi3bt2lX7EhGRtssbCJFsHEGQMgz8hguAgE8VKRERaWFByufzsXr1arp27UqvXr3Izs5m1qxZscf9fj9z5sxh8ODBAAwaNIikpKRqxxQUFLBixYrYMSIiIp5AiGT8QAODFBCwRYKUV0FKRETi3LXv3nvv5dJLL6V79+4UFRXxt7/9jdLSUq677joMw2Ds2LGMHz+e3r1707t3b8aPH09KSgrXXHMNABkZGdx4443cc889dOjQgaysLO69997YVEEREREArz9MMlZFykhqQLMJIGBzQwiC3srGHJqIiLRScQ1S27Zt4+qrr2b37t106tSJM888k++++44ePXoAMG7cODweD7fddhvFxcWcccYZzJw5k/T09Ng5nnzySRwOB2PGjMHj8XD++eczdepU7HZ7vJ6WiIi0MJWBIOmGVZGKduCrr6DNbf2qICUiIsQ5SE2fPv2QjxuGQV5eHnl5ebUe43a7mTRpEpMmTWrk0YmISFvh8YfoHKlI0cCKVMhuBbCQX1P7RESkha2REhERaQpV10jhbFiQCjusNVJhv6exhiUiIq2YgpSIiLR5Xn+A5NjUvgYGqUhFygxoap+IiChIiYhIAvB7qoSfBq6RMqPfp4qUiIigICUiIgnAX7VluaNhQSoWwIKqSImIiIKUiIgkgKC3HAC/4QRbw176jEiQMgLeRhuXiIi0XgpSIiLS5gV9VkUqEGlh3hBGpEmFLaSpfSIioiAlIiIJIOSzws+RBClbpEmFLaggJSIiClIiIpIAQpGKVOhIgpTLClKOkKb2iYiIgpSIiCSAaMvyoL3hQcrhSrV+DStIiYiIgpSIiCQAM9KyPNzQjn2AI1qRCvsaZUwiItK6KUiJiEibF61IhR0Nr0g5k62KlMv0EQqbjTIuERFpvRSkRESk7YtUpMwjqEglua0glWz4qfQHG2VYIiLSeilIiYhImxfrtBfpvNcQ0SDlxkelP9QYwxIRkVZMQUpERNo8I7r3U1LDK1LRDXndBBSkREREQUpERNo+e6QiFd1Ut0Ei1axkfJraJyIiClIiItL22SN7P9mOKEhZFalkw49HFSkRkYSnICUiIm2eo1GClPW9bnx4AgpSIiKJTkFKRETavOgmuvbIproNO4nVOj0ZP75AuDGGJSIirZiClIiItHlJkSDlcB/51L4kI4TP722MYYmISCumICUiIm1aKGziMn0AOI6kIlWldXrQ6znSYYmISCunICUiIm2aNxAiGT8ATveRTO1zEcYAIOivaIyhiYhIK6YgJSIibVqlP0SyYVWkko4kSBkGAcMFQMhb2RhDExGRVkxBSkRE2jRvIIQ7UpE6on2kgIAtEqQCClIiIolOQUpERNo0TyBEMlZFquo6p4YI2qzOfWGfgpSISKJTkBIRkTbN4w+RbFgVqWjnvYYK2q0gZaoiJSKS8BSkRESkTfMEQrgbqyJljwQxv7r2iYgkOgUpERFp0zxVuvYdaUUqbLfWSKGKlIhIwlOQEhGRNs3r9ZJkhKwbRxykIt8f1Ia8IiKJTkFKRETaNL+nyp5PRzi1z4wEMSOgqX0iIolOQUpERNq0oNcKUmFsYHce0bnCDitI2YIKUiIiiU5BSkRE2rSgzwpSfpsLDOPIThapSNlCClIiIolOQUpERNq0UGTPp0BkD6gjEqtIaY2UiEiiU5ASEZE2LRSpSAUbIUgZTitI2cMKUiIiiU5BSkRE2rSQ36pIheyNEaSsZhWOkIKUiEiiU5ASEZE2zYwFqSNrfQ5giwSpJFWkREQSnoKUiIi0bZFW5WHHkVek7NGKVNh3xOcSEZHWrd5B6pVXXuHDDz+M3R43bhyZmZkMHjyYzZs3N+rgREREjljAqkiZjiOvSEWDlFNBSkQk4dU7SI0fP57kZOvF6Ntvv2Xy5MlMmDCBjh078oc//KHRBygiInIkjMieT9HNdI+E3Z0KgNNUkBIRSXSO+n7D1q1bOfbYYwF49913+fnPf87NN9/M2WefzdChQxt7fCIiIkfEiEztIynliM+VFAlSbnyEwiZ22xHuSyUiIq1WvStSaWlp7NmzB4CZM2cybNgwANxuNx6PNigUEZGWJbp5rtEIFSmHywpjbnz4g+EjPp+IiLRe9a5IDR8+nJtuuomBAweybt06LrnkEgBWrlxJz549G3t8IiIiR8QeaVVuOFOP+FxJ7miQ8uMNhEh22o/4nCIi0jrVuyL1zDPPcNZZZ7Fr1y7efvttOnToAMCiRYu4+uqrG32AIiIiRyK655PNdeRT+xwuK4wlG368wdARn09ERFqvelekMjMzmTx5co37H3744UYZkIiISGOKBil7I1SkouuskvFRHNDUPhGRRFbvitSUKVP4z3/+U+P+//znP7zyyiuNMigREZHG4gxba6TsjVCRIrLOyo0qUiIiia7eQervf/87HTt2rHF/586dGT9+fKMMSkREpDGEw2asVXm0494RiexF5TKCeH2BIz+fiIi0WvUOUps3b6ZXr1417u/Rowdbtmxp8EAeffRRDMNg7NixsftM0yQvL4+cnBySk5MZOnQoK1eurPZ9Pp+PO++8k44dO5Kamspll13Gtm3bGjwOERFpO7zBEG78ACQlN8bUvv2d/wLeiiM/n4iItFr1DlKdO3dm2bJlNe5funRprPFEfS1YsIAXXniBAQMGVLt/woQJPPHEE0yePJkFCxaQnZ3N8OHDKSsrix0zduxYZsyYwfTp05k7dy7l5eWMHDmSUEhTLkREEp3HHyLZiFSkXI1RkXLHfhvwVR75+UREpNWqd5C66qqruOuuu/jiiy8IhUKEQiE+//xzfv/733PVVVfVewDl5eX88pe/5MUXX6R9+/ax+03TZOLEiTzwwAOMHj2afv368corr1BZWcnrr78OQElJCS+99BKPP/44w4YNY+DAgbz22mssX76c2bNn13ssIiLStngCIZIjFSlbYzSbsNnw4QIg6C0/8vOJiEirVe8g9be//Y0zzjiD888/n+TkZJKTk7ngggs477zzGrRG6vbbb+eSSy6JbewblZ+fT2FhIRdccEHsPpfLxZAhQ5g3bx5gtVwPBALVjsnJyaFfv36xY0REJHF5AyGSsSpSNMKGvAB+wwlAUBUpEZGEVu/2506nkzfffJO//vWvLF26lOTkZPr370+PHj3qffHp06ezePFiFixYUOOxwsJCALp06VLt/i5durB58+bYMU6ns1olK3pM9PsPxufz4fP5YrdLS0vrPXYREWn5PP4wWYZVkWq0IGVzQ6iMkIKUiEhCq3eQiurTpw99+vRp8IW3bt3K73//e2bOnInb7a71OMMwqt02TbPGfQc63DGPPvqo9r0SEUkAnmoVqUZofw4EbC4IQdivICUiksjqFKTuvvtu/vrXv5Kamsrdd999yGOfeOKJOl140aJFFBUVMWjQoNh9oVCIr776ismTJ7N27VrAqjp17do1dkxRUVGsSpWdnY3f76e4uLhaVaqoqIjBgwfXeu3777+/2vMoLS0lNze3TuMWEZHWw1tljVRjVaSCNuvDPwUpEZHEVqcg9cMPPxAIBGK/bwznn38+y5cvr3bfb37zG44//njuu+8+jj76aLKzs5k1axYDBw4EwO/3M2fOHB577DEABg0aRFJSErNmzWLMmDEAFBQUsGLFCiZMmFDrtV0uFy6Xq1Geh4iItFxef4Dk2NS+xqlIBe1WkDIDClIiIomsTkHqiy++OOjvj0R6ejr9+vWrdl9qaiodOnSI3T927FjGjx9P79696d27N+PHjyclJYVrrrkGgIyMDG688UbuueceOnToQFZWFvfeey/9+/ev0bxCREQST8Dn2X+jkSpSoUhFyvR7DnOkiIi0ZfXu2nfDDTdU28cpqqKightuuKFRBhU1btw4xo4dy2233capp57K9u3bmTlzJunp6bFjnnzySUaNGsWYMWM4++yzSUlJ4f3338dutzfqWEREpPUJ+qpsmttYQSq6l1RAQUpEJJHVO0i98soreDw1Xzw8Hg+vvvrqEQ3myy+/ZOLEibHbhmGQl5dHQUEBXq+XOXPm1Khiud1uJk2axJ49e6isrOT999/XeicREQH2tygPGElga5wP2ML2SCBTkBIRSWh17tpXWlqKaZqYpklZWVm1TnuhUIiPPvqIzp07N8kgRUREGiIcqUj5DTdJjXROM1LZMoJaIyUiksjqHKQyMzMxDAPDMA7a9twwDLUUFxGRFiUcqUhFO+01BjPSbMIW9DbaOUVEpPWpc5D64osvME2T8847j7fffpusrKzYY06nkx49epCTk9MkgxQREWmIaIvygL3xglR0rZWClIhIYqtzkBoyZAgA+fn5dO/e/bCb4oqIiMSbGQlSoUYMUtGpfbaQ1kiJiCSyejebWL16Nd98803s9jPPPMPJJ5/MNddcQ3FxcaMOTkRE5EhE93pqzCBlOK39qBwhVaRERBJZvYPU//zP/1BaWgrA8uXLufvuu7n44ovZuHEjd999d6MPUEREpMEinfVC9sZpfQ5gRDb2dYQVpEREElmdp/ZF5efnc+KJJwLw9ttvc+mllzJ+/HgWL17MxRdf3OgDFBERaSgjaAUp09F4QcrutM7lCPsa7ZwiItL61Lsi5XQ6qay0pkrMnj2bCy64AICsrKxYpUpERKQliAWpRtqMF8DuSgUgSRUpEZGEVu+K1E9+8hPuvvtuzj77bObPn8+bb74JwLp16+jWrVujD1BERKShbE1QkbJF1kg5VZESEUlo9a5ITZ48GYfDwVtvvcVzzz3HUUcdBcDHH3/MiBEjGn2AIiIiDWWPtihvxIqUw21VpJymgpSISCKrd0Wqe/fufPDBBzXuf/LJJxtlQCIiIo3FHrYqUtFOe43B4bLO5VKQEhFJaHUKUqWlpbRr1y72+0OJHiciIhJv0Rbl0U57jSEpUpFyoSAlIpLI6hSk2rdvT0FBAZ07dyYzM/Ogm/GapolhGIRCoUYfpIiISENEg5TN1XhT+5zJVpBy4ycQCpNkr/cseRERaQPqFKQ+//xzsrKyAPjiiy+adEAiIiKNJcmMBClnaqOd05WcBkAyPir9ITKSFaRERBJRnYLUkCFDYr/v1asXubm5NapSpmmydevWxh2diIjIEYh21ou2LG+Uc0am9rmNAPt8ATKSkxrt3CIi0nrU+2O0Xr16sWvXrhr37927l169ejXKoERERBpDNEhFG0Q0BqNKB8DKyopGO6+IiLQu9Q5S0bVQByovL8ftdjfKoERERI6UaZqxhhDRBhGNokqQ8nnKG++8IiLSqtS5/fndd98NgGEY/PnPfyYlZf+ne6FQiO+//56TTz650QcoIiLSEL5gGHckSDkaM0jZ7PhJwkkAb0VZ451XRERalToHqR9++AGwPuFbvnw5Tqcz9pjT6eSkk07i3nvvbfwRioiINIA3ECIZP7B/XVNj8RkunGYAv09T+0REElWdg1S0W99vfvMbnnrqKe0XJSIiLZo3ECbZiK6RatwgFTBcYJbj91Q26nlFRKT1qHOQipoyZUpTjENERKRReQMhsiIVKRpxQ14Av80FYQh4tUZKRCRR1TtIASxYsID//Oc/bNmyBb/fX+2xd955p1EGJiIiciSqrpGq2iCiMQRtVnOloE8VKRGRRFXvrn3Tp0/n7LPPZtWqVcyYMYNAIMCqVav4/PPPycjIaIoxioiI1JvX58VphKwbjR2k7Nb5QgpSIiIJq95Bavz48Tz55JN88MEHOJ1OnnrqKVavXs2YMWPo3r17U4xRRESk3gKeKo0gGnlqX9jusn5VswkRkYRV7yC1YcMGLrnkEgBcLhcVFRUYhsEf/vAHXnjhhUYfoIiISEP4I9WiEDZwuBr13GFHpCIV8DTqeUVEpPWod5DKysqirMzaN+Ooo45ixYoVAOzbt4/KSk1xEBGRliHotapFfsMFB9lI/kiYkSCFX697IiKJqt7NJn76058ya9Ys+vfvz5gxY/j973/P559/zqxZszj//PObYowiIiL1FvTtD1KNu0IKzMiaK1MVKRGRhFXvIDV58mS8Xi8A999/P0lJScydO5fRo0fz5z//udEHKCIi0hDhyNQ+v+Fu/JNH1lwZClIiIgmr3kEqKysr9nubzca4ceMYN25cow5KRETkSIV81h5PAXvjro8CsCVZ4cwIKkiJiCSqeq+RstvtFBUV1bh/z5492O32RhmUiIjIkTL9VsiJ7vnUmAynVZGyBb2Nfm4REWkd6h2kTNM86P0+nw+n03nEAxIREWkMZqQRRNDe+EHK7kq1fg0pSImIJKo6T+17+umnATAMg3/961+kpaXFHguFQnz11Vccf/zxjT9CERGRBjADkfbn9sZuNQF2l1WRcoQ1tU9EJFHVOUg9+eSTgFWRev7556tN43M6nfTs2ZPnn3++8UcoIiLSEJFGEKEmqEglRYOUKlIiIgmrzkEqPz8fgHPPPZd33nmH9u3bN9mgREREjlikIhXb86kRJbmtqX1Jpq/Rzy0iIq1Dvbv2ffHFF9VuB4NBvF5vtal+IiIi8WZEGkGEmyBIOSNBymn6CIVN7LbG3fBXRERavjo3m/joo4+YNm1atfseeeQR0tLSyMzM5IILLqC4uLjRBygiItIQtmhr8qQmCFLJ1oeHyfjxBEKNfn4REWn56hyk/vGPf1BaWhq7PW/ePB588EH+/Oc/83//939s3bqVv/71r00ySBERkfqyh6JBKqXRz+1MtipSyfio9Acb/fwiItLy1TlIrVixgsGDB8duv/XWWwwfPpwHHniA0aNH8/jjj/P+++83ySBFRETqK9aavAkqUkbknC4jQKVPFSkRkURU5yBVVlZGhw4dYrfnzp3LeeedF7vdt29fduzY0bijExERaSBHpCJlczZ+RSpa5bIqUgpSIiKJqM5BKicnh9WrVwNQXl7O0qVLOfvss2OP79mzh5SUJnixEhERaQBHyOqo1zRByqpIJePX1D4RkQRV5yD185//nLFjxzJt2jR++9vfkp2dzZlnnhl7fOHChRx33HFNMkgREZH6SgpbU/uasiKVYvio9ClIiYgkojq3P3/ooYfYsWMHd911F9nZ2bz22mvVNuV94403uPTSS5tkkCIiIvWVZEaClCu18U/u2L/Jr9db0fjnFxGRFq/OQSolJaVG+/OqDtxfSkREJJ6cYWtqn8PVdFP7AHweBSkRkURU56l9IiIirYmLSJByN0FFyp5EMPJZpF8VKRGRhKQgJSIibZLLtIJUUlMEKSBgs6b3BRWkREQSkoKUiIi0OcFQGHekIuVKTmuSawRsLutXTe0TEUlIcQ1Szz33HAMGDKBdu3a0a9eOs846i48//jj2uGma5OXlkZOTQ3JyMkOHDmXlypXVzuHz+bjzzjvp2LEjqampXHbZZWzbtq25n4qIiLQglYEQyfgBcCc3TUUqZLcqUiG/p0nOLyIiLVtcg1S3bt34+9//zsKFC1m4cCHnnXcel19+eSwsTZgwgSeeeILJkyezYMECsrOzGT58OGVlZbFzjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSBokiIonK4wuQYlgVKWcTVaSiQSroU0VKRCQR1TlIde/enT179sRuT548mdLS0iO6+KWXXsrFF19Mnz596NOnD4888ghpaWl89913mKbJxIkTeeCBBxg9ejT9+vXjlVdeobKyktdffx2AkpISXnrpJR5//HGGDRvGwIEDee2111i+fDmzZ88+orGJiEjr5ancH24MZ9NUpMIOq3Of6a9skvOLiEjLVucgtW3btmpVnv/93/9l9+7djTaQUCjE9OnTqaio4KyzziI/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIi0nZ4K6v8XE9qgvbnVAlSAQUpEZFE1OCpfaZpNsoAli9fTlpaGi6Xi1tvvZUZM2Zw4oknUlhYCECXLl2qHd+lS5fYY4WFhTidTtq3b1/rMQfz6KOPkpGREfvKzc1tlOciIiItg7+yHAAvTrA10Sz2yKa8ptZIiYgkpLh37TvuuONYsmQJ3333Hb/73e+47rrrWLVqVexxwzCqHW+aZo37DnS4Y+6//35KSkpiX1u3bj2yJyEiIi2K32MFKZ/hbrqLRDflDXqb7hoiItJiOepz8L/+9S/S0qxFu8FgkKlTp9KxY8dqx9x11131GoDT6eTYY48F4NRTT2XBggU89dRT3HfffYBVderatWvs+KKioliVKjs7G7/fT3FxcbWqVFFREYMHD671mi6XC5fLVa9xiohI6xFoliBlTRm0B1WREhFJRHUOUt27d+fFF1+M3c7OzmbatGnVjjEMo95B6kCmaeLz+ejVqxfZ2dnMmjWLgQMHAuD3+5kzZw6PPfYYAIMGDSIpKYlZs2YxZswYAAoKClixYgUTJkw4onGIiEjrFfRa3V39tuQmu4bhtM5tCylIiYgkojoHqU2bNjX6xf/3f/+Xiy66iNzcXMrKypg+fTpffvkln3zyCYZhMHbsWMaPH0/v3r3p3bs348ePJyUlhWuuuQaAjIwMbrzxRu655x46dOhAVlYW9957L/3792fYsGGNPl4REWkdoi3JA/amq0jZIhUpR0hT+0REElG9pvY1tp07d/LrX/+agoICMjIyGDBgAJ988gnDhw8HYNy4cXg8Hm677TaKi4s544wzmDlzJunp6bFzPPnkkzgcDsaMGYPH4+H8889n6tSp2O32eD0tERGJs3AkSAXtTVeRsjkjQSrsa7JriIhIy1XnZhMXX3wxJSUlsduPPPII+/bti93es2cPJ554Yr0u/tJLL7Fp0yZ8Ph9FRUXMnj07FqLAmiqYl5dHQUEBXq+XOXPm0K9fv2rncLvdTJo0iT179lBZWcn777+vLnwiIgnOjASpkL1pWp8D2FzRIKWKlIhIIqpzkPr000/x+fZ/6vbYY4+xd+/e2O1gMMjatWsbd3QiIiINYAYiQcrRdBUpRyRIOcPeRtsSREREWo86B6kDXyT0oiEiIi2W39ok12yizXgBHO5UANz48YfCTXYdERFpmeK+j5SIiEhjMwLNEKQiFSk3frwBBSkRkURT5yBlGEaNTW4PtzGuiIhIPBhBK0jRpEHKqkglGz58gVCTXUdERFqmOnftM02T66+/PraRrdfr5dZbbyU11Xohqbp+SkREJJ6im+QaztQmu0b03Mn48ChIiYgknDoHqeuuu67a7V/96lc1jrn22muPfEQiIiJHKBakXE0XpKLVrhR8mtonIpKA6hykpkyZ0pTjEBERaTRJIStIOZoySEUqUimGjyJVpEREEo6aTYiISJuTFLaClN2d1nQXiQSpVLya2icikoAUpEREpM1xRjbJjbYob5qL7F8j5fUHm+46IiLSIilIiYhIm+M0rSCV1JQVqcgaqSQjpIZLIiIJSEFKRETaHHckSDlT0pvuIlU6Aga9ZU13HRERaZEUpEREpE0JhsIkY1WIXE1ZkbInESAJgJC3vOmuIyIiLZKClIiItCmVgdD+IJXahBUpwGdLBiCkipSISMJRkBIRkTbF4wuSQmRqX3ITVqQAvz0SpHyVTXodERFpeRSkRESkTfF4KrEbJgCGswm79gHBSEXK9Glqn4hIolGQEhGRNsVbWWWaXVLTBqlApCJFoKJJryMiIi2PgpSIiLQp/kiQ8uMAu6NJrxVypEQuqiAlIpJoFKRERKRN8XmsaXY+w93k14oGKcOvNVIiIolGQUpERNqUgMeqSDVHkAo7rKl9tqAqUiIiiUZBSkRE2pSg1wo1flvTBykz0szCCKgiJSKSaBSkRESkTQn6rCAViHTUa1KRZhb2kIKUiEiiUZASEZE2JRwJUkF7MwSpSEXKEfQ0/bVERKRFUZASEZE2JRakHM0RpKxmE0mqSImIJBwFKRERaVPMSCvycLQ1eROyudIASAp7m/xaIiLSsihIiYhImxJt/BBuhopUNEg5VZESEUk4ClIiItK2RPZ0MiONIJqS3W1dw2mqIiUikmgUpEREpE2J7ulkOJt+al+S26pIuRWkREQSjoKUiIi0KbZoB72kpg9SDnc6AMmmuvaJiCQaBSkREWlT7JEgZY+sX2pKSclWkHLjIxQ2m/x6IiLScihIiYhImxLdHNeR3PRBypViBalUvHgDoSa/noiItBwKUiIi0qY4QtZ6JWczBKnoNZLx4VGQEhFJKApSIiLSprjCVkUqWi1qStH25y4jiNerhhMiIolEQUpERNqMcNjEHbbWSLlSM5r+gs79VS+/p7zpryciIi2GgpSIiLQZFf4gqVhBKjmtGYKUw0kQOwD+yrKmv56IiLQYClIiItJmlHmDpBrWFDtXSjMEKcCDG4CAV0FKRCSRKEiJiEibUeYNkkZkrVIztD8H8BpWkApqap+ISEJRkBIRkTajvLISlxGwbjibJ0j5bMkABH0VzXI9ERFpGRSkRESkzagsK9l/w9X0XfsA/DarIhXW1D4RkYSiICUiIm2Gp2IfAH6SwJ7ULNf0RypSIVWkREQSioKUiIi0Gb6KUutXW0qzXTNot4IUfq2REhFJJApSIiLSZgQqrSDltzdnkLKuZform+2aIiISfwpSIiLSZgQ81jqlgCO12a4ZdEQrUpraJyKSSBSkRESkzYg2fAg5mq8iFYqENiOgICUikkgUpEREpM0I+6wgFU5qntbnACRFgpTWSImIJBQFKRERaTt8kTDjbL6pfbitNus2BSkRkYSiICUiIm1GrCrUTHtIAdjc7QBwBBWkREQSSVyD1KOPPsppp51Geno6nTt3ZtSoUaxdu7baMaZpkpeXR05ODsnJyQwdOpSVK1dWO8bn83HnnXfSsWNHUlNTueyyy9i2bVtzPhUREWkBbJF1SjZ38wUpe3I0SGmNlIhIIolrkJozZw6333473333HbNmzSIYDHLBBRdQUbH/xWjChAk88cQTTJ48mQULFpCdnc3w4cMpK9u/g/zYsWOZMWMG06dPZ+7cuZSXlzNy5EhCoVA8npaIiMRJNMzYmzFIJUWClCukICUikkgc8bz4J598Uu32lClT6Ny5M4sWLeKcc87BNE0mTpzIAw88wOjRowF45ZVX6NKlC6+//jq33HILJSUlvPTSS0ybNo1hw4YB8Nprr5Gbm8vs2bO58MILm/15iYhIfCRFwkxSSrtmu6YzNQMAV0j7SImIJJIWtUaqpKQEgKysLADy8/MpLCzkggsuiB3jcrkYMmQI8+bNA2DRokUEAoFqx+Tk5NCvX7/YMQfy+XyUlpZW+xIRkdbNNM1YmHE2Y5BypWYCkGwqSImIJJIWE6RM0+Tuu+/mJz/5Cf369QOgsLAQgC5dulQ7tkuXLrHHCgsLcTqdtG/fvtZjDvToo4+SkZER+8rNzW3spyMiIs2swh8iBS8ArkiVqDkkp2cCkGJ6mu2aIiISfy0mSN1xxx0sW7aMN954o8ZjhmFUu22aZo37DnSoY+6//35KSkpiX1u3bm34wEVEpEUo9QRINawglZTcfGukUtKt0JaGB68/2GzXFRGR+GoRQerOO+/kvffe44svvqBbt26x+7OzswFqVJaKiopiVars7Gz8fj/FxcW1HnMgl8tFu3btqn2JiEjrVuYNkhqpSBnN2P48Nc2aEWEzTMrKSprtuiIiEl9xDVKmaXLHHXfwzjvv8Pnnn9OrV69qj/fq1Yvs7GxmzZoVu8/v9zNnzhwGDx4MwKBBg0hKSqp2TEFBAStWrIgdIyIibV+ZN0CaEZle50xrtuvaXKmETGsGhKdcQUpEJFHEtWvf7bffzuuvv85///tf0tPTY5WnjIwMkpOTMQyDsWPHMn78eHr37k3v3r0ZP348KSkpXHPNNbFjb7zxRu655x46dOhAVlYW9957L/3794918RMRkbavzBvkmEhFqjmDFIZBhZFCOyrwlBUf/ngREWkT4hqknnvuOQCGDh1a7f4pU6Zw/fXXAzBu3Dg8Hg+33XYbxcXFnHHGGcycOZP09P3TNp588kkcDgdjxozB4/Fw/vnnM3XqVOx2e3M9FRERibNSb4BUIhUpVzMGKcBjpNDOrMCripSISMKIa5AyTfOwxxiGQV5eHnl5ebUe43a7mTRpEpMmTWrE0YmISGtSUVmJ04hsxN6cFSnAZ0uBEPgqFKRERBJFi2g2ISIicqR8VatBzR2k7KkABDwKUiIiiUJBSkRE2oSg19pc3W+4wN68Ey4CDitIhTza4F1EJFEoSImISJtgessBCNhTmv3awSSrAhb2KkiJiCQKBSkREWkTwv5IkIpUh5r12pEgZSpIiYgkDAUpERFpEwyfFaSCcQhSZmRNlhEJcyIi0vYpSImISJsQDTGhpOYPUrjTq41BRETaPgUpERFpE2wBK8REp9k167XdGQA4AgpSIiKJQkFKRETaBHugAtg/za5Zrx2pSCUFK5r92iIiEh8KUiIi0iY4oiHG2fxT+5JS2lm/hhSkREQShYKUiIi0Cc5gZFpdZJpds1471bqmO1zZ7NcWEZH4UJASEZE2wR22gpQRhyDlSs0EIFlBSkQkYShIiYhIm5AcCVL2lMzmv3aaFd5SqSQUNpv9+iIi0vwUpEREpE1IjWOQSklvb40BL+W+YLNfX0REmp+ClIiItHrhsEmqaTV6SEpt3+zXj07tSzF8lHu8zX59ERFpfgpSIiLS6nmDIdphrU9ypjV/kKJKy/WKsuLmv76IiDQ7BSkREWn1PP4Q6UYkSMVhah8OJz6SAPCW7Wv+64uISLNTkBIRkVav0heMVaRs8QhSgMdIAcBbXhqX64uISPNSkBIRkVbP563AZUSaPMSh/TmA12YFqYCnJC7XFxGR5qUgJSIirZ6/wlqXFMJWbb1Sc/LZU60xVCpIiYgkAgUpERFp9fzl+wCoIBUMIy5j8NrTATA9++JyfRERaV4KUiIi0uqFIuGlwpYatzH4HVaQwrsvbmMQEZHmoyAlIiKtXrhyHwAeW3ym9QEEnNbaLJtPU/tERBKBgpSIiLR64UhFymOPZ5BqB4DdryAlIpIIFKRERKT181rhxRedXhcHYVcmAE4FKRGRhKAgJSIirZ4RCVL+eAYpdyYASQHtIyUikggUpEREpNWz+azwEnDGL0gRCVIuBSkRkYSgICUiIq2ePRJeQknt4jYGW2p7AFJCZXEbg4iINB8FKRERafWS/FZ4CbviGKSSI0EqrCAlIpIIFKRERKTVSwpGKlKujLiNwZFmBanUcHncxiAiIs1HQUpERFo9V9AKL4Y7fkHKldYBgGS8EPTHbRwiItI8FKRERKTVc0fWJcU1SKVmEjYN64Z3X9zGISIizUNBSkREWr3kUKQilZwZtzGkJLsoI9m6EdkgWERE2i4FKRERad1Mk5TIuiR7SmbchpGSZKfETAUgWLk3buMQEZHmoSAlIiKtW9BLEkEAklIz4zaMFJedEqwg5S/bE7dxiIhI81CQEhGR1s1bAkDINHClxK/9udNuo4Q0APzlxXEbh4iINA8FKRERad0iQaqMFNxOR9yGYRgGFTYrSAUrNLVPRKStU5ASEZHWLRKkSs0UUuIYpAAqbekAhBSkRETaPAUpERFp3TzWNLoSUklOssd1KF67FaTCHk3tExFp6xSkRESkVQuW7wJgr9mOZGecg1RSZI2WpySu4xARkaanICUiIq1aoLQIgD20i3tFyp9kbQhs04a8IiJtnoKUiIi0auHy3QAU044kuxHXsQQiFSm7b19cxyEiIk1PQUpERFq1cIUVpMpt7TCM+AapkCsTAIdfU/tERNo6BSkREWndKqzNb8sdmfEdBxByWVP7kgKlcR6JiIg0NQUpERFp1QyPVZGqbAFBynBbY3ApSImItHkKUiIi0qrZPdaeTT5n+ziPBEixxuAw/RDwxHkwIiLSlOIapL766isuvfRScnJyMAyDd999t9rjpmmSl5dHTk4OycnJDB06lJUrV1Y7xufzceedd9KxY0dSU1O57LLL2LZtWzM+CxERiSeHN7L5bUqH+A4EcLjb4TcjnQMja7dERKRtimuQqqio4KSTTmLy5MkHfXzChAk88cQTTJ48mQULFpCdnc3w4cMpKyuLHTN27FhmzJjB9OnTmTt3LuXl5YwcOZJQKNRcT0NEROIl6CMpWA6ALa1TnAcDKe4k9mCtk6KiKL6DERGRJuWI58UvuugiLrroooM+ZpomEydO5IEHHmD06NEAvPLKK3Tp0oXXX3+dW265hZKSEl566SWmTZvGsGHDAHjttdfIzc1l9uzZXHjhhc32XEREJA4qrWpU0LSRnJ4V58FAitPObrMdXY29ENkoWERE2qYWu0YqPz+fwsJCLrjggth9LpeLIUOGMG/ePAAWLVpEIBCodkxOTg79+vWLHXMwPp+P0tLSal8iItIKVUb3kEojM9Ud58FEg1S0IqUgJSLSlrXYIFVYWAhAly5dqt3fpUuX2GOFhYU4nU7at29f6zEH8+ijj5KRkRH7ys3NbeTRi4hIs4isQ9prtiMr1RnnwUCq01ElSGlqn4hIW9Zig1TUgZsrmqZ52A0XD3fM/fffT0lJSexr69atjTJWERFpZpXWHlLFpNO+BQSpFKed3dE1UpraJyLSprXYIJWdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZiDcblctGvXrtqXiIi0QpEgtcdMJyulBQQpl4PdZuQ1RRUpEZE2rcUGqV69epGdnc2sWbNi9/n9fubMmcPgwYMBGDRoEElJSdWOKSgoYMWKFbFjRESkDasyta99alKcB6M1UiIiiSSuXfvKy8v58ccfY7fz8/NZsmQJWVlZdO/enbFjxzJ+/Hh69+5N7969GT9+PCkpKVxzzTUAZGRkcOONN3LPPffQoUMHsrKyuPfee+nfv3+si5+IiLRdZuUeDGAv6S1ijZSm9omIJI64BqmFCxdy7rnnxm7ffffdAFx33XVMnTqVcePG4fF4uO222yguLuaMM85g5syZpKenx77nySefxOFwMGbMGDweD+effz5Tp07Fbrc3+/MREZHmFSzbRRKRilQLmNpXtdmEWVHEoVf0iohIaxbXIDV06FBM06z1ccMwyMvLIy8vr9Zj3G43kyZNYtKkSU0wQhERaclC5VaQqrBn4E6K/wdoKS47e6JT+yr3QigI9ri+1IqISBNpsWukREREDsessJpNBN3x34wXwOWw43NmEjINDMxYMwwREWl7FKRERKTVsnusoBJO6RDnkeyXlZ7MXiJT0NW5T0SkzVKQEhGR1ikcxuHfB4AtpWN8x1JFh1Tn/s595QpSIiJtlYKUiIi0ThW7sJkhQqaBvV3neI8mpmOaiz2xvaR2x3cwIiLSZBSkRESkdSrdDsAuMslITYnzYPbrkOba3wJdU/tERNosBSkREWmdSncAUGhmkdUCNuON6pimqX0iIolAQUpERFqnSJAqMLNo3wI2443qmObaH6QqtCmviEhbpSAlIiKtU2RqX6GZRVYL2Iw3qkOas8rUPgUpEZG2SkFKRERap9ZQkSrfGd/BiIhIk1GQEhGR1im2RqoDWS0qSDkpMCMbBJdsi+9gRESkyShIiYhIq2RGpvbtMLPITGk5zSY6pLrYbkb2tfIUg68svgMSEZEmoSAlIiKtj2nGKlJFRkc6pLriPKD9MpKT8NpS2WemWnfs2xrfAYmISJNQkBIRkdanci9GyAeAmdYFu82I84D2s9kMslKd+6tSJQpSIiJtkYKUiIi0PqXW2qNdZgYdMtLjPJiaOqa52GZ2sm7s2xLfwYiISJNQkBIRkdanSse+rhnuOA+mpg5pVSpSClIiIm2SgpSIiMSVaZr8c84G3llcjw53VfaQ6tKu5QWpjmkuTe0TEWnjHPEegIiIJLb3lxXw6MdrcDpsjDr5KGx1We9UpSKV3QIrUh3TnGzR1D4RkTZNFSkREYkbjz/E3z9aDYA/GKa40l+3b6yyh1TLnNrnYltsap8qUiIibZGClIiIxM1zX/7IjhJv7Pbu8joGqchGtwWtYWpfRREEPPEdkIiINDoFKRERaXamaTLps/U8/fmPADgi0/l2lfnq9v178wHYanYiuwUGqQ5pTvaRRiXJ1h0l9Vj/JSIirYKClIiINLuX5ubz+Kx1ANw65BhO65kFwO7yOgQpXzlGpP35BjOnRa6ROiozGTDYgTr3iYi0VQpSIiLS7P5vobVu6J7hffjjRcfTKd0F1DFI7bGqWLvNdpCShTvJ3mTjbKhu7a1K1JZQB+sOde4TEWlzFKRERKRZbd1bybqd5dhtBtee1ROw1hQB7KpLkNq9HohUo1rgtD6AFKdDm/KKiLRxClIiItKsPlu9E4BTe7QnIyUJgI7pTgB2l9Wh2cRua0rghnDXFtloIio3K5nNZmfrRiT8iYhI26EgJSIizeqzNUUAnH9C59h90YpUnab2RYOUmdMiW59H5bZPYa3Z3bqxc2V8ByMiIo1OQUpERJpNuS/I9xv3AnDe8V1i93eqT5CKrJHaYOa0+IrU2nCudWPvRvBXxndAIiLSqBSkRESk2XywdAf+UJgeHVI4plNq7P46V6TCoViQ2thCO/ZFdc9KYRcZlNoyABN2rYn3kEREpBEpSImISLPYtLuCv36wCoArT8vFMIzYY9E1UnvK/YTDZu0nKdkKQS8BHGwzO9GlnatJx3wkctunAAYbjMj0vqJVcR2PiIg0LgUpERFpcpX+IHe8sZgKf4jTe2Vx80+PrvZ4h1QrEAXDJvs8gdpPFGnasJkcwtjolNZyK1K5WSkALAscZd2xU0FKRKQtUZASEZEm5QuGuGXaIlZsLyUzJYmnrjoZh736y4/TYSMj2ergd8jpfZFGE+vCXQFi+0+1RF0z3NhtBitDkXVSO1fU+xzlviCfrd556CqdiIjEhYKUiIg0qfveWsbX63eT4rTz0nWn0jUj+aDHxTblLTtEkCpYCsC6sFXl6ZDmbNzBNiKH3UZOpnt/w4l6Tu0LhsJc//J8bnxlIS/NzW+CEYqIyJFQkBIRkSazrbiSd5fswDDgxWtPZVCPrFqP7RgJRYfclHfLdwAsCvehfUoSSfaW/TKW2z6FdWY3TAyo2AXlu+r8vc98sYGFm4sB+NfcjfiD4aYapoiINEDLfgWSZqEXZxFpKv9dsgOAM3t14OxjOx7y2P2d+2rZlLesEPZtxjRs/BA+NnZ8S5bbPgUPbkrc0XVSh5/eV+EL8swXP/L059Z6MHeSjZ2lPt5bav1Zevwh5qzbRUnlIdaSiYhIk3PEewASXxM+WcPL3+Qz47azOaFru3gPR0SamGmavPDVRjJTkrjytO5Nfq13Fm8D4GenHHXY4w/bAj1SjSpN7025J6VFr4+K6t0lDYBVHM1gtsHW7+GYc2s9vtQb4NJJc9m8x9pz6opTunFM51QmfLKWpz9bz6LNe/lkRSHFlQEuOLELL1x7arM8DxERqUkVqQT3/rIdeANhvt+4J95DEZFmsHx7CY9+vIb731lOpT9Y4/FAKIxpNk5jg+XbS9iwqwKXw8ZF/bIPe/xh10ht/R6A7eknAbSKitSlJ+VgM+C9sj7WHRu/POTxX6wpYvOeSjqmOXnyypOY8PMB/PKMHqQ67WzZW8kb87dSHKlEfbG2iJJDdTgUEZEmpSCVwPaU+9i61wPAtmJPnEcjbcEb87dw7cvzD7+pqsTNh8sLAAibsKGootpj3kCIi576moue+ppQI3SJe2fxdgAu6JtNujvpsMdH10jtKKnl51GkIrXe1Rdo2R37orq0c3Pe8Z35JmyNmW0LwFdW6/Fz1lprqH4+KJefDeyG3WaQkZzEc78axG/O7smd5x3L878aRO/OaQRCJp+v2dkcT0NERA5CQSqBLdtWEvu9gpQcjmmaFJV6a318d7mPh99fyVfrdvHiVxubcWRSV6Zp8lEkSAGs21n9Df3HKwr4saicNYVl5O8up9If5N/fb6bUW/+qh8cfik3r+/mgbnX6nlO6twfg2w172BKZ2hbjr4h17FtmOx5oHRUpgCtP685Wswvb6AzhIGyed9DjwmGTOeusIDX0uE7VHjunTyceurQv91xwHCP6ZccqfJ+sKGySMXv8IX4sKm+Sc4tI21LiCbAnQT9AVZBKYEu27ov9ftu+ytoPrIcV20soa8CbLmn5Xpqbz+njP+PuN5fgDYRqPP7i1xvxBqzGJa/P30KFr+a0MTm895fu4LevLmRvRS0NF47Aiu2lsSo0wLqi6kHq9e+3xH6/ckcpkz//kQdmrOCZz3+s97XeX7aDUm+Q7lkp/PQwTSaiendJ55w+nQib8PI3B7T73jofzBC0O4p13kygdVSkAM49rhOd0118FYxUpTbOOehxK3eUsqfCT5rLwaAe7Q95zgsjQWrOul38+qXvOe2R2Tz2yZpDftgRDIX5x6drmbt+92HH/MhHqxj2xBy++fHwx8ZbY01FFZH68wfDjJz0NedM+ILVBaXxHk6zU5BKYEu37Yv9vjEqUv+3cCsjJ83lwf+uPOJzJYLd5T6mfbf5oKGkJfp8TREA7/ywnatf/K5alWJvhZ9p324GINVpp8wb5K1F2+IyztbMNE0e+XA1s1btZOo3+ZR6A9z86kKmHhgqGig6rc8ZaRm+fuf+isP6nWUs2FQcu71yRynfRtZOLt5STH39+zvr38M1Z3THZjPq/H03//RowPp5sq+ySphc+Y716zHnsbvC+rfXsQXvIVWVw27jtF5ZfBPub91RyzqpL9da/8fOPrbDYdu6n9i1Hd2zUvAGwny9fje7ynw89+UGxvzzW4Khg3di/XB5AZO/+JHfvbaI4sME9Xk/Wn/3X9chdMXT1+t3cfJfZvHv7zfHeyjSQN5AiPzdFYc/UABrJsEPDfiZ3FQ+X7OTrXs9VPitjder/dxOAApSCco0TZZWqUjtqwxQfgQVhBJPgL9/vAaA79S4ok4mfLKGP7+7gue+3BDvoRxWOGyyfLs1FdTlsPHDln2Mnb6ELXsqufv/lnDOhC+o9Ifom9OOcSOsaVdTvskn3AjrbBLJ8u0lFEYqCm8v3s6/vtrIzFU7eeqz9Y3yqfvMVdY0sKtOtzaIrTq17435WwGr1TbA4s3FrIj8na/aUVqvv8vl20pYuq0Ep93GL+o4rS/q7GM7cHx2OpX+0P4wHvDCyv9avx8whl2RZhStpSIFcFRmMvPCJ1r7SRWthOKab/yj0/qG9Ol82PMZhsGvz+wBWBWviVeeTLrLwaY9lSzbXnLQ74muvyrzBZn8Re1VRm8gxKY91hvbVYf4hDnelaAKX5D73lpGiSfAf3/YEdexSMM9+tFqzv3Hl3WqlLYUpmny7+838/D7K1m0ee9B/y+Ypsnzczbw6rebGu3/Sjhs8st/fc+V//yObcWNM5PocOZt2M34j1bXut3Cmwu2xn6/ZW8l1748P/bakQgUpBLU1r0eiisDOO020l1WF/ztDahKhcMm+bsrePSj1bGpSAUl3oT7RKIhvtu4F9hfJViwaW+1cFvV1r2VbN3bPD80D2bTngrKvEFcDhvTbz4Tl8PG52uKGPqPL3hn8XbKfUFyMtz8bVQ/fnFqN9Ld1hu6bza0nhfGlmDWqv2NA7bv8/BsJGQXVwZq31upjorKvGzcVYFhwI0/6QVYlejoFMxPVlj/Dm8dcgwACzcXEwhZL/4V/hCb6/Hv77NIA4ThJ3ahQz3XMRmGwS9OtYJerBqyfib4SqDdUYS6n83eikiQaiVrpAByMtwU0441yadYdyyaWu3xghIPiyKfMg85YH1UbW76aS+WPDicl68/jVEDj4rt0zXvINPxqq6/Apj27eZaf6Zs3FVBNDev2lF7kPrtqws569HPDlvdaipPfbaeHSXWBw+rC0vjHuzqY37+Xm56ZSEFtTVWSSDRSvgnKwsOc2TL4A2EuOc/S3lgxgqmfLOJK577lt++uqjGcR+vKOTvH6/hwf+u5I9vL2+UBj47y7zsKvPhD4X5Ym3dN/c+En9+dwUvfLWRK1/4lqKy6lOHC0u8sZ8rz/7yFNJcDpZtK+GyyXO5ZdpCvl5vPban3MfwJ+Zw+78Xt6r/p3WhIJWgotP6TshpR4+OKQAN+nTjt68u5Nx/fMn0BdU/zT7Up5hivandEnkT82NROf9dsp0x//yWUc9+U2MaV6k3wMhJc7ls8twjqhoeiWg16sScdgzs3p4JPx8AWJ3fTu+Vxdu/O4u5953HwO7tSXE6+NlAa8+gN+ZvwTRNVmwvIVDLdCPZLxqkuma4AQhWeeFdv7P2Tm91sSDferNyfHY7enRIjTVq+LGonO37POwo8eKwGVx3Vk/sB5mKt3JH3T9hXBl58324dT61GXxMB2vMm/ZaG4Yve9N6oN8V7K0MEjbBMCArtXVM7QM4qr31c3aGY4R1x+JXIbh/cfaMH7ZjRv4/HZWZXKdzGoZBZooTw7D+vs4+1vpz++bHmrMCVuwoYU+Fn1SnnTN6ZeEPhfnX1/ubwuTvruDxmdb6qfVV1s7tLvfVePMEsHTrPmavLqKgxMtnkWm/zamgxMNLc62flYYBZd5gtSnqPxaVUVhSfdzeQKhFLIg3TZMH/7uC2at38u/vthz+G9q47fusv7foh4st3SMfruadxdux2wyGnWBVjz9bs7PadhKBUJj/9+na2O03F26tdruhqk6BnLO28f7f+YKhgzYV2lvhZ8Mu65prCsu45sXvCYTChMMm8zbs5q8frIq9D7i4f1dm3X0Ol56UQ9iET1fu5NcvzWfad5t55osNrC8q58PlBczb0LZmLSlIJaho5eOkbhmxF+36rpMqrPICekynVO4bcTzn9LY+SV1dcPA3fb5giHkbduMLto51QU1l8eZ91W7/z1vLME0wTch7fxUTZ6+LPfbFGmuvmOLKAHPX1/4JVFNMo1u4aS9rC8tiHR4HHJUBwOUnH8ULvx7Es788hem/PZNBPbKqrYO5KrLR68yVO7nt34sZOWkukz5b3+jja0u27KlkTWEZdpvBY1cMiN2f6rQDNTvsHYppmkz6bH21dWoLNllvUs7olQVAn8hGset2lrEw8ljfozJon+qkd+e02Pc5HdbLxMpDVCYOtDISvPvmNGyT7+O6pJOV6qTSH2LNmpVWRQpgwJWx1vpZKU4ch1lH1JLkZFrh+N2KAdDuKKjcDaus6YqmafJ25O/q56fUbypkVYMjFalFW4prrL2MTus7+9iO3DrUqjp+uLyQUNjkL++v4vzHv2TS5z9y1/Qfavz8Xry5mDteX1xtGvK07/ZPTfxqXfN8Ml7V6oJSQmGT47qkc1yXdMB6owfWh4KXPD2Xq1/8LvbpdzhscvWL33H2Y5/H3rgfKBw2+e2rC7nplYW1rjNrDMu3l8TGuqIeH1C0ReW+YGwvtB+LymPTdluqCl+QtyPdSJ+5ZiD/uu40OqY5Mc3qa07fXLCV/N0VdEh18ueRJwL7q/5HomqQmrdhD99t3MOIiV/x4bIjO/dtry3m9Edms3lP9bVq0bVYXTPcZKYk8WNROfM27OHlb/K55sXvYzNqrjotN3JcMpOuHsinY8+JTet+5MNVvFbl58XTbey9QOt5FUoA/mCYm19dyE8nfN7kne+iFamTumXSrX3DKlKzVlufnp/SPZPP7hnK74Yew/FdrTdOtXVu+dfX1n++l+duatjA24jo4v32KdbeOv5gGLvN4PrBPQGYOHt9rDI1s8p0r9mrD/4J1IZd5Zzx6Gfc/86yRhvj9Plb+Pnz33LZ5LmxRhMDumXGHr+gbzYX9+960EYCJ+a046TcTIJhk48j7Zk/WN6wH/QfLivg/Me/POQUo9YsGAozcfY6fvWStdns6T2z+Gnvjlx9ei4X9cvmV5F1MGt31r0V9aqCUh6ftY773l4Wm3b1fb4Vlk7rGQ1S1pvP9UXlzI8+Fqkgndh1fwC67KQcoO5BqrjCH5tudWIDg5TNZnDW0VZ1xTXnLxDyQ4+zIbtfLEi1ltbnUdEPrIoqQwQGXmfdOW8ShIIs21Zl4+L+h9+4uDZHd0wlu50bfzDMwiqNQwC+jLVV78zZx3QkIzmJ3eU+Jn2+npe/ySdsgt1msLfCz7s/WPt/Rf9rP/rxGj5YVsDjM9dSUhmguMLP+0v3r0n6ev2uRpm2VB/R7pM9OqTE/r1GX3fmrNuFLxgmf3cFmyJt9N9ftoMftuzDGwjzbS2fiG8r9jBr1U5mr94Ze7PcFKquKVmxveSwU50qfMGDbp7dUsxcWcjPnv2m2tTRujpwSUH0Z1FDLN5S3OSvEx+vKKTSH6JnhxQu7Gv9X43+LF0bCceV/iBPRcLCXef3ZnRkhsamPZWUegPsKvNV65pcH5uqBKlKf4gbpi5gTWEZE2eva/CUufU7y/hsTRHeQLja9HLY/17lJ8d2ZOSAroDVWTb6Qcp5x3fmH784iVEnH1Xt+47LTuexKwZw9rEd8AbC+ENh+h+VgdNu4/v8vW1qLb2CVAvidNhYtq2ErXs9tVZ06sI0Tf5v4dZapwIFQ+HYVK2TcjPp1r5hFanof7jhJ+5/4T+xq/UDpbYgFV2AuGhz6yjhN5VFm60fTrefe2xsGtWYU3PJu6wvdw/vA8DDH6ziv0u282WVaTNfrCmq8YbFNE3+/O4KdpX5+HBZQaPMP/5g2Q7+d8ZygNgbEoAB3TLqfI6rI59QGYb1hmzjrooGrfN65dtNbNhVwUtz8/EFQ9w4dQH3vbWsRc2zLipt+LrAmat2MnH2erbsrcSdZOM3Z/fEMAweHT2A5341KBZG6jO1Lxp6QmGTmasKKakMsKbQuu+0XlZY6h2pSC3YtDdWrTo1ErKi13Q5bIyJrFeq6xuU6LV7dEip0ya8tTnzmA4MMtZy3K6ZgAEjHgVolY0mADKSk0iJVBd3HD0GXO2gcBnMezpWObywjhsX18YwDAZHp/dVWZ+4r9If+2R5yHGdcDpsjIi8CZw423rDd80Z3bmkv/VGKdrwJLrmanMkjATDJrNX7+StRdvwBcMcn51OustBcWWg3ovLvYEQD8xYzqMfrW7Qc43+LMnNSuGEA4JU1ZbtCzftJRAK88Ss/VX+2sa6cff+DyuenLUej796Ve+5LzcccWXd4w/x3pL9IXR3uZ+dpbVXYbyBEBc8+RWXTprbpFWy2lT4guS9t5Lva3nju2DTXu54/Qd+2LKP3722qNbX/qnf5DPqmW9qtOfffsDWK7W9wf5iTREvzc2v9ed+YYmXq/75HVe/+J01HbiJvLXICsE/H9QtNqX2uOzqFdGX5+azq8xH96wUrj69O+1TnbEPUlbtKOXW1xYx6plvGhQm8ndbf16uyEyBysi/0fVF5axt4PTvqsH+wOmV0fcqg3q055L+1odqM37YzuY9laS7HEy+ZiA/H9TtoB+o2mwGE35+EukuB4YBf7m8L7841apSRbv8tgUKUi1MdCpMfdYjHGjWqp2Me2sZo575JvYGCWDjrnLW7yxj3c5yvIEw6S4HR3dMrVKRqnuQKvMG+DbyQj38xC6x+6MvaOt3lh/0h37008HoD5xEEwiFqfAFY0H2/BO68KszunNs5zR+f35vAO4871iuPasHpglj31xChT9E53QX6W4Heyr8NT7Jem/pjtic41Jv8IiaEhSVefntqwu54/UfCJvW3220VXaK087RndIOc4b9Rp/SjZt+0ovJV58Se4P+ZR3ndM9dv5s1haVW6I9MK5y9eicfLivgszVFvLlwa4M+/WwK2/d5OO/xOfzs2XkNeqMT3VD1ilO6sehPw7mgb/WKRO/O1ov0up1ldQ6PVUPPh8sLWbh5L6ZpVSw6p1tTzIYe1xlnpAPjuki167SeVsj6ae9OOGwGw07oQv+jMrAZkbUyh9ijKCr6s6uh0/qifto1zISkFwAInvwr6HoSQJWKVOtZHwVWyIm+mdriT4OLHgPA/GI8KxfPBYi9yTgSP4mEny+rLESf++Nuwib07pwWG8MlkU+XwapE/W7IMZx/QvVugQd+ygzw7pLtvBhZW3X94J6x4Faf6X2V/iA3TF3Av7/fwj+/2tig9blbI9+T2z65WpAKhc1qazAWbS7mPwu3xcIg7F/zeaCq06YKS71Mmbd/veqqHaU89skaHp+1ruZm0fUwc1UhZb4guVnJsSm0hwqhy7aVsH2fhw27Khr8Rrk2W/dWcsPUBdVC5oHeWbyNqfM2ce3L82NTgKOKyrzc/OpC/KEwKU47lf4QN72yMPZ/dP9z2MdfPljFkq37+O+S6t0VoxWp5CTrQ4bv82uGi1JvgNv+vZi/frCq2gyNqr5evwt/KEyJJ1AtzH2/cQ9Pf7a+Uaa+b91byXcb92IY8LMqU3CPjwSptTtL2Vvh5/k51v+Pey7oE5sa3e8o69/oF2uLYuGkaoCp6lBLH6LdNKPrkAF6drDew723pP6dK33BEO9EKtAA8/P3xD6sDYTCLN1q/dsc1KM9p/fKolO6K/b45QNzSHE6Dnn+ozKTmXH72bx161kM7N6eUZFxf5+/p0V9GHok2kyQevbZZ+nVqxdut5tBgwbx9ddfx3tIDbI/SO3/QTDt202c+rfZBy15b95TwfiPVlfr/BPt5FLhD3Hdy/OZ9+Nulm7dx0VPfc2lk+fGWiAPyM3AZjOqVKRqf3HwBUP8Zsp8Lnrqa3732iL++PZyAiGTozumcmyV9RS57VNIddrxh8JsPGBfCNM02RL5IbCt2HNE0xc/X7Ozxewb8tTs9Rz3p48P+4lsUamXwX//nJMenok/GCYr1UnPDik8fHk/Zt89hOxIgwHDMHhw5ImcdXQHoj9nLujbhSF9rPVnn63e/0ISDIV59KM11a6zYVc5RWVePli2o9Z2pQcTDpvc9tpiZq3aicNm8Nuf9uK5X57CLUOsfX0Gds88aBOC2jgdNv408kQuGdCVc4+z3qDVpcvQ/Py9/Oql7/nVv+azuqAMT2StR4knwN8+3P/p9ZOzD90S3BsI8fHygiNej/ePT9dy5xs/xKbWbCuurPaJ59Rv8in3BcnfXVHvPXf8wTBfRCqO15yRS6qr5ovS0Z1SsRlWSC6q4/qBqkFq3o+7YxvtRqf1gfUCd+s5R1e7TrTD3nHZ6cy97zz+8YuTSK4SoOsyvS96TN+culcvaygvoseH13CMrYAdZhb3F4+KNVpZGgnW2Rl1a8jQkuREQsyOfR446WrocxFGOMC/jL8yusOWWAg6EkOP64zdZrC6oDQ2DSgaqoZW6QY4+JgOsanFPxt4FLlZKQzt0zn2fzwzJYlz+uw/Prqo/uv1uykq83FUZjI/O+Wo2DH1+WDjD28uqRZ2Fm/ZV+/nuSUyta97hxROiMyE2Ly3kgWb9rKvys+9BZv2xppq/PIMa+3mqh2lB52KGP3zir4xffGrjbH/92/M398U4mDrmp6YuZb73lp22A9TPl5uvf5eftJR9I9U+GsLdgBLtu6forl4c829g/5vwdYGvRZ+t3FPbNr2pM/Xx17/o+uVohZGrukLhrnxlYXV9i+avaqI4soAvTun8dk9Q+jZIYXt+zz87rVFsZ+7/mCYcW8ti3WBPDAoRT/AvbCv9YHsup3lNZqb/PeH7bHXgVfmbTro85lbpQoZXboQDpv8fvoSnpi1ji8aoTHDpyutv7vBx3So1hDmuGzrfdvawjL+OWcD5b4gfXPacemAnNgx/SI/D6s2F/lkRWGNBlJ/enc5p/xl1kGrVaGwGQvxN/20F5f078r/XHgc91xwHGBNX31v6Y7Yh3MHKijxsKzK/qFgffC+t8JPl3Yu0l0OSr3BWBBdE3n9bed2cEynNOw2g4v77f+gL7oW+nCO7ZzGoB7Wa8+Abhk4HTZ2l/tjH1wEQ2Hy3lvJi19tPNRpWqw2EaTefPNNxo4dywMPPMAPP/zAT3/6Uy666CK2bGl93XD6RhbzR9+MrNhewsPvr2J3uY8Jn1R/wxwOm9z5xg+88NVGbnplId5ACNM0Y58M5mYlU+kPcd2U+fxm6gJ8wTDeQDjWUjm63uWoSJAqrgxQ4gnE9piqulh5fv5evli7i9UFpXy8ojC2wLBqNQqsUm5t66T2VPipqDJVouri+a/X74otAC71Bg45f7i4ws+try3mgRkrDrkAf9WOUn4satrKVzhsMu27TfiCYf6zcP+nS0VlXm6dtqjadIgJn65lV5kv1ontJ8d2jE0NOJDDbmPSNQNj3dtGDshh2AnWn3XVOczzN+2lsNRL+5SkWKezDbvKeWDGCu54/QcG//0z8t5bWacK5/QFW1m4uZhUp50P7voJD1xyIg67jbvO782jo/vzt1H96/mns1/0Ddy8DbsPuwFxdCHq7nJf7JPvqL0VfmyG1R1y6dZ9h3xxfOi/K/ndvxfzl/dXNXjcM1cWMvmLH3l/6Q7+9O4K/t+na/jJY1/wk8c+Z9Jn6ykq9TJ9/v6/97fqua7i2417KPMF6ZTuYmDuwTvcuZPs9OyYCtSt4UQ4bMa6ZmYkJxEMm3y2pgjDgMtPzql27O+GHht7Q3Baj6xqj2VnuEmOTEXb/4nr4a+/4kgqUp598N3zMPlUjKJVeN2duDb4J/6z1scvnv+WdTvLYm8Somu3WpNokNq+zwuGgX/kJFYax5JllPP/PH/G+PQBKD2y/ZCyUp2xnwUfLi+o1va86v5UDruNey44jkE92vOHyHTijJQkTo2sk+vTOZ1O6S5Oys2kQ6qTR37WPxYwwKqcuxz22Ac8i7cUs7OOFctPV+7EZhBbB3ewgHAopmmyLTq1r30KHdJcdE53YZrEQtMp3TMB2LCrgo27K0h3OfjjRceT6rTjCYTYsKvmmsPoh3+3DDmGnh1SKK4M8Mb8rVT6g7F1Y1Az+BSWeHn68x95c+FWvjpEQyCPPxT7uxjRLzv25vpQP5+jFQHYH2qiNu+pYNzby3hgxopat844mKJSLze9spDiygCGYTU5+r+F23j4/ZWc/JeZ/P3jNbEKTnSNTOd0FyWeAL94/tvYn/Gqgv0zK7pmJPOv604j3e1gwaZiHnx3JWA1JVlTWBarzHyfv7daiN0Wed3vd1RGbOr4zJX7X+Os/Zr2v5ebt2FPbC1S1WOqTudcEgnmS7fti01TrW3KYX1E35ed2atDtfv7dEnDMKxpmtG1Q38Y1qfadLe+kYpU1eDkCYT4qMraYX8wzDuLt1PhDzF2+pIa2wrs2OfBHwrjtNvo1TGNZ355Crefeyznn9CZ5CQ7W/d6uOuNH7j1tUWxqdxRpmnyq399z8+enRf7tx8IhXkqMrV3zKm5nBZpRBQNcQsjSzBO6dE+9lyuGNQNu83g9F5Z9Duq/h+WuRx2To6894zOmJq9eidT523i0Y9X1wjyrcGha3KtxBNPPMGNN97ITTfdBMDEiRP59NNPee6553j00UfjPLr6OTlpCwOMDdiLDMrznTz31nJONCvBAP8WWLXQF1tY+9mqnbD9RwYYQAG8+MYORg/qRoeSFWQ7bEwZfSrPzymwfsBUwonJDsq8QQgBBpyTkgTbKmgHXNx+O9v3eXjrv5WYWIsJRw7I4bc/tT6x3r5iCycbW+h3VAZn9MqioMSDNxDm18cWw7aF1Z7DhRlbCRmFFK2ugI77P/HeVVjKycb+TSB3rQ6BrSsrC0p5YsZycrOSeeqqgTz14SoWb97Hg5eeeNA3l18t3U7f0CYwYPty6OHpwKcrCji9Z4dYVWdXmY+81xcTDIe5sG82lw7IIbud+6DzeA+qjiXnH4vK6F6xgu4G7Fq1BXNgOQYGn83fQtGqbby39wfO+Fl/1heVkr94OYMM+J8Lj8NuMzghuwK2fFfruTsCH41KYtu+AP0d6ylPC3KGYx2hXWG2LQ3SLTOF1d9t5FSjkHO7dybNtQe/sQPfhhK8G3ZxqhGEAKz4diUrvoXMFCe57ZO5sG82Zx5d9YXApLjSz8yPl3CaEeL603pyvG8FRD7kTAKu7gJUbIO6bD5/kD+74zEZkbaBvRV+Vn8XqjU0rN1Zhn/DCk6P/DUVLV/NGQYc3TmVjUXWxQd2z6Bb+xTeX1rA2+9s4JSf9Sczufq6km3FlWxevIwzDNi4cDUFR++0Qulh/l5XF5bRMc1JpzSX9eZpxjLOtFkvZjuWrGIHcKYNqIB5ny1m4Zc2+oXCpKckUeYNULpqNeWr95HmrtuP1vXf53OWbSfnd++CbdNXtR53adp65u8ppmx1OWFbF95evI19niC/GdwTh83AxGTzHg87S73kZiXTP7AMZxJc1jeHtxdvx24Y/G7oMQy2rYAq2TQZeOmcCt5etI1f9TCglvbDw5zbKLZtw9xQAN1q/4DKEwiRs2chXW1wciAJNtSy3scMg7/cCk7efVZ42LnS+v8QjryQZvfHfcXLPFbZiVumLWR1QSk/f24eobDJT3t3bHAji3iKVv93RN48fpof4H88D/Bc8vOcG/4evnvG+sruDzmnQPuekJIFrnRwpkNSsrXoEAMMW83fR27/Kncv+37cyLofdpKftYPs8tX0dNo43dUFtu//+/tVLvwq1w0Vq2P/t2/otY/KTRu5vHMAti/mP5e6CISSSC1bxXU9i3ln73ay27n5edds2L6bbsCVObtYVVDG3Dlhrjil5nTAqj6cuZb+xm7O6dOR03s6KM/fSNmGItjui7yxLLQ29TyrBx1qaW9f7g3S078ODMj1doHtNi7uUMCi8n3sXLOR/gZc37MXncsKrNAKXHp8V9L3LOfSTjtZuaOUrSvs9AlWn8roLFpKf8PHAFsq95/kZfIXG/n6y21kFufQ078JIj+XKvL3wvb9MziWrtxJf8P6jzX/mxLOSz/+oONesnEPxwbX07mdi75swHCX0t/YSHDrNthuP+j3eDcvpL9hVaLL87fD9v0/w75dsJX+hvX3+emsUk660KpMrCwo5bPVO+mY6qJftwwGHJWBP2Q1IDm+azqvfbOJXv5d9OmSxkX9s3nqsx/5fu5mKv0h+gHffLWRiUVLuH5wTzKLV9LeBv/6+alMmbuLuT/u5r8fbeAnqf+/vTuPi6rc/wD+OefMPgPDMizDvgoqKAJq4IriSql5UzNztzK1NNtvZbd9sW67duuW2aZtVvdnZZK5ZZkr7ksiKgqKys7ArM/vj5k5MgLKIDho3/frxesFZ86cjWfOme+zfJ8uqDt+FMlcNTKUUuCUAXEAPhoswdMrD2P/9qM4EleOrb8fQjJXh7t6xeCTzcdhMFpRsFuJOEcrt6JkF5K5anRiUvhGGvHRqWM4sO08EJ4EwP5MkJ7ZjTQJh86hWuw8UY7cX2qQkBUnXodj52ugrzkIveP/YzheBJyyIe/PY0jm7AGw4VglcMr9itXDZ6pRbbQgNcIH5hM7kcwZ0FMhd9mWCsAgbRGKK+oAs70SaoD3KeDUheA7hTeJZQSwB/o7TpQjb/M5jNXbKykPnCpHrPkvezmrAhZ9fhqPDe8ovudcYTmSuaMI0yogFO902f+cRHslkzMwPrDNBkmYFk9+vw9j0sOQFKqF6twedAJwNI9DbKcg/JB3Coqzx9BLKcGdsQHINZ3BWe4Yig+UgcWUI29zHpK5GtykswGndgAAunDAhgk+8FEJ4jJ33RhwGrXHT6L4QDUQcg4b1+1FMmcPyg9uX4+eiVGALu7SG2lHOHaNd1I0mUxQqVT46quvcPPNN4vL586di7y8PKxfv77Be4xGI4zGC11kKisrER4ejoqKCnh7e/bhzBbGgatpH2M/CCHkqtMlAD3vBNKmArz9y+WWglKMf3+zWJP98bQeLt3OWoPJUId3nvsYADD7sUmQqRStun0A+HbnSdz3xS5kxPhj2Z034NEVu7FsSyHu7BONfyYUARteBU783ur7JYSQa0bsQGDiCk8fBSorK6HVai8bG1zzLVLnzp2D1WpFUJBrF7OgoCCcPt14P9EXXngBTz311NU4PLdx3iE4W8e7jOvwVckgk/Bit4lALwVqzVZU1Zkh4XkEectRVWdxmUzNWyGFt0Iq1qA5VdVZUG4wQ+A5cV4Tp/M1JhiMrt2ugrQKSAUOp8prwWz2v2WXmbvFxoCT5QaA2buy2BgDwKHWZJ8vguc52GwMcqmAIG8FTlfUwegYc+KsTQEAqYSHr0qKkkojOM6epYvjOJypN8miQiqA5+yZaxg4KKQ8grwVOFdtRI3RCpVcgM3GYLTYXBojBJ6DRODAGKCUCdAqpeABMNizFAGAWiEFB8BsZThXbYTJYkOQtxwWG8PZKiMEngPPcTBbbeA4Dowx+Kll8FZKcfy8QRy/46OS2TO6cRzCfVWQuDHO6GJVRgvOVhkhkwjQeclxqqwWPAdE+qthtFhRVH7h2qhkgtg10MYYTFYGg9GC8lozGAMkPAd/jQwcgNOOrFFhvioxG9AVaaTLYp3ZipNlteA4e3eckiojlFIB/o6kAeUGM85V2//XYb4qnCwz2OfWAodonRomqw1Giw0+Svv/xWS1obDMAJvNnnjAV2XfTo3JIl6HYK0cpyvs5xbhpwLP27tVqWUSBHjJYbTYUFlnhtlic+lyEaVT42RZLSxWG/Q+SmjkElTWmiEROKgdg2ttjKG0xgSLDQj0lqPcYE9rK5fyiPRTX/zRa6DWbMWJUgN4nkNsgBo8uEavG2DvQ36i1ACT1bXeSypw4DgOJovN5bMD2Lv16VtpHJHJakP+2WpwHIcOQV44V22EXCLAWylBSaURVXX2wfNljtTYWpUUIZfbt9wLUGgBhQ+gCQACOgJh6UBAQoNVe0T74cEhCXjxp4PoqPdGn/grH0vkCc5rUuQY07rT0QUpNdIPiOsExGUD1SXAsY3A2UNA2TGgrgIwVgOmKsBcB8Ax4RyYvWWvwe9256qNqKs3ls9HKYWmkTF4rcHGGIor6sAA+KtlqDVZYXB04fVTycRsheW1JlQbrVBIeOg0cjAwnK6og5XZxxnYYL8vgQEWxiDhOQR5y8Fd9GmqNVtxvsYEucAhwOvCc4yBwez4jMgEHgaTBaUGs7g/AOIymcDZnymObZutNpypMoIHoPdRgAOHGpMFZQYzBM4+5tNHKcPpSvt5BnvLIeF5MMe52wAIHGBl9mutkgkocXTl5jlAJZPAYLTABiBAI4NcYr8mZ6vqYLQySDhAEHjxWQjYH98MgJTnAM7+LJLyHMw2BrnEvi7nOFej1QaNXAKNXMDpSiM42BM4GOp1pXZuD7DPT+e8Z1bUmlFltEDggCBvBarqLKiqdz+sv26N0YKyWrN4rvWvl5PJYkNJvYQTzvdX1ZlRUWeBUsrDXy0HYwynHM9zvVYBgeNQUlUHk5XBRymFhOdwrsYEDvbnv1TgxPKiU8sgl/CoNllQY7TCYmPQKiUuv1fUWsRz5mDvnniu2giJwMNHKYX0Mt9l6sxWnHN0r3Mm0xA4e4vTxWWystaMSqMFPOyv843cy52fSef5n60ywmi1iZ9N57n7qaSoNlrE32USHuUGM6w2BrONwUsugVbZeGu/yWpDiaMcg4M4Nq3+/14u8FDIeFTUWlw+BwwMJVVG8TMEABqZAB9V6yb2qX+/UEh41Fls4B3HKhU4BKlbt5KsrV3zgZTTxWNNGGNNjj959NFHMX/+fPFvZ4tUu3DXBrz3w368v9GeLSjAS47f7s+CVCLghc924Ic9xegR4ocDxZWoMlqwaEIqhifrobExzPt4mzjfz8o7ezfaf1VisuK9Hw8gM9YfIcl61xerjbjvk+3oqPfGqfJa/HqwBA+lJSC7YxAGv7YBSqmAPfMGA5e5+fAA7nlnE3YVluOujjH4YGMB5BIeN8T4Y83BEoxMCcH3eUXw4iTYPHMgej+1Whw35MIEDIwIxJpz9nOSW3lIeA41Jiu6hGmx+2QFtIIUPAeUmcyQ8BwsJoYHeyfg/Y1HUW4y45vpGUiL9IPZasOWglIs23ICvx4sgaGuXsBoACJ4FXK66JF3ohx/FNv7Bw9LCkaQtwJfbC0UB7oGGeUwWxlKTRf6LnMccFffWLy7Ph99InW4f3ACRr2z6cI1t3Cw2BiGJQVj8e1pl7x2l2OpMWHQc7/AamLoGxaADWfOIqeLHu/clgpDtREDn/1FXHde33jMy+4g/k8Ujp9TJytw/1d59kxt9YY0TO8dLU4c2BbkjGH26xtx6EwVfCqlKDeYIZPw2PvAEOwrqsCYd/+Axcbw1IjOmJwZhec/2oo1B0sQ6qPEpnsHQAJ7FwYnGYDf/ziGJ77fh1SND1bM6oW8wnKMf28zas1WTMqIxNMjk/CI43MzWh8KL4UES4uOg6sFVk/tixkfb8PxeklWfFT245oQHoHPik5AIeWRd89gcFIBF3+aeNi7XzpxNSaMeGENjDU2fD0xQ8xU+NOeYiikArISXbsRvfbjAby34ShGpoTgjVu7XfLaSQD4G8yY+8VO/H7kPJ64qRMWrT1i70oCIMhbjh/u7YN7Pt+JPxz9258aar+OrUGwMYxasApGiw2PdE7Eiz/Zx2tG+atwzHH9RgWEYEtBKYpMdfjvrekIuWj85JW6q28MEoO9kBDs1eS9vb1zjkctLq9DVZ1ZHPPWzTGeBwCgCQSS/nHF+zqcfw5Pfr8PZqsNwVoF3r09DWjlL0ROPIAXPt+BlbuLgYvyodzaJRwv/qML6sxW9Ht+DSqMZnx0W3f0TwgEB+CpT7ZjlWMQf7C3Ar/c3w9VdWYM+/cGVNVasHJGbyQEeyF3/xn0TwiASibBx+vz8cJPBxt8djjY7wtOSsZw5PBZpEb6Ao608kUl1cj+t72nSqAgx1MjOmNYsh6/7juNuz7Zji5hWvxvTm8AgBoAM1qglglimbvzzY3YV1SJd4ekYmiSHr/9dRYTP9iCQC857uoXi2dW7kewXIEkf2/8UlJyoYLDca8N9lZg0/0DxEm6TOW1mPTBnzh61t63UiHlMaFnJFbtPS2OGx6bHgaZhMen9RIVOK9zThc9bkkLw9QlW6GBBHf1jMGruYfRM9oPX9yVgdytJ/DYt3sR6qvEB5O7I/9sNfaeqsCdfWPEawKDGe/nHsI/0sKgD/OBsaoOA15cC5MjccZLNyZjnCOxQMm5GmS9sk48jG4RPvh2Vi+X/7kMwH3v/o6tjrnMvpmWibRIXxw5UYabF/0OLS/F9nuzUVhWi6xX1kElE7DvviEAx+G7Dfl4/seDCFUqARtwyliLqb2i8ORNnQEA73y3B59uPoEJKRGoqrPgf475zCQ8h9x7+uG13MP4364iqJmAGpMV2R2D8GfBeVTVWZAdE4RfztnHX0nrOET6qxGjU+PFf3SBXyPdSJ9asUdMMiIx25/jveL88dmMGxqse/xkBW5etAmz+sdi/uCGlUEAsCnvFB7+ZjfeHZOG/gmB+GFTAf71f/uRGuSD/0xMR4/n7M/vbQ9m461f/sInm49jevdoGEwWLKs3FvfZYUni/IIXk9gYRj73C87XNJ29Vy0TkB7mh/WHz+Kx4R1xhyPpEAfAVGrAiLd/Q5nBDJ4D1s/Ngo+fqslttQQP4I43NtrH8jrK8Vvju+GeZfbuijuGDIJf029vd675ZBM6nQ6CIDRofSopKWnQSuUkl8vh7e3t8tOe1M92NSUzSqy5emhoAqQChy0FpaiqsyA+UCPOBcLzHP49tis6h3ijZ7Sfy4Sa9SllAp4ZlYRhFwdRAPw1cnx9dyaeGZWELEdygHWHzooDgbuEaSG5TBDl1MeRfeo/64/CYmOoMVmxxhHkDUgMhFTgUGW03wQtNoYQrULM/qfTyBEbYB9c73xPfKAGRosNNSYrIvxUeHVMV0h4DhW1ZpQZzFBKBTw7yt6n+o01f6HcYIZGLhETakgFHr3idHj7tlTsXDAIy+64AYsnpOLlW7og2FuBE6UGLF6Xjz+OnodSKkAqcPhp72l89Psx1JqtyIjxR0yAGmcqjSitMSEmQA1vxziYrmE+uMUxg/efR0vFrHrOjFjOIHFs9ysP1n3VMnGAtjOpyPAk+//STy2Dj+pCLVV6ZOO3ouQwLf7vnt64d2A8QhwtVhF+KnH+qrbCcZyY3tmZVctksWFfUQVe++UvWGwMOcl6TMqwPyCcaVIv1YUr2/FlfWdhOY6fr8GMpVtRa7aib4cAMSh0Zh38364ifOFICMIYMGXJVhw/b4C/WoYHhyTg8xk9xTGBzodnr1gdFNLGxy5czFctE1PSLnFklioqr8Wsz3fgjo+3ucwzxRgTM0ANrjcP26VoVVJ8NLUHdv9rMCbeEIl7BtjT5XMc8O+xKdBp5HhyRCdxElVnut3WIPCc+Pn878YLKaGPnTeILazf7ypCUUUdlFIBvdugxYjjOPRPCGy1VjZPCPJWQOA5mKw2/G9XEWwMCNEqEOTd+t0IM2N1yJ3fD+sezMLyOzNavVb5YlN7RUPCc5BJeCSHajE7KxaAPcsfYwy5+8+gotYMvVaBPvEXPtNpkRfGSz5+Y0do5BLotUoxo92+ogos/f0YZn22A09+b09gcKJeoolLcZYZ73pzc8UGqDGzXyy8FRKUVBnx5q/2cbvODGLRjsQuThq5xCVwdyaI2HvKPpjfWXnZPyEAt6SGIcJPhdOVdeLk6Z9M64lnRiXhtp4ReGx4R3x+R0+X7KehPkp8PTMTgzsFYWRKCHLv64cnbuyER4dfGGeVEu4rZtyU8BzmD+og3utvSQtD/w4BiA/UoNpowZu/2pMHOJMTjesegS2PZSP3vn6IC9RgSOdg3D84wWW+Mq1KiqdGJonPy0AvBUbXG+uWGnHhfxTlrxJ7OgBNJ5W5s6/9/58Y7CUm/kgK1cJHJUVFrRnvrs8XU5+H+ijFa3xT1xAopDxOldfiVHktgrzlLs+mgY7zWrm7GP+32x5EPTIsEWvu74donRop4fZ91ZiskEt43OmogAHsSQ0A+//YbGU4UlKN1fvP4N+5h8Ttn60y4rkf9uPwmSr8erBehlzHc7yp71bJYVocfGaomLilMSNTQnHwmWHo78hiOyxZD46zZ61csqnAcY28odPIxfPYeaIM6x1ZN3vH6TAgMVCcGLcxPM8hI/bCGOjR3ULFXiYZMf6QS3jUmKzY6EiK0uuiTKHhfiosvj0NXnIJbusZgfBWDqKcxqSHQcJz6B7lizduTcFNXUPQwTG3YVNzlrVX13yLlEwmQ1paGnJzc13GSOXm5mLkyJEePLKWSwn3AccBapkEt/e8UOsQ6a/G5Iwo/Pc3+wduzoA4l+QJPioZVt7Tu1Vqa+0f9H3YfrxMHMhf/4F3Ob3jdXh77ZFGX4sN0CA+0Av7iyvx6mr7/BU3xPqjR5QfHlmxB9N6R+FMRR3yHTV0gV5y/G9Ob6zaV4zYAA2SQuxp2+MCNeJ8VN0i7MHMu+vzxbmqbojxb7TpXi4RXG40w5KC8cPuYuw6WQ6LlWF2VhxKDSYs+H4vQrRK3NYzAv06BOBAcRVGLdoEs9WGV8d0RWWdBY9/twcz+kQjNkCNxGAvHDxdhXcc5z05Mwrvrs9HndkGvVaBvvGt01x9R98YHCiuRIcgLwzvosdQRzpSjuMQG6DB9uNl4DkgpX4tdyPXYP6gDrgvOx7Hzxvgq5Y1mnq7td3cLRQvrToIs5WJrT9/HD0v3jjnZce7PFDD/VTiXCuN0WuV6BzijX1Flbj70x04V21CtE6NxRNSxf99lzAf9Iz2w58FpbDYGAK95CipMoq1vfcOjBdbbrwUUiz8+ZDYHaL/Ra1IlzM5MwrLtxZi1d7TKCqvxbbjZWCObkrrDp3F0KRg/HqwBP5qGY6fN0Am4V1SUjeHM7Abmx6GwjIDYnRq8WGYGOyNV8Z0Rf7ZapcvP62hQ5AX9hVVinPE/HN4IvYVVWJc93D8e/VhMaNY3w7NDz7/bqQCj95xOqw/fBav/Gz/8napz+m1JC3SF3ufGgKpwEPgOdSarHh/QwFOldfi6LkafLntwkSm9QOJgR0DsXD1IfTvECBOCAzYv3T/nn8ee09V4rgjcPq/3UV44qZOKHR8AQ/3cz+o5jgOjwxLxMSMSPR68VccPlOFWpMVBWcbD6QulhSmxRfbCpFXWI6qOjNW7LAnFMjuGAStSoof7u2N5388gGVbCjGzXyx6x+suW7Hgp5bhvUnpLstykvX4vlMR/sg/j/4JAdBp5PgrqxqZcf7IjNVhbHo4Dp2pErMmzugTjYcd05IAcJkTrLHWlsuZ0Sca3+w46ajYvHAP5jgOGTH+4txDnfSNZ24b1CkIn07vidhAtXhPlwo8nsjphPu/2oXXf/lLPHZnSy1gv6eveyALq/efxvbjZZh4Q6RL0JcR4w+VTBCzu2V3DMTMfrHi6yNSQvDzvtOI1qkxNzseeq0SCcFeYuuYhOfw3exeKK0xYduxUjz4tX2c4pTMKMQFeuG5H/bju7wifP7nCdSYrFDLBChlEvG+d6kkN82taHYK8lage5QfthSUitmUnRVrzlbqnYXlYMw+Ae9/J6c3697aK05nbx0GMOGGCHtPjD+OY1z3cBhMFuw6WQEbs3eJdwaZ9d0Q44+8Jwe7Nd2Ju6b2isaUzCiX76sZMf44fKYafxw932hlf3t1zQdSADB//nxMnDgR6enpyMjIwHvvvYcTJ05g5syZnj60FonSqfHh5O7QaeTQqlz7wd4zIB5rHF/EbuzSMP1va3V5CfdTITZAjfyzNeIEeO58MUuN8BX7FGd3DMKag2fE7vuR/ircMyAOd3+2Q7w5ZcT4Y0x6OPp0CECIVoFVe09jqWPm6+HJeihlAm7u5jpZZacQbzGQ6hHtB4nAY86AeDzw1S4AQO841xSlTfFSSHFrjwjc2uPCnAhRUGPlPX0a7G/F3ZkwWqzo5rgWGx8aIL7+zKgkjHn3D/FLeO84HfacrMCagyUYkx7eajelfh0CsP2JQY2+FhugxvbjZeio927WeAiO48TU2leDv0aORRPScLbKiDKDCQt/PoSPNtnTxwd7K1zmJAMg1spdysDEQOwrqhRTfs/JimsQFN7ZNwZ/OuZhe/KmzvhwUwG2Hy9DmK8S4+v93zuHeMNfLRO7RQxwM5DqqPfGDTF+2Hy0FF9vP4nSet0r1hwswR/55/HFtkJxKFSfOF2LA1iJwOPhoQ2zg41ODWtk7SvXIejCA9dXJcW0XtHiF4fy3mYxkGpuC9vf1fge4Vh/+CzKHK2yTWWwvBbV/5KnlAlIj/LF7/nnsWRTgTjPz5g015b5mAAN8hYMglwiuDy/nC0du09VIL/Enq65zmzDyl3FLqnPWypEq4BOYx8zs7+4oskWqYv1dKSI/u3IOcxbnoeKWjNiA9RiS4mXQooXRnfBghs7i9MHtATHcXj39jTYGBMrhR4YcqHLWLBWIWapBeytHQt/PoRz1SbE6NRuTZ7emLhAL/xvTm9o5JIG2W5viK0XSF0isGgsgBydGoo1B8/gxz2nxR4nF7fyBGsVmJQRhUkZUQ3er5AK6BOvw8+OFOmzslyzu+k0cnxxV4bLMuc8TwCQGaeDVimFVilFtE6N1fvPIHf/GTz3wwE8ltNJ7CronKqlX0IAFFJBDJibChxbKidZL84RektamNiDIlqnhlYpFQPGnjH+za6gsneBFRDmq0S3cF90DfPB+J4RSAz2xp8FpeJcfJmxuiYzGbdlEOV08ffVjFh/LP3jeKNzprZn13zXPgAYN24cXn/9dTz99NNISUnBhg0b8OOPPyIysvE+pNeCrMRAsWtDfVqVFGsf6I+v785s84J+V99YcUBjhJ8KPWOa32tVJuExOysO3aN88cLoZHGiST+1DF4KKYYl6/HA4AtN4M503M4m/p710nMPb6Jmov7Nt4fj4TYqxd48LJfw4oOtNSWFasWJ5S7WPcoPt99g/1IuE3gkhWrxrxGd8c/hiZjVP7bR97S2no75Ldri3FvLoE5BuK1nhFjj5pxktk980/NqXUr9cw3zVWJESsMKhqyEQIxMCUFOsr0Fb8GNndA1TIsXR3cR5zcB7N0inA//hCAvl0kXm2u0I+DP3X/GZfLKXw+cwTeOeaaclQpDOl87QYez2wUADEgMcql9HdwpCB319i4p2e247LUHAxKDoNNcaCG4XlqkGuPswvfp5hNgzP4Zj/BvGPyoZJIGzzNnF/ddheUuiWBe/vkgjp6rAcfhioIFjuOQEm7fx+9HziPPMVHp5eY/6xDkJXY/dgYC9wyIb3D8VxJEOQk8d9mECE4KqYC7HN3pRqZcOgV9c3XUezfatatXnE6cz6+xFo1L4TgOz41KxsDEQAxPDsYbt6ZcsjtcY5yVyH3idc2q4E2oVwk09KJ77qPDEiHhOaw9dBZj3v0dNgbcEOOHCMd5D0vSi71JZBIeMQGtW/F4S1oY/pEahpf+kYyFt3QRh3JwHIeu9SoS+7mRpVSvVSJ3fj98eVcGeJ6DROCR6Agm65fv1pgAvDVlxunw0dTu+ObuTE8filuuixYpAJg1axZmzZrl6cO4roztHo6x3cNhsdrAc1zz52BymJ0Vh9mO2qJb0sKw8a9zLjfd2VlxkEl4CDzf4Gbtp5bh8ZyOOF9jEieIvJizJkwqcGKtrkTg8dXMTFTVmRF2BbWVLfXw0EScrTKiS5gPFFIB4X4qsa/41TA6NRQJjgH57V3XMB8IPCemtG7puJrkUK3YXW9mv9hGv3jwPOcyKL1ruA++dwwov9j4HhH4ed/pFidqyEoMBMfZJ+10frlSSHmxhrNntB9GpoSisMwgjgO7FtRvkRrUybWlTiLw+HZWJmyMQSW7bh4rbUIm4fGPtDD8Z/1RCDwnjrm5HvWJ1+GlVfbfUyN88OrYrs1+b7RODaVUEBP9JIV642BxlTi+8r7sDi4tMi3RJcwHvxwowYebCmCy2BDlr3LpxtaUh4cmYt2hszhRau9ae1M7mRx6Rp9o9IrTuVR6tIVQHyXem5gOpUxoUTdeX7UMH0zp3uL939hFDx+V1CXQuJSEYC/IJPYMi4MuSoITE6DBwjFd8OBXu8VW4n8O74gwXxXyCsuQlRCIaqMFaZG+SI3waXZg21xquaTJz0VKuI84FrpfB/eej01VAtYPpHq1s+yn3gqpOH7sWkJPPHJZ7vb7bcyIriHgOA5d6mUS5DjukkHGjD4xTb4G2FuAbu4Wig5BXi61f85me0/wUkjxn4npl1+xjXAc16LZxj1BLZcgMdhLnC2+pbVjziBpZ2EZbm2FhB43xPjj4DPDWvz+AC85uoXbJ1u02hh0Gjn6dtCJXUNmZ8W1+hxIV0OojxKJwV6oMVlckgU40bio5ru9ZySWbylEz2i/Vmm5aK86h3jjzr4xEHgO87Ljxdr25hB4Dh31XtjhSBE/uFMw4gI0+C6vCHMHxuPegfFXfHzOL+LOL9CDOgU1q1VcLZfg7du64bkfDmBudsPWKE/hOO6qTVSd3cpZOd3BcVyj96CmaJVSfDSlO+CYRuViN3cLQ6CXAg99vRtZiQFi0o0BiRe6a3qilaR7lL2COMxX2awAvzmSQrXISghAoJeiRT0uSEPX/IS8raG5k24RQlrXgu/34uM/jiMp1LvBmLRr2eJ1+XhplT1F+OBOQRjXPRzTl25DlzAtvp/d65pN32222mC1sesyaLoaE/LWV2uyOlrkr82ycDU47w8A8PkdPZEa4YviirrLjmNqrrIaE7o9kyv+/eVdGWI3cfL34/w63F7uz4wxfL7lBJJDtWJwR66e5sYG18UYKULItWlMWjiCvRWY1iva04fSqup3fUuN9MXAjkH4ZHoPfDile7t5SLeEVOCvyyDKE5QygYKoy3B2Q5LwHFLC7d2lWyuIAuxdzCIdY7b81DK3MtOS6w/Hce3q/sxxHCb0jKQgqp2jrn2EEI9JDtNi8z8HevowWl1sgAYJQV44dKYKmY5U++50RSGEAL3jA6CWCejbIaDNxt51DfPB8fMGDEwMpMCWEOI2CqQIIaSVcRyHD6ako7C0lmoTCWmhUB8ltjyW3eoD/OublRULG2OtMuaKEPL3Q4EUIYS0gTBflUcyRxJyPWnricITg73x9m2pbboPQsj1i8ZIEUIIIYQQQoibKJAihBBCCCGEEDdRIEUIIYQQQgghbqJAihBCCCGEEELcRIEUIYQQQgghhLiJAilCCCGEEEIIcRMFUoQQQgghhBDiJgqkCCGEEEIIIcRNFEgRQgghhBBCiJsokCKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3STx9AO0BYwwAUFlZ6eEjIYQQ4gkmQx3qjLUA7M8CmcXk4SMihBDiKc6YwBkjNIVjl1vjb+DkyZMIDw/39GEQQgghhBBC2onCwkKEhYU1+ToFUgBsNhuKiorg5eUFjuM8fTjkb6CyshLh4eEoLCyEt7e3pw+H/E1QuSOeQmWPeAKVO9JSjDFUVVUhJCQEPN/0SCjq2geA5/lLRpuEtBVvb2+6uZOrjsod8RQqe8QTqNyRltBqtZddh5JNEEIIIYQQQoibKJAihBBCCCGEEDdRIEWIB8jlcjz55JOQy+WePhTyN0LljngKlT3iCVTuSFujZBOEEEIIIYQQ4iZqkSKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUJaYNGiRYiOjoZCoUBaWho2btx4yfU/++wzdO3aFSqVCnq9HlOnTsX58+fF199//3306dMHvr6+8PX1RXZ2NrZs2eKyDYvFgscffxzR0dFQKpWIiYnB008/DZvN1ibnSNqf1i53K1asQHp6Onx8fKBWq5GSkoJPPvnkivdLrj+eKHsvvPACunfvDi8vLwQGBmLUqFE4dOhQm5wfaZ88dc9zeuGFF8BxHObNm9dap0SuN4wQ4pbly5czqVTK3n//fbZ//342d+5cplar2fHjxxtdf+PGjYznefbGG2+wo0ePso0bN7LOnTuzUaNGievcdttt7J133mE7d+5kBw4cYFOnTmVarZadPHlSXOfZZ59l/v7+bOXKlaygoIB99dVXTKPRsNdff73Nz5l4XluUu7Vr17IVK1aw/fv3syNHjrDXX3+dCYLAVq1a1eL9kuuPp8rekCFD2JIlS9jevXtZXl4ey8nJYREREay6urrNz5l4nqfKndOWLVtYVFQU69KlC5s7d25bnSa5xlEgRYibevTowWbOnOmyLDExkT3yyCONrr9w4UIWExPjsuzNN99kYWFhTe7DYrEwLy8vtnTpUnFZTk4OmzZtmst6o0ePZrfffru7p0CuQVej3DHGWLdu3djjjz/e4v2S64+nyt7FSkpKGAC2fv36Zh45uZZ5stxVVVWx+Ph4lpuby/r160eBFGkSde0jxA0mkwnbt2/H4MGDXZYPHjwYv//+e6PvyczMxMmTJ/Hjjz+CMYYzZ87g66+/Rk5OTpP7MRgMMJvN8PPzE5f17t0ba9asweHDhwEAu3btwm+//Ybhw4e3wpmR9uxqlDvGGNasWYNDhw6hb9++Ld4vub54quw1pqKiAgBc7ovk+uTpcjd79mzk5OQgOzu7dU6IXLcknj4AQq4l586dg9VqRVBQkMvyoKAgnD59utH3ZGZm4rPPPsO4ceNQV1cHi8WCESNG4K233mpyP4888ghCQ0NdbuIPP/wwKioqkJiYCEEQYLVa8dxzz2H8+PGtc3Kk3WrLcldRUYHQ0FAYjUYIgoBFixZh0KBBLd4vub54quxdjDGG+fPno3fv3khKSmqdkyPtlifL3fLly7Fjxw5s3bq19U+MXHeoRYqQFuA4zuVvxliDZU779+/HvffeiwULFmD79u1YtWoVCgoKMHPmzEbXf/nll7Fs2TKsWLECCoVCXP7FF1/g008/xeeff44dO3Zg6dKleOWVV7B06dLWOzHSrrVFufPy8kJeXh62bt2K5557DvPnz8e6detavF9yffJU2XOaM2cOdu/ejWXLlrXK+ZBrw9Uud4WFhZg7dy4+/fRTl+cvIU3ySIdCQq5RRqORCYLAVqxY4bL83nvvZX379m30Pbfffju75ZZbXJZt3LiRAWBFRUUuyxcuXMi0Wi3bunVrg+2EhYWxt99+22XZM888wxISElpyKuQa0tblrr7p06ezwYMHt3i/5PriqbJX35w5c1hYWBg7evRoC86AXIs8Ve6+/fZbBoAJgiD+AGAcxzFBEJjFYrnCMyPXG2qRIsQNMpkMaWlpyM3NdVmem5uLzMzMRt9jMBjA864fNUEQANhr15wWLlyIZ555BqtWrUJ6enqzt0Ppz69/bVnuLsYYg9FobPF+yfXFU2XP+fecOXOwYsUK/Prrr4iOjm7paZBrjKfK3cCBA7Fnzx7k5eWJP+np6ZgwYQLy8vLE7REi8lwMR8i1yZmS9YMPPmD79+9n8+bNY2q1mh07dowxxtgjjzzCJk6cKK6/ZMkSJpFI2KJFi1h+fj777bffWHp6OuvRo4e4zksvvcRkMhn7+uuvWXFxsfhTVVUlrjN58mQWGhoqpj9fsWIF0+l07KGHHrp6J088pi3K3fPPP89Wr17N8vPz2YEDB9irr77KJBIJe//995u9X3L981TZu/vuu5lWq2Xr1q1zuS8aDIard/LEYzxV7i5GWfvIpVAgRUgLvPPOOywyMpLJZDKWmprqko538uTJrF+/fi7rv/nmm6xTp05MqVQyvV7PJkyY4DJHVGRkJAPQ4OfJJ58U16msrGRz585lERERTKFQsJiYGPbYY48xo9HY1qdL2onWLnePPfYYi4uLYwqFgvn6+rKMjAy2fPlyt/ZL/h48UfYauycCYEuWLGnLUyXtiKfuefVRIEUuhWPsEu2dhBBCCCGEEEIaoDFShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3ESBFCGEEEIIIYS4iQIpQggh5CozmUyIi4vDpk2bWnW7K1euRLdu3WCz2Vp1u4QQQhqiQIoQQsgVmTJlCjiOa/Bz5MgRTx9au/Xee+8hMjISvXr1EpdxHIfvvvuuwbpTpkzBqFGjmrXdG2+8ERzH4fPPP2+lIyWEENIUCqQIIYRcsaFDh6K4uNjlJzo6usF6JpPJA0fX/rz11luYMWNGm2x76tSpeOutt9pk24QQQi6gQIoQQsgVk8vlCA4OdvkRBAH9+/fHnDlzMH/+fOh0OgwaNAgAsH//fgwfPhwajQZBQUGYOHEizp07J26vpqYGkyZNgkajgV6vx6uvvor+/ftj3rx54jqNteD4+Pjgo48+Ev8+deoUxo0bB19fX/j7+2PkyJE4duyY+LqzteeVV16BXq+Hv78/Zs+eDbPZLK5jNBrx0EMPITw8HHK5HPHx8fjggw/AGENcXBxeeeUVl2PYu3cveJ5Hfn5+o9dqx44dOHLkCHJycty8ysCxY8cabf3r37+/uM6IESOwZcsWHD161O3tE0IIaT4KpAghhLSppUuXQiKRYNOmTfjPf/6D4uJi9OvXDykpKdi2bRtWrVqFM2fOYOzYseJ7HnzwQaxduxbffvstVq9ejXXr1mH79u1u7ddgMCArKwsajQYbNmzAb7/9Bo1Gg6FDh7q0jK1duxb5+flYu3Ytli5dio8++sglGJs0aRKWL1+ON998EwcOHMC7774LjUYDjuMwbdo0LFmyxGW/H374Ifr06YPY2NhGj2vDhg3o0KEDvL293TofAAgPD3dp9du5cyf8/f3Rt29fcZ3IyEgEBgZi48aNbm+fEEJI80k8fQCEEEKufStXroRGoxH/HjZsGL766isAQFxcHF5++WXxtQULFiA1NRXPP/+8uOzDDz9EeHg4Dh8+jJCQEHzwwQf4+OOPxRaspUuXIiwszK1jWr58OXiex3//+19wHAcAWLJkCXx8fLBu3ToMHjwYAODr64u3334bgiAgMTEROTk5WLNmDe644w4cPnwYX375JXJzc5GdnQ0AiImJEfcxdepULFiwAFu2bEGPHj1gNpvx6aefYuHChU0e17FjxxASEtLoa+PHj4cgCC7LjEaj2HolCAKCg4MBAHV1dRg1ahQyMjLwr3/9y+U9oaGhLi1vhBBCWh8FUoQQQq5YVlYWFi9eLP6tVqvF39PT013W3b59O9auXesSeDnl5+ejtrYWJpMJGRkZ4nI/Pz8kJCS4dUzbt2/HkSNH4OXl5bK8rq7Opdtd586dXYIXvV6PPXv2AADy8vIgCAL69evX6D70ej1ycnLw4YcfokePHli5ciXq6uowZsyYJo+rtrYWCoWi0ddee+01MWBzevjhh2G1WhusO336dFRVVSE3Nxc879rBRKlUwmAwNHkMhBBCrhwFUoQQQq6YWq1GXFxck6/VZ7PZcNNNN+Gll15qsK5er8dff/3VrH1yHAfGmMuy+mObbDYb0tLS8NlnnzV4b0BAgPi7VCptsF1n+nClUnnZ45gxYwYmTpyI1157DUuWLMG4ceOgUqmaXF+n04mB2sWCg4MbXEcvLy+Ul5e7LHv22WexatUqbNmypUGgCAClpaUu50gIIaT1USBFCCHkqkpNTcU333yDqKgoSCQNH0NxcXGQSqXYvHkzIiIiAABlZWU4fPiwS8tQQEAAiouLxb//+usvl1aY1NRUfPHFFwgMDGzReCQASE5Ohs1mw/r16xu0FDkNHz4carUaixcvxk8//YQNGzZccpvdunXD4sWLwRgTuxy645tvvsHTTz+Nn376qdFxWM4Wt27durm9bUIIIc1HySYIIYRcVbNnz0ZpaSnGjx8vZpdbvXo1pk2bBqvVCo1Gg+nTp+PBBx/EmjVrsHfvXkyZMqVB97UBAwbg7bffxo4dO7Bt2zbMnDnTpXVpwoQJ0Ol0GDlyJDZu3IiCggKsX78ec+fOxcmTJ5t1rFFRUZg8eTKmTZuG7777DgUFBVi3bh2+/PJLcR1BEDBlyhQ8+uijiIuLc+mS2JisrCzU1NRg3759blw1u71792LSpEl4+OGH0blzZ5w+fRqnT59GaWmpuM7mzZshl8svexyEEEKuDAVShBBCrqqQkBBs2rQJVqsVQ4YMQVJSEubOnQutVisGSwsXLkTfvn0xYsQIZGdno3fv3khLS3PZzquvvorw8HD07dsXt912Gx544AGXLnUqlQobNmxAREQERo8ejY4dO2LatGmora11q4Vq8eLFuOWWWzBr1iwkJibijjvuQE1Njcs606dPh8lkwrRp0y67PX9/f4wePbrRLoeXs23bNhgMBjz77LPQ6/Xiz+jRo8V1li1bhgkTJlyyeyEhhJArx7GLO5gTQggh7VD//v2RkpKC119/3dOH0sCmTZvQv39/nDx5EkFBQZddf8+ePcjOzm40GcaVOHv2LBITE7Ft27ZGJ0QmhBDSeqhFihBCCGkho9GII0eO4IknnsDYsWObFUQB9rFXL7/8cqunKC8oKMCiRYsoiCKEkKuAkk0QQgghLbRs2TJMnz4dKSkp+OSTT9x67+TJk1v9eHr06IEePXq0+nYJIYQ0RF37CCGEEEIIIcRN1LWPEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3PT/dolDrKOWAtoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV33u/3YOk2c2zCatVtIqS6AAAgkQYCSQARtzAf8MXGMbMFzAtowvsmXse2UuCAO2kIk2JhiDMcJEYUAggoRyXmmVdlfaHGZnJ/d0DvX7o+qcOlVd1V3dXR1m+v08jx5JM9091d1Vp855z/t+vwFN0zQQQgghhBBCCCGEEEKaJtjtAyCEEEIIIYQQQgghZKVDkY0QQgghhBBCCCGEkBahyEYIIYQQQgghhBBCSItQZCOEEEIIIYQQQgghpEUoshFCCCGEEEIIIYQQ0iIU2QghhBBCCCGEEEIIaRGKbIQQQgghhBBCCCGEtAhFNkIIIYQQQgghhBBCWiTc7QPoNSqVCo4ePYqhoSEEAoFuHw4hhBBCCCGEEEII6RKapiGVSmHjxo0IBmt71Siy2Th69Ci2bNnS7cMghBBCCCGEEEIIIT3CoUOHsHnz5pqPochmY2hoCID+4Q0PD3f5aAghhBBCCCGEEEJIt1haWsKWLVukXlQLimw2RER0eHiYIhshhBBCCCGEEEII8VRSjI0PCCGEEEIIIYQQQghpEYpshBBCCCGEEEIIIYS0CEU2QgghhBBCCCGEEEJaZEWJbEeOHMFb3/pWTExMIJlM4rnPfS4eeugh+XtN03Dddddh48aNSCQSeOlLX4onnniii0dMCCGEEEIIIYQQQvqBFSOyzc/P47LLLkMkEsFPfvITPPnkk/jHf/xHjI6Oysd8/OMfxw033IDPfOYzeOCBBzA5OYkrrrgCqVSqewdOCCGEEEIIIYQQQlY9AU3TtG4fhBf+6q/+CnfddRfuuOMOx99rmoaNGzfi6quvxl/+5V8CAPL5PNavX4+PfexjeNe73uXp7ywtLWFkZASLi4vsLkoIIYQQQgghhBDSxzSiE60YJ9vNN9+Miy++GG984xuxbt06XHDBBfjXf/1X+ft9+/ZhamoKV155pfxZLBbD5Zdfjrvvvtv1dfP5PJaWliz/EEIIIYQQQgghhBDSCCtGZNu7dy8+//nPY/v27fjpT3+Kd7/73fjTP/1T/Pu//zsAYGpqCgCwfv16y/PWr18vf+fERz/6UYyMjMh/tmzZ0r43QQghhBBCCCGEEEJWJStGZKtUKrjwwgtx/fXX44ILLsC73vUuvPOd78TnP/95y+MCgYDl/zVNq/qZyrXXXovFxUX5z6FDh9py/IQQQgghhBBCCCFk9bJiRLYNGzbg7LPPtvzsrLPOwsGDBwEAk5OTAFDlWpuenq5yt6nEYjEMDw9b/iGEEEIIIYQQQgghpBFWjMh22WWXYdeuXZaf7d69G1u3bgUAbNu2DZOTk7j11lvl7wuFAm6//XZceumlHT1WQgghhBBCCCGEENJfhLt9AF758z//c1x66aW4/vrr8aY3vQn3338/vvCFL+ALX/gCAD0mevXVV+P666/H9u3bsX37dlx//fVIJpN485vf3OWjJ4QQQgghhBBCCCGrmRUjsj3vec/D9773PVx77bX40Ic+hG3btuHGG2/EW97yFvmYa665BtlsFu95z3swPz+PSy65BD/72c8wNDTUxSMnhBBCCCGEEEIIIaudgKZpWrcPopdYWlrCyMgIFhcXWZ+NEEIIIQ0xny7gz7+1A2+6eAt+87wN3T4cQgghhBDSIo3oRCvGyUYIIYQQ0uv87Mkp3LbrBPLFCkU2QgghhJA+Y8U0PiCEEEII6XUOzmUAAIVypctHQgghhBBCOg1FNkIIIYQQnzgwq4tsJYpshBBCCCF9B0U2QgghhBCfOGQ42UoVlrwlhBBCCOk3KLIRQgghhPiEiIuWyhTZCCGEEEL6DYpshBBCCCE+sJQrYj5TBAAUK4yLEkIIIYT0GxTZCCGEEEJ84KBRjw2gk40QQgghpB+hyEYIIYQQ4gMiKgoAZdZkI4QQQgjpOyiyEUIIIYT4gCqyFdldlBBCCCGk76DIRgghhBDiA6rIxu6ihBBCCCH9B0U2QgghhBAfUGuy0clGCCGEENJ/UGQjhBBCCPEB1mQjhBBCCOlvKLIRQgghhLRIqVzBkYWs8v8U2QghhBBC+g2KbIQQQgghLXJ0IWdxrxUrjIsSQgghhPQbFNkIIYQQQlpEREUnBqIAAE0DKoyMEkIIIYT0FRTZCCGEEEJaRIhsp6wdkD+jm40QQgghpL+gyEYIIYQQ0iIH5tIAgFPWDMqfsS4bIYQQQkh/QZGNEEIIIaRFDjk42SiyEUIIIYT0FxTZCCGEEEJaxIyLKk42xkUJIYQQQvoKimyEEEIIIS2gaRoOzOoi28kTSQQD+s9LbHxACCGEENJXUGQjhBBCCGmBXcdTSOVKSERCOGkiiXBIn14Vy3SyEUIIIYT0ExTZCCGEEEJa4K5nZgEAz9s2jlg4hIhhZWNNNkIIIYSQ/oIiGyGEEEJIC9z1zAwA4EWnTQCAdLIxLkoIIYQQ0l9QZCOEEEIIaZJiuYL79upOtstOWwMACAsnGxsfEEIIIYT0FRTZCCGEEEKa5NFDC0gXyhgfiOKsyWEAQDjEuCghhBBCSD9CkY0QQgghpEnuNKKiLzx1AkHDwRYOMi5KCCGEENKPUGQjhBBCCGmSu42mB5edukb+LCKdbIyLEkIIIYT0ExTZCCGEEEKaIJ0v4eGD8wCAF51mimwhw9FWZFyUEEIIIaSvoMhGCCGEENIE9++fQ6miYct4AidNJOXPI7K7KJ1shBBCCCH9BEU2QgghhJAmuOfZ6qgooDQ+YE02QgghhJC+giIbIYQQQkgTHJnPAgDOnByy/Fw2PmBclBBCCCGkr6DIRgghhBDSBIvZIgBgJBmx/DwcZOMDQgghhJB+hCIbIYQQQkgTLOV0kW04bhPZjLhokXFRQgghhJC+giIbIYQQQkgTLBlOtuGEVWQTjQ/KbHxACCGEENJXUGQjhBBCCGmCpVwJQLWTLWTERYusyUYIIYQQ0ldQZCOEEEIIaRBN08yabAl7TTY2PiCEEEII6UcoshFCCCGENEimUEbZqLk2nAhbfhcxarIxLkoIIYQQ0l9QZCOEEEIIaRDR9CAcDCARCVl+FzZqsjEuSgghhBDSX1BkI4QQQghpkKWsUY8tEUEgELD8LmzUZCvRyUYIIYQQ0ldQZCOEEEIIaRC3emyAKbLRyUYIIYQQ0l9QZCOEEEIIaZAlQ2QbjoerfifioqJmGyGEEEII6Q8oshFCCCGENIioyTbs4GQTjQ9KZcZFCSGEEEL6CYpshBBCCCENIp1sDiJbSMRF6WQjhBBCCOkrKLIRQgghhDTIomh8EHdysjEuSgghhBDSj1BkI4QQQghpEDMu6lCTTTY+YFyUEEIIIaSfoMhGCCGEENIgZuMD9+6iJXYXJYQQQgjpKyiyEUIIIYQ0iHCyjTjUZBPdRUsVOtkIIYQQQvoJimyEEEIIIQ2yWKPxQThEJxshhBBCSD9CkY0QQgghpEGWZOOD6ppskaBwslFkI4QQQgjpJyiyEUIIIYQ0SK24aIiNDwghhBBC+hKKbIQQQgghDbJUIy4aYVyUEEIIIaQvochGCCGEENIAlYqGVF7ERWs1PqDIRgghhBDST1BkI4QQQghpgFS+BM3Qz4YT1TXZwkZclN1FCSGEEEL6C4pshBBCCCENIKKi8UgQsXCo6vfsLkoIIYQQ0p9QZCOEEEIIaYBFUY/NISoKAGHZXZRONkIIIYSQfoIiGyGEEEJIA4jOok5NDwA2PiCEEEII6VcoshFCCCGENMBSVm96MOIisoUMJ1uRjQ8IIYQQQvoKimyEEEIIIQ0gnWzx6qYHgFqTjXFRQgghhJB+giIbIYQQQkgDiMYHrnFRw8lWppONEEIIIaSvoMhGCCGEENIAS/UaHxhOtiKdbIQQQgghfQVFNkIIIYSQBljK1a7JFg4acVE62QghhBBC+gqKbIQQQgghDWDGRd1qsunTK3YXJYQQQgjpLyiyEUIIIYQ0wGK9uKh0sjEuSgghhBDST1BkI4QQQghpANld1K3xAZ1shBBCCCF9CUU2QgghhJAGWMrWrskWCrLxASGEEEJIP0KRjRBCCCGkAaSTzSUuGjG6i5bZ+IAQQgghpK+gyEYIIYQQ0gCLHhsfFCmyEUIIIYT0FRTZCCGEEEI8UixXkCmUAbjHRWXjA8ZFCSGEEEL6CopshBBCCCEeSeVK8r8HYy5ONkNkq2hAhW42QgghhJC+YcWKbB/96EcRCARw9dVXy59pmobrrrsOGzduRCKRwEtf+lI88cQT3TtIQgghhKwqloyo6GAsLGOhdtSflyiyEUIIIYT0DStSZHvggQfwhS98Aeeff77l5x//+Mdxww034DOf+QweeOABTE5O4oorrkAqlerSkRJCCCFkNSHrscWdXWyA2fgAAEoVRkYJIYQQQvqFFSeyLS8v4y1veQv+9V//FWNjY/LnmqbhxhtvxAc/+EG8/vWvx7nnnouvfvWryGQy+MY3vtHFIyaEEELIamEuXQAAjCSjro8JBU2RrVimk40QQgghpF9YcSLbe9/7Xrz61a/GK17xCsvP9+3bh6mpKVx55ZXyZ7FYDJdffjnuvvtu19fL5/NYWlqy/EMIIYQQ4sSzJ5YBACdPJF0fEwkqcVE2PyCEEEII6Rvcsw49yDe/+U08/PDDeOCBB6p+NzU1BQBYv3695efr16/HgQMHXF/zox/9KP7u7/7O3wMlhBBCyKrk2RNpAMCpawddHxMMBhAM6I0PyqzJRgghhBDSN6wYJ9uhQ4fwZ3/2Z/j617+OeDzu+rhAIGD5f03Tqn6mcu2112JxcVH+c+jQId+OmRBCCCGrC+FkO22du8gGmM0PihTZCCGEEEL6hhXjZHvooYcwPT2Niy66SP6sXC7j17/+NT7zmc9g165dAHRH24YNG+Rjpqenq9xtKrFYDLFYrH0HTgghhJBVw15DZKvlZAOAcDCAAhgXJYQQQgjpJ1aMk+03fuM3sHPnTuzYsUP+c/HFF+Mtb3kLduzYgVNOOQWTk5O49dZb5XMKhQJuv/12XHrppV08ckIIIYSsBhYyBcws640PTlk7UPOxYaP5QYlONkIIIYSQvmHFONmGhoZw7rnnWn42MDCAiYkJ+fOrr74a119/PbZv347t27fj+uuvRzKZxJvf/OZuHDIhhBBCVhEiKrpxJI6BWO0pVMSIi5bYXZQQQgghpG9YMSKbF6655hpks1m85z3vwfz8PC655BL87Gc/w9DQULcPjRBCCCErnGenjaYHdeqxAUA4pDvZioyLEkIIIYT0DStaZLvtttss/x8IBHDdddfhuuuu68rxEEIIIWT18ozHemwAEA4aTjbGRQkhhBBC+oYVU5ONEEIIIaSbPDttiGwNONnKFTrZCCGEEEL6BYpshBBCCCEeeFY62Wo3PQDMxgdF1mQjhBBCCOkbKLIRQgghhNQhVyzj4FwGAHBaI3FRimyEEEIIIX0DRTZCCCGEkDocmM2gogFD8TDWDsXqPl42PmBclBBCCCGkb6DIRgghhBBSh2eVpgeBQKDu48MhfYpVppONEEIIIaRvoMhGCCGEEFIH2fTAQ1QUACJGTbYSnWyEEEIIIX0DRTZCCCGEkDo8YzjZTvPQWRQAQmx8QAghhBDSd1BkI4QQQgipQyOdRQEgIuKiFYpshBBCCCH9AkU2QgghhJAalMoV7DnemJNNNj4oMy5KCCGEENIvUGQjhBBCCKnBnull5EsVDMXCOHnCm5MtHNSnWCU62QghhBBC+gaKbIQQQgghNdh5eBEAcM6mYQSD9TuLAkBYND6gk40QQgghpG+gyEYIIYQQUoOdR3SR7fzNo56fI+KidLIRQgghhPQPFNkIIYQQQmrwmCGynbdpxPNzROODEruLEkIIIYT0DRTZCCGEEEJcKJQqeOrYEgDg/M3eRbaQERctVhgXJYQQQgjpFyiyEUIIIYS4sPt4CoVSBcPxME4aT3p+XkTERelkI4QQQgjpGyiyEUIIIYS4IOqxnbd5BIGAt6YHALuLEkIIIYT0IxTZCCGEEEJceOywqMc22tDzZOMDdhclhBBCCOkbKLIRQgghhLjwuOws6r0eGwCEg+wu2sscX8rhWw8cQq5Y7vahEEIIIWQVEe72ARBCCCGE9CL5UhlPT+lNDxrpLAoAYXYX7Wk+fssufOfhwwCANz1vS5ePhhBCCCGrBTrZCCGEEEIc2DWVQrGsYSwZweaxREPPjUgnG+OivYgQT/fPprt8JIQQQghZTVBkI4QQQghxQNRjO3dTY00PANPJVqSTrefQNA0HZjMAgBOpfJePhhBCCCGrCYpshBBCCCEOPDO9DAA4e8Nww88NBdn4oFeZWS5gOV8CAExTZCOEEEKIj1BkI4QQQghxYD5TAACsHYo1/NyI0V20zMYHPYcaEaXIRgghhBA/ochGCCGEEOLAXFoX2UaT0YafGw4acVGKbD3H/hlTZDuRynXxSAghhBCy2qDIRgghhBDigHCyjQ9EGn5uOMS4aK+iOtlm0wV+R4QQQgjxDYpshBBCCCEOzKeLAICxVpxsbHzQc+yfycj/1jS9RhshhBBCiB9QZCOEEEIIcUA42ZoS2WRNNrqkeg3VyQawwyghhBBC/IMiGyGEEEKIjVyxjEyhDAAYG2hcZBOND0qsydZTaJoma7INxsIAgGnWZSOEEEKIT1BkI4QQQgixsZDRo6KhYADD8XDDzw/JuCidbL3EzHIB6UIZwQBwwUmjANhhlBBCCCH+QZGNEEIIIcSG6Cw6lowgEAg0/PxIUMRF6WTrJURUdONoApvHEgCA6SWKbIQQQgjxB4pshBBCCCE2WqnHBgDhEBsf9CL7jKjoyRMDWDsYA8C4KCGEEEL8gyIbIYQQQoiN1kU2UZONcdFe4oDhZDt5TRJrh+MA2PiAEEIIIf5BkY0QQgghxMa8iIsORJp6ftiIi5boZOsp9s9kAOhOtnVDwslGkY0QQggh/tB4JV9CCCGEkFXOvNH4YLyJzqIAEDYaH7C7aG8h4qLb1gzI75ZONkIIIYT4BUU2QgghhBAbovHBaJNx0YiIi7K7aM+gaZqMi26dGEAiGgKgi2yapjXV4IIQQgghRIUiGyGEEEKIDVGTbbxJkS1kxEXZ+KB3OLGcR7pQRjAAnDSehAb9uymUK1jIFDHWpGuREEIIIUTAmmyEEEIIITZEXLRZ4SVidBctMy7aM+w7obvYNo0lEA0HEQuHMJrUa+6dWGZklBBCCCGtQ5GNEEIIIcSGbHyQbLLxAbuL9hx3PjMDADhnw4j8mWx+sESRjRBCCCGtQ5GNEEIIIcTGnOwu2lrjA8ZFe4cf7zwGAHjVuZPyZ+uG4gCA6VTO8tjbd5/A1d98BMv5UucOkBBCCCErHopshBBCCCE2FlqsyRYOsvFBL7HneArPnkgjGgri5Wetkz+XTjalw2iuWMb7b9qB7+84ip89MdXxYyWEEELIyoUiG+kJcsUy/vd/PYqfGLvMhBBCSLfIFctIF8oAgLFmRTYZF6WTrRf48U5dLHvx9jUYjpsR4LUOcdH/evAQZg0no6jNRwghhBDiBYpspCe4f98cvv3QYXz2tme6fSiEEEL6nAVDWAkFAxiKN9eIXTQ+oMjWG/zk8eqoKKCIbEZctFSu4At37JW/XzQcjYQQQgghXqDIRnqCVE6veZI1nAOEEEJWN5rWu+LTvCGsjCYiCBqxz0YRcdFyRevp99oP7JtJ4+mpFMLBAK44e73ld+uG9ZpsJ4y46I92HsOhuaz8/WKWTjZCCCGEeIciG+kJMgVdZCuwdg0hhKx6rv/xU7j073+J2eXe7Og432LTA8BsfACw+UG3ES62S09bg1Fb/FfUZDuRykPTNPzz7XstP6fIRgghhJBGoMhGeoKM4WArlCiyEULIaudnT0zh2GIOO48sdvtQHBF1uJptegCYNdkA3c1Gusctj+v12K6yRUUBU0w7vJDF73zubjx1bAnJaAjvfPEpAIAFimyEEEIIaQCKbKQnECIbd/sJIWT1I4SLXLE3N1bmRFw0GanzSHdUka1Y6c332S/smkoBAC49daLqd6ImW6FUwY5DCwgEgA+88gycNJEEQCcbIYQQQhqjuWq+hPhMVsRF6WQjhJBVTaWiSeEiX+rNOpwiLjreQlw0osRFS9xA6hqFUgV5Y24xmqj+PofiEbzjRdvw5LElXHn2evzmeRuwbjiOe/fOAqDIRgghhJDGoMhGeoI046KEENIXpHIliD4AuWKPimyZ1muyBYMBBAKApgElOtm6Rjpfkv896NIp9m9ec3bVz4SLcTFDkY0QQggh3mFclPQEsiZbucIubIQQsopZyBbkf/dqXFQ2PmghLgqYbjY62bqH6F6ejIYQaqBT7EjCENmyRc5LCCGEEOIZimykJxBxUYB12QghZDWzoDiDetXJNmcc41gLjQ8Asy4bRbbukcrr3+VgrLHwhhDZShVNbgQSQgghhNSDIhvpCdLKBLZQ7k1nAyGEkNZRuzX2qpNtIdN6TTYA0jnFxgfdY9lwsrlFRd1IREKIhvRpMjuMEkIIIcQrFNlIT5BVRTbWZSOEkFWLWkg+16OND+bSortoayJbxBBpyhU62brFslGTbahBJ1sgEMBwgnXZCCGEENIYFNlIT5CxxEUpshFCyGplMaPWZOtNkc2P7qIAEBZONt7XuoYU2eKN19cTzQ/UOoKEEEIIIbWgyEZ6ggydbIQQ0hdYa7L13nifL5VlCYNxn5xsrMnWPZZEXLRBJxtg1mVbYlyUEEIIIR6hyEZ6AlVky1NkI4SQVYta3ypfx8lWKldw3c1P4NYnj7f7sCRCBAwGgKEG63jZETXZSqzJ1jWarckGWDuMEkIIIYR4gSIb6QlUkY2xGkIIWb1YnGx1arLdt28O/3b3fvzjz3a1+7Akaj22oCGSNQu7i3af5Sa7iwLAqCGyLbAmGyGEEEI8QpGN9ARqTTbGRQnpDHPpAv7o3x7AT3Ye6/ahkD5iMavWZKs93k+ncgCAVK5U83F+IkS2iRbrsQFAJGjERdn4oGsIJ1szrsRhOtkIIYQQ0iCt5SAI8QFN05BVIkMFOtkI6Qg/f+o4fvn0NJayRVx13oZuHw7pE6w12Wo72WaXC54e5yczy3kAwMRg6yKbcLLRod09Uj7UZKPIRgghhBCv0MlGuk6uWIGmbPIX6WQjpCMcX9RdQicMUYGQTqAKFtl6IpvhKlNLCrQbIexNDMZafi3RXbRMJ1vXSPnSXZQiGyGEEEK8QZGNdJ10wRoDynPHn5COcNyI4p1IUWQjnUMVLOrFRecMwStbLEPTOiNUzab162GND3HRsNFdtMiabF3Dj8YH7C5KCCGEEK9QZCNdJ2tzKLAmGyGdYWpRFxMyhTLS+c7VvCL9i6ZpWMx47y4qBC+gc52n2+FkY3fR7rEsnGyMixJCCCGkA1BkI13HHgOiyEZIZxBF5QG62UhnyBbLlrqbdWuypc0mCfYNmXYxY4hsa/wQ2dhdtOsIka0ZJ5uMi7K7KCGEEEI8QpGNdB17XJQFognpDMeXTJFthnXZSAewixW5OpsqwlUGAJkONT8Q7jlfGh+wu2jXSeX0c46NDwghhBDSCSiyka7DuCghnadUrljca3SykU5QJbLV7S5qnpedc7IZNdl8ENliYX2aVa/BA2kforvoUBNOtmFRky1XRIVCKSGEEEI8QJGNdB17LagCnWyEtJ3ZdAHqmpEdRkknWMjqzrRhQ/DI1WhokCuWkVaEtXqCnF/ImmwDrcdFRdxwMVOo80jSDgqliqzlNxRrvLuocLJpminWEUIIIYTUwheRrVwuY8eOHZifn/fj5UifYd/hp5ONkPajRkUBOtlIZxBdGidH4gCAiubeeVOtxwZY7xVz6QKOLGR9P75MoSTrhPoRFx0zOpTOs6ZXV1A38QZioYafHwuHkIjoz2NklBBCCCFeaEpku/rqq/GlL30JgC6wXX755bjwwguxZcsW3HbbbX4eH+kDqhof0MlGSNuZWqTIRjqPiIuuH47Ln+VKzg61uWWryKbeK17/ubtwxQ23y6L2fiFcbNFwsKkaXnbGkkJko5OtG4jzIxEJIRxqbl+ZddkIIYQQ0ghNzTi+/e1v4znPeQ4A4Ic//CH27duHp59+GldffTU++MEP+nqAZPVTFRelk42QtnPcJqqx8QHpBAuGULF2MIaA3njTNQY6k7aek6ImW7miYf9sBplC2XdxWLjn1gxEERAH2AJjRlx0Pk2RrRssiaYHTdRjE8gOo9nuf4f37p3F337/8ap5EyGEEOKFE6k87yEdoCmRbWZmBpOTkwCAH//4x3jjG9+I008/HW9/+9uxc+dOXw+QrH7Y+ICQ1rlt1zQu/egv8OvdJzw9ftqIi24wYnt0spFOIJxso8ko4mE9hpcvOo/5diebEOPUjtR+N0MQjRYmBluvxwbo7xNgXLRbLIumBy24Eod7yMn26V/uwdfuPYDbdnkb5wkhhBDBYqaIl3z8V3jjP9/T7UNZ9TQlsq1fvx5PPvkkyuUybrnlFrziFa8AAGQyGYRCjde8IP1NxuZiKDIuSkjD/OrpaRxdzOE/7z/o6fEiLnrOxhEAFNlIZ1g03ECjyQjiEX0K4uZkm7U72YzHZfLlqp/5hWx64EM9NsCMiy4wLtoVRFy0mc6iglFDZFvIFJHOl/DpX+zBobmML8fXKEI0XM53X/AjhBCystg7s4xssYwnjy31xMbRaqYpke0P//AP8aY3vQnnnnsuAoEArrjiCgDAfffdhzPPPNPXAxR89KMfxfOe9zwMDQ1h3bp1eN3rXoddu3ZZHqNpGq677jps3LgRiUQCL33pS/HEE0+05XiIf2QYFyWkZUS9qnv3zqJScS4kryLiouduGgYAzCwXXLs8kpXN7HIeDx2Y6/ZhAFCdbBHEjYLyORcnm73xgTjH2+lkExFVPzqLAsD4gBEXpZOtKwiRrZW4qFqT7fO3PYt/vHU3/vSbj3RlvBTXit/nPSGEkNXPnDKvemY61cUjWf00JbJdd911+OIXv4g//uM/xl133YVYTJ+MhkIh/NVf/ZWvByi4/fbb8d73vhf33nsvbr31VpRKJVx55ZVIp9PyMR//+Mdxww034DOf+QweeOABTE5O4oorrkAqxZOolxELJ9HBi40PCGkc4QidzxSx63j9MU/ERYWTrVCuYCnLGg2rkatv2oH/8fl78MTRxW4fihTZRhKKyObS+GDWLS6qbMy0y8m2xicnm4iLLuWKKPHe1nFShvOrlSYWqsh286NHAQCPHFzAXc/MNvV6sy3UvxTXStZFmCaEEELcUDcvdx9f7uKRrH6annW84Q1vqPrZ2972tpYOpha33HKL5f+/8pWvYN26dXjooYfwkpe8BJqm4cYbb8QHP/hBvP71rwcAfPWrX8X69evxjW98A+9617vadmykNYQ4MJqMILtYRqFENw0hjaI6G+55dhZnbRiu+fgpQ2Q7aTyJ4XgYS7kSTiznMGIU+Sarh30z+mbU3hNpKap2CxFPGE1GEQvXiYsaYkQiEkK2WJbneLqtcVFRk80nkc0QaDRNf+9+1Xoj3jBFtubHNdH44M49MzioxET/6Re7cdlpEw01yPjynfvwof9+Ep/+vQvw2udsbPhYxLXi93lPCCFk9aM2YdpDka2teBbZPvWpT3l+0T/90z9t6mAaYXFR35EfHx8HAOzbtw9TU1O48sor5WNisRguv/xy3H333a4iWz6fRz5v7iouLS218aiJEyIuOpqM4thijk42Qpogo0To7tk7iz960TbXx+aKZekoWj8cw9qhGJZyJUyn8jht3VDbj5V0liVD2JrrgQ6XUmRL1I+LiuPdPJbAnullKSyoTrac340PjL/pV1w0HApiKB5GKlfCfIYiW6cRtctaqckmnGxPHtPnh5dsG8cjBxfwwP553Lt3Di88dcLza+08os9dHzow36TIVjH+TZGNEEJIY6jzwD2Mi7YVz7OOT37yk54eFwgE2i6yaZqG97///XjRi16Ec889FwAwNTUFQG/KoLJ+/XocOHDA9bU++tGP4u/+7u/ad7CkLiIuOpLQT8eCS3TIb4rlCt7/rUdxybZxvPUFWzvyNwlpF6qT7b69syhXNISCzg4L0eQgFg5iJBHB2qEYnj2RZvODVUiloiFliFK9ILKJBgBq4wM3V87MslVkc6rJporLfjDjc+MDQG9+kMqV2PygC8juoi2IbKK7qOAPLzsZp6+fxdfuPYBP/3JPQyJbKqeLfkcXsk0di3SysSYbIYSQBrHGRSmytRPPs459+/a18zga4n3vex8ee+wx3HnnnVW/s9v2NU2raeW/9tpr8f73v1/+/9LSErZs2eLfwZK6iAXWaEJf1BTLnYmLPrB/Dj989CgePjBPkY2seDLKomspV8JTx5Zw7ibnaKCIiq4fjiMQCGDtUBwAO4yuRlK5EkR99m6LbIVSBWm5qaI62ZwFA9PJlrQ8Tj3X/a5NJeKia3x0nI0NRHFwLsPmB11ACMyt1GQTdfUAYCAawkvPWIfzNo/imw8cxN3PzuLJo0s4e2PteL5gyRD9jhndnRtB0zTkjcZQjIsSQghpFHUeeHwpj8VsUbq1ib801figm/zJn/wJbr75ZvzqV7/C5s2b5c8nJycBmI42wfT0dJW7TSUWi2F4eNjyD+ksIvozZnRh61R30cPz+k4yJ6tkNSCEByEO3POse1Hu41JkixnP0ReRM8t02qw21Bbtc112UoljCQSAoXgE8bAusuUdxuBMoSTH5k1jCQBQarK1p/FBpaLJCai/TjbRYZTXV6eRNdl8iIsCwBVnr0c8EsKm0QTOMzYx1DptXo/n2GLjTra8MjfqRyfbYqaId33tQfz0ian6DyaEEFKFvWs7O4y2j6ZnHYcPH8bNN9+MgwcPolCwfmE33HBDywdmR9M0/Mmf/Am+973v4bbbbsO2bdZ6Q9u2bcPk5CRuvfVWXHDBBQCAQqGA22+/HR/72Md8Px7iH2KyKCIZnRLZjgiRrQ8nq2T1IcSGl5+5Ft968DDu2TuLd77kFMfHHl/S3Trrh3UH29ohXWyjk231sZRTRDZFRF3MFvHjncdw1bmTFqdOO1nM6n9/OB5BKBiQcVGnmmyiy2csHJTCsVmTTXGy+RgXXcoVUarotj+/arIBelwUsBYcJp1h2cfuogDwmvPNOmpDcf3ny3nv56CojzizXECuWJZuTi+ojs9+3Bz82ZNT+OkTxzGfKeKV50x2+3AIIWTFMZfW5/miVuzu48u4aOt4l49qddLUrOMXv/gFfuu3fgvbtm3Drl27cO6552L//v3QNA0XXnih38cIAHjve9+Lb3zjG/jBD36AoaEh6VgbGRlBIpFAIBDA1Vdfjeuvvx7bt2/H9u3bcf311yOZTOLNb35zW46J+EPGFhfNd6jxwZEF08lWL1ZMSK8jalO9/Mz1+NaDh3H/vjmUyhWEQ9WG5eNKXBQA1hoixollimyrDdXJpjqpvnr3ftxw624cW8ji/Vee0ZFjEc02RLfGWnFRsdu6ZjCGZFR/nNgQUeuw+Sk2CCfncDyMaNg/o/+odLIxLtpphADWSk22yeE4JgaiiEdCePHpa+TPhTtuOef9e00pj51azOHkNQOen6uK0f24OXjIcAz243snhBA/EJutzz95HL94epp12dpIU7PIa6+9Fn/xF3+Bxx9/HPF4HN/5zndw6NAhXH755XjjG9/o9zECAD7/+c9jcXERL33pS7Fhwwb5z0033SQfc8011+Dqq6/Ge97zHlx88cU4cuQIfvazn2FoiN3yepmM4UoQkZpix+KiZsQj36G/SdpDp9yPvUqloskF2EVbxzAUD2M5X8Iul5unPS5KJ9vqRRXZ1JjA/tk0AGCmg+4qtbMooIhsDs1uRG208YEoEsbjhKCmOoeyBf+u/Zk21GMDgHHDycbGB53HFNmarzmTiIZwy9Uvwc3vuwyxsOk8GzLccV6dbJWKZnns0QYjo/3uZDvEEh+EENI0uWJZ1sV9wSl6w549x5e7eUirmqZEtqeeegpve9vbAADhcBjZbBaDg4P40Ic+1LZopqZpjv/8wR/8gXxMIBDAddddh2PHjiGXy+H222+X3UdJb1IqV1AwnGsiklHosJMN4M7oSuab9x/Euf/3p7h994luH0rXUBcdg7Ewztqg15Z026GyO9mEqECRbfWxpDrZ0gVoRheEaSMy7NZ0oB0IJ9uIITrFasVFldpocZvIZm184F9cdLYNnUUBYHTAiItSZOs4KR/iooC+ETFhE1/Fa6Y8imzpQgkVpa/TsYXGmh+oYnQnr9te4SCdbISQDjC7nMf3Hzmy6sZZMQcJBwO4cOsYAGAPa7K1jaZEtoGBAeTz+gR948aNePbZZ+XvZmZm/Dky0hdklAFsJNm5mmzlimaZ4HJndOVy3745FMoV3L/PvdD/akeIDoEAEI8EccZ63b27a8p5h8pek22d4WSbS+dRrnSmuy/pDKqTrVTRZHdDIbTmfe7OWYsF41jEhkqiVlzUELzGB6JI2OKilsYHPi64Z41aJX7WYwPUxgeMi3YaEc9sVWRzQtZky3kT2VK2xzXa/MASF+3DOYuIi662hS9ZXTx8cB7Tqca7B5Pe4dO/fAZX37QD33/kSLcPxVfEvGpsIIrT1w8CMDuMEv9pSmR7wQtegLvuugsA8OpXvxp/8Rd/gY985CP4oz/6I7zgBS/w9QDJ6kZERUPBAIZiRly0A06240s5WeAa6M8J62pBLLj7+SYhalQlIiEEAgGcPqmLbE5OtlSuKBd3QmQbH4giEAAqmrW9N1n52K8LUXx/OtV5J5sQPIaNWlZmTbbqMV8U57XUZBOND9pck81vJ9sY46JdoVCqyFIQrdRkc0PWZPPoZLOLbEcXG3SyqXHRPnNz5YplOWZxvkZ6lWeml/H6z92N933jkW4fCmkBkeo4utB4F+heRnZPH4hiKB7BhhF9DbCHddnaQlMi2w033IBLLrkEAHDdddfhiiuuwE033YStW7fiS1/6kq8HSFY3QhxIRkKy0HQnnGyH560DJ3dGVy7CxbWY9S82ttIQn4EQI05fp+9Q7ZqqvnF+4qe7kCtWsHUiiZPGkwCAcCiICSPSxsjo6sIuss2m9a6G4udO9dDahRDEhasoboz5zjXZFCdbxO5kU+Oi/t0vRB04eyywVUTjg7l0/24EdAPV8TjQDiebiIt6dLIt2RokNLqA6+eabGoNXdGsipBeY8oQzg/PZeo8kvQyeWNOsuRxbF8pCJFt3JjvbzdSL3umWZetHTQ16zjllFPkfyeTSXzuc5/z7YBIfyHFgVhnRbYjC9YbIEW2lYtwtfSzS0RcRyJWd7px4zyykMVyviRFjQf3z+Fr9x4AAFz/O+chFDQ76q4ZjGFmucAOo6sM+yRxPl2Q9dgAZxdZu1g2xDEheAgnW75Gd1HR1REwF9eW7qIF/2uyrfHZySYmtAuZAjtZdxDhMItHgog4dFluFbO7qFcnm1Vka7gmWx93Fz00ZwqSmqY3qxLjAiG9QqGsX5de6zSS3kQ4oO0bIysdMa8aM+Ykp68bxK93n8Bjhxfxe8/v5pGtTvyfdRDSAKYDJ4xISF945DsQFz08Z91B9rNDHekswq2w1MdxUbHgSkb0Rd/YQFTWWRM28FyxjL/8zmPQNOBNF2/GZaetsbwGO4yuTuxOtrl0AceVejGd3GAQ16pdZHNufCBcZWZNNvFYq5NtJdRk0ye0JVt3ydVMLziNhMOslc6itWi08YE4HjE2N9pdNK84PksVrSOlNXqFQ/PWjdFO1pIkxCuFkj7upfOlnhgDVzJTizmUujTGCZHNq0t5pTAn5zj6nOTFp68FANzy+LG+up90iqZEtmAwiFAo5PoPIV6RcdGo6WQrlittvzkdscU0+i16sZoQC+6FPhbZZE02RYw4w1aX7Ut37sOzJ9JYOxTDB3/z7KrXEDddcRMmqwMhsomaVHOZgmx6AHR27DPjovp5GpfdRauPYU7GRWMyLgrox2upyebjBsmc3OX1V5SJR0LyvS70QfOD99+0A6+68Y6uO8SFc2yoDVFRQK3J5u07Fa5S4TRO5UoNia72z7Of5i0HZ60iWz+9d7JyKBhCRUXjOSr4xVPHcfGHf45bHp/y/Jwdhxbwgo/+Atd+d2cbj8wdU2Tr7fv1/pk0XvLxX+HLd+7z9HhRskK46y87dQJrBqOYzxTx690n2nac/UpTItv3vvc9fPe735X/3HTTTfirv/orbNiwAV/4whf8PkayiskqtaRihkCrabA0JWgHFNlWD0Jg6ufGB+L8TSoi2+lKh1FN0/BfDx4CAPzlq86UnXxVxg33jojMkdWBcHhuWzMAwHCyKXHRTjpClm1OtphwsjnUZBPuoOF4GKFgQG7CZItlW3dR/3aaxf1oIOq/KCPcbPN9EGv/yeNT2HU8hWdPmHVe9hxP4aM/fko23ugE4nwbbEPTA8AU77zGRcW1uGEkLpt/HGugLpvd8Znro8io3cnGORvpRdRyN/3iWq7HN+47iJnlPP7m+497/kx2HJwHAPzi6emuOAJFCYulHq/1fP++ORycy+Dr9x3w9Hi7ky0cCuK1z9kIAPj+jqPtOcg+pqmZx2//9m9X/ewNb3gDzjnnHNx00014+9vf3vKBkf4gLWtJhREJm3VqCqVKW2qoCETjg2Q0hEyh3FeT1dVGWjY+KKJS0RAM9l+9I3vjAwA4Y73pZHvi6BL2z2YQCwdx1bmTjq8hOirOsrvoqkIV2R47vIjZ5QLUK6SjcdGCLS4ado6LappW1SQhEQmhUKpgKVtEsWztDO1XnTOxcFcdoX4xmozi2GJu1XfvLZYr8nNcVFx7n7/tWXz3kSPYNJbA77/w5I4cy7LtHPIbtbuol3NQja9uHE1gaSqFo4s5WXy6Hv3sZDtUVeKjf947WTmokbt0vgx4u7RXLaVyBfftmwMAzCzn8dlfPYO/fNWZdZ93zGggMZcuYP9sRm4SdgohlqY8upS7hbjH7T2Rxly6IB1qbpiND8ySGK977iZ85a79uPXJKUsNZ9I6vqoYl1xyCX7+85/7+ZJklSNcCAPREKKKqNbObHilokkn22lGF8Z+mqyuJorlirwZalr/FpvNKGK14HQjLrrreAo/3nkMAPCyM9a5dtkz46KrWwToJzRNkw7Pkyf0Sep8poDplNr4oJNxUf1vye6iLnHRXLECYWZOKiIboE/UVSqaGdFpFSmytaGg+rgRQV3tcVHV1TWvvFdxzi128P0LUattIpvxusWyJuNFtY/HjG5vGIkDaKzDqF2M7pd5i6ZpOGR0axQ6Zr+8d7KysDjZVlk9r2Z4/OgSlvMl2WTrS3fsk9dyLY4umiUtHj4w37bjc2Ol1GRTm0A9crD+5zRr6y4KAOdvHsEpawaQK1bwsye8R3pJfXwT2bLZLD796U9j8+bNfr0k6QPUrojhUBDChNTODqMzy3kUShUEA+bCkxO2lUnGtpvdyQVcLyHE6qQiDmw3BOQTqTy+/dBhAMCrz9/g+hripjvL7qKrhkyhLKP3Yid4Nm2tyZbrQDdngYyLRu2ND6zXsVpzTZzTwqUpRLaw4lj1w9VSqWhSxGiXkw1Y/XFRNQ60kDXfq3jfnbzXtrvxwUA0LEUfLzEoUZNtOBHBhtEEgAbjorZYtdfz/omji/ifX7oPOw8vev5bvcRitig30LaMJQGwIzzpTVSDAOOiwD3PzgIAXn7mOrzotDUolCv46E+eqvs8dVx8yIN45DeqyNbLDSzSyj3gIQ9i5JyDyBYIBPDbz90EAPjeI0dcn3toLoPHj6zMe0i3aEpkGxsbw/j4uPxnbGwMQ0ND+PKXv4xPfOITfh8jWcWkbTE3ERH1sivcLIeNwXtyOC6LgXPCtjLJ2Oox9WtdNlWsFgzEwtg8pi/kplN5xMJBvPzMda6vMTFo1GSjk23VIK6HcDCATca5MG8T2cod7FJoj4C6dReVXUijIRn/Fo8VNQOHExHZkdoP4UYVMNrhZBsz6iDOr/KNgCWlULTq2hP/3UmRTTQkGGpTTbZgMIDBqPe6bKqTbaNwsimOjXo0Gxf9zkNHcMeeGXzn4cOe/1YvIaKia4diGDMWh4yLkl5EXbukKbLhnr26yPbCUybwN685C8EA8OOdU3XdbMe67mTTx5dyRavazO8lMso5Vk9kK5Ur8j5sj5W+7gK9Lttdz8xgyuWe9JYv3off+dxdVWkC4k5TM49PfvKTltoTwWAQa9euxSWXXIKxsTHfDo6sfsy4qH4qRsNB5EuVti76RD22zWNJuZiik21lYp/EqM6JfsKpJhug12UT53utqCjAuOhqRAgeI4mInFTNpa012QB98d7OGpiA7hQT5+lAne6iwgGQVM7XhHSy6ednMhpCsVxBsVzyZcGtvkZ7RDb9819Y5U42NV6jbnpIJ1sHFyxC+BLnWzsYjIeRypc8xYrEY4bjYYSDhpNtsYW4qMfPUiyKlnq8U54bB40F+ZaxhKUBCgHufmYG//Lrvfh/v30uTppIdvtw+h462UyK5Qoe3K/XY3vhqRM4c3IYG0YSOLKQxVy6gC3jzudruaJhStkI3HU8hVSu2DZHshOqWJrKlWrOnbuJ6mR79PACimX3eubqBt+YrfnZ1okBPH/bOO7fN4dP/3IPPvI751l+nymU5Di8fyaNNYMxkPo0ddb8wR/8gc+HQfoVuwMnFg4iBf9q7DhxxBAdNo0l5N9l44OViajxJOhXJ1vWRWQ7fXIIv3h6GkDtqCgAjBuNDzKFMrKFclsic6SziPj0SCIiRVSniX+uWMFQvL3HokZA7Y0PShUNpXIFYWNyaK/dBlTXZBuMhVEoVZDKlXzZaRavEQsH29I8RcRFV7uIrTq6hKCYL5Xl59tJcUTcD0YS7VuciXPUS4Fs0YRkOB7BSEI/H44teHey5Zt0ss0aHeV6vb6QG6Kz6EnjSfmdMn2g8x/3HcTtu0/glieO4Y9fcmq3D6fvYXdRk8cOLyBTKGN8ICobcYmNtVpj14lUHuWKhlAwgMnhOI4sZLHj0AJevH1tR45b0zTL97iUK2JypM0TpCZRjQa5YgVPHl3Cc7aMOj5WbHSNJiNyrqXyF1ecjt/9wr345gOH8PYXbcMpawfl71RnoSqAktp4Ftkee+wxzy96/vnnN3UwpP+wO3BE84N21mQ7bEzYNo0mZASJu6Irk7QtLqrGk3719DTO3jiM9cO9eXP0k4zsimgd0sXEpl5UFACGYmFEQ0EUyhXMpvPYHOWu+EpHLEiHEhEMxyMIBQMoGzXaBqIhlCp6wfZOLFiFcBYKBhAz3ChxxTGWK1UwKES2QrUDKWGryZaMhpArOtd0a4ZcGzuLAv3T+EAVm8R7VWtldjJ60xGRLd5IXNSsETec0J93dDHruTtuszXZZlIF4++vzHNPRMu2jCeRn14GQJFNIMZD+4Yj6Q50spnc/YweFX3BKeNVZR9qXb9HDXfv+qEYLj55DEd2ZPHwgc6JbPZyRb08bqZt94CHDsy7imyi1IZbB9JLTpnAb5y5Dr94ehr/+LPd+OxbLpS/UyOkx5cYF/WKZ5Htuc99LgKBgCwAWGtCUC5zsCfeEDW1koY4EAm3X2QTnUU3jyXkAJUtdq74N/GPjIuT7e5nZvCH//YAXrx9Db729ktqvsaB2TTu3zeH11+4WXZAWmnIxgc2geClZ6zFc7aM4oqzakdFAX1MHx+IYmoph7l0AZvHKLKtdESh9ZFEBMFgAGPJiIxbrh+OYzZdQL5UkfVH2smyUmdNzB+E2Abok27hCkrbGiQAppNNTBQHYmFf3VHiNZJtiIoC/dP4QHVLLRjjsRpT6aQ40kknm5cFtVqTTTgjcsUK5jNF14WPij0u6vWzXPlONn3OtmUsKZMI3BjVEc5Yio69QYE12SRqPTZBwqUOq4pw924YTeCirWP4wY6jHW1+YE9SLfXwuClqsp27aRiPH1nCQwfn8UfY5vhYMVZM1LjXfOBVZ+CXu6bxo53H8M5DC3iuIdipXbCP08nmGc9FWPbt24e9e/di3759+O53v4tt27bhc5/7HB555BE88sgj+NznPodTTz0V3/nOd9p5vGSV4epka0NcNJUr4h9+ugt3G91uNo0lzJpsjIuuSOxONrGo2nU8BQC4b+9c3cnndTc/gQ98+zHcsedEew6yA7jVZBtNRvGD916G9718u6fXMTuMrm4hoF+wiwzqQn7dcEypidb+TQZ70wNALxwvaiyp16kU2WrERQeiYek682P8FtdQvE1ONrMmW+/uivtByiEuqgqL3XCyDbdRZBNNFeqJbKVyRW7qDSciiIVDsi6O147O4hpppOFHuaLJxdWKFdkUJ1tcXvPcGAXMhXMvF2fvJwp0sgHQSwSIQvwvPNUU2bw42USdyg0jcVx4kl7n/ZGD86hUOtPlM2+bDy31cBkacU95ieHyq9UkYs7YbBFzESfOnBzG6y/YDAD45K275c+PWZxsFNm84tnJtnXrVvnfb3zjG/GpT30Kv/mbvyl/dv7552PLli3427/9W7zuda/z9SDJ6qVKZGuTk23n4UX8wVful50Tn79tHBdtHZMLNu4CrkzsE0sRSxLW5kK5gp1HFvG8k8ddX0PcPNw66qwEZG3DFl04E0ZdNnYYXR2YIpt+q1cnV+uH4/Lc74QrxEk4A4B4OIhCqWIR+pbz5arHCkFNCMDJWAiJnH9xf/Ea7Wh6AKjdRVf3tWUV2YrGv8333MkNrcWs6eRsF7ImWx0BS11wC2FuNBnFfKboueOsOEdHk1GcSOU9CU0LmQLE2rSXY0+1OKqkD9isyqRS0eR4QpGtNyiUTCHIS4R8tbLn+DLypQrGB6I4Vant5SkuajjZNo4mcObkEBKREFK5Ep45sYzTjRIo7cTu7O/lzQmRBnvhqRP4l1/vxbHFHI4uZLFxNFH1WDGvF/N8N97x4m34zsOH8dCBeVnKwFKTbQWvlTpNU+3Edu7ciW3bqu2I27Ztw5NPPtnyQZH+wRTZjLhom2qy3fLEMcymC9g8lsC//M+LcNMfvwDJaFixLnOCshJx6y6q3hAeMLobuSGEiJXaeQ1QGx+01gHJ7DDKmgurAbXQOmCdXK0fjsvGA50Y/5bdRDaHMTgjXW/VNdmEU2AwFpabM34INzkXN6hfiLhoplD2NZ5748934x1ffRAlF/d3paJ1zAEAWIWchWwRmqZ1JS6qaZo8/9srsumvXc+1IhZq8UhQznPEcXntOCuEaCHYehGaZhRXcipXkiVfVgoVo24koF+bnLOZLGSLUkDl59EbqE42e9KinxAGhsnhuKW8lJfGB6qTLRwK4vzNIwB0s0QnsNdk6+W1gVgDrRmM4awNugC549CC42OF67VeaYJtawYQCOj3NCHMqV2wp1NcH3ilKZHtrLPOwoc//GHkcuZCNp/P48Mf/jDOOuss3w6OrH7staSEk61Y9nciKHbUX3/hZrzynEk56LPxwcpGFPsdMhbuQjBTd1oe3F+7loN4zkruTJop6tdRq0Xbxwf0ttyMi64O7CKD6mRbN9ThuGihOi4KmGOwKjwt22p1AtUOs2Q07Ov4LeOibXKyDSjXpp9urn+7ez9+/tRxPD2Vcvz97/3rvXjljb/uSN09wCo2CYdiN+Ki2WJZLnhHa8RjWmXIY+ODJVmPzRT8Rg2xbMHjvSevONkAb8KKGkUtVbSOXOt+oooW0XDQ14j4SkftVJzpY0GnlyiWqh3Z/YgY8+2CjpeabEeN+fuGEd2NtWZQn5d2yolrj4v2spNNrIEGomGcNK7XUT7hIoKZIlus5mvGIyFsND77/TNpANY11dRibsVt1nSLpmwP//zP/4zXvva12LJlC57znOcAAB599FEEAgH893//t68HSFY3Ik8uJk6iEHbB5+YZagFwFUYPVjZiYrlxNIFdx1NSTD2q7Lo8uH8OlYomuxupFMsVuehbyvbujbQeWZ9cOIyLri7sNdkmLDXZ4p6iG35hRkCt56iT0FerJptgQHG1+CHctDsuGg4FZffeTKGMUZ/6igjXt1MMNVcs4759upN3z/FlnLtpxJ8/WgP7gmQhW7DUoevUvVac+6FgwCJw+o0Q2eotAMX9ZThuntNC9F50iYv+9IkpaJqGV527AYB5nQonmxdhZcY2lqdyxbZ10G0HdpGNG6MmqsjGz6M3sNRk62EHVLsRG7VjNpHNy/V7zIiHbxzVm8NIYb1DGwT2muC9GrMvVzSzYVMshJFE7bqvQnyr1fhAcPKaJI4sZLFvJo2LTx63ND7IFstI5UsyIUHcacrJ9vznPx/79u3DRz7yEZx//vk477zzcP3112Pfvn14/vOf7/cxklWMEAdEF7lom+Kibl3GxOCd467oikS4YzYYN+OlbBGViiYLcwYCusC6Z3rZ8fmqe62XLeH1cGt80ChmXJQi22rAXvhdnfCuH4p1VGRzrcnmcAxid1aNi9obEgwocVE/jl+8RrviooB5v/HTzSXulU7XrDq+7T7u7HTzG/uCZCFT7EpNNvWer8aV/MZrd9GUg5NNxkWz1d/dsyeW8a6vPYQ/+c9H5LWTK4m4qH4de1l0zthcDb3cKc8JdS4YDQUZF1VQyzrQ2dcbFNW4KJ1sGE86r7nyLtdvoVTBCcN9K5xsZoO6zoxd9mPr1Q14VagcjIWlM9ppw+07Dx2WG25qjTw3Tp4YAAAcmM0gnS/J+4ZIm02z+YEnmi7gk0wm8cd//Md+HgvpMzRNkzuxYmHTrppscrEZt57ydLKtbDLGJEYU+VzMFjGbLqBY1hAIAM87eRz375vDA/vncMZkdcFUtWtQL3cQqoWmmbtZrcdFq51sovApWXnU6i66fjhuush8Hm+dcOouCqgiW20nW9LuZIuFlE6D/sVF2+nySUZDWMwWfVsQVyoaSkZRJqfda/Vnu487bzT4TZWTzVbYv1CuoFSuIBxqao/XM8Id1s56bAAwGPfW+ED8fkiZg5iLourv7st37gOgl86YSxcwEAtLYUnERb2cR7O2+pq96spwQ8wFo6EgAoEAElH3mk75Uhk37ziKF29fi8mReEePsxvMpjsfwya1yVvior0pznSCubQ+ztijifFw7Zpsx5dy0DT9ehebvrL2aofWafaabL06ZoratcGAngIbNe519tI3dz0zg7/8zmMAgHdffirO21zf0b5tjS6y7ZtNyxrXQ7EwJkfi2DO9jKnFPE5b1/4mFCsdzyLbzTffjKuuugqRSAQ333xzzcf+1m/9VssHRlY/+VJFFm1N2LuL+lyTLeXiZGP0YGUjnGybDJEtXSjj0HwGALB2MIYXnjKB+/fN4cH9c3jrC7ZWPd/qZFuZE6JcsQJRHqHlxgeDoiabvjB79NAC3vql+3DNq87E/3T4/EhvI9yZTiLbumHTyea2q+wnjTQ+ENf1QLS6u6hgIGY2rsn42F20XTXZANXJ5s9YU6yYiwGn3WvVQbanY042Y8fbiMYuZgtVhf1zpQoG2y2y2Vyc7cKrk01ci+rxyEWRTWSbSxfwnYcPW56raVpVXNRbTTZ7XHRl3eekyGbMDWs1a/nJzil84NuP4X9cuBn/+KbnVP1+KVfEdx46jFeftwHrhle+CDe3zLhor1GgyAYAmJf1v6zjb6yOE1UIOpMjcVniJe5jWQgvVItsnf8eT6TyWMoVa7rO5JwqGkYgEJAOZ/V+e3A2g3d/7SGUKhpe+5yNuOaVZ3j6+8LJtn8mLZseTI7Epch2nE42T3hekb3uda/D1NQU1q1bh9e97nWujwsEAij7XE+LrE7UAVOIA1Jka5eTzUVkyxUrrnW7SO8i7Pjrh+MIBABNA3YZBcA3jMTxvJPHAQAPuDQ/UEW2ldr4QF2wt1pPyh4X/fHOY0jlSrh91zRFthWI3ckmCggPx8N644AOdhd1dbKFhZtOaXwg67fVqsmmxEX9qMnW5u6i6mv7IQoC1vvkfL246HRn46KbxhLYN5PGvM3JBuhjlv088Bu3EhF+IxsfeOwuOmxxshmLIltc9D/uPWBxdi5lSyiWNbkpKWLfjXYXVY9jpSDqI0mRrYarRSzQp1POC8Bv3n8Q1//4aRyay+L/vPbsdhxuR1GdbIyL9gbWuGipb5MAYg5pr8lmpoec13hqZ1FB551strhoF5xsb/nivdg/k8G9f/0brt1AZZkYo6zGiEMjnVueOIZUvoTzNo3gH954vuc17slrFJFtwWhEMZrAWmMOOUWRzROetxIrlQrWrVsn/9vtHwpsxCtCHIiFgwgZF3474qKaplU5OgSqO8K+e0F6H+F4GYqHZYfRp48tAdB3XZ570ihCwQCOLGQthTsFi6sgLiputOp11Cyi8UGmUEa2UMbjR/WW6b1ak4K4ky+V5UJdFKg9c3IIf3TZNvzNq/UFZke7i8ouWPbGB9WRz4x0vYWqHidIKo0P/Jh8i7/frsYHAJCMhC1/q1XULtxOkUN1sn1oLtv2DoSapkmxafOY7i6212QDgFyh/edbp0S2wZj++vW6izrWZBOLIuW7y5fK+Oo9BwBAjudLuaJFhB5rIC46Y7iSxa2hV6NPbqhxUUCtz1T93pfz+ntzc7zsm9Fd7vYIbS3ypTKu/e5O/PSJKe8H3SG60bWX1EZdu5QqWt+uK+ZkTTbnxgduG3tHDUFHlIAB0PGOwgVZ+1Ifn8XGRKWi4eZHj0ohsF2UKxr2TC+jUK44rlsE6bzV8e/kjBabLJdsG0cs7H1us2U8gWBATwftPKKvAzYMxzE5ootsrMnmDd/8+gsLC369FOkTnIq1i+6ixbJ/N6ZssSwXI1Vx0bB5CbCQ7sojo7SvFq6Ap6WTLYHBWBhnbxgGADx4oNrNtrQKGh9kfSzYPhgLy8XMzHIejx/RBcuV+tn0M0IYDQRMt00gEMD/ee3ZeNPztgCoP+H1E/e4qH6+qYsR++QRcI6L+hn372xc1C+RrXZc1B5D3NPmumyZQlm6rTaP6e1TFzKFqnpxmWL7RfslKbK11zEna7I14WQz4z3m53PzjqOYWc5jcjiOS0+dAKALhuIaDQTMeYz42dNTS3jNp+/AL58+XvV3haC0yRA9V5qTLW+LiyYcajgKhNCZdvkupozFcSPX34P75/Gf9x/EJ366y/tBdwh7d1FN87fMCmkc+9qlXyOjMi46aHOyRcXGnltctNrJ1una2WLMEc5/MWb+/Knj+NP/fATX3fxEW//+QqYgS8DUOn/EOCbmVGINpM4FRLkAUQrGK7FwSAqd9+ydBaA3mFtvxOzpZPNGUyLbxz72Mdx0003y/9/4xjdifHwcmzZtwqOPPurbwZHVjSmymZNOsyabfyKb2NEOBQNVQkQ4FJSiAmtarDyEk01vX60vPITIJgofP3fLKADgcWM3RkV1suWKlSqb+ErA6TpqlkAgIK3pjx1elJ/PSluYEfPcHoqFXSMCsj6KT+f93hPLePk/3IZvPXCo6nf1Gx+ocVGHxgeO3UX13/shWplidftEGRl78clRZomLOtVks8UQ291hVHxvoWBALpIOz2dlcwaxaOmEI0Gc/6MJ56iNXwgBu1Cqff9YcnCyCeeB6vT7+VO6UPaWS06SY/FStoi8ISrFwsGq+NRPdk7h8SNL+O7DR6r+rlhkbVuj1/ZZsU42IbLViI6J+1Ta5foScdJGNhXEuHVkPttzIpa93l4nHMmkNvYUTj2H62qkUtGU7qI2J1udEhVHlWiiwM/7vBdEjVpxv1rOl1CuaHJtcaSGu8wPVPG81vmTtjUOFI10FrNFVIx7rthkmXCJnNZCND94ZlrfnNswYopsx5e8u4H7maZEtn/5l3/Bli36Tvitt96Kn//857jllltw1VVX4QMf+ICvB0hWL/bOogAQCemLQT/josLRMZKIONZGEE4KimwrD7mTEw1bbjCAuRN2zkbdyfbE0doiG7ByYpGapskFnbiO/OqKKCKjt++elj+jk23lIeNySfe4nBz7fIrv3f3sLPbOpPHDx45W/c5r4wNN05A2ruvBmjXZQnV3xRtBxkWj7SvI77eTTd2Mmk/X7i4KAHum2+tkMyORYRm12T+bBqCfa+JnnRDZFjoUF1XdliIS7USt7qLpQlnOeaYMIejMDcMy5r2UK8lzPB4JVRUCP2FEQu33s0yhJB+zbSIpX2slIWuyeYiLCjeh2/cgRLZGrj/haskWyz1Xt3XOVoeRc9juY2/a1o9OtsVsUTqaR+0iW9TdiQqYTraNqpPNx/u8F6STbch0fy3nSvJe5nSv9RO11qLbhgGgJHmMeZK411U0cywUY8TEYOMim2h+INgwklBENjrZvNDUbPLYsWNSZPvv//5vvOlNb8KVV16Ja665Bg888ICvB0hWL2KAUEW2aEj/73Y42dwm243m/ffPpNvuCCDeSCu1m+xNLTaM6Dth52zU21U/fmSpaifaLqqtFDHp/d96FBd/+Oc4vpTzvWC7cE/cvvuE/NlyviR3xsjKQMTlhuM1RLawv042MQl2WozKjqFujQ+MSXe+VEHZONdq1WSzxEV9dLIlIu1zsiV87pJWNy5qfA+nrdNdTO2+bwkBZzAWxoixuNo/oy9MxpLRjhaw7lRNtlAwIOsM1nKJLUmRzTyeoXgEYt9PHK9wCKwfjmHYiLouZYvy+oiHQ1VurhOpvHycinA6xcJBTI6szLhoVXdRxX1rv5/XiotmCiX5GTcjsgGmy6YX0DStSmRrd81FUp+CcS8V5nG36PJqRtRjG4qF5XUrEHMOt3uAEMLF/B0w78md7i46GAvJjcilXBEHZ/WajvYao36jXte1xmsh4Ir7ajxi1qkVpSLEPcCteUItthobM4INI3FMGiLbdCrPNYEHmhLZxsbGcOiQHge55ZZb8IpXvAKAPuiz8QHxSsYhntOO7qKys2jcefGUaKAukaZpeMM/343XffYudnPqMqVyRd4MB6LhqsWUcLKdPjmIcDCAxWyxyuZd7WTrfZGtXNFwy+NTSOVKePjAvJx4+FWwXdjKVTu4pgHLnMCvKNyavaiIxXreJ9FDnIt2BxVgukvscdGYbfxVFyXJGjXZEsqE0pe4qHSytb+7qF8ik3qfzBTKVfcwMb6JLsvtrsm2rAhJIgopXIkjiYivNfTq4dZRvB3Iumw1FkQph3lIKBiQIvhitoByRZOutPXDccXJZjY+iEeC8rwvGIK0ENns9zPR9GDNYEw66FZLXFTTqptVpYzGB/lSBSXbRq1wCAKNxbXVCHC7C543wnK+JDejRS1jzkm7j6j/LBxc/ehkc6vHBpjXr9N6K1csS4Fp42i86jmdbnwQC4fkpshSroj9hsimOo/bgepkq12Trbp27ajsMFowXkvERRuryQaYcVHBhtEE1gxGEQzo65CZBhrI9CtNiWyvf/3r8eY3vxlXXHEFZmdncdVVVwEAduzYgdNOO83XAySrl6xDXLQdIttSncl2IxP/fKmCmeUCMoVyVb0b0lnSyg03GQvJRZ1g3bB+U4mFQ9i+fggA8MTRJctjqkQ2j7v8mUIJP31iqiuT2n0zaXmuHprP+O5kcyuQutIcEP2OmKzWEtn87i4qzkunnd5lh46h+jEIZ4p+DEKMS0RClm65qoicjIYQDAakCOdLXLTor1jtRELWlvHnWrIX2baLm+L/n3fyGAC9lkw7F31qJHLMFhNSnWydcCR0yskGmMJxrc/WyckGmB3sFjJFzKbzKFc0BAP6Zoc49iWl8YHqVgD0c99NZBMuhjWDUUVkW1njeKFsds8GajerUusXpW3n2DFFZGvIyaaMjUcXe8fJJiJr8UhQbowxLtp9hPAprut+FNnE3MN+DwDUOUf1uSqu0UQkZBm3O+mABkxhPRYOyk2R40s5uWkBVNc79ZM5pdZiLSekGOPUdID43OYzRWQKJTm3ayouqohsQ7EwBmNhhENBWatumnXZ6tKUyPbJT34S73vf+3D22Wfj1ltvxeCgHkU4duwY3vOe9/h6gGT1IhdTlrio/zXZ6k22G4kcqTun3DXsLmKhGg4GEA0FLd/vmsGopV21WZettsjmtebKl+7Yh3d97SH82937mzn0llBryx2ayyq1Df2Juam28nAwIBdn7XD5HZrL4J9vf3bFuSt6nVyxLM/N7UZU0Il6RYgbRYyJS7mSjHwCuhhUkBEM5+6i4hjcareFggG5CSN+52fXMb/Faif8FpkKJWtcwx4ZFQuBrRMDWGfUl9nTxsiorMkWM2tkCsYGIjVdDH6z1EmRzRDOahWpVuvVqYwoHUaPL5rOs3AoKDcGl7LmYikWCUnBCdDPJbUmmxrhEYvCicGYdMUJt9dKQTrZjJps4VBQ1u61X/eqoGEXslWRrZHxQp3zHWtzwfNGUB0q8Q6K16uBYrlStUHhB+WKJu97Yh5Vq07jakU2PXCIKNbqDiyurw2jcUv97Fp1GNtBvmQ6RMWmyONHrGsHJ7e+X8wpDrFamyIZh41L6WTLFCzlApqZ12wZS8rY8wbFWSg7jPbQpkOv0tSqLBKJ4H//7/9d9fOrr7661eMhPvP4kUXsmU5h+7ohnLtppNuHY0FMdAYc4qJ+3gBFbMrNyZawOSlqoYp/7OTUXdJKTb9AIGBZ1E0qRVMBXWT79kPAk7bmB0JUWz8cw/GlvGchSXQZ6kbxzycVofDQfEbe/HxrfKBMjLavH0K+WEYqV2qLA+Kzv3oG33zgEAaiIfzPF57s++v3K5/+5R4cmM1g/XAM73zJKa6PU+sb+YEqnixlixiTCw3z3KmuyWYVXsTieDBWfT4nIiEUShVZAyseNZvWaJrm2NjGK1nFKdQukj7HXuy1S+dtNZrEQmA0GcHp64cwncpjz/FlXHDSmC9/344QOYbi4aqGG6PJqHQFtVsM0DTNU+MPvxiq42TLl8py4Wafh4xK54H53Yn7lyUuKs7PcBDBYACJSAjZYhnTqZycl1SMWL94nogdTQysYCebLS4K6NdosVyquo7U92Z3gEwpUc9Grj9rXLR3FpXCLTQ+EIUGXdihk60+5YqG1376ThTKFdzyZy+pqhnWCuq6xYyLrixR2w9mazrZ3DfGhFN0o1KPDbB2FK5UNNdu6X6RVzY0xHj92GHr2qGdIttMujEnm7rBLj7zxWxRfg9rBmNNzY2i4SA2jSVwaC4ra3oCusi288gijqd6ZzzsVZoeXb72ta/hRS96ETZu3IgDBw4AAG688Ub84Ac/8O3gSOt89+Ej+PObHsWPdh7r9qFU4dQVUcZFu9D4IOdh4qUeFyc03SVjK6Sufr8bbDdp0fzA7mQTotqWMdF5zduN89C8Xpsh75M40Qjqezg019646Hmbhttay0dMAtgO3D92TaXwL7fvBQD83W+dWxVPU4m1KS4KmN0dAVN8iIaDiIRshZAjoi5cxfJYJ2em2BAR17x4jFN9poaPvQM12fx03gFA0fae55WJf7miSdFhNBHB9vX+Nz9Yzpdw5Sdvx4d++CQApfFBPIyhWNgS9x1LRmSXuHY7ErLFsqyN1Mm4aMplQaSKP3Ynp9oVWyxa1g0ZIpul8YFVBBbn6aG5jOX1FpVzQHWyiXFgpYlseQeRzek6KpQqljHA7iBSo56liuY5LWFtfNBLTjZTZEsaheGZrqjPgdk0np5KYe+JNPZM++vqVc+VcSmy9d93ImuyDVSPvWL8Kle0KjOFdLLZNskt8fgOzLnFvD4aCsr57+NHrCKbU6Mhv1DjorXixumaTraidMQ10/RAIDqMqt1e1xuleI730KZDr9KUyPb5z38e73//+3HVVVdhYWFBNjsYHR3FjTfe6OfxkRbp1KS2GdIO3UXFAqzVBZOK2figtpPNU0025TF+FQsnzZGual9t3kjsN+mzNug12Y4t5uQOcLmiyUXR5jFdlLN3G3VDLGzyHXYzappmiYsens8q15H/cdFzN41YCr/6jRBKvcZ0SW00TcMHv7cTpYqGK85ej1edO1nz8dLJ5nPjA8Bal82t6YF+DIbQVyrXfay4Vwj3s1qfqZV7XKlckRsoybY62fztkmZfpMwpn7nqyh1O6E42ANg97V/zg6ePLWH38WV868FD0DRNiURGEAgELALXWDLaUJOhVhDjSVjp/NlOROMDt7hoSum6GrK5MISTTY+L6osWsYgxmyIUpdNeXC/iszwwaxPZlO/duSZbsaorZy8jrsuoIs47xY7ti9FqJ5t1Qeh1vFDv8b3qZGNc1DtPHTOFtV1T/opsFifbQP0I+WplzqgXOO5QbF+MX0D1mksI4RtGbU425Z7cibWsjItGzJpsU7bUSjs7jM55bHzg5GQT66CFTBEzLXQWFQiDwmlK2RHRYZSb4/VpSmT79Kc/jX/913/FBz/4QYRC5sl/8cUXY+fOnb4dHGmdTmfZGyHrULRRTKR8jYsawkndmmweJv50svUOchfHmGCq3689LjoUj+Bkox21EKnUReiWce9OtuV8STpGOrGrpjK1lMN8pohQMIBgQJ8MHDQEP9+cbDaRTbgp2uGAEIsCimz+MJ3K48ED8wgFA/i73zqn7uPNqKY/422ujpPN3vQAqBb6nHZn7Y9NGr8Lh4LyntHKeKw+tyPdRdsUF11QJufi8x+MhREJBWWnsIOzaV/+NmB+bsv5EmaWC0p3UX3MUJvRjCQiSuOHzohsI4lISxFir4j36xYNE+KjU4dzEStbyBbkokXUvBlWOrSK60JcA2KxesDuZMtWO9nU7qLFsubrJma7cYqLmvNa833YxYxajQ8A7+OF6lafWsxZat51kzmLk62zheFXMk9PLSn/7a/IptYPFAJ5rbhfq3z2V8/gqn+6w+Je7QXMmmzVa65oKAgxJNs3W0T33o22+XswGJB1KMW9o1Su4Fe7ptsydywoNdns5gwx32hnXNRzd9F8dWkNtSabGCOaaXogeO/LTsVn33wh3nLJVvkzWZOtC+VyVhpNiWz79u3DBRdcUPXzWCyGdNq/CRxpHTGp7cWbb8ahm1s7u4u6x0W9u/3UXc1e/Ez7ibSt4L9ak83uZAOqI6NCUEtGQ3Knx8sN+/C8uajptJPtCaP46mlrB2UkVsS//BLZ1g3HEI8EMRAN4azJYQzFzA53fpMxXEsLFNl8QUxux5IRbLTtBjshFup+uXLVMVSd+JuCeA0nm3EtyevawckmBDB1Yybhg4tDjOWBACxF5f3GPFZ/Fl72+6TqZBM77eK+d5KxkXB4PmtpStEKqji7fzZtdheNVY/JqpOt3fdOce51IioKmO/XbSNCbPQ5RbfVeI+Ii5pONvM8Fx1EE/Xiog5OtonBKAaiYbm4bYcruV241WQDbDUgbe+puvFBtubv3VAFyUK5YlkAdxOLyCbF+8bHlUpF66tNrqeOLTn+tx8Ic0AkZDpol30a6534zkOH8dSxJTxyaL5tf6MZatVkCwQCpqO5YI+LOjvZAHN+K675W56Ywh9+5QH8/U+e9u/ADczGB6GqRjVnGU3U5tskslUqmiWK2mhNNumMzhYxK8oFtOBkG4pH8OrzN1g2H9cM6a831yNjYS/T1Gxy27Zt2LFjR9XPf/KTn+Css85q9ZiIj3RqUtsMGVl7R+0u6r/IJuOiCec4XSMRFtU5wMYH3SUjnZAOTrbh6pv02bYOo6rbYSThXUg6NGdO1jvtCBDHfs7GYRlxFU42vxw4yWgY//GOF+Ab73wBEtFQe51sRcZF/USIC25NXuz43fjAUpPNYaLoHBe1Ck/ysbVqsinnuh8RRDHZT0RCbXU++e1kE3XHBOruuhCuhYizfjiOaCiIUkXzrbaU+n3vO5GWnSuFmDSqLLLGBiK+v383FrKNXQetUj8u6txZFLCJbDYnWzgUlOf6tCGyyZpsxr8P2kQ29RwQHSjXDMYQDAbM2nErKMJW08lWIy6q/n+2UJafS6Mdfu33eLtY1y3mlKYWcXldNT4f+avvPoaLP3wr9p7wL0bey6hx0bY52cJBuRHUzrioqIHZa0ml+XTtmKLbvOOoi5MNMK95cd2Kce+Aj85sgXCvqt1FBRdsGQXQvrjoUq5o2QSrdf6YdalVJ5uIixbMxjeD1bHdVhCbpe10aa4WmhLZPvCBD+C9730vbrrpJmiahvvvvx8f+chHcO211+Kaa67x+xhJC/RyTTYxWKqOhXY0PhA7nH7ERelk6x3StgLpyWhIumKEAKVyjhTZ9LioKrKZXdzq3zRUJ1u7awvZEcd+9sZhGXEV+OVkA4CLto7hOcZkYqiBz6ZRhJPNLm4uZAorqm5Qr7BQx7VrR0xci2UNJR/G3HqND+ydRQFTUJhNF5AvlWWhaKfHCiFZ3blVO481ixB7E22sxwYoC3yfxo2CbZGi7oDb3VyhYACbx/Vx0e5+ahZ1/Ns3m64ZFx3tpJOtweugVQYNt2+9xgeOIltCjYsKJ5u5yBRC4bTxO9GsRMxbjsxbRR/x3ssVrSouNLwCmx+IuWDMoSabRWSzvaeMUnBexJoGoiGsG4pVPbcWdpfv0YXeiEjNOsRFxTjWCI8dXkSxrPkuOPUiS7kijigbDCdSeen28UK9qLAQZCNKwfx2ChEinm6PRnebeiKbUxmj5bzZwd7JyWa/5sVj2+GmUputqOaMwVgYp6zVyy60Ky5qd8p6aXxgcbIlTSfbXJ3voVkG6nTTJiZNVcr+wz/8Q5RKJVxzzTXIZDJ485vfjE2bNuHTn/40XvziF/t9jKQFEpHej4smHeKi9q5prVBvwh1voG5doczGB72C3ckWCATw4dedh+NLuSoBCjDjovtm0sgUSorDMSIXMqkV42QbqeqeJq51vxGTxXZEjEQ0UN0VfOzwAl732bvw+y88Gdd5qCtGTBoVF+LK2JsrVTAYai0qmbU0PqiOizo52SYGoohHgsgVKzi2kJO7s4MONdnE5Fx9nXikMWdKreOOt1lk87smmXCyDcXDSOVKcnEDmOeCGtk8aTyJvSfSODCXwaU+/H1VZNs/k7YU+AeAEXtc1Oe4rBv1SkT4TT0nmxg7nZx14jOaXsrLRZFFZItHcGwxJ+Oioo6iuBZKFbOL6mK2KL/3+UwBQhMQnQ7b1Sl6IVPAnullXLx1zHcnaC0nW63GB+r/C/fZ5Egc0XBj44V9w7eeC1TTtI7UARSdAycGzeuqmc108Tn0gyvlacPFtnEkjkg4iAOzGeyaSuHS0+o7ff7ffz+JH+w4gh//6YuxbrjaaQWYcVGLk61Nn2uxXJFpmmZiwu2iUKrIzQY3ccfsam6er6Kz6FA87DhPsJ/jYqxtR5dPYaaIhUMYUk6Nk8aT0inWru6i4h6QiISQLZaxnC+5jimy+ZuDyLaYKWI2arpd/UR8P/0wZrRK0zPqd77znThw4ACmp6cxNTWF+++/H4888ghOO+00P4+PtEgrN9924xgX9dnJVixX5CSiXnfRnAfBRI2x9uJn2k8IgUa9wbzhos1478ucx6C1QzFMDEShacCz02mrk83YrfISWzzUJSfbQqYgd2F1J5t1t89PJ5tKu9wP5YomJ4lLuZJ0rj16aAEVDXjwwJyvf68faFRcUOuP+XEuq5s56rWUtgniKoFAAJvHzHphYlHiVJNN1FrcMGoucvyIIIrjbtc1JBAbSoVSxZe6aOI+KUQZtU7MgnSymRPsrcbmgz1i2CwWJ9tMWrpdZVzU+NuBgNH4QDrZ2rs50Wkn21CdBfVSTSebIbIZIlokFMCYIk6Ke5NwucnmH7ZzdbvR/W0xqy+sRNODsWQEYUM8N0U2f8fyD3z7Mbzxn+/B/fv8H7OdRDaxSFevebtwqAq5stbTSAIJh+fWQiy4hQOuVlz0K3ftw/M+8gtZJ7WdzMnOgTFfRLaV2pn07mdmPDtzRdODMzcM48xJvdvyUx4dfD967Bhmlgt47PCi62PUxgeNimylcqUhN7kq6PeSk02IT8FA/TWXOl8QnUU3jjjXkk3aDCPiep9P+98tWbpnI0HLmH3ymqQcm9vmZDOu661Go7aK5lyaqFzR5GdhiYtKZ7RSk83vuKgQ2QrlnmkE06s0JLItLCzgLW95C9auXYuNGzfiU5/6FMbHx/HZz34Wp512Gu699158+ctfbtexkiboZE22xUyxoYWaU1w0YkwG/XIIqTE0t/osjUxQ1OPqRXdgP5GusRh3Y/t6fSGy+3jKuSZbrv4N+/B8d5xsTxouti3jCYwkIm2Ni6pIJ5vPddPU66dc0eRkVNjlpxbZHrxRGhUXgsGAXLz6IrIVXES2GnFRwIx3H57P1Hzse152Gv75rRfif1y4Wf7Mj5ps4rjb2VnU/vp+uLnEok4IAPOW7qL6f6tONjFmHJz1R2RTa0DpjQ+stcfE3x6ORxAKBuT7z3Wwu2gnkE4217iotVadir04+LqhuMW1IN5DWrot9evVfq6Ke5t471OL1dHTIblh4t9YXq5ouOfZWQDWe6Nf5MumcCFwmtfao7rLDnHRyZG4jFZlPUYrRX2mk43uvEcX3eOitzw+hZnlPB7Y394NolyxLM+H8aQaF21GZNM/h5UY/XpmOoU3f/E+vPvrD3l6vGh0cNaGIZw5qZcPedpD84NcsSzPoXSNcVs4i6PhoBTevbh9KhUNr/3MXbjqn+7wvPmiCuW9JJDOKU0PgkFnR6fZuMS8fwgnm7qBZnmOrZaieP+FcsV3kVGklGLhoGXduHViQI7X4v7qN+Lz2zSakI1qUg5dq9WxT50riXtuuaLhmHHOtsvJBvhX+mK10pDI9td//df49a9/jbe97W0YHx/Hn//5n+M1r3kN7rjjDvz4xz/GAw88gN/7vd9r17GSJuhUoeF0voSXfOJXeN1n7/K8q5ApODjZjIlU0Scnm5hwDsXCCLkM+I0s0lRRhY0PuktGWqW9L4y3r9N3L/dML5tx0bhZk61Y1mp+r5qm4bCya5r3qWC8Fx41dlDP3qBPDreMWUW2dgkE7ViYAdUig9gZFDt5s+m8rw1Q+oFmxIW4FNla+6wrFc0yPnptfACoIltWRiCc4qIjiQhede4GS6zTl7hosTNx0Vg4CHEb8uOeXLQ52VL5kvyZqMk2alskAP452dSJfq5Ykd+/XWQT/5Zx0SZqRzWCU1S2nZgNBZzHSNFd1MnZYd/8m7QV/bY/R5yj9nP11LVWke24IiwJ2uFke2Z6WQo07YgBm0626mYnTjXZxMLU4mRTCqo32o1YnNPbjGvnWI24qFggt3u+LdxC4WAAw4lw0062SkVTnGwrT2QT9fGePLbkScwSTQ/OnDSdbF5q0anjZa1rR5STaTQuOpcp4KljS9gzvSxj4fVQhZdMDwmkYqNnrIawI65fdf4sxOsNrk4255ps6t/0C7fuolvHk/KeMp/x30EHWGPgg7LBQPV1Lb7zoK0jejxi1qYWh+d3TbZ4xJzH9NK514s0JLL96Ec/wle+8hX8wz/8A26++WZomobTTz8dv/zlL3H55Ze36xhJCzRS1L8VjixksZgt4umpVM2dPhVxc1eLTYvBwq/FtYhp1Ooy1lDjAzrZegaxo9iMk+2Z6ZRc+Iwk9K53QoStVXtsMVu07Jh3Umj90c6jAIAXnbYGgO5eUXf3kw7dGP2gXd1FM7aJg1gcioWKpgHTqd4oMu0nz0wv4xdPHW/LazclsvngBAOqO4VZGx+4NzMAoMRFM+Z17fF8TvrQ+EAsTtsdFw0EAvJ9+eE+EILamsGoFBfEAtypCcZJhpPNr45sbueMEJ22Ge4f8W+z4HVn4qKd6i4qPuPFrPPCq1Z30VAwgGHl5+uHrdEe+3uQTjZl3hQKBuRnLN77MblorRbZ/Gxi8/DBefnf7YitOdZkc3BEivvTGiMapS5MRVx0ciTR8MazmPMJJ9uxGvNb4cJut7NIbESNDUQRCARkrcdGRTZ1zHZayPc6QhjUNDMK6kalomGXIaidtWEYZxqblbuPp+q6xw4ozt9aYl6hpL9OJBSU7tZiWau7GasW75/x2IhBjYv2kptoLlO/2H7cIbItxGunzqKAmjjS37c6T/e7+YEpslU72URNtkKp0pY1oNnQJFaz1qdsJhUNV9VrG1VKRMQjQd/nNYFAQJbpWYkO2E7SkMh29OhRnH322QCAU045BfF4HO94xzvacmDEHzpVk03dwX300ELdx5cV18OAQ1y0osGXbndeJtuNfEYFi5Otd25s/YhsfNCEk2338WWlfpV+kxILnVp12UQcRtzTOuVke2Y6hcePLCEcDODV528EoEf9NildVNtdk83vxgf22IX4PtRJpnBjrCbe942H8favPohnppd9f+1mxIW4w65yM9gXlosOjQ/qx0WzdV1vdnyJixarN3zaRaNOmlqI+1E8EpJCj3CEujU+AHSRZdGHmjJOn3kiEpI1wM7fPIrv/K8X4oY3PReA6qzvjJOtU3FR8RkXy5rjwqtWd1H9+eaiaN2Q3clmfY698QGgx4GEc0R8/06dStvhSn5EEdna4WpwEtmc4mZisSdESlUMUQXHxkU2/XHb1ujXzvGlnOPctFzRpMDd7g1Y2TXW+M4TTcZFVWFtJTrZ1OMXTaHcODCXQbZYRiwcxMkTSZw0nkQiEkK+VMH+OpsO6qZETZFNiTartYLrCZjqnMezk00V2XpI6JAdLZO1RLbqe7a8Rh06iwLqOk3/jNX3P+dzEwJxzUfDQQxGw3LsOWXtAAaiIURC+gKgHXXZhIA+MRCV8yWnuKjZ+M2hzqdyz58YiLWlEYusy7YCxflO0pDIVqlUEImYX14oFMLAwIDvB0X8QxZabrCoZqOoO6M7PIhs6g3dqfEB4E/zg0VFSHEj3kBNInUhSpGtu9RbuDshnGyH5jNyESK6uwlholbtMVFgV4gCuWKlLZZxO99/RHexXX76WssO4WZFZGtXXFSIbLlixdf4pn2Rs2BzsgGrry6bpmnYN6NP2A/P+xPZU2nOyeZPXNTp+xTXRrpGx1AAlsYH6TquNzt+bCRlHVzV7cJ03vlQk61sOifEokZcPyKuqzY+SERDWGvUbzsw17qbTdwDw0opBruQdNHWcTlmqTG/do6bnRbZEpGQdBU7LbzEIslN/FYXRettnQurnWyGyKaM92uHYhY3HVDbyeanK/mRgwvyv9viZPNak814T5PG56fOMdWabPEGBSnR+GDzWBKRUAAVzWxSoTKfKch4Vrs3te0u1WSTtQ7V41yJi2X1O36yjsgmaq+dMTmEcCiIUDCA0435oOg66oYlLlpD0Coa86NIWH99cZ66dR0WqHOeE16dbMpx9GRNtppOtuoGOEcX6zjZ5HWrv291o8DPuGilosnaerFwEMFgAJ94w/n4yO+ci/XDer3MdnYYlSLlQFTp4ln9/Zo1qZ3LaggmBv2NigpEswU62WrTUL5I0zT8wR/8AWIxfZKWy+Xw7ne/u0po++53v+vfEZKWUCdiuVIFg6GGdFXPpBoU2cTNPWDLk6siW7GkAS2OD0tK3S03Eg3EjQqMi/YMppPN+zC2ZjCG8YEo5tIF7Dyi1zgTNyS1+YEborPoaWsHcWhOnxQUyhXEwu1bnGuahu/vOAIAeN0Fmyy/U5sfJNskEAwqi+ZUruhbpyL7gsweFwVqd3JbiaTyJeng9TviAHQ5Lqq4wbLFsmxmMRSPWKINTgix+HgqJ89jN0HOjh/OMOlka3NcFFAWCz7GRaPhoBRqhLjmVpfspPEkTqTyODiXwfmbR1v6++JzO3XtIHYZHRUHXdxagPn5VrT2jpuLmc6KbIFAACPJCE6k8ljIFLHR5sYwa7LVd7JVxUVtcxfRWVOtyaaKbKlcCeWK1pHGB4vZIvYojtx21mSLOcRFLTXZDCFTvF8x5uSKZTnWbmwhLhqPhLB+OI7D81kcW8xWfcfCgQK03xVmH+ebrXWouslrFfTvBLliGV+/9wCuOm8DNrm4meyoc4h6TjbRRVTUYtP/exiPHl7E01NLePX5G1yf6zkuahOEB+NhZIvlukKEeu54jYuq13AviWzzUiSqseayzTk0TTM7ALt896qQrGma5TP1cy6lmjtixnH+9nOt8+7RhDnW+42Miw6aIttyLSebw5xKvef7XY9NMNhAY49+piHF5W1vexvWrVuHkZERjIyM4K1vfSs2btwo/1/8Q3qHWDjoWAjWb9Sdmp2HF+u65tQBQrWyhoMBM4pXbv3G4WXR2Xzjg965sfUjyzV2cmpx2jp991J8l+LckLHIrPt1IuKi4jWA9tdle+jAPA7PZzEQDeEVZ623/E40P4iGgjKi5TehYEBGcv10QNgjY4vZIsoVzWL9X21xUTUK0g6RbakZkS1cHb1qBrHgHUtGpDtOTELrRUAnBqKIR4LQNHPh5LUmmx8dtDvpZGtHXDQSCsrJtCjIvOAiNG2Vddlad1KKc+bMDebC1amDpkAVhtrl9tE0reNONsBsMOHUda5Wd1H1uYDpxBK4OtlUkW0wZnmvS9midG+phcSHfXayPXZ4wfL/7XBDOdZkc5izVTvZ9N+Je0g8EsRwIqzURGysu2gsHMRG47MUBfdVZtPm2J5t85xgySagm7UOG/v81THIXiO103zpzn348I+ewj/9fLfn56gxyV1TqZoN0/ae0MXg09crIpsxbj3VgJOt1jlunqv6IkYKEXXOtVlFWJtJeZsXpCxONufX1xtbdFYEmTPuO+MD7puxpnte/ywXs0V5/97g4mRTGxylC2WoZfT8dJTllWtXFfZVZIfRNohssvHBgCqyOTjZHBoH2o8PaJ/IJsbRbovzvU5DTravfOUr7ToO0iYCAd2ynCmUkWtjsWF1VyVbLGPP9DLOMgqLOiEuTLtzIBAIIBIKolDyJ5q25KFGUSOND6xONnY+7CbNONkAYPu6Qdy/b07+vxTZEqIodP246LY1gwgGdEeGPglv32Lue4/oLrZXnbuh6nrZMq5P+tvtwBlORJAulH0V2eyT1YVMEQtK5AYAppZWV1xUFdn8jho0Ky7Eo943GWohFnjxaAijWhRTxRwWs0VsAepGQAOBADaPJS116jzHRf2sydYBJ5ufHb+lky1kRljm0gWkC2WUjFWI3ckm3K+HfOgwKj63szcM4wc79Ei7m1sL0MXASCgga5eNtnwE1WSU995Rkc34nO217jRNk+Omm6Ne/Y7WVYlszjXZkra4aCQUxEA0hHShjOOpnFwATg63Ly4qoqKhYADlNi3oC+VqkS3uICqZNdmsTjbhDFozGJPzYcCbyK1pZu3gWCSIDaP6azs5rFU3UqdrDjY7pmR6yMl2x54TAPQmal5RnWyFcgXP1Fh3iI0edS1whiG47Zl2F9lK5YqltEPNuKjNySYjdXWut9kmGh9YarK5fO9v/+oDeOjAPO645uWyLEq7ESJRLSeb3T0vROvxgahrh2+1wZHdiTuX9k/sEqJ6MGAtg6Bidhj1fw6nxkVlh1qH86dWuRz1u17jU/LEDmuyeaM91gfSU/ix018P+6TNKTKq1mDJSoGkekCNGTcokYtvBSGY1HSyRU0nR6VOlyFL44Mesmj3I7ImQYMLY3UnEzAnXWIBVKsg+CHDybZlPCGjTvk2iq2FUgU/2nkMAPC6CzZW/V446ibatFslMLvSNT+Z+erd+/HX39sprzF7TZzFbNEy2QSA4x47Fa8UrE42f3dBs8WyHDMbc7IZu8otNj5QmweY0UX9PS57qJ+o1hcEvDc0MZ1hzS8SpZOtI3FR/7qLqi6fcVn4viAjo9FQsMqdt3XCPydb3vjOT1k7aEak6oijfsZlnRACRCQUaHu3WBVR+27BVtMzWzRFP9fGB8r1Wi8uKlwgcZvIph+D/ljRRTERCVlEOr/joqLpwQVbRgG0pz6PPMdDqshmdCdU46LGHHT9iOlk0zQNJwxnkFhsJhvYVCiWNbnpEwuHpIA37bD5ozqT2x3fs8eh1cYHjdQ6VI+zm7GvbKGMhw8sALCKlfWwj/m16rI5Nbc53YiOHpzLuN4/ji3mLGuRWp9TXnEWA1CcSN7jol4bHyx7ENkePDCPpVwJ+3zqJu0FMa8Z9dD4QHwnQrR2c7EBVremfb3pZ022vHJPdWsYYC/N4BepfEmeaxMDMXm/cDrnam1cqt1F2xcXDbkeGzGhyNYHmDbb9l0MYtIWMpR/e4fRxWwRL/nEr/CX337MOBaxqKkeIMSOpR9OtkbiooA1DuqEpfFBhzpLkmpK5Ypjd1ovbFeinoC5iKlXk03TNLmjuWUsKWvjtLPD6N6ZZSxkihiKh3HpqWuqfn/m5DA+8Ybz8Yk3PqdtxwCYn1GzizNN0/DxW57GN+47iGeM2Ia9I9ZStlg1wT62tLpqslmcbD7HRcVYFw42Ji44uUKaQY1cDivROU3TPHUMVUW2eMR7/NncRGr+fpFxWIC1i6QPoqBAuHwiIbMm21y6aN73kpGqhYLoMHrQRyfbQDSEkwzxzk1IErS747l6z29HVzU37MKyQCwIQzWuyxFjQZqMhqquEfvcxSkuKjqSitcRItuGkbjlM/DTyaZpGh4x5nmXnabfm9ohLuVrxEVrNT4QHexVJxvQWFxbvbfHwkGsM8TM4w5CiBr5a3e9XreabJpWfw6rYnWydW8+++CBOTmWNVJGQQgNQoCtVZdN3B/U62bNYAwTA1FoGly7fds3I2qJCkWb69KryDbXhJNtuU5ctFwxHbSdLG0jHYM17gP27sBHF6uj7XYStZxsfsZFZQ1I97nAWNIszeAnc8b8NxkNIREN1WwuIL5zp81Ia3fRdjU+8HZu9zsU2foA1WbbLoSFWuxo2p1s9++bw6G5LG55YgqAOUA4TTrFLpA/cVFhEa8/4AP1PyNLXJROtobRNK2mU6we2UIZ06mcxQU10GhNtvWmyBYLB+X3b3YXdb5pzCwXkCtWEAgAG0cTvtWyqsXBWRFPHZACtp03XrwFF20da9sxAIqTrUa9ulqk8iU5iZd1uoz/F6+9kC0oBar1hdLxpXxHurd2CrVzmN9t55sVF+JSLPanJlsiGjLrU2WKyJcq0slT61oVHUaBxiLgpmjT/GQvV+i8yOZnXDQSCip1YgpyjB112FwSYtixxWzL91gx9sUiIZw8oTfAqlWTDTBrubRrPrLooUREO3CrySYWhIOxsLszwniu6F6nUu1kc6jJJp1s+mcrRDZ7p1LTydb6wmj/bAYLmSKi4SAuPlm//7TD1VAwhK6oQ+MDcd3mS2Up0gghTByP2LhZO2TtcOtNZLPWZ1onnWxONdnUuGi7u4vqf2vY5mRr9G+rUS/7plcnueuZWfnfc+mC53u+WEect1mvBf7E0UXXx+Zc3Moi2bD7uIvIZnRhFo6gWteOvX6g1+LwM0o9P78aHywpjtpONmkTf8st9glUi+THjIjwxtH6TrZMoYylBp1sqVzRVUS1o9ZgdGO0TTXZZpWoKAAMxvTr20nIqlW7Vr3vt6u7KBsfeIMiWx9Qa+d4ZjmP/3rwUMuTAnHjedF2fUdz9/GU5eLbNaXvMC1mi8iXyvKm4CSySSdbneYJXvDiZAsFA/Jv1rsZ5S012SiyNcrf/fBJXPjhW2tOhmrx+1++D5f9/S/xfaNOWTgYsMRIvLB2MCZ3etTzYrhOJFJ0a1s7GEM0HOyIk024TbYoAkQ3EIuzZuOi6qJEXJNCFBHFpPW4qD7BFHVVCqWK77uF3aSdjQ+a7ajoV3dRp7joYrZouQ/UEs9UJ1sj7lSziHLz94uOdhf1cdNLXdQJke3IQlZeM07nwtrBGOKRICpaY/WPnFC/cyH0n7J2oNZTfHNOutGNpgeAe022RQ8bfaIA+3mbqhuHDcXDUHU3cb4nasRFn1acbPbXAvS5VavXu0grnLtxWMaT2uFks3dsBJQ6jMb5r0bnhhMRy4Lc7mSTIm8DIpuIjq03PudpRydbB+Oixjklvu9wKCg/H3sZhlqon0G6UK5bLqVd3P3sjPzvUkXzvJknRMLnnTwOAHjy2JKrQOc2xp9ubLruPu5cl01sdJ5tzElq1a6z12QblJuTtecw6lxgPlOs2cBBYK/JZv/uFpW/me/gWiVXQ/wR2BsfiCYtkzXiouL1ckUzLirO/3q10d799Ydw5Sdvl80vaqHWYHRjrE1xUXEeTEiRzb2mX0aW4HBysqlx0fbUZDMbH3AdXAuKbH1ArcL+N/58Nz7w7cfwXw8daulviF2VU9YOYsNIHBUN2HnEFFLEpA/QHUGeRLYGdtmPLWbxv77+EL71wCHLTdbrhFvUJao38VKPqZ21uFYrOw4toFzR6rZbd6JS0bDj0AKKZQ3/5wdPANDPn0YjQYFAQEZGLSJbwhQGnBC7x2IxG+9ATbbDsgZcd0U2sylEc7tWU4vmokR8vuLmLCZWi0pcdP1IHGuMHbipHq7LNrWY81xDBehMXLRRB49vIpviFBhVXFViB3lyOI6gixsTsDnZGhHZwq0ff6YLTjY/FuKifks0FMT5m0cQDQfx9FQKX71nP4DqpgeAPv75FRnNSddCEO988Tb85M9ejN973kk1n5NwqKflJ90S2UYU96aK7Cwacz+eczaO4M6/fBn+wSH2HwwGLBFScb47OdmE2CXE0/W2Retg1BTsWnWzib9xytpB2eG7PU42Ed9yb3wgaz5GQ3o3bCVm5RYX9XL+CXFC/O1aTjZVKPHy2o8dXsCBJmtlmd1FzcV0MzFsu2DUjY3jxUxRrhUiIf3kVJ1dtRBOtudsHkE0FEQqV5JzpurHOo/xoi7brilnkU3ERc/ZaIhs+ZKrkGd3sonr0W1OCejCnH3M8FKXzn792svXLHbZyVbrXmpvViTmRWtrFOlPRA0RuWDGRUV90flMsaZA/Ox0GhXNuVa4HTGfrxUXbVfjA7NphCGyiZpsDsJuTSdbR+Kitcf81ZRAaQWKbH1ArXiKaF29f6a1ybYY8IfiYTzXiIyqddnUG9hMKq/ERasHCBkXbcDJdsvjU/jJ41O45juP4Q//7QHZtl04b9y6egnM5gfenWyFcgXlLu38rVTE91FvZ8+J6VS+qhlGo/XYBNuNiIDVyVbbraXWOQKgONnaGBc1FsEndVlka7Vg9nFHJ5t+rYmIwELGdLKtGYjKqNNUj9ZlyxRKuOKTt+O3PnOn53HA3l3UT+dAs+KCbHzQolicUybXquDwkFEc/cKtozWfb3GyNeAoi0lXS/MLiVwHnWyNOGnqocZFN44mcPUrtgOA7J48knCeYAtB82iLTjb1cwuHgjhrw3BNIRXw9/07sdQtkU0Iy1VxUXNuVIvNY0lLJFJF3JuioaD8fNcO6Y7sU9YMyOvF3kHQ7mQLBgMYjIq6bK05hIXQtG4oJkVA0WzAL0rlCsQQ6RQXzRqF/sVnLBalA/J4TJFNxKaaiYuKBbeIoqYL5aoIlyoM1Tu359IF/I/P3423fPG+usfghNNYn2jCIWp/bL0OoyUf0iV27tk7C00DTl07gI2j+j3Aq8tbCA0jyQi2G440t5REzkX8OUPGRV1ENmMOdrYhshXLmuucr2DMT8UaRtZprDHfFZttgYApBHuJjNrPv6pu7crfbGdJE5Vi2SwNUUtks9dkE6LimqEaIlvELDMgrncxL1brzzkhxrq9J+qL2iKZUishIzcRm1jH1MKMi+qfw4Acq927iw46Otm6Gxd9ZjqF533kF/jSnfva8rdXEhTZ+oBa3UX3zeiDzok6g7qmabj2u4/h//zgccffmy3qTZHtwQP64ipfKsu/A+gLTb+dbKqd9rZdJ3DFDbfjuw8f9jzhtu+suGE/pnYWFH3k4Dze9uX7scfl5r8SETGAZnbRjyzok53J4Theec56AKarrFHExErtvFOvJpt9YhsLWy3v7aBXRLbhFmv5TCkim7gmxc1ZFLtN5UqYSZk1KUQBa9UF10vsPZFGKlfCscUcjrjsnttRx9mK1lq3VjvNimwxn5xsYkyPq91Fs0XZNe7Ck2rXDZwYiMoYSSPiecI2YW8GcW/sRDdKtRNgq9idE3/84lMskUMnJxtgjnutRJZL5Yrc9IjX2PW3U8tZ7wcLTcamW2XU1ckm4qLNH494rhphikdC+NVfvBQ//JMXSTe3/T3ba7Kpr1XLXeOF40aHzXVDMXndlCqaL2U+BOprOTU+AHQhTIpsxrgho0z5srmAt3UX9VLDMW9z0Q3EwvJv2N1s1u6i7m4nQBe3i2UNh+eznqKBKqVyRQos6vfdTO1lu6iWybs/dz5dwAs++gu8/1s7Gjja+oio6GWnrZGum1mPdcmESDgQDePcjfq498jBharHaZrmGhcVG67HFnNV92NN03DQcBuKuCjg7t6xj8du7lYVKawko1LErbceA6pFcrtgumgR2TrjZFPPvXjUXV6wu+eFqFjbyaZ2F9Xf25rBmNxgcKtxW65oUox91kNctOApLmqtyZYr+hO1FmOVEMYGa3UXreFkmxyO4xVnrcPrL9xUM7bbCrUaH9z1zCxmlvP4xVPH2/K3VxIU2foAtx2uxWxRTgyc7O8q06k8/vP+Q/j3ew44xqPEhTYUj+D52/T6CA/sn0OlomHvibTc3QD0G0i2hsgWM3YQGpl8iAHnFWetw3M2j2ApV8L7v/Wo3AWtN8H1OvG3199qpw37pgcO4fbdJ/DDR4+27W90Gulka0JcEDGAk8aT+NTvXYAP/uZZ+H+vO6ep43jdBZvwB5eejPe9/DT5sxEZiazjZDPOJXHOiIm4pmn44h178bDh3GmVSkXDoR4R2YY81hZxw6kmmxBlVLfFfmNCOz4Yk1GnqTpjk51SuYJHDs770jilFoeUqN0zJ+oL4eWKVrV48LMuW7MOnritvlGzqEKVjMlkivJ6uLBOc45AICAdVrW6kNqx13dpBlUgbDeNLPLrYXYX1UWWcCiIj7/hfISDzqKLQIhsrUSW1fOlEQegn3FZJ7pek802Ror7ST0nWy1EvVD7+Tk2ELUI0vb3bHeyAeZ332rR7umU4WQbjlsWcrWEmkZRx3DVWWJpVqW4yoTjWiy80/mSFCzsIlumWN91Z4+LAsC6YaPD6JI5ltsjfxWtdhJD3axqNHKmlmxQOziaXVO9jyv2a7BWp8Anji5hZrmAXz097fn1vXDXM7rIdumpa6SDZ9azk82sS3XpaRMAgNt3n6h6XLGsSbe5/RoaSUTkdWLf0J5NF5AulBEI6A1jkvK8cj7H1W7PgDfHkyqsCCfXTJ0SFJqmVTvZbN97N+Kioh5bMFDbCRZXSgZUKpr8vmu5rlQRWXUHj9XZMFINGN6cbNXxdDujSk22hUwBr7zx13j1p+/05OKtNU85tqivccQGc63utLVqsgUCAXzxbc/DDW96bt3jaRbpZHMYb8Q8l51HKbL1BW41KPbb3GW1ODxvLijtuwG6Xd/soHXuphEkIiEsZIrYM71cVetgJpWXF2bCQWVvxskmJhZnbxjGd/7XpfjfV54uFx5RpYOkG17rWdht4u3sIiV2d9pdRLdT5Ipl+Z0252TTb0CbxhKIhUN450tOwUVbx5s6lpFEBNf91jk4f/Oo/JmMi2ad6zvUc7I9dGAeH/7RU3j7vz3gy3lxYjmPfKmCUDCADTW6LnUCsUD008kmrtnhREQuivYaY9KagSg2GBON4w3WZPvPBw7hdz53N/7l9mebOlavqPWsvHSumksXUNH0WMgmIxbjZ02PpuOiPohU6vPVxgdPHlvCXLqAaCgoa9rUQkRGG+kYLMXuFpxsXoo1+0XC15psVucEoDcN+eCrz8JYMoIXG42I7Iid+FY63KpjXK0FiR3VNZ4rlnHDrbubboTjRNdEtoSzeJXyWLKiFsNyY6f252x/z5MOTjZxbbYq8Ivi/+uHYwgFA/LY6kUOG0HMF4IBXUAW2JtVLeetQqYQHucyBXnPWmuryaZp9Us95EvV19c62fzAvC+pkT9BrTmAupE3n25M7BTF1gdjYctn0kxc1C6I1hqTxL1qPlP0bQNrPl3As4bw8cJTJmQd1jkPNckA8/iT0TBesn0tAgG9/rMQKwTq2sdpY1+42XZNWe/joh7bxhF9zinOq1Te+Tsr2muyyWYo7u9nVqnDJc7Rek62fMl0EQvR3P7dqX+zU3FRtR5brVrJZnmeChayRSmATtQo0i+eU1ZEuaF4uO6GkXqt7ZtN1y3tYY+IOyG+14oGfOKnu3BgNoOnji3VbQLw8yeP49z/+1N860HnGujCSCDmQbVEtlpOtk5QS3A+YVy/FNkosvUFbjdfNcLp1C1JRS0mal9QqgP+UDyMSCgoO43dv2/W0vQA0G8gGWnzrh7IhDjWyI1cXOgDxsTjfS/fjh+890W47LQJ/P4LttZ9fq1IrYp9d7KdnSXFjWS1dDFVb3bNOKKO2G5AfiMWMhUNSDncHOzdG2M2J5v4vuYzRXy7xUYigCnibBiJy53RbiGjtE3XZDPHF/EaGSXqIT5Tcc2PD0alk+1Yg062J42mGk8ea7y5RiMccBHZvnHfQfz+l++vqqsiNjImBswd67kGF1i1aFZc8BqVr4fa+EAcg5hknbtpuOakVSCu7UYmjkJka6VGppdizX4h3psfIpuMJ9nGhz+8bBse/tsrcIFLRHd8wCjc3IqTTWl60EjzGdVxc/OOo/jUL/bgk7fubvo47HSt8YGx8MoWy5Z5gVpKo+nXFiJbnWtIfc/hYAATDvEruShtQWDVNE3OGdcN6eP0gI/ntcBJ5BLEFZHNHhcVIr24h0ZCAdm8J2FzwdXCjI6Zz1kvmx+Y4/us0hVQzF9rfQ7q/GfWY5F/gdv53UzXYntkvZZAqnZS9FIzzAvi+5kcjmMkGZHnpupk+9YDh3Dnnpmq5xZKFTkfH4jqjiZRqua2XVY3m/iew8GA41zqDJcOo6IxhUgSmHWoajvZRBpHRsg9OdliWDOkv39RNsMNcb4HAqZ4bHcwdiMumlHmALVQmxWJc2kkEXGtSQlYr1uRjBiKR+puGKkbw4VSpW5pDzF219o4ioVDUmT6xv0H5c+duoCq3L9/DqWKhof2O6ddTJHNer4tOzTbyBTcnWydYKBGTTbxndb7PPoBimx9gNvNVxXZlvOlmjZzVWSzO9nEojkQMCdalxiR0Xv3zWHXlL7YPc3o6HgiVTsuKp1sDcRFZSMFJTpx9sZh/Mc7XoC/ec3ZdZ/vdaFpd0tkC+3bIRI331Ujsim1zlqJiwoXkN/EIyF5HjiJgPWcbOrN5ot37mu5KUavREUBc4HYrJOtVlw0EQ1VxbknBmLShdGok03sYh9rc1fSQw4im6ZpuPHnu/Hr3Sfw+dusTjo1tjQu3ST+1Ztr3snmT5fcrBRdQlXHcFGdqKjg9RduxgUnjeK1z9no+e+q7p5mFhOFkrdizX5RqxFRoxRthbZVaglf5sKkeZE3p3zfjWC6xit47MgCgOa7FjvRLZFtKBaG6PmgLnDFvWSoFSdb3FqiwA21Bt+6Id1hZkd+9y0IrEvZkhSgRGfTdnQYFXNAp+iZtUaTTWQz5qEHjIZeEwMxeT2EQ0H5evXqIjpFx4STTW3mI+Zq4wNRT6VH1PO9USebq8jWQEMHQcb2XdWsyaaMFfU25b1id+7YRbZnppdxzXcew//6+kNV5WPU8VOcCy87Yx0A4LZd1khrvU2U012aH4g5hN1Z5HaOy0Y0YSOur0TI3Wp2zSkC7VqPjQ/E5tVgNCxFlionWxdrsnlNDqki25o6BfojoaAUsMX558XJZq9d9+xM7dSBmAfVEvwAU0BVta9lF4ejQGzUO40N6XxJngubxPlmzLs1rfr7Tcu4aHecbLWuBcZFTSiy9QFuUUhVZAOsO3N2ajnZlpUJjuh8Jeqy3b9vTsZFX3SaHl2ZWc5Lq6tzXNRwJjTiZKvhjPNC3OPCxy78tdLRrh5iwO3UDbLdqMJaq3HRdlGrUK2YtIiFjHDmiIm4ahU/MJvBT5+YaulYeqXpAaA2Pmh8UV6paJZJ+aItLjoQqxZlxpIRTDZZk+3Ygv54e2TEb+xxUU3TcHQxJ9/rf9x3wFKDTbapH4opdUT8d7I1WmBdxkVbHMukaKrERQX1mh6oj/veey7zLMoBVndPM2OlOuHtRHdR6eQq+leTrd6CwI7TwuT4Ug5/8p+P4MH9c55eQ0SQGhUmVdf4E4br1M/6id3qLhoMBuTfXMxU3+taqsmWEDXZvMdFJx3qsQH+ONlEVHI4HpYL6oFobZdPM5iF5KvPsYR0kjvUZDMWgMJtLBxC8rke6yI6uVqkky2lOtmESznmSURX76ONRrbdRLZmxHsxZxHiRS2BVD1f6tVw9oooQyNELFE3T9w3xYZ+Kl/CUzZnunDdRUNBOf699Iy1AIA798xYxhTxmcRdxvczJp1FNrMzrdHt0RC0nJIOgOK8DOmPExFyTXOf86rnjtfuoimlzqPpjK5Rk61DJWdyhdpipkDcs0sVTYrVa2o0PZDPM173eJNONqB+XTbpRqzjGh5Vmq6J86/eukZ8J04im1hjD8fNZEciEpIbN/ZrU6a3uhQXlU62QnXThxlj0yFTKLdsNljpUGTrA9y6mYki44Jau1NqTTb7ICUnkYqi/pwto4iGgziRyuOosRt0mSGy6U42Y4HtcNMTk9FGJoFiAGo2ny4G/WwdN4e9EG67bl65ojlx7NQNst2o7jA3J9u//novfvuzdzl2eTrSZicboLZcrz737CKGWPCIibg4B8VN8V9+vddTIVQ3hIizpQdENrF4WcrV7prmxGy6YGl8IhyNssNwJGwRZUaTEYRDQblIXMwWG7oGhLg2nco33LnNK6WyNXawlNMLbD+iNL3IFSuWFuaqyDbhw0LXTtNOtnDjizMnZE22aAiDsbDFRVOv6UErBJX6TM00bxDHHQoG5GKznfjlZNM0TS4kG42TjzmIbD989Ch++OhRyzlbi2YjtmYtlxKePqYvauvVxmoEeR24dFZtJ06Fzk2Rrf1ONi8iW71C4V4Q8X+1e6n8XttQk80puiUdY4WKWRM4LrqLGnFRY45rX8B7bb7hVJ9pbS0n22DUUxxcdfU3Gtl2E5HFhnUjyQcxDxe1sGrHRdvpZNPnOPauxwdnzXXH/fus4r+ZXjG/m3M3jmDNYBTpQhkPHjAfX2+sEimbmeWCZWNMdZkBDTjZlHrQYo3jNKcUfxPQzx2vIps0NsTDruey+n212tTIK167dKudRw/N6eeAF5EtKR1w+vvRnWy1Sx/Y6+ftrdNhVDjZanUXBcxz9cqz1+OUNQMA6ju3pMjmMDaINbY63w8EAkodQPO1S+VKRzuiO6E2p7JrC+r56+f9YCVCka0PkFFI5cLWNA37DLFMLHBrNT9QF5RHFrKWm4zTJDIeCcn6CIBec0GNi9bK7m8xbrhqHKse6RqdVryQiJr1PWohdjnEBKddUU51Arxq4qK56nPGzk0PHsKjhxaq3BTzmaL8HDa2UWSTTgRPcVHrDV9EL646dwNi4SAePbSA+/Z5c4U40UtxUSF8lytaw+ejWIwElChVpaKZIpvNySYmtEMxcwLp1c2WzpfkeaZp9Ru6NMuxxRxKFQ3RUBBbxvXz8ZnpZTxycAEA5KTr3+85IF0tzk42P0U2/X03KrKJekOtOtmyisgWCARknGLTaMKyGG8HcVt0uxFUB14jtcWaJRnxp3aVKlzX6uTmxLghBqXyJbkwnDI2w2Y9Fh0Xn3WsQZFNiCNPHluS50zBJ0e4pmldi4uqf1Nd4IoNI+FGa4YzN+hOm1PXDtZ83FA8IsfZyWHn+6T47huNKaqYnUXNhbFYDDbS3bIetZyaahmUZdtGr+qyAKoX8J4bXclzvNrJpt5bxDi+xnNcVHGyNXgP8DMuKj4fIRzWeq56nP6JbFYnm+guKeKiqlv8QVsdKycnTzAYwOWni8ioWZctV0eQSEbDcp61+7gpwoj3PO5RZCs41BCUwrtLNF89d8T3UG/esqSkh6TIZnOQ9nJcNBoKynFKnAP14qJAtUg6bOku6vz5irWG2POzlzuy46UmGwC89QVb8eLta/C3rznbc2MwL042e81pp3NOXB+hYEA6+TpNPBJ0dNllCiXLONLvddkosvUBTjXZZtMFpPIlBALARUaUR+2WpKJpmozqCXeCGjVNubSoF3XZAN2OLW4g6UJZTuSdnGdbJ/Sb3YEGRDa5YG/SyVariKNA0zS5sykmOE43rwOzaRxdaC2qZhHZGlyMaZrWkoOqXSzZdvedjlF8/vablRB51wzGGq4B1Ahe4qIjbk4243vaMp7EGy/eDAD4+5887VqLox69FBdNRkPy2ld34b0gRDYhnmeLZcsiQ218AJi76oFAQNZlm/JYX80eEW1XZFQIoJvHEzh9nb4AfnZ6WTrZ3vuy03Dm5BCW8yX82937AZg12dYOxpSFrj8im6ZppsOhQQeP2V20xZpstqiIOI52utgEYkxoKi7qsVizX6j341bGadWl2WhcdDgRkRNk4aYUC2ev8TXTHdLY3xaLQrXshF9OtkyhLMXHbohs0gmtfIZ+ONkuPXUN7rjmZfjbOvVlQ8GAFJomR5ydIWOG86OVzrL2pgdA7W5zzeLW2AOwxo7NuKioyWa9lqtENpd0hx3PNdlkh0g1Lup+n1TnQs2KbPZIvunyacTJZhXZas1/1XPar80ru5NN3Pvn0gVUKpplDfDA/jnLeCkcMnbhTERG1bpsYn1Qa+54ylp9Y+zgnLm2UR2KgLlOcHMsOZ2vck7p0vxgVomkCqFpPlOs6cJX49HJmPOmzVI3RDaP99JAICAd9I042ezlhYbiEXMuVScuKuru1YuLeukuCgCvOncSX3v7JdgynpRjez1ByYuTTVwLAtn8QHltUdppzWBUlmjqNIFAQCkRoAiAtk26fq/LRpGtD3Da4RIi2caRhLSnuu1OnVjOI1+qIBgAnrN5BIB1guxWc+T5ish25uQQBqIhuaATzhSnnSUhKqhOtkpFww92HHEVr1rttOKl5lSposkil24iW65Yxqs/dSd++7N3WcSVXzx1HNd+9zHPN7vZJp1sz0yncM7//Sk+88tnPD+nU6jCSllxMqmIwdpeCPvIgn4utLMeG6C0XLdNiMoVTZ7nbk426aaMhvCnL9+OgWgIOw4t4AePHmn4OHLFsozk9EJcNBAIKLt1jTkgxPs41ZjEAub1HwjoIo9a32JC2dEUkSevorW92UG7mh+oAqhw6D55LIXHjRpTF20dw/tefhoA4Kv37EepXMEJYxPD4mTzKS6aK1aqXLZeaUWgsh8DYN5vxA7rhSeNtvS6XjDfQ+NiTSc7iwLmPU/TWhM21ZpDjcZcQ8GAvOaEo0lssnkVfptufODweL9qsomFbCQU6Nj3qTLq4IRectmEbJQt40nHRgZ2hLg9OeLiZKtTKNwLYpEnBCdA7S7qf1zUSUSWLufFrNn4IG51sgnsLhmvkW2nBfc6Y+MnXTDFPbNDZNRTFFXdRGy0ZIDYALTX3lS79npB0zQpVImC+7Vrspnn9AmXDflG0DTNtfFBuaJhKVe0rAFm0wXL5r5wbiVt3/VLtq9FMKA70sSY5mWMF+fyjCISuMVF3cSUooPz0kl4V5lV3HJjyai8xmuJr2o8Ohlx/t674WTLNXAvFefr4QVRN9GDyGbb0BmMhR1LH6iI8fd8Y+06ncrXnMOKTfNGNq4GHSKdjsfSjJMtXi3sTitzyW5imlPM93PCFnVutlnaaoEiWx+QcNjhEjerbWsG5IXq1vhAXPyTw3GcMTkMwGq5FQPLoG2n9sKTxuQN44zJIQQCgapBwVFkM5xsM8sFObD87Mnj+LNv7sCHfvik4zG2WgRysM4OFWDdbZdxUdtEamY5j+V8CSdSectN7oZbd+M/7z+Ee56d9XQ8al2IRkS2e/fOIVMo44t37vO1mLQf2B1QTnXXhBvMfhOUN6A2RkUB97iouitY7WSzNj4YiIWxbjiO97xMF1k+9pNdDS88xPsdjIUx1oXaQk4MK3XZGkEIahtGE3KhKcSvpBHRUxcMYqINmLvLe2zNVtwQTQ/c/t8vDjiIbLc8fgyFUgVjyQi2TiTxqnMmMT4QxVy6gPv2zVniovbaM60iztdQMNBw8xe/uouKc1zcb37/hVvxotPW4Lca6BTaLKYbrwUnW4dEGVWUakWQEKJqIABP4oudMdnh1upkm88UPLlvG1lQqTi5HPxysolo9kgi2pHorx17NKxS0eScYrgFJ1sjnLNhBMEAcN6mEcffq86PZl3WTos8s7uofwv6fA2R7cXbdcfSl+/cL4WKwZibyGaPi3qLbDtFxwZjYTnGigYAs4oYk1ghcdF8qSI3jdWUiRuWxgc+ONnm0gVki2UEAsCGUV24jIaDco4wncpXxUkfUMqIpF3qOo8kIxgfEA0UjOZhHhxW4hwR92lN09zjoi7jtnNc1L0ESb5kdsYVriTxt2q5BYXINxwPOzrZiuWK5bvsVMmZRjasRIkHMUfzVpPNvK5DwQCS0ZA5l6rjZNs4mpB/o5abrVYdSDekEFZjblyuaHKt7Oxks7o65Ws7rE1PODiJu4EwtajHNmM7b/3sNr0SocjWByQd4qKqyCZ2cNziokeUi18sKK1ONued2oFYGK88Zz0GY2G88NQJAOaOmXls1aLYcDwib0xiJ+vRwwsAnONfap2oZotAesnUq6KVEAXsBUXVCabqRhODolvBfzvWuKj3BYg4/sVsEXc9O+P5eZ3A/t7tn3W+VJGdaKrioh3oLAqoiyTrDVtMkAaiIVlkXHYXLVobH4gbz9tftA2bxxKYWsrhn2/f29BxHFKaHnRjseiEuEa8nsMCsRCZHI7LhYGYWInFjlNNNgA40xD1n56ydhZz42hVXLRzTjax03/BSWMIBAIIh4K48uz1AICfPH5MmRjFzI5YPotsI4lIw+eLmOwWypWWOkHZJ9i//dxN+Po7LpGd2dpJS3HRYv0FmJ+EggE5gW+lLluxrH9Xen2bxscIe5fJE8YmW0Xzdo0LF14vOdnM66A7HdfMaJj+mS4XSlLIaNXJ5pVPv/kC3Hvtb2DbmgHH34t7nNfv2Ylph8YHba3J5hAX/d3nbcGGkTimlnJyPjrk6mSzzTtl04Q63UVdiqCL9y1c2tLxNBjzVO9N/dwbdRTW6y7qdQxUF7/CPe723RXLFcuczG1DvhGEqLB+KG5xCorv6omjiyiW9bqnrzlf36h5QKnLVqtEzJDN/eNF/LHXQ1vOl+T5J2KsZlzU+TMuGGNyxBIXda/JNqfU1hIivBT7ajQ/EO9LrcmmCn92Qa/VUhBeEWsVty6uKuIxIt4/4aEmm3qvGYyFEQiYNckWs0XH+UtKqV8nNm33zrhv2jpFxOsxJM8L83N/9sQyvvXgIbmRoW7UO4meh2yCssCpJtt0qtpJ3A1q1YsTMC5KVj1xhx2u/YbIdvKaAWl/d9s5ETfDTWMJGfmyONlqtKj/p//vAjzwwVdgw4i1Rbcg6RLv3GpE5A4Y3YV2T6Usf0tFHbDskyuvSLuvB5EtHAxIIcU+kVIHWXED1TRNLmS8WmdVy3ojC0f17//osWOen9cJlmq4wwDYmmlYf9eJzqKAu5PNaWIbs3U0tHe4jUdC+OvfPAsA8M+3PYuv33vAcw0mU8Rp7/tthHqxBzeEk239cExOJKcMMUxcR6OqyKaMEWdO6nU0dhnXfz2EeCcEhKml9tZkO2k8iVPXWYuRX6A0fHnVuZMAgJ/snJIOwLWDcXl8qVzJlw6orRR7Vyeu+SYL0FcqmhkX7UK3q7gtut0InY6LAs4bX41Sq16VF1ShN1soW6Iu9omyE16LXNtxOj8KPnUB7mbTA0AdI/XjEPf7aCjY1lqiKpFQUM7pnIiGg3JR2KzILxsfOMRFa7mhGqVWXDQeCeFPXr7d8jNRG6mqJtuQS1zUc0026+uttW1Mz8i6Wt7ioqqrfzZdaKg2o6uTzWPHVIFZpyxo1pRyEY/sAtHMcr5pF6TALR4n7o2iidDmsQQuOUUvPWNxssn5VvV1JR02OZvIVuPeZBfZxLWRiITk88y4qLM4XXCIGtrHBBVZ823ArK0ljsPuCFJZUuo8DjiIuvb5a6udrL3SmJPNdk010F0UMNeb4vPVNGe3oFhLDMcjsnFMLSebKax7H6+d3GZ/+/3Hcc23H8M9e/X00mINkS2VK8rzw349OHUX7bm4qCLw2s9bNj4gqx6n7qLCyXaKxcnmJrKZCrtwbeybSaNkTIzVQcxOJBS03Niq4qIuA9kWW122p41FttPOq+jqqDoEGmXIQ002NasvP9OSXWQz/1/cpJdyJek68Krqz6WtcVGvkzBVxPvpE1NNL5rbgV1gtP+/6gJ0c7LZb0B+49b4QNwg1VijGbPTj1tMWtXW1ledO4lXn78BhXIFf/P9x/HebzzsOBGw00tNDwTjsihxczXZ1qtONhEXdXCyqXHR0w2R7dhiTkbBanHMEPREHbCjbYqLyu9nIonheATrlS57F5xkFvq/9NQ1GIqHpWgRDQUxnNAbPdgLz7eC0/npFXXxr4pUT08t4ZpvPyqvvVqocb9u1MKKN+jiUMnaYq6dIOkxrlYLIc5GmrznqbW57C52L+4asyZbc40PAFOkKVc0OZ9ohaUui2z2TZqUD51F28GYzcXYKNJJoYh5ZpfD6jnO7HIejx9ZbPjv1BLZAOCNF2+W3Z0B895rdzfZN3fjHgUpt06Dwsk2vZS3RP70uKj+t90EPE3TLPPMfKnSkNjudo57iamqiPc+EDXjr07fHWBurOnuId191Go9UXsUVDBhE9lOmkjiwpPGEAjom+7CGS+P32Gj3l4jK+OhJMBam4Ns1hYVBcxYoFskWnUXC0Zt7laVWVvNN8CsHzhTo8uz6mRLOIjb9vlrp9YB8l7aQE02gafGBxFVZNM/10goiOG4+6aBagJxMonY8dpdVGVQpjzM60fMccV5rs77CyVrakDMsUaTkaoGOU5usRM94mQT46wlLmpzYNLJtgr53Oc+h23btiEej+Oiiy7CHXfc0e1D6iriQhA330pFw/5Zxck2ZHb0cXJVqALHxpEEEpEQimUNh4ydKHXAr4cqskVDQYRdduHNDqNppHJFeQxO9aDS0jYeajpa10hcNBY2d6Vzdieb8nwx4Kv11bzm09WbRbmiyZt3PdS/n8qVcOee3omM2gVS+/+ruyHdi4v64WQzJwKBQACf/v8uwN+8+ixEQgH8eOcUrv3uY3WPoydFNlnDqbGoyHHpZHMS2YxOlBYnmznhHI5HpHvRS2T0mHGeCKHLa1fSRljMmruOomOq2HwIBIDzt5i1kKLhIK44a738/7VDMQQCAcfC860eE9CcuBAKBuSiQBWpPvurZ/GtBw/jvx48VPc11IVdpxw7KnF5LfZ+d1H1b7VUk61FJ5s4/+YyhaoNNi8Op2YdgOr5cYHSFMMPN1uvOdmEY6mVzqLtQDZeaWLsWc6XpGhhcbLFnJ1smqbh9798P177mTsbFtqcnEEqkVAQf/Ybp8v/F4tddS4aDJiuTYEZF228uygAS4kVMX6HjchfIhqs+drpQhlifS02WhpxFLp3Fw3X/Lt2xNiTjIVkXS83F6IohbBmMCpr+tmTL3PpAl732bvwt99/3NPC2q0Glbj/P3VMv9+fNJ7ESCIiS0eIyKjZXbR63TEY0z8bMSfLNeNkU5pZCOp2F63R+MBpk1DMpdS/IcQ+u1ihopboMZ1s5jEJIVY4VjvuZPMSF1U2ZwaiIU/PSTg42YDq0gcq5mcVMeOitZxszdRkc2iIIYRpIZZWuQuVOdPhOXcTgWN3UaW+bzcZjAlx3nwvM4yLWlh1IttNN92Eq6++Gh/84AfxyCOP4MUvfjGuuuoqHDx4sNuH1jXEJLhU0VAoVXA8lUOuWEEoGMDmsQTGklGEjbu908Au46KjSQSDATlQiToYteKidtTdCreoKGCKCwfnsth93Nx1KJQqVW4Fs6tj87vF9hoOTqhFeOMuu4bWuKjVdg40FxdV/87xpRxe/PFf4p9+vsfxeUKEFDs7vRQZFTd+UXDbLpiqAqQaJU3nS3LR0u646GjCrO+gsuCweLM72WQhXpvYHAwG8I4Xn4Kv/tHzAQA/f3K6rtgqHJybe0lka8LJli+V5fm/fjguHR2itqIQ2dQFg6h/Ijhrg+5me9pDZFSIdxcaItt0KueLQ0ZFfDdrBqPyuz7NiCFsXzdY5egVkVHA2kHLXni+FVoVF2IOjQMePbQAwL2zq+rIEAu2aDjYVBH+Vmmlu2hGOLLCnRPZvHY3rEVBOtma+7zHB/RzZT5dqKqx5MXhlG+yJpu6KFZdn6023gC6L7LJ+ktZUR7Cn86ifiM2TJrpMCqcRIOxsOVel3QRju9+dhZPHF2CpgF3PdPYpp84x2M1hOTXPXcjXnP+BvzuxVvk2KvOLccHolVjkpdIJ+AeHVNrsok585gR+UvW6bIq5jaRUEAWLve60aIWtK+OizZW51HWNIuEzcWyyzGL8WA0GVWistYx4/59s9hxaAFfu/cArvqnX+P+fXNVr6Pi7mTTX1/U6hJrgYu36mPFIwd1kS0jm51Vjz9DtkL0WRmNrS+y6SJyqarpAWCKCk7rhHJFk+4kp5psTmOq7EqrzHnsDRicWFbWXEJ4Ut11Yhxcb3Rnt9eO9osv37kPP3z0qPz/bAP3BHVzxktnUcAqsg0rY6rYNJh1cP+p69PJYf1cq+USbKbxgRm31v9WpaLJ70CMDws1IrzyWhitnu+b3UWVDp5SZOt24wMHJ5txbBuMc48i2yrjhhtuwNvf/na84x3vwFlnnYUbb7wRW7Zswec///luH1rXiEfNrzlbLGP/jFFUfSyBSCiIYDAgB3b7ZFtvs229GYpcu7DcqvUB6mHpRlVjID5pXBfyDs6msfu4dXFtF6rkZKGGaFcPceyZQtl1Ua7W50i4LOqWHRofqPVtmnGy6X9Hf92HD8zj0FwW33JxlwiR73cu2AQAuPXJ4x1r310PcZ4IN1pVTTblpqN+x8LFNhwPt90R4BYXdYpoxGzdReWkz8XR+cJTJrB1IolCuYI7ajgMNU2z1PzqFcSivBEnm5gMRENBjCUj8vObsjnZhuIRJCIhhIIBS/QS0DsTA/VFtlSuKG/o520eQTgYQEVrrRPa//3B43j/t3ZY4tpqUwrBpaetAQD8huJaE7zk9LXyfap1R/zsMNpqwXd73c6FTEG6Kd2aR1x38xM477qf4f59c013mvSLVrqLNrJJ5BeNRrucKBrjTqTVmmyZYlVc1IuQ3qwDUD1Hzt80IgWQ1eRkW7TVZOtUZ1GvjNXpyFcLEf+3R5UGotWLQQD4yl375X8/fHAejVAvLgoA4VAQn3nzhfjYG86XP1OdbE4xtIQt3eGGW3Rs3bDpZJuzRf7qdflcUpw14h4w6/Geqm7+2edC9WKqdqTzPhaSwqDb/FS4csYHojIiLMRWgVpn7tBcFr/7hXtwn1GPCgD2nljGZX//S3zxDr0JlJuTTRW1AHMOJNItU7a4aNJhvmWPi3px3Q7GwvI+MpMqOMdFbQ45FTUF5FiTzaFMiNPfqOXKEqTUmmyx6u9dnCeTxnelp2H8FdqmFnP40H8/ib/8jpnMyCqponqowvWE7Tt3I+kQFwXMe5l9TQFY7+8DdcRkwL0OYy3som4qV5JuVVcnm0Vkc3eymUKW/nxN03q68YEQFcX16tVYslpZVSJboVDAQw89hCuvvNLy8yuvvBJ3332343Py+TyWlpYs/6w2oiHTXZArlmV8SzQjANRJQ7UFPFesWNps2zuMNrJbq4pstSbnJxkX6OH5LJ48av1OqmKGPjjZ1EmZW70FtSabq5PNIS6qLqK912Sz3mDFhEI8/8hC1rF+nPj95WesxeRwHKl8CZ/55TMNFdZtF+IGKNxobt8jYK2NJ0TeTWPtF5xGjAlRtli21LFwimiIiXfeqJnn1lJeEAgE8Btn6iLMz5867noMc+kC0gW9tX27nXuNIJxsjcQbxVizbliPSYrFrxBUxTUbCgbw+bdeiE//3gUyxiY4w2OHUSEGjSQiGIyFpdug2Q6jx5dy+Oo9B/Ddh49YOn0dMMSnrYrI9spzJvGLv7gc77/i9KrXiUdCeNmZ6wBYx7+xZPMLXTut1qLaYkzunjQiOo8dNmNdTpHbO/fM4Kv3HAAA3PPsrOwq1mx351ZppbtoN4QZr06aWjjV/2kEa002+32//qJf3PsarYMaj+iCezwSxDmbRuTx++lka6Y2oR+I+ktLuRLKFU0RVHrNyWZ+943iVnQ7KaNDqtiSwS+eNu91Dx9caGgu4kVkcyIWDsoopqPIFqkd6RS4x0X1e8vB2Qw+8dNdAMxNFzGvdRuLUkrawIugoiLO76F4uMqd56WrqYq4fpPRkNm0wmXuK0T30WREbhTZxwxxrr/irHW4/PS10DTgB4rL6XuPHMGRhSz+6Rd7kCmUXIUFe5fJrRP6hrsU94y/m6kx3xqwRezU9+pGIBAwI6PLOTPKqQhAAzWcbGpdUktNthpxUVFKZo1aIkMZQ9yw1GSLCCebGlU0nGxKzcRWNnScEGJKplCW53ojm20WJ5vHDuRucVG3unfliiY/q6F4xLxGimXXxh1N1WSzObrU4xDfsV0AVL8Pt86igBn5FdfmUrYkx8Vux0WdGh8I4fhk47r1aixZrawqkW1mZgblchnr11vdBOvXr8fU1JTjcz760Y9iZGRE/rNly5ZOHGpHCQQClt01WTRRcYyss3VLEogb4bqhmFT2hci2xxDZxI3MU002ZTCt1Ql0cjiOaCiIUkXDbbunLb+rKpgvazM0v8CLhoNyUHVra6/aiIU1vyq6WqgW2dSabF5EtlyxLB8Xt00G1QFLfP4q6s75e19+GgDgM796Bn9/y9NdFdpyxbKchIidy+rGB8412TrVWRTQb2hi7qruPIkJkmNctFRBrliRO1e1zutXnK2LLb96etqx3Thg1mObHI53pb6VG2OGk83rrjtguh7Ejqp98atOml56xjr85nkbql7jLMPJtnsqVbOjmYg1Cpu6+LeIpjaKKLwMWHfp3erlnbp20NVV9P4rTscrzlqP//mCrfJnqsjRKq0KRZeeqjvx7nlWdx7sPOIusmULZfz193bK/z+ykOlKh06VlSeytV4rp1CuXa+qHmOKk1KI4WYB6fpCupc6R04EAgF8610vxHf+16UYSUSkI1i8n1ZYkJsh3pwRfqOeQ0vZYldckl5opfHBCYemB4C5YaIKx1+79wA0DXj+yeMIBwM4kcrjaAObHnlR46pBITkQCMjjWTNYfS7Ui3TKv+/iahFz56OLOew8soiJgSiueeUZxmvXcbIpQnCjtfFqjVVqx1S3uV6uWJbzDrFoT0ZNh09W+b2KcLKNJaPyvdvjjOJ9bRxN4C2XnAQAFifbvcZ/p3IlfP3eA8gWy5bNe4G9XIRobCFrlRl/16zFXH1tDcWtDhvpuq1zf1qrRDVNl5l5PGKNky9Vqpxh6v9HQqYAOioj5MWq70XMj1SRSXy3Tq4sgdiEHoybkW2n7qJ6DVj9Z34nWtR1UsomZnqZt6o12ZqJi6pj6ohLB1d1vaXXr9Ofo2nu9VvlNd9AQ59BWdO7WHUcQoysWZPNWONscUiuiHNOPP/Esnmv7vb6QIw5wr1cLFfkez95zYDxO4psqw578XtN01wL4l977bVYXFyU/xw6VL/I80pEOq8KZXMnUhnYRbbbHhd1snSfvt5wsh1PGXV5vEci1JtJrRueqBcH6NZzwLxx2W8+9WJ6XqlXl81Sky3svKhTxSFRH2C2QSebEOciIXNnTQzIaqRyt0N8Tgqe8TD+5wu24m9fczYA4F9u34sP/+ipun+7XYjPJRAwxY+quKjy2SwXSlJQEZPyTbbJWDsIBgNSCFJ3Hms2PlBEUaD2ef28k8dlt8kdh5yjMwcd4oi9wISsyeZ9YSYEGrGjal8ceLlmT14zgGgoiHShXLPTpXCsSZHNEGWbbX6ww6hJBliv2yMuMZdanLp2EF9828U4e+Ow/NlYW+KizYpsEwCAu5+dgaZpsh4boEduVGfpjb/YLc9RQHfVNjK5bget1GTrRkfKhA9OtkKpuv5PI0g3U6YgF8yiuLgX8aUVYXX7+iGcs1FvECKdbD7UDep2XDQcCkrnwUK2aIkG9hLjLTQ+cIsqCaFGbDRmCiV88369FvIfv+QUnLVBP7cePuA9Mtqsk00/HiGyOcVFG+wualtwqw6h8YEo/uOdl2D7en0zyGtcdDgekS4prxstbk0PAPM9lSuaY/R6MVPEK264Ha/+1B2oVDSz8UE0ZLkPOzme5qXIFnHdkF9S1gHP3zaOQAB49kQaJ1J55IplPHrI3Lj5/G3PAgDWD8WrBEw1Orl2KCZFNHvaRjgma3UXXbaJbPE6GwJq8wN7DFj/W2rixTqXVxvRqOtN8V2priqBcDCpcz1Rt9ZNZNM01Z0VlkJHulCSIp56nsi1SsHfuKh6fGJ+0EgJgaacbC5xUVXIVBGfUzSkp4/U57smlorie2wgLqqcb5qmWY5DrAPtTkbnuGj1nFKcG/tn0npUdMl5k6MbiOtMXIvivarr92XGRVcPa9asQSgUqnKtTU9PV7nbBLFYDMPDw5Z/ViPmLlepppPthK3xwZGFahvr1okBREIBpAtlHJwzXQxedmsT0ZAckOo5z0RkFNDFmbONSVo7nGyAOWi7ZcjVm2hc2TW0HItyE3WKi3qxzoqBanwgiqRRZ0OIeeqxqQ0hBGqtBgB4+4u24SO/cy4CAeBLd+6TRWM7jZhYDsbC0mVQ/T2an6Wm6UIbYDoBO2WNFtZzi5PNIYakOtnUCWuwRuH3SCiIl52hu9l+/tS042Nkza8OxGMbQUx+F7JFVxeeHTUuClQ72bxcs5FQULpnRccxJ6TIZohrppOtWZHNvFZUkUlMoOy1YxplogU3iZ1WxYULt44hGg7i+FIee2fSlrgoYAqVz55Yxhfv2AdAXzgDuugoOpt1skOnSis12bohspmND5qfgBabdPkIhMibKZTlmHOm0WTEi/DbbOMDO/balq3Qje/SjumqKPRuTTbR+MBh7Pm3u/bhoz9+ytUNNS27RdviosIdZixef7xzCku5EraMJ/CyM9fhQqOTrOoQrkcrIpuIr044LOCTdSKdAtn4wPb3B2NhPGfzCNYNxfD1t18ixWmgflzU7DgbbrhkQK3zWxUQMg4CwhfueBaH57N4eiqFmXTerGkWDVvitU5zVNFddDQZlVFZ+4a8OUfS53hnGKLj/fvm8PDBeRTKFYwmIwgFA/L1nOJxqvNQdYvbGxPUcrI1U5NN/RuqyKbe5yMhM/FiF8zEeKy62AB9fBTPUR1OlYpmOpiUuZ4YK5Zy1c43QB+vxfRrKBaR53JFM8dQdT4g741NdN6uheruF+NcI3FR9b6x1sFt6kTSLS6qjLkq9lJGwaCZ6nJzkctmK0042Sqa/v2oxzGXKaBUrjg42fTPbClXlL/b5HA9bFszgHAwgFS+hKOLObOzqEdhsp3YGx8I1974QNRcT9PJtnqIRqO46KKLcOutt1p+fuutt+LSSy/t0lH1BubAUnFs/yt3iVycbGpULxIK4pQ1+qJXLWQ76DESIazBTgVLVdQb7MkTA/J47bXIMrb6Ts0yaCswaUfGRSO1Gh9YRTZN0ywdb7yo+rOyFkTMFPMc4qL2hhD5UlneINTo7lsu2Yr/ceFmAMDHb9nVldiojEjEI/KGV6smG2DeuOccbPvtxKn5gVN3UTFxKlU0OeHw4sx6xdlGXbYnneuyucURu42YyGha9WTGjX0zeqt08V7si02vwviZRmR0V43mB8cMl9tGQ1ybHG4+LlquaNipCE2qIJzKWiduzSIXWD462ZqtRRWPhHCR0enxBzuOYmoph2DAXAQJofLevbMoVzRcsm0cv/9CPfp6dCEnd4W7FhcVu/VNCDXdqOPlj5NNdBdtbho3rNR1EnUGRZORdjvZVIRIWFgFTjbAWuh8yaexwm/GXGqyLeWK+NB/P4l/+fVeV9ew2fjAOS5aKFdQKFVkLd1Xnj2JUDAgO8k+4uLgdqIVkW1QOtmqF/Berz+54Hb4+999z2W44y9fZnEnA/XjoinFySabCTl0O9Q0rao8woJD2QpBJBSUwqd9bngilceX79wv///IfFYR2UKWeK2TyOYYF112jouKY7tk2zgA4L59s7hvr95p9CXb1+I3jPqkgLPINqaIWmrd0yGlMcGJVN6syebgZDNrsunH5FX8kZ09l/PmZrft/HFLvNQ6V2VdNkVomU7lUShVEAoGLJFZ8fkVy5qjM1vMRcLBAOKRoEVkFN/polETbCQRqSsqNUutuGijIpuTEF7vORYnm0tc1Cmub3fc2sk3UWtUNO0C9PNCPQ5N00Xq6sYH+ncrkhGjyYhjyaVoOIhT1urRy91TKUeTTLcYtNVkm1k2489OTRH6kVUlsgHA+9//fnzxi1/El7/8ZTz11FP48z//cxw8eBDvfve7u31oXUV1XsmLVJkkif8+YbOAy3pYtpvhaUZk9CHD+h+PBD3HVoQCX6u7KGAVGc5YP2TZ4VFRuyS1wpDM1deJi4aClvitinrjLZQrWM6XXOOidz8zg+d95Oe45fFjlteQNvXBqFmgt1gtsu2q0XXVPlhf/YrtiIaCuGfvLO58xr2zpZ+UymbdChklSETk91irJhtgTtpmlqt3FNvJSLLaeu7YXVSJOQhh1K3pgcrlp69FOBjAnullHJhNV/1exKNPmuidpgeAPokX79+r++oZowOxcKLZFwdOu9BOCIdNrQ6jQgiaNBq6bBxt3sm2Zzpl63arnAs5f0SZRote18IPcUFERv/9nv0A9O9MdJIWTra9J/Tz9ZyNI5gcjiMUDKBQrkhhuHtOthVWk81wKGda6S4qnWzuztlaBAIBKbaIfRchZjst+u2Iz7qRHX8nxDjaqpNN07TeENmM6NJipndrssm4qG3seejAvHTJ2BeFAhETtMdF1flXtlCWUTiRSLjAcLI9cWTJ0lSoFq24NZ9/8jjikSAu3DpW9bt6kU6B6WSrHtdCwYDjz0WXT/e4qJgLhV27vM6nC3jeR36O937jYcvP653fFxnv9UFbJPezv3rGkro4spCtahwghCmn4xZz0rEBJS66lLds2KoxWAC45BT9fnLf3jnct0+vx/aCUybwe88/ST7HKR6nzjPUGKWlMUEqb6kpZ8esyaY/Roo/nuOiBce4KKAUe7eLbNLJ5iCyiTijIr6I62PDSNzynGTUFGycrkFhAhiMhxEIBIzzUH+++E6tTrbm7421UI9NxkXl51z/eo03ERdVv2tLTTaHjXH1uFRBrp7A3kx30UAgYLonc6Wq45hZzsvPSzhGxWcl5n+1PgPR/GvX8ZTr+NsNzGtBfy9irbZmMFq3/FK/sOpEtt/93d/FjTfeiA996EN47nOfi1//+tf48Y9/jK1bt9Z/8iomKScVJceaGmadBevu1NSStc6R4PR1+mT84QMLABqrOSJuZHXjosoN9vTJIVcRzG8nm3tc1FxUJFxuXHan2ny6aOnUJjL7AHDb7hM4kcrje48csTxHjYvKXaiitbsoYLW0q397QLlJCzaPJfFmoxjtJ37afjdbpaLh1Z+6E6/85K9RLFcUJ1vYdLLZa7LZbnp2J5u961S7qBUXVQtqqztd4kbpRTQaSeg1SwDgVgc3W6862QBzcTbrYRFeKFVwYFZ/L+4im7eJjJcOo8KxJp1shth2bKFxkW2HLdKkjgmqYNwKYw18lvXwQ1x4oSGyiQnieZtGqyK3ew3R9JS1AwiHgtItKMTU7jU+aC4uqmma/D67Exf1QWRr0skGQDppAD3mJBzqqXyprrPMNydb2B8nW7pgFm3vnbhod7uduiHGnsVsESWlftf9++bkf7vNg6ZdnBSRUFB+l2mH7pEnjScxPhBFoVzBE0fdx3GVWk6yevzNa87Gjv9zpdwoUJGNR+rFRZvoNFgviqq6+t26vD50YB4zywX85PEp2V0dqO+6vWirPq9Q694dWcjiG/fptfHEnOKw4mRLGJ+FEEmdnWz63x1LRi11gtX5qHDzi2MTc5xdx1NynXDJKeN4yelr5T1aNDWwI4StrRPWOZCMqqpOthpxUXF88r16bHxwSCmDY9/cFX9v2RbJreVkk2OC0nXSrSxIIBCQDWicmrAtObqzrAKpo8jmg1PYchwWkc36OTfc+MDj3F79/oYtcVFzPFNxdLLVaHpSKldQMu4hjY456jln73I6u1ywNKMAzLHHy0bMGYapZddUyjGJ1i3MxgfVTjZ7h99+ZdWJbADwnve8B/v370c+n8dDDz2El7zkJd0+pK4j1PvFbLHqYlf/+0Qqb7Goi2jAeluRRdH8QCx6G9mpFQu3kTodwETrbkDfYZetrV0K5rfe+KB2TTa5wxEKui7q7BbkmbRVCKtoZsRUWPAfP2KdcM7KHbRYVX0P++ursQC1VbUT73v5aUhGQ3js8CJ+8rhzt12/mFrKYdfxFPbOpHFgNm1x/4gFUD0nm1igONXGaCfi+BaN76dkOBLV3wF6fQexwy6EEi8ddgHgledMAkDV91AoVaRY1GuND4DG3FcHZtMoVzQMxsJKd1Hr5+PVySbqu+ybSVsWhQJN06pqsomJ/HQq5/icWtjrBi0pNUfEZHq4RXeKmFjOLhdaEr3VY2pFXDh/86hF9HzOlhFMGp/h1JJ+Tor4r4gvCIfzs9PdFtma263vljAzUGdDxwviftRs4wPAjA0C+gJ2JBGRO+31IuE5n2qyiUWpV3eTG2JeE1Xuz91AbNJ884FD2GPUTe01J5s4Rk2zLkzriWy5Yln+fK0tLgqYrqh0voTDNhEhEAg0XJetlbgo4H5umpHO5rqL1iKhvLbTuK4uqkUU0X4/3a843G9R5ghenWwPHZyX8/jP/uoZFMoVXHrqBF77HL17tx4XtcYtZVy0UEK2UMbX7j2AxUzRUsh9LBlFMhqW8xx1U97uZFszGJOba4VyBWsGYzhlzQBCwQA+9obz8foLNuHV5290fB8vO3MdRv//9t48TJKqzvo/kXtlZu1bV+8rNNA0TTc0O3QLsjXb4IKC7DI/FBXHVwRHBV8H5VXQcUTAZRQZF3BjHIcRBkR2RaTZZe2mG2h632rPPX5/RNwbNyIjs7IyIyszq87neXykq7IyIzMjbtx77vl+TzQo3XACIYJtG0hY5a5uwQeOtMdEiQ35xTpovblpFPL78uZ04rmd4oHas9lJm4vTqthmaqG1jvq68bDiznI4M9WyYjEWel0uqo4bAwmjT6/4DEqZB9iCD8pKF1WDD9x7srkJkjIowqVvoRoYMt4xp1k5L5whBzuHkvK7FHNh0Y/V+j4L3yP26bXapbhVotWK/OADIbKF5O9S2VzF9/ZGZlKKbCQfMaCJ3ZNQwGe7UYubSyanyxt+OpuTZXBOkU0kKckGnONwsl189Dx8fNUCGfNdCHWXa5/eEpxsnpWLjtWTzWdzmKkTKTFgil2Qt3eNIJ21T7QGk/aY53f3jtp2MoXzrTMekpNE8R7F7pm4kasi24AS6+1GVzyMjx49DwDwpd+9JJvSV0omm8P3Hllv62Glpg+u2z5k7XIqPdlG01lb7LnTVjyYyCCZsXZLnbb9aqH21AGsGzWQL6yIUikhBJZasixEtrVv7bGlX27eO4qcbuzy1UNjUydiUb6rhD5i60zhZUF3TKZthQN+2wK4VCebcDHmdPfF38BoRl4jYhLTGQ8j4NOQ0/P7x4yFSBYViwQxJohrTNMqd86K8oBUNmdrIjxexGTX79NKFnndCAV8OHRuh/z30pltmN5q9WRLZXJ4x3SnCHfITFPQFGWktSoXLdQjcyxqJcxY6Y7jOy9VxH2l3OAD9TgAYw7g82klN2MfT5PrYoQ9crKJhU1LU7BgmvxEMN28Jl7dOiibPtdbiE3ApfQ/kc7ihU175WPcetPuUpLP3TYZxKbJlv6EfO9qqxHZl63EAKZkhSJbIazNy1xe3zO31x9PSbR4brURvYq64Wgl/KZtxyEc4IC7yCbKD50cML0FkaAPe0fSeHPnEBLpLP77uc0AjE1WUZ65ac9IXrmlKj58/9H1+NLvXsKN97+KgURGbkSIuZFaMuo8NnUjTfRlA4DD53fI6/KYRd341jnLCt6vvnTa/lj7xffaekEDlntS/Xzc7sPOtMfxBh8IN1NHLJQ3lhTqNSXH4xJ7som2IG5uvlaXagpBsT5jI8kMEumsPO9ao0F5PgqhY89wCr979l3b3Lsc1HnxkPm6glLmAWJtE1ISmcfCLrLlBx8Mp7K2+4hbuajlYs2fc6l/W66TbTCRlmOqOHW2D1rjodi4FD3ZxPqmWDiOCFZZt2NIrhfqwckmy0VTWeRyulIuGrZd24WSXKcCFNmmCGJwEjen7njYdvMI+n3yohWOkB2DSei6MaHqcLjO5nZGbZP7UgdJwAhR+NzJi/OEOyfRUACfes9CfOTw2VjQHZMDZV5PNpnsWKmTrXgNua0nmzKRUkU08bfChfTGdkMEiympqmLAUXe11PIJW7pogeAD0WxXbQQ/VILt+OOrF2LxtGbsGk7hU3c+O26Hjxt3P/Mu/t+9r+La378kf/a2Mgl6Y9uQMrEM2AZfVTARIokodR1MpKV45fdpE5bQ5pzgiP+PhwMIOBa0YodbHGepbspprRG56/y/f7cm0W8ru/+1XCgWQiZimu93z3AKtzy0zjVcQIpsPfZyHVXcL1UYD/p98lpwK6EQO/9d8ZAc6/w+TY4xm5WS0Ydf247jv/kw1r61O+95AOMaft28bo9e2AXAOk9lMlw4UDRFthQiQb+8VncMlS949yul2JWeM6IvW8CnYfG0ZsvJ1p/A27sNZ2Is5JeLLLGAFjvAlbqayiVcYrnoQ69ux2d//bwcpy1hpvLPbjwI0bgUsboQMs2uAgFCbTIuvlPZJ2qMYxOfdcXpotLJVqHIJkv6a1ua+ZHD5uALp+6Hfz51Mb7+vgPxX1ccVdeu5N3Dxuf27Nt7bXMZt82MPYqr3O16EeO5mJd0xUO2edmyWW0AkJdeXAjLHeTtuKJu7hRKXcxkc1JcGm8TdPncLuORWi4qytyyOd12X1OdbGvf3iM3RMdysgX9Phw0s834u7f24OHXtmMwmcH01ggOn9cpRat3947KOaX4LKQrJZXB3zYa98Yn1u2S7qCmoF9e692yvYxxXOlsTs7f1GNTnWhOV9pYOFueAJaTTfSy1TS4bo6IeVhON8QgIZqNJf44+2K5VU84ExUFqay5Ae4qsomebEq5qFkG7DY2FOo/bbyuKRwpc80mWQKZleeXTwPioYAMBRLf960Pr8Onf/kcvvfw+rznHg/OclG19DpSgvNTXCddcfexxA21j7cqnDVHglLQ6ncpYy3VySbuQX6fljfXHwvpnkxm5Aa9uN5EBQCgONlkuai1vijEzPYmREN+pDI5vGk+Vz30ZFOPeSSdleWinfEw/D7NKiedwiWjFNmmCGJAE4t4NxV8unIDBiBv7D3NkbwFZcBvJZ4A1SuH+MyJ++L6sw40+xSIG4/DyZYUPdmqG3xgRTv7bTcRMVimszk5SItUJFEu0hEP5dnM1br9F9+1Jp27lIarzt5vQmRbbu4Iq062wRJsx5GgH7ectxyxkB9/3bAb1/7+7/jWA6/jgh8/he8/Ut5NV4hEr28dlK4+m5Ntx5BtYhnw++R3pd6oxXvrNc/NgURGCo7t0VDFokapOJuoiomR28RWTPDEdzaec/CUJaJk1Aq+qOd+bIDSR8x8vz998i3c+L+v4YePbsh7rCi5cPbEaXHZVSwFef27uL5e3mKI1Pv12ZPe1DJ4wT0vbMH6HcO490X3kukXNu2FrhvlpgscTjaveyyJRcOOwfLFFi+bvZ+wfy/CAR+OWdSFSNBv68m2focoFY3LSbHTaVDzctExyhK+9odX8Ju1m/DQq9sBeBdiMV6kwFFBP75i5Uml0q4IUsIlIkvCh90d3YBxr5ML14pFNuPvK3ayjRYepyeS1mgQlx07H/947AKcc+hsHGQKS/WG+O6FmKqWigLu86BdYyR9i/FcBNQ4G9uLTY9CoQpOrGby3t771fnbWA3QgfGViwb9Pnm8bs+t9vQMBSwXjypqC5EtFvJD1605llsAkxMZfrBxD/7LdLGdvmw6fD5Nboq8u2dU2Zw23ltUKWF/4R1jPrph57AUTFXBqadFBKUl5d8I1Pnn4aqTTfnvcnE62WIh980RIzEVtmMExh6rIkG/zaHp1ge4kJMtlTHGQ7fyfbfG/LInm2u5qOhbnH8Nivcet/UZsxIz1fmAz6dJQ4BYQ4g55n+/sDnvuceDM/hgVPZj85U0V1/YE0fAp2GZWUJeCm3RINYs7cPZB8+wnWfqJny/sq5yc7IJkVQtn/3rm7vw66ffscJ8KkgzVstFxdx3/XbrehbHIspFhcOtUAUSYLSmEdVjgnooF40EfbK9xHAyYws+AJS2GC6u6KkCRbYpgtjBEQOsmwo+o024PhwiW4Go4IWKQ2Uieo4UapgvdpSiFZRKAVaPg4I92dJWqWbQr8mdNqcABqhONlNki4XzdsDUG+5Lmy2RzZ4u6h58sHxOGwBjx1gIW6XYjgFj4P/a2QcCAH7x17fxnQffwKOv78DX73tV1tSXynAyg8fMtNLhVFb28HvLWS7qaBYv/l/9rMWkT7hnBhOZgglP1cTZRLVYs2FxM5blouMQjUTJ6FMbdsvPvdjEqx7odLhcxATcrezNmSwqUBcIpZaLAsrE02V392XTCbq/Q2QT45xaLir6yDhDXgDjGhLi27LZbXLCLZ1sidKusVIRO+c7x3ndqfSPeCeyLeiO49HPrcYt5y0HYF2L/aNp6bad12VtrjgX0eP5Pr1ELJrVctFHXt+BR1/fIf+9dyQlx2Px3dcqjbLLFCkGk5my+5V4EXzg7MkGQLrWi5Wyqg6dStNFvQo+qIdk0UbC2V/zqY1GAqQQfdzGWXFOqIEZKtLJts0YK2Y6UunHG/hRaU+2Qvh82pi9qlSRbbyvXyy91Fr4G59zu+N7SGVyeNcsyz/vcCOw7d4Xt2JL/6isMil2jh8y1xDZnli3Ew+amwlnHjQDgLUpMpzKynm+mLMIoebFd/vlwh8A7jMFPtUh2uPYvBoo4PbvaYngcyfvi0+sXpg3DygHsWkmXGCF7jdq2qM4Rr9PK0msVQ0Ibk62eNje7F2QKpKE62xBksxkZaicWyl5a4GebGvf2o0fPPomAOAo02UP2K+rvY5xUDrZzHujGCdf3zYkqw3KQR0fBhOZcbcPmNURxVNfOAHf+dDBJb+mpmm45dzl+NY5y/J+Jz/jEftxAfY2L02KICn4zK+ex1W/eQG3P7ERQHkim1oJJb4Dcc6/udP4nFubrPLd8QQfAFb4AWCMR87+xrVA0zQlCCRjCz4AlLJtOtnIZMd503cTzkT/HUtkMy6YaQXKOvdRlPXx9GQrFzdhBgCcUeTlMmZPNiXpStO0PJeZOK5wwKfsuJllbLGQLX1GbSYLAH9XnWzCchsLy12o0ZTR+00IeUtntMHv0zCQyMjvqRTbseDMZTNwxeoFmN8Vw1nLpmNuZxQ5Hfjfv+enXfaPpPHB7/0F//bHN/J+98jrO2yLI5E+qDrZ1u8Ykjd28RlLwVT5rIV9u888D9Vy0YkKPQDy+2dYfVDcRDbj+xFlNOPpiTWrI4oDZ7QipwP3mymjYvJY70428b0It5ozGTaX0+XuXXGRrRwnm4vIZjrZRBm1QDrZlP6D283/FqUugCEWf+xna7H8Kw/gp0++BcBwizrdrQOO87hSupqNz7MikW2MxLnx0tsSkd9LcyQoz+m/rDfEdNXBPMOxiI7USmQT5aLmeZhIZ/GP//E0LvnJ3+Qia62SuLejxiJbS1MAAXOTZqyyzEJ44fLpKFouWnj3WSwQNK28BYlK2OPgA4pspSF77w2nkMrk5PVx7D7dANwXRlYri+JONuHgd24WiTlTKpsrqVVFtUQ2YOyEUXE+qhuq431uZ7morut5KZzOst139owgpxvz2fNNke2vG3bh1H97DP2jaSNAQBmDnYgqh81mH81FPXHs12fM1SNBv1wA7zHFCCHQiE3gP6/fZXu+P5pzE1WQF88hNq/UlgVOPr5qIT570r6elOOLjQBR1lysPYdY4ItjbAr6SzqGsUS2QuWi6Uzh8n3x2YkNsc17E9B145jckjUtV5Y1Bu8YTOLjP38GmZyO05b24QMrZsrfRWVoRTZv080Z0qaKUPcpVRTjxVmWWU7adEcsNO6yzEK4hUu4p4va18K6rktDyU/+vBFAeeNNszI/FdUvYu4rHF4tStqrED1LCT4A7OttZ7unWiKuh3f3jMq5jBgfhDvPGdg3laDINkVw9iLojucLZ6JcVPQvEjsthXqn7aMo65U03C4VN2EGsBb4lfZkizt6sg0lM/joHU/j7mc2Achvwit3Qh3Jn82RgHT8iF62HYrINpzMIJHO2cSpjbtGMJBII5HOyvfT4XCyJdI5+XztsSDmmvHmr5klo6XYjlWuOmkx/vTZVfj2hw7GOYcaIRT/82K+hfy/X9iMpzbuxm2PrMubNN7/d3vJ3XqzX8A7isiWSOfwqimCiMlDi0xydSkXNc+3gUTGKk8pMeLbCyxrv/HaxUo0nOWipQYfCE450HCz/eFFY7JT7+WiqpMtl9NlWYszpW1z/yhG01kE/ZosnRa0lOlkk7u7jus/m9Pxinl+HTDd6WQzy1oUEWuHi5PtsTd24t6XtiKVzWFuZxSXH7cAH1o5W06cxJjgdXmhJ062KosLws0mEgHnK+W/opxUUC/loruHU0hmjJJG4WZ7WhHZxOddSvlVNdA0zSq9LrNkVNw/KkoXVRaRYtwVLqViCcJJkSwaKG3hWgw62WpDh9Jf86XN/Uikc2iPBnGwWb7l2pNtpLizXCxgxVzJ6WRT56GFxC0VdWPTa4q5zQDrHB9Pqah87pD7cyczOfmehCDlDEERG7NzOmOY1RHF0pnGRtyekTQOnNGK337siKLiUls0ZNvYOnPZdNs1WshdKL47cX+cbzqWhXtbdbI52zBMVNm9s81NsfmDmAeLYyy1d6Samut2nhcsFy3mZBNzSrOUUfbe7WhyHT9bHHMdXddx5V3PYttAEgt74vj6+5ba/s5ysmXyNt2cZgB1k9KZbl8qyUzW5hq3lYvWaKOtVfS9c5SxAnYTiNW/TiTGW60PBOVc8+K82DKQkOs0Z6uU1qZgnpu31AokEX4AFK4uqwXCvfyVe15GNqdj395m9JrHFw/bN6mnIhTZpgjOxY/bRSpcCZtKLBddZHOyTZzINpTM2JKYRHxwpemiztKwR1/fgT++sk3as/NFNsdgqexItDuCIjqUSGOjMaZxsw34NGnhf3nzgC29qzkcsN0g1Z2zWCiART3G57/etHyXajt2Y82BRrT7X9bvyisZ/eMr28xjyOEZZaGayuRkOcJyc2K+fvuQzYEm3psQNITF2Sr9NY45o/Sz65PlomkraXUinWxK8EEupxddvImbsRqOMB5OWWJ87n9evwtr39ojAyNmd9anyKYuzDb3j8qJlrOJrChDmNsZy9upVD/H8YgyLU35u7uAsSgZSWURCfowr8s+qel2pKAZicnGublDSUYT7t0T9+/FQ59dhWtOWYx4OGBLjDL+v0rlonXSk80NcT2Kieh8pVw0EvTbFj61EtnE66azel4T8YdeM8aotRsLO9kmKlRFxVl6PV68KBdVA43E96g6nAohXQseLKi8Dj6Y6P56jYp0LI6k8L/mYvvQuR2uG2ACcU445zcCZ8sOZymcUQVg/HdJIluVgg8A63x3bhQKZLJoGdeXJeDZF5dqU3pRZmVdb8bvNuw05gBzu4zP7vzD5yDo13DRkXPxm48dgTmdhV1sgkPMvmwAcIZZKipwuo+FYOf87i4xk+gFdiebcGCLjUi7O69adMZCUDWpYiKbeF9iQ6XUDT3VWebm2IwXcrLJ8ThfNGt1lDK+owRcuSFFNvNz3bRnFH9evwtBv4bvfWRFnshqc7LJABjjfUQcIps6f/r75gFbSFmpOEWTcp1sXtLm2BwXxwUUcLKZc1Y1MV48rpKebJvM77Yp6Mf0NvsmZGtTUDFOmD3ZRAXSGOu2faZZc9vueP2IbOJ9izn/185eIgXgQtfKVIIi2xQh38nm1pPNXi66fYxy0TkdVsLoRCxSxGvoOjBkTl5yOR0jaY+cbGG7a0V8DmqvDMASVqyblz2KORYO5DVM7VJ7siUysql0WzSEJTOMHYqX3u3HG9usJrOaptnq98XOWTTkh8+nSeehcByWajt2Y3anVbp4nzLpHE5m8Od1VvmA6L8GGCUMg4kMuuJhvH/FLADAmzuH5S5dZywk08QE0snm2KlTRZpel55sE1kuKo4tZ55nUsRwSa1zJluN9xyc1xXDGQdNRzan4+M/Xyt3jZ27zfWC+B52Dafw5g4rMcm5mBA3XLc+LOLzFedxqbQ4hFmBKBXdd1pLXlmPsyeb6hgbTGbkcYt01Fkd9lRXyz1rLxf1qh+GWOjVtZPNMf6rPdkA+7naFKrNlEJ1KSTSVskMYLgUR1NZPLdpr/xZrZ1sgJowWt5370Xwgb2Zedh2XMWcbGJjyYsFVcgzkc24RulkKw0hsP7hxS34vrmRePx+PUVT1mW5aAFnubNlh7Nc1NZmI1XbctGPrVoAAPjhY2/KNhcqoly0nAW3EHSczv8BZY4m7n3COermZAOADxwyCy9/5WR8+YwDSnbYHG4mea6Y0563YTfTGVbjcLIJVu3bjcXTrI101fVa0MlW5XVAwO+zbbgWm2+JebBYx5Q6VpVbLlpsPG5TXFa6rhdNFgWsuY64twvDw/S2Jtc5la0nmwzqMp6jKWStU9LZnKyUEf1r7y2jZNS50TlQRk82r3G2eQFUkU2pnpApuvZ0z+ZwANeftQRAeZUkQiTbZPZTbIsG89JqW9VyUfn6pa3buuNhGVZTX04267jPO2w2VsyxAk7UMIipCkW2KUIpTjYh2uwYTNoacxYqFw34fTJ9byJ2jyNBv7yBiYEpkcnC7PtfsZNN7cmm67osm90zbPzb6WRz2rDFTTceDuTtgHXEQvL5hxUnW1s0iCXTWwEAT765G1/6r5cAAKv37bG9xmgqaxPxAGBaq/Ea4gZcqu24EGuWGq6q/3nBuuk+9sYOaYMHgMffsEQ2kXj13v175Y1//fYhuTM2qyMqzw+BWAA5k2JFqW3Qr8lJ1GAiLSf1E+lkiwT9UjzrH0mX5GQTlNMX8Kv/sARzO6Oyt15XPFyxYFwtxKQzmcnJRvhAvpNtfYHQA8CaQI63Sb5TmBWI43CWigL5TrbtA3ZBQ/xbNJR2lj+KyVkqk0Myk5Wv7VUPykYoF1U/k2ktkbxddDVhtClYm/NWXQgn0llbAnX/aBo/e/ItWzlirXuyAUbPTaD8clHRl6iSctHu5jBam4LoaQ7L4xGOlWLHJVPYKgw9ACyXkldONrfemSQfIZok0jn4NOD/vHcffGDFLLlYdCvxGSuISL1vaRrynBzGY0wnSXrshVc1RbYT9+/Fqn27kc7quO73f5cBUgLpZCtDNChULupWVjnbFNOeNxM9N5rzp3mKY2281/gZB03H1993IL7t0iA+r1w0aO/JBhhurhltTThMSQRtdykX3T2cNJzDHm8+FUMt5yw25xfzbbHBVmoZo2pAcE0XlfP4/FJgwP1cFWNSKpNDIp0bM+DKOdcRc0O3wDrAalOiBpHNNc8fcW8cTWdtAtQ5hxob4394cUveuT8W4vsWm5qDibQ8171wN5eDW0+2AUfICGCd72LNoYaynblsBu698hh864PLxv36ogegqJRoi4YQCfpt4pmtXNRhzhirAknTNOxrit71kCwqEGN+d3MYnzt5se13cWXNO1WhyDZFyBPZXC7S9mhQigtb+xNSvOktopp/7qR9cc4hs3DMoq6Cj/EScRMfdDigNK3yHRQxyKWzhqAm3C0pc/cn5djZdIpswzaRLb9cNKakEgmnRVtTEEtmGCLbH1/Zhnd2j2JmexP+ec1+xmsokzX1+QFL/NxqCgSl2o4LIUpGn3xzl1z0P/CyUWp1minAvbS5H3uGU0ikszIk4cQDerHAbMS7uX8Ur5tNj2d3RPNEFiGuOZNihxUB0SpXUZ1sE7tz09ZkJYzuLZLe6FxkFuuVUojmSBDfPXe5FJBnd9Sniw0wFkhiErn2rd3y54WcbM6eFID1OY5XSCwUfFAoWRSwNhN2DiWRy+l5iaLi30Jkm+7Y5VcnSIOJjFUW41XwgTmJ3+GSdFoq1e/JZn0mbg23Z9icbLWZYPt8mjwvE5lc3k77rQ+vAwAcNNMYa3eZPQVrKbJ1VFgumvKgXDQS9OO+Tx+Dez55tFwwOVMn3fCyNEiMoezJNrEs6olD04yF+y8uOxyfPH4RfD5NbiC4imwjxZ3lqujR2xxxdV45nRzFSHpwjhdC0zR8+fQDEPL78NgbO+WmoXzttBflog6RzaU8/fjFxobq397ajZ1DSWzcKZxs5beM8Pk0nHPobFcRRx2vQwGfbOeg3o8PmtkGTdNwmOmIA+zloh1Ro2wzpxvj10SW3atOs1KcbOLe2lTihsDY6aLFy0XdBNFoyDIIvLylH+/sNp3zBSoWrE1ou5Otp4DhQQhHL2zqx7Nv74Xfp+GMZdMBqE42S2RrjgRwypJp0DTg+U39OOnbj+LOp97Oc14WQjyPcLknMzl5bpfa+85r2hw92XI53VXAEmPUiMNJJsa9/fpaXKtWxsK57hKinyrU2tJFU6JctPQ2P6ctnY7mSABHLewc87ETxdELOxEN+XHDPxyYd+9VWyRNVSiyTRFU14imue/QaJpVgrhu+5C8+As52QBg9eIefP39S8sSF8rBSnAxjs1KFg1U3IDZeA7jvwcTGWzut9IH95iNtAFrwhd2BB9I228kgJZIwJb61hkL2cpR98q+CUEcMMMSB/w+Df/2oWXyJqsKeWLnRdwkxPcibsCV9GQDYGuy+6un30E2p+NPrxpC2nmHzcE+vXHoOvDE+p2486m3sWMwib7WCI5a0IWOWAitTUHoOvDoG0aj8TmdUSx0iCziRuRMihUW9lgoYEt0rEW5KKCGHxR3skWcTrYy3ZRLZrTi2tP3BwAcquwe1xuaZjkN1UbyznTRYuWirUq56HgQAvuAY/FXKFkUsNxCmZyR5qsmigJWwugWszR8msPJ5vdptuat1Qs+SI17N1nQr4wl1UB1srmJbDNtTrbaTLABICJENmUxIcZqkaR34gFG0Eg2p2PPSKqmfbzEdVTL4APASHNWF29qT7ZC56RokeDFgkosPlMlpE0WY6CG32UjMrcrhkevWo2HPrtKlhcCxVPWx7ofq/PAQi0PmkoU2XRd96Qkuhhzu2L4/46bDwD4twfX2X5XzXJR1fE1va0JB85oha4bjeg37RE92cbuvVYOM9os4U113qtzl4PMNh8rlbmIen9RyzZ3DCYnLPgAsLu5ilUOiPm2JbKNv1y0WPCB8/oo5rrUNE2GXF392xdlSXCh3rsy5Mlc52wz5ym9BRxMogRShKC9Z3GPNFKIOarqZGttCqKnJYJrT9sfsZAfr28bwufvfhH/fPeLrs/vRJzHqotdbFiOd17nFW2y750xRg2nMrLKSRV/ozL4wFEuWuHGqbPcUxyPWjLaGlV7smWh66oQOPa185HD5+CF6060lWTWmouOmocXrjsRJ+zfm/c7GSbIclEy2VGt0h3RUMGJuRg0RZJcNOQvq8dXtWhxTACFk82Lgd3n0xAPWc8verIBxq5+ytEIVx0s1WOJhQ3BT93564yHERdOtkRGcUeF0NMckQvZT75noW0AjSivMZS0hCjA2kXaNpCErusl1/YXQ8SC3/i/r+HLv/879oyk0doUxKFz23H0wm4AwP1/34ZbHlpnHu8ihAI+aJomF+DPvm2IL7M6opjfHZPCZXM4IN0SzqTYYSW8Qu0JI6z+bqJwNRE7WVv6R2WCppuI4XSyVVLm+ZHD5+DJzx+Pz520eOwH1xBxXqu2/FQmJ3dydw+npKjhJsqsnNeBJTNa8H4lgr4U3Jxs2wcT2DGYhE8D9puWL7KFAj65INw+mHAtF83mdGwzJ4jTW/MXhuqi0+vgAzGhT2VzeeLh7uEUzrrlCfz0LxuLPke1hSJVeJzflS+azlSaN9dUZFMW7+IceY9Zdi84fH6nPB92DqVcF70TRac5+d5VYfCBupnjBWpJeKHm9F723xFjaLJEF0UhxIZbrRZ5jcisjmjeBmmz4tRRRdZMNifH/IIim3L/K1QKZ5VLFf++RTk0UB0nm+D0gwzHz9b+UdvPk44evOOhybGQF7ilHQJG6SoA3P7EBuR047oqVBpYKaqTTZ2vqOeBENm64mEsm9UGTcsf+9VWB147vIthc7IVmeuK+bbodVfq3GxGWxMCPg3NkYDrfV7M1XcOpWwO/nSRdFEAuO70A9DdHMa67UPyvlM4+MCaH+dyugxpKlRV5Bzzzjlklvxv4ZxKpnN5G3IXHzUPf/nn43H5cUZ/wueVvqXFEPfX9phV/jheMdNrnD3ZxFwt6NdsQrksV3c4ySo9d53XtDgeVah19mQbTWeRNQOlSl23VWomqQbOcDOBTOJNUWQjkxx14HPGYKsIke0ZUyiZ1hKpq4u62WGjlk42j4RAobzvGUnZ+iTtdnGy5QcfWA00AftEtDMWsurTU/aebADwrQ8uwxfX7IdPrF5oO54mpaGps1xULH5HzR5E49kRKcR5h83BRw6fDV0HfvrkWwCMXbGA3ydLgn///GbsHEphdkcUHzjEEkpEaaAIfp3TEUUk6JdNRFURwJlgppaLqscvboAT7WQTVu+b7n8N2waSmNYSwfLZ7XmPczo5KhWkp7VG8pr31xuFBE+xoBC7tH2tEdeJbVs0hHs+eQw+esz8cb1uq6NPCWCVis7rihUsVRQ9VnYMJl3LRXcMGkKb36e5jo2qs9Iq9/FmvFF7djj7sj21YReee2cv7vrbO0WfYyJ7so1VLhqpUfABYF2LyYy1Yz+/O4alZoloKODDkhktthLd+igXLa9UWCzqynHaFEMtCS9UyipENmfwSzl45WTz0l03lRH335xudyiLjRNNK5IuqozBhUrhIi6llLc+vA7/+B9Py3MasJ8PXp/jKtEC/dOkk62Mc7xwuaj7Js1JSwyXkwgTmtMZrdq8Ox4OyHmn+n3FbOWirfK/b7/oUNz/6WPzXFdq+IG4J0/EOFqyk828R4v5aKnjQls0hDsuWYn/uGSlazBTWzQk+9Nt3Gklc47VP7AjFsLX33eg7d+F1i3OkDfhZCvU8F797rqbw1i1b7f8d0SpuOl3aX3SEgniQ2Z/ts17EyU56tXyYDE/EnOrWo2/rU32zV+1DFS9lpxOtoFRd+F7vDidcOJ4upTztUXpyZZI56TDy6dNzs0htQpkqkKRbYqgXsDFRDZRLvr8O3sB1FeKCWBf8ALWJNCrAUo8/7rtQ1DvNXYnm/FahYIPxI1TiBHRkB+RoF/eCAcTGewV6aLmze6IBZ346DHz83YEmhQhb9jx/JGgX94st/YnSm6gWQyfT8O/nLkE5x8+R/7shP2MXdbD5nfYXBOfPmGRzRHpXICLSZkoGVWPy+rJZg8+iIUCCAV8tkl1sUl9tRCfq2g4e+MH3EuinZP/yXijdKJ+F23RoFwki/NT7NK2efydOWPtAbVUtNX1bwB7+MEOc7IqhN/tAwlsNh0Mvc1hV4GzWRGEq1EWI0SfnQ4BcNgRMV+IagtFrU1BtEeD0DTIxrsqYuc/4NPQHK5dqZ46Vqrf0yrTzXbQzFaEA37pwNgxlKht8IFMF61tuagTtSS8kMg2KkU2L5xsltOiErwU/qYykaAPAaWhuUD06GtrChbcCLKXi5buZPvRYxtw/8vbbGE6ao++apWLGsdjHHMyk5OuEqCynmyFy0XdAwIW9cQxVxGxnAnOXiNKeVUn2JzOKBZ0x3DKkmm2e3d7LIRFvfnjfrfiZJvIsvvSe7LZj2U8yddHLezCwS6bqgJRyiuqHAAgVUIQzXsW9+LDKw1Bq9h3HAn65Xk3MJqW89BC5aLqBuP7ls+0rSNEuWjCUS6qom7YqxUKhVBFVTE/EiJbzYIPHOWihcpApaieHH9PtGI4N9iFENvlcLKJeUoqm5Ntg+Lhytsd1SOF+hdOJeqnDpBUFdXJViyZRIhsQrwq1o+tFjhLxqTw5FEaoxgUXts6ZPv5nuF0frloyCmyZW3PIZr1i8WUmrQinWxjOLTUAVm8Z3Ui29sSRv9oGht2DssJYqU3C03T8JUzD0BnPIQ3tg/h+P2MRWo0FMDy2e3464bdWNQTx5nLZtj+Ti0nCAV8ckKwsCeOB1/dbneyiZ5spvtPlsKaFv/mSBBJ09lTbFJfLdTS0PMPn4NjFnW7Ps45AZ+o3oS1RHUVzu+K4c2dw0iN5KSrVOzONXv8WTibAQOWk80tWVQgdr53DFlOtiUzWvD27hFsH0zK4JC+NnfnhVXanCnoRKiE7uYwNu4awU5Hby7xeaqiopNEOivHpWoJRZqm4QcXHIJdQyn0uZTTxsIBfOfDByOdzdVsgg1Y4koibZWLtjYFcc4hs7Bpzwg+vHI2AGuRtmn3aNU/u2JIIavcnmwepIsWoj0awpb+RBEnW331ZFPTv+lkqwxN0xCPBLB3JG2M5eb+hegd2F5kzqJuMs0sEODjnDcBVmNs1dUprs2AT3N1FHmFeswjqYyVKJ2tpFzUXpImcAs+AIzP/MQDpuEHj74JAJjTWV2RbUZbE156d0A2zAeM6+aPnzmu5MV+l+pkm8Dgg54S00Wdjei9LGOc1xXDs2/vxYadishWYhLul07bH70tERy3j/ucUtDSFJRu67GCD9T1zweV6hLAahWUyKgim/0ajgSNzaedQ0m8u3e06DUO2PtfyhRXcwOzZuWistIhg2xOLyieiSTWEbMnmlc92aIhPzQN0pwhe7IporAafABY6fZepdXXG+zJRpFtyhAp2clmH8Sn1ZnIludkMydn0TIbzuc/vzHYvW42EBXsGUnJ8oG84ANTkBxKWLsSgLWIEmJbsxp8MGJ3shVCHZB3mJPcuJrg1RLB69uGsH6HIQr6fZonNzlN0/DpE/bJ+/nFR83Du3tH8X/PPCBP+FrYY00MZ7U3yYnx0pltAOwN0lscTrYRh1jaEgnI8rmJLhUFrGtkbmcUnz+1cI80dUHn92lVLWupF2wiW3cc2waS2DuSls4rryYtTsTu/0gqi3Q2h6DfJwMW9nXZaReoTjYxqTlgeiv+8OJWbB9MyN6LztADgRgT9o6kpPvCyx5eam8blWGlMW8up7suNMWkWQ1oqAaHzi3eaPdUM5m4loQVJ5taztIeC+FbH1wmHyc+bzFm+jTvNmnGgwjlGExmkMxkx72YT1cxeVGIjs6UVoGn6aLm8Yv7azkkFdcTRbbKaTZFNrVPpBBc3ZrBC9RNpkL9ppzloulsTgoUu4ftfT6B6vZjA4zzTyyOR1NZOd5XI120mGvmpAN6pcg2t4Jk0VIQ4QdOkWo8bhrZhmEoOaG9LUt3stnfm5fiz3zThSbKe4Gxe7IJoqGA69zaSUskYLS4GEgqIXTua7d9psWxcm4HFvc1Y74jbEwGH6RySi/o/HXHjLYIdg4lsXnvKJbMKFwZAMDWg09cL8KRXSuRTX1PA6NW1YHTXS/u9bpuzBW86rOracYcTDyfEDLFfV4cozre7BgyhEmv58r1guzJRicbmezYnWxj92STj60zkU2WjMmebPYwgEoRyvtrDpFt93DpwQfiOYQYISalYkIzlMyUnAioDshiEa5OZIUIut4UG6ptOz55yTScbPYPcTK7Iwa/T0M2p8tyPPE3P7zgEKyYY9nvxQ1oMJFGOptfCqvedNSb1ETx/hWzsHckjfevmFl0IudsqDoZLd9O7CJbTJaWD5cRST4eVBFpYDSNznhYOtP62gqPU2JSvm0wIa8hMYlUnWzTC4psxuu+u8dqjO2loNWl9IxTEcKz0Rsp47rb2a/0iJsK514xIkr5vlgEuC0mxPmw3lwgtTQFq+qUKURLUwABn4ZMTsfuYXeXYDGqVS4K5G9mOUl6WJopxlC1PHC8qKWmU2Gjo9oYC9NRW7mocJkV2/QSC9WgX7P1clSJKn1mAWAkaQlRNidb1r6pWS00TUMsFMBQMmMTxZybquNh7HLR/HHp4Fnt6Gk27mlu5ZleIlK/i224j0VXswiQmWgnm9KTrZiTLa9c1Lt7tmu5qBiPPTpfxTkiNhKbgoVD6MIBP351+RGuv7OCDwqXiwJGFdPzm/ptgW+FkOWiUcvJJhxckRq52QN+H5rDAQwmM9g7mi44D1XXwsOpjBSIvXCTNSsim5Uuai8X1TTDCDGSyspN33oKF/QS2ZONIhuZ7AT9PgT9GtJZvWifNaebo16dbAOyJ5u3iWIt0vqclP8eMNNAncEHag8gwBpIhFC0fHY7NA1SXFLLRa3+JsVdWuqALAQCdUAW39cbishWK0IBH2Z3RLFh57Ct3MHv0/BeR7xzVzyEcMCHZCaHzXtHrd565qRJnYTWwsnWEQvhcyePnfIZVm7Yk/VG6aTTVi4al31dRhxONme5RqUE/D7Ew8ZiaCBhiE7CXVGsBF4sJF7fOohMToemAfv3GeWle0fS2LjLaF5cSOSQItteQ4yLhfwF05TKoZCTbUhZfIr366SWPcXqjUhAafAsy1nyz0Gnk61Wn52maeiIhbB9MFmwFLcYpTonysHqQ+g+OfbSyRaSTrbyRbaEKYj4fVpVRMephizzSapOtuLJooAxH/k/790HPS3hgmOkc3NySCmpVPsTyvnWBHyfTSG/i8hWgZOtQJhCfxExyufT8L3zV+CVLQNYPrtt3K85Hs5ePgM+DVi9uGfsBxegO27cc9/dMyo/q9YxNo29IBYOIBoy5sTFnWxOccW780j0U7OVi4ryYo/OV3FfElU1vS3hsjbSbMEHRTb3Raugzeamo5OhZAYxcyNZPY+dIVC1TBhvjQYNkW0kZTnZHNeaz6z2GU1nMZrKelp5EY8EgH7jv0XvYnFfb20KynuTFNkGRbno5Fw7qPcRXden5EYwZyNTCLHTL2zeboQD9ujwQvbkWtHs6Mk2Int5eduTTXCA2VB9x1ASGbPnmSjrUZ0TAPLSP49e1IXnrzsRV5iJoeLnOd0S8cZysgHWTUv8jfpehdNQLBhrPViLHdKxyh00TZNut7d2jVifXSjfydZRIM2yHnCLBp/sqP06FnTHZMKXdLJ5kHJbCKvMOI0dpigV9GuyyawbQoAT10hHNISueEgu7l8wY+sLOS/Egkjs8Hrd3Fl1BKio/XwGCpTtuaWFTVXU8biY+ChEV7EAruVnJwSLcsIPqlkuKsTJQqEb4p4X9qRc1Ow7WonIJpx1dLF5QouLk7EUJxsAfPL4RTjn0NkFfy8cRcLJppYS7VGug4kqFwXUhFHrWKTIVsY5XqhcVDhXCjnIls9ux3mHzan6YjQS9ONDK2dX1HNZvIe3dxubVJpmzd+qzX59LfBpwKyOwvPMPAeTh/OzueYm8u7hlLwHi/E4GPDmuxPzDrGBXm5VkTgXMzkdu8xruJCTDQDedXGyPbVhNw76v/fjWw+8DsDZk83hGKyhyCbDD0bTeHGToXa5rUWEA3I4lfG08kL9LMSxzO6M4trT9sfX37dU/i7iWNPFJ2lPNlGqq+v5Y+FUgTOSKcSBM1rRHA64JsSpTFdKRusv+MCZLircY972ZBOIhurbB6zdHaeTbdSRLqoKdeqOZVPQD1GVJEKsStn5EwNysXJRMYDVWmT7zHv3wWXHzMM/HDxzzMfOMW9+b+8eyUtmVfsoFOsBU2vU/j9TIfQAsL4Pn2ZMIJyR6NUqFwXs5eKyGXBzpOiiRCwGxDXX3WzsCIvNBqvk1N1JJK5nMfn0uiTGSru0Cy3DyqSkoMg2galu9Y4Yj4eSGTkmuy0muhyifS1FNhGKo5bJlUpSlot6vyBXE3XdGDXd21462SoT2Rh64CVu378QgjsqbN+Q32Yjv+8bMLEim5soJkqiy0sXNe4ZarloLqdju9kcvlD/z0ZCjKPivtocDkxY2f2PLzwUD3zmuLz2NirODXMvx4ZYOCANCBvMklHLeelRVY250SHKRYu1+SmG+r6FyFuoJxsAbHER2Z5+azeyOR0PvLwNgFVJ1NoUzHcMjiPF1WtEZdDuoRT+vH4XAOCoRV15jxOC63AyW9DxVg7qZ6F+xpccPc/WZkeI+mI8mKxVMJGgT655p2pftsn5zRJX7rhkJRLp7JiDyYy2Jjxn9lkqVlpaC6STLWF3shWzjY/v+R1OthmGyLZVEdnEpEsskITDRYpsBcQFTdMQU2r2/T6tpARGK43LuIk3u4hsgloP1vv1teALa/Yv6bFiF/Lt3SNWbz2ZLqo42epYZFMn4LVonl4L5nfHceL+vZjXHUM44Ld2BWUkumg4W0WRbTQjX28st61zDBM7wj0tYduu7Vg92YqVIFaCLBct0JNNfW0nLBe1EGUx25XP0e1e53SRTEQfoUKIfpO7ykgYraqTzRFM40SIB164Q8JelIvKHnEU2bxAzCPUVDjR4qLSTa8mR2DUsFIWrzo6U1Ush3YiNsiqWS66eySFtJkIXKyapFFoj4ZkD15gYjd6WqPBMTeonZueXjus5nXFsG0giQ07h7BsVpvlZPNo00Pc04fkPKc8YVY9f4WoU8zJtnlvfrnoNrOEdN32IZtTvCUSdOl5Vrt5sDgn/rx+F/pH02gOB7DUJcQhprhpreADj8pFYcxFit2LmqTIZrUlmoyIMIiBRAaDyQzKL05vXCbnN0tcMfqyjT1hEAmj7dFgWfHl1UQscPOcbB5ZwZ0i1f59xgAtBC5NMyLlAWCx2ddp3fYhDCczcue1mGXe1hjTbII5Fs7JgTp56G21T9YaKQp6jhDZdrk42ZT3Ud8im+pkq69rpVr4fRp+cMEh8t9OJ9tQVctFLZFdXG9jTT6bwwHZ/w+wdoTVneGAT0NngYWP8314/b7EcewcStr6Vgyr5aIFemNRZLMQk1rhOm4OB/ISkAGjXFiEyQC1dQFWVi5qvIFqiBAtYzjZEh4GH3jhZLNK+1ic4QXO3reAJQS3V3g/FvcL6WRLFXeyTUSQhQxjSLuUi5YxB3ZzxgnntdqqoJHx+TR0mj0lgdpuVrgRCvgQCvjkeeTVRrxgXlcMT765GxvMAB2vnZfOz7Pc1j2apiES9CGRzsl7RjGRbdtgQqa3C4TJIJPT8dw7exVhNZBfLlrDtilt5vu6/+WtAIDD5ne49oYUxziUzHg6XxUby2P12s4rF52kTjbA+FwHEhnbhs1UovFHeuI5YrCtt1JRIH/yPyIb5nvlZAsq/x2wpWQCIu3TWLhNb42gORJAJqfjebOvE1BcbFEFslKbxDpvWurzd8bCtoWk183mq4kIR3hr94jshRJz6clWi3TRUlEXmVOlXNRJXOlvAVS7XNTqySYWLWONU5qm2dxLQtRS/663JeIqyAD578PrXUfhZEtmcrZG4yPjKBelyGb1TpKLvgKfScDvs7lxalouGrPKW8ZDNqfLhU4t0kUTVQg+SGVzyInas3Eie8TV2aZgo+IWfCEEsEqdbBFH/7N6KhdVXXUiXbQc4dYtXbTU+1Ujod5X6/EepLrpvS5jlOEHZnCS185i5/2rkvPG6apyW3t0xgzxV9chE9cF2wYsd/hfzDLMoN8IECiW3jnRiD5oYtw6ckF+qShgrTN2DSflfdST4AMhso2xthOfUTXnyvWCdEVP0XJRimwkj4NnG2mYS2fm22xrjRiMEukcUpmcnKB5VaqnDnbTW5vQFPLbhBTVNaBpGvabZrjZnt64B4AhuhRLHlRFsLYSJyXOm5a66+H3aTZHTiMN1qJc9J3dI3JyaznZGqVc1PpuvN4pbRSkky1p78lWjd051cm2bYwm0io9LiKb+rNCoQeAi8jm8WKiKeSXTtyditiiLj4LNaAfoMgmEeO0WCAU+5664vWxOBTuyfE62cSCDqhW8IG9LYOTUU+DD6zjT2XLc7N56awj1jxFbGbqui7LRSu9H0dlTzbju1bHucGEVRGQqmI5dN4xCSebrSdb+U46NUhBNy2zW/uN+5WzxUcjo957vW6j4AXqfNvrUvJ5XUbI14adRs+0lMdpuM77UinznEKoawhfgYAKTdNkj7vNjr5s25R2OUJka4kYlTh1JbI5HGRHu/RjA6zrU5TB+n2aJ8Fl4nwbS2RzvtZkDT4ALFMIRTZCTJbNasMT17wHX/uHA2t9KHmoC/fBRFpxsnkVfGA9f58sm7UGbueiYnGfESLx9Ft7zOMrPliqx98WLW2yWqxcFLDvcFWjD1a1mNneBE0zBl/RG0vcfFRHYWcdp4vanGxTJF3USX5PtiqWi5oTz/7RtOwvUsoOr83JJnqyNVt/Vyj0AMgv26hGWUyXeXw7lH5idicby0XHIhKwB8S0Fln01YsDwyoXHV/wgSpG1cLJJsQIL51sQPl92RLm30XoZPME4dYVC6PBZEaWmlUqsskes6InmyN1Toh5SY9Fi2JEi/ZkG/85JRbbOd0quZVBPZNIZFM3K+qtXBSwz7e978lmbBJv2DGM/pG0LKf2SszLLxf1xsnW2hQsGFAhWgVt7rdENiOww7o/PfuOsdYRczHncUZqGHygOvS6m8NY1BN3fZxYZ4gy2OZIwJNEXzGXaB9jbVfMODHZEAIiy0UJUZjR1lTUkVUrAn6fFDMGEhnPnWzqYCfKZtUB0znhW2w62Z6VIlvxG6xNZCvVyebc9cgT2VQnW/1NdAoRCfrlrq7sZ2e+N3VXdKwbVi1RRdepWi4qnGxWuahIa6qGk81qyC6SskrpVaIKasLB1q38XaHQAyD/fVTjfcnwgyFrMluKk40im4UYJ0XFYbFFn21xWEMHhpUuOj4nm9q/rBrpotIxOlaqrQf3G/WeWqwvWyKdxcadwwV/B9DJ5hVOkVWUM0dD/opFBPH3I+n8clHAuhYmslw06jgmQCkXLTNdVIwxb5vlhEJkm7xOtvq7B8Vs5aLeimyzOqLwaYZI/E+/eg6DyQzmdcWwT2+zJ8/vvC95KbIVYnprfvjBTqWkErB6gYrvu76cbNZ7O3JBZ0HhTIjqW805pFdzulOW9GHN0j5cfNS8oo+LOM7FyRp8AABXnbgvfvmPh+O4fbtrfSg1gTMS0nCIwX0wkZYLey+svoBdpBILb3Xn1jnhEk62wTGSRQWxMpxs6g3S79PyjkGdtDXajoiz5534fMTirSUSqOsmwbZ00SkSfOBEvO+RVBapTE46AKqxs92qlLFtK9fJ1iycbNbPphUR2ZzXVDUWE12m2CJENl3XC/Zku++lrfj985sBUGRTcQosxT6TenGylduTLa0kL3qxA+9ELDqGU1nbAku8tihrLrcZt4qmaXKMF8KGG//0y+ew6qaH8drWwbzfJZku6inCkS82TEQ5sxetG6zSTOMcdpYR5Yts1f9OZXln0sXJVqZwO7fTmNts3GUIw8I1M6218mumXqh3J5ta2RH1OPUyHPBjRrshSv3p1e3QNOAb719aleCDWMhf0dxevTcWFdlMY4Gaui42M7viIZuAJoQh58Z+LcdgdU11VIF+bIBVdWKFJHlz7k5rjeCWc5dj5byOoo/Lc7JNYpHtwJmtOGx+p22smErU7+qVkAI0K26WEUcvL6+eGwD6zF0dNU3LeQN17lqN5aizl4uOvydbLOTPW1T1KgJBI/VkA9xENuO9Lp7WjDVL+/Dx1QtrcVglE6GTzXKyJTO2NMJqiI5C4NoxmMTeEeO1epvHFtlUQa3bJfhAXOtuBPw+m4hflXJR6WQzF5jZHDKKuCHEtEQ6i0/d+Sw+deezWLd9yHIUUWTLKxUs3pOtXoIPjO99MJkpKjA5SWdE6IH3AhtgXzg5yzxESXPQr3nmMg6XkDAqxLU3dwzl/U4IIhTZvKHZUS7qVegBYM1nRs0NUlXYAixBL5WduHLRJkdCNqD2ZCvvnBLBTsJ9uU06ryenk61YeX6tsPVkq0IZo+jLBgAXHjEXh84tLq6MB/W+VGmJsU0cK3K/c+vJJnqc9rU2Yb8+a73T6uJkC/q1qrQvKBV1TXVUgX5sgHW9q+WiE4nTFNJIFUhkfFBkIw2HWOT+5c2d0snmVT+scMAnFy5WuWjQ9nuVeNieQDrWYF2WyKZMDtx2s2xOtgYT2eZ0Wp+dplmTgYDfh1vOXY7Lj1tQq0MrCZuTbYoGH8SUBYpYlEVD/qqUm4trf7250A4HfCWV+4nFQHM4IMtGOqIhBHziWi8+iVWv62qUF0qHnimaOReeoq/P9oGkXHz+13Pv0smmkJeg1gBOtpamgDwHx1Mymsoa50ewSi7fUMAn3Q/OUmXZW6o5UrC3z3gJKwmjhRDn+kgqX4y00kU5pfUCuZFpjjt7zHOz3QuRTTjZ0lnouo6hlF3E3VOLclF5TN6UiwJWz66NjnLRSSWyxeu7XFTMl31adcTa+WbC6OyOKD538r6ePrc65+ipIPQAsN8bi1XQTHcT2ZTz9oDpVhie+L6DfuteUetNjjmdUSzqieOE/XqkYOiGWC+KjdqJFrmcn1OjVSCR0uE3SxoO4dy65aH18mdRjwYpTdMwtzOGjbuGsdBsmmkLPnDZ1Vw8rRlv7zYmUmO5mVQRrNTFnZpa6fb86qStHi37xZht7vYChlhTjdKnahL0++D3acjmdM9KlhsNEToynMpUPZJcCFwJ02XQ0xIu6ZzZd1oz/D4N+01vkT/z+TSctrQPr24dHLOPSnMkKJ0I1Qx0ECLbsGPhKX4uSmQB4DdrN0kHT2uJgv1kxlnWVazPSb2ki2qaho5YCNsHk9g1lCrqqFRJmU62arp8miNBJNJJF5Gt9F6IpSLuq8I95ETXdUVky2+gLMaDWi/yJguifMoo/896Wi6q9k5MZXMYMTdmwgEfkpmc5WTLlJ/uOV6sNFBvgg8Axcm2axjJTFaK6JOrJ5t1PtTj3FOIF03B/AoQL7jgiDnYNZzC5cfN9zxdXvSfHk5lKxZm7eWihY9TbDa+u2cUuq5D0zRZUtnbEsYByvxJ/b7FvaLWc+BwwI/7/+nYMb9r53FOdE80Z7loo1UgkdLhN0sajutO2x+z2qN48JVteGP7EOZ2RmXjWi/42UcPQ/9oWrodOoqUiwLA4r4W3P/yNgBj70hU2pNtLJGt0XZEVBdgo/Y0Cwd8GEllG+6z9wrpZEtm5YK8Wp9FXuJWCaWiADCzPYqH/s8qdDiSar/9oYPlZLIYNidbFSZEaq85IN+tI34u+qMAwBazjMOnAfEp6qJUyXOyFREeVSdbrUs1pMg2Dieb6MlWzdKclkgAOwaTecm21XDkhMZwso2ksrJ8uqiTjcEHnqBuBg4lMthtpt96WS4KGCm1w6Zrd1ZHFOu2D8nXkuWiEyKyWfcweWwVnlPzTJfTW7uG5bgdCvhKrmBoBLrjygZvHTvZvA49EMzvjuPmDx9clecGjHnBcCrrqZOt2KaS2OQZTmUxkMigtSlo9RJsiWDJDMvJpj5Ps3mv4NVFNAAAMW9JREFUqGXogaAUMdUpiE70uauej0F/fp9tMnngzJw0HD0tEVxzymJcc8pibN47iuZIwLOyFcBYPKgLiPYiwQcAsN80ywUzlrigNmItOV1UuXG5los2cE+2OarI1qBCgRDZvHJTNhpiV3A4lZH9m6olXDgnQ+NZ6M/ujLr+vJRJmfp+qjEhE+KhcOuIxL1I0IdEOoehZAa5nI7tipNNPR4vx79GxTnBL7aYmNsZQ19rBDPbm+Cv8WcnFt2FkjzdmAgBQpzzgwXKRT0V2UyxsJCTba/y2Qy7iWxmaZ+zLx8pD79Pky6awURGCsBelIsG/UZLjnRWx2jaajEw2xTZ9gwb37UsF52AHk/SyWaWi+q6Ll3Z5Tq0xP1m51AK68z2BtNaIg3n1i9GS1MAIb8PqWyupinNhRBicbVEtmrT0hTE5v6EB042pVy0qfA13BTyoyMWwu7hFDbvHUVrk+Xg722NYFFvHAGfhkxOt33fYl3TKE5i54Z+LXuyxcONV8FDSofyKWloprc1Vd2JoPZkK+RkE4zHyVZq02i1J5ub2yseDuBjqxbgoiPnorPBElzaokF5g27U4IAjF3ShtyWMBd2xsR88CRHnfCKdk4vhak1amsMBqPORHg9L1oq+rvJ+qvHerJ5sZjNwU0gQO8u6bjTHFxPeRT3xvL+d6jgn+MUWx5GgHw9ftQp3/eMR1T6sMRHXjzNlsRjpCRAgxHk+mHA62Yxz0MtrT7iFRK85J/0jlsg2ynLRCSGufP/rtxsiUbE+R+NBfE8jqaws/51lJjXuMp1syQnsydbkKBcdSmZkqm6542tLJCidf399czcAb0us6wFN03DBEXNwzKIuLOyOj/0HE4xaLtqIiLYGIsW0XJpKdLIBVsmo6MumbqqEA37ZWkNdv4g1WKOImU2ODf2JFtnU+1StnfSkujTmqpaQCcTeky1/wje7I4qmoB+j6ezYPdmU35faR6mphATLq09eXNJz1RuapmF2ZxR/3zzQsOWi3z33YGRzelUa/TcCUeV7217ltCafT0NzOCAbck9UE2khBIcDvrJ79BRD7Ao7nWxt0aB0sw2MpqWT7ayDZ+Anf96IHYNJimwmEUdZ11ifSzW+x3IQY/rwOEQ24WQLBqq3A97iKGEWiHOw1FLtUhjLydY/hpPNShedmmNwNRB9KN/dO4IX3+0HABw2r9OT524K+jGYyGA0lcWQUi4KWAEgO4cMsW0i2jAIF/2oeW6J+0tIaepeDnO7Ytg1nMJTG3YBmFyhB4IvnrZ/rQ+hIJb405hL3atPXowVr2zD8fv1VPQ86jk8lhN/VnsUL707gPU7hnD8fr1SZBO9BK85ZTHufWkLjt2nW/6NmO81ipjpDMqbaKFrrOokMnngjISQMRirJ5vfp2Efs2S01HRRn2YvHS1GZJIPyCJhtFHLRTVNm7ICG2AsRERCooxED1dv0qJOEifKGSCu62r17ijUky0WCthKSXcMGgvPaS0RnHnQdNvfTnWcpYL12CPIjVgZTjZRSlftnmyAm5PN+3JRy8lWSGSz+tWNFk0XbYxFXiMgxrw/vrIdOR2Y3x2ztaaohKiSMCrEZafI9sKmvQBg6wNVLZxONuGcbGkKVlTKJeY2L2wyRMrJFHrQCBy5sBOr9u3GxUfOrfWhlMWBM1vxT+/dp+JxbTxOtmWz2gAAf9u4B4l0FnvMa0HMtY7dpxs3nL3UthZpNJHN2ZOtluWijdbih4wPfruEjMFY6aIA8PFVC/DLv72DVfsW33Ga1hqB36dhdke05D5KpTjZGhkxuZ6M720qoGkaoiE/BhIZbO0XCZzV+y4N0ckoZejx0E1TDLHTWa0UKiGkjaSySGdzMl00GvKjpSmI7YNGyqMQOHpawjh60Xxs3DWM8w6bU5VjajTygg8aRGSLl+FkS2erny7aUrAnm/fpotLJlinByebyOQmRjU427xDn5R9fMUKdjlzgjYsNsK7VoWRGBgzMajfmAXtG0tjSP4ptA0n4NGDJjJaCz+MVVrqocW6J863SPmNzzYRREdoxGZ1s9UxLJIifXLyy1odRc2w92caooFk5rwMA8LeNu+V8IxzwFb2fivlRpEHKRZ3pohPtZLOXi3LdM5nht0vIGDSF/LJkq1B/kJMOmIaTDpg25nN1N4fx248diY4S+7EB9l2XyehkO3H/Xvzm6U1YtW/32A8mdUnMLOEUk7J4NUU2ZeEzWZxs6kRrYDQtU+5i4YAU9gZGM9g+KAQOI5zl3y88tCrH04iopfyhgK9h+nMJB+9Q0r0fmRvpCQk+sM47QSKdlQJEj5dONnPzqhSRTYgyKkn2ZPMcIbLuNZ0sRy3o8uy5xSJ395DlUJzZYfSdyuZ0PPb6TgDAPr3Nea6TaiCOJ53Vkc7mpKO4UqF+bpe9T2uvR05AQsZDqemigOEcbQr6sXckjcfeMK7Daa3FAzvEc0YbZPyN1jj4oCk0uauTiAW/XUJKoCMawub+hCeLGmHHLhVb8EGD7BSNhxVzOvD0F09gwk4DIxYpsly0ijuDakN7Lxf6xRCOuZ7m6oh6Ab8P8XAAQ8kMBhKZPCcbYPQoEgveah1HI+PzaQgHfEhmcmUnAtYC0YtyXD3ZJqBcVKaLJi2Ba7vpYosEfZ66OsV9NVVAZNs7MoaTLUMnm9eoC09NAw6f752TTSwyRd81v9lrszkcwGAygz+9uh3A+OdK5aIKeSMpS0iuWGRzJFqzXJTUgvGIbEG/DyvmtOPxdTvx++c3Axi7/+aapX1Y+9YefPDQWZUf7ATgbE1TrQqFQjQx+GDKwBkJISUgouvdgg+qTWSSl4sCoMDW4IjzUiyaqlouak4Sm4L+kvsaVsoJ+/fgy6fvX9WAETH57R9NWz3ZwlZPtnVmwl9ojNKNqYwYK1srLPOaSMopFxW9y6paLtqU72TbNmj1Y/NyzBYiWzJTIF1UcbKNFOnJ5uzLR8pHHcP372uRcyAvEItMcb+IhfzQNA0dceM1Hl9nOGiWzmzz7DWLEQpYfUVHU1kMiHLRChfAczrtTjaKbKQWiM2HoF/LK5V0Qy0ZBcZ2YC7ojuOOS1bi0LkdFR7pxODsHTfRm3Lqd1DNqg9SeyiyEVICoi/bRMTJO2ESDal3xKRBN1rPVHVnUAhMvS3hCRNnwwE/LjpqHuZ3x6v2GlZ5XloKLoaTzfj5+h2GyNbTPHHvu9EQi4lGCT0Aygs+SMt00So62cL5Pdlk6IHHvRDDYzjZxhbZjL8LN0i5UiMQV8JrjlroXakoYKU97jTLRcU1IEKmxLVw0Kzqhx5Yx2Q6SlMZKbJVupnR2hS0BWf1TFB7A0JUmuTmU2lBHkJkE/O53knmnPf5tJq6ydiTbepAkY2QEhCpWrVwkKj1+5PVyUYaG6f9Pl7NdFFzQjRRpaIThauTLZTvZGOpaGEiymKiUZBOtlQ55aLVE1uFUKmmi4rQA6/FAsvJVp7IlmS5qOeoi78jPAw9AIAm83uSTjYhsim9aiNBH/bpbfb0dYshE089LBcFrITRtmiQPQNJTYg7ROyxWDarzeaS9ipVuJ4Q13vAp034fSMc8EFonRNVjUFqA79dQkrgU+9ZhHldMZx+0PQJf221BIYiG6lHoo7zspq7c9NajQX+7I7oGI9sLISoMZBQnGxhP3K68fMt/VapHnFHjJWN1JNNlIsMlxF8UM32BdJZmVB7slXnHBTBB6U52dzSRcXnQRHDK8T3H/BpWOlxGZjogbZj0CoXBewiwJLprVXtOejE2ChK2nqyVZouCgDzOmN49u29LBUlNWPFnHZcctS8khOCI0E/DprVir9t3ANgcs45omE/dg0b49xEVwZomuGkG0ll2ZNtksMVOyElMLsziitWL6zJa6sNvVkuSuqR+ASmNZ1x0AykMjkcv19v1V6jFhRysvkcE0A62QojdqQbyclmpYvWW/CBENlUJ5sQ2arlZCutJ1sup8Pns64L2ZONTjbPmNFmpH2unNfh+eZeRPZkc5SLxi2R7aAJCj0QiIqBkVRGnvPeONmMvmyTUaggjUHA78O1p+8/rr9ZOa9jUots4r5bK5ErGjJENq7pJjeckRDSABw2vxN9rZFJ594hk4Oos1y0iiJbU8iP84+Yi+nmInCyINxXA6OOdFHHJHCylcl6SbiRy0XHFXxgNMupbvCB8RmmMjkpYolyUe+dbKWniwJWmigA6Louy0xZjucdh8/vxI8vOgT/es4yz59b9EPaPVy4XHTpzInrxwZY5WNeposCwHv378WMtiasWdpX8XMRMlGsnGe53iajC1OI6rXqiVbr1ycTA79dQhqAn1x0KLK6PqHlE4SUSixU27SmyYAoTeofTWMkaaWL5kT3YRM62QojFu9elHlNFLGwtbjP5nT4fWOXrmzpHwUAhKvo3IqHAtA0o/n1YCKDSNAvnWw9Exh8kMvptpJVwCitFcK+2seNIpt3+Hwa3rO4Om5hIWjlzKHNrVx02YQ72YzzyV4uWvl9bP/pLXjimvdU/DyETCQr5rSjORKA36dNysAOy8lWm7nCPx4zH4+v24lls9tq8vpkYmicmSghUxifT4MPTBQk9Ynaky3o16raK2qy0qr2ZFOcbHnlopNwV9krhNN3QRVTYL1GLcUbTmXGFKhf3zaI/35+MwBg9b49VTsun09DPBzAYCKDwUQa3c3hCSgXzRfZBpMZmXIX8vuQyuYwqoQfCJcdAEQ47jQEEcemjLgGOs1y0bZocMJd+zEZfJCxRDZuFpEpSjwcwN0fOxKaNjk3L4TQX6tr/Pwj5uL8I+bW5LXJxEGRjRBCSEWoTrZ4eOIbyU4GrHJRpSdbOJDnXqWTrTD/fOp+eN+KmThogkvNKiEc8CHg05DJ6RhOji2y3fCHV5DTgZMPmIZDPG5I76QlEsRgwuhRNZTMYNg8L70Weos52frNUtGmoB+xsB87h1K2JFYhzAV8GgJ0ejcEUceiXZRMHzK3A8tmteHEA3on/B7SpJSLDnhYLkpIo7JoAtN9J5qoLNfkNU6qB0U2QgghFaH2ZOOkpTykk21USRcN+WUJpGAyNiH2iqaQf8LLzCpF0zTEwgH0K997IR5/Yyceem0HAj4NV5+yuOrHJkppBhNp6WKLhwOeN2su5mRT+2MZj0tJERqwnGx0zzYOTQ4nm7h/tESC+N0VR9XikOSie/dISp6HrVHeywiZjIjqC/ZEI9WEZxchhJCKiCnpopy0lIfo/6Mu8mKhgK2cMOjX0M6F36QjbopsQ0n3dE0AyOZ0fO0PrwAAPnL4HMzrilX9uNQwDr/P7MdWhf484YAxfrg62UyRrU0570cUJ1sizdCDRsO5cRAL1/67E0Lftn7jPNc0oy8hIWTysU+P0VJi8bTJ69YjtYd3EEIIIRWhOtkYSV4ewsm2rT8pfxYN+xEK+NAU9GM0nUV3PMxS3EmIEBmKOdm+9cBreHnLAJojAXzq+EUTclyqky2dNcSsXo9DDwArJTWZyRcZ946mABgidMY8BjcnG0W2xsHpZKuHe4Zwsm0xRbaWSBC+EkJICCGNx4VHzsXx+/ViZvvkSqkn9UXt72yEEEIaGruTjU6rchCJmKms1WNKiA+tTUGMprMMPZikCLfiUAGR7d4Xt+CWh9YDAK4/a4kthbGaCHflYCKDPWZvNK9DDwArJXWsclEReGB3smVtz0HqH6eTLVpHIpsoi2Y/NkImL5qmYdYEh6uQqQdnJYQQQipCdbK1sFy0LJyLumjIL11rQoBj6MHkRDh53Jxsr20dxP/59fMAgMuOmYczl82YsOMSTraBRBqPvbEDALDvtBbPX0eIyUJgVlFFtqjSnF6QMIW5SIBOtkYhmudkq/1312Tew4STjSIbIYSQSuBqiBBCSEXEbMEHvK2UQ1PQL1MmAdh6sYneWNXoh0Vqj7h+3ES2637/EkZSWRy5oBNXn1z9sAMVcS2/uXMYT765CwBw2tI+z18nbDqbkunC6aJtarmo0rsuKctFuWfcKDhLe2N10PtMJJ4KN6XY2CCEEELKgbMSQgghFaGWi8YpspWFpmk294Tq9hBle9Xoh0Vqj7hm3IIP3t41AgD47En7IuCf2CmbEHcf+Ps25HTgoFltVSmxKdnJZgrPbk62MJ1sDYOzJ1usDspFneELdLIRQgipBIpshBBCKkJdJLEnW/m0KAs79TNdMacdfp+GQ+Z21OKwSJUpVi46bApKtSjDFteyEL9Or4KLDQBCAbMnWzpfZJQiWzQo3UZuPdnoZGscnOWi9SCyNTncdBTZCCGEVELt72yEEEIamnDAB58G5HSWi1ZCSwEn2xWrF+Lio+baet+RyYNw0bgFHwhBqRbfvbNk7tQDqyOyhQOFnWx7R4o72ZJMF204nP3znC6yWuAU/lq4WUQIIaQCuPVHCCGkIjRNk3114nXgSmhUVLeSs08RBbbJS6F00VQmh3TW7NFXg+9fdaUeOrcd09uaqvI6QmRLZnLQdd32O7fgg2Gbk80MPqDI1jD4fJrNeVgPPdmciactdLIRQgipAIpshBBCKiZquhHoACgfm5ONYuWUoVC5qFoW6exjNRGortTTlk6v2uuIfmq6Dhn8IVBFtphIF1V617FctDERopam5bvIaoGzZJXlooQQQiqBsxJCCCEVM63VcLlUy+0yFVAXdrE6WHiSiUE4eZxONtGPLeT3yb5lE0l7NAQA8GnAKQdOq9rrqO9NpDsK7E42s1w0rQYfGP/N4IPGQohssVAAmqbV+GhcykUpshFCCKkAbpUTQgipmG+fswzrtw9h32nNtT6UhkV1AbI8dOoQK+RkM/8drVHPqrmdUVx+3AL0tUbQU8VkW1VkS2VyQNj470w2J4XHtmhICiEjyueUNMtFw3SyNRTCmVkPLjYg3ylKJxshhJBK4CyeEEJIxczrimFeV6zWh9HQ2JxsddAMnEwMVrmoPV1TONlq1bNK0zRcc8riqr+O36ch4NOQyemGyGYykLDEtJZIwDX4QDjZnM30SX0jRK166eEZDVJkI4QQ4h3c+iOEEELqADXNkU62qUOhdFErWXTyC0ghGX5gCWh7R1IADCEm4PdZTjYGHzQ80aAxvjl7odWKgKMkmyIbIYSQSqDIRgghhNQBdLJNTaSTLeUsFzUEp6kQgiESRlUnm9qPDYAisjH4oNGJ1Fm5KGA/FjXpmRBCCBkvnJUQQgghdQB7sk1NCvVkE6LbVAjBsJxsxUQ2l3JROtkakiZTFK2XclHAXjLK4ANCCCGVQJGNEEIIqQOYLjo1ESJbOqvbyiWFmDQVBFeRDlpMZIsp5aK6rpuPp5OtERHndD25NEWfuFjIj6Cf5xMhhJDy4V2EEEIIqQNU90Q9LT5JdVEFVTX8QDjbpkLpsFtPtq39CQCWyCZEkJxuiXEiXZTBB42FcB7G6+jcFmI3XWyEEEIqhSIbIYQQUgfQyTY1Cfh9aDJFB7VkdGo52ew92XI5Hb98+h0AwMp5HQDsn4P4bES6aJhOtoai2ex51hypH0FLXIMMPSCEEFIpk3/mRgghhDQAzRGmi05VYuEARtNZDCYskW0q9mQTItufXt2ON3cMozkSwAcPnQUA8Ps0hAM+JDM5DCcz6IiFrOADOtkaivevmIl3947iAytm1vpQJCL4gE42QgghlcKtP0IIIaQOCPp96IqHoWlAVzxU68MhE4gom1MTRqdSumjI7IE1aopmP3jsTQDAeYfNsTXHFyV94nEi+CDM4IOGYp/eZtxy7nIs6m2u9aFIxMZGSx256wghhDQmk3/mRgghhDQI3/vIcmwfTKKnJVLrQyETiBCPhpJT08nW12qc7//v3leRSGfx1IbdCPo1XHTkXNvjnGW10snGclFSIcLJxnJRQgghldIQs5KNGzfi0ksvxbx589DU1IQFCxbguuuuQyqVsj3u7bffxumnn45YLIauri586lOfynsMIYQQUq8cMrcDpx7YV+vDIBOMENlsPdmmkJPtsyftiwXdMWzpT+Dq374IADjjoBmY1moXm0UIxKjoySZFtskvRJLqQpGNEEKIVzTEzO3VV19FLpfD97//fSxcuBAvvfQSLrvsMgwPD+Omm24CAGSzWaxZswbd3d14/PHHsWvXLlx44YXQdR0333xzjd8BIYQQQog7cReRbSo52Wa2R3H3x47C5T9bi7+8uQsAcNmx8/Ie12SW9A2bIptIGaXIRirl+P168eCr23HCfj21PhRCCCENTkOIbCeffDJOPvlk+e/58+fjtddew2233SZFtvvvvx8vv/wy3nnnHUyfPh0A8M1vfhMXXXQRvvrVr6KlpaUmx04IIYQQUgyrXDQrfzaV0kUBoDUaxB2XrMSPHt+A9mgQi6flz9uE4DiSykDXdSmyiXRSQsrl2H268fjV76n1YRBCCJkENOzMrb+/Hx0dHfLff/nLX7BkyRIpsAHASSedhGQyibVr12L16tWuz5NMJpFMJuW/BwYGqnfQhBBCCCEOZPCB6mQz/1uUSE4FQgEfPrZqQcHfR6XIlpUCG0AnGyGEEELqh4bc+lu/fj1uvvlmXH755fJnW7duRW9vr+1x7e3tCIVC2Lp1a8HnuuGGG9Da2ir/N2vWrKodNyGEEEKIk1jIpSfbFHOylUJU+ZxEPzYAiNDJRgghhJA6oaazki9/+cvQNK3o/55++mnb32zevBknn3wyPvCBD+CjH/2o7XeapuW9hq7rrj8XfP7zn0d/f7/83zvvvOPNmyOEEEIIKQG3dNGR1NRzso2FGnyQSBtOtoBPQ8BPkY0QQggh9UFNt0c/8YlP4EMf+lDRx8ydO1f+9+bNm7F69WocccQR+MEPfmB73LRp0/DXv/7V9rM9e/YgnU7nOdxUwuEwwuHw+A+eEEIIIcQDXIMPzP5sMTrZJE1BK/iAyaKEEEIIqUdqOnPr6upCV1dXSY999913sXr1aqxYsQK33347fD77ruURRxyBr371q9iyZQv6+voAGGEI4XAYK1as8PzYCSGEEEK8wBl8kM3pGE2LclGKSALLyZZBIiNENrrYCCGEEFI/NMT26ObNm7Fq1SrMnj0bN910E3bs2CF/N23aNADAiSeeiP333x/nn38+brzxRuzevRuf/exncdlllzFZlBBCCCF1Szxid7KNKv3GhABHgCZTcBxOZZFMi2RRipCEEEIIqR8aYuZ2//33Y926dVi3bh1mzpxp+52u6wAAv9+P//mf/8HHP/5xHHXUUWhqasK5556Lm266qRaHTAghhBBSEiJdVPRkGzH/36cBYTb1l4jS2VGlXDRMJxshhBBC6oiGENkuuugiXHTRRWM+bvbs2bjnnnuqf0CEEEIIIR7hTBcdTln92IqFN001LCdbBomM4WSL0MlGCCGEkDqC23+EEEIIITXEmS4qxLYok0VtCDFyxBZ8wKksIYQQQuoHzkwIIYQQQmpIc8Quso2kmCzqhgiBGEllmC5KCCGEkLqEIhshhBBCSA3pjIcBGOLacDKD4RSdbG5YIpsVfECRjRBCCCH1BEU2QgghhJAaEg8HpIC0fTCJkaTh0orSyWZDfB5DiQwSGTP4gMEQhBBCCKkjODMhhBBCCKkxPc2Gm237QEI62WIhurRU2qJBAIYQ+Z0H3wBAJxshhBBC6guKbIQQQgghNaanJQIA2DaYxIgMPqCTTWVmexOuOWUxgn4NO4dSABh8QAghhJD6gjMTQgghhJAaY3eyieADurRUNE3D5cctwH9/8mgsmdECAJjZHq3xURFCCCGEWHCLlBBCCCGkxvSaTrbtg0kE/RoA9mQrxOJpLfjPjx+FV7YM4IDprbU+HEIIIYQQCZ1shBBCCCE1RnWyjQgnG9NFCxL0+7B0Zhv8Pq3Wh0IIIYQQIuEWKSGEEEJIjRFOtm0DSYQDhrhGJxshhBBCSGNBJxshhBBCSI2RTrZBposSQgghhDQqFNkIIYQQQmqMSBfdPpCU5aJMFyWEEEIIaSwoshFCCCGE1JieFsPJNpjMYOdQEgAQY7koIYQQQkhDQZGNEEIIIaTGNIcDaAoa5aEbdg4DAKIMPiCEEEIIaSgoshFCCCGE1BhN0yw3W0L0ZKOTjRBCCCGkkaDIRgghhBBSB/Q2R2z/jjL4gBBCCCGkoaDIRgghhBBSB3SbTjZBjMEHhBBCCCENBUU2QgghhJA6gE42QgghhJDGhiIbIYQQQkgd0ONwslFkI4QQQghpLCiyEUIIIYTUAT3NTpGN5aKEEEIIIY0ERTZCCCGEkDqgt8UqF40EffD7tBoeDSGEEEIIGS8U2QghhBBC6gDVyRaji40QQgghpOGgyEYIIYQQUgf0KE62aJj92AghhBBCGg2KbIQQQgghdUBLJIBwwJia0clGCCGEENJ4UGQjhBBCCKkDNE2TfdmYLEoIIYQQ0nhQZCOEEEIIqRNEX7ZYmE42QgghhJBGgyIbIYQQQkidQCcbIYQQQkjjQpGNEEIIIaRO6BZONvZkI4QQQghpOCiyEUIIIYTUCUtmtAIA5nfHanwkhBBCCCFkvHCblBBCCCGkTnjf8hk4aGYr5nfHa30ohBBCCCFknFBkI4QQQgipEzRNw6Le5lofBiGEEEIIKQOWixJCCCGEEEIIIYQQUiEU2QghhBBCCCGEEEIIqRCKbIQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKCdT6AOoNXdcBAAMDAzU+EkIIIYQQQgghhBBSS4Q+JPSiYlBkczA4OAgAmDVrVo2PhBBCCCGEEEIIIYTUA4ODg2htbS36GE0vRYqbQuRyOWzevBnNzc3QNK3Wh0MIKcDAwABmzZqFd955By0tLbU+HEJICfC6JaTx4HVLSGPBa5YQ79F1HYODg5g+fTp8vuJd1+hkc+Dz+TBz5sxaHwYhpERaWlo4gSCkweB1S0jjweuWkMaC1ywh3jKWg03A4ANCCCGEEEIIIYQQQiqEIhshhBBCCCGEEEIIIRVCkY0Q0pCEw2Fcd911CIfDtT4UQkiJ8LolpPHgdUtIY8FrlpDawuADQgghhBBCCCGEEEIqhE42QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKochGCCGEEEIIIYQQQkiFUGQjhNSEW2+9FfPmzUMkEsGKFSvw2GOPFX38z3/+cxx00EGIRqPo6+vDxRdfjF27dsnf//CHP8QxxxyD9vZ2tLe344QTTsBTTz1le45MJoMvfvGLmDdvHpqamjB//nx85StfQS6Xq8p7JGSy4fV1e/fdd+OQQw5BW1sbYrEYli1bhp/+9KcVvy4hxKIW1+0NN9yAQw89FM3Nzejp6cFZZ52F1157rSrvj5DJRq3utYIbbrgBmqbh05/+tFdviZCphU4IIRPMXXfdpQeDQf2HP/yh/vLLL+tXXnmlHovF9Lfeesv18Y899pju8/n0f/u3f9PffPNN/bHHHtMPOOAA/ayzzpKPOffcc/VbbrlFf/bZZ/VXXnlFv/jii/XW1lZ906ZN8jHXX3+93tnZqd9zzz36hg0b9F//+td6PB7Xv/3tb1f9PRPS6FTjun3ooYf0u+++W3/55Zf1devW6d/+9rd1v9+v33fffWW/LiHEolbX7UknnaTffvvt+ksvvaQ/99xz+po1a/TZs2frQ0NDVX/PhDQytbpmBU899ZQ+d+5cfenSpfqVV15ZrbdJyKSGIhshZMJZuXKlfvnll9t+tnjxYv2aa65xffyNN96oz58/3/az73znO/rMmTMLvkYmk9Gbm5v1O+64Q/5szZo1+iWXXGJ73Nlnn61/5CMfGe9bIGTKMRHXra7r+sEHH6x/8YtfLPt1CSEWtbpunWzfvl0HoD/yyCMlHjkhU5NaXrODg4P6okWL9AceeEA/7rjjKLIRUiYsFyWETCipVApr167FiSeeaPv5iSeeiD//+c+uf3PkkUdi06ZN+MMf/gBd17Ft2zb85je/wZo1awq+zsjICNLpNDo6OuTPjj76aDz44IN4/fXXAQDPP/88Hn/8cZx66qkevDNCJi8Tcd3quo4HH3wQr732Go499tiyX5cQYlCr69aN/v5+ALDdkwkhdmp9zV5xxRVYs2YNTjjhBG/eECFTlECtD4AQMrXYuXMnstksent7bT/v7e3F1q1bXf/myCOPxM9//nOcc845SCQSyGQyOOOMM3DzzTcXfJ1rrrkGM2bMsE0Urr76avT392Px4sXw+/3IZrP46le/ig9/+MPevDlCJinVvG77+/sxY8YMJJNJ+P1+3HrrrXjve99b9usSQgxqdd060XUdn/nMZ3D00UdjyZIl3rw5QiYhtbxm77rrLjzzzDP429/+5v0bI2SKQScbIaQmaJpm+7eu63k/E7z88sv41Kc+hWuvvRZr167Ffffdhw0bNuDyyy93ffw3vvEN3Hnnnbj77rsRiUTkz3/5y1/iZz/7GX7xi1/gmWeewR133IGbbroJd9xxh3dvjJBJTDWu2+bmZjz33HP429/+hq9+9av4zGc+g4cffrjs1yWE2KnVdSv4xCc+gRdeeAF33nmnJ++HkMnORF+z77zzDq688kr87Gc/s82bCSHlQScbIWRC6erqgt/vz9uR2759e97OneCGG27AUUcdhauuugoAsHTpUsRiMRxzzDG4/vrr0dfXJx9700034Wtf+xr++Mc/YunSpbbnueqqq3DNNdfgQx/6EADgwAMPxFtvvYUbbrgBF154oZdvk5BJRTWvW5/Ph4ULFwIAli1bhldeeQU33HADVq1aVdbrEkIManXdqnzyk5/E73//ezz66KOYOXOmx++QkMlFra7ZtWvXYvv27VixYoV83mw2i0cffRTf/e53pfuNEFIadLIRQiaUUCiEFStW4IEHHrD9/IEHHsCRRx7p+jcjIyPw+ezDlbjZ67ouf3bjjTfiX/7lX3DffffhkEMOKfl5crlcWe+FkKlCNa9bJ7quI5lMlv26hBCDWl234t+f+MQncPfdd+NPf/oT5s2bV+7bIGTKUKtr9vjjj8eLL76I5557Tv7vkEMOwXnnnYfnnnuOAhsh42VCYxYIIUS34sl/9KMf6S+//LL+6U9/Wo/FYvrGjRt1Xdf1a665Rj///PPl42+//XY9EAjot956q75+/Xr98ccf1w855BB95cqV8jFf//rX9VAopP/mN7/Rt2zZIv83ODgoH3PhhRfqM2bM0O+55x59w4YN+t133613dXXpn/vc5ybuzRPSoFTjuv3a176m33///fr69ev1V155Rf/mN7+pBwIB/Yc//GHJr0sIKUytrtuPfexjemtrq/7www/b7skjIyMT9+YJaUBqdc06YbooIeVDkY0QUhNuueUWfc6cOXooFNKXL1+uP/LII/J3F154oX7cccfZHv+d73xH33///fWmpia9r69PP++88/RNmzbJ38+ZM0cHkPe/6667Tj5mYGBAv/LKK/XZs2frkUhEnz9/vv6FL3xBTyaT1X67hEwKvL5uv/CFL+gLFy7UI5GI3t7erh9xxBH6XXfdNa7XJYQUpxbXrdv9GIB+++23V/OtEjIpqNW9VoUiGyHlo+l6ER8pIYQQQgghhBBCCCFkTNiTjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgipKalUCgsXLsQTTzzh6fPec889OPjgg5HL5Tx9XkIIIYQQNyiyEUIIIYR4yEUXXQRN0/L+t27dulofWt3ygx/8AHPmzMFRRx0lf6ZpGn73u9/lPfaiiy7CWWedVdLznnbaadA0Db/4xS88OlJCCCGEkMJQZCOEEEII8ZiTTz4ZW7Zssf1v3rx5eY9LpVI1OLr64+abb8ZHP/rRqjz3xRdfjJtvvrkqz00IIYQQokKRjRBCCCHEY8LhMKZNm2b7n9/vx6pVq/CJT3wCn/nMZ9DV1YX3vve9AICXX34Zp556KuLxOHp7e3H++edj586d8vmGh4dxwQUXIB6Po6+vD9/85jexatUqfPrTn5aPcXN+tbW14Sc/+Yn897vvvotzzjkH7e3t6OzsxJlnnomNGzfK3wuX2E033YS+vj50dnbiiiuuQDqdlo9JJpP43Oc+h1mzZiEcDmPRokX40Y9+BF3XsXDhQtx00022Y3jppZfg8/mwfv1618/qmWeewbp167BmzZpxfsrAxo0bXV2Dq1atko8544wz8NRTT+HNN98c9/MTQgghhIwHimyEEEIIIRPIHXfcgUAggCeeeALf//73sWXLFhx33HFYtmwZnn76adx3333Ytm0bPvjBD8q/ueqqq/DQQw/hP//zP3H//ffj4Ycfxtq1a8f1uiMjI1i9ejXi8TgeffRRPP7444jH4zj55JNtjrqHHnoI69evx0MPPYQ77rgDP/nJT2xC3QUXXIC77roL3/nOd/DKK6/ge9/7HuLxODRNwyWXXILbb7/d9ro//vGPccwxx2DBggWux/Xoo49in332QUtLy7jeDwDMmjXL5hZ89tln0dnZiWOPPVY+Zs6cOejp6cFjjz027ucnhBBCCBkPgVofACGEEELIZOOee+5BPB6X/z7llFPw61//GgCwcOFCfOMb35C/u/baa7F8+XJ87Wtfkz/78Y9/jFmzZuH111/H9OnT8aMf/Qj/8R//IZ1vd9xxB2bOnDmuY7rrrrvg8/nw7//+79A0DQBw++23o62tDQ8//DBOPPFEAEB7ezu++93vwu/3Y/HixVizZg0efPBBXHbZZXj99dfxq1/9Cg888ABOOOEEAMD8+fPla1x88cW49tpr8dRTT2HlypVIp9P42c9+hhtvvLHgcW3cuBHTp093/d2HP/xh+P1+28+SyaR0vfn9fkybNg0AkEgkcNZZZ+GII47Al7/8ZdvfzJgxw+bYI4QQQgipBhTZCCGEEEI8ZvXq1bjtttvkv2OxmPzvQw45xPbYtWvX4qGHHrKJcoL169djdHQUqVQKRxxxhPx5R0cH9t1333Ed09q1a7Fu3To0Nzfbfp5IJGylnAcccIBN2Orr68OLL74IAHjuuefg9/tx3HHHub5GX18f1qxZgx//+MdYuXIl7rnnHiQSCXzgAx8oeFyjo6OIRCKuv/vXf/1XKeYJrr76amSz2bzHXnrppRgcHMQDDzwAn89erNHU1ISRkZGCx0AIIYQQ4gUU2QghhBBCPCYWi2HhwoUFf6eSy+Vw+umn4+tf/3reY/v6+vDGG2+U9JqapkHXddvP1F5quVwOK1aswM9//vO8v+3u7pb/HQwG8543l8sBMMSqsfjoRz+K888/H//6r/+K22+/Heeccw6i0WjBx3d1dUkRz8m0adPyPsfm5mbs3bvX9rPrr78e9913H5566qk8EREAdu/ebXuPhBBCCCHVgCIbIYQQQkgNWb58OX77299i7ty5CATyp2YLFy5EMBjEk08+idmzZwMA9uzZg9dff93mKOvu7saWLVvkv9944w2be2v58uX45S9/iZ6enrL6nwHAgQceiFwuh0ceeSTPYSY49dRTEYvFcNttt+Hee+/Fo48+WvQ5Dz74YNx2223QdV2WsY6H3/72t/jKV76Ce++917Xvm3DqHXzwweN+bkIIIYSQ8cDgA0IIIYSQGnLFFVdg9+7d+PCHPyxTMO+//35ccsklyGaziMfjuPTSS3HVVVfhwQcfxEsvvYSLLrooryTyPe95D7773e/imWeewdNPP43LL7/c5ko777zz0NXVhTPPPBOPPfYYNmzYgEceeQRXXnklNm3aVNKxzp07FxdeeCEuueQS/O53v8OGDRvw8MMP41e/+pV8jN/vx0UXXYTPf/7zWLhwoa3M1Y3Vq1djeHgYf//738fxqRm89NJLuOCCC3D11VfjgAMOwNatW7F161bs3r1bPubJJ59EOBwe8zgIIYQQQiqFIhshhBBCSA2ZPn06nnjiCWSzWZx00klYsmQJrrzySrS2tkoh7cYbb8Sxxx6LM844AyeccAKOPvporFixwvY83/zmNzFr1iwce+yxOPfcc/HZz37WVqYZjUbx6KOPYvbs2Tj77LOx33774ZJLLsHo6Oi4nG233XYb3v/+9+PjH/84Fi9ejMsuuwzDw8O2x1x66aVIpVK45JJLxny+zs5OnH322a5lrGPx9NNPY2RkBNdffz36+vrk/84++2z5mDvvvBPnnXde0ZJVQgghhBAv0HRn8w5CCCGEEFL3rFq1CsuWLcO3v/3tWh9KHk888QRWrVqFTZs2obe3d8zHv/jiizjhhBNcgxkqYceOHVi8eDGefvppzJs3z7PnJYQQQghxg042QgghhBDiCclkEuvWrcOXvvQlfPCDHyxJYAOMXm/f+MY3sHHjRk+PZ8OGDbj11lspsBFCCCFkQmDwASGEEEII8YQ777wTl156KZYtW4af/vSn4/rbCy+80PPjWblyJVauXOn58xJCCCGEuMFyUUIIIYQQQgghhBBCKoTlooQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUyP8PYZbTWVhfgxMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fg(freq), label='Best fit')\n", + "plt.axvline(1/period, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fg.mean[0], alpha=0.5, label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fg(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Phaseogram\n", + "\n", + "Let us now calculate the phaseogram and plot it with the pulse profile. \n", + "We do that with the functions `phaseogram`, `plot_profile` and `plot_phaseogram` from `stingray.pulse.search`" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABO4AAATCCAYAAAAKFqn+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWOElEQVR4nOzde7xVdZ0//tfmnMM1OALGLRG1jFSwDJRLlhkIZkTWmPW14atlXma8ljZlV238RTWTNmGlOY6WaDSWNloNCnlp/AJeUEqTMctLkCBWeBBBrvv3R+OejiBwzlmcs+A8n4/Hfuhe67Pf57M46+z9frz2ulSq1Wo1AAAAAECpdOnoCQAAAAAAWxLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2FVs3rw5Tz/9dHr37p1KpdLR0wEAAACgg1Sr1Tz//PMZMmRIunTZecfFCe520NNPP52hQ4d29DQAAAAAKIklS5Zkr7322mn1BXc7qHfv3kn+8gvp06dPB88GAAAAgI6yatWqDB06tJYX7SyCux300umxffr0EdwBAAAAsNMvp+bmFAAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJdWhwd+GFF6ZSqTR7DBo0KEmyYcOGfPKTn8zIkSPTq1evDBkyJP/3//7fPP30081qrFu3LmeddVb23HPP9OrVK1OnTs3SpUubjVm5cmWmTZuWxsbGNDY2Ztq0aXnuuefaazMBAFqtWq1mzfqNhTyq1WpHbw4AQKt01p6ovqMncNBBB2Xu3Lm153V1dUmSNWvW5IEHHsjnPve5vPGNb8zKlStz7rnnZurUqbn//vtr488999zccsstmTVrVvr375/zzjsvU6ZMycKFC2u1TjjhhCxdujSzZ89Okpx66qmZNm1abrnllnbcUgCAlqlWqznu8vlZ+NTKQuqNHtY3N5w+LpVKpZB6AADtoTP3RB0e3NXX19eOsvtrjY2NmTNnTrNlM2bMyGGHHZbf//732XvvvdPU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fv/I0EAGiFtRs2FdagJsn9T63M2g2b0rNrh7eAAAA7rDP3RB0+w8ceeyxDhgxJt27dMmbMmHzpS1/Kfvvtt9WxTU1NqVQq2WOPPZIkCxcuzIYNGzJp0qTamCFDhmTEiBGZN29eJk+enPnz56exsbEW2iXJ2LFj09jYmHnz5r1icLdu3bqsW7eu9nzVqlUFbC0AQOvc/9mJ6dm1rlWvXbN+U0ZfPHf7AwEASq6z9UQdGtyNGTMm3/ve9/L6178+zzzzTC6++OKMHz8+v/71r9O/f/9mY1988cV86lOfygknnJA+ffokSZYvX56uXbumb9++zcYOHDgwy5cvr40ZMGDAFj97wIABtTFbM3369Fx00UVt3UQAoB1Uq9Ws3bCpkFo9GupKedpEz651u8S3wgBAxymyJ0rK2Rd1tp6oQ7f0ne98Z+3/R44cmXHjxuW1r31tvvvd7+bjH/94bd2GDRvywQ9+MJs3b863vvWt7datVqvNdqyt7WQvH/NyF1xwQbM5rFq1KkOHDt3uzwYA2ldnvuYJAMBLiu6JEn1RGXToXWVfrlevXhk5cmQee+yx2rINGzbk+OOPzxNPPJE5c+bUjrZLkkGDBmX9+vVZubL5TrlixYoMHDiwNuaZZ57Z4mc9++yztTFb061bt/Tp06fZAwAon511zRMAgF1J0T1Roi8qg1IdW7hu3bosXrw4b33rW5P8b2j32GOP5Y477tji9NlRo0aloaEhc+bMyfHHH58kWbZsWR5++OF89atfTZKMGzcuTU1Nuffee3PYYYclSe655540NTVl/Pjx7bh1AMDO1tmueQIAsDVt6YkSfVGZdGhwd/755+fd73539t5776xYsSIXX3xxVq1alRNPPDEbN27McccdlwceeCA/+clPsmnTpto16fr165euXbumsbExJ598cs4777z0798//fr1y/nnn5+RI0fW7jJ7wAEH5Oijj84pp5ySK664Ikly6qmnZsqUKe4oCwC7mc52zRMAgK3RE+0+OvS3uHTp0vyf//N/8sc//jGvfvWrM3bs2CxYsCDDhg3Lk08+mZtvvjlJ8qY3vanZ6+644468/e1vT5Jceumlqa+vz/HHH5+1a9dmwoQJueaaa1JX97/J8nXXXZezzz67dvfZqVOn5rLLLmuXbQQAAACA1ujQ4G7WrFmvuG6fffZJtVrdbo3u3btnxowZmTFjxiuO6devX2bOnNmqOQIAAABARyjVzSkAAAAAgL8Q3AEAAABACQnuAAAAAKCEBHcAAAAAUELuDQwAsBNUq9Ws3bCpTTXWrG/b6wEAOpqeqG0EdwAABatWqznu8vlZ+NTKjp4KAECH0RO1nVNlAQAKtnbDpkIb1NHD+qZHQ11h9QAA2oOeqO0ccQcAsBPd/9mJ6dm1bQ1mj4a6VCqVgmYEAND+9EStI7gDANiJenatS8+uWi4AoHPTE7WOU2UBAAAAoIQEdwAAAABQQo5RBAA6TLVazdoNm9pUY836tr0eAKCj6Yl4JYI7AKBDVKvVHHf5/ELvNAYAsKvRE7EtTpUFADrE2g2bCm1QRw/rmx4NbbtTGQBAe9MTsS2OuAMAOtz9n52Ynl3b1mD2aKhLpVIpaEYAAO1PT8TLCe4AgA7Xs2tdenbVlgAAnZueiJdzqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoITcY7gg1Wo1azds2qGxPRrqUqlUdvKMAACK15KeZ3v0RAAA2ya4K8jaDZty4Odv3aGxo4f1zQ2nj9OoArDLKiK8WbO+mPCH9lOtVnPc5fOz8KmVhdTTEwGwq9MTsbMJ7jrA/U+tzNoNm9Kzq39+AHY9RYc37DrWbthU6O9dTwTArkxPRHvQJRWkR0NdHvni5G2OWbN+U0ZfPLedZgQAO0fR4c3oYX3To6GusHq0j/s/OzE9u7bu96YnAmB3oCeiPQjuClKpVHxbDECn05bw5iWuc9a+2nI6zl+/tmfXOr0PAPwPPdGuZ0d6ojL8TnRbALALKOsNAYQ3ux5HugGwK9MTUZQd6Yke+eLkDv+92qsAoOTcEIC26tFQl9HD+ub+Avchp/IA0N70RLRV0T1RexDcAUDJuSEAbVWpVHLD6eNKeYQCAOwoPRFt1dKeqAxfVNo7AWAX4oYAtJbr8QKwO9ET0Vq7Wk+068wUAHD9FACA6InoPLp09AQAAAAAgC0J7gAAAACghAR3AAAAAFBCHRrcXXjhhalUKs0egwYNqq2vVqu58MILM2TIkPTo0SNvf/vb8+tf/7pZjXXr1uWss87KnnvumV69emXq1KlZunRpszErV67MtGnT0tjYmMbGxkybNi3PPfdce2wiAAAAALRKhx9xd9BBB2XZsmW1x0MPPVRb99WvfjWXXHJJLrvsstx3330ZNGhQjjrqqDz//PO1Meeee25uuummzJo1K3fffXdWr16dKVOmZNOm/7217wknnJBFixZl9uzZmT17dhYtWpRp06a163YCAAAAQEt0+C1Y6uvrmx1l95JqtZqvf/3r+cxnPpP3ve99SZLvfve7GThwYK6//vqcdtppaWpqylVXXZVrr702EydOTJLMnDkzQ4cOzdy5czN58uQsXrw4s2fPzoIFCzJmzJgkyZVXXplx48bl0UcfzfDhw9tvYwEAAABgB3X4EXePPfZYhgwZkn333Tcf/OAH8/jjjydJnnjiiSxfvjyTJk2qje3WrVuOOOKIzJs3L0mycOHCbNiwodmYIUOGZMSIEbUx8+fPT2NjYy20S5KxY8emsbGxNmZr1q1bl1WrVjV7AAAAAEB76dDgbsyYMfne976XW2+9NVdeeWWWL1+e8ePH509/+lOWL1+eJBk4cGCz1wwcOLC2bvny5enatWv69u27zTEDBgzY4mcPGDCgNmZrpk+fXrsmXmNjY4YOHdqmbQUAAACAlujQ4O6d73xn/uZv/iYjR47MxIkT89Of/jTJX06JfUmlUmn2mmq1usWyl3v5mK2N316dCy64IE1NTbXHkiVLdmibAAAAAKAIHX6q7F/r1atXRo4cmccee6x23buXHxW3YsWK2lF4gwYNyvr167Ny5cptjnnmmWe2+FnPPvvsFkfz/bVu3bqlT58+zR4AAAAA0F5KFdytW7cuixcvzuDBg7Pvvvtm0KBBmTNnTm39+vXrc9ddd2X8+PFJklGjRqWhoaHZmGXLluXhhx+ujRk3blyamppy77331sbcc889aWpqqo0BAAAAgLLp0LvKnn/++Xn3u9+dvffeOytWrMjFF1+cVatW5cQTT0ylUsm5556bL33pS9l///2z//7750tf+lJ69uyZE044IUnS2NiYk08+Oeedd1769++ffv365fzzz6+depskBxxwQI4++uiccsopueKKK5Ikp556aqZMmeKOsgAAAACUVocGd0uXLs3/+T//J3/84x/z6le/OmPHjs2CBQsybNiwJMk//MM/ZO3atfn7v//7rFy5MmPGjMltt92W3r1712pceumlqa+vz/HHH5+1a9dmwoQJueaaa1JXV1cbc9111+Xss8+u3X126tSpueyyy9p3YwEAAACgBTo0uJs1a9Y211cqlVx44YW58MILX3FM9+7dM2PGjMyYMeMVx/Tr1y8zZ85s7TQBAAAAoN2V6hp3AAAAAMBfCO4AAAAAoIQEdwAAAABQQh16jbvObM36TW2u0aOhLpVKpYDZAAB0DD0RAMArE9x1kNEXz217jWF9c8Pp4zSqALRYW8KSIoIWeImeCICOpCei7AR37ahHQ11GD+ub+59aWUi9+59ambUbNqVnV79GAFqmiLAEWktPBEBZ6IkoO91NO6pUKrnh9HFZu6Ftqfya9Zu8uQDQYkWHJaOH9U2PhrpCatG56IkA6Eh6InYlgrt2VqlUfBsMQIcoKix5ieuK0RZ6IgA6ip6IXYluCQA6EWEJAICeiF1Hl46eAAAAAACwJcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBJyCxUAgJdZs35Th74eAKAs2tLX6InaTnAHAPAyoy+e29FTAAAoBX1Rx3KqLABAkh4NdRk9rG+hNUcP65seDXWF1gQA2NmK7ov0RK3niDsAgCSVSiU3nD4uazcUd0pHj4a6VCqVwuoBALSHovsiPVHrCe4AAP5HpVJJz67aIwAAfVE5OFUWAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp4AAJRNtVrN2g2bCqnVo6EulUqlkFoAAO2pyJ4o0RdBawjuAOCvVKvVHHf5/Cx8amUh9UYP65sbTh+nSQUAdilF90SJvghaw6myAPBX1m7YVGiDev9TKwv9phoAoD0U3RMl+iJoDUfcAcAruP+zE9Oza12rXrtm/aaMvnhuwTMCAGh/bemJEn0RtIXgDgBeQc+udenZ1UclANC56Ymg4zhVFgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJlSa4mz59eiqVSs4999zastWrV+fMM8/MXnvtlR49euSAAw7It7/97WavW7duXc4666zsueee6dWrV6ZOnZqlS5c2G7Ny5cpMmzYtjY2NaWxszLRp0/Lcc8+1w1YBAAAAQOuU4rYw9913X77zne/k4IMPbrb8Yx/7WO64447MnDkz++yzT2677bb8/d//fYYMGZL3vOc9SZJzzz03t9xyS2bNmpX+/fvnvPPOy5QpU7Jw4cLU1f3ldtUnnHBCli5dmtmzZydJTj311EybNi233HJL+24oAJ3SmvWbOvT1AABl0Za+Rk9EZ9Thwd3q1avzoQ99KFdeeWUuvvjiZuvmz5+fE088MW9/+9uT/CVwu+KKK3L//ffnPe95T5qamnLVVVfl2muvzcSJE5MkM2fOzNChQzN37txMnjw5ixcvzuzZs7NgwYKMGTMmSXLllVdm3LhxefTRRzN8+PB23V4AOp/RF8/t6CkAAJSCvghapsNPlT3jjDPyrne9qxa8/bXDDz88N998c/7whz+kWq3mjjvuyG9+85tMnjw5SbJw4cJs2LAhkyZNqr1myJAhGTFiRObNm5fkL+FfY2NjLbRLkrFjx6axsbE2ZmvWrVuXVatWNXsAwI7q0VCX0cP6Flpz9LC+6dFQV2hNAICdrei+SE9EZ9KhR9zNmjUrDzzwQO67776trv/GN76RU045JXvttVfq6+vTpUuX/Ou//msOP/zwJMny5cvTtWvX9O3b/A1g4MCBWb58eW3MgAEDtqg9YMCA2pitmT59ei666KLWbhoAnVylUskNp4/L2g3FndLRo6EulUqlsHoAAO2h6L5IT0Rn0mHB3ZIlS3LOOefktttuS/fu3bc65hvf+EYWLFiQm2++OcOGDcsvfvGL/P3f/30GDx681SP0XlKtVpv9EW/tD/rlY17uggsuyMc//vHa81WrVmXo0KE7smkAkOQvnz89u3b4VSkAADqcvghap8P+ahYuXJgVK1Zk1KhRtWWbNm3KL37xi1x22WVpamrKpz/96dx0001517velSQ5+OCDs2jRovzzP/9zJk6cmEGDBmX9+vVZuXJls6PuVqxYkfHjxydJBg0alGeeeWaLn//ss89m4MCBrzi/bt26pVu3bkVtLgAAAAC0SKuucffAAw/koYceqj3/j//4jxx77LH59Kc/nfXr1+9QjQkTJuShhx7KokWLao/Ro0fnQx/6UBYtWpRNmzZlw4YN6dKl+RTr6uqyefPmJMmoUaPS0NCQOXPm1NYvW7YsDz/8cC24GzduXJqamnLvvffWxtxzzz1pamqqjQEAAACAsmnVEXennXZaPvWpT2XkyJF5/PHH88EPfjDvfe97c8MNN2TNmjX5+te/vt0avXv3zogRI5ot69WrV/r3719bfsQRR+QTn/hEevTokWHDhuWuu+7K9773vVxyySVJksbGxpx88sk577zz0r9///Tr1y/nn39+Ro4cWTuV9oADDsjRRx+dU045JVdccUWSv9yddsqUKe4oCwAAAEBpteqIu9/85jd505velCS54YYb8ra3vS3XX399rrnmmvzoRz8qbHKzZs3KoYcemg996EM58MAD8+Uvfzn/3//3/+X000+vjbn00ktz7LHH5vjjj89b3vKW9OzZM7fcckvq6v73DjPXXXddRo4cmUmTJmXSpEk5+OCDc+211xY2TwAAAAAoWquOuKtWq7XTVefOnZspU6YkSYYOHZo//vGPrZ7MnXfe2ez5oEGDcvXVV2/zNd27d8+MGTMyY8aMVxzTr1+/zJw5s9XzAgAAAID21qoj7kaPHp2LL7441157be66667azSOeeOKJbd7wAQAAAADYMa0K7i699NI88MADOfPMM/OZz3wmr3vd65IkP/zhD93wAQAAAAAK0KpTZd/4xjc2u6vsS/7pn/4p9fWtKkkHqVarWbthUyG1ejTUpVKpFFILAKC96YsAgLJpVcq233775b777kv//v2bLX/xxRfz5je/OY8//nghkyujb97+23Tv9aoOncOGTZtr/3/Z7b9NQ12rDpxMtVrNDQuXZlnTi4XMa3Bj97x/1F6aVGCXVtR7LLDzFfn3qi8CaE5PBNv24gur2+XntCq4e/LJJ7Np05bfRq5bty5Lly5t86RoHxs3VwtrTpNkWdOLWbthUyFv6PVdKhpdAKDdlLUv0hMBQOfWouDu5ptvrv3/rbfemsbGxtrzTZs25ec//3n23Xff4mZHuznlrfu2urHcsGlzrvyvJ5Kk9t+28i01ANBRytQX6YkAoHNrUXB37LHHJkkqlUpOPPHEZusaGhqyzz775Gtf+1phk6P9NNR1aXWDWt+lksGN3Qv/lnrj5moa6jSpAED7KlNfpCcCgM6tRcHd5s1/Ocd93333zX333Zc999xzp0yKXUulUsn7R+2VjZurba71199SAwDsaorqi/REAEDSymvcPfGEJoLmKpWKb4IBAKIvAgCK06rgLkl+/vOf5+c//3lWrFhROxLvJf/2b//W5okBAAAAQGfWquDuoosuyhe/+MWMHj06gwcPdrFcAAAAAChYq4K7yy+/PNdcc02mTZtW9HwAoNWq1Woh15UCANiV6Ylg99Gq4G79+vUZP3580XMBgFarVqu5YeHSQu9wDQCwq9ETwe6lVfe5/+hHP5rrr7++6LkAQKtt3FwttEEd3Ng99V1cCgIA2LXoiWD30qoj7l588cV85zvfydy5c3PwwQenoaGh2fpLLrmkkMkBQGuc8tZ901DXqu+mauq7VFzDFQDYpemJYNfXquDuV7/6Vd70pjclSR5++OFm6/xBA9DRGuq6tLlJBQDY1emJYNfXquDujjvuKHoetFJbLhjqYqMAwO6irX2NvggAKKNWBXeUx5X/9URHTwEAoMPpiQCA3VGrgrsjjzxym6fE3n777a2eENtX36WSwY3dC7vgqIuNAgC7oqJ7okRfBACUS6uCu5eub/eSDRs2ZNGiRXn44Ydz4oknFjEvtqFSqeT9o/bKxs3VQuq52CgAsCsquidK9EUAQLm0Kri79NJLt7r8wgsvzOrVq9s0IXZMpVJJQ52mEgDo3PREAMDurNDby/zt3/5t/u3f/q3IkgAAAADQKRUa3M2fPz/du3cvsiQAAAAAdEqtOlX2fe97X7Pn1Wo1y5Yty/3335/Pfe5zhUwMAAAAADqzVgV3jY2NzZ536dIlw4cPzxe/+MVMmjSpkIkBAAAAQGfWquDu6quvLnoesIUNmza3uYY7wwEAuzo9EQB0Xq0K7l6ycOHCLF68OJVKJQceeGAOOeSQouYFufK/nmhzjcGN3fP+UXtpVAGAXZaeCAA6r1YFdytWrMgHP/jB3Hnnndljjz1SrVbT1NSUI488MrNmzcqrX/3qoudJJ1HfpZLBjd2zrOnFQuota3oxGzdX01CnSQUAdh16IgAgaWVwd9ZZZ2XVqlX59a9/nQMOOCBJ8sgjj+TEE0/M2Wefne9///uFTpLOo1Kp5P2j9srGzdU21dmwaXMh304DAHQEPREAkLQyuJs9e3bmzp1bC+2S5MADD8w3v/lNN6egzSqVim+DAYBOT08EAHRpzYs2b96choaGLZY3NDRk8+a2XzwXAAAAADq7VgV373jHO3LOOefk6aefri37wx/+kI997GOZMGFCYZMDAAAAgM6qVcHdZZddlueffz777LNPXvva1+Z1r3td9t133zz//POZMWNG0XMEAAAAgE6nVde4Gzp0aB544IHMmTMn//3f/51qtZoDDzwwEydOLHp+AJRYtVpt84XTX1LfpZJKxbWcAIBdj54I2FlaFNzdfvvtOfPMM7NgwYL06dMnRx11VI466qgkSVNTUw466KBcfvnleetb37pTJgtAeVSr1dywcGmWNb1YSL3Bjd3z/lF7aVQBgF2KngjYmVoU3H3961/PKaeckj59+myxrrGxMaeddlouueSSVgV306dPz6c//emcc845+frXv15bvnjx4nzyk5/MXXfdlc2bN+eggw7Kv//7v2fvvfdOkqxbty7nn39+vv/972ft2rWZMGFCvvWtb2Wvvfaq1Vi5cmXOPvvs3HzzzUmSqVOnZsaMGdljjz1aPM8z3vG6rW4/5bJm/cZ8687fJUnOfMfr0rNrqw4uBbZhzfqN+cbtvy2s3rKmF3P621/b6r9Xf/cAW/LeCDufngg6p1WrVuXT7fBzWvQX/Mtf/jJf+cpXXnH9pEmT8s///M8tnsR9992X73znOzn44IObLf/d736Xww8/PCeffHIuuuiiNDY2ZvHixenevXttzLnnnptbbrkls2bNSv/+/XPeeedlypQpWbhwYerq6pIkJ5xwQpYuXZrZs2cnSU499dRMmzYtt9xyS4vnyq5nzfpNba7Ro6HON16wDfd/dmJ6dq1r1WvXrN+U0RfPLXhGALycngh2Pj0RULQWBXfPPPNMGhoaXrlYfX2effbZFk1g9erV+dCHPpQrr7wyF198cbN1n/nMZ3LMMcfkq1/9am3ZfvvtV/v/pqamXHXVVbn22mtr19ebOXNmhg4dmrlz52by5MlZvHhxZs+enQULFmTMmDFJkiuvvDLjxo3Lo48+muHDh7dovux6ivjwGz2sb244fZxGFV5Bz651vs0FKDk9Eex8eiKgaC26q+xrXvOaPPTQQ6+4/le/+lUGDx7cogmcccYZede73rXFjS02b96cn/70p3n961+fyZMnZ8CAARkzZkx+/OMf18YsXLgwGzZsyKRJk2rLhgwZkhEjRmTevHlJkvnz56exsbEW2iXJ2LFj09jYWBvD7qdHQ11GD+tbWL37n1qZtRva/i01AEB70hMBwK6tRV8FHHPMMfn85z+fd77znc1OV02StWvX5gtf+EKmTJmyw/VmzZqVBx54IPfdd98W61asWJHVq1fny1/+ci6++OJ85StfyezZs/O+970vd9xxR4444ogsX748Xbt2Td++zZuRgQMHZvny5UmS5cuXZ8CAAVvUHzBgQG3M1qxbty7r1q2rPV+1atUObxcdr1Kp5IbTx7W5sXS4OgCwK9MTAcCurUXB3Wc/+9nceOONef3rX58zzzwzw4cPT6VSyeLFi/PNb34zmzZtymc+85kdqrVkyZKcc845ue2227YIAZO/HHGXJO95z3vysY99LEnypje9KfPmzcvll1+eI4444hVrV6vVZofvb+1Q/pePebnp06fnoosu2qFtoZwqlYrD1AGATk9PBAC7rhZ9gg8cODDz5s3L3/3d3+WCCy5ItVpN8pdmYPLkyfnWt76VgQMH7lCthQsXZsWKFRk1alRt2aZNm/KLX/wil112WV544YXU19fnwAMPbPa6Aw44IHfffXeSZNCgQVm/fn1WrlzZ7Ki7FStWZPz48bUxzzzzzBY//9lnn93mXC+44IJ8/OMfrz1ftWpVhg4dukPbBgAAAABt1eKv3oYNG5af/exnWblyZX7729+mWq1m//333+J01e2ZMGHCFtfL+/CHP5w3vOEN+eQnP5lu3brl0EMPzaOPPtpszG9+85sMGzYsSTJq1Kg0NDRkzpw5Of7445Mky5Yty8MPP1y7ocW4cePS1NSUe++9N4cddliS5J577klTU1Mt3Nuabt26pVu3bi3aJgAAAAAoSquPme/bt28OPfTQVv/g3r17Z8SIEc2W9erVK/37968t/8QnPpEPfOADedvb3pYjjzwys2fPzi233JI777wzSdLY2JiTTz455513Xvr3759+/frl/PPPz8iRI2s3uzjggANy9NFH55RTTskVV1yRJDn11FMzZcoUd5QFAAAAoLRKfbGL9773vbn88sszffr0nH322Rk+fHh+9KMf5fDDD6+NufTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1+/YAAAAAwI4qVXD30pF0f+0jH/lIPvKRj7zia7p3754ZM2ZkxowZrzimX79+mTlzZhFTBAAAAIB20aWjJwAAAAAAbElwBwAAAAAlJLgDAAAAgBIS3AEAAABACZXq5hQAdG5r1m/qkNcCAJSJngh4ieAOgNIYffHcjp4CAECH0xMBL3GqLAAdqkdDXUYP61tYvdHD+qZHQ11h9QAA2oOeCNgaR9wB0KEqlUpuOH1c1m4o5rSOHg11qVQqhdQCAGgveiJgawR3AJ1QtVptc1NY5PVTKpVKenb1kQQAtC89EVB23hEAOplqtZrjLp+fhU+t7OipAAB0GD0RsCtwjTuATmbthk2FNqiunwIA7Ir0RMCuwBF3AJ3Y/Z+dmJ5d29Zgun4KALCr0xMBZSW4A+jEenatcx0VAKDT0xMBZeVUWQAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASqi+oycAwI6pVqtZu2FTm+usWd/2GgAAHamIvkhPBOwKBHcAu4BqtZrjLp+fhU+t7OipAAB0KH0R0Jk4VRZgF7B2w6bCm9PRw/qmR0NdoTUBAHa2ovsiPRFQZo64A9jF3P/ZienZte3NZY+GulQqlQJmBADQMYroi/REQJmV5oi76dOnp1Kp5Nxzz93q+tNOOy2VSiVf//rXmy1ft25dzjrrrOy5557p1atXpk6dmqVLlzYbs3LlykybNi2NjY1pbGzMtGnT8txzz+2cDQHYyXp2rUvPrvVtfmhQAYBdXRF9kZ4IKLNSBHf33XdfvvOd7+Tggw/e6vof//jHueeeezJkyJAt1p177rm56aabMmvWrNx9991ZvXp1pkyZkk2b/vdCoyeccEIWLVqU2bNnZ/bs2Vm0aFGmTZu207YHAAAAANqqw4O71atX50Mf+lCuvPLK9O3bd4v1f/jDH3LmmWfmuuuuS0NDQ7N1TU1Nueqqq/K1r30tEydOzCGHHJKZM2fmoYceyty5c5MkixcvzuzZs/Ov//qvGTduXMaNG5crr7wyP/nJT/Loo4+2yzYCAAAAQEt1eHB3xhln5F3velcmTpy4xbrNmzdn2rRp+cQnPpGDDjpoi/ULFy7Mhg0bMmnSpNqyIUOGZMSIEZk3b16SZP78+WlsbMyYMWNqY8aOHZvGxsbamK1Zt25dVq1a1ewBAAAAAO2lQ29OMWvWrDzwwAO57777trr+K1/5Surr63P22Wdvdf3y5cvTtWvXLY7UGzhwYJYvX14bM2DAgC1eO2DAgNqYrZk+fXouuuiiHd0UAAAAAChUhx1xt2TJkpxzzjmZOXNmunfvvsX6hQsX5l/+5V9yzTXXtPhiodVqtdlrtvb6l495uQsuuCBNTU21x5IlS1o0BwAAAABoiw4L7hYuXJgVK1Zk1KhRqa+vT319fe6666584xvfSH19fe68886sWLEie++9d239U089lfPOOy/77LNPkmTQoEFZv359Vq5c2az2ihUrMnDgwNqYZ555Zouf/+yzz9bGbE23bt3Sp0+fZg8AAAAAaC8ddqrshAkT8tBDDzVb9uEPfzhveMMb8slPfjKDBw/O5MmTm62fPHlypk2blg9/+MNJklGjRqWhoSFz5szJ8ccfnyRZtmxZHn744Xz1q19NkowbNy5NTU259957c9hhhyVJ7rnnnjQ1NWX8+PE7ezMBAAAAoFU6LLjr3bt3RowY0WxZr1690r9//9ry/v37N1vf0NCQQYMGZfjw4UmSxsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTptTqAAAAAEDZdOjNKYpw6aWXpr6+Pscff3zWrl2bCRMm5JprrkldXV1tzHXXXZezzz67dvfZqVOn5rLLLuuoKQMAAADAdpUquLvzzju3uf7JJ5/cYln37t0zY8aMzJgx4xVf169fv8ycObONswMAAACA9lOq4A52Z9VqNWs3bCqkVo+GuhbfbZmOU8Tvfs36YvYdAOhoRfZEib5oV1LU715fBHQmgjtoB9VqNcddPj8Ln1q5/cE7YPSwvrnh9HGa1F1A0b97ANiV7YzPRX3RrkFPBNA6XTp6AtAZrN2wqdAm5f6nVhb6TTU7T9G/+9HD+qZHQ932BwJACRX9uZjoi3YVO+N3ry8COgNH3EE7u/+zE9Oza+sajDXrN2X0xXMLnhHtpS2/+5c4HQiA3UVbPxf1RbuuInqiRF8EdA6CO2hnPbvWpWdXf3qdkd89APwvn4udl989wI5zqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJ1Xf0BADKqlqtZu2GTW2qsWZ9214PANDR9EQAHUdwB7AV1Wo1x10+PwufWtnRUwEA6DB6IoCO5VRZgK1Yu2FToQ3q6GF906OhrrB6AADtQU8E0LEccQc7qC2H9zs1YNd2/2cnpmfXtjWYPRrqUqlUCpoRAHQcPVHnpScCaH+CO9hBoy+e29FToIP07FqXnl29XQJAoifqzPREAO3PqbKwDT0a6jJ6WN/C6jk1AADYFemJAKBj+LoEtqFSqeSG08e1+S5aL3FqAACwK9ITAUDHENzBdlQqFacEAACdnp4IANqfU2UBAAAAoIR8ZQadVLVaLex0l8QpLwDArqvIvkhPBECRBHfQCVWr1Rx3+fwsfGplYTVHD+ubG04fp1EFAHYpRfdFeiIAiuRUWeiE1m7YVGholyT3P7Wy0CP4AADaQ9F9kZ4IgCI54g52UWvWt74h/OvX3v/ZienZta5NtUZfPLfVr98ZijjdpS3/vgBA+ypDX6QnAmBnENzBLqqoxrBn17rS3CGuiOayWk3ef/n8PLJsVUGzAgDKbnfri/REALyk4z+VgB3Wo6Euo4f1zf0FXoOlR0Prj7Yr0s647l4RyvRvBAD8r921L9ITAfDXBHewC6lUKrnh9HG75V3Pir6+zIGD+/zPhaHbVqdM/0YAwP/aXfsiPREAf01wB7uYSqVSilM4dqa2Xncv0VwCQGewu/dFeiIASnNX2enTp6dSqeTcc89NkmzYsCGf/OQnM3LkyPTq1StDhgzJ//2//zdPP/10s9etW7cuZ511Vvbcc8/06tUrU6dOzdKlS5uNWblyZaZNm5bGxsY0NjZm2rRpee6559ppy4CWeun6Mm15aFABgF2dngiAUgR39913X77zne/k4IMPri1bs2ZNHnjggXzuc5/LAw88kBtvvDG/+c1vMnXq1GavPffcc3PTTTdl1qxZufvuu7N69epMmTIlmzb97yHzJ5xwQhYtWpTZs2dn9uzZWbRoUaZNm9Zu2wcAAAAALdXhx5WvXr06H/rQh3LllVfm4osvri1vbGzMnDlzmo2dMWNGDjvssPz+97/P3nvvnaamplx11VW59tprM3HixCTJzJkzM3To0MydOzeTJ0/O4sWLM3v27CxYsCBjxoxJklx55ZUZN25cHn300QwfPrz9NhYAAAAAdlCHH3F3xhln5F3velcteNuWpqamVCqV7LHHHkmShQsXZsOGDZk0aVJtzJAhQzJixIjMmzcvSTJ//vw0NjbWQrskGTt2bBobG2tjtmbdunVZtWpVswcAAAAAtJcOPeJu1qxZeeCBB3Lfffdtd+yLL76YT33qUznhhBPSp0+fJMny5cvTtWvX9O3bt9nYgQMHZvny5bUxAwYM2KLegAEDamO2Zvr06bnoootasjkAAAAAUJgOO+JuyZIlOeecczJz5sx07959m2M3bNiQD37wg9m8eXO+9a1vbbd2tVptdhHWrV2Q9eVjXu6CCy5IU1NT7bFkyZLt/lwAAAAAKEqHHXG3cOHCrFixIqNGjaot27RpU37xi1/ksssuy7p161JXV5cNGzbk+OOPzxNPPJHbb7+9drRdkgwaNCjr16/PypUrmx11t2LFiowfP7425plnntni5z/77LMZOHDgK86vW7du6datWxGbCgAAAAAt1mHB3YQJE/LQQw81W/bhD384b3jDG/LJT36yWWj32GOP5Y477kj//v2bjR81alQaGhoyZ86cHH/88UmSZcuW5eGHH85Xv/rVJMm4cePS1NSUe++9N4cddliS5J577klTU1Mt3AOKsWb9pu0P2gmvBQAoEz0RAEXpsOCud+/eGTFiRLNlvXr1Sv/+/TNixIhs3Lgxxx13XB544IH85Cc/yaZNm2rXpOvXr1+6du2axsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTprijLBRs9MVzO3oKAAAdTk8EQFE6/K6yr2Tp0qW5+eabs3Tp0rzpTW/K4MGDa4+/vhvspZdemmOPPTbHH3983vKWt6Rnz5655ZZbUldXVxtz3XXXZeTIkZk0aVImTZqUgw8+ONdee21HbBbsdno01GX0sL7bH7iDRg/rmx4NddsfCABQInoiAHaGSrVarXb0JHYFq1atSmNjY5qamppdZw/4y81e1m4o5rSOHg1127xxDABAWemJADqP9sqJOuxUWWD3UalU0rOrtxMAoHPTEwFQtNKeKgsAAAAAnZngDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACih+o6ewK6iWq0mSVatWtXBMwEAAACgI72UD72UF+0sgrsd9Kc//SlJMnTo0A6eCQAAAABl8Kc//SmNjY07rb7gbgf169cvSfL73/9+p/5C2H2tWrUqQ4cOzZIlS9KnT5+Ong67IPsQRbAf0Vb2IdrKPkQR7Ee0lX2Itmpqasree+9dy4t2FsHdDurS5S+XA2xsbPRHTZv06dPHPkSb2Icogv2ItrIP0Vb2IYpgP6Kt7EO01Ut50U6rv1OrAwAAAACtIrgDAAAAgBIS3O2gbt265Qtf+EK6devW0VNhF2Ufoq3sQxTBfkRb2YdoK/sQRbAf0Vb2IdqqvfahSnVn37cWAAAAAGgxR9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFOG9x961vfyr777pvu3btn1KhR+a//+q9tjr/rrrsyatSodO/ePfvtt18uv/zyLcb86Ec/yoEHHphu3brlwAMPzE033bSzpk8JtGQfuvHGG3PUUUfl1a9+dfr06ZNx48bl1ltvbTbmmmuuSaVS2eLx4osv7uxNoQO1ZD+68847t7qP/Pd//3ezcd6LOpeW7EMnnXTSVvehgw46qDbGe1Hn8otf/CLvfve7M2TIkFQqlfz4xz/e7mv0RPy1lu5DeiK2pqX7kZ6Il2vpPqQn4uWmT5+eQw89NL17986AAQNy7LHH5tFHH93u69qjL+qUwd0PfvCDnHvuufnMZz6TBx98MG9961vzzne+M7///e+3Ov6JJ57IMccck7e+9a158MEH8+lPfzpnn312fvSjH9XGzJ8/Px/4wAcybdq0/PKXv8y0adNy/PHH55577mmvzaIdtXQf+sUvfpGjjjoqP/vZz7Jw4cIceeSRefe7350HH3yw2bg+ffpk2bJlzR7du3dvj02iA7R0P3rJo48+2mwf2X///WvrvBd1Li3dh/7lX/6l2b6zZMmS9OvXL+9///ubjfNe1Hm88MILeeMb35jLLrtsh8briXi5lu5DeiK2pqX70Uv0RLykpfuQnoiXu+uuu3LGGWdkwYIFmTNnTjZu3JhJkyblhRdeeMXXtFtfVO2EDjvssOrpp5/ebNkb3vCG6qc+9amtjv+Hf/iH6hve8IZmy0477bTq2LFja8+PP/746tFHH91szOTJk6sf/OAHC5o1ZdLSfWhrDjzwwOpFF11Ue3711VdXGxsbi5oiu4CW7kd33HFHNUl15cqVr1jTe1Hn0tb3optuuqlaqVSqTz75ZG2Z96LOK0n1pptu2uYYPRHbsiP70NboifhrO7If6YnYlta8F+mJeLkVK1ZUk1TvuuuuVxzTXn1Rpzvibv369Vm4cGEmTZrUbPmkSZMyb968rb5m/vz5W4yfPHly7r///mzYsGGbY16pJruu1uxDL7d58+Y8//zz6devX7Plq1evzrBhw7LXXntlypQpW3z7zO6jLfvRIYccksGDB2fChAm54447mq3zXtR5FPFedNVVV2XixIkZNmxYs+Xei3gleiKKpieiLfREFEVPxMs1NTUlyRafT3+tvfqiThfc/fGPf8ymTZsycODAZssHDhyY5cuXb/U1y5cv3+r4jRs35o9//OM2x7xSTXZdrdmHXu5rX/taXnjhhRx//PG1ZW94wxtyzTXX5Oabb873v//9dO/ePW95y1vy2GOPFTp/yqE1+9HgwYPzne98Jz/60Y9y4403Zvjw4ZkwYUJ+8Ytf1MZ4L+o82vpetGzZsvznf/5nPvrRjzZb7r2IbdETUTQ9Ea2hJ6JIeiJerlqt5uMf/3gOP/zwjBgx4hXHtVdfVN+Cue9WKpVKs+fVanWLZdsb//LlLa3Jrq21v+/vf//7ufDCC/Mf//EfGTBgQG352LFjM3bs2Nrzt7zlLXnzm9+cGTNm5Bvf+EZxE6dUWrIfDR8+PMOHD689HzduXJYsWZJ//ud/ztve9rZW1WTX19rf9zXXXJM99tgjxx57bLPl3ovYHj0RRdET0Vp6IoqkJ+LlzjzzzPzqV7/K3Xffvd2x7dEXdboj7vbcc8/U1dVtkW6uWLFiixT0JYMGDdrq+Pr6+vTv33+bY16pJruu1uxDL/nBD36Qk08+Of/+7/+eiRMnbnNsly5dcuihh/pGZzfVlv3or40dO7bZPuK9qPNoyz5UrVbzb//2b5k2bVq6du26zbHei/hreiKKoieiaHoiWkNPxMudddZZufnmm3PHHXdkr7322ubY9uqLOl1w17Vr14waNSpz5sxptnzOnDkZP378Vl8zbty4LcbfdtttGT16dBoaGrY55pVqsutqzT6U/OVb5ZNOOinXX3993vWud23351Sr1SxatCiDBw9u85wpn9buRy/34IMPNttHvBd1Hm3Zh+6666789re/zcknn7zdn+O9iL+mJ6IIeiJ2Bj0RraEn4iXVajVnnnlmbrzxxtx+++3Zd999t/uaduuLdvg2FruRWbNmVRsaGqpXXXVV9ZFHHqmee+651V69etXuIPOpT32qOm3atNr4xx9/vNqzZ8/qxz72seojjzxSveqqq6oNDQ3VH/7wh7Ux/+///b9qXV1d9ctf/nJ18eLF1S9/+cvV+vr66oIFC9p9+9j5WroPXX/99dX6+vrqN7/5zeqyZctqj+eee6425sILL6zOnj27+rvf/a764IMPVj/84Q9X6+vrq/fcc0+7bx/to6X70aWXXlq96aabqr/5zW+qDz/8cPVTn/pUNUn1Rz/6UW2M96LOpaX70Ev+9m//tjpmzJit1vRe1Lk8//zz1QcffLD64IMPVpNUL7nkkuqDDz5Yfeqpp6rVqp6I7WvpPqQnYmtauh/piXi5lu5DL9ET8ZK/+7u/qzY2NlbvvPPOZp9Pa9asqY3pqL6oUwZ31Wq1+s1vfrM6bNiwateuXatvfvObm93i98QTT6weccQRzcbfeeed1UMOOaTatWvX6j777FP99re/vUXNG264oTp8+PBqQ0ND9Q1veEOzDw52Py3Zh4444ohqki0eJ554Ym3MueeeW917772rXbt2rb761a+uTpo0qTpv3rx23CI6Qkv2o6985SvV1772tdXu3btX+/btWz388MOrP/3pT7eo6b2oc2np59lzzz1X7dGjR/U73/nOVut5L+pc7rjjjm1+PumJ2J6W7kN6IrampfuRnoiXa83nmZ6Iv7a1/SdJ9eqrr66N6ai+qPI/EwQAAAAASqTTXeMOAAAAAHYFgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AACd3J133plKpZLnnnuuo6cCAMBfEdwBAHQCJ510UiqVSiqVShoaGrLffvvl/PPPzwsvvNDRUwMA4BXUd/QEAABoH0cffXSuvvrqbNiwIf/1X/+Vj370o3nhhRfygQ98oKOnBgDAVjjiDgCgk+jWrVsGDRqUoUOH5oQTTsiHPvSh/PjHP66tX7hwYUaPHp2ePXtm/PjxefTRR2vrfve73+U973lPBg4cmFe96lU59NBDM3fu3Gb1v/Wtb2X//fdP9+7dM3DgwBx33HG1ddVqNV/96lez3377pUePHnnjG9+YH/7whzt9mwEAdmWCOwCATqpHjx7ZsGFD7flnPvOZfO1rX8v999+f+vr6fOQjH6mtW716dY455pjMnTs3Dz74YCZPnpx3v/vd+f3vf58kuf/++3P22Wfni1/8Yh599NHMnj07b3vb22qv/+xnP5urr7463/72t/PrX/86H/vYx/K3f/u3ueuuu9pvgwEAdjGVarVa7ehJAACwc5100kl57rnnakfY3XvvvTnmmGMyYcKE/N3f/V2OPPLIzJ07NxMmTEiS/OxnP8u73vWurF27Nt27d99qzYMOOih/93d/lzPPPDM33nhjPvzhD2fp0qXp3bt3s3EvvPBC9txzz9x+++0ZN25cbflHP/rRrFmzJtdff/3O2WgAgF2ca9wBAHQSP/nJT/KqV70qGzduzIYNG/Ke97wnM2bMyCOPPJIkOfjgg2tjBw8enCRZsWJF9t5777zwwgu56KKL8pOf/CRPP/10Nm7cmLVr19aOuDvqqKMybNiw7Lfffjn66KNz9NFH573vfW969uyZRx55JC+++GKOOuqoZvNZv359DjnkkHbaegCAXY/gDgCgkzjyyCPz7W9/Ow0NDRkyZEgaGhqSpBbcvfQ8SSqVSpJk8+bNSZJPfOITufXWW/PP//zPed3rXpcePXrkuOOOy/r165MkvXv3zgMPPJA777wzt912Wz7/+c/nwgsvzH333Ver8dOf/jSvec1rms2pW7duO3ejAQB2YYI7AIBOolevXnnd617Xqtf+13/9V0466aS8973vTfKXa949+eSTzcbU19dn4sSJmThxYr7whS9kjz32yO23356jjjoq3bp1y+9///scccQRbd0MAIBOQ3AHAMB2ve51r8uNN96Yd7/73alUKvnc5z5XO5Iu+ctpuI8//nje9ra3pW/fvvnZz36WzZs3Z/jw4endu3fOP//8fOxjH8vmzZtz+OGHZ9WqVZk3b15e9apX5cQTT+zALQMAKC/BHQAA23XppZfmIx/5SMaPH58999wzn/zkJ7Nq1ara+j322CM33nhjLrzwwrz44ovZf//98/3vfz8HHXRQkuQf//EfM2DAgEyfPj2PP/549thjj7z5zW/Opz/96Y7aJACA0nNXWQAAAAAooS4dPQEAAAAAYEuCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBKq7+gJ7Co2b96cp59+Or17906lUuno6QAAAADQQarVap5//vkMGTIkXbrsvOPiBHc76Omnn87QoUM7ehoAAAAAlMSSJUuy11577bT6grsd1Lt37yTJ4Tkm9WloU60Xjj20iCml14/vK6TOqYt+V0id77zptYXUKdKzp40ppM6rr7inkDp0Xl16dC+kzua1LxZSJ0nq9927kDobn/h9IXWKsvnwNxZSp8vdvyykTpE+8auHCqnz+YtPLqTOytcXcwT6ftctK6TOskmDC6nT8EK1kDpJsmZAMf9GB73zsULqPPHd1xVSZ4+Z9xZSp2w9UbL79kV6IsqiqJ4oKa4v0hNtm55o+3bXnigpri/aHXuiTetfzEP//o+1vGhnEdztoJdOj61PQ+orbQvu6huK+bBq6zxe0rN3XSF1ippPkeq6levfms6rS6VrIXU2VzYVUidJ6rt0K6ZQyf4+NtcX83ffpWTblSS9Cnq/rutazL9RXfdiGrCi9sWi3vPrNhQX3NV1K+bfqKFXMe8hRf3ui/pcLFtPlOy+fZGeiLIoqidKiuuL9ETbpifagTq7aU+UFNcX7a49UZKdfjk1N6cAAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQfUdPYFfz3N8elrqu3dtUo/+ipkLm8pZfrSukzmWv27+QOmXUa9nmjp5Cp1F3wOsLqbNp8W8KqVOU3XW7kmTj408WUmfJ58cXUqdhdSFlMuiSeYXU+f0PRxZSZ+/jHiqkTpLs0WVtIXX6XDe/kDr9hgwupM7Gp5cVUmftgCGF1HnDB4v7e/3zW/5USJ0Frz20kDpvmLWokDp/+vC4QuqUrSdKdt++SE/UfnbX3mF33a5ET7Q9RfVESXF9kZ5o24rqiZLi+qLdsSfaWF3f9onsAEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2NXs8eia1NdvblONzd0aCpnLfx3crZA6u7M+v/5zIXU2FVJl97Zp8W86ego7xe66XUUa+sV5hdTZfMSbC6lTlH3+v2L+8jePfWMhdZLk/H2KqVPXr28hdRZ/Zu9C6gw//7lC6nQ/eGUhdVZN611InST502nDC6kzYv8nCqmzaZ+hhdTpu3hNIXX0RO1HT9R+dtfeYXfdriLpibavqL5IT7RtRfVESXF90e7YE1U2rUseLWAy2+GIOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEL1HT2BXU39H1elvsu6NtV4/Ku9C5nL3scVUqaUVn1oXCF1+lw3v5A6wCtb9+7DCqnT7ZZ7C6lTlM0PPlJInS6HHFhInSTZeMSbC6kz5ds/L6TOpgNXFlJn5IPFfI+47pO9Cqnz53F7FFInSfpfMa+QOr/vNb6QOoMWFzOf+v32KaSOnmj79ESw69ATbV9RfZGeaNuK6omS4vqi3bEn2lTdUMBMts8RdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQq1Wq12tGT2BWsWrUqjY2NOfgjX0pd1+5tqnXpJ79dyJwu3u+NhdShExtb4D604JfF1SqRLoccWEidzQ8+UkidItX161tInTVv2b+QOiv3ry+kzqBL5hVSp36/fQqp8+dxgwupkyT95i8rpE7TmwcVUqfX0rWF1Pns9d8rpM5zm3sWUueyvz2ukDpJUtdUzL/Ri0P7FFKn4bb7C6nzp9PGF1JHT0SpFNUX6Ym2SU+0fbtrT5QU1xfpibatqJ4oKa4v2h17oo3VDbkz/5Gmpqb06VPMvLbGEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACVWq1Wq1oyexK1i1alUaGxtz5t3vTbdXNbSp1i8P2VzQrMqlS48ehdXavHZtIXXq+vUtpM6mP68spE7ZrPzwuMJq9b16fmG1ilB3wOsLqbNp8W8KqVNGXQ45sJg6TWsKqbN52TOF1HnufW8qpM6zhxbz8bjH4uK+I+t/xbxC6rzxwWLm9MN5hxZSp/G/6wqp88JexfzO9r2pmH06SZ56V69C6lz5oW8XUueCfzitkDrjP3NvIXV2154oKa4v0hO1n6L6Ij3RrkdPtG1F9URJcX2RnmjbiuqJkuL6ot2xJ9q44cXc9+PPpqmpKX369ClgVlvniDsAAAAAKCHBHQAAAACUkOAOAAAAAEqoQ4O76dOn59BDD03v3r0zYMCAHHvssXn00UebjTnppJNSqVSaPcaOHdtszLp163LWWWdlzz33TK9evTJ16tQsXbq02ZiVK1dm2rRpaWxsTGNjY6ZNm5bnnntuZ28iAAAAALRKhwZ3d911V84444wsWLAgc+bMycaNGzNp0qS88MILzcYdffTRWbZsWe3xs5/9rNn6c889NzfddFNmzZqVu+++O6tXr86UKVOyadOm2pgTTjghixYtyuzZszN79uwsWrQo06ZNa5ftBAAAAICWqu/IHz579uxmz6+++uoMGDAgCxcuzNve9rba8m7dumXQoEFbrdHU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fvpC0EAAAAgNYp1TXumpqakiT9+vVrtvzOO+/MgAED8vrXvz6nnHJKVqxYUVu3cOHCbNiwIZMmTaotGzJkSEaMGJF58/5yi+j58+ensbGxFtolydixY9PY2Fgb83Lr1q3LqlWrmj0AAAAAoL2UJrirVqv5+Mc/nsMPPzwjRoyoLX/nO9+Z6667Lrfffnu+9rWv5b777ss73vGOrFu3LkmyfPnydO3aNX379m1Wb+DAgVm+fHltzIABA7b4mQMGDKiNebnp06fXrofX2NiYoUOHFrWpAAAAALBdHXqq7F8788wz86tf/Sp33313s+Uf+MAHav8/YsSIjB49OsOGDctPf/rTvO9973vFetVqNZVKpfb8r///lcb8tQsuuCAf//jHa89XrVolvAMAAACg3ZTiiLuzzjorN998c+64447stdde2xw7ePDgDBs2LI899liSZNCgQVm/fn1WrlzZbNyKFSsycODA2phnnnlmi1rPPvtsbczLdevWLX369Gn2AAAAAID20qHBXbVazZlnnpkbb7wxt99+e/bdd9/tvuZPf/pTlixZksGDBydJRo0alYaGhsyZM6c2ZtmyZXn44Yczfvz4JMm4cePS1NSUe++9tzbmnnvuSVNTU20MAAAAAJRJh54qe8YZZ+T666/Pf/zHf6R379616801NjamR48eWb16dS688ML8zd/8TQYPHpwnn3wyn/70p7Pnnnvmve99b23sySefnPPOOy/9+/dPv379cv7552fkyJG1u8wecMABOfroo3PKKafkiiuuSJKceuqpmTJlijvKAgAAAFBKHRrcffvb306SvP3tb2+2/Oqrr85JJ52Uurq6PPTQQ/ne976X5557LoMHD86RRx6ZH/zgB+ndu3dt/KWXXpr6+vocf/zxWbt2bSZMmJBrrrkmdXV1tTHXXXddzj777NrdZ6dOnZrLLrts528kAAAAALRChwZ31Wp1m+t79OiRW2+9dbt1unfvnhkzZmTGjBmvOKZfv36ZOXNmi+cIAAAAAB2hFDenAAAAAACaE9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAlVqtVqtaMnsStYtWpVGhsbM+wrF6dL9+5tqrXH4mLy0heOer6QOt3v6l1InT1/9WIhdZKky10PFFJn8xFvLqROUfOpHzK4kDobn15WSJ0i1fXrW0idTX9eWUidsulyyIHF1GlaU0idJHn2iGL2x75Xzy+kTlEK2xdfv3chdep/v6KQOknywqihhdTpsm5zIXW6PVvM/vjbT3QrpM7Qa+oKqdPjt38spE6SnH7bnELqfOv97ymkzn/+9PuF1Hndv59WSJ2y9URJ+foiPdH2la0v0hNtW1E9UVJcX6Qn2raieqKkuL5IT7RtRfVESXF90e7YE616flP6vv7xNDU1pU+fPgXMausccQcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUUKVarVY7ehK7glWrVqWxsTH7fvH/S5fu3dtUa6+fbyhkTg233V9Infr99imkTpE2Pv5kR08BaGddevQopM7mtWsLqdPlkAMLqfPsYXsUUidJ1gwsps6gBesLqVPU59CVv7+7kDqnDT+qkDqVfYYWUidJ/vvMvoXUee2/F9M7FOWpY7oVUqdsPVFSvr5ITwSdz+7aEyXF9UV6om0rqidKiuuLdseeaOPGF/OLu7+Ypqam9OnTZ6f9HEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEqpUq9VqR09iV7Bq1ao0Njbm7XlP6isNHT2dvxj7xkLKbO5WV0id+nsXF1InSTavXVtYLdid/Om08YXV2njMykLqvOZjxfy9bnz8yULqFGXVh8YVUmePR5oKqZMkmx98pJA6v7ny0ELqTH7jrwup85umVxdSZ82GroXUaTzmsULqJEn9kMGF1Km++GIhdSrduxdSZ+PTywqpU5iCeqKkfH2RngheWVF9kZ5o24rqiZLi+iI90bYV1RMlxfVFu2NPtHHz+sxddkWamprSp0+fAma1dY64AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJVTf0RPY1az64WtT16tbm2o0HvNYMZNZ8MtCyhSV3i4/a3xBlZIBM+YVVgt2J/2vKO5vY/N/v7mQOhsfX1xInbLpN39ZIXV+9+EhhdRJkmEPFlOn2/KGQur8YsmbCqkz9IvF7NfP/WMxn0OrP/XqQuokyWu+XMy2PfGVcYXU2f9fniykTtPP9i+kTtl6oqR8fZGeCF5ZUX2RnmjbiuqJkuL6Ij3RthXVEyXF9UW7a0/UHhxxBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQpVqtVjt6EruCVatWpbGxMQec+aXUdeve0dNJkgy6ZF5HT6HTWPL58YXUGfpFv7POqn7I4ELqPP03+xZSJ0kGzChmf6zfb59C6mx8/MlC6myYNLqQOg233V9InS49ehRSp0ib164tpM5j3xxTSJ29ZxfTijx9eF0hdfb95PxC6iTJb648tJA6DX+uL6TOxldtLqRO798V829dFD1R+9ET0VZF9URJcX2RnmjbiuqJkvL1RXqi7SuqL9ode6LNa1/MkvM+l6ampvTp06eAWW2dI+4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlFCHBnfTp0/PoYcemt69e2fAgAE59thj8+ijjzYbU61Wc+GFF2bIkCHp0aNH3v72t+fXv/51szHr1q3LWWedlT333DO9evXK1KlTs3Tp0mZjVq5cmWnTpqWxsTGNjY2ZNm1annvuuZ29iQAAAADQKh0a3N11110544wzsmDBgsyZMycbN27MpEmT8sILL9TGfPWrX80ll1ySyy67LPfdd18GDRqUo446Ks8//3xtzLnnnpubbrops2bNyt13353Vq1dnypQp2bRpU23MCSeckEWLFmX27NmZPXt2Fi1alGnTprXr9gIAAADAjqrvyB8+e/bsZs+vvvrqDBgwIAsXLszb3va2VKvVfP3rX89nPvOZvO9970uSfPe7383AgQNz/fXX57TTTktTU1OuuuqqXHvttZk4cWKSZObMmRk6dGjmzp2byZMnZ/HixZk9e3YWLFiQMWPGJEmuvPLKjBs3Lo8++miGDx/evhsOAAAAANtRqmvcNTU1JUn69euXJHniiSeyfPnyTJo0qTamW7duOeKIIzJv3rwkycKFC7Nhw4ZmY4YMGZIRI0bUxsyfPz+NjY210C5Jxo4dm8bGxtqYl1u3bl1WrVrV7AEAAAAA7aU0wV21Ws3HP/7xHH744RkxYkSSZPny5UmSgQMHNhs7cODA2rrly5ena9eu6du37zbHDBgwYIufOWDAgNqYl5s+fXrteniNjY0ZOnRo2zYQAAAAAFqgNMHdmWeemV/96lf5/ve/v8W6SqXS7Hm1Wt1i2cu9fMzWxm+rzgUXXJCmpqbaY8mSJTuyGQAAAABQiFIEd2eddVZuvvnm3HHHHdlrr71qywcNGpQkWxwVt2LFitpReIMGDcr69euzcuXKbY555plntvi5zz777BZH872kW7du6dOnT7MHAAAAALSXDg3uqtVqzjzzzNx44425/fbbs++++zZbv++++2bQoEGZM2dObdn69etz1113Zfz48UmSUaNGpaGhodmYZcuW5eGHH66NGTduXJqamnLvvffWxtxzzz1pamqqjQEAAACAMunQu8qeccYZuf766/Mf//Ef6d27d+3IusbGxvTo0SOVSiXnnntuvvSlL2X//ffP/vvvny996Uvp2bNnTjjhhNrYk08+Oeedd1769++ffv365fzzz8/IkSNrd5k94IADcvTRR+eUU07JFVdckSQ59dRTM2XKFHeUBQAAAKCUOjS4+/a3v50kefvb395s+dVXX52TTjopSfIP//APWbt2bf7+7/8+K1euzJgxY3Lbbbeld+/etfGXXnpp6uvrc/zxx2ft2rWZMGFCrrnmmtTV1dXGXHfddTn77LNrd5+dOnVqLrvssp27gQAAAADQSh0a3FWr1e2OqVQqufDCC3PhhRe+4pju3btnxowZmTFjxiuO6devX2bOnNmaaQIAAABAuyvFzSkAAAAAgOYq1R057I2sWrUqjY2Ned2nvpS6bt3bVGvYPz1YyJyWnHNIIXUGz3+xkDpd7nqgkDpJsvLD4wqp0/fq+YXU2V1tmDS6sFoNt91fWC0og1UfKuZ9qM915XsfWv7xYm7M1PBCIWWyqWsxdVaPW1tInbrf9SikTpJs7L25kDp7/2xjIXXq1hUznz8c0bZe6CVl64mS8vVFeqL2U1RfpCdid1NUT5SUry/SE21fUX3R7tgTbdz4Yn5x9xfT1NSUPn36FDCrrXPEHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFKtVqtdvQkdgWrVq1KY2NjJvQ9MfVdurap1hPf2auQOe193EOF1ClKlx49Cqu1ee3awmpBGax792GF1Ol2y72F1Cmj+iGDC6nz7OR9Cqmzrm+lkDrPv3ZTIXWSpNp1cyF1Xn/KfYXUqTvg9YXU+ePY/oXUWbVfMb+zTa8t32dQ413FfMZuPGZlIXWGfHh5IXV2154oKa4v0hOxuymqJ0p2375od+2JkuL6Ij3RthXVEyXl64vK1BNtWrMuj3zwq2lqakqfPn0KmNXWOeIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp7ArqbPv3dJQ6+25Z11t/QuZC51/foWUqe69sVC6mw87IBC6iRJl7seKKbQ2DcWUmZzt7pC6hS2Xbuzgn5n9SuaCqmz8fEnC6nT7ZZ7C6lTpJUfHldInb5Xzy+kzsanlxVSZ88FxbzHblr8m2LqfGp8IXWS5JgP3FdInVs/XsycBl0yr5A6fRcXUibFfCoWa3lB/9avenpjIXXW/HiPQuo03rKikDpl64mS8vVFeqJOTE/UbvRE21ZUT5QU1xfpibZTp5gyhdode6JN64vpGbbHEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCE6jt6Arua+3+3d7r06N6mGr3XFzOXTX9eWUyhgjQ89ERhtTYVVKeuaW0xhRb/ppg6JbP5iDcXVqvLXQ8UU2jBLwsps7GQKsWp32+fQupsfPzJQuokSd+r5xdWq0w2Nfbo6Ck085o7Xyis1i+/vLmQOv0nFfNB9Ng1owqp029+t0LqrBlYSJnsc9niYgolGXTJvELqPPbNMYXU2ef1TxdS557H9imkzu7aEyXF9UV6ovZTVF+kJ9q2onqipLi+SE/Uforqi/RE21ZUT5QU1xftjj3RxhfWJTMLmMx2OOIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBC9a150ZIlS/Lkk09mzZo1efWrX52DDjoo3bp1K3puAAAAANBp7XBw99RTT+Xyyy/P97///SxZsiTVarW2rmvXrnnrW9+aU089NX/zN3+TLl123wP5XnvVxtTXb2xTjfoVfypkLm2bxf9a8vnxhdQZ+sV5hdRJklUfGldInT7XzS+kzgvHjS2kTq8fLiikTlG63PVAYbU2H/HmQuoUOacy2fj4kx09hc5jwS8LKVPXr28hdSormgqpkyTPfriY98a+i9cUUqf7470KqfPngzcVUqcom/68srBahb03bqgUUufpBa8ppM7+P32hkDpl64mS8vVFeqL2U1QPoifaNj1ROypZT5QU1xfpidpPUX3R7tgTbXrxxQJmsn07lLCdc845GTlyZB577LF88YtfzK9//es0NTVl/fr1Wb58eX72s5/l8MMPz+c+97kcfPDBue+++3b2vAEAAABgt7ZDR9x17do1v/vd7/LqV796i3UDBgzIO97xjrzjHe/IF77whfzsZz/LU089lUMPPbTwyQIAAABAZ7FDwd0//dM/7XDBY445ptWTAQAAAAD+osUXo1u7dm3WrPnf88CfeuqpfP3rX8+tt95a6MQAAAAAoDNrcXD3nve8J9/73veSJM8991zGjBmTr33tazn22GPz7W9/u/AJAgAAAEBn1OLg7oEHHshb3/rWJMkPf/jDDBw4ME899VS+973v5Rvf+EbhEwQAAACAzqjFwd2aNWvSu3fvJMltt92W973vfenSpUvGjh2bp556qvAJAgAAAEBn1OLg7nWve11+/OMfZ8mSJbn11lszadKkJMmKFSvSp0+fwicIAAAAAJ1Ri4O7z3/+8zn//POzzz77ZMyYMRk3blySvxx9d8ghhxQ+QQAAAADojOpb+oLjjjsuhx9+eJYtW5Y3vvGNteUTJkzIe9/73kInBwAAAACdVYuDuyQZNGhQBg0a1GzZYYcdVsiEAAAAAIAdPFX29NNPz5IlS3ao4A9+8INcd911bZoUAAAAAHR2O3TE3atf/eqMGDEi48ePz9SpUzN69OgMGTIk3bt3z8qVK/PII4/k7rvvzqxZs/Ka17wm3/nOd3b2vAEAAABgt7ZDwd0//uM/5qyzzspVV12Vyy+/PA8//HCz9b17987EiRPzr//6r7W7zAIAAAAArbfD17gbMGBALrjgglxwwQV57rnn8tRTT2Xt2rXZc88989rXvjaVSmVnzhMAAAAAOpVW3Zxijz32yB577FHwVAAAAACAl+zQzSkAAAAAgPYluAMAAACAEhLcAQAAAEAJCe4AAAAAoIRaFdxt3Lgxc+fOzRVXXJHnn38+SfL0009n9erVLarzi1/8Iu9+97szZMiQVCqV/PjHP262/qSTTkqlUmn2GDt2bLMx69aty1lnnZU999wzvXr1ytSpU7N06dJmY1auXJlp06alsbExjY2NmTZtWp577rkWbzcAAAAAtJcWB3dPPfVURo4cmfe85z0544wz8uyzzyZJvvrVr+b8889vUa0XXnghb3zjG3PZZZe94pijjz46y5Ytqz1+9rOfNVt/7rnn5qabbsqsWbNy9913Z/Xq1ZkyZUo2bdpUG3PCCSdk0aJFmT17dmbPnp1FixZl2rRpLZorAAAAALSn+pa+4Jxzzsno0aPzy1/+Mv37968tf+9735uPfvSjLar1zne+M+985zu3OaZbt24ZNGjQVtc1NTXlqquuyrXXXpuJEycmSWbOnJmhQ4dm7ty5mTx5chYvXpzZs2dnwYIFGTNmTJLkyiuvzLhx4/Loo49m+PDhLZozAAAAALSHFh9xd/fdd+ezn/1sunbt2mz5sGHD8oc//KGwib3kzjvvzIABA/L6178+p5xySlasWFFbt3DhwmzYsCGTJk2qLRsyZEhGjBiRefPmJUnmz5+fxsbGWmiXJGPHjk1jY2NtzNasW7cuq1atavYAAAAAgPbS4iPuNm/e3Ow01JcsXbo0vXv3LmRSL3nnO9+Z97///Rk2bFieeOKJfO5zn8s73vGOLFy4MN26dcvy5cvTtWvX9O3bt9nrBg4cmOXLlydJli9fngEDBmxRe8CAAbUxWzN9+vRcdNFFWyx/4TU9Ut/QvU3b1ec3v2/T62tzOW7s9gftgM0NhZQp1B6PNBVSZ3MhVZJeP1xQUKXdV5e7HujoKUCSpH7I4ELqbHx6WSF18ueVxdRJUjeumG1beUDPQuoM/eIrfwHWEn86bXwhdTb0KqRMobpfVMx+VHl662cftFSfX7ath3nJC3v1KKRO2XqipHx9kZ5o16MnoixK1xMlhfVFeqJt0xNtXxE90ab11QJmsn0tPuLuqKOOyte//vXa80qlktWrV+cLX/hCjjnmmCLnlg984AN517velREjRuTd7353/vM//zO/+c1v8tOf/nSbr6tWq6lUKs3muL0xL3fBBRekqamp9liyZEnrNwQAAAAAWqjFR9xdeumlOfLII3PggQfmxRdfzAknnJDHHnsse+65Z77//e/vjDnWDB48OMOGDctjjz2WJBk0aFDWr1+flStXNjvqbsWKFRk/fnxtzDPPPLNFrWeffTYDBw58xZ/VrVu3dOvWreAtAAAAAIAd0+Ij7oYMGZJFixbl/PPPz2mnnZZDDjkkX/7yl/Pggw9u9ZTUIv3pT3/KkiVLMnjwXw6LHTVqVBoaGjJnzpzamGXLluXhhx+uBXfjxo1LU1NT7r333tqYe+65J01NTbUxAAAAAFA2LT7iLkl69OiRj3zkI/nIRz7Sph++evXq/Pa3v609f+KJJ7Jo0aL069cv/fr1y4UXXpi/+Zu/yeDBg/Pkk0/m05/+dPbcc8+8973vTZI0Njbm5JNPznnnnZf+/funX79+Of/88zNy5MjaXWYPOOCAHH300TnllFNyxRVXJElOPfXUTJkyxR1lAQAAACitVgV3f/jDH/L//t//y4oVK7J5c/NL3Z599tk7XOf+++/PkUceWXv+8Y9/PEly4okn5tvf/nYeeuihfO9738tzzz2XwYMH58gjj8wPfvCDZjfBuPTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1ZtMBAAAAoF20OLi7+uqrc/rpp6dr167p37//FjeBaElw9/a3vz3V6ivfhePWW2/dbo3u3btnxowZmTFjxiuO6devX2bOnLnD8wIAAACAjtbi4O7zn/98Pv/5z+eCCy5Ily4tvkQeAAAAALADWpy8rVmzJh/84AeFdgAAAACwE7U4fTv55JNzww037Iy5AAAAAAD/o8Wnyk6fPj1TpkzJ7NmzM3LkyDQ0NDRbf8kllxQ2OQAAAADorFoc3H3pS1/KrbfemuHDhyfJFjenAAAAAADarsXB3SWXXJJ/+7d/y0knnbQTpgMAAAAAJK24xl23bt3ylre8ZWfMBQAAAAD4Hy0O7s4555zMmDFjZ8wFAAAAAPgfLT5V9t57783tt9+en/zkJznooIO2uDnFjTfeWNjkAAAAAKCzanFwt8cee+R973vfzpgLAAAAAPA/WhzcXX311TtjHgAAAADAX2nxNe4AAAAAgJ1vh464e/Ob35yf//zn6du3bw455JBUKpVXHPvAAw8UNjkAAAAA6Kx2KLh7z3vek27duiVJjj322J05HwAAAAAgOxjcfeELX8hHPvKR/Mu//Eu+8IUv7Ow5AQAAAECnt8PXuPvud7+btWvX7sy5AAAAAAD/Y4eDu2q1ujPnAQAAAAD8lRbdVXZbN6UAAAAAAIqzQ9e4e8nrX//67YZ3f/7zn9s0obJrvGdJ6rt0bVONp049oJC5vObL8wqp0/unPQqpkx4F1Umy+cFHCqnT5ZADC6lT1HygTLoU9De7uWSXUdj49LKOnsJOU/3QHwups/K5VxVSp+/VhZRJ/yuK+Tz7/Q9HFlJnyavGF1InSf5uwE8LqbPs+/sWUudVf1hfSJ0eD/+hkDpl64mS8vVFeiLY+fREux490bYV1RMlxfVFu2NPtHHjhgJmsn0tCu4uuuiiNDY27qy5AAAAAAD/o0XB3Qc/+MEMGDBgZ80FAAAAAPgfO3yNO9e3AwAAAID2466yAAAAAFBCO3yq7ObNm3fmPAAAAACAv7LDR9wBAAAAAO1HcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcA/397dx/ddXnfDfwTSEgCkggiBCwgKMXHOkXLQ63o4UF8QNvO2c6WI61uzk690Tpr67bSbtPO06obtK71dtLVqm0VbE+1iB4VdYgVxHYqVSs4tEKpLSQSw2O+9x+9/R3DQyLkMrkgr9c5+SO/35U315dcfPPxnZ8JAABAhso7ewN7m6YjBkZ5eVW7MhoP2ZJkL83jj0uSEwufSRKzZfLxSXIiIv5wVI8kOQfNWZ4kh66re98+SXK2/XFdkpxU+4lIt6fy4QcnyVn5mUFJcgZ/bVGSnO6HfzBJzuqJ/ZLkRES89VJzkpwPfu3FJDkbHxyaJKfqssokOWW/6p0k5+DZ6b523BxnJMmp6JUkJioWLEmS05Toa352M1FEdnORmYhc5DYTReS3JzNR21LNRWai1qWaiSLSzUX74kxUVqSZY9riFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGyjt7A3ubk/55cVTtV9GujLvuOCXRbrYlSel++AfT5LzWkCQnIuKAqEmWlZNUf9fblr+UJIe2bfvjus7eQgsp99N4zpgkOW8NSfM9oMFfW5QkZ8UdxybJGTyne5Kc/rPSXFdERP9EOcWxRyTJqb7o7SQ5v5vUL0lOqjNUNmhgkpyIiK29iiQ5g7/2ZJKcVP/up/zjwiQ5uc1EEfnNRWaitpmLOkZuM1FEuj2ZiVqXaiaKSDcXmYlal+oMRaSbi/bFmWjrlo0R9/4kwW5a5xV3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABkqK4qi6OxN7A0aGhqitrY2To6zo7ysorO3ExERL91yQpKcYT9OcwQqFixJkgPsXRrPGZMkp9fdi5PkpPK7nxyeJGfA2cuT5ERErLliXJKc3quak+RsmFafJOegy5uS5Pxhdpqvz7Wnv5wkJyLillVPJMmZ8n+vSpJT+0qar/k1P3gySU4qqWaiCHMRsOfMRG1LNReZiVqXaiaKSDcX7Ysz0bbNG2Ppj66J+vr6qKmpSbCrnfOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIENlRVEUnb2JvUFDQ0PU1tbGn33mX6J7j6p2ZfW57clEu0qjW3V1kpyygwcnyYmI2FabZk+x+JdpcjLT8OmxSXJqfpDXWUypfPjBSXKKyh5JcrYtfylJDu/BmGOSxJSvWpskZ+sbq5PkZCnR3/Wacb2S5Aw5a2WSnObPVSbJiYh4/WODkuQ0DUgzrh0y89kkOX/41J8lycltJorIby4yE7XNXNQ6M1EXltlMFLEPz0X76EwUkW4u2hdnoq3F5ni46YdRX18fNTU17d/ULnjFHQAAAABkSHEHAAAAABlS3AEAAABAhjq1uHvsscdi6tSpMWjQoCgrK4t77723xfNFUcTMmTNj0KBBUV1dHSeffHI8//zzLdZs2rQpLr300ujXr1/06tUrzjrrrHj99ddbrFm3bl1MmzYtamtro7a2NqZNmxbr169/n68OAAAAAPZcpxZ3jY2Nccwxx8Ts2bN3+vz1118fN9xwQ8yePTuefvrpqKuri0mTJsVbb71VWjNjxoyYN29e3HXXXfHEE0/Ehg0b4swzz4xt27aV1px33nnx7LPPxvz582P+/Pnx7LPPxrRp09736wMAAACAPVXemX/4aaedFqeddtpOnyuKIm666aa45ppr4hOf+ERERHzve9+LAQMGxB133BEXXXRR1NfXx6233hrf//73Y+LEiRERcfvtt8fgwYPjoYceilNPPTWWL18e8+fPj8WLF8fo0aMjIuKWW26JsWPHxosvvhgjR47smIsFAAAAgN2Q7c+4W7lyZaxZsyYmT55ceqyysjLGjx8fixYtioiIpUuXxpYtW1qsGTRoUBx11FGlNU8++WTU1taWSruIiDFjxkRtbW1pzc5s2rQpGhoaWrwBAAAAQEfJtrhbs2ZNREQMGDCgxeMDBgwoPbdmzZro0aNH9OnTp9U1/fv33yG/f//+pTU7c91115V+Jl5tbW0MHjy4XdcDAAAAALsj2+LuHWVlZS3eL4pih8e2t/2ana1vK+dLX/pS1NfXl95ee+213dw5AAAAAOy5bIu7urq6iIgdXhW3du3a0qvw6urqYvPmzbFu3bpW1/zud7/bIf/3v//9Dq/me7fKysqoqalp8QYAAAAAHSXb4m7YsGFRV1cXDz74YOmxzZs3x8KFC2PcuHERETFq1KioqKhosWb16tXx3HPPldaMHTs26uvr4xe/+EVpzVNPPRX19fWlNQAAAACQm079rbIbNmyI3/zmN6X3V65cGc8++2z07ds3hgwZEjNmzIhrr702RowYESNGjIhrr702evbsGeedd15ERNTW1sYFF1wQX/jCF+KAAw6Ivn37xpVXXhlHH3106bfMHn744TFlypT4q7/6q/jOd74TERF//dd/HWeeeabfKAsAAABAtjq1uFuyZEmccsoppfevuOKKiIg4//zzY86cOXHVVVdFU1NTfP7zn49169bF6NGjY8GCBdG7d+/Sx9x4441RXl4e5557bjQ1NcWECRNizpw50b1799KaH/zgB3HZZZeVfvvsWWedFbNnz+6gqwQAAACA3depxd3JJ58cRVHs8vmysrKYOXNmzJw5c5drqqqqYtasWTFr1qxdrunbt2/cfvvt7dkqAAAAAHSobH/GHQAAAAB0ZYo7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyFBZURRFZ29ib9DQ0BC1tbVxcpwd5WUVnb2diIjoVl2dJGfrhw9PktNt4TNJciIiXv7W6CQ5I/72qSQ5+6ryQQOTZW19Y3WyLHZty+Tjk2VVLFiSJKd5/HFJclLdQ3579bgkOYMfWJ8kZ/0RtUlyIiLeHlCWJOegn7+ZJKes/q0kOb+9ef8kORt/1SdJTtnhaa4rImL4ZWn+rn9/6sFJcrbsl+YM9Z+1KElOKqlmooj85iIzUcdJNReZiTpOqrnITNS6VDNRRLq5yEzUulQzUUS6uWhfnIm2bdoYz3/ny1FfXx81NTUJdrVzXnEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkKHyzt5AV9T98A8myVk9sV+SnP6zFiXJaR5/XJKciIi+v+qeLItd2/rG6s7eQpexZfLxSXIqFixJkhMR0b1vnzRBC59Jk5PIQY82JslpXvZCkpyaZUliIiJi/2OPSBeWQFHbO03OwjRnccRZK5PkbD453b1xa6KcX/zL/CQ5w+67MElO/yQp+c1EEfnNRWaijmMu6hipZqKIdHORmah1qWaiiHRzkZmodalmooh0c9G+OBM1N21JsJO2ecUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQofLO3sDe5vcXjY7ulVXtyui1ujnJXvrPWpQkp/GcMUly1h+argce+qM3kuQ0TT4+SU7VkleS5Gz747okOeWDBibJ2frG6iQ5OepWXZ0kp7mpKUlOxYIlSXJSSnUeU91Det29OElO95dWJcn59ZxRSXJGTF+aJCci4pVP1SbJ+cBxae6xm7+T5l70F9MfSZJzzy2nJMkZNLwySU5ExNUP/SRJzhnHT0mSc8DUiiQ5ay8dlyQnt5koIr+5yEzUNnNR68xEbTMTtS7VTBSRbi4yE7Uu1UwUkW4u2hdnom2bt8XrCfbSFq+4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMhQWVEURWdvYm/Q0NAQtbW1Mfg/vhLdqqvalTVi+tIke3p5zqgkOVUrKpPkbBywLUlORMQhP9qSJKfbwmeS5AB7jzVXjEuSc9Cc5UlyXr3k8CQ5ERHNFWlyhl27LEnO0IVlSXJWfvjtJDmppDpDERHVE3+fJOfAnhuS5Kz66bAkOW99aFOSnNxmooj85iIzEbCncpuJItLNRWaijpPqHO2LM9G2TRtj+ewvR319fdTU1CTY1c55xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJCh8s7ewN6mbn5FlFdUdPY2IiJixPSlSXIaPj02SU7P33VPkhMR0W3hU8myoD269+2TJGfbH9clyelWXZ0kJyKiuakpWVZO6hY1Jsn5zRcPS5LT/+nmJDkppfrcr7zsmCQ5r9yU5lwf+HRZkpy6GxYlyYmIiBvSxCy/aUySnEMSXVvvc9LsJ5VUM1FEfnORmYhc5DYTRaSbi8xErUs1E0XkNxeZidqWbC7aB2eircWWWJ5gL23xijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADGVd3M2cOTPKyspavNXV1ZWeL4oiZs6cGYMGDYrq6uo4+eST4/nnn2+RsWnTprj00kujX79+0atXrzjrrLPi9ddf7+hLAQAAAIDdknVxFxFx5JFHxurVq0tv//M//1N67vrrr48bbrghZs+eHU8//XTU1dXFpEmT4q233iqtmTFjRsybNy/uuuuueOKJJ2LDhg1x5plnxrZt2zrjcgAAAADgPSnv7A20pby8vMWr7N5RFEXcdNNNcc0118QnPvGJiIj43ve+FwMGDIg77rgjLrrooqivr49bb701vv/978fEiRMjIuL222+PwYMHx0MPPRSnnnpqh14LAAAAALxX2b/i7uWXX45BgwbFsGHD4lOf+lSsWLEiIiJWrlwZa9asicmTJ5fWVlZWxvjx42PRokUREbF06dLYsmVLizWDBg2Ko446qrRmVzZt2hQNDQ0t3gAAAACgo2Rd3I0ePTr+67/+Kx544IG45ZZbYs2aNTFu3Lj4wx/+EGvWrImIiAEDBrT4mAEDBpSeW7NmTfTo0SP69OmzyzW7ct1110VtbW3pbfDgwQmvDAAAAABal3Vxd9ppp8Wf//mfx9FHHx0TJ06M++67LyL+9L/EvqOsrKzFxxRFscNj23sva770pS9FfX196e21117bw6sAAAAAgN2XdXG3vV69esXRRx8dL7/8cunn3m3/yrm1a9eWXoVXV1cXmzdvjnXr1u1yza5UVlZGTU1NizcAAAAA6Ch7VXG3adOmWL58eQwcODCGDRsWdXV18eCDD5ae37x5cyxcuDDGjRsXERGjRo2KioqKFmtWr14dzz33XGkNAAAAAOQo698qe+WVV8bUqVNjyJAhsXbt2vjnf/7naGhoiPPPPz/KyspixowZce2118aIESNixIgRce2110bPnj3jvPPOi4iI2trauOCCC+ILX/hCHHDAAdG3b9+48sorS//rLQAAAADkKuvi7vXXX4+//Mu/jDfffDMOPPDAGDNmTCxevDiGDh0aERFXXXVVNDU1xec///lYt25djB49OhYsWBC9e/cuZdx4441RXl4e5557bjQ1NcWECRNizpw50b179866LAAAAABoU9bF3V133dXq82VlZTFz5syYOXPmLtdUVVXFrFmzYtasWYl3BwAAAADvn73qZ9wBAAAAQFehuAMAAACADGX9v8rm6O0B3aJ7Zfv6zm2fHptkLzU/eDJJTp+f/zpJzquXHJ4kJyLigGRJefnt1Wl+m/FBX1+UJIe2bfvjus7eQgvNTU2dvYXsrRnXK0nOsC+m+XfWvW+fJDkR6c5j8/jjkuR0W/hMkpzyM9LcG2t+kOZz1q26OklORMT6T/xZkpxDZqT5mp/qc984MM33fnObiSLym4vMRG0zF3WM3GaiCHNRW3KbiSLSzUVmotalmoki0s1F++JM1Lx1Y8QTP0mwm9Z5xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhsqKoig6exN7g4aGhqitrY0Pfe7a6N6jql1Z/+eKHyfZ0+0jD0qS03jOmCQ5bw1J1wNXrktzLPvc9mSSHNrWrbo6SU5zU1OSHLquVGfxjYuPTZJTd8OiJDkREfX3j0iSU3v6y0lyXrkpzdePQ2YsTpLz8rdGJ8k5+CfbkuRERFQsWJIkZ9XdRyfJ2fJ6ryQ5+y9P8zU/t5koIr+5yEy09zETkYvcZqKIdHORmah1qWaiiHRz0b44EzVv3Bj/+8W/j/r6+qipqUmwq53zijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBD5Z29gb3N/i9tjPJ2/q3ddcrxaTYTq5Ok1D6zJklOr7tfTZITEdE8/rgkOd0P/2CSnG3LX0qS89ItJyTJ+eBfPZ0kJ6XmpqbO3gKd5A8XjUuSc8AvG5PkNC/+ZZKcukVp9rPmijR/PxERg65ZnySnOUlKRNWaNN//a/j02CQ5Q+ZvS5JT0bAlSU5ERLdjj0iSs2lDjyQ5PRN9zvr8emOSnNxmooj85iIzUdtym4vMRF2XmahtqeYiM1HrUs1EEenmon1xJtq2qWNeC+cVdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIbKO3sDe5s3TqyK7pVV7croNnZYkr0MfqBPkpyty15IkpNSt4XPJMlZe9G4JDkHLH8pSc7hN9QnydmWJAXSOOCXjUlyGj9QnSSnevxxSXJ6vPbHJDkRvRLlRBz9n79OkvPceR9MkrPfSb9PkvO7lX2T5HTvsyVJTq9em5PkRER84bCHkuR8bemZSXK2JjqOvx3fvlnoHbnNRBH5zUVmoraZi8iFmei9SPOFyEzUulQzUUS6uWhfnIm2dW9/xnvhFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGSrv7A3sbfZ7vYjuPYp2ZVx69d1J9nLXjz6SJKc5SUrEKzeNSZQUcciMxUlyNvZJEpPMtuUvJclZc8W4JDl1NyxKkkPbNk39cJKcXs+vTZITEbF1xatJcn57cq8kOQd9Pa/z2FxdnSSncUhdkpyIiCVvDk6SU5HoXrR25egkOYf9Q5r9rP704Uly6v7vr5PkRETc3nRQkpzhsSxJzstzRiXJ6bewR5Kc3GaiiPzmIjNR28xFe5dUM1FEurnITNS6VDNRRLq5yEzUulQzUUS6uWhfnImamzYl2EnbvOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEPlnb2BvUVRFBERsW3zxnZnNW3Y2u6MiIitzZvS5BRbkuQ0b2z/3807Uu1p26Y0e0q1n1T21eval23dkuhzlujffYR/Z23pVnRPkpP03tiY5vNfluq+35TqXG9OkpPuLKbZT0REc2bnOtXnbNvm5iQ5uc1EEfnNRe7VbduXr21flGomisjvv4f21bOYaiaKSHhvNBO1KtVZjEg3F+2LM1Fz05/O4Tt90fulrHi//4R9xIoVK+KQQw7p7G0AAAAAkIlXXnklhg8f/r7le8Xde9S3b9+IiFi1alXU1tZ28m7YGzU0NMTgwYPjtddei5qams7eDnshZ4gUnCPayxmivZwhUnCOaC9niPaqr6+PIUOGlPqi94vi7j3q1u1PPw6wtrbWP2rapaamxhmiXZwhUnCOaC9niPZyhkjBOaK9nCHa652+6H3Lf1/TAQAAAIA9orgDAAAAgAwp7t6jysrK+MpXvhKVlZWdvRX2Us4Q7eUMkYJzRHs5Q7SXM0QKzhHt5QzRXh11hvxWWQAAAADIkFfcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABnqssXdt7/97Rg2bFhUVVXFqFGj4vHHH291/cKFC2PUqFFRVVUVw4cPj//4j//YYc0999wTRxxxRFRWVsYRRxwR8+bNe7+2TwZ25wzNnTs3Jk2aFAceeGDU1NTE2LFj44EHHmixZs6cOVFWVrbD28aNG9/vS6ET7c45evTRR3d6Rn7961+3WOde1LXszhmaPn36Ts/QkUceWVrjXtS1PPbYYzF16tQYNGhQlJWVxb333tvmx5iJeLfdPUNmInZmd8+RmYjt7e4ZMhOxveuuuy5OOOGE6N27d/Tv3z8+9rGPxYsvvtjmx3XEXNQli7sf/vCHMWPGjLjmmmti2bJl8dGPfjROO+20WLVq1U7Xr1y5Mk4//fT46Ec/GsuWLYsvf/nLcdlll8U999xTWvPkk0/GJz/5yZg2bVr88pe/jGnTpsW5554bTz31VEddFh1od8/QY489FpMmTYr7778/li5dGqecckpMnTo1li1b1mJdTU1NrF69usVbVVVVR1wSnWB3z9E7XnzxxRZnZMSIEaXn3Iu6lt09Q//2b//W4uy89tpr0bdv3/iLv/iLFuvci7qOxsbGOOaYY2L27Nnvab2ZiO3t7hkyE7Ezu3uO3mEm4h27e4bMRGxv4cKF8bd/+7exePHiePDBB2Pr1q0xefLkaGxs3OXHdNhcVHRBH/7wh4u/+Zu/afHYYYcdVlx99dU7XX/VVVcVhx12WIvHLrroomLMmDGl988999xiypQpLdaceuqpxac+9alEuyYnu3uGduaII44ovvrVr5bev+2224ra2tpUW2QvsLvn6JFHHikioli3bt0uM92Lupb23ovmzZtXlJWVFa+++mrpMfeirisiinnz5rW6xkxEa97LGdoZMxHv9l7OkZmI1uzJvchMxPbWrl1bRESxcOHCXa7pqLmoy73ibvPmzbF06dKYPHlyi8cnT54cixYt2unHPPnkkzusP/XUU2PJkiWxZcuWVtfsKpO9156coe01NzfHW2+9FX379m3x+IYNG2Lo0KHxgQ98IM4888wdvvvMvqM95+jYY4+NgQMHxoQJE+KRRx5p8Zx7UdeR4l506623xsSJE2Po0KEtHncvYlfMRKRmJqI9zESkYiZie/X19RERO3x9ereOmou6XHH35ptvxrZt22LAgAEtHh8wYECsWbNmpx+zZs2ana7funVrvPnmm62u2VUme689OUPb++Y3vxmNjY1x7rnnlh477LDDYs6cOfHTn/407rzzzqiqqoqPfOQj8fLLLyfdP3nYk3M0cODA+O53vxv33HNPzJ07N0aOHBkTJkyIxx57rLTGvajraO+9aPXq1fHzn/88LrzwwhaPuxfRGjMRqZmJ2BNmIlIyE7G9oijiiiuuiBNPPDGOOuqoXa7rqLmofDf2vk8pKytr8X5RFDs81tb67R/f3Uz2bnv6+b7zzjtj5syZ8ZOf/CT69+9fenzMmDExZsyY0vsf+chH4rjjjotZs2bFv//7v6fbOFnZnXM0cuTIGDlyZOn9sWPHxmuvvRbf+MY34qSTTtqjTPZ+e/r5njNnTuy///7xsY99rMXj7kW0xUxEKmYi9pSZiJTMRGzvkksuiV/96lfxxBNPtLm2I+aiLveKu379+kX37t13aDfXrl27Qwv6jrq6up2uLy8vjwMOOKDVNbvKZO+1J2foHT/84Q/jggsuiB/96EcxceLEVtd269YtTjjhBN/R2Ue15xy925gxY1qcEfeirqM9Z6goivjP//zPmDZtWvTo0aPVte5FvJuZiFTMRKRmJmJPmInY3qWXXho//elP45FHHokPfOADra7tqLmoyxV3PXr0iFGjRsWDDz7Y4vEHH3wwxo0bt9OPGTt27A7rFyxYEMcff3xUVFS0umZXmey99uQMRfzpu8rTp0+PO+64I84444w2/5yiKOLZZ5+NgQMHtnvP5GdPz9H2li1b1uKMuBd1He05QwsXLozf/OY3ccEFF7T557gX8W5mIlIwE/F+MBOxJ8xEvKMoirjkkkti7ty58fDDD8ewYcPa/JgOm4ve86+x2IfcddddRUVFRXHrrbcWL7zwQjFjxoyiV69epd8gc/XVVxfTpk0rrV+xYkXRs2fP4vLLLy9eeOGF4tZbby0qKiqKu+++u7Tmv//7v4vu3bsXX//614vly5cXX//614vy8vJi8eLFHX59vP929wzdcccdRXl5efGtb32rWL16delt/fr1pTUzZ84s5s+fX7zyyivFsmXLis9+9rNFeXl58dRTT3X49dExdvcc3XjjjcW8efOKl156qXjuueeKq6++uoiI4p577imtcS/qWnb3DL3jM5/5TDF69OidZroXdS1vvfVWsWzZsmLZsmVFRBQ33HBDsWzZsuJ///d/i6IwE9G23T1DZiJ2ZnfPkZmI7e3uGXqHmYh3XHzxxUVtbW3x6KOPtvj69Pbbb5fWdNZc1CWLu6Ioim9961vF0KFDix49ehTHHXdci1/xe/755xfjx49vsf7RRx8tjj322KJHjx7FwQcfXNx88807ZP74xz8uRo4cWVRUVBSHHXZYiy8c7Ht25wyNHz++iIgd3s4///zSmhkzZhRDhgwpevToURx44IHF5MmTi0WLFnXgFdEZducc/eu//mtxyCGHFFVVVUWfPn2KE088sbjvvvt2yHQv6lp29+vZ+vXri+rq6uK73/3uTvPci7qWRx55pNWvT2Yi2rK7Z8hMxM7s7jkyE7G9Pfl6Zibi3XZ2fiKiuO2220prOmsuKvv/GwQAAAAAMtLlfsYdAAAAAOwNFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwDQxT366KNRVlYW69ev7+ytAADwLoo7AIAuYPr06VFWVhZlZWVRUVERw4cPjyuvvDIaGxs7e2sAAOxCeWdvAACAjjFlypS47bbbYsuWLfH444/HhRdeGI2NjfHJT36ys7cGAMBOeMUdAEAXUVlZGXV1dTF48OA477zz4tOf/nTce++9peeXLl0axx9/fPTs2TPGjRsXL774Yum5V155Jc4+++wYMGBA7LfffnHCCSfEQw891CL/29/+dowYMSKqqqpiwIABcc4555SeK4oirr/++hg+fHhUV1fHMcccE3fffff7fs0AAHszxR0AQBdVXV0dW7ZsKb1/zTXXxDe/+c1YsmRJlJeXx+c+97nScxs2bIjTTz89HnrooVi2bFmceuqpMXXq1Fi1alVERCxZsiQuu+yy+NrXvhYvvvhizJ8/P0466aTSx//93/993HbbbXHzzTfH888/H5dffnl85jOfiYULF3bcBQMA7GXKiqIoOnsTAAC8v6ZPnx7r168vvcLuF7/4RZx++ukxYcKEuPjii+OUU06Jhx56KCZMmBAREffff3+cccYZ0dTUFFVVVTvNPPLII+Piiy+OSy65JObOnRuf/exn4/XXX4/evXu3WNfY2Bj9+vWLhx9+OMaOHVt6/MILL4y333477rjjjvfnogEA9nJ+xh0AQBfxs5/9LPbbb7/YunVrbNmyJc4+++yYNWtWvPDCCxER8aEPfai0duDAgRERsXbt2hgyZEg0NjbGV7/61fjZz34Wb7zxRmzdujWamppKr7ibNGlSDB06NIYPHx5TpkyJKVOmxMc//vHo2bNnvPDCC7Fx48aYNGlSi/1s3rw5jj322A66egCAvY/iDgCgizjllFPi5ptvjoqKihg0aFBUVFRERJSKu3fej4goKyuLiIjm5uaIiPi7v/u7eOCBB+Ib3/hGHHrooVFdXR3nnHNObN68OSIievfuHc8880w8+uijsWDBgvjHf/zHmDlzZjz99NOljPvuuy8OOuigFnuqrKx8fy8aAGAvprgDAOgievXqFYceeugefezjjz8e06dPj49//OMR8aefeffqq6+2WFNeXh4TJ06MiRMnxle+8pXYf//94+GHH45JkyZFZWVlrFq1KsaPH9/eywAA6DIUdwAAtOnQQw+NuXPnxtSpU6OsrCz+4R/+ofRKuog//W+4K1asiJNOOin69OkT999/fzQ3N8fIkSOjd+/eceWVV8bll18ezc3NceKJJ0ZDQ0MsWrQo9ttvvzj//PM78coAAPKluAMAoE033nhjfO5zn4tx48ZFv3794otf/GI0NDSUnt9///1j7ty5MXPmzNi4cWOMGDEi7rzzzjjyyCMjIuKf/umfon///nHdddfFihUrYv/994/jjjsuvvzlL3fWJQEAZM9vlQUAAACADHXr7A0AAAAAADtS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABk6P8B9lixg7hZNuMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import phaseogram, plot_phaseogram, plot_profile\n", + "from matplotlib.gridspec import GridSpec\n", + "\n", + "# Calculate the phaseogram\n", + "phaseogr, phases, times, additional_info = \\\n", + " phaseogram(events.time, cand_freqs_ef[0], return_plot=True, nph=nbin, nt=32)\n", + " \n", + "# ---- PLOTTING --------\n", + "\n", + "# Plot on a grid\n", + "plt.figure(figsize=(15, 15))\n", + "gs = GridSpec(2, 1, height_ratios=(1, 3))\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "mean_phases = (phases[:-1] + phases[1:]) / 2\n", + "plot_profile(mean_phases, np.sum(phaseogr, axis=1), ax=ax0)\n", + "# Note that we can pass arguments to plt.pcolormesh, in this case vmin\n", + "_ = plot_phaseogram(phaseogr, phases, times, ax=ax1, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Examples of interactive phaseograms\n", + "\n", + "### First: shift the rows of the phaseogram interactively" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def shift_phaseogram(phaseogr, tseg, delay_fun):\n", + " \"\"\"Shift the phaseogram rows according to an input delay function.\n", + "\n", + " Parameters\n", + " ----------\n", + " phaseogr : 2-d array\n", + " The phaseogram, as returned by ``phaseogram``\n", + " freq : float\n", + " The pulse frequency\n", + " tseg : float\n", + " The integration time for each row of the phaseogram\n", + " delay_fun : function\n", + " Function that gives the delay (in seconds) for each row of the\n", + " phaseogram\n", + "\n", + " Returns\n", + " -------\n", + " phaseogram_new : 2-d array\n", + " The shifted phaseogram\n", + "\n", + " \"\"\"\n", + " # Assume that the phaseogram is repeated twice in phase\n", + " nbin = phaseogr.shape[0] / 2\n", + " ntimes = phaseogr.shape[1]\n", + "\n", + " times = np.arange(0, tseg * ntimes, tseg)\n", + " phase_delays = delay_fun(times) # This gives the delay in units of time!\n", + "\n", + " delayed_bins = np.array(np.rint(phase_delays * nbin), dtype=int)\n", + " phaseogram_new = np.copy(phaseogr)\n", + " for i in range(ntimes):\n", + " phaseogram_new[:, i] = np.roll(phaseogram_new[:, i], \n", + " delayed_bins[i])\n", + "\n", + " return phaseogram_new\n", + "\n", + "\n", + "def interactive_phaseogram(phas, binx, biny, df=0, dfdot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(biny))\n", + " tobs = tseg * phas.shape[0]\n", + " delta_df_start = 2 / tobs\n", + " df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** df_order_of_mag\n", + "\n", + " delta_dfdot_start = 8 / tobs ** 2\n", + " dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** dfdot_order_of_mag\n", + "\n", + " pcolor = plt.pcolormesh(binx, biny, phas.T, cmap='magma')\n", + " l, = plt.plot(np.ones_like(biny), biny, zorder=10, lw=2, color='w')\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Times')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " sfreq = Slider(axfreq, 'Delta freq x$10^{}$'.format(df_order_of_mag), \n", + " -delta_df, delta_df, valinit=df)\n", + " sfdot = Slider(axfdot, 'Delta fdot x$10^{}$'.format(dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=dfdot)\n", + " spepoch = Slider(axpepoch, 'Delta pepoch', \n", + " 0, biny[-1] - biny[0], valinit=0)\n", + "\n", + " def update(val):\n", + " fdot = sfdot.val * 10 ** dfdot_order_of_mag\n", + " freq = sfreq.val * 10 ** df_order_of_mag\n", + " pepoch = spepoch.val\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " new_phaseogram = shift_phaseogram(phas, tseg, delay_fun)\n", + " pcolor.set_array(new_phaseogram.T.ravel())\n", + " l.set_xdata(1 + delay_fun(biny - biny[0]))\n", + " fig.canvas.draw_idle()\n", + "\n", + " resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " def reset(event):\n", + " sfreq.reset()\n", + " sfdot.reset()\n", + " spepoch.reset()\n", + " pcolor.set_array(phas.T.ravel())\n", + " l.set_xdata(1)\n", + "\n", + " button.on_clicked(reset)\n", + "\n", + " sfreq.on_changed(update)\n", + " sfdot.on_changed(update)\n", + " spepoch.on_changed(update)\n", + " \n", + " spepoch._dummy_reset_button_ref = button\n", + "\n", + " plt.show()\n", + " return " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# f0 = 0.0001\n", + "# fdot = 0\n", + "# delay_fun = lambda times: times * f0 + 0.5 * times ** 2 * fdot\n", + "\n", + "# new_phaseogr = shift_phaseogram(phaseogr, times[1] - times[0], delay_fun)\n", + "# _ = plot_phaseogram(new_phaseogr, phases, times, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIcCAYAAADhfaE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB900lEQVR4nO3dd3hUVf7H8c+kTRJSSCENQhOkBRBBqQpKdylW3EURVuyCAqJrXVl3F1ZWBYUFyyJgxf0pKBYiIEURqYLSRKRISyBACCSkz/39gYxGkpMyySQzvF8+8zxmvufcOfdm5pDvnHPusVmWZQkAAAAA3MSnuhsAAAAA4MJCEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3A+B5HA6HDh8+rNDQUNlstupuDgAAqAEsy9Lp06eVkJAgH5/q+Z47JydHeXl5Lh8nICBAgYGBldAilIQkBOV2+PBhJSYmVnczANQABw4cUL169XTw4EH6BQCSfu0X3C0nJ0eNGtVVauoJl48VFxenvXv3kohUIZIQlFtoaKgkaUGHu1XLL6DYMs0apBmP8d2eOGP8irmtjPFPb9lpjEvSj6f9jfH7++42xr/bGGuM/9+BEGO8wGEZ413rOIzx7ELzt0hpuaWPQi06au6Ixzc1n0Mde04pbTB3zheFnTbGT2TbjfFCy3yOF8WkG+OS9PmeusZ4g2DzOV7x7iXGeNaERcZ40EXmbnbvl7WM8cSWJ43xwjPGsCTJP8p8Hf37mj9vZ97ZWmIsJjhIkhQdEKLFnUYXW4b+gP5Aoj+QvL8/OJ2Xr2ZvL3D+neBueXl5Sk09oX175yksLLjCxzl16owaNvqj8vLySEKqEEkIyu3cFKxafgGq5Vf8PxphAcUnJ+eUVM9ZP9TceQT7mutLUqCvuQ1hdtfaGOBj7ph8ZP6jI9i30BgvbclWoG/pQ91+NvM5lHYdQ/zM55BVUFr9XGM8t5RrXNofHaH+5t+hJAWVco61SjnH0t6LvqW814MCzd1sSAmJvPP1S3mfFhYYw5Ikf3spf3TUMr+X/QzneK4/sKnkzwz9Af3B2fr0B97eH5xT3VO1w8KCFRZmTuhQ/UhCAAAA4D0cjrMPV+qjypGEAAAAwHuQhHgEbtELAAAAwK0YCQEAAID3sKyzD1fqo8qRhAAAAMB7OCwXp2ORhLgDSQgAAAC8B2tCPAJrQgAAAAC4FSMhAAAA8B6MhHgEkhBUWFKLIyVuQpZWyu7BV/23oTH+6Q3bjHH/MozhRQaY53TmpJkPsvSIecfXpqVsCHtRSJ4xnu8wb+Z0WcxxY/y5rTHmBkjqERVtjDePSDXG39lj3iW6YS3zBmtv7TG38a+3mXepdmSZj//1V+bdjyXp9iezjPHFz5t30rZK2QDtnfUXGeNdfzbvUr3vtPmzclEdc/vtN7YwxiXpm0eOGuOdGv5sjG/fUfLvsW2+jwIk+fs71LZV8e8n+gP6A4n+QPL+/iCzwLwhpduQhHgEkhAAAAB4D8vFJMQiCXEH1oQAAAAAcCtGQgAAAOA1bJZDNhdGM1ypi7IjCQEAAID3YE2IRyAJAQAAgPdwWK5tOMhmhW7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEdgOhYAAAAAt2IkBAAAAN7DslzbcNBiYbo7kISgwk6mBqnQP6DYmJ9fobHuHb2OGOMtatuN8fwy9C0xdnOhY0dDjPHDZ8ydUGRt8+u/u8/88Qr1Nw9Ezthlbl+WTpgbIKlnYLQx/uqPscb4opN7jPG7AxoZ41fFZBnjM95rbIzf3Hy/Mb43K9AYl6TGc8zvtVax5vfqon7rjPGOUWeM8ZY35Bnj2fNyjHHfFubf0Y9Pm6+RJLW75KQxbru4hTEeEXSoxJiP7eznxFFoU3pKULFl6A/oDyT6A8n7+wO/AvP5uQ3TsTwCSQgAAAC8B7fo9QisCQEAAADgVoyEAAAAwHswHcsjkIQAAADAe1guJiGuLGpHmTEdCwAAAF7D5nC4/CiPL7/8UgMHDlRCQoJsNps+/PDDIvHMzEyNGjVK9erVU1BQkFq0aKGZM2cWKZObm6vRo0crOjpatWrV0qBBg3Tw4EFXL0WNRhICAAAAVFBWVpbatm2r6dOnFxsfO3askpOT9dZbb2nHjh0aO3asRo8erY8++shZZsyYMVqwYIHmzZunVatWKTMzUwMGDFBhofmObZ6M6VgAAADwHpbl2l4f5azbv39/9e/fv8T4N998o+HDh6tHjx6SpLvuukuvvPKKNmzYoMGDBysjI0OzZs3Sm2++qV69ekmS3nrrLSUmJmrp0qXq27dvhU+lJmMkBAAAAN7j3MJ0Vx6STp06VeSRm5tboeZ069ZNCxcu1KFDh2RZlpYvX64ff/zRmVxs3LhR+fn56tOnj7NOQkKCkpKStHr1atevRw1FEgIAAADvUUlJSGJiosLDw52PSZMmVag5L730klq2bKl69eopICBA/fr104wZM9StWzdJUmpqqgICAhQREVGkXmxsrFJTU127FjUY07EAAACA3zlw4IDCwsKcP9vt9god56WXXtKaNWu0cOFCNWjQQF9++aXuu+8+xcfHO6dfFceyLNlstgq9picgCUGFncmxy6cgoNjYxXcGGuu2+cm1D9Wm9NIXar08YK8xfs8njYxxfx/znNBCyzyQGOpvjn+U+YUx/kS9nsZ4kG+QMS5JsYE5xvi+rOJ/f+c8HN7AGK8XlG2M78o0t/HWNubf0fYDdYzxyIACY1yS3t8bb4zf2CjFGO9Q74gxHvOvzsb4W0P2G+PDZkcb48cmbTLGExJLvwZfrKtvjPcO3mGM/9++piXG7i/0VZjOTqHOyi7+H2j6A/oDif5A8v7+IKfQ/B5zm0raMT0sLKxIElIR2dnZevzxx7VgwQL94Q9/kCS1adNGmzdv1nPPPadevXopLi5OeXl5Sk9PLzIacvToUXXp0sWl16/JmI4FAAAA71FJ07EqQ35+vvLz8+XjU/RPbl9fXzl+eZ327dvL399fS5YsccZTUlK0detWr05CGAkBAACA93BYLu6YXr5RlMzMTP3000/On/fu3avNmzcrMjJS9evXV/fu3fXwww8rKChIDRo00MqVK/XGG2/ohRdekCSFh4dr5MiReuihhxQVFaXIyEiNHz9erVu3Nk7X8nQkIQAAAEAFbdiwQVdddZXz53HjxkmShg8frjlz5mjevHl67LHHdMstt+jEiRNq0KCB/vnPf+qee+5x1pkyZYr8/Pw0ZMgQZWdnq2fPnpozZ458fX3dfj7uQhICAAAA7+HmfUJ69Oghy1AnLi5Os2fPNh4jMDBQ06ZN07Rp08r12p6MJAQAAADew9V1HZW4JgQlY2E6AAAAALdiJAQAAADew3LxFr2uTOVCmZGEAAAAwHswHcsjkIQAAADAe5CEeATWhAAAAABwK0ZCUGH1mp5UWEBAsTGr+yBj3eahm1x67csi80sts3pbPWP8tkbmYzz24zFj/OqAeGP8h8xMY3x99+bG+F/WmL+JaRdV+r3DswuL//2cM6BBqjG+6WiUMX48z3z8jlEnjfHSXN41xRifs6hJqccYWC/NGI+KyzLGDx8IN8YD//6lMX51fbsxbiUkGeNRz5s3qjp8/wpjXJKaR5w0xk/t8zfGu9c5XWLM7nP2fernZ6l+s+Jfh/6A/kCiP5C8vz/IKsiVfiox7D4OF9eEuFIXZUYSAgAAAO9hOc4+XKmPKkcSAgAAAO/BSIhHYE0IAAAAALdiJAQAAADeg7tjeQSSEAAAAHgPpmN5BJIQAAAAeA+H5eJICEmIO7AmBAAAAIBbMRICAAAA78F0LI9AEgIAAAAv4uI+IWJhujswHQsAAACAWzESUkNMmjRJ8+fP1w8//KCgoCB16dJFzz77rJo1a+YsM2LECM2dO7dIvY4dO2rNmjXOn3NzczV+/Hi9++67ys7OVs+ePTVjxgzVq1fPWSY9PV0PPPCAFi5cKEkaNGiQpk2bptq1a5erzYHD2iswJKjY2EtX7TDWvTSiwBjffqpWKfVzzY2T5O9j/iYj0m4+xk0x9YzxJiGnjfG+ceHGeET8UWO8caj547kyNccYl6Qpl580xr84GGuM78vyNcabhpp/j7WDzW08djzEGN9zOMAYH3rZbmNckoLbBBrjeT+Zh923p5t/jxdPvtgYD/tmu/n1n11ojPsn2I3xsnyX1LBHtvkIt/c3t2H8JyXH/H75nNUKUODIy4stQ39AfyDRH0je3x+cysuT1pQYdh+mY3kERkJqiJUrV+r+++/XmjVrtGTJEhUUFKhPnz7KysoqUq5fv35KSUlxPj777LMi8TFjxmjBggWaN2+eVq1apczMTA0YMECFhYXOMkOHDtXmzZuVnJys5ORkbd68WcOGDXPLeQIAAFSpc0mIKw9UOUZCaojk5OQiP8+ePVsxMTHauHGjrrzySufzdrtdcXFxxR4jIyNDs2bN0ptvvqlevXpJkt566y0lJiZq6dKl6tu3r3bs2KHk5GStWbNGHTt2lCS99tpr6ty5s3bu3Flk5OWc3Nxc5eb++i3hqVOnXD5fAACAKsFmhR6BkZAaKiMjQ5IUGRlZ5PkVK1YoJiZGF198se68804dPfrrEP7GjRuVn5+vPn36OJ9LSEhQUlKSVq9eLUn65ptvFB4e7kxAJKlTp04KDw93lvm9SZMmKTw83PlITEystPMEAADAhYckpAayLEvjxo1Tt27dlJSU5Hy+f//+evvtt7Vs2TI9//zzWr9+va6++mrnKEVqaqoCAgIUERFR5HixsbFKTU11lomJiTnvNWNiYpxlfu+xxx5TRkaG83HgwIHKOlUAAIDKxXQsj8B0rBpo1KhR+v7777Vq1aoiz998883O/09KSlKHDh3UoEEDffrpp7r++utLPJ5lWbLZbM6ff/v/JZX5LbvdLru9tMVwAAAANQAL0z0CIyE1zOjRo7Vw4UItX768yB2tihMfH68GDRpo165dkqS4uDjl5eUpPT29SLmjR48qNjbWWebIkSPnHSstLc1ZBgAAwGOdWxPiygNVjiSkhrAsS6NGjdL8+fO1bNkyNWrUqNQ6x48f14EDBxQfHy9Jat++vfz9/bVkyRJnmZSUFG3dulVdunSRJHXu3FkZGRlat26ds8zatWuVkZHhLAMAAABUJaZj1RD333+/3nnnHX300UcKDQ11rs8IDw9XUFCQMjMzNWHCBN1www2Kj4/Xvn379Pjjjys6OlrXXXeds+zIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOydsQAAADyKZZ19uFIfVY4kpIaYOXOmJKlHjx5Fnp89e7ZGjBghX19fbdmyRW+88YZOnjyp+Ph4XXXVVXrvvfcUGhrqLD9lyhT5+flpyJAhzs0K58yZI1/fXzeZevvtt/XAAw8476I1aNAgTZ8+vepPEgAAoKqxJsQjkITUEFYpWXdQUJA+//zzUo8TGBioadOmadq0aSWWiYyM1FtvvVXuNv6e4+vtcgQWv4PtXVebd2QNvLL4vU7OuWzNT8b4yX2lL5TfnhJtjMdFmnc4Dk2rbYyH2fOM8Y9Tjxvj+cuaGuM3JJ4wxvecDjPGJWnTsShjfN7P5t/Ta13Ne8Lk5pu7kDqJmcb44o0NjPFv082/59J2wZak6GNZxvjJrEhj/Momh4zxY5MOG+NZmeZzaDDs/LvVFTn+gnRjPCs7yBiXJJ9bexjj+/+8zBhP/PjPJcZstl92M8/Nl2PllmLL0B/QH0j0B5L39wfWqSzpvXmltqHKkYR4BNaEAAAAAHArRkIAAADgPSwX73BlcXcsdyAJAQAAgPdgOpZHIAkBAACA93DIxSSk0loCA9aEAAAAAHArRkIAAADgPZiO5RFIQgAAAOA1LIcly4VEwpW6KDumYwEAAABwK0ZCAAAA4D0s6+zDlfqociQhAAAA8B6sCfEIJCGouALH2UcxMo/6G6u+OiHUGO9XN6fCzTrnYLbdGF+1pb4x/uGxg6W8Ql1j9OGm+cb4lgzz0f+9PcwYH3lRrvkAkrafCjLGb6wfbIwfPmW+T+GiFHMb07ZHG+OXRZk7+kF1T5by+hHGuCT9Kdj8XrqoxQlj3K+OrzF+cpvNGH/1hwRj/O8DOxjj+2YuNcYjgsrwWfn4K2M4MND8Xk276a0SY3VebSPfKLski/7AgP6A/kDy/v7gdH5e6a/vDiQhHoE1IQAAAADcipEQAAAAeA9GQjwCSQgAAAC8B0mIRyAJAQAAgNewLBf3CeHuWG7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEcgCQEAAID3IAnxCKwJAQAAAOBWjIQAAADAe1jW2Ycr9VHlSEJQYcsX1FEtP3uxsYPZAca6NzQ5aIz7+TmM8QPHws2Nk7Qs1WaMd65j7mRebFnbGJ9/0Hz8qADzQGO+w1w/0Ndcf+2JYGNckpqH5hnjJ/LMXcDSI6HG+OP9fzTGA3vVM8Z//E+mMf7tsQhj/GiOMSxJiorLMsaP7Akxxg9vNsc7Dc82xv85vpYxrm/WG8MdHjX/nj+dEGg+vqScD8zXuaDQfAw/35I/j1EOH/lKys321cr/iym2DP0B/YFEfyB5f3+QWVAz/qy0HGcfrtRH1asZ7xYAAACgMrAmxCOwJgQAAACAWzESAgAAAO/BSIhHIAkBAACA12BNiGdgOhYAAAAAt2IkBAAAAN7DcnE6FrfodQuSEAAAAHgPxy8PV+qjypGEAAAAwGtYDkuWCyMhrtRF2bEmBAAAAIBbMRICAAAA78F0LI9AEoIK6/mYr8KCfYuN3TrCPJS5NaOeMX5T4mlj/NLLU82Nk3RjTmCpZUze3lfLGI+024zxLRn+xvj645nG+HGfdGO8V1ycMS5JR3PNbTiRZz6H2EDz77Hnm5HG+PzDacb49nTzOYT6FxrjXaKNYUnS4QPhxvhFV2eZ638aYow7jp0xxq1F3xvj739Y3xi/acghY7xP7wJjXJLWrjBf5y7XnTDGdywyfxYkyR4m9Xma/qAk9Af0B9KF0x9UO+uXhyv1UeVIQgAAAOA1WBPiGVgTAgAAAMCtGAkBAACA92BNiEcgCQEAAIDXsBxnH67UR9UjCQEAAID3YCTEI7AmBAAAAKigL7/8UgMHDlRCQoJsNps+/PDD88rs2LFDgwYNUnh4uEJDQ9WpUyft37/fGc/NzdXo0aMVHR2tWrVqadCgQTp48KAbz8L9SEIAAADgNc5Nx3LlUR5ZWVlq27atpk+fXmx89+7d6tatm5o3b64VK1bou+++01NPPaXAwF9vHT5mzBgtWLBA8+bN06pVq5SZmakBAwaosNB8a2pPxnQsAAAAeA9Lrk2p+uUOvadOnSrytN1ul91uP694//791b9//xIP98QTT+iaa67R5MmTnc81btzY+f8ZGRmaNWuW3nzzTfXq1UuS9NZbbykxMVFLly5V3759XTiZmouREAAAAOB3EhMTFR4e7nxMmjSp3MdwOBz69NNPdfHFF6tv376KiYlRx44di0zZ2rhxo/Lz89WnTx/ncwkJCUpKStLq1asr41RqJJIQAAAAeA3Lcv0hSQcOHFBGRobz8dhjj5W7LUePHlVmZqb+9a9/qV+/flq8eLGuu+46XX/99Vq5cqUkKTU1VQEBAYqIiChSNzY2VqmpqS5fj5qK6ViosLyvflaePaDY2OsjzHXXfR1vjBdaNmP8/nebmF9AUoMQ8zH8S0nBp921xxhf9lmCMf7D6UBjfFgjc3xTej1j/PU9Wca4JN3V5Pxh4986eMbfGB9Y77gxPrz3CWN8zHvm39PYlseM8e9PRBjjPS4qfdHe/B0NjPFTi4p/D5/j72Me0/+//5l/TzffmWaM92l2wBi3+fsa44uXJBrjknTNnRnGuGUOq+UNeSXGbEG//GudW6i8FfuKLUN/QH8g0R9I3t8fnMrOl1aW2oQqV1m36A0LC1NYWJhLbXE4zh5s8ODBGjt2rCTpkksu0erVq/Xyyy+re/fuJbfDsmSzmfsuT8ZICAAAALyHoxIelSQ6Olp+fn5q2bJlkedbtGjhvDtWXFyc8vLylJ6eXqTM0aNHFRsbW3mNqWFIQgAAAIAqEBAQoMsuu0w7d+4s8vyPP/6oBg3Ojsy1b99e/v7+WrJkiTOekpKirVu3qkuXLm5trzsxHQsAAABew907pmdmZuqnn35y/rx3715t3rxZkZGRql+/vh5++GHdfPPNuvLKK3XVVVcpOTlZH3/8sVasWCFJCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3YiSkhpg0aZIuu+wyhYaGKiYmRtdee+15WbNlWZowYYISEhIUFBSkHj16aNu2bUXKlGWzm/T0dA0bNsx5t4dhw4bp5MmTVX2KAAAAVa6yFqaX1YYNG9SuXTu1a9dOkjRu3Di1a9dOf/3rXyVJ1113nV5++WVNnjxZrVu31n//+1998MEH6tatm/MYU6ZM0bXXXqshQ4aoa9euCg4O1scffyxfX/M6IE9GElJDrFy5Uvfff7/WrFmjJUuWqKCgQH369FFW1q+LDSdPnqwXXnhB06dP1/r16xUXF6fevXvr9OnTzjJl2exm6NCh2rx5s5KTk5WcnKzNmzdr2LBhbj1fAACAKuGwuf4ohx49esiyrPMec+bMcZa5/fbbtWvXLmVnZ2vz5s0aPHhwkWMEBgZq2rRpOn78uM6cOaOPP/5YiYml32jAkzEdq4ZITk4u8vPs2bMVExOjjRs36sorr5RlWZo6daqeeOIJXX/99ZKkuXPnKjY2Vu+8847uvvvuMm12s2PHDiUnJ2vNmjXq2LGjJOm1115T586dtXPnTjVr1uy8tuXm5io3N9f58+837wEAAADKg5GQGioj4+w98iIjIyWdnV+YmppaZCMbu92u7t27OzeyKctmN998843Cw8OdCYgkderUSeHh4SVuiDNp0qQim/V4e2YOAAA817k1Ia48UPVIQmogy7I0btw4devWTUlJSZLk3Kzm97dq++1GNmXZ7CY1NVUxMTHnvWZMTEyJG+I89thjRTbrOXDAfB9zAACA6mJZNpcfqHpMx6qBRo0ape+//16rVq06L/b7TWvKspHN78sUV950HLvdLrvdvMkVAABATeDuu2OhYhgJqWFGjx6thQsXavny5apX79edV+Pi4iTpvNGK325kU5bNbuLi4nTkyJHzXjctLc2rN8QBAABAzcFISA1hWZZGjx6tBQsWaMWKFWrUqFGReKNGjRQXF6clS5Y4bwGXl5enlStX6tlnn5VUdLObIUOGSPp1s5vJkydLkjp37qyMjAytW7dOl19+uSRp7dq1ysjIKPeGOD7BvvIJLP7WcZu/iDLW7dij+Klf55zYEWCMX5fvb26cpKva7TfG135f1xif8V5jY/xMoTGsr45kG+Nz+5yfDP7Wum8aGuPtImuZGyDpi1TzfQb7xuca49N/iDTGb8kxj5C1CDeP0u07FWqM1w0yX8NFP5a+PmnoZbuN8fU7EozxVceCjfG/XLfLGM/dbgyrlvnl5VPX/Dvod12K+QCSrCxzV39inflrv8KC/BJjdYZY8g2RZJN8atEflIT+gP5A8v7+4HR+yTF3siwXR0LKeYteVAxJSA1x//3365133tFHH32k0NBQ54hHeHi4goKCZLPZNGbMGE2cOFFNmzZV06ZNNXHiRAUHB2vo0KHOsqVtdtOiRQv169dPd955p1555RVJ0l133aUBAwYUe2csAAAAT+Lqug7WhLgHSUgNMXPmTEln7zX9W7Nnz9aIESMkSY888oiys7N13333KT09XR07dtTixYsVGvrrt0dTpkyRn5+fhgwZouzsbPXs2VNz5swpstnN22+/rQceeMB5F61BgwZp+vTpVXuCAAAA7uCwySrnXh+/r4+qRxJSQ1hlGPuz2WyaMGGCJkyYUGKZc5vdTJs2rcQykZGReuuttyrSTAAAAMBlJCEAAADwGpbl2roO1oS4B0kIAAAAvAZrQjwDt+gFAAAA4FaMhAAAAMBrWC4uTHdpUTvKjCQEAAAAXoM1IZ6BJAQAAABegzUhnoE1IQAAAADcipEQVNiOr2orxM9ebKzDKHN++/6zDY3x70/6G+OD6p40xiXpsw2NjPEdp8xv//xS5oReGpFrjB86E2SM374k3hgf2rDAGN93pvSPb90g8zl8czzAGP/nFXuN8U9/qG+MNw/NMcYXHCz+/XPOqOZZxvgNrVKNcUnyCzfHewzLMMf9M43xJf9NNMYvqm0+fnzDU8Z44b50Y9y3YYQxXhYhMUeN8cBe9UoOBp/dCDU/10fblxffFvoD+gOJ/kDy/v4g6Eyu9LHLTXCZw2GTw4V1Ha7URdmRhAAAAMBrsCbEM5CEAAAAwGuwJsQzsCYEAAAAgFsxEgIAAACvwUiIZyAJAQAAgNdwWDY5XEgkXKmLsiMJAQAAgNdgx3TPwJoQAAAAAG7FSAgAAAC8Brfo9QwkIQAAAPAaDrm4JkRMx3IHpmMBAAAAcCtGQlBhrZ+OV1itwGJj+Z9uMdZtGhpljDesZc6PE6MzzI2TtOBgbWP8vqQDxrifn8MY/+5QjDHeLz7XGN+SYTfGN500hvVA64PmApKyss2vcTy7+N/fOct2JRrj/jbzmHW3S8zXeO2Jpsb4qdwAYzxlX5gxLkkpmbWM8Y7+qca4/42XGeM9dq0zxlesNF/Do9uCjfGc732N8bUnzPUladzgXcb4mWPmfwoci0p+rwVdWShbkOQf5qu2ExOKLUN/QH8g0R9I3t8fnMnLK/X13YFb9HoGkhAAAAB4DcvFW/SShLgHSQgAAAC8BiMhnoE1IQAAAADcipEQAAAAeA3HLw9X6qPqkYQAAADAazAdyzOQhAAAAMBrOCy5tk8ImxW6BWtCAAAAALgVIyEAAADwGkzH8gwkIQAAAPAaZ6djuVYfVY8kBBW3+5AUVPwOvFa++RP88q7axvgtDbOM8dQToca4JDWoZb6/RU6uvzH+zo5YYzw20HyOB8+YZzve3/ZnY/y+FfHG+Lxd9YxxScov5RYfzUPNu9u2iUw3xufvr2OMv7W6iTHeOtz8+jtOmXc3rh9Z+k7Zx46bd1k+usW8S/S2pSnG+KUNzO+jPveZ38s5608Y4351zDskRy6PMMYlaf6SRsb4zXemGeO2pob3YtAv/4wUFEq7it9Jmf6A/kCiP5C8vz8oyMqRZpfahCrHSIhnYE0IAAAAALdiJAQAAABewyGbHHLh7lgu1EXZkYQAAADAa1jW2Ycr9VH1mI7lggMHDujgwV/nQK9bt05jxozRq6++Wo2tAgAAuHA5LJvLD1Q9khAXDB06VMuXL5ckpaamqnfv3lq3bp0ef/xxPfPMM9XcOgAAAKBmIglxwdatW3X55ZdLkv73v/8pKSlJq1ev1jvvvKM5c+ZUb+MAAAAuQNYva0Iq+rBYE+IWrAlxQX5+vuz2s7eoXbp0qQYNGiRJat68uVJSzLfxAwAAQOVjTYhnYCTEBa1atdLLL7+sr776SkuWLFG/fv0kSYcPH1ZUVFQ1tw4AAAComUhCXPDss8/qlVdeUY8ePfSnP/1Jbdu2lSQtXLjQOU0LAAAA7sPCdM/AdCwX9OjRQ8eOHdOpU6cUEfHrLqV33XWXgoODq7FlAAAAFybLxXUdrAlxD5IQF1mWpY0bN2r37t0aOnSoQkNDFRAQcEEkIYc/ytFpf0exsazs2sa6h87kGeOd+hw1xpd9lmCMS9LQy3Yb45NWNDXGH+n6kzG+aGuDUlpgHmh8dHU9Y3xGj4PG+Hs/1C/l9aVN6YXG+Ol8uzGeUxhhjHevc9oYP5JjPv7RXH9jPMzP3P7P95X+PmgfmWGMZ2Wb29jtkgPGeHpKkDFesM/8+vaWIcZ4ac4UlN6NX9XosDFu5Znfq44N+0qM+V5eIAVKhdmWUj/ILrYM/YFEf0B/IHl/f1CYY/4su4vDOvtwpT6qHkmIC37++Wf169dP+/fvV25urnr37q3Q0FBNnjxZOTk5evnll6u7iQAAAECNw5oQFzz44IPq0KGD0tPTFRT067cf1113nb744otqbBkAAMCFiTUhnoGREBesWrVKX3/9tQICAoo836BBAx06dKiaWgUAAHDhYk2IZyAJcYHD4VBh4flzVA8ePKjQ0NBqaBEAAMCFjTUhnoHpWC7o3bu3pk6d6vzZZrMpMzNTTz/9tK655prqaxgAAABQgzES4oIpU6boqquuUsuWLZWTk6OhQ4dq165dio6O1rvvvlvdzQMAALjgMB3LM5CEuCAhIUGbN2/Wu+++q2+//VYOh0MjR47ULbfcUmShOgAAANyD6ViegelYLgoKCtLtt9+u6dOna8aMGbrjjjsqlIB8+eWXGjhwoBISEmSz2fThhx8WiY8YMUI2m63Io1OnTkXK5ObmavTo0YqOjlatWrU0aNAgHTxY9N7y6enpGjZsmMLDwxUeHq5hw4bp5MmT5W4vAABATcTdsTwDIyEuOnTokL7++msdPXpUDkfRjfseeOCBMh8nKytLbdu21Z///GfdcMMNxZbp16+fZs+e7fz593flGjNmjD7++GPNmzdPUVFReuihhzRgwABt3LhRvr6+kqShQ4fq4MGDSk5OlnR2d/dhw4bp448/LnNbAQAAAFeQhLhg9uzZuueeexQQEKCoqCjZbL9mzjabrVxJSP/+/dW/f39jGbvdrri4uGJjGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fbVjxw4lJydrzZo16tixoyTptddeU+fOnbVz5041a9as2GPn5uYqNzfX+fOpU6fKfF4AAADuZP3ycKU+qh5JiAv++te/6q9//asee+wx+fhU/cy2FStWKCYmRrVr11b37t31z3/+UzExMZKkjRs3Kj8/X3369HGWT0hIUFJSklavXq2+ffvqm2++UXh4uDMBkaROnTopPDxcq1evLjEJmTRpkv72t7+d93ytsFyFBBT/UT12qpbxXN4ccNAYtwX4GuNlcTzV3IZIu7mb2bIn1nz8PHMbN5/IMcZ7xduN8bd21DfGO0ZmGuOS1DzU/BF/ZZfDGD+V72+MRwaY49H2PGN8d1aAMX66wNz+fgnHjXFJ+vZ4bWN812nzazySmGGMR8RnG+MfLmxkjA/ovNcY9wk2hnUiL9JcQFLnBxubCxw2X8czK46WGAsqlGySfHwshYTnFluG/oD+QKI/kLy/P8jNyy/19d3BkmtTqliY7h6sCXHBmTNn9Mc//tEtCUj//v319ttva9myZXr++ee1fv16XX311c4RitTUVAUEBCgiIqJIvdjYWKWmpjrLnEtafismJsZZpjiPPfaYMjIynI8DBw5U4pkBAABUHkclPFD1GAlxwciRI/V///d/evTRR6v8tW6++Wbn/yclJalDhw5q0KCBPv30U11//fUl1rMs67xpYqWV+T273S673fwtHQAAAFBWJCEumDRpkgYMGKDk5GS1bt1a/v5Fh6JfeOGFKnvt+Ph4NWjQQLt27ZIkxcXFKS8vT+np6UVGQ44ePaouXbo4yxw5cuS8Y6WlpSk21jzVAAAAwBNYlk2WK9OxuDuWW5CEuGDixIn6/PPPnWspShtxqEzHjx/XgQMHFB8fL0lq3769/P39tWTJEg0ZMkSSlJKSoq1bt2ry5MmSpM6dOysjI0Pr1q3T5ZdfLklau3atMjIynIkKAACAJ3N1ShXTsdyDJMQFL7zwgl5//XWNGDHC5WNlZmbqp59+cv68d+9ebd68WZGRkYqMjNSECRN0ww03KD4+Xvv27dPjjz+u6OhoXXfddZKk8PBwjRw5Ug899JCioqIUGRmp8ePHq3Xr1s67ZbVo0UL9+vXTnXfeqVdeeUXS2Vv0DhgwoMRF6QAAAEBlY2G6C+x2u7p27Vopx9qwYYPatWundu3aSZLGjRundu3a6a9//at8fX21ZcsWDR48WBdffLGGDx+uiy++WN98841CQ0Odx5gyZYquvfZaDRkyRF27dlVwcLA+/vhj5x4hkvT222+rdevW6tOnj/r06aM2bdrozTffrJRzAAAAqG7ndkx35VEepW04/Vt33323bDabpk6dWuT5smw47W0YCXHBgw8+qGnTpumll15y+Vg9evSQZZX8rv/8889LPUZgYKCmTZumadOmlVgmMjJSb731VoXaCAAAUNNZsrl0m93y1i3LhtOS9OGHH2rt2rVKSEg4L1aWDae9DUmIC9atW6dly5bpk08+UatWrc5bmD5//vxqahkAAMCFqSKjGb+vXx5l2XD60KFDGjVqlD7//HP94Q9/KBIry4bT3ogkxAW1a9c23h4XAAAAnunUqVNFfq7olgUOh0PDhg3Tww8/rFatWp0XL8uG096IJMQFs2fPru4mAAAA4DcqazpWYmJikeeffvppTZgwodzHe/bZZ+Xn56cHHnig2HhZNpz2RiQhqLDDqeE65Vf8NwItux431l217Pz5kL8V+nO+MR5pzzU3TtInP8cZ4zc2SjHG39gVb4wHl/LpCS5lDmdCUIEx/sye/cZ4l6g65gZIWnUsyBhvEm4ec37x4ExjvMBxjzE+8iLz7ynQx/z6sYGFxviWE+HGuCTF2s3vpfQ88+8p5MYG5hfIOGMMx23NMcY3bTa/TzsX/2+WU99ah8wFJFnxVxjjuf+3wxg/k+5fYizwl3tZFhb66ODh2sWWoT+gP5DoDyTv7w+y812YA1WJKms61oEDBxQWFuZ8viKjIBs3btSLL76ob7/9ttzbN5S2mbSnIwkpp0svvVRffPGFIiIi1K5dO+Ob49tvv3VjywAAAFBZSUhYWFiRJKQivvrqKx09elT169d3PldYWKiHHnpIU6dO1b59+8q04bQ3Igkpp8GDBzsz4WuvvbZ6GwMAAIAaa9iwYc7F5uf07dtXw4YN05///GdJZdtw2huRhJTT008/rdtvv10vvviinn766epuDgAAAH7D3bfoNW04Xb9+fUVFRRUp7+/vr7i4OOdG0WXZcNobsVlhBcydO1fZ2dnV3QwAAAD8juXiRoWGbduKZdpwuqzKsuG0t2EkpAJMmwoCAACg+jh+ebhSvzxK23D69/bt23fec2XZcNrbMBJSQd58twIAAACgKjESUkEXX3xxqYnIiRMn3NQaAAAASJJl2WRZLqwJcaEuyo4kpIL+9re/KTy89HuSAwAAwH3cPR0LFUMSUkF//OMfFRMTU93NAAAAADwOSUgFsB4EAACgZqqszQpRtUhCKoC7Y50VE5mpUP+8YmN+Dc07jLaMP2aMf7M/zhjv1viwuXGS2nQ6aozvWBdtjLcIKzDG6waZb9O8Pi3IGN+U7m+MXx7YyBj/KbP0AeNu0eY2xpZyDhEB9xrj/ePTjfGFhyKM8ZsbphnjjbudNsbXL6ljjEtSTK0zxnj3rgeMcceP5t/jlg9rGePdJpinbe5+7ogxXrAjyxjfttx8jSWplb4yxn2CzfWX7qpXYmxwga+CJfn4OBQbVfzvi/6A/kCiP5C8vz84U5hb6uu7g/XLw5X6qHokIRXgcDBbEAAAoCY6OxJS8VkrjIS4B7foBQAAAOBWjIQAAADAazAdyzOQhAAAAMBrsDDdM5CEAAAAwGuwT4hnYE0IAAAAALdiJAQAAABew7LOPlypj6pHEgIAAACvYckmhyp+i17LhbooO5IQAAAAeA1GQjwDa0IAAAAAuBUjIaiwqEfbKywkqNhY/jurS6kdYIy2jko3xjMyin/dIvaVXsSkblC2MR5T64wxfmMDcxvf2JNjjN/UwPzx3HW69I/vD6fMZfrHFxjj/qV8TbH2eG1j/IFOu43xoHjzPUiWfZZojPcZk2uMS9KxBebf438/b2KMH842X4S7mh82xn+cnGaM1292yhj/cGEjY7xF7QxjXJJ8apnfBy/Oa2yM39Gh5N9joH/h2dcIC1D005cXW4b+gP5Aoj+QvL8/OJWXJ31fahOqHHfH8gwkIQAAAPAa7BPiGUhCAAAA4DXYMd0zsCYEAAAAgFsxEgIAAACvwXQsz0ASAgAAAK/BLXo9A9OxAAAAALgVIyEAAADwGtyi1zOQhAAAAMBrsCbEM5CEAAAAwGtwi17PwJoQAAAAAG7FSAgq7Nk/pSnQN7DYWMfIesa6ve84ZYz7LjljjP/3u4bGuCRdWjvHGA/2KzDGt5+qZYwfTAkzxj88sdsYf6VVHWN8UUrx1/aclmH5xrgkbTpp/ogfPGN+jfVp5muUUMt8/DFLGhnjU3vvNcYPZgcY4/+aYG6/JD36rPkYUX8rNMbv/MNPxnh2ivm7nPAbEozxH/9jDOvGv5u/k1v1T7v5AJJ0Tz9j+MGs94zxnJ9L/17w9HGHpl57tNgY/QH9gUR/IHl/f+BbQ24rxXQsz0ASAgAAAK9hySZLNpfqo+qRhAAAAMBrWHJtNIOBEPdgTQgAAAAAt2IkBAAAAF6DNSGegSQEAAAAXoNb9HoGkhAAAAB4DUZCPANrQgAAAAC4FSMhAAAA8BrWL/+5Uh9VjyQEAAAAXoPpWJ6B6VgAAAAA3IqRkBriyy+/1L///W9t3LhRKSkpWrBgga699lpn3LIs/e1vf9Orr76q9PR0dezYUf/5z3/UqlUrZ5nc3FyNHz9e7777rrKzs9WzZ0/NmDFD9erVc5ZJT0/XAw88oIULF0qSBg0apGnTpql27drlbvPo7rsVFhBQbOyzDY2Mdb+eE2yMB/rajfGbGh4xN05SoD3fGP98X4Ixnu8wH79NbfPxH+luPsDwDwON8ea1za//9bHSP76jm6cZ474+5jYuTY0xxq+sk2eMh/sXGOPvbW5sjDcNyTbG+zY8YYxL0rZpQcb4ppNRxvjxT5sY4w1rma/BJa+bfwcN25nPUbXijeGY4JPm+pIKnnnHGPeLMX/efvgpvMRY2wIfBUgKsRfooat3FVuG/oD+QKI/kLy/P8gsyC319d2Bu2N5BkZCaoisrCy1bdtW06dPLzY+efJkvfDCC5o+fbrWr1+vuLg49e7dW6dPn3aWGTNmjBYsWKB58+Zp1apVyszM1IABA1RYWOgsM3ToUG3evFnJyclKTk7W5s2bNWzYsCo/PwAAAHc4Nx3LlQeqHiMhNUT//v3Vv3//YmOWZWnq1Kl64okndP3110uS5s6dq9jYWL3zzju6++67lZGRoVmzZunNN99Ur169JElvvfWWEhMTtXTpUvXt21c7duxQcnKy1qxZo44dO0qSXnvtNXXu3Fk7d+5Us2bNin393Nxc5eb++u3GqVOnKvPUAQAAKo1lnX24Uh9Vj5EQD7B3716lpqaqT58+zufsdru6d++u1atXS5I2btyo/Pz8ImUSEhKUlJTkLPPNN98oPDzcmYBIUqdOnRQeHu4sU5xJkyYpPDzc+UhMTKzsUwQAAMAFhCTEA6SmpkqSYmNjizwfGxvrjKWmpiogIEARERHGMjEx58/pjYmJcZYpzmOPPaaMjAzn48CBAy6dDwAAQFVxVMIDVY/pWB7EZrMV+dmyrPOe+73flymufGnHsdvtstvNC9UAAABqAm7R6xkYCfEAcXFxknTeaMXRo0edoyNxcXHKy8tTenq6scyRI+ffRSYtLe28URYAAACPZP26LqQiD26P5R4kIR6gUaNGiouL05IlS5zP5eXlaeXKlerSpYskqX379vL39y9SJiUlRVu3bnWW6dy5szIyMrRu3TpnmbVr1yojI8NZBgAAAKhqTMeqITIzM/XTTz85f967d682b96syMhI1a9fX2PGjNHEiRPVtGlTNW3aVBMnTlRwcLCGDh0qSQoPD9fIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOKdsQAAADyJq+s6WBPiHiQhNcSGDRt01VVXOX8eN26cJGn48OGaM2eOHnnkEWVnZ+u+++5zbla4ePFihYaGOutMmTJFfn5+GjJkiHOzwjlz5sjX19dZ5u2339YDDzzgvIvWoEGDStybBAAAwNNwi17PYLMsLjXK59SpUwoPD9fLrf+ioBJ2Mn5zb47xGBPbmnfOTYzOMMb3HI0wxiWp09BMY3zYBPPuv0kRvsZ49zqnjfFv00OM8R5x5t19H9lo3kW6fi3zDsuSlBBsvnFB8tHjxvjYJiXvjCtJPS46aIwv/KG+Mf6HJub6n/5UzxgfNnCPMS5JhzfVMsaj4rKM8YBocxd54LswYzynwPxdT6vR5t9z4Q7zbuC+F5l3eJakba+Yd3Fu1MT8XvQ1XEL7Uy/KVjtSWUcy9EG/F4otQ39AfyDRH0je3x+cys1T7H/+p4yMDIWFma9FVTj398ntCY8pwKf0z0RJ8hw5ev3wpGo7jwsFa0IAAAAAuBXTsQAAAOA1LMuSKxN9mCTkHiQhAAAA8BrsE+IZSEIAAADgNVzd6oMcxD1YEwIAAADArRgJAQAAgNdgOpZnIAkBAACA1yAJ8QxMxwIAAADgVoyEAAAAwGucXZjuwi16K68pMCAJAQAAgNdgOpZnIAlBheU7bPKz2YqNzeyUaaxbr9UpY/zbdXHGeOOYdHPjJOVuzzXG72kaaowvSjHHX/whyBjvElP8tTln3+kQYzzUz9cYbxdpDEuSNp0w96Qtgs0H6XHRz8b4D4eijfH2kRnG+Fc/JxjjO0+bZ4we3RJojEvSR/vizQX2mcODG6aU+homgX4Fxnje6oPGeMAfWhjjr4/OK7UNjWqZ30stZow0xm2vv19y0P/c+9ymfAf9QUnoD+gPJO/vDwKyS399d7Cssw9X6qPqsSYEAAAAgFsxEgIAAACvYcmSw6U1IQyFuANJCAAAALwG07E8A0kIAAAAvIbjl4cr9VH1WBMCAAAAwK0YCQEAAIDXsCxLlgtzqlypi7JjJAQAAABe49w+Ia48yuPLL7/UwIEDlZCQIJvNpg8//NAZy8/P11/+8he1bt1atWrVUkJCgm677TYdPny4yDFyc3M1evRoRUdHq1atWho0aJAOHjTfstnTkYQAAADAazh+uTuWK4/yyMrKUtu2bTV9+vTzYmfOnNG3336rp556St9++63mz5+vH3/8UYMGDSpSbsyYMVqwYIHmzZunVatWKTMzUwMGDFBhYaFL16ImYzoWAAAA8DunThXdSNVut8tut59Xrn///urfv3+xxwgPD9eSJUuKPDdt2jRdfvnl2r9/v+rXr6+MjAzNmjVLb775pnr16iVJeuutt5SYmKilS5eqb9++lXRGNQsjIQAAAPAaln69TW+FHr8cJzExUeHh4c7HpEmTKqV9GRkZstlsql27tiRp48aNys/PV58+fZxlEhISlJSUpNWrV1fKa9ZEjISgwob02KMwe0CxsZw0c367dFV9Y7xbM/M8yOD6pQ+V7l1X2xhvXveYMR7qn2+Mf3Ag0hjvGW8+/tdHzfVHNcsyxs8UlP7xvTQi1xg/khNojP97fUNjvFmo+UaGF4eeMcZ7t/zZGM/eYn79Y6dqGeOS9MBfjhvjf/5LhDE+6nbz+8Cnrfm9nPHGbmM8YHhXYzx31tfGeLfY2sa4JDV960pjfHufBcb4RS0ySowF3mBJtaRge4Fu6VX8udIf0B9I9AeS9/cHuXl5pb6+O1RkStXv60vSgQMHFBYW5ny+uFGQ8srJydGjjz6qoUOHOo+dmpqqgIAARUQUff/FxsYqNTXV5desqUhCAAAA4DV+O5pR0fqSFBYWViQJcVV+fr7++Mc/yuFwaMaMGWVohyWbzVZpr1/TMB0LAAAAqEL5+fkaMmSI9u7dqyVLlhRJbuLi4pSXl6f09PQidY4eParY2Fh3N9VtSEIAAADgNdx9d6zSnEtAdu3apaVLlyoqKqpIvH379vL39y+ygD0lJUVbt25Vly5dKrUtNQnTsQAAAOA1HJaLa0LKuVlhZmamfvrpJ+fPe/fu1ebNmxUZGamEhATdeOON+vbbb/XJJ5+osLDQuc4jMjJSAQEBCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3IgkBAAAAKmjDhg266qqrnD+PGzdOkjR8+HBNmDBBCxculCRdcsklReotX75cPXr0kCRNmTJFfn5+GjJkiLKzs9WzZ0/NmTNHvr6+bjmH6kASAgAAAK9h/fKfK/XLo0ePHrIMoyem2DmBgYGaNm2apk2bVq7X9mQkIQAAAPAaliTzDaNLr4+qRxICAAAAr1FZ+4SganF3LAAAAABuxUgIAAAAvIZlubgmpJx3x0LFkISgwuytI2QPshcb+/a1AGPdP9yfaYwX7DPvEOpbJ9jcOEnhodnG+K7DUcb4P7aaPx4HbLuN8VxHY2N83YkMY3xia/NA5RdHA41xSeoXZ54V++4+8zlGFP/rdZr1c7oxnuNj/h0MT7/IGM8v5d+BFpcfMxeQ9N3saGP8tXv3GeNWvvn3sOHv5t9jh+faGuNv3pJijB/KbmqMjxu8yxiXJNvG743xVn81b4aV9+mJkoPnLo+/j+xtI4stQn9AfyDRH0je3x/41JAbOTEdyzOQhAAAAMBrkIR4BtaEAAAAAHArRkIAAADgNaxfxkJcqY+qRxICAAAAr8F0LM9AEgIAAACvQRLiGVgTAgAAAMCtGAkBAACA13D88p8r9VH1SEIAAADgNSybJcvmysJ0pmO5A9OxAAAAALgVIyEAAADwGpaLC9MZCXEPkhBUWMbyDFkBAcXGdpxqZKy7cmKoMT6qa7ox7peWaW6cpG/2Nyi1jImvzdwJBVrBxnj9YHN9P1ttY/zpLeZzvCLGGJYkvbKr+N/POY8lnTLGVx6NMMaHNzJ3Id+fTDDGH933qTE+v3V3YzzthyBjXJJaDzhtjJ/+rrR/bAqN0XyHeUD50D9+MMZvGWF+9TPf5xjj676ONx9Aku9q8zE63njEGH/5k6Ylxm4f66fQcMnKdejU0pPFlqE/oD+Q6A8k7+8PcgrNx3YXhxyysSakxiMJAQAAgNdgs0LPwJoQAAAAAG7FSAgAAAC8hsPmkM2Fu2MxHcs9GAnxIBMmTJDNZivyiIuLc8Yty9KECROUkJCgoKAg9ejRQ9u2bStyjNzcXI0ePVrR0dGqVauWBg0apIMHD7r7VAAAAKqEoxL+Q9UjCfEwrVq1UkpKivOxZcsWZ2zy5Ml64YUXNH36dK1fv15xcXHq3bu3Tp/+dSHemDFjtGDBAs2bN0+rVq1SZmamBgwYoMJC82I7AAAAT0AS4hmYjuVh/Pz8iox+nGNZlqZOnaonnnhC119/vSRp7ty5io2N1TvvvKO7775bGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fYt9zdzcXOXm5jp/PnXKfAcVAAAAwISREA+za9cuJSQkqFGjRvrjH/+oPXv2SJL27t2r1NRU9enTx1nWbrere/fuWr16tSRp48aNys/PL1ImISFBSUlJzjLFmTRpksLDw52PxMTEKjo7AAAA15y7O5YrD1Q9khAP0rFjR73xxhv6/PPP9dprryk1NVVdunTR8ePHlZqaKkmKjY0tUic2NtYZS01NVUBAgCIiIkosU5zHHntMGRkZzseBAwcq+cwAAAAqh0OFLj9Q9ZiO5UH69+/v/P/WrVurc+fOuuiiizR37lx16tRJkmSz2YrUsSzrvOd+r7QydrtddrvdhZYDAAC4h/XLnumu1EfVYyTEg9WqVUutW7fWrl27nOtEfj+icfToUefoSFxcnPLy8pSenl5iGQAAAKCqMRLiwXJzc7Vjxw5dccUVatSokeLi4rRkyRK1a9dOkpSXl6eVK1fq2WeflSS1b99e/v7+WrJkiYYMGSJJSklJ0datWzV58uRyv35gtEOB9uK/aRjSYY+x7iebGhrju/dEGeOtrko3xiXph9MBxrh/KSl4VAnnds4HIzON8Y+So43xrSfNr98uspYxHhtY+jc1X+XnGuPTdtY2xnvFFRjjCw6a63evk22MP514jTE+fad5SPyN283Hl6SVH9Q1xiPt5mu063SoMX5Fg8Pm+kcijfG47GPG+PSvmxjjvWIzjHFJat4kzRhf9I55ndfNzfeXGAv2P/sesflIgXXoD0pCf0B/IHl/f3A6P0+P7iy1CVWOfUI8A0mIBxk/frwGDhyo+vXr6+jRo/rHP/6hU6dOafjw4bLZbBozZowmTpyopk2bqmnTppo4caKCg4M1dOhQSVJ4eLhGjhyphx56SFFRUYqMjNT48ePVunVr592yAAAAPJlDhbK5MNmHNSHuQRLiQQ4ePKg//elPOnbsmOrUqaNOnTppzZo1atCggSTpkUceUXZ2tu677z6lp6erY8eOWrx4sUJDf/3mZsqUKfLz89OQIUOUnZ2tnj17as6cOfL19a2u0wIAAKhErt7hipEQdyAJ8SDz5s0zxm02myZMmKAJEyaUWCYwMFDTpk3TtGnTKrl1AAAAQNmQhAAAAMBrOKxCuXLvpbP1UdVIQgAAAOA1XN1wkM0K3YNb9AIAAABwK0ZCAAAA4DUsFcpy4Xt2i7tjuQVJCAAAALzG2X0+2CekpiMJAQAAgNewZLm4JqT0zT/hOtaEAAAAAHArRkJQYVa+ZNmKj9X6q3kH9sibfzDGGyaeMMYdWaV/w/FAj13G+OKNDYzxQ2cCjPEe0yOM8X+0zDPG6wTWMsYH1T1pjJ/O9zfGJSnU13wO6bkFxnhsYL4x/smhEt4AvzgSZm7jpRGZxvhnh8xd1PdrYoxxSep6xSHzaywzvw9u/Lv5G7HnH6pvjI+9+6AxvuideGP8Lw+mGOPHV+Qa45K0cmuiMf6H8eb3quNwyd9X+QT88h6wJKuEw9Af0B9I9AeS9/cH9hwf6eNSm1DlLKtQlszvx9Lqo+qRhAAAAMBrsCbEM5CEAAAAwGucvTuWCyMh3B3LLVgTAgAAAMCtGAkBAACA17AsF3dMt5iO5Q4kIQAAAPAarAnxDCQhAAAA8BrcHcszsCYEAAAAgFsxEgIAAACvwY7pnoEkBAAAAF7j7MJ0V6ZjsSbEHZiOBQAAAMCtGAlBhZ1KscvyDyg2dmzkRmPdI7m1zfHUMGN834+hxrgkta171BhvHZVujM/bF2WMr3rOvHDtzr8GGeP+PuZvWlYfCzfGj+SU/i1PauGxUsuY5DtqGePNwn1LqW8+x3aXpBrjr0aar+He47WNcUlK+8F8jGuu/tkY/3l6iDHeJcocL0zLMca7Jx0wxtO/NF/j3Bx/Y1ySkqJPmAtkF/85Psd0Dj6Os9MWHA4p47C92DL0B/QHZ+vTH3h7f1CYm1fq67tHoYsTqliY7g4kIQAAAPAaZ6dTMR2rpiMJAQAAgNcgCfEMrAkBAAAA4FaMhAAAAMBrOOSQzZWREHZMdwuSEAAAAHgNpmN5BpIQAAAAeA3Lcu3uVq7WR9mwJgQAAACAWzESAgAAAK9hyZJcWNdhubjLCMqGJAQAAABew9U1HawJcQ+SEFRYZFKBwgKLn9EXmWfefThkk3lX1Sc2xBjjA+qW/i3Fd4fMx7jyMvPOtJftjzXG97xvbsOAuvnG+DfHzbvSbjph7gS/zz1sjEvSpozZxviAiEeM8X1nzG3cc9rcxksjzNfg+H7z7sUh4bnGeFO/Unb+lZRx2vwadZRtjDf4Z0tjvODRH4xx/64NjHG/feZdrEMigo1xBZl/R5JkXdLCXOCb74xhnxDDPxW/rP308Zei2hYUW4T+gP5Aoj+QvL8/8PGrGX+8k4R4BtaEAAAAAHArRkIAAADgNVzd54N9QtyDJAQAAABeg+lYnoEkBAAAAF6DJMQzsCYEAAAAgFsxEgIAAAAv4upIBiMh7sBICAAAALyGZTlcfpTHl19+qYEDByohIUE2m00ffvjh79pjacKECUpISFBQUJB69Oihbdu2FSmTm5ur0aNHKzo6WrVq1dKgQYN08OBBVy9FjUYSAgAAAFRQVlaW2rZtq+nTpxcbnzx5sl544QVNnz5d69evV1xcnHr37q3Tp087y4wZM0YLFizQvHnztGrVKmVmZmrAgAEqLCx012m4HdOxAAAA4DXcfYve/v37q3///sUfy7I0depUPfHEE7r++uslSXPnzlVsbKzeeecd3X333crIyNCsWbP05ptvqlevXpKkt956S4mJiVq6dKn69u3r0vnUVIyEAAAAwGtYluXidCxLknTq1Kkij9zc3HK3Ze/evUpNTVWfPn2cz9ntdnXv3l2rV6+WJG3cuFH5+flFyiQkJCgpKclZxhsxEoIKy0stVF5A8cOEQY/1NtbNvXO9MR4T5GuMDxle+jzJRe/UMcZ9w23G+JkC8/EfWBtmjC+462dj/P05jY3xaxMtcwMOJZjjkm5q9pQx3iTEfJJXN91njPc4HmKMLzkcbYz3aZ1jjN/7+kXGeFSg+XcoSTclZhjjfglB5gMcSzeGf0ivbYw33nfMGP/+f4HGePNLjxrjWzbEGOOSdCRnpzEe7OtvjF91T2jJQd+z32VZhVLeYfqDktAf0B9I3t8f+GaX/4/0qlEoqfT3Q8nOft4SExOLPPv0009rwoQJ5TpSamqqJCk2NrbI87Gxsfr555+dZQICAhQREXFemXP1vRFJCAAAAPA7Bw4cUFjYr18w2O32Ch/LZiuaFFmWdd5zv1eWMp6M6VgAAADwGpV1d6ywsLAij4okIXFxcZJ03ojG0aNHnaMjcXFxysvLU3p6eollvBFJCAAAALyIoxIelaNRo0aKi4vTkiVLnM/l5eVp5cqV6tKliySpffv28vf3L1ImJSVFW7dudZbxRkzHAgAAgPewHHJpTYhVyhqs38nMzNRPP/3k/Hnv3r3avHmzIiMjVb9+fY0ZM0YTJ05U06ZN1bRpU02cOFHBwcEaOnSoJCk8PFwjR47UQw89pKioKEVGRmr8+PFq3bq1825Z3ogkBAAAAKigDRs26KqrrnL+PG7cOEnS8OHDNWfOHD3yyCPKzs7Wfffdp/T0dHXs2FGLFy9WaOivi/ynTJkiPz8/DRkyRNnZ2erZs6fmzJkjX1/zjTk8GUkIAAAAvIal8o1kuFq/R48eztv6Fsdms2nChAnGO2sFBgZq2rRpmjZtWrle25ORhAAAAMCLuDgdy8UkBmVDEgIAAAAvYrmYR5CEuAN3xwIAAADgVoyEoNzOzXs8nZdfYpn809nGY2QW5BnjuQ7zzrmncsz1JelMoXnn1lO55mPkFJrbkG+5dvx8h7n+mULzNzF5jtK/Q8gpLGUX6MLid7g+53S++RxK+z1ml3INS7tGeaW8D3IdpQ+3ZxaU8nsq5b3kk2Vuw5lCc/1T2aVdQ/M5lHaNSjs/STpTyvvAsszvg1OGXZBDLUs2ne0XTuUV31b6A/oDif5A8v7+4Nz5mdZHuIfl8roQVD2bVf3vFHiYPXv26KKLLqruZgAAgBpo9+7daty4sdtfNycnR40aNTpvY8CKiIuL0969exUYGFgJLUNxSEJQbidPnlRERIT279+v8PDw6m5OtTh16pQSExN14MABhYWFVXdzqgXXgGsgcQ0kroHENZC4BpKUkZGh+vXrKz09XbVr166WNuTk5CivhFHZ8ggICCABqWJMx0K5+ficHfYPDw+/YDvac8LCwrgGXAOugbgGEtdA4hpIXAPp178TqkNgYCDJg4dgYToAAAAAtyIJAQAAAOBWJCEoN7vdrqefflp2u726m1JtuAZcA4lrIHENJK6BxDWQuAYS1wDlw8J0AAAAAG7FSAgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEGjGjBlq1KiRAgMD1b59e3311VfG8itXrlT79u0VGBioxo0b6+WXXz6vzAcffKCWLVvKbrerZcuWWrBgQVU1v1KU5xrMnz9fvXv3Vp06dRQWFqbOnTvr888/L1Jmzpw5stls5z1ycnKq+lQqrDzXYMWKFcWe3w8//FCknDe/D0aMGFHsNWjVqpWzjKe9D7788ksNHDhQCQkJstls+vDDD0ut4239QXmvgTf2B+W9Bt7YH5T3GnhbfzBp0iRddtllCg0NVUxMjK699lrt3Lmz1Hre1h+gapGEXODee+89jRkzRk888YQ2bdqkK664Qv3799f+/fuLLb93715dc801uuKKK7Rp0yY9/vjjeuCBB/TBBx84y3zzzTe6+eabNWzYMH333XcaNmyYhgwZorVr17rrtMqlvNfgyy+/VO/evfXZZ59p48aNuuqqqzRw4EBt2rSpSLmwsDClpKQUeQQGBrrjlMqtvNfgnJ07dxY5v6ZNmzpj3v4+ePHFF4uc+4EDBxQZGambbrqpSDlPeh9kZWWpbdu2mj59epnKe2N/UN5r4I39QXmvwTne1B+U9xp4W3+wcuVK3X///VqzZo2WLFmigoIC9enTR1lZWSXW8cb+AFXMwgXt8ssvt+65554izzVv3tx69NFHiy3/yCOPWM2bNy/y3N1332116tTJ+fOQIUOsfv36FSnTt29f649//GMltbpylfcaFKdly5bW3/72N+fPs2fPtsLDwyuriVWuvNdg+fLlliQrPT29xGNeaO+DBQsWWDabzdq3b5/zOU97H/yWJGvBggXGMt7YH/xWWa5BcTy9P/itslwDb+wPfqsi7wNv6w+OHj1qSbJWrlxZYhlv7w9Q+RgJuYDl5eVp48aN6tOnT5Hn+/Tpo9WrVxdb55tvvjmvfN++fbVhwwbl5+cby5R0zOpUkWvwew6HQ6dPn1ZkZGSR5zMzM9WgQQPVq1dPAwYMOO+b0ZrClWvQrl07xcfHq2fPnlq+fHmR2IX2Ppg1a5Z69eqlBg0aFHneU94HFeFt/UFl8PT+wBXe0h9UBm/rDzIyMiTpvPf1b9EfoLxIQi5gx44dU2FhoWJjY4s8Hxsbq9TU1GLrpKamFlu+oKBAx44dM5Yp6ZjVqSLX4Peef/55ZWVlaciQIc7nmjdvrjlz5mjhwoV69913FRgYqK5du2rXrl2V2v7KUJFrEB8fr1dffVUffPCB5s+fr2bNmqlnz5768ssvnWUupPdBSkqKFi1apDvuuKPI8570PqgIb+sPKoOn9wcV4W39gau8rT+wLEvjxo1Tt27dlJSUVGI5+gOUl191NwDVz2azFfnZsqzzniut/O+fL+8xq1tF2/vuu+9qwoQJ+uijjxQTE+N8vlOnTurUqZPz565du+rSSy/VtGnT9NJLL1VewytRea5Bs2bN1KxZM+fPnTt31oEDB/Tcc8/pyiuvrNAxa4KKtnfOnDmqXbu2rr322iLPe+L7oLy8sT+oKG/qD8rDW/uDivK2/mDUqFH6/vvvtWrVqlLL0h+gPBgJuYBFR0fL19f3vG8gjh49et43FefExcUVW97Pz09RUVHGMiUdszpV5Bqc895772nkyJH63//+p169ehnL+vj46LLLLquR33i5cg1+q1OnTkXO70J5H1iWpddff13Dhg1TQECAsWxNfh9UhLf1B67wlv6gsnhyf+AKb+sPRo8erYULF2r58uWqV6+esSz9AcqLJOQCFhAQoPbt22vJkiVFnl+yZIm6dOlSbJ3OnTufV37x4sXq0KGD/P39jWVKOmZ1qsg1kM5+4zlixAi98847+sMf/lDq61iWpc2bNys+Pt7lNle2il6D39u0aVOR87sQ3gfS2bvI/PTTTxo5cmSpr1OT3wcV4W39QUV5U39QWTy5P3CFt/QHlmVp1KhRmj9/vpYtW6ZGjRqVWof+AOXm3nXwqGnmzZtn+fv7W7NmzbK2b99ujRkzxqpVq5bzjh6PPvqoNWzYMGf5PXv2WMHBwdbYsWOt7du3W7NmzbL8/f2t999/31nm66+/tnx9fa1//etf1o4dO6x//etflp+fn7VmzRq3n19ZlPcavPPOO5afn5/1n//8x0pJSXE+Tp486SwzYcIEKzk52dq9e7e1adMm689//rPl5+dnrV271u3nVxblvQZTpkyxFixYYP3444/W1q1brUcffdSSZH3wwQfOMt7+Pjjn1ltvtTp27FjsMT3tfXD69Glr06ZN1qZNmyxJ1gsvvGBt2rTJ+vnnny3LujD6g/JeA2/sD8p7DbyxPyjvNTjHW/qDe++91woPD7dWrFhR5H195swZZ5kLoT9A1SIJgfWf//zHatCggRUQEGBdeumlRW7BN3z4cKt79+5Fyq9YscJq166dFRAQYDVs2NCaOXPmecf8v//7P6tZs2aWv7+/1bx58yL/GNVE5bkG3bt3tySd9xg+fLizzJgxY6z69etbAQEBVp06daw+ffpYq1evduMZlV95rsGzzz5rXXTRRVZgYKAVERFhdevWzfr000/PO6Y3vw8sy7JOnjxpBQUFWa+++mqxx/O098G5W62W9N6+EPqD8l4Db+wPynsNvLE/qMhnwZv6g+LOXZI1e/ZsZ5kLoT9A1bJZ1i+rhgAAAADADVgTAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAEARK1askM1m08mTJ6u7KQAAL0USAgAXoBEjRshms8lms8nf31+NGzfW+PHjlZWVVd1NAwBcAPyquwEAgOrRr18/zZ49W/n5+frqq690xx13KCsrSzfffHN1Nw0A4OUYCQGAC5TdbldcXJwSExM1dOhQ3XLLLfrwww+d8Y0bN6pDhw4KDg5Wly5dtHPnTmds9+7dGjx4sGJjYxUSEqLLLrtMS5cuLXL8GTNmqGnTpgoMDFRsbKxuvPFGZ8yyLE2ePFmNGzdWUFCQ2rZtq/fff7/KzxkAUDOQhAAAJElBQUHKz893/vzEE0/o+eef14YNG+Tn56fbb7/dGcvMzNQ111yjpUuXatOmTerbt68GDhyo/fv3S5I2bNigBx54QM8884x27typ5ORkXXnllc76Tz75pGbPnq2ZM2dq27ZtGjt2rG699VatXLnSfScMAKg2NsuyrOpuBADAvUaMGKGTJ086Rz7WrVuna665Rj179tS9996rq666SkuXLlXPnj0lSZ999pn+8Ic/KDs7W4GBgcUes1WrVrr33ns1atQozZ8/X3/+85918OBBhYaGFimXlZWl6OhoLVu2TJ07d3Y+f8cdd+jMmTN65513quakAQA1BmtCAOAC9cknnygkJEQFBQXKz8/X4MGDNW3aNG3fvl2S1KZNG2fZ+Ph4SdLRo0dVv359ZWVl6W9/+5s++eQTHT58WAUFBcrOznaOhPTu3VsNGjRQ48aN1a9fP/Xr10/XXXedgoODtX37duXk5Kh3795F2pOXl6d27dq56ewBANWJJAQALlBXXXWVZs6cKX9/fyUkJMjf31+SnEnIuZ8lyWazSZIcDock6eGHH9bnn3+u5557Tk2aNFFQUJBuvPFG5eXlSZJCQ0P17bffasWKFVq8eLH++te/asKECVq/fr3zGJ9++qnq1q1bpE12u71qTxoAUCOQhADABapWrVpq0qRJhep+9dVXGjFihK677jpJZ9eI7Nu3r0gZPz8/9erVS7169dLTTz+t2rVra9myZerdu7fsdrv279+v7t27u3oaAAAPRBICACi3Jk2aaP78+Ro4cKBsNpueeuop5wiHdHaq1549e3TllVcqIiJCn332mRwOh5o1a6bQ0FCNHz9eY8eOlcPhULdu3XTq1CmtXr1aISEhGj58eDWeGQDAHUhCAADlNmXKFN1+++3q0qWLoqOj9Ze//EWnTp1yxmvXrq358+drwoQJysnJUdOmTfXuu++qVatWkqS///3viomJ0aRJk7Rnzx7Vrl1bl156qR5//PHqOiUAgBtxdywAAAAAbsU+IQAAAADciulYKBfLspSfn6/CwkL5+vrK39/fedccAAAAoCxIQlAm+fn5OnLkiA4dOqTs7Gzn80FBQapbt65iY2OL3M4TAAAAKMkFtSZkwoQJ+vDDD7V58+bqbkq16dGjhy655BJNnTq1zHVOnDihbdu2yeFwKDo6WnXq1JGfn58KCgqUlpamY8eOycfHR61atVJkZGTVNR4AAABeocavCRkxYoRsNptsNpv8/f0VGxur3r176/XXXy9yO8iKHvvaa6+tnIZ6qRMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDAIAqNGPGDDVq1EiBgYFq3769vvrqq+puEjyQR0zH6tevn2bPnq3CwkIdOXJEycnJevDBB/X+++9r4cKF8vPziNPwOPn5+dq2bZsiIiKUlJQkH5/ic1a73a6kpCRt3bpVW7ZsUURERIllAQBAzZGUlFSu8u+9957GjBmjGTNmqGvXrnrllVfUv39/bd++XfXr16+iVsIbecRfina7XXFxcapbt67zPvIfffSRFi1apDlz5jjLZWRk6K677lJMTIzCwsJ09dVX67vvviv2mBMmTNDcuXP10UcfOUdaVqxYIUn6y1/+oosvvljBwcFq3LixnnrqKeXn55fYvn379slms2nevHnq0qWLAgMD1apVK+fxztm+fbuuueYahYSEKDY2VsOGDdOxY8ec8R49emjUqFEaNWqUateuraioKD355JP67Yy59PR03XbbbYqIiFBwcLD69++vXbt2FXmdr7/+Wt27d1dwcLAiIiLUt29fpaenO+MOh0OPPPKIIiMjFRcXpwkTJhR7XkeOHHFuLlZaUuHj46NmzZrJsizl5uYaywIAAM/0wgsvaOTIkbrjjjvUokULTZ06VYmJiZo5c2Z1Nw0exiOSkOJcffXVatu2rebPny/p7F2b/vCHPyg1NVWfffaZNm7cqEsvvVQ9e/YsdorQ+PHjNWTIEPXr108pKSlKSUlRly5dJEmhoaGaM2eOtm/frhdffFGvvfaapkyZUmqbHn74YT300EPatGmTunTpokGDBun48eOSpJSUFHXv3l2XXHKJNmzYoOTkZB05ckRDhgwpcoy5c+fKz89Pa9eu1UsvvaQpU6bov//9rzM+YsQIbdiwQQsXLtQ333wjy7J0zTXXOJOkzZs3q2fPnmrVqpW++eYbrVq1SgMHDlRhYWGR16hVq5bWrl2ryZMn65lnntGSJUuKtMOyLB06dEjR0dGy2+1l+ZXIbrerTp06ysnJ0QW01AgAgAtCXl6eNm7cqD59+hR5vk+fPlq9enU1tQqeyqPnMTVv3lzff/+9JGn58uXasmWLjh496vyj+bnnntOHH36o999/X3fddVeRuiEhIQoKClJubq7i4uKKxJ588knn/zds2FAPPfSQ3nvvPT3yyCPG9owaNUo33HCDJGnmzJlKTk7WrFmz9Mgjj2jmzJm69NJLNXHiRGf5119/XYmJifrxxx918cUXS5ISExM1ZcoU2Ww2NWvWTFu2bNGUKVN05513ateuXVq4cKG+/vprZ8L09ttvKzExUR9++KFuuukmTZ48WR06dNCMGTOcr3Nuh+Jz2rRpo6efflqS1LRpU02fPl1ffPGFevfu7SyTn5+v7OxsNWrUyHjOv1enTh2lpaXJsixu3QsAgBc5duyYCgsLFRsbW+T52NhYpaamVlOr4Kk8Ogn57R+6GzduVGZmpqKiooqUyc7O1u7du8t13Pfff19Tp07VTz/9pMzMTBUUFCgsLKzUep07d3b+v5+fnzp06KAdO3Y427d8+XKFhIScV2/37t3OJKRTp05F/njv3Lmznn/+eRUWFmrHjh3y8/NTx44dnfGoqCg1a9bM+TqbN2/WTTfdZGxnmzZtivwcHx+vo0ePFnnu3MhJedfbnCvPSAgAAN7p918y8sUjKsKjk5AdO3Y4v6l3OByKj48/bx2GJNWuXbvMx1yzZo3++Mc/6m9/+5v69u2r8PBwzZs3T88//3yF2njuQ+lwODRw4EA9++yz55WJj48v07FK+sP+tx/+oKCgUo/z+/08bDbbeXca8/X1lSQVFBSUqW3nnCtPZwQAgHeJjo6Wr6/veaMeR48ePW90BCiNx64JWbZsmbZs2eKc/nTppZcqNTVVfn5+atKkSZFHdHR0sccICAgoslZCOruou0GDBnriiSfUoUMHNW3aVD///HOZ2rRmzRrn/xcUFGjjxo1q3ry5s33btm1Tw4YNz2tfrVq1ij3GuZ+bNm0qX19ftWzZUgUFBVq7dq0zfvz4cf34449q0aKFpLOjHF988UWZ2mvi7++voKAgpaWllateWlqafH19SUIAAPAyAQEBat++/XnrSJcsWeKcJg6UlUckIbm5uUpNTdWhQ4f07bffauLEiRo8eLAGDBig2267TZLUq1cvde7cWddee60+//xz7du3T6tXr9aTTz6pDRs2FHvchg0b6vvvv9fOnTt17Ngx5efnq0mTJtq/f7/mzZun3bt366WXXtKCBQvK1M7//Oc/WrBggX744Qfdf//9Sk9P1+233y5Juv/++3XixAn96U9/0rp167Rnzx4tXrxYt99+e5FE6MCBAxo3bpx27typd999V9OmTdODDz4o6ez6jcGDB+vOO+/UqlWr9N133+nWW29V3bp1NXjwYEnSY489pvXr1+u+++7T999/rx9++EEzZ84scheusrDZbKpbt66OHTtW5rtd5ebmKi0tTYGBgSQhAAB4oXHjxum///2vXn/9de3YsUNjx47V/v37dc8991R30+BhPCIJSU5OVnx8vBo2bKh+/fpp+fLleumll/TRRx85pw3ZbDZ99tlnuvLKK3X77bfr4osv1h//+Eft27evxCHCO++8U82aNVOHDh1Up04dff311xo8eLDGjh2rUaNG6ZJLLtHq1av11FNPlamd//rXv/Tss8+qbdu2+uqrr/TRRx85R2ESEhL09ddfq7CwUH379lVSUpIefPBBhYeHF7n97W233abs7Gxdfvnluv/++zV69Ogii+pnz56t9u3ba8CAAercubMsy9Jnn33mnGJ18cUXa/Hixfruu+90+eWXq3Pnzvroo48qtJdKbGysfHx8tHPnzlI3hnQ4HNq5c6dsNluZ76YFAAA8y80336ypU6fqmWee0SWXXKIvv/xSn332mRo0aFDdTYOHsVmsIHbZvn371KhRI23atEmXXHJJhY/To0cPXXLJJZo6dWqltc1V53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgAAwFN49MJ0VL3IyEi1bt1a27Zt05o1axQdHa06derIz89PBQUFSktL07Fjx+Tj40MCAgAAgDIhCUGpIiMj1alTJx05ckSHDh0qslg9KChIF110keLi4io05QsAAAAXHqZjoVwsy1JBQYEKCgrk5+cnPz8/FqEDAACgXEhCAAAAALiVR9wdCwAAAID3IAkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3AwAANYtlWcrPz1dhYaF8fX3l7+8vm81W3c0CAHgRkhAAgCQpPz9fR44c0aFDh5Sdne18PigoSHXr1lVsbKz8/f2rsYUAAG9hsyzLqu5GAACq14kTJ7Rt2zY5HA5FR0erTp068vPzU0FBgdLS0nTs2DH5+PioVatWioyMrO7mAgA8XLWuCenRo4fGjBlT6ce1LEt33XWXIiMjZbPZtHnzZre+PgB4khMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDqEYzZsxQo0aNFBgYqPbt2+urr76qlDqllamMY6DmKPd0rBEjRmju3LlnK/v5KTIyUm3atNGf/vQnjRgxQj4+Fc9revTooUsuuURTp06t8DEkKTk5WXPmzNGKFSvUuHFjRUdHu3S8ym7fl19+qX//+9/auHGjUlJStGDBAl177bXnlZsxY4b+/e9/KyUlRa1atdLUqVN1xRVXnFeuffv2ys3NPe/5xYsXKyEhochzhw4d0l/+8hctWrRI2dnZuvjiizVr1iy1b9++XOfQ8NFPy1UeQM0U7CdNuaqWYqMjlZSUVGIfbrfblZSUpK1bt2rLli2KiIhwqb8HUDMkJSWVq/x7772nMWPGaMaMGeratateeeUV9e/fX9u3b1f9+vUrXKe0MpVxDNQsFfoXpF+/fkpJSdG+ffu0aNEiXXXVVXrwwQc1YMAAFRQUVHYby2337t2Kj49Xly5dFBcXJz+/mrX0JSsrS23bttX06dNLLHPug/TEE09o06ZNuuKKK9S/f3/t37//vLIbN27U1q1bz3v8PgFJT09X165d5e/vr0WLFmn79u16/vnnVbt27co+RQAeomtdPwX4Si2aNys1qfDx8VGzZs1kWVaxX3wA8H4vvPCCRo4cqTvuuEMtWrTQ1KlTlZiYqJkzZ7pUp7QylXEM1CwVSkLsdrvi4uJUt25dXXrppXr88cf10UcfadGiRZozZ46ks1OiJk+erMaNGysoKEht27bV+++/X+IxR4wYoZUrV+rFF1+UzWaTzWbTvn37lJycrG7duql27dqKiorSgAEDtHv3buNxRo8erf3798tms6lhw4aSzv7hf9tttykkJETx8fF6/vnnz6ubm5urBx54QDExMQoMDFS3bt20fv16Y/t+Ly0tTXFxcZo4caLzubVr1yogIECLFy+WJPXv31//+Mc/dP3115d4HlXxQXr22WeVmJio2bNn6/LLL1fDhg3Vs2dPXXTRRRU+JgDP1rtBgOpE15Hdbi9Tebvdrjp16ignJ0csKQQuLHl5edq4caP69OlT5Pk+ffpo9erVFa5TWpnKOAZqnkobS7/66qvVtm1bzZ8/X5L05JNPavbs2Zo5c6a2bdumsWPH6tZbb9XKlSuLrf/iiy+qc+fOuvPOO5WSkqKUlBQlJiYqKytL48aN0/r16/XFF1/Ix8dH1113nRwOR4nHeeaZZ1SvXj2lpKQ4k4iHH35Yy5cv14IFC7R48WKtWLFCGzduLFL3kUce0QcffKC5c+fq22+/VZMmTdS3b1+dOHGixPb9Xp06dfT6669rwoQJ2rBhgzIzM3XrrbfqvvvuO++DUZKq+iAtXLhQHTp00E033aSYmBi1a9dOr732WoWPB8CzhfhLMcE2xcTUKVe9OnXqqLCwkCQEuMAcO3ZMhYWFio2NLfJ8bGysUlNTK1yntDKVcQzUPJU6T6l58+b6/vvvlZWVpRdeeEHLli1T586dJUmNGzfWqlWr9Morr6h79+7n1Q0PD1dAQICCg4MVFxfnfP6GG24oUm7WrFmKiYnR9u3bi53HGB4ertDQUPn6+jqPk5mZqVmzZumNN95Q7969JUlz585VvXr1nPWysrI0c+ZMzZkzR/3795ckvfbaa1qyZIlmzZqlhx9+uNj2Feeaa67RnXfeqVtuuUWXXXaZAgMD9a9//assl1BS1X2Q9uzZo5kzZ2rcuHF6/PHHtW7dOj3wwAOy2+267bbbKnxcAJ4p0O/s3h/lnbJ6rjxJCHBh+v2+QZZllbqXUFnqlFamMo6BmqNSk5Bzv+jt27crJyfH+Qf/OXl5eWrXrl25jrl792499dRTWrNmjY4dO+YcAdm/f3+ZF1Pt3r1beXl5zoRIkiIjI9WsWbMiZfLz89W1a1fnc/7+/rr88su1Y8eOcrVZkp577jklJSXpf//7nzZs2KDAwMByH6OyP0gOh0MdOnRwThVr166dtm3bppkzZ5KEABegnIKzSUR51/KdK88/7MCFJTo6Wr6+vud9IXr06NHzvjgtT53SylTGMVDzVOqtTXbs2KFGjRo5E4VPP/1Umzdvdj62b99uXBdSnIEDB+r48eN67bXXtHbtWq1du1bS2YSmrMrybd25MpX1h/+ePXt0+PBhORwO/fzzz+WqW1UfpPj4eLVs2bLIcy1atCh2sTsA75eZLx09Y+no0bRy1UtLS5Ovry9JCHCBCQgIUPv27bVkyZIizy9ZskRdunSpcJ3SylTGMVDzVFoSsmzZMm3ZskU33HCDWrZsKbvdrv3796tJkyZFHsWtozgnICBAhYWFzp+PHz+uHTt26Mknn1TPnj3VokULpaenl7ttTZo0kb+/v9asWeN8Lj09XT/++GORMgEBAVq1apXzufz8fG3YsEEtWrQotn0lycvL0y233KKbb75Z//jHPzRy5EgdOXKkzO2tqg9S165dtXPnziLP/fjjj2rQoEGFjwnAsy35OU9px9LKfLer3NxcpaWlKTAwkCQEuACNGzdO//3vf/X6669rx44dGjt2rPbv36977rlHkjR9+nT17NmzXHXKUqYyjoGapULTsXJzc5WamqrCwkIdOXJEycnJmjRpkgYMGKDbbrtNvr6+Gj9+vMaOHSuHw6Fu3brp1KlTWr16tUJCQjR8+PBij9uwYUOtXbtW+/btU0hIiCIjIxUVFaVXX31V8fHx2r9/vx599NFytzckJEQjR47Uww8/rKioKMXGxuqJJ54ocjvKWrVq6d5779XDDz+syMhI1a9fX5MnT9aZM2c0cuTIEttX3C0tn3jiCWVkZOill15SSEiIFi1apJEjR+qTTz6RdHaNyk8//eQsv3fvXm3evNn5utLZD9KwYcPUoUMHde7cWa+++qrLH6SxY8eqS5cumjhxooYMGaJ169bp1Vdf1auvvlrhYwLwbF8fKtCNF9u144edatO65H1CpLNTOnfu3CmbzVbmu2kB8C4333yzjh8/rmeeeUYpKSlKSkrSZ5995vxC89ixY+fdxbS0OmUpUxnHQA1jldPw4cMtSZYky8/Pz6pTp47Vq1cv6/XXX7cKCwud5RwOh/Xiiy9azZo1s/z9/a06depYffv2tVauXOks0717d+vBBx90/rxz506rU6dOVlBQkCXJ2rt3r7VkyRKrRYsWlt1ut9q0aWOtWLHCkmQtWLCgxDZOmTLFatCgQZHnTp8+bd16661WcHCwFRsba02ePPm818/OzrZGjx5tRUdHW3a73eratau1bt06Y/t+b/ny5Zafn5/11VdfOZ/7+eefrfDwcGvGjBnOMueu4W8fw4cPL3Ks//znP1aDBg2sgIAA69JLLy1y7Srq448/tpKSkiy73W41b97cevXVV10+JgDPdvz4cWvFihXWd999Z+Xk5BRbJicnx/ruu++sFStWWMePH3dzCwEA3sZmWdzeBAAudCdOnNC2bdvkcDgUHR2tOnXqyM/PTwUFBUpLS9OxY8fk4+OjVq1aKTIysrqbCwDwcCQhAABJZ9fBHTlyRIcOHVJ2drbz+aCgINWtW1dxcXHlvp0vAADFIQkBABRhWZYKCgpUUFAgPz8/+fn5sQgdAFCpSEIAAAAAuFWl7hMCAAAAAKUhCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFv5VXcDAAA1i2VZys/PV2FhoXx9feXv7y+bzVbdzQIAeBGSEACAJCk/P19HjhzRoUOHlJ2d7Xw+KChIdevWVWxsrPz9/auxhQAAb1Gt07F69OihMWPGVPpxLcvSXXfdpcjISNlsNm3evLnSXwMAvMmJEye0Zs0a7d69WyEhIWrZsqXatGmjli1bKiQkRLt379aaNWt04sSJ6m4qAMALlDsJGTFihGw2m2w2m/z9/RUbG6vevXvr9ddfl8PhcKkxlZWUJCcna86cOfrkk0+UkpKipKQkl49Z2b788ksNHDhQCQkJstls+vDDD88rM2PGDDVq1EiBgYFq3769vvrqq2KP1b59eyUlJZ33OHz48HllZ86cqTZt2igsLExhYWHq3LmzFi1aVNmnB8CDnDhxQlu2bFF4eLg6deqkVq1aKSYmRpGRkYqJiVGrVq3UqVMnhYeHa8uWLSQiwAWurH+flLdOaWUq4xioOSo0Hatfv36aPXu2CgsLdeTIESUnJ+vBBx/U+++/r4ULF8rPr3pnee3evVvx8fHq0qVLiWXy8vIUEBDgxlYVlZWVpbZt2+rPf/6zbrjhhvPi7733nsaMGaMZM2aoa9eueuWVV9S/f39t375d9evXL1J248aNZX7devXq6V//+peaNGkiSZo7d64GDx6sTZs2qVWrVmU+TsNHPy1zWQA1V7CfNOWqWoqNjlRSUpJ8fIr/bsputyspKUlbt27Vli1bFBERUWJZAJ6jvF/Ulufvk/LUKa1MZRwDNUuF/gWx2+2Ki4tT3bp1demll+rxxx/XRx99pEWLFmnOnDmSzk6Jmjx5sho3bqygoCC1bdtW77//fonHHDFihFauXKkXX3zROdKyb98+JScnq1u3bqpdu7aioqI0YMAA7d6923ic0aNHa//+/bLZbGrYsKGks6Mso0aN0rhx4xQdHa3evXuXqZ1ZWVm67bbbFBISovj4eD3//PPGEZu0tDTFxcVp4sSJzufWrl2rgIAALV682Plc//799Y9//EPXX399scd54YUXNHLkSN1xxx1q0aKFpk6dqsTERM2cObPEcy+LgQMH6pprrtHFF1+siy++WP/85z8VEhKiNWvWuHRcAJ6pa10/BfhKLZo3KzWp8PHxUbNmzWRZlnJzc93UQgA1SUX+PilLndLKVMYxULNU2tdYV199tdq2bav58+dLkp588knNnj1bM2fO1LZt2zR27FjdeuutWrlyZbH1X3zxRXXu3Fl33nmnUlJSlJKSosTERGVlZWncuHFav369vvjiC/n4+Oi6664rcerXiy++qGeeeUb16tVTSkqK1q9f74zNnTtXfn5++vrrr/XKK6+UqZ0PP/ywli9frgULFmjx4sVasWKFceShTp06ev311zVhwgRt2LBBmZmZuvXWW3XfffepT58+ZbqWeXl52rhx43nl+/Tpo9WrV5fpGGVRWFioefPmKSsrS507d6604wLwHL0bBKhOdB3Z7fYylbfb7apTp45ycnJkWVYVtw5ATVKRv0/KUqe0MpVxDNQ8lTpvqnnz5vr++++VlZWlF154QcuWLXP+cdu4cWOtWrVKr7zyirp3735e3fDwcAUEBCg4OFhxcXHO538/VWnWrFmKiYnR9u3bix1CDA8PV2hoqHx9fYscR5KaNGmiyZMnO38urZ3t27fXrFmz9MYbbzhHTubOnat69eoZr8M111yjO++8U7fccosuu+wyBQYG6l//+pexzm8dO3ZMhYWFio2NLfJ8bGysUlNTy3yckmzZskWdO3dWTk6OQkJCtGDBArVs2dLl4wLwLCH+UkywTTExdcpVr06dOkpLS5NlWdy6F7iAVOTvk7LUKa1MZRwDNU+lJiHn/kHavn27cnJynH+4n5OXl6d27dqV65i7d+/WU089pTVr1ujYsWPOEZD9+/eXex5jhw4divxcWjt3796tvLy8IqMEkZGRatasWamv9dxzzykpKUn/+9//tGHDBgUGBparrZLO+8e9sv7Bb9asmTZv3qyTJ0/qgw8+0PDhw7Vy5UoSEeACE+h3tj8p7zq+c+UZCQEuTBX5+6QsdUorUxnHQM1RqUnIjh071KhRI2ei8Omnn6pu3bpFypR1yP+cgQMHKjExUa+99poSEhLkcDiUlJSkvLy8crevVq1aRX4urZ3Hjx8v92ucs2fPHh0+fFgOh0M///yz2rRpU+a60dHR8vX1PS9zP3r06HkZfkUEBAQ4F6Z36NBB69ev14svvuicogbgwpBTcDaJKCgoKFe9c+X5hx24sFTk75Oy1CmtTGUcAzVPpa0JWbZsmbZs2aIbbrhBLVu2lN1u1/79+9WkSZMij8TExBKPERAQoMLCQufPx48f144dO/Tkk0+qZ8+eatGihdLT0yuryaW2s0mTJvL39y+yaDs9PV0//vij8bh5eXm65ZZbdPPNN+sf//iHRo4cqSNHjpS5XQEBAWrfvr2WLFlS5PklS5YY7/hVUSwyBS5MmfnS0TOWjh5NK1e9tLQ0+fr6koQAF5iK/H1SljqllamMY6DmqdBISG5urlJTU4vconfSpEkaMGCAbrvtNvn6+mr8+PEaO3asHA6HunXrplOnTmn16tUKCQnR8OHDiz1uw4YNtXbtWu3bt08hISGKjIxUVFSUXn31VcXHx2v//v169NFHXTrh3woNDS21nSNHjtTDDz+sqKgoxcbG6oknnij1DjJPPPGEMjIy9NJLLykkJESLFi3SyJEj9cknnzjLZGZm6qeffnL+vHfvXm3evFmRkZGqX7++xo0bp2HDhqlDhw7q3LmzXn31Ve3fv1/33HOPS+f8+OOPq3///kpMTNTp06c1b948rVixQsnJyS4dF4BnWvJznuoEpyk3N7dMI9W5ublKS0tTrVq1SEKAC1Bpf59Mnz5dCxYs0BdffFHmOmUpUxnHQM1SoSQkOTlZ8fHx8vPzU0REhNq2bauXXnpJw4cPd/6B/ve//10xMTGaNGmS9uzZo9q1aztv51uS8ePHa/jw4WrZsqWys7O1d+9ezZs3Tw888ICSkpLUrFkzvfTSS+rRo0eFTrY4pbXz3//+tzIzMzVo0CCFhobqoYceUkZGRonHW7FihaZOnarly5crLCxMkvTmm2+qTZs2mjlzpu69915J0oYNG3TVVVc5640bN06SNHz4cM2ZM0c333yzjh8/rmeeeca54eJnn32mBg0auHS+R44c0bBhw5SSkqLw8HC1adNGycnJ562LAXBh+PpQgW682K4dP+xUm9Yl7xMinZ3CunPnTtlstnJPrQXgHUr7++TYsWPnbaVQlr9pSitTGcdAzWKzWFlYbj169NAll1yiqVOnVndTAMBl53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgC8RfVubQ4AqHaRkZFq3bq1tm3bpjVr1ig6Olp16tSRn5+fCgoKlJaWpmPHjsnHx4cEBABQKUhCAACKjIxUp06ddOTIER06dEhpab8uVg8KCtJFF12kuLi4ct/OFwCA4jAdCwBQhGVZKigoUEFBgfz8/OTn58cidABApSIJAQAAAOBWlbZPCAAAAACUBUkIAAAAALciCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCu/6m4AAAAAUFEOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JQ83kESAgAAAI91+PBhJSYmVncz8DsHDhxQvXr1SoyThAAAAMBjhYaGSpL27l2i0NBa1dwanD6dpUaNejt/LyUhCQEAAIDHOjcFKzS0lsLCQqq5NTintKlxLEwHAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAwAUjRz6pgIA2Cghoo6Cgdrrooj4aNervSk8/5ZbXf+aZGerQ4Sa3vFZl4e5YAAAAgIv69u2q1177uwoKCrRjxx7ddddfdfLkab311uTqblqNxEgIAAAA4KKAgADFxUWrXr049e7dRTfd1E9Ll37jjM+d+6Fatx6s0NAOSkoapJdfnueM5eXl68EHJ6p+/asVGtpBTZv207PP/tcZz8g4rXvv/Zvq1u2uqKjO6tNnpL77bqck6Y03PtI//vGyvv9+p3M05o03PnLfiVcQIyEAAABAJdqz56A+//xr+fuf/VN71qz39cwzMzV16mO65JLm2rz5B917798UHByk224brOnT39Ynn6zQO+/8W4mJ8Tp4MFUHDqRKkizL0uDBoxQREaaFC2coLCxE//3v/6lfvzu1bdvHuummvtq2bZc+//xrJSe/JkkKD6/5+6WQhAAAAAAu+uyzLxUR0VGFhQ7l5ORKkv7974clSRMnvqpnn31I113XS5LUqFE97dixR//97/u67bbBOnAgVU2a1FfXrpfKZrOpQYME53FXrFinrVt36dChFbLbAyRJzz47XgsXLtf8+Ut0xx03qlatYPn5+SkuLtrNZ11xJCEAAACAi3r0uEzTpj2pM2dyNHv2fO3atU/33/8npaWd0IEDqbr77gm6996/OcsXFBQ6Ryxuu22Q+ve/W61aDVLfvl11zTVXqnfvLpKkb7/drszMM4qLu6LI62Vn52r37gPuO8FKRhICAAAAuCg4OEhNmtSXJE2Z8qh69x6pv//9Zd13358kSTNnPq3LL29dpI6v79nl2e3atdSPPy5ScvIqLVu2RkOHPqyrr+6o9957QQ6Hpfj4aC1Z8vp5r1m7dmgVn1XVIQkBAAAAKtmTT96jgQPv0913D1HdujHau/eghg79Q4nlw8JCNGRIPw0Z0k/XX99bAwbcqxMnMtSuXQulph6Xn5+vGjasW2zdgAB/FRYWVtWpVAmSEAAAAKCSde9+mVq2vEjPPvtfPfXUvRo79lmFhdVS377dlJubp2+/3a709FMaM+Y2vfjim4qLi1bbts3l42PTBx8sVlxctGrXDlXPnp3UqVMb3XjjGE2cOEYXX9xQKSlpWrToKw0efLXat2+lBg0StG/fIW3e/IPq1YtVaGgt5/qRmopb9AIAAABV4MEHh2nWrA/Uu3dXvfzy03rjjYW69NIb1KvX7XrjjY+cIxshIUF67rnZ6tz5j+rSZah+/vmwPvroP/Lx8ZHNZtPChTN0xRXtddddT6tVq4G69dZH9PPPhxUTEyVJuv763urTp6v69BmphITueu+9RdV52mVisyzLqu5GAAAAABVx6tQphYeH69ix1QoLq/m3pvV2p05lKjq6izIyMhQWFlZiOUZCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbsU8IAAAAPNa5G72ePp1VzS2B9OvvobQb8JKEAAAAwGOdPn1aktSoUe9qbgl+6/Tp0woPDy8xzj4hAAAA8FgOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JS88oMkBAAAAIBbsTAdAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEAAAAABuRRICAAAAwK3+H9wGuSBGjivaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interactive_phaseogram(phaseogr, phases, times, df=0, dfdot=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Second: overplot a line with a pulse frequency solution, then update the full phaseogram\n", + "\n", + "This interactive phaseogram is implemented in `HENDRICS`, in the script `HENphaseogram`" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "class InteractivePhaseogram(object):\n", + " def __init__(self, ev_times, freq, nph=128, nt=128, fdot=0, fddot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " self.df=0\n", + " self.dfdot=0\n", + " \n", + " self.freq = freq\n", + " self.fdot = fdot\n", + " self.nt = nt\n", + " self.nph = nph\n", + " self.ev_times = ev_times\n", + "\n", + " self.phaseogr, phases, times, additional_info = \\\n", + " phaseogram(ev_times, freq, return_plot=True, nph=nph, nt=nt, \n", + " fdot=fdot, fddot=fddot, plot=False)\n", + " self.phases, self.times = phases, times\n", + " self.fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(times))\n", + " tobs = tseg * nt\n", + " delta_df_start = 2 / tobs\n", + " self.df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** self.df_order_of_mag\n", + "\n", + " delta_dfdot_start = 2 / tobs ** 2\n", + " self.dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** self.dfdot_order_of_mag\n", + "\n", + " self.pcolor = plt.pcolormesh(phases, times, self.phaseogr.T, cmap='magma')\n", + " self.l1, = plt.plot(np.zeros_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + " self.l2, = plt.plot(np.ones_like(times), times, zorder=10, lw=2, color='w')\n", + " self.l3, = plt.plot(np.ones_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + "\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Time')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " self.axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " self.axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " self.axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " self.sfreq = Slider(self.axfreq, 'Delta freq x$10^{}$'.format(self.df_order_of_mag), \n", + " -delta_df, delta_df, valinit=self.df)\n", + " self.sfdot = Slider(self.axfdot, 'Delta fdot x$10^{}$'.format(self.dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=self.dfdot)\n", + " self.spepoch = Slider(self.axpepoch, 'Delta pepoch', \n", + " 0, times[-1] - times[0], valinit=0)\n", + "\n", + " self.sfreq.on_changed(self.update)\n", + " self.sfdot.on_changed(self.update)\n", + " self.spepoch.on_changed(self.update)\n", + "\n", + " self.resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " self.button = Button(self.resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.recalcax = plt.axes([0.6, 0.020, 0.1, 0.04])\n", + " self.button_recalc = Button(self.recalcax, 'Recalculate', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.button.on_clicked(self.reset)\n", + " self.button_recalc.on_clicked(self.recalculate)\n", + "\n", + " plt.show()\n", + "\n", + " def update(self, val):\n", + " fdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " freq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " self.l1.set_xdata(0.5 + delay_fun(self.times - self.times[0]))\n", + " self.l2.set_xdata(1 + delay_fun(self.times - self.times[0]))\n", + " self.l3.set_xdata(1.5 + delay_fun(self.times - self.times[0]))\n", + "\n", + " self.fig.canvas.draw_idle()\n", + "\n", + " def recalculate(self, event):\n", + " dfdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " dfreq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + "\n", + " self.fdot = self.fdot - dfdot\n", + " self.freq = self.freq - dfreq\n", + "\n", + " self.phaseogr, _, _, _ = \\\n", + " phaseogram(self.ev_times, self.freq, fdot=self.fdot, plot=False, \n", + " nph=self.nph, nt=self.nt, pepoch=pepoch)\n", + " \n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + "\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " \n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + "\n", + " self.fig.canvas.draw()\n", + "\n", + " def reset(self, event):\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + " \n", + " def get_values(self):\n", + " return self.freq, self.fdot" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIiCAYAAADfDcfpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvoElEQVR4nOzdeXyU1d3//9eQbZKQTBbIJiEEiQEEEVEhaAVUNuuCeheplkrr7VK3UvV2vaux3xbU+1Zppbfbz4rWhdqqWKuCWCFqWaWAiBhRwiZZWLKQkMl6/f74XDM4ggsEApm8nz7mMcx1neuczznXmcucuZbjcRzHQUREREREpJ10OdIBiIiIiIhI56JBiIiIiIiItCsNQkREREREpF1pECIiIiIiIu1KgxAREREREWlXGoSIiIiIiEi70iBERERERETalQYhIiIiIiLSrjQIERERERGRdqVBiIiIiIiItCsNQo4Sjz76KCeccAKJiYkkJiZSUFDAW2+9FVzvOA6FhYVkZWURGxvLyJEjWbt2bUgeDQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqvaoooiIiIgIoEHIUaNHjx7cd999fPjhh3z44YeceeaZXHDBBcGBxgMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cH85g6dSqvvvoqs2fP5oMPPqC2tpZzzz2XlpaWYJpLL72UVatWMXfuXObOncuqVauYPHlyu9dXRERERDovj+M4zpEOQvYvJSWF//mf/+HnP/85WVlZTJ06ldtuuw2wsx7p6encf//9XH311VRXV9O9e3f+/Oc/c8kllwCwbds2srOzefPNNxk7dizr1q2jf//+LFmyhKFDhwKwZMkSCgoK+PTTT8nPzz9idRURERGRziPySAcg+2ppaeGvf/0rdXV1FBQUUFJSQllZGWPGjAmmiYmJYcSIESxatIirr76aFStW0NTUFJImKyuLAQMGsGjRIsaOHcvixYvx+XzBAQjAsGHD8Pl8LFq06BsHIQ0NDTQ0NAQ/t7a2smvXLlJTU/F4PIehBURERKSjcRyH3bt3k5WVRZcuR+ZiG7/fT2NjY5vziY6Oxuv1HoKI5JtoEHIUWbNmDQUFBfj9frp27cqrr75K//79WbRoEQDp6ekh6dPT09m0aRMAZWVlREdHk5ycvE+asrKyYJq0tLR9yk1LSwum2Z/p06dz7733tqluEn62bNlCjx492Lp1K9nZ2Uc6HDlC1A8E1A8kVKA/tDe/309u7jGUle1qc14ZGRmUlJRoIHIYaRByFMnPz2fVqlVUVVXx8ssvc/nll1NUVBRc//WzDo7jfOeZiK+n2V/678rnjjvu4Kabbgp+rq6upmfPnhRPvpCdm2xglHdqJQAvz+sFwA8HbgTg4UXHAjA6vRaAU8fsAOB/n8+x5Rk1IWW9sDERgMRoi+euyZbP66/bwayqcf+/rGR4mwHYtCcquOzq5zIAqJy+NCTtS2ut7A93tAJwcU+7ZybNWw/A+9sthuomT0jsD31qX5fjEmMA+OWJoTf9f1GR7G4X7eZjsVycbXXsnrAHgMc+sbhiIiz/mka7InJTnZ1tuuN4e29oiQDg5S3xlm+jxdsn0dqgpsnKPTvdb+ubrbzimohgTDnxrW7etk2ShUa538quqLf1Z2fau7eLm95tx0C6gBcqPwDg3PjTiI9IACCuSwJrxv7M1q+3ug1KsuCO774TgH9usX4S2E+BthmYZOWtqbL4Am366nrb3zFdrG3y3bbzxdivW8t2JFm8EYG26xJSbkyXvfdBLdtl/wNJ91raU7tVAfBRpS+k7MtyrQ8fO9D+5/Wbv1vfzUtw3LYLtGWEG5OVVbw7KuRzoB89+llXAH5+rH0eNGD/A/2dW23/bq1KcPOLA+CEJLvfK/CdmH7pBgAqi20n/vtLa1NfVGNI/r972+IO9C+Auwstry0vWl/+1zb7MeLDnVb3uwrsx4zaWuvbK8q7WyxuXzqje11IbBf02wzA0pIsUqKsnplxsSw64xprMx0PdDxAxwPofMeDPS0N/Hz1IyQkJOy3fodbY2MjZWW72Fgym8TEuIPOp6ZmD71yJ9HY2KhByGGkQchRJDo6mj59+gBw8skns3z5cn7/+98H7wMpKysjMzMzmL6ioiJ4diQjI4PGxkYqKytDzoZUVFQwfPjwYJry8vJ9yt2+ffs+Z1m+KiYmhpiYmH2WJ0RH0RBpyxNj7EAYG+F+jrbPMV3syxsfaQfkRK8t90bY8q6Rey/zAoh208d08YSkj3PzbYiIYH/iIprcfKODyxK7xgLQHBUdkjZQdpT7P6a4iBY3ltaQ9f4WT0jsUZ7IkDolfC3feLctmloDdY8OqWNCVHPI9oE6Rrv/Y41y/x/R1f1WRnoiQtokEK/XbYOGlkC5tn2TE+Wu3/u1jo0I3cbrNt/esltD2iDwR0egHQPpArq4bWAxBdZ5gm0RaLu4iC4hbRQbXB74oyCwvMX9HBGSPpCP122b+MjAPvKE5OeNCMQbEVKuN2LvHx2BvGLdP1C6uvsp0FcDZXf9Wl8O7KfAdsE2ctt3b1nRIZ8D/SiqS4wbu30OfCe+rtGtc3wwrsB3w/6YCOz/QFyB/hz4TsS7bfL179xX911inOWV4P6BEqh79Nfa3fO1vAN1jY9sDokt4SvpPG4/8Hg8+7Shjgc6Hlh+Oh50luNBwJG+VDsxMY7ExPgjGoN8Nz0d6yjmOA4NDQ3k5uaSkZHB/Pnzg+saGxspKioKDjCGDBlCVFRUSJrS0lI+/vjjYJqCggKqq6tZtmxZMM3SpUuprq4OphERERHp0Fpb2/6Sw05nQo4Sd955J+PHjyc7O5vdu3cze/ZsFi5cyNy5c/F4PEydOpVp06aRl5dHXl4e06ZNIy4ujksvvRQAn8/HFVdcwc0330xqaiopKSnccsstDBw4kLPPPhuAfv36MW7cOK688koef/xxAK666irOPfdcPRlLREREwkNbBxIahLQLDUKOEuXl5UyePJnS0lJ8Ph8nnHACc+fOZfTo0QDceuut1NfXc+2111JZWcnQoUN5++23Q667fPjhh4mMjGTixInU19dz1llnMWvWLCK+csnC888/z4033hh8itb555/PzJkz27eyIiIiItKpaRBylHjqqae+db3H46GwsJDCwsJvTOP1ennkkUd45JFHvjFNSkoKzz333MGGKSIiInJ0cxx7tWV7Oew0CBERERGR8NHqtPFyLA1C2oMGISIiIiISPnRPSIegp2OJiIiIiEi70pkQEREREQkfOhPSIWgQIgettiKGqgabpOi1ub0AGNP7SwDmrbHPgRls/e5sv9Nm5QJwYbbNQlu2xyYQO66bzU47tJvNKjuih02quOB1m3F3Ybl11ZkvWfqGv30EwAOv5wEwNsdmXi4pyQrG95MzbLbdCdnZAAxKtTIHJ9kssf0SLKbZm2zCpXyf1aW42nFjsfd1NTbh0TV5NrFWfnIFAC8V9wRgVLrlW9Vo26+ssvfFVTY78IQeNoHTZztsEskcqyK5cQ1u+RbHBdkxbls1h7RZID21oROz5SdafIGJuJaUWtuMy6wPpin1WyyX528DYFlpmrsm0t3WJpSavsFm1x2XbG3VNzE0hoBfZowAYHzWrq9M5ubwnNvug5Ns8qu5pVbuwgpbPijZYly8M8aN0WY8Toq29M+UWDnvbwrkU+umt8qvrLL34uqQcJiUY3Udlmb5JXa12aK37PAF01w3xOoWmP133iab8HN1pdV9Qg/LIyvNMv/NnOMAuDrf+uDqnSkAXHyl9bHfPmh9sldCrVv/2JCYHltvMxoP7W75D3/vHADqrvgTAEs/PQaAdbttO787j9oot/ylVgwF3W3FrSfavvvVMzaR6aBk2+/J0ba+zG/998Y5tn5clu27ysa9++7jx6zv9s63mY4ndCsBoN+G7iFtc0yB9cnK2RFuTLVunWJD6uRNtjJOSN9BlDtBnNOKjgfoeKDjQec+HuxuauSooEFIh6BBiIiIiIiED6eNgxBHg5D2oHtCRERERESkXelMiIiIiIiEDY/TiqcNZzPasq18fxqEiIiIiEj40D0hHYIGISIiIiISPlqdtk04qMkK24XuCRERERERkXalMyEiIiIiEj50OVaHoEGIiIiIiIQPDUI6BF2OJSIiIiIi7UpnQkREREQkfDhO2yYcdHRjenvQIETaZFBeGQBJm1MAuK4oE4BnJ5YAUPlBHwAW74wFYFRaLQAbd3cFID+5CoCPyrsBMDilGoBlpWm2fWMEAOm2OY9cWQ/Apto8AMrqWwC4aXF3AIZ23xvbpBxb542w99U7LcbZG+3gMqW3vSdFewCY0LMCgMeLreyqJstn9S7b/tFzNgMwb00vAPy2mLe2Wb658c0AVDfacn8Xi7WqMQGAhRXRVudEK7eyyeqW74sIKa+kzir7l422oJc1FZ/urnXTd+WryvzekHwfW//Vr7UdhF/bEmgYSzMiwz6V14dkxdzKLVZm/DEA/LS/1fmJNT0BKK4OtGkKuS1diAJaHQ9l9daGZfUx7nujm66L2wb2Pi6rya1rFAArq6yuveLcfRHld9NbW22yKjOhhwXq7WJ1zY23dJPWrgBgzgknApCaUgfAupq9bVRWb2UE2nvG1s8AeLy/1XFBRVc3VmujuyfY+j+8aX1scJKV/dsHM9y2sTaY9YXt93tGfQ7A7BXHAnDbwO0ANDTbfrgx5z0A0mPtu5BkVSPTa/2lr6/G4twT66YLPUG9uTIRgN//wr5Tf5rdC4D/uM3i+sn1cQAM7W77oNRv5U7M3xzMY8sOHwCLVvYAYPjgrQD4W6xNGhptm18+mgXAuEzbfz2TLbapfVtC0re4+/uzHcmkt3YJ/o9ExwMdD3Q86NzHg7rmBo4KuhyrQ9DlWCIiIiISPgKP6G3L6wB9+eWX/OQnPyE1NZW4uDhOPPFEVqxYEVzvOA6FhYVkZWURGxvLyJEjWbt27aGsdYejQYiIiIiIyEGqrKzktNNOIyoqirfeeotPPvmEBx98kKSkpGCaBx54gIceeoiZM2eyfPlyMjIyGD16NLt37z5ygR9huhxLRERERMJHO1+Odf/995Odnc3TTz8dXNarV6/gvx3HYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx98rB2YzoSIiIiISPhwWvcORA7m5d7UXlNTE/JqaNj/PS9///vfOfnkk/nRj35EWloagwcP5sknnwyuLykpoaysjDFjxgSXxcTEMGLECBYtWnR42+IopkGIiIiIiIQNT2trm18A2dnZ+Hy+4Gv69On7LW/Dhg08+uij5OXlMW/ePK655hpuvPFGnn32WQDKyuyhHenp6SHbpaenB9d1RrocS0RERETka7Zs2UJiYmLwc0xMzH7Ttba2cvLJJzNt2jQABg8ezNq1a3n00Uf56U9/Gkzn8XhCtnMcZ59lnYnOhIiIiIhI+HCctr+AxMTEkNc3DUIyMzPp379/yLJ+/fqxebM9Gjkjwx7p/PWzHhUVFfucHelMNAgRERERkfDRlvtBDuKm9tNOO43i4uKQZZ999hk5OTkA5ObmkpGRwfz584PrGxsbKSoqYvjw4W2vbwely7FEREREJHy089OxfvWrXzF8+HCmTZvGxIkTWbZsGU888QRPPPEEYJdhTZ06lWnTppGXl0deXh7Tpk0jLi6OSy+99ODj7OA0CBEREREROUinnHIKr776KnfccQe/+c1vyM3NZcaMGVx22WXBNLfeeiv19fVce+21VFZWMnToUN5++20SEhKOYORHlsdxnAOfFlI6tZqaGnw+HyvOvJKWZvvyzPi0KwBTejcCsHhnLAAZXute3ojQXxVy4+sBOGVoKQDLl2aGrPe3RIS8l+yJBiApqsVdblcS/teGvwLwt4HnhaQHqGyyfxeVW9r02NCrD6sbLbZxmY1ujC0h73npuwC4a3G2m7fVYUS65VNcYzeTldVb+nyflVduVcMXbeuTokO/Yhne0DoUlVu+VY1NAFyTZ8sXVlidh3VrBmBlZZSVW23xvtf0NgC/zv4hAKt3Oe72NcGyHluf6MZsZWR6bdu5pbZ/RqbZ5xmf2fs1fbwAnHNqCQAPvpPntpXlNyjZYp+3DR5ZeRMpWT4aK6oo/nEhALO+SAmJudRvv3MUlVndxmbZ5/PztgDwPyt6hrTNuMx6t22sLQP7MGBEj3IANldavd4qtf7XK97q52/1uPVsDm7TK74OgNtXW173DWoJyXPxTh8A/RLqQ9omJsLyyoh1+3AXey/oXglAVYPtnzlbre/n2BsFqdXA3rZ//PqNAET0sM8fPGHXFCfFWKPm9LR+NmdVbkhcgf4R+O4EvjPp8XsAOOZYK6el3uLcU2PxBNp0Qo/ar+Tlfo/qvCF12Li7a0iZGbFWxn1r44C9+2tk5nYAVu+0/Xumu/+eWpXLLxZMJSEjkabtlaz6j98COh6Ajgeg4wF0vuOBv8XPPeunU11dHXJDd3sJ/H1S9a//IbFr7MHnU1tP0mn/dcTq0VnoTIiIiIiIhI92vhxLDo4GISIiIiISPlqdNg5CdJFQe9DTsUREREREpF3pTIiIiIiIhI+vzPVx0NvLYadBiIiIiIiED90T0iHociwREREREWlXOhMiIiIiIuHDcdp2c7kux2oXGoSIiIiISPjQ5VgdggYhIiIiIhI+NAjpEHRPiIiIiIiItCuP4+jCNzkwNTU1+Hw+7s27g6RoLwCj0ncBULYnFgBvRAsA/pYIAEr90QBM+mEJAMWLUwBIjPMD0C27DoB/f5QJQEmd5VPVZNuX1XsAmNKnHIDHi9Ps87FW7spdPre8veNqf6ttU5BaDcCCCkszOKk+JKZ+ibUAzN5k6322mF7xLSHrV1YmujFZvklR9tWZt63ZLdvSD+1ubbKp1tYP7RYaj7eLLS8qt19aMmIDdQxsb59z4xrd7bq4bRIZEv/indZGo9IC8Xd149j7lU6PtW3vnvAZABf/Kdtij44CIKdrpPvZtsnwtrh1tBgyvVa3dTWWrrja1j99ZQlR/zUDjy+FxooqXjvnIQB+kLMNgJs/OAaAsVm4de0SEs+FParcOlsd1u2ODin/h303AxDlfi7bZm2/sLS7xVHjcfPDbQPbx2mJ1o8qauKDbfDq1iQA+iZaXWIjrK5LdlidRqZZOwf6bOA90AczvY1um0S5MfpD1idHtbht2MhXBfK5b20cANfkWfk5ibsBOOZYi3nRyh7A3u9KYH/39dUAsKDcvisT861Nup9udfev94eUF/juBMod9IPtwXX+L+090I6zPk93Y7a2+HqfmpRbAUBDs7XRp9W2nbdLoM/WB/Me9NdfE52WxO6yGp4+ewag44GVreOBjgd7dZbjQW1zA2cu+iPV1dUkJibS3gJ/n1S9dQ+J8d6Dz6fOT9L4e49YPToLXY4lIiIiIuHDabVXW7aXw06DEBEREREJH61tfDpWW7aV7033hIiIiIiISLvSmRARERERCR96OlaHoEGIiIiIiIQPXY7VIWgQIiIiIiLho9Vp45kQDULag+4JERERERGRdqUzISIiIiISPnQ5VoegQYiIiIiIhJE2zhOCbkxvD7oc6ygxffp0TjnlFBISEkhLS2PChAkUFxeHpJkyZQoejyfkNWzYsJA0DQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqsNdRRERERERQGdCjhpFRUVcd911nHLKKTQ3N3PXXXcxZswYPvnkE+Lj44Ppxo0bx9NPPx38HB0dHZLP1KlTef3115k9ezapqancfPPNnHvuuaxYsYKIiAgALr30UrZu3crcuXMBuOqqq5g8eTKvv/76AcU8OrOSHfWpACwoTwFgyimfA5BwTjoA7zxkaUf0KAdgxst9AHisfAUAy8fadj99qRcAz1++EQD/oh4AVDXFAlBc3QhAtT/G1rdYvo99ZtsPSrZTp5nepmB8i3da2uxu1QBk1HQFoNRvbVbmj3C3sc/5iZaHNyL0F5CyeothcHKN1bXCB8DSHbZ+Ui8PAPUtUQAkR1msVw0sA+CuxdkAjMtqBiApymL0Zlm587a1uOWG/iaQn1wFQHldnLudxXvfOkufFGn59Iq3+B44bz0Ad7+Zx9ed+ZS106QeXmBv++XGu7F0sTonRTe6beMN2T7J7WYZsRbDa3N78cMbIojzwZ6WLizZYYeSheU9rZwcy6fUb22SHmt165tobeDzNgB7902vKts3hasTAKhqygUg09scEl/AyDTLf85Wy398VkvIen9LRPDfF/aosjq5+9EbYWlvHFgBwObKRABK6mx9oK/2z94OwDZ3f5+UZvvzjysstuJqy2faqdYRfrMiE4ApveusnEhb/8Ro+xHgjU+tbc6caHV/9yXr48d1qwSgW7Zt9/Li3gAs3p4MwMT8zQC8VGzbXxZdAsAnW6y8U4aWhsTfL7EWgMIX9/aDXvHWflf8zGLJeMr6+mUDLa+X1/YC4Fa3D71eZHUcO3CjtcUJFtsXc+07tXqn9acz87YQ4X5fvBGt5MbZftHxQMcD0PEAOt/xYHdTI0cFXY7VIWgQcpQIDAgCnn76adLS0lixYgVnnHFGcHlMTAwZGRn7zaO6upqnnnqKP//5z5x99tkAPPfcc2RnZ/POO+8wduxY1q1bx9y5c1myZAlDhw4F4Mknn6SgoIDi4mLy8/MPUw1FRERE2oEGIR2CLsc6SlVX2y9CKSkpIcsXLlxIWloaxx13HFdeeSUVFRXBdStWrKCpqYkxY8YEl2VlZTFgwAAWLVoEwOLFi/H5fMEBCMCwYcPw+XzBNF/X0NBATU1NyEtERETkqBSYrLAtLznsNAg5CjmOw0033cTpp5/OgAEDgsvHjx/P888/z7vvvsuDDz7I8uXLOfPMM2losNO5ZWVlREdHk5ycHJJfeno6ZWVlwTRpaWn7lJmWlhZM83XTp08P3j/i8/nIzs4+VFUVERERkU5Il2Mdha6//no++ugjPvjgg5Dll1xySfDfAwYM4OSTTyYnJ4c33niDiy666BvzcxwHj8cT/PzVf39Tmq+64447uOmmm4Kfa2pqNBARERGRo5Mux+oQNAg5ytxwww38/e9/57333qNHjx7fmjYzM5OcnBzWr7ebxzIyMmhsbKSysjLkbEhFRQXDhw8PpikvL98nr+3bt5Oenr7fcmJiYoiJiTnYKomIiIi0Hw1COgRdjnWUcByH66+/nldeeYV3332X3Nzc79xm586dbNmyhcxMeyrGkCFDiIqKYv78+cE0paWlfPzxx8FBSEFBAdXV1SxbtiyYZunSpVRXVwfTiIiIiHRYuiekQ9CZkKPEddddxwsvvMBrr71GQkJC8P4Mn89HbGwstbW1FBYWcvHFF5OZmcnGjRu588476datGxdeeGEw7RVXXMHNN99MamoqKSkp3HLLLQwcODD4tKx+/foxbtw4rrzySh5//HHAHtF77rnn6slYIiIiItIuNAg5Sjz66KMAjBw5MmT5008/zZQpU4iIiGDNmjU8++yzVFVVkZmZyahRo/jLX/5CQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YF5wgBeP7557nxxhuDT9E6//zzmTlz5uGvpIiIiMjh5jj2asv2cthpEHKUcL6jw8fGxjJv3rzvzMfr9fLII4/wyCOPfGOalJQUnnvuuQOOUUREROSop3tCOgSP811//Yp8TU1NDT6fj8/Om8yxP7SZbVe8YLOzBmamDcza+tK7NttrbMT+u1lgBtaybTZLbWJXv23nzgZ73RVbAGjZaY8hvuM5m2F5Uk51SD6Ld9ostlVfmax16mk2W3Pxhu7A3ll5711ls7yPSA+9JWpsjsVcUWMz1AdmQs6Nt1l6KxutbmV+e4pYQWo9ACV1Nptwv8Q6d719XlcTGZJuzlZrI1+0bV/dGNomK3fvBGBKT5sbJjDbc2Cm58Ast/7W0KeYjUrfZfG6s1TP3rozuG5kajcAkqKtrMFJFsvKKoul3D4G2zPQjkVlVra/xWb5HZHhdetS6y6P4Aev3Y43zUd1aQ0f/ei3ITG9VZrgprc2D8xKPLTvlwBEp1g889/PAWBuqU3BPLSbpVu6IyLkc6bXduy63RZ3Wb0npE0C+yQwk3NgVmGA9zdl2bbu/vC6JwV/2n9zyPqAwGzMJ6TbzMfXfmDtevvxzSHpAn090Jaj0qwNA7M+r9nWPaTugX4RyN/fav3vvBE2S/Ef3Jmt+yU0hqwflGr7t+cAy/eB1y1dhnffWcGtDWz7pJi9X4aNu7uGpBk/wfbDn2b3AmBkps0GnZpifXjnLvsObKpJCNkuUJfAe37v7XR9cAZdUlJo2bkLz9/+G9DxAHQ8+CodDzrP8aCmsZHsF/5CdXU1iYmJtLfA3ydVT15LYtzBP1CnZk8DSVf+3xGrR2ehG9NFRERERKRd6XIsEREREQkfThufcOXo6VjtQYMQEREREQkfuiekQ9AgRERERETCRyttHIQcskjkW+ieEBERERERaVc6EyIiIiIi4UOXY3UIGoSIiIiISNhwWh2cNgwk2rKtfH+6HEtERERERNqVzoSIiIiISPhwHHu1ZXs57DQIEREREZHwoXtCOgQNQuSg/fvLdNKXlAPQO6segD+uyLWVSzMBSI5qAaBXQi0AG3d3Dclj0+YUAKoaogG4f013AEak23YTf5cBQOGg3QBMyqkGYPFOHwCDkyzforImAG4/fk8w7yZ/BABvlVra1bsszQXZtr7M7wGgINXNY2t6SGxFZX4Ayn1eABbUbAVgao7VraTOlv9lcx0AfROsbuMyGwHI8NpBLCnaPuf7Yq3OtbbcF23l94q3ZwGmx6ZanZKtjvetjQNgUIqln7et2c0n2s3Xlr+6JcX9bHHPGtoSrMOSiuaQOlU1RQEwKs3KKPwoxupWYW00u9zqeG+fNKvjHqtjoJ0DSv3RtLjH6C4eWFnV1W2zQBtbuZVNtg9WV1hwMz7tAcDtxze7+dvysnrbbmNdlFtHyzvQfxbvtLbrl2jbFaTWhcQT2McFqVav5Vsygutmb7RAh1rXIinKPv+/ZT0BeHDiegDeX2SxBfZrpdsfnjrzSwC27LAyfN4GADbVJABwSZ9tAHy2I9liLbZ8LxtYAuz9TgRi97faVbATV0wHoPbUSQAMTrLv0FlTrA6tO+3z4jct8OL3kwC4+WyL98F38mx5jbXhuExLv64m3tou2htsA28X62OBvnj3U70BuGvsZwBEpVhfLF4c+n0MtIU3wrbfWGf7M9C3+8dWgG1KY3METUusn+h4oOOBtZmOB53teBARcZT88a5BSIege0JERERERKRd6UyIiIiIiIQPnQnpEDQIEREREZHwoUFIh6BBiIiIiIiEDcdp4zwhejpWu9A9ISIiIiIi0q50JkREREREwocux+oQNAgRERERkfChQUiHoEGIiIiIiIQPDUI6BN0TIiIiIiIi7UpnQkREREQkfDiOvdqyvRx2GoTIQUvz1jPjX30A8Ld4AOib2BySZt3uaPdfXUOWz94UAcDQ7ikAXDV2vbs8D4BhaTvdfLsDkJVWDcDLa3u5yy0fb4T9IyM2CoCqxkB5EOW1dcXVLSFlb6yzsqee9jkAd7zTx93W0k3KsfcRGV4Arhlm6QatygXgmZJ6AO4bZOmSo+MBmLvNDlpztlos6bF2orHM77N8cyusvBXJbv6WLjfe70Zm5V2+pgyA23P6uG1R4dY53fKv/BSA8Yn5btxWbnW07YPVO1OCdV26w+r6m9NLAFj0xTFuG1jMGbG2vtyqxKT0HgBUNlndvF0s78U7bf9luG3qb+mCg5XX1ApXnGH7r99K235lVSwABam1tjzRtjv5Cusf/5iZ4K63/bqp1uems/WDUnfZ8hpLV1RR65ab4MZhcafH77G2yLR8HlufCECS2xYAVc22rTfC2ntwcg0AVz6eAcAjV+a5MVj6cZnWGKV+60txiY0A9I62mN74tCcAn9bY4bOqKcqNyfZjWb2VnXJlb6vjRotxYNZ2AKKirS1e4g77nLIxpM3O3LMDgLfm2L468+RNALS4+caNsriT3iOkzQLbB/bllGNrgm2weLv1uZI9VqeMWNuvn6xNszq435vFOy2PQHsG+mZGnGUaG2HtW9lo7f/uhzmc3RhBLBDhcfgfHQ90PNDxwI2pcx4P9rQ0cDRwWu3Vlu3l8NMgRERERETCh+4J6RB0T4iIiIiIiLQrnQkRERERkfChMyEdggYhIiIiIhI2dE9Ix6DLsUREREREDlJhYSEejyfklZGREVzvOA6FhYVkZWURGxvLyJEjWbt27RGM+OigQYiIiIiIhA/H2XtJ1sG8DuIRvccffzylpaXB15o1a4LrHnjgAR566CFmzpzJ8uXLycjIYPTo0ezevftQ1rrD0eVYIiIiIhI+Wt1XW7Y/QJGRkSFnPwIcx2HGjBncddddXHTRRQA888wzpKen88ILL3D11Ve3IdCOTWdCRERERCRsOK1Om18ANTU1Ia+Ghm+eB2X9+vVkZWWRm5vLpEmT2LBhAwAlJSWUlZUxZsyYYNqYmBhGjBjBokWLDm9DHOU0CBERERER+Zrs7Gx8Pl/wNX369P2mGzp0KM8++yzz5s3jySefpKysjOHDh7Nz507KymzC0fT09JBt0tPTg+s6K12OJSIiIiLh4xBdjrVlyxYSExODi2NiYvabfPz48cF/Dxw4kIKCAo499lieeeYZhg0bBoDH4wnZxnGcfZZ1NhqEyEHLzaxkR0MKAGMHbgSgbJt9We9dlQpATlf7gnkjWgC4rXgnAFOyegBQ1Wh5zX8/B4CNtX4AFpZ2B6BfYh0Atxb1AuDuIaUALCtNA2BlpZX3y/4VABxzbHUwvjeX5QLwhzM3A3DVfCuz2i1zzipbnx5rn/N9EQBkxNYC4G+1E4UjX/MC8Mxgy3veNp9btq0vKrej1ZTeFvuCijgAVu+qB+D245utvM1pbv5WXlFZk5vO8i+rt9O89+dZXLM3Wboyv233zK6FVteMERZHqcV5Sc94izPT2mB2SVqwDfItVLZV2D8W77QDaEOLnWpOirb1E3rUumV2tRgtJJbusPe7h2yzGIqzANhU6/AfLYFSHG59PQ+AqkZbGNjvAVWNVtA/Zsa6bWBt81apxTUyzXbKnK1RAHi7JAGwssq2u72fpZ9banEH+tOmmgQASv3Rbj2aQuoJMCLN6jTuGGufJRXWN6tu2gXA4CTL67KB2wF4eW0vAMbmWF9r8lu/CPSfC7It38HJVtYF4zYCsHF5ohublffOXRbzwCzLd8sOX0ibeLtYv5n9Rm7I8k/+Ee/W1eq0boG17dSLPwfg48es3Eyv9av6Fmvrn/bfvN9yLK1tU+q39q1qCt0/Z060HV36rO3fdTVWh+Qod3/2tLaaMS8ZgKRo2/7i478kOtLSRES00i/RYtLxQMcD0PHAYutcx4PdTY3w732KbH+O+2rL9kBiYmLIIOT7io+PZ+DAgaxfv54JEyYAUFZWRmZmZjBNRUXFPmdHOhtdjiUiIiIiYeNQ3RNysBoaGli3bh2ZmZnk5uaSkZHB/Pnzg+sbGxspKipi+PDhba1qh6YzISIiIiIiB+mWW27hvPPOo2fPnlRUVPDb3/6WmpoaLr/8cjweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLz3SoR9RGoSIiIiISPho50f0bt26lR//+Mfs2LGD7t27M2zYMJYsWUJOjl1aeuutt1JfX8+1115LZWUlQ4cO5e233yYhIaENQXZ8GoSIiIiISNhwWu3Vlu0PxOzZs791vcfjobCwkMLCwoMPKgxpECIiIiIi4eMITFYoB043pouIiIiISLvSmRARERERCRvtfTmWHBwNQkREREQkfDi07ZKqtj2hV74nXY4lIiIiIiLtSmdCRERERCRsOI692rK9HH4ahMhBW1qSxYhe2wAo25YIQEZWDQAPdvUD8PaGY0K2eXygPRN7xqctANw+oBqABeUpAFyQbd/8SUO+sHT/6gPAIFvNA6uybH1OLQCPfW7LN9alA7B6WWKwrMIT6iyWZb0BGJFhea/eZe9Ld0QAMC6zEYB1u6MB8HkbLIO6eACm5mQCkJW22fJJT7Z8Kj0hdfi02soen7kbAG9EV7euTQBMH1IBwL2rUt06RQEwOMnKL/XHuO9WvL+lGYDZ5aUAbPqvngC88NcWvsobYeecpyx165P2lXVdrK6PfWYNOCnHYpu9qWtIHj2Tbb+lV9jyTG+jW1drk4oaa4tNtY4bu4do9zxqXCT8+lRrm7hE2+7Hc3q4OYc+A31U2h63TaycsVktbp2tLW4buB2A8ro4tw2sTeaWxgJwdb61YbXbVut22/LBSbUh5dx4Ylnw389+Yu22qcZiuW+TdZr3x1rdrppvsU5ptL5a0L0SgNdKrK/1S6gHICk60m0bvxuzbT/7jdyQNgvIiLPtEtKtPy34xAfA+KxdACyssO1/d/F6ANZ8aDsu0I9+2d/qmppi/Xje21aP/OQqAJbssHhGplm5T6yx9b3irU2Hpe0MxnJC+g57J1TXrhbbmy9a3X/Y1/bjy2t7AfDYRuu7Z55s+/0PE6ztdmyx/vDgst7c1hiJD2hsjuAHOToe6Hig48FX2yygsxwPGlr9HA10T0jHoEGIiIiIiIQPPaK3Q9A9ISIiIiIi0q40CDlKTJ8+nVNOOYWEhATS0tKYMGECxcXFIWkcx6GwsJCsrCxiY2MZOXIka9euDUnT0NDADTfcQLdu3YiPj+f8889n69atIWkqKyuZPHkyPp8Pn8/H5MmTqaqqOtxVFBERETnsApdjteUlh58GIUeJoqIirrvuOpYsWcL8+fNpbm5mzJgx1NXVBdM88MADPPTQQ8ycOZPly5eTkZHB6NGj2b17dzDN1KlTefXVV5k9ezYffPABtbW1nHvuubS07L1u+NJLL2XVqlXMnTuXuXPnsmrVKiZPntyu9RURERE5HAI3prflJYef7gk5SsydOzfk89NPP01aWhorVqzgjDPOwHEcZsyYwV133cVFF10EwDPPPEN6ejovvPACV199NdXV1Tz11FP8+c9/5uyzzwbgueeeIzs7m3feeYexY8eybt065s6dy5IlSxg6dCgATz75JAUFBRQXF5Ofn9++FRcRERE5lFo99mrL9nLY6UzIUaq62p6wkpJiTzEpKSmhrKyMMWPGBNPExMQwYsQIFi1aBMCKFStoamoKSZOVlcWAAQOCaRYvXozP5wsOQACGDRuGz+cLpvm6hoYGampqQl4iIiIiIgdLg5CjkOM43HTTTZx++ukMGDAAgLIye8Rgenp6SNr09PTgurKyMqKjo0lOTv7WNGlpaXxdWlpaMM3XTZ8+PXj/iM/nIzs7u20VFBERETlMdE9Ix6BByFHo+uuv56OPPuLFF1/cZ53HE3qK0HGcfZZ93dfT7C/9t+Vzxx13UF1dHXxt2bLl+1RDREREpN05jqfNLzn8NAg5ytxwww38/e9/Z8GCBfTo0SO4PCMjA2CfsxUVFRXBsyMZGRk0NjZSWVn5rWnKy8v3KXf79u37nGUJiImJITExMeQlIiIicjTSmZCOQYOQo4TjOFx//fW88sorvPvuu+Tm5oasz83NJSMjg/nz5weXNTY2UlRUxPDhwwEYMmQIUVFRIWlKS0v5+OOPg2kKCgqorq5m2bJlwTRLly6luro6mEZERERE5HDS07GOEtdddx0vvPACr732GgkJCcEzHj6fj9jYWDweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLw2mveKKK7j55ptJTU0lJSWFW265hYEDBwafltWvXz/GjRvHlVdeyeOPPw7AVVddxbnnnnvAT8ZaXRXFxUPs0b8vvWD3mWTutBvpM7x+AKqaIqzcxEYA/C32eWh3e89KsxvwrzpxJwDLl2YCMG9NLwC8lozcONs+09slNJ/UOADGZ9pjigtSo4PxBdLceOIma+Miy3tslnX7onKLPT+5CoBeCbZ8YWl3t+xWNx8rc+Jbtvz2fn43Fst/xjq7ByffZ6dve8Vbvptq7Rl/K1s/AuD+NScBMO3UUgCWlVqbrdttMU/oWQHAarcNS1rtjNW9fSzd1TOjAMjpGnqaOBDfhMxUa6v45uC6xz63WK/p4wVg8c6u1m7dWtw6WLv+YU0WAAtqtrp1yAxZ/9h6O/s1Ir3VLaOeqC727+ZWD+9vsu1nfWFlT+1rdS/12+cyv7VVRly921axAFQ1WZxJURZPtT8GgNmburp1tXwC/WBTTYKbr7XZvC+tfgWptn1Voy1/e8MxwTa44sQSAF5e2wuA+/vYAH/RF7Y+0B8qm6w+izdaOwb61LqaeL7qpF723Xzj054AxEZYjAOztgOwssqWr9zlszZ50/bn/VdZHIvftH50db7t72fn9wFg0hAL6OT/sLb5839bHMPccjNire2WVKSGxBPov2eebN+lqBTrH8WLU/i6QPslRdt+/ai8W8j6nbtC61p4QgMAt76eB8CEHvUh24/P3B38njQ5HrrpeKDjgY4HQOc9HtQ1N/DQxn2KaneO07azGXpEb/vQIOQo8eijjwIwcuTIkOVPP/00U6ZMAeDWW2+lvr6ea6+9lsrKSoYOHcrbb79NQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YRERERTPP8889z4403Bp+idf755zNz5szDW0ERERGRdtDW+zp0T0j70CDkKOF8j2G3x+OhsLCQwsLCb0zj9Xp55JFHeOSRR74xTUpKCs8999zBhCkiIiJydGv14GiekKOe7gkREREREZF2pTMhIiIiIhI2HKdt93XonpD2oUGIiIiIiIQN3RPSMehyLBERERERaVc6EyIiIiIiYcNp443pbbqpXb43DUJEREREJGzonpCOQYMQEREREQkbuiekY9A9ISIiIiIi0q50JkQOWn5iC4vf7A7AdVdsAaDuowYAyrYlArB0fSwAuXH2XrIn2tbX268Mn2yx7Us+tfV/2dgEwJRjrQx/i70PP/ZLAG4t6gXA3UMqAJi1wfJbVxMPwODkmmB8b5X6LO86y3tEhs0av3SHnWcdlGKf52xOs/fSnQCMTLWxed/EVgAmDfkCgOKaPgAkRVcDsHin5Z/T1cqravS4dbPy5ta/B8A92We45Vq6P6zJ4qvGZdZbnZdaPJN62Nfy/vxUtxyrY74Vx6g0K7+oIiIkn6Xbm9x/RQWX/ekH1h6vlViQq3dZg3q727ZVTRarz4rgmh7HAJAbX2d18XtteV5NSJ1L6mI5yfEQA0R4HCobLb++vsiQNiqps+0zvFbu1BVW0AhrcnLjGi2d2y8C+2z62Z8DcMc71ua3nrgNgJo9lp83wvK7pFesG5ctvyDX0iW5/QFg0RdWp/PzrI8++0lPq9MwK6N4g/VBn9f67g/7Wt3/uCIXgDunlABQ8E+LLdBnl+6wOl9z3C4A/meF5Xt1vvXN+9dYuruHWEwv/NXWJ0dZ7ENHlgFQ9pI1xqbNKQD4H7D+0M++QiypsH4w8cwNAKycbyvuv8riWufG9eYyi3fswI0A5J24M9gGy5dmsj8ZsVZWYL+OON7289joZgA2V1pZE3pYupN6WcxPrbKycuObaXF/MYz0ODoeoOOBjged+3iwp+XoOIPQ2uqhtQ33dbRlW/n+NAgRERERkbChe0I6Bg1CRERERCRs6J6QjkH3hIiIiIiISLvSmRARERERCRs6E9IxaBAiIiIiImGj1fHQ2oaBRFu2le9PgxARERERCRuaMb1j0D0hIiIiIiLSrnQmRERERETChh7R2zFoECIiIiIiYaOVNt4Tgi7Hag+6HEtERERERNqVzoRIm1Q1RgPwyvOZAJxzagkAC0u7A3D7gEoAXt2SAsCotFoASqJiASjzewHYWBcBwAXZNi7u66t0S0gEIMrbAsCgFPt14qPybgA89ZMNAFzxXG8A/K2+YGxLt/vdMpsBWFnVFYChtimDk6tD6jChp5WxqWYPAHO2Woz+FccC4LNkeCMtXVJUi7u9xd430crxRtjy6b1Otzh2WMxJ7vaTcqzcX6629CPTEgAYl5bKV62sig35PPXizwGY/UYuAJf0tLbK9DYB8PR5mwEoWtszuM2P348B4Fd9rKx8n33lC1JD6z4wazsALxXbtrM3dXXTWz694t26d3HcOkVwXquHeKDZ8ZAbb21d1WQxpyXWAdCvxdpmxqcWR98Ey7ef21YnpO8AoKQkC4DqRitn6afHuG1l/SWwv7/O32JtMDjJ0v1mhfXDKb3r9km73d3/BamWdtbyPgBckLsNgJ4/tf3wyL1pANw5xfpyw1aLdUG59eGJ+dbOU9z9/NY2W351fgUAq3fa5xHprQA8/onVJSPW2i7Z7TeB/ZjhdULyL6u3/jI42fZrv0SL94HX89y6WiP9aXYvAKqaLP34rF0ANPmtzYvePyZY98U7rf0v7FHlfrYdW+W291UDrU7RKRZLTI3V+bH1tj+nnVrOV9181RYAvpgbQ1SX1uByHQ90PNDxoHMfD2qbGzka6BG9HYMGISIiIiISNpw2PqJXg5D2oUGIiIiIiIQNnQnpGHRPiIiIiIiItCudCRERERGRsNHqvtqyvRx+GoSIiIiISNjQ5VgdgwYhIiIiIhI2Wh3aNk+IJitsF7onRERERERE2pXOhIiIiIhI2NDlWB2DBiEiIiIiEjbscqy2bS+HnwYhctB6xtXRO8VmUn2m2Ga4TVrZAwB/q/2K8NhnNutrYKbdOVu7huQRmC14YbklmJRrM/VuqrHZanvF20y3s91Zivsl1ANwzzqbxTgj1mazndrXZpFdULF3huQRGV53mX0en2ll5fe2Msa9mmx5xiW6sVi6jDgrI6erzQ4bmIE2MOPy+EybgbbMnYk2MKvvX7bbjLYXZHvd9bbdL/uHzpy7sc6mG5411Ga0vX9NlKWv97vb22y2/hbb3mvFULzYtn9tS2vIcohw26K7u7wl2Ab94mybpCi/m6eVFZghNzDj8cpPerrp7PNvTt8IwBuf2vJ1NbbfArMxF0dEE/idyAOs2+3OJu0W/cAq6w/XHLfLjc22H5dpjVXqtziWlaa5dbfcfNFOSB0Cs1oHZkAOzOi8bne0u7w+ZHlgVuLAzNsAZ+bZbL63FvUC4O4hpcDevviXzy1W771um7l97OqZlv4PEz5328Zien9TVki+Pm8DAHO/tLrkxlkdzxuxyWLbaPtz+ZaMkLoNTrA6Ld5u/TCwL+6esB6A8s+sn1TU2HugP1Q22f4+3y3/on/Gu/HZvi5w6x1oY4Af99oJ7J3NOdB3fv3ftvzjZ6wtEuob+Ko/nGkzJ9/9gc3mPPOh3QD8eVocABPP3ECk22ciPU5wxmsdD3Q8sPxtmY4Hned4UNPQCO9yxOlMSMege0JERERERKRd6UyIiIiIiISNVjy0cvBnM9qyrXx/GoSIiIiISNhwHHu1ZXs5/DQIEREREZGw0ep42jhPiM6EtAfdEyIiIiIiIu1KZ0JEREREJGw4bbwnxNE9Ie1CZ0LaqLm5mXfeeYfHH3+c3bvtcXXbtm2jtrb2CEcmIiIi0vkE7glpy0sOPw1C2mDTpk0MHDiQCy64gOuuu47t2+158w888AC33HLLEY5ORERERNrT9OnT8Xg8TJ06NbjMcRwKCwvJysoiNjaWkSNHsnbt2iMX5FFCg5A2+OUvf8nJJ59MZWUlsbGxweUXXngh//znP49gZCIiIiKdU+DG9La8Dsby5ct54oknOOGEE0KWP/DAAzz00EPMnDmT5cuXk5GRwejRo4NX0HRWGoS0wQcffMB///d/Ex0dHbI8JyeHL7/88ghFJSIiItJ5OXja/DpQtbW1XHbZZTz55JMkJyfvjcVxmDFjBnfddRcXXXQRAwYM4JlnnmHPnj288MILh7LaHY5uTG+D1tZWWlpa9lm+detWEhISjkBE7cvnbWRzZRIAm2rtAsoMrxeAsnr7Ao/LbADgsfWtAPT1ed3l9QB4I639hnaz916n1ACw8O/dLZ+ddoZpfGY1ABvr4gH4/SDruutqugKQG1+/T3y58c0ALNlhaRfv9AFw39o4AF45qxSAqGgr848rcq0OdV63LhZTVVMEABdkxwCwoMLWj0qrdutqMX5qHymusbqPTGu0z24bXbt+HgDnx5/j5m9x5HS19LcNtDgamt14t9tBbHWlrb/935b+vpN2h6wvKre2nbXBt08bTOlt9yb5WyJCls/eutNiTO0GQEGq7adSfxQAT62ytrikzzYrY2t6yHpfNHRxj9FdPA7eLrb/N7m3Qk3tVwlA4Wr7HozIsOXeCGvT5Gj7/WNdTaS73LbvFW/ry/xeNy5r1NmbQus2KDmwbyyelZX2fnV/G/wvK00Lpq2tjXHbwNrpsx3WbpNyqkPapqTO9uNJvcoASIpOsbZ4Lw+ATK/1p8pGS79zl/XF8jrbL5cNLAHgjU97ArB+VSoAiXF+a4PjNwOw9NNjrI57rLzLTv88pJwn5tn7lFM+36cuAMPSbN/V1FobvT7e+s2/N1oc3ZNsJxR9vLfN+iXaDyU/7b85ZNt/zEwCYN1uWz/YjWlg1vaQtpvS29qqabUt31jXB4C7Xs7j17dEkpQEHo/D5spEQMcD0PEAdDyAznc8aGj1czRodezVlu0BampqQpbHxMQQExOz322uu+46fvjDH3L22Wfz29/+Nri8pKSEsrIyxowZE5LPiBEjWLRoEVdfffXBB9rB6UxIG4wePZoZM2YEP3s8Hmpra7nnnns455xzjlxgIiIiItIm2dnZ+Hy+4Gv69On7TTd79mz+/e9/73d9WZkNZNPT00OWp6enB9d1VjoT0gYPP/wwo0aNon///vj9fi699FLWr19Pt27dePHFF490eCIiIiKdzqGarHDLli0kJiYGl+/vLMiWLVv45S9/ydtvv43XPfu7Px5PaDyO4+yzrLPRIKQNsrKyWLVqFS+++CL//ve/aW1t5YorruCyyy4LuVFdRERERNrHwd7X8dXtARITE0MGIfuzYsUKKioqGDJkSHBZS0sL7733HjNnzqS4uBiwMyKZmZnBNBUVFfucHelsNAhpo9jYWH7+85/z85///EiHIiIiItLpHap7Qr6Ps846izVr1oQs+9nPfkbfvn257bbb6N27NxkZGcyfP5/BgwcD0NjYSFFREffff//BBxkGNAhpoy+//JJ//etfVFRU0NraGrLuxhtvPEJRiYiIiMjhlpCQwIABA0KWxcfHk5qaGlw+depUpk2bRl5eHnl5eUybNo24uDguvfTSIxHyUUODkDZ4+umnueaaa4iOjiY1NTXk2j6Px6NBiIiIiEg7O1SXYx0qt956K/X19Vx77bVUVlYydOhQ3n777U7xJNVvo6djtcHdd9/N3XffTXV1NRs3bqSkpCT42rBhwwHl9d5773HeeeeRlZWFx+Nhzpw5IeunTJmCx+MJeQ0bNiwkTUNDAzfccAPdunUjPj6e888/n61bt4akqaysZPLkycEnPUyePJmqqqqDqb6IiIjIUSdwOVZbXm2xcOHCfZ6eWlhYSGlpKX6/n6Kion3OnnRGGoS0wZ49e5g0aRJdurS9Gevq6hg0aBAzZ878xjTjxo2jtLQ0+HrzzTdD1k+dOpVXX32V2bNn88EHH1BbW8u5554bMpfJpZdeyqpVq5g7dy5z585l1apVTJ48uc3xi4iIiBwNjtSM6XJgdDlWG1xxxRX89a9/5fbbb29zXuPHj2f8+PHfmiYmJoaMjIz9rquuruapp57iz3/+M2effTYAzz33HNnZ2bzzzjuMHTuWdevWMXfuXJYsWcLQoUMBePLJJykoKKC4uJj8/Pw210NERERE5LtoENIG06dP59xzz2Xu3LkMHDiQqKiokPUPPfTQIS1v4cKFpKWlkZSUxIgRI/jd735HWprNnrpixQqamppCZuTMyspiwIABLFq0iLFjx7J48WJ8Pl9wAAIwbNgwfD4fixYt+sZBSENDAw0NDcHPX59BVERERORo4bivtmwvh58GIW0wbdo05s2bF/zj/es3ph9K48eP50c/+hE5OTmUlJTw61//mjPPPJMVK1YQExNDWVkZ0dHRJCcnh2z31Rk5y8rKgoOWr0pLS/vWWTunT5/Ovffeu8/ylOQ6vthoZ2byfVbf5Ohm990uAcuIrQfg4VNtELN6p3W5Un80AP6WCAAmnFgCQNE/jwGgoHslACt3+QBYUGHvm2qt7Ak9bPt+ibUhMfn3XnnGuhorK6crIdu+eM0mAGa/kQvAjE2lANyfb7Eu3mlzvEzK3QnAnM3WZqt3EZLfW6UW09LtfgBGZNgkRbPLt7rpegAwOMkK/l3OOSGxLqjo6tbB2mzW5/a88IJUaytvhD1tbWg3Sz8y3eozY53t46n9rI38rSkhdR+VVh0s4761cW5eXULyvCY3CYAyvx1qS/ZEu3W0z+OyLKZ5mzJDtqtq8rjpmmhyL5qNiWxhdaUtf3js5wAMe82Cube3PV99nTtu9UbY8tLdsW7Mtl1StOX1qbvP+rptsq7G2mjKsdb4i7cnu9t1ceP3uPmG/i9jzpa937+kKNsm32d9bWVVYA4fe++X0Ajs7YOzlvcBIDfOll9xxnoAfjfvOADGZ+4GoLgyyWLcbW1XUmf5JUdZHV/dYvvlwmyLffN6a4uTetl37eW1vQAYWm+xTszfDMCzn/S0/Dd0B+Cxz61/XWNhsanGbmQ8rpvt/4RjrTzvFnvfssP65Yj0vZeJJsVYXboNsTQNi619T0jfAUCpP7Cfbf3f12cDcPHxGy19o+2XeW/3dNNZvv26NRPdxdq+SxeHMr99B3Q80PEAdDyAznc82NPSAls44hzadknVob4xXfZPg5A2eOihh/jTn/7ElClTDntZl1xySfDfAwYM4OSTTyYnJ4c33niDiy666Bu3+/qMnPsbHH3XrJ133HEHN910U/BzTU0N2dnZB1oFERERkcOu1X21ZXs5/HRjehvExMRw2mmnHZGyMzMzycnJYf16+1UmIyODxsZGKisrQ9J9dUbOjIwMysvL98lr+/bt3zprZ0xMTHDW0O8ze6iIiIiIyLfRIKQNfvnLX/LII48ckbJ37tzJli1byMy006ZDhgwhKiqK+fPnB9OUlpby8ccfM3z4cAAKCgqorq5m2bJlwTRLly6luro6mEZERESkI3McT5tfcvjpcqw2WLZsGe+++y7/+Mc/OP744/e5Mf2VV1753nnV1tby+eefBz+XlJSwatUqUlJSSElJobCwkIsvvpjMzEw2btzInXfeSbdu3bjwwgsB8Pl8XHHFFdx8882kpqaSkpLCLbfcwsCBA4NPy+rXrx/jxo3jyiuv5PHHHwfgqquu4txzz9WTsURERCQs6HKsjkGDkDZISkr61vsxDsSHH37IqFGjgp8D92BcfvnlPProo6xZs4Znn32WqqoqMjMzGTVqFH/5y19CZtt8+OGHiYyMZOLEidTX13PWWWcxa9YsIiIigmmef/55brzxxuBTtM4///xvnZtERERERORQ0yCkDZ5++ulDltfIkSNxnG9+KNy8efO+Mw+v18sjjzzyrZeIpaSk8Nxzzx1UjCIiIiJHu7bOet7WGdPl+9EgRERERETChoOnTY/Z1SN624cGIQfopJNO4p///CfJyckMHjz4Wx9t++9//7sdIxMRERERnQnpGDQIOUAXXHABMTExAEyYMOHIBiMiIiIi0gFpEHKA7rnnHn7+85/z+9//nnvuuedIhyMiIiIiX6HLsToGDUIOwjPPPMN9990X8mSqzih5dAJz7rYv6oTsZgBK/dalkqJaAHhsvU1sePeQUgDOObUEgAffyQMgM7URgHsX9AHgv4ZsBiAhvQGA21+MA2BQiuU7Mr0pJIaVlZb/xjqb8ubGEzcF1y3fkgHAPZ9XADAlqwcA971kZSVFE7K8pM4JWR4TbXWaV1oLwNBU29/VjaHnaS/ItjNjr23xAzAuxWaTL6u39WVeLwC58bb+vnXWNo8O3WPlL7Wnl+XGJLnlWwCj0qoBWFDhA6BfQqNboqVfucsXEkdVo+2LdTVdg8sm9bJY52xxY6m3dv20JhaAhTt3ABCL1cHrCRwS7H11peXpdZ+w5nPbJt8XTaR7KWJDcwRDu1mdKnfY/qp2bBLNUn++Wyfbrn/2djfGeADGZ1rbFn5s6+8bZPkE9mtxjZWRHNXVjcMenJgbb41b5re2XVhu8W52txuUsveJcCV1lsbf4nHfbfnNp24AoKnR0u6psSBz4xr5qk/WpgEwpY9N9HnMsbZf3lyWC0CG1zKMjbC29reGTr8U2E/D0nYC8OCy3gD8dqFt/9z5oXUK7Pe0xDq3TeLduP3uu8Xbtavty9LV1uaBtq2ttX15frfqYAwNjdY+f5rdKyS2SUO+ACC51OqwoMLaeXCStcE2t++V7bH+UtlkZXvd5h2UuouoLhZ/F28X5mzR8UDHAx0PoPMeD2qbQ9vrSNHlWB2DBiEH4dueYiUiIiIiR44GIR2DZkw/SN92Q7qIiIiIiHwznQk5SMcdd9x3DkR27drVTtGIiIiICOiekI5Cg5CDdO+99+Lz+b47oYiIiIi0G6eNl2Ppqvv2oUHIQZo0aRJpaWlHOgwRERER+YpW99WW7eXw0z0hB0H3g4iIiIiIHDydCTkIejqWiIiIyNHJcTw4ThvuCWnDtvL9aRByEFpbdaJORERE5Giky7E6Bl2OJSIiIiIi7UpnQkREREQkbGiywo7B4+gGBzlANTU1+Hw+PjtvMv66FABW7rLHFW+siwBg6mmfAzBreR8A+iXU7zev2Zu8AOT7Qq+/vKTPNitrj61PjPMD0C27DoAvv7Dy5n5pTyjL9DYDUFK3d1zdL6ERgIxYK/v21Rbbo0P3ALB6p8Xu7WInXtftjrblu1qsDn1rASirjwWgssm2f6ykCoBxaakAJNlmeLvYV2l1pdUl3Taj2sIgp6u9V7mfV+9qAqBX1yhrg0TbfmxOKQB3Lkt387dyByXb+jK/5d8r3uLMjbf6rauJB+Di4zcG2+CpVbkAFKRaXd4qTXBjsrym9K62Oq1PBGBCD4vJG9HCVy3eaZXJ8Np287Y188RHt5Ca5aOuvJqXxz3k1t1iHdbN9sfcbfb57iFWp8D+fGubtf1P+2+2OvZqAGDNh7Y/F1T4QtY/saZnSJ0Hp1jci7cnA9Avsc6Ns6vbJs3B2C8YZ+2x+v3uAFQ1RofUbWDWdit7m60/qVcZANMWW9v53OQXZtu8P2V7YkO2P3PiDgC+mBsDQEx0c0hdAzEW19h+m5RjsftbrG0CbZ3dzZa/veEYK8dv64urrc1vG2hxJna178L2KqvrrC+sLW8caN+Z7HPtBPcbT6UEY8xPrgKgvC4OgPvW2vdkRIbFOD7L6lbVYJUtqYsNiSGw3t9snzfWWV87M28LSTMfJCI1hZadu/hk4m8AHQ8sHx0PdDzofMeD3U2N5L78AtXV1SQmJtLeAn+f/OH424mNiDnofOpbGrhx7X1HrB6dhc6EiIiIiEjYsDMhB39zuc6EtA/dEyIiIiIiIu1KZ0JEREREJGw47qst28vhp0GIiIiIiIQN3ZjeMWgQIiIiIiJhQ/OEdAy6J0RERERERNqVzoSIiIiISNhwHHu1ZXs5/DQIEREREZGw4eChlYN/RK/Thm3l+9MgRERERETChs6EdAy6J0RERERERNqVzoTIQdtd5+WD8hQAqhptWYbXfj4o3tAdgFHpuwCIiWy292h7X1aaFpJXQWotAIt3dgWga9cGAJ4pzgJgfGY1AB992A2AU7LLAMj0Wn4lddaV+yU0BvMs2RNtMcXWAzBjiK37/SdW9qBkx83DnoOxyULg9gHVIbF5I1oA2Fhl+U3qkeqWZfkuqIgDYPUuv+WbEgtAeb3lPy7Tys1PrgJgYam1jd9n+TW0OG45FsdrJVbnnK6hp4Nnbd4JwK/6+ABYWRnlrrHyVlda+sHbUoLblFuIJMU0hpRVVt9kMbREADCld53Fnmft+uM5PULq0iveYhuZud3aoi6dSI+V19Tq4eKCDQBc2sP2w8p5Ke72FutnO5IBWLc7NqRO72+yulautziu+NlWABY/Zdttr7L+MCm3AoDUFIvz3fXZAPRLtM8ldZZvVaPFtK7lK4e2ub3cNLbMa0Wxepe1xYKKHGu3ZGuTT7bY/hmUbPt9WJq1+9wvrd94u4T+RPbmi+kAJEVbGyc12/vi7Vbn5GjL57+GbAPg5g+OAWDaqeUA3LTYyiscZOkmnFgCwOwVxwJ7+0FxZRIAZx67CYC/u22Q7jZpt2xrix/dZfW9IHvvb0z3rrI++4czNwPwcHw8ADHR9v38qNy+VyvdPn55/raQ5b3zd4bUeeOyXKvrqZF0ibb4Wls9LNDxQMcDHQ+ATnw88LfCyxxxejpWx6BBiIiIiIiEDc0T0jFoECIiIiIiYUMzpncMuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNvSI3o5Bl2OJiIiIiEi70pkQEREREQkbekRvx6BBiIiIiIiEDd0T0jFoECIiIiIiYUOP6O0YdE+IiIiIiIi0K50JkYP28NpURme2AHDV2A0APDEvD4DeWbsA+GRLdwBOm9gIwP/OyAJgvLv+4c/t94aSuiQANtVa3n9ckQvAhdmWrnuSrXhscaKl39MTgCrLFn+Lx95b946rB7vbeCMtxsXbkwEYlGxlFpXbVZ+DUqIByOlq2836IsXN29Jdk1cDwOwdmwEYFZ8PQHF1LABDuzUDUN3oBeDq/l+GtNNNi7u75aQBUF5vy9NjLf/Bybb9kh2Rbnwt7pYRAOTGWSUbWlKtPl0a3bZqdpdbOl+0tUF2t+pg2b5SHwCvbkkJyXtYN0t731orMyM2xmIqzXO3rHfrZDH6Yy39Mcda3kmb0+hii/A7zTz7nm1XVNZkbdI9CoBrhn0OQOWOuJA2SYq2Ojy2PtH9bJn98anskHRTV9i++dMP/AA0NVpdS/0W9wXjyiyGfx4DwOAUi69wdUIwj8FJob9p9UuwuhWkWgxl9bYfhx9r++35Ndb3rhq7HoD3F/UI2T433mI5rlslAB+VdwPg9N9YmU9OtX6VHG1tneG19Mu3ZAAwIdvi6ZZdB8A1O6xfxkTa/py1vI8bn9Vl8U7bh5VNVvdP1lo/uux0a9uYHtYWO1bYPnxi9FZL5373AB49x9pp9opjrc5+a+9JuRUhdRufaWX+5XP7nlY1WrrSDywmf6t9vmxgCQAPPpHLL34cQUIC7G6KIClKxwMdD3Q8gM57PPC3+Dka6HKsjkGDEBEREREJGw4eHDxt2l4OPw1CRERERCRsOLTtbIZOhLQP3RMiIiIiIiLtSmdCRERERCRs6J6QjkGDEBEREREJG3pEb8egQYiIiIiIhA2dCekYdE+IiIiIiIi0K50JEREREZGw4bj/tWV7Ofw0CBERERGRsKHLsToGXY51lHjvvfc477zzyMrKwuPxMGfOnJD1juNQWFhIVlYWsbGxjBw5krVr14akaWho4IYbbqBbt27Ex8dz/vnns3Xr1pA0lZWVTJ48GZ/Ph8/nY/LkyVRVVR3m2omIiIiEp0cffZQTTjiBxMREEhMTKSgo4K233gqu/z5/w3VGOhNylKirq2PQoEH87Gc/4+KLL95n/QMPPMBDDz3ErFmzOO644/jtb3/L6NGjKS4uJiEhAYCpU6fy+uuvM3v2bFJTU7n55ps599xzWbFiBREREQBceumlbN26lblz5wJw1VVXMXnyZF5//fUDjtkX7aFfYi0AVzzXG4ApvesBiPK2APBWqcXGn+0tw13ub7Z4xqX5ALi4YD0AG9/JA6BXvKVbvD0ZAO8un5t/HQBJMY2WfndXAFZWRQOwrmZvl15ZaWWPz9wNQFWTzYCaG99sebpt4reiWL2rCYCnz9tkn9dnAPDY+kQA3h1VbXWLLgHg3xtt/X3rLIMRaRbLtR+kADC1r/2UMiIjys3fcctrBWBSjrXV7E22XVWj5TOsm6VbXYmb3up2dX4FANX+GAAGpfjceli6C3K/BGDLDl+wDQLr+iVYe80ttbx80R53fWhM4zOtffsmxro5WEyxbro3l+UCkBTl4HEnlPVFRFCQam2zqdYXUt69C/oAsLHW2vb5yzcC8MQ828/jsmxfzN1mgU5IqnPbwuK8vZ8t/6i8GwDrdtvywD7cuNz2TVK0lffYZ9b2pc07g20we1MSAJNyGt06W50WVFis5bYbWLc7120L+/zSu9anx/S2dk36SrsCbK60sgNtuu46x20Da5iZD1nGu17ZAez9TkSnWLrXi6y8DK/ftqux/jruGNvPC0u7h5T3qdu3f9h3FwBffmHxNBTb8vs+ts9/OHMzAAXnbA9uu6HIYi3zW2z9Eq395mxOs7Sp9j3O7713GwCftwGAJRWpABSVuyvWWOz9EhqJ9Fh9unjQ8QAdD3Q86NzHgz0tTRwN2vvpWD169OC+++6jTx/r48888wwXXHABK1eu5Pjjj/9ef8N1RhqEHCXGjx/P+PHj97vOcRxmzJjBXXfdxUUXXQRYB09PT+eFF17g6quvprq6mqeeeoo///nPnH322QA899xzZGdn88477zB27FjWrVvH3LlzWbJkCUOHDgXgySefpKCggOLiYvLz89unsiIiIiKHSXtfjnXeeeeFfP7d737Ho48+ypIlS+jfv/93/g3XWelyrA6gpKSEsrIyxowZE1wWExPDiBEjWLRoEQArVqygqakpJE1WVhYDBgwIplm8eDE+ny84AAEYNmwYPp8vmGZ/GhoaqKmpCXmJiIiIHI0cp+0vYJ+/fRoaGr6z7JaWFmbPnk1dXR0FBQXf62+4zkqDkA6grKwMgPT09JDl6enpwXVlZWVER0eTnJz8rWnS0tL2yT8tLS2YZn+mT58evIfE5/ORnZ3dpvqIiIiIHO2ys7ND/v6ZPn36N6Zds2YNXbt2JSYmhmuuuYZXX32V/v37f6+/4TorXY7VgXgCF926HMfZZ9nXfT3N/tJ/Vz533HEHN910U/BzTU2NBiIiIiJyVGp1X23ZHmDLli0kJiYGl8fExHzjNvn5+axatYqqqipefvllLr/8coqKioLrD+ZvuHCnQUgHkJFhNzyWlZWRmZkZXF5RUREcWWdkZNDY2EhlZWXI2ZCKigqGDx8eTFNeXs7Xbd++fZ8R+lfFxMR86xdPRERE5GhxqO4JCTzt6vuIjo4O3ph+8skns3z5cn7/+99z2223Ad/+N1xnpcuxOoDc3FwyMjKYP39+cFljYyNFRUXBAcaQIUOIiooKSVNaWsrHH38cTFNQUEB1dTXLli0Lplm6dCnV1dXBNCIiIiIdWlvvBzkE84Q4jkNDQ8P3+huus9KZkKNEbW0tn3/+efBzSUkJq1atIiUlhZ49ezJ16lSmTZtGXl4eeXl5TJs2jbi4OC699FIAfD4fV1xxBTfffDOpqamkpKRwyy23MHDgwODTsvr168e4ceO48sorefzxxwF7RO+5556rJ2OJiIiIHIQ777yT8ePHk52dze7du5k9ezYLFy5k7ty5eDye7/wbrrPSIOQo8eGHHzJq1Kjg58A9GJdffjmzZs3i1ltvpb6+nmuvvZbKykqGDh3K22+/HfJ86YcffpjIyEgmTpxIfX09Z511FrNmzQrOEQLw/PPPc+ONNwaf0nD++eczc+bMdqqliIiIyOF1qO4J+b7Ky8uZPHkypaWl+Hw+TjjhBObOncvo0aMBvtffcJ2RBiFHiZEjR+I433z+z+PxUFhYSGFh4Tem8Xq9PPLIIzzyyCPfmCYlJYXnnnuuLaGKiIiIHLW++pjdg93+QDz11FPfuv77/A3XGXmcb/vLV2Q/ampq8Pl8/CT9dvLcmXQDM64GnJm3BYBbi3oBMKGHzaJ6zo/txvjfPWpP17ow22Z7XVBuM9tusolamZRjM+4u3mmzvt7wst3M9Y/JNnvxwgqblTY9MJGvq7h63+6c5M4GPCjZZqitarIzQ5lei7lXvM3K++rWJAAKUhvcsu1m/FFpe9zPVli1TbTLyLTQGXfX7Q4NJjfO1t/2uc2o/Pv8ngCsrLJ0q3e1uNvbrVk5Xb/9KRmB2Y7HZ1mbXb7S4pqU3gOA2eVbAbijd0ZwmzlbLM8J2dYu3i72+86sDbZ8Sm9bXrLH2nNUuuXdO99mGH7+A7vJLjfeZvGds9ViT4+Fqe9NJTEjkdryGtZNvBfYO7Nxqd/e/S1d3Nit3I11VonADNgBgZm20xJtXzQ02u8jX5/B198S4ebntnlNPAA/HW2XMq750NKvrNx7I2FgZuxAe4/NsuUTTrT9En+C7edbf2998jfn2GzdT71nszgnRdl2r22xOgRmvA60VVaa9dXaWsunx5mW/t9zEkPaZMRZNtNy6eo4y6/EAvl6Pzz5Ptt/j1xpMyx7u4T26cC+mFtq++LGgdsAOKbA+u2GoviQtoO936txmaF99qReZSGx/+VziynwPRraLbTMQN8N9MXXttYye+2ddD8miV3bapg5cgag4wHoeAA6HkDnOx40Ow28V/MHqqurv/cN3YdS4O+Tn2fdQXQX70Hn09jq50/bph+xenQWujFdRERERETalS7HEhEREZGw4TjOt17i/n22l8NPgxARERERCRuHap4QObw0CBERERGRsNHWqT40BmkfuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNjQI6Rh0OZaIiIiIiLQrnQkRERERkbBhN6a34RG9hy4U+RYahIiIiIhI2NDlWB2DBiHSJr3iWwDo66sBICayGYAN21IAGJTisXQJtQA8+EQ2AOMzqwFIjPMDUFTWBMDtx+8BwN8SAcDE/M0AvDOl3pa3RgEw5dhdAHxanQhAUlST++4NxjZrs6W5v3cMACV1sSFlTeplsa2r6QrAplqLvbja4+bQ6NbR8szw2lGpvN7WVzZZjJ/utPwLUhssXWx9SL79uvR262TbzyndCcDghFRro2RbPjjZ2uStUp8bh7XttFPLAfjDmiwApq6IBmBUUoobj0XbLyrT6v1FU7ANnh1XCsDLa3sBcH7eNjf2Y9wUVkaZW6eNuy3mspXWVsU1Hjc2a4sJPWyrdbtjg9dyenBYUOFz62jLBidZ+lN6fwnAkHdLAHgsrwCAuaVWhxwrjtiI+JA2m3jmBsuvJA2ABRW2PCmaEBfkWn1++JTVvXCALV+6Y2+a2wZWAOCNsLw21rlpPrU2GFizHYCRaRbz8x/0AaBfgjXsnK3WFk+fZ3W4d4Gt3xhnMQ34reXzxrXWxzc+GuGWZ+XcNNm2W/xmBgBVjVaJKad8DkDljjgAPirvBsC551QCe/fdG5/2dOO2DKuaLJ78ROs3NXusfyavt+9O3mWWbtRT1cE2yO5v/25otEN+0dZ0AJJOtc9PPWF9q6jMvo+DUqyMTK/16R8M3wpAyfw+7nLrY8+ftYsUb2uwHB0PdDzQ8aBzHw92NzVy3OsccY5jr7ZsL4ef7gkREREREZF2pTMhIiIiIhI2HBxa23RPiE6FtAcNQkREREQkbOhyrI5BgxARERERCRut7qst28vhp3tCRERERESkXelMiIiIiIiEDcdxcNpwTVVbtpXvT4MQEREREQkbmiekY9AgRERERETCRmsbn47Vlm3l+9M9ISIiIiIi0q50JkREREREwoZDGx/Re8gikW+jQYgctLMzWxmcUg3AY5+lADAusxGAXgm1APRLqAfgxY2pAFzYowqAt0p9tr4uHoCpff0ApCXWAXBMQQMA6/5p6R5bb131jyO2AbBmW3cATs2sAOC1kiwAkqJagvFN6Wkxlflt2Yge5e5nSzvrCyuz8IQGd7nP3TICgHILnStv2QnAIw9YHby2mjK//SMpOvRw9erWJAAKUi3fXl2jAchPtlgnZKaF5NPPrfOCCit/cJK14fhMC+APayze/ETHfbc2S45utny62MMEV1ZZOaPS6oOxTFuca2X2sP3x9/XZABSV2zZVjfY+9hjLe/ixXwLw4LLeIesD++u6ISUAlKztBR4rw8GD28SMSrNyBuWVAdDkttHlKSMBqGyymAclW3llfk9IHQInZ//wZh4AVw3cDEBcorXJnFVWn4sLNgDw05d6AXBBjygA7ltr+3REhifYBg3NkW5dCKnDzl3Wjt2GuP0j0cqq3BEHwDPF1u63nmh9bvaKYwEY5+4Xf4vVbfcTa9zPtv7XD1tBu/9m+X252PLrmVxjdS61/b9ps/XPjbu7WhtEWByDUiz9oi+OASDTa/mN6b0dgPRJyQCs//8sjmPHWT/73aN9AFj9ehMAhYN2B9tgyw5fSMxVTfa+6GXLa0JP65uDkxLcdJZnUrSVXf5ZvBtLU8jyl4p78vOmSLoC3ghHxwN0PNDxoHMfD/wtfo4GuhyrY9AgRERERETChuO07WyGHo7VPnRPiIiIiIiItCudCRERERGRsKHLsToGDUJEREREJGy0Om0chOh6rHahy7FERERERKRd6UyIiIiIiIQNx/2vLdvL4adBiIiIiIiEDQdo/c5U3769HH4ahIiIiIhI2NCN6R2D7gkREREREZF2pTMhIiIiIhI2HKeN94To6VjtQoMQOWjjT9vI/f84HoDfnF4Ssm7nrngA5myNBeD3v9gAwMp5KQBUN1q6pKgmAE6/qgGAzX+15a++kg2At4td1Vk4aDcA72/KClmeflwdAI/9qxiAe3sfG4wh0+u3deutmy/ZYdturLUye3X1Wt4fWfqh3e196XbbblCKxf63P/jc5S1uuggAVu+yg1S+zwNAqT8KgGd2LQSgb+Lplk+ybbd6p9Xda5sz70srp1+CLfBbMhbvjAHg6v47AMjpauWX+a2cfonNAJTUWb2qGm15UrTFM2tDfLANFvutXWJK+wIwOLnJrZttmxvvuG1j6a+a38Pq0mwLJmSmAlBcbel+OjfTbTsPP3IvuG1qhV7xFvycrV3dmHq6dbXl1Y22/dIdVtd0a1om5VYAkHeZLf/zw0khbRHY30t2WLzjMusB2FBscY3NctvAqsVLP94CQEu9J9gGZdsSrW4DN9u222w/rKy05eVvxtnnKos9N846Z6BOAefnWd5R0bY80MdnLe8Tku4f99p7qd/64oytnwHw+3xrk3U1FnNSlDVCUrSVt3inlT8qbQ8AJ/UqC8k3EHfCAlve0Gxt8O851l9+/ZjV+YO77btU1RAd3DaQ93Wj1luZbvuV7bEYeo+w79HsWWnA3v2SmmLLn1+TC4C3i+3HyibbX4OTaolyv4uxMS3M+sJi1PFAxwPQ8QA63/GgrrmBo4Eux+oYNAgRERERkbChQUjHoHtCRERERESkXelMiIiIiIiEDcc9F9KW7eXw0yBERERERMKGLsfqGDQIEREREZGwoUFIx6B7QkREREREpF3pTIiIiIiIhI1W97+2bC+HnwYhIiIiIhI2HI+D42nLjem6HKs96HIsERERERFpVzoTIiIiIiJhw2njjek6E9I+NAiRg/bY28eyoGYrAIM+7QnA4JRqAD6tTgTgl/0rAHjhr7Y+N74egHtGfQ7AL97MBeC4v1YC0LVrAwArK6Msv+QmAF7dkgJAv8RmAHol1AKw+WMfAJO6pQHw8Oc7g/ENTkgFYErvRgDmbLWDir+lxcrYXWMxxSQBsKnW1o89xgvA6l12Kndho31Npp26DYCireluvlaXGZ/GhLTLPdlnALB0hwcAX7S994q3/GZtszabckwPAErqrNyl2/0AXNLL6v74J8eEbFfdaPks2WHxDEq2elS58Y3P2gVAhtcXjGVClLXvjM92A3BhjxY3TQQA/bO3AzB9g5V5b580d8sE973RLcPqOCjF2mbel35aWvcepKuaLL9VVbZfPq22mMYeEwtAvhtSbpzlV+mmL65MAmDh/wb2t7tP4m19XrrVqdRv/WdglsXb4Nb5stOtH728uDcAX35hBf3+k0A9IKervRekWmxJMRbDyEzLq7wuDoCyemvfccdUAfB4seXxaY3th6v7fwnA+5uyAOjrq+GrRrmxHj/R8v/nLDeWfIs9I876y1VuHf7fsp4h8fVLsO1WVlmbJW2zPu9viXCXW0LfF/YdeXFjqlsv+7zryQ1um1n6Ndu6B2ObXW59ruCjzJA8S+psfx632PZv4PsVaJNZn1tfD3wP19VYu0/Kte/ZHSuSeaLZQwxQ64/U8QAdD0DHA+i8x4Omo+RWilZa8eiekKOeBiEiIiIiEjY0WWHHoHtCRERERESkXWkQ0oEUFhbi8XhCXhkZGcH1juNQWFhIVlYWsbGxjBw5krVr14bk0dDQwA033EC3bt2Ij4/n/PPPZ+vWre1dFREREZHDotXT2uaXHH4ahHQwxx9/PKWlpcHXmjVrguseeOABHnroIWbOnMny5cvJyMhg9OjR7N69O5hm6tSpvPrqq8yePZsPPviA2tpazj33XFrc66JFREREOrLWQ/CfHH66J6SDiYyMDDn7EeA4DjNmzOCuu+7ioosuAuCZZ54hPT2dF154gauvvprq6mqeeuop/vznP3P22WcD8Nxzz5Gdnc0777zD2LFj27UuIiIiIoeabkzvGHQmpINZv349WVlZ5ObmMmnSJDZssCdglJSUUFZWxpgxY4JpY2JiGDFiBIsWLQJgxYoVNDU1haTJyspiwIABwTT709DQQE1NTchLRERERORgaRDSgQwdOpRnn32WefPm8eSTT1JWVsbw4cPZuXMnZWVlAKSnp4dsk56eHlxXVlZGdHQ0ycnJ35hmf6ZPn47P5wu+srOzD3HNRERERA6NwNOx2vKSw0+XY3Ug48ePD/574MCBFBQUcOyxx/LMM88wbNgwADweT8g2juPss+zrvivNHXfcwU033RT8XFNTo4GIiIiIHJVaacHDwd/r2tqGbeX705mQDiw+Pp6BAweyfv364H0iXz+jUVFRETw7kpGRQWNjI5WVld+YZn9iYmJITEwMeYmIiIgcjZzgnOkH+9KM6e1Bg5AOrKGhgXXr1pGZmUlubi4ZGRnMnz8/uL6xsZGioiKGDx8OwJAhQ4iKigpJU1payscffxxMIyIiIiJyuOlyrA7klltu4bzzzqNnz55UVFTw29/+lpqaGi6//HI8Hg9Tp05l2rRp5OXlkZeXx7Rp04iLi+PSSy8FwOfzccUVV3DzzTeTmppKSkoKt9xyCwMHDgw+LetA+KIcpuZkAlDVFAHAp9V2lmRQ6i4AllSkAlDmt/WDUxoB2LQ5BYB7TtwJwAOrsgC49cRtAIxK2wPA4p2xAHhtc+ZsscvGhvpt+6Xb7ZTp0O62/t5+ccH45rjTn/zyc3uMcWHOiQDERkS6Mdq2qSmbAXh3vV1i5u3S6r5HAZDptZgrauIBWF1pwczbZrENSrHPm2odN30TAH5fNADF1e7yVFvubbXtqhoDkVqdrsmz3wQWVlh+vmjbbtZma8uCJGvLYd2aAahstHTl9RbvY59Zm/hb9v6CM6V3PQCX9LTYF+/0uLHa+nVunUYl2vLKJmuTwP4cnGQJqxutLn0Tbf2UYyOJi9wbfW6cVeaCHl3dOhNSTo4tZmFFtFt3i/G2gbb/qUwCYGOdxXPeiBIALv6T7ZMLsi39+nKrY1KMlVe02M7gJUdZXMVuPr85vSTYBs+vyQWg8GP7PPU4C6bUH8X+ZGTZgxfyS61TJUdbe79WkhVSp4suqwOg7CV3fzZY3f71Z3vPiLO2D+yXfJ+lw61DwKg0ayxvpNXBG2HpFlT43M+WbtwxFQBU+2Pc7ew7sm63pV+8rLdl7/aH2wZuD5bx6mnWt5K72ZnS2SuOBWBjnS3vcaaV/ZcnAv9L8AJw19jPAGipt/7x8Kt2P9ngpCQApvZtoGuk7RuPBx0P0PFAx4POfTyoa27g9aUcca2eVjxtmOtDT8dqHxqEdCBbt27lxz/+MTt27KB79+4MGzaMJUuWkJOTA8Ctt95KfX091157LZWVlQwdOpS3336bhISEYB4PP/wwkZGRTJw4kfr6es466yxmzZpFRETEkaqWiIiIyCFj94Qc/MU+uiekfehyrA5k9uzZbNu2jcbGRr788ktefvll+vfvH1zv8XgoLCyktLQUv99PUVERAwYMCMnD6/XyyCOPsHPnTvbs2cPrr7+um8xFREQkjLT1yVgHdiZk+vTpnHLKKSQkJJCWlsaECRMoLi4OSeM4DoWFhWRlZREbG8vIkSNZu3btIaxzx6NBiIiIiIjIQSoqKuK6665jyZIlzJ8/n+bmZsaMGUNdXV0wzQMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cfwciPLF2OJSIiIiJho9VpoS2/s9v239/cuXNDPj/99NOkpaWxYsUKzjjjDBzHYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx90rB2ZzoSIiIiISNg4VJMV1tTUhLwaGhq+V/nV1faAgZQUe/BASUkJZWVljBkzJpgmJiaGESNGsGjRokNc+45DgxARERERka/Jzs7G5/MFX9OnT//ObRzH4aabbuL0008P3pcbmMPt63Oypaen7zO/W2eiy7FEREREJGw4tOC04Xd2x3061pYtW0ImaI6JifnOba+//no++ugjPvjgg33WeTye0HIcZ59lnYkGISIiIiISNloP4glX+24PiYmJIYOQ73LDDTfw97//nffee48ePXoEl2dkZAB2RiQzMzO4vKKiYp+zI52JLscSERERkbDh4LTxnhDnuwv5anmOw/XXX88rr7zCu+++S25ubsj63NxcMjIymD9/fnBZY2MjRUVFDB8+/JDUuSPSmRARERERkYN03XXX8cILL/Daa6+RkJAQvM/D5/MRGxuLx+Nh6tSpTJs2jby8PPLy8pg2bRpxcXFceumlRzj6I8fjOM6BDfek06upqcHn83F/3zuY0LMGgNU77QkQlY028/rqSrvG0Rdt74U/Xg9A0T+PAeC4bpUAVNTEA+CNtOsvy/bEApAU3RiyPCvNnjRxa1EvAIZ2s1i8EXbKNDbCuvG6mr3j6tW7mgCY0tvWVTZZbEXldgLQ32LbDkqx5Uu3W/oRGVHuekLex2daDCsr7dRsVZPVrarR3gtS7akZc0ujLdYTtwHwhzVZAEzoUQvAW6U2g/2Pe+0E4MWNqSHbr6yy7cvrrdxByRb/0h2BeELjDpTf0GLp8hP3fqUDMY7P2gXAq1tS3Haz9Rleq9xjJVUAjEtLDWm7fJ/FcnX/L63tttpp4zJ/BL9YMJWEjERqy2r409kzALggN7TO7uZBgToF+kXfxGZg3/3Xz11+3ogSAJ6d38faqHtlSD0CcT4xeisAL6/t5W6/99nsSTHWl/ILrA2WLswIWb54e7JbJ4up2hYH9/uU3tXuZ2u0U4aWArD5Yx8AczanAXvbeOPuriF1XlhhjTAu0yqfk2jPhM/Isu/OnFWhv5iN6W1t/VJxTwC8XaxtimssvhsHWhvX7PFafj2t3OgUJ6St9tcG/uZAn4kOiaWh2do9JtLafUmF9YPceIt5UJ79D7V4Q3cATr7evkP/c3dCSD/YdvmdgI4HoOMB6HgAne944G/xc8/66VRXVx/QZUyHSuDvkyzfSLp4Dv539lanmW3VC793Pb7pvo6nn36aKVOmAHa25N577+Xxxx+nsrKSoUOH8sc//nGfSaU7E50JEREREZGwcajuCfm+vs/v+R6Ph8LCQgoLCw8yqvCjQYiIiIiIhA17OtbBP3Uq8HQsObx0Y7qIiIiIiLQrnQkRERERkbDhOHtnPT/Y7eXw0yBERERERMJGe98TIgdHgxARERERCRuO08Z7QhzdE9IedE+IiIiIiIi0K50JEREREZGwEZgxvS3by+GnQYiIiIiIhA27Mb0tl2PpnpD2oMuxRERERESkXelMiBy0mC4OczanAZAb3wzA2JxSAKqastxUdkpz4/JEAErqvO57JgD9EusAeKvUB0BStG111ditALz0bm9bvy0FgD/+eD0AVzxnywelRAAw9eLPLd+X+wTj69U1CoBZG5rcz5Y2p6utn3paCQBl2yy2S/pYHV4rsdirGu1XlAt7VAFw9ZrdFnOUZZDvs/xGpe0BYManHrcOdkPbH9ZYPlfnVwAw90trq4U7dwBQXG3lTu27222TWAC8li1VjZbPrM1W/jW5SQCsrowISVdeb7/YbNxjbVlWHxtsg0D7fOqWNSnXYimviwNg9iary6QeqZb3Lttftx9vdVpQYW34wCqry7jMRsuvJpJW92y1N7IFbxf7UFETD8A9o2x/zFvTy62bHWpuPXFbSH5lfotvcFI9AP0sTE7NtDjfX9TD2qLJ2jYxzg/Ahdm73PS2QXyW7bvixZZubE5NsA02V1qa2W/kApAbb2U99pn1qQk97HNytNU1Kcr6yy+LNwPw627Wnt2G2P5Y8HoPvuqKE60fTVuc67aR5Td8sPXhpI8y3TawfPwtSQAsqbA2j41wQsrdssO+C4E2zY33u21g2wfaeGOdveel7ASgxYplZOb2kPwBynbafg6085kTrQ/+8alsAPoluG2y3vbTX39necx8JAOAlcvte1WQWg3A/9yd4G7XSKTH7QgedDxAxwMdDzr38WBPSxNHh5Y2XlClG9PbgwYhIiIiIhI27HIqXY51tNMgRERERETChgYhHYPuCRERERERkXalMyEiIiIiEjZaacXTljMhmjG9XWgQIiIiIiJhQ5djdQwahIiIiIhI2HCctj3dqq3by/eje0JERERERKRd6UyIiIiIiIQNBwfacF+H08ZZRuT70SBERERERMJGW+/p0D0h7UODEDloSdGt9I6vBWDOVpuBtbLRZoMtrrZfEXK62o1hgdmBy+rtc0FqAwD3rbUueEkvu/5yWJrN9vp6kc02u3SHzaCbb5PGEtXDZliekG35l9rkscx7u6ebb20wPn+LbRuY9bWs3sqYcqzN8nrHO33cGC39NcNsVt/c8kZ3++iQfO7obbPFzt1mVzEGZihet9tmrh2UEnoTXFK0xRiYRdr/tUtM832W/8oqm5l33pd+dztbX9VoM8+ubf4nAK9tuRCAjNiIkPz8LXawTIqMcePae5VlvwSrS68Ea5dZn6eHxDa0m2USmKk4MMvySndW4XJ31t10d9LlhRUW3P/+sQGSLA9/cwSDk21G4lkbbEf9upu1cWBm5FFp9jkw+/Qj/10GwA2/tTYtSHUr02Rtcecyi3PaqeUAlPqt3GWl1pZ9fVbeuhrLv3RensX1ohvo+phgG2R+ZmWlu7N0B/ZHoO4BpX7LKzA78zPRFttLxVanCxptduecRJvROu/GJAA2P2ZlBWZG/rrAzMiTZ9vMyn+7bAsA8yw7rsmz/d7TbcPMQTY79cD6ipB8Bm60choaA/3Z8g3MIj0wa3tI+kxvY/Dfk374JQCt9bbPfveotVe/RJtZesRZtj4pujsA/5xldS623cYfPj0FgFuPXw7AoGRru1Oyy4iOtH93wQl+/3Q80PEAdDzYn3A/HuxuaoR/77fq7UqDkI5B94SIiIiIiEi70pkQEREREQkbbZ3nQ/OEtA8NQkREREQkbOhyrI5BgxARERERCRsahHQMuidERERERETalc6EiIiIiEgYaeuZDJ0JaQ8ahIiIiIhI2NDlWB2DLscSEREREZF2pTMhIiIiIhI29IjejkGDEBEREREJG47j0Jb7Omx7Odw8jlpaDlBNTQ0+n49ZJ97KSSkNACTG+QF4rSQLgKXbWwCYkG3da2VlVEgehT9eD8Dq97sD0P/4CgAmvpgNQEZsDAAPjNgIwCdbLF3P5BoAumXXAXDr63kATMqpBWD2pq7BMgLL7ltrY+1LelkMf9nYFBLLNXl2VeLinVbmqLQ9AJzUqwyAd9dbTElRTW66WACqG237HLfI1btCv0pDu9l7QfdK2257MgBF5a1ufNZGMz6zjG7vFwHAY+st3l5dQ9tsyrG7AHhxYyoADS1WXlWjvT9+/UYANhTFB7dZvTMFgCU7It0yqwHwt1hZQ0daHe97qQ8AGV7La2OdtcngZKuzt0urG1urG0skP3zjZuLSfdSW1/DKuAcB+GHfzQA8vybXLQc33xY3Xyu3vN6We+0j+YmhbZccbennbrMEg1I8AIw7xvpJTHSz1fmTYyyePuUAJHa1ftj9dE8wry/m2n5dUmHtdnHBBovxgz4hdS1IbQiJwd9qy88bUQLAE/Osr1011vpui1uHp97LC9nO28XdL00Ww0/7W5u8v8m+G3191odX7vIBEBth6QP9q9Qf7W4f4S63tkh23+eW2vprjtsVUm4gv3nb7PPQ7hHBdTfcb33sb/dYnc7M2wLs/V6dMrQUgDUfpgHwVqnlNT4ztL/0z95udUy29v/dvOO47YNf4stMZE95NV9ceg+g4wHoeAA6Hlhbda7jQUOrn4c2TqO6uprExETaW+Dvky5dEvF4PN+9wTdwHIfW1pojVo/OQveEiIiIiIhIu9LlWCIiIiISNuzpVm07EyKHnwYhIiIiIhJG2jYIAQ1C2oMGISIiIiISPtp4JgSdCWkXuidERERERETalc6EiIiIiEjYcNp4OVVbt5fvR4MQEREREQkjuiekI9AgRERERETCiNPGcYQGIe1B94SIiIiIiEi70pkQOWCB52fXtzRQ22yzynqabAZWf4vNUNvUajPp7nFn8W1obQnJo6bB0ge2r2m0z02OfW5ste12u/nWuekCn6Pd9I2t/pD1ja17u3RgWZPT4sbb6n4OnSF5T0sXN0Znv2XtabHPUZ4mt44eNz3uZ0JiDqh3lwfqWB9sG8fN1xI0O4E6RrjrW9z8Q9sskE+DW+dAvIFya/yBNt07s3Ig9obW5tA83BlvA/shsN/qg/uri7u9bdfqBNousF9bgr8TOY5DfUtomwXyC7RNoO39bls3um0XmNA2UG5AjJu+0Y0j0Oa1ze5+9zSHtEVgeaAfxvj3noavbfa4ZYT2tcD+2FvXxpAYAjMkf72NAp8DyQPLAwLfj0DMX+9He/uDvQeuPQ70r0BbBNqq3p2dOqZLi9smrSH5BATyawr2y72/MdXsaXJj6BISU6Cvf/37GKjT1/tLYLvGxr3tH4jf+Up6HQ90PAAdDwLt8dWYw/140NDaEFLvI8fRfR0dgMc58j1FOpgNGzZw7LHHHukwRERE5Cj0xRdf0Lt373Yv1+/3k5ubS1lZWZvzysjIoKSkBK/Xewgik/3RIEQOWFVVFcnJyWzevBmfz3ekwzkiampqyM7OZsuWLSQmJh7pcI4ItYHaANQGoDYAtQGoDQCqq6vp2bMnlZWVJCUlHZEY/H4/jY2N353wO0RHR2sAcpjpciw5YF262Clcn8/XaQ+0AYmJiWoDtYHaALUBqA1AbQBqA9j7d8KR4PV6NXjoIHRjuoiIiIiItCsNQkREREREpF1pECIHLCYmhnvuuYeYmJgjHcoRozZQG4DaANQGoDYAtQGoDUBtIAdGN6aLiIiIiEi70pkQERERERFpVxqEiIiIiIhIu9IgRERERERE2pUGISIiIiIi0q40CBH+7//+j9zcXLxeL0OGDOH999//1vRFRUUMGTIEr9dL7969eeyxx/ZJ8/LLL9O/f39iYmLo378/r7766uEK/5A4kDZ45ZVXGD16NN27dycxMZGCggLmzZsXkmbWrFl4PJ59Xn6//3BX5aAdSBssXLhwv/X79NNPQ9KFcz+YMmXKftvg+OOPD6bpaP3gvffe47zzziMrKwuPx8OcOXO+c5twOx4caBuE4/HgQNsgHI8HB9oG4XY8mD59OqeccgoJCQmkpaUxYcIEiouLv3O7cDseyOGlQUgn95e//IWpU6dy1113sXLlSn7wgx8wfvx4Nm/evN/0JSUlnHPOOfzgBz9g5cqV3Hnnndx44428/PLLwTSLFy/mkksuYfLkyaxevZrJkyczceJEli5d2l7VOiAH2gbvvfceo0eP5s0332TFihWMGjWK8847j5UrV4akS0xMpLS0NOR1tM7ieqBtEFBcXBxSv7y8vOC6cO8Hv//970PqvmXLFlJSUvjRj34Ukq4j9YO6ujoGDRrEzJkzv1f6cDweHGgbhOPx4EDbICCcjgcH2gbhdjwoKiriuuuuY8mSJcyfP5/m5mbGjBlDXV3dN24TjscDOcwc6dROPfVU55prrglZ1rdvX+f222/fb/pbb73V6du3b8iyq6++2hk2bFjw88SJE51x48aFpBk7dqwzadKkQxT1oXWgbbA//fv3d+69997g56efftrx+XyHKsTD7kDbYMGCBQ7gVFZWfmOena0fvPrqq47H43E2btwYXNbR+sFXAc6rr776rWnC8XjwVd+nDfanox8Pvur7tEE4Hg++6mD6QbgdDyoqKhzAKSoq+sY04X48kENPZ0I6scbGRlasWMGYMWNClo8ZM4ZFixbtd5vFixfvk37s2LF8+OGHNDU1fWuab8rzSDqYNvi61tZWdu/eTUpKSsjy2tpacnJy6NGjB+eee+4+v4weLdrSBoMHDyYzM5OzzjqLBQsWhKzrbP3gqaee4uyzzyYnJydkeUfpBwcj3I4Hh0JHPx60RbgcDw6FcDseVFdXA+zTr79KxwM5UBqEdGI7duygpaWF9PT0kOXp6emUlZXtd5uysrL9pm9ubmbHjh3fmuab8jySDqYNvu7BBx+krq6OiRMnBpf17duXWbNm8fe//50XX3wRr9fLaaedxvr16w9p/IfCwbRBZmYmTzzxBC+//DKvvPIK+fn5nHXWWbz33nvBNJ2pH5SWlvLWW2/xn//5nyHLO1I/OBjhdjw4FDr68eBghNvxoK3C7XjgOA433XQTp59+OgMGDPjGdDoeyIGKPNIByJHn8XhCPjuOs8+y70r/9eUHmueRdrDxvvjiixQWFvLaa6+RlpYWXD5s2DCGDRsW/Hzaaadx0kkn8cgjj/CHP/zh0AV+CB1IG+Tn55Ofnx/8XFBQwJYtW/jf//1fzjjjjIPK82hwsPHOmjWLpKQkJkyYELK8I/aDAxWOx4ODFU7HgwMRrseDgxVux4Prr7+ejz76iA8++OA70+p4IAdCZ0I6sW7duhEREbHPLxAVFRX7/FIRkJGRsd/0kZGRpKamfmuab8rzSDqYNgj4y1/+whVXXMFLL73E2Wef/a1pu3TpwimnnHJU/uLVljb4qmHDhoXUr7P0A8dx+NOf/sTkyZOJjo7+1rRHcz84GOF2PGiLcDkeHCod+XjQFuF2PLjhhhv4+9//zoIFC+jRo8e3ptXxQA6UBiGdWHR0NEOGDGH+/Pkhy+fPn8/w4cP3u01BQcE+6d9++21OPvlkoqKivjXNN+V5JB1MG4D94jllyhReeOEFfvjDH35nOY7jsGrVKjIzM9sc86F2sG3wdStXrgypX2foB2BPkfn888+54oorvrOco7kfHIxwOx4crHA6HhwqHfl40BbhcjxwHIfrr7+eV155hXfffZfc3Nzv3EbHAzlg7XsfvBxtZs+e7URFRTlPPfWU88knnzhTp0514uPjg0/0uP32253JkycH02/YsMGJi4tzfvWrXzmffPKJ89RTTzlRUVHO3/72t2Caf/3rX05ERIRz3333OevWrXPuu+8+JzIy0lmyZEm71+/7ONA2eOGFF5zIyEjnj3/8o1NaWhp8VVVVBdMUFhY6c+fOdb744gtn5cqVzs9+9jMnMjLSWbp0abvX7/s40DZ4+OGHnVdffdX57LPPnI8//ti5/fbbHcB5+eWXg2nCvR8E/OQnP3GGDh263zw7Wj/YvXu3s3LlSmflypUO4Dz00EPOypUrnU2bNjmO0zmOBwfaBuF4PDjQNgjH48GBtkFAuBwPfvGLXzg+n89ZuHBhSL/es2dPME1nOB7I4aVBiDh//OMfnZycHCc6Oto56aSTQh7Bd/nllzsjRowISb9w4UJn8ODBTnR0tNOrVy/n0Ucf3SfPv/71r05+fr4TFRXl9O3bN+R/RkejA2mDESNGOMA+r8svvzyYZurUqU7Pnj2d6Ohop3v37s6YMWOcRYsWtWONDtyBtMH999/vHHvssY7X63WSk5Od008/3XnjjTf2yTOc+4HjOE5VVZUTGxvrPPHEE/vNr6P1g8CjVr+pb3eG48GBtkE4Hg8OtA3C8XhwMN+FcDoe7K/ugPP0008H03SG44EcXh7Hce8aEhERERERaQe6J0RERERERNqVBiEiIiIiItKuNAgREREREZF2pUGIiIiIiIi0Kw1CRERERESkXWkQIiIiIiIi7UqDEBERERERaVcahIiIiIiISLvSIEREREIsXLgQj8dDVVXVkQ5FRETClAYhIiKd0JQpU/B4PHg8HqKioujduze33HILdXV1Rzo0ERHpBCKPdAAiInJkjBs3jqeffpqmpibef/99/vM//5O6ujouueSSIx2aiIiEOZ0JERHppGJiYsjIyCA7O5tLL72Uyy67jDlz5gTXr1ixgpNPPpm4uDiGDx9OcXFxcN0XX3zBBRdcQHp6Ol27duWUU07hnXfeCcn///7v/8jLy8Pr9ZKens5//Md/BNc5jsMDDzxA7969iY2NZdCgQfztb3877HUWEZGjgwYhIiICQGxsLE1NTcHPd911Fw8++CAffvghkZGR/PznPw+uq62t5ZxzzuGdd95h5cqVjB07lvPOO4/NmzcD8OGHH3LjjTfym9/8huLiYubOncsZZ5wR3P6///u/efrpp3n00UdZu3Ytv/rVr/jJT35CUVFR+1VYRESOGI/jOM6RDkJERNrXlClTqKqqCp75WLZsGeeccw5nnXUWv/jFLxg1ahTvvPMOZ511FgBvvvkmP/zhD6mvr8fr9e43z+OPP55f/OIXXH/99bzyyiv87Gc/Y+vWrSQkJISkq6uro1u3brz77rsUFBQEl//nf/4ne/bs4YUXXjg8lRYRkaOG7gkREemk/vGPf9C1a1eam5tpamriggsu4JFHHuGTTz4B4IQTTgimzczMBKCiooKePXtSV1fHvffeyz/+8Q+2bdtGc3Mz9fX1wTMho0ePJicnh969ezNu3DjGjRvHhRdeSFxcHJ988gl+v5/Ro0eHxNPY2MjgwYPbqfYiInIkaRAiItJJjRo1ikcffZSoqCiysrKIiooCCA5CAp8BPB4PAK2trQD813/9F/PmzeN///d/6dOnD7GxsfzHf/wHjY2NACQkJPDvf/+bhQsX8vbbb3P33XdTWFjI8uXLg3m88cYbHHPMMSExxcTEHN5Ki4jIUUGDEBGRTio+Pp4+ffoc1Lbvv/8+U6ZM4cILLwTsHpGNGzeGpImMjOTss8/m7LPP5p577iEpKYl3332X0aNHExMTw+bNmxkxYkRbqyEiIh2QBiEiInLA+vTpwyuvvMJ5552Hx+Ph17/+dfAMB9ilXhs2bOCMM84gOTmZN998k9bWVvLz80lISOCWW27hV7/6Fa2trZx++unU1NSwaNEiunbtyuWXX34EayYiIu1BgxARETlgDz/8MD//+c8ZPnw43bp147bbbqOmpia4PikpiVdeeYXCwkL8fj95eXm8+OKLHH/88QD8v//3/0hLS2P69Ols2LCBpKQkTjrpJO68884jVSUREWlHejqWiIiIiIi0K80TIiIiIiIi7UqXY8kBcRyHpqYmWlpaiIiIICoqKvjUHBERERGR76NTDUIKCwuZM2cOq1atOtKhHDEjR47kxBNPZMaMGQe0XVNTE+Xl5Xz55ZfU19cHl8fGxnLMMceQnp4e8jhPEREREZFvctRfjjVlyhQ8Hg8ej4eoqCjS09MZPXo0f/rTn0KexHKweU+YMOHQBBrGdu3axZIl/397dx5XVbX/f/x14DApiCCjSGIOKCCgkIlDYoZDV9OyspvjI7KbTQ6pt9LuNevhWKlUUs7avd/0fsvpmpL+HCr1YuKQqKSFIqaIIGRCyHh+f/jgfC+BMkgH0Pfz8eDx8Oyz1tqffXBx9mevtfaOJzk5GUdHRwICAggODiYgIABHR0eSk5OJj48nKyurrkMVERGRP9jixYtp1aoV9vb2hIWF8e2339Z1SNIA1fskBKB///6kpaWRkpLCtm3b6N27N+PHj2fgwIEUFRXVdXh3tKysLBITE3F2dqZr164EBgbi4eGBq6srHh4eBAYG0rVrV5ydnUlMTFQiIiIicgdbt24dEyZMYNq0aRw5coSePXsyYMAAUlNT6zo0aWAaxHQsOzs7vLy8APDx8aFz58507dqVPn36sGrVKp599lkArl69ypQpU9i4cSPXr18nPDycBQsWEBISUq7NGTNmsHr1auD/ngS8e/duIiMj+etf/8qGDRv4+eef8fLyYvjw4fztb3+76XSjlJQUWrVqxWeffUZMTAyHDx+mdevWfPTRR0RGRprLnTx5ksmTJ/PNN9/QuHFj+vbty4IFC3BzcwNuTJUKCgoC4B//+AfW1taMGzeOt99+2xxjdnY248eP59///jf5+fn06tWLmJgY2rZta97Pvn37eOONNzh48CB2dnZ06dKFtWvX4uLiAtx44vHUqVNZtmwZtra2PP/888yYMaPccRUWFnLixAlcXFwICgrCyqrinNXOzo6goCCOHz9OYmIiLi4uNy0rIiIi9UfpeUdVvf/++0RHR5vPvRYuXMhXX31FbGwss2fP/iNClDtUgz1TfPDBBwkJCWH9+vXAjQXTf/rTn7h06RJbt27l0KFDdO7cmT59+lR4dX7y5Mk8+eST5lGWtLQ0unXrBoCTkxOrVq3i5MmTLFq0iKVLl7JgwYJKY5oyZQqvvvoqR44coVu3bjzyyCNcuXIFgLS0NHr16kVoaCgJCQnExcWRnp7Ok08+WaaN1atXYzQaOXDgADExMSxYsIBly5aZ3x8zZgwJCQls3ryZ//znP5hMJh5++GEKCwsBOHr0KH369CEwMJD//Oc/7N27l0GDBlFcXFxmH40bN+bAgQPMmzePmTNnsmPHjnLHk56ebn64WGVJhZWVFf7+/phMJvLz8yv9rERERKRhKSgo4NChQ/Tt27fM9r59+7J///46ikoaqgYxEnIz7du359ixY8CNUYzExEQuX76MnZ0dAO+++y4bN27k888/57nnnitT19HREQcHB/Lz882jLKWmT59u/refnx+vvvoq69atY+rUqbeM56WXXmLo0KEAxMbGEhcXx/Lly5k6dSqxsbF07tyZWbNmmcuvWLECX19fTp8+Tbt27QDw9fVlwYIFGAwG/P39SUxMZMGCBYwdO5Yff/yRzZs3s2/fPnPC9M9//hNfX182btzIE088wbx58wgPD2fx4sXm/ZQ+HKxUcHAwf//73wFo27YtH374ITt37iQqKspcxmQyceHCBdzc3MyfZ2Xs7Oxwd3cnKysLe3t73TVLRETkDpKZmUlxcTGenp5ltnt6enLp0qU6ikoaqgadhJhMJvOJ7qFDh8jJyaFZs2ZlyuTl5ZGcnFytdj///HMWLlzITz/9RE5ODkVFRTRp0qTSehEREeZ/G41GwsPDSUpKMse3e/duHB0dy9VLTk42JyFdu3Ytc/IeERHBe++9R3FxMUlJSRiNRu6//37z+82aNcPf39+8n6NHj/LEE0/cMs7g4OAyr729vbl8+XKZbYWFheTl5dGqVatKj/u/ubu7k5GRUeZ3IyIiIneO33+/6ztfaqJBJyFJSUnmk+SSkhK8vb3Zs2dPuXJNmzatcpvx8fE89dRTvPXWW/Tr1w9nZ2fWrl3Le++9V6MYSztlSUkJgwYNYu7cueXKeHt7V6mtmz3c/r87v4ODQ6Xt/H5ti8FgKHensdLpW0Zj9f6LlJa/WawiIiLSMLm5uWFtbV1u1OPy5cvlRkdEKtNg14Ts2rWLxMRE8/Snzp07c+nSJYxGI23atCnzU7rw+/dsbW3LrJWAG4u6W7ZsybRp0wgPD6dt27acO3euSjHFx8eb/11UVMShQ4do3769Ob4TJ07g5+dXLr7GjRtX2Ebp67Zt22JtbU1AQABFRUUcOHDA/P6VK1c4ffo0HTp0AG6McuzcubNK8d6KtbW1+Tiqo7S8roiIiIjcWWxtbQkLCyu3jnTHjh3maeIiVdUgkpD8/HwuXbrEhQsXOHz4MLNmzWLw4MEMHDiQUaNGAfDQQw8RERHBkCFD+Oqrr0hJSWH//v1Mnz6dhISECtv18/Pj2LFjnDp1iszMTAoLC2nTpg2pqamsXbuW5ORkYmJi2LBhQ5Xi/Oijj9iwYQM//PADL774ItnZ2TzzzDMAvPjii2RlZfHnP/+Z7777jjNnzrB9+3aeeeaZMonQ+fPnmTRpEqdOneKzzz7jgw8+YPz48cCN9RuDBw9m7Nix7N27l++//54RI0bg4+PD4MGDAXj99dc5ePAgL7zwAseOHeOHH34gNjaWzMzMan3mNjY2ODg4kJGRUa16GRkZWFtbKwkRERG5A02aNIlly5axYsUKkpKSmDhxIqmpqTz//PN1HZo0MA0iCYmLi8Pb2xs/Pz/69+/P7t27iYmJYdOmTeYr9gaDga1bt/LAAw/wzDPP0K5dO5566ilSUlJuOkQ4duxY/P39CQ8Px93dnX379jF48GAmTpzISy+9RGhoKPv37+fNN9+sUpxz5sxh7ty5hISE8O2337Jp0ybzKEzz5s3Zt28fxcXF9OvXj6CgIMaPH4+zs3OZO0+NGjWKvLw8unTpwosvvsjLL79cZlH9ypUrCQsLY+DAgURERGAymdi6dat5ilW7du3Yvn0733//PV26dCEiIoJNmzZVe1qVwWDAx8eHzMzMKt/tKj8/n4yMDC1KFxERuUMNGzaMhQsXMnPmTEJDQ/nmm2/YunUrLVu2rOvQpIExmDR5/7aVPifkyJEjhIaG1ridyMhIQkNDWbhwYa3FdjsKCwuJj4/H2dn5ls8JgRtrXo4fP052draeEyIiItJAVPc5ISK1pUEvTJc/lo2NDYGBgSQmJnL8+HH8/f0rvF1vfn4+p06dIjs7m44dO+Lq6loH0YqIiIhIQ6EkRG7J1dWVjh07cuLECeLj43Fzc8Pd3R2j0UhRUREZGRlkZmZiZWWlBEREREREqkTTsaRKCgsLSU9P58KFC+Tl5Zm3Ozg44OPjg5eXV7XXnYiIiIjI3UlJiFSLyWSiqKiIoqIijEYjRqNRi9BFREREpFqUhIiIiIiIiEXpFkYiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERizLWdQAiIlK/mEwmCgsLKS4uxtraGhsbGwwGQ12HJSIidxAlISIiAkBhYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RZ1Ox4qMjGTChAm13q7JZOK5557D1dUVg8HA0aNHLbp/EZGGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljixcvplWrVtjb2xMWFsa3335bK3UqK1MbbUj9Ue0kZMyYMRgMBgwGAzY2Nnh6ehIVFcWKFSsoKSm5rWBqKymIi4tj1apVbNmyhbS0NIKCgm67Tai9+L755hsGDRpE8+bNMRgMbNy4scJyVe1IYWFhBAUFlfu5ePFiubIXLlxgxIgRNGvWjEaNGhEaGsqhQ4du+5hEpOHKysoiMTERZ2dnunbtSmBgIB4eHri6uuLh4UFgYCBdu3bF2dmZxMREJSIid7F169YxYcIEpk2bxpEjR+jZsycDBgwgNTX1tupUVqY22pD6xWAymUzVqTBmzBjS09NZuXIlxcXFpKenExcXx+zZs+nZsyebN2/GaKzaLK/IyEhCQ0NZuHBhha9r6sMPP2T+/PmcO3euWvuvbrw1tW3bNvbt20fnzp0ZOnQoGzZsYMiQIWXKrFu3jpEjR7J48WK6d+/OJ598wrJlyzh58iT33HNPjfabnZ1Np06d6N27N+PGjcPDw4Pk5GT8/Pxo3bp1tdrye+3LGsUgIvVLIyMs6N0YTzdXgjsGYWV182tTJSUlHD9+nOzsbFxcXG5ZVkQahupeqL3//vvp3LkzsbGx5m0dOnRgyJAhzJ49u8Z1KitTG21I/VKjbxA7Ozu8vLzw8fGhc+fOvPHGG2zatIlt27axatUq4MaUqHnz5nHvvffi4OBASEgIn3/++U3bHDNmDF9//TWLFi0yj7SkpKQQFxdHjx49aNq0Kc2aNWPgwIEkJyffsp2XX36Z1NRUDAYDfn5+AOTm5jJq1CgcHR3x9vbmvffeK1c3Pz+fV155BQ8PD+zt7enRowcHDx68ZXy/l5GRgZeXF7NmzTJvO3DgALa2tmzfvh2AAQMG8M477/DYY4/d9Djef/99oqOjefbZZ+nQoQMLFy7E19e3TMeqrrlz5+Lr68vKlSvp0qULfn5+9OnTp9oJiIjcObr7GLG1hg7t/StNKqysrPD398dkMpGfn2+hCEWkvigoKODQoUP07du3zPa+ffuyf//+GteprExttCH1T61dxnrwwQcJCQlh/fr1AEyfPp2VK1cSGxvLiRMnmDhxIiNGjODrr7+usP6iRYuIiIhg7NixpKWlkZaWhq+vL7m5uUyaNImDBw+yc+dOrKysePTRR2869WvRokXMnDmTFi1akJaWZk4ipkyZwu7du9mwYQPbt29nz5495aYhTZ06lS+++ILVq1dz+PBh2rRpQ79+/cjKyrppfL/n7u7OihUrmDFjBgkJCeTk5DBixAheeOGFch3jZv6ojrR582bCw8N54okn8PDwoFOnTixdurTG7YlIwxfV0hZ3N3fs7OyqVN7Ozg53d3euX79ONQfSRaSBy8zMpLi4GE9PzzLbPT09uXTpUo3rVFamNtqQ+qdW747Vvn17jh07Rm5uLu+//z67du0iIiICgHvvvZe9e/fyySef0KtXr3J1nZ2dsbW1pVGjRnh5eZm3Dx06tEy55cuX4+HhwcmTJyscQnR2dsbJyQlra2tzOzk5OSxfvpw1a9YQFRUFwOrVq2nRooW5Xm5uLrGxsaxatYoBAwYAsHTpUnbs2MHy5cuZMmVKhfFV5OGHH2bs2LEMHz6c++67D3t7e+bMmVOVjxD44zrSmTNniI2NZdKkSbzxxht89913vPLKK9jZ2TFq1KgatysiDZOjDXg0MuDh4V6teu7u7mRkZGAymXTrXpG70O/7fVX+FlSlTmVlaqMNqT9qNQkp/UWfPHmS69evm0/4SxUUFNCpU6dqtZmcnMybb75JfHw8mZmZ5hGQ1NTUKs9jTE5OpqCgwJwQAbi6uuLv71+mTGFhId27dzdvs7GxoUuXLiQlJVUrZoB3332XoKAg/vWvf5GQkIC9vX2126jtjlRSUkJ4eLh5qlinTp04ceIEsbGxSkJE7kL2xht/T6q6jq9UaXmNhIjcXdzc3LC2ti53QfTy5cvlLpxWp05lZWqjDal/anVVYVJSEq1atTInCl9++SVHjx41/5w8efKW60IqMmjQIK5cucLSpUs5cOAABw4cAG4kNFVVlS/K0jK1deJ/5swZLl68SElJSaUL5H/vj+pI3t7eBAQElNnWoUMH3TVC5C51vejG372ioqJq1Sstr6uLIncXW1tbwsLC2LFjR5ntO3bsoFu3bjWuU1mZ2mhD6p9aS0J27dpFYmIiQ4cOJSAgADs7O1JTU2nTpk2Zn4rWUZSytbWluLjY/PrKlSskJSUxffp0+vTpQ4cOHcjOzq52bG3atMHGxob4+HjztuzsbE6fPl2mjK2tLXv37jVvKywsJCEhgQ4dOlQY380UFBQwfPhwhg0bxjvvvEN0dDTp6elVjveP6kjdu3fn1KlTZbadPn2ali1b1rhNEWm4cgrh8m8mLl/OqFa9jIwMrK2tlYSI3IUmTZrEsmXLWLFiBUlJSUycOJHU1FSef/554MYdSvv06VOtOlUpUxttSP1So+lY+fn5XLp0qdwtegcOHMioUaOwtrZm8uTJTJw4kZKSEnr06MGvv/7K/v37cXR0ZPTo0RW26+fnx4EDB0hJScHR0RFXV1eaNWvGkiVL8Pb2JjU1lddee63a8To6OhIdHc2UKVNo1qwZnp6eTJs2rcydYBo3bsy4ceOYMmUKrq6u3HPPPcybN4/ffvuN6Ojom8ZX0d1kpk2bxtWrV4mJicHR0ZFt27YRHR3Nli1bgBtrVH766Sdz+bNnz3L06FHzfuFGRxo5ciTh4eFERESwZMmS2+5IEydOpFu3bsyaNYsnn3yS7777jiVLlrBkyZIatykiDduOcwW4N8ogPz+/SovT8/PzycjIoHHjxkpCRO5Cw4YN48qVK8ycOdP8LLatW7eaL2hmZmaWu4tpZXWqUqY22pD6pUbPCVm9ejVwY16wi4sLISEhPP3004wePdp8Um4ymfjggw9YvHgxZ86coWnTpubb+T7wwANA+edunD59mtGjR/P999+Tl5fH2bNn+emnn3jllVc4c+YM/v7+xMTEEBkZWeGzNUotXLiQhQsXlrmFbk5ODuPGjWP9+vU4OTnx6quv8uWXX5bZ//Xr15k6dSqfffYZ165dIzw8nAULFnDffffdNL7SWwCX2rNnD1FRUezevZsePXoAN9avBAcHM3v2bMaNG8eePXvo3bt3ubhHjx5tvsUx3HhY4bx588wdacGCBebPrqa2bNnC66+/zo8//kirVq2YNGkSY8eOrXY7ek6IyJ1BzwkRubvV1gOdRaqr2kmIiIjcWUqfmO7i4oK/v3+FIyL5+fmcOnWK7OxsOnbsiKurax1EKiIidwolISIiQlZWFidOnKCkpAQ3Nzfc3d0xGo0UFRWRkZFBZmYmVlZWBAYGKgEREZHbpiRERESAGzfjSE9P58KFC+Tl5Zm3Ozg44OPjg5eXV7Vv5ysiIlIRJSEiIlKGyWSiqKiIoqIijEYjRqNRi9BFRKRWKQkRERERERGL0q1NRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUpCREREREREYtSEiIiIiIiIhZlrOsARESkfjGZTBQWFlJcXIy1tTU2NjYYDIa6DktERO4gdZqEREZGEhoaysKFC2u1XZPJxF/+8hc+//xzsrOzOXLkCKGhobW6DxGRO01hYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RbWnY40ZMwaDwYDBYMDGxgZPT0+ioqJYsWIFJSUltxVMZGQkEyZMuK02AOLi4li1ahVbtmwhLS2NoKCg226ztn3zzTcMGjSI5s2bYzAY2LhxY7kyixcvplWrVtjb2xMWFsa3335bYVthYWEEBQWV+7l48WK5srGxsQQHB9OkSROaNGlCREQE27Ztq+3DE5EGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljVT0/qW6dysrUZL9Sf9VoTUj//v1JS0sjJSWFbdu20bt3b8aPH8/AgQMpKiqq7RirLTk5GW9vb7p164aXlxdGY/kBn4KCgjqI7P/k5uYSEhLChx9+WOH769atY8KECUybNo0jR47Qs2dPBgwYQGpqarmyhw4d4vjx4+V+mjdvXq5sixYtmDNnDgkJCSQkJPDggw8yePBgTpw4UevHKCINQ1ZWFomJiTg7O9O1a1cCAwPx8PDA1dUVDw8PAgMD6dq1K87OziQmJioREbmLVef8pDp1KitTk/1K/WYwmUym6lQYM2YMv/zyS7kr97t27aJPnz4sXbqUZ599FpPJxPz58/n4449JS0ujXbt2vPnmmzz++OPmOv89HWvMmDGsXr26TJtnz57lhx9+4J133uH48eNYW1sTERHBokWLaN269U3j++92WrZsSUpKCpGRkQQFBWFra8uaNWsIDAzk66+/rjTO3Nxcxo0bx/r163FycmLy5Mn8+9//vuk0soyMDDp27Mgrr7zCG2+8AcCBAwfo2bMnW7ZsoW/fvuXqGAwGNmzYwJAhQ8zb7r//fjp37kxsbKx5W4cOHRgyZAizZ8+u+JdTQ66ursyfP5/o6Ogq1/F77ctajUFE6kYjIyzo3RhPN1eCOwZhZXXza1MlJSUcP36c7OxsXFxcbllWRBqG6s4Wqcn5SVXqVFbGkudFYhm19g3y4IMPEhISwvr16wGYPn06K1euJDY2lhMnTjBx4kRGjBjB119/XWH9RYsWERERwdixY0lLSyMtLQ1fX19yc3OZNGkSBw8eZOfOnVhZWfHoo4/edOrXokWLmDlzJi1atCAtLY2DBw+a31u9ejVGo5F9+/bxySefVCnOKVOmsHv3bjZs2MD27dvZs2cPhw4duunn4O7uzooVK5gxYwYJCQnk5OQwYsQIXnjhhQoTkIoUFBRw6NChcuX79u3L/v37q9RGVRQXF7N27Vpyc3OJiIiotXZFpOHo7mPE1ho6tPevNKmwsrLC398fk8lEfn6+hSIUkfqiJucnValTWRlLnReJZdXqwvT27dtz7NgxcnNzef/999m1a5f55Pbee+9l7969fPLJJ/Tq1atcXWdnZ2xtbWnUqBFeXl7m7UOHDi1Tbvny5Xh4eHDy5MkKs3dnZ2ecnJywtrYu0w5AmzZtmDdvnvl1ZXGGhYWxfPly1qxZQ1RUFHAjkWnRosUtP4eHH36YsWPHMnz4cO677z7s7e2ZM2fOLev8t8zMTIqLi/H09Cyz3dPTk0uXLlW5nZtJTEwkIiKC69ev4+joyIYNGwgICLjtdkWk4YlqaYu7mzt2dnZVKm9nZ4e7uztZWVnY29vrrlkid5GanJ9UpU5lZf7o8yKpG7WahJhMJgwGAydPnuT69evmE/dSBQUFdOrUqVptJicn8+abbxIfH09mZqZ5BCQ1NbXaQ4jh4eFlXlcWZ3JyMgUFBWVGCVxdXfH39690X++++y5BQUH861//IiEhAXt7+2rFCpT7ci/9fG+Xv78/R48e5ZdffuGLL75g9OjRfP3110pERO4yjjbg0ciAh4d7teq5u7uTkZFRa3+TRKRhqcn5SVXqVFbmjzovkrpRq0lIUlISrVq1MicKX375JT4+PmXKVPVqW6lBgwbh6+vL0qVLad68OSUlJQQFBdVoYXnjxo3LvK4szitXrlR7H6XOnDnDxYsXKSkp4dy5cwQHB1e5rpubG9bW1uWy+8uXL5e7ClATtra2tGnTBriRmB08eJBFixaZp6iJyN3B3njjy7uim3fcSmn5ai4pFJEGribnJ1WpU1mZP/q8SOpGra0J2bVrF4mJiQwdOpSAgADs7OxITU2lTZs2ZX58fX1v2oatrS3FxcXm11euXCEpKYnp06fTp08fOnToQHZ2dm2FXGmcbdq0wcbGhvj4eHOd7OxsTp8+fct2CwoKGD58OMOGDeOdd94hOjqa9PT0Ksdla2tLWFgYO3bsKLN9x44ddOvWrXoHWQWa3y1yd7pedCOJqO5dDUvL6wqkyN2lJucnValTWRlLnxeJZdRoJCQ/P59Lly5RXFxMeno6cXFxzJ49m4EDBzJq1Cisra2ZPHkyEydOpKSkhB49evDrr7+yf/9+HB0dGT16dIXt+vn5ceDAAVJSUnB0dMTV1ZVmzZqxZMkSvL29SU1N5bXXXrutA/5vpXe7ulWc0dHRTJkyhWbNmuHp6cm0adMqXbw5bdo0rl69SkxMDI6Ojmzbto3o6Gi2bNliLpOTk8NPP/1kfn327FmOHj2Kq6sr99xzD5MmTWLkyJGEh4cTERHBkiVLSE1N5fnnn7+tY37jjTcYMGAAvr6+XLt2jbVr17Jnzx7i4uJuq10RaXhyCuHybybcLmfg4eFR5XoZGRlYW1srCRG5C1V2fvLhhx+yYcMGdu7cWeU6VSnzR50XSd2pURISFxeHt7c3RqMRFxcXQkJCiImJYfTo0eYT9LfffhsPDw9mz57NmTNnaNq0KZ07dzbftrYikydPZvTo0QQEBJCXl8fZs2dZu3Ytr7zyCkFBQfj7+xMTE0NkZGSNDrYilcU5f/58cnJyeOSRR3BycuLVV1/l6tWrN21vz549LFy4kN27d9OkSRMAPv30U4KDg4mNjWXcuHEAJCQk0Lt3b3O9SZMmATB69GhWrVrFsGHDuHLlCjNnzjQ/cHHr1q20bNnyto43PT2dkSNHkpaWhrOzM8HBwcTFxZVbFyMid4cd5wpwb5RBfn5+labL5ufnk5GRQePGjZWEiNyFKjs/yczMJDk5uVp1qlLmjzovkrpT7eeESNnnm9yt9JwQkTuDnhMicner7k1+RGpLrS5Ml7tHypw/1XUIIlJLSp+Yfvz4cfz9/SscEcnPz+fUqVNkZ2fTsWNHXF1d6yBSERG5UygJERG5y7m6utKxY0dOnDhBfHw8bm5uuLu7YzQaKSoqIiMjg8zMTKysrJSAiIhIrdB0LBERAaCwsJD09HQuXLhAXl6eebuDgwM+Pj54eXlV+3a+IiIiFVESIiIiZZhMJoqKiigqKsJoNGI0GrUIXUREapWSEBERERERsSjd2kRERERERCxKSYiIiIiIiFiUkhAREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUZ6zoAERERubWSkhIuXryIk5MTBoOhrsO565lMJq5du0bz5s2xstL13Lqm/lG/VLV/KAkRERGp5y5evIivr29dhyG/c/78eVq0aFHXYdz11D/qp8r6h5IQERGRes7JyQmAs2d34OTUuI6jkWvXcmnVKsr8e5G6pf5Rv1S1fygJERERqedKp5g4OTWmSRPHOo5GSmnqT/2g/lE/VdY/NJFRREREREQsSkmIiIiIiIhYlJIQERERqXVt2/YnJubTWmsvOno6Q4eOr7X2RKRuKQkRERG5w0RHT8fWNhhb22AcHDrRunVfXnrpbbKzf63r0CwmJeUCtrbBHD36Q12HIneBuu5zM2cuJjz8CYvsq7ZoYbqIiMgdqF+/7ixd+jZFRUUkJZ3huef+xi+/XOMf/5hX16GJ3JHU56pHIyEiIiJ3IFtbW7y83GjRwouoqG488UR//t//+4/5/dWrN9Kx42CcnMIJCnqEjz9eW6b+zz9fYvjwqXh69qBp0y507foU3313DIDk5PM89tgrtGgRiYvL/URE/JmdO+NvGc8vv/zKuHFv0aJFJE5O4YSGPsqXX34NVHwVNybmU9q27X/T9r76ai+RkaNxd++Ol1dPhgx5ieTk8+b327UbAECXLk9iaxvMQw89U+VjF6mJ2+lzBQWFjB8/i3vueRAnp3Datu3P3LnLzO9fvXqNcePewsenF82aRdC3bzTff38KgDVrNvHOOx9z7Ngp82jMmjWbLHfgNaSREBERkTvcmTM/89VX+7CxufG1v3z558ycGcvCha8TGtqeo0d/YNy4t2jUyIFRowaTk/MbDz30DM2be7B+fQyenm4cOZJESYkJgJyc3xgwoCdvvfUS9vZ2fPrpZh599GWOH9/MPfd4l9t/SUkJgwa9wLVruaxaNZt77/UlKSkZa+uaXwvNzc1j/PiRBAW1JTc3j7fe+ognnphAQsL/YmVlxf79/0O3bk8TF7eEgIA22NraVOnYRWpDdfvchx/+ky1b9vA//zMfX19vfv75EufPXwJuPIF88OCXcHFpwubNi2nSxJFly/6X/v3HcuLEv3niiX6cOPEjX321j7i4pQA4O9f/WxUrCREREbkDbd36DS4u91NcXML16/kAzJ8/BYBZs5Ywd+6rPProQwC0atWCpKQzLFv2OaNGDWbt2q1kZGSzf/9nuLo6A9CmzT3mtkNC/AkJ8Te/njnzZTZt2sWWLXt44YU/l4tl5854Dh48zrFjG2nXzg+Ae++9vSeNP/ZYVJnXS5a8hY9PJCdPJhMU1BY3NxcAXF2b4uXlZi5X2bGL1NTt9Lnz5y/Rps09dO/eGYPBQMuWzc3t7tnzHceP/8iFC3uws7MFYO7cyWzevJv163fw7LOP07hxI4xGY5n/6/WdkhAREZE7UGTkfXzwwXR+++06K1eu58cfU3jxxT+TkZHF+fOX+MtfZjBu3Fvm8kVFxearp99//wOhoe3NCcjv5eb+xttvf8zWrd+QlpZBUVEReXn5pKamVVj+++9/oEULT3MCUhuSk88zY8aHfPfdMTIzf6GkpASA8+cvERTUtsI6VTl2kZq6nT43atQjDBjwFwIDH6Ffv+48/PADREV1A+Dw4ZPk5PyGl1fPMvvLy8svMwWxoVESIiIicgdq1MjBPHqxYMFrREVF8/bbH5tHKmJj/06XLh3L1CmdHuXgYH/Ltl977X127NjPnDmv0rq1Lw4O9jz11KsUFhZWWL6y9qysrDCZTGW2FRYW3bLOo4++jK+vF7Gxf8fb24OSkhI6dXqMgoKKYwDM08ludewiNXU7fa5TpwBOn95GXNxedu2K5+mnp/Dgg/ezbt37lJSY8PZ2Y8eOFeX22bSp0x98VH8cJSEiIiJ3genTn2fQoBf4y1+exMfHg7Nnf+bpp/9UYdmgoLasWLGerKyrFY6G7N17mJEjBzNkSB/gxhqRc+cu3nTfHTu24+ef0zl9OqXC0RB3dxfS0zMxmUwYDAYA86Lbily58gs//HCGxYvfpEePMAD27TtcpkzpGpDSERIAT89mlR67SG2pTp8DaNLEkSef7M+TT/bnsceiGDhwHFlZV+nUqQOXLl3BaLTGz8+nwrq2tjYUFxf/UYfyh1ASIiIichfo1es+AgJaM3fuMt58cxwTJ86lSZPG9OvXg/z8Ag4fPkl29q9MmDCKp556mLlzl/H44+N5553xeHm5c/RoEs2be9C1awitW9/Dxo07+dOfemEwGJgx48MyJ/u/98AD4fTsGcawYZOYP38KrVv7curUWQwGA/369eCBB+4jI2MW7767kscei2L79n189dVemjSpeIqUi0sTmjVryrJlX+Dl5c7582lMm7aoTBkPD1ccHOz56qu9+Ph4Ym9vi7OzU6XHLlJbqtPnFi36FC8vN0JC2mNlZeCLL7bj5eVG06ZO9OnTla5dg3n88QnMmjWBdu38SEvLYNu2bxk8+EHCwgJp2bI5KSkXOHr0xtRHJ6fG5vUj9ZXGHkVERO4S48ePZPnyL4iK6s7HH/+dNWs207nzUB566BnWrNlkvspqa2vD1q2f4O7uyiOPvEjnzo8xf/4K89SRd9+dgouLE716jeKxx16mb9/udOrU4Zb7XrfufcLDgxg58q+EhDzK668voLj4RuLSocO9fPDBND7+eC3h4Y9z8GAiEyeOvmlbVlZW/OMf8zh8+CSdOj3G5MnzmTNnUpkyRqORBQv+yrJln9OyZR/z09afeWboLY9dpDZVtc85Ojrw7rsriYh4im7dnubcuYts2vQRVlZWGAwGNm9eTM+eYTz33N8JDBzEiBFTOXfuIh4ezYAbN2ro27c7fftG07x5L9at21aXh10lBtPvJ2GKiIhIvfLrr7/i7OxMZub+m44OiOX8+msObm7duHr1Kk2aNKnrcO566h/1S1X7h0ZCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJQeVigiIlLPld5N/9q13DqOROD/fg96ykH9oP5Rv1S1fygJERERqeeuXbsGQKtWUXUcify3a9eu4ezsXNdh3PXUP+qnyvqHHlYoIiJSz5WUlHDx4kWcnJwwGAx1Hc5dz2Qyce3aNZo3b46VlWa21zX1j/qlqv1DSYiIiIiIiFiU0ncREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRf1/6O69usheWdAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "times_delayed = events.time + 0.5 * (events.time - events.time[0]) ** 2 * 3e-8 / cand_freqs_ef[0]\n", + "ip = InteractivePhaseogram(times_delayed, cand_freqs_ef[0], nt=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "An evolved implementation of this interactive phaseogram is implemented in [HENDRICS](https://github.com/stingraysoftware/hendrics) (command line tool `HENphaseogram`)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Simulator/Concepts/Inverse Transform Sampling.html b/notebooks/Simulator/Concepts/Inverse Transform Sampling.html new file mode 100644 index 000000000..9c232bc17 --- /dev/null +++ b/notebooks/Simulator/Concepts/Inverse Transform Sampling.html @@ -0,0 +1,252 @@ + + + + + + + + Inverse Transform Sampling — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Inverse Transform Sampling

+

This notebook will conceptualize how inverse transform sampling works

+
+
[2]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+import numpy.random as ra
+
+%matplotlib inline
+
+
+
+

Below is a spectrum which follows an almost bell-curve type distribution (anyway, the specific type of distribution is not important here).

+
+
[118]:
+
+
+
spectrum = [[1, 2, 3, 4, 5, 6],[2000, 4040, 6500, 6000, 4020, 2070]]
+energies = np.array(spectrum[0])
+fluxes = np.array(spectrum[1])
+spectrum
+
+
+
+
+
[118]:
+
+
+
+
+[[1, 2, 3, 4, 5, 6], [2000, 4040, 6500, 6000, 4020, 2070]]
+
+
+

Below, first we compute probabilities of flux. Afterwards, we compute the cumulative probability.

+
+
[119]:
+
+
+
prob = fluxes/float(sum(fluxes))
+cum_prob = np.cumsum(prob)
+cum_prob
+
+
+
+
+
[119]:
+
+
+
+
+array([ 0.08120179,  0.2452294 ,  0.5091352 ,  0.75274056,  0.91595615,  1.        ])
+
+
+

We draw ten thousand numbers from uniform random distribution.

+
+
[128]:
+
+
+
N = 10000
+R = ra.uniform(0, 1, N)
+R[1:10]
+
+
+
+
+
[128]:
+
+
+
+
+array([ 0.49834338,  0.31993222,  0.35882619,  0.15837646,  0.22595417,
+        0.85575223,  0.85203039,  0.78380252,  0.04170078])
+
+
+

We assign energies to events corresponding to the random number drawn.

+

Note: The command below finds bin interval using a single command. I am not sure though that it’s very readble. Would we want to split that in multiple lines and maybe use explicit loops to make it more readable? Or is it fine as it is? Comments?

+
+
[129]:
+
+
+
gen_energies = [int(energies[np.argwhere(cum_prob == min(cum_prob[(cum_prob - r) > 0]))]) for r in R]
+gen_energies[1:10]
+
+
+
+
+
[129]:
+
+
+
+
+[3, 3, 3, 2, 2, 5, 5, 5, 1]
+
+
+

Histogram energies to get shape approximation.

+
+
[130]:
+
+
+
gen_energies = ((np.array(gen_energies) - 1) / 1).astype(int)
+times = np.arange(1, 6, 1)
+lc = np.bincount(gen_energies, minlength=len(times))
+lc
+
+
+
+
+
[130]:
+
+
+
+
+array([ 825, 1652, 2626, 2466, 1589,  842], dtype=int64)
+
+
+
+
[131]:
+
+
+
plot1, = plt.plot(lc/float(sum(lc)), 'r--', label='Assigned energies')
+plot2, = plt.plot(prob,'g',label='Original Spectrum')
+plt.xlabel('Energies')
+plt.ylabel('Probability')
+plt.legend(handles=[plot1,plot2])
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb b/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb new file mode 100644 index 000000000..1f1b783fe --- /dev/null +++ b/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb @@ -0,0 +1,223 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Inverse Transform Sampling\n", + "\n", + "This notebook will conceptualize how inverse transform sampling works" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import numpy.random as ra\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below is a spectrum which follows an `almost` bell-curve type distribution (anyway, the specific type of distribution is not important here). " + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1, 2, 3, 4, 5, 6], [2000, 4040, 6500, 6000, 4020, 2070]]" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[2000, 4040, 6500, 6000, 4020, 2070]]\n", + "energies = np.array(spectrum[0])\n", + "fluxes = np.array(spectrum[1])\n", + "spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, first we compute probabilities of flux. Afterwards, we compute the cumulative probability." + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.08120179, 0.2452294 , 0.5091352 , 0.75274056, 0.91595615, 1. ])" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prob = fluxes/float(sum(fluxes))\n", + "cum_prob = np.cumsum(prob)\n", + "cum_prob" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We draw ten thousand numbers from uniform random distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.49834338, 0.31993222, 0.35882619, 0.15837646, 0.22595417,\n", + " 0.85575223, 0.85203039, 0.78380252, 0.04170078])" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "N = 10000\n", + "R = ra.uniform(0, 1, N)\n", + "R[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We assign energies to events corresponding to the random number drawn.\n", + "\n", + "_Note: The command below finds bin interval using a single command. I am not sure though that it's very readble. Would\n", + "we want to split that in multiple lines and maybe use explicit loops to make it more readable? Or is it fine as it is?\n", + "Comments?_" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[3, 3, 3, 2, 2, 5, 5, 5, 1]" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = [int(energies[np.argwhere(cum_prob == min(cum_prob[(cum_prob - r) > 0]))]) for r in R]\n", + "gen_energies[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Histogram energies to get shape approximation." + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 825, 1652, 2626, 2466, 1589, 842], dtype=int64)" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = ((np.array(gen_energies) - 1) / 1).astype(int)\n", + "times = np.arange(1, 6, 1)\n", + "lc = np.bincount(gen_energies, minlength=len(times))\n", + "lc" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0VNXXxvHvDoROQgnSiRQpiihgAREMJaEX6UGqoqiI\nYgcLYEHUH/gqRSnSBWkiIDWAhN5BRKmCgDSlhg4h2e8fGWLADEwgk5uyP2vNyszcMs8MYXbOPfee\nI6qKMcYYEx8fpwMYY4xJvqxIGGOMccuKhDHGGLesSBhjjHHLioQxxhi3rEgYY4xxy+tFQkTqiMgO\nEdklIm/Hs7yRiGwRkc0isk5Eqni6rTHGGO8Sb14nISI+wC6gJnAYWA+0VtUdcdbJoqoXXPfvB6ao\nahlPtjXGGONd3m5JPALsVtX9qhoJTAIax13hWoFwyQZEe7qtMcYY7/J2kSgI/BXn8UHXc9cRkSYi\nsh34CXg6IdsaY4zxnmTRca2qM1S1DNAE+NjpPMYYY2Kk9/L+DwFF4jwu5HouXqq6QkSKiUiuhGwr\nIjYAlTHGJJCqyq3W8XZLYj1QQkQCRSQD0BqYFXcFESke534FIIOqnvRk27hU1W6q9O7d2/EMyeFm\nn4N9FvZZ3PzmKa+2JFQ1SkReAsKIKUgjVXW7iHSJWazDgWYi0h64AlwEWt5sW2/mNcYYcz1vH25C\nVecDpW54blic+58Dn3u6rTHGmKSTLDquTeIJCgpyOkKyYJ/Dv+yz+Jd9Fgnn1YvpkoqIaGp4H8YY\nk1REBPWg49rrh5uMMe7dfffd7N+/3+kYJhULDAxk3759t729tSSMcZDrrzmnY5hUzN3vmKctCeuT\nMMYY45YVCWOMMW5ZkTDGGOOWFQljTJIpW7Ysy5YtS/LX7dSpE7169Ury102oiRMnUqdOHadjXMeK\nhDHmpoKCgsiVKxeRkZF3vK/ffvuNatWqJUKq1KlNmzbMnz/f6RjXsSJhjHFr//79rFixAh8fH2bN\ncjt0mvFAVFSU0xFuixUJY4xb48aNo3LlynTs2JExY8Zct2zu3Lncd999+Pn5UbhwYb744gsATpw4\nQcOGDcmZMye5c+fmiSeeiN2maNGi/PzzzwBcunSJDh06kCtXLu677z7+97//Ubhw4evWHTBgAA88\n8AA5c+YkNDSUK1euxC6fPXs25cuXJ2fOnDz++ONs3bo1dtnmzZupWLEi/v7+tG7dmkuXLt30fY4a\nNYp7772X3LlzU7duXQ4cOBC7zMfHh2HDhlGyZEly5crFSy+9lKBtv/76a0qWLEnJkiUBCAsLo3Tp\n0uTMmZOuXbsSFBTEqFGjABg7dixVq1aN3X7Hjh2EhISQO3duypQpw9SpU2/5+Sc6p0ciTKTRDNWY\nlCi5/+6WKFFChw4dqhs3blRfX1/9559/Ypflz59fV65cqaqqp0+f1s2bN6uqas+ePfWFF17QqKgo\nvXr1qq5YsSJ2m7vvvlsXL16sqqpvv/22BgUFaUREhB46dEjLlSunhQsXvm7dRx99VI8ePaqnTp3S\nMmXK6LBhw1RVddOmTXrXXXfp+vXrNTo6WseNG6d33323XrlyRa9cuaKBgYH61Vdf6dWrV3XatGnq\n6+ur77//frzvccaMGXrPPffozp07NSoqSvv27auPPfZY7HIR0YYNG+qZM2f0wIEDmidPHl2wYIHH\n24aEhOjp06f10qVLevz4cfXz89MZM2ZoVFSUfvXVV5ohQwYdOXKkqqqOGTNGq1atqqqq58+f18KF\nC+vYsWM1Ojpaf/nlFw0ICNDt27ff9PO/kbvfMdfzt/5+9WSl5H5L7v/RjHHnlr+7vXvH/De98da7\nt+fru1v3FpYvX64ZMmTQkydPqqpqmTJl9Msvv4xdHhgYqMOHD9czZ85ct12vXr20SZMm+scff/xn\nn3GLRLFixXThwoWxy7799tv/FImJEyfGPn7rrbf0hRdeUFXVF154QXv16nXdvkuVKqXLli3TZcuW\nacGCBa9b9thjj7ktEnXr1tVRo0bFPo6KitIsWbLogQMHVDXmi37VqlWxy1u2bKmfffaZx9uGh4fH\nLh83btx1RURVtXDhwvEWicmTJ2u1atWuW7dLly764Ycfqqr7z/9Gd1ok7HCTMclZnz7xlYiY5z1d\n3926tzBu3DhCQkLImTMnAKGhoYwdOzZ2+Q8//MCcOXMIDAykevXqrFmzBoC33nqL4sWLExISQokS\nJfjss8/i3f/hw4cpVKhQ7OO4h5quyZs3b+z9LFmycO7cOSCmr2TAgAHkypWLXLlykTNnTg4ePMjh\nw4c5fPgwBQteP9NxYGCg2/e5f/9+Xnnlldh95c6dGxHh0KF/5zi7WY5bbRv3PR4+fPg/7zPu8htz\nrVmz5rr3OHHiRP7++2/A/eef2GzsJmPMf1y6dIkpU6YQHR1N/vz5Abhy5QqnT59m69at3H///VSs\nWJEZM2YQFRXFoEGDaNmyJQcOHCBr1qz079+f/v37s23bNqpXr84jjzxC9erVr3uN/Pnzc/DgQUqX\nLg1w3bH8WylcuDDvvvsuPXv2/M+yZcuWXfclfW3fJUqUiHdfRYoU4b333iM0NNTj14+b41bbivw7\n8kX+/Pn/cwLAwYMH3e47KCiIBQsWxLvc3eef2KwlYYz5jx9//JH06dOzfft2tmzZwpYtW9i+fTtV\nq1Zl3LhxXL16lYkTJ3LmzBnSpUtH9uzZSZcuHQBz5sxhz549AGTPnp306dPHLourZcuW9OvXj9On\nT3Po0CGGDBnicb5nn32WoUOHsm7dOgDOnz/P3LlzOX/+PJUrVyZ9+vQMGjSIq1evMn369Nj14tOl\nSxc++eQTtm3bBkBERATTpk3zKMfzzz+foG3r16/Pb7/9xqxZs4iKimLw4MGxLYMbNWjQgF27dvHd\nd99x9epVIiMj2bBhAzt27CAyMtLt55/YrEgYY/5j3LhxPP300xQsWJC77ror9ta1a1cmTJgAwPjx\n4ylatCg5cuRg+PDhTJw4EYDdu3dTq1YtsmfPTpUqVejatWvstRFx/6ru1asXBQsWpGjRooSEhNCi\nRQsyZswYuzzuujeqWLEiI0aM4KWXXiJXrlyULFky9lCYr68v06dPZ/To0eTOnZupU6fSrFkzt/tq\n0qQJPXr0oHXr1uTIkYNy5cpdd63CjTniPk7ottfyvPnmmwQEBLBjxw4eeuih6973NdmyZSMsLIxJ\nkyZRoEABChQoQI8ePWLP8HL3+Sc2GwXWGAfZKLD/Gjp0KJMnT2bJkiVOR0kyqkqhQoWYOHHidacK\nJyYbBdYYkyIdPXqUVatWoars3LmTAQMG0LRpU6djeV1YWBgRERFcvnyZvn37AlCpUiWHU7lnHdfG\nGEdcuXKFLl26sG/fPnLkyEFoaCgvvPCC07G8bvXq1bRp04bIyEjuvfdeZs6cGe/hpuTCDjcZ4yA7\n3GS8zQ43GWOM8RorEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxphE1a9fP5577rlEX/dWfHx8\n2Lt3b6Lsy/zLioRJdc5ePsvL815m8LrB7Dy+004xvQNjxoyhXLlyZM2alQIFCvDiiy8SERFx0216\n9uzJ8OHDPdp/Qta9lZsN47Ft2zZq165N7ty5yZUrFw8//LDXpwmtXr167GRCKZkVCZOqqCrP//Qc\nB35ZyuYD6wgeH8zdX91N51mdmfzbZI5fOO50xBRjwIAB9OzZkwEDBnDmzBnWrFnD/v37CQ4O5urV\nq/Fu4+QUnTf7Y6Bhw4bUrl2bv//+m3/++YeBAwfi5+eXhOn+K8VMZ+rJpBPJ/YZNOmRchm8YrmV7\nBej5+0urRkZqdHS0bj+2XQeuGagNJzZUv35+WvGb8tpjYQ9dvHexXoq85Gje5Pq7e+bMGc2WLZtO\nmzbtuufPnTunefLk0dGjR6uqap8+fbR58+batm1b9ff315EjR2qfPn20bdu2sduMHTtWAwMDNSAg\nQD/66KPrJh6Ku+6+fftURHTs2LFapEgRzZMnj/bt2zd2P+vWrdPKlStrjhw5tECBAvrSSy9pZGRk\n7HIR0T179vznvRw/flx9fHw0IiIi3vcaHh6uhQoV0k8++UQDAgK0aNGiOmHChNjlly9f1tdff12L\nFCmi+fLl0xdeeEEvXfr392bGjBn64IMPqp+fn5YoUUIXLFig7777rqZLl04zZ86s2bNn127dusVm\nHDJkiN5zzz1arFix2PccFRUVu7+goKDrJiGqUqWKvvrqq5ojRw4tXry4rlq1SseMGaOFCxfWvHnz\n6tixY2/yL3nnkw45/gWfGLfk+h/NJK1fjvyiAR/76fay+VSPHYt3nStHDumykhn1/dZ5tdI7d2n2\nDzJpnW+q6IAV/9Nfj/6q0dHRSZo5uf7uzp8/X319fa/78rqmQ4cO2qZNG1WN+ZLPkCGDzpo1S1VV\nL168qH369NF27dqpqurvv/+u2bJl01WrVmlkZKS+8cYbmiFDhuuKxLV1r31hPvfcc3r58mXdsmWL\nZsyYUXfs2KGqqhs3btS1a9dqdHS07t+/X++991796quvYnO5KxKqqiVLltQGDRrojBkz9O+//75u\nWXh4uKZPn17feOMNvXLlii5dulSzZs2qu3btUlXV7t27a+PGjfX06dN67tw5bdSokb7zzjuqqrp2\n7Vr19/ePfT+HDx/WnTt3qur1X/ZxM8adznTfvn3q4+Nz0yLh6+sbO4Xpe++9p0WKFNGXXnpJr1y5\nomFhYZo9e3Y9f/6823/LOy0SNnaTSRXOXj5Ly4lP8n/zlNIjfoSAgHjX881XgKq/RlD111/5cO1a\nTq1fxpKlK1i4vj9DHviGi5EXqVWsFsHFgqlVrBb5s+dP4ndyPfnglqMmeER7J6xf5vjx4wQEBODj\n898j0vnz52fTpk2xjytXrkzDhg0ByJQp03Xr/vDDDzRq1IjKlSsD8OGHHzJw4EC3rysi9OnThwwZ\nMlCuXDkeeOABtmzZQqlSpahQoULsekWKFOG5555j6dKlvPzyy7d8P0uWLOHTTz/ljTfe4M8//+Tx\nxx/n22+/jZ2ISET46KOP8PX1pVq1atSvX58pU6bw7rvvMmLECLZu3Yq/vz8APXr04KmnnqJv376M\nGjWKZ555hho1asR+NtcmaXLnnXfeid2XJ4oWLUr79u0BaNWqFZ988gm9e/fG19eX4OBgMmTIwB9/\n/EG5cuU83mdCWJEwKZ6q0mVmZ6ptjaBt60/gViNqZswIDz8MDz9MTl6iKdD08mXImJG9p/aycM9C\nZuycwSvzX6FQhgCCz+cluHR9qlXvSJbc+ZLkPV2T0C/3xBIQEMDx48eJjo7+T6E4cuQIAXGKcHzT\njl5z43SdmTNnJnfu3Dd9bXdThe7evZvXXnuNDRs2cPHiRa5evUrFihU9ej8FChSILU6HDh3i2Wef\npUOHDqxcuRKAnDlzXlfgAgMDOXz4MMeOHePChQvXvU50dHRs/8dff/1F/fr1PcpwjbvpSt2J+3lk\nzpwZ4LrPP3PmzLGfkTdYx7VJ8UZsGsFvJ7YxsOYA6Nr19nbiGoWzWM5idHmoCz+0/IFjbx5jRMUP\nyHk+mk9W9CPvF/mp+WI2Pu3+EBtnfE20Rifiu0heKleuTMaMGZk+ffp1z587d4558+ZRq1at2Odu\ndlbRtSlKr7l48SInTpy4rUwvvPACZcqUYc+ePZw+fZq+ffve1plrBQsWpGvXrvz222+xz506dYqL\nFy/GPj5w4AAFChQgICCALFmy8Pvvv3Py5ElOnjzJ6dOnY8/wKly4cOwsfDdy97nEfT5r1qwAXLhw\nIfa5o0ePJvg9eZMVCZOibTm6hXd/fpcpLaaSuW1HuMkXVkKl80nHo9VCea/fSpZ9GcHhnid4teHH\nHC6QnbY7PyVv/7y0ntaakZtGciDCNbfwhQtwG19cyY2fnx+9evWiW7duLFiwgKtXr7Jv3z5atWpF\nkSJFaNu2rUf7ad68OT/99BNr1qwhMjKSPn363HT9m33pnz17Fj8/P7JkycKOHTv45ptvPMpw+vRp\n+vTpw549e1BVjh8/zqhRo2IPgV173d69exMZGcny5cuZM2cOLVu2RER49tln6d69O8eOHQNiWiJh\nYWEAPPPMM4wePZolS5agqhw+fJidO3cCMS2AW123ERAQQMGCBfnuu++Ijo5m1KhRbouOJ5+RN1iR\nMCnW2ctnaTG1BV/W/pLSAaW9/nrZs+WiQd3uDHxrCdvfPsCm5zYRUjyERX8uouLwipQeXJpuHzzK\nrEo5OdOkLnz8MSxcCKdPez2bN7z55pt88sknvPHGG/j7+1O5cmUCAwNZtGgRvr6+Hu3j3nvvZdCg\nQbRq1YoCBQrg5+fHXXfd5Xb+hJtNFdq/f38mTJiAn58fXbp0oXXr1jfd9poMGTKwb98+goOD8ff3\np1y5cmTKlInRo0fHrpM/f35y5sxJgQIFaNeuHcOGDeOee+4B4LPPPqNEiRJUqlSJHDlyEBISwq5d\nuwB4+OGHGT16NN27d8ff35+goCAOHIj5g+GVV15h6tSp5M6dm+7du7vNOGLECD7//HMCAgLYvn07\nVapUuelnerPPyBu8Pp+EiNQBviSmII1U1c9uWN4GeNv18Czwoqr+6lq2D4gAooFIVX3EzWtoUldX\n4yxV5anpT5EtQzaGN0yci7HuRLRGs+XoFsL2LGDhttms/XsjD0bmJnh/eoJX/8PDQ2eRvkat/2yX\n1uaTOH/+PDly5OCPP/4gMDDQ6TgALF26lHbt2sV+uac2dzqfhFc7rkXEBxgM1AQOA+tFZKaq7oiz\n2l6gmqpGuArKcOBaz2M0EKSqp7yZ06Q8IzYO57cjW1jbZYPTUQDwER/K5y9P+fzlefvxHlyIvMCK\nAysI2xPG85XCOLC+BdWPVSe4WDAhxUMonqu405GTzOzZs6lZsybR0dG8/vrrlCtXLtkUCHNr3j67\n6RFgt6ruBxCRSUBjILZIqOqaOOuvAQrGeSzYITFzg1+O/sK7c15nxY7KZH4ps9Nx4pXFNwshxUMI\nKR4CwNFzR1m0dxEL9y7ko2UfkSl9JoKLBTucMmnMnDmTdu3aAfDQQw8xadIkhxOZhPDq4SYRaQbU\nVtXnXI/bAo+oarwnNovIG0DJOOvvBU4DUcBwVR3hZjs73JRGnLl8hoe+uo/eP53hqQlboUgRpyMl\nmKry+7HfWbhnIa899lqaOtxkkl6yPtyUECJSHegEPB7n6SqqekRE8gALRWS7qq6Ib/u4Z00EBQUR\nFBTkxbTGCarKc1PaEbTpBE+9PyNFFgiI+c9Z9q6ylL2rLK/xmtNxTBoRHh5OeHh4grfzdkuiEtBH\nVeu4Hvcg5lLwGzuvywE/AHVUNd7zv0SkN3BWVb+IZ5m1JNKAYWu/5uupb7Em+6tk7v2R03ESRVrr\nuDZJ705bEt4+3r8eKCEigSKSAWgNzIq7gogUIaZAtItbIEQki4hkc93PCoQAv2HSpM1HNvPeop5M\n2VuBzO9/4HQcY9IMrx5uUtUoEXkJCOPfU2C3i0iXmMU6HHgfyAV8LTEn/F471TUv8KOIqCvnBFUN\n82ZekzyduXyGltNaMrDRUEr1aAnxjCeUUgUGBnr9PHeTtt3pmWRev04iKdjhptRLVQn9IRT/jP4M\nazjM6TjJTsSlCJbsW0LYnjAW7l3ImctnYgcoDC4WTEG/grBhA9StC/PmwUMPOR3ZJBOeHm6yImGS\ntaEbhjJ0w1BWP7OazL7J83TX5GTf6X0s3LOQsL1h/Pznz+TLlo/GpRrzQUR5fLt1h9WrU2yHv0lc\nViRMirf5yGZCvgth5dMrKZm7pNNxUpyo6Cg2HdlEr/Be5Mqci/GnquNT7QlwDTdh0rbk0nFtzG05\nc/kMLUbXYWCJblYgblM6n3Q8XPBhpreczqEzh+iWbzPqmj/BGE9ZkTDJjqry7Ljm1Np8htAyLZ2O\nk+Jl9s3MrNBZrD20lveXvO90HJPCJJuL6Yy5ZuiyL9j521LWNBsJpb0/umta4JfRj/lt51N1dFVy\nZsrJ64+97nQkk0JYS8IkK5sPbaTXwneYmq41mVp7NmeB8UxAlgAWtlvIoHWDGLlpZMy8F7eYu8AY\na0mYZCPiUgQtvg1h0LZA7pkU7zBd5g4V8ivEwnYLeWLME/ifuUTzlh/AggVQvrzT0UwyZWc3mWRB\nVWk1rRW5j5/nm4bDIIHzAJuE2XJ0CyHfhTAu4Dlqvz8m5tRY+8zTFDsF1qQoX6//mhGbRrD6mdVk\nSp/p1huYO7bywEqenPwkM64257Epq2H5csiWzelYJolYkTApxqYjm6j9XW1WPb2Ke3LbOfxJacEf\nC2g/oz1he6vwwIErMHMmpEvndCyTBOw6CZMiRFyKoOXUlgyuO9gKhANql6jN4LqDqVd8LbuL54CT\nJ52OZJIZ67g2jlFVOv/QgZDiIbQq28rpOGlWi/taEHE5gpDlfVme8TLWM2HisiJhHPP1nD7sWT2H\n8e/udTpKmte5QmdOXTxFyPgQlnVaRkCWAKcjmWTCDjcZR2zcs4I+q/oypfT7ZMpf2Ok4Bnizyps0\nKd2EOt/V4czlM07HMcmEdVybJBdx8TQV+ham34nytPx6Kdh8CsmGqtJ1ble2HdvGvDZzyXzhCuTI\n4XQs4wV2dpNJllSVFp9VJO/v+xky9ABkzep0JHODaI2m7fS2nN2/m+kTo/Bdutz+nVIhO7vJJEtD\nVv0fe49uY8A74fbFk0z5iA9jm4xF8+WlU/UIotuEQlSU07GMQ6wlYZLMhsMbqDehHqs7Lqd4nlJO\nxzG3cDHyInXG1+b+NXsZlL0lMuALpyOZRGQtCZOsnL50mlbTWjGk3hArEClEZt/MzGrzE6sfDKDX\ngXEwdKjTkYwDrCVhvE5VaT61Ofmz5WdwvcFOxzEJdOz8MaoOr8Rz2zLz2tAtdkV2KmEtCZNsDF43\nmH2n9zEgZIDTUcxtyJM1DwufDmfgfecY9etYp+OYJGYX0xmv2rB5Dh8teIfVL/1CxvQZnY5jblNh\n/8KEtQsjaEwQfhn9aH5vc6cjmSRiRcJ4zekz/9ByUjO+zt6U4rmKOx3H3KGSuUsy96m51P6uNv4Z\n/QkuHux0JJMErE/CeIWq0uy9eyh4KopBg/eAjx3ZTC2uDTE+s+V0Khd+zP5tUyjrkzCOGjTsafaf\n/Yv+H6y2L5FUpkqRKox7chxNRtfh155POx3HeJn97zWJbv3KqXz851imNJ9Cxjz5nI5jvKBOiToM\nrPMldfmOP77p63Qc40XWJ2ES1elLp2m19g2+ue8tildr7HQc40WtKnXmzKmjBC/qxYrZxSjYINTp\nSMYLrE/CJBpVpdmUZhTyK8TAugOdjmOSyOfjn2fMhm9Z1iGcgAqPOx3HeMjTPglrSZhEM3DtQA5E\nHOD7Zt87HcUkobfaDeXUyUPUndqExfftxS+jn9ORTCKyloRJFOsOraPBxAas6byGYjmLOR3HJDFV\n5cU5L7DjxE7mPTWPTOkzOR3J3IKd3WSSzKljB2g1rRVDGwy1ApFGiQiD6w0hX7Z8tJrWisioSKcj\nmURiRcLcEY2KotPHD9MoshhNyzR1Oo5xUDqfdIxtMpbIqEienvU00RrtdCSTCKxImDvy1ccNOJT+\nAp+/NMvpKCYZyJAuA9NaTmP/6f28Mu9l7DBwymdFwty2dT8M5JOLYUx5bhEZM9kEQiZGFt8s/BT6\nEyuXT6T36PZOxzF3yIqEuS2ndm+l1apXGfZQH4qWetTpOCaZ8c/kz/ygb5n86/f838weTscxd8Dr\nRUJE6ojIDhHZJSJvx7O8jYhscd1WiEg5T7c1zlBVOo1pTOOclXmy+ftOxzHJ1F21m7Kw7Gd8uWIA\no5fZdTMplVeLhIj4AIOB2sB9QKiIlL5htb1ANVV9APgYGJ6AbY0DvlzzJYcDc/N5j8VORzHJXJHO\nrxOWsTPvzH+D6VsmOR3H3AZvtyQeAXar6n5VjQQmAdeN1aCqa1Q1wvVwDVDQ021N0lt7cC39VvRj\ncospZLD5IYwHSn04hLmHqvP8jM4s2rvI6TgmgTwqEiIyXUTqu/66T4iCwF9xHh/k3yIQn87AvNvc\n1njZyYsnaTWtFcMaDKNozqJOxzEphY8P5YfP4od2swn9IZQ1B9c4ncgkgKdf+l8DbYDdIvKpiCT6\nTPYiUh3oBFjfQzKkqnSa2YknSz/Jk2WedDqOSWkyZqRqsSDGNhlL40mN2fr3VqcTGQ95NHaTqi4C\nFomIPxDquv8XMAL4znU4KD6HgCJxHhdyPXcdV2f1cKCOqp5KyLbX9OnTJ/Z+UFAQQUFBN39TxnOq\n/N8nDTmS6zBTW0x1Oo1JwerdU4+BdQZSZ0IdlnZcSolcJZyOlGaEh4cTHh6e4O08HrtJRHIDbYF2\nwGFgAvA4cL+qBrnZJh2wE6gJHAHWAaGquj3OOkWAxUA7VV2TkG3jrGtjN3nRmv97jUbHBrG2268U\nzV/G6TgmFRi+cTifrviU5Z2WU9DPjiI7IVHHbhKRH4HlQBagoao2UtXJqtoNyOZuO1WNAl4CwoDf\ngUmqul1EuojIc67V3gdyAV+LyGYRWXezbT3JaxLPyWULaH3wK4aHDLICYRLNc2U70GW3PyFjanLi\nwgmn45ib8KglISL1VHXuDc9lVNXLXkuWANaS8A795x8a9wikxEMhfPHiTKfjmNSmRw/e/vs7llTO\nz+IOP5M9Y3anE6UpnrYkPC0Sm1S1wq2ec4oVCS+IimLAM2WYUuQcy3vvI0O6DE4nMqlNdDTaqiXP\nF9rC7gcLM/epuTbEeBJKlMNNIpJPRCoCmUWkvIhUcN2CiDn0ZFKp1QdX81nxo0x+eZkVCOMdPj7I\nuPF8vSond/35D62nteZq9FWnU5kb3LQlISIdgI7AQ8CGOIvOAmNUdbpX03nIWhKJ6+TFk5QfVp6B\ndQbSuLRdv2i87OhRrjz2KE1ezU9AoZKMaTIGnwRfkmUSKrEPNzVT1R8SJZkXWJFIPKpKo0mNKJmr\nJANqD3A6jkkrDh/mQm4/ak+sS/l85fmqzleI3PL7y9yBRCkSItJWVb8TkdeB/6yoql/cWczEYUUi\n8QxYNYCKby9MAAAb50lEQVSp26ayrJMdZjJJ7/Sl01QfW53GpRrTJ6iP03FSNU+LxK0uprs2SYDb\n01xN6rF65yI+X/U56zqvswJhHJEjUw7mPzWfqqOrkjNTTl6p9IrTkdI8jy+mS86sJXHnTowbSoXt\n3RnUcQqNSjVyOo5J4w5EHKDq6Kp8EPQBHR/s6HScVClRWhIictNB4FX15YQGM8lP9G9b6bDkZVrU\nCrUCYZKFIhczsCCiEdUX98Q/o7+NF+agWx1u2pgkKYxzzp7li/dqcuLRIvRr/a3TaYyJ4edH6dlr\nmNPoSerM7kL2jNmpVayW06nSJDvclJapsqpjTZ4MXM2613YQmCPQ6UTG/OvIEahUiWW9OtD85FBm\nhc6iUqFKTqdKNRLr7KYvVbW7iPxE/Gc3JYtjE1Ykbs+JpfMpP68RQ9p+T8OyzZyOY8x//for1KrF\nnBFv8vTu/ixqt4j7897vdKpUIbGKREVV3SgiT8S3XFWX3kHGRGNFIuGiNZpG3zeidM576F/3/5yO\nY4x78+ZBp058P603b67ry7JOyyiWs5jTqVK8ROm4VtWNrp9LRSQDUJqYFsVOVb2SKEmNIwasGsCJ\niyfo1+pHp6MYc3N168LcuYSWL09EJiF4fDDLOy2nQPYCTidLEzy94ro+MBTYAwhQFOiiqvNuumES\nsZZEwqw8sJKmU5qy/tn1FPEvcusNjElG+i3vx4StE1jacSm5s+R2Ok6KldjDcuwAGqjqH67HxYE5\nqlr6jpMmAisSnjt+4TgVhlVgSL0hNCzV0Ok4xiSYqvL2ordZun8pi9otsiHGb1OiTjoEnL1WIFz2\nEjPIn0lBoufPo8OohrS6r5UVCJNiiQif1fqMB/I+QJPJTbh09ZLTkVK1W3VcN3XdDQYCgSnE9Em0\nAA6o6oteT+gBa0l4YN8+Pu9Slhl1i7K02yZ80/k6nciY27dnD1Hbf6fNpQlcibrC1BZTSe9zq8u+\nTFyJ1ZJo6LplAv4GngCCgGNA5jvMaJLKpUusfLYOA6oIkzrNsQJhUr6zZ0n3dGfGF3iJS1cv8cys\nZ4jWaKdTpUp2MV0acPyFDlTINZWv20+mgR1mMqnFnDnw7LOcX7qI2sufo2L+inxZ50sbYtxDid1x\nnQl4BriPmFYFAKr69J2ETCxWJNyLHjeWBitepGyjznze4Cun4xiTuAYNgqFDOf3zXIJ+bMyTpZ+k\nd1Bvp1OlCIndcT0eyAfUBpYChbCO6xThf1HLiLi/JH3r9nc6ijGJr1s3qFmTHG07syB0LhO2TuCr\nNfbHUGLytCWxWVXLi8ivqlpORHyB5aqaLAZSsZZE/FYcWEHzKc1Z/+x6CvsXdjqOMd4RFRVz6KlR\nI/af3k/V0VX5qPpHdHiwg9PJkrXEmnTomkjXz9MiUhY4Ctx1u+GM9x07f4zQH0IZ2WikFQiTuqVL\nB41ihpELzBFIWLswqo+tjn8mf5qUbuJwuJTP0yIxXERyAu8Ds4iZqe59r6UydyRao2k/oz1tyrah\nfsn6TscxJkmVDijN7NDZ1J1Ql+wZslOzWE2nI6VodnZTanP+PJ9uHsRPu34ivEO4ne5q0qyl+5bS\nfGpzZofO5tFCjzodJ9lJ1I5rEcktIoNEZJOIbBSRL0XEBk1Jbv7+m+U1ivPlygFMajbJCoRJu37/\nnSfkbkY3Hk3jSY357Z/fnE6UYnl6dtMk4B+gGdAcOA5M9lYocxsiIznWvhlt6l5gVNOx1g9h0raf\nf4YGDWiQtypf1P6COt/VYe+pvU6nSpE8PbvpN1Ute8NzW1U1Wcz+keYPN0VHc7VDOxrkWciDdTvy\nafDnTicyxlmq0LUr7N0Ls2fzzeYR9F/dnxWdVpA/e36n0yULiX2dRJiItBYRH9etJbDgziKaxKJv\nvcmLmRYTVa4sH9Xo63QcY5wnAgMHxvzs1o0XHnqeZ8o/Q/D4YE5cOOF0uhTlVgP8nSVmQD8BsgLX\nBkfxAc6pqp/XE3ogTbckjh6ld89KzHkkB0ueXm7DJhsT15kz8Pjj0LEj+uqrvL3obZbsW8Li9ovx\ny5gsvr4ckygtCVXNrqp+rp8+qpredfNJLgUirfv6r+lMrODL3PZhViCMuZGfH8yeDXnzxg4x/lD+\nh2j4fUMuRF5wOl2K4PEpsCLSCKjmehiuqrO9liqB0mpLYtq2abwy/xWWd1puc/4a46FojabDjA4c\nv3CcGa1mkDF9RqcjOSKxB/j7FHgYmOB6KhTYoKo97yhlIkmLRWLJn0toNa0VYe3CeDDfg07HMSZF\nuRp9lZZTW+IjPkxqPilNzkWR2EXiV+BB1ZgB20UkHbBZVcvdcdJEkKaKxNmz/HJ+DyHjQ5jcfDLV\ni1Z3OpExKdLlq5dpNKkR+bLlY3Tj0fiIp+fxpA6JfXYTQI449/0THsncsYMH2Vu5NPXH1mZIvSFW\nIIy5XWvXkvGPP5necjp7T+3l5Xkvk2b+0EwgT4tEP2CziIwRkbHARsDOtUxKJ0/yT6Oa1G55mXdr\n9KbFfS2cTmRMyrV7N9SsSda9fzE7dDZrDq7hncXvOJ0qWbplkZCYaZ5WAJWA6cAPQGVV9eiKaxGp\nIyI7RGSXiLwdz/JSIrJKRC6JyGs3LNsnIltEZLOIrPPoHaVGFy5wtkk96jWIILTqi7z4cLKYWtyY\nlKttW+jXD2rWxP/Pw8xvO59Zu2bRb3k/p5MlO7fsrVFVFZG5rqurZyVk5yLiAwwGagKHgfUiMlNV\nd8RZ7QTQDYhvTN9oIEhVTyXkdVOVq1e50roFTSvvp8JDDfkg6AOnExmTOrRvH3OxXc2aBCxaxMJ2\nC6k2uhrZMmSj26PdnE6XbHjapb9JRB5W1fUJ3P8jwG5V3Q8gIpOAxkBskVDV48BxEWkQz/ZCwvpN\nUp3ovw7QsdR2sj74MF83+Mbm7zUmMbVrF1Mo6tShwPbtLGq/iGqjq5E9Y3Y6PtjR6XTJgqdF4lGg\nrYjsA84T8+WtHpzdVBD4K87jg8QUDk8psFBEooDhqjoiAdumeKrKazsH8te9BQlrPjlNnqZnjNe1\nbQvVqkHWrNxNVsLahVFjbA2y+ma1vj88LxK1vZrCvSqqekRE8hBTLLar6gqHsiS5z1d+zuI/F7Os\n4zIy+2Z2Oo4xqVeRIrF3SweUZt5T8wj5LoSsGbJS7556DgZz3k2LhIhkAp4HSgBbgZGqejUB+z8E\nFInzuJDrOY+o6hHXz2Mi8iMxrZB4i0SfPn1i7wcFBREUFJSAmMnP6M2j+WbDN6x8eiU5M+d0Oo4x\nacoD+R5gZuuZNPq+EVNaTCHo7iCnI92x8PBwwsPDE7zdrQb4m0zM/NbLgbrAflV9xeOdx1x0t5OY\njusjwDogVFW3x7Nub2IGDRzgepwF8FHVcyKSFQgDPlDVsHi2TT0X0/31F7MvbqHzrM6EdwyndEBp\npxMZkzZFRvLzweW0mtaKOW3m8EjBhBwpT/4S5YrruHNGiEh6YJ2qVkhgkDrAV8R0QI9U1U9FpAsx\nfRrDRSQvsAHITszZTOeAe4E8wI/E9EukByao6qduXiN1FIn161n9dAiNnvJhdtu5NuWiMU45dQoe\nfRSmTWN2pgM8M+sZFrZbSLm8yWKQiUSRWEViU9yicOPj5CJVFIldu9jWpArVn4pkTMvvqXtPXacT\nGZO2TZ4M3bvDggVM9tnOqwteJbxjOCVzl3Q6WaLwtEjcquP6ARE5c22fQGbX42tnN9lw4YnhyBH+\nalqLum2i+V+DgVYgjEkOWrWKOT22dm1aLVjAueofETw+mGUdlxGYI9DpdEnmpkVCVdMlVZA0KyKC\nkw1rUafFZbrV6En7B9o7ncgYc03LlrGF4pn58zlb6VVqja/F8k7LyZctn9PpkoSdeO+wC8cO07Dh\nOepWassbj73hdBxjzI1auK6V+PNPujfpztnLZwkeH0x4h3ByZ8ntbLYk4PGkQ8lZSu2TuBp9lScn\nP0mOTDkY22Rsmhuq2JiUSFV5e9HbhO8LZ1H7RSl2GtREnU8iuUuJRUJV6TyrM4fOHuKn0J/wTefr\ndCRjjIdUlRfnvMi249uY99Q8svhmcTpSgnljPgmTiN77+T22/rOVaS2nWYEwJoUREYbUH0IR/yI0\nm9KMK1FXnI7kNdaSSGobNzIwcgVDNnzNik4ryJM1j9OJjDG34+efueqXjRZ7+pFO0qW4aVCtJZEc\nTZvGpFeD+XzFZyxou8AKhDEp2ZkzpK/fkElF3+LM5TN0ntWZ6JgZnlMVKxJJJTycRZ905uW6MLfd\nfO7OcbfTiYwxd6JJExg2jIwNm/DjPe+z59SeVDkNqhWJpPDLL2x68UnaNBemtZmRqi7tNyZNa9IE\nhg8na6NmzC71IasPrubdn991OlWiSjkH0FKqvXv5I7Q2DdoKw54cSbXAak4nMsYkpsaNQQT/Vu1Z\nsGkFT0ytR/YM2elZtafTyRKFtSS87GjkKWq3g961+/FkmSedjmOM8YZGjWDzZgLyBLKw3UK+3fwt\ng9cNdjpVorCWhBeduXyGuuGd6VClK10e6uJ0HGOMNwUEAFAgewEWt18cO192Sp8G1U6B9ZLLVy9T\nb2I9SuUuxZB6Q2xuamPSmB3Hd1B9bHUG1R1E83ubOx3nP+yKawdFRUcR+kMo0RrN5OaTSedj4yQa\nkxb98udqav/QhNGNRye7aVDtOgknqKIzZ/LK/Jf55/w/fNf0OysQxqRVp07x4BOtmHHfR3SY0YGl\n+5Y6nei2WJFITP368cmELqzYt5yZrWeSKX0mpxMZY5ySMycMHUrlDu8xuUwvWkxtwbpD65xOlWBW\nJBLLt9/ybfgXjKyUkXntFuCfyd/pRMYYp9WrB2PHUqPTh4ws+QYNv2/I1r+3Op0qQaxIJIaZM5k5\n8k3er+nDgg6LyJ89v9OJjDHJRd26MH48DZ/tz1fFulJnQh12ndjldCqPWcf1nVq1ihXP16NpqA9z\nO4TxUIGHnMlhjEneFiwAYGSeg3y47EOWd1pOEf8ijsVJrDmuzS38ljOSZq19+K7lJCsQxhj3atcG\n4Bng7JWz1BpXi2WdliX7aVDtcNMd2H96P3Xnt+X/Gg4mpHiI03GMMSlE90rdaVeuHcHjgzl58aTT\ncW7KDjfdpuMXjlN1dFW6VOxC90rdk/S1jTEpn6ry1sK3WLp/qSPToNp1El50/sp5GkxsQONSja1A\nGGNui4jw+eVqVCQ/Db9vyIXIC05HipcViYSIjCRy8EBaTm1B6YDS9KvZz+lExpgUTLJkYcg7Kyl8\nMUOynQbVioSnoqPRpzvReef/EIQRDUfYeEzGmDtTsyY+kyYzpvdmMp06R5sf2nA1+qrTqa5jRcJT\nb79Nj3RL2HV/Aaa0nIpvOl+nExljUoOaNUk/aQqTPtrOmaP7k900qFYkPNG/P1/8MZ5ZFbIyu+1c\nsvhmcTqRMSY1qVGDjN9P4ceBf/PHsZ3JahpUO7vpVn78kQkDn6Vn/YyseHa1oxe/GGNSuXPniEgf\nRY1xNahdvDaf1PzEay9lZzclkrBiymt1YF77MCsQxhjvypYN/0z+LGi7gJk7Z9JvufMnx1iRuIn1\nh9bTNux5pofO5L677nM6jjEmjQjIEpBspkG1YTnc2HViF40mNeLbRt9SpUgVp+MYY9KYAtkLsKjd\nIqqNetzRaVCtSMTj8NnD1P6uNh9X/5hGpRo5HccYk0YVlZwsHBlJ9cuvky1DNkemQbUiEdepU0T0\n/5i6hRbxbIVneabCM04nMsakZTlyUHr4dOY914gQ7UwW3yxJPg2q9Ulcc/EilxrXp7HPFJ64uxo9\nH+/pdCJjjIHHH+fBET8xc5LQYUqbJJ8G1U6BBbh6lahmTWlZ8hfSP1KJ75tPwkesfhpjkpGVK1nc\nrT6hzWB2xzAeKfjIHe0u2ZwCKyJ1RGSHiOwSkbfjWV5KRFaJyCUReS0h2yYKVbTLc3QtsJmIsiUY\n9+R4KxDGmOSnShVqDp7LyHt7Juk0qF5tSYiID7ALqAkcBtYDrVV1R5x1AoBAoAlwSlW/8HTbOPu4\n/ZbEN9/wwYq+zHw8gPCnlyX5cL3GGJNQk36bxOthr7OkwxJK5i55W/tILjPTPQLsVtX9rlCTgMZA\n7Be9qh4HjotIg4RumxiGlrvC+MsZWNlugRUIY0yK0Lpsa85dOUfw+GCvT4Pq7eMqBYG/4jw+6HrO\n29t6ZPr26Xy45jMWtF9I3mx5E3PXxhjjVZ0rdObVSq9Sa1wtjp476rXXSTWnwPbp0yf2flBQEEFB\nQTddf+m+pTw/+3kWtF1A8VzFvRvOGGO8oHul7pzZuIrgryuxtNsmcmXO5Xbd8PBwwsPDE/wa3u6T\nqAT0UdU6rsc9AFXVz+JZtzdwNk6fREK2TVCfxJajWwgeH8yk5pOoUbTG7bw1Y4xJFnTNGt76tAZL\nqxRi0csbPD5snlzObloPlBCRQBHJALQGZt1k/biBE7rtre3ezZ/Pt6b+xPoMrjfYCoQxJsWTSpX4\nvOcSKqz7i4aDH0v0aVC9fp2EiNQBviKmII1U1U9FpAsxrYLhIpIX2ABkB6KBc8C9qnouvm3dvMat\nWxJHjnCsRiWqPHWJbsHv0e3Rbon1Fo0xxnHRa9fQ/qsgTj5clhkvryJDugw3Xd/TlkTauJguIoJz\n1atQo/FpQqp25OMaHyddOGOMSSKRa1fTYkQw6WvUYlLraaT3cd/tbEXimkuXuFI3hIaP7aPwo8GM\naPitzU1tjEm1Ll84S8MfmlEgewFGNR7l9uLg5NIn4bjozz/j6Qf3k6nsgwxtMMwKhDEmVcuYJTs/\ntvqRP07+wSvzXrnjaVBTdZFQVd6oeIJ9ZQsyqfnkmza9jDEmtciaIStz2sxh1cFVvPvzu3e0r1Rd\nJPqv6k/Y/p+Z1WY2mX0zOx3HGGOSjH8mf+Y/NZ8ZO2bQb06P295Pqv3TetyWcQxeP5iVT6+86QUm\nxhiTWuXJmodFTaZTdUBZsh86zkvPfZvgfaTKlsTc3XN5a+FbzH9qPoX8CjkdxxhjHFOgYGkWNZ3B\nZ7tHM/bbhJ/6n7paEuHhrBn3CR3L/MKs0FmUyVPG6UTGGOO4oo83YKFOo/pPzck6KiPNn+7v8bap\np0j88gvbuzSlSQcY0+Q7KhWq5HQiY4xJNkpXfZK5UROoPb8NWcdm8ni7VFMkDrWoQ91O6fms3v+S\nfA5YY4xJCcoHtWamXqHRmlc83ibVXExX9qMCtKv+Cm9VecvpOMYYk6wt3ruYWsVrpa0rrl+d/yoD\nQgbYxXLGGOOBNDcsR1R0lM1NbYwxHkpzw3JYgTDGmMRn36zGGGPcsiJhjDHGLSsSxhhj3LIiYYwx\nxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLG\nGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIi\nYYwxxi2vFwkRqSMiO0Rkl4i87WadgSKyW0R+EZHycZ7fJyJbRGSziKzzdlZjjDHX82qREBEfYDBQ\nG7gPCBWR0jesUxcorqr3AF2Ab+IsjgaCVLW8qj7izaypRXh4uNMRkgX7HP5ln8W/7LNIOG+3JB4B\ndqvqflWNBCYBjW9YpzEwDkBV1wL+IpLXtUySIGOqYv8JYtjn8C/7LP5ln0XCefsLuCDwV5zHB13P\n3WydQ3HWUWChiKwXkWe9ltIYY0y80jsd4BaqqOoREclDTLHYrqornA5ljDFphaiq93YuUgnoo6p1\nXI97AKqqn8VZZyiwRFUnux7vAJ5Q1b9v2Fdv4KyqfhHP63jvTRhjTCqlqnKrdbzdklgPlBCRQOAI\n0BoIvWGdWUBXYLKrqJxW1b9FJAvgo6rnRCQrEAJ8EN+LePJGjTHGJJxXi4SqRonIS0AYMf0fI1V1\nu4h0iVmsw1V1rojUE5E/gPNAJ9fmeYEfXa2E9MAEVQ3zZl5jjDHX8+rhJmOMMSlbij691JML9dIC\nERkpIn+LyK9OZ3GaiBQSkZ9F5HcR2SoiLzudySkiklFE1rouRt3q6tdL00TER0Q2icgsp7M4KSEX\nKqfYloTrQr1dQE3gMDH9H61VdYejwRwgIo8D54BxqlrO6TxOEpF8QD5V/UVEsgEbgcZp8fcCQESy\nqOoFEUkHrAReVtU0O3qBiLwKVAT8VLWR03mcIiJ7gYqqeupW66bkloQnF+qlCa7Tgm/5j50WqOpR\nVf3Fdf8csJ3/XpuTZqjqBdfdjMT07aXMvwoTgYgUAuoB3zqdJRnw+ELllFwkPLlQz6RhInI38CCw\n1tkkznEdXtkMHAUWqup6pzM56P+AN0nDhTIOjy9UTslFwhi3XIeapgGvuFoUaZKqRqtqeaAQ8KiI\n3Ot0JieISH3gb1crU1y3tKyKqlYgpmXV1XXIOl4puUgcAorEeVzI9ZxJ40QkPTEFYryqznQ6T3Kg\nqmeAJUAdp7M4pArQyHUs/nuguoiMcziTY1T1iOvnMeBHYg7fxyslF4nYC/VEJAMxF+ql5TMW7K+j\nf40CtqnqV04HcZKIBIiIv+t+ZiAYSJMd+Kr6jqoWUdVixHxX/Kyq7Z3O5QQRyeJqaRPnQuXf3K2f\nYouEqkYB1y7U+x2YpKrbnU3lDBGZCKwCSorIARHpdKttUisRqQI8BdRwnd63SUTS6l/P+YElIvIL\nMf0yC1R1rsOZjPPyAitcfVVrgJ9udqFyij0F1hhjjPel2JaEMcYY77MiYYwxxi0rEsYYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxriISJTruopr11e8lQSvOVxESnv7dYy5XXadhDEuInJGVf0SeZ/p\nXBd+GpMiWUvCmH/FO6yJiPwpIn1EZKNropaSruezuCZ8WuNa1tD1fAcRmSkii4FFEuNrEdkmIgtE\nZI6INHWtu0REKrjuB4vIKhHZICKTXfO8IyKfishvIvKLiHyeJJ+EMS5WJIz5V+YbDje1iLPsH1Wt\nCAwF3nA99y6wWFUrATWA/q4xkgDKA01VtTrQFCiiqvcC7YHKN76wiOQG3gNqqupDxEyW9JqI5AKa\nqGpZVX0Q+DjR37UxN5He6QDGJCMXXMMnx+dH18+NwJOu+yFAQxF50/U4A/+OTLxQVSNc9x8HpgKo\n6t8isiSe/VcC7gVWiogAvsSMxxUBXBSRb4E5wOzbemfG3CYrEsZ45rLrZxT//r8RoJmq7o67oohU\nAs4ncP8ChKnqU/9ZIPIIMdP0tiBmUMuaCdy3MbfNDjcZ86+EDrW+AHg5dmORB92stxJo5uqbyAsE\nxbPOGqCKiBR37SuLiNzjGso5h6rOB14D0vQc5ibpWUvCmH9lEpFNxBQLBear6ju4n+7yI+BLEfmV\nmD+49gKN4lnvB2L6LH4nZsrdjcQcRuLavlX1uIh0BL4XkYyu598DzgIzRSSTa/1X7+gdGpNAdgqs\nMUlARLKq6nlXR/RaYqaP/MfpXMbcirUkjEkas0UkBzEd0h9agTAphbUkjDHGuGUd18YYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxq3/BwqGCBVMuSBSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot1, = plt.plot(lc/float(sum(lc)), 'r--', label='Assigned energies')\n", + "plot2, = plt.plot(prob,'g',label='Original Spectrum')\n", + "plt.xlabel('Energies')\n", + "plt.ylabel('Probability')\n", + "plt.legend(handles=[plot1,plot2])\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Concepts/PowerLaw Spectrum.html b/notebooks/Simulator/Concepts/PowerLaw Spectrum.html new file mode 100644 index 000000000..249ae8c02 --- /dev/null +++ b/notebooks/Simulator/Concepts/PowerLaw Spectrum.html @@ -0,0 +1,219 @@ + + + + + + + + Simulating Light Curves from Power Law Power Spectra — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Simulating Light Curves from Power Law Power Spectra

+

In this notebook, we will show how to simulate a light curve from a power spectrum that follows a power law shape.

+
+
[1]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+
+%matplotlib inline
+
+
+
+

The power distribution is of the form S(w) = (1/w)^B. Define a function to recover time series from power law spectrum.

+
+
[21]:
+
+
+
def simulate(B):
+
+    N = 1024
+
+    # Define frequencies from 0 to 2*pi
+    w = np.linspace(0.001,2*np.pi,N)
+
+    # Draw two set of 'N' guassian distributed numbers
+    a1 = np.random.normal(size=N)
+    a2 = np.random.normal(size=N)
+
+    # Multiply by (1/w)^B to get real and imaginary parts
+    real = a1 * np.power((1/w),B/2)
+    imaginary = a2 * np.power((1/w),B/2)
+
+    # Form complex numbers corresponding to each frequency
+    f = [complex(r, i) for r,i in zip(real,imaginary)]
+
+    # Obtain real valued time series
+    f_conj = np.conjugate(np.array(f))
+
+    # Obtain time series
+    f_inv = np.fft.ifft(f_conj)
+
+    return f_inv
+
+
+
+

Start with B=1 to get a flicker noise distribution.

+
+
[22]:
+
+
+
f = simulate(1)
+plt.plot(np.real(f))
+plt.xlabel('Time')
+plt.ylabel('Counts')
+plt.title('Recovered LightCurve with B=1')
+
+
+
+
+
[22]:
+
+
+
+
+<matplotlib.text.Text at 0xcbec4a8>
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png +
+
+

Try out with B=2 to get random walk distribution.

+
+
[23]:
+
+
+
f = simulate(2)
+plt.plot(np.real(f))
+plt.xlabel('Time')
+plt.ylabel('Counts')
+plt.title('Recovered LightCurve with B=2')
+
+
+
+
+
[23]:
+
+
+
+
+<matplotlib.text.Text at 0xd188198>
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb b/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb new file mode 100644 index 000000000..396e24edf --- /dev/null +++ b/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Light Curves from Power Law Power Spectra\n", + "\n", + "In this notebook, we will show how to simulate a light curve from a power spectrum that \n", + "follows a power law shape." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The power distribution is of the form `S(w) = (1/w)^B`. Define a function to recover time series from power law spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate(B):\n", + " \n", + " N = 1024\n", + " \n", + " # Define frequencies from 0 to 2*pi\n", + " w = np.linspace(0.001,2*np.pi,N)\n", + " \n", + " # Draw two set of 'N' guassian distributed numbers\n", + " a1 = np.random.normal(size=N)\n", + " a2 = np.random.normal(size=N)\n", + " \n", + " # Multiply by (1/w)^B to get real and imaginary parts\n", + " real = a1 * np.power((1/w),B/2)\n", + " imaginary = a2 * np.power((1/w),B/2)\n", + " \n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r,i in zip(real,imaginary)]\n", + " \n", + " # Obtain real valued time series\n", + " f_conj = np.conjugate(np.array(f))\n", + " \n", + " # Obtain time series\n", + " f_inv = np.fft.ifft(f_conj)\n", + "\n", + " return f_inv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start with `B=1` to get a _flicker noise_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4FMW5/7/v4QAKCoILKggYUVyCa8QtMSeJUbxXRRPN\nRXMVl5vw05jrjUtQs4DeJGquGmPcl+ASo0ajBo1RNOa4xAXcNxSMirK7Iohs57y/P6rLqamp6q7u\n6Z6Zc+b9PM88M9PTtXRPd337feutKmJmCIIgCEKRtNS7AoIgCEL3R8RGEARBKBwRG0EQBKFwRGwE\nQRCEwhGxEQRBEApHxEYQBEEoHBEboekgovFE9GiGdGcQ0VWB+04iohvT165rQ0QvE9HeMb//g4iO\nrWWdhMZAxEYAEb1NRMuJ6BMimk9EU4ioT73rVTDOAWZENIyIOomo4t5g5nOY+fvVlhGV8xYRfd3a\n1pOIJhPRLCJaSkRvEtE1RDQ0RZl1hZm/yMyPAJ8L7g1Z8yKirxJRR3RdfkJE7xLR5Ix5nU1ELxLR\naiL6edY6CdkRsREA1Sj+OzP3A7AjgJ0AnFHfKoVBRD0KyLZeI53/DOAAAOMA9AewA4CnAXwjbUYF\nnZd6MI+Z+0XX5pcBHEdEB2XIZzaA0wDck2vthGBEbAQNAQAzLwZwP5ToqB+IehHR+UQ0h4gWENFl\nRNTb+H0sET1HREuIaDYR7Rtt34SI/kJEH0RP6/9lbF9OROsZeexERO/pRpKIjiWiV6O0fzOf7iPL\n4wQimgVgVrRtayKaFu0/k4gOM/YfSERTo/o9CWCLTCfIco0R0VGRVfgeEf3UYa30JqLro6fyl4ho\n5yjdDQCGArg7+u1UIvoGlKgcxMzPMnMnMy9l5iuYeUqUrix/sz6GRXYsEc0B8HciupeITrCO4Xki\nOjjpnFlp2ojoReP7A0Q03fj+iBYAXUci2g/AmQD+I7LSnjOyHE5Ej0XHfh8RDQw5/8w8B8DjALYN\n2d9KeyMz3w9gWdq0Qj6I2AhlENEQAPtDPQlqzgMwAsD20ftgAD+P9h8N4HoApzBzfwB7A3g7Sncr\ngHcAbAzgMAC/IqI2Zl4A1Wh82yjjcAC3MXMHEY0FcDqAgwFsCOBRADdbVR0LYDSAbSOX3zQAfwCw\nAZRlcBkRbR3texmA5QAGATgOQDV9Bhwd97YALo3qvQmUJbKpte+BAP4Y/XZ3tD+Y+Sio83JA9NR+\nPoB9AExn5vlZ6mOwN4CRAPaDOmdH6B+iOg8FcI/nnF1qnDOTJwGMiES7FcAoAJsQUV8iWgvAlwA8\nUlYp1bD/CsCtzLwuM+9k/Hw4gPFQ/21vAKeGHCgRbQlgLwBPGNteIKIPo9dH1vslIfkKtUHERtDc\nRUSfQDWCiwBMNn77HoAfMfMSZv4UwLlQDQagGu5rmfkhAGDmBcw8KxKtPQBMZObVzPwCgGsAHBWl\nK2sIoRq7m6LPEwCcw8yzmLkzKm9HItrM2P9XzPwxM6+Ecj29xcw3sOIFKJfUYaT6Xr4F4GfMvIKZ\nX4ESx2r5NoCpzPwEM69BJL4WjzHz/awmILwRSqxNyPi8PoAFVdaJAUyKjnMlgDsB7GCctyMA3BHV\n13XO7oB6KCjPlHkFgBlQQrYLgBcA/BOq4d8dwCxm/jhFPacw87+iOv4JhhXtYHAkHEsAvAYlfP80\n6rYDMw+MXgOs9xNT1EkoGBEbQTM28ot/FcDWUE+7IKINAfQB8Ix+ggTwN6jGEQA2A/AvR36bAviQ\nmZcb2+ZAWUWAEoPdiWgQEX0VQAcz60ZkGIDfGuV9ANWQDjbymmt8Hhbl9fkTLlTDOgjq6bnV2n9O\n2CmJZVMA7+ovzPxZVE+Thcbn5QDWIkfgQcQHUBZStXx+nMy8DMC9UEIOqAeEP0SffedsY0++jwD4\nGpTgtEevNqjr5eGUdbTPyzox+86LhKM/gPUArACQOehAqB8iNoJG99k8CvXkf0G0/X2oBmE74wly\nvejmB1SD6+oDmQ9gIBH1NbYNBTAvKudjKDfOOKhG8BZjv3cATLCeWNdh5ieNfUz30bsA2q39+0VP\ntu8BWA0limY9qmUBgCH6CxGtjZIAh2C7vx4EMJqIbFecyadQwq9xCYOd780AjiCi3QH0Zub2aLvv\nnP3AU/bDUOLylejzI1BCszf8YpNroAUzL4VySx6gt5EKtf7Eei2N3i/Ls3yhOkRsBBcXAfgmEY2K\nXEBXA7gosnJARIMpCgIAcC2AY4joa6TYlIhGMvNcqH6Zc4ioNxFtD9VfYo49uRnKrfZtqEZEcyWA\nM6M+BhBRfyI6NKa+9wDYioj+k4haSYUQfymqRyeUe2gyEa0d5Tk+4fgJygrpbbzI2ud2AAcS0e5E\n1BPlbse4fDULAXxBf2HmvwN4AMCdRLQzEfUgonWIaAIRHR3t9jyAcdExfgmAfU7sOgLKshkG4Gyo\nPjSN75y5+mwA9V+OhOonm87Mr0b57garv8ZgEVQwgKteoXyelojWgXoweVlvi0Kt+1mvdaP3E4y0\nrVH/UguAntF/Ku1fDZGTLQDWEygzvw9l3eh+iNMBvAHgSSLSFslW0b4zABwDJVBLoNwr2nI4AsDm\nUFbOn6H6Tf5hFDUVwJYAFjDzS0b5d0H109wSlfcigDEx9V0GYF8oK2l+9DoXqvMZAH4IYF0oa+T3\n0SvpfCyFsug+i96/ZpX5apTvrVF5nwBYDGBlQr6acwH8LHJhnRxtOxRKHG4F8DGAl6D6SB6Mfv8Z\nVIDGhwAmodTH5cpf13MVlNh+A4agx5yzXs6KK3foMwBejvp8ANVR/3Z0vbjqcBuUWHxARE/76pjA\nJtpiAfAWlCvtP1PmAagHpuVQx3tm9DlLPkJGiOu8eBoRjYFqqFqgOprPs34fCWAKgJ0BnMnMFxq/\nvQ3VwHUCWM3Mo2tVb0EwidyFHwMYEYXoCoJg0FrPwiMz9hKop675AGYQ0V+Y+TVjtw+gniAPdmTR\nCaCNmT8qvLKCYEFEBwD4O9SD0gUAXhShEQQ39XajjQYwm5nnMPNqqE7iseYOzPw+Mz8DYI0jPaH+\nxyA0L2OhHpLmQgVJjIvfXRCal3o31INhhI9C3bSDPfu6YAAPENEMIvperjUThASY+XtRFNcAZv4m\nM89OTiUIzUld3Wg5sBczL4iipB4gopnM/Fi9KyUIgiCUU2+xmYfyMQ9Dom1BsJr2BMz8HhHdCeWW\nqxAbIqpvFIQgCEIXhZmrCV3/nHq70WZAzbk0jIh6Qfm8p8bsb8bc94ni7nUk0L4w4u9tmLnbviZN\nmlT3OsjxybHJ8XW/V57U1bJhNeniiVDjNnTo80wimqB+5quIaBDUNOvrAugkopOgZn3dEGoAHEMd\nx03MPK0+RyIIgiDEUW83Gpj5PqiRyea2K43Pi1A+1YhmGeIn8BMEQRAahHq70YQcaGtrq3cVCqU7\nH193PjZAjk8oUfcZBGoBEXEzHKcgCEKeEBG4mwQICIIgCE2AiI0gCIJQOCI2giAIQuGI2AiCIAiF\nI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAI\nhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIg\nCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOHUXGyIaQ0SvEdEs\nIpro+H0kET1ORCuI6OQ0aQVBEITGgJi5foUTtQCYBeAbAOYDmAFgHDO/ZuyzAYBhAA4G8BEzXxia\n1siD63mcgiAIXREiAjNTHnnV27IZDWA2M89h5tUAbgEw1tyBmd9n5mcArEmbVhAEQWgM6i02gwG8\na3yfG20rOq0gCHXk9dfrXQOh1tRbbARBaEK23hqYO7fetRBqSWudy58HYKjxfUi0Lfe0kydP/vxz\nW1sb2traQusoCEIBrF5d7xoINu3t7Whvby8k73oHCPQA8DpUJ/8CANMBHM7MMx37TgKwjJkvyJDW\nGyDw2mvAAQcAb7yRzzEJgpAMEfDmm8Dmm9e7JkIceQYI1NWyYeYOIjoRwDQol961zDyTiCaon/kq\nIhoE4GkA6wLoJKKTAGzLzMtcadPWYfp04F//yu2QBEEQBAf1dqOBme8DMNLadqXxeRGAzULTpqWz\ns5rUgiAIQggSIODg2WeVmS/Ulscfr3cNBEEoiqYXG1dXzpw5ta+HAOy1F7B0ab1rIQhCETS92Igb\nLZxzzgGef77etRAEoSvS9GLjsmxkZhs3Z54J/Pa39a6FIAhdEREbEZZUFN2XJf+HIHRPRGykcRME\nQSgcERsRm4ZCogAFoXsiYiNikwoRAyEv5N5rLppebCQaLR8WLlTTjwhCGjo6gEcfrXcthFrQ9GIj\nT1fp8Fk2++4LbLFF9fnL/9FcPPggsPfe9a6FUAtEbKRxy4VqB2N25f/h00+BE06ody26Jh0d9a6B\nUCtEbLpwI1cPiuqz0f9DV/w/Xn0VuPzyetdCEBobEZsu2Lh1RxpVbB5/HDjppPh9Gq3OjcoVVwA/\n/Wn5Ngk4aR6aXmwkQCAf8mpwG63hvvpq4OKL612L7sHZZwO//GX5g4WITfPQNGLT2Qn83/9Vbm+0\nxq3RKdqNVjQrV6Y7hpB6yTWUjjix+eCD2tdHqA1NIzbvvw/8+MeV27v63GhEwB131La8IqiVG+2j\nj4rNX/Cj/9tPPin/rpk7F9hgg9rWSagdTSM2PndZVxIWHy+9VO8aVE+txGbZsmLzF/zo/3bAgNJ3\n8+FF/pvujYhNisbtzjuBXXbJpz4+VqxI3+DWUjB9lk1X6bORBq1xkD6b5qJpxMbXiKVp3O69V63i\nWSRrrw0cfzxw/vnFltNoNKJlc+CBatChkA/2f9sdvApCOK31rkCt8Fk2aaLRanVzXHmlej/11NqU\n1wjU6txqsUl6qp49G7jnnrA8G6HRXLwYWLUKGDKk3jXx4xKbWlk2118PLF+uHuSE+tA0lk0eotII\njUq9abQAgTvuAHbYIXz/xYuTy3n1VWCrrdLVo97svTew2Wb55DVvXm2GBNhiU+T9dfzxMstDvWl6\nsREBSUejLZ52//3Aiy+G7z9njnqPa0xXrEhXh0a4hj78ML+8hgwBfv/7/PLT1NOyEepP04tNI7rR\n6sFnn6nQ06xUe26yWjZpG6uFC5PLKaIBXLSoJHRFkHed338/3/wA6bNpdppGbNK4xprhaWvNmvLv\nP/pRfm6YLGQVm5aUV7A+7lqLTVsbMHx4/vlq8q5zEUIglk1z0zRik+RGu+KK2tVFs3QpcPvt1efj\nahhWrgT228+fpmdPYNq00vf33gsrq9FmEEgrNvo6iLNo0+YZgs/NtWwZMHNm9fl3BbFxlVGrPhux\nouqPiE10EYZEqeR9wV53HXDYYfnmqVm8uFxMXLz9dklk6v2EWSvLRl8HeVo21Uxpc9ppwLbbpivP\nRa3F5sYbqz9PtRQbof6I2NRxuppGuLk22gh47LHqG6siBnWGWFtpxUavnxJn2dRSePPq2K/1w8L0\n6enTSJ9Nc9M0YpNHOHOj3hxnn10ZPRTS+OjjMSc/fOed+DS1Cn2eP18JYRJp6xNi2aSlGstm9er8\n6pEnScdk9/kVUYbQvWgasenu0Wg331z+Xdc15PhMd8Z228XvWyux+eyzsHRZLRvXf3n99arxL6LP\npmixybvORYiNBAg0N3UXGyIaQ0SvEdEsIpro2ediIppNRM8T0U7G9reJ6AUieo6IYg37Rly3pkjx\n0o1q3LK7LkGq19xhjRAgcPTRwIwZ+TWAN97on+FYk1ZsbrsN2HPPyu1F9dlcfLE6LzZZlnOuZ59N\nIz8oNgt1FRsiagFwCYD9AGwH4HAi2traZ38AWzDzlgAmADAX4O0E0MbMOzHz6LiyTPfJypXAK6+U\nvsfx978XOz6iKPSTZ8gTaJobsdEGdebtRkvztH3eefEDQI86Crj11vg8Vq0KK0szdSrwxBPq8+uv\np0ubhcsuUxafTZzYDBwYds90NcuGSIm9kI16WzajAcxm5jnMvBrALQDGWvuMBXADADDzUwD6E9Gg\n6DdC4DGYT7IXXQR88YuV213ssw/wgx+oz2YDtXSpP82MGfk38lddpTryQwkRmzSutlA+/jhbuizR\naO+9514Qr73df9whAQKhnH468MILYfvmZdnoxvmNN4CtjceyotxovvMYd1199BHw2mv+PF3fG0l0\nPvtM/S/MwFNPlf8WNxHvppuqlUgFN/UWm8EA3jW+z422xe0zz9iHATxARDOI6HtxBZm+eu3a0N9t\nkqJmFi4E+vXzlzV6dD5PQOYNO2GCCpP1YddRH2+I2GR5wuzsdD/Vf+c77v07OoBLLil9f/xxf11C\n8TX0X/uafxLNEMsmTR1aWuoTIGD/r0W50bKIjZk+blujWjaDBgHHHAPMmgXsvnt4ugUL1IOO4Kar\nz/q8FzMvIKINoURnJjM7n/+vumoyAGDyZOCtt9oAtAEI70A33z/9NDlNiHskqZHaZhsVKTZwYPq8\n0rrR9E2fdPPr3085Bbj88krB8YXyzp8P/PCHwIknqvL22kvVrUcPd/1DGiGd1oX+X5cvBx5+GNh/\nf/U9LkBAb8/TrZgkolnFJi9LpqPDfR51fX3usryi0Rqxz2bpUuD557MdY6NGF4bS3t6O9oIUs95i\nMw/AUOP7kGibvc9mrn2YeUH0/h4R3QnllnOKzbHHTsa11wKTJgFnnOGv0JgxlSPvs9wEed04nZ1A\na/QvpXkKTCM2aVxKug633676vny/f/KJetIbOVJ9X2st9c5c2eD/6lelgY1pzltrwNV73XXKDWq7\nDOOiE7NaNnFP6nm70WyxyWIhLF6snuLjjjfJHekji2UTV4/77lMPX8OGxZebF77/Jek85yHC9aSt\nrQ1tbW2ffz/rrLNyy7vebrQZAEYQ0TAi6gVgHICp1j5TARwFAES0O4CPmXkREfUhonWi7X0B7Avg\nZV9BZgNn3ij2BX7//aUOWJt6RbRkifwxxebmm4G//c2/r33TP/lkeZkLFlTeZHbfjH1uxo9XfQrP\nP6++6/QrVlTOT/aTnwC//rU7nzjiLBvfPiHjbNJaNnF56uP25Zk2QEDnZx9XFrEx3ck2M2cCf/lL\nZeM5Z446XvP6GD4c+Oc/k8tziY25Le46339/4OSTk8vIiyTR8NW1q1s2RVJXsWHmDgAnApgG4BUA\ntzDzTCKaQETfj/a5F8BbRPQGgCsB6FUpBgF4jIieA/AkgLuZ2TtBi9kgmE+1ridc+8a9777y+at8\nN/a0aX531Pz5auZfk2p8/UmYfTZHHOEOX/W5ePbYQy2Brfnoo8q0vnOgt+vZlS+6qLyMzz4r3cjm\nufe50+IIsWzsfZICBLK40UICLXx5Zn0SzkNs4o7zttuAgw+urN/w4cAtt5RvnzOnMnglS19okosz\n5P82eeWVSoHabLPKvr6ODuDNN8u3+f4XfZ5bW933hYiNn3pbNmDm+5h5JDNvycznRtuuZOarjH1O\nZOYRzLwDMz8bbXuLmXeMwp5H6bQ+zCcRn2UTd/P5rB2TuAkVBw9WnY5pMRuwpAbltNNKHe9xbrQF\nC9S72UjaImneNKbLJrRPx+5g1t+XLy/lbZ5vXUaahv6OO5L3sRuokACBNG7FlpZ01tKcOeVhwdVa\ny7psfd7TRAOGlO26fpYudW+//fZ0omcLe5Lw9uwZnjcA/OEPwG9+UyoLUMto2FPtXHcdsMUW5dtC\nHgJcA49FbPzUXWxqhdkgmGJjNixJjUXSzekyrc3pX+yn0ZCbPY0L7fzz1bgIIF5sNt20sh5xjUQ1\nEUMusXFN85/2qRVQ41x86DrbDVRSn001lk3c07x+33775Fkaksoz89PncskS9f6f/xmeV9brr0cP\ndzTcM8/E553kRkta/iHtNeJzs9rXsz53JllFQ8TGT9OIjWmi+9xocU+oIRaQ3YCtWqU6NEPWUPFh\n3tQhjf6aNWq/NKHPSa5E8/OUKcA66yS70TS2a8QUmxA32tlnZ5v0UeNzozED776rlkA2yRL6nGa+\ntWXLwqIZfdhi09GhrjM9aWmaiT2zWjatrZXb33sPODfWt1C92DzxhIpiDCWkT89HkhvN/qwRsfHT\nNGKTJDBA6SJPG1GksZ8C9fdqVj1MGxygjyfP0GfTjbZkSWVjOXVqKQTaTm8Li9lnE+JGmzSp1O+T\nhTg32pZbArvsUv573pbNlClqvIbv2kr7AOKybMz/OM31klVsevSoLGf+/PR52/vomQp8aWfNqhyf\nFUdoeLjrms/alyZi46dpxMYXjZbGjaYnu/Q1LuYFalpQdmBASHl2vUPReeqLXtcpzipKqocrrblt\n7NjymaPNPG1hWb06fYCAq/zQRtp2o5kBAitXKvFcvjxb3oDbslm9uhRl9uSTalR5XmJjp1uzJr7f\no0+fSiFIU7bLxdqjR2XakIY9ybK57jr3fhOtGRNDLV3Tsok7Vp/YZHEfp40ubCaaRmxC+mxsd9Ks\nWaXP5sW6xx6V24BKYdD5addGUjSOCzPPkItfl6nFRr/rtDvvXFl+kZOUxomNefxFiU1SgMCKFUDf\nvuX5phnoO3t2pXjut1/leU6q74MPJpfpKn/NmvL62mLz2WfAv/7lziO078h2R7n6Tnwuq87OUmRi\nktiY2++/v3Tt6rB4zW67qYi4tPXW2NdTVnfY3XdXLoMhlo2fphMbINyy8U29ot1idqNkfl+4ENh1\nV/d+aQi1bGzhcEV8AcBzz1WmdZ2bpMF2oX02trCsWhVv2bjyySI29ngU+/xUO6hTn6eDDgKuvrq8\njOnTSxO92nX1WTah7iGXGy1ObOwy77knvTVl/zdpLJspU4BNNnH/Fic2Y8aoIQc+zjnH/1tSnUL7\nPl0eDNNt+sgjlQv8xU3M2uw0jdiEBAjYF1fSmip2g2UKw3PPlWblzeoqsfOMw25MQ4ISzON13YCr\nVgEbbJCPWCZZNnfd5a+vq25p66TLTBrLkfSbq3wdzcQMPP10ZZ+W2aiaDeBPflIKgw69Rlxi4wrr\n9y0VceCB6ZeR6NWr/Htra7LY6N8XL67c5vtub682QlKLpGtS0BBcgR9z55b+b/sa7Nu30iUrlGga\nsUnjRtMXsik2rhvDvth8nYpplqS2SdtRqcsKaVTNerhu3k8/VX0xaSybJ55QA+neeEN9ty0sn9iY\ndQkpK+m4jj8e+MpXKvuwQsbZzJ0bnzfgvoaYS9asr77msZhT9//hD35LOi6/jo7y62vBAjWaf911\n/WnTRmnZebksG58ryhz3k8aNllTPNGKzzTbhfTZPPln67LKCr7sO+O53y+upGTIkuU7NTL3nRqsZ\naSwbjWkih4iNzwqpZinirH02aQYa+hp4/bSa1orQA+mAcDeaXSeTlhY1tYq2tELqtHChepkTcvbp\nEzaDwKGHxudtp09zrs3/0Jxb7o03SgIdR5Jl88knwJe/HJ8m7jpyLZ1hi42rz8YlJCefXJrp257i\nBlCh53/9qz+vlhbg5z931zPkXrCDVnyYeZnBPD6Xqw64sI85biZ4oQktGyC8z8b0v7oaksWLy10m\neSw9bZM19DmNu8icQcBEb7v8cv9vSbjcaL7+JN82ItXpPnx4aZt9TnU6exkGvV1PURJi2YTgs2zW\nW8+dZ5LYpMV0l4ZeXyHXhKvB1GLj6s/TuPI0AxNc1/Fll6lZB3x5tbQA//u/7nqGXH++tWVCr12f\n2NhWctp8m5WmEZs0gzpduG6mMWNUZIxdhr1/NQ1bVsvGblji0iaJ5O9+l1yuD9uKSbJsXBABL79c\nLuz2udN5/eMf5dv1fnqKnpAZBEJwXTednZX9G3a+Zt9GFrFJsmxMtMDqND6xSTrmddZR72Yj6zv/\nvjxddUz6D7K40ebPT+6T0mkXLFBTSPny+ta33PXU4c0iNuloGrHx9dmEiIKPZcvKo46S+mwWL04f\nh2/fpEnRLnagQDV9NnFikPbpMLTP5t573WXZDYjPhelrBHXDHrKeTQguS5nZHQHls2yqGZNhnk+f\n2BxySPn3pHPko0+fUll6/5A8zH1c90bSfxA3dsd1/b3/vpqD8Kij4stavlyt8Prgg6oPxhd5qaea\nChUbIZ6mERvfRJwu4Ql17+g1Wlx5mRewviifeQb48Y/V58ceU9FIaeoNAGuvXR7hY5PFjeYSG3Pq\n/Gqwz6lvUKdGD+Az663rpp+w7d+B5Kd2s4FwRVPF/fc2zOVRR6agphGbtLz3XuVxdnb6/ye7Llkt\nG52P+ZCQh2WTVG5ay+brX1fvcfcHoO69H/+4MiDIh8+NFhIkIZRoGrHRkwSGRKO5CImS8vX/mJ9f\nfVW9n39+5Q348MOVZbjmRotzE/gCBLLMIBAawROH3YibbrQQITTLMjuq0wZnaLHp6FBi42scQwT2\nxhvVVPV2GXFio0nbID3+eMkq22gj4Npry/O0r2dXuWbkml0f13cbXWfz2kprHdXCsrHHvPjQ3oEs\nVizg77MR4mkasdGzIdt9Ni5RSNNxbRIiYjpG3zWGR0/X4cvT5tZbK+uXNUDARR5uNLusJDeaRoeX\nAqVGZ+21K/PThFo2Wmx8+4U0IPYTd5IbzSTkvDEDF1ygPu+1F3DNNe59gHjLxm4Us7rR7DLffrvy\nN5d4m+WksWyq6bMBVP9e3Eh+LTZZLRvps8lG04iNiS8yLW2fjd2wmE9v5sVulqdXRzT7Xu6+219+\nnNiMG1e5Les4G9dCUHk8ub30EvDii27LJi7/p54qfdY3ce/e/rqF9tmsXq3yqcayMd15ZpoQsQlZ\nb2bVKuDUU0vfXQ1niGWj0+nf9bsdMaej/JIsJM1JJ1VaEVksG1+akAjMuOjJJUtKszpo7D4bs/y8\n3GhCPE0nNiFuNNdFFDebgO2mAMo7f80lmXVjZOann2JdN19aX3fcOBs7L/3b1VerJYBNzGk5XNiu\nlTjefddv2bjKsCda1GWZkV5ZLZvVq1U+PlEKOR5f2hA3WhpCrdJHH3Xvo+cks8XGt5/PGnBZ/PZ4\nnDz7bHTvSiO5AAAgAElEQVQ9Zs92/w6oa+Koo0ozT9j84Af+tDqqMfRhSiybfEgtNkQ0gIi2L6Iy\ntcB2o5mf9RxOrpvAnnkWKDWaLS3qacq8ocyw1t//vvRZD4gzxUYPPrvxxsoy8gp9BiobE/2bnlbH\n/i3kZgwdB6TzsgMEXOnNcHIgnWVjR3i5xMZl2djnLQ5f2s7O8Gnt4wgJVjDFZsKE+PySxAZQc7y5\n3GO++iTNlG3366Tps9HXqSuqzOTGG0uDQjs6SuHtSVRr2fgscxGbeIJuDSJqJ6J+RDQQwLMAriai\nC4utWnH4LBtN6JOoeQNtsIHfsjGJExsXLrFhroxk03XWy1e7LJu0M9LmKTa+AIGQ6XhcYuN7crbn\nwbIDBHyWjT13WhxxLrw8LBv7v3Ol17NKh+R96KGqHyPu2O6+G2hvd//mqod9LfkEWJNmnE3Idaqv\nic039+fvI61lc/zx7n0lQCAdoc9h/Zn5EwDfAnADM+8GYJ/iqlUccW40c58QzJvCHlznExvd6WmK\nTdzKjb7G+Lbb4uvmGtSZZlxHaOhzWrGxLZuQhuXpp9V7nGWTNEDQ7LPp1atyjaE0YhPnRqtmOQQ7\nv5DzH7LP0qVq2piHHorfzzfINMTSsge0+qwBV742aR5AdJlJ59j8Xd9vIZGagHLV7b9/fJ4h+TQ7\noWLTSkSbAPgOgHsKrE/hmGKzZo2act21Twh2Q+lzo5loy8ZM+8kn/sGaLmF0NTCPPOJOV41lE9Jn\nEzpRqGnZHHdcaVtIeh0sENeYhYY+azeave58mpVNfUKXxrKxZzpw7Z+l/8jHlVcCxx4bn873MBLX\nl2m6H+PW8MnSZxOHvYREGivDjtILEYlp0yq3iRstHaETcZ4F4H4AjzHzDCL6AoCY7rvGJunJMYsb\nDUhn2djccYd7u0tsOjrS+5lddUrqEyjKsjG3pRHAkAABX7mrVpXChF0TSZoPID7efFP9f3FiEzqj\nsh6AaPPyy6U1h/KybELTZbFszPNmrooaYtnk4UbLMllsFrFxIWKTjlDLZgEzb8/MJwAAM78JoEv2\n2ZiNaMgFqlfldGHfFHpFTiDZsrFvXHv5Yo3ZSWo+8SZd2CGWzcsv+9PHjd8AKufbisOMbDPrsPXW\npSlBkhg6tNxqsOs2YkT8+I+ODlV2a6vb+kiybGbMALbYAthll/g+m2rdaKecUvrP4yyKLHmbuI4z\nSWxcEV5m4Icp4iGWZ6NYNlnx1f+dd6qbZLW7Eio2rqkYq5iesX6YT9NJrhcAOPdcf172DfvYY6XP\nvkWUdL+DfaH6JnB01SuNZWP6pe2b2BX9pvGFJduEuJ3MvGzrSk8WmcR22wFvvVWep81vf+suu2dP\nVc/Vq9VnV3+UjmTyHY9eNXLFivjopGqj0bbaqvQ5RGyyNpiua99njevyXWHGpmVjWnV2NFoasdFj\n0eKwz00WsdGu56RVaZPqYKcdNgz42c/C82kWYt1oRLQHgD0BbEhEJxs/9QOQcgmmxuDss0tjBEIW\nO4trPNasAUaNUgMXbfTS0TY6v1DLxlWvNO4ts5w0AQKhlk2oG8xl2QClMR5JrLWWci8984zbugDc\nVhKzEnJTbFpaKv97veiZ75rQDanLjaaDDXx9NmkwZ0ko0o3mevJOGmfjQl9nui/MV6/RoyvT+uqu\n14uJwxT4X/6ycpxYCLZ4Xn11ab2kEOLGFoVOndNMJN0avQCsAyVK6xqvTwAELDHVeFx6acnd4rNs\n9PbeveMtiDVr/Asm+fJeswaYPLnc5QaE+frTWDbVBggkiY1m2LDkfUxLwq7DT38aVh/dkOkR+KED\nbzs7S5aN7ldwWXka3/+mXUQtLfF9fdWGPse5onxlZsElNnEPX766mP+rbdkkYVqqJiHjZUyxueEG\n5ebMiq7rgw+mS6fP/fjx5d/NPIUSsZYNMz8M4GEiuo6Z59SoTjXD1+DoC+XWW5Mb9bRL7HZ0lKan\nMQl5Iq7GjQaks2ySAgSyzo2WdVp97WZctUot26zHE5m4xEZbNnrRNm3Z+P5733b9/2QRm1D23LNc\nbELOVdZGzRX9GGfZ+GbQMAfT2n1qWYUwxI1mhqr7XNbbbVe+BEhSXi6rNQ697w03qCW+RWziCY1G\n601EVwEYbqZhZk9MTddg9Wo1k7Bv6g2ifMXm6qtVP8mzz1b+tu++yelNN1qo2Bx8cGlbGstm8eKw\n0OcQOjqqFxt9nleuVMekZ/E2cTU6xx2n1jix3Wi+evie7vUKoEVaNnak3MYbJ6fJ2qCnFRuftaHF\nZsWK+ACONIRcp6Zl4xPCUOHXde3RI2xJcDudxvwvsv4v3ZnQ57DbADwH4KcATjNeVUNEY4joNSKa\nRUSOSWEAIrqYiGYT0fNEtGOatD5691YNl+uCNMUm6YJN8yS71VaV4zvSoG/sPfZIH/q8ZAlwwgnh\nZZ16KvDf/53P9Ctr1pRuPnsA66BBYXlosVm1yj+tiu8J1+6zaW31d+AmRdfFPf36xMY3f5eN7yHi\n44+BfaIh1HHLWgBq5clttkkua+XK8j4WwC+0zMDXvuavM6DOfV5iE/JAoiMp8xSbtNe6PYefKTA3\n3ZQur2Yg9PSuYebLmXk6Mz+jX9UWTkQtAC4BsB+A7QAcTkRbW/vsD2ALZt4SwAQAV4SmjaNvX3VR\nuywTc631NJaNXkY2bt+4qWmSCB1ACVQ2mkuXhrkUTNrb/ZZbVsvGFptQS0fXY/Xqyv4ujU9sdJ/N\nRRepIILWVv+sDUnnOM6yqTYarbPTLXYffqhmzgb8sxdoevQIC0dfsQLYcMPybXGWja/DW5f12Wf5\nudHSWOAdHX6xCfU6pF2m3MXq1eUzlQuVhN4adxPRCUS0CREN1K8cyh8NYDYzz2Hm1QBuATDW2mcs\ngBsAgJmfAtCfiAYFpvXSq1eln1kTGo0GlF/QIfvGiU1SerMhTLox9MDAaknbJ+VCi02vXpWNfOh4\nBH1uVq70C52v0dFic+mllSG6Nklik8WyCcWeSkmzalV8WPLuu5fXz8xj5Eh3uhUrKs+DPQuFprMT\n2N4z9a4uy2XZZBWbNK7W55/3lxP6X6SZqsjHJZeI6yyJ0FtjPJTb7HEAz0Svp3MofzCAd43vc6Nt\nIfuEpPXSs6daNdPVcGXtswnZN26pAtutYWM2hEkXdl5PWXlYNtqN1ru3WmV00KDSsYY2LOZaJb6y\n49xojz9e+u6aQcCsaxxFBgj4LJvVq+OnkjHT2GLjO9bXXqv8b+fOde/L7B/crM9FvSybOBfl04Et\nVB6WjWvmdKGcoAABZt686IqkIOOkEJONz21obW3DEUe49zTdaGksm2qDCXr1ihcj34JsWdlhh+RB\nlXlZNp2dJbFZf/2w6WFMdMM1Z042y8akGsumKLEZOTJebOJG95t1DhWbZ5+NF127DF/5vhmvi+6z\n0aRxLfvQy6y76jx4MDBvXnIevnF1XY329na0+6b/rpKgy42IjnJtZ+Ybqix/HoChxvch0TZ7n80c\n+/QKSGswuexb3CBK86Lr08e9T1tbZZ9GtWIzcGB8AEHeYhMykDQPy+ahh5TA9O6tbsrQfgUTfbzz\n5vnL9jU89uwM1Vg2cbNhVyM2V10FnHii343mK/PRR8sHxtpuPt+x+vorXTD7J4r1uZz/+Mdwy8Im\n1LLZaad83MVvvKHeXec+5B7pTrS1taGtre3z72eddVZueYfeGrsar69AtdwH5VD+DAAjiGgYEfUC\nMA7AVGufqQCOAgAi2h3Ax8y8KDCtl7gGR190LS3qifOQQyr30RdhnmLTv3/84DR7EstqCXmy9dU5\nTfnXX68i4XSD1dKSfdr9NWv859nXIKexbFyNqrmY21tv+ceBhD4AmC49s06+Ppu4fq2LLioPS25p\nCbNsXH02PuLExizLFBuX0JhLNR9+uL+8UMvG1x+VFj3zhOvch1p/QjJBYsPMPzRe3wOwM9TMAlXB\nzB0ATgQwDcArAG5h5plENIGIvh/tcy+At4joDQBXAjghLm1o2SGWjW7URoyo3MccUa6pVmzWXjt5\nehyNr7EOGa8TWh/Af7O9+657u4933ikFR2R5+j/gAPUeMsbIJo1lY66qqvnCF8q/+yLZVq4ME1FX\n/0drq9+N5mvoTf78Z/Ue6kb761/j11Ey6exMLzY2W2wBbLRRcr2AcMsmZD7BEFwBAv37pytDggOS\nyarbnwLIpR+Hme8DMNLadqX1/cTQtKGEWDYh6fO0bPr0iQ8SCBGbNA15yFNbXB9SVrKIjTlbdlqx\nsY8zbT+U/aTtuz6WLMnu3qxWbLQgtraGic3SpZWDmX1kcaPZ2FM/+eo1cGC4ZZOX2OjzZR5Lv37q\n/2w2N1qRhC4LfTcRTY1efwXwOoA7i61asaSxbFwUJTbrref/PaTPJk1DbtfHXmoaqG4QKgAceWTl\ntizrfqSZPcHGflJO6xqx0/v6dcaP9y+tnITua3GJje7AjkM3vKGWTRqeeaZyuW1NR0f5VD4+bLHx\n3Qs9eoRbNnkJgT5f5gBjPeehuNHyI7RpOh/ABdHrVwD2ZubTC6tVDQixbPTN4WrcihCbTz4pFxvT\n7QCEzb2UVIe99gL+67/UZ/sc+Bb0Atz9Vj4uv1y977+/ezndLJZNNWJjhkSfemr6BsR+0vaJTchs\nxT7ixCbEAjH7EEMCBNIyxzMzYkeHGiANxP+vthUSF3hSazeaOXO1Zt118y1DCO+zeRjAa1AzPg8A\nkHGGq8YhNBrNRzVi41qECgAefrg8+k3fvP37qylIdtqp9FsWN9r666sVQc2n4NC0WWYu/t3vSr5v\nk1pbNpsZsYznnFO9Gy2PcFub1lZ/gEAasQkNEMiLTz8tXU9x14+ebTupXnGTpNrk3WdjPpToa0Tc\naPkR6kb7DoDpAA4D8B0ATxFRl1xiQOO6iHSjpKexj2vUzJtbQwTsvbc/jb6A7Q5nE7NMnfcuuwAn\nn6wakQ03LH96Pf748vRxN/xWWylrSQuHfbPGHW8WsWlpcTfsWfo1dJqHHw7rwzDp06fkImxpSd8A\n2/1WLrFZp8pwGf2fuvIOmQXZtGxMsYlbaTYP9t47LPCjV68wN1o9xEYPyHQtzS5utPwIdWj8BMCu\nzDyemY+Cmiqmy65FN2SI+yLSEVaLF6v3kD4bM59Qy8a8Sd58s/RZRxRp9M2rZzJYs0ZZJ6bY/PKX\n7jQuzEW+gPKFuszt1ZIkNlksg29+E/j3f1dCk3aMjrkkg1mne+8NS2+LzcsvA5Mmlbs5tSsplNMt\nJ3RcgEBIkIavz0avtVILkiwbkzjLJnTsTJFWh75ezKmAhOoIFZsWZl5sfP8gRdqGYv31VYdnyIUa\nJx66wbItm5A0Ztnm/gOt2ebMjlftHtHjMczlnl1pXGhh00Jli01cR3S9LZt111XWXRZscXOFrcdh\nN/bTp1eu9pmXZZN1fi5fn00es3aHkpcbLZQixebLX1bvv/hFcWU0G6F/7X1EdD8RHU1ERwP4K4DA\n58LGYtQo9UQaYh7HBQi4ttk3ysSJ5dP6J4mNrpNe78YsX1s22rfvmxY9pD/DZ9mEhsImkSQ2Wfps\ndH5ZsBtwXafQergsC1ts0lo2rvx8fTYh1FJsfHnGPZDY95vv/ktz/P/6V/i+aTjkkJKlGHqN+Ja9\nEErEXopENIKI9mLm06AGVG4fvZ4AcFUN6pc7ugO+2jm/XDecfWH27w+stVbpe6jYjBoFXHhhueuH\nSHVU9+xZPsmhXWYasbGn4gnpGwjBtPrymFtNk5fYVGvZ6LTVWDZ2w9zSoibCzLp2vW9GiyL6HC68\n0L09zj2qr2Hzu4vQWcCBbMLsW8fIJMt15loQUSgn6bReBOATAGDmO5j5ZGY+GWqMzUVFV64IdOMf\nckHFNdwhYmN/DxWb1lbgRz8q/aZdEAsXqtUbmYEvfcldjzTr1tuWzTe+kZwmhCTLJitZxcZuBF0u\nUED1C7k45ZTyFU912rwtG0AFQGTBJaA9egAbbFBdvVz4/tO4wZghM6gD6cQmdPCnvleAsOuxR4/s\n1rfGt9hcM5N0+w5i5pfsjdG24YXUqGD0TRlyMcXt43KxJfWfJIVL2zeC/q1HD5XXp58qc51ZNSLX\nX19Zph6MFoevz2bECGCsZ0WgNONskiwb5myNc1qxGTVKvdtl+a4BM0TaZOJE4IILKuuSp9hU27iZ\n6/1o9Lm3r4lqBSjLfHmhFngasQmdbsec2y50PsBq/w891kwokXT7xoxnx9oxvzUsvtHOOqpr/fVL\n2+L6bEItG5eY+MTGdyO0tpb20wMv9chtux4hDbJuFFxT4/gajB12APbbr/Rdd6C6MM+xr2G67jpg\nwoTEqjrzDWXMGPU+YED5cfncaHFWoWtMkrl/tWKTl7tLTyoJlI7PPq4NNoifqSKJLNaqfS/4GvM0\nywskrYzrIuQ82y6/LFSbvjuSdPs+TUTfszcS0X9BLaDW5TD7QUy02atHDgNq8sCkfOK2EZXfmL4I\nNo19I5iWjf783e+qz1psslzUvv4e8zeNHqdBVP5bXMOfZNkQAYce6h/c6sNV5le+ktyADBjgr59J\nGlehnbba8SymtWEKV9r/98ADS5/1caaN/tMDce+7D5gypbRdn2ff+BZ9/lz9V1n6FpPIEtZdKzda\nLaMAuwpJp+R/ABxDRO1EdEH0ehjAcQBOKr56+RNnrQwdqsZyAGoVz8Ex636GiI1peVxzjbts28fu\nwrRstMCsWeMWmzQBAq4bwm5w9aBRex2XuJspxLIJrWvS/n36+ENgmYFzz1XT87hEPY3Y2J3RdtoN\nN/SnTcIcxNi3b7l4pg3vNcf+6HN/2mnl+yT1n+gQ/C9+Ud0Tdl3ixGb+fDUGyUWIZWPjmu6oGkLE\nJu4hzh6eEJeHUE7sKWHmRcy8J4CzALwdvc5i5j2YeWFc2kbF50YjUvM/nRRJaNxN/utflw+4NPOw\n89QX93HHufNK60bTN4LPjRZyE/vCpl2YYcJmYxwSPJEkNmlvSJ/rMq4uEyeqQbxm3X2hz3EWgC02\ndiSf7zj/9jc1c0Mcvr46oLqxJDrfyZPTpdPWPXN5f4+ui3a/Dh9eno4Z2GQTt3s21I0GlN8rafoK\nbVxLo4fcH77rcurU8HBrcaNVEjo32j+Y+XfR66GiK1UkcZYNULqh4m7y3XcvXZBxDTBRcoMa4kZr\nbS0XNz3As1rfcohlY3amV+NG22absPLjMPe/6qpseQDZLJsRI9TqrBrbVeSqx847q34jHajgI846\nrUZsfOfGzP+cc8qjtfTvm26q+nW+9CW19g1Qsmh0nfR5tPveqn2qN62zLbeM3/eUU9T7V79a+Zvr\n3PnqZvbV+txo666rzskTTyhPRRxi2VTSdKfEZZGYuMTG3rdnz7AAgZDQ37R9NqZlY4tZ6AWexo1m\nCkc1bjTXjZ9WKM0ydaBElpva12cTZ9kQlfeHaLFxBX1obr89Wx2rERuXBRfH6acrYbHLnzevdIy6\n79Iey6PLuuKK8u9ZLFCTvn1LYejrrqtWI/Wh57xzWVOuevj+i002KX22z5ueJV3Xf/fdS9PY2NNF\nJZXTzDTdKfGJjTmmBYjvdDan3khyo6WxbOL6bMwGnEjN67VqVVh6G7tRMMfX+MSmWjeaaw65aiwb\nnzs0BF/oc5oAAd0QuyZktcdyVdM3VY1l4xs3lfa47bVdkkKfQ8RGuyVd4eZ9+wK/+pU/LxP9+5ln\nusvUTJtWuc3EDCKxPQa/+U1lXXwPGVokxY1WSdOJTVJDF2LZ2DPY+vazo9E0vkY7xI1m1tsebR4X\n0GBiLw5n3vBFudFc4p232OyzT1g+WaPRzN/t9U7M//nss8vzD4n6MzH3Tzuzsc53gw2Am24qbbfD\n7c0ykqLVdHRa0r0TJza29aSnd7HPzbhxyoIMFWq937Bh/t/M6Z18511HAB55pJqDz/UQ5wrssa9r\nHRwhlk0lTXdK9AXjm8Y8pM8m1I1WbZ+NpkeP8gZSPxUutEI0pk/335xmY2M3CmaaOMvGbJTizk+S\nZRMXeh2H68nSbDjN9X7Mcmx8fTbaXRKCbpxca7nEnd8QzHpntWzsWRNefrn0OSkwwv69Tx+1Yqvp\n1nXhE5tXX1WWipnvPvu4BxDffLNy2yX1rWriLFzXf5L0QDF+fHn5gFtsfJZN2qmQmommOyX6grGt\nAtuNlofYpO2zCXWj6YbkUGtFobjwW5fY6G3m2KJQyybu/Lgsm5DO2gce8Odp7+9qZEJvcNuNduCB\nwNNPuy0jsyPYdfyuOclCxCauETVn33ZZNnvu6U+ry46bp4xIWT66DiFzjPXrV3nOQxfwGzSo8jiO\nPBK46y7/eTDFZuut/fVKKzY+tPXmmpXAZQn7LJu0k7w2E00nNvoiWbLE/Xton42rIXGFIfsawEsv\nrUzv60fS09WYZbS0qGinUFw3ns7fXMzNNUGk3jdUbOzIOcB9Pu3jTXKD+cQmbR+Q2XjcdZdaUXSX\nXSr3W3/98jBcV+e7y41mh5anfcpduTJepH/wg1J/zAEHuPOwxcb+Xx99tDTbQOigz6yWTRbRNf/T\n/fYrjwR05V2t2EyZovraRoyorJcrb7Fs0tN069Dpi+imm4CDDgJeeKF8e0uLWrwpbrnnavtsgFJj\noZ8y33+/MqImrs8m7fQmcY3hkUf6fdo+sYkrv6WllE6Xe9hhavbkxx+vzDsUlxstzrLxNWRmg+By\n5Ywfr1agHDTIXxedhytAoBo3mt53nXXUA1FSI+oTijixISoPL7YtmyQBsMcY2WX4HprSiI197pKs\nqDhPw8YbJ/fZrL12+ezerodAV5+lb+kEEZtKmu6U6Atn6FC/ZbDjjvF52AtB2XlrzEbXty8RMHu2\nmt4/tM8GSC82cY3hwIFqlmnzN1c9zd/iOq5NS8wc1PrPf5bnmUeAQNITqCZkUKdm002BY48tzSYR\nl4fLstH76ai0NAECert2bbrStrSokN9f/MIvNmmm308rNrvsArzySuXvWRb082ELVFaxWbQIOOOM\n8D4bu3wTl9jYD5O+4BOhCcUmi4/fJk2AgC8azbyZ1luvvN/Exh7Uqbe5SBMgUFTHtcuyyWMRNZ/Y\n+MQrbYBAGnQe2ho189Lb4sRGc8MNldtuvrlyuzlDd0uLmsvvJz+pFBt9bdnHHhe2HipM5jW77bbJ\ngulK58szriyg5N6ySXJV6oUS084P56qXmYfvus4aFNIMNJ3Y+PpI0lwcphstqc8lxLJJqqurzyZP\ny8Yk7skvi9jE3XzVWDYuwcjSZ+PC95/Yls2MGaWBmzrPMWNKU9q7XGw2Rx5ZWfa4caWJYYlUv5I5\nKWySG811bcT9r2n7bJKwXXhZGl77AeLyy4GPPvLvl1RGUZaNfa6z9tM1A013SsyLIM4nH0eoZQNU\nPvlccQWw777hNwlQXJ9N0hgg+7vZKOnyzdHeZlkhN53vt512Uucobn9TMNK65ZIsm5D/pEcPNZWL\nnqhS12fbbSvXZKn2KXfsWODb33bnZ/4nI0YAm2+efG3Yx22vb2NO3WIS2qDby4tXEyCg33v1Kg0u\nPfHE+Hq48s7DsnG5UX2WjYhNJU13SsyL4Oc/V0vxJqHDIjVmY2piX6DMlftNmKAa6LSWTWifTVKH\nq66Xb98414jLspk4sTKSy7Rs1lpL9UmlqavpZrTz1VRj2aRZQM+uly8PXTYzsGJFeTq9j23FhKDT\nTp5cCtf3WTazZ6v+N5fVaV7D9nm68UYVmfbmmyqPW2+Nr4sPn9jkESAQUn5c3mktGxeu6ZqyrO3T\nrDSd2JgXYK9epVH3cRfySSepiSR79gT+9Ce1zV7l0pWHXlEzrh5ZLZu0g/3ixoGYxN2Uett55wH/\n7/9V5qsnZLTFOMnf7ivHxjxXrk7+0BkUsrrRXHmYDwQan2WT1NDtuqtan8eHvuayuNE226y0MJl9\n3P37q98331z9V76F1UL7xHxik4Y4N3VaKwVILzKhlo3rngey1bG7UzexIaIBRDSNiF4novuJqL9n\nvzFE9BoRzSKiicb2SUQ0l4iejV5jwspNtx1QovTssyo8+bDD1Lbjj1cDAceNKw2utPNYs0a5QN59\n119eyNO46bZLeqJKY9mk6bMxp/z48Y9LfQhmHuedp0LJ46LwXHX13bA2LivGdKMddZR6+n/22fh8\nsrrR4hqbOMsm1OJ64gngnnv8dXFdM65j9Fm9IX1IcdTDjeaqq6shd0VHutxo1fTZuCwbV/023tj9\nMNrs1NOyOR3Ag8w8EsBDAM6wdyCiFgCXANgPwHYADiciczzxhcy8c/S6L6TQrDfaWmuVr+3Ru7dy\nH+2+O/DHP+r6lqdZs0ZtGzKkMr9aBwi4+mzSuNF8v5nns39/YPvtw8XG1wj53GgmRModaa6QSaQs\nSXvaGpuk0OdQa9Pc10xjT4UU+mTvc89qXA2cK5Is6drI6voJFZtJk4C//MWf7uKLS59PPTW+rKRG\nH1AWW1w0p5mmGjeaK0DAZe0tWFDdBKrdlXqKzVgA10efrwdwsGOf0QBmM/McZl4N4JYonSa1gV5N\nA5OUpxmGCyRPGZJUrv6ttbXS9WMPAP3iF8PqCGSPRnPt36OHez61asUmhGXL0s1npnG5o0xCrgU7\nrZnmP/6jtAaM+VuWhs7M19XAhbrRTIq2bAYNKl+Owb7WzT6+738/vo4hUYy+hr2aPpvQ0Oes124z\nUk+x2YiZFwFAtOrnRo59BgMwnVBzo22aE4noeSK6xueGs/HdMK71MELxCUe1YqNxWTam2+CQQ4An\nn4zPw+V6SfOEy6xCcLWLypWvZsAANaVKEr5zkNbffdFFwIUXxu9jirFe2jdtoxs3VsV0o629NvBv\n/+bfF1B9XhdckK58VwPcSGLj29eud8h1F+dizfJgmEefTZwbTY+LEveZn0KnqyGiBwCYAcYEgAH8\n1LF72meCywCczcxMRL8AcCGA4/y7TwagRrG3t7ehra3t819eew0YOTJl6QZFi41rUKcpjnfcEV5H\nQL4mmTwAABDQSURBVI0DeeKJ9G60oUPL16S/7z7gy18uTamv6d07bCniOL93mrodfbR7u5nH4Yer\nF1BauyRPKzcujWu1yc03V1PZp8m32j4bTV5iExcmH5fOFpt+/dQMGq40oX02LsxpdfKwOFx9drp+\nAweq/kJfQFBXob29He3t7YXkXahlw8zfZObtjdeo6H0qgEVENAgAiGhjAIsdWcwDYDRvGBJtAzO/\nx/z53381gF3jazMZwGTsvffkMqEBqhMaoFw4zAvSt4yBnSZpH5dl47PEfPmZroazzvLPu5Xmptxv\nv9JU+2nQddQj7EPrkNb6TMpn+XL37yEBAr40rn3+53+Uy6/aBi+vPpui3Wia7bd3p7fFZsEC4Lrr\n3PuG9Nlo3noLODhyxn/6afn8b3afzTHHqPfBg93TU9nlnn46sNde/t91f2FXp62tDZMnT/78lSf1\ndKNNBXB09Hk8gL849pkBYAQRDSOiXgDGRem0QGm+BeBlR/oKqumbScK+ieMsmziftE1In00S998P\nvPiiuw4m116rVgEtEntafh2SC6ibeuLEyjSACsnN6/ofN65yQS+N7z8ZP77UmIWmAdR57tu3+j4b\nVwPcKG60009XQwRM7rrLnd4Wmz59/CPx04jN8OGlFVTtyULtPpvf/169H3OMmnjXxi73nHMqx9uZ\n+QnJ1HPW5/MA/ImIjgUwB8B3AICINgFwNTMfwMwdRHQigGlQwngtM8+M0v+aiHYE0AngbQATQgot\nQmyKDhDYbbfSOhtZxcZ0f9n5m2y9dfn6IXqNnLRRanHEReqcc4561+OZbHR/S7XcfLP/N99/MmQI\ncNpplY0oUNyI8aTrNYvYZL0H4o5R/28hhMxcEXd/uFbl1Fx8sTvCzXeN+oQr7TmSGQOSqZvYMPOH\nACpWMGHmBQAOML7fB6DC0cXMR2Upt5YXRZzYpGGzzYBZs9TnrGLjIulcrFhRKkc/MeZBSNh2tU+M\nRGo6maxpfST1S+Qpyr66mNtcUy7Vq8/GxicgaQIEXHU988xKK0ozYECpT87EF/oc2s/kI+ukts1I\n061nU7TYjB6tzPIlS+L7bNJSbZ+Ni113BX74Q//vuoxly+L7ZvK0bJIIPb6iRnBX2zilJSlQ4vbb\nK1eXvO22yiXDTWoRjRZHNdFoOr055i0E3/UgYlM7ms74K/qiOPdc4MMP1edqLRuzrnafja9zPQ39\n+pUPsPORJQggjkYf8BZ3jSS5XfL04R9wQCmCzke/fsAmm5RvGzpUPfT4yGtQZ9Zw4mrFJgu+cTbV\n/l8iNuE0jdgccYR6L9Ky0X02uow8xca2bJJGTNcS31xaPkyxmTtXRbXZ1PPmjSvbd959q1eapG3Y\n7r4bOOGEdGlCqJVlk8aNZu+bJoAmBNe8ef/4h1pYzYX02eRP05yim25S77VqxPr3L61rkgf2k56v\nD6UejfRppwFvvBG+vyk2oZNnNgo77QTMm1e+7f33sy9XkYVq/+Na9dn4CFlvJ67PJgv7718Zft7W\n5o4wA9Sg3ONiRu1pxLIJp+n6bGp1UXz8cfV5uMJeNb4n7B/9CNhuO/XU9pWvAKNGqZuqSHr1Kl/c\nKwnbjdZo4aNJ14gdMu1b/6VRqVefjU4f4kbN240GpAs/HzoUuOaa5P0a7dptZJpObLqquRsqNl/4\ngpoKRS8B8NRTxdYrCyHRaI3qRksi72i0IqiXG01TL7Epkq5Sz3rSRZvebJxyipoksauz0Ublo5nj\naMSbwDfgzsXw4YVWxUlRYtMoZBUbO13afkN9XkPcaHn32RSFrvfmm9e3Hl2BprJszj+/2PzT3Bgh\njdL3vgc89ljl9kWLwstpNJ5+ulJA4s7FoEHA22+Xvh9yCDBnThE1U2y0EbDnnsXl3wjkZdn8/e/A\nZ5/59/f1w6SxbPL2ROT9MGCvYCv4aSqx6Wocf7x6VUOjPRnaS0gD7nBiX70HDwb+7//yrZNJtULe\nFRqerNeEnc4OubbxRei5xCbNDALVUITYCGGI2NSJtIufZWXnnYE776xNWVn54Q+Bbbetdy2Kp1Ea\nplr12QweDHzwQel73DpKvrIaXWyEcERs6sSGG1ZOjBnHwIFhYzlsevTwTx7ZKBx8cOPXsZFolNDn\nEMy57PS4s5B8ukqAgIhXOCI2OZL2xhg1KnzfPn0qpyXpzjR6I9OVKWpZ6CTiBjn7AgTy7rP5/veT\n3X9pELEJR8QmR6SBzI+0y/g2CrUIfa4mn0suAb7+9WxpixQbX1l531ODBmVbSlyoHhEbQciJvfZS\n85n5aAThDFmu20d3EJu8MZdnF+IRsREakkZvZFy4wtSLoF7nplqXVho3WlcQm2eeca/yKbhpqkGd\nQtdjjz2AjTdO3q8rkIdls+uu9Yvcq7bhT7PkRlF9Nnmy886NXb9GQ06V0ND85jfA/Pn1rkXjMH16\nafXUWlPLAIGuYNkI6RA3Wo7IjZE/3emcHn10Pius1gvpsxGqQcRGaEi+9S3go4/qXYt8OfBA9eqq\nVNvw77OPWlzQxejR5ctNiNh0P8SNJjQkRx8NPPpovWshmFTb8PfvD0yc6P5t1Ci1kJ5dlohN90HE\nRhCEIDbYoHZltbQAf/pT7coTikfEJkfkKUzozlx6KfDWW7Upiwg47LDalCXUBumzyZGQqdMFoauy\nzjr+5cgFIQmxbHJExEYQBMGNiE2O1GrZAEEQhK6GiE2OiGUjCILgRsQmR8SyEQRBcCNikyNi2QiC\nILipm9gQ0QAimkZErxPR/UTU37PftUS0iIhezJK+lojYCIIguKmnZXM6gAeZeSSAhwCc4dlvCoD9\nqkhfM8SNJgiC4KaeYjMWwPXR5+sBOFehZ+bHALhmyQpKX0vEshEEQXBTT7HZiJkXAQAzLwSwUY3T\n545YNoIgCG4KbR6J6AEAg8xNABjATx27V7u0VN0X3RXLRhAEwU2hYsPM3/T9FnX6D2LmRUS0MYDF\nKbNPlX7y5Mmff25ra0NbW1vK4pIRsREEoSvT3t6O9vb2QvImzmOt2iwFE50H4ENmPo+IJgIYwMyn\ne/YdDuBuZh6VMT0XfZxEwMyZwNZbF1qMIAhCzSAiMHMuUwzXU2wGAvgTgM0AzAHwHWb+mIg2AXA1\nMx8Q7fdHAG0A1gewCMAkZp7iS+8pq3CxWb1aLBtBELoX3UJsakktxEYQBKG7kafYyAwCgiAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELh\niNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC\n4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAI\nQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4dRMbIhpARNOI6HUiup+I+nv2u5aIFhHRi9b2SUQ0l4ie\njV5jalNzQRAEIS31tGxOB/AgM48E8BCAMzz7TQGwn+e3C5l55+h1XxGV7Aq0t7fXuwqF0p2Przsf\nGyDHJ5Sop9iMBXB99Pl6AAe7dmLmxwB85MmDCqhXl6O7X/Dd+fi687EBcnxCiXqKzUbMvAgAmHkh\ngI0y5HEiET1PRNf43HCCIAhC/SlUbIjoASJ60Xi9FL0f5NidU2Z/GYAvMPOOABYCuLDqCguCIAiF\nQMxp2/icCiaaCaCNmRcR0cYA/sHM23j2HQbgbmbePuPv9TlIQRCELg4z59Jd0ZpHJhmZCuBoAOcB\nGA/gLzH7Eqz+GSLaOHK/AcC3ALzsS5zXyRIEQRCyUU/LZiCAPwHYDMAcAN9h5o+JaBMAVzPzAdF+\nfwTQBmB9AIsATGLmKUR0A4AdAXQCeBvABN0HJAiCIDQWdRMbQRAEoXno1jMIENEYInqNiGYR0cR6\n1ycLRDSEiB4ioleiAIv/jrZ7B8US0RlENJuIZhLRvvWrfRhE1BINzJ0afe82xwYARNSfiG6L6vwK\nEe3WXY6RiH5ERC9HgT83EVGvrnxsrkHkWY6HiHaOzsksIrqo1sfhw3N8v47q/zwR/ZmI+hm/5Xd8\nzNwtX1BC+gaAYQB6AngewNb1rleG49gYwI7R53UAvA5ga6i+rh9H2ycCODf6vC2A56D644ZH54Dq\nfRwJx/gjAH8AMDX63m2OLar3dQCOiT63AujfHY4RwKYA3gTQK/p+K1T/a5c9NgBfhnLPv2hsS308\nAJ4CsGv0+V4A+9X72GKObx8ALdHncwGcU8TxdWfLZjSA2cw8h5lXA7gFaiBpl4KZFzLz89HnZQBm\nAhgC/6DYgwDcwsxrmPltALOhzkVDQkRDAPwbgGuMzd3i2AAgekr8CjNPAYCo7kvQfY6xB4C+RNQK\nYG0A89CFj43dg8hTHU8UXbsuM8+I9rsBnkHrtcZ1fMz8IDN3Rl+fhGpfgJyPrzuLzWAA7xrf50bb\nuixENBzqqeRJAIPYPSjWPu55aOzj/g2A01A+zqq7HBsAbA7gfSKaErkKryKiPugGx8jM8wFcAOAd\nqHouYeYH0Q2OzcI3AN13PIOh2htNV2p7joWyVICcj687i023gojWAXA7gJMiC8eO7OhykR5E9O8A\nFkWWW1x4epc7NoNWADsDuJSZdwbwKdS8gN3h/1sP6ql/GJRLrS8RfRfd4NgS6G7HAwAgop8AWM3M\nNxeRf3cWm3kAhhrfh0TbuhyRi+J2ADcysx6PtIiIBkW/bwxgcbR9HlQ4uaaRj3svAAcR0ZsAbgbw\ndSK6EcDCbnBsmrkA3mXmp6Pvf4YSn+7w/+0D4E1m/pCZOwDcCWBPdI9jM0l7PF3uOInoaCh39hHG\n5lyPrzuLzQwAI4hoGBH1AjAOaiBpV+T3AF5l5t8a2/SgWKB8UOxUAOOiqKDNAYwAML1WFU0DM5/J\nzEOZ+QtQ/89DzHwkgLvRxY9NE7lf3iWiraJN3wDwCrrB/wflPtudiNYiIoI6tlfR9Y/NHkSe6ngi\nV9sSIhodnZejED9ovdaUHR+p5VlOA3AQM6809sv3+OodHVFw5MUYqOit2QBOr3d9Mh7DXgA6oKLp\nngPwbHRcAwE8GB3fNADrGWnOgIocmQlg33ofQ+BxfhWlaLTudmw7QD38PA/gDqhotG5xjAAmRfV8\nEarzvGdXPjYAfwQwH8BKKDE9BsCAtMcDYBcAL0Vtz2/rfVwJxzcbamD9s9HrsiKOTwZ1CoIgCIXT\nnd1ogiAIQoMgYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBROPVfqFIRuB6lFAf8O\nNaXJJlBjpBZDDaL7lJm/XMfqCULdkHE2glAQRPRzAMuY+cJ610UQ6o240QShOMomFyWipdH7V4mo\nnYjuIqI3iOgcIjqCiJ4ioheiqUFARBsQ0e3R9qeIaM96HIQg5IGIjSDUDtONsD2A70MtUHUkgC2Z\neTcA1wL4YbTPbwFcGG0/FOVr/ghCl0L6bAShPsxg5sUAQET/gppzC1DzTbVFn/cBsE002SEArENE\nfZh5eU1rKgg5IGIjCPXBnF230/jeidJ9SQB2Y7XSrCB0acSNJgi1I26BOBfTAJz0eWKiHfKtjiDU\nDhEbQagdvtBP3/aTAHwpChp4GcCEYqolCMUjoc+CIAhC4YhlIwiCIBSOiI0gCIJQOCI2giAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIXz/wFRfJZMiFR6wwAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(1)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=1')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Try out with `B=2` to get _random walk_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYHGW5t+8nJDPZJwkJgSRkgwAhQgBlRwybRhDCAUEE\nDEEFVEQUQRaPEPQooOIHshwR2ZFFQSAoCgYI4GGHAAESwpYJZF8nyUwyE2be74+nXqq6p5fqnu7p\nZZ77uuaq6urq6rd6uutXz/qKcw7DMAzDKATdSj0AwzAMo3owUTEMwzAKhomKYRiGUTBMVAzDMIyC\nYaJiGIZhFAwTFcMwDKNgmKgYVYuInCIiz+TxugtF5I8x971ERO7IfXSVjYi8KSIHZnj+SRH5ZmeO\nySgPTFS6ECKyQESaRGSdiCwWkVtEpHepx1VkUhZiicgoEWkTkXa/AefcZc650zv6HsH7fCgiBydt\n6yEi00VkvoisF5EPRORPIjIyh/csKc65zzjnnoZPhfX2fI8lIl8Qkdbge7lORD4Skel5HGeIiNwl\nIotEZI2IPCMie+U7LiM/TFS6Fg44wjnXH9gN2B24sLRDioeIbFGEw5aq8vd+4CvACUAdMBF4GTgk\n1wMV6XMpBYucc/2D7+YBwLdE5Kgcj9EXeBH9Xg8Cbgf+0QVunMoKE5WuhwA455YDj6Liok+I1IjI\nb0WkXkSWiMj1IlIbeX6KiMwWkQYReVdEvhhs30ZEHhKRVcHd97cj25tEZEDkGLuLyAp/MRSRb4rI\n28Fr/xm9Ww8sie+JyHxgfrBtJxF5LNh/rogcF9l/kIjMCMb3PLBdXh9QkktLRKYGVt4KEfnvFNZH\nrYjcFtxlzxGRPYLX3Q6MBB4OnjtXRA5BxeMo59yrzrk259x659wfnHO3BK9LOH50PBEL65siUg88\nLiKPiMj3ks7hNRE5OttnlvSaSSLyRuTxv0Xkxcjjp/2F3o9RRL4EXAR8LbC6ZkcOOVpE/hOc+79E\nZFCcz985Vw88C+wcZ//I6z50zl3lnFvulBuBGmDHXI5jdAwTlS6KiIwAvgy8G9l8BbA9sGuwHA5c\nHOy/F3Ab8GPnXB1wILAgeN29wEJga+A44FciMsk5twS9OBwbeY+vA391zrWKyBTgAuBoYAjwDHB3\n0lCnAHsBOwd3nI8BdwKD0Tv960Vkp2Df64EmYCjwLaAjPn0XnPfOwHXBuLdBLYthSfseCdwVPPdw\nsD/Ouano5/KV4C78t8ChwIvOucX5jCfCgejF8kvoZ3aifyIY80jg72k+s+sin1mU54HtA3HuDuwC\nbCMifUSkJ/A54OmEQTn3KPAr4F7nXD/n3O6Rp78OnIL+b2uBc+OcqIiMA/YHnotse11EVgd/a5KW\n16Y5zm5AD+C9OO9rFAYTla7HgyKyDr3YLQOmR547DfiRc67BOdcIXI5eGEAv0Dc5554AcM4tcc7N\nD8RpX+B859xm59zrwJ+AqcHrEi546EXtz8H6GcBlzrn5zrm24P12E5FtI/v/yjm31jnXjLqMPnTO\n3R7cib6OupKOE42NHAP8zDm3yTn3FiqCHeVYYIZz7jnn3CcEIpvEf5xzjzptpHcHKspRJLK+JbCk\ng2NywCXBeTYDDwATI5/bicDfgvGm+sz+hop/4kGd2wS8hArWZ4HXgf9DL/D7APOdc2tzGOctzrn3\ngzH+hYhVnILhgUA0APNQgfu/yNgmOucGBX8Dk5bfTz6YiPRH3V/TnXPrcxiz0UFMVLoeUwK/9ReA\nndC7V0RkCNAbeMXfEQL/RC+CANsC76c43jBgtXOuKbKtHrVyQC/6+4jIUBH5AtDqnPMXi1HA1ZH3\nW4VeMIdHjvVxZH1UcKxP71jRC+hQ9G64e9L+9fE+kowMAz7yD5xzG4NxRlkaWW8CekqKBICAVajF\n01E+PU/n3AbgEVSwQW8E7gzW031mW6c57tPAQaiwzAr+JqHfl6dyHGPy59I3w76LAoGoAwYAm1BR\nyJnAqpoBPOuc+3U+xzDyx0Sl6+FjKs+gd/JXBttXoj/8CZE7wgHBjxz0wpoqRrEYGCQifSLbRgKL\ngvdZi7pfTkAvdvdE9lsInJF0B9rXOfd8ZJ+o2+cjYFbS/v2DO9UVwGZU/KLj6ChLgBH+gYj0IhTa\nOCS7rWYCe4lIsgstSiMq8J5UApB83LuBE0VkH6DWOTcr2J7uMzszzXs/hYrI54P1p1FBOZD0olLQ\nhIfAsrgLtbKAT1OY1yX9rQ+W10f2qwEeBBY6575TyHEZ8TBR6dpcBRwmIrsErpsbgasCqwURGS5B\nMB64CThVRA4SZZiI7Oic+xiNm1wmIrUisisaz4jWbtyNusOORS8WnhuAi4IYACJSJyJfzTDevwM7\niMjJItJdNDX3c8E42lC3znQR6RUc85Qs5y+oVVEb+ZOkfe4DjhSRfUSkB4nuwkzH9SwFxvoHzrnH\ngX8DD4jIHiKyhYj0FZEzRGRasNtrwAnBOX4OSP5MkscIaqmMAn6Oxrg86T6zVDEV0P/ljmgc60Xn\n3NvBcfcmKZ4SYRkalE81rrh8+loR6YvegLzptwUpzP2T/voFy+8Fr+uOWsZNwLQOjMXoACYqXYuE\nO0rn3ErUWvFxggvQoObzIuItjB2CfV8CTkWFqAF1i3hL4ERgDGq13I/GNZ6MvNUMYBywxDk3J/L+\nD6JxlHuC93sDmJxhvBuAL6JWz+Lg73I0CAxwFtAPtS5uDv6yfR7r0YvQxmB5UNJ7vh0c997g/dYB\ny4HmLMf1XA78LHA9nRNs+yoqAvcCa4E5aAxjZvD8z9BEidXAJYQxqFTH9+NsQUX1ECLCneEzq0k5\ncHVjvgK8GcRkQAPmC4LvS6ox/BUVhVUi8nK6MWZhG2+BAB+iLrCTczzGfsDh6Pk2RCyZ/XM8jtEB\nxNkkXYYRm8DNtxbY3mnqq2EYEcxSMYwsiMhXApdaHzQG9YYJimGkxkTFMLIzBXUbfYwmK5yQeXfD\n6LqY+8swDMMoGGapGIZhGAWje6kHUEhExMwuwzCMHHHOdSQdPIGqs1Scc1X5d8kll5R8DHZ+dn52\nftX3V2iqTlQMwzCM0mGiYhiGYRQME5UKYdKkSaUeQlGx86ts7PwMT1WlFIuIq6bzMQzDKDYigrNA\nvWEYhlGOmKgYhmEYBcNExTAMwygYJiqGYRhGwTBRMcoW52Dlyuz7GYZRPpioGGXLo4/CkCGlHoVh\nGLlQVb2/jOpg6VJYtw7Wry/1SAzDyBWzVIyyY/Jk2HFH6NVLH7e1lXY8hmHEx0TFKDuWL9dlS4su\n164t3VgMw8gNExUjKxdeCPff33nv19ioy6YmXZobzDAqBxMVIyuXXw7XXFPc92hthblzdT1ZVPzS\nMIzyx0TFiMWWWxb3+HfdBTvvrOutrdC9e3txMQyj/DFRMWLRv39xj79xY+Lj3r1DMfHiYhhG+WOi\nYuTMX/4C555b2GP26KFLH5SPiopZKoZROZRcVERksojME5H5InJ+iudPFJHXg7//iMgupRhnV2L4\ncHjjDaivh2uv1W2treHzl18OV16Z+rUrV+aXAtw9qJgaOFCXvXub+8swKpGSioqIdAOuBb4ETAC+\nLiI7Je32AXCgc24i8D/AjZ07yq7FunWweDEcdRSMHg1nnaXbFy6Eq66CTz6B+fNTv7a1VSvgH320\n4+Po08fcX4ZRiZS6on4v4F3nXD2AiNwDTAHm+R2cc89H9n8eGN6pI+xirFihy/r6xO1PPaV/Bxyg\n9SNbbKG9uUTavzafFOB0MZWoG8wwjPKn1O6v4cBHkccfk1k0vg38s6gj6uKsXp35+Q8/hHHj1F21\naVPic4sX63LDhtzfNyoq3/++ilVjIwwerJbPs8/mfkzDMDqfUlsqsRGRg4BTgQMy7Td9+vRP1ydN\nmmRzS+dINlE5/ng4/HD4+GNYsyZspQKhpZKru+rmmzUWM3Uq/OIXsGwZPPecWihDhsADD8CoUbDf\nfrkd1zCM9syaNYtZs2YV7filFpVFwMjI4xHBtgREZFfgj8Bk59yaTAeMioqRO+laohx6KMycqeuj\nR8Mjj8Cf/wznnRfu462NXC2Vb31LLZOLL4aRI1XYNm/W+M7QobrPRx9lPoZhGPFIvtm+9NJLC3r8\nUru/XgK2F5FRIlIDnADMiO4gIiOB+4FvOOfeL8EYuxTNzam3R2MnI0bAz37WPtbhRSWfwLpzodXT\no4eKyqpVKjKgllEhaGqCiy6CRe1uXQzDKAQlFRXnXCvwfeAx4C3gHufcXBE5Q0ROD3b7GTAIuF5E\nZovIiyUabpdg8+bU27tFvil1dZr6uybJZvQxllwsFefC9aioNDerS2zUKN1WKEvlF7+Ayy5TK8sw\njMJTavcXzrl/ATsmbbshsn4acFpnj6ur4jsDJ7PFFuF6v34qAK+9lrjPpk26Xy6WSjRA70Vl5Ej4\n4ANdHzFCl0uWqOD5Isl88R2Qt9qqY8cxDCM1pXZ/GWVGOksl6v7q3l0tleT4y8aNmq2Vi6XS2Bi2\ngOnZM3G5zTah+8s5FZaOsmwZbLttfhlqhmFkx0TFSCBqqdxzT3jBj7q/WlvTu78GD9bX3XJLvPdr\nbIQBA3T9k08Sn+vfH8aODR9ni6t861uamZaO1laYMwe2397a6RtGsSi5+8soL6KWyl576QX41Vfb\ni8qAAalFxXcz/uY34dRTs7+fL3CERFfYuefChAkwbJg+7tkzrINJx4wZGodJZtkyePddtVDWrIFJ\nk0xUDKNYmKgYCbS0wDe+AXfcATU1YYbXSSfphf3kk+GQQ7QmJZX7q7Y2fNzWlihG6d7Pu7uiovKb\n3yTu16NH9hkgo+8d5Yc/VOtp7lx1qdXVpRYfwzA6jomKkcDmzbDddrreo4fe1ffpA8cdp3+eVO6v\npqawrgQ0gytaHJmK5mYVrwcegIMOSr3P7Nlw663t3y8ZLyr19Zow4IP8vsFlY6NaRf36maViGMXC\nYipGAlHLobUV/vd/4eWX2+/Xt6+6u6LusvXrtUjynXf0cXI/r3TvV1MDRx+tFkQqdttNYzXZLJWa\nGl2OG6euO49PMrjrrlBU/BhfeCExrdkwjI5homIksHmzXpz/+U/Yeuv0+4mEcZWGBnjwQc2o6tsX\ndthB3UzJvcFS0dyc3m0VZcAADdRnOqYXlc2bE9OavagsWqSWU9++2gZm9mzYZx+YN6/9sQzDyA8T\nFSOBlhZ1e02enJhGnAqfVvzII/Bf/6Vxir599bmePeOJirdUsjFgANx+u8Z00hEVp+7d269v3KiW\nSp8++ti7xdKlURuGkTsmKkYC3lKJg7dU+vXTx888E64XQ1RAM7nSERWVaJHk5s0a61m0SEXFp017\n91y6gk/DMHLHRMVIwFsqcfDB+mghobdUevUqvPsLwuB7KtJZKg0NMGaMTjTWpw9MnKjbTzhBl378\n69bFiwMZhpEeExUjgVwslbo6vWBH4xdR91ecybXiWio+iyxTe5XocaLC6EVlxQqN9QwZosF/31TS\nZ4Jtt50mDBiGkT+WUmwkkIul4kUlapF499egQdnnZvHvF0dUfGPJTPGPqHUSPYd168LX+7FGq/fX\nrdPlypXwyivZx2IYRnrMUjESyNdS8ZaEt1SGDNECyiuuyHyMuO6vwYPhppsyu6eiQrF+fZgq3NAQ\nntOZZ+oyepxXXtEsMNBzeecdSzM2jHwxUTESyMVSGTBAL9gbNsDwYBJoX+MyZAjcdx9ccEH294sr\nYr16pReV1lZNg/asWRPWtTQ0wJQpmjk2ZoxuGz063PeOO7ReBdSS2Wknjb8YhpE7JipGArlc5Lfa\nSrOxGhvDALpPQx48ON4xfEV9HDKJio/r7LuvLnv21LYsra363MSJKh6ee+/V5Q47pK7U9y4xwzBy\nw0TFSCCXOUtGjtQ7+sZG2GOPxOeGDIl3jJaWeO4vyJxR5jskT56sjxsaYP/91Q3Wp0/ifDAQNr7s\n0SP1+zc0xBuTYRiJmKgYCeRiqQwfrvGIxx5TUfHFhJBoqWS66y+U+2vTJrVOLroosVlkQ0P69i+g\nYpMqS80sFcPIDxMVI4FcLJUBA3QeeV//Ea3Aj1oqqeZBefZZTfHNxf3Vs2d6UWlu1ue7dw+tENC4\nSjZR2XZbbbEfTSowUTGM/DBRMRLIxXKIXqx91pfHi0r//qkbQe6/P5x9du7ur2yWiufnP9cOyytW\nZK5t6dYNnn9e54w56qhwu3UxNoz8sDoVI4FcUop9TQq0b3Hv3V9Dh6a/69+8ufDuL89nP6vW0LJl\nie34o/zv/4ZWCoRusG7d1PIxDCN3TFSMBHJJKfYTcE2dCvvtl/icF5y6uvR3/a2thcv+ShaV2lo9\n9vLl6S2V73wn8bEfx6BBJiqGkS/m/jISyMVS8fTo0b6jsYjOtjhhQmipJBcUtrXll/3V0ABvvpn4\n3KZNicfxorJmjYpEHPzrBw2K17fMMIz2mKgYCeRiOXiWL0+9/Wtf02C+t1R22gl++9vw+ba2/CyV\nc86BXXZJfC6dpbJ2rTa+jENUVMxSMYz8MFExPmXtWhWI5KB7Jq6/Hn760/TP9+sXWirz58O114bP\nPfxwbjGVnj11/1TFig0NmhTgiVoqvsNxNryofPazJiqGkS8WUzFobdVsLR8j6d07/mu/+93Mz/fv\nn2jJrFiR+HwuloqIilSqwsRkN1fUUokrKjU1WnPz1luwYEH75737LtvkZYbRlTFLxeD739eL8qpV\n+rhbAb8V3lLx1kpy/GTJksx1JMn4fmPJrFmT6ObKx/0FcNhh+tpUMZUpU+Dzn49/LMPoipilYrB0\nafGO3b+/xlRuuEEfJ7dLef31+H3CQAXIt9R//XVNErjzTm0V49vbg1od3lUW11Lx9OyZ2v31+OPx\n5ogxjK6MWSpG7OyrfPCWSkuLNnv0FkDv3nDggboet08YqED4KYV3203jH5ddBvX1ibGgfNxfya9N\nphLcXm1t1rbfKC0mKkbKNiqFwlsqixZpNlhTk170+vULuwbnctHv1y/RWvAi9dBDqVOKc3V/+feY\nNw9+8Ytw28aNiTNclitTpoRt/A2jFJioGHz0Ubje2lrYY/frB08/rdXrAwdqby7vlurTRwUm2SWW\niT590j+XLCpNTSosmV6TisGDYfZsuPjicFul1K2sWgWLF5d6FO154gntam1UPyYqXZylS8PeXGPH\nFjZID4lpvn37qtvrrrtUWKJ1JXFJJRC+mj8qKn5q4ba23N1WqWI8lZJi3Nxcnm37//nPxJsXo3ox\nUenivPJKOLFVoQUFEvuD9emjAvbNb6rA5GpBQJiSHH2t70ocFRUvJNF2/HGJtnXxFkoliUo5dlhO\n1VTUqE5MVLo4y5fD1lvDLbeoi6rQRC2V7pFcw1xcXlGWLNHldtuF23x9Sj6WTyrq6uDII3Xd3/VX\nivurpaU8LZVUBatGdWKi0sXxDRenTYNDDy388aMX+rY22GYbXc83duPvwqPH9YH4XNvLZGLGDHUH\nbtigjyvJUmlogPfeK/VIEjFLpetgdSpdnOXLwwt9MRAJ+3KNHq1+9e7d8xeVb38b3n0XPvkEXnxR\nt/kOAKlSaa+6Kr/3AXXRJYtKvhZWZ9HcDHPmwLhx5ZVanK4/nFF9mKXSxcnUGr5Q1NbqBW7cuPCi\nnE+sA+AnP4Ebb4Qddwy3+YvnJ5+0378jGUeLF+v7gQrjNtuUfwZTc3NxU8TzYeVKFTqja2CWShdn\n6dLii0oyt9wSf86WdET7k3mrJznR4PHHwwLLfFi5UnuBgV6sBwyAuXPVesml6WZn0tISphTnMjV0\nMXnnHS1SnT1bbwAqoYjUyB+zVLowq1fDzJkwZkznvu+0aXDSSR07RlRUhg3TKYGT+3IdfHBickC+\nPP54KCoA3/tex49ZLKIpxeXSUqa+XhMrRMrPijIKj4lKF2bpUp3jJOpKqhT89MV33qlxlr33LnxK\ndH29Lo84Qt1fXlTuuANOPLGw71UIWlsTY1XlIipNTWrZtbaWv/vQ6DgmKl2Uk06CiRPDGo9Kw7tQ\nTjopv3qXOPgLYHOz/kW7KT/6aHHesyMkZ6ilm3q5s2luLm5/OaO8MFHpojz9tAa24061W250dt1I\n8syShUxfLhQtLYnZaeViqZiodC1KLioiMllE5onIfBE5P80+vxeRd0XkNRHZrbPHWI14MalUS6Wz\nROWss2D33dtfGMtRVJqbE5tnlouoJAuyUd2UVFREpBtwLfAlYALwdRHZKWmfLwPbOefGAWcAf+j0\ngVYh0fnYK5ETTgjnaCkmJ5+sd//NzXph9EH6chUVf/Hu1auwojJxIvztb/mPq7ZWE0PKIRvNKC6l\ntlT2At51ztU75zYD9wBTkvaZAtwO4Jx7AagTkaGdO8zqw/+4K9VSGTQITj+9+O9TWwsffAA/+pGu\nH3GEbs9lyuXOoqVFx3jXXbD//oWLqVx4IbzxRphenSteVOrqNM1548b8Bcoof0otKsOBaO/Sj4Nt\nmfZZlGIfI0d8hXMxmkhWE/4OG9Q6+fKX4eyzYcKE0o4rFf7i/fWva8+1Y44JheCTTzSO1tICCxfm\nVnx6+eW6zLebgHd/deumKd733QfHHgvXX5/f8YzypuqKH6dPn/7p+qRJk5g0aVLJxlKubN6s7VKu\nvVbnZDfSE3VzrV2rWWcHHAB33126MaUjGvfp1Usv5g89BF/8Ilx3Hfzwh3DaadqR4MUXYc89czt+\nvq11ouOqqQnjYQ8/XN41P9XKrFmzmDVrVtGOX2pRWQREM9dHBNuS99k2yz6fEhUVIzX+QnnmmaUd\nRyUQDc4vWhRua26GK6/U1jNHHVWasSUTvXh799zWW+vST0Fw443hvnG45ZZwff36jo+rpibsWLx4\nsQpVufdTqzaSb7YvvfTSgh6/1M6Pl4DtRWSUiNQAJwAzkvaZAUwFEJF9gLXOuWWdO8zqo1zbjJQb\nUVFpaQm3bdoE554LV1xRmnGloqUlvGHw1oC/XojAbpG8yThB/NZWnfsGNH6Vr6isWhVmpa1dC+cH\nOZ5vvAG33prfMY3ypaSi4pxrBb4PPAa8BdzjnJsrImeIyOnBPo8AH4rIe8ANgBnMHcBfGIdaqkMs\nvKg88kh4AYx2Lx49uhSjSk3UIvAxE++yamkJe7xtuWW8IL6fEA3U8lm/Pmze+ZvfJD6fifffh+23\nT9w2ZIguV62Kdwyjcii1+wvn3L+AHZO23ZD0+PudOqgqxv+IC9ETqyvgL9K77x5OMzxiBLzwQrhe\nLkRF5YortOp/5Up9vGlTKCpDh8azVKLT//bvr219unWDP/5Ruzf36wff+U7mY7S1afbc2LGJ20eN\nUlHKt1u1Ub6U2v1ldDJ+siTzY8fDp15HZ7AcNixczzd4XQwaG0O35vDhsOuu4XM//GGYxTZ4sPYu\na2zMfLyXX9bl0KFwyikwb54+/tWvdBnnO7RkiX52ye5WH+uplMnPjPiYqHQxvNvDRCUeIvDqq4l1\nKd27qwVwzTXlNc1wckv+u+7SpZ9nxv/vvUA+8UTm43lLZfz4REtjwQJdxklHr69PdBHedJMufbA+\n3ziNUb6YqHQx/EXwrLNKO45KYvfd22/bckutvShnURk6VJtt+imY/WRpvureu8bS4S/46W5A4loq\nUcvOj+/gg8MxG9WFiUoXY9MmmDRJ6xWMjlHuogJar7Jkia57V922QYK+txbS4UXFWySXXBK6vqLb\nM7FkSeJ01X58xx0Ht99uolKNmKh0MTZtCuciMTpGOYpK8jQAUVHZvFmXP/+5Fr1mEpU//hFuu03X\nvUUyfXpisWI2UVmzBh58MLWo9OypgX5zf1UfJipdgNbWMMvGOsYWjnIUlWRLpU8fbcsCYWylb1+Y\nMiWz+8sH6SHRzeWLKCEUqXTcdZfOmumD8v69QT+7aGq2UT2YqHQBDjxQLyKgwVoTlcJQCaKy++7w\n73/relQERo4MZ7ZMhZ+QbNw4nf7ZE7VOfM1TOrzV5MUMEkVl0KCwB51RPVi1QpWzeTM8+6zOEQ5m\nqRSSShCV0aPhsst0/Sc/CbePHQtz52rg3s+iGcVXwM+Z036CrXXrdEqAbOnAGzbA5z4HU6eG26Ki\nMmGCFkY2NZVn12cjP8xSqQJaWvSOMhXen77vvrq0mErhqARRiT4+5phwfeed9Ybj/fdTH6tnT23R\nkmrGxn799PuWzVLZsEGzvKKCERWV2lqtrDdrpbowUakC1q+H994LW2h4zjkH9tlH130FvVkqhaOS\nROWggxK3i6iLK934oxX4qfD9zzLR2Ng+ccA/9t/HwYOzpzYblYWJShXgfdbJd45//3toqfhaBYup\nFI5KEhXvAotSW5ve2sg2r3xdHTQ05D6eLbZIdLkNHmz9v6oNE5UqwPu2k5sEer94nz46095Xv2qW\nSiHp2bNwsysWgkyikmr645qa9HGRbKIyaFDY9iUdr7wSxvLSseWWMHly2ALGqHxMVKoAf2FIbhLo\nxcP3r7r/fvjlL01UCkUlWSqpBCKdpTJnjjakzFQxP3Bg5jqX9eu1vc3kyZnH7L+zVq9SPZioVAE7\n7KDL5LtmX5uy//6J2y1QXxh69tS79XKJCaQqfswkKuksFT8b6MyZ6d9r0KDMre8//FAzzzJZOxCK\nSragv1E5mKhUMA89BK+/Hj7euFF/6D5g70XliCMSW4xn+6Eb8fDi/OMfl3YcoP/fVKm5+Vgq/kJ/\nySXp32/XXXWSrXRdmlevVtdWNvx4TVSqBxOVCubooxNn87vuOs3YeeABfezFZfBgDYx+97v62NqN\nF4YttkicbreUbNyoIpfsssonpuJdUckWbpQtt1QhS9c+f/VqtWaycfPNMGaMfSerCROVKuLmm3Xp\nM768v99XR/tJprIFWI34DBgQzlFTSlLFUyCzpTJ7tiZvJBM35ta9e2K1fJTVq8NEkUwMGgSf+YxZ\nKtVEzqIiIgNFZNfsexqdje887Ntx+DtO76Y5/XRdRiecMjpGuYjKww+nzkTLJCp+XpRkdt4ZXnop\n+3v26JG+/9eaNfEsFcichWZUHrHatIjILOCoYP9XgOUi8n/OuXOKODYjR7xl4n/ovlmfr7YfMUJr\nArzlYnQ8lhtBAAAgAElEQVScAQOyt5DvDNJNZeAD96ncX562tsSeXo2N8dqmZBKVuO4vyFwvY1Qe\ncS2VOufcOuAY4Hbn3N7AocUblpELzsEdd4Si8pOfwFNPqaXS0JDYJXbQIJv1sZAMHFgelko6tthC\nkzdStan/wx90GXVhrV4N77zTPossFYVwf4FZKtVGXFHpLiLbAMcDfy/ieIwc2GKLMPsruWbimms0\niyfOxcHIn3Jxf2XCx9KSOeMMdY1GheG3v9VlnO9NJkvl3XfNUumqxBWVS4FHgfeccy+JyFjg3eIN\ny4jL+PG67NkzMRNn4UK94JlVUlz69dPPPd0de7nTvXuiMHi3Vz6iMm+efg5tbfDkkzrlQhzMUqku\n4orKEufcrs657wE45z4Afle8YRnZ8BNv+cZ8PXsm3jEvXJi5IaBRGLp108QH31stFVOnwnnndd6Y\nciHZheVFJU4GWPJrx4/XGSO9hRyd8TET5daZwOgYcUXlmpjbjE7iyisTG/P17JkYMF671kSls8jW\nsuSOO+Cee4o/ju23z/01PXokCsP69fCzn6WeYyXVa5PdXytXpk9vTkffvnDBBYkFukblkjH7S0T2\nBfYDhohINNOrP2COlRJy552Jj3v3Vj+2p7lZ3V9G8YkTV8nlf3HvvXqhPeKI7PuuW6f/+/7946UB\nJxO1NpqbNbFj2LB4r40Kkk9nbm7OXVS8td3YmDhdsVGZZLNUaoC+qPj0i/ytA1KUTRmdRfId4vjx\n7e/0bDa9zqHQwfoTToCvfEXneM92915XBz/8Yf6zJ0ZjKj17wrJl8XvD+dc+9VT43k1NuYuKF6Z0\n1flGZZHRUnHOPQU8JSK3OucyzGhtdDbJBYz+QrDDDjBpkvq2rXFk5xBHVNJlSWXipJO02nzXLKXG\nzzyjF/hMtSjp8NaGH9+aNfF7w3n313vvhdsWLzZR6erEnaO+VkT+CIyOvsY5d3AxBmVkp6kJXn45\ncduLL8K22+qP3ESl8xg8OHPHXsg/ZTZOB+T6+vy7JHTvri4rP/61a+OLk3edRQV13jxYujR9GnMq\nfFKAL9Y1Kpu4gfq/ArOB/wbOi/wZJeDZZ+HNN2HChMTte+6phY7+R2qi0jmMGwfz52fep7k5fiA6\nekHOJlagcZB8uyR0765B8uHD9fHq1blbKgsX6uNJkzSu9/rr4XQMcfjRj9SyMVGpDuKKyifOuf91\nzr3onHvF/xV1ZEZajj1Wl+nSPr2YWEylc9huO/jgg9TPeSFZvBh23DHe8erqwv/t4sXxXvPxx/H2\nS8XfI+XM+YjKhx/qYxEYMgSuvhoOOij++/fqpR2RswmzURnEFZWHReR7IrKNiAzyf0UdmZGWb3xD\ng7Pp8GJilkrnMGRI6KZ66SWtSwF1ea1cGRagRmMPmWhpCV1QyS7OQvPWW4mPV6+O7/7q21dTkD/8\nEI4/XtsDjR+v28aOzW0cX/oS/OtfVllfDcQVlVNQd9ezaEPJV4Aif92NZF59Ve8GW1pg1Kj0+/n0\nVROVzmHwYI1nicDvf691KaANPI89NvfU7pYWzQADjU/E4XcFKkVubY1vqYwcqZ2OFyyAG2/UqYO3\n3Vaf81NYx2X77eEvf4FjjsntdUb5EUtUnHNjUvzleC9idJS339Zl9E42Fd6/Hrehn9Exhg4Ns6ei\n9UMrVsBrr+U+02ZzM1x+OTz/PDzxhE7Glo1C9Hjzwf644x01Sgslo6/18aBcRcUX6v7jH7m9ziOi\nqc1G6YklKiIyNdVfsQdnJOKnbm1pyfzD9x1pLabSOaRqnOhjKRs26AX24ov18ciR2Y/nbxp8Wu5D\nD2V/Tb7/6699TZeHHhpaR3HdX/5cohaxF5Vc05sL0f1h5syOH8PoOHHdX3tG/j4PTEfnVzGKxGmn\nhdP/eryoNDfH+9GOGFH4cRmpSf5/RDOZamrgsMN0/aOPsh+ruVlvGnKp9cjXUrnnHth3X5gyJTxG\nXEvFi2l0nH5bvpZKPrU2ftrsOJ+tUXxi1ak4586KPhaRAUAndDPquvzpT+2DnbmIytq1NhlXZ5Kc\nLuxn3QS9wCbHt557DvbYo/0F3DcK3WKLsGVJnIt8R9xfzz6rS+/KihuL22ef9tv8a3MVFT/+fLo9\nNzToMl0GntG55DtHfSMwppADMdrTowd87nPhY19x3NCQXVRMUDqXqKgkdy2uqUm8UN92G+y3H1x/\nffvjvPhi2CjUi4q/mUgm2i4+F6smHf4YQ4fG2z9V00l/nvlYHKCZdLniBTxTp2ij84g7nfDDQGBk\nsgUwHvhLsQZVLFasgEsuSf1jLkfeeUeX69frBWbVKn382GPwgx+UblxGe6Ki4hy8Eqni6tEjseJ9\n2jRdLlvW/jg//Wni677whfSi0tAAW26pbp9CZvrlUp1/xRVhxheE9TW5Wiqgn9m3v5376zZu1Dii\niUp5ELdNy28j658A9c65DpRbdT5tbaHfthxExbnQzZHquSjz58NnP5tYXZ1qelijdNxwA8yerVP0\nrl+vtUSemprUc4usXt1+W3Ic7Oyz4fbbU79nQ4OmKxdKUCZP1my1OG3vPT/5SeJjb6Hk8/2sqcmv\nTmXjRrWuTFTKg7gpxU8B89AOxQOBiitRKrcWEDfcELb8TiZ5rL7SOCoqcXpCGZ3H6afDt76l69/9\nrrq3ohfnVDcPq1fDrbcmptFusw2cf374OHqhff99ePrp8LlCx80mToS77+7YMToy02i+otLUpDeM\n0TiWUTriphQfD7wIHIfOU/+CiHSo9b2IDBSRx0TkHRF5VETa/TxEZISIPCEib4nIHBHJ2+kTvVAn\nWwKlYPbs9M95N5fHByBXrAhTR8eNK864jPzx6bTHH6/Bb/89Szer4eLFcOqpcOaZ4ba1a2H06PBx\n9EJ70knqDvN4S6WcSHejFIeOWCoDB+rnbdMSl564RupPgT2dc6c456YCewE/6+B7XwDMdM7tCDwB\nXJhin0+Ac5xzE4B9gTNFZKd83ix6F1OKqUsvvxx+/OPwcaYsl1WrEt0HflbBFSvCIGqqzBujtIwe\nrRe25LoVn53k8Vl9zz2ny/r60PJcty4xphG90CbHVsoxw68UlsrGjeoCzDats9E5xBWVbs655ZHH\nq3J4bTqmALcF67cB7eqGnXNLnXOvBesbgLnA8HzeLCoqpfji/f73ia00Ms2vsWoV7BRI58CBYWvx\nlSttiuBKYNddE4UhOXaSSgimT9elv0B6amrCu+/kWEc5Wiod+X7mIyqrVmlWpBcVc4GVnrjC8K/A\nRTVNRKYB/wAe6eB7b+WcWwYqHkDGr6OIjAZ2A17I9Y1WrNC28J5SxCP8Reb113WZ6cezZAnssouu\nDx6sF4+2NrVYcpmnwigd0Qp3LypvvKHLVNlV110Hs2bBjBmJolJbG35Xkl1L5WipjBmTX60J5Ccq\ngwfDr3+tn3e/fmaplAMZRUVEtheR/Z1z5wE3ALsGf88Bf8x2cBH5t4i8EfmbEyxTVeOnjXSISF/g\nPuDswGLJCZ+a64nbTryQ+JqD44/XZaYf3oIFYcyke3e9eLS06Ho+qZpG5+OtigsuCF2V/kbBF/od\neGDiaw46SN1n0SkNevUK65OiorJokX6Py3FO93xdYLW17V3Tn3ySPqXa88ornef+8paRkZ5sYbWr\nCGIdzrm/AX8DEJFdgueOzPRi59xh6Z4TkWUiMtQ5t0xEtgaWp9mvOyoodzjnsnZBmu79CMCkSZOY\nNGlSO7dBKUTF37n69964UZezZmnBV3TCrQUL4IADdL1nz1BUamq0xiHdPCpG+eBjYpdd1v65MUHZ\n8MyZcMstcMYZic9HLZUBA8KYjK+FaWkJU49/+cvCjbnU1NaqGG/aFH7Hd99dLfdk78L99yd2NO4s\n99fw4frbrOQ+Y7NmzWLWrFlFO342URnqnJuTvNE5NydwR3WEGcA04Aq0tX46wbgZeNs5d3Wcg0ZF\nxZOcEVIKUfGtNnwev/+f+smMohlpCxbAySfreq9eOgHTpk362ilT9M8ob9LVeixfrv/r665Tq3Pr\nrdvvkywqy5bBI4+E3+Noj6tqu8Goq1MR9ef15pu6XLcODjlE56tpa4OvflVnmfT06tU57q/mZpjT\n7opYWfibbc+ll15a0ONni6lkCgN2tOTqCuAwEXkHOAS4HCCYCOzvwfr+wEnAwSIyW0ReFZHJub5R\nNJ145MjSiIoXE79sakq/74IFYVppr146XeuBB7ZPNTbKl3SiMmSIBrP9TcR222m8L1ocGRUKv/6H\nP4Suoe23D5/Pta1+ueNFxbPddrr84AOdsKy5OUxyiXYt6N278wL1lgyQmWyi8rKInJa8UUS+jU7U\nlTfOudXOuUOdczs6577onFsbbF/inPtKsP5/zrktnHO7Oed2d87t4Zz7V67v5b8Ee+yhbSWWLOnI\nyPPDi0mPHpkF5RvfUFHxrS/8RSM5LmSUN8Nj5ihOmKD9vqLZgFFR8eI0erSKSnKlejnUXBWSujqd\nOdMLqHfz+cnK6uvDYP68eeHrUsVUmpoy/9byQSR0XRupyeb++iHwgIicRCginwNqgP8q5sAKic++\n6dNHv3ilCLT5YGNrq7ozBgwIU4Wj+EmevAjFbe5nlBe33Za5wDWZaNZTctuVH/xALexNm8LZFj3J\n3ZErncGD4dFHdYri8ePVaqmtDb0LO+4Yxleyub9OPFFrgVL1WMuX3r0tUJ+NjKISpPzuJyIHAZ8J\nNv/DOfdE0UdWQD78UJfNzfqlKMWdhveH19Vp8dvYsYmi0traPmtm0SIVn0GD4MorO2+sRsfZYQf9\ni4u/M29tbW+N9O6t359Nm9SyiYpKtsyoSsNbJj47csMGFdJFi8J9vABHxaJ3b7X2Fi4Mt61dqzGs\nQtKR4s6uQtzeX086564J/ipKUCAMbLa06B1NKURl0yb4n/8JaxSS579IFWAcNkx/LIVoa26UNy0t\nGm9J1YixtjYUlWOP1c7EnnxrQsoVf24rVsB99+lvtbY2nDkTQlGJurEHDNBYVTReWoymq9bINTtd\n4iPyftWWFr1IF9rPGofmZhUHbzr36qX+8Msv14uJF76amvZdaQsx/7hR3vzjH5rhlQpfVd/UBN/7\nngbtPdXm/vKicsghcNxxKhw+A8wTFZXx43V9zBjtQvHOOzB3rt6Q5dJtOS5mqWSnS4iKdy2U0lJp\nblafr89s8f2hzj9f77AmTlSXWEtLWKPiMUul+jn88MQJ2aLU1mo3hZ499aLmL5YHHqhzy1cTRyWV\nRacSTf/7Xb1aBeTXv1a34LBh6hJ79VUVnGJYFSYq2alqUdljD03D9aIyaJCKSqkslaionHRS+Jy3\nRHzsJzlQa6LStamt1eB08vfgqad0np1qYqed4JprErsHPPNM4j7LliVmyJ13nlpz/ftrlthbb+l2\ns1RKQ1WLyuzZWnn77LPw8MPwz3+WNlDft6/GTsaODYsbof0dVXJBmxedX/yiuGM0ypOaGr058i1Z\ninGxLCeOPDIxAWG//XR55pnq7qqvD5MgRo4M9/NdK3wXA/85zZ1buLGZqGSnqkUFwhYYY8aElkop\nRQXaWyL+y+9npExnqUTn3TC6DrW1iaJS7WyzTWL9jb/pmjhRn6uvV6tk4kSt8fGkE9srrijc2ExU\nslO1opJcFObv/n3X185OxfTuL0g//asfU3KVtL8Dy2XucKN66NNHYwT+5mKXXRK7IFcbvkYryj33\nwCmnaN3WRx/pb+S11zLXcT32mC4L+bvxN6Q2GVh6qlZUklto+wu5iK539kRdmzaFX+7kC4KP8aTr\nW+QF0u6SuibDhydaKuPGdb0CvK99TcWmXz+tpB82LPV+yc05oXDTRbz+elj3UsR+jBVP1YpKcn+e\naOCvFC6w5ubwh5BcSb/ffnD00emL5bqK28NIjW/ZY98D/QzeeisxlhLlt79NfLzvvoX73HyrpL32\nsj58mejAjNLlTfKdzMCB4Xpn16o4F7auh/ZtI3wsxe+bzG67lWZiMaM8GDJEl10xCzDZqu/fX6vs\n/WeSTN++mmF57bXw05/qfoVyVS1eDGedpW5qE5X0VKWlsnFjYoO+q65KnNyqsy2VlhZ9fx9wzCee\nE62iNroWPsbW1aq5u3Vr7+bzVkemguD+/bVHGKjrq1Cu7g0bVLT+8x/tx1btWXj5UpVf0+Q7k+S7\nnc62VDZuTBxDtfVrMjqHamvJko1UIuqLhrN1mfA3YYMHF85SaWxUUTnnnMIcr1qpSlFJvjNJ/gJ6\nS+XttztnPE1NJipGx0nn8qlWUonK5z+vy7iisuWWhbVU+vQJpwSHRI+IoVS1qJx4oi6TLZVevXT2\ntgkTOqd3komK0VGuvhp+9KNSj6JzSeVe8kkL2Wa89PGnPn0Ka6n06ZNYElCK7hzlTlWLig+Mp3J/\nffyxrv/ud8Wf6KipKfGLWG1NAI3i84MfJM4OWe185jM6I2YyPjaazfoYPRr+/e/CtmXy7i/Qxp4A\nF11UmGNXE1UtKv4LmMpS8XNSnHde4vSlxSBqqTz+uE5CZBhGel56CWbOTP+8n247HSLabLOurnDz\n1nv3F8B11+nSCpLbU5UpxV5Upk6F+fPVzRWld+/EWePWr9f5GIpFVFQOPrh472MY1UIm91YunoXk\nOe+jHHigdob+3e/iHStqqXhMVNpTlZbKf/6j7eMPOEArX6M1KqCWSnTO91TT+haS5JiKYRidQypR\nWb9eM+meeQZmzIh/LB9T8ey6K3zpS4UZZzVRdZaKc+rSykSvXonFS53p/jIMo/Ooq9OpiF9+OZyv\npn//MC04l6SZqPsLtG2L0Z6qs1TipPglX+CLbakk16kYhtE5DBigc6wkB/19O/wNG8Jt6dxqv/kN\n7L13aveX0Z6qExVfKX/BBen32X13XfoviFkqhlGd1NWl3t7SonU/69ZpUP/UU7Uu5vnn2+/75z9r\ni/1kS8VITdWJyqZN2jxy+vT0+xxzDPz+9zpZFoTzwxcLExXDKA3J00h4Wlpg663Dbua33qrL5L58\nEGaR+jYtRmaqTlQ2bFA/aao5GTwi2hjOdy6+8EL1uRaL5DoVwzBKS0tL+wQegPPPb7/Nu9R79Mhe\ndGlUoag8+aRaBXGavUV9qMXsOmqWimGUF01NqcsIolmh0X2h67XJyZeqE5XTTovfeC9qGhez46iJ\nimGUnttuC28k58zR9eTCyFQT4flOydYpPB5VJyoQv8nbPfeEk/oUs1XL+vXmizWMUjFvni6nTUvs\nA/aPf2gr/ejMkN27t58Ww0/4Z66veFSlqAwfHm+/UaNgzBhdnzateMKydm1q/61hGMXHz60CcPjh\n4bpvTnnqqeqpWLhQg/dLliS+3nfo6Grz2eRLVX5Mu+wSf18frF+6NLF1SyFZu7a4bWAMw8jMDTfo\n8sknw20vvKDLX/9am7xuu6027YyKSmtr6E43UYlHVX5M48bF3zeax/7BB4UfC8CaNSYqhlFKRo1q\nv23o0Pbbhg1LLDHYuDHM3DRRiUfVfUwffACXXx5//wMPhPHjdT1aXVtIzP1lGKUlbtHi7rvDK6+E\nj6OiYtMHx6PqRGXMmNwCaiKw8866XkxRMUvFMEpHXFHZZZcwsA+JomKT68Wj6kQlH3waYTFEpa1N\n0xbTtYswDKP4jBgRb78xYxLd4FFRWb688OOqRkxUCH2lxRCVdes0nThV/rthGJ3DkCFw7726fsMN\n8OGHqffbdlvtauzxonLQQbD//sUfZzVgokJ4wff56IVk7VqzUgyjHPCdirfaKv3MkQMGaINZP31G\nY6MWLj/xBPzpT50yzIrHRIVQVLLNe50P1i7bMMoD30EjUx8+H4y/7z5dmus6d0xUCEXFdywtJM3N\n6TulGobRefgEnjgi8eUv63LdOpsyOFdMVIBDDtFloUXl44/V+rH2DoZRenwGmJ9PKR2//GUoPOvX\nm6jkiokKcNJJcPPNhRWV+noN+j33nFkqhlEO1NZqK6Zsv8fa2vBasG6d9gcz4lN1c9TnS01NYUXF\nN6U791zrUGwYlURNTdh40txfuVMyS0VEBorIYyLyjog8KiJpPZ0i0k1EXhWRGcUaT/SLVAh8u2wI\n52MwDKP8SbZUTFRyo5TurwuAmc65HYEngAsz7Hs28HYxB5PKUnn3Xa2izad+JSoqhmFUDrW1Zql0\nhFKKyhTgtmD9NuDoVDuJyAjgcKCoWeLRuxOABQtghx3gwQfh29/O/XjFavliGEZx8V6Lpia46SaL\nqeRKKUVlK+fcMgDn3FJgqzT7/T/gPKCI02i1t1T8PCsLF8LKlbkfzywVw6hM/A1mfb0+thvE3Chq\noF5E/g1EG0wLKg7/nWL3dqIhIkcAy5xzr4nIpOD1GZk+ffqn65MmTWLSpEmxxhoVlba2cPvSpflV\n2jc2wtSpOj9DtOupYRjljXd/LVyojz/zmdKOp9DMmjWLWbNmFe34RRUV59xh6Z4TkWUiMtQ5t0xE\ntgZStWvbHzhKRA4HegH9ROR259zUdMeNikoueJO3rS2xT9fSpe3nsY6Dr6TPpQ2/YRilx18L1q6F\n446DffYp9YgKS/LN9qWXXlrQ45fS/TUDmBasnwI8lLyDc+4i59xI59xY4ATgiUyC0hFqa+Hll+Hi\nixO33357aKk88gg8/ni8423YEL/dtmEY5YN3f1k3jPwoZZ3KFcBfROSbQD1wPICIbAPc6Jz7SmcO\npqZGl7/8ZfvnvKgccYQu48xl39hoomIYlYh3f5mo5EfJRMU5txo4NMX2JUA7QXHOPQU8VazxeFFJ\nxfr1KiRDhsCKFfGO19io8RTDMCoLH181UckPa9MSkEpUvvY1XToXP5urXz9YssS6ExtGpWKWSscw\nUQlIJSrnnhuuz5oVr43Lhg3w/vvm/jKMSsVEpWOYqASk+vJsFamcOfLI+G1cXnwR7rzT3F+GUYmY\n+6tjmKgERC2VUaN0OXBg4j7ZLJXWVl3++Me6HD++MGMzDKPzqK3VaSsWLTJRyQcTlQAvKocfDvvu\nq+s+JjJhgi7b2sL57FMRbRy5554wfHjhx2kYRnHxQnLTTSYq+WCiEuALHk8+ObRIRNRq8fNVQ+Ys\nsWgwv9qqcA2jqxD9jZuo5I7NpxLg56bu2zcxdrJggWZ//e1vMGNG5hqVqKhkmgfbMIzyJSok3kth\nxMcslST69m0fOxHRGhXQ59IJS2Nj+CXMZNEYhlG+dOsGW2+t6xYXzR0TlSQGDEid5dXQoMs+fdJ3\nLd1zT3jrLV03UTGMyuXoYCKOnj1LO45KxEQlwvPPw267pc7yGjtWzeIBA2DNmtSvj77ORMUwKhcv\nJiYquWOiEmHvvdXVdc45iYWPAJddpt2KBw5MLypRTFQMo3Lp0UOX9jvOHROVFBx3HPzmN4nbunXT\nL1hjY7z5USyd2DAqF5+4I1lncDKSMVHJkS23hL/+NXMW2KJFMG1apw3JMIwCE6cTuZEaE5UcOeMM\nzQTr1g1eeCH1PsOGZS6SNAyjvLHfb/7YR5cjtbWwPJij8qOP2j//7LOdOx7DMAqP9e3LHxOVHKmt\nDedUiQbsP/lE726qbepRw+iKHHYYDBpU6lFUJiYqORIVldWrw+1r12q6sQX2DKPy2XlnWLWq1KOo\nTExUcqS2NnR7RS2V1avtzsYwDMNEJUeieetr1sDf/65pxiYqhmEYJio5E202t3q1Tt51990qMAMG\nlG5chmEY5YCJSo74FvkQur9699a5VGz6YMMwujomKjmycaMuH300UVQ2brR294ZhGCYqOeLjJttv\nH2aB1daqpdK7d+nGZRiGUQ7YJF05suuusHkzrF8fZoG1tpqlYhiGAWap5EX37lBXFz7evNlExTAM\nA0xU8ibaG2jzZnN/GYZhgIlKh/BTjpqlYhiGoZiodIBRo3RplophGIZiotIBpk/XpVkqhmEYiolK\nB5g8Gb7zHZ2b3iwVwzAME5UOU1NjlophGIbHRKWD9OhhMRXDMAyPiUoH8aJilophGIaJSofxzSRN\nVAzDMExUOkz//rBunQqLiYphGF0dE5UO4kWlsRH69Sv1aAzDMEqLiUoHqatTUdmwAfr2LfVoDMMw\nSouJSgfxloqJimEYholKh+nfH+rrNQMsOn+9YRhGV8REpYP07w/vvVfqURiGYZQHJRMVERkoIo+J\nyDsi8qiI1KXZr05E/ioic0XkLRHZu7PHmon+/Us9AsMwjPKhlJbKBcBM59yOwBPAhWn2uxp4xDk3\nHpgIzO2k8cXCi8q//lXc95k1a1Zx36DE2PlVNnZ+hqeUojIFuC1Yvw04OnkHEekPfN45dwuAc+4T\n59y6zhtidvr00eXYscV9n2r/Utv5VTZ2foanlKKylXNuGYBzbimwVYp9xgArReQWEXlVRP4oImVV\nYigCN98M221X6pEYhmGUnqKKioj8W0TeiPzNCZZHpdjdpdjWHdgDuM45twfQhLrNyopTT02cXtgw\nDKOrIs6lupZ3whuLzAUmOeeWicjWwJNB3CS6z1DgOefc2ODxAcD5zrkj0xyzNCdjGIZRwTjnpFDH\n6l6oA+XBDGAacAVwCvBQ8g6B4HwkIjs45+YDhwBvpztgIT8YwzAMI3dKaakMAv4CbAvUA8c759aK\nyDbAjc65rwT7TQT+BPQAPgBOdc41lGTQhmEYRkZKJiqGYRhG9VEV4WURmSwi80RkvoicX+rx5IOI\njBCRJ4ICzzki8oNge9oiURG5UETeDQpDv1i60cdDRLoFWXwzgsfVdG7tinSr7Px+JCJvBok2fxaR\nmko+PxG5SUSWicgbkW05n4+I7BF8JvNF5KrOPo90pDm/Xwfjf01E7g9KNvxzhTs/51xF/6HC+B4w\nCnWRvQbsVOpx5XEeWwO7Bet9gXeAndCY00+C7ecDlwfrOwOz0bjY6OAzkFKfR5Zz/BFwJzAjeFxN\n53Yr6polGHddtZwfMAx1PdcEj+9F46AVe37AAcBuwBuRbTmfD/ACsGew/gjwpVKfW4bzOxToFqxf\nDknFLRMAAAQfSURBVFxWjPOrBktlL+Bd51y9c24zcA9aWFlROOeWOudeC9Y3oJ0DRpC+SPQo4B6n\nBaELgHfRz6IsEZERwOFofMxTLeeWqki3gSo5v4AtgD4i0h3oBSyigs/POfcfYE3S5pzOJ8ha7eec\neynY73ZSFHGXglTn55yb6ZxrCx4+j15foMDnVw2iMhz4KPL442BbxSIio9G7jOeBoS51kWjyeS+i\nvM/7/wHnkViPVC3nlqpItzdVcn7OucXAlcBCdKwNzrmZVMn5RUhXkJ3ufIaj1xtPJV17volaHlDg\n86sGUakqRKQvcB9wdmCxJGdSVFxmhYgcASwLLLFMad8Vd24ByUW6jWiRbsX/7wBEZAB6Fz8KdYX1\nEZGTqJLzy0C1nQ8AIvJTYLNz7u5iHL8aRGURMDLyeESwreIIXAv3AXc453zdzrKgCJTAHF0ebF+E\npmN7yvm89weOEpEPgLuBg0XkDmBpFZwb6B3cR865l4PH96MiUw3/O1Bf/AfOudXOuVbgAWA/quf8\nPLmeT8Wdp4hMQ93QJ0Y2F/T8qkFUXgK2F5FRIlIDnIAWVlYiNwNvO+eujmzzRaKQWCQ6AzghyMIZ\nA2wPvNhZA80F59xFzrmRTjsjnAA84Zz7BvAwFX5uoEW6wEciskOw6RDgLargfxewENhHRHqKiBAW\nIVf6+QmJlnNO5xO4yBpEZK/gc5lKiiLuEpJwfiIyGXVBH+Wca47sV9jzK3WWQoEyHSaj2VLvAheU\nejx5nsP+QCuavTYbeDU4r0HAzOD8HgMGRF5zIZqpMRf4YqnPIeZ5foEw+6tqzg2dluGl4P/3NzT7\nq5rO75JgrG+gQewelXx+wF3AYqAZFc1TgYG5ng/wWWBOcO25utTnleX83kULzV8N/q4vxvlZ8aNh\nGIZRMKrB/WUYhmGUCSYqhmEYRsEwUTEMwzAKhomKYRiGUTBMVAzDMIyCYaJiGIZhFIxSzvxoGBWL\n6CRzj6OtPLZBa4yWo8Vmjc65A0o4PMMoGVanYhgdREQuBjY4535X6rEYRqkx95dhdJyEJpkisj5Y\nfkFEZonIgyLynohcJiInisgLIvJ60BIDERksIvcF218Qkf1KcRKGUQhMVAyj8ETN/12B09GJkL4B\njHPO7Q3cBJwV7HM18Ltg+1dJnHPGMCoKi6kYRnF5yTm3HEBE3kd7SoH2U5oUrB8KjA+a9gH0FZHe\nzrmmTh2pYRQAExXDKC7RbrBtkcdthL8/AfZ2OnOpYVQ05v4yjMKTaSKyVDwGnP3pi0UmFnY4htF5\nmKgYRuFJl1KZbvvZwOeC4P2bwBnFGZZhFB9LKTYMwzAKhlkqhmEYRsEwUTEMwzAKhomKYRiGUTBM\nVAzDMIyCYaJiGIZhFAwTFcMwDKNgmKgYhmEYBcNExTAMwygY/x/mMNGYLMmcywAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(2)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=2')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.html b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.html new file mode 100644 index 000000000..e0bdabbb4 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.html @@ -0,0 +1,329 @@ + + + + + + + + Simulating event times with the inverse CDF method — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+
+import copy
+import glob
+import numpy as np
+
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+
+params = {
+    'font.size': 7,
+    'xtick.major.size': 0,
+    'xtick.minor.size': 0,
+    'xtick.major.width': 0,
+    'xtick.minor.width': 0,
+    'ytick.major.size': 0,
+    'ytick.minor.size': 0,
+    'ytick.major.width': 0,
+    'ytick.minor.width': 0,
+    'figure.figsize': (6, 4),
+    "axes.grid" : True,
+    "grid.color": "grey",
+    "grid.linewidth": 0.3,
+    "grid.linestyle": ":",
+    "axes.grid.axis": "y",
+    "axes.grid.which": "both",
+    "axes.axisbelow": False,
+    'axes.labelsize': 8,
+    'xtick.labelsize': 8,
+    'ytick.labelsize': 8,
+    'legend.fontsize': 8,
+    'legend.title_fontsize': 8,
+    'figure.dpi': 300,  # the left side of the subplots of the figure
+    'figure.subplot.left': 0.195,  # the left side of the subplots of the figure
+    'figure.subplot.right': 0.97,   # the right side of the subplots of the figure
+    'figure.subplot.bottom': 0.145,   # the bottom of the subplots of the figure
+    'figure.subplot.top': 0.97,   # the top of the subplots of the figure
+    'figure.subplot.wspace': 0.2,    # the amount of width reserved for space between subplots,
+                                   # expressed as a fraction of the average axis width
+    'figure.subplot.hspace': 0.2,    # the amount of height reserved for space between subplots,
+                               # expressed as a fraction of the average axis height
+}
+mpl.rcParams.update(params)
+
+
+
+
+
[2]:
+
+
+
def find_inverse(real, imaginary, N):
+
+    # Form complex numbers corresponding to each frequency
+    f = [complex(r, i) for r, i in zip(real, imaginary)]
+
+    f = np.hstack([0, f])
+    # Obtain time series
+    return np.fft.irfft(f, n=N)
+
+
+def scale_lc(lc, mean, rms):
+
+    lc_mean = np.mean(lc)
+    lc_std = np.std(lc)
+
+    return ((lc - lc_mean) / lc_std * rms + 1) * mean
+
+
+def timmerkoenig(pds_shape, mean, rms):
+    pds_size = pds_shape.size
+
+    real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)
+    imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)
+    imaginary[-1] = 0
+
+    flux = find_inverse(real, imaginary, N=2 * pds_size)
+
+    rescaled_flux = scale_lc(flux, mean, rms)
+
+    return rescaled_flux
+
+
+
+

Let us start with a standard light curve simulation with the Timmer & Koenig method:

+
+
[3]:
+
+
+
from astropy.modeling import models
+
+pds_model = \
+    models.PowerLaw1D(x_0=1, alpha=1, amplitude=1)
+
+nyq = 100.
+freq = np.linspace(0, nyq, 1000)[1:]
+
+pds_shape = pds_model(freq)
+mean = 10
+rms = 0.3
+
+dt = 0.5 / nyq
+
+flux = timmerkoenig(pds_shape, mean, rms)
+times = dt * np.arange(flux.size)
+
+plt.plot(times, flux)
+
+
+
+
+
[3]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fd1916a8e50>]
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png +
+
+
+

Simulating event times with the inverse CDF method

+

Given a positive-definite light curve (generated, e.g., with the method by Timmer & Koenig), we treat it as a probability distribution: we calculate the cumulative distribution function by calculating its cumulative sum and normalizing to 1. Then, we generate random numbers uniformly distributed between 0 and 1 (horizontal lines) and take the event times at the corresponding values of the CDF (vertical lines).

+
+
[4]:
+
+
+
from scipy.interpolate import interp1d
+
+def cdf_from_lc(lc, dt):
+    cdf = np.cumsum(lc)
+    cdf = np.concatenate([[0], cdf])
+    cdf /= cdf.max()
+    return cdf
+
+
+# cdf_times = np.concatenate([[0], dt / 2 + time])
+cdf_values = cdf_from_lc(flux, dt)
+cdf_times = np.arange(cdf_values.size) * dt
+
+cdf_inverse = interp1d(cdf_values, cdf_times)
+
+plt.plot(times, flux / flux.max(), color="grey", label="Light curve")
+plt.plot(cdf_times, cdf_values, color="k", label="CDF")
+
+for prob_val in np.linspace(0, 1, 100):
+    time = cdf_inverse(prob_val)
+    plt.plot([0, time], [prob_val, prob_val], color="r", lw=0.3)
+    plt.plot([time, time], [0, prob_val], color="r", lw=0.3)
+
+plt.xlabel("Time")
+plt.ylabel("Probability")
+
+plt.ylim([0, 1])
+plt.xlim([0, 10])
+plt.legend(loc="lower right");
+plt.tight_layout()
+plt.savefig("CDF_lc.jpg")
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png +
+
+

The same method can be used, in principle, to simulate variates from any probability distribution. The only requirement is that the input distribution is positive definite. Stingray implements this method in stingray.simulator.base:

+
+
[5]:
+
+
+
from stingray.simulator.base import simulate_with_inverse_cdf
+event_times = simulate_with_inverse_cdf(flux, 10)
+
+
+
+
+
[6]:
+
+
+
event_times
+
+
+
+
+
[6]:
+
+
+
+
+array([0.3809308 , 0.10856514, 0.71888075, 0.54479831, 0.87783205,
+       0.45405823, 0.66623686, 0.62832368, 0.72111516, 0.25882679])
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb new file mode 100644 index 000000000..cbceef802 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb @@ -0,0 +1,289 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1a67952", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "params = {\n", + " 'font.size': 7,\n", + " 'xtick.major.size': 0,\n", + " 'xtick.minor.size': 0,\n", + " 'xtick.major.width': 0,\n", + " 'xtick.minor.width': 0,\n", + " 'ytick.major.size': 0,\n", + " 'ytick.minor.size': 0,\n", + " 'ytick.major.width': 0,\n", + " 'ytick.minor.width': 0,\n", + " 'figure.figsize': (6, 4),\n", + " \"axes.grid\" : True,\n", + " \"grid.color\": \"grey\",\n", + " \"grid.linewidth\": 0.3,\n", + " \"grid.linestyle\": \":\",\n", + " \"axes.grid.axis\": \"y\",\n", + " \"axes.grid.which\": \"both\",\n", + " \"axes.axisbelow\": False,\n", + " 'axes.labelsize': 8,\n", + " 'xtick.labelsize': 8,\n", + " 'ytick.labelsize': 8,\n", + " 'legend.fontsize': 8,\n", + " 'legend.title_fontsize': 8,\n", + " 'figure.dpi': 300, # the left side of the subplots of the figure\n", + " 'figure.subplot.left': 0.195, # the left side of the subplots of the figure\n", + " 'figure.subplot.right': 0.97, # the right side of the subplots of the figure\n", + " 'figure.subplot.bottom': 0.145, # the bottom of the subplots of the figure\n", + " 'figure.subplot.top': 0.97, # the top of the subplots of the figure\n", + " 'figure.subplot.wspace': 0.2, # the amount of width reserved for space between subplots,\n", + " # expressed as a fraction of the average axis width\n", + " 'figure.subplot.hspace': 0.2, # the amount of height reserved for space between subplots,\n", + " # expressed as a fraction of the average axis height\n", + "}\n", + "mpl.rcParams.update(params)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d515146e", + "metadata": {}, + "outputs": [], + "source": [ + "def find_inverse(real, imaginary, N):\n", + "\n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r, i in zip(real, imaginary)]\n", + "\n", + " f = np.hstack([0, f])\n", + " # Obtain time series\n", + " return np.fft.irfft(f, n=N)\n", + "\n", + " \n", + "def scale_lc(lc, mean, rms):\n", + " \n", + " lc_mean = np.mean(lc)\n", + " lc_std = np.std(lc)\n", + "\n", + " return ((lc - lc_mean) / lc_std * rms + 1) * mean\n", + "\n", + " \n", + "def timmerkoenig(pds_shape, mean, rms):\n", + " pds_size = pds_shape.size\n", + "\n", + " real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary[-1] = 0\n", + "\n", + " flux = find_inverse(real, imaginary, N=2 * pds_size)\n", + "\n", + " rescaled_flux = scale_lc(flux, mean, rms)\n", + "\n", + " return rescaled_flux\n" + ] + }, + { + "cell_type": "markdown", + "id": "3730fb8c", + "metadata": {}, + "source": [ + "Let us start with a standard light curve simulation with the [Timmer & Koenig](https://ui.adsabs.harvard.edu/abs/1995A&A...300..707T/abstract) method:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "44483c14", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABggAAARJCAYAAAAc8YkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd7xkdX3/8fe5ZffusguINEUFIyACtljAXqIxURNNYk+MKaaaXozGJJYYyy8xcWMUBVyxYEUFVtoCwtJ2WWCXrcAWtvd2e5s78/39MfdeZu+d+c4p33PO98y8nnn4yDJ35pzv99Tv+X7O9/MNjDECAAAAAAAAAADtpSPvAgAAAAAAAAAAgOwRIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA115V0AuBcEwUmSXlPz0S5J4zkVBwAAAAAAAABQ3xxJT6/572XGmL6sVk6AoDW9RtJ1eRcCAAAAAAAAABDJ2yRdn9XKSDEEAAAAAAAAAEAbIkAAAAAAAAAAAEAbIsVQa9pV+x/XXnutzj333LzKAgAAAAAAAACoY8uWLXr7299e+9GuBl9NhTcBgiAIzpH0RlXz5z9X0jMkLZA0IGm3pOWSvmuMWRZj2S+R9PuSXivpaZMf75Z0p6RvGGMeSFZ679Z/3ITE5557ri666CLHqwAAAAAAAAAAODbe/Cvu5B4gCILghZK+KumlDb7ypMn/PVfSHwdBcKekDxhjdoZY9hxJ/ynpLyUFM/78nMn//WkQBIskfdgYU4pVCU/XDwAAAAAAAABAI7kHCCQ9W7ODA5skrZd0WNLJkl6uJ968f62k5UEQvMoY83iTZV8h6Xdr/vtxSSsm/32ppF9QteP+bySdKOkP41TA4/UDAAAAAAAAAFCXDwGCKVskXSnpO8aYPbV/CIKgQ9LvSfqSpPmSnirp6iAIXm6MMfUWFgTBH+iJzvmKpL+X9L/GmErNMv9K0hdUnaz5D4IgWGaM+ZaLyuS9fgAAAAAAAAAAbDryLoCkfarm57/AGPP5mcEBSTLGVIwxiyX9Ts3Hl0r65XoLDIJgrqRP1Hz0/4wxX5zqnK9Z5hdVTQE05VOTaYESyXv9AAAAAAAAAAA0k3uAwBizzBhzlTGmHOK7P5W0suajtzT46q9Levrkv/sk/btlsZ+S1D/577Mty4wi7/UDAAAAAAAAAGCVe4Aghntr/n1Og++8vebfPzDGDDda2OTffljz0W/ELpk/6wcAAAAAAAAAwKqIAYLaOQc6G3zndTX/vjPEMu+o+ffroxbIw/UDAAAAAAAAAGBVxADBc2v+vWvmH4MgOEnSU2o+WhVimbXfOSsIghNjli339QMAAAAAAAAAEEahAgRBEDxDx79hf1udrz17xn/vDLHomd+ZuYwo8l4/AAAAAAAAAABNFSpAIOm/9URaoZ2SltT5zpNr/t1vjBlpttDJeQAGaj46JXYJ81//tJ6eHi1YsECSVC6X1dvbK2OqGZr6+/s1Pj4uSRoZGdHQ0JAkaWJiQr29vdPL6OvrU6lUkiQNDw9reLg6nUKpVFJfX9/093p7ezUxMSFJGhoa0shItdrj4+Pq7++fqqd6e3tVLlfnox4cHNTo6KgkaWxsTAMD1U1QqVTU29urSqUiSRoYGNDY2JgkaXR0VIODg9SJOlEn6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfq1DJ1ykthAgRBEHxA0m/VfPRRY8xYna8uqPl30875Bt9d0PBbzeW9/mmXXnqp3vGOd0iSDh06pEWLFk0ftIsXL9bGjRslScuWLdOSJdVYy+7du7Vo0aLpZVx22WXaunWrJGnp0qVaunSpJGnr1q267LLLpr+3aNEi7d69W5K0ZMkSLVu2TJK0ceNGLV68WFL1hFq0aJEOHTokSbrmmmu0YsUKSdLq1at19dVXS6qeNIsWLZo+Sa+++mqtXr1akrRixQpdc8011Ik6USfqRJ2oE3WiTtSJOlEn6kSdqBN1ok7UiTpRJ+rUMnXKjTHG+/9JerGqHehm8n/ftXz3/TXf2xlhHTtrfvc7Ccqa6/onl3WRJNPT02MWLFhg1q9fbyYmJsyxY8dMpVIxxhjT19dnxsbGjDHGDA8Pm8HBQWOMMaVSyRw7dsxM6e3tNePj48YYY4aGhszQ0JAxxpjx8XHT29s7/b1jx46ZUqlkjDFmcHDQDA8PG2OMGRsbM319fcYYYyqVijl27JiZmJgwxhgzMDBgRkZGjDHGjI6Omv7+fmOMMeVy2Rw7dsyUy2VjjDH9/f1mdHTUGGPMyMiIGRgYMMYY6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfqRJ2oE3UqdJ3Wr19vavqFjaSLTIZ974GZHOrgqyAIninpPklnTn60VtKrjDH9Db7/Tkk/nPzPA8aYM+t9r87vDkg6ffI/32GM+XHM8ua6/sllXSRp/dR/r1+/XhdddFHcxQEAAAAAAAAAUrBhwwZdfPHFtR9dbIzZkNX6vU4xFATBUyTdqieCA49L+pVGwYFJgzX/nhdhdbXfHWz4rebyXj8AAAAAAAAAAE15GyAIguDJqgYHnjX50T5JbzDG7Gvy0yM1/z4xCIKeEOuaL2lhzUdHo5TVs/UDAAAAAAAAANCUlwGCIAhOlHSLqrn0JemwqsGBbSF+/tiM/z47xG+e0WQZUeS9fgAAAAAAAAAAmvIuQBAEwQmSbpT0osmP+lRNK7QxzO+NMX2qjjaY8sIQP/vFmn/vaZLCyOv1AwAAAAAAAAAQhlcBgsl0PNdLesXkR8OS3mKMeSjiou6o+fdrQ3z/NTX//nnEdfm4fgAAAAAAAAAArLwJEARB0C3px5JeP/nRmKS3GWPujbG4a2v+/e4gCBpOFjz5t3c1+G1cea8fAAAAAAAAAAArLwIEQRB0SvqupDdPfjQh6V3GmNtiLvJ6Sbsn/32ypI9Zvvuvk9+RpB2SfhZznT6tHwAAAAAAAAAAq9wDBEEQBJK+Lukdkx9VJL3fGHN93GUaY8Ykfbzmo48GQfBXQRBM1zcIgo4gCP5K0j/VfO/fjDHjlrLeGQSBmfzfnVmvHwAAAAAAAAAAV7ryLoCkP5P0gZr/3irplUEQvDLMj40xf9Hg88VBELxW0vtVDYQskvRXQRCsmPzKpZKeVfOTbxhjvhWt6NZy5bp+AAAAAAAAAABsfAgQnD7jv8+b/F9YdQMEkz4oqU/ShyQFqnbIP2vGd4ykL0n6hwjrDCvv9QMAAAAAAAAAUJcPAYLUTKbr+csgCL4t6Q8kvVbSWZN/3iPpTklfN8Y80IrrBwAAAAAAAACgkdwDBMaYT0j6RMrrWClppYPlvDbP9QMAAAAAAAAA4ErukxQDAAAAAAAAAIDsESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANdeVdAAAAAAAAUAxrdvXqZ2v3anBsQm94zhn6peeckXeRAABAAgQIAAAAAABAU8s2HdIfffNBjZcrkqTvrdylj735OfqjV/9CziUDAABxkWIIAAAAAAA09T+3bpoODkz571s3aWyinFOJAABAUgQIAAAAAACA1WiprId39c76fKRU1m0bD2ZfIAAA4AQBAgAAAAAAYFWaMXKg1t7ekQxLAgAAXCJAAAAAAAAAAABAGyJAAAAAAAAArIzlb0GQWTEAAIBjBAgAAAAAAAAAAGhDBAgAAAAAAICVsQ0hAAAAhUWAAAAAAAAAWBkiBAAAtCQCBAAAAAAAwIr4AAAArYkAAQAAAAAAsKpYIgQBsxQDAFBYBAgAAAAAAIBVxTKCgPAAAADF1ZV3AQAAAIpmZLysL962SfdsOaynnDRP73/Z2XrN+aflXSwAAFLDHAQAALQmAgQAAAARGGP0wW89oHu3HJEkbdjbrzsfO6iv/95LCBIAAFqWbQQBAAAoLlIMAQAARLDpwOB0cGDKRMXoOyt25FQiAADSZ5uDAAAAFBcBAgAAgAi+tmxr3c9v3Xgg45IAAJAdW3iAOYoBACguAgQAAAARHBwYy7sIAABkrmLJMUR8AACA4iJAAAAAEIGxvkMJAEBrIsMQAACtiQABAABABHSQAADakW0OgoAcQwAAFBYBAgAAgAgIEAAA2hGTFAMA0JoIEAAAAAAAACvCAwAAtCYCBAAAABEwBwEAoB0Za4qhDAsCAACcIkAAAAAAAACsKsTHAQBoSQQIAAAAAACAlXWS4gzLAQAA3CJAAAAAEAFzNAIA2lGlkncJAABAGggQAAAAREB8AADQjpiDBwCA1kSAAAAAIAr6RwAAbcg6go5ZigEAKCwCBAAAAAAAwMo2BwEAACguAgQAAAARkGIBANCOKpbbH+MHAAAoLgIEAAAAAADAihEEAAC0JgIEAAAAAADAyhAgAACgJREgAAAAiID+EQBAO7Ld/5ijGACA4iJAAAAAAAAArGxzEAAAgOIiQAAAABAB/SMAgHZkm4MgYJpiAAAKiwABAABABORgBgC0IyYpBgCgNREgAAAAiIDuEQBAO7LFBwgeAABQXAQIAAAAAACAlS0GQHgAAIDiIkAAAAAAAACsbKMESL8HAEBxESAAAACIgD4QAEA7sgcIMiwIAABwigABAAAAAACwsqYYIkIAAEBhESAAAACIgC4QAEA7so0gqHBzBACgsAgQAAAAAAAAKyYpBgCgNREgAAAAiII0CgCANsQkxQAAtCYCBAAAABHQBQIAaEe2NELEBwAAKC4CBAAAAAAAwMo2SsAQPgcAoLAIEAAAAETAW5IAgHZkG0HAJMUAABQXAQIAAAAAAGBln4Mgw4IAAACnCBAAAABEQBoFAEA7st39bMEDAADgNwIEAAAAAADAyjYHAQAAKC4CBAAAAAAAwMqeYojgAQAARUWAAAAAIAL6QAAA7ahSsfyNeyMAAIVFgAAAAAAAAFgxSTEAAK2pK+8CAK1qZLysHz64S2t29+rCp5yod7zoaTp5/py8iwUASIhOEABAO2KSYgAAWhMBAiAFI+NlfWDxSq3cflSS9BPt0Y9X7dH3/ugSggQAUHB0gQAA2pFtngHujQAAFBcphoAU/PzRg9PBgSmP7OvXdQ/vzalEAABXmIgRANCOrPMMeHBv3HV0WJfduVWfXLJBdz52MO/iAABQGIwgAFLwqZ9tqPv5Z296RB94+TnZFgYAAAAAErKlEcp7kuLH9g/ovVes0NGhcUnSN+7drr95w3n6mzecn2/BAAAoAEYQACk40D9W9/PRUiXjkgAAAABAcrYggMk5ydD/3r55OjgwZdHtm3VsxmcAAGA2AgQAAAAAAMDKOgdBRvEBY4y2HBzQvVsOa2S8PP35Dev21S3T9x7YmU3BAAAoMFIMAQAAAAAAK1sQIIsUQyPjZX3wWw/o3i1HJEnz53Tqyg+8WC9/1qkNf/PIvoH0CwYAQMExggAAACACD+ZhBAAgc7Y5CLJIMfSFpY9NBwckaXi8rA9+80GNlsqWXwEAgGYIEAAAAAAAACvrHAQZBM+vvGfbrM+Gx8u6deOBhr+xpUUCAABVBAgAAAAiyHsiRgAA8mCfgyC/e+P1a/bmtm4AAFoBAQIAAIAIeBkRANCOrCmGuDcCAFBYBAgAAAAAAIBV3pMUAwCAdBAgAAAAiIA+EABAO7LOQZDj3ZHRCwAAJEOAAAAAAAAAWPmbYogIAQAASRAgAAAAiCDPiRgBAMiLr5MUAwCAZAgQAAAAOEIHCQCgVdlTDAEAgKIiQAA4Zusc6u4MMiwJACANdIIAANqRfZJi5iAAAKCoCBAAjpXKjVuoczo55QCgldFJAQBoVb7OQWBbNbdlAACao7cScGxsotzwb3O6OOUAoPBIsQAAaEO2kdK29EMAAMBv9FYCjo1NVBr+jQABABQffSAAgHZkDwJwdwQAoKjorQQcI0AAAO2LSYoBAK3K1xRDAAAgGXorAcfGSpYUQ8xBAACFRxAAANCObCMI8p2kmPsyAABJdOVdAKDV2EcQdGZYEgBA1uiiAAAUyWP7B3TvlsN6ykk9euV5p2phT3fD7xrLXc7XSYoBAEBzBAgAx0gxBADti5cYAQBF8Z0VO/Qv166f/u9zT1+g7/7RJTp9YU/d79vucUxSDABAcdFbCThmG17bEWRYEABAKugDAQAU3bGhcf3rdeuP+2zLwUF98bbNDX9TsUQBbKMLAACA37wKEARB0BkEwfOCIPjDIAguC4LgwSAIxoMgMJP/uzPCskyC/13loC7nxFjvlqTrRf54exQA2hcdJACAIrjmod11n1u+e//Ohr+xjhLIM8UQt14AABLxJsVQEARvl3S1pPk5F0WS9uddABQZLVQAaGV0RAAAiu6uzYci/8Y2UjrXSYpzWzMAAK3BmwCBpJPlNjjw5QjfvUjSa2v++zsOyyFJA5K+FeJ70Vtp8A4dRwDQ2nydpBEAgLx4e/vztmAAAPjDpwDBlAOSHqj535sk/XXUhRhj/iLsd4Mg+FHNf64yxqxv+OV4jkYpD1oXHUcAUHxcywEARRfnXmYbJcC9EQCA4vIpQHCzpLONMcclPQyC4JI0VxoEwZMk/VrNR99Mc31ofbSNAQAAALQab1MMpbDu8YmK5nR5NWUjAACp8SZAYIzJK+//eyTNnfx3SdJ3cyoHWgRvzwBA++IeAAAoAlu6vEZskxS3yu3vxw/t1pd+vlm7jo3o+U87SZ/7refp/DMW5l0sAABSRUhc+kDNv28wxhzOrSRoCbY3WFql4QwA7YwgAACg6OLcy6zPOTneHF2NXrjjsYP6h2vWaPuRYZUrRqt29uq9l69Q7/C4k+UDAOCrtg4QBEFwvqTaFEakFwIAALHFeSMTAICsxQsQuF1eFqLcl5c8vHdWPY4MjeveLUcclwoAAL94k2IoJ7WjBw5LuiGl9XQFQfBGSS+WdKqk0cn1PShppTFmLKX1Igeeto0BtJG+kZLW7u7Vs89YqNNP7Mm7OAAAwDPxUgz5OUmxq3X/ZPWeup9/7Np1esvznuJmJXBqT++IJsoVnf3kE/IuCgAUWtsGCIIg6JD0/pqPvmuMKaW0urMkLW3wt2NBEHxF0ueMMYMprR8Z8vXtGQDt4Tsrdujfrls/nSf4919xjv7trRcqCIJ8C9YmuAcAAFqVbQ6CPCcpTnvdpYlKqstHdL3D4/rgNx/UgzuOSZIufMqJuur3X8KLMQAQUzunGHqdpKfX/Hde6YWeJOljkh6cTHkEAEAsG/f261+uXX/cA/w37t2uJWv35VeoFpRnnmUAAFyIcyuzjiBIUJakbIGLQLwg0Yr+8Zq108EBSdq4r19/fvWqHEsEAMXWzgGC36359zpjTBp3kwFJV0l6j6RnS1ogaa6qgYl3Srqt5rvPlnRzEASnuVp5T0+PFixYIEkql8vq7e2d7tTo7+/X+Hh1sqWRkRENDQ1JkiYmJtTb2zu9jL6+PpVK1YEVw8PDGh4eliSVSiX19fVNf6+3t1cTExOSpKGhIY2MjEiSxsfH1d/fL6naodLb26tyuSxJGhwc1OjoqCRpbGxMAwMDkqRKpaLe3l5VKtU3NQYGBjQ2Vs3CNDo6qsHBQa/rND5erVO3ypqnankCGS0IxqRKuZB1asX9RJ2oUyvW6YfLN0uSOlWpXnMmfeeuRwpbJx/301SvyjyNq1vV38zRhOapJFPQOrXifqJO1Ik6USfqZK/TfI2rq+Y+1qOStU7GSHNV0tzJ73WqrBMm2xtTZU2zTjPvuZLUoYq6J0Y0FaKYWadgYizSfqqtkyQtCMbUGZhc91MrHntJ6jQyXtbPN+6dtZ9W7ziiQwNjhaxTK+4n6kSdqFO8OuWlLQMEQRAskPRbNR+lMXpgn6SnGmN+3xjzA2PMJmPMkDFm3Biz2xhzjTHmjZL+RE+8cPFMSZ91VYBLL71U73jHOyRJhw4d0qJFi6YP2sWLF2vjxo2SpGXLlmnJkiWSpN27d2vRokXTy7jsssu0detWSdLSpUu1dGk1U9LWrVt12WWXTX9v0aJF2r17tyRpyZIlWrZsmSRp48aNWrx4saTqCbVo0SIdOnRIknTNNddoxYoVkqTVq1fr6quvllQ9aRYtWjR9kl599dVavXq1JGnFihW65pprvK7TzkfWSJLO6zysN86tdtadEIzrnT3r1F0ZK2SdWnE/USfq1Ip12rnmHknSaR2DemfPuumynntkeWHr5ON+6lG1rG+cu1nndR6WJF3YdUCvmbNVxphC1qkV9xN1ok7UiTpRp8Z1MpLePPdRndNZfQv7Bd179fI5O6x1qhijl3Tv1ku6q+U+q6Nfb5tb3SbGpF+nmfdcSTo5GNX5h+/WnMmgwMw6LTy0JtJ+qq2TJL2zZ51OMQO57Sep9Y69pHXafmSo7n46rWNQD+04Wsg6teJ+ok7UiTrFq1NeAt+HyQdB8AlJH5/8z2XGmNc6WOYHVH2zX5ImJD3dGLM/6XITlOc/JP3z5H+WJZ1ljDmQYHkXSVrf09Ojrq4urVixQhdccIEGBgZ00kknKQgC9ff3q6enR3PmzNHIyIgqlYpOOOEETUxMaHBwUCeffLKkajRu/vz56u7uno7EzZ8/X6VSScPDwzrppJMkVaNxCxYsUFdXl4aGhtTR0aF58+ZpfHxco6OjOvHEE2WMUV9fnxYuXKjOzk4NDg6qq6tLPT09Ghsb0/j4uBYuXKhKpaL+/n6deOKJ6ujo0MDAgObMmaO5c+dqdHRUExMTWrBggcrlspd1enBnn37vWw+rW2V1qawRzVEgoxOCcT3zKadqyV+9unB1asX9RJ2oUyvW6YWfvEWj6lanKpoXlDRo5kqSTgjG9PCnfq2QdfJxP/3qlx/UvoExzdO4JtSpkjo1RxPqlNHKT7xF87s7ClenVtxP1Ik6USfq1I51Ojw0rmtXbtWOY2N66bln6A3nnyJTKc+q07svX6H12/ZrXJ2amLyPdchoVN3a8uk31a3T31+zXresqQYRxtStTpXVE0xoyMzV6y84Xf/99vNS3U+/+B93HHfPHVG3OlTRpU+fr/t2jUgKNF/jx9Xpjc85TV/+wMtD7acLP3XHcXWSqm+mB909WvepN3PseVKnx4+V9LYvLZu1n0ZMt77y/pfolecsLFydWnE/USfqRJ2i1WnPnj26+OKLVeNiY8wGZaRdAwS3S3r95H/eYIx5a9JlJizPAkkHJc2b/Oj9xpjvJFjeRZLWT/33+vXrddFFFyUrJEK7d8th/faV99f928Vnnaif/eWrMi4RgHZxzkduaPi37Z97S4YlaW2XfuZ27e8frfu3tZ/4ZZ3Y051xiWarVIy+/8Au3bPlkM48cZ7e+eKn6TlPOTHvYgEAUrSvb0TvuXyFdhwZnv7sN194lv7rnc9XR8fxufjf9dXlWrn9aN3lNGoz/MV3V+lnDeY1eu2zT9NVv//SmCUPp1E750VnP0kP1eSjr/Xm556pr/z2ixItf8HcLq3/5JvCFRKpW7e7T7/2f/fU/dsVv/tivfHCMzIuEQAkt2HDhlwDBG2XYigIgmeoOkHxlLwmJ55mjBmUVNuj/Jy8yoLkbDE3z+NxAIAQTK5TMYbzTz9eq3/+6TrduG6/Ft+7Te/86nI9vKs372IBAFJ01X3bjwsOSNJPVu/R+r19DX4RTZ7PObYXG22TJ6P1lC37u7PtergAwI12vHy+X9LU6xPHJF2fY1lq1b6KcWpupUBito4j2q4A0Np8uM7vOjqsHz20+7jPBscmdMXdj+dUIgBAFr62rP51/it3bJ31WZxgt60jPu1Oel7CwpRypfEOD4Kg4d8AAI21Y4Dgd2v+/X1jzFhuJTneCTX/HsqtFEjM2njNrhgAgJTE7Yh4cPtRve+KFXr+J5fq/V+/X4/tH3BbsElX3be97uc3NEgLAQBobfVSCcW5l9k6ZvNkKxXBg9ZjG03SSYAAAGJpqwBBEASXSjq/5qPc0wvVeGHNv/fmVgqkyvc5PwAACTW4zG8+MKAPLF6p+7YeUd9ISXdvPqx3fW259vWNOC/CpgPpBB4AAO3NFh9IPcWQ9Y88Y7UT23HY2UGAAADiaKsAgaQP1Pz7UWNM/ZlkMxYEwRskPb3moztzKgocoHkKAK3N+qZig7/+bO0+DY2Xj/usb6Skm9fvd1gyAADCifPMkuc8APZ1p7pqeMaeYijDggBAC2mbAEEQBHMlvbvmo9RGDwRBMCcIgjkhv3uapK/WfPSIpFWpFAyZsDVeebkFAIovzrV80e2b637+ySUbE5ZmNu41AIBa9fpM44xstk0Om+cIgjjzKaC4SDEEAO61TYBA0q9LetLkvyuSvhNnIUEQbA+CwEz+76oGX3uqpK1BEHw4CIKzGywnCILgLZIekPSsyY+NpH8wxlTilA1+oPEKAO3Lh8557jUAgGbi3Clsb+qnPYLA5tF9jVPruegvpsvZL7bjsIMUQwAQS1feBagVBMGNqnau1zqz5t8vDoLg4To/fbMxplne/trJiW83xuyOUcQonibp85I+HwTBdknrJB2WVJJ0mqRLNLuuHzbG3JhyuZAjHzqOAABJ+X0xr/CaAQAgBdaR0qmvu/HfJiw9xi6ev/y+67cf20gW4gMAEI9XAQJJF0qq+8b9pBMkPb/O59Z0PkEQnC7pV2o+uipyyZI5Z/J/jeyR9OfGmOszKQ3SZZu8K7tSAEBdmw4M6Ker9+hg/5heff6p+vXnP1UBw7Gd8eE6zwgCAEAzcTrOraMEUk8xxL0NVbbjsIM2LQDE4luAIC2/rSfq2i/ppymvb4ek50p6maSXS7pI0qmSnixp/mQZ9qmaXugmST81xpRSLhMyYmu8xsn1CQCurNnVq9+58n4NjE1Ikn68arfW7u7Tv771wpxLVizW/hEPrvMeFAEA4BFXfaa2yWHTn6Q41cVb0eXsF1tbi5deACAerwIExphzUlru/0j6H0fLOifEd4yk9ZP/u8LFetEa6LMBkKev3LllOjgw5ev3bNOfvuZZOm3h3JxKBQAAsuZ6DgKec5CVsiWVog8vagBAEbXTJMVAJqxtEtorAHJ0y4YDdT+/+v4dGZekdcW5zN/+SP39kkYZeHAGgPZT99If435gu4fkOUkx2ovtWOMoBIB4vBpBALSCHFNzAkAsWw4O5l2EQnF9Lf+nH6/Tq8/bp5FSWa867zS95yVPV0eSWfYsBSxXjLo6GX4PAIjOlmIo7fhA3OUPj5fdFgS5s06WzQM3AMRCgABwjDc3ARQNV6Zo4jyYzu3q0NhE/THxhwfH9JPVeyRJN63fr3V7+vTZ33xu/PJZ9mjZmMwaf8YY3brxgO7efFinL5yrX3v+U3XOqSdktHYAgE3RUgzFnaR42aZDGhkva96cTsclQl5sKYZo1QJAPKQYAjJEcwWAl7g4RRJnc82P0DHx/Qd2avOBgRhrqbLFoivWh2q3/vOWx/TH335I316xQ1+4dZPe/pV79ci+/uwKAACQ5G6SYnuA3N/GxG2OU/khX9YUQ/4ehgDgNQIEgGM+N44BoJ64b+Vhtkbbcv6c8O/tGyP9z22bEpShsXJG96hDA2P6yp1bj/usd7ik/7tjSybrBwDYxbkdWEcQeJpiSJI+c+MjyVZOZj6vMAcBALhHgABwzJ5iKLNiAADy0OA6H2UEgSTduG5//CJYbja2/NEuNZr4+oa1+zJZPwAgvkb3EescBCl3zSZZ+r6+0fxWDucYQQAA7hEgAByzT1JMiwWAf3iYiibO9ooaIEjCVrxKRgGCDXtJJQQAPrM9lzS6z9k6ZtNOYccobUyxHWscJwAQDwECIEO0VwD4iGuTO4025Qlzs5oa2L4/s0oxlFUgAgDgXqMruP1FqBZGiiGvkGIIANwjQAA4x5BHAGhlcd5O6+zIrnfBVr6sOu6zCkQAAMKYfQ+Kc5m2XdvTfnObuwqmkGIIANwjQAA4RqMEQNGQ/swdH+4BPkxSnNVcBwCAeOwTDtf/Y54dsz7cX+GHsi3FEG1aAIiFAAHgmH2SYhosAPxDX240cTZXlpd/a4qhjHa2rRMJAOC3OCmGHjswoPsfP5JKeaorT2/RKBbryw4cJwAQCwECIEO0VwCgBcSYjD7LN9ps60p7Esms1wMAiMf24lKjPzULMn/gGyu1ZldvglL5iZi3X2zpEtlVABAPAQLAMesLDbRYAHiIa5M7jbalNyMIskoxxEEFAIXVKNDcbHTYaKmiH6/anUaRck0dMzg2oZItrw0yNWELEND8AIBYCBAAjtkar+REBOAnrk1RkGKouawmQwYANBfMnqPYKkmw+1vLd0RbWUh5d/x+f+XOfAuAafYRBLQ/ACAOAgRAhvJu2AIA0tUwb3OmKYYay2puAEYQAEDryXN+mbzvKv93x5acS4ApjCAAAPcIEACOMWcSAB/FyTWM+uJMOJ/tCILGK8tukuJMVgMAiClOWtSs7iE+OtA/lncRMMkWqGrfIxQAkiFAADhma5TQCQcgLwQvs9Goc96XbUyKIQBAM43nIMi4IDXiBOfRmmxtGY4TAIiHAAHgmL1RQoMFQD7swUuuTVHE2lqezEGQWYohAgQA4I1Kxejo0Phxn1nnTWs4B0H7phiCP6wphjIsBwC0EgIEQIbogwOQlzzzBreThp0qmc5B4EOKIY43APDFkaFx/eK/36p3f2259vSOSIo3sjDP+WW4rWCKdZQixwkAxEKAAMgQ7RUAeSHFkDtxOimynYOg8d+y6rgnQAAA/rl/21H96bcfUqlcsX6v0UgB0sfBB3kGqgCgVREgAByzT/hFYwZAPuKkEkB9cUYDZLmJbetq0ifkDCmGAMBP6/b06cZ1++ypB+t8tmrnMfWPTqRVrKayHIkHv1nnIOA4AYBYCBAAjlk74TIsBwDUYgRBNnwIttje3s8uxVAmqwEAxPCP16y1/n3mbWT3sWG9/8r7UyxRCNxXMMk+SXGGBQGAFkKAAMgQDRYAeQk7uskYo+2Hh3TTun3aO5mnGMeLl2IouxuALQUEkxQDAMYnKpHuS7dtPKCh8XKKJWqOuwqmECAAAPe68i4A0GpIMQTAR2GGXFcqRp9cskHfXL5j+rO/ecN5+ps3nJ9m0VpKo+2c5dV/wvLgnFXHPQECAPCb9So944+fWLIxzaIAkdhTDAEA4mAEAeAYMQAAPgpzbbplw/7jggOS9MXbNmvF40dSKlUxxbnMZ3lvsD04ZzWxHwFxAPCcNfWgf9dwbiuYYmvL0P4AgHgIEAAZorkCIC+21DJTf7rynm11//6TVbvTKFJLarSZfRlBYEs/5FJWgQgAgHs+XsJ9DFogH7a2DEcJAMRDgABwLMpwXQDIiu3yM/XQ/dCOY3X//sMHCRCE1XA7Z9jbYhtBYAseuC1DJqsBAMRkbxf4x8egBfJha8twnABAPAQIAMdswxpprwDICw9MDsWZpNh9KRqasPTOZzWCIKvJkAEA8VifWbiGw2P2tgzHLgDEQYAAcMzaXKGxDSAn9o6ADAvSAmxpDhpt5zjbOO49w4c5COwprTjgAMBnPl6lfSwT8mGfgyDDggBACyFAAGSI9gqAvNgemHiYiiZWZ3+MO0Dc/WIbem8LHrhkWw/HGwDkz/5SU2bFCI3gMqZYUwxlWA4AaCUECADX6IQD4CEuP9lotJ3jBRXisXXOZ5X6hwkEAaC4fJwQmOcoTLG2MThOACAWAgSAY9bUEx42tgG0B2vKF65NzjTazFk+sNpHEGRTBvvwf443AMib9VLMZRoes45S5OAFgFgIEACOkcYDgI9s159mWWe6OwO3hSm4OJfyWL+JcdNo9pvsJilu/DduhQDgN67T8BlpDAHAPQIEQIZorwDIi/WNqiYXpzmdNBfCazRJcYzO/hhrb9b/n9kkxTy8A4DXrKOePbxOJy3Tt5ZvP+5eXK4YPbyrV2t29WY2Pw/csI5SzLAcANBKuvIuANBqrI0SWiwA8pLg+jO3u9NdOVpAVily4qym2RwDmU1STEorACgsH6/TScv0b9dt0JHBcf3tG8/X7mPDet8V92vn0WFJ0tlPnq+rP3iJi2IiA/YRBP4duwBQBLwSCDhmTTHkYWMbQHuwp3wx1gcqRhCEl/ccBM0CBFlNUky6PQDwWztep6+6b7vKFaO/+f7D08EBSdpxZFh/+4OH8ysYIsmqLQMA7YQnfsCxog3XBdAeml2bxiYaz147p4vmQq14cxDESTEU/TeVJpMQk0YBACAV77nERXn7Rkq649GDenDHsVl/e2D77M/gJ+YgAAD3eOIHMkR7BUBemj0wjZbKDf9GgOB49pFi0X8TZz2N+JJiyIaHdwDwm4+XaVdlWr+3z9GSkBfbyxCM2AeAeHjiBxyzD9elwQIgH7aOY6MmIwhIMRRawxRDGa3flxRDNjy8A0D+rO0CD+4VM7kq09wu5lUqOvuxm2FBAKCF8MQPOGZrk9BeAZCXZsFL2wiCud00F5KK07ERbwSB/e/lJimIssDDOwDkr107WRkVWXzlNj12ASBN3B2BDNFgAeCr0RIjCFxo9HZ8Vpf/ZoEIP0YQAADy5kHGuUhcFXduggDBl+/YogkfIu1trmKbgyDDcgBAK+nKuwBAy/Gg8wUAZmqeYog5CFIVZw6COJMUNx1BkP89ysfUFYALfcMlLVm7V5sPDOgXz36S3vzcp6ibACs8ZbsW+3iZdlWmJG2a/7zlMW05OKj/efcL3BQGsdhHEHh48AJAARAgABxr1iQxxigIgkzKAgBT7CmG7CMIyNcbnss5CFp2kuK8CwCk4OjQuN53xQo9un9AkvTN5Tt08/r9+tJ7X6guggTwkO124OdcMW7K1JHwOeynq/fon9/8HJ22cK6T8iA6+yTFAIA4aK0CjjXr0OGlBgB5aDY/im0EAX1bycWagyDGegoxSXH+RQCc++GDu6aDA1NuWr9f9287mlOJALt2nYPAxWtaP3xwl4OlIC5rW6aFj10ASBOP/AAAtAH7w5TRmGUEgQcvnReGyxEELtc/xYcRBDy8oxV97qZH635++V2PZ1wSIJw087inkebF1SI7HPSAHB4cS74QxGZry/g5+gUA/EeAAHCsWYOYJguAPDR72apd3yR0reEkxXHmIIjxo2YBAB/iAz6MYgCysmzTobyLANRlTTFUc52OE1hO4zLvapGBgzEELpaB+OxzEGRYEABoIQQIAMfCzEEAANmzP0yF7ShAPHHeaEsjxZAPb9blXwIAgPXFgJp/l8qWhO8xlh2XT00RppPLFxmGAMA9AgSAY03nIMimGABwnObzo6SXaqCdNEwxFGsEQQq/8WBnEnBCO5nTxeMWshH12hp25OBEjBEEPoxWa8RF5z7xgXxZUwx5fOwBgM9osQIZo9ECIA/WEQIyjCBIWaxNGOM3hZikOO8CABmawyzvyEjUy7u9E/+JP074MoLAo7sHIwjy5cV8SgDQYrryLgDQapq/vEmDBkD2bNceY+x/5zmsOJrtKw/iA16UAcgKIwgQ1tZDg7rzsUOa192p119wus48qSfS76NeWq0jB2v+VCp7MgeBR/eOgAhBruzpsTw6UACgQAgQAI41naSYNguAHDS79thHGCCpOKMw4jzkNp+DIH88vKOdMIIAYSzdsF8f+u6q6c74k+d36+oPXqKLnnpS6GVETzEU7nsTFU9GEDhapIuyER7IV9j0WACA8GixAgDQBpo9TNnfJORpK6yGcxA4XJb9NwUIUvtQBiAj3V10JcKuUjH66E/WHfemfu9wSZ9csjHScqJeWq153Gv+PRFjBIEP6ewacVI0Tutc2bJe+XvkAYDfGEEAZMzj9jKAGA70j+pHD+7S5oODetHZT9K7Xvx09XR35lKWIIg3Sa4Rb2O50ujt+Fid/THW3+yNUB86bfIvAZCdbkYQoIkV247oyND4rM9XbjuqkfGy5s0J16ZweXk/PsVQnBEE7soyxdXoMxdl6yDFUK6sbRkP2jkAUEQECADHmrVJSK0AtI79faN619eWa+fRYUnSdQ/v1a0bD+jrH3hJofJOG2OaBBC4bhWFDwGAZgpQRMAZUgyhmcf2DzT822gpQoDA4b26dlkTMXrU0xh5SIohTAk7+gUAEB4tVsCxZo1zOkaA1vG9lTungwNT7t58WPdvO5JTiRpr9kBse/6PkX64bTVOMZRNB4vtoTnuMl0j4IRWYzvv5hYoWIx82C7bUd5Ub/URBM74XDaEUsRRr6Olsu7adEg/enCXdh8bbv4DAMgYIwiAjHnaZgEQw6LbN9f9/D9veUyvOu+0jEtj12w0tvVhiytXYlmlGEoyGXVWfH14B+Ian2jcgUqKITTjQ+B2ptoiNQs81+PzaDYXZSPFUL4qthEEHh57R4fG9b4rVujRydFCHYH0xfe8UL/+/KfmXDIAeAItVsCxpimGPGy0AHBr7e6+XNZre1xteuWxjSDgshVao02V1STFzTo+fAj25F8CwK2xiXLDvxEgQDOuAvRORxDUrDeNe1Ec7lIMJV8G8YF8la3njH++sPSx6eCAVD0G/+4HD2tgtJRjqQDgeLRYAceaNUp8bLQAaH3NOiDsE76lUKAW1SgIHG8EQZy3NpssM4N92SwQTqAcrcY2gqBI89EgH9YUfzldLmsv03E6+9O4zLsKcPsQKEcyttSXPjYxrr5/56zPJipGP1u7L4fSAEB9pBgCHGs+giCbcgBoP0EQNLzINE8xZPl7mz9Mj09U9L2VO7Xi8SM6+8knxFxKNtuw+QiC9HEfRLsZI8UQErBdt6N0zqd1r46z1NYfQcAQgjzZX3opjjsePaj3vvQZeRcDACQRIACyV6RWC4AWYn+YsndQpFCcgihXjD703VW6deOBUN9vmGIoVo6hxn/acnBQdz52UCfO69brnn26Tls4d3I9vL0PZG3cMokrkxSjGdtlOVKAIKVJiuPcN3xuN/SPJE/rQnggX9YUQwVq5xBnAuATAgSAY83e3mn3N3EBpMf2nNE09YztbwV62HJt7e7e0MEBG5fxgRvW7tNffX/19MSRpy6Yq+/90SU674yFfqQYavb39j2c0KLskxTTAwQ7+4Sr4Zfj8tKadA6CNNoNrpb4n7c8lngZ3MbyY4xpmXYEk10D8AmvtACOkVoBgI/sKYaM9WG+nS9bX75jS6TvN9qMcTpL6v2kVK7oIz9eOx0ckKTDg2P69A2PSLJ3NNnK51LTUQxtfUShFTEHAZKwz0EQZQSBu2vrcSMIEv7eFZ9eVijbkuAjVWUP2jmuEB8A4BNGEAAZK1CbBTH0jZR052MHtevosF72rCfrRWefkneRAEn2B2sje8eyz6kC0rZ+T7+T5bjahHc+dkgDYxOzPl+26ZCMMSFGiqS/MxlBgHbDHARIwlWKP7cjCGrKEKMRkMocBM6XGJ8lqxhS5kM7xxXmsgDgEwIEQMZ8evsFbh0aGNN7r1ihLQcHpz/7uzeer7/6pfNyLBVQ1ezKY33g4roVQfRJohsvafaPNuzta/x907xTJotgT9ORdOkXAciUbQRBVwcdQLCzPRtE6Zx3OwdBTYqhGL9P417jU1MkjQAIwmm27Yu0a7g7APAJr7QAjhEAaF+X3bn1uOCAJP33rZu0+9hwTiVCu7G9iGR9oDL2DoB2HkEQ9eWutFMMWb8vPx6cm87Fw30SLWa8XG74N452NGOfcDXCglI62OJcslu9A71Zmhukp2mKoYzK4QIjCAD4hAAB4BhvTravxfduq/v5t5bvyLgkQB2Wi0+56RwE7XvlcvXo5nKS4obf9yXFEPfBQjg0MKZv3rddn1qyUbduPEDgJgHbCAI2K5pxNgeBw6tr7ZLiBbjTOPD9OZkIEOTHFlCTinXNJTwAwCekGAIcI/cyZrpr0yH985ufk3cx0AYCBWqY4sbyu4ox1k4IrlvhNdxUcVIMRdzwvowgaMaHMrS7vb0jes/lK7TzaHWE2+J7t+l3X3a2PvnrF/FGYwy2OQjaOcCKcOxzEOSVYqjm3zF+bzsn4vLp3kGAID+myaFVpGsut1sAPmEEAZCxIjVa4IZPDzRoX9YOiIr9OG3n52BXnaVZbEJjmgcV/HhL3IcytLcr7942HRyY8q3lO7T10OCs746WGqfPQRWdhUjC1f3X7VH4xNLipAv6959tdFkYSX7dOZq9xY70MIIAANJBgABwrGmjpECNFt/t6xvRjx/arWWbDtGBATRhnYKgSWoaPzqViyHtOQiaLabS9M269DVNMcThlLtGKfGuvPuJzx/YflS/8sW7dMG/3qzXf+FO3bJhf1bFKxz79TO7cqCYbAGmKPcOl/fq40YQxFjsisePtnTboVxu3br5rmgBWdt50MEQAgAeIcUQ4FjTyRkzKkeru2XDfn3o6lWamGwknnf6An33jy7VaQvn5lyy2Rg1Ah80m4SYFEPpyqRjXvZUUZInkxSnXwTEtHLbUUnSrqPD+sDilRoerwbfHz80pA9dvUo/+tOX6YXPeFKeRfSS9fqZYTlQTLbj5x+vWatr/vRl6ups/l6fy2PNNPh3FP2jEzppXreL4lTL4dHJxAiC/DRv55jp/79qZ69WbjuqXzjtBL36vNM0b05nFkWcUR7LH4kPAPAIIwiAjNGeTG60VNZff3/1dHBAkjYfHNTnbno0x1I1xj6HD5rlOGaS4vqivtzVaDvGuQ5E/Y0xzdNRxEkVERUjCIpratfc9siB6eDAlImK0U3rGUVQj/X6yfGOJmzHyMO7erXo9s2JlxNV7bLi3je6Otz2fvo0IqFSsLfYW0mYFyGMMfrPWx7Tb112nz5/86P6k28/pPdduUL9o6WMSvkEW3kDIgQAPEKAAHCsacdIG3e0uXLz+v0aLc3Oo/HjVbtzKA3gEdtzRpMcx/YURLFLVHiRAwQNP89mIzadgyCLMjT9exsfUAXxySX184dfftfjGZekGOgrRBLNOjx/tnZfqOW4vLYedy+JudiP/mSd03QwPp1mjCDIT7Njykh6dP+AvnLn1uM+X72zV1fduz29gjVgKy4ZhgD4hAAB4FjTjhHak4ndvflw3kWIhF0OH9hTCNnnIMjirXNfuXq7K9YIgohXD2NCdFpkkWLIgzRHQJbs10gOeNg1u8duOzwUbkEuRxAc9+94C75+zV4tum2TmwJ5ZoKoYG6azrVkpG8t3173b/99a/bHo30EAQD4gwAB4JoHb2/CLz4NiUZrsz1oNAsAkEO7vugphhp8HmPdkVMMyR7okTJKMdTs7+18QKElMUkxknDV1+x0DoLaFENNOmRtbnY4ublP5xIphvLT7EUII6MbQo66yYKtuIwgAOATAgRAxugsBpAH+xwE5NBOXawRBBG/32Q/Tn0nb6QYQsvx4cRCYbl6NnA6B0HNdTpJCs9NBwZdFEeSX/cOl6mTEE2YOQg6HM9/kQRzEAAoCgIEgGO8OZk+nx4QwihWaVFktjeRbB0QFWM/q9o5sBn10a3Rloxz3Yq63Y1CPDhncEVikuLiaudzPQlGECAJV53NTq/vk4vadXTYn8nJPTqX2jn1Yt6ajd4wkjo8ejXfNuKhg944AB7hkgQ4RnsRs3BMwAPWFEMVUgylLYt7gzEmVG7e9AuSwTqAkMoVo93HhlMNftivn5wQsPPxZfSpIl3zUPzRA62MOQjy03yuJSOPBhDIWNplgUeBDADoyrsAQKtp9iBIAAFAHpqlGGKS4voiP7y5nIMgxveb7ass+jS4D8IXP3xwlz5z4yPqHS7p1AVz9ZnfuFi/fNGZztfDCAKEdd/Ww1q64YB6ujv1luc+Rc992knO7rFOUwxNLuvr92xzt9CEfDqVSDGUn2bb3sivjncmKQZQFAQIgIzxJpkDBduEBSsuWlSzAICtY6GdO7iipxhq8HmMjRh5kmIT5jcepBjiquitsJ0qj+0f0M8fPaj5czr1hgvP0Fknz0u5ZNHd//gR/dOP104fj4cHx/TnV6/SjX/9Kp1/xkKn6yI1E8L43sqd+uhP1k3/9+J7tulrv/siZ/fYNI5Cn45tj4rS1i9O5C3MpvdpBIE1QOBROQGAAAHgGLmXMZNPD1dobbbJzmw5W5tNbsshnFy8TRg1QhBu8r60MRdPcYW5X92wdp/+6vurp9/i/MLSx3T1By/Vc592UtrFi+SGdftmHWsTFaMb1u7T+W90GyAgRRuaKVeMPnvjI8d9Nl6u6L9ueUznnr7AyTpctjenArk+vSjvU3CZEQT5aTqCwPg1+a+tuD6VEwCYgwBwrGnHSCalAIDj2VMMNZmDoJ17dKNmGGqUYiij1D7N+iwymYKg6UTJKLKPXbvuuA6a/tEJ/fsNG3MsUX3fWr6j7ueLbt/sfF2kGEIzy7ceUf/oxKzPN+zt15HBcSfrSCPFkE+d8j4hQJCfZnMQGHk2BwEjCAAUBAECIGNt3dHmSNG2YNrlrVSMNu7t176+kZTXBN/ZHjSapRiydnDFL1Lh5fnsVu920WxfNHtw9iEtAvfBYusdLs36bOW2oxotlXMojR84pNHMXksbrX909jmVt6lD2qdj26eyECDIj21ErDQ5gsCjnnf7CAIA8AcphgDHmudeRrtJ84Fm84EB/d43HtCe3uqD56vOO1Vfe/+LNH8Ol3ccz/ZAVWmSu96HTuW8RH3IrPe2ZdwO8ciTFDdJFTX1nbQxkq49jZUq6unuzLsYubCnGOKIh6wBtPGJipN1uB1BUF2YT0evT2Up+1SYNhNmpGSnR0MI7HMQ+FNOAGAEAeBYswfBNu5ng2PGmOOCA5J09+bD+vQNj1h+hVZme8xo1slvTzEUs0AtIPIkxfXe+o+5/SJPUqwQb9bFK0q0cjAXT1sK2vipwhqY43hva7uODus3v3Kv/u26DQ2/M152FCBweLCZWf/In0+jz8oVN/sM0YWZg8Cj+ACjTQAURhs35YGU0AZInU8PCGGk9fbghr39xwUHpnz3/p2prA/F1uz5ZMLysFusM84/cbdf1GuHaZIqauo7aWtebo4oXyXZMx71x2SOFG2op1Su6D2Xr9Cqnb3W7/k4gmDqwGUETH2OYjqIodkLL9U5CPy5I9mK61M5AYAAAZA5GtrtJq3+uJvW72v4t2ZvEaP9NHugsr3hVLSgnEtRn91S31LWVCbN9/PmA4Pp709GEKDNtHMaNjS2emdv3Rc5ZiqF6G0Oc912Gx+oLs2n5qRHRaGdnaNmb+Tf8ehBDY/7MyeOPcVQhgUBgCYIEACONX1vkvYkHOnqaHwJdzVcHa2jWeeCPUDgujTFETh4Lzr2HARRUww1mUtCkvb3j+rX/u8eHR0aj1WmUOVI+HcUUzvnUraOIGjnC2ib++Jtm0J9rxQioX2Yw8jlsTa1KK+OX4+KUvZpu7SZZgHZTQcGtb9/NKPSNGcNEGRYDgBohgAB4FjTCSIzKkcrYxtWzekiQIDj2TromqYYsnRQ8HZsePXuAbFTDEWeg8CE2lfr9/Trw9esjVmqEOVgBEFb8qojMWO2urfvVkHYe2eYFENhluR0BMF0iiF/+JTuiLzy+Slam9R2qLRxXB2Ah7ryLgDQaugYwUxp7fMuywxcY6WK1JPOeuGX0VJZX7lji1ZsO6rBsYmG32v2QDVhG0EQu3TF5+LhLfYkxVG3vAmfDuK2Rw5otFRWT3dn9IIl1M4dyb5Lsmvaea9ySKOesMdFqACBMWr2vrHL43BqURzb9REgyE/R3oGytXmYgwCATwgQABnz6e0XFFtXJyMIIP3Zdx7SHY8davq9Zg+ztuHydBCEV29TZXXdDzMHQa39faM659QTUigHI+nQXmznHdfP9hV214dps4VblssUQ/4duD4ViQBBfoq27a3FJT4AwCOkGAIcYw6C9LENq+Z0Nm5VhnkbDcX34PajoYIDUvPzpkyKITfqbKrYIwhizEEQZeLEtPYqI+naUzvvV+scBNkVA75x+UZ/qDkIHK7P3aJ035bDOuAgJ7xP1xjaRflJGrzKOvhln4OACAEAfxAgAByjYwQzpdUQ7baNICBA0BY+c+Mjob/b7GH25g37G/+xja9bRZp4tToHQYTvp3Rtaj5JcRsfUK2sjXerdQ4CGn5ty+W1LkyHdBpzELjwvivv1yWfuV3/eu36SEHsWWVyV6TE9vWN6q+/v1oHPZoMt10knSA66wEIthEPBWpiAmgDXgUIgiDoDILgeUEQ/GEQBJcFQfBgEATjQRCYyf/dGWFZ59T8Luz/tqRYt18KguBbQRBsCoJgKAiCo0EQrA2C4D+DILggrfUie81TK/jUvEWRESDAqp29ob+b5IGond+Ui/rsVu8an+kIggg/Wr2zV6UU0pE17RBt38OppbVz+6adr5FoLOvDwvfD8Nsrduiah3bnXQxnrnt4r95zxQqNjJfzLkpbSZpiKOsURbbz0jKdHABkzpsAQRAEb5fUL2mNpCsl/amkF0nqzrFYiQVBcGIQBN+XdJuk90s6T9J8SU+S9FxJ/yBpbRAEH82vlMiS7433IijaJkyrvF22FENlHlZwvCQdWEU751xyMklxzC0Y9XdG0d5W/vsfrdHLP/dzPbq/P2LJmpSD+EBbauf2DSmGUE/Wb/S7DdKlc+R+/Z5tsX/r42icxw8N6f5tR/IuRltJGpDNOqBLiiEAReHTJMUnq9pxnoYBSd8K8b1wiZxDCoKgW9JPJb2+5uP1klZJ6pH0KklPUTUI8pkgCLqNMZ9yWQZkz8O2K3KW1jHR1dE4xjvGCALMkOTBup2va1EDBPW2VVZ5oY2JlmJIkg4NjOmD33xQd3/4dZmlU2rn4wmtydrhxPHetlx2aIfp/Hd6r0npuH3swEDs3/p6Kv37zzbqtc8+Pe9itI1KwkecrEcQWAMExAcAeMSnAMGUA5IeqPnfmyT9dcJlHjXG/EXSgsXwr3oiODAq6feNMd+f+mMQBHMkfVrSP05+9IkgCJYZY5ZlW0xkiY6RdBljCpUzPC2kGGp9UTsekmSSIX1GMnG3XpzNHmdf7T42orW7+/T8p58cfYV1NB9BwPHUitp5r3KJRD2+zgkQan3Zri4UX8+zI0PjeRehrSRtkyadwyAqWzyCJ1YAPvEpQHCzpLONMTtrPwyC4JKcypNIEASnS/q7mo/+pjY4IEnGmHFJHw6C4BmS3q3qPeKzkl6eWUGROTpGkvNxiLFNWvvc1kAmQND6op4GpBiKJ+rw7/ojCOKmGIr4fRN/rok7HjvoLEDQTMEu4QipaPdml6yTFLf1FbS9ZTV6LJX1cdiGxrbKVtLtnWSi7Dis90ZeagPgEW/mIDDG7J8ZHCi4D0g6YfLfmyRdbvnuhyVN9ea9LAiCF6ZZMKSr2QMyjch0+bh90yqTNUCQwsSj8Ev0zuMEB6KH51VWIqcYCvlZqGXF2Gdx9/NEOdlOHh6fmH7obtYh2saHk/eSdGa38361zkHQzhumzbkdQRAixZDDNfoZ2PKxTO0dHM1D4hEEmacYavw3wgMAfOLTCIJW8/aaf19lLC0HY8zOIAh+LukNkx/9hqTVKZYNKWrW5KAJmS62b9VYiQBBq4v6gJRkSDUphpLJavNVRxDEDBDEfGDe3zeqv/nBaj2w/ZhO7OnSb19ytt7xoqdZf0NnSmtq591qO+/aebu0PadzEGS6Oi+PWx/LJPHskbWk/fvZpxhiDgIAxeDNCIJWEgRBj6RLaz66M8TP7qj59+sbfgvea5p72dfWbYEUbQumVV5GELS3qB3BSR6oinbOuRT12e0nq3br0MDY8R/G3ICRR4nIxJ5rohxj1r9Kxei3r1yhFY8fVblidGy4pP+7Y4suv/vxJuUEWkvGL6SiIFweF8xB4GeZJHlcsNZUuBEE3CAAFES7jCDoCoLgjZJeLOlUVScMPizpQUkrjTFjth/H8Gw9EXwxCjcaYFXNv5/juDzwCE2EdFUDMH69jpHWQ51tucxB0PqiHldJjsO2HkEQ8fWum9bv1/3bjurqD16i5zzlREnxUzXE2cdZjiDYuK9fWw8Nzfp8yZq99h+28eHUyvxMSZIN5iBA6kIcRm5HEHDcwk9Jj80tBwf1lJPmOSpNc6SgA1AU7TKC4CxJSyV9RtWJg/9Z0n9LukvSviAIPh0EwQKH63t2zb8PGmNGQ/ymdv6FU4IgOM1heZChprmXaQikqp02r63BSYCg9UXvPE6QW7ydTiwHjg6N69+uWz/93/G3X7QfGmU7B8EVDUYKDIxOWH9Hh2mLauPdSooh1JP1nABFubbGvU/5ei55WqyWlfSF/I/8eJ2bgoRkvT9kWA4AaKZdAgQ2T5L0MUkPBkFwvqNlPrnm3wdC/mb/jP8+xVFZkLHmjVeaAokVbhOmU2DbAxYphlpf5DkIEj5RtevbhHHHIz2w/Zj6R0uSkkxSHPX7JvaD80SMFENxj6k2PZQKgbnM4+GYRj1ZzwlQlDkI4rZRfQ2AtGv7KC9JR7Xu6R3RyHjZUWmaa+tRuAAKpdUDBAOSrpL0HlXf6l8gaa6kp0t6p6Tbar77bEk3O3pzv3Y0wkjI38z8XuIRDT09PVqwoLqYcrms3t7e6QZMf3+/xsfHqyseGdHQUDVFwMTEhHp7e6eX0dfXp1Kp2sExPDys4eFhSVKpVFJfX9/093p7ezUxUX1jcGhoSCMj1eqMj4+rv79fUrXx1Nvbq3K5ekMeHBzU6Gh1cMXY2JgGBgYkSZVKRb29vapMdlYMDAxobKyaBWp0dFSDg4Ne18mUq2XoVlnzVP13IKMFwZgCGRlTvDr5tp86SsPT31sQjKlT1TL0qKTh4XzrNEcT6lG13J2qaEEwNv2Q5Xo/jQ0NqGOy7vNU0hxVf9OtskaGB3PfT6147M2sU+2xN7X9u1TW/MlzP806GUnzNa4uVZdd79ibckIwpnK5Wr65Kmnu9PfKOqHmezPPp9o69fUVdz8lOfY6zUTda7kkzdO4umu2/7zJ7doxuf17h6q/G+jvC72fOie/N1cljY+O1K1To/00XhpXZWwq5U+1rI2uETPrNDFRjryfNHlMRanTXJVkTPtcI3ytk20/DQ8Px7pGDHi2n+ode1N1cr2fzHj1N/WuEaqUnNWpFY69dqpTxcS/5061I6au5RMh6jQ00B/6/jQV0mvUjiiXS6HPp6h1Gi2VY+2nseGhRHUKc3+KU6ep0Xs+HXtS651PU3UqjY3G2k9V1fOpb3gsszoZYzn2jGnZ/USdqBN1il+nvLRygGCfpKcaY37fGPMDY8wmY8yQMWbcGLPbGHONMeaNkv5ET7z09ExJn3Ww7p6af483/NbxZs6DkDgx3qWXXqp3vOMdkqRDhw5p0aJF0wft4sWLtXHjRknSsmXLtGTJEknS7t27tWjRoullXHbZZdq6daskaenSpVq6dKkkaevWrbrsssumv7do0SLt3r1bkrRkyRItW7ZMkrRx40YtXry4WsGxMS1atEiHDh2SJF1zzTVasWKFJGn16tW6+uqrJVVPmkWLFk2fpFdffbVWr65O47BixQpdc801Xtep89AWSdJ5nYf1xrmbJUknBON6Z886nRCMF7JOvu2nU3Ytm/7eO3vW6bSO6gX45XN26J6778q1Ti/o3quXz9khSTqtY1Dv7HliGKvr/bT1zh/p5KB6w3rNnK26sKs6YOm8zsMa3rgs9/3UisfezDrVHnsv6K7mXT+n85jePPfRahAnxTpVjNGb5z6qczqPSbIfe2+bu1GmrzpQ7SXdu/WS7uq+OKujX2+bu3H6ezPPp9o6XXXVNwq7n5Ice08e3dvwWv7GuZt1XudhSdKFXQf0mjnV8pwcjOqdPes0Pl6t04+//53Q++msjv7p/bTxwXvq1qnRftqxZZO6t1avgXNU1jt71jW8RsysU2VsJPJ+mjOwN3KdXtK9WyaF/dSKx16adbLtp6VLl8a6Rlz3w6u92k/1jr2pOrneT/N3LZdU/xoxv3+3szq1wrHXTnUyxsS+57557qOSnriWHzncvE63/ugboe9PcyY7xhu1I4aOHgp9PkWt08DgSKz9tHX5zYnqFOb+FKdOxvh37Emtdz5N1alv84Ox9pP0xPnUf+xIZnWqGNPw2DMtvJ+oE3WiTvHrlJfA9yFxQRB8QtLHJ/9zmTHmtSms4z9UnZdAksqSzjLGhE0NVG95/yjp/03+5/3GmEtD/GaepOGaj15sjHko5vovkrS+p6dHXV1dWrFihS644AINDAzopJNOUhAE6u/vV09Pj+bMmaORkRFVKhWdcMIJmpiY0ODgoE4++WRJ1Wjc/Pnz1d3dPR2Jmz9/vkqlkoaHh3XSSSdJqkbjFixYoK6uLg0NDamjo0Pz5s3T+Pi4RkdHdeKJJ8oYo76+Pi1cuFCdnZ0aHBxUV1eXenp6NDY2pvHxcS1cuFCVSkX9/f068cQT1dHRoYGBAc2ZM0dz587V6OioJiYmtGDBApXLZS/r9B83PabvPbRf3SqrS2WNaI4CGZ0QjGvIzNEP//TluuDJ3YWqk2/76W+vvl8/e7QaDV4QjGnEdKusDvWopBUfe4NOXrgg8zrNnTtXz/74bZqjCXXIaFTd6lRF84KS5sxfqFX/+kbn++nbyzbqEzc/roo6NE8llRVoXF3qVlm/85Kz9PHfelHhzyffjr2ZdXrR5+6ePvYqk9u/S2XNUVlr/+Nt6uwIUqtT/8iEXvapn2lcnZpQZ91jb9DMlVR9U+m3XvoL+tb9e6bfkBtTtzpVVk8woaHJ7808n2rrdP8/vVpPftLJhdxPYY+9sWCOyibQiV3l6Tq988t3af2uI7Ou5UaB5mlcE+pUaXL7d8poRN3qUEXzg5Ju/Ic36RlPPkHb9h7SG/93eaj9NGq6VFan5qqkr3/gJXrlc846rk5fWPqYvnHHhrr76aa/vFTfvHuLvv/wYVXfkhvXsOmue42YeX963XPP1pfe96JI++mffvqIbnrkcKQ6SdKX3n+pXnf+k9viGuFrnZ71kSV199NTnrRAS//yUr3wU0sjXyNu+otLdd7TTvdmP1300Z/MOvam6rTqo69xup8+8qNV+un6o3WvEa989hm64vdfzrHXhnX6tS8v17b9R2Pdc+eorGHNmb6W3/6RX9EZJ8231um+R3bp/d9eF+r+NGjmSAo0X+N12xH/+ZsX6Y3nn6wXfO7ehtfyuHW6+8Ov1cKOUuT99OMVm/WRax+JXacw96c4dap09+iRT/2KV8deK55PU3X61n3b9Lnbtic6n+746K/qtBPnZVKn+3YM6k+/tbLusfdnr3u2/vxVT2/J/USdqBN1il6nPXv26OKLL1aNi40xG5QRAgTVdSyQdFBPvLX/fmPMdxIs788kfWXyP9caY54f4jenSDpS89EFxpjHYq7/IknTsyOuX79eF110UZxFIYaP/mStvrdyV8O///BPXqaXPpMpJpL486sf0o3rZk7bUfXov/+Kero7My6RVKkY/cI/31j3b0+a363V//bLztd59f079LGfrq/7t9+59Bn69Nuf63ydON45H7mh4d82ffpXNacrvYF6vcPjesGnbg39/d+59Bn6zoqdsdeXdn3yNDg2oT/7zkO6e3P1zcTnPe0kXfm7L9bpJ/boty67Tw/tOBZruXd/+HV6+inzdXBgVC/9j9sj//4Hf3ypLvmFJx/32ReWPqYv/XxL3e/f+rev1hV3P64fPrg78rre/Nwz9ZXfflGk3/zxtx7U0o3R36f42vtfpDdddGbk38GdRteupz1pnu75p9dbr22N3PeR1+upJyceAOuMrQ6/ctGZOmFul37jhWfpleedmnhdf/W91bp+zd66f3vDc07XlR94SeJ1oHh+5Yt36dH9A06W9cDH3qDTFs61fuehHcf0W5fd52R9X3jn8/VbL3parGtBM7f93Wt07unRs+le9/Ae/fX3H3ZenqTmdnXosU//at7FaBtfXbZVn7vp0UTLCHM+uXLLhv36k2/Xf+/zQ697lv7xTRdkUg4A/tuwYUOuAYLWfNKPyBgzKOn+mo+ek3CRtR39Z4T8zcwn5aMJy4CcNIu5+R6UQzx57FXboTRWYpLivKU9KVnU+WGTFsfXyQFd+OhP1k0HByRp7e4+/dnVqyTFn6RYqtnmGW06o+jHxZSJcvQfxl0Xt0F/tcskxTdv2K8fr9qt3118v25cty/x8mzXe4739uWyHRDuHuxyfekZm8hugtgscIpny8V5leXzeMXSWOL+AMAnBAieUPt0kPRVoto3/08PgqCn4Tef8Iyafx81xhxKWAZ4inZAcj42pmwNzbSKa1tn3I47uJN+gCDa8pOWx8fzzoXxiYqW1Hnz96Edx3Swf9TJOuJuunq/a7Yf4u7niVgXDZc1gw/29I7odf91Z6zfFvEFiIqRvnJn/RE5UdiqXrytktx9Ww7rczc9qivvflx7ekfyLk5unJ4SIZblcn1pns9jEy32Eks7nuQ5cnFoZvmcZFsXhw4An3TlXQCPnFDz76GEy3pMUkXVAEwg6QWSVjT5zS/W/PuRhOtHjpqPIMimHO0qr+1rW21aZbItNu3OaTRXTvnpI3KAIOHzeKseUnstnVf3bj2sIMEQgqk3PuNuu6i/Myb+ukrl6AcIIwha07bDSZvBxbJ+T79GxsuaNyd+esJWHmEV1Vfu3KL/d/MT70pddudWfe+PL9X5ZyzMsVT5yDg+kPn64oo7ypV7ByT7G/lhlbMcQcAIMwAFwQiCJ7yw5t/1k4iGZIwZ1fEBgdeG+Nlrav798yTrR76aPSTyEJmuvLZvHg08WwOZAEH+knbINxVxFyceQdCi1y7bdgkm/y+uqUXH3XZRf2dkYr/1GSegFfeYas0jCUW+7SS9Ptqu90UcWRFX33BJX1i66bjPjgyNa9Ftm3MqUb5c7vswi8p6xEJccVMM+doO8bVcrcrF+zcuggyh12UdZc6xA8AfBAgkBUHwBklPr/noTgeLvbbm37/XZP1Pl/RLDX6LVkM7IDEfn7VtDby+kZL+59ZN6h0ed7zOxkgxlD/f5iBI+rZUqx5TtmolGT0gVY+B8YmKlm890vzL9cQZQRBvTbFSDDGCoJjaqcM6rPGEKU/sHUDt44cP7qobbLzBwTwPReRy34dpUzgNSKR45MZNMeTrpcvXcrUqN3MQOCiIi3Vx7ADwSEsGCIIgmBMEwZyQ3z1N0ldrPnpE0ioHxfimnkhV9OwgCD5o+e7nJU2Na15ujHGxfuSkaYqhbIrRtnJLMdRkvYtu36z3XXG/+kdLztZp65xjBEH+0h6+HHUfJ56kuEWPqabVShAkGBid0HuvWKG/++Ga+AuJwJj4nfZxRhDEPSZ4Yy5fqaW9K/Bu/Y2v3KujQ/GD+NYc0wXeLlE9vKs37yL4xeWcANmuLtXjttXmIGijU9wLLtqj3qQYyqwUANBcSwYIJD1V0tYgCD4cBMHZ9b4QVL1F0gOSnjX5sZH0D8aYhq2WIAi2B0FgJv93VaPvGWMOSvrvmo/+NwiCd81YVncQBJ+T9N6ajz9qqxj81+xG304PinnwefNu3Nevnz9y0NnyrBMjc6DlLu0gTdSlJ06h0aKHlO1c6QiSJBiSvvTzLXpox7HYv4+6yZOkGJqINQdBzABBix5LRZHW5i9y4Gf7kWF9/qZHY/+ee25VnLlMWpnbDvswIwgcrs/domYZLcVMMeTpacb5ny0nKYYyDRA0/hvHDgCfeDVJcRAEN6rauV/rzJp/vzgIgofr/PTNxpiZ8wY8TdU38z8fBMF2SeskHZZUknSapEvqrOvDxpgb45W+rn+X9ApJr5c0T9IPgiD4F1VHKPRIerWkp9R8/+PGmGUO148cNB9BQEMgKR+3Ydj23b9cu15vf+FZqa8z9fz3aCrtfRA1f2riByr/TjsnbNulIwgSpRm67ZED8X+sbCcpjpNiKPbky/F+BkfS6pAoej/HDx7cpc+/43mxfssbolVxriOtLOs5CFxKc31xRqxJ7XUuoTEXb/+7vg/uODKk+7cd1dmnzNcvnv0kdXc+8R4ukxQDKAqvAgSSLpRU943/SSdIen6dz5ulEzpn8n+N7JH058aY65ssJxJjTCkIgt+UdLmkqdEDz538X62SpE8YYz7jcv3wEw2BdOX1JkbYoMXg2ISzddoanFkOnUV9qY8giLh4Jimuz1avIFCiSYqTirPN4+6niXKcOQjijiBozWOpKNj67vGGaBUjCI6X9Z53eZ9O854fZ8Sa5O+55GepWpeL9rXLWOa3l2/Xv163Yfq/X/rMU3TV779E8+dUu9qynBAZAJLwLUDgyg5VO+FfJunlki6SdKqkJ0uaL6lf0j5V0wvdJOmnxhh3icFrGGP6JL07CIIrJH1gskxPUTUosEvSLZK+box5JI31I3vNGtQ0EdKV1/bN45nFOueVpw9R7STuG3JhRX14T3pMtOrzjW2zBEo+UXGWko0giJNiKN66kK/U5iBIZ7GF0M51rxUn0NjKnKb8yXgSgjSbka020qSVmtwPbD+q76/cpQP9o3rVeafqD1/5THV1+pWV2sX2dtVG39M7clxwQJJWbjuqry57XH/3xvMlNQkgOykFALjhVYDAGHOOo+UYSesn/3eFi2XWLPucmL+7TdJtLssCTzVLMdRKrcic+LgJ8yiS7Q2aFnv2KqS0RxBE3cdJUx616rXLtp+CnKMDkVMMycQ+7mJ12MRNMdSah1JhpPVmcKteI8Jo57rX8nUEwYPbj+rm9ftVMdKvPvdMveScUzJZb9Zv9Dud88DhsmYixZCf7tt6WL/3jQc0PjmJ9D1bDmvdnj793/t+MeeSHc/FG/mu2ujfu39n3c//9/bNNQECUgwBKAa/wsFAC2h2n6cdkK68Glp5dA5Y5yCgxZm7tEcQRN3HSdNOtWrQybZZOoJ8RxBE3eSJRhBkmWKIO2GuGEHgHh1AVSUPbxRL1uzVu762XFfes02L792md39tua5fM3PqunRkPYLA6bGW4oEbewSBf4dXS1l8z/bp4MCUn63dp11Hh3MqUX0uLjOuDu/r1uwJsS7L/YGDGoBHCBAAWaMdkK68AgR5rJMRBF4rpZxqIfoEtsxBUI81xVDuIwgippFS/GtRnOMj/hwEsX4Gz7XzfrWN0GrVa2c9cXPLp8UYo8/f/OhxbaKKkT5/06OZvNjhNEAQ6jsuRyykJ/4IgvY5l/Jw2yMH6n7+9Xu2ZVwSOxcvQbl6icd27Z8oV/TQjqP6zor6owyk9r5vAvCPVymGgFbQ7IGDxm1yPm7BXOYgsOW0pMWZibldHRqbqP90MFoqp7ruqPs48bNQix5S1kmKlfckxRG/b0ym5378YITTYiAitr97jNqrso1EMsZkHnTdfHBQu4+NzPp8T++INh8c1PlnLMy0PEmEubYX5TBkropi2ds7+xzKk4t2jqtrtm05f371Ki3dWD/oAgA+YgQB4FjTFEO0iVOVWwAmh9XaOnzTTm+DqrldjW+jaQcIIs9BQIqhuqwphjr8m6S42TUu7m6O8zOyRBRTevfJ9t2z9oB9duXIW8nyOm0e2+HwwFjDvx0bGk99/S4DtuFGELiT5v4qx5wUqZ3OJTTmoj3qqk1rOybDBAd4oQuATxhBAGSMdkC6cpuDIIeOEfskxRxoWejsaNx7vL9/VPduOayLn3qSTprf7XzdUY+5pA9DrTr6yedJiqNu8mQphuL8Jm6KodY8looirWBfO+9W5iCosk1SXDFGHRmPyLLluu/qTL8sWXfYOw1IpDwHweqdx3TLhgPq7JB+5aKn6LlPO6l5mVIrEWx82+4unnGyGEEQhm/bFkB7I0AAONasnUBDIDkfH7ZzSTFk+Vurvu1dJH/9/YclVSe6/ec3P0cffNUvOF1+1Bfwkj7st+oxZatX3oMHogZljMk2OBh/kmLkKa2Ov1bYr3HT4LRC3V2wpY7J4x5iG03ZkUEA2O31OESKoUzXFt91D+/VV5dtnT4mLr/rcV322y/SGy48w14mTjTI0QgCV3MQJH35hmO6LY2Ml7Xj6JDOPW2BujpJ6gJ/cDQCjjW7z/Nmd7ry2rp57FdbJw9v6GYjzFauGOnTNzyih3YcdbruqMdc0rRTrXtM2UcQ5DmKIPomNwlSDEX/YcwsEfSm5iy1BEMtsF/r5asPwzqCoI0O+JI1QJD9drDd97o6ivUYHGrzOdzExrjrRJ1pT+/IcR2rpbLRZ296JJV1ofW4mYPAQUGUvCztdH9A1Zfv2KLnf2qpfuWLd+uFn7pVt2zYn3eRgGnFahkBBdCsoZBWYxtVeXVi5rFWW1U5zLIR5XD73spddT+vVIzW7+nTzev362iKOZGTBwgcFcQz1jkIAv8CI81ynWeZYij+CAK/tmm78eyQ9srbvnyvth4ajPw72+W1nbb3hGdzEJQtK80iPuCyzuHiA27nPLBtP9e2HhrSrqPD1u9w74DUYimGOKTbys3r9+s/b3lM4xPVe+XA2IT+/OpV2n54KOeSAVUECICMZdnYbl3+bcM8dqutUbq/bzTDkiCMax7aPeuz4fEJ/c7X79dbv3SP/vQ7D+ml/3Gbblq3L9Tysh9BkOjn3rKnGMo3yVDUbW6UYF6AWL+KJ04RxybKWru7V0NjE+4L1G7SmoPAw3tzVEeHxvXN+7ZH/p11RF+C8hSNPcVQ+40gyH4OApfrM4nbDVEdafKSRKu2Q3yXxnYfLZV13cN7dOXdj2vzgYFIv3UzSbEnKYaclAJFcUOdZ7xyxWjJmr05lAaYjQAB4FizG33Wje12k9fWzaNjxLbGPb0j+q3L7tORwbHMytOOkr5d/n8/36L7th6Z/u+JitFffm+1eoebjySIeilJGpxshc6/emz7sDqCIMPCzBB11cZkW96s5iD46erdev4nl+rX/+9ePf+TS/Wl2zfHWi+q0jqXW6XzbuW26OngSB9Z1WyS4qzZJinOIu2z00mDw8xB4HgTZ73Pmq2Ps6w1HOwf1Vu/dI/++vsP69M3PKI3/s9d+vo920L/3s0IgsSLmFwOL98gvEaBgC/cuinjkgD1ESAAXGtyo+chMl25bV7PRhBI0kM7jukvvrs6o9K0p6S7/St3bp312UTIN0miXkuSpjdr1UuXdbME+QZGonYuGWNilzdeiqFYq4q0rsf2D+jvf7hGo6Vqx+NExegLt27SrRsPxFs5UjuXW+Ua8ej+aG+zSk3m42iR7RKGPUCQYUGm1mlZaRbzy7h9oz/Ed9ytbnLSe4cLDLXONjpZ2tii2zdry8HjU7l9+oaN2tcXbg4YF4eJq5S/HLLxjE2UQ+9vANkhQAA41qxzxvLshJB8bIz5NgfBlOWPH0k1rz3Sce3DzQMEUc+DpCMIWjW4abtmdwRBsUYQKMHEwTGuYnE7c/75p+u0+J5toUbKXPvwnrqdVD94oP6cHmgurUO6VUcZhcEkxVX2uRj8SjFUtFtauBRDbkcsZD3qudkz0taD0ecHgV/KFaOr798563NjpAe3Hwu1jFaag6CtIsiqXqM+e+Mjev4nl+pln/25Xv9fd+qRff3W39yyYb/e/uV79YJPLdUff+tB7e0lsACkhQABkDEmKU5XXg/ieTxohn0QjJMuASHl2XkceQ6ChOtL9nNvNduMRQqMVCcpzm4EQZJN86mfbdQ7v7pchwbsadAuqzPKRpJue4QRBHHxli7ykEfzN++0nk7f6A+TYsjl+kz2zyzN7rdXxZgfBC64Ow427O1r+LfHQo7ecjMHQfJlSMmf/9rtdvzN+7bra3c9Pj0q9PHDQ3rfFSs0WirX/f69Ww7rz69epYd39ap3uKSlGw/oPZev0PA481EBaSBAADjW7EbPJMUpy2nz5hGYONDP/AJ5y/NsjjwHQfxXyyW1bqeirVpZ5/Svt/5Zn9m+L5OovDuPDOtfrl2n3/jKvfrE9RuaTnaeNHiy+eBg3cm7ka7URhC05iUiFOsIgjbeLrV8m4Mgizu4yzpnPkmxsn9msW2vHUeGMiwJ0vLQjsajBE5bODfUMlppBEG73R9+unrPrM+ODZd075bDdb//41W7ZwV6dx4d1v2P8/IbkAYCBIBjTQMEjCBIzMctmHUDr3+0pOtD5KlHutLqNA+TGTn6CAIeYupplhrEt/dPrfshQUDjyNC43n35cn1nxU6t3tmrq+7brvdcvlzHLCnKXGybz9/8qIOlIIpWPZfzZE2tk10xctXsnpRHgMDWwZ1FcbKeg8Dl0ZbHCAJbHVfv7M2sHEiPrU3RHXLmcBdtb1/mIMi7lZm1NbvrjyD5vzu21P38J6tmBxSk6ihUAO4RIAAcaz4HQXs1BLKW19bNer3LHjsU+rsZzMOHHES9lCS99LTqlatpp5V3IwhsAY1kD5v7ZowY2H5k2DoZcJHSL+EJaXVItPPhYB9B0B4b5vZHDtq/kMNmsHUCZlEc13MCZGnD3r7M00JxT2l99mBquP2fcEBs03JEWw4v37gQdTsMjJbSKQjQ5ggQABkjQJCuvBpaWXcAfPz6DZmuD/WltdfDBHWiHnMTCZ+oWvXBvekb+b6FRjJOifRPP1nb8G8uHtKRg5QOae/OlQy16OUxkpXb7SkfBseyzxltTzGUPtdzArj4Tlg/W7tP6/c0zhefBtvu4mWX/Lg8rlykY2upFENOSlF8bAfADwQIAMdaacJLX/n4Nl7WRTpqGaKL7OSanz7i95N25np42jlhTzHk3z5uVhzX9xj7HA0telC0OPaae82uI+1gqEkA4C++uzqjkjzBNvdOJpcvx3MCZLg6SdLV9+9wvES7rFMaIXtN3skIxc0kxa4CBMl+TzMKgE8IEACONbvPM4IgXe38BmMjvHTVmqI+3CS99rRqcNO2XYzJt3Ovboohj+ZMcDZEn/tiptI6lVvpEhH1eskkxc2vlRv39atvONu0EGVLYDyLq6XbEQTNl+b6WLsjQjpLF1q1nSFJB/pHtad3JO9i5M5FOjYncxB4cqzx3ArAJ115FwBoN7YJ05BcfimG8lkv8pVnwz5qn2rSa0+rHuPNtmOeb8nXO77sb/Rnu59cPWAPjU9oYU+3k2WhubQ6RlrpElEqV9TZ0Rn6+616fXTt5g379O6XPCOz9eU9gsDtHARhvlPsA9GeYqiYr7v0jZT0J99+UCser6bgev7TTtKVH3iJTls4N+eS5aRJGyYMJymGfEmRWOxT1p2I+5R7LpAORhAAjjVNMcSbkon5uAWL/lCGeNJqoAYhxn1E7Xjg2lOfT2/kz1p/vREEtu8r24CGqzX1j2afm7ydpXWEtFLKqai5662Bu4RlKYowuz/r2xBzEBSLbeROMcMD0oevWTMdHJCkNbv79KHvrsqxRNG5PKxcjCBwcVr78sKeH6UoHrYbkA4CBIBz9luWbbgzksurweBJOxNtJOoxl/RhyJfh2K7ZHjSzfiM/jGZzAmRZXFcdwlmnHWl3aXXke3aqJDIRsbFmvT76dhHJUUfGvby2wHg2IwicLs3BN/zWSkFGSRoZL+uWDQdmfb5y21EdHhzLoUT5s7a5Qi8j+XHiy7HmSzkAQCJAADjX7D7vyxsLrSqvhhZ7tT3lud8jz0FQJsVQPc0nKc4zxVC9z5qVN7XizOLq5dz+UQIEWWIOguZKEa+XTFIshalp1mlibG3ubOYgcJhiKNQIgmIfbbbSFzHD0LbDQw3/9uD2YxmWxB+2QzRsm8JJiiFPTpWpYgyMlnTf1sM60qaBI092B9D2mIMAyBhpPpLz8fnH54eyouZtLYQcdzsjCNxoVq98UwxFm4NAJtv95GwEwQgBAvhlImKCapp24aTZGtm4t1+3bNivijH65QvP1HOfdlL+KYYcrr4dDjF7iiHasq3ASYohB6Pxo05EnxZjpKvv36F/u27DdJn+7LXP0off9Gye3wBkjgAB4Fiz5kbeDyutLrdJivNZLVpViGeCyCMIEl57WvXS1exhtUhxEaNsy+vqmBgeZw6CLKV3jBToZGliIuIIAutcJq2zWazC1PPY8Hgq677j0YP6k28/pPHJ1FCX3blVX3rvC60j5zJJMeRyWW0wB0GrvohQdL69BNVKKYY27O3T9Wv2HvfZZXdu1fPOOkm/+tyn5FQqAO2KFEOAY80aHDR+WxO7tT3lOYVt1M7Z5Nee1jzIbW+iGfk3AXmzjsgsS+vqfsb1M1tpHdO+7cckL1+WIs9B0Phvvl1D0hJm/3/mxkf1K1+8S1sODjhd96dv2DgdHJCqL+N8+oZHck/r6bITMsyyin6s+XYNSVdbVXaard0Qtk3h4jjx5aWXrYfqp6H69oodGZckX1H3qS8BHqDVECAAHGt2u/JlSGOR+bkF/SyVlO6Q/naXVvs0zD6L2jhOeu2J+kZtUdgnF823w6Leuq0Zhky2D008nxVTanMQpLPY2JLc+6KO9mQEQXiP7h/Qey6/X6OlspPl7To6XLeTbU/viDbs6W/4u6LtlzDFLVqdZrK1U4r4ghUZYmazj9pMvoywfH8ev2/rkbyLAKANESAAMuZ7g6TocksxlPF6eegovqQduVF/nfTS8+7LV+gDi1dqf99osgV5xh4fyDfFUL23QZvEMzIrb6ViNDjmJjVQAft9Ci2tze3bfuxIcKN0OYKgXUR5e/3w4Jge2H7UyXoPWyb13NM74mQdcTmdg6DNUwwVMUCA2Zq1YcJwM0kxxxP8wqgI+IAAAeBYs2s7DZJ05TW8OspaXTQAknR8wJ0kezJph1Ie15Jlmw7pXV9bHrnzzGfNUlDkecWuP4KgyZwJGZX4rs2HnC2Lu2K22uUhNMltMurLHC7eim03X/r5FifLsU3kaZtsOotrpdM5CEIsreiHmu1cabUXrIp0XXBZVGs6ttAjCJKXo0jbvx0UPT2aC+Mt9GyF4iJAADhGiqH0+di5EaVILo6BDuIDXkhyLCbt4M/rUrLz6LCzNz990KxjL8/rTd0AQZO377I6Lr613F1+XB+v6a0svREEfu3HIEGSoVLkSYotf4tdimKJuvuzaMbY+luyOFydBvJDjSAo9tFm215FfH7iXZ56XMxB4CDFUMHPFbSeqO0OIA0ECADHmKQ4X7mlGIrQBRA1t3E9tjfmUAxJrwV5dgQsum1zbut2zcXbbFlqVqSsjoufP3owk/XAvbaZgyDBbXIicooh32rfPmy7uWwdQZC+jOMD3p2DUdnux5xjrcFySoZfhoNDgeMJvhmfYAQB8keAAMhYEd+AKZK8tm6UdqaLRmmUEQTEEtKTKMWQpR0YZp/l+WzTO1zKb+WOWScXVc6TFNf7rElAo4h3mCKWudjS2eK+9bckChA4TTHk2YZJSdRa3r/tqD5x/QYdGmg8h0BSEy30Rmaow6jg1bW91e3i5Rrkr1maxDBcPEe1yWW5MKLuj1bcfa2UvhXF1ZV3AYB2w7U/uvGJihbfu033bjmspz1pntbt6cu7SLNkn2KIXn8fJHnAsD3ghEmNkefbT63UiK00OR/zzIta/2HZVp58J1WOrW4qJUOHUErSG0Hg1/5ikmL/XXXfdt2z5bB+8ucv14k93c6Xb7uGFC1wE24OgmLVaSbbPml2ry6aItXG5aliHyWSfBmhy9FixxOKobszaJhKiBEE8AEBAsCxZo0o23BnzGaM0Ye+u0q3bjwQ+vt5iPJQRoAAkosUQ44KEkMrTaRle8HUGJNrx1+sEQQF6/SaqVIx+sKtj+mHD+7W0NhE3sVpScU+QsJLcpeM/OZ5wVKVpSFuPbccHNQdjx7U215wVqzf25pDtjfSi7Zbwmzfoh9rtk7bIo7ATjIPStayaju4mNCdOQhQVF0dHSqVy3X/NkaAAB4gxRCQsRYa7ZyJTQcGQwcHpGKkGEr6kPPY/gENRug4I5bgp6TPuowgcKN5iiG/LtrNJkP1q7Th1AZY//fnm/XlO7bq0MCYhsfrP0QhmdSuHZ4dfEnm6pmI+DJHKwVN8/CJ6zfE/q2tE9Y2l4Rnl/am2iFnuu0ZieendGV2eFnbMNmlGCpgvKmltcHlTZLUZckRXMQgKFoPAQLAsWaNG4Y0RnPZnVvyLoJzSRoA92w+rF//v3sclgZxJe04Tv77RD9PpJXyOjd7my3XmtZLvWPN31vMTqTaIl+7ek9+BWkTbRIfSBQcb5QCoJ5H9/db/170tC9hJannsQTz2tj2cys1udtgCoL2SjHkWXWyKo6LEQQuDgXfXv5Ae+iwBAiivpjQyKGBsZa7XiI7pBgCHGueYogLdhTbDg9F+n5e7b1IIwgSFPIzNz7CEERPJD3Wkl4K8ux0aqU8mU33Q64phmav3HbcffqGjdrXN5piidIxVSVjjLYfGc61LO0gtQCBZ82bRCmGIjyoX/fwXuvffdsumFKwHdMOKYYsFSAlTH5cbnnrLEoZTlLM8zjy0JniCIIHtx/V3/9ojXYcGdaT5nfrr3/pPP3eK56ZaJloP4wgABxrGiCggZuy1p2D4NDAmDbus7+piOKwTlIcomcrz2ebVkqnYX/QzPfd33pFs5WniMGBWjyvZyOto9q3N+Vtb+o1E2UEwb7ekdjraSl+7f6mitYcb4dJim1NiyJ26BYpxWd2cxBYyhByGS6KWsDDqaVF3R1Fu35Psc0h+PmbH9XX79mm3ceivyhzsH9UH1i8UjsmX7I5NlzSJ5Zs1NIN+2OXFe2JAAGQMYZ8taYs5iDoG4k/BB/uJT2Tk74BxRwEbtiuyXlP+ltvzUV9KLKZqhND/rPRLps5q0mKJ5rc09tkcxeunoUrb7uPIOD5KVXFSjGUvLS0N5AH23sL9245on//2Ub92pfu0fo9fZGWe8djBzVUZ96uG9bti1pEtDkCBIBjzd7eYQRBunJLMRThu1k/5Ngm8EN8SR8ukqaazPNS0krP6c3eZvOtqkV/Q7SeqTq1Xs3ai2/NG9ubes1ESTHUrLOKjqh0Fekt7SRCBQjSL0ZuWi1A4Nu9vN0mKW614wnFEKZdcmy4pP+5dVOk5f7Tj9fV/bxZCkRgJgIEgGPMQZCvvLZulA6AIk4iCveSHgd0OrnRvHMvo4KEXXcL73aujdlgkuLmoqQYajbawLftkpai3ZMKVtxwx1HRKjWD7RmJ+0N+XJ7btv0Y9hHZxVyuPI77pWj3j7jCBsFuf/RgyiUB6iNAADjW7LJPAzeaomytKOVslo7AzVpqtMnbdVlLM8WQ73MQtBLrCAKT71t+dScpzqEcaXsixVC+5WgXqc1B4N0OTDCCIEIaNdp1+Yo7StK/49UuTHmLVaPZWi3FUJEOsazaOrZtEnZ7uTh3uW4jD1EOu7GJ2SmDgLQRIAAyVsQGbpHklmIogzkIaMv6Jen+sP0+TIdH0To3fGXbjkbGuxEErbjfY4dMW3BbZKFdRhAkmKM4UiC/6Xd92zApyW0EZ8w1F223hClv0S+JtlMpbNv5vS99ui44c6F+84Vnqac7364O39II2WR17FjnIAidYijdcgBpiXLUDY8RIED2uvIuANBySDGUq/wa4xFSDLXO/K5IIPkkxY4K0uZs1+TqJMUZFiYEz4rjVNRzomKkTkZIRdbKx1CtJCmGorTVmn23XbZ3Xny7Rqcl3CTF2W+Mc548X9uPDDtZVsVyLoU9Jz/7m8+b/vfWw0Nas6s3abFic/G2fKtpNmoz3DIYQdDuivqCSJRyD45N6EknzEmxNMBsjCAAHGvWQT02Qe9wK4rSWRtl8kP4K2kwKmkHf94PN7YH+SJp+vJvjtu57hQEHmx259tkcnlRF0vAPZ7UjmnPdkdXR/zHnCgjCDgOq4owgtPF7/LjZ4qh73zwEmfLsqYYKt4OK+AxlgXbSxlZjiBIvgwgqijXhOFxRhAgewQIgIyt3d2n/176WGEj374rwgNq3I5djhi/JD3Wkk9SnGz9SY1HyNHtM3uKoZzPuzpl8+E64LpD1Mz4/2HlHSQrqrS2mm/pNBLEB1SOEMhvOoKA4zRV8VMMFWu/hBtBkH45al1w5kI97UnznS3PdirFeSkh7wFmRTrG0j52KhWjkfGykxEETuYgIELglXa5TUap5uDYRGrlABohxRDgWJgb3P/+fIvOPGme3nfJM9IvUMFFbTDkFyCIkGKoTRpBsEv6gFOkB0+fWfPhmpznIKj3mQdPUa6DQ1NVip5iKP9tUUSpDSBood3hcgRBC20Wq9wSPLbJBg5TzaJfE233tzgjCJKkGXPBmmIou2KEkubk9f95y2P67sqdGhqbUKlsfykjDBejSYp+rqCYohx3w+MECJA9AgSAY2Ev+9c9vMdJgGBgtKSv37NNa3b16vwzF+r9l57t9G2evBWlEzRKKeO+tRK3LZv3G1SoL2kfa96BplZ5tmo+v2iOKYbqrDqP0hhjFNT0tIynlCqPFENZSasjKJXF5qJs6cSa9d0mFW+l7ZKWJB25sTv6CrZf2uE4sl3TW2TQorfSOr4uW7ZVX7lza6jvhj2XXbz9T/MBeYhyng0xggA5IEAAOBb27c77tx1NvK6R8bJ+58r7tWZ3nyTpjscO6Wdr9ulHf/oyPfXkeYmXX0R5deZFueEXMY8qZkszxVCYzpK8334qSvCumebpQTIqSEh5jCAoV4y6OtMLEEzXKWLVeMCPp02mIEhUT+YgiC7JtakjQYQg7lqLttfC3HPzbhckZWsfR0n7NSXvF2SKvj+mJKnG9Q/vdb4eF5uVFEN+aZVnimaiXBOGxpiDANljDgIghL7hkq57eI+uuOtxPbq/P+/iTFu26eB0cGDKnt4R/WTV7pxKlL/cUgxFaNhkXcYg7zHWqKvocxC0yrOVdQ4Ck28nUr2y5bHfZ3bajLkOEEz+/8gphlrlIMwYm625KJ3+zVMMscGb6UwSIIg7gKBgu8XHOQhcr892TQ8zguCpJ/Uc999Ztn+j3q99a5mndeg8un/A+TJdBF5aJXjTrgq79yIUnBRDyAMjCIAm9vaO6D2Xr9DOo8PVD26UPvubz9V7X1o/PVCWN6xPLtlY9/P/WrpJf/H68zIsCaLs+HqdCSu3HdV3VuzQnt4RveLcU/Xnr32Wujs7VK4YzenqmFxFYZtDLSnp/kj6bJJ3Lvq81++KdcI8+TgHQebF0MwXN0sp5XqIWjUe8ONJ69z17ZrgywgCzzaLSuWKvr9yp1ZuP6Zznjxf73rx0/X0U5KnpkxSzST9uL4dd2kJNwdB6sVIlW0EQZjr/Ufe/ByXxYnEmNnHsa3Evu0qH86jsGVwcZwX/VwpIh+OsbxF2QKDjCBADggQoG2Mlsqa29UR+W2SLyzd9ERwYNK/XLteb3neU3RiT/es72d579vXN5rdynJSlLZEpDkIZlTq/seP6P2LV06n7XhoxzH97+2bdWJPlyYqRq+74HT9v996XmG2RbuIsz8qFaOOjuo1KGnnZt4PN61yONonKZbyrGn9OQiyL89EpSKpc/q/05qkOOrDI+na4klrq7XS3oiSzqRIKYYqFaMPXb1KSzcemP7sBw/s0g//5GU659QTki08wWbIJ8VQcfabFO76WLQ6zWS7tTQ7z1513qn65QvPOO6zLN/SrxijjhlrLFKHqA8lDXspzXIEwU9X79Y379uhh3f1SpK+/oEX63XPPn26LY/wrJN2+3AAZoBJiuE7Ugyh5T1+aFC/ddl9uvDfbtYrPvdzfXv59ki//3GddD3litG1q/fU/X6b3N+8lVuKoQjrndk4+NbyHXVzevePTmh4vKwb1u7TX39/ddIiwgO1+z5pn1Lejem81+9Ks8a6b/X0YQSB8zkIptYTsW4xUlJDKc5B4Nm5kkSrjiBYu6fvuOCAJB0cGNM3I7aNXUvS19YuKYZsyhWjNbt69fihoUzX6zogYU0x1GSHXfG7L1ZPd+dxn2WZYbNe0VvlEMsq8BR2PU7mIAixkJ+s2q2//cGa6eCAJP3hNx/Uh3+8tlCBYV+wxaIdu4NMUowcECBASxsen9C7L1+hh3YcU8VIe/tG9a/XbdDP1oafMKmRlQ4mGUbriNJ4ntmpdcO6fU1/8/NHD6pvpBS1WEhRnIZu+bgAQeMlhBnplHt6lRZp6ds6mXOfgyDkZ2mb2THjOsXQ1FuWUTshcj8HCiq9zh6/9keSt3cjzUFQoONw0W2b6n7+jXu3J152kuMq0QiCmNu/OHutqlE1Nx8Y0Cs+93O97cv36pqHij0HmXWS4rJ9j80MDmSt3v3I/sa0X0egD8UJWwYnIwhCNGO+s2JH3c+veWi37tt6OHEZ2o1vx3xSA6Ml/fCBXfrkkg267uE9oV6eiXLsjoyTYgjZI8UQWtqKx4/o0MDYrM+vf3iv3vq8pyZadsMOvBa7+RVNXsOro+z2OJ0JFSPdsmF/5N8hPXEaurU/SdpQzruhXfRUBlOsKYaa/D1tvkxSPDHjSTq1F+ciLpc3+GJiszUVZQTBRJOOy7yv1bVq34T1SZI3vdvlMlC/A9roD7/5oPb3t0bKUdv9Nk7bOch9KuACHZweFDXLFENhjqdVO3sb/u1LP9+iV557auJytBPbFo+8R3M+XvtHS3r/11dqTc099WcX7tOX3/eL03MH1hOl2B41HdBGGEGAlvbpnz1S9/OZw6vjaNTk5Fqer9xSDEX5bsxCxn1rN+/Ho1YVawRBzdNP4hRDyX6eWKs0XK2TFJt8JymuL/sCzXzTzpYGItF6Ii7Wv31TDKnFdzzbH0mK0+xt5VpFGskSJfARVZLN0Jkgx1DcYLVPgZsw6hX30f0Ds+ZJy9JbnpvsZauZbPeWWPedTFMM+RHQj8uPlz7ClcHFZSzpvlm57Wih9q8PijSippmfPLT7uOCAJN268YDu2XLI/sMI1fTjnES7YQQBWprriRTDKNj9zXuutufDu3r1vft3am/fiF5x7qn6w1c+U92d7mKkURo2cQ/LHA5nOFb7AJn07ee8O6Va5VLX7Nz17aElj+LMfNPOdRGmJymOuOQipXbxSWpzEKSz2FxEGkHQbA6CpIVxyNdRN0lSDMXdwH5uicbqlffOx5p0RqXs3S95utPl2eJytuv9Jc88xWk54ij6HAQ+TCAbZj3u2mTZjEJAa/rEko11P190+xa9/oIz6v5NivbsxuGFPBAgQEtL6y1HKdmEakjP1+7aqq/89ouO++yhHUf1O1eu1Eipmsvv7s2H9fDOXl32O78YKtd7GFGOtLgdu+WYM3JmOUlbO4mzG2svSdbUNiEWnnc/j28d53HZHvCMcp6DwJMOh5lvU6cVnIq6WF87O32X1ltpvl0SkpQnyv22WVvTp+3SLB1SEknqmaQtFnu1Hu2XMOrdcx2+5xLZf/zGxTrzpB6ny7ROUmz52/sueUbdz7Ns/hZ9BEEaorYTw3zd1W3fxb6hDRKNre3RKlty5qiCmVqlnmhdpBhCS0szst/oYYbhYPm6cd3+WZMELb53+3RwYMrNG/br8cND7lYcYbfH7VyLmxqg3R9QUhMnQFCzD5Pul7z3a6scVtbTKucIQb37SR6BmVn3UsdFmKpn1GtjqwSpspbeCAK/9keS8rgcQeCTmfOJ+CLJSzd5j6ZrxPX1qd7SOjvyeZQ/48S5+u1Lzna+XFuHq+1vv/78+qmOsnxBxtQ5tYp0j0qjpFEvjWHOZVfnu4vlFGj3eoHtFe2awOZCHggQoKXl8czGzS9/P3/0+Dkmbli7r+73Ll/2uLN1RumIiD+CgIOr6Gr3vX0EQfNl5f3g2SrXOvskxfl2eXozgmDGtcf1pWg6xVDUEQStchBmjK3WXJQ37ZuOIPBoi6fZjEhSzyQphuJeBtLeLyXXozXqLK4rp+HM5zz5hFSWa7umN2oD/9Xrz3U2GjiJuiMIcihHXGm0KSMH/VNYZpJ1NUMbBFFFuQdzeCEPBAjQ0tJMMeRBW7QtxNmD+/tGQ31v+xF3Iwii3MTjziUQewRBvNWhiTidC+XjAgSNv5flW1Rx+dTplYTPcxDUW3MucxDMOFhd7/u4S/P0ZWjvpXVM+/YwmyzFkLsRBL5tFx8lm6Q45u9S3i8lxxNH1bvuJtluSSSaM8LCOklxgx1mG0URZJhkqOgphtIoatT6h3s5Jl5Z0lgOL25FY93mUY+VRCXJR94vdgFhECBAS0s1xVCDRmea1/5KxWh0RqocxOdyX0VZVuwRBCnmDkZ0cXZj7W9sx0GYYyT3dmbe63fE1slsjH/VbMURBE8sN9qC8w6SFVVaW62V9kaUVDzN2pqttF1skpyOSTLlxL0OpH35mJnuMql65c0tQJBSD0KcEQS2eRiyfJmr/iTFyUaK+iJuWdNIG+jTCIIJx0HAVtcqLxbFFTlg1ubbC/lgkmK0tDxGEKTzBobR//18i765fLt6h0v6xWc8Sf/znheksCb/xIm2h/2Fy86lKEuKe1zGDXjxxoI/ysfNQWALEDRfVt4vLrXKUdV0kuIcK1o3xVAOBZp5rXSeWztmiiECBDGltNl8u9ckKU2UN0Ndv0U6Wirr+of36uHdvXrOmQv19heepYU93U7XkYYkWyHRG+l+HXbTxp2PIJit1UYQWOcgaPCnjpy2wUx1r38JR4pmyYfihEsx5GhdDio8PM5Le1H4cIzlqc2rj4IgQICWlmYHWqPmaBoPyN9ZsUNfuHXT9H+v3H5U77l8ufP15KF3eFxrdvfp2Wcs1Jkn9ThZZtj97jRAEGFZcY/LuJ0QNEjSEWe7HjcHgfXN9QKkGGqRA8u2rasjCPJMMeTHRp6ZQsX1vp+qZ9TFMrw/Hl+Oq7QlOU7DpvQzxjQ9DqOUY7RU1ge/+aDu2XJ4+rMfPbRb3/7DS3TSPP+DBHElmoMg5vGc9lmQyQiCnPKdphUgsJ0rjV6usW2DLDdPvZcNrBlVPLsMp3FfcD2CYF/fiD55/cYkRapZV/JlDI1PJF9IG3GYYaiQIvcRtcNGgXcIEKClJe08sF3Is2x0Xr9m76zPdh0dya4AKfnmfdv1iSUbphtpf/CKZ+pf3/qcxJONhb0Bu+xbirKouCMB4s5BgHTEGt1S8xPbcRBmV+f9tm7eAQpXmm1r/0YQZF+O2SmG0ikEKYaywdwNzYVtP4b7Wvjj9OePHjwuOCBJa3f3acmavfqdS88OvZw8JDkdEw0giLnetO+h7kcQzC5vV2deAYJ0lmu7pjdqA9tGUWQ5B0G9a4btEPPu7pVCgaI+tti+3jdS0nsvX6HtR4YTlemJdSWv8NAYIwiiyPu5JW8uzwcgLcxBgJaWtPPA9vMsG50PbD+W2bqysn5Pnz5+/YbjtvHie7dpydp9mZXBZUMlyqLirrcct1eHFoY3wqYYCnOM5L1b816/K9b9INMWb/k1MzvFkNvlx08x5LYc7SKtzebbuZKkpmED8q5HsVx59+N1P//49Rucrsc3Sd5Ij7sL0j5cnU9SXKfAab3J30weIwjGJ+p3xnbbJiHIUL0muu1+XaQAd+xROpGD/o3/tmzTIWfBAcnRCIIxRhBEUZwjPh3tMnoTxebHHRVISdLGl+33Decg4Nofyvcf2Fn3828v35542WH3gdvn+vALi9uhMBFzkmIaJOlInGLINpQ+xMLzfrhslTeBmqUA8O38yWOzz0ztkN6xF225pBiKJ61z17dzJYmwx1aY70XZ3Kt29iYqT77ilzHJG+m+3oucpxiq81lXbpMUZ7/e0VL97TlvTmfD3+SeYqhAOVXSKE7kN6YtG+xffrouYWmO56IdM0yKoUisI2pSmNDaN5EzDBWwjig+AgRoaYlTDFn+1niS4vwv5nM8eZvG5jsr6gcIZo6WGBiN3vgKuw9cPnBHuYdnPQcB0hGn3XZ8gCDZCIK8D4dWabc2SwGQb4qhiB0OKZl5rPnyBnreQbKi8mX/pS3ZHAThOnfDpAz0bLN4KdkcBDF/l/KOcT2CoF6B85qgN63V2trvI6X6IwjmdTcOEGSpboohy/d9eF6slcr54DClSn+M50HrupyMICDFUCR+HfKpsF0bmYIAReB/LyKQQNIONHvnQz6N8jC6c8pJ6tJEuaIPX7NGe3qjz7UQfgSBwwBBhO82mmitmbhzEPjWadPOandh0hEE7Nds5LmZD/SPzep0yKNTYWagwvVbTVPLi3qJI5d+PGldO3y7JiUpTjnkiL0w32uXtwDzqmb89aZb4LFWHkGQQ2qjkXG/AwT1ninsqSTTLE10PkxSnGXzxsWqmKQ4Gt+CYmmwzYnSDvVH8REgACyscxB4nGKou6v4p/b/3r5ZP3xwd6zfht0FLvdVtBEE8VbM27J+idPQCzsHQZh9nXenU6scjtZqGJPrdv72ih160adv1VX3bqstUuZmjSBwXIbpOQginlNcE+NKK8VQ6wg9BwHHYO7iXqPT3nXOUwzVKW9ucxCkFJhotE+MMY1HEFhTDOU8SbHl+3mPAo0i7rkS9R6d6T2dEQSZG7TM2VCg08HKdk2OnnIrYWGAGLryLgDgM/skxQ1+k0pJounM6YHBpZs37I/927ANTLcjCMIvK26HQuw5CHw4KFtRqimGoi0rD63yJox9kuL8r+m9wyV9YslGnfWk+XrjhWfkUp6Zx5rrjo2pxUU9pOmcjaddNluS4F7YlH5hUhFFKUV3Z6BSzHt93pKUOsn9zNet5Xo/1k05l1Pt0wpMbNjbr/+85VGNT1T0yxedqZecc4ok+2iMHssIgiyfhupeMyy7x7c2VBr3haiLzDY+YF9ZmPsHcxCEM1oq6+9/tEY3rN2Xd1FSZx1B0C6NLxRa8V8zBlIUb5Li/C/++ZcguU0HBmP/NuwucNm5FGVRcVcbdw6CVjgeWkXtvrf1K4UbQeCgQAnkvf4sGONPPW9aP/lglUN5Zl4r0+rYiPy2YZFewfRIWlvNh/aPK2FHEIRJcxVls/R0Ne7sbKXtO1OSUznuZkl7a2YxSXFeh0RamY0Gxyb05Tu26oq7t+ldX1uuHz24S1Lj9EKSPymG6u0L273St9M5jeJEvadnGTRpds0JU3TbG/F4wieXbGyL4IBkf0kzcsAsWVGAWAgQABa2hk1ew3rDaOWHSJecphiK8N24Hf1hJ01ENuLsxdp9n3wEQYwCONQqV5miXC5/smqPJD/mIHA+gsAc///DyvscKKrU5iBIZ7GxJSmPyxEEUfRY0qWMlvxuAyRpeyYZQRD3t0WbpLhuB3RuAYL0n4GMkT5706OqVBqnF5KapRhKo2T11XvpyLZ/vLtepnAw+XxPd1HfYVIMNVWpGP1kVfOUwR5PVxGJLf2aiXhLoD8HeSBAAFjYGio+pxhq906TL962KdT3nKYYirCsuOuNPYKABkYq4mzWsCmGwhwjuacYaoPjysc65jIHwYyHGueTFMe8c8a9Jra71IJMnu2OJIdp2I7/cCMIwhfE9jb0wFgp9HKKJsm+8uywm5bJCAKnawgvq5ekjg6Na8W2I9YAwXxbgCCNQjVQdw4CW4DAwX20UslmnqS4a4jc6ZtpiqFkf5ekQVIMNdU3UnI+YbvPmKQYRcccBIBNnOs41/7clcpGj+7v1wVnnmj9Xl4drHHTYoRNeTATh2Q64jT0jg8QhPteI3l3jrbKcWXbjz6mAs+jSDOPx7QunZHTEXgYwCmC9EYQtM7+CPu2vus5CHq6G7+7NTRWlhZGWFjGkuz9RHMQxB1BkPLxOu58BEG9Duh8zrm0UgzVs693VCf2dDf8u20OgizVO4ZteyfJriuVK/r3n23Ujev2KQgCveW5T9HH3vIcdXfGf/czjUMp+nmd3fHcrGhhzq1RS+ortCenkxQnLAsQByMIAAv7HASkGEqLi/J/a/mOpt9xmRkgSpHj9uuSb7v4jpuDIGGKobwnaC34ZWZa2m/4uZZHmWZeelx3rJFi6AlDYxOp7+MW3Gx1Jd2Oa3b1Nv1OqA6wCMWwdXYOjvr9tmqSzZ3HCxtpr9L5CIJ6KYacriG8LNOsGlUnOW3ENuomy2e1+iMIbO28+HvvYz9dp28t36HDg+M6NDCmq+7brn+7bkPs5aUlcnigYCmG8m6Ht5JWecHAFqPz8ZkCmIkAAWARa5LiCMtfv6cvlU7fot9/XGySMPkOnaYYirDn4zYoY48gKPjx4Ks427X2J7bdGWbR+QeM8l6/G7b9mHcap3ryKNGsOQgcjxY3M/5/+N/5t3/i2nZ4SL/xlXt18Sdu0Uv+43ZdftfW1NaV1kOqh6dLItc81LwdEfe+3IhtkuJWnhAzyTUl9hwE8VcZivMRBHVKnNscBBkOIaiYxnMQdHYE6u5sXJYsX+Wq1yaz7Z64l46xibKWrJk94euSNXsTBaVSGUEQsZJZtrlcpBjKeyQv/ONykuIWauKiQAgQABaxMgxFaNy89Uv36K1fukdHh8ZjrMlSBqdLy56LSf+CEI8FbucgCP/d2vVGOV5oiPol3vWh9t+Nl1CMOQhyXb0ztk5mH+uYR5lmBjVdF+F/b9+sj/10nQ70j0b6nY/7J47RUlnvuXy5Vu/slTHS4cExfebGR/WjB3flXbRIfNsdScvz7RXNRyKGuS+72i5DngcIktQzSdDK1+tAKYMRBHmddVmmGJKRRhqkcpnX3enNiO6sJiles6uvbsBkcGxCa3b3xlxqEzEL6/PEs81TDCVfBpIp4hv3tuBp5DSa3rWq0A4IEAAWtgt5o+G1US/lG/f161+vXR/xV3Z5dxwm5frt1IbrcbiZIgUIalYc5Xfx31Qs9vHQSowx2ri3X1++Y4u+e//Oht8LNweBy5JFt+nAYEu80WofQZBdOcLKo0gzt0Ma95ir79+pP/n2Q5F+4+HuieWB7Ud1oH9s1ufXr9mbyvpSm4OgVXZIBKECBFFeBLB81/VoBZ8kCy7E/V2629P9CII6n+U1giDTFEONRxA0m38gy9jBF5ZumvVZGimGbL8bCzl3St3lpnBHjbrMbCcpTr6yoj9vZyHsOejzhNYz2UbG2CYpbplGK1oakxQDFrabT6PLf5wb1g3r9ul/K6bhTWVed2fDxnErcjKCIESDxOXDYZQl1bYrovwu7ggC2q/piHP8fHflTl33cPNOvzCnQN4PJh/67ip1dQT6nUvP1r+99cJMUw5kJe9tXFcuubqPX6ctH3SWivh2WT3/fevsjiVJunvz4VTWl9Zx7d3bbhkUx/XIPlsQwMvrUY0k52OiSYpj/zJd7icprvOZ0zWEl+Xt3pjG95x5c5q965hdQR/e1auD/aM6/cSe6c/S2D9dliTnpQTPT+lMUhyxDO6L0FCzTRXmfsbI7nTZR+Dkt+1tgXynkxRzeCEHjCAALOLNQRDvam7LGxm1IV70G0pWDS63IwjipQqK8lDsInACd+KcZ2GCA9VlF+PBZKJidNV92/XN5dvzLkpstq3oYwd0PiMIqms1xmjRbZu9nAyxyLI+lz08rFORRTVdpxgqW+7zrTyCIEnVYs9BkPLmdD5JcYIj+ikn9ejk+d3OypLlCwFG0rAlxZBPvrvy+JGhacxxNMcSIJgo+xVoi9qGyrLN1WxNYYrSytdkH/i6dW33fdsIAp9H1ABTCBAAFtYRBI1SDMW8mNsailEX6ftbZs246CwJ8+iS1xwEtQ3gaKmJIhSodn3xfoYaj+7v19//cI1+7Uv36OPXrdfhwdnpQFwKs898Os9/8ECxcqUfp2gphnIo09S15/o1e/U/t9V/2z0PHp0CiWSdQzutzdYq+yOKcCmGwi/P1sGXdGJ6HwOeUxKVzdNqlbIYQRCy7q8+7zSnaYEyTTFkpL29I3X/trDHHvTIenqCh3YcO+6/05jjqMsyKbPrY25K3OCUz29Mu7geprW921H965ufF3drgCAINDZR1n1bD+vGdft0rGaeSU+rAxyHFEOAhXUEQYPPY+dCjfez1JeVh8xGEDhcT5TGc+3QxCi/YwRBPrYeGtR7Ll+h3uGSJGndnj4tf/yIFr3nhamtswiTFNd6dP9A3kWIrXCTFOdwhZ861n7o2aS53qW0iSnr7FxpPXT7tjey6FwIN4IgfDls1/WkbSOf33ZNUrS414G0rx+uRxDUE7YOQeA22U6mKYZktO3wUN2/nf3k+dbfZp34cGbgJI1JirtTChCkcb2MPILAslWCwL82WRbneDvzbHdPs6UYOjo8rrf+7z3afHBQktTT3aHFH3iJXn7uqUxSjEJgBAFgYb2OO251WkcQRL0/5Hg/GS2VdffmQ1qyZm/st6yzeoh12dCMNBKg5rtxfxeFbw3qovnxQ7ungwNTNh0Y1N2bD6W2zjD72ocUQ60gjRQAacqjSFPrvHfLkexXbuHh7okly7dxpRSbCK2yQyade/oCSdV2zX1bD2vltqOzOuBsHQVx2No/iQMECdKPhJFkUyS51vraNio53t71OlvD1sH1KKVMUwwZ6fFD9QMEzzptQWblCGPmZrHtnjTaF96lGIr4fdt7UK6PuGabP8zuIUCQLl+bFGXLeXZoYGw6OCBJo6WK/vQ7D2miXPG2PkAtRhAAFvYRBI1SDMV8k8nSxoicsy6nCMHB/lG954oV0w35nu4OXfm7L9Erzzs10nKcpBgK8TDkNMVQhO/WjlzIorHAGwjJfOXOrXU//8yNj6a2zjDXEQaUuGHb0j4Ob86jSK47QV3xtFiRZT69d0rbzbfdkbQ8xhhtOTio912xQgcHqi88PP2UefreH12qpz1p/uR3wiwn/Dpt7Z+k52GSCUzTlmREZ+yRuykfsK6D+EkmKXYdg8wyqDlRrmjn0eG6f/uFU0+w/jbrFEOzRxC4H6Fo+12yEQSxf9qQyzemO4LA6XNbs2WFeXYaI0CQmzzbf1FfZOwfndDdmw9Pv3QQVqu0cVEsjCAALOxzEDT4Tcx1uRxBkNcN5ZM/23jcWz6jpYo+9N1VmojYYC3mJMVR1hsvxRDaR5hj08e321uNj4M08igSx1q6sh9B4M/+3H1sWI8fGkwpvUWy35crRn/5vdXTwQFJ2nV0RP/wozXT/x3m3IhSDGuAwPcRBAmOq2RTEPhzPNdyHVitt7Sw543rF/6zTDHUO1Jq2CH39FOapRjK9tqaxcgK2x4vpdRoySoIF+e5Oy4XW4o5CJpLcg76em2P0yZe/viRGAGzcDYdKG6aV/iHEQSARZZzENgeJCIP0cypM+eGtftmfdY3UtJdmw/p9RecEXo5Wb2t6nI9keYgqGlPZtEBSd9e8YQ5h319q7tobB0sPnaM5zGqwcdAieTfG+txZf2Wa1qHUJTl9g2X9MFvPaAHth+TJJ1/xgJ98w9eqqecNC+dwsWw/Uj9t5ZXPH5UfSMlnTSvO/ExuOPIkO7ZclhPPmGOXn7uqakGCHy8nk1JUjYf5v6qu3zXAYIEiwsUOL3OzAxqnr5w7nGBNJdsx/3cLr/edZyVYsiyz2KPOLf8LOoLWTOWnOC39bnsEK12NDt8bms2giBMiiECBKny9ZYVNxVyWvX5/kq/5gdDsREgACxs1//GIwjiXf2tjaiob2DEKkF6lm89Ei1AkNkcBC4bmvHWm0Vnn2/HA5oLc1i4nGS7ndm2Ipu4ysdUS5K/5Yoq8wBBWsuNsD/+6cdrp4MDUnVelz/9zipd96FXuCtPine/PcdGdNK87nAbs8F3bli7T3/1/dXTbZ5nnDJf+/pGGy7G1jZavvWIrrpvm44Nl3TJM0/RX7z+XM3t6jy+GCmfLsnmIEiy3ridNeluEOcphuocSGGr0OF4gteZAYJ/feuF+svvrXa3ghrWl7WaXDxzTzFkuUDEnjvDssxEcxCkcDpEH0Fg29cJCzNzXQn/LjEHQRhh78NFas/Fff6KHDAL+fXF926LURqgPgIEgJVtBEGjOQjircllaljf7rFRX7BIexj8FKcphiJ8t/bNb892FTzBCILspPGGX5ryeAvY12CUn6WKzpZiqFIxztNWpHUI7T42om+v2KFA0usuOF1nnVx/NMBoqaybN+yf9fmaXb3a2zuipzb4nU+mdlmYzo963xktlfX3P3r4uE7kRnnWpzQ695dvPaLfXXz/9KS4K7cd1T1bDuu7H7xU8+Y8ESRIO11DXpMUx50MOO3rh+vLZv05CMKtxPkkxTOW90vPOV0vOvtJemjHsQa/iC/Oy1pTsr5dzrxW29sX8dZh+12SN9rT2FRR61gbNJ7JeYDAQYVJMZQuD5vgkuKNIIg3/sXTDYCW5te4PMAz8UYQxF1X41/mnYNvaGxCN6zdpy/dvlkrHj8SudMs6oOfiw6wMO1Ipx1tEZZVe1zZJqd2xcdOTtiFG0GQfjnagX0EgX/nTh5F8jQ+0DLPTraOjzQCgWm1Ka68Z5v+9dr1+pdr1+uX/3uZHtpxtO73bG/J37/tiLPypHmuTO2zMNfheuW4ef1+jZaiXcQbdUosvnfbrE7y1Tt79d+3PjajIJFWl6n4naVGn/rZRreFccR1YLXe0sJutyBw28E6M2Y5f06XvvkHL3W3ghq27disSlk/P82epLjxd+OWzZ5iKJ36pvFs28g9mw/HXFs0zVMMNS973OBkO2nJ+WViPoB5+EgBzEKAALDIdA4CSwM4zxtK33BJ771ihT703VX6wq2b9J7LV+g/bngkUqfzRMQbadzcflE5jQ9E+G7tw46vjR/kK8xDlY+d163Gx02cR5F8PdZa5fppG0GQRsq9LHbn0HhZ//yT9XX/ZuvUy+u+HNXUKNK464gTCGl0LGzc21/38yvuzjbtQJLzMe41ZtvhodjrTPvy4fy6WWd5oQMEjifrrTeqacHcdBIT2LZjswnes751zSyNbfXx585o/MOoz1vHLTeFbRXnHLjmofr51Jvt66ialaw1Whf5C7sdo27vPPdP3IEjUV/Y87TpjRZHgACwsLWzlm06pJHxcp2/uH8jJM/7w1X3bdfa3X3HfXblPdv0yL6B4z6z3fSi3kjjRuaP4/Gkj7UNZm7+qCdUiiFvX+suGNu1y8MTNI8RQZ++4RFtPTSY+Xqb8XD3xGLr+EgjYJ7VZnvswID29I7M+tyaUqkg+3Q6xVCIg7DeN+I0cxq9SV1vG9f7jc+bNm5nepIgSNoBRtcvF9cdQRDyt67Ts7jurLVJlGLIbVGamj1Jse3lL/fPi8lSDPlxr7n24b11P3d9xLVK+6GV+bqPYgXiAr/vwcAUrwIEQRB0BkHwvCAI/jAIgsuCIHgwCILxIAjM5P/ujLi8JwVB8M4gCL4SBMF9QRAcnFxefxAEW4Mg+H4QBL8dBEF3SvUxEf83kUY5EJ+tsbRmd5/e8dX7dGxo/PjfxB1B4LgR6aoT6X9u21T38yvveXzG+hovI+ow6yKmdIyyvWs7drN4M9fXBhYaC7PPfOy8LiLbVvQxCJNXid711eU5rbkx//ZOPNYUQ2mkMMjw2nGgf3Y6IVt9nQbA0kwxFGEVruoUJ1hU+4tWnKQ4SeAy/e3hOMVQncWFXYfjaUycL8/GPprbrxEEs+YgsHw3jaL5N0mxu4W6nkej2fMXTWw3wh4D9edY8VPcZ4PIk3bHWguQjDcBgiAI3i6pX9IaSVdK+lNJL5IUufM+CIIFQRAskbRf0g8l/Zmkl0k6bXJ5CyX9gqR3S/qOpE1BELw6eS3QappdyDfs7dei2zc7WZc1xVCM5aXdsLll/fETDFo72SIWJskQ2bxESjFU82Vu/skYY7Tl4IBuXr9fhwbG8i6OM+HmIODoccGaz9fHbZxTkY7MCIb7oFUe4O0jCNzfD7PcbFG7dIqyS5OOIIjztm6cFwpqy+d7Sq44nYkZDxaNxHWAud7+Cz+CIN1JitNknYOgaTGyPeZnbRfb6PC4KYZsbZaU3rBKY7RDVJlPUuz35bIt+DqHXtxre9R7uK/1R2tLJ1lgPCdLmu9oWQskvXXGZwckPahq0KBb0gskPW/yb+dIuj0Igt8wxvzMURlm+nKI79TLV4MchbmQX3Xfdn3i1y+a/u+4l3Lnbxo5XdpsM++N9hRD0UpTwPiA1ymGfO8UiGuiXNHf/OBh/WztvunP/uM3LtZvX3J2jqVyI9wcBBkUpA3Yzo9U3t5OyL8S5adVrm22t3HTGMWSZXAxcsek0wEEadZzcg6CFDr5GolzLGR5hiRdV8VInRn2+Mct75I1e3Xdw3s0NlHRr1x8pt730mfUPc5djxCtu7iQq6gWz93GrTcHQVoSpRjKegTBrPhA4wLEPT5syxz3bASBy1uNz8FANJbkEPC1hRfnXhwoaJmXWtDafAoQTDkg6YGa/71J0l/HXNYxSd+S9A1jzJqZfwyC4JWTf3+mqtvi6iAIzjfGHIi5voaMMX/heplw49jQuG7esF/bjwzpkmeeotc9+/Tphn6cC3ncjn57iqHoy6sYo84Um1MzG6gu03S0/giC2gBB+q2FVm2QXH3/zuOCA5L0sZ+u1yXPfLLOPX1BTqVygzkIsmPb1CUPr0W8UdSKGt+rSwWeg0CK36nTN1LS8q2HVSobveLcU3XKCXOcliup6REEIb7rKnVCrACBqf9vH1WvbdGOmCRvFcfZHt9ZsUP/cu0Tk2/fvfmw9vWO6h/e9OxZ33V9+6i3+8MGwZxPUpxhb63t+ahZADLrQ75zZooh2wiCmOtIawRBGgFVl0Ey16NgmrWlWuUFhKKoO0LK012Q2QiCWGsBkvEpQHCzpLONMTtrPwyC4JIYyxqX9ClJXzDG9Df6kjHmniAIXq9qWqMTJ//3N5I+GmOdKKCD/aN6zxUr9PihIUnS15Y9rt97+Tn6+K9dqCAI4g3njlkW9w8S6d5WZo8gaPzdqCmGXHR8Zv2mSdw5CLj5x/e1ZVvrfv6DB3bqY2+5MOPSuBXmFMhi/op2lySfb1r8K1F+WuUUsI4gSOEYzHK7RR9AYLT5wIDee8X9OjxYTRu3sKdL3/7DS/SCp58cbVkp1nN6DgLvRxBk2N5IuII4Tb8kHd9xOgAvv+vxWZ99495t+qtfOk9zuo7P3Ot8BEGCDjT3cxBk18q2ta+blSLrgPrMTmzb2mNfOyx/S5IWMZ05CNwty/Ux3KxordK+yFvY7Rh5e+e4f2KNIGAIDArCmzkIjDH7ZwYHEizrqDHm47bgQM13t0v6as1Hb3FRBhTD1+/ZNh0cmHLVfdu1+WB10rM47ay4DYpGDxI+5H2sv4KZ/2kZRht5kuLWbpXV7hsmKY5vb9/syS+l6jncCpqd+61+nmTFGtz0cBu36vkcR6tsitaegyBa6hVjpI/8ZN10cECSBkYn9Hc/eDjyutOs51RHYBppQhqJMzH98SMI/D5jfA967+8b1c6jw7M+Hxova9mmQ7M+j7O/rBKMRHHdOZVpiiHLJbBZoCLrI2pWiiHrCAL3pRtPaw6CuL/zeASB79cbyNtGXpxAXKDo7XcOUeTBmwBBzu6t+fc5eRUC2ftanTeBpCfeEIrTsInbGGocIIi1uNRvKjPL67KT7fBg8skwn0gTlc3dNcpqjhtBwM3fuVbZps3q4WHfdSHZ38bzMMWQr09MeWiRk93W75FGkCrLjuJ6dbOt/sjQuB7acWzW548fHtKWgwMOS5bM9AiCkN+ftc1j7IKlG5xnQHUq6bUpzmGZZYqhkqXztW+kNOsz16duvcWFH0FQ3BRDto5c3+Yg6Jw1gsAeDI3Ddv0uTfjVZvH5Dt1s+/tc9iIJe1+oe33zdC/EDf6SYghFQICgqvb868ytFHAqySR89245LCnehTnuWht1AsRdXvophsIvP2oHxz//dF3U4jTUrJi//42V+v7KnYk7TKI0Yo6bgyDRWsNptwZGq9S32TnG209u2M59L1MM+Vek3LTKprCPIGiVWj7Bdu060F9/ZJgkbT4wGGk9aQZCppYcdh0O4gPa0zuiK++u/2JLmPX6fu3I+p4WdW22zuh6x4HrycDrrSP8HARuRxFkmWLIOgdBk99mfcjPSjFkG0EQ43i/cd0+/cZX7mv4d99SDLk8p7NPMeT5BbMoEmxGX3dB3NSPnlYHOI5PcxDk6bk1/96VxgqCIHi1pJdKOkNSWdJhVec+uM8YM2T7LeJJMrR3qkETq3Efc7Wu+wDSftCauXSXcxBk6Y7HDumOxw5pb9+o/u6N58deTpQq1u4b1w+Q9dDILaaJilGXJWTtY/qbVuNj5yyn8xNaZVuEGUFQqRh9+Y4tumHdPnV2BPq15z9Vf/LqX4iVdiHL7VavI9F2WhVln0a9r85uM8Wr6P/cukm/+7JzZuW7b7ze7DZo0n0Xp92aZV5nW6d4vaI7n4MgweJcp2fJcgSBtd5NRxBke0GZuZlta49atFU7j+kvv7fa+h3bKJdm0pmk2OXSXE9S3OTvTteGOHzdB5mNIChKgwgtpe0DBEEQdEh6f81Ht6W0qmUNPh8OgmCxpH83xhxMad1tKUnn2dRPwy7CGPNESpvY62wwgiD2TShmQUKa/TZc4xXm0cc21UgPu+rF92zTh173LM219chaRKniA9uPaeW2o3rpM0+JtS7YtUqDqukIAg87r4uoaHMQ4Amtcq6HGUHw6Rse0eJ7t01/vmFvvwZGS/rHN10QeX1ZdhrXTzFkay9Y3haOPOFxeqaWHbcTOO6lZWi8rHu2HNLrLzgj1PezHEGQdPFZT1IcdYPYztN6x4Hr+0e9pYWtgvM5CDKMzNjOsSzLEcas8tjmW4m47JvX7296TCUJENikkQ4pKte7ulXaD74Lu5Xr7Q5f91HcSYo9rQ5wHFIMSX8uaerpqiLpsozXP1/SX0h6OAiCSzNed0tL8ubO1A0p7EN05bgHsJgPi45TDGV9U7XdK/PsyAy7HQbHJrTssdmTzIVfT7Tvv+try7Xots2ZNBbarT3SKvUtNRnCSoqh9KX1sJ2Erw9MeWiVLWF7G7dcqahUrugHD+yc9bfvrdwV6/6a9yFkHUHgcD1p1nNq2WHX4fK8PdA/1vxLU+t1ttb0ZX1ti7o2WwdlvWPa+RzF9dYR8rfu5yDIrmP+uof3Nvxb0xRDGZ8AM8tjW33UNtzlDebNq5UkLWIa28rlMrNPMeR2fXArz/kJ4j9/cVDBf20dIAiC4CJJn6356OvGmA0OVzEm6YeSfk/SxZJOlDRH0pmS3irpGj1xpXiKpBuCIIif42SGnp4eLViwQJJULpfV29s73fju7+/X+Hh1ItiRkRENDVWzHE1MTKi3t3d6GX19fSqVqhNvDQ8Pa3h4WJJUKpXU19c3/b3e3l5NTExIkoaGhjQyMiJJGh8fV39/v6Rqw7+3t1flclmSNDg4qNHRaq7ZsbExDQxUJ5+rVCrq7e1VZXJyyIGBAY2NVR+GRkdHNTg4GKpO/QPV73WqogXBEw9TJwRj6lS1DHNV0lyVJr9X1gmT3ytXzHF16lFJc1T9d5fKmq+pSXSNFgRjGh0vTdepa/J73Spr3uT3gsnvBZO7e57G1T1Zhjma0DyVVDambp3Gxsanv9czXdbmdTLGzX6aV1P3mXU6bj/198+qkyR1qKKO8eG6+ylqnWbuJ0laEIypU5XZ+8mU1d/fr6lQz4JgTB2T32tUp0P9o7GPvUo5ep2+ctsG7T42HL5OdY69ZnUKZDQ+PJD4fPLxGmE7n1zWKfKxF3M/zbxGjIyMWvdT2RjN17i6auqe2vkUsk5pXMvTPvaqDxn161SumEjX8kueNl9X/O6L9Xe/9KzJ7V/9nsv9ZBzsp6j3J6l6LU+rTopZp4nRkVTbEVld9zpLIw330+DAgB7YdlTD4xOz9tPA0Ig27uuPXCeT4X4KgtnX8qHB6n6qd+yZiep66x17UfdTmsfeyHC1TsaEO5+Mjj/2jIl/PnVNlqH22GtUJ2PM9LFnZKx1StouV6Wc6BpRMdHPpyBI0jYajHSNCCx1mpgozbpGmEp1va6OPVOZ3TaqlMZCXcvNxLjmmur3XFzLK6XRhvspy/vT8PDQrP0kPXGNMDKZ3p8qY0PHtWEnJq9T9epkIt6fwuynijGx709jY6MN91Ng4l0jprZ/1HZEvXtu52QZXJ1PqnM+1dapPHk9y7tt5GMfS5S2kTHh99PMOvX19Ta9Rvhep9pjr1yJdt0Le42Icz4VtX/Px/6ItOqUl7YNEARBcLKkayUtmPxos6S/c7yas4wx7zbGfNMYs8EYM2CMKRljDhhjbjDGvFPSr0uampHtFElfcbXySy+9VO94xzskSYcOHdKiRYumD9rFixdr48aNkqRly5ZpyZIlkqTdu3dr0aJF08u47LLLtHXrVknS0qVLtXTpUknS1q1bddllTwy2WLRokXbv3i1JWrJkiZYtq2ZU2rhxoxYvXiypekItWrRIhw5V39K+5pprtGLFCknS6tWrdfXVV0uqnjSLFi2aPkmvvvpqrV69WpK0YsUKXXPNNaHqdOvNN0qSTusY1Dt7npj09m1zN+qsjuqyX9K9Wy/prpb7rI5+vW1u9fcVU61T76H9kqSXz9mhF3RX32A5p/OY3jz3UUnSHJX1zp51Onjw4HSdzg+qvzmv87DeOHezJOmEYFzv7FmnE4LqxeCNczfrvM7qRMgXdh3Qa+ZslTH16/TII9UyvaB7r14+Z0foOlWMcbKfXjNnqy7sOlC3TrX76afX/GBWnSTp5GBUzzp0V939FLVOM/eTJL2zZ51O6xictZ+eqiNavHixjHliP50cjFrrNDw0EPvYGz24M1adrn14T+g61Tv2mtXphGBcW+/4UeLzycdrRKPz6dXdW53WKeqxF3c/zbxGrFv3sHU/VSrSm+c+qnM6j0lK93wKW6c0ruVpH3u2a0SpYkJfy1950jH96oIdeuOFZ6gy0q939qzTnMmGusv9ZEz6x16ja3ladZLi1enw+rtSbUdkdd078fFbG+6nB3++RGPlSsP9NF6uRK5TuWIy20+BglnX8rtu+qmk+sde57Htkuofe+XSeKT9lOaxd8/SG7RixQoZhT+f7r73vun91DEW/xoxcqRavtpjr1GdjJ449oyx1ylpu3xueSjRNaJiTKzzKe51b889P458jWhUp9HeQ7OuESdNHJXk7tgzI/2z9lP/ni2hjr2xvY/pF8uPSXJzLd+3cWXD/ZTl/emWn11Xdz9NXSOMyfb+ZNbfeFwbtn/HhoZ10ni1YyrpsVdbJ6P496fHVt/fcD/1lIem6xTlGvHd+3fGakfUu+eepl5n++mdPeu0UCPWOg0ODHjRNvKxjyVq2yjcfjKz6vTtK7/a8Brxuq5NudXJhK7TE8deoECl8fFI172u8mioOsU5n4rav+djf0RadcpL4PtQ9SAIPiHp45P/ucwY81oHy+yRdIukV09+1C/pVcaYtUmXHbM8fyTp8pqPXmyMeSjB8i6StL6np0ddXV1asWKFLrjgAg0MDOikk05SEATq7+9XT0+P5syZo5GREVUqFZ1wwgmamJjQ4OCgTj75ZEnVaNz8+fPV3d09HYmbP3++SqWShoeHddJJJ0mqRuMWLFigrq4uDQ0NqaOjQ/PmzdP4+LhGR0d14oknTkaC+7Rw4UJ1dnZW37bv6lJPT4/GxsY0Pj6uhQsXqlKpqL+/XyeeeKI6Ojo0MDCgOXPmaO7cuRodHdXExIQWLFigcrlsrdOBvmG99osr1KmK5gUlDZq5kqoR+1HTpa2f+3U9+yPXSpLG1K1OldUTTGjIzNWJPV26628u0ap9I/qDb65Sj0qqKNC4utSlsuaorGHNUfUthHHd9c9v1ikLezQ4OKiXff4ODZQ61K2yulTWiOYokNEJwbiGzBwZBZqncU2oUyV1ao4m1Cmjr/3BK/SKZ50yq05BV7ee+6mfa44m1CGjUXU3rFNZndNvINzzsV/VyT0diffTcz5yrcqTdZ9Zp9UfeeX0ftpz8Khe+9/3HFenEXWrQxW99Gnz9b0Pvf64/XT+v90auU4z95NUjdiPmG6V1XHcfnryvA7d8bevUM/8BTr/X27UgmBcw6ZbFXVUR2zUqdM/vel8vfeFp8U69r61co/+67bHI9fp5BMX6HD/cKg61Tv2mtUpkNGnfvWZ+u1XPSfR+eTjNeKFn7un4fn0yOfe7qxOL/zU0kjHXtz9NPMacdPfvk7nnHFyw/107sdu0tzKmMbVqYnJuqd1PoWp06bPvS2Va3nax95vXrlaWw4O1K3T+Wedosf2HAt1Lb/gtLm65k8u1YIFC/R/tz+mr962QYNmjqRA8zXuZD9t+Oxv6qX/cZuGB/tTPfZmnk9T1/L5Qcl5nZIcex99wzn6wCuflVo7Iqvr3t995z5dt+Fo3f305fc8T3Pmzdfvf2Nl3f30/T97lS46Y16kOi1esVdfvPXRTPbTjX/zGj1tQcdx1/K1Ow7rnYsfrnvs/foLn6EfrN5f99j7z/ddql997lND76eLPvqT1I69a//4RbrgqSfr+vWH9LFrVjc9n848ZYEOHB3QuafO0z+/7Rf1vZXbtWz9zljn0+ff9RK99YVPnz72LvzUHQ3rtOrjv6Kuyrg6Ojq0f6iiN/7X7Q3rtP5fXpOoXf6bX75bm3Yfin2NWP6xX9aCzkqk8+mPv7tWyzcfiHXd+9gbztYfvP6i0NeIgwNjet1nbqpbp0+89QK9/eInH3eN+I2vPaDHj445O/beccl5+sTbn3tc2+gbd23S/7txQ9Nr+d//0jP1g/u3a/egcXIt/5/ffI7edPGZs/bTOR+5IfW2Ue396c6/e7WeevqTGl73PnDVKj30+IHM7k8ve9o8/f1bnq8XPOMUjY4M6wcP7tG/37ylbp1+85Jz9am3Py/0/enCj/y06X564TNO1lW/fXGs+9P6vf1699dX1d1P5551mq79i1dFenYPOrt08eTza9R2xJZPv2nWPfetX1mpXX3jzs6nzrnztOYTv9qwTvt7h/WGz9+ca9to++fe4mUfS5S2UV8p0Cs/e2vT/XTigvm678OvOa5OW/cc1C//38q614h5nRWt/Y+351KnWzcd0999/6FIx94fvO5CvfLcJ+uDV94V+rr3/F84U1f/0cub1ukFn7sn8vlU1P49H/sjXNdpz549uvjii1XjYsdZbqzabpLiIAi6JP1ATwQHRiX9el7BgUlfl/Qvkp4x+d+/Kun/s3fe8ZJUZd7/VffNc+9kJgNDGBjikKMCEgwYEBQVw5pzWF13XXV1zWH1NYwJRUVYFxRFRVFEchAY0gwwMMAEGCbnuTN3bu7uev/o232ru6tOnXPqhOdU1/fzgenbXXVyfs7zPNICggoVVRgAyOfz1Q4EABMnTqx+7uzsrH5uaWmpea7SmYByJ6vQ2tpa81vwnQkTJlQ/t7W1oa2tDQDgeV7NcxXzRwDQ3t6O9vbyAJvL5Wqe6+npqX7u6OjgzlPLUFn4VUSuOhkDqA7kQHkirlBEHv1+2UGt75fzlNtavjUwFHiuMDbwlvGwz2+H73m489lt+NPSjegbLSvmjI4tIgDAH3uuwiDaqp9HxrphyfdD8zQ0Wqx5jjdPvu8rqafBQN7r81Rbnz3V34JpLSGHIa+j6sQ5WE+ieSo/N15PAGreCdZTyctj4sSJGC4UgYbyD8/TSBHybS+3VSpPna157jyFtb24PPnw0NbVg1wuJ56nMaiOEf6Ytdew/qQyT5W60l1P9WNEvrWcr6h6Kvn+2GanMe+q+xNvnnSM5RV0tb3yRYnwPBWKPvdYXvRaq23Wy+VrnlNZTyVff9sLS2upLq0U2l6+vbPallxse0B53BvNd6I0ptRbX08tHZ3wPI9RT75wnoq+b6yefL9xLO/o6h5LeWOeSrlyWwpre56Xi8wTUFtPvu9rbXsdXV3lcvf5+tP6XYMAWrBixyjeffXDOGj6BOn+1NFefjbY9iLz5AfaXn8/M09J1+W+l2yM8H25/iQ77uU7u4XWRr4fnSd4uYYxopImVW3PH1tHB+vJy7dW2xhrLG9pbcew1wZgWMlY3tbRWa2r+noyOT9N6CmXRdS458M3Oj89sGEIr//Zg5gzqQPXvPc0eC1tkXnyIbYu56kn35efn1rbR0LzVG575bSKjBG3rWjcF/G2vbA5t+Sp7U89YOfJy+WYbU80T7Jtj+IZSwWetdGePYPc9VSfp4kTJ0WujSrHmDby5Pu7pdpe43jGHvf4x4jy3CDSn+rzBLhxvtcMedq4cSNs0lQmhrzyzuIqlM36AEABwKW+799tLVEAfN8vAbgj8NURttKSJuIcfLIoVpwUcwbxp2Ub8a6rHsZfHo92pBWHaoejpnWDWM6CbDpTFYm6LEwwS2ebfjktcUUx0tjUsmM5yPV9P6tXAxQEHMAGfTbq9N9IXfMzQxxWlRaKPtM5o0xzkHFsLEtY+kysCXRHUXVSLLHaGi6U8MyWPum4W1vK2zeeegymT/fYkTR402tF0ejY69zG74qK+1lYaLwxeF68Q18RVDuMlSVurrU1XW7aM4QPXbOUWT82nayGobqs1u7sVxugamgVf2rhbVdJnLCbRqbveh69Pp+REUZTCQgA/BTAW8Y+lwD8i+/7f7WYniCbA5+nW0tFihgpRB+uxVHZpPBuVn505+rkG6OI5MqGS2mjpXqTxENFY2H1tn3c7wwnaDOyxd3Zqn8YzpYj8thouzxx20xX2mCVZIEhpGHhKT2KGefRF3ZjZ/9I/INNQlpkJaz5uljyme3p0p89gIfX7hKKr2iw4MLyxsqvK1VaFRBYSPCewVF86JpHsehLt+Al/+8u5rPB9FEvW5lpzdMpja2DVddhbVq1QCbs0gBvFKoP9HNEJAS5mPq32eaf3rwXLzAOyXWMHcmCpD1C5BRvl+JyS2F98efHNjp/KURX6m0Wi2zcwkJpt6s+w1GaRkDged73ALw38NX7fd//ja30hDAh8Jm4yN0NWLdv46gMyLybld6BUem4KkRt2GWlzSbPD33fx7dveTbyd5uHmR+/7jHuZ+1oEOTjH8qwhsmDtHpYt9dtpit1sG5vi2gQBA5xdZ1Zve7y+/UE7ChpuY3FmiMLpXgNgrdf+RBWb+O/kS7SrnXAip49tPGnW3cOK23PRlF+7DfLcNPyLegbLuD5HewtQzB52rUqEr4vo9mSZKgVjY15GzxMg0BxgYftNbg1CBQLreMO5k0RmwrLU8Sydb2Rv/E0d9/3sXJrH57l1DjSdphMYM2pug3HlRWF9cW//vYxfP+2VbaTYQ0CzS4UYwICAm0wo/loCgGB53lfA/DxwFef8H3/F5aSE8Xxgc/ydmoyqowkEBBUbgKZlNpHxSWtQWBw13rV/Wtx7YPrIn+3okEAYP2uATENgtEEQiXJ9zpbMxNDlInS7DFBgWEmTVWdtrfULgMOmNqFhbN6Ip5OJ6yiFBm7akwMyScnQ4C0jG2sZlYs+bENamCkiJuWb+GPz7KJIdbaypUNcRITQyZx6fap6aSKlo1ou1XdzcK0x3jzoPo8n4gCQbyJIcv9k63NzU7btr1DePn378VLv3cPXvb9e7jiS9KHqA8VqtuwK4q4l9+9puqP0EV4x6iwp2z33yhkUuWBbn4yMoKkXkDged5/Afhs4Kv/9n3/+5aSE4rneQsBnBH46i5LSUkVLBNDLTEr28qiweTiIYE8IxSTC70bY3wv2Lrt/NSmPULPJxEqyZJpENDGrgZBdHtUJXT79btPxdmH7Ye5kztx0XFz8Nv3nYauJmuTrM2LrC8bIpcrU09atlqsNljWIIhvUN+9dSV3fCanOuGDU2al8ncsUwfj1A/VfMZf6iNLFr6MaUyTYy3bxFDId4o3EbsTmJdTbYrJGRNDlvunvLZUWQP62a1ivkqSmJclPpQpv3gRd1g7WqBRIiOFEv7xFP8FgDRhu/9GIdvPRKcEqvnPSDf6r65axPO8fwXw1cBX3/J9/yuG4u72fT/26rLneV0oO06unMjsAHCzxqQ1DSwTQ3ELShsaBNEmhuQwKaVeylChBczeVgwi6lMgkQaBZBbjhCsqyG4syGPTPJYJE0OnHDQVpxx0Ss13zdZa2BoEtHwQZNSSls0Tqz/LtkEWJn0UiWoQPPLCbo2pUce4BgFtgnVN3cSQ7K1MCoj62pBh90CYBgHfux7UClOomBiKw3b/ZI11rPbROzCC+9fslIhP+BUl75pAdZtj5bdvaBRvvOIBpfElYeveIdtJkCZRm1SXDLVImxgim6OMjCqp1SDwPO9dAL4X+OrHvu//p4Jw7/I8zx/77y7Go2s9z/vymHZAVFhnAngAwKmBrz/PI1jIiIclIIg7MLWx8Ys2MWRGSq0TW/aORW//2vBBYIJsPSKPLeEWwDYxpDNdWXsZR8gHQWDz6sjZifOkRfjJamb/+YfleNMVS5TGZ1LwGRYTK/p1uwa0xauSStsjv+H3Qz+SxKTgClDrMDLUB4FqDYKB0Ya5n3cMVO6kmMgcF2tiyHL/FG0zFVZulTsKSKRBQN15vOI2x8rTj+5Yjc176BzKuyKQS0JY+7Pdf6OQXXuKZufB53dx+x/JyFAFKQ0Cz/NuAjCn7utZgc8neZ73WMirF/q+X72G63neMQB+jvGppL/8tfcjzqQs9n0/qUeYaQA+D+DznudtAvAEgK0AhgBMBXAigIPr3vmx7/s/TRhvxhgjClQDTW5WojYSsikwvdFiYeuQVdRRtajGQZC0HFRl1GLTxBDrcEHnAV+ztWRWFdvUIFHBG06ah989ssF2MrRBaJpLhOk50uS4ZmvTr/22vF/7L1XMXnRJ+r6MiSH5gzPRdRvr+bA+rLptFEs++oYKmNTVKhyHchNDRA4s47T1bHdP1l6MlTaqB6M2UW5iiFHGP7vnOcWxJSNPRSJHCJs9RKp7ep7UWcFlP1+CWz5xFqZ3t0tEmpEhDikBAYAjARzI+H0CgEUh37fV/T0NtdoREwB8SCAd1wNQ6TJ+DhoFH0F2A/gUQcfJTsOyJ887sJvcs0fFJbtGpLS4tHHI6nlmBQSUodMS3MOmBsEow7SI1mQRGjtMwFqws7Q46glu31Qfxshw3sIZ+K8Lj0y1gCAtmBbomxzXQm2zp2CIqWSB0lorjGDy4pLq+77Vsct0u1CpQRCWdh1r310DI7UCAs731GsQ2J/jgPh82e6eTAGBhrSl2geBQRND1GhWAQHVOpJNlkx+dvWP4J6V23HJCfMkY83IECO1JoYIcBiAtwP4KcpmhFYD6AVQGPt3JYDfAHg3gHmZcEA9o4zDXt7x2eTGL3LDLi0gkE+Laiz4/gXAdlQdRhITQ5TKO0MdVjUIWCaGNKbr0Bk92sKmCKsoWUKaeoJ7VwpbOc/zaCREI9QPZ3kxLSAwqxnTGJeJ/OrW6qu0PeotMFgOvOY1VcQlg5ST4kQxisG88W2onffW+SHgjkK5BoHS4KSJOzS23T9NawkkGdpVJqdQLCm/dKXeSbE7ULh0Igtvu3KpPkw5Ka7wqeufkHsxI0MCUhoEvu/PVxTOXdC0ZvR9/xzO51ahrIXwvzrSkRGP6O3xMEzu2VVvJCjd0LNl7oilRRL6fEo1CDLphTx2nRRHt0ed6Xr/2QfjD0ub59a5rI1gFhT2cjmPRjoy4tHgh5iJWRNDjd/JrgkotedKDiittcIQ0iDQm5RYZPpBkjYhml+2w9mQ7zT06/p4rPkgICIhiE0FZR8ErPek40uiQZBc26FQLOGLNz6FG5Ztwr7hgnRawlA9/rt0wSBPafIThHeMMmGmTRUy6fIg3+Zs+XLMaE5ICQgyMlTCdFLMOUAb9UEQ5aRYcplIyQdBwYIKge8Do4J+KJL5IKAL5bRRx/TBXRDWglCngGDBjG5ceMws3LR8i7Y40gg1DYKc55ExA6ELQtNcItJsYigsJhOxm/NBQLsRiqSunJcENv0TFgV5J8XMsCxpynBGEWerXxQqc0usk2IzyYiEbWJIfep0NTnWXvTmJ7fgl/98Dut3DWLLXn2OfVW3OZfOXFuICOR0Er5WoFlJ0gI8panIyNBDJiDISC2sw17eAdplHwSUBAQ2FmEl38dIUcxk0PBoSjUIMqRh3eLXDUsIoLN7e56HxW86HifPfwH3rd6J257eqi+yFBE8gKGgDp7L0RBU6ITOLJcM4yaGDEYXqkHg0slMJG7kIXgISWhZGIpc+pI5KX5my15cff9arNnWjxPnT8GHzjkEPR2t4c8z0hfWh/Vo6siFmfPUCgmonFfGmhiy3OZlnRTLkihMCW3KO5/dhg9d86iWfd4dz2zF7U9vQ09HK16ziOXKMf1Q0diRgbsPhjxnu/9GIpkw6hcKMjKATECQkWJGFeyAKfggkFczlU/LeBhq8m/DTEux5Au3gUSHNIQnfcJJI49NQRur/ao4eDj/iBmRv7Xmc3jnmQfhnWcehPmf/lviuCijY5wnIB+A53kk0qGTtIxtJg/sAcMaBCGV9D83P2Msfl2MaxDYTUccNSaG4nwQKIxLBikfBAnGuFVb9+Fndz+HPYOjAICH1u7CA2t24rr3n4b2lnzIG/wmhnzf19I26sPknb9UzwUUNAh4kqDqBnJLzpMy88G6Y8IKzsblMLaGTPj3v39kvRbhwE/vXoNv/n18nrjq/ucxpOESl23H7Lzkm8BrqGjbtXnYLhOz59FfL2RkAJmT4owUwzYxxBcGBR8EshOgGgFB8jAAO45efV/cp0Ba5+3sxoI8thxsl+PW64PgTScfkDiMIK62M1WppmZiKO95ys1KUIOq+rkopvrOpt5BfPEvT+FvyzcbiQ9oPATb1jeElVv3aY9Xu4mhsX8paWvGEeuDgPBtax38adnGqnCgwmPre/HQ87uEw6pPuy4ZnGywqg9BSQgIOJ5R1aR03OCmZmJIxl+CLlOU37t1Zc3fOoQDgP0xjxcK/U2WBAoEZFd4spcsUqE8mZF6MgFBRmpR4XDWqA8CxRoEKtKuKv82zAkUfV/YUXUy514ZacSmk2KWBoGKvnn8AZMThxHElY1WPVrSTWAz1wxOil1tc/Wo6M9tLewl/fa+Ybzxigdw1f1rE8clQr0Q57cPrZcOi1JzrmoQ2E1GLOd99258+x/PcPmCSipwS1oWMtOtjjYRpeEi4tBe1/6hUYOA7z3V5ZQjcILAc2iqqhpkncSaNjGkr92ZHemS+IQTgfr4XSHvsIkhXsKaGNWLR9LWHZxpcRnNTGZiKCO1iB4Oh2HybFD1HKhGQKAgIbCjQVA2MSQqINCUGMukNFtGsHk7lCWcUJEu1TcKXW1nqhbsXsRnW7h844wXV9tcPSo0ldpjBAQ3Ld+M9bsGk0ckSl0lrdi011C0eltH5eCC+rphpFDCj+9cg139I3jLqQcyn7WdFyqHQc9s7gv9npW6+oswpi4X8Maiej6gML/wmRhSg6yTWLZQiZgGQWpmVH5Kvo88iRUbG1kBFQV423nYvoZqi5TpZx4863NsRgYPBOT/GRl6GInZcfNMWCYXS1GH6PJ2KBMkphqGmvzbmBB9X9wPRZJkUp70v3TjCrzmR//EtQ+us50U57CpQcCyd6siXaq3Gy6Z2tBCYANHYS/XDD4ISA+8Aqg4KAq3mT7OF/7yVOI4ZKjPmambx6ZMDLlyqPaHpRsxMFLUGkfSdkzF/ELU3Mt2Usz/bBLqy5hbg8ADZkxsV5YOEgICjlWMqkP4fF6DBoGGNpJIE1pAQyYtuJIvl50U8xJqYoho/di07pCRoZtMQJCRWuJuj/OM0SY3K5E+CCSnIRWLYpfnsaLvxwqJ6qFye00HT2zYg8/+aXkmJBDEhvZLBZZJCJbjO15Ub/Bd7T460k3B9n/Oo3GIo5O4qts3XMDqbfvIj+0qBH5xGgS2qC96FxxC8uCKk+IKI4USbn96q+1kMDHtpFgU1nq8Pu261g71ofLuEXKeh0+9bKGydFBwmmqy7uVNDEX/xrb5L7n3k3or/l1XBKGiuJIvpzUIEj1Is36orykzMpKQmRjKSC0qfBCYnAAi7fRLJkFFynk2a1QnyZLvC7eBJGc0riwyf/PQOrz5VLXOadOMDf8ZFZgaBCr6neL9hit9oB5Vqa4xMURgL5fzKIgp9BLVDUolH1+88Slc++A6FEo+Zk5sx0/feiKOP2CK2QRyYsIHgS3qxwVTQivdo1ElX1TXQGH0DReYv9vOCvXblSLJI+eDwANOPmgKFszoxqptyZ2EUxD0cZkYUlQNsje4WeODjjWTqXaXFlzJl8s+CHjLWLTt2qw6eesOjjS4jKaG5m4iI0MBceZleIZok+O4YvmAkoNNnomMikp4Pb4vLiRyaaMvy/KNe5T452gWrJoY0uykWPV+w9XuoyrdwcMKClu5XM4jcYhjgyvvex7/+8ALVSHb1r3D+JdfPoT+mANSW6hog65oECQZdyi1Z9c0CABgNGZNlNhJccKykLXrbAq2iaHaH01dLuCNxfM8tLfk8Zv3naYkXgraaVwmhhQdI8qOW6y1mo4mksgHgWGHyhRwZfx29QKOCG6ZGJLTdqNmViwjIwyau4mMDAWo8EFgUtIbdRBp1wcBzzN0J6ahUTF7u4lUc+kWQwP//vvHbSfBGWyaGCoy7AipOHygdNhmF/V1TKFocx4NQYVOojZp1z+6oeG7vuEC7np2u+4kSaFinKGqQVC/RjCmQaB57K4KCLTGopbhOAFBpkHARMTEkC75QEMaOMus0uumd7dj/rSuxOmgcKHZpAZBi6TzFKbZHrZNHymSaUIzfiPeN2Vx5eDd7eLnS3xYG6Oabdn60FGPVC9qZrgLzd1ERoYC4m5K8WBy0FW9+FLjg0CPEMXUQjNuM9xAk0yyf3l8E3oHRmwnwwlU2PqXRbeT4kyDoIwyDYKaz/ZPT3JN4KQ4qu6e2dIX+v1P716jMTXyKDExRMEoeAj1OUtLm6wcLFE/1A4Sp1WZNCc2NBBMlj+r/OqnZG3ah/XyAc7XgoI5FSmjoEHAkwZVtSDrXJ19mUNHG9EjIXBnlBPDoeE79YR1Far1I23dQUOGXFqDZLhB5oMgI7XELc75TAwZ1CBQ7aSY87m7nt2Gu1dux/TudrzymNmYP31C9be4/Y3v+1KTt6lildUg2DM4igfW7MBo0ceZh07H1Alt3O+6gO8Df35sE95+xnzbSSGPVSfFmn0QqD7EduUmli48YjaGcl76tUREWxzVjZQKQWR7K00BQX0lpcYHgYMmhlRo1upEpn+avMjzkWuXRf5WX3a6yrI+VBEfBKLvsJC1ya8SnhSoqgfZcUtGg2C4UMS/XveYVHza+oND45wIrmTLpXmmnkRmr4jWkJw5PPn2xhp+XG4bGTTJBAQZqSVuo8EzoJocdKP2bTod4fz4ztX49j+erf59xT3P4Zr3nIqj507iCqNY8iU3dDQ1CHzfx6qtfbjs5w9ix75hAEBPewt+/Z5Tcdz+kzWk0B77iNripoZVJ8UMHwRKfBQ7pEEwNFrEA8/txPpdAzj94GlYMLNHWdg6km3/6CT9wgEgPRsjFXOirAkM3TQ6KTYUr+a24df96wK6/Q/Z8EFgSqixdkc/NvYORv5eL+QzdbmA9wAt2O1UHLoRkA9wTbSqaiEvOZ+y1pBR4/5X/roC2/uGpeJL0h9Y7cKlcU4EqpcG6nEjlcnxfb9m7Uq1eqTbjeRrrNHHlTac4Q40dxMZGQpQMVyaHHSjFnXyamzs3/cOjeK7t66s+W7P4CgW374qEEaMgMD3pW6rmDpzFdUgKPnAp/+4vCocAMp2qz/BcZPHtfmZgnq4C1h1UszyQaBCg0C1gEBtcFX2DI7ijVcswTt/9TD++89P4YLv3YMr//m8svBVHTDVmBgi0L+aoY+LHnRRHacpOh1XRaOTYvmEUspiddyg2qhCiPVBYCgdUVC+cPLLmDmnfizSZmGo3sQQtwaB2kM32QNzlXCNJYrqQVZjgtUOwn7yfR83P7lVKq64+OJgtQvb2kW6cCVbLpe/SMpF2q9rReJ52WF+hhtkAoKM1BJrHodjyjJ5NhjtpFguEXGT0B8e3RAa560rxhemcVFT1yAQvS03OFrEoy/sbvj++R39WLk13Ka1qxA1V00OqiaGVIxNyk0MaSqrn969Bo+v76357st/XcG8zSmCqlQTszDUHH1csPKobs7S7GSuvsiNCc8MaRC4VHe6nRQnLQrKF04272HPN/Xp0KV9WL934Y1FtYkhCkJwg/IBeQ0CRmGH/TQ0Wqq5pCRKIg0CQWFGKnAkY44kMzGNptosJSQGmX7meV4CE0PR4w/VdW2GuzTD9jGjSYkbvLlMDBmckqP2EtJabDEvPrM5/sCbx8SQL6GxbmouU7k/W7V1H/N3qnYSo2iG28UqsGliqMgwMUTxxrGukrr8rnDHsr97eL2S8HWMRxS6VzP0cbdG3WhUjDNUy6J+rKKq6SBMRYGAbMk3MhpndtFyVljz2ra9Q/jNQ+vws7vX4Jkte7neUUlcNPXp0JUuWQ0C1fMBhX5s0geBbPGxtFB1tBFd3SGtZ5CujN8ul79I2uu7C9X60Wn+OQzW8ONy28igSeaDICO1qBgwTQ66qheKccGp0KAoliSdFBua8FWah6G6SJGFwu0vF7CpQTDKMDGkYtOrug2YLqqbn9yCT1xwWOJw1JkYGi9PCt2rGfq4aN1RvWmlIl1Es9Ywc5pzUqy3QCrhUy33MOK0KpOWWdKxNOr9lVv78OafL8GOfSMAgP+5+Rl8743H4aLj5hq8cCJ26ciUeUIpHwRKLhjYn1940qCqFlrycvkVXUMmnQuSvM1614U9UM4TvxgWVtw0zfmU03T1/Wvxx6UbsH73II6aMxHvftFBOOfwGZbTxkak7RRKJbQF7i+TrArI9zMd+aG6rs1wl0yDICO1qFjMmLw9rHqAV5H0uPzLmhh6ZosZcz17BkeNxAPA+s07USjc/nIBmz4IWHGrGC6UtwHDRSVrE1gbNSaG7KeNWvHoQLQfUN1HqRhniGYtxAeBnXh1hU+13MPQbWIoKVHd4Os3PV0VDlSe++wfl2O0WDJ2OBLXRRs1CPSkoyFYXg2CwI5fRdIozL9cJoYU1YOsiSG2Xf/G75K25yTvsw7GbY8NPFx2ygHC74SVF8W8+j7w83uewxf+8hQe37AHu/pHcO+qHXjP1Y/gvtU7bCdPGcOjEmYJLCDbz2SbFmv4IdhcMxwnExBkpJbYG/QcIyoNHwRy4YnedpJ5piwgEEjUGL+6b634SxlK0XH7a8WmvfjG35/Gf17/BG5+covy8G1gc7Gq3QeBag0Cw8tUVecTOlJN4HIliRueuhGtO6obKYoHEuqozVxaNFsqdebS7b2ROBNDCUlaElFledez2xu+6x8p4vantxoUEIitqXXdQm6w0c35XlBoTdFEoRw8GgSKNAQ1jFthadPVh3hgahA4MMzJ3KQPyxbFMd0H8JuH1zV8Xyj5+PUDL5hPkAAixTlSp+VGsCoA6DP/LBWmGzKVDIfIBAQZqUWJyr7B44RtfeFOqWTToGISiivDvUMFqXhufHyTbJLIQnQNE4nqzd1Dz+/C6y6/Hz+7+zlc98h6fOD/HsX3b1upNhILbNg9YC9yRqNKOr7pOKMzrWyh7ABcUbpJnJcEoHGAo5df/vN57OofiX9wDJqmA1SZGKKZt0YNAvmGKfKq7tLwGz7Qp/7wpZ7EWUkYQNgcwmrXKzb3GZt3RH0Q6DJPWB8qb79X7aSYggDaqAaBhgk1zIpk0sM+otOAdo7bf7LUGizUxFDi1KhnuFDEc9v7Q3+7+al0XMgC3NEgMG1iiKWV7IL5rwy3yAQEGanFhA1+ldy6YiuuuKfRGae8lDrmd44w4g4ttu4dMn4omKEG1behfnD7KgyOFmu++9Edq7FvuKA0HtOs22VPQMAao5IeBurY2ps+oFRl4kCPBoH9wxMKJiBM8J6rH+Z+lup0ZdPXiW7qc5aWZlkZ71yquTgnxbaFTGHxM9eYvm8szXF7hvpkMFwIKYU3+8E5SUWJ6TgwF4UnCbzl89O3noC3nBptokbWxBCLsDaV2AdBgtfZ5pBoj3SeJ3fxRUcd6KBQpJcmXkSKc7hQu48ke/gt0Ub8JPMVo21n5zAZqskEBBmpRYWJIdMLoq/f9AweW99bmwbJsJJMGJV8x4Wxec8QyYWUDagvnutZum630vD+GWIDs1Dy8adlG5XGYxqrAgKmBkGysHXc/jPdAyR9Bjago+/aPzqhccPTBEvX9WJT7yDfw0SH6TRv8OrXCKYEV7rn5EroLs39w5o1CHSYR4krX119p94HV9yBf6MPAk0JqzdlxPlarZPi5MmgML2o9PVz+sHTcelJ+0f+ntNwYrJ3sIDP/mk5zvn2nXjzz5fglqe24Lkd+xKFmexAlXEpJUGoJsh5npyAIFRrKXl6VNMse+16PzlUsy2TLN/XM1+5tAbJcIMW2wnIyNCFEifFFgbd6x5eh+P2n5w4nLgbiXGOszwvftIpaxA0x8SUtmz+celGnLVgP7z2+Lla41m3M1wl1hXW7eI8eNQAW0BAz8SQ6T5C7QA8WCcUkkbggqcx/rRsIz78kkNjn6M6X6nY4BHNWkO6kvQNkTxqNzE0FoFLwp04HwS221DYITyrfH3o69MjxRI6cvlAOuIEFWYEBNJmRxl/yUBh/uUzMaSmHrT47dq8Fys27wUArN05gPvX7EwcZrLLYXK/UcCDnMDIHQGB7RTIIzJmNQgIVCdGETLjuw/5/LBatsttI4MmmQZBRmpRYWLHxiLhNw+tr0uDXCLqbz8JvcutQTBIciGlg7hsulgO3/z7M9nNAwa+72Nnf7hvECPxM1pd0gWhypt3FYw7KSZmYihYJzrKVxQKZo5MwTuOUR3tigp2eD58FEt+orlfB/WpSXLQtvj2VXjP1Q9j8W2rsFvA94QeyjlL0xSadAxPup4IO3RhHcT4frK1Lot6W9jxPghq/07Sp886bD+0RqjINTpD5gszWI4q2qwOkzui8Iwl3Fn12IdwFEwq8aDNOTbZ2bNMzoupwAhcMTGkYo3gAg0mhgjWBSA3hvq+nvxQ75sZ7pFpEGSklrgJ/g+PbuAIQ1Vq5JFNQiEm8TyHj3FluGXPMMmFVAYfW/YO4cmNe3HMvEmJwmEteFw+pCz5dg9/mDcnCWoQmF6jqjqgUFXH9DQICCSCGFTnKxVrjftW78QJX7kVLTkPr140B5975RFoyYvdAzp0RjdWb0tm4qKe+rEqyTnb8o17sHwjcNvT23DzU1vw2/edhkmdrRHxysfDQyX8bHOuDpk607VOHy4WAYy3rbixo8EHgUC6Dpo+ARcfPxcrt/bhpAOn4E2nHIATvnIrRovF2Hd521+wH6ooMlemF34fDew8uTKfJtIgYP1GfJiTlA+E5oviOoFimngRSXq9lpupXC9dtxvfu3Ulntq0F4vmTcKnX3EEDp/VE/m8TLp8+PJOihmN2+GmkUGUTECQkVrixssv/OWp+DAIjLqySSgm8JA2rkEQIyDYO9g0txricLUUdii4IU+gm2jBdtt2zsSQ+iCZqLIJrOqAL3iTlcJRgiMXHo1CcaxSuc7YMzgKALjq/rUolnx85bVHC73/qZcdjl/dtxYPPJfc1EUUqg7ant68F7c8tYVpN1wnlVqj2KakSZiXpEUhrEEAH/3DhYSxhjNa5xQ0XkAg9nyQmRPb8bHzFnA9K61BENgSqBhzKFz+4DIxJNAqWZp/rmgQAOX6lakfpomhBOkxQVnAI57n8DFHRYrUQk0zUBf1JoZMsHrbPvzLLx/CvrG55M5nt+PxDXvwt4+9CLMndYa+I61BINmTWGNTqtYgGSTITAxlpJLRYgnL1vUmDofGmCuXihhfdMxgqzfjYqIuaxDwpYeCsCVDDy7fbGFhW0Bw29NbI39LIP8DoMlJsYbiYo0bqvKgToNg/DOBsxOnDjSSwluHFIcqXePMXx7fJBx2Pucpd8bZ6INAXbv8/J+fjI5X8wpufJ1EsFFJYjsnYc2VVbwDI0U8t0OPn6MGJ8UxhVPv90vkQC/s0aheIltHNSaGJMOgBp8PAs6wYn53RYMAkJ/nWGMm9WEu58kZdgzNF8G8FgmmiUWhWMKjL+zGoy/sxmjsgcQ4DRoEBvL9tyc2V4UDFXb1j+C2FdF7MJn1hQ89wqe07sEz7JFpEGSkjpFCCR++dqmSsFyW2JvQINixb7jBXmAUFcfHaaWZ52dWN3G5ygtJT+EVcMOyjQ2OpIcLRXz6j08kClePhSH1nYB1wKnqAFxVqmvHS/stn8INT1O4PPzqWmbsGRzF6m37mGry9eRynnL/GfXjgkq51dAoY4zWbWKo4oNAbzRGSbqOSfq+qAbBjY9vThahAHGCoPq5ql5gwA688auo8bs+HbwCqmDyku5tqEwtKn0QeJ4XY2KIMyAC6BmTaI90cSaiRKB44OrSecT6XQN48y+WYP2uQeF3GzUI9Of7e7etDP3+839+Cm87fX7ob1JNxNdkYkguyIyMSDINgozUcfvTW3ErQ+rLyw3LNmpVs+dFdjKJ90EQDa+TYgDYuneIKz0UF1wipOmWoGpcr9soCMgH8JuH1jV896nrn2gwfyCKKxoErHGMgpPEIMEDIgpJc+lAIyn8GgT0xiqd46do2PmYQzKpNNSNo9T6rSy8mpYuYdufguhl3h37kptIjKK+78SVjKzpn3LYjQ/zahDwRqPaBwEFeEYSVRoELmnkyc4pTBNDxBtNWYNAjVklinsaIYGjZT5x3WNSwgEgzEmxihSpR2YtWdYgkDUxFA2P8Iji2jeDLpkGQUbq+H+3PKsknI9f95iScJIiO6QnMVvA66QYADb28gkI0j412d5Y24TZTNzZU9Wwelsffs/hyFw3Dz6/q+bv/uEC/r58S/KAHfFBwBrHlN2QV5TwYD+g0OxdMolgCoqjtA2bu1Hkc57ydlNf5jlDB22669qv/kuxVcmRWIMgYVmEHWL4lrpHo9NhQQ0CQzd+uX0QBJ9LSZPlWwOoyaxLAgJ5E0Nyv1FBZuoKG7Mo5tW2yVNedveP4JEXdku/b8tJsSiyPghskXYrDhlqyQQEGaljzXY99khtIe+kOEaDgOX4bew3Honz5l6+WwKZ8Dq9uHSzhYfbn96KD/zfo4lv6evgn6t3YETAnmcUWkwMaWgHrLalar+uzElxIK0UzPs4dJ6RGN46pHgzcHCEz0yfCXIaNAjqxwUCXUMJlXw5cm7Dhe2shN2EtNVn6+ON0yisn6tEDvRCsxjRTxo0FSTGPtv1rAqlPghiTNS4JHCX1yCI3xdSxZP0QRDWTSmuE1wxMfTcjn2J3q+/MEGwKgDIjaE+fOl+xNpTUGyvGW6TmRjKyCCO7OFVnIkhFuMaBPHP1jv2iSJNt+zCaOb5mbU4UW3PWje+7+O//vQkSeEAoO62sY5bvDr6QJFRD8p8EChKd/CAiEKrpyCkMIWok2Lf97FlzxCJW3kDI3xzqAyibduIBoGhdql7Tk6jiaGkJPdBEBJmsiClqY837hCm/gBPRJAfFnZ0L6kzfcStQRAQEKSk0arUH/DANlHTTAL3MMLKkVI7ynmQWniFai3RyVYVVy5i5XPJjhbrNQioIqtBILvkZDVtnrS40XoyqJAJCDIyiKNNg4DxW9UHAcdMxiuIcGRtkyEBywSAa2eUT2zYgy2cfjVsoOoWkSvVwhpfVAk5VA1NNSaGCBSwSyYRTOEDePC5nXjxt+7Ead+4Hcd/+Rb86r7nraZpgJAGQT6n4SCsroOlpVWOX3pIz+Im6YGfaSfFOml0Bsx+vv4AryBwySBUgSDSSXH8uzLxqeJ9Zx2sMfRaeITgqg6xTZlGU4GOPhMWJKV9nbQPgrDvCOWrgisaBC0J+0mjDwJ5awg6keljPhK0LUaxZhoEGarJBAQZGSklmQ8CftV51g3fINn8RRMVWx62BoFbrNs1YDsJTFTdeNZxi1fHIpWVX1V5ULXByJwU2yNYg6z63N43jHf86mFs2F02jbd3qIAv3bgCt67YqjmF0QyO0hEQlPuUag2CuoNWpaHzx6s8/BRqENjOC6VDSFFTPvUHeIU4m0SMuETgfTc4P+ks05cfPcuYcFqpBkGMiSGXnKtL+yBgvBd6014uGi188JxD5HwQuGJiiF6SQmnJJxQQjIr5ICBYVZH4vvy6pG+ogLf98kH84t7nGvZFPCFS0vbJoE8mIMjIII4+HwTxv/FMKNwaBKSWkhkqobiYTiuq1Ix17HV1NAPWIUvCfYhyanwQEBCNNZOJoWDji5uSwg7k//rEJtUp4qaf00yfCcomhtSGWV8fpqYLUyaGsvlPHWFlae+GKPvvuOdFTGWEaxDwPstXPsH06VyPn3DAFPzgTcdrCz8IzyUBkebDFBA4JHGX9kHAaBfUTQwdv/9kqVWX7/solnz0DoxUv6M4prtiYiipBkG9aba4bNsqFZm278NPJOi5d9UOfPVvT+M/fv+4cFrcaD0ZVMgEBBkZxNHlg4DLxBCPBgHnLSlXbj9EEbtIcWTxpgNW3bp2RkndEZ0yE0Ma8qmjBzA1CAibGCIgHyDfllUSLHqZzf2fH7MnINDppFh0/ZDzNPggELyJ7QqVXKRp6redl3CHoebTATS207hxpX6uEvIDJuCDoKE/cUazcFaP8DuyvPLY2fjuGxbpjQS8TooVaV06JCDQUr2E+mY9rzthHlryckdaP7xjNU74yq047su34hWL78WqrX3Wx8EwKAotwki6fmjUIIi77GinXKRi9aFk8P3jso3YvGdwPFg3mkaGQ2QCgowM4shrELAP7lmT6riTYoUaBNkMllrSVLfUz1SVaRAoCaUWHe2A6YNAmYkhJcHUmhhSE2QiHDrPUIprwxEtHwSe8jGwwcSQKQ0C3eGPZcSx5sYkqfAm6RwQqkFgqYTrl9BxWatPe0HISXHjd5E+CCT609zJnThqzkShd5JCZS3Fm1XPY2v+uTSfsvyCMd9jaZaHfkdj9DtoehcAuYsvf3l8E/YMjgIAnt68F5f9/EFSc3KFuMtBVPZhSS8f1fsgiGti9jQIJN6BOqHaVfevrX7mCZNI88hwhExAkJGRUgT2Jg1UFho8AgJem+jBpyZ3tcokizTNPPcyNQhIHJWmB8qOykxrEFCzCRwU3lAw7+OSSYSkBKcqV27aVRgg5IOgbGJIrwZBWkijBoFtwg65qGgQxB3A1c9VI0JOiuUzGfduV1se33vjcTVzkomDXRNrP66xijOrHtjC0SR7KtPI1q+wDwJiY5+KqWvHvmE8+PzO5AEpJq79UamLpIKKUcEB30S++4cLVSFSBSknxb6vbOzd1Ds0Hm5Tn0Bk6KDFdgIyMjLYaNMg4IiTJ25+DYLxz5QPOTPEce1AjgX1I1VVTop11JiOZqDbxJDKW1fBsCi0IwpCClO4vEEaHNHng0C0ebdo0SCo+9vQfKE9nuo6yd22V0/SrCQtibDh3poJibpo46beeu0+EQ2CsCwmNTHU0ZrD1y8+Bi9aMB0zejq43lGJielHoXwglvYWd+5Uyi4TmfvCsO+IDH2VtY6qJvetm59VFJI64vZZJd9HjsDKM3GTqB/fYh/X2wj/60/Lcf2jGzBcKOHYeZPww8uOx4HTJkjF6vvq+kxwXuSx9OzyGjnDPO7MdhkZGUII2T+tY9wHAYeJIc5NUHAyc3GaireDaCghBEmTgIA6ApcSmeipMvWBMgUE9vdCNdSYGCKQNmrlYwrXxqP+YToaBN3tLep9V9TVR2qcFCONJobsEu6k2EJCQuKNG1fqfxZZg4cKCDidFEfFcuHRs3HJCfMahAOsd3hpk7T3rhqVPgjKJoaimdzVWuPHgTI65sCwIKkdOqqauiguneIuB6Xl3p2oCbUPX7Os0SyRQq55cB2GxxzOP7FhD9511cMolXzrJob8ms8pqfwMMtCY4TMyMiKRHfhjbxozfh73QRAfj4wGgWPnNxkxsOqTwkGpCNTTS1n7Rke/1u2DQGWag0mlYFqrqZwUBzXU6HaRUAYJmRjqam/Rr0GgNnhrjGtapiVHyfOStCjCNQiShSlLg5PimIGlfs19dcBGdHxcYUT4IOAVuDH6cdJ67mzLJ3pfFSrnWQ/x679PXHCYE6b7ZKuX1S7C9qL05lr6dSNLnP8xKhcjEmuhNWgQsAO87emt+MZNzySLVIA12/vx4PO7ILOS8X2Fh/mCZypEmkeGI2QCgowM4sibGDKjQfDUpr1cYdZIu1M4UzWzBJ/KwlQN9DYYwf6iykmxjmM6Ha2AZSpNxUZdZZqD/YDC2bwD5xhacG1+GdBoYuiD1zyKIQEBRFdrXrlgqXKwumXPEH738Hr8YekGpeHbwq/7Nw3Yzku4DwI7qapfQseaGAo8sGLTXmzrG+aOK8mYFbX2ZB2eJy3RjpZ4AYEJE3c8c5yq1uPBw8uOmoXfvu80vP30A/Gmk/fHu190kKLQ1SLbnlhvhWoQEJlrK02NwrpLF3ECSjr7MLVCZp5s3fDYxkRxivLDO1ZJahDIaR5EhVX9TKXqM1JD5oMgI4M4suN+nICAdaBdWfTxLP529Y9wpafGXl42maUKVltL8XrdGCUfyI8VpCofBDrQokHAsKmkRoNAXaKDGzgK7T5NPghm9LQzD9yCtShtf9n38ct/Po+blm9GPufhNcfNxVtPPUB7OQ6M6NMgWL9rEF+/6Wl8+aKjuZ7PafJB8PDaXXjHlQ+hX2NeTVMZOggPycIk90GQLICwQy5bB18NN/Vj8hZM59+Wb0ocP3c/jEgW6/2kRdrRGn+/0Mjsw1FI7zvrYHz/tlUcQXlgpboS1cnzp+Lk+VMBAPev2YFf/vN5rqSaRLp6BV+kMvRVhGHpWfE04oqJIdVzCE9wvQOj8Q8pZOXWPsyb0in8XtkHgZqKqtWaJVL5Gakh0yDIyCCO7GSSzAdB7b8qCIaVxtv2zTw/M9uJY4eUFJNbGQPuW70D3/6HGudpOtqrjn6tWyCiVoMg8AeBdpSn2Jgl2X9qF/ezsnPm/9z8LL76t6exdF0vHl67G5+/4Un85K41UmGJIHLDX4brHxW7sa/aPJbvA5+6/gnjwgFjPgiaefKvQ4uJoWRBSpNEg+DHd4qNG0mcFNugo5VHg0B/OniiuOT4eVyaBjwmhuqhOsdq8UEQ9h2/H24jqBLm9w3r0+qTxRkTQ0nfT3DBwxQ79o0kSKeaNATrmydIXcXj+z4GU3TxI6NMJiDIyCCOtAaBoEO1ICImhngJHh5SuemQoQbWwozm9ikaiukt+cCTG8vOsShj2geBCoGEWh8EQQ0C+y0pl6IVXtxtLRU+bv5vyQsN3111/1rtG0+GFS0liGooqDZNtWrbPjy/o19toBzovohQ9UGgNRbT2M1NuJNiW2mqu8mq8YAurK1GOynmu2GrcwbiERCYgGesOmBaF77zhkWJTRKGvZ0jasdP+vCS1f9DhXc0Rr+qiSG7ydBKXJ1SEdYk1yCoD48vQNPThEx0vu+rc1IsqEHwp2Ub8anrH8eP7liFDbsHlKTh6vvX4vRv3IGjvnAzLv7JfVizfZ+ScDPsk6LtY0ZGOlB1IaXIMM0RR+XAQulBvh/x2RFiF2dmkkGSTOCjl5Lv48bHN2G4oG4HoKPKdCzQWRoERC5MVaHmgyAtJoaOmD0RnTEHUrUCaLmGsS/k1uD2vmGs3qZ302PikEXkkFW1D4Lnd6Rz0+g3fHAf1Yc7KgKwNc6LahAkWQeFaxDw9cOovq1z+OczMaR//uGd4y4+fh6W/fcFmNTZyghL/IBZ9VipCtk58KHnd0f+RtlJcaUWiFaHEuLqlI4Ggdp08IZmOvdyPgjUlU/NkQpHkJ/903L87pEN+H+3rMQlP7k/8aWNGx/fhC/85Sls2TuEkg8sW9eLy65Ygn6C2jcZ4mQCgowMYtSvb2Tn/DgTQzwaBErtcwtKu6nhYJKNwapP1xbsVA9Vf3bPc7aTEIuOg84kptJ4UJnmYFIptCKqhxeivO+sg+LHET/0oxJUCubCMDG3iMSh3AeBpblTe7waNC1tYzsn4T4ILCQEje0nbj2cxByeSBtqSFfEczoP6OMEtgAdE0MVJna04qzD9osOy/OY67+wn4gqEMgdXvo+04F82FqMmnk1Cpqbuoj3QUCjLhILmRtUCHjfM5t/mb1D2QeBovhrtGbFAt3WN4wrE/pO+cvjjX52tvUN46G1uxKFm0GDTECQkUGMxkMdudmkmMBuwbjzPT0mhmgsY9RCZG1mBSoL07SixZ6sljCVB8ncFKkoF20mhggczlM9vBDhkuPn4uLj50HkKEh1f9FdlSZGT5E4VLfdtM4OlXylafpTfrgjSNhwb2t9UYl3pFDCht0D8Qd0gd9Fx95LTpjX8F2kiaEGwUX4c3o1CDgEBPqiH49DMJK4x0XTnNRskS5kuszTm/tiw6zvA1SGvqqJIZrVoYS4cTDOrLA71Lcxvny5oUHgK9x7JTtT+XWISU0Rbl2xNfT7b9z0dKJwM2jQYjsBGRkZtdQvcGTnkjgLQ6xJt+qDQOHFSVF7eRlmUHEYxKpO1270UEytHofCGsI0LCCgNowE00Nho5oGDYJXHDMbQHx5iqpbU8KMBgF/JETPvIQxpEBAxg63CmznJdwHgYWEjMX7oztW4fK71nA52A4e0LXmc0KaR68LExBEpSvm7+r7GvsxGQ0Cg3NcWFxU51iZfrxqG1tAAACjxRLyufG6p7KXc22fIUOcgJJIVSgXMvOGZ9wHgUSEvg/4ipqq7wN7Bkexec8gCglMSquGitmxjGRkAoKMDGLUL0Jlx9okGgR6nBQHPqdyAkllprigsklQAcX9nivlq8fEUPQ4Rs1JcRAKzYjq4YUIlcPquJwEN8+q61Tn4cPeoVGug5mkiGkQaEtGqqgcEDgyPBsiWWGElaWt+e+GZRtx3SPruZ8PjkEiAoIXL5iOWZM6Gr7nPfyOPqjS15HbuZwUG/BBIPp8zAuiYx/VOVbmkI5HG2K0WKrVHiE29hGtDiUUY4YTKvuEpOty2bdNC7dlY1NVT7c/sw3Hf/kWcgfyKe6CTUUmIMjIIIYyHwQxEmW2D4JkcYeGWapsponNZhmJYS1Q0rxgNwW1BWAU5k0MJQ9f16aCQrtPw03w3Fgm4soz2E6obJRZlEo+/vsvT+I3D61PZLucF5EiUX7oZe0GuN6IK6G7Mj7zYLvrUOq7Nz25Wej5YNJb8/x96PUnNmoPsOPhM/Ni20mxCdSbGBILkK6JIfF+xDPujxb52p5pqiaGUnw8Ge+k2FBCYkiuQVDXxohqEMiUt1/9n7006Iaq0DRDjExAkJFBDFWDa5JDB1+DBsF42MqDNEJcsm3mK5/zjBwyRUFpU58UkmsbR4pXRzJZToppNzv7DalyuD5vSic27B60nBo5KvNh3MY/OAa54IPgyvuex/8tWac+4Ah4yuSblxwDID0bPFMmhpwZoDmw74OgMQBb64u+oYLQ80ETQy15/gN00f7WUBoRxaOzF1MxMWRyrHLJSbHMdoAnL6N119iprf1TMnWFIuIDxWV4TajZRsZKg++DwtZAK9G+c3zcs2oHHlizE3OndOLlR83Cfj3tZhOXwQ2NKwAZGRlVGn0QyE2PcQ6LWL9W1hkq1xs6HB9nAN3tLfjJW06wmoY0aYVQvIHkiqBORztgb4oImxgi1IzeccZ820mQhvcARquJIQ11+bflYreTTXD+kTMBqM+vbbv2uqjkKkXTn/W6ChvuXSnf4BjUJiAgiOpvkf3Qr/8zvIB0zkHzp02IfYakk+KYF4RNDFGVEEj0Yz4NgtpDUWp9k9K6SzVx+wAqdaHeBwFfgKbzL2f3X6WTYppEjSPf+sezePuVD+Gnd6/B5294Ehf/5D5s2D1gOHUZvGQCgowMYtQPrrJTSZIb5Tp8EFTCSuvUaGvOv/6Dp+NlR82yE/kYLNuYzq3XCSbYlT5Tn85HX9iNf//943jLL5bgJ3etxoiA08YKujUIdJUthWZU2cy/88yDcNFxcyynRo6qBkFMgQbnKhd8ECxb16s8TBZxZbJwVg+md5dvc6nOr00ns3rDT9+aJvHhTuL46WgQyFC5xStiYiiqv/EedkYVj67LDu0tObxq0ezY50w4EBbNY5IUhcVFVdtKnw+C2oCp9E2TzqptEbenj7sUaArVPgh4QzMt3JZp+75PR5Cji1zIyfKG3QO4/K41dd8N4qd3r2l8OIMEmYAgI1XU325wEVU+CEYKJTy3fR/2DYerSbOk2NXDfA1OitM+OZqGwo13KpsEJRDMih4NAr1aCQ89vwtv/vkSXP/oBty3eie+dfOz+Mi1S4XjLTLGdBXlkubbPJUbTvmch/936SLLqZFj3LYwG9d8EJgmbvN8xOyJ1c+qL8WmtTYyrUj1hFltcMlyRuWQrlXIxJBYHPV9OVJAoGlp+IGzD0FXW7yFYooaBKrjyhM9mJYZklzWIPCq/9KsDxXE+yBQVxmrt/XhI9cuxTnfvhMfuXYpVm/bx/2uLR8EpucJ1uWlKHw/up5sDCU69j9h48iv7lsb+qxJM5sZYmQ+CDJSxY/uWG07CYlpMDEkub1+Zksfzv3O3WhvyeFdLzoIn3rZ4TW3LFhzW2XOUDl16PRrQAFbqvkU9idpqlOKedEiIFAeYm2ov7rveQzXaQzcsmIrntvRj0P26+YOkaXFS1qDgEDHLARO2+ynRo5xDQJ2DoLnFqrrlEBVJiaurwTzSNdshih6x/LKnE9wyrBG0gOH8LnOnQIulny05sV8EESaGIoYtRtMcESZGOJOAR+vPW4Ozj1iJl6ziE8bzUStqZ5nxU0WKY1eGTJrRp5xX0YL1ATViwRE60MFcefRqg57N/YO4k1XPIgd+4YBAGt3DmDJc7vwl4+ciTmTO5XEoYMPXbMUX73oaBwwrctIfDJWGnz4keuFnOcZ1wIplHwhbTcewkJ7YM1OpXFk6CfTIMhIFX9/kp5dX1EaFrwJ54vhQgmX37UGv390Q833rMltXIMgWdxB3NniNR9Do0XcumIrfnLXajy8dpfwQpP1uGv1TvKwh2KaQgiW3d+f3BL6zC/ufQ6lko+7nt2G7926En9fvhmDI8XIMFmOwCgXC4V96khhvIQoCCxk4DXhoNNJcRqIK5HgYaSbLaUR/SaGxv7VG41RmHO572P1tj7sHRqNfiZh/GHLUpc0CCrlJ3boImZiqMEER6QGgbqefOC0Lnz/TcdzCwdMIZzDmBdEy4zHLI8NZMY+Hm2I+lvT1OZamrWhhjgnxKrGyb8v31wVDlTYsW84ck1fj63rTPes3I43XfEAdvePKE9BGDIWK3w/Ojc2hhIdVjfCxtA0WPdoNjINgoxUsXIrvxocVXSd49y2YivecNL+1b9ZCzsdqvOuaxDEHZrbylbS5tI/XMDbfvkgHl67u/rde150EP7rlUdwb5Z42pIrUGyfWg5INITJE+TzO/rxn394okZgecr8qfjVO0/Gyq19+MU/n8f6XQM4/eBp+Mi5h+r3QaCpuimcxwcX5UTPMWLJcd4M1OmkOA3EzV/B8nVVmGSacbOJ6WlwUbfRH1vfi/f/+hFs3TuMfM7DG0/eH1+96Gjl2iZhZelS8ao0MRTpo7hBg4AmFE0MJTFBE/YmXR8EEhoEHFkhb2KIZnUoIe52uaq9y1f/9nTo91/56wq8+0UHxb6fdD5sdFLM/+6mPUO4a+U2XHz8vERp4EFOg4BlYsiD6dF8tOADbWrDDBtHMgGBe2QCgowMYjT4IFAU7i0rttb8zVpMaNEg8Gv/dQ2qyU66IP6/JS/UCAcA4Bf/fB6vXjQHi/afzBUGa51E8cCdBcXU2jJfJUqlqncxbvA8vHY3ljy3q+a7h9buwmf+uBz/eGpL1SzRExv24JEXduNFh05nxEfXxhAFW7gnzZ9S/ezqoW8l3XHlGdw8qz6wdW0MCyNuLxvc1Cn3QWCp/HTH6vqaJoywvAyMlC8R9A2V/VkVSz6ufXAdDpjahQ+cfUjs+yKE9TWX+l/l0EhIfyDh2GzCBwHV2UP1Ab1oaGEOOSkg5YOAx0lxnYkhKn1zvA9RbanJidUgIHIGm7RFNPhYEXz/8zc8ZURAIOuDICpDNvyZjGg4uA8bk6maJsuIhujUlpHRvNQPrrrWXyzptxYfBGP/UllQqsbVXN0fYRvwyvue5w6DqUEgnCK7UGyeOjQItCgl+D7+/NhGnPTVWyOfiRp3/vL4pgafBY++sBtL1+0OfR5QkwddwhcK5/GzJ9G1F8sLrwZB8BBadX+hOCYIE5OHGhNDmZNiLqo+CFKUw7Cc3LNye1U4EOS6h9crjz/cxJA75Vs5xBM5PIrqblGCg8b2FnEjVeFhab0giAqqp1nW2OeUk2KJMYnHXNJoXbum1jOJVocSTGkQJCW5k+Jk4e0bbpyrdCDtgyDiNxttt6BBqhQqIGA5k8sgSSYgyEgNhZSoMKlyUhwHz61vlTf/qmEqCzGjjJ5VxY2Pb+J+ltVOXDO/QDG9FNMUxra+YXziuseUHtDeu2pH5G8qysWRohXmq6892nYSlFB1UhzzXI2JIcWzDJWNdxLiyiR4E1b1rVxbxWfMB4H7zaNK2Jj683vDLws8v6Of630RQvuaQ+VbOcQTGTOinRSHw3uAxurGh83sjk1XhY7WHF521Czu501i0qlwmMCFrokh8Xe4TAwViJoYqlwksJsMrcQdcdBZpyg2MUR0AijIHHr70fVkYywZLagv27BsZCaG3CMTEGSkhqGUqDDV3xrSNeez1BV13FjuH5Pq++mopgas+SDQtKYQUXtnXUIgs2blpM/Q7RMRdJShDqHDn5ZtNOpQUjSuJzfuwft//QjO/vad+Phvl2HdzgFtWw/b5wYHTuuymwBFVAUEsT4Ixj+rvhTl2hgWRnweghoE6ThmMXWwkIb2QYW/PrG54TuXnBRXDn9EDo8iD4Z4nRRHhMvqxf/58oUxqSozqbMVV779ZEyZoNhQtSJEx6q4p0W1LlT74FCFzPqOpywbfRDQ6JzjPgho1ocKTDkpTkpiDQKiAoF6ZH0QmDAJx4sOE0NJBQS7+0ewZ3BUYYoyZMh8EGSkhsGRou0kKEGXD4L2llp5oGkfBB/7zWO479PnOjP5NzsiaxWetkSdDbsH8PHfPoZHXog2aWMLkTI8d+EM3PHMNo2picZ0vCIta832fbjs50uqpjJe2DmAh9fuxtXvOllL2mz7IKBq+kAU3mwE+4jqMceRIYxJXBaC51yqW04Kii8UX+K2OHWS5kRFSWzsHcTcyePm0VxaM1aEk0KHRwk7XNQhLWvsPJPh2wcArn3PqZjY2YqFs3rQIuBw2TS2TQwRlQ9oOywmb2LIdgI0ImNiyPd940KTxHNIQhNDppAxz+P7Pi0NAkM+CHji2TM4io9cuxT/XF3WGj/7sP3ww8uOR09Hq/I0ZsRDd9bPyBBkaDQlAgJNc0RQQFAs+Vi6rjfy2cqGY9W2PmXxb+wdxN6hUTK3HET5zUPrcPFP7sN537kLX7/p6QanO7Y2sRQWxKw6daG6iyUfb/zZEpLCAUBsgTxzYgfedeZB8WEmSA8VRG6v/fmxTQ12tDf2DuL2p/UINWyfz6flJt24BkGMk2KNE4tLB5RRxPWVYPFSNZshijETQ3qjMUp9mS3fsAePGp4Xb35yS83fLq0ZK4d4cYd5QSJ9EES9wBk2a8zsaM3jtcfNifx9Ulcrjp47KZFwwMQwYtLEUBg8dvvtIHG7meMVqiaGwKlp6DJxgujgHL92Rz/e+auHcOwXb8ElP7kPdz5r59KQDLwaUraR1iCI+M3GUGJOQBBfVp+47jHcu2oHfL88rtz17Hb8x++fUJ6+DD4yAUFGakiLgKDRSbGa6TGoCvu5G5Yzny35wPWPbsDvHtmgJO4Kdz27nYxKqijL1vVi2bperNnejyvueQ6f+N1jtpMEQN9BoEiwrDqlfruyb2gUZ3/7TmzsHbSdlEhEypB3kUm8WrgQycIPbl8V+v03/v6MmsTUYXujSvfgQoyKbfy43OjUIHDpgDKKeA0CL/BZb1pU88SGXivx+g0f0sB4Zh5euwtv+NkDsq9Lc8U9a2qDdGiyqpgBETk8ihLIRTspZv/NS2dbtBEB2xpwvIimM+550VxTFabKzVnxL9UfKFJZ31dNDDnSbmXgNTHUOzCCN12xBHc+ux19wwUsXdeL9/3vI3j0hV0GUqlgb9GgQUCjjdUj4oi+gs+QENjRIDDjgyCO/uEC7lm5veH7m5/aYszpdEYtmYAgIzUMjabDuL0uE0OVyad/uIDrH2Uf/O8bKuAzf1QvuS2r1ykP1go3Ld+M3f0j41/Y8kGgLVz+kFm35Yiu7ap84P8exYbddoUDR86eyPxdpAhznmf9cNoUVDcOgP2NKmGrEEJUTSXF+iAYbwuqmwXldsZL3EFOsHiV29XWXH5v+cWD2LZ3yHS0AQ0C99tHhWCZ/ezuNRi0cPGmvSVf87dL3a8oISDQ5qSYOwUh7zqyhsipnucE801VQKCrzzSYGCLWN4lWhxJiTQyN1c29q3ZgS918OFr0ccOyTdrSFiTpesmV+VRWgyBqLWZD69eUBkEcj2/ojRS4PLlxT9IkZUiQki1kRgasbGR00DBJKJorK3v+m5/cEis1vuGxjVoky4A7k38cvg/8YalaDQtSCMzxTBND1HYQAbbsGcJ9q3faTgY6WtlTsUgZcmsQpKAfEm5a1jeqVA8uRKnMh3ECl+BmLdMgCCEmD8F1h+qmo7v4+oYKuDvk9pluKmNoKtrHGMGs3CZhfk1FUYj4y6JG1cSQiIAgoTA5MqaYYEXt7VNEtOxefBjb9wIzrpBCoaqpJ9NnZEwMUembrrTXJMSZvK+MPZ/9U7iFgF8veUF1kkJR3SKINLEGZM5IfN+PzI+NSz2yAgLWnlRmSKyf84MMF9Jx+dc1MgFBRmpIi4mhRvmAIhNDFQ2CkXh1rSXP6Ts0pTrZyzAQcIxtK1u6FsYiwbJNDCVPiy5ueGyj7SQAiD/MFfJ32Aw7pTEojyW2a4HqwYUolWzENetaE0OqU0G4oXESl4Ng+bro4Po/rm/UeNQtBK1qEFAeiAShkJX2OoE5hTTxUmkLIg4sIzUIIr6vb2+RTooTzEK2NeC4EUzmBUfORFdbvuH7S06YOxZcdIBhv1CdZmX6DM8rOm4cq6BSbw5OXdzE+yAo/1vva8s0ScdrV8b7ooyTYkSvS2yMubL9mbXGltmD1msNBknL2Z5rZAKCjNSQFg0CXTc/q84eOZ7VeajryuTvChQ2cqyFK+X6LhDZ7MSZ9BApQ97hg3K98ELl9loYtjeqadEg4J23am/sZhoE9cR1lWB7US1cstVNtZsYqvs3Q42wpP6wgPI4X09lSSGytIg2McTng0A0XN3vmkR0nmtvyeOHlx2PtsB13QUzuvHZC48AIOP0mKZJR11Cy3ozINS6ZpovyMRpJVEZJ5MK5h95YTded/n9+Obfn0Hf0ChZbWcZHwTwo9eTNoSNIwW5smW1tUyDIB1EeyjKyHCMtEgZGzQIFJsYsg2VRYxq0nSLEBDbKLEuUlCu7xYihtrjbuyKOSkm0tENQLdlAbZ1CNKjQcB3MzCo7a36QJ/wEMZN3Ca7xgdBE40hiRhrGGloHxWS249OTlvdvOxS8Y77IBDQIIiYK6I1CGr/jtr7JPJBkODdahgGhhGZKM47Yib++emX4IE1OzFtQjtOy57/1wABAABJREFUmj8FHa156fBynhdrH940MqnhycIIcRNDaZ654sq6su7xPMtzkoK4H31hNx59YTcefH4n3nTy/skD1ECc0+gwfESbGHLJBwFLWCWzfmTlfTglZ3uukQkIMlJDagQEdX+rmugp3Kzwfbc2ey6gz8QQf8BUNgmitBA5RI1ztCdSvDmP74DUzRqrhXKzsz3cpkVAML7xjxGiBX0QKJYQuDq+BYnVIAi0F+UaBKkYbRqpahCkoH1UoJCTRhNDFFLFR2WsUOGkOA7f9/H921bh4bW7pcJNwwwhW3Yzejpw0XFzlcRFsRzlfBDEv1N/oEilZ1bqwPa6Sye8GgQe7NaLyriXrevFwdO7hd4x1QZkNAh8P7qfKXe4zoGIKbwgrKFCrvyjA8w0COxA4/pkRoYChkbTMYjUH+Srmmyrk4/lFZTqwxsqpC1XIs2EtVigfLjWSkSDIN4HQaZBEA7dtsVTC8cfMFlb/GlpB5WD61gNgsC8orpVEB7CuIn1QRD4HGfyTDjuFJRfGFUfBHaToRQK9qM7GkwMJQ/TFOMaBPrm7ErINzy2EYtvXxX5XJxQNR1OihWHx8h41C8Uy0rXmNtoYsihzuk4cWNKpS4oXAZUyR+WbhB63lTupQUEEb/ZWLOPajExJJ4P1jCSCQjsQON0JCNDAWnxQdBoYkjNAiwtB0YZZhBpLa76IGjJ0+gTcX1TzAcBrxMC/jCpQvngiKce3vfig9HZGu2cKwlp0SCoOimOea7WSbHahhE3BxeKJTy5cQ/2DI4CKN+ypHZwEiuY1+ik2FY/1e+DIIUmhjRNDIfO4L8F2tbirpPiqgaBQKKjnRRH+CAYC/vPj22SCpczVUleNgaFfQ0FP2D1SGkQcDwzUihhaLSIr/1tBc7/7t14w88eEE+cBng1DV0mbh6tKHfYXvrZHq9NCUhEhMAVyiaGIjQILIxlI7ImhlQLCBi/pcU6iGtkJoYyUkNaBpEGE0OKwq1s+m0vn2wvHlQSLEtb+SKwP2IuXElrENjQ6QwhbkEvcmjDuzlIg9kPFYewLTlP+CbQp15+OL5187MN33/5oqOqn+Oq4R1nzMfLjpqFr19SxCeue1wofh5UH/Im5cULpuMdZ8zHB/9vqdCmhHezUaNBoNoHAeO3e1Zux0euXYq9Q4Xqdx2tOfR0tOKyk/fHJy44zIkbfbVOitWGbUtYonuMG9cgcH8srZIwK1EXdQ7ZbwJWb9vHFUa9w0LKa4h6pEwMCX5f4a5nt0uFy4MDQ1YZg+mMHMcJlpUuHwSjxRI++ptluHXFVokY9FERDDjTbiWI90FQMTFk18iQ7fnQtoCEhe9H75dttF1ZHwQ+4zWZfGQaBPSgcTqSkaGAtGgQ6JIiU1g4+fCd2uzFQSEnug6fRMJlahCoSIwEP717DZ7evJf5DBUNgrjb3iLn1xRu1JmCt1hYt6frb6vy8Opj52BGT3vNd7MndeDlR82q/h1XDV949ZHI5Tycd8RMLJzVI5yGOIjIvqr8/F9OwnlHzMRnL1wo9F61HGMKNHijSfUUEzW+be8bxnv+95Ea4QBQNne4vW8YP7hjNX5y1xq1iZEkrkyCpZtX3HjSNOcHqeRK0oxvqugdGMGbrlBzm7jBB4GSUM1QOW8RETpHaxAkTEyCAFxZRai+MS4jzKRYVjL54DnY3bB7kJxwIAjFulAFv4khfWm4f80O/PjO1bhtxVYMF8LPXGxP95S1SHxEz2c2LvXICgiUmxhi+iBIx9meaxDbQmZkyDOcGh8EtX+rmmwrg7bt80OXNnsipC1fIs2EtRmxdXv0m39/Bhf+4F787uH1kc+0OOKDQKQMuTUIUtBgec9gWDfWZfxQzJrUgevefzped8I8HD6zB68/cR5+897TMGNiR/WZePvP5d8ndrTit+87DUfNmSicDhaUBEWXnXIAOsZMKYkKNHOcmm81ToqVmxgK//7mp7ZgJOZ2058f26g0LbLEHf4Eq0X1sJhaE0Np9EEg+d4nrnsMS57bFR2uQMDtdT4IqJnrYlEs+SiVfD1mAcfgDTsuVNYcpeLiiYmDOtW3hVlFq02QowFdXebulWytFWt4df+mkHgNgvK/Otd+b/75g/j2P57Fe/73Ebz7qkcwONJ4eGt7tKbYHyuwnBTb0SCQqy22iSHZ1ISTlrM916BxOpKRoQiZ26DUaJzcbU+3aknrbUJbaFtTCATMOgCyWd2+D3zuhicxMFII/b2ViC5qvJNi/rA8j/L9GbXwHhyxFpgyc0bO83DQ9An4zhsW4R+fOAv/79JFmD99Qs0zIov9yV1t+ORLDxNOB4swrZTLTtlfaRy8JOlmnAoEtRoE8tGFEjVn/YDhILTCyq2NZlVsmEOM1yAYL2DVBwxpnfMr449LB9hxVIUeAnnaN1zAvat2KEtDvYkhl4q35PtC/gcAcee3vCY8knRjV9YQJg/Vok1B0SstKaGsQ/2snnH5AL26UEWcBkHVxJChIvjn6h24PsSBsO35kNLlmHr2Do1GzmeU010Pa01XL1zmaQ9sE0OZBoEN3D9NzcgY44uvOQorv/oKfO3io20nRSmq5loKa7+y9Nx2KtRR64PATsZ0rSlEgmUtXG0fDo0US5Eq0bocub78qFm47JQDuJ+PT4eIBgFfnlLUDWNhLTDbJK5L62g1qje2Ye3gky89HIfPVG/OKI5gUkTHq3ENAvaLwZv8yjUIFIWzbe8Qjv7CP7Dw8zcrCpEfkTyoHhdtTQG6o03jGCrjeHntjn5hPy4s6rW6bK8hRCiWfGHnlVG39aPGPH4NggQmhhw5q6JwIEyxrORMDLkPxbpQRdywUvndZBF886anG76z3Y4ot4GHnt+Ff64OF6bb8FUle27Beq0+GzxaCkwBQaZBYIVMQJCROlqI3AqWpf5gx/Zkqxrbtwsy1MPawNsyLxFk2bre0O91JS2XE1uk5pT6IFCfrzefyi/sMAnvUMJyciXjh4KnboXX+oqnrbBD3und7bjhw2fiqneerDayGIKHOKLZ5DWN1z88LgRSPceoCO+eldtxytdvx77hcG0m3YjkQbUtXBMHvGFJ1r3WqITv0gF2HJWsiOSp/sZ/GCJNqj5mCmsIXkq+uIAgavpP2g2TaRC4sY9SfabGbPaRghx6uNRnVOBVLxI0LxUziyZvoveHmBiyfWihUlhtEhtHV7JFxZrj6tsfz1qCpRU3lGkQWCETEGSkDlcWtlHo8kFA5WCeRirU4Ed8Nkmlvf/Hyw5XG67AIpPVtCg0u3qnhxV09QlRMz9xC0OWk92GsDhXmSJ5f8NJdkzTxMF7iKVcg4Cjb4jeBlI9a0Ud8na25XHO4TNwxGy1Pg9YJNqvejX/RNI/UgiYfEkQXwhJwxsplPCha5aqSYwkIge+vGOIjrhdYtwcj910qKSSFZGDAx6TOkJlVPcwlbUrDyXfFz6gEt2z8IYe64OA8QDlW7hBVN+6ZR1URZuColdYlT4zMFLA7U9vxa8fWIvV2xrN3dW+YyJlehg3RUivLkxRnWctFwGvCTRdjBRKkWZlKaNLo52FbJ9nOynmf5YnHZkGgR0yAUFG+nB8faBrfVMZf20LUHQeFrx60RxtYVOl0l4uPWmelnB5YNUphc19Z2s+9HtdSct7npgGQZyTYoG4dYwfx+0/GV+56Cj1ASeEt/6GFPog4C1f0bW+6o1tLiZbJmeBmrhEBSde7b9R+D4wMHabTfUFsqjweHNy17PbrGkOVBApE+UaBAb2d2EpNmViyP4Mpx6RdVpB0tFhFPWhEVhCcFMsiQn0AYbz24jnuU0M2d4LGYjfeh5Bc8vpA9jVP4JLfnI/3n31I/j8n5/C+d+9G9c+uI7xjkMdLQKKdWEKE06KXeHn9zxvOwnC2Kg12T7PmoMaNQikoqjC0gDP0EcmIMhIHa5PjfUDbxoWbUF0bfauftcpOGK2WfvaNW3NcjXN6OnAsfMmKQtPpB8xnRQnTklyOiIEBLo0UXOemCAu3kmxmA8CHWPg206fryHUZPCOjXev3B75W7296zh4N1+it4GUaxDExG/UuWMgMnkTQ/Fv9o8dwiv3QZAwPJUOXGURKRP1PghMmBiyd/uOghBcFTJaOKNFvRt4l9bAxZKEBkH01fTQr/mdFDeDDwLFyDQ1gmVV8n0svm0lntnSV/P9f92wHLv6RyylSh+8FwnSjGknxVFQmA4vv3u17SQIY3MNIwrLxFB9PhJrEGQmhqyQCQgyUofrKoYNAgJVk21F+9By8ag+vGnL5/DZCxfi7MP2s64dYYNgjqdNaFMXrkBDYfsgsL9ajLKRrOvgISesQRDzgKAPAh5kct7T0SLxlj54m9bi21dF/tYq6IOA9+mWuCv89eEqHroo3SJL4qRY5PHKLX3VQ46jJm1rWLujn/tZ9SaGlAYXSqgGgeZ4ZRz6UmfcxJCABoHiCq6P2qX+V/J94TVP1Lo1qQZBElzZR6me5yZ3Ra+hTzt4Wuj3FEvK94GrH3gh9PvfPbI+8h1XqQoISNaGGSrCXdtrPwrtiKU1TBUbPghkq4o1xzWYyeaoCtZePNMgsEMmIMhIHa4vDxrUqzWFa4OSr37x8PgXXor3nXWI2kAlsHbLLdDgbdUx6wYlhcWiaRNDoj4I4m7sijkp1jcC2t541MNbfyOMBaZoG+AtAlHnx6o3tqQ0CBLkTeRmYMVRsfob3eHh8ZYhhW7zgf/j94GQFifFuqlqEJiPWh9jmeGts7df+RDW7xqIfU7MSXFt3BQuGfAi44NA19oxrsxZPxMYsrhQ3e/bWnJ4+VGzGr4/dEY3Dp3RHZEGeqXF6jN3PrMt9Ht3ehkDelVhjMqwY7oIHlizs+bvVLQjC9jYX+3cN4zL71qDj/92Ga6673kMhjmdDoE1xan2QeDQ9J8qaF0HzMhQAMG1mhD1hxuqDztsFk+p5Csf7Dvbxg9/Xa/7pKgsW1UmhuIWB5v3DOK+1TsxubMVpx8yDRPa1U9LUU6KdR085HNim8a4G7si6eSNVybrNm64sFBxsCIaAm/5toiaGFJctnGHvCZv2tVoEAjGK7Jp6h9zTKe6Vye9wezCBidYzKpNDBkREFjxQjAWiwsVzEllTOVt83ev3M404VYNV6CItGnRGqBY8lEU9MkQ5cPB5nrWlbW0jmR+45JjsLF3EMs37gEAzJnUgSvedmJ0GhwpqwpRrdPlcawy/rtWFyqxZWLonVc9hL997MU4ZL+yAM3ldmQTGwKCawI+SW54bBP+8dRW/OqdJ0ea5a3AdlIsYWIo9okM02QCgozUQe2Wqyi65lYKk3bJ97XetLdZ87aKV9dBnzInxYz3bn96Kz74f0sxMmbD+MBpXfjNe0/DnMmd/JFzYHpMEI0v7jxOpGnpzCm1sVVFnxM3B8GHbR8EcUInsxoEyePlGef0+SBQGhx5VAsIduyzY/Nau4mhir1+vdEYhYJfhQYtWoc6YMn3URRMb5QPh2gTQ5w+CJJobjlyFVvH7f0pE9rwl4+ciTXb92FgpIij5kxijokUS4o5B7rTnbgZNzHUvFSco5vWaBkaLeGWp7big+eMCQiMxp4eKGyvHnhuJ+5dtQMXHDmT+ZyYgEBJ0jIMk5kYykgdFAbZJOg2VWOzfIq+n00WignWpy1dE6aT4oiFxGixhH/97WNV4QAAvLBzAF/92wrueHmJWsxoNTEk5INAnQaBzlv+qm2TJ4W3XFibe20mhgR9EKR5Z5tkzhExMbSvKiCQjy+MqHbmyiGaKIJ+u2lg0X6vSyZweKG0TiOUlFiKJaBYErOZPBqpQRDeqHmbm4pxNwkmuqSu/YzneTh0Rg+OnTeZw1wfvXmALR+IWA9rSotJKNaFKSpjto1l+v/c/Ez1cwqnQyNQuYD1vVtXxj7DdlJc+zePQNulSwDNgovbgIyMVKNLvZrC8Fv2QaBRg8Di/EphflNZtkI2gyV8ENz17PbqgV6Qm5Zv4Y+Yk6j9uk4TQyLEHiaL+CDQuDsgJh/gLhZWukX7DO8iXrSsTB82m4wtWGai8VZNB3A8W/FBsHPfsGAsbJKOEtb80wgQ7AZUNqoi2DAwNH7bXnNEBqnkxabQo8FJMSVpRQylko8IhYBIojQIkpKkF7syAlAQ0tpPQSNss58RP7jTzSKhWBemqJoYsl4KKWhIFlCtuSnLis17Y59hLQ9kNAiyFkOPzMRQRupw/QZBg3q1oqGzMqDbXDyUSpkGgWp01uaNj2/CH5ZuwEihhPOPmIl3njk/tH+xDhOifnt47a5EaRM52I22uZooCZHkPE+on7XGOLTV4YNABmoHh7zFolLbnrcEROvBeNFasjEkGm1lz8TnpLiAvz6xCV+6Ua0WUlLBq2sHyFQ2qiJYcVI8Nnq4Vr8sKGhF1K95XSrespNisQP/qPxFmhjiDDfWSTHrAUeGAApLEgppqIclVEvjbd1KW6ZYF6awqUGQkRyX2i7bxFDt3zwm91iPuFQuaSITEGSkDtfHkkYnxZYSooGyWpq+W+42hR+2bonqOhDe3jeMj/5mWfXv+9fsxPrdA/jCq49qeJZ1AS6q/Zo8dIs0MZQoBdHkBE0MtcQICETyqtXEELGVGm+xsJ4T9kGgqQxolaxaEtnCrmz8OcLY2DuIbwZU3VWRpjk4imCzptbPeQhrH/p9EOgN3wZVvwo281avQeBQORd9P1JjMYy2lhxOPWhq6G9R3ZDbxFCqZ5UyNA5DSSSiBtYt4GgFAoc6Wh30asA8lbHb9iXJNM6LJrBdbyKwTAw1aBBwTeBZo6FGZmIoI3U4NMaG0uigTVW49gfgku8rXTz896uOrPnb9bpPiu6F2TUPrkPf0GhIvCwNgvDvTS4io9Kn65ak54ltWPIxJobEfBBo1CAgtmLgFTLJmMCKQqfNY5OYjC2YNdFDq8rTPMXzx6UbmBsXWSJ9EKR0vnFRgyAM3TdlKdy2V42uPImE1rgGdqd8SyUxDYILj56FjtZ86G9RYyXvWj6RDwJHjlwpHKoRSEIDDz0fraEbfWlHU2IM4kq71QGVeYhGKtzDpWUXc5nd4IMgPjwiTTcjAKntvud5ec/zjvU8792e513ued4jnueNeJ7nj/13V4Kwz/M87389z1vpeV6/53m7PM97wvO8b3uet1BhNkjG30w4v0Co90GgKlgCA3BJ0knx+UfMaPiurSWHlx89S0Gq1GCrfE229pFCCX8P8RHAWphGbe6T2/UWeNawzdW8qAZBzMpQpM80lQYBr4khBWFU0FUCpovWkoUh4QIUSefeoUafJipIOra7dAMaSI+AQDdp9kFAKU+U0hJHseQzhZSXnXIApk1ow6TOVrzp5P3xP68/1mDq+CE21UdCIZkU0lDPM1vENQhcptJeXWm3OqhoctsuA5fGa0pQ21+xYAntG30QcJgYSpyiDNWQMTHked5rAVwDoEtxuBMBXAHgjXU/dQGYAuAYAP/qed4XfN//hsq4KcTfjLi+t03zQCnrpPhVx87BcftPxo/uXI2h0RKmd7fh+288HrMndWpIJT8U5vNgGkxoiazfPdDwHesAjEJ7Dqbv3lXbcc/K7ZjR0xGqDaECUUfBcSaGREqxqXwQcJYLa8hpVhNDzjgprtoWtug7p8l2vNT6OQ9hSdZfa2PmeEjMcmqx66S4Nm6X+l/RZ5tf+Oprj8bXLz4aJZ9DEJfUxFBMP9btgsDImE1gqKI4XMoIpR3qZg04fzFQAZVx0vb8ncb50AQunV2xTQzV/s0lIGD5IOBNVIZSyAgIAEyGeuFAK4A/ATg38PWTAJYC6ADwYgCzAbQC+Lrnea2+7385LfE3KxQXayI0+iBQM9lWg7FYPkVJJ8WeB3zk3AV471kHY1PvEA6c2iV8CKuDYNVQWBKZWOD3DjQeqss4KU6KSL+opOGHt6/Cd25dqSU9QTwPQg2iNdbEEH9YOjcH1MZWQV+QoYg2T13DDrWyVYls3mpNE9kjqomktcpc1CCwkWKKt+2To8cHgUj91MftUvGWYjQIcl754Dz2TgAUOCnmfC70XUcmpPaWcPNMJnHucNqwTy6TONJsteBXBQS202E3fldxZcwF2HvS+vGQZ//qkhnBZoGSgKDCVgAPB/57GYB/lQzr8xg/nB8C8E7f939b+dHzvDYAXwXwH2NffdHzvLt9379bMj5q8Tcp7gyyYTTYX7WSCj34vp/odkF7Sx4HTZ8Q+btLE6wqgpOxiTl2z2CYD4Lo52Xsnfq+r7QufQC7+kfw3dv0CweAsomhokA7jzuQo+KkOE+sf/EUS9zCk4oGgcp56zWL5sTHZrAugzGJxGv7JlyF5JsXt2bxOJNnFAlrV6acFLtmQorFeJ7o+CBwSYOg5PsoRqS3JecJjX+Rj3KWRzIfBG4wscP+MQaRaYobd3oTP1UTQ860XPWMmxhKVgael2zuTGP7MoFLyy7Wmri++cWtnz/5u8dx0/LNKpKVoRD7M+s4NwM40Pf9dcEvPc87VSYwz/NmAPi3wFcfDx7OA4Dv+yMAPuV53gEomwDyAHwDwBkycVKKv5lxbbFWT8NYavEml2qKJbmFB++Cx7iZjqB5H1urIsOZDhMQqNYg8P34fizmg8DH7x5Zb6yOcp4ndGgUZ2JIpAwntOub1qkc2FbgObiNe0S0SVDXIJg2oQ0ffsmh8fGpiY4PSRNDtYIFZakRxqHzSSVQ0M4TJSzFuk0djIefngZSyYlNoUd9f9sTorVIFR9AIaLwRPtV0sPOZBoEiaI2xsSOVttJcO5IOvrSjrvjWKUOXGm3OiiOqdQmLQNBBegGXG5HNnFJczNKCA40ji9xa4k/LN2gIEUZqiHjpNj3/S31woGEvB1A5arxSpT9AETxKQAVYwWne553fArib1rcGWLDqT8MVLXJpTBpF31fTkCgPimpxITtx15BAYEMqnNRKvlYvnGP4lCjKZsR4H8+bmHIW76drXmceOAU/ogFcXHzFVdy4m2Xpg+CI2dPxKdefjhu+PCZOHxWT3x8ButSNioqJoaSHpYSmHqFoKYpRJU0mhjSpUEgZGKobtT+2T3PKU2LTnwfKBajNQiUxMH5XKwPAkatuHITe2Kn/XuOrmkuR/XtNAxjtmti9qQOXHjMLCtxj44tVFhlwHMOQO0iULPgypgLiK2JXdIAzBiHjIBAA68NfL7KZ4yKY4KJOwJfXZyC+JsW1xZr9TTYX1U0tlZdEFgsH9/3pSYL3iSbzlptVuxMgqa1GPaGCgiin4/ejLBuICS/GV4bl1k8T2ypF+eDgJf/euURmN7drq0fUNs48Iwlsc8INg5dRZB0XP7qxUfjQ+cciv2nKnXlpISag36BbAbLxOq8lXAEcW1/pGg4Mku4CoFW0qc/MN7WKVwoAYD1uwZsJ0EIlokhUcFb1OP8ToqFoqt7OcG7BukhoEGgmgltev0qyJj9pE7VxJDlNer+U7rwmVccYSXuQrGiQRBdBjx1TG2d3yy4VOysfVX9ejmpgMDhYclpXNwGxOJ5XgeA0wJf3cXx2p2Bz+dGPuVA/M2OQ2Ns01EsyR21uCRZN43pkukdGGn4jnWYILM24LItL9CSTJtLEFUVVWFi6P9dughvPe1AoXhFoaYCy9O24p4RXbxqMzGU8H3R26kmx9RczUE//3tUTAylycY8Dy5qENhI8bgGQXoaCAW/CsHi/OPSjfYSIkmUk+I8j2fiAJECAs61j20TQyb6JAkTQ4oz+qpj56CzVZ+QID2jVRAv8H+7tLfaOVobHdNcYi0FWaZhKiRtzymaDo3ikmCmJLBASNoentiwB+t2unVRIA2kUkAA4HCM580HsIzjnaWBz0nFv7bjb2qcvP0WoH6zqWqurQRr21SDVg0C4ZCTQcIHQQATSRgcLTZ8VyqFPFj5LUqDwGB5mT7AUW1iiCf5rzthLn+EkhCTDygRJIkbGNJkYihhsMLCG0smhkTKj4qJoagOyHtb0YTpt6QEc0JNEMiD53kYGi1ixaa9GCmUJyTdpV6ZV+jXrjhUzAaOFhmLC4KUSn6kgMC4EDfBpOLKCNCTQifFh83qwdXvOgWnzJ+qNuAxotfD7o9k1s9YPaC9Ra8GSBSFsY0Y66CZZ1xPLCBIQTuygUvLLpZ8oNEHQfL28MYrHsDmPYOJw8ngx/Gj1EgOD3ze5vv+EMc7Qf8HUz3P28/h+Jsa12+bB4fSPzy6AZ/543JF4dqftEu+L7UGdbtG9VJzSGWpipnqhjIaBApuhgcxbQOxbGKIv9W2xEg14y5reF5tO9CVXdvq2/Xw1KtqDQJtJoYSjnJxbcgmsmVWs9G12PaaTYPARSfFewZHsehLt+DCH9yLRV+6Bb834JS+amIoRe2jkhWW0F97GgIF6pqwyke0BoGqG6LcJobifmc8QG2uj2JiJwENAsU7FA/AKQdNxe8+cDredeZBSsNm4fI4RsXEkAegw5IGQSHC90kQEyaGXG5HNnFKg0CgklWsnzfvGcLfnticPKAMbujuKJMxLfB5K+c7W+r+TiK6tx1/c+POGBtKZdz91X3P45O/f9xuYhRTKun2QWDTTrUdTOc4rPpYeZczMaT49qIPoxWUz3lC55lJTQyZMglC7qxGQZ2KHoTpWsSb1iAwWZW1vgQE3ov4bJo0mZDhwUUTQwAwPKY5MDhaxKf+8ASe2NirNb6qBkGK2kclLzYdCwZjVuXY1xS+DxRUaRBEmhhK9j7Xu/KvGiWNGgS65eIpGq6qUGqvbXm7JoZY+2CecT0TENjBtnCrAs80xTIxVP+LqrXEV//2tJJwMvhIq4CgO/CZVyel/rnu0KfciB8A0NHRge7ucjDFYhG9vb3Vxf/evXsxMlK2JT44OIj+/n4AQKFQQG9vbzWMPXv2YHS07JR0YGAAAwNlO2Cjo6PYs2dP9bne3l4UCgUAQH9/PwYHy9kZGRnB3r17AZQ3Hr29vSgWyyZK9u3bh6GhsnLF8PAw+vr6AAClUgm9vb0ojZ3c9PX1YXh4GAAwNDSEffv2MfPkAWhDAR0opzuPErq94WpaJ3jDyKOchnaMor36XBETAs91e8PIo5yGDoyiDeX8taCILlTssPvo9oaRG3uuM/BcK4roHHvOG3vOGxs6OzGC1rE0tKGAzrE05FBChz+IUqmEX9z7PLowgpbAc0ny5PvlevJLBeN5Kqe17LxtqH+fcJ5Gh4e42l5pZNBonoJtzxsrV9Ntr1Qa709eaURJPQGIbHs5lBrGCL9YiMxT5bC/fozwR4cj81QoxI8Re3p7ufNUudGnsj+x6gnFUfjDFZuJ8W2vJecx66k4Msysp7bc2MHY2Fjuefx5EhnL2/1KePrGCJF6aisNxc5Pvs/uT8J5GpvHeOYnVp6i5lzZtlccGarWE8+cm/cLxuqpONRfrafC8BB/f/KK1TwVh/vF6klhnkp++Noo5/PVkz9W/jbmXN568jG+3svnPJJrI5E8+T5ww7KNWtd7KAxhaGgIvsF6AvSuYUeHBsp58u3lCYXh6lju+W61vcJgX/XwpKGevHIaeOdcr1QIzZPvl8fyuDx58Jjzkz/cH5mngYHke8JiUe9eo6M1h+LoSOyeENC7z23x1bY9vzBazRNK6seI1tL4cUMwTyNDZvdPKvM0PNBXfa4nZ2+M8ODD8zwrY/loodz+84w8lfz4M5YObyRRPQ0P7iNxxiJybmSynqLylPNo9KdWrxQ77pV8dp6Ce42R4WGleUrbmWVcnmyRVgFBR+Bzo0fNcIbr/u50OH4AwGmnnYbXv/71AIDt27dj8eLF1UZ75ZVXYsWKFQCAu+++GzfeeCMAYMOGDVi8eHE1jMsvvxxr1qwBANxyyy245ZZbAABr1qzB5ZdfXn1u8eLF2LBhAwDgxhtvxN133w0AWLFiBa688spyBoeHsXjxYmzfvh0AcP3112PJkiUAgGXLluGaa64BUO40ixcvrnbSa665BsuWLQMALFmyBNdffz0zT57n4bjWTTij7QUAwH65fbi0Y9xMz0XtKzA3Vw775NYNOLm1nO65ub24qH1F9blLO5Zjv1y5Y5/R9gKOa90EAJif340L258BALShiEs7lmOyVx40zm5bgyNbykojC/I7cEH7KgDABG8El3Ysx4SxifeC9lVYkN8BADiyZSvObiuX8WRvCC8pPIq12/dgY+8gLmx/BvPzuwEgcZ78sXoa2L3deJ4u7ViONhRRKvlYfucNwnlat3wJV9vbseIBo3nyi+WJ6Morr0RX/2Yl9QSItb0dO8b707T+dUrqCUBk25vm7WsYI/L92yLzVLloUD9GeFue5spT1Bjx05/8iDtPxcIIM0+q62l4x3oMPHV7TZ5Yba8ln2PW087nn2LXU66cp+BYHpenU9vLzh9FxvKDdz3MnSdAfdurz9NJg4/Ezk8+fGZ/OmXkcaE8dWCYe35i5al+zq1cHpJte088sqRaTzxz7uTBjcbqqXfp36r1tPGpB7nzdJS3oZqnDUv+LlRPKvPkI3xtNK20m6uecoO7qnkyPeeK1FNlvZfzPJJrI9E8rdy6T+t6r3vTo+X+5JutJ515WvvIHViyZAlKvm8tT97G5dWxvNi7xam2t2/pjVUNgvp6OrzwPAD+ObdnaGtknq6//vrYPHkee37yn7wpMk+3/P0mAMn2hHt3bNVaT93trVx7QkDvPndGcYfStte3bkU1T8WBPcrHiOP3PRyap7XL7iHXn3jz9Pit11efe327vTEi79sby4uFESxevBidpf7IPJV8P/aM5TRvdaJ6WnP3n0icsYicG5msp6g85XMekf7UFzvulXw/Mk++X7vXWLdqhdI8pe3MMi5PtvCoq8Z6nvdFAF8Y+/Nu3/fP4XjnPwB8a+zPB33fP43jnU4AQTfZJ/m+/6hYasnEfxSAJzs6OtDS0oIlS5Zg4cKF6Ovrw6RJk+B5Hvbu3YuOjg60tbWVpYGlEiZMmIBCoYB9+/Zh8uTJAMrSuK6uLrS2tlYlcV1dXRgdHcXAwAAmTZoEoCyN6+7uRktLC/r7+5HL5dDZ2YmRkREMDQ1h4sSJ8H0fe/bsQU9PD/L5PPbt24eWlhZ0dHRgeHgYIyMj6OnpQalUwt69ezFx4kTkcjn09fWhra0N7e3tGBoaQqFQQHd3N4rFYmielqzdg/dceT9y8DGEVuRRQqc3in1+O4Cy1HTIb0ER+arEdBityKOIDq+A/rHnur1hDPqtKCJXvkUIDyNoQQuKaEMRA2hDWWo6ggG/FSXk0IlRFMeea0URLShiEG3w4GOCN4J+vw0+PHRiBAXkMYo82lBAHj4G0YocSpjX7eGq95+Dc79zN7owghHkURh7Lkme9utpx60fPgm3r+7FJ69/ymieurxR7PPb8LbT5uPkuR34tz+sEMrTj99wJF6ycGZs27vqrqfx9ZtXGsvT+88/Gh897zDs3bsXH//9k7hj1e7E9STa9pb896vQ3dmGffv24V1XP4qH1u9LXE+AF9n2OlqAJf9+Zs0Y8aWbVuGPj28NzdNh+8/Enz50ZsMY8T83P4v/fXhzbJ6ixohtO3bj9O8+wJWnD1xwDJ7e0oc7n3hBWX9i1dNnX3Yo+voH8cN/buRqe794z4vx1l8siaynr776MHztxqci66m1rQ2Pf/mV1bH8+3e9gCvvXcPM01dfezQuPe1QobH8Xb+8D/98YUDrGMFqe/X1tGByDjd98nzm/NQ/XMCpX/xLZH+a19OCtX0+d54OnNKJP7//BK75adHn/hyZp2WfP79mzt00kMOFP7hXuu39/RNn4aCZU7nn3Lf89J9Yuna7kXr6wsvm460vOgytra3440PP4TN/fIIrTxM6WvHoF1+JkZER/PaBNfjvvz9npe39+yuPxTtOP6BhbfTqyx/Cut6R2Hp62aL5+MNjm63Mubz19NFzD8V7Tp2Frq4u5PMtOOKzfya3NpJpezrXe685aiq+denxOOkbd2N4eDgVefrWRQvwmuMPwNPbBvGGn9yrLE/nHDEH9zy9kStPbz1pJj574ZHo6urCFXetxOJ/POlM2/vAGXMwa8Z0fP6GJxvqaf70CfjHv1/APee+/Rf34+HVWxvy9N6zD8VHX7w/Tvjq7cw8feOSY/HKI6ZEzk9fu2Eprnx4a2ieHvj0SzBt8sREe8LHtgziHVct1VZP0yZOwF3/dmbsnlD3Pvf8b9+OTTv3Kmt7X3zlArz++Dno7u7Gp363DDcte17pGLFwejv+9u8va8jTDQ8/h0/9YTmp/sSbpx+8/ki88qRDAQDHfvZP6C+1WBkjjj1oNq593+k48tN/iszTo59+MV59xVKs3zWodCy/4IgZ+PZFC/Av//sEntjUF5qnB/77lZjY0cI8Yznnf27DlkFPuJ6e/MYlAIBr730an//bKutnLI996ULuc6PD/vtWa3NuJU+vO+UgXP/QWuv9qavFxwP/8WLmuHfLs7vwyd8+Gpqn9529AB958bzqXuO+ZzbjPVctUZKn1d98TerOLKPmp40bN+Loo49GgKN9338KhrBvvE8P+wKfeW/i1z+3L/QpN+IHgKoqDADk8/lqBwKAiRMnjkfcOR51S0tLzXOVzgSUO1mF1tbWmt+C70yYMKH6ua2tDW1tbQDK9tWCz1XMHwFAe3s72tvLg1Yul6t5rqenp/q5o2NcOSMqT54HjASadhG56oAIoDqQA+XBcPy5PPr9fPXv4DtDgecKYwNvGa/mucHAc6Njgx4A+A3PtVU/B9NaQg4DaK/aohuIeE4mT75frqdcfp/xPFWeK/o+2jonVOPizVNbR1e1/bHaXr69sxqmiTxV6mnixIko5VqE8qSq7bW0lP/u7u5GMdeaOE8VotpeCbmGMcIfy3tYnioy6IYxoqUtMk+5MRuerDFi0uTJ8OFx5amSBpX9CYiup1xLK/IdFUOO8W2vJecx68lraau+F1ZPPWPlHxzLWXnq6e7GuUfvD0BsLC+1VOTY+saISp7CnqvP01CuHa2t5bij5icf7P5UjmuYO0/IedzzEytPlbKtzLmbB8u3T2Tb3oTOcv5551w/31KtD931NHHipGo9tbZ3VPMVl6d2r7Wap9bOSls03/Z8P3xtVPLKccXWUy5fzVMFU3NuVJ7Kaa19LjgO8La9iT3d2NY3TDZPOtd7pXw7Ojo64Pt+avLU2tGFjo4OlPxBa3ny8+3V8byttbXmN1vrct48ee3dKBZLDXkaRiv8fPk93jkXuZZAXIG0+uWxvBI3K0+s+SnXPgEV6+1x81MFkT1hfnv50ElXPeVzHteeENC7zy3l8uH1JJEnAGhpba/O1YNFKB8jhrzx34J5amnvMLp/Upmn9q7xdj6AdhTHTJMYHyM49u6TJ09GxbG1yrG8UPLLYedykXkq+fFnLCO5dgAj0vXU0tmNIjjXRjF5SlJPlf0i7xhh+9zI8zwS/cn3WmLHvZLvR+bJh1+z18i1tinda6TtzDIqTxs3boRN0mpiaGfg80zOd2bV/b3L4fibmsrE6y60tXqS4Pu+lAMj7ho17OSHilOhCrY0wlhOiGTSxPOKiCNjhj8lLfi+2DgU56Q4rjxEHNSeMn8qfvu+0zCtuz3+4Tp0OeiVhaudxDwk2jZ0lUDSohUdi0SdGiehs218AyXkpDjorFFhekRJ6mRNtdN1HciWr2tOZFXi1/2bBipNXfVaQqTfB2POW3L4KYsPH8WIosvnxPJi1Umxgm594oFTtC7JqSxHVCcjuM4aGi0qDj26/RA3KMGETFvgTIeO9FZMmyV3UpwwIQ63I5tQWUrxtM0xGTgX1C3VZITj1sqLn2cDn2d4ntcR+eQ4BwQ+7/J9f7vD8Tc1VAZZWfSNpfYH6WJJ7qiEe9ElEXYSghNf08yBIflk5V1mM8JTlCLl7cM33vxFNgAtMQcHcQusvEBk//vuU3DojO74B0OgsgmrwCdISv5EEF1CkqSCbdF5z6Rws7M1H/9QCMGyttn2mmVolyEfI9xMNdXDdLvJUEklL6aF6mFpAMTmNgqUfKBYCj89EZV1ROWc98AlyZyi4qJVV1sLXnok7x05cahcWFA9lwaD0yEgiJrQXB7Gai4TWGwWvP1GRxJHx05tWfkv+T56B0bwpRufwsU/uQ+fuv5xPLulr+aZpO3ZhQsRFKEynvEIkZjP1P2kci3x0d8sUxdYBpM0CwgqKzQPwHEc75wQ+Py04/E3NzTGWGl0Ta2V8dymhkXJl7uNSWTeJEmwbEwsy8IWf6x4o+qbtYhUfePA5mEHD3EaBHHpz7kuFZWEp53EPSLc1DQVddIxTnRzYfJct0aDQKAAvZrPNuct4gOIRVw7wFVJZQ5L04FIJSdU2rxrZev74zd56xHVIEhMTNc00XW/84bjcIEmIQGVZY96DYLxz4Mj5jQI0oILVgR0XNAojKkusdaCA8NFvPFnS/Cr+9Zi2bpe/O6RDXjTFQ/gue3jVq2T9isKU4fspRSbUBEQFKJU4AKI7NFVriXueHqrsrAy2KRSQOD7/hCAJYGvzuF47ezA5ztcjr/ZcWFxwILKxkwHpZKsiSHOWxlNfsvURNMphmx+WYuFqJ+SplXkddMqjn7VOwIfJjUIkvQRKgvYCly1GvOQ6HirT4Mg4fuCARg1MdSa3MSQzWk9qolw54XC5KAJk+2IGuPmeOymQyWVuUb1OlQsuPGHS9Sl+3X4vh+ZZlGhbNQhIm9Zxs1VrENKVdNcd3sLfv4vJ+Ge/3iJmgADUFmPqE5GcL8zVNAgIIi6tOPwQFazR7SpQWBR2320YmKI8cydz27Ds1trNQZ2D4zi949uCKQtqQaBfVw8RyEynKFQ8mPHApaJofo3VdZFM683TZNKAcEYNwQ+v4P1oOd5+wM4L+JdV+NvWqgMsrLomtcqwdosn6Lvy00WROuUgg+C4GLOxJKo5DduJNgaBOJxqM6H6cWi74v1szjTA3FlKLJoSmR2wH5zryGqWvcMjuLhtbswMFKIvYFKxwdBspBF3zdqYqhN7jZXMI02m17SgxP3tqr8tDpmI14lVQGB3WQoxW/4YCENgbijbuNTxUd0muMuAtQTaWKI8/0kZymqx9sJ7epv9FJZj6i+lBbMV6ZBwAkN+QA/OnwQcJgY+tKNK0K/v/yuNdXPadAgIJAEYagIPIH4eVdkT62yPbQ08XrTNGku6asB9I99PtzzvPcwnv0foOqK+wHf95emIP6mhc4QK4euWxwUbofI7vV469S09kitDwI75VuzpjCUhnotArYGgXiaVDifFQ1PNbwHsOXDffazcckXOXdIkwZB2CL1B7evwvFfvgWX/vQBLPrSLbjmwXXMMETbp64iSG5iSOx5k6ZhajQIBN6rUSCw2PbCmsiTG/dg/a5BrvdHRTy6OQa1McEkVeGj/aWVclSfyws5KQ7EHaaxSBmmBoHgIB3ppFiRBgE7btWH3urHCSpjj3INghonxernDgJbQa1Y9UHAGbleHwRmL5vUQ8EsHIXzDlEoXY6PMzMksudXeUGPypjfDKRWQOD7/jYA3w189QPP894QfMbzvFbP874J4LLA159hhet53lrP8/yx/64yHX9GPBRudSfBvWmNn1JJToPA9TpNG8V6DQJGlUaaGGJFoLgTlHyQlRzmPS92YajUxBD3k41M6mxN8LZ66kvljme24ru3rqwebo0WfXz7H8+ywxBsa3RNDImFYNIcdo0PAkkTQza7b/153/1rduD1P72f+/2/PrFZcYro0Mwq3+MaBClatY1lRbXWXXd7i0ASAiaGHDvoKTF9EJjtK0mmKtUp1ZHztB4W1fgg0OCkOGq8cqyr1VBrjdB+u3j5UbNCv7/khLkA2Os12WFi3AeB3PvV+FNwMuhiW6Y0no2W2IJJEcG9SiF/SxOvN03Dv2IzgOd5NwGYU/d1cJQ9yfO8x0JevdD3/U0h338FwJkAzgXQCeA6z/M+B2ApgA4AZwGYHXj+C77v3y2Z/DBsx9+UEBpj5dBsYsgmJV/WBwHnc4brnoLgokaBwFCcjRoE0c/KHJ7wvEPbBwF/W8zl4ttR3CFJvZNiXe1y9qQOLeHKUl8s1z64XjgMKgdQSetMdN1scjMi6zAumEa7/mVq28gPb1+t5WanizTzfq3SKogMIUqotHXV4+JFx83BDY9tFC4r15RvfD/6QERcQBDhg4Bz9RM3p7B+VT3e6phvCCy/AejQthj/rEOoFH1ph+5A1pr3MMq41ewRWStUon7b6Qfi5qe2NPz+2uPmxoaR8zyp8bdyqJtUQJK0r1KYDwkkQRgK5wkV4jQIWGf+9fWvUgmwmS+kmIaUgADAkQAOZPw+AcCikO/bwh72fX/U87xLAFwBoHJ7/5ix/4KMAvii7/tfF0suG9vxNyuujx8+9BxaUZi0iyVfarKw6fiJOsFFhak6fuj5XfjlP5/HM1v6sGjeZLywsz/yWSkfBIrz4Vf/Zw7eRXrei38yrjxEFvRJFqGzJ3dKv6uH2oK57emtCUOIR9ciPmmoops6kwKCjhoBgZy2i829U3AM830fDzy3015iiEFpU2uaVPog8Gv/VcWUrja86tg5uPHxsLtc4WkAgGLMTUZqlHw/Uqhh2sRQkp6pvF9rGCao3LhVnYpgvj574UJ84rrHlYZPYS8oyrwpXXh+R/Q+I4jNVlGpujMOmYZ/u+AwfPfWldXfPnbeApx12H7l5xhhlOtfvJIqh7rJzVUmNTFkHyoXf0SgdHZViJHMi/kgUKhBkCdUSCmHmoBAOb7v7wHwRs/zfg7g7QBOR/nW/iiA9QD+AeCXvu8/ncb4mxO3BxDfj/cgnwSbG/qSZN4oqIzGQWE9YuoG0Dt+9XD1c9yhbFR9s7UO4hEp7yibwDrh7Wb5nBf7bKyT4roAWH0sSU+aQ0yDQEW1ipsYSh5nGKaHZZM3cYJxiZkYCrxncw4INBLXbKLrhtKm1jzltuCiveMoKjlRfcDiecB3Ll2EOZM6cOvTW9HT0YrH1/cy0wC4p0EAqDMxZFporBMdSaFiCkVnMb94wX7o6WhB31BBWZgya3KbtOVz2K+7nSkgqL1MYL/de56Hj523AJedcgCe2rQHR82ZhP162gO/s96Vi3O0amIooQ+CRG+DREMikARhKI3XowmcFNf/kmkQuAkpAYHv+/M1hn0bgNsUhDPfZvwZ8RAaY6UoaxBoCJfAjFny5SZubg0Cx+teBupZlqlvrrYqIiAw3PR9n//gLJ/zYg8/RU0MsUjSR2YRExCoGNNED8K0OSk2rBZuazMiEiuV8Tw4frDMHDiNZGFTOIyxRZo1CHTMmW0tOXzmwiPwmQuPAAD82+8ewx+XboxMAwA8tNYtbR3fj76mIWo/OWnXotQ1dcw3VA7UdJpjmt7djv991ym4+Cf8Pm/iiGqfBLaIocye3BErDKLir6g+7v162nHO4TNCnotOpWy7LlRMDFkeN6g0I9/3nVqfiOzjdBOnQbBy6z7usFReNhDxt5eRDCLy94wMdbg+fPi+JhNDY//aLJ9iyZe65e5Cndqy3xmcLyku8KPbMv8NhKSYrhsfvloNgpjTGpF1ZZIF8yH7dUu/qwMVtSraZ0QO8kUOhJKrhet93gY1Y5vFbWcw7jjnbc2GC+1IF7c/sw1fv+lpkvNuUpRrEISMm1FjaaW//eHRDbhvtVsCApaTYlUHQLyC8djoDPZdHVFROfxTrd1Wn63jD5iCmRPbwx+WINoHAU06W/OxZVzzu8VmwdsmWY8ldVKclDT4IADopIMXGqNZGdZFGN/3cffK7dxhKRUQNPOC0zCZgCAjdVBZNMriw0dazyBKvpwPAt6Z0wVTRDqhuCDSdVtJ5MDQRrnwtsWcp8DEkCEnxR2tebz2uDlawpZBhemoEUEbFiLrU5M3gkTr3NZCWySdwT5k09RIjQZBIaWTsySur7eScsU9z9lOglIq86oJjVNW0ymVfHz9Jvcsr/rwUYw4XBHWIIgUoHC+H9M3D54+QSg9SdBiYojI0GPCoTMVbQkbeBxr5Jrn9SXFSNyydT06tkhK2laSCwhobETX7RqwnQQhKPXxAuMQqndgFNv7hiN/r69+lc0h80FgjkxAkJE6XB8+dGkQVHYVdp09+nImhvglBNawtSaifkAj05ZVlyVlh1UtOS+2Dosx6TfZBr7w6qOMxRWHlVoVKOsZPfy3/kxrEJhqM5ecMLfmb5G+GMyTDT8iFYJJTq2Jobp6efvpB3K9Rnv2EafZb6jpMjEkNNz4wCMv7MbO/hG1iTBAyY+er0XNI+h2UvzqRXPQlm88BnjRodP5IhBAx+EXFXMTqlMRFp7K8ou6XEPlYLceD/H5rzExRKRdsGClUTb5Fc0lmSksOA6kxcTQp65/wnYShKC09BgtRNei6KUqtRoE2bG1KbKSzkgdDqwNmOiaXCvh2lwDlkpyk4XrdWoKKguzIJHqzEwnxfE5EWlGptu87/O32VwuXvwVt3EzubCcMqENpx401VyELKxohvDzxQhhymWn7N8YblLHcsIaBImi4+Ztp9UeNIs4+Q3mKU5IppNg/xt10WuqBO8962DMm9IZ+xylW28qCOubzYQuJ8VhRLUcH8DmPYPa49eB70ePccJOihMLjdkBdLW14N9eeljdd3l8/PwFySI2BJmxR3E6wuZyledirpkYyuXiizj4s81mwe0vj/GbrOZpseSjVJKzu9/dMe6S1AUBCw8Prd2FfcPxzr2pCMYo+SAYLhQjf4tbG9Tv31VeNhDVwsuQh5ST4owMFZBZNMqiS4OAAEWGAzcWvDVqs+YpVBmVhU4QqSQ1kQYBjw+CuENV02MelTHWRq2KrE/POHQa5k/rwtqd46rObfkcXnfCvIZnTZeoqduXxx8wpeZvkb4YTKHNPhyMOa0CgmPnTa75e96ULvzxQ2fgpic244s3roh8L20Xur78mqNx4NQJ+JqD5m2UMNbPTCjsRN+Qpztfx+NHzteqzCPwrqJ5hvgPnH0IFs7qwR3PbMPkzla8atEcHDazJ2EK5dJCIUwZlGsQhASoVoPALURNx9ptFip8EMjnYLRUkrow1NEyPpEnPYOlNHxv2zuE7hjfaVTSS2U8A4Ch0eh1rmh5ZT4I3CQTEGRkEEPaTn8MlU2XVRNDJV9q85eWGw2qcaFYouqbtcnlaSEirciGdRLeNpv3vNgNQdzt6fo1k+4DFirtzsahschY1NXWguvefzq++ren8cjaXThkv268/+yDcdL8Rg0M02Vqa0wV0yAY/2zTxFAw7jSaGGpryeGcw/dr+H5GTwfeceZBTAFB2vz+5HIe3nvWwRgtlfCtm5+1nRzj+AC29w3j+kc3KA03bLhJamOfIqVS9BgnevAXWT6cBcQb3zmHz8A5h8/gTZYUOi4VULmo4JoPgsj2Q7Tj5TyO9YpzJoaif0tyBlp2VCweQHtrvvo5uX84t6CSXirjGZBQg6DBB4FCAQGhMko7mYAgI3W4Pn740HPwRWESlPZBwKu2abHy5XQjkuFCU5c511Pd/G3cSOStmzyHiaG4w9Gm1SCwMKiJbt5mTuzADy87PvY50wettm7iCGkQBE0M2fRBEPicRg2C77/xOLRI2pwiMhQoJ22CD16e3LgH37llJfYMjmqPK6mNfYr4LA0CYUcxUXFwvk6oCetIChXtJRM+CNTWpfilHat48aNx8AmbzZ7fxBDrQfkcFIq+VFtpVej81W0NMHtQuhyfRIPgwed34bu3PIs5kztxwZEz1ZoYypwUGyMTEGSkDtc3dr4vd8veBYqS5pOomhgaGi3irme3YVvfMDbvGTIceyMUm43MpoPPBwF/uOZ9EPAv0vM5L7bhxp1J1h/Yv+yoWfj5vc/zJUACKgcPdoRyejJvukxtbUYKAjfwg0m0eXE/OGelUUBwwZEzpd+lIixUTUqzFcvvHlGrOVBBdNykuJbhoeSPOwutR9TGdNImSOkmtY60UBl7VOctLDiVN2ctytqlyHm0Dk9ZcO9VNWkQyJoYCvYlx5oHEy5tdCKTDZXxDGBrEMQV19Ob9+LpzXsBAD++azVes2iOsnRlJobMkQkIMlIHoTFWirIGgYZwCcyBvmYNAtP88I7VVuOntAGMIqotM50Uc7QRMRNDdDUIcp4Xe3gSl/76m3QnHDAFsyZ2YMveWqFV2hxwWtnoaupypnuyLYdoYhoEgfdsahAEok6jiaEkLcGBKUiKlGaLFJEaBGaToZSyk+JwIaIqB4v8JoaURKcEHWmhsv5VnQr9JoYiNAiIdjwP8XUd/NkFJ8UsktR1oehLvR+s+6QH5lTbURRUkktlPANiNAgESmz9rkH8+M41KpIEIHNSbBIiCnoZGeogNMZK4ft6JtjKoG5z8i6WZO/88lWq63UvSn12KaoIy7Q31bkwfbZ40vyp/D4IOJwUxwoI6gLI5Tz86p0nY7+e9up3px88DZ975ZFcaYqDzE0XB0wMcWNcg8CWDwL+Z4NpjLqVa4LghrmQQg2CJG2BzFigmJRmyxrh5RllY5/eOoYXH36ktpOwBkFkI+R0UkxIzKVHg0B5kFIoz1pIeCrjcMwFwdglGjYe4y+KsFKYSINAcn2i8hIVxX0oCyrTDZXxDChbR4jCpgZSpkFgjkyDICN1UFoUy2LjxrMJitJOijUkJoVQbDZRbTlpUkXyanLBOr27DafMn4qVW/u4ns/n4p0UiwoIAOCI2ROx5DPnYfnGPZjS1YoDp03gSg8PVPpjqkwMmfZBYE1AYH8DK0ow5pEUCgiSNAUiQ4Fy0rCOpE6mQcAmUjzgoAaBDqgIJ1WPFcUQCZMRJ8VE8TyxOcqqBgFvW2AkMokwTdbPn8omQal98Wmj00gwlfEMAIYLLB8E9sorExCYIxMQZKQOQmNsla62PAZGoiWy9egwp1AZ021OhSPFkpyJId7nCNa9TurzS2OZU0uUwz62iSG1OTG1nulqy+MnbzkRuZzH7VSVx0lxvA+C6LCP238yVzpEoLKQtbFO1ZV14z4ILC20RZwNBzfKNk0M1fogoDjKJiPJgQQltfgMuoQ1k8iW43AX8/1oJ8V5Qa+6cV3L89hzYNr7JpmzIsXpCBNCq3TI7JyJIc/jMDE0/rvNZsHvpDiaJHUtsr4KElzjUG0HuqCSXzLjGShrEGSGb0yRCQgyUgelQbaCaJKKVGYsxRSKvpyT4pRvdGRx4ZajzIJV9a0PU7eP7//0uZjc1QYA6B8ucL2T9zhMDMWUoekDeyqtzsatcl1lbdwHgaVKFDlfD6bR5pwYjDqNJoaSQHG9pYJsyaEfVhlTudUpSsmPXvOo0tqqjEce2LKUtLdhKvsC1akIcxCqUuMv2sQQzT7nIb6Mqfgg4IXtpDiJBoFkPQZ9ECRsB5RakUvm6mxd2gmDpUFgs4bzdIoo9WSimIwUQm8EEV3I6rC3XAnR5oQ5WixJTS3cGgQE694kFBdDhQh1e5ObEVPFUhEOAEA/p8ZQLhffbuMOwk1vlKlswKz4KNamQZCZGKqHipPiYNRpNDGUhNZ8to3IiEdkbUb1oJIHH9Hr9xbB041oDwTl8OPmDCqafrqgcp6muphHQg7nlK4PIroXwe0DgDEfBCImhizuA5VoEFgwMaTUBwGhdsSzbKSSXkrnF1Q1CNI+p1EiW9lnpA6K44dokn79wAvqE0FgEhwtyi1euBddBOteKw6bGGLB1UYEgrVx05xXg6ClLCFgEnd72vQZHZWbe1QW9iowrkFg6XRFZDgIbpjsatWNx71i816L6aDH/OldtpOgBSpjXJqJOhBxeVz3fT9SmCl6uBHVBnnLJ+1NmMphkeqDvbDbu6qn6219Q85ow3lefBkHf3XBBwFrfkmSflkTQ8G3ko6/lAS8POVBJb1UBJ5AnA8CgwnJsEZmYigjdRAaY8cRTNQdz2zTkw7LlDUIJEwM0axV67hQKpHaMCwfBIoXbL6s2m0C9nEKCHI5L35hGJP0ZjUxBJQPZEwe5mkzMWTaB4E1DQL+fhjsFzZvLVWUHnzfx8/ufs5eQghy4oFTbCdBC5TGuDQQ6oMgopBdPoDwfYYGgSonxWP/5jyApadI6cBJB2QEBAY0CFTmtW+4gFO+djt62lvwvrMOxkfOPRSe5xE5Jm0k53mxdvlrTAzpTQ4byxoExZLcTqfGB4F07GPvE2pIPJfDqKSXyngGAMNMDQKLBUaniFJPpkGQkToo3vyikKLKssHm2F6QdVJMoQBdgMhCJ4jvi5sH4fNBwI+NBc3AMJ+JobwXP2bFpd/0wpLSQnbP4KjR+LSZGDI8S9iyDCM0FhBxUlyZO5/d2mctDbqYPakj0fvH759SAQGdIS4VhBVnnAkdF/HBclKstlHF3qpOeSOmYrNbdTF3tTXe3dSx5uobLuA7t67E9Y9uKH9B5aS0Dh4NgtrnabQLFmwfBPLh+r5cNQbfoWiqVhYuAYGBdPBAqdkOhfhBqZCi5pHBIBMQZKQOQmMsKSgM6qMiHiozYqlfUFAtXVGfGqrzYaPt949wOinO5WLHrLhuY3phSWkhW93cGkJb1hkBt7WoX6rZEvKIjAXBFMqqzqugEvVtK7ZaS4MuvvDqoxK9P7mrVVFKaEFoiEstLhzkiVIqMZwUi578JdSwSF/p1kJEPqBcuH/hMbMavou7QZ+EGx7bqC9wBXhlCUHcUyaSEosKf3lJ2pOsKUaVeyRKAgYuE0NE0kvp4tXwaLSJIZsaBJk1CXNkAoKM1EFojK1CaSNk83bWaKkkNRnz+yCgU84mcGWyDFuksVoBTxsRaUYl3zdeVkfMnsj1XD4X377veJp9MGncxBChZnfV/WuNxmfDxNDHzj0Uv3nvaUrjs7UZEbmxHjwAarHoDLcy1oTd7HSdpAf8aZ1z05ovW4gUp+wtWAqo1CCI9NFQWT3FBEfpwAkALjlhrtLwqORPdTImd7U1fKczr/et3gmA7gUjD/EH7zUmhmz6IFDgpThJ+l/74/twW8x+IYzgnitdJobin6GSXJ1CQFFYGgQ2ITLkNwWEmmNGhhqoLBqDUEgShUnQ9wEZv1jcjp/Eg3aaBg0CSiuzAIVSY6UnTauIoMvG5eM3nDSP67mc58W27/4R9mJNtemCOCgdnm3YPWg0Pn0mhqJpzedw+iHTlMZn6/blqxbN4X422M4uO2V/HcnhojJW9XSkT0BApyfTgtAQ13TQXMXw4fvRt3iFBQRxTghk37fE5155JBbO6lEWHrX8qeAjLzk09HsT+1qi2wfkOMxwBnGhXejyQSBLzR6JaDuQweZt97MP20/oeUpnV3Q1CDJMkQkIMjIMQGFQqxxy2F4EjhTFJdOE5k3SUF3XiZoHUZ8P8yVzyH7deA3HYWgu5yVu38ZNDJmNjhS6zKSx+oiO2/OmhUoVuttbuDdOwRQeOG0Cjj9gspY0xVGpmYmd6TOnQ0nYR4msVFTTWKJpdFJc8oFCxByhasytmmmLKSdKB04AMHVCG2786Ivw+w+criQ8KvlTOYa2Rsz1RLJqBc/zYi80eDWf7RWWipht3CRXeehLafjmMzGkJ+5ZE8X8O1EZz4DMB0FGJiDISCGExtiMEGQO2PhNDAkH7TSuZDfM7jjbxFB8mGImhvifVYXnefjuGxbFPpf3kgsImtlJsWkGOH1LiMISAsyb0qk8PpsHw5+5cCHXc/Xt7FfvOBkvO2qmjiQxqWyeW/Ppa/dN3JXZZAWjneiDPN/hQwg/8rCtRdjEUDh/eXwT1u8acNKZc2s+h5PnT8WnXn544rDo+CBQGFZEYGY0CGi2pxyHC4LgesauiaHkz9lYX6tUIKDUjLgEH5rSO72nTehSC6UlR5SQG7CsQUCojNJOJiDISB0Ub8TpcDIpSmVItz15jxTEbQy5YmvfNPVt3XbdRiHuYFRtRkq+b2UzzXPzu7z5Sda+TW+UCQ6xxugf1mObs7u9BUfPbfRb0dPegnMXzlAeny0NAqAsFOOi7rHJXW342dtOwvvOOlh9ohhUxtUQS2nO08RdmUlWLmoJ6/IsDQKbhxBJKPnRjtiVmRgC8InrHotd71EW5L/rzIOwaP/JicKgkj+VyYgKysR8TbfHeWImhjSmRFXcTCfFNgQEQR8E0o6Ox6wUEGpJPGs2Xen14OHzrzoSkzg1T6mMZwD7LIFO7WboxP6pZUaGYugMseMsmKHO7qYsVPZbIxJOCPjPkyjWvjkoLcyCjIbUOXMBovjSB5W2H4YKE0PGfRAYjY0WujQIAOCTFxzecEv9ky89LNLsQBK4D+k1kONsr1FPid7ETUrlsNLVQ0sWhPakpMjKRT+sIna1r/m+j5JmJ8UA8MgLuyMFERUoOb2sp6M1j6vecXKiMKhcBlOZiqi50cSUR7XLcWkQBD8TaRcs2BoE5tJRQUXdVy2fEWpHUf5gguhM7wkHTMHf//XF+M+Xx2vNUtGIAthnCTY1jZr9jMck6fO4ltH0UFwbnH7INPxz9Q7byQBgX/o7KqFBwAvFuteJK9m17YOg5NM1WZDzvMQ3R0xviCjddDGdlDiH0Ul4ycIZ+P0HzsBfH9+EwdEiLjhyJs45XL32AGB3rORtP1GPmU67X/dvuqDTlymRbUTVIlKaPuyYBVSBD4YGgeDAldg3EfE23JLQZBuVAzUT6y8XDr114Xnx+Q/+bFWDIOHaBrDlpDigQZAgjDw8UuskHkGzrvRWqnHO5E588JxDcPisbrzrqkcYz7vRx23upR0polSQCQgyUoeNRfHMie3Yunc48vdLT5qH79zyLIlNj207k2G3yXW80xTUNXWqh+BxN93q4fNBwB+m79Mtm7yXfMQyvlEmtEjjVd9VRf+wPg0CADhu/8k4LqHpBR5sCnl4D8qi0mh6jq+qzlMdRBKgohnkPHcPdKPINqL6iTYx5EuYJaRByY++EGFa04/KAXoUSQ/EqFxUMOODQGEkEVDtcTlBP11WbaRzPxf9pBUNguBnyeKrljuhdVKUNlcQXeu6+mo8YOoE5vNUxjOAXYU2p2ZCRZR6CCsgZmTIYXoA+fm/nIS3nHog85kZPR24+Ph5hlIUDYUDDhkTQ7x+C5p97iBQvaGEbZiZTooVb1V82PFBwEMul3zMMr2wpHQzUYcDXxYDGjUITGLT/ARv3GQ0CCo+CGgOIYlQUZSdrXkFodCCzgiXDsIOg6MOiH3QWKvKwBJuiN6YT6xBQLwRO3cxIgKV5Ry1lmtmJ8Uel4mh8SdcmKdZ1WnjJnnwIF12r1SVD6hIkCJ42oKp9MZVK5XxDIjZnxMdJzLUkgkIMlKH6bn13IUzuBa6X7roKFx2yv7obm9BV1veyC3RMGwP7SMF8RSMFm2nmiaE1hNMCoL1x6dBwB9eqUR30+B5Yg7YwjAtIKC0kKUkrHAJE23m/WeHOxPmNjEUUbemN9ClqgaB0Wjx4gXTtcehoiw729KnjEzpcPX8I/SYGbNNVBH7jFv41GGlXXzMdcv0oGno5E9dOqJC4vXbk0Y8Dg2C4O9W/Zco0sgzjYoSo+g3hmceMZXsuPGfkgYBC0en5gxBMgFBRuowfWDkIe42QPnf7vYWfOOSY7H8iy/FE194Kb5xyTFG0hfkb8s341PXP2E83iAyGgS8JoYcmV+VUb9BoirZD9UgMJjWsg8CmmWjwlmscQ0CQv3M1YOktJPzgIuPnxv6G6+pjUgNAtlESTKuQWC2rfE4tkuKirLsakujBgGdQe7Npx5gOwmJCS1NRhG7Oqz78CMdY7YIqm25plkoSlrypzIZ0SaGaOTVBh7ExmO78gHetU30czbmnmCZyZsYSva+Dvh8EGhKcF0dx9UqJSEga79sVxufThmlnUxAkJE6TK+j4hwo1f/ieR5a8jkrh2wfuXaZ+UjrkHFSPKWrTXk63n9W+O3WDPUUSo11zlZhVBu/7wN7BkfVBqoIFWtC0+tKSptVireWXEBnHXa15fG9Nx6HhbMmhv7OG3XUvGq6+ZUsCQjaW3La+7aKsjx5/tTkgVCDzhBHaryVRSQLZSfFbo7rpRJDg8Dwjtv9VsOGynmaymREmxhSGEkEVLtczvOE+o5VHwS8axvGbzbMPwYPhJP6IKBkzpWrLeiSD9T/HacFoycZUpjcn4uQgqWQM6RPLzij6TE9fsSpuUb9noZNnwyiDodnTmzHEbN7OJ/mK9OJHS143Ynz8LN7nhNKCzXqmxCdZVktore8eRaYIouUR17YRfZGoopbI6ZvnlAaukQdYGeU0VGHV77jJMyc2IEFM3rQ1hK9y+XVmol6yvwNOzttzEQ/U1GWHzznYPxh6QYFqaEDoSEutUS1PZedFLPSLaxBkDAt1PcYScce006fozBRzNTrUiflrMfts8c/uyBcZFWnjbpWMdz6Y1t7SsXPZWJIU9z11eiUiSFGoThuwSuDk0yDICN10LFLWSb6kKM5EREQ5DzgsxcewV2nvFV/7XtPw2EzeYUOdKnPLqWFWZDQQ1yDCxDKZw0qFoXmhzw6o1eJcuUSRsdmpKM1j6PmTGIKB0Tijjr/aRYNAiC5f5LYGBQEf+iMHrz+xHnJAyIEtXWk64QdBrOKmOqwfvjMHpy3MNonxGiItmSFvOCOO/VOihPnj0YG4wQdkzpb8apjZ/OFZVFrjtLN7yA5Hh8ERJwU81YT6zkb7VpF3VfCoNSKqO6JwyAi74zFBQ2djORkAoKM1GFy/KgMVjw+CHi/TzvDAiaGrnv/6bjouHA71rK05j0cPXeS0jB5mTu5U+utJ6oLfB23AanmVRQV7cH0jWpKC9koe89JeeNJ+4d+/7HzFmiJzzQ2q5BX4yXysERlYjioqN+b3he5tEb41uuOxXffsMh2MpThUNE7S1QZ+z7dW8BtLTn89G0n4rSDw81qFYrR6c4LaxAka4UujR8yUFqHRPHb952Gx/77AvzozSdwPR+VJRW+quIg2uXGfBDwY9PfmIpqstGug1s02fKj6IPAppPi+vE73tE2nQGNaWLIWCoybJIJCDJSh8kx1qv+y/JBkOkQBBHRIBC1bcxTojadDx4xuwc/eNPxmNLVqiQ8SgsKFss37mn4jnXAT2mBqRsVVWjD7woVdJmieNWi2Q3Cm5ach5ceOVNLfKaxOXZwOymO+t6aBoHZeEUPRqTiUBRBLufhkhPm4dWL5qgJ0DKUxrg0EFaeUWXswyerGZbzgNZ8DqcfPD30d9b6tsXwyR8pkxUacCF/HsTm2qgm4kJeteHF57/WxJDm9CiA1Sas1LWCMqPog4DnApGu9IqaGKJiMg1gC4moCu8z1JIJCDJSh8mDj0pczCgzDYIaRgR9ECjHarl7eOWxs/Ho5y7A3f9xjoLQaqE6b3/z788IPa/aBwFlVNwMM92kKW1WdR0kHTl7In721hMxe1IHgLL2z4/efII17SPV2NyL8MYdbW7BbOIrLcz0xsjjMK2QOA7FowedkSEZhIa4pkSXZlhixhpG1BjG8okjOm+m3cRQUqicp7HWq6L+oSJ91hk4rSHa4/hMDNUICNg5OWxmt4JURaRDwQxoR4Mg4KQ4aRiEGhKPNoSpqUakDZPGqgkvVwrJfTInxRmpw44GQfwzvN+nndGCvtmF5+CIQrnnch4OnDZBebiE1mUNPL+jHwdN58sz1bMBHbjog4BCH6qg6yDJ8zycf+RMnH/kTOzuH8HkrlZnNHZ40JEX3sU7b5unYp7Pt7TxNZFN1WWZli5CaSOapnEnSLSTYrq3gKtr/igBAUuDIC94WCz0dCOUBPlhpMUHAQvRFEbPeZmJIV7iLo2876xD8O+/fzxRmqJQoxFsvl3XCAgk2wHF9sNzH1Gbk+KGv9n1SkXgCbDLxKYGQXdHdmxtikyDICN1mBxjk/kgIDQbGETExJAo1Eu0mQ9j6s0MsdYYPMsPgmtRKSqLwhMPnCIdhunDLEpjl67hJLhYnzKhjVSeVaBjM8JbRNwCgsjvzdZFZUNkXoNAf15T1qyVkZWLfiJNDPn6nc/PndyJy045QPi98TV/eOJHGT4IxDUIkjVC6k046dhGXQACiI8jkRoEBrJKyTRMkLIGQYyJoUBbipumX3/iPBXJCk+HgnqycVDs13yW9UFAz0kxl4khbZeMav+Oq1dK4xlzf26xgt8sMWdnyJEJCDJSh42DHBkfBHSmArPYNjFkcw7WcWc3CMUbHBXaW2qnm6RptemITCUVFfR/Of1A6TCa2QeBrkPbtAkE6rGZPV5bq1EbJtNpHymU5yzzPgj0ZzQzMUSfNMx1oT4IIp714WsXxuVywNcvPhq3f/JsnH8Ev1+ZWA2CEh0fBGmfwyjduI1GjdaI7sPDlVv7tIafBJ6si5gYoo6Ng2IVRTbupJhO+VMyMRQ3FLgyXtvsX/tP7bIWd7ORCQgyUodRDYKx2OQ0CDQkyAEqhy064FpIpvoIg87CrJ62Fv7phtICUzeVzcBFx83FhLa8VBimWzSlPsQy6ZCEtI/PNjcj/D4IIr5XlxQu+oeLAMzfsPREbStIoPqQzZVNbhxpyQdpIsrY9/X7IPBQvpV8yH7deM1x/I61q37HIjpmgaFBYNoJJfUD9KRdTNS+vw3ENQgivk+eFCb/+YcnyF4w8jxP6NCcJcifP033AWPymrJ1k7yy75JtBxWtL0rtqGjRVl39GsItE0PR5WarRL//xuMsxdycZAKCjNRhdG7lOpCO+p7QbGAQnSaGeLCqQaDZxNCZh05XG4FCGjQIEi5ACK1BExE8NHjVsfwHFTUYbtSUFrK61v+U1H11YDN/vIevVITrAyMFAHTtoidB+ZykNjhrpCUfVAjr86wy1m1iKIjIfFZ5Nuod1vpWVEDQDDb6k+BC9kSTGK01pzezy9b1Ynf/iNY4ZPG8+LoO/sy64fyKY2arSVRUOlRUk6V2XdUAkHyfoI9irjWbKYFGekwM2anhLskLdBlyZAKCjNRh8uCdJ6aohR2hucAoOvd9fBoE9tBtzuG9Lz5YafgqEVn8ULqBoptgsciOCaYP7CmNXbpuCFESgujAdvYO3i/eYXnk3Gk49fsqGgRWfBBoj4V0cLagNMal4aBXJAc+9AvjgkUqsjaJ0xreO1SIfFfUxFByG/2JXtdO0uRROlCLQrTv2szRtr5hi7FHk+OYB4PFzJqm338W3T1SBdsaBLKUEmog6OArf12BE79yK977v4/ghZ39oc+Y0gyN9aNBaDij6IPAhfE+TWQCgozUYXIMiXNYBqRmv5wa0ngLtMJRcyY2ON7rbKUhda8/yGUvMgjZjdRMPjB2yI5dTe2kWJcPgpSP3DoW2yIhXnzcXOnwbGkQmB5zPM/Tnlee8OdN6Qz9/vgDJjeGl5J+k5Z8UCay7fn6TUMExz+hg/TKml+ifZg2iUO9DSddR1AXgAC1c9g7zpgf/7xFrTlCy7oayubA+J9naRDoNvOlInRb7Xrch4Dc+371X1qbs539I7h1xVa86YoloVoyutZ19W02rlpNm6CTxdYZCtXxKa1kAoKM1GFUQFC5TcR+KBQX7Ge6Bs+GSLdtWxa6TQx5noevvfZoXPG2E/GeFx2Er118NP704TPURiqJyIY/LYf/PKg4qG1qJ8WaVquU8qgD2/n7yLmH4rSDpzKfoSKIGhgpolTS7zi1HhO554nj4+cfFvr9R15yaGN4NKosgxjhTorDG4sPX7u2jsf4i+c9mXYurEGQ1MRQynf4LtwoDSbx3S86CHMnhwtbq89HtEUzDutpkvN46nr8d9YeT3ebURG8NQ2CwBG/DBQ1CIJs3jOEe1Ztb/jeVHLj6pW6QLeCLQGQC+N9mkj58iGjGTFqYsir/Tf0GcHvMxLAUagmbdvWo97ec2OAuZyHlx41C5971ZF4y6kHYnp3u9pIJRESECh8ijq1gkI3RgVKC9lidVOitj2kfS1qO3+e5+GTLz2c/UzE9zY2CoOjReM3p3Kep72v8QhhXr1oNs4/YkbNd5ccPxfnHD6j4dm0dBvb/SNImKZGGogq45Gij6sfeMFY3CLn9jxaw1EI+yAQjkHt+7pJnD9KnTSC4Pi9/9Qu/OGD7As7djUIaJanx2Frj9fEkH4NAvcu/FRIuoS2ZZtehM/d8GT189BoEau29mnTVmtoCzH1SunOKKsurR2hECqfZqDFdgIyMlRjVoOg9t/QZzIfBKSwqUFgA9Fba7poMDHEeLaZqihYPa74ICDSpACU24rv+8rbTNpvq1AS8kQR1c5sVE3/SMGKDwLtcXA8096Sx0/eciLuX7MDT23ai+P2n4zTDp4WetiSlm5DKRsTO1oxvbsdO/bRtBHOQ9h4E1XGj6/v1ZoWoN7EkIgGgTf2jnicpp0Up30OyzuQvfoqmDWpA52teQyOFiOej9Ig0A/V4izLB9SkjkqfYK0l7PkgqP1XFBfM9/aN+Yj54e2r8KM7V2O4EO1UPin11Rg3/FMV0NVjSxBEpe82C5kGQUbqMDmEVAZ0pg+CqEMOsssxd+EpUZuHz8qdFHMER8WuoYhghmcBkhYhQnDRI1tTpheW1NZpRQ3mX9K+GKUwLMQaDbB4WFJP/3DRvA8C6O9rvOG3teRwzuEz8OGXHIozD51OZl7RBbXuv/hNx9lOQqqo0SAQ2AlXNQgk4hQXECRrhNTnsMQCEEfHIFayI7XmTOSVaHHy+CDgTbp2DQIlJoaShyFD1URQ0veJb87+9sRmfOfWlVqFA2HEjeeUhjOKF/golU8zkAkIMlKHycOyqgaBjImhbLBrPpSbGIqHykGOmJPieKgtQd9/9sFS7wU3fq6MCdSEm4WSr/z2Eq0cqofC4Yrspt/GTav+4YJxHwQmGqFyoXVqeg6tfEzqbLWdhESE+iCwWMQ1gnmBhOQ4LgVFkW9yQX49ScdxF27chrf76HRHCavo51QfZR8E7Gd424LuZY+K4O35IBj7V3KdUyrVhkOV3z+63kg89bUYV6uUBLqsJmB8HTxGetaWbpAJCDJSh9EhhOM2EaVbkGnHhQ2DaagKCFjLSOoLzHqzTR2tObxm0RypsGpMDEmOCqabPZEmVaXk+8odZ6V9KNGRvQUze5SGR8k838BI0fi4pN8DgfqyTEu/SUs+KENlvSZkYsirvCMej3EfBDSKVxvU1iFhiJjWino+9qWUo9LEEJUxh4WtNCY9+KXupBgoj8F3PdvoqFgHjSaG4jQI6LRN1n4q0yBoDjIBQUbqsOGDgBVp5C/ZYKcc0SI95aCpWtIRheoq51lImr61FoWQk2KOR20uQq97/2l4yeH7YXJXK04/eBqueucpOGrOJKmwVNSP8ZsVRNpUhWJJvQ8CFzaSSVCdv1MOmoqpE9pEU8H+ldBZSf+IeQ0Cz3OvHTqW3EhSkg0yUCvPWh8EEgEINvScTF9OWGhpv3FJ6UAtClHNGZsmaake7OY8dSaGdKNivrZ1EOon1ACo+jAgfMXL5oW52DZMpRHHYEuDgEwnbxIyJ8UZqcOoiaGKujHzmYjvs9HOOh8/bwHe/IsHjcVn47CHqgYBa41BeYEJAIfO6MGv3nmKkrBqTR3IhqEkKdzQaFHjlEpAKUe7zVAj6VB04LQuvLBzAAAwf1oXvvfG45SnIVq4br4FDljyQaA9DuWRUBsd5KAmmCGWHCXYzFMwbpG1eKVdiM65LSKODipxJexLRJZ+2nAhf6ImhkTCUY3IJR6jePGzSprGR3smhpJpADihQWDUBLVYXFT26kDc/twOLgiE00QmIMjISEDVYRlz3KJjJiHtiJap6xoEXHESaWj1mw/mLQQeDQKLQgSVRVrjg0AyDPMmhmi0qQpF30fep5Um6iSpw2kT2nDHJ8/BU5v2wIOHI+dM1LK5iUqjjZoeHC0ad77neSZMDKmNgdjQIE1KskEHYgUqq0HgVf+lf/hDbZ5WDZW1LYuwdsJqCjbnPGs3g2PIlVXpbCeDC7edFCd9P5mTYxOYHIdFTQxRauJsJ8V2ajjt8xk1MhNDGRkJ4BmuKJlJyKilJZ/DNy85xlh8zWzvuVi3qGAuQPQmJTEqFyo1PggcqVBqySyWfLKbW6ocst8E6Xc9r7zROnbeZBwzb5L0pkv2VqCNjUKxVFLuCDsOIxoExMOzBbUxLo0apzbzJDvv8l0KakRmjEzaBqm14WYkrA5Y81fkftFAXVJdQnngcFKcovHR1j7Ar2oASDopJtp+gti8pB9Xra4cgFuzMORG8aSGTECQkZGAcRNDjAVfzLsZ6pBZJLbk3R0GXWpCjRoE0c9S90GgsthVLApNb44IacICGHNS7MDmhBI9Ha0467D9Gr4/ef4UC6kJx+ZhST0FDX4u4vA8aD9xb2ahNYu05IMKoc5abZaxpAZBZb4WnQOlBATCb9S9n/JGXHLgRDKsBlj1ErWWM7HGo3rJIud5sfmn0tRV1JOtvFS6k3wrcMDEkE0fBHG/E2nDALsObQ271Padacfdk7GMDAJUxivWwEVp0E87MmVtsnqauSk0+iCIXmVQ90GgVIMgaGJIMljTYwy1g4eyk2LabYYi333DIhw9d2L178NmduOHl51gLP64dhT1u43WZ0NLxcShkOo4ZMI7d+EMpWlQAbUbqcSGXGFCbbGbT0aV4Jo9J3DyYNLEkOt1rpt6rVRbsJIRrkEQ/XzUbybaAlUBgUMWhhSZGLKkQYBkEoLxLR7NdgQAeQlfMLLUr1/j6pWWBgHF/Tml8kk/mQ+CjIwE8KgbR20kyDqEIsKnX7HQSDwG1wvq7T07NGGKtHfyGgQKi13FrQhqB/amKR/e2k6Fe0zvbseNH3kR1u4cQLFUwiH7dXO2JTXtLfZGVdT3NjQIihaEUJ7+cY7C0EHJOV8VgklKG1adFAc+C/kgMGhiKIONC3N+2HwqZ2LIhAaBvrDb8jkcf8BkPPj8LuF3TfjioYStsSLpWqOi0UNUzgQAsGkwwCUTQ5kGQUYmIMhIJZ6BjfVYTGPxiS/4shuv0XS05nDBkTOF35OZP1xeehJaT8Qi5KSYg7Q4Kc4HApNti6abAaWFLJD5IEiC53k4aLq8PwKdRPvvMd/+iiXzI47nAQMjBb1xqA6PuBYfL9TSRGzIFSbU1IpVHwRBzT2RdMSv+cNokTIx5Hila8ZVE0PsA2B7WnO6yvMvHzkTC2b0oLMtjxO+cit29Y8Ive8hXsuHyvioIhnWNAgSmhiqvEd5Kd5iUoOg/u9YDQJ9aVFK5qS4KchMDGWkkreeeqCReKq3iVjPGElJOvA84MjZE/Grd5yCQ/brNhanKZQfxigOTycNTopZPgg0pyUpKjfuXs1BhWwYihJDNL44ipkPAqOoqn/pG1UW2l/Rt2FiyL1IZIKjuPGjppWVHRarJVi9Iu2PZ80fhkwbJ9YEyeGCFnbYOMKq1zSaGOpqa0FnWx4AMKWrVfh9ivNDFLxJZZW0jDBRBZX6l728OC5goNsvTVoMEIXSHM+qQVvDrkPDQCrINAgyUslnLzwC63YN4O6V27XGUxmv2Cqj4b/t19OOSZ2t2DM4qiFl7vGaRXPw7UuPRXtLXj4QmduLLksIHKLRB0H0szwLVJsHwirX78HbZLLBmtcgMBxhDKXMB4FRTFV/pIkhQ/EHsWHGyvM87Vtt5T4IUnIQSjBJTiN6UKqbGsG8yHtj/4oeNLXkZTQIMli4oDUYVocy+0UTh4e6SjNpP+fRpKMi0FWRDmsmhlSFQ7hb5g22E+GoaDRhADE+AjMNgqaAsCwtI0OezrY8rn7XKbj/0+dq3YTI2iMtv+PhjSfvrzZBjpNIOCCJySmHwmGMLURMDBFeXwJQW+7BvYC8BoHZdkDppgtQud1tOxUZosS1o8jDEgvjXtkHgdk4PTSHDwIKaaiHWpqopcd1apwUS2kQiFWIyYOpZoHyQWSFsGpnHQBHCsUNNB9dGhlJk57zgL2DMQKChHFQwpoGQcWHgOT7Fc0Byt1SxCF9UoTlA4404myv1RxkAoKMVDNncieOnD1RW/iVTYKM0ykA+PeXHq46Sc6iYnKUObh0WSrtUsobNAhYDxNfgKhcYwYXrLIHn01vYijzQeAksu3Ixv65WCoZvzllop8pN3snc1mC4EymIk1nH7afgpSkg7DStHnBIVi/IsmorBeNOCmmNtESo95sJUXCxhFWtdq0qqerOJPusTzPc0bTXkU95SW0jVQi3Q7od0drwhfXYFWlrWp2+azGRTIBQUZGAng0CFi/ZZPVOCpKQk6TQ0HEnLzuxLnmIiNGo4khlgZB/BLkmS19idMki1oNguRhmR5FqGmulEpumBtwhbedxvbhY6r6o/qGjeZXsCCEMnFwrrovy6SZ2HACQE2afnDZ8XjtcXPQ3d4iZXu7Jj3Jk0MOm3kKmgiS0iAQbCAyAoI01rlK3PBB0Pgdq73ZnPN0zW8qTAztHWILCMjMIQrSYdsHgSwuOCk2ecgsOkdQacJAchPAOqDsPyKNZD4IMlKPzvmgMk6yJgLWhpnMooYAtg4dTa3F9utpx6kHTVMbqEPtR8hJMcf640s3PpUwRTSoMTEkG4hxE0O0yJwUq+XiE+biuofXY6RYspqO6NuU5ltgsWTBxFCzaBAQXAipSFFXWx7ff9PxKBRLyHkevnbT0/jlP59XELJ7UKvi4BgicvBQeU80O1ICAmJlRo2SAwKCMJhNIWrOM9AYtAkIarR1ZARlHvbGaBBQ1EKTxdZNaVVOhik7KZbxBSNLWsdvW3utNPVxF8jkMRmpR+egUpkIWQs+tnaBR87hpy2UaBBYi5nNnEkd+PW7T1HufMqlpiNiYihuATI0WkTfENsmqSvU2CZ2xOQKtTHLxuFtmjnhgCn4xdtPivxd1Zwat4GK+tmeBoH5eHWjuixlgiM2nJRRYvKwTEs+h1wuWa9J42GDXSfF45+FDuQ8iXeQaQvrwIXxWFSDwGYrKWm6D5C0n+c8YG/Mep/K+KhibWRbg0B2LV19j3C/pOwLhtJFCZaWgC1t7WwKNUsmIMhIPUY0CFhaAjFhZHbVxrBUDLqL/11nHoT7Pn0uFs7S5wvDBVQ6KR4etXuzWSXBRaHs5sL0zQpKC1kg80Ggg7MY9tONmRgitCMolnzjN+PMaBDYL2NC1VxFRbnUj5OU2rNpQm2xW0hHNe5A3YhUS+VR0b4pU/cU+iZlnPBBENJQZEwMmdgnUjYx9PbT2WYPqaCimvJ5O0dzpaoGgRyZk+JaRGOiNNpT9EFAbNuZejIBQUbq0XmYVRko2RoE7PgzAYE6ZOpad/kvmNmtrQ1SO6hl0eiDwFJCEvLSI2cqDS9f46RYLozMSXEmIHCRuAOwaA0C8w2wUCqZNzFkYsuoWoNA0sTQe198kNqEJERFE6sPIlmYxAZdBdhcv9Su2fnTUUmz6DmTzK1gavMsNVwwMRRWhSyTVpFm9Qy0BX0CgmSJz3kezjl8BjuORDGoQ0U67GkbJTQtVBEwEF6LGy1blwdwRhXa2mu5dN6RBjIBQUbq0WlybtwHQfQzsRoEWS8EoOrGnky8etEZvkvTpZCT4rgFiKWMz53cic+/6kilYbp4qZTaQq3kp9P8Cy/EqkMdUYclZlMBoKy1ZNxJsQn5gHIBgcxNaeATFxyG0w9W7KMnASqKpb4okqxxnO/jIem3mafgxRCROXj8WbHEy1xEcb3KdXPeEexDYwqImxgK/81EW9C1hlKR9v2ndmEyy9F7ijqLalO0vFTrP2E7oLwUp3whk3DSarDngyDDJJmT4ozUo3OyrRxkMjfFMdFTnrBMYqsYKApoPM/dG/ZRNDgpZjxLMetvOfUAfOrlCzGpk7FJkSCo8irbBUx3HWojVln4RLHVmMHV+o8b822aW6jn949uwGWnHGA0ThO5VB2HVHge0NXWgmvfeyqe3dqHzXuGcNKBU/DAmp14368fVZxCziQpaGMNJoaoDZwGCStOqyaGAp9FxhNZE0MmnWM2A7MmdmDRvMm2kxFL2IE/28RQRDgGmo+um9/JfRCUA3jnGQfhe7etVJAifaioJ1saBEmdFFflC4SX4iaFLy6P+GwfgbZ8ELhcou5B8GgsI0MtOgeVcRNDrBshbLJBr4ySG3tS7+gtf5nq5W0TLjWdYpHfxBDFBeYrj52tXDgA1Na1bH2aHkOotbti02sQmK5/NfG55KQYAG5avtlofCbqVfnYkWC+8zwPC2dNxEsOn4Gejla89KhZatMmgI6iT1LWxIZc56n1QSBjYkisRvISN1GozbM2OXn+lOrn6d1tuPIdJzvh0yNcg4D1QtTX+vOqaw2VdI6pvN7eGt2HqPjrUJEOexoESU0M0V+EGxUQCEZFpQ0DcRr+BhMSIDsrM0umQZCReoxoECQIw4E1rhGsjf0Eyz/nAUWO53gXFEfOnogVm/cmS1RC6jUI2IvRmBWIhQWKrsVbsP9Lx2G4DVNbqJWa3AcBrdpQR6Q9ZrPJqLJncNRofCbWBurlA2pNqeQ8fQdXLJIWS+iN+bR2VA5Cs26xQIJRiyTDq/uXFxkFAmqm/Gzx9YuPwWWn7I/nd/Sjd3AUx86dhBZLjlxFCatBKRNDBppCvRlQVXgRn3mplFdna15JeijAWq7aEhCM+xBIGE7ypGjDVtny4Mpwb+sylivlkxbcmGEzMhKgVUAw9i/b6RQ7fhduwZjAlg8C3YedUgcmitP0jjPnKw1PBhEnxXELVBuHwbq6qQoNAtMjCLURq1jyUSrZToU9XF04x42NUWOzq/kVxcQBoWrBp5yTYtZvdio7abRhryfJSxoPi23mKDifC63Bvco7YvHJaBBkAJM6W/GShfvB8zwcvF83TjhgijPCAQDCvjdsdnNt6+qkY+nY+x0MDYKRIo0FoMsmhir1L9sKxk0M0RUR5A12MEoaAaKwr+/ZclJsJdqmxaFZNiNDDq0mhipOihkTQVzsJies9KP29qIteNeHvE3n9SfMk0+MIuoFBKzNSNzyw8byRNcBTY2AQDIM04dH1DQIik2vQUCrPniRNTFEc9R2EwIWhhKtn/SR1CxG4/vNfBckrDxsTiPBNicmH/Aa3udB5kyb2DRrnBMOmIxr3nMqZk/qtJ0UacLaCavtRAvF9TcGffIBNWMpy8RniYiNSRW15Kww0a/5hySUNQgowRoL7GkQZHVnEkdHoYwMfsw4KY5+JvYQJBv0ANjbDGk/7CSg1ZDLefjouYcqDVOUehNDLChqEOhqJirGp1bTDhCJDVmjRDaHGYppYg0CV/Mok27WjTRb5aBFgyDBwOloc2BiU7AZPIMTWW9Vp2vBpLe4euhnkT9+6EwcPXeS7WQkQtgOecTzJnqKrnV10iVu5fVzDp8RqkUwo6cd86YQESIpmLCsaxBItgPfAQkBaR8EhCZ5ppaANSfFVqJtWrIVS0bqMeGkmHXIH29GQWGCHEZFNak2b2CLBTN7lIdpO5tCTopjVpg21if6TAwF/pBojC05D+cunKEuQRzYbkv1jBRKza1BYFo+pCi+uGCi+hy19qcDU3mkMP+xum6atGOaea1HLevBNbtI2iqviTspltFupVZq5jB+6UET4abGxJ4HzIwdIpd4REh6Ca7S1zpa87j0xP0bfn/raQfSuWinoAyt+yBIGg5hCYFJk85EWqRybN3Hoqa5nnYyAUFG6tFprrIyobLmnLgxLVN5q2CmHF5x9KzaWC0qELwzwjfAf77scL6whbzr2W1nYk6K2dixcanJxFBO7qCiwsuOmoWejmjVax1QW6iNFkvWFq0UcFVAEBtPpMNGWu1PB6byqNwHgUR4zK5rS4Mg8fshJoYSrPXS2OTtmhgKfBZIyLiJITFk1vnNLfR2p8GzailsrSTjc8VtE0OBzwkvcX3xNUfh4+cvwMJZPThqzkR87pVHWNeODqKiCG2dCYxrEMi9r8rJsU4om3SmJBBOcoFPF3RKpzlosZ2AjAzd6PVB4CeOg9phmy2UaBBwPHNJnT1+m+X/5lMOwJ+WbUTvwGj1u5MOnIKT5k/FJcfPxR+XbWS+L3TzTTKNqmhwUsx4Nm6BaWN5QtVJ8XfesEhhavigNmQ1uwaBq8Sb3wv/vhlk6q5qEFDwaaAkXg02hpIESenwQIawvNvMUXDeFfJBYFCDoFBs3jmN8kGeCMpMDBkoDl0Xb4Jpl4ki2HXyOQ8fP/8wfPz8w5InTAMqitCaBkHC95/YsAcHTO0iLSAwab7J5SGMVYWZD4LmIBMQZKQenSplVRNDjGfiBrVszDPHf114BC44cmbNd7oFBKz6XzCzB9e973T8eslarN62D6fMn4r3n30I2lpyuOSEebjhsY3KJmPb7axBQJDASbEdHwR6CjC4ERY9BJrU2YqO1rzqJMVCTag5WiyR3pToxvThobr42OFEmhii1fy0YE5Lw354TBNDzmoQhH3XBA1XAJG6/dU7TsYTG/bge7etVB63yHxWeVS0XcoceBdLJeF30kJahMCiToqjfjFRHFRNDLk0bqrYm9jyQZBUQLT49lVYfPsqRanRhMGiPWh6t9Dzrqxrbe21XCmftJAJCDJSj86bKJWBku2DgE1mYqiMilKIW4hefMLchu90mqDi4fBZPfjqa49p+P5FC6bjJ285AR/4v6WR7wpZGLK8yG4UEEQ/G7dQtbFA0VV6wTp0xakVtYXacKFkyewUDajVhyoizS04dGAgi6k8Khd8SoTHUlm3JYxMrEAQ8n6SpZ7rfVz0oLThWU9tGdRqEIjrYgqbGJKwqa/rwNYFqF1CkEZQkygy3wbKQ5c8KskaV/YdW7hsYsj3bZlvNYih7E3vbsfJ86cIvUOqmSfYn+siNXOCI2Q+CDJSj87JtrKxTTJuZYNeGRMmhsLtgWrWIEjw7suPno23nnZAdNgSqvG2EDExFIcNDQJd/TSZ2YkMoGJiyHYq7GG6HShzUiwbTjM0/CbSIGBNBtZMDCWMOdQHgUSDtz1vUyGfUysyC4blCeyExzUIxFIjcyu40MSTmklnojoJNa3FyFqkfEBNcphoMzGU9H2HBkE1GgR2juaaYbgxkcXWvIevX3y0U+22HtalDVvNJCVTgjNkGgQZqUevD4L4OOIGU4fnEKWYuDEZNsFQF9CoKhfbuRRxUhzrg8CGBoGmAgwuIkWjsLUApdZnyk6Km2B3E4HpdmAqNpuHJbaxXcZ0wkuPBgGxYdMooXkXKI+c5yk9NA62K5H5rJIE0bqUmTOLTeyDIC2HQeHNnqVxHqE1Z6A8dB0QJx3DnWoLDvsgKPm+M6Y621tyGC6Iq7zovv3+zjPn482nHIAFM3uE33VFoFCyJElqBs1hSmQCgozUo9OETNUHQYJxKy3OuJKiRIMgJozwW33J42XGqeGgofqboIq+TYRMDMWsstMkIAi2P2ETQ2qTwh8vsSGr2Z0UE6sObmQ0vgB3NlJJMOaDQHFEMps4Vs81WdPvP+tgZWGFHgxKlHWbbRuIGhEy7KO4IdTMuyLpGHta9MA/0yAQIy2mV8P6vJwGgf7y0GXSKmlVujTdq1iHWjUxZCVmcf79pYfjouPmYPnGPThqziTct3oHPvn7x2Pf052/D5x9CGZO7NAci37Y+3M7iGj6ZSQnK+6M1KPVxNDYKMqKIk5iTe02ri1MlELYBEO9/FmpEzMxZDefjSaGEmgQWFii6NqgBcMVraNMg6DMaLHkzs4mo0pc+436lVbr04Ort6VkhgbmGklDMRx/wOSGg/ecB7z86Fnj0SY+1FJzGeFbrz9WSXooIjJ/5T1PaRkYd1IsUfn1a6ZmwvZ6VRXiWqFi36tEn4mhpBoEYu+//fQDQ79/94sOSpQOHlQUoT0Bge+MDwLPA2ZM7MB5R8zErEkd3GWmO3tJak5nrU/vbhN63gcwXCji4bW7sH7XQM1vti5jpWNGcIdMgyAj9ZgwMZRkMZsWW5sUiFuIhvsg0JUaNeGnZaNUv9llOURrJhNDLjqupNYiR4pN7oPAcIWYGpNsHpbYxkQeXShHHUk8ZL9ufOy8BfjvPz+J9bsGMXtSBz574RE4/oApgXiTxZzQog4AYEpXK168YL9E6aBCqMklgfdzOU/pWj4YltBFi7p/eZESEDhyWKeDtGyLwk2NiZsYMlEe+kwM6Qk3ilctmoOrH3ihIQ2vPW6u9rh5i5D1nIy2kQpcGm3q5wIq5yhJz4JOO3gqljy3K3E6jpg9ESceOBkbdw/i9EOmYdG8yXjjFUu43y+WfJz01dvQN1QAAJy3cAZ+/JYT0NGat2aGitrFtLSTCQgyUo9eJ8VlksRAZF5TyikHTcX6XQPYvGeI+x0Vh05xQTjpg4CljqwoHBOoVJdPk5PiYCU2k4mhVxw9C39/ckvygAAMN7uJIdudW5K4VEf1OepjtgqMaNQRCZNpYkhTXb/k8Bm491PnYlf/CKZ0tTbEkzjasLWG4GLv2veehqkT2sbS43abDzv4FMlSzlPbXuU1CLyaf3mREhA0sQ+CtJheDW33rOejhOIGZoS0rKFOnj8V37zkGHztb0+jb7iAno4WfPmio3DMvEna43bZxFDJt6GbLUd9EfEKVXTnL2nV/cfLDse//PIh9I8UE4Vz9JyJ+Oprj6n+vXTdbuEwKsIBALj9mW34/m2r8OlXLLSmZdIM635KZAKCjNSjV4OgYmIoOo64sTSNg97v3n86vnvLs/jBHattJ6WGsLLWXf7JbyKyJAQCG1vL977rFxVMJ8VxYSlIjyj65APyAVvTIEgY8SkHTcXcyZ2KUgOMFv3UbG5dQFWzk21G6ZsxGzFxIKwjDjkTQ2rDi+OoOROrnysH8KrjDddWFAv0iNnj6XS5zS+aNwltLcks2nqeWg2CWifFMu+LPS9z6NfMPghcF4hVEHVWHtnGTWgQaGpvNdo6hkayN51yAF5/4jy8sGsAB07tQoshXy4qlqEteUsaBL4d7WwZ6oXtvHODbge7ScetEw+cij9/5EX4+/LN2Ds0ip/f+7xkOmr/VjF3Xn3/2rKAIHFIcqRkSnCGzAdBRurRKiAY+zdJFFRU45QjbE9dUzpi4qBe/KrKhdrkynSCFLNKtXGDQVc7qXWWKNhnLB0bicZ68PQJmDu5Ez3tLXj1ojn4xdtPUtoeRwpFZzY2OjDetw3FF7nZIjaW6cDIfKgjTImEm3RSnM95uOSEebHPJRbshx0MJgrRTVrzHj5+wWGhv4k0FeU+CAKfRfYIlWdNOCkusuwwppy0OCkOQ06DQD+61lDBPL30qJl6IgmhJZ/DIft1GxMOqMKW9oxLl2zqx1/e8UJ3HlUMW4fO6MZHz1uA/3rlkckDG0NFixocLWs1WPNBkN4pgSSZBkFG6tG5NqiMk0wNghh5a1rXwaL5MnHYqeJWnyjJbyIywhZJR7JkJKZ+TcF0UiwYlhnkStDz2OkN3qwUNjFkqVJFD0f+7aWH4ZXHzEbJH1/Iq+x3o0XfiuNqKtju27LE+4yRey8NmMihCxsu1fPzv7/0cEzqbOWIN1k8Ya8nuaziQl3Vc8pBU/GZVyys8e0QRKQfq77oI+2DYOxZ0dTIXARqYgtDqdkXifsgiApHf4Ho8nkRTPllpxyAH4Zolp88fwoeXituBoUaKi4vWXNSjPjzCirUzwe8Aljdjt+paD69/sT9a/5WmSxbcqRmWPdTwi2xakaGBNRv6KfRxBAgni8VxRDvg6DxAeLNg72ZkNjY2qJ+4clcp8UsQGxo3usyddHTMX5YJRqFrSoVLYvzFs6E53naNj53PLMNX/jLU1rCpsT5R4TfvvvvV6u7aUSJ6MMSo8mwghETQxpGEDkTQ9EDusoh49r3nIoPnnMI17NJow2rP+prDdV86TVHRQoHAPH1i1onxcGw+bUTKo+JJiXTIBCD+r6NF3EfBOG/migNXTeDg3maM7kTn3vlETW/Hz13Ij78kkMj39eRrDedvH/8QxKo2Ju05Owczfm+74wmbv3wwDte6L79TmFtOqOnHSceWDvvqlzr2bJ8l5IpwRkyDYKM1GNCXS+JD4K0OOOqh2KuwtJEXZVZVepsS98bNAhYJoZiJAQ2brnIHk54iJZ3fOy8BbXPCmsQ2KlTkWgXzupBZ1u+MQyF6QGA9bsGFYdIj1cvmo3bnt5a811PewvOPmyG0XQoG5NiArJ5WGIbI9OShjhk5hn2aK4mkZ4HnHHodKHnE8UX8l0iDQIHW73K6Smn2sRQXWCsebr2vcrzYomRqftCE6sQpGVfJOqDINLEkIHi0HXwVz+XvefFB+NFC6ZjyZqdOGBaF04/eDpWbu3TE3kErzluDn73yHrleVaxN8lb9EHgCrIaBLoPt21f+Jw3pRNXvuPkhnMNtcmyZWIoHXOCK2QCgozUY+IAmCXwjxtK0zrmid4AUlEMcZu2cB8ExCuAtZkQCYZYNlm3RuMWqjYu1skWn8ewMfSyo2bJJ8giIgu1r19yTEQgihLTRFx03Fxs6h3CT+5ajb6hAg6c1oXvv/G4SEerrhNpYojaYKYBMxoEGsJUHKiq8MTn+WQRh0YnEOQlx89NFD8FVAo18jm1IpIwJ448t0sr/XKkKLYIkdMgcOjETjHk1+WciIq4bWrN6fLtFTaXLZw1EQtnBZywM/Kn40LQGYdMxw8vOwEfvnap0nBVFKE9HwRWopVC1gmvdhNDWkNnc/snz8bB0ydoXzvaUmwjfpczdWQCgozUY2KhmWTrQv0Guyw27KnL3EjV3TySTtas9isStu1DtfplWQILQ05pEIgg7KTYUpWKRNtqSV06rXzwnEPw3hcfhF39I5gxscNKGoyNJVEaBOmcMmswokCgRYOAZnjC4oHEETcGIDKHvPnUAxSnxzyyGkJh5Dy1Zmfq59py3XAICMb+HRUUEOQlnKEVXDqxU4xLJoZYKRXdc0RrzekvD5vNzYZA6JXHzsaOfUcpNU+pogxtjfVumRiqLSQ6TortjVuH7Ncd+ZtSHwSZBkFTkAkIMlKPEQ0C1u2HmAkpLTdl6hH3QWCnHKiXv60DEtXU94MkGgQ2FrGyzUSnloc1AYGQYCrie+st0l1a8jlrwgHAoImhiO8dOjuSxlUfBFIwxnNbGgRJow3XVuR77zOvWIiT5k9NmAL7xGVXbG5U21rr64K7eYw9N1IQFBBINOTm1iCwnQI1iCoSRWvNqUgNG92HpyyIb8MESF6Gtsqi5DvkpLhO3kpFQEC1Has852jiaampyAQEGanHhIAgydhLdUJJilmF/rEwJALRLSDQcdAgE7btdla/pmAtMmJ9EDi0QNFZ7rYO+ESGVJs2dTNoE3cIHj02q2s8OY/mhsdE/9CiQSARJmu8VzXGmfbvEnowGBPkj998As44ZBqmhJgMS+NwKVLE+ZyntMHKmqioPCcqIJAxMVRoZifFKVkgCPsgiDJKZKA8bK6rXahvhrXQKirK0Na6XpeJKR3IahBoNzFEtBkr1SBwp5lkJCC1uv+e553jeZ6f4L93JIz/HRJx/kJR9jMCGDENwogjbixNq4khFxZ8AP2bSqzFokgRW89mg5Pi6J7xjZuewW8fWofegZHQ323cdDKh8i66CbRnYkjENESUynxGBhsTwqUWCdMfJjAxL+mIQvXhhqq6FhYQaIgvbk101mHTQ4UDShJkgXgNIZF5RG2fqK8L3rArj01oF7tfJ7N+aGL5gFMmhlir0VATQxJrendKQw7W2EjhQHLhrB5c977TY59TIiCwVNk+aJQ1D/X9ildDS/eYSkYrsw6V6XJJkJQhD82dEQ222E5Ahhp415mHzujGdy5dhP162oXjSDL0unKQXuEDZx/C9Zxhn4BjQYgHovtmTtLgWe1XJL/U7Pexlhj7hgv49B+X49KfPoDtfcNC7+pCtvSE6kgwbFtjh8je3bXxLSMeZYe2kr+rbFEyN3tNYGKjqWNOkNIgYJkYkk9KDeImD5PFF1Z/ceVNbY5OjkpNH09pn6gva972UXns5PlThOIzrUHwymNnS79LAaLDshLYPgjE30kD1POX8zyuNPJeXmIdstoqipLvioGhxvGBW4NA8+E22fWkSg0CdUFlECbNJoY2AvixwPMvBbBg7PNWALcpTMszAG7neO5+hXFmjMEzcZx92H64+l2nAACue3h96KEkC+bmImY0JTqfhPLzfzkJFxw5E4vmTcIHr1nKfFbc5m/ygpAzMZQ4Wr0omtltL8AbnBRzrDJWbduHq+9fi39/2eE139vQIJAtv2+9/lh8/LrHGr6/+Pi5yRIEi7fKRDRXmnTDm2ZM3ZKK1D5R2HioavAZMTGkPwoumAICRQVhej2ytW8oJMy4OPWlxwbxTorFwlLZJxrC4tYgKD/Yks9h5sR2bN3Lt1eQGWfaW/LC71S4aNEc6XcpIOOzIQ3YdFJsE6LTcJVcjm+IULEzsSUoduliOFknxUQbsspU2fRVkmGO1AoIfN9fBeAjPM96npcHsCHw1TW+7xcUJudB3/e50pKhHp6NYVDq++IF0/HQ2l3K4ogbSl26YdvVVt6wvOKY2ThwWhde2DkQ+awrDlf1+yBIFj7zbZENdqJUJEfESXGQH925ukZAsHdoFLeu2Ko0bTzItpMXL5iOno4W9A3VTikXHtN4w8+G1o0MoqYhkoZR4cULpuPeVTuE38ugSWx7N2BuoZWoiSETXVuPDwLbM004ptcjYdNb3BxCtOikSSIQqSef8xSbGKr/W0yDAAA+eu4CfO6GJ7nekxEQfOy8BXjguZ3C733i/MPw0qNmCb9HCZf2RaKw8hapNZfe4gBAd96owKtBoMYHgR1Kvu+M+ZhGDQK+90oUHU4ZIPNBkCEKzZ2ReV4GILiautpWQjLUI7owf8PJ+wvHkWTwdWkhLJJS8Rt7yZEJg3r5q3NSbDefIk6Ko3h8fS/O/OYduPyuNUrSJIJs6U3rbsc17zkVh83sBgBM727HV157NC44cmbiOGzVqJiTYjWpnN7djlcc7bbZhLSgzsRQzIGp5vgByhoE+tOlxcSQxDsswwY5RbsU07Uc1qzimpoqf0NUiDepxB+WchNDdWGJ+iAAxNMvygkHTsa8KZ3C773rRfOF36GGi+2dG9aa3oBQnCLUfRDwzpUqDthttn0CRc1Fgw8CzoVCk8oHlK71Mg2C5iC1GgSCvD3weZnv+09YS0mGcnhUvoJjZ2ebuFov08JQzGCqagNshEA+Tz1oKlODQPTcxZrDVc3ln9wHgZqCsb3hqu8GotYufd/Hh65Z2nAT3xRJFljHzpuMWz5xNvYMjGJiZ0u0GrmwnWw7lSoSb9JD3gOmduGYeZPwifMPw/pd0eNNRvowYW6hWU1ZALo0CMTfYfsgUJNIUdX/pGUTdhCh0uSOC3CsvPnD8oQej0Veg2D8OZG1mUzdtrfk8dv3nYYX/c+dQu/ZvgyigvOOmGE7CVaINqtnOCGGISqnr1JOX3wiXTYx5NLBb4OJIc4yKzaphEBli2rOEmw+XDqa1ILneZMBvCbwVaY9kDL4Jg65RX/17QQTOvUb7EGCm/X3vPjg0Gfeeeb88rMW8iUTJfUDIlbqhGz4EruDJLoWXb5xDzb2DupJDAcqmsmkrlZmvxA2g5EwPbKocFLME8T33rgI93zqJfjxm0/AoTO603+NrsmIa++R5qkIahB85aKjMHtSh5KwTKGjO8lpEDDCU5RIcSfFGrQrEoSZxqFPpDjynqd2rVwXFm/dBB8zUSfzpnTh/WeFr7WjcKmtvP30Axu+y3nApSeKa3K7goyJIbdqVRxq+5N6+E0MuXt86vs0tDV4aBDw8poYciWDilG5nnG5jWfw0/QCAgBvAFDZ1Y0CuNZiWjI0wGObLumin3XGkCYfBMF8LpjRjTefekDN7/OmdOLdLzoIgMxhp4pyEA9Dvw+ChO+z1JFFb+BZpF5jQHSNsWxdr7rESGCi+ETjsKZ1o9m0QjUe4pvGjGTE1W6kuQWVN4kVrII/84qFeNvp85W2VhN924WbxqpSKDy2Koo3iEtrPRUo7aee2tmgUYNAJgz+l5KcqYhrFsrHZZp/Pf8wHDF7YvVvzwO+ecmxmDKhzWKq9MKsnogfqd+wTzs5j29OcPmCesmHM9fD68feFs6FXKZBkJxMPtAcZCaGas0L3eT7/nYNcUz2PO9SAEcBmARgL4BNAB4AsNzPxHFaEd2USWkQJBh+qdpADiO4UfE8D1977dE4a8F0PLBmJw6cNgGvWjQbM3rK8jbxG3tKk0o+Xl5UHeLYzmZSE0O2oXi4Y+8AXYFgSmqczaCAqYPlqPatst2r6NcUxwYetGgQSJQF08SQMhN79tcjsgKx8m/utTFZHyNh5DxPqTnO+j4r1YeFXpFf7zi0RRBm6oQ2/PGDZ2DJczuxsXcQZxwyDQfv1207WVphNbVoE0MpbgQxUNgpeJ7HVQcu31D3fd+ZfVl9VWQaBGxUDh/NWobNRlMLCDzPWwDgjMBXV2uK6qKx/8JY5Xne/wC4MhMU6IHnAD74hMxAytQgiKlVl9Z99Wn1PA8vP3o2Xh7iPFTYB0GCdI2nR/wd7RoECYNnHxqYS0dS6vuB6EUO28OjkfIjcIjFg5iT4ojvJd5t5k1yKompTiMaBAoCqwThWvuk4oOAdQSkKomi6xEd003cIQbTSbHitJgg3ueCgKA5p1YwWB8Sb1KCaTAlGBS+bONYa+lsy+MlC5vT50A9kfcpjKbCPNSnTl4NAuqHOAtn9eCZLX2hv7l0AiXrg6BJFQiUzgnNWobNRrObGPqXwOedAP5mIQ0LAPwCwF88z5ugMuCOjg50d5dvYhSLRfT29lYP2fbu3YuRkREAwODgIPr7+wEAhUIBvb291TD27NmD0dFRAMDAwAAGBspOIkdHR7Fnz57qc729vSgUys5D+/v7MThYthU+MjKCvXv3Aigf8PX29qJYLAIA9u3bh6GhIQDA8PAw+vrKk1apVEJvby9KpRIAoK+vD8PDwwCAoaEh7Nu3TyhPnl9EtzdcTesEbxh5lNPQjlG0YxSeN56nysTT7Q0jj3IaOjCKNpTz14IiujAyFppfk9bOwHOtKKITI/DhM/OUK42iE+UyzqE0ltZynrowgpaxtLahgI6x5/LV56LzVH6uiAmB53jz1O0NI4fGPBVGRrjrqTg8KJQn3y8lbntDAwPMPIW1vdGRYXSOPeeNPeeNpbUTI2gNpFWmnob7xxdjMnnyR4Yj89RaHOTuT5VZXUWeZNpehz9UM0a0+qOR9RTW9kqFEa31FD9GeNrHvcJgn3CebIzlACLrqTLuVeqpv29v6BiB4ghXPQXzVCoWjI17puYn6nNuWNt76ZEzlOWJVU/F0eHQPA3s28PV9njGiLyCMaI0OlzNk6o5tzVBnnjHvdxY++CpJ962Vxzqj8xTVD3lRgci+1OrPyKUp6h68jzBPA0NctUTq+3V58nzPGY99fVF96e9e8brydR6T0XbY40Rw/3j80lcnvJjNsBV5SmX82rGvZznCefJA/8YMTI0JD2Wl4Vb/PW0d0/zzE8U8uSVCkLriLK5rPD+5HleaJ6o7gl5x4i4ehodq6ewPFWe09H2/FKRK085+PA8jnGvJNb2TNbTZy+Yj5s/fhYOnNIZWk8+fAwNDhk9jzjjoMk4aPoE4TzlPK9mjMiNhRc3P5WKRa154ts/RddT/bj3+ZceyD3nssY9z1MzRvT398MrjHDXE6BuDdus85MtmlZA4JWvrrw18NW1vu+PRD0vyToA3wFwIYD9UfZ1MAHA4QA+BOCZwLOvAnCt53nK6uS0007D61//egDA9u3bsXjx4mqjvfLKK7FixQoAwN13340bb7wRALBhwwYsXry4Gsbll1+ONWvWAABuueUW3HLLLQCANWvW4PLLL68+t3jxYmzYsAEAcOONN+Luu+8GAKxYsQJXXnklgHKHWrx4MbZvL1txuv7667FkyRIAwLJly3DNNdcAKHeaxYsXVzvpNddcg2XLlgEAlixZguuvv14oTwO7t+PSjuXVtF7UvgJzc+WwT27dgJNbN8CDV81T5abZpR3LsV+u3LHPaHsBx7VuAgDMz+/Ghe3lqmtDEYsXL8buXTsAAGe3rcGRLVsBAAvyO3BB+6rYPHXseg5nt5XLeLI3hEs7lqNtbMC8sP0ZzM/vBgAc17oJZ7S9AADYL7cvNk8AMDe3Fxe1r6g+x5unSzuWY7I31JCnDatXcNfTxmV3CeWp1LcjcdtbcvctzDyFtb0nHn+sWk8TvBFc2rEcE7zyUHBB+yosyJfr9siWrVL19NjNv0mUp76VSyLzdPDWe7j7U2G4X1meZNreWSMP477Hn8Uv7n0OP7/m9zi2Razt7du0Rms9xY4Rnv5xb909fxDKk+d5Vsby4uhIZD0Fx70J3gh++6ufhY4Rw5ueja0nz/Nq8tS3c6uRce+j5x5qbH6iPOe+76yDQ9ve6xbNVJKnDS+sZdbTlmeWhebpr9deydX2eMaIHgwkHiP2rn4Ut9xyCzxP3Zx7QGGjdJ54x72p6FPe9jY99PfIPEXV09yNd0X2pyOHVgjlKaqecp4nlKdlD97PVU+stlefp5znMevp11dfFdmfrvr5eFpNrfeStj3PY48Rj9407vItLk+5MRMfKvMUHPc8j78/VfLkefxjxPrlS6TH8rJgib+efvqTHzXF/EQlT539myPbXliePET3p5wXnqfS2KEctT0h7xgRV09r16yMzZOOtjfSv4crT22lYXjwYscIvzhazRNP2zNZT3uW3wkA6MBwaD2VfGDZow8bPY+Y2zqIv370RfjwIXvwkSNGMKWrlStPOa92jOjv38s1P/X17tKaJ562x6qn+nFvw71/wIz2IjNP/5+9+47XpCrsx/85T7/97t7tvbN9ge27LAtLURApCioWRMTeYoxGTTRojDHGb5L9Jl9JYoLlJ2oSYiOxIJpgXSsoRQTBBigssnf77fP747n37nOfcuacmXNmzsx83nkR7z7PPDPnTDnnzKkT10mW7glhJo249dZb0dVffTaiKkdMXKes5k9xEXFP2xAXIcQ5AP6n5qMtnuf90OD+ewEc8TxvTLJNCcA/AnhJzccv8jzv4yGPvQ7APZVKBYVCAQcOHMDq1atx9OhR9PT0QAiBI0eOoFKpoFQq4eTJkxgbG0NHRwdGRkZw7Ngx9Pb2Aqi2xrW3t6NYLE62xLW3t2N4eBgnTpxAT08PgGprXGdnJwqFAo4fP45cLoe2tjYMDQ1hYGAA3d3d8DwPhw8fRldXF/L5PI4dO4ZCoYBKpYLBwUEMDQ2hq6sLY2NjOHLkCLq7u5HL5XD06FGUSiWUy2UMDFR7IXd2dmJ0dFQpTrfe+Ru87d+/j2NeGUC11XTAK2AU+ckW033rF+L/PncjTpw4gc6ubix/+xfQKQZx0itiFDlUMIwxCAyhgAJGUcIoTqAEwMNdbz0Lw7kytr73a2jDMEbHtytiFAWMom9aD77+5nNaxult//EDfPaHj+AkishhDO1iGMe8EgBRbTVFHiPIV1vN4WEAReQxhmu2zMaHf3CwZZwGUUQeo6iIERwfj7tqnDrFEE54RYwhNyVOn3rpZqyb06F0nT77w1/jrbc+qByn15+7DNdtnxvq3rv3V0/gihu/0zROXbkh3PXnlzXcewMDAzjjhi/iJEoQ8NAhhnDcK8FDtUfZCPIYHg9rHp72dfqbK1bjsu0rA8fpg1+5F3/31Z83jdM5Szrwry87W+l5+sqDR/Dm/7zbSJzaxLD0eTJ97z3wvstw0x0/w19/8T5r18kvTj+44Rmo5GE13fv/7vgpbvjyL5TjtHZuDz71kk2Rp+U/+U0/nv/BrzVNIybSvYnrdNtrtmL5/JkNacTffule/PP/Pii9Tn9z9RZcsGraZJzuuP93eM1Hv2393vv8687Gkp58JPmTy3nuwGgO1/7LN3H/Y4cnr9OfXLgU1527zkicfnvoGM5//20tr9NfXbkJl21Z2hCnO3/+KK781zt97z2VNGLN7A785omnQqUR73jaMly9fTEu/PsD+O2hY0bSvbnTOvC1P74AK9/6ee04qaZ7czqL+NJrtxm99z7x7Z/jhi/9QlqOqL9O56/owj9dt6fp83TFP3wdP31yOHRaPqe3E195/Q7lOP3u6CDO+7vvKJeNmt17P/mLy6fE6bu/OoLrb/p2y+t051vPQkd7W9Pn6bGDT+Hs/d+PtLwX5HmqjdO33noeunLDLdOIL9/1C7zmlgeU4vTDd1+Gr9z3ON72qQNG4vT6p2/EK85eOpnunfOBO3DwqX7fOP3hBafh2q2zUalU8IV7D+It//YDpTRi/5VrccHa2YHS8g9/73H87e0/U75OB960EzP7pqU+f3IlTi//yAF88/7fNr337vnTvQ1x+rMvPITP3PlI0+fpB++8COXcaEOcfvTbQVz30R84VS5XTSMefN+lvtfpyRNj2Pd332oapz979lZctWWhlXvvs/f8Hjf81/2+cTpj+Vz88UVrcdXff02aRpy1ZhH+8Zotvvfe6/7zZ/jGg082vU4/e9/lWP7Wzxu/Th941lpctm0F9v31/+CJpw41XKd3XXE6zl3Ri31//bXI3gkv3LgYf3P15snrdNW//AD3P3rIN04ffdlZOHNB52QacWxgCDve9V+RvhM2i9Ndb90tvfc2vvcbLeP0wPsua5ru/eLwGK648Tu+cbr7vVe0TPf6h3M4+323h04j7n3HOXjDp+7C7Q/2R1aOmLhOd737GZnKnx599FGsX78eNdZ7nncvIpLlNQhqFye+x2TjAAB4ntevsM2QEOJ6ACsA7Bn/+I8BhGogmDAxFAYA8vn85AMEAN3d3ZN/t7W1Tf5dKBSmbDfxMAHVh2xCsVic8l3tbzo6Ts2UVCqVUCqVAFTnG63dbmL6IwAol8sol6uJUS6Xm7JdV1fX5N+VSkU7TsViYTJBBDCZ6AHVxLA+ThONZrW/GajZbmQ8M6mqxunQ8fFhQjXbDY8nen5xEoXy5O/GkJty3GrCWzVU87iOIodn7zwNM2dMxz/+70M4cupST4nTKPI47uUn/60ap9rtauNULpcnw+53ncrj94tqnHJ11zPIvdfe0TG5z/o4nUAF+Xz137X3XqVSwYAoAR7gNcS9eVh1rlOl89R5CRKnYrmtZZxGi+1N49TsecqN9wAwESeV58n0vZcrlCbDbuM6+cUpJwSKxYLVdK/U0QVvfK5IlTjlcvGk5blc6+tUm+55EOjp7UFufPLt2jQiXyz5pnuiLk75vFpaHvbeWz//1PkA7OZPLue5ZQCffNXZ+O4vnsKvnzqBncv6sGLWqX2YiFPtNay/TsVypWmcurp7MDY+AFZ276mkESKXD51GFCttaG9vhxDm0r3RXCFwnFTTPa/uupu494ptE/9WTyNG8m1N04hKpYKRXBnAsJG0XCdO5aFqOqyaPzW7TvVxygkhvU493d3IjQ9hrX+eenqmNY2TzTw37L0nIE8j2jpPfecXp9z4FEOm4iTE1HQvnxPacRJC/d4rlCqT959uWl4sPKEUJ6B6nXqn9bZ8niakIX9yJU5erlCTHk29Tk3jJCTPk2geJ/H4EwDcK5erphF+1+nwyAnfONm490SuXylOuVy+IU7N0ghPnIrTBNm9F+V1KrePnwvR/DqNeR5K5WD1EYHvvfHzOnGdBIRSnHJiahpRLOS18ycbcVK59/zqWOrTvTN6gX9/xU4855++I43TxJo+ze69w/0njaQRHR0dGMlVt42qHAFUr9PE+ctK/vToo48iTplsIBBCtAN4ds1HH40rLJ7njQkh3gXg9vGP1gshFnie90hcYUoblQW+ajcJstCg7Bh+g3RUF9dpdsxXn7MCrzh7Ob5w92/xuk/eGWg/OrQWlUP0C6vJ9iBbpDAnBEYdHU1lavEu1xcB8xP31XHx/MW1GKHW4tghwti4SHHgXSn7z1fttH+QBKkU89i7aqaVfftdzpYLNhq8EfwWjlUxER6bi6jaYCP9ML1PUwvBmrjOocPgExUX8xibdO6VfE4YXRS4/lroLmIN6KVD+SAHGFfK6928SVukOGuki5G3+CrLVzTusj+gnj44+ho5bryc0iIunudFf64DlvFzdRckaD1KUoSNnsnT4/Y9TqY4UGSOxbMATDTxjAK4OcawAMDXgfHxPVVr4gpIGqkUzEMXqEP8POh7w0SCn88JzOgsyzc2RCeouhmS7fxddo1DvLspHNcNKS8/WWeycqIV3SPEdU110stWz5bKHuqPE0V0Ny3ojeAoBPhXsLX63uR9b+LF0sZ9abIRpPUx3Nin7H3TVBh1028rL8G+DQSSDRKYf/ueco045YTZU1B/PwTJ31V/UcwL7Fk5Q3v/p36v2UCQwHslS2TXp9V9GEV+ECfXozcxgsnPWAIqT1vdSx6ir/wNWsavf68I0wCbBGFjZ6rR2PM8jLGFIBOy2kBQO73QbZ7n/Ta2kADwPG8YwJM1HwUvSVKD+pbmpkKmnWHyJqXwNT3mqd9FVbjSOY7uC5eJKEgPGaBQ7gLZi4HNER2uyUKZRLtRzU4wfOn0xm39whvgwJYj/OeXrUNBszKGggvao9poRaGBF8uJe9zhbKQpV4IbRdruQlxdLmfY4Ffm0OtwolZBF1SQCibV8Fy4bg46ysEH7Os2EJDbgrympLz+E13lYsvvFk5rb/ldVIQQiu9Q7r6oTKRXre6lj3zrl4h9XVLFRLX+3VcIkepnJGzeZ+rcxH17UHQyV+oQQiwAsK/mo4/EFJR6HTV/H48tFCmk0kMwbNopn2JInqIGfWmsTfCjyhf1eg67lVvLQmMzrGF7/pjK2B27HIkTxfnTbsSJ6aLqhDNMEBumGLKc0s3urvhvRMYErUA02ZvSxAiCiTTa5N0ZxZNto1dqkD3KRxCYCaML5ZEwYXAg+NpMhXmi8t7o1GIBRxDUbub3m562Ip6zZQH+z1WbtMNXq5iPvrMN2SO7b1o3iqf7qva0F7FpQU/D530dJWxfOj2GEE2VE2rpmcsVqBPBb3X/Pfzkcbzjc/dEFyA0K+OraVZuS/cogpBxM9VAAHAEQUZkcQ2CF+JUw0g/gM/HF5QqIcQyAN01Hz0WV1jSKIpMI8x7S9gphqp/R5Mxas09HkNdZ5C5PQG3e+cEHBTRuG0SaxgcEkkFU0JGEOilA61GEOg33FqfhozPSKSETxeVlqNPDIbBxHM9sQuj909Cb0XTj5Cp3bnwaLsQhij5RVf1ebHSAFe3s0AjCCTf7VzWh49fv93I+0epoDvFUMZutIQJNsWQpcA45O0Xr8G1H/4+Tg6PAqg+93926Tojo/zCUp9iyN3KU5V04cv3Ph5BSFpTXoOgyYbVz9w9/2GEXoPA4BRDDt/iZFAWGwhqpxf6N8/zBmILySnX1fx9GMBdMYUjldQWKQ7by1sygsDvtwELP7VhdnOKId19m6uoaUZ2jayOIAj7+wC9jWyEI25xl0ki6dGru31MF1Xn2Q7zbhd1/JL+jCSNX7rbsjelyXp4Ew3TCa29sbIGQYCnSDbKMq41CGwIlRaaC0Z0fAKtGqfJRcCtjiDQC4tfePI5YaxzkvYaBEaOSi7JwjXdvqwP//X6s3DbvY9jYHgU56+ZjQ1NRhXEIZdTy9vifk9R4UJeOKGhE5Dq75psWMgJDIYNkKPC1yMYCUYs61RQPDLVQCCE2AZgdc1HH7F0nE7P844pbrsLwJtqPvqU53kjNsKVVREsQRBK8CmGal5UTAXGh97UIu4UQgCfnvhuBXUKU2FzOY5J4FKhekJ8IQqfDgQ5nbbjq7O2AoXn38O41e/M3QkmRxi6l0LIWUnSTI8giCn/m9ZRMnPgKWEIHhnXylMqfKcQU+4tOvV/Tag/dpCOOrLwm7xcBQd6UFNruhVmge6bjNwCy2d24lXndMYdjAaqa6CYqjy9dtcSfOTbvzSzs3ETwXc5K1EfVdZkBEGK08mw+b+pM+N5gJeIZjAKK2uvw7WjBx7wPO+Azo+FEEuEEF7Nf9e22PRKIcT3hBDXCCGaNn8LISpCiNcDuB3AxMTH/QDepRMm8qdSARB+ARjJCAKftDTwFEO1fzs5gkAvULbjIB1BYLFgEXpooGwEgc5+svKGYUkkMwxpPzPxXNORsTHlbcM9WlN/bDu+fEai5TuCoMX1MHkbmGggeOLI+EBUkxWY5nYlOYb5o5jeo6kw6pZHOssF43NfM3WZSvXaTsw3bXbk0NSdBVmLJKrrWdSeYshSQMgQybtIy2n1eFHjpJp/mKo6ffaZC1Apmq2im4iCS52dgq5B0KwzT7rXIAjH1LuTBw9jbB/IhMw0EAghSgCeV/PRRy0fcuv4MZ4UQtwthPgPIcQ/CyH+VQjxJQCPA9gPoG18+5MALvM877eWw5U5UbQqh0l7gy6SODWTjyZjtDmljfUCsGT3LhWY6slHPuj05A4fliyLojJe/5mJh9ZIolaVvAr7aHh5sB1hPiOR8rue0UwxFH5njx8xP7A9kvTGwiGChFvWicLcCAL9Hf3lszZgdnfZTAAQcpFiY6GITtDnu97EeTNZRqx/LQhybaKatrKkO8UQC3uRai/ltbaXjiAI8BuyLyfU0mDZdHk6NizowUdfsg3nnDbTyP5quXwvhVmDwPZIq9fvW4F/eP4ZVo/RStiYmTo1nodkzKNFoWVpiqFLAEx0BxoD8LGIjlsAsH78v1a+B+Baz/N+Gk2QskWlAj5sni5fg0C+86CF+dqfRTaCQCObimO6jiAFb8DuIsXhRxAYCoeZ3cTGVMHbZbrXOq6C/opZneiuFHBkwH82vDCVvPWbsH0gXfwrEFuNIDB3pfIGdrV3VfUlPmn3j43wBtmnrIxkKoxB9rNsZidu/8O9OPDwUxgYHsXvjw3ihlvvCxwGlzsi2GDs2omp/2tkn3WhC1JejWqKId01CChar9i7DJ//8WMNn+9Y1nwEUpBOP9lKOdyjukixydeU7cv6sH1ZHz74vz/H+7/0s9D7O5WOunM31afDqnUMzd7Z509rx5PHhkwEq/kxcwKXbJyH137izqbf2zytoesRDKUg/SeG8b1fPmVkX+S2LJU6aqcX+prneY9YPNYnAewG8GYA/4nqosOPoDpKYBDAEwC+i+oIgj2e521n44A9KsPOfnv4ZKhjyA7hP8VQwBEENQeNKrvXqUjXny5FMzCa5Iv9ulNgqifL2HVC7XIcqUq7gSCm18Z8TuBle5YpbWuyUizOacjIPP8phvQ+txEGP4WcwNbxqWhMprFR3Ik28oQgu5SPIDATxqAdFroqRVywdjaeuWkepneGG00QJipJTJr8rp1qlCbK8DbLMKrTU9QGQZZ2mAxp0UQrJlmzZk431s3rbvj8ys0Lm24fbAQB74E4VU+/QmdDC92rTZXzJ/bj0p3UcFsrBq7Z87B7eV/4AEn4lRVtvj+EvgcMBe35H9KamZ0SLDMjCDzPu8zAPn4JhcfM87xBAN8e/49ippJoL5zWHuoYYQpvQTsH1R4xqsKj3SmGwpM3ArT+ndURBCFjJgub1vVwqVRIZsR4TV+7bwX+z1ce8N2u5QgChWNE/VLMZyRafqe7Vd5tcih52CkI/+a5p6OnrQjA7OMYyZon9g+hZFp76wWBTZ0HEy/vYfeQtfTFN7qK52Pi2pksp9VX5AW6P6RlM3OB5QgCt+VyAh9/6Xb86efuwTcffBJzuiu4ZtdiXLl5QdPtpZ1+WnzF6dXjpTqCQGN5Lo1ju70/k1SD1iy9PmPRNLOBaTim/Pug00WrcGUmgoefPG5mR+S8zDQQUHap9AxaM7ex94cpfv0JTLxIRJffqx8pjkWKZbuIar5Y0zjFUHboNibFWdAXQmD9/G7c8+gR6XYtF91TCHvjJnYjzIUAo+U7gqDF1yYXowvzUrd6Thcu3TTPWFhqRXIvWjhEkNP56nOXt95fiLCY3k/YvDjcGgTJS5t8pxBTjNNEGdnmOVC9NrVhkJc3QwaoRklzkWKK3rSOEv7f88+E53n+I2cCNCw5/IqSaKpTl6quQbB6bpficZU2A2Dw2ouJ/blzM9UHRX0NgsbPOjTXAtHl15nEodPawOGgkaNY6qDU8+t809NWxNPWzYkmME0ErewYrVlKPrI1CDSOo91AYL3yrzWrDQShRwbKdqC+c5cKhdRcUqYYmqBSuRqmoiToy4Op45Fd/hWIzRUMLnATZlezuytT/p20+8dGcHXTpDMW9WLNnNYdNEzlW2Y6YoQdDZiwGyQkv/OlejpsrEFQX0EXpBwuv54cQZBFKulMsDsjW2mHa6ojCPyvwXW7l1o5tgkTe3F7BIFa4JqdE9vvuH7XwWTHlXrhRxA4fNHJSRxBQKmX96kB+LdX7MCivnBTDMn4r0EQbL8jtQ0EERUedY6iGy8jIwgCDvmOY0FlZdI4GdlNImRgjWJtcZf5lF6GWy66p/Lb+t/YlfRnJGn8e1o2/75gcE7uMC/f9S+EcTfY6YpzDYKF09tw1ooZeNvFa6Q980yF0MS7e5zD/ONO6+M0ce1sngPlEQSi+d+y7cLiGgTpEiTdzfLzb5PqtRDCP3e/etsiLJxury4hrChGYumrK0NpNhrXst3wEesUQxanKk4Cpn/RYwMBpZ7ffMWrJb3XohC0gqI2M4puBEFya6TlaxDYzNjDMdZ7xLHroUN1GHDSubawt58wPWYCTflsOcLsZeOWSKYYCrEvq2vXRHArxnW3//srdmLb+MLOfoxNsefAs530l3RtAUcINW5nv2IrSCf9qBYpLnEEQeZlLemIis4UQ37+4vL1IUPT6thmr74DWWFL6lMMuTeCwOpEBGE7JziUgnRVCjg6MKL1G3dCnx0sdVDq2Rz2pUZeAAmS+c/tqWDh9LagAQpM51TGMZxeuviX9HfuMhVulwuFfjyvcVHBNNK9RHEX+mz2mAEa42d9BEGCn5GkkvbCbfG5yUWKw9zD9Xlc0u4fG+FVeUnXuXym0jgTewm7DxcaKaLkO4WY4vmwMYKgvjQRpLwq+4XJ8i+nGEoXFztHkJzKIsV+c9QHP7aZ/UzsxqVbqXGUsGqe0Lid/REE8gO4PcWQmXCE9ZwtC3DnOy7Q/h3Tv+ix1EGpF3cDgY0phl561tIpCWZkIwisLlIcPhJBh3yPWax7DhsvU8PYk5zBjmVkBIGuuC+p9am5Io5fcp+QdGr1wm0yTw+TLsY9p/yiJtMZbF0yTfn3NhoYVfYYx0hEE9cqfC+++I4dB78gq08nUd3Q5vOmWrknWv6jbjuDQS1ykeJUCbLmXQIf/0TQaaSMq0OOuXV4qv8bd7lFRn0EQbPf2h5BIP/eagNBSlKAnBAosME7EXiVKPXibiDwo9vr4P3P3ojr9yyb8llkaxBojSDQ3Lfe5tpk52jUZgtBSMamWFDYZrHFtTjCcPjyGOVwub2pcFMM+f+2fgvb5yfJjWhp1OpqmLxOYYoH9Q2XJsOlsq9PvGw7zlzUCyGqw7Zfdc5yvKyubCA/RpgQBt+n3ggCQ4zsKNxOXK6YscF3jRHt/QUPS4O6Z1d1JFHtZlFdT65BkC7blkzHzK5yw+dXb1vY8jcZSzoiozrFkFAYQWCL6SoMl/KhoCFplrdYH0HgcwCb7w9pGUEQNByOBD9TuAYBpZ7J6QiC8Ct+6GTWH7pmCy5YO7vhc1cS/1q6YTIRB/mQ79bf2WwgCBst+Ty36ntXKbz8/dVn4LqP/ABPHhtU3m8UsjKCQLehL+4K7TAvGkF+absh1PG25MyJ4vYO08gVd8Plgmnt+PSrd+PowDDainkU8jncft/jyr+3skixwjOqk25E2UDuu4+QOwmXXiYvcTI1gmBipJrNMxAkHYjqihStD9WjKOVyAh++ditefNP38PvjQwCA7Uun40+esbblb5L4/KdJrJXqpkYQTKzl4tCt1DDFkOa0c0F+G5TvFEMOr2XoTvoRLBwu3bNZwQYCSj3nRxBopHytohLZFEM6Pf8cS9Fl4RmJu6YnINMzNWyY34Ovv+Uc/Pg3h1EqCAyOjOH5H/pu4PCZkpkGAsdG3fixnbbWP7P2RxDY3T81EmjdiB5FHhLmGA0jCMIGJuC+uirFyb916hLjut110g1TFTO2OyBEFYYkMde4M1GxZe4E1qc5QXZta87xZsfJ54TTI11Jz/r5PTjw9vPwk0cOY3pHCUv62qX3d9bSjqhoTTFk8Bos6msHfq62rbE1CMTE/7p7M6mGLKlrELzr0nX4s8/f2/D5n1+2Tvo7jiBwJAIZwm4JlHqFmHvf+A1h1JmOrVXiGt0UQ/Ze7OOcAWB0bMzE0ZsKn7GbeWlQ2VYIgfZSATuX92Hz4unODEUd8/zX8kiDWKdcCCBMjxml+zHAftuK+QC/CnNEsiWKqxFmOtTGKYZCBsbAvvRGlQU7Rth9ms63lPZj4G6yuZ6Qzd+6Sy1Spyq2zB25vjyhPMVQTZijvCRxj4Qm84r5HDYvnoalMzr8p+Pi5bdCdYqhXE4YrVi//qylTT9/xoa5DZ+Zfr936Vaqj5v6GgTNGgjiHWGsUtV00YY5WDCtbcpnC6e34enrG6/7VOHi5sq7fGAJD34SsYGAUs/1EQQ6hY5WBYWo0n6dU6m9BoGJRQQluYgs83Z5BIGx3iMBclhXKuU5gqDF9naCoSxMD0qVXzYOP5Zvf+aiXlx31pKgQeJLuGOi6OkWppGrvkevC/dPHJXvU/apsI3WFEOGUjkXRhAk/iVdk9+1060Msnn2Ak0xFOHlZANBtrEHbbyEMJv+LJ3RgYs3TF2sulLM4SW7lzRsa+4d0Oz+bFANmmjyPm87PfZ731EpS87qquDfXrET1+5agjMX9eLaXUvwqZfvbLomSa3QHQ3D/dwY1Qa5eq6EP0s4xRClXtwFa5NrELRKJaOKoVbvRO351HVDo0cWnjGraxCE7HUo+X3cvUWj4o35P0dZFPdQ4TBJq5X5z4XAmy44DV+853d4+OBx/d8bDxH5EUK0bImMIusOcx/abLcMPIJA44dPHh0KdhDp8f23iWMNAhcq56NesyVuftFVrgwa/1+T17C+oiJIOiD7jem0wfWOTmSXA8lXKqlPMWR2kWIhBPY/7wycvvAX+ObPf4/5vRU8Z8tCnLFoWpNtTR301LFdEXwNgsbt7K9RJt+/aoep+b1tuOFS+ZRC9cLGzJVLHjRfdCX8WcIGAkq9qOYJbcUvQdSaYqjV5xGlnjZ7J5qIgeyYsu9GHe6hLj2PBq9Hs+89R6rlszKCQPcpiLvOwPoaBPXDj/16pKKa3r/tojV42cd+oH08FyoR6ZQoek2GuYcbRhAYDG/Qfen86vjgSKBjhA1BHOmWkREEIfcR5l5zqVLHFOU4TVZs2QuLajm8NgxRXpFimLnQKPFS+Pg7QXmKIQvnv5jP4eVnL8fLz14u3c5U2j9Rpoj7vaFWfZlbNWjN4mB7NmnfKYYcfkhdKT9wHZ3kYImDKGZ6ixQ33zaqtF/nMNphshwJ2d5tZlquDA1UqVx1VVYaCPTvlbhHEISp8NLfxu83E+Ep5ANWrrr8EGRQFNcjzMuyzTUIgjIxIjEM1bVu1PfnwEkdFzYocY9mjZrp0R9GRxDU/TvIVGNRVghxBEG2cYqheOWEiO0aWBhra3yPQVXq1gxzew0C+f7DTFfpx6VyUBhBq1qY/kWPDQRElvn1UNB7WW7xuU6AwtA40PBo9JW6suDJMneX1yCQLlKstZ8AB3fktHCR4hbbJ3gEgcov67fxje/498WAXYlYCI1e3Gc8zAhDmw2XwacYUt/WxtR6KofXOeXGGsgtr3GkImjDZfXYyWOqU0IUcQ+SDnANAopK3GW9rBOGpxjSYarie2I3LiUlbXUNBKqpfbNTYjtefnmEzfvDxK5dSEOCzkrgQtizhg0ERCH8xRXrQ+9Dp9W59SLF0aSeOgWVpTM6tPZtPQaSA1idSzrs7yU70Fvg2u84jVu4UicfdGGjpNF9juMuM/mlXZdsnGv0eKoVThxBkA5R9NAN0+urvn7dZGiD7ksnOkOjYwGPEk4caxAY2U3oEQTZeuUKMq2hbDuTyUF9kSJIWiPLj0xPz5gP0bhEycerb4f6nPfxXQPTeaBL5dy20tQ8McwIAttXyK8BwuYoLxPXzIUpkAKvQWA2GKQgW6VVIoMWTGvD09bN8d3Of5Fi9WPGPYJA5zg9bUW9fRuIhKne9i6Jqgely3MDjnqeM+sh2JS0EQR+PWpef97K1l8qzUWi95OJ74tsIEiFaKYYMjiCwIEbSKeXu41RfirZiFYDQYiwTNmPifJFyN+HW4Mg5MEdpHqv2phiqJ7qtaktR0U7goCv61mWxuffBeprEMTXQmA63XOhonhC/QgC1ZA169hhfQSB3xRDNhsIDNx8Llz1oKNu0zLFUpKwxEGkacP8Hrxg+yJ86uU7MKOzHHp/JnqBR7YGgeaBXnWOfPGlKfu2nAHGVigKedg4pxhypeO+w20XsYp7ShxZ7+uOUh6rZne1/F4l5Lrxm9g+aGVK3Oczi4IuLB/F8f3YHEEQNGBxTx+gUuGitUyCoZvARP4fNixZmybGf9Si5v4snr5AIwhkaZfhvCRr9w5NxQqyeFVHEMRzDYyNIBjfkUu3UtA1CJpPMWR7BIHPCGaraxC4sY+wOIIgOQpxB4AoaW593Vl6P/BJEHVanVtlQFEVXHSPMq1dfRSB7czLhcwxCNntEfN6lJGxMVe2i1yqMFEhG0GwcHp76P3Xx88vuhPtApxiKB1sv/AJEe6lzsV0Ke6KJKURBBplHlP1oi482mHWu4j7ugZhKsyTFVvKIw7878OGRYoDtCnL0ifjUwyxgSDTePXtUE2j4lyDwFw6anZ/JrSV6kcQ6I/kmmC/gUD+veuzwFXPbbxl1sDrdjl+btOIIwiILItkiqHIRhDobR/1VAJR9uhSFfa4pnuP6HBlWh9XRjLYlrQGAlmlit/9FiTsvlMMjT9rxSC1PQr7p2jZvhw5ES51rn/ZMXn/BN1V3PWIKi+AemE0WzkSah/hd5Epps7XxP2iet8EqUxXLavWbhXpFEOu1z6RVS5V6qaJzhRDcV0B03m6y1MMhWE7Wn7nbceyPmvHNhI3By57Vt7l04ANBEQx0+lVFnf6rltEcqnXk0NlIi2yc64TpaTGHwjR6yBhgk6pExfZFEO+00sohL1xC7VGh6DTMcR9Pmkq66PKQh6jft0Wk8ENGq6403m1BgKdUZNhQjNlT+H3wORBS1yLFKtUptZXDCo3ENRsFmV+kecaBJnGpCdecb7KmkpnRN3/uqB+iqEw73rWGwjGk+Dnb1/U9Ptrdi6xdmwTDYQuXPeg19elRq2sYImDyDK/Hgp6L8vNt41sBIFmiqE3fZJmYJrtw4kscKrQ8ZKNirA8QmNuT1uAX5k35nnZ6Hmge5Fivt1l959ffYbSGsV1G6ne7kFHEDjUnpkZ0gbQCOaUDZNnuJgmxd3TVOWcJHeRYvWd/NGFq8IfsP74CUuffEeRqU4noVm1FSQdDzbqQP84QRWZOWVa0p79pFDNL3NCxJa3GptmT3MkVhQaGwiC7yuqNQhee+4KLKqbQvUPzl+JOT0Va8c2ETMXKtmDL1JsOCDki2sQEMXMzBRD0aSeukfRqwiwOweAC5ljELJwm1i/QmbFrE4sndGBXzx5XPu3Jjk41bcVCWsfkN5/RhYd19zFxLPCNQjSwfrlECFHEDRMMWQuxEH3FPctbHqKIWNT7JnYh+JOyoUcnr15gYEjppvuCALV+yZIWS9IA0GU+UWY9Sso+Vzs/JQGqlMMCRFf3mo6nYm7E0Gt+imGVK9HM1E1EMzrbcNnXr0Lt//0cTxy6CR2LZ+BncvtTS8EGOrg4MBlz8q7fBqwgYDIMr/0UDZNR71W7whRpfu6BQutqT5sTycRU+ZocQAB5nSr91gIGo53X7YO13/0BxgcGQu4h/DCFBrTLO6CvqxSxe/RDxJyv9+cmmIo6OBIB0rQNMn2/S0QrjddwxoE4YIzdV8B4x53Q7j5EQRm4mPivKju4T9ftcvK6DuBuJcYNEt3yiCd3r62wjL1N9E9a0GnzaN0cKFyL8tyKVikeCIHc+leql+k2OkphmoO0NdZxnO3Np9qyAYjHa4MhCMsrlGcHJxiiChmepl/820jm2JIc/uo11eQnYe4K06CkgV7Xq96JUTQ6O9ZORNffMMe5e1ftmdpsANJZKXXge6LQNx3tPSZMrBIcf0m/lNWVBU5giAVbNeJhZ02YKx+DQIH7p+4w+DqGgRRLvK3YJobU/PFycaC3aq7DHJs1Y46osXftrm0nhdRWqjm/9URBPE8g8aaB8TE/txJS+pHEIR514tqDYI4mBlBEP91D9rZz4WwZw0bCIgs80sPjUwxFFGGr5tG64yOsC2pvT9GJCWmeb06IwiCh2PZzE6l7RZNb8eu5TMCH6eV6hoE6W8l0G6Ai/nxkk31byJs9Y+O/wiC6haFwGsQuJNekd/6BAb2H3IfNhsugwYt7ntYpYFAZy0jlxoIlOfMZzqidKbUz2f1f1XvbZXt6jtXBFuDoPVvTBdXOIIg25ik2KH6XpGLcY4hU3n6xF5cSkoaGwjcn2IoDhH2b7Aq8BoEhsNB/thAQGSZ5zMoXGse+VafRzaCQO9AtufIb9hHwO9c9sSRgZbfzY9gBIGKGZ0lXLR+Dv7tFTvQXjdk1ITRjAwh0L1GcVdEyRoAfSvzFauQpvzL5ycTXwetTElqGpFoAQehmHphCrUGQf0IAoN3UFIrhFSS6jimGIqy16St3t5JygZV8ibV22DiflHfXv59eymP89bManoMP7XxivIZDdroTekQd8Nv1uVEnJ3M3N5fGJXS1HQtTMNqmhsI0tJCELQM49I9mxVcg4AoZjqVfK0yqKjSTu1FQyOfYihgbZNFYQ/bXSm2/G6uIw0EP/jTCyb//s1TJ43vPwODBwDoV2LFXWaSPd++6VqAwPudn8kRBEEbCOI+oTRFFHPKhqk4buh96MD9E3dFkulFis3Nr2BgF4r7cGnkZFz0m3/DbzfBr4HmDy9YhXJhakeGIFlGlI1OHEGQbUxS4iVEfBPzGBtBML6fuMsItUp1DZ9hOoPZjlWcbbQm7j4XrnuYESIULXZJILLMLz3U62Xf6gv18IRhc4oh23lX/FljMDuX9zU9N6fN7kJnWb2N16V5J3VVpxiKOxQOivmSyp5vG1MMqW4ftAdvkp+RNJI1Mhl52RHh7tOlMzvCh6GFoPdi3O+AphcpNvVSG+UixXHOVewKpTVmFE/o5BRDig+rLN1oK+Zx/Z5lDZ+r5hm1u47yWeMaBNnGskm8Et97vGY3cZcRatWn1S5PMRTniG0XptQ0IfjldSDwGcNiLJFlfumh1hoErRYpjmoNAqtTDOmGpsk+JN/F9X4V9rC97SU8b+vChs9fsbfxJVcaDkcbkVRkpdeBdoV4zIUm6QgCv97+Cvuv30Z1UELQgrwLBeiskZ1y6XcGrlV1keLgv3/9vpVT/u23q/NWz/LZIry4e4mpzOmsE0SHBhAopyscQaCWN+lO66PcQCPZ8NzVM5v/JkABMdIphthAkGlMUuJVnWIonotgOk+Pe2rSCbtX9DV8pvKqt69FOUpnbaMg4i5bheVC6P2m3G4l4ac+kTjFEJFtvosUh69Ed7XyV299hfS2/of1nss3YElfB26773FMay/iqi0L8bR1c7T2Ed06FeYlae7lMHTPXdy3tCzt8q3MV5qjWi+CYc9H3OeTprI+qkyEy3fOXDytYX8ysgXnGwQMVtz3sPE1CEz1noywB17SKxKiUlScs2HibJpcpNj2b0wXWbgGQbYxRYlXLsYphow1kguz+wvrpWctbfhMpTPYtbuWNP3c/hoEVncvFWUHB5vGxoL9Lv6QZw8bCIhiFuXQ96iPE/U7jexUxjaCwMBx8zmBV+xdjlfsXR48HFGNMrFwGJVeqTY964z50RxIewRBvGTPt4klCOqvu98+w6alLhSg6RR5A5RA2Go4geDp1Y5l0xsqOP3S2KER9bejoHdi3B2N1dYg0Ok4YIaRF2zF7YL0Rk8dhVNQKig2EIip/+snSD6gOuqjdiuOIKDI8PLHSoj4Gt+NrUEwfhO50IB98/XbsXvFjIbPR33KDy/bsxRnr2o+Csx2rOI8bybeTeK/6sFnA3Dgls0cdkkgssxvSJXOfLUtFymOKPXUzSDj6CnYcv+S7HG5xbmkXRFdBmv+QGOe+R55qgo5gSu3LIjkWNqLFDs8gsBEYbq+N7JfOhd6BEG4n1MAsmsmux4mrlWYe1Rn/ZcJQ6MBu09pifcuVhtBoL4/U2UbIy/YTCCUqZwq1UrviedU9fQHuU7KjTo1O5fl16ZvFa5BkG1xTyeZddURBPFcA9OPftz52PVnLW3aOAD4lx92tfgdEMUIghgbCEzsw4EkJGhfP6Z/0WMDAVHMjEwxZCgsQY/fStQvNdJMRPLV689b2frL0NzI2KK6FGlYg+BZZ8zHvJ4Kdi3vw4eu2YJdy1sXSk1K2hoEsufbf4ohlSPUjSDw2Trs+XChAE01bDcaizAvfY2/89uV1giCgMHS+d3V2xrXtglLbQ2CZI4gcCUvTwKVS1zUHkGg16DQdF8trmGQ0a6yMpXxKYbYQJBpLJvEK5eL8RoYOu5E+OOq6O5pK+LFOxfjrRetbrmNX/khzLSmYel05jTNzBSJ8SciHEGQHJxiiMgyv/QwWWsQ6B1Ib5Fiuz38ZHt/2ro52LtqJu544GDoMLgruTls1A0Ef/Pc0yM9XlBxF5pkz7dfuqYSdu0O1yHPhwtDr7NG1qhje4SKEMEXKW72O6MNBAFvZp3zcqHmOjYqjKfVxipHsvNsz+wq4+DRwVjDoHL/lpTXIJiYGkPt2EHq0gOlJxHeUvk4a6codtlJvdwUZ9nQ/CLFRnen5CMv2Yo9K2f61gn4lR9kP7d9jVSnobPBRGcwF9KQqN/lKTiWOIgs80sOtYbbt0ji4+5J3IpOhmo7BrKgVIp5/NOLNuODLzgTr9y7HPufd3okx41Skhcp9rzgQxOTRPfcxX1v2S6Q1xcmTaxrIMMGArfIroaRHlU+x/D7ra4ophhSCVdXpYAbnrkW5542y/jxTS8ob6psE+UixXFa3NeOd1+6Lu5gqI0gUG0gGN+XaocTm4sU124VZX5RzCfg5iNrWDaJV5jOBKGPbWo/EyOxYqgv2LigVyn99isixTmCINZOBikpvwQtHjoQ9MxhAwFRzIzM0+9o6qk3gsBiQOB/nivFPC7eMBdvvWg1Ltk4z25gYhDVLWKjEDVqutbJUfrnLt4HXz7FkM8IAoWw1zcK+f0m7Es0Z3Fwi+weet7WRQb2Hzy9ajqCwOAixUHJnoFrdy3BN95yLu58xwW4dvdSK8c/SzJHcBCyy3PNzsXq+zERFgP7sKm3vYj/9/wz8fT1c/C6fStiTc9UDp3PCaUwTjyjqs9qkEc6yHSYUZ5eLnydbS5U7gWxben0uINgRE7E1xHP9LMfR1KiumaT3xRDsufA/hoEVncvZaZDTPyJSNBX+SyNAHUFGwiILPPL8HReTFpt6mra6dJLjc45MhlqV85AVBmsjaOMeZ7vYt8TTpvdZSEE0dC9RHE/XrIRQn5hU4lrfdppZl2D1thLzy2ye+j528M3EOSEWgWlKr/bZzDmNQiEABZOb0chyITritbN68aCaW3G9ic7DTM6y+r7MdIDz9304c8vW4dvv3Uf1s/vgRACb7rwNNz5zgulv/n/XroN0ztKEYWwOZVRBBNn3cgIghZfBUn7o7wfuAZBtrlQuRfEtbuWxB0EI5K+QG11PxMNrYZ2qKiQEygprjfjP8VQ8HeOsOJcKN5IBwcHkhCVNarIDWwgIIqZXqLdfGMH0v2m9KYYCh8L+XuhO6MZ4hDdCALz+1QtUyyb2YF187rNByAi2uMHYr5PZQ2AJoJW39vEb59hj+lSgybJ0+wVszrx9otbL3antn8EfoiC5FdDI6Pq+7fRQBBBLiCEwIeu2WJsf/IFZ4HnblFbaDktc/i2sm/NbLSXpvbS7GkrSn+zZ+VMa5UqqpXnKusQTIRRfQ0C/Uip7rt219JFig3Xg8RZOUUOSODlv/6spbhovfl1buKQE/GVt003REbd2DGi0W3cb7S4fIohu/GKs5HOyBqNBsIRVtB8Me533SxiAwGRIa2G1r/94jXS35lZpNjN1DPqKYZkGbjWCAKD59OVa+NIMAIZ8zylgsWqWV2JruTVvUZx9yqT1e2YeAlp6E3kO4Ig3DETfOsklvSS+VyPl5+9HF97094Qxw7+BAW51XTWIAgaMhfymzVzu3HxBjMVQ34jIt7y9NOURo2lfQ2CoAsoqi4UrEs1NEWFnqUT97TyOgEBToVqWbX2uYwy/1Vdr4HSyeW0p9b5a2bhpmu34Dtv24c/vWStE/mRCWHKCuGPbXqHhvdnkN97nomRyUHFuU68mREE8V/4oNMFOxD0zGGJg8iQq7YsaPislM/hog1zpb/TaiDQ/DxuWg0EFsMB6GeOacuQouo1YqMYrVqmyOWCV5QkUdxRDbNgmMrz6DfcWPeYfthL0y0ql2PZzE48fV3ryuj5va2nuxEhegU2XYPAZ2fRrEFg/RBKCobepv2uT19nGZ977W6F/ZjogefIyW0i6HVXnfpBm2J4VBbfndhCtQwTaARBkDUIInyDZt6UbUm5+jO7yti3ejbm9pibZs4FOSFiq2A1/e7m8lSafmV+v2tgM26xTjOVkg4Ouu90E1wue6UVGwiImgiSkF66aR7ecN7KyR5Zve1F/NM1m6UVFIDei12rDMqFhL+ZyEcQSKdX0GOqMODopbHGxr2oWqgQEIkeQaB7t8Qd0zDDfVXCXn/V/QqJYQuRLr84ZZHqC7msLrqjnJfsP0RP/Sa/89uTTuepwA0XsacKVeZmWPFPYyrFPDbM75HvxY3TYk3QfM/WehTKIwhU1iAYv3jKaxBIdtlqD0E6FkR5S21ePC3Co5FrXOj9qyYp4dRTXaQ4Hn7HXTW7U2k/E+u4uXyF/MpIflmAzde/eNehMNDBweULT85hAwGRIUIIvPGCVfjxn12I2954Nn74pxfg3NNm+f5O58Wu5RRDjmb5LlW46U/fki4OXQptqgsbCSGf9sZ12vdozBdVVmFjImRRL1Kc5GckqWSnXPVyyPI/WU/2UIsUB/jdn1+2LuDB1MniE+X9/bytzdcG6K4Umn7eimqYfdMGraMGO0acgo6cszV1jWrepNZAUP1f1Wc1yLkIMn1RlPnvlsXTMLtbfVFuSheHk54pEt0/R6I6giC+Y7dy0fo5uO2Ne/GJ67f77meiOO3Se3m9MGsQAHbT5DhPm+0pmKPygh2LA/0uremKyxJclUKkbtMCee+yemHSorZSHqtmd6n3djKwkK+r+b3esGgTUwC0plsoMjaCwJFrE9XLrJ0RBKrHFomeYihpIZc9I/4Fef/9j9XNyOL3k7DnL8n3ThqZSIMLkilMBMymV377Okehw0D4QNg/hIptS6djRmep4fMXar4gShuQaitr/fbjyHmxJeizUlKY4icI1eDoTDEkFCvpgpR1gsyIFWWlhRACf3/1mSiwpiSTkpJ+uVz5HEZ1OsJ44qZyWJW1XHT2Fxe/zmB+95fN5NHl86Yi7vAX8wLP8Jlyu5W4O8NlERsIKBPedOFpTT9/89Oafx5lYqSToSUtjdSpcLMdN+3dJ+xc+0lydMY8T2nKCoHgUy24IGnrZEhHEPj26PUPfP3UUr7TFoU8H2l9uU0qE5dDVqFWXXgw2EGa/cpvTwunt6vvP2DkpdN+BdpjMMV8Dh+7bjvm9VSqxxbVaRjfeMEqrf0onwbfKc3SPUQ/6JIPcS9+q3L82ntaJY0OUgQINsVQtDfEtqXT8c0/3hfpMckNSSmbJLj4LeX6/PM66XjUla2v3LtceVu/zmAm3iuCivMeCDh1/xRxPpqlQg4ffMFmTO9o7DRCbtIb60uUUDuW9WHf6ln42v1PTH62fGYHnrOl+TD4KBNSI4vnOVooy2v0TjMzBUDwCst6pgq6LgzrA6K7R2JdpFgkuxe4bsjjvrdk7yQmCtP1191vj2GPmeTGpaQy8rIq2YVsiiEh5L+VHrJJuGVxOX+N3uiBoGfFpTt47bxufOut+/DzJ45hRmcZ0wK8HMrSuNrv/NMG7UNrhSVuQRextTbFkMHj1z5WeSEw6tNdIMjaOKrnr3YredJlbhWOWqxgIZclradvZ6WotJ2r889PBEtnZFHUMblg7Wzlbf3Wm4tzBEGsDQQ++clbL1rtu4+ow3/triW4bvdS/PqpEzhjUS86ysGrnJOVqqQDGwgoE0qFHG584Zn4zI8exY9+fQirZnfh8jPmY0Zn8zk9o0xHtRYpbrGxqy+ueiMIDDSUGNy/q+c0qKgKB1amGBrzlLpQCCECV5QkUdzvYtJ7yq+nj0LYdS9l3OeDzIpkiqGA+9VuzIvo5nStp6kQAitnd4X4vdp3/uuTuNERI58TvvMsBxH0uutMTaFD9XyXNBsI1PKNAKMBFH+iGxYiE5JyryUlnBMuWj8Hb/v0TzA86lcxHVGAmh1bIYnWaeiNqoyQE8DbL16jtcC6bwOBTzRtxi3Oe6CtmEdXpYCjAyNNv1eauifi8OdzAov62rGoT33kbEsJS1fSgFMMUWaUC3k8b9sivP/KTbh+z7KWjQNAtJXDOhWarbZ0tVCmM+zddhR0929sBIEj1yaqYNhZg0B9keIk9wLXPXdxxzTMIsUqYT9r5Yypv/H9UdxnhEwyVSHbSnWR4mAHafYz2Z6CJkuv2Lus6ed/fvn6pp+7kt+YohqdKKJt5H60dIECNxBYyi+VRxAU/LesbWxQKS8HabdWbdCY29NWs6/oH7a0Pd+kJikdllxroPbTUS7gys3NZxKoFefICJVzKusIUS+qqNz5zgtx/Z7m5ZdW/NrO/fJPm3GL8x4QQuDy0+c3/e5D12xRmr4y6tCb7KyXrFQlHdhAQBQzrUWKW2zqauIZ9XQvqr0N1fbl6lkNKKLoxDnFkEDSFynWHOUSc1Rl57q3XW3odiud5QLaS1MHOfqdn7jPB+mTjvoysH9Zz7rqwoPB9tvsZ7J96VacTGx+yYZ5Db2suysFnLe6+ZRFJqfZc4E0PorbVb83EBYDd2TQtQL8ODfFkGJwlKYYqvlbbQ0C/XOh8puetiJ2rzjVaB1HX4QEPsJkQFLS7iT2z3nP5esxo1M+dVec8VI5dFEhY5noZxVFXFbN7kRPm/47gF9nMP98Pp0jCADgTy9Zg8tOn4fieGNQRymPA287T3kKp6jrNEw2FqauPiYB2EBA1EyEaZFOutfqBdXVxFNrdITlKCSt8tW0pPRAakZ1keJc1kYQxHyTDo2OtfzuzEXyYcV+Qf/AVRub/Ej+mwRfempC9f6WbSUf5SIiS+cnXpYqRbVi90SwNizowYdevAUb5veglM9hy+JpuPn6HZjX29b8dyl7BpSnGPLbT0T537POaN7Lb8K+Fg07YQVuILA0xZBqIVptDYJT+7KVxqvs9+0Xr55ynuPOfyk7knKnJW0EAVBNO1977grpNnG+V8gbyavf6Y0gcPcajfn0Bou1oSbm81Yu5LH/eWfgrndeiB+94wLc++6nY05PRfn30Y8giPiAZBTXICBqIsqE1MQIAlcrxnQKVUZ6+BnsPenoKQ0sqrKNjeN4GlMMJXkEga64oyqbpu2sFTNaflclD3y5mG/8hU98k9wIRo1M5GtF2RoEIvg90zyv8c9//ujC0/Ce//6p1rH2rpqJvatmYnTM860IDrJAq8uUFyn2SxuMlC/k3xdyAlduWSDd5lV7V+ALd/+u4fPX75NXUNkiez7CUD3fSmsQ1PytUqYMcq390oFtS6fjuVsXTflMFhTFIou2JD7DFF5SrntSwlnPL9y2nmcVKqfUpc54YfiNFverL1GdjjYIV+pZOsoFdLR+9Wop6utudASBsT2RKrbvEDURZUJqZIohIZSHmUWpoLW+gt2TrptZmeox4kphLKpg2DiO4hrFyAmR6F4L+o1Y8d5cq+d0obvS2M9gz8oZmNUt79niX9mv9pnOPilZlEcQSLbLS4beCxF8BEHT+1Oyr4n854U7Fis0njWPk9L8675bJIvq9fFLC01k5367+OdrNmPXcvm1XTevG8/bOnXO65WzOnHNriXhAheQytQUtf7wglVmj6/QQFF77cJ2AGhdhpb/bvvS6U1+E/3T5nfE63YvjSQcFC3ZdXel4hJwKyw6/B7lp44PRROQJlTeXVVO+8Q4bJdHefguUhxjQ47L501F1O+LZqcYMrYrUsQRBERNRJmQ6hSoZOG64dJ1uP93R/Cbp04aCJUZWhmE7VOe+REE0cTIxmGyskixrrgLTYV8DvufdwZe9rEfYGS868+8ngreccna0PsOcr9m58qniOWLJluENSdCpItNfqZSiVMp5nHTtVvxg18+hXseO4z3fuF+1d0rSfpLbD1ZbKZE1XcEQfjzItvF6/etwL7V/p00cjmB916xAeetmY3v//IpLJ/Zgaetm4Pedvkc2LaoLBJcSzV7Vd2r7hRDKtcxyKX2e250d2nrMfTb7yvP0VsUlJJBdt3zOYGx0Ri7uNdIavbjF+xVszsjCUczKqe02YjbehOvUS5fIv81CML9Poyk3tsTog6/2UWKE37yE4gNBEQxm+jFqJKvyRL4+b1t+NIbzsZ3f/F7XPeRH5gLYAhawx4thgMIskikoREEjmRs0dWbmz+Q8iLFQm2R4rVzu3Hfb4+EDJV5rtwrOs5dPQvffus+3P7TJ9BRzuPc1bPQXfFfnMx3NECzz2JcoIySSTY3b3WKoWB0n9Xa/KdUyGHXihk4c/G01g0EQdstUvYIqDb4BklP9LXei061RC5XHfHpwqjP6ZpzFaiP6lHbX0FziiGVEYJB8lHf8Go+WHFNSTKrS31OakoO+fSpAnopkD2JbaD2CffSGR0RBaSR9JyOf9XTVlR+r3H5Go21XtYMgH95wO4UQ+6eNxVRvx8ZbSBI9qlPpARPxkBkj6tztflt1VEuYN/q2ZjfYgHDqLk0H7xuSNLWET2qyudY1yCAWqHk2pimc/Dj0OOiZVZ3Bc/fvgiXnT5fqXEAUKnsb/KZ7z5P/f3+ZzdZ5JhSSXZfSKcYCrFIcdP7U9rdXXN7C5KYvEgXmZ7Ss9xnRwYin9T0Wea5ddMd+TE15dOEksIUQ1MXKbZzEUyPILCFjeBUz6n3LIfCokMW6medMT/WeKke+g/OXyn9fuItyuVL5D/FkN/vDQam4dgOnzgFUYc+6ecr69hAQNRE9Amp2nZJK3zpLVJsN276uzfU59CVS+ZKOAIYUyz15YTwLZQ8f/siXLlZvpBkXJy5VxzQrILJf92CUxucc9pMtJf8h11TvGzf8rI5znPCbMOpbF/N0iUbjbZpeylTXcfI71yaONfpOrNVup1JVM+j6m2oNsXQqb+V5uP273DbwO82S9ljRSniUmcml8KiQ/Z8n76oN7JwNKOa9ly4bg5ec+5yhf25e5HCr0GQ/kWKg4q+46u5fbl8z6YVGwiImog6MVI9XhIzKPUXfLsyP4IgZHzedtHqpp+/9twVU48T7jBNeTi1wJaMEP4jCN57xQZn1ylI4hRDQQWZ0cG3ErDm61ndFXzsum1YNL0dADCtvYgbnhl+bQRyj9/8zLIfmlykWKZZMOTHDhYw3VEMritIR4DU/B1BBW9aX1Lfc/l65W2Nr0FQ0JtiSHNNZWW+I9qS+PBQJtgsz7YpzG1fK6kN1LLnW5YHRUEn39myuHEx9Yb9hQmMZX59wfxOxajFIQRJz/+TvAYBRY9rEBA1EXWypjpE1HTvrSjkckJp3J/tMOtm7qbC48q1CBuM89fOxt/e/gAGhk9NElnMCzx9/Zypx4kxwjkhpC9LXeV0ZXlxzXNsgv9ogPC/2bJkOr7+lnNx8Ogg+jpKyOUEbrj1Pp1gUsLJeijnRPCGYN0phvTXwNEMkMJxkljJ6beGRLO/m+G7amsdZfVKQOUphhQ3VOlAUntP25pOxfRuE5w1U8LYrJRfMasTj/WfxO+PDymGxVpQrJKdQtkoRJXfhyXt42B4f67zu9dttQ+48h4fRtTlP5PpUgpOf+JwBAFRM64OxVJ+OQscFONMN34EpXtOktoTppWwFffLZ3biphdvxWmzuwAAy2Z24MYXbMb6+T1TjxPqKM15nnpluOx+c/2Suh4+k2zMGd6qcWhmV9nZUSNZZ7tBUTqHfc3/16U7BVazeNqIedruclkF8pQRBJxiKDCdso7pcpHulEGxrUGQ1otPiWezp24+J3D1tkXK2ye1l7XsFKpMg2aTqXfjiel3knqNgPjey9NQHxD1KxAXKU62dHWnJEoo5UWKE5hIujLMTLeQZSrUrvTaNBGKXStm4MtvPBsnh0bR1mJ+dyuLFCtuV51iSPa9G9eiFbdDF60gzw3PH9Ur+ixya3SRYukaBM2P33L/QQKFZJYRZAqKlTPRTDEUfh8u0skXTeehKiMIpjQQhCxPdlaav/b6rkGgeZyU3irkIJuvWPmcwJsuXIXOSgGfu+sxeJ6HSjGPu37T33T7pKaRsrw77gYCreursK0jr+RNvXLvcvzjHQ+1/D6usLt8zpRF/HDK8uobnrlWazR3UtOVJOMIAqImok6LVBM/5YYEh15P1BdgdiMcE1yvTNZlsgdEq8YBm1QaCfwWKXa9kJeyW05KZz0B2Wd1O6UMkl32vGT+4OoixQGPaXlEWvCGi3Q9BNIRBDoV2wbCIkuzkjzdm06+aLo8p1LhX3udVY4vhMC2Jc3n4r5u99Lm4TA8giDBtwMljM3ezXkhIITAK/cuxxffsAdf+oOz8cYLVsUSFqskwZZNcxcJQ4efTJMiuEZB88Nnnzlf+n1c5Zs0lKuijoEsrz5/7Wx0tWisb8alOq2sYAMBURNRZwaqvaJUQ+VSXqY6gsB2kHXPSerWIIgoHDYyck+xtCkgv9/cf3lxPXwGBeixGcU0IpQu0jnsIczm9ZJdNR1BYO7ISqa1FyM+YnjqaxDYH0LgfPYRkE6+aLoMqjSCoOZvpSmJADx368KGz7ctmY6lMzrUAla/z7RefEo8m+XaZu3rskfW9U44rciCXYp9BIGZ9HniNcrla7RydhfmdFdafs8RBMFFvkix5IALprXj5uu3K++L2W/02EBA1IRLCWmtJCaSsh6cU1iOm27lofuVyW6K87TlckI+57jj19Tx4MWOC5Gmj+17XloBKcLcM40/lO2q6RoE0qAFPzGbFvQ0fCYEcNWWxkpT1xUl5QfR4m+/bWkqrREEyh0+1LZT6UASZA2CZ29egPc/eyM2LujBnO4KnrNlAW56ydaWZQCuUUNJZXuKocbjJbkTTnOydwOVEQQ2Yy07p/XhVnnHiaIjTZjb4HnbWpdTuAZBcJGPIPBJmDYu6HWmAyk14hoERE2oVtibolpxqZqxu5SYKg9Jd2yRYlO3wJgjcw+koHzjS8Dv5SW6sJCcb4VegEVds3CPkx7Z/ME5EWYqH73tm6VL0jUIQtzLL961BH/47z+e8tllm+Zhekcp+E5jovwC6dt4yBEErdiYqkl1lyrXt/ba6TQoPGfrQjynyUiC5sdQ2ozIOTY7vjTPt6wdzkkqaxDYvAY6e+6WTNvSWa5+l+S0jg0EwUXdQS7qejQyiw0ERE38+eXr8eqbf9Tw+TM2zrVyPFfm6bfBlQWYbc8Z3crYmJHdhBbV9CtWFilWbGMRQj6CwPVCntuhM8uvsBrkUnGKoWyS3UvFgqwHugh8zzT7lSwc+mvg6G1f61lnLkAxn8O//+A3OHxyGOeeNguv27ci+A5jJO29WXOS2HgYnNYUFsqdWdQoVfjX/G2rcsv0GgREUVFtRDW1b50e7UkxKnlRK8a8BoFO+rxpQS9mdJbw5LGhKZ/P7alg1exO7f3FQVYmU52QwDS3z5iaqBuGVNKl0THF6YMdv2fTiA0ERE3sXjEDve1F9J8YnvL5JRtsNRCYrUR3KTF1pbeC7jkxFWzPkeXqHLolAlFpJBDC7+XFYIAscOm5jZtuBWz1ezthIXtsX7KS5OU+lwsegKaLaEu2j3oKk2dumodnbpoX6TFtkPXerD2jvmmDgbCkNX3WuTVNnwK1EQGntlFa1DhAOHwbmDT3qrpuElFYS2Z04NdPnbCy72a9gF2vYA5ieLT186oygsAqjdOdywm85twVeNet9035/LX7VpxKRyO4fGGSP9ntFde9l4ZbPuoOVEaX90rB+U8aNhAQNdHTVsQnrt+BN/3Hj/HT3x7BzK4yXnvuClxkrYFAbbskTjFkusdZ4HBY/0FzrrwnRnVP2KhEUW1kyYlkL1LsdujMCtLj178Sh7JIdt1LkhEEnmf2npGuKcCbMxD5mjI1f/vsx8T5T+sl1MkX1TuzqG2nMg2B7hoEQcogbHwm151z2kz8788OTvlMCOAF2xfh6w8cbPGrcJo1yLnS6cskWU/mQlzd1sf5LKPU4CW7l2JOdwX/ffdvkRMCl2yciwvXzanZn9sXsK2YjzsIDVKxRo2DIwjIXWwgIGph7bxufPENe3BkYBhd5YLdeR4NzbPrIldGPbSX9AodpgpRrjQQRFUotHEUz1NrJBAQkHX2cf35cT18JvnHtXEDv9+ktYcvBSfr/Tc65gVOF5s11ptcvJHTZVWZmt7BRNrgavISNlw6v1d951feTmlEwKltbM1r7BcMRy89Zcirz1mBAw//HgPDp6bDuXbXEszotLe2TLPnLY3lrOHR1lMMlQrxxjfI+b5ow9yWHRqjiE2YW+SKM+fjL77w04bPl87oiG00h+uNKiqijsHs7oqxfSX/7CcPGwiIfHRXitaPodwrS3WHDqWmUa9BsHFBD37yyOGGz6/ZuURrP6ZOYdYWKY6zHJUTZivpoqY9jYEj01cF4RfXpiMI2MszdWxXNpR8GghMLlIsH72kewDN7VMqL+m9WZuG+KWEZkYQtN5JnGlxIWRPPa1FihW3Vc1rVcI+ZaSIwm6DnI00VnpSumxbOh23vHIXPv2jR/HksUHsXTUTzzpzPu78Tb+1Y+abNNCmsWNw2BEENk+J6fMdxYCIMK+9MzrL2Ld6Fr52/xNTPr9y84KQoQouDfd8lFlcqZDDhvk9xvbH/Dl6bCAgcoD6IsVuTNejQ336JDOu2rKwoYFg57I+LJzerrUfY4sUO9NAENUIAhtTDKke3G+RYiPBoQgEquRxKuWjyEguu2yKoVHPM7pIsayy0/XGSVcVFacY8mMibXD1EoadAkNrDQLlfSpOMaRw8NpNbE1b4DuCwNFrT9myfn4P1tdVvNm8NXXXIEjq2hsjkgaCoqQMEQXT5doklJP/3/PPxA2fvxdfvf9xdFWKuHLzArz6nOWxhScNFdRRXvdNC3pQMThVVPLPfvKwgYDIAaovU0ms4Ix6BMGLdizG6OgYPvm93+D3x4dwzmkzccOl67T3Yyo8knIn6VA4jzkhn4KgtpD3nsvX408/e0/DNnH2UklBGVSZjemCsnT+SI20gSDUCILGHxYk0+Ho3s+8lasKPiNAVKV5DYKwIwjsrEGgtj/tRYo11yxQ5b/IdfPvF0xrwyOHTjZ8/uJdS/QDQRSAzcbnZs9nGhu7R2SLFMf84m16baMkXL62Uh5/deVGeJ7nROV8Eute6kW5lEZvu9lpz+obRck+NhAQOcD0PP0uZKiTYgjKtbuX4trdS0Ptw9w5zFYLgY1bT7VTkoCQzmlc+825q2ehrZjHyeHRKdtcstHOQuQ0ld9t0up7IVrfD2koxGeN7Utma4qhZmQ9uXlvBiOrQNZqIDARGEevoaxhSoXWSAzFbZVHEKhU+NfuV+lB0j8fQUcQPG/rQnzgtgemfDa9o4Sdy/u0w0AUhM3XvWbPsUuvl6aMjrVeg0Bl3nub58T0vp2qH/DhSliTMOrCT5RxMF3efelZ4epzSF+846aICID5HhkuZWXqcXMp1CbXIDC0o4SwcRU9xRmehZBXKNXeivN72/Dhl2zFovGpp/o6SviLK9bjnNNmhQxtcI6UhZ3Q6lzITpErLxPkDt8RBAZTLPn0ZpojCHgvA5AvUlzbQOA3tUWaT6dsnQYVOvem6hQ/qkHSH0Ggtl9dQZ+3V52zAldvWzgZj/m9bfj4S7ejXDA3vQKRjN0RBM0+S19iOixbgyBkA2xYsusbJGQpvHzWpeGcRVkGMpkmvWjHYu0poik8jiAgcoDpApdLL8Pq6yvYDYcuU8PxxthCEBm/RYpLdS/tO5b14etvORcHjw6ir6Ok2DvRHu1KiiTfWn49NltsIGRDCCiTZJX8st5/I4YXKZZVJOgmLY5lh7GRjcrQG0EQ/oy62otQ1oiiwsYUQybXIKjdlUrSH+SZ9h9B0HyDfE7gL5+1EW+/eA2ePDaEJX3tbNyj1MjKFEOyvERpBIHFvMH0nl3Nx1zGNF2PiTTi6m0LsWv5DI7qjwkbCIgcYDrzcakAoDxnreVw6DJ1DrPXPmD+Snqe2uJnwmeR4la9iWd2lQOHzSTXngGb/O6TYCMIgoeH0kk2gmBszAv8zDW7f2VzwfMFMxhZo4tsYcl6RtYgcPQShu1govNz1fUOVO93pQaCmr/HLDUOh63Q6KoU0VUpGgoNkTqbFfbN9i17ZJPad0O6BoFCA4FNpq9vGnrDRy3K+fttibIMauJQf/msjeF3QoGl4JYnSj7TGbarL7IyrlWgmLomapPjpEecl1EI+ZzG5ZgL+mSXSw2jpMZ2eiFbg6A6giBYAJr9TDbVi/4UQ7ohSidZhbRs3uh6JsoXrl6SsBVYOudGdZSdavlJt3FDaQSB1h7Hf+M7oo3ITTbzimbPp2vvaibI8pK4p1QyvwaB2f1lQRpGzUQZgzScr6xjbQkRWZXYwqShcCe1R41r1CoGhLSnR7Hg9r2ofcu5HR0p3wqZViMIJL9jzyiq57cGQdB7ptnPitI1CMLvP4tkUwxpjSAwEBZZWSbOfD7KEQQqiwpX92luBEEtlREEQYpuQUe0EcXNpREESSVbgyBuxmcYYGKmLQ0V3lE+t2lMI7KGDQREDjD9culSZqYaEndCXGUqPFlrILBxHT1PbRxGTsgrHGS9iV2QpR7wfjFtuQaB5JcOJXsUIdl1l/WuHjW8BkFeMh0O781gZFMMTVmk2Gc/RqYYCr8LK1Sn/WlFa5FixfUOlEcQaF4Ye1MMyb939doTRT2CwKX3S1NmdJTiDkJk0nf17EvDLR9lw1Aa04iscbu2hCgjTL/yJDFtdi3MOu/cq2Z3oq2Yb/i8VMhhy5JpBkPlPluFENXFCWUVDrLexC5w7RmwKfB9IvlZlhpY6BTZVZct4FrtgW7unpFV1OpPMcR7GTC4BoGBsLh6SWTnSIVWA4HqmlLWRhAoHDvA1fY7B3weyVU2e+tmpYHgedsWNf18x7LpajtI0ClJ4/WzLQ3nLMoYML9MPrdrS4gyQmUBVh0upc2qYXGtck8ngysX8njautkNn1+wZjYqTRoO0szOCAK1tRxyQkjnSC4V3L4W2ucuxaNTuEgxmSCbombMCzOCoPGHsmPpvjDxVq6SndNRrUWKw59R18ooE2RrX6jQOTWqFfr21iCwk+kx76DkinaKoTQ+K/N62/D0dXOmfCYE8OKdS5R+H9cpCZKvpWHB3ail4ZaP8rnlFEPJx2SCyAGmh0271NqtGhaHggxAL4MTAnjfszfi8tPnoa2YR7mQwzM2zsUHrtpkL4COsnEdPahP1SQdQeD4FENZYmMNAvZaSSK710x2S4yMjgU+erPfyXpy84UpGNUphvyk+fyftaKv5Xcv2b2k6ecbF/RM/q1TXlTd1t4aBP7bBFqDwHcEgf4+iaJgdwRBk+NJDqg2Gaib/u/VZ+B1+1Zgw/we7Fs9C//0ws24aMPcuINlXBQN3S/Y3nxERlK5VKcSnHtTDK2Z29308z0rZ5gMDgVQiDsARKT3oqvCpawsqfmqTiFKAKgU8/i7552BwZFReB4yN3LABTkh5GsQOD7FkFMPrmV+UQ3yEpOh00eKZPlPdZFic1NdydIe7ePwZgYAFBVHEPg2IKdgEYIX7liEjx/4dcPn10h6uT5ny0J8+Fu/bPj82l2nfqPTo1R9BIGdBgKVsnLQS50TrRsg+DiSq2x2jGjW4Ub2yCZ5zbVSIYc3XXga3nThaXEHRVmQK2/7nbyQE3jmpnl2DxKxpNZj1IoyDqrHum73Erz5lp80fP6Ks5cbDhHpcry2hCgbjBeqHMrN3AmJHq1TWLNxuZDPdOOAjd4pnqc2tYAQ8t5NZccbCFydwiIOracYan2OHEr2KEKy6y6rqBwNM8VQk/tQVpmd5h7sNskqkEfGxpT3k4Y1CF577kos6Wuf8tkfXbgKs7srLX+zZm43/uKK9VPuv2t2LsYVZ8yf/LfWGgSKN7LqLm1MMXTVloVa+5wgPQ9xX3yiFmzmLc3K0+noTZ1dtkfafvAFZ6Kvs2z1GFFLwz0fZRlU9R677PT5uHDt1OmZr962CLuWtx4VSdHgCAIiB5huH0hiZYRr+a9OeBwLerwsnQyVZyQnBBcpTgjfKYYC/C5Dpy81bN/zst2PjnmBG+WahVtW2am/BgHvZkC+8LPeGgThwyLbRRQdZ+f0VPDZ1+zG7T99Ao8eOoldK/qwdYn/Ipov2L4Yl2yYh7se6ceq2Z2Y29M25Xud8qLpEQSy69uMyiXfvTzY9ATMWyiJbOYVzUcQ8Gmol6RTYrN+4HX7VuDCurUc0iAN6zZEWaZUvcdKhRw++IIz8f1fHsJ9vz2CTQt6sHnxNE4X6wA2EBA5wPQaBE4lraprELgVaq1CMPOyU+ysQeApjbKpjiBo/X3a1iBI8Ghu+KVSQRYplo0eofSS5R2ydHxkLPgIgmbkaxDoHWjV7M6wwUkF2TM9MqrRQGCgfOHCS2tvewlXbl6g/bue9iL2rprZ9DudeKkmserb+W9Ye5X9ysqv27cicEeA6nlovn8HLj1RUzbvzeYjCOwdj+yz+a7dWU5ntWIaGsWiXaRY/WCFfA47l/dhJ0cNOCVdtSVECWW8gcChzEw1JKbPQVg6pzANhQdTbJwJz1Nb/EwkfASBY49AzJpfR1naxqeQ6smS5jDPW7PdFgJMMXT+mtkNnwkBPHdrsGlSsmTKGgQ+26ZgCQJrdOJlepFi2TPTjN8IgvXze+QbSLDik5LI5utHsxFDfN9xSIBLYXVKqpTeGy7VqQQVbQNBdMciO9yuLSHKCI2pdJW4lDirZkrDo4ZPQkhaIwgshoPUCcinQHC+gSDhYwJ0+E4xFGAEAbt5Jo/tK+b3Yhf0hVZ3iqFWx3n9eSvQVZna6+51565Ab3spULiyZERjiiETZaK0Ji86z4DqtqoVKirtA7V7UlmDIChZ3Fwb4Uo0wWalrO4UQ9kpwbrhjEXT9H9kMSlLax6ZhmhFmYeloUEl69I5FogoYUy/9Lj0MqMaEp2XfdcwLzzFRsHAg1pvX79Dp22KoSTzu0uC3EV8DEmX0UWKJVMMtTrOxgW9+OxrduPWHz+Gg0cHsXfVTFywtnFUATXSWoOAqUNLNhYpVm2QURlBoDPFUJirLPsty3jkqqhHEAgWoxvYzl+euWkebv3xY1M+K+QELj99nva+dEdt6UjrCAKXOl0G5ugUQ+QmNhAQOcB41bhDabNqhXGyRxA4dMJjZuVMeGp963NCoFzIt/x+9Zwuc2GyQTMhSPJd55cutPxe8jOWSZPHyNQvIfYRuIHA0AgCAFg+sxN/cP6qYAHJsI0LNKaTMTLFUDoTGL3pFFW3MzeCoJZfm1CYDgryEQREbrI6goBTDCmxfUredMEq/OCXT+G3hwcmP/uzS9ehq1LU3lelaLOBwNquY5WGez7KGKT1PsgSNhAQOcD0/PsuJc7KIwg0FhyMglZ5wKHzHTdb5SilEQQA2kp5bF0yDd//5aEp383oLGHHMi6ClBStbiPZ7RWmEJ+C8n8inbloGr54z+9iO37QSl/tNQjY6zKwy06fh8/d9VjD5zqL9Zp4vNOaRugs7m5y6iAgwBoEFkeayqKW1mtPyWfz1uQixW5YMqMDt77uLHzt/idw8Oggzl45Ext0GshryDpRhaWTlyRJGhoIooxDWu+DLOErC5EDTL/zuNTTTTVPGjG9EENIbB8Ixsa959X8f5mJAtA7L1mH7pp5vYt5gfdcvj51hRa3mtT0+E4x1GoAgaVenum6M5Lj1eesaPr5S89aGsnxTb4zFSRTDFFwr9u3ErO6ylM++6MLV6Gv89RnftM0ck7c1nSyRdVtVc93sznOZWxOMZS28gFlg820rdnz6dL7ZZbM6CzjOVsW4jXnrgjcOADYHUGQ1nw2DdGKMg5pOF9ZxxEERA5QWYPg6evmKO/PpcRZtTBpc17EILSmGHLofKeV0iCb8euwYUEPvvzGs3H7T5/A4PAozjltJlbMcnx6ISS7wl+X7yLFLdINW7080/pi47p187px6aZ5+HzN/Lpzeyq4dtcS5X2EuXSB6wSbHLQg2Zlj7d+JsmJWJz732t340j2/w++ODGDvypnYtWKG1j5sL1Jsce1c6+ysQRDPFENhSNcgYKUoOcpmu5busl1JTgezwuoIgpiTyT0rZ+AbDz5pfL9pGEEQ7RRDyT9fWZfqBgIhxLUAPqz5s3/1PO96w+EoAXgugKsBrAMwG8AhAL8A8GkAH/E8z3yKRomh8tLzsrOXKe/PqcRZMSjbl023Gw5NOqeQL4+n2Lj1PE/txaP2vp/b04YX7VhsPjAW8eXqlABLEIR6DuN+scmqXE7gb56zCXtWzsB3f/EUls7owBVnzMe83raIQmBuiiFZ5anpaQSzZm5PG16yO/ioEiNrXaQ0n9dbg0C1gUBtf9pTDPmOFNHa3RTSuKXz0lMK2Ozc0OyZkOVzi/varYWFzLC7BkG8CeU1O5fYaSBwq/9iIFF2guL7VPKluoHABUKI1QA+CeD0uq/mjP+3E8CbhRAv8TzvCxEHjxzhN4Lgxhecic2LpynvL4HtA1Z7NQShk5m6dL7TyBv/Pz9Jvwy97foLjiWVjcq2UCMIEn/3JFchn8NVWxbiqi0LA+4h+rUnmv2uKOluyQaCeJl4vtOaz9sYLWlrBIHfY2RrFFlKLz2lgN0RBI07LxVyTdf5ai/lcd6aWfYC47AkpQ8237V1p4wz7fw1s3DtriX4yLd/aXS/aXg/4AgC0pGlBoL7AXxVYbtvmzqgEGLB+DHnjX/kAfg6gIcAzARwPoA2ALMAfFYI8XTP875m6viUHH4jCNbNCz7fYBLc8My1cQehgdYaBMwLJ8W5SHHSe3lUinlrQ2RdE7xiVlKJE66FgBJq44IefPJ7wX4beIahJr+UjyAIeCAywswIgnTSeZlX3VZ1l6ZHEIQhn74urVefks5m5WWrPO1NF56Gl3z4+zg5PDr52R8/fbVzHb2oUblgcw0Ca7tWPL7Anz1zLXYsm45XfvxHBvdrbFfxiXQNgjScsGzLUgPBdz3Pe23Ex/wETjUO/ArAZZ7n/XjiSyHEDACfAnAegCKA/xBCLPc8rz/icFLMxnxqD3TTWpcSZ5Wg5HUnuoyAVq+61FYd6LOySLGnNj9/Gq7DXz5rA67+0AH85qmTAKovaKMt0geVtUuSKtgUQyGOF+K3FK9LN83DOz93D4ZHpz4PF62vrtszt6eC3x4eaPjd3lUzjeaVRckixRxBQK6y0QPZ9FREE/wXKbYzzRzzB3KVsPj61Oo53rGsD595zS584e7f4ejAMC5YM1t7XRiKh83F2F3oOS6EwLKZnUb36UK8wooyDpxiKPmy1EAQKSHExQD2jP9zCMAzPc+7u3Ybz/OeFEJcBuAnAJYBmA7gLQDeHmVYKX6mKw9cSpxVXtgcCu4krTUIXIxAinhQG0GQhuuwYFo7vvLGvfjhrw7h5NAoNizowfb3qgx+S5dWFbf2FikO/luKV0e5gHdeshbv+Ny9k5/N6CzjTReuAgC88YJVeMstP2n43XVnLQ2cVza7X/KS3tB+nQDILhMNQS51vDDJRrxUnyvdY/s+RrbWICBylM27VjYqbvWcbqye023x6MmR1rxBlyujuE1fDZfqVILiFEOkgw0E9rym5u+P1jcOTPA877gQ4p0APj7+0SuEEO/0PG/EegjJGX4vPdojCIIHxTiVAoOLeQkzuGDiPG1pKaRXinnsHu+NdWIonVmB36UKMhs01yDIrhftXIINC3pxx88Ooq+zhAvWzsbs7goA4LLT5+G2ex/H7T99fHL7521diD0rZuCRQycDHa/Z3VLgFEPOMvGCn9YUIs4RBLpsjpqThTklRQtKIZvvKnwPIh2u3C+mg+FKvMKIMgppaFDJOjYQWCCE6ER12qAJH/b5yX8C+EcAnaiOIjgbANciyBC/BVh1Kz5dqihVG0HgTngnaY0gcDD8MbFxJqpTDPlXDKSxUOLks2GAX7xaTjEk+VmYQjwf4eQ7fWEvTl/Y2/B5uZDHjS88E9/7xVO477EjOGNRL85cNA25nDC6SHGBUww5i4sUt2aj8sNWmehPn7EWf/Bvd7U+rpWjpvfaU/LZvDdlIwjoFJ6lqrS+C6chXlG+S6bhfGUdGwjs2AWgPP73cQDfl23sed6AEOI7AC4Y/2gf2ECQKb4jCDT3l7QynYt5id4aBDTBWsFAZYqhFF4JF5+NKER9LdPQQ4haK+Zz2L1ixuTInLCapXOyypRW64iQGX7tL0YWKZbsRKUB21U6aV93W1Fxn0FD06j22p69aqa5HdeRjXZNY9mC0sFm2cXB5eHIYa7UPZjuj+FKvMKIdgRBCk5YxmWpgaBXCHEVgHUAegAcAfAYgO8AuNszO251Tc3fdytOF/QjnGogWCPbkNLH7/bTT2vdSZxVwu5OaE/RCRPzwlOsjCBQrH7hdUgO3ymGWo0gkP4mxAiCwL8kqirI1iDgCIJY8fluTTXZ3LZ0OjrLaq+NtioIpneUsLivHb/6/Ymm34fJAzjFENFUrOgjHa7cL6ZLW67EKwxOMUQ6stRAcNn4f808KIT4KwA3GWooOK3m718p/ubXNX+vNhAGShD/EQS6UwyFCAwB0MvgeLpPsXLveWpzD6exUJKGgmkzQdcgkC5SHDg0YX9MJJ9iaHQswoBQg5Qmo0ao5DEzOkt4z+XrNfYZJkRT1Qdv8+JprRsIQhwnrXktpZvdEQR8JkhdWm+XNGQNUU77w7w0+Th4rGolgH8B8HkhRIeB/fXV/P14y62m+l3N39MNhAGVSgWdnZ0AgNHRUfT3909Wsh05cgRDQ0MAgJMnT+L48eMAgJGREfT390/u4/DhwxgeHgYAnDhxAidOVAvlw8PDOHz48OR2/f39GBmpDpQ4fvw4Tp6sLvw3NDSEI0eOAKhW8PX392N0dBQAcOzYMQwMDAAABgcHcfToUQDA2NgY+vv7MTZWfaM+evQoBgcHAQADAwM4duxY6uJU9qrhzmEMnWIQE+3f7RhCAaMQQi9OhbHq/vIYRYcYnNyuUwwij2oYKhhGCdX4FTCKdgyNb+WhUwwiN75dW812Qa6TGN9ffZwAoIQRVDAMIdy7TkIItGEIxZqwtmG46XUqjA4k5t6Txcnk82T63vNGh9E2vt3EPSXGz/+pOInUpRFCyO+9JMYJAIYGB1rGqR1DGB5uHqd279Q91SEGkR+/l8sYxujQoG+cnrFmWtN7792XrmP+lNE4+eVPAJCfvEerxgaPN8SpkBMt070xz+N1shin/Ohg0+t0Ko0QRuIky5+Sep0OH+5vGqciRtGGIeRzAl96wx7MKo8qlSOqeTO04lSflpcnn7tRjA0cnxInMSYvRwS998pjgy3jNHjiaOzXqTZOza5Tszi5fu8x3QsfJyFk6V7j86RTLs8Lweuk8P4kDL8/2Y5T8/cn+buGStlICOHEdTpx/JixOAFAYeRk7HEK+zyJsVEraUTV1LLR2NDJzKYRpuMUlyw0EPwawP8BcDGAhQAqADpQ7eX/agD312x7CYBPCCHCnpfOmr9PKv6mdrvOlltp2LFjB6688koAwMGDB7F///7Jm/amm27CfffdBwC44447cOuttwIAHnnkEezfv39yHzfeeCMeeughAMBtt92G2267DQDw0EMP4cYbb5zcbv/+/XjkkUcAALfeeivuuOMOAMB9992Hm266CUD1gdq/fz8OHjwIALjllltw4MABAMCdd96Jm2++GUD1odm/f//kQ3rzzTfjzjvvBAAcOHAAt9xyS+ridHaxGp5eMYCrKnejNJ5oX1y+H0vyhyCEXpy6f/9TAMD83BFcVr5vcrurKndjZq6aWO0q/QqnFx8DACzJH8LF5eqjUMIorqrcjV5RTQj3lh7C2sLjga9TefhY0zgBwOnFx7Cr9CsICOeukwBwQflBrMw/CQBYW3gce0vNr9Oc3x1IzL0ni5OJ5+krX/kKALP3ngegfPjXuKD8IACgQwzhqsrd6BBDU+KUE+lLI0ST61R77yUxTgDwwN13tozTxeX78fCDP2sap3NGfjAZ1svK92F+rrrvrcVH8Mg9B3zjtHLwgYZ7r6tcwI7F3cyfMhin/qee9M2fAGBmrpqPTTj0g/9uiFM+J1qme57n8TpZjNOs/nubXqeJNCInzMSpVdlo7OAvEnudPvgPf980TivzT+KC8oO4dNM8FEYHlMsRV1Xuhhgb0YpTfVq+tVgN9/zcEQzd8+UpcSoOPAWgeTlCiOD33obBu1vG6adf+bfYr1NtnJpdp2Zxcv3eY7oXPk45IVqme0Dj86RTLs/lBK+TQrrXLU4mKk7N3p/q4zSRlj/ttD7sWTkDz6jcj53TT2LBtLaWZaOcEE5cpzu+8Bmld3fV8t7039wRe5zCPk+5k09ZSSOAxnf3p+79RmbTCNNxioswO/W+W4QQvQCOeJ7XcnC3EKIE4B8BvKTm4xd5nvfxEMf9KqoLDQPAn3ue906F3+wD8NXxf456nhd4+ichxDoA91QqFRQKBRw4cACrV6/G0aNH0dPTAyEEjhw5gkqlglKphJMnT2JsbAwdHR0YGRnBsWPH0NvbC6DaGtfe3o5isTjZEtfe3o7h4WGcOHECPT09AKqtcZ2dnSgUCjh+/DhyuRza2towNDSEgYEBdHd3j/dUOoyuri7k83kcO3YMhUIBlUoFg4ODGBoaQldXF8bGxnDkyBF0d3cjl8vh6NGjKJVKKJfLGBgYwMjICDo7OzE6OpqaOJ1xw5dwEkXkMIZ2MYxjXgmAQDuGMIQ8vvMnT0NnYUw5Tn/0Hz/GF376FPIYRUWM4LhXXTO7UwzipFfEKHKoYBhjEBhCAQWMooRRnEAJ1ZbgIZzwihhDDm0Yxuj4dj971/na1+namw7gBw8+1hCnEeRRwghy8PDuKzfjWafPdeo6vfmWu/GFHz2MEeQxPB7WPLym1+lpK7vw9y/a4fy9t+ztX0QbhlrG6Udv3WPkeVr77v8xeu+9eM9KPH7oGL5yz6M4iRIEPHSIIRz3SvAgJuP0wWu2Y8+ynlSlEYViCWve/vmm997L9izD6/YsSFycyuUy7vn1QVz1wW+1TPduf8v5mDe9qyFOF77/y3i4Wg5DhxjEgFfAKPIoYxh/feUmXLplqW+cPn7g1/jgN3+D4ycHsGJ6Ge+7ejs2Lehh/pTBOP3y4FFc8jdfkeZPAygijzG0iWEcG0/P3nzuQrx835opcapU2rDy7bc2Tff+5nln4vyVvbxOluL0io99D1//xbGG6zSRRvzjNduxe0lX6DhtePtnmpaN/uWFm7B9cU8ir9OhQ/3Y8v5vNsSpiFEUMIqLzrtPxf8AAGBPSURBVFiKD1y1Ubkc0S6G8dxdp+Edz1ynFKc//Le78OW7Hp6SlgPAIIrIYxTX75iPt12+eTJO773tYfz7j37btBzxTy89C2etmBHo3nvGB27DA08ONI3T+y9dhWfvXOXE87T8T77U9DqdRAkPv/eiRN17TPfCx6mtrR0r3/5fTdO9Zs+TTrn8o6/ciy2Lp/E6jcdpzVs/0zTd66nkcMcf7ExMnDb+yWcb3p9apeXP230a/vSSdejvP4z29jb83dcexr/878+alo3+9cVbsGVeJfbrdNdDv8VVH/p+0zi9Zd9ivP9/fo0xT728d/naXvz11dsSm0Z0dHTgHZ/+MT7z/YeMpxHN3t3/9MKleOGuZZlMI0zF6dFHH8X69VOmdVzved69iEiq1yDwPK9fYZshIcT1AFYA2DP+8R8DCNxAAGCg5u+S4m/KNX+rjjqQB2LgVDDy+fzkAwQA3d3dk3+3tbVN/l0oFKZsN/EwAdWHbEKxWJzyXe1vOjpOzdJUKpVQKlVPgRBiynYT0x8BQLlcRrlcPQW5XG7Kdl1dXZN/VyqVVMbpJIoAgDHkJhNvAOMJb3X+O504iUJ1H6PI47iXn/yudt8D48cEgJHxDLJKTNnuZM12Qa4TRPM4AcDQeBIkFOI0IarrJARwsklYgcbrNFponzyW6/eeLE6mnichgFHP7L03litMht1r2K76eU6kL40YG/Ok914S4wQApbI83Su3eJ4GRAUTWezxmt8MoojS+LX3i9MrzluD689djaeOD2FmV7npdsyfshMnv/wJAEbr7tFCpQPFYrEhTpuXzMT3fvnU5L+PeWWUCzk8bd0cVIqn0kNeJ7NxGs2XARxruE4TaYQwFKdzNy7FrT+u9qCbSL9624s4d+38yfm6k3adpk3rxdj4gPLaPHd4vNIIQq8cccwrI5/PKcfpVecsx6fvfHTyu8GaMIwiD1E+Ffbe3l6IXPV4zcoRAiLwvTeSr2B4vKKkPk6Vzq7JOZxdeJ6aXqcmcXL93mO6Fz5Onue1TPeAxudJp1yeE8GfpzRep1bpnmfw/SmKODV7f6qP00RaPpHu9fb2NN2u9t7LCeHEdWrr6JxME+vjtGjuTAjxCOB5yuU9lNqblveSkkYAgKgr65pKI8b3PmW7YqV9MoxZSyNMxenRR0+VieKQhSmGfI2PMHhXzUfrhRALQuzyWM3fbS23mqp2u2Mtt6JM0l7uxaH1YVQWq4ly8RxVWosUuxf8WJk+HZ43MWOkz3FTeB1kcUryAEC/S9UqTZCnFeo3QD4npjQOUDYFTTNa/e4Pzl+JcmFq0foPL1g1pXGAomcqb3jnJWuxctapF8W2Yh43vmBzohfztFH+0tnlytld+Nxrditvn5O8uYaJiuy3wqVCNVENm+9PSU7XbCjlmyc+V25eGHFIwrn89HnK29bfX9J00pHbxfN5Y9QNZhoW3Y0yBkw2ki/VIwg0fR3AMDDZPLYGwCMB9/X7mr9nK/5mTs3fT7XcijJJtwDoUtqsEhaXwjtB54XQxfA387p9K/D3X/t53MEI5K5f9/tu42JDU1hpjBPg/yIRJNYslFLcdq2Ygf981S7c+pPHcHRgBOevmYV9q1WLgRSUX2OpqWR0ZlcZ//36Pbjz14dw6MQwdi7rQ0970f+HCRakcly3QmVxX7v/RpPsJPRpzWsp/XICGLPQYaTAQtUUb7xgFf7qS/c3fP787YtiCE1wz9++GJ+96zGlbevvAFl+4EpFuqw8IKBfHkhD3hBlHNJwvrKODQTjPM8bFkI8CWDu+EczQuzuZzV/L1b8TW3u0pj7UKrN6CzjyWODLb93obX77RevDvQ7laC4mJfIeqnVczH8zbzqnOWRNBAIIYx2b//iPb/Do/3+M68l5DIQAL+r1eqZkvde4h1AeoLeM7KX5PXze7B+fk/L7yl6JnuAlwo5bF/WZ2x/rgvyiOjWK2p1yJD29A9OFmZmLeQy02XuCa5U+LriJbuX4NsPPYlvPPjk5Gd/+ow1WFEzqiwJti2djo5SHseHRrV/K7slknC/BAliAqLlK8o4JOE+IDk2EEzVUfP38RD7+WnN3xuEEAXP80Z8fnNmi99TBtxw6Vq89hN3tvxev7U7ZIDqzOmu4Jmb1IckTqUyxVDAXVulM4LAyQg0aC9Fk+SbPhsqjQMACyVp0uqZslU5RKSDSU2y8HrJma5f1M6LZVPp1U0XYetSMm+hpMoJQL+q1x+nGJqqUszjw9duxY8f6cdDTxzH1qXTsXRGh/8PHfSys5fh725/0H9DjVtAp2NdnKrvF+oZXhoegyjrKdJwvrKODQTjhBDLAHTXfKQ29qq5bwMYRHXh4Q4AWwAckBy7DGBHzUdfC3FsSqA9K2dKv9dN2E2mzfmcwL+9Ygfm9qgup6HPxQp2rkEQXFzng9chOQLP/S5JK3j9iagZji6Sk1WXBDlzuudbp7wlbXwIcZll++XtQy7TrfBUxQaCRoV8DpsXT8fmxdPjDkooNt67E9NJSzOYiYmXBEcQkI6EtPVF4rqavw8DuCvojjzPOwbgqzUfXevzk2cBmFj2+ilU10OgDOlpK2Lf6lmtN4gxM3vP5euxuC94D4mkTjGkEyYXwx+nuBp8WChJDt8rFWhaC15/0hP0jmGFc7LwasmZvp+1pxiSVc7XXT1biwnLzwHvIHKXreyIDQTppXrP1KepspFmrpTBTc+2lYbyXpQxSMHpyrzUNhAIIZQnhBNC7ALwppqPPqUwJZCfD9b8fa0QYl2LY7cDeHfNR/9s4NiUQPN7W/fQ105sHUqcHQqKFp2CjosjILIorVdhZle56edXbVkYcUiiE2QNgtTeAOQc3mpuiWqR4iwKtgaBuREEUU0xxLpQSipbFbNcpDi9VK9s/a1Vnx7XcuV2kYUxyBu7K/EKgyMISEdqGwgAXCmE+J4Q4hohRNPV4oQQFSHE6wHcDqAy/nE/gHe12H6JEMKr+e/aVgf3PO+/AXxj/J9lAP8lhNhYt78+AJ8FsGL8o6cA/JVK5Ch9pAukae7LZIV12D0lNZ/QCXZS42hNbFMMpfNCPOvM+Q2fLZ/ZgVWzk7UwWi2/a9XqW7YPkEmdFc60mQVsxJeTp6v6587mIsXS/YTYjfQc8PYhh9nq6c8RBOkVNE0bk9S9J+EdTAj9uKehwjvKOCRlLQpqLe1vRlsBfBTAiBDifgD3AzgEIA9gPoCdmLruwEkAl3me91tDx38+gO8BmAtgCYC7hBB3AHgIwEwA5wNoH992BMBzPM/rN3RsShjpEGuL87n6CZunqGRKLhYqdMLkYvjjFNfZSOtlePOFp+HQ8SF89s7HMDQ6ho0LenDjCzcn+r7zC3mruJlMJ4m6K0WcsagXd/66f8rnhZzAiORNmLdasvB6yZk+P7ppsc60QfLpiIKTrkEQYr9Ettmqx+cIgvRSTaPrt5JPMRQ8PCb5jijUTNFdiVcoHEFAGtLeQDChAGD9+H+tfA/AtZ7n/dTUQT3Pe0QIsQ/AJwGcjurjec74f7UOAniJ53lfBWWWyZcTk2lz2J5dSmsQhDqCHVprENgLRiLFtkhxPIe1rpDP4f1XbsK7Ll2PY4MjLaccShK/e4QjCCgqf/bMdXjRv34XRweqszsW8wLvvWID3nzLT1r+hvdasvB6BRfFFEOyzeXTRZgjX6SYdxC5iyMIyBa9KYbcv18E9PO0NKT/UY6iTMP5yro0NxB8EsADAHYB2AFgOYAZAPpQnVrpMIBfADgA4BbP875pIxCe590vhNgO4HkArgawDsBsVKcyehjApwF82PO8J20cn5JDlp5qv2yZzAgiSOddzEt0zqGL4Y9TbIsUp/xlpq2UR1spH3cwIhFFpRQRAJy+sBdffMMefO3+J3ByaBT7Vs/C7J6KvIGA95pToqpETqtqnt38HAZLi4McP7wwz6V8FAORu/KW5vQocK6Q1AqcVCZgkeKetmLL72Z0lXHd7qX4h//5ufL+HIlWKNGuQRDdsciO1DYQeJ43CODb4/+Z2ucvEaCc6HneEICPjf9H1JTJ+U9dysxUXvxcnB9YJ4NzL/TZxOuQHH7PfMvvZZU4vAEooAXT2nHNziWT/z4+OCLdnvdasrD5wIfh+9nkIsX1bD170gYCPu/ksLylevx8njd+Wqm+d9dvNyaZv8eVdHLh9HYsm9mBhw8en/L5zK4yzljYi76OklYDgSsNH2FEGYM0nK+sY9MwkSNM9n422bsx9J5UphhyMC/RmmLIxQjEKLYphngdEsN3iiH99gE2EJExfi84vNcoTUzf7TancJBVbIUpArBSg5Iqb+ne5RoE6aV6yzRMMZSAEQQA8MdPXz3l/hUCeNtFqyGEwOK+Dizpa5f8eqo0PAYcQUA62EBA5AiTvZeMrkEQcmcqv3YxL9F7YU2Ov7ii+VIsrz5nubFjxHU+HCqbkiXS55LXnwxhWkIUnP60mGaE2Y8szC5VfBHVszW9JtcgSC8LMwzBpRmpnrZuDv7jlTvx8rOX4brdS/FvL9+JZ525YPL7525dpLyvNKT/UcaBnfWSL7VTDBEljXyR4nhetkzsSyWjcDEv0QqSg+Fv5bzVs/GB9p/h0Inhyc8qxRwu2TjP2DHiKhykoRBHVVyDgOLkey/xXqMUMT29jvYaBA5MMSRTLjhU80VUx1ZPf1sjEyh+yiMI6v4tm2LItTL4GYum4YxF00LvJw0V3pxiiHSwxEPkCFn5TjetTV7i7GB4tdYgcDD8LczpqeATL9uBs1bMQGe5gK1LpuGma7di7bxuY8eIbQRBTMclfb71ry2upieb/zRMgIhq+NW38F5zi2zaA/InnbYnwP50ezSbGrEZpug7MjbW8rtyka/L5C5bIwhs7Zfip/zeWpeoyqcYChEgh6UiXlGOIIjsSGQLRxAQOUI+gkCP2SmGQv4+gmPYoFPp72L4ZdbM7cbHr98Oz/Ps9IyI6Xwkr2GMWglyKdPQy4fc4LsGAW81ShHT97PNtNjWrodHW9d8lQt5OwclMoA9/UmXlVe/BN2HOkFNw7tlpCMI2J6eeLyERI6QZay6ma7RKYZC7kyl5d3FrFenx4CL4VeRpMKcipRFJ9X87r0gl5LXn0wJOsKFKG2imGJIZk53RWPr4AceGpGMIOAUQ+QwrhVAulRH3SV5iiFT0hCtKOPA8nHyscRD5AjpsGndfRnMCcIm9GprELiXmbg+J67LuEgx+fG7VK3SBNk7DS8/mSKEMD4vO8WHUxDJycuf+jd7kIqirUsa54rO58SUhSUBv8402oedJGsgqBQ5goDcxQYC0jUaMFOUNxAEDU30dILqYh2Frkgr7ZN/ujKPDQREjti6ZHrL73TzpqRNMeQirSmGEhtLO+IqTPE6JId/D+0WZPOfJunthJyX1t5wacT6/3BM59lBkuJXnbO8YbHVa3ctQU9bccpntp7K4VGOIKBk8msgYNGI6skq+mvVZw3yNQjSeaOl4fmJMg4pOF2ZxzUIiByxc3kfpneU8NTxoSmfn79mdoAphpKVPLsYWo4gCC6u88F5D9NP9lLDeXjJpLwQGG1R9cw7jdLE9MK/QRoc9q2ejY9fvx2f+dGjOHRiCPtWz8Jzty7UO672UU8ZkjYQcAQBucuvYvbKzQvw7z94JKLQUBKMjSk2ENSlqrJfJamTTubWIIgwCmk4X1nHBgIiR+RzAn9/9Rl46Ue/j4Hh6ovKwulteNdl67T35VQerbIGgUvhHac3/NBaMBIptimGWG2XGH7XqtUzJRsWzWH2ZBKnGEoPXq9oBa0g2LGsDzuW9ck3kj6XwS+0dARBkb0PyF2yss95q2fh6evnsIGAppAkd1LyEQTB9um6NLxbRDmyn+Wt5GMDAZFDdq+YgW+8ZR++/dCT6K4UsX3ZdLSX9B9Ts1MMhVyDQKHS1snMRCtQLkYge5y8j6gp3ymGWmwwJnmpSUMhntwhq+RkY2SycA0CH7JK9wC7s5kU23r2ZGsQlPJsICB3yco+V25ekIo51Mks1TUIGqcYSscixTr5SP3UdySXpPuAmmMDAZFjZnaVcdnp80Ptw+wixSF/rzKCwMHKFo4gCC6ulxGW4dJPOsUQbwAySHo78VajFJFPMRTNIsUmhDnq8Kik4ot5CzlMNr1iLufiGxbFTX2Koalk7QppfRdOw7tFkLUsg3asSP7ZInaJIEohlzJppaA4FN4JWmsQ2AtGIgU5H8tmdsR0ZIpD0Cs1KnmpYa8VMon3U4JwhIBTbD46tvYtG0FA5DJZBWZeCOZl1EB1BEE9T5LZpvU+S0UDgeZbV5hryRFLyccGAqIU0skIXrJ7Cd5xydrW+wqZzquNIHCPzjlkXjhVkPNxyYa5WDCtLdRxU1CGy46A10rW6YnDgMkk6RoE0QWDyDrTL/Q2K4pML6g8QbZIMZHLZCNc8jk2EFAj2WjcWo1TDLXeNkn3mU5Q0/BuoT2CIMJjkXvYQECUQqqJ8/+5ahP+7Jnr0FVuPdtY2MGpamsQuJeb6I0gcC/88dI/H0IIbFk8LdxRHbyPyCzZ/Kdp6OVD7pBVujCtoTQxvSB3fFMM8bmk7JFVYOZyghV21EB5iqG6m0f2s7QWwdMwxZxuFMLk4UlqKKLm2EBAlELaeZnhl0Pd37uYlXANgmjlhAhd6ZaCMlxmBK3IkQ2LTkMhntwhX6SYKD1M389WFynmw0c0hSyvygs2m1GjoAOmZFMMpbXjRCpGEGimAk9bPyf4sZJ/ujKPDQREKaSaEUwk4jbXYlRqIHAwM9GpbHQw+LEKcj3zOQP3Gq9EYgR95mVrEKShEE/ukN1OLuZZWSartKBwguSrNiuKZOHhc0lZlJfU5uRy4EsKNVCdYqhBBkcQ5HPJry7VzRuv270k8LHSeh9kSet5RYgosVQzgskGAqtvVQpTDCW89JrWXhNBBTkbJs4hL0NyBL1UaZn/lNwnS5N4qyULGxDkzK9BYHR3U/DZI5pK9g6VF4KpHzWQdbap1bAGgWTbtJbBZQ1wafS6fSuwanZXiD2k8z7IEjYQEKWQ6sveRKHS1qJvJn4fl6SG2wWB5yzO6L1G6mS9nrgGAZmUZ4JCGWG6DJjWiiKipMnnhHJlMGWHbLpOGVkZPK3pfjpGEMivzTsuWYuhkTFsWzodZy7qxcnh0cDH4qtY8rGBgCiFtJcgkP7AfkrvYplCZ1SDi+GPU5ARISYKFGktnKZR0B6rshddNhCQSdIphthDilJEukhxgP3ZrE+x2aGFKIlk930uJ6QLy1I2KS9SXJfiytoVkpT+6ryDpGH6Ur8YPH39HMzvbTNyLL6LJ1/ym8SIqIH+FEPh99Xy94a2iZpOvFlZFF5OiNDnkWWS5LAxxRAbCMgkTjGUHEGnUyY7rE67yIePSFleCD4y1CDoqJIsTjGUhnj5vR7Vfx/mfTwFpyvz2EBAlEK6CbvNCm6ljMLBzEQnSMwMpwpyPoQIfx7TUIgjOdmwaE4JQyalYFQ5kSKzjWFx5cVhyrJnLupt+nlfRynwPonils+xCxM1Up1iqGENAukUQ2FCFC2doKZiBIFPnlyfSoTJwvkunnx8/SFKIdW8bCLDMD28fGpYkrlIsd4IAqoVaEoCE4sUh94DRSXo5eYUQxQVWZrEhekpTXRu57981gbfbawuUiz7LsRxX372sqafv+3iNcF3ShSzHEcQUBOqo+7qbx3Z79JaMZzPJz9efpeGr09Uiw0ERClkMo8OWxGiNIDAwYyJaxAEF+SeKeTDNxOx0i45bDQKsoGATJI2EEQYDgpvSV9H3EFIrPp89fw1szG3pyL9jc2KIlu7Pm/NbDxt3ewpn+1ZOQPP2DDXzgGJDJE9E/mcYNmYGsgWGw76u7TeZmkYnewbg/ophjiCINO4SDFRCqkWBqOY/UclLC5mJTr5GzPD8IyMIOBlyDS2D5BJTE/S4bTZXVg4vT3uYDhN2iu/7t8zu8r41Mt34Mp//A4OHh1s+pu41oQI88wW8zn8/dVn4n9/9gR+/Eg/1s3rwb7Vs1Ap5s0FkChi+Zyb71gUL9U1CBqnGJJtm5w7TSeoaZhiyC/CJusxEnQbUAtsICBKIf1FiuNNzeM+fmgJD75pQS5ntZdTyOOG+zlFycLFSnw6Qk6RTzEUYUDIl6yq4/88Z1Nk4Ugq3ft5cV8HPnTNFlz+/77V9PvBkVEDoWrO5pSUpUIOF66bgwvXzbF2DKIoVacYYoZFU6mOIKhPb4OOPEiyNIxO9otB/fdh8ll2mkw+TjFElEKqCfvEdrbmdFXlYl6iU6B2cQ2FpKkupBbuPLJQkhy8VOQ62Tsh0/zkWD+/J+4gOE96P7f4qk3Ss/7EkL0GAhk+l0RTcZFiakZ1BEG9tDQP6DwTaWgg8Hs/rv8+zDsa3++Sjw0ERCmkmzhLFykO26tb4fcu5iU6YWJmOFWgEQScYihTeKnIdRxBQNS60l3WQHBy2OIIAovlVaIkkjUBcJFiambBNLVp93SmGEqrNDQQ+KUB9d+HiXHyzxaxgYAohVTzsskphiTJedi+Jyq/d7HwqlMecDD4sQpyzxiZYsjFG4mIEomLFCfH0zklTChBss5KqfUrZNDeqSr47BGpMzE6l9LnxTuXBPxl9loIUtFA4Pc91yCgGmwgIEoh9SmGxv9XZ4U63bAo/d693ERriiH3gh+r2NYg4HVIDDbmkOtykhIyb1+3PHvzgqaN+teftTT6wCRQkGkmZ3SU0ddRavrdeatnhQ+UZngAF0uSRPEyUbam9FnU145nbJyr/TuLbb/OSkUDgU8U6qMY5h2N73fJxwYCohTSXqTYXlAS+8Kmk7+xd85UQc6GiQIY1yBIDl4pch3Tk+SY3lHC+6/cNCXfPn1hL15//sr4ApUgQV7oczmBS5pUMG1bMh2zuismgtUUKx+I6kgeCeZj1MrfPfd0vPlpp0m3qU9vvZTMMaSTjxRkvUUSwq+eov58cIqhbCvEHQAiMk/3BcpmjyylNQgczE24BkG0qi8xYaezIiIyQ56PMrVxzZWbF2DHsuk48PBTmN/bhjMX96JcaD1PPqmR3el/8oy1ODk8is//+DEMj3rYtbwP//d5Z0QWtnosixFNlRNsJKDmivkcXnPuCvzLNx7GoRPDTbepv3PS0TygJ5/89gHfImvjCILgh2J6k3xsICBKIY3JcXx/Eba3lsrvncxKdKYYshiMJApyzxQ4giBTeKnIdbIkifevmxZMa8eVm9UWXyQ1snu9VMjh/Vduwnsu34DBkVF0VYrRBawpPphEtTjFEPnRGcGdkgEEWs9EPgUjCPzej+tHGISbYijwT8kRbCAgSiHtKYZsjiBQCod7uYlWiBwMf5yCTjHENQiyg9Nykeu4SDFlRdi8s1TIoVSIphKF+TyRulzAsvXOZX3mA0NOkr2D1381lpYWAg0mOrDFzX+RYnPHYme95Et+kxgRNVBNnP3HD4S3fn6PcjhcorcGAU0R4ITkcuGrjFkmISJT5CMImNhQNiSpMZePJWWR7LbPCxHoGX7deSuCB4gSJc/OEFK5NDQQ+ETBZN5ZLrJ6Oel4BYlSSDeh1+k9oOvCdbPRVpTPA+ziS51OgdrF8Mcp0AgCAycxSRUZWcdnhlwnzRcjDAeRbdJRpAm62RMUVKJIBBmd+6wz5mP7Uo4gyIpMTjGksW0qRhD4rkFgJo7LZnZgVlfFyL4oPmwgIEoh1WRebX2AcJlGuZDHX1yx3uoxbNAbQeBe+JPGxBRDKSjDEZEjTDRaEiWBrAzj2lPA8haRupzQf2L++qpNWpXGlGyyKfbr6wm8DC5TnIZnwS8VMNVA8Kq9y43sh+LFNQiIUkh1+gOVKYZM5BnPOnMBPvLtX+Injxy2dgzTdILkYvjjFGT6jXwu2DDosMelePBSkevkL83RhYPItiTdz/LRDgmKCFEEgnS+SUOFKKnT6QwxNmYxIFHSiHMaOov4TjEUcL+vOHsZHjp4HJViDpedPh8XrJ0dcE/kEjYQEKWQS4sUTzhtdlfLBgIXcQ2C4IItUhzPcYmImpEuUszEhrLCsZvdrdAQxU/WMFat6+dTQ63plHU2LuzBdx7+veUQ2bd35UzlbfP55D8/fo3nQbP5KzcvwMrZXcF+TM7iFENEKaTbEzuK9z/ZoETH3j8B6PVEczH8cQpyPvK5XOjzyOuQHJwmglwnX4OA9y+lh3QUaWShCC9JYSWKghCC02+SlGwR3vpvrtm5pOl2V21eYC5AEVjU1461c7uVtk3FGgR+3/MFmmqwgYAohbRHEMiyjgjyDBcrW/SmGHIv/HEKcj2NLFLM65AYvFTkOuk7Ie9fShFpY5hj93paFlQmMoWVfxSGzvvX/N42vGzP0imfzewq45XnJG/u+X++ZjNWzOr03c7U/PxxkkUhTPtHCk4NNcEphohSSDWxn6zIlbYP2E/9XcxgWKCOVi4Xrs4tBR08iMghaeg1RqRC3hbm1nPgWniIXMcnhmRkIwiavaC//eI12LpkOr718ycxr7cNl2yah/m9bRZDaMeCae34yhvPxi+ePI4//Pcf467f9DfdLg1lQVm+Ga6+I/nnhhqxgYAohZRfoBQ2y2o9ORcpDi7YFEMiVCGFDTrJIrta5QIHN1L8CpJVipnaUFYkKWtl4wFlkd8zOi+BlbcUHWn7QLPPhMCF6+bgwnVzrIUpKkIILJvZidnd5ZbbpGHRbo4gIB18CydKI80EO+703cUMRm+RYgcjkDBhe2ikoPyWKbIGne62YoQhIWquIFmYjg2SlCrxzjKphY8ekZ5SIYfLTp8XdzDIUWmYQies0bHW36WhvJekUYIUPzYQEKWQamavspWpbMOTrFLsYuak1UDgXvBjFaQwFbaA6uI9RMF0Vzi4keJXzHMEAWWDtPIgQTd7ksJKZMr2pX2+27z3ig3Yt3oWnxFqwHVdAE9WSZECttYZysjtkTlsICBKIdUEW6UiN4qWcxcLIDoVzg4GP1ZBzkd1iqEQx+RFSBTZ5eIIAnKBbFQT0xtKE3nlAW92Ipddevq8pvnVs86YP/l3R7mAm67dijvfcQFueeXOKINHjmPvcmA09Q0Erb8L00GP5YN0YgMBUQqpptcTm8myxSjSfhezF44gCC7oGgRRH5PiI7te3RU2EFD8CtIRBExwiOLACgmiqTrLBbz3ig1TylWLprfjTU87rWHb3vYSZndXIgwdOY9pKkbHUt5AIPuOIwioDsfxE6WQyfkEjU0xJGmGSHrZhJVF4eVzItR55ByaycI1CMh1RckaBERpkqQphpIUVqKoPGfrQpy+qBdff+AgZnVXsHflTPS0Ny9L5bhoF9WQLlKckVsl5QMIpO9cfH+memwgIEoh5REE49vFnzXEH4J6Or3UmLdOFaSwkQ+9BgGlBdcgIBfIRjUxzac0kc5BzdzVKctmduDhg8cbPj9/zawYQkMuWTW7C6tmd/lux/YBqiWfYigbMj2CIMx+s3KDZAynGCLKMJUXP2OJv2yRYgczGAeDlBhBrmcu5BoEYacoIncsndERdxCIuEgxEdwrn8kX1HQssBa89twVTT+/7qylEYeEkoo9hqlWFtJNP1legyDcFEO8d9KIDQREKaRa+FPbLIJFiq0fQZ/eGgQuxiA+Qc5HIReumCGbL5zcdPrC3obPCjmBKzcviD4wRHVkixQ7mWkRBSTLfV271bPe2/XSTfNw2enzpnz28rOXYeeyvphCREnDVxaqxWnbAC/lDQSyeqEwdRhZuT+yhuP4iVIoaQm2ixXsOj1s3At9vIJ05g87JypHECTPK/cuw6tv/hFqR/a+YPsi9LaX4gsU0TguUkxZ4WARrCUXy4tRKuRz+NvnnI6XnrUU9z12BGcsmoZVszszf15IXdgpPSldOKIk/VMMyYqsfH2memwgIEoh1cqLia2ieLGQZb0u5k06YWLmOlXQNQjC3IbS3r7kpKevn4sPv2QbbvnhIzg2MIxzV8/Ci3YsjjtYRADkaQrfpykrknSvJymsYeRyAhsX9GLjgt64g0IJxAphmoJr0GBOTyXuIFglu4pMD6geGwiIUki5rtSRPMHFvIlTDAUX5GzkcyLUeeQIgmTau2om9q6aGXcwiBoU8kxTiFyrIOKCykThsEKQaknvhozcKq/auwJfuPt3DZ8/Y8PcGEJjnuz9OtQaBBm5P7KGkzYTpZBqgs2XKRmNKYZ4GqcINIIgZAU/RxAQkUnSEQQRhoPINluVBzY4FhyixBGs/aEarqXxcVg3rxtbl0yb8lkxL/D87YtiCpFZ8nUmwqxBwJsnjTiCgCiVkpVgu9hQoTWCwF4wEilIeSEvwt0FHEFARCblc5I1CPhSRCmSlruZjyWRP44goFrSBWwjDEeccjmBD79kG/72Kw/gWz9/Egunt+PFO5dg94oZcQfNCPnIO6Kp2EBAlEKqdaVqZUQzC/d4Xuv9uFhW1QqSixGIke7LhxDhFykuSCrzKD3eeP4q/O3tDzR8fsMz18YQGkozrkFAWSGtPHDtZnctPEQJw/40VCtR6b9FneUC3nFJOt8lZF3wwjQYZufuyBbWqBClkGqGzoS9NZ1CEc/jVLpljfzED0KcSI4gyIZnbJyLzvLUvg297UVcsG5OTCGitJKlKUxtKCtcu9elUyVEFgqi5OIIAqrl4ih+Mkv2isw1CKgeGwiIUkh5jWJHUnZHgjGFTpBcDH+cdF8+JkYPhCmksoEgG1bM6sRHr9uGs1bMwLT2IvaumolPvmwH5ve2xR00ShmOIKCskPcgjS4cRGQfn2mqxelnMkByIdlgSPU4xRBRCpmdbcVMxiGbqMiVhopaemsQuBf+OAUeQRACGwiyY/Piafj49dvjDgalXCHPPjSUDbIyjGs5q6y4YGZCTKJ0Y4Ug1UrSIvUUjK16CtZ/pBPffohSSDXBjnINAhkXsxetBgIXIxAj3ZePiZ66Yc6jrLcvEZEueZrC9IaywbUOHLLyrWSpKyIaxwYCqsW7If1sPfJMStKJDQREaaS6SLHe5qHIXtxczGB0WsUdDH6sdOvqwy5QDHAEARGZJV2DgMkNpUiSphhyLTxEScPiMtVKUvpPwUi7u4RZgyD4T8lhbCAgSiHVBLtUcCMJcHGIGkcQBKfb4zA/uQZBcIU8LwIRmSNdgyDCcBDZxrEyRNnh2qggipc8/ee9kgacRop0uFE7SERGqQ4frRTzlkOixsXMSacAzQLUVLq9k/IGphjKm114g4gyTj6CgGk+pUiCupDKQuNxFQIiIi2ccir9rI0a4q2TSqxRIUoh1by+UoiugUC6SHFkoVCnFSYXIxAj7REEBgqnXIOAiEziqCQi94o30kWK2T5ARKQlQe3DFJC1NQicKyGQCWwgIEoh1QS7UvRPAiJ54XIwf9GaYsheMBIp8AiCEGeSaxAQkUkFyaik0bGxCENCZBdzTyKirGIOkH52rjEbkNKJDQREKaRaV1oen2KICXwjrUWKeQKn0K3on6iHC3MaOYKAiEySNTqOjLKrMqVHknqQysoXfCqJiPS4lsaTedI8ng1EVIcNBERppDrFkMIIgii4mDlxBEFwussByHrqquIIAiIySZamjI6xKpLSI1GLVEqnGOJzSUSkQ/b6xA5w6cAlCEiHG7WDRGSU6gtdKe9GEuBi+UMnSC6GP066BcqJwmmY08gRBERkkixNGWEDAWVEkso3bB8gItLjXCMwGSd7Lw+Tx7MBKZ3cqB0kIqNU60qjTNhlPbuczF50RhA4GYH45HQXKTZQuZ83MAqBiGgCRxBQVkgrDyIMhwrXwkNElGTy6WcoDWz1oeP9kU6sUSFKoaS16LoYXq01CJhFTqF7NvIGFiHgCAIiMkk29dnwKBcppvSQTjHkWNbaUS60/I5TDRIR6UnSGjQUDOspSAcbCIhSyMUMXdbf0sHg6q1B4GIEYqT7jm5iiqF8nheBiMwpSNIUjiCgrHCtYmHf6lkoFRpfX+f3tmFuTyWGEBERJZeLnfTILFujRHjrpBMbCIhSKGmdqFzMYBwMUmLEMcUQRxAQkUlcg4CyQpplO5a1Vop5PGfLgobPX7hjMSu6iIg0JWqRenIK7490aj1Ok4gSzFyCHUU1iIsZjM6LJl9Kp9I9HxNbhzmNuo0SREQyXZViy+/6OkoRhoTILlkZzMWc9V2Xrsesrgq+dM/vUC7mcPnp83HNzsVxB4uIKHFsLWBL7pBPIxVmleLgPyV3sYGAKIV00/pIKugTNseQTod0B4MfK93O/BOFkzD3IUcQEJFJc3oqWDGrEz9/4tiUz3vaiti+rC+mUBFZYKvywJJ8TuD1563E689bGXdQiIgSzb0UnkxzsSMmuYtTDBGlUNJ6U7sYXK5BEJzu+TBRt881CIjItD84f2VD+vTG81dyMVTKDN7pRETpJSvOMP1Ph5ylGl/Wf6QTRxAQpZCL6bUnGULgYnh1QsWW+al0G6gmtg9T0OAIAiIy7ZKN89DXUcZ/3/0YBofH8LR1c3D+2tlxB4vIKOkc1MxaiYhSi1MMpZ+tegreHunEBgKiFEpahu7iEHaOIAhOew0CEyMIbHWPIKJM27m8DzuXc0ohSi/5/MTRhYOIiKLFJD79pHl8qP3y7kkj1qgQpZDJKYY8Q6sUJ62XvU5okxUz+4KvQRAcRxAQERHpky9SzLyViCi1pEk80/804CUmHWwgIEqhYl7v0Y6iAThpUwzptIqzAX2qoGsQhDmPnBOciIiIiIhITdLWLSR9ti4x75x0YgMBUQpViv6P9pufdtrk36ZGCQTlYtlEc5IcS6FIpqBrEITBEQRERET6OMUQEVE2cQ2aLJCNEgyxV94fqcQGAqIUaivmpd+X8jk8bd0cpX2ZSvxljRAuDmHXiTfrpqfSrfAXkyMIgp9IjiAgIiLSx5d8IqJssjU/PbmDr8ikgw0ERClUKckbCP712i1YMatTaV9RjC5w8eVUp9GCi/RMpT/FEEcQEBERxUG6BgHLN0REqeViJz0yy1Y+znsnndhAQJRCfiMI9qycOeXffP9rpHNOePqm0h9BEP4M5jXX3SAiIiI5lm+IiNIrJ3l9YgNxOti6irw90ok1KkQppLtI8eK+9pbfLZzeFjY4AHymGEp4BpP08JumezpMLFLMEQRERET6uAYBEVFW2Zmfntwhz+N5lWkqNhAQERZMa8eaud0Nn6+d2425PWYaCGRcHKKm0wueeetUOc3KehOnj2sQEBERmeVi+YyIiMzgO2z6SacRjDAclAxsICAiAMAHrtqI3vbi5L+ntRfxgas2Gdu/h9ZDCFwsnOhNMeRgBGIUdA2CMOeRIwiIiIjMcrF8RkREZsiSeKb/6WDrOvL+SKdC3AEgIjesm9eD//2jc/Dth34PANi9fAZ6ahoMbHIxf9HK9FyMQIyCrkEQpqDBEQRERET6ZFMMMGclIkov2TsbK4DTwVoDAUsIqcQGAiKa1NtewsUb5lrZt3wNAvcyGJ1Mz73QxyvoGgRhsIGAiIhIH3uQEhFlE9P49LNVz8J7J504xRARxc7F/EVriiHmkFPojyAY/98Qx+QUQ0RERPrkWTbzViKitJI2EDP9TwV2AiAdbCAgokgkLQPiDEPB6dbV5wxMMaTbKEFERERyzFqJiNJL2smN6X8q2JtiiNKIDQREFAn5FEPRhUOV3ggCe+FIIt0RFSYq9znFEBERkT55D1IiIkorvsOmn2wkSJhRIpxBIZ1S30AghFgihHiZEOLjQogfCyEOCSGGhRBPCSF+IoT4JyHEXgvHPUcI4Wn+d7vpcBAlgZsZjM4aBC6GPz66l/PUFEPBz2OODQRERETa3CyDERGRbfLKY0oDjiAgHaldpFgIcQaAfwSwrcUm08b/2wDg5UKI/wXwYs/zfh1NCImyRTKAwEkcQRCc/hoEBkYQ8CIQERFpk89PzLyViCitpDMMMf1PBa5BQDpS20AA4DQ0Ng48AOAeAE8C6AWwC8CC8e/OAfAdIcQez/MeNhyWxwB8RmG7+w0fl4gC4hoEwemvQVD93zCFFE4xREREZBZzViKi9GIan362GnrYuJBOaW4gmPBzAP8C4OOe5z1a+4UQIgfgWgB/D6AdwDwANwshdnmebMZ0bQ96nvdag/sj8rVzWR++8/DvGz5fOqMjhtAkj1ZmygxyijjWIGAhhYiISJ+8B2l04SAiomjJpmhl8p8OQfLxq7ctwie/J59YhSNM0inNaxD8FsBLAKz2PO+v6hsHAMDzvDHP824C8MKaj3cAuDCiMBJZ89p9K5p+fv2epRGHpMpok1sE9EYQMIOspT/FUPhjcoohIiKiICQVRMxaiYhSi0l8+gW5xi/Yvsh4OCgZUttA4HneHZ7nfcTzvFGFbT8D4Hs1Hz3DXsiIorFjWR+eu2XhlM/OXjUTzz5zQYtfUC2dSm6+QE+lvUjxeNElTE8ETjFERERkFjtAEBGlGEeQpV6Q9+v183vwwRecaSE05LosTDGk6ls4tWbBkhjDQWREPifwvmdvwGVnzMOPf3MYa+Z2YdfyGSgV4moXTNYQAp28NGmjI2wLugZBqGOygYCIiEibtLzDrJWIKLVkjcBsIE4H+SLFrb/dML/HfGDIeWwgOKW2ii8fWyiIDBJCYNfyGdi1fEbcQUk1L2GNH7bpTjE0sX2YYiinGCIiItLH9gEiomxi/6r0C/qKzNH52cQGglM21Pz9G8P7bhNCPBPAJgDTARwH8DiA7wK40/O8EcPHI6KQWN8cnPYixbmJ3wU/pomFjomIiLJGvkgx81YiorTiIvXpFzQf57t1NrGBAIAQYhGAfTUf3W74ENsAfL7Fd48JIf4WwH7P84YNH5eIAtLKTDmAYAr94kT4AkgutSvqEBERxYPVA0RE6SWfYojSQNoIJPkd362ziZe96m9walqhXwO4NcJjzwPw1wC+LoSYbXLHlUoFnZ2dAIDR0VH09/fDG58s/ciRIxgaGgIAnDx5EsePHwcAjIyMoL+/f3Ifhw8fxvBwtd3ixIkTOHHiBABgeHgYhw8fntyuv78fIyPVgRDHjx/HyZMnAQBDQ0M4cuQIAMDzPPT392N0tLpu9LFjxzAwMAAAGBwcxNGjRwEAY2Nj6O/vx9jYGADg6NGjGBwcBAAMDAzg2LFjjFMC4zQxUX87hlBAdd8ljKCCYSfjJAC0YQjFmrC2jYc1hzF0ikFMtAycPHEsNdfJxL2XE0Aeo+gQg5PbdYpB5FENQwXDKKEavwJGkRuungd4HjrFIHLj27XVbFfEKNpQDY9AdTsxfv7bMISxkSGrcUrjdWKcGCfGiXFinBgn4U3kpY15rhDJjFMarxPjxDiZjFOrcnmS45TG62Q7ThithqHZe25S45TG6xQmTqMjI+P1FlUdYhD58fqNwthQyzgdP3K45bt7+/g7Oa+TvTjFJfMNBEKIFwN4ds1Hb/M8b7DV9poOAvgggCsALAPQDqAy/veLAXy/ZtsdAG4VQrQZOjZ27NiBK6+8shqQgwexf//+yZv2pptuwn333QcAuOOOO3DrrdU2kUceeQT79++f3MeNN96Ihx56CABw22234bbbbgMAPPTQQ7jxxhsnt9u/fz8eeeQRAMCtt96KO+64AwBw33334aabbgJQfaD279+PgwcPAgBuueUWHDhwAABw55134uabbwZQfWj2798/+ZDefPPNuPPOOwEABw4cwC233MI4JTBOGKsmxheX78eS/CEAwOnFx7Cr9Csn4yQEcEH5QazMPwkAWFt4HHtL1fD0igFcVbkbpfHM9Qe3fTo118nEvZfLCczPHcFl5fsmt7uqcjdm5qoZ5a7Sr3B68TEAwJL8IRQf+joAwBsdwVWVu9Erqpnw3tJDWFt4HACwMv8kLig/CADoEEO4qnI3OkQ1c72g/CB++bP7rMYpjdeJcWKcGCfGiXFinIrD1ZfdZnmugEhknNJ4nRgnxslknFqVy5McpzReJ9txGjn4MIDm77kj452vkhanNF6nMHH63WOP4arK3ZNhvax8H+bnqvteNPDzlnH62L/8Y8t394vL9/M6WY5TXMRES0YWCSG2APgGqpX2APBJz/Oeb2jfnQCGPM8bkmwjALwLwDtqPn6H53nvCXnsdQDuqVQqKBQKOHDgAFavXo2jR4+ip6cHQlQL+5VKBaVSCSdPnsTY2Bg6OjowMjKCY8eOobe3F0C1Na69vR3FYnGyJa69vR3Dw8M4ceIEenqqq5v39/ejs7MThUIBx48fRy6XQ1tbG4aGhjAwMIDu7m54nofDhw+jq6sL+Xwex44dQ6FQQKVSweDgIIaGhtDV1YWxsTEcOXIE3d3dyOVyOHr0KEqlEsrlMgYGBjAyMoLOzk6Mjo4yTgmK05s+8wC++rODaMcQhpDHCPIoYQQ5eLj/fZc7F6cnjg7h3L/8IkaQx/B4WPPwcBJF5DCGdjGMY14JgMC/XL0OZ6+Zl4rrZOLe+8+fHMQNn/0xKmIEx70ygGpPpZNeEaPIoYJhjEFgCAUUMIoXbJ6Dd121DR/51i/wgf+6Eye8IsaQQxuGMTq+XRGjKGAUJ1GCgIcOMYTjXgkeBNowhE+/7mysmd+XmeeJcWKcGCfGiXFinEzE6e3/9SC+cM8TTfPcf7l+D3Yum564OKXxOjFOjJOpOC1563+3LJc/8O4LEhmnNF6nKOL0oW/+Gv/3jl82fc/955eejV0rZiQuTmm8TmHidPj4AHa/5ws4Nv5O3iEGMeAVMIo8Ns2p4JMv39k0Tr95/CDO+dsDTd/dSxjFfe+7gtfJQpweffRRrF+/HjXWe553LyKS2QYCIcRSAN8GMGf8o58A2ON53pEYwnIzgImGiUMAZoVZuHiigWDi3/fccw/WrVsXLpBEIb30I9/HV+9/oul3v3zfMyIOjb/Hjwxg+3u/qrTt//fSbdizcqblECXHzd/9Ff7kM/f4bzju2l1LcMOl6/Cx7/wS7/xcsPzvf/7oHCyd0RHot0RERFn16pt/iC/c/bum333i+u3YtWJGxCEiIpuWvPW/W37n4jsZ2fN3tz+Av7v9wabfffJlO7BzeV/EISLTTgyNYO07v9z0u/Xzu/Ffr9vT9LvjgyNY92fNfwcwrbDl3nvvjbWBIJNTDAkh5gL4Ck41DjwM4OlxNA6Me2fN39NQnW6IKFWS1hTJhZmCky141XR7Ayc7b2InREREGaObZxMRUfrx1SodcgEvZNDfUbJlroFACNGHauPA8vGPfgvgfM/zfhtXmDzPewjAL2s+WhNTUIhogkaemNGBWC3lNMsTEwWQMMWQXOZyMyIiIgNkmS/rB4iIMonJf7bx3TqbMnXZhRDdAL4MYGK+nSdRbRz4RXyhmlTbQMGxvJQ6SZvOTKfVPFkxs0+3x8Fkg0KIngp53VYJIiIikuLoAiKi9GIan35BX69lo/MLfO9Orcw0EAghOgB8AcDm8Y8Oozqt0H3xhWqK2smzj8cWCiICwF4TYegWRISBIYycYoiIiMgsZq1E6fO0dbO1Pqf0kqXxJt7PKH6yRiDZd7LOd+VCZqqRMycTV1YIUQHweQC7xz86AeAZnuf9ML5QnSKEaAdwWs1Hj8UVFiKqYqEoON1zN7F5mDPO60VERGQWc1ai9HnRjiVNP3/B9sXRBoRixzQ+/eSNQLLvWn9ZYgNBaqX+ygohigD+E8C+8Y8GAVzmed634gtVg+cDKI//7QH4eoxhIbIiadPwsMAUXOA1CEKcdE4xREREFICkgMbGd6L0OWvlDLzx/FVTPnvDeStx9qqZMYWIXMTkPx1sXEY2EKRXIe4A2CSEyAP4BICLxz8aAfAcz/Nut3zcdgADnueNKWy7EsD7aj66zfO8J6wFjoiU6BSKkra+gm2B1yAIgVMMERERmcWslSid3nD+Sjx/+yLc89hhrJ/Xg5ldZf8fUepIe5BHFwyySPe9XAUbCNIrtVdWVLu8/CuAK8c/GgPwIs/zPh9yv17Nfze02GwbgHuFEK8SQsxqsZ+8EOKFAL4DoG/84yEAfxwmfERkhs6iTWwemEp7DYLxcx1moaxcanMzIiKieLCCiCi9ZnaVce5ps9g4kGEcJZZ+Ni5xuZA3v1NyQppHELwKwItr/v0QgLOEEGep/NjzvNeGPP5qAB8E8A9CiJ8DuBfAU6g2VMwBsBPAjJrtRwFc43nej0Mel4hMYHkpMN3CppERBJxiiIiIyCjWHRERZRPT/3SQvZcHvcRcpDi90txAUN9zf+X4f6rCNhBMyAFYNf5fKz8DcJ3ned82dEwi5yRtFh6tQlHC4mabbl29MLAGgY3hk0RERGnnSQsxzFuJiLKJ6T81xymG0ivNDQRx+gaALaiOEtgF4DRUpxHqQ3Ux4sMAfgPguwA+D+BLHicxJ3KKXvsAH99a+msQTEwxFN0xiYiISI5ZKxERUUoFzOQ5giC9UttA4HneDQBusLBf36fI87xRAD8c/+8fTIeBiOzjnIzB6Y8gCH9MTjFERERkFnNWIqL0ki5SzAwg9YJe4hLXIEgtNv0QUSSS1sdeawRB0iJnWdA1CMJNMRT8t0RERNSInSWIiLKJqT+1ctH6OXEHgSxhAwERURM678RsIJhKt0A5uQZBiKIoKzGIiIj0ycowzFmJiNIrzLsXpd8Ldyxq+KyUz+GZm+bFEBqKAhsIiCgSSVtmQ2dO+2kdJYshSZ6gaxAQERERERFRvNj5iv7owtOwfn735L+LeYG/fe7p6Cyndqb6zOOVJSIKYUZnCWcs7I07GE7JaTY9T5Y/WQ4lIiKKFOegJiLKJmn6H10wKCZ+eXxvewmfftVu/PBXh/DE0QFsX9qHOT2VaAJHsWADARFFYlZXsjIT1ZfiN16wCjlOgD9F0DUIiIiIKFryKYaYQRMRpRVTePJTKuSwc3lf3MGgiHCKISKKxCv2Lmv6+flrZkUcEjV+L8XP3bIQH37JVrxg++KIQpQcuoXN3OQaBEREROQKjiAgIsompv/px0tM9TiCgIgisXJWJ85aMQPf/PmTk58VcgIv3OFmBbtfoeivrtwYTUASSHdNgclFilkSJSIiIiIiso6vXkRUiw0ERBQJIQQ+dM0W/N1XH8C3fv4k5va04YU7FmPvqplxB60plpeC024gsBQOIiIiCo6VR0RE6SUbMc8p5oiyhw0ERBSZtlIeb7toTdzBUMLe7MHprikwsT3POBERUbS4BgEREdXjq3D6sb6D6nENAiKiJphdhqDbQJCbmGLIQliIiIgoEObLRETpxTSeiGqxgYCIqAkWmIILugYBERERuYPZMxERUToxi6d6bCAgImqCldbBBV2DgKeciIjIHZxiiIgom/heRpQ9bCAgIiKj9NcgYAmUiIgoDh5aL0LA7JmIKL3YIY6IarGBgIiIjNItbJ5apJiFVCIiIlcwVyYiyia+lxFlDxsIiIjIKN3OKBMjCNiJhYiIyB3Ml4mI0kuWxDP9Tz9eY6rHBgIiIjJKf5FiSwEhIiIiKa/1DEPgGAIiovTiOxgR1WIDARERGaVb1uT8l0RERERERG7g61n6cRopqscGAiIiMmpU3h2xge6ixkRERGSGrBKIFURERNnEyuMM4CWmOmwgICIio4ZHxrS2P7UGAUspRERErmCuTESUXkzjiagWGwiIiDQV2OVdanhUbwTBRLsAzyoREVG0ZIP+2HBPRJResjSeyT9R9rCBgIhIUzHPpFNmeExvBAErIIiIiNzD3JmIiIgoG1jLRUSkqZjnK7OM/hRD1f9lOwEREZE7mC8TEaWXdA2a6IJBMeE1pnpsICAi0lQqMOmUWTKjQ2v7yTUIWEwhIiJyBvNlIqL0kqXwbCAmyh7WchERaeIUQ3IrZ3ViwbQ25e25pAMREVE8ZKsGsYKIiCjFmMhn2sUb5sYdBHIMa7mIiDQVOMWQlBAC73/2RlSKqlnM+AgCnlYiIiIiIqKY8cUsLa4/a2nDZ/mcwOWnz48hNOSyQtwBICJKGo4g8LdrxQzc/od78T8/O4hSXmDMA9726bubbssRBERERO5hwz0RUTYx/U+PN5y/Ej/89SHc+et+ANV377997unoaS/GGzByDhsIiIg0ldhAoGTBtHa8aMdiAMD//uyJltudWoOAiIiIouRJ5hgSrCEiIkotpvDZ0FUp4t9fsRM//k0/Hu0/iR3L+jC7uxJ3sMhBbCAgItLEEQT68pJhArnx08l6CCIiIncwWyYiSi/ZuxfT/3Qp5nPYsmQ6tsQdEHIaa7mIiDQVuQaBtpykBCpYBCUiInIOG+6JiLKJI8iIsocNBEREmjiCQJ+sgeBU+wALokRERK5gAz4RUXoxjSeiWqzlIiLSVCow6dSlshBx0I4qr9u3ItgPiYiIiIiIaAo2HRBlD2u5iIg0cQSBPtkaBJAskOinvZTHJRvnBd8BERERNcUZJoiI0ks6wJvpP1HmcJFiIiJN566eFXcQEicnaSDwxlsIdMuhO5f14Q8vXIXT5nSFCBkRERE1w/ohIqL0YhpPRLXYDZaIqIWrty1q+KyYF7jijPkxhCbZZGsQeAFGEFyzczE++fId2LpkeohQERERUUusPSIiyiSuT0CUPWwgICJq4Y8uXIXVNb3T8zmBD1y1CZ1lDr7SpbYGgXpBlEVWIiIiE1q30rOCiIgovTjFEBHVYi0XEVELfZ1lfPY1u/HdXzyFxw8PYOfyPiyc3h53sFJnYgSBTjlUpzGBiIiI9DGrJSJKLzYCE1EtNhAQEUlUinnsXTUz7mAknqwAGmKNYiIiIrKEVUdERERE2cAphoiIyDpZL0RvfAiBTk9F9mokIiKyi6P1iIhSjEk8EdVgAwERETlBq4GAJVoiIqLQPMkwPua0RERERNnABgIiIopVkCmG2KmRiIjILua1RETpxSSeiGqxgYCIiKyTTzE0vo1GMZUFWiIiIrs4Wo+IKL04jRwR1WIDARERWSevZOAyxURERHGQ5sCsOyIiIiLKBDYQEBGRdSojCHQqItjhhYiIyC7mtURE6SXtvsX+W0SZwwYCIiJygk49BIfEEhER2cWclogovaQduDjCmyhz2EBARETWyQugAfYXOCREREQ0gfkpEREREbGBgIiIrJOtQTC5SLHOqADWaBAREYUma6TnaD0iomziFENE2cMGAiIism7BtLaW352xqBeA5hRDbCEgIiKyijktEVF6mR7hTUTJxgYCIiKyrqNcwDmnzWz4fMP8Hszrbd140Ao7NRIREdnFvJaIKL3Y4YqIarGBgIiIIvHXV27C6jldk/9eOL0NH3zBmZP/5gxDRERE7mDlERFRNnmcY4gocwpxB4CIiLJhZlcZX3zDHjzw+DEMj45h7dxu5HLBKh/Yq5GIiCg8WSUQ81oiovRiGk9EtdhAQEREkRFC4LSaUQRTvtPoqchejUREREREROZx/ABR9nCKISIicoLWFENsHyAiIrKKeS0RUXoJSSLPGYaIsocNBERERERERBkkqwPiaD0iIiKibGADAREROUGnGoJVFkRERHZxBAERUVZxCAFR1rCBgIiIEifo4sZERESkhjktEVF6bVsyveV383vbIwwJEbmADQREROQGjZqIciFvLxxEREQknZ+aiIiSbU5PBWcs6m34/Pw1s9BW4rsWUdawgYCIiNygMZK1UmT2RUREFJZsIUo2DxARpdsHX3AmVs7qnPz36Qt78ddXbooxREQUl0LcASAiIgKAMY0GAo4gICIisosDCIiI0m1uTxtue+PZeOjgMRTzOSzu64g7SEQUEzYQEBGREzyNIQTlAkcQEBERhcVGACKibBNCYMWsrriDQUQxYw0LERE5QTbNQb0ypxgiIiKyimsQEBEREWUDa1iIiMgJYxotBBVOMURERBSaTuM8EREREaUTGwiIiMgJHEFARERERERERBQt1rAQEZETdEYQcJFiIiIiIiIiIqLw2EBARERO0BpBwEWKiYiIQuMMQ0RERETEGhYiInKCTiUFpxgiIiIiIiIiIgqPNSxEROQELlJMRERERERERBQtNhAQEZETuEgxEREREREREVG0WMNCRESO4CLFREREUfJ0WueJiIiIKJXYQEBERE4Y4yLFRERERERERESRYg0LERE5QWuKITYQEBERERERERGFxhoWIiJygs4ixYU8sy8iIiIiIiIiorBYw0JERE7gLMhERERERERERNFiAwERETmBCyUSEREREREREUWLDQREROQEtg8QEREREREREUWLDQREROQET3GSoa1LplkOCRERERERERFRNrCBgIiInKA6guCZm+bZDQgRERERERERUUYU4g4AERERAIz5NBB0lgu4bvcSvGjH4mgCRERERERERESUcmwgICIiJ8gWKf7ca3Zj3bxuFPIc+EZEREREREREZAprWoiIyAmyKYb6OktsHCAiIjJMdXo/IiIiIkov1rYQEZETOiutB7WV2DhARERERERERGQca1yIiMgJ+1bPQqnQmC0tmt6OWd2VGEJERERERERERJRubCAgIiInVIp5PH/boobPr921JPrAEBERERERERFlABcpJiIiZ7zzkrWY01PBl+/9HdqKeVx++nw8Z+vCuINFRESUSh64CAERERFR1rGBgIiInJHLCbxy73K8cu/yuINCRERERERERJR6nGKIiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsogNhAQEREREREREREREWUQGwiIiIiIiIiIiIiIiDKIDQREREREREQZ5Hlxh4CIiIiI4sYGAiIiIiIiIiIiIiKiDGIDARERERERUQbtXjEj7iAQERERUcwy00AghCgJIV4khPiCEOJXQogBIcRvhRDfFkL8kRDCWuk4zmMTERERERE189ytC5t+/vztiyIOCRERERHFJRMNBEKI1QC+C+BjAC4CsAhAGcAcADsB/DWAe4UQF6fp2ERERERERK3M6CzjnZesnfLZshkd+IPzVsYUIiIiIiKKWiHuANgmhFgA4KsA5o1/5AH4OoCHAMwEcD6ANgCzAHxWCPF0z/O+lvRjExERERER+bnurKXYtnQ6vvnzJzGvtw17V81ET1sx7mARERERUURS30AA4BM4VUH/KwCXeZ7344kvx6f3+RSA8wAUAfyHEGK553n9CT82ERERERGRr/Xze7B+fk/cwSAiIiKiGKR6iqHxaXv2jP9zCMAzayvoAcDzvCcBXAbg4fGPpgN4S5KPTURERERERERERETkJ9UNBABeU/P3Rz3Pu7vZRp7nHQfwzpqPXiGECDu6Is5jExERERERERERERFJpbaBQAjRierUPRM+7POT/wRwbPzv6QDOTuKxiYiIiIiIiIiIiIhUpLaBAMAuAOXxv48D+L5sY8/zBgB8p+ajfQk9NhERERERERERERGRrzQ3EKyp+ftuz/NGFH7zoxa/T9KxiYiIiIiIiIiIiIh8pbmB4LSav3+l+Jtf1/y9OqHHJiIiIiIiIiIiIiLyleYGgr6avx9X/M3vav6entBjT6pUKujs7AQAjI6Oor+/H57nAQCOHDmCoaEhAMDJkydx/PhxAMDIyAj6+/sn93H48GEMDw8DAE6cOIETJ04AAIaHh3H48OHJ7fr7+zEyUh0ocfz4cZw8eRIAMDQ0hCNHjgAAPM9Df38/RkdHAQDHjh3DwMAAAGBwcBBHjx4FAIyNjaG/vx9jY2MAgKNHj2JwcBAAMDAwgGPHjjFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDgxTowT48Q4pSZOcUlzA0Fnzd8nFX9Tu11ny63cPvakHTt24MorrwQAHDx4EPv375+8aW+66Sbcd999AIA77rgDt956KwDgkUcewf79+yf3ceONN+Khhx4CANx222247bbbAAAPPfQQbrzxxsnt9u/fj0ceeQQAcOutt+KOO+4AANx333246aabAFQfqP379+PgwYMAgFtuuQUHDhwAANx55524+eabAVQfmv37908+pDfffDPuvPNOAMCBAwdwyy23ME6ME+PEODFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDilJk6x8Twvlf8B+CoAb/y/dyv+Zl/Nb0aSeOzxfa0D4FUqFa+zs9O75557vJGREe/QoUPe2NiY53med/jwYW9wcNDzPM87ceKEd+zYMc/zPG94eNg7dOiQN6G/v98bGhryPM/zjh8/7h0/ftzzPM8bGhry+vv7J7c7dOiQNzw87Hme5x07dsw7ceKE53meNzg46B0+fNjzPM8bGxvzDh065I2MjHie53lHjx71Tp486Xme5w0MDHhHjhzxPM/zRkdHvUOHDnmjo6Oe53nekSNHvIGBAc/zPO/kyZPe0aNHPc/zGCfGiXFinBgnxolxYpwYJ8aJcWKcGCfGiXFinBgnxolxYpwSHad77rnHq6kX9gCs8yKsRxdetUI5dYQQ/w3g4vF//pXneW9V+M1FAL4w/s9jnud1Je3Y4/taB+CeiX/fc889WLduXdDdEREREREREREREZEF9957L9avX1/70XrP8+6N6vhpnmLoWM3fbYq/qd3uWMut3D42EREREREREREREZGvNDcQ/L7m79mKv5lT8/dTCT02EREREREREREREZGvNDcQ/Kzm78WKv1lU8/f9CT02EREREREREREREZGvNDcQ/LTm7w1CiILCb85s8fskHZuIiIiIiIiIiIiIyFeaGwi+DWBw/O8OAFtkGwshygB21Hz0tYQem4iIiIiIiIiIiIjIV2obCDzPOwbgqzUfXevzk2cB6Br/+ykAX0/isYmIiIiIiIiIiIiIVKS2gWDcB2v+vlYIsa7ZRkKIdgDvrvnonz3PG0nwsYmIiIiIiIiIiIiIpFLdQOB53n8D+Mb4P8sA/ksIsbF2GyFEH4DPAlgx/tFTAP6q2f6EEEuEEF7Nf9dGdWwiIiIiIiIiIiIiIpNUFs9NuucD+B6AuQCWALhLCHEHgIcAzARwPoD28W1HADzH87z+FBybiIiIiIiIiIiIiKil1DcQeJ73iBBiH4BPAjgdgABwzvh/tQ4CeInneV+FIXEem4iIiIiIiIiIiIhIJvUNBADged79QojtAJ4H4GoA6wDMBtAP4GEAnwbwYc/znkzTsYmIiIiIiIiIiIiIWslEAwEAeJ43BOBj4/8F3ccvUR0FEPmxiYiIiIiIiIiIiIhMSvUixURERERERERERERE1BwbCIiIiIiIiIiIiIiIMogNBEREREREREREREREGcQGAiIiIiIiIiIiIiKiDGIDARERERERERERERFRBrGBgIiIiIiIiIiIiIgog9hAQERERERERERERESUQWwgICIiIiIiIiIiIiLKIDYQEBERERERERERERFlEBsIiIiIiIiIiIiIiIgyiA0EREREREREREREREQZxAYCIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsqgQtwBICtKtf/4+c9/Hlc4iIiIiIiIiIiIiKiFJnW3pWbb2SI8z4vyeBQBIcSlAD4XdziIiIiIiIiIiIiISMtlnud9PqqDcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGcYqhFBJC9ADYW/PRbwAMxRQcIiIiIiIiIiIiImquBGBhzb/v8DzvcFQHZwMBEREREREREREREVEGcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiL6/9u78yDNqvKO49+fbCOLUCAIyBqMYNApg4iKcQmShNKUe0AxCFPRiAmpWInG0sRAmahYqSIVLZRFBaICalTKKAYBAY2OS8QIlsAoKBJFthEIqDDokz/uHftOZ7r7nel36bfv91PVVeeee86dZ/7o9719nrNIkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQItC0m2TnJckouT3JzkF0luTfLlJK9P8shJxyhpOJLsl+TVST6U5FtJfppkXZK1Sa5JcmaSZ006Tknjk+S0JNX5+cGkY5I0XEkOSXJqkv9q3/MfSPLjJFcn+UD7t8Duk45T0uIleVqS97S/32vbd/17k3w3yUeTHJtkm0nHKWluSbZIsjLJnyR5b/v9/WDnff3KRTz7OUn+NcmaJPd3xgL+KclBQ/xv9EaqatIxSIvS/vJfADxxnma3A6uq6uKxBCVp6JL8NnAGcNiAXa4Ejq+qH44sKEkTl+QwYDUbTny5uar2m0xEkoYpyW7AacArBmh+elWdNOKQJI1Ikl2A9wMvGKD5jTTv+l8abVSSNlWSFwIfBradp9lVVfXsTXzuI4CzgGPmabYOOLmq3rEpz+67LScdgLQYSfYCLgf2bKsK+ALNy8KuwJHAw4HdgIuSHFVVn59ErJIW7UD+f3JgDfBt4E5gJ+BwYK/23rOB1UmeUVU3jSlGSWOUZCvgfbgqVlqWkuxDk/Dfv1N9A3AtcBfNwMMBNBOF5huEkLTEJXk4cBkbTvy7A/gm8D80f98fDPxGe+8A4HNJjqiqr44xVEkL24khfy+37/2fBI7oVH8buBpYATwD2APYCnh7kq2q6q3DjGE5M0GgaXc+M8mBm4EXVNW31t9stxa6EHgOzYfEx5IcUFV3jztQSUPzPZoBwQ9V1Y+6N5I8DDgBeDfNC8mewIeTHF4umZOWozcCT2jL5wPHTjAWSUOUZEfgCmaSA1cAr6uqazbSdmuaAYMdxhehpCF7IzPJgQLeApxWVT9f3yBJaGYOnwHsSPO+fzawcqyRShrUbcDXOz9/APzlZj7rLcwkB35Bs0vIhetvtu8C/wi8oa06JclVVXXVZv57veIWQ5paSZ4LfKa9fBA4tKqu3Ui77YBrmJlp8I6qevN4opQ0LO25AvsDH6yqXy7Q9kXAJzpVR1XVJaOMT9J4tVsM/jewDc0S5suAc9rbbjEkTbkkZwOvai8/Arxioe9/SdOrPT9o3/byX6rqdfO0fSnwsU7Vyo2NBUiajPZMoK1nb/eb5BTg5PZy4C2G2u0GbwK2a6tOrKoz52h7ITNbEK2uqsM3Lfp+cjm2ptmfd8rnzfVCUFX3A3/fqXpNElfPSFOmqq6qqnMHGRyoqk8CX+tUPW90kUkat3YG4ftokgM/Bf5qshFJGqYkT2QmOXAL8GqTA9Ly1e4rvm+n6oIFulwE/Kxz/dhhxyRp81XVT4Z8FuDxzCQH1tCcQzCXvwF+1Zaf1p5lqAWYINBUSrI9zbZB650zV9vWx4H72vLOwDNHEZekJaV7YNl+kwpC0ki8Fnh6W35DVd0+yWAkDd2JnfLpVfW/E4tE0jhsP+v6p/M1rqqHgHs7VY5tScvbCzvlc+fbPrhNTHTPHn3RqIJaTvwQ1bQ6nGbWIMD9NHuZzamqfgGs7lQdMVdbSctG96Vhi4lFIWmokuwNnNpefhH4wATDkTRkSbYAXt6p+vikYpE0NnfQ7Cm+3sHzNU6yK7Bbp+pbc7WVNN2SrACe2qm6coBuV3TKjv8NwASBptXjOuVr2xkEC7l6jv6SlqcndMq3TCwKScP2HpqDSB8EXuMB5NKy83jgEW35HuDGJFsmWZXk8iQ/SfJAkh8l+WyS1ybZZp7nSVriqmod8NlO1d8l2XaeLu9kZjzr8qpaM7LgJE3agcz8vhfwzQH6OP63iUwQaFod2CnfPGCf7v5nBw0xFklLTJJ92HCmwGWTikXS8CR5GfCH7eU7q+q6ScYjaSSe3CnfAuxFs23gB2i+2x8FbA3sCRxFkzRck+TJSJpmb2ZmW+BDgGuSHJ/kMUlWJNk7yfOSfBFY1bb7TqcsaXnqjv/d3u4QspDu+N/O7aojzcODWjWtdumUbxuwz0865Z2HGIukpec0ZrYV+iHw7xOMRdIQJNkFeFd7uQZ42wTDkTQ6e8+6/iwz241cT7O16C+BlTSDiAD7AFcmeWZVfWMsUUoaqqq6PsnTad7b9wEOAM6do/ndwAeBv/WMEmnZW+z4HzRjgHcMJ5zlyRUEmlbdQ4x+PmCfbrvZhyBJWiaSHA+8pFP1pqp6YFLxSBqafwbWz/450d9radnaqVN+PE1y4GfA0VX1uKp6ZVWtqqon0awouLNtuy3wkSRbjzVaSUNTVdcAjwVOojlrcC6XABeYHJB6YbHjf7OfoY0wQaBptaJTfnDAPt2BhIcPMRZJS0SSQ4EzOlUXVNX5k4pH0nAk+X3guPbyvKq6Yr72kqbadhup++Oq+tjsyvaz4PnAr9qqA4BXjDA2SSOU5JHAe2kmBWxHMwv4E8BZwEeZ2V74GODLSc5sDzaXtHwtdvwPHANckAkCTavunmODzhLqHl42aNZR0pRIsj/NkuT1LxDXACdOLiJJw5BkO+DM9vIu4PUTDEfS6M3eW3h1VX1yrsZVtZpmAHG9Y0YSlaSRSvKbNIePrqJJ+p0E7F1VL6mq11TVMcD+wLHAvW23PwXePYl4JY3NYsf/wDHABZkg0LS6r1MeNBPYbXffnK0kTZ0kewCXAru3VTcBR1XVvXP3kjQl3gbs15b/uqrunKetpOk3+z19zuTAHG0OH2IsksYgyZY0ib692qoTq+r0qnqo264aFwAv7VS/NslhYwpV0vgtdvxv9jO0ESYINK3u6pQfNWCf3TvltUOMRdIEtQeXXkqzrQDArcCRVXXr5KKSNAxJDgH+or28oqrOm2Q8ksbirlnX3xmgz3Wd8g5JdhhiPJJG7yU0Z44A3ADM+31fVZcCl3WqVo0oLkmTt9jxP3AMcEFbTjoAaTPd0CnvO2CffTrl64cYi6QJSfIImkPKDm6r7qRJDnx/clFJGqKVzExo2SfJV+Zpu2unvMestv9QVZ8ZenSSRmH2e/ogs/5mH1S6w0bqJC1dR3XKV1RVDdDn88CRbfnQ4YckaYnojv/tlmRFVc3ejnC27vjf2qq6YwRxLSsmCDSturOEnpBky9nLDzfikDn6S5pC7b7kFwNPaqvuodlWaJCZhpKmzwHMrBRayNbAUzrXu87VUNKS8+1Z19sP0Gf2ioF7hhSLpPF4dKc8exXRXLpbDu44xFgkLS030JxL8jAgwBOB+SYNgeN/m8wthjStvszMqeTbscCMgSTbAE/tVH1+RHFJGoMkK4BPAU9vq34GPK+qvjG5qCRJ0mK1qwC7KwF/a4Buj+uU11bV/cONStKIdQ8Q3XnAPrt0yncPLxRJS0m7WqCbEHj2AN2e1Sk7/jcAEwSaSlV1H3B5p+qEBbq8mJmZRWuBL4wgLEljkGQr4OPAEW3VA8ALqupLk4tK0ihU1blVlUF+2HD/4Ztn3T93Qv8FSZvnE53yCwdo323je740fX7YKf/ugH2O6JS/N8RYJC09F3XKJ8zXMMnewHPm6Ks5mCDQNHtPp3xCkoM31ijJtsBbO1VnDbAdkaQlKMkWwPnAc9uqh4Cjq+qyuXtJkqQp815gXVs+PMnz52qY5DCayUDrnTvCuCSNRvdd/qAkx83XOMkRwO91qi4ZSVSSlorzgPWrAw9M8qp52r4T2KItr66qq0ca2TJhgkBTqz1s8Ivt5TbAp5Os7LZJsgtNtvAxbdVamg8LSVMmSYD3Ay9tq34FHFdVn5pcVJIkadiq6kY2nAx0fpIXz26X5FnAp5kZCPgKzRaEkqbLZ4A1neuzkpzYTg76tTSOZsNVRrcAF44hRkkTUlW3A6d1qt7Vfhb8WpKtkpwKvLxT/aZxxLccZLDD4aWlKclewNeAPdqqAq4CbqQ5kPBIYNv23kM0B5hePvs5kpa+JH8GnN6p+i7wuUH7V9VJQw9K0pKR5ATgnPby5qrab3LRSFqs9gyxS4FndKqvA74O/BJYCTypc+9W4ClVdcvYgpQ0NEmeQrNX+Lad6ltpzh+8k+Yg4qcC+3XuPwAcWVX/OaYwJQ0oycXAnrOqdwce1ZbvZ+Pbgz23qn68kedtBfwHG24vdi1wNbACeCYzY4MAJ1dVdzcRzcMEgaZekoOAC2hOMp/LHcCqdtWBpCmU5BTg5M3t3+5RLmmZMkEgLT9JdqTZbujlCzT9KvBHJgek6dZuGfZB4LEDNP8+zWpizyGTlqAkPwD23Yyu+1fVD+Z45o7AWcDRG7vfWgecUlVv34x/u7e2nHQA0mJV1fXtbIOX0fzxcDBNRvJu4Caa5YfnVNWdEwtSkiRJ0iapqnuAY5OcAbwS+B3g0TRbCt1Gs6XQR4GLyplv0tSrqq+1Zws+n+bw8UNpZiBvTzPb+DbgGzRbif1bVa2b41GSlqH2veCYJGcDxwNPo1k1sI5mu7FLgPdX1XWTi3I6uYJAkiRJkiRJkqQe8pBiSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB4yQSBJkiRJkiRJUg+ZIJAkSZIkSZIkqYdMEEiSJEmSJEmS1EMmCCRJkiRJkiRJ6iETBJIkSZIkSZIk9ZAJAkmSJEmSJEmSesgEgSRJkiRJkiRJPWSCQJIkSZIkSZKkHjJBIEmSJEmSJElSD5kgkCRJkiRJkiSph0wQSJIkSZIkSZLUQyYIJEmSJEmSJEnqIRMEkiRJkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB76P73oL1SqEQt4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from astropy.modeling import models\n", + "\n", + "pds_model = \\\n", + " models.PowerLaw1D(x_0=1, alpha=1, amplitude=1)\n", + "\n", + "nyq = 100.\n", + "freq = np.linspace(0, nyq, 1000)[1:]\n", + "\n", + "pds_shape = pds_model(freq)\n", + "mean = 10\n", + "rms = 0.3\n", + "\n", + "dt = 0.5 / nyq\n", + "\n", + "flux = timmerkoenig(pds_shape, mean, rms)\n", + "times = dt * np.arange(flux.size)\n", + "\n", + "plt.plot(times, flux)" + ] + }, + { + "cell_type": "markdown", + "id": "de32c52b", + "metadata": {}, + "source": [ + "## Simulating event times with the inverse CDF method\n", + "\n", + "Given a positive-definite light curve (generated, e.g., with the method by Timmer & Koenig), we treat it as a probability distribution: we calculate the cumulative distribution function by calculating its cumulative sum and normalizing to 1. Then, we generate random numbers uniformly distributed between 0 and 1 (horizontal lines) and take the event times at the corresponding values of the CDF (vertical lines)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "27458926", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABwUAAAStCAYAAAClVIT2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXwU9f3H8fckIQkJEMJ9BAiKKIeKotVaFdSqrYonWqv1vq1HtO3Po7ba1trTClLBG8X7wgOEgoqgIDcil6BiEkgIJEDIQc7Nzu8PkpjAzt6zO7v7ej4eeTw2M/P9zmd2ru/OZ74zhmmaAgAAAAAAAAAAABC/kqIdAAAAAAAAAAAAAAB7kRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJwTAzDCPZMIwjDMO4zjCMKYZhrDAMo8EwDLP5b34EYkg1DOMKwzBmGYZRaBhGnWEYJYZhfGEYxm8Nw+hhdwwAAAAAAAAAAABwDsM0zWjHEDcMwzhf0iuSMrxMtsA0zbE2xnCYpNckjfIyWamka0zTnGVXHAAAAAAAAAAAAHAOegqGV1d5TwjayjCMHEmf6IeEoClpgaTnJc2QVNs8vJek9wzDODXSMQIAAAAAAAAAACDyUqIdQJzaIWl5m78zJd0Zgfm+Kqlf8+dCSeeZpvlVy8jmx4a+Luk0SR0kvWUYxsGmae6JQGwAAAAAAAAAAACIEpKC4fU/SYNM09zSdqBhGMfZPWPDMM6SdFLzvw2SxpmmubbtNKZp7jQM4zxJayQdJKmbpP+TdL/d8QEAAAAAAAAAACB6eHxoGJmmuX3/hGAE/brN5xf3Twi2ME1zr6Q/thl0k2EYJIcBAAAAAAAAAADiGEnBOGAYRifteyRoi6k+irwjqbr5czdJJ9sRFwAAAAAAAAAAAJyBpGB8OEFSWvPnvdr3HkNLpmnWSVrcZtCpNsUFAAAAAAAAAAAAByApGB+Gtfm81jRNlx9lVlmUBwAAAAAAAAAAQJwhKRgfDm3zudDPMm3ffXhYGGMBAAAAAAAAAACAw6REOwCERfc2n3f4WWZ7m8/dQg3AMIwsSWPaDNoqqSHUegEAAAAAAAAAAKIgVdKANv8vME2zIlrBhANJwfjQqc3nWj/LtJ2uk+VU/hsj6f0w1AMAAAAAAAAAAOA050n6INpBhILHh8aH9Daf/e2dV9/mc8dwBTJ27FhdffXVkqQ+ffrooYceUnr6vvDy8vI0atQoSdLPfvYzXXrppZKk3NxcPfTQQ6113HvvvTrssH1PND3//PN1/vnnS5IOO+ww3Xvvva3TPfTQQ8rNzZUkXXrppfrZz34mSRo1apTy8vIkSenp6XrooYfUp08fSdLVV1+tsWPHSpKOP/543XzzzZKkrl276qGHHlLXrl0lSTfffLOOP/54lollYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimRJ4meKKaZr82fwn6SFJZvPffBvq/7BN/X/3s8zP25SpCkMM50oy09PTzU6dOpmSzOTkZLNr166mYRimJLNLly5mamqqKcns2LGjmZmZaUoyU1JSzK5du7bEYmZlZZkdOnQwJZkZGRlmRkaGKcns0KGDmZWV1Tpd165dzZSUFFOSmZmZaXbs2NGUZKampppdunQxJZmGYZhdu3Y1k5OTTUlmp06dzPT0dFOSmZaWZnbu3NmUZCYlJZldu3Y1k5KSTElm586dzbS0NJNlYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimVimxF2mlngknRvtfFOofzw+ND5Ut/nsb6+/ttNVW07lv62SVFdXJ0l67733NGTIkDBUCwAAAAAAEDmTJ0/2ODwlJUU33nhjhKMBAADhUF1drTfeeENPPfWUampqVFVV1TquJa8hSU1NTdqzZ4/6Spoi6fzKyrbVbI1UvHYhKRgfdrX53NvPMn3afN4dhhjaPbZ0yJAhGjFiRBiqBQAAAAAAiJxevXp5HJ6amsq1DgAAYkxjY6OefPJJPfjggyovL/e7XPdOnTSk+oD+VP6+vs2xkqIdAMJiU5vPg/wsM7DN541hjAUAAAAAAAAAACBqXC6XXnjhBQ0bNkx33HGH3wnB9PR03XjjjZo3b57NEUYHPQXjw9dtPh9uGEaKaZouH2WOtigPAAAAAAAAAAAQk5YsWaKrr75amzZt8j1xGz/96U/13HPPaeDAgVJBgUptii+a6CkYH76QVN/8OVPSMd4mNgwjTdLxbQbFZ8obAAAAAAAAAAAkhLKyMt1www064YQT/E4IJiUl6fzzz9fcuXM1d+7cfQnBOEZPwThgmma1YRifSDqredDVkpZ4KXKhpM7Nn3dL+sy+6AAAAAAAAGKfYRjRDgEAAHjgcrk0efJk/fGPf1RFRYVfZTp37qzbb79dN910U9wnAtsiKRg/JqtNUtAwjEmmaa7ffyLDMDIk/bnNoKf9eNQoAAAAAAAAAACAYzQ1NWn69On6y1/+orVr1/pVJiMjQ7fffrvuvPNO9e3b1+YInYekoIMZhpErKb/NoGtM03zB07SmaX5oGMbnkk6SlCZppmEY55mmuaZNfd0lvSZpSPOg3ZL+YUPoUnGxlJlpS9UAAAAAAAB2ySov9zg8LS1NKiiIbDAAAOAALpdL77//vp544gl9n78vhTJIUrKkvpKWS2rYr0xycrKuvPJK/fnPf1ZOTk5kA3YQwzTNaMcQVwzDmCWp336D+0jq3fx5r6TvPBQ9yzTNbfvVlSs/k4LN0+dIWqZ9270kmZIWSNosqaekn0rKaB7nkvQz0zQ/8b5E/jEMY4SkdS3/r5M0IhwVAwAAAAAAAAAA+OlESYva/H/ppZfqr3/9qw466CD/Kyko0PrBgzWy/dCRnp7QGEvoKRh+w7UvKW0lU9KRHoanhjpj0zSLDMM4Vft6A46SZEga2/zXVpn2JRjDkhD0aM4caehQ26oHAADOVV5erk2bNqm6ulqDBg3SkCFDeAcPAACIGRMmTPA4PC0tTbfccktkgwEAACosLNQHH3yg1157TdtKSiyny5G0UFLLFAcffLAmTJigc845JxJhxgSSgnHGNM2NhmEcJ+lSSb/Uvg57vSXtkfS9pOmSppqmudPWQPr3l3JzbZ0FAABwnu3bt+vFuXNVV1cnSVpUXKwfm6bOOOOMKEcGAADgn4rsbI/D09PTudYBAEAEffrpp7rnnnu0fPnygMqlpqfrr3/4g+6+++5952+0IikYZqZp5oaxrgLt6+0XaLkGSdOa/wAAACJm4cKFrQnBFosXL9YJJ5ygTp06RSkqAAAAAAAQK3bu3Kk//OEPevLJJ4Mq/8knn6jfCSeEOar4kBTtAAAAABA/1q/3/Gj9QO/qAwAAAAAAiWPLli16+eWXdcUVV+iggw4KKCGYnJysK664Qh/OnClJ6tevn11hxjx6CgIAAMB2ZWVl0Q4BAAAAAAA4RG1trT777DO9//77mj17tgoKCgKuIyUlRVdddZXuu+8+HXzwwVIQdSQakoIAAAAAAACAD4YR8BteAADAfrZs2aInnnhCzzzzjMrLy4OqIy0trTUZmMv7fgNCUhAAAAC24yIaAAAAAACJa+HChZowYYLeffddud3uoOo4+uijddlll+nqq69W9+7dwxxhYiApCAAAAAAAAAAAgLAyTVMffvih/v73v2vRokVB1zNw4EA988wzOuOMM8IYXWIiKQgAAAAAAAAAAICwKCkp0VNPPaXXXntN33zzTdD1ZGdn65577tEdd9yhjh07hjHCxEVSEPYoLpYyM6MdBQAAiLAsi/cBZJSW8sJvAAAQE6zaM+m1tbRnAADwoqmpSS+++KL+/e9/q6a2VpI0qM34ZEl9JS2X1GBRx/DhwzV27FidddZZOvXUU0kGhplhmma0Y0AcMAxjhKR1Lf+vkzQieuEAAAAAAAAAAAAHOlFSy8NEu3TpolNOOUUXX3yxzjjjDPXs2TP4igsKpMGDpfx8KTc3tCALCrR+8GCNbD90pGma60OrOLroKQh7zJkjDR0a7SgAAECETZgwwePwoUOH6qyzzopsMAAAAEGwas907NhRN910U2SDAQDAoerr6zV//nwtXbpUy5Yt07r1vnNlOZIWSiqRdNhhh+mOO+7QFVdcoU6dOtkdLpqRFIQ9+vcPPRMPAABiTkV2tsfhNb160TYAAAAxwao905iRQXsGAJDwTNPUc889pz/+8Y8qKSkJqo6pL76ok664QoZhhDk6+JIU7QAAAAAQ/2joAwAAAAAQ24qLi3XOOefohhtuCCghmJSUpAsvvFDvv/eeJOnkk0/mOkGUkBQEAAAAAAAAfODiJQAgUdXX1+vvf/+7Dj30UM2aNcvvcpmZmfr73/+u4uJivfPOOzryyCNtjBL+4PGhAAAAAAAAAAAAaMc0TX344Ye6++679e233wZU9txzz9V///tfDRgwwKboEAx6CgIAAAAAAAAAAKDVmjVrdPrpp2vcuHEBJQR/8pOfaMaMGXrvvfdICDoQPQUBAABgOx63BQAAAABAbJgyZYruuOMOuVwun9OmpaVp/PjxOvbYY3XeeecpNzfX/gARNJKCAAAAAAAAgPY9Jg0AgETV0NCgO++8U08++aRf0x999NF6+eWXNWzYMJsjQ7iQFIQ9ioulzMxoRwEAACIsq7zc4/CM0lKpoCCywQAAAATIdLst2zOZDQ20ZwAAcWvFihV64IEHtHHTJg2SlCypr6Tlkhr2mzYrK0t//vOfdeuttyolhTRTLGFtwR5nnhntCAAAQBTkRTsAAACAECTJR3vmkUciEwgAABF2jKT/eRh+oqRFbf6/9tpr9be//U29evWKTGAIK5KCsMecOdLQodGOAgAARNiECRM8Dh82bJjO5KYhAADgcC6XS//97389jsvMzNQNN9wQ4YgAALBHdXW1nnzyST3zzDOqb9i/L6CUI2mhpJLm/8eMGaNHH31Uo0ePjmSYCDOSgrBH//4SLxQFACChmKapiuxsj+NqevWibQAAABzPbGy0bM80depEewYAEPNM09TMmTN10003qaSkxOf0SSkpeuqJJ3TDDTfIMIwIRAg7kRQEAABAWJimaTmOHw4AACAW0J4BAMQr0zS1YMEC/elPf9L8+fP9LvfKK6/oR5dcYl9giKikaAcAAAAAAAAAOIG3pCAAALHINE299957OvbYY3XKKaf4nRAcd845kqQf/ehHNkaHSKOnIAAAAMKCi2gAACDW0Z4BAMST0tJS3XLLLZo+fbrfZQ499FBNmjRJpx9yiDRzpo3RIRroKQgAAAAAAACIpCAAID64XC49+uijGjZsmN8JwZ49e2ry5Mlau3atTj/9dJsjRLTQUxAAAABhwTt4AABArCMpCACIdevWrdPVV1+tlStX+l3mjjvu0F/+8hd16dLFxsjgBPQUBAAAQFhwEQ0AAMQ6bnICAMQql8ulRx55RKNHj/Y7IXjKKado+fLlmjhxIgnBBEFPQdijuFjKzIx2FAAAIJIaG5VVXu5xVMcdO6SCgsjGAwAAEKi9ey3bM51dLtozAABH2rBhg+69916tWbtWfSUlS+orabmkBg/Tn3nmmbrvvvt08sknc9NLgiEpCHuceWa0IwAAABHWQVJetIMAAAAIQaZ8tGcefjgygQAAEIDhkj7wMPxESYva/H/44Ydr6tSpGj16dGQCg+OQFIQ95syRhg6NdhQAACCC6uvrNWXKFI/jRowYwYvKAQCA41VVVem5557zOK5Lly669tprIxwRAACeVVVV6fbbb9f8BQsOGJcjaaGkkub/MzMz9dvf/lb33Xef0tLSIhkmHIakIOzRv7+UmxvtKAAAQCTV16siO9vjqNrevWkbAAAAx3NXVFi2Z5SVRXsGAOAImzdv1rmXXqoNGzZ4na5J0llnnaWnn35a/fv3j0xwcLSkaAcAAACA+GCaZrRDAAAACAntGQCA082dO1fHHHOMz4SgJP37X//SzJkzSQiiFUlBAAAAAAAAQN6TgoZhRDASAADaM01TEyZM0M9//nPt2bPH67SnjB0rSRo/fjznL7TD40MBAAAQFlxEAwAAsY6eggAAJ2pqatJdd92lSZMmeZ2ua9eueuaZZ3TR6NHSQQdFKDrEEpKCAAAACAsuogEAgFhHewYA4DR79+7VZZddpg8++MDrdIcccohmzJihQw89VCooiExwiDk8PhQAAAAAAAAQSUEAgHOYpqnXX39do0eP9pkQPP3007VkyZJ9CUHAC5KCAAAACAsuogEAgFhHewYA4ATr16/XmDFj9Mtf/lKbNm3yOu1vf/tbzZo1S926dYtQdIhlPD4UAAAAYcE7BQEAQKyjPQMAiKba2lo9/PDD+uc//ymXy+V12pSUFD377LO66qqrIhQd4gFJQdijuFjKzIx2FAAAIIKMvXuVVV7ucVzHHTt4pwEAAHA8o6zMsj3T2e2mPQMAsM3ChQv1wAMPqKCwUP2bhyVL6itpuaSGNtNmZWVp+vTpOvXUUyMeJ2IbSUHY48wzox0BAACIsExJedEOAgAAIAQ95aM98+c/RyYQAEDCOVHSfC/jFjV/HjRokGbNmqXhw4dHJC7EF5KCsMecOdLQodGOAgAARFB1dbWeffZZj+OOOOII7mAEAACOV1paqldffdXjuKysLF1zzTURjggAEM8WLFige+65R9t37PA4PkfSQkklzf9feeWVevTRR9WjR49IhYg4Q1IQ9ujfX8rNjXYUAAAggtyVlarIzvY4rrZ3b9oGAADA8VypqZbtmeRu3WjPAADCoqqqSr/73e/01FNP+TX98SecoBnPPEPvQISMpCAAAADCwjTNaIcAAAAQEtozAAC7rVq1Spdccok2b97sc9ru3bpJu3fr5ZdfljF4cASiQ7xLinYAQDTs3r1ba9euVWlpKQ1+AAAiwDCMaIcAAADgE9cIAAB2MU1TkydP1o9//GO/EoLXXXedPvnkE0n8pkb40FMQCcU0TS1YsEALFixoHXbEEUfovPPOU1ISOXIAAELBRTQAABDraM8AAOxQVVWlG264QW+88YbPaQ855BA9++yzOvnkk6WCAvuDQ0IhC4KEUlxc3C4hKElr1qzRmjVrohQRAAAAAABwinhKCpqmqfr6+miHAQAJ7/3339ewYcP8SgjecccdWr169b6EIGADegoioSxZssTj8FWrVmnUqFGRDQYAgDjj7SIajzoBAACxIF7aM4sXL9YXX3yh6upq9evXTxdccIF69OgR7bAAIKG43W799a9/1R//+Eef0w4aNEhTp07VKaecEoHIkMjoKYiEsn79eo/Dt27dGuFIAACIP/F0Zz0AAEhM8dCeWbNmjebOnavq6mpJ0rZt2/TCCy+ooaEhypEBQOJYtmyZTjrpJL8SgpdeeqnWrFlDQhARQU9B2KO4WMrMjHYUB8gqL7ceyfOZAQAISdKePZbn2o47dnCuBQAAjpe8datle6aTacZEe6Zg/vwDl6G8XMWLFmnw4MHRCQoAEkRBQYEeffRRzZg5U5I0SFKypL6Slktqe3tGWlqaJk6cqBtvvDGmeqMjtpEUhD3OPDPaEXiU523kxIkRigIAgPjUVT7OtQAAAA43QD7aM3/6U2QCCcG5ViO47gEAtsuVNKn5b38nSlrU/Pnggw/WW2+9paOOOipSoQGSSArCLnPmSEOHRjuKA0yYMMFyXF5eXsTiAAAgHu3evVvTpk3zOO6oo47SmDFjIhwRAABAYAoLC/Xuu+96HJeVlaVrrrkmwhG1Z5qmFi5cqJUrV7YOO+qoo3TyySe39jKxuvaRnZ2tq666KhJhAkDCqKmp0eTJk/Xcc8+ptq7O4zQ5khZKKmn+/7bbbtPDDz+srKysSIUJtCIpCHv07y/l5kY7igNUZGdbj3RgvAAAxBJ3p06W59ra3r051wIAAMdrdLks2zNG165Rb89s/u47zfv+e6lNjPMLCtT3xz/W0Oabs63iT+nePerxA0A8WbRoka666ipt3rzZr+lT09P1ziuv6MILL7Q5MsBaUrQDAAAAQHwwTTPaIQAAAITEW3vGCW2dpUuXehy+ZMmSCEcCAIkrPz9fv/zlL3XiiSf6nRCUpNmzZ5MQRNSRFAQAAAAAAADk/KTgd99953F4fn5+hCMBgMRTVFSku+++W4cddphef/11v8qMGDFCL0ydKknKpbc2HIDHhwIAACAsvF0oa3nHDQAAgJM5PSkIAIis3bt365lnntH777+vZcuWqampya9ygwYN0p///GddfvnlSt661eYoAf+RFAQAAEBYcKEMAADEOtozAABJampq0ssvv6y8vDzt2bPH73I9evTQAw88oJtvvllpaWn2BQgEiaQgAAAAAAAAIHoKAkCiy8/P1zvvvKMpU6bo+++/D6jsVVddpQkTJqhr1672BAeEAUlBAAAAhAWPDwUAALGOpCAAJB63263//e9/euKJJzR79uyAj/cjR47Uv//9b5155pk2RQiED0lBAAAAhAUXygAAQKwjKQgAiWP37t2aOnWqJk+eHHCvQEnq27ev/vKXv+jqq69WcnKyDREC4UdSEPYoLpYyM6MdRTumaSqrvNx6goKCiMUCAEA8Si4ttTzXpm/fzrkWAAA4XkpRkWV7pmNdXdTbM/5c17CapnObaQAgkW3cuFHTpk3T9OnTVVdfL0ka1GZ8sqS+kpZLavBQfsiQIcrLy9M111yjjIwM+wMGwoikIOzhwK7ShqQ8bxNMnBiZQAAAiFO95ONcCwAA4HCHNv9Z+vvfIxSJZ3neRjZf1/A6zUMPhSsUAIhZh0l6pPnPmxMlLWr+nJycrP/7v//T5ZdfruHDh/OKDMQskoKwx5w50tCh0Y6indraWj311FMex6WlpemWW26JcEQAAMSXHTt26LXXXvM4bvTo0TrppJMiHBEAAEBgvv76a82ZM8fjOCdcO5gwYYLluLy8PK/TZGdn66qrrgp/UADgYDU1NXrzzTf17LPPqqi42K8yOZIWSiqRlJKSossuu0z33nuvhg0bZmeoQESQFIQ9+veXcnOjHUU7jZWVqsjO9jguMzPTcfECABBrXB06WJ5r6/r04VwLAAAcr6GiwrI9k5aWFvX2jFVsklpjs5ompXv3qMcPAJGydu1avfjii5o6dap2794dVB133nWXzs/L08CBA8McHRA9JAWRMBobGy3HpaSwKwAAECrTNC3H8WgVAAAQC7y1Z7yNAwA4w6JFi/SXv/zFste3NykpKRo/frzuvvBC6ZJLdMcdd0gkBBFnyIQgYbhcLstxJAUBAAAAAACJPwCITd9//71uu+02zZ49O+Cyffv21c0336wbb7xRffr0kQoKwh8g4BBkQpAw6CkIAIC9uIgGAABiHT0FASC2uFwuPfbYY3rwwQdVW1sbUNmf/OQn+vWvf62LLrpIqampNkUIOAuZECQMbz0Fk5OTIxgJAAAAAABwIrfbbTmOpCAAOMvKlSt1/fXXa/Xq1X6X6dChg6644grdddddGjlypH3BAQ5FUhAJw1tPQd5zBABA6HinIAAAiHXx3FMw1uMHgBY7duzQX/7yF02ZMsXrzRxtdenSRTfffLPuvPNO9evXz+YIAeciKYiE4a2nIA1jAABCx/kUAAA4gWma2rVrl4qKitSrVy/17dvX7xuUaM8AgHO53W5NnjxZ9913n6qrq/0qc9xxx+mmm27S+PHj1blzZ5sjBJyPpCDsUVwsZWZGO4p2jMJCZZWXexzXKTWVF8gCABCi5KIiy3Nt+vbtnGsBAIDtTNPU4sWLtWzZstZhhx56qM4880wlJSX5LN+huNiyPZOUlBT19oxVbJJaY7OaprNpRj1+AAjW1q1b9bvf/U5Lli5Vd0ndJSVL6itpuaSG/aY/7rjj9PDDD+u0007jyTVAGyQFYY8zz4x2BAc4rPnP0v33RygSAADiU46kvGgHAQAAEpoh6YTmv2Ac1fxn6bHHgqw5PPK8jZw40fc0f/pT2GIBgEgaIOl1i3EnSlrU/LlLly76+9//rptuusmvm0GARENSEPaYM0caOjTaUbTz9ddfa86cOR7H9erVS5dddlmEIwIAIL5s3bpV77zzjsdxP/rRj3TCCcFengMAAPDPrFmz9M033xwwPDs7W1dddZXP8qtWrdJnn31mOT4vLy+U8EI2YcIEy3EtsVlN07VrV1199dVhjwkA7FJfX6///Oc/eurppz2Oz5G0UFJJ8/8XXnihHn/8cfXv3z9SIQIxh6Qg7NG/v5SbG+0o2mmoqFBFdrbHcR27d3dcvAAAxBqXaVqea2t79+ZcCwAAbLe8rEzy0B6pkPxqi9Rt22bZnpGfddjJn9ispknu1i3q8QOAPxoaGjRt2jT99a9/VYEfjz3u3bevHp08Weeff77tsQGxjqQgAAAAwsI0zWiHAAAAEBJf7RnTNHk3FQDYpKKiQi+//LL+9a9/qbCw0Of0HdPTpbo6ffrpp0o79NAIRAjEPh6qi4ThrWHPRUwAAAAAAOBPUhAAEF6FhYW64YYb1K9fP912221+JQRPPPFEzZ49W5KUlpZmd4hA3CApCAAAgLDgBhwAABDraLMAQOTU1dXp4Ycf1rBhw/Tss8+qpqbGr3J/+9vftGDBAuXySGQgYDw+FAmDC5UAANiL8ykAAIh19BT0ze12yzAMHqMKICSzZ8/W7bffrs2bN/tdpnfv3nr66ad17rnn2hgZEN9ICgKiUQ8AAAAAAEgKelNXV6cZM2bou+++U2pqqo466iidcsopJAcBBOSrr77SPffcozlz5vhdJiUlRdddd50eeeQRdevWzcbogPhHUhAAAABhQa98AAAQ60gKWnvjjTdUUFAgSWpoaNDnn3+u5ORkjRkzJrqBAYgJTU1NeuSRR/TQQw/J7Xb7VaZDhw669tprdd9992nQoEE2RwgkBpKCsEdxsZSZGe0o2ulQXKys8nKP4zoZhtTcsAUAAMFJKSqyPNemb9/OuRYAANjOqi0iya+2SFpJidc6zPx8KTU1iMjCw5/ls5qms2kG3R6rqqpS+ZdfKmu/4fmffqoxXKgH4MOuXbt05513auGiRRogKVlSX0nLJTV4mL5Pnz669tprdfPNN2vAgAERjRWIdyQFYY8zz4x2BAcY2fxn6cEHIxQJAADxabCkvGgHAQAAElqet5ETJ/os/+Pmv1DqsFOet5HNsXmd5k9/Cmq+nb3VG2SdABJHd0kvexh+oqRFbf7Pzs7Www8/rBtuuEEdOnSITHBAgiEpCHvMmSMNHRrtKNpZu3atPvnkE4/jsrOzddVVV0U4IgDA/lwul5YvX66tW7eqc+fOOvzww5WTkxPtsOCnzZs3a8aMGR7HHX300Tr55JMjHBEAAEg0EyZMsByXl5fns/yiRYu0fPlyy/G33HKL0tLSgogsPPxZPqtpunbtqquvvjqo+S5evFhLly71OO7OO+/kvYIJrqioSBs3blRDQ4MGDx6sww47jG0Camho0NSpU/Wvf/1LrqamduNyJC2UVNJm2PXXX69HHnlEPXv2jGSYQMIhKQh79O8v5eZGO4p2GnbtUkV2tsdxKd27Oy5eAEg0pmnqjVdf1XfffbdvQG2tVs6fr1/96lfK5RgdE1z19Zbn2ro+fTjXAgAA21m1RST51Rap/e47r3WYgwZJ6elBRBYe/iyf1TTJ3boF3R6ry8+3nndurkQCKGFt2rRJb376aes74paXlemktDSdeuqpUY4M0bRq1Spdd911Wr16tdfpmiT95Cc/0aOPPqrjjjsuIrEBiS4p2gEATpDILwoHAKcoKyv7ISHYrKmpyeud2nAWzqcAACDW+WrP0N4B2vv8889bE4ItvvjiCzU2NkYpIkTTsmXLdO6552r06NE+E4KSNOnxx/X555+TEAQiiKQgEgYNdwBwtkWLFnkcvmHDhghHgmB5O9dyHgYAALGANkvg+M4Sl9vtVnFx8QHDm5qa+B2XYNavX68zzzxTxx13nOUrJdoaPmyYJGncuHE8ahaIMJKCgGjAAoATVFRURDsEAAAAJLh47ikYy7HDmZr2e09cW1VVVRGMBNHidrv12GOPafTo0Zo7d65fZa6//npNnz7d5sgAWOGdgkgYNH4BALAX51oAABBOVVVV+uabb1RdXa2DDz5YOTk5ts8znpOCduE7SVze1j29v+JbQ0OD3nnnHT322GN+v/IjMzNTkyZN0jXXXCMVFNgbIABLJAUB0YAFAMBusXiudbvd+v7771VUVKQ+ffpoyJAhSkmh+QwAQCTs2rVLL774Ymtvo/nz5+tnP/uZ7e+dIinoWaIuN7wjKZh4duzYoaefflpTpkxRSUmJ3+XGjh2rl19+Wf3797cxOgD+4KoGAAAAwiKeLha53W699957Wrt2beuwgw46SJdeeqk6dOgQxcgAAEgMn3766QGPH5wzZ45GjRqltLQ02+ZLUhDwn9vtthyXlMRbq+LJ2rVr9a9//UtvvPGGGhoa/C531FFH6Z577tHFF1/MNgE4BHsiEoa3hjuNegCIPu4kjX3xdD79/vvv2yUEW4atWbMmShEBAJBY1q9ff8Aw0zT11Vdf2TrfeGrPhJO3tjrfWeLylhTk913sM01TX3zxhc4991wdccQReumll/xOCJ5wwgmaNWuWVq5cqV/84hckBAEHoacg7FFcLGVmRjuKdlK3bVNWebnHcV2amniWNQBEWWZZmeVxmmN0bOhQXGy5DtO3b/d7PbpcLhUVFammpkY5OTnq0qVLGKP0z+r33vO4LCvfeUeju3ePeDwAACQaqzbFntWrpV69Ai4nya+2SFpJie86Onf2WY9d/Fk+q2k6u91Bt6vTt2/33lbnEesJyayuttwu0kpK+B0Xo8rLy/XMM8/o/fffV/G2bZKkQW3GJ0vqK2m5pP1ThJmZmXrsscd0/fXXkxgGHMrgbh6Eg2EYIySta/l/naQR0QsHAAAAAAAAAGCTEyUtavP/mWeeqf/+978aMmSI78IFBdLgwVJ+vpSbG3wQ4arH7npDqS/YsuFYBju+X7vWmR31FxRo/eDBGtl+6EjTNA98nEEM4TYe2GPOHGno0GhH0c6XX36pBQsWeBzXuXNnXXfddRGOCADQ1ttvv62ioiKP4/Ly8iIbDILy9ddfa86cOR7HjRo1SmPHjvVZx9y5c7Vhw4Z2wzp06KAbb7wxou/ymzBhguU4tkcAAOxndS4ePny4zjjjjIDLSf6dwz21Rdq69tpro/IUgxb+LJ/VNFlZWbrmmmuCmu8XX3yhZcuWeRz361//mncuJ6iKigpNnTrV47jTTjtNhx9+eIQjQrDy8/N13333acnSpT6nzZG0UFKJpI4dO+qKK67Q7bffrpEjR/ooCcAJSArCHv3725PpD0HDjh2qyM72OM7dubPj4gWARLO3Z09V7N3reSTH6JjQWFlpea6t7d3br/W4uKRE8lDHuupqHXXUUaGG6Der5ZDE9ggAQARYnYtrevXyei4O9Rxe06uXKkpKLMe7Bw6Uunb1WY9d/Fk+q2mSsrODbsfUff+99bxzcyWSggnJtWuX5XbR6MBrg2jP7Xbrk08+0VNPPaX3339fLpcroPL33Hefxv/2t+rWrZtNEQKwA2/4RMLgUbkA4Gy8byD2eTvXhnoe3rRpU0jlAQAA/OGrzcK1hQPxnSQut9ttOY7fd87V0NCgiRMnaujQoTrjjDP0zjvv+J0QPProozX5iSckSTfeeCMJQSAG0VMQEA1YAACcrqFh/1fYAwAAhF8sJwXr6uqUnp4e7TCQQLztD0lJ9EVxoqVLl+r666/XunXr/C6TnJys0047Tb/5zW90+umnyygstDFCAHYjKYiEYWfvBQAAYO/5tL6+3ra6AQAAWnjr+SQ5+/rBP//5Tx1zzDHRDgMJhJ6CsaGkpESLFi3S66+/runTp/t9HEtNTdXvf/973X777cr29uhiADGFpCAAAIg5pmlq586d2rVrlwYMGKDMzMxohwTZewMOPQUBAEAkxHJPQdM0tXz58qjMF4mJpKAzmaaplStX6u2339b06dP17bffBlzHmDFj9NRTT+nQQw+1IUIA0URSEBANWACIJU1NTZo+fbo2bNjQOuy8887TqFGjohcUbEdSEAAARALXBwD/eUsK8vjQyDJNU0uXLtXbb7+tt99+W4VBPuJzyJAhuv/++3X11VeT2AXiFElBJAwa9gDgbP7+4Fi2bFm7hKAkvf/++xo0aBCPNIkyO8+1dXV1ttUNAADQIpYfHwpEGj0Fo880Tb333nu6//77tXHjxqDqSElJ0fnnn6+bb75Zp5xyCgldIM6RFIQ9ioslhz3KLa2kRFnl5R7HpdfWSgUFkQ0IANBOZlmZ5XG67TF6/YcfKqu6+oBJNv7vf/rxj39sU3TwR+q2bdbn2u3b/TrXWm4Dkuo3bVJaWlqw4QXEWxy0GQAAsJ/VuTijtNTruTjUc3hGaanXOozCQmnvXp/12MXr8vnQ2e0Ouh2Tvn2797Z6hNpocJakoiLL7SKtpETKyIhwRIll3bp1evjhh7Vk6VJJ0qDm4cmS+kpaLsnX81Z+8Ytf6D//+Y/69etnX6AAHMXgDieEg2EYIySta/l/naQR0QsHAAAAAAAAABLWiZIWWYw75JBD9O9//1vnnntu4BUXFEiDB0v5+VJubnDBhaOOcNZjd72h1BdsWSetJ7vrtKv+ggKtHzxYI9sPHWma5vrQKo4uegrCHnPmSEOHRjuKdlasWKGFCxd6HJeWlqZbbrklwhEBANqaPn26tmzZ4nFcXl5e6+cJEyZ4nIZjefStWbNG8+bN8zju8MMP12mnneazDqv1K0lZWVk6/fTTtWTJElVVValnz5466aSTlJWVFWzIQcXRdnsEAAD2sDoXDx8+XGeccUbA5ST/zuHvvfeeCrz0prv88svVs2dPn/XYxdvy+SPYdswXX3yhZcuWeRx38803Kz09PYSoEKsKCwv17rvvehx3zjnnaMiQIRGOKL5VVlbqqaee0vPPP69aL69XyJG0UFLJfsO7du2qn/3sZ7r++ut5TCiQwEgKwh79+9uT6Q9BXVGRKizeNZWenu64eAEg0dT06qWKqirPI9sco62O5WlpaRzLo6xh507L9VPTq5df68eqvCRVSHpxwQK5XC4pKUlbdu3Sd59+qltvvVWpqalBRh14HE7bzrZt26Z169apvr5ehx56qIY67MYsAACCYXUuru3d2+u5ONRzeFX37qqoqLAc3zRggNSnj8967OJ1+fywprJSRxxxRMDlajdvtpy3OWiQ1LFjSHEhNjU0NlpuFw39+jmu3RyrXC6XnnzyST344IPavXu33+WM5GT97PTTNX78eJ199tnq3bs373oEQFIQkHhROAAA4RCJ86nL5Wr3f0VFhVasWKETTjjB9nk70ebNm/Xaa6+pqalJkrRq1SqdfvrpCft9AAAQKl/tmVi/frB48eKgkoKAJ263O9ohxL2lS5fqhhtu0Nq1a/2a3jAMnTJmjDR/vlasWKGuo0bZGyCAmEMfYQAAAIRFtC6SffTRR1GZrxPMnz+/NSHY4tNPPz0geQoAQCyJZuIt3pOC27dvV2NjY1jrjPXvBMHzlhRkuwjNihUrdNlll+nHP/6x3wnB0047TatXr9bUqVMl7XtcKADsj6QgEoa3xggNFQCIfRzLnc3u9ePtMV/xqqmpSUVFRQcMd7lc2rRpUxQiAgAg9vnq+RQPbc5gloFHDsITegqGl9vt1nvvvaeTTz5Zxx57rF577TW/9tehQ4dqxowZ+uijj+gJDMAnHh8KAACAsIjmRbLS0lJlZWVFbf7R4K03YCImSQEA8cPJPQUTFd8LPKGnYPjMnTtX//d//6evvvrK7zI9e/bUH/7wB918883q0KGDjdEBiCckBZEw6CkIAPGNY3liS8THZXrb5rmbHwCA4MT740PtwHeSuOgpGBrTNDVv3jz99a9/1aeffup3uYyMDP32t7/Vb3/7W3Xu3NnGCAHEI5KCAAAACAtuwIksbxdhkpJ4SwAAIHY5uacgbRrgB7T/g/fVV1/prrvuCigZKEkXX3yx/vOf/ygnJ8emyADEO5KCsEdxsZSZGe0o2kkrKVFWebnHcSkpKVJBQWQDAgC0k1lWZnmcbnuMtpqmQ4cOHMujLHXbNsv103HHDr/Wj+U24ENKUZHUsWNQZQOOwynbWU2NZZxpJSXOiRMAgEA1NQXdpgj1HJ5RWuq1jqQtW6SmJp/12CXYtlI7BQVSampARdK3b/feVnfYNSBERkpRkfXvs+JiiV5sB3C5XJo0aZImTZokt2lqkKRkSX0lLZfUYFHukEMO0aOPPqpx48ZFLFYA8cngrg2Eg2EYIySta/l/naQR0QsHAAAAAAAAAGLGiZIW7Tds7Nixuuuuu3TOOef4/zSQggJp8GApP1/KzQ1vkOGqP1wx2rWs4a43lPqCLeuk9WR3nXbVX1Cg9YMHa2T7oSNN01wfWsXRRU9B2GPOHGno0GhH0c6SJUu0ZMkSj+OSk5N1++23RzgiAEBb7733ngos7t7Oy8tr/TxhwgSP03Asj76VK1fq888/9zhu+PDhOuOMM7yWN01TEydODGreZ599tg455JCgynpitZ1J7bfHaKqsrNTzzz/vcdxpp52mww8/PMIRAQAQHi6XS//97389jvPVpgj1HP7KK6+orKzMcnxycrIuuugi9evXz2dddvC2fP665ZZblJaWFlCZRYsWafny5R7H3XDDDcqkp2BCWr16tebPn+9x3Jlnnqlhw4ZFNiCH2rhxo5544gnNnDlTnrrn5EhaKKmkzbCLLrpI999/v44++ujIBAkgYZAUhD3697cn0x+CuoICVWRnexyXlJTkuHgBINHs7dlTFRUVnke2OUZbHcuTk5M5lkdZXXGx5fqp7d3b5/ox3W7L8r409OsX1vXvNQ6HbGeu3bst43Tl5DgmTgAAAmU2Ngbdpgj1HF6Rna0Kl8vrNC8uWKDrrrtOvXr18llfuAXbVmrLHDRISk8PqEzd5s2W83YPHMhjIhNU3fbtlttFuNvnsai0tFR33XWXXn31Vb+mb5I0ZswY/eMf/9Bxxx1nb3AAEpaffY4BAACA4PnzyHqnPNbeVxxOidPtdluO8/vRQgAAoB1/zvMNDQ1avz52nxwW7rbMihUrwlofYoe39qhT2szR4Ha79cILL2jYsGF+JwQl6c033tD8+fNJCAKwFVcLACV2QwUAnMIwjJDKcyyPvmiug3DOOx6SgqHuTwAARFMstCk+++wzmyOJHZ999pmKioqiHQaiwFt7NFF99tlnOvbYY3XNNddo9+7dPqfPzs7WfydNkiT96Ec/sjs8ACApiMThlAt4AADAM6ecq31d3HDKxQ96CgIA4lUsJAVjmR3LuHr16rDXCeejp+AP6urqdPfdd2vMmDFatWqVX2VOPvlkffXVVzrnnHNsjg4AfsDVAkCJ11ABgHjEsTz6vK0Du9dPOOtvamqK2LxCQU9BAEAisvsc55Sbf+xkR1tm5cqVYa8TzueUdnG0rV69WqNHj9Zjjz3m1/TDhg3Tyy+/rE8//VQDBgywOToAaI+kIBIGDRUAiF0cw2NDqOvJKeuZnoIAAEQXPQWB2JDoPQVN09SECRN03HHHacOGDT6nHz58uN555x2tW7dOl19+OW12AFGREu0AAAAAACeJh6QgPQUBAAhOoiQyIlEG8c8p7eJo2Lt3r6677jq98cYbPqft0KGDHnjgAd17771KTU2NQHQAYI2kINDMNE0uoAFAFHk7BvtzjOZCRfSF+vjQUNZhONe/r4sbTtnW6CkIAIhXvs61VVVVcrvdysrKivi840EiLCMiI1F7Cn7zzTe6+OKLtWbNGp/TXnDBBXrkkUd02GGHRSAyAPCNpCDsUVwsZWZGO4p20kpKlFVebj1BQYFEUhAAoiazrMz6OF1QIDUnOXweyxE13s61GaWlvtdPQ4P39etFh+JiqUuXoMruz6ys9BqHmZ/viHaOUVhoGWfy1q0SdyEDAGKUUVdneY77ft48fT9vniQpJydH55xzjtLT01vHh9pW7LRzp5JqavwLNAptz2DbSm0ZhYVSp04BlUnfvt33vGmLJ5zUbdsst4vUbduk7t0jHJG9TNPUq6++qocffli1dXUa1Dw8WVJfScslNTQP69Onj55//nn9/Oc/j0qsAGDFiOe7NhA5hmGMkLSu5f91kkZELxwAAAAAAAAAiJgTJS2SdNFFF+mpp55Sd3+TogUF0uDBUn6+lJsbeiDhrs+O+sMVo13L6qR1EmxZJ60nu+u0q/6CAq0fPFgj2w8daZrm+tAqji56CsIec+ZIQ4dGO4p2Fi5cqBUrVliOv+OOO3jUFgBE0QcffKDvv//e47jbb79dycnJkqQJEyZY1pGXl2dDZPDX4sWLtXTpUo/jDj30UJ93ydbX12vKlClBzfuMM87Q8OHDgyq7v927d2vatGmW46+99lp1CVOvxFBs3rxZM2bM8Dhu3LhxOvjggyMcEQAA4VFbW6unnnrK7+kvuOACDRq0r89OKG3Fb7/9Vh9++KHf841G29Pb8vnruuuuU+fOnQMq4+uaikRbPBHNmzfP8hGap556qo444ogIRxR+pmnqlVde0Z/+9Cc1ulwep8mRtFBSeWqqnp08Wddeey2vKALgWCQFYY/+/e3J9Ieg7rvvVJGdbTneHDRIar7gDACIvL09e6rC4tEz5qBBUsq+Zou3Y7nTzj2Jpi4/33L91PTq5XP9mHV13tevFw39+oVt/Td27Og1jqYBA6Qg4wynhtpayzgbHdgWAwDAX+69ewNqE3yyebOuHTNGUvBtxbVr12r6F18Edo6Pwrk22LZSW+6BA6UA38fo65qKJNoeCaimVy/L7aK+b9+Y3yYaGxt122236emnn/Zr+jenT9eIs8+2OSoACA3dogAAgCNwJ2XsC/Wx9E55rL3b7Q5pfKR4i8Mp3yUAAJFQXFwcch3Lli0LQySxgXYCwsUp7WI77Nq1S2eccYZfCcExJ58sSRoxgpcpAXA+egoiYfhq9NIoBgDnCvYY3djYqAULFqigoEBdu3bVscce2/poKYSft/UUS+dZkoIAAERXoOexcJybi4qKQq4DSDTx2h79+uuvNW7cOG3evNnrdOnp6frXv/6lX599tnTQQRGKDgBCQ1IQAADEJdM09eqrr6qgoEDSvjvIN23apF/96lckBh0qlAsH4bzo4OvColMucDglOQkAQKxzyrk9UhJteWGfeEwKzpkzR5dccokqKyu9Tvfzn/9cjz76qIYNGyY1/+YEgFjA40ORMOgpCACxK5hjdElJSWtCsIXL5dKKFSvCFBX2Fy/n0qamJq/jnZKMi8eLMAAASJE/jznl3A7Emnhrcz777LM666yzvCYEU1NT9eSTT+rDDz/clxAEgBhDUhAAAMSlBQsWeBy+bt26CEcCyb8LBrHSU9ApFw6dEgcAALEu0c6p8ZbIQfTEy01q9fX1+r//+z/dcMMNXpepZ8+emjdvnm666SYZhhHBCAEgfHh8KNAslhorABCPvP2oCuYYvWvXrlDCQRDi5VwaK48P9daj0SkxAgAQjEifx3w9JSDe0E5AuMRDQn3NmjW64oortGbNGq/TjRw5UjNmzFBubm5kAgMAm5AUhD2Ki6XMzGhH0U5aSYmyysstx5v5+VJaWgQjAgC0lVFaan2cLihoPUZ7O5a3fZdDRmmpXFaPfeGdD7bwdq7NKC31/b3v3et9/XrRobhY6tYtqLL7MwoLvcZhFBZKjY1hmVcoOhQXW8bZobhY6tQpwhEBABAeRlVV4G2CggKZpul3W7Etd01NcG2QKLQpg20rtZW0ZYtUVRVQmfTt233PmzZ2wum4Y4fldpG6bZujt4mmpiY9++yzevTRR9XQ2KhBkpIl9ZW0XFJDm2nPOeccvfrqq+rcuXNUYgWAcDK4OwjhYBjGCEmtz2NbJ2lE9MIBAAAAAAAAgICdKGlR8+ff/OY3+sc//qHk5GTrAgUF0uDBUn6+FExPwlDL212fHfWHK0a7ltVJ6yTYsk5aT3bXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7SxYsEBffvml5fhbbrlFafQUBIComTFjhjZv3uxxXNtj9IQJEyzryMvLa/08ZcoU1dfX+5wO4ePtXDtkyBCdc845XstXV1fr2WefDWrep556qo444oigyu7vm2++0axZsyzHjx8/Xjk5OWGZVyiWL1+uRYsWeRz3s5/9TIcddliEIwIAIDwqKyv1/PPPB1QmLy9Pbrdbjz/+uNdpPKmoqNDUqVMDmp+3+uzkrS3sryuuuELdu3cPqMzChQu1YsUKr9PQxk4806dP15YtWzyOO+mkkzR69OgIR+TbzJkzdf/996vSQ2/ZHEkLJZVo3+stJk6cqNtvvz3SIQKArUgKwh79+9uT6Q9B7caNqsjOthxvDhokpadHMCIAQFs1vXqpYvduj+PcAwdKHTtKktdjedtzz67OndWUkeFzOoSPt3NtTa9ePr93s6rK+/r1oqFfv7Ct13ofcYRzXqGo3bLFMk6nxAgAQDDce/YE3ibIzZXZ1OR3W7Gtxp07g2uDROFcG2xbqS33wIFSz54Blan77jvf86btkXCqundXhcWjaOv79nXUNmGapv7xj3/ovvvu8zlt127dNGPaNJ199tkRiAwAIoukIBKGr0fl8ihdAIguwzDCWl9TU1NY60No/DnPOuVc7Ha7QxofKd7icMp3CQBAMII9jwVbzinn9kgJ5nuibQFPvG0XTtpmqqurdd111+nNN9/0a/o5c+aoxzHH2BwVAERHUrQDAAAA8MVJPyhhLdT1FEr5cG4j8ZAUBAAgEQXbHuBmMiA4sdAe3bRpk4477jifCcHOnTvr3//6lySpR48ekQgNAKKCpCDQjAvOAABAip2nC9BTEAAQryLdUzDRkoKxkMhBbHB6e/Tdd9/Vscceqw0bNnid7ic/+Ym++uorjR8/PkKRAUD0kBREwnBCYwQAEBqO5c4W6uODnNJT0FddTrmQlmgXMAEA8IWkoH+eeuopffDBB2psbDxgXF1dnb7++mvl5+fL5XJFITrEEqe0i/f39ddf6xe/+IUuvPBCVVm887DFn/70J82fP1+DBw+OUHQAEF28UxBoxoVmAHCulmM0x2pni5f1EytJQaffmQ0AQLCCfecdSUH/ffnll6qpqdGll17aOmzLli165ZVX1NDQIEnq3r27rrzySnXp0iVaYcLhnNYe/eyzz/SXv/xFn3zyic/5p6en69lnn9Xll18eoegAwBnoKYiEwcUxAACcLVZ6CjqlTeGU5CQAAE4QSlIwUc+pmzZtUm1traR939+bb77ZmhCUpF27dul///tftMJDDHBKUrCpqUl33323xowZo48//tjnvAcPHqzFixeTEASQkEgKAs2ccoEPAHAgegrGhlAfH+oUvi4MOuXCoVMuwgAAEG70FIycjRs3StrXS3Dv3r0HjP/6669pV8CSE7aN0tJSjRs3To899phf05911llauXKlRo0aZW9gAOBQPD4U9iguljIzox1FOx137FBWebnleKOw0HExA0AiySwrszxOtxyjTZfL67FcBQWtH/2dDuHj7VybWVbm83s39uzxvt68SN22LWzrNXXbNq9xpBQVSQ54jFZaSYllnB2Ki6Vu3SIcEQAA4ZG0e3fgbYKCAqm+Pqg2YNKWLcG1QaLQpgy2rWQlpahIys7W9qVLLet2f/+90rdv9z1v2tgJJ7OsTI179ngcF872uSemaeqDDz7QQw89pPI9ezSoeXiypL6SlktqaDO9YRh68MEH9Yc//EFJSfSTAZC4DCfc0YHYZxjGCEnrWv5fJ2lE9MIBAAAAAAAAkKBOlLSo+fPIkSP12GOP6ac//an3QgUF0uDBUn6+lJvr/8yCLReu8nbXZ0f94YrRrmV10jqJ1nYZrjoiUadd9RcUaP3gwRrZfuhI0zTXh1ZxdNFTEPaYM0caOjTaUbTzySefaO3atZbjr7/+enXq1CmCEQEA2vrwww/17bffehzXcoxubGzUE088YVlHXl5e6+cJEyb4NR3C56OPPtL69Z7bxgcddJDOPfdcr+XLy8v14osvBjXvMWPG6Kijjgqq7P5Wrlypzz//3HL8aaedpsMPPzws8wrF7NmztWnTJo/jTj31VB1xxBERjggAgPDYtWuXXnrppYDK/PrXv1Z9fb2effZZy2ms2oAbNmzQ3LlzA5qft/rs5K2NG4yf//znOvTQQ7V8+XItWrTI4zS33nqrli5dqpUrV3qtizZ24nn++edVWVnpcdzxxx+v448/Pqzzc7lceuONN/SPf/xDlVVVHqfJkbRQUomkESNG6IEHHtAll1xC70AAaEZSEPbo39+eTH8Ianr1UkV2tuV498CBjngUGAAkqppevVSxc6fHcS3HaLOhweuxvOXc09TU5Nd0CK/a3r1VsW2bx3HVPXr4/N7dnTt7X29e1PXpE7b1Wldc7DWOcM4rFNU9eqiitNTjuIZ+/RwRIwAAwWjKyAi4TWAOGiR3XV1QbcDaXbuCa4NE4VwbbFvJinvgQCk3Vw1e2j/moEGqKyz0OW9z0CAZhhHW+OBsFdnZqkxO9jgunG1ml8ulmTNn6oEHHrC8CXF/z02dqjFXXcU2CQD74RYJAAAQM/x97LnL5bI5EngS6mPpnfJYe7fb7XV8LMTplBgBAIgU0zR9nv+sxvs698ezlJR9/QW8JU78/X7+85//aNmyZWGJC7HB7vbozp07df/992vgwIG64IIL/EoIHtr85LKxY8eSEAQAD+gpCDTj4hkARJe3H2wtx2h/j9WNjY1hiQmRFcq5OJzncV91OeXCoVPiABCYqqoqrVixQqWlpcrJydExxxyjtLS0aIcFOEow5/VQ2gJNTU1Bl411yc29vHy1xf35fqurqzV79mx17txZw4YNC1uMcC67rqU1NDTo5Zdf1j333KOdFk+T2V9KSop+//vf6/7LLpMOPdSWuAAgHpAURMIg6QcAiYOkYHR4O9fG0nk4HpKCsfR9A4mkqqpKU6dOVXl5uSRp48aN2rhxo6688kp16NAhytEBsc3fnoKekl8kBcPTU7DFunXrSAomCDvao0uWLNGVV15p+b55T44++mhNnTp13zu1CwqCmi8AJAoeHwo04+IZADgXPQUTAz0FA+OUOAD4b82aNa0JwRZFRUX67rvvohQR4EzB9hQMtj2QyEnBFv48tcNfGzZsCDUcxIhwtsF37typG2+8USeccILfCcG0tDT97W9/09KlS/clBAEAPpEURMII9t0CAADn4J2CzhYv59JYaTPQUxCIPR9//LHH4Z9++mmEIwHiU7Dn8EROCrZ8J756CvJuNngSjvZoU1OTnn76aR166KF65pln/C532WWXadOmTbr33ntb340JAPCNIyYAAHC8QBMcJESiI9THhzplvcVKUtDbBUynxAjAP2VlZdEOAXCUSPcUpPe976QgbQt4Eup2sXbtWt1www1aunSpX9N37NhRF110ke68804dc8wxIc0bABIVSUHYo7hYysyMdhTtdNyxQ1n7PaqnLaOwUKqoiGBEAIC2MsvKLI/TSVu27DtG19R4PZa3vD8iqaTEr+kQXhmlpZbfe2ZZmc/vPcnLNuBL6rZtYVuvqdu2eY0jnPMKhbfvO62kxBExAmiPcxPgnyQfv989KiiQUV/vtZyZny956FHUobg4uDZIFPbbYNtKVlKKiiTtaztY1W0UFip9+/bA5s0xLSF03rXL8kY1X+3R559/Xo888ohcTU0a1DwsWVJfScslNbSZtkOHDrr33nv1m9/8RllZWeEJHgASlMGdPggHwzBGSFrX8v86SSOiFw4AAAAAAACAGHSipEXNny+99FI99NBDOvTQQ/0rXFAgDR4s5edLubmBzTjYsqHMMxzl7a7PjvrDFaNdy+qkdRKt7TJcdUSiTrvqLyjQ+sGDNbL90JGmaa4PreLooqcg7DFnjjR0aLSjaGfu3LleX3Z91VVXKTs7O4IRAQDamj17tjZt2uRx3NVXX62uXbuqurpazz77rGUdeXl5kqTi4mK99dZbltPdeeedvBfFBt7W4cCBA3XhhRd6LV9WVqZXXnklqHmfcMIJ+tGPfhRU2f199tlnWrVqleX4448/Xscff3xY5hWKV155xfKRgyeffLKOPvroCEcEwJcJEyZYjms5hwGQtm/frtdffz2gMtddd53q6+v18ssvW07z61//Wh06dDhg+CeffKK1a9cGHGc02pTejiPBuOiiizRgwACtW7fO8r2nV1xxhdavX++1fbQ/jmmJwdv2OHr0aJ100knthtXV1emuu+7S7P/9z2OZHEkLJZVIOuigg/T444/r7LPPDlu8AACSgrBL//72ZPpDUNOrlypKSizHuwcOlLp3j2BEAIC2anr1UkVpqcdxTQMGSN27y6yqUoW3Gziazz0uw/A9HUnBsNvbs6flOtzbs6fPtoErLc37evOivm/fsLU9ajdt8hpHbe/ejmjnVHbrpgqXy+O4uj59HBEjgPasji0pKSnss0AbTR06BNwmcA8cqKa6Ot9tQA9JweoePYJqg5iDBslISgq4XCiCbStZaWy+ftNYXm5ZtysnR3W7dgU2b45pcc80zYDazLt27dJ5v/qVFi1aZFmmxR15ebrpb39Tenp6OEIFALRBUhAJw9ejcnmULgBElz93Wft7rPbnmE9PwfCL5rk0nPOOlTaDU+IAELrk5ORohwAEbfv27dq4caNM09Rhhx2mvn37hlxnMOc40zSDPoe73e6A5+etvljkrW0cT8uJ8Alku8jPz9fPf/5zy6eKtBg7Zoy0YIHuvPNOiYQgANiCpCAAAHC8lh+c4UwKIrL8+c6dsl6CvTDoJE75LgH4JyWFn+aITd98843efPNNNTU1SZIWLlyo8ePHa9iwYRGPxZ+koJWW+APldrvjJqnvLSkYD20jhJ+v7cI0TblcLj3zzDP6wx/+oF27dllOm5KSoieffFLXnnqqdNBB4Q4VANBGZJ9xADgYF88AwPlICjpbqN+rU9ZLrGw/TokDQOhICiJWzZ07t11Cze12a86cOVFpE4TSUzDYpGA8nItbloGkIALla7v49ttvdeSRR+rWW2/1mhDs3LmzZs2apeuuu46nuQBABPDLAwkjHhrrABAIl8ulrVu3qqqqSrm5uerSpUu0QwpaoMfwWEnqIHwS8fGh3sRCjAB+EC89jZBYysvLPV7or6ioUGlpqXr37h3xmII9//H4UB4fisB52y42bdqk6dOnq76+3msd/fr106xZs3TkkUeGOzwAgAWSgkAzGrkA4klNTY2mTZumHTt2SJKSkpKi9iincPL3XYEc06PD2/ceS48PJSkIwA7ekg70FEQsqq6uthxXVVUVUlKQnoKRR09BBMpqu1i+fLlmzZrlc/8YMWKEZs+erQEDBtgRHgDAAo8PRcKIp8Y6APjy8ccftyYEpX0/2KZPn67GxsYoRuWdP3cn+3uhJx6SOrEomt9rJHsKOkWsxAlgH5fLZTmOnoKIRd7OQ9F4BGA03ikYD+fiWLpxC86y/3ZhmqY+/vhjffjhhz63mbFjx2rhwoUkBAEgCrgdEfYoLpYyM6MdRTsZpaXKKi+3HG8UFko1NRGMCADs8/28ecryMPzbjz7S8OHDIx6PP7wdp5O2bJFqamSUl3s9lpv5+VJyspK3bvU9XVpayDGjvcyyMsvvPTMzUyoo8Fo+ads2r+vNm/Tt233WH0hd3uJIKykJ27xC0XnXLrks4kzdts0RMQL4QVNtreWxpWvHjuyziDlJRUWW23Tqtm1SCMlub3VbMQoLlVRX571cQYGUnn7A4I47dgTXBikokDp2DLxcCIJtK1lJKSqSUlLUobjYa1vcV/voABzT4p65d2/rNtHU1KSPP/5YWzdu1CBJyZL6SlouqaFNmfT0dP32t7/VH/7wB6WmpkY+6ADt2LFDCxcu1Pbt29W/f3+NHTtWXbt2jXZYABASg7t9EA6GYYyQtK7l/3WSRkQvHAAAAAAAAABRdKKkRc2fL7jgAk2YMEEDBw60LlBQIA0eLOXnS7m5wc00lDralN3dpYueffZZ1dbWto7OysrSDTfcsO+Gx3DGHY7ltrM+O+oPV4x2LauT1kmwZZ20nuyu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2pk1a5a++eYby/GXX365evbsGcGIAMA+EyZM8Dj8kEMO0dlnnx3ZYPw0Z84cff311x7HtRyjd+/erWnTplnWceuttyo1NVWbN2/WjBkzLKe75ZZblEZPwbB7//33lZ+f73FcTk6Oxo8f77V8cXGx3nrrraDmfdxxx+nHP/5xUGX3521blKSjjjpKY8aMCcu8QvHCCy9oz549Hscdf/zxOv744yMbEACv9uzZoxdeeMHjuMGDB+u8886LbEBAiLZs2aLp06d7HDd+/Hjl5OQEXXdRUZHefvvtgMpcfvnlqq+v91rupptuUkcPPftef/11bd++PeA4PSYHbGbVzg/Weeedp8GDB2vjxo363//+ZznNli1b9OWXX/pd7x133KGkJN5aFM8qKyv13HPP6eOPP9b6DRvajcuRtFBSSfP/9913nx5++OGY2ibWrVvXLiEoSRUVFdq0aZOOPvroKEUFAKEjKQh79O9vT6Y/BDW9eqmirMxyfNOAAVKfPhGMCADsU5Gd7XH43p49HXd8blHTq5cqLC7GtByjmzIzLZdNksxBg6S0NDXU1nqdzj1wYMQf9ZQI9vbsqQqLJFXXHj18bntNSUle15s3tb17h23b3tuzp+W2GO55haKyWzdVWLyzqb5vX0fECOAHDaWllse4uj592GcRcxqbmiy3affAgZK33kA+uGTdnrXSNGCAGn20Ac1Bg6SMjAOGV/fooYr6+kDD3LecnTsHXC4UwbaVrLhycqTcXDVWVVnW3di/v+oaGgKat3vgQCWlcNkxntWXlemlzz/Xl/slBNsyDUNTJk/WzTffHMHIwuPTTz/1OHzGjBkkBQHENM7OSBi+HpXLo3QBJAInH+sMi+RGIFqWj2O+/UzT1Pr16/Xdd98pMzNThx9+uNfv1Z/v3Cnrxe12ex3vlDi9iYUYgUTjcrksx6Vw4RwxyNu5JtR2XTDnMdM0g24DBnvejIfzrT/tZ19tI2/1Ij7t3LlTF154oc/eo08//bR+ev31EYoKAOAPfnkAzWiwAkgEsXqsCzTZR1LQfp988okWLVrU+v/y5ctj5nFA5eXlKisrU05OjjI89BaIle0n1CQsgMjylhRMTk6OYCRAeHhLFIXjZq9gRDq5F0/nW2/HqGCSgsGUQWxYtWqVLrjgAm3ZssVymrTUVKmhQT/96U8jGBkAwB8kBQEASCCx/uOcpKAz1NTUtEsISlJjY2PI9YayXvwp63a79cEHH+irr75qHTZu3LgDHv/D9gHADt4uuMfKTRVAW3aeL+kpGDm7du3S1KlTvSZ4/Plu9xfrvztwoPr6ek2ePFn333+/6urqLKdLSUnRuHHjpHfeiWB0AAB/kRREwuACMQDE/rHOV/wtFx9ifTmdbvXq1QGXccI6WbVqVbuEoLTvnSADBw5Ujx49WofFSpuBnoJAbPGWFGSfRSyy8zxkV1Iw3CKd+LJj+ebOnetzGnoKJjbTNPXmm2/q3nvvVUFBgddpk5OT9ctf/lI53bpFJjgAQMC4HREAIogLPoi2WN0G/Y073NPBs127dtlSr909BRcvXuxx+P7vQomVpCCA2OItKQjEIm9Jn2icK0N5f3Ei9xT0Bz0FE9eePXv0y1/+UpdeeqnPhGBGRoauuOIKHXzwwZEJDgAQFHoKImFwgQ/RVFtbq9mzZ2vz5s3q3Lmzjj32WI0ePTraYQExh8eHxje718vu3bs9Dl+8eLFOP/301v9j5SIWPQWB2EJSEPHG27km1HMpjw91FnoKJqbPP/9cv/rVr7w+WrZF7969demllyo7OzsCkQEAQkFSEABsZpqmXn75ZW3btk3SvndxzZw5UykpKTryyCOjHB0STaz+OA802UdS0Hns/s7DWT/bDwA78PhQxBun3ZwSyuNDYyUpGK1jRTDfLce12NXY2Kg///nPeuSRR/z6/Thy5Eide+65Sk1NjUB0AIBQkRSEPYqLpczMaEfRTkZpqbLKyy3HJ23ZInH3Lmyws6xMe9evV9Z+w7/96CMdmbX/UCA8rI53GZmZko/HvkSLt+N08tatUmOjkrZv93osNwoLpS5d1KG42K/pEBxf51RPOqWn+9z2krduDbjeFunbt/us36puwzDalfW1fP7MKxI679olo7ra47i0khJHxAjgB0lbtlifn0tL2WcRc7xt08lbt0qGEXTdwbQJkrZsUUp9vfdyBQUe24Cddu5UQxBtEKOwUNq7N+ByQXO7g24rhSKlqEgdd+4MbN4FBVLXrnaFBJsUFhYqLy9PX65erQHNw5Il9ZW0XFJDm2k7duyok08+Wccff/y+9jQAICaQFIQ9zjwz2hEcYJyvCSZOjEQYSEA9JeVZjfzd7yIXCBJKnreRDt3uzmj+86j5GN1HPpatebrhzX++pkNwTmv+C9i993odPUg+1m+IvNY9YULrxwtsjCGcro92AAACMqr5D4gXXttbIba1BiuINkHzPL2Ws4jrykDn5aM+uyTJ3raSpeblPCWIMogtgyS9azHuREmLJCUnJ+vGG2/UNddco1mzZkUuOABAWJAUhD3mzJGGDo12FO3MmDFDmzdvthx/8cUXq3///hGMCIli5syZ+u677zyOy8vLi2wwSBgT2iQ42urfv78uvvjiyAbjp7lz52rDhg0ex/3iF79Q3759VVJSojfeeMOyjquuukrZ2dlat26dPv74Y8vprrnmGmXRUzdo8+bN05o1awIq06dPH1166aVepykoKNB7770XVExHH320Tj75ZK/TWO0XhmHozjvvbP3/nXfe0datWy3rGT58uM44wzKFHTHPPPOM9lr0Thg9erROOumkCEeEaKmsrNTbb7+tysrK1mEHH3ywzj77bCUlJUUxMrS1dOlSLV682OO4YcOG6UwH3lgJeLN27Vp98sknHsedf/75ys3NDbru77//Xh988EFAZcaPH6/a2lp9+OGHltNce+216uKhp+CLL76o8iB64J133nkaPHhwwOWC1dTUpEmTJkVsfi3Gjh2r3bt3B9T++9WvfqUePXrYGBXCZf369Xr44Ye1eMkSj+NzJC2UVCJp6NChevXVVzV69GgV0MMdAGISSUHYo39/KYQfAHao7tFDFbt3W45vGjBAGjgwghEhUdT06qWKXbs8j3TYfoL4UWHxgvcu3bs7drur7d1bFSUlHse5cnKkAQPkSk62XDap+Vjeo4fqd+3yPV23biHHnKhqe/f2+v160qlHD5/bnsvlCrjeFnV9+vis36puwzDala3u0UMVFo/llPYd152wH1V266Zqi3e31Pbu7YgYERnLPv5YW5OTpTbb+Krdu3VkSooG0r51jNqCAsvjkFOOK0Ag6srKLLfpxhCvCbgaGgJuEzT276+Gmhqv5dwDB3p8pGVlt26qCDRISdM++0x/HDs2Yo9ONENoK4Wirk8f1XboENC8XTk5Up8+NkaFUFVVVemee+7Rk08+6dc7IC+59FI98Oyzymx+XRDvjQSA2MRto0AzGjOxo7a2NqbWF8/Wh5PE0r7jia/4W8b7Ox2cJZT1Es516na7w1aXndiO0WLRokUehy9YsOCAYY2NjZo3b56ee+45vfPOOyosLLQ7PDTzts+yPyMWNTU1WY4LdZsOprxpmkG3AUOJd7eXm4/jhT/fracycK7Fixfr8MMP15QpU3yuq67NT1j529/+1poQlGKnzQwAaI+kIBIGDdLYV1xcrMmTJ+uf//yn/vOf/2j58uXRDgmIObF6LPQ3bn+TgghNMDc7xNI6iYekcizECPtt2bKl3f+maeqNN97Q559/rqKiIq1bt04vvfQSj/+KEPZLxBtvCYG5c+eqpqYmgtEEl7gKh9WrV0d8npEWTPKHhJEzmaapCRMm6OSTT/brxqBTTz1V//vf/yzrCkZjYyPnRACIIpKCQDMaJM62d+9evfTSSyorK5MkVVdXa9asWdq4cWOUI/ONnoJwklg/1tFTML45padgrGw/TokDsaO0tPSAd2w3NTVpxYoVUYoosbDPIt54S/rs2rVLL774ourr64OqO5Z6Ckby9160jiPBJFxJCjpPQ0ODrr/+et11111yuVxep+3YsaMef/xxffTRR+pj8RjYQNfxrl279Pzzz+tvf/ubJkyYoGXLlgVUHgAQHiQFbWIYRqphGFcYhjHLMIxCwzDqDMMoMQzjC8MwfmsYhm1vWzYM48eGYUw2DGOVYRi7DcNoNAyj0jCMbw3DeNMwjMsMw0iza/6AHTZv3uzxB+WGDRuiEA0Qu5x8QdLbBZVAk32xktSBM8XD9hEPy4DQ7X9cXbhwocfp1q9fH4lwEh6PD0W88fb4UMnzjQh2CqWnYCj74KZNm9TY2Bh0+VhAT8HYt3v3bp155pl6/vnnfU578skna/Xq1br99tuVlGR96TiQ/aahoUEvvviitm7dKtM0VVlZqdmzZ2vdunV+1wEACA+SgjYwDOMwSUslTZP0c0kDJaVJ6iPpx5L+JWm9YRhnhXm+3Q3DeE/SF5JukXSUpGxJKZI6Sxoi6WJJrzTP/yfhnL/TcYE4tn3wwQceh69duzbCkQCxLdaPdb7ib7n4wDHfXnbdEU9PwcA4JQ441/7bSEVFRZQigcQ+i/jjT9Jn7ty5QdUdSz0FS0tL9eqrr0YkMUhPQQRj1qxZOuaYYzR//nyv0w0cOFDvvfee5s+fr6FDh/qsN5B1XFhYqKqqqgOGkxQEgMgjKRhmhmHkSPpE0qjmQaakBZKelzRDUm3z8F6S3jMM49QwzbejpI8lnddmcJmkuW3m/X2bcQdLmmsYxnHhmD8AIDbE6gVJ3ikY+/xZJ05Zb74ucDglTm9iIUYg0Xg7trDPIhb5kxCI5M0I0dyPCgoKtGbNmqjN3270FIxN3377rc455xydffbZys/P9zrtNddco3Xr1um8887z+wbAQPa5Tz75xOPwTZs2+V0HACA8UqIdQBx6VVK/5s+Fks4zTfOrlpHNjw19XdJpkjpIesswjINN09wT4nzvUftE5B8k/cc0zZYkpIx9Z/VfSHpSUpakDEnPSDoixHkfqLhYyswMe7WhyCgtVVZ5ueX45K1bJd795lhZ5eXWj6cpKIhoLIHKLCuz3vYcHjtil9U21yk52bHbXccdOyzjTikqkrTvWO3tWJ60ZYvU2KjUbdu8TmcUFko1NaEFnMB8nVM96dShg89tr0NxccD1tui4Y4fP+q3qNgyjXdlOO3d6jcOfeUVCl927lVpX53Fc+vbtjogRkWF57ExJ8X/bZnuxXfr27Zbff0ZpKesAMcfv83YQ23ZKUVHAbYKUoiJ1qKvz3Qb00FsppahIWT4eh+rLN3PnanT37iHV4VNDQ9BtpVCkbtumjjU1Ac07eetWKTnZxqjgzVtvvaUHHnhA9Q0NGtQ8LFlSX0nLJTU0D0tLS9OTTz6pq6++OuB5BJL49fW4YQBA5JAUDKPmx4Ge1Pxvg6Rxpmm2e7ahaZo7DcM4T9IaSQdJ6ibp/yTdH+Lsr27z+XHTNP+6/wTmvlt4XjcMwyXprebBhxuGcfj+cYbszDPDWl04XOBrgokTIxEGgnS7t5EOX3c/b/7zyOGxI3bleRv5hz9EKIrAnN7851HzvjJQPpatebrRzX++pkNwxjT/Bez3v/c6+mD5WL8h8lr3hAmtHy/3p7LbbgsplnC4OdoBwDHyvI189NHWj5d4m47jou2CPnYCDnVy859PQRxfDlEQbYLm+YwIIhavvzcDcX+ol3a8S5W9bSVfLNvqnnBeiaqLm/88OVHSIkk9e/bUe++9pxNOOCGoeQTSU9Cu1w8AAAJHUjC8ft3m84tWiTbTNPcahvFHSS83D7rJMIw/mqbpCmamhmF0kVpv/JGk13wUeU9Sjfb1FJSkoZLCmxScM0fy4/njkfTuu++qsLDQcvwFF1ygQYMGWY5HdE2aNMnyzrK8vLzIBhOg//3vf9q4caPHcU6PHbFrQpsER1vdunXTlVdeGdlg/PTRRx9p/fr1HsdddNFFGjBggAoLC/Xuu+9a1nHxxRerf//+Wr58uRYtWmQ53WWXXaZevXqFHHOiWrBggb788suAyvTs2VOXX+493fbdd99p5syZQcV05JFH6pRTTvE6jdV+kZSUpDvuuKP1/5deekm7du2yrGfIkCE655xzgooznKZMmaL6+nqP44444gidempYnlKPGGC1baekpOi2NgnsN998U9u2bfM4LW0S+3366af66quvPI475JBDdPbZZ0c4IiA03rbptoI5vnzzzTeaNWtWQGXOOecc1dbWWj6mUJKuuOIKdW/Tm6++vl5PP/102Hox2X0sra+v15QpU2ydhydHH3206urqtGHDBr/LjBs3TgcffLCNUWF/O3fu1O23367FS5Z4HJ8jaaGkEkkjRozQzJkzlZubG/T8AukpmJTEG6wAwClICoaJYRidtO+RoC2m+ijyjvY9xrOT9vUWPFnSvCBn32m//70+z8E0TZdhGJX6ISkY/jNz//5SCA0LO1T36KGKykrL8Y0OjBk/qMjOtv6h5vD1VtOrlyp27PA4zhw0iDvmYIuK7GyPw1O6dXPsPlPTq5cqLC5WtxyjG10uy2WTJFdOjjRokOq2bvU9Xb9+luPhXd2mTV6/X0869ujhc9trqKkJuN4WNb16+azfqu6kpKR2ZSu7dVOFl4sce3v2dMR+VJGdbZkUrO3d2xExIjIsj/kpKe22g+oePVRRW+txWrYX+9X06mW5rvw5hgFOs7dnT//O20Fs2w3V1QG3CRr69VO9j7aEe+BAqWfP1v/Xr1ql3V26BByfJZv3Y7OuLui2Uihqe/dWXV2dKkpK/C5T37cvx7UImjFjhq6//nqVlpb6nHb8JZfo9888oy4hbvv0FASA2MRtGuFzgqS05s97te8R3ZZM06yTtLjNoFBu5S6T1PaFMl6flmEYRk9JbbtH+L61D4AtAmlEA+EQ69ucr/hb7laN9eVEdMXD9hMPywCEU3Fxsd5//31NmzZNn332mVyuoB7SEhJv+yX7LJystrZWZWVlB2ynTntHmD/70f7TrFu3zq5w4orb7Q74OBVILzIEr7y8XFdddZXOPfdcnwnBo0aNkiT94x//CDkhKAW2jkkKAoBz0FMwfIa1+bzWz0eBrtIPj2Qf5m1Cb0zTbDQMY7Z+eG3eA4ZhzDFNs8aiyD/0Q0L4E9M0vwl23rHEVwOWH+LOFsvrh8YvIi0eLzq2xO3vsZxjvr2COa4Fc6Eu3PX7y9cFDqdsP06JA/HJNM24acMUFRVp2rRpamxslCTl5+dr69atuuyyyyK6jOyziDVut1sffPCB1qxZI9M01blzZ/3yl79U3759W8f7Euw+Fsz+YppmwOVibb+MVryJ8N3Govfee0+33nqrSnz04ExOTta///1v3XHuuVIYH+lKT0EAiE0kBcPn0DafrV9c196WNp8PC3H+92tfgrGTpKMlrTEM4y/a9+7gIkk9JR0h6V7te6ewJG2QdE2I8wUQAn4oIdLi/Y5dkoIIh3jYfmIhRtgvmO1g7969mjVrlvLz89W1a1cdf/zxOuKII2yILnKWLVvWmhBs8d1336m0tFS9e/eOWBzsl4g1n3/+ebt3BlZVVemll17S3XffrZSUFL/alZF8j5g/iSs798OOHTvaVne0rV69+oDjqC/x/rsjmrZt26bbbrvN67vWW3Tv3l1vvvnmvndNFxSENQ56CgJAbOLxoeHTvc1nzy8PO9D2Np+7hTJz0zQ3SvqJfkg0HizpBUnfSqptHj5T+xKCeyRNknS8aZpbQ5lvPOFHOqKB7Q6RFqvbHD0FE4NT1kusbD9OiQPxw+1268UXX9SGDRtUW1urkpISvfvuu/r666+jHVpI1q5d63H4559/HtE44rEnP+Lb6tWrDxhWW1ur77//XhI9BfcXz0nBQBOCEklBO7jdbj355JMaNmyYXwnBUaNGafny5fsSgjagpyAAxCaSguHTqc3nWj/LtJ2uk+VUfjJNc42koZJu0773GlqZI+k10zSrQp3n/tLT09Wp075FaWpq0p49e1obCZWVlWpoaJC074fE3r37QnS5XNqzZ09rHRUVFa0NzpqaGtXU7HsKamNjoyoqKlqn27NnT+u7QPbu3ava2n1fZ0NDgyorKyXta6Ds2bNHTU1NPhsr1dXVrY3Wqqoq1dfXS5Lq6upUXV3tyGVqibuubt8rJevr61VVtW+1ut1u7dmzJ66WyRsnL5O3xm9LrPG0nuJx24u1ZSovL5eVlmV14jJ5u9hQXV3t17G8qqrKr3eeVFVVRX09xfK2F8y7uFrKeFumlpiD0bLs3pbJW9m268mfdyQ5YT15284bGhricttjmTwvky/7L5OVwsJClZWVHTD8q6++iun1ZGXnzp0RXSZf338sbnvxuD+xTD8sk9XxZfny5a3z8iUpKSmoZWpZnkDU19f7LNdyzm9ZT+FMXGVkZERkPcUKrrGEd5k2btyoMWPG6L777msdl5mZ2ZqMTk1NbX1PoGEYuueee7Ro0SINHjy4/TKlpamquXxAy9S16wHL5Gv/qcjKUmOb3wBW2q2n2lrVNi9T0Oupulru5l7KQa2njh21t9b3pd1268nlUkVWludl8nfb69RJdc0xhGXb69JFDc3bVNj3Jyesp7bLlJKiPc1lgl6m/ddTc91hO0Y01x30MaLN/hSz62n/Zaqutu9YHub9KRzvYXUSkoLhk97ms79XtNq2oEO+pcwwjB6Spkh6TFKm9vVEnC7paUlv6ofHmv5C0heGYTxlGEZyqPNt6/jjj9f48eMlSWVlZZo4cWLrjvX8889rw4YNkqQFCxZoxowZkva942PixImtdUyZMkWbN2+WJM2dO1dz586VJG3evFlTpkxpnW7ixIkqKiqSJM2YMUMLFiyQJG3YsEHPP/+8pH07/cSJEz1e3NjfjBkzWg8kr7zyir788ktJ0pIlS/T22287dpnefvttLVmyRJL05Zdf6pVXXpG07wA8ceLEuFkmXxdRnL5MVioqKqK6noqKilRVVcW2F2fLNGnSJFlpaTw5cZm2brXuvP7++++rrKzM57Hggw8+UGVlpc/p3nrrraivp1je9lo+B6KlUe9tmb799tuA692ft2WyYppmu/XU8qPF2/ROWE/eLq5s2bIlLrc9lsnzMllp+VHcsky+jo0tMe9v06ZNMb2erFRUVER0mbzd+GCaZkxue/G4P7FM7ZfJk5ZjSX5+vuU0LZKSkoJapmXLlvmse3+bN29u97hTK23Xkz+JTX+lp6fbvp6efvrpsMVrt3nz5rE/hWGZNmzYoMcee0xHHnmkFi5cqLy8POXk5EiSxo0bpzFjxkiShg8frmuvvVaHHHKI5s2bp44dO7bG2m6ZjjpKr3z8cWDLVFGhiXl5qm++eN+yTL6SglNuuUWbt22TpHYX+PfXbj0tXqwFzcsU9Hp65x1VNl/AD2o9jRmjGYsXe102ab9tb9s2TbnlFs/L5O+2N368ljTHEJZt79prtaFw36XgsO9PTlhPbZcpJ0cT33kntGXafz3Nnr1vmRobw3OMaK67rPk6YMDHiDb7U8yup/2X6YMP7DuWh2t/aj7uXXvttYonBo8pCQ/DMD6UdFbzv/8wTfNeP8r8XNKs5n+rTdPsHML8D5E0T1KO9iUbfyPpKdM0XW2mMSRdKulJSS3p7Smmad4a7Hzb1D1C0rr09HSlpKRoyTvv6LCDD1ZVba2yMjNlGIYq9+5VemqqUjt0UG19vdxutzI7dpSrqUnVtbXq2tzDsKK6Whnp6eqQkqKa5rsUMtLT1ehyqaauTlnN0+2prlanjh2VkpysvbW1SkpKUse0NDU0NqquoUFdMjNlmqYq9u5V544d9e6772pLcbEMSYZpypRkGoaSmj+fevrpOnzYMCUlJamqpkapKSlKS01VXUODXE1N6tSxo5qamhy1TMnJyaqurVVKcrLSU1NV39CgBpdLnTMy5Ha7VVlToy4ZGXGxTM8/84zcpikzKUmG2y1DktswZJim7srLc/QyffLJJ1r39dcet72bbrpJ9U1NEV9PBYWFmjl7tlzNw3KHDNHPzzhDaampbHtxsEy7Kys1berUH/aTNttex8xM3XzDDY5cpg9nz9amb75pPS63PUb/9MwzNXzoUOXn5+uDDz/0eSz/4osvtGzlShmmKaN5GlNqne5nZ5+tw4YMYdsLcpmWLl2qNatXH/D9H3CMbrOesrt319VXXOF1mb5au1afzJtnXV/z+nQ398BuO93hw4bp9NNP97pMk554QknNbV93m7qVnKybbryxdT09N3Wq6mtqLJcpd+BAnXX22VFfT5P++181NjV5XKZDDj1Up556atxte/G4P4VjmaY+++wB+4lpGEpKTtadt93WukxzPvxQJSUlHvenu++8U6+8+qp27NyppOaLfG2nu/Hmm2N2PT3+xBMel6lbjx4aP358xJZpycKF2rhx4wHryZR0yEEH6ayzzoq5bS8e9yeW6YdlmvzEEx7Pubk5Obrwwgv1xjvvaNvWrZ7Pzc3tg44dO+oXl18e8DKt+uorLZg/32N7z6p9MPbUU1VTW6tlixdbTnf5ZZepc1ZW63p6/Y03tG3HDo/HCKtl2v+c2zLdwbm5+vlZZ9m6nkp379brr7ziV9soHMvkqV3urb3Xdrof/fjH+vGxx7I/BblMO3ft0vS33tIbb72lyr17tbeiQsmSBnftqi+qq1XrcikzM1Nut1u1tbVKS0vTbbfdpj//+c/q2LGjKioq1Llz533LVF2tlJQUpW/frvrDDlPDqlXqPHz4vmWqrFSXLl32LVNVlVJTU5WWlqa6ujq5XC516tRJTZs3q+qYY5S1apWMwYNVWVmp9PR0LV++XB83Jxj3l1VermteeEEZK1aow5Aheu655yxv1LnzzjvVqVMnpaSkaO/XXytp9Gh13LBBDf36qa6uTl26dNm3njwtU3q66uvr1dDQoM6dO+9bpg0b1OXII5W0ebOqunf3vExNTaqqqlJWVta+9dS8TKnbtql2+HC5V67Uv99802O8kvTggw+29mrKyMhQ43ffqeaYY5S1erWUm6s9e/b8sEx79+7b9jp2VENDg+dl2rpV1YcfrpSVK5U+dOiBy+TPemq7TIWFqjzySKWvWKHUQw5RbW3tvm0vM1Mul0vV1dXq2rXrvm2vokIZGRnq0KFD+2VqbFRNTY2ymntAtlumaK+n1NQflqmsTK5DDlH1l1+q68iRwS/T/uvp22/VZeRImd9/r4rsbP+Wydt6ys9Xp+HD1fTdd6rq3t37Mu2/ngoKVDFqVOv+FJPrqe0y7dkjDR6sirVrlXHooaGtJ7v3p/JybTjoIJ3QpUtrIlHSSNM011seIGIAScEwMQzjDUmXNP/7uGmad/pR5kJJLbcxbDdNs2+Q806R9KWkkc2DrjFN8wUv058uqe1twMeZphn4bXjt6xwhaV3L/+skjQilQgAAAAAAAADtnChpUZv/R40apWeeeUbHHHOM94IFBdLgwVJ+vpSb6/8MLcp9/vnnmjdvnsciWeXlyps4sbXMtGnTLHsX//GPf/zhtSvBxuhHvIGW/dOLL1pO9uCDD4ZvnuEob3d9dtQfrhjtWlYnrZMw77sRmXek67Sr/oICrR88uDXp0izmk4Ip0Q4gjuxq87m3n2X6tPm8O4R5X6QfEoKbJFmftSSZpvmRYRgfS/pp86BrJIWUFDzAnDnS0KFhrTJUb7/9ttfHB40bN04HH3xwBCNCILw98iovLy+ywQRo7ty5lo/fufnmm5Wenu5xnF2+++47zZw584DhGRkZuvHGGyMaC+zR1NRk+QjR9PR03dzc28Np5syZo6+//trjuHPPPVcHHXSQvvnmG82aNcvjNJJ09tln65BDDtFnn32mVatWWU530UUXacCAASHHnKgWLlyoFStWBFSme/fuuuKKK7xOs2HDBsvHF/oyfPhwnXHGGV6nmTBhgsfhSUlJuuOOO1r/f/LJJ72+k2jgwIG68MILg4oznCZNmmT5/kN/vg/ED6ttOzk5Wbfffnvr/2+++aa2NT92aH95eXl69dVXVVpaajk+Vll9Pz169NCvfvWriMUxe/Zsbdq0yeO4gw46SOeee27EYgE82bRpk2Y3Py7Nm5ycHI0fP15vvfWWiouLvU6bmZmpG264IeBYgmkT/PSnP1VdXZ0WLlxoOc0vf/lL9e79wyWbN954QyUlJQHH50lubq7OP//8sNRlpaamJmYeIXrSSSdp9OjR0Q4jZtTV1enFF1/U5MmTVfFDb5R2ciQtlNSyxaanp+tPf/qT7rrrLnXo0CFSobYKpKNJa9LPoh5v4wEA4UVSMHza/rob5GeZgW0+bwxh3j9r8/lT07+z8jz9kBT0cStREPr3tyfTH4Kq7t1V4eUdQQ39+jkuZvygIjvbusHp8PVW27u3Kix+aLoHDpQyMiIaz8L581WRnX3A8ArJ8d8l/GO6XB7XsSTVp6c7dj3X9Oqliu3bPY5rbD6vNFRXWy6b9MOxvHbTJq/TuXJyHPs9xIL6zZu9fr+epHbv7vM7b6yoCLjeFrW9e/us36rupKSkdmUrsrO9JgWre/RwxPazp2tXy3e51PTq5YgYERlW23ZycnK77aC6Rw9VNL9b9gC5ufvay83vzfA0PlZZfT+p3bpFdLmqe/RQhUXSdW/PnjH9HSM+LF+40K/zcFbzOb2yWzdVND/uy4rZpUtQ23Z9eXnAbYL6vn1VV1vrtVzTgAFSv36t/1d1764KL+f8QESifeD20RZ2En/aZpAKCws1efJkPfvss9q927/+Ak2STjvtND311FNRvbnd1zsF2/KVFIwlJDABxDqSguHTtmvD4YZhpLR9n5+Foy3KB6p/m8+7LKdqb2ebz1khzBtACKLR+E1OTo74POEcsfaDK1Aty+drOeP9e3Aif75zp6wXX3Hk5+dr9uzZOv7445Xt0AtzTvkuAfzA237JPgsn2Lx5s1/TtWyv/iQEkpKSQoopEMG0Ndj37BNIwigRlZWV6e6779arr74a8Hf173/9Sxf95jdRT075s/+89tpr6v+Tn3id1u12c50CACIocq2z+PeFpPrmz5ny0fvOMIw0Sce3GeT5Idz+aXu7bzc/y3Rv83lPCPOOGVwgjm2xvH6cdkdcSgr3gyQyJ+9L4UgakRREOPizfSxbtkwvvPBC25eNRxzbMRCaSO9D7LOIFy0JDKtHWLcVbFIwmP3FNM2otgEjsY/H0nGEpKC12bNn6/DDD9fLL7/s9/eUlpama66+WpI0fvz4qCcEJf/W8Y4dO/Tpp5/q+++/D6keJ3HCdw8AoSApGCamaVZL+qTNoKt9FLlQUufmz7slfRbC7Le0+XyKn2VObfP5uxDmDSAE9BSEHWKxJ0K4kn3+/qB06vcQK+z6IRzKegnnOvV3O6qsrNTatWvDNt9wYhtHMBJtuyEpCAQnkJ6Ckbx47k9S0FMZ2IPv9kA1NTX69a9/rbPOOks7duzwq0zPnj3173//W9u2bdODDz5oc4SBCdc6jrVthaQggFhHd5HwmizprObPVxuGMck0zfX7T2QYRoakP7cZ9LQfjxr15mNJtzV/PswwjCtM03zJamLDME6VdHqbQXNCmHfciLVGCGKH03oKeksKut3uiD7iB5HnpGNdXV2d5s6dqw0bNkiS6uvrfZQIX/IQkRdL6ySQWD/++GP95Cc/sTEaa7F4AwAii+3AOyclBVlXiCWRSAoGu08E2lMwnPsePQXbi7XeX3ZbuXKlLr/8cm3atMmv6Tt16qTf/e53uuuuu9S5c3Ofgig+ocKTcK1jJ24rsbSvAUCguPIbRqZpfijp8+Z/0yTNNAzjiLbTGIbRXdJ7koY0D9ot6R+e6jMMI9cwDLPN39UWs/5Q0jdt/n/aMIybDcNod+Xf2OcSSdPbDN4q6XWfCxcHOKHDiZyWFHS5Qrk/AU4RKxcdP/zwQ3355Zeqr6/3mRD0N24eHxoZ8d5TkO0DiSrRtn0nJQWBWNJyAd+J7xRkP3MOJyZ6Is3lcmnRokW6+eabdfzxx/uVEMzKytJvfvMbff/99/rjH//4Q0LQgcK1vzlxW/G2bPQUBBDr6CkYfpdJWiapr6RcSasNw1ggabOknpJ+KimjeVqXpEtM09wTygxN03QZhnGl9r2XMENSuqQpkv5oGMYXknZKytK+dxjmtilaL+ky0zR9d81IAPx4QDQ4MSmYmpoawWgQaU451u3evVvr1q0LuBzvFEQkxMP2EQ/LgNAFetEq0bYbJyUFE+27R2xr2V6d+E7BQKcJ901FLpdLlZWVys7OTvjEgRMTPZFQU1OjRYsWaebMmXr55Ze1e/duv8odcsghuuuuu3TFFVeoU6dONkcZHonaUzDR920AsY+kYJiZplnU/HjO1ySNkmRIGtv811aZpGtM0/xEYWCa5lLDME6R9JKkoc2D+0q6yKJIvqQrTNNcFI75xwIuEAP70FMwsTnlWLdoUWCnn0CSfTt37tTKlSv9qg/BCeaHcDAX6sJdfzTqskssxIjoYztxFtYH4kVLe6vSj0cZRjopGM13ChYUFOgf//iHXC6XOnXqpPHjx2vQoEFhq1+KrePIkiVL5Ha7dcwxx6hnz57RDsdWpmnq008/1RNPPKGZM2eqoaEhoPK/+c1v9PDDDys9Pd2mCO0Rz+8UJCkIIJ6RFLSBaZobDcM4TtKlkn4paYSk3pL2SPpe+x7fOdU0zZ1hnu8ywzBGSDpX0vmSjpHUT1InSXsl7ZC0UtIHkt42TbMxnPNvp7hYysy0rfpgdNq5U1nl5ZbjOxQXSw5+LEOi87buVFAQsTiCkVFaahm/UVgo7dkT0Xgyy8os43F//73UtWtE40H4mfX1jt9ntn3xhbJqa/2evkNxsZSRodRt27wuW8M332j6O+8oq6bGa30pRUVSWprf80d76du3e9/GPOhsmj63vQ7FxQHX2yKjtNRn/VZ1Jycnt5Y1TTPwGKKxT/mIs+OOHY7Y1xEZVttCUlJSu+3Aa3u4oECdd+1Sg5fxscpqmTs3NUV0uby1CTPLymL6O0Z88Pf8l1Jfr7f//W9l1dX5nLZzWlpQ27avNp9VGV/t4KQtW6Q2vZI679ql+iDbHl6Vl2vGpEm69tprlZGR4Xt6PxmVlUG3laJh05w5KlywQBdffLG6d+8e7XBssWrVKv31r3/VylWrJO27O7+t5OZhyyXtnyrs37+/XnzxRZ122mn2B2qDRO0pCACxzuAgh3BoTka2PgdunfZlQgEAAAAAAIBEdqKkts9KueSSS/Tkk08qOzvb/0oKCqTBg6X8fCk3N/Aggi1vUW7GjBla1ZwM3V9WebnyJk7UhDvvVIWPZbztttt+SBqHuoyh1tFctmHTJv3ttdc8TpKWlqZ77703fPMMR3m767Oj/nDFaNeyOmmdhHnfjci8I12nXfUXFGj94MEa2X7oSNM014dWcXTRUxD2mDNHGjrU93QR9Nprr2nHjh2W488880wNGzYsghEhEBMmTLAcl5eXF7E4gjFv3jytWbPG47irrroqsB8BYbB48WItXbrU47hf/vKX6t27d0TjQfjV19drypQpluOdsM9426c9OeusszR06FCtXbtWn3wS+pO3zznnHA0ZMiTkehLVkiVLtGTJkoDKZGVl6ZprrvE6zVdffaVPP/00qJgOPfRQ/fznP/c6jdV2l5ycrNtvv13SvvcjTZo0KagY0tLS9Itf/ELdunULqnwg3G63Hn/8ccvxQ4YM0TnnnGN7HHAGq207KSlJd9xxR+v/b775prZt2+Zx2ry8PE2bNs3y3UdOOHcEy+r76dSpk66//vqIxfH222+rqKjI47iBAwfqwgsvjFgsgCeBts/80b9/f1188cUBl1u9erXmz58fUJmf/OQnqq+v14oVKyynGT9+vHJyclr/93bcC4fU1FTdeuutYauvsrJSzz//fNjqi6RYPo+0qKys1JQpUzR16lTV1df7VSZH0kJJJc3/9+7dW//+9791+eWXx/xjKBO1p2CsrzcAICkIe/Tvb0+mPwTVPXqowstz3Rv69XNczPiB1zvLHL7eanv3toy/acAAqUePiMbTuGWLZTz1fftKAwdGNB6En1lX5/h9xtfdovtrOUbX79wZcFlv9SE49YWFAa+HpOxsn995Q1lZ0Ou3plcvn/Vb1Z2cnNxa1t3YGNI2tqayUmOPPjro8n5zu73GubdnT7bxBGK1LSQlJbXbDqp79FCF1aObc3NV2a2bKqwugsXw9mTZDuvUKaLLVd2jhyr27rUcF8vfMeJDONpY+8v24/zsSf2OHQHHU9enj+rr672Wc+XktIvH63EvDPY/DofKvWePLespImL4GOd2u/XSSy/pd7/7ncrKyoKqY+ypp+qRG2/U+eefrzReY9COE59i58SYACBcSAoiYXBChxNFY7v0dleby+WKYCRA9HBOcKZQ1ku41mmo9SxYsEBjx44NSyzesA0DsYf9FokoKSkpovPztZ9Fej8Mdw8ojiORVVpaqmnTpumpp57Sd999F1DZbt26aezYsfrFccdJ99yj5557LqYTo56Ea3ukpyAARBZJQaAZjWtEg9O2O5KC8cFp29X+gomvpYzTly1RhLIOnS5W4vQlXpYDsFOk9xP2SySiYC+eB9vWCLQc+yX2l5+fr/fee0+zZ8/WvHnz1NTUFFD5M888U7/73e90yimn7EuKFxRI99xjT7BRlqiPDwWAWEdSEAmDEzqixdsP4Whsl97mSVIQTueU3mCwRzz0FLSLy+VSSsoPTXenxonYlmjblZOSgon23SNxRLKnoD9JwVjf12I9fif76KOP9Le//S3o91sfffTR+vvf/67TTz89zJE5Fz0FASA2kRQEmtG4RjSQFEQickJPQY75oYnn789py7Zy5UotXLhQFRUVysnJ0bnnnqsefryL1mnLgehgO/DOSUlBINrs2j7pKQin27Nnj+68805NmzYt4LK9evXSTTfdpIsvvlgjR45MuGRRPP8285aoTLT1DCD+kBQEAJvRUxCR5sQfVW05IT4nxBDLgvn+qqqqVFJSot69e1v2GqCnYHtff/21Zs6c2fr/1q1b9eKLL+q2226L+DuakBictP3HI3oKwsns2gYj3VMw0Glibd+LtXidbsOGDTr33HO1efPmgMqlpqbqd7/7ne655x517tzZpuicL1F7CgJArONqAhJGvD9GBLHJaUnBQN+XAATDCT0FEXlNTU16+umn9Z///EfFxcXRDseSky5KrFu37oBh1dXVKigo8FmWfQVS4HeyJ9p2Q09B4Ad2bZ/B1hupnoJITKZpavLkyTruuOMCSgimpKTo4osv1po1a/Twww8ndEJQCt9xw5+2rZPQUxBArKOnIOxRXCxlZkY7inY679qluvJyy/Gp27ZJ3bpFMCIEIsvLupPDG5AZpaWW8Sdt2SI1NEQ0nvTt2y3jSd66VerZM6LxwAY1NY7eZ8zGRu/xedChuFjKylLqtm0Bl/UkpahI6tIl5HoSVVpJSfDrobxcHzz+uG688UYlJye3GxXK+s0oLfW5bVse+5KTfyhbXR36Nhamfax40SJleRi++LXXNPiyy7zGmVlWFvV9HZFjtS0YhtFuO+i0c6f1dlNQoM67dsmsrLQcH6usljktLS2iy5VZVmYZS6fMzJj+jhH7TJcrLG2s/QV7PgqmrZFWUiKjocFrueStW6U27Q+vx71wCeO+nVRebst6igiHHOOqqqp0zz33aNbs2eouqbukZEl9JS2X5OnX+ZAhQ3TllVfq+uuvV9++fSMZrqOFKyk4f/58/ehHP1LHjh3DUl848E5BAPHM4C4qhINhGCMktd7Ovk7SiOiFAwAAAAAAAPjtREmLmj+PGjVK559/vs4++2yNHj06+ERQQYE0eLCUny/l5oYWYKh1BVveotzrr7+uTZs2eSySVV6uvIkTNeHOO1WRne1zFuPHj9eIESPC832FUkdz2T1ffqmJ77/vcZLOnTvr7rvvDt88w1He7vrsqD9cMdq1rE5aJ2HedyMy70jXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7bz88svauXOn5fjTTjtNhx9+eAQjQiAmTJhgOS4vLy9icQRjwYIF+vLLLz2Ou+SSS9SvX7+IxrNo0SItX77c47jjjjtOP/7xjyMaD8KvpqZGTz/9tOX4aO8z9fX1mjJlSkBlzjjjDA0fPlwrV67U559/HnIMp59++r4fnQjKwoULtWLFipDqGDJkiM4555x2w0JZvwcffLDGjRvndRqrc0lycrJuv/12SVJlZaWef/75oGJoEa59zCreLl266PLLL/e6Hw0aNEgXXHBBWOKA81ltK4Zh6M4772z9/80339S2bds8TpuXl6fnn39elRY9ZqJ97giF1ffToUMH/frXv45YHN5+j/Tv318XX3xxxGIB9tfQ0KDJkyeHvd6DDjpI5557bsDlVqxYoYULFwZU5phjjlF9fb3Wrl1rOc15552nwYMHt/7/3HPPqaqqKuD4AhHO4+fu3bs1bdq0sNUXSdE8j3z++ef6/e9/ry1bt3ocnyNpoaQSSYcccoieffZZnXzyyZEMMSaF87H78+fPd9TvM2/LRk9BALGOpCDs0b+/PZn+EFR1764KL+9Lq+/b13Ex4wde7yxz+Hqr3bjRMn5XTo40cGBk4/nuO8t4qnv0cPz3Cd/c1dWO3mfMujq/7hZtq+UYXVdcHHBZb/UhOLXffhvyeqjp1euAdRDK+t3bs6fPdWpVd3JycmtZ9549oW9jYdq2rOJIys6WcnO9xunP94H4YbUtGIbRbjuo7tFDFbW1Hqc1Bw1SZbduqtjvsb6tYnh7svp+OnToENHlquzWzfL3SJfu3WP6O0bsM+vrw9LG2l+wvy/qiooCjqe2d2/V19eroqjIchpXTk67eCqys1WVYvOlsTDu202Zmbasp4iIwjFu9+7dysvL00svveTX9Kecdpr+M326uvCaAb+E8+lz+79WINp4fCiAeEZSEAmDR+UiWpzWYPS2L7hcrghGgkQVyvGYYzns0PY4HY47nk3TtPXYbxiGz32BfQXBSLTtJtLLm2jfL2KLXdtnJLd70zQDPj+yX8avjz76SFdffbVlD/m20tPSpPp6Pf3000oiIei3cO4/SUlJYasrHDg2AIhnzjriAlHECR/REI3tjqRg/HP68SyY+MK9TE7/jpygsbFRe/bs8TjOiRcOwxVTOOpp8vJkgnBw2s0miA+JeFwkKQj8wGnbZ7DtRactByKvrq5Od911l8444wy/EoKHHHKI3n33XUnOS0w5HT0FASA20VMQCYM76hEt3hqMJAWRiOIl8ROvTNPU7NmztWrVKjU1Nalbt276xS9+oV69erWbJhzzcaJwxOVyuZRi46PI6CkIuyTadmOapjZu3Khvv/1W6enpGjlypPr27Wvr/IIZB0SC0274sSspGOs9BWMt3khbu3atLrvsMq1bt86v6a+44gpNmjRJWeXlNkcWn+I5KegNSUEAsY5bYADAZk67AERSELGoZbslKWi/RYsWafny5a293Xbv3q1p06ZF5PgQrfXSdr7hSgraiQsRsEMiHhfdbrfeeOMNrVq1Sl988YWef/55FRQU2Da/RPyOETviYft06jLY/QQB7Fv3kyZN0rHHHutXQvDaa6/Vpk2bNG3aNGVlZUUgwvgUz0lBpx5PACAc6CkINOOEj2hw2nbntHgQHKevRyf0FIS11atXHzBs7969Kiws1MEHHyzJmT0FnZQwjkRSkJ6C8IdpmnK73Vq6dKkKCwu1devWaIfkaC6XSwsWLFBubq4t9TvtRrF44Ha7tWPHDmVlZSkjIyPa4cQ0egrax+VyhS3hwbHiQGVlZbr22ms1c+ZMn9Medthhevrpp3XSSSdFILL4F8/vFPT2nnFu0AMQ60gKImHQeEa0OO0CkNPiQeSZphnVHzK8U9DZdu3a5XH4kiVLWpOCdnHCeomVpKAvTvgu4QzvvPOONmzY4HM63sW1j509Bb1dYETgCgsL9cYbb6i2tlaSNGrUKI0bN85xF5ZjhdOSgsHOK9D5RSK+xsZGpaWl2T6fRPTxxx/ryiuvVElJic9p77jjDv39739Xx44dIxBZYgjneS2WegqSFAQQ62gtA824CAK7OC0J522eXKxKDNFez07oKcgxP3Btf/w68ftz0rbhhJ6CQAt/EoIt2K7sxfcbPg0NDXrllVdaE4LSvp7uX3zxRRSjim1O2z7tuoksWj0Fw8Vp6yla6uvrdc899+iMM87wmRDs06eP/ve//2nixIkkBMOMx4cCQGyipyDsUVwsZWZGO4p2Ou3cKdeePZbj00pKJBvvDEZovL742+HrreOOHZbxG4WFMpOTI3qnWfr27ZbxZJSWOv77hB8qK73uM2Z+vpQSxSaAj/g86VBcLPXoobSSkoDLepK6bRvbugWr77fTzp2t35m344i/MsvKDlgHqdu2BV2vp/raMk3Tsu6UlJTWssllZSEvm5mfL9XVhVSHZL0uOnfoIKOw0GucmRkZbOMJJBzHRTM/X11271ZKTY3nCWJ4ewr4+7FpWTvv2qWkvXs9jstMTY3p7zjSNn/99b52634KFyzQiTk5UYgoDgTRPvNHRmZmUNt2MG2Njjt2KKWx0Wu5lKIiqU1iqMvu3Uqrrw84vkA0bd4sde8elrrC0U6JmjAd4zZu3Ki77rpLX2/cqIHNw5Il9ZW0XFJDm2nPP/98PfPMM+rRo0dY5o32EjUpSE9BALHO4M4HhINhGCMktb7NeZ2kEdELBwAAAAAAAAnkREmLJHXs2FETJkzQDTfc4F8Cp6BAGjxYys+Xwv1e2XDWHWpdwZa3KPfMM89o27ZtHotklZcrb+JETbjzTlVkZ/ucxahRo3TeeeeF5/sKpY7mskWff67nPvnE4yQ9e/bUrbfeGr55hqO83fXZUX+4YrRrWZ20TsK870Zk3pGu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2nnhhRe0x0tPwZNPPllHH3105AJCQCZMmGA5Li8vL2JxBOPTTz/VV1995XO6U089VUcccYTt8Xz88cdat26dx3GDBg3SBRdcYHsMsFdlZaWef/55y/G33HJLVN9rUlFRoalTpwZUZuzYsRo1apS++OILLVu2LOQYOOZbszreHnzwwRo3bpwkad68eVqzZk1I8znooIN07rnnaseOHZo+fbrqQ7xL39fxy+126/HHH/c4LiUlRbfddpskaceOHXrttddCiuX8889Xbhh+3Fitiz59+mjcuHF65plnLMv269dPl1xyScgxwPlM09TEiRNDrufWW2/V1KlT2z2OsS2nt7e88daOtHLEEUfo1FNPDWscTz31lOX326tXL1122WVhnV88e+mllyzfgRvL22o0BdM+80dOTo7Gjx8fcLnFixdr6dKlAZUZMWKEGhsb9c0331hOc9ZZZ2lom2sVkydPVkNDg+X04XDxxRerf//+YamrtLRUr776aljqirRg902Xy6WXX35ZEyZM0J6KCo/T5EhaKKlE0pFHHqnXXntNw4YNCzZU+CmcHU2c9j5YOtEAiGckBWGP/v3tyfSHoLJbN1V4uUOsrk8fx8WMH3i9s8zh662mVy+/7oxbuWuXjojAsniLp6p7d8d/n/DNvWeP123OHDRISk+PYETtNe3e7dc+0VZDv35Sbq5qN28OuKwnHPOtWX2/Nb16tX5n/h7XvNnbs6eUm6v5S5eqNCNDysgIqb7qHj28r1O32zLmlJSU1rKuDh1CXrZwbV9WcXTu2VPugQO9xtnF1/eB+GGaYTkuKjdXld26qcbq8aExvD0F8/18vnWrjsrKUnY4vts2cdRanH8z2GcDsqdrV1VYvSOZ7zEowbTP/JEV5O+L2u+/Dzieml691NDQoIqyMstpGve7VlGRnW17UrC+b9+wbZdNaWm2rKeICOI72Lx5sy7/1a/8ThBfefXVumfKFKVH8bdOIiEpCACxyVlHXABIYFu2bInIfLw1bmn4Jga31UW0CAllOwvXNsq2Hji73p2xceNGW+rdXyTXucvlsrV+f9YF23jiCOdxke2mvcWLF4e1Pr7f8Glqaop2CHEnUbbP/ZczEssdzu01UdZTU1OT/vnPf+qII47wKyHYvVs3SdKDDz5IQjCCYjUpWFNTo/z8fNV5eQc4100AxDN6CiJh+Dppc1KHXWJp24qlWGHN6ce7YObfUoakYPS0TUSF4/tz6joIR1yRSAo69ftD5LEt2KekpCSs9XGBMXxICoafXdtgsPUG21504r4U7RvyYs2WLVt0zTXXaN68eX5Nf9555+nZBx6Qjj3W5siwv3Bu25HYd03T1IIFC7RgwQJJ+9rUZ5xxho4//vioxAMA0UJPQQCwmdMak1yQQrQvTLCdxSa7egqGS7iS4bGSFPSF/QyBcurF9GgK9/fB9xs+0W7LxKN42D79OY5Fo6dgrCVOosU0Tb300ks6/PDD/UoI9u3bV9OmTdO7776rHj16RCDC0O3du1dr167VunXrrB/XHUPCuT1GYtv+9ttvWxOCLfOcM2eOtm7dGlA88bwfAkgM9BQEmnFSR6KgcRv/6CloTwz4QSz2FCQpiHgVqXVtmqbjbw5wOtpg4RPrPQVdLpeqqqrUtWtXx+xXidpTMNaSgrHM23mkrKxMN998s6ZPn+6znoyMDP3ud7/Tb3/7W3Xq1CncYdpm+/bteuH111VfXy9J6tixo6688kr16dMnypEFL9aSgitWrPA4fPXq1RowYEC7Yey3AOIZSUEkDH5oI1qctu15i4eGb2KI9jbJOwVjU7gfHxpuToopHElBb8vD40NhB3oKHoiegs4Vq0lB0zT18ccfa+nSpWpqalLXrl118cUXq1+/ftEOLS62T6f2FIzV7TXcrJKCM2fO1PXXX68dO3b4rOPUU0/VCy+8cEACJxbMnTtX9W22t9raWn3wwQe68cYboxhVaMK5/0TiWsS3337rcfiqVas0btw4v+uJh+MlgMTG40OBZpzUkSi4Sx1292LyhZ6CzuUrERXLItlTMBx1eLswQk9BtMW6jh2sq/CJ1STL8uXL9cUXX7TGv2fPHr300kutPYeiKV56CjoRjw/dZ//Yq6qqdMMNN2jcuHE+E4JdunTRpEmT9NFHH8VkQlCSdu/efcCwkpISVVdXRyGa8Ii1noKBcFo8ABBO9BSEPYqLpczMaEfRTuddu6SqKsvxaSUlUkFB5AJCQLLKy61HOny9pW/f7j3+Nsz8fNsvvGeUllrGk9mhg+O/T/hmlJd73ebc33/v9XhotyQv26CVlmN0xx07Ai7rrT60Z7rd1seHsrLW7ywc66GlvnCsT0nKzMz0vk4bGiznlZKS0lo2uago5JjCsX2ZLpdlHJ127pRRWOg1zk4czxOG6WXbDoRRWKguu3eroaHh/9l77zirijT//3M75xzpprsFDAQF0SEojqgDKiNGxADiKCYMY+/+Nn5nvt+d2Z3ZMDuzSxvGcQxkQSQoOapIlKyNZOic4+0c7r3n90cHb3effKrOqXNvvV+v+4I+lZ5T+dRTT5V4OgUFcATYc0+p3vwhPS+Kqa+XVA5EBQbyNquBGJHF9X4YzsfLe/aI1sfSAwcwcuRICyT6ET3zMzVEhoToKhMt31B9hFdVIVhm/ASAoNJSICam/++Y+nrqi/9BpaVAXByRuAIrKqiUkxkIBQVAUM8y5NGjR/G3f/u3KC0rQ3aveyCAdADHAHiPRFOnTsWKFSssbyO0cDqdtjoG1RtfUwq63W6czc/HjQC+/fZbSX8syMrhcDhG4EpBDh3uvddqCYawUMlDXp4ZYnB0kivnyHjZzez9qcKEd7m/9yfJr35FXQYOXeLBdptJgYJ8YvTKfGfvzzCM9xtWEQB1ZaOpX5Pjb/5Ge12Q4+//XtIpBArv9qc/AQAylfypgUD9ClIhh5I778/9A8W6rZa8PLyq4G5Xco0EJtiOfqnk4f/+X2Jp+Tq5co4M19WnpRwYkFnX/Ewt/+f/aA5yR++POIPy+k0aaSikaYR0UCwn2njlwyQAByS8TQNwEEBwcDB++9vf4h/+4R8QGBhogoAcrfiSUtDj8WDdunWoOHwYN6LnnkvEx1sqE4fD4dCCKwU5dNi5E7juOqulGMBHH32EZhnLmKlTp2Ly5MkmSsTRwuLFiyXdcnNzTZNDD7t27cLZs2dV+X399dd7LFYosnXrVsmz9JOSkjB//nyq6XPo09DQgGXLlkm6P/bYY5Yeu1NZWYk1a9ZoCnPHHXfglltuwVdffYXvvvvOsAyTJ0/G1KlTDcfja3R3d+Pdd98VdRszZgxmzuxRBe7cuRPnzp0zlFZ2djYeeeQR2f5dC5mZmZgzZ46ke2dnJ9577z1Rt6CgILz++usAgJKSEqxfv96QLCTmFHLyXnPNNZg+fTqWLFkiGT45ORnz5s0zJAPHHsjVFS28/PLL+Pjjj9Hd3S3q/sYbb9h2UVZvP0O6HcnJkZiYiGeeeYZYWr6OXb8NpOROS0vDk08+aa4wg9AzP1NDSkoKnn5aUh0qyb59+3Dq1ClNYUaNGoXu7m4UFRVJ+pk5cybGjBkDoEcJkWeCQvbOO+/EzTffTCSu8vJyrF27lkhcZjNq1Cj8z//8D64WFIi6Z6JHUVgBYNy4cVixYgUmTJhgooQcrfjS0bhlZWU4f/48YlX4tVpWDofDMQpXCnLokJEB5ORYLcUAnPHxaJZRtnSkpTEnM+dHnHI7tBgvt7aUFDgrKlT59WRlASEhVOVpTU6Gs7ZW1C0kIYH5/OQo446Kkm0z7ampELKz0dLSgqioKNPvinMHB8u3aRH6+uj21FTNYcVoT03ldV0EoatLMn+986wtJQXOykpDabUmJwM5OUTKEwBiExNly1To6JBMKygoqD9st8djWCYScwo5edtSUuDJypKVM0whPzg+RGcnkXbUV6eklILIyQFsqhTUmz8k25EgCLJyhPA2qwm7fhtIyR2TkmK53K6gIGJjsjcRSUm63q3jwgXN8rQmJ6OrqwvOpiZJP13DhvXLIxAY89XQNy/o6urClStXUFdXh+zsbGRmZmqeh7sDA02RmSTd3d3YsmULvlOpgH3hpZfwt2+9hdDQUMqScYxCUjlGUsGoh/3791uaPofD4ZgJVwpyOL3wnT4cWmipW2ZMhOXk4e3AP7h48SK2bdsGp9OJ8PBw3H333bj11ltNS99IPSNVR3ldF0cuX7wXreyYf3Z7NyV5leRk5T049DHr6C5ep4zB848jRwAD93XSqqN649UTTk0Ybz9mKSE8Hg/a29uxcuVKlJeX9z+fNm0a7r77bk2KQbv1JY2Njfj0009RoWKT7PDMTKC0FP/8z/8McIWgLfCl40NLSkpU+7VaVg6HwzEKVwpy/Aa+eMaxA1wpyCGBUjmeOHGi///t7e3YunUr4uLiMGrUKNqiATC2yMPrKF3MzF/SafmawlitEpPD8bW6zxJOpxOCIBBpc/xbhCMHC/06a0pBvWlpSc8s2TweD44cOTJAIQgABw4cwE033YTk5GRT5DCboqIirF27Fq2trYp+X3jhBfzvm28CN95ogmRsYef+35eUgiz0wxyOEpcvX8aBr7+G0+nENddcg5kzZyIsLMxqsTg2xPrtaBwOI1g9AeH4Lqx9mHKlIEeMH374wbS0uKUgu8htTGDRmk4LdlN4KpUFVzBwzMYf61RHRwc2bdpEZNOWP+YfRz2+bCmoF72byLSMj2ZZCrrdbnzzzTeibkeOHNEUF2vlJMWxY8ewbNkyRYVgamoqNm/ejA8++ABRUVEmScchhb8qBa2WleO/bN26FUVFRWhsbMSpU6ewYsUKXh85urB+5snhmIRSJ2n1+eUcDmC9pSBvB/7L6dOnFf1cvHgRa9aswUcffYR9+/bB7XbrSsuIpSCpOsonzuLY7YhNb3xNYcwtBTlqIVn3Wan/LHH69GkcP37ccDxckW8edsxLX1YKmlkeHo+HuasblNI5f/68KTKYhcvlwubNm7F161bZ9w4ICMCCBQuQn5+PBx54wEQJOSTxpTsF+fyaYwcGt7ny8vIhVugcjhr48aEcTi9WT0A4vguLH6ZSNDY24syZMxg1ahQ/gsDG0Fh8OX/+PNauXdsfd2lpKWpqajBnzhzNcXFLQXbxZUWU2jInUTdox2GWpWB3dzcuXLiAiooKDBs2DNdffz2Cgvjng7/iz/3mpUuXMGnSJENx+HP+cZQJDAy0WgTm6qgZloJmHh+qx00M1srJm5aWFnz66aeKd7NlZmZi/fr1hvtVjna6uroQAuDTTz+Fe/hwTJkyBSNGjNAdH7cU5HCs55tvvsFTTz1ltRgcm8G/6jmcXqxWxnB8F9aUgkryrF+/HklJSXj22Wf5ES6cfr799tshdeeHH37AzJkzERMToykuFu4U5B9y4phpKcjvFJRH7VGutOju7saaNWtw9erV/mfXXnst5s6dyxWDjMEtBemj5j4sJXjemgepeyBJw/rGG1+xFKTpXy9y6fhK31BXV4dly5ahqalJ1t+0adOwbt06pKammiQZpw9BELBp0ybMAVBRUQFnRweuXLmC+fPn45prrtEVJ8k2ZHVbYKEf5nD00NLSYrUIHBvCv+g5dCgrAyIjrZZiANF1dQhqb5d0D6usBAoLzROIo4nYhgZpR8bLLaK6Wl5+bwoLAafTcnm6Gxpw7LPPcNddd1GVhUOHgNpa9XXOG5m21HDqFGJFnp/ZsgW33XabpmQCS0o0yxdaUQEUFiK8qkrfuw2C9/kSNDdL5m94VVV/nmnq1ySIjIoCCguJlCcARIWGypdpa6tkWsHBwf1hg0pLDctEon45nE5JOSJrauAoKpKVMwowJMOls2dRd+LEgHZfffQoriYl4brrrtMdL4cCMnVbC46iIsTU10svyhUWAiEhhtOxAqP509bQYHzM6OyUb7OCwMcllXg8Htm89Fy9igAGNy+4XS5JuaNqay0vfz3zMzVEORy63i2sslKzPBERERAEQTZccFkZkJjY80dLC5V3HkxIeblkOiEhIZryh8Q8hTSNjY34ct06xLe2Ih5AIIB0AMcAdHn5e/755/Hee+/1vDPHdK5evYrS0tIBzzweD44ePapbKehLx4dqwWoFpp1xu92orq5GUlISgnWEZ3Xjj5XovdaF49+wN1Pm+Ab33mu1BEN42WoBOIbIlXPMyzNJCn3M6v2pwoR3eYR6ChyrSYJCm5FCpv7pik+CLD3x9cp2X++PQ4doqCubn5NK8O/+jmjdwj//s6RTJBTe7Y9/BACMVPJnErFQlkPJHb/5je70x/T+hsD4mOuPKNZtteTl4U0Fd7uSSyISg+8fqkaO3/7WUBr+QgDs+W0QBAW5X3/dHEEkyAbF8e9f/kVzkLt7f8Txqh9RMG/Mny7n+N//rTqeTLAxTxnMb0SeTQNwED33B86aNQv/8z//wxWCFrJt2zbR51VVVbrj5MeHcrTw/fffY8uWLeju7kZgYCDuHz0at6gM29TUhC1btqCwsBCxsbGYMmUKbrlFbWjfhisFOXrgSkEOHXbuBBjbRf6Xv/wFHR0dku7jxo3Dz372MxMl4mhh8eLFkm65ubmmyaGHrVu34tKlS6r8zps3D8nJyVTlWb9+veI9D32wnrcccWpqarBq1SrN4eTKW6oNjh07FjNmzNCUTmFhIT7//HNNYaZMmYIpU6Zoak9yTJgwAdOnTzccj6/hdDqxZMkSUbebb74Zd955JwBg8+bNuHLliqG0hg8fjscee0y2f9dCamqq7F0KLS0t+PDDD0XdgoOD8dprrwEALl++jC1bthiSZdKkSZotaAdTX1+P5cuXi7qNGTMGEydOxMqVK1XFFRwcjNmzZyMrK0t1+nYed/0Nubqtheeffx5LliyRXOhatGgRQkNDDadjBUb7mZiYGDz//POG4mhvb8f7778v6R4bG4vnnnvOUBr+glJevvrqq0wqHjo7O/Hee++Juo0ePRr3WryxtqCgAF988QXxeOPj4/Hss89qDrd3717k5+drCpOWlgYAqKyslPRz1113Yfz48QDk5z0kGTduHM6cOSPqFhgYiDfeeENVPIIgII8hpXdFRQU+//xzdHZ1DXieCeAAgAoAkZGRmDt3LrKzs7kixUIEQUB9fb3oyS8NBixP/VUpyNFOZWUlNm7c2P+32+3G/v37VSkF3W43li1bhvr6egBAbW0ttmzZgtDQUIwbN46SxPaBKwU5euBKQQ4dMjKAnByrpRhAU0IC2mWOD21NTmZOZs6POOPjpR0ZL7fW5GQ4a2tV+XVlZgLp6VTlKQTQIpef3jCetxxx3GFh8m1GCpnyloqvPTVVcz3p7u7WLF9HWhqQk6OpPcnRlpLC67cI7vp6ybLpKwOgJ/+cvR9leolPSgJycvTVVREie+OTwtPUJJlWcHBwf9iutjbDMvW1C7fbjfPnz6OsrAxpaWkYPXp0T1oqcEdGyrY7T1aWJjn3XL6M53/6U9X+7Tzu+htCczORduTJykJjXJx0OtnZQFiY4XTMRhAEw/kjxMQYrvee1lZZOQLi43nbUkm3TH8O9NZVBhXYLpk64D3GWkV3VxexMdmboMREXe/WnpoK56CjDpWISEhAQEAAnJ2dkn66hg3rl0du3kOS1uRkyXQCAgJU509Zaakp8qqhuLgYKzZuRHd3t6SfxORkPDR/PmJje1RRdjoe0tdobm6mEq8vHR/KLQXponWThzdlZWX9CkFvvv/+e64UBFcKcvTBlYIcTi98UOewAO2JcGlpKb+EmEMUPTsqjfS3vK+mi1z+epc1i+XAmkxutxtr167FxYsX+5+dPHkSTz/9tCoLFqX30fq+JSUl6OzstK2lF0ca1uq+L0JisYWXEznkTn8B2M1ruXl+QECAiZKIQyvf9MarJ5wgCJrGT7OUEHLpaHnPwffBWcWlS5fw2WefySoEAWDOnDloj/3RNo3VtukPtLW1SboZsZDjloIctRw6dEh32K+//lr0OYkThHwBrhTk6MH6mSeHYxJKEwyrdyVxfBctk1vaE2GpyRSHYyZ6F3kAcn211R+drCKXv6SVgmaXgdr0SMl18eLFAQpBACgqKpI8PmwwastCC3ILQhz7QqrOklZE+xJmKAX9OX+1snv3bll3VvNSrh5xpSAZPB6Ppu9+s2QjpRRkQWlx9epVrFmzBl2Djgz1JmPYMAAYsgmK1bZpNWbki1waak+x0BInC/FphVsKsovSBgR/hysFOXqwfubJ4TACH9Q5tNBSt2grp43eAcaxB6x/oLFgKcj7fHHsnC8s1Q1BELBv3z5RN6XFbDVyOBwOXXIqWddwOL4IiTZNYn5m5/6VNeTuiwPYzWt/tRTUix551CgFd+7ciaampn7/ZuALC7aCIGD//v1YuXKl7Ptce+21ePjhhyXj4FgDjbwnHafVG/VZULpzOHqwuu1w7In1M08OxyS4pSDHDvB6yGERFpSCfWFYUvz4ImYeH1pUVGTqIpnZloJVVVWiz9Uq5tSWhRbk7lbm2BduKUgfbinIFkpH4e/fv98kSbThr0pBM+u2muNDAWDjxo39/s2A1DeeVUoLj8eD7du3Y+/evbLvMm7cODz55JOSlme8n7MOOygFra4f3FKQY1d8YeMJx3ysn3lyOIzAlTEcWrBkKcjxD1j/QDMSHz8+lC40FFFyfPrpp8TjlMLsRUmjKB0fyi0FORzzcLvdhts1H3fM48iRI6itrbVajCH46/GhetFrKaiGwsJCdHR0aEpj7ty5uPnmmzXLpEUuFunu7sa6detw9OhRWX+jR4/GI488gsDAQEk/rNUxf4IrBZXhloIcu8KVghw9WD/z5HAYweoJCIcD2PuDkeO7sPDBR9pSkCOOmXcKAmQvh/c1K1JuKchRC7cUlIeVvsGu+WdXTpw4YbUIQ+CWgvRRc3xoH42NjZpkCw0NRVBQkG657EhTUxOWLFmCs2fPyvqbOHEiHn/8cVmFIKCtLnR3d6O4uBitra2qw3DMhYVvRJJwS0EOh+NP6JvRcDg2hB8fyrEKbinIsTssffSwsrjrq5h5fKjZmH18qFG4UpDDYQu3221IceOrSldWOXPmDO69916rxRiAvyoF9aJ3Exmtby8jVkR2tOIoKSnBp59+qnhc76233opZs2apqsNqy+bSpUtYu2oVXC4XAOAnP/kJ7r//fm7JZQAa7Zv02oWVayEOh4PXLw6H41dwpSCHDmVlQGSk1VIMILahAV1dXZLu4VVVQGGheQJxNBHb0CDtyHi5RdbUyMvvRWBJCRASQkUOQRBUy9EP43nLESegslJ7WQOS5S10dUnGp6fvDCot1SxfaEUFUFioqT3Jwft8cQIqKiTzN6yysj/PSJUDSaICA2XLNKCxUVLm4ODg/rDBZWWG3y1UJh8BqKp7ATLtJKK6GgHFxZrl9Fy9CmRmqvJr53HX33DI1G0tKNUpR1EREBFhOB3TcbuJ5I/n6lUgNFR3eEdDg6wc0S4Xb1sqUDufjeruZi8/ZcYXFuYleuZnatBbtyOqqzXLE9nVhdDQUHSpCBdYUgJPd7fqNILLynTJBAARERFExlXF+QUhioqK8PXmzUh0u5EIIBBAOoBjAPpWVAICAvDQQw9h/PjxquNVq5jatm0bXHFx/X8fO3YMaWlpmDhxouq07IQZCnl+fKg8WpWCrG2i4HA4HK1wpSCHDoztygSAV9V4+tu/pS0GRye5co55eSZJoY+HtHim+C4OKOSjGIznLUecNOgoa0CyvEP0xifB9b0/PcwhKAdnKOlQV9aPUJZDN//3/0o6xUHh3f74RwDAmN6fUX4q56iib82EclkouRtBNm4+NjBFHAjVhbw8nyz3QJDLHyPEq5Hjd78zlIY/oGk++/vf0xNEBxmQkZ2B9jW690cFHXV7Zu+PGr15nqvBfyaA6RRlUWJ8788M/lfk2TQABwGEhIRg7ty5GDVqlKY4jZzacOzYMZ9VCpoBVwrKwy0FORyOv8GVghw67NwJXHed1VIM4N1330V3d7eke2ZmJubM4cvNrLJ48WJJt9zcXNPk0MPGjRtRVFSkyu+sWbNwHaW24/F48NZbb2kKw3recsSprKzEmjVrNIeTKu/Ozk689957om433ngj7rnnHk3pnDt3Djt37tQU5pZbbsEdd9yBTz/9FBUVFZrCijF69GjmjhVjgdLSUqxbt07UbcqUKZgyZQoAYMOGDSguLjZTNEUSExPxzDPPSLo3NDRg2bJlom7BwcF47bXXAAA//PADdu/ebUiWm2++GadOnZJ0V9O3FhcXY8OGDZLxX3/99Zrb+ciRIzF79mxVfu087vobcnVbCwsWLMDy5csl3V988UVEMnYSiBpcLhfeeecdw/G88MILiIqK0h2+rq4OK1askHSPiorCCy+8oDt+f0EQBOSpUKBER0dj4cKFJkiknqKiImzcuFHU7bbbbsOkSZNMlmggZ8+exa5du4jHq7du79y5E+fOndMUJiwsDOHh4WhQYU33zDPPoL29XXLeM5g5c+bgypUrsuO7FKmpqaiqqpJ0Vzuufv/99/jyyy81p6+Wb7/9FoePHBnyPBPAAQAV6GlbTz/9NNLT0zXHb0TpU1lZqTssxx5KQTsdH8otBc2FK2w5HPJwpSCHDhkZQE6O1VIMwBkfL6sUjE1MZE5mzo844+OlHRkvt9bkZDibmlT57UxPp/Y+gtstn49iMJ63HHFcQUHayxqQLG9Pe7tkfO2pqZrrSZfTqVm+jrQ0ICcHzYmJcHZ0aAorRmtyMq/fIrgg3d92DRvWn2ctSUlwNjebJ5gKQhTGcXdUlOS7BQcH94ftrK/X13686EhLMzxudcv02e2pqXAPH65ZztqoKNX13s7jrr8hV7c1xaNQpzxZWUB0tOF0TMflIpI/rsxMwOs4O624IyLk8zc6mrctNQiCuvKMjbU0Pzs6OhAWFjbgWVd3t6TsffMcK+lsaCDSVgbj1jD2eNOanAynRkVQR2gouiMj4VTh15OVhe6WFtXv7MnKQkdrq648CouPh1PmKhO1+dNVW0unjNxubN26FSdPnpT1l5qejkeefhrROscCrkjxLbilYA/V1dU4ePAgWn/4AfMBNDU1IYaseBwOh0McrhTk+A1KEwwrdyVxfBtal91zOGbB0gcfqTbCFyXEMXKsk9UoySTnTnr3KYn8UarretLoIKBQ53DsBqn+yu12U5WDxX6VRdTmk1VWBRcuXMDOnTvR0NCAhIQE3Hfffbj22msBsD/P94U66PF4VL/Hxx9/rGlcNKI0YLnsOzs78dlnn+Hy5cuKfh977DG0GNgc4gt1zK7YwVLQ6vqhx1Kwvr4ey5YtQ1tbW/99n+vXr8cTo0Yhwo73MHM4HL8hwGoBOBxWYHmizpHH6skjSWjWQ1/KJ448rB/loke+vjC8HtOF5y87eSAnh14ZWXk3DllIlStXWsljdCz09/wzm8bGRpw4cQK1tbWmpVlZWYm1a9f2H11ZX1+PTz/9FNXV1QDkFcss1A9aMpg5ZmlRCmrdKGNE0czqWkNTUxOWLl2qqBC8ecIEAEBgYKCh9Fio5/6KHeaVVh8fqof8/Hy0tbUNeOZ0OnHx4kUSYnE4HA41uFKQ4zfwhQ6OVbBiKcjrOEcvLO0CNWvx219Ru2Bgx/yzmxUkjXkLK+/GIQsvV3PgloL2Y8uWLXj33XdxROSONBqcO3duyFze7Xbj/PnzANhVDPXBmlJQb1q00mPBUpDkuxUXF+P9999XvKv73nvvxZ133kkkTd7PWQeNvGdh4yip+AMCAnRZCn799dei7ps2bdIkG4fD4ZgNVwpyOL2w/pHG8Q94PeSwCAtKwb4wJBdVjC7w+iJq85fFRR2WFMZmHB/K4ZDGV5VWrBwfyts0GfSU586dO1FfX09BmoF88803os+/+uorAPJ1gIX2xYIM3ui1FKSFEaUgqTknqTnK0aNHsXTpUrS2tkr6CwwMxOOPP46pU6caTtM7bc5QrM4XViwFrVQKGmnfWtPicDgcFuB3CnI4vfAPdfsiCIJl94aogVsKcsyG9Q80FiwFz549i3PnziE5ORkzZ87EyJEjicRrd2gcLcQKdpN/3759su52ex8OPXhdMAfaloIcuhw/fhwzZ860VAbWNyP5gqUgQO97ioXjQ0kcY7x7924cOnRI1l9YWBieeuopZGdnG0pPLH2ONdjh+FDa9UOu/WhVCvK6zOFw7A63FOT4DUqDNlcKcmjBilKQw9ELCx98NO4UFAQB1dXVWL16NaqqqojFa2fsdsSmN75kKdjY2ChbJ1lZvOH4Fr5qKUgK2ncK+nv+0iY/P99qEZif57NWB/XKQ9taUA+sKAW/+uorRYVgbGwsFi5cSFwhCLBXx/wJGnlvtzsFzbQU5JCFlw1f0+aQh1sKcuhQVgZERlotxQBiGxpkO8koQQAKC80TiKOJ2IYGSTehoAAweOk5TaJqa2Xl9yakvJxaPRQ6O1XL0Q9vE7YkoLRUe1kDkuXtcDol4wuvqtJcT4LLyjTL15dOZE0NXE6nprBquLJ3L1Jvu414vHYjSKbuhFZU9Je1ln7NLKIVxvGAmhpJmUNCQvrD6qmfgwmvqpKPQ6HNnD10SDZ8eFUVAmJiNMsZrSLtPozIzzEXubqthcCSEtl4AoqLgcZGw+mYja75jwiOoiJD4QMU+pbwjg7etlQguFy6yjOyq4t6/ir1m3JtzHuMtYqQ8nIqY3toW5uud4uortYlT2hbG4I6OzWHUyKotFR5fJeRKVhOJpX5Y2SOcuzYMRQdOoRsAIEA0gEcA9Dl5SczMxNPPPEEoqOjdaWhBF+0tg5uKcgtBTn2RhAEyNVQl8vV803L4aiEKwU5dLj3XqslGMIv1Xj67W9pi8HRSa6cY16eSVLoY44WzxTfJRQK+SgG43nLEScTOsoakCzvWL3xSTCh96eH58iJwRFhJNSV9VzKcuhGZhxPhsK7/fd/AwBu7v0Z5S45R4W+9bbenxK56sX5kd/8RpU32bj52MAUinVbLXl5PlnuuuY/Yhh8/ww1cvznfxpKwx8IgoHy/Pd/JyeICLlyjnl5huY/ZkBq/BPlD3/QHOTnFMQwRF4ekqFufNYTtxp+0vsjxTQAB3v/P3HiRMyaNQtBQfSWCbkiRRwz8oUrBbmlIMe34UpBjla4UpBDh507geuus1qKAeTl5clOAqKjo7Fw4UITJeJoYfHixZJub7zxBgIZthT87LPPUFZWpsrv1KlTMXnyZCpydHZ24r333tMUJjc3l4osHLqUlpZi3bp1msO9+eaboh9DDQ0NWLZsmWiYG2+8Effcc4+mdE6dOqV4X9pgJkyYgOnTp+Pjjz9GU1OTprBq4fUduHjxIrZt2ybqNnnyZEydOhUAsGbNGlRWVpopmiKxsbF47jlptXF1dTU++eQTUbeQkBC8+uqrAPTVz8HcdNNN+P777yXdleraqlWrUFNTIxv/ddddp7mdx8XF4Re/+IUqv3LjLm8rbCFXt7Xw9NNPy8bz3HPPITY21nA6ZqNn/iPGAw88gFGjRukOrzQ2h4WF4ZVXXtEdv7/gcrnwzjvv6Ar78MMPIz09HaGhoYSl6kGp3zxx4gT2798v6j5p0iTcZvGJBXLyGSE0NBSLFi3SHG7Lli24fPmy5nCBgYFU7m+cN28eLl++jG+//Za4TGrH1SNHjuDIkSOa0j58+DC+PXp0wLNMAAcAVAAICAjAz3/+c9xyyy2a4tUDVwqyCStKQdqWpNxSkGNnlOoc6/cWc9iDKwU5dMjIAHJyrJZiAI1xcbLu7qgo5mT2Z9xuN9rb2xEVFQUAcMbHS/oVsrMBijsajdKcmAhnW5sqv+2pqdTqoae9XTYfReFtwpa4IN9mpBCys+EIGHrdsDsqSjI+PXW2o6JCs3xtKSlATg6c8fFoorUJgNd3dLW0qCrrlqQkOCkczWWEgPh42TJ0hYRIvltISEh/WD31czDtqanycSjUtebERDhdLtn4XZmZmuUMTEhQXc+NyM8xF7m6rSkehTrlycoCCKRjNkJHB5H86UxPN1T3uwVBVo6u8HDettTgcukuz2X79iEgIACPPPIIxo0bR1gw5X6zraRE0k9HWprl5d9RVkakrQzGe4zVQmtyMpx1dcTl0Yt7+HB0trbqyiOHwyG/oKsyf9oLCjSlv3//fuwdpBD0xgPgsccew9ixY1XHaQSuSBHHaktBvZBW4nFLQQ5HGqX24ZL5duRwxGB3FZ3DMRk+QWUDQRCwd+9eHDt2DF1dXUhJScGcOZoO4LQ1NHfH8TrOUUKqjrB0NAy/i4QuasuGxf6ElEwk4jEah5pFCT1pyIVxu90oKSlBWFgYUlNTNcfN8X1YbPdmYnQHtlL++Xv+qsVoPnk8HmzYsAFZWVmIiYkhJJX6tFmG10F6kMpbLXXo5MmT2Lt3r6yfmTNnYphJCkGA1zEpWFAKCoKgWSnG0jeiGkhaCnI4ZsOVghzScKUgh9ML6x9p/sLRo0dx8ODB/r+rq6uxfPlyCyUyjpbJLa+HHCvxeDyiR/GysAu0LwxfTKCLXFnbPe/trPAcDGkZKysrsWLFCrT1WrWnp6cTjZ9DF5YU4r4MbaUgxzwEQcCZM2dMP65Trg6xUD9oycDK0YRGYUFpoHZO/t1332HTpk2K/kaPHg2nUaE0wFqZ+hM08t5ux4eSthTk9ZnDEvz4UI5Whp4RxuH4KVwZwwb5+flDnrW0tMiGYX0yxoJS8OLFi6o+DDm+AenFF5baGEuy+CJ2VpyxKBNNSCqC1qxZ068QBICKigoicXPMway6b9c2Rkpuo4stzc3Nsu52zV+7oudeOKOw/r3JWh1kTR5AnSU/TdTkSX5+Pj7//HNJd4fDgXtnziQolXpYLFMWYMVSkHSceqCZF9xSkGNnlNoG63MMDntwS0GOX6BmYsEnqGxQVlZmtQiWQmMgP3r0KLZv3048Xo7voUcpqOfjychHJ5/s0kWubLzd7DhmmqnwNOP4UD2IyVVeXg6n00w7AQ6r2LFdm4nR8Wfz5s2EJPFvSNVTKxZ/WbfGZ81SkDMUpX7o7Nmz2LBhg2yeP/LIIxg9fDiwaxdp8RThdYFdWFIK0uqduaUgx84o1TealoI02yXHOrilIIfTC19oti+sT8a0yEfjCI6vv/6aaJwc9tFbj6T6QZbui6DZ3lnvS8zAznlgZAe0w+FAd3c3du/erXj/DgmM5rMgCMTK6urVq0Ti4VgHtxQ0ByOLLS6Xi39rMIYVSkHWj/ZiTSnIWp/DgiWRXD9y/vx5rFu3TjbfZs6ciZtuuomGaKpgrUxZgQVLQV+Osw9uKcjxZWjNMw8dOoQlS5YAAD7//HPFky849oErBTmcXviHOocFSNfDoqIitLe3E42T47uYdXwoq3cKdnd3U4vbLtj5+FAj9B2heejQIWLxGXGnha+VG4csvlo/WDg+VM1czFfzn1VYsxRkAV4HlbFaaSBVhy5cuIC1a9fK1rG7777b9Hs0B8PrmHXw40O5pSDH3ijVN5fLheLiYtTW1hKrmydOnMDu3bvR1NQEACgsLMTy5cuZn89w1MGPD+XQoawMiIy0Wop+BI8HsQ0Nyh4LC6nLwpFHVTkNprAQCAkhLgspImtqVL9XaEUF0XrYeeGCvjztg7cJWxJUWqq/LUVEDHkcUFEhGV94VZXmehJSXq5Zvr50ouvq4HK5NIVVS/elSwhhaOyyArm6490/RdXWosNI30KBaJdLti4GlJXJ1ru6qirEEpIlvKpKNi3P1asICJKehkfV1sqGD6+qQmB0tOZ2FON2D8mjUJn2LQkfG5hCqW6rJbCkRDYeR1ERoHDPM4s42tuJ5E9Qaanuui80NSnKEBISwtuWCoTOTiLlGSMIxPNbVq7CQtn+lvQ3gB50jQcqCAgI0PVuEdXVVOTRS0BxMbU8Ups/YZWVQ9I/e/YsDu/ejeEAAgGkAzgGoMvLz5133omf/vSnZGQ1AFeiiMOCpaAeGWgoBmgqG+TeMSAgwHKlP4djhJUrV/b/Pzs7G08++STCwsIMxZmfnz/kWW1tLSorKzFs2DBDcXOshysFOXS4916rJRhAAIBcNR7z8ugKwlEkV08gxsvtaQvTvqH3pxvG85YjThbItqV0vfFJMKX3p4fXCcoxBF7fMb73p8R82oLo5Xe/k3TKANl6rMQMOUeFuqZ23MhV6W8A//ZvA/6c1PvTBG8rTEGsbuflycdj03IPB7n80UuMWhn++791p+EvhIJgX/7b35KKCYCCXHl5+BmAnxFNkSy39f6o8L//qznIw+SlMEZeHpIA/IRS3GpQW4emATjY9/9p0zB9+nR9chGGKwV9C7tZCiodH6oVXp/NgytstdW3oqIi7N69G7NnzzaUZlFRkejzAwcOYO7cuYbi5lgPVwpy6LBzJ3DddVZL0Y/b7cbbb7+t6O+NN95AYGCgCRJxpFi8eLHmMIsWLUJoaCh5YQixatUq1NTUqPI7ZswYzJw5k1ja586dw86dO3WHz83NJSYLxzyKioqwceNGzeEWLlyI6OjoIc/Lysrw2WefiYa56aabcPfdd2tK5/Dhw/j22281hRk7dixmzJiBt956i9oO0nnz5iE5OZlK3Hbh1KlT2Ldvn6jbxIkT+3eZr1ixAnV1dWaKpkhUVBReeOEFSffS0lKsW7fOFFnGjBmDs2fPSrorjVurV69GVVWVpPvYsWMxatQofPHFF5rkio6OxsKFCwc8O3r0qOZjU/nYwBZm1e1nnnkGiYmJ1NMhTVtbG/76178ajufWW2/FtGnTdIVtaGjAsmXLZP0EBwfjtdde0xW/P9HZ2Yn33nvPcDyJiYl45plnCEj0I3LfMbm5udixYwfOnz8v6u49xlrFgQMHcPz4ceLxOhwOvPnmm5rDbdy4UXJB0gqeeeYZFBYWYv/+/cTjVjuu7tq1q39+ceHCBWzfsWOAeyaAAwAqev+eOnUq7rnnHmYW1LkSRRy7WgraTSlI+vhQDsdMtLaNkydPGlYKSsH6HckcdXClIIcOGRlATo7VUvyI2w1nfLyiNyE7G5A5zotDHzXlNIScHIBhpWBzYiKcKo87bElKItp2upua9OVpHyy1Y45qul0uXeXuycoCYoceoOhyOCTja09N1VxP2q9e1SxfaVAQkJODxrg4ah+L7ampQFYWlbjtQmdlpWTZdKSl9Zd1c2IinIzdJeCOipKti26Zekya9tRUOCsqJN09WVlAeLike3NiIpxdXZLu7ampcGVman4fISZmSB51lpRozxc+NjCFCzrnTxpxDx8OpKRQT4c0QmsrkfxpTU7WXfddkZGKMgQHB/O2pYbOTiLlGUp4zg0otMOcHLQmJ8MpseHDe4y1ivZLl+j1JTrerTU5Gc7ee4xYwJOVhU5C9W8IKvOnJSkJzvh4HDlyBDsGKQS9caNHIThz5sx+RUdQUBCSk5NRITM/oQ1XCorDlYJ04+xDaWMpv1OQwzJ66pvb7QYNsxeuQPcNAqwWgMNhCX5Zqj3xpckYr4McK5Gqf6TbmJ74iouLcfbsWartvUtGCeMvqO2D7NjvsiSzUj4r7b7U+y4s5QGHYzeM7IpW07fy9qkOUvnE2oIWC+XPggzesCZPeHi45fWmu7sb27dvl1UIAsB9996LFStWID09HQ6HA2lpaXj66aeRYvHGDtbK1J+wi1LQqjsFrW7bHP3wfkWazs5Oq0XgMAw3ieL4BWoHCa6Q4dBAyySF10GOlUjVVbl6aeYHpJ4jUbXAlYLyZePtxuLHF43FDr0opaXU17tUWJdbWQaCIPDFE4Ywqy6w2O7VQEpuI3M0Pr9jDyv6MNbbEOvyWUlqaiqioqIsHftaW1vxxz/+UdURr08++SRGjhyJkSNH9liK9F6R8t1339EWUxZex8RhwVLQl+Psg98pyLEzeupbZ2cnIijIwr8DfQNuKcjheME/2DlWQ7oO8omqf6K33PVYCpqpFFSjKDECVwryPsMsSCgFrYTXE44/QlspyNuVufAFraFYdZcXyTA0CAoKInrnux527NiBCRMmKCoEb5s6FcDA+t2nEBz83ApYKVPOUFhpo1beKag1bV6f2cBfykGvUpDDkYIrBTl+gdrO018GE1+D9XLjloIcuyBVV1lRCtKGKwW5paBZGD0+FLC27bGUlxxuKWgW3FKQDfjxob4tA4u8+OKLGDFiBADz601JSQkee+wx3H///bh8+bKs3zvvvBOTJk0CAAQEsLnUx+uYOCxYCuqRgcbYRnO8lIub1TbD4fTBklKQtTkURx+81+NwvFi1ahXKysqsFoPjx/APJY6V+LtSkHXrLDPgC9dkMLrwwnpdZLUN+yu8POThx4dyxLBiAZj1tsotBcXxvofPzIXQTZs24aabbsKGDRtk/QUEBOChhx7CXXfdNeAZi/C+0DrsYtVnZT/ELQXtCS8HafimZ44c/E5Bjl+gdpCoqKjA8uXL8cILLyA5OZmyVBxSsD4J4JaCHLMx8/hQPbDeZv0ZO1sKKsGSzEaPDxUEgdgCq54FTj5W+ScstSErUGPBKwU/PpQ9WNvlzkL5c6WgdXjf1etyufDrX/8a//Vf/6UYLjQ0FE888US/JWMfrNXvPvypTLVAI18aGhpw8uRJ1NXVYfjw4VRksJtSUG4s5nWT44t0dnYCwcHE42V1jOFogysFOZxBdHV1IT8/H3fffTf1dBoaGpCcnMzsTj4OGbRMMLnyhWMl/m4pyKpcZmLn47ZZkklJFqVFCSPKBzNgKa85vDzMglsKsoGdjw9lva2yJh9r8gD06o3H40FgYCBKSkrwzDPPYN++fYphYmNjMW/evAGWjH1IrS9YvZDLYpn6IvX19ViyZAlaWloAAOfOnVMMw8o3Hc3xklsK+ib+Ug66jw+NiqIgDccX4EpBDh3KyoDISKul+JGuLsQ2NKj2/v2mTbh70G47UgiCgAMHDuDkyZMQBAFhYWGYNWsWsrKyqKRnN7SUUx+OoiIgPJyCNGSIrquDS+V7RURGAoWFxNIOKS/Xlaf9EJSFYx6BJSW6yj2guBgQOXc+qLRUMr7wqirN9SSsstJYvaREaEWF39f50IoKVWUdXVcHoanJRMmUCWtvly0/ve1ClywKddxRVAS0tYm6uV0uRTkjqqsRFBWl+X0iOjuH5JFcmUshFBQAYWGawnDoIddHk0RqjGCe5mYi+aNnvOsjoLhYUQaHw+H3Y5AaHO3tRMozmvCcG1D4jiksRER1NdH5FGlozs+EggIgSNvyU2RNDRvzRa9y0TNmqkEoKMDm7dvxq1/9Ck3NzcjufR4IIB3AMQDeh8DdfPPNmDFjBiIiIkTjs1r5J4W/LN5rhXS+HD9+vF8hSFMGbinIMQu5Ps1fyo7fKcghDVcKcuhw771WSzCAEAC5WgPl5ZEXBIADwB29v35UHA3iL+TqCUSprEjxrNYAf//3xNIe0/vTDeN5yxFnJMi2Jd3xSXBX7485eH3Hbb0/JZ6nLYheZMbTHJCtx0rMknOUqWtBUC+nWn8D+I//GPDnT3p/muBthSlyYFLdtmm5R4Ng/rz5pq5g16iVYfFiXfH7E+EgWJ4E59yAglx5eXiAaGrk+Vnvjwo6+o+5FMTQhZfsN/X+aKQxG8BsCedpAA4CyMrKwowZMxSPgwymcFwcCfxl8V4rpPPl8OHDROOTwm5KQW4pyLEzLCkFOb4BVwpy6LBzJ3DddcSjFQQB586dQ0lJCSIiInDDDTeouvuvs7MT7733nqa0cnNzdUopz6effoqKioohz2fOnIkxYwypb3yCxToWQ1566SXJXZIssHTpUjQ2NqryO2zYMMydS+4T+OzZs9i1a5fu8LTaAYcuV65cwebNmzWHmzt3LoYNGzbk+aVLl7B161bRMNdffz3uv/9+Tel8+eWX+P777zXLR5vbb78dP/mJZvWIT7F//36cOHFC1G38+PG4664ede5HH32E5uZmM0VTJDQ0FIsWLZJ0LygowBdffGGKLCNHjsSVK1ck3Z944gmkp6eLurW2tuKDDz6QjX/06NEYMWKEZLuUIjw8HC+//PKAZ8eOHcPBgwc1xfPiiy8ikqUTIfycq1evYtOmTdTTeeqpp5Camko9HdI0Nzfjo48+MhzP8OHD8dhjj+kKe/nyZWzZskXWj8PhwJs6lY7+RHt7O95//33D8RgpTynkvmNyc3OxefNmybHBe4y1il27duHs2bNU4n7ttdc0K6qkvpvNxvt7KD8/H3v37iUWd1lZGXbu3IkmiTlVJoADACoA/OpXv8Lw4cNRWVmpGO/1118v+txq6w6uRGEXf7cU5NgX3q9Iwy0FOXJwpSCHDhkZQE4O8Wh3bN+Oo8eO9f99oLQUCxYsQEZGhmw4oaMDzvh4bYlRkB8Aznd0ACKybD93DmNmydoV+AWaywmAkJ3N1nG1g2hKSIBT5aAZlZAgW/cKCwtx4MAB1NbWYvjw4ZgxYwZiYmL676AKGnQsT2dDg6487YdSO+DQpVtPnwfAlZkJiBxl3NnSIhlfa3Ky5nrSlpJirF5SoiMtze/rfPvFi5Jl05aS0p8/TQkJaNJ4DBhtQkNDZcuvu6vLtHrXnJgIZ329tCwZGaJtDQBcTqeinG0pKejOyND8Pl3h4UPyqLO0VHM8nqwsIDpaUxgOPVwm1W1XZmbPHN9meFS0KTXEJSbqHiM6W1vVyWDTMaimpgbffvstamtrkZWVhdtvv72nT6aAR21eKpCUmko8v2Xlysnpmf9IjA3eY6xVtKWkwElJCSdkZwMhIZrCNCcmwtnRQUUeTXiVS3d9PZH619zcjH379uHEiROqFrQ/WrIE03/xC/z1r39VFT+rG3f44r04LOSLHhloKNmsulNQEARuKchhGm4pyCENW6s5HI4Mzc3NOHr06IBnXV1dOHjwIFHLKqsIDAy0WgTbwvpkTIt8cn7LysqwatUquFwuAIDT6URZWRlGjRqFH374AZ2dnbjmmmvw8MMPM/shyGEbqY8wpQ8orbDaZlmVy0zU5gHPK3mUFjTk8q+vj1cKb2UZ8J3WbMHbozkYqfe+3GZqa2uxZMkStLe3AwCKiopQUFCAZ599dshmNZawYpc7622VNflYkwcgU2/Onz+PjRs3qlqsvWXiRODkSUyfPh2Acp7ccMMNhuWjCYtlytEPK5aC1dXV2LdvHwoKCtDZ2Ynbb78dk1JSEDXIny+Pxf6Mv/QrLCkFuaWgb8DuLJ1jewRBwL59+/DDDz/A4/FgzJgxuOuuuxAQEKArvmNeFoLenDt3zoiYzMDyRzPHPOQmqqdPnx6yWNzQ0DCgbVy+fBmrVq3Ciy++yAdqP0bvxFgqnL8oBTnky5olzJRfadFBzl2NUtBq7F4XOPrw93LnSkFxTp482a8Q7KO0tBSFhYUYNWqURVIpw+fJQ7HyLi9vXC4XgoKCfK7P8Xg8OHr0KHbu3Kn4boGBgfiXf/kX/PNTTwHXXjsgDjnuu+8+WXer672vlSkpWMgXVr7ptMbZ2NiIZcuWoa2trf/Z/v378X1Dw5B7XrmlIMfOmK0U5PXb9+FaCA41du/ePeCC4wMHDqCzsxOzdB6RWVtbq1sWO3RmXCmoH9bLl5Sl4PHjx1XFUVFRgbq6OiQlJalOl8MBuKUgq3KZidqFaxbziiWZlGSRy2e3200kDVJhaMbDIQMvD3lI5Y/atimGLysFvb/3vPnqq6+oKAVJlafVypHBsNCOrZahrKwMW7duRUVFBRISElAvcwy3VeitN+3t7Vi3bp3sfcN9jBw5EqtWrcLkyZOBwsIBbnbvS6yuYxxpWPmm01rHf/jhhwEKwcEIggCH1/85voedyrWrqwshAJqamhBjUno0YG0OxdGHPpMtDkcBj8eDU6dODXn+3Xff6f6gtlNHrwd+fCgHIFfP1SoQORxvuKUgx5ePD7WLpaAaOa3Of7svSvoaZtUHq+ud1ZhhKehLeVxdXW21CLLw40OHYqWlYFNTE1asWIGK3jsNWVQIAvrqTXV1NT788ENVCsGFCxfi9OnTPQpBEew+/rLeBqyChXxh5ZtOa5x79uyRda/wuidVaf7NLQXZRa7vtUs5nDt3Du+//z4A4OOPP8bGjRs19elmt1G75CtHP1wpyKFCTU0NOkQuBe/q6kJJSYnp8rDSmcnJwS0FfRct9Y/Uh16f8p2Vus8xF358qD5YlctM7Hx8qJJ8vqQU1OKPBqzXBQ6HBvz4UG3ovTLCLFjb5c5Cv2qlUvDy5cvU7j4ygpGNu4Ig4NSpU/jggw9QV1cn6zczMxMbNmzAhx9+iKiowTeh/YjRvsTqes9CPeeQgwWloBLeG1R4/eNYRXNzMz777LMBRjLff/89jh49aqFU8si1F6vHEg4ZuBaCQwU5a0C9E1lfGMDl7gniSkHyiozBdHd3QxAEhISE6ErHDPjRbhwr4ceHsimXmdhBIWUHzFAK6oFU3P6o4GAZbikoDwv1XouloK8stNBSCvrq8aEsYGUb37x5s2Vpy3HvvfcO+FttvWltbcWmTZtw4cIFRb+333471q5di2HDhin6tWs/3Ifd5acFC/niS9903njLqDQWc0tBe2KHcsjPzxeV8/jx45gyZYqqOMx+TzvkK8cYXAvBoUJAZSViGxpE3YLLygAdH4mRNTWScQ4+a38wjvZ26bBSKMSpB5eMHDH19VTStBWCoL2cALSdPYuYtDRJ9+7ubuzevRtXrlyBIAi45pprMHPmTISGhhqRVjXRdXVwtLSo8hvp8UjWAy15E1ZZCRQWIqS8XFee9iEUFPBFExsSXFamq9yDSksBkXYhF19EdbXmviuiutpQvaRFX7vxZ0IrKiTLxjt/YurrEdzebqJkygQFBcmWX1BpqWn1LiIoSDatwJISIDxc1C1ARfsNr6pCUESE5vcJDQ0dkkdyZS6Fo6gIkLm/hWMuevt8rQSWlAA2VAgHOJ1E8ifS7dY9Rqguo8JCXd9JViI5P4iIoDKmOlpaiJRneFUVcflk5SoslJ3/sDAHCa+qoteXFBZKjnuAtu8csxg2bBhuiokZUC5qvq2ampqwe+NGdDQ2IhtAIIB0AMcAeN/uFBgYiPvvvx+33nqr6k2rckqNSZMmKYa3+ruOLzKzi56yobFJjHQd8ZbRzieicOzNoUOHRJ8rWZF7w9LxoVaPJRwycKUghwppCxbgHinHvDxdcc6Wc1SIMxxArtYEdcppSI5cWVefxwEd5QQollUwgFl64iXEC1oD/Ou/ij7O1ZH2uN6fbii0Aw59rgXZtnRj70+Sv/kbTcnc1/vjsMfM3p8SL9MWRC9/+pOkk+52QQOZvjUD6uUcrSftP/xhwJ8/6f1pgo8NTGFa3bZpuceCYP7827/pCjax96eIDfM4V87xP/6DeHpRSmlq4Ze/JBUTAAW58vLwENHUyCP7vW0UhbqdSzNtI/zjPw7484benxL/T+TZNAAHe/+flJSEJ598EklJSQDUK1fk/N1+++0Ao3cx9sEVL+LYNV/scHyod5vhloK+iR3KgZ+ywmERrhTkUKF8yRLsPn1a1G3u3LmqjsYYzBdffIGCggJRt1wFZVpbWxv++te/akpPKU49NDQ0YNmyZaJuN9xwA+67z7+Xyd1uN95++21dYaXqldvtxl/+8hd0d3cPeO5wOPDKK6+YYi34wQcfoLW1VZXfmJgYPP/886JuixcvVp3mmDFjMHPmTOTn52Pv3r2qww3mzTff5LuAbMjFixexbds2zeFmzZqF6667bsjz7777Dl999ZVomKysLDz66KOa0tm2bRsuXryoWT7aTJo0CbfddpvVYljKzp07ce7cOVG3sWPHYsaMGQCA9957j7m7fwIDA/HGG29IuuttF3pISEhAvczC3L333ovRo8VVeqWlpVi3bp1s/Ndddx1ycnKwa9cuTXKFhITg1VdfHfDs2LFjOHjwoEQIcZ566imkpqZqCsOhx4ULF7B9+3bq6cyZMweZmZnU0yFNY2Mjli5dajieiIgIvPTSS7rCqm1nb7zxhqE7zKxAan4qN6c1QktLCz788EPD8YwYMQIPPvggAYl+RG6unpubi88//xyFEtaA3mOsVWzatAlXr16lEvdLL73UYz0qgZbvHDMYN24cfvaznw15LtfflpSUYNu2bWjv6BjwPBPAAQAVvX9ff/31eOSRRxAWFtbvR+2ittTC8qxZsxATE+PzSkFfOmLZGxaUGr56fCi3FOSwAIn6xY8P5ZCGKwU5VHClpsIZHy/q5snKAnQsKLQmJ8PZ2CjumJMjG9bT0iIpjyQKceqhMyxMUo7O9HQqadoKt1t7OfXyVUEB5oks5ldXVKBW4rL2AkHADSbkuTM+Hq1qj4SJjpasB1rypi0lBcjJQVddne48BQAhOxsOmx1jxQG69PR5ALqGDROtfx1VVZLxtSQlae67WpOT4ayp0SwfbdpTU/2+H25NToazslLUra9fAYCmhAR0DFr0sprAwEDZ8utubTXUH2qSJT4eTpkPKbkxv1sQFOVsTU5Gd0aG5vcJCQkZkm5naanmeFyZmUBGhqYwHHp06+zzteIePhzIzqaeDmk89fVE8qczLEz3GNFeXKxOhpwcwGZKQan3CoiPpzKmepqaiJRnc2Iicflk5crJ6RljnU5RZ+8x1iqaEhLgpHSMp5CdDURGSrqbNT6rpSMtTbQ8xPpbj8eDgwcP4ssvv5RfRA0IwL0zZmDKlClDFFta7h0VI0rie3cwVivU+CIzu7CiFBQEASBYT/mdgr6PHcqBhKUgPz6UQxquFORQQa7D09t52KGjV8Llckm62W1XMA2MlLHb7RZ9LlffWKxTpGTixxNw9CBV/0jvqmSx7QHsymUmavPAjnllpsxKfbCcO80y4GOMb2JW3bZjuyeJkXpvdMHfjrD+beNLeU0KuW9Voyjld0BAAFNjS4DKTZGdnZ34/PPPJU9Z8Oapp55C8LXXiroZPT5UrbxWwy0FxWGhP2Llm460UpBbCvo+dig7q5SCdkqPYz5cKcihglznYZcJKw0GH2HpDesfzmZAYxcLC0pBLemQ+hjmAzhHD1L1z1+Ughx7KwWVZLKLUtAOsFj+HI4ULCjD7d7m9cD6N58V/RjrfSdXCv6IGsVTS0sLVqxYgaqqKll/aampQFUVkpKSIG4navz4UNbbWx9Gy5j1NuRv2O1OQamN5HrT5vWRoxY71hVuKej72GPmwLEdrFkKmt0BNzY24quvvsL69etx9OjR/smHnFKQQwcWlIJaICVTXzwkdmNy7IfecuOWgmzKZSZ8By0ZaFsKkm7jWmFp4ZbD5iYnX8QuSsHm5ma0tLSYlp4UtDY8kp4rswIL8igtmNOEtQ2ySmsWTqcTy5YtU1QIXnPNNaru3jbLUtDqhVwW6jmLsJAvvvRN5413m2HtPnQOGexWD/XC0vGhHN+AWwpyTEfvLja7dEgNDQ1YsmQJmpubAQBnzpzB5cuX8dRTT8nuvrTL+9GExoAlV99YXETz1YUOjj3gloIcOx9xx5KloFJaVh0fSgoWy9+f4eVhDh6PR/fRdWb0re3t7fj0009RVFQEAMjKysITTzyBiIgI3XEqYefTYbil4FCsthRkCTl5amtrsXz5cjQ1NcnGMWXKFMyYMQMhCv4A42O/1co+tXBLQXbRmrdNTU2qjs2lLYeW+OSUgoIgcEtBCxEEAfboxfRBoq6wVN/sMuZw5OFKQQ4VWNtBbmbneezYsX6FYB+XLl1CaWmprKUgSx08SVpbW3H8+HFUVlYiIyMDt956K8LCwkT98uNDybUd1togx1y4paA+WJXLTLilIBmU+mC75zMfY/wTO9RNMUjKTVspaISNGzf2KwQBoLi4GBs3bsS8efOopSn3XqwpeQZj1/pME5pKQSVYqy9S7by4uBhLly6VtcYNDg7GQw89hHHjxqlOT00fIae08BdLQV9tt3Z7r6+//hr79u2jEjfN40O7urqIxs0hh5JSkIV1PX+D56vvw5WCHCrY4WxxWhw+fFj0+d69e2U/DOzyflpoa2vD0qVLUVtbCwA4f/48zp07hwULFiA0NNQUGeQmDywuavLjQzlWwpWCbMplJnawUpOCJUtBM44PtbLtsVj+/gwvD/Nwu926lBe0LQW7urpw5cqVIc8vX76M9vZ2hIeH64pXCbnjJlk/PpS17wAW2jHN40PtZiko9g1ZUFCAhQsXyioE4+Li8NRTTyE1NZW4THLlw1r+ScFCPeeIo7ZsSkpKqCkEaeDdbkhbClZXV+uWi8MxA1rHh1q9wYRDBnvMHDi2g8SxWL5GUVGR3x0fmp+f368Q7KO8vBwXL14U9c8tBfmCLcda+PGhHLXwMpSHWwpyfBE71E3a6K37tNtMdXW1ZBqlpaXU0rWzkoIfHzoUux0fSnNRcnDcly9fxl133YXKykrJMElJSVi4cCEVhSAA2VOHQkJCqKRJGn58qDgsvJdaGb7//nsm5FALzTsFP/vsM6Lx+TP87jtlzH5Pf8lXf4ZbCnKoEFxdjdiGBlG3gOJioL1dc5wRMnGisFA+cFOTdFgplOKUQC6dgOJiSfewykrdabLK4dWrESvy/OCqVbjxlVeGOnR0aC+nXiLDwkTzL8DplIwzuKwMiIvTlZ4WYhsaVE9AAwICJOuBlryJqK4GCgsRUl6uO08B9MgSxIcKuxFUWqqr3IPLykTrn1w9iggK0tx3yfbnFuKL/bBW5MomvKqqP39iGxqoWhToRqb8gsvKTKt3gYGBsvkj1dYAde03oroawRERmt9HbIwJq6zUHE9gSQlgkwVIf8Csuh1UWgpQsv6iiaOujlj+CAUFgMQx+HKEVlSok6GwUFfbCq2pkYxfKCgAgoM1x6kGT2urZLrRdXVUxtQAPd91IkSGhhKXT1auwkJEypST9xhrFZE1NQiRUTwZIaC4GGhslHSPbWgAnE5NcSqNtUbo+5YCgCtXruDpp54CamqQDSAQQDqAYwD6DiPMyMjA008/jcjISF3pqVl8lTv6MFhlG7fauoMrBcVh4b3UynDp0iUgPt5yOfRA2lKQb5IjB1cKKsOSUtDqsYRDBr7Sy6HCyFdfxYNSjnl5uuKcI+eoEGcMgFytCeqUUzadvDxM0hWrPcmVc/yv/xryKEwpjBL/9E9DHsXKxamzjLWySGuA//1f0ce5WuPJzcV4AOO1hvPGpDzikGVM708zEuU9pfcnya9/rSmZRzX55pjJQyr9vUFVCgPI9Fm62wUNZOQcCfX9/Y160h40xtza+9MEHxuYYmzvjzo2LfdEGJxfeqMzD2b0/mjFnwxr5ruRcukCwN/8DfE0dX3XSfHP/0wqJgDK34GPEU2NPK/RjFyhHj5HM22DjARwVOT5NAAHAWRlZWHevHnUr8fwBUtBfrUFx2xoWgpyyMHbtjJmn9DEy8T34UpBDhUuvvMOdl+6JOo2b948JCcna45z3bp1ksff5ObmyoZtamrCxx9/rCk9pTilWLx4saTbxIkTcfLkSVG3MWPGYObMmbrSZBW5vPDOX7fbjX379hk6iiItLQ1PPvnkkOeNjY1YunSpaJi7774bN910k+401fLnP/9Z06XWb775pujOG7n8HExWVhYeffRRnDp1ytCZ/6+99prqnaccdjh79ix27dqlOdwdd9yBW265ZcjzQ4cO4ehRseWQnqOS5s+frykduf7cSiZMmIDp06dbLYalfPHFFygoKBB1u/7663H//fcDAN566y0md8dK9Z8A8MMPP2D37t0mSyTOlClTMGWKuKr98uXL2LJli2z4kSNHIjs7G19++aWmdAMCAvDLX/5ywLPjx4/jwIEDmuL5+c9/jmuvvVZTGA49zpw5gz179lBP5+GHH0ZOTg71dEhTV1eHFStWEIlr4cKFiI6O1hxux44dOH/+vKK/RYsW6VIs1NTUYNWqVaJu06dPx4QJEzTHqQan04klS5aIuo0aNQoPPPCAqWlqISUlBU8//TQBiX5E6dtHbv5zww034L777iMqjxY8Hg/eeustavE/99xziI0VO0OmhxUrVqCurk5TnKGhodQW+adMmYKbbroJTz/9NE5/990At0wABwBUAMjMzDRFIQjIWwraRSnI4tyRBVhYfGdBBsDa40NZyQOONvyl3Fh6T24p6BtwpSCHCp2JiXAOukuuD/fw4UBamuY4W5KS4GxtFXdUWKDwNDbCqfWIA52LHnLpNCcmSrq3paToTpNVZPPc6113btuGYyUlho6hiEpKEs0/T329pByd6emm5HljXJzszs7BCNnZcIjcq6GlDrf05kdnZaX2uu9NTg61I6c49OjS0+cB6EhLE20T7VeuSMYXkpCguR3J9ucW4ov9sFZakpLglDjeyzt/GuPimPow6ePDPXvgcDgwbtw4TJ48ecAHS6fMeGA27ampknWtq61NUc7W5GR0DRum+X0cDseQdDvLyjTH0zVsmN+3FZborKszpW67MjNtWe7uiAhi+eMePlzX0fMtSUmqZBCys3UdT9odEiIZf2tyMrVy666tlUxXak5hFE9DA5HyDE9MJC6f0rdPa3Ky5PyHZjmpwd3dTbUfcQ8fDiQkSLq3JifDqVFhFB4ejnYd15KooTU5GY/+7d9i5yCFoDfJqam4a/58IgpBfzk+lFsKsgsreUtaDu8jhpWOD+VYB89/9uBl4vtwpSDHdPR2LL7QIcm9gy+8nx48Hg/OnDljOB6p/GMhz7WmQ0Kuvjj4hxdHC2a1I16v7A+rZVheXg4AKCsrQ0dHB7OWnyTaFKky0BMP3+nvn7Da7s1Eb92n3Wbk4teyMU0rcve5BYhscGMJK/oxltuQy+WiGr/Su+tRVtGqY263G//2b/+meNrKI488gg4dSnwpBEFAQ0MDoqOjRZV8Um05MDCQ+fbWB79TUBxffS8W6Mtbt9ut2M/xciBPW1sbDh8+jLKyMll//JhLZVg6PtTqDSYcMnClIIcKNDplXxgkWFBQsUZzczO1HZ5KsJrnLCkFOfZEb7lLfaj7i1KQVbnMxJfGqWPHjuHOO+/s/2hhSX65RTE1clq9wYqlvOTw8jATrhQciJxSMDAwkEqavtqPWS0PbaWgEnqUWjQUYS6XC5999hkuXLgg6SclORmoqUFoaCg6CKVbVlaGTZs2oampCYGBgfjJT36CmTNnwnvZVcpSUMvRoVYv5PJNRexidR/UB63jQ5Wuc2Hl/X2Jzs5OLF++HFVVVVaL4hOYXUd5m/B97LGdiGM7+GRPHLmPLX/tcEl9zPmSpSCJ9tMXB7cU5GiBWwpyfIm2tjZUV1dbLYYo3FKQY0fs2neTlFtOCUZCBtKbegDlhVAjyKVrtfJBCbvWZ1rordtqUcpvPd+EpBXPXV1dWLNmjaxCMC0tDQ8++CDRdAHgq6++QlNTE4Cesjhy5MiQ+7xJKAWthn+bisPCe7EgA0BPKajm/lFW8sBXuHjxoikKQX8pN5aUgqzP8Tjq4EpBDhWM7oAnGc5oWK3IfdDIWcT5y0A2GFILixUVFZrDsJrn3FKQYxXcUpBNucxETVnbKZ+8FzlZkpuFDStG0mMpLzm8PMzEjpaCNJWCVlgKksKKvpbltmq1paCe+kLSUrCzsxOffPIJLl++LOknKSkJ77//PqKiooilK8epU6cG/C1l9av2PkEW4MeHsouv5q1apaCvvr+VbN26VbVfu6z32g2eNxw5uFKQYxvs0pmFydwrwJWCQyG5SCL2ESeXr2ZZOlhhKWjHxXsOOUhvviCtwGDVyoi3F3XYKZ+8dzGyJLdRWSorK7F3715C0miHpbzksHvygS9CWylIw1Kwo4PUAYdDoW1dJgY/PpQOVt8paOXxoW1tbVixYgUKCwsl/cTExGDHjh245ppriKSphsEWNvz4UHp0d3dTPWpZCavbP2nGjh2LiRMn6gpLOi/64uOWguajJs/7oHHvLMcY3FLQ9+F3CnKowNIOeLPTDAsLQ1tbm6gbVwoOheSHwaFDhzBq1CjV/lnNc5YsBVnNIw4d+PGhHNbGb6Ow+sFi9ESFviPG9CAIgmFlKauLehwObbQscHljpaWgXpnVYIVSkBTcUnAgdjw+lIRSsKSkBJ999pnsuBoXF4ddu3bhlltuQX5+vuE09SKltOLHh+qnu7sbn3/+OS5cuIDYhga8gR7lq9k5ykLfQFIGh8Oh21qc1vGhVltDc+ThloLKmL3u4i/56s9wpSCHCkFVVYhtaBB1CywpAXTswoqsqZGMEzK7+gAgoKFBOqwUCnFKEdfYCLdEWsEdHYiVUAyGV1XpTpNVZPO8713r6rSXjQT1DQ3AT3864FmATPwh5eWm5HlMfb22AbWwEIiIGPJYSz5FBgcDhYUIKS83lL+OoiIgNFR3eI41BJeV6Sr3sMpK0TYRVlkpGV+0y6W5Hcn25xYi9f7+hFzZRFRXA4WFENxuJstPjMCSEqDXSkZvu6CBXF2jLmdhIeClFAytqNCcXnBZGZCURFgwjl7MqttBpaW2nBMEEBxzdn/wAV5++WXN4SKqq1XJ4CgqAsLDNccfWFIiGX9wUBC1sS2guFgyXVrfNrq+60SIcruJyycnl1BQgKjaWtPzSy1CaSnVfiSguBiQ2DgLANE6vgljgoLQaUDm06dP45tvvkG8ICAeQCCAdADHAPTZ5CUmJmLXrl26rZ5IImUpyI8P1c+mTZtw9uxZAD8qxnft2oUHrruOaDp2gGTeGlHY01IKKtU91jducDgsXTHB6sZbjja4UpBDhfH/8A8YK+WYl6crzqfkHBXijAeQqzVBnXI+oytUL7/8pZHQzJEr59ibv4lK/rQyqNxk49dZxlp5U2sACblytcbzq19hCoApWsOpkIXDNjf2/khxV+9Pkt/9TlN8840Iw6HKY0oe3ngDgSDcb9PEqw+b0PtjnTG9P2oM6td1jRN8bGCKm3t/1LFpuSeDcJ/1n/+pOcjjaj3qzOORUHjHX/9aV7yG06WAru86Kf7t30jFBED522euUgRvvEFMFq1kgnJZKtTth2imrZFpAA4CSEtLw549ezB2rOTKhqn4wvGhLFkKulwunD9/fsjzgoKCHmtBEy0wfU0Z5XA4LK9rffQpA9Xksa+Vg53gFm3KsKQU5PgGXCnIocKp//ov7C4vF3V74oknkJ6erjnOTz75BNXV1aJuubm5smHr6+uxfPlyzWnGxsZi2rRpuPbaa1WHWb58Oerr6zWnNWLECDz44IOaw7HM4sWLJd36yqy6uhqffPIJsTQH14Xa2lqsXLlS1O+UKVMwZYohlZkq5PJBjIULFyI6OtpQPElJSZg/fz4OHz6Mb7/9VlP63rzyyiuy92Ry2CQ/P1/XfWO33norpk2bNuT5nj17cObMGdEwkZGRePHFFzWls2zZMjQwYrHlzZgxYzBz5kyrxbCUdevWobS0VNRt5MiRmD17NlwuF9555x2TJdPHM888g8TERADAqVOnsG/fPosl6uHGG2/EPffcI+p25swZ7Nmzh1rakyZNQlxcHEaMGIGwsDBd48T06dMxYcIEOgLahKqqKnz22WcDjqOKjo7GvHnzTB83zarbs2fPxsiRI6mnQ5qamhqsWrWKWHxz5sxBZmampjCrV68ecj+YGC+99BIiRE6LUOLChQvYvn27qFtYWBheeeUVzXGq4fz589ixY4eom1w/ZwS933WDiYqKwgsvvEBAoh+Rm6u/9tpr2LBhAyoqKkTd+8ZYq7h69So2bdpELf558+YhOTlZ0n3Lli2i98PLcc0116CgoEBTmLa2Nmzbtg2lZWVD3DIBHABQASA1NRXffPONpnUA2kgdH+pPloIkqaqqEj1S0u12o6ioiKmy1wLpu+X1YEQhSOtOQaV4uQLEWnj+04GWspUVpT/HGFwpyKFCZ2IinBLHZLqHDwc0fkgDQHNiIpwSE2EhO1u2U/JERcEZH685TSeA1YcP47kbbsDw4cPVy6mj421JSgJycjSHYxnZPO991+7gYF1lI8XguuAOD5eMvz011ZQ81/p+nqwsIDbWUDwhCQlATg7ar141lL9CdrauY6w41tJZW6ur3Ae3CZfLhaCgILSlpEjG54qM1NyOmhIS4NQsHX3M6hNYpiUpCc7WVlG3tpQUICcHQnc30X6bJp6sLKB3EbKrqooZufvyUozOujqqcu6+dAkAkFRQgGeffRbtqama0+saNszv28qp8+dRN2gDjxPApe5u3HjDDabK0lFRYUrdtmu5u0JDieaPJysLyMrSFKYpIQFOCSufIXFHRWmWqbOpSfIdO0JDqZVbR2OjZLpy/ZwR9H7XDcYdFUVcPjm5hOzsnjG290jrwdDKL7V0tLVR7Ufcw4cDaWnS6aelwVlXpzq+uLg4RIwZA2djo+owpaWlWLt2reK9vPGJiXjro4+YUwr5gqVgZWUlGhsbERcXpyu8WUdcmq28JPleLCgFAf11jdbxodxSkG24paAy/vKeHPPgSkEOFVjaAQYYH2DOnj2rWinIyiTMLpCuK4IgqJ6AmpHnetIgkSdqd8RxOGIUFxdjx44dqKioQExMjOQiBGBdHVfLzJkzsWvXLlV+S0tLsX37dnR2duL666/H6NGjKUtnL+zYn3jLzJL8cm3ALDlra2tx6NAhBAYGag7LUl5ahZR15ZYtW3DjjSQPcOawhp67kmiPe3Lx00y77w4uO8KP4RqImMWUmWhVIEyfPh21tbWq/Z86dQqbN29W1R6eeOIJzdbAZuALloIAsHbtWrz00ku6wpJsR3LzH3/s21i5U5A0Wu4U5HBYhqV5i9UbTDhkYKen5vgUcp0HC5MUrRw5coR6Gv46CaGhFJT7W62blZCQi1S+sppHHDoIggCn04lPPvmk/3irpqYmdEjsau8LoxUzlYJadnnX1tbi6NGj+O6777B27Vp88803FCWzL3bqF1hVCkpRUFCAr776yrT0Dh8+bIt8sRNymyhoYVYZ8rrSg54xzB+VgrTqC6l4rVhcY/m7hLYSROn9tCww3nHHHRg/fryqMIIg4KuvvsIXX3wh2xYCAgLws97jboODgyXjtrKcSFgKskBFRQWcTuvPDGFJKWh1+yeNkTsFuaWgf2JkjPCXctPzntwCkyMHVwpyqMDSDgY17iSxo9LTSkgvVGiJj1sKcnwBsfpipNwvXryIzs5O1f7NnpxqJShI/6EI+/fvl9yV7auoWbC0U7/Cqqxi7fbLL7/E8uXL0dbWZoFE2mA1XzkcMWgtMNIIo1dWuQVsmkpB1k6H0YKdjwekAW1LQZLf6yNGjACgbI3k8XiwadMmxTtXw8LCMH/+fIwbN67/GYtWEK0Sx7vb6fjQPoqKinSFM+veO24paAw73inIsS+8bOnALQV9H358KIcKNDplX9/hYAcZacAtBYdCQi4++fV9Lly4gK+++go1NTXIyMjA/fffj/T0dENxCoKAixcvag6jFTMX4owcX+NyuXDu3DncdNNNBCXimAmrloKDZWlsbMT+/fuZkIVjP7iloLnYzVKwz0KNxgKOFZaCpOCWggOx+vhQLfTVZSXLkZ07d+LUqVOycaWlpWHu3LlISEgAGhqGpMEK3d3daPCSz5tYkbvoWYcVKzIp7GwpyIpSkJU2pOX4UKv7YX+G5z1QVVWFy5cvIywsDNdddx2iB91dzprxDcf+cKUghwpm35XDUmfFwiTMTtBWCpqZthhWWVGRUgr6a71kndLSUqxdu7a/DpeUlGDFihVYtGgRoqOjDfVDdXV1msPoSccMAgICDH+QsnC8kZn42tE6rMo6WC6p++nMgOU2zFEHLw9zYdFSUM1ip9lKQVrY+fhQlrH6+FA9+SNVpz0eD7Zt24bjx4/Lhh8/fjweeOAB0Tv5WLoTDYCkQhAAUlJSTJSEDCwoBeXi8kelIElYshTsK0sW8oVDB18o2/z8fGzcuLH/XSIiIvDss88a7t9pGdewovTnGIOtmQ7HZ2BN8WeHQYJ1GQVBQHV1NcrKyogq0/jxoUMhkSdazs7n2I8zZ84MqSft7e24dOmS4bjT0tI0+WfZUjAwMJBPWAlix/7ELpaCBQUFFknCVr5w2MaudYX28aFNTU2or6/XFIY0SvHTSt8fj9izS3pasaOloJjirqGhAUuXLlVUCN533314+OGHRRWC3mmofU6b2tpa0edBQUGIj49XHQ8r82JW5JDCH/s2ViwFrTo+lFsKWos/573b7caWLVsG5EFbWxt27949wJ8/5xGHDtxSkEOFkNpaxErsZgsoLgZ0fJhG1daiS2qHXGEhIHNRdGBNjaQ8qiksVOUtuq4OHh2WJZEREarTMJv29nZs3LgR1dXVAIDo6Gg88sgjPcesyCCb573vGlhSYrxsBscbHt7/Z0BVlWT8YZWV9PPc5dL8fgHFxUBHx5DnWuKJ7OoCCgsRVllpKH8dRUVARITu8Bw6nN+xA2IHBX2zfDkmJiQgpLxcV7mHVVYi3OFAuYawQUFBmttRTH09QjXcW6iX0NBQBBQXG2oDoRUVzPbNNIiUGS8ja2p68qKjg2y/TZGA4mKg917I0IoKZuQOr6oaUK/k8p02esaJkPJyv2oXYqiZ45iF3j5fK8FlZUBUFPV0SBNocC40JL6SEiAkBJ2dndi8eTNKS0sBAMnJyXjooYcQJZJHMfX1CJS4D8wbR1ERMOi4KDUEl5XJvqPn6lVAw71jJNId3M+RIkDmO1MLeuYvcgiCoNgvyPX1EdXVlvartMdI7/FYjHCZb7bBBJWWAh7PkPHr0qVL2LNnDxxdXcgGEAggHcAxAF19YYOC8Oijj2LMmDGyaUgpNKxalJXaeJCUlMScVaMa9MpslkWd2UpyFiwFWblTkDRqjw/lWIuvG4HIceHCBXR1dQ15fvnyZQuk+RG5zREstXGOfrhSkEOF237zG4yVcszL0xXnAjlHhTiTAeTqSlV9Gn08ZySNf/gHI6GpEQ7g6cEPf/c7xXC5co69+TlKyZ9WBpVTKun4NRKkJ32JuqY5nn//d9wJ4E6t4VTIwrGWXDnHvDxMADDBQPya68yf/qTJ+yKt8RvhD38w1gf4WRt4QslDbi7CYG2/qgmv8ru198cMr7/e/99nLBQD0NHm/axdiJEr52hy/kzq/VHHpuWeBjpzzVAAcwa7/frXokFe1Bi3VhTrAKWym9b7M5MkECxPjfMXORxQ7heGfE8NJlc2BqpM7f1RQ6EO/lxHXGrH9WkADqJHEfXkk09i1KhRimFYW/Bsa2sTfZ6YmKgpHlbeixUrMim4paAxjCiqaVn3c0tBtvHnvK+srFTlz8wrHzweDzZs2KArLMc+cKUghwoH/+VfsLuxUdRtzpw5yMzM1BznsmXLJM/Sf/3113t2e0pQXV2NTz75RHOa3uSq/Ej7+OOP0dTUpDn+9PR0PPGE4nKs6bjdbrz99tuibvPnz0dSUpJk2MWLF0u69eXn+fPnsWPHDiMiDuCFF14YsEO7srISa9asEfV744034p577iGWthjd3d149913NYV54oknkJ6ePuS5XH4OJjw8HC+//DK++uorfPfdd5rS9+bFF19EZGSk7vAcOii1rVOnTmHfvn2a4x0/fjwAaKozAQEB+OUvf6kpnXfeeceUHbgRERFYsGAB/vKXv+iO47bbbsOkSaYstzPBmjVrJD9McnJy8PDDD6O9vR3vv/++yZLp4/HHH0dGRgYA4OjRozh06JDFEvUwcuRIzJ49u/9vvXMHEkyYMAGnT5/WFGbatGm49VamVKymo2aOYxbffvstDh8+TD2d++67DzfccIPu8GVlZTh9+jScTicyMjIwZcoUhIaGEpRQnIqKCnz66afE4ps1axauueYayfnd4LkoALz//vtob29XjPv5559HTEyMor/BdwQePnxY9m7Sl19+GeFeJ2mQYt++fTh16pSo2+jRo3HvvfcST7OmpgarVq0yHI+e+YscHo8Hb731lqT7woULsXnz5v6TVwbTN8ZaxYEDBxSP3DTC3LlzMWzYMEn3LVu2qLaKePLJJ5GWloZTp07hyy+/xJ49e3Du/Pkh/jIBHABQgZ4j5efMmaNKIQhIKzVotCMjyK2BsAwLykl+pyA9WLpTkF+r4vvYvWzlvgG953tmvmdJSQmam5sl3VnowznGsecMgsM8bXFxcEp0Eq7MTCAnR3OczYmJkDqUU8jOBiTuAwAAV0gInBrO2hdFpcxNCQlwyhxlKkVUYqKufKFNR2urZN5d9XiQJCOzbJ73hut0Oo2XjRfu4cOB2B8PVnQHB0vG35aSQj3Pha4uze/nyswEhg8f8lxLPF3h4UBODtpSUgzlr5CdbcujwnwdpbbVWVmpq9zbU1OV4x+Ew+HQ3I4aYmNNOcJFiIkBcnIMtYHO9HQm+2ZatCQlwSlxtGtrcjKQkwOPzLjAGq7MTCA7GwDQWVLCjNwtSUkD6pUzPh5NOuYOJNAzTvhbuxBDzRzHLDqLi02p290ZGbrfrbS0FMu+/rp/Q8ilwkJc6u7Gc889h0DKdd8dFEQ0fzrT09EYFycZZyGAcYPyqSkhQdLSxxtPVhYQFyfp3tHRgW3btuHy5cuIiorCrbfeikmTJqHtyhXZd/RkZQEqNnn13SEeGBiIhIQERWuP9vPnTZ9ne8LDyZUnQfkEt1uxDJoTE+GUOEKzb4y1ivZLl6j2I67MTCArS9K9NTkZzro6VXF5srKAYcPQWlqKv+7ahYsXL8r6DwoJwbwnn8SIESNUyyu14DlixAiEUDiK19/gloL0YMFS0OFwMKOoUXunoFo/HDr48/Ghajdkm/meBw4cMC0tjnVwpSDHNti9o1eC1feTWwwgsahPWjEwOB/l8tWMPNeTBsl8NfqOrNZLDh3MOpLCrHoVEBDAd7FpxOo+kzTeMrMk/2BZ7HbPCUt5yTGvPIykc+LEiSEW4mVlZSgrK0OWjKKARTwej2xeiI07JMpIEAR88sknKCkpAdBz5/f27dsRGBio2Ieo6WOampqwatWqfku2jIwMPProo7J3iNu9LxhscUk7LZax2zjU2dmJf/qnf1JUCALAvHnzejY6akCqXgQGBmLixIma4iKBVP3RWn9ZmRezoBTkloIDIdkHsGQp2IfS+7HeR/s6vpz/RhWeRiwF9aZt9X2GHHOw343EHFtA46PCLjtHWNiZRRK5CR2LSkEt8bGa56QWjkjFxfEvaE82zbyvgSsF6WCnfoVVWVlSCrKaRxz1mFmGV65cwYYNG/DJJ5/g+PHjqtOWOqL2q6++IiidOLSOIjNbhrq6un6FoDenT58mohRcv379gKMty8rKsGzZMrS0tGgXFvTqJat9VkdHh6y70vzH6veinb6a+7zU0tnZiUcffRQHDx6U9Tdl8mQAUHUk72DkNsZO7o3XTKyuH6RhQSkoh50tBfXyxRdfEMtfFpWC3FKQbZTyXq5OsV5udtt0Ayi3YdbznKMObinIoYLZHzy+0CGZ9Q4dHR04ffo0KioqkJ6ejptvvln3fS4sKgV91VJQazxcKejfGNmcYPWiEEm4UlA7avpMO/UrrFoKDu7n7aYUZCkvOeZx7tw5XLhwob/8L126hLq6OkP3xjVK3EHOMnosBdUiF++RI0dEn5eWlsre1QYo9zHt7e0oLi4e8rypqQl79uyRvOvO7n2Bx+Mhdnyt0r2VrOeVXeZ/3d3dWLhwoeyGgqCgIDz44IOYMnw4IHPXphxy7ZiluSVLstgNbik4EI/Hg4qKCsXxRA0Oh4M5xS/JjQkcjhaMfOex+i3L8Q24pSCHCtxS0LxwWujs7MSKFSuwc+dOfP/999i5cydWrFiBTon7o5TkIiEzbaUgKb9mIiaXVUpBVvOIwxZa6omZyo/AwEC+WOLnsPohxS0FOSQxqwzPnz8/JK2jR4/KziOVsGP9s+r40G6Ju+j6ZJJDyV3uvsMzZ87ICyaBHcqWlIwtLS2iVpxa0rI6v6y2ZFDz/t3d3VizZo2sQjAsLAy/+MUvcNNNNxmSh5X5o9I3nV2PD2VhzUQuLrPbAwtKQQA4dOgQERlYqWfeqClTq/thjj5YLzcrlYJ684bFNswhD1cKcqhgtnVWSUmJ7Y94MGMgO3v2LMrLywc8Kysrw7lz5yTD0J4s+/rxoVZZYFj9Yc+xJ3otBVlVxnNLQbLY3VKQJQoKCnDo0KH+hXi7zWFYzVeO+Xg8Ht1KI4DduZgcNI8P1fsNReL4UClY659YWTz3Jj8/X1VaLPedrFsKdnR04JNPPsGVK1ck/YSHh+PZZ59FZmamobQA9hZEWa47etDbJ/HjQ5UxkkdXr14lIoORbzBaJ4uxvjHD3/Hl/PfFtTlfLi9/gisFOVQw21Jw5cqVeOedd9DQ0KA5LGlY2PUmxa5du0Sfb9++XVd8LCoFtRwfyurgzI8P5RjFbMtqVi0FuVJQO2rKktW+UwxWLQUBYPfu3Vi+fDna29u5pSDHEFaXod475+wKi32gUaUgje8Xq+ulGkjJqEaBwHp+WC2fXPotLS1YunQpCgoKJP2Eh4djwYIFSE9PJyKP3J2CZsItBa2RwR+PDwXI1Xt+pyBHK0aUtqyXGylLQTNhZazg0IWNmQ7H57DiY7mxsRGff/65qBvrgwRgjowdHR2iz7u6uiTDcEtBY5BSsPDjQ9nE1/LHjE0NZuYZPz6UDiwuiEvBehutqqpCfn6+pXJaZdHOIYedy8OOslt1fKiRObkd89kMSOWLmrmGkqWK1WVEe2zX+36tra1YuXIlKisrJf30WQiSUggC7CyIKuUbK3JqheWN1ID/WgqSqk9G7hSkAeuW2hxjsF62pMZXfnwohzRBVgvA8U3C6+sR4XKJugWWlAA6diBF19UBzc2yfpwNDWg7exYRERED0ywrQ6yEFaFqCgtVeYuuq0OgzL0cUkRpSEMvsnkgkbajrU0yXEh5uazMatILJlE2XgQUFwNed9sElJZKxh9eVUU9zyGTf1IElpQAoaEDngnd3drzqbAQ4VVVhvLXUVQExMToDu+rNDU14euvv0ZZWRni4+Pxk5/8BCNHjjQtfaW2FVJerqvcw6uqIAiC5rBCQQEQEqLOb3s70TYvR3RkJBxFRYbSC62ooN9PMERUba1kfkVERvbkRX29aWVolMCSkv66GVpRwaTch1evRqyFH7N6xgl/axdi6JlT0SKsstLSuh1WWan4zlLyRXV3U88vubmgHoLLyhAYHCwZZ3BZGRAWNuBZTH09XBLfRt44ioqApiZRN7m2qlQHHEVFgMTmQABw1NXpqtNy6dKaZwcYnNsOoLBwyJxbD2rGF0dREaLr6tAl4S8yKopYfgmCgJqaGjQ3NyMjIwNhg+qjGEa/GZQIKi2VXQOIqK4ekn5VVRV2bN2K0OZmZAMIBJAO4BiAvi2tERERWLBgAdLS0ojKy8qCKGlLQVZgQSnILQWHQlIpqBdaCh41m2dYVy75Mr58vKuVdwrSgiVZOPrhSkEOFWb+6U8YK+WYl6crzoVqPYrEnwEgV1eq8vGK8ZKRNH7zGyOhFcmVc5R4vwilcAbTm9L7I8ag98hUkuONN0imPgRd+SdSFsE647kPwH1awynIwgFiADxoYfq5co55ebgVwK0G4p+pNYCGehIOAv2xFv7+742l52dtYJ6Sh7//eyTA5DI0glf53db74wyFZpv3VXLlHE3On9t7f5ah4n1z5Rx//3tSkoiiOBfUSu/7SsYpkh+va4xbjFm9Pynu1xkvACRCX52+p/cnyeuq31w1qSBYnoTaqqp5V14enlHy83d/R0QeB4CU3p9aZkLHWKAFhbx+WOL5f4g8mwbgIICEhAQ88cQTSE1NNSabCHY5PlQrrCgRWVAKyuGvloKkMGIpaNWdghxrMfv6EzOx0lJQL6yMFRy6cKUghwrb/+ZvsFui43vkkUeQnZ3d/3dDQwO++eYblJeXIzExEZMnTx7g3seHH36o6s6SOXPmDLlcvLS0FOvWrdP4FgPJzc1V5e/9999He3u75vhjY2Px3HPPaQ6nhcWLF0u6Sb1fa2srPvjgA1G3m2++GXfeeaeh9A4ePIhjx45JcNgfwwABAABJREFU+tPK3LlzMWzYsP6/5cp+5MiRmD17NrG0xZDLPylmzZqF6667bsCzrq4u/PnPf9YUT25uLrZt24aLFy9qCufN888/jxhuKTiAK1euYPPmzUOejx07FjNmzDBFBrm2FRAQoHviOWbMGAiCgHPnzmkKt2jRIoSq3Gnf0tKCDz/8UI94msnJycHDDz8sm19K3HbbbZg0aRI5oRhn5cqVqK2tFXXLzMzEnDlzUFNTg1WrVpksmT4eeOABjBo1CgD58cZXGD16tOY2P2XKFEyZQnRLj+3QM6eixYEDB3D8+HFT0/RGTT8plV+RkZF48cUX+/++cuUKzp49i+7ubowYMQLjx483vDBB4jvAm8mTJ2PEiBFYvXq1qPuDDz6IESNGDHj29ttvq1pkXrBgARISEkTdtm7dikuXLom6jRw5EleuXJGM9/HHH0dGRoake11dHVasWCHpLlWn9+zZgzNnzoi6jRo1Cg888IBknHqpqqqSzHutvPTSS0NOmNHDiRMnsH//flk/Tz/9NHbs2IH6+npR974x1ij79+/HiRMnBjwLCAjAyy+/LDtX2759Oy5cuGA4fSkefvhh5OTkSLpv3LgRRUVF8Hg82L9/P06dPj3ETyaAAwAqAIwYMQJ//vOfceTIESrysrIgyo8PtUYGbiloDBbrpRpLNBbqpb/CLQXF4dcBcWjClYIcKrTGxkq6dWdkAL0fBG1tbfh4/foeZV9EBKrb23Fx/378YuTIIYo9Z3w8WoKDFdPuGjasP/4+XL3hDSHzEeNNU0IC2nQcH+qIi1Odhl5k80AibU9zs2S41uRkWZnVpNd26ZLxsvHClZkJZGX9+LeMHC1JSdTzXGhp0fx+nenpQ+QSOju151NODlqTk+GsqdEWzgtPVhYQF6c7vC+yaeNGNImUxaHycsygXJ/6INlmvGlPTYXb7YZT5t4WMTxZWUB4uDq/TU3U5B9MR1oakJNjKD2x9ujLNCcmwimxEBLX22d2h4SYVoZG8Z4TtF++bBu5zaQtJUVzm29PTfWrdiGGnjkVLdoJz6W0Ijb3HoyUfK7IyP6w3333HT4/cKDfLf+771AVHo57773XkHxEvgO8aEtJgSszU/qdMjOH5EdjXJyqRSFPVhaQlCSZrlNi00ZLUhKcEsomYOD3lxjuiAhddbo9NRXOsjJRt7aUFCptwU1wDPJkZQFRUYbj6SwvV5TJlZnZM8ZKLNDFEfou+XLZMkBElvzmZtx6/fWS4VqTk+GsrjacvhRi7WJw+hWVlVi/fr2sghsA0jMy8NmBA2hubuZKQUbk1IreRXJuKUgXFu4UpGUpaKc70TnaYF3x5YuWgqznOUcdbJyJwPE51HZ6ly9fHmL953a7kZ+frzttu3ZOrMotJxcJmUlPzgbHJyejGRNDUpcBs37Eij/RIXMnj93Ru0NSSxjS7S4oSHp/EytHP9kJNX2+nT6qeR+oDM8j+2N1GZJaRDx8+PCQZ8eOHUN3dzeR+Emhpw8kUUZG5rRW9Nu06iUrFjXeqGkDVrdTpe9r2vIpWWXt2rULb7/9tqJCEOg5QSg9PZ2qQow1ZRs/PtRYOK1xcUtBYxj5BrNq7OCWgtbCLQXFMXqnoN58Y2Ws4NCFr5ZxqCDX6Xl3Slu2bBH1c/ToUdlwWtM2cwBhYYJrFkYXGFwuF65evUpImh605COreU6yDvPjBsjDJ0hDsbLdyR2FxcuKDnbaPc3q5ewsYeYHJoczmL661NXVhaqqqiHubrcbZ8+eNVssWTwej2wbMDL26G1bSnPykydPUtnoZ/e+wOxvRCvzSyltqxTH+/fvxx133IEVK1YoXsFxQ6+lY99VETTneaxsLFO6U9Cuc10W+g65+ayd5rqDYUEpaMRSkAZW978cZfidgsqw/p4c+8GPD+VQQW1npWXnrxGloB1gtYOnZWlXVlaGlStXEre60iLTlStXsH79ekRGRmL8+PFIT08nKgtg7WIrq3WKwy52tBQMCwtDa2urKWn5A2rK0k75yvtBjj9gdT0noQST61f0HMsvlgYplMZKsfygbSmotID9ww8/IDw8HD//+c8Ny6EWq+ulGliS0UpLPbPTFwQB27Ztw+9//3tRC+HBOBwO3Hvvvbj3+usBr3sPaSruWFFo+OrxoVZuRGhtbcUXX3wheUcrwC0FjWLF5hgS8bI0JnAGQvsEM5pYaSmoF358qH/AlYIcKli5YEjy6EVS6dMMZyVGynn16tVUjmEcnI9K+XrmzBkAPTuo582bh+zsbKry6A2jNx5uKcjRip4y19IXkB4f5CwF7bzLl0Xsfnwo78/E4ZaC9BEEAadOncLVq1cRFRWFCRMmIC0tzWqxODqh2QfSshQEgOPHj+OnP/0poqOjdaUhhhV9Ack0zRzPrLZUsdpSUBB67vT6/PPP8bvf/Q6nTp1SFS4sLAxz587FiBEjgIYGAD8uVvrD8aGkLQVZey+zwnmHX7lyJSoV7lLmSkFj2PFOQT635dCCtfVxDqcPrhTkUEHt8aFa4JaC1kBrR46UZY9R9JZ/d3c3Dh48SFwpqIe6ujq43W4EBgb2P7NKKcgZCisf0zTQW2e0fDibeXwoVwrSwU7jLO8DleF5RJ+tW7fixIkT/X+fOnUKzzzzDDIzM4nEb3UZsmgRQBOlPnBwfphxAoTafvn06dO44447NMXty7C0cdSXLQXdbjc2b96MJUuWaDoOOCkpCU899RQSExMHPO9rY/5kKehrbVTvXNJoPtTU1CgqBAF7f0OwohTUC7cU9E/48aHiWPVurIyBHLpwpSCHClZ2yvxOQbLQOj6UFlotBb2RO0JEL3rK9dChQzh+/DjuvvtuTJ48WXc8SnfecDiksNJSMCwsTNLNzh/0VqFmI4iRMgwNDcWsWbNw+fJl5Ofn645HLdxSUBluKagdNYvrfR/TTU1NAxSCQM/9eYcOHcLcuXNNkYdl1MhudGGCdP5onV+xpBSsr68nIosa7FAvScmopo5anR9WKAVdLhe+//57HDhwQFPdCw4Oxu23347bbrsNISEhQ9zNsBRk5U5BpetW/M1S0CjHjx9X5Y9bChrDjncKWt1H+zu+XD6kFJ4s5QFLsnD0w5WCHCpENDYitrNT1C2otBTondzH9h4BIkph4YA/o+vqECIR55D4o6IGPAssKZFPSw2D5JEitqEBnSrkHExYe7vqNPSiJb/7CHA6JcOFVVbKymw4z3UQWFICeFkOBZWWapJDKCggOoENaGrSnQ+HV69Gans7cnJy4Ght1RyP5+pVRFRXGyoHR1ER0NSkO7wvEtvQgFCpo28pt2GgZwJGq22FV1XB5XJpjl8oKACam1X5DTBYJwcT19goGV94WBhQWGgovdCKClPKlRWi6+rgksivqN781DOmJiQkICkpCbfccgtSY2Jw08SJKP7mGxIiyxJcVgbExQHoGbOsGJdYR884oTT++zqCxyObZ0JBARy9C8r5Bw+K+i0/dAiYNImIPOFVVZbWbTX1QUq+0NBQoLAQjs5OaT8G+2Gtc0ElwiorEVBcLBlncFkZ4HXaAxTqizeOoiJA4g7FyJoayXgig4JUpRFZUyOal4pjs0T+y9U9qbSMElBeTqw8HUVFqucvcoRWVCjKFFhSgqjaWridTlH3qPBwIvklV0fk4ifdj5SVlWHXrl1wNjUhGkDfobWBANIBHAPQJRJuxIgRmD17NuLj4xXT8AdLwaVLlyIXQFFRESCSJ6zIqRWrNlKrVfaxuPlZLbSVgqT8SEFL2aCmTLmiwzp82VLQjM1hpNO269jC0QZXCnKoMOevf8VYKce8vP7/5spF4uUPABapTXxQOADIUUpLZ7xiqJZTjP/6LyOhFcmVc5R4v1ilcG+8oS89Wgx6j2ytcqgsZ7XEaE1/ML3yROqJJy8PDxtJ2yt9zo+8IudoQn45YFHbkkPDe6eAvPwz5Rz/6Z+ItEF/4VklD//0TxgFMmVIIg5FvMrvzt4fh2OUAKifU93e+1PyZ4TpvT/LUPEeuXKOf/gDQuX8GMynLKX0dSIZ5yB5FeuLTFhvHlQbhw4Ux2YJuWZCYQx+8029IkkyDATLk1AbvLn3p5TWc0p+/vEfDcuSK+f4619LOj1mOOWh/LeM2zQAB73+Hjt2LCZMmIBRo0YpLkb6052CvopVSkHv6zlYgqRSo9nARgeSSkHW7hT0ZUs0f8DO5WNHhScfA/0DrhTkUGHN888jUeIS+9mzZ2PkyJEAgLfeektyx05ubu6Av9977z1VFngzZszA2LEDVZIFBQX44osvVEguzZtvvqmqY/zzn/+Mri6xfY/yhIaGYtEiQypFRRYvXizpNji/+2hsbMTSpUtF3UaMGIEHHxRfohAEAXkWLKbPmjUL1113Xf/fhYWF+Pzzz1WHf/nllxEeHk5MHqfTiSVLlhiKIzc3F83Nzfjoo480hXvppZewY8cOFBcX60772WefVbVT1594//330d7eLuom1Y5I4nK58M4771CJ+7rrroPL5cLVq1c1hXvyySeRlpamym9FRQU+/fRTPeKJcssttww5mq+PpKQkzJ8/X7bvU+K2227DJELWPHZg6dKlaGxsFHVLS0vDk08+ifPnz2PHjh2a4n3jjTeGLMTk5eVR/9C55557cOONNwIAvv76a5w+fZpqenZk5MiRuHLliqYwt9xyi+i9ZP6CUj+8aNGi/vtOt2zZgsuXL4v6IzVm7N2715TjeKW48847cfPN8ioRqX44ODgYr732Gjo6OvCXv/xFd/xyFBUVYePGjbrDD+a6667DjTfeiPXr14u6P/roo8jKyur/W8u4PW/ePCQmJqKmpgbh4eGIiYnpd/viiy9QUFAgGi4+Ph4NKqy8Jk6ciJ/+9KdDnldVVWH16tWS4aTq6q5duyTviLvmmmvw0EMPKcqklfLycqxdu5ZIXPPnz0dSUpLheE6dOoV9+/bJ+nn00UexZ88eNEmcwJGeno4nnnjCsCxSba1vTiTFZ599hrKyMsPpHzlyBEe+/VbSPRPAAQAVvX8/9NBD+NWvfoUzZ86o/mYx405BVo4PVYIfH6oNu5SrXjwej6HvLFL1g8V85ncKso0dFWdmw9J7siQLRz9cKcihgjMyEkESioTujAwgJwcA0JSQIH2EQ6+f/jjj41UpBTvS0oaEdXV3w2lQsSFkZ/cfBSVHY1yc4tn/YoSEhAyRmzSyeSCRtruuTjJcc2KiZDjB4zGc53roTE8fIJPL5dIkR9ewYQiPjSUmj7u+3ng+5OTA43RqjkfIzkZLUhKcBnYLuocPBwgslvgSTQkJaJM42ot2GwYAgUB/JkVbSgq6u7vh1Hh8VHdGBjB8uDq/AQFE5e8aNgxOCSVmUFwckJNjKL3BfYqv05SQAKfEgkBUUhKQk4NOHf2R45prgEFjaFNCAvXjmbzLrzU52ZJxiXVakpLg1HjPWHtqql+1i8F4urpk65InKwvo3WDUnpoKZ12duEdCeWh13fae20shJV9wcDCQkwOhvV3Sj9F+2OV2E82flqQkdGdkSMY5JD80zEVLg4KwbMMGtLa2AgBGjRqFuXPnIjg4uKetSmzaCIiPh/ihlAqy9eIOCdH1nSBX91p6xwzSuAMDiZWnKzMTULmpSY6uqipFmbozMtCcmAinhKVSlMx3lRak5AhJSJCNvzkxEU6p+a0KBEHAl19+if0yCkFvZj3wAF78/e9x0003AYCmjQ3cUvBH7CLnYFpaWnDmzBlERERg+PDhPWOBCsyyFDR7wZtUekYV+/5sKcixFiOWnKyXrZV3CvLjQzlycKUghwpqz2rX0tGo7cz6/AmCgNOnT+Ps2bOSO7S1QHugYX0gE0NuMdeq9xmcrlY59Ch0WYVPfulg9QSJphJFb51R2+f3pUESuZ2oWuTiKNNXdna6Z4XVy9k59kapLnm3ETPGDKvrNot3B9HE4/FokluL302bNg34+/Lly9izZw/uv/9+RZnUEBRk/89/knWGVFxq2oDVdZ3m0XmCIGDXrl04fPiwrL/AwEDMefhhYP16vP3227qVoFwp+CN2kXMwBw/+eHhsUlISFixYgGiJk6a8MdqOWLRgI8mBAwcMhfflOwXV9IFW99P+jC/nvZV3CnI4cvj2iMhhHi2TMrUdYN9H8YEDB7Bp0yYiCkHveJWw6nx8WsjJxaJS0OhiNWmloNUTAFbrFUc/tBUyeuqMFplIyy+345crBbWjpvz1lKHY4oDZyhLeH4pj5q5TX0Hp/b37HjPquZ0U9VLQrFOk4xYEQdMc2Gj6J0+eVIxHbR2QGjNpzDPt0E+YKaPVC85aNjNowePxYMuWLYoKwdmzZ+PSpUv44x//qEs+MWgqeOyqbFOC1nvl5OQMucJFLbW1tdi5c6cqv9xSUJ6Ojg5D4UnVDyOWgjRQGrc57GP3+YZeWL1T0Jfz3J/gSkGO6Xh3HjQmCh6PBx6PB4cOHSIar79aCuodfFmxFDxy5Iim8KxaCupdtDVaDqzWS3+GxYVTVi0FU1JSiKbl75C2FDRTKdjU1ITy8nLq6dkR3s9rh5Sl4Jo1a3DmzBnD8li90GVk4cCO9U/JUpC0UtDlcqmSSQ19C+LV1dXYtGkTPvroI+zatUvyrmRfx2yloBF3FtN3uVxYt26d5N3OQE//MHv2bPzrv/4rrrnmGs1pyEFzHmEXizJWFC/z58/vuQ5FJz/88ANBaaRRW652HJvMwlctBWmkfeHCBWbXl1jDl9uclYYC/PhQjhz2Pz+EY2toHB/q8XhQUlJieJeU3vRZjV8PXV1d+PLLLyXdWbcUvHTpEq5K3DUmRVdXF2mRiMAtBdnB6gkStxQcSEBAAG655RbRBanbb7+daFr+AC1LQavo7u7G1q1bceLECd4fSsAtBbWj1AbUtpELFy7gwoULaG1txeTJk3XL4wvlYad30Hp8KClIWQrW1dVh6dKl/YrA0tJSRSsvQRA0z3+sXNi1Ii6W0tKTvlb5Ojs7sWbNGhQUFEj6cTgceOSRR3DTTTf135NJIv2+usgtBbXLSeu9AgMDbXFcNqtKQav7hz5IWgrqhUZeWGWpvWbNGgwfPhzz5s1DaGio6en7EnbeYGb0eG4S8XA4YnClIMdSaCkFSSsE++JVg68ob9xuN1atWoXi4mJJPywqBb3TPX36tObwvrSTy+pjijh0YPFOQRaUgvn5+QOU+hkZGcjKyiKaFqcHOx0funfvXuppcPwPUpaCfRw8eBCTJk3S3SasVtSzbilIOg2zLQXVxKOlDpw+fZqYZaDd55lm7t5XmmNZvQFVSx1qaWnBJ598ImuBHxAQgMcee6z/SEklpaAW+J2CbGJUSSsIApRyXWs7uXTpEo4fP47m5maMGDFCtWLGrn2b0XqrpgzVWgqy1oassBQEgJKSEhw9ehR33HEH8bh9Cbu2OV+FHx/qH3ClIMd0zDg+lNbuIpqw1qmWlZXJKgQB9pWCZ8+e1Rye3ylINrwvYvUHDouWglYfH5qeno5nn30W3377Lerq6pCdnY077rhD9b0hnB9Rs2BptQKCQxZuKagdpffXeqdgc3Mz6uvrkZiYqEse1tukVQtxtND6rcGS4lMQBBw4cEBX/KxYCpKEVNuxQx0nZSlYW1uLlStXorGxUdJPYGAgHn/8cdxwww39z9ra2oikD5hjKciPD9WOUVnUKAW1cPHiRaxZs6a/blVUVBCMnSxW9w99kDoa1Ej7obWWp6a/p1UOX375JVcKGsTqDWZGsNJSkPW84VgLVwpyqBDV1ITY4GBRt+CyMiAiAgAQ29CAYKkPhMLCAX/G1NerGsiDy8oQ3N2N2IYGTTIrIRQUAJGRiv7UyimVBs2JvWyeDMrvo+vWKeZhZFDQkHD9dHQQLwM1BJWWAsnJABTeVwJHUREQE0NMnoD6euP5UFgIh554CgsRWVNjKP2A4mJA4SPe34ipr0dAS4u4o1R7IIjD6aTWtiKqqxHU1aU5/sCSEiAqSrVfkvKHVVYChYUYBuCRm2/+0aGysv+/RtILragwpVxZIaa+Ho7mZlG3qN4+P7isTFd/NJi4xkZmj2z2JyKqqzWXZ3hVlV+1i8EITU2yeeYoKgJ6LbHU5q9QUABItD0l9JQhSZT6ScHlkpTP4XD0zHNaWyX9GO2Hg0pLieZPRFiYbJyBJSWA191aDhJz4sJC2XIODg5WtbFNV/+N3vopstEmvKpKMr7IqCgq/UQgwfIMLCkBCCyYhZSXK8oUVFqK6Lo6OCTmkLLfVRqQkiPa5ZKNP7KmBl0K71BWVoZdmzYhtqsLsQACAaQDOAagbzQPDw/H3Llzh9wf2CI1d9aBGZaCdoGV40NJxE1auX78+HHDi/H+VsdIHh+qNy4tZXb58mWi8XIFinWQUpyxiB3fzd/6Pn+FKwU5VFiwciXGSjnm5fX/9yW5SLz8AcAvNcqQq9G/IoPkkUKrnHrS0EuuhrTnqI30178WfRymlB4tvN5DV/qEyyBBrxze5OXpiycvD08RSJszkBfkHE3Ir1hY1Lbk0PDeo0BYfhVpG0rPz9rAQiUPv/41JgGYpDVikXx8VWscHA4jxED9nGpm708RA33Ng7pDEkJB9iAo5NfixYiU82OwH75GKX2dSMY5SF4ic+K8PPVzc4V4JuoMJ8as3p8kf/d3elKTJRMEy5PQGD+x96eU1rVKfiS+q7SQK+f4u99JOj2rMv7/Fnk2DcBBAJGRkfjDH/6AmpqaIX7sdKcgi0cfSsGSnEZl8Xg8UDrjQ0s9uXTpkiF5zFQKsqLUYOFOQbXk5+djw4YNqvyqvSKDlXLwR3jeK6Mnj2hdj8TLyzfgSkEOFZbPn490iSOQZs2aheuuuw4A8OGHH0ruGszNzR3wd15enqqOZ+LEiUhPT8fWrVu1Ca3A888/jxgVFmRq5RTjl7/8JdWjShYvXizp9uabbw6YvH3wwQeKH28JCQlYsGCBqFtbWxv++te/6pLTCHfccQduueUWAPLvK8XUqVMxefJkYvLU1dVhxYoVhuNJTU1FVVWVpjDPP/88tmzZgurqat3pzps3D8m9lpecHj766CM0S1hzDO63aECqTokxYsQIdHV1obS0VFO4e+65BzfeeKMqvxcuXMD27dv1iCfKzJkzMWbMGFk/evqCPm677TZMmqRZBWZb5Mbl5ORkzJs3D4cPH8a3336rOk6Hw4E333xzyPP33nsPnZ2dumWlTXBwMMLDw5GTk4PCwkI0NTVZLRIVMjMzNbf58ePH46677qIkEfs4nU4sWbJE0n3GjBk4ceIE6uvrVcepdp4pxoYNGxSPfKfJjBkz+u8NE6Orqwt//vOfJd0dDgdmzJiBXbt2ibrfeeeduNnbElwjV69exaZNm3SHH0xycjJuvfVWybFs9uzZGDlyZP/fJObEubm5WLdunWRbDQgIUHVSybRp03QdH/r6668jKGjo0sG2bdtw8eJF0TCZmZmYM4eIKnMApaWlWLduHZG4Hn30USL3Dx8/flwxX++//37s379fcYw1itScJzIyEi+++KJkuCVLlsDpdIq6HTt2DAcPHRryPBPAAQAVAOLi4vDMM89gwoQJ2L179xC/JJWCfdBSPLCkaLMTJO4UJOGHFHZc9DZDZtp3Cqp9B61jmZXHh3KUMXLENevlZuXxoQCwevVqzcYCfBz0D7hSkEOFlpgYOOPjRd26MzKAnBwAQHNiIpokjhnt89NHY1ycqrTbUlLQNWyYZPp68WRlASpkcMbH67//LTtb9GgeUsjliZCdDYfXRN4ZH49Wr6OPxAiMjx9STn14WlqIl4EaOtLS+mXSk35LUpLkO+nBExlJJB+cXV2Axng8WVloTkyE08DuIE9WFpCaqju8L9KcmAinyMIYAKJ1Rwp3RAS1ttWanIyOjg44FRZuBtOemqr63buam4nK78rMVEzbSHqd6emmlCsrNCUkoFliXA5NSAByctB25YqmPHU4HKJ56IyPZ1op+NprryEpKQkA8O6778Lpo3dUOltbNY8vbSkpftUuBuOqq5NtA+uOH+/5j4Z8FbKzgdhYXfI0JybCqfPoURJ0DRsmWx+Ezk7FPuNIZaWkH6X4lXB1dREdd0ITEmS/NQbLK7S2Gk8/JwctSUmS47PD4VD1/dGRlqZPlpwcQGTu05qcDKeIVRgAxCcnU+knXDA2rnvj/V1qhI7SUkWZujMy4IyPR4vEGBuWmEhEFik5XJGRsvE74+PhHKTUcbvd2Lp1K06ePCmbZkJSEh5esAAxMTGIlLhuo7W1ldidcbSPD7XTYqgvHR/K2v24/qiAJHWnoJG6oCYv2tvbNW185paCHCshVa/0xqPVuACw1zjI0Q9XCnJMx7sjo2EV53a7iccJqO+A7XheNNAzCddaHnITd6vexejHBC3zeqvgE1vfg+YHs976okUm0vLTtK72R9TUAVJlyPrHBuvycayDxthq1/mjmvTVyFdSUkJKHF3pa8Hj8WiK04zFILVp6L73XMc70KqXJOMlFZcdLFC0ttOGhgasX79elSX5448/jvZeS+coiTumPR4POjo6EK5TPm/MOD7ULrAkK2t3CtoJVt7LLncKulwuKvGyUg7+iC9bChqB5Lu1trZCfNuOdnw5z/0JvpLGsRQak1itH+pa4qWN1UpBb4wuDFv1LkbT9SWloNodcUpxcNiCdl+kp8y1bMYgXad4HTUfrXVQaqxnaSFLDNblsxJ/b3esvT9r1hWDYS2/jOLxeDTNgVl6f92nmUiEY+nd9GDm7n2leTntvFSK37tOl5SU4IMPPlBUCN44bhwAIMTrdBkpS0Ggx7qHJLTGaV/ecMaypSBrShs79m9Gy4AFS0EakFgX4dDFl8vHakvBPrRswGOtDXPowC0FOZZiJ6WgGYOULykFrVqgYs1S0OrJjdXp+yJWT5BoWwrqqTNWWgp2dXUp+pk6dSoOHz5MNF1fRc2CJesKCFJ4t3Wr2z2HLWi0ASPjtdVtkoSloJ1Q+tagoRQktaDJF9QHYrZS0ErUttPvv/8eX3zxheKGr5/97Ge4Z+xY4MyZAc8DdR61rSd/uKUgW7IaLQ+rx7LB2KW/zM/Px7lz5xAYGIiioiJDcpCqTwEBAdTvFNQKa/WLMxBfthS0+k7BPlgaLzhswJWCHNPx7sjkOiVBEHR1WrSODzXjWBi7KQVZHJi5peCP8B1xvonVO8nFsNJSUM2ddJMnT8a5c+fQ2NhING1/xV+OD/VlSwGj+PvYwtr7Wy0P60pBq48PJYHVSkGWLAVZPD7UF5SCXV1d2LJlC4733YkqQWBgIB555BGMGzcOaGgY4q70fU8S1ucRZsBSHnBLQfp0dHSg5NIlXAugsbERZw4cwN69e4nFz4KlII16wNdFfBt/KVsz31OpDftLnvs6XCnIsRQaSkFuKagPPYu8LB8fqnfRWo3VkZ2ws6KaVaz++OZ3CmqPLzY2Fs8//zzOnDmDuro6VFdXU72/ys7QsBS0us3oxa5yc+jD2tjI+u531vLLKFZYCpLC3xfUB8Py8aFdXV1oaWlBfHw8kfFILu2LFy/inXfeQUVFhWwc4eHhePLJJ5GdnW1YnsGwZClop01BWusGy8eHsnY3J2tpNTY2YtmyZRAKCpALYOnSpXDGx1OXze12D7AAVqsUZG0ebYcxiSONncuPlKWgmbDWfjl04EpBjul4d2pyE269nZ/b7bZMKWhnBYyv3CnYJ5Nei1FalqZWwHfE+SZ2v1OQtPzXX3+9Kn/R0dGYOnUqAODYsWNcKWgAf7EUZF0+K/H3sYUfHzoQJdl9zUpb6wZElo4P1VtXfLXNs2gpKAgCduzYgePHj8Pj8SAmJgZPPPEEhg0bRlzGhoYG/P73v8fbb7+tuDEyOzsbjzzyCOLi4mT9+YKlIB//9WFUmcotBeXZs2cPGhsbEUsxDe93Pn36NPbv34/GxkYMHz4cD40fj3iwcaegHktBq+dKHHnsqDhTCyvy8bGNMxj7bIHi+CRynZLeQZuWpaAZkwiuFDROX7oul8tQeFJYPQGwOn1fxOrJFM0y1bvoqKV/JC1/UlIS0fj8HaN9vy9hdVvnsAtrY6vV8sil73K5sGTJEhOlGYrZx4eyfGKJmceH0qqXvnp8aJ/7t99+i6NHj/aPtU1NTVi+fLnh00y80+/s7MT//M//YOTIkfjTn/6kGPfNN9+MZ555RlEhCOhXDOkpC64UZEtWMywFzYQ1BeQPP/xgmhwXL17EF198gfr6eng8HhQVFWHdunWq4zFiKUhLOWz1XIkjD+tH0VuF93vz40M5pOGWghwqRDU1ITY4WNQtuKwMiIkBAETX1aFD5C4CABAKCoCQkP6/YyX8DSasshIhsbGq/asloLgYUPoY83iMpVtYCERE6A+vgKxshYWA14debEOD4gdiUFBQTzgRHHV1xMtADSHl5UBhIdwtLbrSjwgLk3wnPQTU1FiSD0BPnY2qrYWnqclQHFBxZ5s/EV1XB7eU1QPBuiNFQHExtToVWVODwI4OzfH3tTs1BJeVEZN/ypQpcBQVaQ4XWlGhWobQigpTypUVYurrEdLRIeoWBQCFhQirrNRUhlJjRWxDA4JaW/UJagIBxcX9Y3JMfT26LOrLWSSsstKv2sVgAsrL6cwzNYzX9fX1OHjwICorK9HV2krVckAJuTGgvLgY0XV11OJXA8lxBwBCQkJk4wwuKwOio/v/djidxtMvLEQkgTmllvHPG0dRERAWNuS5nExRhOfUfQSVlhIrz6DSUiLfXiEq+oTgsjJE19UhWGKMjXY4gMJClB44IBpX8TffYNSoUYqySMkREBAAoaAAW7ZswR/+8AeUlJYiBkBMr3sggHQAxwD0fQE6HA7cc889uP3221Uv8LOkpNKLnd7Bl44PZc1S0B/py9/8/Pwhbq29c3YW7hTUEyevO74L62XLihWkncY2jjlwpSCHCgtWrsRYKce8vP7/zpOLxMsfAORqlGGMRv+KDJJHjABol1NrGkbI1ZD2q2oj/dOfRB8nKqVHmSgj6f/TPxGTI9mIHEbJy8PzBOLgDOQXco4m5FcOrG1bRrml90cEnfl9U++PZhp25RUlD7/5De4HcL/WiEXGihe1xmE2XmU/30IxOOwxDBT6YY19TQKA2aRl0IuM7FkgkFcG++FRJGQQYYKUwyB5Y0mkn5eHp4zG0ctPdaYvhmIdJDin7iMbBMuT0Bj/U6jI17w85bnHv/wL5siEV0OunOP//i9mQ77cpgE4iJ5j1x977DHk5OSoSrcPvceHsrSoa6c7BVnC15SCvpqWHH1ynDlzxlA83FKQoxVfthS0+rQHPXAFon/AlYIcKiyfPx/piYmibjNnzsSYMT0qu9WrV6OqqkrU3yuvvIIwrx2pixcvVpV2RkYGRo8ejT179mgTWoHHH38cGRkZsn7cbjfefvtt3Wm88MILiIqK0h1eCbk8nD9//oBj+N599110d3crxpmbmyv6vKamBqtWrdIqomHGjx+Pu+66C3V1dVixYoXm8CkpKXj66aeJyWNVPgDAggULsHHjRjQ3N+uO46mnnkJqaipBqezPsmXL0CCxC1uqPZDkypUr2Lx5M5W4hw8fjo6ODtTU1GgKN2bMGMycOVOV36NHj+LQoUN6xBuC93iihfz8fOzdu1eV39tuuw2TJk3SnIZdee+999ApYR0cFxeHX/ziF9i8eTOuXLmiOs7g4GC89tprQ55/+OGHaGlp0S0rbRYtWoTQ0FAAwMqVK1FbW2uxROygpc37IqWlpZqO0VLDs88+i/j4eFV+z5w5Q3yea4Q777wTN998s6gbibYzffp0TJgwQXf4S5cuYevWrYZk8CYgIAB33HEH9u3bJ+o+eGxqbGzE0qVLDaX56quvYt26daiurjYUz4QJE3D69GlDcdx333244YYbAACbNm3C1atXRf2lpaXhySefNJSWGEVFRdi4cSORuLzfxQj79u3DqVOnZP1Mnz4dhw8flhxj4+Pj8eyzz0p+ryUlJWH+fOUtKoPDX716FQcPHkRdfb1suEwABwBUABg5ciQeffRRREZGKqY3GL6QaC4sWQoaVab2Hc3MSg2ysxJCL6TemTXFOr9TkH1YsaZjDauOD1WCJVk4+uFKQQ4VWmJi4JRY2OjOyAB6dxy2JifDKXFEpXv4cMDrQ0QqvsFEJySga9gw1f7V4srMBLKzZf0ILpehdD1ZWf1Hq9JATjZXZiaQltb/d2NcnKp7+YTsbNGPC3dYGPEyUENbSgqQk4Ou0FBd6YcnJvbXTxJYlQ9ATxtyxsejOUh/V7+vqAhCYSHS0tJw66236loc8DWaExPhlHIkWHek6Gpvp1an4pOS0NbWBqfGOzlbk5NVv3tHcTEx+b3HE03h6utVy9CZnm5KubJCU0ICOiSONgtMSAByctCSlASnwuKiN8HBwaJ52JyYiCaJo8aZICcH6FUKNicmwul2WysPQ/SNtf5KtyAQ74fdw4cDKu9IXb9sGWDR3EIMuX6yJSnJcNvpGjbMUH3rbmsjWl4OhwMdaWmqvnUAwF1XZzz9vr5XxYY9OdpSUgzLcrS6Gjfcdx+A3vKV2CgVSXhO3Ue3we8tb4zWrT7azp1TlKkzPV12jHVFRqI6IkIynuD4eEVZBa++yel0YvPmzbh8+bLyC3hx989+hmG33UZlUd8uloJ2UmyyJCu3FLRHWnKokUPt8aEsWQq6XC7Dm2o4dOGWgubFowaWxhYOPdjavsHxC7w7MrmORu9OHrfbTaWzNGNnkZUD3eD3UyuLlD+r3qUvXTUKTTF8bQeZ0XI4d+4czp8/j6+//hpLly5FW1sbIcnsi9UTJBbrqBaZSMpvdVn4ImoW7FisgzTg9YsjhZ0XJmgglx++2o7k+sHB+UGivpC6D4lEHAUFBYbjYAUzF+qU/LS2tuK9996TdNcy9l6+fBnvv/++aoVgZGQkpk6ZAgAYO3asIYWg2W0+W2HTrh7s1G+xJKtRWfosBeUwukahBa4UFMeOdwr+5S9/IR4nhx1YaT9SsGIFydJ4wWEDrhTkWIreOwfkUDOZ1IMZO9dYUgoaxap36XsPNUefisH6hEILpN+ltrbW8P0CHOPQVMjoXXTUIhMLE1s+ITaG1joold+slwPr8lmJ2nbc1NSE3bt3Y8WKFdi7dy9aW1spS2YO/qIYJwELR4jpHXek+gBBENDe3k49/cFx8EVu8pitFDSSnpp+p6WlBZ9//jlWrlypaiNfYGAgXn75ZVy8eBGTJ0/WLZs3NK2DxKBxxDsL/RYtaM5tSFgK+qtSkBVYsBRUgz+Wja/DiuKMZViaw/lLnvs6vjvb4TCLd+chN+HmloLmwi0Fe/AV5Sit9Ldv3040PjtitaKAdp3SE79bw9Fw3FKQbeTKv6Wlxa/u5PCeo/C6pp2WlhYsXboUhw4dwtWrV3HgwAEsX75c8ug8O2HV5jNW8VVLQTnZDx48KOnGcln6wjyXZJosWQoqoTTX+vrrrzXdGTl79mzk5+fjL3/5C1JSUgzJ5g2NTb9yjBkzhvjdlXbqt1iSlcSdgqRguR8Wg5UFeFLpsGYpyGEfVtoADUgpPI3mgZZ2aef85qiHKwU5lkLLUpAGvmApqCW//VUp6EuDH6ld5YOprKwkHidHPdxS8EfMsBT0pT7BKN3d3XjrrbdQWFhIJD6WFrLEYF0+K1HTLvLz89Ew6K6x6upqXLhwgZZYpsH7hYH4o1JQDl8/PpRkPFZD6j3UzIOMnmYjlUZTUxMWLVqEu+66C1evXlWM5/HHH8f+/fuxadMmjB49GgAbczMjMlx//fVITk7WHX4wduq3WJKVWwrSgyWloB3vFOT4NqzXBzvOvVjPUw4ZuFKQYyn8TsGB2NFSUAqrjw9lxVLQamiUw+rVq/16kmD1xzeLddQqS0G9WF2GLKPUthsbGzXHadf8tqvcZqBmDNi1a5fo8y1btpAWx3Ro9GO+Oq6y0I705i2pIwRZWpwmFU/fuC8Xnx3qtN0tBbdv345x48apui8rIyMDx44dw9q1azFt2rQBbmad4mCX+sJCv0ULlo8PVVMPfXVRnJX6T1IpSBNW8otjHv5a5lYbW+h159gDrhTkmI5358HvFCQbXiluufj1fgxyS0Fz42Mh/aamJpSVlRGPl6MOK/sJKbT0H3Y7PtTqNuzLsL7oxrp8dkXv+MwSvF8YCLcUHAit+sGSctHKdszi8aFmpOU9fyoqKsKcOXMwa9YslJSUKIadMmUKnn/+edx6661UZPPGzm2+Dzu9Awuy9slghqWgWkh8b7A01rNkKaiGgIAAbinI0QSpIzZZhHX5OP5LkNUCcHyTqKYmxAYHi7qFlJcDCQk9/mprETvoaKl+CguBlpb+PyX9DSK8owMh5eWq/aslqLQUCAuT99TZaShdR1HRgHdWQ3d3Ny5duoTq6mqkpKRg1KhRCAkJGepREGRlCyguBgID+/9W+x5CQQEgkl5AaSnxMlBDWGUlUFiIgOJiXelHdXf31L1empqaUF5ejsTERCQlJWme3AZWVVmSD0BPmcbU1yO0s5N43CX79yNz6lTi8dqB6Lo6dEqUqVBQQP3jPIhi24oKD4ejtRVup1NTuPDw8AHtRo6wykpi8oeUlwMREbrCqZUhtKJC9bv5AjH19cQXe0NDQ0XzMLquDh6Ndc0sHA7HAJmj6+rQYVFfziLhVVWK7UK2jdm8TdHohwOKi4G2NlV+rZpXSBFSXi5ZptF1dYbllYtfDcFlZbpkCA0NRaeOOVRIeTmQmNj/d0BNjfEyKyxEVG0tugzGE05oXuq+cgWIjESkzLtFBQVRaesk219wWRmQlGQ4HjVzm5DycsTU16O7u1tXGkFBQei8cAF//etf8e6776KjsxPZvW6BANIBHAPQ5RUmNjYWjzzyCHJycmTjZkHhwNLmWhYUbWrRKivNdzNqXU1KGVRfX4+lGzYYkkVtWqRgxSpHTTp1dXVAfLysH9p3CnIli+/BShugASt3CupNl+O7cKUghwoLVq7EWCnHvLz+/z4iF4mXPwDI1SjDzRr9KzJIHjFCoV1OrWkMJhjAmN6fHA4oyKY3vyVkztQSB2lefx0TAEzQG/73v+//b0zvTy+psDAf8vKwyKq0fZj5co462rBWxvf+mOMf/1GVt+m9PyLozO/RvT+aadiV12lF/Ic/DHn0HK20SLF4cf9/51knhW3JlXO0ebu6FhTGdg15Qjxto8jIPody/Gq4vvdnGoPkTQaBMsvLwwKjcfRyH4lIet9R9lsOAH79axKpDWAECLYBQn3Rvb0/pbSmGE3oT3/CGwDekHCeBuBg7/8nTpyImTNnIkxpUyvYONqdJXxZKUgTEseHklAMfP7552j22uysF5YWxVlSCqrByJ2CamCpbDhk8GVLQVJwpSCHNFwpyKHC8vnzke61Q9abe+65BzfeeCMA4IsvvkBBQYGov6effhopKSkAeiaIb731lqq0w8LCMGnSJHzzzTc6JJfm/vvvx/XXyy8pdHZ24r333tOdxrx58zRdkn7+/Hns2LFjyPOZM2dizJiBakK32423335bMq4HHngAo0aN6v97sddiqByLFi3qsQIZRElJCdavX68qDpKMHDkSs2fPxrfffovDhw9rDh8eHo6XX34ZNTU1WLVq1RD3u+++GzfddJPq+KqqqrB69WrNcpDg6aefxmeffaZ7R7IcU6ZMwZQphpc2bMmqVatQU1Mj6vbLX/6S2B1EUpw6dQr79u2jEnd6ejpaW1vR1NSkKVxycjLmzVOnNvnyyy/x/fff6xFvCLNnz8bIkSM1h5PqO8WYPHkyplpgFdvW1oaNGzf217Xo6Gg8+uijiFfYmWuUt99+W9MdkWoIDQ3FokVDtygsW7YMDYxZPPURGBiIN974cdlVrt37I9deey1+/vOfy/qRm0fk5uaSFchktPQhatEyB1Q7RzOLqVOnYvLkyaJu69evV3W8oRzTp0/HhAkTdIfXW17h4eFob2/XHG7wXLG6uhqffPKJ5ni8efHFF7F+/XrU19cbiufaa6/FpUuXDMUBAAsWLEBCQgI2bNiA4uJiUT9JSUmYP192K5Uurly5gs2bNxOJ684778TNNxvfSrp9+3ZcuHBB1s/kyZNx8uRJTfPyyspKfPXVV6iqrpb1lwngAIAKAHFxcZrnRyxY2bFkKUh7Lu9rmHl8qJpybmpqUrRkUyuPWbBiJUVSKUhTBq6w8D/scietGNxSkMMqXCnIoUJLTAycEhOxrmHDgN4jTNpTU+FsbBT158rMBIYNAwAIbrdkfIPpDAtDR1qaav9q6UxP75dbCqGjw1C67uHDgbQ01f63b9yIJpH0tv7wA8bMmjXgmae7W1a2we+n9j2E7GzRY1W7PR7iZaCGlqQkICcHbQUFutLvCg8HcnJwJD9fNPyXV6/ipgcfVB2fKzjYknwAeupTY1wclXtfvNuxv9GSlASnRJ4K2dkDjuGlQXt5ObU6FZWYiJbQUDg1vkNoQoLq+tCWkkJMfldmpq566GppUS1DR1qaJXV986ef4rLL1b+o4QSw+vBhvPrqq1TTdcbHE1cKhvf2q4NpTkwEm4eHAsHBwQNklmv3/khbSopiu5BtYzYfP7qamoj3w1rmgFbNK6SQ6yfbU1Ph1Hg0/mC6MzIM1Znu5mZdeeaOikKLDtkHz6ldISGGy8yTlYWmhAQ4DS7StCYnw1lbaygOoLdMUlN7+sbmZlE/oYmJVNq6q7OTWBtQ832nhtbkZDgVFHftqamq5+VutxvffPMNvvnmG00LczeOH48xs2aJbtiUwyxLQbssMrJkfacES7KSsBT0V1hpG6TudeRKQY5WfLlM7WgFycpGBQ5duFKQYylykwXvSaGWDodW52TG5ERreClrnjaRO2mU4tY7CZeKl9XBS4m+fDh58qSou5PR+6/EKC4upqIQBPgOWiuh/cGspw1pUSKxsBtdC1b0ZS6XC+fPnx/yvKamBvX19UjovZeXBma+L0sLWYNhWTYW8PcPQX9euNQKC21Jb30lZfFEor2QWqgl1XbVzC/t0E9olVEQBNF6QfI7sba2Fhs2bEB5eblqucaOGQOcPYvp06fDqVEhqEU2NfiCpSAL/ZZatMpKs12ycqcgKVjqw8y0FCQ11vDjQzlaMKKE8pf6YOY46S956u9wpSDHdLw7F7mJghEzaRodmBmdIs00aCkF9aZHi7730Ju+Lw1+pI8288ZOH8tmYkb9obkYrVd+LTKxsGijJZwVfYKcZUpRURFVpSCnB97HceTwpbkCCeTyw85tiZTsLNUX0kpBlt5ND2rlz8/Px6FDh1BfX4+cnBz8/Oc/R0zMj7eOq1VmKC1qnjhxAjt37lR9xGh8fDz+/d//HS/OmAF4XQOhFbsdTUgbO/dbStAsAyKWggqKRV9VCrJilSMIApETQwINnJzDmnKYFk6nE1VVVQgNDcXw4cP9ftO1L2+4Y+X4UK4U5AyGKwUp4XA4QgA8AeApAGMBpAJoAFAAYAOApYIgGD+7RV6GiQDmAvgZgAwACQDqAFQCOA3gKwC7BUGopCmHgoySbkYsBWl0YGoGKZZ2OGqNm7SloJ7jlkhQVlZmKLwvT0ZI4ssfy0qo3cxAC9ppcEtB6/G1BXYpmVl+l8GysSyrFfj7h6JdN5/Rwtf6rD70LtDRqh/cUpB8vGriunjxIjZs2DDg75qaGrz66qsICgpSHY/cN0ZLSws2bdqEixcvqpC651ju5557Dr/97W+RlJQEFBaqCqdHNq1wS0FzYUFWM+8UNBN/lcVof5CRkYGQkBCqfQFLZaMVQRCwe/duHD58uP9ZZGQk5s6diywL5bIapXmFnS0FScnHklKQ9TznqIMrBSngcDhuALAawIRBTmm9v6kA/t7hcDwnCMI2CumnAPgfAPNEnNN7fzcDeA7AuwBeJy2DHGotBVlTCtp9sd9speAXX3yhKz6jdHR0oKmpiRlLQV8dLFn4AGURX7AU1PMO3FKQLHJp0t5F6qt9llb8fbcuRx7eTtTDwnxBb3mxZClIqs6RmkOQvnvWKtTk63fffTfkWUNDA4qKijBy5EgAxjaPXrp0CZ9//jlaW1sV47j//vuxaNEi3HPPPYiIiFD0rxZfsBRkYX5pBb52fChLC9G+mpYcgiAYHid+9rOfGZaBhB9WOXv27ACFIAC0trbik08+wf/32GMItkguq/GVeQVpzN4IRSNdDrtwpSBhHA5HJoC9AIb1PhIAfAPgCoBk9FjthQNIAfC5w+G4TxCELwmmnwXgawDXeD2+ACAfPVaCEQBGokdhSe5LggJ6zaQFQcD+/fuJy+PrloIk755raGggFpcexO7iUgu3FFSHmR/LgiDg5MmTuHDhAkJDQ3HTTTfh2muvNS39wVi9UEDbCldPP8QnmGSR64esrn8kYfldWJaNBfx9rPT39x+Mr1oKsnSnIKl4Ll++TEASdceH2mG8VyPj2bNnRZ/v2bOnXymo5/jQrq4u7Nq1C8ePH1cMGxYWhtmzZ2Pt2rWKfvXAQp/GUn2xU7/Fkqz8+FB6mKm4N9of5OTkAKBbN1kqG61IjcOdnZ2oqKjwW2tBbilIPx6+ZsMZDFcKkucT/KgQLALwkCAI/dsLHQ5HEoA1AO4BEAzgM4fDMVIQhEajCTscjlj0HAnapxD8CkCuIAjfi/gNAXA3gGij6RpBrqPRaylIUrnljdPppBKvN1YqBfUqGsTi/eGHH3TFRYq6ujoEB+vbY8UHP3WY+QG6Z88eHDp0qP/vH374AY8++ijGjRtnmgxqMaP+1NXVUYvbbhbR3FLQ3LT1wtKClVrsKLOZXLx4Efv378cdd9xhtSiWYNcTKWjhq0pBXzw+lBS0vrfUYNWu+cF0dnZqisfbT21tLVavXq1qTjdixAg8/PDDiImJgSAIVNoUC3Mzo5B8B18+LUBLPj311FO4fPkyKioqMDw9XdKfmceH+qpSkJX3NqoUJNH+fd1SUM4qXI3FuK9ixFKQ9fpgRD6r3o2VPolDF64UJIjD4ZgFoG91pAvAbEEQ8r39CIJQ63A4HgLwPYAR6Lnn7x8A/B8CIvyxN04A+BTAPEEQRHtWQRC6AOwgkKYoUU1NiJVQygSXlQHJyQCAiOpqxEpYlQWWlAC99zSgvV3Sn1mc2bIFHefP4/7775e+OLm11ZCcAcXFgIZJmGxag+6WEFpaZP13X7oE9O52VYx7cDpRUQMehVZUWFpeoRUVCAkJ0S2DUFCgKW/lCCgvt7zu0iCsstLw/SVq6OrqwvkdOxA7aJL4/aZNGDeo3plFdF2ddJkWFgKhoVTT7750CbGUPhiigoKAlhYEtbdrChfe0aG6PoRXVRFrE8FlZYo7isUI0dAuQysqTKnrA6ipkZQvpLwciIykljSN/iqis1M0D2Pq69HJaP8Y1d09QOao2lqf7MuNcGL9eiS1tGD06NGi7qTGURYJLisjXh8CS0qAri5Vflmri3JzgkiZ/kwtIeXlhuqM3vKKCQhAt45wg8eNgNJSw3ngKCpCTH090NRkKB5SBBQXAzExsuUbJQhU2jrJ9qembkmlFe3x9IeV+6btI6yyEjH19SgpKcGerVsR1dGBKACB6Lnb4xh6FhD6CAwMxIwZMzBp0qR+JZXb7e6/x5AkLBwfytICo502M9CUNT4+HrNmzQIAdF64QF0WFixWWcWOSkF+p6A4dukHzcbKzUa04ZaCHFbhSkGyvOb1/2WDFYJ9CILQ6nA4/h+Alb2PXnY4HP9PEATdvaDD4ZgA4IXeP0sAvCilEDSDBStXYqyUY15e/39/LheJl79wALnGxaJOJAzK6fXOapBNa1BcUUr+tcQtkw4A/KT3ZzXT9AbMy9OUt3IMgz3qrmY01lW9hAB4Q8rxV78yRYbBPCnnaEK+vEg9BZ3853+q8nZ/748IOvN7JNhul8mQkY9yHZNM1yj/8R9DHoldfMwUv/99/3+ftlAMppGpj7k6w9mBm3t/RNGQJ7mk06aI7FxfLQbry5jen2kMkjcTBMosLw/PG42DJL3v+LiSv9/+lnjSo0CwDaioW7Jp/eu/AgAeUZncXb3//lHEbRqAg73/T01NxWOPPYaUlJQBflwuFxWlIElljC9YCtoJf7xTUBAEXLhwAZcuXUJkZCTGjRs3pK2QgCVLQbNgwVJQDazklx7sLDtNlCwF/VWZqvdaLaW4OByAKwWJ4XA4otBzJGgfSxSCrAfwF/ToahIA/BSAkbsFX/H6/7uCIDQbiMswy+fPR3pioqjb9OnTMWHCBADAli1bJM/Unj17dv89DW1tbfjrX/9KRVathIaGYtGiRaJuLS0t+PDDD3XH/eijjyIrS/0p4osXL5Z0y83NHfB3U1MTPv74Y0n/0dHRWLhwoaq4vVm4cCGioweeQpufn4+9e/eqCk+LESNG4OrVq7rCvv7663jnnXck3QfnrRzl5eXU7v+wmvHjx2P69OlUJ//Hjh3DwYMHRd1ee+013cfEGmHNmjWorKwUdXvllVcQFhZGLe3q6mp88skn1OJPTk5GU1PTgCOx1CDXLw5Grt/Xypw5c5CZmak53JUrV7B582ZVfm+++WbceeedmtMwQlVVFVavXi3q5j02kkYQBORRUNZERkbixReHqrNXrVqFmpoa4umRICYmBs8//+MS/OrVq1FVVWWhROwiNSZqmaPYjRMnThC/v/rJJ59EWlqaKr9q52hmceutt2LaNPGtWDt27DB01zMA3HXXXRg/frzu8GfPnsWuXbs0h0tOTtbVR91xxx245ZZb+v8uLS3FunXrNMfjTd/coqOjw1A8pPjpT3+KiRMnYu3atSgvLxf1ExcXh1/84hfE07506RK2bt1KJK7Jkydj6tSpsn6k2pv3OLF+/XqUlJSI+istLcWxY8dQVFws6p4J4ACAit6/p06dinvuuUdU+UfLkkLPQqHY/P+GG27QnQ5Li512shSkidp8IHV8qBpllCAI2LdvH/bt29f/7Ntvv8Xdd9+Ny3v2EN1wxpJSkFsKavfDKmqvUPI3uru7rRaBGnasr6z0SRy6cKUgOW4D0HdmXCt6TgCRRBCEDofDcRjAjN5Hd0OnUtDhcAQCeMrr0Xo98ZCkJSYGzvh4UbfO9HSg9/LhtpQUOCXuUvD252lpkYzPEnrlGozQ3GxIzq5hwyTjFkM2rUHxeBobZf03ORxwDx/efzSq2vfwZGUBsbEDnzmdlpfXqYYGQKcMnqwsTXkrhzsw0PK8oMU3xcVI6+iQPDqOBB0lJdL5l5MDWKAUbE1OhlNCaebJygIiIqil3dDZSbU+hSYkoCkoSPOiY1hYmOp20ZqcLNnva8U9fDiQna05nEtDPnakpWlq8yRwBQdLyufJyqInjyBQqV/uqChRmVuTk+Fk9KiYgPj4ATK3JCXBqfJoR79Doj6SGkdZpKOsjHhbcQ8fDmRkqPKrNe2wsDCqyqT21FTJMm1PTYXToEK9a9gwCNnZqK2tRWxsLEJCQrSFV5gDSxGhs48aPG50E+hb+282Dw83FA8pWpOTgZycnr5R4sjxwf0oKbrb2oi1P7m624dUWo64uP6wLUlJcA66n93pdGLbtm24oOLYRQCIiIrCgkcfxYgRIyT9GFUKSt1JqHUhOjAwENOnT8dxL2V3eHg47rzzTqqKALOw052CLFkKmnGnYEdHB06cODHgWVdXF3bs2EH8aG2W6qSZSsHq6mpT0pKTgYQfVvFXizclfNlSkNSdgvz4UA5puFKQHN6r4vkqjwI9iR+VgkZW1ccBiOn9vxPAFYfDEQTgGQDzAYwFEA+gFj13GW4C8LEgCNpMQSigtmO3S4dkVE6aO4PU7PRobm5GXFyc4XitsN4iCcn6Zpe6q5cjR45QVQraDdrlbeQCbrXoeQerJph6Fx+0hLOiDcuNBTR3r9N6VzvueuVWAhw5aNRpQRBQU1OD0tJSpKamIj093XA9nDZtGjIyMpCUlIR3332XkKRDkes7SLSlkpIS7Nu3D62trQgICMCkSZMwc+ZM1XHr7dtIKTd8cS7oK3f/kCqbwX3CxYsXsX79ek0nL8yfP79HoSwDLaWg1nwQBAHTpk1DlscD5OVh2rRpGHnPPYiPj5ftH2m2BRbml1bgS0rB0tJSXPjhB1lrv++//56JOzDNTsssWbq7uw2dcvT/s/fmcVJU5/7/p7p79g1mZWAYhn1HEEVWwQUEFBRFjYK4b3FhvInfX5LvvTc3N7k3N8n3JowxIcbEBAVjFBdEQZF9l31fxGGG2fd9n56u3x/T3fb01HKq6lTVqZ56v179gqmqc85z1jp1nvM8h4alIAlWfq9aWbmlJ6zPKzweD0qLi9HR0YHBgwfr4spbCFspaKMntlKQHqMD/n+NMEygDxFpXxvSBB7fVohuLyQbAUwLem6g97cQwI84jlvO87ykRaMeNDc3Y+vWrSgsLERpaanoc4EfFH1lQDJTKQgAdXV1ipWCQvisDa2KFRewzaJAxBWSEZg1Lpi5UKB32yTZoSsWTo9n5eiLSkEr7V73IVaGLC+6sSybjfnoMS7s3LkTeXl5/r/Hjx+Pe++9V1OfnzFjBqKjo9EUZMFkJDT60tmz3x3T7vF4cPjwYSQlJeGGG27QHLcUVhxvjcK3eGf1xU1aMvri4Xkehw4dwldffUUc97ixY4GLFxEREQE5e16t7tXEZFKjFATgP/bihhtuUO2hRa0MtMMHYqU5gJ6ykip4fPe0jpmnT5+WtfbrMNBrA0tjmFGyaPUqQKM9slTuemD196ZesG4p+O677yLXK2NUVBRWrVpF7Paf9lxDiP79+6NWZvykuWbTl9tqKGF/6dAj8AA9Uh85gYdSJWpIe3DQ31vxnULwEoB3APwd3ZaJPjIB7OY4bioMZt++fThy5IikQhCwLQVpQyJbfX297DMk8VqlvsSwuvx9BRbrSW+ZjFBY652HvrpoowSzNiboVfcs9lU5QrVt2dBBjzYdqBAEgPPnz+P06dOa4jSqHettKSjEqVOndIk3ENtSUBwjPBeIwaJHj8LCQrS2tuK9997Dtm3biOLNyMjAI488ggULFhCno9e3Js15Ryi8P0N5QwDLloKswZKloFWwzxSUx2zlFqto2fRiRLlVVVX5/9/a2op//vOfxOnSch8qxu23347ly5dTlaMvt8W+ROjOdownNuD/wgcr9CbwuVjRp+TpF/D/Ceh2F9oC4AGe58fyPL+K5/nHeZ6fiu6zC32jWTSAf3Icp+xgDgkiIyMRG6slK9/h8XjQ0tKClpYW5gYknzwNDQ3+3Wqtra1oaWnRFG9jY6N/521zczNavWd0dHR0oKGhwZ92XV2d7Me4x+NBXV2d/yOPZJd4fX19jzyRwPO8v56A7pe5mTvSaSD3YVxXV0dcT6y7QaBFe3s7GhsbAfRue42NjX73SW1tbf720dXVhbq6OtH+1NzcLDtpDm57gYptJfXk609NTU3+HZJieZL6wHG73bJ5CnzOR319vX8iLJUnvfuW2kW+jo4OFBUVEeVJLA01H44cx6lqe0oWvwJ3zJLWk9a2J7VLt6WlRXV/AuTbnh54PB7BemKZQKsP1mU1G6m2J4VR/UmP95Oe5/MFsnv3bsE8kdLR0YGmpibdF2qD5zyB9aTXJofi4mJF454a1Mrua9e+tsfadwwN3G43PB6P5CKer+3Sej/5xgiac2ue52XHCKn88TyPwsJC5Ofn46233sLly5cRFRWFmJgYAIDL5erhhSUhIQGZmZlYsWIFnnzySQwfPhwA0BkWBg9BP5Uc92JjwcvEwXuPiwge93ieBw+grl8/kLTWwDZdn5CATm+dBNaTEP4xIiYGrV4ZfHki6Se+MhKqJ6H+qiRPgbR3dRG9nzyEykOPw4EuDZ502iIjRdtHS0tLz/7kHXvd3n7nI7A/Ad+VpVTZtLa2+sfyTrcbDfHxgs/xPI+2trZe7xqPw0FcRoE0xMcrrjOALE+S4YPqyVeuVOYRzc3oIDgPV2zcC55XqWnXgbRHRBCNOYGQ9CeO43qP5QkJimVtbm1Fq/cMXbVrLGrbn4/WqChVZVSfkCB4zzc3klvfaIqNRRvNthcfjw5vm6KxHtFjvhdQT21tbbh48SIuXbqElpYW4u8nXz11dXVJ5klqncLXP9wuF+oC1ktofGvUecs/uNbq6uqQn58PQL6eAtur0nGqK2As53lesD9xHCdZPh6OQ2tUFHieJ/5+Cn6nBvcnXxgq6xFNTfp9E1LuT/Ei70GrYisF6REZ8H9SjUrgIQNaTo2PEbi2kuf5D4Iv8jy/C8BSAL4ePhyQdNuuiOnTpxPtUCCB53ls27aNeLelkfgGi7feegsXLlwAAOzZswfbt2/XFO8XX3yBoqIiAMDmzZuxZ88eAMCFCxfw1ltv+dPOyclBZWWlZFwNDQ3IycnxD46bN2+WTb+urq5HnkgIrCcAyM3N9f/fqsgtAuXk5BDXU19ZTD558iQ2bNgAoHfb27BhA06ePAmg+wzCjRs3AgAqKyuRk5Mj2p/k2qxQ21u7dq3/vpJ68vWnjRs34vDhw7J5EqOqqoooT0VFRcjJyfGHW7t2LXJzcwFAMk9fffWVZPpaaW9vVz3evvPOO7J52rt3L65evSoYXu2itZq2p8Qq+syZM/7/k9aT1rb37bffisqzc+dOTf1Jqu1pfYeJwfO8YD2ZaWkih8/9iq+etLpsC2Wk2p4URvUnPd5PV65cUV5QKmhoaBDMEynHjh3Dxo0bDbHeEKsnPedBpOOenDslMYqLi1WFKywsBPBd22PtO4YGXV1daGhoQHm5uIMc36IOjfdT4BghlaZSxN5PgWOEGI2NjcjJycGsWbPQr18/DBo0CAAwd+5cLFmyBEC3NWB2djYAYNiwYVi9ejUef/xxjBw5ske/zB0+HI0EC015eXni497y5WiPiJAM7/F4BMc9j8cDj9OJnOxsQOF4sfb555FbUgKgu56k5qo+WTcvWYI9XkvowLFcjmbv5uOGlpZe9SSkJFCbp9OVlUTvp0aRxf9gGhMSUJmSokiGQA5Pn46WGKEln+71gx796dAhAECRt9/58PUn33jU5l3Id4eFiaa7c+dO/1h+qbAQbz3xhOBzbrcbhw8f7vWuaYiPJy6jQN564gl0EijQgiHJkxTB9eQrVyrziK1bcWHcONG0ffUiNu5du9bzhKKc7Gx0aTjT7OSUKf7+RApJf+I4zj+W+9rD2uefV1QnPM9j86FD2DN3LgDh+R7Jt1xjQoKoIpuEPXPnojU6WlEYd1gY1j7/vOA939xITim4cflyHKbZ9p54Ahe87YfGekSP+Z63nlpbW7F27Vq8//77+Oc//4nf/e53PeKWwldPbrdbMk9SGw59385FGRnI+fBDbXkK+tb42xdfdD8k0O73798PQL6eysq+cxLoG8s9hBtFKgPGcp7nBfuTr9+J0RodjT1z54LneeLvp+B2GtyffHNrKusRn36q3zchrf7kXQt4QuQ9aFW4UPxIMQOO4z4HsNj75694nv8RQZhFALZ4/2zieT5OZdqvA3gh4NIhnudnyoT5AIBPe/clz/ML1aQdEN94AOciIyPhcrmwatUqpKamaokSd911F4YMGYKWlhbExMTg9ddf1xQfTf793/8dHMehoaEBkZGRCA8PR2trK2pra/Hmm2+qjnf+/PmYNm0aXC4Xmpub4XA4EBUVhY6ODrS1tSE+Pr57d0h9PeLi4vCLX/xCNK5/+7d/Q0NDA+Lj4+FwOHD16lW88847kukPGzYMd999NyIjI/HLX/6SSOYXX3wRUd4JeHR0NDo7O3H69Gl8/vnn5BlnjOzsbKxZs0b0/urVqxEbG0tUTzU1NbLlbnV++tOfor29HR0dHYiLi4PH4+nR9hobGxEeHt59VkpbG9xuN2JjY/27wRISEgT7k8fjwfHjx7Fr1y7BdF999VX//31tr6WlBQnej8+6ujrieoqLi4PT6URTUxNcLhciIyNF8/T222/3+jDz8fLLL4PjOMk8xcTEwO12o6mpyb97vL6+HtHR0QgLC/Mvognlae/evaLlQYP+/fujoaFBtbJmwYIFmDFjBoDeeTpy5Ih/4iaEy+VSvPv/6aefRlJSkuK298033+Af//gHURoTJ07EvffeK5gnQJ+2d+7cOXwY8EETyLJlyzB69GhV/Umu7TU0NOB3v/udojogweVy4Yc//GGvetq4caPqRXe9SUlJwfe//31/PX3wwQco8S562vTkX//1XwXbntQ84qc//alh/UmP99Pu3btx5MgRw8o3OE8/+9nPiML+4Ac/ANB91vOvf/1r3WScNm0aZsyYIVhPn376qf8jmzZibS943Dt69Ci2bNkiH2EQGRkZkossYsyePRu33Xabv+2VlZXh3XffVRwPy0yYMAHLli3Dn//8Z1ElXWxsLH7wgx9QeT8FjhGnTp3Cpk2bqOTjpptuwi233CI5Rvz2t7/1P8/zPL755hucPHkS5eXl/t3j8fHxaGtrQ0dHB6KiouBwONDc3AyXy4XY2FhMmDABL774Ii5dutRLhoTaWrzwxz/i9y+8gEaZs91XrVqFpKSk3uNeYSGaJk7Em089hQaJOF599VV0dXX1GvfKysqw+fXX8fi6dfjbo4+igeB8wJ/+9KdAfj7qJ09G9LFjCBsxwl9Pv/nNbwTDrFixAiNcLjRPmADH8eOIGj3aP5b//ve/l50HxtXV4V/WrIEnNxcNiYk96umPf/xjL2vq+NpaRXlKqK1Fdk4OPl+7FguefFL8/VRbCwwdit++8gqR0iuuvh6rX3sNv3/xRdQrPHsxobYWz73xBv743HOC7WP58uUYOXLkd/0pPx8x48bB/e23aEpK6tWffN/pvrL83erVomXz5JNPIikpCVFRUWi+cAFdM2bgrccf75WH8PBwvPLKK2hoaPAv4CbU1uLl3/8ea1avVqQYTKitxRN/+xv++vjjRHUWCEmeJMMH1dMDDzyAsWPH0plHnD+PyOuvxx+ff16wDaSlpeG5554THffKysrwxhtv+MvoMQXtOpiE2lo8/6c/4Q/PPy875gRC0p+io6PxyiuvoKmpCdXV1dj8+9/j8b//HW899hixrAMHDsTDs2fDMXUqoi5cQMfAgb3me0VFRaLfSj7i6uuRnZOD1156SVW/e/bPf8baZ59VXEZP/P3v+Ntjj/VIk+M4/OAHP4DD4cCGDRtEv3/umjABox97DK7jxxE5apT2tnftGhquuw6Rx44hfORIKusRPeblFy/CMXUq9q1Zg0NBx0OFh4cTeQ7x1dPaf/kXrPr3fxfN069//WvR+G688UYsHjcO7pEj0XTyJPpNmKA+T0HfGvXnzyPl+usFx5V58+Zh7ty5svV08OBBv7JN6Tj1wAMPID09Hf369cOG//ov3PWb3/TqTwsWLEBGRoboBpu4ujo8/8YbuPzuuxi3eDHR91Pwt0Zwfxo9ejS+973vaVuPqKsDhg5F/dmziB49mv43oXduRKU/1dbiwrBhmBkfH2goMIHn+fOylcgw6reW2AQT6NON1Oov8DktPuGCw35MEOZjfKcUlFQgKoGmO6XPPvuMWly08e16CjQdjoqK8u+IUItPqQrA73YG6H6hhnt3y3Ec18MNjRgOh6PHc9EEu5zq6+sVm0PzPN8j7rCwML+S0KrIWQoGlqtcPak5p9GKREREIMK7Ozm47cXFfbffITLyO6Nqp9PZ47ng/gTI+zIPbnsJAR+dSurJR6D7Y6k8ieFwOHrIIJQnQNidlFSeeJ5HeXm57tZKWs9Q2bFjh18pGJynixcvSoZV6z5UTdtzKdhZGx6wU1munnxobXtOiZ2D0dHR/vwq7U8AedujCc/zgvXE8pk9vjbiq6dQOyeHJlJtTwqj+pMe7ycj24NvPFDjnj86OhoOh0N3d6c8z4vWk5LxVimk457asSZCxupKDF+efW1P7hx1K+J2u+FwOCTfV75yp/1+otmmxN5PPgLHiMrKSnz22WeCG8MCPUn43Fn5uOWWW3DddddJjhthnZ1wEGzWdrlc/vLrNe41NYGTiYPnecFxj+d5cAD61dVB6eiWUF8PeOtEbh7hay8xzc2At8wDx3I5fGUkVU+BqM1TZFgYwryWGILvJ6+FhIPQxbDD44FTg3eEyLY20fYRGxvrL7+oqCjA26dcQf3O159831a++KTKJiYmxt9HI8LD4RLxmMJxHCIjI3u523V4PMRlFEh8Q4PiOgPI8iQZPqiefG2AyjwiJgaQUJD46kVqbhSImnYdSER7O9GYEwhpf/KN5TU1NQC6xwilssZERQHesVRovkeyUU9t+/MR1dqqqowSBNZ/HA6Hf24kZykY29QEePNLpe01NADe9qNlPcJHj/met54uXLgABCm4SI8k8tVTZ2cnYmNj/e/K4DxJvkO9+XO53egXMF+m8a0R7w0nlHo4YT0FzluUjlPB8Qn1J47jeo0RPeLgeUR5XdeSfj/1iiOoP/ne55rWI7zeRBJiY/1tlPo3Ia3+5JVVznOY1bCVgvSoDvh/GmGYAQH/r6GUNgCQ+H4MXJ2N4zgujud58UMTFBLb0IAElW4bLIHXd3QwXH19985BlbiKioDEROLnJdMKktFRUSEvW2Mj+Ly8bksnwnxw164BQeecuYqKNJWD2XDXrikqWymcFi8LIhSUh1IiSkvFyy8/H9BJiSFFbFWVqEzctWsAZT/jlZWV2LRpk9+vuXInPOTE8jw8DQ3azoASaQ/tly9Lyk66mzAQV1ERoGIzhpIxKqq8XNc2LoSjoEBUPmdhoX/xjTZ8Z6cu4xXHcYJlKNWXzCY+IqKHzCzLajoi/YPWe5RFnIWFxrUHgbJSNEfjOHDt7brKKzVORpPMP9VC2I7CS0pUyaC230eUlvaQzdD2YhC+PEqVUWxnpy59Pay4mFp5RpaVycoYX1ODEydO4ODBg4DHgyEB95wA0gEcRe/zQ5KTk3H//fcjLa17aYDG+ZpavTyJyWCUO2+e50VdD7LkwcpKG4GUyqpnOVup3Egwsk3KpcVS/5CCRhsgyatVysNHYLlIvQusli/aeDwe0c1GVi4bWrKLxUN77A3FPmgjjK0UpMflgP8PEX2qJ5kB/+/tS4Sc4LAkVofBCsA4gWuqWbV+PcbTioxFRPxjJwDI1iFeMSTTCoorVe55H//7v/JxS6QDAKO9P8uSk6OobKXIgMY2YQUUtlslTPf+jE5XCslTU3WQKQXAU9Rj1RGRMsg2MC05MsF2v5QcQ3Vs92HQsVwEXDI/oFdatPjxj/3//Z6JYjCPmj5v0vhNi/nenyEIlFW2wrARSsJQZp73pwuE7Wii92cYQXINB9vvHNW88goeknvmv/6LerJGf2e8QvDMbAAHAv6eNGkS7rzzzh7WpjQW0LTGIRaetlKQ4zjDFwxppseyJ4NgWFDE+WSwUrmRwNKiN0uySBHYHtW2zVBUSAT2DSnZaWwesTKdnZ2SHgjEYL09aJEvMKyUUpCkv7FeTjbGYysF6RFoeTeR4zgXz/NyhyNdLxJeKeeC/ibxLxTsY4Oqj8O3V65EelISzSiZwndgfDB1dXX4+9//rjreuXPnYsqUKcTPS517FyxjWVkZ3nvvPdk4X3zxRbhcLsm4A1m5ciWSk5N7XLt06RK+8B3Ia0EeeeQRyXMAxepfiKKiIv8htaGKkvJQyuHDh/3+14N56qmnVLlT08rGjRtFzxh6/PHHe7g40IrR7SchIUGzy1uh9uB2u2XPhY2MjFTs4m7FihVISUlRFAYACgsLZc+h8DFhwgTcfvvtitPQwoULF/wHbAezZMkSDB8+XJd0Ozo68Mc//lGXuIXaxQcffMDsmYIDBw7EAw98p7b85z//GZIuAGkg9g4gmaO43W7k5+ejsrISaWlpyMrKssSi4qZNm5CXl2dIWkLlSzJHczqdeOmllwB0L7L84Q9/oCzZd0ycOBG33Xab4L09e/bodqYg6fzjzJkz2Llzp+L4hw8fjtzcXMXhbrrpJr8rbQDIzc3F5s2bFcfDMr4x8t1330VFRYXgMzExMXj66aepp03zO0Os7RYWFuKXv/wltmzdKhk+A8B+AL63w+jRozF9+nQMHTq017O2paA0eik81UCqzIiPj6e7iGIASspJqYKHBQWlVbEtBb8jFJWCgeUi5z60LyN3rqwYfaXctFoKkpZTXylPG1spSJODANrRvRk3BsANAIRXsgFwHBeBngYwyr9UvfA8n8dxXB4A39fHOACfywQbG/D/Gp7nm9WmL0RTfLziw3wtRVaW4GVPTY2mfLempYnGLYRkWkHxuF0uItk8mZlAeDhxProGDwbSenrM7WhosHT9uzMyFJWtZFyQqadQQEF5KKUtP1+0/DyZmdRddZLQkpqK+mbhIbNr8GBFLoDlOH76tKHtx9G/P+q1LsgLtIeu9nbZfLhjYtAsUq5i8EOGAKmpisIAQBfI+2VLaqqubVyINol3iTsjQz95Ojr0a28CMjenpKDee5g4aySkpPSQuSk5GfU6n8tmWUTao9x7tLOzE++99x6uXr3afe2bbzC+pgb33nsv84rB2oQE48ZmgfIlSdvlcn0XtrNTV3ml5q+tly4ZOq4I0VFVpUqGltRU1NcoP+GhbcCAHrJ1tLaG3Fwwul8/ICsLjUlJqBc577grNlaX91VnYyO18gx+xzc2NuKXv/wlfvvb3yo6K37S5MlYMH06BgwYIPoMC4tsZlsKslAGNJkyZQoKz5wxVQaWFHEsyUKDUGuvRjB27HfLjHq2B6vVDYm1l420UtDK5aa3paCSuHiel+2boaiYtxGG7S9uC8HzfBOAHQGXHpMJci++s9arAbBXowgfBfz/HoLnA5/RmraNF60Do567NPXaFRKKH3w05bd6WbAMi2VLWyajP671KlOSsU1NXtWWj5JwZrQzs86aYLFPmUWoLWyxyNmzZ79TCHo5f/48vv32W5MkIkeJssAsAhWrerfnUN31rlY5beU8k0Kym98K5eCTsba2Fq+99hpGjhyJX/7yl0R9fMSIEdj4wQcAur29SCkEA9OiIa9abEtBMkj7/nXXXYeJEw11TtwLPc8UJLUU9N0LtbmTfaagcm688UbNcYSiQoJUsWO1fNEmVC0FaSkFxSB1H7p//3786le/wmuvvYYDBw6Ixs16edrQw1YK0iXQ59ZjHMcJHqvHcVw0gP8MuPRnAlejcqwF4NumOZPjuKViD3IcNw3dSkkff9eYtg0l9PQhTho3Cx+sZtPXfbmzBIuTZqkJl9Xbfl9RCrKOVHlZvY0FwnL9sW6pFgrs2LFD8PrevezvVevo6DBbBFlYUQqygJh8SUlJ6C9hcUbrPCTWy0cNahfuaECrPHmex7lz57Bq1SoMHDgQq1evRnl5uWy48PBwLF26FM899xxuuOEG4vT6kvtQsb5jlb5A2vcdDgfuvfdevPzyyzpLZA1Cbe7EUntlSRYxkpKSehwrQ+Md6vF4BD3JWKE8xGBxfYMVOkU8DwB22QDa3YcC3Rsba2trsX37dtFjeuyy7jvY7kMpwvP85xzH7QMwB91uRD/jOO5unuf9PiU4jksC8A8AI7yXagD8Sig+juOyAAQeWPI4z/N/F0k7l+O4PwJY7b30Lsdxq3ieD7QgBMdxcwF8AMB3euthAJ8SZ9JGEr0+1GhAKptSGWxLQRsb/ehLloJqFhKMsBQ0A7M2Jthj33cEtxHW24yZkLihEaJFxHUsq+dMBmIFpaDSs6D0guVxRa5caJUby2WgFt973Yp5a2trw5EjR3Dy5EnU1tYqCjt27FgsWLAA/fv3V9w+WFAKGuU+VA0sWQoqrVupzQV6o6eloFJCba5kWwoqY+7cudTi4nkeHIA33ngDFdHRSElJwX333Yc077E1ViiPQEgtBfv65nQWLQXNNpogaTtqx97Tp0/3OANbLh2lz9iwj60UpM/DAI4ASAeQBeAUx3F7AOQCSAFwO4Bo77NuAA/wPF9HKe3/D8D16FZKxgD4kOO4iwCOovsIpUkApgY8X+pN3+7NjMCCUtB2H0q3HqxeFixjWwrSR68xyMqWgn3JfajRsLx4xLJsrKFWKWhlbPehPQnVXe+03IdauQzEsKr70KtXr+KTTz5BQ0ODonBpaWlYuHAhhg4dqjptsxcWAfH5RSgsRJupFDQT232ofrA0hrEkCylaLAUvXLiA8fDOt6KjUVlZiXXr1mH16tWIiIiwZHn4CNU5Ew3sMwXVx6Omv4l5R7ByWdsow1YKUobn+SKO425FtzXgZAAcgHneXyCV6Lb8E/adpC7tdo7jlqDblehD3stjvb9gvgZwP8/zhbTStwkNS0H7BWCXgVVgsZ5YlEkJVrMUVAvrixZ95UxBluuBZdmMZNCgQbKWex6PJ+RchknB87ykeyNW6Et1IofaRRR7HBDHt3BnxrxHTZo8z2Pv3r3YtWuXonCpqam46aabMGXKFM19igWloFGWgkrdh5LkKy4uDgtuvBHIydEkGwlWGj9ZGqes/h0UDEuWgn0Jnudx6dIlBJ/F1NraimvXrmHUqFGWKy9SS0Gr5Ys2at9FofR9rCZ9lt4DNtbCVgrqAM/zlziOuwnA99CtnBsPIA1AHYCrAD4C8Dee56t0SLsewMMcx/0JwCoAswEMQre70HJ0uwt9H8AntoUge1hRKWhbCtroidUmzbRl6kvuQ420FFQSzrYUJIPjOGZlU4P9cQU88cQTyMvLI1IK9iWs4DoUsC0FSdDLfahtKdgNK/nu7OzEp59+irNnzxKHCQ8PR3Z2Nv7v//2/+N3vfif4jNL8sTBWGnWmIE0effRRpKWlITIyEty1a6LPsdLeWEdtOZGMh1ZSprJGKLgPpTnXKCwUtl3Yvn27JZWCgVh1zmQ2LJdbaWkpjh49isbGRgwePBizZs2C0+n039dbPtrzfNt9aN/BVgrqBM/zHQDe9v7UxpGPbktDNWH3AtirNm2txDY0ICEszKzk9Sc/X/Cyo7oaCQrPpggkorRUNG4hJNMKisdZWEgkG5+XB8THE+fDUVAABO2YDysu1lQOZiNbVgrqyFVUZOmyIEJBeSglsqxMtPy4a9eAxkbd0hYjtqpKVCZHQQHQ2kotrajyckPbT2RrK8La2rRFItQeSktl8xHPcXArzKuzsBCor1cUBgCcBPL4iCov17WNCxFeUiIqX1hxMRAbq0u6XFub6vbmdDqlFxUFylCqL5lNXHV1D5lZllUvXEVFkmOwDz4vD4iI6HVdKhyfl0ftPWs0nU1NxrYFgbIgST/Z6ewRtl9dnW4f8NEVFaJ1put7jLCdiI2pcQ4Hurq60FVXJxguprJSleyRZWU9ZAvVuSCfl4fYqiq0i+QtsrVVl76s5DujoaEB2z77DA2VlRiC7l2y6eg+W0NIvT9o0CA88cQTePrppzF48GB6QqNvnSlI01KQ4zhERUXJpklzfAuz0DqGnps+SOP2PRcdHY3k5GRUVVHf+24KLC16syQLKbQ21gTiUzxbrTxILQX7OmrL5tixY7guIQEZlOUB5GUqLS3F3//+d/+mwW+//Rb5+fl45JFH/H3AiDMFab4L7Dbad7CVgja6sGr9+l7m/iGFiNuSJADZBoohmVaQjFlyzweFI3pWIB2g+/DKSaThWSQnR1HZSpEJY9uEKejoxmem92d0ulLcI3WTsky3eX+WQqAM0qFTP1BZ3rrJQ4kZ3p8gOrb7SOhYLgJyL9MrLVq8/LL/vw+YKIZp5OQgHcA0gueEyJYJI3efVWJh8PghUBbE6f/bv/n/u5qKMMrR9T1G2E4me39quF1luEDEznKwPDk5eETumV/9inqy47w/Uv5d4NpsAAe8/3e5XLjrrrvwxBNPYNGiRXC59FkiYcF9qJhisqysTFO8oUYoKwX1XuydM2cOPv74Y13TMAqW3If2pUV6EpffVi4PKdlZsChnFbk6//DDD02Z63799de9vIjk5eXh2rVryMrKopqWHu1e6Gx4K/cvG2XYSkEbXXh75UqkJyWZLYZuZGdnC16vqqrC+vXrVcc7YcIE3H47+fLDmjVrRO8Fy3j16lV8+umnsnE+/vjjSEhIkIw7kAceeAADBw7sce3UqVPYvXs3UXgWueeee/DJJ5+I3herfyGuXbsWMh9GYigpD6UcOHAAR48eFby3cuVKJCcn65a2GJs2bUJeXp7gvYcffhipqanU0tq5cyfOnDlDLT4jEGoPBQUF+OijjyTDpaSkoLKyUlFaTz75JOLi4hSFAboXv9577z2iZ0ePHo1FixYpTkMLe/fuxYkTJwTv3XHHHRg7Vp/l5dbWVrzxxhuqwrpcLkl3ckLt4pNPPkE+oxZhI0aMwF133eX/+/3330dJSYmJEhnPSy+9hBMnTuDAgQOSzz3zzDOIjo7udV1qHvHiiy/i9ddfF72v53tFK+Xl5fjHP/5hWHrPPvtsLysZkjna0KFDcffdd/v//v3vf6+bi8AxY8Zg4cKFgve2b9+Oc+fO6ZIuaTs5efIk9uzZ0+t6cnIyurq6UCtidTZp0iRV7+ApU6Zg7ty5/r8vXLiAbdu2KY6HdZ577jl88MEHqK6uFrwfERGB559/nnq6cuXJ8zwOHjyIo8eO9bqXAWA/gFLv3/Pnz8f69etF5240F8ZYVQqWlJTg6tWrSNAUMxlqLQW1xK2G8PBwanFZGTWWJ5MmTUJUVBRyd+wAACxcuBDDb7sN//3f/01bPN2xF8aVEdxe9LBitapS0D5TkAxaFnU0kYv3ypUrgtd37NiBJ598kigO0vSlLAW1xK9GKdjX22qoYCsFbXShKT4e9f37my2Gfojs+OiKitKU7+aUFNG4hZBMKyiejrY2Itm6Bg/Glepq4ny4MzKAzMyeaVVUWLr+OwYOVFS2Uri7uixdFkRQ3gEVSFturmj5eTIzAYoKOFKaU1JQL+JqzJ2RAQQpybXQmpZmvfYj0B7aOztl8xGdkoJ6gjOKAuGHDAHi4xWFAQBPeDhxubakpuraxgXTvHRJVL7OQYN0k8fT3Ky6vcm6DxWQuTklBfUq3L8aQWtaWg+Zm1NSUE/RNbAVcA4fjvbSUtk24cnMFHRpKxWOHzKE2nvWaFohM/+izO83b8aqVaswYMAA/zWS9N0ZGT3KsSExkegcODUEj5NXr17FpUuXEB4ejqsej37lRdhOOsrLBWWISEpCV1cXxEahtgEDUC9yrpEUbQMG9JCto67Oeu9yAtwZGWhITES9iGVDRESELn1Zqjzr6urw0ccfo6CgQDIOzunEA/fdh3vvvVf1Zi4zzhTUw33owYMHNcUphNXP5Q1lS0ESV6xaGTlyJEZ6y3DMmDHosuhZg7aloDb0cB9q9bEFsJWCaiEtm9bWVug/ynXDcRxaWloE7xUVFfn/b8SZgjT7m90O+w62UtDGhiH0dBdAOrB7PB7s2rVLU7xWf4mwtivYRhizytbIj5FQ+PAByM6qUZNXteWjJJwZ7UzqXcDqmKJGLpbbN8uyGYEv/yTloGbuQhrm2rVr2L17N8rKyjBo0CAsWLCAqjW2GoJdBOlNa2srNm/ejKefflpRuIigcx71bNOB/f/o0aPYsmWLbmmpQe246VC5kM3qOE0bvZTMajl37hw2b96M9vZ22Wfvv/9+RI4ZY+hCPAtKQSEZzp8/rylOGrCmBAgeP1lGaflMmDABn3/+uaEyqB1LzYalsZwlWcSg1VdD0X2obSlIBo380/aKYXadGGEpSHLNJjSx5tvZxoZR9DrngQaksrW3t6O0tFT+QQppsYrty90asNjOWJTJTLq6urBt2zb885//lH1WzYKBEQtFfUkpyKLLFrOw6gIWLZQsiOqlFCwvL8eGDRuQn5+PtrY25ObmYt26dWhoaFCcHk3MUISUlJSgublZURgzFrW7urqww+syzgrI7aw2YoHTyrjdblMWN4Pj5Xkeu3fvxsaNG2UVghmDBgEA0tLSiGQMtY2CRskg1ndYKAMSQtlSMCIiAtdff70ucesdj9HYloLa0KPeKyoqAFizPHzYSkFxaOSfpW8439ydVr2ypBTs6201VGCnt9jYWAi9BkAWlIJKd9aE4s4Sq8uvhEHexRFWsdqkmUWZzOTzzz/HoUOHiJ5l1VLQDKTGYVbbmG0pGFqMHz8eAFk5qKl7kjDnz59HZ2dnj2stLS345ptvFKdHE7P6YGNjo6LnzbAUzM3NJbLSsgq0XDGxOm5rhQVLQY/Hg88//1z2LHOO43Drrbfivvvu63HdakpBljegaoE1S8FQP1PwzjvvxOzZsw1Ns6/Pq2zIkRoPOjs7kZeXZ+n3qtXWN6wG7bFGrk6k3hd13iNn9D5TEKDrrpdUXp7nUVxcjMOHDyM3N1fXeWF7ezs2bdqE3/72t3jzzTdx6tQp3dLqSzDtPpTjuAk8z+tzMr2NjQ6w/KGmZGDXGq/VJzOsfjDrwdChQ1FcXGy2GKpg0X2o1ds+TdxuN86ePUv8vJFKQSWYUadmtSOj07XSApGVZKXB1KlTiZ/Vy1Jw3759gtc///xz3HDDDYrTpAWL7x4hzFAK1omct2s2WuqM4zjNc+NQnRvIbSTUO98dHR345JNPcOHCBcnnIiIisGzZMowZMwZcbW2Pe1qUgqFypqAe2JaCxqF2/ux7j06dOhU7r17VXQaHw0HdrZ/e0N4UIFVKoWApGNwOtCgppELu3r0bo0aNUhW3mfA8r2pO0ZcQKxuWyywqKkr0aAGj3vta5vhCMpJaCm7fvr3HucTDhg3Dgw8+SH1jDc/z2LBhAwq953w3NjZi06ZNcDqdmDhxItW0+hqsWwqe4TjuEMdxT3IcF2O2MDY2PliwFKShvNMqg9a0WIW1XcE2wvSFsrWyIuLq1auKdosZ6eqD9XK14pmCoUZf2hwSzLhx45Ceng5AvzMF7XasHJaVgkamQRM5eeXci/Z15NyH6gXP88jLy8PatWtlFYKZmZl4/vnnMWbMGNG45NKihW0pKI5tKagePcuHZtxWHEtp9v9Lly5J3pfrm1acN9G0XAqkoKCACUt1tUjVNatjtJWg3Vfk4pNq5776DEX3oSUlJT0UgkD3+s/x48dVyyJGZWWlXyEYyMmTJ6mn1ddgXSkIANMA/BlAKcdxb3IcN91sgWxsxDDyQ03phEEvpaAVJ6hy9KXJGOsfaCy617AtBclQ+rHGqvtQM+rULPehtqXgd1htNzstRowY0cu9nhxq2o2V37NmjfNKN04EL2obYSloRUgUg0rpK5aCZizKNjY24pe//CXWrVuH2iCrv2BuueUWPPbYY+jXr5/oM0bWDQsbL2mNvZmZmarCWaUvhLqloBmwdM4XKTTbq9wGBrMtr62GFeeRvjpkcX2DFaxoKUiiFNQCqaWgXkp4MVpbWwWv79mzR1V8UgQrH33k5eVRT6uvwbT7UAAtAKK9/48F8ASAJziOuwDgLwDe4Xm+xizhbPouVrQUJI2bhlKQ5Zc2CVaXXwlW+ZAUgsV6oi2TletHKWoWC0LVfagVP3RDDSvvQNbCDTfc0KMv6mUpaLdx5Sgd74IXtfuyUlCtfLTKjPXyUYucpSDNfDc3N+OTTz7BT37yExQUFEg+63Q6ce+99/rPRpXCypaCdXV1uHz5Mrq6ujA6IgJJBskAADfffLPkfaV9hzVLwb40/5aCtBxInrNimdLs/0JWLoGEglKQpvtQOaw8j7SVgvpidBmS1KfeloK049SSjh5ni7e1tVGP06Yb1pWCAwB8D93KwOmA37X0OAC/BfA/HMd9AuCvPM9vN0VCG0FiGxqQYKEddorJzweczl6XHWVlSJDZtSpFVHl5d9wE8J2d0mkFxRNWXEwkm6OgQFEenIWFvcoivKREUzmYjauoSFHZaorLZCI1tlkAispDKVLyOQsLAROseWIqK6VlojhZiyovZ7r9COJtD6Rjjo/YqirFeeWuXQOCXOSR4KyuJk4rprJS1zYuhFS9hxUXA0kkS3/K4Rob9WtvAmUo1ZfMJrKsrIfMatqnFQkrLu7RpyJKS2Xz7SgoAAQ+1qTCcdeuyb5nab2HaWPWe91ZWAg0NgKQLlsfUeXlQMBcPKG2FmEtLbrIFl1RAeTnE7UXqhC2AzG54sLC0NXVhQ4RmSPLytCvrk7xJoHg8cPq82IxuGvXEFddDU99veB9l8ulqa+63W4cOHAAn3zyCb788ku0tLaCAzDEe98JIB3AUQC+03zCw8Pxve99D8OGDSNKw0ilIM1F7KKiIqxfv96/+Ha0rg6rDZIhMTERQ4cO1RyPDR20KtuMUtb1daWgHH3VQ4UQpOeZWQ3bUlAeGpaCRroPlRvXaLgP1ftMQZ7n0d7ejqtXr6KhoQFDhw6FU2Ct20z6er/QE6aVgjzPN6HbIvAvHMeNBfAUgJUAUryPRAB4AMADHMddA/AWgL/xPF9shrw237Fq/XrI7820MDk5gpcHAMjWGverrxI9FiaXVpCM470/WXJylOVBoCymeX+WJScHE2TukzIUFNqEzszQGoGC8lDKHO/P6HSluEvqJmWZ5np/lsJbBiNhQNtXWd5JUCjbyy+rSkctS6Vu6tju46BjnQnILdmXWOAHP/D/d7mJYhhKUD1N8f6UhPGRLRNG632zGOv9GU5AnrMVPg8Az1AVRoCXX8YkAJP0TicQwnYw1ftTw2yV4QK5zvsLOXJyMErumf/9X9XRu0A2D5oN4ACAuLg4PPTQQxg4cCBxGlqUgnqd704SxxdffNFjNz5p3DRc2y5btkzWu4PYAqWaBV8rKpOMxCrl09fdh5Kk5fF4RMvJCovitCwFSbBCeYhhKwVDCyPrU+pMQbX9rbGxER999BGqqqr812666SZVcemF3S/0g2mlYCA8z18E8AOO4/4/AHej23rwDnx3LuIQAD8D8FOO47YBeBPAZp7n7S03JvD2ypVI18mSgQVeeOEFwbMGysrK8N5776mOd8CAAfje975H9Gx7ezvWrl0rej87O7vH32fPnsWOHTtk4120aBG2bt1KJAMA3H333b12ix4+fBiHDx8mjoM1brnlFuzevVv05RNctlJcvXoVn376KSXJ6DJ58mRERkZqrisl5aGUvXv34sSJE4L3li9fjoyMDN3SFuOzzz7Dt99+K3jvvvvuw+DBg6mltWfPHssdoOxrD99++y0+++wz4nDDhw9Hbm6uorS+//3v9zo3i4Samhq8/fbbRM8OGzYMS5dKqumo89FHH4m6R5s3bx4mT56sS7oNDQ146623dIlbaJz4/PPPceXKFV3S00p6ejoefPBB/9+bN29W3D6tyD333IOsrCz/3ydPnpQ9G+KBBx4QXIRfs2aNaJhHHnkE77zzjuj97OxsyfB6vneEKCgowKeffmqqW9nAs9GkysbHE088gfj4eP/ff/nLX9DU1KSLbL5x8syZM9i5c6cuaQhB2g6OHTuG/fv397qempoKj8fTYyEkkGnTpuHUqVPo6OgQvC/GhAkTcPvtt/v/JulHVuT222/HkSNH0NDQIHjf6XTipZdeIo6voaEB77zzDv785z+jXiTOQDIA7AdQCmDKlClYsGABoqKiiNMDrGcpyPM82traUFysbg90sAxq8seaBYGNfvR196FG09XVZWmlIC1Ixkorug+1LQXlsZqloBy0LQWllIJq2bVrV6958Ndff606Pj3o6/1CTyyjFPTB87wbwIcAPuQ4bhCAxwE8BsDnI8QJYKH3V8Fx3Dp0uxdlc9UpRGmKj0d9//5mi6EfWVk9XDL5cLtcmvIdnZjYHTcBXS0t0mkFxdNeVUUkW3t6uqI8dA4a1Duta9csXf++MhB9+RDWEQC4OzqYLIsBAwbgpgcfxJEjR7TLp6A8lNL2zTei8rkzMnRNW4zmlBTUV1cL3hPqD1pou3yZyfYjiTf/na2timRvSU1FfY2yY4K5oUMFx2I5+Lg4YtmakpMNb2eNSUmo97oJDKZj4EDd5PHU1enX3gRkbklNRb3IYrzZRPfv30PmG5Yvx4k//9k8gQyia/DgHvnurKiQbRPujAwgM7PXdalw7owM2TmMkjmOnrjdbmz4xz/QERdnWJpCeDIzgcREANJlCwApKSmIn9TTZq8hMRGNOrn2b05JAbKy0Fldbew7i7AdtBcXC8oVk5ICt9uNehG3bW0DBqAhMVHx+Sgtqak9ZOsoL7feu5yAltTU7veViJLI4XAQ1ZHH40FOTg5+9rOfoV7EFakUdy9bhoTr1NliWvFMQaVKaikZ9Fposy0FjcMq7kNtS0F5urq6BDeemyELDdS2LRKFnxXLAzD2nWNjDFJ1RkMpSJKWFktBVjfoBqK1/FpbW3HlzBk0Nzdj+PDhSE1NpSSZ9bGcUjAQr5vQXwD4BcdxtwJ4EsAyAJHeR9IAvArgVY7j9gP4M4APeJ5XP5O2sYF+L2slO55IJhSBLwZSmWntYrUyNHeesVYWYWFhePDBB5GZmSn60cESVttJR1umvrQQomaxwIjyMaOdSZ0rwmK7VwvL7Tu4DgYMGICBAweipKTEJImMQU2dCL0z5dqplXZ45+bmalqEp4WSvn/LLbf0uma78VIOrTIL1fJxu92a87Z7926sXr0aZ86cURz2ukmTgDNnkJmZCeWqxG6saCmoxVIvWAY1MukxlthKQfVYpXysImcgZigFrQwt96Ek5WCleaSPUD0rkSahZilI0204rfisiNZ8v/vuuyhyfaf+uueee3Cdys1koYb1tuuIwPP8Tp7nV6D7GCOfrauv5XDoPm7gbQDFHMf9J8dx/YyX0ibU0TpY0VYKKnneh9LJqFC8Vn9ZWV1+Ka6//noMHz7crxBk/QPNakpBG/WoaYtq2y+tdt/c3IzTp0/j6NGjqK2tpRInIP0u0LPdG92nSOvB5TJ+D1uwm0iO4/DII49g2LBhIiFCAzULOmqUglYavy9evGi2CACUldnYsb1PPTRCKcjqnEKLwkFNnoyyxjIbuW8GqXyXl5djxYoVuOWWWxQpBFNSUvDAAw/gueeeE1R+K8WqZwqqxWylYKj2BTPRc9ylGbdtKSiPlIvyvtR3QtV9KCAvd1+q51DBSEtBMVidf9NCa/k1Bnlg2rx5Mzo7OzXFGSpY780sAsdxN3Ec92cAFwBMQ0+FoO9fDkASgP8L4DLHcXcaLqhNSMCCpaDSCYVeloKhqBS06iSTBKtNGKymFGRRJqtgNUvByspKrF27Fp988gm2bNmCP/zhD/jmm2+opBnKY5AaWLHWjIyMxN133224LEaiph+qmQdYqY2HyvlZVnv/GwGJQpBGuYXq3ECNpWB5eTleeeUVjBkzBu+++y5RmOjoaKxYsQJbtmxBcXExXn31VQwYMECNyL2wovtQmlYLeo3FSvsNK5aCZpxVbjY0yjdUzxRkyVLQiu8RtXVOklcrzSN9kIzfRtVzV1cXcnNzcfjwYRQVFTHTvmhYCtKGxjvXiDMFrTjGkkK7/ru6unD58mWqcVoVS7sP5TguCcAqdLsN9W2JDewJ5wG8CeAjALcBeALAHO8zKQA+5jjuZp7nDxsmtE1IoNfLqqurC8ePH0dBQQFiY2MxZcoUJCcnq0rLVgqqx+d61er5IIH1yQOLE34jFZWs1w9NjMwrjbS++OILNDc3+//u6urCpk2b8MMf/lBz/LalYE/McKdkdRdOarEtBXvDilJQa5nZ7kONwy6PbnzlUFZWhq+//hpbtmzBunXriM9ojI2Nxf/5P/8Hr7zyCmJjY3vFS1NGK6FlbhwcVk3+Q21u+tBDD6GoqAipqakYHREBvPqq2SIpwiqWglZsN7ZSUBlG1rEVykMIFjbNdXZ24r333sPVq1f912bOnInbb7/dkv00mG+//RZjR45EVFSUIemRWArSil9KKRjK6NHfCwsLMWHCBOrxWg3LKQW57tZ+B7oVgUsA+A7F8vWCVgDvA3iT5/mDAUHXAVjHcdwUAL8HMBPd+f8xgNDe9m1jGerq6vDZZ5/5/z5x4gQef/xxwYNQWbEUJEnbaoTymYJWw7YU7Duw6j5UqE67urp6fEj5aGlpQX5+PoYOHapKLh9mKQVZJSkpCdXV1YamKbYwE+ofXfaZgr0xw32tEFZQCrLaP9RaIdlnCkojZfXg24V955134osvvlDU52NjY/GDH/wAL7/8MhITE2mJK4jVNjCwYCmoxSpMzcZavceVUaNGYdSoUd1/5OfrmpYesDruBmO7D5Un1Dak6dk2rTSP9EHSnoxoc8ePH+/1HXvw4EGMHTvWdGtpGsYXe/fuxReXLmHFihUYMmSIbjKRYJT7UNbwGVnQjE8NHo9H1D0mK993ZmOZUuA4Lgvdln6PARjkuxzwyBl0WwWu53le9KxxnudPchx3G4ArADIAzNJDXpvQxiiz9ra2Nhw8eBD33HOP4rTUykLjTEGrE4p58kHrAHAhGhsbcfDgQZSUlCA9PR0zZsxAQkKCpjitphSkjVU+9GlgpFJQCULtTOrMj9LSUr9S8Pz58zhz5gza29sxZswY3HTTTb1k9ng8vRZKbEvBnsTGxiIsLAxlZWU6S/QdtlJQ+G8hbPeh1iDU264a9DhPEOg7ZwqKbZo5ceIEDhw4gLq6OsVxLl68GK+99hqGDx9OQUJ5+ppS0OwzBW3Yw3Yfyg62pSA5VppHBsJCPe7atUvw+uHDh7F8+XKDpdGHzs5OvP/++/jBD36g+4YEkvUqvV2QsuY+1OPxUP1+Ult+brcb4SL3QuX7TitMKwU5jgsHcB+6rQLnoef5gADQDOCf6LYK/Jo0Xp7n2zmO2wHgUQD9qQls4ye2oQEJYWHyD1oU7to1IDKy13VnURESamupplVy8CAweXJvGWprJdPi8/KAiAj/3+ElJUSyhRUXK8qDq6gIiI7ucS2itJR6ORiJr6xEJ5sKdpEqLU+9iSwr6yE/lbrKz0drays+/Oc//QtA9adPo+TgQTz44IOIiYnRJK+YfM7CQsCEcSa6okJapnCxqYdypPLPLN72pbTtx1RWKs+ryh3djoYG4rRiYmN7p9PeLho+vKQEyM/HuXPnsH37dv/1w6dOof3yZcydOxcAcPbsWRw9ehRNTU3IyMjAbbfd5leix1RWwl0vvL8porRUt53sDpn3iiYEZJbqS4HExsTgrnnzsH79eh0EEyY9PV1QZkdLi/X6pAJcRUVAgNKbZO7gLCzsPSfq6JAM5ywslI43P1/2vlGoGpt0gLt2DWhpAQBJeTiOEyyf+JoauHXKR3RFBZCfTzzXpAZhOxCb68RGRsLtdovKHFFaiviaGoS3tSkSy1ceculbHV/5OJqaAAA1NTX48ssvUV5RgQQAvm1hTgDpAI4C6BCJKyUlBYsXL8bQoUNx4sQJZGVliS7YGOk+lLXNaZ2dnThw4IDq8EYprK1kKWh1rOI+1LYUlEdq0yELyiSl2G7Le8KKpWBHh/Cb+Pz586YrBWnmv6WlBQUFBcjKytIUD82NOHrJwdp7squriwmloNRGC1sp2A3TSkEApQD6ef8f2MpPAfgzgA08zzeqjLtOtVQ2sqxavx7jzRZCT3JyBC9nAMjWI73f/KbXpf5yaQXJONX7kyUnBzcRC9Y7HaD74M45SuJgkBlSN0XqX4jh0KlNUOJG708TOTmIQrcZdy9+/nNNUc/3/sTSNYOlUjcpyzTb+7MU3jIYAeVt/3aVaSklHgpl++EPe/wZIRXeK9ME70+Mid6fEI9LyaJju5d9r2hBQO47vD9SsmnJQsqPftTrUrQZchhJUD1JtVOxMAAQDvk5itb7RjHd+zOdgDxnyz27Zk2vS6toyiLED3+I8YCx83/CdjDN+1MTv6I5sQhU5lqMEjxH+U+ZZ4PVWTExMZg2bRpmzZrld+V04cIFjBw5EpMFNkXSxmqWgjt27NAU3rYUDD2sUh9WkTMQltyHsjYWkWC7D+2N1d45rKC2XPLz8zUrBeUwylJQCtbGV9qukLVYCophuw/thvVS6A+AR7dCsAnAP9BtFXiMQtzfAthDIR4bAd5euRLpSUlmiyHLsGHDBM+FkuOZZ55BdJB1HAAUFRVh48aNNETrQXZ2dq9rVVVVklYTzz33HCIDdu4fO3YM+/fvl01r2rRpOHLkCLFsixYtwujRo3tc27NnD06ePEkcB2vccMMNOHHihOhkU6g+xPj22297nBNpNlOnTsWcOd+pbEnbhRTZ2dlYI7AAGXhfLdu2bcOFCxcE7y1ZssQw91KBfPrpp6Ljxl133YURI0ZQS+vAgQM4evQotfiMwFffStv+lClTFI8battWY2Mj/vrXvxI9m5GR4d81WVZWho8//hjt7e2iz8+ePRsTJ07E2rVrBe8vXLgQFy5cQEFBQa979957LzIzM/HXv/4VjY3Ce55mzpyJadNULW/LUlNTg7fffluXuIXqSqp/BzJ48GDcd999kuMMbV544QWECVgit7a24o033jBMDqNZsWIFUlJS/H8HW7wKsXDhQowZM6bHtfb2dtE+AAB33303Nm3aJHpfz/eKUk6ePIk9e8z/ZAisG6my4TgOq1ev7nX9nXfe0e1sTt84eeHCBWzbtk2XNIQgbQdff/01Dh061Ov6wIED4Xa7UVFRIRhu5syZOHHiBNoUWgqOGTMGCxculE1fbyIiIiTfV1qZOnUqDh48iE2bNqGktFT0uQwA+9G929fHwIED8S//8i9ISEhAcXFxrzD79u2zlYI6YLZSkDVLwZEjR+oWt1FoLR8a56qSPGdbCspjdaWg7T5UGhL3z1bMF01ot3MabZKVMwXl4mBJMSiljFOD2n5hWwrKw7pSEABOoNsq8F2e55tpRcrz/B8A/IFWfDY9aYqPR31/9j2ztqeno16FOx9+yBBAwCViJ8/rk2+B3S3uyEjJtLoGD+4hY1tREZFsLampivLQMXBgL/laL12yRP2L0ZqWhvr+/cVfPgp2G3W2tjJVFm0DBvSQv6OkRLt8WVnScWjYndWckiIat1DbM4Km5GTRcaNz0CCqMrXl5jLVfojw5l9p28+8+WbsLShQNulTW9aNjcSy9UtOBrKywPM8/vHxx2iIju7lMjmQtgED0DlokGj8DYmJONvYCAjcP1pZicybb0Z9//5oFNm91p6erlu798TG6tfeBGRuTUtDvcRCso+k1FT5cYYiixYtQpjYQiFjYzptPJmZQFqa/+/O2lrZ/Aq1SY9MOXUMHCj73tDrvaIUd2UlE3XuzsgA0tMBQFIejuMEy6cpORn1Oi02+cbJjro6Y8uKsB20FxQIyhWfnAy32436zk7BcB0DB6LB6yJdCc0pKT1kE0tfb6Kjo9HidTlLm/Lycnzy179i3759xO/t8MhIzJs+Hffccw+eeuopxMTE4Gc/+5ngszU1NTTFFaWvKQWD86PXArQZi5NDhw5FXl4e8fMcx2HqVCI/OjYUYGnBmhSWlIJWxLYU7E1fe+fQguVykZKNRjslPVOQJWxLQevAeilcz/P8KbOFsLEJhoWXkl4TCqUDeENDg6p0WMaqk0wSWJswyMFCX1OC1eRlifDwcIwfPx5nz541W5Qe+Oq0uLiYeLxT2w58Fh1SY5DWNsbzPC5evIiCggIkJydj3Lhxfst3LXFnZWUh38Bz3vQkKirKbBFMQ807Qqi9htJO6FD5aDTi/c/qHMPod7NR57bJoYdlTklJCY4cOYLTp08T5SssLAz33303sHEjLly4AG7oUM0y0CxPOetZ1s4U1Erw2KsmD3r0cxqLnbNmzZJUCk6ZMgVhYWG4evUq4uPjceONN/bydmNFWBh3SWRgQU6lsKQUtMJ4Y2QdW6E8giGxFLRivmjCoqWglvhpuA8NjkuNHEbDilLQthSUh+mvXFshaKM3tAdPPV7i4eHhqtJSuyChdKFu+/btmDx5MmICrBKtPpnheZ5a22C9LFibQARjtcUYWhO+c+fOITc3F6dPn6YglTVwOBxYunQpnE4nTp06pWtaatp9YWEh0XM8z0uOo1IWJ75xVK92z/M8Nm3a1KNdff3113j00UcRGxurOl6g222qUqUgaT0YPWmXWkhnfczUSnD+SPIr1CZDadGDlTrXWmZ65sNK9RkIx3FUXOfJYVb50Kzz1tZWbN26FWfOnCEOM2LECGzbtg1DOQ7YuJGZvhTM6dOncd111wnes2rbFoOGpaAWBZCe5Tl06FBERUWJzrPCw8N7uPUNFfTsVzTjtqL7UKORsmqx4lhkWwr2JpTmx0aitlyMmHeQWArSOFNQTinI0hyLFaWg1JgqtL7Q0tKCw4cPo6ioCGlpaZg+fToSEhJUpW0VmH4zcxx31fv7qcrwP/aGz6Utm01ooHbgNPJlLXSmESA/0KqVUc0E69KlS1TSZgUS+Ts7O3H16lXk5uaiU8TtlI129LSYUoveisrt27fjo48+srxCUOn4ynEcXC4XFi9erJNE6vDVqZL8SI3Pzc3intBJLPa0tLGSkpJe7aqqqsp/bqWWuIdSsP4Qw2jLPSOUBKxiWwr2hpU5ja0UNB5a3wlWtxTMy8vDn/70J2KFYHh4OJYsWYIVK1YgMzNT9DlWXOWdO3fObBEMw+wzBcWgYQHhcDhwzz33UJLIhjZWnD/ZloLasJWCPSGxFBTD4/GgsLAQx44dQ1lZmSXbAwksWgrSUOjpDWvjK+0zBdWixFKwvb0db7/9Nvbt24e8vDwcPnwYb731Vkh6xguEaUtBAFkAeABJKsMnBsRhY9MLKygFhT7om5ub8dZbb0mGC5QxNzcXO3fuJEpPzQTrs88+63Emg9UnKXLyV1dXY926dWhsbAQAxMbG4rHHHkNSktqhyjjUWIGYidUsBbXA8zyKiopw8OBBs0URJS0tDeXl5brEbWRbVJMWaRie5yUnoFLnO0VGRgLQ70N37969otdvueUW1fHOmjVL1eIzaZlGS5zhqAe2paD430KEuqVgqBCK7kNbWlqIxoe+2t601kdTUxO2bdumyDowKysLd999N/p7z1AUK/v9+/dj3759quSiXZ/ffvutYWmZjdkKa73T64vvb6vky4qWgiwpBa2AkW3RikpBQN2mua6uLmzcuLHHRvxZs2bhtttus0z/1wrLloJSGGUpyBq0xzK1/V2J9fU333zTa52roaEBZ86cwezZs1WlbwWs92a2saGIFdyHCsm4ZcsWYlny8/Pxj3/8gzg9mofhWhU5+T/++GO/QhDoXjT56KOP9BarT2I1paBamXiex+bNm2WV/Wby8ssv49FHH9Utft9YZ/bkPRgjLQWD01R6T45vvvlGdbpS6L3Qw5JSMNQxylLQSgtfrLxrbEvB3qxZswYFBQWqw8uVSV+1FPR4PDh+/Dhef/11YoVgYmIili5dilWrVvkVgmKcO3cOO3bsQEdHhyr5jISV/k8LoywFlfYdK52VxBpay4eGdwT7TEE62JaC5FhRKaj2TMGTJ0/28sx14MABFBUVUZWPBVhs51o2OtruQ+lghBe8Xbt2CV7fsWOHqrStAuuWglrx2YOyYbtqwxxWsBQMlpHneVy4cEE2nE/GkydPKhqUbaWgfBkUFxf3ulZSUoLGxkbExcX1uM56WbA0eRCCRaWgHjKdOXMGJ0+eVCuSIcTGxurqCoJVS0EjlYK+sYdFt7lSqK07Vi0F+7L70GAlAkl+Q10pyAq2UrA3nZ2d2LhxI1555RXdxyElWFkp2Nraig8//FDSei6Q/v374/bbb8fYsWMF0xPKe/DiJsuwOA/VAqvuQ2ml1xff31rz5XKJLwnSbONW3HBlKwXZxarloUbBJGZVf/jwYQwePJiKXKxjVUtBmu3USptnWFEKKrEUrK2tVZWG1Ql1paDvEINGyadsqBPb0IAEkbPwWCK6ogIJKjo/d+0aEB/f67qzsFBVfFLEd3UB+fn+vz1dXURpcNeuAfX1uLZnD5QcjRpZVqYuDwEyRpWXUy8HI/GVgdKXWd2pU4gLmpiFFRczVRZR5eU96iq8pES7fPn50nEEpKcUqT7qKioS7Id6E1NZSV2my19+yVQ7ESQ/Hw6PR15Ob30rbfvOwkKguRkc4RgXmJZSHG1txGnERkQA+fnEfSW8pARwOkWfdba1IaG1VfBeRGkpkJ+P+Joa0fEnsqxMdb7l+qlDom1L4RtXlI4DpO+KhNpa+fgpEl5SAojMYTi3m/2+qgFHQQFQV+f/m6Qfh5eU9KpfrqFBMpzsfEnH94pSWHmPOwsLAe+4ICUPx3GC5RNXXa1bPpSOk1SprUXpoUMYOHCg6CMRpaWCcsXGxMAt0acjy8oQX1OD8LY2RSJFV1T0qAPVc2uNxDsc6CRMl+d5fPPNNzh06BA66+sxBN27a9MBHAUQbNOXlJSEW265BWPHju11Losc58+fV/S8kKxGYdWFZzGC82O0paBYedIqZ9YWRq3A2LFj8ZnAuZpJSUmK+7YUVqwbo/u/kgVsFjHymJK+ZCkodqYZiaGA1bDimYJGWQpKwdr4SnsjudryszehyhOySkGO46YCWIju8wSl/WXZUGfV+vUYb7YQhCxQEygnR/ByFoBs9aKI8/Of+//rJE3DKyPRs0EsUhEmsExu9/6szHw1gQTaxSjvj1WmeH+ayMmRbmci/YWEpTrFq4VlUjdVyvSAqlAGQzqmeJ8bTvKsQDjiMS4gjFIilaQBAD/+Ma4DcB3JsxrGXl/Yl9SEJSBbJu0UuWckwpLEH8xt3h+V+Gki0a5cRsphBkF5H+v9KQkDAPGQbw+TZe7LhTeKid6f6QTkOVvu2TVrel3S/T3z4x9jDIAxeqcjhEx7mOH9qYlX9Rzp5Zf9/53l/VmV2QAOBPx9/fXXY+HChQgPD5cNa4WFbClIFgPZWoqTJnghnZX6McICgrVFU1pozVd0dDRGjRrVy8X85MmTNcUbjBXL37YUZBerlod95rY6rG4pSKNe5eIwO6+BWNFSsK/CjFKQ47idEreXcRw3gTCqMACDAAwBwKFbKbhNo3g2Cnl75UqkJyWZLYYsEyZMwDmBnXFyPP7440hI6G1/l5eXh02bNtEQzU9cXByefPJJ/98ejwevvfaabLhVq1YhMTERawQWhqQYPnw4cnNzlYqJ7Oxs//+3bdtm6Z1L48aNwzfffKN4h8t9993Xy4XD5cuXsXXrVpriaeKmm27CjBnfLY2dOnUKu3fv1hRndna2ZDsLbBtK+fjjj3Ht2jXBewsWLMC4ceNUx60WPWRS2k/N4KWXXoLb7cbatWsln/PVd25uLjZv3kwc/2OPPYZ+/fqhq6sLv//974nCqG1b7e3tsvnwkZaWhoceeghnz54l8ik/ffp0DBgwAJ988ongfYfDIbq79YYbbsDs2bMl24PvGTXI9dOKigq8++67iuOdPn06pk+frngc2LlzJ9F5VY888giSkpIM6yfLly9HRkaG4D0l7dOKPPXUU4iNjfX/fenSJXzxxReSYWbMmIGbbrqpx7X6+nr87W9/Ew1z8803Y+/evaL39XyvKOXMmTPYuVPqM8UY7r//fgwaNAiAdF/mOA6rV6/udf3DDz9EYWGhLrKlpqbi4YcfJmovejBv3jzJBexDhw7h66+/7nU9IyMDXV1dKC0tFQw3d+5cHD58GO3t7YrkGT58OJYsWeL/e9++fTh+/LiiOGiQkpKCyspK0fvV1dXYtWsXigTc4gNABoD9AHylk5ycjDvvvBNDhw6lLiurhNqiEauWgrToi+5DabB8+XJs3boV33zzDSIjIzF58mTMmkW+lYGkbK3oPtRorG7VYlsKSqPWUrAvUVhYiPr6ejidTowbNw5paWma4mPFUpBG+rb7UH3l4DiuT/Y/ZpSCAOahW4EXDAdgoPenBF+vKAPwunqxbNTQFB+PeplD5lmgbcAA1It8CEvhycwEBPLn7uyknm8+Ph7Iyvru764uojS6Bg8GUlIUy9OYlIT6mhqlYvaQsTUtDfUiCyxWoDklBfWVlYqVgu6MjB7lAACdTU1M9YW2AQN6yNhZWaldvqws6TiCykQJTcnJqBdxmdGenq4pbrXoIRNLbUQMbuhQcG63vKze/He2tSnKFz9kCNC/PziPhzycyvrnFcgWnZQEZGWhs6aGKEzbgAHoGDhQVZ22pqWBHzJEMmxrWprqfMv1066ICFVydwwcqGocaBswAPUESorIMWOAmBjD+oknMxPIzBS8p6h9WpGsLCBAKegmeIcFv1cAoEumv7Smpcm2F73eK0ppp/GepIA7IwMYMgSAdF/mOE6wfFpSU1Hf1KSLbNHJyUBWFlF70QPfGCRG69WrgnL1T0mB2+1GvYh70M5Bg9CYlIRWEZfPYjR5y8NH25UrppRLTGoq6gXmsm63GwcPHsSePXuIFkw4pxO3zp2LmTNnSp4/JoTVF1jkzhS0mqWgUUpBpdBa7GRtYVRvaOU3LCwMS5cu7W7POpWhFevGthTUhq0U7I2c3FasZ5qcPXvW//8DBw7goYcewvDhw1XHZ3Z50nAf6sNWCipHiaWgy+VCZ2enqnSsDEtKQQCic2o1LbwFwCcAfsLzfJVqiWxCGrWDp97nIdCIU+1EieZuFqtSXV1ttgg2XuQWY1iDRZlooueE08jJrJK0fHVKGobnedUTYY/HY2obMto1C2m4qKgoVfGrpS9bGqjJn9C8Qa4tWXUxx0y0jg16WmmY/e7TcwxSk7fgMGaVT3D+6uvrcejQIZw9exbNzc3E8axYsQKOYcNoi6casfKMiYlRlC8taVkVs92HCqVXVVWFzz//3FA5QgXac5JQmefTwlYKsosV55G2paAyurq6sH37dgwfPtzwNdFAtNQZDfehpGcKsjTGWvFMwbCwMFspaDK3BP3NAdiJbuvBTwDI+0vsfrYNQDWAPJ7nrfemsDEUlgZO2rD84mSdYhXWo1bBSLceNLCaUjCU0but+OI3ok2qSUNJGLVKQat+LOpdZ0a7nOrLLq6C805St2qUgiy2YzGsJKsURrRr1ucUSqGVH7PakK/OPR4PTpw4gS+//FLRgse4sWOBixfRv39/1KuUwci8x8fHY/r06USuvmlhtfEheLw22n1oMDU1Nfj73/8uqcy1LQXZJ1TL3ej+bfXzr2z3ofKE0vzYCMrKyjRt9jG7ndBM30ptw4qWgmFhYarSsDrMKAV5nt8TfC3gJVIsdN/GRitWtBQkTcNWCrKBXRbaYFEpyKJMRqD3DjRWFTFKLQU9Ho8mS8G+5FaGpEwnTZpkgCQ9kWqLLC98hYWFITk5WfR8NBLU5E+oTdqWgvTR2vf1bLtmj0tyeTPa5ZLZ5eHD4XCgubkZGzduRF5eHnG4sWPH4tZbb8UIlwu4eFFHCekze/ZsxMXFiZ7rqxRW6pIWrLkPPXXqFFXrTpbf0XpgpfxaSVYfRvf/4P7Y1dWFqqoqJCYmGiqHFbDi2Eyy+dOeH/emvb0dTqdTVdhQshS03YfqK4eUe3yPxwM2V6q0w4xSUISfef89YqoUNiELbaUgSxgxcNJO2+qw9jIWwrYU1BcWZaKJnru1Q8VSsC+7D73llluwa9euXvfVngWRkJCAm2++2f/3woUL8cUXX6iKSwmsj4tiTJ06FXPnzsXJkydRUlKCc+fOKY5DzTuCZfehXV1dKCwsRHl5OTIyMjBw4EB0dHSgsrISAwYMIDofjZVx3XYfSh+59m11S8G8vDy88cYbaBA5BzmYzMxMzJs3D8N8rkJrazXLYMbRCgMHDjQkLSu2exruQ7VYCgant2/fPirp9VVYKRua1qMsYab70HPnzmHz5s3o6OiAy+Uy3JU+DWxLwd7YloLK0dKOzG4nRp4pyNIYy4pSkJalYGdnJyJUScA+TCsFeZ7/mfxTNjbqoT1wsvQSN9NS0MaGFlZrjyyNATRhVVFnBEZaCvI8b0lLQV/ZTJw4EXv27OmVh+uuu04ynBhPP/00YmJi/H+PGTMG27dvp35OQTCsWq1KceONN2L+/PlwOByYMWMGAKC0tFTxGblGnSloxKJIV1cX3n//fXzzzTc9rnMcB57n4XK5sGTJEllrVBb7nBqs2K5JYe39wcKZgidOnMCWLVuIxsvIyEjccccdmDx5MnNlGQzP86Ju/vXYXCSnFLTa+EDDUpBlpOreanVlYz5muQ+tqKjARx995E/f7XajsbHRUFnUYLsPlcaqx0SwAKte0HzfFGrCKk3fSpaCrJwpqKT+baWgjY0NMUa+rG33odaG9bJgbQIRDIs7tKXSvXjxIpqbmzFo0CAMHz485BZhlbQXpfVjZFtUkw+j3Iea+bGo1VKwf//+WL58OT755BN0dHTA4XBg5syZmDBhguI4x44d20MhCHRbDq5cuRKbNm1CLQULFjGs1m/T0tKwePHiXtdpWMSSxKGH+1Aa7fzUqVO9FIKBcbvdbnzyyScYMGAAUlNTNaenN1pdEBlhKcjqnEfr2GZW+mpwu93YunUrjh8/LvtsWFgYpkyZgjlz5iAuLs4A6bRRXV2Nd955B/X1ak84VA6L81AtmH2moF6WiWqeDQWslF8ryWoWvv547tw5S44vRmJFpSBgjfdGSUkJcnNzER8fj5EjRyI6OtpskVRjdjuhaSkohW0pKIwSS0Ep7zFKzuO2GrZS0KZPw9LASRvbfajxWCHfVmvzVluMycvL85/bM2HCBCxbtsxyCgYhjHDtyapSUGkYrZaCVt9BOnbsWIwaNQoVFRVITExERIT4vjo19TBkyBC8/PLLeOedd3D16lUtoooiJ1dcXBxTO7ZpjjFGWQrKfaTT+Ijfs0f+OHKe53Hu3Dnceuutks+wgFbFWyifKagWuUUUqx0zUF9fj/fff1/Uks6H0+nEnDlzMGPGDMkxmgY0y+L9998nUgjaloLisHamIG1Ylk0P+lp+jcbo/u1Lj8StLosYaSlotbEXsMZ33tdff93jqIZ+/frh0UcfRb9+/cwTCmx7QWPhTEHWoF3uRqxty1kKhiqmKwU5jvv3wL95nv9PsXtaCIzXRn9iGxqQINGpWCGqvBwJKqwNuGvXAIFD0V1FRarikyK6vR3Iz//uQmcnURqOggKgq0uxPDEAOtTkIUBGteVqdVxFRUDQ5DesuJipsogoLe1RVxGlpdrly8+XjiOw/SokprJSNO7wkhJNcatFSqZACvftw7XERAwdOlT2WaPayMKFC+FwOJCfn48LFy4Qh3M6nd1lzfPysnrrROl46CgoALyLk8Th1Na/grExluOA/HyEl5QQhQkvKYGrsVFVnUaWlYHPy5MMG1Verjrfcv3UQZjHYCLLynrI5ASQDgClpbLhxNKLqayUzGdyUxOqdeo3rqIiQELpd2NKCo4XFOiSthriwsMFyyq+pgadCsuIu3YNcDr9f5O0++D3CgA4ZOYBUnUPQLYfkPQBR0EBEmSfAs58+ilu9Z2hJgCV9yQFXEVFgMsFeDyS8nDeMSsY0neXGuK8aeoxDyZBqA0GItbeYior4Xa7JecZ8TU1iGhvVyRPdEVFD3nk2jsNLly4gL1798LV3o4h3mu+sfgogA7vtbS0NDzwwANISkrSVR7aNDQ0oKKiQvIZPRagWV/AVQqNMwW1oLelYF+DlbKxzxS0ZnpWxmwLMLWwcua2GMFnt9fV1WHPnj24++67TZKou8zM3KSlJQ6aXtis5D6U9lhmWwrqh+lKQQD/ASCwNv5T4p4WbKWggaxavx7jzRaCkDlqAuXkCF4eASBbgyyi/PKX/v+GkabhlZHoWRoElMldRqXJGgLtYqz3xwxBMo73/rTGma0gTSU8rFO8Wliu5GFCGbPVCKIGrzyjACxQGva3vwUHAlm9aSgeDwPKijicyjbgVJIGAPz0pxipMMxNSuIPQkk61OLNycFAtWmrrIebvT9RXnxR9NYi708XZPIzByrnDnryk5/0uvSImniC8j4c6tpEGkG4uTJySIYnaHNy6ZPGd733ZzpeGR0gyNuaNb0uLYCKcV8JP/0pxgAYo2caYsi0h9nen5p4lTs/9vLDH/r/e6v3ZxazARwAMGnSJNx1110IDw83LG1aC0NlZWXEzxplKUhynzXMdh+qN6wtjNrYKMFq44kc9pmCPbGCpaAQp06dMl0pqBa924lcndJwH3rgwAHU1NRg8ODBos+w5j6UNkZYCtpKQXPxtV6hmqbRstkbWUOct1euRLoFdqDecMMNOHbsmOJwK1asQEpKSq/rV65cweeff05DND9RUVF49tln/X93dHTgj3/8o2y45cuXIyMjA2sEFoakiI+PR0NDg1IxkZ2d7f//5s2bkZubqzgOtVx//fU4ceKEYemJ4SvzQC5cuIBt27aZJFFvZs6ciWnTpvn/zs3NxebNmzXFmZ2dLdnOAtuGUjZs2IDKykrBe3PmzMHUqVNVx62WjRs3oqioiPh5kvwr7adqWbZsGYYMGYLKykps2LCBOJzL5cKLXgWNnKy+/CodD7///e/7FypJy0Nt2+J5HjmEiqz+/fvj0UcfxbfffovPPvtM9vlx48YhOjpa1btl5MiRuPnmm/HXv/5V9JmJEyfitttuUxx3Z2cn/vCHP4jez87ORnFxMT744APFcc+bNw+TJ09WHG7//v2i5TRy5EjceeedomG/+OILXLp0SXGaJDz55JNE52t1dnaivr4e69ev10UOUgYMGIDvfe97va6/8847qK6uVhTX6tWre3xUkrwjhg8fjiVLlvS4VlZWhvfee080zMSJE3H27FnR+88++yzeeOMN0fu0x9XA+E6ePEnketRo7r77bgwdOhRutxuvv/666HMOhwMvv/xyr+s7duyQLHMt9OvXD4899hguXryIL7/8Upc0pJg/fz7Gjxff4rRv3z7BM/aysrLgdrtF3+nz58/H3r170a7QUjAjIwPLl3+3hUiPsu/q6sKxY8dw5MgRdIksemUA2A+gHMCiRYswbdo0yy4a6e3mVAwrLuBKYUX3obTOFLRaXZFgpf5sJVl9GN1mrKjoCsTIOrZqWYXaO8UIPB5Pt9cilWG1woLrz4sXL+LixYuiHlBYG19ZsRRUchSRVBl2dnYCFvCEqAYWlII/U3nPhmGa4uNR37+/2WLI0p6ejobERMWDTNfgwcCAAb2ud7a0UM93Z3Q0kJX13YWODqI0OgYOBLKyFMvjiYtDo5qXboCMzSkpqK+pUR6HCiIjI5F5883Y5T3HzUzcGRk96wpAZ309U32hPT29h4xZgwej9cgRdHR0iAeSQ66dBZWJEur790e9iNl/24ABmuJWS1NyMuoF3AeLQiCjUW3Ek5kJZGWhKzJSUZphYWH+fMiG8z6ndDzkhg71T7aIw6msfw5AxuzZOH/+vOyzzsREICsLHYT5aUpOBh8To6pOm5KT0TV4sGTY1rQ0Vfl2t7bK9tMuh0OV3L73jVLavv1WND25fLampaG+vFxxmiRwQ4cCsbGyz4UBiNbhva+UuJQUwbJqSk5GvdKP4aysHm6w3e3tsvmriY/vlb7b5ZIM15ySInnfnZGh+b2iqF688R0/fhyfnTkDMPTe9tE5aFC3nG63ZN4cDodg+bSnp6NewYYWJfjGyc6GBlP6g9wY1HbliqBczSkp3cp9kXd656BBaEhMRFtbmyJ5+gf1yZbUVKrlUlBQgM2bN4tumgpm2f33I0ZCaaonRi5wmrEoZrUFXBruQ7VYClqtvFiHlYVgVuSgje0+VBv2mYI9saqloNloOb/3woULkptM9YaGpaAVYUUpqEQpLJVGR0eHrRTUC57nRRV/UvdsbFhEj8Fej10RUpi9m0YJ4eHhWLVqFSIjIw1JLxQInpw7nU7MnDkTu3fvNkcgGVicQLEoEym++lf6kabmo05pORm9oLB48WJUV1cTuyQjzY/H41HkqiKQS5cuYc4caceUevjUdzgcmuJWW3esLiKxKpcRBOedpCyErKi0LnqYtQP8zJkzpqRLgtbdxkYszpn1fpTLm9kLu7TSb21txfbt2wWtHoUYPmwYcPUqBg4ciHoqEpiHkveqke5DrWatQsNS0GhoWQramIsV6ya4v5SVleHQoUOoqKhARkYG5s6di1iCTWRq07M6tlKwN7ZSUDlaLAVbWlpw5coVjBw5UnX6SqzNlN6nBWvuQ1lRCmqpu0BC2X2ow2wBbGzMRO3gaebLmjRtI/wu005bCXFxcfjRj36E9PR03dPSghUmdjffLHmql6nQepGbBUuTM4Bt5Y3RZRUdHY1nnnlG9jnFluRdXZrGUTmXq2rbvZQ1sNoPLR9q686njDQyTRKUyMVCHxeTwQjlPwBBKyqtH8k05iJqKCgoMCVdJagdA7T0Nzms8D4WQq7Nq+0TtMvD4/Hg3Llz+MMf/kCkEHQ6nZg3bx5eeeUVqnKogVZZmDUmhJpS0KgzBcXQyzJRzbOhQF/Lr9EEtteqqiqsW7cOZ86cQVlZGY4dO4Z169Ypdi9Nmp4VsdujNFos3voyWsvt5MmTFKXpCekcQe96D/W+p3aupaTcpZ4NZaWg6ZaCNjZWRGzAsC0FtaVNitPpxF133RXyLz+j4DgO0dHRaGlpMVuUXlhdKRjGmJsBtZaCalBaP3ouWIvBcRwiIiKIPuiVWApqGUdLSkqoyBHM1q1bRe9JHaxNgh5KQTPHdzPaohb0LCu9LAXl+ojVFtqNQKs1nhHt2grv5WCk2jitvqVlTn7u3Dns2bOH+HzQIUOGYMmSJUhOTvaf0xsKKBkTjLQUtFqbN8pS0P5GMwZWyjk+Pl72GVZkVUJgfzl9+nSvTVBVVVXIzc3FuHHjqKcXClixzvUm1OrYCLS+py5evKgpvJb1qI6ODuTm5hK7e1cLa32NlXZuWwrKYysFbfo0rA2eNAlFpWBiYiKmTp2KUaNGITk52X89lOuRNlYrK1spSBe1i8JWs6hWAm23c1rch+oFz/PIzc0Vve9rp0bXGauWglYbJ2mhNt+2UtAYGhsb0dTUpPq9EsqWgqy7D1VDdXU1PvzwQ9mNIj4iIyOxYMECTJkyxdANQHIYaSmoNr9SfSrUlIJGnSkohpmWglarKxJY6OMA215ntBDYZvbv3y/4zJYtW2yloBc17ZHjOMvnmxQrWwryPG/aeMNymcnJVlRUhPXr1xsiCyvvA4CdOqNlKSh1DIvVsZWCNn0emovdRgx+VnAfqhfTp0/HjTfeaLYYNgbColJQSbqsKQWNPFNQKWZNZEkXk404U1Av5KyAzXIfKpWuVSwFWfgA09N9KEkcXV1dcLvdPSxOtSoFWetDLLBlyxZs2bIFAwcOVBW+L58pqDacWZaCZ86cwWeffSbp9jmQiRMn4o477uh1thUL45MW3nzzTdx0002YNGmSrmcKSlnLh7pSMNQsBa3e5q1A8NwtMzMTAwYMkA0XqnXT3NxMLS6rjSdykNS5w+HoU3M+q9bxBx98gKVLlyIyMtLwtM1WprK4HhUMq+PrtWvXkJubi5iYGIwdO5bIqtwoWKk7szFdKchxnCHbinie32tEOjbWgtXBMxCj3YfSGBz1GmCtUF/BWOVlw6qcUosVSmVuaGhAeHi4oZNZUqWg0+k05IPIyDMFldSPmX2bNG0lSsGKigotIlGRQ0kYnxJM7TgQamcKWu1dw0JZtLe3K1IKhto5XUZCajkWjNXc4hqFHv0nuH2Tjq0dHR3YsmULTp06RfR8v379cNddd2HEiBGC91kYy7TML0tKSvDxxx/D5XKZNiaE2lhllPtQmtBqxyz0B9qYkad77rkHh0pLUVtbi6FDh2LevHkh+34x+vvYCv2RNn1JKcjzvGXr+OLFi2hsbMQTTzxh+LjDcpmxsobG2vuN53kcPHgQX331lf/avn378OijjyIlJcVQOWg8y0o964HpSkEAuwHoXcI82MhrnyG2oQEJjFnICBFZVoZ+dXWKzYEdBQWAgF9hV1EREmpraYkHAIiIiADy8/1/c+3tRGm4ioqAyEjq8ogSIGN0RYUu6UaUlvZIx4ejocG4fErgKirqdS28pIQJ2XxElpUJlmF8TQ3Cg85JICY/XzqPAumRElddDa6pSfCeWHsIpqGhAZs3b0ZlZSU4jsOIESNwxx13qD5HLbaqirhO+4eHE8nYv77eEF/lYcXFQEcHnDU1itplVFubPx+y4bzPhRUXE6fhcDh6lBOxbBralo9+dXUIk9jlG+d2A/n5xPnxeDzorK9HgmbJhIkqL1ecb665WVL2WJ4H8vNVv8MiSkuB/v0Vh4ssKxNNL7qiQjKfUeXluo2tjoICgPDjivSdrCcxMTGCZRVXXY1WBbK5XK5e8ZC2ic4rV4B+/fx/OwsLJcPJ1h+F94qieiEd3yxA8HjqQ88+g9paReMkbcKKiwGJ3cdiY01MZSU6OztFZQ4vKUF8TQ0iCM6dDSQ2MlLxvLiwsBA7duxAXX09hgBwAkgHcBRAsL0gx3GYOXMm5s6dG1LnBopx6tQpjBkzRvY5td4QtCwEsbxYKQQN96EkiNWB3gtrtvtQ/Rk8eDAGz5mjOBxri9YkWNH1tJmo8ThhxXahBSvXcVFREWpqapCUlGRouraloDwcxzHVl9ra2rBjx44e15qbm7Fnzx4sX76calpSrm1pGhiEKqwoythpvTZUWLV+PcabLQQJOTmYrjKcEGO9P+r8+tf+/0YAyCYJ45WR6FkaBJTJfQakEUg8DMynFALyjff+mEGkDJ/TGGe2ijRJeEp1yO+IB7CCQjw+HlAa4Cc/kX3kBVWSqMBbF4lQ0Wf+538AknDeNBSPh7/7nf+/smkEpaWFp0ke+sUv9BvfDSAGBGX6s59hMMlzQqish8nenxrme3+6oCA/xO9kvXn11V6XHlYTz//+b48/h0DZnENxOIn4JMMT1JGi9I2eM+lNwHjq4ybvTzdycjABwAQ905BIW4q53p+aeEerCQcAP/qR/793eH9qmA3ggPf/HMdhzJgxmDt3bp9y13flyhWMHDnSlLRDzX1oqFsKhkqbJ6Wv5ddobKWg/oSqlakQZiu3aHDkyBEsWrTI0DQ9Hg/a1G5e1xlW6pO1d8GFCxcEr58/f566UlAKWpaCoQwLSsG90N9S0MZg3l65EukG7yBRw4wZM3Ds2DHFFjoPPPCA4JkuFy9exJdffklLPABAeHg4vv/97/v/bmtrw5/+9CfZcIsXL8aoUaOwZs0aqvKIkZ2d7f//xo0bUSRgNaeV+fPnY/z43iq2hoYGvPXWW9TTU8ry5cuRkZHR49r58+d7mM2LERERgeHDh4u+QGlx88034/rrr+91fe3atWhXuBPeR3Z2tmQ7C2wbSvnzn/8seh7atGnTMHPmTMnw1dXVeOedd3pdd7lcePHFF1XJ9M9//hOlpaVEz2ZlZeGee+6RfU4qnzRZuXIlkpOTUVtbi3Xr1hGHi42NxVNPdato5cYUX31fuHAB27ZtI4o/LCwML7zwnWqUdNzS0rZ8/PWvf0VjY6PofV/eleRHT8aMGYOFCxcqCtPU1IS//OUvovf79euHxx57DAUFBfjoo48Uy7RgwQKMGzdOcTip8XHs2LG44w7xZfTt27fj3LlzitMkQUm7am9vx9q1a3WRg5TMzEzce++9va6/++67ilzZBs83ABC3ieD3X15eHjZt2iQpc0FBgej9e++9VzJdkjoiHUccDgdefvllRWFYJjA/gRw7dgz79+/XLd3hw4cjKyur185gI1i4cKGkJdmePXtw8uTJXteHDx+Ojo4OFBYWCoZbvHgxduzYoXh+lJaWhoceesj/99atW3H58uVez129ehXbt29HS2trr3sZAPYD8M02hg0bhsWLFyM5OZlYDhYWiWgtsuipvNIio9UWkYw6U1AMMy0FbczFinVDs72S5N9q4wkJcvnuS0pBwPp1rNTDGg14nsfWrVsNTzcwfRtrQsvKM5TbgOlKQZ7n55ktgw19muLjUa/ClZjRtKeno75/f8VKQXdGBpCZ2et6R3099XyHh4cDWVn+v/nWVqI0OgYOBLKyjKuHABmbkpNRr/LQ7alTp+L48eOC9zoHDeqRjg9eh3JXgzsjo5d87TU1RLJFRUWhbcAA1BMqm9TSnp4uWIb1/furVgrKtrOA9FpbWxEZGUn8YVjfvz9aIiIE77WmpQnmJZAzeXmisvFDhqj6QG1KTkY94W41Xz8kiVNKMUULfsgQICUFnrg4ZX0mIcGfD9lw3uc66uqI0wge54hlIyhbOZqSk1Ev4Uq2KzYWyMpSlB89aU5JUZxvT0ODpOyO/v2BrCx0dnWpyqPQ2EcUTmLsbklNlYyzbcAA1BcXK06TCAV54To6TG8XYm2iOSUF9QrmN8H9EAC6eJ4of03Jyf6wFRUV+Pz8eclwTcnJqJcY83zzM1EI6oi0XpxOJ/n4ZgEcDodg+XSWluqavxM1NRg4c6YpZSg3BrVeuiQoV3NKCjo7O1Ev4qa8c9AgNCQmKt6hHhPQH3zp1Acp6I8fP47NmzfLxuUBcPvtt2PmzJmKF0+tuAgvBsmZU2rdh0oRau5D1Z53qRSadRBK7Zg2ViobK8nqw1YKKkNNHVuxXaglFCwFzcDj8aCsrMxsMQRhpT5Zcx/KCrbiTx7TlYI2NmZixYGTdLAy8yNVy4A6bdo0UaWg2GKIFetRiFDJhxAVFRX4+OOPUVZWhoiICMyePRuzZs2SzTOLPtyVpEtap06nU604ivD1IaVtLZR3cZKWBSsTRVbkCETt2CXVrkJ5PKQNrbLSEo9vU0lpaSnWrVsnu8lEbo5i5Bymr7Q1I8ZxFscnQL1catuGXHonTpwgUggC3d5JolVYYgNstG1abYJEKagWLXNNVtu8GLalYGjR1/JrNE0iG0bUQPIOttp4QoJtKfgdR44cUWTtb9MNy/2CFdms9C6QOgOQdny2paA8fWcEtrERQc2AJDYo6DFYqI2T1cN4pbj11lsRGRkpej86OlqtSJbAiEmxGROGjo4OvP322/4dXu3t7dixYwdOnz4tG1bPw4GN6COkaRhVL3oob8TQQ3mqB6SKaStPBkkXNY3OoxZlOCsfPyzIISaDUtmEnieNw+dx4euvvyayOpdbiNZTARAMC3VoBKGcT72UfrTKLHCM3bNnDz799FPZMOPGdp9im56eTkUGq6NEeWVbCopDqhQcM2YMwsLCel2fMIHs1FCzLAWlnrXyPC4UsOI7qLy8HM0qvR8FQ5J/q40nwaiZR/YlpeCpU6ewfft2s8XQhBn9mOV+wcp7xUrjK6v1yUpdGk3fGYFtbATQawcwC1hRKehwOBAfH4/ExMRe9yIjIzFs2DCtohmOEqWQmS9zPdtLfn6+4AfVmTNnZMNq3d1jdl81O/1g1LrWorl5QuuztLHSJBpQV1as7sy3LQXZQkuZ+9oYyWaPwOfFMMNSkLXxmjZ92VJQCj3GGiEXjW1tbdi0aRN27dolGTYpKQmPPfYYFixYoFkOFsZRWu4qbUtBOgTLKzbWhoWFYdmyZT3GjcTERMyfP19X+WyUwUIfD3W+/fZbKvH0VUtBOew2bCOH2UokFj1XCWGVvmTkxk+r1J2Z2O5Dbfo8Ru4mNTJOKyoFfXUxZ84cbNq0qce92bNn2+5DLYqYO9i8vDzZsHq+yI3oW6TPGtVf1S4Kh/IuTrm8sWYpqOd7xmgXe1raFSvjJQty6CmDXnHbloLGE8rjuF6KGxqbB/Pz87Fu3Tps374dHR0dkuFmzJiBW2+9tdtCq7ZWVdqBsNi21dYFyaKgGWcKsjI3ICW4HMXkdzgcGDt2LF566SXk5eUhOjoaQ4cO7T57lgA1rryUxqX12VDASvm1kqyBVASdB6snVhtPSLAtBUMLM/qxkd8ESmGlz1ppfKWt5JWqAyVp9VUFoq0UtOnTWNFSkDUlA820ffUxefJkxMTE4Ny5c+jq6sKYMWOI3dVYFaMsBWl+pJPidrtF78n5FLf6C1hIfrfbjaKiIng8HgwePBhhYWGG5VPtgpne7kPNpC+cKciqpWAouA9lAT3dh5KitI2xeKYgK31cL0LZUtBopR8JFy9exH/8x39g48aNRO35tttuw5w5c3STxyysYCkoBUtWzTQgtRT09Y1+/fphypQpustFC3tu0LcZp/L8VSlovddI2qbV5yFq+p+tFLSRw+z3rBWURVZ699mWgmxhulKQ47jAFsHzPO8SuaeFHvHa2ATCuqWgWliSRQ0jR47EyJEjzRbDUEJ1Uix1FmRra6vkfRYtBbWkUVtbi3Xr1qG+vh4AEBMTg0cffVR3OXwYYdGl5vBolt2HWn0sZZlQHfOsipYzBZViKwWNx0oLBqygpsyqqqqwa9cuvPTSS5KbogKZP38+Zs2apTgtOVgcY41QCtKcg/RlS0E9sFp5sY7QuY+sovc7aN68eRjJcHn0VfehRp3da2MM9pmCPQnFPqs3rCgFlTwbyvXMgqKMA8B7/1Vyz4ZhYhsakMDwpMxHZFkZ4mtqENHeriics7AQEHghhpeUIIGCu58eaTmdQH6+/2+upYUoDUdBAZCURF0eUQJkjKmsVJVuZFlZj3hIcTQ3G5dPCVxFRb2uhRUXE8kW3d6OqPJy3fMRUVoqWMYJtbXo7OxUF2l+vqTciQ0NovdbL15EdFKSaNj4mhrRiSBJe4koLRWXLT8fcCl/DcZWVRHXU0xlZQ8Zd2zcCBQVIcF3obYWX77xBuLa24HGRsWyKMVRUADExMAhUSdCxEdG+vMhF47PywPncBC3fcC7qBFQTsSyqRgvgomrrkabRHoRLS1Afr6i/OhJdEWF4nxzdXWSsse53UB+PpyFharyGF5SAkgo98WQKtOo8nLJfEZXVOhSH+PGjVNUvlxXl+ntIraqSlDmuOpqRbLFdHT0isdJ2O7Diotl3wWBxDocaJd4VrYtEtQRqSxRbW1Afj54t9v0uqSBw+EQLB/J92EQHMep+gA2a5wMKy4GEhJE70eWlQnKFV1RgXCJencVFRF/J7S1teHQoUM4c+YMeACDADgBpAM4CkDIcajT6cSyZct084bBglKQlqWgEvehNOnrloJqoVUXNC3eQ3FRLyoqymwRiNFbmRAeHq7LoqGR7cbqbdS2FLTRA7Pdh1pBWWQl5TorSkGe5/0evBIkviFCHRaUgoC00s86rdvGz6r16zHebCFIyMnBVJXhhJjg/VHnt7/1/zcaQDZJGK+MRM/SIKBMHqYQhxJiYGA+pRCQf5L3R4rujqNEyvgFjXFmyzxyi0RYKV5WIU4gs7w/NWmL8ZDSANnZ/v8uV5UiRbx5joeKPvOjHwEk4bxpKG37+H//z/9f2TSC0tLCCpKHfv1rXAfgOs2pUeJlZT2jHwjK9Be/wDCS54RQWQ8ZatMDMNf7MxsnGHn/CLSJB9TE89//3ePPQTBpzpGTg8kE6UmRrSS9//kfuJSGYZnf/a7XpTHen67k5MAUR4My7eFW709NvM+rCRfEbAAHgq7Fx8dj+fLlyMzMpJCCMCwuErHoPlTLoh4rC4KkkCoFWVmoN9INthWxklLQRh6rjScksHqm4Lhx43D16lW0tbWZkr4NOSxvvqHZZxMTE1FTU6M4nNXee0aeKSh1Lz8/H/v375c971suHqtjulKQ53nRt4DUPRu2eXvlSqRLWP+wws0334wjR44ongwsW7YMQ4YM6XX97Nmz2LFjBy3xAHTvIn7ppZf8fzc3N+PNN98kCvv8889j7dq1VOUR4+WXX/ZP6jZs2IDKykrFccydO1fVuRVKysTH2LFjMXToUGzZskVxemIsX74cGRkZPa6dOXMGO3fulA0bExODcePG4ejRo9TkEWLevHmYPHlyr+uvv/46sZurYLKzs7FmzRrR+9OnT8fhw4cF7y1atAijR48WvMfzPHIkFvomTZqEW2+VXuY7cOCAaJm+8MILqtzuvPvuu8SHzg8ZMgTLli0DAFRWVmLDhg2K06PJc889h8jISDQ2NuKvf/0rcbiMjAwsX96t0pSqawB46aWX4HQ6cfr0aezatYso/hEjRuCuu+7y/y2Xho/sAIWrWt577z2UlZWJ3o+IiMDzzz+PU6dOYffu3ZrT08qwYcOwdOlSRWF8bmvFiI2NxVNPPYXc3Fxs3rxZsUxLlizB8OHDFYcrLy/HP/7xD8F7o0ePxqJFi0TD7tmzBydPnlScZjCTJk2Cw+FAbGwsRo0ahfj4eEXhPR4PXnvtNc1yaGH48OFYsmRJr+vvv/8+SkpKiOPxtYNASkpK8P7778uG9b2/SftuQkKC342yELNnz8b+/fsF73Ech9WrV8umQSqLL98dHR344x//SBSGZRwOB14WUBJfuXIFn3/+OVEcTqdTlRJm7ty52LNnj+JwWpk/fz7Gjxffjrhz506cOXOm1/WRI0eis7MT+SKWp3fffTe++OILtItYCra1tWHbtm24mpcneD8DwH4ApQHXoqOjceONN2LGjBmIjIwUlZkGLCwUkSqh5FASjma+Dx48KHnfagtFpJabWhfqzTjDvC+i9xhCE73HI47jmLYUJImHZeWHXpilFExNTcW8efNw+vRpHDgQvG3HRgwz5hV9xVJQbV9gYa6nBLPr08fVq1fNFoEJTFcK2oQmTfHxqO/f32wxZGlPT0dDYiJaW1sVhescNAjIyuodX1UV9Xw7HI4eafFNTcRplEdFGVYP/JAhgNMJAGhITES9CgVTx8CBguUqS3Oz4nw2p6TAnZFBtXzcGRm95G+vrCRKoys2Fh0DB+peX2Jtt65fP/Uv6KwsSbnbBgwQvV/Xr594nfO8ZLwtqamy7aX1229F4+CHDAHCwyXDC9GUnIx6QlerTcnJfhm7IiPNHxezsoDISPANDYpkSQwoa7lw/JAhgMuF9ooKojQiIiIwa8UKIOBZYtnUjBdBNKekoF7CNVxERASQlYX28nLz6w892xQpXbGxkrJ74uKArCy429tV5bFr8GBVdcFL9Am5fLZdvkylPrLmzcOwYcPUR+DxmN4uWtPSBMuqOSUF9QrmN3x8fK94PC4XUf7aBgyQfRcEwvXrh3qJj9/WtDTRuDiOI2pvpLL48s2rbP+sETxv9NHV1kacv7CwMFUuxdvT000pw/b0dMk20ZKaKihXS2oqOjs7RRXUvnlisFLQ4/Hg1KlT2LFjB5qbm2Xl6wKQnJyMGTNmYNKkSYadA8aKtVcgeloKql0YE5Oprq5OcvOCVFirYFsKWhvbUvA7OI5DfFwc9Xht96HkqOl/ZvVZjuOQkpKC22+/HRzHiW5EszEflpXlNPtsX3l/seI+1KYbWylo06fhOM5yg6+Sgc3IF6jH4+k+/1ADRtcFS3VvxbZIilQ7bGpqUhUOMO8lT+vAYjPwtTGlbU3J4pCSPCckJGD58uXob+JCvFxZsFaHespjdF6l2pVc/6c1Xmp9b5GQmppKbF2sBhbeHUrbjlz9Gjl/8ZUfa32dNkrGcdrKFVaRy6fQ/ZqaGnz00UcoEjhHWoyVK1bAOXy44YoWFhQ7Rp4p6IPWmHj69GnZZ1herBSD53l/GemlFDTLUpCF96GR2JaCPeOPVnG+NUtY7R1KAqvuQwNxuexlcVLMGGPNfs8aZSmotmyt9t4zUilIq+2E4tjsw/wR2MbGRGgverA2WJi1s421chCDhUloIEa80FmbyEntsNe7HRnRTlnrC2rbvBqlIEnen3/++V4ud41GLm9K8mMEauSQC6M1b2rHFSmFnFFKQb0WPn0MHjwYgwcP1pSGUQjlRa93hlz9Sn0w0pbJVgr2xmoLDEa9z0+ePIk//elPRArBIUOG4H9++UsAwA033GDKnJO1eS5grTMFz58/LxvW7MVKrYSapWBfw7YU/I7AthITE0MtXiPdh4b6PEQIs8aawPZC03o/Tgdr1b4OK+4m9cZWCqrDCKXtwYMHUVBQQCUu1mBjtmdjowOjRo0iek7NIGoVNxJGyhn4Uak2XaNfhCy9QM22FNSznUktmEidY6i3IsMIWJNRraWgkudJ8xwdHd3tmtNkSPPGWl3qgdFjtxZLQVrovRgxceJEQ3bHK7muNB4SlLYdLe8N2vQVpaCS+rWapWBgukKLDVrHttbWVmzcuBGbNm1CR0eHZBiXy4XFixfj4sWL+N73vqcp/VDECKWgkZtGrFi3gTIbrRS0LQXpYiWloJFzoVWrVuGhhx7CzTffrGuatLHieBKIms1lLGxAoKUUnDNnDh5//HEqcbEKaxvMjcC2FKSLkfVJs34++eQTanGxhKXspDmOiwXwEIBbAEwBkAIgDkAjgCoAJwDsAvAPnufFfdLZ9AlIJhi0BtDm5macP38eX3zxBZX4pGDVdSENS8FQdB+qpCxYmBSrQYvyTsukQOuOS7XtlNU+SIIeyptgSC3rWGnvfcF9KKuWgiy4D9XbUtBKFuBWsRSkTagpBcXqTElbZ2V8VkJubi6++uorVFRUIC0tDXfccQeyZM6eJNmQVVxcjHfeeUf2bDmg+9zABx54AGPGjGFisZ6FejTSfShtZTaJe2mzFyvVYIRSUM/3khHpWgUruQ81koiICIzKykJcXBz27t2rKS7bUlAbLMyT5aClFAwLC2MiP6EGy5aCNPssC3M2I7DqmYJWnO+RYAmlIMdxDgCvAvi/AAJ9AfhG3EQA/QGMBPAggP/lOO6/Afya5/nQrDkbWfQcVAMHl8bGRqxbtw7V1dW6p2VkWKXQsBQ0GtqTNi35NspSUI8zPrScDSV1z7YUpI9vXGThTEFWPpqsZilonylIFyPOFDSrrRuZrn2mIPuE8pmCZWVl+OKLL/wLDWVlZXj33XfxzDPPIDk5WXW8X331Fd544w10dnZKPsdxHGbOnIl58+YhLCyMmiJMKywuMIWapaAVF4nMtBTUG6m6D8UxnoXNB6SY4TWBRppW8RDFAmrKO5Tch7LybRtqmP2etS0F6WJVpWCowrxSkOO4aACfots6UKq1B96LBfBfABZwHHcXz/MtOopowygkgyMNRczRo0d1Uwhqpa9YChph/WQEVnuh+9DiBk6LUlArffFMQbWEsqWg1c4UVAOrloKhcKagHH3FUpC2UlDqg5F2X7Tqu1cpSpWCEydOxNmzZ3WUiB4XL17s1WY6Oztx+fJlJCcnq2ozBw8exFdffSUbNisrC0uXLkViYqL/mq0U/A5aZWGGpQBJ+bFswSCGmZaCwfXPcZxkm+gr47NabKWgcfEbgdnKDz3oS+5DgdBoh1JY1X0oz/O6yG4rBZVj1JmCVl67MRLmlYIA/gHgVgC+Gi0F8B6AQwAKADSj23pwMIAZ6LYUHIRuJeFcb/i7jRXZhgX0HBwDB5h9+/bplo5W7J1t0rBkKQhY74XuQy9LQTnMcsMSCu5D9bQUVCqL2djuQ7XFDdhnCkphhBW4WB6U1qeRfVLLe0MvpSBrfZ02SurX4XBg0qRJipWCZpVhS4vw/s/t27dj1qxZouGEysTj8WD79u04ePCgZJoOhwO33XYbZsyYwcSiphCsvGcDYdF9qBiheqZgIGZbCjocDqoLhCy2eT2x3Yd+h20paE1Y8KYhpRQcNmwYIseMgdvtxsCBA7Fp0yaiOG3owfLmG1spqByjvvH74niqBqaVghzHLQWwBN0KQQ7ALwD8gud5oRPejwD4kOO4H6Pbzei/ecPcxXHcEp7nNxsktg2A2IYGJFDccaOGmMpKJNTWSj4TUVqKhNpaOJuUHUHpKioCvJNwuTSokJ//3f8bGojTdBYWGiMfAD4vD4iPBwDEVlXB09CgOI6I0tKeeSWEa2tTnM+o8nKEFRdTLR9XUREQ9BFNmkZ8Vxciy8p0ry+xMo6vqVEfaX6+pNxS+YoqLxev8/Z2yXglwxKkjfx8QMUO27jqarQT1lNMeLhfRifBmKQ7Xlm41lZFssRUVvrDyobLzweioxFeUiL5bALPi9YfiWzDhg1TNV4EE1tVJZmew+EA8vNl82MUMTExivMt1/ai2tqA/HzVY2JYcTGgxmVQR4doetEBfUeIqPJyKvXhKioCVLyvAulXVyf64RFeUoIomTamlfiaGsGyIpkH9YiH43rF4yKMI7ykRPZdEIjD4ZD8KJR7H/J5ebIfwaSyJLhc3flubGSij2vF6XQKtocwBX0mvqsLI1wujI+JQVFREXHavnk1U+Tni44X0RUVCOvs9N/zKQSLL17EEO8zTgDpAI4C8H2AJiUlYfny5UhPTxdMkhVLQRYWisywFFSTbyErAtt9qL5pA/TPG2OhzRuJy8X0cl4PrOo+1GisvJCtpg5Y2FQjpRRMSUnBjAULAAANGr8XQoG+aCloVJ/sK0pBpUpeteVv5bHUSFifRTwe8P9/5Xn+v+UC8DzfCeA/OI5rR7cLUQB4AoCtFDSQVevXY7zZQgBYKPdATg4mqYk4J8f/32w14TWkF68kzZwcY+TzpuXjCQpxKCES6utBbThBBOSf4v2RouRZVYiUcbbGOOXCz5e6+S//Ing5Atrr52bvTxCV7W2l0gA/+QkAIAUGjRdSePMcBR37jDeNqd6fJD/7mbo0fKxeTfqkKEtJHvrd73AjgBs1p0aJV19V9DhR2/uf/8EoAKPUyKOyL4VDRi5v3xFipvenGZWyByLZCr3xz9OcinLuVxPopz/t8SfxuOXNJ9GzhCwgSE+KbCWJ/eu/Ik5pGJb57W97XUqDwvz9/OdYrjTdnBx2xkkfOTmYD5l5SADCMxJgNoADACZMmIClS5ciPDycinh6wsJiazC2+1DzMdN9KO10+jpWWwzWk1CwFDQjPRLmzZsHl8uFox98QD1uFsYAKaWgGefZ2vSEllJQD2jGy0JfMALbfShbsK4UvMH7bzmAXyoM+ysAL6J7cydz36ehztsrVyI9KclUGcaOHYuLFy9KPnPbbbfhyJEjaGxsVBT3nXfeiZEjRwIA1qxZo1ZEYlavXu2fZDQ0NOCtt94iCnfnnXfi888/11M0P4899hj69esHAPjrX/+quEwBYP78+Rg/Xrk6ub29HWvXrlUUZvTo0Zg0aRI+oDi5XbZsGYYMGdLj2smTJ7Fnzx7ZsAkJCbj++uuxa9cuavIIIVbGWtrx008/jTfffFP0vlRfzMjIwPLlwsuObW1t+NOf/iQa76hRo7B48WJJ2fbu3YsTJ04I3nvmmWcQHR0tGV6Id955h/gc0ZSUFKxYsQIAUFlZiQ0bNihOjybZ2dkA5Ms2mIkTJ+K2224DIN9WnnrqKcTGxuLYsWPYv3+/6HNJSUl45JFHBO/JpXHTTTdh+vTpVD6+PvvsM3z77bei9zmOw+rVq3HkyBFZd3JGMGjQINx/vzJ1T0VFBd59913R+5GRkXjuuedw+fJlbN26VbFMy5cvR0ZGhuJwPM8jR0S5k5ycjJUrxVXwhw4dwtdff604zWCefvrpbutLDbz22muiH6zz589HVVUVTp48qSkNKaZPn47p06f3uv6Pf/wD5eXlxPEI9UnSccsnA6050ciRI3HlyhXR+y+//LLsxzOpLKmpqXj44YcVza9Yxul04qWXXup1Xck7KCEhAY8//jjOnj2LHTt2EKc9c+ZMJsbJQLKzs7Ft2zZcuHCh172xY8eivb0dW7duxc6dO9He0dsZTQaA/eg+v2Lu3LmYN2+eZdxOs7DAFFwWahf3lLgPNdJSkJW6VgJLloJy6dC0FNS7rqKjo0VdGeuFlZQQVpI1EFrtRm9X/nqi5cw92tbAtCB1HxqowLBqG6aJVS0FtSDVJ233ocpRqhRUW/8sjqUswrpSMAXdrkP38AprlOd5D8dxe9F9xqC52qk+SFN8POr79zdVhpbUVNSXlUk+0zFwIBoSE9Gg0PVG56BBQFYWABiTz6wsv2s2T10dcZodAwcaVg9dgwcDXkVwff/+aFThzqRj4EB/uSqBb2tTnM+W1FTwQ4ZQLR93RkYv+dvLyojScPTvj85Bg3SvL7Ey1pKuJzNTMnxTcrLo/fjERNE697S0SMbbnJIi215aL18WjYMfMgRQoQxoTEpCPeHkJDIpyS+jOyLC9HHRX14K+0zbgAHEY54nMxOIj0dbUZHks5ES9ScV7tVXX1WlzBWjNS0N9XJK3qwstBUUmF9/AOID2hQp7vBwSdnbIyOBrCx0NjWpyqMnMxPIzFQcjoN4XYdLjA0A0J6fT6c+srJUjQOBNCQmin7gdA4ahDaXS9e248nMFCyrxqQk1AsoOcSISE7uFY8nKopIdt8YQSufTcnJqK+qEr3PDxkCOJ2ScZDKEuMdi7pqa5no41pxOp3CfScmhjh/Lu8401lTo/hdwVwZZmV1j/Olpb1uNSUnY/369fjkiy9ko7lt/nwMkjifMBBWFiJYUAoGY1sKqktHL8y2FKS9mGnm4ujChQvx0UcfGZqm1RaD9SRU3Id+9dVXZovQC5fLRTTWhaL7ULfbTRyPFdubFaDxng1lS0GrtTvbfShbsK4UrAQwEIByk6NufOHEVxVsQhaSwZF1v9KB6and9WoUNHbwGL07hvYLVGt5szApVoNc3Uvdl7onV55ay9uI/hGYhpUnJkraJmk+1bT3iIgIqgpBwHoTaT3bkdq49ShDo3aF0pDd4XBIfuDo3cbE3BgqLUOWFtTkPhj12Jlr5TGaBCVjrhaLK6vQ0dGB3/72t7KWjWEuF+B2Y9y4cahXmZZ9pqD436QYcaZgME6ZjQeA+RYMajDTUlBpOiy0YVJGjx6NjIwMReewasVK5dPXzxQkHftoeMGgDalSUA0sWApKnc2pxFLQ7PZWXl6OU6dOoampCSNGjMCkSZPATg9Qj9nuQ21LQboorU+1ZWzF+ZkZsK4UvAhgEIDhKsMPR7el4SVqEtmEFBzHMa9s04KRctJQfhj9QmPpBaq2LapJhzZyL1yp9hDqL2tWlYJK24EapaBcflnpfyRy8DzPVP0pxYqyy40NtNoPjXik4jCindNSCmqBdhuT25mtx85cK/YTJRihFGS1DIPlqq6uxj//+U9UVFRIhktISMADd94JSLhfJkmvLysFg7HS4g5JnzFzU6RazDxTUKn7UFrpGkF4eDhWrlyJ48ePo7i4WNBlMU1Y7N9mEipnCrKIy+VCB4HnCTXlzcKmaFpnCppJYWEh1q9f76+nc+fOoaSkBIvGjqWajhnjTl+xFOwrYzpt96H2mYLaMH8ElsZ38MUcjuOGKQnofX5OUDw2fYhQHVSVDG5GfkAHpmWVAZi1NsKaPKScPn1a8n6oWQoqCceqUlAprFgK6gGpHKzUnxo5SPsSSxs6rGYpqHcaUrBgKXjmzBlUSbj7VEpnZye1uOToK5aCStphKFsK5ubm4s9//rOsQjA5ORkffvihqvNSWYGF96yRloJazxQMxiiloNFYyVJQqRxmj1kRERGYOXOm4rOf1WB2XpViVUtBe27QrRTUq/5YaMdSVuGBm9RYtBT0tc8DBw70UtweOXIETU1NhstEG9tSUJ9wZmG7D2UL878UpNkA4BC6LRrf4ziO6JAKjuMSALznDXcYwHrdJLSxNFaxFLTCQGimpSArL1ChfCspC6u90H3s2bNH8r6ZSkGzJwOsKgVtS8HvILUUZAWWZPFhhlLQSpaCerd1sR3ONJSCpNTV1eEPf/iD6vDByCkFbfehylEyjvueDRVLQR/nzp3Dhg0b0N7eLvnc3Llz8eyzz2L06NGq0mHFUpAFpWAwVjpTkKT920pB9WkDbC6yWwWrlY3V5KUNq+9Hkr4u5V5TDlb7eGC6UjJYZYy/fPmy4PUrV65QTceMdmy2UtCoeO0zBYWxwlq4lWHafSjP826O4+4D8DGAmwCc5jju3wB8wPN8S/DzHMdFAbgfwH8CGAzgawD38TxPfjqsjU0IYTWloNGwtFhiZfehcqhVCsphhTMFA7HKR4UQeigFWel/VnMfKrdb8fz58/jmm28QFRWFSZMmYdCgQbaloAR6Wwpa3X2oWR+aWt2HqtmQw0of14u+fKZgYWEhNmzYILs4FhYWhvvuuw9jxowxSDJ9YaH+aClI9X4nCMlFkqaVx1nAePehescj9XyojfEs9G+WsC0F1UHTUlBNHfjWQFgtZytYCkqVXU1NDfX0jMZsF662pSBdlM6b1M6zWB1TWMN0pSDHcW8RPJYLYAqADABvAVjLcdxZAAUAWgBEA8gEMAFAJAAOQDuAbwH8N8dxPM/zT+ogvg3DkE5crGApqBYj5aThPtTIFxrP84ZYCiqBFSUJbdSeKai3+1C1hIL7UJqLLGphpb2LKVSCYan+xNi1axf27dvn//v48eN4+OGHJc/KYJVQsRSklYYUYm1YaZtl6aNSi6XgoUOH8PXXXxOn5ct3bW0tcRgrYoT7UNbGycbGRnz/+9/HG2+8ITum9OvXDw8++CDS09P919T2CdtSUBw9d3zTVmaTLESx1uZJYMlS0Irlxwos9m8pzHAfyhKstnWSdhQfH4/q6mpdZTBa8UPaXlJSUnSWRBsej0dyziz0jeBwOCylaGHZUpAmrI9htKBtKWifKagN05WCAB4DQFpbPLoVfpEAbvD+AuECngsH8HDAPVspaCCxDQ1IMHkRMqq8HAkyCzxhxcWIq66Gp75eUdyuoiIgPh4AZNOgAZ+XB3jdNnB1dcRphhUXGyIfADgKCgDvTqr4mhpEyLhmEiKsuBiIi1McjuvsVJzP6IoKOAsLqZaPq6gICJp4hZeUEKURz3HEz2ohvKQESEjodV3PdKX6YmxXF5CfLxywoUFSruiKCvGwXiLLysTjyM/392MlxFVXw01YXrEej19G2u1NFb7yUthnosrL/WHlwnHXrgGNjYgoLZV8NjYuTrT+xMJFRETI1rlS0lpbZfPE5+VJtyUDiXG5BMugvb0d5z77DAlBH04nPvoIM2bMkJQ9PDwcyM9X/c5wFRUBQedYkCJa1y0tknVNrT7y8wGN85V+dXVwNjYK3gsvKUFkVZWubSeyrAxobe11PbaqClxzM3E8cQL9y1lba0q7j2xtBdfWJv5Afj4QGdnr8tmzZ/H1jh0AgN5vOmFi4+LQfvkytq5dSxyGZZxOp2Dfcba1EddlfGQkkJ+veF7CwjjZ2dmJvLw8XLx4EdeuXYOH5zHYe88JIB3AUQCBI9aIESNw7733Ijo6mooMrCxEsLjAxErZkEAiK42FbKPryQilIEsbd0IVu2x6IlQeNM4nttKYpQaSvt6vXz/V8au1MDSayZMn49SpU72uT5o0yf9/szcBCsHzPFoFvgF8REREUE3PDM9HZisFbUtButjuQ9mCBaUg8J0yj1aY4Ht2azCYVevXY7zZQgCYL/dATg7GqYk4J8f/32w14TWk109Jmjk5mEhfGtG0fDxPIQ4lhEF9PagNJ4iA/FO9P1JGURNGBJEyztY7XSl+/nPBy/EgkOuVVyRvz/P+BFHZ3h5VGuA//xNAt0/rbFUpUsSbZ8V9RsmY5312uvcnyQ9+IHhZMo1f/1ouVkVc7/1JkpODmQBmUk1ZA//6r70uRQB4WSJItlycv/kNxgGa34lKyZa6KVHXN3p/mtEguw/JXWc5ORgNYJbmVKTTEOJpNXH9+Mc9/uwPBsYtIUTyPNH7U8wPfsBmPtXy29/2uhQJhXX5ox9hFJTPS2YofN4MZgM44P3//PnzMWPGDMGFUVoLLX3ZUtAMyzCO4zB+/HicP3+eOIyZ7kONJtBluFh9GNV2rHL+NItYrWzMsBSk4Skj1BeW5fp6fHy8JvehJGFYaMvTp0/H5cuXeynYEgQ2U7OEGqWglvK2qvtQK5wpaCsFhVE7z7Li/MwMWFAKPm62ADb0eXvlSqQnJZkqw4QJE3Du3DnJZ+644w58/fXXqKurUxT3ggULMG5c99LpmjVrVEpIzosvvug/4Lmurg5///vficLdcsst2LVrl46Sfcfy5cuRkZEBAPjjH/+IDhVWI4sWLcLo0aMVh+vs7MQf/vAHRWFGjRqFWbNm4W9/+5vi9MRYsmQJhg8f3uPa8ePHe7jzEyMpKQkzZszAZ599Rk0eIe644w6MHTu213U92/HAgQNRUlIieC86OhrPPPMMmpqasGfPHhQVFSEhIQFTp05FWloa3npL3MP0kCFDsGzZMsm0d+/eLbjrDwCeeOIJxKuwFPz73/9OPGbEx8fjiSeeAABcu3YNH3/8seL0aJKdnQ2g+3yE119/nTjcnDlzMHVqt3pbrq2sXLkSycnJsi78hg0bhqVLlwreE0sjIiICzz+vetuBIJWVldiwYYPkMy+88AK+/vprHDt2jGraakhJScGKFSt6Xd+7dy9OnDghGGb58uXYuHGjaJxhYWF44YUXcP78eXz11VeKZVqxYoVq9zpide10OvHSSy+Jhjt27Bj279+vKs1AXnrppW7LKg289dZbaGhoELy3ePFiVFVV4ciRI5rSkOL73/++oHugtWvXol2B1X56ejoefPDBHteUzDmM5Nlnn0VUVFSv62reZVlZWSgpKVE1b2ERsb6jZK40aNAg3H///bhy5Qo+//xz4nSnTp2qa1sXwu124+zZszh69ChaJBbGgO5zKPYDKPX+/b3vfQ+LFy/G1atXBZ+n5T7ULFhQCgajZ9kE1teiRYtQWVmJiooKAN3zh1tvvRUH332XOL5QVQr6kJJdL0tBK7u1Zg27bHoiVB79+vVDv379FK/16AEr74Vg5Pp6//79AeirsDDjXRUsV1paGp588kmcOXMG9fX1GBUeDuTk9HiOVUvBNgnPGkKKcaspBfuKpaDafmC1d4HS+rQtBfXFdKUgz/PrzJbBhj5N8fGo904gzKJtwADUFxdLPuPOyEDjt9+iXuFA2jFwIJCVBQCG5JMfMsTv3qyrupo4zfb0dMPqIbBM6vr1U+Wuw52R4Y9DCZzbrTifLamp4IcMoVo+QvK3l5QQpRGelISuwYN1ry+xMtYz3djERNSLLNTVA/jjli2orKzsvhAZibL2dnxz6BAWLVokKVdTcrJse2lNSxONw5OZCahwh9KYlEQ8ZvDx8X4ZO1W0U+p4ZeG6uhTJ0jloEPGY1zV4MJCWhra8PMlnW1JTRetPLFxERISqMUKK+PR01G/ZIvkMP2QI2q5dM7/+AEQkJgqWQevly6LyuTMyJGV3uVxAVhY6amtV5dGTmQmkpSkOB4jXNcdxknXdXlxMpT64oUMBjYsRzSkpqBdRLHYOGoT2sDBd207YyJGAwJhU16+fIkVXfEpKrzL31NQw0e6D8WRmAjExva6rkbUlNRWV9fWC8VkRp9Mp2HeUzJX6eduCu7WVOIzT6eyeexvUXtxut3/jVVNTk6KwqQMG4JY778TSpUtFFfo0MWthgoWFIrPOkIuJicGzzz6LkpIStLW1ITMzE1VVVaLPm2kpaJb7UD2VgrRgoQ2zitXKxix5b731Vnz00Ueqw4f6wjJNpaDVLZ2SkpJwyy23dP+h4rgKFt2HCmE1paDR500qwbYUVI7S+pT7lrXPFNSG6UpBGxuzUTOIWmWAMVLOwLTUpmv0C412ekL5VlIWVnuhkyK3YOJXCAbA87yohV/gM3IYtbOLJA2rjBtCKGmbgW6ppGBlwYn0rAVW6o8VOQLRY+wyyqUYjXik4jDCLZKeFhmsvpdY+Ai3GkrGXN+zSsd+I8Ynj8eDkydPYs+ePYoVevFxcUBjIx588EG/8lJKZlqWgn3ZfWgwRlrWORwOvxcTpfA8j9LSUtnnrGgpaKZSUGnf6CvjsxqsVjZmzYUmTpyIrq4ubNq0SVW8tMZvFufvgHxf13KeIEBmXWdGW1br6pQ1PB6PpKWgEFZTCpptKWhUvCy2Lz1QqhQsljH0EYPVMZc1bKWgTcii524mowcYtekZ+aFqtY9inueZevEaNSE2I89q24aYy1EfZr3olaTLqlJQaTtQsjhEmk+W+l9KSoqgctoHS3WnRha5MKSKXDFYqkul0JBdqn+YWTZKx14r1aP9Ea4cJfn0Pcta2ZSXl2Pz5s0oKipSFC4pKQk33ngjbh8xAghwna1X/txuN/Lz8xFbVYVkXVIggwWlICsKUkC6vgPlcrvdeP/994ksUFm2YBDDCKUgSxt3fLA0l6MBC/2bJaTayrBhwwyUxFrI9TGf+8lQcx+qByxaCtIe96xqKRjKSkHW5upyKP0+vXz5sqp0Qu2drxe2UtCmT8PKwcZKUKuQ0BszLQVD5QXKmjy0YHUSZlsKkqNGKWil3d833XST5HmeRlnAaIGGVaxaBb5VdvjqEQdJPGa1dSu6tSNFras/Iay2qUkOsTrTWyno8XionPMpRGdnJ/bu3YsDBw4Q11dYWBgmTpyINWvWoKysDBcuXICztlZRuhzHCZ7HI0dXVxfWrVuHhNpaZAPdZ3tqPLtUDSz2X6POFNTCwYMHceXKFaJnaeSnL7kPNdNSMC4ujlpcLMBi/5bCLEtBQFt7Zn3+rxW5slEyH1BrfWeVtsyinHJnCoaCUpDGPL2xsRHx8fGqwhrleSpU1jTlUKrklTMUECPUx25ahMaWDBsbAfQcHK0ywFhNKWg0tD94teSb47iQ2SUXjF4LrlZoZ6z2CyMsBa2kFJwyZQqGDh0qep8lpaAeloI+Pv/8c8VxmwVL7cdMS8FRo0aJ3qPhPpRVaCoFSRf/rYJUvWdmZhLFocZ9qB60t7dj7969eO2117Bv3z6iOna5XJg5cyays7OxdOlSzJkzR1M+5s2bpzqsDyPOLRTC7PoDrGkpeODAAeI4rbypIFQtBcXmczfccINWcZiChf7NEnKu3M2Gle+IYEiVgmrR03uXFvRI0yqWglraolWVgn/729/Q2dlJQZqe0CwPte9dFsY3JShVCra3t0vet88U1IalLAU5jksAMBvAZADJAOJAptjkeZ5/UkfRbGx0Re2AZuRAGPiytooLOiPSY+1MQSu5D5XDPlPQOPRQWLOkBHc4HLjjjjvwpz/9yWxRZFHTjuT6IM/zRG7SxNAyrgwdOhR5eXm9rtNYiJcjFCwFp0yZQi0uK50pKITb7TZbBOaZNWsWioqKZMcEs92Hut1unDhxAnv27EFzczNRGKfTiRtvvBGzZs0itgjiOE72TMHBgwcTxcUiLL1nfVhhLtTR0UH8rO0+lD2mT5+Oa9eu9cjfuHHjEBsba6JU9LHS+xkw11LQameoGQlNS0G9ZGAFFvucbSlIRldXF65du4YRI0YoDsu6paDVUKqctcJRWlbGEkpBjuP6A/gVgBUAIlVGYysF+xgkg2pnZ6eqwdfMyWEouw9VCyum9lrzHaoTgVB7IffFMwWVPG9FS0E5WLIUVAOJ7GfOnFEdv5a6nDp1ai+lIMdxGD9+vG5p0owDkLcU1Kuth4WFYcyYMdTis1qfDMaKi/N6EBkp/qk0atQoPPLIIzh9+jROnz4tOjaYqRQsKCjAJ598gpqaGqLnnU4nrr/+esyZM0fUNZRcPsXgOA4REREAuq0sL7a2Wkr5zMJCK8/zQEA5m+k+lNRSUAlWnBuYeaagEe5DR40ahYcffhinTp0C751f3H777YrjYR0rvbPNxlYKikPa10PNfWioWAp6PB5ZSyqaWPVMQQDYvn27KqWgFCwoBa32LtDDYlOIUB+7acG8UpDjuCwAewBkACBp7bzAc3ZrsBFE7YBklQHGLEtBtRj5QuN5nqkXqJX86StFr4Va+0xB41DjPlQO1tq73GIhK/WnxkWGnOw8z6OxsVG1TFrqcty4cZgzZw72798Pnufhcrlw9913Izk5WXWcpJjp3owGEydO1D0N1vqpDxaVgomJicSKLD1ZvHix5P2srCxkZWVh3LhxePfddwWfMUMp2NXVhX379mHPnj3E4+2IESNw5513on///pLPqVUKBnLvvfeCHzIEP//5z5l5H8jBglIwGKuUHSlW3PhmJUtBtWPQ8OHDMXz4cCA/H3j1VWbyQxNW389iWPVMwVBHb/ehJFilLbMo5+nTpyXXNG33od9B6nkiGNYtBVlsl1Io3VxHso6hJpxNN0wrBbnu1v0xAJ/fljMANgBYAOA2dCv7nkC3G9EhAG4GcKP32SYAPwNQZaDINl5iGxqQEBZmqgzRFRVIqK2VfMZRUID4mhp0yDwXTHhJSfdHBiCbBhXy8wHvTmVHdTVxmuElJcbIB8BVVATExoLnedVpuoqK/PlUhMejOM3oigpw165RLZ+w4mIgOrrHNdI6iHW5EFZcrHt9hZeUADExva7rmW50ezscLS3U442JiPD3QzEiy8pE8+YoKABUuEyMq64GT3g+UHh4uF9GV1GRYf1RlIDyUiJLRGkp4HW7RDKuoqsLEaWlks9GV1SI1p9YuAiCOleLU2pszc9HVHm5+fUHILarS7AMpOSTa3scxyG2qkp1/hwFBUB9vaqwHIBbhw3DrEGDUFtbi+TkZLhcLtl6lmtfJISFhVFpT/E1NaKyhBUXI1LBe1sJUn0IUD6ux1ZV9YqPa2xkot0Hw1271qvN8fX1psp6/YgRiBk8GLt37zZNhtjYWAx3OonatdScw9cWjJiXAN1n7m3/4guUlJYi8NRDJ4B0AEcBBDp0jImJwcKFCzFhwgSixRCxBSUS96FSf7MOC/IGlm9JSQlOXLtmojT0sdqmSMBcpaARloJ9BbtsesJxHEBhA0gwNBaWWV6cpuk+VI0beo7jQkZpa0af3L17NwYMGCB633Yfqi/2mYLKMcp9KMvjLkswrRQEsBzAdehW/n0JYCnP826O4zLRrRQEz/PrAgNwHDcVwJ8BTAGwGsACnucvGSq1DVatXw9px1/GMFfugZwcTFUTcU6O/7/ZasJrSC9JSZo5OZiugzhiaQHdC7zZGuNQikNDmmrDCSIg/zTvj5RsWrKIIVLGuqerFz/+seTt27w/QVS2tyeUBvjNbwAAo70/U1E7dikJ5332Zu9PDZJp/PrXKmOVRnJszcnBPADzdElZBT//ea9L8yAhX04OUX3PUiuPyr4USAQA8U/a3kz2/jTz//6f5ijul7qZk4Nh+G7HmpFkqwn0L//S4884tfHojUCbSwAbsk42W4D/+i+ix7IgU14vvojBcs9Q5N8l7s0GcADdrkInT56M2267DdFBm7CkoGEpGBjGKgsNrCwUud1uuAC8//77qJex6tSCGe5DzbZQ1oIZ7kPNiicUsZoixRBLQR2UgqGO3mcK6uV2VCtq3/+046RBWVmZ6L1QUAqaDeuWglaDtlKQ53mUlpaisrISgwcP9nsP6YttVQ2sKwWXef/lATzP87ysnSnP88c5jpsN4CsAMwG8z3HcNJ7nxU9ftaHO2ytXIj0pyVQZpkyZgpMnT0o+c8MNN+DatWuorKxUFPe8efMwefJkAMCaNWtUSkjO888/7z/TpKqqCuvXrycKN23aNBw5ckRP0fwsWLAA48aNQ1dXF37/+9+riuPuu+/G0KFDFYfjeR45ChelR4wYgYULF+L1119XnJ4YixcvxqhRo8DzPFpaWhATE4MjR47g4MGDsmFTU1Nx66234r333qMmjxB33XWXoC91PdtxeHg4Ojo65B9USGpqKh5++GHJZ3bs2IGzZ88K3nvkkUeQpGKceuutt9BAaCnocrnw4osvAgAuXryIL7/8UnF6JGmQumHIzs72/19JnS9duhTDhg0jCrd8+XJkZGRgz549kmPwxIkTcdttwirbzZs3Izc3t9d13zijB7W1tVi3bp3gvaeeegpHjhzRdO4eLeLj4/HEE71V07t27cLp06cFwyxevBhbtmyRjHfmzJlEY5UQTzzxhOhZXnpx+vRp7Nq1S1McEREReP755zXLsnHjRhQVFQneu/vuu1FdXY39+/drTieYSZMm4dZbbxW9r3Rcz8rKwj333NPjWlNTE/7yl7+okE5fVq1ahcTExB7XKisrsWHDBpMk6p5zxcbGYufOnabJEDjGy1FQUICPPvpI8N7o0aOxaNEiFBUVYePGjZSk60ljYyO2bt2KktJS0WcyAOwHUOlwYNaMGZg1a5YiZaAPsYUBFtym6QkLSgOe53H69Gl1mzAtAI1Fp75kKSgmixhW74N6YrWyMdN9qG0pKA4Lii6rtWWrYzX3oSzDglLQav2HtlLwgw8+QGFhof/v+fPnY+bMmXZbJYR1peA0dCsET/A8T+xrhOf5Vo7jHgNwEcB4AA8DeEsXCW0EaYqP13UnKAltAwbIytCYlITGpibUK/Rr3J6eDmRlAYAh+fRkZgJRUd3/j44mTrM1Lc2wevCXSVeX6jTdGRn+clUEzytOsyU1FdzQoVTLp2PgQByvrsaOHTvQ2tqK/v37IzExkSiN6ORkeDIzda+vzkGDBMtYz3SVKK2UEJWUJNteWtPSUC+yWN81eDCQmqo43YbERNQ7nUTPOp1Ov4wd9fW6lLMipWtAeSmRpWvwYOIxz9fGWi9dknw2cBwNZugtt+BE0Nlc4eHhGDJ3rqD7Wxp44uJE5fVkZqL12jXT32sAwMfHC5ab1HjfMXCgrOzujAz1+cvKAgxWCnZUVmquj4iICHXvnCBa09JQL3JORdfgwWgPD9el7bQNGCApv5r3Yq/4mpqYaPfBeDIzgaBzJzt1KmdS2tPTEWH2/FdBe+6SmDv52lYXx+mSn9zcXHz44YdoIXQtvvKxx7rrXCW0LQWtAgtKQQD4+uuvmVAK6mEpyLJbMzGMUAqKlbXScrZSfzMau2x6wrJSkGX6qvvQULIUlMK2FPwO1t1Q9hWloNvtBs/zxHLLlX+gQhAAvvrqKwwfPtzSbdVI2PhSECfF++/FoOv+GSzHcZFCAXme/xbAQXR7M/yeLtLZMA3JIDNq1ChVcVtlgDFSTt+HpZY0jX4R0n6B5ubm4rPPPkNrayuAbssjIWsnMVlYWbyhjV6ulUjamh59QEmcgc/q1R9J242W9q6kbZLmU0qeCRMm4Pbbb/dbSPfv3x8rV65EjE4KQTl5eJ5nZtxXIwfJoqWTUNEthFXc/ugRB0k8VvlYs4qcgHA/YMGNn5XKkGQBlXZ+urq6sH37drzzzjuyCsHIyEjcuXgxACAuLk5TulJKQSVnCloNVuTXw1sEK7Aw7iiFJUtBOVhpwyxitbIxU15W2jOLGPEdaWbcfR2hOY5tKUgP+0xBdehhMBDIsWPHLLlpywxYtxT0Kfyagq4H/p0IoEQk/BUAc8DAMU42bJKVlWWJQVStYsFqSkGjoV33Ym4qSVEjT3Z2Nnbv3o1Tp07ploZW9GoTWuM1oq0aoRQkVebMnz9fdRpqlIJaXULNmjULM2bMQFNTkyGuKa2iFBRD63kHWpSCZiBVX9HR0cQWSDSQ6h8cx+k27tKOV80Ob7MQatN6f2DKwWpZiWH0OT91dXX48MMPe+3oFWLIkCFYtmwZhlAad9VaClqpTwjBgqxGvjvNOFPQiu5DfbCgFLTdh6rHLpue6FUeoe4+lKYbbbXvTKu0ZbM2AbJ0ljErchgJ62cKWqX/BNLZ2YmwsDDZ59SW77Fjx3Q7cibUYF0p2IBupV/w4RHVAf8fAXGlYIL3X+X+4Wwsj9zgOG7cONWLoKSL3mZjpHy+nbJmWAqqQYnJOiladgurWTh2uVxISEiQfzBEsdruHzMtBQcPHozrr79e1zSUQtLeHQ6HYWfVWWVCraYdkYTRUsesbTaIiYkhUgoaZSloQx8WLQX1VADrgVELdTzP4/jx49i2bZusxZjL5cK8efMwc+bM7jGptlZz+j4ZhAh196E2+mP2uKMGEktBre2clvtQG3GsNhaZfaYgS4oVlqDpPlQqvNR9q7gPNQstbdd2H6ovLCgFrQjpuYK2Vav+sK4UzEW3UnBA0PXzAf+/FcDe4IAcxzkA+FZAjdsubmMZsrznroSyj3kjlSY0lIJmwNIHgtK22JcmDkJobd9GTK5ZcB96//33Y+TIkUS7sdSmEQgtS0GWYMlSUC+loNXch0r1/5iYGFRWVhomi20paDwsKgUBdstLCCPch1ZVVeHzzz9HXl6e7LODBw/Gvffei/46nGHYV92HsgAr707APlPQh5xS0MgNDqE0VzQau2x6QqJ80msObUQceqG3UpAEq7RlKx4XYLsP1Y5RloK2+1C69MW2qgbWlYKnAEwDEGz3eRhAO4BwAM9xHPdHnucrgp7JBjAUAA/gnL5i2rCIni9toy0FreA+lMZinBkvNIfDwcRCIqBeKajVrYdVIVmIYWEy4LNKNUMpmJGRQcV1gh5nCrJ2vocei4V6oNeZglax8vYhNW6Tnj1pdUtBI5SCrMKiUtC2FPyOlpYW7NixAydOnCAaW6ZPn4758+fr5sZYSvmhFCvVMQsYqTRjbYMKKUbLLacUpDE/o2UpaPc3cVibR8thdl2qTZ+lbwA9MNt9qFlzJ7PboxJYMmII9f6gFJrlofY7xkpt2YdtKcgOrCsFdwN4BkAGx3HDeJ6/CgA8z9dzHPchgIcBpAA4xnHcGgBn0e1qdCmARwPiec9IoW2shZpB9MqVK5g5cybzA43V3IdqQa3ShZWXqBrXGazIbhZmWQqqSUdPpaDUIiqtNJW0NdLzRVlrv3JKQSuP9ySys56/YKR2GEZHB3ud1xezLAVpYyVLQSHMVgoC1iovEiIiIhQ97/F4cOLECezYsQOtra2yz0dFReGee+7B6NH6Hv8uNr7RXAy1EYald4tVNv/ojRFKQaWyiGH3QXHssumJ3HehXV7CkG6k17P8rKTglvqmp1lGPM/DFxttpWBfVbToITvNOBsaGlSFs+LYZisF2YF1peAWAB0AwgAsB/DrgHv/H4BFAPoBGATgNyJxnADwF/1EtBEitqEBCRpc1dEgqrwcCRJnkUSUlgL5+YitqpJ8Toja2lo0Xn89IiMjFYdVA3ftGuBd5HRWVhKnGVlWZoh8ABBWXAzk5wNtbarTDCsuBlROChNqaxUN/NEVFUB+PvrV1RG/lPQkNjISzsJCRWUXEREB5OcjuqKCOFxYcTEgsMhnVDuhSXR7e3ebk0BqHHAWFgLt7YrTjauuhqO5mfh5Pi8PcDoRVlysSzknOJ3oFIk3JjxctIyUyBJWXAx4z4KSC+cqKgIiImTH4Kjyctn6MxJHU5OovNy1a7L5MYrI1lbBcpOSj6TtuYqKVOfPUVAAREaqCqsWqTwlNjQQ5YVkDCEhRuK9HFZcjAgV8wwS5PqQ0jR978VAOA3vdD1xFBT0Gr9LDh40VdbIsjKEt7SYW14K2rNLYo7oawv9PR6ktrSgneBdmZ+fj0OHDqG8osJ/mLsTQDqAo+j+oAskMzMT9913nyFnI9tnCpqHFd1rGo1ZbYoFpaAcdn8Tx2plo7e8ct/zcu06PDxc8Hpfdx/qQ68zBbXEzRo08+HxeODb9suSpWBffKcb5T5UrVLQithKQXZgWinI83wDx3EPAUgFUBx0r5jjuNsBfAggSySKvQAe4Hne/BX/Psaq9esx3mwhAMySupmTAwB4SG3k3vDZasOrSAvoNo1VkuattGWRIRIayiQgn0pZrSbQyy/jBdUp6sCPfqS87H79a9wO4HbS50XKWHG6rPDLX0renu/9CaKyvT2tNIA3ncnen+H85CeCl7OVxBFQVrLhvM/eCuPHHy3EQiJvOTlYAGCBYdLI8Ktf9bp0m/cnSE4OrpOLMycHE9XKo2HsVst070+QnBzxe8HIjCEkLPL+xGTJgDl9P1tNoBdf7PGnpne6ngi0uTu8P9PwyjSGARlIGAD5unUAeF6DOD5mAzjg/b/L5cKtt96K6dOnG6Z8sM8UNA8jF2Xs+iKD5ExBrdjuQ/XHamWjt7xutxtwiS9vyqUv9j4iabP79u3D+fPnwXEcxo8fj1mzZlmmfmieKah2o42V3Ifq6f0nkMA0WGpLtqKlJywoBVlqH6QYoRTsiwpsNTCtFAQAnuc/lrh3kuO4MQDuQ/da2EAAHgBXAWzmef4rY6S0CebtlSuRnpRkqgzTpk3DkSNHRO/ffvvtmDBhAt577z2UlZUpjt/lcuHpp5/G2rVrtYhJxNNPP+0/I6miogLvvvsuUbgJEybg3DljjtS87rrrcMstt6CtrQ1/+tOfVMWxfPlyZGRkqAr72muvKRr4hw8fjiVLlmDt2rVEO+D1ZuDAgVi4cCHeeust4jDR0dF45plnsGPHDpw9e5YozNKlSzFs2LBe19esWUOcLitERETg+eellyu3bduGCxcuCN576KGHkJaWpjjdN998E80KLAVfeOEFhIWF4eTJk9izZ4/i9OQYMGCA6BiWkpKCFStWCN5TUuerVq1CYmIiUbglS5Zg+PDh2L59u+T4M336dEyfTqy60Z3m5ma8+eabgvceeeQRHDt2DBcvXjRYKmFeeumlXm5jpcp77ty5sm1v5syZOHjwoCp5nn/+ecVuBrWyd+9enDhxQvDes88+i/fffx+1MhZbMTExePppxWr+Xnz55ZeibWP58uWorq7Grl27NKcTzNSpUzFnzhzR+0rH9dGjR2PRop7qzfb2dkPmOUp58MEHkZ6e7v/73Llz2L59u4kSAbNmzUJ8fDy2bt1qSvozZszATTfdRPy81Hxy/PjxmD+/e0vNiRMnsHfv3l7PXLt2DXv37kV1TY1oGhkA9gMo9f6dmZmJpUuXIjk5mVhOGqi1FLS6S10WYGlRxnYf2o3tPjQ0sMumJ2rGc1rs3LnT//+ysjL8/+y9d5wVRbr//+kzZ3LOOcCQ4xAkZ5SgBANGBAVdFOPsvbvu3t+6691w73f37t27jKuru64orqwJVxQDILpiAgXFgIAKOsAEhgGGyXn698ecczhz5nR3dXd1d3Wfer9e5zVzTldXPRW7up56nmpra8PFF1/Yssvy+MKCG22ntGXaloIswnJbNgqz8jxp0iS89tprqu+zY//hloLswLxSUAlRFDsAPOP5cBihKSEB9cnJlsrQlpUlK0NHTg5QVISmtDTUa1AKhYeHQywsNCWfYmEhEBcHAOiOjCROszk93bR6aEpLA4qK0NPSojnN7vx8oLBQ0731ycmqJk8tGRlAUREaU1OJzr0xmoS0NAgDBqgqu+64OKCoCK2ZmaivqCC7Jz8fKCrq97vV/VUL4eHhQfPiT2tmJuqrq4Ne68rLA3JzVafbkJKCJgkXM8EQCwuBiAi0VlUZUs4JGRmSY1hUaqpkGamSpagI8CgFle7rzM290C4rKyXDecdgZmhulsxbd34+Wk6cQL2GDSRG8FFNDaZNm9bnN7nyVnoeAsAbhw8DWttnUVFQt8RG0nz4sGSewoqLMWv1ajz77LPo6Ah0WngB7xiql9bMTMm20Z2fjw4Vz201tGVlycqvNk3vc9GfntZWJp8PXXl5QH6+7/ubL72EBovl7MjJQVdSkmXlddHVV6tywd4TFSUpa2tmpq8tRDY3o95v41FbWxtef/11fPHFF8RpxSUk4Ir58zF69GhLXBOacf4PJzisLmxKYcUiktnt0EqlYChZCubk5KCqqsqw+O1WNkbLW1BQAMi8d2hVGmoZEz755BPMmzePKVe8UtA8U1DrRhoryslId6g0oPUsCoxHb7x2VrSwfqZgkcZ3Urs9CwCPZTcBXCloPOw/pTgcjRh9aLJZrgMAewxo3d3dVougCm+ZsvIQ1eI6w4yDv1nGqjantj96wxvVj83Y+a6mjZHml7V2q1SOLI3Dx44dUxXeaNmtqEu5/h8WFoYBAwZg/fr1GD9+vGQ4WnLLxWOkWyTa8QaLj9UFfdqLHLSwalxzu92qF9WU2q0XfyvgEydO4LHHHiNWCLo9Fs2rVq3C2LFjLVsgpek+lGYdu2Vc3TkFVvomQDZfYnXMMwIjlYKk/cRuc0U1zJo1y9D47aBwMouUlJTezaIymGlJ2NbWZqhCmCY03YdqwSr3oUZAMx+HDh1CY0TPNvsAAQAASURBVGMjALYUIyw9083CrDMF09LSMGfOHNX32bH/kFoKasXMtXq7w2cSnJBF7+Bp1UCjJk0z5fMu0OpJU0+daL2XpRcqrUrBUEXvwo3ZSn2j0pNrw3Jp5qqwklTTT9577z3s2LFDUXHFWvtlTR45vvvuu36/mfXCEgzWlILe9pqUlCSrFLQ7SuWu9sUyWHxmu4XVSnR0tNUi2G5hi1TWiIgItLa2Ytu2bdi4cSPOnj1LdN/QoUOxevVqANYqv0RRlHSxbXV9zZtnp5N3tWGmko1GfXJLQev7hVMYPHgwRo4caVj8dqsnI+VdunSpYhitbjK1jgn+ljAsL04b7T7UqLMIrcIsWXfv3o2HH34YJ0+e1BUPVwoaC+3yMHozCStw96HsYMvtiYIgRAMYAyAdQDyARgBnAHwuiqL1fgA5TED6wHaypaAVSkG7EXgul5WobYtaFJp2mnST0NPTw5RiVw7WLAVHjx6NShk3O/6oKePq6mpUS7hs1Rqn1bBmKagWoxdlWVMK+stDag2lB6ssBZUYPnw43nnnHeLwweR0u90oLi5WbZ1qNIH9MSoqyiJJ2EBLGyPtG++99x4efvhhNDU1EcU7bNgwTJ8+Hfn5+UhQONfTDF599VXJa1afKcjSHNQoWHp2ckvBXsxwH0qqYHGypaDL5cKVV16JkpISnNm/Hygroxq/ncuGNiRjqZnuQ/XcZzak/d0o5Z4gCLZyH2pmnO3t7XjllVd0xcHdh+rHzI23tOfzrMKVguxgG6WgIAhhAFYB+AGAiwAEe/J3C4KwD8BjAJ4WRZHMUS0nJLHrblI1hJKloFZYWZDRMiH2hrfjRIAWSkpBIyZxrLkP1Zr/SZMmoba2Fp988oliGnZ4cdKLndyHqsXOskvB0kYUVt2HZmRkYOrUqdizZ4+udJYsWYJNmzbh/PnzuuKhSWCbDnVLQSMWEVpaWvCjH/0IjzzyCFF8w4cPx/Tp05GXl6daFiM5cOCA5DWrN6dYnb4Z2E3J5sTnZSBWninodYdHCmtzRbW4XC4MGjQIgwywlrZb2RgpLw2FFW357DKWGO0+lFsK6uPMmTO67ueWgsZiRHkMGDAA33//PXF4O/UfL2YoBe02/7QKW7yJCIIwBsAnAB4HMAW9ykwhyMftuf44gE8EQSixQl4OGzjJUtAf1t2HWoXWemRFKQiY4z7UjpMGOezwsGf1TEFBEDBz5kzdaWiFtbaotRztgBMtBUeMGKE7DjMsBa1m0KBBxGGl8pGUlIQ777wTq1atQkJCAi3RdMGVgvqRk7WhoQEzZ84kUggmJydj7dq1uPbaa5lTCALKz0ErzxTkSkG66Fn055aCFzCyXZ44cYJoM5oXO42pJNC0ardb2dhVKUhjEynL7xGh6j40FN5tAW4pSAOzj+gYO3asqvAstjslSMtNz/i7detWTfeGGsy/iQiCMAXAbgCjcUH5BwBNAI6gV1l4BL0uROF3fTSA3Z77OZx+eAfPiIgIzfdz96EX4JaC+tCymMgtBfUt3oT6mYK00tAKa+3W7paCoXam4ODBg4OeUzZp0qQ+382QzQwXpVrjptV33W43Bg4ciKFDh1KJTy+BbZqVsw+dYCl45swZ/OQnP8Gnn36qGMeoUaOwbt06FBQUqE6fBbj7UONh/dkZiN3k1YORZwrKxfHee+/5/ney+9BgXHXVVdTiclrZGI3Ryi+7QtNS0E7uQ7Vi1ZyfFez8jDRCdqOUgosWLUJiYiL1uO2GndubXWDafaggCPEAXgDg7Q3tAB4GsEkUxS+DhB8F4CYAdwKIRO95g88LgjBSFEV1vio4uohraEBieLilMkSdOoVEmbNMwisrgYQEDHS5UKvhzJOY9nagvFw2DVoIx48Dnt35YQr58kepDGgSHR0NlJdDaGrSnKa7ogLo0ub1N7Gurs+B3krE1tb66q+VgTNvYmNjIRw/rqrsEt1uoLwc0TU1xPe5KyqAIItQZrUT2vR89x0QEyN5Peb0acm8hZ08CWhQKsafPYvwtjbyG8rLgdhYRFZXG1LOcWfOSMYb193dm74ErsZGIplcJ04AnkV3WnmIOnVKVjazETo7ZduKmn5mCgFlJyefUW3Pi3D8OGDyi3AEgJXTp2Pbtm2+TSm5ubmYN3Bgn7IJkxkDEhT6BylK40yETB/VQ3RNjaL87ooK4rRjTp9WjE8ur2YSdvIk4LeIxEL/jKyuRnhrqyVyREZGqm7LYfX1/WQ9efIkdr76KsI6OlCI3rMasgHsA9DhFy4pKQmXXXYZBg8erE9wi7F6Ac9OC6FaYcnyjsRSMBQWoKy0FFSL1X2UNunp6Vi8eDHeeOMN3XHZrWys3iRFsgkkWO/nloLcfaid4e5D9WPFxtvJkydj8uTJaG5uxubNm1FdXS0Z1o79JxTbEaswrRREr3IvF4AIoBLAIlEUD0kFFkXxIIAfC4KwEcB2APme++8A8DvjxeV4Wf300xhptRBlZZiscB0Apno+mvh//w+lWu9Vg9/B5FmAOWlq4Sc/QRx0yKfjAPa7tNx0zz24TnOKBvDjH6svu/vvxxwAc0jDS5Sx6nRZQaHNLPB8tNwrxe1qb6Ax1ujh17+WvBQPwrr3Kyui8CrjZIFwyOStrAxLzBOFjIDyk23rAKaZKItZFAG4O/DH++7r8zUDCm1Wpn+QMtfzCUpZGbIAjNKdSvC4lcgD3fF9DlQ8b4wkIO+zPR9L8chUalX6//M/qoInIrisfwjy2wwAH3j+nzp1KubOnavZ0wZLcPehxmO3hR8rlJhmL+iZoRQkzVOoWQoC9PIUCuMHKawrBVmG5lmLRioOaWOErHYYr7j7ULoYXR6xsbFYvXo1fvc7aXWGHdqdVnh7Mx7WlYJX+P1/rZxC0B9RFA8LgnAdLry/XgWuFDSVp268EdmpqZaknZqaiquuugoHDx7Ehx9+KBlu0aJFGDZsGHp6evDoo4+io6OjX5ioqCi0SVgExcXF4eqrr8YTTzxBTXYp1q5d6zvHp7q6Gs899xzRfcXFxTh27JiRovlIS0vDjTfeiMbGRjz++OOa4lixYoXm82gefvhh4gNrAWDgwIFYtmwZXnzxRZw8eVJTmjTJz8/HFVdcgQcffJD4nszMTFx//fXYvXs3Dhw4QHTPlVdeGdTN14YNG4jTZQn/vhGMHTt24PDhw0GvaW1vjz76qOS4EIxbbrkF8fHx+OCDD7Bv3z7V6SkxaNAgHD16NOi1+Ph43HLLLZL3Njc347HHHlNM484770S4x/qbVluZP38+Ro8eTSUuGnR1deGhhx4Keu2aa67BJ598Ytp4qkRYWBjuvruvOmznzp04dCj4NCktLU33QfVylJaWGha3Xmpra7F58+ag1xITE7FmzRrdabzzzjv47LPPgl67/vrrUVtbi127dulOJ5ApU6ZgyhR5L/lq5gyjR4/G/PnzZcOoed4YyeWXX46ioiLfdxbkmjNnDpKSkiw5wyIyMhLr169XdU9DQwM2btyIlpYWvPfeezh85Ei/MHkA3gdQjd7nyRVXXIGBAwdSkZkFrF5IsTp9M2DJUpCEUFiA4paCzsBuZWMHS0Ga2GUsIe3vRin8BEFgxgW8E+GWgvqx8ogOoHdNWm5d2m7PAsD4MwU55LCuFByEXivB/aIo7lFzoyiKewRB2AfgIk88HBNpSkhAfXKy6enOnTsXEyZMQExsLNrPnpWVoSsvDygqggvA8MWL8e677/a5npKSgpjERNR8/33Q+8WEBHTn55uSz56CAiApCQDQ7XYTp9mUlob6c+cMlOwC7qQkoKgIPfX1msukIycH8FvkU0N9crIqpWBzejpQVIS2rCzUNzVpSpMmKenpEAYMUFV28RkZQFERWo8cIb6vOz8/aBlb0V9p0J2fD8jI3pKRgfpTp4Je844BaqlPTlalFOwpKAASE9F69Kgh5dySkYH6s2eDpx0fL5/H5mYimYQBAwDP+W208tCZm6u5vxuB0N0tmbeuvDw0nzhh2niqRExMTL+ya83MRL2Ea5H67m7ZfkJCRERE0M0zAJiqx0B6oqMl69WVnExF9rasLMk0egoK0BkRYUjfJ3lmiirSbs3MVIyv7euvmXheBI4fLYcPWy5XR04O4ouLUb97t+lpR0dHq2/LDQ34qKYGL7/8MlpbW2WDJiYnY/nNNzvufBOrzxS040KOWsxUCupZ9FdSlBmJVZaCXtfbgXBLQXvAy0YdWs8U5O5D9bkPJSFG5igQowgVS8HAthfKloJ2OVMwGCy2LTOwc3uzC+xsAwuOd8tIv/MDCTno+Wvt4XYc05g6dSpiY2MBqHsxnDFjBiZMmOD7np2djRtuuEHxoc/6IGWmfFIvlmpQcyZgIFoflGFBztezAkEQVOfBjEk66yi1Oxb6qJXn1NBabDFi1zhLO9EBe/WjYPVqZPuaPXs238Urg1VtJ5XAI4MZbp+sgPYiBw0EQUBqairS0tIsSVsNoijiF7/4BZ599llFhSAAXHvttY5TCALWt3kj01ey+jULFvqmGuwmrx7sYCnoRGj1e6vHL7VwS0E20aosJYWk3K1QCoYK3FLQGdhNGU0L3t6Mh3VLwUr0WvlpPbTCqwysoiMOh3W0Dojh4eFYsmQJFi5ciNbWVll3hP5pmTVI+afT0tKi6T6joaEUpBGHWlhRCmqBv7Tr29Ftdv+1s1LQiMmmnSawoigyNSk125LhoosuwldffYXGxkZT06WBGS9RVmwgCg8Px9ChQxXD0VYKstJvWVUKAsDSpUtNcS2vlbq6Otxxxx149tlnFcOuXbMGeOIJREZGgtw+3j64XC5LzxQ0kvHjxwOnT1stBlPuQ1m1FDQbJUtBlt6N7NLfrICXzQWMVApyS0GyTch62qOdlIJ2U87Qbnuh8IxUAwt9m8V2pwR3H8oOrCsF3wUwGMBkjfdPRq/70feoScRhGv8BUcvEJTw83HduFqA8CJk5SDU3N2PLli0oLy8nvsfMh7b3xVJPmeixFFTLoEG9XoVZefHV8jD3TuKdaglCglIbZ8FNBFcKmhenHpQWC1malJo5tqelpSE2NhYREVr3Z7GLWUpBGgS6b12wYAHcbuVpvJrNI1wpSIdg5/YaDWm9HDhwAMuWLUNFRYVsOJfLhT/96U+449JLAYYVnHox23LErPiHDh3KzCKrmX2TRnlaMZZY5T5Uai5BQ55QtYYzE7uVjdXy6lEKahkXWJqXyMHdh4YWoew+VCtWnykI2E8ZTYtQbG9mw7qZyV8A9AAYJAjCdWpu9IQfjF6l4F8NkI0TAsgtvAqCYNrCrCiKeO6551QpBL33mQUNK7/c3FzN96pVjI0ePRoAO0pBLTh5AkCKHvehZlsKtre3m5JesLSlsLINsdZ+SSwIWMFM96Fel9zcfag0ZrTldevWYd68eZg+fTpuvvlmTJw4keg+1vqZUbDQR/3LmhWFjD+vvfYaZs6cqagQTEtLw29/+1vccccdvt+Ki4uNFs8StPQPO/Sp6Ohoq0XwwZJVAclznoWxRA8lJSWKYZSUgma9G5GUtR36m1pCVWGqVt4iFefkcveh2uHuQ9VhN+UMdx96ARY2i2vFbu1OCTu3I6fBtFJQFMX9AH4DQADwuCAIK0juEwThSgCPe77+lyiKHxskIocx9FoKBqKkFCQdzPQO1E1NTTh58qTq+6xQCmpNMy0tDSkpKTRFkuTyyy9HVFQUAHsrBbVYCjoNlhabpBBFEV9++SUOHDhgWPxargHWth07ub8NZUtBbxuxq1KQBfehNEhNTcXMmTNx8cUXo7CwkPg+bikYGijVy5///GcsW7YMzc3NsuFmzpyJ22+/3bdxysu4ceN0y8giSnN5u1oKstJPAfv1TSvmlTTra/DgwcRhjTxTkKU26FScXsbTpk0jDktSFlqVXzQsBVkeB0n7u9Pch4aCFxyA/nyZ5bZsFCxsMmexbZlBKLY3s2F+RU4Uxf8EcC+AMADPCYLwjiAIawVBGC4IQqzQS6zn+xpBEN4C8AJ683avKIoPWCg+x+YoLRSQDlIkLr7k+O677zTdZxdLwdjYWFx99dUUpZFm1apVGDNmjO87K0pB74M+MzOT+B4tL+1Om1DocR9qVv84d+4cXnrpJVPSCoRlpSCLbZFFmYLBlYJsYbULQlpp26X9A2wqBVms5+7ubvz7v/877rzzTtlxIywsDNdffz3mz58fdM6am5uL2bNnU5OXFZxqKciSjFY8r7Rcd4qlYG5uLi6//HKflX8wlM4UNKv9hKqloBrk3lPtVjZy8mZmZuLmm2/GjBkzMHPmTABARkYGlbhJw8gpBZ2M0e5Dle7r7u62laWg3eCWgsbCQnnY7VmgBhbK1+lYfqagIAhqNAkCgJmej1K4CAAbBEHYAEAURdHyvHKMh1VLwfDwcHR2dhKFDYbWHZtmDqKiKKKnp0d1mosWLcKECRN0K05JSUpK6vOdFaWgl9GjR6OmpoYorBk+/lnHDmcKHjx40NC+qMftJYuL2FYiNa6LooijR49aIJE0oij2KUOj2pg3jcmTJ+Pzzz/vdz09Pd2QdGnhFEtBrdC2yLU6P15Yf0lkoZzq6upw/fXXY8eOHbLhUlNTceWVV8q6cBcEAXPmzEFJSQkOHTqEN998k7a4lmC1Qt+o+FmyxLeDRwd/7CZvMMaOHYsxY8bgV7/6VdDrZrgPDVUXmSSoyZOTlIJyCIKAwsLCXk8IKo9LUZOG1uuhbClotFKwo6PDtHUgoxEEAWC4rmnAcls2ChY2mbP8rqkF0nILxfZmNiyMvgJ6z/2Ta8liwF/vfVrDcQwmrqEBieHh5idcXg54rRqqq5FYVycZNLyyEvC4kJQi5vRpyTgSXC64TpyQTcNLfFcXwhsbFcNJ3n/2LFE6gcRGR2u6Tyvdx47B1dysKs1BbjfcCufbkJBYV0d0ZlvYyZNAQ4Pve2xtrallJEVsbS1QXo5pOTkIGzoUX3zxBdrb22UtMOPOnAHKyxF16hRxHtwVFUEnqyyUgRY6vvnG1+eDEV1TI5m3sJMnAQ0LH4l1dejo6CAOf+Ldd5GoOhVy5PIYHh4u/3Ld1UVW935x0GorEVVVAEPnHgFA0vnzQfvc0V27mOsjPd9912exSO55pQfv2JQlihggCDh37lyf6+OHDjVsAYcGrnPnJMsl3uWiIrtcH3SdOIEIFWO0JBrldDU0EKcdXVOjmI5cXs3EXVEB+FnCsCBXZHW1r/wSzp2Du6XFtLTju7r61N23336LW2+9FcdPnIDX2WwYgGwA+wB4n2AjR47E8uXLERER0Sc+qQWGpKQkDB8+PGSUgrTuMSMuM+LVAksLOqxaChrlxi4hIQENfu88XpQsBc1SKnNLQWXklIIsKf9JMLIuWbQUZGnsk4PWmYJa65dk/cYItMprl3qVgrsPpQsLSkEnw9ub8bCgFASUFXekPSA0ewqDrH76aYy0IuGyMt+/4z0fkrBSrFQK8ItfoFRZKv2UlcEWp7mUlSEJUFcmBPVAwnqN6U33fJjghz+EAGCK50PE3XdjBoAZpOElyruU9H7WUGg/S3XcK8Udmu6ykP/9X8lLbhDWvV9ZEYVXGScr3C1zbaFpUhASUH6LPB9D+Pd/hwBgNYEcrJEChTb7i1/oTkN2zC4rQyqgf06ksZwTQHd8n+b5WE5AeSzwfCzFT6Z1VqT/m9/4/h0MYLdEsBkAPgBw3333ISoqynYLyzSx+kxBo2BJbrtZ3tlNXi0oWQqyNCaw1JatIJQsBY2+X4/yS6+lIMuQKkuNtBQEes9D/fbbbzWlwQos9knuPlQ/LOSZWwpyjMJypaAoiuzMOjnUeOrGG5Gdmmp6uqWlpb7/Dxw4gN27pZZEgGXLlmHgwIGy8f3973/H2bNng15LT0/H3Llz8fzzzyvKlZaWhjNnziiGk2L27NmyeZEiMzOT2BUlDdatW4f29nZs2rSJ+J6bbroJycnJutN+5JFHiHaarV27FgkJCb7vH3/8MT788EPd6etlwIABWL58eb/fjxw5gu3btwe9Z+jQoVi8eDE++OAD7Nu3jyidq6++OqiLsA0bNqiSlyWk8gQA27Ztw7Fjx4JeW758OQYMGKA6vYcffliXO2DaDBo0SNK1ZVhYGO6+W1rV1dPTgwcffFA2fpfLhXvuucf3nVZb0Vr+RvLQQw+hq6vLajGIuOOOO/pY97zxxhv4+uuvqadTVFSEyy+/vM9v7e3tcLvdzLlfDkZdXZ3kMyktLQ033nij7jT27t2LvXv3Br120003obKyErt27dKVhv/8Rg1NTU3429/+RhR24sSJmDFDfovJnj178NFHH2mShSaLFi3CsGHDfN+3b9+OI0eOWCgRsGDBAowYMQIA8Nhjj6G5udm0tBMSErB27Vp8+OGH+MEPfoDmIFaKeQDeB3BaEPDYX/+Km266Cf/93/8dND6nLT5IoWWRmFsKqsPMBR0a+bZyAYr2M5XkLK9g0FAKcveh0oSq+9BQthRkeWGblvtQvZaCJSUlpioF7dZ/tMKVghews+xyhEpb5hiD5UpBjjNpSkhAPQVFjxoEQQCKinzfO2pqZGXoysvrEz4YDSkpqJfYRRmdloauvDyifMZmZqJexg2kEm1ZWZrKMyY1FfUq3BzqpSsvD90dHapkFQsLgZQU3Wk3pqaitbVVMVxPQQHgd65gV1WV6W01GC0ZGUHbY1dTk6R8bVlZQFER2o4dI85DT0EBkJ/f73cWykAr71dU4Nrpwe09m9LSUB/g7tALyRgQjPrkZKaUgs3p6aiX2Lzgcrlk8yiIomLdh4WF9Ylj4Lx5OHDggBZR+9Cdn6+p/I2kISWFqbqVo6egoI8L7JaMDNSfPk09nWBjUyT1VIyjJz5eso1HpaVRaYMdJ05IptFTUIAOgn6miFY5ZZ4hgXifKXK0l5cz8bzoyMnpI2tzejrqTdwEFYzO3FyfTA0pKWgKcMlpJGJCAv53yxb8x3/8h+LGhr89+SRmrV5tmw0QRmK1+1CjYElGlhbhSCyBrLAU9Mo1depUvPbVV9TjDYQVS0HuPlSZsLAwSK0gOKlszMiLHqWgky0Fje7vSuXuVQqOGDEC8fHxaNRx5I7VsNgnA9shdx+qHhbyzGLbMgMWyt7pcKUgJ2QhGVjlXgyVXA75o/fwZK0vqGYPonLn30lh9gMuMD2WXOSoxSt7qE4SvNTX10teY+FgaCtRyqOWtjNhwgQqSkEW2y2LMklh1sKlncokGFYvNAmCYGkZqknbTnUd2P5DYTyXoqWlBS+88AK+UlAmDB40CDh6FLNmzQJgnCswO2G1+9BQsBS0mztOK8eSiRMnImHMGHzzzTcQRRGffvqprvi0KgVpWCxyS0E6OEkpaKQFupGWglrxXxdheY5Cy1JQK/6ensaNG4d3333XkHTMgMU+yS0FnYHTPHhw96HsYN/VcA4ngMDBkMbgSEspqPflyk5KQbVpWv0QY0UpKFUOTpsAGEF4eLjkNSP6gJ0mJzRkDWxnubm5uPjii3XHy0rfsytcKaifUFi0pK0UZCWvHQFeEFgYl/3LxqxyOnr0KB599FFFheDixYvx0ksv9fmNzy+4paAZmKkU1LPo7x1DrBhL/OUaMmQIlixZgksuucSw9Lx5lNrMaVb7CVVLQe4+1Jq4zbYUfO2112xhkW+0+1Cl++Li4ojD0sRu/Ucr3FJQPyzkOVTn7CyUvdOx9YqcIAhxgiBkC4IQpxyaw+kLyeCpNAiRDlJ6F7/tpBRUi9mLsqFuKejESYNWS1w+ySAjWJuZPn26rDJWa7xWw6JMUtB+yZPCTmUSDBYsBa3Eqc+HwDOEWRjPzSy/1tZWvPzyy3j66afR0NAgG/baa6/F1q1b+yy8AdxSELA+L6FgKchC31QDLSWm3g2hNOpQKQ4jLQU5dHCSUpB1jChPGp5VjEbL2bpqULp/6tSp1NKyGrvLT4LdnumhgJPbHW9vxmOr1XBBEAoFQfgvQRA+FAShFUA9gAoA9YIgtHp+/40gCAUWi8qxAJYtBfUqnrQo2wBuKUgC60pBsxabs7Ozg/4eExNDLQ2jkFMK8omEfqTaWXx8vCHxWgmLMknBLQXZgeUyoi0bK3ll0VLQDOrr67Fr1y48+OCDRIuNd955JzZv3owIE883tBPcUtB4WHIfaqaloN73CyOVgkqWgjTejWhsviWNx8nIKQVZf4cNJNQsBQFg9+7dvjhYxWr3ofn5+YbEq0SojC3cfegFtMrOQp5Z3oCqBe4+lB1sMZMQBCFCEIQNAI4C+CmAyQAiAQh+n0jP7/8B4JggCH8UBIG/AXMk0fuyYqZSUOsLtdkv4loGbbMfYqxaCmpxuUHTUnD27NlBf6fhJtJotLoPtfPE0Ey0uoPRGq+VsCiTFFwpSIYZL1Esv6hFRkYiISGBKKyd3IeybilIu5xaWlrw+uuvo6ysDO+//z5aW1tlw8fExGDTpk146KGHJBeVtbZbVtoADdTM5Y1K307xasHM8jV6Q6gaWLYUVDpTkKX2w5IstAhV96FGYrRSUCvNzc2a7zULo92HyjFr1qw+m3vt3qZZlJ+2ZxmWNvpo4fTp0/jggw/w8ccf4/z581aLQwyLbYvjDLT5XDMRQRCiAbwJYCp6lX+ywT1/wwDcA+AiQRAuFkWxzUAROYxgtqWgml1joXKmoJVKQa3xsKIU1AJN2QcPHowRI0bg0KFDvt+Ki4sxatQovPLKK9TSMQJuKWgsRk1CWex7dppwBz4XuPtQ9VjtWtQMBEHAmDFj8P777xOFtQssKgWNoLW1FZ9++imRItDLiBEj8MILL2DEiBGa001OTtZ8r52w2lIwFJSCLC0gmmkpqObdL5hcRioFX3/9dVRVVaG2tjbodRruQ61+v3MKTlIKatlsMmrUKBw8eFBX3KSQjA9OxMp2RLppjcMOdu4LXV1d+Mtf/uKbl7z99ttYvXo1cnJyLJZMGadt1uOWguzAvFIQwGMApgHwtoavAGwE8AGAcgDNAGIBFHnCrQEwGr0Kwqme+1eZKTAHiGtoQKLO86bU4na7gfJy3/eIqiok1tVJhg+vrAQUXnrizpxBeMDCk5fYiAiEnTwpm4Z/PCThpIisrtZ0f1xPD7rr6zWnqxbXiRMQwsNVyeo6cQKg4KIy4dw5uFtayNKLjfV911q2tImtre3Tfr3ItePomhqgvBxRp04R5yHs5Emgs7Pf7y4AV02YgAmpqaipqUFGRgYKCwvhrqxkonzkiDtzJmjZAb3lKiW/u6ICiIpSnV5iXZ1ml75GEHP6tHwdSZSNF6X6jYqKChpHwrlz6NLRNtwVFUBXl+b7jSDh3DmEEy68W41w/DjQ2Oj7Hl1TY0hflRqb7IKroUGyXOIiIqjkTW4MFo4fV5yPEKFDznkDByKiqgqffPKJbLjI6mrFdNQ8b4zEXVHRR1a5sd4sIqqqAM+5fQnnzkHw659q6enpwYEDB/DRRx+ho7MTGZ7fwwBkA9gHoCPIfevXr8fvf/97xPrNc+QoKipCeUCdu1wujB49WvIeOy4+SOFyuRy54MDSphuWlIIkWGEpaJRSUI7PPvtM8ppZ7Ye7D1XGSUpBLUydOhXffvttv41AWrDCUpBmHEZBWi5GWAoasalfa9qsxqkX2paCLLdlEvyf8e3t7dixYwfWrFljoUT6YbHd0cLu7c0OMK0UFARhEoAb0KsQ7AHwYwBlYv+W0QzgNICPBUEoA3A3gD+g9935BkEQHhRFcZ95knNWP/00RlqR8B/+4Pt3jOcjSVmZYnTrCZIsJQgDAIsJw0kR3LkjY3jKtFTDPXpZpzG9oZ4PE9x9d7+fiqFcnlM8HyJkytsFYKDn449S+ixzldxFjW2vfy0xjkI+S0ni+N3v+v20WpMwflDq+zS5zWoB1BBQfkssEoN1EqDQxv+//093GuM8n6CUlWEkoH9OpKO/CABmej5607jI82GCe+7x/bvMQjF8+JXfLQYnNQO9uyO9pKWlYcuWLZKuwKWYNWsWKioq0OW3QWPGjBkhcwah1QspoWApyNKCDoklkJOUglZ6UeGWgtKEqvtQLfLm5ORgzZo1ePTRR3XHrUepxdI4RhtaSkEt8QeONXZr03bAiLYriqJj6urEiRPo7OzUfByNWTjNUpAUFsre6TCtFERfC78fi6K4QekGj8LwQaG3Z/zR8/Nq9G6q5ZjEUzfeiOzUVFPTjIiIwB133OH7/uWXX+Ktt96SDH/VVVcpHmz88MMPozOIVRUApKenY8qUKdi2bZuibIFuGdUyevRofPnll6rvS0hIQENDg+Z01bJixQpERkZi8+bNxPfcfvvtvZZIOnnssceI/PavW7cOMX6WiceOHSOqQ6MZNGgQlizpv6wvJ9+kSZMwbdo07N27F3v37iVK5/rrr0dmZqYq2TZs2KAqvNmMGzdOciF0y5YtqKioCHrtsssuw+DBg1Wn9+CDDzK18724uBjHjh2TvF5aWip7v1L9RkdH47bb+qvL/v73v+Ps2bMkIgblhhtuQEZGhnJAEyEdR1hg5cqVSE9P933ftm2bbDvQyrBhw7Bo0SLq8ZpFQ0MDNm7cGPRaVlYWrrvuOt1pfPbZZ3jnnXeCXrvllltw4sQJvPnmm7rSUOrHJDz99NM4c+aM5PVp06Zh0qRJsnHs37+fyBWp0WRmZuL666/3fd+6dWs/izez8X+mbNy4UfX8q7u7Gx9//DE+/vhjSL0C5wF4H0C153tERAQmTZqEq666SrVCEAAGDBiANWvW4Msvv0Rra6vPlbgcTlp8cFJe/GEpX2bOl/Tm+8yZM3jxxRepyaLnzEq7KwVpwVJbtgK5IxLsVjZalW6ZmZmYOnUq9uzZoyluUriloLbreuK3cqwJVUtBTn+6urr6KAXb29tx8uRJJCcnIyUlxULJLsBi29IDdx/KDqwrBed4/laRKAQDeBDAjwDkAJhLUSYOAU0JCag3+TySiIgIoKjI973z3DlZGbrz8/uED8b5pKQ+u6f9iUxJQWduLlE+O3JyUF9drRhOiub0dE3lKSYkoIHCuRCkdOXlwR0VpU7WoiJNLhwDaUhJQRPBznaxsLCP+9Cezk7T22owWjMzg7bHrvZ2Sfnas7OBoiK0lZcT56E7Px9Q6TedhfKRoyUjQ7IvN6amol5CydOZm6s4BgSjPjmZKaVgS0YG6s+dkw6gkEel+u2KjQ0aR2NqKup1lENPQQGQlaX5fiNoTE1Fo00sZDpzc/v05aa0NPl2oBGpsck2NDRItvH49HQqeeusrZXuR0VF6Ojq0j+OUpCzMTUV9TKujztychTT6aiqYuKZ4I6P7yNrU1oa6k10lx6Mrrw8n0wNKSmoJ5x/iaKIr7/+Gjt37sQ5wj4cExeHxTNnoqSkBJGRkbos+3JycmxxnooRaFlkoblAYZaloJULr3ZZ0Ons7FS1qZEEl8tF5G6eNYtRGmcK0sJpC6Fqkeu7LClvjYaG4kqP+1C7jGNaCFX3oUZgB/lpKbntkFdS/PNy5MgRbNmyxffsHjZsGOIZODaGWwpyjIJ1pWAuel2Hvqf2RlEURUEQ3gNwHXoVgxyHY8RgKLfw39PTI2kZEIjeSbtWBYTZg6iWSbPZDzGWFkpIINldp6bMnThpkOsfcmUTCpMMf0syrUi1Gb1tifW+xzq0z4iQwoljBm3sUkZWWp7QJvB8IbuO5+fOncOOHTvw9ddfE4V3h4UB3d1YvXp174YYD3Y/h8cqnJQXfwLzdckll+D5jz+2RBaWNlHJ1fcnn3yC8+fPU00rLCxMs1LQyrZplvvQUD1TkLsPNfdeltJgEe4+1NkY5T7USXjbXXNzM1544YU+85YjR44gsa4Ol1olHAFO7jdOa2sswrpSMNrzt0nj/d77omVDcRwJjd1Mci+yci64AgklpaBarD5zgnXFBG2loBMxe8GJxfKeO3cu/vWvf/X7/eKLL9YdN2s72I2ERZmkCGz3XCkYHL6QRI6d8sGiUtC//JTKsrGxETt37sTBgweJZI+MjMTUqVNxyeDBwGOPyZ59wiFHj3tHWumbEa+Vc127uA89fPgwRUl6IS13uc1XetqnEYv4HHNxklJQDr3rNqxbCrIwR5GCtB0ZYSnI3YcajxGbSHt6epiyKNeLt0y+/PJLpjYy+eM0S0GWx8RQg3Wl4Bn0WvkN0nh/sV88HIfD8mAYSkpB1gd4lhZK/NHjcoNbCnJLwZKSEhw4cKDPLvfCwkIMGDDAOqEUYLEtsiiTFFwpqB8zNqWoqZecnBxUVVX1+33s2LGa5FILjUU1s+js7ERPT48tN8eUl5fjxRdfRGNjI1H44cOHY/HixUhISEBMXV3QMNxSUBtW5yUUNt2w1DfN7ieki6asKQVpLPZavenTKThJKWikpaDRSkEnY+WZgk5zH8oi3FKQnP3791stgiSh2jec2tZYgnWl4FfodSE6QxCEAaIofk96oyAIAwDMRK/70a8Mko/DMEZPcNSg9+WKxPVMMOxgQWX1Ay7W73xBFuGWgspoVQo6iYSEBKxZswaffvopTp8+jby8PEycOJGKNYlR7kOt7vvBYFEmKbj7UP2YkTc19XLppZfib3/7W7/faSkFWZoX0aCjowNRnjOJWRjrlcqvp6cHu3fvxrvvvkskb3R0NJYsWYKRI0fSEpETgNWWgkbBUl9mdde9GejdeGjVPMusDZPcfagyTlIK6sFqrw+hbClopvtQMwlVS0FW47QSO+THaZaCpNihbuwO60rB1wEsABAGYLMgCAtFUVTcVisIQiyAp9GbPxHAq4ZKyWEClncacUtBaczeSRoYLjU1FcnJyaiT2H1vFnpcboT6w1KrNaDWcmO1vBMSEjBnzhzq8Ro1lrJipesPS88NJcyyFLQ7dlpIys3NxdKlS/HGG2+gq6sLbrcbF198MVMWvyz1kfb2dmaVgoHlVFdXh1deeQXff0+2v3H8+PGYN28e4uLiVKdtNCy1Ab1oeQ7RbGtmWQpaWWdm9k2WNj4IgkDFfaheGbRg1pmCZsZjV5ykFDRSXm4pqB1aSkEa7kPt1qbtCI327PQ+wSJOUwqStiHe1oyHdaXg4wB+CiATwGQA+wVB+DGAV0VR7KclEXp7w2UAfg9gCHoVgjUANpomMcc22MlS0E5KQbWY/RALtlAyb948vPjii6bKQQrJBIC7Dw3dXehW4kRLQTvB3YfqhzX3oUCvMmjMmDGora1Feno63G7zpup2ch8K9FoKemH1pbGpqQl79uzB3r17ibw+5OTkYMmSJcjJyVGVDkv1YiecWm4s5SuU52h63YdatXmKWwqyg5OUgnqw0n0owO4cgwbcfSg9WJSfWwoq482PXfPFYrujhV3rxE4wrRQURbFZEIR1AF4C4AIw2PP/GUEQPgZwHEAzgFgABQAmAUj33C4A6AJwqyiKLWbLHurENTQgkYLbOjVEt7UB5eW+7xFVVUiUsf5yV1QACgs0cverkq2mRldcWu+PiIjos2hmNGEnT8IVE6NKVuH4cYDCy2fCuXMQSM7nKS8HIiP7/DQqLg57OjrQ3NysWw6txNbW9mm/XtwVFZLlGXXqFFBejsjqauIyd504AbS2qpKNVj8wCm85BCO2tlZSfndFBRAfrzo91soj5vRpyfyToJSfhO7uoPHHnTmjqyxcJ04AfmcgskDCuXPoYUwmKVwnTgB+CiO5tq4Hve3LalwtLZLlEhcbSyVvKQ0NkmlEVFUpzkd8eGRxA8gGgIoK3bL5E3/2LFpl5IisrlYsD+K8qEQQBAwfPhyHDh0iv6m8HPA8t41q/2oIr6wEIiJ88uzZtQv79u1DV3c38tDr9iQbwD4AgTOz1NRUzJw5E2PGjGHSitofGosPBQUFOHHiBAVp9GH1QopZloJWEqoLOmosBeXisOJ+GmcK0oKltkwLWu5DWX9WBKKnLs2wAjbSUpDlcdBo96FyOM19aKjAcnt2Kk6zFCSFtzXjYVopCACiKL4qCMKNAB4DEIdeZV86gEuDBPfvDU3oVQi+bryUnEBWP/00LDkB5be/9f073PORpKxMMbpSvfL4pXURrbhYxlOmpRru0cstOtP7ARUp6FMImfL05GW250OEhvKWTJ8l7r476M83yN2jse2VarrLYO65R/OtpSSBfv3rfj+t1JyiB0p9nyY3Wy2AGgLKb4VFYrBODBTa+I9/rDuNArk0ysowEiCbExncJ2THQ8L0Szwfo1igJrCfvNdSl0QDfvLcAul5yQwAH/h9nzhxIhYuXKjrDFi7LQhccsklePzxx60Ww3blRgpLLtlYsxRk0VMMa+5DjVSw+EOycdWpfZQUJ1kKGqkUpBGHnFLQyQvTWo9g0RqPPyw9q2jAovxGnEHv5P7AKiy2LT3wNsQOzCsFAUAUxecEQdgH4AEA1wCIRF8FoD/tAJ4D8CtRFL8zSUROAE/deCOyU1NNTTMmJgbr1q3zfT9y5Ai2b98uGf66665DVlaWbJwbNmygItvs2bOxe/duzffn5OSgqqpK9X1utxtdXV2a01XLkiVLEBsbi+eee474ntLSUippb9y4EQ0NDYrh7rjjDkR4dvL788Ybb+Drr7+mIosWhg0bhkWLFvX7/eTJk5KuTS+++GKMGjUKu3fvxoEDB4jSufHGG5GWlqZKtrKyMqYf3AMGDMDy5cuDXtu8eTNqa2uDXluwYAFGjBihOj1a4wItiouLsXTpUs33K+UnKSkJN998c7/f//GPf+D06dOa0/3BD36A2NhYzfcbwVNPPYVz585ZLQYRS5YswaBBg3zfn3/+eU3PCSVKSkoMOavSLFpbW/GXv/wl6LW8vDysWEFHnfrFF1/g7bff9n13uVy47LLLUFxcjK+++gpvvvmmYhy0nodSKPXZOXPmoKSkRDaOwHzSwu12Y/ny5apceV977bXIzs4GADzzzDOoqamhLpcali5dirfffhv/+7//i/Ygi915AN4HUO35HhkZieXLl2t6DlmJ3oWJ2267TXH+bRaCIKie39jxTEErMVMpyFK+Q/1MQRKefPJJIDlZNgxLdWoFci7EQ6lslNok62XB8nu00VaYcnm30n2oEWmx2A65+1Bl7OA+lFsKcozCFkpBAPAo+G4SBOEeANMAjEOvxWAceq0CawEcAPChKIr1lgnKAQA0JSSgXmGST5vuuDigqMj3vbOxUVaG7vx8IDdXNk5aeejIydEVV1xKCupVunwEencXkpxhQ4uOnBxExsery6tfnemhISUF9QQ7coUBA4Agu/FbMzNRr0PBoZfWzMygZdElipLl2ZWXBxQVoeXwYeIy7ykoADIyVMnWkJLC3E5vfxpTUyXbUUNKCuolFOOdubmq258oUx9W0ZKRoasfKeXHLVG+zenpqO/s1JwuiooAxpSCjampqLfJ5LM9O7tPvTSmpmp6TijRlpVFbZy2ArGlRbKNp+jsO/6MKSpC7MiROHLkCNxuN0aOHIm8vDwAQEddHdm4YXA5K/VZkjGx48wZQ8bAiIgIdOfnq4q7MzcXKCgAADSlpaHeRHfpgdTV1eHan/wEn3zyiWLYbvRu9lqxYgVSUlKopG+nBQFaeaaBncpNDSzli7UFHW4pqAwN96FmnNlrV9TkSU4ZZreysdp9aChaCo4cORJnzpyR3TRFy32o1FqBXNnZzQWuHeGWgs7Hbs8CgLwN8bZmPEwrBQVBGOP39StRFLs9Cr83PB8ORxIzfM+TojctrQoZsxU5agftXAWlrBqsenE2Gjm5vBNpNeWu1bUHy0pBrbLxSQYZoWDJ4IVFmaQIbPdGtWc7lYnVFBcXo7i42GoxNENjUU1P2mrj9t/0ZOV4fuTIEWzduhVtbW1E4S+ePx+506dTXQyz05yWpTFFi6Ug7fTtFK8Wenp6EIrLvixYCmqFL9Szg5Pch+rBjLw6oTwnTpyIlJQUnDlzBgUFBRg9ejTq6+vx4IMPSt5DSynYKrExUY1S0O51wKL83FJQGTvkh1sKcoyCaaUggM8AiACOi6I40GJZOIxjpfsBJaxSCpo9iKrdSTdlyhQDpQkOS+3CHy1yee8xup5ZLTMvcv2DTySMw0kLw15YlEkKI3Z+BsNOZRKMUH2Jshsul0t1ffiP/VaM9d3d3Xj77bfxwQcfKIaNiorC9PHjgQ8/xKhRo1AfwovuLPU7LbLY0X2olWVuZt9kqW0B5Mo11iwFaSgFuaUgHeTch9rtHYd1S0Gpdk/DUtCsuoqLi8PUqVP7/Jas00Wvme5DzSRUxha7jRNWwnJZhUp7DYTlOnEKrCsFO9Er416rBeHYD24pyB7z5s3DsWPHEB0djZKSEgwdOtRqkXyw+qAlWdA2+mHJ+o5hrUpBLeUWihMTo/oGi+2K1XEgGNxSkKMWMxbVtKLFUtAqpaAoiqiqqsLOnTtx/PhxxfDFxcVYvnw58ru7gQ8/NEQmO81pWYLF5xANWKqjnp4e6HdGSQ8W3YdKYWelIC1Yasu0UJMnuTYUSu8kVrpRtVM569lkrHRdazk7zVKQVSWnFNx9qDJ2yI/TNrly96HswLpS8BSAPPSeGcjhyGLErtgFCxZg586duuMJFaWg0k666dOnY+bMmYakTVrGrLno0YMWpaARLwtWwy0FjYW1HexGwqJMUnClIBlOe4kyEiuVgnaxFDx37hy2bduG77//XjFsREQEFixYgAkTJvTmra7OBAnZh6V+Z7UsoeI+NBRhwX2o1vtpnClIC5bashXI1YXd+paRloI04pC7bhdLQSPf852mFAz1sYXTH7uuGzm5Ldu1TuwEO9vAgnMEgACg0GpBOOpYtWoVli9fbqkMNHbEDxkyxBRZlLDLpJ8P2trRsiDALQV7sYt7XbsSCouWdoQrBTm0sdqNE8tKwZ6eHuzbtw+PPPIIkUJw0KBBWL9+PSZOnOi4s5CctCGEBVmmT59OPU7uPlRfGFqQKtdY27BohgLG7HjsCrcU7IXGBi+ta0NOL2crvWs5rX/bIT/cUrA/dsiP0za52qHMQwXWLQWfB3AJgBmCIKSKonjWaoE4ZMTHx5s+OKl9ASaRLzU1FVOnTsWePXt0yaaX7u5uS9MnRclSkIUHFmsv3krQVgo60VKQtotQrWk5lVBSCrIokxT8TEEy7C4/TVha6A1Ei6Wg/9zIqPbf2dmJAwcOYO/evTh37pxieEEQ8LOf/QwZGRlE4TnWIgiCpc91QRBQUlJCdC6l2nhZwS4bG2mjxlJQLg4r7mdpMyBLbZkWtNyH2q1vGWUpaIYC2i7vf9x9KCcQu7Rdjjyh2jd4+zUedmZ8wdkM4BCAKAAPWywLh3GM2hU7ePBg3XFwS0HjsfvO9YSEBNX3mCUzS4sDwTDzTMFQxChFOovtyupxQA1mWQo6GbPqOyMjw5R09GKllQ2LloLffPMN/vznP+P1118nUvAlJSXh9ddfx69//WvT3e9xS0FtsCBLWloali1b1keWkpISFBcXa46ThXx5Ye3ZZGbZhLL7UG4pSAcnWQrqqUsa7wxWWgra2X2oU5WCRqTF4nhlt3HCCrxlxHJZOc1SkBSW68QpMG0pKIpimyAIKwBsB3C1IAgJAEpFUfzGYtE4SlRWIsLlQqKJ56fEd3cD5eW+7+6KCtn0w06eBFpbFeMNr6zUnY/I6mpdcUS3tSGMQFarCa+sRFhjo2RehePHDUs7/uxZdJ8/rxhOOH4cCPLgjDl92tT2GshF6el92q8Xt0zbCa+sBKKiEF1TQyy768QJoLFRlWyJdXVwqbzHTGIFIWjZAUDcmTPoaWgIei2iqgpITVWVVvmxY5a2k2DEnD4tmX8SlPITFx4eNP64M2d0lYVUX7SS+LNnmatfKcIrK/vUS9yZM+gwQPbomhpd7ctqhI4OyTqNO3PGlLzliCLyurrQqDSOGiyLUp+NqKoCkpJk46AxJwpGoigqztsCcVdUAJ4NNXFnzqCLYA5AQkNDA3bv3o1j332HBADeLTthALIB7APQEXBPfn4+nnnmGUNcQZJgpwUBlmTVYilIc4HCWxbjxo3DsGHDUFlZibS0NCQlJeHVhx7SHS8L2GVjI20EQbDcfajW+1lqPyzJYgVOshTUg5XuQwFnL0wb7T6UdS9SNGExP0Z4lnFyf7AjLLY7JUjbEG9rxsO0UlAQhF94/n0FwO0AFgI4LAjCFwA+AVALgEhTIorirwwRkhOchQsxCECp2en++te+fwcqpV9WRhRlnlI8JJSVYYTeOOyAp0xLFa4bwc2kASVkmO/5WIaEXNlQLs8Fno+edOS4RfUdFvDAA0F/Xit3j4ayKIYF4xoJ99yj+dZSkkA/+1m/n67RnKIHA8cDrVxntQBqCCi/1RaJwToRUGjjpbJXqSCAcBw1uE9cSyH9EZ6PIfzyl+rGVz95b6YsihwzAHidPebl5WHatGkYNmwY8vPzTZTCOuy4+CCF1XnxTz86OhqDBg0Kek1PvFZjpuKCtTMF7WopyBJOyEMgtNyH2m2x1M7uQ+2CkceEcEtBe2K3cUINLpeLyhzDDmXELQU5RsG0UhDAfwIIbAUCgDGejxq4UtBMduzAsbAwbNu2zbQkExMTsWbNGt/38vJybN26VTL8qlWrkEpgJVRVVYXnn39el2wLFy7Ejh07NN8fERGBjo7AfensMX/+fCQmJuKf//xn0OulBi6+btq0CXUEFgZSMrz99tv44osvKEslT2FhIYqKijB27FjJhYPq6mo899xzQa9dfvnlKCoqwvbt23HkyBGiNG+++WYkKViCBPLEE0+gvr5e1T1mkpCQgLVrg6v/Nm7ciAYJS8F58+ZhzBjyR0lzczMee+wxTTIaSXFxMZYuXar5/g0bNshez8rKwnXX9VeXvfDCC6isrNScrpHjgVaee+45VFdXWy1GHyIjI9He3t7v9+nTp+Oiiy7yfX/yySdxnpKllD9TpkzBlClTqMdrFh0dHfjzn/8c9NrAgQOxbNky02RpbGzE448/Lnnd6D7x/PPPo6qqSvL6woULMXz4cNk4Dh8+rGs+I0VqaioWL16Mp59+mvge/zFcbqxXoqenB1999RX279+Pepk48gC8D6AagNvtxvz58zF58uSgz289L+hLlizBq6++quoeJy8IGAnL5caybBxl1JwpaLfzzkmws+wsIdeGuKWg8jU14eSu6y1r7j40OCweJaEHFsc9J1sK0lIKemElX8FwmlKQWwqyA+tKQaBXCUjymxy8JZlNbi46w8JQn5xsWpJhKSlAUZHve3d3t2z6PQUFQHq6Yrw9brfufHTl5emKw+12o6urS5cMZtCenY2ulJSgeRUEoU/90KYxNRVEaisJGdqyslB/8iRNkWQZPXo0rrjySsVwnS6XZNvpzs8HiorQnJ6O+poaonR7CgqAlBRVsjalpaGe4Um7mJAgWa/1yclokNhl256drapNtp87Z+qYRkrOtGm6+pZSnuLT04PG35yejvqWFs3pGjkeaKU5PR31bW1Wi9GH2NhYNDc39/u9NTOzTxk2pKSg3oCXgo6cHCbrihShs1OyjTdLtG2jiIdCfzNYlqa0NNTLuCLvystTlKGrsdGQcTAyLQ1iYaGquNuysnzyNqSkoF7lOVgdHR04fPgwPvzwQ9QQPkMBYMiwYViyYAFSAp6lpC/lERERktdcLhfzL/e05EtMTLR8w5HVZW1W+lbnkyXMLAu7ug9lCSfkQQ9yShO7LZZafaagEqHqPlQN4eHhqu9R4z401Ps7Rx202osd+jfvGxyjYF0p+EurBeBox+qdP7T8o5txsLUSdtkJaIcHqhRmP2hJ0yOZSKspdyPdiliFXP+wc5skweVyYdSoUVaL4RhYbOtSL+CB7d6ots5imXC0QWNeZFR70KIM6+7u9v2vpv2fOXMGe/bswcGDB4Na4UoxetQo4OBBLFy4UJdi1IgytGM/nTRpEt58802rxVANyxYfoQ5LZabGUlAuDivvZyFtluqUFmryxC0Fe7HaUlDvuO+E54YgCBgwYIDq+0LJfSiL45WT10JYLG8rcHI5OLn9sgLTSkFRFLlS0MZYrWRh6WUklJSCVg3cTn0Y0lYKasFqBb8SWpWCdp9kCIKAK664ApGRkYano+Z3O8Nintzu4FM1rhQkw2nuVozE6gVktemrnRu1tbVh9+7d+Oijj1Tdm5OTg8suuwwjYmKAgwclw9GaL4ZKu5wyZQpqamp8rtvDw8OxYsUKvPbaa5pdwWrByrmAUeNTqLQh1gllpSAtnJAHPchZm+bk5JgoiX6sPlPQSqWgWRjdX+bOnav6nlByH8oiTnYfSttSkJV8BcNp77PcfSg7MK0U5Ngbqx/ytCwFWVAK2gU17iFYg1X5uKWgMnZRmtNk+fLlGDBgABITEw1Pi/X6Z5mlS5eisrISn376qeY4pCwFjXjJCwavf44/LFkKnvRz+S3X/nt6evDFF19g165daGpqIo4/KioK8+fPx4QJE3rntArnFvvLr+fl3Q7PaUEQdI85LpcLV1xxBS6++GKcO3cOubm5cLvdiIuLY/L8XrPhY6+9EQQhpN2HsrQ51+4UBXHrHRUVpclqy0qsVgrqSYMvTPcSHR1NNT4r3YeGiqWgkwmlfuk0pSApoVTHVsGcUlAQhBwAdwC4GMBAAAkA6gF8D+AtAH8WRbHSOgk5pJitFFQ7qbCT+1C7YKWloF5YrSMWLAVZLRsvoWYpGBsbi5KSEtPS45aC2hk/fjyqqqp0xcEtBfURqi9RwWDZfagWC7mvv/4a1dXVyM7Olmz/VVVVeP3111FRUaFKlnHjxmH+/PmIjY1VJRNp/FquaY2TdeLj4xEfH+/7npOTg0WLFmH79u2mpK927KQ51pplKWjn9qEG1vJJ+g4ZSvMstTixDNTkSRRFzJo1q89v3g0VVm/ANhMz1mO4+1BjkHtPt9J9aKjgZEtB/2ME9MBKfuRwWt/gloLswJRSUBCEWwE8CMDrC83b8tMBpAG4CMAPBUH4oSiKf7FARI4KrHYfylK8ThvEpbDSUtBuu2lJ02NBKZiYmIiamhpD09BDqJ0pyGpbdQIs5pWfKWgcTs6bFqwsDy2WggDw2WefBVUKNjc34+2338Ynn3yiKr6RI0fikksuQVJSkmpZaG02s0O7pGEpKIfUuMfh6MWs/hXqloK0cEIe9BAREYH4lBQAwOLFi9GYmori4mIk6zjX1iq4paDxsNhfQsl9qN3K3+7Q9hZl17Jisd3Rwq51YieYUQoKgrAKwF89X0VcUAj6gnh+jwLwZ0EQWkVRfMpEETkqsfohz92Hmg+3FKQPC+5DZ82ahW+++Ub1fWYRapaCrLRVVuSgCYuuZLilIIcWLM9ntFgKAsDHH3+MxYsX+9p/d3c3PvnkE7z99ttoa2sjiiM6OhpjxozBuHHjkJWVpVqGYGhdwAxFS8FQhlsyOxurLQW5+1B7k5eX1+fc8KFDhwJBXImGAjTGSm4paA1qNo1z96H0MaLtsbKGQksOVvIjB58vcoyCCaWgIAgJAP7k+epVCH4O4EMAdQCSAUwHMMbv+oOCIGwVRdG8k+g55FRWIjw+HokK56/QJCEsDCgv9313V1XJpu86cQKor1eM133+vO58hFdWmloWVhFRVQV3e3vQvLrd7j71Q5v4s2fRQVLGEjJEnTplah3FnD5NVB5hJ09KyhVeWQl0dyO2tpZYduH4cSAhQY2oyBFFDIuKQnV1tar7zEIQBMmyTDh3DhESC8OR1dWq2qSLwlhAg/iuLqp9SSlPcXFxQdNT0+6CYuB4oBXdeQqkvBzRNTWa4xQEAfFnzwa9P+rUqT5lGH/2LNytrVollURtP2ENoadHsvxJx2GayLYFg2VRat8RVVWAwnkxRs1n4uPi4DpxQlvc5eWIra3FNwcO4OOPP0Z9QwMyPZfCAGQD2AegIzDN+HjMnz8fo0aNklS+q8GMhUlWYN37g10wa5EnVMqTBDMtBUNZKUgLJ+QhEJI8RUREYMGCBSZIYx5GWQrSisMJloIswsuOLXh92BOnKQW5+1B2YEIpCGA1es8OFNF7fuCNoii+HhhIEITLAPwdQBKAeM99D5knJoeYhQuRDaDU7HR//nPfvzlK6ZeVEUWZpBQPCWVl5peFFXjKtFTq+h/+YFjSq0gDStT7TM+HNQZApjw9eVmmJkLCdu+PAOBa1XeZzIYNQX++Xe4elWWRBAvGNCl+8xtqUZWSBPrRj/r9dKXehDW0RaPRnadAysowD8A82vEG4TajImawntTggkIbv/tucwTxUCp30eCyXqEUgCD9QTB2HNQUd1kZ7lAIMgPAB57/XS4Xpk6dilmzZvWxwjALpRd7LS/3dlwQkMPM/DhxwcFp7YEU1vIdyko9O8tuJZGRkZg9ezaGDRtmSxehRiGnYDfDKpW2m0KjYLHfGe3RSCvcUpATCMtl5TSlICks14lTYEUpeLHf/2uCKQQBQBTF1wRBWAvgn373caUgi+zYgdNJSfjHP/6h6farr74aL7zwgqp70tPTsXLlSt/3U6dO4dlnn5UMv3btWiQQWEw1NDRg48aNqmQJ5PLLL8fWrVt1xWEHpk2bhrS0NLzyyiv9roWHh+POO+80LO2nn34aZ86cUQxXWloa9PcPPvgA+/btoyyVNCNGjCDaAXrs2DFs27Yt6LUbbrgBGRkZ2Lp1K8oJLUxuueUWxMfHqxHVx6ZNm1DHgKVcMO6+++6gZ7c88sgjaG9vD3rPrFmzMH78eOI0zp8/jyeffFKriNRISEjA2rVrqcW3QUKh6qWwsBBXXHFFv99feuklHD9+XHO6Un3RStT0JRJKS0vxr3/9C59//rmm+yMiIlBcXIzDhw/3uxY4hsi1dT3MmTMHJSUl1OM1C1EUUSah7Bo8eDAuu+wyU+WR6m+CIODee+81NO0XX3wRJ0+elLy+bNkyDBw4UDYOuWeSHoqKinDJJZfgscceUwzb0dGBb7/9Ft9++y2qq6vR3hFoA3iBPADvA/DauQ8aNAiLFi1CWloaFbn98X8p1/PybgeloJMXIMwkVBd5rMRMS0G91sOhrFT04oQ8qGH27NmYOnWq1WIYgtVnCnL3ocYyevRo3XHYob/bTUnhZPehtHBafuwAtxRkB1aUgmM9f78VRfFluYCiKG4VBOFbAIPR606UwyK5uehJTUW9xh1uPQUFqu+NSk3t42e/JyJCNg6xsBBITFSMV6yv15wPL935+brjsANtWVnozMwMmtfw8HBDz0FoTE1FfXe3ckAJGdq/+87UOmrNzCQqD7GrS1quoiIgIwNNaWmoJ3CFC3javUr3oV4aU1NBlor59BQUICw8vN/v55OS0CGxYNyWlaWqTXafPctEPxaSkqj2JaU8tWRkBE2vOT0d9Q3aPHgXFRUxeS5KS0YGcV8ioqgIrRJjIglRUVFoz85G/alT/a41Bjzz6pOTDVEKdubmMllXxIiiZPmTjsM0kZJFEATDZWlOT0d9U5Pk9a68PEUZutrbDRkHveOMXNytra348MMP8dFHH0mO61LEJSTg+ssuw5AhQww9F1FvOK2Wgk6D5TKw4+Iuy+XpZEJZKcjPFJRGLk+kLmedhhlutbn7UHrk5+f3mU+63W5cdNFFQcOGUtmxOF4Flj8r9ZGfny+7UZHTl1DdRMZKe3UyrCgFU9HrOpTUTOdj9CoFUw2TiKMbsye1Rh1UHKqTcy2oOUjaCuQsA1iQLxhFRUUIDw9HZ2dnn99jY2ORnp4OwDy3HKyWESDt1sWJEwlWLEL0yEFjN6kRsOZKJiwsTPKss66urj7fjWrrLPd7Euwuv5mQlJVR5elyuSTj7u7uxt69e/Hee++hTeKMWCnC3W6gqwurVq1Cs+eZaTWsjTN2SM9IrJwnGLXI46T6UYOVY1iwdOys1GOFUCsDJ6876FG6mdEOuKUgOcuXL0fKyZMoLy9HUlISJk6ciPz8/KBh1eTdzOdxqIwtrFoKTp48mRmloDc/dl03cnJbtmud2AlWlIJx6FUKnicM7w0XZ4QwHDromdTScJ1Ea8eZGTvTnIIoipYN3CRlPHz4cF33W4Hb7UZJSUk/16bjx4/3yTx+/Hh89913VojHDFrOelDbVvmkhA4ZGRmq3LaGMmFhYUHd4gK9ihJ/uFJQPU7OWzBozIuMtLILFndlZSW2bduGU0GsZeVwuVwYM2YMrhw/Hti4UVK5ThNV7kMl+iu3FOyFlwEvA1YYNWoU2tvbMWTIEOzatUuVRX4oWwrSwgl5CCRULT705I2GsjQULAXNaj9utxtz584lCsuqUtAI7NB/WSljO5QVSzjtucHdh7IDK0pBL7zGHQTrgxNXCtKHZUvB8ePHY86cOZLXrZZPjkWLFiEmJgaHDh1CWFgYRo0ahWnTpvmuDx48GBEREardqamF5TKSans0JxKsTEpYsQjRKod/22UN1tq4y+XiloIGwlLeWJDFShkCLQWPHz+Ojz76CIcOHVIdz7hx4zBjxgwkJycjnsFzcI1QCrLyXLBL/HqgOdaatcjDcnmyTFRUFK666irf97feeov4XjVlLhVWryKEuw+1H062FNSDGQo7JygFWUTNxl1uKUgfI8q0pqYGx44dQ0JCAgaHhyOSegrmYgdLwVBprxzzYU0pyHEQrFsKkmLGzjSnwOqDNDs7G0uXLpUNw/KCmsvlwpw5cySVmhEREVi5ciWeeeYZRddqTm2LWtyH2tVSkOW2andYc+snCAJXCnKYwmhLwbq6OuzcuROHDx9WdX94eDhKSkowY8YMJBKcF20EpGXjcrkAmUUy3udCByP7UyhC29o58B1QbblyS0H9OCEPanCyUtBql8hWWgo6zX2oGtTkXYvnH5ZgsfyN4KWXXvL9XyiKuFlDHKFSVqRccsklstedZilICivrb07GubMOjuVYPThx96Hmw6r70IiICF3324GCggL86Ec/QlZWlmFpsFxGZpwpyMqkhBWloFY5WG5HrMkmpxTk7kM5amHZfWh7ezseeOABPPTQQ8QKwejoaEydOhXvvPMO7rvvPlx22WWWKQQD0TM+cktBc/PDyrM9ED72Wo9eJYbVSkEr4ZaC0oTq4q4cSvmWU5aSjuHcfSj72KWcpWCx/APLlHYZnz9/XtN9NMpq4sSJuuMArG93ERERGDp0qOb7WWx3SnD3oezAmqXgJEEQfkESzvsPYXiIovgrzVJxNOEUS0GuFCSHVfehJGk7YWdmWFgYcnNzZc9ecmpbDKUzBZ1ah5zgSJ0pyC0F9ePkvGnBqvI4evQo/vSnP+Hs2bNE4SMiIjBt2jRMnToVkZGRmD17Nnbv3m35GE1rs5kdlIIcOnDlAF0CN8sEQ49bT6MsBVm9nwWckAc1OOF9VAqrLQX1pMEtBbXD6pmCLJaVEVg9N5aCRvnn5eWhsrIS1dXVfX5PTExEvYb4zC4rl8uF3NxcLFiwAKmpqbJhQ3W+yGr7dRKsKQUv8nxI8LaOBwjDc6WgyVg9qaW16MLdh5JjpaWgHFZaP5idnpH5YLkdm2EpGKpwS0Fr4+TuQ0MDFsrZ7GdlS0sLdu3ahU8//ZT4nmHDhuHSSy9FQkJCn99ZGOtpKAVZaAckOMlSUGrjhRR2WNw1aqMk67S2tlKNT085smApyPqGTE5/rF4/YRUaCjs9a0N2d2tpJdx9qLUYbSmoFRplFRYWhlWrVuHNN9/E999/j9zYWADAzTffjN88/TRxe7KqTO666y64Bg4kCsti2wKA3NxcVFZWqr6PWwqyA2tKQaNaOm9JZlNZCZcgILGuTtPt7ooK1ffGR0UB5eW+72F1dbJxCMePAzExivEKXV2a8+FFS37sSGR1NcKBoHmNCqgf2sSfPYtWiTKOi49XTDvq1ClT6yi6psaQ8og5fZpKuw9G/NmzaGO1HZeXAw0N/X5OOHdO8paIqipVdeBSKFuzSAgLo9p2lPIUW1sbNL3Y2lpN5RFRVQXEx6u+zwy05kmS8nJdY0sCpPt0bHe3r15EUTSsbUZUVQEBChi7IVU2Um3bClnCKPfrYMSdOSPbTtwVFYpx0JjPdHR04PDhw9i7dy9a29pQ6Pk9DEA2gH0AOgLuSU1NxcKFCzFkyJB+8e3YsUOXPEYg9/KutOjLLQXNzc+ll16K559/vt/vo0ePNjxtJyiIWaKlpUUxjJpy5WcKcoxAz/PBzlhtKWiV+9BQt37jloLW4mSliiAIiI6OxrJly3p/KC8HfvxjCIKA7OxsTcoqM1Ez3ls9X0xNTUVXwPtffHw8brnlFvz2t79FR0fgmxsdnNx+WYEVpeC74Io7Z7FwIWIAlGq9v6xM270//anv32Sl9MvKiKJ0K8VDgtb82JRSqQu/+51had6gFODf/1328njPx+7M9XwkIWz3wVip+U4TkMhXqYZ7pMhQis9Mfv5zalGVkgS6665+Py3VmqCONmg0l3o+1Cgrw2wAs3VGM0Lqwq9/DaB3R1WpzjQkYbi+SCm1WgA/SuUu/t//GZr25UoBCOq6AMaX5wwAH3j+z8rKwty5czFo0CBJi669e/caLBEZtCwF7bBQZQcZSRkwYABiY2PR3Nzc5/dRo0ZZJFEvWss4LCwM+fn5lKWxByRKQTWYpZRz4pmCHG2Eap0rLfzSOFNQCSOVgnawMDeK8eODr7AkJSX1+41bCtKHVaWK0Yp+NQo3bxmxWlZKmNHu5s+fj53HjvVJ8+KLL7bNewtHGiaUgqIozrFaBg5lduxAe2EhHnnkEU23r1y5Eps3b1Z1T05ODq655hrf9/r6ejzxxBOS4W+77TZER0crxiuKIsp0Lopef/31eO6552w/0QGA6OhoxMXFoba2tt+19PR0NDU1BXXfEx0djdtuu80wuf7xj3/g9OnTQa8VFRXh8ssvl73/wIED2L17twGSBWfUqFG4+OKLqcf7zjvv4LPPPpO8Ttrug7F58+ag9e5PRESEYTuF5Fi5ciXS09P7/KbUd6dMmYIpU6YQp3Hq1Ck8++yzmmWkRXp6OlaupKei3bBhg+z1oUOHYvHixf1+37ZtG475TQ5JufTSS4Na+7DA9u3bceTIEWrxlZaW4t1331XlHtGf5ORkTJ8+Ha+++mq/a5GRkVi/fj2A3pfoBx98UJesUixevFjX4ecsINXGR4wYgQULFjAhS1hYGO6++25D0966dSvKZawRr776auTm5srGUVFRgS1btqhKt6mpCW+//Ta++/572XB5AN4HUA0gNjYW8+bNw7hx4xxnOcHPFFTGzPxERUXh5ptvxiuvvIKKigokJydj5syZpjynjNj5PWTIEISHh1OJy24YrRTUcx4hjfTVYtcFzlDGyX01VC0FQ53i4uKgv190Uf9To3g508fJ7kNDyeqadL54ySWX4M0336Se/vDhw5F0zTXAhg0YN24ciubMQWFhoaJsUng3S3zx+ecYC2DXrl0YtmgR8vLy+oXjGAsTSkEnIghCBIBrAVwPYCSATAB1AL4H8E8AT4qieMZEef4PwA/9fjouimKRYQnm5kIYMAD1ycmabu/Oz1d9b2J6OlBU5PveU1cnH0dREUCgHBEAzfnwyVJQgIaUFHR3d+uKx0oSEhKQk5ODuXPn4l//+hfqA86zAtD7W1RU7yeAzpiYPvVDm+b0dNR3dga91pKRoZh25+nTuutZDW1ZWYaUR1tWlmw+xMJCze5Dm9PTg9a7P8F225tBZ24ukJPT5zexp0e2LNqzs1XVQZfbbWobkSI6LY1q21HKk1T/acnIQL2Me1YpOnNzDR0L9NCSkYH6mhoqcY0cORIoKkLbN99objfhaWkQCwuD3u92u33lKHZ3G9Y2u/LymK0vUqTKpjUz0/S8ScniX59G0ZKRgfr6esnr3fn5QEGBbBxdIJ8T9fT04KuvvsIbb7yharF+1JgxuObSS3vdjtsI/5dircoeu+y4ddKZggCQlpaGtWvXoru7W/UZg0ahpQyGDx+uuAnOyQQqQ/Vid/ehgWcPm4kTNsIaRSgtZPujZxOEGQo77j7UGLxzucjISN9vJSUlQTfmhnpZhRJGKwXVxG8HxRNpXseMGYP9+/ejzoBjRbKzswEAs2fPBgoLfb9rrctt27bhu3/9C2MBHDx4EB/V1GDlypUo8nsftkPd2B2uFDQAQRCGAXgGQEnApSzPZyqAHwuCsEYUxddNkGcSgHuNTicQPZNaFnZXBsalZ0CyyyKPHD/84QWdst12sZOk7eSXMH+M3qVpVTkGW3xQ6rN2nWSY3ZdoL1axPBZqkW3w4MH49ttv+/3udZejN79SC9RdXV0QRVH380kJluuLQxeSuiZtD9999x127dqFqqoq4vQL8vOBkycxd+5c1NtMIUgTu82xnITZCkHa9ebvMSUUUeP9gQS9loJWKwWt3IzKlYLa4GN5cOxsKRjq7kO9rFu3DtWRkUhOTkZsbGzQMHzcMB5W1j9YtBRkpWyCQVpecXFxuPnmm7Fv3z7U1NQgNzcXsbGxeP/ppw2WUB0NDQ0oLy9Hot9vXV1d2LNnD1cKmgxXClJGEIQ8AG8B8JqsiOg9M/EYgHQAFwOIRu/xVFsFQVgkiuLbBsoTDuBvAExfqbd6UkLTPRNXCvbFbnmhudDJOlbnw+r0jYSVSQkrSkEnoiWvAwYMQE5OTh/3w3PmzMHAgQOpyOR2S0/Venp6EBYWxpWCGnFy3rSg91kpiiJOnDiBd955B98ruAr1JywsDNdddx3+dv/9wPDhxPexBml7kluosMtmCydYCo4YIXlaqyw0x1sj3IeGKjExMRgwYIBiODNdgFqtFLTSUtDO3nGsxMn9Xk/eaJwpaKVSkNM71wt0DRgItxQMHVhSCtq9jwaWQ0JCAubPn+/7fujQIVPTJ+GchLepb775ps93u9eNHeBKQfr8AxcUgscBLBdF8XPvRUEQ0gA8C2A+gHAALwiCUCyK4nmD5PkJgNF+st1gUDr9YN1SUE0aLpdL184lrhS0dgGJRaWgUenRbPda7rXKUjDYhIG2pSArkxJW2qpdFq/VoEU2URQxZ84cTJw4EadOnUJ2dnafHbB6+5ycUrCrq4srBR2CGeVs1POhu7sbBw8exPvvv6947qw/MTExGDduHC666CJcakN3oYH4l59RbtI49NCqFDQL3g7IycrKwtzVqzWfmS2F3S0FuftQNpGbs4WK5xq1WD1HsruloNQ5YxMmTDBaJFWw8q7NsQdy46XTxlKW3yuMjJ+PCcbDlYIUEQThUgAzPV87ACwVRfFL/zCiKJ4RBGE5gC8ADASQAuA+AP+fAfIMA3C/5+tmALtgolLQ7JfZwAGDtvtQvfc76eXebnlhUSloFFbnw+r0/aE9iWBlUmJ2GRf6+YynAUtthAYJCQkAet11DBo0iHr8cu7surq6EBkZyZWCGomIiLBaBNvh3x66u7vxxRdf4N1331V1dkVmZiamTZuGESNG+M4AM6OdlZSU4LPPPjMsfr0KAO81FjdemZ2e0fHPnj2799xXi+GWgvrwPn+vu+46IDOT6B61m0K13qslPO37uVKQTeTmbE7u90ZtTGXdUtBMpPIwdOhQ/Otf/+o3Jhjx3qIH2hs7OP2xS1smgbalIMtlY6VS8KKLLjI0fjlYrhOn4Cz1ufXc6ff/pkCFoBdRFJsB/MLvp9sEQaCqoBV6e+bfAEQCqAPwbzTjJ0XrDg2t1hpq4jDTfQytOFjBDgtWatN2Uv0YBcvlGEqWgmYSFhYmuXDqxD6jNk9hYWEYNmyYQdL0Imcp2NTUhJqaGjQ0NBiWvhPqOTc3N+jvkydPNlkStiGta1EU8cUXX+Chhx7Cyy+/TKwQFAQB06dPx7p16zB27FifQhAwZ0ev0efF0VAKqonHyRhVBt6NAOPGjdMchx3nArxNaUOvpaDesFwpaM/+pkSoKgX1YLUXKT3tmYU2nJqaihtuuAFpaWkAgMTE3pO8srOzrRSrHyNGjDDNwov3NftDSyloB4z29iWF2+3G2LFjNd/PYR9uKUgJQRDi0OsS1MsTCre8COBRAHHotRacBYDm2YLrAUz3/P9jURRPW/HgY10RZFZcgiA46sHE4iTKbu5DjSJU3YeaAQsvdYC5bXXZsmXUralY7mtqZZs1a5as0k5LnIH3ysX/6KOPao5bjQx2p6SkBJWVlX1+KyoqQnJyskUS9cdq11ikMpw9exbPPvssvv76a1VpDx06FBdffDHS09M1p60XVtqyEZaCZmMHGYMRGRlptQh94JaC5mPmplCr3Ydaea4ftxSURq5snPwepac90zhTUAknuw8Fes9Av/POO9He3o7I6mrgV78yRSY1REZGYvz48di/f7/VojgWVtYzaMgRSkpBOYxY/0tMTERaWhpmzJghublWT/yksNJenQxXCtJjGnqt8gCgGcA+ucCiKLYJgrAHwCWen+aBklJQEIR8AL/1fH0PwEYa8aqishKIjUVyfT06OztV3x528iQSVbiiAoDYyEigvNz33dXaKhuHcPw44LdLXY6k8+fR1tamSh5/wk6eRMK5cwhvbdUch+X4lW1sba3q+onr7OwTB23izpyRlCm2tlYx7cjqatV50kPM6dOGlEd0TY18PsrLAY2LYnJl7CXB5UKnieXoJezkSSDgJVtsb5eVN7K6WlUduCsqTG0jUsTHxFBtO3J5GpOQIJmWlnEA6C1HrW3QaBT7TwCzCgoU6yLq1CnN7SY+LAzhlZWWtrvwykriZyWrTExLQ3hJCQ4ePIiWlhYUFhZi9pQphj6TpJCqy4iICMPlUeqz7ooKoL096DVRFPH666/j/vvvR9v58/A6FQ4DkI3eSW9HkPsKCwsxf/58FBQUyMrmhJd3/5dircoerS/WTlMgGZUfO5WTWlnj4uIMkiR00WspaLVS0AmWgk6EWwqqx2pLQb1KQbMgKSfWNscEcumllyI5ORkfP/+8oenwvmZ/aM2n7eA+VA7aSsEpU6Zg4cKF1NLXg13rxE5wpSA9hvv9/6UoiiSz8E9xQSk4XC6gSv4MIB696zO3iVb0JM8gcqdCMEnKylCq5b7/+A/fv9GAfBxlZcTR3q5FloC0btMbh9X4ldcCz0c1//VftKTpx7U67x/m+did6bhgIhwUFe0+kGs032kCQfIVCYUxQCX5lOPTxX33UYuqVO6iTHtZ7PmoRkcbNJqLPR9iCPKi2CeV+PnPrW13DNeXGsZ6PlZTKnfx9783NO2lSgFk6loAcJnnE4wZAD7whhUEFBcXY+rUqRg4cCAz1vqsnINnxI5esxe3+GIaHWgqiGfNmqVXHNthdF/hZwpqhysFpZFbmnHCBhkpjPJWwy0FL+CEZ7MgCJg2bRpyOjoc8w7C6Q+3FKQH7fcKlsYRrhQ0Hq4UpMdQv/+PE95zwu9/KvoIQRCuA7DE8/V3oigephGvanbsAIYMwSOPPIJ2iV3nctx0003YtGmTqnsyMzNx/fXX+763tbXJula76667FN2+efnrX/+KlpYWVfL4s2bNGrzwwgtoamrSHIfVlJaW+v7fuXMnDh06pOr++Ph43HLLLZSlusDzzz+PqqqqoNeGDx+uuNvlm2++weuvv26EaEEZO3Ys5s6dSz3eDz/8EB9//LHk9TvuuEOzO8gtW7agoqJCNkx6ejpqa2s1xa+HFStWIC8vr89vSmPAxIkTMWPGDOI0jh8/jpdeekmzjLTIy8vDihUrqMW3YcMGyWv+/T6Q7du348iRI6rTW7ZsGQYOHKj6PjN4++238cUXXxCHlysfL0p9Uo709HRce+21eOihhzTdT4MrrrgChYWFygE5REj1t4iICNxxxx2Gpr1t2zYcO3ZM8vrKlSv7uff89ttv8YMf/ADlx4NPbfMAvA+gGr0vkWPHjsXMmTORmpqqSjYzXt7toBS0i/tQo2HZUpDFxd3hw4dj/PjxVOLiXIBbCmqHlutSJ7ZdOYWpE/NLAxoKu1CwFORwlGClPbKkFGSlTIzCaKVgqFgKOvX5zJWC9PBf/aghvOeU3/8pegUQBCEVwIOer98AMM4sS4ncXKCoCE1paZqUaT0FBahXedZPTGoqUFR04Ye2Nvk4iooAQqVgU1oaGhsbVcnjj1hYiMbUVDTY2QWbX9m2ZWWhvrpa3f2JiX3rhzJNaWmol3DP2pqZqZh2V0uL6janBxKZtND+/ffK7V6jUrApLQ31zc2yYWLS01FvwSJEV15ev/LsUajTtqwsVXXQ2dVlahuRIjk9nWrbUWwvErRkZKC+hvRxd4Hu/HxDxwI9tGVlof7kSfIbCPLR9t13mttNVGoqwoqLLW13wfoWRztSdRkZGWl4ObdkZKD+3DnJ62JhIZCR4fv+z3/+EzfddBPRhqZhI0ZgycUXIyVF23TWCZaCpGlxS0Hr4mfthV6PPAsXLkR0dDTS09ORlZUVUrvi9cDPFDQHWpaCLC0I0oK7D1UPjfHNKqWgmTip/ajNS3h4OCIiIpCamooTJ04ohndSWdkRo5WCWurXLv08EKstBblS0N7wtwd6+B/kQHpwnH84GgdB/BGAd4v37aIoqjfR00lUVJTvTIvu7m5NnXj48OGadjZ6Xz46OjrQ0NCg2Gk7Ojp8ir6enh6cP3/eF0djY6PPwrGtrU33YKRHoWgkGRkZyMnJIQrb1dWF8+fPA9A+IDY3N6PVo7jz1hPQO9ifP3/e9/La1NTkO8Oxvb2dqJ7kXj47OzvR0dF72lFrayuaPYotGnnSivesTaW2512M7e7uxvnz531tsaGhIWielF7CveXf2dmJ+vp63+/nz5/39TupeiLBykWpwDz5/x8MrzsX0rbHSj/2tgFa/UkJubanhe7ubtVtj8YYQdqf1ODd9CLXn7Scq+uPKIpMLPayVk9SYznQ2/e95d7S0kJUT2blSQ6j86TUFgVBQHt7O86fP4/7778fV199Ndxut6/9xcfH+86i8c730tPS0B0WhvkLF2pWCHrz2+IpV9qvf+2RkeihYIHnlatHZgHfW0/B5o3e+5T6c7PM5hvRE0dg7O3t7WT9KSlJfX9KTESnp035tz1SOiIi+pQZaX/yz6dUmavF2wbqm5rI+5NH1ubWVl9/IkUE0BgfL3ldbtzzIpX3xMREFBYWIicnBy6XS3qMCA9Hk8YzzWmVvwj0tj1dsfTHW5/nm5qIx3Jv+yfJk8vl6tOfgvVrqTJSo5ATBAGd4eGo93tO+MtKSlNcHNo8fbq9vV31/MNXTxTGCKX3kebYWKI6aG1t7TtGeNq1qnmEljyRjhGkba+pCd1hYb50pWhqagqep6goXz9WnBt5wnUFjCX9xghPuXZ2dZHNIzo70ZCQcCFPJGO5y4XzfnmSIrB/NiQkoMMja2trq+xzxxu3Up5I+mSPy+WrJ3/0zOV7enogiiJ6BAEdGjfmBiPYmCoIAvkcNjLS15/kMHIeITeHbe3oQGt0NFFZuFwu/OQnP8Fdd92FadOm+X7vcbnQIzHn8soq25+ioy/0p4A8SdHZ1YX6xEQiuaVoiovzzfdo4N+ftHhxk6NHEIjryR//ua5cPcnhbdd92p7bjfNNTaotBeWeuT0Sc2+teONT857r7bdAb3/yl8Vbp1L9SRAEVfXkLdd+77lNTb56UpobqcV/PuA/RtDYYEStP3niSPA8B52C9atMziHK73/SlUX/EVn9SOqHIAgLAKzyfN0kiuK/9MSnlSlTpvjc2tXW1qp+eU5NTcV3331HtLsnEO+AdejQIWzcuFFx8efzzz/H5s2bAfQOwGVlZb4J1ObNm3HgwAEAwN69e1XnI5DNmzdb6sJFiilTpiAzM5MobEVFBco8ft217mLftm0bdu/eDeBCPQG9D5yysjKf28ktW7Zg7969AIADBw4Q1ZOcwubo0aM+d6e7d+/Gtm3bqORJD9988w0A5ba3ZcsWAL39qayszPfw3bhxY9A8KSmu3nrrLQDAsWPH8Mgjj/h+Lysr87kGlaonkge+VTtoRFHsl6e//vWvsvccPXoUO3bsQFlZGU56rMPk2t4rr7xikPTq8E4WafUnJaTanta6rq6uVt32aIwRJP1JbZ527twJQL4/ffvtt6ri9EcQBDQ0NFh6No+337NUT4D0WA4AjzzyiM9N5s6dO4nqyaw8yWF0nkjmVh9++CH++7//G//1X/+FhIQElJaW+l5+Vq5ciXHjxgHonT/ccsstuO6661Cbno5GnQsg33zzDXbu3w8A6KLsVeHAuHFojovT/Xzq9CzmtUdFBb0uCEKfegqk0VOOcnK0t7fLPmvaPUrZDs9fLwcPHlTuT/X1KCstRbtnYYi4P61fj2Me9+zetqemLA+NGIEmP8UYSX/yzrtFz+JDcxyNvZMXyv6RV14h708eWbft2ePrT6R0REZi88qVktflxr0uz7jfJKFUPHv2LNkYUVyMFz1lrJYez+J4S2yspvv94ykrLfUtqNCm7MUXicdy70s6SZ4EQejTn4K+D3ryFFhPlZWVqvrJseJiPOLX98vKymQ3CARjy4oV2Ovp0wcOHEBYEOWGHN56ojFGKM1bti1dKjmW+vPuu+/2HSN27QIANLS0kM0jtI57pGMEadt78UXUetxz79mzRzK/mzdvDp6nKVOwxRO34tzIE3+FJ5wvT4FjhOeZe6yqimwecfw4Nq5deyFPJHOjhASUvfii4gbTzs7OvnlauxaHPG7Ld+/ejTfeeEP2fpI8KW0W7erqQmNioq+e/FE6PkMO72J+U3w8Do0YoTmeQMpKS9EdxOsV8Rx23Dhff5LDqHkEID+H/fDrr7F79myishBFEWFhYfjss898cQNAY2KiT5EdyKuvvtqbJ7n+NHv2hf4UkCcpjlVV4ZH164nklmLLihW++R4N/PvT559/Ti1eAGiNiSGuJ3/851Ny9SRHeXm5Ly5f28vLQ9mLL6reUFtWVia51uV7vlOaw3jnH7X19cTvufs9YxvQ25/835W8x5RI9SdBEFTVk/dIpn7vuS++6Ksn/+cTDUVzo1/9+48RSuM2CbT6k7d1rPU8B52CwJI5pp0RBOE1AJd6vv5OFMWfEtyzGID3ELMmURSlt5LKxxML4CCAIgBnAQwTRfFMkHA3A3jC8/W4KIpFWtKTkGEkgINRUVFwu93Yu3cvhg0bhrKyMiLrmlmzZiE7OxsDBw5Ea2sr2tvb+wxoJKSnp+OOO+5AR0cH2traEB0djf/+7/+WDH/fffehq6sL8fHx6OnpQUNDAxISEny7QiMiIhAZGek7l0zPgHTrrbdiy5YtRLuLzGLJkiWYMGECWltb8fTTT0uex+flZz/7GZqampCUlITXXnutz4OJhKSkJNx6661wuVyIjo721VNCQgJEUUR9fT3i4+MRFhaGpqYmuN1uREVFob29HR0dHYr19Pjjj0tO2EeNGoWlS5ciIiICra2t6OnpQWxsLLq6unx5+uabb/DMM8+oypMeSkpKsHz5csW219XVhbi4OHR3d6OxsRGJiYk+RUFUVFS/PL399tt47733JNMtLS1FYmIiOjs70dLSgkTPQu758+cRFxcHt9uN5ubmoPW0adMm3+RLivz8fJ+CzUxWr16NvLy8PnmqrKzE3/72N6L709LScNNNNwGAZNv77LPPfJMzKxkwYABWr14tWU9q+9ODDz4oOQl+4IEHJNvea6+9pur8PS/XXXcdsrKyVLU9GmMESX96++238dFHHxHn5cc//jFiYmJk+9OOHTt8L+BqycrKwg9+8AP8/ve/77ND0ExuuOEGDB48mKl6khvLgd4XiJiYGISHh/t2GirVk1l5+uUvfxm0nKOionDPPfcYmqcXXngBR48elazr+fPnY926daioqEBjYyNcLhcSEhJ8iun4+Hh0dHQgISEBV111VW8/rqvD3Q89hLJ77tGlGJw/fz7Gp6UhZvhw/PHee9FAyWVuYl0d1j/6KB5evx6jL70UH374oea4Eurq8MOyMvxfaSkaPfXiz09/+lO0tbUhJiYGTz/9dD8lbPz58/i3DRuw8y9/wR4JF+ypqalYtGiR7yW8nwznz+OHGzb0K6PRo0fj8ssvl+9Px46hceJEJH76KYQBA8j6U3k56ktKELN/P8IHDfK1vccee4xoTptYV4c7HnkED91xh6/M7r33XsX+dOzYMTz99NOKZa6WgS4XVv3iF6j/8kvEDB1K1p/OnoV70CA0HzoEV1ER/vSnPxFvFkyoq8OtGzfi8bVrg7oO/ulPfyo57h3fvRtjL79cMu/XXnstsrKy5MeI06fROWQIyrdvxz9k5oZy8tMo/4S6OqzZtAlP3HQTtb4N9L743vSf/4nzX36JuGHDiMbybX/6E1b94hdEeSouLsby5ct9/emRRx7B6dOn++UtWBkNHz4cEydOxN///nfFfFw5fjyGXXUVWj79FImjRgHobXt79uwhPpM4sa4Otz7+ONyffIKoIUPQ3t6OqqoqPPXUU0T3e/OyZtMmKmPErl27fAuGwWT9wd/+hr/84AeydRAdHY3169cjPDz8whhx7BjiR45Ez7FjaEhJUZ5HqB33zp8HBgxQHiPq6oABA8jb3ldfIb6kBGFHj2Jfba3kOfarV69GYWFh3zxVV6Nt+HB0ffop4oYPV54blZcjdsQIdB09iqbUVOkx4sQJxAwfjs5vv0VLerryPOLbb9E2cSISPv8cYmGh8tzo7Fn0FBej4fPPkTBiBFwul+QcKC8vD1dddVVvno4fR8PYsYjavx8RgwejtbUVnZ2d+OMf/yjZVh544AHFPH399dfYvn27ZByrVq3C1ocewr0PPog/3XVXnzF7zpw5eOeddyTvlaO0tBTV1dV4/S9/wV1//jP+vH697mMBEuvqcHOQMXX16tXIzc1VnsOeOoX2YcPQ8emniB8xQrJeAOAnP/mJIfMIpTns17t2oWDZMvxl3TrF8nK73fjZz36G9vZ2lJeX49lnnwUAxNfXo7SsDA/efXe/ONavX4+MjAzp/lRVhdYRI9DzySeI9Xgya2pqwiOPPCLpXeaBBx5A59GjaJk4EU/cfLOmevaO5Y/deisaKMx7EuvqsPaJJ3z96fDhw3j++ed1x+sl/vx5rP/LX4jqyZ/ly5fj5Zdf7o1Dpp7kWLNmDQoKCi60vdpadA0ejKYDB/BRZSXx+/fq1auRnJwsqfT1zt9pvZ944+s+ehSNqalE77k7duzA/v37kVhXhzVPPomNN9/sk2XVqlUYOHCgZH+qrKzEixs2ENfT1KlTsWDBgv7vuYcOIWHsWLiOHUNjaqrvmVtWVqZ5nTuxrg6lAXOoH//4xwB6x4h//vOf+PLLLzXF7Y2fVn9KaWzEvD/8AdM878YeRomi+JWuiC2GnylID3+/UKRWf/7hlP1KSfNf6H0vAoB/D6YQNAv/RcuwsDDiHYozZ86E27PTKSIiQtPip3c3SEREBCIiIhQt86Kionw7OF0ul2/CDPS6yPIPp3anZSCJiYlMuH/zMnHiREyYMAFA7wvXrbfeioqKCt+usmC43W5fGWm1FIz125XrrSfvNf/yj/PbER4ZGelzVyZXT3LlGxkZ6Usr2s9sXm+e9ECSpyi/HbRhYWF9wvmbrQfmSQ5vHYSHh/smDAD6xC1VTyRt2Kp2LopivzypMe0/c+YMPvroI8yfP9/3W2Dbi9W5U54W3jKm1Z+WL1+OrVu39kvH635Fqu1p7TNa2h6NMYKkP6nNU0xMjGKeInXsTEtOTobL5dL8XKQJS/UESI/lAPrUhbeOADbanhxm5SkYhw4dwu9///u+7nwCXAw3NjZi4cKFGDduXN966u6GS6c1a2RkJGI8cdJ+Gke2t8MlivrPB/P8dclsqEyUUYzK3edLQxD6tJ1+1z1xBOYkKiqqj5tX/9+9hIWF9S54B3F/I9v26ut9Z3B7256asozo6OiTd5L+5J13k5S5GrxyJ8bFAZ5d1or9ydMHYqOjAZUusgQA8RKbI10uVx93vF68495JT31K5Z14jOjsRJwG115e+eVkUBNP0vnz1Pu2l6S4OF8bVRrLfe9+GvpjsDmuVBm53W5VZwqGd3b2tktvnpKSVL9/xjU1+c4Nj4yMxIABA1Td760nGmNEuILFd2xzs2IdTJo0qU/5R0ZGItITv6p5hJo8efq74hhRVwdARduLiwM8LtnknsX+awZ98tTW5ht/FOdGnnDugHD9xghPOYW73WTziPBwRHgWQonmRmfPwtXT05t3hffDwPgSGhp85R8dHS07j/L2M6U8Kb0ju1wuuHp6EBbEzSiN91uXKCJCx/ELgQQbUwVBIJ/Dtrf7+pMcRs0jAPk5bHREBKIJN+B46ycyMrJPm3X19EjOT73hZPtTa+uF/hSQJynC3e7e/OogrqnJN9+jgX9/kht/tOASReJ68iIIQp92JVdPcvRb36uthburC0lxcar7rHd+EGyjtEti7q0Vb3xq3nP9yyuxvr6PLN5rUv1JEARV9eR9fvd7z42LAzz15P980rtWDvSdQ/mPETTGXlr9yeUZ99QcrWQH2NFS2J+zfv+T+WMEsvz+P6clUUEQxgO42/P1X6IobtISj1GQduLAlybSBTR/AgdwmkoeGgfNs3wwqSAIyM/PVxWeNfQeNMxinuyIncvx/fffl73OimU97TIePHhwPwVqeHg4Ro8eTTUdO8Ba+50xYwYAOpNtDicYPT09eOutt/D8888ruqr75S9/iSeffFLTHE0JMzaUGN2//eOXe14ozVe0brxyEkblx07lxNJ7DKsY3VcCxyU196rpy1LhaNSbdx5hNhdddJGu+xcvXozZGlzS2QGtz4dQRq5cSN/PlMqWRhoca/CvO73jLsd4pJRvWuKRQu2Zgv5/7YaesY1GeCNhqU5YKheacEtBenzt938h4T0Ffv8f0ZjuGFxQ7hYIgiBnI+3vID07IOyvRVF8TaMMkuhZ5Fm0aJGsi4dA1A4Yel4K1cKaUpCGktPsNPUQSkpB2pMCtfdaeaYgyW9a4n333Xfx5Zdf4uzZs8o3mADtMo6JicHNN9+MN998EydPnkRmZiZmzpyJrKws2fu0yuGUvkaK1vwWFRUhOztbVxw0YGky7mSsqOOGhgZs27ZN8dzLhIQEPP3001i6dGk/13m0MDr/LpcLAwYMUNz8oQdaC1F2GCPtICPr6G0HvA6MJ7CMjVpYM1IpaFU7SU1NRV5enuaz2CZNmkRZInaQO2+RJc9CoYZRSkFRFE2bSzvpuaB2EwbHXrCkFLQ7VisFjex/LK1DOHWc4UpBehz2+3+0IAhuURTl/VcC4yXu10qx50NCBIDJft/7n6ish8pKIDYWCefOodPjXkMO4fjxfm4lMrz++gmJd7kAv/POhJ4e+fsVzkbzJ+HcOXSokCUQ14kTxGVhBjGnTwfNP2l5RdfUqKobAIgXRVVlrpa4M2ckZZLKrz/hlZWq86SH6JoaQ8oj6tQp5XrUaHUkV8Ze4hMSTC1HL+6Kiv75amhQL0tAnez58EMc8Jznov20LLrEnTlDve0kA7hm0iTAuwhD0F+1jANAb18Do5Mq1XkiqIfI6mqiOJctW4avv/4aDQ0NyMvLw6RJk3qfjQDiz55Ft0Vn0rorKnzuyDj6kWoLUa2thj4jASC2thaJdXVoamrCJ598gi+++ALdPT0oBBAGIBvAPgD+zq2GDRuGrVu3YujQoQDsa8E1cOBA6i6TAuGWgvSwaztTg9JCB0uysoqZ1r9q02NFoWdVOxIEAStXrsTrr7+u6zwgJyLnIlrJ7SpHO1ZZCpq5qB2qzw1uKUgOS0oWvej1FObF7mXClYIcPXClID0+BNAOIBJALICJACSt9gRBiAQwxe+ntw2VzmwWLgQArCINH+RQ1wEAStWm+4tf+P51Kd0vcZBsMG5UK0eQtIjLwkJK5S76lddsz0c1ModY62WFzvsLoKG9MchFno8kKtp9IJdrvtMEguQrARrqNCCeaZ4Pc9x7r9USYIHnoxodbdBoZno+xBDkZQr6Puzl4hoocelmconow3B92ZFSuYu/+52haV/q+cgxA8AHnv+XL1+Op556qo97YbsqaxYuXIgaQ1MgxwkWYGYrY1iKl9YChd54uBWF8ZjlWcVIS0EriYqKwpVXXomvvvpK1jou1PBuUukIOF8uMzOzz1lKHLpYqRTkC9vqMdOrF8dcaLkPlat33iYuYDeloOh3DjwfO42HKwUpIYpikyAIb+HCesvNkFEKArgSgHeb2DkA72pM90kAT5KEFQThZgBPeL4eF0WxSEuaROzYAQwZgs2bN6O2tlYx+L333ttvMDl+/Dheeukl4iRTUlKwevXqPr9t2LBBMnxpaSlx3P/4xz90ucxav349tmzZQlQWZjBu3Lig5zQ0NDTgmWeeQavfIbSxsbG47rrr+uxqfO+99/DJJ5+oSjM5ORk33XSTdqEV2LJli6SLGqn8+lNRUYEtW7YYIVpQSGTSwv79+2Xdo91zzz2aJ0kvv/wyvv/+e9kwAwcOxHfffacpfj1cfvnlKCoq6vNbQ0MDNm7cqCoe/3FBy/1mUFxcjKVLl1otBt5880189dVXqu9bsWIF8vLyDJBIPx988AH27dtHHJ7kOfLRRx9hz549iuHWr1/vO8w7kE2bNqHOIkvzpUuXoriY1AkBRwmpeUl0dDRuu+02w9I9f/481qxZgwOffRb0eh6A9wFUe77/8pe/xP3332/aS7VRi99r164FysoQHh7OzJmCcmXK3TIbC0vlxC0F9cPPFNQet5mwIANLhIWFYc6cOdi5c6fvN0EQHHuGol3gloL2RYulYKjCipKFJfehrJSJVqy2FDQSluqGpXKhCVcK0uXP8FMKCoLwJ1EU+62YCoIQA+BXfj/9lcDVqL3IzQWKitCSkYH6LoKsFRX1cyfX3dOD+uRk4iTdKSm98fghe39AWDma09NR39lJHD5YWk1paWRlYQJtWVlB858A4MrsbLz77ruoqqpCTk4OZs+ejfi0tD7h2o8eVVU3AOBOTVVV5mppTk9HfXNz0Gvt2dmKafe4XKrzpAepOtBLR1WVcrvXuMjbkpGBegUXhi0ZGai3QHnRlZfXrzy76+rU16lfHF3nzpnaJkhpycgwtC+R0pqZifqqKtX39RQUAAUFygEtoO3YMXV1TlAP7SdOkMVZVARIKAWb0tJQTy4VVTo9z3MOHaTaQmdMjCHl3NPTg02bNuG+++7DmTNnFMPHxMVh2zPPYMmSJUGvs2zBFQy327xXHSvPFDT7RTWULQXNwgkWpXaHnylIBxZkYI2pU6ciJSUFhw8fRnh4OEaNGoXCwkKrxXI03H2oc7HDvMloxo8fj08//dRqMYgx+vkWSpaCVisFQ8VS0GljhheuFKSIKIqvCYLwHnq9j0UCeFUQhOWiKH7hDSMIQiqAZwAM8vx0DkBQf1GCIBQB8DfLWeOxDLQNegZjtZ3OyAGDhvsYuwwi6enpuOqqq2TDsDjx0utT3GkLalZh1QQsWP9naRJBE1baDity0MSIPNn9bAun9qNQoLm5Gddddx1effVV4nu2bt2K4vnzJa+z2k6lMHP3OKmloFIcditjO2GnsrWTrFZh9PuIHqUgjb7MlYLOZujQob7zejnWY5RSkMb9pIRqXwt1S8G0tDRMmDDBNkpBQRBQXFys240otxTsxWlKQVZxaj65UpA+NwD4GEA2gCIAnwmCsBvAMQDpAC4G4HUW3wXgGlEUz5svpjnoWQxlqdPpVXSwtsjDwkuqmbCoFDQKI3eW260c7T7Bk4KlMtYCy/KzKhurcnHYpba2FsuWLcPevXKe7HuJj4/HnPHjgd27LXMVG0qWYUqbmFjceGV2eizWmxdWFnf1KLc4ZOjd3MqCpSALhJLFBoddQsFSMFSxw7zJCEpKSpCZmYnRo0eju7ub6B5W2mNUVBQGDx6Mb775RnMcoWQpKFdvSm1ZrdcUq/uGf15Zaa+A9eViFM7qKQwgimIFgHkAPvP8JACYA+AWAMtwQSFYC+ByURTfMllEU+GWghfuZ2kQsUIpaGX+7abM0oOR+WC5HI2wFGRpEsIxB6eMAzThZUKXuLi4oL9PmjSJWhrvvfcexo0bp6gQDA8Px6JFi3DPPfegpKSEKG67Ke/MbL+kloJKc2Pe55zRHjj2R6+loN6w3FKQw6GHHqVgT0+P5nS5+1DjCVVLwaVLl2LKlCmIjY21Zb6vuuoqjBgxwqe0GjlypKr1Y24pSEZKSork+ycNjHAfGux/jjFwpaABiKJ4BMBkADcB2A7gJIAOAKcB7AVwH4ARoii+ZpmQJmG0VZI/rCsF582bR0ka62Fx0qHXfahTdhMZaSlII30z6OjosFoEQ2GhjAHtcrAifzC4+9C+uFwuDBw40GoxHMW0adOC/j527FjdcXd3d+M3v/kN5syZg8rKStmwKSkpuOWWWzBlyhSEh4frTlsvZrR/qzfNkITlloLGYie5rZ7PORUW3YdypSCHYz1GWgqyYmFuJ7g1vDJalKEsKFm8skZERODqq6/G7bffDgC45JJLEBYWpjoetdcCee+99/Duu+8Sh2cNkvki6eZPkvj0hlcDC+3Vi1PHGe4+1CBEUewA8JTnozWOcvRaGtKS6UkAT9KKjwQSRYsdXKbQcB9aUFCA+Ph4NDY2UpJKnzxm329lfepph0bBUvsmhWXlqiiK+Oabb7Bjxw6cO3fO51vfidix7fhjd/mtwKoyGzZsGCIiIixJ26lMmjQJFRUVOHToEIDeur388suRlJSkK97Ozk5cf/31ePHFF2XDhYWFYcaMGZgxY4YmZaDdLLhYsl73wsdAZXgZcfehJJi90Y0rBe0rA4fD3Yc6Fy3KMaeNS3bOj797SzX5kFt3UrMmVVFRgYqKCuLwrEFSZhMnTgQAxMTEoJ5CfHrCK8GqpaCd+5gcXCnIMRTuPvTC/W63GzfddBNeeuklVFZWIiYmBi0tLZQkVC+PlfebDctuL2ljtSWEVeV46tQpvPvuuz73LmfOnMGOHTsskcVoWGmrrMhBE24p2JfLL7/cahEcR1hYGFasWIFz587h7NmzyM/PR3R0tK44Ozs7cd111+Gf//ynbLjU1FRce+21yMjI0JwWi+1UDrNcSnFLQXtAQ25u8WFvzFKmau3L/tDYaMdCO1Jj+cHhGIVVSkEa95PCQn+nBd/4og6nlAGteneKFzAS1JTZVVddhYdefZVafEbDlYLGw5WCHEPRo0RgqdPRUqKlpqbi1ltvRXt7OyIiIvCHP/wBzc3NNEQ0FRYXrPS6D2CpvenB6nxYlf6hQ4d0nfcQDJYmIU7C6jYqB6uyWSHXmDFjmHAr6UQEQUBqaipSU1N1x9Xc3IzVq1crKgTHjh2LO++8E1VVVbrTNAK7WwoGpqPHUpDFOZbZ2L09mIGT8qIVli0F1YS3w7uwHrhSkGMH5JQIdrEUdMqYoRb/urPzZky1aMmDk9Y3uFJQPUasixppKcgxHq4U5BhDZSUQG4v4s2eRWFcnG9TlcgHl5f1+d9fUKN7rT3xXV794ZO8PkqZk3AT5kCUgrUjP34Rz5+C2wFowuqZGVf4DiayuVl0e8W63rjSViK2tlZQp6tQpxbTD9NaxSkhk0kJEVZVkPgRB0JWmXBl7iTl92tRy9NJeV4dEGhH5lY/r3DlVeRk3bhwOHDhAQwpZYmtrDe1LpGita3dFBcDouY9Rp06pyxNBPZCOl8Lx44DEwln82bNoM7lfTc7MZKKdcaQ5evQo1q9fj2+PHkWh57cwANkA9qH3MGsAuO222/DHP/4R27dv160UtJuyxiqloNawNKyLnIDd2wMN7CSrndDjmsxs96FOsRT0dw3H4ViFUl9wglIwVGFhnLMaO5WB3s38JGGdphQ0o8y0xKclvBKsug91KnyGxjGGhQsBAEtJw//xj/1+ygRQqjbd3/ymz1fZ+8vKiKNdrlYOwrTW6Y3XIiZ5Pqq5/37KklzgCrmLBHWdCg3tjUHGej6SbNigOe5LPR8lLtGcAgP4tZUUqG8Ts2nKwjhzPR/VqBh7zeYiz4cYgrxM9Hz0xLWSWCCKMFxPnF4GAXhT4toMAF/Ex+Nvf/sbrrnmGgBsn09lRrxmLpg43VLQTotP/thJbiPaidNg2VKQlfFWTRwJCQm60wsGtxTkKMHCeGaU+1BRFLn7UA1oHW+dVAZqIM23k5QsoaQUlIN2m7daKegPS+3VqWMLVwpyjGHHDmDIELz22mv49ttvFYOXlpb2+622thabN28mTjIuLg633nprn982yChAgqUpxbZt23Ds2DHi8KRpPfbYY5a4D508eTKmTp2q+f79+/fj/fffV3VPeno6Vq40bml769atKJewapkxY4bvcF0pzp8/jyeffJK+YBJMnDgRM2bMoB7vl19+ibfeeivoNUEQcO+992qO+4033sDXX38tG2bMmDH44osvNKdhNf599dy5c3jqqaeI7x0/fjw+/fRTA6Tqy4gRI7BgwQLD01HinXfewWeffab6vpUrVyI9PZ2+QBRQO7aRPEc++eQTvPfee4rh7r77bsmFs82bN6O2tpZYLr1cc801yMnJMS09Djmtra343//9Xzy+cWPQ63kA3gfQGBuLXbt2YdKkC1t4nPoyIweLloJybnlDsY6CYTflsxHYSVY7weKZgixYCoaHh2PB/PnAr3+tO81AuFKQwwJWnSloB/ehkyZNwscff9zv99GjR+sVyRTM3EzFkpLCH6X8tLe3+7yVsQy3FFSP1ZaCtGHVUtDqcjEKrhTkGENuLlBUhLasLNSfOaMcvqio30890dGoT04mTrI7Lq5fPLL3B0lTitbMTNSfO0ccnjStxtRUNEZEaI9XI+3Z2aryH0hHVZWqugGAmPR0XWkq0Zyejvr6+qDXOnJyFNMW6+pU50kPbVlZhpRHx9mzkvlwuVy60mzNzET96dOyYdqzs1F/8qTmNCzHr3x64uJUtYn27GxT2lBrZqahfUmNHFry21NQAGRmGiCRflSPbQT10E4YpzBgACDxAtOcno76ri5yuXTSnZ8P5Oeblh6HjF27dmHdunX4/vvvFcNuevpplEzqa9PPiuWKmfGalYaaMwUjI+WXZbilINvtjBWLD7Ot1liEdUtBFs4UlIsjIiICixcvRnd3NwYNGmSY+3/uPpSjhBnjqpXuQ1l5bkgxduzYoErBsWNl/Q8xA7cUVM73P//5T6z40Y9MkkYeWnVEy6Umpy/cUjA4Tm1ToaM+51iC3h2WajBywGB5ccKKdO02ILK4I8ZpbYqV9Gmidkwxa0caK2XMihw0MSJPdiwnO8rsZNra2rBu3TpccskligrBvNxcAEBJSUm/ayzXq92fiWrSiZDZDNbZ2cl0PdkdO5WtnWS1E6F2pqAc8fHxKCkpwYQJE5CYSOVk7qBwS0GOHZDrs0atM7Eyzufk5GDp0qU+Bb7L5cIll1yC4uJiy2QyeuMLK2VPC6X81NTU4LvvvmNKyRIMPc9o0mtOw+pNYkaeKcgSThszvPBtWxxD0TMYs9TpWJKFBViceOndKeSUOjbTEsLs9FmHxcVnFrG7/EbB0m5HXkfs0NDQgOXLl+Odd95RDLtkyRL8/de/BsaNM0weuyvvzELuhVZOKdjR0cHkHCsQo1/YndYetEDTUpCjDadbCpoFVwpyWIBkTDVCKSh3r8vlQnd3t+a4A9HT38ePH48xY8bg9OnTSEtLk52rsAa3FCTL986dOzF//nwTpNEOdx8aHD1nlavF6j7EqvtQp+KsnsJhDqdYChr1UOGWguYQSsosIxULJPc7bQKmBqe0IVK05pflcmppaaEeJ8v55bBNTU0N5syZo6gQFAQBv/71r/Hyyy8jKSlJNpxe7KwUtHrTjBc596FcKWgsNMppyJAhFCRRhj87lLFywyHJvSxYCrKw4YgrBTlKsDAHkLtulPtQ2u/NesvR7XYjJyeHCYWg1dZPesln8BiGc3qOQ6KIGe5DrVyTMvuZR7uvcPehwWFxnKFB6K7eckyBWwqyCVcKagvDUSaUy5FbCtqf8+fPW5Y2Cwt3VqXH6c/HH3+MiRMn4sCBA7LhsrKy8Prrr+P+++9XnHPxejUPrZaC7e3ttqgnu1oK0oh32rRpFCTRj90XTO2AXvehtNPXAgtzC36mIMcOWGEpyMdmOmixFDS67EeMGGFo/IGQ5oclJUswaNWLVUrBkSNHYt26dUhPTzctTastBY10H8p6e3UCXCnIMRSnWAoaNWmw6yBnh13satM2e+JgxYKXGcrgUH65CbUzBbXCsvxdXV1Wi8AELNeR0+nu7saf/vQnzJw5ExUVFbJh161bh8OHD2PRokVEcXNLQTYsBZXOFDQ6fRqEslIwOzsbEydO7PNbZmYmxo4dqztuf/g4rIzZloJ2dB/KAtxSkMMCeiwFe3p6NKd7+PBhvPvuu0GvsWYpaFdYzPfw4cOxdOlSZGRkICoqyvD0WCwDo2HNUjAuLg4rVqxARkYGMxvItGC1UpBjLnzbFsdQzLQUtKNS0CqcaCmoVxnGYp60YHU+uPtQ56SjhBPdh44aNQpHjhyhGifL+eWwRU1NDa6++mq89957suEyMzPxzDPPYO7cuariD3WloJkonSEkhx3KIpQ2tQWL49JLL8WQIUNw/PhxpKWlYdiwYZKLvnrS0XOdExw91n5GLZRx96GcUMcst8xyGGUp+PHHHwMAEoNc40pBadTkxb8cjbYUVHPf+PHjMX78eIiiiCeeeAInT57UlCZNuViYv5nxXJJz1W8U/rKXlJTgrbfeQlNTk6npshifWli1FLS6XIyCKwU5xlBZCcTGIra2Fol1dcrhy8v7/RTW0EB2r4fIyMh+8cjeHyRNKWJOn1YlC2la8WfPQjDhQRFIZHW1qvwHu19tecRHRelKUwm5tkaSX1dbm746VknUqVOGlEd4ZaVkPtxut640SfpB3JkzppYjbcTvv/c98AWVeYk6dcqUvMecPm1oXyJFa35dJ04AjY0GSKSfgS4XUhsbyS0GCeohoqpK83PQS/zZs6b2K3dFBdDeblp6HOCjjz5CaWkpqk+dQqHntzAA2QD2Aejw/DZw4EDs3LkTxcXFqtNg+WXGCNlycnKox0kDI5Q93FLQ3HgFQcDgwYMxePBg6nEbER/LfV8PZlsKqr2XhU2YXCnIYYnJkyfjo48+6vd7SUmJ4WkrtXeXy2WIUlAOp47NZmNmOWppC7yezSctLQ3R0dFobW01Lc3Aeh48eLDiMRBGpKs3rNWWgt4+9vnnnyt6zeHohysFOcawcCEAYLbno0hZWb+fEgCUqk33f/6nz1fZ+4OkKcUlno9mJNK6VU+celCR92CM9nxU89Of6kpXjmVyFwnyGwUN7Y1Bhns+kvzhD5rjJuoHZWW4SHMKDODXVtKgsk3YPe8qmeX5qEbn+GMk0QDuUnMDQV7GeT564rqWWCBKMFxHTmUygD0S12YA+ADAuHHj8NprryE7O1tTGixbChrBhAkT+nw3032onjOE7FDGLO3cVYMdytaLE9oJi2i1PlF7Lw33oUZbCpoFVwpyvMyePRvHjx/HqVOnfL8tXboUsbGxhqetZ0w16pnHLQXp4J9vVsuA5U0sLEFz89bQoUPx2WefUYmPhMD+bNZc2epNaUa0vQ8++AC7du2iHq8enNLHAuFKQY4x7NgBDBmC9957D5988ols0KioKNx+++39fm9sbMTjjz9OnGRERATuuOOOPr9t2LBBMnxpaSlx3G+//Ta++OIL4vCkaT322GNobm7WHK9WZs6c2W+xTA1fffUV3nzzTVX35OTk4JprrtGcphLbtm3DsWPHgl675JJLMHLkSNn729vb8cgjjxghWlAmT56MqVOnUo/366+/xhtvvBH0Wnh4OO68807Nce/atQsHDx6UDbNs2TK88sormtOwmrvvvtu3eHHmzBk8/fTTxPfOmjWLuvuwYIwbNw6zZxNttzAUkvE9GGvWrEFiYjAnOuzw/PPPo6qqSjEcyXPks88+wzvvvKMrLlJ5aLFy5UpTD0gPVQ4ePIgf/vCH+Pbo0aDX8wC8D6AawOrVq/Hoo48iOjpac3o0XmaMchEtCAJA8eV56dKlGD9+PBNW1WrhloL2fPE2e1HGjmVkN5xwpiALloJuN19y4vQSHR2NtWvX4vjx4zh//jwGDBiA1NRUq8UCYJz7UDm4UlAa2tZPNO7RgxnpCYKg2FZZ39RFs5xycnJMVQqq2SBoFXY4VkkURXz44YeWyhBK8Bkaxxhyc4GiIrQfPYr65GTZoOmDBgFFRf0vNDYq3utPREREv3hk7w+WpgRtWVmo1+MDXCKt+uRkNEdEaI9XI+3Z2aryH0jn+fOq6gYAEtLSdKWpRHN6OurPnQt6rdPTHuUQOjpU50kPbVlZhpRHZ1OTZD6C9RE1tGVlob6yUjZMT0GBqeVIG7GwEPAsXvTExKjKS0dOjil5N6rtqIVkfA9GT0EBwHgbac/ORj2JuxGCeug4fZqsnGTiakpLI5OHEmJhIZCRYVp6oUZDQwP+53/+B7/73e+IXNX+569+hRvvv58JV3RGWXzQVArGxsb2KgSDpWEQVi8E2EUpeOmllxKFY919qN0I1XwHw6wzBVmxFNSSLm24pSDHn/DwcAwaNMj0dEk2WthdKRiqcEvBC2mwqIgKxKnPnsB89fT0WJKu2fHRTr+iogItLS1U4+RIw5WCHENRmuiEhYVhypQpQa+pHVyMfAA6bcJmxcKilRM0krSdUsesToTtgp7Jm1llb/c6toP8NMcDO7pstEMd2ZV9+/ZhxYoVOHHihGLYUSNHAl99hVWrVgGMWIzYQVnDwvOcuw/tT2pqKkaMGGGANGzALQXNh2V3bDSsXJxiKciVghw7YIX7UNqE6nNBbb4HDBhgkCTSmKUUVIL1tkyznKx+f2bRfagRZUI7zvb2dqrxAaE7NpJg/Vszx9EoLcysXr0axcXFQa+xpBQ0ahCx6qHMgrUBbfS+9Fo9aWA9XtK4WWwbavDvk2r7p93zrhYn59fJeeNYQ0dHB/7zP/8TM2fOJFII3nrrrdiyZQtVGWgtMBuhdLPzIoBa7PBCrgTJ83HSpEmYNGkSAOCiiy7CTTfdRHxulB3nSLSxk6x2ItQsBVloR9x9KIcF9KwVGLVmo2acII0vFFFrKThv3jwjxQkKK0rBUMLs8gh8ZnNLQW0YoRQsLCykHqdT4DM0jqHIvcwkJSWhoKBA8jpLDzWnKQX14kRLQZbamx6M3BHslDKSQ0+fZME6xQ7YoR1xS0H268hOVFdX4/LLL8fHH3+sGDYzMxOPP/44LrvsMlPPw1NT52FhYaa96GpBqv+y0q5ZkUMPJM/KuLg4TBs+HAAwffp0ID6eOH47lhHL47Qdy5MEsy0FjVIKkqZPOw5uKcgJJVhUCgK9c5bu7m4qcTl1rFdCTb6vvPJK5OXlGShNcEK1boJh1nPJ6nkZi2u9dlgX3bFjB/U4Fy9ejOb9+3Hs2DHN9WJ1uRgFX8HkGIrcSwBttzisug+VU3xaBQsvqWZih4efk4iMjLRaBM3oGUdCrQ1pza8dyskOMhpJqOefJkeOHMHUqVOJFIIrVqzAwYMHexWCBkDrJZxbCiqnqeQ+dPDgwUGvZWVlUUnfaEielSyOIyzKJIWdZA0VnGYpyJWCHE5fpPqEURuhaFsKOgmtG1+U7ktNTdUsE+s4wX0oTUJFKeg0S0EjiIyMxMqVK3Hfffdh3LhxVovDFFwpyDEUuZcZ2kpBI9Ejy7BhwySvhZL7ULN386pN2+pJA+vxksYtCAKys7MNSX/OnDnErse0YgelYChN5q2CNatPlp6HHHJefvllTJ48GcePH5cNl5KSgs2bN+P5559HWlqaYfKEulKQpX40Y8aMoL9PmDBBU3xm541kgVSPTHacI9HGTu9JVmH0+4jeNhxqmzCl4O5DOUYSFRVFFI5kDiQVxi7H1DhlzFCLmnmpVWXE3YeSYef+YAf3oUasi9qp3UVFRSEiIsJqMZiCrVUvjuMwUynI2mQtLCwMkydPxpQpUyTD2HVx304DP0Aur93yFQwWdgTPnTs36O+5ubma45wyZQpmz55t+MKCHc4UZGXccLKlIGvuQ83GjjKzRE9PDx544AFcfvnlaGhokA27atUqHDt2DDfccIOlm2fUYITVh50XAYKlqWQpmJ+fj8mTJ/f5fciQIbbZvUryHGJtcwVg/cYpK+PjqEeP+1A14bmlIIejjNT75aWXXkp0P6vuQ+0+/2EBNZaCoa4UZGEdwaznktWb/kNFKWg3nLyGpQW+bYtjDJWVQGwsok6dQmJdXdAgCYIge16O0NEheW/Q8EHik71fxVk9MadPq5JlypQpmDBhAsLDwwEZC4HEujpDDlJVIrK6WtdZRRFVVarKA0CvhZeB5yPJ1VFEVRUQE6MYR9L586Y9vPXWgRTuigrJcoiMjNSVJkk/CK+sRF5eHoZGRuLUqVO+38PCwjDtoouw8+BBzWmjvBwJ584BCovsehC//x6IiwMAhNXWqmrnkdXVqvuFFqJrakw9a0wKufFdDteJE4DBFp96iSWte4J6IB4vZeKKO3PGlLblJezkSUP7mZM5deoUfvrTn+Kd3btRCCAMQDaAfQA6/MKlpqbit7/9LW655RbTXjJYthSkCQsLHkpKQUEQsHDhQowaNQqVlZXIzMxEQUGB5rJ1mvtQp754q4HmwqZTy5N1S0G9YblSkMO5wJgxY7Bv3z40NTX5fktPT5d0x60Fsy0FBUFgfk5lFU57xrGiFAwlrFYKsvA+ogUnWwoC9pPXaLhSkGMMCxcCAMZ6PpI88IDkpQgApWrT3bChz1fZ+8vKiKOd4vkQQxj3ejVx0kRF3oMxCBrqBgB+/GNd6cqxRO4iYX7voSIJITrrQIpiKNTN//yP5rhnez6yePJ1XbBr//d/GKE59V7W6rxfEb96SYfKdl5Wpjt/dmKq56Mag9o+TRZ5PooQ5GW056MnrqtI7qeJDeqIVbIAPBnk9xkAPvD8P2HCBGzbts0wV8tS0FocZt1SUOolnJWXQH83ZXl5ecjLy7NYIvXYVSnILQU5elC7SK3XUpBGG2ChHXGlIIcGSUlJWLNmDfbu3YtTp04hLy8P06dPN8V9qJGbhu1sGcUK3FLQvDSMxs79wUhLQVrHS4S6+1CAWwoGwpWCHGPYsQMYMgRfffUV3nzzzaBB0tLScOONN0pG0dXVhYceekhVsqWlpX2+bwhQEsqFleOjjz7Cnj17iMMvWLAAI0YoqwcefvhhdHZ2EsdLi3nz5mHMmDGa7z927Bi2bdum6p78/HxcdZVxS9uvvfYavv3226DXli1bhoEDByrGIddeaDN16tR+rsNo8P333+Pll18Oei0qKgq333675rh3796NAwcOyIa56qqrkJ+fH/RaY2MjHn/8cU1pT548GVOnTsXGjRsV3fHpYe3atUhISAAAnD59Gv/4xz+I7120aBG2b99ulGg+SkpKMGfOHMPTUWLv3r3Yu3ev6vvWrVuHGALLXSvZuXMnDh06pBiO5Dly8OBB7Nq1S1dcL774Ik6ePCl7f0JCArW+4d8POMrU19fj7rvvxrvvvdfvWh6A9wFUe75feumleO655xDnsUg2E5YtBWm+aJll8e+P1S+KTrMUNAoWZZKC1YVNljDbUtBspaDRFkRmtSF+piCHFikpKcTuQrVghaWgnZUgRmKUpaDeMsrJyVE8K9yIdGmlwYL1GgseUowg8JlNs6xHjhyJV199td/vJGucauFKwdCCz9A4xpCbCxQVoau+HvXJyUGDRKWlAUVFklEI3d2S90oSEJ/s/TJpB9JZUaFKlq68PKL465OTLVEKdnrqRyvdHR2q6yY1I0NXmkq0ZGSg/syZoNe68/OJ68Ms2rOzDSmPrs5OyXx0REfrSrP9m29Qr+AuUa6sxYYGzWXckZMDFBWhKS0N9QbuOO4pKACSkgAAXRERqvu9GW2oxeC+REpbebm2/BYVEbnztZL27GzUV1crBySoh45z58jKSSaulowM1Pu5Swpk6NChuPbaa3HkyBE8//zzymkpIBYWAomJuuMJBU6dOoWFy5fjiy++kA3XDeDnP/85HnjgAcusJmi9BLGuFGTBUpCFRRcjMfpMQTu+sLNsKag2rpKSEuTn5+Pdp56iJoMdsVopaLSlIHcfygkl9FgKGvlM5+5D9aPGUlAvc+bMwaZNm/r9Pm3aNNn77DivsQI7K8mNtBQMDw/HvHnz8LHfe35ERAQTG8XtBu+LfeFKQY6hyL0E2GkHrFG7JaxaNNJbtizVjRcWXnpZwMhysPJ+s16Y9PRJs9oZK4vNTu5Xdnsh8S4+DhgwgIrFoJPrlibHjh3DggUL8N133ymG/etf/oIF69aZIJU0tOrVru5DzcRsGULNUlAQBE1l7KSxzci8lJSU4Pz584bFTwuj69NqpSA/U5DDoYcet3ncfSjbmGkpmJ+fj+LiYhw7dsz3W1xcHCZMmKArXhqEav1LYbVSkPa7wLRp05Db2QmUlWHKlCkonj8f6enpVNMAnG8pqBWn5pNvS+EYitzLjJOVgk7HaHc9tAml+rM6r0YtPijt4KSF/+RN7USO7/Qkw+o2SgJrdUn6vIyKisJNN91khkghz+7duzF9+nRFheDoUaMA9LoVtxqW3YfShLsPNR6rzxScPn265riNgmVLQY75GG3lZ2YceuHuQzmso9RPuPtQ89Gq6DN6jTEsLAzXXXcdFixYgGHDhmHGjBlYu3YtUlJSDE2XBLu4D5XDzv0h8P3IiPeRwsJCAMCUKVM0KQT1bI6gFd5q7Cav0bD9Vs+xPaGqFOSWgmzBorxGyWT0znwr7zcDPZM3bilo7H1mYgcZ/fGXNyUlBddffz21+Dj9efDBBzFv3jzU1NRIhomMjMRvf/tbvPTSSyZKZg52tRTk7kPpYbVSMBTGKCXlO8vzPbMwepMitxSkA7cU5LCAnvbO3YeyjdnPLLfbjalTp+Laa6/F/PnzkUxwTAQrSkEWMOu55DRLQbOwSzvSipPXsLTAt21xDEWPUpAl1E7WuFKQfpp64rdTWzMSM+rd6Hpg2VIw1JSCTobmC7oV7V6v/HzMDE53dzf+/d//HWVlZbLhBg0ahG3btmHYsGGAwjmsZsKypSDNNmeFpaDVsGgpaORCJ4sv9LTjtnKhmLb1il3RqxSknT5tuFKQE0qQzIHMdh/KLQXpYKaloFZYUQqysI5glvW41UpBFt9HuKWg/eQ1Gq4U5BiKU5SCRsnKwkNZC+3t7VaLoAo7tTW9hFJejUBPnwy1nZ4sLsrSwm51GVimfAGOPs3NzVi5ciVefvll2XAlJSXYvn07MjMzTZKMHFpKQW4pqBy3Xed3pFhtKah1jLbD88eLlZaCnF7MUgpaZSloFtx9KMcuSPUXI5/pXCkYHLPHW6NhRSnIAhEREZLX7NwfnPIuYJd2pBWn508tfIbGMRQzF1aHDBliWNxO2y2hV77IyEjT01RC7qHLYn1w96Ha7uWWgvadYHphsT8GQiLjiBEjqMWlNw7aSkE71JGZnD17FosWLcL+/ftlw82ZMwdbt25FYmKiSZKpg2VLQZrYfYzUAot91kilIIuYbSlo5CKoHcufFBbzJiWT0fMHbinICSX0WAraxX0oi+ObGaixFLQKrhS8QHh4uCnpmF0eZpwpqBduKejsje1aYPutnmN7zHwJmD59umFxc/ehfcnKyqIkiTk4dQBnERYWH/Sgp0/aIX80cXJ+Scb8CRMmmCAJGVwpaByNjY1YvHixokLwtttuwxtvvMGsQhCgV6+suw+1Ym7F+0x/WNykZKd6slr5bqeyMgqnWwpypSCH0xe7uw91EtxS0BhY2DjHLQXZxulKQU5fuKUgxxgqK4HYWIRXVSGxri5okNjISMWzdqTuDWTkyJHI7+7uF5/s/SrO+YmsriaWBQDCKyuB6GjFcGripEl4ZSWQkKD5/hiolz3uzBlDz1aKrqmRlMldUQEQTObNrI/I6mpDysNdUSGZj5j2dl1pypWxl7CTJ4Hu7qDXhPZ2zWXsLa/4s2fRaWA9uU6cANraev+vrFQlb4TMeEeTqFOnmDinTO246EU4fhwwaYegVmJOn5bNW35+Pga6XET1EE7ajmTiijtzRjaOmNOn+9wfUVurqy0Kx48TPcOcTnNzM9bdeitO79uHQgBhALIB7APQ4Qnjdrvxl7/8BWvXrrVMTlJCxX2o1OKdmS+tZi8EsPhCrkehEYreFAKx0n0oi+0pGFrk1LN4bPYitRmeBsyAKwU5LMCqpaCdlSCsYAeloBnYJW9OtRS0g1KQWwqGxsZCNXClIMcYFi4EAOQAKJUL9x//IRuN7L0EyN5fVkYczyjPhxjCuEvVxEkTFXmXolTLTffeqztdKS6Tu8hifVCog2DkQSEf/+//aY57qucji0y+IqGjjD3xrtZ6v8p0ACAXKuUtK7OuT1vARZ6Pagxq+zSZ4vnI8qMfEcU1wvNRRKZclhGldIF06BzPbFBHZhAL4Jkgv88A8AGAhIQEvPjii7j44ovNFUwjLLsPtbuloNWw+KLKokx2wsry49YrwbGjpaCWdGnDzxTksICe9m6kG0CrrcKdgH8ZsvrsYsV9KAtzZKdaCtrBfSgJrPYhWjg9f2rhMzSOMezYAQwZgtOnT+Mf//hH0CAZGRm44YYbZKPZsGGD5LXS0lJFMfTe7+XQoUPYuXMncfilS5eiuLhYMZycfEayePFiDB06VFccR44cwfbt24nDDxw4EMuWqV3aJmfbtm04duxY0GvXXXcdkctTM+tjxowZmDhxIvV4Kysr8cILLwS9Fh0djdtuu01z3Hv37sXevXtlw1x77bXIzs4Oeq2zsxMPP/ywprS95fX3v/8dZ8+e1RQHCf7yV1RUYMuWLcT3rlixQlV4rYwYMQILFiwwPB0l9u/fj/fff1/1fXfddRfzC0Qff/wxPvzwQ8nrK1asQF5eHlFchw8fxo4dOxTDyT2T5MY3oH+bqKurw6ZNm4jkC8b69es1nR3rFKqrq7Fq1SocDSjzPADvA6gGUFBQgNdeew2jRqnaMmQpLFsK0iQULQVZxMgzBVnc5Wv1jnRaYe2E2ZaCZqdjtKWgWeMUV3pwWMcqS0HaY7OTxnruPpTNNGggZyloZ6WgUywFWYjTSOwmr9GwvSrHsS+5uUBREcToaNQnJwcNEpWSAhQVyUYjdS8AxXtp3O+lq6FBPq7A8Hl5+uUzkE5P/eihu7lZlfwtGRm605SjOT0d9efOBb3WU1AA5OQoxmFmfbRnZxtSHj1hYZL56IyJ0ZVm+/HjimXUnZ8PSClLOjs1l7G3vJrS0lBv4K6rrrw8ID8fANAtCKrk7SkoMKUNNaenG9qXSGmvrNSUX2HAAIBxpUJHRYVs3rrz84HCQqK4uhobycpJpk7lxjeg//gqJCXpaotiYSEQFaX5fjuzf/9+XHnttTh58qRkmOzcXDz7wQfEimFWCJUzBa3A6oUAFsvPLIUKC/E6DV5OvZjlPlQKo88U5HBCCT3uQ1taWgyRSS5NDjn+ZWjUpiK9cKXgBULFfWhCQgLOnz9vqgw0cLr7UE5f+LYtjqHIvcywuHNCCqcNjKy8qJoF6/VBE6t3wdOyRLEK/3FJ7Rhlh/zRxMn5tfIsJy0EyqPXkou1/JnFE088gRkzZsgqBAHgqaeesp1CEOBKQY65GDlPZLG9WL34ZLf4aeCUMwVZj4PDCXWMtBTkfVQ/vAx74e5DjYtLS3pz584NGm7ECKKDRQzBiDMF7YbT86cW+6zqc2yJ3MIkCw8kUtQubLA+0FihFDS6TOTaE4v1YcUueKv7nJ70lXZw0kKPUtAsRbnV9agXFvtjIKwpBdWmp7ct2qGOaNLR0YE77rgDa9euRXt7u2S4XI/F+cCBA80SjSqhcqagFWlY3WesTj8Y3FJQHr1u/NXgtM2NVmG2OzuuMOBw6MHqYridNlqzCrcUNC8NGjjVUjCwL+fn5/c7VsftdjN/9ASfMwbHqfnk7kM5hiI3ybHTwatOHQD0wFqZ2E0paEf0vky53W7Ex8ejsbGRplhUoaG4DBW05tcO5WS3XYq0LQVDiaqqKqxYsQJ79uyRDTdixAhs+dvfgGnTTJLMXKw+j8UO44IauPtQNmUyErX51bso5GQlNylmWwpakY4gCHxuyuFQQI/7UCPhfVQ/Vs9hWU43EBY2F7vd0moIu72Dy6UXFhaGVatW4e2338bx48eRkpKCKVOmQPlQI+MwYnMEK22bFLvJazRcKcgxFO4+lE2caCnIatpmI5dXvbuy9JajIAgYOXIk9u7da5kMSvhvVmDVfaidxk67YndLQe4+lIz3338fV199NU6dOiUbbtKkSXj99deRyvCGBhJCpV6lMDP/fJw2VqFi97Y8Z84cx+0UdyJmuQ+VC+tyuXRtpOX1yOEoY5VSkFsDS6N1DGW1PLml4AWcaikYLL3o6GhcdtllfX8sLzdHII04be2bFk7NJ7dV5xiKU5SCdlKAkWCFUtBouKVgL3J5TUpKsjR9ALjkkkswfvx41ZPBmJgYPWIRo2dcYq1PGI2TLQVpKgXtaClohzrSy8MPP4y5c+cqKgRvvPFG/Otf/0JqaqpJkhkHLfeh3FKQPVgsPxafiSxY1w0YMACzZ882LT21YbWEtwqj5WRBKUhjQx6Hw2G3L7D4rLQbVs9hWUnXLhuq5CwFacKCUtCOOCUfUjg9f2rhTyCOoThFKcgHjv6wpii1m1LQCpn0KgVpKZOXLl2Kn/zkJ8T3hIWF+Q5kNrMdcUvB0IW1lyq18rA45rGCKIr4+c9/jrvuugtdXV2S4dxuNx588EE89dRTpm1KMBojF571YnX6egmUn4/Txioz7NxezNohzwmOWS5BacXrlDOCueKDYzUsug/lloJ0UGMpGMpKQYCN+amcUpCmfKy9r9sFp24k4wSHuw/lGENlJRAbi7D2diTW1QUNEt/drWg6LXUvACKza733ewmvrJSPK0h4EFhqqImTJuGVlUBUlO441Mgfc/q0oabysbW1kvKEnTwJNDUpxmFmfURWVxtSHm6ZcshsbdWVZtSpU4plFHbyJNDerhhXGMjLu6SkBBFVVQCAuDNnDK2nsJMnAc9E1V1RoSqtsJMnTWlD0TU1TLidiKyuVp1fQRCYkF0JpbburqgAOjqI4iIeK2XKJeb0adk4AsdXAUBKQwO6u7uJZAxEOH6c6BlmN06fPo2f/exneHPXLhSidxzKBrAPgH9tZmRk4IUXXsCsWbMskdMoaL202dVSkL+0mosgCAADi0/+sGApSEs5YraVHIuwXAYsj7dWoNcNKodjBlb0N6f0cdqoKRc7bDrg89wLyG2OsrNS0A7tkASuFAyOU/PJlYIcY1i4EAAQCaBULtyvfy0bjey9ZWWKYui938sApbg0xq0qTpqoyLsUudAg/1136U5XiivkLrJYHxTqIBjpMC4fEzwfWVTkq1SDDDdouEcVfvIXQn2/VxVeDwb2JVLGeT6q2bCBriAGMMLzkURFOx/i+SgiE+dlklekuVvDPT4MGp+sJgPAY0F+nwHgA8//U6ZMwZYtW5Cbm2ueYCbhVMsrFrDaUlDO6tUqWLQUZKGd22HRmQVLAhYww31obm6u7EIitxTkcOjAoqUgwPsGDexgKWgGTrAUpLl5hFsKmoPd8m03eY2GKwU5xrBjBzBkCLq7u/GnP/0paJDY2Fj84Ac/kI1mg8zicWlpqaIYeu/3cuLECfzzn/8kDn/VVVchPz9fMZycfEaybNkyDBw4UFccp06dwrPPPkscfsiQIbj00kt1pSnHiy++iJMnTwa9tmbNGiQmJirGYWZ9zJo1C+PHj6ceb0VFBbZs2RL02pVXXomCggLNcX/66ad49913ZcOsXLkS6enpRPFJlXdCQgLWrl0b9NozzzyDmpoaovi1sHTpUhQXFwMAysvLsXXrVuJ7b7rpJmzatMkgyS4waNAgLFmyxPB0lPjss8/wzjvvqLrH5XLhnnvuMUYgihw5cgTbt2+XvK6mnX/77bd47bXXFMPJPZNef/11fPPNN5LXx44di7lz5/b57ZFHHkE7gdVuMO69917HTJhra2tx33334V9B2moegPcBVHu+33bbbSgrK0NkZKSJEppHqJ8pqCaNzMxMQ581tGFRKehyuQCN1sqA/V7anWQpyMKiIQl2P1NQEATMmDFDdzxG3k8LvWcdczhmwN2H2hOr57CspGuXtsTdh7KNU/JBG6eWC1cKcowhNxcoKoJLFFGfnBw0SFdsLFBUJBuN1L0AFO+lcb+Xbpl8BA2fn69fPgMhlU8OMTJSlfytmZm605SjOT0d9RIuQsXCQoDgPD0z66MjJ8eQ8kjJyED9W28FvZY5eTKgY7G7vbpasYx6CgqAzEyi+KTiciUnS5ZNU1oa6gndNmrBv146OztVtQmxsNCUNtScnm5oXyKl4/Rp1fkNCwtjQnYlupubZfOmpp13trSQlZNMubRmZqK+tlbyeltWVr/7m9PT0dzcTCRjUFkcMPHdsmULbr/9dpw9e1Y2nCgI+Mujj2LdunUmSWYNoa4UJCUmJgZXXnklHnnkEc1xmK1U0eoq2EhYqlMvLMhkF6sQFsqKNWiPk6tWrcKAAQNk3YdzS0EOhw6sektgpY+yhtXzUtqwICMLMgDOdR/KSvnqhbsPDS347IxjKHIDhF12oQLqX2RYHxhpyMfay51ce2K9PmgSExODwsLCfr+PGjVKt/ULC+VotAx6xiUWyodDB5quZ6xqF3p25du9LdfV1eHGG2/E1VdfragQBIAHH3zQ8QpBgO16pSnblClTdN1/zz33ICMjQ9U9VpetE5WCdnMfShq3Hc6as9M7mlrMen6T3DtgwABDZVC638x6Zu29kRN6WP2cDoYgCLxvUMAO72WsWAqy8HxPSUmRvEbqPnTo0KGKYfiZgtpwulLQbvIajTNaLceWsPBAIsXpA6MWWMsjVwpeYMWKFX3c1w4aNIiK69ZQKEf/dqR2jDKrfFgZO53cHpQm9aztPAx23SkvJmr59NNPMW7cOGzevFkx7NAhvac9suCO1wxYVkbQjHPMmDG60rCj+1gW3Yc6+RmhByvch/IzBS+gZsOMGWcKKuGUZzl3H8phGSvPFOTPyuAYNd6GulLQagYPHiw7zyadf5Acw8Pa+7pdcEo+aOPUcuHuQzmWQfMQWaNx2gBghaWglRZeLL5QG1kecXFxWLt2Lerr6xEREYHo6GjD0grE7PNdaGMHS0G1Fiwc9djNUjBYGloX4Oz8vNu0aRNuv/12tLW1yYaLjY3Fr371K9y1ZAlAsNM0FLBzvQeSnZ1teppWlx+LSkEj3R5yS0FjEUXRFnJqIdSUgqzUI4vvYpzQguSZwpWC9sQOZciVgkBWVhaWLVsmG4ZkLWb27NkY4tnYKQdXCmqDG8SEFlwpyLEMO+1CZU0BxgJ2erkLhfoIRmJiItX4QqEcWbIUTEpKwvnz5/v9ftFFF1FNRytObg92Gt+kCKVd+R0dHfi3f/s3PPzww4phS0pKsHnzZowYMUL2HCcnQkvJwrKlYElJieFpsAiLSkEj3R6yFKdVMnD3odrKQM/z3YpxksV+pAUnzKs49oakL1ihROB9Qz9Wz2FZSZdkU6tVz/fRo0fjiiuuUJRRSb4hQ4Zgzpw5RGly96HacLpSkMWNhVbijFbLsSV2eeEEnDcwhpqlIGnaZlrU2REWXqZCyVJwxowZiIqK6vPb5MmTER8fTzUdTn9C2X0o68+vQPbv34+pU6cqKgRdLhfuv/9+fPTRR70KwRCE5bplWTY74MQzBa2KWyukMlmxaMRieVmF202+J1pPuXFLwb44ZbGU42y4pSA7OM19qBmwmrfY2FjMnTuXSD4lb3IxMTHE6bL2vm4XnLb2zZGHWwpyLIO7D7UOK5SCRkNDKTh79mxs376dlkgcG+I/LlltKZidnY1bbrkFX3zxBRobGzFw4ECMGjWKahp6cNq46I8T3Ic6fRecKIr4r//6LzzwwAOK84nBgwfjqaeewpQpU0ySjk1CwVLQLu2XNnIWklbhFGUGbezQ1u3iPtRoS0E97kNpYYd6ICGUvBdw2IRF96GCIDimj1uJHcqQBUtBwFzDjJycHGRmZmLatGlITk4mukdJPqvfV1hKzyickg8pnJ4/tXClIMcy7GQpyJpVHAvYaQcJadrjxo37/9m77zgrqrt/4J977/a+y8JWtlCWXpcOSlFZRbESuwImFozoxvLLk5gniab4GI2wamJJomhEo2JPVLC3iKJiAWwgC+yy9C1sb/P7Y+8ud3dvmZk75czM5/167Uu8d8r3zDlT7nznnME333yDcp8h5SZNmoSvv/465Duq9IpJJCLE7KSegi6XC+np6ViwYIGmy6XQrNZT0B879xSUJAmlpaW4++67Q057wQUX4G9/+xvi4+MNiExsIicFjWDXnmspKSnIyMgwbf2B6D3sYXR0NFpaWjRdZjhE7imoVEJCgm2PmeG8UzCchKJadkmuW6Hdk3OZlRQ0a512Y8axWSlR6rmurs6Q9dx8882KeuZ3Y1LQfFa6z2sku5aTSUHSR2Ul4P0xmVxd7XcSl8sV8n0+geYFIOtdQOHO381z6FDwZfURUVEBtLWFnE7JMrUUWVkJhHlQ8zQ2Koo/7sABXd/fFH/wYOC2tmsXEB0dchlRAC6cNQu7c3Nx6NAhZGVlYfDgwdj73/8iWkVSMDs7G3v37vW/rr17Lfc+q+iqqpB17tmzB2hokLW8QMtK7OwMuG0SFO6LSkVWVgLeJ9kiKioUrcuzZ4+msUVUVAAKb3gaSU576Mvj8Vii3UdWVgYtm2fPHqC2VpNl9QiyXeIOHAi6jNj9+/vNn3j4sKr2GBkZKXQdSZKEsrIyvHD33cj3fuYBkAVgE4DW7s88Htx555247rrrbHsRr5RWSUE9WKH3lEi6y5meno7zzz9fyHLrnYCbNWsW3nrrLd3WITq9tm96enrPE/0DBgxQPH9RURG+++47rcPyS802CKfHmhk3I/VOrhuFSUEymyj7Ql+ixmU2uw0fKkJPwY6ODmzatEn3OAoKClQlBIHQo8mJXNdOPc/xGGZtTAqSPkpKev5ZGmy61auDLibovGVlIcMId/5u6aGWpXLZipapJQVlDyQOJsbvx/nBvlRQ3kgAQ71/3a5SF1JwGtSB0cZ5/4JSUK7SYF/eeqvfj38ke+kq+cQ/DMr3e0XTK4hFRGO9f4rddZfGkWgvB9qdP4aEWpaMZS70/ilxnsLpe7nzznDm1pULXduz1M93cwB8AGDQoEF46qmnMHfuXAMjE59WP9qUvM9DDqN+TIrQS0wrV111FRoHDZI9HJPWIiMj0Rbi4Te9kxmzZ89WnBQU4caFyCOlRERE4JRTTun5/4ULFwK//rXs+UePHq358UFr4fQUNONmpF16CnL4UDKbqMOHOjWRoCVRjnPBiJAUNEo41wGhrpFE7hUqyvYPl13KEYjdy6cUk4Kkj/XrgaIiAMDqIIm/0tLSoIsJZ14t5u925MgRPProo7Knv/DCCzFo0KCQ0wWLT09LlixBbm5uWMtoaWnBfffdJ3v60aNHd91c0Mnjjz+OAwcO+P3upz/9aVfvF5UefPBBNDY2Kppn7NixyMzMxOuvv+73+/nz52PChAmqYzLDli1bApan29KlS2XfpAzU/pOTk7F8+XK/361btw4VFRWylq/GggULMH78eADA999/j//85z+y5psxYwYmT56Mv/71r5rFctFFF2HgwIGaLU9rW7duxWuvvaZoHo/Hg5UrV+oUkXb27duHf/3rXwG/v+yyy5CUlCRrWT/88ANefPHFkNMFOydt2LAB27ZtC/j91KlTMXv27F6fqd1XoqOjsWLFCsXz6e3jjz/G1VdfjUOHD/f7LhfA+wCqAJxxxhn4y1/+gpycHKNDFJ5WPQXHjx+PDRs2CJnccMoPvejoaESblBAEgEWLFuGFF14wbf0ulwsejwcnnnhiyOuSvvPpGZMcWr1TXcuyDBs2DIWFhRgxYkSv3oHdw9IuWrQIG/ftw86dOwMuY+7cuTjuuOOwfv16zeLSg9WGD2VPQSJ702ofHTNmjCbLsSKRe48ZuV5RjvcxMTGq5+Xwoebj8KHOwqQg6SMnBygoAADUBrtp4Z0mkHDm1WL+HklJwZfVR2deHpCZGXI6JcvUUmdeHpCXF9Yy3G1tiuJvyshQts0Vqk9PR22Ap9ZdhYWAyiEMAODogAGolzH8qK/mzEy05eQE3Eat2dm6bg89tB45ErLOO/PyAJnDTQValjs1NeC2qU9PR63M4UnVaMnK6ll3W2Oj7DY+/bzz0NHRoek+LeXnAzIeLjBLa3W14vJ6PB5LtPvOqKjQ5w+ZScEOucfKINulKSMDtVVVAb/3bbfdGgYOVLWvxMbGCldHDz/8MK688sqQPZNW3303Flsg6WwWLXsKjh8/Hl988YUmy+OPSesZOXIkPvzww4APYwHGJDMmTJigKCkoAjOS6aG25axZs1BYWBjw+6KiItSmpgZMCp5//vkYMWKErHVpycj37Spdnyg9BUVhl3KQdYnYU1CrdUZGRmL69OkaRGNNVriOZFJQHisnBe1ynmNS0D+7ltMerZZIZ3Y7AGhRHtFOFsEuIMx6ytYuFwbd5GwHvetZ7+X7PsEv98bd3Llz4XK5NI9N9OOO6PGFI9S+K9qTh/6+VxujSPUqSRJ+9atf4bLLLguaEOyOePHixcYEZlHB6lZpouL000/HvHnzenoSBVNcXKw6LqVEfm+incTExGDp0qVITEzUbR1y6ishIQHDhg3TdJlqyV22iD1s5Vyvyt23RL/2VfKeI/YU1A6HDyWzifA71t/61BwzM70PnxcWFmLKlClYtmwZBg8erHV4liFyoshIopTNqUlBUbZ/uES7z6s1q8WrN7Gv2onCdNppp/n9fObMmYqWY/cDoxqi/egXLSmoR5LIbHYrjz/h3KxTsk+UlJTg+OOPDzqNE7a3qLRMCppVj2qP0SId2++44w784Q9/CDpNdHQ07hT4HYgi0bItut1uzJ07FxdccEHIaU8++eSg38uNS+Rjosix6SUuLi7oezuNSsD96Ec/kj0cuwj1pNXwoVrS8mZ5OMP1K6V3T0G+U1A7Il1bEPVltZ6C3Un2M844A6eeeiqys7O1DstSRDnOBeOknoLRCkfY8hXqGkmUMvojcmxK2KUcJA+vzsjWioqKuoZC8+HxeBSPuW63pKAdewqKtu5QSUHR24iojOxxKjdBqOaHZHR0NObPn49p06aFXC4ZT03PPD05safgmjVr8POf/zzoNBMmTMCnn36Kc845x6CoSKlFixYhIiJCVo/CULTszUTa0LPXm9z6ioqKwplnnhn0fGoEkXsKhopNy8RTVFRUWMvSWzjvFDQjKajng41GtkUmBclsIl4DqH2IWMSymMkK2yNYjKNGjZL9rnorYE9BZ3FKue1aTl6dka0lJiZi6dKlKCgoQEREBHJycnD++ecjJydH0XLs9kNGq6SgSAdGEW5MaTWfqEQcdkVratqRmmGzrL6dAHuUIRCrHfPtlBSUJAkPP/wwfvKTnwSd7oorrsBHH32k+CEfJzOjbrt7DQXbp+TGJfLwc2bvNyIyeqhOq1yjiDh8qJbbzsikoJr6VDJ8aF9mDB9ql56Cwd5ZSWQ2M3sKWu03h4hEOc4FEyzGlJQULFu2DDNmzAhrGFhRtgOTgtZmpc4falgtXr2pvyomsoiMjAwsXboUkiQZdpPUKQcat9uNjo4Os8MAIObwoXa7yBehXYvcUxDo2ie0GhpMhO3tVBw+1Bw1NTW46qqr8OSTTwacxu12Y/Xq1bjmmmu4jyhk5vbSIikYbk9BObKyssKa32mCDVkWzvBRgD7t1ehEpT8iDh+qZS9c0XsKGjV8qFbscp4bN24cXnnlFWF+N5LziPrgCHsKhs8K91xCnUNTU1NRUlICjBgB3Hij5uswUjhJwVDXSGY8nCPq+shYdq1f8Y+eRBoJZye2W1LQjKdXjUzmaE3txbro7UAPVi9zuD0F5ZZf1B+mSogeXzg4fKjxdu3ahVmzZgVNCALAI488gpUrV9q6/enFzJtdRiUFwzV58mTd12EnWVlZSE5O7vf50KFDw363nNKhYK1yTLBqT0G5RO8pGM7woewpqF5UVBQWL14sTDzkPHLOKWZc3zMpGD4rbA+l1zRar8NI4TwUxp6C1iNKue00BK+R2FOQ9FFZCcTHAwDmFRRg8+bN/SY56aSTgPLyoItJrq4O/GWIebXkbmoKHkvf6XfvBurrQ06nZJlaiqioAFpbw15Oam0tWlpaZE0bu3+/rnWWePgw2gJtzzDXm3TkCDprahTNE7t/P6IiIwPWcXRVlaFtWAtRe/eGbLPu3bsBmdsq0LISOzsDbpuEQ4d03W8iKyt71h1RUSFrXTH79vXMI3efiKysBJKTEbNvX8B1ePbsAWprZcdutMjKSsV14fF4LNHuPUePBi2be/duQOYPHtnbKch2id2/P+gyfNtgt/iDB1XtK0mSZHgdvfzyy/jVr36Fxupq5APwAMgCsAmA75nqz3/+My6++GJDY7OTYD/a9EpUyLnRZmRS0OVyBS0rk4LKuFwuLFmyBI899ljPuS8lJQWnnXaayZEZT247tuo7BdlT0JybkXZJCgJd7wHOycnB43/8o9mhEPnFnoLWZIXtwaSgPEwKWo8o5S4sLERERAQ+/fTTns/y8/P7TSdKvKJgUpD0UVLS88+53r9+yspCLqY02Jcy5tdKLELE0pfM2BQtU0sabbsVmixFG5cG+zLM8i4LY97SQF8Y2H61MtL7F5SCcpUG+/LWW/1+fJbspavkE/8o75+SeWTvE9555nv/Qi1XRLK3T1933aVxJNpLhHbnn7xQy5KxzBO8f0rmDeuW/C23hDO3You8f33NAfCB99//8z//g+uvv964oGxI1J6Ccuk9fOjQoUNVx+nkH5i5ubkoLS1FeXk5IiMjkZeXF3YvQUCfUTpEqCcRhw/VctuJnhQM552CZtyMNOMVCHpKT0/HhAkTzA6DHMiIpIxSal83Itp+bTarbw9RzhdaSElJ8TuChFaYFBSPKOV2u9049dRTMXbsWFRUVCAzMxMFAKDR/QNRyqk1JgVJH+vXA0VFPf+7c+dOfPjhhzhy5AgyMzMxd+5cDBw4MORiVq9eHfC70tJSDQKVp6WlBffdd5/s6ZctW4aUlJSQ0wUrn54uuugiWds/lAceeABNTU2yph0/fjwWLFgQ9joDWbNmDWoC9FALt6088sgjqFbY42by5MkYPHgwXnjhBb/fn3DCCRg3blxYcRnt22+/xSuvvBJ0mssuu0x21/1A7T85ORnLly/3+91zzz2HXbt2yVq+GjNmzMCMGTMAANu2bcOGDRtCznPcccehuLgYgPx9oqSkBKNGjcJbb72FL774wu80SralGb755hu8+uqriubxeDxYuXKlThFpp7GxEQ8++GDA71esWCH7Kcjdu3fj2WefDTldsOPUm2++iS+//DLg97Nnz8bUqVN7ffbKK6/g22+/lRWjrwEDBuCSSy5RPJ9S1dXVuOaaa/DBf//b77tcAO8DqELXDdw//elPhp7z7UrUpKAoPQXt+mPPCDExMRg5MuRjQ4q4XC4Eel5cxOFDRe4pGIqWvdFETwo6bfhQIgrNrPOHx+NhT8EAlDzAYYXt4ZSegnPnztU1DiYF9VVQUGB2CKp1D8dcUFBwrBx+Rj+yQz1piUlB0kdODuBzQCksKEDh/PmQJEnRTlibmhr4SwMPWK7W1uCx9NGZlwekpYWcTskytdSZlwdkZIS9nPr0dNTLGCYVAJozM3Wts6MDBqA2UNsKc7316elQOohjS1YWOgYPDljHbX32EStob2gI2Wal/HxA5tNhgZblTk0NuG0aBw1CbV2drOWr0ZSR0bPuttpaWftoa3Z2zzxy94n23FygoABNGRmB11FQAAicFGyvr1d8DPN4PJZo966mpqBlcxUWAjJvfHZIkrztFGS7NGdmonbPnoDf+7bBbk0ZGag9cEBWjL6i09N1r6MdO3Zg0fnn47vvvgs6XX5hIZ56+umepDuFxwlJwXDKqOW8iYmJOHr0qOrlkT5EuBEg4vChVu0pqKY+rTZ8aLhEicOXiDGR/YnYmzwmJoZJwQCYFLSW0aNHY+gJJ2Do0KG6rkfNKBJGXXdZpR5HjhyJb775xu93M2fOVLw8Ucqt90NUopRTa3z0jAxl1R1JjyGM7ECkp1f1PNmrrU+7tQMRf0xpzbcdyW1TvmXWcp+w+ra0Mi1uoCoR7nvM/MWjti3qfVzfuHEjZsyYETIhCADPPvssE4IaMvOYosXNECU9fNTQcvucfPLJmi3LqZS2GbOvUeQuW8ThQ530TsFwbjSb0VNQ7nJycnJ0jYPI6uQcw8xICnL40OBiY2NDTmOF7WH3noILFy7UPSEIiH1f1grtEACmTZvm9zfVpZdeiiKf0f7kEqXccuMQJV5RiHNHn0hgIp981DDjwkPvbSJaUrC7+zppS8R25BuTk+rczmUN9QM9nHcS+RMq8WXkU8R61uvTTz+N+fPn49ChQwGncbvd+OnVVwOArGG4ST5RewrKpUVPwWDfa5kQHzZsGDIzM3t9FhcXp9nyybrk3OA0mgjDh6pJ+uvdUzCc9Rn9WyvQdYSdr9WItGb0/hIbG8t9NISLLroo5DRW2IZ2TwqKiknB/goLC3HJJZdg3LhxyMvLw9y5c3HzzTejsLDQ7NDCIlKHFSvh8KFEMtjtAMP3XOjP5VL34nCRGXWhY+YFle8T/GoShHLr3OweDRRcsHqMj4/X9MZgXFwcsrOzZS9P7jpESgpKkoQ//elP+J//+Z+g06WmpuJf//oXFhYVAX/9q+ZxOF2wutXrwRqjhw8Nh5bDh0ZFReGSSy7BBx98gIqKCmRkZGBmVhZw223hhukYejyQJ0JPQTVDM4UrVGxa9sKNjIxUNd+4cePw+eefaxZHIOG8U1DUpODEiRMDvgfIjON+KLy+JTOIOHxjTEwMOjo6FM/npH0oISEB2dnZ2Lt3b8BprLA9mBQ0B5OC/uXn5yM/P1+TZYlSbpF/J4qMSUEiGfTqKZiSkoKamhoVEYnBjGF0ArFaT0GzfojrTe96FrEdOXX4UNHjC4fb7Q74DgKth7MMNOSXLzW9n4LNM23aNHz88cd+v9P6grqtrQ1XX301/v73vwedbsyYMXjxxRcxZMgQvy8FJ2uSMySXlknBcHoK9v1u4cKF2LBhg6zY/ImLi8NJJ5107AO2a0VEvIEbruzs7H49SNVQM7xTMHISZXLrQ23dzJ8/Hx6PB59++qnsefTuKWiF4UOHDRuG008/Ha5duzRZH5GTmTF8aFNTk+L5rHoOVCucaztR2PGaxgxK79UYuW3t1iFALlHaL4cPVceZrZZIIb2SgieccIKacMJmx56CoiUFQ81nxaSgE06g4b5TUMuLESdsb1G53W5kZWX1+zwiIgJTp05VtCyz6jHY8XngwIEBv9My3traWixatChkQnDBggV4//33uxKCpBtRhw8Vtafg5MmTMXjwYFXzkvHMPq+GWvaECRNw8cUXK46h74MoUVFRmDNnjuL4ghHhet7tduO0007DyJEjdV1POL39zDyGBpKfn2+5m82hYjr++OMNioSoi5wHmPQQExOj+uFjJwlV3ra2NoMi0Qd7CuqHPQX1J0q52VNQHfYUJJIpUK+RcIwYMQIFBQUoN/jpcTOSgiL28JKLPQW7mH3DzYjli9RTkMx1wgknYO3atb2GlJ07dy4SEhI0XY8W+5XSnoJaJGhCqaysxMKFC7Ft27ag0y1btgwPPPCA6vdQkXxm/pgR5Z2CSuaNjo7GxRdfjO+//x779+/H4I4OoKxM9fJJGT0SHWbtAyUlJRh1yimq5p0zZw5SJ03Cjh07EBcXh/HjxyMjI0PRMvQePlSL7dq9DCXv7DW6PkXsKWiHHjR9TZw40ewQyKGM3l9iY2ODvmc7ECvu13pSO2y1kTh8qDZE7inohO0vMm5/dZgUJH1UVgLx8WEvJrm6OvCXBifSUmpqet0cDsa9ezcg48ZxJIALZ83CtwMGYN++fdiyZUuYUcrj3r0bOHo07OUkHj6M5mB15CNm3z5d6yzx8GG4Gxr8fxnmehMPH0ajzHJ2i92/H5GxsQHbcGRlJRCkt46IIioqgu+TQNfwRTL3/UDLSpSkgHUWf/BgyBjC4dtOIysrZa0ruqqqZ56kI0fQImOeuAMHgPh4xOzbF3Ad7t27gZgY2bEbLWrvXsV14fF4LDOE3hC3G1eWlGDbtm3o7OxEYWEhCnNzFcfvCbHfxB88GHKZwdoJ0LsNdos7cCDgPNFVVYH3v/j4sOuosbERly9Zgoavv0Y+AA+ALACbALT6TPeHP/wBv/jFL3gRbxD2FFR+UyYqKgpjxozBmDFj0Pb992Gvn/Rj9nFEr/W7XC6MHTsWY8eO1WX5AB9oCiScnoK8yavO8OHDkZqaanYY5DBm9hRsbW0NPWEfTjsuhCqvv9FdRKP0+jM1NRW1Gq7DqZgU1J8o5ea1rDpMCpI+Sko0WUxpsC8Nflr7WiUTK4gtEsBY79+JykJST6Ntd5EmS9HG5cG+DLO8F6iZybvO0hDfW8lQhNgnAUXlCrqsW27x+/Fi2UsP3zjvX0g+ZZa9T3jnWeD9C7VcEQ2DjPbgz113aRuIjgZ5/8KRCxnb6brrgn491/sXkJ+2Ms/7F2j6McGWd9NNQeMJJQ7Ay34+nwPgA3T1wFqzZg3OP//8sNZDypjRe120dwrqNS9pT48ezWbVsehtK9z4tOwpaEbiTe7yrZgUFLHtBYuJCUEyg1n7CZOC4cvKyrJlT8ERI0ag/NtvNVuHUzEpqD9Ryq3la3ychElB0sf69UBRUdiLWb16dcDvSktLw16+Evfeey/a29tlTXv55ZcjXkVPyZdffhnfffed4vmArovK5uZmWdMuX74cycnJqtbj68knn0RVVZWsaSdPnqzrOyIefPBBNDY2+v0u3Lbyr3/9C/v27VM0z4wZMzBkyBA8/vjjfr+fO3cuJk2aFFZcRtu5cydeeOGFoNNcccUViIuLk7W8QPt3cnIyli9f7ve7l156CTt27JC1fDXGjRvX867PL7/8Em+++WbIeU488cSeJ/jltJVJkyZh7tyuFM+bb76JL7/80u90K1asQHR0tJLwDbVjxw689NJLiubxeDxYuXKlThGJqbKyEk8//XTA74cOHYrFi4Onu99991189tlnAb+fP38+JkyY0OuzpqYmPPDAA/2mzc7OxtixY7Fhwwa/y8rLy8PZZ58dNJ5APvjgA1xzzTWorqnp9XkugPcBVAEYMGAAXnjhBcyePVvVOkg99hQMLzlptfd2WZ3S+ja7Dsxev96UlG/u3Ll45513dIzGGH3LbMXhQ63GbuUha2FPQTEFG62rRKPOCHpTeg05bdo0HIiLw+bNmzVZh11w+FDxiFJu9hRUh0lB0kdODlBQEPZiaoM9LajB8pU4OmCA/Iu2ggJVw6c2DhqE2oMHFc8HAG1xcQGTYn115uUBGjyJ2ThoEGplJiKbMzN1rbPa1FQ0BkqghLnehoEDUdvSomie1uxsdOblBWzDem8PPbS3tQXfJwFI+fmy236gZcVkZATcNo2DBqH2yBFZy1ejyWfdrYcOhSwvALT5HO8aBw0K2lZOOOGErmSI9+KpKSMj8DoKCgCBk4Jtzc2yto8vt9ttuXYfrk6PJ+h2ahw0KOQ2af7uu6DLaPNzzo0FMGTBgl4/Jl0uF0oWL0Zra2vA5TUF2f+CWbNmDS6//PKgD8/kFRTgb6+9hmHDhilePoXPzKQgewqSUkrfcydy/Zkdm9E96qZMmaI4Kaj2/d1GsmJPQRHZsUxkbWa0SY/Hg4iICFVJQacJlhRU8h5aMym9Dna73Tj99NOZFOyDSUEKhElBdbjViGQSaTibcNepVXxmPDFrBrU3Kux2YpKzHZRsqzFj/A9geNJJJ2myfDV8LzTlXnT6xhQsvoSEBMyZM8c2QxuIHp+dqN3WixcvxsKFC1FYWIjRo0fjggsuwKhRozTt8SRJEn77299i+fLlIXvTP/3000wImkjUnoJy6X1OZUJRLFYbPpRt4JiEhASMGDFC1bwibUf2FCRyFiP3p+joaLhcLsQI/P54UQRLCip9gMgsHG3CHEwK6k+Ucut9j02UcmrNGo9VEAnAiIOAUTek7Pj0ql7vQwL0OXHoGa9etK7v8ePHY+vWrb0+S01NRV5enqbrUUtNUlDLm5gi7V9asWOZwqXlu5j8fT5z5kzMnDlTl3gkScL1118fdKhvABiYng4cOoT09HTZyybtmbn/2X34UNKeHj0FWYf68LddY2Njw16GHvOEs3yn/9YygtPKS2KQM6qB1rrPcZMnT8amTZsUzeu0/aSjoyPgd1ZJCgbD84V+mBTUnyjllvs7UZR4RWGvbixEOhK9p6AZROopKFpS0OVy2S4pKIeSbVVUVISzzz4bmZmZiIqKQlFREZYuXRr0ZeEi7ltOTQqqic+u7T4YPZN+atcRbHq5x/XGxkYsW7YsZEJw2rRpePbZZ5WERzoRtacghw8lf4Ld6BOxrtgLoDe1SXyRt5WIvwVF3l6BWDFmcgYj22b3MTIjIwM5OTn9vu9+X70/TtuH2FMw/HXYBYcPpUC4/dVhT0EimYxIgFmtp6DdhsfUkh2TgnqcaMeNG4dx48ZBkiQhTuRqhg/1pfSCP9g6RNgepD/RhpuWE8+XX36JCy+8sF9P375WrlyJP//5z4isrFQcI9mDnKfv7dBTkMdr7Smtb/YUNI+/7WqHbR3O8KF6xWB3TisvicGMnoK+67z44ouxfv167NixA0lJSZg2bRqio6OxZcuWoPM6hR16CjIpKE9aWhqOHDlidhiq2GH7qyFKueVeo/l7CEMOUcqpNSYFiWQS8elQtes0IynotJ6CQPDtY8WkoJ70HgNcT3r1FBSdiEN9iUjEnoJql9Xc3Izf//73uP3224O+P9DlcmHVqlW47rrrNIuLwidqT0G52FPQWfS40adnHTs5aaxFUlDEbaTF8KFDhgzBDz/80O97ue9c1PP8b9ZvERHrmggwp6cgAMTExOCMM87o9f13330XcF6n7UN27ylopXXobcGCBVi3bl3A70W+h2aH7a+GKOWWG0dycjKys7Oxd+9enSOyBnbzIZJJlIOdSETaJqIlBZ3aU1CkNhEuvlNQe1Zs93ozImmoZPpAbfjTTz/FxIkT8Yc//CFoQjAiIgJPPfUUE4ICMuOcZPTwoeGw4zHXypS2Gdafvoy6hhGpHrXoKTht2jS/n0+dOlVVDHbntPKSGMxod6GOJ05+0KQvuycF2VPwmKKiImRkZGi2PCPvPdhh+6shSrmVXKMtWbJE8fJFKafWmBQkksmInnh2Hj7UygdRJgW7iFCHIvY49Y1Jywt+EbY36c+MZLuSdtre3o7/+7//w8yZM/Htt98GXW50dDSef/55VRfapD8zjymivFNQTUJczrxab9vCwkK/n0dHR2u6HpGxp6B1mNVT0OjtqmZ9RUVFmDlzZq/PjjvuOAwZMkSTddq9bREZyYzhQ9V877T9nsOHhr8Oq4iMjMRFF12k2fKCJZS1Zoftb2VK7k2npqbyAWYvDh9K+qisBOLjw15McnV14C/Ly8NevhLJ1dVw1dXJmta1axcQGal4HXEHDgQvcxBJHR2Akvg0qJ+EQ4dkxxuzb5+udZZ05Aja2tr8fxnmepWUs1vMvn1wJyQEnC+6qsrwNhyuiIqKkNvBtWsXoONNy3D2ETli9+/vqZeovXtlrStq796e/SlYW0kC+tV57P79gddRXg4IfHEZWVmpuC48Ho/l2n24IoLVMbradKhtErNvX9BlRO3dC6SkyI4pWN0lHDrUE8/u3buxcuVKfPHll8j2fu8BkAVgE4BWn/lyc3PxzDPPBOwVQeYzc/hQLW6GOKmn4Jw5c7Bz585+n8+ePduEaMwR7Eaf2iSUSHVsd3bY1uEMH+o7z8KFCzFt2jRUVVUhOzsbycnJqmOwO6eVl8QgYk9BJ72SIhQmBZ0l2ANwSh/gZk9B/YlSbqVxWOXYoTcmBUkfJSWaLKY02JdlZZqsQ67LlEysMrYS75/uNNp2p3j/RPDTYF+GWd6z1MzkXWdpiO+tJBch9klA93IZ2eYme/9C8inzqaGm/e1ve/3vCd6/UMsVUQFktAd/7rpL0zhElwGV28nHLO9fQArbynDIiykPwAsBvpsD4APvv88880z84x//QFpamqI4yFhmDh+qNMHjj949BUXqkVNYWIiJEyfi888/7/lsyJAhGDVqlGExmE1pEtjsmxJmr99MWvYUNGPkE7nLD+fBhJSUFKQoeHgnUAxKvyci+cx6p6A/3LePCdbbS+8HxowQrK7z8vKwe/fusJdjJVrWKZOC+hOl3ErbjdV+Z+iFSUHSx/r1QFFR2IvZunUrXnvttX6fT5w4EfPmzQt7+UqsWbMGNTU1sqa95pprEBGhfPfasGEDtm3bpng+AEhKSkKdzJ6CV155JWJjY1Wtx9f69evx9ddfy5p2+vTp/YbP0dI999wT8Cmy0tLSsJb9/PPPo1xh76a5c+dixIgRePDBB/1+P23aNMyaFfQ2v3AqKyvx9NNPB53m6quvRlRUlG4xvPrqq/jmm290W/7o0aOxcOFCAF3vUHvvvfdCznPaaadh2LBhAILvEwMGDMAll1zS67M33ngDX331ld/pw223etu1axeee+45RfO43W5ce+21OkUkpv379+OJJ54I+P3IkSNx8sknB13Ghx9+iI8++ijg9yUlJYqSBTt27MBLL73k97sRI0Zg9+7duOOOO9Du55iaC+B9AFUA0tPTUVZWhgsuuMC2F8p2YmZPQS2extT7iU6jhnCXu7zTTz8d48aNQ2VlJTIyMjBkyBBEVFRouh6R6dFLwqzjlMjHR71iE7nMcmnRU1DrGOzAjmUia1PzUEK4RBqyXHTBegpaZVuorc958+bh0Ucf9fu5kuVYiZYPMTIp6BxKt78dHijQApOCpI+cHKCgIOzF5Keno3XrVjQ1NfV85na7MWTBAiAvL+zlK1Gfno5amQcaV2EhoOLmVeOgQaitqlI8HwAgORm1Mtcp5ecDcXHq1uOjKSMDtfv2yZq2OTNTkzYRSE1KSuCnyMJcb+OgQaitrVU0T5t3H6hNTfX7fVNGhq7bQw8dbnfA8vQoKAB0TAo2DhqE2v37dV1+d7207N0burwA2nNze+YJtk9Ep6f3q/OmjAzUBrrJK3j7aO/okLV9fLndbuHLpbXO6Oig20nOsaB5586gy/Btg3K0NTf3W54kSfj666/xp6eeQpWM89Ci007Dbx5+GOnp6bLXS+Yy84a2KO8U1GtePbhcLgwZMkT2u8fsRmkSWLT6swq5N0X0fkegFd4paMYNJKe1a6eVl8SQkJAAwDrvFCTrUZsUzMvLw8iRI3s9FJ2eno7i4mJFy7ESLc+1fKeg/kQpN3sKqsOkIAktISEBl156KV5++WVUVlZi4MCBmDdvHvIMTggC9joImPEyYytvPz2eSDfyqSWtiFCHRsYgt458Y3LSU512K4/ItL5x0Hf6Xbt24bXXXkOFjF5IiQkJQH097r77briYELQUM/dZo4YPDcVJx2irs9oTvFZtP3r1wLVab05/rNBTUKTtRSS6YcOGYfv27f0+7x7NyCo9Bcl61F5/ejweLFmyBF999RV2796NQYMGYdy4cYiPj1e0HCthT0FrEaXcfKegOkwKkvAyMzNx2WWXobOz09QbBErWLfoPYTOSgnrT84Sv9unlYG3GrklBkdqEUXzLzJfCU19G3NBTkxRsbW3Fli1b8Mknn2Dv3r2y5luwYAEe+/3vgVmz2J4tSNThQ63yTsFw1kvKKW0zvEZRR4vfVv6uaY3oKaj370IrJAWtiA9nkFmmTZuGHTt29DpmDR8+3JR3YjMp6Czh1KfH48HEiRMxceJE3dZhFSNHjlQ0PZOC+hOl3DExMYqmt9rDh3rhViDLMHundUqvOCVE2ibTpk3z+3mcBsOkqk0K2q2noAj0bke+9aKmp6DSpKCV24FTjnMi0HJbd3Z24pFHHsFdd92FF198UXZCcOXKlVi/fj2ysrI0i4XsT05SUC4trgP54IZ16PEEr551bNX2Y+WegkZvcxGTglZtd0RmGD58OC688EKMGDEC2dnZmDNnDs4991xV7xSMjIwMK5ZQ6zL73hdpy4hjtZ3OB/4SoImJicjNzVW0HCYFncHtdiM7O1vRPEY8vGYF7ClIJJOdDgJ27Ck4efJkfPTRR/0+P/74402Ixp5JQT6FHxqffialjOwpuGPHDlx22WV49913ZS87ISEBq1evxo9//GO14ZEgnNBTMJxlsKegWJTWFetAHb1uPBvxrha969xfT0GXy8WbjGHitTKZadiwYRg2bJjf75QmBdva2lTHwZ6CzsL6VObkk09GdXU1du3aBQCIj4/HhRdeqHg78nytPxHKPXjwYERHRyuaR4S4RcCkIJFMIj+5qpQZSUG9t8mgQYNQUlKC9evX93w2cuRITJkyJexl6/G0s12TgnaKwYiegomJicoDE4QI7cEKjEj6hfr+k08+wapVq/DUU0+hvb1d1jrdbjeWL1+OW2+9VfGTd0TdutumFsk4LYYPZU9B62BPQWOI1lNQdKIlBcPZzlqMpkJkJ0r2p3CPneEkBa14H4H0Z6fzbnR0NJYuXYrq6mo0NjYiOztb1UNMIp2v7UqEcivtQaqGCOXUA5OCRDIZMYSD1Q40osU7Y8YMjBw5Env27EF6ejoyMzNNeV9X9zx2e6egE6ipl3CSgsXFxXjnnXf6fV5QUKA4DiJfHR0deOmll7Bq1SpFPQMBYNGiRbj99tsxduxYnaIjpxCtp2CwODhUl1j06Gkm2nWrCPRq92qHZRLpgUMR1qnF+oqKivDdd9/1+3zOnDlhL1tr3EfJKsJNCnJoYGcxooe03dqMy+VCWlpaWO/8ZFLQGSIi9E9t5ebmoln3tRiPSUHSR2UlEB9vdhSaSjx8GMnV1fImLi9XtY7Y/fvlr6OPpI4OoK5O1rSuXbuAMMfBB4C4Awdkxxuzb5/q7aJECoCUxESgpQXwDjcQrviDBxXXS3RVFVypqQHnM2p7aClCRn27du0CdHrqHAhvH5Ej7sCBnnqJ2rtX1roiKyt7yhwsvsTY2H51nghgekYGvvnmm57PXC4X5uTmCt8+IioqFNeF2+0Wvlxa8xw6FHQ7+ba5QGL27Qu6jKi9e4HYWABdP37Wr1+Pu+66C999/z0AIL87FgBZADYBaPWznMLCQqxYsQI33XRT0HiIlNKiN5KcZZjVU5A3ArSnNJFsdh2YvX61ROspKHpS0OiH+rRIHBQXF+P777/vFfvgwYORkZERdnxqWHVfIftT0jbDfaCCw4c6C98paH9O3f4ilFvvGKKjo1FQUIBvQk9qOUwKkj5KSsyOQHPnKZm4rEzVOk7y/ulOZXx9zfP+GblOMyzy/iniLW+pxrGYaRBklEfnel7o/TPCdO9fSD5lPs77F9DPf97vo5O9f72sXi1nzabKhcr2vWqVtoEILh3hHwemef8C8mmDLgRoUz7mAPjA++/IyEgUFxdjypQpSE9PR3FxcZjREh0jp6eg3JvsevcUFOFHLR1jteFDrUrufqW255/S6ZkU7E2rnoLnnnsuNm3ahJqaGgwZMgQnnngi9weiMJg5fChZD5OC9ufUEUdEaHd6xuDxeLBkyRLdHqIzG5OCpI/164GiIrOj0NTTTz+NyspKWdOWlpaqWsfrr7+OLVu2qJo3KSkJdTJ7Cl5zzTWadLF+5513sHnzZlnTzp49G1OnTg17nWZ49dVXe/XkkmPhwoUYPXo0VgdI7owbNw4nnHCCBtEZ5+DBg1i7dm3Qaa699lpdL4hee+01bN26VbfljxgxAqeccgoAYOPGjdi4cWPIeZYsWdIzjvmHH36Ijz76yO90hYWFOOOMM7QL1mR79uzBM888o2get9uNa6+9VqeIxHTo0CE89thjAb8fO3YsTjzxxKDL2LRpEz744IOA3+fm5mLdunXYGKDt9UwH4H0AVd7/z8/PxxlnnNFrWBYRLuzJPuQkBTs7O2Uti+8UdBaldWX28KFWbT9a3OTwlyhjT0FtaDXE4MiRIzFy5EgtQgqbEcPoEakh0jsFnZpgsCsmBe3PqdtfhHLrEcPFF1+MxsZGFBYWIiEhwbajXTEpSPrIyQFs9k6sxkGDUNvYKG9ilWVvzsxErczEY1+ulBTUyrw4dRUWajLEY8t336FW5sGxJSvLsm2icdAg1O7fr2ieNu8+UJuaGnCZVtsenbGxAcvTo6AA0PFHTFNGBmr37tVt+b710rJrV+jyAmjPzT02T3l5wHlas7MtV+fBtEuSrO3jy+1222obyCHFxwfdTk0ZGSG3SUtFRb9lSJKE7777Du+++67sB1a6ZeXkYMzkyZg0aVK/mw4iXNiTfXS3p2A3t+QmBbVomxw+1Drs+kSuaER5p6Ca+Zxw05zHFiLjGJkU5DsFnYVJQfvj9jePHteDQ4cO1XyZImJSkEgmOx3kzXiZsZW3n5rYQ81j9JPGdqF3O/KtF7l15BtTsAuSqKgo9YEJiG1YG0p7txw9ehQ7duzAhx9+iP0KH1aYMX068NFHWLt2Lda8/bbqeMh+9Nqftewp2L28YLGGar8cPtQ62FPQGKK9U1DJjR2rbnMlnFBGX04rL4mF7xQkvbA+7c+pdSxCuUWIwaqYFCSSiU/39Ge1eNXSo5xWTKiYfcNNVHKTgpGRkUaEQ4LRap+oqKjA22+/je3btyte/7nnnoubbroJxQMGAIWFTIyQ4bRICrpcLrjdbnR0dKiOg8OHWgd7ChrDyj0FncCOvYmsGDM5A3sKkpWxzZjLqdtfhHKLEINVMSlIJJOdkoJm9BS0Mj16ClqRCGUyMgb2FCQjhGrThw8fxu9+9zusX79e8bLnzp2Lu+++G+PHj+/6QMZwzyLs52QfWvcUDJUUNKunIPcb7SlNVpldB8HWL/KDYHJvbCvdvnZ9p6DRnFBGX04rL4mFPQXJDLw3Zw9O3f4ilFuEGKzK/gPxE2mEScHwluO0A3Wo8iYmJhoUibGsXs9qbtz5ljlY+dlTkJR6/vnnMWbMGMUJwXnz5uH111/HW2+9dSwh6MPq+ylZh5ZJQZfLFXbbZU9B69Ajgcs67k+0noIcPrQ3O/YmsmLM5AzsKSimQYMG+f08PT3d4EjExgfZzcVtaR5ue/WYFCSSyQkvs1dKycFXSU8A0YRzkgn0gtqpU6eqXqZZRDjZithT0JeTegqK3PNBJGp+9O/atQs/+tGPcNZZZyl6b+App5yC999/H2+99RZOOOGEgOsOFpMI+znZR3d7CnZsVNpTUM76AuHQudah9Iar2UOcW7X9aPH7xt/1gNrl8oHD3pxQRl9OKy9ZV7hJwVDHSN57Omb27Nl+P58/f77BkahnxO9mHj/N5dTtL0K5RYjBqnimIZLJTj0FtaIk3nDeAWS2cJ66mjFjRr+L+gkTJliyp6DV2qdR+E5BCodv+2lsbMRvfvMbjBw5EuvWrZO9jIULF+KTTz7Byy+/HPCHs5p4iMJlpZ6C4dyA436jvWD14e/mGutAHb3e3cjhQ7XB3kREYtI7KWjVIan1MGbMGBQVFfX6bNSoURgxYoRJEYmJ5wNzOXX7i1BuEWKwKr5TkPRRWQnEx5sdhabiDx5EcnW1vIllvLfJn9j9++Wvo4/Ejg5IdXXyJlYZX18x+/bJjjdq717N1mu0uAMHFNdL1N69QHw8hkVEYPn8+di6dSsaGhqQn5+PSePHW3JbuKurQ28Hnculpi6UiN2/v6cM0VVVstYVUVEBtLWFnCf+4EFL1nsgERUViuvC7XbbahvIEWq/id2/Hx07duC5557DnXfeiX379yPD+50HQBaATQBa+8yXlpaGoUOHYsqUKbjppptQWFgoOyZeOFNfet1g0uOdgnLWp2Z+7hdi0ap3qS/2FOwvNzdX1nTZ2dkBv0tLS+v3GYcP1YYTykgkCr5TUEwejwfnnnsuduzYgaqqKmRnZ2Po0KHsTdmH2gfZnZZk1gv3WfOo3fZxcXFobGzs9/mkSZPCDckymBQkfZSUmB2B5hYrmbisTNU65nr/dKcyvr5meP/s7gTvnyI+2zjX+2d1qQBKQ02kUdsKZL73T1crVwIAZnv/QvIp83jvX6jp7CAfMtqDP6tWaRuI4GTtNwCWeP/8mQPgA++/BwwYgJNPPhnDhg3TpScGf9CQHqzQU5BtXyzB2oy/0SdYf8GNGTMGW7du7fWZ2+3GxIkTZc2fmJiInJwcVFZW9vq8sLAQMTEx/aY3oqegE24IO62noN3KQ9bCdwqKy+PxoKioqF+PQTLX4MGDzQ5BGE7dZ0Uot9oYZs6ciTfeeKPf59OnTw83JMtgUpD0sX49YLMT9ssvv4zvvvtO1rSlpaWq1vHuu+/is88+UzVvUlIS6mT2FFQbX18ff/wx/vvf/8qadtKkSZg715CUp+befPNNfPnll4rmOe200zBs2DCdIjJHTU0N1qxZE3QardpWIG+99Ra++OIL3ZY/bNgwnHbaaQCA999/H5988knIeS666CIMHDgQALB161a89tprfqc766yzkJ+fr12wJisvL8fzzz+vaB63241rr71Wn4AEFWi/aWtrw4cffojNmzcj0POZuQDeB1CFrovdWbNmYd68ef2GolV6ISzCxTs5Q3dbC9bmtOwpGIpe7xTkPqU9q/UUFN2CBQuwe/duHD16tOezhQsX+k3oBbJkyRI8+uijqPb2fk9PT8dZZ53ld1ojkoJkTaxjEpXctqn3Q0pKYiHqFs4rb9RIT09Hydy5wI03ql6GnTh1nxWh3GpjmDZtGrZv345du3b1fHbcccdh0KBBWoUmPCYFSR85OUBBgdlRaKopIwO1Bw/Km1hl2Vu+/x61qamq5nWnpqJW7hNrGtVNa0WF7HgbBg60bJtozsxE7Z49iuZpz821bHkDkaqrQ9e3zmVuzsxE7e7dui3ft502b98uq3135uUBGV0DPrYcORJwHldhIZCXp1msZmtvb1d8vHK73bbbL0Lpu990dHTgiy++wNtvvy37QY7B+flYcNJJAYd50/JiXIQLe7IPLZOCcm7CcfhQ+1CaFJRTf04ePjQtLQ1XXHEFvv32W9TX12Po0KGyhw7tlpKSgpUrV6KqqgputxsZGRkBy+3k4UOPO+44zZbltN5EdisPWYvc9ud2u5kUJM1oVddGtpmBAwdixYoVcPkkU5zOqfusCOVWG0NUVBQuvvhilJeX49ChQxg8eDBycnI0jk5sTAoSyWTEwU6EA6oSSuJV+1S3CKxWL3px2nZQM75+e3t7wO+ioqLCCUc4fP+AMrt378aHH36InTt3orm5WdY8qSkpQE0N/vznP+PfW7ZoFguHDyWjyGlPSq4Pwm2fevUUJO3p0VPQ6RISElBcXBzWMlwuV9D3C/pOp3b5ekxrpFmzZmm2LFHLSORkWvQUDOchJiJ/jDxfZGVl8fzUB7eHecI5XkZERGDYsGG2G+VNLiYFiWRiUrA/JfH6e/+LVRg9FAMFJuJ29Y3JSUlBkqempgYvvviioqGhIyMjcfXVV+OW5cuBiRNDvreEw4eSqLRMCorcU3Dq1Kmq5yX/rNZTkHpzalJw2rRpioZkDUXEMoaLDyaRqKzSU5APZlqPEXVm5D0rHqv7c+o2EaHcIsRgVXz8hEgmPq3Vn1N6ClIXJ5xsfS/Y5V68y00K9n0PHNmbJElYt24dZsyYoSgheO655+Kbb77B6tWrkZycLGseDh9K4TLzBpOR7xTUIymYmJiIwYMHqw2JAghWV2ofNOPxzThOHT40IkLbZ66dNnwokZmskhQk8sfINsP22ZuTt4cIZRchBqtiloNIIFY7mLGnoLbziE6EMokQQ19O7SnIp1QD27VrF84880z86Ec/woEDB2TNk52djZdeeglPPvkkhgwZ0us7/sgjq9K6PYV7g1yL4UPHjh3bczNvwIABuPTSS/ngmA6C1ZXanoJkHKf2FDT6mGdF7ClIojIyKciEv7Ok+rxfvq+srCxN1sHfi+Hr+xtcLrtuD6vg9lePw4cSycThQ/tjUpDsjD0FSan6+nr8/ve/x+rVq9HS0iJrnoiICFx11VW49dZbg/5gDEbL4UN5vCMtiXaDXIuegieeeCKOz85GY2MjUlJSwoqHAtNj+FCzOPEhGqcmBbXGxAGReLR4pyB7CjpLTEwMhgwZgh9++KHX59nZ2bJHhglFzQNqHD60N7UP+dl1e8ghQtlFiMGq+FgrkUx8Crw/JgW1nUd0IpRJ7xjCvXGXk5MT8DseQ+zthRdewOjRo3H77bfLSghGRERg4sSJePjhh3HPPfeoTggCYuybRP5o2TYlSRKipyDQ1fObCUF9BXuQxqgHKEg9pw4fqjUnlJFIFBw+lPR05plnIj09vef/U1JSsGTJEs2Wb+QDyHZtn0ySKidC2UWIwarYU5BIJvYU7I9JQW3nEZ0dyxSMmp6CRUVF8Hg8/dr7yJEjNY2NxLF7925ce+21eOGFF2RNn5qaigULFmDkyJGIjIxEZmZmyHm07inAnoLUV1JSki7LtVJPQT64IZaoqChkZ2f3+zw6OhpDhw7t9zmPXWIx4ml7EetctCGTRcRrEBIVk4Kkp8TERFx99dXYv38/Ojo6kJWVpem1J5OC4WNPQeVEKLsIMVgVk4Kkj8pKID7e7Cg0FXfgAJKrq+VNXF6uah0x+/bJX0cfiZ2d6KytlTexyvj6iq6qkh1v7P79mq3XaLH79yuul4iKCiDCXodYV0ND6O2gcx2rqQtfqampqA4yf9yBAz1lkLsuz549QF0dACASwJkTJ+L1118/tsy4OJwwdKhl238gnj17FNeF2+22zXZoa2vDww8/jFWrVqGpuRn53s89ALIAbALQ6jO9y+XCrFmzMHfu3F7vlzTjIpYXzs41YcIEfPHFF/0+nz59ui7r07qthXsTTauegmSMWbNm9fts4cKFvGljARw+VBtOKCOR1RjxTsFgnDgktV24XC5ZD4SqoSYpaESvfivh9aU1cfurZ6871iSOkhKzI9DcfO+fLGVlqtYxw/unO5Xx9TXe+yfbTTdpsl6jzfb+KaLRNhZJPIDSUBPpXO7jvH+6Ki0FAMz1/oXUp8xjvX+93HZb2GGJZihktAd/Vq3SNhCTRAK4wvvnzxwAH3j/nZWVhdNPP131i+SN7CnAi2p7mzJlCrZt24a2traez/Lz85GRkWFiVPKJ8E5BMk5ubi4AYObMmahNTcWIESOQn5/vd1o59cc6Ng6HD9UGewoSGUdu+zPinYJESkUY+EC6VY7VERERaG9vlz09hw9VToSyixCDVTEpSPpYvx4oKjI7Ck298cYb+Oqrr0JOV1JSglGjRqlax0cffYQPP/xQ1bzJycmoldlTsNSb9AjXli1bevWICmb+/PmYMGGCJus12n//+198/PHHiuY566yzAt64sqqmpiY88MADQafRqm0F8t577+HTTz9VPX96ejoOHToU8PvCwkKcccYZAIC3334bn3/+echlXnbZZboNvSeyHTt24KWXXlI0j9vtxrXXXqtTRPrbsWMH/vCHP+DNt94KOE0ugPcBVAHIyMjAL3/5Sxw6dChgDyUtLmI5fCjJlZubi0suuQSbNm1CdXU18vPzcfzxx8O9d68u6xNtKD0mBa1p+vTpQEGB2WGQAk7tKSjakMlEJB+TgmRlHD60v0WLFuHFF1+UPT17CionQtlFiMGqmBQkfeTk2O7He+OgQahNTQ06zamnnopRU6aoXkfrnj0h1xGIOzUVtXJPYhrVTVt1tex4h590EhAXp8l6jdayc6fieukYPNh2+4DU2Bh6O+hc5pbt21XvIwAQk56O2iDvt6xPT+8pg5x9HkDX9A5MCna0tiquC7fbbcn94siRI7j11lvxl7/8RfbThpcsXYqflZXB7XbjrrvuCmv9vMlIWho8eDAGDx5syLpEa7scPtS+zO4pyPbTm1OTglqzY0/BYOxWHrIWI5OCcuZPTEzE0aNH+30+dmy/MWmIDB0+1CrH6pEjR+K///1v0IfCfdl9e9gVt796fDyFSKZQY7ePGjUKU8JICALhHcxEfi9VVlYW4iyaEATUbVs7npjsUCYlZeD7GoIrLCz0e4M9JibGhGj0sXPnTvzsZz/DkCFDUFZWJishOHbMGADAb3/7WyQnJ4ec3oyegkYti0hLkiSxpyCFhXVsHA4fqg07ltGOZSJ7MPKhBDnHuvHj+7+oJTU1FQMHDgxr3WRP7CnYX2xsLJYuXYo5c+bImp49BZUToezsea0etxyRTKESBFokEEQ4oCohN94x3pvkVmW1erEzM1/qbuQyrSAyMtLvvj1u3DgTotHWV199hR/96EcYNmwYVq9eLWto5sTERJSVleGFF17o9bkRST8OH0qi0ro9hfujj23fvsyuPz5I1JtTewqKNmSy1ditPGQtog0f2v36le5pMzIycMkll3A/Ib/UvFPQCT3jEhIScMIJJ/S8pzoYJ2wPO+L2V4/DhxLJZERS0GqUXDg7jR3LbIcyhfoB5rsfy92n7bBd1Fq8eDEiIyPx9ddfw+12Y8yYMVi4cCE2bdpkdmiq1NXV4YYbbsA//vEPRcf0Cy64AHfccQdycnKA8nJF63Ry+yH7iI+PR9/Ued8HBHJyclBZWdlvXiXDYOl5E477orWZPXwo9ebUpKDW7FhGO5aJnMeIB1U9Hg/OPPNMLFq0CM3NzcfeYS/jYUVyHiN7S9n1OM6egsqJUHYRYrAqJgWJZGJPwf6ckhS0evxaEWE7sKegWCIiInDaaafh1FNPBWDtbbFx40Zcdtll+Prrr2XPM336dKxatQozZ84MOI2IPQWDna+sXIdknsWLF+ORd95Bc3MzACAzMxMnn3xyr2lmzpyJdevW9Zt38uTJstcT7r7AnoLOxjo2DocP1YYTykhkNUb1FOwWFRWFqKiosNZHpCW7DtfIpKByIpRdhBisiklBIpmYFOzPavGqxXcK2oce7xRkXVt7G7S3t+Pmm2/GHXfcIbvOc3Nzcfvtt+P888/XdThDI5ehx7LIOTIzM3H99ddjz549iI2NRWZmZr+2NHr0aBQXF+PTTz/t+ey4445DQUGB7PXo+WAI2761sf7E4tSeghw+NDx2Kw9Zi2jDhxLpzUnDZcr5ne+k7WEn3P7qMSlIJBOHD+2PPQWdRYTtoHdPQSfux05WXV2N888/Hxs2bJA1fWpqKkpLS3HjjTciLi5OkxjM2K/YzkkPkZGRGDJkSMDvXS4XTj31VMyYMQP79u1DTk4OUlNTFa2DPQVJVGw/vdk1KTh06FDs2LHDsPWxXREZx8ikIPdtsjK7tl/2FFROhLKLEINVMSlI+qisBOLjzY5CU7H79yO5ujrg93EHDih+l1RfMfv2BV1HMImShI6aGnkThxlnt6i9e2XFG11Vpdk6zaCmXiIqKgCb3Xh3tbWF3g4613M4+wgAJMbHB50//uDBnjLIXZd7924gJkZ1THYUaLu53W5hjgXbt2/H5Zdfjp3l5cgH4AGQBWATgNY+044aNQrXX389LrroIsTGxipajxEXqRw+lKzC5XIhPT0d6enpiueVJEnXJ/M7OzvDWjaZi+8UFItdhw+dOnWqUElBu7Vpu5WHrMXIhxLYU5CszK7HavYUtCZuf/WYFCR9lJSYHYHmFnn/grr++rDWMcn7p7uyMk0WMxxAqYHrM8sU758iFi+zP5GQUd86l3um909XN9wAADjJ+xeSDes6XKXBvly1yqAoghsG4C0/n88B8IH33wUFBbjzzjtx9tln63axyeFDieQLdRMtnBvo7EFLpB0lN7xHjBjR82/RewoWFRUF/d7o4UOtyI5lInvg8KHkNEyC9caegsqJUHYRYrAqJgVJH+vXAyF+NFnNv//9b2zfvj3g94MHD8Y555wT1jo+//xzvP3226rmTUlJQY3MnoKlpaWq1tHXjh078NJLL4Wcbu7cuZg0yZB0py4+/fRTvPfee4rmOffcc5Gdna1TROZob2/HvffeG3QardpWIBs3bsTGjRtVz5+Xl4fdu3cH/N53P96wYQO2bdsWcpkrVqxAdHS06pjsaPXq1X4/d7vduPbaa40NxockSbj//vvxpz/9CX1v/+cCeB9Alff/zz33XNx3331IS0szNkg/tL7QZfKDrIo9BSkQ9hQUi9xt7Xa7MWXKsUfvRE8Kulyufu9G1Xt94XxvNXYrD1kLewoSyWPXYzWTgtbE7a8ek4Kkj5wcoKDA7Cg01TBwIGoPHw74fWp6ethlbj1wALUK36/TzZOWhlq5B0ON6qa9pUVWvG0Wbw+tVVWK66UzLw/IzdUpInO4OjpCbwed67m5vFz1PgIAjYMGofbo0YDfpw0c2FOGpowM1FZVBZy2m6uwEIiKUh2THQWqI7fbbdqxoKOjA1dddRX+/ve/B50uPjERL65di8WLF2uyXiNu6CldhsfjCfgdE9wkMj3fKchkuf3xpoFx5GzroqIiTJ06FcOGDev5zAo3yo18N6kd26wdy0TOwncKkp0sWLAAb775Zr/Ps7OzsXfvXr/zWLH9yrnOHzNmDN5//33Fy7bi9tCKCGUXIQarYlKQSKZQJxEtbiZZ7WBmtXjVcko5rUDEH2BsH+JraWnBxRdfjHXr1oWc9oUXXkDh/PkGRCWf1onF5ORkJCYm4mifBHlUVBSGDBmiOD4io+h5DmBS0NpEPhc7sW2Fqo/09HRccMEFiudTO62WjFwvewoSGYfDh5LTdPd+37p1K/bv39/z+dixYxEfHx8wKWjH9jto0CBV7zwHeO4yG7e/evbbk4l0wqRgf0ounK1MTfxWL7M/dihTqDL47sdOvIlnR/X19Vi8eHHIhOAJCxYAAAoLCzVdv4g39FwuF6ZPn97v8+Li4qC9CInMpmdPQQ4fam0cPlQsRrynyKybkiIlBYlIO0wKkhPFxcVh6dKlOO200zB9+nQsWbIEZ511VtA2ardzU2ZmJi688EIOH6qCCGXn8VQ99hQkkolJwf6sFq9aTimnFYj4A4ztQ1xHjhzBokWL8NFHHwWd7he/+AV+9+MfAz5DmIlEj8Ti7NmzERMTg6+++godHR0YNWoUZs6cqTZEIt1JkhT2MTw2NlbVd2QPep6vExMTA36n9slzJ1Kyj4dTn4MHD0Ztfb3q+QMxevhQK16DWjFmor5EHL2GSK3Y2FgUFxf3+szIobLNduWVVwJQf0/XbtvDarj91WNSkEgmI5KC4TCrt4mW09mJHctshzIpKYPcfdoO28WO9u7di5KSEmzZsiXgNDExMXj44Ydx/vnnA+XlxgXnw4x3CnYrLi7u9wOQSGTh3iBPT09HcnIyamtre30eHx+P7OzssOMj85h9Lo6NjUVeXh52797d77u0tDQTIjKX2n3VqOFD58yZg+1vv43m5mbF85rd1uyM25bMxJ6C5DRG9Oq3ErXlcvL+LEJbECEGq3JuyyVSiD0F+7NavGpx+NAuIpRJ76cy1ezHImwX6m3Hjh2YM2dO0IRgUlL2axQJAACoNUlEQVQS1q9f35UQ1JGZST8iu9HiHDBv3rx+n8+bN4/7mQPoXcenn356rx6D0dHRuq7PjoxKCmZkZPT0DFCKw4eGx45lInsw8p2mTk4imMUJ52Qt3w1vt56CenbisOL20IoIZRchBqtiT0EimZgU7M8pPQWtHr+W8vPzsWvXLrPDUI09Be3vyy+/RElJCfbt2xdwmoEDB+LVV1/F5MmTDYzMPyYNieTToq1PnDgRCQkJ2Lp1KyRJwujRo1FUVKRBdGQmEY6DAwYMwDXXXINdu3aho6MDhS4X8Kc/mR2WKdT2FDRq+FAASElJUTWfkTdK7Th8aDB2Kw/ZkxY9BdnW9bNo0SK8/PLLfj+3u+OPPx4//PCD7OnZU1Ab3B7m4vZXj0lB0kdlJRAfb3YUmoo7cADJ1dUBv4+PjAx7+Lnoqqqg6wgmEUC7jHmTk5M1GyYvsrJSVrxRe/cCAwZosk4zqKmXiIoKoKVFp4jMs2DIEDz7+eeBJ9B5CMaYfftU7yMAEH/wYND5E+LjgfJyNDc3Y/e77yJZzkLLywFeiPQSaBu73W5d28ibb76JlStXIrqxEUMAZAHYBKDVZ5rBgwfjtddew4gRI3SLw5cRST9eCJNTaLUvDBs2DMMEfYco6ceIY2VUVBSGDx/e9T8mDUttZTyf9cbtQWQcDh9qD2PHjsUnn3yCFp/fo9nZ2Yb99jPT4MGDUVBQgHKdrz/Yfntz8rlahLKLEINVMSlI+igpMTsCzZ0jZ6Kbbw5rHaO9f7q79VZNFpMLoFTOhGVlmqzPLOO8f4pYvMyB5CFEnetc7qnev3CEfEbwppsQA5ltG7BtXYejNNiXq1bptt4FALb2+WwOgA+8/x45ciQ2bNiAwYMH6xaDUuwpSCQf2zoFwrYhFiN6H5hV5yINH2rFdm+3IenIPjh8qD3ExsZi6dKl2Pqf/wBlZTjuuOMw5tRTHTF8qNvtxumnn46777477GXxWC0ft4e5uP3VY1KQ9LF+PWCzoZgaGxvx4IMPBvx+4MCBuOiii8Jax7Zt27BhwwZV86ampqI6RA+q0aNH48QTT9TsIrSyshJPP/10yOlOPPFEjB07VpN1mmHLli14/fXXFc1z0UUXYeDAgTpFZK5HH30UR44c8ftdaWmpruvetGkTPvjgg9ATBjBq1Ch8/fXXAb/PycnBtGnT8Nxzz8lansvlwnXXXac6HrtavXq138/dbjeuvfZaTdfV0dGBX//611j7+OO9Ps8F8D6AKu//FxcX45VXXrHtfknkBHa8QU7kRCIMH6qWSMOHEpF2jOwpyH1bX3FxcZg6tetR4uLiYiAmxuSIjGPEedSK7ZfvFNSHCGUXIQarYlKQ9JGTAxQUmB2FpuIAzLzgArz66qt+v49OSwu7zO11dahNTVU1b8SAAagN8v0NN9yAhIQEdYEF0OnxyIq3zeLtoa26WnG9SPn5wKBBOkVkrqMDBqA20EWVzvXcWlmpeh8BgKaMDNQGeddc0oABeGPHDtnrcLlclm7begm0/dxut6bbq6WlBZdccknQhxM6AMydOxcvvvgikpKSNFu3XFokMZgIIerCtk6BsG3Yg5J6NKunDXsKhseKMZMzGJkU9Hg8Yc1PpDf2FJSP28Nc3P7qsc86kQLTp08P+J2eT55oQeuEIOCcg69TyimXlbeHnNhD9bhVujzSR0NDA04//fSQvZVPLinBK6+8YkpC0Chsh+QUoZIA3Beci3UvFjsPH2okJ5TRl9PKS2Ixsv1x+FDSixHtmMfq3py8PUQouwgxWBXPREQa0SIpaLWDmZKn6axMTfxWL7OojBiqRcmTm6xn/0aNGuX380WLQr7RUZampiacccYZsoZb/utf/4rY2FhN1quGET0FiZxAkiTuC0Q2weFDw1+XHusjotC06CnIpCCJwEnDh+qJ28Nc3P7q8UxEpBEmBe3LKeWUy8rbI1TskiQxKagBf+8QjYyMRJEG75o9ePAgTj31VLzxxhsBp4mKisKf77wTgDN+dLMdkhPEx8fzBjkFxLoXi51vNIo0fKgVcUg6EpWRw4c64fcJmUOr4yiP1fI5eXuIUHYeT9XjliPSCJOC4U8nKvYUFAd7ClrD6NGjcdJJJyE6OhoAkJycjIsuugiJiYlhLfejjz7C5MmT8dZbbwWcJjExEevXr8c555wT1rqMokUbYjskO0n1807S2NhY5Ofns60T2ZyRN+WtgA9CEBnHyJ7KvIlNejHivGDF9qvn6554LjYXt796EWYHQGQXor9TUA88+DqTletdTuxWGLrKCmbNmoUZM2bg6NGjSEpKCmtbSZKE++67D6WlpWhraws4XXp6Ol599VUUFxcD5eWq16clthEiZWbMmIFdH33U67pq7ty5cLvdvEFOAbHurSXc4UPNrG+Rhg+1G6eVl8Si5PgTbltV8hAqkV7Uns94rO7NydtDhLKLEINVMSlIpBH2FAx/OlGxp6A49H4qs6KiIqzlU29utxvJyclhLaOhoQFXXXUVHnvssaDTDRo0CG+99RZGjx4d1vqMpsU7BXm8ITsZMWIELikqwtatW9HR0YGRI0dixIgRANjWiaxC7+FDRU0KGr0uHhOJtGNkUpD7LunFiLbF9tubk7eHCGUXIQarYlKQSCNmJwXNOBA65eDLpGBvVi4bn+C2lsrKSixevBibN28OOl16ejreeOMNyyUEAQ4fSuRPYWEhCgsL+30e6oYd9wXnYt3bA5OC5q1LBE4rL4lFSftjWyUns2L7nz17Np599tl+n6enp/f6//Hjx+PLL79UtGwrbg874fZXj0lB0kdlJRAfb3YUukiurvb7eWJ7e9jD1UXt3Rtw+aEkulxoCzavDkPpeQ4flhVv1N69QFKS5us3ipp6ce/eDdTV6RSRuRIOHQq8PXQesjG6qkr1PgIAsfv3hzV/v3iio4UZptJuNmzYgJtvvhlHDh1CPgAPgCwAmwC0+kw3ceJEPPPMMxgyZIgpcYbCpB+RdrgvEFmD2h5uVhg+NBg+fBaaHctE9mBkT0EivWiV3Lbb8KHDhw9HVFQUWltbe31eXFzc6/8nT57MpKABsrOzkRwbq8myuP3VY1KQ9FFSYnYEuikN9uXvfx/WsoeGWn44yso0X+QAyIxXh3UbaThU1IvFyxzMRcG+1Lnck7x/4ZirRSC+/vQnrZdIABZ6//qaA+AD77+XL1+Ov/zlL4jV6ILSDEwaEsnHofQoENa9PbCnoLJ1sd0TaUfJ8Yf7HomKw4f6FxMTg4suughPPfUUGhoa4HK5MGXKFEyfPr3XdPn5+cjNzVX0Whkrbg8tuVwuxSPnRUZG4owzzgB+/nNN1k/qMClI+li/HigqMjsKXaxevdrv5/Hx8bj88svDWvaOHTvw0ksvqZo3NTUV1UF6QJWWlqqMKrDq6mo88sgjIac75ZRTet4HZEXbt2/Hv//9b0XzLF++POx3qYlq//79eOKJJ/p9PmLECJxyyim6rnvz5s145513VM9fXFyMTz/9VLN4YmNjceWVV2q2PKfr7OzEvffei7tWrer3XS6A9wFUAYiKisK9996Ln/zkJ8JfBBqR9BN9GxBphW2dAmHbsAcmBZWty4rt3m69T8g+5PYUBNhWyR6c1FMQAPLy8nDDDTfg4MGDSEpKQkxMjN/pCgsLmRQ0QHR0tCbL4fZXj0lB0kdODlBQYHYUuqhNTfX7eVtcXNhl7mhtDbj8UDxpaagNNoEO9SElJcmKt83i7aG9uVlxvUj5+UBKij4BmWxQfj5Svv4au3bt6vnM4/Fg9KJFQH6+rutuO3BA9T4CAK3Z2aj94Qft4tFgv6cuzc3NWLZsGZ588smg02VmZ+PJF17AlClTDIpMX7yIJZKP+wuRNXD4UGOWFxHB2zlEWmFPQbIDI9qmkgS6aFwuFwYNGqT5Mp1MTU9BLbeZ07d/OHgVSaQRpQdBf6x2MLPC07ykPZfLhQsvvBDvvPMOysvLkZKSgqlTpyJf54SgFviuFzFVVlbirLPOwqZNm0JO+/zzz2OgTRKCWmE7JKcIdROC+4Jzse7twQq/LUTqKRgZGWlQJMbgfkxWwKQgOZ3d27/S8tl9e+iBSUExMClIRKo55eCrppx23zZRUVE46aSTDF+vaNtVtHis6JtvvsFJJ50UcoiOy3/yE+Dvf8fAgQMNikwbWgz9Zcfhw4jUYFsnsga991UzeymIlBS0Yk9BHsfJDtiOSVRK2qbadsz235vTt4fZ90udvv3DYd0+v0SCMbunoBbrV8oKT/NqweyTHGlDjxtIrOfwfPbZZzjuuONCJgTvv/9+3HzzzQZFRUSiYoKcAmHdW0u49SVqT0Gj42JPQSLjsacgicyItsn23xu3h7m4/dVjUpBII2YnBc1gtXjJ+sJpc3q0V+4D6j355JOYN28eDh06FHCa+Ph4rF27FldeeaWBkRmLPQWJ5GNbJyJAu2PB1KlT/X4+adIkTZYfLjsOH8rjOFkdk4LkBMHub7L99+b07cFOFNbFpCARqcaegtrOQ/piUlAMDQ0N+MlPfoLzzz8fR48eDThddnY23nnnHVx44YUGRkdEImOCnAJh3YtF7/rQavnjx4/3+/mECRN0X7cWRIpFC3YrD9lTZmYm2yoJi8OHGs/p24P3S62LSUEihcaNG+f381NPPTXsZdt1+FAirYjWU5CU+fzzz1FcXIx//OMfQaebNm0aPvnkExQXFxsUmb7CHWos2DRmvleJyGg8jhPZgyjDh+bm5uL000/v6XEXGRmJU089Ffn5+arWzWMUkf1Nnjw5rH2d1+5kBcHuL9q9DSvdv3nuJ6uy3pupyRoqK4H4eLOj0MWE5GTsrq7u9Vl0dDSGejxAeXlYy46srERyn2XLldjRAamuLvAEYcbmj7uxUVa8UXv3ArGxmq/fKGrqxb17t233ATNF7d2reh+JiopCzL59quf3J6mjQ5d9y25aW1vx0EMP4a677kJrWxvyAXgAZAHYBKDVZ9qFCxfi2WefRTz3H1ns/qOMyFeo9s4f5c7FuheLVXoKAl1DhY4fPx6HDh3CgAEDEBHBWyR64r5KVnb88ccjLi6OD6qSsLRqXxw+VD6n/x5nT0Hr4hUv6aOkxOwIdDMUQKm/L/70p7CXPTjQsrVQVqb5IuMgM14d1m2kAqioF4uXWVTjvH/hmKVFIL5+9zutl2g7UQCu8v71NQfAB95/n3POOVi7di2io6MNi80ILpcr4A+rcHsK8oKanITtnQJh23AWrevb4/EgIyMj7HWzHYaH249EVlhYiPnz5wMIr606PYFA+tJq+FAmBeXjPq0c25AYmBQkfaxfDxQVmR2FriRJQmtrq6Y3rysqKrBu3TpV8w4cOBAHDx4M+H1paanKqAJrbm7G/fffH3K6xYsXY+jQoZqv3yi7du3Cc889p2ieK664AnFxcTpF5FxbtmzB66+/rmremJgYzJo1C2+++aZm8aSkpGDZsmWaLc8uJEnC+vXr8eCDD+KzzZv9TpML4H0AVei6Gffb3/4Wv/jFL+DxeIwM1fL4I4SchO8UJLIHUYYPtdq67YDbj6xqxIgRPf9mUpDsjklB+Zy+T7OnoHUxKUj6yMkBCgrMjkJXLgBa92XpcLlQm5qqat7F55+Pxx57LPAEetRHc7OseNtzcy3dHjo6O5XXS0EBwKSg5lqPHFG9j7TFxWFESQle+OILdHZ2ahJPxIABlm7beti4cSNuvPFGfPDBB6EnBpCVk4N/PvUUZs3SvA+nJVj5xiiR0djeKRC2DbHoXR9m3oBjW9MPty2JzLd9cvhQEpUR7YttuDenJwXJuthyiQSi9uSampqKvLw8jaMJTW68vGggrYT7Ayw6OhrTp0/XMCLqtmXLFpx11lmYOXOm7IQgALz88su2TwjqeQzk8ZWchD0FiezBrg/EiBoXEYXP98Y/ewqSHXD4UP+Uls/p+zR7ClqXs1sukWCUHhhjYmIwcuRILFu2DJGRkTpFFZhTDuQ8ydlDd52cdNJJyMzM1HSZTvbee+/hvPPOw/jx4/H888/LmicxMRH/d9ttAICkpCQdoxNfuO8UdPqPEHIWtncKhOdjsehdHxw+1Lr4TkayKq2SgmznpCet2peTk4JK8feJcmxDYuDwoUQWNXHiRJx++umW+FFs9QO+1eO3Ey2eynS5XJg0aRJeeeUVU+OxutraWqxYsQJPPPGEovmWLVuG//u//0NGUxPwi1/oFJ1Y2FOQSBvsKUhEAJOCRGQ8rYYPZQKBRKG2pyDbcG9O3x68LrIuZ7dcIsEoPZiaffB1SlJQDSeWWXR61IlT6/mLL77AlClTFCUEp06dildeeQUPP/wwMjIydIzOWsJtQ07/EULO4tRjLoXGtiEWvRP4oiYFjYyLbZ7IWBw+lKyA7xQ0Hvdp5diGxMCWSyQQqx0YrRavWhw+VByiDdXixHpes2YNZsyYge3bt8uavqSkBJs3b8bHH3+Mk08+Wefo7EmUG5BEZmN7JyKAxwIA8Hg8ZodA5CgcPpSchMOHyuf0pKCa9lBcXKxDJKSUs1suEYWFPQXJSrQa8iXQMu2uqakJl19+OZYvX47m5uaQ0xcXF2P9+vV49dVXMXHiRP0DFJieST2n/wghZ+HwoRQI695ZRO0paKSICL4JhshIHD6U7Ebt8KGinAf1orR8Tt+nlW6v+Ph4FBQU6BMMKcIrSSKBKDmYinAiFiEGI7CnoDj4VKY5duzYgSVLluDzzz8POe3IkSPx+9//HmeffTa3uQxythF7ChJ1YXunQNg2xMLhQ/Vn1Z6C3FfJqthTkKgL23BvTk8KBpOeno6cnBx8+eWXkCQJKSkpuOCCC7jNBMGkIOmjshKIjzc7CsuJOHAAydXVsqaN3b8fKC/v9VnQeftMqwVXqHV6RVZWAhb94QoAEXv3yq6XHuXlQFSULvE4WWRlpfK68Ep2uXr2gyg1depHYmSkLvuWSF577TXccMMNqDt6FPnezzwAsgBsAtDq/Wz48OFYtWoVTj75ZMveqNKLnj+ceEFNThKqvfMmBZEzdHR0mB2C6dhTkMhYfKcgOYmTewoq5fR9Olh78Hg8OPPMM3HyySejoaEBaWlpbD8C4ZUk6aOkxOwILGkQgNIw5g86b1lZGEtWuU6d122UbKioF4uXWVSjvH+q/eY3AIAJ3j9N3HyzVksS0kkAvgzw3RwAHwBYsmQJ/vGPfyApKcm4wGyCPQWJ5GN7p0DYNsSid320tbXpuvxgRGlrfACLyFgcPpTshsOH+sfhQ7XTvS1jYmIQExNjcjTUF5OCpI/164GiIrOjsJyDBw9i7dq1sqYdO3YsTjzxxF6frV69OuD0paWlYUQWWLB1djvnnHMwePBgXdZvhKqqKjz55JOK5vnpT3+KyMhInSJyrm+++QavvvqqqnnT09Nx8cUXAwC+/PJLvPnmm2HHk5mZifPPPz/s5Yjmhx9+wC9/+Uts/Ogjv9/nAngfwEG3G6vvugvXXnut7X8ciIrbnZyE7xQksodw99XW1tbQE+lElAd1rNpTMNiNZiKRcfhQcpJgx2omwXpz+vYQ5bqIlLPmlSSJLycH4ItDFeuMjUVtaqqsaZszM/tt46Dz6lQfcuJtz821dHvoiIiQXS/dXIWFgEV/rIus7ehRxXXRLSY9vacdth46pHo5vhIHDrR02+6rtbUVd9xxB373u9+hpaUl5PSPP/UUis85x4DIrC3cC+Vg0zj9Rwg5C39YEhEgblLQSLGxsWaHQOQoHD6UqIso50FRcJ8OjG1FbGy5RAKx6wHT6uVSE7/VyywqrZ7KZP309+GHH6K4uBi/+tWvQiYE58yeDQAoLi42IjQKgm2ZnIQ9BYmsIZx9MTo6OuQ0Zg4farRhw4b5/XzevHnGBkLkcFr9luS1ComCw4dqw+lJQfYUtC5nt1wiwfCAKSbWiz3ocbFmh7ZRV1eHa665BrNnz8aWLVtCTn/zzTfjkUceMSAy+9Czp6Ad2iCRXE7/0U1kF8HOXccff3zI+Ts7O7UMRxGjz8kTJvR/C3ZaWhry8vI0XxcRBcaeguQkTk4K8p2C2rF7W7E6jm1HZFFWOrhaKVatOLHMRhDtB5jV6/n999/HBRdcgIqKipDTJicn45///CcWL14MlJfrHxzJwh8h5CTsKUhqFfFd54YKZ1+cNm0aysvL8f3332sYkXaMPs6MHTsWLS0t2LhxI2pra1FQUIDFixfz/E9kMCYFyW7YU1AbTt+n2R6si0lBIoHwYCom1os9aPVDzpdV24YkSbj77rtx4403or29PeT0xx9/PB566CEMHTrUgOichT0FieRjeye1xowZY3YIJFNERATOP/987Nu3D3/729/MDkcIxcXFKC4uhiRJPA4SmYTDhxJ1YRvuzelJwWDYVsTGlkskECUHTCsdXK0Uq1acWGYjiPZUphXrub6+HhdeeCFKS0tDJgRTUlLw97//HW+99RYTgmHQs53wRwg5CXsKkhopKSkYP3682WGQj1D7qtvtRnZ2tkHRKGPmgzo8xhGZhz0FyUmC9RRkG+7N6duDDzBbF3sKEgmEB0wxsV7swekXawDw7bff4uyzz8a2bdtCTnveeedh9erVyMzMNCAy5wr3+MLjEzkJ2zupMXv2bLNDcBw776t2LhsRBaZVUpDHEBKF2rbINtyb0+8zMSloXUwKkj4qK4H4eLOjsBx3TQ2Sq6tlTRu7f3+/93oFnVend4DJiTeiogLo7NRl/UbwHDwou166uXbt0ikaZ4vau1dxXXRLOHSoZz+IrqpSvZxey0xIsMz79V599VXceOONaGhoQD4AD4AsAJsAtPpMl5eXh/vuuw+LFi0yJU5Sxuk/QshZQrV3/vB0rmBPtBNpiccZImfSavhQXruTFTj5nYJKy8d9OjC7txWrY1JQJy6XKwrAeQAuADAGQAaAagA7ATwLYI0kSYc0XmcBgJMAzAUwDkAegAQARwFUAPgQwOOSJL2j5Xr9KinRfRV2lAKgNIz5g85bVhbGklWuU+d1G2UgVNSLxcssqmEIbx/B9dcD6Dooa/Z2oRtv1GpJujrZ+9fXHAAfeP99+eWX46677upKdpJm9Hx6jhfa5CRs7xRIRETgn7XxfFDRcE4d6teu5SIi9hQk68jJyUFlZWVYy3ByUlAppycF2VPQupgU1IHL5RoJ4AkAE/t8len9mwngJpfLtVySpJc1WN8kAPcDmBZgklTv3zgAV7hcrrcBLJUkaXe46w5o/XqgqEi3xdtVXV0dHnroIVnTTpw4EfPmzev12erVqwNOX1paqj6wIIKts9t5552HrKwsXdZvhEOHDuGxxx6TPb3L5cJ1112nY0TOtX37dvz73/9WNe/QoUOxePFiAMDWrVvx2muvhR1Pfn4+zjrrrLCXoxdJknDrrbfi4TVr+n2XC+B9AFUAYmJi8Ne//hXLly83OEKSgxfaRF3Y3imQ2NhYDBo0CAcOHOj1eWRkJIYPH25SVBSu7Oxs7N27t9/nZg5tzuMQkTPxnYJkFePHj5eVFAzWjpkUlI/7dGBsK2JjUlBjLpcrF8AbALrfjC4BeBfADnR1ODoRQCyAQQCed7lcJ0uS9GaYqx2B/gnB7wBsAXAIXR3QZqHrHjAAzAPwocvlOk6SpB/CXLd/OTlAQYEui7azzpoa1Kamypq2OTOz3zYOOq9O9SEn3o7Bg4Hc3JDTiUqKj5ddL4D3xMf2r4v25mZFdeGrKSOjp17aFOxrwTQOGiRsXbe0tGDlypX4m5+EoK/s3Fyse/FFTJo0yZjAHEjPpB5/hJCTOLX3Eclz3HHH4dlnn+11I2v27NlBexGS2ObNm4fHH3+83+fTpgV6FlZ/PM7oh9uWRMbhQ8kqpk6ditbWVnyybp3ZoTiC0/dpPsBsXfyFpL3HcSwhuAvAGZIkfdH9pcvlSgfwLwAnAIgE8LTL5RoqSVKNBuveDuDvAB6TJKnXYyEul8sNYBmAewDEeWNc63K5Zkl8CYcw7HrAtGu5AnFaea1Cj4s1Uev6s88+w9KlS7Fly5aQ07700ktImThR/6BINV5oE3Vhe6dgxo4di9jYWHz11Vdoa2vDyJEjMW7cOLPDciStEvhDhgzB2LFje13PDBs2rKteKyrCilEPPEaFh7clSGQcPpSswuVyYc6cOZidk6P6tTY8Hsvn9KRgMDzeiY1JQQ25XK5FAI7z/m8rgMWSJH3lO40kSYdcLtcZAL4EMARAGoD/B+CXYay6CsByAP+UJKnD3wSSJHUCeMjlclWj652GADADwEIA68NYN2lIyQGTB1fjcFuLQ6unMu1ap52dnbjjjjtw8803o6PD7+kAQFf5f3bddcDq1UhJSTEuQOqH7xQkko89BSmUoUOHYujQoWaHQRrxeDw4++yzMX78eFRVVSEzMxNDhgwxtfcnjzNEzsThQ8lqwrludnJSUOn+7fR9mtdF1uXslqu9n/r8+5G+CcFukiQ1APi1z0dXulwu1b9sJEl6R5KkNYESgn2mfQ7Axz4fnap2vaQ9ux5M7VquQJxWXqvQo15Equvt27fjlFNOwf/8z/8ETQhGRkbi6aef5nsvLSRYO3P6jxByFrZ3ImvQ8vrI5XJh+PDhOP7441FUVGT6cLAiXfsRkXG0Gj6UxxAie+Hvk8B4vBMbW65GXC5XArqGBO32cIhZngFQ7/13GoDj9YgrgA98/l1g4HqJLEnpiYwnPv2I9lSmCHUtSRLWrFmDiRMnYsOGDUGnjY6OxvPPP49zzjnHoOgoFPYUJJKPPQWJ7MHK+yqH9CZyJq16Cg4ePFiLcIh05eSegko5PSnI6yLrcnbL1dYsANHefzcA2BRsYkmSmgF86PPRAp3i8rt6n397DFwvhWDX4UOtFKs/Vo+fuugxfKjZbaOurg4XXXQRli9fjoaGhqDTpqen45VXXsGiRYsMio66hfujij0FibqYfcwlIiL98BhPItPimtvtdmP8+PEaREMUPg4fqg3+Hg+M53WxseVqZ5TPv7+SJKldxjyfBZhfb+N8/r3HwPVSCFY8YBYXF5sdgnCsWI9WwZ6Cx3z88ceYNGkSnnjiiZDTLlmyBFu3bsX8+fMNiIyUYE9BIvnYU5CIzMYn4omcSYvhQ+fPn4+oqCitQiLSDZOC8jk9KWjEdVFcXJzfz2fPnq3J8p3K3AH57WWEz793yZxnt8+/R2oYS0AulysPvXslvq7Liiorgfh4XRZtZ+6mJiRXV8uaNnb/fqC8vNdnQeftM61W5uTmYt/Gjaivrw84TURFBdDSosv6jeCprZVdL0DXO9v02t5OF1FRoagufMUdONBTL5GVlaqXE2iZRmlra8MDDzyA1atXo6OjA/no6vKdha4u6q0+08bHx+OBBx7ARRddZGiMJJ+cC2XegCTqwvZOZB0ulyvgTUUr78tWjp2I1NPixv+4ceNCT0RkEJ7P/FO6XZgU1L8dDRs2DLt370ZNTU3PZ1FRUex5HSYmBbUzwOff+2XOs8/n32kaxhLMXTg2ZOhuAC/pspaSEl0Wa3exAErDmD/ovGVlYSw5sBQAPwk1kU7rNkoyVNTLnXdqHwihEOHtI91GQcPu2StXarUkWSIBXOP962sOjr00dvr06VizZg1GjjTkmRMyCX/MkZOE+tHN/YHIGqy8r3K4NSJncvqNf3IWns/k47EhMK2u92JjY7F06VK8+eab2LNnDzIyMjBnzhwMGjRIk+U7FZOC2knw+XeTzHl8p0sIOJVGXC7XUgDn+Hz0C0mSNO2+FRMTg4iICOCZZ9AxdCiONjUhOT4eLpcLdQ0NiImKQlRkJJpaWtDZ2Yn42Fi0d3SgvqkJKQldm6C2vh5xMTGIjIhAY3MzACAuJgZt7e1obG5Gsne6mvp6JMTGIsLjQUNTE9xuN2Kjo9Ha1obm1lYkxcdDkiTUNjQgMTYWHo8H9U1NiPB4EBMVhZbWVrS2tyMxLg6dnZ2oa2xEUlwc3G43jjY2IioiAtFRUWhubUV7RwcSYmPR0dGha5n2Hz6Mx//5T7gAdHoPnm5JggRAcrmO/dvtxpRJk3D8ccf1KtOq1av7Tefq7IQLwI+vuELXMj33/PM4uG9fr1gBoNPtxgXnnouszEzL1tPhI0fwyD//2atM3dvVXz3FREZixYoVQpfJqvtTeXk5nn3hBbgkKeh+4q+eJowfjxPmz0drWxu2bNuGd996q99+0ulywQXAFWC/6zWdJGFEUREWnHii7vUUGxWFe++9F4+sXYv6ujp0tLcjJj4enZ2daG1qQn5UFF6KiUFVXR0iIyPxxz/+Eddddx0iIyNRX1+PiIgIxMTEoKWlBa2trUhMTOyqp5QUJHV2wg3g6NGjiIqKQnR0NJqbm9He3o6EhISuMh09iuTk5K4y1dUhpq0NUUBXmRoaEB8fj/b2dtTX1yMlJaWrTLW1iIuLQ2RkJBobG7vKFBeHtrY2NDY2Itl73qipr0dCezsiIiLQ0NDQ1fZiY9Ha2orm5mYkJSV1tb36eiR6PPAAwctUV4ekpKSuMiUmIqq1FdGAMWVK7ipVTUoKEjo6EAGgoaEh6I+qzs5OIFCZvO24zrsufzo6Onr+269MMTGIiopCU1NTV9sD0B4R0VUm7/yyy1RTg4SEhK4yxcfD3dKCWKB/PdXWIjExsesY0V0mAC3R0WhtbOwqk289ud39215TExK6y1RTE7xM8fFd+1NKivIy1dcjISKip54Ctr3uMgGoT0hARGtrV5kCtT3fMgFojonpXaZQ9eTb9vQuU3c9dZeptRWtR48GL5PvMQJAh8eDo/X1SJYkeWUKtD81NyMO6Dru1db2b3sREWhqCn6J3b0/qG57eh4j6uuPHfd8ymRIPXWXKSWlq54A+fWUnIy49nZEAvKOEb5lAtAaFYXmhgYkAYGPEYGO5d3np8ZGRLW0yKsnOftTfT3i2trkHfe6j+VNTXA3Ncmrp+4ytbaiNTFRXdvrrqeGBsS0tirfn4Cu/SkyUn3b6+joOu41NSGiuTn4OddPmbpJ6Dov+p4Ju899issUznWEBmVqb+/9hpDuMnX63PQyvJ7Unp9MOkYAXdcRnX5uFEqShJqamsDHCN9jeU2N9mXyxhHyGKG07Sm9hg3nOqKpqet6r6MD9TU1YZ1ze5WprQ3NSUnyj+XwXsPW13cdy+WecwHUJSUdO+dqfB0hp54CcblcvepJiU6XC61RUcrL1LftBfitIfs6ItxrI6OuI5qa4I6Nlf9bw9/+VF+PJLdb+e/cmJiueoqNPbY/ya2n9nY0Jiebfyzvsz8F+iXa1tbW8+++Zep7vvPV3n3cM7uetP6d662niIhjqZLuc1WwFGl7ezuOyr0uV/o71wL7U/c1nT/d90GCnXP9XQ/01Z1cPP3003vtTwhWJmi4P3nLkZSUhLq6upDxWgXT2dqJ8fl3a8CpevNNyMVqGEs/LpdrCoD7fT56QpKkx7Vez4wZM7BkyRIgJwcH4+NR9swzaMnKAgoK8NBrr2FbQwNQUIB3du7ES198ARQUoMLjQdkzzwAFBUBBAe7797+xo70dKCjAhm++wYZvvgEKCrCjvR33/fvfPdOVPfMMKjweoKAAL33xBd7ZuRMoKMC2hgY89NprQEEBWrKyUPbMMzgYHw8UFGDdRx9h4969QEEBNh85grXvvgsUFKAuLQ1lzzyDurQ0oKAAa999F5uPHAEKCrBx716s++gjoKBA9zLd/+9/oy41FbWpqTiakoKjKSmoTU1Fnff/e/6dnIwjiYn9yuRvuu7l6V2mvR5Pv1hrvTFURUVZup7KJalfmYLVU11amvBlsur+1J6b27WNQ+wn/uppR1tbT5ne+O47v/vJ0ZQU1AXZ73pNl5qKpowM3evp3hdeQPE55+CGe+7B2ddei87cXOwCMGnxYgydOxe7AESOHo2HLrsMg/Pz8e6776KhoQGHDx8GAKxbtw4bN24EAGzevBlr164FANQ1NqKstLQn4bR27Vps3rwZALBx40asW7cOAHDw4EGUlZWhxTsE8EMPPYRtu7pGyX7niy/w0ktdHc4rKipQ5tMr+L777sOOHTsAABs2bMCGDRsAADt27MB9993XM13ZM8+goqICAPDSSy/hnXfeAQBs27YNDz30EICuC7iyZ57BwYEDg5eprg5lZWU9F2prL7oIm7dvN75MpaWoOHiwp0y+P7j66h4CI2CZkpLw8GuvBZx/586dgcu0bVtXmd5551iZcnO72p7SMpWVHaunxYvxzhdfAPBTT2VlOOgte68yTZqEta93jVjer576tj1vGzhYWyuvTAcPoqy0VHmZnnkGFbm5XWUK1vZ8y7RkCTZ6Ywja9nzLNGPGsTLJraeKCnX1pKZM69YdK9P27fLK5Ls/DRzYddyTU6Zg+9Mnn3SVae/egG3vjTfeQDBHjhw5ViY1bU/PY8SLL/otk2H1VFuLstJStHiPR7LracUK7Ni713+ZAh0jfMs0ejQeeuWVwGUKdizvPj+9/rr8epJTphdflH/c6z6Wf/ih/HrqLtP27VjrHb5bcdvrrqdXXlG3P3WXaehQ9W2vtrarTO+8I++c26dM3TeCOj2ermO0z02fo0ePqi+T2usIDcq0bt263k+9e/9dn5jY85Hh9RTO+cmsY8TixWiJ8b190qWtrS34MaL7WN7YqG+Z5B4j9LyGVXsd8eGHXWXyTtdTJhXn3F5l2rULD1122bEyyTmWJyV1/SZUes697LJj51yNryPk1pM/bre7Xz3JVZ+YiG2jRysvk8zfGorPT2qujYw8Rnz4Id6ZO1dZmfruT888gzpv8lbR9V53mebOPbY/ya2nvXtx34oV/stk1LHcz/7UFuA9lpWVlQHLFCzRI1Q9af0796WXcPDgQXi8Dwj0nN+DJK62bt0qv56U/s61wP7kO6RnX93bIViZjsp8yMLU/cl73LvMex60Cxe7BGvD5XL9B8Ai7//eLknS/8iY5xQAL3v/t16SpMRg04cRWyGA/wLI9H70JYDjJEnSLL3tcrnGANjS3VNw48aNGDlypLKnd5U+HaX2KWslT+aF+0SywjLt378f999/P+SYOXMmFi5c2KtMt9xyS8Dpr7/+el3L9Nhjj6Gqqsrvui+//HJkZ2dbtp4OHTqEv/zlL7LqBejqMfv//t//E7pMVt2fduzYgccee0x2XfiaMWMGSkpK0Nrais8//xyveG9ShmPcuHFYtGiRLvW0f/9+XHvttXjvvfdQ672JlZKSgvr6erS3tyPe21OwqakJQ6Oi8FlMDNwffID4MWPk1dMPP6CuuBhJn34K95Ahyupp/35EFRWh6Ztv0Jmbq67tVVcDhYWo+eorJIwcGbrtbd2KxIkT4dm+HfXp6aHb3u7dODp+PKI++QTRRUXGlCk5GSgvR82kSUj45BNEDB2KhoYG3Hvvvb16Tfhavnw58vLy/NfT4cPoHDoUFe+9FzAxOHHiRJxxxhny2t7Bg2gfPhz1mzcjZexY+WWCzzGiogINY8fC/emniB0xQt4xYt8+tIwcidbPPkPi6NGhjxE7dyJh9Gh0bN+OowMGhN6fduxA/ZQpSNm8GSgokF+mLVuQMGkSIr7/Hg0DB4Y+7u3Zg/px4xDx6aeIKSqSd9yrqkLzqFFo/+wzJIwapewY8c03SBk3Dti5E7WpqfqUqbue9u5FzIgRaPn2W7RmZck/lh86hI5hw3D088+RPGZMeMe93bsRN2oU2r7/Ho0DB/o9P4W6Trruuut6jpOq2p6ex4hvv0Wytz5rUlLUnXPV1lNCAjp27MDRKVOQ/NlncBUWyqun8nLUTpyIuE8+QeSwYcqvI/bvR+uIEWj+7DMkjRmj/DriyBG4hw7F0a1bETV0aPjXETU1QGEhar/6CnEjRsg77h0+jIhhw9CwbRvcBQXKro2++w6tU6Yg8csv0ZmXp6ztVVfDNWQI6rZsQczw4equ9w4cQFtRERo/+wzJ3mO+ouu9w4fhGTYM9du2IaKwUPH13p/+9CdIkoSk6mosf+QRPLx0KepSUwEAI0eOxHnnnRfeNazS6wgNytTe3o7q6uqem09J1dX4WVkZ7iotxdGUFJxzzjkYOnSosfWk9vxk0jFi38aNSD35ZDxw+eU46t0u3S655BKkpaUFPkbs2IHEMWPQuWMH6tLStC+T3GOE3tew4VxHlJcjfvRotG/fjvoBA8I65/Yq0/ffo3nKFCR98QWk/PzQx3LvNWzdF18gafRo+efcXbtQN2ECYj75BFHDh2t+HSGnnu655hrUeo9Vvn79619DkqSeevrd734X6HKkn8SaGlzz178i6ttv0ZSREd5vdz+/NRT9dld7bWTkdcTXX8NdXIzYbdvQmp2t7n7Etm1ImjAB7h07cHTAAGX3I/buRdPo0ej89FPEjxolv562b0fjlClI/vxzoKDAnGO5n/3pH8uX95x/feXm5uLHP/6x3zK1t7fjvvvu6/cbdtq0aTjppJPEqCetf+f61NN7772HDz/8EIk1Nbh+9Wqsuu46v9sQAH72s5/B5XLJqyelv3MtsD89/PDDOHDggN9tM2rUKJx77rlBz7nd11DBzJw5E9OmTTNvf6quxrYhQzCrd0/BsZIkbQ0auOA4fKh26n3+LbfXn+909QGnCoPL5coC8BqOJQR/AHCylglBX74nDI/H03PSBNBriIXY2GNFj4iI6DVd90EM6Dq4dYuMjOz1ne888fHxPf+OiopClPdJGJfL1Wu67iFLACA6OhrR0dEAup768p0u0edpzxifpxiNLFMo3U+u+JYpGL3L1B2PP93d761aT91xKiF6may8P6nVHV9UVFSvbREOl8uleT1FRUVh1apV+M1vftNvqDzfp7AaGhoAdNXdHb/+NZKuvx5ISACU1FNNDeAddkFRPXl748RGRwPe9qK47VVXd8WfkADIOUYkJADeoQFlt72jRwHvMgwpk1dKTQ3gPSbGx8f3PAHoT/dy/Jbp8GG4Ozt7hpn1p3sbyWp7Bw8ior291/JUHSMaGgCf/UnWMaKlBdHe5Yc8Rnjjlb0/eTxd21xpmRISAO/QOLKPe/X1PW1K9nGvuVl5mSIi1NWTmjIlJBwrU1QUor2xyzqWHzoET0dH13q9T9CqPj95lxkZESHr/OSPv2sjRW3PZzmaHyN8YlJ9zlVbT91lqqlRXk+1tT3HaFXXEa2tiPL+v+LrCO9+nRgX13PMCeuc611eckICEBkpr0zeeeJjY3v2Y9nHvagoRHt7xClue971JsXH99S7quu9tjb1bc8bQ0JsbM/+qeR6z+12o6OjAy50nRd9n7Hv3lfDuoZVeh2hQZkAoNq7XgA9ZXL7PGhteD15qTo/mXWMaGjotc26hTxGqDmWKymT3GOEEdewaq8jvNNF9Jku3HNuVGQkorw3QmUdy32vYZX+1qir69n+el5HBKsnf1wuV7+yy+WWJES1tiovk1eo3xoBy6TFdbmXoceI2FjA+ztY9f2IhATA29tN1f2IpqZj+5PceoqI6CqvvzIZeSzvsz8F6uMW6d3PApXpkksuwRNPPIH6+q7b1WPHjsXChQt7zuFC1JPWv3O99XTSSSchLS0NFe+/31UmBBYbG9uzLTX/nWuB/SnYveCg13vec66/6wF/TN2fvLHaaehQgElBLR32+XeGzHkyff59RMNYAAAul2sAuhKCQ70fVQE4UZIk/925yHRavYTVDMF6HVu5XGo4rbxGCmfbWqFeNm3ahCuuuAKff/65rOnPOOMM3HfffchqaQGuv17f4Ei1YMdH3wtkNazQrom0EuxHJ8D9gYj0F+w4w1GYiIjIKkJdN2dnZ+P666/H/v37kZiYGPLhPDtxuVyYMmUKpqSnAz/7GQoKCvCFT8LXV/e77ZwqWDvibzOxObvlautbn3/ny5wnz+ff32gYC1wuVxKA9QDGeD86hK6E4E4t10PaUnLA5MHVONzW9uB7saZVnWq1nB07dmDFihWYPn26rITggAED8Pjjj+O5555DVlaWJjGQOcJNCjr9Rwg5S6ikIBGJw643iawcOxFph9ck5AQulwuZmZmOSgj6E+yhH/4eD0y0+27UG1uudr72+fc4l8slpxfm5ADzh8XlcsWj612Fxd6PatE1ZOg2rdZBpITVD+BK47d6eUUWzrbV42It3Lo+fPgwrr32WowYMQL333+/rCfMf/SjH2Hr1q244IIL2NZsINx2yTZAThJqf+H+QER643GGiABg+vTpZodARAbp9A6d6Y/Trwvs+hCYEzApqJ3/Auh+aVA8gCnBJna5XNEAZvh89KYWQbhcrhgALwKY7f2oEcCpkiR9qsXySV88YNoD61FMIj3BtW/fPlx77bXIy8vDPffcg44g76/oNnXqVPznP//BU089hYwMuaNUkx3wQpuoC5/KJ7IHu567OHwokXPMnz8fo0aN6vl/3/dxEVmBXc/FeuD5XR32FBQb3ymoEUmS6l0u1xsAFnk/WgZgY5BZzgbQ/SbLIwDeDTcGl8sVCeAZAAu8H7UAOEOSpA/CXTYZw67Dh1opVn+sHr+daNVT0KyLk6amJqxatQq33XZbzwu7Q0lKSsJtt92Gq666SqjEJomBbYKcJNQxl+drInHYdX+0a7mIKLDCwsJ+n0VERODcc89FfX096uvrkZGRgd/97ndMHhCRo/C6yLqYFNTWX+GTFHS5XPdIkrS170QulysOwK0+Hz0oSVJ7OCt2uVweAI/7rL8dwLmSJL0eznJVq6wEHD7mtBquzk4kV1fLmjZm3z6gvLzXZ0Hn7TOt1hIOHQq4fvfu3cDRo7quX0+uxkbZ9QIA8a2tum9vp4qoqFBUF75895nIykrVy/EVd+CArLru6OjAf/7zH9x+++2o3LsXAwAM8H7nAZAFYBOA1j7znXPOObj77ruRnZ0ddqxkXewpSEREdmLlc5eVYyei0IYOHYrPjhzp+X+Xy4Vp06YFnD4hIaGnl6Db7ZY1AgwRWUuw4UOdzoh7Fbz20geTghqSJOk/LpfrPQDHAYgG8G+Xy3WGJElfdk/jcrkGAHgCwDDvR0cA3O5veS6XqwDATp+PlkuStMbPdC4A/wCwxPtRJ4BLJEl6MawChaOkxLRVW5kbQGkY8wedt6wsjCWHdr6J69ZbHFTUyx//qH0ghFyEsY/4tMPh4SxHBQ+A071/gcwB0N2tOz8/H/fccw8WL16se2xkbewpSHQMfzASicOJ+yN7CBFZ3ymnnIL43buxY8cOJCQkYPLkyRgxYoSseZ143CPrYnuVj+d3siMmBbV3IYCP0dXxowDA5y6X6x0AOwAMBHAiunIMwLHefDVhrnMFgKU+/78DwByXyzVHzsySJF0T5vr7W78eKCrSfLF2J0kSymQm0GbMmIEZM2b0+mz16tUBpy8tLQ0jstCeeOIJ7N+/3+93y5YtQ0pKiq7r11NzczPuv/9+2dMnJCTgJz/5iY4ROVdFRQXWrVunat4TTzwRY8eOBQBs374d//73v8OOZ/z48ViwYEG/z7dt24Y1a9bghRdeQEtr3/5/veUCeB9AFYC8vDz88pe/xKWXXorY2Niw4yOxyU3osacgERHZiZXPXVaOnYhCi4iIwIIFC/z+xguFxwcie2JPwcB4r8K6mBTUmCRJFS6XawG6egNOBOACMM/75+sgunr+vaHBagf1+f/h3j+5tE8K5uQABQWaL9buXABqU1NlTduSldVvGwedV+f6qE9PR22A5IeUnw/ILJeIpKYm2fUCAJ2JiWz/Oul0uxXVha/23NyeemlTWKeBNGVk9Krr7777DitXrsSGDRsUL+uGm27Cst/+FnFxcaEnJlvQIvHLnoJEx/CHJ5E47Lo/2rVcRhkwYEDA7zIyMgyMhEh7PD6QlbC9ysekoDocPlRsvJOkA0mSvgEwHV29914FsAddr4o6AGAjgP8HYLQkSf8xLUgikk3pCYgnLP2Es219kyda1ZHH4wEAtLS04JZbbsG4ceMUJQSTk5Nx8y9/CQC4+uqrmRB0mKysrLCXweMNERFZjZXPXcFi5/BioQV6ICo/P5/XwWR5Vj62ERGpwZ6C1sWkoE4kSWqVJOlRSZJOkSQpT5KkaEmSMiRJmilJ0h2SJB2SsYxySZJcPn9rAkz32z7TKfrTvPAUFqseNIP9CLZqmdRyWnmNpFVSUEv/+te/MG7cOPz2t79Fa4ihQrt5PB789Kc/xfbt23H55ZfrEheJY/z48X4/nzdvnqz5g7V79hQkOobnXyIia/DtMThw4ECcffbZJkZDpA1ehxDZE3sKqsOegmLj8KFEgnG5XLKeMrXSQdFKsfpj9fjtRKSk4JEjR/Czn/0M33zzjex5oqKicN555+EXv/gFRo0a1fVhfb2mcZF4pk6diq+//hptbW09nxUUFCA7OzvsZfP4REREIrLr+Yk9BbVx8cUX42B8PICupKBd2ws5C9sxWQnbq3w8vwfGdmRdTAoSEYXA4UPFIcLwoXV1ddi4cSM++eQT2T0Dc3JysGLFClx++eUYNKjva2DJ7nJzc3HppZfik08+QU1NDfLz83HcccfJbocckoNIHu4PRNZg5X3VyrGLxOVy8ZqYiIgsobOzE+D5XzFeM4mNSUEiwWhxk1g0VoqVxBZOW1I7b2trK8rLy7F9+3bs2rULBw4ckP2k2IwZM3DDDTfgjDPOQGRkpKr1kz3k5uYiNzdX1bzBhivh8KFERCQiXv8TERGRHRQXF2PXZ5/1+zw5OdmEaMRixAPMvKbUB5OCRIKx6sHOzt3p2VNQHHoPH9re3o6DBw+iqqoKBw4cwMGDB1FeXo6Ojg5F60pLS8Of//xnLF26lO2BwsZ3thId43a7+V4PIouz8rmLw4cSUSBWPraR87C9yjd06FB4vvii332hadOmmRSRNbCNiY1JQdJHZSXgfUcAKZNcXY329vaQ08Xs2weUl/ebN6A+02ot4dChgOt3794NJCToun49udrbg2/bPhI7O3Xf3k7lOXhQUV34itq7F/D21ousrERydTUOHjyIb775BkeOHEF9fT2OHDmCjj43m/v27fIAyAKwCUDfwUNdLheWLVuG22+/HQMHDlQVJ1FfTAoSHRMsKcj9gYj0xuMMEQXC4wORPcXFxeG8887D008/jba2NgDAhAkTMGPGDJMjMx97CloXk4Kkj5ISsyOwrGvkTlhW1u+jUoXTa+kiE9ettwiE2Lb+3Hqr9oEQBkJFXXTzaYdDwlmO1xwAH/j8/wknnIB77rkHo0aNCnPJRL15PJ6A38XzARxyGI/HI+vhKSIyl13fh8uegkRERM4zfPhw/L//9/+wd+9epKamIjEx0eyQhGDlazqnY1KQ9LF+PVBUZHYUlvTXv/4Vra19+x/1N3v2bEydOrXXZ6tXrw44fWlpaZiRBbd27VocPHjQ73eXX365pW9cd3R04J577pE9fUpKCpYtW6ZfQA52+PBh/POf/1Q17/z58/HGG2/gsccewxGVvQ2Brp6D7wOo8v5/SkoKfv3rX+O6667j+91IF3FxcUhPT8ehQ4d6fR4VFYXhw4ebFBWROYIdZ/mjlMgauK8SERGZi+di5SIiIpCXl2d2GJbBNiY2JgVJHzk5QEGB2VFYUl1aGlpaWkJO15qd3W8b16amBp5B5/qoT09HbYAn96X8fEsPH4qOjuDbtg9PWhrbv06khARFdQEAjY2N+Pjjj/E/998va9+SKyEpCTddeSV++9vfIi4uTrPlEvlz3HHH4bnnnuv12ezZs4P2IiSyIz58QWQNdr0RZNdyEVH4eHwgIqfh8KHWxaQgEenO6gdwpfFz6CD9yKmL+vp6VFZWYv/+/aiqqsJ3333X74XQasTGxmLYsGGYkZkJvPYali9fjuPPP58JQTLE+PHjERsbiy1btqCtrQ0jR47E+PHjzQ6LyHDBEuFWv94gcgor76scPpSIiIgoNCtf7zkBk4JEgpF70BTt4GrnH8GibWsnC1QXHR0dKC8vx8aNG/H999+HvR6Px4OMjAykp6djwIABGDp0KLKzs+F2u5FcXQ289hoA9lghYw0fPpzDhZLj8bhLRGbi7wIiCoTHB7IStlfSAnsKWheTgkSCsePBzo5lCsbOCVKzdbellpYW7Ny5E/v27UNVVRX27NmDxsZG1cvNycnB0KFDkZaWhszMTAwcOFDWsIy8OU1EZCy+U5DIGoy4SUREJBIe24iIyCqYFCQSDC8kxcM6EUdLSwveeecdfPDBB2htbQ1rWVFRUSguLsbkyZMxcOBAVctgUpCIyFg87hKRmTh8KBER2QHvc5EW2FPQupgUJLIoK90U4wGctPD222/j8ssvx/bt28NaTnJyMlasWAEAiImJCWtZVtoPiYjsgO8UJLIG9hQkIiIici5e74mNdzOJBCP3oBkZGalzJERiOHz4MC677DLMnz8/rIRgdnY2br31Vnz//ff4yU9+EnZCEAh+c5qIiLTHhzGIyEy8wUVEgfD4QEROw4fArIs9BUkflZVAfLzZUVhScnU1IhoaQk4Xd+AAUF7eb96A+kyrtcTDh9EcYP3u3buB6Ghd16+3lJoa2UMCJXZ06L69neDIkSP429/+hn/+85+ob2hAPgAPgCwAmwCEGjw0KSkJmZmZyMjIQH5+PlatWoX09HQAQF1dnSYx8uY0EZGx+E5BIuuz677K4UOJiMgq7HouJmNx+FDrYlKQ9FFSYnYElnW53AnLyvp9VKpwei1dZOK6jXCd0hl+9zs9wnCUNAA/9/71NQfAB34+j4yMRFFREaZOnYr8/PxeFw9RUVGax8ikIBGRsXjcJbIGu97AsWu5iCh8PD4QEZFVMClI+li/HigqMjsKS/r73/+O+vr6kNOdeeaZKCgo6PXZ6tWrA05fWloaXmAhPPbYYzh06JDf71asWIFoi/cUvPvuu9HZ2Slr2sTERPz4xz/WOSL7qa2txV//+lesWbMGLa3++wHmAngfQJX3/yMjIzFkyBBkZWUhJycH+fn5AZN/vj/StPrBxpvTRETG4rDNRNZn1xvn7ClIRERETsKegtbFpCDpIycH6JOwInmODhiAOhnvC3QVFgL5+b0+q01NDTyDzvVxdMAA1HZ0BF63xZOCdWlp6AhUvj6kpCS2fwWam5tx77334o9//COqgw2B66MDwIQJE7Bw4ULEyxyqWI8EHpOCRETG4nGXyBp4A4eInIbHPbIStlfSG9uY2JgUJBKM3INmpIzEoSh4IiB/Ojo6sHbtWvzv//4vdu/erWjeJeecg8Rx4xTN43sjWas2yR4rRETG4nGXyPqs/NsgWOzsKUhEREROYkRPQdIHH7UlsigrJQXtgCcz7XR2duK5557D5MmTsXTpUtkJwQEDBqD0uq63O+bm5ipeL3sKEhFZH4+7REREJCLeMyAiOobDh4qNv6qJBMOegmJSUgY+JRzYxx9/jGnTpuHss8/Gl19+KWuegQMH4rbbbkN5eTlWrFihet1MChIRWR+Pu0TWwCfHiYiIxMVzMWmB7ci6OHwokWCsmhRkIoyCOXz4MG6++WY8+OCDsttKRkYG/vd//xeXXXYZYmNjAQAtYcSgx/ChvDlNRGQsHneJyEwcPpSIAuHNcSKiY9hTUGxMChIJxqpJwWDscABnT0F1Ojo68Le//Q0333wzjhw5ImuehIQE3HTTTbj++uuRkJDQ67tw2pIe7ZA3p4mIjMV3ChJZg117CkZEBL6FMmDAAAMjISIiIjKXXa/3nIBJQSKLCvaDlLTHk5kykiTh2Wefxa9//Wts27ZN1jwRERG48sor8b//+7/IyMjwO41oSUHenCYiMhYfxiAiM0VERCAvL6/fO7Gjo6MxbNgwk6IiIhHwngFZCdsr6Y1tTGz8VU0kGLkHTSvdFOOJwFm++OILzJs3D0uWLJGdEPzRj36Ebdu24d577w2YEAS0Swpy+FAiImvicZfIGuz85PhJJ52E6OjoXp+dcsopPD4RERGRoxhxvWf160ZRsasR6aOyEoiPNzsKS0o6cgTt1dWhJywv7/dRcrD5/EyvpcTDh9EaaP3l5YDFe1QlV1ejpUXeG+3iW1t1394iqqmpwV133YXHHnsMnZKEfO/nHgBZADYBaO0zz+mnn47f/e53GD9+vKx1qL0Y0Osigjd/iIiMlZqaanYIRORwubm5uOKKK7DzrbeAsjJccMEFyJgwweywiMhkvHFNVsL2SlpgO7IuJgVJHyUlZkdgWZfKnbCsrN9HpQqn19IlJq7bCCuUzvDHP+oRhtBSANzq/fNnDoAPvP8uLCxEWVkZFi9erGgdTAoSETnb5MmT8cYbb/T7vLCw0IRoiEgNO9xASktLQ1pxMQAEHeWCiIiIyInYU1BsTAqSPtavB4qKzI7Ckv75z3/i8OHDIacrLS3t99nq1asVTa+lRx99FEeOHPH73bXXXmv55Mn999+P5uZmWdPGxcXhiiuu0DkiMXz66af4zW9+gy1btwacJhfA+wCqAMTExOCXv/wlbrzxRsTGxipen1ZJQQ4fSkRkTXFxcZg6dSo2bdrU85nH48Hs2bNNjIqI+uINHCJyGh73iMhp7DxcvN0xKUj6yMkBCgrMjsKS6tPTUdvZGXpCP9u3NtiQWjrXx9EBA1ArSX6/cxUWAhY/GRwdMACNjY2ypm2Li7N1+z98+DAeffRRrF27Fp9++qns+U5dvBg33HMP8vPzQ08cgGg9BT0WHxaXiMiKTjnlFGRkZGD79u2Ii4vDhAkTkJeXZ3ZYRCQTbxIRERGZi+di0ht7CoqNSUEiwfBgR6Lq7OzEXXfdhVtuuQX19fWy55s9axbw3//i7rvvBsJICIaDw4cSEdmHy+VCcXExir1D9xGRePjkOBE5DY9tROQ0vN6zLiYFiUh3djgR2KEM4di8eTOuuOIKfPLJJ7LnycvLw1133YWzJ08GhgzRMbrQOHwoEREREREREREROR3vZhIJxunJJxJLZ2cn/vznP2P69OmyE4LR0dH49a9/ja+//hrnnHOOEG1arxhEKBsRERGRlfD6iYjsiMc2IqJjOHyo2NhTkEgwkZGRZodAfig5CUkB3q1oNXv37sWyZcvw2muvyZ7nzDPPxF133YXCwkIdI1NOj4sIt9vNixMiIiIiP3iNREREJC6ep0kLHD7UuthTkEgwcpKC8+fPNyASZeySCAvEaSezF198EePHj5edEJw1axbWr1+P5557TriEIKDP8KEcOpSIiIhIOaddVxORM/DYRkR0DHsKio09BYkEExUVFfT76OhojB071qBoSA0rJ0gbGxtxww034P777w85bUJCAm688UZccsklGGLyOwND0aunIBERERH1xxs4RERERPbGnoLWxaQg6aOyEoiPNzsKS0qurkZydXXA7y+88EKk1dUBdXV+5w2ovFyD6AJLPHwY7YHWr/O6jZBcXQ330aOypo2OjrZkmTdu3Igbb7wRFZWVyAfgAZAFYBOA1j7TnnbaaVi9ejWGDh1qeJxq6HExwgscIiIiIuV4DUVEdsRjG1kJ2yuRszEpSPooKTE7Ass62fsXUFlZwK9KVc6nhaUmrtsIP1Y6w5/+pEcYupoB4H0/n88B8IH33/Hx8bjnnnuwbNkyS11E6jF8qMfjCXsZREREREREREREVmNET0Er3Xu0EiYFSR/r1wNFRWZHYUnvvPMONm/e7Pe7U045BSNGjAg47+rVqwN+V1paGmZkwT3yyCOoDtBTUO91G+Ghhx5CnZ/emf5ER0djxYoVOkekjba2Ntx888146umn+32Xi64kYZX3/6dOnYq1a9di+PDhRoaoCQ4fSkRERGQcDidFRE7DYxsROQ2v96yLSUHSR04OUFBgdhSW1PHDD6gNMPRke25u0O06+6KL8PLLL/f7/OSTT9a9Po4OGIDaQF/aoC0cHTAAtTJ7hkVHR1uizA0NDTj33HP9thlfnQB+8Ytf4JZbbkFkZKQxwWmMSUEiIiIiIiIiIiZsSH/sKSg2JgWJBBMVFRXwu1AHwlGjRuG///0vampqej5LTk7G6NGjtQovIEmSdF8HaefgwYM47bTT8PHHH4ec9oknnsCM8883ICr96DF8KC9MiIiIiPzjk+NE5DQ8thGR0/B6z7qYFCQSTLCeWKEOqAkJCVi6dCk++OAD7N27F1lZWZg9ezYSExO1DtNxlJzMRE+Q7ty5EyUlJfj++++DTrfknHOAZ57BjBkzDIpMP+wpSERERERERERERE7HpCCRYMLpKQgAKSkpOPXUU7UMiWzk/fffx5IlS7B///6A00RHR+POO+/ET089FXjmGQOj048ePQU9MoeTJSIiIqJj+OQ4EdkRj21kJWyvpAUjegqyreqD3RyIBBNOT0Ezid47Llwib3s5JEnCqlWrMG/evKAJwdTUVLz55pu45pprLF9mX3qUxU7bh4iIiEhLvE4iIiIici5eC4qNPQWJBBNuT0HSh5W3/dGjR/HjH/8YTz/9dNDp8vLy8Oqrr2LUqFEGRWYcDh9KREREJAYrX1cTEQXCYxsROQ17CloXk4JEggmWFLR7bzy7EKmetm3bhrPPPhvffvtt0OnGjRuHV155BTk5OQZFZiw9hg9lUpCIiIjIP97AISIiEhfP06Q3tjGx8Y4mkWCCDR/a3t5uYCTky2ons/379+OWW27BtGnTQiYE586di3fffde2CUGAw4cSERERiYLXUERERETWZ8Q1Ha8b9cGegqSPykogPt7sKCwp5vBhJFdX+/3OtWuXsNs18fBhdNbW+v+yvNzQWPSQePgw2gLUS18RERGmlbmjowOPPPII7rzzTjQ2NSEdQLr3Ow+ALACbALR6P7vyyitRVlaG6OhoM8I1DIcPJSIiIiIiIr3wxjVZCdsr6Y1tTGxMCpI+SkrMjsCyBgAoDfRlWZlxgSi0PNiXAsct16VKZ/jzn/UIIyQPgMu8f4HMAfBpTAzuv/9+LF261JjATKbH8KG8wCEiIiLyz4h3zBARiYTHNiJyGl7vWReTgqSP9euBoiKzo7CkpqYmPPDAA36/O/744zF58mSDI5LnoYceQl1dnd/vSktLjQ1GB4899hgOHToka9qIiAhcc801Okd0TEdHB26//XY8+Le/BZ0uF8D7AKIGD8bGl17ChAkTDIlPBBw+lIiIiIiIiIiISBtGJAV5700fTAqSPnJygIICs6OwpIi2NtSmpvr9rmHgQGG369EBA1Dr8fj/UtCYlTg6YABqOzpkTevxeAwrc1VVFX784x/jlVdekT3P8//+N5LGj9cxKvFw+FAiIiIi4/DJcSIiInHxXEx6YxsTG+9oEgkmIiJwrn748OEGRkK+RDuZSZKERx99FKNHj5aVEIyPj8fNv/wlACApKUnv8ITD4UOJiIiIiIhIL/x9SEROE+5xLy0tTfd1kH9MChIJxuVy+R3WMTk5GRkZGSZERIBYJ6Hq6mpccMEFWLp0KWpqaoJOGx8fj//7v/9DRUUFLr/8cmMCFBB7ChIREREZhz0FichpeGwjIjpGzjHxhBNO4LHTJLyjSSSgkpIS5Obm9vx/fHw8LrjgAh4oLUKSJN2W/eabb2LChAl48sknQ0579tlnY9u2bfj5z3+OlJQU3WKyAu47RERERERERES8R0LaCPchsJycHKxcuVLLkEgmvlOQSECxsbG47LLLcPjwYTQ1NSEnJ4e9kkxm9gVTU1MTfvnLX2L16tUhp01OTsbjjz+ORYsW6R+YRegxfCj3SSIiIiLlzL6uJiLSA49tROQ0wTpFyD0mJicnB/2ex1Z9MClIJCiXy4X09HSzw5BNz95xTrd582ZcfPHF2LZtW8hpJ0yYgH/9618YOXKkAZFZB4cPJSIiIjIOhw8lIiIici6513u8LjQH72gSEcmg5CSlVYK0vb0df/jDHzBt2rSQCcHIyEj84Q9/wKZNm5gQ9EOPiwxeuBARERERERGR1fB+BonC5XLxYTITsKcg6aOyEoiPNzsKMlDSkSNAXZ3/L8vLDY1FD4mHDyO5ulrWtC6XK+wyl5eX4/rrr8dnmzcjx/uZB0AWgE0AWn2mHTFiBB5//HFMnjw5rHXaGYcPJSIiIjIOb+4QkdPw2EZETqPF8KHd03IEOmMxKUj6KCkxOwIy2GXBviwrMyoM3ZyvdAYZ7/4LpgDAswG+mwPgA++/V6xYgTvvvBNxcXFhrc/u+AONiIiIiIiI9MLfnERExyg5JrrdbnR2duoYDfXFpCDpY/16oKjI7CjIQA899BDqAvQULC0tNTYYHTz55JOoqqqSPb2aMtfW1uLGG2/Ea6+/7vf7XADvA6gCkJWVhYceeggnn3yy4vU4EYcPJSIiIhIDr6GIiIjMxXMx6U1pUlDNd6Qek4Kkj5wcoKDA7CjIQHVpaaj1ePx/aYO2UJ+ejtrmZvkzKCzzZ599hiVLlmDnzp0hpz150SLc+uijGDBggKJ1OBmHDyUiIiIyDm82EhERETmX0uFDA4mKitIiHOqDdzSJSBN2H/tZrxsbkiThwQcfxKxZs0ImBJMSEwEA9957LxOCCrGnIBEREZEYeA1FRHbEYxtZCdsriaSjoyPgd5GRkQZG4hxMChIRyaDHBVNbWxt+8pOf4Morr0RLS0vQaRcsWIBXX31Vt1ichj0FiYiIiPTD61Uichoe94jIaYJ1EFFyTGxvbw/4HXsK6oN3NImITNDQ0IAzzzwTDz30UNDpoqOjsWrVKrz22mvIzs42KDr7YU9BIiIiIjHwGoqIiIjI3rS63mNSUB98pyARkQxa3rxYv349rr32Wnz33XdBpxs1ahSefvppjBkzRrN1OxWTgkREREREREThkyQJnZ2dwV8j09kJJCZ2/TdILyDN5tNqGWbFrUW5/SwvIirK7/CLbrc7aO8sucs3rZ70WI7ey7ViuwyxDJfLFXB4T0mSArexPssMNkSox+OR3VZdLhfcbjd4ty40JgWJiAwiSRJuv/12/OIXvwg57QUXXIAHH3wQCQkJBkRmf30TeBw+lIiIiEg/wa61+GAVEdmRnY9tkiShccwY1Dc1oeGHH0K+/gQA0NIC/OUvQF0d8P338lemdj6tlmFW3FqU28/yxmZkoMPj6fd1fHw8vg9nPWbXkx7L0Xu5VmyXIZaRmJiI6dOn+53t4MGDqKmpkbXMQMsAgIqKCsXH1+j2dsRfcAES2toQJ0m2Pj6rxaQgEZEM4Z5AJEnCz3/+c9xxxx1Bp4uMjMSqVatw9dVX86SlIfYUJCIiIiIiIr3Y9YHetrY2VNTXo/nnP++6kU9EZCA1995aOjrQcsopONLQgJjycuTm5gbtjehETAqSPiorgfh4s6MgAyUePgxXfb3/L8vLDY1FDwmHDiG5ulr+DD5l/vbbb3Hbbbfh7XfeQT4AD4AsAJsAtPrMkpaWhpdeegmzZs3SJGY6Ro8EHnsKEhEREfnHnoJE5DQzZszAJ5980u/z/Px8E6LRRnNzM/bs2YP2jg7A4wGU/AaOjARGjer6rxJq59NqGWbFrUW5/SwvLTIS8HPeDft+htn1pMdy9F6uFdtliGUkJCQgLi7O72wREUHSTn2WOXDgQPXx+V85kJICuFxobm5GeXk5Bg8ejJiYGG3XY2FMCpI+SkrMjoAM9pNgX5aVGRWGbs5ROoNPmUcAWONnkjkAPvD+Oy8vD6+88gpGjx6tJjwKQY/hQ3lDi4iIiIiIiICuh3yHDx/ea0hGl8uF8ePHmxiVepIkYffu3ejo6OhKKhUWdiUGiYhE53IBWVldyUEA7e3t2LNnD4YNG8Z7eV5MCpI+1q8HiorMjoIM9Pe//x31AXoKlpaWGhuMDp599lns3r1b1rR1dXU4evQonnnmGXT6efF2LoD3AVR5/3/p0qVYtWoVUlNTNYuXeuPwoURERERi4DUUEdmRy+XCueeei7fffhs//PADEhMTUVxcjKFRUWaHpkp9fX1XQhDourEeGYnIyEgkp6YiPj4ekZGRwY/nra3Atm1dyUQl20DtfFotw6y4tSi3n+UdTE5Gh58eW/Hx8UhMTAx7+abVkx7L0Xu5VmyXIZZRV1eHxsZGv7Olp6cH7i3YZ5n79u0LuPrMzEzZoUqShLa2NjTU1qK2shJtPt+1t7ejvr4+vHZvI0wKkj5ycoCCArOjIAPVpaXhaKDu6DZoCw0DB6L26NGg09TV1eG9997Dp59+is7OztALdbux9p//xIUXXqhRlBQIhw8lIiIiMg4Tf0TkRBERETjxxBN7f2jR16nU1NT0+v9oAHm5uYgIMFRgP90JRY+np7eOrvNptQyz4tai3H6W53a7Ifm5d+HxeIIP7yhz+abVkx7L0Xu5VmyXIZbh8XgC3huLiIgI3Mb6LDPY/TWl7TQyMhJxHg9SKyuxOyoKLe3tPd/V1NQwKejFpCARkQyBbmzU19fju+++w549e/DVV1+h3edkE8r999+Pk5gQNASHDyUiIiISA6+hiIjEJkkSGhoaen2WBiCCw4cSkUVEAEhLSUHVoUM9nzU0NECSJF6LgklBIiJZfE8YkiTh0KFDeP311/Hdd99B8jNEaDAF+fnArl046aSTtA6TAmBPQSIiIiLj8GYLEZF1dXZ29rvPIbN/IFkEz9PkBHExMb3+X5IkJgW9mBQkIk0oTYxZTXNzMzZv3owvv/wSFRUVaGtrCz1TH2PGjMGvfvUrnD15MjBihA5RUiB8pyARERGRGHgNRUQkNn/3d/hILBFZjb+H+Ts7O/mQP5gUJCIKqrOzE2vWrMH111+Puro6VcsYNmwYbrnlFpx33nnweDyWfaeAlXH4UCIiIiIiIiIiIofgfbuAmBQkIgrgo48+wsqVK7Fp0yZV8w8ePBi/+c1vcOmllyIyMlLj6EgJDh9KREREZJxg1158sIqIiIjI3ni9JzYmBYmI+vj000/x5z//GU888YSq+RMSEnDbbbfh8ssvR3R0tMbRkRocPpSIiIiIiIiIiIicjklBIiKvXbt24Wc/+xmee+45xfMmJydj+PDhKCgowIgRI3DNNdfoECGppcfwoewpSEREROQfewoSERERkRxxcXFobGzs93lycrIJ0TgDk4Kkj8pKID7e7CjIQElHjsDT0OD/S8HfoSdJEh599FHcdtttaG5pQb7Pdx4AWQA2AWj1M+/AgQMxY8YMTJo0iUkigbGnIBEREZEYeA1FRERERN1iYmL6JQVdLhdiYmJMisj+mBQkfZSUmB0BGezyYF+WlRkVhiouAEu9f4HMAfABAI/HgylTpmDMmDFIS0tDQkJCv2mzs7P1CZRUY1KQiIiIyDi8TiIiIiIiOWJiYpCSkoKjR4+io6MDERERSElJgcfjMTs022JSkPSxfj1QVGR2FGSgBx980G9XbwAoLS01NhiZ/vOf/+Dmm29GTW1twGlyAbwPoArAiBEjUFJSgrS0tKDLnT9/vqZxUvj0GD6UN7uIiIiIlOM1FBERkfjWrFmD5cuXAwCWLl2KNWvWGLZu32sFSZIMWy+ZJy4uDrGxsZAkiSOxGYBJQdJHTg5QUGB2FGSgurQ0NERH+/9SsLZQU1ODlStX4rHHHpM9z5UrVqApIyPkdEOHDkVhYWE44ZEO9Lj5xIsUIiIiIiIiIhLJvHnz8M477wAAbigtxfU33WRyRETyuFwuPjxmEN7RJCJNLFq0yO/no0ePNjiS4N5++22MHz9eVkJw0qRJePCBBwAAY8aMCTrt+PHjsWjRIpx//vns3u4QTAoSERER+Rfshg5v9hAREZHR5s2b15N0evvtt80OxxaC9eLk9Z7Y2FOQiDRRWFiI2NhYNDU19fo8VDLNKJ2dnfjNb36DP/zhDyGHHoiNjcXtt9+Oq6++Gp49e0Iue+bMmVi4cKFWoZIOOHwoEREREREREREROR27ORCRJmJjY3HppZciwzvEZnx8PE4++WQhegru378fZ599Nn7/+9+HTAhOnToVmzdvxsqVK3v1+OPTztamRx2x3omIiIj847UzERGRtS1btgySJEGSJEPfJ0hE+mNPQSLSTGZmJq666io0NzcjOjpaiB/8L7/8Mi699FIcPnw46HQejwe/+tWvcPPNNyMyMrLf9yKUhdRjT0EiIiIiIiIiIiJyOiYFiUhzMTExZoeAyspKlJaWYt26dSGn/f/t3Xl8FEX+//F35YZcnComQBANqFxyiuABi8KiIKKisKDgsnjyA8XV1ZVzPdCvoq6gIrogoKCCouCBiuKBIIiioCLIoQjIaSThCCGp3x8zDJOQY5LMTM8Mr+fjMQ+qq6uqPw0k6fSnq/qMM87QjBkz1K5duwodi+RQ6AvEvxHvFAQAACg/rp0BAAAA53BHE0BE2bFjh8aOHavGjRv7lBC86aab9M0335SZECzt5gXJodDH8qEAAADBw3USAAChq6xX60jStGnTZIyRMUYDBw4ss/0ff/yh+++/X61bt1b16tWVlJSkRo0aafDgwVqxYoWn3dExTTknFPz0008aPny4zjzzTCUlJSklJUXNmzfXPffdp91ZWSX2O3q8Tz75xFPXqVOnY3F4ffy1TOrGjRs1ZswYXXDBBUpLS1NCQoKqVq+u0y6/XL2uvlpPPfWUdu7cWWq8vl5LXXTRRZ72ixcvLr7NxRcf12b79u168MEH1bZtW51yyimKjo5WtWrVJEnNmjXztJ/1yis+n/ddd92ltLQ0paWl6bbbbiu17Y+bNunekSPVtm1bnXzyyYqLi1Pt2rXVrl07jRo1Stu2bfP5uCg/ZgoiMLZulRITnY4CJ5CCggJNmTJFEyZMUO7hw6opqaakaEl1JK2QdNirfVJSkmbOnKnLL7+80seOieFbaagLxPKhJIMBAADKj4QhAACR5eOPP1bfvn21Y8eOQvXr1q3TunXrNHXqVI0aNUqjR4+u0PjPPvushg8frtzc3EL13333nb777jtNmTJF773zjlqfd16Fz8EfcnNzNWLECE2ePFlHjhw5bv+mgwe1ads2vTl/vkaMGKE9e/YoOTk56HG++eabGjRokP74449i9/fv31933323JGnmrFnq+5//lDlmbm6u3n777UJjlNRu2G236fmpU5Wfn19o3+7du7V7924tX75cjz76qB555JEyk4uoGO5kIzC6dnU6ApxgoiTd6P4Up6OkJe5y48aN9dprr6lJkyY+j1/azQuSgqGPmYIAAADBw3USAAAnhmXLlumyyy7TgQMHJLmuAdq0aaOzzz5bhw8f1vLly7V+/XqNGTNGtWrVKvf406ZN08033yxJatSokVq3bq0qVapo7dq1WrJkiay12vPnn+p51VX68ccflZqaWqj/rbfeKkl64403PLPPevXqpbS0tOOOdeaZZ5Y7vqNycnJ0ySWXaOnSpZ66qlWrqkOHDqpbt67skSPaum6dVq5frz179igvL++4pFgwfPHFFxozZozy8vJUs2ZNXXDBBapVq5Z27typb775RpLUr18/3XPPPSooKND7H36oXXfcodpljPvRRx8pyz1jMyMjQ+3btz+uzf79+9W1a1ctWbLEU9ewYUO1atVK1atX1969e7VkyRJt27ZNBw8e1NChQ7Vv3z7de++9/jp9uHEnG4GxcKGUmel0FDgBLFmyRMOHD9eu3buL3Z8u6XNJ293bt99+u8aPH6+4uLhyHYekYHgjKQgAABAauIYCgMhSUFCgffv2Fa7MzZUOHJCysqT4eN8Hq2g/f40RwLhTUlIibsWhQ4cO6brrrvMkBBs0aKBXXnlFbdq0KdTu1Vdf1aBBgzRixIhyH+Omm25S7dq1NX36dHXr1q3Qvk8//VQ9evTQvn37tH37dj355JMaNWpUoTYTJ06UJK1Zs8aTFBw2bJguuuiicsdSmsGDB3sSgtHR0Ro1apRGjBihxKMr6eXmSqtXq+Dss/XJsmV68sknHbkmGj16tPLz8/Wf//xHd999t2JjYz37js7ETE9P14UXXqiPP/5YR44c0SsffKDbLrig1HFff/11T7l3797Ftrnllls8CcHMevU0ecoUXXTJJYXa5Ofn67nnntPtt9+u3NxcjRo1Sp06dSo2yYiK4042AiMtTcrIcDoKRLCCggLdf//9GjNmjE9roWc2bqwZL7yg8wKwlABJwdDH8qEAAAAAAPjfvn379OSTTxa/8+OPKzZoRfv5a4wAxD1s2DDPO9sixbQZM7R+/XpJrllxH3zwgRo2bHhcuz59+ig2NrbEZFFZPvzwQzVr1uy4+gsuuEAPjhun24YPlyTNmjXruKRgMHz44Yd6xevdezNnztS1115bbNuoqCh16tRJnTp1ClZ4hRw5ckT333+//v3vfx+3L94roT1gwAB97P7//NJ77+m2UpYQ3bdvnxYtWuTZLu7f+bPPPtP06dMlSQ1PO01LJk9WrfPPP65ddHS0br75ZlWpUkWDBg1Sfn6+xo0bp3fffdf3k0SZuKMJIOzs379fffr00ejRo8tMCCa5n8iZP39+QBKCEknBcMBMQQAAgNDANRQAAJHhhWnTPOXhw4cXmxA86oorrqhQImzIkCHFJgSPuu5vf1NMdLQk6aeffjp+1moQPPbYY57yNddcU2JCMBSceuqpnvcFlubKK69UlSpVJEnLVq/Whg0bSmy7YMECzyzDli1bqkGDBse1mTBhgqf82MMPq1YZCfKBAweqcePGkqSFCxdqz549ZcYM35EUBBBWvv/+e7Vv315z584ttV1SUpIeeeQRz7T0QCbuSAqGvkDcfGKmIAAAAAAAOBFl79+vr93voJOk/v37l9nHlzZFXX311aXuT05OVsP0dEmStVa//PJLuY9RGbm5uVq8eLFne+jQoUE9fnldddVVPt3HTElJUY8ePTzbL82eXWJb76VDr7zySkmF78MdOXJEH3zwgWfcy7p39ynWo0lka22h9xCi8riTDSBsLFmyRH/961+VnZ1daruWLVtq9uzZOuOMM6TNm/1y7NKSStHuJ5IQugKxfCgAAADKj+swAADC33c//6yCggJJrkTP0VldpWnXrl25j9O0adMy29RMTfWUgz1TcNWqVTp06JAk1xKqFTnHYGrVqpXPbfv3769XX31VkispOGrcuOPabNu2TcuWLZMkxcbGqmfPnse1+e6777R//35Pm2EjRkh79kg1a0ql3FNdsWKFp7xlyxaf40bZSAoCCHnWWj3zzDMaPny48vLySm07bNgwPfzww4XWwQ40ZgqGPmYKAgAABI8v7/wGAADha9cff3jK6enpPt13SXfP6CuPVK+EX0live7LlXXf0N927NjhKdetWzfk7xHWrl3b57bdunVTrVq1tHv3bq1bv14rVqxQmzZtCrWZN2+e57rvoosuUo0aNY4bZ9u2bZ7ynj17NOnZZ8sd9x9e/99QedzRBBDScnJy1L9/f916662l/mBPTEzU3Llz9cQTTwQkIVjajY1Q/4EPkoIAAAChgpmCAACEv5wDBzzlqlWr+tQnKSmp3McJ9esG79XMKnJ+wXb0PYG+iI2N1TVXXeXZnjlz5nFtils6tKg///yzHBEW78iRI5UeA8dwJxtAyPr+++919dVX68cffyy1Xf369fXWW2+V+uLhyjq6JEJxSAqGvkAsHxrqF6YAAAAAAARaSkqKhg0bVrgyN1f66SepUSOpPA9uV7Sfv8YIYNwpKSnliyXEJXklAg94JQhLc3QJyUiSnJzsKefk5AT9+KXdr/SH/n37emb2vfLKK5owYYLnNUrff/+9555tSkqKLr744mLHSExM9JSbNWumb5cvl1avlpo2rfjXOSqFO9kIjK1bJa8veKA8rLWaOnWqHn74YeUePqz6kqIl1ZG0QtJhr7bdu3fXtGnTyjX9vSJKeyKFpGDoY6YgAABAaODBKgCILFFRUapWrVrhytxcqWpVqVq18ifXKtLPX2M4GXeYqeX1b75161af+vz2228BisY5J598sqe8ZcsWHTlypFL3CWNiYjz3IH0Zyx+z8Epzbrt2Or1uXf28ZYt27NihDz74QN26dZMkz/sGJenSSy9VQkJCsWN4/x39/vvvAY0XvuFONgKja1enI0AYM5JucH+K6ihpibs8aNAgPffcc0FJyjFTMLxx8wkAAAAAAMA/mp1+uqKiolRQUKA///xTa9euVePGjUvts3z58iBFd7xA3Rdq0aKFEhISdOjQIR04cEBffvmlOnToUOHxUlJStHfvXkmu9+95J9SKOnz4sNatW1fhY/nqb926aeyUKZKkl156Sd26dZO1VnPnzvW06d27d4n9W7Roofj4eOXm5mrnzp36ecMGnR7wqFEa7mQjMBYulDIznY4CYea3337TkCFD9EMxy4WmS/pc0nZJ8fHxeuqppzR48OCgJXvy8/NL3EdSMPQFYvlQZgoCAACUHw9rAQAQ/lKSknROixZa+fXXklzJov/85z+l9inunXTB4j2LLS8vz2/jxsfHq1OnTnr33XclSRMnTqxUUjAjI8OTFFy1apW6ljLx5q233tKhQ4cqfCxf9f/rXz1JwXnz5unAgQNavny5Z4boqaeeqvbt25fYv0qVKurcubPn7+jpyZM1YcCAgMeNknEnG4GRliZlZDgdBcLI4sWLddVVV2nPnj2ltjs1PV2vzpunVq1aBSkyF5KC4S0QN5+4oQUAAFA8a22J+7iGAgDAWaX9nC6PG66/3pMUfOKJJ3TDDTeoQYMGxbZ96623tGjRIr8ctyJq1qzpKfu63Kmv7rjjDk/Ca/bs2br88st17bXXVmisdu3a6Wv33+m0adNKTAru27dP//rXvyoWcDmdXreuzm3XTsu+/FI5OTmaN2+ePv74Y8/+3r17l3l9d/fdd3v+jp56+ml1z8xUl6ZNfTr+77//rlNOOaXiJ4DjMM0BgKOstXrqqafUpUuXMhOCkrRgwYKgJwQlkoLhjncKAgAAAAAA+M+g667T6ae7FoLMyclRly5dtHLlyuPazZkzR/369VO8g+9bbNKkSaF4/JUYlaQuXbro6quv9mz3799f48aN04EDB45rW1BQoI8//lhXXHFFse8D7Nevn6c8e/ZsTZw48bg2a9euVefOnbVhw4ag/Z3279vXU37hhRc0Z84cz3ZpS4cedeGFF+r666+X5HpX4qW3366HHnlEOTk5xbY/dOiQ5s2bp8svv1w9e/asZPQoijvZAByzf/9+3XrrrXrxxRdLbVe1alU9dN990r33KjU1NUjRFUZSMLRUq1ZN3pdOxhi1aNFC33zzTbHtWT4UAAAgNDBTEACA4Jj+0kt69/33j6uPiopSdHT0cfXjxo0rVwKmSpUqmjZtmi6++GIdPHhQGzduVJs2bdSuXTudddZZOnz4sJYvX+55793EiRN12223SQr+9UDv3r117733ylqrt99+W82aNdN5552n5ORkT5trr71WrVu3rtD4zz//vH755RctX75c+fn5Gj16tB555BF16NBBdevWlT1yRFt/+klfrV/vmRRRXGKyY8eOuvTSS/X2229LkoYOHapJEyfq3DPOkKlRQz/9/LOWLVumgoICDRw4UJs2bdInn3xSoZjL45qrrtLt//yn8vLy9NFHH3nqmzRpokaNGhVqGxsbW+wYkydP1vbt2/X+++/rcF6e7h01SvePH6927dqpXr16io+PV1ZWljZs2KA1a9YoNzdXkhyZHBLpuJMNwBGffvqpbrzxRq1du7bUdvXr19ebb76p5qmp0r33Bim64xUUFJS4j+RQ8F155ZV654cftHnzZtWsWdOzXruvSUEAAAAAAIBItmvXLu3atcvn9kffZVceHTp00FtvvaV+/fpp165dstZq2bJlWrZsmadNVFSURo0apSFDhniSgikpKeU+VmVkZmbqX//6lx566CFJ0po1a7RmzZpCbZo0aVLhpGBKSooWL16sYcOG6X//+5/y8/O1f/9+vV9MUlZyveOwuMSsJE2fPl1du3bVV199JUla+9NPWvvTT4Xa/P3vf9ekSZNKfeegP9WqVUtdu3bVggULCtV7z5A8qmrVqsWOER8fr3feeUdjR47UY48/rgOHDunAgQOFliItKjY2Vueee27lgsdxSAoCCKo9e/bozjvv1LRp08pse+GFF+q1115T7dq1pc2bAx5baY4cOSKVkFgi4RR8ycnJuuaaawrV/VTkAskbMwUBAABCA9fOAABEli5dumjt2rWaOHGi5s2bp40bNyovL09paWm64IILdOONN6pNmzbasWOHp081B1YCe/DBB9WxY0dNnTpVK1eu1I4dO4pd4rOiqlSpoueee0533HGHpk+frkWLFmnz5s3au3ev4uLiVKdGDTVr1UoXd+2qa665ptAsRW81atTQF198oeeff16zZs3S999/r5zsbNWpU0dt2rbVkCFDdPHFF/stbl8NGDCgUFIwOjpaf//731WlShXl5uYqKipKVatWVWJiYoljREdHa9zo0RraqZOmf/21Ply8WD/88IN2796tvLw8paSkqH79+mratKk6deqk7t27u+4Lw69ICgIImtdee0233HKLdu/eXWbboUOH6rHHHitxynmwFRQUSCU8wYPQUNoNpkDcfOKGFgAAAAAACCWLFy+WcnOl1au146STlF/MK28SExPLfD3PwIEDNXDgQJ+PW6NGDY0aNUqjRo0qsc13333nKZ/ZuHGJ7cr7vr/FkydLTZtKPrxfr3v37urevXu5xi+vxo0b68EHHyxc6f438TXO2NhY3Xzzzbr55ptL7bt48eIyx1r8wQc+HbMsffr0UZ8+fYrdZ60t132y2tWra8Tw4Rpx992VjgvlR1IQQMBlZ2dr6NChZb47UJLi4uL0zDPP6IYbbghCZL7Lz88nKRjiSpu5F4gEHjMFAQAAyo8HqwAAODG98sornnIb3hMXUbi+Cy8kBQEE1NKlS9W/f39t3LixzLb169fX7NmzQ3Kt6Pz8fKdDQBnKM1PQHxcrXPAAAAAAAACU7csvv9T06dM92/2uvVY6fNjBiIATF0lBBMbWrVIp6wcj8h0+fFgTJ07UpEmTlF9QoPqSoiXVkbRCUtEf+3379tWkSZNUvXr1oMfqC5KCoS/YMwVJCgIAAJQf11AAAESOX3/9VSNGjNCwYcPUoUOH437O5+fna9asWbrtttuUl5cnSerZs6caN2rkWhITQNCRFERgdO3qdARwWJykO9yfojpKWuIun3HGGXr22WfVuXPnoMVWESQFQx83mAAAAAAAAIKnoKBAc+bM0Zw5c3TSSSepVatWqlOnjqKjo7Vjxw4tXbpUu3bt8rSvU6eOnn32WQcjBkBSEIGxcKGUmel0FAiSXbt2af78+Zo1a5bW//xzie3SJX0uabtcs7ruuece3XfffUpISAhWqBVWUFDgdAgoQ3mSgiQQAQAAAsdaW+I+rsMAAIhMO3fu1Lvvvlvi/tatW2vOnDmqU6eOlJsbxMgAeCMpiMBIS5MyMpyOAgH2888/a+TIkZozZ46OHDnic7+0unU185VX1L59+wBGhxNNacuHlnZjqrxq1arlt7EAAAAAAADCVUZGhr788kvNnz9fy5Yt02+//abdu3crKytLSUlJOvnkk9W+fXv17t1bPXr0cDpcACIpCKACsrOz9cADD+jxxx/X4Qq8FPidd95RUpMmAYgscDp16qR5q1YdV3/WWWcFPxgUK9BPnffo0UO1atVSWl6eNHJkQI8FAAAQqZgpCABAZGnbtq3atm3rdBgAfFTytAoAKMJaq5kzZ6pRo0Z6+OGHy5UQrFmzpp6eNEmSlJSUFKgQA6ZBgwaKiTn+OYpmzZo5EA2KU56ZghW5GdW4cWPVq1dP0dHR5e4LAAAAAAAAAE4jKQjAJ/v27VPv3r01YMAAbd++3ed+MTEx6t+/v9asWaPu3bsHMMLASklJ0bXXXutJaMbFxalr165q1KiRw5HhKJ46BwAACH1cswEAAADOYflQAGV67733NGzYMK1bt86n9sYYdenSRVdffbWuuOKKY+9g27w5cEEGQcOGDXXHHXcoKytLqamppc5MQ/AF+gYTN7AAAAAAAEC4K7qaEoATC0lBACX6448/dOONN+q1117zqf1pp52mAQMGqG/fvhE7g84Yo+rVqzsdBopRnuVDAQAA4AwetAIAAACcQ1IQQLG++OIL9evXT7/88kuZbU8++WSNHz9e1113HbPn4BhmCgIAAAAAAABAyUgKIjC2bpUSE52OAhXw22+/6dFHH9W8N9+UJNWXFC2pjqQVkg57tY2NjdXw4cN13333KSUlJfjBAl6YKQgAABD6eNAKAAAAcA5JQQRG165OR4AKSpf0hPtTVEdJS9zl008/XW+88YaaNGkSpMiA0jFTEAAAAAAAAABKRlIQgbFwoZSZ6XQU8EFubq6mTZumSZMmaV92drFt0iV9Lmm7e/u6667TE088wbv1EFKYKQgAABD6eNAKAAAAcA5JQQRGWpqUkeF0FCjDN998o/79++uHH37wqX3Gaafp5ZdfVrt27QIcGVB+zBQEAAAIDTyQBQAAAIQmkoLACchaq6eeekp33nmn8vLyfO43f/58VT3rrABGBlRcaUk7bkwBAACEBh60AgAAAJxT8lprACJSdna2+vbtq2HDhvmUEDzrrLP0vxdekCRVrVo10OEBIYsbWAAAAJXHNRUAAADgHJKCwAnCWquXX35ZZ555pl555ZUy29epU0dTpkzRt99+q86dOwchQqBymCkIAAAAAAAAACVj+VAgwllr9c4772js2LFasWJFme2Tk5N19913a/jw4UpMTAxChEB44Kl2AACAyuOaCgAAAHAOSUEgQllrNX/+fI0bN04rV670qc9VV12lSZMm6aSTTgpwdID/MVMQAAAgNHDtBQAAAIQmkoJAhNmwYYOmTZumN998U6tXr/apT0JCgiZNmqRBgwbx5C7CVkxMyT/S/DHrla8NAACAyuOaCgAAAHAOSUEgQvz6668aPny43njjjXL1a9CggV5//XW1aNEiMIEBQZKQkKCTTjpJO3fuLFQfExOjzMxMh6ICAAAAAAAAgNBAUhCBsXWrxPvogsJaq7lz52rs2LHKzslR/SL7oyXVkbRC0mGv+piYGA0dOlSjR49Wampq0OIFAqljx456/fXXC9V16NCh1FmEvuKpdgAAgMrjmgoAAABwDklBBEbXrk5HcMIwkq5yf0rTUdISd/myyy7T//3f/6lx48YBjQ0ItqZNm6pKlSpavXq18vLy1KhRIzVr1szpsAAAAAAAAByTnZ2tjz76SJ999plWr16tvXv3avfu3YqLi1P16tWVmZmpNm3aqGfPnmrfvn2xY4wZM0Zjx44tdl90dLRSU1OVmpqq6tWrq2nTpmrdurU6dOigc845p1yxXnTRRfrkk0/KfY4ff/yxLrroonL3A040JAURGAsXSizXFzDr16/XM888o3nz5qnA2lLbpkv6XNJ2ST179tTIkSPVunXrYIQJOOL000/X6aef7vdxeaodAACg8rimAgAgeA4ePKgpU6Zo8uTJysrKOm7/4cOHlZOToy1btmjRokUaP368MjMzNWbMGF177bU+/9zOz8/X3r17tXfvXm3atElff/21XnzxRUlSixYtdNNNN2nw4MGKjo725+kBqACSggiMtDQpI8PpKCLO5s2bNXr0aM2YMUO2jGRgUW8tWKCzL700QJEBAAAAAAAACBW/bd2qAX//u3788cdC9enp6WrRooVq166t/Px8/f777/r222+1Y8cOSdK6devUr18/bdmyRXfddVexY59au7auuPJKySvJl52draysLG3evFlr1qxRQUGBJGnVqlW66aabNG3aNM2YMaNcD3K3adNGbdu2LblBfr60Z49Us6bS0tJ8Hhc4kZEUBEJYfn6+Vq9erXnz5mnRokX6/PPPfe7bpEkT3XDDDerVooXUubPOPvvswAUKnAB4qh0AAKDyuKYCACDwNm/bpu6DB2vnrl2SXD9/e/XqpaFDh6pFixaqXr16ofbWWn311Vd66qmn9NJLL6mgoEAHDhwocfwz6tbVxCeekOLji92fnZ2tBQsWaMKECfrqq68kScuWLVPbtm21bNkyZdav79N5dO/eXWPGjCm5QW6utHq11LRpibEAKCzK6QAAHG/RokXq0aOHqlWrpnPOOUdjx471OSEYGxurhx56SKtWrdLtt9+uBg0aBDhaAAAAAAAAAKHg8OHDuvpf//IkBBMSEvT8889r4sSJatSoUbF9jDFq06aNpk+frm+//VZNmjSpVAzJycnq27evli9frgcffNCzbOgff/yhyy67TH/++WelxgdQccwUBELIr7/+qttvv12vv/56hfo3b95c06dPV7NmzfwcGQAAAABUHjMFAQAIrEcee0xfeS0Z+vjjj6tbt24+92/SpImWLVumVatWVToWY4zuuecexcTEeJYiXb9+vZ6cOFGjevas9PgAyo+ZgkAI+P3333XfffepcePGFUoI1q5dW1OnTtVXX31FQhAAAAAAAAA4AR08eFD/ffppz3b37t3Vs0jyLSam7HlCiYmJ6tChg9/iuvPOOwuN9+SkScopZXlSAIFDUhBwUG5urkaNGqWMjAw98MADOnjwYLn6Z2Zmavr06dq8ebMGDhzo0w91AOXHE+0AAAC+s9aWuI/rKgAAAmfOnDna5V42VJKGDBlyXJuqVasGMyRJrp//d9xxh2d77969+uDLL4MeBwCWDwUc88MPP6hPnz76/vvvy923bt26Gj16tK6//noSgUAQHF37HgAAAAAAIFR99NFHnnK9unXVtm3bQg/rVK1a1bF7HD169FBCQoIOHTokSfps1Spd4UgkwImNbAICY+tWKTHR6ShC1nvvvacRI0Zo/4EDqu+ui5ZUR9IKSYeLtI+Li1ObNm3Uu3dvnXfeeWrTpg1JCiCISL4DAAD4BzMFASCyHDlyRL/99lvhytxcads2KTlZio/3fbCK9vPXGAGMOz09PSj3Fj777DNPuV3btqpZs6YOHjyo/Px8xcfHOzJL8KjY2Fidc845Wrp0qSRp2erVjsUCnMi4y4nA6NrV6QhCWjf3pzgdJS1xl8855xyNHj1a3bp1U3xFL4YAVBpJQQAAAAAAjvfbb7+pQYMGTocR8jZt2qSMjIyAH+eXX37xlM8+80zFxcUpLi4u4Mf1VaNGjTxJwR1795bZ/p133tHu3btLbpCfL+3Zo3vGj1faaaf5K0wgonGXE4GxcKGUmel0FCGjoKBAL7/8sh5++GFl5+QU2yZd0ueStkuqXr26HnjgAQ0ZMoQZgUAI4OsQAADAP5gpCABAYOzbt09HjhzxbFerVs25YEqQmprqKf+RnV1m+xUrVmjFihVltht8550kBQEfkRREYKSlSUF4+iUcrF27VjfccIPnKZiy3PPvf6vPXXcpJSUlwJEB8BUzBQEAAAAAQCjLLpJkSwrBVzslJSV5ytn79zsYCXDiinI6ACCSzZ8/X23atPEpIXhxly6SpMGDB5MQBEIMSUEAAAD/YKYgAACBkZycXGg7JwSTbt6JyxSvBGFJRo8eLWttyZ9Dh2RXrFCL5s0DGTYQUUgKAgFgrdX48eN1+eWXK6eE5UKPMsZo1KhRmjx5cpCiA1BeLB8KAAAAAABCWUpKSqGHmrOyspwLpgR//vmnp1yDSRGAI0gKAn62evVq9ejRQ/fcc4+staW2bd68uZYtW6axY8cqKoovRyBUMVMQAADAd6X9HsRMQQAAAqd+/fqe8g9r1zoYSfHWesV0Ss2aDkYCnLi4ywn4ydq1azVmzBi9+uqrZSYDq1SporFjx2r48OGKjY0NUoQAKoqZggAAAP5BUhAAIkt6ero2bdpUuDI3V/rpJ6lRIyk+3vfBKtrPX2MEMO709PTyxVJBHTt21IYNGyRJXy5fHpRj+urw4cNatWqVZ/vcJk2cCwY4gZEUBCpp48aNGjt2rGbOnKmCgoIy219yySV69tln1aBBgyBEB8AfmCkIAAAAAMDxYmJilJGRUbgyN1fKzpYyMsqfXKtIP3+N4WTcftK5c2e9+OKLkqRffv1VX3zxhc477zxHYzrqrbfeUm5urmf7gnPOcTAa4MTFeoVABVhrtWrVKg0ZMkSNGjXS9OnTfUoI3nfffXr33XdJCAJhhqQgAACAfzBTEACAwLn66qtVq1Ytz/aECRMcjOYYa60ef/xxz3bt2rX1l7ZtHYwIOHFxlxOBsXWrlJjodBR+t2vXLr322muaO3euNmzcKElKc++LllRH0gpJh4v0S0hI0LRp03TNNdcEL1gAfkNSEAAAAAAAhLoqVaro/91yi0aNGydJmjt3rubOnasrr7yyXOPs379f3377rd9mGT766KP64osvPNu3Dx2qqgkJfhkbQPlwlxOB0bWr0xEERG1Jt7g/JekoaYnXdsuWLfX888/rHKbEA2GLdwoCAAD4BzMFAQAIrLtGjNC8V1/V12vXSpIGDBiguLg49ejRw6f+a9asUd++fXXllVdWOilordXDDz+s++67z1N35plnaugtt0hF30UJIChICiIwFi6UMjOdjsIvli9frn//+99a//PPpbZLl/S5pO3u7SZNmmjcuHHq1asXv/gCYY6kIAAAAAAACAfx8fF67aGH1P7GG7Vz504dPHhQvXr10t/+9jfdc889OvPMM4/rY63VV199pYkTJ2rmzJkqKCgo9+xCbzk5OVqwYIEmTJigFStWeOpr1aqlBQsWKCkpqcJjA6gckoIIjLQ018t1w9ju3bt11113aerUqeXql3HaaXrggQfUp08fRUXx2k4gErB8KAAAAAAACBenpafry08/VY+rrtKaNWtUUFCgGTNmaMaMGcrIyFCzZs1Uq1Yt5efn6/fff9eqVau0Y8eOQmMkJyeXOP76LVt02/DhktdD1Dk5OcrKytLmzZu1Zs0a5efnF+rToUMHzZgxQw0aNJByc/16vgB8x11OoBiLFy/WNddco507d/rcp256uvTbb1q4cKFiTj89gNEBCDZmCgIAAPjOWut0CAAAnPAyMjK0dOlSPf7445owYYKysrIkSZs3b9bmzZtL7Ne8eXONGTNGvXr1KrHNtl27NOnZZ32Ko2XLlrr55pt1ww03MIECCAEkBQEveXl5Gj9+vMaOHXvc0yzFiYqK0oUXXqj+/ftrwPnnS5mZzCgCIhBf1wAAAAAAINwkJSVp5MiR+n//7//pnXfe0QcffKCVK1dq586d2rt3r+Li4lSjRg01btxY7dq1U69evdSyZctyHyc6OlopKSlKSUlRzZo11bRpU7Vq1UoXXHCBmjdvHoAzA1BR3OUE3H7++WfdcMMN+uyzz8psm5qaqn/961+67rrrdOqpp7oqS3nCBkB4IykIAAAAAADCVWpqqvr27au+fftWeIwxY8ZozJgxrqU/V6+WmjaV4uP9F6Tb4sWL/T4mgGO4y4kTnrVW48eP15gxY3T48OEy2/fr10+PPfaYTjnllCBEByAUsHwoAAAAAAAAgHBHUhAntKysLP3jH//QnDlzymx7xhln6Omnn1aXLl2CEBmAUMJMQQAAAAAAAADhjrucOGH98MMP6tWrl9avX19m21tvvVWPPvqoEhISghAZgFDDTEEAAAAAAAAA4Y6kIE5IX3zxhbp166bs7OxS21WvXl3//e9/1b9//yBFBiAUNW7c2OkQAAAAAAAAAKBSSAoiMLZulRITnY6iWGvXrtVNffqoRna2akiKllRH0gpJ3m8UbN++vWbPnq169eo5EieA0HDaaacpMUS/nwEAAAAAAACAr0gKIjC6dnU6ghI1lvRdMfUdJS2RVKVKFU2cOFEDBw5UVFRUcIMDEBJiYmJUUFCghg0bqnfv3k6HAwAAAAAAAACVRlIQgbFwoZSZ6XQUHtZavf/++7rvvvu0a/fuQvvSJX0uabukzMxMzZ49W+ecc44TYQIIAaeccopuuOEGWWsVFxfndDgAAAAAAAAA4BckBREYaWlSRobTUUiSli5dqjvuuEPLli0rtV2nv/xFE15/XSkpKUGKDEAoMsYoNjbW6TAAAAAAAAAAwK9YGxERKy8vTyNHjlTHjh3LTAhK0jPPPENCEICMMU6HAAAAENastU6HAAAAAKAYzBRERFq/fr369++v5cuXl9m2Xdu20vLlzAwCIEmqX7++0yEAAAAAAAAAgN8xUxARxVqr559/Xuecc45PCcGOHTtqypQpQYgMQKhp3bp1sfVt27YNciQAAAAAAAAAEHgkBRExdu3apSuuuEL/+Mc/tH///lLbRkVF6fbbb9eHH37IkqHACapjx46qVq1aobrzzz//uDoAAAAAAAAAYYTl7EvE8qGICK+//rpuvvlm7dy5s8y2Xbp00cMPP6yWLVsGITIAoSo1NVWDBw/W2rVrlZWVpQYNGqhBgwZOhwUAAAAAgGOMMcfVcWsdQLgpKCYpWNz3txMRSUGEtYMHD+qWW27RtGnTymxbo0YNPffcc7ryyisDHxiAsJCYmKhWrVo5HQYAAEBEsTyZDQBhKyrq+IXlDkuKDX4oAFBheXl5x9UV9/3tRERSEIGxdauUmBjQQ6xcuVIjR47UDz/+qPruumhJdSStkOuC5aguXbpo2rRpSktLC2hMAAAAAAAAQLgyxighIUGHDh3y1O2TFNi7fADgX/tycgptJyQkMFPQjaQgAqNr14AfopWkd0rY11HSEknx8fF66KGHNGzYMJ4EAAAAAAAAAMqQnJx8XFIw9dAhVY2Pdy4oAPDRAR2fFExJSXEmmBBEUhCBsXChlJnp92GXLVumoUOHatfu3cXuT5f0uaTtkpo2baqXXnpJTZs29XscAAAAAAAAQCRKSUnRrl27XBvWqkDSlm3blHLggFJSUhQbG1v6w/f5+cf+PHLE9wNXtJ+/xnAqbn+cdyDHC8T4/ooxUOcaSv8m4fr1FMwxJRUUFCgvL0/79u7VPve2vL5PJScn++1Y4Y6kIAIjLU3KyPDbcLt379bo0aP19NNP+9R+yE03afgTTyieJ5gAAAAAAAAAn8XFxSk5OVnZ2dmuG/cHDqigShVlZWUpKyur7AEKClx/btpU6KZ8wPr5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8Ecs7jxvd5xnZycrLi4OP8fK0yxniJCWk5Oju655x6lp6f7lBCsc8opkqS7776bhCAAAAAAAABQAaeeeqqSkpJcN9Z//fXY7B4ACGUFBa7vWe5ZiElJSTr11FMdDiq0kBRESLLWaubMmWrUqJHGjx+v3NzcMvv06NFD8+fPD0J0AAAAAAAAQOSKiopSWlqakmNjXYnBo7NvfJGXJ/34o+vP8qhoP3+N4VTc/jjvQI4XiPH9FWOgzjWU/k3C9espmGN6y8+X9u+X5JohmJaWVvpyxycg/jYQclauXKmOHTtqwIAB2rZtW5ntmzdvrg8//FBvvfWWatWqFYQIAQAAAAAAgMgWFRWl9MRENbzzTtVOSFBCQoLTIQFAqRKio3XSK6+oYXKy0tPTSQgWg3cKImTs2rVL9957r1544QVZrzV/SzNkyBD997//ZalQAAAAAAAAIADidu5UrYQE1crIkLVWBQUFpd+7+/VX6dZbpVWrpHr1fD9QRfv5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8EcU5IxRlFRUTK//CK9/bY0caLfxo40JAUREj744AP169dPu3fv9ql9vXr1NGXKFF1yySUBjgwAAAAAUB61a9fWxo0bnQ4DABAAxhhFR0eX3igqSsrOdv0ZU47bzxXt568xnIrbH+cdyPECMb6/YgzUuYbSv0m4fj0Fc0yUC3Mn4aitW7fqpptuUteuXX1KCJ500kl64IEHtGbNGhKCAAAAABCCzj333GLrmzZtGuRIAAAAAHgjFRsgxpg4SddI6ivpbEknS/pD0iZJr0uaZq31bVpcGB3bY+tWKTGxxN3WWs2aNUv333+/Dhw8qHqSoiXVkbRC0uEi7WNiYjR8+HCNHDlSKSkpgYsbAAAAAFAp1apVU8uWLbVh0SJPXUJCgtq3b+9gVAAAAABICgaAMaaxpFmSWhTZdYr7017SP40xg6y170TKsQvp2rXU3UZSP/enqI6Slnhtd+vWTY8//rgaN27sv/gAAAAAAAFz2WWX6cfoaOnJJ9WmTRtlXnKJateu7XRYAAAAwAmNpKCfGWPSJS2SdKq7ykr6VNIGSbUldZFURdJJkuYZY7pZaz8K92MfZ+FCKTOzUNV3332nZ555Ru+9956KexVxuqTPJW13bzds2FBPPPGELr30UhljAhImAAAAAMD/jDE666yzJEkdOnSQSAgCAAAAjiMp6H8v61hS7hdJl1trvz260xhTS9JsSX+RFCvpNWNMQ2ttVpgfu7C0NCkjQ5K0fPlyjR49Wu+9955PXfMl3XHHHXrwwQcVHx/v99AAAAAAAAAAAABONFFOBxBJjDHdJZ3v3jwsqYd3Uk6S3O/yu1zSRndVDUl3hfOxS1JQUKDRo0fr3HPP9TkhKEnPTZ6sxx57jIQgAAAAAAAAAACAn5AU9K9bvcovWmtXF9fIWrtf0iivqhuNMZWdtenksY+zfft2XXzxxRo3bpysLW6x0MISEhJ037//LUm65JJL/B0OAAAAAAAAAADACY2koJ8YY5LkWpbzqKlldJkrKcddriHpgnA8dkmuuOIKffSRb68rbNmypVauXKnBgwf7OwwAAAAAAAAAAACIpKA/nSfp6HqX+yWtKK2xtfaQpKVeVZ3D9NjFysnJKbPN2WefrRdffFFffvml5wX0AAAAAAAAAAAA8D+Sgv5zpld5tbX2iA99vi6hfzgdu9zOPfdczZ8/X6tXr9Z1112nmBi/r14KAAAAAAAAAAAAL2Rj/KeRV/kXH/v86lVuHKbH9lliYqL+97//6eqrr5YxJhiHBAAAAAAAAAAAgEgK+lNNr/IOH/v87lWuEabHPiqutJ3NmzfXQw89pHr16umHH34ovtHWra4/162T9u+vWBQVGcMfx/XHOP6KIxDjhsLfUUX7huK/S7icSyj8uwdyrFCJIRy/9zkRc6i1D/Q4/h7LX+MF4/9asP7tgnGcYH+dBfvnSyj/f/f3mKFwPREu/59Cpb8/xnPqZ6XT/1/8FYM/x/HHuKHwfyqSxgj1r6lAtQ/mNWa4noMT1xWh8j0v0GM7dZ7hcF3qrzHC5X5NsMcLxPiReK0RqPHC9espmGMGavytW/Xz8bWl5kHCgrWWjx8+kt6WZN2f8T72+atXn+xwPLbXeD0l2YSEBJuUlGQl2ejoaFutWjVrjLGSbEpKio2Li7OSbJUqVWxiYqKVZGNiYmy1atWOxmJTU1NtbGyslWSrVq1qq1ataiXZ2NhYm5qa6mlXrVo1GxMTYyXZxMREW6VKFSvJxsXF2ZSUFCvJGmNstWrVbHR0tJVkk5KSbEJCgpVk4+PjbXJyspVko6KibLVq1WxUVJSVZJOTk218fLzlnDgnzolz4pw4J86Jc+KcOCfOiXPinDgnzolz4pw4J86Jc+KcOCfO6cQ9p6PxSOrpdC6qsh/jTuigkowxiyR1dm/+x1o7yoc+nSUtcm/mW2srNHPTyWN7jddT0puVGQMAAAAAAAAAACBEXW6tfcvpICojyukAIsghr7KvU0jjvcoHw/TYAAAAAAAAAAAACHG8U9B/crzKVXzs490up8RWoX3soz6RdLnX9hZJh/0wLgAAAAAAAAAAQLDFSarrtf2JU4H4C0lB/9njVT7Zxz6neJX3humxJUnW2j8lhfW0WQAAAAAAAAAAAC/fOB2AP7F8qP/85FWu72Ofel7ltWF6bAAAAAAAAAAAAIQ4koL+86NXuakxxpdZmC1L6B9OxwYAAAAAAAAAAECIIynoP19IynWXEyW1Lq2xMSZe0rleVR+F6bEBAAAAAAAAAAAQ4kgK+om1NkfSIq+qgWV06S0p2V3eK+nTcDw2AAAAAAAAAAAAQh9JQf962qs80BhzdnGNjDFVJY3zqnrOWnskjI8NAAAAAAAAAACAEEZS0I+stW9L+sy9GS9pgTGmmXcbY0xNSfMkne6u2ivp4eLGM8ZkGGOs12dgsI4NAAAAAAAAAACAyBHjdAARqJ+k5ZLqSMqQtMoY84mkDZJqS+oiqaq77RFJfay1WRFwbAAAAAAAAAAAAIQoY611OoaIY4xpLGmWpBalNNslaZB7hl9J42RI2uRVNchaOy0YxwYAAAAAAAAAAEDkYKZgAFhr1xpj2km6VlJfSWdLOllSlqSNkl6XNNVauzuSjg0AAAAAAAAAAIDQxExBAAAAAAAAAAAAIMJFOR0AAAAAAAAAAAAAgMAiKYgKM8bEGWMGGGPeMcb8Yow5ZIzZboz5whhzpzGmltMxAoA/GWMyjDH/MMbMNMZ8a4z5wxiTZ4zZa4z5zhgz2RhzodNxAkAwGWMmGGOs12ez0zEBQCAYY1oaY8YbY75y/+6ba4zZZoz52hjzP/fvx6c4HScA+Isxpr0x5mn397m97t9/9xlj1htjXjXG9DPGxDsdJwCUxhgTbYxpZoz5uzHmGfe13GGv32EXV2Lsvxhjphtj1hlj9nvdI/w/Y0xjP56G37B8KCrE/R96lqQWpTTbKWmQtfadoAQFAAFijDlH0rOS2vrYZbGk6621vwYsKAAIAcaYtpKWqvDDhr9YazOciQgA/M8Yc5KkCZL+5kPzSdba2wIcEgAElDGmpqQXJF3uQ/MNcv3+uySwUQFA+Rljekl6SVLVUpp9Yq29qJzjpkh6TtI1pTTLkzTaWvtQecYOtBinA0D4McakS1ok6VR3lZX0qVwXAbUldZFURdJJkuYZY7pZaz9yIlYA8JNGOj4huE7SGkm7JVWTdJ6kdPe+iyQtNcacb63dGKQYASCojDGxkp4Xq48AiGDGmHpyPfDVwKv6J0mrJe2R6wZTQ7kemC3tZhMAhAVjTBVJH6rwRIBdkr6R9Jtc9/7OlnSae19DSe8bYzpba78MYqgA4Itq8vM1mvt34TckdfaqXiPpa0kJks6XVEdSrKQHjTGx1tpx/oyhMkgKoiJe1rGE4C+SLrfWfnt0p3vZ0NmS/iLXf/zXjDENrbVZwQ4UAPzsZ7lugM+01m713mGMiZI0UNJTcl1snCrpJWPMeZZp+QAi092SmrrLL0vq52AsAOB3xphUSR/rWELwY0nDrbXfFdM2Tq4bQ8nBixAAAuJuHUsIWkkjJU2w1h482sAYY+SaHfOspFS5fgeeIqlZUCMFAN/tkLTC69NV0rAKjjVSxxKCh+RaLXH20Z3u68L7Jf3TXTXGGPOJtfaTCh7Pr1g+FOVijOku6W335mFJra21q4tplyjpOx17augha+29wYkSAPzL/Z7ABpJmWGvzy2h7haTXvaq6WWsXBjI+AAg291LyqyTFy7UUy4eSprp3s3wogIhgjJkiabB78xVJfyvrWhAAwp37/dD13ZtPWmuHl9L2KkmveVU1K+4+IQA4xf2+57iir/gxxoyRNNq96fPyoe5l5TdKSnRX3WStnVxC29k6trzoUmvteeWLPjBY6gfldatX+cWSftBba/dLGuVVdaMxhpmpAMKStfYTa+00X24CWWvfkLTcq+rSwEUGAMHnfjL8ebkSgn9IusPZiADA/4wxLXQsIbhF0j9ICAKIdO53ZNX3qppVRpd5kg54bWf6OyYAqAxr7e9FE4KVdL2OJQTXyfVewZLcJanAXW5vjDnHj3FUGElB+MwYkyTXkqBHTS2prdtcSTnucg1JFwQiLgAIQd4vWM9wKggACJCbJXVwl/9prd3pZDAAECA3eZUnWWuzHYsEAIInqcj2H6U1ttYekbTPq4p7zQAiXS+v8rTSXhnkTkZ+5FV1RaCCKg++UaM8zpPriXBJ2i/X2rslstYekrTUq6pzSW0BIMJ4XxBEOxYFAPiZMaaupPHuzc8k/c/BcAAgIIwx0ZL6elXNdSoWAAiyXXK9H+uos0trbIypLekkr6pvAxEUAIQCY0yCpHO9qhb70O1jr3JI5EdICqI8zvQqr3Y/DVSWr0voDwCRrKlXeYtjUQCA/z0tKVmud0vfWNpTkQAQxppISnGX/5S0wRgTY4wZZIxZZIz53RiTa4zZaox51xhzszEmvpTxACAsWGvzJL3rVXWfMaZqKV0e1rH7y4ustesCFhwAOK+Rjn3Ps5K+8aFPyOVHSAqiPBp5lX/xsY/3er2N/RgLAIQkY0w9FX7y50OnYgEAfzLGXCvpMvfmw9baH52MBwACqI1XeYukdLmWh/+fXNd5J0uKk3SqpG5yPTCxzhjTRgAQ/u7VsdcBtZT0nTHmemPM6caYBGNMXWPMpcaYzyQNcrf7wasMAJHKOz+y071SYlm88yM13DOsHRXjdAAIKzW9yjt87PO7V7mGH2MBgFA1QceWDP1V0nwHYwEAvzDG1JT0X/fmOkkPOBgOAARa3SLb7+rYEnpr5XqVRr6kZnLdMJekepIWG2MusNauDEqUABAA1tq1xpgOcv0uW09SQ0nTSmieJWmGpH/z7lUAJ4DK5kckV45kl3/CqRhmCqI8vF82fNDHPt7tir6sGAAiijHmeklXelXdY63NdSoeAPCjxyUdfaLxJr63AYhw1bzKTeRKCB6Q1Mdae6a19jpr7SBrbSu5Zg7udretKukVY0xcUKMFAD+z1n4nKVPSbZL2l9J0oaRZJAQBnCAqmx8pOoYjSAqiPBK8yod97ON9w6iKH2MBgJBijGkt6VmvqlnW2pedigcA/MUYc4mkAe7NF621H5fWHgAiQGIxdf2tta8VrXR/T+wpqcBd1VDS3wIYGwAEnDGmlqRn5HowLFGumS6vS3pO0qs69lqhayR9YYyZbIyJLm4sAIgglc2PSCGQIyEpiPLwXiPX1ycfvV+27mv2HADCijGmgVxLqxy9OPhO0k3ORQQA/mGMSZQ02b25R9KdDoYDAMFS9P0wS621b5TU2Fq7VK6b5UddE5CoACAIjDFnSPpGrncEFsg1W7CutfZKa+2N1tprJDWQ1E/SPne3IZKeciJeAAiiyuZHpBDIkZAURHnkeJV9zWh7t8spsRUAhCljTB1JH0g6xV21UVI3a+2+knsBQNh4QFKGuzzCWru7lLYAECmK/u5aYkKwhDbn+TEWAAgaY0yMXA85pLurbrLWTrLWHvFuZ11mSbrKq/pmY0zbIIUKAE6obH6k6BiOICmI8tjjVT7Zxz6neJX3+jEWAHCcMaamXAnBhu6q7ZK6WGu3OxcVAPiHMaalpKHuzY+ttS86GQ8ABNGeIts/+NDnR69ysjEm2Y/xAECwXCnXu1Ql6SdJpV7/WWs/kPShV9WgAMUFAKGgsvkRKQRyJDFOB4Cw8pNXub6Pfep5ldf6MRYAcJQxJkWul6qf7a7aLVdCcJNzUQGAXzXTsYcI6xljlpXStrZXuU6Rtv+x1r7t9+gAIHCK/u7qyxPd2UW2k4upA4BQ182r/LG11vrQ5yNJXdzl1v4PCQBChnd+5CRjTIK1tuiy80V550f2Wmt3BSCuciEpiPLwfvKxqTEmpujyAcVoWUJ/AAhb7ndsvSOplbvqT7mWDPXlKXIACEcNdWxWdFniJLXz2q5dUkMACFFrimwn+dCn6MzAP/0UCwAEU5pXueis6ZJ4Ly+f6sdYACDU/CTXu1ajJBlJLSSV9vCsFIL5EZYPRXl8ISnXXU5UGU//GGPiJZ3rVfVRgOICgKAxxiRIektSB3fVAUmXWmtXOhcVAAAA/MW98oP36g9n+dDtTK/yXmvtfv9GBQBBcdCrXMPHPjW9yln+CwUAQot7VqB3EvAiH7pd6FUOifwISUH4zFqbI2mRV9XAMrr01rGnJfdK+jQAYQFA0BhjYiXNldTZXZUr6XJr7RLnogKAwLDWTrPWGl8+Kvz+mF+K7J/m0CkAQGW87lXu5UN77zb87gsgXP3qVe7kY5/OXuWf/RgLAISieV7lgaU1NMbUlfSXEvo6hqQgyutpr/JAY8zZxTUyxlSVNM6r6jkflhoFgJBljImW9LKk7u6qI5L6WGs/LLkXAAAAwtQzkvLc5fOMMT1LamiMaSvXQ7FHTQtgXAAQSN6/3zY2xgworbExprOki72qFgYkKgAIHS9KOroiRCNjzOBS2j4sKdpdXmqt/TqgkfmIpCDKxVr7tqTP3JvxkhYYY5p5tzHG1JQr6326u2qvXF8AABCWjDFG0guSrnJXFUgaYK19y7moAAAAECjW2g0q/FDsy8aY3kXbGWMulLRAx274LJNrqXkACEdvS1rntf2cMeYm90OyHsaljwrPqt4iaXYQYgQAx1hrd0qa4FX1X/f3Qw9jTKwxZrykvl7V9wQjPl8Ya63TMSDMGGPSJS2XVMddZSV9ImmDpNqSukiq6t53RFI3a+2iouMAQLgwxtwiaZJX1XpJ7/va31p7m9+DAoAQYowZKGmqe/MXa22Gc9EAgH8YY+IlfSDpfK/qHyWtkJQvqZmkVl77tktqZ63dErQgAcDPjDHt5HrvVVWv6u2SvpC0W1KqpHMlZXjtz5XUxVr7eZDCBACfGWPekXRqkepTJJ3sLu9X8csfd7fWbitmvFhJ76nw8smrJX0tKUHSBTqWO5Gk0dZa71UVHUVSEBVijGksaZakFqU02yVpkHt2IQCELWPMGEmjK9rf/b4tAIhYJAUBRCpjTKpcS4n2LaPpl5KuJiEIIBK4l0WeISnTh+ab5FpJZ0lgowKAijHGbJZUvwJdG1hrN5cwZqqk5yT1KW6/W56kMdbaBytw7ICJcToAhCdr7Vr3k0PXyvXL0dlyZdazJG2Ua/mAqdba3Y4FCQAAAABAJVhr/5TUzxjzrKTrJHWUlCbXcqE75Fou9FVJ8yxPXQOIENba5caYsyX1lNRLUmu5ZtkkyTWjZoeklXItlzzHWptXwlAAEJHc14jXGGOmSLpeUnu5ZgfmybWc8kJJL1hrf3QuyuIxUxAAAAAAAAAAAACIcFFOBwAAAAAAAAAAAAAgsEgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAACCwhgzxhhj3Z8xTscDAAAAACeSGKcDAAAAAACEFmNMhqRNfh52rJ/HAwAAAACUAzMFAQAAAAAAAAAAgAjHTEEAAAAAQFH7JE0qo01bSW3c5W2S3iij/XJ3HwAAAACAA4y11ukYAAAAAABhxv1OwNHuzU+stRc5Fw0AAAAAoCwsHwoAAAAAAAAAAABEOJKCAAAAAAAAAAAAQIQjKQgAAAAACApjzBhjjHV/xpTQZqBXm2nuuihjTD9jzLvGmC3GmFxjzA5jzFxjTPtixogzxgwwxixytz9kjPnVGPOiMebMcsYc6x7rVWPMRmNMtjFmvzFmkzFmljHmCmOMqcjfBwAAAAAEU4zTAQAAAAAAUBJjTC1Jr0jqXGTXSZJ6S7rCGPN3a+1Ud/vTJb0lqWjyr66k6yRda4y5xlo7z4djXyTpeUkNi9md4f5cK2mZMeYqa+1Wn04KAAAAABxAUhAAAAAAEKpiJL0u6XxJhyR9IulXSTUk/UVSNUlG0vPGmPWS1kn6SK4E4D5Jn0raLulkSV0kVZUUJ+llY8zZ1tpNJR3YGHO1pJckxbqrDkpaJmmzpAJJmZLau2M8V9JSY0wba+0O/5w6AAAAAPgXSUEAAAAAQKi6SlK8pDclDbHW7jy6wxhT3V1/vlyvxhgn6U+5EoLPSrrLWpvt1T5d0vtyzSCsImmkpBuKO6gx5mxJL8qVELSSHpP0gLU2q0i709ztOrqPO1VS90qeMwAAAAAEBO8UBAAAAACEqnhJiyVd6Z0QlCRr7R+SBkjKd1d1ktRL0ovW2pu9E4Lu9r9J+odX1VXGmJIelP2vXIlDSRphrf1n0YSge8yNkrpJ+sFd9VdjTDvfTg0AAAAAgoukIAAAAAAglN1urc0vboe19hdJX3hV5Uq6q6SBrLVLJG1xbyZLaly0jTGmuY69v/AbSU+UFpy1dr+k/3hV/a209gAAAADgFJKCAAAAAIBQtcFau6qMNqu9yp8VnVFYjDVe5QbF7Pde/nOWtdaWMZ7keo/hUR19aA8AAAAAQcc7BQEAAAAAoWpN2U30h1f5ex/a7/UqpxSzv71XuZMxpr4PYxqvcl0f2gMAAABA0JEUBAAAAACEqj99aHOkEu1ji9l/qlf5rz6MV1T1CvQBAAAAgIBj+VAAAAAAQKjyZenOyrQvTmol+0f7IQYAAAAA8DuSggAAAAAAHLPfq9zbWmvK+3EscgAAAAAoBUlBAAAAAACO2eFVPsWxKAAAAADAz0gKAgAAAABwzJde5Q6ORQEAAAAAfkZSEAAAAACAYxZ4lXsbY052LBIAAAAA8COSggAAAAAAuFlrl0ta7N6sImmGMSbOl77GmDhjTPVAxQYAAAAAlUFSEAAAAACAwoZKynGXL5b0qTGmXUmNjTGZxpiRkjaLJUcBAAAAhKgYpwMAAAAAACCUWGvXGGP6SnpFUlVJ7SQtM8ZskPS1pL2SEiSdJKmZpDSnYgUAAAAAX5EUBAAAAACgCGvtAmPMeZJekNTKXd3Q/SnJZkm/BTg0AAAAAKgQkoIAAAAAABTDWvutpNbGmEsk9ZJradBTJVWTlCtpl6SfJH0paaGkpdZa60iwAAAAAFAGw+8rAAAAAAAAAAAAQGSLcjoAAAAAAAAAAAAAAIFFUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcP8f/QlVT34BTAwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "def cdf_from_lc(lc, dt):\n", + " cdf = np.cumsum(lc)\n", + " cdf = np.concatenate([[0], cdf])\n", + " cdf /= cdf.max()\n", + " return cdf \n", + "\n", + "\n", + "# cdf_times = np.concatenate([[0], dt / 2 + time])\n", + "cdf_values = cdf_from_lc(flux, dt)\n", + "cdf_times = np.arange(cdf_values.size) * dt\n", + "\n", + "cdf_inverse = interp1d(cdf_values, cdf_times)\n", + "\n", + "plt.plot(times, flux / flux.max(), color=\"grey\", label=\"Light curve\")\n", + "plt.plot(cdf_times, cdf_values, color=\"k\", label=\"CDF\")\n", + "\n", + "for prob_val in np.linspace(0, 1, 100):\n", + " time = cdf_inverse(prob_val)\n", + " plt.plot([0, time], [prob_val, prob_val], color=\"r\", lw=0.3)\n", + " plt.plot([time, time], [0, prob_val], color=\"r\", lw=0.3)\n", + " \n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Probability\")\n", + "\n", + "plt.ylim([0, 1])\n", + "plt.xlim([0, 10])\n", + "plt.legend(loc=\"lower right\");\n", + "plt.tight_layout()\n", + "plt.savefig(\"CDF_lc.jpg\")" + ] + }, + { + "cell_type": "markdown", + "id": "55e11634", + "metadata": {}, + "source": [ + "The same method can be used, in principle, to simulate variates from *any* probability distribution. The only requirement is that the input distribution is positive definite.\n", + "Stingray implements this method in `stingray.simulator.base`:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e77b524a", + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.base import simulate_with_inverse_cdf\n", + "event_times = simulate_with_inverse_cdf(flux, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6ed2573e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.3809308 , 0.10856514, 0.71888075, 0.54479831, 0.87783205,\n", + " 0.45405823, 0.66623686, 0.62832368, 0.72111516, 0.25882679])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "event_times" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eab73320", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Simulator/Concepts/Simulator.html b/notebooks/Simulator/Concepts/Simulator.html new file mode 100644 index 000000000..54217fe76 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulator.html @@ -0,0 +1,586 @@ + + + + + + + + Outline — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Outline

+

Following features of impulse response simulator have been implemented in this notebook.

+

1- Find lag-frequency spectrum of a simple delta impulse response.

+

2- Find lag-frequency spectrum of a more realistic impulse response based on real physical principles.

+

3- Compute lag-frequency spectrum of delta impulse responses with same intensities and varying positions at different energy levels.

+

4- Compute lag-frequency spectrum of delta impulse responses with same positions and varying intensities at different energy levels.

+

Import libraries and obtain data.

+
+
[1]:
+
+
+
from stingray import Crossspectrum, Lightcurve, sampledata
+import numpy as np
+from scipy import signal
+from matplotlib import pyplot as plt
+
+%matplotlib inline
+
+
+
+

Define variability signal.

+
+
[16]:
+
+
+
lc = sampledata.sample_data()
+s = lc.counts
+
+
+
+
+
+

Lag-frequency Spectrum

+
+

Simple Delta Impulse Response

+

Define a delta impulse response with a delay of 10.

+
+
[17]:
+
+
+
delay = int(10/lc.dt)
+h_zeros = np.zeros(delay)
+h = np.append(h_zeros, 1)
+
+
+
+

Find output signal by taking convolution of variability signal and impulse response.

+
+
[18]:
+
+
+
output = signal.fftconvolve(s, h)
+# To make two counts of equal size, remove last 'delay' entries and avoid first zeros
+output = output[delay:-delay]
+s_mod = s[delay:]
+
+
+
+

Visualize input and output signals.

+
+
[19]:
+
+
+
plt.figure()
+plt.plot(s_mod[-80:],'r',output[-80:],'g')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_13_0.png +
+
+

Make lightcurves using Lightcurve class.

+
+
[598]:
+
+
+
time = lc.time[delay:]
+lc1 = Lightcurve(time, s_mod)
+lc2 = Lightcurve(time, output)
+
+
+
+

Compute crossspectrum.

+
+
[599]:
+
+
+
cross = Crossspectrum(lc1, lc2)
+# Rebin the cross spectrum for ease of visualization
+cross = cross.rebin(0.0075)
+
+
+
+

Calculate time lag.

+
+
[600]:
+
+
+
lag = np.angle(cross.cs)/ (2 * np.pi * cross.freq)
+
+
+
+

Plot lag.

+
+
[601]:
+
+
+
plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.plot(cross.freq, lag, 'r')
+
+# Find cutoff points
+v_cutoff = 1.0/(2*10.0)
+h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]
+
+plt.axvline(v_cutoff, color='g',linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-15,15])
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_21_0.png +
+
+

According to Uttley et al, the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase warps and the lag becomes negative. This is given in page 43 of review.

+
+
+

More realistic impulse response

+

The response of refelection from an accretion disk to an instantaneous flash follows the top-hat function to first order approximation. The response shows an initial steep rise some time after the initial flash (slope depending on the light travel time to the disk) and then gradually decays, as parts of the accretion disk farther away from the source receieve radiations at later times.

+

The secondary peak is caused due to the bending of light in strong gravitational field around the black hole. This is the re-emergence of photons reflected from the far side of accretion disk that although would be classically blocked from our view, are lensed by strong gravitational field around black hole into our line of sight.

+

Below, we obtain an impulse response similar to one in Utley et al.

+
+
[602]:
+
+
+
# Primary peak time, secondary peak time, end time
+t1, t2, t3 = 3, 4, 10
+# Peaks' values
+p1, p2 = 1, 1.4
+# Rise and decay slopes
+rise, decay = 0.6, 0.1
+
+# Append zeros before start time
+h_primary = np.append(np.zeros(int(t1/lc.dt)), p1)
+
+# Create a rising exponential of user-provided slope that ends at secondary peak time and secondary peak
+# value
+x = np.linspace(t1/lc.dt, t2/lc.dt, (t2-t1)/lc.dt)
+h_rise = np.exp(rise*x)
+# Find a factor for scaling
+factor = np.max(h_rise)/(p2-p1)
+h_secondary = (h_rise/factor) + p1
+
+# Create a decaying exponential until the end time
+x = np.linspace(t2/lc.dt, t3/lc.dt, (t3-t2)/lc.dt)
+h_decay = (np.exp((-decay)*(x-4/lc.dt)))
+
+# Add the three responses
+h = np.append(h_primary, h_secondary)
+h = np.append(h, h_decay)
+
+# Plot
+plt.plot(h,'y')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_25_0.png +
+
+

Obtain output through convolution.

+
+
[603]:
+
+
+
delay = (int(t3/lc.dt))
+output = signal.fftconvolve(s, h)
+output = output[delay:-delay]
+s_mod = s[delay:]
+
+
+
+

Form light curves.

+
+
[604]:
+
+
+
time = lc.time[delay:]
+lc1 = Lightcurve(time, s_mod)
+lc2 = Lightcurve(time, output)
+
+
+
+

Find cross spectrum and compute lags.

+
+
[605]:
+
+
+
cross = Crossspectrum(lc1, lc2)
+cross = cross.rebin(0.0075)
+lag = np.angle(cross.cs)/ (2 * np.pi * cross.freq)
+
+
+
+

Plot results.

+
+
[606]:
+
+
+
plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.plot(cross.freq, lag, 'r')
+
+# Define the x-position of vertical line
+v_cutoff = 1.0/(2*t2)
+h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]
+
+plt.axvline(v_cutoff, color='g', linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-10,10])
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_33_0.png +
+
+
+
+
+

Energy Dependence

+
+

With same intensity and varying position

+

To create different lags for different energy channels, we create delta impulses of same intensity at different positions.

+
+
[607]:
+
+
+
energies = np.array([4.5,8.5])
+
+
+
+

Create impulse responses for all energy channels.

+
+
[608]:
+
+
+
h_zeros = [np.zeros(int(i/lc.dt)) for i in energies]
+responses = [np.append(h, 1) for h in h_zeros]
+
+
+
+
+
[609]:
+
+
+
delays = [int(i/lc.dt) for i in energies]
+outputs = [signal.fftconvolve(s, h)[d:-d] for h,d in zip(responses,delays)]
+s_mods = [s[d:] for d in delays]
+
+
+
+

Make light curves.

+
+
[610]:
+
+
+
t_mods = [lc.time[d:] for d in delays]
+lc_input = [Lightcurve(t_mod, s_mod) for t_mod, s_mod in zip(t_mods,s_mods)]
+lc_output = [Lightcurve(t_mod, output) for t_mod, output in zip(t_mods,outputs)]
+
+
+
+
+
[611]:
+
+
+
cross_spectrums = [Crossspectrum(lc1, lc2).rebin(0.0075) for lc1,lc2 in zip(lc_input,lc_output)]
+
+
+
+

Compute lags and cutoffs.

+
+
[612]:
+
+
+
lags = [np.angle(cross.cs)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]
+
+
+
+

Get cutoff points for all energy channels.

+
+
[613]:
+
+
+
v_cutoffs = [1.0/(2*energy) for energy in energies]
+h_cutoffs = [lag[int((v_cutoff-0.0075)*1/0.0075)] for lag, v_cutoff in zip(lags, v_cutoffs)]
+
+
+
+

We plot lag-frequency spectrum for all energy channels.

+
+
[614]:
+
+
+
plt.figure()
+plots = []
+colors = ['r','g']
+
+# Plot lag-frequency spectrum
+for i in range(0,len(lags)):
+    plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')
+    plt.axvline(v_cutoffs[i],color=colors[i],linestyle='--')
+    plt.axhline(h_cutoffs[i], color=colors[i], linestyle='-.')
+
+# Define axes and add labels
+plt.axis([0,0.2,-20,20])
+plt.legend(plots)
+plt.xlabel('Frequencies (Hz)')
+plt.ylabel('Lags')
+plt.title('Energy Dependent Frequency-lag Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_49_0.png +
+
+

Note:

+

Currently, lag-energy spectrum isn’t plotted and hence I am unable to verify results from Uttley et al. However, as soon as it is implemented in library project, I will test it here as well.

+
+
+

With same position and varying intensity

+

Here, we use delta impulse responses whose position remains same but intensity varies.

+

Again, first we define energies and then create impulse responses, and subsequently using convolution, obtain the output light curves.

+
+
[615]:
+
+
+
energies = np.array([4.5,8.5])
+
+
+
+
+
[616]:
+
+
+
h_zeros = np.zeros(int(10/lc.dt))
+responses = [np.append(h_zeros, i+1) for i in range(0,len(energies))]
+
+
+
+
+
[617]:
+
+
+
delay = int(10/lc.dt)
+outputs = [signal.fftconvolve(s, h)[delay:-delay] for h in responses]
+s_mod = s[delay:]
+
+
+
+
+
[618]:
+
+
+
t_mod = lc.time[delay:]
+lc_input = Lightcurve(t_mod, s_mod)
+lc_output = [Lightcurve(t_mod, output) for output in outputs]
+
+
+
+
+
[619]:
+
+
+
cross_spectrums = [Crossspectrum(lc_input, lc2).rebin(0.0075) for lc2 in lc_output]
+
+
+
+
+
[620]:
+
+
+
lags = [np.angle(cross.cs)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]
+
+
+
+
+
[621]:
+
+
+
v_cutoff = 1.0/(2.0*10)
+h_cutoff = lags[0][int((v_cutoff-0.0075)*1/0.0075)]
+
+
+
+
+
[622]:
+
+
+
plt.figure()
+plots = []
+colors = ['r','g']
+
+# Plot lag-frequency spectrum
+for i in range(0,len(lags)):
+    plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')
+
+# Draw horizontal and vertical line
+plt.axvline(v_cutoff, color='g', linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+
+# Define axis
+plt.axis([0,0.2,-25,25])
+plt.legend(plots)
+plt.xlabel('Frequencies (Hz)')
+plt.ylabel('Lags')
+plt.title('Energy Dependent Frequency-lag Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_60_0.png +
+
+

As expected (and also demonstrated in Utley et al), the shape of lag-frequency spectrum for both energy channels is similar.

+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/Simulator.ipynb b/notebooks/Simulator/Concepts/Simulator.ipynb new file mode 100644 index 000000000..6c6137f83 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulator.ipynb @@ -0,0 +1,793 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following features of impulse response simulator have been implemented in this notebook.\n", + "\n", + "1- Find lag-frequency spectrum of a simple delta impulse response.\n", + "\n", + "2- Find lag-frequency spectrum of a _more_ realistic impulse response based on real physical principles.\n", + "\n", + "3- Compute lag-frequency spectrum of delta impulse responses with same intensities and varying positions at different energy levels.\n", + "\n", + "4- Compute lag-frequency spectrum of delta impulse responses with same positions and varying intensities at different energy levels." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and obtain data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from stingray import Crossspectrum, Lightcurve, sampledata\n", + "import numpy as np\n", + "from scipy import signal\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = sampledata.sample_data()\n", + "s = lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lag-frequency Spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple Delta Impulse Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define a delta impulse response with a delay of 10." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "h_zeros = np.zeros(delay)\n", + "h = np.append(h_zeros, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find output signal by taking convolution of variability signal and impulse response." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "output = signal.fftconvolve(s, h)\n", + "# To make two counts of equal size, remove last 'delay' entries and avoid first zeros\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualize input and output signals." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEACAYAAABbMHZzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4VEX3xz8hgIDSS2ihSG+CIEVECChFELGACBZ81deC\nInbFnwXhlSqCgGJDmgJSlV4EA9JbIEDo0hJa6BBK2vn9Mbtkk+wmu5tNdjc5n+fZZ++dO3fu2U32\ne+eeOXMGFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFEVRFD/nCBAOhAGbLGXFgOXAfmAZUMSm\nfj/gALAXaGdT3gjYaTn2TaZarCiKomSYwxixt2UY8IFl+0NgiGW7NrAdyANUAg4CAZZjm4Amlu1F\nQIfMMVdRFEXxBIeB4inK9gJBlu3Sln0wvf4PbeotAZoBZYA9NuVPAd973FJFURQlXXI5WU+Av4At\nwH8tZUHAacv2aZJuBGWBSJtzI4FydsqjLOWKoihKFpPbyXr3ASeBkhg//94Ux8XyUhRFUfwAZ8X/\npOU9GpiL8dufxrh7TmFcOmcsdaKAYJtzy2N6/FGWbdvyqJQXqlKlihw6dMhJsxRFURTgEFDVlROc\ncfsUAApatm/HRO/sBOYBvSzlvYA/LNvzMP78vEBloBpmoPcUcBloihkAftbmnKRPcOgQIuLTr88/\n/9zrNqidaqfaqTZaX0AVV4QfnOv5B2F6+9b6v2FCO7cAM4AXMaGgT1rqRFjKI4B4oDdJLqHewEQg\nPybaZ4mrBiuKoigZxxnxPww0sFN+HnjQwTmDLK+UbAXqOWeaoiiKklk4G+2j2BASEuJtE5xC7fQs\naqdn8Qc7/cFGdwlIv0qWIxYflqIoiuIEAQEB4KKea89fURQlB6LiryiKkgNR8VcURcmBqPgriqLk\nQFT8FUVRciAq/oqiKDkQFX9FUZQciIq/oihKDkTFX1EUJQei4q8oipIDUfFXFEXJgaj4K4qi5EBU\n/BVFUXIgKv6Koig5EBV/RVGUHIiKv6IoSg5ExV9RFCUH4qz4BwJhwHzLfn8g0lIWBjxkU7cfcADY\nC7SzKW8E7LQc+8ZtixVFUZQM46z49wUiAOv6igJ8DdxteS22lNcGulveOwDfkbS02DjgRaCa5dUh\ng7YriuINfvwRtm/3thVKBnFG/MsDHYGfSRLyAOyvF9kFmAbEAUeAg0BToAxQENhkqTcZeNRdoxVF\n8RJHjkCfPjB/frpV06R9ezh71iMmKe7hjPiPBN4HEm3KBOgD7ADGA0Us5WUx7iArkUA5O+VRlnJF\nUXyN1atBxP6xTz+FKlVg71732z97FpYtg3373G9DyTDpif/DwBmMX9+2pz8OqAw0AE4CIzLFOkVR\nspZz56BVKxhh5ycdFgZ//QVjxmRM/MPCzPuRI+63oWSY3Okcbw48gnH75AMKYVw2z9nU+ZmkgeAo\nINjmWHlMjz/Ksm1bHuXoov3797+1HRISQkhISDpmKoriESIioFo1+OoruOcesP3tffABfPYZNGoE\n+/ebp4MAe97fdAgLM+ep+LtNaGgooaGhGWrDlb9cK+A9oDPGh3/SUv420BjoiRnonQo0wbh1/gKq\nYtxEG4E3MX7/hcBoYImd64g4euRUFCVz+f572LIFuneHXr1g82YoV864afr0gV27IE8eKF3a1Ctf\nPv02U9KjBxw7BrVrw08/ef4z5EACzE3YpTuxK3H+ASRF+wwDwjE+/1aYGwCYiKAZlvfFQG+bc3pj\nnhIOYAaC7Qm/oijeJCLCiHLbtvDGG9CtG9y4YXr9gwcb4QeoWdN9n31YGDz2GBw96jm7FZdx45kt\n09Gev6J4iwcfhPfegw4dIDHRiPTx45AvH6xdm+TmefVVqFcPXn/dtfavXoVSpWDjRnjiCeM+UjJM\nZvf8FUXJ7kREQJ06ZjtXLpg0CW67zYwB2Pr3a9Rwb9B3xw7TftWqxvWTmJj+OUqmoOKvKIrhwgXT\nM7f14xcpAuvXQ/Pmyeu66/YJC4O774b8+U3bp05lzGbFbVT8FUUxRERArVrORfCk1fPfvdu4juwR\nFgYNG5rtSpU04seLqPgrimKwDvY6Q8WKEB0NMTGpj82bB6NHw8WLqY9Ze/6g4u9lVPwVRTG4Iv6B\ngWY+gL0B29Wr4Y47zE3AlthY87RQr57ZV/H3Kir+iqIYdu9OGux1Bnuun/h4WLcOPv8cZs5Mfiwi\nAipXhgIFzL6Kv1dR8VcUxeBKzx/sD/pu3w7BwfD887BqFVy6lHRs27Yklw+o+HsZFX9FUYxIX7wI\nFSo4f469nv+qVSY3UOHCJjWEbfZP28FeUPH3Mir+iqLAnj2mJ5/LBUmw1/NfvRpatjTbXbvCrFlJ\nx2wHe8HcaDTW32uo+CuKYvz9rrh8AKpXNwO+VvFOTIR//kkS/0cegZUr4fJlcyw8HBo0SDq/QAHz\nhHD6tGc+g+ISKv6KoiSf2esshQqZiVrHj5v9nTuhRAkoU8bsFykC998PCxfCwYNQvDgULZq8DXX9\neA0Vf0VRXB/stWLr+lm92vj7bena1UT9pHT5WFHx9xoq/oqiuC/+toO+q1YluXysdOliFoBZvVrF\n38dQ8VeUnM6VK2a2bqVKrp9r7fmL2O/5Fytm8gL98kvySB8rKv5eQ8VfUXI61kifwEDXz7X2/Pfu\nhdtvtx8qal0TQHv+PoWKv6LkdNx1+YC5aezdmzzEMyWPPgoPP5w0EGyLir/XUPFXlJxORsQ/ONik\ngl6wILXLx0rx4mayl71soRUraqy/l1DxV5Scjjsx/lZy5TLx/osWOe75p0WBAiZkVGP9sxwVf0XJ\n6WSk5w/G9VO6NFSp4t756vrxCs6KfyAQBlgTdRQDlgP7gWVAEZu6/TCLtO8F2tmUNwJ2Wo59477J\nipINOH3aLI14+LB37YiJMatp3Xmn+23UrGl6/c4sAmOPihVV/L2As+LfF4gArCurf4QR/+rACss+\nQG2gu+W9A/AdSYsKjwNeBKpZXh0yaLui+B+bN8NzzxnBHDUKVqzwni03b8IHH0CjRpA7t/vtvPEG\nDB/u/vmVKsHRo+6fr7iFM+JfHugI/EySkD8CTLJsTwIetWx3AaYBccAR4CDQFCgDFAQ2WepNtjlH\nUbI/Z89CmzYm7LFePTh0yNwEvOXr/vdfuO8+iIpKnnnTHUqUSL7ur6uo28crOCP+I4H3Advh+CDA\n+l972rIPUBaItKkXCZSzUx5lKVeU7M+xY9CiBTRrZkT//ffN5KegIO+I/6xZxpZnn4W5c1Pn28lq\nVPy9QnrPeg8DZzD+/hAHdYQkd5BH6N+//63tkJAQQkIcXVpRfJw9e6B9e3jnHXjrreTHgoLMqldZ\nyYIF8O67Jtla48ZZe21HqPi7TGhoKKGhoRlqIz3xb45x8XQE8gGFgCmY3n5p4BTGpXPGUj8KCLY5\nvzymxx9l2bYtj3J0UVvxVxS/ZeNGk9tm+HDTy06JN3r+mzdDr16+I/xgBnyPHjUpItwdNM5hpOwU\nf/HFFy63kZ7b52OMmFcGngJWAs8C84Beljq9gD8s2/Ms9fJazqmG8fOfAi5j/P8Bljas5yhK9uPY\nMTOrdfx4+8IPUKpU1ov/oUPuh2RmFrffDgULaqx/FuNqnL/VvTMEaIsJ9Wxj2QcTETTD8r4Y6G1z\nTm/MoPEBzEDwEretVhRf59NP4ZVXoFMnx3W80fP3RfEHdf14AV98xhIRjw4hKErWsmOH8fPv329m\nrzoiMRFuu83E2ufNmzW2lSpl7LOXZ8ebPPkkPPYY9OjhbUv8kgDjLnNJz3WGr6J4mg8/hP/7v7SF\nH0xqhJIl4cyZtOt5iitXzI2mdOmsuZ4raKx/lqPiryie5K+/zJKFr7ziXP2sdP0cOmRm8vrioKq6\nfbIcFX9F8RSJiWbG7KBBzrtxslr8fdHfDyr+XkDFX1E8xfTpJk1Ct27On6Pib6hUyft5jnIYGUjo\noSjKLW7eNH7+iRNdc6tktfjXr58113KVSpWS8vrn0j5pVqDfsqJ4grlzTa/a0YImjvC0+H//vRFR\ne/hyz1/z+mc5Kv6K4gl+/x2eecb18zwp/gkJ8PHHJnWDPQ4ehKpVPXOtzED9/lmKir+iZJTLl2Hl\nSrNWrat4Uvy3bDFLKm7enPpYbCycPGl/gXVfQcU/S1HxV5SM8uefxt1TpEj6dVPiSfFfutTYsWVL\n6mNHjpi0y3nyeOZamYGKf5ai4q8oGeX336F7d/fO9aT4L1sG771n3DsxMcmP+bK/34pG/GQpKv6K\nkhEuXIB//oFHHnHv/BIl4OJFiI/PmB2XLkF4ODzwANSpA2FhyY/7g/hXrqw9/yxExV9RMsLcufDg\ngyYrpTsEBpqFXaKjM2bHypXQvDnkz2/SNaf0+/uD+KvbJ0tR8VeUjJARl48VT7h+li6Fdu3Mtr+K\nf8WKSbH+Sqaj4q8o7hIdbRZsSSttszNkVPxFjPi3b2/2/VX88+c3g+anTnnbkhyBir+iuMucOdCh\ng1mMJCNkVPwPHoS4OKhd2+zXqmUE9MIFs5+YaAZS77wzY3ZmBer6yTJU/BXFXTzh8oGMi7/V5WNN\nKxEYCHffDVu3mv2TJ83s2TvuyLitmU3lyhrxk0Wo+CuKO5w6ZSJqHnoo421lVPyXLUvy91u5554k\n148/uHysaM8/y1DxVxR3WLDACH++fBlvKyPiHxsLq1ZB27bJy239/ir+ih1U/BXvkphoctL4Gzt2\nQJMmnmkrI+K/fj3UqAHFiycvtxV/X8/pY4uKf5aRnvjnAzYC2zGLsg+2lPcHIoEwy8v22bcfZpH2\nvYDts2gjYKfl2DcZtFvJLowcaWal+hu7dkHdup5pKyPibxviaUuVKmaW76lT2vNX7JJePv8bQGvg\nmqXuGqAFIMDXlpcttYHulvdywF9ANUv9ccCLwCZgEdABWOKJD6H4McuWpU5F4OuIwM6dviH+y5aZ\nG2hKAgKS/P7+JP4VK8Lx4+ZpMDDQ29Zka5xx+1yzvOcFAgFL/JjdleK7ANOAOOAIcBBoCpQBCmKE\nH2Ay4EYKRCVbERdn3Bbh4f41sce64HpQkGfaK1kSzp1z3f116RLs2wdNm9o/3rixSfLmT+KfL5+Z\n8XzypLctyfY4I/65MG6f08DfwG5LeR9gBzAesKYzLItxB1mJxDwBpCyPspQrOZktW4wvulAhOHrU\n29Y4j9Xl46mF0PPkgcKFzQ3AFTZuhEaNHK8X3LixeTKIjzc5hPwFdf1kCc4s45gINAAKA0uBEIwL\nZ4Dl+EBgBMal4xH69+9/azskJISQkBBPNa34EqGhEBJieq87dpgYb3/Ak/5+K1bXT6lSzp+zdq3J\n5+OIxo1hwwZo0MBzN6qswCr+LVp42xKfJTQ0lNDQ0Ay14coavpeAhcA9gO1VfwbmW7ajgGCbY+Ux\nPf4oy7ZteZSjC9mKv5KNCQ2F3r3httuM68edxVC8wa5dpsftSaziX6+e8+esWwdvveX4eNmyULq0\n/7h8rGjPP11Sdoq/+OILl9tIz+1TgiSXTn6gLSa6p7RNnccwUTwA84CnMOMDlTGDvZuAU8BljP8/\nAHgW+MNla5Xsg9Xff//9ZlHxHTu8bZHzZGbP31ni443b5957HdcJCDC9fxV/xQ7p9fzLAJMwN4lc\nwBRgBWbAtgEmiucw8IqlfgQww/IeD/S21MGyPRFzE1mERvrkbLZuNaJUrBjcdRd8+ql37dm/H6pV\nS989IgK7d5uc+Z7EVfHfudOszFWsWNr1+vZ1b4Uxb1KpkkmdoWQq6Yn/TqChnfLn0jhnkOWVkq2A\nC8+0SrbG6u8HqF4doqLg6lXv5J9JSDA9+SlT0s/Vc+yYGaAuWtSzNrgq/uvWpe3vt/LAA+7b5C10\nUZcsQWf4Kt7BVvxz5zaZKHfuTOuMzCM6GnLlMv7z9CJudu3yfK8fXBf/tWvhvvs8b4cvUKECREb6\n58xvP0LFX8l64uJMz/X++5PK6tc3g77e4MQJc/Pp1g3efTftupnh74fM6/n7I7fdZkJTT5zwtiXZ\nGhV/JevZutXklrf1V991l/ODvp5a8NzKiRMmMubLL+Hvv2H5csd1fUH8rS6y6tU9b4evoIO+mY6K\nv5L1rFqV5PKx4mzPX8SI77//es4eq/gXLAjffw+vvOI45YQviL+11+9PsfuuouKf6aj4K5nLzJnG\nf2uLrb/fyl13OZfmISoKzp41KQs8hVX8waRpbt4cPvssdb34eDMhzbpilicpVcqMPTiT5iI7+/ut\n3HmnyUaqZBoq/krmsXs3vPSSiTW3ulLi4ox42fr7waQkdibNg/XpwJPpIGzFH0yitN9+g+3bk9c7\ndAjKlMn4so32uO0206516cW0SG9mb3agTh3zlKVkGir+SubxySemBz11KvTqBQMHmnw+lSunzj8P\nzvn9w8NNdJAnXQIpxb9kSfj449S9/8xy+VhxxvUTEwMRESZjZ3amXj3vRX/lEFT8lcxhwwYj9L17\nQ+vWZnv5cujSJbXLx4ozfv+dO6Fly8wVf4CXXzbLNFoXRAHzJJPZ4m/NGOqIzZuNMObPn3l2+ALV\nq5vUzteupV9XcQsVf8XziMBHH0H//kkiVbYsrFgBffrAs8/aP8/Znn/nzpnr9gGTWjhl798Xev7r\n1mV/fz+YTKfVq5unHCVTUPFXPM/SpUbEevVKXp4nj0nj4MhlkV7P/+ZNMwj40EOe6/nHxcH58/az\nab74IuzZYwQXfEP8c4K/34q6fjIVFX/FsyQmQr9+JmY+tytJY0me5sEee/ea8YIqVYx7JDbWuXaX\nLIHXXrN/7PRp4+O3t2pU3rxJ4xY3b8Lhw2a93MyibFmTPsIRiYkmGV5OEf+77lLxz0RU/BXPMmOG\n6eE/9pjr51rTPDiK8ggPN4KQO7eJukkZQuqINWuMaNrDnsvHll69jOj/+KMJP3S0cIonuPde07N3\nxO7dJqdQmTKZZ4MvoT3/TEXFX/Ec8fGmpzxkiPsTkNLy++/caY6DWevVWb9/eLhxF4mkPpae+OfJ\nY3r+H36YuS4fgGbNzGd09OSzYoV/JmpzFxX/TEXFX/Ec8+cbF0qbNu63kZbf39rzB9dmgO7YATdu\n2Penpyf+AE8/DcHBmZPQzZZ8+cx4iKPef04T/3LljLstvQgoxS1U/BXPMXasiebJCA0bOnbR2Ip/\nxYrOif/Fi2ZAt1Ej+zNGnRH/3Lnhzz8djxt4klatzAzolMTHw+rVGbux+hsBAdr7z0RU/BXPEBFh\nXl27Zqyd5s3NoG9KoT571sR8B1tWCa1UyTm3z86dxl1Tvbr9lBDOiD9AzZrmqSazCQmxL/6bN5vP\nnBU2+BIq/pmGir/iGb791kyMyuiAaO7c5gYyY0by8p07jRBYxxKcdfvs2GGeFqpUcb/nn5U48vvn\nNJePFRX/TEPFX8k4ly7BtGkmG6Yn6N4dpk9PXmbr8gHnB3yt51Wt6h/inz+/cVFZ5xZYUfFXPIyK\nv5JxJk+Gtm09J6ItWpgVtWxnd6YU/+BgI9zx8Wm3FR5uBpH9Rfwhtevn2jXj9mnZ0lsWeY+6dc3/\ngTPZThWXSE/88wEbge2YRdkHW8qLAcuB/cAywHaF6H7AAWAv0M6mvBFmTeADwDcZNVzxERITzUDv\nG294rs1cuUzv33YR7/Bw0wu0kjev8X+ntdpTQoKZM1Cvnn3xv3kTrlyxn2TOm6Qc9F271tzAChb0\nmkleo3Bhs6qXJ9dvUID0xf8G0BpoANxl2W4BfIQR/+rACss+QG2gu+W9A/AdYA34Hge8CFSzvDp4\n6kMoXmTFChOi2KKFZ9u1un5EjIhHRKSOs0/P7//vv0Y4Chc2Ai9iIn+snDwJpUubm40v0ayZudlZ\n/f451eVjRV0/mYIz//XWtHp5gUDgAvAIMMlSPgl41LLdBZgGxAFHgINAU6AMUBDYZKk32eYcxR0u\nXjR5abKalBOlxowx4Z2eXlWqSROTvmHHDhOlExRk8v3bkl64p9XlA8a+lL1/X3T5ABQoYEJerX5/\nFX8V/0zAGfHPhXH7nAb+BnYDQZZ9LO9Blu2ygO2c+0ignJ3yKEu54i5PPJHcLZLZxMXBf/9ronGK\nFTOpDqwC1bOn568XEABPPWV6/yn9/VbSC/e0RvpYSRnx46viD0l+/wsXTE6jZs28bZH3UPHPFJzJ\nvJWIcfsUBpZiXD+2iOXlMfr3739rOyQkhBBH+d9zKmfPGmHIqtS+MTHw5JPGv3/unHHDXLxohKlE\nCdNTzQy6dzc5gvLksS/+FSvCxo2Ozw8PN7NzrfhLzx+M+H/6qVkFrXlzs9JXTqVePfjiC29b4VOE\nhoYSam8+iAu4knbxErAQM3B7GigNnMK4dKzzr6OAYJtzymN6/FGWbdvyKEcXshV/xQ7z5xsx8OQ6\nto6IjoaHHzYJ1376yQgxZM0gaf365nNOngxffZX6eKVKqecD2BIeDsOGJe1XrQp//52078vi36yZ\neXKZNy9nu3zAZFI9ehSuX8/+i9g4ScpO8Rdu3BzTc/uUICmSJz/QFggD5gHWZO29gD8s2/OApzDj\nA5UxA7ubMDeJyxj/fwDwrM05iqvMnQv/+U/mi//hw+bp4sEHYcKEJOHPKqyun2PHHLt9HPn8L182\nuXyqVEkqq1o1+Xd24oTvZsgsUADuvht+/VXFP08eqFZNF3bxMOmJfxlgJcbnvxGYj4nuGYK5EewH\n2lj2wYSDzrC8LwZ6k+QS6g38jAn1PAgs8dSHyFFcvWpcPn372o9b9xQi8MIL5ibz5ZeeH9B1lqee\nMiGOVaumPlahgknrbC8GfOdOk4jNNk+/P7l9wLh+ChaEBg28bYn30dz+Hic9t89OoKGd8vPAgw7O\nGWR5pWQrUM9OueIKS5aYvO/Vqpk49UuXTCijp1m50uTYef99z7ftCjVrmicQe4ut5Mtn8tufPGky\nQNpiG+ljpXRpM35x+bKJHPJ18X/8cXPTtffZcxo66OtxfCzAWUmXOXPMIGhAgIm4yQzXj4jJy//F\nF66vxpUZpDW+4Cjc016EUMrvzNfF/+67YcAAb1vhGzRpYrKaKh5Dxd+fiI2FxYuhSxezX6VK5oj/\nokXGvdS9u+fb9jSOwj1Thnlasbp+YmJMjv+iRTPdRMUD3H+/uck7u4CPki4q/v7EypVQu3bSIGVa\n4r9zpxFvR0siOiIx0YQYDhjgezNf7WGv55+YmHzVL1usg74nT5pev7fGMhTXyJ0bHn0UZs/2tiXZ\nBj/4dSu3mDs3+dq4aYn/smWmh9umjZmcdfKk89cICDA/NH/AXs//yBHTo7fXq7f2/H3d5aOkpmtX\nmDXL21ZkG1T8/YWEBLOalLPiv327Sba2f78Rwbp1Yfjw9K/x2Wfwv//5T4/YXrinI5cPqPj7M23a\nwL59JsJLyTAq/v7Chg1QqlTyuPW0xD8szIQIFiliJjpt3Wqyb65Z4/ga06eb+h38KOdeyrz+cXHw\n229msNQeKv7+S5488MgjJuhByTAq/v5CSpcPmDj3U6dMyKct16+bjJa2C45XqmR69O+9lzo5G5jw\nx48/9m5MvztYxV/EpJzo2NHkv//gA/v1y5UzKSoOHVLx90eeeEJdPx5Cxd8fELEv/rlzm0VNUro9\ndu0ya9amXFLx6adNxNDMmamv8d570K6dmVjkT9x+O9xxh8nxc999Zl7AvHmOc98HBpob4Zo1Kv7+\nSNu2ZjD/1ClvW+L3qPj7Azt3mgiWlJOWwL7rZ/t2+7NCc+UyOXL69Uv+tLBsGSxdCiNGeNburKJS\nJZOC4tVXTYrp9OYmVK1qvlMVf//jttugUyfTGVIyhIq/P/DHHyb6xp47xt7C5Nu3O/Z5t2ljesfj\nxpn9S5fgpZfg559T58v3F1580SR469PHufpVq5qnKRV//0SjfjyCir8/YM/lYyVlsjJIGux1xLBh\nMGiQScn87rvGT962refszWpefdV8Bmex5glS8fdP2rc3AQzR0d62xK9R8fd1jhwxOXYc5e5P6fZJ\nSDAujbTEv04dM0v48cfNKlHphYBmN6pWNWMFOXFN3OxA/vwmIu0PTQycEVT8fZ0//oDOnR0n90op\n/gcPmoXN00v2NmCAiYf/+eecJ4L16kHr1v4V1aQkp2vXtNdyUNJFxd/X+eMPxy4fMInKjhxJSmvs\naLA3JWXKmIiJnJgrvmxZsyCO4r906gR79qS9kpuSJir+vkx0tBHzBx1lz8Ys+lG0qHENQdqDvSlJ\nGQqqKP5C/vzm6fX99+3PW/FnsujzqPj7MgsWmIHYfPnSrmfr+klvsFdRsgu9esH58+Z3kp146CEz\n294RsbEm624GUfH3ZebOdS7Bmq34O+v2URR/JzAQhg6FDz+E+HhvW+MZzpyBf/6Bd94xYdj26N/f\nI4ssqfh7grVrTW54T2JdrrFTp/TrWsX/5EnzIyhf3rO2KIqv0rGjyXk1caK3LfEMCxeaz9SpE3z+\neerja9aY9bT798/wpVT8M0p0tEmJUL06/PKL53ogS5dCs2Ym0Vp6WMXf2uvXKBYlpxAQYOatfP65\nWaDH35k/30T3DR4M06aZFemsXL4Mzz0HP/4IQUEZvpQz4h8M/A3sBnYBb1rK+wORQJjl9ZDNOf0w\nC7XvBdrZlDfCrAt8APgmA3b7DsuXm7v077/DpEkmlfDcuRkftEkvyscW6yzfsDDnB3sVJbvQpAm0\naAGjRnnbkoxx44aZd9OxI5QoYQa0X389SUv69jXBH507Z5lJpQGrE/kOYB9QC/gceMdO/drAdiAP\nUAk4CFi7opuAJpbtRYC93MHiVzz7rMh335ntxESRRYtEKlUSWbDA/TZjYkSKFhWJjHSufnS0SOHC\nIl27ivz6q/vXVRR/5eBBkeLFRc6c8bYl7rN4sch99yXtx8eL3HOPyOTJIrNmiVStKnLlit1TAZd7\nm870/E9ZxBzgKrAHKGfZt+df6AJMA+KAIxjxbwqUAQpibgAAkwE/WS7KAYmJJila+/ZmPyDAjNS/\n/z5Mnep+u8OGmSifcuXSrwtmgXMRWLVKB3uVnEmVKtCzp0lJ7qts3w5vvmnm1sTGpj5udflYCQyE\n774z6cl5+hzTAAAgAElEQVR794YpU0wGWw/hqs+/EnA3sMGy3wfYAYwHrM7pshh3kJVIzM0iZXkU\nSTeRrEEE7rknKSY+o4SHm2Rod96ZvLxrVzNwc+2a620eO2YyU7qSciEgwPzzX7kCNWq4fk1FyQ58\n8okRyMOHvW1JEnFxZhGlhg1NSpVixUz5Dz8kryeSWvwBGjeGZ54x0T/NmnnUtHRy3ybjDmAW0Bfz\nBDAOGGA5NhAYAbzoCaP624xkh4SEEOIox3xiovnSHKU+SMmOHSYh1MaNJq9NRlmyJKnXb0upUuaP\ntmiRuRG4wgcfmOyUFSq4dl7VqiaVcXrpjBUlu1KqlOlZf/op/Pqrt60xTJtmUqgMH24y6gYGGh1q\n397MU7Bm0g0PNyuV1aqVug07HcHQ0FBCQ0Mz13YLeYClwFsOjlfCDOQCfGR5WVmCcfuUxriMrPQA\nvrfTlvM+sqFDRR5/3Pn6AweK3HabyP/9n/PnpEVIiGPf/s8/izzxhGvtrV4tEhxsfP6u0q+fyH//\n6/p5ipKduHxZpHRpkW3bMtzUpRuX5M5v7pQbcTfcb+TVV0VGjUpd/uyzIp99lrQ/cKBI375uXwY3\nfP7OEIDxz49MUV7GZvttwOrktg745gUqA4dIGhvYiLkRBOCJAd9GjUTy5xdZv965+s2aibzxhkjH\nju59w7Zcvixyxx0iV6/aP37unEihQqaeM8THi9x9t8i0ae7Zc+qU8wPEipKdGTtWpH371OWJiebl\nJH8f/lvoj6w6ssp9Wxo0ENmwIXX54cMixYqJnDxp9ps2FVm+XBITE2XgqoFy6Pwhly5DJg343gc8\nA7QmeVjnUCAc4/NvZbkBAEQAMyzvi4HeNob1Bn7GhHoexDwVuEdkpPHtff21WXs2vdDK6GiIiDDh\nUtu2uX3ZW/z9NzRtalID26NYMbj/frOkoDNMmGDa6t7dPXuCgpwfIFaU7Mx//2tCn1esMPtXrhid\nCA52abW6bSe3ERgQyIp/VyQVLl5s5uCcOZN+AzExsH+//SCMSpVMzP7AgXD6NOzbBy1b0m9FP4as\nGcLQNUOdtjM74dyt7rvvRJ55RiQuTqRaNZFly9KuP2mScRElJpqQsBMnXLqzpuK110SGDUu7zpQp\nIg8/nH5bFy+aR9WtWzNmk6IohunTRRo2FPn0U5ESJUS6dzcaUKGC0Qwn6Dm7p/SY1UNa/NLCFNy8\naZ72Q0JEihQRKVdOpHNnE2Zqj9BQ421wRHS00aJ+/US6dZNR60dJjTE1ZPeZ3VJkSBE5G3PW6Y9L\nJvX8fZN58+CRR8wA58CB6ff+Fywwk7ECAsxEqLAw968tYgZ7O9jzWtnwyCOwerVZMSstvv3WTN5o\n2NB9mxRFSaJbNyhd2vSq1683idKee86kPnEynfe2k9t4s+mbbD+1nauxV02gSM2a5qn//HmTg6dk\nSfjpJ/sNbNiQdoROiRLw9tsweDDTW5dk+LrhLH1mKbVL1uaxmo/xw9YfHJ+bTUn/Nnf5skjBgkn+\n9IQE41ubNct+/dhYc6e2+tc++MAMsLjL/v0iZcs65z98/HGR8eMdH792TSQoSGTXLvftURTFOaZO\nFWnTJt1ql29clgJfFpDY+FhpNaGVLNq/SOTzz4122LJ+vUi9evYbefRR8wSSFlevyvIn75GSQ0vI\njlM7bhVvP7ldyo4oKzfjb6Zrq0h26vnXrAk9ehj/3PXrqY8vXQrNmyetQJUrl1mT9pNPzDKGKVmz\nxoRCli5t9jPa81+61IRqOZNDp3t3k/rBERMmmLGDOnXct0dRFOd44gkz9hcRkWa1Had3ULdUXfIE\n5uGByg+w8vBKWLnShGva0rixSah4/HjycpH0e/5AYoH89LjnCDOenMldQXfdKq9fuj41itdgVkTm\nLVTvm+I/Y4Zxqcyfb1w6KZk3z0yYsKVDB/MYNWVK6voLF8LDDyftN2yYsUFfR/H99ujUyTwu2lts\nOj7exPB+9FHqY4qieJ68eeHll42rNQ22ndxGw9LGDdumchtWHFpuNKNFi+QVAwONFixenLz82DHz\nns58nb1n91LotkKEVApJdeytZm8xcsNIJJMWd/FN8b/rLjMBYupUk8Fu376kY/HxZvJUyplw1ux+\nH31kFjC3xervt1K1Kpw7l74v3h7Xrxs/flqra9ly++3m2sOGpT42c6b557j3XtftUBTFPV55xUy+\ncpQvH9h6cisNyxjxb1KuCYfOHeBck3r2o/s6djSaZIu115+Od2BT1CaalGti91inap24cP0C6yPX\np/153MQ3xd9K2bLwf/9nZrxa735r10LFivZz1t97L4wcae7E+/ebsoMHzR/ZdjA1Vy6oX99118+Z\nMybnzuOPm3w6zjJypLkB2d4ARGDIEO31K0pWU7as+R1PnuywyraT22hUthEAeQLz0CK2NKEtg+1X\nbt/eDALfvJlUtn69U+kYNkZupGm5pnaPBeYKpG/TvozckHKKlWfwbfEHeOMN41ObPdvs//lnapeP\nLT16wP/+Z3rmR44kLY6QK8VHbdjQvvhfvmw/hjc83Pjm27QxeftdoVQp+Osvk89j7FhTtsQyxSG9\niCFFUTxPnz7mt5iYmOrQtbhrHDp/iDolk8bh2uyLZUX5OPttFS9uxuz++SepzAl/P8CmE5scij/A\n8w2eZ+XhlRy9eDTdtrIDqYeyV60SKV/epDOtUkUkLCz94e8xY0TuvFOkcWOROXNSH58wQaRnz9Tl\n3bqJ5M0rcv/9IiNHihw5IvLnnyZWeOpUp0beHXL4sEnfMH68SMuWGW9PURT3SEwUqV/fpGBPwfrj\n66XhDw2TCs6fl7DK+aX66GqO2xs4UOTtt832jRsm84Cj2f8WrsVek/z/yy/XYq+lWe+dJe/I+8ve\nT7MOmZTeIaux/+meecaETlWo4PwU7SFDTC4feykWduwQqVkzednevSIlS4qcPWty9rzwghH9smVF\nNm507prpsW+fSJkyIpUrOz3ZRFGUTGDmTDNpq2FDkXffFVm4UOTKFRm7cay89OdLSfXmzpWEdm2l\n+NDicvzScfttbd0qUqOG2V6/3oSep8PaY2ul0Q+N0q136PwhKT60uMTEOs75RbYJ9bTHsGFmuvYj\njzi/TOGHH5pRd2tIqC21asHRo8mXfhs2zKycU7y4GaQdP964nA4dMqsFeYLq1c3avFOnagZORfEm\nXbuawI9vvoHChU3kXb16bDu6/tZgLwArV5LrgQdpXbm1Cfm0R4MGZmzx0CGnXT4bIzc6HOy15c6i\nd3Jv8L38Fv6bs5/MKfxH/MuUgVmzzIw4VyhVyn55njzGT7djh9mPjDTLL/bpk7xe7tyQL5/r9qZF\n9eoez82tKIob5M1rwjc//dQM2nbuzNatC2iUQvxp0yYp3t8euXIlRf14yN9vS58mfRizaYxHwz79\nR/wB2rVLvXBKRrCd7DViBPznP0mLLSiKkuO4MWgA+/Ncpt4SyzygU6fgxAm4+24T7394hWMB7tiR\n/Stnsnvvaucjfco7J/4P3vkgsQmxrD662tmPki7+Jf6exjrZ6+xZs/j6O/aWJFYUJaew6/JBqhWv\nRv5+n8HeveZpoFUrCAykWrFqBBDAnrN77J/84IN8nH8dL9x7BqlaNc3rRMdEc/76eaoXr+6UXbkC\ncvFGkzcYs2mMqx/JcZsea8kfsYr/6NHG/6cpkRUl2zB913RmR8zm4o2LTp+z9cRWGlZubjIL9Oxp\nZu5aUjoEBATwRK0n+H2X/XQtV/MHsrwKnC6ahzWR69K8zqaoTTQu15hcAc5LcK/6vVh5eCXHLx1P\nv7IT5Gzxr1fPzB4eN84sn6goSrZgy4kt9F3Sl5+2/UTwyGDu++U+BqwawLlr59I8b9vJbTQq08jM\nAq5Y0aSLscnn06NeD6btmmbX9bNw/0LuLVibj0p3Y/i6tNfg3hS1iSZlXQsiKXhbQZ656xnGbRnn\n0nmOyNninz+/Wfj8gQdMygdFUVIxfO1wfgv/jRvxN7xtilMkJCbw6oJXGfbgMJY8s4Qz753h81af\nsyFyQ7qifCutQ0CAWXu3b1+oXfvW8cZlG5MoiWw7mTo32MyImXR7sC+9XvuBjVEb2RPtwD0EbIxy\n3t9vyxtN3uDnbT975G+Rs8Uf4PPP4csvvW2Fovgku8/s5qv1XzFpxyQqjKzA+8ve58C5A942K03G\nbRnH7Xlv57n6zwGQP09+2lVpxyctP2HxwcUOz4tNiCUiOoL6QfVNQfHiMGpUstDygIAAnqr7FNN3\nTU92bkxsDMv/Xc6jNR8lf5789L6nN1+v/9rudUQkzZw+aVG9eHUalW2U6vruoOLftavp/SuKkoqv\n1n/Fm03eZNmzy1j34jpyBeTivl/uo8bYGjz+++N89vdn/L7rd05dPZWpdqw7vo53l76bbr0TV07Q\nP7Q/4zqNIyDFfKCm5ZoSeTmSyMuRds8NPx1O5aKVuT2vg6VZLfSo24Ppu6eTKEmpIRYeWEiz8s0o\nXsDk/OrduDez9syy+70cPH+QgrcVpPQdpdP9PPZ4p9k76bqvnEHFX1FyEBeuX+Dg+YNO1Y26HMWf\ne//ktcavAVC1WFWGth1K1DtRzHlyDt3rmPWmp++eTp3v6vDO0nc4ffV0ptg9fdd0vt7wNWuOrUmz\n3jtL3+HlRi9Tu2TtVMcCcwXSvkp7lhy0v3T4nD1z6FStk91jttQpVYei+Yqy9tjaW2UzI2bSrXa3\nW/slby9Jj7o9GLtpbKrzN0U5H99vj7ZV2vJu8/RvhOnhjPgHA38Du4FdwJuW8mLAcmA/sAwoYnNO\nP8wi7XuBdjbljYCdlmPfZMRwRVFc49KNSzww+QEe+u0h4hPj063/zcZveK7+cxTLn3zuS57APNQp\nVYfudbszoPUA5nafy67XdhGfGE+tb2vx4fIPOXvtrEdtX3l4JW83e5u3lryVrMdty7JDy9gYtZFP\nWn7isJ2Hqj7EogOLUpWLCNN2TaNnvZ5O2dOjrhn4BePyWXZoGY/WfDRZnbebvc0PW38wS0DasDHK\nuZm9mY0z4h8HvA3UAZoBrwO1gI8w4l8dWGHZB6gNdLe8dwC+A6zPX+OAF4FqlpemtFT8ggvXL/jN\ngKc9bsTfoMv0Ltxb/l6CCwUzeYfjdMZgbhTjw8bzdjPnZtSXKViG0Q+NZserO7h88zJVRlehy/Qu\nTNs5LZX4ucrpq6eJuhLFsLbDyBOYx67t0THRvLbwNb7t+C0F8hRw2Fb7qu1ZeXglsQmxyco3RG4g\nX+58Sf7+dHiq7lPMiphFXEIciw4somm5ppQoUCJZnWrFq9GyYktGrBvBtbhrt8oz2vP3FM6I/ylg\nu2X7KrAHKAc8AkyylE8CrLe9LsA0zE3jCHAQaAqUAQoCmyz1Jtucoyg+iYgwZccUqoyuQp9FfdI/\nwQeJT4znqVlPUaZgGcZ0HMPA1gMZsGoAN+NvOjznx60/0qFqByoWqejStYILBzPu4XEce+sYT9R6\nginhUyj3dTmenfssl244XjwlLf4+8jetKrYid67cjGo/iv9b+X/JbijRMdG0mdyGnnV70rFaxzTb\nKnV7KaoXr57MZQMwdedUetbtmWqcwBGVi1bmzqJ3suLwCmZEzEjm8rGlf6v+LDywkJLDS3L3D3fz\n6oJX2XlmZ/LcQV7CVZ9/JeBuYCMQBFgdfKct+wBlAdsRlUjMzSJleZSlXFF8kqjLUXSe1pmv1n/F\n7Cdns+DAArac2OJts1xCRHh5/svciL/BpEcnmQHbCvdRq2QtxoeNt3vOzfibjNo4ivebv+/2dQvn\nK8xz9Z9j0dOL+PfNf7kjzx20nNiSE1dOuNzWysMraVPZxNo3Ld+UNpXbMPifwYAR/gcmP0CXGl0Y\n0HqAU+11rNYxmesnPjGeGREz6FGvh0t29ajbg/Fh41l2aBmP1XrMbp16QfXY9N9NnPvgHN93+p7a\nJWvTv1X/dAeVswJX0kreAcwG+gJXUhzzaD7p/v3739oOCQkhJCTEU00rilPM3D2T1xe9zuuNX2dO\n9znkDczLl22+5M3Fb7LmhTUuzcx0xIXrF9hyYgv7z+03r/P7KX1HaV5v/Dr3lL3HA58ChqwZwp6z\ne/jr2b/IG5j3VvnA1gPpMr0L/2nwH/LnyZ/snKk7p1K3VF0alG7gERuKFyjOd52+Y/Cawdz3y30s\nfnoxNUvUdPr8lYdX8mbTN2/tD35gMPW/r89jtR7jhT9foHP1zgxsPdDpXnvHah35z5//YXi74bfa\nr1i4IlWLuTbX58k6T/LOsndoU7lNKpdPSvLlzkfT8k3diu23R2hoKKGhoR5pKz3yAEuBt2zK9gLW\nWKUyln0wvn/btQmXYNw+pTEuIys9gO/tXCvd/NaKkpkkJiZK0PAgWX98fbLyhMQEuefHe2Ty9skZ\nvsbRi0elwsgK0mpCK3ll/isyYt0Imbd3ngxdM1QqjKwg9/58r0wNnyqnrpySvw79JcPXDpees3tK\n1xldJdHJ9SxOXz0txYYWk8MXDts9/uj0R2XEuhHJyqIuR0mNMTVk+aHlGf2IdpkQNkGChgfJumPr\nnKp/5MIRKTW8VKrP/EXoFxL4RaB8/NfHTn8fVhISE6TEsBJy5MIRERF5/o/n5et1X7vUhpWOv3WU\niWET3TrXk5BJi7kEYPzzKReSHAZ8aNn+CBhi2a6NGSPIC1QGDpE04LsRcyMIABZhf8DX29+jksPZ\ncWqHVB1d1e6x9cfXS9kRZeXyDTsLBDnJqSunpNroajJq/Si7x+MS4mROxBxpPbG1FBpcSFr80kL6\nLOojE8ImSM2xNWXVkVVOXafv4r7SZ1Efh8fDT4VLqeGl5MrNK3Ll5hX5/O/PpdjQYm4Jqiss2r9I\nig4pKjXH1pSWE1pK1xld5Y2Fb9hdKGVC2ATpPrN7qvJrsddkdsRst+18Zs4zMm7zOLked12KDCki\nUZej3GonNj7WrfM8DW6IvzPPSS2A1UC4zQX6YQZuZwAVMAO7TwLWDEofAy8A8Rg30VJLeSNgIpAf\nI/5Jz3JJWD5LqkJemvcSnap34vFajzthtmLL/nP7WX98PXkC83B7ntu5Pe/tFM1XlIZlGjr9uJxT\n+GrdVxy+cJhvO31r9/jzfzxP0O1BDG071OW2L1y/QOtJrXm81uN81uozl88fuX4kYafCmPxY2tE6\nRy8epeGPDYnoHUHQHUEO6/WY3YNrcdfYHLWZ1pVb82WbL6lUpJLLdrnK5ZuXibwcyZmYM5yJOcOi\nA4u4mXCTaU9MS1bvubnP0aJCC15u9LJHrz9t5zSm7ZrG8w2eZ+ymsazs5SBPv59g+Q279EP2xV+9\nXfGfvGMyry96nebBzVn6zFI7pym2iAirjq5i/r75zN8/n5i4GFpVbIUgXI29SkxsDMcuHaPk7SUZ\n0W4EzYObe9tkn6HdlHa83vh1utTsYvf4qaunqPtdXda9uM7plLxg4sHbTmlLs/LNGNFuhFs33bPX\nzlJ1dFWOvHWEIvmKOKz34p8vUqZgGf7X5n9ptnfg3AH6rejHh/d9SONyjV22x1Ncjb1KtTHVWPz0\n4ltjDSJC8MhgQp8Pddkfnx7nrp2j8jeVaVWpFV1qdOGlhi95tP2sxh3x90VSPdIcvXhUSg4rKWuP\nrZVCgwtJdEx0Vj5RZTrhp8Ll478+loTEBI+1OXL9SKk6uqp8EfqFbD2x1e7jcUJigkzaPknKf11e\nnvj9CTlw7oDHrm9l0OpBcurKKY+3m1lci70mdwy6Qy7duJRmvTEbx0jRIUXl2TnPytw9c9NcX1VE\nJDomWlpPbC0v/PFChl0qT858Ur7d9K3D43ui90iJYSXkwvULGbpOVjN6w2jp+FvHW/v7zu6T4K+D\nM80Fde/P90regXnl/LXzmdJ+VkJ2WcA9PiH+1odKSEyQ1hNby+B/BouI+cf/YcsP3vqOPc6RC0ek\n/NflpdroavLpyk890ua5a+ek5LCSsvvMbqfqx8TGyJerv5RiQ4vJlB1TPGKDiMjWE1uF/sjI9SM9\n1mZms/TgUrlv/H1O1Y28FCljN46VNpPaSKHBhaTn7J6y6/SuVPX+OfqPBH8dLO8ve1/iEuIybOOy\ng8vk7u/vdni864yuMuSfIRm+TlZzI+6GVBpVSf45+o+IiIzbPE56ze2VadcbtHqQPDb9sUxrPysh\nu4h/uynt5GzMWRERGbV+lDQf3/zWDWHW7lnywKQHvPk9e4zomGipMaaGfLPhGzl15ZRUGFlBft/1\ne4bbfWvxW/Lq/FddPm/3md0SNDxI/tjzR4ZtEDE36gcnPyj3/3K/220kJibK5qjNHrHHGd5b+p58\nEfqFy+dFx0TL0DVDpeSwktJzdk/Zd3afJCQmyKDVgyRoeJAs2LfAYzYmJCZIxZEVZeuJramObYna\nImVHlE33ScRXmRg2UVr80kISExOl24xuMmn7pEy7VnxCvFy9eTXT2s9KyC7i/97S96TSqEoybec0\nKTGshBw8d/DWh7wWe00KDy4sp6+e9uJXnXGu3rwqTX9qKh8u//BW2bYT26TEsBJ2f9TOcuDcASk+\ntLjb38/mqM1SclhJ+evQX27bYGtHdEy0FB5c2G3Xz4J9CySgf0CWuY7uGndXqhBPV7h045IMXDVQ\nig8tLnW+rSP3jb/PbhRLRhkQOkBeW/BasrIL1y9Ik5+ayHebvvP49bKK+IR4qTW2lizYt0BKDCsh\nxy4e87ZJfgHZRfxFRKbvnC4Fviwg32/+PtUH7TGrh1//g8fGx0rH3zpKr7m9UvkzZ+6eKcFfB8vJ\nKyfdavvx3x+XQasHZci+0MOhUnJYSdlwfIPbbbwy/xX5ZMUnIiLSfWZ3+XHLj261EzIxREp/VVrG\nbR7nti3OcuLyCSk6pKhHXDMXrl+QORFzPNKWPY5dPCZFhxS91cOPvBQpdb+rK28uetOjY0feYHbE\nbCnzVRmpNrqat03xG8hO4i8iDmOp5+6ZKyETQ7Lqe/U4Q/4ZIm0nt3UYI/z5359L8/HNHQpHYmKi\nPP774/L474/L/rP7b5WvPrJaKoysINdir2XYxgX7FkjQ8CDZeXqny+daRfTM1TMiIvL7rt/loV8f\ncrmdzVGbJfjrYJm+c3qarr6L1y96JN568vbJ8sTvT2S4nayi428dZdL2SbL7zG6pMLKCDF0zNFPj\n87OKxMREafxjY3l53sveNsVvILuJvyOsEzNOXD6RrHzdsXXS769+WfoDiImNkcqjKssj0x6RqeFT\n5crNK2nWvxF3Q8p8VUbCT4U7rJOQmCBtJrVJNfvSyqzds6TOt3Vk0OpBUnxocem7uK9Ex0RL4x8b\ne3TAdsqOKVJ5VOVb4y/O8uHyD+WNhW/c2r9847IUGlxILl6/6FI73Wd2lxHrRkhMbIwUGlzo1s3E\nlsTERKk/rr6UG1FOBq4amMrdtTd6r3y19iunfMfPzHnG7pOmrzInYo7UHFtTSg0v5ZFZx77EkQtH\n3J54lRMhp4i/iPmhjtk45tb+2mNrpeSwklJrbC2X3B6D/xksC/cvdPnLtjI1fKq0nthaJoZNlId+\nfUgKDS4k3WZ0c+i2Gb9tvLSf0j7ddq0+83/P/5us/OrNqxL8dbCEHg4VETOF//WFr0vBQQXlnh/v\n8fgj//vL3pc2k9o47b64eP2i3ZQCD099WH4L/83p6/57/l8pNrTYrae/bjO6yU9bf0pVb+W/K6XW\n2FoSdjJMXvrzJSkypIg8N/c5eXvJ21JtdDUpO6KsvPDHC1J0SNE0bz7WlA4pv29fJjY+VlpOaClL\nDy71timKlyEnif+8vfNuRZGsO7ZOSg4rKYsPLJbIS5FSdkRZp6Irtp7YKqWGl5Kg4UFuRxV0+LVD\nMlE7G3NWXpn/inSd0TVV3YTEBKk1tpbTg6mDVg+SDr92SPYk89Hyj6Tn7J6p6u4/u99hDpeMEJ8Q\nL+2ntJe3Fr/lVP3B/wyWZ+Y8k6r8l22/2P1OHPHmojflg2Uf3Nr/fdfvdm+anad2Thb6ezbmrAxf\nO1wGhA6QbSe23frueszqIcPXDnd4vbRSOiiKr0NOEv8bcTek6JCiMnP3zFvCb8X6FLA3eq/D8xMT\nE6XVhFby/ebvJeJMhAR/HezQzeKIE5dPSJEhRVKF1V2LvSZVvqki8/fNT1Y+f998ufv7u512S8XG\nx0q97+rJ1PCpImJcGMWHFs/yx+Hz185L1dFV7d4gr8ddl81Rm+XHLT/Kawtek2JDi9l1aUXHREuh\nwYWcGo84d+2cFB1SVCIvRd4qu3LzihQcVFDOXTt3q2z/2f1SYlgJp8Iat0RtkfJfl3c4NjB87XDp\nvaB3uu0oii9CThJ/EZFec3vJbQNvSyb8Vn7a+pPUGFPD4aP+nIg5UufbOrfcGUcvHpWaY2vKR8s/\nclqcR6wbIc//8bzdY8sOLpOKIysmiyNuNaGVS64PEZENxzdI6a9Ky9mYs9J2clu3sw9mlF2nd0mJ\nYSVk3OZx8kXoF9JtRjepNbaW5P9ffrlr3F3Sa24vGbV+VJox+a0ntnZqDsGXq7+0O7nnsemPyYSw\nCbf2+yzqI/3+6uf0ZwiZGCK/7vjV7rG2k9t6bH6DomQ15DTxP3juYJqpYV9b8Jo89OtDqXqGN+Nv\nSpVvqqTylVoHTZ0dM6g/rr6s/Helw+NPz35a3lv6noiIbIrcJBVGVnArKqXPoj5y17i7pO53db2a\nRXDxgcXy6PRHpd9f/eS38N9kx6kdciPuhtPnj9k4Jt0Zm9fjrkvpr0rbjTL6Lfw3eXjqwyJiQimL\nDinqUgz9gn0L7D55rTm6RooNLebygLSi+ArkNPFPj5vxN+Xp2U/LXePuShYSOWLdiGQ5RGyxDrSm\nlxdl+8ntEvx1cJoDrKevnpaSw0pK2MkweXLmk2732i/fuCz1vqvndCpfX+X4peNSbGixNG9gk7dP\nlnZT2tk9dunGJSk4qKBcvH5RRqwbIT1m9XDp+gmJCVJzbE1Z8e+KW2V7o/dK0PAgu0+PiuIvoOKf\nmnAhuzoAAAmGSURBVMTERPlu03dSclhJmR0xW6JjoqXEsBIScSbC4Tm95vaS/n/3T7Pdd5e+Kx//\n9XG61/9p609S+9vaUnxo8QzlgM8uNPmpiSw7uMzh8ZYTWsrsiNkOj3ee2lkmhk2UiiMrysbIjS5f\n/6etP9268Z+8clIqj6osv2z7xeV2FMWXQMXfMZsiN0nFkRWl9re15fWFr6dZ98C5A2lmRYxLiJMy\nX5WRPdF70r1uQmKCtJzQ0qkbRU7g203fSpdpXewe23d2nwQND5Kb8Tcdnj9p+yQpNbyUNB/f3K3r\nX4+7LkHDg2Rj5EZp+ENDt/L4KIqvgRvin/GFSP2ExuUas/XlrbSv0p7+If3TrFu1WFU6VevE6I2j\n7R5f8e8Kyhcq79Q6pLkCcrHsmWUMbDPQHbOzHc83eJ71kevZe3ZvqmPjt43nufrPJVtrNiWdq3fm\nwvULvNX0LYd10iJf7ny83vh1QiaG0LB0Qz5t+alb7SiKv+OLyf8tNzLvcuDcAZr/0pyDfQ5SOF/h\nZMeenvM095a/lzeavOEl6/ybAasGcOzSMX5+5OdbZXEJcQSPDGbV86uoUaJGmudvjtpMwzINCcwV\n6Nb1z18/zzcbvuHTVp+SO1dut9pQFF8iW6/k5Q16/dGLqkWr8mmrpN7htpPbaDOpDQffPEiJAiW8\naJ3/cvbaWaqPqc7u3rspU7AMAHP3zGXkhpGs/s9qL1unKP6HO+LvjNvnF+A0sNOmrD8QCYRZXg/Z\nHOsHHAD2Au1syhtZ2jgAfOOKkd7ik/s/YfSm0Vy6cYlNUZvoPK0znad1ZmT7kSr8GaBEgRI8Xe/p\nZG61n8N+9vul9BTFn3DmTnE/cBWYDNSzlH0OXAG+TlG3NjAVaAyUA/4CqmEGIzYBb1jeFwGjgSV2\nruczPX8wC0ivPb6WuIQ4PmrxES/c/QL5cufztll+z+ELh2n8U2MO9z3MxRsXqf99fSLfiaRAngLe\nNk1R/A53ev7OODz/ASrZu56dsi7ANCAOOAIcBJoCR4GCGOEHcyN5FPvi71MMfmAwKw6voHud7tyW\n+zZvm5NtqFy0Mm2rtOWnbT8RExvDU3WfUuFXlCwkI6NdfYDngC3Au8BFoCywwaZOJOYJIM6ybSXK\nUu7zlCtUjufqP+dtM7Il7zd/ny7TuxAYEMic7nO8bY6i5CjcDfUcB1QGGgAngREes0jJMTQs05Aa\nxWtQLH8xGpZp6G1zFCVH4W7P/4zN9s/AfMt2FBBsc6w8pscfZdm2LY9y1Hj//v1vbYeEhBASEuKm\nmYqvM7bjWC7euOhtMxTFrwgNDSU0NDRDbTg7QFAJI/DWAd8ymB4/wNuYAd6eJA34NiFpwLcqZsB3\nI/Amxu+/ED8Z8FUURfF1MmvAdxrQCigBHMdE+oRgXD4CHAZesdSNAGZY3uOB3iRNO+4NTATyY6J9\nfH6wV1EUJbuik7wURVH8nMya5KUoiqJkM1T8FUVRciAq/oqiKDkQFX9FUZQciIq/oihKDkTFX1EU\nJQei4q8oipIDUfFXFEXJgaj4K4qi5EBU/BVFUXIgKv6Koig5EBV/RVGUHIiKv6IoSg5ExV9RFCUH\nouKvKIqSA1HxVxRFyYGo+CuKouRAVPwVRVFyICr+iqIoORBnxP8X4DSw06asGLAc2A8sA4rYHOsH\nHAD2Au1syhtZ2jgAfOO+yYqiKEpGcUb8JwAdUpR9hBH/6sAKyz5AbaC75b0D8B1JiwqPA14Eqlle\nKdv0G0JDQ71tglOonZ5F7fQs/mCnP9joLs6I/z/AhRRljwCTLNuTgEct212AaUAccAQ4CDQFygAF\ngU2WepNtzvE7/OUfQu30LGqnZ/EHO/3BRndx1+cfhHEFYXkPsmyXBSJt6kUC5eyUR1nKFUVRFC/g\niQFfsbwURVGUbEYlkg/47gVKW7bLWPbB+P4/sqm3BOP2KQ3ssSnvAXzv4FoHSbqh6Etf+tKXvtJ/\nHSSTqERy8R8GfGjZ/ggYYtmuDWwH8gKVgUMkDfhuxNwIAoBF+PGAr6IoSk5gGnACiAWOA//BhHr+\nhf1Qz48xd6G9QHubcmuo50FgdKZbrSiKoiiKoiiKb9IB87RwgCSXki/g6iQ3bxEM/A3sBnYBb1rK\nfcnWfBj333YgAhhsKfclG20JBMKA+ZZ9X7TzCBCOsdMaSu2LdhYBZmHG/iIwLmBfs7MG5nu0vi5h\nfke+ZieYybS7Mbo0FbgN37QzXQIx7qBKQB6MONTypkE23A/cTeoxjw8s2x+SNObhTUoDDSzbdwD7\nMN+hr9lawPKeG9gAtMD3bLTyDvAbMM+y74t2Hsb86G3xRTsnAS9YtnMDhfFNO63kAk5iOlW+Zmcl\n4F+M4AP8DvTC9+x0insxkUFWUkYNeZtKpI52ss5tKE1StJMv8QfwIL5rawFgM1AH37SxPGZcqzVJ\nPX9ftPMwUDxFma/ZWRgjVinxNTttaYeZ4Aq+Z2cxTOeuKOZGOh9oi+/Z6RRdgZ9s9p8BxnjJFntU\nIrn42854DiD1DGhvUwk4iplV7Wu25sI82V3B9FTA92wEmIl54mtFkvj7op3/YlwUW4D/Wsp8zc4G\nGHffBGAb5rd+O75npy2/AL0t275o58uY39AZYIqlzCU7fSWrp3jbgAxgjbP1Fe4AZgN9Mf8ctviC\nrYkYMSgPtMT0rG3xBRsfxvyowkgKVU6JL9gJcB/mJvUQ8DrGTWmLL9iZG2iIyfXVEIgh9ZO9L9hp\nJS/QGdMBSIkv2FkFeAvTySuL+c0/k6JOunb6ivhHYXxrVoJJng7C1zhN8kluZ7xoiy15MMI/BeP2\nAd+19RKwEBMC7Gs2NsfkrzqMCXVug/lOfc1OMH5pgGhgLtAE37Mz0vLabNmfhbkJnMK37LTyELAV\n852C732f9wDrgHNAPDAH4zp36fv0FfHfgsn0WQlz1+1O0iCbLzIPM8CC5f2PNOpmFQHAeEwkxSib\ncl+ytQRJEQj5MX7KMHzLRjBzVYIxExWfAlYCz+J7dhbAuPbAuFHaYdyTvmbnKcwcoeqW/QcxkSrz\n8S07rfTA3PSt+Nr3uRdohvkNBWC+zwh89/tMl4cwgxgHMWFMvoKrk9y8RQuMS2U7SaFqHfAtW+th\nfL7bMeGJ71vKfcnGlLQiqSPia3ZWxnyX2zHhvdbfja/ZCVAf0/PfgempFsY37bwdOEvSTRV8084P\nSAr1nIR56vdFOxVFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURRFURR7/D+dTFae\nkSkZsQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(s_mod[-80:],'r',output[-80:],'g')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make lightcurves using `Lightcurve` class." + ] + }, + { + "cell_type": "code", + "execution_count": 598, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 599, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc1, lc2)\n", + "# Rebin the cross spectrum for ease of visualization\n", + "cross = cross.rebin(0.0075)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 600, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lag = np.angle(cross.cs)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 601, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG2lJREFUeJzt3XmUFNXdxvHvAKLiAiLrIIohLhBRwQguGNoFBhRfglET\nNDEuUaOJ0SQaI74n06PGJWo8B5fXKO7HKJgjKAiyKD0gilFARASFUQjIpgQUhJGt3z9+3UwzzNLd\nVdXVVfV8zukzPd1dXZei55k7t+79FYiIiIiIiIiIiIiIiIiIiIiIiIiISMA9CawB5mc8FgdWAHNT\nt4GFb5aIiHjlNKAnuwd/OfAHf5ojIiINaeLCe8wA1tfxeIkL7y0iIi5zI/jrcx0wD3gCaOXhfkRE\nxAdd2H2opx3W4y8B7sDCX0REikAzj953bcb9kcC42i/o2rVrsqqqyqPdi4iEVhXwfSdv4NVQT8eM\n+0PZ/a8BAKqqqkgmk7q5dOv3y36+tyFMt/Lyct/bEKabjqd7N6Cr04B2o8f/AtAPaAMsx2b0xIDj\ngSTwOXC1C/uRBlQurfS7CSISEG4E/7A6HnvShfcVEREPeDmrRwqpi98NCJdYLOZ3E0JFx7O4+DnX\nPpkarxIXlFSUkCzX8RQJu5KSEnCY3erxi4hEjII/JMr7lfvdBBEJCA31iIgEiIZ6REQkZwp+EZGI\nUfCLiESMgl9EJGIU/CERT8T9boKIBIRm9YSEFnCJRINm9YiISM4U/CIiEaPgFxGJGAW/iEjEKPhD\nQrV6RCRbmtUjIhIgmtUjIiI5U/CLiESMgl9EJGIU/CIiEaPgDwnV6hGRbGlWT0ioVo9INGhWj4iI\n5EzBLyISMQp+EZGIUfCLiESMgj8kVKtHRLLlxqyeJ4FzgLVAj9RjrYFRwGHAUuBCYEOt7TSrR0Qk\nR8Uyq+cpYGCtx/4MTAGOBN5IfS8iIkXArXn8XYBx1PT4FwH9gDVAByABHF1rG/X4RURyVCw9/rq0\nx0Kf1Nf2Hu1HRERyVIiTu8nUTUREikAzj943PcSzGuiInfjdQzwe33U/FosRi8U8ak74xRNx4rG4\n380QEZclEgkSiYSr7+nVGP/fgHXAPdiJ3VbseYJXY/wuUq0ekWgoljH+F4C3gaOA5cBlwN1Af+BT\n4IzU9yIiUgTcGOoZVs/jZ7nw3pKvTZtgn32gmVejeSISVFq5GwbV1fb1wQfhl7+E7t3hwANhxAh/\n2yUiRUndwaDZvh0WLID33qu5LVoENwPz50PfvvD738PUqbB0qd+tFZEipOD30/bt8O23sHGjDc1k\n3mo/9uWXMHs2zJsHnTvDiSfa7bLL4LjjKH/3Hsic1bN4Mcya5ds/TUSKl67AVShbt8KMGfDaazBh\nAixbZo/tv/+etwMO2POx1q2hZ0844QQbxmnMzJlw003w9tve/9tEpGDcmNXjpyRxu5VPK0/WVj6t\nvN7HA7fdNd2SyZYtk8k+fZLJ225LJmfPTpZPHp4sf/Mv3rXzs8+SycMOK8y/T9tpO21XsO1wYUGs\nevxuSibhgw9g/Hi7ffIJ9O8PgwfDoEHQrl3h2lJdDS1b2teSwHYORKQWN3r8Cv5M1dXw3HOwdi3s\ntRc0b17zNfN+7cfWrYOJE20YZ7/9LOgHD7YTrc2b+/fvOfhg++XTpo1/bRARV7kR/Dq5C7BtGzz9\nNNx2Gxx/PBx7rI2/b9tmXzPv1/W1RQsoK4Mbb4Qjj/T7X1OjY0dYtUrBLyK7iXbw79gBL74I5eXQ\npQu89BKcdJLfrcpLnbV6Skth5Uro0aPObUQkmqK5gCuZhLFjrXf/8MPw+OM27z2goQ9QUVmx54Pp\n4BcRyRCtHn8yCVOmwP/+rw3T3HUXnHNOeE9+KvhFpA7RCf6ZM+HWW23M+/bb4fzzoUnI/+ApLYWF\nC/1uhYgUmZAnHzBnDpx9Nlx8sdWxWbAALrww/KEP6vGLSJ3C2ePftg1efRUee8zq1wwfDmPGwN57\n+92ywlLwi0gdwhX8VVUwciQ89RQcfTRcdRWcd56VJw658n7lez6o4BeROgR/AdfWrfDKK9a7/+AD\nuOQSuPJKC/6oS9cCqq6OxtCWSAREewHXkiXWu3/6aejWzXr3Q4dGoneftebNoVUrq+zZvr3frRGR\nIhGsbuDWrTB6NJx1FpxyipU1rqyEadNg2DCFfl3Sq3dFRFKC1eM/4wxo2hSuucZ691E7WZuP9Dj/\n8cf73RIRKRLBCv7ly62m/aGH+t2S4NAJXhGpJVhDPTt36iRlPeKJeN1PKPhFpJZgpejOneEtr+BQ\nnbV6QMEvInsIXvCrx58bBb+I1BKsFFXw507BLyK1BCtFFfy5U/CLSC3BSlEFf+7at4evvrI1DyIi\nKPhDo85aPQDNmtm1d9euLWyDRKRoBStFFfz12uOyi5k03CMiGYKVogr+/Khsg4hk8Hrl7lLgG2AH\nsA3o7ejdFPz5UY9fRDJ4HfxJIAb815V3U/DnR8EvIhkKkaLuLbVV8OdHwS8iGbxO0SQwFXgfuNL5\nuyUV/PWot1YPKPhFZDdeD/WcCqwC2gJTgEXAjPST8Xh81wtjsRixWKzhd1OPv14VlRX1z+xR8IsE\nViKRIJFIuPqehax4Vg5sAu5PfZ/7pRebNIEdO1SorQ4lFSUky+s5nqtXw3HHwZo1hW2UiLjOjUsv\netl9bgEckLq/HzAAmJ/3uyWTdlPo565tW1i/HrZt87slIlIEvBzqaQ+MydjP88DkvN9NoZ+/pk2h\nXTvr+Xfu7HdrRMRnXgb/54B71/vT+L4z6XF+Bb9I5AUnSRX8Daq3Vk+aVu+KSEpwklTB36AGa/WA\nZvaIyC7BSVIFvzMKfhFJCU6SKvidUfCLSEpwklTB74yCX0RSgpOkCn5nFPwikhKcJFXwN6jBWj2g\n4BeRXYKTpAr+BlVUVjT8goMPho0b4bvvCtMgESlawUlSBb8zTZpAhw6ayy+FsWEDjBsHN94IJ54I\nV1/td4skQ3CSVCWZndNwj3jlq6/g5ZfhhhugZ09bIT5iBLRqBX/5C4weDdu3+91KSfG6LLN71ON3\nTsEvblmzBiora27Ll8Mpp0C/fvDII3DCCdC8ec3rDzsM3n0XTj3VvzbLLsEKfhVpc0ZlGyQfO3bA\nggXwzjswa5Z9XbMG+va1oL/0UuvlN2sgTsrKYPJkBX+RCFbwq8dfr0Zr9YB6/JKdtWutd54O+fff\nt07DySfDSSfB9ddDjx5W9TVbAwbArbdCRSOTEKQgFPwh0WitHrDgnzbN87ZIgGzfDvPm7d6b/+or\n6NPHQv6mm6B3b5sV5kTfvvDxx/Df/0Lr1u60XfKm4I8S9fgFbJjm9ddhwgSYMqWmN3/66XDLLdCt\nm/s/a3vvDaedBlOnwoUXuvvekjMFf5Qo+KNp504brpkwwW6ffgpnnglnnw0PPGCfi0JIj/Mr+H2n\n4I8SBX90rF9vIfvaa9a7b9vWgv6ee+wEa+aMm0IpK4N779XV9IqAgj9KDjoItmyBzZuhRQu/WyNu\nq6qCf/0Lxo+3cfsf/cjCvqICDj/c79bBkUfaz/DChdC9u9+tibTgJKmCv0GN1uoB62WVlmpKZ5is\nXGnDNX362Dj9smU2e2bNGvsFcO21xRH6YJ+/sjKYNMnvlkRecJJUwd+gRmv1pGm4J/jWrYN//MNO\nxh5zDHz4Idx+u/2/PvIIDBwI++7rdyvrlh7nF19pqCdqFPzBtHEjjB0LL74Ib71l4X799fZ1n338\nbl32zjzTFnxVVwer3SGj4I8ard4Nji1bYOJEeOEF6yX/6Edw8cUwahTsv7/frctPq1a2+GvGDOjf\n3+/WRJaCP2rU4y9uq1fbTJxx42yx3Q9/CMOG2dBOWBY+pcf5Ffy+CU7wqzqnO0pLYf58v1shacmk\njdGPG2e3Tz+1YLzgAnjyyfCEfaayMrjqKr9bEWnBCX4VaWtQVrV6QD3+YlBdDYlETdg3bw7nngt3\n3WWrW/fay+8WeuvEE2HFCvscFmrxmOwmWMGvHn+9sqrVAwp+v2zYYCdnX30V3ngDjj3Wwn7SJDj6\n6Gh1apo2tZO8kyfbiV4pOAV/1Cj4C2fbNgu3Z5+1gD/zTBg6FB57DNq08bt1/kqP8yv4faHgj5oD\nD7T66hs3wgEH+N2a8EkmbdXsM8/YbJyuXeGSS+DRR23ltJiyMisIp59rX3h5xAcCi4DFwM2O300f\nEHdo9a43Vq2C++6D446DH//YfqnOmAEzZ9r1ZhX6u+vc2eoHzZnjd0siyaskbQo8hIV/d2AY0M3R\nOyr43aPhHnds3my9+kGDrPbMwoXw4IPw2Wdw221wxBF+t7C4DRig8g0+8SpJewNLgKXANuBFYIij\nd1TwNyirWj1pCn5nli2zGjidOtmQzi9+AV98AU88YZci1Oc0O6rb4xuvPqGdgOUZ369IPZY/BX+D\nsq7VAxrqydeyZTZs06sXtGwJH31kJY8vukjVTvPRrx/MnQvffON3SyLHq5O7yWxeFI/Hd92PxWLE\nYrH6X6zgd0/Hjurx52LpUrjzTit5/OtfwyefaFaOG1q0sMs7TpsGQ5wNCIRZIpEgkUi4+p5eBf8X\nQOeM7ztjvf7dZAZ/oxT87ikthdmz/W5F8fv8cwv8l1+2wF+82Pm1Z2V36XF+BX+9Yn36ENt3XzsR\nPmcOblyu3qvgfx84AugCrAR+ip3gzZ+C3z0a429YZuBfc42VUVDge6OszNY2iKmutstkzp69K+ip\nqrJFfr16Qc+eruzGq+DfDvwWmITN8HkCWOjoHRX87lHw1+2zzyzwx4xR4BdKjx5WhbSqytY8RM23\n38I770BlJUyfboHfrZuVtTjtNCu9/YMf2MXq0377W8e79XIB18TUzR0K/gZlXasHasb4de1Ts2SJ\n1ckZO9Zm6yxeHM7iaMWopKRmuOfaa/1ujfe+/trWdkyfbmE/fz4cf7yd6B4+HE45pSALK4OzclfV\nORuUda0esA9W06Y2m6JlS8/aVPTmzLGLj7/5pvXwFfj+KCuzC8yEMfjXr6/pzVdW2sSA3r0t6O+8\n005u+3C1tOAEv6pzuis93BO14E8mrTLm3XfDggXwhz/AyJEqX+Gns86yk+dbt1ql0iBLJm0h32uv\n2TWP5861ayH36wcjRtj1FTKHbXwSrOBXj9896eDv5mxBdWDs3AmvvGKBv2ED3HyzXc2qCH4II69t\nW1vlPGuWXWUsaKqrrTefDvvt22HwYPuMnX56UV7/WMEfVVE5wbt1Kzz/PPztb3a5wltusamDTZv6\n3TLJlF7FG5TgX7UKJkywoH/zTbvo/eDB1rk45piiH51Q8EdV2IN/0yZ4/HH4+9/tr5qHH7beV5H/\nQEZWWZkNu/31r363pG47dsB779lK7fHjbQbYgAHwk5/Y5yxgC/qCk6QK/gblVKsHwnvR9S1b4I47\n4PDD4e23babO5MlwxhkK/WJ20kl2cv3LL/1uSY2VK+Gpp+BnP4N27eDKK2365f33w5o1dkL65z8P\nXOiDgj80cqrVA+Hr8SeTFvLdu9s1bGfOhJdeghNO8Ltlko3mzSEWg6lT/WvDd9/ZsM3NN1t57WOO\ngYkTrWc/b55Nvbz3XjtRG/DLY2qoJ6rCFPyffGILXZYvtwqZZ5zhd4skH+lx/mHOFvnnpKrKhm8m\nTbITtEcfDQMH2oVzTjwRmgUnInMRnH+Vgt9dYQj+TZtsWGfkSFv8ct11ge+JRVpZmf1/ermwcMsW\nm847caLdNm2y/V50ETz5ZCCHbfKh4I+qIK/eTSZh1Ci46SY7YTt/vv17JNi6drWpj/Pn28Xo3bJ4\ncU3Qv/WW1bsZNAhGj7ZVs0H7/LtAwR9VLVrYD9n69cFarfrRR1arZMMGu/pV375+t0jcVFZmJ+Od\nBP/mzbv36jdvtuGbK66wz0yrVq41N6iCk6QK/gblVKsnLUjDPRs2wA032Pj9hRdaMSuFfvjke1Wu\nlSttZezAgdC+vS3UKy21ayh88YUN45x/vkI/JThJquBvUE61etKCEPw7d8LTT9tc/M2brczCtddq\nAVZYnX66reDdvLnx127bZpVUzz3XKljOmQO/+pWd5J8+3RbrRXQopzEa6omyYg/+r7+269muWgWv\nvmqzLCTcDjzQxuArK20cvi4ff2w9+Oeeg6OOgssvtzn1++1X2LYGWHCSVEXa3FfMwb9woVUxPPRQ\nm5Ov0I+O9Dh/pm++sRWyJ59sRd322gtmzLCe/aWXKvRzFJwev8oyu6+01C42UmzGjIGrrrLFMpde\n6ndrpNDKyuCSS+xn/q23bG3G2LF2fufWW20cP6Tz6wslOEdPQz3u69jRZj8Uix07oLzc/oSfONFK\n2Er09OplpRuOOMJW9F5xhV03oX17v1sWGgr+kIgn4rmf4C2moZ71661M8ubNVgyrXTu/WyR+adIE\nnnnGphn36aMhXg8EJ0kV/A3KuVYPFE/wf/SRjeEfdRRMmaLQFzj7bCvcptD3RHCSVMHvvo4dYfVq\nO7Z+eeklm8IXj8MDD6jkgkgBaKgnyvbe2y45uG6dXQWpkHbssBN1o0bZDI6ePQu7f5EIU/BHXXq4\np5DBv26dFcVKX9wiIoWxRIpFcJJUwe+NQo/zz5tn4/nHHWflcBX6IgWnHn9I5FWrBwob/K+/bvOz\nR4ywqxqJiC+CE/wtW9qYtNQpr1o9ULjgf/ZZ+NOf7GLUJ5/s/f5EpF7BCf7f/MbvFoRTaanVP/dK\nMgn33QcPPQTTplmxNRHxlcZOos7Li67v3Al//KMtxpk5U6EvUiSC0+MXb3g11LN1K1x2GfznP1ZM\n66CD3N+HiOTFqx5/HFgBzE3dBnq0H3HKi+DfuBEGD7byC5MnK/RFioxXwZ8E/g70TN1e92g/khJP\nxPPbsEMHWLvW5tS7Ye1aW4l7+OG2Knfffd15XxFxjZdj/CqyUUB51eoBK5Fw0EFWDdGpqio49VTr\n7T/6qErnihQpL4P/OmAe8ASgC10WMzeGe+bOhdNOs5O58biKa4kUMSddsilAhzoevxX4P+C21Pe3\nA/cDV9R+YTwe33U/FosRi8UcNEfylg7+Xr3y2/6NN2DYMOvln3eeu20TibhEIkHC5etmFKJb1gUY\nB/So9XgymUwWYPfRUFJRQrI8z+N55ZVWRuGqq3LfdtQo+N3vYPRo6Ncvv/2LSNZK7K9pR9nt1VBP\nx4z7QwEPVwiJY/kO9Tz1FNx4I0ydqtAXCRCvzr7dAxyPze75HLjao/1ISt61esCCf/bs3LaZOhX+\n/Gebo3/kkfnvW0QKzqvgv8Sj95V65F2rB3Jfvfvxx1ZW+aWXFPoiAaSSDZLbUM/atTZd8777NLwj\nElAKfsk++LdsgSFD7KLol+iPOpGg8nOytWb1FIvt26FFCyuxUN+iq507bXgH4J//1LURRHzixqwe\nLa0UC/s2bWDNGujUqe7XlJfDsmXw5psKfZGA009wSORdqyetoeGeZ5+F55+3i6io9o5I4Cn4QyLv\nWj1p9QX/9Ok2V3/8eGjXztk+RKQoKPjF1BX8ixfDBRdYb797d3/aJSKuU/CLqR3869bBOefA7bdD\n//7+tUtEXKfgF5MZ/N99Z8XWhgzJr36PiBQ1Bb+YdPAnkxb2rVvD3Xf73SoR8YCmc4aEo1o9UFO2\n4c47YcECqKyEpk3daZyIFBUt4BKzZg0ccoj9Apg1y/4CEJGiU8xlmSVo2raFnj1h3DiFvkjIqccv\nIhIg6vGLiEjOFPwiIhGj4A8Jx7V6RCQyNMYfEo4uti4igaExfhERyZmCX0QkYhT8IiIRo+AXEYkY\nBX9IOK7VIyKRoVk9IiIBolk9IiKSMwW/iEjEKPhFRCJGwS8iEjFOgv8CYAGwA+hV67lbgMXAImCA\ng31IllSrR0Sy5ST45wNDgem1Hu8O/DT1dSDwiMP9SBYqKiv8boKIBISTQF4EfFrH40OAF4BtwFJg\nCdDbwX5ERMRFXvTES4EVGd+vADp5sB8REclDs0aenwJ0qOPx4cC4HPajlVoiIkWiseDvn8d7fgF0\nzvj+kNRje4jH47vux2IxYrFYHrsTEQmvRCJBIpFw9T3dKNkwDbgRmJ36vjvwT2xcvxMwFfg+e/b6\nVbLBRfFEnHgs7nczRMRjbpRscLLxUGAE0Ab4GpgLDEo9Nxy4HNgOXA9MqmN7Bb+ISI78Dn6nFPwi\nIjlSkTYREcmZgl9EJGIU/CIiEaPgDwnV6hGRbOnkbkiUVJSQLNfxFAk7ndwVEZGcKfhFRCJGwS8i\nEjEKfhGRiFHwh0R5v3K/myAiAaFZPSIiAaJZPSIikjMFv4hIxCj4RUQiRsEvIhIxCv6QUK0eEcmW\nZvWEhGr1iESDZvWIiEjOFPwiIhGj4BcRiRgFv4hIxCj4Q0K1ekQkW5rVIyISIJrVIyIiOVPwi4hE\njIJfRCRiFPwiIhGj4A8J1eoRkWw5Cf4LgAXADqBXxuNdgC3A3NTtEQf7kCxVVFb43QQRCQgnwT8f\nGApMr+O5JUDP1O1aB/uQbH3udwPCJZFI+N2EUNHxLC5Ogn8R8KlbDRGHlvrdgHBRULlLx7O4eDXG\nfzg2zJMA+nq0DxERyUOzRp6fAnSo4/HhwLh6tlkJdAbWY2P/Y4EfABvzbKOIiLjIjZIN04A/AnNy\nfH4J0NWF/YuIREkV8H0nb9BYjz9bmb9A2mC9/R3A94AjgM/q2MZRw0VEpPCGAsuxqZurgYmpx38C\nfISN8c8GzvGldSIiIiIi4p2B2HTPxcDN9bxmROr5edh8/1y2jRonx3Mp8CH2F9i/vWtiYDR2LI8G\n3gGqsXNTuWwbRU6O51L02aytseN5MfYz/iEwEzg2h2091RQ7cdsF2Av4AOhW6zVnAxNS9/sAs3LY\nNmqcHE+wpV2tvW1iYGRzLNsCPwTuYPeg0mdzT06OJ+izWVs2x/NkoGXq/kDyzE4v5vH3TjVgKbAN\neBEYUus1/wM8k7r/LtAKmzaazbZRk+/xbJ/xvJ8X3Ckm2RzLL4H3U8/num3UODmeafps1sjmeL4D\nfJ26/y5wSA7b7uJF8HfCTvqmrUg9ls1rSrPYNmqcHE+AJDAV++G70qM2BkU2x9KLbcPK6THRZ3N3\nuR7PK6j5Sz+nbd2azpkp2+sp6jd9dpwez77Yorq22IK8RcAMF9oVRE6u9anrhO7J6TE5FViFPptp\nuRzP04HLsWOY67ae9Pi/wFbupnXGfvs09JpDUq/JZtuoyfd4fpG6vzL19UtgDPYnYVQ5+Xzps7kn\np8dkVeqrPpsm2+N5LPA4NsS7PsdtPdMMW1nWBWhO4ycjT6LmBEU220aNk+PZAjggdX8/bBbAAA/b\nWuxy+XzF2f1kpD6be3JyPPXZ3FM2x/NQbCz/pDy29dwg4BOsgbekHrs6dUt7KPX8PHav51/XtlGX\n7/H8HvYB+ABbVKfj2fix7ICNlX6N9ab+A+zfwLZRl+/x1Gezbo0dz5HAOmqud/LvRrYVERERERER\nEREREREREREREREREREREREREZFC+n+0KptY6+7dFwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*10.0)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-15,15])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al, the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase warps and the lag becomes negative. This is given in page 43 of review." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More realistic impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The response of refelection from an accretion disk to an instantaneous flash follows the _top-hat function_ to first\n", + "order approximation. The response shows an initial steep rise some time after the initial flash (slope depending on\n", + "the light travel time to the disk) and then gradually decays, as parts of the accretion disk farther away from the \n", + "source receieve radiations at later times.\n", + "\n", + "The secondary peak is caused due to the bending of light in strong gravitational field around the black hole. This is the re-emergence of photons reflected from the far side of accretion disk that although would be classically blocked from our view, are lensed by strong gravitational field around black hole into our line of sight. \n", + "\n", + "Below, we obtain an impulse response similar to one in Utley et al.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 602, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXHWd7/F3rb3vWzagOxtJSEJCNARlKTYNOsAdhUHc\nkVFU9M59uI6Ic5UeZ0bFZ7zjVRQQB2QcBK7ICFwRFKQQCSQhQpLOnnQHsna6O72numu9f5zqpOh0\nUtXdp+ucqvN5PU89qeV05WNLf/qX71kKRERERERERERERERERERERERERERywgNAO7A5zXbvBqLA\nh6Y8kYiIjMmdwTYPAqvTbOMB7gKeBVyTDSUiIhOTSam/DHSn2ebLwONAx6QTiYjIhGVS6unMBK4F\n7kk+TpjwniIiMgFmlPoPgK9hlLkLjV9ERCzjNeE9VgCPJu/XAlcBEeCp1I3mzJmT2LNnjwl/nYiI\no+wB5ma6sRkr9dlAU/L2OPAFRhU6wJ49e0gkEra/3XnnnZZncErONWtm0dbWbOuMdroppzNzAnPG\nU8iZrNQfAS7BWIXvA+4EfMnX7hvPXyYyIhYbYnj4AJFIun3wIjIemZT6jeN4v5smGkScZXj4LSBB\nNKpSFzGTGeOXvBIIBKyOkJFczxkKtQIuotGerOYZS65/L+1GOa2VzSNVEsn5kAgHDvyYAwfuxuer\nY/nyP1kdR8S2XC4XjKOrtVIXS4RCrZSWrtD4RcRkKnWxxNBQG2Vl52lHqYjJVOpiiVColbIyrdRF\nzKZSl6xLJBIMDbVSUrKURCJMPB62OpJI3lCpS9ZFIl24XF58viq83kpbHAEjki9U6pJ1Q0OtFBY2\nAeD1VmkEI2IilbpkXSjUSlHRbAC83krtLBUxkUpdsm5oqI3CwpFS10pdxEwqdcm6oaHUlXqVZuoi\nJlKpS9aFQq3HV+o+n1bqImZSqUvWnbxSV6mLmEWlLlkVj0cYHj5IQcGZgHaUiphNpS5ZNTz8NgUF\nM3C7jUvya6UuYi6VumRVKNR2/Bh10I5SEbOp1CWrjBOPZh9/rB2lIuZSqUtWpZ54BBq/iJhNpS5Z\nNXqlrh2lIuZSqUtWaaUuMrVU6pJVJ6/UK4jFBkgkYhamEskfKnXJmkikh0Qiis9Xc/w5l8uN11tO\nNNprYTKR/KFSl6wxLuTVNPJBuscZ11TXCEbEDJmU+gNAO7D5FK9/DNgIbAJeAZaaE03yTerlAVJ5\nvVXaWSpikkxK/UFg9WlebwUuxijzfwJ+akIuyUOpF/JKpZ2lIubJpNRfBk73E/cqMDIQXQvMmmwo\nyU+nW6nrrFIRc5g9U78ZeMbk95Q8caqVus4qFTGP18T3uhT4DPDeU23Q3Nx8/H4gECAQCJj414ud\nJRIJBgc3U1y84KTXtKNU5IRgMEgwGJzw17vSbwJAI/A0sOQUry8FnsCYve8+xTaJRCIxrnCSPwYH\nt7F58wc4//zWk45+eeutbxON9jFnznctSidiX8mfl0y72pTxy5kYhf5xTl3o4nDd3c9TWXn5SYUO\n2lEqYqZMxi+PAJcAtcA+4E7Al3ztPuCbQBVwT/K5CLDS3JiS67q7X6C+/oYxX9OOUhHzZFLqN6Z5\n/W+TN5ExxeNRentf4uyz7xvzde0oFTGPziiVKTcw8BcKCmbh9zeM+bp2lIqYR6UuU667+3mqqq44\n5es6o1TEPCp1mXLd3S9QWXn5KV/XjlIR86jUZUrFYiH6+9dRWXnxKbcxxi+96JBXkclTqcuU6utb\nQ0nJErze8lNu43b78HiKiMX6s5hMJD+p1GVKGfP0U49eRmhnqYg5VOoypbq7XzjtTtIR2lkqYg6V\nukyZSKSHY8e2U16+Ku222lkqYg6VukyZnp4g5eUX4HYXpN1WZ5WKmEOlLlMm03k66KxSEbOo1GXK\n9PS8kHGpa0epiDlU6jIlentfIRYLUVq6LKPttaNUxBwqdTFdIpGgtfUfaGz8Ji6XJ6Ov0Y5SEXOo\n1MV03d3PEw4foqHhkxl/jXaUiphDpS6mSiQStLV9naamb+F2Z/5piZqpi5hDpS6m6ux8kng8Ql3d\n9eP6Oh39ImIOMz94WhwukYixd+83aGr6Di7X+NYL2lEqYg6t1MU0R448isdTRk3NB8f9tZqpi5hD\nK3UxRTweoa3tTs4++/4xP1w6nZGjXxKJxIS+XkQMWqnLpMXjYbZu/QilpedSVXXphN7D4ykEXMTj\nIXPDiTiMSl0mJRYboqXlQyQSMRYt+uWk3ks7S0UmT6UuExaLHaOl5Ro8nlLOOedXGV2463S0s1Rk\n8lTqMiGRSA+bNl2F3z+dRYsexu32Tfo9tbNUZPIyKfUHgHZg82m2+SGwC9gILDchl9hUJNJNW1sz\n69bNo6zsPBYseDDjSwGko0sFiExeJqX+ILD6NK9/AJgLzAM+B9xjQi6xmaGh/bS23sHatXMZHt7H\n8uWvMnfuv437ePTT0VmlIpOXySGNLwONp3n9GuCh5P21QCXQgLG6lxwUjw8zNLSXvr7X6Ol5iZ6e\nPxGN9lBffz0rVmygqKhxSv5e7SgVmTwzjlOfCexLebwfmIVK3dZCoTZCoV0MDe096RaJdFFQMIuy\nshVUVl7CrFm3UVKyyNRV+Vi0o1Rk8sw6+Wj02SKJsTZqbm4+fj8QCBAIBEz662U8hocPs27d2VRU\nXExhYSOFhY1UV19FYWEThYWNFBRMN21OPh5+/3T6+9dn/e8VsZNgMEgwGJzw12d66l4j8DSwZIzX\n7gWCwKPJx9uBSzh5pZ5IJMbsesmyY8d2sWnTVaxatdvqKO8wOLiNTZtWs2rVXp1VKpKU/FnI+AfC\njH9PPwWMXDh7FdCDRi+2lkiEcbv9Vsc4SXHxAhKJGKHQLqujiOSsTMYvj2CsvGsxZud3AiMHJd8H\nPINxBMxuYBC4yfyYYqZ4fHjSJwpNBZfLRXX1++ju/gPFxfOtjiOSkzIp9Rsz2OZLkw0i2ROPD+Ny\n2a/UAaqqruTIkceYOfNWq6OI5CSdUepAxvjFrqV+OT09QeLxiNVRRHKSSt2BjPGL/WbqAH5/PUVF\nTfT3r7M6ikhOUqk7kJ3HL2CMYI4e/YPVMURykkrdgey6o3REVdWVdHf/3uoYIjlJpe5Adp6pA1RU\nXMjg4Gai0V6ro4jkHJW6AxnjF3vO1AE8niLKyy+gu/tFq6OI5ByVugPZffwCIyMYzdVFxkul7kB2\nH7+A5uoiE6VSdyC7j18ASkuXEo32EgrttTqKSE5RqTtQLoxfXC43VVVXaAQjMk4qdQdKJOxf6qAR\njMhEqNQdKB63/0wdoLp6Nd3dz+uSASLjoFJ3oFyYqQMUFEynqGguvb0vWx1FJGeo1B0oV8YvADU1\nV9PV9bTVMURyhkrdgXJl/AJGqXd2Po0+NUskMyp1B7L7Bb1SlZYuIx4f4tixHVZHEckJKnUHMsYv\n9p+pg/FpSDU1f0VX1/+zOopITlCpO1AuHKeeqrZWc3WRTKnUHSgeD+fM+AWgsvIyBgbeIBI5anUU\nEdtTqTtQLo1fwLhqY2VlgKNHn7U6iojtqdQdKNfGL6BDG0UypVJ3oFw6+mVETc0HOXr0OZ1dKpKG\nSt2BcuHSu6MVFMygsHA2vb2vWB1FxNYyKfXVwHZgF3D7GK/XAs8CbwItwKfNCidTwxi/5M5MfYSO\nghFJL12pe4C7MYp9EXAjsHDUNl8C3gCWAQHg+4DX1JRiqlwcv8CJubrOLhU5tXSlvhLYDewFIsCj\nwLWjtjkElCfvlwNdQNS8iGK2XBy/AJSWLiceH2ZwsMXqKCK2la7UZwL7Uh7vTz6X6n7gHOAgsBH4\nO9PSyZTI1fGLy+Wiru46Ojp+ZXUUEdtKNybJ5N+5X8eYpweAOcAfgHOB/tEbNjc3H78fCAQIBAKZ\npRRT5er4BaCu7np27LiJxsZ/xOVyWR1HxHTBYJBgMDjhr0/3U7EKaMaYqQPcAcSBu1K2eQb4F2Dk\nsIQXMHaovj7qvRKahdpDMOjl4otDuN0+q6OMWyKR4LXXzmLJkmcoLV1sdRyRKZdcvGS8gkk3fnkd\nmAc0An7gBuCpUdtsB65I3m8AzgZaMw0g2ZVIxIA4Lldu7svWCEbk9NKVehTj6JbngK3AY8A24Jbk\nDeDbwLsw5unPA18FdJEOmzKu++LP6dFFXd31dHQ8bnUMEVvKZLn2u+Qt1X0p9zuBq01LJFMqFy8R\nMFp5+fnEYn0MDm6lpGSR1XFEbEVnlDpMrh7OmMrlclNb+2GNYETGoFJ3mHxYqQPU11/PkSMqdZHR\nVOoOYxzOmHvHqI9WXn4B0WgPg4PbrI4iYisqdYcxrqWe+yt1l8tNXZ1GMCKjqdQdJh7P/Zn6COMo\nGJW6SCqVusPky/gFoKLiPUQiRxkc3Gp1FBHbUKk7TL6MX8AYwTQ0fIz29l9YHUXENlTqDpNP4xeA\nhoZPcvjwL5JnyoqISt1hcvliXmMpLV2M319Pd/eLVkcRsQWVusMY45f8mKmPaGj4JO3t/2F1DBFb\nUKk7TL6cfJSqoeFGOjufIhodsDqKiOVU6g5jXNArv0rd72+gouJCOjufsDqKiOVU6g6Tj+MXgGnT\nPsnhwxrBiKjUHSYfxy8ANTXXMDDwBkND+9JvLJLHVOoOk4/jFwCPp5C6uutob3/Y6igillKpO0w+\nnXw02rRpxlEw+thEcTKVusMY45f8m6kDlJe/h3h8mP7+0R+PK+IcKnWHybeTj1K5XC6mT/8Mhw7d\nb3UUEcuo1B0mHz756HSmTbuZjo5fEY32Wh1FxBIqdYfJ16NfRhQUTKOq6kra2//T6igillCpO0w+\nXXr3VGbM+DwHD96rHabiSCp1h8n3lTpAZeWlxONh+vrWWB1FJOtU6g6T7zN1MHaYzphxCwcP3mt1\nFJGsy6TUVwPbgV3A7afYJgC8AbQAQTOCydRwwvgFYNq0T9HZ+TThcKfVUUSyKl2pe4C7MYp9EXAj\nsHDUNpXAj4GrgcXAdSZnFBM5YfwC4PPVUFt7LYcP/9zqKCJZla7UVwK7gb1ABHgUuHbUNh8Ffg3s\nTz7W0sjGnDB+GTFjxuc5dOg+Eom41VFEsiZdqc8EUq+QtD/5XKp5QDXwIvA68AnT0onpnLJSBygv\nX4XbXUx39wtWRxHJGm+a1zM5JswHnAdcDhQDrwKvYczg36G5ufn4/UAgQCAQyDCmmMUpM3UwdpjO\nnHkrBw78kOrqK62OI5KRYDBIMBic8Ne70ry+CmjGmKkD3AHEgbtStrkdKEpuB/Az4Fng8VHvldBx\nw9Zbv34JCxc+TGnpUqujZEUsFuK11xpZtuwlSkoWWB1HZNxcLhek7+rj0o1fXscYrzQCfuAG4KlR\n2zwJXIixU7UYOB/YmmkAya543DkzdQCPp4gZM77A/v3/ZnUUkaxIV+pR4EvAcxhF/RiwDbgleQPj\ncMdngU3AWuB+VOq25aTxy4iZM79IR8f/JRw+YnUUkSmX8ZLeBBq/2MCaNdNZsWIDBQUzrI6SVTt2\nfA6/fwZNTc1WRxEZF7PHL5JnnDZ+GTFr1m0cPHgPsVjI6igiU0ql7jD5fD310ykpWUB5+Ura2/Xh\n1JLfVOoOY3ycnbNm6iPOOOMr7Nv3v3UykuQ1lbqDJBJxEokYLpfP6iiWqKi4GI+njK6u31odRWTK\nqNQdJB4P43L5R3a8OI7L5eKMM77C229/V9dal7ylUncQY/TivHl6qvr664lEunTpAMlbKnUHMa77\n4sx5+giXy0Nj4zfYu7dZq3XJSyp1BzHGL85eqQPU13+ESKSDnp4/Wh1FxHQqdQfR+MVgrNa/qdW6\n5CWVuoNo/HJCff1HCIePaLUueUel7iBOPfFoLC6Xh7PO0mxd8o9K3UGc9KlHmTixWn/R6igiplGp\nO4iTPvUoE263l7PO+gZtbd/Ual3yhkrdQZx42d10GhpuJBbrpatr9McEiOQmlbqDaKV+MpfLw+zZ\n32PPntuJxyNWxxGZNJW6g2imPrbq6tUUFMzi0KH7rY4iMmkqdQfRSn1sLpeLOXP+lb17v0U02md1\nHJFJUak7iGbqp1ZWtozq6vfz9tt3pd9YxMZU6g6i8cvpNTX9MwcP3svQ0H6ro4hMmErdQTR+Ob3C\nwjOYMeMW2tr+l9VRRCZMpe4gGr+kd+aZX6O7+zn6+tZZHUVkQlTqDqILeqXn9ZYze/Zd7Nz5BRKJ\nmNVxRMZNpe4g8bhm6ploaPgEHk8ZBw7cY3UUkXHLpNRXA9uBXcDtp9nu3UAU+JAJuWQK6IJemXG5\nXMyf/xPeeusfGR4+ZHUckXFJV+oe4G6MYl8E3AgsPMV2dwHPAs78AMwcYIxfNFPPREnJIqZP/1v2\n7PmK1VFExiVdqa8EdgN7gQjwKHDtGNt9GXgc6DAznJhL45fxOeusb9Db+4o+z1RySrpSnwnsS3m8\nP/nc6G2uBUYGkLrcnU1p/DI+Hk8x8+b9kJ07v0g8Pmx1HJGMeNO8nklB/wD4WnJbF6cZvzQ3Nx+/\nHwgECAQCGby9mEXjl/Grrb2Gw4d/zt6932L27H+xOo44QDAYJBgMTvjr082/VwHNGDN1gDuAOMb8\nfERryvvUAseAzwKjr2Wa0DWrrbVly99QV/dh6utvsDpKTgmH21m//lyWLHmS8vLzrY4jDuNyuWAc\n+yrTjV9eB+YBjYAfuIGTy3o20JS8PQ58YYxtxAbi8bDGLxPg9zcwb94P2bbtU8RiIavjiJxWulKP\nAl8CngO2Ao8B24BbkjfJITr5aOLq6/+G0tJluoSA2F42Dz/U+MVib755GWed9Q9UVV1udZScFIl0\nsX79EhYtepTKyoutjiMOYfb4RfKIxi+T4/PVMH/+vWzffhPR6IDVcUTGpFJ3EI1fJq+29hoqKy9m\n9+4vWx1FZEwqdQfRpXfNMXfuj+jtfZXDhx+yOorISVTqDqJL75rD6y3lnHN+xZ49X2FwcKvVcUTe\nQaXuIPrkI/OUli5h9uy72LLlemKxQavjiBynUncQjV/MNW3aTZSVrWDXLs3XxT5U6g6i8Yu5XC4X\n8+b9hL6+Vzl06OdWxxEBVOqOopW6+Yz5+q9pbf0qvb2vWR1HRKXuJJqpT42SkkUsWPAgW7Z8mKGh\nt62OIw6nUneIRCJOIhHB5fJZHSUv1dR8kDPOuI2Wlmu141QspVJ3CONsUv/IKccyBWbNuo3S0uVs\n2/YJEom41XHEoVTqDqHRy9QzPtv0HiKRDl34SyyjUncI7STNDre7gHPOeYKOjsfZv/9HVscRB1Kp\nO4QOZ8wev7+OpUt/z75936O9/WGr44jDqNQdQhfzyq6iokaWLn2W3btvo6vrd1bHEQdRqTtEPK6Z\neraVlJzD4sW/Yfv2T9Hbu8bqOOIQKnWHMMYvKvVsq6i4gIULf0FLy1/T17fe6jjiACp1hzDGL5qp\nW6G6+v2cffbP2Lz5gzrrVKacSt0hNH6xVm3t1SxY8BAtLdfQ2/uK1XEkj6nUHULjF+vV1FzFwoX/\nSUvLX9PT85LVcSRPqdQdQke/2EN19ftYtOhRtmy5nq6uZ6yOI3lIpe4QxslHmqnbQVXVZSxe/BTb\nt3+GQ4f+3eo4kmdU6g5hXPtFK3W7qKhYxfLlf+Ktt75NW1sziUTC6kiSJzIt9dXAdmAXcPsYr38M\n2AhsAl4BlpqSTkyj8Yv9FBfP57zz1nD06G/ZseNm4vGI1ZEkD2RS6h7gboxiXwTcCCwctU0rcDFG\nmf8T8FMTM4oJNH6xJ7+/gXPPfZFw+AibNr2PcLjD6kiS4zIp9ZXAbmAvEAEeBa4dtc2rQG/y/lpg\nlkn5xCQav9iX11vKkiVPUl5+ARs2vIv+/g1WR5IclkmpzwT2pTzen3zuVG4GtFvfZjR+sTeXy8Ps\n2d9mzpzvs2nTag4f/g+rI0mO8mawzXj24FwKfAZ471gvNjc3H78fCAQIBALjeGuZDF16NzfU119H\nSclCWlr+G319rzFnzvfxeIqsjiVZFAwGCQaDE/76TD4GZxXQjDFTB7gDiAN3jdpuKfBEcrvdY7xP\nQnv4rdPWdifgoqmp2eookoFIpIedOz/PsWNbWLjwEUpLF1sdSSyS/LSyjD+yLJPxy+vAPKAR8AM3\nAE+N2uZMjEL/OGMXulhMn3yUW3y+ShYteoRZs/4nGzdeyoEDP9Fhj5KRTEo9CnwJeA7YCjwGbANu\nSd4AvglUAfcAbwDrTE8qk6LxS+5xuVxMn/5pli9/hUOHHqCl5RqGhw9YHUtsLpufQqzxi4V27ryV\nkpJFzJx5q9VRZALi8TBvvfVtDh78MU1N32H69Jv1IeIOMRXjF8kDiURYH2eXw9xuP01NzZx77gsc\nPHgvGzdeSSjUanUssSGVukNo/JIfSkuXct55r1Fd/X42bHg3e/d+i1gsZHUssRGVukOo1POH2+3l\nzDP/nhUrNjAwsJH168+ho+M32pEqgErdMYzrqWv8kk+KihpZvPjXzJ//U9ravs6mTe9nYGCj1bHE\nYip1h9AhjfmruvoK3vWujdTUXM3Gje9n69aPEQrtsTqWWESl7hAav+Q3t9vHrFlf5vzzd1FcvIAN\nG85n585bdQikA6nUHUIfZ+cMXm8ZjY3fYOXK7bjdRaxfv4QdO27RkTIOolJ3COOCXpqpO4XfX8vc\nuf/KypU78Pnq2LBhJdu2fYKBgc1WR5MpplJ3iHhcM3Un8vvrmD37n1m1ag/FxYvYtGk1b755GZ2d\nT5JIxKyOJ1NAZ5Q6xNq1C1i8+DeUlCywOopYKB4P09HxOPv3/x8ikU5mzPgC06Z9Cr+/zupocgo6\no1TGpPGLgHFmakPDR1mxYi0LFz7M4GALa9fOY8uW6zl69Dmt3vNAJtdTlzyg8YuMVlGxioqKVUSj\nvbS3P0Jr6z8QiXyW+vobaWj4GCUlS3R9mRyk8YtD/PnPtaxcuR2/v9bqKGJjAwObOXLkl7S3/xKP\np4yGho9SV3cdxcXzrY7mWOMdv6jUHeLll8u44IKDeL1lVkeRHJBIxOntXcORI4/Q2flfeL1V1NV9\niNraD1Faukwr+CxSqcuYXnrJz0UX9WsEI+OWSMTp61tHZ+cTdHQ8QTw+RE3NVVRXX0VV1RV4veVW\nR8xrKnU5SSKR4KWX3FxySVwrLJmURCJBKLSLo0d/R1fXM/T1raG0dDmVlZdRVXU55eXna4e8yVTq\ncpJ4fJiXXy7nkkuGrY4ieSYWG6S39890d/+R7u4XCIV2Ul6+ioqKC6mouIjy8pV4PCVWx8xpKnU5\nSTTax6uvzuKii/qsjiJ5LhI5Sm/vK/T2/pne3j8zMLCRkpKFlJWdT3n5SsrKVlJcPB+XS0dTZ0ql\nLicJhztZt24BF17YaXUUcZhYLER//wb6+9fT17eW/v51RCJdlJYuo7R0OWVlyyktXU5x8QKNbU5B\npS4nGR4+wIYNK3nPe3TFPrFeONzJwMAbDAy8mfzzDYaG9lJYOIeSksXJ2yKKixdQVDTX8WU/3lLX\nyUcOoMvuip34/bVUV19JdfWVx5+LxYY4dmw7g4MtDA5u5vDhhzh2bDtDQ29RWHgmRUXzKSqam3Kb\nQ2HhmfrvegwqdQfQpx6J3Xk8hZSVLaOsbNk7no/Hw4RCewiFdhEK7ebYsa10dT1FKLSH4eH9+Hx1\nFBU1UVjYSEHBGRQUnElh4RnJ+zPxeqsdd8RXJqW+GvgB4AF+Btw1xjY/BK4CjgGfBt4wKZ+YQJ96\nJLnK7fZTUrKQkpKFJ70Wj0cJhw8wNLQ3edvHwMBf6Op6kqGhtwmHDxKLhSgomIHfP4OCgun4/dOS\nt+n4fPX4/fX4fHX4/fV5c5ROulL3AHcDVwAHgPXAU8C2lG0+AMwF5gHnA/cAq0xPmiXBYJBAIGB1\njLTGk9PK8UsufD9zISMo52hut5fCwrMoLDwLuGTMbWKxYwwPHyQcPkA4fPj4rafnT6xZs41ly+KE\nw0eIRDoA8Plq8Plq8flq8Xpr8Pmq8Hqr8fmq8Xqr8HorU24VeDwVeL0VuN2+Kf/fm6l0pb4S2A3s\nTT5+FLiWd5b6NcBDyftrgUqgAWg3LWUW5eMPjkr99HIhIyjnRHg8xRQXz6W4eO5Jrz32WDM339wM\nGCdVxePHiES6iEQ6j/8ZjXYTiRxlePggg4MtRKM9o259RKO9uN0+PJ5yvN5yPJ6y4zevtwyPpxS3\nuwSPpxSPpwSPpwS3uzh5vxi3uxi3uyh5vyh5vwi3uxC3u2jc/5vTlfpMYF/K4/0Yq/F028wiR0s9\nHyUSYc3URU7D5XIdL9zCwjPH9bXGL4QQ0WgvsVg/sVg/0Wh/8v4Asdhg8s8BotFewuFDyecGiccH\nicVCxOMh4vFjxGLHiMeHkjfj+fFKV+qZHoM4ek/EmF+3efPVGb6dddrbd7B58warY6Q1npzh8BF8\nPl2dUWQqGL8QivF4ioHpU/E3mLr1KqAZY2cpwB1AnHfuLL0XCGKMZgC2Ywy4Rq/UdwNzxpVORET2\nYOy3NIU3+YaNgB94Exi9G/oDwDPJ+6uA18z6y0VExHxXATswVtp3JJ+7JXkbcXfy9Y3AeVlNJyIi\nIiIiE7MaY86+C7jd4iypHsCY+29Oea4a+AOwE/g9xuGZVjsDeBHYArQA/z35vN2yFmIc0vomsBX4\nTvJ5u+Uc4cE4Se7p5GM75twLbMLIuS75nN1yVgKPYxzmvBXj6Di7ZTwb43s4cuvF+DmyW04wpiFb\nMHrpl0ABNsvpwRjLNAI+xp7JW+UiYDnvLPXvAV9N3r8d+G62Q41hGjBy7nQpxihsIfbMWpz804ux\nb+VC7JkT4DbgYYyT6cCeOdswfqBT2S3nQ8Bnkve9QAX2y5jKDRzCWCzZLWcj0IpR5ACPAZ/CZjkv\nAJ5Nefy15M0uGnlnqW/HOHEKjDLdnu1AGfgNxhm+ds5ajHH28TnYM+cs4HngUk6s1O2Ysw2oGfWc\nnXJWYJTQaHbKONr7gJeT9+2Wsxpj0VaF8QvyaeBKbJbzOuD+lMcfB35kUZaxNPLOUu9Oue8a9dgO\nGoG3gDLsmdWN8a+xfozVBdgz568w/pV2CSdK3Y45WzHGBa8Dn00+Z6ecyzBGbg8Cf8H4WS/BXhlH\newD4YvKEBcTAAAAB+ElEQVS+HXN+DuPn5wjwi+Rz48o51R8/kssXUE9gr/ylwK+Bv8P4Pz2VXbLG\nMX7QZwEXY6yEU9kh519h/MC8wanP07BDToD3YvzyuQq4FWNkmMrqnF6Mo91+kvxzkJP/JW51xlR+\n4GqMX+qj2SHnHOB/YCzeZmD8zH981DZpc051qR/AmF2NOAPjMgJ21Y7xzxswTg07YmGWVD6MQv8F\nxvgF7JsVjB1RvwVWYL+c78G4XlEb8AhwGcb31W45wZj9AnQA/4VxLSY75dyfvK1PPn4co9wPY5+M\nqa4CNmB8P8Fe30uAdwFrgC4gCjyBMcIe1/dzqkv9dYyrNzZi/Ja8gRM7puzoKYwdEyT//M1pts0W\nF/DvGEcW/CDlebtlreXEXvkijFngG9gv59cxFhdNwEeAPwKfwH45izHGbGCMNN6HMSq0U87DGNd9\nmp98fAXGkRtPY5+MqW7E+EU+wk7fSzBm5aswfn5cGN/Prdjw+znWyUt28AhwEAhj/Id5E8aOiuex\nyaFDSRdijDXe5MQhWauxX9YlGHPVNzEOw/v75PN2y5nqEk4sMuyWswnje/kmxqGsIz87dst5LsZK\nfSPGyrIC+2UE4xdjJyd+UYI9c36VE4c0PoTxr3Q75hQRERERERERERERERERERERERERERERERGR\nXPP/AVSAH7dssJeAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Primary peak time, secondary peak time, end time\n", + "t1, t2, t3 = 3, 4, 10\n", + "# Peaks' values\n", + "p1, p2 = 1, 1.4\n", + "# Rise and decay slopes\n", + "rise, decay = 0.6, 0.1\n", + "\n", + "# Append zeros before start time\n", + "h_primary = np.append(np.zeros(int(t1/lc.dt)), p1)\n", + "\n", + "# Create a rising exponential of user-provided slope that ends at secondary peak time and secondary peak\n", + "# value\n", + "x = np.linspace(t1/lc.dt, t2/lc.dt, (t2-t1)/lc.dt)\n", + "h_rise = np.exp(rise*x)\n", + "# Find a factor for scaling\n", + "factor = np.max(h_rise)/(p2-p1)\n", + "h_secondary = (h_rise/factor) + p1\n", + "\n", + "# Create a decaying exponential until the end time\n", + "x = np.linspace(t2/lc.dt, t3/lc.dt, (t3-t2)/lc.dt)\n", + "h_decay = (np.exp((-decay)*(x-4/lc.dt))) \n", + "\n", + "# Add the three responses\n", + "h = np.append(h_primary, h_secondary)\n", + "h = np.append(h, h_decay)\n", + "\n", + "# Plot\n", + "plt.plot(h,'y')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obtain output through convolution." + ] + }, + { + "cell_type": "code", + "execution_count": 603, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delay = (int(t3/lc.dt))\n", + "output = signal.fftconvolve(s, h)\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Form light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 604, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find cross spectrum and compute lags." + ] + }, + { + "cell_type": "code", + "execution_count": 605, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc1, lc2)\n", + "cross = cross.rebin(0.0075)\n", + "lag = np.angle(cross.cs)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot results." + ] + }, + { + "cell_type": "code", + "execution_count": 606, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFG9JREFUeJzt3WuQFOW9x/HvcodFRERAFIPA4gVD8BKEYMJ6gpFYSYxa\nqVRC5Zgck8qlkqqkzgtNzovtzUmqkipNpRLr5EX0nMqpJGoqaoJJvEB0MRFEUUAMcICNKAhBCrkE\ndGFh57x4ZtgLu7Az07M9Pf39VHXNTM/09OPj8Jvep//9DEiSJEmSJEmSJEmSJEmSJCnl/hvYA2zo\nsm4csAzYAjwFjE2gXZKkXgyK4T3+B1jcY91dhOCfCfw5/1iSVEOm0v2IfzMwMX9/Uv6xJKkKxHHE\n35uJhOEf8rcTT/NaSdIAqlTwd5XLL5KkKjCkQu+7hzDE8w/gfOCtni+YPn16rrW1tUK7l6Sa1QrM\nKOcNKnXEvxS4PX//duB3PV/Q2tpKLpdziWlpampKvA21tKSlP5ueSUk7U9KfaViA6eUGdBzB/wCw\nErgE2AF8AfgBcAOhnPNf8o8lxax5RXPSTVAKxTHU85k+1i+K4b0lSTEbiJO7GgCNjY1JN6Gm2J/x\nsj+rS12C+87lx6sklaiuuY5ck/+OsqSurg7KzG6P+CUpYwx+KcWaFjYl3QSlkEM9kpQiDvVIkopm\n8EtSxhj8kpQxBr8kZYzBL6VY1BIl3QSlkFU9Uop5AVf2WNUjSSqawS9JGWPwS1LGGPySlDEGv5Ri\nztWjUljVI0kpYlWPJKloBr8kZYzBL0kZY/BLUsYY/FKKOVePSmFVj5RiztWTPVb1SJKKZvBLUsYY\n/JKUMQa/JGWMwS+lmHP1qBRW9UhSiljVI0kqmsEvSRlj8EtSxhj8kpQxBr+UYs7Vo1JY1SOlmHP1\nZI9VPZKkohn8kpQxBr8kZYzBL0kZY/BLKeZcPSqFVT2SlCJW9UiSimbwS1LGGPySlDEGvyRljMEv\npZhz9agUVvVIKeZcPdkTR1XPkHia0qftwCHgBNAOzK3w/iRJZ1Dp4M8BjcDbFd6PJKmfBmKMP8nh\nJElSD5UO/hywHFgDfKnC+5Ik9UOlh3oWALuB84BlwGbgL4Unoyg6+cLGxkYaGxsr3ByptjhXT+1r\naWmhpaUl1vccyGGYJuAwcE/+sVU9klSkap+rZxRwVv5+PfARYEMF9ydJ6odKDvVMBB7tsp9fAU9V\ncH+SpH7wAi5JSpFqH+qRJFUhg19KMefqUSkc6pFSzLl6ssehHklS0Sp9AZfSKJeDd96Bw4dPXY4c\n6f64vR2GDIGhQ8NtX0vh+cGDwz46Ovq/nDjRuRw/3vv9ro87OqC+HsaOhXPO6bzten/kSKiL8Q/e\njo7QHwcPwqFDYSncL9y2tcH48TBxIkyYEG4nTgxtjbMt0hkkOtRDFO40LWwiaoy6PVkYu+xtffOK\nZrcrrD9+HPbsIVrRTPPWn4ftch8i2nVJCJv2djh2jGjiJug4QbT1wrCusP6S3TS/d1/Y7sVRRCsG\nhdAfMQJGjyZacAyGDSPaMSME1OjRYf3ETTSPXhO2a/8A0TvXhrbkl6j+RejoINo7K+yrsH7SJpov\nbA3b7ZpJtOcyGDTo5BJN2Ah1dUT739d9/TnraB6zNmz37lyi9uvCl0h+iYb8NWw39IawzZEjcOAA\nUd0Kms8Nl480vTqe6LmhsH9/+II45xyiDx6HESOJ/nFp6M+ODsjliN7zGs0Xvx62a51C1Drl5HPk\nckQzdkJ7O9Gq4aGfDx+GUaOIrq+j+ep/hu12TCM6dDWMGROWESOIjj4JRw4TrR8He/aEJZcjunEY\nzXMOhu0OXUk04qPhS+GWW2DKlD4/L3XNnf+Eq/Lz6XaxbxfHUI9j/AOpowO2bIHVq0P4FI7y6ur6\nXgrP5wOeXbtg9+7O2337wlHk+efD5MnhtrCMHRuOtIcN6/22t3WjR8OoUSE8a1lbGxw4EJb9+0Nw\nd+33QYNO/7iuLnwRFkL9rLM6/5op1pEjnV8Cb73Vef+pp2DhQvje9/rc1DH+7EnDfPzZdvAgvPAC\nrFoVltWr4eyz4dprYdKkk0ePfS7QeX/w4LDN3LndQ37ChDCEouKMGBH6c9KkpFsSvkCmTQtLV9Om\nwdKlp93UuXpUCo/4e9q6NRz9FYY16uvDcqZw7eiAzZs7Q/7552H7drjqKpg/Pyzz5lVH0CgdXngB\nvvIVePnlpFuiKuJQT1x27oQHHoBf/Qr27oXzzus8iXnkSFiGDu3+ZdD1tq0NXnwRzj23M+Dnz4fZ\ns8N2Uin274eLLgrnEDz5qzyDvxwHDsDDD8MvfwmvvAK33gpLlsCHPnTq+HYuF8K9a1VL4Qvh8OEw\nDHPNNeFknBSn8ePh1Vf9S1EnOcZfrKNH4U9/CmG/fDksWgTf+AbcdFMY8+1LXV0o/xs5Mvw1IA2U\nhoYw/GjwK0a1H/wdHfDss2EY55FHwvDLkiVw332hnluqZoXg/+AHk26JakhtBv/+/dDSEo7qH3ss\nBPySJbBuHUyZknTrpP4rBH8fopbolNpv6UxqY4z/6FFYuTIE/fLlsHEjLFgQhnIWL4YrrohnP9JA\ne/BB+O1vw9IL6/izJ7tj/B0dsH59Z9CvXAmzZoWg/+EPQ0XN8OFJt1Iq3xmO+KVSpCv4H3kEHnoI\nnn46lE4uWgRf/WpYN3Zs0q2T4tfQANu2hcoySzoVk3QF/7e+FZa773asXtkwZky4VmTXLrjggqRb\noxqRrglZTpyA224z9JUtDvcoZukL/lInwpLS6jTB71w9KoXBL1W7mTP7DH5LOVUKg1+qdg71KGYG\nv1TtDH7FzOCXqt2MGdDaGq5fkWJg8EvVrr4exo2DHTuSbolqhMEvpUEfwz2F32SVimHwS2nQR/AX\nfqhbKobBL6WBJ3gVo/QEf+HEVs9fx5KywOBXjNKToh7tK8sMfsXI4JfSYPp02L4djh9PuiWqAQa/\nlAYjR8KECfDGG91WO1ePSmHwS2nRy3CPc/WoFAa/lBaO8ysmBr+UFga/YmLwS2lh8CsmBr+UFga/\nYmLwS2kxbVqo6mlvP7nKuXpUCoNfSovhw2Hy5FDPn+dcPSqFwS+licM9ioHBL6WJwa8YGPxSmhj8\nioHBL6WJwa8YGPxSmvQIfufqUSkMfilNLr4Y3nwTjh0DnKtHpTH4pTQZOhSmTIG//z3plijFDH4p\nbRznV5kqGfyLgc3AVuDOst/N4JcCg19lqlTwDwbuJYT/5cBngMvKekeDXwoMfpWpUsE/F9gGbAfa\ngQeBm8t6R4NfCroEv3P1qBSVCv4LgB1dHu/MryudwS8FXYLfuXpUiiEVet9cf14URdHJ+42NjTQ2\nNvb9YoNfCt7zHtizB9rakm6JBkBLSwstLS2xvmelgv9NYEqXx1MIR/3ddA3+MzL4pWDIkBD+ra1J\nt0QDoOdBcXNz+X/lVWqoZw3QAEwFhgGfBpaW9Y4Gv9SpoQG2bEm6FUqpSh3xHwe+DjxJqPC5H9hU\n1jsa/FInK3tUhkoFP8Dj+SUeBr/UqaEB1q6laYlz9ah4XrkrpdHMmbB1q3P1qCQGv5RGDvWoDAa/\nlEZTpsDbb8ORI0m3RClk8EtpNGgQTJsG27Yl3RKlkMEvpZXDPSqRwS+lVUMD0aafJd0KpZDBL6VV\nQwPNHU8n3QoNhOPHYft2iGnqhkrW8cfL4Je6a2iA3Uk3QrE5dgw2boR16+C110LQv/56uN29GyZO\nDFN1xMDgl9KqoQGeTboRKsm778KGDfDyy53Lxo3hN5XnzIEZM2DhQpg6NSwXXgjDhoVt6+rK3r3B\nL6XV5Mnh9tAhGDMm2baob4cPw/r1nQH/0kuhGuuSS+Cqq8LyhS/A7NlQXz8gTTL4pbQalD9Ft21b\nCA8l78ABWLu2+5H8G2/ArFlw9dXwgQ/A178OV1wBw4cn1kyDX0qxpj2XhpJOg3/g7d3bPeRfegne\negve977w/+OGG+DOO+Gyy2Do0KRb243BL6VYNOZma/krLZeDN98MId816A8d6hyq+eQn4bvfDedd\nUpBT6Qn+WbPg6NGkWyFVl4YGeNYzvLE5cSJ8kRZCfu3aUGUzaBBceWVYliyBe+4JV07HcKI1CUm2\nOpfL9esXGiX15dln4a67YOXKpFuSPm1t8Oqr3UN+w4ZQNlkI+Tlzwu3551dNyNeFdpTVGINfSrPd\nu0M1yN69Sbekuh07FkJ+zZrOZfPm8BdT14CfMwfOPjvp1p6WwS9lXS4XSjl37ICxY5NuTXVobw81\n8WvWhBOua9aE0J8+Ha65pnOZPRtGjky6tUWLI/jTM8Yv6RTRimaiGTPCuPT73590c5Kxbx888wys\nWBFC/pVX4KKLOgN+yZJwJD9ANfJp4BG/lGJ1zXXk/vapUFXy2c8m3ZyB0dYGzz0Hy5fDsmXhR+ev\nuw6uvx7mzg1DNjV8QZtH/JJqf3rmjo5QWbN8eVhWrQoXQC1aBD/6Ecyb1zmdgfrF4JfSrqEhBGKt\nyOXCJGV//nP473r6aTj33BD0X/sa/OY3ns8ok8EvpV1DA/wsxfPyHz4cxuZXrYLnnw/L4MFh6Gbx\nYrj77vBTk4qNwS+lXZqGenK50NauIb9lS6iwmT8/nIj96U9D0FdJ3XwtMvilFGta2ATnnReuON23\nLwyJVJNcDl54AZ56KoT96tVw1llhXH7ePPj850PFTYITlmWRVT1SLbjmGrj33hCmSTtxAv76V3jk\nkbDU18PHPx5mprz22s7ppFUSq3okBYXhnqSCv7091NI//DD87nch3G+9FZ58Ei6/PJk2qU8Gv1QL\nkhjnb2sLQzgPPwx/+ENow223hXmDpk8f2LaoKAa/VAsaGuCPf6z8fg4dgieeCEM4TzwRxudvuw2+\n//3w84BKBYNfqgWVPOLfsQMeewyWLg1H8wsWhGGcn/wEJkyozD5VUZ7clVIsaomIGqNQ0XPxxXDw\nYPllkLlc+I3Y3/8+hP3rr8NNN8EnPgE33hiqcpQYZ+eUMq6uuY5cU/7f0bhxsGlTmE++WMeOhUnO\nli4Ny9ChcPPNIewXLIAhDg5UC6t6JHUqDPf0N/jb28NJ2YceCtU3l14agv7xx8PvxHoBVc0y+KVa\nUQj+6647/eu2bIH774df/AJmzoTPfQ5+/GOYNGlg2qnEGfxSrTjdCd533glll/fdF3556vbbw9DO\nJZcMbBtVFQx+qVY0NMCjj3Zf9/LLIewfeihc3PXNb8LHPhbG8JVZBr+UYk0LmzofFI74DxyAX/86\nBP7bb8Mdd4T57J3hUnlW9Ui14sCBMGFbfX0ou/ziF+HDH4ZBg5JumWJkOaek7h5/PPz27vjxSbdE\nFWLwS1LGxBH8/g0oSRlj8EtSxhj8UopFLVHSTVAKOcYvpVi3uXqUCY7xS5KKZvBLUsYY/JKUMQa/\nJGVMpYI/AnYCa/PL4grtR8q0bnP1SP1UqaqeJuCfwI9O8xqreiSpSNVe1ePP90hSFapk8H8DWA/c\nD4yt4H4kSUUoZz7+ZUBvv9X2H8DPgO/mH/8ncA9wR88XRlF08n5jYyONjY1lNEeSak9LSwstLS2x\nvudADMdMBR4D3ttjvWP8klSkah7jP7/L/VuADRXaj5RpztWjUlTqiP9/gTlADngN+DKwp8drPOKX\nyuRcPdkTxxF/pX5z918r9L6SpDJ55a4kZYzBL0kZY/BLUsYY/FKKOVePSuEvcElSilRzHb8kqUoZ\n/JKUMQa/JGWMwS9JGWPwSynmXD0qhVU9Uoo5V0/2WNUjSSqawS9JGWPwS1LGGPySlDEGv5RiztWj\nUljVI0kpYlWPJKloBr8kZYzBL0kZY/BLUsYY/FKKOVePSmFVj5RiztWTPVb1SJKKZvBLUsYY/JKU\nMQa/JGWMwS+lmHP1qBRW9UhSiljVI0kqmsEvSRlj8EtSxhj8kpQxBr+UYs7Vo1JY1SOlmHP1ZI9V\nPZKkohn8kpQxBr8kZYzBL0kZY/BLKeZcPSqFVT2SlCJW9UiSimbwS1LGGPySlDEGvyRljMEvpZhz\n9agU5QT/p4C/ASeAq3o8921gK7AZ+EgZ+5B0Gs0rmpNuglKonODfANwCPNtj/eXAp/O3i4H/KnM/\n6oeWlpakm1BT7M942Z/VpZxA3gxs6WX9zcADQDuwHdgGzC1jP+oH/2HFy/6Ml/1ZXSpxJD4Z2Nnl\n8U7gggrsR5JUgiFneH4ZMKmX9d8BHitiP16iK0lVIo4pG54B/h14Of/4rvztD/K3TwBNwOoe220D\npsewf0nKklZgRtKNeAa4usvjy4F1wDDgYkIjk5wTSJIUk1uAHcC7wD+Ax7s89x3CEf1m4MaBb5ok\nSZKkilpMONrfCtzZx2t+kn9+PXBlkdtmTTn9uR14BVgLvFC5JqbGmfryUmAV0EY4d1XMtllUTn9u\nx89mT2fqzyWEf+OvAM8Bs4vYtqIGE4Z5pgJDCeP9l/V4zU3An/L3rwWeL2LbrCmnPwFeA8ZVtomp\n0Z++PA+4Bvge3YPKz+apyulP8LPZU3/6cz5wdv7+YkrMzkrU8c/NN2A74SKuBwkXdXX1CeAX+fur\ngbGEstH+bJs1pfbnxC7Pe3I96E9f7gXW5J8vdtusKac/C/xsdupPf64CDubvrwYuLGLbkyoR/BcQ\nTvoW9HYBV1+vmdyPbbOmnP6EcA3FcsI/vi9VqI1p0Z++rMS2tarcPvGz2V2x/XkHnX/pF7XtmS7g\nKkV/L9bym75/yu3P64BdhD+5lxHGAP8SQ7vSqJwLCb0I8VTl9skCYDd+NguK6c/rgX8j9GGx21bk\niP9NYEqXx1PoPoVDb6+5MP+a/mybNaX255v5+7vyt3uBR8n2vEnlfL78bJ6q3D7Znb/1sxn0tz9n\nAz8nDPHuL3LbihlCuGhrKuEirjOdjJxH5wmK/mybNeX05yjgrPz9ekIVQJanyS7m8xXR/WSkn81T\nldOffjZP1Z/+vIgwlj+vhG0r7qPA/xEa+O38ui/nl4J788+vp/t8/r1tm3Wl9uc0wgdgHfAq9iec\nuS8nEcZKDxKOpt4ARp9m26wrtT/9bPbuTP15H7CPUALbswzWz6ckSZIkSZIkSZIkSZIkSZIkSZIk\nJe3/ATpfKjoz68jQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Define the x-position of vertical line\n", + "v_cutoff = 1.0/(2*t2)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-10,10])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Energy Dependence" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same intensity and varying position" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create different lags for different energy channels, we create delta impulses of same intensity at different positions." + ] + }, + { + "cell_type": "code", + "execution_count": 607, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create impulse responses for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 608, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = [np.zeros(int(i/lc.dt)) for i in energies]\n", + "responses = [np.append(h, 1) for h in h_zeros]" + ] + }, + { + "cell_type": "code", + "execution_count": 609, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delays = [int(i/lc.dt) for i in energies]\n", + "outputs = [signal.fftconvolve(s, h)[d:-d] for h,d in zip(responses,delays)]\n", + "s_mods = [s[d:] for d in delays]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 610, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mods = [lc.time[d:] for d in delays]\n", + "lc_input = [Lightcurve(t_mod, s_mod) for t_mod, s_mod in zip(t_mods,s_mods)]\n", + "lc_output = [Lightcurve(t_mod, output) for t_mod, output in zip(t_mods,outputs)]" + ] + }, + { + "cell_type": "code", + "execution_count": 611, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc1, lc2).rebin(0.0075) for lc1,lc2 in zip(lc_input,lc_output)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute lags and cutoffs." + ] + }, + { + "cell_type": "code", + "execution_count": 612, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.cs)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cutoff points for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 613, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "v_cutoffs = [1.0/(2*energy) for energy in energies]\n", + "h_cutoffs = [lag[int((v_cutoff-0.0075)*1/0.0075)] for lag, v_cutoff in zip(lags, v_cutoffs)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We plot lag-frequency spectrum for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 614, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8E3X++PFX2kJb2gKlHD2hXG25DwVBQCqCoIjKzwtE\nBWVd8HZlXV39KmVR111ldRePBW9U8FxXQUUQCAJrQYVyl7MttNzQQimlRzK/Pz6TJmnTNm2SJmnf\nz8djHklmMjOfmUzmPZ9jPgNCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghGpE04ENvJ6KJSUP2\nudAFeDsBjUw2cAEotBn+5c0EOckMnEel9xTwI3CrV1NUPc1Ny0lEbXdN/4E0oAz73/OPblq/P3HX\nPndkOrAbOAccA74Fwj24vkRq/91FDYK8nYBGRgOuA1Z7eD2BgMnNy+wLHATaANcCrwEpwF/cvB5f\nY6hhmgYsAe6qZRkBqBNRY1XTPnLFSOB5YCywFYhE/X8aQk3b5In/V6Mh0bbhTAPWAy8BZ1An6HE2\n01sB7wBHgFxgLtbfZxqwAfgHKicwG3VyXwqcBTYBzwHr9O+/Drxcaf3fAI86kc4zwEfAfcCf9fU4\nm775QAHqynFUHbatpv3SGViLuhJdAbStlN4hwP+AfCADdSKyMKKC3np9/h+AKH3aT/prASoHcZmD\nfWHA8cnlfeBN4DtUDi0ViAW+BE7o2/CQzfdD9XnOADuBx4HDNtPNQJdKy59r8/k6fdvyUfu5j820\nbGAW6qRbAHwCBNtMv0Gf9yywH3WCvgX4tdI2PQb818G2OvI5cFRf31qgp820KKo/LisbBPyspx3U\n9n2I2qeg9sO/Ub/7OdTv2dFm/hRgJXAayNS3yyIUmIfaPwWo3zsE+9/9HOr4mYb9/yuNqkVyidjn\nUIyo32gD6vj5BnVsfmyz7Z2q2W4hKmQBV1UzbRpQisqOG4CZQJ7N9K9QJ6JQoB2wEfi9zbxlwAOo\ngzYEdXJYrL/vARzC+ocYpC/bcsJrCxTpy3Wk8kkLoJm+zrF1SN8jqKu0W1F/ytZOzlvTfvkZFQCb\nASNQf/RF+rQ41J/cEmRG658tgcEI7AO6ofbTGuCv+rROOFc85ags/319+4bqn0OB34D/Q+XeOwMH\ngKv16S+iTq6tgXhgB+r3sqi8/9/DmsMbABxH/aYGVK4nC7U/0N+nA9GoK/VdwAx92mA9nZZjMhZI\nBpqjTrQpNuvcAkx0tBOouh+mAWF6Gl7R57Wo6bisbDiqODcNGIZ9sAO1n8/p32sOvIo1AIWhAu9U\n1G/YHziprxPUhdNqIEafPkRfhqPffRpV/1+zqT1o7EX91i1RFwP7UBdLgcAHwLvVbLcQFbJRVx35\nNsN0fdo01EFl0QJ1ELYHOgAXUQerxWSsxVzTgBybaYGoE213m3Fzsb+i24U6iQI8CCyrId2Oggao\nq8nJTqYvD3sbgTucnLe6/dIR9WcOtZn+Mdag8YTNe4vlWIuT1gBP2Uy7D/hef5+Ic0GjBOtveQZ1\nEnpfHywuw/73AZVLs5w0bAMIwL3UnNOwDRpvUrWIMBMVQEEFjdttpv1NnwdgAepq25E3UbkAgF6o\nbWtWzXfTqL4ivLWe/gicOy4rG4e6Ss9H/XfmYf1N3kcFIIswoBwVeG+jajBaADyrz38B+xyZRSKO\ng0bl3y+NmoPGGtRvbPEyqj7G4jrsg2mjIXUa7qWhigOqq9M4ZvP+gv4ajsoJNEOdpC0CsL8atT3J\ntEP9drbjciutaxHqpP2j/vpK7cm300xfzxnU1Vlt6ascNHJQV7YdnZi3uv3SHnUyKa603AT9fSdU\nkcQEm+lB2O9/22UXU/dK1k+pWqehYb+9nVDbmm8zLhDrSS0W+9/Kdttr00lfv21xVzN9mRaVtzFG\nfx+P/YnM1geoE/L/AXeitrMMmIIqEkJP//hK8wWi6iFuRh0fZtT+aKuvu7bjsrLl+gDqKv1zYA+w\nUF+u7fxFqOMxFrVfLsN+nwehjvso1EXKgVrWbetw7V+p4rjN+4uooknbz56s0PcaCRq+4TDqijaK\n6itUbVuwnERdcSVgvUpPqPT9j4DtQD9UMYSz5dUWN+jr2IT6A9aWvrhKnzsBX+PctlXnKKrIpQXW\nYNIJayXlIdTV4O+rzlorZ1oEaVRfYWo7/yHUFX9SNd89igqeu/XPHStNv4DaRosYrCexQ6iT9AtO\npLeyw6iiOUfSUbmCK1A5v8n6+I/1oTq3A9ejirxyUDmNM6j95MxxWZPV+tBL/2yoNH84qo4tD7Vf\n1mKfg7MIQJ20uwHbKk2r7nevPP489r9JdC1p92QLM58iFeHuV5+WJkdRlX3/QGXzA4CuqD+0Iybg\nP6gsdCgqKNyJ/YGbi6rsXAR8gTpxO5PuNqirzddQZfH5TqavPfAw6ir4Fj1N36GuguuybbZy9G2Y\noy93OPataz5C5TKuRl0Bh6AqpW0DWHW/x0lUEOtaw/qrm7fy+E2oopU/oX6PQKA3cKk+/TNUUYal\nTuMh7H+rDNQ+D0QV19jum7dQ9TyD9fWGoa7+a7qKtaTvHeBu1BV8AGq/JNt870PU71yKakzgjHDU\nsXRGT4ttMHPmuLR1PaqYKVJP82BUQ4Z0m+9ci6rvaI4q6voZFTS+RQXpO1DHRjNUvU8K6nd9F3XM\nxaD261B9Gc787qB+kytQQasV9kVRFoZq3jdqEjTcbyn27fq/1MdrVP3z2H6+C3VQ70L9IT/HenXj\naN4HUQfzMVRRwxLUn9/WB6hyXWduzNqqp3cfcA+qpVWak+kDVYfRHfWnnAvchLXooK7bZvv5dlQx\nxBlUefUHNtNyUTmip1BFA4dQLYls/8BapfeWzxdQV/Ab9HQOpipHaXM03owKZv1RLadOoopXWurT\n56ACYBaqKGZRpTQ+ggp++fr2fmUz7TdUHchrqH2wD7U/a7pitkz7BRU0XkFViK/BPpfzIeqq/qNq\nluVomYv0bclDVej/XCktzhyXFvn6tu1FtTj6EPi7Po9lvYtRldKnUY0C7tCnFaIuFibpaTmKauTQ\nXJ/+R1RO+xd93r+i9rnt734GdWw5+p1/RBXZbdOXsdTBd6o7thxNF26QgDqId6IOvof18W1Qzej2\noq5QWzucW1T2N1QFqq0RVK3g84Rp1FzZKeylUr8ydHcLRbVOqu2q2xWOjktnvYd902PhA7yZ0ygD\n/oC60hmCau7WA3gSFTSSgFX6Z1FVMuqGPEu2/h7sr1CboXILbzV80oSfuA9VtFaXCuPa1HZc1kWT\nKfIR9fNfVBPRTFQzTVBFGJleS5FvuxRVVFGEKhJ5wmZaD1RF3noapgXHVKpviy+qSqVuLag8IRtV\nXNbPzcut6bisK9umx0LYSUQVo0Rg34TOUOmzEEKIJi4cVdl3o/65cpA407DJEUIIUR1v36fRDNW6\n6EOs9xEcRxVLHUM1lztReaauXbtqBw64sxhWCCGahANUf++OU7xZEW5AtSPfhepTxuIbVBk5+muV\nm9IOHDiApmkyuGmYPXt2/eddU/95G+vgyv60G9y1HD8f3LY/ZQA3tJTzZtAYhmpzfSWqj5YtqBub\nXgTGoJrcjtI/Cx81Z+0cbyeh8Zoj+1b4Hm8WT62n+qA1uprxQgghvEjuCBekpqZ6OwmNiuxP95L9\n6Vv89eYZTS+fE15mmGNAmy2/hUcYDCDHuXAjg8EALp73vd16SgjhojZt2pCfL7czCavIyEjOnPHM\n3QoSNIRLZo+c7e0kNF6zndu3+fn5SM5b2NJzFJ5ZtseW7FlSPCWEzmAwSNAQdqo7JtxRPCUV4UII\nIZwmQUMIIYTTJGgIIRrMunXrSElJ8XYy7EyePJmvv/7a7ct9//33GTFihNuXe/z4cXr27ElpaXXP\ntvIsCRpCCI9ITExk1apVduNGjBhBZqbrTzsoLS1l+vTpJCYm0rJlSwYMGMDy5csrphuNRgICAoiI\niCAiIoKEhARuu+02fv31V7vlbNu2jW3btnHDDTdUWcc999xDQEAABw8erDYdiYmJtGjRomI948aN\nc2m70tPTCQ8Pp6ioqMq0AQMG8MYbb9ChQweuvPJKFi5c6NK66kuChnBJmjHN20lovNLSvJ0ClxgM\nBo+14ikvL6djx4789NNPnDt3jueee45bb72VnBzrgyrj4uIoLCyksLCQ9PR0UlJSGDFiBKtXr674\nzoIFC7jjjjuqLH/9+vUcPHiw1vQbDAaWLVtWsR7bwFUfQ4YMIT4+ni+++MJu/I4dO9i9ezeTJ08G\nYMqUKSxYsMClddWXBA3hEul7yoMaYd9TRqORhISEis+JiYnMmzePfv360bp1ayZNmkRJSUnF9GXL\nltG/f38iIyMZNmwY27dvB6BFixbMnj2bjh3VI8/Hjx9P586d2bx5s8P1xsXFMWfOHH73u9/xxBPW\n50ItX76ckSNH2n23vLychx9+mPnz5zvVKs3ZlmuPP/44I0aMoLCwkLNnzzJ9+nRiY2OJj4/nmWee\nwWw2AzB16lQWLVpkN++iRYsYP348kZGRAAwePJiDBw9y+HDDPzVYgoYQwmsMBgOff/45P/zwA1lZ\nWWzbto33338fgC1btjB9+nTeeustzpw5w4wZM7j++usdluUfP36cvXv30qtXrxrXN3HiRDZv3kxx\ncTFFRUVkZWWRnJxs951XXnmFkSNH0qdPH6e2YcqUKbRv356xY8eybdu2KtM1TePee+9lx44drFy5\nkoiICKZNm0bz5s05cOAAW7ZsYcWKFbz99tsA3HHHHfz000/k5uYCYDabWbJkCVOnTq1YZlBQEN26\ndSMjI8OpNLqTBA0hGjuDwT2Dhzz88MNER0cTGRnJhAkTKk6ECxcuZMaMGQwaNAiDwcBdd91FcHAw\n6enpdvOXlZUxZcoUpk2bRlJSUo3rio2NRdM0CgoKKCgoACAiIqJi+uHDh1m4cCF/+YtzT5ldvHgx\nOTk55OTkcOWVVzJ27FjOnj1rl7ZJkyZRUFDA0qVLCQkJ4fjx43z//fe88sorhIaG0q5dOx599FE+\n+eQTABISEkhNTeXDDz8EYNWqVZSUlDB+/Hi7dUdERNitq6FI0BCisdM09wweEh0dXfE+NDSU8+fP\nA5CTk8O8efOIjIysGHJzczl69GjF981mM3feeSchISG89tprta4rLy8Pg8FA69atad26NQCFhYUV\n0x999FGeffZZIiIiKoqdaip+Gjp0KMHBwYSGhvLkk0/SunVr1q1bVzF9//79LF26lGeffZagoKCK\n7SorKyMmJqZiu2bOnMnJkycr5ps6dWpF0Pjwww+ZPHkygYGBdusuLCys2IaGJEFDCOFTLJXPHTt2\n5OmnnyY/P79iOH/+PLfddhugTubTp0/n5MmTfPnll1VOqo589dVXXHLJJYSGhhIWFkbXrl3Zs2dP\nxfTVq1fz+OOPExMTQ2xsLKACgyUX4GzaLXr06MG7777LNddcw969ewGVkwgODub06dMV23X27NmK\n+hpQxWi5ubmsWbOGr776yq5oClS9y/79++nXr59T6XIn6XtKuET6nvIgJ/ue8mWlpaVcvHix4nN5\neXmt81iu7O+9914mTpzI6NGjGTRoEBcuXMBoNDJy5EjCw8O57777yMzM5McffyQ4OLjG5R05coS3\n336bd955h6VLl1ZMu/baa1m7di2XX345APv27auokNY0jZiYGJYtW0bfvn2rLPfw4cMcOnSIQYMG\nYTabmT9/PqdPn2bYsGF235s0aRKlpaWMHj0ao9FIly5duPrqq3nssceYO3cuYWFhZGVlkZeXxxVX\nXAFAWFgYN998M3fffTeJiYkMHDjQbpmbNm0iMTHRrlGBqJkmhFB89f+QmJioGQwGu2H48OFaQkKC\n3XdWrVpV8TktLU278847Kz4vX75cGzRokNa6dWstJiZGu/XWW7XCwkItOztbMxgMWmhoqBYeHl4x\nLF68WNM0TVuzZo0WEBCghYeHa2FhYVpsbKx2yy23aBs3brRL444dO7RevXpVuw0BAQHagQMHKj7P\nnDlTmzlzpqZpmrZz506tb9++WlhYmBYVFaWNHj1a++233yq++/7772sjRoyo+PzWW29pnTp10nJy\ncrSzZ89q9913nxYfH6+1atVKGzBggPbpp5/ardtoNGoGg0H7+9//XiVd999/vzZ//vxq013dMQG4\nXM4oHRYK4eekw0LXTJkyhVtvvdXhDX6+6MSJE6SmppKRkUHz5s0dfseTHRZK0BDCz0nQEJU15l5u\n3wWOA9ttxqUBucAWfXDtvnwhhBBu4+2g8R5Vg4IG/AMYoA+u3ZcvhBDCbbwdNNYBjp5T6a/FZk2O\n9D3lQX7e95RonLwdNKrzELAVeAdo+LtXhNOk7ykPaoR9Twn/54v3abwJWO7hnwvMA6ZX/lKazVVY\namoqqampDZA0IYTwH0ajEaPR6NZl+kIxUCKwFHDUO1h106T1lI8wzDGgzZbfwiMMBqe675DWU6Ky\nxtx6ypEYm/cTsW9ZJYQQwou8HTSWAP8DkoHDwD3A34BtqDqNkcAfvJY6IYRbyeNeXdfUH/c6GYgF\nmgMJqPs27gL6Av2AG1H3cQgfJX1PeZCf9z3lr497XbhwId26daNVq1YMGjSIDRs21LiNTe1xr/6q\n2j5XhGhqfPX/ULlfKXcqKirS0tLStJycHE3TNG3ZsmVaRESElp2drWma6nsqPj6+4vu5ubnas88+\nq4WEhNil6f7779deeOGFis9btmzRwsPDtc2bN2uapmlvvvmm1q5dO81sNjtMR03b+N5772nDhw+v\n87YlJydr77//vt247du3a8HBwdqZM2c0TdO0DRs2aL179652GdUdE7ih7ylv5zSEEE2Irz/uddeu\nXfTs2ZMBAwYAcOedd3Lq1ClOnDhR7TZp8rhXIYRoGL72uNcRI0aQlZXFpk2bMJlMvPvuuwwYMIAO\nHTpUu0x53KsQonFJS3P8+Nbq7jh39H0P3p3uS497TUhI4LnnnmPYsGGEhIQwd+5cFixYUO3y5HGv\nQojGJy3N8eNbawoazn7XDXzpca/ffPMN8+bNY/fu3ZSVlfHhhx9y3XXX2a3TljzuVYg6kr6nPKiJ\n9j3lzce9/vDDD4wfP55u3boBMHbsWGJiYvj555/rlHaLxvi4VwkawiXS95QHNYK+pyyPe7UMdX3c\n67///W82bdqEpmkUFRXx7bffVuRELI97/eabb2p93GteXh5z5szhnXfe4YUXXqiYZnncq0W/fv34\n9ttvycrKQtM0Vq5cyd69e+ndu3eV5R4+fJgNGzZUbONLL71U7eNeX3jhBUaPHs3BgweJiYmpeNxr\nYWEhZrOZAwcO8NNPP1XMI497db86N2MTnkGa/BYe4+Rx7qv/B3983KvJZNIef/xxLT4+XouIiNB6\n9uypffTRRxXT5XGvvtH3VH3o2y+8Tfqe8iDpe6pByONe60aChnCJBA0PkqAh6qmpdVgohBDCR0nQ\nEC6Rvqc8yM/7nhKNkxRPCeHnpHhKVCbFU0IIIXyCBA0hhBBO88VnhAsh6iAyMrLKnciiabP0husJ\n/nqkSZ2GEELUkdRpCK+Tvqc8qIn2PSV8m+Q0hEvk5j4PcvLmPiGc1RhyGu+ingG+3WZcG2AlsBdY\nATR8379CCCEc8nbQeA+o/CT2J1FBIwlYpX8WQgjhA7wdNNYB+ZXGXQ98oL//ALixQVMkhBCiWt4O\nGo50QBVZob9W/3BeIYQQDcrX79Ootv/3NJuWJampqaSmpjZMioQd6XvKg6TvKeEio9GI0Wh06zJ9\nofVUIrAU6KN/zgRSgWNADLAGSKk0j7SeEkKIOmoMracc+QawPBB3KvBfL6ZFCCGEDW/nNJYAI4G2\nqPqLZ4Gvgc+AjkA2cCtQUGk+yWkIIUQdyZP7hBBCOK2xFk8JIYTwURI0hEuk7ykPkr6nhA+S4inh\nEul7yoOk7ynhZlI8JYQQokFJ0BBCCOE0CRpCCCGc5uvdiAgP0jSNgosFZBdkk1WQpV7zs8g+m01x\nWTEtmrWoGEKDQq3vm1nfA3y1+ys6hHfg8oTLvbxFQghPk4rwRsasmblYfrFiKC4rprC0kJyCHLIL\nsu0DREEWmqbRObIzia0T6dxavSa2TiSsWRjF5cVcKLtQMRSXVfpcXszG3I10bdOV5fuXc+yPx2gd\nIo8/cZu0NGlBJdzKHRXh/kojTQ2z18zWKpu9Zna14/1tvmdXP6vtO71P+3zn59rTq57Wxn88Xoub\nF6d1eKmDljQ/Sev4Sket/UvttZZ/bakFzAmomC94brAW83KM1vnVzlrvN3pr4z8erw1aOEgbs2iM\n9sXOL7Tfjvymnb5wWjObzW5JZ/TL0Vr64XSf358yn8zXlOejmg5g68JfI46+/Y3LxfKL7Dixg4xj\nGRXDtuPbiAyNpH90f/p36E+/6H7EhMcQ2iyUkKAQuyE0KJTmgc0tVxMNasp/pjC261ju6ndXg69b\nCOEcd+Q0pE7DDTRNY/uJ7Xyd+TUFFwsICggiMCCQQENgta+W7xSVFrH1+FYyjmVwIP8ASVFJFQHi\nph430S+6H21C23h7E2uVHJVM5qlMbydDCOFhEjTqSdM0fjv6G1/u+pIvdn9BubmciSkTiY2IxWQ2\nYdJMmMwmys3llJhLMJVZx9m+BgcGc1Xnq5g1dBY92/UkOCjY25tWLyltU/h056feToYQwsMkaNSB\nWTOTnpvOl7u+5MvdX9I8sDk397yZT276hIExA71SLOQrJKchRNMgQaMWJrOJ9YfW88WuL/hP5n+I\nDInkph43sXTyUnq3792kAwWovqfSUtPoHtWdg/kHKTeXExQgh5VbSOsp4YP89Yzn0YrwgosF/JTz\nE9/t+47/Zv6XmIgYbu5xMzf1vImUtpUfIti02fY9lfhqIj/e9SPd2nTzcqoaCel7SriZVIS7SVFp\nEesPrWd11mrWZK9h96ndDIkfwtVdrmbDPRvo2qart5PoF5LbJrPn1B4JGkI0Yk0yaFwsv0h6bjpr\nstawOns1W45uYWDMQEZ1HsXLV7/MZXGX+W2FtDelRKWw5/QexjPe20kRQnhIkwka245vY9neZazO\nWs3GvI30bNeTUYmjeOaKZxiWMIyw5mHeTqLfS26bTMaxDG8nQwjhQU0maNz4yY2M6TKGRy57hCs6\nXUGrkFbeTlKjI81uhWj8fDloZAPnABNQBgx2ZWGlplKeGfkM8S3j3ZA0YTF75OyK99Ls1s1mz679\nO0I0MF8OGhqQCpxxx8JMmolAQ6A7FiVspKWmVbyPjYjlQtkF8ovziQyN9F6iGgtpbit8kK8/T8Nt\nTYJNZhOBARI0PMlgMJAclcye03u8nRQhhIf4ctDQgB+BX4F7XV2Y5DQahqXZrRCicfLl4qlhwFGg\nHbASyATWWSam2WTdU1NTSU1NrXFhktNoGJZmt0II7zMajRiNRrcu01/uCJ8NnAfm6Z/rfEd4+Avh\nHJ11lIjgCHenTdj4bOdnfLLjE/5z23+8nRQhRCXuuCPcV4unWgCWs3sYcDWw3ZUFmjTJaXhCmjHN\n7nNKW8lpuI1UhAsf5KvFUx2Ar/T3QcDHwApXFmgym6QjPQ+Ys3aOXQuq7m26c+DMgbp3XGg2Q3k5\nlJWpwfK+8rjycjCZqr6vbZwzg2UdBgMEBkJAgBocvbcdB1BSUnW4eLH68SaTmk/Tqh+2boWvvlLv\nO3eGr7923w8nRD35ak4jC+ivD72Bv1b5hsGgBkdXYw56BzVpJgLnPlfn+SrG+/N8mgYXLsCsWfDA\nA/C//8H338OSJfDmm3DVVdb5eveGceNgzBi49lq48Ubo1Qv69IG774YZM+Chh+Cxx2D4cLV8gwFG\nj4a0NEKfnk10aXOyZ05Sy0pOVssaNgwGDFCfW7Wyri8w0DqEh0O7dtChAyQkqO9ffrlK34QJkJoK\n/fvDJZfAxIlqe556CubMgRdfhAcfhD/8Ad59Fz7+GL74ApYuhXnzYPp0lfb33oP9+yE3F06dgvPn\nYdUqWLcOIiLU+qOioGVL+PlneO45tfxVq6C4GM6dg9On4dgx+PxztQ+zstS4sjIIDVUn+9deg7ff\nVt+fOBGmTlX77emnISVF7c9//Qvmz4fXX1e/wyWXwJYtkJEBl12m9u2iRfDRR7BpEzzyiG8fZzKf\nf8znIn+p06isTnUamqYR8JcAzM+a/aMr8+JidVKqPBw9ql6LiqxX37ZDaWn144OCoHVr+6FVK8ef\nW7WCZs2s81oGB58NJX9GK3vaesJs0YJx5e/zUMsxjI8aAi1aWAd9esUQHKzWExSkgoY//DYNybaX\n2zvvVEF6xgzvpkn4Nenl1klmzUyAIcAzAeP8edi9G3buhMxMdcIH6xWA5b2jcQaDOvkeP24NCMeO\nqWVER1uHmBj1OnCgugqPiFAnW2eH4GBo3tz92w4w58/qatxG8vd5ZLbqyPjLJ3tmnU3RmDHwzTcS\nNITXNYmg4ZZ7NM6dU8Fh1y4VICyvJ0+qIpeePaFHD3WCt5RJg/2ro/dBQTB4sH2QiIz066vulLYp\nbDm2xdvJaFyuugoefVTVhQRKgw7hPU0iaJSby51rOWUyqbLu/fvVsHevNUCcPq3Konv2VGX8M2eq\n9507N+k/sW3fUxbJbZNZsmOJF1LTyNj2PRUXpy5INm+GQYO8lybR5DWJoGEy2+Q0ysshJ8caGGyH\n7GxVCdqtmxq6d4crr1TBITHR2lJGVLBtOWUhXYm4SeVKzDFjYOVKCRrCq5pG0NBMBJaUqSBw+LC6\nYrMEhm7dVKucbt2gSxdVWStcIh0XesiYMfDyy6rFmBBe0jSChtlEUGmZaoo5eLCqGBYeY9tx4ZD4\nId5OTuMxciTcdptqPRcmDw0T3tE0goZmItCMqpOQgNEgUtqmsOeUBA23Cg9XLejWrVP30gifVFRa\nRO653Irh8LnD5J7LpVVwK14c/aJ/NPuvQdMIGmY9aHiq2amoQh7I5CGWeg0JGg1O0zROF5/maOFR\njp4/St65vCqBIfdcLsXlxcS3jK8YElom0LdDX15Nf5XxSeO5otMV3t4UlzSNoKGZCDRrEjQ8IM2Y\n5rAyPKUWfpV9AAAdUUlEQVRtirSgcpWjO3rHjIHf/94bqWm0zJqZY+ePcaTwSEVAsLweO3+s4vPx\nouOENQsjJiKGmPCYiqAwIGYAE5InVASINqFtHOYmAg2BzPt5nt8HDX/NJ9XpjvDs/CxG/qULOS+X\nN+nmsZ5gmGNAm131t9h2fBuTvpjErgd2eSFVjYTtHeEW5eWqq5Pdu9U9PcJpmqZxougE209sZ8eJ\nHRXDzpM7adGsBXERcRUBISY8xvpef+0Q3oGQoJB6r/9C2QUSX01k/T3rSYpKcuOWOU/uCHeSqayE\nQA0JGA2oe5vuHMw/WPeOC0XNgoJUa79Vq2DKFG+nxmcVXCxg54md1uBwUr2aNTN92vehd/veXBp7\nKdP6T6NXu14N0sqvRbMWzLhkBv9M/yevj3/d4+vzlCbxbzZdLCbQbzNV/im0WSgxETFk5WfRPaq7\nt5PTuFjqNZpg0CguK7YWGxVai49sX48UHqGwpJBe7XvRu11verfvzfXJ19O7fW+iw6O9WhH9wOAH\n6Pl6T+aOmkub0DZeS4crmkbQKL1IoCZBo6FZmt1K0HCzMWPg+edV0ZWft8Rx5HzpebYf307GsQwy\njmWw5/SeiqBQUl5CdHg0MREx6jVcvV4Wd5nd+NiIWAIMvnczbnR4NDem3Mi/f/03T43wz/ttnAka\ntwLLgXPAM8BAYC6w2YPpcitTaQlBEjQanKXZ7XVJ13k7KY1Lt26qI8rdu1VvBX7s2PljFcEh41gG\nW45t4fDZw/Rq34v+HfrTP7o/t/a6ldiIWGIiYmgV3Mrvm6z+YcgfGPvRWGYNnUVwkP/dAuBM0HgG\n+AwYDlwFvAy8CVzmwXS5lamkmECffXSIf3PU95RFclQym4/6zbWF75ldzb41GKxFVH4SNApLCtl3\nZh97Tu1h6/GtFUGi3FxO/2gVHCYkTeCZK54huW1yo64H69NB1al8uvNT7up3l7eTU2fO/DL6I8a4\nDngLWIbKafgNU2mJ1Gl4iKPmthbS7NZFNT1AZ/Ro9XCmRx5psOTUpsxUxsH8g+w9vbdi2HN6D3tP\n7+VsyVm6t+lOUlQSfTv05cHBD9I/uj9xEXF+n3Ooj8eGPsaTPz7JnX3v9LvtdyZo5AELgTHAi0AI\nvvvEP4fKSy8S6IPlm41dclu5wc9jrrpK3a9RVqaKqhqQWTOz7/Q+0nPT2Xp8a0WAOHT2EPEt40mK\nSiIpKqmiaCkpKom4lnE+WcfgLWO7jmXWilmszlrNVV2u8nZy6sTZOo1xwEtAARAD/MmTiXI3U8lF\nKZ7ygpjwGC6WX5SOCz2hbVtVt5GeDiNGeHRV+cX5bMrbRHpuOul56WzM3UirkFYMiR/CgOgBjOw0\nkqSoJLpEdvHLMnpvMBgMPDbkMf6R/o9GGTSCgTX6+zZACbDaYylSxgGvAoHA28DfXFmYqaxEgoYX\nGAwGkttKx4UeY6nXcGPQKDeXs+PEDjbmbiQ9L5303HRyz+VyaeylDIkbwsxLZvLeDe8RHS43Frpq\nSt8pPL36aXaf3E2Pdj28nRynORM0NgMdgXz9cyRwTB/uBX5zc5oCgdeA0aiisV+Ab4Dd9V2gSYqn\nvMbSB5UEDQ8YPRqefRb+8pd6L6KotIj03HTW5qxl3aF1/HrkV+JbxjMkfghD4obw6GWP0qt9r0Zd\nMe0tIUEh3HfpfbyS/goLJyz0dnKc5syRsBL4AvhB/3w1cDPwHqoV1WA3p2kwsB/I1j9/AtyAK0Gj\nrIQgVx/3Khyqru8pC0uzW1EPjvqesjV8OGzfDmfPQqtWTi3yXMk5NhzawNqctfyU8xPbjm+jX3Q/\nruh4BX+6/E8MiR8iRYkN6P5B95P0WhLPj3qedmHtvJ0cpzhz+T0Ua8AAWKGP+xnwRA+AccBhm8+5\n+rh6M5WWSk7DQ+asnVPj9OSoZDJPS2V4vcyped8SEgJDh8KaNdV+5fSF03yd+TWP/fAYly68lNh5\nsfz9f38nJCiE50Y9x4nHT7Dhng38dfRfuab7NRIwGli7sHbc0vMW3vz1TW8nxWnO5DSOAk+grvgN\nqIrx46hiJLMH0uRUT4RpNldgqamppKamVvtdU1mJ9XGvokElt02WnIYnWeo1brwRgENnD7H+0Ho2\nHNrAukPryC7IZmjCUEZ2Gsmr415lUOwgqaz2MY8OeZRRH4ziT8P+5FKHiI4YjUaMRqNbl+lM0Lgd\nmA38V/+8AZiMChq3ujU1Sh6QYPM5AZXbsJNWU7a9knIJGl4jHRd6Trm5nO2DEli/9iU2fHGaDYc3\nUGoqZVjCMIZ3HM7U/lMZGDNQ9ruP69muJwNjBvLxto+ZPnC6W5dd+YJ6Tm25Vyc4czSdBB6sZtp+\nl1NQ1a9AdyAROALchgpS9WYqKyUwQIKGN0jHhe5TWFLIxryNbDi0gfWH17MxdyPxLeMZ1qKQca0v\n5blRz9E1sqvf3SwmYNbQWTy8/GHuGXCPz/9+zgSN9qj7MnoCofo4DRjloTSVo4LUD6jczDu4UAkO\nUjzlbSltU6TjwnooD4D0Q+v5du+3rDi4gsxTmQyIHsDwjsN5ePDDXH7T5US1iIL1kyEnEkZ383aS\nRT2N6jyKoIAgVhxYwdhuY52bSdOgoADy8uDIEfV69CicPg35+Y4HN3AmaHwMfIrqRmQGMA2V+/Ck\n7/XBLUzlktPwlJr6nrKwNLuVjgtrd6LoBMv3L+e7fd+x4pkQOn3/EOO7j+fVsa8yOG6w4/qIMWNg\nxQqY7t6iDdFwbG/2G9ttLJSWqgCQl1d1sASIvDz1fJW4OIiNtb5GR0OPHhAZCW3aqFfL4GQru5o4\nEzSiUDfYPQys1YdfXV5zA5LiKc+pqbmtRUrbFH474u7beRoHs2bmtyO/8d2+7/hu/3fsObWHq7pc\nxbXdrmXe1fOIa+lEw8HRo+GJJ8BshgBpJejTzGY4cUKd+C0nf/110tHD/LnParanRNLnYBF06GAN\nBpahb1/7cRERDb4JzgSNUv31GCq3cQR1g5/fMJWXSmWgFyVHJfPx9o+9nQyfUXCxgBUHVvDdvu/4\nfv/3RIVGMb77eF686kWGdRxG88A6tmTv2FFdUW7dCgMGeCbRomaaBufOVQkEVV6PH4fWrdWJ3zZ3\nMGgQwXE38mBRd17pf5p3b/nIZ5806syZ9HmgNTALmA+0BP7gyUS5m6lTRwLzPV2iJqojzW7hYvlF\nlu1dxuLti1mVtYoRHUdwbfdrmT1yNp0jO7u+AkvTWwka7lderk72ublqyMuzvtoGBbDmACwBoVs3\nGDnSGiRiYiC4+ibPMy4Mpdv8brxQfNJnu2pxJmgs1V8LgFT9vV8FjfJePQg8dMrbyWiyLB0Xnik+\n47ePuKwPk9nEmuw1fLz9Y77O/JqBMQOZ0mcK793wHq1CXC9btjNmDLz2GvzJr/oS9T6zWZ30s7Kq\nBgXL+xMnICoK4uNVILC89u5tHyBatnQ5OVEtopjcezJv/PIGf7my/t3DOFJUWuSW5dS3zOYx4BW3\npKABmMwmaT3lRRUdF57aw9CEod5OjkdpmsavR35l8fbFfLLzE+Ii4pjSZwrPj3qe2IhYz604NRXu\nuAOKiyE0tNavNyllZZCdDQcOwP799q9ZWaqCuEsXFQzi4yExUXXRYgkOMTEN2v38o0MeZfi7w3ly\n+JO0aNaiTvNqmsbJCyfZfXI3macy2X3K+nqi6IRb0tckCvpNmgQNT6mt7ykLS7Pbxho09p3ex+Lt\ni1m8YzEms4kpfaZgnGokuW1y/RdaW99Ttlq1UpWk69erXEdTU1CgAkBWFhw8qAKCJTjk5amTf9eu\nqrioa1dVZNS1qwoWYWHeTr2dpKgkhiYM5cOtHzLj0hnVfq/MVEbmqUzr43KPZ7D12FZMmokebXuo\noV0PRncZTY+2PUhsnUjQ/7l+yq/vXSSHsb9ru6FpmuZUbyMAvL7pdXae3Mkb49/wYJKaJsMcA9rs\n2n+L5356jvOl53lx9IsNkKqGcaTwCJ/t/IzF2xdz6Owhbut1G1P6TmFQ7CD33KBlMKgKVmfNng0X\nL8LfXHqSgG+6eBFycuwDg+V9VpbKTXTubB0sAaJbN+jUCZp7ops8z1mbvZYZy2aw64FdBBgCOFdy\njq3HttoFiN0nd9OxVceKx+X2j+5Pvw79iA6Prvb408e7dHDWFHbOU30/UHXLM3mZ5DS8L6VtSqNo\nQXWm+Axf7vqSJTuWsOXYFm5IvoG5V87lqi5Xeb+F3pgx8PDD/hs0NE1VKO/eDZmZ6nX3bti7F06e\nVMVFXbpYA8Oll1rft22rgmwjcUWnKwhrHsaYD8eQU5DD0fNH6dO+D/2j+zMobhD3XnIvfdr3Iax5\nw+eSajrKwxssFR5mMpvkPg0vs9zg54+KSov4Zs83LNmxhLU5axnTZQwPDHqAa7tfS2gzH6o/uOwy\nVSRz8iS08+Futk0mlVOwBAXLkJmpWhb16GEdbrgBkpJUwAhqEqXpgMoRvHv9u+w6uYsBMQPo3qa7\nz5zDmsSvYNJM3r8KbOK6telGVn6W33RcWGoq5Yf9P7BkxxK+2/cdQ+KHcHuf2/no/31Ey2DXW8l4\nRLNmqqx+1SqYNMnbqVFOnlT3j2RkqNetW2HfPutdyykpMGwY/O536nNUlLdT7DP6RfejX3Q/byej\nCt//97pBublciqe8LLRZKLERsT7dcaGmaWw4vIFFWxfx5e4v6dG2B7f3uZ1Xx71K+7D23k6ec0aP\nhh9/bPigYTKpYGAbIDIy4MIF6NcP+veHK6+ERx9VwaGFX5VwCxtNImhI8ZTnONP3lEVyW1VE5WtB\nw6yZ+Trza17c8CL5xfn8buDv2Pz7zXRq3cm7CZvt/L6tMGYMzJun6gc8VcZ/7hxs22bNOWzdCjt2\nqNyDJUDMmKFeO3ZsVHUNwsVadC+qU+up3HO5mDUzHVt19GCSRG3+sPwPxLWM44+X/9HbSQGgpLyE\nj7Z9xEv/e4mWwS15YtgT3Jhyo39fYGgaJCTA6tWqLsDVZWVl2QeHrVvV3dG9eqkAYQkSffu65eY2\n4Vmebj3VaMS3jPd2EgQqp/HrEe/3dXmu5BwLfl3AqxtfpU/7Prw5/k1SE1N9/jkGTjEYrF2K1CVo\nlJWp4qQtW6zBYft2FQgswWHyZHjxRdWM1Uf7RRKe1ySChvAN3m52e+z8Mf6Z/k/e2vwWY7qOYdnk\nZQyIaYR9NY0ZA599Bg88UP13ysrg11/BaFTDzz+rpqsDB6oAcfPNKvcgFdOiEn+9tKpT8ZTwDUcL\nj9L33305+XjDdh65/8x+Xv7fy3y28zMm957MrMtn0SWyS4OmoUEdPw7JyXDqlLWZamkp/PILrF2r\ngkR6urUzvdRUGDFC9ZQrGjUpnhJ+JTo8mpLykgbruHDXyV2kGdNYk72GmZfMJPPBTP9pBeWKDh3U\nXdBvv60Cx9q1KkgkJakA8dBD8Omnqs8lIepIntgiXJJmTHP6uwaDQfVB5eFu0k9dOMWD3z3IyPdH\nMjhuMAcfPsjcUXP9L2A42++UI7ffroJGQQE88ggcPgy//aZaVk2YIAFD1JsUTwmXONv3lMWdX93J\nqMRR3D3gbrenpdRUyhu/vMHz655nUq9JpKWmqWdo+6u69j0lRC0aa/FUGvA7rM8h/zOw3GupEW6V\nEqV6u3UnTdP4dt+3zFqh6irWTltLz3Y93boOIYTii0FDA/6hD6KRSW6bzEfbPnLb8nac2MFjPzzG\n4XOHeXXsq1zT/Rq3LVsIUZWv1mn4a7GZqEVyVLJbchoni05y/7f3M+qDUVyffD3bZm6TgCFEA/DV\noPEQsBV4B/V8ctFIdI/qTlZ+FmWmsnrNX2oqZd7/5tHj9R40C2hG5oOZPDj4QZoFNtyT1YRoyrxV\nPLUScPTU9KeBNwHLw3HnAvOA6ZW/mGbTsiQ1NZXU1FR3p1E4oS59TwGEBIWojgsLskiKqls3F0v3\nLOWxFY+RFJXEurvX0aNdjzrN73fq0/eUEDaMRiNGo9Gty/T1YqBEYCnQp9J4aT3lx679+Fruu/Q+\nJiRPcOr7+cX5PPj9g2zK28T8a+Yzrts4D6dQiMbJHa2nfLF4Ksbm/URgu7cSIjyjLg9k+n7f9/R5\nsw9RoVFkzMiQgCGEl/li66m/Af1RraiygOqfrC78UkrbFH458kuN3yksKWTWilmsOLCCRRMXMarz\nqAZKnRCiJr6Y07gL6Av0A24Ejns3OcLdLM/VqM7a7LX0+3c/TGYTW2dulYAhhA/xxZyGaOSqa3Zb\nXFbM06uf5tOdn7LgugVcl3SdF1InhKiJL+Y0hB+pS99TFtHh0ZSaSjl94XTFuE15mxiwYABHCo+w\nbeY2CRjgWt9TQniIBA3hkjlr59R5HoPBUJHbKDWV8szqZ5iwZAJzUufwyc2f+Hd/Ue40p+77VghP\nk+Ip4RUpbVP4z+7/8MB3DxAXEUfGjAxiImJqn1EI4VWS0xBe0aNtDxb+tpCHBj/E0slLJWAI4Sd8\n/ea+6sjNfT6irl2jW5wvPc+Fsgv+94yLhiRdows3a6xdo4smILx5OOHNw72dDCFEHUnxlHBJXfue\nEnUgfU8JHyTFU0II0UQ01r6nhBBC+CgJGkIIIZwmQUMIIYTTJGgIIYRwmgQN4ZL69D0lnCR9Twkf\nJK2nhEvqe3OfcILc3CfcTFpPCSGEaFASNIQQQjhNgoYQQginSdAQQgjhNG8FjVuAnYAJGFhp2p+B\nfUAmcHUDp0vUkfQ95UHS95TwQd5qPZUCmIEFwCxgsz6+J7AYGATEAT8CSfp3bUnrKSGEqCN/bj2V\nCex1MP4GYAlQBmQD+4HBDZcsIYQQNfG1Oo1YINfmcy4qxyGEEMIHePIhTCuBaAfjnwKW1mE5Dsuh\n0mzulk1NTSU1NbUOixRCiMbPaDRiNBrdukxv3xG+Bvs6jSf11xf11+XAbGBjpfmkTkMIIerIn+s0\nbNluwDfAJKA50BnoDmzyRqKEc6TvKQ+SvqeED/JWTmMi8C+gLXAW2AJco097CrgHKAceAX5wML/k\nNHyE9D3lQdL3lHAzd+Q0vF08VV8SNHyEBA0PkqAh3KyxFE8JIYTwExI0hBBCOE2ChhBCCKdJ0BAu\nkb6nPEj6nhI+SCrChRCiiZCKcCGEEA1KgoYQQginSdAQQgjhNAkaQgghnCZBQ7hE+p7yIOl7Svgg\naT0lXCLdiHiQdCMi3ExaTwkhhGhQEjSEEEI4TYKGEEIIp0nQEEII4TQJGsIl0veUB0nfU8IHSesp\nIYRoIqT1lBBCiAblraBxC7ATMAEDbcYnAsWoZ4ZvAd5o8JQJIYSoVpCX1rsdmAgscDBtPzCgYZMj\nhBDCGd4KGpleWq8QQggX+GKdRmdU0ZQRGO7dpIjaSN9THiR9Twkf5MnWUyuBaAfjnwKW6u/XALOA\nzfrn5kAYkI+q6/gv0AsorLQMaT3lI6TvKQ+SvqeEm7mj9ZQni6fG1GOeUn0AFUgOAN2xBpUKaTZX\nYampqaSmptZjdUII0XgZjUaMRqNbl+nt+zTWAH8EftM/t0XlMkxAF+AnoDdQUGk+yWn4CMlpeJDk\nNISb+fN9GhOBw8AQ4Fvge338SGArqk7jc2AGVQOGEEIIL/F2TqO+JKfhIySn4UGS0xBu5s85DdFI\nSN9THiR9TwkfJDkNIYRoIiSnIYQQokFJ0BBCCOE0CRpCCCGcJkFDCCGE0yRoCJdI31MeJH1PCR8k\nraeES+Q+DQ+S+zSEm0nrKSGEEA1KgoYQQginSdAQQgjhNAkaQgghnCZBQ7hE+p7yIOl7SvggaT0l\nhBBNhLSeEkII0aAkaAghhHCaBA0hhBBOk6AhhBDCaRI0hEuk7ykPkr6nhA/yVuupl4DrgFLgAHA3\ncFaf9mfgHsAEPAyscDC/tJ7yEdL3lAdJ31PCzfy59dQKoBfQD9iLChQAPYHb9NdxwBtIbsjjjEaj\nt5PQqMj+dC/Zn77FWyfklYBZf78RiNff3wAsAcqAbGA/MLihE9fUyJ/SvWR/upfsT9/iC1fx9wDf\n6e9jgVybablAXIOnSAghhENBHlz2SiDawfingKX6+6dR9RqLa1iOFOoKIYSP8GY3ItOAe4GrgIv6\nuCf11xf11+XAbFQRlq39QFcPp08IIRqbA0A3byeiPsYBO4G2lcb3BDKA5kBn1Ab6a/9YQggh3GQf\nkANs0Yc3bKY9hcpJZAJjGz5pQgghhBBCiEZpHCqXsQ94oprv/EufvhUYUMd5mxpX9mc2sA2VG9zk\nuST6jdr2ZQrwM6qOblYd522KXNmf2cixWVlt+3MK6j++DdgA9K3DvD4rEFU0lQg0Q9Vv9Kj0nWux\nNtG9DEivw7xNjSv7EyALaOPZJPoNZ/ZlO+BS4DnsT3JybFblyv4EOTYrc2Z/DgVa6e/HUc9zpy/c\np2FrMCrx2agb/D5B3fBn63rgA/39RqA1qmmvM/M2NfXdnx1spktDBMWZfXkS+FWfXtd5mxpX9qeF\nHJtWzuzPn7F212R7U3Wdjk9fCxpxwGGbz45u7qvuO7FOzNvUuLI/Qd0j8yPqj3uvh9LoL5zZl56Y\nt7FydZ/IsWmvrvtzOtYShjrN68mb++rD2Rv55ArDOa7uz+HAEVQxwUpUmec6N6TLH7lyk6ncoFqV\nq/tkGHAUOTYt6rI/r0T1xDGsHvP6XE4jD0iw+ZyAfbcijr4Tr3/HmXmbmvruzzz9/RH99STwFU27\nHzBXji85NqtydZ8c1V/l2FSc3Z99gbdQxdL5dZzXJwWhbuhLRN3gV1vF7RCslTnOzNvUuLI/WwAR\n+vswVGuLqz2YVl9Xl+MrDfuKWzk2q3Jlf8qxWZUz+7Mjqu5iSD3m9WnXAHtQG2fpMn2GPli8pk/f\nCgysZd6mrr77swvq4MkAdiD7E2rfl9GosuGzqKu4Q0B4DfM2dfXdn3JsOlbb/nwbOI31pupNtcwr\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQomkwYW1rvgV105KvuwT4p5uW9SPWm9vOV5o2DZhf\nw7zXA8+4KR1CCOEXCmuYZqBx9002Cnjd5nPlfTGVmoOGAXVTXDM3p0s0Eb7W95QQ9ZGIupv1A2A7\nqu+cx1F3vG5FdUNh8bT+3XXAYqzdUxhRuQFQz67P0t8HAi/ZLOv3+vhUfZ7Pgd3ARzbrGITq2iID\n1QV1uP79pfr0MOBdfdpm1NU/QC993BZ9Xd0cbOvtwNeOdwNgHzAzsObGLgAjUJ3T/Yx0uyGEaELK\nsZ4MvwQ6oYqsLJ3WXQ0s0N8HoE7WI1BBYRsQgire2Qc8pn9vDdYuVGyDxu9RgQYgGPgFFaRSgQJU\nl/wG4H/A5ai+ew5gDUDhqMCTijVovIB6ihqo55fsQfWn9C9UUADVH1CIg23fjf3Dh2z3xRYgR1+O\nrQnAWj0dAHcDf3OwbCFq5WtdowvhjGLsH0ubiDpZWvrSuVoftuifw4DuqEDxH9TjQy8C3zixrquB\nPsDN+ueWqBxAmb4+S0/AGUBnVHHRUeA3fXzlOgfLMicAf9Q/B6PqZX5GBah4PZ37HcwbC5yx+Vx5\nX0xFPe3Oojvwd1TQMunjjqCe3CZEnUnQEI1FUaXPfwUWVhr3CPbFN7bvy7EW11a+wn8Q9cwGW6lA\nic1nE+r/5OyzCf4fKqdjKxPVy/B1qJ6HZ6ByQHVhu03hwKfA74DjNuMD6pBOIexInYZojH5APWQm\nTP8ch3pYz0/AjViLp66zmScb6xX6zTbjfwDux3qBlYQqSnJEQxU1xdgsKwJrsZDtMh+2+WzJKXRG\nFYvNR9Vb9HGwjiNAVDXrr+xd4D1U/YqtGFTOTIg6k6Ah/JGjq2TbcStRldw/o+owPkNddW9BXXlv\nRV3J/4L1yvxl4D5UxXSUzfLeBnbp47cDb2LNUThKRxlwG+rEn4EKECGVvj8X1XppG6pr7zn6+Fv1\nz1tQleKLHCx/PfbFT5XTYFlPR+AmVPC01HdY6mwGowKoEEKIOpiN/cN9/EEqKnDVVwAqmEnRtKgX\nyWmIps7fyvaNWCv16+M64AtUHY4QQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII9/r/6JSAjRYx\n9pkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + " plt.axvline(v_cutoffs[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cutoffs[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend(plots)\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note:\n", + "\n", + "Currently, lag-energy spectrum isn't plotted and hence I am unable to verify results from Uttley et al. However, as soon as it is implemented in library project, I will test it here as well." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same position and varying intensity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we use delta impulse responses whose position remains same but intensity varies. \n", + "\n", + "Again, first we define energies and then create impulse responses, and subsequently using convolution, obtain the output light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 615, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "code", + "execution_count": 616, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = np.zeros(int(10/lc.dt))\n", + "responses = [np.append(h_zeros, i+1) for i in range(0,len(energies))]" + ] + }, + { + "cell_type": "code", + "execution_count": 617, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "outputs = [signal.fftconvolve(s, h)[delay:-delay] for h in responses]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "code", + "execution_count": 618, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mod = lc.time[delay:] \n", + "lc_input = Lightcurve(t_mod, s_mod)\n", + "lc_output = [Lightcurve(t_mod, output) for output in outputs]" + ] + }, + { + "cell_type": "code", + "execution_count": 619, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc_input, lc2).rebin(0.0075) for lc2 in lc_output]" + ] + }, + { + "cell_type": "code", + "execution_count": 620, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.cs)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "code", + "execution_count": 621, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "v_cutoff = 1.0/(2.0*10) \n", + "h_cutoff = lags[0][int((v_cutoff-0.0075)*1/0.0075)]" + ] + }, + { + "cell_type": "code", + "execution_count": 622, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8FHX+x/HXpoceUCCQQOhlKYKCcAgERUFB0d8polhQ\nLOid7RTPbrBwNs7z8O4Uyykq9lMBKSISQKS3kFASei9SQ0nd/f3xnU02IQmbZJPdZN/PxyOP7Mzs\nzHxmdnY+8/1+Z78DIiIiIiIiIiIiIiIiIiIiIiIiIiIiIlKNJACf+DqIAJOA9rlYgnwdQDWzHTgN\npLv9/dOXAXnIAZzExPs78DMw3KcRFc/ppeXEYba7pO9AApBNwc/zMS+tvyrx1j4vymhgA3AC2A/8\nCNSqwPXFce7PXUoQ4usAqhknMBT4pYLXEwzkenmZXYCtQH3gKuBtoD3wgpfX429sJUxzAp8Dt51j\nGUGYE1F1VdI+Ko/+wMvAIGAtEIX5/lSGkrapIr5f1YaybeUZBfwKvA4cwZygB7tNrwt8AOwFdgMv\nkv/5jAIWAX/HlASex5zcpwHHgWXAS8BC6/3/At4otP6pwMMexHkE+BS4D3jSWo+n8U0EjmGuHC8t\nxbaVtF9aAPMxV6I/AecVircX8BtwFFiDORG5JGKS3q/W/LOBBta0Bdb/Y5gSxMVF7AsbRZ9cPgL+\nA8zAlNDigSbAt8BBaxsecHt/pDXPESAFGAvscpvuAFoWWv6LbsNDrW07itnPnd2mbQcexZx0jwFf\nAOFu04dZ8x4HNmNO0DcAKwpt01+A74vY1qJ8Deyz1jcf6Og2rQHFH5eF9QAWW7GD2b5PMPsUzH54\nB/O5n8B8ns3c5m8PzAEOAxut7XKJBCZg9s8xzOcdQcHP/QTm+BlFwe9XAmdXycVRsISSiPmMFmGO\nn6mYY/Mzt21vXsx2i+TZBlxWzLRRQBamOG4DxgB73KZ/hzkRRQLnA0uBe9zmzQb+hDloIzAnhynW\n6w7ATvK/ED2sZbtOeOcBp6zlFqXwSQsg1FrnoFLE9xDmKm045ktZz8N5S9ovizEJMBToi/miT7am\nNcV8yV1JZqA17EoMiUAa0Bqzn+YBf7OmNcez6qmi6vI/sravtzUcCawEnsGU3lsAW4ArrOmvYE6u\n9YAYIBnzebkU3v//Jb+E1w04gPlMbZhSzzbM/sB6vQRojLlSXw/ca03racXpOiabAO2AMMyJtr3b\nOlcD1xW1Ezh7P4wCaloxvGnN61LScVnYJZjq3ASgDwWTHZj9fMJ6XxjwD/ITUE1M4r0d8xleAByy\n1gnmwukXINqa3staRlGf+yjO/n49z7mTRirms66DuRhIw1wsBQMfAx8Ws90iebZjrjqOuv2NtqaN\nwhxULjUwB2FDoBGQgTlYXW4iv5prFLDDbVow5kTbxm3cixS8oluPOYkC/BmYXkLcRSUNMFeTN3kY\n3x4KWgrc4uG8xe2XZpgvc6Tb9M/ITxp/dXvtMov86qR5wFNu0+4DZlqv4/AsaWSS/1kewZyEPrL+\nXC6m4OcDppTmOmm4JxCAuym5pOGeNP7D2VWEGzEJFEzSuNlt2qvWPADvYq62i/IfTCkAwI7ZttBi\n3ptA8Q3h9az4a+PZcVnYYMxV+lHMd2cC+Z/JR5gE5FITyMEk3hs5Oxm9CzxnzX+agiUylziKThqF\nP78ESk4a8zCfscsbmPYYl6EUTKbVhto0vMuJqQ4ork1jv9vr09b/WpiSQCjmJO0SRMGrUfeTzPmY\nz8593O5C65qMOWn/bP1/89zhFxBqrecI5ursXPEVTho7MFe2zTyYt7j90hBzMjlTaLmx1uvmmCqJ\nq92mh1Bw/7sv+wylb2T9krPbNJwU3N7mmG096jYumPyTWhMKflbu234uza31u1d3hVrLdCm8jdHW\n6xgKnsjcfYw5IT8D3IrZzmxgJKZKCCv+IYXmC8a0Q1yPOT4cmP1xnrXucx2Xhc2y/sBcpX8NbAIm\nWct1n/8U5nhsgtkvF1Nwn4dgjvsGmIuULedYt7td537LWQ64vc7AVE26D1dkg77PKGn4h12YK9oG\nFN+g6n4HyyHMFVcs+VfpsYXe/ymwDuiKqYbwtL7aZZi1jmWYL+C54mtaaLg58AOebVtx9mGqXGqQ\nn0yak99IuRNzNXjP2bOekyd3BDkpvsHUff6dmCv+tsW8dx8meW6whpsVmn4as40u0eSfxHZiTtLj\nPYi3sF2YqrmiLMGUCvphSn43WeM/s/6KczNwDabKawempHEEs588OS5L8ov1Z7eGbYXmr4VpY9uD\n2S/zKViCcwnCnLRbA0mFphX3uRcef5KCn0njc8RekXeY+RU1hHtfWe402Ydp7Ps7ppgfBLTCfKGL\nkgv8D1OEjsQkhVspeODuxjR2Tga+wZy4PYm7PuZq821MXfxRD+NrCDyIuQq+wYppBuYquDTb5m6H\ntQ3jrOVeQsG7az7FlDKuwFwBR2Aapd0TWHGfxyFMEmtVwvqLm7fw+GWYqpXHMZ9HMNAJuMia/hWm\nKsPVpvEABT+rNZh9HoyprnHfN+9h2nl6Wuutibn6L+kq1hXfB8AdmCv4IMx+aef2vk8wn3MW5mYC\nT9TCHEtHrFjck5knx6W7azDVTFFWzD0xNzIscXvPVZj2jjBMVddiTNL4EZOkb8EcG6GYdp/2mM/1\nQ8wxF43Zr72tZXjyuYP5TPphklZdClZFudiKeV2tKWl43zQK3tf/rTXeydlfHvfh2zAH9XrMF/Jr\n8q9uipr3z5iDeT+mquFzzJff3ceYel1Pfpi11oo3DbgTc6dVgofxgWnDaIP5Ur4I/JH8qoPSbpv7\n8M2YaogjmPrqj92m7caUiJ7CVA3sxNxJ5P4FdhZ67Ro+jbmCX2TF2ZOzFRVbUeMdmGR2AebOqUOY\n6pU61vRxmAS4DVMVM7lQjA9hkt9Ra3u/c5u2EtMG8jZmH6Rh9mdJV8yuacsxSeNNTIP4PAqWcj7B\nXNV/WsyyilrmZGtb9mAa9BcXisWT49LlqLVtqZg7jj4BXrPmca13CqZR+jDmpoBbrGnpmIuFEVYs\n+zA3OYRZ0x/DlLSXW/P+DbPP3T/3I5hjq6jP+WdMlV2StYxpRbynuGOrqOkifudVTAOqu76c3cBX\nEUZRcmOnFBRP2erQvS0Sc3fSua66y6Oo49JT/6XgrcfiB1TSqLraYX6Q5yrW30nBK9RQTGnhvcoP\nTaqI+zBVa6VpMD6Xcx2XpREwVT5ViRrCq67amGJ8E8xdHG9gbl0Ec6/6cky97D8qIZbiqnGkeL7e\nX9utGK718nJLOi5LS8eViIiIiIhIQKiSdYZdu3Z1rl279txvFBERd2sxd/mVWZVMGoDT6VRVp7fE\nj4on8aNEX4dRbSQkJJCQkODrMKoN7U/vsdlsUM7zvu6eEuZvn+/rEESkilDSEBERjylpiOm/U7wm\nPj7e1yFUK9qf/kVtGoJtnA3n89qfItWdN9o09OM+kSqufv36HD169NxvlIARFRXFkSNHKmTZShrC\n8/2f93UIUg5Hjx5FJW9xZ5UoKmbZFbbkiqXqKRGLzWZT0pACijsmdMutiIhUKiUNERHxmJKGiFSa\nhQsX0r59e1+HUcBNN93EDz/84PXlfvTRR/Tt29fryz1w4AAdO3YkK6u4Z1tVLCUNEakQcXFxzJ07\nt8C4vn37snHjxnIvOysri9GjRxMXF0edOnXo1q0bs2bNypuemJhIUFAQtWvXpnbt2sTGxnLjjTey\nYsWKAstJSkoiKSmJYcOGnbWOO++8k6CgILZu3VpsHHFxcdSoUSNvPYMHDy7Xdi1ZsoRatWpx6tSp\ns6Z169aNf//73zRq1IgBAwYwadKkcq2rrJQ0hITEBF+HINWQzWarsLt4cnJyaNasGQsWLODEiRO8\n9NJLDB8+nB078h9U2bRpU9LT00lPT2fJkiW0b9+evn378ssvv+S959133+WWW245a/m//vorW7du\nPWf8NpuN6dOn563HPXGVRa9evYiJieGbb74pMD45OZkNGzZw0003ATBy5Ejefffdcq2rrJQ0hHHz\nx/k6BAkQiYmJxMbG5g3HxcUxYcIEunbtSr169RgxYgSZmZl506dPn84FF1xAVFQUffr0Yd26dQDU\nqFGD559/nmbNzCPPhwwZQosWLVi1alWR623atCnjxo3jrrvu4q9//Wve+FmzZtG/f/8C783JyeHB\nBx9k4sSJHt2V5umda2PHjqVv376kp6dz/PhxRo8eTZMmTYiJieHZZ5/F4XAAcPvttzN58uQC806e\nPJkhQ4YQFRUFQM+ePdm6dSu7dlX+U4OVNETEZ2w2G19//TWzZ89m27ZtJCUl8dFHHwGwevVqRo8e\nzXvvvceRI0e49957ueaaa4qsyz9w4ACpqanY7fYS13fdddexatUqzpw5w6lTp9i2bRvt2rUr8J43\n33yT/v3707lzZ4+2YeTIkTRs2JBBgwaRlJR01nSn08ndd99NcnIyc+bMoXbt2owaNYqwsDC2bNnC\n6tWr+emnn3j//fcBuOWWW1iwYAG7d+8GwOFw8Pnnn3P77bfnLTMkJITWrVuzZs0aj2L0JiUNkerO\nZvPOXwV58MEHady4MVFRUVx99dV5J8JJkyZx77330qNHD2w2G7fddhvh4eEsWbKkwPzZ2dmMHDmS\nUaNG0bZt2xLX1aRJE5xOJ8eOHePYsWMA1K5dO2/6rl27mDRpEi+88IJHsU+ZMoUdO3awY8cOBgwY\nwKBBgzh+/HiB2EaMGMGxY8eYNm0aERERHDhwgJkzZ/Lmm28SGRnJ+eefz8MPP8wXX3wBQGxsLPHx\n8XzyyScAzJ07l8zMTIYMGVJg3bVr1y6wrsqipCFS3Tmd3vmrII0bN857HRkZycmTJwHYsWMHEyZM\nICoqKu9v9+7d7Nu3L+/9DoeDW2+9lYiICN5+++1zrmvPnj3YbDbq1atHvXr1AEhPT8+b/vDDD/Pc\nc89Ru3btvGqnkqqfevfuTXh4OJGRkTzxxBPUq1ePhQsX5k3fvHkz06ZN47nnniMkJCRvu7Kzs4mO\njs7brjFjxnDo0KG8+W6//fa8pPHJJ59w0003ERwcXGDd6enpedtQmXyZNGKBeUAKkAw8aI2vD8wB\nUoGfgMrfKyLiM67G52bNmvH0009z9OjRvL+TJ09y4403AuZkPnr0aA4dOsS333571km1KN999x0X\nXnghkZGR1KxZk1atWrFp06a86b/88gtjx44lOjqaJk2aACYxuEoBnsbu0qFDBz788EOuvPJKUlNT\nAVOSCA8P5/Dhw3nbdfz48bz2GjDVaLt372bevHl89913BaqmwLS7bN68ma5du3oUlzf5MmlkA48A\ndqAX8CegA/AEJmm0BeZaw1KB1PeUVJSsrCwyMjLy/nJycs45j+vK/u677+add95h2bJlOJ1OTp06\nxY8//phXErnvvvvYuHEjU6dOJTw8vMTl7dmzh3HjxvHBBx8wfvz4vGlXXXUV8+fnP4QsLS2NpKQk\n1q5dm1dNNn36dK699tqzlrtr1y4WLVqUt42vv/46hw8fpk+fPgXeN2LECMaPH8/AgQPZunUr0dHR\nXHHFFfzlL38hPT0dh8PBli1bWLBgQd48NWvW5Prrr+eOO+4gLi6O7t27F1jmsmXLiIuLK3BTQSD6\nHhgIbAQaWeMaW8OFOUXE8NfvQ1xcnNNmsxX4u+SSS5yxsbEF3jN37ty84YSEBOett96aNzxr1ixn\njx49nPXq1XNGR0c7hw8f7kxPT3du377dabPZnJGRkc5atWrl/U2ZMsXpdDqd8+bNcwYFBTlr1arl\nrFmzprNJkybOG264wbl06dICMSYnJzvtdnux2xAUFOTcsmVL3vCYMWOcY8aMcTqdTmdKSoqzS5cu\nzpo1azobNGjgHDhwoHPlypV57/3oo4+cffv2zRt+7733nM2bN3fu2LHDefz4ced9993njImJcdat\nW9fZrVs355dffllg3YmJiU6bzeZ87bXXzorr/vvvd06cOLHYuIs7JoBy1zP6S4eFccB8oBOwE4iy\nxtuAI27DLtb2i4g6LCyfkSNHMnz48CJ/4OePDh48SHx8PGvWrCEsLKzI91Rkh4X+0DV6LeBb4CEg\nvdC0YjOj+4Pm4+Pj9XQvESmTzz77zNchlErDhg1Zv369R+9NTEwkMTHRq+v3dUkjFJgOzAT+YY3b\nCMQD+4FoTGN54c5qVNIQsaikIYVV167RbcAHwHryEwbAVMB1q8DtmLYOERHxA75MGn2AW4ABwGrr\nbzDwCnA55pbbS61hqUDqe0pEPOXr6qmyUvWUF9nG2XA+r/1ZVal6SgqrrtVTIiJSxShpiIiIx5Q0\nRETEY0oaIlJp9LjX8tPjXsXn1PeUVISq+rjXSZMm0bp1a+rWrUuPHj1YtGhRiduox71KwEmIT/B1\nCFINVcXHva5Zs4ZHH32Ur7/+Ou/petddd12xd6fpca8iIhXI3x/3un79ejp27Ei3bt0AuPXWW/n9\n9985ePBgsdvk6e3OetyriEg5+dvjXvv27cu2bdtYtmwZubm5fPjhh3Tr1o1GjRoVu8xAe9yrP3RY\nKCIVyDbOO1VEFfUDUNfjXoFiH/cKcNtttzF+/HiWLFlCv3798uYv6+NeXVf27o97jY2N5aWXXsp7\nJkZUVBQzZswodnlTpkyhe/fuOBwO3nrrLQYNGsTGjRupW7duXmwjRozA4XAwbdo0QkJC8h73euzY\nMSIiIoiMjOThhx/mvffe45577inwuNcnn3zS7x73qqQhUs35+6/9Cz/ude/evYB5LOrkyZOZOHFi\n3vTs7GyvPe7VlTTS09Np0KABAFOnTmXChAls2LCB1q1bM3v2bIYOHcrq1auJjo4+a3m9e/fOe/3E\nE0/w8ccfs3DhQoYOHQqYx70mJSWxdOnSIh/36r4drqo2MFVU48eP58knn9TjXsX/qO8p8Se+fNzr\n7NmzGTJkCK1btwZg0KBBREdHs3jx4lLF7qLHvUq1NG7+OF+HINVUVXvca9euXfnxxx/Ztm0bTqeT\nOXPmkJqaSqdOnc5arh73WrUU+5hDKT0StD+rMn/9PlTFx73m5uY6x44d64yJiXHWrl3b2bFjR+en\nn36aN12Pe1Uvt4J6ua3q1Mtt+ehxr6WjpCFKGlWckoYUpq7RRUTELyhpiPqeEhGPqXpKpIpT9ZQU\npuopERHxC0oaIiLiMXUjIlLFRUVFVVgX5FI1uXrDrQhV9UhTm4aISCmpTUO8Qn1PiYinVNIQ/bhP\nJECopCEiIpVKSUNERDympCEiIh5T0hAREY8paYj6nhIRj+nuKRGRAKG7p0REpFIpaYiIiMeUNERE\nxGNKGiIi4jElDVHfUyLiMV8njQ+BA8A6t3H1gTlAKvATUM8HcQWUcfPH+ToEEakifJ00/gsMLjTu\nCUzSaAvMtYZFRMQP+DppLASOFhp3DfCx9fpj4NpKjUhERIrl66RRlEaYKius/418GIuIiLjxx6Th\nzmn9iYiIH/DHZ4QfABoD+4Fo4GBRb0pISMh7HR8fT3x8fCWEVj2p7ymR6ikxMZHExESvLtMf+p6K\nA6YBna3h14DDwKuYRvB6nN0Yrr6nKkjmqRPs3LiUpq27UaPueb4OR0S8yBt9T/k6aXwO9AfOw5Qw\nngN+AL4CmgHbgeHAsULzKWmU0ZkTR9i5aSnbt65i+9717Diyje2n97I99zDbw05zONxBRC6MjbiM\nZ5772dfhiogXVYekUVYBmTROHNpNyooZ/P77LjKzTpOZfYaMrNNkZmeQmZ1BRs4ZMnMyyczNJCMn\nk0xHFpmOLNJzz7DTeZTtYWc4FuYg9nQocbm1aR56HnG1Y4k7vw1xsZ1p3upCmrTuxpcfPML3qVP5\n6u+7fL3JIuJFAd3LrW2cDds4W5G/Zk5ITCh2fFWY77m5z+TN1/f5WK55pDEtHgsl+h+xPPjTIzy6\n/u88u3kSP6bNYNGu31h3cB07ju/gx6wUxtnm80rIEtbXPIX9/I70junNde2uZcLA17m552j+OuBZ\n0iZkMecfh3n/9U0889zPbO7QiL4r/0Szr3rx4qLx2Dv2J4VDfrdfNJ/m03zln6+8VNLwEqfDQerK\n2Rw/up/g4FCCQ0IJCQmz/ocTHGKNCw0n2DU+NILT6YdJXj2bpC2/se7IRtbl7mNTzTM0PRNKF+f5\ndK7Ths7NetCl6xW07NKf4NCwCt+WjJPHiHoliuNPpxMWWavC1ycilcMbJQ1/vHuqysjNzmLx7Pf5\nfvGHfJ+xlswgJ41zwsnFSY7NSS5Ocm1OcnCQa4NcmzVsc1rDEO6wYc+sS+fI5sQ368cDHeLpeNGV\n1IxqWGnbkZCYQEJ8Qt5wRK16NDsTSuqqOXTqc12lxSEi/k8ljVLKOHmMn7//O9+v/ZJpQWk0zgrn\n2ro9uTZ+DBf0uxFbUNWr8bONs+F8vuD+/L9HmnBjxxu48e63fBSViHibShqV5Oi+bcz44XW+T53K\nTxF7uOB0Xa5tHM9TV75Ly67xvg6vQnSq05qU3at9HYaI+BkljSI4HQ7SVs1hTuIHfL97LktrHGHA\nmcZc2/JK/j1sLOc36+DrECucPaYbX234xtdhiIifUdLAtE0kLfqWhcu+YeH+pSwM3UeYw8YAZ3Pu\nv+Auvh/2aKW2MfgDe8d4Uja+4+swRMTPBGTSyDx1guXzPmXhmh9YeHg1v0UcIjozjH4hLRnW5mre\n6HcLze19fB2mT7XtfjnbZ2WRcfIYEbX0SBMRMQImaSyZ9T4/Lv6YBcfXsbLmcdqfrkG/yPbc3fUO\nPr50VEBUORWnqL6nwiJr0fJUGJtW/UTXfsN9EJWI+KOAuXuqxWOhDAvtxFXdhtP7stup3aBJBYVW\nfQz/SyzXtr2Gm8f8y9ehiIgX6O6pUsi2OXhs1CRi2vXwdShVhr1ua1L2rvF1GCLiR6rejwrKKNcG\nwSGhvg6jSrHHdCclfauvwxARPxJAScNJcLCSRmnYOw0gJeiwr8MQET8SMEkjJwhCwiJ8HUaV0rrr\npeyOzOb08d99HYqI+ImASRq5Nqeqp4pRXE+YoRE1aH06nI0rZ1duQCLitwIoaUBwSMX3EFsVjZs/\nrthpnWyNSNm4sBKjERF/pqQhJbLXbaM7qEQkT+AkjSAq5VkU1Y292YWknNrm6zBExE8ETNLICVJJ\noyzsnS4lOfiIr8MQET8REEnD6XDgtEFQcMD8ltFrWnUdwIGIHE4e2e/rUETEDwRE0sjNySLYQZV8\nQFJlKKrvKZfg0DDanopgg+6gEhECJWlkm6QhRXN/1GtROgU1JmWT7qASkQBJGjlZGQT75umw1YI9\nqi0p+9b6OgwR8QMBkTRyc7KUNMrB3vwiUk7v8HUYIuIHAiRpZBPiqKq9wPuevfNlJIfoDioRCZCu\n0VXSKJ8WnftxOCyXE4d2U+f8GF+HI9Wc0+Fg/7Yk0lIWkrptBe1bXcwlQ+/3dVhiCZCkka2kUYKE\nxIQSG8ODgkNofzqS9Stn0WvwXZUXmFRrxw7sIHXtL6RuWUbq/hTSTu4g1XGI1BpniMyx0SazFi2C\nG/DM3k/Z1m8EkXXq+zpkIUCSRk52BsFOVU8VZ9z8cee+gyo4mpTUX5U0xGNOh4MD25PZunExW3es\nYduhVLac2EFazkHSwk+SEeykzZlI2gadT9vacQxtM4Q2LXvQpnM8UdEt8pZzzSONmfzBA9z7yGc+\n3BpxCYikYUoaShrlYY9qR8r+db4OQ/zMqaMH2bZ+EVu3rmDbvg1sPbqVrRn72Go7zvbITGrm2GiZ\nVYMWQQ1oWTOGS2L7cGeLi2jbqT+N4jp59Nupxy97jjvmPcxd2f9VV0B+IGCSRoiSRrnY43ry8/KJ\nvg5DfCTj5DE2rJhJ8vr5rNuziuTT21kXcoTfw3OJOx1GS2ddWoQ3pmW9FgxofyUtW15Ii45/oHaD\nJuVed5+rxnDe3L/y/SdP88c7X/fC1kh5BEbSyFWbRnnZuw4kZe2Lvg5DKlhudhZb1s4jed1c1u1c\nTvLxNNbZDrEjMotWp8PpREM6R7Xj3nZ30bnrFcR1uqTCu+exBQXxeNf7+dvaf/F/jlfVs4OPefJp\nDwdmASeAZ4HuwIvAqgqMy6tyc7IIRiWN8mjWoRcnQh0cO7CDeo2a+zoc8YKcrAzWL53O8tXTWb57\nGSuyd7C+5mkaZYTQKbc+nWu14rq2w3iu06W0u3AQYZG1fBbrNSNf5Il1b7Jg2kT6D3vIZ3GIZ0nj\nWeAr4BLgMuAN4D/AxRUYl1flZGepTaMEJfU95RIUHELH0zVJWTGDPkPuq4SoxJucDgdb1s5j+bLv\nWb7jN5adTmNNzXSaZoTSg6b0bNSd2zo9RKceQ/zyturg0DAeix3Ba4kvK2n4mCdJI9f6PxR4D5iO\nKWlUGbm52SpplOBcd0652EOakJK2iD4oafgzp8PBnrSVrFz6Hcs3L2DZiQ2siDxKzZwgeuQ0pGeD\nLoy7cAQXXjK8SpUab73rnzz3QgPW/fotnS/5o6/DCVieJI09wCTgcuAVIIIq9kty06ahpFFe9vrt\nSDmQ7OswxM3p47+TsuxHkjbMY+3e1SRl7CAp8gQhDuieVZ8edTrwwIX306PPDTRu2cXX4ZZLRK16\nPFhnIG98/zgfK2n4jKdtGoOB14FjQDTweEUG5W25OdmEVK0855fsLS5mxpJFvg4jIDkdDnas/42k\n1TNZu20JScc2kWQ7yM7IbNqfiqRLcDRdGnTk6gtvostFQ2nUopOvQ64QY0a/Q6t/tmLXhqXEdqgy\nNeTViidJIxyYZ72uD2QCv1RYRMZg4B9AMPA+8Gp5FqbqKe+wd72clNXnbv+Q8ju8O42lC6aweNPP\nLDm+nuWRR6iVE0SXnAZ0qdmS69oO4/nOA2l34SBCI2r4OtxKExXdgjts3fnHJ39iwvgVvg4nIHmS\nNFYBzYCj1nAUsN/6uxtY6eWYgoG3gYGYqrHlwFRgQ1kXmJOjhnBviGnXgzPBDg7vTqNBTBtfh1Nt\n5GRlkLJkKotXfM/ivUtZ4tzF/vBsepyOoledjjzc4wF69r2R85t18HWofuHhW/9F18m9eWbftgK/\nHJfK4Uk+AyHGAAAUY0lEQVTSmAN8A7ge3XYFcD3wX8xdVD29HFNPYDOw3Rr+AhhGOZJGbm4Owaqe\nKta5+p5ysQUFYT9di5RVs+inpFFmR/ZuYdHcj1icOpcl6RtYUeMYTTPC6BXUjD4xvXnsotfoePHV\n+vVzMWI7XMzV2S1454MxPPmMnihZ2TxJGr0xJQqXn4AJwD1ARRzVTYFdbsO7KeftvaqeKpknfU+5\n2EObkpL2G/14oGKDqkacDgfrl0xj+rx3mHZoEetqpHPx6fr0rteJsRc/wsX9R1K/SStfh1mlPHbt\na1wxdTiPnDxGRK16vg4noHiSNPYBf8Vc8dswDeMHMNVIFfEQVY9+u52QkJD3Oj4+nvj4+GLfm5ub\no4ZwL7Gf14Hkg7qD6lyyzpxk/vS3mbbyc6bnrCfX5uTq4I480+tx4of+WSe6cup8yR/p/m0DPv3g\nIe566GNfh+O3EhMTmT1jGieO7OX4sQNeWaYnSeNm4Hnge2t4EXATJmkM90oUBe0BYt2GYzGljQLc\nk8a5mJKGkoY32FtezPf75p37jQHo4PYUZv74D6ZtmcnP4XvokFGLq+v35vv4Z+nc5//U/YWXPR7/\nNPcsGMuduR9UeFcm/uzMiSNsWTef1NTFbN6bzM703ezMPMhOjrMzIpPMUCfN6oQRW8s7v+j3ZE8f\nAv5czLTNXomioBVAGyAO2AvciElSZZaTk02wTV9Yb7BfcAUpK5/ydRh+welwsHbh18xY8AHTDy9m\nfeRJBmY2ZWjLwfx76CM0jLP7OsRqrd/VD1Av8Wmmfvos197+N1+HU6GyM06zPWURqRsXkbZ7LalH\n0kjL3Edq6HEOROTS4lQYbZxRtImMoV2DtlzeaCjNmnWmWeuLqN+kVd4Fi+2t8lfTe5I0GmJ+l9ER\niLTGOYFLy732ouVgktRsTGnmA8rRCA6Q61CbhrdEt7qAHJu5qg7Ek+Lh3WnMmTGRWakzmB20jdq5\nwQwO7UDCH56i/5A/EV6zjq9DDBi2oCAe73wfr655m2G3vlwtSnKu3oSTUn5h3d7VbDy9i9Sgo+yo\nkU3TMyG0yalL24gmtG/QjmuajaBth0to1qEXIWERlRajJ0njM+BLTDci9wKjMKWPijTT+vMK3T1V\nMk/6nnKxBQXR6UxtUlbPDoikkZudxYpfPmHWkk+ZdWwF6yNP0v9MIwbHxPPsZZNodUFFXTuJJ669\n9WWeeOItFs14p0o9Etb9x5rrti8j6egm1nGAbTWyaH06nM62xnSOasddbS+nXfs+tOzUz28uSDxJ\nGg0wP7B7EJhv/VWpX9Xk5uYQYgv2dRh+y9M7p1zsYU1J2byYARUTjs/t35rE7JkTmbX1J+aE7qJJ\nVjiDIzvzct8E+gy622++vGJ1ZBhzA6/NfcFvk8bvuzaRsmoWyWmLWHcwmXVZu1lXI5062UF0zqlP\nl5otubrNEJ7udBntul/h98eXJ0kjy/q/H1Pa2Iv5gV+VketQScOb7Od3JPlQiq/D8Kq9aav44ttx\nTDnwM1sizjAwswmD4wby+qA/EdOuh6/DkxLcNnoiz798PuuXTKVjr2t8FseRvVtIWTmTlLTfSDmY\nTErGLlLCj5MZ5MR+pjb2sKZ0Ob8TN7W9l849hlbZ26w9SRovA/WAR4GJQB3gkYoMyttyctUQ7k32\nVr35as8cX4dRbscP7uR/Xybw2ZbvWRV5jGtzWvPqJQn0v/qBSq0jlvKJrFOfB2pdyhvfPsaHlZA0\njh/cScqKmSSnLiTlQDIpZ3aSEnac0yEOOp6phT2kCfYGHbi65U3YL7icJq27V4v2FhdPksY06/8x\nIN56XaWShto0vMvebRApy8fidDiq3Jch68xJZn49ns/WfMLsiN0MONOYMZ3vYMgNTxNZp76vw5My\num/0O7Se2IYXU1fQtO1FXlnm6eO/s375DFI2LSR57xqST28nOeQoR8Ny6Xi6Jp1CmmCv344ru16P\nvevlxLTrUeW+D2VR1pub/wK86c1AKlKuI0clDS9q2LwjwU7Yvy2J6FYX+Dqcc3Lk5rBoxjt8tvDf\nfBO0EXtGHUbGDeWd4eOqbBWBFFS/SStuoytvfXw/r728rFTz5mRlsHH5TJJT5pG8exXJ6VtIDvqd\nPZE5tDsVQaegxnSKasf97QfTqevlNLf/IaB/FxIQW57ryFVDeAk87XvKxRYUhD2jDimrf/LrpLEt\naQHvff0En2Uso3ZuCLfUj2flde/R3N7H16FJBXjklrfp/klfnj64k7oNmxX7vhOHdrNk3icsWj+L\nRcfWsazGUaIzQ+nsbEinOq25pdPNdOp8Ga0vuFTVlEUIkKShkkZJStP3lIs9PJbkLYsZWDEhlcv6\nJVN55ZtH+DFkG6OCujP16il0ueT6gKg6CGTN7X24Mrs57743hsefnpE3fuf6xSxaOIVF2+azKHMz\naTXO0P1UHfrU7sjDF/2Z3vG3qtfmUigpaZyk+H6gqlQH/qYhXCUNb7I3tLN6/xpfh1HAip8nM/7H\nJ1gUtp+H6g7kn/f8UqUeZyrlN3bYq1w5/SYiX7+eRfuWsSh4L1lBDvpkNaZPwwu5pduDdO8/grBI\n73SpEYhKShrVZq/mOnJV0vAye+vefLrrR1+HgdPhYMG0iYyf9yLrQ4/xWPQ1fHL3O9SMaujr0MQH\nuvYbzo0zX2HdoRSubDWIl/4wglZdB6iU6UUBUj2Vq5KGl9m7DyZl6cM+u4PK6XAw84sXGb9sAgeC\nM3ii5c3cMvqffv/DKKl4b/5tla9DqNYCI2k4c5Q0vOy82HZE5gaxJ21lpf74LTc7i/9NfoLxye+Q\na3PyVMe7uX7Ua2qwFKkkgZE0HLmEBClpFKc0fU+5s2fWJWXNT5WSNHKyMvh00p/527bJRDnCeKH7\nowwdOU7VDiKVLCCSRo5DJY2SlPbOKRd7RCzJW5cwyLvhFOB0OJj22bM8uXoCDRzhvNP/FeKHPaxk\nIeIjAZE0Ro+cQG5O1rnfKKVib9SJpXuXV9jyF8+cxOOzx3I0KJNXuz/OkJsTlCxEfCwgkkbjll18\nHUK1ZG/Thw93/uD15W5aPpOnPr+LZcEHeKHVbdw25h2CQyvicfQiUlq6bJMys194JetrnMLp8M6j\n4vdtWcOYxztyybdD6NmgC6nPHuSOBz5UwhDxIwFR0pCKERXdgjrZQezcsLhcXXOcOLSb19++iX9n\nLuKO0O5s+lOa+oQS8VMqaQgJiQllnteeVY/kNWXrJj3rzEn++dofafNGM3ae2suqWxfyxssrlDBE\n/JiShjBu/rgyz2uPbE7K9tL1Kgrw42cJdHg2ipn7FvDTkC/4+I0t6khQpApQ9ZSUi71xZxbu+tXj\n9586epDHXhnAzNxNvN9rPAOvf7wCoxMRb1NJQ8rF3rYPKbn7PXrvip8n0/2lGE7lZrD28a1KGCJV\nkJKGlIv9oqvYWOM0jtycYt+Tm53Fyy9ezlVzRvFC+/uY/MaWEp93ICL+S9VTUi51zo+hflYw25N/\npWXX+LOmb0tawK0fDiWcEFbdt7RS+6kSEe9TSUPK3PeUiz0niuSkgndQOR0OPv7X3fScEs91jfoz\nZ8JBJQyRakAlDSlz31Mu9hrNSdmxgmus4cO70xjz9wFs4Hd+vvYLuvYbXu4YRcQ/qKQh5WZv3IWU\no6kAzPn6Fbq+1Z6Y8IaseGG/EoZINWPzdQBl5HQ6i3sSrVS2ZT/9lztn3cfl4R35Omct/+35Mpff\n8ISvwxKRQmw2G5TzvK/qKSm3jhddyYZFmbRPP8jav2ykQUwbX4ckIhVEJQ3xim1JC4jrdIm6Lhfx\nY94oaegbLuXqe8qlRZd+ShgiAUAlDcE2zobzee1PkepOJQ0REalUShoiIuIxJQ0REfGYkoaIiHjM\nV0njBiAFyAW6F5r2JJAGbASuqOS4AlJ5+54SkcDhq7un2gMO4F3gUWCVNb4jMAXoATQFfgbaWu91\np7unRERKqSrfPbURSC1i/DDgcyAb2A5sBnpWXlgiIlISf2vTaALsdhvejSlxiIiIH6jIvqfmAI2L\nGP8UMK0Uy1E9lIiIn6jIpHF5GebZA8S6DcdY486SkJCQ9zo+Pp74+PgyrE5EpPpKTEwkMTHRq8v0\ndTci84DHgJXWsKshvCf5DeGtObu0oYZwL0pITCj3g5hExP9V5Ybw64BdQC/gR2CmNX498JX1fyZw\nP6qeqnDj5o/zdQgiUkX4uqRRVippeJE6LBQJDFW5pCEiIlWQkoaIiHhMSUNERDympCHqe0pEPKaG\ncBGRAKGGcBERqVRKGiIi4jElDRER8ZiShoiIeExJQ0hITPB1CCJSRejuKVE3IiIBQndPiYhIpVLS\nEBERjylpiIiIx5Q0RETEY0oaor6nRMRjuntKRCRA6O4pERGpVEoaIiLiMSUNERHxmJKGiIh4TElD\n1PeUiHhMd0+J+p4SCRC6e0pERCqVkoaIiHhMSUNERDympCEiIh5T0hD1PSUiHtPdUyIiAUJ3T4mI\nSKVS0hAREY8paYiIiMeUNERExGNKGqK+p0TEY7p7StT3lEiA0N1TIiJSqXyVNF4HNgBrgf8Bdd2m\nPQmkARuBKyo/NBERKY6vksZPgB3oCqRiEgVAR+BG6/9g4N+oNCQi4jd8dUKeAzis10uBGOv1MOBz\nIBvYDmwGelZ2cCIiUjR/uIq/E5hhvW4C7HabthtoWukRBRj1PSUingqpwGXPARoXMf4pYJr1+mkg\nC5hSwnKKvK0nISEh73V8fDzx8fFliVGAhPgEX4cgIhUgMTGRxMREry7Tl7fcjgLuBi4DMqxxT1j/\nX7H+zwKex1RhudMttyIipVSVb7kdDIzFtGFkuI2fCowAwoAWQBtgWaVHJyIiRarI6qmSTMQkhjnW\n8GLgfmA98JX1P8capyKFiIif0C/CRUQCRFWunhI/or6nRMRTKmmI+p4SCRAqaYiISKVS0hAREY8p\naYiIiMeUNERExGNKGqK+p0TEY7p7SkQkQOjuKRERqVRKGiIi4jElDRER8ZiShoiIeExJQ9T3lIh4\nTHdPifqeEgkQuntKvGObrwOoXrz9eM1Ap/3pX5Q0BLb7OoDqRSc579L+9C9KGiIi4jElDRER8VhV\nbQhfA3T1dRAiIlXMWuACXwchIiIiIiIiIiJSjQwGNgJpwF+Lec8/relrgW6lnDfQlGd/bgeSgNXA\nsooLsco4175sDywGMoBHSzlvICrP/tyOjs3CzrU/R2K+40nAIqBLKeb1W8HAZiAOCMU0eHco9J6r\ngBnW64uBJaWYN9CUZ3+C+dlf/YoNscrwZF+eD1wEvETBk5yOzbOVZ3+Cjs3CPNmfvYG61uvBlPHc\n6W+33PbEBL8dyAa+AIYVes81wMfW66VAPaCxh/MGmrLuz0Zu06vqHXbe5sm+PASssKaXdt5AU579\n6aJjM58n+3MxcNx6vRSIKcW8efwtaTQFdrkN77bGefKeJh7MG2jKsz8BnMDPmC/u3RUUY1Xhyb6s\niHmrq/LuEx2bBZV2f44mv4ahVPOGlDHAiuJpr3m6wvBMeffnJcBeTDXBHEyd50IvxFUVladHR/UG\nebby7pM+wD50bLqUZn8OAO7E7MPSzut3JY09QKzbcCwm65X0nhjrPZ7MG2jKuj/3WK/3Wv8PAd9h\nirGBqjzHl47Ns5V3n+yz/uvYNDzdn12A9zDV0kdLOa9fCgG2YBpkwjh3w20v8htzPJk30JRnf9YA\naluva2LutriiAmP1d6U5vhIo2HCrY/Ns5dmfOjbP5sn+bIZpu+hVhnn92pXAJszGPWmNu9f6c3nb\nmr4W6H6OeQNdWfdnS8zBswZIRvsTzr0vG2Pqho9jruJ2ArVKmDfQlXV/6tgs2rn25/vAYcxtyoVv\nVdbxKSIiIiIiIiIiIiIiIiIiIiIiIiIiIhK4csm/13w15kdL/u5C4C0vLetn8n/cdrLQtFHAxBLm\nvQZ41ktxiIhUCeklTLNRvfsmuxT4l9tw4X1xOyUnDRvmR3GhXo5LAoS/9T0lUhZxmF+zfgysw/Sd\nMxbzi9e1mG4oXJ623rsQmEJ+9xSJmNIAwHmY5zWAedbA627LuscaH2/N8zWwAfjUbR09MF1brMF0\nQV3Lev80a3pN4ENr2irM1T+A3Rq32lpX6yK29Wbgh6J3A1AwYa4hvzR2GuiL6ZxuMep2Q0QCSA75\nJ8NvgeaYKitXp3VXAO9ar4MwJ+u+mKSQBERgqnfSgL9Y75tHfhcq7knjHkyiAQgHlmOSVDxwDNMl\nvw34DfgDpu+eLeQnoFqYxBNPftIYj3mKGpjnl2zC9Kf0T0xSANMfUEQR276Bgg8fct8Xq4Ed1nLc\nXQ3Mt+IAuAN4tYhli5yTv3WNLuKJMxR8LG0c5mTp6kvnCutvtTVcE2iDSRT/wzw+NAOY6sG6rgA6\nA9dbw3UwJYBsa32unoDXAC0w1UX7gJXW+MJtDq5lXg08Zg2HY9plFmMSVIwV5+Yi5m0CHHEbLrwv\nbsc87c6lDfAaJmnlWuP2Yp7cJlJqShpSXZwqNPw3YFKhcQ9RsPrG/XUO+dW1ha/w/4x5ZoO7eCDT\nbTgX833y9NkE/4cp6bjbiOlleCim5+F7MSWg0nDfplrAl8BdwAG38UGliFOkALVpSHU0G/OQmZrW\ncFPMw3oWANeSXz011G2e7eRfoV/vNn42cD/5F1htMVVJRXFiqpqi3ZZVm/xqIfdlPug27CoptMBU\ni03EtFt0LmIde4EGxay/sA+B/2LaV9xFY0pmIqWmpCFVUVFXye7j5mAauRdj2jC+wlx1r8Zcea/F\nXMkvJ//K/A3gPkzDdAO35b0PrLfGrwP+Q36Joqg4soEbMSf+NZgEEVHo/S9i7l5KwnTtPc4aP9wa\nXo1pFJ9cxPJ/pWD1U+EYXOtpBvwRkzxd7R2uNpuemAQqIiKl8DwFH+5TFcRjEldZBWGSmaqmpUxU\n0pBAV9Xq9hPJb9Qvi6HAN5g2HBERERERERERERERERERERERERERERHxrv8Hq8ciIJ6tlA8AAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + "\n", + "# Draw horizontal and vertical line\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-25,25])\n", + "plt.legend(plots)\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected (and also demonstrated in Utley et al), the shape of lag-frequency spectrum for both energy channels is similar.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/Simulator/Lag Analysis.html b/notebooks/Simulator/Lag Analysis.html new file mode 100644 index 000000000..86e6396f8 --- /dev/null +++ b/notebooks/Simulator/Lag Analysis.html @@ -0,0 +1,410 @@ + + + + + + + + Contents — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook analyses lag-frequency spectrums of the light curves simulated through impulse response approach. First, a simple case with delta impulse response is covered. Subsequently, an energy-dependent impulse response scenario is analysed.

+
+
+

Setup

+

Import some useful libraries.

+
+
[1]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import relevant stingray libraries.

+
+
[2]:
+
+
+
from stingray import Lightcurve, Crossspectrum, sampledata, AveragedCrossspectrum
+from stingray.simulator import simulator, models
+
+
+
+
+
+

Initializing

+

Instantiate a simulator object and define a variability signal.

+
+
[3]:
+
+
+
var = sampledata.sample_data()
+
+# Beware: set tstart here, or nothing will work!
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.4, tstart=var.tstart)
+
+
+
+

For ease of analysis, define a simple delta impulse response with width 1. Here, start parameter refers to the lag delay, which we will soon see.

+
+
[4]:
+
+
+
delay = 10
+s_ir = sim.simple_ir(start=delay, width=1)
+
+
+
+

Finally, simulate a filtered light curve. Here, filtered means that the initial lag delay portion is cut.

+
+
[5]:
+
+
+
lc = sim.simulate(var.counts, s_ir)
+
+plt.plot(lc.time, lc.counts)
+plt.plot(var.time, var.counts)
+
+
+
+
+
[5]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fdec2fedcd0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_13_1.png +
+
+
+

Analysis

+

Compute crossspectrum.

+
+
[6]:
+
+
+
cross = Crossspectrum(lc, var)
+
+
+
+

Rebin the crosss-spectrum for ease of visualization.

+
+
[7]:
+
+
+
cross = cross.rebin(0.0050)
+
+
+
+

Calculate time lag.

+
+
[8]:
+
+
+
lag = cross.time_lag()
+
+
+
+

Plot lag.

+
+
[9]:
+
+
+
plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.plot(cross.freq, lag, 'r')
+
+# Find cutoff points
+v_cutoff = 1.0/(2*delay)
+h_cutoff = lag[int((v_cutoff-0.0050)*1/0.0050)]
+
+plt.axvline(v_cutoff, color='g',linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-20,20])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Lag')
+plt.title('Lag-frequency Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_22_0.png +
+
+

According to Uttley et al (2014), the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase wraps and the lag becomes negative.

+
+
[10]:
+
+
+
cross = AveragedCrossspectrum(lc, var, segment_size=200)
+
+
+
+
+
+
+
+
+13it [00:00, 3156.72it/s]
+
+
+
+
[11]:
+
+
+
cross = cross.rebin(0.0050)
+lag, lag_e = cross.time_lag()
+plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.errorbar(cross.freq, lag, yerr=lag_e, color='r', fmt="o-")
+
+# Find cutoff points
+v_cutoff = 1.0/(2*delay)
+h_cutoff = lag[int((v_cutoff-cross.df*2)*1/cross.df)]
+
+plt.axvline(v_cutoff, color='g',linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-20,20])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Lag')
+plt.title('Lag-frequency Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_25_0.png +
+
+
+
+

Energy Dependent Impulse Responses

+

In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, stingray an option to simulate light curves and add them to corresponding energy channels.

+

Below, we analyse the lag-frequency spectrum in such cases.

+

We define two delta impulse responses with same intensity but varying positions, each applicable on different energy channels (say ‘3.5-4.5 keV’ and ‘4.5-5.5 keV’ energy ranges).

+
+
[12]:
+
+
+
delays = [10,20]
+h1 = sim.simple_ir(start=delays[0], width=1)
+h2 = sim.simple_ir(start=delays[1], width=1)
+
+
+
+

Now, we create two energy channels to simulate light curves for these two impulse responses.

+
+
[13]:
+
+
+
sim.simulate_channel('3.5-4.5', var, h1)
+sim.simulate_channel('4.5-5.5', var, h2)
+
+
+
+

Compute cross-spectrum for each channel.

+
+
[14]:
+
+
+
cross = [Crossspectrum(lc, var).rebin(0.005) for lc in sim.get_channels(['3.5-4.5', '4.5-5.5'])]
+
+
+
+

Calculate lags.

+
+
[15]:
+
+
+
lags = [c.time_lag() for c in cross]
+
+
+
+

Get cut-off points.

+
+
[16]:
+
+
+
v_cuts = [1.0/(2*d) for d in delays]
+h_cuts = [lag[int((v_cutoff-0.005*6)*1/0.005)] for lag, v_cut in zip(lags, v_cuts)]
+
+
+
+

Plot lag-frequency spectrums.

+
+
[17]:
+
+
+
plt.figure()
+plots = []
+colors = ['r','g']
+energies = ['3.5-4.5 keV', '4.5-5.5 keV']
+
+# Plot lag-frequency spectrum
+for i in range(0,len(lags)):
+    plots += plt.plot(cross[i].freq, lags[i], colors[i], label=energies[i])
+    plt.axvline(v_cuts[i],color=colors[i],linestyle='--')
+    plt.axhline(h_cuts[i], color=colors[i], linestyle='-.')
+
+# Define axes and add labels
+plt.axis([0,0.2,-20,20])
+plt.legend()
+plt.xlabel('Frequencies (Hz)')
+plt.ylabel('Lags')
+plt.ylim(None, 25)
+plt.title('Energy Dependent Frequency-lag Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_38_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Lag Analysis.ipynb b/notebooks/Simulator/Lag Analysis.ipynb new file mode 100644 index 000000000..42a45e543 --- /dev/null +++ b/notebooks/Simulator/Lag Analysis.ipynb @@ -0,0 +1,481 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook analyses lag-frequency spectrums of the light curves simulated through impulse response approach. First, a simple case with delta impulse response is covered. Subsequently, an energy-dependent impulse response scenario is analysed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, AveragedCrossspectrum\n", + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instantiate a simulator object and define a variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "var = sampledata.sample_data()\n", + "\n", + "# Beware: set tstart here, or nothing will work!\n", + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.4, tstart=var.tstart)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For ease of analysis, define a simple delta impulse response with width 1. Here, `start` parameter refers to the lag delay, which we will soon see." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "delay = 10\n", + "s_ir = sim.simple_ir(start=delay, width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, simulate a `filtered` light curve. Here, filtered means that the initial lag delay portion is cut." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEFCAYAAAABjYvXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACIxUlEQVR4nO1dd7gdRdn/zbktvVcSQgqhhBYghF6kJnQQFRsIKKKgIqAG/BREUVARQZrSQaUpAhI6BAhSA4SQ3knvyb1pt5xz5vtjZnbfmZ2Z3XPuubltf89znnPO7OzM7O7svP0dxjlHihQpUqRo38g09wBSpEiRIkXzIyUGKVKkSJEiJQYpUqRIkSIlBilSpEiRAikxSJEiRYoUAMqbewDFok+fPnzo0KHNPYwUKVKkaDX46KOP1nHO+9qOtVpiMHToUEyZMqW5h5EiRYoUrQaMsc9dx1I1UYoUKVKkSIlBihQpUqRIiUGKFClSpEBKDFKkSJEiBVJikCJFihQpkBKDFClSpEiBlBikSJEiRQqkxKDNIpvL44kPlyKXT1OUp0iRIh4pMWijePCdxfjpv6fhsQ+XNPdQUqRI0QqQEoM2ivVb6wEAm7Y1NPNIUqRI0RqQEoM2inQDuxQpUhSClBi0cTDW3CNIkSJFa0BKDFKkSJEiRUoM2hK21WeD3xypnihFihTJkRKDNoJnpi7HqF++hFkra7RyhlRPlCJFinikxKCNYNLsNQAQIQYpUqRIkQQpMWhjSA3GKVKkKAYpMWgjUBaCVC3UfvHM1OXYUpeNr5gihQUpMWgjUHEFqWTQPvHZsmr86LGpuOapz5p7KClaKVJi0EbQ3nyHrnt2Bva59qXmHkaLwVbpSbaqpraZR5KitaK8uQeQIkUxePCdxc09hBQp2hRSyaCNgJv5J1K1UQoDm7bV4825a5t7GClaKFJi0MbA5OofGpRbD5Zu2IahEyZixorq5h5Km8R3Hp6C8+//ADW1afLCFFGkxKCNoC3YDF6ZuRoA8OSUZc08kpaHTdvqkc3lG9XG/DVbAADZXFuYLSlKjZQYtBUotVDzjiJFE6Aum8Po61/BL5+d4ayTZqlN0VikxKCNoTXbCHbUevbfT1dg+vLWo4qqywqJ4L9TV5SkvYh9KUUKpMSgzSBNTJccP3j0E5z6l7ebexgFgz7hT5ZsxNAJEzF39WYAyZgA056UIgVFSgxSpGjhsK3zz01bCQB4c05y7yDVTioYpLAhJQZtBOoFzyjur5Fv/N1vLsBbzeSG2JpVXS0ZpbqvDbk8TrrlLbwxZ01pGkzRIpASgzYCXmID8o0vzMZ5939QotbaPhas3YLXZ69u7mEkQmNViqtrajFn9Wb8/D/TSzSiFC0BaQRyG4F6wRX3x1L2eofiuJvfBAAsvvGUkrdtW7oblYuqkWqiNA9W20QqGbQR5IMXPH1D2xpKp+MXcyPfyPbyckCZlBq0KSQmBoyxMsbYJ4yx5+T/YYyx9xlj8xljjzPGKmV5lfw/Xx4fStq4WpbPYYydRMrHybL5jLEJJby+dgOTW9vR7oMNjQyIAuxjnrWyBkMnTMTSDdsa3X6rhbwt9P4Uo+oJ5kYjRYN8YJ9qVDMpWhgKkQx+BGAW+X8TgFs457sC2AjgIll+EYCNsvwWWQ+MsVEAzgWwF4BxAO6UBKYMwB0AxgMYBeCrsm6KgiDVRM3Q85TFGzDy5y/gnfnrSt724x8uBRBGJzcnlm3chrpsbof3G6oAo0+3EHUg5/p3sShGMthSl0X1tjQNRktGImLAGBsM4BQA98r/DMCxAP4lqzwE4Ez5+wz5H/L4cbL+GQAe45zXcc4XAZgPYKz8zOecL+Sc1wN4TNZNUQBCyYBp3zsC7y1cDwD434LSE4OWgtqGHI64aRJ+8uS0Hd43t0kGjVjQGyszqnEUMsUO/e1r2O/6lxvZc4qmRFLJ4M8AfgpA6QJ6A9jEOVfbKi0DMEj+HgRgKQDI49WyflBunOMqj4AxdjFjbApjbMratWn2RYrmTEwXBDOVSDPVEndrU1HAaq/pYjB/zRYs37S94PNKpfBTi3e+kUYDpREsRDLYnO7A1uIRSwwYY6cCWMM5/2gHjMcLzvnfOOdjOOdj+vbt29zDaVFQ3FqmGV0CmtJK0WLipBpBp47/05s4/MbXCz4vif1nR5qIlJqoLDUatCkkcS09HMDpjLGTAXQA0A3ArQB6MMbKJfc/GMByWX85gJ0BLGOMlQPoDmA9KVeg57jKUyREU+6BzDnHonVbMbxvl5K3rffTpM03Ds04Nm58UxTlWVoim0Hqvty2EMtHcs6v5pwP5pwPhTAAv845/zqASQDOkdXOB/CM/P2s/A95/HUuWJtnAZwrvY2GARgJ4AMAHwIYKb2TKmUfz5bk6toRuENPVIo17Ompy3HszW/GbozS2EXmttfmAQCWbNjauIbaGJLcV9e6vK0+i231uoqmsd5EYbR7o5pJ0cLQGKXCzwBcwRibD2ETuE+W3wegtyy/AsAEAOCczwDwBICZAF4EcCnnPCcli8sAvAThrfSErNvs4Jzjo883NvcwEsGkBaV8Tz9bVgMAmCeTopkoFYOo9Mqra+pK3nZjoRbQ5vCtty3eSY24o375Eva9TjfcNjbOIJdv+XEGE6etTDfxKRAFEQPO+Ruc81Pl74Wc87Gc810551/inNfJ8lr5f1d5fCE5/wbO+QjO+e6c8xdI+fOc893ksRtKdXGNxd/f+xxfvOsdvDar+d0a48ATiO5PTlmKo/8waUcNqWi0xAyszRp163EJTTKcrLH6NzYGJXAtbaGiwfw1W3DpPz/GT578tLmH0qqQpqPwQO0M1RoCntT7nc3lnf7+P/lX07pFtsRFvFRoTm8tazoK838Bt76xT6mlB51trxexIMV4brVnpMSgjUAtxDe+MBvz1mzBEbv2EeWWN59zXlLjX2C0LhEtoGNuKUblJJJXUyFfhF+/D429p4HnWgtWE6UoHGluogRoIeuRF+oFnyelmY3b6mPrJm475g60hzWhWSUDz+0PgwwLarFR4wltBo1qJkULQ0oM2gjMBSPjWSTiloKmymt03bMzMOY3r8bWo92XmtAUe23NaTMIXEtL9FgabUCWA/lwcetwrkiRDKmaKAFaAwNkcu8+rk0siO4KTaWaefCdxQWfU+qxFNseb0bZwEbAGpWOorFxBo3PSdikaMu2q6ZEKhkkQGuYWuYL7tNtx11PvsDVIthOsaCzCkOpluBix1ioZDB16Sbc9OLsInuz921DmKW2gPYKvAu1DTmM+uWLeOEzsdVmtsTU4I8vzcFTHy8raZtAy0xr0pKREoM2AtfrbTcgF9ZW3EvVXGmzi0GhhE6h0NPOvON/uOuNBUX15RwDeTKN4X4LvZaV1bXYVp8LiFs2V9rnfPuk+bjiidQNtLmREoO2AuP9nLp0k6eq/2UudsFsChSTIdPfXnyd2oZcZH+GMG1zacbhw5tz12LB2i3Bfx9BD4IMCxDPiiaI8tuMW2ipSNVFhSElBh60ptwrhUx8uhZUb2uIcPTNRQt6da4EAOy3c/dwLPI7yZOo3tYQGyCYZCHc4xcv4uw737GetyNUD+ff/0GwjSYQ82yVo0AB7Rf6fAM6I8/LtXBikKqHikNKDBKgBTHKTphj7Nu1KvacZRu3Yb/rX8Y9kxdq5bSt7z4yxbkYfbJkI7KEg27sfTp5nwEAgD0Hdou0mYQw/+CxT3DRQ1Owuqa2cQMB8Nnyau1/sd5EpVCd+Talacjmkc/zIBq4UK7/llfmYr9fJdtnQF17rjW8ECXEhq31jU773RrQbonB5+u3tgodNwA8N20Fzrjjf9465iLg9yYS30s3iAjNV2fpOfppWy/NCDltuiB/unQTzrrzHdz62rwdwoklWYQXrROqlboGt4GzsTaDQq+0FFPM1sTmWpHH6frnZuLHT0wNxpXk+miVW1+bh+rtheXwyZZgi9PWgnVb6nDAr1/BLa/Obe6hNDnaJTGYtbIGR//hDQy7+nlvvWAzkGYmGpf98xN86rEBANEFQzEy1iRnsizYTjFybrzaSHHfs1bWOMdQLP43fx2GTpiIdVvqClJ/KScXH+ForGtpoarDUtwTWwTys5+uCH4/M3VFMC4fA1sIwbAhSHnSBrjk9VvqsJDYZVxYt0UkTXx5RsvPT9ZYtEtisLI6Wc6SlqZ79Eky5iHf+x51Q9X/u951Wo0uiqU2rShp5KPPNxbNkbtQ7DJW7PpXSjWRD0oS9M4R4zsp6POdtmwT7nlrobtyM+HRD5bgt8+LLdqTMBDH/OENHEvsMoXikyUbC362P3nyUwydMLHoPpsa7ZIYVJaVJaoXvmBNOBgLXpy+EnMt6aK9C3ykrtvgySM/YhqzYLNMD/z5+jCJX+Nz3uj/c3nyWiegOEk8j4rniovzairN1JGSnNeOzBL3VyyBWl1Ti9Nv/1+Q8kRh9qoaDJ0w0evB1tS4+qnP8DeDSPmYuaTbcNpu1aQ5a3DWne/gkfc+L2iMT360TLbZMiWrdkkMkqK51ESX/P1jnHjLW5Fy7yiMMfrGrCZj6KmjvzSuc+lC+ML0VQAQWRgUVlXXFrw4+K4vyRocXI8v4K7IR6kkg8INyMX1V2wbiWwGRY5D7QNt4o05YtOj52VQWluHymI8b3W8mqk1oV0Sg4aEEZSFcFvF4sIHP8S/P0oWfZlEBaDgtxmo9sR3VE1k2gyibUw3vG1MHPPHSTgzxugdGZepvrKUJTk/PhWH/v9vby3A2s11jjOCmnJMhdoMSqAmSlJHXleSqV0oZxpXvVzecDM2o7lB7/32+hxmr6rx1N5xaKGCQfskBt06VCSqZ/pXNwVen70GV5ZgE46ozSC5fcEkBi7CQqvF3ZNaj0dPYRAdbUkg1ieJBTDHPXNlDX77/Gz86LFPYtoW380pGSRpyicZFDuf41xJFTFoyfEHP3j0E4z78+TIFqDFoNHq0EaPoGnQLolBUrVPKBm0jMfnG4U5Ru8leqQGIHp/bPeLnlu6+6Sfn8kwLFwr9kO+8YX4PD+hmshdx7wWtYApV01n2yU2ZBeCJPfVlPa8dQrs/5F3/brxsjKxjLQULyOVsZfeiw8WrQcA1DtUXXEopZPEyurtuPGF2S0udqFdEoP1W+JUAgLFJAFrShTiIeS1GRgGSZOTjrYl65E3gs7jppKgOlSUJZIIFJIs2MV7EykDcnNkLU1et9A4gySIVaHtwFQdhaCp1trGToHLH5uKu99cgKnLNpVkPKVCuyQGl/z940T1Wtjc9nKIrgU8Sd2kNgNab+zQXgCAYX06uzsqEFFvonyBqgfdMG4DvbZZK2uwuqZOnuPvJ6lkcNWTn2quyyU1ICd4psmIQYGDirnovIOpaC7YEicyi7SQBL68UMVCSaHlLYx6tkti4MKWuiyGTpgYeEUE3kQtTJyzIarn17l/6zFXWw4pg07dg4cLYnD4rr0LHGlyZHO8IGLgS9sQVgp/jr91Mr7z8JREbecTUoN/fbQMh/7uddJd8XNHea3Y2th/SA+jJJ4QhkFnhY0jbskqdTLBxqKxROnZT1c49xHX+imymznSbbyirGUtvy1rNM2MxeuEfvr21+cDCCdVSyEFfjWRwc372nGcoxC1GbjHUkpu0BxONs9xzO59AQDj9hoQf36CPlwLYVJur6nXu9qGXPD7SpnW2TY2ylXSRSnJdRRKoOJUY6q1pt4T+d7JCzHPEn9Tavzw0U/wtXvfj63XWAmhLEYymLmiBhu2urevLTVSYmDBzJU1OPbmNxIFneXyvEUEkRTjTRQaXP02A7uoHHKDTbWfQTbP0b2j8Pwa0S9eHRVKPPH2kkJRrM2g0FtC8wRtrsti7ea6sA3Hop9hLPi/SDI01rFEfiRDnDZjRwjOnHP8ZuIsnGCJv3GfE/4O5miJxkLbLBZxrrgn3zYZ59z1jrdOKdGuicHOvTo6jy1cuzV42nQBWbphG7bXC+5tdU0tRlzzPB77cKl27vw1m3HtM9N3qHrJXOR86hWzrjmnnYSFzH66PpUuVYTecTaXT5RzJzg/gZqoWHpVrDdRY2bArJU1OOiGV8P7Qhqj0luhuudCx5RUTdSUkkFB6kIj91ZTobFX69skSN3ThR7iXmq0a2IQu4OX/KYLyJG/n4TzH/gAAAK3x/98slw778IHp+Chdz/Hkg3bUEoU5k2kym1svfFtIGJA9vTXlN412RwvyKMriWTiMrDGnWpLFpcEpQjw8j1CQOie1f/+3dypyxubqM6FQjb+eeLDpUWlGC8kbbbyfqIqFu57HzywJSh0SdSFwrd9qCvauynRLolBny5iE5W4lyL0Vxb1lJvjB4s2iHJH1k+FlmBQs+r75bd6WbYa7puuOAMt6MzSV2OXGJvNIDwW33qS4KyiJYMC6laWl/a1svVNn2tZJlQTJQkCLrVW0yI4OvHTf0/Dtx74sOA+CpEM7v/fYgDAui2UGBR30UmJ8xf++Ab2vz7ZvhAKipm0IS62oynQLonBLr2F/jlufph6xjmOcPYdtej7deGOcs9kvn2SMJRP+Xyjdtx873zv4YeLN3j11I1BNp8vKPo2zjAujvnPdZ+XXBVCA5sKXYKs6UMsthB6jRVl4ZhyHm4zRiCMPS/ueFI10ZoiJAM6B+NSodhQ7LXbAy4F6OUuWrcVG7cVti/ET/41zXnsBpmBdUeifIf32IIQxy2YaiLnQmKUl1o95OqHwqn+sOYmkouLs0GHZKAZMEXZjBU1mLGiNDlfzNEo2wyQzL03kfRQtAFZfDe1AdnahnU81GaQCa7dFQV895sLyJgKG9RRI/vimakrnMfVWN6TEnMcilGv0Os99S9vAwAW/PbkWI+cAEU8hxHXPI8TR/WPNhVIyi1A9C8h2qVkoLCiuhYPvbPYedzMWhp5z+R/F0dU7vAjvnfyQsx3ZPukL+rJt07WuO6aWg/nkZBQAcBTHy9HPu9eFl3XGdeuz+soCcyqf31rYXB+Ep3xVkk8fKkl4miK090271cJuhsssHrC+0oFgHIiGbiIJk3nUSiB6lzlT/mu2ovbgCmsX/jKbDtlxDXPawyDgjcCvYCuc3keZOfd0bjw8GEAgAMi8SRNh3ZNDADg2mdnBNv4mRPFzFpqTmJX8rLecmN3G9OSywsXudNvf9s6Hvouz1xZg1teCbfbu8mTnycZjy/wh5fm4Ompy9GjU6X1HFM/m3QzeLuKw3uK9/wzRw8ihvDk7Yy/dbK7D6cBWUlL9vMUMco0wxtjCyCkwyzPsOC/Lz+Qeq6FSkfFElAX1m+tx4vTC0x37ehis49Bij+9KBRiIykGddkcunQQSpuhJYzwj0O7JAbOBcExZVR1+lLMWllDPA3MduL73mbhaEQf+tmriH51e4P9HNpu0vKN2xpwzgGDAABfGbOzdwxqEdHURAlfr8a8hF07lBPDaGle59iFzVUuD0xfXoNH3l3sbYOm6Ch04bXVbrB4lug2g/A19jlFNDiYHkBXI0X7ch6SffqP21DoNpJuNWgUx+/ZDwDQqTKUaGx2l0KgO08UKSUmxJE3TcJtr80DAJTtQC+UdkkMTKjpYU5qcwLRiTT+1snOKFzlpRPnEmhLp+t78fyxA45yp/oovJqKcmNzG2PtsaWwbpIQCvP+I7znLjVR4SoHf33XokPLf/HMDG8bPTuFKdILHZ5NzVNvcRHSbAZlmaAfn2TgIwa+rLBJ8zYVAtNpIQ6FdDGwu4gfGjWwW+z5xcQCNbVksIYkBmzqqG6KlBiAGoi5o1z/Do7Lb9fzsk0z+hKP+uVL3uNmI15i4Fr0Pa+RehFM7iO68Ba/8jc2Klldsuul/W2BXhdx776bGCTvgzt+JzrXcoIt7TIdT0UZC3z3fbe7EM+suDHpYyn8GRe6EU4h88iWeys43WhmYhG7s4XvfdMv1NNXVKO6QC+lYhFLDBhjHRhjHzDGPmWMzWCM/UqWD2OMvc8Ym88Ye5wxVinLq+T/+fL4UNLW1bJ8DmPsJFI+TpbNZ4xNaILr9MJlIFaLYrCLlMv/voBJUeh7Q3XU3kykMSouE9k8hwqANMcftRmoev524yShOETqch402uCI1rxn8qICevBJSv7jhSx4mm5f/kmaR9/Wj+3azQjkK56YGj8uTx+FjsnWbiEY3rcwXXghkq+truv9SBrcRc8O1KaJznTjuD36xdaZsaIG597zXiN7SoYkkkEdgGM55/sBGA1gHGPsEAA3AbiFc74rgI0ALpL1LwKwUZbfIuuBMTYKwLkA9gIwDsCdjLEyxlgZgDsAjAcwCsBXZd1mgLEIKoOb4k4dDLNrUhTDFZsvXleyK5t/X2NHuaP+mpq6YHyme16hm9v4+irkFtgin9U99/nPFyLqF6vyKFbCUalKkuqqbfe6PpeTbdDxhL/LM5mE6Tr0+VwqFHNvjhzZt8A+CqnreU+M/zRGw3curXXzy3MAAIvXNy6+pmdnuwOHiVkrd8x2nbHEgAsoP8gK+eEAjgXwL1n+EIAz5e8z5H/I48cxwXqeAeAxznkd53wRgPkAxsrPfM75Qs55PYDHZN0mg/m4XemeA8lA1cubi5WSDPTz1ARLyj3rY9H/n0D8nIshBq5zVmzaHnA4pteTeZ22fPVJX845q5JnmYxoyHh4j3268JdnRt3/ah3GdhdNUf041UQFaDVoC+r6k94v22U2ZHUJVdQrfAEOT7Gf61LdxHVlk4RKjca4KAPubVijjFB8+50rhadPhwq/y20cmuhWFY1ENgPJwU8FsAbAKwAWANjEOVcW0GUABsnfgwAsBQB5vBpAb1punOMq32Fwcf7q3Qh1rQYxkH+31JrpHDx9xXKm5opI2i0mXYmju7HDehF3Sb/NoDGeGKfd/nYk4nTohImxQy3LMHDw0DDqSeplE/U/chgoY++/o7ygxZfULfSO2RY9ZUCm8yqv9VGY1OGan04C6rj2XXp3ihxPuvVlqRL+mdc+dMLE4H7Z7qWpAjWdP5J4rZ07Vnjf7UkM1MWgpWynq5CIGHDOc5zz0QAGQ3DyezTloFxgjF3MGJvCGJuydu3akrWrHkk0jkBfBDtWlBvHxXc0nUPhHLzZZji2sMAXeEX7rCSuhq4zBvfs6DQgO7nnGA7QNbxlm7bbDxig18Bke+p+FLq/bt+u9oRtcTaDJN5EcdDVOX6JI9pPtMzGsdNnVKjU4arvcl121bdtluMj2o1BIbQ4MKZbjh124+vBviVA9J0yn5Mv8V9jNyrL5XkQ49QSUJA3Eed8E4BJAA4F0IMxplbHwQBU6s7lAHYGAHm8O4D1tNw4x1Vu6/9vnPMxnPMxffsWpnP0wWlANmwGSfWLPmNknBeFy6MJ8OvGVb3K8oyR995+Toax4HpNUdn1guiLnHUU1r66VCXMekJOZwy6a6lHLLKlJIhb9F1dc9JNXZakwyhyjVOn0fOnLHanbbARjZmWdB/0uRYsfbiMqQ5Viqv9MCiTSgbJFreCs786RmELhFQGd9ez/pTsPexiABVsr6t6lr99fjaue9bvZuzDM1NX4MQ/J9+foamRxJuoL2Osh/zdEcAJAGZBEIVzZLXzATwjfz8r/0Mef52LO/4sgHOlt9EwACMBfADgQwAjpXdSJYSR+dkSXFtiuNRAamIoomCKkMWsD+8uWJ9oLOEYouOxnkcCYZLGA4TBZDEGZENdJvqLwuVVldRXWpcMZCbOBJLB4J6dImWuxcOdwlo+Y3L8lZlhYFSx3kRqGHTROefud53n2vqx5bSnt6NQPb3rVq537KoVZ1Slh5NKBrZF/HceN2E3EY9XBZn4i9zJ0FY3+t8f4/GgJ51NEvgyl+5oJJEMBgKYxBibBrFwv8I5fw7AzwBcwRibD2ETuE/Wvw9Ab1l+BYAJAMA5nwHgCQAzAbwI4FKpfsoCuAzASxBE5glZt8kQmVgOTl5x4i7JIe4ltE3ULXXuvDm0L1sbSTa5pzuP0fLo2MLxR9VELsmAcKOWdl1ic9LFSqvGRH+q7yQbgTjbouUxY6CLwWX//CT4XVicQbRy0vNt41a6eb29RkgGjptjSr6+MQEIqAFtj+7U5h2DZdR/fWuhs34hxFgxDq4zqA0r4kZtrP02wlIKw29iaXkHInZEnPNpAPa3lC+EsB+Y5bUAvuRo6wYAN1jKnwfwfILxNgnCLJ56eS4gAuq4W4VjbddyvFCbQVIOUB0xOS4fh1wjDd+T563Fj44fGRyLSEC267C068pdlPTdMW0G4GHfxURfx/VhayNOcigU8Rliddj679e1g6UeHZtxLM8jTgFJkIT7vurE3fDHl0W+LJtk8P6i9Yny6RSqKneNzTYtcjZRlqBP16pg7rveebN9rpU1nhq4CG9zIo1Ahtt4qCZsoCYixzOsODVRXPbNyCJL6m/Y5t4cW1XLJJUMeCjixhnAw+A7z8DhlgySvjyaYBBkjBXfDb48/QUQXVpu2/a0JAZkUjVmXbL0k6xvk7jQ/FJxxvZCd3uj5VXloTulUv/R7kb07eLtO24MhcJGZOMkg28fMTz4bb6PcWojwD/2pDEvnSpbnmSQEgOEk+ZzI4gkVBNB+wZEoE+cbtJ2NPYckxaQ30s3+LxyRE3GdP486Z4FFCbXltSA7LIZcJ6MM45IXgiJ40aHPtvZlscZUWHfQT0ixa7nQ2lR1w7+F9l2qcm9iSyLj01VYfzeqUdI2AqdY76+RXn4mz5iM8U7ANwqE6zFQY3R5c5qohCHAKVSdF1Px8pw2Xtumr5PgytJo17HPc5/fbTMfZCgqsS74ZUCLW9EzQA1AcwEZCrCMCAKZBZkMvEvnU1/GrckRI23CblqWY3Bvl9rtB/g6wcPSTYG9ZfqqS0vmstOnOc8YYQsaQsMnIdxBovX+zYMsnHOrrGEv22qFJcAktOu3TMU62gaZzOIlRY418YX59FTqD0lzpOHzoVC024kzVFEx3DuQTt7asa/l/k8MKCbUL39b77u0GHOfdu99DE2P/23e/cyhcN37d10KU8bgXZJDMxH6Xq278udm0IDclixPJPRUgfbcOYd/4uUxc0Bn2TgPY90oHsTuVUCbkJhcOgWycCGjo6IzKSSgWYzYIVIFLFVrHWp2lYVJ7EZFLc5S1KiHq1n9WghCx43zitGYvWN0dWcuS0sAHx5THShtrUbbBaU2NMs/E1die0qQu48BgjC7urWmZdLaz9utH6wFrpHWrskBibiIgGVI4vGVbJQR97PEeBkw147+aMWowtx+LurxwNB26M3gc0gz7nz5XdtbqMxo7YxOMeWjDOmVZj8n2SHM+tYEqhCyiw71Zj9NVijf2PGQ9ro07XSOUb7+KJl9RZPKkMw0J5ZsTYD12n0emyLd+y8sBSazhlx4Npzo5KvhXjGEAPOudPd2Z2uhNRxMEtJITz+Wh45SIkBEPumKi6GvnBlGUYmtPvc9VvqtP9x08acV4VGrmYikoGjH5gLipuzDI2gflWJW/3AE12Hrptm2iLnc8UrVjIo1zhM+SyNa1dRuYWmf1BZOVUMRDE2g9P32wlAvK87h64mCoMlPQ+/gAN0PtC5xQIDcnjcpta0XXuQ6iWhVxFtgS7ktkt8c+5a2Yfretz9JGE+XMGpSWHa9VoKUmKA5Hp8kzsJ54C7hWnLqvW+YiZbsSJosEk3Y7rNwKP2yDsIgIsg0WJ71tLCOE7bmBSYbC+MJi3sxrhTeoflGY3DtI9VLVaFSAZASGjUfU16D+gzGTusFwB7jIXpWkpvj28TG6Dw5+RUE1mOWw3glvODgM7EkkH4u8zy3CiUo4UziI6cNbin7lGWZGF32tQSQtj1CjtnRyAlBnC/NHsPEiodm2tpWYYFC4tvAq0zJIM4e5kvfbRvzqlj5kRzi8r6JJ62PCRa0UR10bas7XrE8iScsVZF2gyChc17noUwJWCKbSafaJR5lBglIeiK98vHcemWc8PxiTbidjoz1URr5U5ZhauDXOWESFu8ifRsqrb+bJIBdx5zjCL4ZZPoCgG9X6baNpnNSD9WqJssYzt2B7OkaJ/EwFzsHEuN6aKmGbEYc6apoDBTJRS6UUih7wqLqIkckxtca5vmv3HaDDzj9PWV58m4J/oc1DXY3ARtLqjRtuwwnQDCNqPHxX/57ZGcon1zzFm9WTs/6XPUbBpMly60PihhNs5Tjg2uLpPYU1zlupoo2p6N07faDAokBrSaTaJznOUszQbvrn1cvv6TuJ/6YHr8tRS0T2JgQD1bJZYrmCK+qWJQx2tqs9ju2OA+buMYE7YNXpKAvq5JXEuFaiE8Sie0awxF2wy421hNQVXj6hpsKo9EEdJODi/8bePOXMbBnGcx8PXxl9fnJTonbDv8rYYXt9MZ51wjVq79OYL6ThWavb5LmlX3T09TYiEGnlmcnEiGv8tibAa2c8xOlR3GtMc47QwO6ef4Pftrz+LIkX3cA5LIMOacn8XsyVwqpMQA4WJ3xK76g1QT4/XZa7T/gLIZhP9rau05WUxVRCxX6VMTeU4OvYmSSQZ5rhOKXmTXJZdkoPVntRk4xobCJQNAXJNNTRTR6xcwFt2bKCzfJom5KxlhoVlCFQ+QNeZQHDTJRfq+2nzdXVHiADEgF2gbSJLcjzIaVptBwiCtJCpW19h0Bst9fqXD9TvPqerXHJejf40Y0ErcysT4oJwjbEhqQ2kKpMQA4YP2vWDiePhbNyAn5/wKjkAm/31nqmOJE9UZevyB3cP8N+YQrdxKAZJBPq9LBu7gNGh1qDgP370uREohv6lrqbLtuFx7TR29DxxAny66u/GnSzf5TwraDhtXnHcSA7JtLjrHmUBqco+JlFvOs+UTtDMT7mNxY4uLM9itv0iJMbK/PTUG5zyU+o25nciV2ZASdNVe7OlYWb09kUpuRyMlBiAvvDExzJeQHqc2AyC5G1u8msgcW1jgS4OgqjEjibVTXWL0pXHejsCbOMLkSwKnnesTISQyknsKJQMXZ1YgyKnllghk83mFjIK93NoFIbQHDe1pdusF5TIzhqrM2R90NZG5Q1+0vqPcxa3S7i0qmjjjus19lFvmlA9OYmCp2zkmIyhHuOj7chHZCB+gPyPOuZGzLJ4aKAO/DbY4h06VjdteMylSYkDg8h/u06VSHtdF1XcXhqHsLvHQF0SWtH5nORmGebJB0v2Y6VB8gUQubteVvCtON+xC3uir0pGXxTRU5jkPCLLXZmBtLZ7zsqajcNhLCnEn5GSMamGybcATNz5FrOKCyDi323ycah9He0m4VXoZtghku2upuyx5EkP7gms73RYXpLXFqZrIfK70/pN5qjFCXCuOm1Mmjtuzv5Mg2yST/t2iWWubAu2SGJi326YKAMIHo1IIm2qiidNWxvYVEUMLVRMBKJe6T+8CJI9ljIAWb4ZKjVt3Sznmjm+2cZpt6Af0e+7idGgdpSayeTJFuXTbWBxDoc/QZkB2GKej6jsPYeQkc6Y8dOKoAfYBmf1T6UgRA8Kau5LWmWoj25hpfdu43RKDfSG2BZ3Zdwazj1nUT0gMSLXymAjkbBwxIMd872e5Q+cTUdEVuAUpY8kIbzCOxu6vmRDtkhiYcAXAmO5vZpyB1oaT27L3FTcW+j/r2eBbwVxIbeVmfVcMg9mPMmBqdWLGQGHqVZ2pALR+maYL1/S0jliAZGOhzzB6PBJjAfui4QtC46S+OpT0fbYtvNSbyCYlRKQ8NeYY24B5OElcgiYZWI7HBZ1967Ch6NOlijBg5tj8YwbibQZxLt/ifsm65vtmOIkE5zjGaEq9SSRmZjbo6N82jqZESgxgN4QB0UllRiBfdMSwsA3Xwy1AvUD7ou02GC6uVshjIs4g3mYgchPp/YRj0OuaXK75m7ZpH5rel2tqa3XkG2PT2buC4uLKRIshbLmJosTb3mfeWBAUMkzXI7ucE1yg/SuOkNoMbC7MJmFXF+nKs+NU0TiGSK/dlkgh1mZAyob16Rw8W1t9Nzev3+Owbct4HSogBUpQI+88KaCJKH2BdVr0vrVHHUrqtcF2/S4JpdRIiQHIC+sQGW2cRhlj2kNyvezRhcs/XaKcabIAHXUsw1gBEchRbtI2hpzS28NeP66vPDcXevvkjqSj4HYCmCya2c0VKtjE76iaKJ4Qm1IPR3QhTuo+btM/03lXl7PEs3D7IuLbEMg2pmSupVq34tvDSJj97DO4e/BsbWNw27jC35kYNZFLBaRA1W5mDdN93AbT1kbHlmRuMjBnPduQberMpkBKDED0lzHqEVOfm2QSRDifODWRqY7IEzc4z6nqUPIIZONFoNdielUltRm4xmaI0nRzEdf5KoW1njNJveTJ+rWPRe/DhCugzR//EZareWFmzkyqG7cZa+mi7rrvNpVfXDStuZA6M3bS67NwGj5GAsbYyhgLPMVsY3TN1xWbwo2dtCgDblNrcu3bhBbE55EyKbNACZDuhad7EyURABlz7xVtu/5UTdSEiEjH3F4e4e7ILGAwPTjsfUVdS/1jMyewvhC4Tw4S1UHnvH3eRK5AKnNCxm2WEjc+Uwpx7pVMF2owmNlOQ27Szr1rZY4xuu7HKfsOtLYdnudeNCJqIvDEi5wJWq0sMCDTeWa5Vs6tRkzXYuiKQ3BKt3TeWyQDbXrEEYMM0wyoNhuZDVc88Wn4x6Di5r1WnL+LGNL57JMMqOSvezCR55H3R+/bwABs2mYnBrYxp8Rgh8I+MQPJwDJxOexcq4kkC5dW3yQG2WQTLZQM9InjVxPZ60UlJLV4xC1KrrEZ9omE6ghTBHdxvLbWfGMJ+wjvVWXgsWVfnHyOALqBlekLc4wx14TJRQM6J2tb3zj0Z6b6zDriEwq5j+aYbG6dcddmShaM9BUlSPY2XGm0OY8SvfqYbS8pcTWr0Puo566yn8PBY99pE74oZRsx2FFJ7VJiAPekDjxZjP+qMEmKgkJdS12bq4i23Oep06IRyO6F12UzSOJeWQgxyOfjVUxmuVowbJ4akfO5W9cf14eCeuGiQWfyGkyiTn6bi2XWotZJKFxpcyyQDPJ0Dtjvu+16XZJBnOTgqg+YkoF8HrRuzPlCMmCed84+JtpvRpN8o1JYQ6xk4L5ulzeRa4xUJaj+NwapZNDMCDklfz3TgyTJJEhqIFOIqIkoMUgogupBZ+4FwSkZJNjtydasT8USGrh990rn2k31UvCcIgsztxre4/rIaAuMq235bTRIo2rp7wwzJUZ7uy7Q8Slvloas32ZgLojBYm/LDUH6cBF9E3pUblwEsrs/IHTnVYRkwdot+hhikuIBUVWV651xvWu6Adlg1jTJwO5aas5JSugTvaOetd02T1JisANhm9S24+a+szmLOsCEzyXRBvMFpRuMJ5to+g6rrjM4otdTSD8udQUQvY+cHEsq8jJmUS+phdXSeZJMptE+ovfJZSh27XNA66g2NddFhwulC7btHWl7LolMs4nK7zhbT5RD9hMPwL6QxakATcmJET3RbybO0uq6iKa2j4LWt1sycF2/17XUYTPQHCy0OemO5HfBt89ZGmewgxHJjhmj11XH9TS23Om6pp1rLowxs8Wc2PWaZBDbnchamjAdRdZhnI4LVjLrm8cjLotUMsh40vcai44pGYSGz+jC71usfX2YY3cRlRrD+4NWM6WNnEUnHSd12tpVkkEcMRD98MhvX9CVra0k0q1VMohpw1R9UT97n5eWa2ymZBAlBvL6HPfcZzPQpRhiM9DGop/vijlxoVDJILUZ7EDEvbC2RS6iwnDMgWhqB/9Yop4RBU40g+/wevhoko17DGEd//W6FiHOw2M+Jkd74cFAI0UpbEFnSQLRon2QctjHru7Mkx8t00pdBuSyjCkZROuLccQTK8WZxnmtKe5YqTVUFds+CLQNUzJwza64rKWuSHZby5nAtdR+v5N4czGDILmTRNrLG7zeROFv145qumtpEUFnnmOFbpRTSqTEAPFqorCezn0VZzOIkQyM41QySKb6MF1L3Qt71kENknBnVnWF41ieh+eqoCwbIpIB7Pp3W5xBNEWFqw/yx+InaV5WEqLCjYXK9kIXE4FcYYmQdrnR5vI8kiQtLs6gGJuBbSnz7Z9tlpWXMZmEUPwf2F3fgzhJrIPhL+dUB7lUTj4vQI0YJ7AZ5E2GJeE76oLtUorZ2rMYpMQACdREgeSgcwCT562LtGHilZmrtBQChaqJlP6zoswdtWgiiVCZ5+b1hL99Cb5sv4Myl/oB4QtT5tnYw1xyqERBx2jjsqPSiOtZkoXb0rdvDwtXO7oaBVYim3Th1SKkLWkI7JKB+ASRqorzd7qWigpRycAvSQBmKghxQM/h42YSADFGRhiCc8fubPRlH8P5h+0S/E4qGah7Hpea3nYOoN9/nRGCVl64msjjWkrO//tFB4s+YlssDVJiALLYx9x1U09M85K7pIuXZqzGL5+ZHvy3TVw6N8xweEUMKssyiSZaxghBdo2Lc7EY9O1apdUT1+ZoPGbSq/Oion9YXxmGfc0r6YYj+uLZ+uYIX6Kd5CY9CS4h4qJoG7tzrOS3aSC13b+IHcUxPm0xsujU7IutkFJDNZF9sTfHktTo7spaSs/bb+ceztTk2j3PyDiDgHEwx2YfxE49QgnCVFU5XWjlt8vbSNmlKPRklK7r0ZlC9cwyLNlzZQCG9OpkrUefSd+uVdhvcPdEGoFSoF0SA86Bnp0qtP9AvHEuiY3ANi8/W17tPU5zj5jEQHkTVZZnEvmqZzLRoBzbeFWUbIVaQCgxSCIZ2DjU4HyjnIdeQWUZj2SgCAYQLBhJ0yyoPo8c2Tc6WG2M5KVMSDQBsdet1p+DMJqLpU+asYFemo2DNKUlVZbnoZrIJslGTiDHDxneS47VDm3zFsuKkec83G7VOi+M+8Pos9QnSxI1kamWijOUR+xw8n95hkWIq4sYOzdXIuri8oybYdPKGdChIn5Pj7IMAI9atdRol8QAMLwiErr/6ZuO2+vYJubsVZvJecklg4oMC4yAFWWZRLpDBma4TLoWI/FSVJRHI29dulaXntwssxlzVftlGZ/NAEEdtWCYbnyuawleSCnau1/K8LdVTeTgll1EwvxtLpY+acY+Pjuxou3ZpIxcnqOiTCcGrh3SQo5ZHFcENBGB0jLihmNWLqO2FmizZWq/jYBgmWOLZ0QaNG8g7lT7mNeJ4H+4eEckA/r+udREWlxBeCyTcTOJ9J3YWpe1VzL6D6K1d5Bo0G6JgY0rdHIl8ttcmBRHpbUR8+Bsh+kLZu6ZENoMMok4hIBDM2Bz97R5oADJvIlcumsg+vKZKSCcL0w+JBhqwbBFeUf7Dt18yy2Sjm2MYiy0nMuxG5wiIUB7DuyG3529j1Zu/na5Aboim33jS7bvgzinPpuPbADv1KWra5JjqohJkex0x1XqqJyYR8oDzIR2zzPKiUBx7XlnXb3czqwoQmg/R9aP2AxEn+UWxoTSlXIthXVYbkbu5yhxsQ9fW1t6dKxEj05i90TzEedNYrBjvEpFfzuuq5YFW8BRHEccCUO3GGAL9RYyYYbDK2+iyvIoF2ODKzeRXTLIB77srslua8tVJ4gqXbNVK8/nw/pisba3r7jq8w4dKm0G9oAek+NVUg4QvsCuW6XGWFmWsQbn+SSKyvKMldi4/PB97SaKg3CM3+b+2pDLB1KeOtoQs0gqoq1043EL8aiB3awEqiEn5pFNB6/GrFAmFzi1OCZ3bw1/a8GS3B1c5iLwSpIoL4sSL3Of8zhQqTSjvB4soO99h4oM7vjaAQCitgOTGfQ0WXK0X2JAfoc5b/wcsckR2CIZ4/yEfYsooE/cDAslA5t+0wbG7H7PZrd5LoKjwg08CKebJB2F7ThX39EXXA3JZWAFxMt3yj4DcfX4PYK0FVlDJQBE/ecpdxgu1u5FHQDenvAFq57IJxlkWLjYuwijafMNFiRzzI57oNsMosc5j57LubgnlQFht3PdQX1j3IF6yTG/cnmOQT064j+XHmaVqLNSReUi86a0ozLSqrYp4gI/zXNMhkE/J1pfjFcngq7+XTm+TAZFHSv3SO+6+imDvl2rcObonbz1MhmmSVFNjVhiwBjbmTE2iTE2kzE2gzH2I1neizH2CmNsnvzuKcsZY+w2xth8xtg0xtgBpK3zZf15jLHzSfmBjLHP5Dm3MZ/vVQnAOTC0d7i5vGvSmDCDf7SFSpXHGHmtnBMpM9MF12wX+kVhM/C3DYiXbeE6wplzNd4oZ5rN80DHro0hgWRgW2xVH0oEpuXUDdG3UFeWZ4KUGnnOUZ/Lo6pc51xpig6z7zKL2st2ESr4KShWBN9pM9DFdn1B0Am4DcXkJnK9Bjb7Q0MuH3jzqKNxuYnU8bh0B3kOdOtYgaryMuOeCdRn8ygvy3hVgAoqkSIlJNq1OM53SqXc4yrq6EM3IOvIOZ4lrWd6FSpBNZFzBAPOP2woKdfrmYwFlaKaGkkkgyyAKznnowAcAuBSxtgoABMAvMY5HwngNfkfAMYDGCk/FwO4CxDEA8C1AA4GMBbAtYqAyDrfIeeNa/yl+dGtYwUevOAgAISrj5mI5iRQHJGoIzmdODWRheDoE01fDNQmGOu31jk5atNtzVrHFIe5NDpmomqVZGk23GURsZ1TNY5bMshzHiy2asGotyxyNjVRVDJw9SHbh93ryqW2iEgGpA4djrl+h0xCskWPwiUZ2HbP04iB41rMQYVeMHF2Fh5IPLYxZfNcqt1c54e/TWLtivh2DBlvXHVMRPKNi4vJGS92A1ETmd3lDWbMBlMyoCpQl5SixnjdaXuhQ0WZbD/K9dO5VGZIUU2NWGLAOV/JOf9Y/t4MYBaAQQDOAPCQrPYQgDPl7zMAPMwF3gPQgzE2EMBJAF7hnG/gnG8E8AqAcfJYN875e1ysqA+TtpoUIeclF/IYsdrMSZLL57Wc56IN/4OLsylkHQv7tvocXC+KqVqiCFVcxkm8CMnA5V4XHI+OR9VVHhRdq8rd6jiujz+bFy6pVeVl8rg4L0IMiB49FP39XLHKkUP7BqKLNlUTMYdkQMdjzgc3kXGMz/Ms1XlmZk8OwZ1XGAbkOP97avikYzXx6qw1mLGiBoAuldHnUe5RNb09PwzOzKigM3VfEqrPVHn/bh0ikf/uVN2iPOJN5DMgU8Ju8ZyK/AbHXOkt6JMMArsCkcJs9gBdMyC96nYMLSjMZsAYGwpgfwDvA+jPOV8pD60CoByxBwFYSk5bJst85css5bb+L2aMTWGMTVm7dm0hQ7ciIAWKUyrAK0G5tJneOHGLvd0LhyyyDs6k3DPRTD2nb5G79rRRQXBMLs+tKgInPeP+Ok79OBQxA7p0KPdeR8iBhjEWVYZkUJeNSgYBd2YhbhTLN24P2l+2MdxK0RmVq+4fV2J7tH16Dr2fesLAZIuey/VVrxNti9oM1J1yRiAHNgXjnjn6o6htiO7BnFW2J8fC9czU5cFvIV2FvUW8iRz95oPF1DAgWw3qOpxxBhZ3bV1NRMdlZ4TyHLj5lbmyvsdtWqmSjPSrPjWRih/dQbQgOTFgjHUB8G8Al3POa+gxydE3+Zg553/jnI/hnI/p27dvo9szovdjdXM0WVme6376cQRFwZVbRsHF5Q/r09l5g+k5Px23h8G5qPHyoE3GmFRzEW8izYDs5yjFdViOB9yeEUjEObZIyaBLVbn3OtRiyhAuPOGOc6JeVDLQ3VLNsVLc+/Yi0T4D7n5zARmj+LapYNS38vum5eZ4KDGgnKeNQNrgclMN5ipPriZyu5bqx4N75qBQfbpUok8XEalOCbGqXZ/LBwbkuGtS0pUaQ1KbQeBibZG8Co1AVvPJJhm4mDGN+HuSR7ruoXpmVHiz3TEthbaSXluSZMAYq4AgBP/gnD8li1dLFQ/k9xpZvhwATTgyWJb5ygdbypsM6t6qh+HUdUfOCCEMR5xEKfKg3AerzYBy3A410e4DurknmjznF6eOwoG79LTWUS9EhdTtKj27TV8cF9EJABu31UePG32F54ULe+fKcuc9yuZCtRtjoTShjOiKYDVEJIPQo0RdT9xzMH3ygwXUsWjn8lwzOtNanyzZGPxWi6YYS9hH0kVDlU//1UkRyVD1S9sa0bdzsCBWGm61cTud0YBG85oodu7VCXsO7ArAmBuE+JdnlAHZ9q6I78N37Q0gzEgbaQ/u55bNSZuNISELRsAlAcHah+5aqp+TxICsMSPaWNxzLkxZoRN4X6K8TKaF2QykZ899AGZxzv9EDj0L4Hz5+3wAz5Dy86RX0SEAqqU66SUAJzLGekrD8YkAXpLHahhjh8i+ziNtNSlCbktOTMc9NyfM2GG95AsY9dOPky7ibLMrq2vJ+MKJU1HmFkEDDs9qcBTH1GJcVZ5BhjFs3NaAhhwP9Lm07RwXroQ3f2k/o63w90efb4QJl46Wc66l1XCt0xu3NWBzrTCYMxa2s4dciNQgbamZ1fsZZwxVqCjLGLl01BwwXk55bz9esglvz19ntRn06yryId149j7YuVeYQ6ecbOsWDcSzI88Fp96lqlwrD/X6YWqP3561D47ara8WiyLqiOPxier081yDyhOJzXZfle3JHYEsSmmglY9xsKEhn7fGkHDOPZKBuk5TMlCMQyay0CaRDGw5rQC/xx+VzIP2LfVskkFLshkcDuCbAI5ljE2Vn5MB3AjgBMbYPADHy/8A8DyAhQDmA7gHwPcBgHO+AcCvAXwoP9fLMsg698pzFgB4oQTX5gXVrat7HedFs+/g7jhqt77YpVenwGZQYehb47yJ4kLLqSrKUC+6jVOKGBjcLhWDaxvEi9+hogxgwMwV1QBC7ttMz71L707o0kFfkOLmpDpuiwNQL2BluT/h3tNTVwAQ3KNqJ9ysXtRRi9+9540JzgtE/xgud48BgrCUZRiuP2PvcIwOLtJsJ8P0+uqaAGD0kB666E8WvaQRyNRuQhcOqtfPBVymuE8mMVCIlwykTcaiKjTbUbpu5QmjxgLQCGT7dYXMSqgCdN9vt2Rgy6NF74eJsA+PAdk4Vc3N16482una26myDAO7d8Dxe/ZHngNn7S9MnLv16+ocv6mSo+O31bvg8KHoVFnuJLBNgSTeRG9zzhnnfF/O+Wj5eZ5zvp5zfhznfCTn/Hi1sEsvoks55yM45/twzqeQtu7nnO8qPw+Q8imc873lOZfxHZSMQ724gd91jO5RGelU4JTgiPRbqNJVq0UHAHbr3yX4TSfuvBvG4wfH7ir6sFyyRgwcIjht04yYpN4NddlQMnDpdml7GcZwyLDeWnncUzFf8McuPgSAILLqBax0BOaoa7vg8KEAxLVTaQIIFwpVPqxv56DffEQysA92n0HdMVBmNu1LVDouTlXNjT5dqnDcHv2CBcLmTaSicBU214Y5aHL5PAZ064BfnDpK79BAnocSoVVNxKkxVeccTfuPYgBMBF5A2ZBAq7ZtoHsljNt7ACaM3wPH79lfU/WUSTWRDx0VISGG1qSSQTYXSgYn7zOAnBDvWmraa6ibc0RNlBd2rRF9u0T2TVBYuG4rBnTvgG4dhcqzd+dKdKos83Lx9Jkp2Oqret8+crio40jx0RRotxHIAHnZ5L12Gk65WoRyQs2SidoM1PP6+dOfAQC+dvCQ4PyuHcIMqbSLirJMRPw+96DQrOJKbWDC9BdXoMY+KhlkGAvGdPFRw7X+RXti0pqcZpzuMiSa4eKoygP9dLk94Z66Lz0DVULI8ZqquAZpsAz195wY6PwLUo6HKg8tD788PzIH5N8OFRl071gR8UADvbZMlNCGBJLkXIL7XlKffl0yiObJoQZtAJHgPGogt1xSVL1krS3mejm5Z5ccPQKdq0IJQahL1aY10VYuOHwYAOCiI4fJcRPVbD6Pob074S9f3d/Ru0BDPpTCR/bvimcuPTwYW1w8hTMdhSMCWd1/X5biT5Zskju2hXPK500UBKZpaiJ3nEEZYQhajGTQFhFEA6r/8tuZ40R+hwFQQjLQ/Ktlm58s2QQAzg1tzJfF9ChwxRn4vAqU0dPc6YqOXdkMOlRkNK67fzeV/5+MMc9RxqJqBx+D0oOkBM9a1DvZfB7lGRakmTARpggIVQmBZGCofoJcOGRcecLt+cZK3WmpUEc51X5dq/DPbx8cjF1dUzklQKT9QO1QpscujB3aC2GcB9diG/xqovAeKFBHBU1NRCq5FvVT9hkY6QMIiXacZJDNR3dRU/3k8zywczDHYqiIlLKDUDVRNsfRoaIskBqSOBcAhndVwTaD8HlFXEvJ/LBlGKDIMIMpZO7xL1y7BYAIHqXX4DJgUzrVkmwGbRamz/iCtSKNg1oITKjMkMpPWqQNtr+AlJOjc/GDRRtgg6qiJvZ954/RxG7BRdjhkgyG9+kcXFxd4LNfJhZaz0KgXggfl20aOHt2qox4iFSUh4SyQS6mKs2EiWzg2RJyRIGEEYxRSWj5iEomXCBDacEG6r5q29w9n+eoLM9EVFPZvEq5IOtRNREhRPSZdayk3DM3JAM7RDxDVE1EJcjHp4hwnfcXbtD6M3MT7TmwGwDgl6eN0vowbQY292JtTMRmoKAWdDr3KMdPYc5PGnmbI8ZnOjYTihiH/Yc2FLXYv3/NcdbrVDaDpy89HN07VoQRyI50FOpe+7bHBFSeLa4/W8f47//fIgDAC5+tCq/BwvUrpiaUDNL9DJocDNSAHN7ufQd3R8/OYW6dPQZ0DSZVfVZIBhkm9rnN5kk6B+OJ6QErIWauFCEaKmthxKMpzzGsT2cct2f/4Ng+g7pb3dAU1GQ3ubfBvTpZJYMMCeiqtHDSM1fW4NVZa2CC+txvqw/14S9dfpQmGagNx6l6R3HzGcsLAIQvtIogppKBmae/PicW7NDmA9QGNpEyra6JPFHt2VwHs/J4uOjLa5IGTJtraTBOQ01EDZTV2xuwuTZLGBDHwstpSo6wNcp0fCw9uRat36oRDDMCeWjvTtitfxdniox1W+qDcfpAF0gFNTYa+c2Y3ZsuINRE6gskg8DeoI/NREOea9dH35ucQdQUgmdKFn8bgaXI50PJTM1JumjT58ak7TCX417JyA2bzULdTzVHoU3m+Ws24625jQ+4taHdEgMgGoHcr2sVRg3spk2YKqLj3ritQeoGdV9lIMpV2fTRgAgeA4BT9h2oj0F+UzFVHQtS2Tquw3SrDMZA/obEQHgTJdUX21CXzWvSzu4DukZEf4CqdziJUrVHUgfSRCAZsNADyXjJG3JCQqMLwg0TZwEA1myulWX2sWfJy77NosrLcS4Ns+GizTlH9fYGMR6LZPDr52YCkHOB3HM6j96auxbrttTFLnqcG+6H8ie1TdFEa1TNqCQx81pNVaS61r+9tRAAInYrE/m8feGkmXvLPRk2F0qJW9ODB1w7167DRSSFmsiuqsoaC6gajy3SWiPWFldQ+v6FczKsp75/fPxugSS0tT6LhhwveCMam73dNDQz6JqF4//0Fs67/4PEfRSC9k0MjBcz8JemL5j0ftmwVXBRD76zWDNumt5EYdsMI/sJLyI6P0b266J5GpkTQunWgXBRULpm9wKX1+pTqHPqSGoHynVXlul5fxT2HtQt2pb8vu21eUHZV+WG5lT0pwFugJjMj7z3OTZsrSeumXp/Su9uEkIgqsoKDMhkEeveUUgmoQ3EjrpsPrhPSzZsjRzPSTdJaht4d8F6AMA/3l9itRkoVBh7JNjqmQyICWrABPQ5IM7jmq5fsxlEYl6UnUPvIyrFRqUdimw+71YTkcynrvTkD76zWGufGk6z+Xyws51vDELN6LcZUGKRzYdkSSV7FHspGATDNOASm83Ez1YG51FmAVBpNcT1PjdtJTZsrfcaew/ftQ8AYDz1hLJcccQN10FgmwLtmhjA4EaUkYq+PIrzX7dFN/wEC15Gn8VHyId+1Mg+eOWKo3HcHv0ibohV5dHbrqq8NGN1sE0m9XrxTQrTrXK4lD7oOUHQWUUZMhmGJRu2ASB+87IttSjTFN/mGB9593MAwHmH7oLfnb2v6Iscny1VYYrLpxw4Ve1QBN5O5SqjY3jM1GkHNgN1/ZzjtP1EbvgRfbsEZTa8NXdtoKo7bESfoDxPXvayjN52DXERDRfzaPumHQPEztOjUwW6dSgPLsy3uY0tMImqQFbXCOnHzBRaZdg5Xpu9BtOX12gL4IBuHYLnpGwKQdtONaTFOUH+3SLVhdl8XqaZcC9c5cQeZEoGPiKr2q+w2Azg8SRTbU14Snj4banLGmq8qGTAeXTr0hwhLFTllTGu19DoaNitv2AADybu2rb65rWYdcbs0jNWrVcs2jUxsEoGhl5RiYj0BVU2AyCa5Ou9hYKL3KU3WZDJw5w0Zy0+XVZNxuBeHFTKhw8WbfBONNMT5z+XHo5XrzhKO8eUDBSC/ZllvZdnrgYguB0TaoybZZ4hda3iOsK+VOCc4uifm7YiqOeSDLZTNRZ0LyvVjiIgL0xfhXlrtmgc7fb6HBgjG40nYKZ6EdsQXZzKMuYmNmFjqpwSs28dNhRdq8o1AzGgE7Sde3bCmKG9wuNOyUC3FaifNOfS6hrBmFSYkoGFyQCAHh1Dew5dsPcb3B39u1XFqq6oaykF58B9kxcBAB5653On9LrXToLodJPuzCYx0AzrTjWRPgYqGcxeKeZw3CKpgrgUKsttWUujxnKa6nrFJpHc8NOlm4TNQItY9jBsRKKg12DWNtNWmPe0V+dK7NqvC5oC7ZYYsFAyDZ5IVoqipocG51zj5jPahNINlqYbWxy3FAzBUkW99KIh/8sKhAtG944V2LVfV23i/+GlOQDCdBQKw1XgFnGBTDrG8XuHLou2pFtqcVI6YyB8iaOSQWjglg2G7RheMgrUH/z2SfPBuZ+4mqDPVF+cdK8hOlYbMctzjjLC9VLoHlAsduH9YNEGTQpVni+L5IZF9BZ0qSyPqDTNOoAlbTLCa9WT79nHlM3lowZkeVZ9Tjy3bfVZ6XcfbWTfwT20nE1KTbStPouPl2zC5HnrYu/L2/PX4WPptg3ojNyznwpmg45R2eY45/jqWBHzs/uArjActq2cuSkFlRGvI2W8fXnm6iDOIGzNp/5T49alG/N+PSyl7vBadILlyjRcCrRbYgBEF476XB4yE28AZTNQz+zq8XtoD/R9yR27Fp+4x2YzItnbcVMD345VEZ010yWf/Qb3sNazwaxCd2wSx0WNo3YTGWVtNgzXYl0bkQxCmEbu4X0749R9B5JoYNK+GovleswXr7wsgy8dOFgbz5tz10quT11TuMgO69OZGJDDdmjwIV2c6TWsqN6OXJ64RDru9/w1W6zlSu9N79uVJ+2mPUt172jbnYl7K6A8YEKVmMpiK86zD6qmNht5luqv8t7q06XKaTPI5gwVj+R2N25rCMti7osJW336XnYn0pBSC9Jxh7/1Dqkb7b6DuwOARuRoMLNSE3XtUI5jZXS6a/zq/DjJQEmrqp64V2Gt12aHe0uUGu2bGMhvzoE/vypykt8xaYFuZCoLowwBoB8Rq4HwYbomgck9AHqUcdKXQEwchwjtyHtichW0XMFcaH3jMI91ogsNEWfLmHCHtRMDe1uvzlqtleuqOv0e5Qx1nsqzpLVvGb9tofrDl/YLEg9q4yT2JLXQ//6cfa1xDA25vPW+0WvYXJvFq7NWW92ZCwJHQMD6de2AtZtDKaKzjP1QLXeqLMO5Y4dopzMiGrw1d60wfIZNR7BYSiT/eP/z6FA4x+idewAAfnf2Pk4pWLkV0zFwwKH2SXZf4u4jNaZ/unRTUK4txojOQ7pJkFIFV29vsLqWZjIMW+tz2Fybxeuz18S4f+vqH9W/iX0Hd8eAbh2CNahpZAA72jUxoHrhP786j5SHdYTxiONJGeizqrpOe6BlweIgMHZoLwzqEWaupC+ImhADZG4cdVyc738JfCLodc/O0K6Htm0PlqG/9YXWPwpTTWNXP2yty6FzVZl1IrsMhfdI3fOm7fWRtsOFRJyUzQlVjqqzeN02Mg43cXVFqtKxA8BhI3oHRkTOQzfcjhVlVsnjiSnLsF56mynXVljqqb5c40sCDkHU1Bx77MNwvyhFnDnnyOc5ttXnAhVK0D95KOu21GN7Q84b8KUcDcwNhdQ9+/HjUwEAPTtXOudoQz4aMGZmG/URJEBwzN88ZJdofW6XiFXAn9meJrlZOPMtddkgoHJwT3GP+3erCq6rb1eh7jpj9E4Rqd6cRxTqUl1GboVPl1ZjVQ3NXFz8XCkU7ZIYmNxnnnOctFf/4DidMFXlGeQ58PQnYouFBWu3aByNOQ/Lyxh26tGBHA+5c2UkpRx1hryIvqypPre1eVK1MHf1Zv0cT1vmb9eG8BQRXbTZjjz+weINeG/hBqsKTBWZHOQ5kts9cdSAyBhtm7aoiFcA+kLjIa4uewgde9eqcuzWv6vm9RRGR2c0d1YbnpgijOfH79kvaIM+lzjdeBLQfaG/d8yIoJxy32/MFUGDVHJQ4DC2V1QE1NKXSz+triP0qss44wyyMi6Ensuhp9i27SBntmHbRc68FoWOFXaXaXXeATLDrHn8/UUbUCPTqH/tYEF8DiJpRbrKTL4XHj7MwXzZx79s4zatf/E72v+cyDscvadUBVZKtEtiAOgLPgcwqEcnACLNAn1g/bp1AHiYcoAmSAOAi45Uid7EceFLr8uiahHaJr1wOlWWk8Nq0eFB5K6JCeP3sE5cEx0ryrzHzT7l8OT4xbfSO//9IpGS46nvH4YDd+mJnp0qnP7pqk1z0ppZLC/7wq5On/buHSvQubIsWORshtE8F9lXV9XU4vEpS4P2yzLu66FwEgMy9jrp+kuN05f+82M5DuYkZgrKIE/TWZx4y1sAgEuOHqGpn4oB5yJholpcexOPKPWbIzREKk8e7Vo51zdo8ahofGoKXV8v/e4tU7jBTCUhbQvzVgsm5jtHDotVE+kbSYUjczEvnZySgUCvzlURBkv1rTzsjt6tLxbfeAoG9egYXGt9ljAGEcnA7U2kNA/mOxE3CyiBUZmHlf2o1Gi3xADQ9dcDugvx75Kjh2vEoEwGptA8LnRSDu0tiAgHsH5LHWav2oz3Sf6hDJlxyt+eSgaUw1GeI1eduJs2zq8dPMQrGSh88cDB2n81kQ664VUAwP5Desgx0Uph/0CoElH344AhPfHv7x2GqvIyy2If/b1Kbs7TVYratK+rTtpdk8YottXntNa1Z0D09NvqcpE6egIzN5frVBPJ+6Q24aG5clYTkb2CeJq5nsVFRwyLtKtw95sLyMJrP79v16ogkM8GMRd5EG1M3UmDe8ZDIqA8acK8QGLsr0gXYu08C1T7vzxVz2+kFr59BnUHINRWiW0GAMA5nvxIqLjenLs2Vk2UzYceW3TMtj2ZAaBDZWhMZww4cmQfeZ448Y05ayJqLRXrshNR45oII/ejkd1JVDobt4Y7BFKJVGHXfl20xIL0va+tF30fu0c/fydFon0TAzIF//7eEgDAlw/aWcsDn5EPuK4hzKBJXc/CgB3gv4Z+VvQRviDKC0BzGVUj4MBTHwsVw11v6KmHla7aNdEOHtbLGsimXlilKlAZVdUL0aWKuCbKxn/46CfyOk0vlGi/ES6HA0ulOKxiEcw6LnXAox8s0YLTJs9bF/xW0ko+j0CEB1zeSmosFjWRfKxfGaMvtkqVpyKN7528KBjnWuLmSblBl2Sg5sDzn62K3LNBPTrGGgTNhdME58DrMpgMcBFCjsE9BZNy3J5i4Xjn6mO12BNK5HxjUmqgYLe5oC/xPbhnR+zWv0uQwsNGbxtyeW3vYrXAHTS0FwDg7AMGx6qJTMlA/druIAbhm83Rs1NlJIgym+eRuansPSpamDamhvXz/4gANqtkkIBho5KaLfnk9vqctoGQtkWo/D56t8bv/25D+yYGZB1UhrLKsowWjKSybNKgKC0HCslNtH5rdF/gVdW1WLxetD1Der2s16KZQ9b8NzK/zla5KP71mwfi0OG9g5w+LlSWZ4IIR9v1mVALwZa6rCGZhETQFsDk43rUi2B26QhcLUhNou5xnnPc/LLw+tpjQNegbZp63KcmUs9wtwHRhS3POZ6SdqG6bD5opzNR6dGspGr8n5EAQgB4b6GelZYO44LDh8Yueg1ZOzF44FsHRdozQa+9LtjmVCws/bp2kLEnYgEy00q7xhSmerDPh9qGXNCHeB7RRpas3xYwB2qcnAPvSOIr3DJlmw6bQzbPsb0+amOgDARFoDLjur0hsrMauWjVlhnURd261YZFGcaCpIoA8I9vHwzA7Vpqjlv8jr4H2xty6FgZJZxAmAbbJQ01Fu2SGKgJp57Lo8Qjo9zYG1csFOG5Z+6/k8ah0ECfft2i4uUHi8Xi0JDLB37LZx8QqnMoB6PpcQGctNcAPCp3C/MtopPnrcNny6sj5S9MX4W5q0O/9XF7CeOs1YuDh1IBECUGG7fVY8PWeue+uoqDUZ4Qvzp9L2s9ajBPCioBKO+Y+lyYY0gZeB+6cKzXZ/7ZT8VirzzDKDgH/kW2HDUzVwI6N6ia/8PLc7R2dPuFbuc5dERv7Xmb2F6fw9b6HB5+d3HkWLeO5ZEyAHj8wyVhf4TwXvdfkTwvCOILxiTujfKKueUro52xH4DbbVktUpPmrA1iI1xxBiuqazFL8/UXEuvrs4WRW212D9jnhdoKVaWBVtcBAP98f0n0BIRqIkDESaj8SFtl+gy14xztbo2UoIf20aUIca36wMzNn3p3qbTGLfhg49W21+c02x+NXTjn7ncBAG/NS7OWlhSMhTpCmhK2U0UZulSV49dn7IVnLzs88sAUd6VACUPPTm4rP+fAljqVHyiq5/3nB0uCh/6bM/c2T/e6/yXFJcTzJGw3XDxfmB7mWjeJQW1DHq/NXoParIMYyMXhJ09OAxB6T5j7Idu2jbThzNE7Bb+tqhnyUxFRofaKHA6gpKfL5FajdEy0/n479wjuNyXQFSSJoVr0Nm3TpcGXLj8KgNya0Zg8u/fv6n2Oyq3WvGdylPI8cUzln7JtbUnPNjO+Kib3kr8Lo3hlecYrTb0u4z+iqR7C/0rictkMTCjVq4I4xz0vtpN06UHvsvvlMj3EIcOFyunCw4dhRN/OwXOaI43BSg+vOPuuylGEdHfBAyIbqGmgpSpaZXcb2K2DpppV+5zYLp9GlJug1Rev2yokA01NFGVsyixSWinQbokBACuXq+wB3zx0KPYd3COiVwTClMWAnv5XuXzZNsfJc46rnvwUgP6CqtZ//2LIYX6D+FMH43IYLgtRt2y0qLFciyeNGKWo8XgycB4uDK4JaybGU+jXtUoLxqN+7bZ8QNXbGyLcOw1Es90WVUTjQIDQoKlw+n47BW03kHGUZ/S02YAReAehYph/w3jc+fUDAYQbJgHQNsexPTXVp82ArM771gMfAhAqPgBB0Je4jqgKysyqazKvdTTOwDKmhyLpEULUGioam81AEdMhvTppo6DqGpo23jYGG3E0jbfH7ylcw3952ii8duUxQXtn3PE/ACFzovDB4g0Rnb3Lq5qqakb07YKduneISAYcoUrZBDXWR9ol1X8gJfNN5B2z2SEqLM+iFGjXxKDeweVS+DwtAPICQgRbAUCnqqhIf4/MHR9tP9mDVbXMyabsEUmw1cNhmXM4wlFKnH7729byyfPWYSqJ9DzH8GwyOzSvY3uDbjij0prNA6lbx4qAsKgFp4zmxbd0PdGSfA+QKSiWVeOLUn33dbJ/9b1vh6oJ26Y3W+ui+lu1ANuerM+1VM3HA4b0tJynQ6k0viwJKJVmfAGMjDG8SxIMHrVbXysRMWESg0mz12h2AEDf21hBMQfnHRoyOIyFXjmAYMCC1i1jsG1Ha14jddcGovdrUE+dAQhSTlsuOpquW6j7cnmOf320DCukxxwlBt06VDgNyOsdkoGZ2G7pxui7TKWSYHwpMSg96h36bwpbArade+kRxoBYkC75+0cA7Fz1za/MDX7360aSdiV8rq5Fe/H6aE5+F0yXtN+cuXdwfaZhzUWk1O5YcTC5b4VgHls4SPpybaVpr+VYKIclIkBF+TRpxCXaButLrmwCdDGk+Lf05uog03xHxp6hMSbSgCxtNWOlZwxFUkKvcPvr8wEALxJ1XVxbI/t3QceKMlx5wm6ause0FQTtINybY0ivTuhQUZaIiFDvIwBalKyCLfVKtcw/VGWoPpR3njLW+uwWNu87c76a75x5u1RqdIVhfTrD0BI5z1WL/BOGrYmqifp2rXJ6/NkcSwBga11WU/OpmAnaxtNTV2DJhm2a0Xi0VFWVGu2SGNBIVoquFo7e9g5++4jhkbJNJOmWzzUQCD08AL9bnz4O+8tygVQb7EfUBS6YQWlfGzskGMBfXp9nOcMN5V/uQrnxcj55yaEAQuJq28/A5ioKhASEutz+4NiREU8llVM/Djv37BRbx2z7oKGCW6eSAZ0/t351dKSNVdXbI2U+dYja21h52QDA4xcfgju+doBznnTrUIFZvx4nkgPKSiurt1ttCbR/IPSgU/BJBiry1geGqMR35RNCNXo3eXaMhRLDt2SyQ5/d4j4inSmY765p4zKZODOp4oVHDNPUNHSxNZkmtcib0r0pPdsiigGxV7UN/5DGb7WFrLqknKWNPX7xYvD7kqOitr9SoF0SA4Wxw3Ru7uUrjorUoYvCp9eeCEB4+QAQBmZ5/BrpfwzEEwMNBXKPrhf24iOjBIqCZls9cBexsGWI2oNu4JIEV5ywm/e4aXBUPuU2Y/D/PS3uHfUWUThhVH8rkVAb/lBwuHMfURwyvLf7oIS5mByzez85/rB9ldwQsKcI+HDxRmf7vvE9fNHY4PfBw3vjlH0HRqbJhPF7OM+/Y9IC5zHqXaYQ54IMAHvt5Cb+o+QmOTbJQBl4N9BgK7Dgv1INJnluXx4Tqh7NVPE2bycKk1nq2qFcU9NQD7MenSq1uqqxhet0KbyDJeLfNnyaNdUG5dKq7EBxdkCb1FoKtFtiwBjQtYP+AtsWcaqTVy/8gO4dsPjGU4SB2cKzuYyvNtCMmwDEbliO8fpgcuIm6IL6yEVj8b8Jx4p2LXXPPmCQvzPEq9hcag2bv7cK+KM2nHvPGwMA+MM5+8aORSGX507bCkWfLpXOYwrm+9axokwrz3OOl2aE6hxTZ23iO0cOA0Dvi3t8Y3aJ2gxMfMvgdAG7SjMJ1Hk0oA8ALn54SvDbt3FMj07hpjXmfVfE4NARIQGmNoAKYx8I33OjRNyUDA5NQOApOleWa2qdLRbbj8JctQGUAeUVqCKWTe8kBbWF7EMXjtXKlaNAfTaPj5eEjENjPAYbg3ZLDGyosHjAUN/zpgBVLwFRH2cFm5HvL2QvYturesnRoTj5TWLA61RZHuj0bYv2TV+MLsAq507YRrI8SCYU0TI5OxPHj+qPxTeegh6dKhO5KwLATjIlAhB9J7XEbMY1/2xcyGUHhNC4LV8/RBmVQwP4yuqo3twFxXi41CENlqRtFOZCb404L5JhVOf99U1dDUJ35PMZLW/+8n4A7JKBwk/H7R78fnXWGmdbvid9MknTsIcRONibbJ4DAH9/73NrG8fs3hcVZSzYd1n1N91gyihenKHbcB64QAYAypOVQdkWUQwAe0up6kgjsllpJuqyeZx95ztBuc2QrJA0/1gxSIkBQTHuu7YXsCcRM6+MUadEMx/aX7pJMkBH5ZXP57lmlN5kcfk8bb/w5bGJtICdiNgkJHMi0/2DTfzaEiehoFxOc/k8VlXXYuiEicGxHxj+/wqunEImRLoHu7phm8WTSoEurMputHFrg1FHlwxWbKoNfNaTYHe5eLmIVVxUadSoaSMYOlQ+njio5632kbb37yYG/bqGnLG537cCjeSmC3mw16/DQYLOD6qjLy/LBIFzNri87B68YCzm3XCy6FNSg1kra5yeZjZ8QaoMTUbO5Z2k0oyb6h01p1R8g8JfvznG2bfv3Wos2iUxKKUUZr4j3zhkSLDJCAAMMzhqZYgMG9D/Ul97igUyFP0RyfGYnDXdWlLB5R6qdZ+QmzT91X2cYqVHZaXUDdk8xzl3v6MdcxmlTcmAuimacHnG+AgKJZTq2e3W377PrFoUb3pxtrM9G5SdyUas1tTU4nsyCMyFJNKRuWCftb9f3TecSKFdqsrRt4t7cTXxe6K+U1OBpmsHdO6cLoQj+ob3tiJww41Xn5mLqbolFx/lt5dR7z8Kdbsu+6f/3rtw/ChBFI4OdvaLjv6jz+3GYyC0yZiEq4vFkUXBF8DWWMS7CLQjFGT4TdgG/X/X1w/AeCLqArpk8Jev7u/kzpR72ufrt+Hqp6ZFAtP2t7ibmQu4DUn1zFRnHCeq2vLYmO1c/9+ZWLZR97ZxeROZ5onrz4jnjsy18/g/veWs27kqej0uTthGA6/2GHNNqPwy67bUYXcIDvma/3yGt+eLxHxUnUJBib9rcTNxkMXdlYLq8SvKmMbJ0+03v2eJXKcLerArlyEZZEmwGE01PfGzkAtXNgO6mVBSqIVxcE///ahzeFblOUd9Lq8FBsaBqkeryssw+adfCCQUuqWowhfvetfZls1l1sQJo/prLtU+201j0S4lAyC6CP7i1FFWVYrNUEeRNaIjTfUJ5c6t3gdk8ozbe4C3L4VHP1iKU27Tg796mh4QSDZxzDXPxZ3/lbjVxRmYX58T6oTfuOoYvHbl0eGY5MtP3ScVXDQkiZoo2AfBcck+jkrbKS3mltmIpy1i3AXlNriRpLGoJ3OoqtxOaOk9oLYgfWwh/vbNA7FzL78L7TAiGVSUZTTDLiUM1KaisN2SIG51Ta0moT5G8ia5bESKAXC5HCeBLT8RDXp866dfsJ6nVK8UN31xH29ffzeyC+wsYzWA0AX1yic+1dRbLhxhZke1wJxbLoapFGi3xMDE6Q6O/IfHjfSeZyaXMx8wlQyqLIFAlJiYkY8Uwx2GZQXTTRZIplow8d8fHBFbh26ookDz3VP969A+nTUu0pdXxcWNU4J57WmjrHWU15G6h0ntDCa+61hoFWxD7OwQ6wdYEheq59S7c6iSmUwSj22ts9sh6Dw5c7SdGNOxucZ0+fFiPleWZTTf+4qyTLBxCxAf5aoeI+1z7uotqN7egPlrNiNrcNxxHlxJAt9cMN9BQGykpOCyl9ncbL9y0BBLzRBDfARWqolU8KLPTgXYvQ5Nw7ip6j14uF/aawxSYiDh4qLjXgqT4+loeNnQB25Tn1BuzOc/bEspHQfTw8KGYhiNiB829AVN5YmxwSetmFGiCjQIhxIWCsUxlZdlUJZhgZvqX99coHFpNhULNbR36+DfUrCQ+/Xi5UdGypSxuj6XB+cci9ZtNXIJ2Tug88Q1F6jUMsCxQYtS13zvmBEao0LVRPNWb9ZiKGzYqbu4jz8izJJihI7/01vY9ecvaPVNN24Fdemhy254TNnJ4mBL39E7gftwMfBtOUlTXQPAqF++5G3LFlx2+9f21/6bDKQv3qOxaJc2A+sm8Y5FKi5mII4DpXr7zbVRj584F8sk/Tz1/cPsfSdRE5EF5NZzRzvrnXPg4MDNdqTFuErzMf3Z046LuB4wpEeQedIEvfajHBt70GutKs+gLpvDR59vxO9e0A29NkJlI24UNB13IWK6zRCoNg36+PONuPnlOUEqDYVejrFQycD5XEnxLg4OVqmkTIJSUZZBQy6PP7w02xu0pjC0T2dM/ukXtLQjvSwSIwD83yl7av/F8xGER7ldKonxw0UbsGjtVpx36C5YTmxKNIutwln7D8J/Pllu5dY7x8R9FAvfOyXSViSXbGwqWZPZoTYKG3NRSrRLYmBDsZJBvDoiPL7FogKw+YsX2o+NMwKSGcTp2qYiSW04a/9BATGw9UdTefi8IVz3+V+XHOZREzmbC5AxiME9kxfhnsnRiGabzj9ug/HdieheCDGwzR21XeWtr9nTf5xuWfSAkGkY3qdzopxHLucBJTGZ6oeKsoyWwlyBbuNpwrRJuObbMEPF2bNTZZDbSBlf1bxQ3nK3GJLJn748OtLuLV8ZjV+eOgo9LUSo0Cjdrh3K8d7Vx1mPXXL0CLFlKfwutgyu9OP2QEJTWrrk6BGR9qmzxh4D3O9nKRC7WjDG7meMrWGMTSdlvRhjrzDG5snvnrKcMcZuY4zNZ4xNY4wdQM45X9afxxg7n5QfyBj7TJ5zGys0u1exkL2oF9a16NsC0SjUIr3/kB5BugoKmtVytCV/0A1n+Q1WCl8oYt/TJO8DreIjfIpoDe/b2aqPVsZvX5oEwK5m+fgXJ3hfXl9enBNGCU6/P9HPu4ywADDQoj4pyzAsvvEULL7xFOs5lADEpT3Qj4mDNH4izt3X9QxUqdogyd6ft2kAwHypelF7Jyi4JOBvFmAcd/V/kGHPOu8w0Sa108UxRa75YSMExeD9a45z2ll8e1JT+O7/pcSGYcP3jhlhTfFiqp2bEkkkgwcB3A7gYVI2AcBrnPMbGWMT5P+fARgPYKT8HAzgLgAHM8Z6AbgWwBgIVvkjxtiznPONss53ALwP4HkA4wDoCscmxNcPHoKH3/3cydXEcRjq5d2pe0crh6n2HwaAXXpHjcB9ulTh2D36oX83v37/6vF7WBN23Xe+O0AlCV2ldXxCjroPtmR+gMjdM+NXJzlfKAVqpASEF5dLvaDg2wD8zq8fgI8+36gRWltGTYULPZyuiQOG9MDHSzZpRLVQ241JYOLOdzEfX9ijH3543EhcdLh7/Emkli8eMAhvzV0bBE4F/brmfwG8mSta37TDfO/oEdhnUHccTjzvirGJxeG2r+4f63gR9O8h0i5u34QtnblCHDNn89gCmk7dZUNsT5zztxhjQ43iMwAcI38/BOANCGJwBoCHuVDKv8cY68EYGyjrvsI53wAAjLFXAIxjjL0BoBvn/D1Z/jCAM7EDicF1p+2Fq8fvWXSO8EOH98ZVJ+7mdC88Zd+BuFJuauPC/XJ/Wx/K5d7MG7bWY+ywXti1Xxecd+guiUTHCz0LCL1u3z1QOmtfCus4QgDEZ5u0wUfUKsoyiRLPAcDEHx5R0HNWQ6X9mxz0dwvMIOm63jG79MSZ+w9yMh9lGRabHNCnnlM4Y/QgHDq8d2SLVjODqULSmIZCwBjDkSN1249PmnvzJ8cU1Y/LQ9AGX0yOK1+YCbW1polfnGr3gEuCYtO+FINiyU5/zrnyH1wFQFnlBgGgSb+XyTJf+TJLuRWMsYsBXAwAQ4b4XcB8oMtRJsMaJYplMgyXHet2P+1QIQJTbG6lheLs/Qfh3rcX4aYv7hvRw7rgUn1QPHLRWFz/35nYqYfdAwUIvVwKScJng7nBjs+dluKDa45LFETnQ6GeGMqDhxIQqsO94oTdYl2PTVSV2efakN6dCopXcGHeDeNj7Vi2vbrXbNbjMO7+xgEYt/fASL1CcdtX94+vBD9TkITJKAZ9ulQliujt160Dnr70cIzsZ/dki4PP7hKHHaU1B0pgQOacc8bYDsmzxzn/G4C/AcCYMWOaKbdf4YgL/kmKCeP3wBcPHJyYECTFkSP74pUrjvbWOWBIT7xx1TF+P+sEMO0mSf2mbQtYUnzpwMFatG1SXHni7rj8sanaIkBfTpsNKA7KgExx4C49NRfNxqCiLINS5DJT6TMai6TcuU9is8W1lAJPfPcQHHvzm4nqFvOsAZHmvrGYef1Jib0OG4NiicFqxthAzvlKqQZSoXzLAVBry2BZthyhWkmVvyHLB1vqNzkKobcdKjL48phkRqSmRHlZBnt6PH6aGq6MqoWAGnrn/mZ8k+iKTfzhS/sVdd4Xdu9ndQpQKOZZ2HTT//6e3TW4OVEMR3ruQTsHSdkA925rO2IsSTC8bxfc8pX9EqsZ4zDvhvEYacRX7Du4h/ecdyYcG5t+Pi49eqlQbC/PAjgfwI3y+xlSfhlj7DEIA3K1JBgvAfit8joCcCKAqznnGxhjNYyxQyAMyOcB+EuRY2oyzP71+OYeQpvEjiAETQkRYZo8uRug66Z7dqrwBui1Nvzu7H3QtUM5fnzCbtiwtb7oKHCKpPr6YnHW/o69uosANcI/94MjnIF/FDs5todtDsTeacbYoxBcfR/G2DIIr6AbATzBGLsIwOcAviyrPw/gZADzAWwDcAEAyEX/1wA+lPWuV8ZkAN+H8FjqCGE43mHG4xRtE5d+YQTumLQAPzlpd2cW2MbguR8cgVtemdtoldnvzt6nJHr5UmBwz45B4kC1RWmhYIzh56cIY2mpuNn3rrH7/rdUTPyhSOfSlJHCTYUk3kRfdRyKPCXpRXSpo537AdxvKZ8CoOmSdKdocfjq2J2tic5KhZ+ctAeuOnH3JlMv7D2oO+5L4AEWh1KpJ0qBX5+5d7Cfdly20x2FJM4PLQ2tkQgotM8I5FZjem6b+N3ZybeyLBY70gujWMSlwdihaAHvxE/H7Y7fvzgHn113YmRzoRRNj/ZJDNA6FosUbRPD+nTGonXJc+jvCKicOjsl0HM3Fb5/zK74/jEiUteV2C5F06HdEoMUKZoLk646prmHEMH+O/dEl6ryxHEBKdoeUmKQIkUK9Oxciem/Oqm5h5GiGdG6fftSpEiRIkVJ0C6JQQuwlaVIkSJFi0K7JAZAYRHIKVKkSNHW0W6JQYoUKVKkCJESgxQpUqRIkRKDNon37gKu6w5s39TcI0mxoyDTbadIUSzaJTHgSTbVbU3IZYEta8L/Hz0ovjevtFZv9cjn29fit/ht8YxdWDQZuL4nsPRDd52alcDyj0o/thRtBu2SGLQ5vPxz4I8jgdoa8Z/Jx8pb+YI56znguh5AvRGt+5f9gZsavxFMq8Dn7wAPngK89Qd3nfmviu/Fk911/rwPcM+xpRnTtg3xdVK0OrRbYtCmslHMfFZ8120W340lBis/jS7ALtSsAN78AxAnbU15IJRYbFg2Bfj9cH2hee16AByoNvbW3bgYqKtJNj4Ts/4ruORSItcgPk2BmhXie92csGz2ROA3A5I/IwDIl2h8n78D/H6YGEOKNoV2SwxisXEx8P5fm3sUyaAW/Yzc4kpRunwRmUHrtwF/PQp48lvJ6j95ATDpN8DqGf56z10O/PdH7uOvXQ9sWy8WG4WsSKmMsgR5atbMBj77l79OrgF4/BvAw6fHt0fBOTD1n+Le2PDnfYHfkVTZT18K3GXscPXuHX41ThwYeVVf/ZW4N5uWqAEW326hWPGJ+F7kkUKaE7kGYMr9xc39do6UGLjw0OnACz8FaqubdxzbNwLVMZu/bVkV/uYcyMjFM0/0zLmGZAblrWvF97yXxfe7dwhjdK2DE2+QC2RjOc9FcvtBKrKpxS7u+gHgzoOBf1/kr5OV+91uXOyu85cxwIf36mWLJwNPfw946Rr7OZtXhIQLAKb+HVg9Xa/z0jXAfcf7x2dDIN1RUZbrZUoqM8XdvxwIPP8Td9t1W9zP1QUmGQ4uF9t8Hpj+lN+G88hZwH++Zz/WUFta+897dwLP/dgvha6dA6ydm6y9VZ+VZFjINYhrbcFol8QgER9Vu0l8NxWHUb8NuPMwYOkHevnW9eGiBQC3jgZuGZWszZf/D/hVj1BCoKqLX/fR9ezLPhKL/PoFehvryEuyYFK4AK6fF5bn8yFnqPqiL/SUBwQRKQY21db2Eumo1X3N1YdllDBwLq5z4pX6eXVbxPeOMMjXb7UvjnShV88oKDOIg8L6+cAHf3P39ceRwI0xm/8smyLmyTr5/IPnLRmNB8YD/7oAeO06dxsLXgc+/We0PJ8HbugvmK7GYNVn4fi2b9S/bbhjLHBHgv0opj0J3H1EqIYFgGw9MPOZeLWoib8eJa61BaP9EYMta/Dm1jNx2hpDBbRospj0K6aK/0osp8Tgs3+FCwMArJxW/DhWTwfWzIhym38YDtx5SPhfEaUk+OxJ8b1MqiPoomfi00fF9/zX9HK6GD9yZvi7nKQ2nvhj4KFTgTkvABmZ65CT+/Tc5W4uOg5PXgA8dJpetvh/xbVlYtWn+v8Z/wFu3S80wAZqFwMr5Xlr59iPlwoNtcBvd9IXVrXo2BafO8YKG4iC73mb7QGhVOfDvXIPq9sPEu/H81fJduQ8Wfqe+H7vrvi2TCiCMuU+fz3OgamPAg3b7cfvPgK4fUxYl34DwCf/AJ44v/DxrZwqvjcuCsve+j3wxHnA3JfCspd+LtSIPqyZWXj/NqyaDmxeXZq2DLQ/YvDHkQCA4zc8Crx7Z1g+S1L/6f8WE0lxFmohWP6xUENMvEL8/+xfwF+PFAsKxZpZwMeP2Ptev0C8ULOfD8vopFWG0g0Li7gwC2xGTdXfh/fIOnX68R6Gl043uUdshujtlQj+9PdCYlAqA2q+AVj0lq6+WNUIokvRiewsdu/xwIdyEVKqgBqHOkoRTroo2HBdd7suPakaRDkA/O9WQRgaakNO3OUM8Pg3gNVyoZl0Q3wf2br4OlYYxMiUmJMQIhOKGMQ5Oix4DXj6EuA/3wUmXiUW33mv2Ov+78/ieytxtX7m+8DMp5ON6bruoWS4drb4Xj8/PD7lAfFNF/d3bxfvQhJMvEr04ULNSrH2ZB338+7DgZt3S9ZXgWh/xIDipavD30qcfuc2oWpRqJELtNIBT3tcLNbKYEonCiC4+mcvs/e3cJL4fozuJEqJAVmMbtgpyRX4YdPjK25HYfMq/f8jZ+n/lYRke9m3bwSWvOs+3hhMezz8bd5jBZs3jal20+oTTnjZh6ErplrYpv/bcR6RBs37ZeKhU6NlSe0pswmXf0N/8VG2FB9nuWFBtIwSICr9mcQfABa+mWx8FC4u3Ydf99O9kPKe2AkKFUMz8xnBxLx7O/CPc/znrJvnP26Dmh8f3gvctn8oMU4nDN+2deLbfI+SQjFh056wS3t/2gO4aSjwm76CaOxAQ3j7JgZJ8NFD4vvZH4RlT38fyEpj0LICAnmWTQl/33eC+NYeNhXhtwpdq8KS95L3o2Dj1v92TMiBRvqHMIZSKL20bRGhsL3YisOi+lvatw+f/D38rYzagD7e31oIprqvNrjUImqx2bY+LKOEgwZ83by7u/1Iu3LcVFrwcea0f4WPHxbfiku1wWYQbyCE8u9nkz6k/YVeU6HeVUDyxZAueLk64LGvhcFvnydU/yV1of3gnvB3ZefocdNF2TToUoaGSuf1ljmr2ip2sX7qO8D94+LrvXlT+LuJMwq0P2Kw88GF1V/xcbRsybvCawEA5r5gP48u5ApK3UCRJRPSFJeXvB/+LsYg61r8qATyfoyud9Pn4tsltirYFrkP7xWLDrWz/G6wvx2FgfvZy80XwvaCuMbquh9K/TOHPMvfDgx/+zh732LwzPfF99t/Cst+089dPymhpOjjIE4uA6qScsxrKlR9ZJPWbOpNW7tK+qSeej7VCZXMfFD2DMDOnNyyl3BBVlhkSESue7DvV6Jlyz8S7sNbiP5+09Jk41RYajB4trk098Xwt88oXgK0P2Jw0cuYy4Ynrz/ksOL6eeSsZLpiyvGZnOEupO9Zz6JgON0GTf1vgnHGqYEUUTN98dfPK06lsMvh9nJTQqnfGl38XYuqaxw9h4nvrMP1z2do9S2iilB1S6jyK4YY9N/LXl6zwl6+Vao5qJQK6F5kxWLyn6Jl6y3qGkUETOcFF3z3xfVMlQRkPh9qV/nnl/VjVE1H4XrGq6fr/f95b/c4k8B2LSuJ08PCNxrXfgzaHzEAsBsnHIztAVBD4xIZBFXl4VxcqHZ4p7hgSgauxSkpXpA+5lvW6uXmwl5HOLSDL7G3Fcc5qrGqoCSFTDmwfEq0vgtdBsgxOvozVV/5hijH5CJcrgUyzjDsg8voDADLpP1CeXnFoVCff8Ctdzefg4LyqjHjIFiCpWD3U/zHbQR8poWJOeF68b0gITFwPbdsvdvDS9178/32MVWv/8Ze7jM+J4lDSupAMO0x//HnLk/WTpFol8RAw8bPo2W2F4wumBWd7G2ZBqFb9wP+/e3kY3njJv2/yb0VC9MOYHLS9IV5/257G3E2g4AYGGq1bB3wzKXh/zg1nQqgcxGfjx4wxpWNjs1FRF+9Nvy9D+EKVYBdEvQaof+nLoZJ0HcP97HuRIV23LX2OubCYs5VZQtwzZ1dDhXfNLEhAJRV2ut3I2PqM5LUr4rWtUWK23T3CjYbiQ1UvUoJ0poZ8YTcJ9EOP0b/X6gaZuiRSBS11JDQ5rGhEUxJCZASgw7domV0cVSukxS7j9f/qxd08h+jdZNyhYCY3BRv/T78Pexo+zlJuMmthmSQNbilJLl6YiUDeVzFOCjkG4CeQ8P/GcuCYQPVE1d2DX+/fUu0/cj1JdB/J/HwsXl7mIuLy7YByMXCbNPDJdJjgw6MHs/ndZdJwEIMYqKs1QKoPGWC81zSFDG60piXPU+LVLUSYVsEr60vFdkcB5qjae1c4J2/+Osvt9j8FDr2Stbn4LGO83voRNckLgr0Hf26J2VKxx7JxtNESImB7eWkk3XIodHjpneDWlhcYqaCjZvqu6f/nGBMjsXLJzqO/rr47tBDLzeDq2zeEibUAusymCoCOvMZvTyX1Q2LNqmLXpsiem/dTI57uLtcQzRiOIl6zYwPscHWjklobE4BCl0sEae+a3nntvA3DfKj55rE1jTaqvG5VHPq/puxG0niRGiKh3w2ykTYrm06Wfyu3eTui+eSeeZQw/VOo91pudV7Ve0x6vqexYB9w99KujEl6vptevS0+Z4p0Dq+9Ba2bLA243UTISUG+Zz/Rcg1RHWW1MKv6iSBTdXCE7qmuSYu9Y2nHDQQvlwqilSBqm2AcBKbqgOtfzn26x3clGsBpveq+87267idpAZQahRKoHL17vD/fENUP27rg7pSUpsQAIxx5DRq2A6sI4vPwNHRZzj1H/Zz1dgi40g4V2w6/FydCDKjML164gihy8ZgGxdlenrvGm1n6ft6Wdy1MSYkw1y9fX+GQgMXfSkhlERPPYxM+OIcKLFU8+mTh/U61LGgc1/3+Gc/F/6mi7vJHL5HgmC/Il2r0ziDpsUXOj4R/qlZIfL2uFC9FPhTDPeeb4iqL0xMdXCQ6uV9+lL7cQDYbZx9gTNfhvE3hr87dBcBPj6XPYV8VuQ1+uNId50kBmSbPzhVnW1da3fVpXrfE3+tH6voDICLl+Ll/wvL+8goTBpF/uWHw7GYoJzy5RbuzBY5vHkVcDtR1ww7UucOqZtihaEb7zFELHi/N2wMLqJOF5LdxgEVFskgSWR6tla/T5Hj9Xp21+OvE982wkX3P7j4zfD+AmLOPGmkePBx2qMlESurFHPp172jdWznUyn2wpeBg74T/ldBnDbkG/zpYnbaX7/nPrdQNfdNCVQFXAKS0Yl5R464Aug+CDh6gvjfi3g1mobwPU8Tc1wRrMakvkmIdkkMsqwCMzvL/D8PeAI/+u/t9xbpJInITUOBV68Ly01O87ruIpxe4VvPA9dVAwecLyb7dd1FpkuF776ln19WEeU6PrxXj5Q+/XZgf8I11lZH1T9XGu6DZ8vsnPceF9W9mmN4cYKfsLzzFz0I7PTbo3XUIr11nUjN8e9vA/8mL/eAfYFyg1s6Uqb/+HVvfYzH/kJ8UzVEt0GyH8tLef9J4W/TqDnlPj1y+AwZ03GXoSIsqxIvfD4nApzuJMbwnxvS46YlwJyJYcQqIDy1XAsmZUi+9jjQsWe0zt+OCX8f/TP92Kl/Ft/3Hq/fJ9Nu8cZv9eyuSh9ujmvOC7rbc1UXYNQZYt4CUekYiEpodL4c+3Px3bBV54AB4NDL7GPYul5syqMw5GDgxN+EHm8vTgiPnWAwEWtni3QxLpR3CPtbN093C/3eu3rd2k3RuW/adMqrovPujRv18/Y7V3x/4Wpha8o3iPd09kSRZ0phgiSA6+YKT6bruuvXcpFh7ykRLNbR9oFRWy0RvafeItLfKpjud995XeeW9v+6yCNj4qQb/Mm3hkoXvI8fsh+nRskjfhxKHb7FePTXwjE21AIPnhyt08lQ8XQdYG+rU2+/YRQIFwXXuIYeof8/egLwppRc/jAiWh8QYzfh8rAwVT1AqGdv2CYSp9HFwsTZ94goUBtsqQz+b61ICc3zblWZD6O/Lvzla6sFMfn0UWDS73QDLQU1tPcbFU1H8YVr9OhU9Syph85RPwWOuNweqa2giNXDZwD7nisWpg7d9XEpwuvChCXAjUOEytKV0sMVa9FrhJCiAKGm3LAQ2OkAu+QACInJZu859DLgFc84v/cOcBeJ21FcvW3u9h8lVIIqytpUxanrpSirFMzOH3aNOjQoKGkWCOMHzHYAcf992DlBxtUi0C4lAwB4YoBFlzjmQvHSH/J94DKLYWqnA/T/n1km/pl3ARUdgZ9Y8sUAoRHNhZ9L18ofThWeB0qM92GPU8OEZoMODIkNxS/W6a5/X7zPLdZ+X+qC/28t8Msi0kf/cGp0Qn/haiGa+2C6Jo65SJeYFL73TjQq9ZqVoRH7ifPchOCX0n1w3y8LCc3ETxbYXYfLK91xI+dJ3/W9vyi+x90UrXPmnaF94fpewm5jIwRnyRxZFR3DMnM/h859xbdSvXz7Nbu959ifCynosinAjy2bD427STcCT3tMSJPmuA73bEoExC9ePvzw43BLz7sOFelEbITgHOJSfIChnrp8OpDJACf9VnxMfOlBoDdRgV7lyHUFhO/fd9/UGR4K83p/ukhEMy99300IgGTbK8Y5lNgYphKhXRIDzoH3exic808lB1peCYz7HdBn1/DlBoD/WyMe5vkySvGKWUAnQ5QfuF/IoXfuI/SIFF138k+Ib00MF4Few4CRnjw7FF+xLJh08l9XHS6011WLzz7nRHO1AGLR6CIXm/LKkMhQHPaDaJnCXmeLsVMpRL1UrkAoQCc6339PvNSn/kl3SwWEvr//XsCQQ/Tyyk5AF0+qB4UMmfIm0fzWRPHc+hkv5ASPPvnQy4Dh0gPq7HuAi98ADjEC9woR6/eTBsYO3YQ0dfEbwIhj9DpXScnlzDvEvR08Jmpwpv74fUbqMQxqTIdcAoy92D+evc6OEmmqIrnGERBGoQiwCcUYJSEme5P8Skcaunt1bYdeKj70vQWAUWeKuXz+c0I1qua3ieHH6ETYhi9Kif9nMj7pwpeiErcN5j2wueYCgtFx4aJX7S7HJUK7JAYAwOki95OF9gd6rDTE7TY+1GUPO0q8gN12Ai6QuWzGXAR846monn0cMehe8jbwY0PtdLHMjdJ7JHD1sqhqReFCR2DTcb8ErpxjJzCXSIPoaRY1lgLlsE7+o5AezEUD0PX/11ULvS2F4oQ79gLOuV+vS7mrb1siTg84Xyxu9Hn021O81ID+clxXHaoU6AKiCElPI/22icunR8uuqxb69ss/C+8/fVG/+1YYi2LaXA78llAJKmTKQunnumox9quXhWL9mTF5oExOVElT5zwA7Hq8WIgu+8j+vPcjmXB/PEN/DgqnSdfV854Jx5TxLAFn3wN86YFo+bdfEwzIj2f4g8oAscDSPpQR+ov3hddxVsz2spcZbrIVHcJo52s3Re/HOfcLl/AvPyzuqTo+7Ehg3y+J39SWMnC0uCe2GAA1Z/Y8PWSiABETcF11lCmx4UfTovf5y0aa+599Ltqj9ah24fTbm0w9FIBz3io/Bx54IC8Wh9/4Gv/x459wns+Ljw8znuZ8e3XRffFP/sn55jXFn6/wzGWcX9ut8e2YWDqF88l/Kn27Ljz6Nc7fu7uwczYs5rx2c7K6D50u7tOiyZzPe5XzbRuSn0tRs4rzRW9Hy+e8xPmdh3OeyxXeZi4rxnZtN86n/4fz2pri2nFh3XzxKRT/+b4Y030ncZ5t4PydOziv21pYG7kc5/eP57x6BeeTbix8HA+eFt6ba7tx/u5dnK+eVVgbheLz98T1lgo3j+L88W9yft84Mf/iUL2C84Zaf50lH3C+fmFpxsc5BzCFO9ZUxgvdvq2JwBgbB+BWAGUA7uWc3+irP2bMGD5lSnHpGo646XWMHdYLf/ry6KLOT9GCkc8LQ16lI2VICjvWzIqqx1K0OTDGPuKcj7EdaxFqIsZYGYA7AIwHMArAVxljCTf+TZGCIJNJCUExSAlBu0eLIAYAxgKYzzlfyDmvB/AYgDOaoqPT/vI2VlU3MhtoihQpUrQxtJQ4g0EAqMvGMgCR9JaMsYsBXAwAQ4ZY/HMTYETfzti5V0d88YCEm6ykSJEiRTtASyEGicA5/xuAvwHCZlBMG38+N8bXPUWKFCnaIVqKmmg5AOqUP1iWpUiRIkWKHYCWQgw+BDCSMTaMMVYJ4FwARezzmCJFihQpikGLUBNxzrOMscsAvAThWno/59wSP58iRYoUKZoCLYIYAADn/HkAlmQxKVKkSJGiqdFS1EQpUqRIkaIZkRKDFClSpEiREoMUKVKkSJESgxQpUqRIAbScRHWFgjG2FsDnCar2AbAutlbrRHptrRPptbVOtIVr24Vzbt3QodUSg6RgjE1xZelr7UivrXUivbbWibZ8bUCqJkqRIkWKFEiJQYoUKVKkQPsgBn9r7gE0IdJra51Ir611oi1fW9u3GaRIkSJFini0B8kgRYoUKVLEICUGKVKkSJGidRIDxtj9jLE1jLHppKwXY+wVxtg8+d1TljPG2G2MsfmMsWmMsQPIOefL+vMYY+c3x7WYcFzbdYyx5YyxqfJzMjl2tby2OYyxk0j5OFk2nzE2YUdfhw2MsZ0ZY5MYYzMZYzMYYz+S5a362Xmuq608tw6MsQ8YY5/K6/uVLB/GGHtfjvVxmX4ejLEq+X++PD6UtGW97uaA57oeZIwtIs9ttCxvFfOxaHDOW90HwFEADgAwnZT9HsAE+XsCgJvk75MBvACAATgEwPuyvBeAhfK7p/zds4Ve23UArrLUHQXgUwBVAIYBWACRArxM/h4OoFLWGdUCrm0ggAPk764A5spraNXPznNdbeW5MQBd5O8KAO/L5/EEgHNl+d0Avid/fx/A3fL3uQAe9113C7yuBwGcY6nfKuZjsZ9WKRlwzt8CsMEoPgPAQ/L3QwDOJOUPc4H3APRgjA0EcBKAVzjnGzjnGwG8AmBckw8+Bo5rc+EMAI9xzus454sAzAcwVn7mc84Xcs7rATwm6zYrOOcrOecfy9+bAcyC2P+6VT87z3W50NqeG+ecb5F/K+SHAzgWwL9kufnc1PP8F4DjGGMM7utuFniuy4VWMR+LRaskBg7055yvlL9XAegvfw8CsJTUWybLXOUtFZdJ0fR+pUZBK742qTrYH4IbazPPzrguoI08N8ZYGWNsKoA1EIvdAgCbOOdZWYWONbgOebwaQG+0wOszr4tzrp7bDfK53cIYq5Jlre65FYK2RAwCcCG7tSWf2bsAjAAwGsBKADc362gaCcZYFwD/BnA557yGHmvNz85yXW3muXHOc5zz0RD7k48FsEfzjqg0MK+LMbY3gKshru8gCNXPz5pvhDsObYkYrJYiG+T3Glm+HMDOpN5gWeYqb3HgnK+WkzYP4B6EonWruzbGWAXEgvkPzvlTsrjVPzvbdbWl56bAOd8EYBKAQyHUJGq3RDrW4Drk8e4A1qMFXx+5rnFS7cc553UAHkAbeG5J0JaIwbMAlBX/fADPkPLzpCfAIQCqpUriJQAnMsZ6SvH9RFnW4qAWSomzAChPo2cBnCu9N4YBGAngAwAfAhgpvT0qIYx4z+7IMdsg9cb3AZjFOf8TOdSqn53rutrQc+vLGOshf3cEcAKEXWQSgHNkNfO5qed5DoDXpcTnuu5mgeO6ZhPGhEHYQehza/HzsWg0twW7mA+ARyHE7gYI/dxFEDrJ1wDMA/AqgF489Bi4A0LH+RmAMaSdCyGMWPMBXNDc1+W5tkfk2KdBTMiBpP7P5bXNATCelJ8M4dWyAMDPm/u65JiOgFABTQMwVX5Obu3PznNdbeW57QvgE3kd0wH8UpYPh1jM5wN4EkCVLO8g/8+Xx4fHXXcLu67X5XObDuDvCD2OWsV8LPaTpqNIkSJFihRtSk2UIkWKFCmKREoMUqRIkSJFSgxSpEiRIkVKDFKkSJEiBVJikCJFihYKxtiXZAK5PGPMufcwsyR3lOWuBIg9GWP/kRHGH8hAs2LbKjh5HWPsQMbYZ/Kc26QLa1F9eO7Jj+W9m84Ye5Qx1iHunJQYpEiRotnBGDuGMfagUTwdwNkA3oo5/UHYcwFNAPAa53wkhOuyygJ7DYCpnPN9AZwH4NZGtDUeIl5iJICLIaLOwRjrBeBaAAdDBK1dy8J0JHcB+A45b1wxfbjAGBsE4IcQrq97QyRAPNd3DpASgxQpUrRQcM5ncc7nJKjnSu7oSoA4CiKWAJzz2QCGMsb6F9lWQcnr5LFunPP3uPDrfxj2BH9J+gBj7CeMsQ+lxPArMt5yAB1lBHgnACss16QhJQYpUqRoq3AlQPwUQuIAY2wsgF0gUkgU01ahyesGyd9mecF9MMZOhJAWxkLkvzqQMXYU53w5gD8CWAIRwFrNOX855vpSYpAiRYrmAxOb30wFcC+A01m4oUxJN76RXLiKsL0RgrueCuAHEFHIuSLbahIk7ONE+fkEwMcQyfVGSnXUGRB7RuwEoDNj7BtxfZbHVUiRIkWKpgLn/GBA2AwAfItz/q0SNr+aMTaQc76SkQSIXGSUvUD2ywAsgtiQpuC24E9ed4xR/oYsH2ypX0wfDMDvOOd/pQNljH0JwCLO+Vr5/ykAh0Gk1nAilQxSpEjRVmFNgMgY6yETAQLAtwG8xY1U6knbQoHJ6+SxGsbYIZIQnQd7gr+kfVzIROp0MMYGMcb6QaiHDmGMdZJ9HAeRWNCP5k6OlH7ST/pJPxBc9ING2VkQ+vE6AKvlYgoI1cfzpF4kuaMsdyVAPBQiGeAcAE+BbFFZRFsFJ68DMAbCU2oBgNuBIEdcMX38SJZ9BuBdACNk+a8AzJb9PAKZRND3SRPVpUiRIkWKVE2UIkWKFClSYpAiRYoUKZASgxQpUqRIgZQYpEiRIkUKpMQgRYoUKVIgJQYpUqRIkQIpMUiRIkWKFAD+H0QCPOho5eFZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(var.counts, s_ir)\n", + "\n", + "plt.plot(lc.time, lc.counts)\n", + "plt.plot(var.time, var.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc, var)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rebin the crosss-spectrum for ease of visualization." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "cross = cross.rebin(0.0050)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "lag = cross.time_lag()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvRklEQVR4nO3dd5xU9b3/8deHIghSlF1EKYJKURRXXRsBgoEoGogNscWI8RfUVBJNYkmi3tjuvXg1ibGgiVgjBKIRYoWIKEUFXRHLIkUFRLqAgkj5/P74nnVnlu07s2dm9v18POYxM6fNZ87OzmfOt5q7IyIikgqN4g5ARERyh5KKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKKZAUz29fMZpjZZjO7Le54RKR8SipSJ2b2oZkNroeXGgWsBVq7+xX18HoZxcw6mdkkM1trZhvNbIGZjUzza44zsxvT+RqSe5rEHYBINR0AvOsV9NY1sybuvqOeY6pPDwNvEc7DNuBwoEOcATWAcy61oCsVSQsz29vMppjZGjPbED3ulLC+W0Jx1lQz+4uZPVLBscYBFwG/NrPPzWywmV1vZhPN7BEz2wSMNLM2ZvZXM1tpZivM7EYzaxwdo7GZjYl+6S8xsx+bmZtZk2h90hVXdPxHEp4fb2azzOwzM3vLzAYmrJtuZn8ws5nR+3nezPIS1vdL2HeZmY00s2PMbFVJfNF2Z5rZWxWc0mOAce7+hbvvcPc33f2ZaL+u0XsZZWafRO//yoTjNjKzq8xssZmtM7MJZrZPFfGNAi5IOOeTE87Tb8xsPvCFmTWJXvvgxL9XyRWOmQ00s+Vm9mszWx3FdrqZnWpmC81svZldU8F7liykpCLp0gh4gPDLuguwFbgzYf1jwGtAO+B64MKKDuTuI4FHgf9x973cfWq06jRgItA2Wj8O2AEcDBwJnAT8v2jbHwJDo+WFwPDqvhEz6wj8G7gR2Ae4EphkZvkJm50PXAy0B/aItsHMDgCeAf4M5AMFQJG7vw6si2IscSHwUAVhzAH+YmbnmlmXCrY5EegeHfM3CUnyp8DpwDeB/YENwF+qiG8syed8WMLrnAd8B2hbzSuVDkBzoCPwe+A+4HvA0UB/4Hdm1q0ax5EsoKQiaeHu69x9krtvcffNwE2ELzWiL8VjgN+7+1fu/grwVC1eZra7P+nuu4DWwKnA6OjX/GrgduDcaNsRwB3uvszd1wO31OB1vgc87e5Pu/sud38BmBu9XokH3H2hu28FJhC+nCEkm6nu/nd33x6dl6Jo3YPRsYmuHE4mJNvynA28DPwOWGpmRWZ2TJltboje+9uEhH5etPwy4Fp3X+7u2whJfHh0lVZZfBX5U3Qet1axXYntwE3uvh14HMgD/ujum939HeBd4IhqHksynJKKpIWZtTCze83so6h4agbQNiru2R9Y7+5bEnZZlrDvPVGRy+dVFI0sS3h8ANAUWBkV43wG3Eu4ciB6zcTtP6rB2zkAOLvkuNGx+wH7JWzzacLjLcBe0ePOwOIKjvsIMMzMWhKS3svuvrK8Dd19g7tf5e69gX2BIuBJM7OEzcq+v/0T4n8iIfb3gJ3RcSqLryLLqt4kyTp33xk9LklEqxLWb6X0fEmWU1KRdLkC6Akc5+6tgQHRcgNWAvuYWYuE7TuXPHD3y6Iil73c/eZKXiOx0n4ZoQI7z93bRrfW0Zcw0Wt2Tti+bBHSF0BiPImV4MuAhxOO29bdW7r7rZXElrjvQeUG774CmA2cSSj6ergax8Pd1wJjCEljn4RVZd/fJwkxnFIm/ubR61cYH8nnt7LlW6j43EkDo6QiqdDUzJon3JoArQi/QD+LinauK9nY3T8iFB9db2Z7mNkJwLByj1xN0S/854HbzKx1VDl9kJl9M9pkAvAzC01z9wauKnOIIuBcM2tqZmXrXEquKE6OKvybRxXQnajao8BgMxsRVWq3M7OChPUPAb8mtOb6Z0UHMbP/NrPDomO0Ai4HFrn7uoTNfhddIfYm1O+Mj5bfA9wU1Z9gZvlmdlo14lsFHFiN91gEnB+dmyFExZzSMCmpSCo8TUggJbfrgTuAPQl9S+YAz5bZ5wLgBEJl9Y2EL8BtdYzj+4RK8ncJldETKS2iug94jtAs9w12/wL/HeEX+wbgBhLqNtx9GaFRwDXAGsKv+19Rjf8fd/+YUPdyBbCe8AWcWH/wBFHxVJniwLJaRNt+BiyJ9vlumW1eAhYB04Ax7v58tPyPhDqr581sM+HvcVw14vsrcGhUbPZkJbH9nPCj4DPC37WybSXHmSbpkkxgZuOB9939uio3Ts3rdQWWAk3j7mthZouBSxNatdV0/65kyHsR0ZWKxCLqp3FQVEw1hHAl8GTMYdU7MzuLUEfxn7hjEUmF2HrUm1lnQnnyvoR/qrHu/seo/H080BX4EBjh7hviilPSpgOhCKodsBy43N3fjDek+mVm04FDgQujZtEiWS+24i8z2w/Yz93fiCoe5xE6aI0kNDe91cyuAvZ299/EEqSIiNRIbMVf7r7S3d+IHm8mtJ3vSCgGeTDa7EFCohERkSyQERX1UUXjDOAw4GN3bxstN2BDyfMy+4wijFxLy5Ytj+7Vq1d9hZvTitcVA9CzXc+YIxGRdJs3b95ad8+vesvqiz2pmNlehKaQN7n7P83ss8QkYmYb3H3vyo5RWFjoc+fOTXOkDcPAcQMBmD5yeqxxiEj6mdk8dy9M5TFjbf1lZk2BScCj7l7Sb2BVVN9SUu+yOq74RESkZuJs/WWEzlXvufv/Jax6ijDM+a3R/b9iCK/B+u2A38YdgohksTgn6foGYbyjt82sKFp2DSGZTDCzSwiD4o2IJ7yGafCB9TGJo4jkqtiSSjTcuVWwelB9xiKlij4tAqCgQ0GscYhIdtJ0wpJk9LOjAVXUi0jtaJgWERFJGSUVERFJGSUVERFJGSUVERFJGVXUS5KbB1U2e6+ISOWUVCRJ38594w5BRLKYir8kyaxls5i1bFbcYYhIltKViiS5Zto1gPqpiEjt6EpFRERSRklFRERSRklFRERSJjeTijt8+WXcUYiINDi5V1G/fTt07QoXXww33hh3NFnnjiF3xB2CiGSx3EsqTZtCx47w8stxR5KVNOS9iNRFbhZ/9e8Pr74K27bFHUnWmbpkKlOXTI07DBHJUrmbVLZtg7lz444k69w440ZunKFiQxGpndxMKv36hXsVgYmI1KtYk4qZ/c3MVpvZgoRl15vZCjMrim6n1vjAeXlwyCFKKiIi9SzuK5VxwJBylt/u7gXR7elaHbl/f5g5E3burEt8IiJSA7EmFXefAaxPy8H794eNG+Htt9NyeBER2V2mNin+iZl9H5gLXOHuG2p8hAEDwv3LL0NBQSpjy2n3Dr037hBEJIvFXfxVnruBg4ACYCVwW3kbmdkoM5trZnPXrFmz+wZduoSb6lVqpGdeT3rm9Yw7DBHJUhmXVNx9lbvvdPddwH3AsRVsN9bdC929MD8/v/yD9e8fkop7+gLOMZOLJzO5eHLcYYhIlsq4pGJm+yU8PQNYUNG2VerfHz79FBYvrnNcDcVts2/jttnlXhyKiFQp1joVM/s7MBDIM7PlwHXAQDMrABz4ELi01i/Qv3+4f/llOPjgOsUqIiJVizWpuPt55Sz+a8pe4JBDoF27kFQuvjhlhxURkfJlXPFXSpmF3vUzZsQdiYhIg5DbSQVCEdjixbByZdyRiIjkvEztp5I6ifUqI0bEG0sWePiMh+MOQUSyWO5fqRx5JLRsqf4q1dS5TWc6t+kcdxgikqVyP6k0bQonnKCkUk3jF4xn/ILxcYchIlkq95MKhCKw+fPhs8/ijiTj3T33bu6ee3fcYYhIlmo4ScUdZs2KOxIRkZzWMJLKcceFYjAVgYmIpFXDSCotWsDRR6u/iohImjWMpAKhCOz112Hr1rgjERHJWQ0rqWzfDq+9FnckGW3iiIlMHDEx7jBEJEs1nKTSr18YtkX1KpXKa5FHXou8uMMQkSzVcJLK3nvDYYcpqVRhXNE4xhWNizsMEclSDSepQCgCmzULduyIO5KMpaQiInXR8JLK55/DW2/FHYmISE5qeEkF6l4EtnkzvP02LFkCu3bVPS4RkRyR+6MUJ+rYEbp1C/1VRo+ufNslS6C4GJYuhQ8/DPclt/XrS7dr2RIOPzzc+vQpfbzPPrWPc8cO+M9/YPx42LQpNDIYMCAcv3Hj2h9XRCTNGlZSgXC18swzYdgWs93Xv/YaXHcdPPts6bI99oCuXUNCKiwM9127ll6xzJ8PkybBffeV7tOxIxQUhMEs+/aFY48NCagi7jBnDvz97yGZrF4NrVuHBgYToya+rVuHBNO/f0gyhYUhNoCdO8OcMR9/DMuWhfuPP4YVK0KsAwaE/dq1q9v5ExGphLl73DHUWWFhoc+dO7d6G99/P/zwh/Dee9CrV+nyN94IyWTKlPDFe8UV4Yu4Wzfo0AEaVVFS6B6+1OfPD4nm7bdh3jx4992wvnHjkGT69i29dekCCxbAY4/B44+Hq6DmzWHoUDj/fDjllPD8449Dkd3LL4errPfeC8fcc0849FBYsyYkj507k2Nq1Soktw8/hC+/DMsOPxy++c3w3gYMgH33Tdply/YtALRo2qJ651NEspaZzXP3wpQeM86kYmZ/A4YCq939sGjZPsB4oCvwITDC3TdUdpxW3Vr50dcdXelrDe0xlCv7XgkLFzLwlp6MLBjJyJ8/wNpXX2T4P86GdeugSRPo3Dl8EZcpZhpZMJKRBSNZu2UtwycM54oTrmBYz2EUry3m0imXVvzCO3bApk1c8dkhDJu5luKFs7l08FZungZ9P9+bWXtt4JpBhCuSffeFvLxyi7huHnQzfTv3ZdayWVzz7K+4d6/z6PnaYiZ/Mp3bun0CzZpDs2YhCTVrFm5NogvRXbu4t+Nl9Jy7lMnzJ3LbXvOZ+Pgu8rbAuFM6MO6EFuF9V2LiiInktcj7unXY9JHTARgzawxTFk6pdF8gafvZy2czacQkAK6eejWzl8+udN92Ldolbb9u6zrGDhsLwKjJo1i4bmGl+/do1yNp+3Z7tuOWwbcAcNaEs1i3ZV2l+5/Q6YSk7U/odEL4LAEDxw2sdF9I+OxF25f9LFWl1p+9SNntkz5L066pcv+y29879F565vVkcvFkbpt9W5X7l92+7GepKvrspe+z99LFL6U8qcRd/DUOuBN4KGHZVcA0d7/VzK6Knv8mZa/YvXsYXPK112D4cHhmEpzXOBQRdexY+kWcKk2ahPqV73wP/msYrHoH/nER9BkACzbC4W2h5ZwQU3U1bQrf/jac9xMongxV/WM3ahTGPjv5fCjuA7PGwMhrYPZbMP32cCUUJZVPNn8CwP6t9q/lGxaRhiz24i8z6wpMSbhSKQYGuvtKM9sPmO7uPSs7Ro2KvyAkk0mTQvHQL34Rbm3b1vo9ZLXrr4cbboCvvoKmTb/+9VPy605Eclc6ir/ivlIpz77uvjJ6/Cmwb3kbmdkoYBRAly5davYKv/89HH88/OAHdWullQvy88P9unWh7khEpA4yMal8zd3dzMq9lHL3scBYCFcqNTpwnz7hJqVJZc0aJRURqbNM7Py4Kir2IrpfHXM8ua19+3C/Zk28cYhITsjEpPIUcFH0+CLgXzHGkvtKrlRWK3eLSN3FWvxlZn8HBgJ5ZrYcuA64FZhgZpcAHwEj4ouwAUgs/kIV9CJSN7EmFXc/r4JVg+o1kIasXbswsoCKv0QkBTKx+EvqU+PGoQVclFTGzBrDmFljYg5KRLKVkoqEIrAoqUxZOKVavZRFRMqjpCKhBZiKv0QkBZRUJOlKRUSkLpRUJCQVNSkWkRTI6B71Uk/y88PEYzt3smfTPeOORkSymJKKhKTiDuvW8cwFz8QdjYhkMRV/yW4dIEVEaktJRZKSyh9e+gN/eOkP8cYjIllLSUWSBpWctnQa05ZOizceEclaSiqi4i8RSRklFQnjf4GaFYtInSmpSJjzfu+9daUiInWmJsUSRL3q27VoF3ckIpLFlFQkiJLKpBEvxh2JiGQxFX9JoPG/RCQFlFQkiEYqvnrq1Vw99eq4oxGRLKXiLwny82HtWmYvnx13JCKSxTI2qZjZh8BmYCeww90L440ox+Xnw65dsH17aA0mIlILGZtUIie6+9q4g2gQSjpAKqmISB2oTkWCxKQiIlJLmZxUHHjezOaZ2aiyK81slJnNNbO5a9Rqqe6ipNLJW9GpdaeYgxGRbJXJxV/93H2FmbUHXjCz9919RslKdx8LjAUoLCz0uILMGdGgko80Px/OvCzmYEQkW2XslYq7r4juVwNPAMfGG1GOy8sL97rqE5E6yMikYmYtzaxVyWPgJGBBvFHluD32gDZtGP3FJEY/OzruaEQkS2Vq8de+wBNmBiHGx9z92XhDagDy8yna9Ql8WhR3JCKSpTIyqbj7EuCIuONocPLzYbtacItI7WVk8ZfEJD9fTYpFpE4y8kpFYpKfD9u/ijsKaQjWr4f586FNGzjyyLijkRRSUpFS7dvT450d0K573JFIrti+HYqLQwJJvK1YEda3bg3r1kETfRXlCv0lpVR+PmOfchj3P3FHItnms89C8li4MPn+/ffhq+jqt2lTOOQQOPFEOOII2LABbr4ZioqgUEP75QolFSlVMlTLmjVhemGRstxh0SJ46SWYMyckjuLi5P5NjRvDgQdC9+4wZAj06RNuPXuGpuslli8PSeWVV5RUcoiSipTKz2fUMOClKxnb46m4o5FM4B6uNl56qfS2cmVY164d9O4Np50WEkaPHuG+W7fk5FGRTp2ga9eQVEaPTue7kHqkpCKl8vNZ2A7YuCTuSCQO7iFhvP12uL36KsyYAatXh/X77Qff/GbprVcvCH3Jaq9/f3j++fDadT2WZAQlFSmlkYobjs2bYcGC0gRSclu/vnSbLl3g5JNLk8hBB6X+i79fP3j44VCk1l0NRHKBkoqUKkkqX6lZcc7Yvj1UmpdNHh9+WLpNy5Zw2GFw1llw+OHhdthhpePBpVO/fuH+lVeUVHKEkoqUat48VLLqSiV7rV0LU6bAtGmh6W5i66vGjUO9x7HHwiWXlCaQrl2hUUz9oHv1gn32CUnl4ovjiUFSSklFkhRsbgl77RV3GFITixfDv/4Vbq+8EqaF3nff0Knw5JNLk8chh0CzZnFHm6xRo3C18sorcUciKaKkIknu+OgQ2NA67jCkMu4wbx48+WRIJAuiAbwPPxyuvTa0xjrqqOyp+O7XD556KjQIiOb1keylpCLJ8vNh2bK4o5BEO3eGepAZM+Dll0tbZDVqFFpP/d//hURy4IFxR1o7ifUqZ54ZbyxSZ0oqkuR7vd6FNit5JO5AGrKvvgpXIjNmhNvMmbBxY1h3wAFw0kkweDB85zv1U5mebkcfHerzlFRygpKKJFm+53bY40v1G6hvH38MTz8dbtOmwZYtYXmvXnDOOeGKpH//kFRyzR57wHHHqV4lR1QrqZjZPuUs3uzuaiaUa5o2DQll06Ywgqykx44dMGtWSCL//ndpvUi3bqEV1Le+FYqFGkodQ79+cOut8MUXoYmzZK3qXqm8AXQGNgAGtAU+NbNVwA/dfV56wpN6VzK8xpo1SiqptmlTSCBPPgnPPReKtJo0gQEDYMyYUJzVs2fDvELs1y/UHc2ZA4MGxR2N1EF1k8oLwER3fw7AzE4CzgIeAO4CjktPeFLvmjYN92vWwMEHxxtLLvjsM5g8GSZODIlk2zbo0CF0NDz1VPj2t8Pw7w3dCSeEZPrKK0oqWa66SeV4d/9hyRN3f97Mxrj7pWaWlobvZjYE+CPQGLjf3W9Nx+tIshPaHwXL3k4edVZqZv360ER24sQwrtX27WHwxMsvh+HDwxdoXJ0NM1WbNmE4fNWrpMeXX8KSJaEzbOK8NmlQ3aSy0sx+AzwePT8HWGVmjYFdqQ4qOu5fgG8Dy4HXzewpd3831a8lyW7pfwNc+CCcuzruULLLtm2hz8i4cfDCC6HO5IAD4Gc/C4nk2GOVSKrSrx888EA4d5q0q+a+/DJ0hP3ggzCWWsn9okWhm4B72K5RozAkzlFHhe1TrLp/ufOB64Ano+czo2WNgREpjwqOBRa5+xIAM3scOA1QUkm3xDlVpHLu8MYb4YvwscfCpFOdOsEvfwlnnx2ayjbE+pHa6tcP7rxTk3ZVh3sYv2327FAPNWdOOG+JQyy1axeSx4AB4f7gg8MwPYceCi1ahG3S8PmsVlJx97XATytYvSh14XytI5DYA285ZeptzGwUMAqgS5cuaQihYTpryoVwXmMmKalUbM0aePRR+NvfQqfEZs3gjDNCq61Bg8IYW1Jz3/hGuNekXbvbsCEkjVdfLU0kJVMStGgBxxwDV1wRJkPr3j2MKB3TRHvVbVKcD/wa6A00L1nu7t9KU1xVcvexwFiAwsJCjyuOXLNuyzpo00RXKmXt2hXqR8aODRXvO3aEf+S77oJzz9VMmamgSbvC5+qDD+Ctt5LrPhJHuejRI8yoefzxoX7usMMyqriwupE8CowHhgKXARcB6fzWWUFowlyiU7RM6kPTPZRUSqxaFYq3xo6FpUtD8eDPfw4jR4Z/ZkmthjRp15o1yYlj/nx4551QPwchUfTqFc5Jnz6hIcMxx4RirQxW3aTSzt3/amY/d/eXgJfM7PU0xvU60N3MuhGSybmEOhypD02bNuyk4h6mzb3nHvjnP0M59cCBcMstoZirOlPlSu3k4qRdX321e6ur+fNLp2WG0My8Tx/46U/DfZ8+IaFk2qjS1VDdpFJS+7PSzL4DfAKU18s+Jdx9h5n9BHiO0Bjgb+7+TrpeT8poqEll/Xp46KGQTIqLoW1b+PGP4dJLwz+4pF82T9rlDp9+Wpo0Soqw3nsvFGtB+EHSu3cYv60kefTpk1MjJ1Q3qdxoZm2AK4A/A62B0ekKCsDdnwaeTudryO4GdRsEC3fA6rkNowjCPVR+3nMPjB8fmmUef3xoGjxiBOy5Z9wRNizZNGmXO7z7bqhjmzo1JJG1a0vXd+oUEsZ3vlNafNW9e2kH4xxV3dZfU6KHG4ETAcxsdJpikhj97pu/g1ebwbaZ8Pnn0KpV3CGlx+bNoQXXPfeEL4O99gr1JJdeCgUFcUfXcGX6pF1ffRVGjp48OdyWLg3LCwrg9NNLrzwOPzwkxwaoLk0GfgnckaI4JJMk9lXJtaRSVBQSyaOPhqR5xBHh+fnn5957zVYlk3atWhVmsIzbypXhSmTy5DDUzqZNYaj+QYPgqqvClUjHjnFHmTHqklRyvFykYTrl0VPgszU8AyGpZOvET4m2b4dJk+CPfwzt+5s3D82AL7ss9HTP9SK+bFNSrzJzZv3Or+IerjzefDN0ai25X7UqrO/QIRSJDhsW5rMp6UAoSeqSVNQ3JAdt3b4VmkR/2myvrN+wITQFvvNOWL48lGfffjtcdJH6lWSy+pq0a+vWUJQ1dSrMnRuSSMlkaI0bhwr1IUPgyCOhb98Ql4baqVKlScXMNlN+8jBANZi5KnGk4mxUXAx/+lOobN+yJcxNcvfdYVRgfSlkvnRN2uUePhvPPhuKsaZPDw0zmjULdSLnnRcSyFFHhT5IzZtXdUQpR6VJxd1VyNwQZWNScQ8zJt5xR5izZI894IILQs/sPn3ijk5qqmTSrs8/D40oamvz5nAlUpJIPvooLO/ZMzTKGDIkjI2loqyUyZy+/ZI5GjcOv9KyJals2gSXXBKGmm/fHq6/PtSXZEIlr9ROyaRdr75a8/lVPvqotHXWiy+GOrVWrcJxrr4aTj45DAcjaaGkIkmG9hgaHuQvKR2wLpO9/XaY8GrJktDjffRoFVvkgppM2rVrF7z+emkiKZknpEePMKTO0KGhTiTH+4dkCiUVSXJl3yvDg/aPZ/6VyoMPhomv2rYNv0j79487IkmVyibt2rUr9FKfOTPcnnsutNBq3Dhc4YwZE1po9ehR/3GLkopUID8/c5PK1q1h8qv774cTTwxzmXToEHdUkmolk3Zt3Ajz5sGsWeE2e3aYphnC5/TEE+G734VTTmmwHQ4ziZKKJBk4biAA0/O7hF+DmWbx4jCTYlERXHMN3HBDRg37LSlUMmnX3nuXzlrYu3eYAO0b3whFWgcfrH5GGUb/jVK+TLxSefLJMJRKo0YwZUroySy565RT4MILoUuXkESOP179i7KAkoqULz8/9PHYsiX+5paffAI33hj6mhQWwj/+odY7DUHr1mHUaMkq6gkm5cuEuepXrAh1JwceGHrG/+xnoeJWCUUkYympSPlKkkoczYpLkslBB4Xpei+4ABYuDGN3ZeGkRSINiYq/JMmI3iPCg53RpEH1eaWyYkXoRX3ffaHj20UXhcr4XBjUUqSBUFKRJD865kfhweLF4b4+ksqWLaGn8z33hD4II0eGZNKtW/pfW0RSSklFkmzZvgWAFvVVp7JiRehj8OabYaiVa69VnYlIFsu4pGJm1wM/BEq+za6JphaWenDqo6cCMP2iF8OgjOlMKvPmhYSyaVOYlGno0PS9lojUi4xLKpHb3X1M3EE0aGbp7asycSJ8//vhNWbO1EjCIjlCrb+kYulIKu5w002hV3RBAbz2mhKKSA7J1KTyEzObb2Z/M7Nyu9Ca2Sgzm2tmc9dkWs/vXJGfn9omxV9+Ga5Ofvvb0Ez4P//R8PQiOSaWpGJmU81sQTm304C7gYOAAmAlcFt5x3D3se5e6O6F+SWVypJa7dun7kpl9eowhPkjj4Te8Q8/rCHqRXJQLHUq7j64OtuZ2X3AlDSHIwlGFowsfZKq4q933w1T+a5eHYZYGT687scUkYyUcRX1Zrafu6+Mnp4BLIgznoZmt6Ty+eeh2Kq2VxXvvx+GJm/UCGbMCGN3iUjOyrikAvyPmRUADnwIXBprNA3M2i1rAchrkZc8/lfnzjU/2AcfwLe+FVqSvfgi9OqVwkhFJBNlXFJx9wvjjqEhGz4hFE1NHzm9bkllyZKQULZvh+nTlVBEGoiMSyqSQWrbq/6jj0JC2bIltPDq3Tv1sYlIRlJSkYq1jwaVrEmz4uXLQ0LZuBGmTQvzjItIg6GkIhWr6ZXKypUhoaxZA1OnwlFHpS82EclISipSsTZtoGnT6iWVVatCQvnkE3j+eTj22PTHJyIZR0lFklxeeHnpEzPIy6s6qaxdC4MHh7qUZ5+Fvn3TG6SIZCwlFUlyzmHnJC+oqgPk4sVw+umwaBFMmQIDBqQ1PhHJbJk69pfEZNnGZSzbuKx0QWVJ5dlnQ2fGFStCQhk0qH6CFJGMpaQiSS584kIufCKhq1B5SWXXrjDS8KmnQpcuMHeuEoqIACr+kqq0b5/cpHjTpjB3/JNPwvnnw9ix0LJlbOGJSGZRUpHK5eeHRLJtGyxdCmecEYZfuf12+PnPQ2W+iEhExV9SuZK+KvffH5oJr1sX+qCMHq2EIiK7UVKRypUklZ/8BA45BN54AwYOjDUkEclcKv6SJFeccEXygp49wxXJJZfAn/+sibVEpFJKKpJkWM9hyQt694b166Ft21jiEZHsouIvSVK8tpjitcXJC5VQRKSadKUiSS6dEuZEmz5yeryBiEhW0pWKiIikjJKKiIikTCxJxczONrN3zGyXmRWWWXe1mS0ys2IzOzmO+EREpHbiqlNZAJwJ3Ju40MwOBc4FegP7A1PNrIe776z/EEVEpKZiSSru/h6A7d4j+zTgcXffBiw1s0XAscDs+o2w4frtgN/GHYKIZLFMa/3VEZiT8Hx5tGw3ZjYKGAXQpUuX9EfWQAw+cHDcIYhIFktbUjGzqUCHclZd6+7/quvx3X0sMBagsLDQ63o8CYo+LQKgoENBrHGISHZKW1Jx99r85F0BdE543ilaJvVk9LOjAfVTEZHaybQmxU8B55pZMzPrBnQHXos5JhERqaa4mhSfYWbLgROAf5vZcwDu/g4wAXgXeBb4sVp+iYhkj7hafz0BPFHBupuAm+o3IhERSYVMK/4SEZEslmlNiiVmNw+6Oe4QRCSLKalIkr6d+8YdgohkMRV/SZJZy2Yxa9msuMMQkSylKxVJcs20awD1UxGR2tGVioiIpIySioiIpIySioiIpIySioiIpIwq6iXJHUPuiDsEEcliSiqSREPei0hdqPhLkkxdMpWpS6bGHYaIZCldqUiSG2fcCGgGSBGpHV2piIhIyiipiIhIyiipiIhIyiipiIhIyqiiXpLcO/TeuEMQkSwW1xz1Z5vZO2a2y8wKE5Z3NbOtZlYU3e6JI76GrGdeT3rm9Yw7DBHJUnFdqSwAzgTK+1m82N0L6jccKTG5eDIAw3oOizkSEclGsSQVd38PwMzieHmpxG2zbwOUVESkdjKxor6bmb1pZi+ZWf+4gxERkepL25WKmU0FOpSz6lp3/1cFu60Eurj7OjM7GnjSzHq7+6Zyjj8KGAXQpUuXVIUtIiJ1kLak4u41HufD3bcB26LH88xsMdADmFvOtmOBsQCFhYVet2hFRCQVMqr4y8zyzaxx9PhAoDuwJN6oRESkumKpqDezM4A/A/nAv82syN1PBgYA/2Vm24FdwGXuvj6OGBuqh894OO4QRCSLxdX66wngiXKWTwIm1X9EUqJzm85xhyAiWSyjir8kfuMXjGf8gvFxhyEiWUrDtEiSu+feDcA5h50TcyQiko10pSIiIimjpCIiIimjpCIiIimjpCIiIimjinpJMnHExLhDEJEspqQiSfJa5MUdgohkMRV/SZJxReMYVzQu7jBEJEspqUgSJRURqQslFRERSRklFRERSRklFRERSRklFRERSRk1KZYkT1/wdNwhiEgWU1KRJC2atog7BBHJYir+kiR3vX4Xd71+V9xhiEiWUlKRJBPemcCEdybEHYaIZCklFRERSZlYkoqZ/a+ZvW9m883sCTNrm7DuajNbZGbFZnZyHPGJiEjtxHWl8gJwmLv3ARYCVwOY2aHAuUBvYAhwl5k1jilGERGpoViSirs/7+47oqdzgE7R49OAx919m7svBRYBx8YRo4iI1FwmNCn+ATA+etyRkGRKLI+W7cbMRgGjoqfbzGxB2iJMnTxgbdxBVEOeXWxZESdZcj5RnKmSDTFC9sTZM9UHTFtSMbOpQIdyVl3r7v+KtrkW2AE8WtPju/tYYGx0nLnuXliHcOuF4kwtxZla2RBnNsQI2RVnqo+ZtqTi7oMrW29mI4GhwCB392jxCqBzwmadomUiIpIF4mr9NQT4NfBdd9+SsOop4Fwza2Zm3YDuwGtxxCgiIjUXV53KnUAz4AUzA5jj7pe5+ztmNgF4l1As9mN331mN441NX6gppThTS3GmVjbEmQ0xQgOO00pLnkREROpGPepFRCRllFRERCRlMjKpmNmQaJiWRWZ2VTnrm5nZ+Gj9q2bWNWFducO8VHXM+ozTzL5tZvPM7O3o/lsJ+0yPjlkU3drHFGNXM9uaEMc9CfscHcW+yMz+ZFHFWExxXpAQY5GZ7TKzgmhdSs9lNeMcYGZvmNkOMxteZt1FZvZBdLsoYXkc57PcOM2swMxmm9k7FoZROidh3TgzW5pwPgviijNatzMhlqcSlneLPiOLos/MHnHFaWYnlvl8fmlmp0fr4jifvzSzd6O/7TQzOyBhXWo+n+6eUTegMbAYOBDYA3gLOLTMNj8C7okenwuMjx4fGm3fDOgWHadxdY5Zz3EeCewfPT4MWJGwz3SgMAPOZVdgQQXHfQ04HjDgGeCUuOIss83hwOJ0nMsaxNkV6AM8BAxPWL4PsCS63zt6vHeM57OiOHsA3aPH+wMrgbbR83GJ28Z5PqN1n1dw3AnAudHje4DL44yzzGdgPdAixvN5YsLrX07p/3vKPp+ZeKVyLLDI3Ze4+1fA44ThWxKdBjwYPZ4IDIqyZ0XDvFTnmPUWp7u/6e6fRMvfAfY0s2Z1jCelMVZ0QDPbD2jt7nM8fOIeAk7PkDjPi/ZNlyrjdPcP3X0+sKvMvicDL7j7enffQBj/bkhc57OiON19obt/ED3+BFgN5NcxnpTHWZHoM/EtwmcEwmfm9AyJczjwjCd3o0il6sT5YsLrJw6RlbLPZyYmlY7AsoTn5Q3V8vU2HsYQ2wi0q2Tf6hyzPuNMdBbwhrtvS1j2QHQ5/Ls6FoXUNcZuZvammb1kZv0Ttl9exTHrO84S5wB/L7MsVeeyunHWdN+4zmeVzOxYwi/exQmLb4qKTm5PwQ+husbZ3MzmmtmckiIlwmfiMy8dWzBjzifhCrvs5zPO83kJ4cqjsn1r/PnMxKTSYJhZb+C/gUsTFl/g7ocD/aPbhXHERij26OLuRwK/BB4zs9YxxVIlMzsO2OLuiWPAZcq5zDrRL9SHgYvdveTX99VAL+AYQjHJb2IKr8QBHoZCOR+4w8wOijmeCkXn83DguYTFsZ1PM/seUAj8b6qPnYlJpTpDtXy9jZk1AdoA6yrZNx3Dv9QlTsysE/AE8H13//qXoLuviO43A49Rt1Gaax1jVIS4LoplHuHXao9o+04J+8d+LiO7/QpM8bmsbpw13Teu81mh6MfDvwnj9H09wKu7r/RgG/AA8Z7PxL/vEkL92ZGEz0Tb6DNS42OmI87ICOAJd99esiCu82lmg4FrCSOabKti35p/PlNVSZSqG6GX/xJCRXtJZVPvMtv8mORK2wnR494kV9QvIVReVXnMeo6zbbT9meUcMy963JRQLnxZTDHmA42jxwdGH6R9vPyKu1PjOpfR80ZRfAem61xWN86Ebcexe0X9UkIl6N7R49jOZyVx7gFMA0aXs+1+0b0BdwC3xhjn3kCz6HEe8AFRpTTwD5Ir6n8UV5wJy+cAJ8Z9PgmJdzFRY4x0fD5r/QbSeQNOJUzetZjwawngvwiZFaB59MFZFL3hxC+Ta6P9iklopVDeMeOKE/gt8AVQlHBrD7QE5gHzCRX4fyT6Yo8hxrOiGIqAN4BhCccsBBZEx7yTaGSGGP/mAwlD/SQeL+XnsppxHkMod/6C8Kv5nYR9fxDFv4hQrBTn+Sw3TuB7wPYyn82CaN1/gLejWB8B9ooxzr5RLG9F95ckHPPA6DOyKPrMNIv5796V8KOnUZljxnE+pwKrEv62T6X686lhWkREJGUysU5FRESylJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKK5JQyI9cWWcII1tnOzI40s79Gj0ea2Z1l1k83s8JK9n/czLqnO05p2OKaTlgkXba6e0F5K6Kxv8xLhx3JNtcAN9Zh/7uBXwM/TE04IrvTlYrkNAvzwhSb2UOEDlydzexXZvZ6NJDfDQnbXmtmC83sFTP7u5ldGS3/+grAzPLM7MPocWMz+9+EY10aLR8Y7TPRzN43s0dLBrM0s2PMbJaZvWVmr5lZKzObkTiXRvT6R5R5H62APu7+VjXe83cTrtSKzWxptOplYHDCECYiKacPl+SaPc2sKHq8FPgF0B24yN3nmNlJ0fNjCcNOPGVmAwg9oc8FCgj/F28QeuRX5hJgo7sfE40wO9PMno/WHUkYNugTYCbwDTN7DRgPnOPur0djbG0F/gqMBEabWQ+geTnJo6RXc6JzzKxfwvODAdz9KeApADObALwULd9lZouAI6rx3kRqRUlFck1S8VdUp/KRlw6MeFJ0ezN6vhchybQiDPi3Jdrv65kEK3ES0MdKZ/prEx3rK+A1d18eHauIMFTHRmClu78O4O6bovX/AH5nZr8iDJUxrpzX2g9YU2bZeHf/ScJ7nZ640sx+TTgff0lYvJow+ZaSiqSFkoo0BF8kPDbgFne/N3EDMxtdyf47KC0qbl7mWD9198ThzDGzgUDi/Dg7qeR/zd23mNkLhAmVRgBHl7PZ1jKvXaloJNqzgQFlVjWPjiWSFqpTkYbmOeAHZrYXgJl1tDB3/QzgdDPbM6q/GJawz4eUftEPL3Osy82saXSsHmbWspLXLgb2M7Njou1bJdRv3A/8CXjdw8x7Zb1HVLxVFQvzjv8FONvdyyaQHuxejCaSMrpSkQbF3Z83s0OA2VHd+efA99z9DTMbTxj1djXwesJuY4AJZjaKMM9IifsJxVpvRBXxa6hkqlV3/8rMzgH+bGZ7Eq4YBhPmWp9nZpsI82qUt+/7ZtbGzFp5mB+mMiMJMyA+Gb3HT9z9VDPbl1Ac9mkV+4vUmkYpFimHmV1P+LIfU0+vtz9hoqleFTV5NrNfAJvd/f5avsYvgE3u/tdaBypSBRV/icTMzL4PvEqY/6KyPjR3k1xXU1OfAQ/WYX+RKulKRUREUkZXKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjL/H3DbH9bCFmNTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-0.0050)*1/0.0050)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al (2014), the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase wraps and the lag becomes negative. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "13it [00:00, 3156.72it/s]\n" + ] + } + ], + "source": [ + "cross = AveragedCrossspectrum(lc, var, segment_size=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvIUlEQVR4nO3debyUdfn/8dcFKJssyiFF2bSEfm5hHO2rolL6U/KruYYaWqSFWdaXzA2wb1ailpqUqUmalJBCmiZqZtgPrYAU7GhuEG4skiKioiDbuX5/fO7juWeYOWfOOfece5b38/GYx5m512tuhrnms97m7oiIiCShQ9oBiIhI5VBSERGRxCipiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKlAUz29nMHjOzdWZ2bdrxiEhuSirSJmb2ipkd2Q6nGge8CfR09++0w/lKipn1N7O7zexNM3vHzJ4xs7FFPuc0M7u8mOeQytMp7QBECjQIeM7zjNY1s07uvqWdY2pPtwNPEa7DRmBfYJc0A6qCay6toJKKFIWZ7Whm95vZajNbGz3vH1u/e6w6a46Z3WBm0/McaxrwJeAiM3vPzI40s8vM7C4zm25m7wJjzayXmd1qZqvMbKWZXW5mHaNjdDSza6Jf+i+Z2TfMzM2sU7Q+o8QVHX967PV/mdk8M3vbzJ4ys5GxdXPN7Idm9vfo/TxsZjWx9SNi+y43s7FmdoCZvd4QX7TdSWb2VJ5LegAwzd3fd/ct7v5Pd/9jtN/g6L2MM7PXovd/Qey4HczsEjN70czWmNksM9upmfjGAWNi13x27DpdbGZPA++bWafo3B+L/3s1lHDMbKSZrTCzi8zsjSi2E8zsGDNbYmZvmdnEPO9ZypCSihRLB+A2wi/rgcAG4Oex9b8FHgf6AJcBZ+Y7kLuPBWYAP3b3Hdx9TrTqeOAuoHe0fhqwBfgYsD9wFPCVaNuvAsdGy2uBUwp9I2a2G/AAcDmwE3ABcLeZ9Y1t9gXgy8BHgO2jbTCzQcAfgeuBvsAwoM7dnwDWRDE2OBP4TZ4wFgA3mNlpZjYwzzafBvaMjnlxLEl+EzgBOBzYFVgL3NBMfFPJvObHxc5zOvDfQO8CSyq7AF2A3YD/BX4JnAEMBw4FvmtmuxdwHCkDSipSFO6+xt3vdvf17r4OmEz4UiP6UjwA+F933+TufwPua8Vp5rv7ve5eD/QEjgHGR7/m3wCuA06Lth0NTHH35e7+FnBlC85zBvCguz/o7vXu/mdgYXS+Bre5+xJ33wDMInw5Q0g2c9z9DnffHF2Xumjdr6NjE5UcjiYk21w+D/wV+C7wspnVmdkBWdt8P3rv/yIk9NOj5V8DJrn7CnffSEjip0SltKbiy+dn0XXc0Mx2DTYDk919M3AnUAP81N3XufuzwHPAJwo8lpQ4JRUpCjPrZmY3m9mrUfXUY0DvqLpnV+Atd18f22V5bN9fRFUu7zVTNbI89nwQsB2wKqrGeRu4mVByIDpnfPtXW/B2BgGfbzhudOwRQL/YNv+JPV8P7BA9HwC8mOe404HjzKw7Ien91d1X5drQ3de6+yXuvjewM1AH3GtmFtss+/3tGov/nljszwNbo+M0FV8+y5vfJMMad98aPW9IRK/H1m+g8XpJmVNSkWL5DjAU+JS79wQOi5YbsArYycy6xbYf0PDE3b8WVbns4O5XNHGOeKP9ckIDdo27944ePaMvYaJzDohtn12F9D4QjyfeCL4cuD123N7u3t3dr2oitvi+H80ZvPtKYD5wEqHq6/YCjoe7vwlcQ0gaO8VWZb+/12IxfDYr/i7R+fPGR+b1bWr5evJfO6kySiqShO3MrEvs0QnoQfgF+nZUtfO9ho3d/VVC9dFlZra9mR0EHJfzyAWKfuE/DFxrZj2jxumPmtnh0SazgG9Z6Jq7I3BJ1iHqgNPMbDszy25zaShRHB01+HeJGqD707wZwJFmNjpq1O5jZsNi638DXETozfX7fAcxsx+Z2T7RMXoA5wJL3X1NbLPvRiXEvQntOzOj5b8AJkftJ5hZXzM7voD4Xgf2KOA91gFfiK7NKKJqTqlOSiqShAcJCaThcRkwBehKGFuyAHgoa58xwEGExurLCV+AG9sYxxcJjeTPERqj76KxiuqXwJ8I3XKfZNsv8O8SfrGvBb5PrG3D3ZcTOgVMBFYTft1fSAH/f9x9GaHt5TvAW4Qv4Hj7wT1E1VNZ1YHZukXbvg28FO3zuaxtHgWWAo8A17j7w9HynxLarB42s3WEf49PFRDfrcBeUbXZvU3E9j+EHwVvE/5dm9pWKpzpJl1SCsxsJvCCu3+v2Y2TOd9g4GVgu7THWpjZi8A5sV5tLd1/MCXyXkRUUpFUROM0PhpVU40ilATuTTmsdmdmJxPaKP6SdiwiSUhtRL2ZDSDUJ+9M+E811d1/GtW/zwQGA68Ao919bVpxStHsQqiC6gOsAM5193+mG1L7MrO5wF7AmVG3aJGyl1r1l5n1A/q5+5NRw+MiwgCtsYTupleZ2SXAju5+cSpBiohIi6RW/eXuq9z9yej5OkLf+d0I1SC/jjb7NSHRiIhIGSiJhvqoofExYB9gmbv3jpYbsLbhddY+4wgz19K9e/fhH//4x9sr3Iq2eM1iAIb2GZpyJCJSbIsWLXrT3fs2v2XhUk8qZrYDoSvkZHf/vZm9HU8iZrbW3Xds6hi1tbW+cOHCIkdaHUZOGwnA3LFzU41DRIrPzBa5e22Sx0y195eZbQfcDcxw94ZxA69H7S0N7S5vpBWfiIi0TJq9v4wwuOp5d/9JbNV9hGnOr4r+/iGF8KrWpYddmnYIIlLG0rxJ1yGE+Y7+ZWZ10bKJhGQyy8zOJkyKNzqd8KrTkXu0x00cRaRSpZZUounOLc/qI9ozFmlU9586AIbtMizVOESkPOl2wpJh/EPjATXUi0jraJoWERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZLjiiKbu3isi0jQlFclw8ICD0w5BRMqYqr8kw7zl85i3fF7aYYhImVJJRTJMfGQioHEqItI6KqmIiEhilFRERCQxSioiIpIYJRUREUmMGuolw5RRU9IOQUTKmJKKZNCU9yLSFqr+kgxzXprDnJfmpB2GiJQplVQkw+WPXQ7oDpAi0joqqYiISGJSTSpm9isze8PMnoktu8zMVppZXfQ4Js0YRUSkcGmXVKYBo3Isv87dh0WPB9s5JhERaaVUk4q7Pwa8lWYMIiKSnFJtqD/PzL4ILAS+4+5r0w6oWtx87M1phyAiZSzt6q9cbgI+CgwDVgHX5trIzMaZ2UIzW7h69ep2DK+yDa0ZytCaoWmHISJlquSSiru/7u5b3b0e+CVwYJ7tprp7rbvX9u3bt32DrGCzF89m9uLZaYchImWq5Kq/zKyfu6+KXp4IPNPU9pKsa+eHguFxQ49LORIRKUepJhUzuwMYCdSY2Qrge8BIMxsGOPAKcE5a8YmISMukmlTc/fQci29t90BERCQRJdemIiIi5UtJRUREElNyDfWSrttPvD3tEESkjCmpSIYBvQakHYKIlLHqqP4aOTI8pFkzn5nJzGdmph2GiJQplVQkw00LbwLg1H1OTTkSESlH1VFSERGRdlH5SWXGDFiwAB59FAYPDq9FRKQoKjupzJgB48bBxo3h9auvhtdKLCIiRVHZSWXSJFi/PnPZ+vVhuYiIJK6yG+qXLWvZcuGu0XelHYKIlLHKLqkMHNiy5UJNtxpqutWkHYaIlKnKTiqTJ0O3bpnLunULyyWnaXXTmFY3Le0wRKRMVXb115gx4e/ZZzc21p9+euNy2UZDQhk7bGyqcYhIearspAIhgfzyl+AOW7fC7Nmwbh306JF2ZCIiFaeyq7/izOAnP4E33oCrrip8vxkzwviWDh2KO86lvc4jIlJE1ZFU5s4NjwMPDCWXa68NY1aa0zDO5dVXQ0mnWONc2vM8SlwiUkTVkVTirrgilFomTGh+20LHuTT3Zd3c+gkT2j6eppAY2iNxiUhVM3dPO4Y267F7Dx/+veFNbnPskGO54OALAPjN5wbxxdnLYP583tzvY5wy65Sc+/zly4/mzLoOPH/hWPY6/Vu8tmAOO42/hC6b6j9c/8H2Hbh67BAeOWhnjpj/OhdOW5KxfnNHY33tJ+i1fQ82Lnmezq+/mfP8Dnz6V4eBGVPfHcmQn0zDly3j9Z22p/7yy9n1axcwe/Fs6n5y0Tbn2NjJuOuo3Xhh95503biVi+/6Dx3ffmebc7zXrw/HXrHPh6/rPRyjg2W+87tG30VNt5oPe4fNHTsXgGvmXcP9S+7PGX9cfPv5K+Zz9+i7AZgwZwLzV8xvct8+3fpkbL9mwxqmHjcVgHGzx7FkzZIm9x/SZ0jG9n269uHKI68E4ORZJ7Nm/Zom9z+o/0EZ2x/U/6APP0sjp41scl/I/OyNnDaSscPGMnbYWN5c/2bez15c9vbfOeg7HDf0OBa/uZhz7j+n2f2zt7/iiCs4eMDBzFs+j4mPTGx2/+ztbz72ZobWDGX24tlcO//aZvfP3j77s9QcffaK99l79MuPLnL32mYP1AKpNtSb2a+AY4E33H2faNlOwExgMPAKMNrd1yZ53juOGcgp89+h2/nnw5//kHe7d3foRO/3tmyzfEtHY6+rp8HV0+jXoQNWX5+xvsumei6ctoQTH3mNj7/8Lp0yV7PdVqfnE0/DIYfwzmEH0vX+P9Fjw9ZtzmPAzAv+wYqdu/CxF+fBps0YsMuajdSPnwT/eJa969dw1B1L6Lw58ySdtzhjHlzR7LXo/p/MD3V2MhERaRF3T+0BHAZ8EngmtuzHwCXR80uAHzV3nOHDh3uL3XKLO7jPnLntuq1b3S+9NKzv0CH8bXh06+Y+fbr7ypXuv/lN5rrsxxFH5F9n1ni+6dPDcePru3Z1/8pX3E88MWyb7zjZ+2Wfo67OfelS9/79c28zaFDGW7/h8Rv8hsdvaPn1FJGyAyz0pL/Xkz5giwMIJZJ4UlkM9Iue9wMWN3eMViWVLVvc99vPffBg9w0bGpe/+6778ceHS3P22e7TpoUvXrPwd/r0zOMMGtT0l3Vz6xtMn57/PPmSipl7fX1h58iVuBoSZMzhtx3uh992eMuvp4iUnWpJKm/Hnlv8ddZ+44CFwMKBAwe27orOmRMuQceO4e+uu7rvtlt4/bOfhS/s5jT3ZV3gl3mTmksahZ5j+nT3Tp0a980Rg5KKSPWouqQSvV7b3DFaVVJxD1+qDQkl/pgwoeXHaao009z6Qo7fXNIo9ByHHOL+mc/kPZWSikj1KEZSSb33l5kNBu73xob6xcBId19lZv2Aue4+tKlj1NbW+sKFC1t+8sGDc49XGTQIXnml5ccrphkzQhfjZcvChJiTJ7duupkTToCXX4annsq5uqFHSUOPGRGpXGaWeO+vUuzqcx/wpej5l4D83bPaqpymxh8zJiS6+vrwt7Xzl9XUwJu5uzCLiLRV2l2K7wBGAjVmtgL4HnAVMMvMzgZeBUYXLYCBA3OXVCp5avyGpOIeBoFmUQlFRNoi1aTi7qfnWXVEuwQweXIYVR4fzV7pU+PX1MCmTfDee5pUU0QSV4rVX+1nzBiYOjW0oZiFv1OnVvbU+DXRDbjyVIFdM+8arpl3TTsGJCKVpLqTCiTXVlEumkkq9y+5v6CpL0REclFSqTbNJBURkbZQUqk2SioiUkRKKtVGSUVEiqjybycsmXr1gk6dYPXqnKu7bte1nQMSkUqipFJtzJocAPnHMX9s54BEpJKo+qsaaVS9iBSJkko1aiKp/PDRH/LDR3/YzgGJSKVQUqlGTSSVR15+hEdefqSdAxKRSqGkUo1U/SUiRaKkUo1qamDNmjCLgIhIgpRUqlFNTUgob7+ddiQiUmHUpbgaxQdA7rRTxqo+3fqkEJCIVAollWoUTypDhmSsunv03SkEJCKVQtVf1UhTtYhIkSipVKMmksqEOROYMGdCOwckIpVC1V/VqImkMn/F/HYORkQqSckmFTN7BVgHbAW2uHttuhFVkG7doEsXVX+JSOJKNqlEPu3u+uZLWjOTSoqItJbaVKqVkoqIFEEpJxUHHjazRWY2LnulmY0zs4VmtnB1nnuDSBPyJJX+PfvTv2f/FAISkUpQytVfI9x9pZl9BPizmb3g7o81rHT3qcBUgNraWk8ryLJVUwOvvrrN4uknTU8hGBGpFCVbUnH3ldHfN4B7gAPTjajCqPpLRIqgJJOKmXU3sx4Nz4GjgGfSjarC1NTA2rWwZUvG4vEPjWf8Q+PTiUlEyl6pVn/tDNxjZhBi/K27P5RuSBWmYazKmjWw884fLq77T1068YhIRSjJpOLuLwGfSDuOihYfABlLKiIibVGS1V/SDjT/l7SnGTNg8GDo0CH8nTEj7YikSJRUqlXfvuGvkoq0VXMJY8YMGDcu9DZ0D3/HjVNiqVBKKtUqT0llSJ8hDOkzJMcOIjk0lzDc4ZJLYP36zP3Wr4dJk9o/Xik6JZVq1Se6GVdWUpl63FSmHjc1hYCkZDVVEpk0KXfC+OpXYf/9YccdYcWK3MddtqxYEUuKSrKhXtpB587Qo4eqv6RpDSWRhsTx6qtw1llwzz2w/fY5B9ACsGED7LorjBgRjrF27bbbDBxYvLglNSqpVLMcAyDHzR7HuNnbzIojlSxfSeS112D8+G1LIps2wd13w/z5YbbrXAYNggcegOuvD49u3TLXd+sGkycn/EakFCipVLMcSWXJmiUsWbMkpYCk3eVqE/nSl0I38912y1+SNYOXX4Zbbmk+YYwZA1OnNla59usXXo8ZU5z3JKlSUqlmmqql8jXVHvLWW7lLIlu3wrp1cO21sMsuuY/bUHXVkDAGDQqJZtCg3AljzBhYuDA8v/RSJZQKpqRSzZRUKluuUshXvgInnwwHHRS6lef79//gAzj/fLjmmsJKIq+8AvX14W++hDFoUCj9/O1vSbw7KVFKKtVMSaWy5eqZ9cEH8PvfhyTz3e/mn02hpSWRQpiFhnsllYqmpFLNamrgvffCF01k2C7DGLbLsPRikpbJVb21bFloHM/XM8sMFiyAyy4LVVxJlUQKMWIELF+u7sQVTEmlmsUnlYxMGTWFKaOmpBOPZGrNSPUzzwyliW99CzrlGTEQ78qbZEmkECNGhL8qrVQsJZVqpvm/0tVU0siVMM4+G849F666Cs47LwwwzK7ecofevWHxYpg2rbCuvEmWRJqz775hfJSSSsXS4MdqliOpnPH7MwDdAbLocg0q/OpX4dlnQ2P2hAnbJoyNG+EXvwjPe/cOAwxzeecdGDIkPCC0rSxbFkookyen2/OqY0c4+GAllQqmpFLNciSVFe/mmVJDkpWrEX3DBrjyyqb3Mwvdfbt3D6WbXO0m2dVbpdZ9d8QI+N//DaPsd9wx7WgkYQVVf5nZTjke2xU7OCkyVX+1v/p6eOihphvRV67MP4XJwIEhoUAodZTjSPURI0I13fz5aUdSvaKq1+EwPOlDF9qm8iSwGlgC/Dt6/oqZPWlmiQcl7WSnncJfJZXiiLeZDBgAZ5wBQ4fCZz8bluUycGCYM+uKKwofqd5ejexJOfDA0IlAVWDpiLfXFUGhSeXPwDHuXuPufYDPAvcDXwduLEpkUnydOoXqByWV5GU3tK9YEZaZhb+/+lXTSaMlI9Xbq5E9Kd26wfDhSirF1FQnkIkTt616TVChbSr/5e5fbXjh7g+b2TXufo6ZdS5GYGY2Cvgp0BG4xd2vKsZ5ql5NDaxe/eHLg/oflGIwFeLdd0OX3lz/cTdtgi98ITzv1KnpRvRSbA9JyogR8POfh84HnYvyFVK9cnUCOfts+N3vQieOIo8RKrSkssrMLjazQdHjIuB1M+sI1CcdVHTcGwglor2A081sr6TPI2wzqv7KI6/kyiObaSyW3L8E588P08L36xfm1col/h+6HEsZSRkxIiSUhvnApHBNlUI2b4YLL8zdc/APfwidPHr0KGp4hSaVLwD9gXujx8BoWUdgdBHiOhBY6u4vufsm4E7g+CKcRzRVS8vlG3R48MEwa1YoiTQ3EWO1O+SQ8FdVYNtq6fils86Co44K87n17AmrVuU+rllI4jfdtG3Va4IKSiru/qa7f9Pd948e57n7anff5O5LixDXbsDy2OsV0bIPmdk4M1toZgtXx6pvpIWyksrJs07m5FknpxhQGchVJ+0eOj6sWgW//GVhEzFWs759Q6cFJZVM+W7PfN11cP/9YdBrrvvbzJkTbpr29a839urMlms+tyIotEtxXzO72sweNLO/NDyKElGB3H2qu9e6e23fvn3TDKW8NSQVdwDWrF/DmvVrmtmpCuT6tbhuXRh8mK9Oeu3axqqFcu2Z1Z5GjIC//z1U/1WTpkoil1yS+/bM558Pxx0Hb7+d/7iPPhrmcpsypeD53BbBora9mW0VWv01A3gB2B34PvAK8ETSwcSsBAbEXvePlknSampCfev776cdSenI9Wtx7Njw6/rcc2G7PEO0squ2qrnNpBCHHhoS8fPPpx1JclozX9uXvwy1teGHx4omBh/Pmwf9++del+Z8blkKTSp93P1WYLO7P+ruZwGfKWJcTwB7mtnuZrY9cBpwXxHPV70aSnlqV2mUa7T7li2ht9aCBXDbbaraSkKlTS6Zr+rq17+Gp56C6dND9VT2Z2vz5rD+4IPD9Du5DBoU2kyuuqr05nPLUmhS2Rz9XWVm/21m+wM7FSkm3H0LcB7wJ+B5YJa7P1us81U1jarPtGxZ/kFh69fDpz6V+i/BirHHHqFDQzkllaZKIrl+jKxfH0q5w4aFzhzvvpv7uFu3wh13hG7WSYxfSlGh41QuN7NewHeA64GewPhiBQXg7g8CDxbzHMI2SeWI3Y9IMZh2NGNG4xiRAQPg1FPhhRfggQfy71Pqc2qVm3K7aVeu8R9f+Qo88khjySSfO+4IMzQfc0zuNrl4IzqU9/gld2/VAxjf2n2TfgwfPtyllZYscQf3229PO5L2M326e7du4X3HHz16uE+c6D5lyrbru3UL+0mypkwJ13f58rQjCaZPdx80yN0s/I3/m/fvv+1npuHRt69716651w0alHn8EvpsAQs94e/jtiSVZUkH09qHkkobvPVW+Bhcd13akSQn3xfDli3uCxa49+qV+z//wIHNH0OStXBhuPZ33pl2JLm/8Lff3v2II9z32Sd/QjFzr68vPGGU0Ger1JLK8qSDae1DSaUNtm5179jRfdIkd3cfNX2Uj5o+KuWg2iDfF0NtrXvv3vm/GBq+HKR9bd7s3r27+3nnpR1J/pKImfvRR+f/MZJdEimRhFGIYiSVttz50dta9SYloEMH6NPnwzaVDZs3sGFznps/lYNcjaWbNsE//wknnRTqtgvplinto1On0KupPdpVcjWyP/ss/OhHoXtzU915H3oIbrih4PEf1dyNvMmGejNbR+7kYUDXokQk7a+SpmrJNzCxvh5uvTU837o1s8EV1CU4TSNGwA9+ECY77NWrOOfI1ch+5pkfDvrlk58M537nnW33bUkjujRdUnH3Hu7eM8ejh7vrrpGVolKSyqxZoUdRLiU0OEyyjBgRkv6CBW07Tq6SyObNYdDgN76Rf2qdFStg0SKVRBLSluovqRTlnlTWrg3/uU89NXyZdOmSub7EBodJlk99Kty7vi1VYLkGHn7xi7DDDmHyylwlEAifnd2iaQX1YyMRSiqSkVSOHXIsxw45NuWAmhH/RbrzzmEQ3cyZ8P3vw+LFcMst+mIoJzvsAPvv33RSyTfo0B2eew6++c1tSyL19WGSxbvuKrwdTT822i7plv80Hur91UYTJ4YeYPX1aUfSvFy9u8zcf/CDtCOTthg/3r1LF/eNG7ddl69H30EHue+8c2E9+kpsfEipoMR6f0mlqKkJjdf5qghKSb5p5xsa4aU81dfDBx+Eqsvs6U8uvjh3j75//AOOPDL82++6a+7j5pruXSXYolJjuzRO1bJ6NSPvPQGAuWPnphZOXnV1+Xt3FfkWqVJEM2aEe9BA5o2nbrstNKKvzDNBuXuYpBHCLYmb69FX6tObVAiVVKT0J5VctSrcY/uTnwx16rlojEn5mjQJNmSNjdq0Cf7yF/jYx2DHHXPvpx59JUlJRUovqcQbZXv3Ds9vvz3cqCjXrVA1xqS8NVXKvP9+uP76kp/uXRqp+ksyk0qeYR7tJnuQ2jvvhO6mV18N3/52WNa9uwagVZKBA3PP8KtBh2VJJRUprZJKrob4rVvhpz9tfK1fpJVl8mQNOqwgKqlIGCew/fbw5puMHjk6vTjc1RBfjVQSqShKKhIaNqMBkF8/4EfpxOAeBrDlo4b4yqaeWRVD1V8SREll/eb1rN+8vvntk1RfH+ZmuuGGcGc8NcSLlK2SSypmdpmZrTSzuuhxTNoxVYUoqRwz4xiOmdGOl7y+Hs49N/Tquvji0NtHXUNFylapVn9d5+7XpB1EVampCYML6dd+56yvh3POCXN1TZwIl18eEomqQkTKVsmVVCQlffu2T++v+BiUnj1DQrn00saEIiJlrVSTynlm9rSZ/crMcg6nNbNxZrbQzBauXr26veOrPDU1sHYtHbcW8Yae2dOTv/8+bLcdfPzjSigiFSKVpGJmc8zsmRyP44GbgI8Cw4BVwLW5juHuU9291t1r+/bt237BV6qaGnBnh/c3F+8cuW71u3lzWC4iFSGVNhV3P7KQ7czsl8D9RQ5H4MMBkGP7H8s7e+SZ8bWtNAZFpOKVXEO9mfVz91XRyxOBZ9KMp2pESeXEvofCsEOTP358KvNsGoMiUjFKsU3lx2b2LzN7Gvg08O20A6oKUVJ5d+VLvLk+wQb7jRvDGJQzzoAhQ6Br18z1GoMiUlFKLqm4+5nuvq+77+fun4uVWqSYoqRy85+u4JRZp7T+OPHeXf37w157wY03wgUXwL/+Fe6boTEoIhWr5Kq/JCV9+gDQa10bGuqzZxhuuLnS//xPmGUYNAZFpMKVXElFUtK1K3TvTq/32pBUcvXuArj33tYfU0TKipKKNKqpaVtJRb27RKqekoo0qqmhd2uTysqVYSBjLurdJVI1lFSkUU0Ne/qOnFt7bsv2W7QIDjwwNL537py5Tr27RKqKkoo0qqmhz/v1nLrPqYXv87vfwaGHhlLKE0/Arbeqd5dIFVNSkUY1NdS/uZrl7yzPvT7eXXjQIDjlFBg9GvbfHx5/HPbdV7d9FalySirSqKaGDuve46xZORJB9mSQy5bB3XfDIYfAI4/ARz7S/vGKSMlRUpFG0QDInrm6FefrLrx8OXTpUuTARKRcKKlIoyip5Byrkq9b8PI8VWUiUpWUVKRRQ1LJ1a24X547Qqq7sIjEKKlIo3wllaefhnXrtt1e3YVFJIuSijSKkspJfQ9vXLZgARx+OPTqBT/+sboLi0iTNKGkNIomldyvY1TV9Ze/wOc+B7vsEnp4DRoEF16YYoAiUupUUpFGs2bhZvj3vhe6CB91FOy+O/z1ryGhiIg0Q0lFgmgcirljAKtXh/Eo3/xm/kZ6EZEsSioS5BqHUl8PV1yRTjwiUpaUVCTQtPUikoBUkoqZfd7MnjWzejOrzVo3wcyWmtliMzs6jfiqUr7xJhqHIiItkFZJ5RngJOCx+EIz2ws4DdgbGAXcaGYd2z+8KjR5chh3EqdxKCLSQqkkFXd/3t0X51h1PHCnu29095eBpcCB7RtdlRozBqZOZcOuH8E1DkVEWqnUxqnsBiyIvV4RLduGmY0DxgEMVBVNMsaMoauSiIi0QdGSipnNAXbJsWqSu/+hrcd396nAVIDa2lpv6/EkqPtPHQDDdhmWahwiUp6KllTc/chW7LYSGBB73T9aJu1k/EPjAZg7dm6qcYhIeSq1LsX3AaeZWWcz2x3YE3g85ZhERKRAaXUpPtHMVgAHAQ+Y2Z8A3P1ZYBbwHPAQ8A1335pGjCIi0nKpNNS7+z3APXnWTQbUj1VEpAyVWvWXiIiUsVLrUiwpu+IIzfUlIq2npCIZDh5wcNohiEgZU/WXZJi3fB7zls9LOwwRKVMqqUiGiY9MBDRORURaRyUVERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZJgyakraIYhIGVNSkQya8l5E2kLVX5JhzktzmPPSnLTDEJEypZKKZLj8scsBOHKP1twOR0SqnUoqIiKSGCUVERFJjJKKiIgkRklFREQSo4Z6yXDzsTenHYKIlLG07lH/eTN71szqzaw2tnywmW0ws7ro8Ys04qtmQ2uGMrRmaNphiEiZSquk8gxwEpDrZ/GL7j6sfcORBrMXzwbguKHHpRyJiJSjVJKKuz8PYGZpnF6acO38awElFRFpnVJsqN/dzP5pZo+a2aFpByMiIoUrWknFzOYAu+RYNcnd/5Bnt1XAQHdfY2bDgXvNbG93fzfH8ccB4wAGDhyYVNgiItIGRUsq7t7ieT7cfSOwMXq+yMxeBIYAC3NsOxWYClBbW+tti1ZERJJQUtVfZtbXzDpGz/cA9gReSjcqEREpVCoN9WZ2InA90Bd4wMzq3P1o4DDgB2a2GagHvubub6URY7W6/cTb0w5BRMpYWr2/7gHuybH8buDu9o9IGgzoNSDtEESkjJVU9Zekb+YzM5n5zMy0wxCRMqVpWiTDTQtvAuDUfU5NORIRKUcqqYiISGKUVEREJDFKKiIikhglFRERSYwa6iXDXaPvSjsEESljSiqSoaZbTdohiEgZU/WXZJhWN41pddPSDkNEypSSimRQUhGRtlBSERGRxCipiIhIYpRUREQkMUoqIiKSGHUplgwPjnkw7RBEpIwpqUiGbtt1SzsEESljqv6SDDc+cSM3PnFj2mGISJlSUpEMs56dxaxnZ6UdhoiUKSUVERFJTCpJxcyuNrMXzOxpM7vHzHrH1k0ws6VmttjMjk4jPhERaZ20Sip/BvZx9/2AJcAEADPbCzgN2BsYBdxoZh1TilFERFoolaTi7g+7+5bo5QKgf/T8eOBOd9/o7i8DS4ED04hRRERarhS6FJ8FzIye70ZIMg1WRMu2YWbjgHHRy41m9kzRIkxODfBm2kEUoMa+bGURJ2VyPVGcSSmHGKF84hya9AGLllTMbA6wS45Vk9z9D9E2k4AtwIyWHt/dpwJTo+MsdPfaNoTbLhRnshRnssohznKIEcorzqSPWbSk4u5HNrXezMYCxwJHuLtHi1cCA2Kb9Y+WiYhIGUir99co4CLgc+6+PrbqPuA0M+tsZrsDewKPpxGjiIi0XFptKj8HOgN/NjOABe7+NXd/1sxmAc8RqsW+4e5bCzje1OKFmijFmSzFmaxyiLMcYoQqjtMaa55ERETaRiPqRUQkMUoqIiKSmJJMKmY2KpqmZamZXZJjfWczmxmt/4eZDY6tyznNS3PHbM84zez/mtkiM/tX9PczsX3mRsesix4fSSnGwWa2IRbHL2L7DI9iX2pmP7OoYSylOMfEYqwzs3ozGxatS/RaFhjnYWb2pJltMbNTstZ9ycz+HT2+FFuexvXMGaeZDTOz+Wb2rIVplE6NrZtmZi/HruewtOKM1m2NxXJfbPnu0WdkafSZ2T6tOM3s01mfzw/M7IRoXRrX83wzey76t33EzAbF1iXz+XT3knoAHYEXgT2A7YGngL2ytvk68Ivo+WnAzOj5XtH2nYHdo+N0LOSY7Rzn/sCu0fN9gJWxfeYCtSVwLQcDz+Q57uPAfwEG/BH4bFpxZm2zL/BiMa5lC+IcDOwH/AY4JbZ8J+Cl6O+O0fMdU7ye+eIcAuwZPd8VWAX0jl5Pi2+b5vWM1r2X57izgNOi578Azk0zzqzPwFtAtxSv56dj5z+Xxv/viX0+S7GkciCw1N1fcvdNwJ2E6Vvijgd+HT2/Czgiyp75pnkp5JjtFqe7/9PdX4uWPwt0NbPObYwn0RjzHdDM+gE93X2Bh0/cb4ATSiTO06N9i6XZON39FXd/GqjP2vdo4M/u/pa7ryXMfzcqreuZL053X+Lu/46evwa8AfRtYzyJx5lP9Jn4DOEzAuEzc0KJxHkK8EfPHEaRpELi/H+x88enyErs81mKSWU3YHnsda6pWj7cxsMcYu8AfZrYt5BjtmeccScDT7r7xtiy26Li8HfbWBXS1hh3N7N/mtmjZnZobPsVzRyzveNscCpwR9aypK5loXG2dN+0rmezzOxAwi/eF2OLJ0dVJ9cl8EOorXF2MbOFZragoUqJ8Jl42xvnFiyZ60koYWd/PtO8nmcTSh5N7dviz2cpJpWqYWZ7Az8CzoktHuPu+wKHRo8z04iNUO0x0N33B84HfmtmPVOKpVlm9ilgvbvH54ArlWtZdqJfqLcDX3b3hl/fE4CPAwcQqkkuTim8BoM8TIXyBWCKmX005Xjyiq7nvsCfYotTu55mdgZQC1yd9LFLMakUMlXLh9uYWSegF7CmiX2LMf1LW+LEzPoD9wBfdPcPfwm6+8ro7zrgt7RtluZWxxhVIa6JYllE+LU6JNq+f2z/1K9lZJtfgQlfy0LjbOm+aV3PvKIfDw8Q5un7cIJXd1/lwUbgNtK9nvF/35cI7Wf7Ez4TvaPPSIuPWYw4I6OBe9x9c8OCtK6nmR0JTCLMaLKxmX1b/vlMqpEoqQdhlP9LhIb2hsamvbO2+QaZjbazoud7k9lQ/xKh8arZY7ZznL2j7U/Kccya6Pl2hHrhr6UUY1+gY/R8j+iDtJPnbrg7Jq1rGb3uEMW3R7GuZaFxxradxrYN9S8TGkF3jJ6ndj2biHN74BFgfI5t+0V/DZgCXJVinDsCnaPnNcC/iRqlgd+R2VD/9bTijC1fAHw67etJSLwvEnXGKMbns9VvoJgP4BjCzbteJPxaAvgBIbMCdIk+OEujNxz/MpkU7beYWC+FXMdMK07gUuB9oC72+AjQHVgEPE1owP8p0Rd7CjGeHMVQBzwJHBc7Zi3wTHTMnxPNzJDiv/lIwlQ/8eMlfi0LjPMAQr3z+4Rfzc/G9j0rin8poVopzeuZM07gDGBz1mdzWLTuL8C/olinAzukGOfBUSxPRX/Pjh1zj+gzsjT6zHRO+d99MOFHT4esY6ZxPecAr8f+be9L+vOpaVpERCQxpdimIiIiZUpJRUREEqOkIiIiiVFSERGRxCipiIhIYpRUpKJkzVxbZ7EZrMudme1vZrdGz8ea2c+z1s81s9om9r/TzPYsdpxS3dK6nbBIsWxw92G5VkRzf5k3TjtSbiYCl7dh/5uAi4CvJhOOyLZUUpGKZuG+MIvN7DeEAVwDzOxCM3simsjv+7FtJ5nZEjP7m5ndYWYXRMs/LAGYWY2ZvRI972hmV8eOdU60fGS0z11m9oKZzWiYzNLMDjCzeWb2lJk9bmY9zOyx+L00ovN/Iut99AD2c/enCnjPn4uV1Bab2cvRqr8CR8amMBFJnD5cUmm6mlld9Pxl4NvAnsCX3H2BmR0VvT6QMO3EfWZ2GGEk9GnAMML/iycJI/KbcjbwjrsfEM0w+3czezhatz9h2qDXgL8Dh5jZ48BM4FR3fyKaY2sDcCswFhhvZkOALjmSR8Oo5rhTzWxE7PXHANz9PuA+ADObBTwaLa83s6XAJwp4byKtoqQilSaj+itqU3nVGydGPCp6/DN6vQMhyfQgTPi3PtrvwzsJNuEoYD9rvNNfr+hYm4DH3X1FdKw6wlQd7wCr3P0JAHd/N1r/O+C7ZnYhYaqMaTnO1Q9YnbVsprufF3uvc+MrzewiwvW4Ibb4DcLNt5RUpCiUVKQavB97bsCV7n5zfAMzG9/E/ltorCruknWsb7p7fDpzzGwkEL8/zlaa+L/m7uvN7M+EGyqNBobn2GxD1rmbFM1E+3ngsKxVXaJjiRSF2lSk2vwJOMvMdgAws90s3Lv+MeAEM+satV8cF9vnFRq/6E/JOta5ZrZddKwhZta9iXMvBvqZ2QHR9j1i7Ru3AD8DnvBw571szxNVbzXHwn3HbwA+7+7ZCWQI21ajiSRGJRWpKu7+sJn9H2B+1Hb+HnCGuz9pZjMJs96+ATwR2+0aYJaZjSPcZ6TBLYRqrSejhvjVNHGrVXffZGanAtebWVdCieFIwr3WF5nZu4T7auTa9wUz62VmPTzcH6YpYwl3QLw3eo+vufsxZrYzoTrsP83sL9JqmqVYJAczu4zwZX9NO51vV8KNpj6er8uzmX0bWOfut7TyHN8G3nX3W1sdqEgzVP0lkjIz+yLwD8L9L5oaQ3MTmW01LfU28Os27C/SLJVUREQkMSqpiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKiIgk5v8D8ZVR1RH7rk8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cross = cross.rebin(0.0050)\n", + "lag, lag_e = cross.time_lag()\n", + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.errorbar(cross.freq, lag, yerr=lag_e, color='r', fmt=\"o-\")\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-cross.df*2)*1/cross.df)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Energy Dependent Impulse Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, stingray an option to simulate light curves and add them to corresponding energy channels.\n", + "\n", + "Below, we analyse the lag-frequency spectrum in such cases. \n", + "\n", + "We define two delta impulse responses with same intensity but varying positions, each applicable on different energy channels (say '3.5-4.5 keV' and '4.5-5.5 keV' energy ranges). " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "delays = [10,20]\n", + "h1 = sim.simple_ir(start=delays[0], width=1)\n", + "h2 = sim.simple_ir(start=delays[1], width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we create two energy channels to simulate light curves for these two impulse responses." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', var, h1)\n", + "sim.simulate_channel('4.5-5.5', var, h2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute cross-spectrum for each channel." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "cross = [Crossspectrum(lc, var).rebin(0.005) for lc in sim.get_channels(['3.5-4.5', '4.5-5.5'])]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate lags." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "lags = [c.time_lag() for c in cross]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cut-off points." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "v_cuts = [1.0/(2*d) for d in delays]\n", + "h_cuts = [lag[int((v_cutoff-0.005*6)*1/0.005)] for lag, v_cut in zip(lags, v_cuts)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag-frequency spectrums." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABZAUlEQVR4nO2dd3gU1frHP286kNBCCdJRQkeaVEVaAAVEpHv1gohYfurFfu0oYrkiKioKNlCQIohSlSYiTYoEpYcSJHRCCyUJIef3x5mFTUjZJLs7m+R8nmeenZ1z5px3zs7Od057jyilMBgMBoPBHfjZbYDBYDAYCg5GVAwGg8HgNoyoGAwGg8FtGFExGAwGg9swomIwGAwGt2FExWAwGAxuw4iKId8iIiNEZLLddhQmTJkbssOIiocQkVgRuSgi55y2j+22KztERInIecveeBFZKiL97bbLk4hINeu6A7KIM0JELqX7PZ/1pp0FHRG5X0R2iEiCiBwVkQUiEubB/LL93Q05xxSmZ+mhlFriyQxEJEApleLmZG9USu0WkTLAbcDHIlJbKfWam/PJb0xXSt2TVQQR8VdKXfaWQQUFEbkVeBPoqpTaJCKlgR42m+Wp/1eBxtRUbEBEBovIShEZLSKnRGSfiNzmFF5CRL4UkcMiclBE3hARf6dzV4nI+yISD4wQkXARmSsiZ0VkvRV/pRX/ExF5L13+c0TkiezsVEqdUEp9CzwMPC8i4Tmw72MROWO9eXbMwbVlVS7VReQ36012MVAm3XW1FJHVInJaRDaLSDunsOUiMtKyLUFEFlmiCbDC+jxt1UBaZVc2TulOFJFPrbfq80B7EblORGaJyHHrGh53il/EOueUiGwTkWdEJM4pXInIDenSf8Ppe3cRibaucbWINHQKixWRp0XkL6vsp4tIiFN4T+vcsyKyR0S6ikhfEdmY7pqeFJGfXLz+70XkiJXfChGp5xSW6X2ZATcBa5RSmwCUUieVUpOUUglO5fCZiCy2fr/fRKSqU161rbCTIrJTRPqlK/P3RGS/ZedKESlCBr+7ZPz/StPkJ+lqONa99Yb1e5yzrjlcRKY4XXs1V8qzQKCUMpsHNiAW6JRJ2GDgEvAA4I9+aB8CxAqfDYwHigHlgHXAg07npgCPoWuaRYBp1lYUqAscAFZa8ZtbaftZ38sAF4DymdimgBvSHQu08rwtB/Y9YZ3XHzgDlHbx3KzKZQ0wBggG2gIJwGQrrCIQD9yOflmKsr6XtcKXA3uASKvMlgNvW2HVrOsOyOL3HOHIK93xidb1tbHyLQpsBF4BgoAawF6gixX/beB3oDRQGdgCxGVW/lb6b1j7jYFjQAurfAah77Ngp3tuHXCdlf524CGn++CMVS5+VnnVtsryJFDHKc9NQG9XygEYAoRZ6XwARDuFZXpfZpDuLcBF4DWrLIMzKOcE63cPBj7k6j1ezEr7PvR/ojFwAqhrhX9i/d4VrXJrbaVxze9Oxv+v9Nec5jwr7d3A9UAJYBuwC+hkpfEN8LXdzySvPfvsNqCgbtYf/Bxw2ml7wAobDOx2ilvUukkjgPJAElDEKXwg8KvTuf84hfmjH8S1nI694fznRT9coqz9R4EFWdh9jahYx48A/3LRvitCYB1bB9zr4rmZlUsV689ezCn8O66KynPAt+ls/gUYZO0vB15yCnsE+Nnav+bhksH1jwCS0/2e16Efdt84xWvh/PtYx553PFTQAtPVKWwYrovKp8DIdGnvBG51uufucQr7H/CZtT8eeD+Ta/sUGGXt1wNOke6hnq4crhFXK6ykZX8JXLgvMzj/NmCuVbbn0C8Q/k7lMM0pbihwGS3M/YHf06U1HngVLaAX0U266fO75ncn3f8ro2tOf551b73oFP4esNDpew+cxLagb6ZPxbPcqTLvUzni2FFKXRAR0H+U0ug3/MPWMdB/jANO5zrvl0W/DWUWDjAJuAdYbH1+mJOLEJFAK5+TQFUX7DuorH+TxX70A9iVczMrlzLAKaXU+XTpVrb2qwJ9RcS5HT4Q+DWjtNG1tdBMLzpjZqh0fSqWfc72VwWuE5HTTsf80bUT0OXgHH9/DvKvCgwSkcecjgVZaTpIf42OsMrAgkzSnQRMFZGX0OI/QymVJCL/Qj+cQT+0b3M+SXSz5SigL/r+SLWCyqDf8LO7L9OglFoILBQRP6A98D1aNB02HHCKe05ETnL1vmqRrswDgG8tW0LQtVRXydLOTDjqtH8xg+85vdfyLUZUfI8D6Lf5MirzDkLnB/Zx9Bt8JXSVG64+aB1MBraIyI1AHeDHHNrU08pjHfohlp19FUVEnISlCjAH164tMw4DpUSkmJOwVOFqWRxA11QeyGG6kLY8c4Pz+QeAfUqpmpnEPYz+fbZa36ukC7+ArqE5iAAcfS4H0DWKUbmw8QC6eeYalFJrRSQZ3QR1t7WhlJoCTMkizbvR90YndC2pBLqWI7h2X2aIUioVWCoiy4D6TkFXzhcRxwvYIevaflNKRaVPyxKoRPS1b06fVWYmpPt+nmt/E0MmmI56H0MpdRhYBLwnIsVFxE9Erhc9Oiaj+JeBH9AdikVFpDbw73Rx4oD16De3WUqpi67YIiKlrbfVT4B3lFLxLtpXDnhcRAJFpC9ayBbk9NrSXcN+YAPwmogEicjNpB0dNBnoISJdRMRfREJEpJ2IVHLhUo+j37JruBA3O9YBCSLynNVB7C8i9UXkJit8BnrQQynLtsfSnR8N3G2d1xVwLpvPgYdEpIVoiolIN3Ft2O2XwH0i0tEq94rWveLgG+Bj4JJSKrPO9PSEoV8S4tEP3TcdAa7cl86IHkQwwCoXEZHm1rWvdYp2u4jcLCJBwEhgrVLqADAPiBSRe617LlBEbhKROpZAfQWMET2Awt/qkA/G9d89GmgrIlVEpAS6OdOQCUZUPMtcSTuvYbaL5/0bXSPYhn7zmwlUyCL+o+i3xCNo4ZiK/rM7MwloYIVnx2YROYfufBwKPKGUeiUH9v0B1ER3lo4C+iil4nN5bc7cje6zOIluL//GEWA9XHoCL6AfFgeAZ3DhHldKXbDsXCV6VFVLF+3JKK3LQHegEbAPXQZfoH8f0B3R+62wRVz7e/wHLZan0X1YPzqlvQE9iOFjdNntRvcBuGLXOnRH9vvoDvvf0M1GDr5F1wpyMrHxG+taDqJ/z7Xpwl25Lx2cQl9bDHDWsuNdq7bk4Dv0734SaIpuykXpEWKdgQHomssR4B10ZzzA08Df6Berk1aYn6u/u1JqMTAd+As9CGNeFmVS6HGMqjEUIETkHSBCKTXI6Vhb9B+1qvLgjy4ig4GhSqmbPZVHQUL0sOfJSilXalSetKMIemRZE6VUjIfyuOa+zMG5E9EDGl5yu2EGt2JqKgUA0WP0Gzo1G9yPHrrrCA9EvwF/4UlBMeRrHgbWu1NQsrsvDQUT2zrqRaQyuvpcHt0xNkEp9aGIjEBXg49bUV9QSmU2asWgCUM3LVyHHnXyHvATgIjUQfdFbEY3fxgMaRCRWHTn+p1uTjrT+9JQcLGt+UtEKgAVlFJ/Wh2NG9E3dT/gnFJqtC2GGQwGgyHX2FZTsUYCHbb2E0RkO3rGq8FgMBjyKT7RUS/aL84K9OiTJ9EjWs6im22eUkqdyuCcYejZyBQrVqxp7dq100e5wtmks8TEx1CrTC1Cg+yZg7QzficAtcJr2ZK/y+zUdlLLx+00GAx5ZuPGjSeUUmXdmabtomJNYvoNPanrBxEpjx6GqdBj0SsopYZklUazZs3Uhg0bMg3fc3IPN3x0A1/e8SVDGmeZlMdoN7EdAMsHL7clf5dp105/Ll9upxUGg8ELiMhGpVQzd6Zp6+gva1TSLGCKUuoHAKXUUaXUZWvS0udoR3h5omrJqgT6BRIT75GRkgaDwWCwsHP0l6Bn+W5XSo1xOl7B6m8B6IX24ponAvwCqFGqBjEn7ROVl9rmk+H1L+UTOw0Gg09ip++vNmjndX+LSLR17AVgoIg0Qjd/xQIPuiOzmuE12RW/K/uIHqJTjU625Z0jOuUTOw0Gg09i5+ivleix8enxyJyUyNKRLN27lFSVip94v9Uv+kg0AI0iGnk97xwRHa0/GzWy0wqDwZBPKTReimuG1+RiykUOJRyiUnHve8QY/vNwIB901A8frj9NR73BYMgFhcZNS83S2hO5nU1gBoPBUNApNKISGR4JYEaAGQwGgwcpNKJSsXhFQgJCbB0BZjAYDAWdQiMqfuLHDaVvMM1fBoPB4EEKTUc96Cawbce32ZL3mx3fzD6SL/BmPrHTYDD4JIVKVGqWrsncnXO5nHoZfz9/r+bdunJrr+aXa1rnEzsNBoNPUmiav0CLyqXUS+w/s9/rea8+sJrVB1Z7Pd8cs3q13gwGgyEXFKqaivMIsBqlang17xeWvgDkg3kqL2g7zTwVg8GQGwpXTSVcz1UxI8AMBoPBMxQqUSlfrDyhQaFmBJjBYDB4iELV/CUiRIZH5qmmcuHSBdYdXMfqA6spFliMqOujqFOmDtrpssFgMBRuCpWogO6s33Ao8wW90hN/IZ5VB1bx+/7fWXlgJRsPbeRS6qU0ca4Lu46oGlFE1YiiU41OlA8t726zDQaDIV9g+8qP7iCsephq+mrTLON0j+zO062f5uVlL/PG72/weY/PGdpkKCcunKDPjD5p4iZfTmb/6f2cTjzNhZQLAPiLPy0rtaRphaYsi13GCze/QOvKrfn2r28Z+8dYTiWeIiU1BYBigcUoVaQUZYuWpXhwcQB61e7FrdVupUhAER6c9yBvdnyT1pVbs/rA6iud+FmRPv747uOpVaYWc3fO5b0172V7fvr4M/vNpEzRMkyMnsjE6IlXI547pz9D0y67nD6+Y8DB6NWjmbdrXrb5O8dfE7eGWf1mAfD8kudZE7cmy3PDi4aniR9/MZ4JPSYAMGzusGybMyPDI9PEDy8Szlud3gKg94zexF+Iz/L8VpVapYnfqlIrnm79NHB1Rc+scNx7jviDGw1mcKPBGd57GZE+/lOtnqJHrR7sPLGTB+dlvzJE+vg+e+9lgrn3PHfv/Xbfb25f+bHQ1VQcI8COnz+eYfix88eIiY/hsrpMqZBSlA8tT4ngEjxy0yM80PQBTlw4weajmwkNCqVqyar0rduXJXuXAJCQnMCpi6c4lXiKg2cPEnc2jluq3IKf+FGjVA0aRTRi54mdXrvWXJFOTAwGgyEn2FZTEZHKwDdAefSCXBOUUh+KSGlgOlANvUhXP6XUqazSym6NemfWxq2l1ZetmDtwLt0ju185Hn8hnkcWPMKMrTNoWaklk+6cdEWAcsO49eP4vwX/x+GnDhMRGnFFeHx+sa4l2k6zWJfBUPDxxBr1dtZUUoCnlFJ/ikgYsFFEFgODgaVKqbdF5L/Af4Hn3JVpRi7w5++az9C5Q4m/EM+oDqN4ts2zBPjlrWjCgsIAOJesm5PeWPEGkA9E5Q1tpxEVg8GQG+xc+fEwcNjaTxCR7UBFoCfQzoo2CViOG0UlvGg4pYuUJiY+hrNJZ3nylyf5ctOXNCjXgJ//9TM3RtzolnxCg3QzkkNUDAaDoTDgE30qIlINaAz8AZS3BAfgCLp5zK3ULF2TZbHLuPGzG/nnzD/8t81/GdFuBMEBwW7LIyw4bU3FYDAYCgO2T34UkVBgFjBcKXXWOUzpDp8MO31EZJiIbBCRDcePZ9zpnhmR4ZHsit9FgF8Av9/3O291esutggKmpmIwGAonttZURCQQLShTlFI/WIePikgFpdRhEakAHMvoXKXUBGAC6I76nOQ7vOVw6pSpw+MtHqdYULE8XEHmGFExGAyFEdtERfQU9C+B7UqpMU5Bc4BBwNvW50/uzrtJhSY0qdDE3cmmIb2ojO8+3qP5uY3x+cROg8Hgk9hZU2kD3Av8LSLR1rEX0GIyQ0TuB/YD/ewxL284RCUhKQGAWmVq2WmO69TKJ3YaDAafxM7RXyuBzBxmdfSmLZ4gfU1l7s65APSo1cM2m1xirraTHj5up8Fg8El8YvRXQSTYPxh/8b8iKg53Fj4vKu9ZbjeMqBgMhlxg++ivgoqIEBoUajrqDQZDocKIigcJCw4zomIwGAoVRlQ8SGhQKOcuGVExGAyFByMqHsQ0fxkMhsKG6aj3IM6i8m2vb222xkW+zSd2GgwGn8SIigcJDQrl4NmDAFQuUdlma1ykcj6x02Aw+CSm+cuDONdUpm+ZzvQt0222yAWmT9ebwWAw5AJTU/EgoYFXReXTDZ8C0L9+fztNyp5PtZ3093E7DQaDT2JqKh7EdNQbDIbCRsEUFaUgMdFuK66Iil1LNhsMBoO3KXiikpwMVarAqFF2W0JYcBgKxcWUi3abYjAYDF6h4IlKUJAewbR4sd2WmDVVDAZDoaNgdtR36qRrKqdOQalStpnhLCoz+820zY4cMTOf2GkwGHySgldTAYiKgtRUWL7cVjOcRaVM0TKUKVrGVntcokwZvRkMBkMuKJii0rIlhIba3gTmvFDXxOiJTIyeaKs9LjFxot4MBoMhF9gqKiLylYgcE5EtTsdGiMhBEYm2tttznHBgILRr5zOici75nBEVg8FQKLC7pjIR6JrB8feVUo2sbUGuUu7UCXbvhtjYPJiXN0xHvcFgKGzYKipKqRXASY8kHhWlP22srRhRMRgMhQ27ayqZ8aiI/GU1j2U4fEtEhonIBhHZcPz48Wsj1KkD110HS5Z42tZMCQsKA4yoGAyGwoMvisqnwPVAI+Aw8F5GkZRSE5RSzZRSzcqWLXttBBFdW1m6VI8EswFTUzEYDIUNn5unopQ66tgXkc+BeblOrFMnmDQJNm2Cpk3dYV6OCAkIwU/8OJd8jgX/yl3XkNdZkE/sNBgMPonP1VREpILT117AlsziZkunTvrTpn4VEbni/6toYFGKBha1xY4cUbSo3gwGgyEX2D2keCqwBqglInEicj/wPxH5W0T+AtoDT+Q6g4gIaNDA1n6V0KBQEpITGLd+HOPWj7PNDpcZN05vBoPBkAtsbf5SSg3M4PCXbs0kKgo++QQuXoQiRdyatCs4aiozts4A4JGbHvG6DTlihraTR3zcToPB4JP4XPOX2+nUCZKS4PffbcnerKliMBgKEwVfVNq21Z6LbepXMaJiMBgKEwVfVIoVg9atbROVsKAwIyoGg6HQUPBFBXS/yubNcOyY17M2NRWDwVCYKByi4hhavHSp17N2iMrywctZPni51/PPMcuX275kgMFgyL8UDlFp2lQv1mVDE5ipqRgMhsJE4RAVf3/o0EGLilJezdoxT+XdVe8yevVor+adK0aP1pvBYDDkgsIhKqD7VeLiYNcur2YbGhRKqkpl7q65zNuVe48zXmPePL0ZDAZDLig8omKTyxaHU8nLqZe9mq/BYDDYQeERleuvh+rV7RMVZUTFYDAUfAqPqIBuAvv1V7h0yWtZOtZUMTUVg8FQGCh8opKQAOvWeS1LR00lwC+AIoHe9z2WY4oUscVHmsFgKBj43HoqHqV9e71415Il0KZNzs69eFF39B84oLe4OP3wrV1brzJZtSr4XavRDlF5vf3rRF0flbM8ExPh8mXtFcBbLFzovbwMBkOBo3CJSni4nrOyeDG8+mrm8f76CyZOhD17rorIiRNZpx0SArVqaZFxCE3duoSWDgFysPpjfDzMnw8//gi//KKFpW5daNHi6lavnh4mnRVK6VrZ4cNQoQIUL+5a/gaDwZAHRHl53oYnaBYWpjZkt7Jj9+7w9NPwwgvw1lt6zZCHH9Zi0aePjnPypK6BnDqlazRFi0JwsN5atYKePfXD+a234NlnoV07WLQIRoyACxeubomJV7LdEy7c8JjirpMRNKrRipevHwLvvqvTaN0aVq+GJ5/Udpw4AWfO6BODgqBMGQgMhLNnISVFiwToGlHTprrmlZwMc+dqT8zJyWk/nZdRrlkTbr1Vi9/atXrYcPnyWjwnTrwab/9+/Vm1atrymzlT2+OI75h1P3q0a0OQneOvWQOzZunvzz+vv2dFeHja+PHxMGGC/j5sWPbDxCMj08YPD9flD9C7t04vK1q1Shu/VSt9L4G+B7LDce854g8erDfney8r0sd/6ino0QN27oQHH8z+/PTx33zz6r33wgvZn58+/vjx+gVq7lx4L8PVvtOSPn76eyk7zL13Nb6b7z357beNSqlm2SfkOrbWVETkK6A7cEwpVd86VhqYDlQDYoF+SqlTbss0Kkr/SDt26O9JSXDkiBaT8+f1w7x6dbjuOghwKp4ePeDf/9Y/RpEiOl54ODRpomsCzqSm6uayc+cIvXwGOMzfHCE+ejYvD5+tReGhh6BlSz1wYPdufV7RolCliv4DhYWlTXPUKChXDiZPhi+/1ML1/vtXBx2IaPELCoLQUG1bUJDeLl7UC5bNmqUFE/RouJYt9bUkJFzNzxGeXlQMBoPBBWytqYhIW+Ac8I2TqPwPOKmUeltE/guUUko9l1U6zZo1Uxs2bHAt06Qk7bKlb1/dTDV2rBaVBg30G93AgfpB7CbOJ58n9K1QapSsTuXAMiwPeww2boQNG2DLFp3vnXfqWtANN+Qs8aQkiI2FsmX1NYlkHV8piInRNZU//tCfmzdrwYmL03Ecbz/G/5fBUOARkYJVU1FKrRCRaukO9wTaWfuTgOVAlqKSI4KD9Ror33yjv3fuDJMm6RpMdg/lXFA0sCiCcFml6prIvffqzR0EB+tmBVcR0dXxyEhd6wJ4+WXdvHH5cvb9NAaDwZANvthRX14pddjaPwKUzyiSiAwDhgFUqVIlZzk8/7x+sA4dCg0b5sHU7BERQoNCfXeeSkSEbq47cUL3sRgMBkMe8EVRuYJSSolIhu1zSqkJwATQzV85SvjWW/XmJUKDQgnwDyC8aLjX8nSZiAj9eeSIFpVwH7TRYDDkG3xRVI6KSAWl1GERqQB4f2UtNxMaFEqz65rxXe/v7DblWhy1kyNH4MYbr450MRgMhlzgizPq5wCDrP1BwE822uIWfHpNFeeaisFgMOQRW0VFRKYCa4BaIhInIvcDbwNRIhIDdLK+52tCg0LZfHQzzy953m5TriW9qDz/vN4MBoMhF9g9+mtgJkEdvWqIhwkNCuXkxZOsictmopUdhIZqNzBHj+rv2U0GMxgMhizwxeavAodPj/4CXVsxzV8Gg8ENGFHxAqFBob69nkr58kZUDAaDWzCi4gVMTcVgMBQWjKh4gbCgMFJVKpWKV7LblIyJiLjap1Kpkt4MBoMhF/jiPJUCR2hQKArFl3d8abcpGRMRoT00JyVph5UGg8GQS0xNxQs4Fury+bkqx/L9PFODwWAzRlS8gENUnln8jM2WZILzrPrhw/VmMBgMucA0f3kBh6j8fexvmy3JBOcJkNHRtppiMBjyN6am4gUcouKzI8AcouLorDcYDIZcYkTFC1wRFV+dq+Lc/OWDKKVYtm8ZW49ttdsUg8GQDUZUvIDP11SCg/XKkT4mKkop5u6cS/MvmtPxm44MmzfMbpMMBkM2mD4VLxAWrNd/L1usrM2WZIFjVn1kpN2WkKpS+WnHT4xcMZJNRzZRvWR1ml3XjB0ndthtmsFgyAZTU/ECjppK/3r9bbYkCxyz6idM0JsNpKpUZm6bSePxjblrxl0kJCfwdc+v2fnoTu6ufzcnL54k/kK8LbYZDAbXMDUVL+Dz81RAi8qGDbZkrZTi+23f8/pvr7P1+FYiwyP55s5vGNhgIAF++hatGV4TgJiTMb65gqbBYABMTcUrFA0sCsDULVNttiQLHDWVYcP05iWOnjtKz2k96T+zP6kqle/u+o5tj2zj3hvvvSIoAJHhulluV/wur9lmMBhyjs/WVEQkFkgALgMpSqlm9lqUe/zEDz/x49h5H56xXr48nDsH27eDv79Xsvxxx488MPcBEpISeL/L+zzW/DH8/TLOu3rJ6viLvxEVg8HH8VlRsWivlDphtxHuwF/8fXf0F1ydq5KcDEWKeDSrs0ln+c/P/2Fi9EQaRzRm8l2TqVu2bpbnBPoHUqNUDSMqBoOP4+uiUmDw9/P33XkqcFVULl3yqKis2L+Cf8/+NwfOHuDFW17klVtfIcg/yKVzI8MjjagYDD6OL/epKGCRiGwUkWsa+UVkmIhsEJENx48ft8G8nJGvaioeICkliWcWPUO7ie0I8Atg5X0reaPDGy4LCmhRiTkZg1LKIzYaDIa848s1lZuVUgdFpBywWER2KKVWOAKVUhOACQDNmjXz+adMiZAS+IkPa7hDVMqVg4YN3Zr09uPb6T+zP38f+5sHmz7I6M6jr4yIywk1S9fkwqULHEo4RMXiFd1qo8FgcA8+KypKqYPW5zERmQ00B1ZkfZbv0rB8Q05ePGm3GZlTpgyIwM03w+uvuy3ZdQfXcduU2wjwC2DewHl0i+yW67ScR4AZUTEYfBOffHUWkWIiEubYBzoDW+y1Km+EBoX69jyVgAAoW9atrlqW7l1Kh0kdKBlSkjX3r8mToIAZVmww5AdcEhUR6ev0kH9JRH4QkSYetKs8sFJENgPrgPlKqZ89mJ/H+fPwn8SejrXbjKyJiIAFC+Cee/Kc1Ozts7n9u9upXqo6K+9bSY1SNfKcZsXiFSkSUMSIisHgw7ja/PWyUup7EbkZ6AS8C3wKtPCEUUqpvcCNnkjbLhJTEkm+7JlOcLcREQH79kFcXJ6S+WrTVzww9wGaV2zO/LvnU7pIabeY5yd+1Ayvya6TRlQMBl/F1eYvx7ClbsAEpdR8wPVhOwbfH/0FWlTyOPprzJox3D/nfjpW78iSe5e4TVAc1Cxdk5j4GLemWZA4n3yekb+NpPeM3r79EqMUHDxolrAugLhaUzkoIuOBKOAdEQnGR/tjfBV/P38UiuTLyTkaRutVypfPtagopXj515cZ9fso+tTtw+RekwkOCHazgbpf5aedP5GSmpLGjUthJyU1ha82fcWry1/lyDndL7bh0AZaV25ts2Epuva7fXvabccOOHsWKlSAAwe85sXB4Hlc/Vf2A7oCo5VSp0WkAuCjC677Jv6i/zTnks+5/e3dbURE6DfIlJQcnXY59TKPLniUzzZ+xtDGQ/ms+2eZulvJK5HhkaSkphB7OpYbSt/gkTzyE0op5uycw3+X/pcdJ3bQpnIbPuv2GXdOv5NV/6zyjqhcvAixsbB3r9727Lm6HxOT9kWlQgWoUwfuvVef99VXegnrpk09b6fBK7gqKiHAcgARKQ0kAb96yKYCSa3wWuw5tcf3RQWgbtYuU5w5l3yOIT8N4ftt3/Ns62d5u9PbiIiHDEw7Aqywi8qaA2t4ZvEzrDqwilrhtfix/4/cUesORITrS13P6rjV7s1QKfjnH1i7Vm9//gm7d8OhQ2njFSsGNWrADTfA7bdrEalTB2rXhpIlr8Y7ckSLypIlRlQKEK6Kyp9AZeAUIEBJ4IiIHAUeUEpt9Ix5BYdBjQaxYPcC3x5W7BCVu+92KfrfR/+m7/d9iTkZw7tR7/J066c9aJzGWVRur3m7x/PzRbYf385Lv77ED9t/ICI0gvHdxzOk8ZA0zYFtqrRhYcxClFK5F/lz5/RyCGvXwh9/6E/HkPMiRaBxY+jcGa6/XouIYytbVs95yo6ICKhfH5Yuheeey52NBp/DVVFZDMxUSv0CICKdgT7AV8A4PDQKrCCRb9ZUgWznqiil+Dr6ax5d8CglQkqw5N4ltK/e3gsGQniRcEqFlCp0nfWXUy+zIGYBH6//mEV7FhEaFMpr7V7jyVZPZuidoE3lNnyz+Rt2n9x9ZS2aTDlzBnbu1P0cjm37dti1C1JTdZyaNSEqClq21FuDBhAYmPcL69QJPvsMEhMhJCTv6bmRlNQU1h1cx9K9S6lfrj696vSy26R8gaui0lIp9YDji1JqkYiMVkoNszrtDdnwzqp3AB8XlfLl9edbb8GAARlGOZ98nkcWPMI3m7+hY/WOTLlrCuVDy3vNRBEpVMOKT148yVebvmLc+nHsO72P68KuY2T7kQxrOoxyxcplel6bym0AWHVglRaV1FQ9VNxZOBzb4cNXTwwI0AJSpw707asFpEULCPfQwmgdO8IHH8Dq1dChg2fycBGlFLtP7mbx3sUs3ruYZfuWcTbpLKBfZnrU6mEGh7iAqyV0WESeA6ZZ3/sDR0XEH0j1iGUFjPPJ5wEfF5VSpXSzxalTGQZvPbaVvt/3ZceJHYy4dQQvtX3JYx3yWREZHsmK/fnWY49LbD6ymY/WfcSUv6eQmJJI26pteafTO9xZ+04C/bOpIRw8SJ2Vf1OSEFZPeoPBQ8bqmsiFC1fjlCyphaNrV93X4diqV3dPDcRVbr1Vj/xassQWUUlKSWJ+zHx+3v0zi/YsYv+Z/QBUK1mNAfUGEHV9FAlJCQyZM4Rf9/1K1PVRXrcxv+GqqNwNvAr8aH1fZR3zR48MM2SD8+gvn8XPTz9QMhhWPCl6Eo8seITQoFAW37uYjjU62mCgJrJ0JJP/mszFSxcpEujZtV+8zfLY5bzy6yv8/s/vFAkowr0N7+XR5o/SsHwWTj4vXoTff4dfftHb1q34Aa3+BavK/APlO+qHt7N4lCvnWr+HpwkL07WhpUu9mu3WY1v5ctOXfLP5G+IvxlM8uDgdqnfguTbPEXV9FNeXuv5KX1RiSiKP//w4M7bOMKLiAi6JirVQ1mOZBO92nzkFF8cbfUJSgs2WZENQUBpRSb6czMPzHuar6K9oV60d3931HRXCKtho4NXO+t0nd9OgfANbbXEXm49s5r9L/8vPu3+mUvFKvNf5Pe5rdB+lipS6NrJSsHWrFpBFi2DFCt0nERwMt9wCgwZBhw60OT2XhStf4+QPU3x3xCHofpWRI3UNuVQG1+smziefZ/rW6Xzx5xesiVtDoF8gd9a+k6FNhtKheodMm7ZCAkLoWasnP+z4gXHdxmVfUyzkuCQqIlIWeBaohx5eDIBSyt5G0HxEvqipgBaVpKQrXx9f+DhfRX/FS7e8xKvtXvWJNmXnEWD5XVT2ndrHy7++zHd/f0fJkJK8G/Uu/3fT/6WtgZ0+DevW6e2PP/TmWEOobl146CHo0gXatoWiRa+c1iY2AVa+xpoDeXfm6VE6doTXXoPly6GXezvDlVJsPLyRzzd+ztQtU0lITqB2mdq81/k97m14L2WLlXUpnX71+jHl7yks3beUrjd0dauNBQ1XnxBTgOlAd+AhYBDg+ytj+RCdanRi5YGVvi8q1arpUT/Al39+yfiN43muzXOM7DDSXruccMxPiTmZf0eAHT9/nDdWvMGnGz4lwC+A59o8x3M3P0fJwDA9GXDt2qsisnPn1RPr1IFu3fQSBZ07Q+XKmeZx03U34S/+rD6w2rdFpUULPbdlyRK3icruk7uZ+vdUvtvyHTtO7KBIQBH61+/P0MZDaV25dY6HWXe+vjPFg4szY+sMIyrZ4KqohCulvhSR/yilfgN+E5H1njSsoPFqu1f53+r/+b6o3HYbbN7Mun/W8MiCR4iqEcWoDqPstioNYcFhVAitkC+9FZ9LPseYNWN4d/W7XLx0kfsbD+HVCgO5bvXf8PFg/bZ+5oyOXL68fuDee6/+vOkmKFHC5byKBRWjcYXGrDqwyiPX4jaCgnSfTx77VQ6ePcj0rdOZumUqGw5tQBBuqXoLw1sMZ0D9AZQIcb3s0uNoApu9Yzafdf/Md10t+QCuisol6/OwiHQDDgE+3Ejrm/j8mioAEREcC7lM7xl9uC7sOqb2nmrLCK/syG/r1aeqVCZFT+LFZS9y+Nxheoc0YdSeCGp98hMc+1xHqlFDD+Pt0AFat4YqVfLcmd6mchsmbJzApcuXfLsvoFMnvezCgQNZ1r7Sc+LCCWZtm8XULVNZsX8FCkXTCk0ZHTWa/vX7U6l4JbeZ2K9eP77961uW7F1SaCfeuoKrovKGiJQAngI+AooDwz1lVEHktim3kZCUwLlLvi0ql776gn594cTFeFb/aw3hRT00PyGPRIZH8uOOH+02wyWW71rEk3P+j03nd9PyeDCzfoJWcX9qP1hRUbpPoX173fToZtpUbsOHf3zIpiObaF6xudvTdxsdrdGES5fC4MFZRk1ISuCnnT8xdctUFu1ZREpqCrXL1GZEuxEMrD8w+8meuSSqRhQlgkswY+sMIypZ4Oror3nW7hmgPYCIDPeQTVjpdwU+RA9b/kIp9bYn8/M0Fy9dxE/8fL6m8my9Q/xWDb6t8R8aV2hstzmZEhkeyfELxzmdeJqSISXtNuda4uLYPWciz8R8wo8lj1DlNEz9LZD+FTogz92u38xr1fL4sF6HQ8nVB1b7tqjUr6+HOS9ZkqGoJKYksjBmIVO3TGXurrkkpiRSpUQVnmz5JAMbDOTG8jd61OccQHBAML3q9GL29tkkpSR5xAu3xzlzBrZv5/CWNczb65l1D/MylOdJ4AM32ZEGa1LlJ2hX+3HAehGZo5Ta5on8vIW/n79Pi8p3f3/HBzcc5/G1cE/1enabkyWOEWAx8THcVPEmm61BD/PdsgVmzOD0zz8ysvQWPmoBwcWEUeda8ETH5ygyqkua0VneoGLxilQtUZVVB1YxvOVwr+adI/z8dG1l6VJdliKkqlSW7l3Kd1u+44ftP3A26SzlipXj/sb3M7D+QFpVboWfeHcFjn51+zExeiKL9y6me2R3r+btEhcuwP792mv0vn36MzaW1H172XR+DwvKnmZuLVhfEfCQJuZFVDz5WtAc2G2tAImITAN6AvlbVMTfZ+epRB+JZuicodxyqjijF52FDkftNilLapbWTRy74nfZKyrbtsH06TBjBqk7dzChmfBSZ39OBglDqvXijbs+JsLmeT1tqrTh132/5s25pDfo1AmmTuXM5j/4OnEtn6z/hN0nd1M8uDh31bmLgfUHZjmfxBt0rNGRUiGlmLF1hr2i4ljk7M8/024HD16JElccFkf6s6h+URZ3SSQ+8BKC0KJoJKNq3k6P5vfScIT7V4XPy6+j3GbFtVQEDjh9jyOd00oRGQYMA6hSpYoHTXEfvlpTOXnxJHdNv4tSRUoxY1tVAvkjW6eSdlOjVA38xM+ezvqdO2HGDC0mW7eCCP90acl9/67FsuSdtKt2M+93eZ9GEY28b1sGtKnchu/+/o7Y07FUL1XdbnMyZXvTqnx8O0z66VbOk0ybym0Y2X4kd9a+k5AA33A2GeQfRK/avZi5fSaJKYnesevSJb3EwNatsGnTVQFxrJrp5we1a3Oh/c38ViuYRWHHWHRpB9vOxwKXiQgtRrfre9G5Rmc61ejkcV99WYqKiCSQsXgIYKt/DKXUBGACQLNmzTwpcG6he2R3ziWf48SFE3abkobLqZcZOGsgcWfjWHHfCiJSV8LGnT4vKsEBwVQrWc17jiXj4uC77/S2ebPuC7nlFtRHH/FNg1QeX/MyqSqVCd0nMLTJUJ+qETj3q/iaqDi8L49dN5Yle5cQ3FQYeKIcj73wE00quP8t2h30q9ePr6K/4pfdv9Czdk/3JXz+/FUP0c7b7t1XF84LCIB69fRcpSZNSG3SmOWlTjNp5wxmbZvF+UvnCTkXQtuqbRlS41E6X9+Z+uXqe/V+zFJUlFJh3jIkHQfR67c4qGQdy7c83fppYk/HMm3LtOwje5ERy0ewaM8ixncfT8tKLeHplvDDDz4vKuCFYcVnz+qy+PZb+PVX3eTQsiV8+CH07s2xkoEMmzuMn5b/xC1VbmHinROpUaqG5+zJJQ3KNSAsKIxVB1bxr4b/stscAM4mneWrTV8x9o+x7Du9j4phFRnVYRQPTN1F2W9nwRjf9ZTQoXoHShcpzYxtM3InKidOXCsc27frBdAcBAToRc7q1IG77rq60Fm9ehASQkx8DJM2T+LbdXfzz5l/KB5cnIH1B9K3Xl9uqXKLrT7x7Pe5kTHrgZoiUh0tJgPQDizzNb42T2XJ3iWM+n0U9zW6j2FNh10NiIi4Mqvel4ksHcnKf1a6t6/g0iXtT+vbb+Gnn7RPrRtugFdfhXvu0QtSAT9s/4EHv3uQhKQERkeNZnjL4T45nwd0s2vLSi19YhLkP2f+YewfY/n8z885m3SWNpXbpPW+fGwWfDoJ1q/Xc3V8kED/QO6qfRfTtk7L3KmpUnrOTUbiccKptaJIEe3g8+abrwpH3br6PgtKO8HydOJpZmz9hkmbJ7H6wGr8xI+oGlG83fFt7qx9p884V/VJUVFKpYjIo8Av6CHFXymlttpsVp5oN7Ed+8/sJ+lykk9MRDt67ij3/HAPtcvU5qPbProa0K6dXlfcyf+Xr1IzvCbnks9x9PxRIkIjcp+QUvohNnkyTJum/WqFh8P992shadHiytDf04mneXzh43z717c0qdCEb+78hnrlfHukHOh+ldd+e40ziWfyNLM8t6w/uJ4xa8fw/dbvAehbry9PtHzi2mHO7dvrsl6yxGdFBXQT2BebvuDn3T/Tq8zNej2YbduuCseOHXrlTAelS2vBuPPOq+JRp46e4OqX+Qi22NOxzN81n3kx8/h1368kXU6ibtm6vNPpHe5peA/XhV3n+YvNIT4pKgBKqQXAArvtcCcOp5LnL52npH9J2+xIVancM/seziSdYcm/l1AsqFjaCEFBet3x5ORr3pZ8CWfHkrkSlX37tJBMnqxrZsHB0LOnFpIuXa659mX7ljHox0EcTjjMK21f4aW2L9n+cuAqrSu3RqH44+AfdL6+s1fyvJx6mbm75vLemvdY+c9KigcXZ3jL4TzW/DGqlqya8UmlS0OTJlpUXnnFK3bmmIsXab/nMmVUEWaMGUKvL05fDatUSYvFkCFpxcPFJZZTUlNYG7eWebvmMT9mPluObQH0vf7ITY9wd4O7aVqhqU/12aXHZ0WlIOJoHjmXfM7WCXtvr3ybJXuXMKH7BOqXq39tBMfD9Ngx/SfxUZxFpW3Vtq6ddPKkHrk1eTKsspqD2rXTa6T37p2hb62klCReWvYSo9eMplZ4Ldbcv8Y35sbkgJaVWuInfqz6Z5XHReVM4hkmRk/ko3UfsefUHqqWqMqYzmO4v8n9FA8unn0CnTrBe+/pN/3Qa5dK9jqXL2snn4sXa7FbuZKApCR63+HH5BuTuDDyFYp27KoncIblvBs6MSWR+bvmM3vHbBbuXsjJiycJ8AugbdW2jOk8hm6R3a7c6/kBIypexBfc36/6ZxWv/PoK/ev1Z2iToRlHcqz8d+SIT4tK5eKVCfYPzr6zPiVFrz3y5Zcwb57uN6lbVy+bfPfdugkiE7Yf387dP9xN9JFoHmr6EO91eY+igd6dwOgOwoLDaFi+oUf7VXbF7+KjPz5i4uaJnEs+R+vKrXmz45vcVeeunM0t6dQJ3nlHLzx2220es/caHHM/tmxJu23bphdCA2jYEP7v/yAqin5VLzN+RncW3tWQ3nVb5SirVJXKiv0rmPzXZGZum8mZpDOUKVqGHpE96B7ZXbuEsaGZ0h0YUfEidi/UFX8hnoGzBlKtZDUm9JiQeRXaUVM56tsTIP39/Lmh9A2Zi8q+ffDVV/D11/phUa4cPPaYbt5q1CjL5gilFJ9u+JSnFj1FaFAocwbMoUetHp65EC/RpnIbJkZPJCU1xW0TCFNVKov2LGLsH2NZuHshgX6BDKg/gMdbPE6z65rl0tA2uilyyRLPisqhQ/Dbb1q8/vpLC4jDQzRo32z16+v1apo10zP+y1+d49E2NYVyxcoxY9sMetft7VKWfx39i8l/TWbqlqnEnY0jNCiUu+rcxT0N7qF99fY+sV5RXsn/V5BP6FevH7vid7Hl2BZbaipKKYbMGcKRc0dYff/qzJsh+vXTTUSbNuWbYcU7453WG0lKgh9/hC++0A8lPz+9DvtHH0H37i6tv37s/DGG/DSE+THz6XpDV77u+XXeBgL4CG0qt+GT9Z/w99G/8+zXLTElkS///JKP1n3EzvidRIRG8Fq71xjWdFjey6pIES0sS5bkLZ30HDyolxb47Tf9GWOtx1O8uH7J+Ne/tIjUr6+H7pbO2hF7gF8Avev0ZtLmSZxPPn9t36TFnpN7+H7b90z5ewpbjm0hwC+Arjd05d2od7mj1h35suabJUqpfL81bdpU5Qc2HNygGIGas2OO1/P+YM0HihGo99e8n33kixeVAqXeeMPjduWVZxc9q4JGBqmUg3FKDR+uVHi4tr1qVaVef12pf/7JUXrzd81X5d4tp4JHBquxa8eq1NRUzxhuA7GnYhUjUB/98VGe0pm3c566/sPrFSNQN024SU3ePFklpSS5yUqLN9/Uv+PRo7lP4+hRpb77TqmhQ5W64QadHihVooRSPXoo9d57Sm3YoFRKSq6z+HXfr4oRqOlbpqc5HhMfo95c8aZq/FljxQgUI1CtvmilPln3iTp+/njur8nNABuUm5/HpqbiJS5cumBbn8qGQxt4ZvEz9IjswX9a/CfryBcu6M8SJfJNTSX5cjL/tKlH9YMX9JDNoUN1u3wWQzXTk3w5mWcXP8uHf3xIw/INWfrvpRkPYsjHVClRhYphFVl1YBWPNn80x+fvPbWX4T8PZ+6uudQuU5tF9ywi6vooD1iK/v1eeAGWLYMBA1w758IFWLlSd6gvXqw9HwCULKmXWn7kET0oo2FD8HfPnKJbqtxC+WLlmbF1Bo0iGvH91u/5ftv3bD6q825RsQWjo0bTp26fzEe8FTCMqHiJ26fcTtJlPffDm6JyNuksA2YOoHxoeb7u+XX2QxFvt9aJiIjw+T4V4uOJ/Pg7qAq76pan+sKf9ESyHBJ3No6+3/dlbdxaHm/+OO9EveMzvqbciYjQpkobVv2Ts876i5cu8s6qd3h75dsE+AXwv07/4z8t/+PZ1Q+bNNFisGRJ5qKSmKhHZS1frkVk1Srd/BkYqJvPRo3S69U0aeI2EUmPv58/fer24ZP1nzBr+ywAWlVqxZjOY+hdtzdVSuQPv4TuxIiKF7GjpvLQvIeIPR3L8sHLc7bgVkSEb9dU5s+HoUOJTDwBw2HXSw/TJReCsnjPYu7+4W4SUxKZ0WcGfev1db+tPkSbym2YsXUGB84coHKJrFdYVEoxd9dchv88nH2n9zGg/gBGR42mYvGKnjfU319PhFy8WDdaXboEf/8NGzZc3bZsueoTq0GDK6OyuOUWvea9l3is+WPEnY2jXbV29K7TO9tyLegYUfEizvNUvMGCmAVM3TKV19q9xs1Vbs7ZyRER2hOqr3H2LDzxhB7V1bAh5SYtpPjPt7Lr1J4cJZOqUhm1YhSvLn+VumXrMqvfLGqVqeUho30HZ+eS/Uv0zzTervhdPPHLEyyIWUDdsnVZ9u9ltK/e3ltmajp1gtmzdU1j2zY9GRd0B3qzZvDss/qzVSt9v9pErTK1+HHAj7bl72sYUfEighASEOIVUUlMSeTxhY9TK7wW/735vzlPwBdrKsuWwX33aY/BL7wAr7yCBAdTc11NYk7GuJxM/IV47p19Lwt3L+SehvfwWbfPMh25U9C4sfyNFA0syqoDq+hf/1pR2XR4E2+tfIuZ22YSGhTKmM5jeLT5o/Z4DrjjDj1qLzwchg/XAtKsmV522YdnlBd2jKh4mdCgUBKSPT9PZfTq0ew5tYdF9yzKXdt3+fKQkKA7P728WuE1bNsGo0fr+SaRkdrPUoury+tEhkeyNm6tS0mtP7iePt/34ci5I3za7VMebPqgT7u8cDeB/oG0qNgizSRIpRQr9q/grZVv8cueXygeXJzn2jzH8JbDPb72RpZUqqT9aBnyFUZUvMTgRoMBeO231zxeU9l/ej9v/v4mvev0zvnoHMf64MpaouboUahuwxocSulO2jFj4OefISQEnnwSRo68RuQiwyOZtmValuuGK6UYv3E8//n5P1QIrcCqIatyPzkvn9OmchveWvkWCUkJLI9dzlsr32JN3BrKFSvHWx3f4uFmD+fb2dwG+zGi4iUcojJmzRiPi8oTvzyBiDCmy5icn+wQlYUL9eeRI94VlcREmDIFPvhAd8SWL6+F5MEHtVO+DIgMj0Sh2HNqD3XL1r0m/OKlizw8/2EmbZ7EbTfcxre9vs3ZoIUCRuvKrbmsLlPnkzocTDhItZLV+OT2T7iv0X0+4z7dkH8xouIlHCs+enpNlV92/8LsHbMZ1WFU7oYzOtZ6cHR8eqtf5ehR+PRTGDdOu55v2BAmTtTDSYMzrn04cHYsmV5UYk/Hctf0u9h0ZBMjbh3By7e+jJ+4Pn+lINK6cmtKBJegZEhJ3u70NgPqDygQ7kEMvoG5k7xEnxl9AM+KSlJKEo8tfIyapWvyVKuncpdIH20nU6fqT0+LilJ6JNdjj2mnfd266WYux7oaLlCzdE0AYuLTdtYv2rOIgbMGahfsA+fSPbK7283Pj5QIKcGhpw4REhBS6AXW4H587o4SkREiclBEoq3tdrttcieeFJUxa8YQczKGsbeNzbRvwWUc6z94UlQSEuDee/UM+NatdafsvHnQoUOORveUCClBuWLlrjiWVErx1u9v0XVyV64Lu44NwzYYQUlH0cCiRlAMHsFXayrvK6VG222EJ/CUqPxz5h/e+P0N7qx9J11v6Jr3BAMCoEwZz82q37xZO6/cvRtef10PEc7DrOfI8Eh2ndzF2aSzDP5xMLN3zGZA/QF80eOLQjNc2GDwBXxVVAosnhKVpxY9RapK5f0u77svUU/MVVEKJkyA//xHT2JbtgxuvTXPyUaWjmT2jtk0/7w5u0/uZkznMQxvObxQDRc2GHwBX63/Pioif4nIVyJSKqMIIjJMRDaIyIbjx497275c4wlRWbJ3CTO3zeSFm1+gWslq7kvY3aJy9iwMHKjXp7j1Vu23yQ2CArqmcirxFKcST7Hk30t4otUTRlAMBhuwpaYiIkuAjPwqvAh8CowElPX5HjAkfUSl1ARgAkCzZs2Ux4x1Ew83exiAnfE7uZhy0W0LJSVfTubRBY9yfanreabNM3lOj4cfvrofEaHXbncHmzbp5q59++DNN/XyvTnwIpwdA+oPYP+Z/bxwywtUKu67q1UaDAUdW0RFKdXJlXgi8jkwz8PmeAWHS4z31+jmqfPJ590yweyDtR+wM34n8wbOc49n3f5OrjvKl9d9KkrlzS3GpEkwbJju/F++HG7OoR8yF6hasirjuo1ze7oGgyFn+Fzzl4hUcPraC9hily3u5MCZAxw4c4DQoFDAPU4lD549yOu/vU6PyB50i+yW5/QAOHBAb6BrKomJutkqNyil1xofPFh7jo2O9oigGAwG38EXO+r/JyKN0M1fscCDtlrjJu6dfS8ADzbVl+MOUflg7QckpiTyQdcP8pzWFe7VdrJ8edoJkCVyWKtKTYWnn4b339cTGCdNgiAPrr9hMBh8Ap8TFaXUvXbb4EncVVM5n3yeLzZ9Qe+6valRqoY7TLsWZ1GplQO38JcuwZAhMHmyntT4wQdu7T8xGAy+i8+JSkHHXaIy5e8pnE48zePNH3eHWRlT3vJQm5MRYOfP61n5P/+sV957/nnjptxgKEQYUfEy7hAVpRRj/xhLkwpNriy65BEcNRVXJ0DGx2s3K+vXw+ef65nyBoOhUGFExcu4Q1R+jf2Vrce3MrHnRM/OxShdWs+sd6Wm8s8/0KWLHjI8axbceafn7DIYDD6LERUv4XDw6BCVvCzUNfaPsZQtWjbDlfvyzFNOjij9/HQTWHaism2bFpSEBFi0CNq2db9dBoMhX2BExUv0qNUDgNOJp4Hc11T2ndrHnJ1zeOGWF9wzLyU9PXqk/Z7VrHql4Ntv4dFHoVgxWLFCu6w3GAyFFjMkx0vsPLGTnSd2UixQOzfMraiMWz8OP/G7MkPf7ezcqTcHmdVUTp7UEyUHDYLGjeGPP4ygGAwGU1PxFg/O0/NTlg9eTrB/cK5ExTGMuE/dPlQsXtHdJmoetKYFLV+uPyMi9KRFZ5Yu1WJy7Bi8/baej5IHD8MGg6HgYGoqNpBbp5KT/5qshxG38OAw4vREROjRX6mpkJSkBaRTJwgLg7VrtQ8vIygGg8HCiIoN5EZUlFKMXTeWphWa0qpSKw9ZlgEREXD5Mvz2G9x0E7z3HjzyCGzcCE2aeM8Og8GQLzDNXzaQG1FZtm8Z245vY9Kdk7zr0t0xV6VjR+0Qcv58uL1ALcZpMBjciKmp2EBuRGXsOmsYcT0PDCPOishI/dm9O/z9txEUg8GQJaam4iVeavvSlf2cisq+U/uYu3MuL97yYt7Xns+Ol15K+/3GGyEuDq67zrhbMRgM2WJExUt0qnF1CZmw4DCOX3B9tcpP1n+Cv58/DzV7yBOmpaVTBkvdVPTQSDODwVDgMM1fXiL6SDTRR6KBnNVUziWf44s/PTyM2Jno6GuHEBsMBoOLmJqKlxj+83BAz1MJDXRdVCb/NZkzSWc8643YmeHD9adjnorBYDDkAFtqKiLSV0S2ikiqiDRLF/a8iOwWkZ0i0sUO+zyNqzUVpRQfrfuIphWa0rJSSy9YZjAYDHnDruavLcBdwArngyJSFxgA1AO6AuNEpMDNrAsNCuXCpQtcTr2cZTzHMOLHWzzu3WHEBoPBkEtsERWl1Hal1M4MgnoC05RSSUqpfcBuoLl3rfM8Dk/FFy5dyDLeuA3j7BlGbDAYDLnE1zrqKwIHnL7HWceuQUSGicgGEdlw/LjrI6l8AVfWVElMSeTn3T/Tt25fzw8jNhgMBjfhsY56EVkCRGQQ9KJS6qe8pq+UmgBMAGjWrJnKa3qe5s2Ob17Zd0VUfov9jQuXLtAtspvHbUvDm29mH8dgMBgywWOiopTKYMJDthwEKjt9r2Qdy/c4L/vrykJd82PmUySgCO2rtfe4bWlo7cHliQ0GQ4HH15q/5gADRCRYRKoDNYF1NtvkFlYfWM3qA6sBPfkRMq+pKKWYt2seHWt0pEhgEa/ZCMDq1XozGAyGXGDLPBUR6QV8BJQF5otItFKqi1Jqq4jMALYBKcD/KaWyHiKVT3hh6QuANU8lm+avHSd2sO/0Pp5t86zX7LvCC9pOM0/FYDDkBltERSk1G5idSdgoYJR3LfIu2YnK/Jj5ANxe0zhvNBgM+Qtfa/4qFLgiKg3KNaBKiSreNMtgMBjyjBEVG8hKVE4nnmblPyvpHtnd22YZDAZDnjGiYgNZicqiPYtISU2hW00vDyU2GAwGN2AcSnqJD7p+cGU/yD+IQL/ADEVlfsx8ShcpbZ+vrw8+sCdfg8FQIDCi4iUaRTRK8z00KJSEpLTzVFJVKgtjFtL1hq74+9nk8qxRI3vyNRgMBQIjKl5iyd4lwNXFusKCwzh3KW1NZf3B9Ry/cNzepq8l2s4MF+syGNzEpUuXiIuLIzEx0W5TCgUhISFUqlSJwMBAj+dlRMVLvLHiDeCqqGTk/n7ernn4iR9db+jqdfuu8Ia204iKwZPExcURFhZGtWrVjAduD6OUIj4+nri4OKpXr+7x/ExHvU1kJCrzY+bTunJrShcpbZNVBoN3SExMJDw83AiKFxARwsPDvVYrNKJiE+lF5VDCITYd2WRGfRkKDUZQvIc3y9qIik2kF5UFMQsAjKgYDIZ8jREVm0gvKvN2zaNy8crUL1ffRqsMhsJBYmIizZs358Ybb6RevXq8+uqrGcabOHEiZcuWpVGjRjRq1Igvvvgiy3RnzZqFiLBhw4YMw6tVq0aDBg1o1KgRzZo1yzDO4MGDmTlzpkvX0b59e3755Zc0xz744AMefvhhl873BKaj3kuM7z4+zffQwKuikpSSxJK9S/j3jf+2v0lg/Pjs4xgM+Zzg4GCWLVtGaGgoly5d4uabb+a2226jZctr54f179+fjz/+ONs0ExIS+PDDD2nRokWW8X799VfKlCmTa9udGThwINOmTaNLly5Xjk2bNo3//e9/bkk/NxhR8RK1ytRK8925pvLb/t84f+m8bzR91aqVfRyDwZ0MHw7R0e5Ns1GjLCfyigihodqzxaVLl7h06VKeX+hefvllnnvuOd599908pZM+zQMHDvDll18yZswYZsyYQVJSEr169eK1116jT58+vPTSSyQnJxMUFERsbCyHDh3illtucZsNOcU0f3mJuTvnMnfn3Cvfw4LDOJd8jlSVyvxd8wkJCKF9dS8vyJURc+fqzWAo4Fy+fJlGjRpRrlw5oqKiMq1hzJo1i4YNG9KnTx8OHDiQYZw///yTAwcO0K1b1i+GIkLnzp1p2rQpEyZMyDLuM888w/Hjx/n6669ZunQpMTExrFu3jujoaDZu3MiKFSsoXbo0zZs3Z+HChYCupfTr18/WFg9TU/ES7615D4AetXoAV/1/nU8+z7yYeXSo3oGigUVts+8K72k76dHDXjsMhQebXAP5+/sTHR3N6dOn6dWrF1u2bKF+/bR9mj169GDgwIEEBwczfvx4Bg0axLJly9LESU1N5cknn2TixInZ5rly5UoqVqzIsWPHiIqKonbt2rRt2/aaeCNHjqRFixZXhGfRokUsWrSIxo0bA3Du3DliYmJo27btlSawnj17Mm3aNL788stcloh7sKWmIiJ9RWSriKSKSDOn49VE5KKIRFvbZ3bY5w0corLx8Eb2ntrrG01fBkMhpGTJkrRv356ff/75mrDw8HCCg4MBGDp0KBs3bgTgxRdfvNJ5n5CQwJYtW2jXrh3VqlVj7dq13HHHHRl21lesWBGAcuXK0atXL9aty3hh25tuuomNGzdy8uRJQE9gfP7554mOjiY6Oprdu3dz//33A9CzZ0+WLl3Kn3/+yYULF2jatGneCyUP2NX8tQW4C1iRQdgepVQja3vIy3Z5DYeoTN8yHTBDiQ0Gb3L8+HFOnz4NwMWLF1m8eDG1a9e+Jt7hw4ev7M+ZM4c6deoAMGrUqCsP+BIlSnDixAliY2OJjY2lZcuWzJkz55rRXefPnychIeHK/qJFi66pGTno2rUr//3vf+nWrRsJCQl06dKFr776inPndD/swYMHOXbsGAChoaG0b9+eIUOGMHDgwLwVjBuwa+XH7VC4Jz85RGXm9pnUL1efqiWr2myRwVB4OHz4MIMGDeLy5cukpqbSr18/unfXaxi98sorNGvWjDvuuIOxY8cyZ84cAgICKF26tEtNXM4cOnSIoUOHsmDBAo4ePUqvXr0ASElJ4e6776Zr18xdMvXt25eEhATuuOMOFixYwN13302rVq0ALSSTJ0+mXLlygB4F1qtXL6ZNm5aL0nAvopSyL3OR5cDTSqkN1vdqwFZgF3AWeEkp9Xt26TRr1kxlNi7cV2g3sR2g16gH7WAy6tsoAJ5r8xxvd3rbJsvS0a6d/jRr1Bs8yPbt26+89Ru8Q0ZlLiIblVIZT5jJJR6rqYjIEiAig6AXlVI/ZXLaYaCKUipeRJoCP4pIPaXU2QzSHwYMA6hSxfeX3f2217dpvjtqKuBjTV/ffpt9HIPBYMgEj4mKUirHbm6VUklAkrW/UUT2AJHANdUQpdQEYALomkrerPU8lUtUTvPdISqlQkrRqnIrO0zKmMqVs49jMBgMmeBT81REpKyI+Fv7NYCawF57rXIP07dMv9IpDxAWFAZA1xu6EuDnQyO7p0/Xm8FgMOQCW55mItIL+AgoC8wXkWilVBegLfC6iFwCUoGHlFIn7bDR3Xy64VMA+tfvD0D50PI0qdCE+xvfb6dZ1/KptpP+/e21w2Aw5EvsGv01G5idwfFZwCzvW+R9QgJC2Dhso91mGAwGg1vxqeYvg8FgMORvjKgYDIZCy+XLl2ncuPGVOSrpcdX1vavx2rVrR61ata7Ec0xgdGbEiBGMHj3aJfvvu+8+xqfzLP7jjz9y2223uXS+J/ChHmKDwWDwLh9++CF16tTh7NlrZi1cwVXX967GmzJlSqZrqeSUgQMH8tZbb/Hggw9eOTZt2jRbZ9YbUfESM/u5tuiO7bi4OJDB4C6G/zyc6CPRbk2zUUQjPuj6QZZx4uLimD9/Pi+++CJjxoxxa/7u4vPPP+eHH37ghx9+YNasWYwdO5bk5GRatGjBuHHj6NixI4MGDeLw4cNUqFCB8+fPs2TJkmw9IHsS0/zlJcoULUOZou5ZmMejlCmjN4OhgDN8+HD+97//4eeX9WPQFdf3OYl333330ahRI0aOHElWHk0+/vhj5s2bx48//khsbCzTp09n1apVREdH4+/vz5QpU/D396d3797MmDEDgLlz59KuXTuKFy+ezdV7EKVUvt+aNm2qfJ2vN32tvt70td1mZM/XX+vNYPAg27ZtszX/uXPnqocfflgppdSvv/6qunXrlmG8EydOqMTERKWUUp999plq3759nuLFxcUppZQ6e/asioqKUpMmTbomzquvvqoaNGigbr/9dpWcnKyUUuqjjz5SFSpUUDfeeKO68cYbVWRkpHr11VeVUkqtXLlStWzZUimlVM+ePdXMmTMzzDujMgc2KDc/j01NxUtMjJ7IxOiJdpuRPRMn6s1gKMCsWrWKOXPmUK1aNQYMGMCyZcu45557ronniuv7rOKlx+H6PiwsjLvvvjtT1/cNGjQgNjaWuLg4QL/8Dxo06Ipn5J07dzJixAgAWrduzeHDh9m8eTOrV6/OdqEwT2NExWAwFDreeust4uLiiI2NZdq0aXTo0IHJkydfE88V1/dZxXMmJSWFEydOAHoJ43nz5mXq+r5x48aMHz+eO+64g0OHDtGxY0dmzpx5ZbTYyZMn2b9/P6C9vffv359BgwZx2223ERISkosScR9GVAwGg8GJV155hTlz5gAwduxY6tWrx4033sjYsWMzdX2fVTxHbSYpKYkuXbrQsGFDGjVqRMWKFXnggQcytePmm29m9OjRdOvWjXLlyvHGG2/QuXNnGjZsSFRUVBohGzhwIJs3b/aJ9VRsdX3vLvKj63ufxbi+N3gB4/re+3jL9b2pqRgMBoPBbZh5Kl5iwb8W2G2CayzIJ3YaDAafxIiKlygaWNRuE1yjaD6x05DvUUoV6iXFvYk3uzlM85eXGLd+HOPWj7PbjOwZN05vBoMHCQkJIT4+3qsPu8KKUor4+HivjQozNRUvMWOrnvH6yE2P2GxJNlgzc3nEx+005GsqVapEXFwcx48ft9uUQkFISAiVKlXySl5GVAwGg9cJDAykevXqdpth8AC2NH+JyLsiskNE/hKR2SJS0inseRHZLSI7RaSLHfYZDAaDIXfY1aeyGKivlGoI7AKeBxCRusAAoB7QFRjnWLPeYDAYDL6PLaKilFqklEqxvq4FHI19PYFpSqkkpdQ+YDfQ3A4bDQaDwZBzfKFPZQgw3dqviBYZB3HWsWsQkWHAMOtrkohs8ZiF7qOM3Ccn7DbCBcog+cROMHa6j/xgZ36wEfKPnbXcnaDHREVElgARGQS9qJT6yYrzIpACTMlp+kqpCcAEK50N7nY14AmMne7F2Ole8oOd+cFGyF92ujtNj4mKUqpTVuEiMhjoDnRUVwerHwQqO0WrZB0zGAwGQz7ArtFfXYFngTuUUhecguYAA0QkWESqAzWBjBccMBgMBoPPYVefysdAMLDYctOwVin1kFJqq4jMALahm8X+Tyl12YX07FuQOWcYO92LsdO95Ac784ONUIjtLBCu7w0Gg8HgGxjfXwaDwWBwG0ZUDAaDweA2fFJURKSr5aZlt4j8N4PwYBGZboX/ISLVnMIydPOSXZretFNEokRko4j8bX12cDpnuZVmtLWVs8nGaiJy0cmOz5zOaWrZvltExoob/Jfnwc5/OdkYLSKpItLICnNrWbpoZ1sR+VNEUkSkT7qwQSISY22DnI7bUZ4Z2ikijURkjYhsFe1Gqb9T2EQR2edUno3sstMKu+xkyxyn49Wte2S3dc8E2WWniLRPd38misidVpgd5fmkiGyzftulIlLVKcw996dSyqc2wB/YA9QAgoDNQN10cR4BPrP2BwDTrf26VvxgoLqVjr8raXrZzsbAddZ+feCg0znLgWY+UJbVgC2ZpLsOaAkIsBC4zS4708VpAOzxRFnmwM5qQEPgG6CP0/HSwF7rs5S1X8rG8szMzkigprV/HXAYKGl9n+gc187ytMLOZZLuDGCAtf8Z8LCddqa7B04CRW0sz/ZO+T/M1f+72+5PX6ypNAd2K6X2KqWSgWlo9y3O9AQmWfszgY6Wembm5sWVNL1mp1Jqk1LqkHV8K1BERILzaI9bbcwsQRGpABRXSq1V+o77BrjTR+wcaJ3rKbK1UykVq5T6C0hNd24XYLFS6qRS6hTa/11Xu8ozMzuVUruUUjHW/iHgGFA2j/a43c7MsO6JDuh7BPQ9c6eP2NkHWKjSTqNwJ67Y+atT/s4ustx2f/qiqFQEDjh9z8hVy5U4SvsQOwOEZ3GuK2l6005negN/KqWSnI59bVWHX85jU0hebawuIptE5DcRucUpflw2aXrbTgf9ganpjrmrLF21M6fn2lWe2SIizdFvvHucDo+ymk7ed8OLUF7tDBGRDSKy1tGkhL4nTqurvgV9pjzRNez096ed5Xk/uuaR1bk5vj99UVQKDSJSD3gHeNDp8L+UUg2AW6ztXjtsQzd7VFFKNQaeBL4TkeI22ZItItICuKCUcvYB5ytlme+w3lC/Be5TSjnevp8HagM3oZtJnrPJPAdVlXaFcjfwgYhcb7M9mWKVZwPgF6fDtpWniNwDNAPedXfavigqrrhquRJHRAKAEkB8Fud6wv1LXuxERCoBs4F/K6WuvAkqpQ5anwnAd+TNS3OubbSaEOMtWzai31YjrfjOS8jZXpYW17wFurksXbUzp+faVZ6ZYr08zEf76bvi4FUpdVhpkoCvsbc8nX/fvej+s8boe6KkdY/kOE1P2GnRD5itlLrkOGBXeYpIJ+BFtEeTpGzOzfn96a5OIndt6Fn+e9Ed7Y7Opnrp4vwfaTttZ1j79UjbUb8X3XmVbZpetrOkFf+uDNIsY+0HotuFH7LJxrKAv7Vfw7qRSquMO+5ut6ssre9+ln01PFWWrtrpFHci13bU70N3gpay9m0rzyzsDAKWAsMziFvB+hTgA+BtG+0sBQRb+2WAGKxOaeB70nbUP2KXnU7H1wLt7S5PtPDuwRqM4Yn7M9cX4MkNuB29eNce9NsSwOtoZQUIsW6c3dYFOz9MXrTO24nTKIWM0rTLTuAl4DwQ7bSVA4oBG4G/0B34H2I92G2wsbdlQzTwJ9DDKc1mwBYrzY+xPDPY+Ju3Q7v6cU7P7WXpop03odudz6Pfmrc6nTvEsn83ulnJzvLM0E7gHuBSunuzkRW2DPjbsnUyEGqjna0tWzZbn/c7pVnDukd2W/dMsM2/ezX0S49fujTtKM8lwFGn33aOu+9P46bFYDAYDG7DF/tUDAaDwZBPMaJiMBgMBrdhRMVgMBgMbsOIisFgMBjchhEVg8FgMLgNIyqGfE06T7XR4uSx2lcRkWYiMtYN6YiILHN4OhCRc+nCB4vIx1mc311EXs+rHQaDM3YtJ2wwuIuLSqlGGQVYvr5EXXUz4hMopTYAG9yQ1O3AZqXU2VyePx8YKSJvK885OTQUMkxNxVCgEL0OzE4R+QY9YauyiDwjIustx32vOcV9UUR2ichKEZkqIk9bx5eLSDNrv4yIxFr7/iLyrlNaD1rH21nnzBSRHSIyxeG8UkRuEpHVIrJZRNaJSJgVf54VXkxEvrLCNolIT+t4PetYtJVXzQwu91/ATy6Wi3Nt7qKI3Kr0JLXlQPfclLXBkBGmpmLI7xQRkWhrfx/wBFATGKSUWisina3vzdFuJuaISFv0zOcBQCP0/+BP9Az8rLgfOKOUusnyKLtKRBZZYY3RboIOAauANiKyDpgO9FdKrbeaqS6mS/NFYJlSaoiIlATWicgS4CHgQ6XUFNGLTPlnYE8b0jojdS4L0K435gA4anMi0gN4FlhtxdmAdrY5I5trNxhcwoiKIb+TpvnL6lPZr646QuxsbZus76FokQlDO/i7YJ13ZeXALOgMNJSrK/uVsNJKBtYppeKstKLRrjnOAIeVUusBHM1U6TzwdwbucNSS0O5oqgBrgBctx6M/KGuNk3SUVtpZZmZlMRjtYsPxvSbaK217ddWx4TH0YlwGg1swomIoiJx32hfgLaXUeOcIIjI8i/NTuNo0HJIurceUUs7uyxGRdoDzejiXcf2/JUBvpdTOdMe3i8gfQDdggYg8qJRalt5OEfFzpc9IRELRtZEHlFKHnYJCuLb2ZDDkGtOnYijo/AIMsR6qiEhF0WvVrwDuFJEiIhIG9HA6JxZoau33SZfWwyISaKUVKSLFssh7J1BBRG6y4oc5uWR3TvMxpz6YxtZnDWCvUmosut+kYSbp18jy6q/yFfC1Uur3dMcj0X1PBoNbMKJiKNAopRah11JZIyJ/o13ghyml/kT3d2xGu/Ne73TaaLR4bEK7VXfwBbAN+FNEtgDjyaJGovSSrv2Bj0RkM3qJ1pB00UaiXfP/JSJbre+g19/YYjWl1Ucv45qe+WgPzVkiIlXR4jjEqbPe0SzW3krHYHALxkuxwQCIyAjgnFJqtN22uIro1QS/UUpF5fL88sB3SqmO7rXMUJgxNRWDIZ9i9Y18Lrlf5rkK8JQbTTIYTE3FYDAYDO7D1FQMBoPB4DaMqBgMBoPBbRhRMRgMBoPbMKJiMBgMBrdhRMVgMBgMbuP/AV0TwObWCJV1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "energies = ['3.5-4.5 keV', '4.5-5.5 keV']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross[i].freq, lags[i], colors[i], label=energies[i])\n", + " plt.axvline(v_cuts[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cuts[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.ylim(None, 25)\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Power Spectral Models.html b/notebooks/Simulator/Power Spectral Models.html new file mode 100644 index 000000000..efdf285c4 --- /dev/null +++ b/notebooks/Simulator/Power Spectral Models.html @@ -0,0 +1,244 @@ + + + + + + + + Contents — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the pre-defined spectral models available for light curve simulation. Specifically, the notebook describes the meaning of different parameters that describe these models.

+
+
+

Setup

+

Import relevant stingray libraries.

+
+
[1]:
+
+
+
from stingray.simulator import simulator, models
+
+
+
+

Import pyplot from matplotlib for plotting light curves.

+
+
[2]:
+
+
+
from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+
+

Power Spectral Models

+

Currently, stingray has two spectral models namely generalized lorenzian function and smooth broken power law function. More models might be added in future, but, as explained in the rest of the section, Astropy models can be used to create most power spectral shapes one might be interested in.

+
+

Generalized Lorenzian Function

+

Apart from the frequencies, the lorenzian function needs the following parameters specified.

+
p: iterable
+p[0] = peak centeral frequency
+p[1] = FWHM of the peak (gamma)
+p[2] = peak value at x=x0
+p[3] = power coefficient [n]
+
+
+
+
+

Smooth Broken Power Law Model

+

Apart from the frequencies which need to be passed as a numpy array, smooth broken power law needs the following parameters specified.

+
p: iterable
+p[0] = normalization frequency
+p[1] = power law index for f --> zero
+p[2] = power law index for f --> infinity
+p[3] = break frequency
+
+
+
+
+
+

Light Curve Simulation

+

These models can be imported while simulating lightcurve(s).

+
+
[3]:
+
+
+
sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.2)
+
+
+
+
+
[4]:
+
+
+
lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[4]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f86b4348910>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Power_Spectral_Models_16_1.png +
+
+
+
[5]:
+
+
+
lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[5]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f86b44f96a0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Power_Spectral_Models_17_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Power Spectral Models.ipynb b/notebooks/Simulator/Power Spectral Models.ipynb new file mode 100644 index 000000000..747733347 --- /dev/null +++ b/notebooks/Simulator/Power Spectral Models.ipynb @@ -0,0 +1,229 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the pre-defined spectral models available for light curve simulation. Specifically, the notebook describes the meaning of different parameters that describe these models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import pyplot from matplotlib for plotting light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power Spectral Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Currently, stingray has two spectral models namely generalized lorenzian function and smooth broken power law function. More models might be added in future, but, as explained in the rest of the section, Astropy models can be used to create most power spectral shapes one might be interested in." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generalized Lorenzian Function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies, the lorenzian function needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = peak centeral frequency\n", + " p[1] = FWHM of the peak (gamma)\n", + " p[2] = peak value at x=x0\n", + " p[3] = power coefficient [n]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Smooth Broken Power Law Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies which need to be passed as a numpy array, smooth broken power law needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = normalization frequency\n", + " p[1] = power law index for f --> zero\n", + " p[2] = power law index for f --> infinity\n", + " p[3] = break frequency" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These models can be imported while simulating lightcurve(s)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACCY0lEQVR4nO29edwsR10u/lR3z8y7nH3JQvaEhBgChBASEATZCcpykaug3gv+uOaq4NWb6xLkCgii6P2pqCBcRFBUBMQtEmQLIYACSQhJyL7v28nJOTnnvMvMdHfdP6q+Vd+qrp7pmXfmnZk3/Xw+53Pememlurv6W08936WElBI1atSoUWP2EU26ATVq1KhRYzSoDXqNGjVqbBDUBr1GjRo1Nghqg16jRo0aGwS1Qa9Ro0aNDYJkUifetWuXPP744yd1+ho1atSYSXz3u999REq5O/TbxAz68ccfjyuuuGJSp69Ro0aNmYQQ4q6y32rJpUaNGjU2CGqDXqNGjRobBLVBr1GjRo0Ngtqg16hRo8YGQW3Qa9SoUWODoDboNWrUqLFBUBv0GjVq1NggqA16Rdy25xC+ddveSTejRo0aPfDIoTZu33No0s2YGGqDXhF/dslteNs/XjPpZtSoUaMHnv/7l+CFf3DppJsxMdQGvSI6WY5uNp2LgVx0zQP4oy/fPOlm1KgxcSx1skk3YaKoDXpF5LlElk+nQX/LJ6/EH198y6SbUaPGhsZDB1Zx5yNLk25GT0yslsusIc1zZPVyfTVqPG5xzu9cDAC4830/MuGWlKNm6BWR5Yql16hRY/rxeF0ruTboFZHlOfLHaSepUWPW0MnysR07HeOx14raoFdEJjG1GnqNGjVctNPxGd19y92xHXutqA16ReS5RG3Pa9SYDXTGaND3LrXHduy1ojboFZHmec3Qa9SYEZQx9Lv2LuH4Cy7C9+99bOBjNmNlLvce6qypbeNEJYMuhHi5EOImIcStQogLAr//kRDiKv3vZiHE/pG3dMLIc9Qaeo0aU4b9yx18+fqHCt+3u+F49K/c8DAA4B+uvHfgc21fbABQ2ajTir4GXQgRA/gggHMBnAbgDUKI0/g2Usr/KaU8Q0p5BoA/BfCPY2jrRJFJWRv0GjWmDOd94rv42U9cgUeXXNZcxtApUi2OxMDn2rHYAjD7DP1sALdKKW+XUnYAfArAq3ts/wYAfzeKxk0T0ilOLKoxu/jM5ffg05ffPelmzCzu2KsSffzIkzINPdXvcDKEQd/cUmk706yhV0ksOgrAPezzvQDOCW0ohDgOwAkAvlry+3kAzgOAY489dqCGThrkFJVSQojBO0ONGiH82j+o+kA/8czZeh+mHaUMXc+yoyEMOuHASjr0vuPGqJ2irwfwWSllUMCSUn5ESnmWlPKs3bt3j/jU4wWx82km6Y/XZIoaNajnE9dqp2ENnd7jeAhSRpni0yy9VjHo9wE4hn0+Wn8XwuuxAeUWgBv06X2YU9y0GjXGAjLL1PcbkTJpZZILvcfDMPRcTj+pq2LQLwdwshDiBCFEE8poX+hvJIQ4FcB2AN8abROnAzQ6T7OOXteaqfF4AxFt6vtJrL7oJ7kMo6HTqz/NM+G+Bl1KmQJ4K4AvArgBwGeklNcJId4thHgV2/T1AD4lp/lq14B8Bhj6NA82NWqME7nn7CyTXNI1RLnIGZBcKlVblFJ+HsDnve/e4X1+1+iaNX2gjjDNRnOaO1qNGuMEvZeNuLfkQoY/GkJD3yiSSw1Mzin6qg98Ez//N9+ttO00DzZrxX37V8aazl1jtlFVcsnWELaY60NOM3GqDXpFGIO+zkbzmnsfw79d+2ClbfMNau+W2ime876v4u3/9P1JN6XGlMJKLsqktbslBn0NYYuGoU8xcaoNekUYp+gUj87T3La14OCqivv9+i17JtySGtMGoeNcSBJtJlpyKSlxa8MWBz8XvV5TbM9rg14V+YQY+iDYqJJLV7+cxL42CjZo/MBEYMIRKQ69pJZLtganaD4DTtGN9YaMEemENPRBMM0dbS0gg97QtCrNcnz40tuwWvLSzgqmddHxWYTvsOwXtjhMtjftO82vWW3QK4KY+TTLGhuVoa9qPTTREQyf/e69eN+/3YgPXnLrJJsFAHjP567Hh75221D7jnNVnUGwf7mD4y+4CP969f2TbsrQ8BP/ygx6qgfRYd4UK7lM73tWG/SKyGbAIbJRDTrFFFNI2opm5qStTxL/cdteXHbH3qH2nZaonesfOAAA+Otv3TXhlgyPzAsrLo1yMSx78HdlUMklzXLsObi+hbxqg14Rk45DrzKQTDNzWAuIoZPkQjHE03C9UkrTN+7dt4w/vfgW3L7nUKV9p8WgU7GpLfONCbdkcJhM0dyVQ8oSi9biC8ul+38/vOdz1+OZ7/0KDrXXj3jUBr0iJp0pulrSQTk2KEE3106xw+TPmgaDnuXSaPy/8U/X4g++fHPlxRO6UyK5HFhRa2Ruma+UZziV8EtzpCX+Cfp6GPeFHTSq7fyv1zwAAOvq69lQBv2Bx1ZwxZ2PjuXYk660ttTu3yk2rOSiXwjS0MmhNQ32MJe2Tv5qR7UzZc8hyyXu278S3HecCxkPgse0Qd86gwyd4Cf9lPm6Mr1hFaP80IFVfIWthiQ9x2s/dPXzXc9i2xvKoL/4Dy7F6z48+tpgeS7NVG5SRmS503/aNg2MdRwok1wG1UHHMfWV0karGJbI6N8fX3wLnvO+r+KeR5cL+06L5PKIXrChlcQTbsnw8AlXmaQySNXU1334P/DfPnFFwZBXfc/I6b2eRGtDGfSlznimNny0H/fDuX3PIXzn9qKTbbnCtW1Uhk5TVnKK6v8GGsCuvHsfTn/nF/Gl66pl3VZFJiVSzfqoPZyh/8etjwAAHnhstbDvtEgu5LiblvYMg8w8A/pcZtDhbNcL9zy64mw7aC0Xup/rGRm3oQz6uMA7x7hZ8Av/4FL8xEe+Xfi+CkPfqAadpAlKLBLGKVr9GFffsx8A8O/awI4KuZRGrw35WWgQChnLaQlbfESvkTktM4ZBQHIG3Uo/2sVH5g2+VeDXcao6M6Tty/T8caA26BWwnga9DFU09I0ruRBDV68vvcSDXK9ZCGGE7QKUdusnnXGG3uiRij4tBvQRzdCnpT3DwK+1VKqhG6Nc/dg2oWg4P1otuUwZ1lNyKcPjW3JxE4tM6dMBLlcY3X2kTVNhi55WyvXbRkTZrcUTj4qhp1mO9/3bjYWV76uCfAuzLLn4MeJl78IwYYupN/MatAheLblMGbiTaz1ZMJ/aPa6dojpske4HlXQZ5EWxY8Bo71EmpXGKhjT0npLLiBjxJTftwYcvvQ3vuvC6ofY32ZUzbNAzj5mXvQv+doMce1CnqL//emBDGnRuCLtZjg99bW11P/jDX08SzDtCFYdv1ffxW7ftNaxyFkDPzn+RBnkW/tqTo0IuUXCK5gHJpZ9BX0uhLkqiGZZhU3s3hOTSxymaes7TKvB9I4M+qlpDXyP4w7zm3sfwe1+4Ed8ORI5UBX9B13O05QPJyoiconftXcIb/vzbuOSm2SlFS05RejFspMJAmguA0WvoksWhBzV0LbmECnFxA8of3b37lvGez11fWRagzYap8c33n0WDbnMSPMd0yaXQcxhkAM08Q14z9HVGSPNeS2U7/oL2eskeDISmrQW8U1bpE1U6GtU/qSLhTAuIofsv7SAvJdm6UZesVZmi5Q65XpIL/46/9L/0qavwF9+8A1ffu79SG+i88RAVBAHbbwZh+PuWOlPVh3yppUxS8WdTlY7ta+iDGvRaQ18bXEM4eGf1wV+2sofzH7c9gmf97sX4/PcfGPo8PtKcM7j+naLKNsR2Z8mBSqvP+IuMDOKcooUQxiK5ZK6R4D6XRkIMvXfYIn92g8pha6nxrc6t2zMAQ3/6e76Ml7//G0OdbxxQyX8yOEvi6KbubKoKigZ9sLZl67iU2IY06I7mna/doOcBxu/j6nse0//vH/o8hfOyJlcxRFWMdGcGDbrP0AfJ9iOIMdV/yVlxrtCqVhQ7HzKW/Lu1PA+zrJrH0KWUeO9F1+PGBw845/RLEdCsZdCom7sD2a+TQsaMOVA+k+6uYxw6odbQ1wg3blz9PyrJpexZ2kUYRndLQwNTL1Rj6BQxMny71oIX/cHXcP5nrhpoH4pyGWTq+9o/+3f80qe+Zz5byWWgU/eFlCyszUtuAXovica/W8u0nAYGn6A/cqiDP//GHfjpj15mvnvnhdfiOe/7Kg6sds13dB/5AHNwtYvr77cDwbQjy2Ul4kXv6TBx6MOuiVBLLmuE48SkULK1MPQKTtGxGPTAwNR7+/7bGIY+AYu+0slw254l/OOV9w20H8Wh+yWMe92TK+/ej3+5qrhgw6ivOsuVU1RN9932AbZC5Gpg0WInymUNs3KawfiSS4hJXqqd4VRhEWCSC+tAP/XR7+AVf/KNoX0Ojy138bWbHh5q30HAy+dWSQC0jvXq1zVMHHpWwWaMAxvSoKeBB7smDV0WBwgf9DKQZupj31IHtzx0cLDzDpihWklymUDBIML37t431H7tdO2SCz3+0Wvo1L/CBp3+DNXn5lPxtQywKzqk1Y9ysVKM/c6GURb7Fh9grrlXSYjD9pO3/t2VeNPHL8feQ+uzwIMaVN3PIXSzwSWX3CMQg8yEgXI9fxzYkAad33DJXrhhwV+8Um1OO1uaJQz9lR/4Jl7yR1/veR6fDWWB6+i1T5WORi/tJBYovvxOZdCP37kw0H4+q+rnnAoZT1M2dcQcnW6jYoj2b/u7+rsdYOh+mV2zj/6/6rqXfuKVOX5W1NZDUTe0W0jnH/a9uXPvEoBqJStGgVzKSsTLhi1WP3YmpXNvq+y7wvJG1nOVsw1p0N3pjvo/XYOnOXeMZnibfpLLvfvCNbE5Us8Q5AGm56MKK+GYpFN0zyEV1pkMKEtxo6n+p+/D17B/uVv4ju7t2Bh6npv2hKbboUEmH3AwLsNKJ9fncPs49UnO0EkCcmPgNUMPhVYG3psqZICITdnKQaNGlnv3syyxaAiGrvR5+7nKvqvs/tYMfY0ISRWjcoqWj/zVNPReL4Mf9RCSjnxkAxoFI7msvz03s5hBs3Z9KaOfU3Tfsq1p4hvZkcehGx8Nk1wCTDHI0LnksoaXntZY9Rk29XkuxTQDmavmHdH7P8YGxG6AtVcxUE1dW33ci3hYDT13jDi18Zzf+Qpe+2f/br73yzRUge9wrbIvZ+jrSZ5md82pHghLLqNxipaN/J0AGwqhm0k0S3R2x6BL38lT0rYKnv3QOSax2DU9g5CDsBd8g96vRCovUrXcybDYSixDH6zJPSGl1W3TLLfLnwWiokKGbdBnV4bVUoNOfbIouYSyVKkP37PPhiOGiFCVd4kGjvVafi3LPSKn/37oQBsPHbA6/jCp/75BrzIW8OuuGfoaEZJcRpZYVDqVK7KzEHpNQdtObY/wwORjUMmFzjGJQl7dvD9Dl1IWfqfL8teNLFPR9i1ZhkmZsf4iwqMAP1bKnHKhqKjQNWcBwx/C9fcfwN9fcU/p78QGfcmEPvPoFypBvOr0NTuLzXOJR5gjM5jhmva/iS1t0FfGbNAl6xu8+4feQ554NAihyaXrcB1kJjzoudaKDWnQQ9OjtQT3V4k2Md7zPg+v1xTUl1xC55VS4qJrHiiUbO3VttD5JxG2SNP3Xgb94/9+J079zS84RqVMcinzizzKJBeKt6bnP8qr5vcwzaxTLiTRhZ57PymPrvMVf/IN/OpnryltR6nkQmta8igX0rbZM8ilNfodNtMAhl+Ygwx6lbLPawEvh+vOeIrbDruuQUGfr7ArJ2BTx9CFEC8XQtwkhLhVCHFByTY/LoS4XghxnRDik6Nt5mAIac/9OuGhdor3/duN4QiJCvoZdfx+D6+XMetkTHcrkVz+4cr78JZPXolPXnZ3oT2DxKFPUnJJc1k6Y/rb79wFAEGDTgY8JG1w7GOSC8Vbm5VqRnjd/N538zxYbZFe7NBz75ff4M/KytpeLrloDT0gubQ98tBi2jqXWYaWXPR5VsZs0Hl2Lt3/RiyC7+mwVVPTPB/YKcpv0VSl/gshYgAfBHAugNMAvEEIcZq3zckA3gbgOVLKJwP45dE3tTpCI3E/hn7ZHXvx4Utvw7X3FbPjQhKOj07FhIVeDJ1ry9LXBPV1UCw7Oa4G7Wg2yqXvpiMHH1TLBjZidI7Gm7v/9yu4xp2iJLmkZp/RXbgjuWTStI/PHGyUS2+GHnp2fldaKimGZQx65hv0ol+HJBdqDw0acw3lxOyk/Rl6lXvYahQZ+mo3w+s+9B+4aoTlMXioKLW7EUfB9zBU46kXTLkIj6FXIfdVbMY4UIWhnw3gVinl7VLKDoBPAXi1t83PAviglHIfAEgpx58i1gPOg6uooXfScoNcpThX1xjKPga9h0PQTwXPAp3oMc0455vqBcz7GIXiOcK1xceBGx88gPM+cYUxzvwZkEzwx1+5BdewqoJLevUcWkWHt7XA0EueKT8PSS79WP0wcApqMYYeepn7hS3263eAe084yiQX66gvMnRbY159P8dKFPABKRjKWEG+NAydDdw3PHAAV9y1D+/8l2v77l8V/J7T7WzEUXA2w6+rSvfn+rwccDCQzrOdIoYO4CgA3CNzr/6O4xQApwgh/l0I8W0hxMtDBxJCnCeEuEIIccWePeOrxx0KG+vXCY0cEOjAoUSRsv3X4hStoqHv1XICGfaho1zWwaD/yt9fjS9d/5ApDsVnSTSw/dFXbsarPmDDysgA8IQU+9KqzyGtmoN/fWCMDJ3fb66hhyS6UGRPmbPdOFe9Z7Q0oEGnaxU9JBc6RxlDD81sKzF0HbbI6/jTPWjpc40CPOKJM/RQ3xiUodv9Bg9bdPwr06ahV0AC4GQAPwzgDQD+XAixzd9ISvkRKeVZUsqzdu/ePaJTFxEywP0ZerkGPkjRn7U4Rdte5EHoJb9HV7jbH5BcJp1Y9OR3fAEf/cbt5jMZg9gs8uBKLqHBkQbeJYehQ7fZvcdl5V7zXGLzXOIcJxuDQee3MM1zy+gCafWh8/aLcvGJ3aGSrMt+iUU8NcJKLu5MrcUMOn8HhpVcaJlALrnQOUmvHwX4akJkRBuxCBKrYTX0LJcD7zvoezkqVLmz9wE4hn0+Wn/HcS+AC6WUXSnlHQBuhjLwE0HIUdgvU9Qw7OBUrb9BJw2932hcOcpF+pmi6u+79mqDHmDovZjDVffsh5SSJRaNtpNJKbHUyfDbF91QaI+NoJBGz13pZoUXgxt4R3JhLIy3veyZcieflVpoBja66+btbXvPjrdFnX9wKc9/nodWwwy9k5Zo6FpG5JJLYqJcSENX35Ohz6V7j8KSS3+DTtfmGnTN0JMRMnRHcrEMvZ/kUsU5Trctzf049P77TmqVsyoG/XIAJwshThBCNAG8HsCF3jb/DMXOIYTYBSXB3I4JISRVdPrEzvaKUqkS7mQYT18NvVccuptd5rMCKaWZXu/Xjr8qUS5fuf4hvOaD/45PX34Pq+XSs5kDI3TZdN9oJZ1ulmPLfAOAmn77Hf0xVgGQr4ZTTCxS35cZ50xKIy34y9Z11/ByXXLjwzjhbRcVdHmgvLa5dcr3CVsM9TtvQCzT0GnfMg2dSy4m6sZj6HSOXEpH8w3d437vEmCvbcVzigLAXGP0FUl5LZ0QQ1elNOzngSQXafX5JBJOX79v/0rYATutkouUMgXwVgBfBHADgM9IKa8TQrxbCPEqvdkXAewVQlwP4BIAvyqlHH4RzzUiJLn0Y+g2SqX31Ljs2bS75QMCx2pFhi5lsbYLb0dIcinrpLc/cggAcOvDh4Zasegd/3ItLr7hoZ7b9HLq8RLGJIUohu7u88ghG51yyNHQ1f+27nhv+STPJRLNOC2DK/eRcHz79r1OrXCOD1xyK6QEbn7woNMuoIdB7zH49JtdUd9N+hj0tMSgh6JcqD3UX6mpdA6/3w0rudAz4k5ROufcCDV0I3PlPGwxgpQuk/advbmUSLMcf3LxLU6Yawj82HFkQyLv27+C57zvq/iTi28J7hP6e9yoNFRKKT8vpTxFSnmSlPK9+rt3SCkv1H9LKeX5UsrTpJRPkVJ+apyNLmmj+Tt0M/t1wqoMvezhmFV1+jlFe8Whe0bBl1x42yg0LzS1e+jAqpP+TpceR2Jgg95OM3ziW3fhzX91BQDg2vseK6x4Q+3zQe0lY9bNJDa3iKEXDToPZVwKSC5+rZReTtFYCMSRsIbca0sIB1a7eP1Hvo1f+Jsrg78n3oLPZZJLKGEo1NZ+DJ3sD0WMlDlFDUMvDVu0Ft1PdAoz9LUbdLo2LrnQrGstGvqeg2286eOXmRkqd0Rzpyjg3tN2mhfW6P3Xa+7HH375Znzgklt7njOX0hn4qD9SCPHXbykGeIyqrMOg2DCZomV6JH3dN8rFW1meo0oVN2IiWWj/PPziF9rghy16MwP+2cahFzvOOb9zMc58z5cL7Y8iEYxyeee/XIvjL7go2CZywi7qMMkf/dNv4jnv+2phu14DITc4xNBXu1mho5cadM8o5n2McyYloogMutuWUPVA//x8yTYOv7BVGUMP1f4JzRD71QiifkyzjRBDl2yg9yOjbGIRO6cx6LrkLhvs1fHcZ9lJc+xf7uDSm63RqhK2SOdZ6do2L3XIKTo8Q7/u/sfwtZv2mNWUMtYnfH8Av452Ny+Uo77hAWWQdyw2nXMstVMcf8FFrE6PJVdxJMz3t+9RJYI3tYolsabZKToTSEtejl5RBhydHgy9SrXFXgydM6dho1w4Q98638DBdopuVi2DjWvZIYP+V9+6q7RNdzyiDPoxO3rXMK8iubgaelaI4uChfYcCUS5SqmdLx+tkedBBledSMXRRZOi9+gEdqqwOuV9LnD9resZJJEoWWJGFtpZJeVSznbann0IGnfZbaNooFdMmk/pvr4feDSu5kKGKzLm5LJXmEu+96Aa88WOX4WbNSId1ilL717KoFx33UDv1Viazz4OeE+/j7TRz5NRcWoa9e3PLOcc3PMadcQ09jsx5bnn4oD52b5l2qjT0WUGZLFI1U9Su5KP+v/Xhg6YUQF8mldspWciwuQa9XHLhzCfL4TEKe+yt2igut7PS6+YwDF3w6yxtBm556KDp7Hc+oljI0dvXYNDJmKacoeeFAYjfmxBDB4ozF5KmHnxs1fkujgQSztCz/v2AjltWMdOXXHhfIOPZiCOvvcXj88/E+oNhdp7eHZJciPmHDHoolJb+9MMWk4hFuZRILrR8Xcig3/PoMl73of/AwwdWnWu99aFDOP6Ci/CFax/ActvNCRgGJqy1k3rRRLY/lUkuvNm5lLh1j/It+e/0pTc/4nzmcehcQ7/lIbX//X0kyPUshLdhDHpZGrWVXPpo6Kk7rf/sd+/Dhy+9De+68Pq+TlFHKglswLNDe2WK+scpMnT1O03xVlM3lrvsPaEO60guQc1WffeSP/q6WV2JVp7ZMte70nKvKA2joecSm1tMcvHkImLoOxabwcQi2s6PIHj/xbfgWb97sXmxcikRCYE4DjH08pcrtMIPR8OTXPh7SgayEYvS2aJvyDIpjT4efB5SsXo6dihske47ZQ63WT2gkF+oqKGr7+mafQ29k+ZmMP/mrY84x+X4yNdvxxV37cNnr7zXaddBbcT/5ar7jaN7FIXyDgXIDN1DE4LJmuknTGW5xD2Pqv7iD6bfv2+/e04pnYGPDvPQQTV4PXRgtdD/nT66josPbBiDXjbFGdQpal4Q7Ym/8q59fSWX0GIBHFUlF/84nFlzDX0TRYp03FjuMibAX9pei0SHYo6plnQ/VhUshsTq20ipCnJRhIMfZ3+onRrZaudisyC5NFlcue+0u1QvRvyQZoe5VIktsRBMXybj1uP+564Tcf9yB2/82GW4VU+tm7GvoRcZejOJjDTkb+Pfw5Qz9BKDnrLZH92Tx1a6JsSTBqhN5GzucIbuzpCA4pJ4fiSNr6GnuSUSdH87WfF4qybDN8zC40iU/jYIqC1L7bQQsltwinpO67JELn8w9Q0wn4EnsbCLpjBn/yPe2qm8m01b6v9MIFQQCeBhi707kU39dwcACS/tN3AczvrCcbu2bb2rLfphVfpl09N4+ryZMfQqkguPZ/an2hyh2QN1xn7RO0GnqLn3uTbqNiNRSveYS+3UDHY7CgZdohFZR5czdc6tRszj1SnKxXeo9mJLNlVefb7pwYO49OY9eNn7vwGASy4BDZ1JLvw3h2h4A2aeS8MmyxKLOAGg/vG03/oSnvZbX3KOv03LcAfb3cL2IYJDceimb8Rk0JWGbgavNC8MDHwVIyOtaPmCZAi/fyWRMMXF1mLg6HxL7bQwg6WPQcnFmxH2ikLx286TlpIosvKqtBnJvCAc/UaoNfQhUJb8YxJK+iyF1fEYOp+u0jEiETaa/EUNMl927p4MPXU7mdEEI+E4SV2G3t+gW6bfW3Lh03WCYbh9po3hzDxrCMgotEqY9rsuvM4MdkdunTMvCK0KRHKHX1cjzXOjedPhchbl4i8w3Wum5ksuNFBkucRyJzVtIIbqhC1mnkEPMPRuJnHZHY/iQ1+7zWxD24eduy4BCLWdiMz2RWXQuSxjC8a5zkDAJvzQ51i4Gjovp+sP6pw8pVrquEnH5pPj1B844ygaDUPXx1VOUfu9G4fuDvBAkaGX+TnoWP5nc58YSchy25/9MWrQonmjwoYx6O76jPZ7E2XQl6HTdmpnbuCpQyuHV3Ffp0piyFAyZx//+959y6UvrJJY1N+NJEKe2xdhsWWTc5ypo9dxyEgYDZ07RUPX0WOZtGEYug3ZsyUHuEHnh/zS9Q9h75Kath61fR4HV1PlkPZYV5oXnaIUcseNt4lD9xl6j37gJ+L4IYDEWjue/gzY2Y1h3Mag222yXOLH/++38HtfuNF8bpoBoNiezGPooZWCDENfUKF3B7lBD5SzoGdC0Sf02Uou6v4msUAzjtDJ7GBsE7rc+//wwTaWOxm2zCW4W4e5Bhn6CDR0en5Lbd8p6iYW8W2BkEG3x/TJiN9FuPyZ6LBFdZ/yYEQNPwYnFeuBDWPQy2SR6sW53DjyrmPQ1TZNL4KB4Hfw4rHDDP25v3cJfvYTV7DjuJILDSRqmmcNGUkufmytf247VVafhQhHaITaSfAZbhmCMxfG0GkW00wiCFEMywRshcUjt84DUGuD0v1ushfH16WJSdOgQQxdRbm47efOMx/+ghD+wOEXtnKchz5DD0gufh/kJQrKlkzjiWihGHp6PiS5cKkqpKHb+HAdh84Mj/pd3dM4ipSDl2VYmnBRL4nq/seUc/GE3ZuQSx1a6t3jOBZY7rqF0oZBZjT0otxoNPSk6GhuM3kyEr1XFPLbx0kEj9fnM6yCTMNmC/x4h9op3nXhdbj8zkcHuu6q2DAGvcxx6UdalIE6v6+1coaeeA/HnLsPQ3cMetdlRt+4xYZI+UzfOnmEftHcKBc/fd7vVHZarV/iTl66LdB7IeN+L2GvaWXKJJdGHKn4cCkLRmy5k6KZRCYueO+hjnMP6FipN4ASozY1vnMlIUQsJtwJxSvRcM1zJIbuRCrkJlZ71YvhBlynKGCJQZlTlJ5vM2B8aJcsd59Jr4qN24mhM4Me1ND1nyR/+JmiUkpkmUQSCTSSSEsuRAKK7chyiQf2K2fpMdvnzfn8/pIwptqvDEcv0LUc8p2ikiUWBap7dlI3rNFh6AHNnIMnLSXMgPNB3t+HBowmi1sH1H3/y/+400hTo8aGMehlzkH6s98SdP701JFcpJrW8yk8R1/JhXesHlUZ/WxDevliT0NfZKF/fskDfn6TvUrTbJa112/g8bfzt3/Txy9zCmj1ju/Ozf1txBEiHR9ORuxZJ+4AoDIJ55IIuzYp4/TIobazaAGgDKU/KyFGzZO7oshN0+5XcAooLgjhhxzaCBGX3QLlTtHcGxT49r0MAu3bZgNFSHIxyWYL2inK6tCEJBdzDWmONMsLBj2XasBTcfyu5BLyQ2S5NOGilHxG7wxHHAlnxjYs6NkVnKIOASL9nzN0WxaYVjQSAWkNCBn4cLw+n2GVDQrNxK3Nbt6DaDymd8MYdJ+1EWyaeD/JxWUzXYehqw4ZCRF0XlWVXDa3EiPthFiKr6FT20nqobZtYgWu+GVluXsMMriWoRdjux0Wk+WF+1QmVXztpj34OkvA6MnQM8kkCWGmvHQ4eimW2ylajRi7NimG/sihjsOqABTCHVNm0EnHJiMfOWGL7JpK2mqdovbY/D6YCJFuMVLIGnTXQPPzuppu5kzZS6Nc9Lk2t5LCzCJl7HmxmSCJhOsU7RHlAgDLrISx0dDBNXSBLusTocViMi25LDZj7NCzhG6eFwZNxdDzwv6DgjN0h8SxGV8SW4cuod21CYIUekjZBiEnqPNZysDA582wJPCFax8w4Yt8cMkC9oHKOYwaG8aglzN0Ykq9mYFlM7rTMQOf5bmawosKkkvgxSQDsHku6bmQhvOiMAOexAKSXZeRXDpFyYUflxg6vVw8DZuOxavhddK8UA3SKX7kXVszsZ2yl7MxYzKJkVyYgTTFpzoZ5hoRdm4iyaVdiFzI8qLfgJgWLwkbRwJJHGbofsTOfftX8JZPXmn055CGnjLWGSpwVtDQjUwhjbHkRo7KB5NBKCthQOdabCUFyWW5mxlikMQCm+cS1ykaWFaR95fltp3hWSlBXStJLkpDt9cCuIYyzXM8sH8VR26btxUuM1kY4OMoquyP6QWjoXf8OHTJZI5ALRePoefSllSg43zumvvx2Eo3wLbz4sAnXQ39wEoXP/c3V+KNH7vM/E7n4v2V3nEaGEaN3ul/U4zVboYL/uEaPO2YbXjTDx5fKI1p/7b7dLMccRQuDGSiXDynaM4YOi/2xNFPcqHynIdtmbO6ZsnSXpRExMPzKPaV9iGD3k7zQqfm4ZnEyOla3Brj7jbqeFmhGqTrS/AMemzvZa+XVGnoruSSSxTY93InxVwSY7EZo5VE2LvUMbqtNZS+FJIXJJdcUpSLne76yTIcv/256/Fv1z5oDIIf167Om5vz+utxAkxDD4QtNpMIaSdzGHY7zVynaKBf5dIOHptaiVNBE1AG2eQqRAKb5hLHKeqH4gJueJ0yiupvh3lmEkkUAVAx6PxagICG/tgKjtw6Zweu3LJXu0JWbq5/FBp62Cmq/vZr7vA2AVrXzq0unuYStz58EG/95PfwiqccEWDsdsCl+5TpGaZfCOwOXSqDjHgzcRespmunNo4aM8vQ79y7hH++6n781r9ejz2H2qUMvVeUAUeZhk6rlViDHpJKyBCEDdujSx1EQhUBsiUGisfppLmpRMejWhpJ5Gjoc40YcSQUQ3ckF+kYDWLkbWPQi5IL/y7E0LlT1GcuoSp+BF/bdyUXUbg+QBmoViOCEAI7F5vYG5Bc0gBDt05ReoaqzEEswk7dTpbjPZ+73kyP6XB+dUJ/EKDzrnpZlgBP/XcNeiYtC089TTfLWdhiieRCg8emuaTQZ5Y7qWljHAlsbjVKwxa/dN2D+MK1DzrPic/wDGOUFOUi0Igjp4648cWwPpPmEvuWu9ix2DROYxr8eRVCPjCsjaGrfQtOUdY/TYkGr9idIUixcPbNc2kyb+/bH07j9xl66s3I/IRE3m+dfsQG4HFgZg26v+Cwr6cRnPAkto9f17uoodtOnBonkQjGb9PDnW/EYYO+3MG2hSbmGnFfhk6ruajz2ofPa7kkscBcEhVqiqeedklyCnXsoOTiLRFWYOjsJfSZLZ+Z+NfT8dhRlzHYWIcTGhZjJBfF0AGVUdphTrsGS+DIcruPMrTqPKssgigSamZjIitY+756w0P4i2/egXfo1eepuiHdk6BTNLMMMBi2SBp6YttFx2gldjAiUJ8NhdgRcinN89k63yg4rZc7lqU24gib5hLHKUq/pXmO8/76u/i5v/mucfADbvp8whh6mudKQ/clF91EvrJUpo3h1vmGkVxo0KWCYfSdPwseBrRvJ82d6pwyMONzM6/tM/GNbJZLHFhRA2HDW5GIfrcDn3tsvxyEHxbcjF0SyNswDsys5FLQN51pZdi4c4b+o3/6TQCKNX/pl59XqLZonKLSl1zKnZlzZQZ9qYPtCw2VqNFjgYluJnWtE6XjkWGKhdCGzL588824ELbItWrAGmu6Np7EZDV0NkVP80LoIl/P0zc6/MXMvUHUXazDvsxJHBmGbjRPrcUvtzNT64WcaNbo61A0LX00YoFOptm/NrCGoWujFUWuU5dK29JLteqtq9krsYhf/6q32g9gpZFQYlGYoWcuQ8/5/aNzWpls63yjUIJ3hWnocSSwZS7BA6zqZGh2kkvly9m/3MVyJzMRUxHLFM00Q4+ECDr8abUsumcHVrVBj+y1Z5nE5rmGvd5uXjjOMODvH60sFQk3P8HIIFn4+SVsoRdA9Ze9Ws6iCBj3nLIw8HGfEODalr/9zl2mbxQkl8w+r3Fgdhm6d5P45wOrKX7vCzdqBmv3CWWL7jnYxn37VwoRAW5iUW4yD7903UM4/oKLzMIPgA1FnEui4NT50aUOdi620Ewi05HKVoIhg5ZLa5iEcB2ecSTQSuJCCdrUk1wMQ/ckFxVlordhsentNC/UmilbPAEoJpjY63AzHHm7KMoll0XNc6mTGjabaBZF7UyoXrd2zvKiVtQOvq5rJFTYHc8U9VfKoTZTy+n6RB+nKDlf/SXOgKKGnuXSyGicoZNTNJSmTsilNItCbJtvmJo4BM7Qk0hgU8t1ilqG7pIdkkK4Y5FniqaZREMnFnVSG3JK179/pWOS2x5b7kJKNeCYjF19rxZalqGvlvSVQeG855pVU62jXho6lyybOr6e35O9Wn7z5RiAHK7qb6p5Y3xCpkSC3eft/3RtIUSSYIlN7RR10Iuh/8U370CWS2xfaDgvXdd78Qmr3awQa+vWlbZRE/Sgrr53v4m7TSsw9BN2LaIZC5uR6m13/qevwo0PHsSpR2w2v+eMKXGDmkQR5puxs0gEOXo4KyEDTtdCjH2uEZuXkztKfYYupWU1oSgX/6Xg3zsMPbOSS4NLLt70M5coMHSue9I2ee4ZdDMDsfolzah4tcVWI8ZSx5ZLKKuyZxi6r9H2Yuhde320PbWlGZcz9LI4ZmpfO1WOchXlIh3DsdJJTbGzWM/a+IBM7eOHznJizitOPf04LjL0ViPCvqWOjYBhDH3npiYOtlPDbLfMN8ygSw7KxaY1L+7scHinKH9viKFTOr5fxoATOLou+t1h74yhh3xFfvlcwBrmhmfgCe1uBiHUc1npcltVO0WDcAoEZa6+Szf9vn0rnuFX+3ANEFBMtutp6Px4nTTXBsLeLv4A6e9WqUFXTiPFDGgG4G73j9+7zxwDsIxcZTwWGfp8w5VcVJq2dNpFRpVmEGS8udbPmVMncw06181D6dxlCyN3vePwTNFmQpKLNWJNxpxbDWLoArx0rNF4c5ehK33eZc6ZZNUW2fNsxj5DdyUXmtGEwxat/NP2KhXSvePXwlP/m56uro6RezMNFJBLxaIXm4nZjg/AS+3MhGAmUYRWEheen4/lTmrY9TKPchGMoWsNnfqYGRSlKuFwcDU1oaUUeeMw9EzNahc5Q2cGfS21Tfh7c0C/x7SoiN+f/HBivqKRr6Hv1QuUH1xNC/ctz93iXKodYQ2doAZi4SS3AXDe4XFgZg26Y0Dy3Bn16WapxBS7D3WGx5Y9g97JmLOyKIm0U+sUNcdK+cusJZdGUX/Lc4l9yx1j0EOhZBxziWVsWa5qktioEO0UjQTmGq5TtKG1Omd6Ld3ZxjJj6PRb249D77oRDLRdKJ3bd3zy7/3QNjds0Q3L5GyF5ImGdmjatRwti3e159y0w5ZVULKJn53YTFw2bLuM+kzlXctqudBnf/k2unf8WuhZ5RJO5UICrakaYuj0FzlF55uxYYLOosvM2BKjDvlJOPYtd01impqtuAZGwka5GIOe2YGPyNBOvQ7nXmbQHQ09lw5DX/EiY4YFf89Jy29pqdNfgq5YG8kafCcvIZemMJyKQ/fP2V9D9zPRV7tZIXTW2a/OFHXh3yT+mTr9noNt50WhBxxi6IXyuR5zjYQ7qroRHlpySYoMnUb87QtNNOPYdPayeiJmAYjcSgdCM1rqDHEkMGcYutqvGUc6yqUYeUIyD7G3hSYz6N4alD6z5gbRb7JTqsC5z7Kgr9O9TyJha7nQC8b0RDJ+yhjnzgyEzqMkl9hcI51rlWWKxhE5k+2ARMc2iUH62NT0ZV0czI96of1pO9pfBgx60zhF7X2hWVcoAim0wAVfHGNJOy5JzuAGfaWTOpFPxNBNlc2AjPPYShdzjQhJJByG7kS56Dj0uWaMlY4bOUWMfKcuz/CoNoRb5xtWX9Za/yILW1zpM9BUBX/PH9UllucaMfLcSkzWyLJB0pdcnMEahqHv9+qaU3t9YuHPyPxZRzvN1SIrkdePMvu8xoGZNeg82y/NcocBEO7dt+xpu+rv/R5DP9ROnSQDwO0MnTRDEkUuQw9ILiGGTgsObJ6z02Z/OSwOClskiUNlqLpOHTMd7mQOy81yV2OlKfKyd2+U1q/+5gbcTyzKvNhhX0On1dH/7Gu3uk7R1GfoeU/JhTN0usdJrCIs/KluHnCKto1BZ5JLpJagS3VUTMocznSNvlOUGHrKDGroXnRSOxNQ7bcLh/B4eWpfKJKFBo9GVJwN5Mwgr3RSzDdiG6vPJBfuFFWOctfYlPWxSAgsNGMstYtx6DQDSjRDX2WRNAAz6ItFycVh6FKavgzYZ0MD9bCgtgHW+LZ0noa/BJ2/EId9f6LC/SaSdyC0zJ/kZSo8p2iJ5LLazdQyiJGbXd712jhqzKxBT72bFHoQDx5Y9SQXddP3ewydvOUAY+hZbjq5Gm2Fw9D5iNw1kktcMHq8Ch89xI5n8DjmmIaeSy65uPrbYitxXmgqAuQb0pe+/+tOKBugNPTcGCc7GPmJRTyqwl+cGVDTdwD40CW3FZyizipOBclFmAxcajuBWB4NUCHHqYpDtxEVJmyRRZ+Qfqmm00p6O3zLnN5OyyFk0I2D2K2EWZZYZGvK0wzDVu/j8fKqvWyxCGbIaPBIYltOmGD1d6WTL7Zic70rDkN3M0Wp74SqQXJEQm2r6s27zJM09DigoQPWgO9YbDqffQ09z9W10bVTm+Yb8drqoWfSLJK+b0lLLo0oSBD87PGcPS9fQw8VpuO/86xtaoc6llu6mdBOWbkQx7mutotrycWFq2/mJqGCL2ZMbIOQGobuTqu4BMMzvuaY9hlHLpO86p79uF0vu9UrDt2Gs8V2yp+5acvcGLaYUy3PVcSFDfOznWq+GWOZRWxQ3WV3KT7g9j1LhXs314wLDr5NrYZyinpTY4ehe9dGJVj9xQN6a+iiUMuF31fSFuNIFYbyNV56Mbke7ke5UJQGSTu0FuZR25RBL2Pofpifr6H7g6CNoy/OMOg58MQiHotNhpmkIW5g6JlKKbHczTDftJLLEjPopMMDrvHkiU8h5xtJdqvdnIWF2holVMtlvqn6M5/h7S1ILh0kkWL8PMIn1aG+FItODH2u4RrTQZHmuTXohqHHzvsRqrZI16XulSg4TLtZXpq9yXMmEo+hm0JgXiXMVR3l4jtFu2wAHgdm1qBzw9XNVKbXplbivFyAO3LSQzjgM/RAdl03y81K6irKJXJejou+/wBe+AeXmm1NJqlv0BlDbya2o/lhUwTD0DUjjAXT0DlDb8ZaA+0huZTp9IldqKOd5mjEysna9jT0bh+DTnVDOplr0LtetE2a89T/yMTV85rRBLrHDT/Kha15meUsttvR0K0hM9PdzBr0J2ybN9dM91gd070/JuTQYeg2yiWX0CGVMNdEaHmaKpeHuI68bAx6VCjLzO/5cjvFYjMsuXD2zBk6rzoZmtoLodrJneqRp6HH7Hi8giO9K2RUD6ykWGjGxgkN6OQvqZ7l//0vz8ATD9tkrr0V8DP5KFuAhK6JnMTcKcoZum90aT9u8PkpMt2HaNbhIw1If77k4stIK91MJ7e5g7XvTB01ZtegZ+5NOrDaxZa5xEQoEEJad1FyYQw9z/UK9dK+IGmOWJSPqt1MvTihBTBCBr2T5oUpH4Fn7OW5klwE7JJXADQjUpKLn8DgL8XnJ9MAKjSSs81WomYPfmIRrz3ur+UJuIsp+Bm5zsCSedUWdSkDE5XAqjaSAUqiKBhdQBmzZjk4ZlhtHQ1Ygy4lHjqgHHe+QQ/VLFf3LSC5ZO6AxmclrQY36G4SUS4RDjnUf1O/CpVYzaUy/PNNK7ksOwzdRndxDd0uBI5CqKY6J0kuPaoIRhHmdf/nAxHNLCg5iUuTdAzq83Ek8IzjtuPo7fOmX7UaUU8NfbWb4cTf+Dz+9OJbgr+nuUQSR1hsJYahU9QWXUso7p+c6UDRmGZ6lseduBxcrimLQ/clm3ZXhS1yx7xqf+0UDcKPET6w0sUWpuMRKIYcsA/hNi2VELj+zmOmyaB3TRx6mUFXawuGyuvyDEKqTthJ3WiU0MruZMwosciPQ6cYX5I9SBd0JZccJ+7e5LSnmUS6Jo2VXNRgE6OT5k5Fv06WO85iurYP/dSZ2L7QwKFVPhAyg+47RfWUliKFyCcQklxoCptoyYXLTHQsHoLoFxejexdHMA6phw6sQgi1+DTgMnm+H28v4DlFvQGNr4DDjSYZd17ToxVoKzlFY+1TcCUXe/5lHYcejHLxGLqvV6v7VKwuqjR0l6FzSSvNpdLQmxHbB875yfjx9ysOGHTVNsuI55LeGvpnrrgHAPC337k7+LuKwBFYbCbmvZlruEs0hsMWeR0V9z3OtSRI77uPLC8ydHrPDEnznaJpZvxumVSE85+/d19dnKsMfqq5YuiNAkNXDNROix5d6uDbtz/qbONr6PSwiKF0smIcOgcZ9NCKRqVOUdZ+Z6FokgOkKjoV6cQiKcGSSATmdYwvTYepZoQf5QIALzz1MJxzwg4AQItqqVCUS1fdH9Lg9xxsF9pOx6LjzTdjNJPIKdXqrt9Y1NA7mV1QN9KGNmQQeZRLlkvHRwAUU/9XTOw4M6LSrimaaoO+c7Fl2LNfz9x/GbnkQfDj8Plgx41m05uCu221z9kydGGKr5nzM4O+1MmUPm0qUtp7zjV0LpG0WV340Awtioohji5Dz02Ui7kuNssQwn03qFQCDTptz6BzA0oaupQSf/Tlm3Hrwy65oiUZn3L01kK7AXVf40g4lRxbSayXifNYs5fJnEtVO79gI/QsjxcT48gkCvfJL5dcCFvs5mYZxCxX5QB++dNX4Zp796vjTFJyEUK8XAhxkxDiViHEBYHf3ySE2COEuEr/+2+jb6oLd0mxHAdWUmyZT0wn4lPyFpM6Lr35YWS5xAtPPczsf1AbdCp/Sw6OeaZJ+pmiHN1USS6k2XLQg29xySXLnPbzF52X36TiXCLE0HXnI01TRbm4zD/LYQpZ0RSvmUSII5Z0pO8Pre7zMDfomX0xuQYZR6oS36FA3RBqE+/wlM1JBp3K2pqwv4BTMYkjHbZI57RRLuqaXMa62LKLh+RSspdJGfTDt7RY1FIfhh4w6Koeut3GZegsjp4xdCnVgJREESLhOjQdp6iXfMIlpE6aY6GZGCNFx1hoUkihncH4DJ07jzkiAcvQ9TXZxKKihg5YKWm5k6GVRKY/dbLcZJkWGLr3PWBnvXuXOvjji2/BT3/0O07baN+ldjFqDbBhizwLVYUt2tj/ssQicvb6Bp18DqUGPc8L/dCvmljMFM1sYT0p8bD245BTeWIMXQgRA/gggHMBnAbgDUKI0wKbflpKeYb+99ERt7OAYtiiYuj0rGiNRV5jPM1tiu/Jh1kpgozifCNGyjIP6eVUDD0qZ+h57ix+DKiOd/feZScBwWroLpN2ZAMjudjEIrX0nY1aEEJp6ICdXVA6P49zpdV9+GBEceBkrNrd3MoweY49B9vYrCOFKBqE6sRwg96II1dDdwy6rdPdaqisvDTPjVEyma8hpyiTXLgjkie+cOZJ+u6mVqJZszROUXJSH2qn2DyXGCPEJQn1PCoydMaiHQ3dYejWWUu7U6GwFUdDt05RX0On2c6hNg1WNoKEjrF5LnGyOEMMnfsaOGxxNyu58Fo5qR4w5xuu0QRUGGUrie0AIK0ck3gDpmXotg1GxqTsXq+uEn1/qMSgUxbrQpMzdDf1369RTtdFRdv813jFRODY6+XbqAgn9xqLxbkCGrqWXNIsL8zSJukUPRvArVLK26WUHQCfAvDqsbRmADjsKbMa+l17VRVEcoB1spyxphxL+iXZtmA92gWjmAUkF2FjpH0op2ikE1lUu37/Czfief/nEtytqzI2WViZHxXCnU6UsJEzw0Rhi9SZARiGQp7++WasNHQajBKVPKQGATsYNRNaMchq6PSCppnEnkNtozXzBYoBlqkqBJpx5FT249PbAytd5x5SjZmC5BLQ0CnRJonUWox+uFgu1T8aHIpOOmVIo8gydHo+Zu1RbUQePLCKr930cKFkMI+95985kkvKJZeihs5j+ONItZ8P3O0uZ+jCY+jqb2Kpc424MCPZPNdQcehcQ2/Y8Ehas5U7nAmRUNtyp6h1xktDHOabRcllpZtirhEZ9g3YCBmet8E/cyJEyUb03Eiu+cwV9+C2PYdMHzsYyCsBVB9sxJGTtNRkUS5CADSR7ngMndh95Fl0ev84Q+d9Ms/BGLrrj7Nx6O7MfDW1iUWqv7rPb0wEvZJBPwrAPezzvfo7Hz8mhLhGCPFZIcQxoQMJIc4TQlwhhLhiz549QzTXwtfQD7VTJwb9ZU8+HICroXczaUq0zrMOQQ+HjKIxRvoBS4neGroO/eMe7YtvfBiATSluJuVOUdLQzz5hB3793FMBWM2PFjvOmbYJwDCU/XwwYtEkc5oZZ7lEzHTDVmLX9ATUy0dT6H3LHXTSHEdudaNBbCq1ZV7+VJ5HCnHJhWKZO47kouu7h+K49TaNWJjwN8AtzsW3oxefwugouShmDD3V980wSBYP/qaPX96ToVv/i+cUzZjkwg06k/d4SKBKtXcXE1H3MtL+AtfnANh+0Yyt/4WOsWUuMSV4I6HOQYuDrKZuSQgfkSiWX7bliWHuV4ihK8kldowi9a2E+YjoutX3jKEz6QaAieD6tc9eg1f96TeNES416DlVgtQ1f2I9cGuGHuvIEqAY5ZLmOmrMe41X+xj0TLIyziWZov7i6lShleRK6nsr3QyNWJiBbNQYFe//VwDHSymfCuDLAP4qtJGU8iNSyrOklGft3r17TSfkbGn/isoE3DJvC+ofpRl6l013FENX8eqtgEebs0nAdj7ALnARakeqJReKHvnXq+83zp6USS7ElvywRWIrP37WMVigWi6aYfn10GNj0NV2VGiMnE0dztC1TBMxY0ZsnE7fSXOtq0cmo/QJOgGH6//8cxSJgqGgELLtCw0cWEntINmwgyQ9B6oe6adqA9Zw04zBr6Hha5f7V9zMxdWuq01nOq46iaMCgyQ8eMDNpA1VSiSGPmdYcNhocnnPGHShJCoetthmA4+fWER/mgE1EYzhkeTSMBo6GWPO0On9CEVukIbuZooKc53U70Ia+opeyJszdB7Nwq/N+EPYe0PvXUhmXOpkTHJxQ4sJRGro3aSZl5LabLgqUIxyMWWVPWNKEhy/Xt4nuQPfZsN6ZCeQaUoO2EzalalWOpm5T+NAlSPfB4Az7qP1dwZSyr1SSvKmfRTAM0bTvHK4BYPUw9/USnD521+Mq9/xUnPTHA1dG/SFVhxkLsTQO+QUbboGPaR7rXYzdLTBiCKldf/i333P/E46s2Loluk6dcu79gUwCR65tOyLaej0ciwaht7RTk83Dp20a8NadAfd1ErUAOEz9EgYVkQp8vRiWmeulVz8e0FlALYvNHFg1Uouc0zGorZTJw8ZRGJAtMCF0dBN0Ssbiw/Y9G/KXCT2HekXV0roCBv7ovuLePggPZtr9RSHzmW40AyDl241kos2MmTEkkiYdnIWR/CrZCZRxBYBIclFaeg8G5T6OdfG5wMGnYx1u2tnQL4RpExR/7rUDNdl6GQfC3HoHnMHrORCA5MQ1qDSfVbXYCOl8lzi+/c+pn7PyWFLM7lIOx4puql4LXQMI7kUnKJZ4V7xWQVFVvFrtHHoYQ2drj+O1Lmpj690s7HFoAPVDPrlAE4WQpwghGgCeD2AC/kGQogj2cdXAbhhdE0MI7QU1UIrwe7NLWxdaIBrXdaQ6up1zWJGKUAauu1IPGGEj/wcVEu9GYclGRNWGLNM0dStDrlKuhpjp7aD+hp6pK/Vaug0O0i181EI15HJ5aLFVuI4b7mGTtgyZx3K1Hb+OSS5HFpNEQk1Szqw0kWa6Xbo6BvSsele8vrqoeJcjcKLo5kRc8wmkTBlHMj3YBi6sJE97W7uFFfzGboPnvpPma1ZrjRzY9BZyF/IoPPCYpEmAzQTm2/Gjs7sG3TfWduIRcFnsGW+ofoeGyjN7CHtzdCFUDHrnSyHvyQa3e84ioJhi8TQeVc30Sye5NLLKWoju4QxqEK4hpF8CO+/+Ba88gPfxG9/7nrcvmfJyYpVDJ1HhYnCtQBFnxQHyXRcctnMwiI5+SCiaOqhJ+65zjx2m70vkS2fa6KU2unYIlyACgZdSpkCeCuAL0IZ6s9IKa8TQrxbCPEqvdn/EEJcJ4S4GsD/APCmcTWYQDcpiYTRbxf4CMvYgmLXwjD0xUCJAIA5FnMrW/DjhR7ESifDo0sdbJ1vFJwtgPXWc4PezlwNfaXrTlEjAUcTNFEhWZGhq9R9W8GQ4r0pkoUGBerkm1qxY0A6qXIa82koz5AF4EhWQHi20smU0dwy38CB1RQdbcBJx+5muZl28gGLH1/dA71NwThY6QPQ09lIGB8CSS58kQruBE0YQ/cjK3zwZesoWoZmC3OsHIRZCNgLuzSlf3OSXJRRptjzhWbMQkJRyDAmvZZXcCxKLgmk1HW3Y5+h29lDyKDHkf2e2LG/mj3fRh3b1dA5ATAaujdgBp2iuo0//7dXAlDPsZ3aNnBHJs0Yv3jtgwCAj37zDrUdc4qSHi0lTKkMak+oHjpFiXFYH5o14r/4oifiF374JDzvlN3IchSc82Vhi7/1qtPNMQTT87lkOK4YdKCihi6l/LyU8hQp5UlSyvfq794hpbxQ//02KeWTpZRPk1K+QEp549harGGYZ8wMOotNNQZBM8VEj5RUX7qcodsqgDwpgxvFSFin61InxR17l3Di7k2O5k441E6N46bFnaLsBbaebytJWMnFreVCbZhrRGaqS4YTUGy0EdkyBMopagejTXOJkYYA9TI1dYQOwTI9T3JhL6qfsNLR9Z+3zCU4qKNcmlq3Nho6C1v0a2sQ6IVpRO45/YUFyNDSvbMaupVc3HtiNXQ+xQ/BpN7nrmMrL0guansuGVFBppSVTaABcNXEO1vDoWq5eNX/zOxJX7tj0MkpqmZRB1ct4yPi0k4zM5jwbE9zTiGYgU7NvoAt7+rPSF2DHjmyhR/lUsgUZffHf+8EvNK6rJoiGfS7HnULzHENXcBdkIS/p34ZDLN4eED/B1zJZbGZ4NdefirmG5EKUGAzQ36NvkHn0TfKj2P/JjTYOUeN8Q0VYwY5g5IoMqn7/EXhK4KQ4e+k5BSN0Qpp6A2fobNjMKN4yuGb8Z+fodwKt+9ZQifNccKuRccpSzi0mpoXfr4ZQwgVEcJT9H2jRbVO8lw5ECNha7mQwRNCmBlJM7YauWKjNlEoy9049MVWYmYAanvF0N3QMrfIky+5KCefz3JUgoli6F0dpmhnUEvMGWSmyCENnVVbBGxkjV/FMBJ2m2YSmbBFK7nY31c9hs7xNC8jcdemps5QVZm6amZm9fx5Nnsh1ub3k4aXFEVOUQI3HDwah8AjkABlAEJRLoAiDK7hjR3JJaShC8FL7box47w2DN+fz1bnGrFr0I2GbiUffgzet3xnJ9fQk0gt3kyDM81u/QGYO2wzKc35u5k0yTyAG7YoGUPn3YC3bcHzmdH/ruTi9kNbH536Ao9ltz4xFiA1eYY+jUgpHT8WpnRu6IEA6sbSij7L7RQLTEPnLyOF2JmFlxOXOfJMUXIY/YKeOp64a9EwC46D7dQcp5lEeMLWedy1d8lhZCYc0GGwbmKRz9B5GxqJNcgHV9WCCJROnktiMOp8m5qJE7ZITuMQGzMVEr3PIQ2dpK0tcxTlQuUQIty2ZwlX37Pfk1xYIgiLlTYM3SxS4LL4NHcZOqCMGx2bGyiupZJh9vHKpz3B+XyEjsHPdZioqcehB0e65+00HLZIg103s5mlkRBONqzfT0miAdy66KQtc4a+0lFlWamWyqHV1LkuqqJoyjSUOEX9+jLWUNn7CwBH6ogn/p60ErfyKJ+50r3hx+BOwDecfSx26fVIAUBA2FBTLbls10mBh9rdQjggtZWYcJbbGQLZhMgzugCTXIQbh+4MtOy5RJF9F3lfJRtA/TLWWcBGjoxtBBgV5wLcKJiJaujTCkrjTaLILFDBXxTeiSLtIOumKl6dl9nlRpgkl9DK3NyAAEVt8oTdi04cPOHQauq88MfvWsAde5ed6aAfFUAMNpNuYhGPcgHY+pvacAIqS3OhpaIQqC5NEgvDchZbiRNJQ8W5ggy9xCmaBDR0Wnd1y7zK2DywmqIRRw4jM5JL1ENy8abpbc9pRxEoqlyr2mZTK3GiCOgc3OioKCTb3l2bWvjK+c/DG3/wePzMc4433x+hI3x8uUoZaFuBs8OScvgMI4qEjtDJmeQCZ0boR0/xAZYzdZsHYO83+UjIUPsM3VRR1PZjLpDOHgn7jG0ZX0/S0p8pycxNnoodlkuatND3yg9b5LPl7QtNvOUFJ7F97UyQpCpi6AdXU5Mqz9HN7bJ+tJgJoGwCtSWOhDG6KpzYJUgEbiecgdaTP6XH0GmxEopgMgadzV45qeCO+ElHuUwVPv/9B/Cmj1+GlU5mNENijq426U4J1TRYLce2oItLAcC2BWvQF5jDC/Cm0p6B4Mzn7ON3YPemlik3wLHSzVyDvnMRdz6yVMg6BEKSC9PQczfKBbBROFxDP7DS1dX5mGwjhM2onEtMZ+3q6JNWErnH9TRzn7FHkV24wFyDLo+wQ2fgPnxgFY1Y4MYHD5pteJQLhWHy6wasITcvQreMQdrvNs81zD1eZU5R16C7DH2uEeGJh21GI47wzlc+2XxPDJ18KfTc//Y7d+P+x1adKBdqv8vQlUTSZTH0iqGXTe1dpyjrFo7jjUsFzTgyhvrgauoYCJ+hh/w6EWO4RcnFhloCMElmvA5NK4kghE3Q4fYpjkRRcond58DfHa6hJ3pmQ9LlcicLhpgeWk1LJBe3roxdhELFqVONGldyKZHCCpKLq6GbaCDtlLXRQXb2ymVBl6HXkovBvfuW8bWb9mA1zZQhKxlhuZEgDXOpo2qMLDJGxxl6y2emnkEPxdMCwGd+7tkQQgQlF8BloCfsWsRjK13sOcSLYLmsyEao2MQiPw4dsC9rk+nDB1a7WGjGxhmpHEFuzRM6D7F2JbnY9vo1QQpOUSFw+BY7babf4sg6Jx88sIpGHDnrt/LiXPSSCAEn6sCwOk+bJEOfMSMZG4NunyddU+wZ9EbkhtqV1dIwDF37LPyInn5hizExdJZJ6mvonHg0YzfqKLRsHI/Np8/UjqWOGwbXMgydnKLFSpCUKQoEGDrzUQDAE/QA9xBLvqL+wVmsaWskAuVz3efAZ7dCCCe7N80lts2rPrTUToMhpgdWu2Y1MQocsH/DHKtrchZsrRce/aTuSXjW7QYooKChd9m7EAvhyJGcuFhfUM3QgyAmSRUQG8zRxhl14jlF+Qoni4yhkxFOIlGQFvhL6BuI+cBUlhv0Y3bMm7/5lPz4nYsAgNtY2VCfoVOtFZ5Y5GeKAnCSKyxDV2GZcWQjZWIhDNNRTlG1LbF2JblEheP6TtGuYejW8BGIHVGCz0OPtdGIIzzvFJsRTB2Zh1T6WXvGeHlRLtbgWIZuQzGTIkOPhMf8hZEE+PEITzlKOUcpdE0t7mHlIUIjEVrrZZminoaexMJZ7akwKPAU88SGRQJhg0770nNoxLYu0FI7dQyUYeh50WFLf6sFLlyJyl8rkwb9n37WcTj9qC34qXOOLRwnYv2VkMSRE4YIwMnKVrMD992x1SHV562MobcDEUkHGUPPc2lmCt1MOhE3RnKJqQSERBKLQnsJnBCagSFyM0UT712gGZwruViD7tcP4vdlHJg5g85jXSnmF1Csx2F6bBSksEUqwrXYSnDk1nn85DnH4iWnqfBDmtYCbFEKzrxi4WiBxHC4PeJTtgvf8ly2rd2PsjDv379ivuNSBgBT6yR3NHS3lgtvA2+7YehsGhhFwiyMvKmVGDZOIWtNz8ll6oZ798Fh6Ftdg95J1cLClODT0XHnf/HGs/DqM5Tj0TDEiCQXl90B1rCYPIKMYrFJ41Vt4MZ581zD/G4YeuQabV4YjB+f8MmfPQdf/9UXGPkg05JXLNyVhqgwmSO5eL6WRuQxdEYW4sgtm2Dq6Ac0dLNNRIZcmPPxdTN5P6WlBDNPIgCsRCeEm8rPtzOJW/q5HLZlDp/7xR/C0dstQSFjSod2JQyrodMx/cGfD2gqysXWb6draCVqRr0ayBk4uNr1JBdi6HaxjUiw1YH0Ahu8CqdprzPDL0q2RKb8tW27bLCmGTSgyA49Dy7TOpLLGKNcwmsuTTGskyEz01ugyJh9L3wjiXCvrnxIKxv9zn96Cq6+Zz8AgNcMJ922VcLQhRDYNt/Auacfgf/y7OPMNnxA4SGM/IXbvVkZvAM6fpivWh9MLIp0+VxIU/CHYBg6r0+d5ipxJbVlgGMhTDbqQtOGnFFY2KZW7E3bPYbuaehJFBVe0lTPBHZsslUsm9qZd5i+Zl6cyyY9OYcpOEV5+judR90jT3LxyukWNHRmyDsoSi6b5xrYPNcw5Xsp6zaJIqcaZqQ10k6aY76h2KHrPIdehNjmM8TC6qoUymnvUWTCIgE4NddN2wOSS8MbFAitJMb+la6j3/NzAW6Ui5/UZiQt77n4swC6LjoeIY5sWQNqNx8MABi5BFDE5h+uvBeAXay7Easl5pbbvRi6OgYtpA7YRDBqB1+QmYrd+dUWGwHfkbp+d7ZcKrlEfj+zhdSEsPeIS0ehdV5HhZkz6Jyhk5QCwCz44G8HEGsSxmNOhbsAOxBw2SHI0CNXQ48igQ/9dHnJGnrQvMATYGuOAKoDpZ3Mie+mY4cSi3gtEbU/19BdjfbgasokEqtT8hhimrFsajW8gcImzwDFAkRRZAcm/5o3txIdtmdT/Te1GuZ32p+WkiuVXLxMUVvLxUouxOh2LjaZhs4MujNjc52toZh0wL6AeQ6TB8BTyMk4U+lZklj4PUjiKCC5WHadeMaYZJ3f/8KN+NCltxXalLB9aZ9QQTNA9ak2c4ry67TOOhba580OTZ/xnkuof3CfD2+LZejqfE/Y5hp0Tr5yCXzv7v0ALMttJBEWmjGWOmkwq/edrzzNYegxa7uVSgTaHetspcWvQ1IcgYeWmsGKkQ9+H1IWr+8mWTHiUsLQyxbKGQVmTnKhTtTu5jpyQX3mabuAO63xWRTvYGQgm162JVA06GVGoAz0AvpTbIqzbXmG0+rHNpmBarkoL32OIEOP3bDDRZ3e7+vPdL1Gnlkhhp4UWKO6D+WZoiGnopp+CuMYpWewiRbMSK2xldKWJeCg41rJpUxDFyahbPtis6Ch+8+Lh5Lxzz544gg3FvwaW8agSx1tw/uaQDMW6KZ5UEP3Q0SJsWe5xOV3PoqAhM4MObU9cu6/K7nEWOlmuP7+A+Y+EYgARBFPj3cNFW8zR5ChBwx6HAsnDJHaxBGKjQdYsk6k1gxdbmeFpKK3nXsqXn76kSYgIGOhimnmM3RLSHIKWywZ6NV27sBM//Pa/VaWtezfuX6mofNZPTfodaYoA3/RVS1pdQn+8lH8peGFmuYa1qCqzzY5p6eGzrS3qo+DJxRxUGKFHx7InaJUfjUWpOPZ+jWFtseuBr7QTFyDLgT+4o1n4a0veCIO39IyRtQy9ISxLWtUaZpo68m77G3nYhMn7l4057Xfq+ujCAIqdMQrDNJLUsYE/axDKwmQhm5rsO9cbJo2c4buM2d+nLLB2cbooxAmSr9vW2hg/3IHmZSOlk9QEoq72hJ3bPqskO4HjwhyjmekFjqGO6D6DP2uvcs4/zNXF67TFJtjzmg+44lEMbHIXLco9jsbCeJeux+26KNsMWZ6do04wkIrzNDpHsx5hfMApWsbQyw8yYXyOLyMYR7lwuUXHuUiJUzEmYl5Z+8Cv0zuIxFsJsQlFx7hNmrMnORiNPRuhmSxaQycb9D5Q1NhWuomH7Vt3tG6TbYle9H8hBqAElX6j3+f/NlzTA0Ka9Ddtu3e3MItDx9i8d3uS0SaX2HFIk9Dbxld1i2utdgsMvQnHrYZv/KyJ6nPvuQyZxm60KxCiEBikceWv/ubL8Geg208871fUe3W949kJTI6PLuSrjMzIZUeQ/ccgFZy8aIwhI13dhl6eCpMx7UMPfwsOUMnpyhHLAR2LLbw6FJHLXwibBbom597grkPK11pBp8osv2v4TF0mhmqBczDRcMSr82JPyiwa/GNJb9MakPGIkNsmKK6X2kFyaXFpBv/NxUB5A7CPsoNus1MXmwmKsrFC1ukfuFEzujTZLldsNqPZFEGvehbabDZT+RdBx2b/Fk06AG2H/LAjEjoSpYN6muuhr65leBgO8U1uhTwODBzBp0ztziyySK9GHoUAc84bge+ckNxubE5bhS96ZFfRc8avfL2/eBJu8zfZAh9fd8ydDeRydY60Qw9pxVWFEvo5rm7+gvJRYlwimst6BK5vgEm0Av56JJiCiryRbMKdr0dLw7dpDt7mimBvj9u5wK+cYs9L53PlVzCUS6xJ43wWYbgDJIZqp2LTSR6ELJp5F61TDpuwAhxGIbOan84vwtg12ITtz18yCzi/dwn7sLfvPkc/OBJOwGovqSWoLP3xWXorgRHDjwqBeyjwZi5+uw5RQOhiba9bPAggy7tdfLqlfz+FqUm+zc3WGrfkv7A/v7q/3q+WYA8FPLrXG8ksNCM8cihtpH9zG89GLpayKT4fBvaSY3IFlsz7WV+idD1mtmkhE6m0rMB5nvwBzaqhKoGD3WcdprhB56wBZfd8WghoGCUmDmDbqNc3GXFFnto6JEQ+LEzj8LvfeHG4HbNOHLqmZclFtG5QzpnCLQ/d4QC1qFoS7FS7LQ9V06JRcItB8r1N2IpvNY33YuEZdD6OjW9UHv0C7Z5LimwqTgShfvQ1pUrneXHAi/wk5+gYropGcVP2IojFhboEWWfjZprEJbZA6oGCGH7YhNCuDXHhXAXaDBOUS/O3QfPSA0a9EjF2u9dahunaBwJPPfkXc4xqOwC3ZcGMxy+0UsigUcDKe503UYuYsdw/DIhWYUdn0D70EBE16nOo4wVl2DcdpRLLqHVi6idhBN3b8KJu9XC7HNJ+N7z/RZbiQ5bdAkY3Tu6ls16wRZAvR+tJAm2qZPmkLko+lZKZmxOgIIOW+TPguyP2sbdh6q+cmPf0VVNv/DLP1SagDgKzJxBt0ZXhS0+ol+EJ+vEEH87QN3ow7bM4S/eeBZO0p2KY64ROfVQTIakNygMmhBA8cukKRN+/KxjICXwoh84DD/10e844YDUdsrypGqLAGVjFtmYhGt4KDSRBh4/koScUo8c6iDRcoANyYRpS6iWSyEqJWDQT9cG/Sad9m8YetdO5ylzr+x4ofUpI2ElAr7bNv2CtOLIGACePAPAWXwaKHeK8qzDoFNUSy6r3RyH2t3gbI3KTFAIogqb1YbIk1zo2ghHbZvHfSxHIeS0K+jwfNbmyXv8/vLl8fh10nVHophYZI7TQ3LhYyNvb9ksqF8cNkW58LBFIRSRomsVQuD//89PwzOO244r79pnriskuTSiCEsyNb4Dl6HbWU/oep0QW+GSPp43wvfhDN30Yx3QcOoRW3pe+1oxcwadGBZV0KM48nNO2OFuFzA0L/qBw4PHnNeZo74R8R98YjpTtbbSakU+Q3/SEZvxjleeZqZtPBxQ/e/WcrEhZWGnaJa7jHOhGXuG1m0Xsbg9B9tYbKmELFOWF7ZzFqNcsp4vOv19yhFq0KQBZaeOeqG1SlVYJoxTMXQ8E+/LNF3FIGE+EwxzTSITbx9HIrikGDW31NgwKSLktCWGDgAPH2wHj5PEdkCmc/GIJ9+g8Wd18uGbHIPuR0jR8UP1b4AiQ+fPi36jkguAm3krIBxN3TlOgKGHolycdg1IgAiNSBiG3k7VosrkM+GD1+uecTQAGBvAfUxuJIsKKpCyuKao7Rfh61XvIgohqp00Y3kjrkEnhk4BDYB6F8aZIUqYOYPuGqoIW+YSHFhN8QNHuiMff2j9DPBCM3GmwiEvve9MqQIqaOQzdL+NvoZOYWyUWETtpxK1BGJKuScN8IqK1HYOMnR7DrVNHXGzv/6vEQscansaelZk1I7jUb8crSTGH/7408wzOfnwzfjIf3kGfvCJu/Q+XHJxj0cG3k/9V5KLjXLxrwlQxm+V6fRzjaKGbhl6mCXy8D2q6NmMIyb9COzSBn1PiUFvxJEOW7T9iEc8FeUt25bTn7AVX7tpT6HdvM1qWTwq0ytL65Hw66H7A7jhfVZDF/r+Fv0k/nEsQ4e5J6HtBn1fCMTQV7u5WSFJQMscgZkVd/CGBmySMKX+m/ub6J5s8wrrcUcnYB3JXHLhmc98H2LoEkVSOG7MnEH3HXIXvvW52LtUfLHsWpzhl59j52IT29k6pH6iD2C1TqA6QzfH9xg6b6MQxRkBOUVtlIttVyhcjTLgCJtZRUV+XAJpy48udXDqEZvVNoEX2NfQO2leMEZljOy1Zx7tbPfSJx9hj60ll0z2mpa7g6ugKAzGKP/mzedg/4rVnsmRRu13VnH3olzKzsuTqGgFnO/8xovwO5+/AX//3XuRZjl26AH64YPtYN9qmFou9r7waIpeDP31Zx+DhVaMb922F9+45RFn5sUlF2prN8tcht7DKUoMnafLpywZJxK8XIR7Tfx++YlFcUkfqFpV8EeeeiS2zDXwd5fdba6LjOK+5Q5aSWRr5weMolucq9imBkW5hBi63s5PlPOZvkpaskEYnSw375EZREhDb9rFQ9xzVbsfa8HsGXRvxDt+1yKO37UY3DaJowKrDeEDP3kmmkmEW3XBLL+eM513UENOKDPogBsva51fwqzIzuNcSYcjmEgFT+s9fMucw0IKBp0ZOp+h05ZJFBnJxCQaBSSXskJHvUC1XLhzzoefnUovImm8QriOSAA47Qlb8LlrHtDb+6u4uy96mYZO0+XlbmY0/u2LTZOM1s2lkZD2HGybeuEcia7lwmcTZU5R3iZAVav8hR9+okkMapQwdHUe4XwG3Mge/9jN2Ba04szTGH3hauocvVL/+aZOQbuKjHTHQtMkn9F10XN4dEkZdKqdEppZ8SQpLpXw4+WSygSE5ardm1yD7h8nzVynKIWshralxUdWujlCQQPjxPiHjBHDqa3c5wZVZdRHbJ3DjsVmMVSOP4xhrTlgaoSHEIrbNWGLuvStqxczg871OW/azdtbJrkAtvP508HQFLtscEz6GEkfkcd6QvBrjURCPceyKAwAePqx283fJEn4bezH0IkZLrczU50PcBfKbgVC5jj8Wi6q9oo9jn+veT+e9/TpUM0Wv02uX8WLcilh6Ca7khl01e/Coa5Bhk5s2JHdqr2fv/Sik3HsjgVzHTxSp5lEZmA6oCsrNs0gFjLo6n+eSc1vcSOOzMI1fi0XKrrlM3RfuunmeWEw8H0I9Jth6J2sdAY7LsycQed6Y79En5CDpBd4FqoQyig88/jt5juCqJwrqo/bg7n6Oj21w5bPdVcpd9dKVf/7kgu/Fv9vwF3FhpiRiUMXxX1MvHyJAbYVDKt1J/OSZOWzJzIaVECMnMNlTjsAOPPYbfYc3n2jZ0AvcJlfg17GpU7qOEV5tUe/NLOPRhyhq4t7UVtpgGoGGDrP0hXCMxIOQ3eNfMgf4DN0/kjIKGYeQ6fbFInyTFH+DvnacciPAvRmpP/zJafgJ56p1uVtegusJJH1ORxc7TqDYDMpHtPEhrNr8WfykhKLItcoP3JISXa7NvWWXKjEQMhH4Bt2IgWr3oy2ZugBDDLihbzwVbZvd2143s885wR9jOrx54R3vfK0wpqVhXMG9Lw4UgyPap3w1ocGgKwkRT30N+AydFo2z5Y1KBoSYnaq2mPxGvxQw34w+m0gisScM4kghF2AgXwJZdUAARX/zkuXhtr40AGlsfsVAAkkQS21U0fKIuPpO4bLZiz0/Ggbt5ZLWEN32bj+ztHQ7TEAmFDI0LMKtc8wdHbf+TMQTNLyL0vowzaTiGnn6ruyNTr7ESkeFus7f2nQOLCSotWwUVsh0kDXyBm67/8ytVwit717dXJdgaF7s3uSXPxlKfm2xilKkksnC0bUjBMzZ9CdEbKPAaHaEFUD+f2YUQB4xVOOxD+/5TmOk6+q+vKm55yAP33D03tuw6+Bdwwq2RkLt1ZEo0xy0RvRlDuUwWmPYePOt2k5yI9D5wMED50LvlDEYisydGpaL/+GEAJzSVyoNdJlGrqPZhLh9Cds0dsXrxlQKykBwDF6uu/DaOidDBkLg+MLZfPLDDVfrSkqnVoiXP/2+y2dgyeybTcFzorG0gwAkWX9hIKGzu7DmVqSOuu47cHIlEiUF+ei4zjLMgq7n712+51PJHzwjGzer5Xkog36ahetJCrITRx0mpzp2m7yUIRMF7fzk/AoEa3gFPWOQ/Jg6F2k70ySo+5DqzpXhlBLLgH0MlQ+qDaEH5JUfmzt/Ou6huaMY7aVhrmtFXQNvjZno1zgTdtsOyiu+6TDNpmpMnXMflM9enGpUFmvhCFnaa7AbTCSS0WGbhhVXqy2yOGswu4z9JJnT0arwNC9tpUZdJJEDEM3g1WRBYbOo46hiQFLiuLsulEib3HDTI5Xp0qfJ7n4/wNFDV0Igf/09KMAAM86cSeu+N8vxrlPOdIhJcYnKsolLbpOf/k4/x700rp9vPZM1a4ffeqRzvaU7Aao659rxE7pBB+8raE2xTFV97T9iPCe15yONz/3BDz7xJ3B6/XlQV6MzWQfe0ydFspY6eTBgXOcmLkol7LpXS9QOdd+cCo5BgzG6UdtxU+ecyx+9odOrHS8Kggt4xXrKAn63tHQmWF6xnE78Jn//myceew2kyH5G+f+gHMt/rF90PqNxBppS9cJxqb9gRc1JBn0gi13mvc26N7SZZFjcML7/PCTDsMnvnUXti+6g7jf7rJ6GkKopJblTuak/vMVgvhLGnaKqm1X2eIRpP3yInDGqehJKYDV+A+sFtdkpe382vGh9sSRwP953VPxW69WC2GTVhy6hkgA7ax3lIu/cLq/baiWShlOOXwz7nzfj+hr48eInHvRYhp6SLbgTaWf+axDhcnCVFvk9+uY7Qv4zR89rXBM7igGKAvVHptyFPg2ZDMMQ++uP0OfOYPuVKrrUxOCsK1HlAmH1dCzYMeJI7XK0ShhtUE+82B1qr1pnt8pztYZspviyLwcgKch9pjJ0OylzKkaiWJNGx9ly7qVgd6nTiax2GMQIM2XDsslgTKG/tyTd+Hqd760UACqVxSPj8VmjEPt1MSh8/27WV6YTfngxIDaSiGDPLFIeNvzAZFWfqKa9aoNblRLiKH7S9ip0tERthRqlRT/FhDIshLJJQoYdM/o8bYMarz4zJOv+UvnpAE5dNzQ4MTbRv2GfAduBFhZezyDzgbyJBJogy0Y4vkSiKH7Br1qGOdaMHMG3Z3eVbtBlRk609DLSnyOGqFEiDiKnMJajnGuyIL9apNlKGrobnv8Wuuhgc6fgvaDo0tGqgt+4Zd/CEvt1Nlu3guPU5KArQ5YhlA1P3q2//DzzzZlg8uw0Epw255DSHOJw7WERYz+6O0LfSUXP/w1iVgtF5ZY5D97zlJJcuHL31F/9+vR8P1O3L2IHYtNU+yr7NmXMfSuCVv0t1f/u5KL+5tqo5YhBjReSU+GHju1cHpeizfjpegom1jkPrOQL4ZfE92HUBaqz9D9sEV/UfeqPqa1YOYMehLw+vfD9ooaujU0vbXdUSIUFx1Hbg0TxxFTlQVX9DVsNwzdvZduIoyrb/rwQ/v6gUsu1LZQ0aLCQgqRWw99ENDL9IzjdvTddrEZm5rVTztmGwDgnBN34uM/80w856RduoyqckaH2mFmegEN3UksIgNh7h+TXDYVwyrNMVjJZ3+/hWaCK3/zJTj+gouctvhwNXQ7YPJSAO72qh+GJBc/RBAYnKH7fafpXFPslMXw4TqpPYYeqe9ofYE4ivoOyEAxfJRLbf6CI7E3iDT0gPQrLz2lb0TUqDFzBt1h6BUlly1zgzlFgeqx62uFP9rTd3YRWvflqtop3Hj98n22LrjrfdKWPGvVkXx61NKo3jb7kvRypBqGTlNaIVC25mXfcw7AGBdbCTK9OhSvEfSCJx1mjycE0kA1RiDM0E1xroRr6Gp7+txyNPTirJKvWMQ/93JAlvVjMtDKUUjfsXroJQMVZ+j+rA5wqyEOAroGChvl7/Z8M7azkT4MPfb6IhEifl1u6G/vdlkHfl5wYtsoFxpE7H43//a5AIB79y2zaxy/TalkEYUQLxdC3CSEuFUIcUGP7X5MCCGFEGeNroku+E2pytCrsu0qI/eoURY322VMtCxxo/dxi+cIwThFPdbIdV3u2Q9NG83ivlXbpq+nLFGJEMpIzPo4RcswyHSXNNAfOHJLqfTWK2kt8Qx6HClHaySAzXONQsx/KGwxdN6mp53T51CyDaFX3/cdf5FgJZdLZmJ80LHynN2G2jZozgbdEzLoPPxyrmEZeug59pJcYi25EBGoKrkQbIy7q6Gr/10fT6/BHVgfDb1vLxdCxAA+COBcAKcBeIMQouAWFkJsBvBLAL4z6kZy8JsSGq3XgtAiseNGMGxRCMeh1o8hB49bkaGbiIkShk4ST2h6TaDsy6oMhN6hULEvjjnjFCUmCKahD8gAB2Loypg87ehtpdvYaXbxN15MjT7vWGzisz//g06InmHobPD0cfxOG17Z8Kb6fsZosJ097hPXzvn/QNhHUWDoZj9OONTfckCLTte0ea7I0OcakXnXe8Wh87bwsh+RjnJR1xANxNBDJRJiz3fR692YxiiXswHcKqW8HQCEEJ8C8GoA13vbvQfA7wH41ZG20IOTkj7i2PBJMPSysEXeDicsrPJsg50j8HbuXGxiL1slpyxum+u1ZeVL6WUZzilafj3WKWqvo1ctl14Y5GWiTD/Sz0PotZQdd67zc/sx8r5O6xv0y9/+4uCqS77k0mtm1Ov+UrfgGrq5vpBx8hi6z/B5WwYk6OaeLRqGziSXRswWKCm2y2m316ZWI3b6ShzBi3Lpw9CZvydhK4Tx/0Ox7/7+fPtxoopBPwrAPezzvQDO4RsIIc4EcIyU8iIhRKlBF0KcB+A8ADj22GMHby28ztNjqgkAX/qfzxuo6gq/4etkz8Nhi44xdtlS9XopvRn6V85/vlnMmp/fr0fuF7UKvVAS5aVNQ+DFuXozdAr1s9JLWa2RMvz5fz0Ln778noEYPa0Be8YxW0u3CdUxMb8xSYlvSzA6s/4sve8JfvZiMVzRZYoh9CIm3NkMePHcgesSoizKhRkt3bZ8QIZORzAMPXYNOhU4Cz1Hh6GbOHT1fyuJCgbcfc/d473h7GNNGV9+nG4msdD03gVi6IGBze7P7810MPSeEEJEAP4QwJv6bSul/AiAjwDAWWedNeggDmAwDf2UwzcPdGxH2liH0RToz9CLYYsVGXoftrV9sWnSy0Pb+DJAr9BEw9Crpv4zp2iVTFHKiBXCXdS4Cl5y2uF4yWnhlarKcPpRW/HUo7fixF3F5QoJvabZfHGO0IDll1kgacavZe6j6UsufRbrAPpJLu42oYxLjqO3L+DYncUMW376ppFcSk8bxJJeTIU0dN4v5psxkrhYA4cQjEPX+6uaQO4Mlx/Gv8zffe1T8LuvtbkmNrHIlnzw3w2+FnChbes8669i0O8DcAz7fLT+jrAZwOkAvqZv3BEALhRCvEpKecWoGkoIpRmPCuT865eSPkqQfS5j6HyRaKC6c8/VCftfi50+uvtTpw3FShOkkVwGH2yqMHSKAY+j/qn/o8CrzzgKrz7jqJ7b9HKK8rDFUD/yZ0PksOsXtVVILErcZxRCr+7iF5fiLQ0Zn8/94nODA6lrMIdj6IfaKjeADDrHXCPG9oVGaQmPUF+3ma1xIeCgF0MvO3Zo8Qw/Dj1kj6r29VGhikG/HMDJQogToAz56wH8JP0opXwMgFlpQAjxNQC/Mg5jro9v/h61UxRQDysNrEY/LlgHWQlD95yig4YGVt3HZ/7+4rlWegndmEElF3benlEu6lw7A+nqY7TnleDX73B+09/xdSc5yNTRT8TQ+90/8inMe1puT8mlx40yg3eAoYf2KyM5TvIMvZMDMnSqZR8aSOcaMX7u+SfhJ84Ky7Qi8H7wyCFHwvQYer9Xg8ehGzmyJA49tJCNnzA4bvQ16FLKVAjxVgBfBBAD+JiU8johxLsBXCGlvHDcjSzDqJ2igE3rXa84dHrGoZRq9Xt5LZdeGKSIGd+GtrQ6oe60ppxr8VjDSi78PCGQoduh67KEohkmhaphi6Hft8438IIn7cZ5zzsJgGXo/STEZ524A+//iTNM9E3TSzDq1c4QfD8Ab6qo9Chpf/sN9Y9BGTqv6+JjvhFj81wDm0vyScJZr+WSyyAM3cqDeWE2Te8iHSGUkT6NUS6QUn4ewOe9795Rsu0Pr71Z1TAOhq4MWFaZCa8VVusrLpemfve0/YqDGJ++V7Gz1jFGjNxlf/S5V9hi1cGmavbc/mU1Dd+uyxOIwIs7KVTRTTtZHvR5xJHAx3/mbPP5qdpA88SlEJI4wmuebhlslTr0vZzBBcmlD0PvdxzADi75UB6yMOb7lOFwDbr6n+6NinJx+w1/ZP0u00a5hCQXda0UXLAjsGgKv49Vy3ivBTOXKcoxjpK2flTHuEHTsLJlzSIhCgyjCnjnqcKcI4+h+44fn7FzDM7Q+d/l10OVFQ/TGrrL0CudamwwUlkPjbyMoft42jHbcMO7Xx6sQdMLvUrKVoFxikbuZ/XdkAY9obDF0Vn0+Wbv6wu1mztF+e1JvEiZftFP1FdpCTqgyND369pAoexe3j/8qKVxYKYN+qidogBLGFknBkjkymHonpPHZejV2sUdSFXsrD9Djj1m3mvdUJNYNGDYIj9uCP/rJU/Ctvkmzj39iMJ+gyYWjRo2QiT0GzPoFQ3joMYcYLOnId8DEz8djHKpfhy3ABVJLkM1KYh+hfJCBjpiBj0kyVQF3RspiwED1N/3Lat8jn5FAA8vKdk8Ssy2Qe8Thz4M1p+hq/PwmuO+xjxMYhFn6FVYIkUXvO6so53z0D3unSmq/q86Y6qqYW5fbOJXXvYku60z0FU61djgF2TiMIlFAxj0YUCGrl+4YxmoaTaxyP5Wpc/YOHT73bBO0V7oZ9D9wnaAbX8riYeqhUSIPHLFj0H9+DEtDYacohwhBj9qzLRBH4fkQsx03TJFWccjJJ7hch0r1a6Zh39VuZb5Zowb3v1yYxxiw8y92Oeg5DJY6r9TKnWgqT3/e9IM3WW3HCbKJcsLS8KNEq8982gcs2PBZFcOCt9ADWv4oqj4PAd1ivZCfw2d/+0OtM0kcmZRgzom3Tox7m9FyaW3pLIeodDrFJw3HlSttjgIejn/xgEybmUMPRLCOAX59v3gOBAHmPb7i1X4TqYgQzdtq8rQhzQcU+QU7Vm/Q7etrFTCqLBjsYmXPfmI4G+bKxj54mIQ9rdBJK2wU3R0Br0fQw8mFpnYcBFk2VURinG3eRfqWs1yjovjd3r2Q83QPfQKRxsHQgzdjwLZtZkZ9CFiWYe5FjJEvs4aDlscLMqFG/5hDfqk49DNgBcy6AM6RceBL5//fNzDSreGYCQTinDS3w9KZvg1No1TdHTo1x5+i23NchpwozVJLrHT57RB15+pD5x13HZccde+sc7GqqI26B56vajjQEhD952ifCo3DOMbZrbBq9Xx/0MsXA4Y5TIsQ3de3AmL6FGPgZ9LLus10/NxxNY5HLG1txMuVD4XGJwA8M3p2Y6QoPeFm5TntimJReUw2eCxA0lINkxX/fiJN59tQmzLcOoRg5UhGRYzbdCHdQb1wrArrgwLOgsf3Z0pYiQcaWmYdg0jT5CGTjW7pfk+ILkYp+jgGvogL9ggZU/HjZ7VFplRm5RBrwIbtuga9EG7ixPlsl4p1gyheuh5bv06w4ZjFo7t3RjqxwvNxNTQD+Gy33gRNs2tj6mdaYM+HsmlPL54HOjqjlfG0H22NEyI2loYutm1h9E2TtFhNPQhtdpJa+i9qi1OogzzMChcg2fg+4G2GmYBlir4+M88E7c9fKjvdqEl6GiBmCR2wxYHnX2ESIQhMBVnpIetQ7giYaYN+jheFuP8WyeDkWbFSnu9wvOGY+iDt8uvCGi/D0gu+v/KUS68tO8AEpLrtKu821hgGXrgt1kx6N4sw8bWDypLcIM+uut9wZMO65s9CyBosCkprRGJQhjwIAjlPphy0WMIm14rZjrKZRzwi1GNG7ToMffkOxq6145B2vU/XvhEAMMl4fgdv1fN89zTFAc59iDGY5pS/826oD2cov7f0wZqmv1/OMklGIe+jgg5y6luvmLodtuBnaI9ydX0mc+ZZujjAK2xud6SS1nqv98BB+mQ57/0STj/pU/qv2EANK0s6IY91hSt6rBtDB3lwv+esORSIQ697PdpQalTdA2RIIOs3ToqhAw2EaVG7CbmDfpeh449qM9oPVEbdA+06MN6vYhdXVFwrkdiEQD83c8+C1+87sF1S3knRk6ns5Es5ecfplb78HHolXcbC3rGofeYYU0T/KXT/NT2/vu7/wOTMXKhmVvGnaLsetaSWETnsYl0NUOfelB67noRK9L6nMV3A8kMzz5pJ5590s71aRSsAfcHkF4svDpDH9KgR8WXa1LwZQoO/qKvl3Q3DMw1GIPu/j8MJiExOTM3/YFKEsee5DLaxKLpe7a1QfdABXYOttM+W44G5I136qFPgQZLsbb+2Xu1p/KKRSNg6JNXMnow9DXEPa8nipKL+n4ts1MhBI7ePo///vyT1ty+qgg6RTMetsgY+oBGOBjloj9PIkSzH2qD7oEK7BxY6Z0oMCoQQ2/1YejrDeq0YoBOXFVycTT0gcIW+d+TNZS95Il4yBnIesMacPW/8L6vCj+J6Ju//sI1tWtQhIxuV79XvkEfOIIn5IiXxfNOC6ZviJkwiKH3y/waFbppb4Y+MYNOkovH0UMSAi3CXFUv3ggaOiEYh74GA7Ke8EvN+oWtZgWhDGLS0Bu+5LIGp6i15+HZ6zRgJhn6V85/PlY62ViObQz6Smcsx/fRNRr6dEouNpmivOb5B37y6XhsgBnNSFL/p8RQznYcuvrfLD84ZJTLpBFi0c87eTf+5ar78QNHbsG9rKbNoD6NaSBXg2AmDfoTD9s0tmNT3ZT1Yug2vCoctjip0Kjcc4ra5KGiBWslMQ7bXL0w0bDFktxCSZV3GytmOlPU09DpUqoaLr8sxKQQquXyY884Gi958uHYMtfA/ftXgttWOnaPTNFJO+ZDqCUXD8TQ+5XsHBUoU5SnzXMW0a/G8rhQ9pKOOmpjVsvnEoJriorev08LfInFTzSaFZT5VrboRaXFGp5HHOhzvn9pmjCTDH2caCYRfve1T8HZJ+xYl/PRy9QoYXVb5ifziHbo2s60bJZfA3pUGGiBi0DNjkmBzh4yEEIIJJFAmsupNujWsav+HzaxaNLgTHlzoAhWs4QsVQG/F2a2WhIBNg2oDXoAbzj72HU711/+zNn45+/d5ywgG+pE643XnHEUIiHwI0850vl+1C/7IIbZTSAZaTOGRln7o0gAuZxqp6if7Tqo5DKN2BGY0e7cZL8b1Cnq+m3U/9PM0GvJZcJ44mGb8Csve9KaivCPA0IIvPqMowwjH1cnHiQu2I04mPw9Asqf1XqvTTsMzMIWnlO0sobuacrTgNC6nbvYWp80eJ1xzDYsVFiYOyS5vPc1T8HzTtmN04/autbmjhw1Q59CTKURGNNbOwgb9BNgpgFlDLxXvfRpQbHa4vS3uR+2Bww6X8KRcgT++S3PqXS8UIz7aU/Ygk/8f2evoZXjQ83QpxChNR43KoZxik6DJGDkiZL2r/di48OgUMtFfz/FTe6LxQDrdsrnDth3hBB9n/U0oTboUwh6wTizmBaMukvPqkEnlPmISXKZiVouHoGoarim6DEY9JPihhlg4ynsd2WoDfoUYqWrkqa2LUx+FXEfo9auh0n9n6b3qtQpqr9faE2vqunPBIddU3SWMNTqXbF7n6YZ09vbHsc4YdciXnjqYTj/JadMuikG83oqO+qXfSCnaDR9TKnMQFBiVkgCmBYUMkMHjHLZOq8IB89ynnYM038bcYTVbj5V/a4MtUGfQjTiCB970zMn3QwHf/z6p+NTl92D04/aMtLjDha2SPuMtAlrQpmBaOtZ1uIUM3Q/TNEmGlXb/+0/chqeeNhmvPDU/svETRon7lrE7Y8sDaWDUxz7tERW9cL09rYaU4XDt8zhl1588siPO8giAdOkoftFy3ysptqg91gNflpQWFO0otHb1Erw5ueeMK5mDYQkEvjPZx1d+vtnf/4HcfNDB4c6NpXlmCYiUYZKvU0I8XIAfwwgBvBRKeX7vN9/DsBbAGQADgE4T0p5/YjbWmMDYpBFX/wEmGkG1blfaE2v5GKXGVT/0yA1DQPmoLj1d17R8/cdi00868ThFoihxaBn4b70fZ2EEDGADwI4F8BpAN4ghDjN2+yTUsqnSCnPAPD7AP5w1A2tsTExCENveElOs4BpllzoThrfhFcCoIbCLDH0Km/T2QBulVLeLqXsAPgUgFfzDaSUB9jHRczWO1djghikNAwtpE3Li00D+nX0aZZciKHPevnccYMWbtkoGvpRAO5hn+8FcI6/kRDiLQDOB9AEEFyyRAhxHoDzAODYY9evXkqN6UU8AEOnRUA66fQY9H6okl4+afgGnKfK1+Bhi9Nv0EcWbySl/KCU8iQAvw7gf5ds8xEp5VlSyrN27949qlPXmGEMEkZGJY3zKZj/VW32pimWXGx9HnUxdz6yBAB4xnHbJ9Si6UTiOY2nGVUM+n0AjmGfj9bfleFTAF6zhjbVeBxhEKcoX6ZvVjDdTlFl0ikV4Mq79wEAnnHc+pSOnhWYKKAZsOhV3pDLAZwshDhBCNEE8HoAF/INhBA8nu1HANwyuibW2MgYxCnaSqbXOJZhFhg6GazXnqnC/k7avTihFk0nTK2b6bfn/TV0KWUqhHgrgC9ChS1+TEp5nRDi3QCukFJeCOCtQogXA+gC2AfgjeNsdI2Ng1ln6P2KUM7NwCBEzPO9rzkd73zlaTPh/FtPkEGfhZIIleiDlPLzAD7vffcO9vcvjbhdNR4nGIShr9eygFVQ9d2e5mm6jUO3US6zOAsaN6iPPq6cojVqDINBWE9rhmqGzAKM5DIDhmqSmCXJpX5DakwU8QDFuaZRcpllkFN0mmcR0wB/AZBpRv2G1JgoBmLoUyQHHL19AUB5ieMXPGk3jto2v55NGhojXvd7w8GvdTPNmF4XfI3HBQbJSpymMq3/66Wn4Mxjt+M5T9wV/P3jPzOdS5SFMAvMc5JINljYYo0aY8MgBn2aGHorifHy04+YdDNGgtqg94bV0Kf/PtUGvcZEMQjpqTX00cLUcpkB5jlJbLRM0Ro1Ro4Lzj0VQgzGeuool/GgZui9Ec9Q2GKtodeYCH7u+Sfh555/0kD7TJPkshEgqXzu9NupiWKaF/r2UVOeGjODWhoYLWrJpRootDabhqpwfVAb9Bo1HqcwmaK1Qe8JYui1Qa9Ro8bUo84U7Q3SztPaoNeoUWNaYTX02qD3AjH0vDboNWrUmFZYyWWy7Zh2kIZeM/QaNWpMLcyKRagZei9YDX36lz6sDXqNGo9z1IpLb1Aces3Qa9SoMb2Yfvs0FZilKJc6sajGTOHyt7940k3YMCCnaE3Qe4Pi9GeBodcGvcZMYffm1qSbsGFATtFZKDo1ScwSQ68llxo1Hueo7XlvGIae1Qa9Ro0aU4rpN0/TAVrM5Ojt079gSS251KjxOAUtQVcT9N542ZMPx1+/+Ww856TwYibThNqg16jxOIWJQ68tek8IIfBDJ++edDMqoZZcatSoUWODoDboNWrUqLFBUBv0GjUep5DGK1prLhsFtUGvUeNxijm9pF+9wMXGQe0UrVHjcYr3/8TT8cnv3IWnHb110k2pMSLUBr1Gjccpjtg6h/Nf+qRJN6PGCFFLLjVq1KixQVDJoAshXi6EuEkIcasQ4oLA7+cLIa4XQlwjhLhYCHHc6Jtao0aNGjV6oa9BF0LEAD4I4FwApwF4gxDiNG+z7wE4S0r5VACfBfD7o25ojRo1atTojSoM/WwAt0opb5dSdgB8CsCr+QZSykuklMv647cBHD3aZtaoUaNGjX6oYtCPAnAP+3yv/q4Mbwbwb6EfhBDnCSGuEEJcsWfPnuqtrFGjRo0afTFSp6gQ4qcBnAXg/4R+l1J+REp5lpTyrN27Z6M2Qo0aNWrMCqqELd4H4Bj2+Wj9nQMhxIsBvB3A86WU7dE0r0aNGjVqVEUVhn45gJOFECcIIZoAXg/gQr6BEOLpAP4vgFdJKR8efTNr1KhRo0Y/CCn7l7kXQrwCwPsBxAA+JqV8rxDi3QCukFJeKIT4CoCnAHhA73K3lPJVfY65B8BdQ7Z7F4BHhtx33JjWttXtGgx1uwbHtLZto7XrOCllULOuZNCnDUKIK6SUZ026HSFMa9vqdg2Gul2DY1rb9nhqV50pWqNGjRobBLVBr1GjRo0Nglk16B+ZdAN6YFrbVrdrMNTtGhzT2rbHTbtmUkOvUaNGjRpFzCpDr1GjRo0aHmqDXqNGjRobBDNn0PuV8l3nttwphPi+EOIqIcQV+rsdQogvCyFu0f9vX4d2fEwI8bAQ4lr2XbAdQuFP9P27Rghx5gTa9i4hxH36vl2l8xzot7fptt0khHjZGNt1jBDiEl32+TohxC/p7yd633q0a6L3TAgxJ4S4TAhxtW7Xb+nvTxBCfEef/9M6+RBCiJb+fKv+/fh1btdfCiHuYPfrDP39evf/WAjxPSHE5/Tn8d4vKeXM/INKbLoNwIkAmgCuBnDaBNtzJ4Bd3ne/D+AC/fcFAH5vHdrxPABnAri2XzsAvAKqeJoA8CwA35lA294F4FcC256mn2kLwAn6WcdjateRAM7Uf28GcLM+/0TvW492TfSe6evepP9uAPiOvg+fAfB6/f2HAfy8/vsXAHxY//16AJ8e0/0qa9dfAnhdYPv17v/nA/gkgM/pz2O9X7PG0PuW8p0CvBrAX+m//wrAa8Z9Qinl1wE8WrEdrwbwCanwbQDbhBBHrnPbyvBqAJ+SUrallHcAuBXqmY+jXQ9IKa/Ufx8EcANUFdGJ3rce7SrDutwzfd2H9MeG/icBvBBqDQSgeL/oPn4WwIuEECNfjbpHu8qwbv1fCHE0gB8B8FH9WWDM92vWDPqgpXzHDQngS0KI7wohztPfHS6lpBIIDwI4fDJNK23HtNzDt+op78eYLDWRtunp7dOh2N3U3DevXcCE75mWD64C8DCAL0PNBvZLKdPAuU279O+PAdi5Hu2SUtL9eq++X38khGj57Qq0edR4P4BfA5Drzzsx5vs1awZ92vBcKeWZUKs5vUUI8Tz+o1Tzp4nHhU5LOxg+BOAkAGdA1f/5g0k1RAixCcA/APhlKeUB/tsk71ugXRO/Z1LKTEp5BlTF1bMBnLrebQjBb5cQ4nQAb4Nq3zMB7ADw6+vZJiHEjwJ4WEr53fU876wZ9EqlfNcLUsr79P8PA/gnqE7+EE3h9P+Tqj5Z1o6J30Mp5UP6JcwB/DmsRLCubRNCNKCM5t9KKf9Rfz3x+xZq17TcM92W/QAuAfBsKMmCynDzc5t26d+3Ati7Tu16uZaupFSlvD+O9b9fzwHwKiHEnVDS8AsB/DHGfL9mzaD3LeW7XhBCLAohNtPfAF4K4Frdnjfqzd4I4F8m0b4e7bgQwH/V3v5nAXiMSQzrAk+z/E9Q943a9nrt8T8BwMkALhtTGwSAvwBwg5TyD9lPE71vZe2a9D0TQuwWQmzTf88DeAmUvn8JgNfpzfz7RffxdQC+qmc869GuG9mgLKB0an6/xv4cpZRvk1IeLaU8HspOfVVK+VMY9/0apUd3Pf5BealvhtLv3j7BdpwIFV1wNYDrqC1QutfFAG4B8BUAO9ahLX8HNQ3vQulyby5rB5R3/4P6/n0fanHv9W7bX+tzX6M78pFs+7frtt0E4Nwxtuu5UHLKNQCu0v9eMen71qNdE71nAJ4KtRj8NVDG8R3sPbgMyhn79wBa+vs5/flW/fuJ69yur+r7dS2Av4GNhFnX/q/P+cOwUS5jvV916n+NGjVqbBDMmuRSo0aNGjVKUBv0GjVq1NggqA16jRo1amwQ1Aa9Ro0aNTYIaoNeo0aNGhsEtUGvUaNGjQ2C2qDXqFGjxgbB/wNgL5auqlstQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABltklEQVR4nO29d/wlVX0+/pyZWz59e2MLS1maVFlQUMGGgg39xgIalXxNiN2o0S9+Y4ii38SY/DQmYkFjiY1gi6hIUVAUpSxSFxZZlgW290+/ZWbO74+Z98yZM2fa/dzOeV6vfe3n3jt35szcmWeeed7lMM45NDQ0NDR6H0anB6ChoaGh0RxoQtfQ0NDoE2hC19DQ0OgTaELX0NDQ6BNoQtfQ0NDoExQ6teHFixfztWvXdmrzGhoaGj2Ju+++ex/nfInqs44R+tq1a7Fhw4ZObV5DQ0OjJ8EYeyLuM225aGhoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGiAc47xmXqnh9FSPLBtHPc9dajTw2gpNKFraGjgjscP4PRP3oTdE5VOD6VleOXnf4cLr7yt08NoKTSha2hoYNd4BZbDsX+q1umhtBybdk3gH37yIPpxch9N6BoaGqjbDgDAcpwOj6T1+POv3olv/uEJ7J2qdnooTYcmdA0NDViOq1brdv+pVhl00yoY/Ud//bdHGhoauWGRQrf7X6Hb3k1LWy4aGhp9CVLmpNT7GbSPtiZ0DQ2NfgTZEPWngUKnfe3HcIEmdA2NPsD4bH1OFgIpdFsr9J6GJnQNjR7HnskKTvn4jTj7UzejatkNrYOUebcGRSt1Gwenm5NSSTzu9OHNSxO6hkaP4+C0W+G5c7zScB655Xvo3elDvOVrd+K0T9zU1HX249OIJnQNjR6H6Hs7DdoIdYeyXLqT5O58/EDT16ktFw0Nja6DqDQbFdhE5E+HoChBWy4aGhpdBzHVsFGFTvnn/WhDxEErdA0Nja6DSMKNklSdKkWfToTeh/uqCV1Do8chBjIbTV1sd6Xot/6wFT+9b0fu7zWzuvORXZNNy5zpFmhC19DocYQ89Ab5zq8UbVNQ9Eu/2YIf/nFb7u81qqpVN4IPXHMfLvjcb2O/M1Hpvf7wmtA1NHocIgnLhHfHlv2ZiMnPQ29D2mKlbmPH+CxqVv5tNdqaIO5GsCum//vNm3bj5I/d2JLsmlZCE7qGRo8jLig6PlvHG666He/6zh/T10GVom1Q6E8dmAHnaIjQGw765rwR/H7zfgDouRmONKFraPQ4bEFViwK7UnerRh/eOZm6Dr+XSxsChVv3zwAAag349Y0q9Lzfo8UZa2hzHYMmdA2NHkecQiebwcxwlQceeustlyf2TwNoUKE3arnkfPLg6M0MmEyEzhg7nzH2CGNsM2PsMsXnn2WM3ev9+xNj7FDTR6qhoaGEHUPoZKOYGWQmKfR2tM/dSoTeVoWeb1t0GI0ek+iFtAUYYyaAKwGcB2AbgLsYY9dyzh+iZTjn7xeWfw+A01owVg0NDQXEoKhI6NSoyzTTSanexkrRJ8hyaaNCz2+5uMsbvcXnmRT6mQA2c863cM5rAK4GcGHC8hcD+F4zBqehoZEOUX2KvFX1CDOTQrfz9XI5NFPDTM3KMcoAj+9r3HJpl4fuK/QeY/QshL4SwFPC623eexEwxg4HcASAm2M+v5QxtoExtmHv3r15x6qhoaGASFai/UKWhpmBlGgdWYnv1Ctuwks+e2ueYQJwnxp2HJoNjS8PGs1Dz+uhk0LvLTpvflD0IgA/4JwrmzJzzq/inK/nnK9fsmRJkzetofH0RJyHXq1nJ3RSy3mCotsOzmZeVvyOw4FFw6WGFLq4r5xzXPfAzkxjzu2he/8z4enm95v34doGqlvbiSyEvh3AauH1Ku89FS6Ctls0NNoK0SYR07RJAWcJ7OVV6I1i854pAMC6ZSNztlx+/sBOvPM7f8RVv92S63tZwH0PPTh2b/zqHXjv9+7p6h4wWQj9LgDrGGNHMMZKcEn7WnkhxthxABYA+ENzh6ihoZEEO85ysXJYLv6MRXmzQfKR2//csx0Lhoo4bc0CWA7PHeQUn0AOeH1YyMJJQt6WBiToVffCjTvGc62rnUgldM65BeDdAG4A8DCAazjnGxljVzDGXiUsehGAq3kzu+d0GDvHZ/0AjoZGtyIuD93PcslA6I32cpmsZg+MTlTquPGh3Xjd+tUYKbsJdnl9dHF8pJ6zrCKvqqbjKH5v7aIhAMBtXhVpNyI1bREAOOfXAbhOeu9y6fXHmjes7sBZ/+TGdrd+6uUdHomGRjxClaK8QYXeYB767vEKxgaKmZY9OF2D7XAcu2wUB2dcdV2zHQwUzczbE/ePCD2Lhszbo4YOg+jPj3r7uf3QTK51tRO6UlRDo8chTuws8lYtV9piY3OK7p6oZl52puY+MQyXTZQKRmiMWSHecOg+laW/S16FTpWi4vboiaeLLXRN6BoavY7YLBcre1C0njMPnRDXrVAFylsfLBVQMhsjdHFfKUc8i+WSuy0wj26v4mUNdbOrrAldQ6PHEeeh57NcGqsUzVNcNF31FHrJRNEj9LzbCxF6DsulUQ9dpdC7Ocslk4euoaHRvbBjKkXzFBb5Cj0DWXHFTSMLyHIZKhUatlxsheWSNO2eZTs477O3Yv3hC3Jtx0lQ6F3M51qha2j0OmKzXLz2uWmOC+c8yHLJwFaqm0YWkJofKgUe+qZdk/juHU9mXodKoTscuH/bIexR2D/TNRuP75vG9++Onx1JpfBpO2oPvXsZXSt0DY0eR1weetUj2zSLQPw8S9WlKtc9CZv3TOELt2zGsctHAQBDQlD0Pd+7BwBw8ZmrQ1WZcRCDtkS2Dud41edvw+hAAT9/z/OwxksvzLM/BamBWV2aY5VzHij0LpboWqFraPQQ7nnyID59/abQe3WpUtRxOB7cPi6U80cJaKJSx/n/dis27ZoIqdAswUOR0LN44D+7fwd+dM92/NMv3HEPlQooS03as6ZLhvu9hwl2smLhnH+5BU8dCNIKszxB1BX7XJduhuJ6upjPNaFraHQDbnpoN174r79OJcjXfOH3+MKvHwsFI0UP3XY4vvibx/CK//idPx+mKhXxtkf3YdOuSXz2pj+FtpklX1tcXxaFvnC4FHo9WDRRLISpJ2twVLzhiApdxHahclQe3yVnr8WP3nl26D0V6csWFKlz1fa6CZrQNTS6AB/50QPYsm8aB71y9jTsmwyWkz30e548BCBonqWyXCiQaBosTJK5FXr68uI6ywUDpsH8tMU86wHUE3jI3w3doCSy/t/POQInrBiLXV5+j/aV/HN5DN0GTegaGt2EBBv50ExA4nunggCg7XCfIDkPyEiVekcI5sxkIVWerXNhNNc9CSqLpqRQ6D+/fydOveLGEHkmbTtQz+HlRTUtj880WSQvP4nQ6WmkKir01s8B0jA0oWtodAXSVd9DOyf8v/dOBhWalsNR9IJ6NucBQSlS7/ytCd0ESekyBtRsjvd87x7ctfVA7DicnB56XZFWKRO6ZXP843UP49BMHXsSqk/DAWB3vZQOSZiYrft/y5ZLwWCRNE7VU4nc20Yr9B5HNxcPaPQfiCNYgkSnwhwgTOi2zX2CdARClxX6ZKWOd3z7buydrAYTSLOAlAeLJvZNVfHT+3bg4qtujx2HqJKzeOiqySWilouDsrcPSapfZffICn2iUo8sQygYLDKtnNpDD+flhz302OF1HJrQY9BIr2YNjVZCPCfDCt3xKy8dh6NmU7DQ+9wjp4d2TOAXD+7CPU8e9InRMJhPeqMDBWGd8ayVN8tFta6ywnIpe026ZIKO27YdY7lMzAYB46hCNyLpkT/+4/ZI5lBNe+j9BU3oGu0E9/+PJ4uaLSj0qbDlEih0oO6duzVJZc56xDdbt0Oz2pNPvHL+YOIYZ2s23vXdP2Lr/qCldCaFriD0oiIoSiQ/ldCS11Z46NOy5SIodPGYAeoJsz9/y2Z84dePYdd4BR/6/n2YqVkpCr17CV0XFsWgaserBA2NZoM87SSuIPJcMFQMWy5CULRuO5GeI/T/rEd8MzXbN3YMFvjEqxcO4Y9ehgwAjM/WMW8waI37q0278fP7d2Lz7qlgTBkVesk0QsvKHvobrvoDDs24RDxViSf0cM68o1w+7KFHLZc4/NcftuL7d2/DkUtGUPe+d2C6ikMzNf+YGkxbLj2JrGlUGhrNRFLshrzlZWMDODgTkJYleOif/PnDeGxveFIWIkEKHs7W7FDaIqnRNQuHQt/bKk3uQjeEYiEgxSwK3bIdvxLz6KUj/nZFHBL2Z1pq+CUGYcOFReEnD8K4SOh2NCgah9Xe/t/71EH/qeW2zftx6hU3+Qp9qFTo6kpRrdBjoC0XjU4g6XGezsmxwSKmq2JhEY8oXhEy8c3WbT8rxrVcPIW+IEzoMlGSVy3aJVk99ILBcM/fn4dy0f1uUsOwSUlx24rcc1qvCiHLRU5bTNgufXTfU+OR75FCHyyZ2nLpRWhC12gnfA89gStIoY8NFP35NIFwUFQFIt3AcrH8WYIMFij0wyQPXSZrUqnitrJYLm6vFAMLhIrRpEk3ZA89rt97XM68Kij62TecgrufOJjYL4aCybsmKpEbJO37YLG7CV1bLjHI26dZQ2MuII7IotBHBwqhzA5L8NBViCj0muOvS/TQB0vJ5fhk2ZC6HygavtecBMvhEWVsGCy2C+R0AqHfuHG3fzPLotBpH85ZtwSffPVJieMURVxEodep9a+pC4t6EWIubDd7Zhr9haRTrWY7KJkGBopmKOvCsnmkN4qIiIdetwJCFzz0gmHguOWjWLXAVepyHGnSI0oi8cGimVGhO0rvOk6lT1YsjM/U/UCxaLncufUA/vKbd3nrVR8s8UZE+5lkSRGS0iVpP8sJCn3PRKXjQlATegzEO3Q3P2Jp9AeIvJLOtWrdQalgYKBo+IoRCGe5qBBkubjKd6Zm++l8bqsA9/OCyXD935yDr19yBoCoQj/kBRtn6tTXvJAxKBptTwsEU8jJ2LhjHKdccSO+4/VJlwXVpl2T3vjUx0r02YmIsxB60uxLtK2yaSh/o+mqhTP/8Vf4+E83pm6nldCEHgNReSTNiKKh0QwEHnpyHrpL6CYqlmi5OJFCHRG2w8E59y2XmZotdBN0/IwO8sbjpoejTBSqWB0oGpnTFgtGdHxxCv1PXlrkz+7f4Y8/tD6b0jHV21Yp9KJi+zLkFgIiKFBbLDCo7iP7p1wb6JZNe1O300poQo9BXVAems812oVEy8XyLJeCibrNQ3nmKgUswna4T1iVuu0Tne1wnyDJFiH7RvbHx2dd0iKPe6hUyGQx2AoPHYjPOCGep+CoTOjUGybOQ69LCr1ostinAREz1SD7BwCec/Qi/29KhSyahvKme9BrnCZW23YCfUvoB6driQ2G0hBS6NpD12g1MgZFyXIBAs+Xgo5JnGU53F9+pmb7MSLLDnq/BArdXZHcG50UOt0YBopGNsslxkOPGy+tf/9UDROVeuQJmV7GtfqV+7Un2VEipmsWCoaBH73zbFz33ueFbgwTlTpMg8FkTPkb7Z92C71GyprQW4JXf+E2vO5Lf8g0I7gK2kPXaCfoDEvKoKh5DawGpJ4ntpfnnQRLUOiu5SIodCfw0IHAnqhbag+dCn8GiqZSoe8cn8WJ/3ADHva6Q+ZV6HTt7Ryv4OSP3RgrqJIUOl33ddtJDBiLx2225ir0Z65ZgBMOGwvt28SsS+iMMageSshyGdEKvTV4Yr87DVWWfs0qhKac6uI0JY3+QtagKABUvHO7bnOYhpFo19g2FypFgyyXusP9fG5foZPlIilgCsTSEIdKrvUjBy1/88heTFUtfO13j/vrKShUclKRT2jsMTsW56GL30lT6IMl0/97pmaHgqcyoVOnRpVI3O+lUmqF3gKIBzwpFSkJWqFrdAKJlovt+EFRQLRc1JaGCMtx/OVnQx664xM3KXOyXOSAp0ysg944ZGuG+r+Q7xz3BCFPNBGHAzGzOKkU+rnHLAl9RjZVHMRxzdSscBWsJVoulmu5GDGWi9csLe13aDX6jtCnq5Y/9RYQLV/OCpHQdZaLRqsRpC3GL1P11Ga5EBA65xzTVSv2UZ/UqRgU3T1RxfUbdwEIe+gRy0UidJlAB0vuNmUffXQgTOiW4+SyXGTsGq9E3qvbDiybY1hQ2Fs/9XI89+jFobFX7WRCN4Xsl5maHdvWIFDoTPkbkULPkvXTSvRd6f8z/uGG0OvZhFSkJIg/plboGq2G76GnBEVHBwp+P5RK3cFs3U1BHBsoKr9TNBlqtmutqMSNykM3PCUqBx1jFbq0HAlvUaGrWhNkVeg7FIQ+PluH7XCsWTTse/XiPtCY6imWi/jRTM32jy0QJufx2TrmD5XAmLrQkDx0caq6TqDvFLqMRhV6aOJd7aFrtAlJQfyq5QVFPYVerds+aYptbkWQOrVtrhQ3dUfIchHUatFkIVHDOVcodHd5WaET8U/M1nHtfTuwcceE0kNPS7Uk7Bqfjbw3PltH3XGweKQUep9uHBQXqKUpdBa2XEoxCp0ajMVZLpS22GmF3v+ErhW6Rg8g6OUSv0zNslEumH5Q9FPXb8JOT72mEXrdcTBTs3Dyqnmhz23HtS4MFq7cLEr9y1XjIoX+s/t34Peb9wXr9HZmfLaO937vHszU7Fyl/zJ2KhT6Y3umlN58kHKZLShqhDz0sOWi6tQYZ7nQsqokjId2TMTGAZqNTITOGDufMfYIY2wzY+yymGVezxh7iDG2kTH23eYOs3E0rNCFx0idh67RatBMRUl9g+Sg6P3bxvG5Xz4KABgbjPHQPUIfn63D4cArTz4Mn7voVP9zy+aoK7o1lkxDUqhRoiIP/ZM/fxhv/Ood/vu0D+JMQiq/PEuxDxAl9NULB/G5Xz0Ky8vuEUEVqaTQ63ZyJ0pxXFXLCRUWReYjNd2GYio+CKaqCx+n6x7YiZf9+2/xqV88HDuGZiKV0BljJoArAVwA4AQAFzPGTpCWWQfgIwCewzl/BoC/af5QG0OjCj1kuWiFrtEm2JzjJ/duV2Zn+ZWixSAQSIJFVOjHLR/1/yYyO+gpxHmDRSwZLQfb8ypFZdIrmCxV1IgBydA+KJZtRKFfdsFxOGbZCB7bOxV6/zWnrsTGHROo2W52z60fegF+8b7n+eMGAjJOy3KRx5DUGpgKi1S2mJgmKeJHf9wGAHhk91TkO61AFoV+JoDNnPMtnPMagKsBXCgt81cAruScHwQAzvme5g6zcTSu0Htjlm+N/gBxxG2b9+F9V9+Lf73hkcgycqWo+0X3P5HQX3v6Kv9vshsoC2NssIClAqFbXh667GfLlgsJHHHbwzE51yoB1IhCP2fdEpy6en5oNiMAGPBuJLM1GwWTYc2iIRy/YswftzvewAJJInR5DKosF9rnpCwXspnEyaSBgH/2CVMGthJZCH0lgKeE19u890QcA+AYxthtjLHbGWPnq1bEGLuUMbaBMbZh797mN7FRKYNG89BFha4tl+7Ck/tnsPayn2PjjvFOD6VpoDNs94R74e+ciPrGRE4UFAWCyaLFLBeRwOhv8nDHBopYMjrgf245DuqK5lmu5SJcA97fw6WAxONSJVVxQZXtkVaRbxoMpx++IPI+3aRm61Fvnl5TDnmlbvtev3IbEYUevL74zDUAgn02DQOGoU5jtmy1Qqc2xzvHZ9syaU6zgqIFAOsAPB/AxQC+whibLy/EOb+Kc76ec75+yZIlTdp0APnuCCR3UEuCHOHX6B788uHdAIDvb9jW4ZE0H2SNqAJ5NStc+g8EOdpjgkIXv0t/+4Q+WMSYQMSWzVGXvGPAJWCx9J8EzlA52PZojEJXEZ4yDz3FcokjdOosOV21Ih663ynSU+iVuhN+opGQpNA/eeGJ2PSJ8/2nF1LoSZaL7KGToHQ4sO3gTOw4moUshL4dwGrh9SrvPRHbAFzLOa9zzh8H8Ce4BN9WVBQ5oI1aLqIq14VF3QW6BvvxRrv9kJuiJ9sWjpcvXioYoVa5s3Ubo+VCiDBFhU551ZQnPW+wCMYYPv1nJ2PNwiE/D122XApS2iJdD1kUuiqwq6wUTbFcTINh7aJh//W/vPZk3HbZC/39k4OYgJi26Cl0yw7dAKPbCL8W+74YBsNA0fTXmZTlYsV46JW6jWVjrsX1xIHuIPS7AKxjjB3BGCsBuAjAtdIy/wNXnYMxthiuBbOlecPMBpVCrzSs0HUeereCyKuvnDBvX6jKmQiYIE7UYBgMr18f+ORjUsqiqDKpqpS6AZI18/ozVuOU1fNhe3nocr/womn4qX9A4EmLvUri+paoLMqGFDpjofz1o5aOYOX8wdANS14v3ZgoBlappxC6NAbVk5HYhdKIyXJxYjz0St3xb0q7FemXzUYqoXPOLQDvBnADgIcBXMM538gYu4Ix9ipvsRsA7GeMPQTgFgAf4pzvb9Wg4yAq9HLBwGDRnENhkc5D71bQRL/99OREaYvUA3zfVDiIRo/u5J9/+rWnYMGQS87JhB4odMbC/boLBkPdy0NXpi1aUYW+dCwIqA6VslsuykrRFIUuz0lB5CuuKykPnXPuWi6KoOhLn7EMRy8dwcde9QysWTgUuz5xndRtUcUHfiGT5YSeHKuWjZXe5NsHZlqfi56p9J9zfh2A66T3Lhf+5gA+4P3rGMS7Y6lgoGQazakU7SPi6AdQyXg/Wi4EmdDpPBa7Aw4WTRxEHfOkHPRSISClgNCrGCkXQiRqGgy2zd3mXrJ1UWChMnZ6Yl0qBFTjgo0qy6VRDx0AFg6XcGC65r8WVbRcgSrmoZOfXVaM88tvXu//fcPfnIPjL78eAJStdmmdBcOAaTDlhDd0w3O4yx10E6jUHcwfKmGwaOLAVOsJva8qRUWFTvm6s7XG/BJL4R9qdAeIG/rJCpNJYv90LXQOUj2FSKKUvidXiZbMYBmyXPZN1yLLFU0Gy+HK9rYFw1B66MvnBYQeN+2dSqEr89AzeOgAsMLbpmp+0EiWi5+H7vg3pCTLRfwOEGe5BAo9znIR91n00V3Lx/BvSq1GnxF6WKEPlkzM1uMnfk2CWFSh+by7YPgeev/8MOKelEwDnIfbxlYU5DTkEbrcmEsVFK1ZTmQ502BeUNRBUZHtUbOjHvrysYDQ4yyTzApdeE+0PfzPPQVPHRTpdYjQY4KidZv7864mZbkA4ZuCHGQV1xnkoauzXKjQKpgNyoHlcAwUTZfQ22C59BWhiylDJfLQMwZFN++ZCt0QtOXSPPzk3u24+4nGpwOUYfShhy5i1ULXc6WMFyDecgGiCl0kJVFFy1kppMJdhS4FBwtM+ZSaZc7MzEFR772Lz1yDt5x1OICgU6P4+YfPPw7f/atn4ZTV8yP7JNs+YmGRHHeIA2PMV+Yqr78gKnTPcvnSbx7DX39rg7+M5fBIO2GagEQr9AYhEnLRzB4UnazU8eLP/AYf/sH9/nuhoKiW6HPC+66+F3/2xT80bX1B2mLTVtlxiPEAyooQ+/oH5BRcsgMxhB5S6AXRfglf7qTQVf1OipFeLtz/ThzoOlFN9amajIJuzOIqxZa69ARgGgxnH7XYf1+0lGQ7xS8ssrnyqSYOtF+qrpC+QveyXBzO8alfbMING916CMfh4Dx4YqJYnv+bkULXhJ4PIYVuGv4JmwYqPrp9S5CYE6qS6yfmgFu88u3bn+j0MBoGXfP99OQk7gnZD6GJWmpRhe5bLhEPXST9aMYLoeB56JYd7VroqvdotbRcUSqCPG6VALIU5aM0TMoeAcKB0rjZf8QblpxpI+ahB4SaTnO02VKC5WIaBgzGInxAr+n38BW68ISgCb0BhBR6IZ7Qn9w/g3uePOi/pmVEdWAJfZT7iDcAAO+/5l589H8eDE0M0Eugh6dufnC68/ED+OVDuxv67thAAQuGinhKqCz0LZdiFstFrdDlniaFBIVeKrBwLxc7XaH7E0+r0voSbJiwKg8+j5sAQ9wP6slOEIOis4JCTgNtSWm5kHr3K0XDnxN/DEkeOj0hlD3LZaZmN9yKJCv6asYiUaGXTbcAQ/X4d86/3ALAnbIKCH4Q8WS1HY6yaaBmOX2X5bLH6xfSq/vlp4h18fhf/2XXYqJzLA0iSRgGw+qFQ8qpFEVyGozJchHPY3EGHjmDwzQMV6ErZhQqmobSQy+YDH//ihOUfXSCeUrje52IIMI2DeYTqqjQ424epSQPXZg+L49Cp9GpCJ1SGalSVIbfFsF7WlBZLvO9moGDMzWsmDeYOp5G0VcKvSpluZjCdFGX/fB+vOHLah9XReh1m/snTj892gPB/mSdAqzbQBdQ2u/ytd89jqfaUG7dbJiMYeX8wVDvj6oiKErkLlsuhZigaKRFrkG50rYyW6SuyHIxDYa3PfcIfOb1p0bGTcsrLZdEhQ6cffQiAMD5J64IPo9T6Kao0KVAL1WKOoGHXk4JigJBsLesIP9iSKGHP6tatt+4jH4bSpesWgGhlwQrqJXoL0IXFHrRZCHL5eq7nsIdj6szLSzfchHfc/yLoW8JvUd/fXqkT/pdpqoWrvjZQ/jZ/TvbNaymwTQZRsqFUNsKleUy5Cv0MKmJwqRgGP55LVsutNxU1Yoo3YIZtlwCD71By0XloVNQ1GA4bvmYO8nzukX+53FpkSFCj8tysZ0Qoabhe3/1bHz05cfj/Gcsj3wW6uUijenYj16PL/7mMQBBs7KKr9C9oGzBELJvNKFnhpyHrsoZVVUX0oko/ljUCAlQtwPtBszULLz5P+/A5j35mufTOdWrCt2m4FvCtUGKVkUk3Q6TeZM0CztIBXIDCg89Uvov3KkNI8jckAmd0hsPzdQj6YhkN5LazpLlQoJKpdBVNoyfxSJ66BnOyXBQVCZ0Mcslu+Vy5JIR/OXzjsSikXLkMzp+hRjL5Xt3Pgkg6A9fqbt2z0d+9IC3fdM/bq0+H/uK0MN56KYyKEq9MkQQoZuhoGj3Wy53bDmA3z66Dx//6cZc36MLrjfpPEiLS5tQGUCowVSvgJSgeN7N1m0/c4tw2poFOPOIhVg4FJ4o2TTDBFmKIXSx9exIOXxTmO+tc6LiTi5B11HSdG71hBut6nfwFToLP1GkoaRI3SQw/2bo5EpbTEJQKWpELBfAFVaASOg2fv3IXjzp2X0DRdN/stEKPQfCeejMC4qGD+A+RT+FuiKCb9mO7711a/CNVBXN/J4Vjm9ZNH1IbYHtxAffCGK1Xq/BYAwFSaFTCbmI5xy9GNf89VmKsv0woZOvXE5YTi46WjjsEjql2sUp9LOPCiySJMvFVvRpIIUe7i8TWSwCcQyDimnwCgYLKfSkCS6yQMxDVz2h1P3JP9ztVOpOKFA9UDT836jViQh9Reii+i4XDJiMRchYbnoECJYLU1su3Up8dJHJU3SlgS643s1ycf9PGn5SxkW3g7IpbInQVeQV933V33EeOhCdrGKBR+gHvXJ1ImTZQ//6X5yBf7/4NADBMVcJoOceHZ3QhlYVzmzJR0lDCrKmoqhmKfSC1G0xDqJCF387UaHXWyww+iptcVog9KJpwDSciFrYq5jbL/DQg/csh/tB0W4tLCIVmluh+4TYnfuVBiKXpPFTQEyeub0XYBquQheJcTZlKjURom1hsCAlUiZ00X+OKPQhUujuuRWXh14umP4cpRRElW+iV1/6bDzriIWRcRI3iqvMotBFKBW6N8F1xbL95Ii5oBTy0OOXGxGCoiJxDxQCD10r9ByYrtr+o2LJ9IKi0g1RpdD9k1W4+9ZDhUXdSQr0SNm45dKd+5UGulaShl/1FXr7LZe5XrSmoQqKJk/UIH+fIE6ZJuehiwFAebKKBcNe3rRkuag8brIk/Kci6YdZMlpOVLZhyyUfJak6PhZNA5bjYKpizVmdu2Nyx8eQHLQdFCwXIvQ/e+YqzBsqhtIpW4m+IvSpquUn8JcKBkwjuLhI3Yizb5MCqqmyXGzuXwDd+tguz1+YFU7PWy6eP55A1rUOBkXFvvyNiAGTqYOijZCTwZhfNFOS8rEXjwTB1FgPfSbZQweCG4WYh57U4lZGyCLKmXmlulEUPQ/9D1v24+RV83KtT7kNL32AI3lSjqLJUC4YqNZt/1hces6RAIIboVboOTBTs/xHxSL1cvEuCrpjHhLULE0kq8pysXvAQxcLqfJ4c3avWy7+b5puuXQiKCp2+GzkAjYMdVC0keCeOCGDbLksFhS67KEPFk2UC4av0ClVVEXOtF4xKCoqZ1XDKxFhy2XuuVcDJRMPbh/H5j1TeNFxy+a8Pr//PueJlotpuHMwVOqB5SL2Ugda76H3FaFPV20/mOPnoTvc70sMIDQLC11sZLmId9+6E1gu3ZrlIir0PI1/ej3LhX7LpIuDfudWP+KqIHb4bGT7Ys8QUvhps9fHgbFgHXKvb1LhADAq9UpnjIUaSvkKXdm8yn0vCESHrZA4hU7K1wgFRedO6KetXoBNuyYBAOedMHdCp+Fxnmy5mIab0SJaLmIvdUAr9FyYqlpYOlrGsctGcdzyUV+hixVvoYZDkuVCCt322mE2WinKOcc1G57K3Iu9UYiEnmdbvW65OE66QqfftNWl1ipUQlO35VdkpNCB4Deq206q0lXBNALLRfabxZxy2XIBXMIPslziK0V9D13othiuVs1huTSBkajatFwwsFoxcUZekK3DkWwJ+QrdCiwXMeURaL3A6JssF845pqsW5g0WccP7zwEA/PbRfbCFng5A2N+kHgxilstU1fKVBuWh581y+d3mffjwD+7Hg9vHccWFJza+UykQ8+7zzJ1KhCg+efz+sX0YLRdxUhM8x1ZDVOh/8fU78fxjl2LjjnH87tF9+P1HXgRAVOgO9nuBcFUVYCsQmiilgRsKeeiAu68F0yXUNGJUQayWli0XEar0v7GBoh9wT/LQywrLxcxRLGTMIW1RBUqR/MgFx815XSIczpFk8RcMhoGCO6kOxXfo6SWY61QTeiZULddWGRa8QNNL/RJJXJzvz5ItF8bwt9fchxnvgmzUQ5+quOmTuycq+XckB0IKPQ+he/sj3qje+JU7AGTvDthJOAKh3/LIXtzyyN7IMoGHznH6J38JIP++7Tg0i/M+8xv8+F3PwTHLRjN/T/wt6hmybGRLzzQCVes/TXGeGJCLg9juVZwYIrKcYt0DRQP7p91zOakfupzl4jjhscqNvwgqcswaFD1+xVjs08+S0TIevuL8zHn7afCHlGq5MNdysRz/WNBTlV/63+Ksq74hdJqkYlj4EQ3mXgjVkEKPeuh+UNRg2DVRwaRX7kzR++710APiyNNnWZyhvBfhK/SELB+/UnQOO3njxl2Yrtn49u1P5HrSyqvQ5SdAgzGBAIKnqbwZIO664vPQ00ABPnEcqnuKKigaV9yUhqzL/uJ9z0v8vFlkDgQkzpE8PtNgKHvHjI5XMLVdezz0viF0KioSFbphuHnoFYH4RHKnu6XooVctx785NNrLpV09r8R9yUPoflA058n1oe/fh1se2YMNHz0v83dakcNP468lZrmEM5gaganokPdff9iK+7eN419fd0rs9/JmucjnlzvVmafQnUChp5HdLz9wLvZIT4Wuhx5vudz0/nOwc1z9JFkuGKF8/kJMpWRRSlu0pZtPUv8XIHyONCMo2mz4Aj3FcjENhsGiiUMzNV9sFKQsF90+NyOo7F8skDC96aJCCl3RElTMcqlZtn9z8CtFG7yrNpvLOOc459O34Ad3bwMgK/TsxEXjyrtf3797m7IXThJaIUjo90p6fK02ofTfD0wKF+HlP9noH/84zOZMJ5V3Q+y/Eij09E6ERy8dwdlHLw69xxjzfwO5sAgA1i0bxTnHRMvyATeGJGYLxZEtqU+/26JkD8VxtOBk+OhGQvcVeorlUiDLpe749Q/BbEfeTc9xWlqo2DeErlLo1G2RTrSRciGUu61Kf6taDqYlhd4t6drbD83iyQMz+Pv/eRBAWKFfdesW3PqnqJesgi34sq1Gs3PdHW+GHSDNcgk89EbRaIe88FNg+LsHp2v40+7J0Hvy7yDOjOMrdIc3lAHi5qGnB0VVKBcN/zjainlHCczr6OhbLpJCj6sSVb3fjYQezGGbbrkEWS4OimbwREM36H2TNRz70etxtddyt9noG0KfUlku3sEkxTQ6UFA27RfTrcQp50oN9nKhi7jZdLlpp0sEh80fAODefMa8dLN7nzqEt3ztzkzrof1rR0uDZm/i7E/djB/fsx2AOm3R/039StHGLZeC73s6sGwHn/rFpkzfS1Lor/z87/CSz94aek++6ZlMSFsUbr6NkJ3BgqckVZl8EsoFw3/yS1LogKvSxTz0PAFccfcbyeRpFzjSCovcLJdK3UbdCs/TSvu1b6qKmu00pSWBCn1D6NNV9yIakRQ6AMx4ZD82UAyrJ3p0p5JlzsM91c2oh/7g9nE851M349BMvPVAJ3azyWzTrgkAwGHz3TkJq5bt961uBO0oomy2Qt8leMQ1xQ4QgTbDQydBYDkcN2/agy95M9OkISkoKs4TOlW18MiuyUgswzCEtEWhnL4xQg++00hQtGrZGJ+p4+ZNexLz4IuFQKE7vLGnCSDfjaBdEC2XpJ40ouUiz9NqCoQOwG9R0vSxtmStHcBU1c1MEQskfEL3LJR5g8XELBebh9May8VoP/R/++Wj2H5oNnY6OyC8jmaCqt+IJKuWE5kgOA8atVzylNO3264ikqcbN6WQAsDay36OOxN+Nxli/408fXMqisC7Cm/+zzvw0n+7NeLzFwzmWxb0W1sNZ7lkD07KKBcMOBx4/zX34skDM4nVyEmWSx50o0JfMc99Il61YDBbYVHdRs2zXAh07Pd7Mai5CLEk9A2hT3oXrjiVFp3MM6LlYokeeljFyTnrQXOuYDtxfaFFBMqxuWy2/ZCr7mhfK3Ubw+Xwo1seGyVt2Tu27Fcuk4fc2t0vhnx1+g0mK+EZqq7Z8FTudVoOzxVcFc+h937vXv93E2E7HPc8echfvwjDUAVFG8xDF67w3B66V1i3QzF+GUXTiA2K5kE3Tot4/onL8bVL1uMvnnNE4jy8BYNh8UgZVcvB/dsOJSr0BVqhJ2PCu3BHSqJCd//3LZdYhR74ruK1VSqEVRIgFCMlXOCtUuhUtUckVbWiXpxqir04JJHUdQ/sxBuuuh3/fVeUALua0L3fkoLfMqEnWWUyxIlA5N87y/R3gHsT/oefRKcIFK0g+XwxWUzaYgNkJ35HleWShLLXO0bs+RKHUsGITVtMQ7dnuTDG8MLjlqVOcGEYDK8/YzUWDBXx4PaJUEEVHY+9ZLkMaoWeiKmKhZFyQUqXilouql4udHHJ1ZYDBROMhUmJSHCqEk+cjba1TcOET+ju/9W6gwGpJapqAo84qAidiGrTTtevV+Uoiwo0De1OECJyrEpKnZBndqegTS+P9FVPEuzy8VH5+LVQZlV4eZrgAgjfVBohO8YYnrlmPoBoc640UBB1QQZ7oGQa/tORnfFpQlkp2oWELiLpRlUwGOYNFnHq6vkAwhaX4U2OMVmxYDBEJuVuFvqmsGiyEp25PPDQAztGFFayhy4T+mDJdKexUyh0IlUVWhEU5Zz7Cn3CV+i2r6IIeyarOHLJSKZ1qtQzqf4JhYXlL5Mn573N3WuJKOOekg7lmAxEDEjKCr1uOzANdaaCXBNA1t7vHt0XjFMYn7y8wRRB0QZtDNNg+Mb/PhNPHZhJVJcq0NNflsByscCCbDHOM032rEK3E3pa6T8QZNoVpWNQMA3UvLhXq4K/mY46Y+x8xtgjjLHNjLHLFJ9fwhjbyxi71/v3l80fajImK1YsoU9VbTDmZrmIuPVPezFbCzqjyR0Lh8sFb27H4D3bJ/R4he6TShPTSGa9pvmj5QJqloOqZaNSdyKpaHkUOnGUGPSlMU8JmUEy2mW5WLaD32/el76ggCDLRf0UkU+hBzd8ORMlyXKTj0/d5ti6bxp//p93RMapWr5gsmgvlzmU/o8NFPGMw+bl/i6dW9O1dBsvEhTNlbYYHMtuDIqKoOGpWhnT7zPs2b7FQnhfaN9aFRAFMhA6Y8wEcCWACwCcAOBixtgJikX/m3N+qvfvq00eZyomq/VIT2e6m05XLbdhv/QjfPnWLfj7nzwYr9CLJgwjfMJRAVOSV+0H5ppovZA6X7nATVmcrFioWnYk0JVHgdqCP0s499O3YM9k0M9GPmZAPstlLoT+mZv+hDd+9Q5s2Jo9M0VOW5QxPpvfQ3/qwAwekYqBLNvBnskK7nvqUOR71bodsjcs24mcL6IgkM+TkEJ3ODjncHhjKX1zCTJSUHTKSwn+l9eeHLts0VOfgJstlslyQXSZbgyKiqCnHFUeOfWKJ4UuP6WYPqG3JiAKZFPoZwLYzDnfwjmvAbgawIUtG1EKvnPHEzj7n34V6V0ylajQLX8GFhmb90wFhB6r0ANSIoU3kUGhN9NLJ0JftcDt7zxZcdv8liUPvZrS00W8Oan6oh+cqePae3f4hBNny2TFXEr/H/HSNA+mqOrLX3EC3vvCowEE5Bh3M63bPHMPGzouO8Yr+Pbt4cq+us1x4edvw4VX3hb5XtVyQvUQlsP9OA5BjE2oPHRTCIom9SJPw1we7X2FXrWweKSE161fHbtsqWCE+6Ez4PeXvRC/+uC5ubbZ7QqdOEU1e1TBt1zcz+SYBXnq8+eQapyGLIS+EoCY6rDNe0/GnzHG7meM/YAxpvzlGWOXMsY2MMY27N2brUxdRqXuYMd4JeLjTnpBURF0UUxVLQyWzAj5Ae4jlG+5SGQ45HvowXuHPIWXpNDTSKURjM8QobsKfapioW7ziEJPI1vRKvB72chpc4z5hG7ZHLdv2Y/th2b9kznLfl3/4E5s3jM1p2pUKyORDRRNnHWU28Mky810MmMmUFLbANvhPinLwWU3nTQ4F+s29wPahF3jQSqgPNZQpajD/SeFRvzlRvPBgeDpbLpqpXriKsvlsPmDOCohniPOBEToxsIiEYHlolDokocuX1f0+VxqR1LH16T1/BTAWs75yQBuAvBN1UKc86s45+s55+uXLFE3BEoDeVcVSdVMVKyo5WKELRdVHq7BWGzQp1wwQlkulbrtB7CyBEWb6aEHCt0l9IlK3SteyEfo4r7S+SYXCpkG8/fPdjguuup2vPBff+2TTBbL5e3f/iNe/JnfzCnLhYKJcf20g/GKLVyp6Cp+jFlvtElpneJxlM8FWaHXLBsT0jK7J6rC55LlYgTnru1wv3lXI3bEXPgxsFys1JtJ0TRQt4QAboaxdjd1q0GWiyoFNPDQ3eMm/64FifBbgSyEvh2AqLhXee/54Jzv55zTGfpVAKc3Z3hRUJqebLlMVup+XxMCHfNpX6HnI3TGmHuiep+LAcfEtEVFYG7D1gP46m+3xH4nDUToVPZPr8V9KhWMVLIV+584MQrd4TxQ6E5QlUo3jzxZLnMLipJCpyZp6nUZXnMoIFv8IuuNNinw6ZZ2uxfoxGz4XKhaTuiinahYEYUuBmcjQVHDCKUtBgo907BDmIviHRAUelrKY1GwXLIGRekJIG86ZSdB+6XaP1mhRwjd7A5CvwvAOsbYEYyxEoCLAFwrLsAYWyG8fBWAh5s3xDDoUUe0R9ysDyfioRui5RKn0I3ki79UCII9VHq/ZLScnOWiIJWf3LsDn/vlo4n7lgQi8GVjA6HXRZPhh+84C599wykYKBipZCuqcVvhoQNu3j7ZEuJnBalNahbMxUP3LZeUyQFMg/kZBWlBUSA9zkBIuhlZdqDCZfVdtcKWy/hMHfulsvlDQnBWvgmLCl2sUm1Moc89KOpwpM5nWgoFRbOlWL7rBUfjnc8/Chc/a03DY2w34ibcBgL1PuRlucjCgYLAQ02cfENGKqFzzi0A7wZwA1yivoZzvpExdgVj7FXeYu9ljG1kjN0H4L0ALmnVgAdLnuUiEBf52bLlEgqKxnroLLGXuBjs2bhjHIwBZ6xdkNtDtxwe6sWeFxMVC4wBS0fdeTFJ8ZVMA6cfvhCvOW0Vyl4zpSSIqlPsExLeVt0fu/iZr9DzZLnMgdHp5kPcEKeYTYNFJiquWk6s3ZD1hpTkodftYLpDWX1X6w5GRcvFdvAfN28OLSN+R1UpKgZF6Ri23UMXBFBaHKMk5qFnTLEcKhXw4fOPU16X3Qo/QJ1wgxuJUegkNlpJ6Jm0P+f8OgDXSe9dLvz9EQAfae7Q1FBZLvS3nBtKJ1Wl7sRmubiEHk9QovLYuGMCRywextLRAUxU4vOj5WpFIGjN6856kv8iq1o2SqbhnwykCovCPpUzKPSaNCYgPIEDEJ9SV/IJPUdhURMUOt0H46wS0XKpWW6rW9txc/ZVAdCs45erQ8Of8RSFnnzRjs/GWy6mEZ6Cbi5BUTaHKJlItGmNvURrstFWv70AsiyT9m+orPbQ6fVQqbOWS1eBOiCKJGz7Cia8O+Jj32BJbbkwljx9m9vk3/0hNu+ZwvHLxzBYMiMpjiJU1Yp0UTYaKLVsjpJp+HMlkm8rBmfEKcNi1xPKcqH3wt8ZF/xd8dj4lkvKTUP0uvkcwqKWHbaE4hSzabBQUJSO8VAMqdLvcvWdT+LynzwYv/2koKgTWHzjCoUuWi7/67RoUpj4HTmlUST0Pz550D/XOpXlAqQHpsXS/yyzKyXhg+cdg+/85bMa/n4rQddKku8fp9DpddrNfi7oudJ/P8tFQejyY6F4Mg8WTWXuqMEYKkkeuqDQJysWxgaLGC6ZsDzFrbpJiHYFBYhIDVcVueNZULcdFAuG/4RChFAKKfQMlksGD/2g0MBKzCbKarnYIVsncdFE0OQUdIOIa9trsMByqduOf8NxK/ailbM0/st+9AAAxE4AndRe2LIFhS4FRSuWHUpre9vzjsCP7gnlEYQIfVaqxBR7uXz5N1vw6O4p9/22e+jBuSWXscuIBkUb3ize86J1jX+5xQhSaYMdvPH95+Bhr/cREFgqssVa1Qo9ikFfoYf9aSAa0RcVzWDRVHpXjGUPilbrNgaKhv+DzMSURIvrEwNF8md5ULfdSXoNT43SY35IoRfTFbp43HiMhy4W8ohqnA5nnqeAuWS5iJWsW/dN48x//JVyOddDD3LkiVhIJQ9Lv3vWLB3ZihJh2U7wtFSp+yradjjqNg+R4ZGLg1zsWz/0AgDJCl2sFAXcSVWABitF53CFMxY8+WRS6LZb1drPlkvZu96WjJbxspOW48PnH4tjlo3iwlODp7BYhd4tHno3YUBhuRBpyApdvACGSqZ/AYpII9hSwfQvPlLX9IPM1GzMH4p+R7RVapZ74duCQm8ENSuYAWWwaApZLsEVS9NfJUFU3D5hSoQutpgNH2caS/I+iOubU2GRYLl8+/YnYpcT89BrgkKn32n+UAnTtfhCntjtJ1ou3I8P3PLIHvzHzZvxrbedifWHLwQQ9p/pvDtu+ahvA4k3Vtm+ExU6vQbar9ABV6XXLCc9y0WwvBwnWx56L+KsoxbhE68+Ef/rtJWx6YdpClwrdAEqQrdiAhXiBTBQMpUHMq1/OFkutsO9uQANDJWzK/QHd7jqSp7rMi/qdmDvDBZNP0siFBTNpNAFQo9V6HGEnu2mJFoVqnk/s8LyLZdk/9hgzLcE6rbjWyp0wS0YDmc/1exsWTpJhUW2E8w9++B293H7qlu3+Nsma/CEFWMAgA0ffTF++I6zlRad3PxK7IcOJOc+p2EuHjoQ3JiKqYVF3hOS7fS1QmeM4c3PPjwxl5x+40vOXqv8XHvoAuhCmRUUjh8UZbJCD/4eLJrKk2xCKNCpWg4YC2dmuArFFi5UE0PFQKGrULUcvOyk5di4YwKf+NlDuP5vzhEUevaUPxE0izjgKr7xuKBoip0gfh7MKO++d8nZa7Fvqoqf3b/TX6aiWD7VQxdIfDrHhBsyRIWeZDeYnhVVMJhH6I7/PhDt553ZcvFOhJedtBzXPbAr9Fnd5pH4wO827/OPV7lg4vaPvMgPnC4ecdNNxRvkcMnEdM2OWi5CUFTcj0Ysl7kKZbreslgugNvS4NBMvW8VelY8/k8vi81mG9YKPYAqbdFP6zLjFXqcb0UpenTHLRcMvPWsw3H1pc8GEOSh04U6UDD8x2aamFpGzbKxdHQAZx+1GNsOzuLl//5b3P3EQQD5qixF1O3AcnH7lVNQNNjHLEFR0XIJSv/dP15ywjK/+VfS8qnFSwLT5ZlBCQDue+qQH/y0BA89cS5H77Oi5+MSodN65Hal8hPGA9vGcdoVN0bmzLRtjuVjA/j0a0+JbNOyeSQ+wHlQ8FYuGFg+byCi5ESLjOomVBlTzbJcGkmRFVH2PfT0oCgAvPgztwLo/r7mrUbScVdZv81CzxE6BQXDXrCnyKSDKJ5UqmY6QBCcomBryTTw8QtPxLOPXOS/rlmOkOtupgZFK5aDctHNGZ+qWti4Y8KvFGw0bbEu9G0ZLAaB2pIZ7FeWtMWK4skmSPtkkVx+VTZRkrcsLgfkI/Q7tuzHhVfehq/d9ri7HTvIckniB1KuRZP5veLFccrd7eSb3pdvfQwHZ+r4/WPh2gLLy1AaUpw7luMoA750U1C1HQbCKYmk3lVPeqIap/N6LpkjjSK75RIenFxspRFAK3QJcol70PMjKSiqPoh00ZOvVZYuXspyEQl9uBRvuVAB0UBBnVXTuEIPWy4EsYl+Xg9drhQtmCxyYYo3ALqBJc1kD4Q9dLHnTVqA9F6vtzh1MawLhUVplgvgBrBrthOkjXrnxQJpTsy4pkmyZ247jm/nyKjb6omj93tzRialppI9MebdaFTCQKnQ55Ky0iDKxWwKXS7au+PxAy0bU69DNTlGs9CbhF4MF/aIClOEnIeeBCJ8uYtaQOjkjQbFPaoLkQh1oBiTVZMxICcjrNCD9ZZyZrnQ+AoGi/RDNw0jsv/i+ugGllQSD4Q9dFGhy3x+00O7cePGwJsmIj9s3mBoXLaie9/bzz3K/5s+K5kMdSvw0C95zlqsWzqCN565RlhWVZlpKPfLcrhPrO+TcqNtx1FWwW7dPw0geVZ3ujGPZVToRgcVOlmcqc25pMG9NSYgqDF3GywJPUnogyUzbLnElEaH8tBLybsaKHQFoQuZE65Cj78QxTYEqkf1RhV6TfLQCcXceeju+IZKplApGjzhyBeuSOi07qTsD3d9wRjENgKyRfFX/7UBl37rbv/1Tq9HOPnOtB3Oeaio6EfvPBuvW7/Kf02/85KxATy6Z8of51FLhnHTB87F8nluQ7PXnb7K60gpE3p03DReWvf7zzvGz1gBKCgaPQ4PeBkvRywejnxGKHkkmeShm4osl04EGn2FnlZYJJyH1/z1WXjbc49o6bg01Oi5LBcgqkStGIVuhBR6ttxQWaGWC26gzQ92FUWFriB0i4JiplJRNeyhW2qFLj7qlgtuvrtlx+cNVwXrSM5ycbsWxlsu/lgcjqcOzOCJ/TN47rrFkc9FwhezXNKqRkmhy8RqS43NikJ7WSAgv5c+Yxk+ff0j+OdfbAIQtj02feJ8FE0DNz60G9W6HbpB+ApdGqBlx6ffUb8YGfdvO4R5g0UsHI6fN7JECn3QEwZ1O5Jdpcpy6USgsZyxsEjsdLpmoaI4QwP/9oZTcf+28ZZuoycV+kDRCAf3pL7ZhLBCD4KeKpAvrvLQgUBpDnhNvkyDKS0XPxumaGBQ4dvPxUOnjJaQhy6lLQLJeeIVy51YumCwSB56wVB46IqsGdtx8IJ//XVo0uPQ5wIziTewtKrRHYc879yWvWweOm7FQjhPm372V5x0GABg+yFX6Ys53wNe2mqZspaEY+RPyBzx0MOELgpkSygsEvHE/hkcuWQ48bGabpqk0G2HR85LJaHnUOgvP3lF+kIZ4AdFU/yeM9YuxLnHLMHikZLfEVQjjFefthKXv1I1HXPz0JOEXi6aoX7oRCDyU6F4DvpZLIrCDgA++ZZlD917TdkwAwUTjLmZD6q0xVA2jMpyaTAP3fVzo5ZLuJdLOqG77QtMGEoPnUWCWypP3rK5fxMYn63jC7/eHG4VLBCyOHlIWtEoFTTJPVs4D98YCoYRUoxEeGsWDeGqNwdzq6i6a5aLbkBd3C+xs2FoPwUPXYbYBVFGkt0CuJNOA26JOHF0hNAV5J0nD/3zF5+Gx/7xZZmXj4Ov0FO2bRoM3/zfZ+L3l72o66eR62f0JKEPFs3QJAVBcy6p2yKLKnQ6QY9bPhq6iAKFHrVcgCANiyLUQ2V1x8UgKGqos1waLv13Uj10ej/pplGpu9WuBgsahokzAyVluRBE4nvL1+7Ep69/BHc8vt9/T7Qiala2vi6c89i0SJtLCt1kYY9Z+Pusoxb5f6syTUqm66GLhE7niWyhiB66DMtWpy0CwNpFyYT+nKMXgzHgVacc5le4ylaXSIp0g8tjuTDGmmLR0DmVdfLmOMGk0R705NEflBR6nIcuN+cCAoL+0p+fjne94Gj/cyrnV2W5AO4EE0BgyQyXCpGSbUBQ6AV1lkujhC5aLkMhyyWctuiOIclysX37gYS0r9AVaYsqiIR7n5dquG8q6GoYLv3PZrmIx6VuO6EUR9vhoZtU0TTCWSDC3+IkJypyoeIr8RjR/cDy4g+/eni3F4vgscFA6lmiwkpvmsA4fOUt6/GnT16A1QuH/CeNpCySWoYe3K1C1sIije5AT/5KQyUzFJCMm9ElSPcKsjfoInc4D13wQzEKvSQrdO/1ivkDuPuJgxEfveIHT9W9Y+bSy4XIdpEQcBO9Wtpe0nynlbqNcsGAwYLjRm1q5SyXuHxZ1cQPuyequHnTbuyeqISUrmpSavl9IBxgpr45BM556LgVTKYMispQESBlAokKnZaybAc3b9qDt31zA/75+k0pHroT2h9xPCsXJBP6QNH0f0v6XpKy9RV6J7Ncemjez6czepLQB6QJJsSgngi6GIeKZjBbt+AzixeRf2FFPPTwDEH0CPq+Fx2DneMV/Fjqcx0Kiio99LmX/lManozFIy7R75+O9gAXt08KXeWhlxQWjgxVHvruiQre/q0/4ju3PyF56OrOi3KGkHhjrNthAncVejjLJVRJmUO5UjWtMjbgcOz2JgK/6tYtsLzCIhUsqbBIXC5NoYug3zTpyajegOXSLASVoj1JFU879OSvNFQ0JUWnPuHp9YBgUbz/xccAAFYtGAwROi0r+66BQg+yXADglNXzAIRnbwcQyldXWy6NBUVrtuOrpOVjakJfNOxmF+yfqik/B1yFPlAwYTAWmQmoIKUtDsRUO6pK/3eNV1CzHczW7UwKXY4/iL+nJVR7AoDNw082xUI4bVEOwn3opcfiGYeNQYVSwfQIPWq52A7Hbi91EnCPeSyhO+E8dJGQ4264KpgxQkIE3RQ7koeeMW1RozvQk3noQyXXQ3e8LnzEGXGWi6iULzhpBbZ+6uUAgnzgdUtHgmrDgtpymazU3WAc9Q0R2rWKCPd8yd9/PQ6W7fgX/bIYwlikUOiUUbHayw2u1N2p04yqWqGHg6xxlkuU0Hd4RFiznEweuqjIHYeHCd2bJILAedhDT5qZCnBnkxfjIyJKpoFq3Vb2ebcdjt0TwbGbqdlYNipYLgj+loOiIuFliUPIyyZ9x4oRLO2AHxTVHnpPoCcJnVIMK5aNoVIhVaHHdVqkvOfzTljmqzw51Y1IdKJihRQrtTgVCeupAzP44q8f89fTLMvFdtxWrXTRj8b0Yh4pF1AyDb8RGAA879O3AIB/E6vUbSweKXuWi7uMOK1WKMgao9DlmxgA7PByv2u2E/LYQ5NSCwQoBrVrtoOZqmi5OKHioojlYhoh+yaPG1A03RuZmF9P+1O3HeyaCCbCmKnasSRad7jkoTdGeAUhtvOFNz3T7wUjIuj339Am5gS6HtKac2l0B3qS0MUZg4ZKhXgP3VNucV7wa09fhS37pvGO5x+Fn97n9gCPU+gTs/VIwLRgsJBf/I7v3I2t+2f8barycRtR6EQ4ROhxRSuMMSwaKcVaLn/7/fuwadckjl46AoOJ3Ra9oKgpe+jZFPrYQAF7Pe+5ZvFMeeii5VKzHclyCfvTthQUNQ0WrqrMYUWYBoPl8ND2aYw1y/GrVQF34onEtEVhjAYD/vCRF6bm2sugc7ZoMrzsJHUxEAWIO1r6rxV6T6AnCZ28aXEeRyDqpZJoimvMtXrhEP7j4tMABOpHVqViHvqY1Ia1ZBqhbAyRlAZishYa8dBrPqGnX9AuoauDoj+4exsAN4ApFhb5aZ/CHJJAtGqWIHvow+WCn9ZZk0riawK5OzFB0ZrlhFJA644T2gbn7pPNi45bivef58ZAxJtaHiuiYLBIFg3ZO1XLwa7xChYMFXFwxp0nNG7dh2bqkTTMFfOyB0MJmSyXmErodqCcsTmXRnegJwmdFDo9tttxCj3FchER56GTSp2sWjhiSbhgpGCGFbqYAx2naBpS6NT7XBjb1y85w8+8EbFouByyXESsXTSErftnsGuigmWjA6F+6AZzb4iqQiUZciWnaFPVLDvkoVsxQVGZ0OnmXCoYUYXutSRePFLGiSvnRcaTpzLRNNz1i+qafpP90zXM1GysWzqCgzPjkUpRuoecsmoefrVpT2qTsiwgy0VV1UqgJ4hOJJoElaJaofcCevJXGpKaY6U15xrIQejyhbVkJAhA0jRiBHeGnICwxgai98dffuCcUOOiRjz0ukKhveC4paGZxglJlgv1Bf/im06PKHRad3jSafXpISt08UYj9wkPBUWF98WgpKvQ3ddjA0W/qIdAhUWxk0bksCIKBoPlOMox7qL2vULaoaoH+dued2SEzBuldtVxJ3zuolMBxJ/f7UAQFNUKvRfQk4ROnRMpU8IRLAMRdAGk9UIXl5UV+thgwSf5JUpCDy5l1XaOXjqKFUJWSmOEnt1yWTl/EDvHZ5VtCWqWgxcfvwwnrpznFRa574sFNFny0GUyK4UUupOQhx58Z0by0Ge933LeYAF1ybZxPA89LrUvl+ViupaLmEpPYyT/XEw7VG0yLijdCIp+pWh0QxeeuhKHiWPpYNqitlx6A71tuaQodLoAMlkuMVkujDEsGS1j28FZLB4Nt0Qtmm6Wyz9e97CXWqcma1HlzSUomqVPxjMOmweHA5t2TeC0NQtCn1W9TovumIIMHbfE3SMWYQYkIhkxVlCUbCb6nFCzZA89PW2RFHrRZBgsmW4JvhP+XtWb1k+FPMHCghcUdRQKndoXHDZPrdCZ/17zyG2eF5eJ89DFWEEnml6dtGoeLj3nSJx5xKL0hTU6jp5U6LLlQgpTzv4w8ij0GA9dfE9W6AXTgOU4uOrWLfjKbx+PneFevFazBkWf3D+Dt33jLkxW6r6CzJLffNIq12N+cPt45LOqZfuELhYW1YWiJXEbqrL0ohQIlr9TtbPloYtPEFXPQx8smigYro3l8LDKtxwemj9VRB6CNQ0Dts1jxwi4bR0IqqZU4nt0PPNmtxCOXjrqjStuvOktDlqJcsHE/33Z8Rhp4lOJRuvQk4QeyXJJmBX+xccvw/q1C1PXGZflAgQX0uLRqOUidhMkHziaD59foX/+lkfxq0178LP7d0bSFpNw2LwBLBgq4gEVodcDlWsaDFNVCzXLwWSl7gd0Qz1SFI2jkm54gBvAFdNI65Y6KHpgJvD5a5aD6aqF4XLBfwIQnwJIzccrdOXbShRMV6GLTxHyE8eKkOUSXbn43ly7C65bOgIAoXRJEeLmdVtajTT05G13qBT20OUmSiK++tb1mdbJYoKiQHABR4OiLGQNzNQsvPzkFfjM608JLSeSpGzLxI196ahLKjsPzeL3j7mtabMEphhjWLVgCPsUgVHXcnFvWAZj2LxnCm/66u0YHSj6gVvxKYfGLWbsqHzsUJaL7cAWLKK4Xi6P7Z32/657eeiDJVehy0HLfZPuviwcUs8ClGeORtMLijoxttBg0cS8wWA7SoUuFV9NIr4ZWhrWLXMJneYilWE0mJ6p8fRETyp033KpB5MWZ+3XHAczgdDpiWBY6p5YNI2QupuqWJg/WIyofDOG0G/cuAtH/d/r8NCOicg2aV7Ne546hJ/etwNAcr+P8LiYspqzJjQkoxHdtfUgJit1jA1EJzUO2hwkl7XLQVE6JDQ7EEFU6I/tmcKR3kQQNcvBTM3CcKmAgsl8i4WwZ9JVr3IMoxGQhx6aVUn4TRYOl0LngPjbjXg3PdUsUY3iqCUuocf1zRFV+VzPcY3+R6azkTF2PmPsEcbYZsbYZQnL/RljjDPGssniBlEuGGBMLCxy5vw46ucDKx7rP/v6U/Hnz16D41eMhr9jhKeh2z9d84lYhDg0kTxoguSHd0YJndb720f3Bd/NOB+paiJk6odCBCTmqk/MWqHUSoJKoasITLzR1IXSfzlLhnzx2ZqN7Ydmcbw36XLNdoOiQyW3rays0Pd4VajUfGwuKBgGOI+fVWnRSJjQxfPqs68/FR887xictHKef2yC86UxE324XMDn33gavnbJGcrPQ5ZLBzx0jd5CKqEzxkwAVwK4AMAJAC5mjEUmxmOMjQJ4HwD1RJNNBE0BNyN46HNVL88+chE+9NJjccqq+ZHP1i4exidffVKkWKhUMHBQ6raoyqgRmzpRUFS0Hya9AqH9U1V8/bbHwTlXTm93/HJ1B0EZcn48QN0BA0KmnOuiyVyFPqhS6NFOeyrPuChluZC6lsmfCP2xvVPu/ng3SCosGiqZfjuFkEL3GmbJMYxGQPsi3hzFbS0eKYeesMRg4NKxAbznRetCswFlfWpKwitOPsxvniZDWy4aeZDFQz8TwGbO+RYAYIxdDeBCAA9Jy30CwD8D+FBTRxiD0YGiT4RJHnpWDBTN2A59cSgYDAekqkxVNoA4b2TN6wEiPvL/9P6dWDo2gG/f/gR+/9h+nHPMksjEGdRcKwvKBQMHpsOEToqdyGrXhEvoS0cHMD5bT1ToYi/stKBozXL8SbvlZW94cBdOWDGGf75+E8oFA886cpH/nemahTXlIXDOvaCl0ODLI19xYo9GQeeJ+KQk/v3KU1aEntLmKW50gHtsqohvj9AshNIWNZ9rpCCLvFgJ4Cnh9TbvPR+MsWcCWM05/3nSihhjlzLGNjDGNuzduzf3YEXMHyri0Ewd37njCXzvzqc6ol6KpuFPHk1QzVJE1yR58XK/k7ufOIh3fuePeHSPq1xth2OqamGNp9oOy9Ffm8YlK/SXfvZWAFGSXTxaxlTVSvTQFwwHn6V66ELaorytf795M27YuBu/fXQf3n7uUTh8kbt/VdtT6F7aomU7kWrU0XIhttApD+gmFe7l4v79/GOX4FWnrAyp7jhC9/vnt7hpFa3eYPmCvxpPT8w5y4UxZgD4DIBL0pblnF8F4CoAWL9+/ZwaYcwbLOLQbB1/9+MHAXTmcVRFbsPleNIZKpkYn62jajlKtXXIS+WbrlqYqdmYN1jEbz/8gtyBN7mCFQC2e+1t5XVRrxWVQidVf+rqBbjj8QPgXG0xyIRu2W5vGNXxefKAm82xeuEQyl5euZi2aPN6pH0AEPR6nytUCt1yOI5fMYZv/MWZkeXnD8UodG/f4lIpmwVxGkUNjTRkORu3A1gtvF7lvUcYBXAigF8zxrYCeDaAa1sdGF0wVPIJEOhMBoCqHFrOhAECD50UetWylY2diISnqzamqxaGSiZWLxzC0pgZiuJQKhix+e5EQF980zMBAAc9y0il0B/YfggA8Mw182OblwFhlep2RnS7FKp+k8kKlfgX/XXVLHemo8GSiaKXtijnhsspo42ioCD0uuXEFvakKfRmeOhJIFWuA6IaWZDlbLwLwDrG2BGMsRKAiwBcSx9yzsc554s552s552sB3A7gVZzzDS0ZsQeyXAidKLpQdVQ8TsqEEUEVq9W6E1HQIqZrFqZrljJjJgtU1ZwE8tAvOGkFnrdusV/gMzYY3dZzj14CADhj7UI/rJsWFAXcLpimwZSqkibbnjdY9G+IMzULdZtjuGSiYDLsnqjig9+/D0BAnHFKOS8o0CtW7NZsJ7YwLZbQKc21xQqdNINOWdTIglTG4JxbjLF3A7gBgAnga5zzjYyxKwBs4Jxfm7yG1mCeROiOQvG2GjKRPeOwMaxaEM1WIK4YEjz0pCKhmZqFmaqNoUWNecYlk6FmOaFMmuCzcGk/za05qlDobz/3SLz17MMxVCp4CpGnBkUBYLbmoGAYyparFHMYGyygYBoomQa2H3TtoMFSIXJMS6aBWceOnT0pL/wsFyvsoccJgvmDaqtHVuiNlv6ngZS5rhLVyIJMEpBzfh2A66T3Lo9Z9vlzH1Y6FgyVQiq00bk65wLRcrn5g+cqyVwETZ1Xrcd3DgSAqartKnSFfZMFboWmA9U9TlSUYksC0XL59tueBQ7upoeWqILUW3eKhw4As3V3ph/VTWtcUOgAcNZRi/ATr3Bq2EtbFFE0GWbrcy+xJ6iCog6P75Oiii2IoBtNq+QEEbpW6BpZ0JOVogAwX3oUbqQt7VxBarJcMHDkkpFY0iEfdNAj05qQxXHK6vmR5WeqrkKfi+Uit6AliEpXvCENCvnzz123GM9btyT0Pd9Dz0DoM7V4D53SPInQX3nKYf44B0umItffjN1uI1AFRYF4BRz/Po2vxUFRb/WqvuwaGjJ69iyRPdVOEDopUJVdocKQr9BtP8/6L597BP7fa04MLTdVJQ+9MZuBslzEPjMEMcslrQJUBPGa0nKRPfRavIe+d7Lqtsn14gmnH77A/2y4VIjcBGhczVPoQSBWRN5OhhTonmvpfxq0QtfIgx4m9LC32QnLhYhMNVORCkGWSxAULRgs0t53/3QNDlfntGcal0cy5I+rPqNtE9I6OdJTRloeurtdGwWDKT30vVNVjA0U/fWJnQ2HSmYknZOeIppF6HSTkQVA3hl5aJytnjxZpy1q5EFPdlsEgCVSGXjWPifNBBFWms9Kl+JQMci79if+NQ3IUws/sM1tfduoQqcbzWw92j6gHEvoyYTBcij0mQSFXrd5KHNELBYaKhcwJbU8KDVdoUc9dCCaFvi3LzkmNMG1DOYTrfs6brq+uYIsHz0FnEYW9CyhH7VkBN/4izOwf6rmp7i1GzS7z0gaoUuVolXL8e2QgslQECZuWDxSwgPbx7F4pIwXHLu0oXER+ammoRNL1UNtcVMtl3ilHA2KxnvoAJR9YwBXoU9KE1/TTbNpHrpHjFXp6UW++bz7hesS10O/6aLhMt7/4mPwilNWNGV8MmhYWqFrZEHPEjoAPP/YpfjT7smObZ96nIyWkz10uhSJ0A/O1DDt9WopGCxkYwyXC9g3VcNbzzo8tmFT6rhMslyihC6nLcrfiQMtquy2qLBcxgaLsSSUTOjhHjakkVU3kh+/8+zI8mmg3yxNoadBtELe9+Jk8p8LaDtFHRTVyICeJnQg2/RyrULRD4pmO4xkuXz0fx703ysYRmgfaOaaY5fHFyhlHZeK0EUSFx/j0wmdPPQo8aksl4XDpVibQJ5kuey1+x0smpishhU6BY9VNxJ5ztQsELNcxLlS8z4A0GFsdX64VugaedDzt/1GU/uaAbIssma5DCpa6xa8iZEJFNw9LmOrXBV8y0Ui9He/4GgsEDoWEonH+d0iWELaYlFhuRhMHRQFoi2Gv/Tm03HG2gWYP1TCyVL7YivHfKpZIBYWiTecvIRJWS6t5lk/y0V76BoZ0PMKXdV/vF0gtZruobvLqboFqrJcAGDVAjlUmh1+UFTy0P/63CNDr/P0IwnSFqNjlb/PuXtTiSNJ+Sb8gmOX+vGCD5x3DAwGXHnLYwCCXuXNznKp2Y7X6tg9RnktF1q81RM36ywXjTzoeUJvdR5wEooZ0xbpUlSNtWgaIaL/7l8+C1v2Tc/pUb4Yk+UiK+ZijgwK4i2V5RI3i1FcUDTpJlw0DRwrPJ1Q0VGzgqI0JtvhIdWfW6G3qWkW/WQ6D10jC3qe0DvZIzqwXLJluZiG4c33GaTDmUbYcjn76MU4++jFcxpXkIcuEbpExjT+LGRBxKXqWRKX+WLG3CjSnqrkKe3ittEIzFAguHHLpX0eulboGtnR8x56J1HKWSnKOY/YLkWTNT2HuRhjucj2AJFElpsiEcuAR8anCi0L4gg9XqEn3wBLheB7dpMtF/EpJaTQG7Rc2uah6ywXjQzoeYUOAKetmY+zvOnM2omshUVkunC4WTliqp1pGE2vNgyCosn9SkihZiElIrDDFw7h+28/CyPlAi743G+99agtl7j+I2kFU+L64mY/ahThzJ65KPQ2WS5+RapW6Brp6AtC//E7n9OR7a5aOIiiyXD4wuHM35EzXUQVu3ZRY3nnMkoJeejhbbvL5VHopsFwxuqF2LpvOthekxW6SOiU5dKsqd7icu/zWie+h95qy4XiHNpy0ciAviD0TuG45WN4+IrzUxU28SXn0bx5Ul6/+uC5WDzcnFl5qII1ldC9bWehCtqHIB4QfCuuA2Oc6k310IUbBFXUtsZDb9xy8T30Nlku2kPXyAJN6HNEXrtE9tBJJR+1ZKRpY0rq5aLadhYuk4lF/I5INgZz+4uXC0Zsf5hUD120XFrqoc/dcml92qL7v/bQNbJAnyVtQHDJ84hCT2uK1QjigqIyCr6HnsVyof+jilEkNdp2szx0yghqhUIXb8a589Dp/xYTOo1XK3SNLNCE3gaELBfJbmjFhRpXKSqDfNksZCYTl0ji4kdid8RG8tDFdYTea4GHXgrloedbT7usEOZnuWhC10iHJvQ2YI3XZGv+UEmh0Jv/EwRB0eSWwnnsIkO4KQFhghf/FiekiPfQ04Ki0e+1Pssl5/rb5qG7/2uFrpEFmtDbgA+99Dhc9ebTcdZRiyIeeisu1KKv0JM7EVKlaBYuo94ljsfoceMOLBcztK/PPnKh/3faXKnKIGvTFHpMHnrXNufKXs2roaEJvQ0oFQy85BnLAYQnaQZa8yg9VDTBGDAxm0zofoAzQ54LiXCf0GNsGtFyWSBME3j1pWf5f6ualKnWkfZeI2hWlkvQnKtNhK6DohoZoM+SNkO+/FsRVDMMhpFSAYdma4nLEaFluacQEfqWS8yZQ0q6VDAi8776y6SQc5Zp7hqFeAMNZefkzXLxhqPTFjW6CZrQ24x2tZ4ZGSjg0HQ9cZk8WS5ZFXpRIPR5g+F5X89YuyB1O+I6RDTLcjEMpsylz5+HThZUU4aVsB33fx0U1cgCTehtRhZ7oxkYHShgsprNcskypEvOPgIAsHrBUPi7EnzLxWQRhf6ttz0LGz764tRtqYKizWyPoMruabRSlKu6lTURftqi9tA1MkAXFrUZbVPoGSb+ICWcZUivPX0VXnv6Kv91nKoXPfT50lRzA0VT2RNeRjtyu+s2D9kl+Se4cNFiPtdpixq5oBV6m9GuyzJLB8g8eegy4vilJGS5NENVr5g3MOd1yKD5OUNFRg22z+VoLaMHaYv6UtVIh1bobUa7+rdnmeeUMicaIfRUy6VJQcyfvee52DVRacq6CGRfiDZL/hmLPA89OdV/zqDbhVboGlmgCb1PkYXQVX1ZsiLuxiRmuTQDi0bKWDTSnKZlBCp+EgOhjU5w0WLHxQ9C6zx0jSzQz3FtxhvOWN2W7WSxXMguaOZTQ9EPinbvqUU+/lzSFiEVWrUKtPpW57tr9Ae696rrUxy/YgxbP/Xylm8nS1DUzylv4nabpdC/+KZn4ifvak2f+wFvomuRJEczHC8RQSuEVhM6D21PQyMJ2nLpU2SxXEhdNlP8EZGTrXHde5+HXROzuddzwUkrmjcoCQNFCooG7x29NF/74nbloTtaoWvkQCYZxRg7nzH2CGNsM2PsMsXnb2eMPcAYu5cx9jvG2AnNH6pGHmRR6PO8tMKTVs6b8/buvfw83Hv5ef48q0TsJxw2hhcet2zO628myHIRbZa8hH74Imq4lm0+2UYR3HQ1oWukI/WqZ4yZAK4EcB6AbQDuYoxdyzl/SFjsu5zzL3nLvwrAZwCc34LxamREFg/98EXD+OE7zsKJTSD0+UNuVWiplzx0gSSz5MeL+OBLjsX6tQtx9lGLmzo2Ga2wxTT6F1muujMBbOacb+Gc1wBcDeBCcQHO+YTwchitD/5rpCBr/vbphy9EuZCPzJLQ7LTFViCwXBqnyVLBwHkntP7Jw9EeukYOZPHQVwJ4Sni9DcCz5IUYY+8C8AEAJQAvbMro+hgGa60veuzy0ZatOwnFJqcttgJlISj6g7ef1fS0yGYirV2xhoaIpgVFOedXAriSMfZGAB8F8FZ5GcbYpQAuBYA1a9Y0a9M9iY0fb60jlddCaBZ6QaHT2EyDYf3ahSlLdxZ+0FV76BoZkIXQtwMQk6dXee/F4WoAX1R9wDm/CsBVALB+/fqntS2T1hO8V/GSE5ZjtmbnTgNsJ+gpohdUb5CH3tlxaPQGssiouwCsY4wdwRgrAbgIwLXiAoyxdcLLlwN4tHlD1GgUN73/HPzdy45v6zaPXjqCD77k2K7OyqCUyl5IBQzy0Lt/rBqdRyqhc84tAO8GcAOAhwFcwznfyBi7wstoAYB3M8Y2MsbuheujR+wWjfZj3bJRXPKctZ0eRteh6PeB7/BAMsBPW+zwODR6A5meiznn1wG4TnrvcuHv9zV5XBpNQt6JG54OIMulbre4s1YToEv/NfKgeyNXGk1Bqycx7kUQodfs7g/j2C2o5tXoX3Rv5Eqjabjk7LW44MTlnR5G14CyXLRC1+g3aEJ/GuBjr3pGp4fQVaAq1rrVC4TuBUX1s7RGBujTRONpBwqK1npAoevmXBp5oAld42mHYg9ZLro5l0YeaMtFo2Gcd8IyHNaCOT9bDT8oanV/UFQ359LIA03oGg3jK29Z3+khNIRyDyn015y2Ej9/YCdOXT2/00PR6AFoQtd42kE1BV234sUnLGvLDFca/QFN6BpPO7zouKV4x/OPwl8978hOD0VDo6nQhK7xtEPBNPB/zj+u08PQ0Gg6dJaLhoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn4BRv+W2b5ixvQCeaPDriwHsa+JwmoluHZseVz7oceVHt46t38Z1OOd8ieqDjhH6XMAY28A578rOUN06Nj2ufNDjyo9uHdvTaVzactHQ0NDoE2hC19DQ0OgT9CqhX9XpASSgW8emx5UPelz50a1je9qMqyc9dA0NDQ2NKHpVoWtoaGhoSNCErqGhodEn6DlCZ4ydzxh7hDG2mTF2WYfHspUx9gBj7F7G2AbvvYWMsZsYY496/y9owzi+xhjbwxh7UHhPOQ7m4t+943c/Y+yZHRjbxxhj273jdi9j7GXCZx/xxvYIY+ylLRzXasbYLYyxhxhjGxlj7/Pe7+hxSxhXR48ZY2yAMXYnY+w+b1wf994/gjF2h7f9/2aMlbz3y97rzd7na9s8rm8wxh4Xjtep3vvtPv9Nxtg9jLGfea9be7w45z3zD4AJ4DEARwIoAbgPwAkdHM9WAIul9z4N4DLv78sA/HMbxnEOgGcCeDBtHABeBuAXcCeSfzaAOzowto8B+FvFsid4v2kZwBHeb222aFwrADzT+3sUwJ+87Xf0uCWMq6PHzNvvEe/vIoA7vONwDYCLvPe/BOAd3t/vBPAl7++LAPx3i45X3Li+AeC1iuXbff5/AMB3AfzMe93S49VrCv1MAJs551s45zUAVwO4sMNjknEhgG96f38TwKtbvUHO+a0ADmQcx4UA/ou7uB3AfMbYijaPLQ4XAriac17lnD8OYDPc37wV49rJOf+j9/ckgIcBrESHj1vCuOLQlmPm7feU97Lo/eMAXgjgB9778vGi4/gDAC9ijDV9Vu6EccWhbec/Y2wVgJcD+Kr3mqHFx6vXCH0lgKeE19uQfLK3GhzAjYyxuxljl3rvLeOc7/T+3gVgWWeGFjuObjmG7/Yeeb8m2FIdGZv3eHsaXHXXNcdNGhfQ4WPm2Qf3AtgD4Ca4TwOHOOeWYtv+uLzPxwEsase4OOd0vP6fd7w+yxgry+NSjLnZ+DcAHwbgeK8XocXHq9cIvdvwXM75MwFcAOBdjLFzxA+5+/zU8bzQbhmHgC8COArAqQB2Avj/OjUQxtgIgB8C+BvO+YT4WSePm2JcHT9mnHObc34qgFVwnwK6YqZteVyMsRMBfATu+M4AsBDA/2nnmBhjrwCwh3N+dzu322uEvh3AauH1Ku+9joBzvt37fw+AH8M9yXfTI5z3/54ODS9uHB0/hpzz3d5F6AD4CgKLoK1jY4wV4ZLmdzjnP/Le7vhxU42rW46ZN5ZDAG4BcBZcy6Kg2LY/Lu/zeQD2t2lc53vWFeecVwF8He0/Xs8B8CrG2Fa41vALAXwOLT5evUbodwFY50WKS3CDB9d2YiCMsWHG2Cj9DeAlAB70xvNWb7G3AvhJJ8aXMI5rAbzFi/Y/G8C4YDG0BZJn+Rq4x43GdpEX8T8CwDoAd7ZoDAzAfwJ4mHP+GeGjjh63uHF1+pgxxpYwxuZ7fw8COA+uv38LgNd6i8nHi47jawHc7D3xtGNcm4SbMoPrU4vHq+W/I+f8I5zzVZzztXB56mbO+ZvQ6uPVzIhuO/7BjVL/Ca5/93cdHMeRcLML7gOwkcYC1/f6FYBHAfwSwMI2jOV7cB/D63B9ubfFjQNudP9K7/g9AGB9B8b2LW/b93sn8gph+b/zxvYIgAtaOK7nwrVT7gdwr/fvZZ0+bgnj6ugxA3AygHu87T8I4HLhOrgTbjD2+wDK3vsD3uvN3udHtnlcN3vH60EA30aQCdPW89/b5vMRZLm09Hjp0n8NDQ2NPkGvWS4aGhoaGjHQhK6hoaHRJ9CErqGhodEn0ISuoaGh0SfQhK6hoaHRJ9CErqGhodEn0ISuoaGh0Sf4/wG2WSuQME7B4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Simulator Tutorial.html b/notebooks/Simulator/Simulator Tutorial.html new file mode 100644 index 000000000..dfbe8f2a2 --- /dev/null +++ b/notebooks/Simulator/Simulator Tutorial.html @@ -0,0 +1,674 @@ + + + + + + + + Contents — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the basics of initializing and using the functionalities of simulator class. Various ways of simulating light curves that include ‘power law distribution’, ‘user-defined responses’, ‘pre’defined responses’ and ‘impulse responses’ are covered. The notebook also illustrates channel creation and ways to store and retrieve simulator objects.

+
+
+

Setup

+

Import some useful libraries.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import relevant stingray libraries.

+
+
[2]:
+
+
+
from stingray import Lightcurve, Crossspectrum, sampledata, Powerspectrum
+from stingray.simulator import simulator, models
+from stingray.fourier import poisson_level
+
+
+
+
+

Creating a Simulator Object

+

Stingray has a simulator class which can be used to instantiate a simulator object and subsequently, perform simulations. Arguments can be passed in Simulator class to set the properties of simulated light curve.

+

In this case, we instantiate a simulator object specifying the number of data points in the output light curve, the expected mean and binning interval.

+
+
[3]:
+
+
+
sim = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=False)
+sim_pois = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=True)
+
+
+
+

We also import some sample data for later use.

+
+
[4]:
+
+
+
sample = sampledata.sample_data().counts
+
+
+
+
+
+

Light Curve Simulation

+

There are multiple way to simulate a light curve:

+
    +
  1. Using power-law spectrum

  2. +
  3. Using user-defined model

  4. +
  5. Using pre-defined models (lorenzian etc)

  6. +
  7. Using impulse response

  8. +
+
+
+
+

(i) Using power-law spectrum

+

By passing a beta value as a function argument, the shape of power-law spectrum can be defined. Passing beta as 1 gives a flicker-noise distribution.

+
+
[5]:
+
+
+
lc = sim.simulate(1)
+plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)
+
+
+
+
+
[5]:
+
+
+
+
+<ErrorbarContainer object of 3 artists>
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_16_1.png +
+
+

When simulating Poisson-distributed light curves, a smooth_counts attribute is added to the light curve, containing the original smooth light curve, for debugging purposes.

+
+
[6]:
+
+
+
lc_pois = sim_pois.simulate(1)
+plt.plot(lc_pois.time, lc_pois.counts)
+plt.plot(lc_pois.time, lc_pois.smooth_counts)
+
+
+
+
+
[6]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd1d29c10>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_18_1.png +
+
+

Passing beta as 2, gives random-walk distribution.

+
+
[7]:
+
+
+
lc = sim.simulate(2)
+
+plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)
+
+
+
+
+
[7]:
+
+
+
+
+<ErrorbarContainer object of 3 artists>
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_20_1.png +
+
+
+
[8]:
+
+
+
lc_pois = sim_pois.simulate(2)
+plt.plot(lc_pois.time, lc_pois.counts)
+plt.plot(lc_pois.time, lc_pois.smooth_counts)
+
+
+
+
+
[8]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd3f9b9a0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_21_1.png +
+
+

These light curves can be used for standard power spectral analysis with other Stingray classes.

+
+
[9]:
+
+
+
pds = Powerspectrum.from_lightcurve(lc_pois, norm="leahy")
+pds = pds.rebin_log(0.005)
+poisson = poisson_level(meanrate=lc_pois.meanrate, norm="leahy")
+plt.loglog(pds.freq, pds.power)
+plt.axhline(poisson)
+
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.lines.Line2D at 0x7fccd359b610>
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_23_1.png +
+
+
+
+

(ii) Using user-defined model

+

Light curve can also be simulated using a user-defined spectrum.

+
+
[10]:
+
+
+
w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]
+spectrum = np.power((1/w),2/2)
+plt.plot(spectrum)
+
+
+
+
+
[10]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd5485b80>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_26_1.png +
+
+
+
[11]:
+
+
+
lc = sim.simulate(spectrum)
+plt.plot(lc.counts)
+
+
+
+
+
[11]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd6506550>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_27_1.png +
+
+
+
+

(iii) Using pre-defined models

+

One of the pre-defined spectrum models can also be used to simulate a light curve. In this case, model name and model parameters (as list iterable) need to be passed as function arguments.

+

To read more about the models and what the different parameters mean, see models notebook.

+
+
[12]:
+
+
+
lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[12]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccb6d9b4f0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_30_1.png +
+
+
+
[13]:
+
+
+
lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[13]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccb6dfddc0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_31_1.png +
+
+
+
+

(iv) Using impulse response

+

Before simulating a light curve through this approach, an appropriate impulse response needs to be constructed. There are two helper functions available for that purpose.

+

simple_ir() allows to define an impulse response of constant height. It takes in starting time, width and intensity as arguments, all of whom are set by default.

+
+
[14]:
+
+
+
s_ir = sim.simple_ir(10, 5, 0.1)
+plt.plot(s_ir)
+
+
+
+
+
[14]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd66015e0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_35_1.png +
+
+

A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default.

+
+
[15]:
+
+
+
r_ir = sim.relativistic_ir()
+r_ir = sim.relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)
+plt.plot(r_ir)
+
+
+
+
+
[15]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd65955e0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_37_1.png +
+
+

Now, that the impulse response is ready, simulate() method can be called to produce a light curve.

+
+
[16]:
+
+
+
lc_new = sim.simulate(sample, r_ir)
+
+
+
+

Since, the new light curve is produced by the convolution of original light curve and impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter full.

+
+
[17]:
+
+
+
lc_new = sim.simulate(sample, r_ir, 'full')
+
+
+
+

Finally, some times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to filtered.

+
+
[18]:
+
+
+
lc_new = sim.simulate(sample, r_ir, 'filtered')
+
+
+
+

To learn more about what the lags look like in practice, head to the lag analysis notebook.

+
+

Channel Simulation

+

Here, we demonstrate simulator’s functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where you can create a new channel for each energy range and simulate.

+

In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, there is an option to simulate light curves and add them to corresponding energy channels.

+
+
[19]:
+
+
+
sim.simulate_channel('3.5-4.5', 2)
+sim.count_channels()
+
+
+
+
+
[19]:
+
+
+
+
+1
+
+
+

Above command assigns a light curve of random-walk distribution to energy channel of range 3.5-4.5. Notice, that simulate_channel() has the same parameters as simulate() with the exception of first parameter that describes the energy range of channel.

+

To get a light curve belonging to a specific channel, get_channel() is used.

+
+
[20]:
+
+
+
lc = sim.get_channel('3.5-4.5')
+plt.plot(lc.counts)
+
+
+
+
+
[20]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccb763d340>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_49_1.png +
+
+

A specific energy channel can also be deleted.

+
+
[21]:
+
+
+
sim.delete_channel('3.5-4.5')
+sim.count_channels()
+
+
+
+
+
[21]:
+
+
+
+
+0
+
+
+

Alternatively, if there are multiple channels that need to be added or deleted, this can be done by a single command.

+
+
[22]:
+
+
+
sim.simulate_channel('3.5-4.5', 1)
+sim.simulate_channel('4.5-5.5', 'smoothbknpo', [.6, 0.9, .2, 4])
+
+
+
+
+
[23]:
+
+
+
sim.count_channels()
+
+
+
+
+
[23]:
+
+
+
+
+2
+
+
+
+
[24]:
+
+
+
sim.get_channels(['3.5-4.5', '4.5-5.5'])
+sim.delete_channels(['3.5-4.5', '4.5-5.5'])
+
+
+
+
+
[25]:
+
+
+
sim.count_channels()
+
+
+
+
+
[25]:
+
+
+
+
+0
+
+
+
+
+

Reading/Writing

+

Simulator object can be saved or retrieved at any time using pickle.

+
+
[26]:
+
+
+
sim.write('data.pickle')
+
+
+
+
+
[27]:
+
+
+
sim.read('data.pickle')
+
+
+
+
+
[27]:
+
+
+
+
+<stingray.simulator.simulator.Simulator at 0x7fccd6629640>
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Simulator Tutorial.ipynb b/notebooks/Simulator/Simulator Tutorial.ipynb new file mode 100644 index 000000000..00fa37407 --- /dev/null +++ b/notebooks/Simulator/Simulator Tutorial.ipynb @@ -0,0 +1,886 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of initializing and using the functionalities of simulator class. Various ways of simulating light curves that include 'power law distribution', 'user-defined responses', 'pre'defined responses' and 'impulse responses' are covered. The notebook also illustrates channel creation and ways to store and retrieve simulator objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, Powerspectrum\n", + "from stingray.simulator import simulator, models\n", + "from stingray.fourier import poisson_level" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a Simulator Object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has a simulator class which can be used to instantiate a simulator object and subsequently, perform simulations. Arguments can be passed in Simulator class to set the properties of simulated light curve. \n", + "\n", + "In this case, we instantiate a simulator object specifying the number of data points in the output light curve, the expected mean and binning interval." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=False)\n", + "sim_pois = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also import some sample data for later use." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "sample = sampledata.sample_data().counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are multiple way to simulate a light curve:\n", + "\n", + "1. Using `power-law` spectrum\n", + "2. Using user-defined model\n", + "3. Using pre-defined models (`lorenzian` etc)\n", + "4. Using `impulse response`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (i) Using power-law spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By passing a `beta` value as a function argument, the shape of power-law spectrum can be defined. Passing `beta` as 1 gives a flicker-noise distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5sElEQVR4nO2dd5gV1fnHv+82ll6XDi5dEBBwxQJKFRCMJb+YaIyxhsQSNSYaQKNGTULUqDFqDFGsaIyKDRBFSrAAsjTpvcPCgjRZYFn2/P64M7t3706fc2fO3Pt+noeHvXPnnnln5sw757znLSSEAMMwDBNdMsIWgGEYhvEHK3KGYZiIw4qcYRgm4rAiZxiGiTisyBmGYSJOVhgHbdKkicjPzw/j0AzDMJFl0aJF+4QQeYnbQ1Hk+fn5KCwsDOPQDMMwkYWIthptd2xaIaKJRLSXiFbEbXuciNYQ0bdE9D4RNZAgK8MwDOMCNzbyVwCMSNg2A0B3IURPAOsAjJUkF8MwDOMQx4pcCDEXwHcJ2z4TQpRpH+cDaC1RNoZhGMYBMr1WbgTwidmXRDSaiAqJqLC4uFjiYRmGYdIbKYqciO4DUAZgktk+QogJQogCIURBXl61RVeGYRjGI769VojoegCXABgiOAMXwzBM4PhS5EQ0AsC9AAYIIUrkiMQwDMO4wY374VsA5gHoQkQ7iOgmAM8CqAtgBhEtJaIXkiQnwzAeOXqiDNNXFIUtBpNEHI/IhRBXG2x+SaIsDMMkgbGTl+OjZbsw/a4LcHrzemGLwyQBzrXCMCnO9gMxq+fRE6dCloRJFqzIGYZhIg4rcoZhmIjDipxhGCbisCJnGIaJOKzIGSZirNx1CBx7x8TDipxhIsRnK4sw6pkvMXnxzrBFYRSCFTnDRIgNxd8DANbtPeL4Nzx4T31YkTNMhNCVMoHCFYRRClbkDBNByIceP3TsJPZ9f0KeMEzosCJnmDSj98OfoeDRzys+L91+EPljpuKlLzeHKBXjB1bkDBNB/BhWyhNs5pc/9xUA4JEpq3y0yoQJK3KGiRDsdsgYwYqcYSJExWKniyG5H3s6Ew1YkTNMBHHjtcKD+NSHFTnDRAhdJz87ewNmrdkTqiyMOrAiZ5iIUF4uMGvN3orPN75SGKI0jEqwImeYiDBpwVYs3X4wbDECQwiB+z9YjtW7D4ctivKwImeYiLDj4LGwRQiUosPH8cb8bbj+5W/CFkV5WJGHyN3/XYr8MVNDO/7Og8ew5/Dx0I7PuCPdwvIzNXebPYdPoDzR+Z2pguPiy4x8wspgd/JUOTrd90nF5y3jR4UiB+OOdHMjzMyoPOHjZadQK6dSXZ08VY6l2w/i7PxGYYimHI5H5EQ0kYj2EtGKuG2NiGgGEa3X/m+YHDHlsPPgMZz1yAxs2Xc0bFFCpYSL8KYM97yzzHHelMQXgerBRfGKPJHHpq/BlS/Mw7UvLQhQInVxY1p5BcCIhG1jAMwUQnQCMFP7rCwfLNmJ/UdL8Xbh9rBFYRgpvLNoB/4ybY3lPvoC6R8+WIEXv9hUsX3xtgNKK3OymIKs2xNL5/vF+n2G37/y1Wac8cD0pMilIo4VuRBiLoDvEjZfBuBV7e9XAVwuRywmWZSXC7w6b0vYYjAeMFNrTk0uK3cdxqNTV1d8/r9/zsOHS3f5FywE7M75oY9X4Whp+sw8/S52NhNC7Nb+LgLQzGxHIhpNRIVEVFhcXOzzsIxXpq8swpMz1oUtBuOBZNjIN+z9Xn6jAZBmywW2SPNaEbE5muk8TQgxQQhRIIQoyMvLk3VYxiXfnygLWwTGIyVpNMIEgG93HDT9zsrsko74VeR7iKgFAGj/77XZn2EYj7z81ZawRQiUjRGdLYSBX0X+EYDrtL+vA/Chz/aSysZi7hg8jmHiEeaTaCZCuHE/fAvAPABdiGgHEd0EYDyAi4hoPYCh2mdl0f22i4/E3LXyx0zFmPe+DVOkwOHHNvVQ2PHEF2w+cY4br5WrhRAthBDZQojWQoiXhBD7hRBDhBCdhBBDhRCJXi3K85+F4bgiquz2xUSL9xbvQGlZedhiSMerHj9+Mr3WEgAO0Q+Ndwp3hHJcHuOkJkeOn/T0O5XHE/F9NVFOq37c/6+zkyGO0qSlIldBmX210TiQgWGY6rh53ziNdE0l0lKRB8m6PUewM82y1jEMEyysyJPMsKfmot/4WdW2qzilXbT1AKZ8G81Iv6jyhw9WYNz7y0M7voLdsJI4I3nimtLMNezpHA8r8pD4aJl6CvP//vk1bn9zSdhipBWvz9+KNxdsC1sM5Sl49HMMfmJO2GIoS1oq8nT2amKXLiaKnCgrxyaPWUsnfrkZI56eK1kitUhLRR4V3lywDX/8eGXgx12y7QDue385u0imASrf4j98sMJ+Jwc8PGUV1hQdkdKWqqSlIg+i8w56Yo7v6j/j3l/uOyy77FQ5fvzCPHy1wbmXzE8mzMekBdtwIgV9k4Ok7FQ5np+zAcfSLEeKE7btL8GyNKo/mmwipciPHD+JW95Y5Nu96OuN+yVJZM5mF9NAu5Hvd0dLPcux7/tSfLPlO9z936U4VS6cjfAVHqUFQeGW71BS6j+52PtLduKx6Wvx9Exn2SY37D2CAz7utReKDoXjUXXh47Nx2XNfhXLsVCRSivydwh34ZEURnp21wVc7J0+FN9I8fPwkPlhStcSb3Qzh/SX+S8LtOXwCCzbtx5Hj9gqqVLs+6WhOLzp0HD96YR7uedd/6obtB2JK0umIfOiTc3HRU3JtuXa1LlclVKi/9NkvpR6fCYZIKXJZ7D0SXsDAve98i7veXhrKsd3Wr023Yr8AcFQbia/eddh0n5+9uABTv91t+r3OMzPXAwAyXLwRvc42E29taVk58sdMxchnvrD83dGEsn/f7jjk6fiqcrCkcoZTUlqGWWv2hChN8khLRQ5Y5zpOJrsNqtarYMk4VFI9xDsdR+RO1k++3LAPt7252HGbbhS5V95fvLNKnz6q5Z23W+RTKVjt0LGTmC3ZP3zok5UznDHvLceNrxTaFtM4cLQUp9yOekImbRX5jFWp+WZOxKkOGTM5vbJA2iJR91rUEDbksIe8KX+athqXPltpc5b17jhwtBRrA/L4uHXSItzwykKpIfbxbW3ZH1u3OmpRXOXoiTL0fmQGHg7BW8wPkVLkMgc2ekpbI1btOowPl/q3SxtiMOQLys3vz9NWm37nZ0GVsSbDpSZ/QJLbnVduemUhXp+/FQBw6XNfYnhAPtibimOKNkxvKV3JT1tRFJoMXoiUIteRofisppQjn/kCd/5nqe9jOGWFhT0WkKfoExe2dE6UnTI076jsY5w8rE+62MP6yh4Dc5oVh455y2Qoi5lr9lb4cG//LjjTi/66CzN+IapdPlKKXL/Ra/ccwSat2s/mfUfR5f5PsHW/t6gvFbj8ua9Czdi2YmdqLXAlk9fnbXH9m9UmL1AzZCiTKC5U61HHdnr8+Tn+vNasuOL5mHnKyws7TCKlyHXmb/oOg//2PwDA5MU7cKKsHB8utc5donqUYqKL2qNTVvlqTwiBmav3+Fq0OXTsJPLHTMXHCuaFCQsvKQ6yMtw9Zn66qp27YSrw2PS1SWu7baNaSWs7mURSkcfjtNPvOuRueuuV8nKBMg9+6onn8eKXm33JMW15EW56tRAT5m5ytL+RXVIPakqUZd2eIymvMDYVH8UZD0yvtj3T7colgCt6t3K1v58re8Fjs9HjoU/x+vwtPloJh3T0kpJFpBR5FBI+3fX2UnS875OwxUCRZpd95estjvZ3Gi69evdhDHtqLv7hMyhLVU6eqlSjRw0CeTzocWRluvuR2eyxT9sGtr/97mgpjhwvwxOfOYsmVZFkTZ7d+si7XdsIk0gpcj8E9QqwTU/r4GWkSm4Oo0W33VpI95LtB4IWJxDsTFFOBxPxgShOfvHfQvvasT1bN7Dd51iE61Xql1a4nJNYuRO6Jf4lsnV/ibR2k40URU5EvyGilUS0gojeIqJcGe0msqbI3aKRSrhRzkdOhOu1oPOL1wqrbdMX0ZyOmspOlePZWeuVeTn5xUlwz7HSU1UCcZy4H85cXRnXsPew8ULbspCC2Mz4Yn0x8sdMleZo4LZv6Ux0aYZcuMVZjXgvs6+w8K3IiagVgDsAFAghugPIBHCV33aNeOsb7xXvw7bK3Pue84CbICIB4ylxo2Rdivbfwh144rN1+Mes9e5+mATeXLAN8zdZJ0wrt9EimQ6emOte/gZXTZhf8dnskp0oq7zu8Yddu8c4AGfJtoP2B08SRuYePRZj0VY5s7PKEbk5urdaPKdcav5Hp5rHUxjJEwVkmVayANQkoiwAtQAE7uaQjGsuM1x4pY2LX/x0MlGRJ3tt4NqXvrH83s/Rj2tTfVcviyQx7v3luGrCfGwq/h7bTKbNdm57T86wtz1/szlhxGdy/87980zbtnTe+ibcKkLTllcPkFkqOQ2tEz/yfd9XD1xLnqtldDS5b0UuhNgJ4AkA2wDsBnBICPGZ33a98NSMdcgfM9XQzunlZt/wykJ5ORccHP6DJTuRP2ZqhfJTkcOa3TxqPitD/zan4u/Bf/sfLnx8tqd2jp9075FkdusPGOS3MWPs5PDqegLA/qPVzT26V5PfccaWfUcxc/UeR9HFMsc0K3cdsnxppNWInIgaArgMQDsALQHUJqKfGew3mogKiaiwuLjY72EBVA9k0QMFXvpyEzbslZMfQta9tGuHQBXZ8nYnuEp6CU6Q6TcfP/LSI14j1McBAP075flu45Pl9hkPjYiSQjBD5imUJri6DnxiDm56tRCHtRTLQQwSZqzag1HPfIn3LFJ1eKGktAzrTUxjyUSGaWUogM1CiGIhxEkAkwGcn7iTEGKCEKJACFGQl+f/oQKAS/5RNXeyrrv+PG1Nte+8PkyyOpWdeaTqSn3Vo77wv42SpJCP3SKmKiN3O9u4jpXHxC2TrDMeCmFcuMPJmocq18kUiW+jR2yC3azGIDsOyPEk2ajZ2hOVbvxpejnj0a8twkVPzQ08e6IMRb4NwLlEVIti2moIAGerCRKIf/DiL13iFFj1QdE7hTs8F5fdVPw98sdMxacrizBz9R7c8dYSydIZ8/GyXej6wHTXIehhEETNxi37SwxL8+U4WCGdu07OLDVZyHx+nHqNGPH5qurrVvHKd9z7zkxQZi8LvxPZrzc6L6kokyy/DQghFhDRuwAWAygDsATABL/tOuW52bHR6tHSU9bmBIc9MXHaFxTPzq4MsFm3xzpfciJ6oMO05bsrUhX0bF1fnnAm6IvBK3cdRtcW9ZJ+vCBIRjCKkybTqT6q/TV29xzHb3pzgctFYQu9EKWc5FK8VoQQDwohThdCdBdCXCuECDzjzKFj5gsldjckf8zUikCXfuNnVflOlq15w97vMc2hjfVVh9GYTCVz18V8mot8pmKwcz9MZMeBEtz99tLQBgBBYWVZke01YnULZLnmOgk6cqvIN+87WlGFK+jcTikV2Zl46Ub+/QsIIdBh3DT0/ZO1q5c+tc12GU7thlsnLU7KkM9tJFwq8oaWP3vp9oM44qEwg47bK3nf+ysweclOfLVxn6k6M92uuL0vPtXzip2HpeWs99NfZV0y/TG0egm5lXLQE3M8y+OXFFLk1W/Iqt2HKwoJO8Xtzes3fhZGPD3XdgFH51sHKWPdjgr/4yNQSgZOHq6glNaaosPo8dBn1Qpch8kzJsFQiutxrItbCHzrm22+CzMfLCmtkrrADKveL6sfPf5pLINioiNBFZcDH+OjoPNCpZAiN77wX6zzt/hgdy93HjyGNUVH8JLDMGEnncNtB1qQGIASACWlZUrNA3RZ9IXX/3lcPHR77eN3LzOZipvl7Ag6gtctidLtOGBcZMLpafR6eAZ6PTzDdj+3S12yLuPKXYeqB3N5hE0rknE7uvVz/f1M6eMxUwhuSHY/iq++roI+0muw6lPl+PB3N9Sukelq/3hvk3cX7XD1W6v7/K//baxwkYsKPR78FDe/utB2P7u+6db08sRn6/Cah4IflfLEjnf9y1Vlj5LJMmUUuSxlUuQjdeXIZ76QIsNmj26I8SQGFckmI8PdqGPZ9oPSgrSs0AsXG4WUO6F2jndHrmOl8rLw/eWTNfjxC/OkteeF711mFTxyogyfr7ZPa2HXa4QAOt03zfA7s1mM03TNRsSnLo5n+3dplv1QBY6bBKaM8Rna7GZkG2R9QzsmfuWvMIUd8YtETl6ii7cdxNAnk1/E9+uN1QN/xk52nrDMzf1ekBBkJNsuul9bXJQVBOOW299MTjzCbot6uQBw8d+/MFWuZgsLfmagZeXG62i/f285Vu6KRhnElFHkk00Wt7g6fHJwqrNUKLHnJmummxnZU59XJtAi2F+Tm15ZiKc/d1/w4Qf/8LfIqBpGBTucYuZl4taEGs/JMvPfLtjkzWYedK9PGUXuF7MOEiU7WdCm6uhcGWOmr9iNL9ZXXRT98zTnQcnzEx5yu8XLmWv24unP3aXzveL5r1wl10p1zC6xjPGCUdPHy05FIpc+K3KXCCHw2rwthtVzwiC+OkqQipWAiihSK1/cIB6CEo+26V+9sbhaCl+ja1h2qhzjP1lj255VIQInFYCMCDMHuVMWS8pH7oRk+ORbDdYem74WXQ1qt9rx8bJdyB8zNbBiOKzIdRx0hAc/XIGeD32GBz5ciXEhpxXViZ9SBpnzZOdBZyaIkx4KUbvljAc/TWr7n6wocpS4zGpEfu+7zu30UePVeVvDFsGXaSUZ3P3fZQCAW9+wTrQmC1bkNsT3j1fnbcURbQR8wEFgQxDEL7C5zdHih3gFbbUgFMTMReozbNCY41BtBdwww+KwgevtjgMlFRG3sjB7V27/7hj6/3WW8Zc2yOg/Ya8FsSLXcPsMBn3f9n1vnL5GBd3x7y82Y9aaPSgpLcPnq/ZU+S5xtBalRESMc4wKX1zz4gLc/8EKqS9zq1mPWcCSDOxyjL+90Nh0FlRvZ0UeEdaapGENKzowsVr7ln0lGDd5OW5+rdBUVgCGIdq3vLEIc9bKK6un8+FSZ2H6dsFDKgQ8qc4uA5fCCo8xidosGQMBvcW9FgVcLnrK2nV2+krzuIUbX1mItxcmt1QfK3KNoHMjuEU16RKz/REBW7UACreBJJ+sKKoWVScDpznIF289iIMlpfh64z5PpdwA9/3H6wKtqlhdtz1HjjuqdeqEZJjq9n1/okpeGZnsPXwcs9bsxe/fS+6amu985KnEfQ6T0gMhuCWqpsk9knjVkmlbdNo0EXDdywuxTHIxYSt6PBRKWdukUZ4wUp65eg+OaKXbhtmMZt2QjBG5X/nu/2A55qw1zu0T7zO/fs8REBE6Nq3j63hGsCKPY5JBUnpVFsP/9tk6HBt4CkO6NquyXU0/d4Ht35XgdYOFLlWuZzwEa48fJ7bX6yZ+Y7tPPKm2VpDYD10XeIgAx0pPoWZO9Vw8b8x3dq66eWbL+FFS5QLYtFKB6gPeRVsP4KZXC6ts23XwGFbsDMblcMm2A/h6g/NMkrdOWowJczfZ7qeCYs+wcgBHZcpTBpi9dq/h2oPX95LbOIMwu8s3PkrUJRsekWt8/O2usEVwxZJtB3DF818Hdjy7YyWqQjP/cTcziJOnynGqXCA3211GQrfHotjOjANu0NYyLj2zpeV+TpcM3AbbhOnmZ3RKBxRJAcIjcg0zG5dqpgs9X/L6AH3GneJlVmN1dX/4/Nc4/Q/uo+rcQqTefVadxPQEiQp2rs86ACpi5CF2wWOzQ5CkOqzII8bjn8ZCxSOreFyIvdxBNSU5kBImniiR6D2ysbhq6mW3lbmcsklCimevEAGLtx3A9BWVtXfdemglC1bkHgn7BqqmeHbapCY1YvO+o45C+PfEZSScvWYvXnGYovdf/7O30QPeZE93zFK/JhuzaktBQIjNEn8VUNi9G6QociJqQETvEtEaIlpNROfJaFcFzBRmUIuMZiimx/HvL6oq1w17jU0/uty7Dx3DoCfmYICDqWl8+a0bXlmIhz52Vh/VKWuLDptez7BDrxnGCbIWO/8OYLoQ4kdElAOglqR2lUAIgcURyEKnEmZlzHS9qBfhqF8rG3ssIur8snW/v6n4HI+1P5nU5lDJSbyzKNyi5/H4VuREVB/AhQCuBwAhRCkANZZyJXD4+EkMemKOYfhumKO1qA8Ufz5xgel3W/cfRXZm5WTRz6lahV3rEMj0XhYn8SUTZUpOqJ+jWzbxRUfOfFitgC4ZI/J2AIoBvExEZwJYBOBOIUSVoRARjQYwGgDatm0r4bDBMOypuRURaomEqUyjutipy62HdBtdwwGPz6ny+Y63lqDo0DGMvrCD6+Nd6aDuZQaZvyyiUFQgDKLa//zwlIfqTkEhw0aeBaAPgH8KIXoDOApgTOJOQogJQogCIURBXl6ehMMGg5kSB8KxU+tFHFQekVvJ9siUVeh83yeV+zps88/T7As7+MFM5gc/WpnU40aVRMtZTmbq+02EtL7rCBlXfweAHUIIfa78LmKKPeXZWBy8L/c3W76DENEdD01bXmTomqZ4zjKpbA7RhU4WiS+++Ht6xCA3OZNcfCtyIUQRgO1E1EXbNASAXLcCRZGZDMgNG4u/V3tIHjGCznw56Ik5vn7/8e395QjiA6uhRKolBNNR2YNJltfKrwFM0jxWNgG4QVK7jAHFR0ojOyJXkajNBnq0rh+2CGk5jth1yFl5wzCQosiFEEsBFMhoi7Hn6n/Px+gL24ctRjW8uGgmjnLCGPUcVSQ6L0qoPDpNR1J/hSJFSdVoRLdZ9LZIsDcnBjMx9rAaVwtW5FGFnyQAwK/eWBS2CGkJD8jVghV5RFmy7UDYIkhBVwhU8dmdhmCFEg7bvgsv5wlTHc5HHlFUXnhxg57NTjepODWt/PL1Qnx/oixyC5WpwktfsjlKJViRM0oRnyDLik9X7gEAnN68bjLFYZhIwKYVRilOqhw+pxCNa+eELQKjEKzIGaVIrMbOGHNZr1a+fv/Bbf0kScKoACtyRims9Pjew9XXBYKOylQFv0kaerVpIEcQRglYkTPK8POJ31h6rfT988wApVEbt946mRnp+cJLFyKlyLkvpjZz1xW7DghKV2pku3t0rz33tIq/n78mLXLapRWRUuS1a6jjZNOuSe2wRfDNA5d0C1uEarj1I0/Xd3vN7EzH+w7t2qzK55E9WsgWhwmZSClylR7aOgq9VLzSskHNKp9/P+L0kCSpZNz7y13tn6Ymclczl9+P6GK/ExMYx0/KL1YSLUWerk9tkhh+RtWRWpYCtiuVZl0qkle3RuwPlzOX5vVzAaTvi08l5m3aL73NSClyRi6JL0YVHvIdB1IzGZgsdP09onvMPNK2kX2dc6LKGeTVfaNTZpFxTqQUuQqKRkdGjZ47BneUIIk8ojjjiaDIUujWsh62jB/Fka0m5De2f8GlEtFS5GELEIeMZE29T2vov5E0Z/XuI2GLEDBVO56zF1nlTlFLMlbXo6ntpevPliyJ2kRKkauEjAdCpReTTILUFafYXzGlqVgTcEnDWgqnMEhCl42UIo/a1P9PV3T3/NvbB3XE12MGS5TGHllrnVEb9UWJJ648U1pbCqxt22Lm5munChqlWS6aaClyCW3kZMk5ZSe6imwkrpubbfpdw9o5aOpxNGLE8oeG2e4j67kuZ02eFG4b1AEDuzR1/TsiY8W3/KHhEqQKh6UP2PfndCJSilwGQQ5CerSyLpJbv6a5/U92TUSrl4aOrBkPK/JoEBVXzy/uHVTN26Z+Tfv+nE5ESpGrZFpxomjtqp13bGrucSCEPFPamIuDDfRhPZ4c7GZ45r8DzmgZ64vnd2gsUaJgaNOoFprVkzc7DZsTZfJTNUtT5ESUSURLiGiKrDaTQVR0TLkQ0mYPI85o7mg/We/JVFfkXhfgwqRXmwZY9sAw/ODMlqb7jL6wfYASpS9Fh+THSsgckd8JYLXE9qohQ9HIUo5riuS4vZ1l4oIoAGRlBjthknVtZPjYq4zTtQunL1A/6KN0q7S0WRmxflS/VnVzxL+uPQsttKjPM1rWky+gTxSahEsjGZYFKZqCiFoDGAXgRRntmR4nmY0rRp+2MQV/z/Dg8mTMd1hmzY7X5m2V0k7UeeHas5J+DP2l+UuL0XRbi+CY4Wc0R+dm6gcVpdIsLxkvJ1lDvqcB3AvA1PhDRKOJqJCICouLiz0dpFaO84xvUadvu0YA5Cx6Om2hVJLtbsaqPVLaYRidFNLjSRmQ+lbkRHQJgL1CiEVW+wkhJgghCoQQBXl5eZ6O9eJ1cqO1/v3zAqntRZ0o+BUzVfG6AFqlDa0JpUe9Sgvnjlo58r2FZIzI+wG4lIi2APgPgMFE9IaEdqvRumFN+51sGNqtmf1OKYbTUX1GKhokU5wGmt07NzsTNTzGSERBR0ZARMe4LQriBN+vBiHEWABjAYCIBgL4nRDiZ37bNUKGnqkRt4AYptqafOv5AOT7izth0s3noEmd6gt2rMidEZbiM7o991/SDZ2b1cXALnloVDsHuw9Vr2uaCnBsgjWR8iNPJfTFTDuXLxn9N7GJfh2boItB1jzW49GjTo0s3Ni/nS9PiArTisLj3lTS48k4F6mKXAgxRwhxicw24/FqD6yXWznxiL+GKiius/MbhXr8+EpHXKDXGQdKSsMWIe0w0n23DeoQuByqkhYj8tYNo5ubOMiBCKtxZ3z5+8FKFmgoS8lMkLFeWW5wbvcMD780oSpESpF7HUHXzY1GTolk0d6iUHS8jZ5t5M7IzCC01IJoVMIoW2b/jk0c/z5I88UtA92NplPxFSWTaClyj79rkBDR1rJ+Lu4b2TUQ08rZ+f6KR0jJe+7wRFXKZaM6KiqW7MwMzBs7GIX3D63Y9sbN54QokX9G9YxFx4bhFBAlIqXIZTCsWzN8PXYIfhFQXomJ15+t9IwgXnm3aeTfvZNxz9IHLnK0n5PXbIv6NdGkTg20a1Ibdw3t5E+wkNnwp4txRe/WAICUtBpJRF0NY4CMEePFPVpUtheAVbhubjbq18zGkeNlnn6f7EFy/EinVQNW5GHQIAnVbGb/bqDjffUuFqRpzckAOz7XkN8B+dCuzVB0+BhW7DzsryEJJOOdlHYjcqf87Fx5i1lz7xmEBeOGePqtzBnl+B/2wMe396+y7Yo+rSr+JiIMPr0pHrnsDHkHTVH6dZSbDvaac8JbPNW7WD2L/Phh49eP/MXrCjDl1xdIkkY9WJGbIHO0npFBaFYv/MWxq/q2rZYj/Y+XVi1HN/H6s3HtefkBShVNzjpNrtuo28U/Jrokw94fKUXu1c3Z9LpFYG0v2UEa7DtujJWnT2gkyfQRRg9w2695sdOaSClyIgrMf1cVB47TmzvLEf3ur85LsiTRp+C0hnjm6t62+718w9mY5cLGLANV9NSCcUOC6fsm59upaR3D7bzYaU2kFDkgN0Of3lT3Vv4T6o/q2SIpL5kR3Z0VJzAKuXdL/KX9xQXtHP3m/lFdfR83KBrXycGlFhVydAZZFDiWbRu34kdnta7y+WKHfcErQgDN6uWicQAV6M308vS7LjTc7sfzKytOaTSpU6PKZzOeuPJMz8cLg8gp8mTQqHb1BFJu3xfDujVDfPesF7DLoWwf8KFdnWWJdPqiUQmzqkxOGNXD/kUgi9pa/v2HftANW8aPQtcW6lXw8YqZqcTM1JdtUi3LymX2lwPa48Z+7bD0wWEV2+aPHYzVj4ywla/ARx8Jg8gpci/6ym5W5tf+dumZLTE8oayXkym8ani5tlEKItJv82mNopGy4RJt9tDPRXSmH/RbGYhlxeUjF/+M/i1utFynRvXydTpjL+6KB37QrUo+oazMDNOXQpXjuRMvdCKnyO34+XmnVdtmpqitlJDZd0Yj7Weu7o3c7MyKzvnnK3pgoMX0PBnIePjiE3hFSUEn8qcrutvv5JEgMwSend8IW8aPQqeASrHp/ffrsUPwwW39MH+sN5dZR8fysX+8mSWKi6DKZz8MglM21cg65FVfLDmVBislfoI59BFLm7iRaoT1uL0d3Me5JUtvNK1XAw0NiiMHQeJLOzszA73aNEDzJOaTcT8id77vLwfIjdr+Ye9W9juFTOQU+U89LCh6yQqXzE4cT91c+4f33Pb2Pss1fdQz/eTOC/DPa/p4/j3jnxpZmVjywDD7HZNAGKNatzObQafHZrjN6+Xiws7WpSKduI5aDVTa59VGi/qxRd8J156FM9s0cCOqLcmY1UVOkfdoXR9bxo8y/d7I42BT8VHDfa0GZjf3d+a1EY/+PLgZzeY4KM/lNDgpg4C+ceaRYQ7L2rVpVKtK6gI3RGngLuPxcdrGb4Z2BmBs6ounUQAeIn6YN7Z6RkUZuH13nHVaQ2wZPwrzxw1BbnbloMWonZOn7Bu36rcZRMjNzsSiP1yEYWdEYzE/corcjraNa+H68/MrPs/67QDMvXeQ5W+MOkOWgwUR2Xx4Wz9fv9/0l1H4b5w/+YSfF1i+9KzoaGCiMqKFw5mL3Sgq1ejdtgEAe7fQJnXCV+RW6yEt6qudf6dFg+r977NVe3y16dT11itsI/dA+7w6gUUv6lMmu6NFwf7c0OFI0XGKXD/CuMRMJrfue0YL205fcE7vsR9XyCgjy5zz95/0xqieLTD9rso8KqfKbRbSYN1vf3K2ekVD7Eh5RS6bSxwElNg9xBHQ4ynJee1jwTxe8+g8cnl3nNfBWUCQ02OMuVidgCoz3XplQmCSlGNJaqd+rWw899M+VSKga2R5Xy+KKmmtyL0Unb28l/kKttNBhlvXvrBH8Oe0858gKshzyDVZd6jwk/YoS35j5/7nicfIq1s96AwIPnDMC48nIcox/ln5peTaADsPlNjuE+QjdWO/5JpqgAgr8nuGdzH9zmja9soNZ7vK0ZxMzDpR2ArbDCcLsiphtr4RpHNG4r0c2rX6IvygLnmR9tf3Q/zgadgZzhblnfLpbwbY7hPkZW9cJ6dKmmIlbeRE1IaIZhPRKiJaSUR3yhDMjm4t3dk7B3ZpinaKZLRz6/Md1rM+7Y4LMPt3A33nggaqBhtFBT9nfU47bzlZflwg34xhh5PuJXuxOr5LyU4JLBv9+bvmnLZ47ca+ntrIb5xc3SNjqFUG4LdCiG4AzgVwGxF1k9CuJee1b2zauZw+gLIrBOnHtWs3UTH3aFXfeMeQ6dayHto1qS0lv4jT3C3JxOlidCK6Z47T99lXYwYbLLA7dSFVc4ReK9vY7pyd6U3esEP0vDz7GUSe7k/iT5SsECSE2C2EWKz9fQTAagBJD4XKzc70/HZMRNZUZ/HWAwCAzjYuZ9VvbNjd2pqr+7bBnUOiXf8xniwT5fPhbf0w8fqCatvdPrrGJfPUvce1tMhes+tiRXweEzf0at3A0++k4eJU9YXUrzfu83y4jCR7zkldaSGifAC9ASww+G40gNEA0LZtct17nJoCZA9+Zv52APYeOWFaDahLs7pYu+cI2jQ0XjQLooaoF4gI9Wr6Cx+vaTKiCxL9+t41tDOWbT+EN24+B30emVHxvVkEX6rbsR+9rDu6NKuDCzu5N594de1NrFR138iuvqKT3ZLp4p72bdcIX48ZjJYNauLL9d6U+TXntMUjU1YBULxCEBHVAfAegLuEENUqnAohJgghCoQQBXl58uxtb9x0TrVtYaVWIbIu6XaTFmiQ2Ilt21VUwbuhrQuPj0RkBc3oM59m9XIx7c4L7KMqpfYjde9h/VrZuH1wJ8tRo5necxuZero2W03UZb+4sD1+dq51FKxMarucSbT0WZg8N8kDGSmKnIiyEVPik4QQk2W06ZT+nSpTfI7sEQundfvGc7O7n8HZwC55qJ2TWc0dqXWDmJKrmWN8O5I9LXNC0BLo9xJITpV5nYcdFJrO0G6LusaR5GPW73Wzw19+2APjf9jDcXthmxPf/uW5uHeEuedbMlHSRk6xeedLAFYLIZ70L5J3WmrhxA4CuwBUKicBgWUPDktq2k4AaFo3FysfHoHuCYubj1/ZE89f0wcdmxrb1h/7v55JlUt1ajmYco/q6S1XTI6DVAyyZkS9HCRfUjWVgd01qJmdiascJLTTFwvDzj7bIa8Obh3YUWqbZuOtIGbUMkbk/QBcC2AwES3V/o2U0K5r9L6h28jdpAWtXzM7sIyHidTNzcZIi6RVzevnYtXDwzHHxA8+cbT03E/7SE/lGTTxnd948bAqz/00edkbm9WLBfMkvlAmXl9QJTTcDifrDMl2U5ONVVDd6zdVd0ZI1eWG317UGWseubjis12yNNn4XuwUQnwJxQyAuo183Eh1wp/9UisnC/lNnN2uUT1beB6hMpXoqunhy7pj+Y5D1cp/DT5dvkulqorOSyzBBRaLp2GPyL2S+MIyS0r38GXdcW77xrh10mIM0GZZ/7ymD26ZtDgpFZ+iFbLnEN1Gbufz2bhObKTVrYWaftx2/OzcaCT3saqraErcrUu8jfH2c78MceDfXqdGFn58dpuU916xIl8Lpnv6J718tVNhWkmDFYeRPVpgy/hRFcGLF2ufncww3aJ+ogcX6I+ZPnrIsHlNdWleF5NvPV+pgJzc7AwcP+nMyB+V5EBN63owWcU954mjt1o5Hrutge6wMr/pA4I01t8V3H1RZ5zfoTEu6JSHu95e6rmdClOMhR6/Y0gnnLQrBRYSqnqQpdSIXO8benHVLDtNDqBP24aOirEGxdx7BmHKr/uHLYYr5t4zCM9LrjB08Fhpxd+J4f1z1u6Vdhwno2w/I/GLujZDw1rZVXLkW+E1wCbZZGdmWJpKErGzEQvEkpCNG3l6te/uvqgzfj+i+vYguMhhMRbVUEeDSeT+Ud3wqwEdcHH3aFT3iKdpvdxqXi1mZDgY3cjm+vPz0aRO1Ux+bRvXQuuG5tNFL96TX23YX/H3JWdWtfe7USjxWF0mI11dmXLBO03r5WLJA8PQpXldR+3E102NAmbn1L1lrA8nXleq8FoRmHPPIIy+sINUefw+83Zl4lQ1Can5+vdJ/VrZGHNxct7oKk2spny7G0DwozgjpWcVhCV7OtrYJAjlX9eehdpezS4WuBmQW7201FQBycFM4VW6/MrHazUsmbx+U1+UlJ4K/LgpqcjThSt6t0LDWjkY2CVY3+Pm9XJRfORElW0lpWWe2+veqh5W7KwWDAwg5haaiFlk7HCb+opeXydOX0SzfzdQSg3OKb/ujx0HjvluJ1k0r5eLosPHHe1LMFbaqnqt2Ill1xe8zhb9kpKmFVl0alq9rJfb9LmyiV+cE4iFNndqZp2kSzYvGSSWssxdYaMH6+WaLzjmZGU4Ctpxglfd4XRE3qROjuGLp+L4DrVX91b1MUJhs6BRUrjEUzM71coZi6KaPKKkhCK/2kFEmRcS3641szO9e0xIYskDw0I9PhDzQvnDJd3w3i2VhZ6N0ggM0xeObJ7ZFTsPmX4nRPUQ/aBGPboycjqSt1sUTfTF/u2wcELEg6BifSHhmpAikZ1m2L1sVbWRp4Qi75AXTDQcu6FVclP/dlUKAhjZhm/s76zElVnWQTNkmC90HN1SSfd9QEL4vdNFbdVwcjkS9eHndw+oEn2rpjp0/oJpWT8XU+9Qx7ssJRR5UKg6ilAD76YVo1wqunK/sX++d5ESaOvRI8TOLuq0FN4vLmiPhfcN9SSDioz/YQ/HrpmnNa6FUT1bVKQzVnVM5PQRb5dXG2e0VOdFnFKLnbIVrarTKB2VXizLth+sts2pfEYeL3+6vDua1q2BphZpgd3wn9HnGrr2ORHRTldNu+MCfLqyyNZ7iIhMizBHCf16NK1nfi5mz86TPz4Tr83bij5tGxp+z3iDR+QWqKQow+by3q3Qs3V93HyBsbnEbY71eMoNNHkGkWMl7qRohV3NUCNd7bQ0XMemdXDbILmZ9FSmcu2Aqm1L5Omf9ELnZnWQpdnemtbLxe+Gd1EiNbMRTp951SI8U2pELsuGfVmvWI3KxIWPhy5NeilSZWlUOwcf3W5uEzQKdXd6P4wSMrmZDTmpLOOna6RzjhUjKlNgmF8X/Zb+4MyW+MGZ/mu+BoXqs3AzeESewLcPDcPfrjwTQOW0+5aBHbBg3BD85OyYd0zh/eHaOW8bJDcaLlk4Hd1c1K26q12L+vITC3klGWq8o4Fra1Rw4s0TTXXovM+qpvBTSpHLMIXUy81Glua3rI88WtbPrVLCzU29v2Sgl6lSrTOZYXe1ru7bBiv/OLzKNjeeKX5m6RkUM8388VLzSkGyb/ec3w3E5FvPl9togFSMyMncwNAl4NgGr0Qlg6gdKWVakU2F6baaL2zwskQZ22g5Itc1FBNa8P5LIqx+ZIThd0a2YBnk2+TzUB39uli9QPu2s16TUIUGNb25sqpmI0+pEblszKaQ9XKz0T8JyeGjTJgLw0Yv1p8UtPHdbsV7nJ+SKpS7jZSKEMmocB8E3EUtMS5QkZFBeOPmc8IQCIB6owE73ErbuZk7+7GRWaRD06qjXj+zqGhd7eSjq7r450Lf9tHt/fDo5d0Dl8krieZJp2pcNbMmm1Ys0Is4K+oppfyKkllnn/Lr/sjKJNTIyjS8the6DME3qncqc2DFXisJWAzIe7ZugJ6tGwQpDQNW5JYM7toUbxduV65jRl2vBBGa3j5PgldI6loQfFHhXx/1jojqs9thBh5UTn4XNlIUORGNAPB3AJkAXhRCjJfRbtgMP6M51j16sWkI9sTrC9AyCfX3UoUwO/s57eUttqWAvpKK7gRAhJR6y6mQz9wrvhU5EWUCeA7ARQB2AFhIRB8JIVb5bdsp9bTUoVb1F71ilUcjGVXU3aC4ZcWzHfE6h2XRrJCpX1QbfYVNZXFz4NaBHbFs+0EMOb1pyFKlNzJG5H0BbBBCbAIAIvoPgMsABKbIf9SnNU6eKseVZ/n3VGDk43ZEK7PcWXYmYcG4ob7MADwir8rVfdti8baDOK1xbTSpUwMzfzswbJECo7PmH39lQeuQJamKDEXeCsD2uM87AATq0pGRQbjmHOtir0xysRp7h+nRlZWR4TntrWqeCapwZUEbXCnBvTOKNKuXq6QJJjD3QyIaTUSFRFRYXFwc1GFTEh4gBguPyBnVkaHIdwKIfz231rZVQQgxQQhRIIQoyMsLp65dqqFy8MKKPw5Hcy2twY4DJdLbz8601q4yPSrYRp66pMpLWoYiXwigExG1I6IcAFcB+EhCu0yEqVMjC+3z6mD27wZi7r2Dpbe/+mHjsPpEUuVBZRgrfNvIhRBlRHQ7gE8Rcz+cKIRY6VsyJiVoJymvSI2sDJwoK6/4nCWpILMVCk94GEmkyj2W8jQIIaYJIToLIToIIf4ko03GHBVHmcl+IKbfdaGr/WVcor/8sAea1q1RURSBST1UfJa8wJGdESZVRhNO8Dqy93ON0tk7I11oXl9OKcGw4aRZEUT1xbd+HRuHLULKjLSY5HJBx5jjRauIR2jziDyCXNW3DZbtOIhbFawTmZOVgX//vCBsMSpgX3DGCRkRH9KyIo8gdXOz8exP+4QthiGnNaqFWjnG3WrMxaeje8vkJ8wC1J+1MGqQKi96VuRMYPxqQDRqjTLpR9Rf/BGfUDCqoZptOp0WhBnvRH1kzoqckYJqD0Km5jLYOSJFgJlwiPpIXIdNK0xkGNq1Kb7csM/RvjlZGZh08zno1qJekqViooxqAxCvsCJnIsOL153tav9+XCCbcUjUR+asyBmp+HkgZv12AA6UlEqUhmHSA1bkjDJIqbPJMC6oUyOmAgtOaxiyJP5gRc5IQY+M+9XA9iFLwjDOaVynBj6960Kc1lheVaowYEXOSKFubraSlVMYxo4uzaPv2cTuhwzDMBGHFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYfdDJrL8/apeaNMo2v6/DCMDVuRMZLmsV6uwRWAYJfBlWiGix4loDRF9S0TvE1EDSXIxDMMwDvFrI58BoLsQoieAdQDG+heJYRiGcYMvRS6E+EwIUaZ9nA+gtX+RGIZhGDfI9Fq5EcAnZl8S0WgiKiSiwuLiYomHZRiGSW9sFzuJ6HMAzQ2+uk8I8aG2z30AygBMMmtHCDEBwAQAKCgoSI2yHAzDMApgq8iFEEOtviei6wFcAmCIEFzqlmEYJmh8uR8S0QgA9wIYIIQokSMSwzAM4wa/NvJnAdQFMIOIlhLRCxJkYhiGYVxAYVhDiKgYwFaPP28CwFkpdXXhcwifqMsP8DmoQNDynyaEyEvcGIoi9wMRFQohCsKWww98DuETdfkBPgcVUEV+TprFMAwTcViRMwzDRJwoKvIJYQsgAT6H8Im6/ACfgwooIX/kbOQMwzBMVaI4ImcYhmHiYEXOMAwTcSKlyIloBBGtJaINRDQmbHmMIKI2RDSbiFYR0UoiulPb3oiIZhDReu3/htp2IqJntHP6loj6hHsGlRBRJhEtIaIp2ud2RLRAk/VtIsrRttfQPm/Qvs8PVXANImpARO9qOfNXE9F5UboPRPQbrQ+tIKK3iChX9XtARBOJaC8RrYjb5vqaE9F12v7rieg6Bc7BtPYCEY3VzmEtEQ2P2x6cvhJCROIfgEwAGwG0B5ADYBmAbmHLZSBnCwB9tL/rIpanvRuAxwCM0baPAfBX7e+RiGWNJADnAlgQ9jnEncvdAN4EMEX7/F8AV2l/vwDgFu3vWwG8oP19FYC3w5Zdk+VVADdrf+cAaBCV+wCgFYDNAGrGXfvrVb8HAC4E0AfAirhtrq45gEYANmn/N9T+bhjyOQwDkKX9/de4c+im6aIaANppOiozaH0VWkf1cHHPA/Bp3OexAMaGLZcDuT8EcBGAtQBaaNtaAFir/f0vAFfH7V+xX8hytwYwE8BgAFO0h21fXGeuuB8APgVwnvZ3lrYfhSx/fU0RUsL2SNwHTZFv15RZlnYPhkfhHgDIT1CCrq45gKsB/Ctue5X9wjiHhO+uADBJ+7uKHtLvQ9D6KkqmFb1j6+zQtimLNr3tDWABgGZCiN3aV0UAmml/q3peTyOWEK1c+9wYwEFRWUgkXs6Kc9C+P6TtHybtABQDeFkzD71IRLURkfsghNgJ4AkA2wDsRuyaLkK07oGO22uu1L0wIL72ghLnECVFHimIqA6A9wDcJYQ4HP+diL2ilfX7JKJLAOwVQiwKWxYfZCE2Pf6nEKI3gKOITesrUPk+aHbkyxB7IbUEUBvAiFCFkoDK19wJTmovhEGUFPlOAG3iPrfWtikHEWUjpsQnCSEma5v3EFEL7fsWAPZq21U8r34ALiWiLQD+g5h55e8AGhCRnvo4Xs6Kc9C+rw9gf5ACG7ADwA4hxALt87uIKfao3IehADYLIYqFECcBTEbsvkTpHui4veaq3QsAVWovXKO9kABFziFKinwhgE7aqn0OYgs6H4UsUzWIiAC8BGC1EOLJuK8+AqCvvl+HmO1c3/5zbQX/XACH4qahoSCEGCuEaC2EyEfsOs8SQlwDYDaAH2m7JZ6Dfm4/0vYPddQlhCgCsJ2IumibhgBYhejch20AziWiWlqf0uWPzD2Iw+01/xTAMCJqqM1MhmnbQoMqay9cKqrWXvgIwFWa11A7AJ0AfIOg9VWQCwgSFiBGIuYFshGxUnOhy2QgY3/Epo7fAliq/RuJmL1yJoD1AD4H0EjbnwA8p53TcgAFYZ9DwvkMRKXXSnutk24A8A6AGtr2XO3zBu379mHLrcnVC0Chdi8+QMwDIjL3AcAfAawBsALA64h5Rih9DwC8hZhN/yRis6KbvFxzxOzQG7R/NyhwDhsQs3nrz/QLcfvfp53DWgAXx20PTF9xiD7DMEzEiZJphWEYhjGAFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYUXOMAwTcf4f3Jnkxmg4ENcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(1)\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When simulating Poisson-distributed light curves, a `smooth_counts` attribute is added to the light curve, containing the original smooth light curve, for debugging purposes." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOSklEQVR4nO2dd5zUxPvHP7Ptjt5BinKogKICIgiKBUURxfqzARZEsWL9qogVBQTEgqioIBakKXbkpEsRld57Pekd7oC72zq/PzbZzWbTN9lN9ub9evFiL5lkJpPJk8kzTyGUUjAYDAbDebgy3QAGg8FgGIMJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUDzprKxmzZo0Ly8vnVUyGAyG41m2bNlhSmkt8fa0CvC8vDwsXbo0nVUyGAyG4yGE/Ce1nalQGAwGw6EwAc5gMBgOhQlwBoPBcChMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh8IEOIPBKJMEwxFMWroLkYhzQ2qn1ZGHwWAw7MIXf23H0GmbAArc1eb0TDfHEGwGzmAwyiRHTwYAAIUlwQy3xDhMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh6IqwAkhpxNC5hBC1hNC1hFCnuG2VyeEzCSEbOH+r2Z9cxkMBsNcKJxrRqhlBh4C8DyltBmAdgB6E0KaAegLYDaltDGA2dzfDAaD4QgIyXQLUkdVgFNK91FKl3O/TwDYAKA+gFsAjOGKjQFwq0VtZDAYDIYEunTghJA8ABcCWASgDqV0H7drP4A65jaNwXAOPyzdhby++dhfWJrppjDKEJoFOCGkIoCfADxLKS0S7qOUUkBakUQIeYQQspQQsvTQoUMpNZbBsCs/Ld8NANh++GSGW8IoS2gS4IQQL6LCezyl9Gdu8wFCSF1uf10AB6WOpZSOopS2ppS2rlUrKScng8FgMAyixQqFAPgSwAZK6QeCXZMB9OB+9wDwm/nNYzAYDIYcWoJZtQdwH4A1hJCV3LZXAAwBMIkQ8hCA/wDcZUkLGQwGgyGJqgCnlC4AIGdw09Hc5jAYDAZDK8wTk8FgMBwKE+AMhglQ5zrzMRwME+AMhokQWW0jg2E+TIBnEZNX7cWcjZLWnAwGIwthKdWyiKcnrgAAFAzpkuGWMBjOwcnqLzYDZzBMxMmR7coaJAuiWTEBzmCYQBbIAoYDYQKcwWAwHAoT4AyGCThZj1pWoVlw05gAZzBMhJkROg8nq7+YAGcwGGUaJ0/EmQBnMBhlEmaFkkZ2HD4luf3YqQCOFwfS3Brnc/RUABv2FaE0GLa8rl1HixEKRyyvh8EoazhCgE9ftx9XvTcX09buS9p34YCZaNl/ZgZa5WxaDZiJ64f/hUfHLrO0noMnSnH50DkYmL/B0noYjLKIIwT4hn3RDG7r953IcEuyj3mbrU1zd7w4CAD4e+thS+thMMoijhDgDAaDwUjGEQLcyavEDAbD3jhZvDhCgPM4f82YwWDYhWyQJ44S4AwGg8GIwwQ4g8FgOBRHCHAn66gYDIY9yQa54ggBzpMFjlNlDrYAzbA7ThYrjhLgDG3k9c3HKX8o081IINtfvuw95VycfO+cIcDZNE43K3cdz3QTyiTZ/qLKJrLhVjlDgDMYDAYjCWcIcDatcTzsI4rBMB9nCHD29DuWsvbuZUOVkU6cIcA5WLYThl1hI5ORCRwlwBnaYTNBBiP7YQKcYSll5UVSRi4zK3HyGHWEAHdw/zI4yoouvKxcZ1aQBffKEQL8GJcyzU4Px9o9hdh5pDjt9W4/dBIb9hVh2tr9iETkX227jmlvW3HAeqefzQdOYu/xEqzZXYhdR9Pfb05l55FirN1TmOlmZIxwhGL6uv2gFkyT1+8tMv2c6cYRAnzcwp0AojfTLtz48QJc8e6ctNd79fvzcP3wv/DYuGWYuGSnbLmXf16j+Zx9f9JeNhUuHfInbvpkAS4fmv5+cypXvDsHN368INPNyBij/9qOR8cuQ/6a5HSKqfLXFudniXKEAGdIc6DIb8p5Co5IJ4xmMDLN3uMlAIDDJ8wZ61LY6cteL0yAMxgM22Kfb2574igBzm4mg1E2IRZOk5kVCsPROPgL0j44WAgwnIujBDgTNAxG2cLJs+N04CwBziR4Imx02wc2Ni2FPfvSqApwQshXhJCDhJC1gm1vEkL2EEJWcv9usLaZUZi8sgj2dDAYjkTLDPwbAJ0ltg+jlLbk/v1hbrMYDAaDoYaqAKeUzgdwNA1tUUVpolhYHNR8ni8X7EBe33wEQhETWmUe3UYtRKdh8yT3LSk4iry++bLHjl34n1XNSjufz9uGvL75uh23flu5B3l983HsVMCilqWH3uOXo/XAWZluhmkMn7VFcexawei/tiOvbz6C4cRnvN2g2cjrm48+P66KbXtn2sa0ts1MUtGBP0kIWc2pWKrJFSKEPEIIWUoIWXro0KEUqlNWoezU4Z798Z9bAMB2eSP/3X4Emw+clNw3eeXe5I2CN9rnc7cZrtduCpRhMzcDQNLDp8Y3/xQAALYfdrZjUv6afTh80jrHlXQzbNZmw8dSg+Y9w2dFn/GSYDhh+/6iUgDApKW7DbfJThgV4J8BOAtASwD7ALwvV5BSOopS2ppS2rpWrVoGq2MwbA5bn7EUo5OMbF83MyTAKaUHKKVhSmkEwBcALja3WdKwtbayhfGHL3NPLRuiNoG/EUyAJ0MIqSv48zYAa+XKmkm2v011I+iQVKK12e3FaLQ9NrsMhgkYHdZlZSx41AoQQiYC6ACgJiFkN4B+ADoQQloi+n4rAPCodU00H/YiSB9GdZipHsvIMgy+1bN9DKkKcEppN4nNX1rQlpQwcqPsNvNUwkltTZVUc59m8gWd3eLCOfCxU7J9suYoT0yGNWTLu8HKgEfqlWeuakYyZWXC4ygBnuUv04xhZb+mMpvO9tkTw3qyfQg5SoB/NHsLvv57h+7jpqzei1W7jgMAIhGKwhLtTj9ClhQcxfR1+xO2fbVgBz6du1XSeaSwOIgRc7bKpj77csEO7C8sla1v6pp9WL7zmHyDuGlGIBTBXonzfDhrM35buQfT1u7H0gLtvljFgRD6/LgKXy1I7uutB09g0pJdqudYuP0IZm84oLlOAJi3+RAWbDmc8uzJ6oe2NBjGkKkb8cGMTThRGsRHs7cgpGCzXliSOA6mrd2PZf+Z4xu3/dBJTFgkn5nJrhwsKsW5r09DqchOW4zeexkKR3DF0Dk4rsOxz8mo6sDtxlu/r8eNzeuhVqUczcc8OWEFAKBgSBfM2XTQcN13fv5v7Dw8/aesBwCs2nUcI+9rnVC+3+S1+HXlXjSrVxlXNa2dsG/X0WIMmLIev67Yg9+fukyyvsfHL0+qLwFuijpxsfQD/CHnzMAjex4Rw2dtiTk63Nm6ASrlemP7Og2bjwgF7mpzuuI5uo5aCACY/uwVmuoEgB5fLQYAlPe5Aeh/eNP11fzZ3G34fF7UcWrikl04JMgWI9WG/r+vx0/Ld6NpnUq4plkdPDZuGQDt90OJmz/5Gyf9IXRve0bK50onFw+aDQDoNWYpxvVqq1pe6739ecWeBKc+K3Jp2glHzcB5UrkpVrnPn/InzyROctuCEnWGuNnYidLUZwpqsxg1xA9HcSB+PnFPpyMtqd3Vl0LvvuPF6m77vMevXs9SLZy0mTexXswY/0L8omctu8W3QwU4I31k1KLDYOXpbHOWT/AyDutfZZgAzzDZPj6z3Q6XkRpaR0dZsSrRS5kT4HYZCDZpBgAV8zsHyt903mMHdk9WI7712T6DL3MC3C7YdYEuG0ivCiXLJQTD1jhTgEtIMyPPUaoef2WBTKhAjDrk2OXrimEfsl2F50wB7jCkhpCdZI1SW5zolp7OWbGWmrJdiKSC+q1Kse+yvOsdLcCVEjIUlgRREghLmHnJi6sjKQbRLwmEccofSgrG7w9FYuZSgVAEhcVBHBE5/igF8I9EqCnme4XFQUlTthOlIfhDcdO4I6fU+6E4YK75mvB8Rl9uer6oTvpDkuaX/lAYRSqmbYdPaB8n/lAYJ0qj1yb1hXDsVACHTvh1v3SckvBB6MQm5dCm9nI7cjL6nBw9mWyuefRUQNZJjoe/z2plC7gkIOEIxf7CUt3mjceLA4rOXFbhaAF+Xr/psvtavDUD574xDS37zxTtEYRgFfzOX70PFw2chSU6PBbFtBs8G+f1m47WA2dh5vq4F+LTE1fggjdnAAAe+HoxWvSfgds/+ye2f/q6/YoptIbN2mxKyrQW/WfgyQnLk7ZvOnAC945eBABYv7cIf6yJe5vKDfkWb81IuT1Cmr0Rv5cn0mDbfH6/6bhi6Jyk7d2/WITmbypf288r9miup/sXi/DPtiOS+wqLg7hwwEy0eXsWRs7frvmcq3cfR+uBs/DTMvtnlRkxZ2vs97szNuk6dvuhk5jBPUfvz9yMRdvj/Xj0VACtBsxUPefV78/Def2mo9WAmYqZgTq8NxdHTvoxZOoGtBs8O/a8aiEcoWjZfyZe+mmN5mPMwtECXEiq+s/FO6KDY92eQsPnELroy7nASz3My/5TcJcHEl4GqTJ9nfS5lhRE27Dl4AlN5wmGtc0YMxELRethByVm0mr3Qi9K5zteEp9VztXhIbxxf/Qe/btd+sVgJ2ZtjF+XOAyFGv+J0iSu21sU+32U+0qcITqnlBzgc6uqPUfHigOYulZfGwEgFInOvH9fJZH20GIcKcClhAJbxLSGVPXJadX/ZuB2MiMUC1HoW6v63Wn305ECPDWUn/J03z+nDZi0wvpGkbI2diSNAcq46VEZFODSmD0Q0jGsytjzqxm7Cjaz2uVUkWX3dtt13CjBBLgIs26intMwZxBzsIOAKOszQkZ6KXMCPBufL/6aXIjgPKI/XroSmXy1ZJv9tHjsCd/b2foOF16y3peb+P6ziU4yZU6AJ2ChME/ne4If173dvyI/51U0J9vSWDsjUzjtBSclgM22NMqEYUIm3ytZI8CdNZTNQTxUz3cVAADqEnOyvQCZDiebubqNko5ZYjapaVLtLjN7giLF+5eB2+JIAT5k6kb0+22t7P781fu0nUhwrxbviAq9D0XG/hMW7cQXIicLqZvM24LyfDp3G2aJUor1GrNEognSA0aYok3KXllIss258iDsNWap5PZ/th6W3D5q/jZcMng2flgqnUqt4PApPDp2KUbM2YpxC/9L8HgLy3i/vfJL1Olh8NQNmKZge0spRZ8fV2FJwVHM3nAAA7gMSEIG/bHBsK18rzFLsed4SdL2vL75+H3VXjz3/cqE6/l07taksnr4V+AHsFjFaaz3+ESnq4MnSvHQN0tMS4KQv3of3puuz7kmXfyyYjeGz07s64H5G3DJ4NnI65uPF39YBQAoKg0ir29+LEOSErz9fLp4+ec1+Geb9DNlFo5LqQYAPy1P9kATvvx6S3gbqrF+X9RJoKg00QuQFzQPX3FmbFtIQihtOXBStY5ZG6SdNaRe+mP+LYj9PiqRb1MI75xDNU4BxC8Wnu6jF2F415aJbQPFoD82AgBe/HG15HH9Jq/DvM2HYu3ockHd2L5dImcMngmLdmLQbRdg5Dx5D0RCgEA4gklLd+PXFXsR4FyVX7+xWUK5UfO3Y9T87WjbqHqszVqZteEAKuV6MOzulkn7npoYTcX38vXnoHblXADA0GmpCbxuXyyM/e4j0588+WsSJyIj/tyK2RsPxl/oCTp0qntmzj8nL1zXVNdxejD6sfDc96skt+/jcr+u2h11uDtQFO2LIVM34rErz7JVPtWJi3di4uKdpqTOk8ORM/BsIiVPRRPbYRWpfJHqPTaLNAuKlJXrNIIT1W6pULYFuIkPguHIeaCSD6RtVHFl7IFIlWzST5uBcBw7oW+c9gLIGgGuOTWTpa1giEnlmTX8LNn2IWSjz2oy+o7IwLjLGgHOsAbbykIJjKqjVC0PmNxl2BQmwG2A2d6fJM1i1wFfxlmFkz7zhWND0g48jW3RQkq29cyMkMFjZBh5ELXSuM29wLx2GInymPDQplK3sYPtJhTMwgk6ZL2YbTefSg856cXIU+YEuPAhyLbnoRaJ2oN3ci/TVP4612LUgrnxr4HMPQjZdj/VEHazE4SPE15ATuhHIVkjwA8Wcfahu44rlpNzLNHDX1sOJW1Ts9WWY9fRZCcSQNtMQmyP3tKlPauLD0GM9H2I73wDNR8jZuvBE9h8wDrniEU74o4uAYl0VUWlQYwV2MvHjpNJdHC8OICx/xZItnnX0WJZm/XVu/Ql+di0/wQOFJXGnMPiyI89fs9KmfG7v7A05huw65h0O42y+cAJLNx+BAe4ZwiIOpJt2FekcJT5lATCsolQtPDN3zsEqQopvNCX2emkKBPUnI0HEYlQBMMRiXupzEFBX67ZbTxJjBqOdOSR4pGxy7BpYGfcMuJv2TK/rtiT4CBj9G374DfSnoxGCRvUDX42dxte6nyOoTp5PXl9YtxT7JoP5gMAOjStZfgcSjwxfjkWvdJRdv+NHy3AToHQ5bMdffTnVnQ8tw5anF41oXybt2fJZhK6XCK9Gk+vb5di5RvXomp5n6Z2X/fhfE3lxBwvDuBWmfHbbvBsQTlzPDF5Og2Lt5d3Ornx4wXYc7zEUicUMS/8sAr5a/Zh8avy91yJN3+Pe+n29UzEY54paFI6BgF4k8q+6PkOe2gtTAjH63p07DK4BDOnnt8sQb+bmmF/USlGztuO33q3TxpTcgjv102fLMCOwTdY8gWSNQIcUJ9d7zh8ClsPqntMpptMfrapDalMB0wqCSQnHubZKTNjBqQTM8sJby1XWBo0I2Gtcm/rrcPKuCtS4QWMoEdkreHSGSrdc610d0cFaA6CkgK8t2cyACQI8MMn/ahdKSehXMHhU7FxpiXZN48ZSci1kDUqFECbILS/Fo4hROrrhMHQil6LLKXSdhyKWSXA1SDEnouYku1I02hRqyVlKxT9h4vqT0N0PwPH1MIxfO/rj+pIr57Yydj9a08KCu2Lr5kQJ2VLgFvUxR6E4FTjtXQNurPIHjzt/ln3cRJrl7bgIc80tHVtxF3uuaacj0D/hILK/LYr2r2lzRuVWgO8xcpblEjZqnlI2RLgxPxZdyUUY2vu/ejt/s3cE9sEI+NOarB+7xuA/3l/RCXos6CIGLUFT5NEM2s4OUEAl1Vs8qEuiSMEuA9B1IB1pjipUJNE23WHe57hc9hRt2Y2PhiznDDD7FMNQy8p01uR/dhZEGrBjvdcVYATQr4ihBwkhKwVbKtOCJlJCNnC/V/NykaO8A7HstzHVcupdbB4ADl9QKUDLTpoK/vR6MstXesb4kUyu6yrOAWrJy9mhJXQek8VF0BTboU0Wmbg3wDoLNrWF8BsSmljALO5vy3jWrf+BA1yWPV86dW12YUcEsQFRLsDkF5SfUCNqlDsiJogcOYIsitGe1PB2cqGY1FVgFNK5wMQuyHdAmAM93sMgFvNbZY1vD9zM44JnCB+WLobeX3z8efGxAw1LfvPSEqjltc3X/KcZrzhxQMjr28+PvoztdRdqnUKBvhA71ex3898tzKh3GXvyDu48Ig92IRek0rZka5+f67queUcs64f/pficQ9+sxSDp25A64GzkNc3PyEtmpjfVu5Vbcekpbtw9it/qJYzyuIdR3HxoNnqBQWUBhPtpdu8PSsh5dvzk1bh7pH/mtI+I3QaNg/Ldx6P/S309JTCGvmo76SHTyZ6VH/773+ymbQAYMCU9egscNxavOOorKywAqM68DqUUj7f034AdeQKEkIeIYQsJYQsPXQo2QU9k/Tn8it+Njcxn97x4iDe/mODrnPZbwauPHCFL55Un5sdh08l/H3kpLawAtsPnVIvJIMWN++R87bj8Mmo80Uwkpo5ywczNyeELojf78TeS+ckjU8nFq2X4tAJf0LKt5+W704IR5BuNovSDIrTFQLSpoNWq6FcMM+06csFO1BwJLowTwB8888O086thZQXMWl0+ig7bCmloyilrSmlrWvVssblOlUy/WVkRvUVkOg5dx4p0HG0uU9MWdAD2+9jOnsw83mUGopXuVaYV4FGrFK/GBXgBwghdQGA+1/+G8NUKJqTbbjXPVN6bwYksTkqlNSOv8y1ButyH0rYlqPD6iPVrwc97U93rHKr0dNzmZ4olEWkxpsHxlz17Xj7jArwyQB6cL97AEiLETQBxeSc1zHQ+7Wp57XjjdFDJ1dycK2PfJ+krX61hcY6OIpcGIvWyCh7mPEFp5TcxEyjiEyjxYxwIoB/ATQlhOwmhDwEYAiAawkhWwBcw/1tOdn6ZZ7qgJUSnw0EUQbLoRRnkAMSpeSPTwWX4IJyEMCi3CfhI2GurszcRau8cJPqSePlOX3iYRVuhOHm9NxSt+MOd3zRsQXZigvJFk3n1RZrKb3jWzUaIaW0m8wuYzEfUyDbPr95Uvq0Dpagh0dapcTzrW8I2rg2I690gnT9qapQRH8LhdgZJFG7li33MJdTUem5nrKwNmAH1uf0RA6JLpiq3Z/fct4AANlnQy9y8VwyaQduG9RuRjpFQ3vXGtzm+ivWplSEYEpBfErUA+C3cW1Wqd86HXi2CGwxD3mmWnp+H4IY5PkCU319URfSCSqyDTPWCBqQQzHhDej5atdSuf3GsqMEuMuiDjSy+DneNxjDfJ/Fz2FTBQ+RMZkSCtbWrs140G1cIIn7T6kn7NJPUdd++z2QPHe756C7Zw7Ode3EI54pquXteyXpRWx9pXUCUQXGTVpjdZH0q1AcJcClbsaj7t/xkDvqYPHlX8ZsMIXOBkLGL/pPcntNHXFZKqEYBbndcZPrH9ky4xbulN0XFcDyg7DdoFmK9fdwz4j9bkj240wi7bTyhnes4nl43AijtiiPpti+V0lVYMaMfNLSXbqPmbI6ft2VUIzNuT3wtPuXlNtShSQ++C/9uFq27P++X6n5vD4N6cDU0geKCYQi+GzuNnw+b5tkKjopZq4/gL+3HsZvK/doKu8PhTHmnwIUB6Tbv3F/UcILf/OBkzh4IurgIzVuzifbUZDbXXENJ6H+JK2wtvH2lEd9LNjRishRAlzK/Odl70S87h0HABg+W9tihFZe/WVtwt/VUIT2rjUJgZmU3rePuycj3/cyAGCI9wvd9VfFCezIvRfDvSNky1Qm8tH9XvGMRz0S//yel/M//Jnzgu52COnn+RaLc3ujssKMxeqB3kdBSMrxv0mrYr+rkWhOzNvdxlKfCRGba24/LN8vp7hMM26EdTmTmPXV8tncbXhn2kYMmboRr/+2TtMxD3+7FPeMXoRnvluJoIbYviPmbEO/yetwuYwHb+cP/8LfWxNVQhe/HfVAlRo3d3JB4q5yrdTUXvET+aiGrxcA6GWCSkwp7hoLJwtgTs7zsvt6uKcDAMqj1JJM6wAwzjcY432D4SbxF0lcB57MS97vcIYr6n1agfjRgGj3RL3FtQArcx+N/nb/Ax+CuNW1IKmmK12rJI6O8ojHfJfea7mM9xWg7BZdVjDyRbEt9z5sz71XsYwVqqbCEnNzaUpxvDhqLnpEIcm33OxcCYUIJbjEtS5WQtxvYsHczzMG2YSjBHhtclx2Hx9Y/1ff61iS29uS+puS6Ke7cIjwXwVaHjc92VsucyXO/jfn9sCHvk9xtciLzOiDblSVUZcc5epVOLegSWr1DPR8iSsUXkJA1BRxuq8P2pCNWpupSKpqnA6Ce2AXnX46sKMK4TrXEkz0vY37OVWhWhN7eqYbrsuGl+8sAa4E/xg1cWnT1RmrI3m2/UfOKwCAxly9FVGMtmSD5OKhnoddruzD7j9QkNsdBbndUQXqCZrlBl17l7ZPaGNov857PbPxre8d1EQh3vV8jhwJh58mZDeaunbjDe+3ZjbSsPC9xBXPft7ctU2hpHFowm9zXhJONGNUazKvImxE9gMAIjYVaVali7Pn1WpEKMCkHnyz0TL+h3tH4PucAdih8olslEvcceFxOjmoOwY6z2jf+ym1QyhUquAkHndPBi92jAiKSb63cKdnPm50LdRUp11o6TIeivcj78d4zvODKe2w4+zYTMT33ocgnnD/KnDYkVdl8ng1LAwrtsGGfexoAb4q95HY74qkRKGkubgVFqCakN2y+yiAJmQX6iHqJUkQgVsmLoMWYRUto1xOys1ejjvdczWXFbbvbe9XeMn7HZ5wT0ZLohwGd5Kvv+TL9kxXdAZVjviT9snZ2ldACW5zSYeVbUm24hbXAuWLMIhZL5Kb3f/iGRnrhw4qaiUj2O/1p04F7rlu60pUn/X1TEQf7yS85h0PALjRHX3xS5kaE0SQg4CuZ8Ewae5kRwtwIXUk9OOn4QhW5/TC2QpCVQ8uEh0c97mlTfeucy3G6S7lhcoZOS/hn9ynAQCjvMOwLfc+yXK3uKXjYOslz6XN/AoA3vWO0lxW+JhU5CIh9vF+j19z3kgYw+LxfI5rFwZ5v5Q9r5SlkdzsapD3SwzzfYbmJFmN8WvOGxju+1ThCszh7/B5SWaVQs4ie3CXWz2mupgr3XFLGxtO/GQxe5Z6uzv6EuYFNE8HkVVKTVKEid6BeMEzKekceeQANuU+gAdVLE2ak20op7A4b5UaJBUcLMDVO/MN71hUJsX4zDscBbndYzPfVJGzSR3p+1DxOPHMjbfokCKXaLMYMDIbNCcDT7xe8Z1QuzMtOIErtU5QnRShn2cMPFD3pjuNW1AtLzFrVyLVRUy+XgBo716HxRKL5le6VmFJzuOYnfMihhowIRUifKmVRykmegeiEdmncISzkVPBtXetUTzuEvd6tJBQaT3BJRy/yKVsZjw553V85I0GgSvI7Y43POatuTAzQhFavDJvcC8GEF9g7O/9Gk3ILgzyjDacZBewVzQzI+MilQTMWmpWM1c727UXFVCCCyXULU97fkVPz3S8Iyn0Ep9s/uVlVCAbfaZudcs7ZfG84hmPWkSrw5dySx7wzEBtHENBbne86Pkel7jXo4/nu4QypaG4kBdnHwqFIwiGIwmZkpQQZ/qJt5IiEIroTDRNkQu/aEsy/lA41j45YTfeN1hwDu0Tlzs92u39hS+ABz3TEtsYjPcf36dCAqGIbOYnf8i8JBJCHCvApR5aJecSALjGvQIzcl5Cd8+fuMmViVRTZivIjJ1PLfhVHPkHVanm//s0KuC6uBaivcgckqeX+w9FZ5bb3XHdtpwOnNLU+rORDvWSXvS8VOqLvgzF6gEg3h9yZnDN34x73D71XaKp6ZXvzkXjV6fi23+lPYuFvD9jE855fZrs/iavTcXj4+S/HMX0dE/DxtyeCWqmBVuSv4SbvjYNh05EBf17MzYl7U8XSnft+R/i6xI3frwAjV9NVslMXbtf8tgWb83AnuPmr9NllQCvTrTbWduRh91TsCTnMc3l83NeQT+NLvB68CKEgtzu2JDTU7aMFgE1wvdRzEtWDNURNUKLhQEQVW1psUZqTLSZmt7rnomLiDFhoufVIlYZvC2xRvCSN3HGfYFLPmxE/upE9YoewfGxQi5WfmY8Y732F9/13FdwHtmPPLIPNVCIOZuU879oyVGaaTbuP6H7mP8UvHSN4lgBrqZCqQrlDpY6+jLXGjQg1iUXUhNAr3onoBYpSnAUyQR8QKByRF4YJubU1D8TDsNlWqTCx92TUR6lmJ/zHD7wqi9c3uPWljx4oPdr/JTzlqE26bk2scpAy7HlHeIJG1dzAXNznse/OU+act5ZkVamnEeMlDGEWVihBnesAFcb5Lwbuh7G+QZjQc6zBltkHt/43s1o/cKePYfsjJk78kHDAGXhrq0OggtdyiaHPLIqFO7/K9xrcB+XZu8KlYUuq4nqe6nuxLnDvCNiZpz1iHoiYqeZBBLOgstHjKUzE3OAVjflPGqcRfagsgaHOS1YsZDpWAEuhdMGNc/1rkWZboIAivsFOvJpOX3xuHsy7nHPSlCHvCmIKXGWTIRDJSqSErzsnaipbDfPHK5l0ouYAGIp28Qv9jwJaw0rZkL3umeiLo5gY25P9HDPQI0kdZ5SNA+C29x/6zLjtCtiUzv+Hp1PjEUKFeNCBLnwy4ZJNgOhwJ6d82LM29qOOEKAb4o0SNomNcPRk6w0E159cnV+5huOOlCfdaWDa1zLExYQAaC5awcqiCwJ+MBcPgTR0KVf7dRKxaRLCJ8Cy4jgFbb7ctdq/J3zlGTC5xwE8L2vv2ETy4Her2PZh25wL0JAFNZU6YvRyFjMhEWykRkkv9DMO9zoQcrJbXvuvdiY2xPPeH7W3xiNjPR+mPB3A3IYZ2lcN1HCCjtyRwjwU8hN2iY15IWf+GbSimw2vJglZGrOy7L7FuWaoxtMFSnd6jlkp6QNbkOyH5tzexiqp51rg2oZM8MjeBHCWN8Q1CdH0FDC+uRcshNtXRvxe85rhl2uqxD5T+2bFEIEXKjjZcZTXaEuvXR2LcY837OyXsGpICWyCAFudS3A7z7lme01Lnlrl8oWel4Lw1XwNCPqFjxqWKFCUc2JaQekZtZSM3Cl2Nip8HPOm5ac1ynkuQ4gD4lCj4Cqus2nigfhhHm/nA5c3C5IlBLG/q6N47Hfl7jW4d/IeQmhfvt6JmJB5HyZVsk/haN8w2K/xYvsj3smY3LgUsnjrjHoV1AFJ1GIioaOFTLYOxrVyElUQjGOo5JsOSMzSLmviw9VvGTr4Cje9n6luz6rMCNIVpldxJSKPS1OlgsoxygRIx5YTYj+LC/ZiFbriTNd++Ej0jPV5zw/KLok62mL0JpISQcux5WuqEu6cBLgFSykTfS9DSCawoznIc9UfC2zkMyHLVaiKdmFGiTRCkqpX//PbSxmi96F0kwgddVaZqKDvF+ipo3Mgs0QvkZSN6rhiBm41OCXWljQY7p1sWsjfo1cFvv7a99QY43LMnTZL8v09zOeX1AJqX/iVkIJhinM1M53FcR+P+f9CUA0cYZQDVSLMwsza83jIqKu7qhKku19+b5SczYzi0sGazOV1MO2g+ptD4akFzGF7D5WAgmtaAJ2eznxM/C3fl+Hf7fpSTJN4UEYIYtErSNm4FoFs9TilBzdPX8abY4pKAVAyiS36ZgNKolEsRuyEe71zJTUlXdzz8YgzxeoJqMHftkzIfZbqyCoq2C614ZsjMVgzzFoPsmP4aYmfukRAL3c+diWc0/Svn2F2r+AtD5fPb9ZrFpm1oZEVZvRF6fdQgfzPfT13wW6nHi6u//E1tz7cRqOlF0Vitet7WaeQDnDdViV8V4OqQBIdkAYBU+NZqIM4GbTkEgLg8HeL9HdIx/hTyjYtYqBs13yppDvekfGftfSkdBaCD++rnSrhYnVNw5f846Hm6Q2dvkvBjVBri8GijZakc2S2+0mwLu7jU34eP+EM8hBS5TgjhDg6UBpBsaQRntMFWPc6E60j9diuQIkzrrlnID0IAzJa9R7lD9ObZ1Gz/nN8mTlOceV+tcB0ZnN4wPvZ5Lb7Ra4Vc/ERsi5rp0AouOvzJoRah2oLNGucxgQTP7s18LlLvUH6QKB04jZQs5NjOlm+ZeKmkpH3xqEMe52z0FBbndURKLVVgnNUTxOS08K5XcFlEhGZOzt/jX2Wy5evS/F7Dl24A9f3Gw4hwTLriem1ocw3WoQhnGucxvLjjLWN0S1jDCphtkf4uLMMFrhIx+aOQOX4iF3Pk6D8iLbw+58APG45kU0qno8SKvGyrzmGYv3NcSVEUMQjYX+g+9NTPG9EpuBCnnRm5x0QUx1oj9YlPVovzdehNDMFbcdr4XjZViAa7xys2dbDOu42JWekKH8mLhHJotSOqmAElMFuDDpRVOyEw3IIbzuHY+FuU8pHicMMOVCJOYU87I3vvjbyzM1lg0ndhwFnvP8iBtd/8qaxBECfOz9GG1cm1MK1yu0MLILeu6NMNQEAATLshXKDPcVmsqZJcDPIcmzBifxd/i8TDfBNvAxSc5zpe5JlypveMaaqkLhE5YAwPScvobig1QX2Nnf5Jb3FuV5xvMzPvF9LLvfZSSjtUPQc2UXi77UdtC6ZdcKZQ1pqqnc5W7p5AFyyLkO93SnbgLHsAdGVTVWUJWcVJ2B64nFInbdpwYeZz3u81ocUVIV38O8I/C8RF5Lp/Ck+xfM9j0vOZkss448VlEZp3AMlZO2C7tZzszJzjBVUiJKMTXSjdo6jZ6wDeKM9hGNGYqELcjVYddOKWIS+u+tR1DO50Z5nxvhCEWOx4WGNSrgYOFJVM41FtKiDo7iNpOSeVuBlufqBe8PAIBtkbqiPdakRHaEALdKIF3mWovfI8nxKXJJAAQR1MVRR8ZBsSomjFMZ7Xtfcf/tLu05E1NFLvyAGUQ0zn/5MBQEVPWL4EyyF93dszEwdC9O+EMxD8p7v0wOgdy97Rm42aWeL1SOL1TuU6aRkkM3u/5GM9d/GB76P/jhi22vKAq25QItu8GsrLIK/dj3CX4vTRbgt7r/QQnNwbTIxZbUazV2XACyM+/7Pk9LPRQkFhrXCpJjkEuTS6Iey0Qi8YQbYVQVxMMe7X0PZ7r2Y2z4WvxHT1M877KCY2huwMySDyhW1aTECVYh9Xr8yDcCAPCYZwrGhTrGtosz+xDQpNR5ZuAIHTgsjovgkbA57eaZgzG+dyyt1wp4kzBG2SM/51XZfTkI4H739ISFzp7uaUkqHQKKRTm9E/4W/q9GhOoXKVdqsO23A2p9oBTozCotgiMEeIla5JsU0RPF0O4MC92R6SYwbIQXIbzt+RIzfH3Q3zsGXQTZn7p65kqOfY9gFs2bHGr1sdCqxhHCfwWUI36VkplFTQgrpYuzyjbHEQJ8CWmOEaGbLTv/NS5j8ZjtiFX2pozU6exekvY6O7mW4h7P7FjWpO6ihM5iFYo4oceZrv0AtM0gCYkmq9YL34ZaNgofK0Uqs2irois6QoCDEEwKd7Dk1NVQhBG+jyw5dyYwI/A8I3sQC45LRdlmKokW204jqUXJNBJzxike1E94fjN8bASusuuJacWF89yowXnBSURAElyiGQwlPvZqm7x01PiVaiQdXSbNXgsidTSXfdrzq+F6hF6uZpKSACeEFBBC1hBCVhJCLPOYoLAuvOQA7zeWnDdTREDQwf9BppshyaLIOZluAkOEVrWFVFAqKV7yfqe7DZlM3rCP1tB5RPRlM9QzEne652o+ymgMHTXMUJheRSk9bMJ5FHHGR1bmoSAotnjR1yhDg3eDgOLHnP6ZbgpDBrnZcEuXtvynYvM5LThFhQIAuQigFD7c5ZmHuzAv081xjgrFbgHe7UgRLYe54ZaZboYsFAQ7qfZPVkbq6H1q5Mq3cW1WdbvXk6lGSENyIKOz8F6B5zWXfc870laezqkKcApgBiFkGSHkEakChJBHCCFLCSFLDx06JFVEYzX247Vgz0w3Icas8IVo7v8Sh1A1YfteWh0tS0dKH5QB7HknsxOCiG7BeFLh6004U25LpJNrhDW68wu5wr0GI72ZUfv9GmmPWZGLNJe/zLXGVlPJVAX4ZZTSVgCuB9CbEJIUNpBSOopS2ppS2rpWrVopVGWnbovyR7htppsQQ24QBqkHx1Epza2RJjpzsd99zEZOwxGsynkEHyokhZZCyalGOPNsLRMO2IgZIQBc606/KW+j0nH4Xqd1W1VyCoM8o61pkAFSEuCU0j3c/wcB/ALAEt9zSoEDtBp205oYE7rWiioMYSfdnVxbDqNKmlsiTxhuQ44eDP0szH3KUEycZzw/y+4TCnA5pxsjEREzRbSt+sdjV89c09tiFMO9TQipQAipxP8G0AmAvniuOgjCg8v8H2FmpLVVVejGTrowubbsoql89ZjH4GA3rKRnsbUMm1Nb4yLkk57f0IALivWQ+w8U5HaHCxEbPRHJBKk7sw2g2kP3aiWV12UdAAsIIasALAaQTym1JJA2lfmdaYpQPtNNiHGEJobFfSbwhKbjhgS7ok/wYSualMDI8E1Qe+UtizS2vB0M44jv3oKcZ3Eh2YI+nu8BGLMBTyeZ/vqrfsh8T1zDApxSup1S2oL7dx6l9G0zGyaHnTwN/fAhr9QaA309nKS5mBZpY+jYz8M3YVL4KpxIUxAspftXSCukpQ0MY3RyJbt6nEn2ZaAl6uyI1MEU0RrVw8HnMSfcIkMtAjxB80MF2EcaKmBFJotsYnqkNVJdHPwkdKspbVEj2+7k0kiTTDchbfChU5Ohgl/2UJFdFRiGQyKP5PmRFugZfCkzDQLgCZ0y/ZyOEOBC7DJAngwoJ45NJ6n1SPToUNqGgnxr7XJv9fBruH2mm2Ab7Hb/ttL6mW5CAsRmOvCMQA3YmVrBCR3679/CyUkjzETK1rcUOQCAE1RbO9PVq0p6SCfNztuUjkCj0nEYF74m003JOELduJ0W9seHO+L//G9muhlxLNAkOEKA23URU4kZ4ahd9sLIufgufJWhc2yMnC67b2SoS+y3lEicEbkIA4L3YHCoe8L2t4PdJUrri0exMnKW5rJi7DZLMw4xbIaWTbzv+zwWB5vY7u4SLKfRhfF0rfEoYcXLzREC/M2bzov9Fg+Rw7QyOvjtkUtPKFRfDD6KN4I90DXwGgLUWMiZ78JXYbwgTZMQYS9ICV8KF74Md4nFRSmlXgDA2PC1eDDwguL51PgvBXd4uz3iRsmW6zCT3p5fkcOla7MPBP2CPXBLYEBsS7vSj9G69LOEUj+HL7O+KdT8cAGOEODCXHLiT/C1kUYooOIM0NYjfJf+FL4cALBZMGMuREV8G74OqczQlN7YBBRHaUUd5zIP/RHc4ijNQZhQdDaphFvVXVcgnvbt/aByFqox4euwndaL/b0fNZIc3PamMKa1QsqqCkWI+CFXC7CTDmaFWwEA1tG8tNXpAsWbwR4A9Ak+ubLp0l3ayQw0FVLtrfWRhqplVkXOjE0OGIlMjsQXj8eEr8tgS7RTsWiz6ed03NMkFgA+knnngamRtmha+g020jNMPe+KSGNZwToj3BpHEXXe2Ulrazibssj5O3K+5nb9Hr5Ec9lsJdWvhRsCg1XL3BIYiOeDjydtHxsq2wun+eHEiB1FSN1/QGlxfULo6pTPDwC5xftNOY8Qxwlwsbmbn9PtphvxA+yHT7as0dntSnq27L5F9FwsiFyAXoHn8WHodtVz8W2QEzyHqPaYKal8aWSLmiRTi+l5pRPweujBDNVuD/ZYEB5CaVyupMYX7RPqIOa78jtOgJdw5nE8J5D51WU1rBRZsyIXIaQhLwffBgqC/bS67H4rEHq/Kbsz20u474zICwqtLyI7eOpmG1a4xCsFpjOrtpOV5SdkRnGcAN9G6yXoBXcbeBt/lCavQx6z9MuXlH6c8jkogPVp1NVPCF2Nx4LPCeqXfhz+FCWiEAceutw/DG1K9YVGTRXeBE2KbPmScCJW9P2EUEfLv+a3NzU/5pDjBDhA8HzwceSVTkCvwPN4L3S3YulRnGnf6ND1sW2TTXCs0TOIzNDRAcA+RFfKD5iQtLiT/x28Enwo9rf4JdM18Jruc7YoHZW0bRetnaBekuu3B4N94Ef8AfozcqHoPHWSklXopW+wF6aGtceM2UVryy42mvFKvsI/TFO5h3RkjMlG7vS/gQ8EliZSMcc3RE7Hv+FmhuvYhxq4XsO6RCpEXOa/IBwhwOWsb2ZFLkJQQn0gNNr/IXwl2pR+ioGh++LnM+ENXiTj4dg/eB9u9SfmfNxIz8D9AekYDIW0fFIWk2v9Q/FA4EXJ8ueXjsaVGh98IWIBvZmejgnhjrL7F0b0PwyFUDdrVPr8ncotTn0SukV33VpRu/c7BFnKA9SDmwX2w7tpTVPbopRe7jb/W7Hfs3VkjMlGltBz8FH4/2J/S42h6wPv4OXQQ0nb9ZCp9bRUcIQA18sLwUdjvwlo0szNDAG+WmZh46vw9ZKLj/MjzSXLt/CPRhfRm38LbYC5ohnoO8GuAICTKB9zk9eD2iJmwJT81vJc3IjXuxO8FbxPskx+pC16BZ7HB6E7EYT5Cz6LIufipIpH3v8F3sKCcNRxjHJJyXj2JAhwa1UoKyTUN3vSYKvsBMbJJHVJ9bneg1roHXga7wXvTNhulgr07Nra/Ta0kpUC3A9fzA1dqvMzo7+Ur7MK1KOU6Yk93rROcgq1z8I3A5CfAR9CtaRt3QKvonfgaeSVTsBZpWM11y+E7/2vHoirLuR7gmBW5CJE4MJnoZs1nX+ujvCgO2hd7Oeuc2uknmSZY6iMVdzLmSo8ulrGkB5VV0TwFbYqcmbS/tv9/XCLf2Ds7+NlOPRuMTeB6R54JcELO5XFTY8remx+pB0+Cd+Ka/1DU2ukBPWrmX/PHCHAqYY3oFyHC2/pw4H/4elAb9vFU9Hyaa7PWSf5Ct8L3Y280gm6Ul79GzkP+ZF2AKLp0ITc7u+HYUF180W+3XpDAq+jjWTVTkJ6B5+W3XeZ/0PZfSWKZp9RKOT7XelqugVeTfj7Tv8bCqWT2RxpkLRtGW2a4D24WkLIZyPtJBbu+XvyT+T8BC9sfnsg5cw7BFtoA8Ff5kgMYsG80RECXAvCDl8XaRjrcmHnz4y0xuRIexwVZa/JNHtQC9f5h0ju4xfzVqUQQMoKltGmGB5WF+A8Rh6B+RH12XWpQBBPCbeL/R4S7IrdmhyclCCQ+15QeqHywpVPer2EniNbdm0kjztfnAGhe3W1Mlt5OvAk9kOP2ih6T04ZMC1Oz6TOCvNHB6A3hEBUHSDfWUWogDt0zoqsYJfAzphfjN0WSYzrMityEZqUjtHlPGNV/ouZ4YuwKCIvjCTbwv+v0CalmbbcYnH8/AQvBx/Cz+HL8KRgNv55WJsKRgivY9Yy41IS4KdQDi1LR2JASFrXL6X2EZ6vSMNisFPMGPU4iInRq77i1VBmD38797S1K1c2QO5hXKowK1LjqcCTho8VIjSHUhIaAehbHTc6gB8MvICvfO8lvUR4Hg4aN2dTUqEozbSv9Q9FHjmgeO6J4Y6YGJaO2iiH1EMZoa6EfUpCUq2PjyN5HULp2L20Bs4gh1TO6jz20eqoRQoNHatXfRVT19la5JpLVs7AgfhNtOJW/h4xJ0GDVZ9tRlPQ8U5RIRMsQEYJQutG2xT/rUeneADVsYieK7tf75VO5+zAZ0VaJe0jhHLti4b9VFoUkzJf1Yo41ZcRnCKklPrwJ5UQrvICXGYGbnMBTlxlVIWilU9DN+PxwDMAgKGhu1FEy2M7PU3z8bz5mBxFtDw6+t9NqY1CrBpodlikFZstRmyS13QdbYS80gmSDjriuOpKLdYSvkCOfqEesd8bItEAaHoyPDkJpRfdLyqRFpdEmuqqK5XnSWnSMzOsboevyYa8rIaT1bp6OzTUFVMj0YWjuZGWaO4fjRIuoYEWlFynJ4WuxGX+4dhmYp69HRmIY64FM1bdebty/gGOWCS/1R7a80tHS26XVKHAJbvPTIRj8rXQg7jL/zp26JhoAOa/pIWOQ2ZCQXC5fxial36R5Kkr5VEp5KCEaSt/Tuntif+bhRYP4I4B+YndgOA9CFEXSFkNZpWuyZvSg/tR+LYEl/i2jZIDQr11s/QM/okOyRYkiyLn4NlgPCi9mqONEj3b5yX8PaJ7snpAzJk1k21SzVQ7fRK6FZ+GbsaEcEf06dwU1StErUXuap1sIhdrUy11O1lhIP8oia19JfhQghnfSY0z289DN+H+QF/ujPruxUGBSuSJgLxZoxR++LBYQUWUDm72D5B0HDKLXbQOilABhaiIddyXz/zwBVgUMfu6ieh/bTSrm7pVmpLF0zfhzjjbP84SO0JHCPB0QUBlF/DEg6J25fgsqmBIFxQM6YIel+ahYEgX8YG4pWXyrH1uuKWhz2a+LuHf/W46D5OfjAe4P7du5Vg5cXmeP1/ogPvaJaoRxO/Jcw0M7DAl2BapixLkYmioKwLw4okOZ8PtIigY0gVD72iBmhWlbbD/fL4DCoZ0wa0tpZ1sAPXgZRPCHfFvRFkVBiTbgQ8JdYtlbZET4Pzfzwcei20rGNIllq4OAP6ItIMUzUu/SPh7+euJ3oTieOw3tagXu3dXNEm+ZqmIkkaR8yo2A7mX4DuhbpLJPXg15kEN6wR9OjeN9dFPj18KvXPvTs2ioQye7tjYUrWjlTp5RwjwdGlPCSjcOpL7aj6vPddUTIHP+n2ERq0uGvvH4hqFz0kAcKlkUdJ6vx8NPKuxZDLzI83xRrCH5D6hI48Ue5DoePVG6AEAwBrOplsKcUAzsc51Ylhf0oD+IhPF/yKp2rwnMk4mF2uq/BW5AEB8vIh5I9QTgPLip5RAJESb9ZDcGaXo4h+Ey/zDdZ4rGf5amCOPxRDoy86uF6VoacYHH3eciW85D7RnOVpOm+Aa/1Bcyy3uRuBS9/bkFOKbI/XxdrB70m6t1zI9crF6IVkIl7M0mR/DVwCIOn4BwGvBnrjeLx+p7hgnjNR0ukKS1wSUAgwko2dtxwhHRDkjzWJoqCsuLf1I1kGnmEbd5LU8B8SAl2zC8YLDpcbcOppnKFw1z6/hSzkva+tmcI6wAzdqFqcXAgoXka7LjCZ0C76Gl+hEPO75XbZMJm01eHvdRq6o3bXWYbeVyuu1pYm+JGdFLsIX4Rt1HcmrN5ZFrNPZbqANExIxjAtLB09KBTWrHOGY1zImjC489w32MnScVsSCOAIX9kI+dEQqoi6VdSQreDaY6C9iRavYDFwAUQxfZH5dQvis2KN0CrTY+UwYHTWR6HBhVU8QqmxnrVTvAUR1v/PD0tEd04EZY8QuZpWTwh0sPf/SSBNDxxnpHZfNBHg6YAJcAAFVTK1kBvwn2T7RItQplENe6QT8GL7S0vqFiIW+HhVAKvxFona103QkV+DZTWuhbekn+Ch8m9nNUqWAixUu596vJjb4CJmAPrNKLeKIF1pKenjp4/Rt18sHoTvVCwnQ83IUBm0jiOfLPU71hW3V8i6VSlbCszlinmmxXpyhQklTPUo68NScBOK/J4Svxh5aE3M1BGpKN3zALD+NDgur5jGbkKeYK1JNZcbPwtNNv9ADmBm5COtoI0PH3xV4A7XJMQBAxGTDeKPqA6tnq1KWJlow0q5DqIbXgw9ocrwB5HXoUmhJVpIJHCHA00V0Bp4owP3UgxyifVFPDQoX5kZamnY+M+EfmiOwNlqjmuwy+4XdI/CSalAsLfjhSyk7ThEqoIiL462qAzdYh37BJ13ehQimhNvhRvdCgy0xhpYZOO8kJiWAx4Y7md4msyBl1Q78rFrRt98158qnoFKj/dnyYSknhaJqCykVCi/MxA9GmzxpLzG70kjguHNG9agwu/CMqgllhNd4zbm1cXlj/SnELmqo3i/iesW00XAOPcyLtLDUUUWv0Lz6nNqolJvser1TEJ1S2AftzkwcuxfUT7YQ4R2WtAj+PkH15LpuRCzJiiRGbK7IyzipPr3RPxBX+d8H/9I5p27cFLFmRX1ZqirnetCGc8Y7o0Z6whhY8a3jiBn4RQ2r4a8+V6FBtXLYcfgUcr1uzN5wAK//tg71quTi+0cvwZCpG5G/Zp/sOcY91BbL/juGelXL4dIhfybs4wPlE0TzMt7rmR3b93DgBTzgnhbL5MJzX7uGaHdmDVQrn+yUsuL1a1Fw5BQe+HoJCkuCSftHdG+F+tXKgVKK2z79B4QAL19/Dgb9sTGh3KDbLsArv6wBANx2YX281kXdc61uFWnzsilPXYaSYNT+upzXzZ2zAVo3rI5whMLjJug7aTk27WmAwaFu+Lx7K3jdLnRoWhsRSnHP6EWoUcGHUfe3Rl6N8rho4KyE8w/v2hLXNqsDFyE4eioQ6+MH2yerG+5qfTpmrj8AFwGmPXsF/jtSjMaCdFM9Ls3DWbUr4sjJADo0rYUIBTbuK8LPK/bgx2W7k87XpXld5K/ehzZ51bCk4Fhs+/LXr8X+wlL8u/0IBkxZn1C2bpVc7CssVe3PijkenPQrf4Ed5SIPLucsY75+oA38oQia1KmIq9+fx/V1ffyyYg8a166IL3u0BiEEf/e9Gu25fhp9f2vc9O3bqEWO44+nL8e5AuH06BVn4uJG1XFG9fIoLAmgflVO4AyK/vd2sDvW04YY79OWlHdS+CrMCl+ExmQPAGDeix1w5btzNR1rhIUvR4V0u8Hx5+rze1vB7XLh13ELcS9mC0rLv4LW0mic9fG92sLncaFNXlyVVrtyogD/q89VqFrei2CYYsfhU1ix8xgG5m/ANefWxtA7WsDrJqiY40GnZnVwevW4AF/y6jV46/d1mLI6LksaVCuH3cdKFK/x03taAT8pFoHLgmBWjhDgAGKdfCY3G2/CpQ1rUK08Tq9eHpXLKV8KIQSt8xJ1pydoOVQiJXFDe1D0Cz2AD0J3Ynlu1NtuHc3Di6HHJM/XRCJ1GQBUq+BDtQo+1K6UIynAuzSPentu3F8EAGhcuyI6nlsHg/7YiEY1K2DH4WiKtWrl47O0Fg2qoIbCLIP/IpebiVTI8aBCTnIfCQdvw9pVcN2OaGajXE7IX3JWDew+VhzbJjfDFnqb1qsaD6gv90IBgKua1kaTOpWS+pEQgssbJ9rfXnp2zQThzFOjgg91KkXraC8qU72CD9Ur+NCsXuWYAOe/PmpXjgrwd4JdcZV7hWwbtViL7Ka10cn/DrZzsW2qVfCh5elVcfBE9AVRs2IOWp5eFb+s2INLzqoR+5SuL+in06rkohAVUUgrolm9RBWWy0Vi/V6rUvz+tiwdiQhcKEIFtCRbVdsp5CgqYxGX2ER4v2J1gqaUokzIaRJjoEG18ji7dkU8ztnaJ9XvklcOtD87+ctQrE4RjuvqFXxYvy/6rNWpnBsL6yAux5ct70v88mjdsJqqAL/hgrqqAtwKHCPAxfAPQfwBMz7YwrEgRhRhuHEUlXGNf2jKCzxaVV7CwSc8JMHRwOQ604VSezLRVnGVn4VvjuULTYXNNG5h4k7ThQljjqeybiDVWgIai4+ul/nhC7A4cg7qk8OqZcVRHffSmpgZboUfyt0JKMvMBMzqcgL9gdfGhq/FAHOq142DBXj0fzMWvPiBKlzA1O+cIo9cTk/h5M4mZsGmY+Z1qT2kWurS+6AbaX9yHem7uWqX1z3wiuZzGbUg8cOLTwyaeUbgwsPBF1C/QjnokuAmIrYQUrt7Y8OdMibAHbGIKQWvTjLDSzM+AzcXrWZKCQ98wiE2m05nGLlbrUco8/dE67gx4nDDt0d4/632JtbytdiidBT+EQXNAuJfs138g+LbQOHXmQmKR5wAWw5TX+4mVUYIEDahYZrig5uAYwU4f8v4l2Uqn1BCHbgVyI2HxO2Zn4KnqwVmCjOrtRVGWuq2YLFKja20Po7Sing3dLfk/u2R02RtmfnWCvOuEgBfhzsDAFZySZrF8MkoxGzWGDOf/zLlvwpmhS/UdJwUWk30tBRL1UT/KK2Itv5PUjuJRlIS4ISQzoSQTYSQrYSQvmY1Slvd0f9T0YAn+nGZL8D1CBdepsnqwDMv3zOOmcJaa38aedm4DDQ01ftbjFy08o/CAi7aX9L5dT4hLkSwg9bF04He6BnoI1lmqMzLopCqx3UH4tf8T+R8XFA6Go8Fn9PVRiFmDQ1CSMpOVvtoDcWcqGZiWICTaHqJEQCuB9AMQDdCiHy4PZOJ3TATJJuV+TMBhRm44IURexHJPPxMfstj7OWtrUeNDC8lAW5HpZhUc/lNkyPtcQyVJcO/ppo7Vdi1J1A+YUFT7zvQzJe7nNrsycBT5lViEqnMwC8GsJVSup1SGgDwHYBbzGmWOh7OzCjHEx1EvNmbHgq4NFa8Zxc85uqt+DbJWUTxD3o5nzum0y8nuA6P4FPco/JZzn+253iM31K5Y/l25nj1n1tKneBx823Vd8+87uT6czxu+Lh2+zRcO19Ga93lDIwr/pp5oZLrdcPDtV3qGoRlraIU0kk0onUnVy524pFKsHCYVkGb0k+Ttgc06M5dRHmFSO/zLLwGqXGg1v/CsS8u4+P+nhK5JCkxhxRG1w6MkIoVSn0AuwR/7wbQVlyIEPIIgEcA4IwzpHVmRji/fmU83bExul8cPefznZrgywU7ULNiDl654RycUb08th86BX8ojJanJ9ouj3uoLY6c8mPLvnewaOEEfBvuhFqkEJ2feA+fHI7gyQlxu+C8GuVx3fmnweMiCIUpzqpVEcGItpjhn97TCt8v2YWmdSrht97t0W/yOrwqcMY557RKeKZjY3S9+HScVjkXz13TBHe0boDVu46j/5T16NC0Nn7r3R63fvo3ul2c2HcDbjkv4brOq5fYH0Z4qfM5+PrvAkx/9oqE7XWr5OKFTk1wc4u4bvPDu1vi/Zmb8NbN5yEQSu6PFzo1weKCY7inXXJ7rmxSG090OAu9LpfWrcrRs30e5m8+hL2FJfjvSDFubF4XL3RqilqVchCOUPS6vBHcLoL3Z2xC/1sSF+te63Iupqzeh4cvPxOn/CE83bExPpmzFV4XQefz62L17uOolOvF76v2YvnOY6hfrRxaNKiKZ69pjM/mbsO97Rpi0tJdqFIuWqbrxWeg6WnRWemEXm3RffQi3NP2DNSpnIs8zrOvZsUcvHhdU3S5oC7qVS2HXUeL8VTHRI/Q/13bBIt3HMV59Spj8pPtsWp3oeb+uKppLZxXrwrK57gxdNqm2Pa3gvehITmA38LtcYv7bzzgmYFHAv+L7X/66rPRpXk93DN6Ycyv4puebfDA10vQN9gLQ7yjcbzdS7hsfwkWbI2aAj4QeAl/5TyDzoF38KznJ7RybcEGGs3o1C3wKm52/YNunjkAgN/Cl8bqGnp7PGrk5/e2wmPjlqOCz41z61YCIQRdLqgbc8C7OK86Bv3f+Zi6Zj9uvbA+Zm84gDaNqoNSYMXOY6hRMSfJRlt8j7ccOImHLk92Hru9VQMUHD6FJ68+W/LY35+6DPM3H4r2383noX61cjhY5MdPy3fjtS7NUBIMY8XO49hzHHgn2BXLI40xyDsab4Z64M2booqHEfXewbW7P0JvLrF6p2Z18MCleYhQ4Mgpv2y7U4EYXVAihNwBoDOltBf3930A2lJKn5Q7pnXr1nTp0qWG6mMwGIyyCiFkGaU0yespFRXKHgCnC/5uwG1jMBgMRhpIRYAvAdCYENKIEOID0BXAZHOaxWAwGAw1DOvAKaUhQsiTAKYDcAP4ilK6zrSWMRgMBkORlFzpKaV/APjDpLYwGAwGQwcO9sRkMBiMsg0T4AwGg+FQmABnMBgMh8IEOIPBYDgUw448hioj5BCA/wweXhOAeoR4e8OuIfM4vf0AuwY7kO72N6SU1hJvTKsATwVCyFIpTyQnwa4h8zi9/QC7Bjtgl/YzFQqDwWA4FCbAGQwGw6E4SYCPynQDTIBdQ+ZxevsBdg12wBbtd4wOnMFgMBiJOGkGzmAwGAwBTIAzGAyGQ3GEAM9k8mStEEJOJ4TMIYSsJ4SsI4Q8w22vTgiZSQjZwv1fjdtOCCEfcde0mhDSKrNXEIcQ4iaErCCETOH+bkQIWcS19XsufDAIITnc31u5/XkZbTgHIaQqIeRHQshGQsgGQsglTroPhJDnuDG0lhAykRCSa/d7QAj5ihBykBCyVrBNd58TQnpw5bcQQnrY4Bre5cbRakLIL4SQqoJ9L3PXsIkQcp1ge/rkFaXU1v8QDVW7DcCZAHwAVgFolul2SbSzLoBW3O9KADYjmux5KIC+3Pa+AN7hft8AYCqi+WPbAViU6WsQXMv/AEwAMIX7exKArtzvzwE8zv1+AsDn3O+uAL7PdNu5towB0Iv77QNQ1Sn3AdFUhTsAlBP0/QN2vwcArgDQCsBawTZdfQ6gOoDt3P/VuN/VMnwNnQB4uN/vCK6hGSeLcgA04mSUO93yKmMDVUenXgJguuDvlwG8nOl2aWj3bwCuBbAJQF1uW10Am7jfIwF0E5SPlctwuxsAmA3gagBTuIfssGAQx+4HorHgL+F+e7hyJMPtr8IJQCLa7oj7gHiu2epcn04BcJ0T7gGAPJHw09XnALoBGCnYnlAuE9cg2ncbgPHc7wQ5xN+HdMsrJ6hQpJIn15cpawu4z9gLASwCUIdSuo/btR9AHe63Xa/rQwB9APCZimsAOE4pDXF/C9sZuwZufyFXPpM0AnAIwNecGmg0IaQCHHIfKKV7ALwHYCeAfYj26TI46x7w6O1zW90LCR5E9MsBsMk1OEGAOwpCSEUAPwF4llJaJNxHo69k29ptEkJuBHCQUros021JAQ+in8GfUUovBHAK0c/3GHa+D5ye+BZEX0T1AFQA0DmjjTIBO/e5FgghrwIIARif6bYIcYIAd0zyZEKIF1HhPZ5S+jO3+QAhpC63vy6Ag9x2O15XewA3E0IKAHyHqBplOICqhBA+e5OwnbFr4PZXAXAknQ2WYDeA3ZTSRdzfPyIq0J1yH64BsINSeohSGgTwM6L3xUn3gEdvn9vtXgAACCEPALgRwD3ciwiwyTU4QYA7InkyIYQA+BLABkrpB4JdkwHwq+k9ENWN89vv51bk2wEoFHxuZgRK6cuU0gaU0jxE+/lPSuk9AOYAuIMrJr4G/tru4MpndJZFKd0PYBchpCm3qSOA9XDOfdgJoB0hpDw3pvj2O+YeCNDb59MBdCKEVOO+RDpx2zIGIaQzoirFmymlxYJdkwF05ayAGgFoDGAx0i2v0rlAkMLCwg2IWnVsA/Bqptsj08bLEP1EXA1gJffvBkT1kbMBbAEwC0B1rjwBMIK7pjUAWmf6GkTX0wFxK5QzucG5FcAPAHK47bnc31u5/Wdmut1cu1oCWMrdi18RtWhwzH0A8BaAjQDWAhiLqKWDre8BgImI6uyDiH4FPWSkzxHVM2/l/vW0wTVsRVSnzT/TnwvKv8pdwyYA1wu2p01eMVd6BoPBcChOUKEwGAwGQwImwBkMBsOhMAHOYDAYDoUJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUP4fhJWeNqSRcesAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(1)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Passing `beta` as 2, gives random-walk distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA26ElEQVR4nO3dd3gTV9YH4N+VZMtgm25Mx3TTmxMIxYTe0jfJpmxCevZLNnV3sySkENJI3YRkUwhpm142nUDoxIQEYno1GDAdbAPGvUi63x+aGc2MRtKMijWSz/s8eTKaGY2vkH10defccxnnHIQQQszLEu0GEEII8Y8CNSGEmBwFakIIMTkK1IQQYnIUqAkhxORskbhoq1ateEZGRiQuTQghcWnDhg3FnPM0rWMRCdQZGRnIzc2NxKUJISQuMcYO+jpGQx+EEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHAVqQhqg9QdOo7i8JtrNIDpRoCakgeGc48q3fsPV83+PdlOIThSoCWkATpytxomz1QCA6joXAGBvYXk0m0QMiMgUckKIuQx/ZjkAYGKfdDx/+YAot4YYRT1qQhqQpTtPIrfgTLSbQQyiQE1IAzP7hx3StstFa6bGAgrUhMQ5dXZH26ZJ0nbBqYr6bg4JAgVqQuJcaVWd4vEfsqGPBCuFgFhA7xIhcW77sVKfx/JOlNVjS0iwKFATEufSU+0+j93yX1rgIxZQoCYkztU56YZhrKNATUicq3U6/R4vr3HUU0tIsChQExLnnvlpt9/j419YVT8NIUGjQE1InKuu89+jHtm9VT21hASLAjUhce7wmSoAQJdWybAw7+PFFbX13KLAOOfgnMbWRRSoCWkgFszIwt8n9fLa73S5otAa/ya//Au6PPhTtJthGhSoCWkgEq0W3HF+N+nx5kcnAgAOn64M+dqcc9Q4/A+xGLHnJFX2k6NATUgcu/i1NdJ2xxaNwRhDZptUdG7ZGMl2d/HMK7M6hvxz5i7ajV4PL8bTP+0K+VrEG5U5JSSObTly1mvf4nuzAbh7wRYG1DhCH/p465f9AID5v+zHQ9N6h3StFbtPSttOF4dVa2C9gaEeNSFxSl4Zj2nEOsYY7DZrWAK13Be5h3Wfe+hUJZbsOKHYd6DYMxRz2oQ3OqOBAjUhcaq81jORxVef1J5gQU2A9D1/vtt8FJmPLFLse+CrrdL2K8v2ImPmQqzNL/bK4jhbVYfs51fitg83KPbLx7qfoaEUABSoCYlbZdWeQN20UYLmOSWVdfjgt4NB/4x7PtssLe2l5d/L9gAArlmwDu/+WiDt33y4BAMfXyI9PlVegyNnKrH+wGk8tzhP2v/1pqN4d82BBl83O2CgZoz1Yoxtlv1Xyhi7tx7aRggJQVm1p7zpmco6P2fWj+83H5W21x84pTg29MllGPXsStz5yUav5835cSdGzF0e8faZWcCbiZzzPACDAIAxZgVwFMA3kW0WISQUnHP8uOW49LhZY+0etWhfUTm6paVEtE3yG5sf/a7diy8qq9HcL/920BAZHfoYD2Af5zz470qEkIjLfm4lXluZLz0ONMnv201H/Z9gwBVDOwQ8p1ebJoau+dcx3RSPSyprsXZfsaFrxDKjgfoqAJ9qHWCM3cYYy2WM5RYVFYXeMkJIUIrLa6Rp44A74+PJS/r5fc4R2fl6bT/qnfoHAAu3eXrymW1SFcfEsealO0/CiBeX7lFkk1y7YB2ueXsdzlZFf0inPugO1IyxRAAXAfhS6zjnfD7nPItznpWWlhau9hFCDNp9XLlqy8aHJ+LCge00z01OtAIABnZoquvanHMs23kSLhdHzl5lj/aVqwYBACpr3VkbZ6vqsFu1gszEf6/WVcOjR2vvYRh5NskOYdWauz7dpKvdsc5Ij3oqgI2cc2MfhYSQemVR/VU3EoKxFnHyS2O7vrlv3285hlv+m4uP1h2ESxVw7TblDz5yxntq+r6iCr9ZIp7n6uvhbzx4JvBJccBIoL4aPoY9CCHmcKaiFiWqDA91AJVLEQJ0pc7FA46VVAMAXluR75V/nWC1oFe6e6hj3vK9sGjNsgEw+/sd0nZGy8aa53Ro3shrn9blGsqiB7o+RhljyQAmArg9ss0hhASrzunC4CeWeu1nPgImADS2u3vbFbX+J70cP1uF/UUVeHaxexGCwrIar5Q/m9WCvJPuoY6Xlu5Boo8PiM9lY83L7h+D7rMWeZ2jVUP7nvE9/LYxnunqUXPOKzjnLTnn2ncPCCFRt3Dr8cAnqSRaLWAAPlaly9U5Xbj70014dvFuOJwunPfMCly7YJ3inA+F54hZHt1V48pzF/lfWQZwB/f+7ZXj4w9OzcTKf5yPxfeOxvzrhkr7NzSQYQ4tVJSJkDhRUmm8LgZjDBYLg1M13vz0T7vw/ZZjAICvco/4vcbVwzrhiUv6ISlBeyz8oWmZeNrPcmCPXtgHV7z5GwBg39PTpCJMmW2aIFOWxpeztxgHiivQpVWytG96/7Z+26ZXxsyFAICCudPDcr1woynkhMSJl5buCep5ThfHydIa5Bd6akDLU++KyrUnoYgaJ1qlIP3ynwd5HR/auYXm8yb1SQcAnJPRAneN647bs7sGrJT32op8xXTyOqf5Fj2IBArUhMSJB6ZkKh7/c3IvzLm4r+7nT3hpNQCgqtaJOqf+2hryXq+8tytq0zQJ78zI8tr//BUDpe2/T+qFB3WUR/3fxiP4Yesx6bEzDDVAvpSNme8U0v7MhoY+CIkT6nKld47tbvgau46XYuorOUG3oXdb7xmH7Zs1Qvtm3lkcvgpFBfKYLGukLohA/fqqfPRonYqJQo/+Q9n4/LR5Och7cgrsNt8pjdFAPWpC4sT7vx4I+Rpvrd4X8JzhXbWHMgAg0WbBE7JZkE9d6tnu1MKTiveirDcdyLT+bdBINv4tTz80ut6jw+nCc4vzcOt/c3H8bBVOllZjq2pxhVV55ptZTYGakDihnoASjG83Hwt4zh3n+++pXza4PVokJ+KvY7rh2mGdpf33TvCk1/1JRz0Q0evXDsWqf56vecxhYIgGgKK0as7eYgx72rsq3+0fbjBdHREK1ITEiWlBZkAEqqwnOjfD3ZPObJvq97xkuw0bH5mImVMz/Z5nhK9UcIfBoQ95vri/QlRmW/uRAjUhceDw6Uq8nRPc0EeCVV8YuHpYRxx4ZhpapyZJ+5bel63754jBdnSPVobaBwBpKXbN/fJAffBUBTJmLsS6/ac0z1Vbu8/3eT3T/X8Y1TcK1ITEgfyi8sAn+aB36dhEq1Wa5fj29VmYf91Q9DAQ0OYt3wsAQVW8Y4xh15wpXvvlY9S/CEWifA3f6CkGJfp641FUmGh6OgVqQuKA1c808UDev/Fcn8duH9NVc//EPumY1LeNoZ8zLtOdZaG+eadXo0QrbhnVRbFPPkb92HfbAQAnS6s1nx8o5fCTW4cpHk/69y/BNDMiKFATEgfUE0XO76W/1HCfdk1wzbBOmscenNobLZITAQAOgxkWarOm9cZ1wztj55zJQV/jvok9pe3MNqnS0Mfrq/IhjoJs81EnO9DkGHVK3tES4zW6I4UCNSFxQF7EKP+pqXh3xjmGnv/JukM+j4ljyqFmlVgsDE9c0g+NE4OfvpEsK8faMz0VDiH4yhfEvWlkF6/nAUCtkGfu6zhg3gV0KVATEgeqhEA9tV8b2KwWWAJMxVZTL3UlJxZ7CrFDHTa92zbB8K4tYLMwqUc9sntL6XiNQ7sSoNijbqxRn7tji0YY1LE5bhiREf4GhwEFakLiwEtL3HU+HtIxDVvLv6b08tr3yS3uMducf43FtP5tMLW/sTHpSFl0z2h8eutw2KwMR85U4Y6PN+DQKc8iBeoZmur96iyXh6ZlIueBcbBaGGZf1Bcf3OR7zD5aKFATEgduHJkBwP9qLv4wxqRr5DwwFt/cMQIjuruHPNo2bYTXrx0a0pBFuDHGYBWWsvlp2wlcO9wzsabWR6AWe9SpScrXoV7gYExP9/i+r0UNAGDF7pNeP+ftX/bj1v/m6nwFxlCgJiTGcc7xhVCK1FepUT0eu7AvCuZOR8cWjTG4U/NwNS9ift5xQtqukS3v5Wvoo1YI1G2aJimq/Pmqm11wynspMQD4ff8p3PR+Ll5cmqfYv2pPoeFFe/WiQE1IjFuZVyhlOiT5WXYr3pyu8NTfLqv25Gbv0KiAV1JZiykve4pNXTK4vTRWfYef4lVaudTiz31r9X7F/l/z9U20CUbDeVcJiVOHT3vSyGw6ZxnGmwVrPLMyNx0qQUFxheL4FlnuthjUxbTDbD8zJUs0JufI16Cc+NLqsJRaDaRhvquExJFGIQx3xDKx9oiWM6rVbma8u17aFoeHTpx1T4yRT4kXXTyoHQB4LeALeGZYAsDewnLFEEykUKAmJMaJC9Q2NNU+xqJFi7YdR8bMhahSLdwrTg66ZbR71mXrJt51RC4Y4A7UFTXeP2OLamblit2FOH7W/a0m2BrbgZjnNi4hJChMd7WO+OJvKnqtw4X/+3gjAOCB/21VHGslFHh6YHIv3D2+u+YN2GRpdfbA9T6+2nAEa/YWw26z4KpzOupuvxHUoyYkxr24JC/wSXGog8aqMSJ5LvVP25Srsw/r4h4ysViYz5TDZGF/WbUyULt8jEefKK1GjcMVsRRGCtSExDhxanfXNO/1CuPZ13eO8NrXv31TAMpcavnNvqzOzaUKgP6IU9XVedFdH/rJ7/O0Zj2GAwVqQmKcWFDp+7+NinJL6pfWuobPXzEAgCdnWu0e2Soz/iRrjPvrKZMa7ISjQChQExLjKoWbZQ0t+yNZIygmCumJb6zahwsHtlOeb7didA99VQWTND4EjpwJXE1Pz5qTwaCbiYTEuKo6J+w2i1ep03hns1pQMHc6qmqdqKpzokVyIg6ecudPbzt61muqeN+2TXVfW6tS4FXzf5e2LxvSHuMyW+Nvn2xSnHODz8p8oaEeNSExrqrWGbGx0VjQKNEqTV6RZ3Col9qyJ+gPd6lJ3ml28vrUPVqnSil8cgnWyHxYUqAmJMpKKmsxb/lenxkFgXz4+0GcqTS+vFU8Sm/iPXlFVK0xecWXRNnsw6paJ85/fqXiuM3Ht5dIfaehQE1IFDmcLpz/wiq8tHQPVu8pCuoaDW1sOlh/FJwJ6nn7isq9CjTlHjytee5lQzoE9TMCoUBNSBS9tjIfJUJv2BFkj3pIp+YY2tn81e5ildaEmIJid+B+QFXHW74CTThRoCYkivYVeYoHMQDdHvoJ172zztA11uQXY8PB4HqLJDCtIRNxBZ07zvddeS+cdAVqxlgzxthXjLHdjLFdjLHzIt0wQhqCH7Yck7atFganiyNnb3EUWxT7ltyXLW0bWeRX7fZsdy0QrfrWz18+QNoWF1yIJL096lcALOacZwIYCGBX5JpESMPRWb6KSBB3ovRMwmhoeqanYul92dg1Zwr2FZZL+1f8fYyh64zNbA0AqK5zKd6agrnT0a+9J9XvNiGgR1LAQM0YawogG8A7AMA5r+Wcl0S4XYQ0CAdlN6mCyfoQa1qMDaHnGI96pKeiUaIVV53rnrV548gMdE1LMXSNx77bDgBYvqtQWp98/azxXueJFfMenJoZfIMD0NOj7gKgCMB7jLFNjLEFjDGvogKMsdsYY7mMsdyiouDuXhPSkP1nZb7h54glPPcXVQQ4s2ES/01/22d89ZWLB7cHALz7q2dRAq3a1Y0TbSiYOx23+1nJPVR6ArUNwBAAb3DOBwOoADBTfRLnfD7nPItznpWWRp/uhBi18VCJ4eeszCsEAAzv2jLMrYkP4jeOozqmf6v5W5igvukJ1EcAHOGci7eiv4I7cBNCQnCytDrka3z4+0EAwB8F2nm9DV3+U1Nx4cB2yH1kguHnDujQLPwNClLAQM05PwHgMGNMTBgcD2BnRFtFSAMQjpS6G0ZkAADenpEV8rXiEWMMr149WLPSXiDq6eB/jeDQRiB6s7PvAvAxYywRwH4AN0auSYQ0DHcIK5Bocbq4riJLYo6v1qQMEhrGGBJtFqm29U2jMqLWFl3peZzzzcL48wDO+SWcc8quJySCZn+/Q9d54s3EJBvNXYsEu2xVd60bifWF3l1Comz2hX289n34+0FdtT+qhd5epArWN3RlNYHXTKwPFKgJibLpsnKZd4/zTEme8e56aWjjZGk1Nh7y/iIrDX0EMQZLYgctHEBIPfsy9zDeztkvPRYnTADwmpRRWl2HpAQrxr+4GuU1DhTMna44Xl3nQqLVItWeIPGJAjUh9ejN1fswd9FuxT557eMxPZVzEKpr3UMb5T6+gtc43Ku7kPhG7zAhEXaguAKPfrcdVbVOryAtaiIsG9U8OVERuF9f5X+2osPJkUCBOuIm9UmP6s+nHjUhETZ9Xg4qa50YqDGBIklYHmrFP87HmYpaAO7KbPd8thkAsL9Ye2p4SWUtVuYVShNeSGQ8flFfLN5+Am9dNzSq7aBATUiEdUtLwbajZ/Hqir1ex+6b0BMA0CrFjlYpdgDKFVsuHqRcl8/l4rBYGO7+bDN+CXJFGKLfjBEZmCFMKoom+s5ESISJM9zUyzkBQO+2Tbz2NU709J/EyRaiovIaAMCxEuO1K0jsokBNSITZrL7/zFKTvL/UNkr0nK8O1MOeXo4P1hYgX1ZnmcQ/CtSERFiin0A9uJP3Woc2i+f8GlWgBoDHVLMWbxnVJYTWkVhAgZqQCLNZjeU4y2t8qHvUWkZ2b2W4TSS2UKAmJMJW5Wnf9NManwZUgdrpgjPAyi+JlJ4X9+gdJiRK5NPF5bq3TpHydmsdLtQ5/feq9fS6SWyjQE1IPVs7cxyeuaw/pvRro3k8wWrB/Ouz0CrFjhqHC6VVdX6vp3VDksQXeocJqUdL78tGu2aNcLWw6Ko/xeU1+HT9IXy6/pDf84Z29r4hSeILBWpCIui6d9ZJ2+qCSuHCGBVkinc09EFIBOXsLY7o9fc9PS2i1yfmQIGakBjz/OUDAAAWBl3LdZHYR0MfhERQWqodRWU1YblWy+REnKqoRYrdhtX/PB/NkxPDcl1ifhSoCYmgGmEFli2PTQr5WqeE6npl1Q50bpkc8vVI7KChD0IiqHvrFIzu0UqxikuoNh2mtaUbGupRExJBu0+UBT1z0G6zaNb6sFCWR4NDgZqQCEpvkoR+7ZsG9VzuY+a4nRaybXBo6IOQCKqqdaJRQnB/Zk9e0g+A+ybiH7Mm4Dkh2+PSwe3D1j4SG6hHTUgEVTucihVbjOjVJhUA0L55I6Sl2nFlVkdcmdUxnM0jMYJ61IREyE3v/4GSyjokJQYXqO1CTzy9SVI4m0ViEPWoCYmQFbsLASDoHnVmmyZ44YqBmBjlFbBJ9FGgJiTCkoIM1ABw+dAOYWwJiVU09EGIQT9tO46zlZ7So3VOFzJmLkTGzIXSPoeshnSwPWpCRNSjJsSAwrJq3PHxRgCeanjfbT4mHeecgzGGihqntI8CNQkV9agJMaDO6Z3c7JItlSVOUHHJkqB3Hi+NfMNIXNPVo2aMFQAoA+AE4OCcZ0WyUYSYlVi7Q65NU09WRnWdE0kJVtS5PEMf6w+crpe2kfhlZOhjLOc8ssV1CTE5+ZRul4vDYmGoqHFI+6rqnGgGwCHreb934zn12EISj2jogxAD8gvLpe1KoXf9v41HpH1r80+Bcy4tSPviFQMpD5qETG+g5gCWMMY2MMZu0zqBMXYbYyyXMZZbVFQUvhYSYiJ3fbpJ2q4UetLiDEIA+PuXWzD6uZXSWHZCkAWZCJHT+1s0inM+BMBUAHcyxrLVJ3DO53POszjnWWlpaWFtJCFmIL9pCLiHQdbtP4X/rNyn2H/kTBUOn6kEACTQCiwkDHSNUXPOjwr/L2SMfQPgXAC/RLJhhJhNmWwsGgDGv7gafds30Tx378kyAECClXrUJHQBf4sYY8mMsVRxG8AkANsj3bD6UlZdhwU5+6PdDBIDDp+uVDyudbqw85h26l1NnXuM2malHjUJnZ4edTqAb4Ql6W0APuGcL45oq+pR/9lLAAA90lMxpicN2cSz9349gLRUOy4Y0C5s12yUaNUs7v/i0j0AgETqUZMwCBioOef7AQysh7ZEVX5hOQXqOLZ6TxEe/2EnAAQdqP/55RavfSWyqeRa6GYiCQf6LRIUllZHuwkkgma8uz7ka9w/qZfh59joZiIJAwrUgqKymmg3gZhceY3/3rMWuplIwsG0v0X5heX4ZN2hevt5y3adrLefRaKL+1qMMIDyanfWxz8m9YRV1VMumDsdn9w6DC9dqRwlpEBNwsG0v0XT5+XgoW+21dvP0yq2Q+KT02X8veac45HvdgAAbhndFf+5Zoh0rGurZADAiG6tcNkQZf3oWo0bjYQYZdpArb6T7nC6UK1RECdc7EEuQEpiTzAfyiPnrpC27TaLokf9yAV9fD6veXKC4Z9FiJrpo5P4NTXzkcXIfCRyWYGB7t6T2KUe6qhxGPvAr65z4myV5/eDMYa1+zz1ycZmtlacP6xLC2m7WeNEQz+LEC2mD9QOFwfnHI4gvq76U1pdV69DKyR6vtxwRPH4iR93GXr+K8v3oqJWGdxHdW/l8/xtR89K23ZKzyNhYPrfIocz/EEaAKa9nFOvNytJ9Dzw1VbFY3m1Oz2Wa9xo7tE6VeNMt0pZUKebiSQcTP9bVOt0SSUjgfDdnBnQsWlYrkOi64O1BXj8hx2Gn1dWrX+oS+vmI/OTHt0ymYY7SHiZPlDXOV2K4HwyTBNTqKcT+85W1uGx73fgvV8L/J4n3vf7/Lbh0r5VefpL8WpNEU9Ltfs8/49ZE3RfmxA9TB+tVucV4eYPcqXHf/1oQ1iuK1+QVG7z4RKp8hkxt4Fzlkjb6hKkcnabe3HZwZ2aS/sOqQos+XPkTJW0vfQ+d4XfJD8L1lpoNiIJM9OvQv7t5qPYcPCM9HjHsVIUFFcgQ8hdDac6pwuX/OdXAJ4VpklsqHW6kGTRDp5VQlpngqyS3fM/5+HOsd0DXlf9AdAj3TM2/cgFfdCpRWPN5+19aiqs/sZHCDHAlD1q+fhhzl7vZRrv/GRjWH+e+AfcY9aisF6X1B+xrKhaxsyF0jYLInBWy1L59jw5VXHs5lFdMLFPuubzEqwW6lmTsDFVj7q6zomnf9qF3IIzfs9zhDCLcPeJUqSnetawa5WSiOLy2qCvR8yhvNaBpo19Ty7JbOOdpeF0ca+p4GoLtx6XthMp1Y5Eial+877ddBT//e0gdh7XLsYuOllWjYyZC7E23/ii6FNezsHgJ5ZKj7+5Y6Tha5Do+G7zUfxN9m2qW5pn+OvzPw77fe7uE973HfTMdJ3zo7s06sAOlCVEosdUgbpctdSRL+Iswo/XG8uD1qqQ19HHGCMxn3s+24wfZT1c+Teh5ETfN/d80crmEJ2ucF+7TCjElGw31ZdP0sCYKlAbZXQE8Jynlike35bd1ee5RqcZk/ojTgnv3dYznPHMot2Gr+PrPe718CIMeWIpnhR60wBw3fDOhq9PSLiYKlA3TjTWa1l34LTftKxAxD/4z2T5tSJ5bQdiLg4Xh9PF8fv+0yFdx9cNSLGnvWDNAWnf1P5tQ/pZhITCVIG6mexmUCNVnuqy+7MV6VWAeyhjiGy82ai3c9x/iMO7tsTd45SpWr7+iONBfmEZVu4ujHYzgjbtlRyU6vgg1ZpR+MpVg6RtraGPV5fvDalthESCqQK1fAZiVZ0TrWWzv7q3TsXOOVO8nlMSQs/35lFdpO15K/IVxyJRX8QsrnjzN9z4/h/RbkbQ9haWo9YZ+IO0stb7nsfFg9rjnRlZALSHPsRFaeX8FWAipD6YNlADwMK7Ryseh3vad8fmjaTtm0Z2URxz6AgEsepMHJR01VPzZecxT/bQy38eJG2LMxWrVd+aNh8u0bzOiO4tjTeQkDAyVaCuUPWA9BbzLywLrv7HtAGecUf5jSnAvWp1vIu1G6bnZnjqPH+iI+OnuVAc6YUrBuKSwe2l/eLvlfr1i7NS1RIspvozIQ2QqX4DH/9hp+JxYz/1FOSCWVoJAFrLJr5cPKi94tiTC43VLI5FvSO4EEMkyGcJvrFqHwDgn5N7Ybpwo0+9QIDY626SpLxJPft7d7U9vfchOOJ3GIzEBlMFajWbzqEOPTMVxT9sXxrirLNYGIYvr3GgpNKd07z1yFmv404Xx8Jt7txq9bcg8T6Desjsmcv6AwAe/W67rja8vIxuMJLoMlV0unhQO2k7u2caAODZP/WXKpYBwOJ7R3s9r07HePKzi915tv7KU8pFamWOrzYcwe/7T0Xk2pG2+0QpvggwAzDcBs9ZgkFzfGf2uGS96Ie+Vq7YI/5eqAO1Raj54a+w15VZnkVqe6b7XiSAkPpgqulWYunRD246V6rN8OdzOinO6Z6W4vW8QBkax0o8ZSrPzWiBSwe3R7/2/qcE92nXRFebjfrHl1sARKc6345jZzF93pqgnz/l5RwAwJXndAxXkwIKtBDtTaO64NCpSny96SiOna1GrcMlfTuqc4iBWpnW2amlezbqOGGtw6MlVVKvHXDPcnxwam98keteCaZzS5q9SqLLVD1q0ZieaUhvkqR5zGa14MlL+mF0D0/KVKAMgBGyFaQXbjuOCX3S0aap9/XnXtZf+oDYdKgEGTMXoqo2tm64+bM2X9mTH961hY8z/TOyOko4aU0Tb5KUIN00BICeD3sqIIorv6iH0JKErI/31xYAcK8wLv8Am31RX6TIxrWpXCmJNlMG6kD+MrwzPrx5GBZc786HveDVNThV7l3Hw6irzu2ExfdmK/adrgxfZb1QZlGGgzqrpqrOhdMVtbjz4404GyBlT36j7hbZQg71ydc3pxtHZmjuFxcKEOt2iBKsDBYGXDq4vdbTMLxrS8VwyeVDO2ieR0h9MV2g7tiiUeCTBPIbgEOfXObnzODZwlhT+JUoznrbeaxUKqAv2nOiDO+uOYCF245j+rwcv8/PlGWIrDsQ2tTtYKkD9ZyL+wIAOjTXHpr4TBhPV7+DjDG4OPDqinzNFEV1oa4RNOGFRJmpAnV6EztGdNX/R/H0T4FT6ILJFb5EdlMzlKnkZypqkTFzIdbsLcau46VRC9R7TpZh2rwcvLV6v2J/VZ0TH607CADI7pXm9xrtm+v/AI2ER7/b7pWG+ZdhnkJJb/5lqLRdXF6jGA4b0rk5fBnxzAqfxwgxC1MFaqcLsFr192AfvaBPwHNKq5Rf928f47tinuiCAZ5A/cZq/2l9/tz3xWYAwF/eWYfDqjX6/A01VNc58c6aA0Hnh6v5q4shloz9ZN0hv2P9+4sqAv6cwrJqfPj7QeMN9EE+3PLf35TXTU60KlZQOV/2QbN810kcP+u5gdzYTwnUUxX+h7bC+Y2KkGDpzvpgjFkB5AI4yjm/IBKNcbpchv4winSMS09TfaX/1+TMgM9pnuwpDvXp+kNS3q1R8pWu1SG3rKbO54okLy7Jw9s5B9AiOQGXDg59fDTQKiaiz/44hOvPywh43lChh1pQXIFnF+/GlsMl6NY6xbNsGue4Tsd1AvH3QaV+TfLFZv/1P2WaXrCplpsfnUir1RNTMJKedw+AXQAik7cG9xik3qACAKN7eHpRU/q20TxHvljA6B6tdK1jN6ST76/KwVLPmlM9hMvFwZh7/FSs6hfoBp9eeoONnvoZgDs/+bvNR3HPZ5ulfcfOeqbxv7+2IKRALf5b+Eu7NLL+YTBrJQJAs8aJgU8ipB7o+gtmjHUAMB3Agkg2xunihnrU8vxYpyryFZXVKBY2/f5vI/HhzcN0XZcxhnMyQg/WLYS0sRS7TQq+InX1t64P/YSbVdkU4UoS0bPkFOC757nnpGcZq/QmdtQ6XIogrWYJMZ2t3+yfMfWVnACBWt+1Hp7eW3P/hocnBNM0QqJC7/e6lwE8AMBnl4sxdhtjLJcxlltUFFxBo3GZrdGrjf4Ou7z3rZ6d+JmqaE//ABNc1N6Q3ZwKljihorzGgQ0HlQv2ynuvYttXqGpEh2t49Lp31nvt01rsVWutyt/2ncKkf/8iPU622zTXH5QLdbJQZa0Tu0+U+e3ha/3TvC2ka8q1bap9E7S5qrf8syotkxAzCRioGWMXACjknG/wdx7nfD7nPItznpWW5j+DwJfXrhliKGdV3nNT/1Gr6wob/frbKsWuqNYWDH89WfkHS6WPSTUtUvRNdw9EnZYHABcObOe179P13tPDNxxUpuLpuanoa7KSHodOeW66TnxptaHntmvm/XN91XBRD4H1aO2e8drVz7RyQqJFT496JICLGGMFAD4DMI4x9lFEW6WTvx51OKwvcAepUc8Gl8KlrncMALeOdte91jMevPlQCXYc8y5EFA7yRRP8eWGJ5wNPK7hrCSVbpdbp+VDRysh48pJ+ALx7xID20M0LP+fp+rkWC8Oy+7NpVXpiSgEDNef8Qc55B855BoCrAKzgnP8l4i3TweqnRx1OR85UBT5Jg1YO9/je6QCAh7/1VG6Tz1iUB+Z3fz0QUm0Of5J8lJDtP/tn6UNPnVKod6Vv8b1wuThyC4xNjtH6cPvHpJ7SdtumSXj0gj744KZzvc5LtHq373FhUoyWxy9SHuveOtVnJg4h0RTTuUfyr6+1for3RCsVVmvoQ1wLcrAss+SMbJr64u0ndF1HL3WwBfynq5VVO1BW7cDmwyUY/dxKxTE9GTOA+zW4XBx3fbYJl7/5G9bmFyuOv74qH5mPLNJ87kWveX8wtZGNM3du2Rg3jeriNXsQ0F5oYo6qxrlcVhhuGBNSHwwFas75qkjlUIdql8aNMNF3d46qx5Z4aPUOGwm90k9lNzt/k5U9fVW1diPge+URPW77UHlrYebUTOQ9OVV6zADkPDBWcU6tw4W8E97/ngkWhj9nBa6cN7pnK7z76wEs3OquEy1P3QOA5xbnobrO5ZWyCGhnuqzbfwrL7s/Gguuz0L2175KjYrElueevGODz/E4awZ4QMzJVmdNQ1TicsNusigDwyz/HSmUtjRrTMy2kJbn2FpbBwpTBR726OgAkJ/p/GwJlWfhzstQTJB+/qC+uPtdTNnbJfdlo3jjRq0a3w+XSXKE7KcGK3m2b4PNc/zWp65wcb8pmdPrqhztdHDYdM1FrHC50b53qN0gD2j1qf98eUpNomIPEhpge+lB79FthiSVZkAk2SAOhTXz5/I9DqK5zYfqAdpjYJ13a30hjnPfezzf7vZZ4AzIY8spxM0ZkKLIgeqanai6k4HByzeGWH7ce85vb/NC0TKTabah1OBWTRXwl3HSftQi3fOBZDd3XfQa9k6C0grLWuDUhsSbmA7W8AP/nuYdxtrIOZ/3UtjDib+O6B/1ccRpzit2Gt6/Pwp+zOuLdG7IUdSf0jj3X9zRmh8ulGZCPlVRrZluIbsvuhi5pyahxuJBfWC7t95cZuWxXIWocTny/5Ri+33JM2r/872N0PV9OKwVT7wLJhJhZXA19AMC9n2/CvRN6Bj5RB6uFoUmSzXBGSXmNpxCUWBzo2cu9x0pLq+p8Zl/IhfLBM7lvOn7ecdLQTLw6J8eWwyVe+/u2b4Jp/dtg3tWDMa1fG3Sf5X1DMCnB6rXYQqCZii8u2YP5vygr+8k/EO4L4f0M9CG3+p/ne9WrJsRs4qK70S3NM0lhZV4R3vol+Ip3aqN7pqGdwRKf767xTBfXGuN++c+DALjzhNUTSrQE+qAoq67D4DlLsHafMrviWEkVft5xEql2G1oamDwz9ZUc/LzjpNf+e8b3BGMMFw1s53Ph4QQr8+qNv7p8LxZuPe7ztZ5Q3WwEgGaNPOPHWqvx+HL1uZ3wwJRe0uNku/8Pws4tkxUZOISYUVwE6q9VkxR+2uad4hYsu81iuCa1fMVzrdolYq70Q99sw5/e+E3a/80dIxQ/F3Cno8nrgnDOUSpbCmtfUTn6z16CM5V1eGmJcjbmO8IHRlmNstSrlm/vDDzRQ732oBabxQKHavLRxL5tcOcnGxWvVU4+5CGSpwIaGfp55rL+uFq2zqZdIxOEkFgTF4G6aSPtu/daGRZGWRjD0ZLAE152HS+Vsk3kU7ZT7N6jS+2auXvomw6VKPZ3a+1ZuHfLY5Ow/fHJXh8UX+YewYDZS7C/yD0G/Ns+T2rfxkPKeiLbj+qf1TioYzNcpJp5aLMwRQ66OmCunzUen946HIAnVz3ByrBXNj4NKD+4rnxLO1jLzfEzSUUPGpcm8SZufqNbyb7ai/WSt86eFPJ1v9rgXona35qMS3eexNRXcjBBqE0hzz7QKhR02RDteibiB8s943sgKcGKFLsNiTaLokf90Dfum5RiASX5DUn5iEPeiTLNyS7+XH9eZ8XjTi0bY/8z09FOGHp48kfl5JHWqUk4r1tLfH3HCPz24HgA7puDvmqXAMB6Hct4yVduCQb1okm8iZtA/do1g6XtMxW1SLHbwpotkecnl1ksAzqxj7sm9owRGQCA+yf2RJZGYadEjXa9f+M5SLBaUDB3Ou6b6Ll5VlrlwPajZ7GvqByP/7BDqsgn1tPwlTky+eVfvCaaBKIu3iQGPPE6T17aT/N5Qzo11yzE1CQpuHvV4rDHJ7cOw4c3e08VD8RITXNCYkHcZH0M7tRM2t5fXOFzkoVRrVPtKCyrwTUL1ilSAbWIyQ0uF0ejBCvuHt9D8zytSR7ZPbQrDh4SesXT5+Wgus6Fnunu4ZF7PtuMvBNl+HbTUencVI1hFgBoprN+xTHVEI96TNpoBcLnLh+Av3600dBz5EZ0o0VlCQHiqEet/robppr7GNixmbTtq/cqFlWyMOCj3w9iwZoDmqVFRVo3GAPV0RCnoxfIyoC+vmqfotdcVuPAS0v34OuNRxTP/ey24X6vLeqRrpz55xDqp4jj7Ear4qXYaeYfIeEQNz3qSGkhy+ctqaxDm6be459i+GJgfosAiRhj6JqWjNSkBM18ZX8CperN01jp3NfNVrXBsg8lwDMOnmK3obzGoevm7ITerbFsl3sBhC1HSjTPSbAyJNmsmtkok2SzOAkhbnHTo46U2bJSmMOfWY4lO7xT/z7/w137wsKAOpc7kAYqCWq3WXUF6YlhCFx6x+p9DW38ePcoPHVpP/TVsXLL/Os8N099rarDGEPuIxPwuayn3ys9Fd/dORLzNW6+BmPh3aPw24PjwnItQqItrgL10vvCv5ySujaHuhodALiEtLx5K/KlRWsr/GQ+AP6r/cn1a2dsCTEtwd5UFbM9WqXYce2wzrrGqOVDONk903D3uO64fUxXxTm1DhfsNqu0piQA/HxftmKYKVR92zX1uQwXIbEmroY+5GOs9bkG3nGD2RVq/pZ/0pMTnGi1eC2Wqz4ejNLqwBNltCQnWqUPqvsnuWcJXjSwndciCJSdQYg+cdWjluulsXhrpAQbCEX9O/juNfsr0ynqEGCKe5KBCSCzpvXGAKE93WUTcIzY8MhEbH50omJf33ZNcfW5ylrW4SqeRUi8i9tAHU7d0/wveNo8xOWb/uRjAgzge3FWubLqOrx3wzle+zPbpOK9G84xlFZ3a3ZXaYkqrcL+eiQlWBVlTkVje7VWPG4VpsV7CYl3FKh1uMtHPrToZJn3rMWFd+tfVSa7p+9V2/XUGVkw4xwM6exdWOihab0xNrO1xjP8EwOo1mSdUKin09P6hIToE3eBOhLDnvKbXkDgFc9vz+6KvgFuAh54Zpqun+2vzog4IaV1E7tmTZE+OrI0tHRs0RiL7hmtqEIXDsmqNqYk2pCUYMFTPmY8EkLc4upmIgBsf3yy5rp7oRjVvRXmXzcU+4srMHfRblTWOtG0keczrkmSTXHjbVr/tgGvKQ5HBKpIN6F3ulQFT23b7Mk4cqZSym5Ydv8Yqd4IoFyl3ajebYML8v4M6NAUt47ugkl93VPtLRaG3U9MDfAsQkjcBerGAdYfDAZjDJP6tsHH6w4CcM9QlE8iSbYrA7XeRVN3zpkcsKi+1hj1xD7puHeCu3CTfB3B7q1TkGBlqBNmFJqtihxjDLOm94l2MwiJOeb6SzY5cRkt+QomLhdXpOf9MWsCmif7Xq5KeT1bwBVe5Fkf905wj5U/PL23z6GVpy7pDwCYf93QiHxoEULqH/0lG/D6SnddZXkZT7GXDbgDqNZisaGQ96gvHtQed47t7ncCyxVZHTC5bxu6UUdIHKFAbYB4o1JecOmR73ZI27eM7qp+SsjkOdqdWzQOWLyJMUZBmpA4Q0MfBjwhDCuoF28FgL+NDX7Fcn/kPepAQZoQEp8oUBsgVo/TKmGaGmSR/ED0THghhMQ3igIGiAWa5IG6i1Cn4/xexieW6KFnCjkhJL7RGLUBUqCu9aTiDezQFC7OI1ZbhHrUhBCKAgZIQx+yMeqKWmdYVjv3JdSCT4SQ2EdRwAAxj/qFJXukZbmqap1eU6PDyeg6hYSQ+EOB2gBxvLi8xoE3V7tzqtfkF2PvSd8rlIdD//ZNpYp2hJCGJ2BXkDGWBOAXAHbh/K84549FumFmJO/dyie9BFtgX68f7tJfiY8QEn/0fGevATCOc17OGEsAsIYxtohz/nuE22ZqLheXquilUV1lQkgEBQzU3F09vlx4mCD8F+b6dLHHxYHznlkOABgXRM1nQgjRS9cYNWPMyhjbDKAQwFLO+TqNc25jjOUyxnKLiorC3EzzeX/tARSX1wIAPs89HOXWEELima5AzTl3cs4HAegA4FzGmFeld875fM55Fuc8Ky3N94ol8SLcNa8JIcQXQ1kfnPMSACsBTIlIa2IUrf1HCImkgIGaMZbGGGsmbDcCMBHA7gi3y7R+1MjASE6M3IQXQgjRk/XRFsAHjDEr3IH9C875j5Ftlnn1a+9dsH/xvdlRaAkhpKHQk/WxFcDgemhLTMpskyrVACGEkEigmYlBuHNst2g3gRDSgFCgDsLNozwruVTURnZWIiGEUKAOQgvZ4rUnS2ui2BJCSENAgTpINmFZrFqHK8otIYTEOwrUQXLQjBdCSD2hQB2kxy7sE+0mEEIaCArUQZo+oC0AgBYGJ4REGgXqIFmF2tQZwuK2hBASKbS4bZBaptgx+8I+mNKvbbSbQgiJcxSoQ3DDyC7RbgIhpAGgoQ9CCDE5CtSEEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHOM8/FXgGGNFAA4G+fRWAIrD2Jz6FuvtB+g1mEWsv4ZYbz9Qv6+hM+c8TetARAJ1KBhjuZzzrGi3I1ix3n6AXoNZxPpriPX2A+Z5DTT0QQghJkeBmhBCTM6MgXp+tBsQolhvP0CvwSxi/TXEevsBk7wG041RE0IIUTJjj5oQQogMBWpCCDE50wRqxtgUxlgeYyyfMTYz2u3xhTHWkTG2kjG2kzG2gzF2j7C/BWNsKWNsr/D/5sJ+xhibJ7yurYyxIdF9BW6MMStjbBNj7EfhcRfG2DqhnZ8zxhKF/Xbhcb5wPCOqDRcwxpoxxr5ijO1mjO1ijJ0Xg+/BfcLv0HbG2KeMsSSzvw+MsXcZY4WMse2yfYb/3RljM4Tz9zLGZpjgNTwv/C5tZYx9wxhrJjv2oPAa8hhjk2X76y9mcc6j/h8AK4B9ALoCSASwBUCfaLfLR1vbAhgibKcC2AOgD4DnAMwU9s8E8KywPQ3AIgAMwHAA66L9GoR23Q/gEwA/Co+/AHCVsP0mgP8Ttu8A8KawfRWAz6PddqEtHwC4RdhOBNAslt4DAO0BHADQSPbvf4PZ3wcA2QCGANgu22fo3x1ACwD7hf83F7abR/k1TAJgE7aflb2GPkI8sgPoIsQpa33HrKj+ssr+kc4D8LPs8YMAHox2u3S2/TsAEwHkAWgr7GsLIE/YfgvA1bLzpfOi2OYOAJYDGAfgR+EPqVj2iyq9HwB+BnCesG0TzmNRbn9TIcgx1f5Yeg/aAzgsBCub8D5MjoX3AUCGKsgZ+ncHcDWAt2T7FedF4zWojl0K4GNhWxGLxPehvmOWWYY+xF9a0RFhn6kJXz8HA1gHIJ1zflw4dAJAurBtxtf2MoAHALiExy0BlHDOHcJjeRul9gvHzwrnR1MXAEUA3hOGbxYwxpIRQ+8B5/wogBcAHAJwHO5/1w2IrfdBZPTf3XTvh8pNcH8TAEzyGswSqGMOYywFwP8A3Ms5L5Uf4+6PWFPmPTLGLgBQyDnfEO22hMAG91fXNzjngwFUwP2VW2Lm9wAAhHHci+H+0GkHIBnAlKg2KgzM/u8eCGNsFgAHgI+j3RY5swTqowA6yh53EPaZEmMsAe4g/THn/Gth90nGWFvheFsAhcJ+s722kQAuYowVAPgM7uGPVwA0Y4yJq9LL2yi1XzjeFMCp+mywhiMAjnDO1wmPv4I7cMfKewAAEwAc4JwXcc7rAHwN93sTS++DyOi/uxnfDzDGbgBwAYBrhQ8cwCSvwSyB+g8APYQ73olw3yz5Pspt0sQYYwDeAbCLc/6S7ND3AMS71zPgHrsW918v3AEfDuCs7GtiveOcP8g578A5z4D733kF5/xaACsBXC6cpm6/+LouF86Pao+Jc34CwGHGWC9h13gAOxEj74HgEIDhjLHGwu+U+Bpi5n2QMfrv/jOASYyx5sI3i0nCvqhhjE2BezjwIs55pezQ9wCuErJuugDoAWA96jtm1ecAfoDB/WlwZ1DsAzAr2u3x085RcH+12wpgs/DfNLjHC5cD2AtgGYAWwvkMwH+E17UNQFa0X4PstZwPT9ZHV+EXMB/AlwDswv4k4XG+cLxrtNsttGsQgFzhffgW7uyBmHoPADwOYDeA7QA+hDuzwNTvA4BP4R5Tr4P7m83Nwfy7wz0OnC/8d6MJXkM+3GPO4t/0m7LzZwmvIQ/AVNn+eotZNIWcEEJMzixDH4QQQnygQE0IISZHgZoQQkyOAjUhhJgcBWpCCDE5CtSEEGJyFKgJIcTk/h/C5Usiz5J1cAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(2)\n", + "\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABAq0lEQVR4nO2dd5gURfrHP+/MbABEAUVEUVeQpJ6ioqKgh4cBAfU8Pc+MATFhOhNmz3BnOLOeOSvq705RBCOKCqLAooLkuGTJGWZ3Z6Z+f0zP7ISe2Yk7Yd/P88wz3VXV1W93V3+7urrqLTHGoCiKohQvjlwboCiKomQXFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocV64NsGOXXXYxFRUVuTZDURSlYJg8efIaY0xru7h6hV5EXgUGAKuMMQdYYe8Dna0kLYANxphuNttWAZsBL+AxxnRPxOCKigoqKysTSaooiqIAIrIoVlwiNfrXgWeANwMBxpi/hWT+KLAxzvbHGmPWJLAfRVEUJQvUK/TGmO9FpMIuTkQEOBP4U4btUhRFUTJEuh9jjwZWGmPmxog3wJciMllEBsfLSEQGi0iliFSuXr06TbMURVGUAOkK/dnAu3HiexljDgFOAq4SkWNiJTTGvGiM6W6M6d66te33BEVRFCUFUhZ6EXEBfwHej5XGGLPM+l8FDAcOT3V/iqIoSmqkU6M/DphljFlqFykizUSkeWAZOAGYlsb+FEVRlBSoV+hF5F3gR6CziCwVkUusqLOIaLYRkd1F5FNrtQ0wTkSmABOBUcaYzzNnuqIoipIIifS6OTtG+IU2YcuBftbyAuCgNO0rOmb9voktbg/dK1rl2hRFURoJeTkytpjp+8RYAKoe7J9jSxRFaSyorxtFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXLqFXoReVVEVonItJCwe0RkmYj8av36xdi2r4jMFpF5IjI0k4YriqIoiZFIjf51oK9N+OPGmG7W79PISBFxAs8CJwH7AWeLyH7pGKsoiqIkT71Cb4z5HliXQt6HA/OMMQuMMTXAe8CpKeSjZIkl67ZhjMm1GYqiZJl02uiHiMhUq2mnpU38HsCSkPWlVpgtIjJYRCpFpHL16tVpmKUkwuRF6zj64TG8P2lJ/YkVRSloUhX654AOQDdgBfBouoYYY140xnQ3xnRv3bp1utkp9TBv1RYAfl68PseWKIqSbVISemPMSmOM1xjjA17C30wTyTJgz5D1dlaYoiiK0oCkJPQi0jZk9TRgmk2ySUBHEdlHREqBs4ARqexPURRFSR1XfQlE5F2gN7CLiCwF7gZ6i0g3wABVwGVW2t2Bl40x/YwxHhEZAnwBOIFXjTHTs3EQiqIoSmzqFXpjzNk2wa/ESLsc6Bey/ikQ1fVSURRFaTh0ZKyiKEqRo0LfSNHu84rSeFChb+QIkmsTFEXJMir0iqIoRY4KvaIoSpGjQp/H1Hh8PP7VHNy13mDYM9/MZegHU6nx+Gy3WbR2K2/+WGW7rR2TFq3j/yqXMOv3TRm1XUmdl8cuYMXG7bk2I2XGzl3NmFmrktpmybptvPbDwixZlBjDJiwOjhjPNL8sXs8nU5bz6riFLF2/LSv7iEe93SuV3PHWT4t48uu5OES49riOLFm3jX9/OQeA/XbfkQuOrIja5q/P/8iqzdVsrfby5NdzAbj++E4x97Fg9VZu/t9UAKoe7J/5g1CSYsm6bdw/aiYf/bqMkVcfnWtzUuL8VyYCyZWnc1+ewOJ12zjt4D1o0bQ0W6bF5bbhv1HqcjDn/pMynvdp/xkfXB42cTGj//7HjO8jHlqjz2MCtXG3x//vC+kqU11rX6PfuL3WdlulMPD4/Nd4i9uTY0salk1uf7nNdW+wWG/KmWSzdawNiQq9oig5J9cCX+yo0BcQmbwZ9L5S8hHR3r5ZQYW+ALAr+7FuCBVwpZDRmn12UKEvAOzKvt4QxY1eXiWTqNAXGYm++eobcn7S2K+LNt1kBxX6AkDLvqIo6aBCX6AkXPPRNgBFySty4V9KhT6PMSk0xAe20FdgRVECqNAXAAHRzmTlXCv6itJ4UKFPkkPv+4p7P5mR0rYdb48/2dbaLdVUDB3F6Bkrw8LtKvb3j5rJ4rXRPjMiK/IvfL8gyo/NoDcmceuHv0VtWx0xinb0jJVUDB3F2i3Vce1W/NwzYjrd7x+dkbxCr/nDn89i/7s+z0i+6TBv1WYqho5i6tINaee1fMN2KoaOYvy8NUBqb6/ZxuszVAwdRcXQUVRWrYsZF2BLtScY9vm0FQ1tblxU6JNk7dYaXk3R+VKtN35hnrHCL8ivj68CQOppf/lh/pqE9vvl9PAHx+iZ9g6nNm0PH3YfOM5Zv29OaD+NndfHV7EmzYei3SX/z7fz2VqTe1cWX1vlZuTU9EVskiWc705aknZe2SK04vO/yUtjxgUIdVb20tjcOmiLRIU+j0mnlpOHFSRFiUl9lZpiwuSg4bReoReRV0VklYhMCwl7RERmichUERkuIi1ibFslIr+JyK8iUplBuxsVydwDqu9KIZKPTTehJGJePh9CIjX614G+EWFfAQcYYw4E5gC3xtn+WGNMN2NM99RMVJTGQz6LRUNQKFNbpnOd8rJ7pTHme2BdRNiXxphAg+5PQLss2NZoSfTVztYHTibtaOSik0saUUtG3lIoD51EyEQb/cXAZzHiDPCliEwWkcEZ2JeSAukKdvEU98JBH7L5RWTlq9AexGnNMCUitwMe4J0YSXoZY5aJyK7AVyIyy3pDsMtrMDAYYK+99krHrIInVk0imXbMQiuIip9CuG753p7eENidgnw+LSnX6EXkQmAAcK6JceWNMcus/1XAcODwWPkZY140xnQ3xnRv3bp1qmYVFakUnDwua0qBk42HUEA6tNxml5SEXkT6AjcDpxhjbGe6FZFmItI8sAycAEyzS6uEE/WaGKOG31C1P70JlUxTCN0pC8DEhEmke+W7wI9AZxFZKiKXAM8AzfE3x/wqIs9baXcXkcDwzzbAOBGZAkwERhljcj+8L4/JxMefIiqbSiNCy212SaTXzdnGmLbGmBJjTDtjzCvGmH2NMXta3Sa7GWMut9IuN8b0s5YXGGMOsn77G2MeyPbBpMO8VZuTGtU4edE6Ji8KHxZd6/VFhcXDGMPEhevYVuPh5bELmLhwrX06DNOXbwyOTAwwqWo9Xp99fTt0cumN22uj3CDY8duyDWyv8bJk3TaWbdjOlmp/Hpm+CScuXFdw7bxbqz38tnQji9duY/mG7cHwiQvX4bO5BoFr2xB2fTH9d5as28aqzW7mr96Scl7LN2xn5NTlLFm3jQUh+azeXJ1QvvNXb2H15rp7KHSkaCShTTZTlmzAHTHZ/SZ3LdOXb2TCgrXBtKs2uVm4ZmvCxzNt2UY2u2tZun4bS9dv443xVcFJyOtj4sJ1DP9lWUJpF6/dxswVm8LyDlx/u3Ie601h2rKNwXsu06T1MbaYOO6x79mhzMW0f5yYUPrTn/sRgI+u6km3PVsA8O8vZ/PCdwsYeXUvDthjp3rzGDZxMbcPj27NsqvZ939qXFTY/yYvZa9WTbmmT8eouJfH1Q3BfvWHhbz6w0KqHuwf156LX6/kxP3b8EWEywRPjIdJKoyesZJBb1Zyz8n7cWHPfTKWb7YZMuxnxsxeHVyverA/381ZzcBXJ3J7v65cekz7sPRv/riIu0dM56ULunP8fm2S3l+iXWwvf3syY+eGu8Ko7zrH4qgHv7HNp8e/vsbrM9zWr0vc7fs8+h2OkKLb66ExMW35v0q/64NRU1cwKtSlgrX9wFcn8sviDQA88bdu/PngPTj8n1+H2RUPn88w4OlxHFbRkklV64Phd4+YntD2Z77wY71pAhzzyJiosJ8Xb+DMF37kybO6cWq3PerNo9rjZcDT4+i57868M6hHwvtOFHWBEEIqT9M1ITWYWSv8PmFWJ/hmsHC1fe0k0TZ6gLmrwmta6Ury1KUb08whPoFaXjI1s3zglyUbosICNXu72m6gRrwsTq3WjmSb735etL7+RGkS663RjkSTVq2JcV6s7QMiD7B4XXLnMCQbJmfo/KT6ArokQdsD5/jnRRtS21E9qNAripIUBdbqlhUK7RSo0KdJNr/M50thKqbeB6mSr+JWCL1X7Ij5jaYwDycpclGWVOhzSKHco8U0FFxJn0Ipt5kkUpsL7RSo0OeQ+p7shVaYlIanUMtIzDeRPH1ziiRbZmbLhbEKfR6TyCWPul0KxK9NgdzPQZLtDpru8eVrU5GSHIk2rWX7rVmFPoMke28m+gqcnD/69BQi2/pSqG3KqZL14y3Q01lo4ygyaa5dkcj2ZCQq9Glid9Fyee9pe3rDkU2tamTPQ8UiW/evCn0ek5pTs8yrj4pO/pKLS5PNB1wuptlrDKjQ55DG1oxRbDS2y1dIb4v50jSU/Led7NhdVC4Q3p+0mDs/ms5Pt/WhVbNS/v7+r3z4yzKO67or1/bpxMnPjKNzm+YMv+oompbWHfq2mroRsR6vD5cz8effxa9XMmJIT0555odg2IWvTQLA5ZCY7gOuefcXRkxZbhv3w7y1VAwdFVx/+pt5MfcfKTa13tgF5ZVxC7lv5IyY8QArNrqjwmo8fj8kn09bwdqtNZx7xN5x8ygmPF4fJzz+PZvc4aOmI2/gMbPC/RDFYvKi9Xw1YyXrt9Zwc9/O7LxDWTDuv5VLWLU5sVHVj3wxiz5d20TZBX6fS3d9PJ39d9+RtVtqeHz0HN69tAdHdtjZNq8HRs3gpbELo8LHzl3N0R3rXIYHRGj8/LU89+18rujdga3VHu4ZMZ07T94vpq3j561h6rKNXP7HDsGwZCo5kSkrho7iiH1aMezSHkxcuI5flqznyt772m8rEvcVpNbro+8T3zM/ZJT6Lf+bGpXug5+Xcv+fD2Ds3NWs3OTmtEMSm1Tv31/O4Yj24ec98h575ItZWf/4XlRCf8sHvwHw8OezePD0A/nQcko0euYqRlsOwWav3Mx7E5dwca86PyvDJiwOLk9cuI6j9t0lqf2Ginwo8XzExBL5bFKfyMfio1+XcWyXXbn87Z8BMiL0eVLhqpcfF6xlgY27hkhBvuj1SWHrsY7v9OfG16XB8PAZBwXXbwoRmPrOz7Nj5vPsmPm2cWPnrubdiYvDws5+6aeYPl7sRB7g/Fcmhm2zapP/mGes2MSMFZu4oncH3vixiv9OXsouzcts8wA45+UJAGFCny4TFq6jsmodZ7/0E0BMoa+PcfPWhIk8wPuWH55IXvh+Pk+MnguQsNAD/PX5+H5zYl3HTKJNN0TcVIXzdgoUjmAGKJbmjkQPo1iOF2L0Fslw+bOduSlG2kTeCjLZhFNITVeRNEqhL6abr9AotAdTujS2421I4ol4oXz/aqhvCUUp9DriNLNkoywWyH2YMln1gVTPBSnkmqeSHYpS6BsTDSGYjblSGk9TtbaupEtDlaFGKfRxX+v05m0Qil0k0z2+tLYvgAp9rLeSfC4WoV0f86X7ZqIUpdAn2xdVB2nEJ5O6USxNNobEjiUbx5srjYm33yK5rA1OQ13KohT6tNASqxQ4WoSVSBISehF5VURWici0kLBWIvKViMy1/lvG2HaglWauiAzMlOHpUCy1SiX76LteHZm8bzLRKybetclG00o2PnJH2pmtt7VEa/SvA30jwoYCXxtjOgJfW+thiEgr4G7gCOBw4O5YD4SGpJh0vpiORUmM+rSgULoW2mEn0OkcTSGfi0ySkNAbY74H1kUEnwq8YS2/AfzZZtMTga+MMeuMMeuBr4h+YOQcr69u2efzT9RrjMHn8/8Cy/n4AcZr/PZ6vL6kJnFOhlqvD58vsuZhgmGR+40Xly1C9xmPWq8veB0T3Sb2PhNL5/H6gr/oPBIvWx7L9vrOaaxjCtjg89WfR6h9dcvhcd4Qu+ONAg+1K9XzbXd+fCFhoefW66v76uaz2c7rM7hrvdR6fUk9RLwheaVbrL3WuUjkvGWCdFwgtDHGrLCWfwfa2KTZAwgdT7zUCssbflqwloc+nxVcP++VCVFpLv9jB57/LvvDlFPhkynL+STL7hQ+m/Y77W/7NCzsuMe+Y8m67bxw/qFc9PokRl3Ti/133wmAf302ixe/X8DIq3sx4OlxvHphd/7UJbx4ZPoD+D0jpvPGj4tiDvMHmLp0A6c88wNddmvO59cdw5//M54pSzbE3SYWAtw23O9yY8aKTVHxgeNbv7WWfW//LGY+d308nbd+WkS3PVuEhS/bsD0q7b63f8ZuO5bz+6Zof0ShRLpjCN0+lF/vOp4WTUsTzuvlceGuEjqElIkXv18QNx8gWIZSOd8X2xzTOS/V3av73v4Zn117NLvsUMZhD4zmzgF+3zt2z89Qu586++CEbXjq67nB5YP+8WXC29nRIeJ+CpCtF5CMfIw1/sdtWneuiAwWkUoRqVy9enWa9tS7s+Di2Ln17+uVcfUX4sbG/NVbqfH6GD1zJQA/L94QjHv9hyrA748E4OuZdQ6/svUi/caPi+pNM27eGgBm/b4ZgClLNtS7TSx7Q4vY1KUbY26/YmO0YIfy1k9+u39NwBagXpFPhkQcqH07O717MVOMScCOX5dsYOn6bQAM/2VpQvmu3ZKYE7lCJx2hXykibQGsfzv3fcuAPUPW21lhURhjXjTGdDfGdG/durVdkqzgSMhfRgMYUkQUU3fV4jmSwqCxn+9cf4y1YwQQ6EUzEPjYJs0XwAki0tL6CHuCFZZTJMZyLOza+ZQIbNpy8+0zmF7GwiTRyxZa3vRah5No98p3gR+BziKyVEQuAR4EjheRucBx1joi0l1EXgYwxqwD7gMmWb97rbCskkTLTUKNYlpmkiPyfGnHB6WhSLaXTWN5ICT0MdYYc3aMqD42aSuBQSHrrwKvpmRdA6AalCFUzQuOYr5ijUXAE6XRj4xNpI1eSYCwphv/cjGc2nzsUlvMpHu6i6DIZYVGKfShI9wSESO911OjmM9bMR9boRJ6Lyd6eRrLZWycQh9SILQGkCFsnpiBm0j9oyvpkEzpCRRDfRMLp1EKfSjF0LyQF4Q23eTQDCVxtOw3HopS6JOZYUp9YWSefK1MpVLLiz1faXq2QO7fdPLxOjX0GIzGUvMvSqH/ZMpyajzRfkUC/LbMP5JxUtU6nhg9p6HMKhruHzkjuFxr+Rh5+pt5rNrkZt6qzcG4EZZrhm9mreLJ0XMZP39NMG78/LW2w/wDeLw+PvplWdI34ke/LKPW6+OXxeuZt2ozo2es5JVxC1m3tYZ/f2l/rcfPX8PitduiwtduqeaRz2fbbvPNLLvxgX4CrhEgvpiuqGeU68H3fsn3c7I3MvX4x79nwNNjs5Y/2I/4vevjaTGv/T9GzGDk1HCXHo9+ldg9umKjO/jwDIx+ro+VGRxpnM9IPj7RunfvbiorK5PermLoqODy4RWtmFgVu8t+1YP9w9Ir6bNHiyZxxRvgvlP3586PpwNQXuJg1n0n2aZ7dsw8HvliNk+e1Y1Tu9XvHin0Wl7bpyNPhvglsWPGvSey313hY/cifbD0f2os05dH+7FJhKM77sLYuWs467A9eW/Skvo3UDLCJ0N6cfIz43JtRsqUuhzMud/+nqgPEZlsjOluF1eUNXqAuasSe6IrmaM+kQfC2jzctbHfulZZNa31W2uStiMRHy6JeA2sWrM16X0HqLaOTVsGlXygaIVeUdIl/951lWInW/UCFXpFUZQiR4VeyUuKpTadh5/AihptKrNHhV5plCSiByrSSrFQtEKv/eOVXBLoD67FUEmGbNUtilbo87HbqNIYXU40viNW8o+iFXolP0llEonCRiscSu4pWqHXppvCptDlMdfuDRorhX7ba/dKRWlgMuF3RVsQlXwgoRmmCpF19YyoVPcHueGN8VUx46o9Xs58/kfuGLBfMGzD9loqho6iYuemfHvTscHw24b/xt6tmnLZHztwX4jvHUi9Vnfy0+OCfpDSJeB+Q90fNCz9nypc9wcA1XF8dKWD1uiVBmXeqi0x4xau2cqUpRu5Y/i0YNhXM1YCUBXhdGzYhMX867NZALwybmFGbMuUyCtKvqFCrxQd2lyiKOGo0CuNEv1YrzQmUhZ6EeksIr+G/DaJyHURaXqLyMaQNHelbbFS9KT7EVQ1XFHCSfljrDFmNtANQEScwDJguE3SscaYAanuR2k82HVJVNFWlPTJVNNNH2C+MWZRhvJTGiENPY2cojQWMiX0ZwHvxog7UkSmiMhnIrJ/rAxEZLCIVIpI5erV2Zs+Tcl/dLCRomSWtIVeREqBU4D/2kT/DOxtjDkIeBr4KFY+xpgXjTHdjTHdW7duna5ZSgGjNXtFySyZqNGfBPxsjFkZGWGM2WSM2WItfwqUiMguGdinUoRoTV5RskMmhP5sYjTbiMhuYvVjE5HDrf2tzcA+FUVRlARJywWCiDQDjgcuCwm7HMAY8zxwBnCFiHiA7cBZRv0HKyH8vtGNwwEtm5byuzUh+IqNbjZtrwVg/qq6Cbq31XjYuL2Wtjs1CYa5a71Rec6PM/o2wIZtyU86riiFiuSj7nbv3t1UVlYmvZ36r2kcPH/eIVz+9s8AdNmtObN+35xjixQlc1Q92D+l7URksjGmu12cjoxVCo5fl9T5pFGRV5T6UaEvINrJKjrKUhxkx8OdoijFSdG6KS42DpE5fFh2T3C9wj0sd8bkGO1+qSjJoTX6AiFU5AF2YJt9QkVRlAhU6AuAcqqjwn4ouyYHluQJWqFXlKRQoc8yxzsqmVN2Ph1kGZ+X3sJfnd8mncc1rmhfcTtJ463Rq84rSnKo0GeZl0ofo1S8fF12E10cS3ik5EXbGno8Bjn93Ub7Vz9A/+p/BsNvcr3HMyVPJpVXF1nMKY7xuPAktZ2iKIWLCn0WkRi9Y2aVX2Sb9nznl9ziepdTHePoIMtw4KOrLKJU/IOCZpi9mW4qgttc5RrBAOcE9pWlNMUd046/Or9lVtlAyqjh87KhPFX6DHe53krr2BRFKRy0102WuMj5GTvJ1pjxD7te4GZPcEAxh8oc7it5PSrd054/B5eN9Vx+2XMSg1yfBcNHl90MxO6J80jJiwB8X3ZdMOwC11fc5bkIMFSVn8tNtYP5r7d3PUeVH+TjID9FiUdnWUxTqvnFdMzJ/rVGnwVas4G7S97iOteHYeGfeHsEl890fUcztgNQRg0HO+bZ5nW16yMAjnI/FQz7wXeAbdrLnJ9EhZVRN9S/jWwIizvd8T1V5ecC/odBKzbFOKL8QnVeyVd2ZCsdZWlYWFdZxBdlQxledneOrFKhzziCj0GucFcMQ2quppv7Ba6uvYbu7ueC4bvIRtqyltnlF3J7Sfx+8atpEVwe4+tmm+bWknfpJEvCwvaSVTHzfLT0+bD1f5c8T7s46fOFD39ZlmsTFCXIza73qCo/h3+5XmJq+aV8VXYzJSHfwP7q/C6H1vlRoc8A5VRzrfMDjpCZLCw/j8tChL5/9T8Z6TuSDTQHYA078aqnL+Cv+f9YfrVtnltNWdh6bVgrm3CY+1m6ul+lm/uFsHRflt0SXB7o/IKvrGadsd66t4A7ay+03eefnL8yzmre2VNW8mjJc3n50XbdVnVIpjQszSPGrQS+v/V0/MaVrhEAnO0aE4z/m9O/7MDHxa7Pg+GHyuxsm2qLCn0GuMP1NteXfMD7ZfeFhVe4h4V9PA0w1dcegP+V3RsVV+F+h87u1/nI2ysY1tMd3bNmNS3ZTjkbaE6Fexj9qx8Ixu0rSymlln+UvBEMu9UziNtrL2Zf95u85T0hLK9jqh+PyN0wtux6TneO5dGS51GUxszJjvH8Vj6IrrKIoa53GV82hIXl5+HCwzul/7Ld5v6S17jS+THHO8KdM35Q9o+GMDkKFfoM0Mf5S1LpP/UdESdWqKaUez3nc17NrVS432EZ9c+4Nd3sE1weXXYzc8oHhsUvNbvyjvc4PDbf3xebNmHrgXZ7gFOd49lHVtS7f6U42VeWUlV+Dje4/i/XpmQcwceVzo+oKj+HqvJzYqZ7uvQZwN9Ec7nrE3aXdQDMK78gmGaDaRa13c0l7/NC6RMA/L3m8gxanjwq9Bmg0tcpbP0z72Hs5341ZvoaSsLWA4Vgo2kaDKumlHG+P0ASsy6dXXN7VNgkXyeur7kiKvxn374AfOs9CIBu7hd42XOSbb5jym6IeyMo+UcLNoe1E6fK7a53gLpOAcXCJc5PWVh+HjeX1D3A6vs+daxzSsy4E6sfirvtcF/dG3prNgSX28tydqL++RPSRYU+BQK1nOdKHqeq/BxOdv7ELN+eVLiHUeEexhW117ON8rh5nFZd9wr3pa877d1v0636xbTs+snXNSrs77VXMNx3dFT4BTVD6Vf9Ty6s9bfpb6A593vOD0tzWc11Yet7oJO2FwK7sZZfyy9jbvkFvF4SW4B2Yy0DnV/EzetAxwIAfvTuFwwL1ICHOKNHbBcCZdRwZ8nbUeG7hggwwOXOEQlVcMZ792MlrYLrf6x+LCx+gq9LsGs0QB/nz9aS4ZuyG5lSPpgmccbBZAIV+hQI9Fs/yTkpGNbFsSRWclt+M/vwibcH59cMZQtN8eEIKwypYHAwpOZq5vj2CIYtNfbNPltoygyb7wc93U/y95rLqXAP4wvf4WF5/VB+LeqAIP85zflDcLm3cwqdZbFtup/Kr+YfJW9wi+tdTnRMsh3gt7P4/f03l23szEb+U/JEMO7Gkv9m1nAbDpNZMQcepsr5zq/C1gNv5JdanSgCD7KhJe8F02wx4RW3NWbH4PI5tf436UBFb5HZLWxMyx21FwMEe9w9WPIyAC1CavIzyy9O76DqQYU+Q8zy7ZlUeg8urq69hrG+AzNqx0jfkfSv+RczfXvy95rLk354LKM1H/qOCa6fXXMHF9XcFFzv4/jZbjMlj7glRKAAvigbGjf9Fa5PeKH0ce5zvRYM24FtvFtyf3C9pWxmcvkV9HNODNu2j2NyBiwOZz+pwoWHC52f89+ye5lfFvqmaegm80inwtFK6iarecNzPBfV1FXc/HlHc6/n/LBOD8dWP8ZH3qOsZlf75tX7as9lvq8tc007ANZQ93CoKj+HPo7wb3vJukZJBp1KMEl2ZCtTyy8NCzuh+iEWmrYRXSCLi9BX2MbsCz8fudj5Gb/6OvCz6YQDHwvKzwPgptrBwVHR4O/RFSpKz5Q8yQDnhLC8jqt+mBGld9JU4ovOKtOCXa0BeI/WnsHT3r9QggfBUENJsLzYlZVA3BnVd1FpuoTEGJ4qeYZTnD/ylOfPXBPxXeDu2oFc5PycCsdK7qs9j1e8/eLaGIsRpbfTSZbSpfp1AucjYNMEXxeOcMwKpq02Lh70nM1r3r4k870sFvGagj72HsW1tUN0KsFcshNbuNn1Hgc4FgLwpOc0AE6uvp85Zs+iFnkIiISfm1zvxUmpNBTN2cb8snO5q+QtPiy7h6ryc5hdVtfbKtKlRaA31U5soar8nCiRB3i39IEokQ98sA9lZMgo7xtK/gfA6NIbmVM+MK6YneoYF1wOdC9uxSarueRcTnH+CMApjh+jtv1HyRtUOFYCcIIz+Yog+CfwOdCxkHKpxU64Q0Ue4Oraq3nNe5Jt2lTo6H4zKuyh2rMAfw+3w2VmRvYTSdpCLyJVIvKbiPwqIlFnX/w8JSLzRGSqiByS7j5j0ZoNtGZ9VHgT3FSVn8PdrjdstkqMM5zfcaVrBMNK/d4jv/V2o8I9jN9M+5TzLCzqCvpVrhF5OZAqlzTBTRvWpbx9OdU0Y3uwffjL0rrmstdKHuK9Uv8Yjd6OX7nR9T4Av5UPwinhb+QllgO8e2r9Xf/e9/QOi+8kS5hSPji4Pt/XliPczwQ/traWjURydW3doL6bay9lUM0NPOz5W1iaK50fsbcjutfKYTILMBwiczjKMY0nS/8TFj+h7Ep+Lo/uehgQ9Fgc4ZgV1nslUU5xjgfgF6vXWYAe7qfD1o+pfpzHas9gtO/QpPcRj1pcYaPjAZ7znhxcDgy+yjSZqtEfa4zpFuO14SSgo/UbDDxnkyZ9arYxqfxKJpVfxV8c31NVfk6w//cxjt8AuMj1Bam27bWTNWHrs0xybfLFwKCaG4LLn5XemkNLGo4DZEG9FYTdWcPM8ouZUD6k3vyceNmFaDEdXXYT08svCa53ciwjUFaPdU6hh2MmQ13DeL30YYa4Pq63N8jb3uMAuMUzOOxtLHTkNEApHlbSik99h0fl8YKnP+3db7OZum6/n3qPYLTvUNyUcbC7bjBdaDfFUP5bdi+9HVP4sOyeYCUplEj/S5HcWXshJ1ffbxs3qfzKuNsGOMP5XfABeqHrSwCuqw3f9nd2DltfbNrwlPcv+LLQ6LGGnYLLndxvABLsh782pB0/kzRE082pwJvGz09ACxFpm/G9lNYVxscsHy5jym5gf1nIQY75wbiznGOiNq2PVmyyHhJ1bK+n+2QxMtp3KP+qPRuAjo7G4W9mZNkdXOT6gr/HGDDU1zGR8eV1s33Fm7jdgY/55edTWX5FVO0/siIBcIAspAV1Hw4vd420zfdAd3S3XE+Ey4zLI7rKjvYeDMDLVjv3J94jw+Ifrz2dpzx1QlfhfocK9zC2hIj+enYME/tQjnA/E1x+vfThqPhIewLcURvuwvst7wn8ZtoHa9zDPMcyzHNsMP4S56i4LroB/l3yQlTYErNrVNgUa8T63bUDo+IyzYHul+jpfjI4pqZb9Uv85OvK3hL/TSZVMiH0BvhSRCaLyGCb+D2A0L6HS62wMERksIhUikjl6tWZ6689quz2sNchu6/q/pszdk3/07Lw2utttZfESFn8vOAdEFx24o2K7yB1NdFiIvBh8K/Ob6kqP4cdra5xz1sjHwMEPoTacWfIHADPlvq9kQ4vvSuqdj7B5/9AObLsDvZ3VNVr2yZ2oMI9jPZuf9/whb42UWk+9x3OfF9d/WpQ7U3s636TNyx3GBtoTj9rUpsB1ffzpPd0ttIkJAf7Nur17Mha0zy4/qTnLxxd/TgracU47/4xbf484g0iMIBvhPcourlfoFf1E2Efcn9nZ06tvpd7PRfwqOfMYPidJe8woeyq4PqFzs+DTVuA7aCxu2sH2tbUT6253zonJ8a0O1NsolnUiPcFvt2yNgo9E18QexljlonIrsBXIjLLGPN9spkYY14EXgR/r5tUDOnsfp3Z5RfGTXOW61uGevzPo1Jqudo1nKtdH/G+pze3eOyeU7Cb+Nv9b629hHe9fVIxrYiou+Hnl58fdjOe6JjEC6WPc1nN9XzhOywXxmWc0N4ld7veCL7ZTS0fzAfe6IFo8dhZ6txAbzelMd1TX1MzJNgMFMuXSoATqx8MLvtw0Kv6ybA+3qH0qXmUIx3TmefbHYis9cMMU5FSj6rTa+7h2zJ/s16lrxNLLJcavZzTo9I+VHsWX1rt3vu636QFW8OaMgJsCHl4BJhi/A8DN2VcWXMN/7Eels3F/21jtPdgjrPckXzp7c5U057bXeEDo57w/CWukNu5CGkoXvb25y3vCXxmDEhmPv4GSPuojDHLrP9VIjIcOBwIFfplQGiDdjsrLONUU8pJ1f+iqyyiv3NCmA+av9dcHmzSCRDqD+Zvrm9thT50sIaKvJ8+1Y/wddlNUeHXuT4A4FTnD8w27agymW+ha0iasT0o8kBU893pzrHB5dOq/xH0N15Vfg4nV98f9qG+FZuCPUpWmx052jmN2c4Lo/Y5y7cnK2nFYl9r9nLUvdlWuN+hDes53jmZj709w9rNQ4k1QC7Aj77YtexUCb3OP/nqRtAuN63YXdbxg3d/3vf2ZoSvZ9h2Hly2Ip8In/p6AE+FhR0Xcr+PKLszLO5tTx/u8OT3m/gC438AZ1rkIc2mGxFpJiLNA8vACcC0iGQjgAus3jc9gI3GmKx5yZpp9uZD3zHcWFs3e1N393N86DuGdWYHAB4teS7mx6w/yAKqys8JTgpyhtP/zLqv9lzb9I2R+WYPNhv/a/2JDv/o4BI8dHX4R2D2c04M1vAKmdOc/q6Am4y9qAb4g/vlqJmDPim7g6ryc7jV8hUT2rOkdUjNHmC6b2+6uF+jwj2MvjV+lwXH1ER6LBVW0oq3vcfHFPlcEhgVGtrN+KjqZ6hwv8O5tbdHiXwmOML9DG5TUn9CsGZTa7yk20bfBhgnIlOAicAoY8znInK5iARK9qfAAmAe8BKQ2KfyNFnPjozxHsTFNTcGaw3rrdfB0JpYKC+VPMonZXcAML38EpqxPTjg5Hezs+02jZXnPf4uYS+UPs6DrhfpZfVsKiZ2sB72f6upqx2uMzvQp/qR4Pr5NUODwhsaHuAy1yjru0VsBtQ8gJuymPGfeQu5GSzztdMAK2lF1+rX6k13ZvWdWek9U0ikdfTGmAXGmIOs3/7GmAes8OeNMc9by8YYc5UxpoMx5g/GmNRGOqTARbW38I2vrtv++TXRXQJDnYsd7wwfzh3a3W2UrwdKHb+FuEU+y/Utr5VGi1yXGD5WCoV9Hcv53bRkptkrGHZo9fMsNG3xGAcDa24Jc2Ex3+xh28Yd2cx1ZnXdg+OU6vtiuql40vMXAK6ptZ+cRiHq3A2quYFvvN2C69fVXMlEE+3sr7FR3MM5I1jOLrzk6celrk8BeMnTj19MR3q6n7Qcdtlj5xWysfN9DB8959XcytvWB8TPy4ZyiPt51mWpb3C2CTTbgdDT/SRNpRqDAwPsWx3t/TDAoJobeLn0UbabUppI3WxY831tObnmAbZRznHVD9NBljPVdIiZz+OeM3jcc0aGjqZ4qXAPw4GP7jKbiaYrY31/oK1nbcF/I8okje595gHPecH2xAc8/q5wy2jNNTV1XbQeqT0zbBs7P++KcLj72ajQH3z781htnTj9XH45B8r8qHQNTUfLtfR+UpVQ+siJ0pfROuicqj5G+w6lwj2MXtXh7ezH1zwSdF89z7TjC5tBSkpq+HAEa+7VlKrIR9CoavTxGOHryfzqPZhu9gaELo7FnOz8CYh+PVT8rKJlVJjBwVPe0+jiWBz0dNjNMY+p3tg112zixIsDE5w799Oy2xLqQhgYWGc3aUuirGUnBlTfTzWlCT8kFCUbqNCHEDq/6/2157HG7MQ/PdrbJh4V7mGUUsuc8oEhbaNCdcgsWveWvMGbDTAIxY755edHhTXFzTbKaEJ1zBHON5f4B92M8x1gG58o0xqNLyQln9GqagxW0op/eAYWvVfKTFBDCYe5n+Wy2r8Hw57znJJDi/zYjdwF/0fiW13DmFl+sa1ztlDHeKtt3loUpdBQoVcywmpahj0U55g9w5pIqsrPob0sr9cvSSZ5rSTcx8qlNf4HUVtZx2XWbEKBUc8BHPiYVH4VilJMqNArWeW6mrphE9+U3ciMLE+Z5sLDmc4xtGUtxzjD+/ZPsHpPDQmZ0GJc2bXB0c8OfPxWVtelNrTrraIUMtouoWSV8TZD7supjjtAKB3mlfv9sId8ImBo7SAqfZ3YhN8VbGAEb4D7Xa9xu+cS/iALaBYy6UbkaFdFKVS0Rq9klVW05LyIgWpDXB+xq80EMenyQsljUWGjvQfznvdPzIvT6+Vc19cAYS5iQ324K0qho0KvZJ1xvj8E3dACDHF9zMTyq/iDLLBNf5RjGgNsppKLRxdZzIkR08tN9e3DoNrwUamh3h7f8BwfFne9yz8l3p+q/002h+4rSkOjQq80CINrbuDqmvAZmD4pu4MjHeGubHdmI8NK/8kzpeFTu9XH52VDg8sV7nfY1/0mp9Q8EJVuttmL7aYUgEdCpsPbnTXsY01fF/QiqChFggq90iCsYSc+8R0V5ucF4EZr5qYjHdNx4WFyed0AJYkzW1MobVkbXH7Gcyogcf2Kn1NzO294jmdLyMQaobNEKUqxoUKvNCgTTdewaeZWmxb0cMzg3dIHeLwkfOLoc5zfJJTnAGddM8+/IyattuMX05G7PRcBEjVb2Hdeex8+ilLIqNArDc5KWvnnHzXl9HVO4i5rir2Ay4kAD5S8ynel14UNYLKjlfjnVf1r9V1J2zIsYjKZ//P2TjoPRcl3VOiVnLHS+Eed7udYFDPN3o5VvFj6eNx8rnB9AsAMs3dKdgScs600LRjlOyKlPBQln9F+9ErOmOjrQgdH9GRjf62+i6mmfXD+X7t5VcE/OOqr0rpeNeGTWSfOKlqmNFeqohQKWqNXcsY9noF87/1DVPgk04VqSuld/Wjc7Q9zzA72lFEUJTYq9ErOqKaUC2pvpcI9jGsiul6Cf9Lp9dY8v5G48PBuaV33ydAPvIqihKNCn+d0btM81yY0CCN8RwUnhAnlLe9xgN8pWmBC9x6OGdzjeiMs3doCncVKKX7a79Is1yZoG32+I418gOYSs2vYuuDjvdL7g+uP157OSF+PuP3mFSWXmFwbQBo1ehHZU0TGiMgMEZkuIlGTropIbxHZKCK/Wr/k+78pjZpNJrw29HJJeLv9W97jmW/2aEiTFKXgSKca5AFuMMb8LCLNgcki8pUxZkZEurHGmAFp7EdpxIz37c9y04rdZR0AfZy/BOOqTUnBTjyuKA1JyjV6Y8wKY8zP1vJmYCagVSslo2ymKUdVP0MPd7jvmzOr76RL9Ws5skpRCouMfIwVkQrgYGCCTfSRIjJFRD4TkWjn5HV5DBaRShGpXL16dSbMUoqI39mZCb4uwfUppoNO2q4oCZL2nSIiOwAfANcZYzZFRP8M7G2MOQh4GvgoVj7GmBeNMd2NMd1bt26drllKETK4pm5O2mpKc2iJohQWaXVVEJES/CL/jjHmw8j4UOE3xnwqIv8RkV2MMWvS2a/SONnIDlxccyNrzE65NkVREsaY3Pe7SVnoRUSAV4CZxpjoqX38aXYDVhpjjIgcjv8NYq1dWkVJhG98h+TaBEUpONKp0fcEzgd+E5FfrbDbgL0AjDHPA2cAV4iIB9gOnGXy4fGmKIrSiEhZ6I0x46hnvjVjzDNA0Y5Nb1LiZHutN6v76NSmObN+35zVfSiKkj0679acqrXbcmqDdltIg9/uOSFs/YMrjmLwMe2D67f07cLIq3vx1iWHc+FRFUnnP+TYfXno9AMZc2Nvnj/vUMbdciw39+0cluagPVvwysDufHX9MXHzuq2fv8fKe4N7RMVdf1wnptwVfiz/+ku0szElv3E6khtGfWXvDlFhd/TvGhV2yF4tOK7rrlHhADedGF4e/3JIXQ/rdi2bcOjeLZOyCeDxvx2U9DaZ4to+HePGt92pPGbcXQP2Cy5f2bsDlXccx+39uvLYmd0S3v+YG3snnDYZikroky3oAFUP9k95fy5n+Ok7dO+W3NavK13b+gfxHNNpFw7YYyeO7tg6SqABWjWL33OkR/udaVLqZJ9dmtH3gN1o17Ipf+wU3iPp46t60qdrGzq2ac7eOzeNmdclvdpT9WB/erTfOSru2uM6slPTkrCwsw/fK25+Sv4x/5/9kkp/c98uUWGDjm7PiCE9w8KuP74TZx++V3D9huM7BZfPPWIvdm1eFlwP9c305FndeP68Q5OyCeDkA6Pn7N1/9+iBcS0jymwmGHT0PrS2jscu/8P3aWW73f1/PoCLe+0TXP/LIXuwyw5lXHpMe5qV1TWcHNQufkeCfbLkF6eohL7Qmv8LzV6l8RKrqEaGh/tmSs1Rk9g4ePI10K1iYizXR777pCoqoW/sZLqs5XnZVbKE2Fz5WKJnaBiRs6sUZVv7kzksu3NmnzA3d5UKvaIocYkUsVCB9RkTFp+w4BUAdg+SWEenNXolZewKT7wbKV4NJ8/LoZJHmHrqyqGVa189zY/15WWHXVltqFZOCdmXnR12zUqxc8ofVOizQKJt7/UVGm3CV/KF0DIdKt7GxK7NZrKWa/fAyIaU1nfLxazRJ51Tw6JCn0Ua+jU2v+oQSjERS7b8TTd1hIp7JsujXaUn21KqH2PzlPx6hqb22hpKvhcepTiJ35MmsummvswyYlLe3duRJFqpy9UtXVRCny8k2o7XkBc9328UpXAI+xjrMzHLe+Lt2ZHbRYfV9y0gs8TZV+JtN3mFCr2iKPWSeD/60B44mTQgk5klhu3H2BhHlec6X1xCH1nompY6G2zfe7WKP4q01Jn8qe7YZoeosD1aNgkuX/bH9mFxlx7TPjJ5kFgFccix+0aFnXzQ7mH5hQ5rV/KTPl38LgrO77F3VNzO1ghsu/vhpAN2Y6cmJRy6d8vgqNbIEdEd2+xAWUld+T2+a5u6vHco5ZaT6kbYHtu5buT23js3Zccm0aNLL+pZwZnd2xE6kP3Wk6JH6QLBUeaDjo4u23ZlN12alDi5orc/3+utEcBHhIyGPbN7O675kz9+55CR7YdVhI+YbbNjbFcJAXruGz1KPVtIPo7O7N69u6msrEx6u4qho4LL39zwR9q33iEsPJ67g3tGTOf18VXcNWA/7h0ZPu1tmctBtccHwGkH78HwX5ax+07ljL+1j21efZ/4nlm/b2bUNb3Yf/fwIc83/XcK/528FPC7QPj5zuPpfMdnVHt8zLqvL+Ul6T+cPv51Gde+9yunHLQ7T519cMLbJXKeAmkCtkeyZks13e8fHXc/C/7ZD4dD+H7Oai54dWLC9tlR9WB/3vppEXd+NM02LrRMBChxCiOG9OKkJ8fGzDORc5EMkXa8dEF3rhr2MzXWde9y5+dR+3vmm7n8+8s5YXYBfDNrJRe/XsmxnVvz2kWH17vPyGNI5dgC16rXvrvw9qAjEt6uPkJtCSwv/Fc/9rn10ygbI89hrOOKZME/+9H+tuj8AO78aBpv/bSIe0/dnwuOrEj9QBLkz8/+wK9LNvDBFUel5AcoHiIy2RjT3S6uqGr0oaTaPlhvvkmlzd1Q7myTTgXBkYJPokySN4N66jmFscpwLutmDdFBINP3brzs0u0wkSy56mBRtEKfr8QTyEzfwPn+TMmYfXn4VlofsbokKko2UKGPINuDPOx6DxTijR6zp0UD25EqhXjOA+TC9sJ7lOY7DXtGi1bos3YvWBnHdTcQ504slqabvKKQVTsFCvAFJqck0hTUUCVI+9FnmFTv/fpuokTad+M1zzRsf+DskVcf8VOwJZ/MT5VsfYeyI6+ut5I0RSv0+YCtu9c490tDfxhSckv9zsPyrzw05MNFyRwq9EmSbjm3baMvmJbt+ikUIcgnM5O9/nmo/0qek5bQi0hfEZktIvNEZKhNfJmIvG/FTxCRinT2l5RteSqeXm2kzziFekbTFWx1oZE+uXpoNvR+UxZ6EXECzwInAfsBZ4vIfhHJLgHWG2P2BR4HHkp1f/lCujeX6rwSST69XdRHAZmaHA10EXL1xptOjf5wYJ4xZoExpgZ4Dzg1Is2pwBvW8v+APpLFI20SMqo02b2UufynwuUUykvCT0uTkKHjpVa6eCNYA3EOm7Mb2A9AubWcaVcNLmvHJc7sFaomMY4/mbFQrgwNnHLZneg4lJc4cORYXZ0OCZarQO0u0k1GSQy3GU7rupa6Gq7lNXCtGnKfmS6/drYHwjJVFusjoC0NLfiu+pPEZA9gScj6UiBybHQwjTHGIyIbgZ2BNZGZichgYDDAXnvtFRmdECOG9OTtnxaxyw5ltAvxCfPmxYezcXtt3G2v7tMRgL8dtied2jTntuG/0X6XZrTZsZyLeu7DlCUbeGnsAu7ovx+7t2hiO1N9gP+cewj/V7kk6DsklPv+fAB779yUpqVOBlh5/N/lR/LVjJU0LU3nctRx4v5tuPyPHbj8j7F939iRyHm6/rhOPD56DiOvOdo2vkXTUm7u25k2zcup9fqo9RnKnA62VHto37oZW6u9wbRHtt+Z3p1b8+3s1QDsvlM5yze6+ezao3l2zDxGTl0Rlf9xXXeleXkJ5xyxFzNXbALgjEPb8eOCtey2YxkHtmvB1e/+wgOnHQDA+4N78NhXc/AZQ7uWTWnXsgmndtuDDq2b0afLrnRp25zenXdl4ZqtYKB962YAjLqmF5MWrkvq/MXjuXMPYfWWav756Uy6792KYzq1ZviVR/HNrFWUuhzc0b8rx3RqHbbNwKMqWLe1hnYtm9B5tx2D4cd0bM2VvTvY+n8J5aULutt+0B11TS8mJnlsPTvswlXHduCinvsktV19DL/yKGau2AzAR1f1ZPryjQDc0b8rR3cMPx93n7wfw39Zxo0ndGaDTTkddukR/LRgHU1KnDgd0KzMRbnLGcwv8vwC/P34TpQ6HZx+SLuMHlcsHj+zG2/9tIhD9mrRIPsLkLKvGxE5A+hrjBlkrZ8PHGGMGRKSZpqVZqm1Pt9KEyX0oaTq60ZRFKWxki1fN8uAPUPW21lhtmlExAXsBKxNY5+KoihKkqQj9JOAjiKyj4iUAmcBIyLSjAAGWstnAN+YfOwcrCiKUsSk3ChstbkPAb4AnMCrxpjpInIvUGmMGQG8ArwlIvOAdfgfBoqiKEoDktbXP2PMp8CnEWF3hSy7gb+msw9FURQlPXRkrKIoSpGjQq8oilLkqNAriqIUOSr0iqIoRU5eTg4uIquBRSluvgs2I28LiEK3H/QY8oVCP4ZCtx8a9hj2NsZED/8lT4U+HUSkMtbosEKg0O0HPYZ8odCPodDth/w5Bm26URRFKXJU6BVFUYqcYhT6F3NtQJoUuv2gx5AvFPoxFLr9kCfHUHRt9IqiKEo4xVijVxRFUUJQoVcURSlyikbo65uoPF8QkT1FZIyIzBCR6SJyrRXeSkS+EpG51n9LK1xE5CnruKaKyCG5PQI/IuIUkV9EZKS1vo81Afw8a0L4Uis8ZxPEx0NEWojI/0RklojMFJEjC/AaXG+VoWki8q6IlOf7dRCRV0VklTUpUSAs6fMuIgOt9HNFZKDdvhr4GB6xytJUERkuIi1C4m61jmG2iJwYEt5wmmWMKfgffjfJ84H2QCkwBdgv13bFsLUtcIi13ByYg39y9YeBoVb4UOAha7kf8Bn+eZl7ABNyfQyWXX8HhgEjrfX/A86ylp8HrrCWrwSet5bPAt7Pte2WLW8Ag6zlUqBFIV0D/NN0LgSahJz/C/P9OgDHAIcA00LCkjrvQCtggfXf0lpumeNjOAFwWcsPhRzDfpYelQH7WDrlbGjNymlhzeCJPxL4ImT9VuDWXNuVoO0fA8cDs4G2VlhbYLa1/AJwdkj6YLoc2twO+Br4EzDSuhHXhBT04PXAP1/Bkdayy0onObZ/J0skJSK8kK5BYD7mVtZ5HQmcWAjXAaiIEMmkzjtwNvBCSHhYulwcQ0TcacA71nKYFgWuQ0NrVrE03dhNVL5HjmxJGOv1+WBgAtDGGBOYDft3oI21nI/H9gRwM+Cz1ncGNhhjPNZ6qI1hE8QDgQnic8k+wGrgNav56WURaUYBXQNjzDLg38BiYAX+8zqZwroOAZI973l3PSK4GP+bCOTJMRSL0BccIrID8AFwnTFmU2ic8T/i87Lfq4gMAFYZYybn2pY0cOF/9X7OGHMwsBV/k0GQfL4GAFY79qn4H1q7A82Avjk1KgPk+3mvDxG5HfAA7+TallCKRegTmag8bxCREvwi/44x5kMreKWItLXi2wKrrPB8O7aewCkiUgW8h7/55kmghfgngIdwG/NxgvilwFJjzARr/X/4hb9QrgHAccBCY8xqY0wt8CH+a1NI1yFAsuc9H68HInIhMAA413pgQZ4cQ7EIfSITlecFIiL459KdaYx5LCQqdCL1gfjb7gPhF1g9EHoAG0NecxscY8ytxph2xpgK/Of5G2PMucAY/BPAQ7T9eTVBvDHmd2CJiHS2gvoAMyiQa2CxGOghIk2tMhU4hoK5DiEke96/AE4QkZbWm80JVljOEJG++JszTzHGbAuJGgGcZfV62gfoCEykoTWrIT9gZPnjSD/8PVjmA7fn2p44dvbC/2o6FfjV+vXD3176NTAXGA20stIL8Kx1XL8B3XN9DCHH0pu6XjftrQI8D/gvUGaFl1vr86z49rm227KrG1BpXYeP8PfeKKhrAPwDmAVMA97C37Mjr68D8C7+bwq1+N+sLknlvONvB59n/S7Kg2OYh7/NPXBPPx+S/nbrGGYDJ4WEN5hmqQsERVGUIqdYmm4URVGUGKjQK4qiFDkq9IqiKEWOCr2iKEqRo0KvKIpS5KjQK4qiFDkq9IqiKEXO/wPB3e/dO1x1vwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(2)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These light curves can be used for standard power spectral analysis with other Stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABBcklEQVR4nO2deZgcVbn/v6d6nenZlyQzmUwmOwlkZUhYwmpYA0QFFYTrQgD5XUEfr5d7UblXxY3rxY0LiigYFAUBURMSBNkMsmSFbCSBkGSSyTaT2ffezu+P6lNdVV3VXb3XTL+f58mTmerqqjM1Pd966/u+5z2Mcw6CIAhi7CPlewAEQRBEbiDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBCc+R5APGpqanhTU1O+h0EQBDFq2LJly0nOea3Ra7YUfMbYVQCumj59OjZv3pzv4RAEQYwaGGMtZq/Z0tLhnK/hnN9aXl6e76EQBEGMGWwp+ARBEETmsaXgM8auYow93NPTk++hEARBjBlsKfhk6RAEQWQeWwo+QRAEkXlI8AmCIAoEWwp+uh7++vfbsfFAJ070DoPaPxMEQcjYsg6fc74GwJrm5uZbUnn/f/91Jw52DAIAilwONFYVo7G6GJOrijG5uhiN1T40VRejvqIILoct73kEQRAZx5aCny6rPr8YBzsGcKhzEAdPDuJQ5wAOnhzA+vfbMRIMK/s5JIaJFUXyTUDcDKp8aKqRvy92j8nLQxBEgTImFa2pxoemGl/M9nCYo61vBC0dA2jpHMShjsHI/wN4bvsx9AwFNPvXlnowWXk68GFydXHknw+VxS4wxnL1IxEEQaTNmBR8MySJYUK5FxPKvVgytTrm9Z7BAFo6B9DSMYhDnYPyjaFjEG992IFntx7R7FvqdeLmpVNx+0XT4ZBI+AmCsD+2FHx1L51cUl7swrziCsxrqIh5bTgQQmuXbBG1dA5i44EO/OSl97G5pRM/u24hqnzunI6VIAgiWZidq1iam5u5XZuncc7x5KbD+ObqXajxufHgDYuwsLEy38MiCKLAYYxt4Zw3G71GJSopwhjD9Ysb8afbzoYkMXzyl2/hsTcPUhkoQRC2hQQ/TeY2lGPtHefivBm1+ObqXfjSk+9iYCSY72ERBEHEQIKfAcqLXfjVZ5px56WzsHb7Uax48A3sa+vL97AIgiA0kOBnCEli+OKF0/H4yiXoHvTj6gfewOptR/M9LIIgCAUS/Axz9vQaPHfHuZhTV4YvPfEOvvnXnfCrJnsRBEHkC1sK/mjvhz+h3Isnbj0TNy+dgsfeasEnf/kWjnYP5XtYBEEUOLYU/LHQD9/lkHD3lXPw8xsWYV9bP5bf/zrWv9+e72ERBFHA2FLwxxJXzK3D6tvPwbhSLz77m4342UsfIBym0k2CIHIPCX4OmFpbgj9/8Wx8bMFE/OSl93Hr7zaT6BMEkXNI8HNEsduJH31yPr568Uy8tLsNWw915XtIBEEUGCT4OYQxhs8vnQKvS8Jf36WSTYIgcgsJfo4p8TixbPZ4rNtxDIEQlWsSBJE7SPDzwIoFE9Ex4Mcb+07meygEQRQQJPh54PyZtSgvcmE12ToEQeQQWwr+aJ94lQi3U8Llp03AC7uOY8gfyvdwCIIoEGwp+GNh4lUirl5QjwF/CC/vOZHvoRAEUSDYUvALgSVTqjG+zEPVOgRB5AwS/DzhkBiumleP1/a2oWcwkPgNBEEQaUKCn0dWLJiIQIjj+Z3H8j0UgiAKABL8PHLaxDJMrfGRrUMQRE4gwc8jjDFcvaAebx/owIne4XwPhyCIMQ4Jfp65en49OAfW0OpYBEFkGRL8PDO1tgRzJ5bTcogEQWQdEnwbsGJBPba39mB/e3++h0IQxBiGBN8GXDmvHoyBonyCILIKCb4NmFDuxZlTqrH63aPgnBZGIQgiO+RM8BljH2WM/Yox9kfG2CW5Ou9oYcWCeuw/OYCdR3rzPRSCIMYoaQk+Y+xRxlgbY2ynbvtljLG9jLF9jLG7AIBz/hfO+S0AbgPwqXTOOxa5/LQ6uBwMf333SL6HQhDEGCXdCH8VgMvUGxhjDgAPArgcwBwA1zPG5qh2uTvyOqGivNiFC2aNw5rtRxGi9W4JgsgCaQk+53w9gE7d5sUA9nHO93PO/QCeBLCCyfwPgOc551vNjskYu5Uxtpkxtrm9vT2d4Y06rp5fjxO9I9h4QH9JCYIg0icbHv5EAIdV37dGtt0BYBmAaxljt5m9mXP+MOe8mXPeXFtbm4Xh2Zdls8ej2O3A6m1k6xAEkXlylrTlnN/POT+dc34b5/yhXJ13NFHkduDSUydg3Y7jGAnSwigEQWSWbAj+EQCTVN83RLZZZqyveBWPqxfUo2cogPXv03q3BEFklmwI/iYAMxhjUxhjbgDXAVidzAEKYcUrM5ZOr0GVz03VOgRBZJx0yzKfAPAWgFmMsVbG2ErOeRDA7QBeALAbwFOc813pD7UwcDkkLJ9bh5d2n0D/SDDfwyEIYgyRbpXO9ZzzOs65i3PewDl/JLJ9Hed8Jud8Guf8e8ket5AtHUCehDUcCOPv7x3P91AIghhD2LK1QiFbOgCwqLESEyuKaGEUgiAyii0Fv9CRJIar5tfj9Q9OoqN/JN/DIQhijGBLwS90SweQbZ1QmFMHTYIgMoYtBb/QLR0AmF1XhvkN5fj9hkPUQZMgiIxgS8EnZG44czL2tfVjA7VaIAgiA9hS8MnSkblqXj3Ki1z43dst+R4KQRBjAFsKPlk6MkVuB649vQEv7DyOtr7hfA+HIIhRji0Fn4hyw5JGBMMcT206nHhngiCIOJDg25yptSVYOr0Gf9hwiPrkEwSRFrYUfPLwtdx4ZiOO9gzjlT1t+R4KQRCjGFsKPnn4WpbNHo/xZR48TslbgiDSwJaCT2hxOiRcv7gR/3i/HS0dA/keDkEQoxQS/FHCdWc0wiEx/GHDoYT7BkNhujEQBBEDCf4oYUK5F5fMGY+nNh/GcMB8NSzOOf7tqW24+Mfr0TMYyOEICYKwO7YUfEraGnPjmZPRNRjAuh3HTPd5fMMhrN52FP5QGO8d683h6AiCsDu2FHxK2hpz9rRqTK3xmSZvt7d24ztr3sPpkysBALtJ8AmCUGFLwSeMYYzhhjMnY+uhbrx3VCvmPYMB/Ovvt6KmxI1ff6YZNSVuEnyCIDSQ4I8yrl3UAK9LwuMbolF+OMzxb0+9ixO9w3jghkWo9Lkxu66MLB2CIDSQ4I8yyotduGpePf7yzhH0DctJ2V+u34+X97Th61fMxqJG2c6ZU1eGD070IxAK53O4BEHYCBL8Uci/nDUZg/4Q/vzOEWzY34H7XtyL5XPr8Lmzm5R9ZteVwR8KY387lWcSBCHjzPcAiOSZ11CBeQ3l+M0bBzEwEkRjVTHuvWYuGGPKPrPrygAA7x3rwawJpfkaKkEQNsKWET6VZSbmxiWTceDkAHqGAvj5DYtQ6nVpXp9a64PbKWH3sb48jZAgCLthS8GnsszEXDW/HufOqMF9n5ivRPNqXA4JM8eXUKUOQRAKZOmMUorcDvxu5ZK4+8ypK8PLu9vAOdfYPQRBFCa2jPCJzDC7rgwdA360943keygEQdgAEvwxTDRxm31bZ/exXnBOC7QQhJ0hwR/D5Erw3z3cjct/9jre+rAjq+chCCI9SPDHMOVFLkysKMp6pc7GA7LQt5F1RBC2hgR/jDO7rizrlTpbW7oBAP0jwayehyCI9CDBH+PMqS/D/vb+uD3004Fzjq2HugCQ4BOE3bGl4NPEq8wxp64UYQ7sPZ4dW+doz7Bi5fQPk+AThJ2xpeDTxKvMke3E7daWLuVrivAJwt7QxKsxzqTKYpR4nFnz8bce6oLXJaHM60IfRfgEYWtsGeETmUOSGE6ZUJo1wX/nUDfmNVSgotiFAYrwCcLWkOAXAHPqy7D7WB/C4cxOjBoOhLDraA8WNlagxOMkS4cgbA4JfgEwu64M/SNBtHYNZfS4u472IBDiWNRYiRKvC30k+ARha0jwC4BsJW7fOdQNAFjUWIlSjxP9kRW4CIKwJyT4BcCs8aWQWOYFf+uhLkyqKkJtqYcsHYIYBZDgFwBFbgem1Pgynrjd2tKNhZPkNXR9HicGRrIzuYsgiMxAgl8gZLrFQmvXII73DmNRYwUAoMQrR/iZTgyPNZruWov/+svOfA+DKFBI8AuEOfVlaO0aQs9QZnz2F3edAACcN7MWAFDqkad0DPjJ1knE795uyfcQiAKFBL9AEInbPRmK8tftOIZTJpRiam0JADnCB2i2LUHYmZwJPmNsKmPsEcbYM7k6JxFlTkTwM2HrHO8ZxuaWLiyfW6dsK4lE+NRPhyDsS1qtFRhjjwK4EkAb5/w01fbLAPwMgAPArznn93LO9wNYSYKfH8aVelDtc+NHf38ff999AjPHl2LW+FLMnFCKBQ0VkCTra94+v/MYAOCKeQaCTxE+QdiWdHvprALwAIDfig2MMQeABwFcDKAVwCbG2GrO+XtpnotIA8YYfnjtPLyw6zj2nujHkxsPYyjSMvkbV8zGLedNtXwsYedMi9g5AFk6VqAlIIl8k5bgc87XM8aadJsXA9gXiejBGHsSwAoAlgSfMXYrgFsBoLGxMZ3hETo+Mns8PjJ7PAAgHOZo7RrC8v97HYc6By0f40SvbOd8ZdlMzXaydBJDBUxEvsmGhz8RwGHV960AJjLGqhljDwFYyBj7mtmbOecPc86bOefNtbW1WRgeAchN1Rqri1Fb4kHngN/y+57fcQycA1eo/HsgKvi5bK8wEgzh2l+8iS0tnTk7ZzqESPGJPJOz9sic8w4At+XqfIQ1qnxudAxYX4t23Y7jmDW+FNPHlWi2l3pzH+G39Y5gc0sX3jnUjdMnV+XsvKlCgk/km2xE+EcATFJ93xDZZhla8Sp3VPnc6BqwVpvf1juMTS2dMdE9IM+0BZDTFskiXzDkHx0zfEPk4RN5JhuCvwnADMbYFMaYG8B1AFYncwBa8Sp3VJe40WHR0vnru0fBObB83oSY11wOCR6nlNOkrbi5DGZpvd5MEwqR4BP5JS3BZ4w9AeAtALMYY62MsZWc8yCA2wG8AGA3gKc457uSPC5F+DmiyudG16A/YUuEcJjj8Q0tWNxUhenjSg33KfU6c+rhD0Qie3WE7w+GcetvN2dtDd90oAifyDdpCT7n/HrOeR3n3MU5b+CcPxLZvo5zPpNzPo1z/r0UjksRfo6oLHYjFOboTdDaeP0H7WjpGMSNZ0023afE48yph69E+Kp2Dsd7hvHieyewRbXWrl0IhsP5HgJR4FBrhQKnusQNAAkrdR5/uwU1JW5cdmqsnSMo8TqT8vAH/UEs+/E/sGF/h+X3qOlXBD8a4Q8H5a+zGU0//nYLrvnFm0m/j/SeyDe2FHyydHJHlc8DIL7gH+4cxMt72nDdGY1wO80/Mj53cpbO0e5h7Gvrx7bWbsvvUTNgkLQVX4dC2VPXu/+yE1taupKuuqEIn8g3thR8snRyR7VPjvDjJW7/sPEQGIBPL4k/Ea7Um5ylIzp3dg2m1sFzwCjCD4gIP6VDJkXXoPX5CwBF+ET+saXgE7mj0hff0hkJhvDHTYexbPZ41FcUxT1Wsqte9QrBT2LilxqRtFVX6Yh2Ebnoy3+y3/r8BSA2wj/cOYhVbxzI5JAIIi4k+AVOdQLBX7fjGDoH/PiXOMlagVgERfD7DS1455B58jQa4aco+IqlEz3ncEAW1WAWBV/0/j/Zl2SEr8sr3PjIBnxrzXvoSfEJhyCSxZaCTx5+7vC6HCh2O0wF/8mNhzG1xodzptUkPFaJx6UIfjjM8e017+GJjYdM90/X0jFM2ooIP4tJW9EoLvkIXzumvoj9FUjC6wmEwtSgjkgZWwo+efi5pcrnNhX8fW39OHNataX2ySUeB/zBMEaCIZzsH4E/GI67zq0Q/O60I/xYSyeYRRO/NEXB1yd5JSZf02Tsp1t+uxmnffMFNN21NmOrlxGFgy0Fn8gt1T7j2baBUBgdA36MK/VYOk6J0l4hhMNdcgfOeFU7QrA6LbZ20CNuJsZJ2+QFn3OOE73DCfdzOeQ/m/Y0BT9ymKTG+treduXrw0l0OSUIgASfgJy4NUqcigh2XKnX0nFKvC4AcgO11q6hyNfmYt6rivBT6RUv1s8dCoSUKDmdpO1jbx7Eku+/nHCW7khQtmC6k7xRxQh+JMJPtamaPxTGyf6RlJ+QiMLDloJPHn5uMbN02nqF4CcX4feNBJToM57fLCL8YJin5EurJ3mJCVfpJG3Xf3ASQOLIWTxFBJKs9dfnFYRNlqr9NBwIofm7L2HBPX9P6f1dA37sOpr+31jTXWtxzxrtchfbDnePmrbVhYQtBZ88/NxSbdIiua0vIvhl1gRfeNsDIyElwrfi4QOw3LFTjfrYwtZJJ2krbhIOR/x8hbip+JMUfL2wO4Tgp1ign0obi/eORtc0/tjP38Dy+/+Z0rn1PKorL13x4Bu45hdvpXSstr5htHaRXZUNbCn4RG6p8nkwHAhretIA8h8eANRajPB9yrq2gaiHH8fS6RkKwBUR11RKM/tHgvC5HQCiidvhNJK2oYjwOhMkqEeCqUX4eq9eWDqBFCP8PpXg72uTbaje4YBp1L5uxzFccf/rWLPtKADgYIf8O+oa8OPl3SdMz3OkewhXP/BP/G3n8bhW2dZDXWi6ay3ufX6P6T67jvYktO8Wf+9lLP2fV+PuQ6QGCT6BKp/svXf0a0W3rXcEjAE1JUlaOmoPfyRo+gfeOxTApMpiAMkLPuccAyNB5WY0qOucmVKEHxFeRyLBj0T4yQp1TJVOmpaO+ma67Mfrse1wNz776EYsv/+fyjXnnMMfyTkc7BgAAOw8or0hfG7VJqx8bLOprfbI6wewvbUHtz2+Bb9586DpeD7+c7m/0EP/+NDw9b/tPI7l9/8Tf333qLUfkMg4JPiE0k9HL7rt/SOoKnYrVSmJEJZO71AAR7uH4HZICPNoIlVPz1AAk6tlwe9OshbfHwojGObKzWhQlcAFUkuEiveIyNtsH2HlJB3hmyRtk6nDV7NLZc8AwKHOQbxzqFtzrh++sBcz734eI8EQ9rX1A4j9few9Lh/H7MbMEd2+v70/pbECwP6T8ntf3duGYBLX7sVdx9F019qYc+880oM/bjKf55EKw4EQbvj12xnJbQhe2XMCx3sSV3/lAlsKPiVtc0uVST+dtt4Ry3YOEI3wP2wfQCDElWUQjSLHQCiMAX8Ik6t9ABJ369Qj/Hsxvqilk3rSVrxH/9ZAKIxP/+ptbGnpVOwcsV3NByf60HTXWrxt0v0z0xH+01taNd+rn2rEz/L7t1sAAMP+MJ7dKi88N6wTfHHNzO476vuApLsZJlNdJayyv757NMbzj8faHccAANtbtXpw5f/9E//5px2Wj2OFnUd68Ma+Dvz3X5NawiMuN63anFJ31WxgS8GnpG1uUdor6Cyd9r5hjCuzVpIJAMVuBxgD9kQixlPq5IVSjJKLoiSzsaoYjCU/+UpU6OgtneE0yjKFIOuF+UjXEN78sANffvJdRRyBWEvnH+/LNfIv7Doe9/gCpyL4iaPdE73DyvHNUGuv/makTgyrfwY1H//FG5obb/9IENt1nUz1bpdVvf+/lz/QjH+PQenr4c5BnPG9l2K2S2mWr6ZCKmXCRojP4ZHuoYwcL11sKfhEbqky6Ynf1jdiuSQTABhjKHE7sfuY/Mc8e0IZAOMIX1ToVPpcKC9yJd1eQRyzVlg6Aa3ghzjHcCCk+NdWEFGxvmpGtITu6PdromO1qPYMBvD0ZjniLnI5DI9vFuFbqfa574W9+OyjG+Puo47w9Tcj9fertx01vC4ftg/g2a3Rp4Z//f1WXP3AG5pkPtNF+FYnjf3o7+/jjX3RJ58ilwMPvPKB5no+s6UV7X2x1WJC8L/69DYcODlg6XxWGQ6E0HTXWjwZaQESx81LiVTtumxBgk+g1OOEy8HQqYqyw2GO9iQFH5D7zPQMBcAYMHNCnAg/sq28yIWqYnfSSVshQlFLJ9bDv+W3m3HPc9YfzUWVjl6YQ6pJXSMqoVSL5n/+aTv2npBvdMVuE8GPqdKR/7di6Vhpo6AedjAUxoneYeU66wVeVOroEdbY8Z5hrI9E5Or3CvH99ppd+OHf9qQcda/dcQz3vfg+Hnhln7JNH1W/uqctcs7otusffhtAtCoJAL727Pa454r3tCeCnJ++9EFki3yyTD1L5PKpxAok+AQYY6gsdmssna5BP4JhnpSHD0R9/PGlXsUqihfhlxe5UFHsSlrw+yMefjRpq4vwwxxHu4dwvMd6+4NohG8s+OrjS0wb4av76hS5nYbHj7V0pMj5EkeBouQ1HpoIP8w10bD+KcKsiun1yOSzH724V9mmvh6PvnEAr+5pw2/eOIifv/Zhyk3qRJJevbSmXhs/v2oTAG3VlPjcbDgQndT1xMbDmvdxzpWbx6o3DmDq19eh+bsvoaVjAI/884BmYp2I6I/3DmtsRfWPdbR7KKmV3NSor52R1RcMhfHq3raUjp0KJPgEADlxq07aKpOuLLZVEIhOkg2VRYr4JxL8ymJ30hOvzD38aJQeCvOEghQOc1z20/V47M2Dph6+OjIXgl/qdWn+mMXPDQAek1XBYi0d+X8r5Z2uBJPBAGjC0mAorBFKfYSvT74KNh7sxIneYbSoRFF/CX/1+n7laysR7NE4/rX6Zzf6XX39zzs0NlJIKTc1P9/X/7wDU762DgDw7Dtyovpk/wh++MJefOe593DjIxuUfRmix15wz9+xQ5ezCIbCOPveV/DFP2w1P6GKO5/ehpsf26R6f3SgX/jdFk3SHwB+8dqH+PxvNilPM9mGBJ8AIK9t26mabZvsLFuBEPlJVcWqiVjmgl9W5EJFsTvppK04ZpXPDYlFrQi1pROM/IvHpoOd2HO8D99cvUv549S/R20JiPOWF7kQUImoOgI3u8noj6ufabv5YCemf30d2nQN3N472osP2xN711oPP6yxQvRJ3Hhe9XAghI2qCFr/BKI+jxWL+ux7XzF9TZ2wNvpV/WHDIairgsUNJt5vVR3xq/Mpa7fL1T5qe0z/u/qWrkWEuCGpm9bF4+ktrXhpd1S89ddO/9EQN9b2vhF8ELEEB/1BdPSPZCxxrMaWgk9lmbmnstitSZy29yXXR0cgBL+hskipy++LU6VT5nWhypd80lZE+D6PE8VuZ6ylwyMRfgLB/3MkAhxf5lH+OEO6P1J1hL/5oLygy6wJpfCrordSleCbRez6sUi6mbbfX7cbwTBXcgFHuofQ0T+CK+5/HVtauuL+HIBWMOVJc1FVT0bw9RPP9DkG9eVJlLQ1K1FV3q8aNLfgnJs9Uby8+wSa7lqryU003bVWY/0o51Edwux4YqtZ0lVdV987HMCnfvkWHnx1X8x++uPrL5e40s/vPIaLf7Ief9t5HI/+8wBO/+5LKc/AjoctBZ/KMnNPtc+Njn51hC9/oJO2dESEX1kMj1OCU2KG/mfPUAAepwSvy4GKYjeGAqGY+nA1hzsHNf1VhMD7PA4UuR0YCsgzevURfiLLYdNBWRBO9vuVpwS9wKm/f/PDk6gt9aC+3KsRUfXkNLMJWaYRfojj7f0d2BqZNFUa6Tp6zr2v4PTvxpYpmqGOVj/96w2an11v6aitDD16u0c/bnXU2pGgRfR1kSSrGQG14Jv8qgy36zZ+5zk5Mr/jiXfing+QP3uiTDLRE2DIQHS3HurCmT94GX+KzIP44EQfNhzoxP++sDdm35ibJef4wbrdeHqz/BTy90hLC5FvefdwN+578X0AiWd8p4ItBZ/IPVU+D3qHg4pYtfWOoNTjRJFJxYkZag+fMRaz7KGgZzCA8iJZ2CqL5eRuvMTtnc9sw9f/vFP5vn8kCJeDweOUV+wa9IfgD4UVHQiFOYKhcMIItGswAJ/bgVCYKxUt+puEWki3t/bg1PoyuBySxo5QC6pZXb04jtBTMdM2GA5rhDHMOW74dXyhjHd8gdpy0idt40X4+iumtyUOdUY9+Yt/sj65QeqPHQqjpWMAfcMBwydBo/EYIfoCWeWce19B14A/bpABRJ8A1QjrZcMB+ekl3tNXjD3IOX65fj/ufGY7mu5aqySvj0aeGPpHok+6WdB7JE79EwWBqMXvGvBjXJkX7X3JzbIVlCqWjtwywed2GpZl9gxFBV/08ukaCKCu3Hih9EMdgyiL7A/Ilk5xpBqmyCUL/rA/KkxWIvxwmKN70I9zptco1SlA/CqdkWAYU2p8cDklzSO3OhnnN3kUF9Ge+DsWdfj6R3fOuaZm3Sp6wfSb3JCA2Hp6NU9s0LYr0I8v2ZW+4hEIcZz/v69hfkM5trUaW7jZ8LIBYOF3zNtKC7G957mop/+t1bvwtStOgbis4mPx/XXmzeL09qBZzkP8ftR/K/F+R6lCgk8AUM22HZQFv61vOCXBn9dQgXkN5airkK2gUq/TcNUrteBXRCJ8s8RtKMxxok/rSfePBBX7qL6iCB+c6FN64ov3hBIIfu9wAGEOnD65UiP4oTDH33YeQ2OVD3Pqy2KO4XZIcEks8kTBwRjDSDCMiRVFONI9pET4f9rSimA4jE+d0QhAHeEzHO4cxN/fkx/n9U8Eqepbr65WXy3UetGOJyUPr9+v+d7sGlYUu5LugaRHrDBmJvZA7PUIhTn+K4OtD4wocjnwoq6MctWbB/Gnra3KjTVeBdigP4h//f3WmGRvoqqxo1nuuUOWDgEgaquIWvy2vpGk2ioIls0Zj9W3L1U87RKP09DD7x2OCn59JKrfZ9KY62T/CEJhrqmuGBgJwueR7aYLZtXiYMegptd7iMsRfrw/MJEobqwqhtcV/VMIhjlue3wrrrj/dflYBjNkxc8nngZGgmFU+dzwuiRl21ef3qbp9SJyBG6HpNSYq48h+JIFH/r8mbX4z8tO0WzTT85S30iOdGstj2SCRzOLKhPx544jiQsz9L/CJzZmtmGaEUUuB2793ZaY7eqnqGe3HsHCe140fP/KVZsNK3su/sk/4p73PV1DvExDgk8AkMsyAbmBGuccbb3Jz7I1wtTDV0X4k6qK0FRdjJd3G9ciH1P8zaAiPoP+kFIKeeGscQDkfu8C4eHHm8UqcgaVxW5U+6I/q9rX3XSwU2n1LHBKDK5Irb3IeYwEQ/A4Jbgckmk7B9H+waFLZOurO6xEeQ6JYWKl1v7q1a09oLZ09LbDV/74bsJzCMyqRZKtrEoV/U377r/sNNkzc7xssS7e7Bq8ZVKddLI/fvlxKiu/JQNZOgSAaMfMzgE/+keCGAqEMiL4Po8ThwwSaj1DAcWTZ4zhI7PH43dvtUQid+3H8nhPVHD7hoOo9Lk1ls6kqmLMGFeiEfxgKIwwj/8ILSykimIXako9SuWGup/LJx6KXbVJYtEIX4jhSCAMj0sWfLOZsyLC108IUy/CbhWJxdbZ6CevxSvri/eaPsGb6opcmcJezQlGNyxbCZFMUDV5Nr/464/mexgFAQew8UAnJlYUoabEjW2tPZhW67O8+IkZ+08OoHvQj0WNlZrtGyLnaohEqb3DAew+1ocZ40qUm4/geO8wWiI3jfkN5fC6HNje2g2vy4GZ4+V+PYe7BnG0W46MJQZ4nA4MBUIockmY11BhOLaT/SP4sH0A8xvK0dIxiO6IJVJV7EJnnOi1obIITonhYMcgFjVWwOWQsONID9wOCQP+ICqK3Zha41NqwJdMqZKvRXs/2vv9YJAj9FRaOAsqi12oLvEoPe4BoMglYSgy09jlYGioLM5IszGvU8JwEk3oMk1NiTthZDwWEZ+bZHnqtrO3cM6bjV6zpaUjJl4Fg9l9vCGiKCIUCisRntviwifxcDAW44ELoVMvJVjqdcHBjEsz1RZJtP2Btk55YkXU3nBITJnEEy+eEVGuyyFp2xAk6F7JEK2gEIfnnENicn27WRCVhXk0GkR1kMQAr9ORseqWfIeEQyk8ARHG2DrCb25u5ps3b873MAqGi370GmZPKMOlp03Al554By9+5Twlgk6Vn770Pn760gf48PtXKKLa0jGA8//3Ndz3ifm49vQGZd87nngHb+47iY3fWKYR4C8/+Y6yLN7vVi7GuTNqMf/bL2LFgnrcs+I0Zb+uAT/+/M4RvPnhSew+1ocj3UOYXF2Mf9x5oeHY/veFPXjoH/vxwXcvx3+v3onH35aTgaLaxoy7Lj8FNSUe/PvT27D+zgvRWF2M8374KhY1VuDdw92Y11CB+69fiKa71gIADt67HABw06pNeGVPGxwSQ6nXGbfCpczrVOYFGLF8bh2umFtn2ONlfJkHEyuKsHxevTIhKR3qy71Zrx4hYhGfm2RhjI2uCJ/ID9U+NzoGRpReLhlJ2hr00xGJrspil2bfc2fUoGPAr6y9KjjWM4yKyL69Q/JxBv2xXn+lz42blk6Bx+lQ2hjHK8vsGgygosgFSWIo8UTHImYZm+FgTGlm5tckbR1wOaSYmbbDgRDaeoeVls5hnrjlQ6IJb4yZV9r0DQex9VA3ntp02HiHJDES+0QLvRPWmFRlPO8kW5DgEwpVPjc6B/xo7xuB2ykpVTTpYCz4Ilmq9erFYib6evLjPcPKk0bPUAAjwRACIa4cW48kMfiDide27R70KzeSUq+2F47bKWlKNfXHdzu0rY1HgnLS1umQYhKin/vNRiz+/suKNcG5caMwNR5nfME/d0aNaVmkSAKLnjzZwGuyyAthnfs+MR+v/8dFOT0nCT6hUOXzoHMggLa+EdSWeDIy00+0WlCXIXYr5ZAuw33Vtc6ccxzvGcYpkcVUeocDynq2ZguNOBisRfgDAWX+gVrwAaDG5zYVXaeqDj8QjFbpeF0OuBwspqrl7f1y8nZA5UUnWgDdrMWy4JPNk+K+nm3sIPgVxckHJNcvTnzdptb6NF+r80PNkyuN3pI0H1s4ER9bOBEAcPfy2Rk5phVI8AkFuWulHyd6h5Nui2yGiMLVIt6tWDpuw33VTwOdA374Q3I7A6fE0DMU0HTKNMIhSYrVoi/L7B70K5UrXYN+5SnjgpnjNPtVFLtNRVdS1eE/8OoH+PjP38BQIFqHbybm6uRjoqZu7jiC75AYGGOmlo7Zk0kmydQ50ikMELbYqfVllt8jWn7Ew6G6sK989QLN78Ls93LO9Grl64vnjE94jpVLpyh5qpvPnZpw/0xBgk8oVPk8CIU59rX1Z8S/B6KRs97DZwya3jiASvBVNwcx6aqu3IvyIhd6hwLKscwsHYcUrc7Rlz5e9tPXceF9r0XG4VeeMhqri3Hw3uWoiUxAK3I7TP+4HYzBFfljfWHXCaXLpdshdwc1q3FXrw2bqCQznuCLQovJ1T7D111SLgQ/QxF+Eg+RHzlFe1MWv+Mbz5xsuP8dF01PaUjjdTPMxWcCAJwmN6hk51I4rSxokwVI8AkF0U9HXrw8+bYKRvgMRLx70I8yryum/WtZpC2wuveO6Ds+obwIZUUu9AwFFOE0j/BVKyTphPV4JCHNOUfXYCCm5l+81+OUTCN89UxbzXaHFNNFU42VdWkFiSwdAJhdV4bFTdpa7aXTa5SmbNlEXf+fDlaHev3iRnxRJ+DiN2uWQJ41IbbCTP/7NuL+6xdqvn/whkVYMKki7rlGArGlw2q+cL4cxYt5LWZNArMNCT6hoP5jSKVxmhEiCh/QRfh6/x6A0hunT9UiQJRH1ld4UVbkQu9wUFnPtsRj4uGr/ijNqmGGAiH4g+GYxLFYZ9bjlOA28fDVvXS055UnPAVC3LAGPsy18wXiYXZuPQ269gqnT65Muo/6jWc2JrV/JjFbatEIvf0jrrHLIeG6M6zlNIxyH2c0aX15/U1hXKlX8f7NBP/+6xcoXxvOG4h8HFYunYKD9y6PWxDx0r+djw+/f4Xp6+lAgk8oqD/oGbN0PLFRe7fKO1fjdEgocjk0TwNHuofgdkqo8XlQ5nVqPPxik8XC1R6smXViVhoqxNLtlMwtHcl4jVmJsUiVTtjU1tH3vzEjnretPrI+se52SkmJKAB89qympPbPJNbHymNsEPGrdToY7r1mHurLtU+lRou8OCSmyT8smz0eT992dsKad3GDN7rRA8D0cdGniSFVL6bl8+rw40/OV/ozWcl9lBU5s7L4CUCCT6jQCH6GkrYialeLuNo711Oqa7Z2pHsIEyuKIEkM5UUu9Fny8KMfa7NeOl0DxqWhTsXScZjaKg5JMhRkicnlmvJausa2jj4iN8NjMSmq10uHxJBMHrSputhUxJLlkc82x4huIpKRNf04xe9WPJXpb37jdZ/h9+65FID2JvPAp7X2jeCrF8/EU184y/TcgDwJ0IjFqpYID356ET6+qAFfvGg6LpkzHteoJhqaUepJvxzaDGqeRihoI/zMePhOh1zPrl7Jp2sggJnjjGfwluj65x/pGkJ9pLe+8PATV+lEvzarhulOEOHH8/AdkUg+9rwMTgeTI/yg8XkbqxJXiQCAJ16Erzq0kWAmM3k+zJNrlSyY11CO7boe9pOqipNP5lo8N+exyWjxc4qnLfFzrL79HARCYZw+WZvfEE+E6idAs/He8ZEZmu/FOYLhML5xxWycNa0ap00sx7LZ43HWtGrNvndeOitmTYFxpV48/BnDya8xZLPKKmcRPmPMxxh7jDH2K8bYDbk6L2Edr8sBX6S2PVOWDgCUeFyK7w7IyUsjSweQV8zqG46N8AGgPEbwzT12QZgbr5jUKeYCmCVtXXEE38zSkRickoRAMGy6+LXVG2m8Kh3NOXVqnWynlDDnSVtAAPDQjacbjCX5vjtm5/7DzUs033MOuJzafb959RxcdMo4nD2tBoBq6UiJxYi95pwp2CVinKEwxy3nTcVpE+X1tn/92WasXDpFs6/LIeGH18zDv5hUD8Xj9f+4MCsrXQnSEnzG2KOMsTbG2E7d9ssYY3sZY/sYY3dFNn8cwDOc81sAXJ3OeYnsUVXihsSA6jS7ZKpR2zT+YBj9I0FTS6fE60R/JGk7HAihvW8EEyvkqLjM60IwzHGy36+sZ2uEPrFmFOWfjLRA1s8FED6xxxmnLNPU0pGjs5GgeR/+Ire1PzmrHq5eG7jSNs4aqbbSMgoIGDNvHGeG0Y/pdUk4e3oNvv+xuZpJUE5dhD+ttgSPfu4MpQ2FEGX1TcRoUtNZU6tjtiVC/D7izZ/49tWnKuL/yTMm4TsfPc10Xz2rbz8HL3/1fEyy+ASYKulG+KsAXKbewBhzAHgQwOUA5gC4njE2B0ADANHcg9rf2ZSqYjeqSzwZTRqVeKIi3j0U7UFvRKnHpdwcREmmSHSKyoaj3UOmCVtA+8gOwHAhc7Euq34cDlWVjtkNRY7wDSwdxpQF1b/27HbD93otVt9YjbqNdktGdDnnKUW8aktLPO2or7vVHjFG0axItn56SSNuVU1K0t9k9XaMkeAbTWr67sdkITbLARkh/h7izZ/47NlN+K8r51g+ppp5DRWYVluS0nuTIS3B55yvB9Cp27wYwD7O+X7OuR/AkwBWAGiFLPpxz8sYu5Uxtpkxtrm9PXaJMCK7NFQVY3KGowyfx6G0QxDeuZmlI0f4suCrSzIBleD3DMX9Y3XoIkEjd+Vk/whKPc4Y4RZS4XYaR/FAZAEUg+hfkhiK3U4MBUJ41WB5O8B6Mtb6DTd2v6Q9/AT7fPHCaXFfF9dQYkx5upg3scLS+Y1+TDOrTl+loy/LVRaHT/ADVfvc+NzZTXjy1jMtjRGIPl0kmiFtd7Lh4U9ENJIHZKGfCOBZANcwxn4BYI3ZmznnD3POmznnzbW1tVkYHhGP7330NPzCwJ9NhxKPS0nEiuoYvZUS3Tfq4R+JLC3YELF0RFL5QPuAqSgAiKlSMaqYOdnvR4Uv9ilDVH7Et3SYYT22g7G44xLHtUKi4wiMFkBPRpKsePhfvXiW4XZxfYTgqw9j9tTwzG1n6bbE7vfHL+j3ka0q/c055inP5Mf49JJGZeKUPE6Gb119quLDC6bUGM9cBqxF+KOBnFXpcM4HAHw+V+cjUsMs8k4H2cOXI/suJcI3tnTKvE70+4MIhzmOdA+BMWBCpNTvjKZKNFYV41DnoGmFDhArNkYRfv9wEMWu2GOICC5ulY7JxCtJAoriWE3iuFa4eelUPPjqhwn3EwLkdpj3D4oHR+KIWJIYdnzrEsz9lnbB7hnjSrDraK8mgS1ObXbMZt3MYKP91NaGuIlwHpso1zfPEzcu/U///Y/NNR6Mjhe/cp7ptRNPF4naWtudbET4RwCop7M1RLZZRqx41dPTk3hnwvbIHr4ctXebVMco+3qd4Fxe8PtI9xDGl3qVSNLpkHDb+dOUY5qhj76P9w7j4MkBjbc9HAwZ9jNRBN8VZ+IVY4aWi8SYUuVkhtUI3+ty4Mu60kAjhECJ8SSbNPU4JUulkaXe6A36uTuWAgAeu2kxfv2ZZuVnYgxKythqDiLRfurJU3q/Xz0m+Vjy/8nc8NS4HPHyNmMjws+G4G8CMIMxNoUx5gZwHYDVyRyAc76Gc35reXl54p0J21PilW2aUJgr68aaVulEJp30Dwc1NfiCa06fiPpyr9I73wi9iFz60/W44L7XNEsXDgdChrZMMBy1dBL98Rttj5dMBpKbUGXFx1dmm0qxUbYVilyOpMsyhRVSU+LBMpPOkJYzEFbr8FVfOySGXd++NOb6iJtDNhbxc1qo0hkNpFuW+QSAtwDMYoy1MsZWcs6DAG4H8AKA3QCe4pzvSvK4FOGPIWaMK0Ew0oWza9APt1NuoWBEqdITPyDX4Ova2XqcDvzl9nPwzatPNT2fmVCOqNbGHQmGDSdPqS2deB6+4fZIlY6aZbO1HR6tWjqSyVOEHhHNrlhYDwC49NQJSUW4XpcjqdmuiVBOrTpodZyGZYnOLW6Q4slp57cvxd7vXGZo6antn0wjboqjPcJPy8PnnF9vsn0dgHVpHHcNgDXNzc23pHoMwj7MjyTMth3uRveAvKyg2eQSsQhKz1AAx3qGsHxeXcw+iSYvmTW4Glb1ODGP8CMLuCfw8I1gBklbvT5YtXQcEtPcoEyJHH9OXXm0H0wWI/zTLS4AYtTHxnC/yLln15Vh97HemNevnFePQx2DuClS3x7PyhM/R6qWTjxEHuny0yZk/Ni5hHrpEFlnSrUPpV4n3m3tjvTRMY/4SiN/0Pva+hEIccutCNSYVYiol04cDoQNE68iwRsvwjcTSCNLR91LXRzXChIDeiL5DkBOyt6zIvapRjyRqH+UZOTO63ZYtlW23L0Mv9fNgNWTKGmrR1TQ3vtx48SqQ2K44yMz4ibpBdmM8GtKPNj+rUtw+4Wp9di3C7YUfLJ0xhaSxDC/oUKO8AcDcZemExH+rqNytDfJwgpFeswi/LbI7FpAjvCNInUR4ccryzRbvMIhaStHLjt1Aq6cV6/Zx2qvGcaYku8A5NzF7LrYlZ2iSdvEDeOMuHJuneWp/NUlHsPxL2ysAKAtk1TfFPWjmaaaPWv1ScAKiuAn3eDBGmVeV07WGsgmthR8StqOPeZPKsee43041jsUP8KPVF68F3m8TynCNxGwdpXgjwTDhv1wREsEj8s8z6Cfyas+r1r0rppfH3PTsNojB4hOUgPkqNXorELaNBG+Tu/M9Pz3Ny/BJ8+YlFLzNDX3fWI+nrtjqab5Xrxjrr59qfL1vdfMxUdOGWd4M0sW0bvGyjKGhYotBZ8Ye8xvqEAozHG4cwiVBhOeBMKj3XOsFw6Joa4i+a6dZh67WvCB2N4sgLpKR8JFp4xTykDVmEV5ks7DF2vcWhmbEeqKEG7S1VKUYapvcndeqp0oZXZGca1TaZ6mxutyKJU7YjyfOmOSphKrRlVV5fM4lddOmVCGRz53RlI3QjM+dUYjDt673NKqVoUKCT6RE9QzHeNN7lJWyPKHUFfuTalXu2XBN4jww6qyTJ/HiZvOaYrZx8wyckhM81TgcUmGTxFW+Z9r5ykrj3FwQ+tFRPPqn/mmyKpKAjPLJtp7JuUhmjKuzIvnvnRuZIwcr915AbbcvSxmTNlIsBLm2FLwycMfe4wr8yqLY5jV4AOycIkSvFTsHHEMI2Ij/Hh1+JLpscwiYokxjbh6nA5T++qq+fWG29VMrCjCv18yE4C5paN4+HGidHXPmOsXR5czFG/JpI++6qbF+Pw5Tagv92qOWuJxajqwfnTBRACxs2WJ7GJLwScPf2wiyjMTtW8QidtUBd8sAm/v10f48evw5WMZL3RihH67xylhUlVxTAXKwXuX43sfs9Y6V5lMBOMbjXB94iUTz2iqwrcj8xbUh1AE3+StCxsrML8hub/BmeNL8c2rTgVjLK5V9I3ls7H9W5cknKhGZBa62kTOmD+pAs/vPI6KOAs4A3I0eAIjKfcGt5K0BYwXMVFX6QDGto/ZDUW/WUwaOtOg/3q8iFyDqtTQ0MO3eDzxsnqMwk0xe+uf//Uca2M0QZzLyLRxSAxlutYIP79hEaaPy36L4EKGBJ/IGedMq4FTYppFLYwoiQhBqoKfTtJWRMxCrA0tHTPB120X7ZWNjmF5gZPI/xzc0Hrhul46yRCtmc9SqWGSh71ibuwkOyKz2NLSIQ9/bDK3oRw7v30pppusZysoi1g6kywu+K3HTPw6BvyW9gOiYm220InheSPbxZODJ5LANeysaXmBk2iYbFylEzleAsFXvzpXVNREYm/1a1Y7S1ohazcSImVsKfjk4Y9drEw8EpU6mU7a6jGydB5fuQQfXzhREVCjQ5mJqziv8KWVlaAi29X6l3yEbyz4VpK26pNzru4qKf+vFuZPL2nUvzNlSO7thy0Fnyhsyrwu+NyOlOuprfrjRknbpTNq8ONPLVC+NyppNPPwxa436/q+iP3V77LqwETbBRgvVBJW6vATHCfyv3zj0JZEZs3RoQjfdpCHT9iOledOwUWzx6UsGJYj/BQL0BNV6dx+0XT8vwumKTcUh0NE+NH3Wf3ZVI6OSYSf3PHUyV+uCH52hFm5yVCpvW0gwSdsx8zxpZg5Pr7PHw+rgq9f+9Yqps3TWFTY1dU9zjj2UCLUPd6NzsutRviq1yWVvZNNKMC3H7a0dChpS6SDVcE3a4KW8H2R4+s7YcZruQCkNsFJE+EbvG6lDh8AlkyRlxZcPrcOp9bLfWvKE5THEmMPW0b41A+fSAcjwf/CeVNx+uRKOCSGlY9tBmCctLWCENfnv3wejvUM4eoH3pC3m4S0okrn2uaGmNdqSjw4qZsQZgTnPEEvnfjvnz6uVGm3sHhKFVYsqMeMNJ6ikiHZZReJ7GFLwSeIdDAS3kqfG5ecOkFTi5+qpSOoLfUovW6AOOWakUXA9bNKn7ntLDRWF2Px9142PYfw19XJVjXR/mrWb15up4TTJ1cl3jFNMtmygcgMJPjEmENYNS4HQyDS7ljYMOoKm3QamxkR7/6hX3AbAJqbEouuMsIE7ZGNIvx7VpwKXx5bF4jrUVee2nwKIvOQ4BNjDhFpux0SAiF5WUPRftehSaZmNoWVymzXRKgX9YiftI197TNnNWV8PMlQ6nXhZ9ctwFkGrSWI/ECCT4w5hPB6XA4M+GXBF+KujvBTTdqakY2ZpeoqnXgTr+xaEbMi0hWTsAe2rNIhiHQQgu9WTaxy6ma9AuYTqIxoqk486zddwX/9Py6M2aZep9W4l05mzk0UBrYUfCrLJNJBiJ9ogAZE/Xq1jWM009aIPd+5DC9+5fyE+6Vq6VwwqxaAcbO4c6bXYPq4Enx52YwEE69SOjVRYNjS0qGyTCIdRDTvUS2bJ4RerclWZ9paXXjccstjHb/+TLOSXNZTXuTCS/8m32xauwZjXldmy1JFDGEBWwo+QaSDkrR1qiN8+WvGGJwSQzDMLUf4VmEpHs7pkOC0cE8xTtpGXrPlszphN+hjQow5jDx8dQmmw6BEMyPnzbKvEjdpSxE+YQESfGLMoVTpqMJmdTSv1ORnuEonG2WZaowifNFzSCwLmQnGl3kS70SMSsjSIcYcovWBxtKRjCL8zMY72a6UMTr6D6+dhxvObMTEisxNbnr9Py5SFkchxhYk+MSYwykZJG0dsV8nO9P21X+/AF2DftPXsxzgGyq+z+PE2dNqMnoa9Y2SGFuQ4BNjjmhZptrSiY3wk7VgptT4MAXm6/Hmw9IhiGSgWzkx5hDCq47g3QYevtFas+mQ7RWeSO6JdLGl4NPEKyIdRLWMU2JRv96oSifDSdtsQxE+kS62FHxaxJxIB0liYExuf2yUoBWRfaaTttmG9J5IF/LwiTGJU5InWIloPxd1+Nkmm7X2j69cggnlVI451iHBJ8YkEpPtnKh9k/06/GyT6kxeKyydkdlKH8KejK5nWoKwyPgyL8aXeQ0TuI4sJW2zzei6PRF2ZHR94gnCImu/tBQ3nzslKu6SQYQ/yiwdStoS6UKWDjEmEUsKCpE0rNKhpC1RYIyuTzxBJIlRzb2y+tUo8/ApwifShQSfGNMYVeSM1jp8gkgXEnxiTCNJiNTkx65l6yJLhygwRtcnniCSxClJcEmSpu2BIzIxS6KkLVFgkOATYxqJxVo3TomNuugeoLJMIn1yVqXDGJsK4BsAyjnn1+bqvERh44jMuI3ZZlP//g+3LEFNifGMV4rwiXSxFOYwxh5ljLUxxnbqtl/GGNvLGNvHGLsr3jE45/s55yvTGSxBJItDkmImWDklKaM1+N/56Gn43NlNGTnW2dNqlFWs9JDeE+liNcJfBeABAL8VGxhjDgAPArgYQCuATYyx1QAcAH6ge/9NnPO2tEdLEEnikGItHTnCz5yl8y9nTs7YseKR7fbLxNjHkuBzztczxpp0mxcD2Mc53w8AjLEnAazgnP8AwJWpDogxdiuAWwGgsbEx1cMQBAC5VXJshB9r8xBEIZBOmDMRwGHV962RbYYwxqoZYw8BWMgY+5rZfpzzhznnzZzz5tra2jSGRxByNK8X/ElVxWisKs7TiAgif+Qsacs57wBwW67ORxCAcdL2KxfPxFcunpmnERFE/kgnwj8CYJLq+4bItrShFa+ITCGxzPr1BDGaSecvYROAGYyxKYwxN4DrAKzOxKBoxSsiUzgdTNMamSAKGatlmU8AeAvALMZYK2NsJec8COB2AC8A2A3gKc75rkwMiiJ8IlMsmVKNs6ZV53sYBGELrFbpXG+yfR2AdRkdkXzcNQDWNDc335LpYxOFxZc+MiPfQyAI20D98AliFHHezFp8dEF9vodBjFJsKfiMsasAXDV9+vR8D4UgbMVvb1qc7yEQoxhbli9Q0pYgCCLz2FLwCYIgiMxDgk8QBFEg2FLwqSyTIAgi89hS8MnDJwiCyDy2FHyCIAgi85DgEwRBFAi2FHzy8AmCIDIP45znewymMMbaAbToNpcD0N8JrGzTf18D4GQGhhkPo3Fl8n2J9ov3Ol3H5PY1e93q9kTX1s7XMZn3Zvs6Gm3L9WfSztcRAGZwzo0ToJzzUfUPwMOpbDP4fnM+xprJ9yXaL97rdB0zcy2tbk90be18HZN5b7avo5Vrm+1raefrmOg1W1o6CViT4jajfbJNque0+r5E+8V7na5jcvuavW51u9XrnU3SOV+2P5PJbM/3Z9LO1zHua7a2dLIJY2wz57w53+MY7dB1zAx0HTMHXUtzRmOEnykezvcAxgh0HTMDXcfMQdfShIKN8AmCIAqNQo7wCYIgCgoSfIIgiAKBBJ8gCKJAIME3gDE2mzH2EGPsGcbY/8v3eEYrjLGPMsZ+xRj7I2PsknyPZ7TCGJvKGHuEMfZMvscy2mCM+Rhjj0U+hzfkezz5ZswJPmPsUcZYG2Nsp277ZYyxvYyxfYyxu+Idg3O+m3N+G4BPAjgnm+O1Kxm6jn/hnN8C4DYAn8rmeO1Khq7jfs75yuyOdPSQ5DX9OIBnIp/Dq3M+WJsx5gQfwCoAl6k3MMYcAB4EcDmAOQCuZ4zNYYzNZYw9p/s3LvKeqwGsBbAut8O3DauQgesY4e7I+wqRVcjcdSRkVsHiNQXQAOBwZLdQDsdoS2y5iHk6cM7XM8aadJsXA9jHOd8PAIyxJwGs4Jz/AMCVJsdZDWA1Y2wtgD9kcci2JBPXkTHGANwL4HnO+dYsD9mWZOrzSERJ5poCaIUs+u9ibAa4SVEoF2Aiond5QP4QTDTbmTF2AWPsfsbYL1G4Eb4RSV1HAHcAWAbgWsbYbdkc2Cgj2c9jNWPsIQALGWNfy/bgRilm1/RZANcwxn6B/LQFsRVjLsLPBJzz1wC8ludhjHo45/cDuD/f4xjtcM47IOdBiCThnA8A+Hy+x2EXCiXCPwJgkur7hsg2IjnoOmYGuo6Zh66pBQpF8DcBmMEYm8IYcwO4DsDqPI9pNELXMTPQdcw8dE0tMOYEnzH2BIC3AMxijLUyxlZyzoMAbgfwAoDdAJ7inO/K5zjtDl3HzEDXMfPQNU0dap5GEARRIIy5CJ8gCIIwhgSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgC4f8D0ms9A+23UnIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pds = Powerspectrum.from_lightcurve(lc_pois, norm=\"leahy\")\n", + "pds = pds.rebin_log(0.005)\n", + "poisson = poisson_level(meanrate=lc_pois.meanrate, norm=\"leahy\")\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.axhline(poisson)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (ii) Using user-defined model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Light curve can also be simulated using a user-defined spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVqElEQVR4nO3dbYxc133f8e9/d/kgUZZIiltCJumQroimbJ4sLGQ6DgLDqm1JMUy9cAwJQcw6Qoi0cuJUBRyqBiKkQQC7LexYReqEiJTIgCNbUeyKMJTKjKQgCFDJXlmynmhZa9oySVDm6omO9URy998Xc5aa2ZkluTu7s8sz3w8wmHvPPXPvOcPhb+6eOTM3MhNJUn8YWOwGSJJ6x9CXpD5i6EtSHzH0JamPGPqS1EeGFrsBp7Nu3brcvHnzYjdDks4pDz/88POZOdxp25IO/c2bNzM6OrrYzZCkc0pEPDvTNod3JKmPGPqS1EcMfUnqI4a+JPURQ1+S+oihL0l9xNCXpD5SZei/evwkn/3G0zzyo5cWuymStKRUGfqvHZ/glvvHePzwscVuiiQtKVWGviSps6pD34uCSVKrKkM/Iha7CZK0JFUZ+pKkzs4Y+hFxW0QcjYgnmsr+R0R8NyIei4ivRcTqpm03RcRYRDwdER9oKr+ylI1FxO5570kHXvRdklqdzZn+XwNXTivbB/xcZv4C8D3gJoCI2AZcC/y78pj/HRGDETEI/BlwFbANuK7UXRAO7khSZ2cM/cz8J+DFaWXfyMyTZfVBYGNZ3gF8OTPfyMwfAGPA5eU2lpkHMvM48OVSV5LUQ/Mxpv9bwN+X5Q3AwaZth0rZTOVtImJXRIxGxOj4+Pg8NE+SNKWr0I+ITwEngS/NT3MgM/dk5khmjgwPd7za19nva57aJEm1mPPlEiPiPwAfBK7INz8xPQxsaqq2sZRxmvJ554xNSepsTmf6EXEl8EngQ5n5atOmvcC1EbEiIrYAW4FvAt8CtkbElohYTuPD3r3dNV2SNFtnPNOPiDuA9wDrIuIQcDON2TorgH3li1APZubvZOaTEXEn8BSNYZ8bMnOi7OfjwL3AIHBbZj65AP1p4YxNSWp1xtDPzOs6FN96mvp/AvxJh/J7gHtm1bo5CidtSlJHfiNXkvpI1aHv6I4ktaoz9B3dkaSO6gx9SVJHVYe+P7gmSa2qDH2/nCVJnVUZ+pKkzgx9SeojVYa+ozuS1FmVoS9J6qzq0HfyjiS1qjL0w+k7ktRRlaEvSerM0JekPlJ16Kc/uSZJLaoMfUf0JamzKkNfktRZ1aHvlE1JalVl6DtjU5I6qzL0JUmdVR36ju5IUqsqQz+cvyNJHVUZ+pKkzs4Y+hFxW0QcjYgnmsrWRsS+iHim3K8p5RERt0TEWEQ8FhGXNT1mZ6n/TETsXJjutHL2jiS1Opsz/b8GrpxWthu4LzO3AveVdYCrgK3ltgv4AjTeJICbgXcClwM3T71RLARn70hSZ2cM/cz8J+DFacU7gNvL8u3ANU3lX8yGB4HVEXEJ8AFgX2a+mJkvAftofyORJC2wuY7pr8/MI2X5OWB9Wd4AHGyqd6iUzVTeJiJ2RcRoRIyOj4/PsXkN/vaOJLXq+oPczEzmcXZkZu7JzJHMHBkeHp6v3UqSmHvo/7gM21Duj5byw8CmpnobS9lM5ZKkHppr6O8Fpmbg7ATubir/aJnFsx04VoaB7gXeHxFryge47y9lC8rZO5LUauhMFSLiDuA9wLqIOERjFs6ngTsj4nrgWeAjpfo9wNXAGPAq8DGAzHwxIv4Y+Fap998yc/qHw/PG2TuS1NkZQz8zr5th0xUd6iZwwwz7uQ24bVatkyTNK7+RK0l9xNCXpD5SZej7g2uS1FmVoS9J6qzq0E/nbEpSiypD3ymbktRZlaEvSeqs6tB3dEeSWlUZ+o7uSFJnVYa+JKmzqkPf0R1JalVl6IfTdySpoypDX5LUWdWh7+wdSWpVZeg7uCNJnVUZ+pKkzqoO/XT+jiS1qDL0nbwjSZ1VGfqSpM4MfUnqI1WHvlM2JalVlaHvN3IlqbOuQj8i/nNEPBkRT0TEHRGxMiK2RMRDETEWEV+JiOWl7oqyPla2b56XHkiSztqcQz8iNgC/B4xk5s8Bg8C1wGeAz2XmpcBLwPXlIdcDL5Xyz5V6C8rRHUlq1e3wzhBwXkQMAecDR4D3AneV7bcD15TlHWWdsv2KcBxGknpqzqGfmYeB/wn8iEbYHwMeBl7OzJOl2iFgQ1neABwsjz1Z6l88fb8RsSsiRiNidHx8fK7NkyR10M3wzhoaZ+9bgLcCq4Aru21QZu7JzJHMHBkeHu52Z902R5Kq0s3wzr8HfpCZ45l5Avgq8G5gdRnuAdgIHC7Lh4FNAGX7RcALXRz/tBw4kqR23YT+j4DtEXF+GZu/AngKeAD4cKmzE7i7LO8t65Tt92d6Ki5JvdTNmP5DND6Q/TbweNnXHuAPgBsjYozGmP2t5SG3AheX8huB3V20++zauNAHkKRzzNCZq8wsM28Gbp5WfAC4vEPd14Ff7+Z4s+HojiS1q/IbuZKkzqoOfT8xkKRW1Ya+3/uSpHbVhr4kqV3Voe/lEiWpVbWh7+COJLWrNvQlSe0MfUnqI1WHvlM2JalVtaHvjE1Jaldt6EuS2lUd+o7uSFKrakM/nLQpSW2qDX1JUruqQ9/ZO5LUqt7Qd3RHktrUG/qSpDZVh74/uCZJraoNfUd3JKldtaEvSWpXd+g7uiNJLaoNfX97R5LaVRv6kqR2XYV+RKyOiLsi4rsRsT8i3hURayNiX0Q8U+7XlLoREbdExFhEPBYRl81PF2bm6I4kter2TP/zwP/NzJ8FfhHYD+wG7svMrcB9ZR3gKmBrue0CvtDlsU/L396RpHZzDv2IuAj4VeBWgMw8npkvAzuA20u124FryvIO4IvZ8CCwOiIumevxJUmz182Z/hZgHPiriHgkIv4yIlYB6zPzSKnzHLC+LG8ADjY9/lApaxERuyJiNCJGx8fHu2ieJGm6bkJ/CLgM+EJmvgN4hTeHcgDIzGSWQ+uZuSczRzJzZHh4uIvmQfqLa5LUopvQPwQcysyHyvpdNN4Efjw1bFPuj5bth4FNTY/fWMoWhFM2JandnEM/M58DDkbEvylFVwBPAXuBnaVsJ3B3Wd4LfLTM4tkOHGsaBpIk9cBQl4//XeBLEbEcOAB8jMYbyZ0RcT3wLPCRUvce4GpgDHi11F1Qju5IUquuQj8zHwVGOmy6okPdBG7o5niz4eiOJLXzG7mS1EeqDn1HdySpVbWhH07fkaQ21Ya+JKld1aHv7B1JalVt6Du4I0ntqg19SVK7qkM/nb8jSS3qDX3HdySpTb2hL0lqU3XoO3tHklpVG/qO7khSu2pDX5LUztCXpD5i6EtSH6k29P3BNUlqV23oS5LaVR366ZxNSWpRbeg7uiNJ7aoNfUlSu6pD38EdSWpVbeg7uiNJ7aoNfUlSu65DPyIGI+KRiPh6Wd8SEQ9FxFhEfCUilpfyFWV9rGzf3O2xz8TJO5LUaj7O9D8B7G9a/wzwucy8FHgJuL6UXw+8VMo/V+otGL+cJUntugr9iNgI/Brwl2U9gPcCd5UqtwPXlOUdZZ2y/YowmSWpp7o90/9T4JPAZFm/GHg5M0+W9UPAhrK8ATgIULYfK/VbRMSuiBiNiNHx8fGuGuflEiWp1ZxDPyI+CBzNzIfnsT1k5p7MHMnMkeHh4Tnvxz8hJKndUBePfTfwoYi4GlgJXAh8HlgdEUPlbH4jcLjUPwxsAg5FxBBwEfBCF8eXJM3SnM/0M/OmzNyYmZuBa4H7M/M3gAeAD5dqO4G7y/Lesk7Zfn/64ziS1FMLMU//D4AbI2KMxpj9raX8VuDiUn4jsHsBjt3CtxRJatXN8M4pmfmPwD+W5QPA5R3qvA78+nwc72w4L0iS2vmNXEnqI1WHvqM7ktSq4tB3fEeSpqs49CVJ01Ud+s7ekaRW1Ya+s3ckqV21oS9Jald56Du+I0nNqg39wQgmJ89cT5L6SbWhPxAw4Se5ktSi3tAfCCYNfUlqUW/oRzA5aehLUrNqQ39wIDDzJalVtaEfjulLUptqQ38wAq/RIkmtqg39gQgmHN+RpBb1hr5j+pLUpt7QD5y9I0nTVBv6g87Tl6Q21YZ+RDBh5ktSi2pDfzBw9o4kTVNt6Dt7R5LazTn0I2JTRDwQEU9FxJMR8YlSvjYi9kXEM+V+TSmPiLglIsYi4rGIuGy+OtGJv70jSe26OdM/CfyXzNwGbAduiIhtwG7gvszcCtxX1gGuAraW2y7gC10c+4was3cW8giSdO6Zc+hn5pHM/HZZ/hdgP7AB2AHcXqrdDlxTlncAX8yGB4HVEXHJXI9/Js7ekaR28zKmHxGbgXcADwHrM/NI2fQcsL4sbwAONj3sUCmbvq9dETEaEaPj4+NzbtNAhL+9I0nTdB36EXEB8HfA72fmT5q3ZWP6zKySNzP3ZOZIZo4MDw/PuV0D4TdyJWm6rkI/IpbRCPwvZeZXS/GPp4Ztyv3RUn4Y2NT08I2lbEH4jVxJatfN7J0AbgX2Z+ZnmzbtBXaW5Z3A3U3lHy2zeLYDx5qGgeadY/qS1G6oi8e+G/hN4PGIeLSU/Vfg08CdEXE98CzwkbLtHuBqYAx4FfhYF8c+o3CeviS1mXPoZ+Y/AzHD5is61E/ghrkeb7Yav6ffq6NJ0rmh3m/kDnjlLEmartrQHxoY4OSE386SpGbVhv6KoQGOnzT0JalZvaG/bIA3DH1JalFv6A8N8vqJicVuhiQtKRWHvmf6kjRdxaE/yMnJ9MNcSWpSb+gva3TtuKEvSadUG/orhxpde+OEoS9JU6oN/RXLBgF4/aQf5krSlHpDv5zpv+6ZviSdUm3oX7hyGQA/ee3EIrdEkpaOakN/zarlALz46vFFbokkLR31hv75jTP9lw19STql2tBfO3Wm/4rDO5I0pdrQv3DlMgYHgud/+sZiN0WSloxqQ39gIHjb2vN59oVXFrspkrRkVBv6AG9ft4oD44a+JE2pOvQvXX8BB8Zf4bXjfkFLkqDy0P/lf72O4xOTPPiDFxa7KZK0JFQd+u/cspa3rBzirtFDi90USVoSqg79lcsG+c3tP8M9Txzhn595frGbI0mLrurQB/j4ey/l0uEL+O0vjnLHN3/k7+tL6ms9D/2IuDIino6IsYjYvdDHO3/5EH/z29v5+Y0XcdNXH+ddn76fT33tcf7PI4fZf+QnvHr85EI3QZKWjMjM3h0sYhD4HvA+4BDwLeC6zHyqU/2RkZEcHR2dl2NnJv+w/yh3jh7k/33/BX76xpthf/Gq5axdtZw1q5az5vxlXHTeMs5fPsTKZYOct2yQ85YPcN6yQVYsG2T54ACDA8GywWBwYIChwWBoIBiaYTkCIoKBCAYCgkbZwEAQ8GZ5lPLmegON9al6U9tP3Z96Xk89v/PyXEk6t0XEw5k50mnbUI/bcjkwlpkHACLiy8AOoGPoz6eI4H3b1vO+beuZmEyefu5fOPD8T3n2hVc5/PJrvPTKcV585Tg/eP4Vjr12gteOT/D6iclz+spbze8Bb75BxLT1qe3RUnGm7dG2vXV/7Y/v/LjTtYUZjnU2ZvO+F7PY82zfT2fX5oV5s57VczHr/i3Mc7eQz9usai+BNv/bSy7kf133jlns/ez0OvQ3AAeb1g8B72yuEBG7gF0Ab3vb2xakEYMDwba3Xsi2t154xroTk8nrJyZ47cQErx2f4MTEJBOTyYmJbNxPNtZPTiQnJyfLdXmTiclJTkwkSeOvjEyYzGQyW9eTzuUz1cuEycnGdoDGFshT60XTX3A5rWimx0zfTtv2s3vc9D8eTz2upezs2tL6qNObzR+ts6o7izbMft8Ltd8FasQsq89mJGGhnovZ73th2jy7f5Jk05rzZrP3s9br0D+jzNwD7IHG8M4iN4fBgWDViiFWrVhyT5UkzVqvP8g9DGxqWt9YyiRJPdDr0P8WsDUitkTEcuBaYG+P2yBJfaunYxaZeTIiPg7cCwwCt2Xmk71sgyT1s54PVGfmPcA9vT6uJKkPvpErSXqToS9JfcTQl6Q+YuhLUh/p6W/vzFZEjAPPdrGLdUC//aZyv/W53/oL9rlfdNPnn8nM4U4blnTodysiRmf60aFa9Vuf+62/YJ/7xUL12eEdSeojhr4k9ZHaQ3/PYjdgEfRbn/utv2Cf+8WC9LnqMX1JUqvaz/QlSU0MfUnqI1WGfq8vvr6QIuK2iDgaEU80la2NiH0R8Uy5X1PKIyJuKf1+LCIua3rMzlL/mYjYuRh9OVsRsSkiHoiIpyLiyYj4RCmvtt8RsTIivhkR3yl9/qNSviUiHip9+0r5SXIiYkVZHyvbNzft66ZS/nREfGCRunRWImIwIh6JiK+X9dr7+8OIeDwiHo2I0VLW29d145J89dxo/GTz94G3A8uB7wDbFrtdXfTnV4HLgCeayv47sLss7wY+U5avBv6exmU7twMPlfK1wIFyv6Ysr1nsvp2mz5cAl5XltwDfA7bV3O/S9gvK8jLgodKXO4FrS/mfA/+xLP8n4M/L8rXAV8rytvKaXwFsKf8XBhe7f6fp943A3wBfL+u19/eHwLppZT19XS/6k7AAT+q7gHub1m8CblrsdnXZp83TQv9p4JKyfAnwdFn+C+C66fWA64C/aCpvqbfUb8DdwPv6pd/A+cC3aVw/+nlgqJSfem3TuCbFu8ryUKkX01/vzfWW2o3GlfPuA94LfL20v9r+lvZ1Cv2evq5rHN7pdPH1DYvUloWyPjOPlOXngPVleaa+n7PPSfkz/h00znyr7ncZ6ngUOArso3HW+nJmnixVmtt/qm9l+zHgYs6tPv8p8ElgsqxfTN39hcbl0b8REQ9HxK5S1tPXtVf7PsdlZkZElfNuI+IC4O+A38/Mn0TEqW019jszJ4BfiojVwNeAn13cFi2ciPggcDQzH46I9yxyc3rpVzLzcET8K2BfRHy3eWMvXtc1nun3w8XXfxwRlwCU+6OlfKa+n3PPSUQsoxH4X8rMr5bi6vsNkJkvAw/QGN5YHRFTJ2fN7T/Vt7L9IuAFzp0+vxv4UET8EPgyjSGez1NvfwHIzMPl/iiNN/bL6fHrusbQ74eLr+8Fpj6x30ljzHuq/KPlU//twLHyZ+O9wPsjYk2ZGfD+UrYkReOU/lZgf2Z+tmlTtf2OiOFyhk9EnEfjM4z9NML/w6Xa9D5PPRcfBu7PxgDvXuDaMttlC7AV+GZPOjELmXlTZm7MzM00/o/en5m/QaX9BYiIVRHxlqllGq/HJ+j163qxP9hYoA9LrqYx4+P7wKcWuz1d9uUO4AhwgsbY3fU0xjLvA54B/gFYW+oG8Gel348DI037+S1grNw+ttj9OkOff4XG2OdjwKPldnXN/QZ+AXik9PkJ4A9L+dtphNgY8LfAilK+sqyPle1vb9rXp8pz8TRw1WL37Sz6/h7enL1TbX9L375Tbk9OZVOvX9f+DIMk9ZEah3ckSTMw9CWpjxj6ktRHDH1J6iOGviT1EUNfkvqIoS9JfeT/A6eL3sW0puviAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]\n", + "spectrum = np.power((1/w),2/2)\n", + "plt.plot(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABRAUlEQVR4nO2dd7gVxfnHv+85t1CliwjIRcAWFVFUQLFrbElsSTSxxpLEVH9JDNYUSzTFJGqisZeoMdEYexcLgiCgCEivggiXdulw7z3z++PsnDM7O7M7u2f3lHvm8zw8nLs7uzs7O/POO++88w4xxmCxWCyWyiRV6gxYLBaLJTpWiFssFksFY4W4xWKxVDBWiFssFksFY4W4xWKxVDA1xXxYz549WUNDQzEfabFYLBXPlClTVjPGeqnOFVWINzQ0YPLkycV8pMVisVQ8RLREd86aUywWi6WCsULcYrFYKhgrxC0Wi6WCCRTiRPQAEa0iohnCsT8Q0Wwi+oSIniGironm0mKxWCxKTDTxhwCcKB17HcC+jLH9AcwFcFXM+bJYLBaLAYFCnDH2LoC10rHXGGMtzp8fAOiXQN4sFovFEkAcNvHvAHhZd5KILiOiyUQ0ubGxMYbHWSwWi4VTkBAnomsAtAB4TJeGMXYPY2w4Y2x4r15KX3WLxWKJxMvTV2DNpu2lzkZJiSzEiehCAKcC+DazQcktFkuRadrSjO8/NhXfeejDUmelpERasUlEJwK4EsCRjLEt8WbJYrFYgml1dMcla6tbBJm4GD4BYAKAPYloGRFdDOBOAJ0BvE5EHxPR3Qnn02KxWFykKPt/JlPdhoBATZwxdo7i8P0J5MVisViM4UZcIiptRkqMXbFpsVgqEq5/V7kMt0LcYrFUJtyfospluBXiFoulMqluS3geK8QtFktFkrGezQCsELdYLBWKndjMYoW4xWKpSKwinsUKcYvFUpFk7MQmACvELRZLhWJt4lmsELdYLBXH2s07cMnDdtN1wApxi8VSgTwwbhFmf7ERgF3sY4W4xWKpOKpdcItYIW6xWCqOancrFLFC3GKxVBzk81e1YYW4xWKpOFKCJl7tSrkV4haLpeJIVbngFrFC3FI1ZDIMG7Y1lzoblhiodu1bxApxS9Vw66uzsf+vX8NGK8grHnFis9rluRXilqrhhWkrAADrt1gh3paodq3cCnFL1ZByartdrm1pS1ghbqk6qOoH4Ja2hBXilqrBKuBtByZ8zGrvlK0Qt1Qd1W5DtbQt2qwQ/2DhGutOZrFUAdXeKQcKcSJ6gIhWEdEM4Vh3InqdiOY5/3dLNpvh2LitGWff8wG+9+iUUmfFUkZYc0rbpNq/q4km/hCAE6VjYwC8yRgbAuBN5++yoaU1+1VnLG8qcU4sFkvSWE08AMbYuwDWSoe/BuBh5/fDAE6LN1vxUO09tEVNtTf6tka1f86oNvHejLEVzu8vAPTWJSSiy4hoMhFNbmxsjPi4cLQ60tv6A1tEuEeDDWNqaUsUPLHJsi1DKy0ZY/cwxoYzxob36tWr0McZ0ZrhQrwoj7NUGMx27hWP/YR5ogrxlUTUBwCc/1fFl6XC+WRZ1hZuI51ZRHi7twKgbVHtI6uoQvw5ABc4vy8A8Gw82YmHSx/JbqBa7R/XYqkGqn1kZeJi+ASACQD2JKJlRHQxgFsAHE9E8wAc5/xtsVQEVd7mLW2MmqAEjLFzNKeOjTkvsWP1cIsIF95MP4VjsVQcbXbFJgArxS1KrCbetqj2z9mmhXjGuqdYBLgGbmtF5WO/YZ42LcSbrRC3KKj2ibBqZFtzK9Zs2l7qbCRCmxbiVhN3s2FbM1a30YochiRrxcZtzfjBY1OxfP3WBJ9iETHpk8+9byIOuvGN5DNTAtq0EG+xQtzFkb8fi+FttCKbkJvYTLBajJ3TiBenr8Adb85L7iGW0Exesq7UWUiMNi3ELW7W2b0lHZKT4pu3tyR272rg6SnL0DDmRWxrbjW+ptq9jawQt1QNxVixmcnFZ0nuGW2ZP742BwCwdvMO33R2WiOPFeKWqiPJ9p8XLpUhxVszDH96bQ7Wb/EXmsUmzDdqzSSWjYrACnFL1ZGkFsc9Xyolbs87c1fhjrfm41fPzSx1VgDku74wHkTNVS7FrRC3VA3FWLHZ7GxIUpuujKaVceTfpm3lYcvn8Y7CdLQtVoi3PQ4akN0t7og9ihP6ttKodj/pJF+/xZGKNQGq+JI1m7FlR+kFZzqdzWeQJ9f4+atx/G3vYHuL+YRjIYTxLKv29SBtUoi3q22TrxUbrVVb6ZN/b66J1wRo4kf+4W1c/NDkxPMTF9c/NxPzVm3C4tVbivK81oy/di2OpnTmlLWbd+CztcXJbylpk9KOC6lq1zh1VKv/fDH8xPkCs/vHLcRna7dgj2tfxpl3jVemnbBwTXIZiRk+smjcmOxiMe7VE6aO6r7nkb8fi9G/HxtDrsqbNinEeSdevRqnP9UqxDlJ2sT5nZtbGb5930TsaMlgShtaaHLu/RMTvX9OiLeaf6PBO3dSHt9YJT77bVKI8z02rRBXU60TQcXe2adpq3pxlR0hBhOm7XZpX+s5pivjtlj2bVOI58wpxXle48btaBjzIv47dVlxHlgg1a6JJ4k4nanbqLuc5Ei5ekK2BhSSeFpVzv+Zom6L5VT2cdEmhTj/qEEVIS4Wr9kMAHhs4tKiPK9QwgxV2yLFasi655RT6ZdTXgCAnG4lSBMXNWpV0kmL1uZ+X//sjPx1BeavHGmTQjy/231xPlkYbWbz9paSRxKs1sURvOEXwyYuPk+mWPWykgkS4uLpIBPJIxOWGKetRNq2EC9Ds8FX7xxX8kiC1T5XUKx2rCvmNihHYoNPbAZq4hA18RCeLJFyVd5UnBB/dMJinPa397Hfr17F7Zpwn8U2p3BMevkFjZtjf+7gq1/Cz/8zzTh9S4APblL8+8PPMPzGN0quDSX5dHFUptP4yynqXjnYxKcva8LY2atcx8Jo4qrqrDVllU/Rx0bFCfHrnp2Jjz9bj43bW3Db63OVafKaeHHyVOqIdS0Zhqc0EzkqmktkE7/6melYvWl7yZ6f904pzvO3NasrYDkJknLIylfuHIeLHvoQAJAif5v4jOVNePD9RYETmzraoikrcLf7SoR//7b4weKgVBObtekUWjKt2N7Sirqa0ukPiUYxNElThtWyXLLE9SGdED/1jnEAgO8esXvumKo8y2m0kzQVp4mbsMlx8i+27Vf3tFkrNuC3z39acjMCJylzStCEaQ2P01EqTbwYKzYNbl5OAmb5ujLbRo7bxAPKUXSTVZa5NaeYQURXENFMIppBRE8QUbu4MhaWGcubMGN5E5q2NueWBhdPE/e3p5x3/0Q88P4i/HvyZ0XKjz9JdG4vTV+BIde8jJte/FSbJjdULnlLStA7xeDWQWm27GjBPe8uKMrE/LX/y7rfJWERfGrKstCeWEGaOEdcsKZq57qry6kDjYvIQpyI+gL4MYDhjLF9AaQBnB1XxsJy6h3jcOod41yR4QptAy2tmVACL6hx/vLp6bnfz0/7PGq2CiYJm/SrM78AANz73iJtGh7Yr1ReQzkXwwQfbzLaCkrxh1fn4OaXZuPF6SviyZQBcRfJqo3b8PP/TMPFD5sH+drW3Jqb+A8U4sL5MN+z5PpDAhRqTqkB0J6IagB0AFB0ySSHxkwLIUAL1cQHX/MyTv/7+wXdI5sP77H73ltY8H2jUioXw1Jr4kz6P05mft6EZeu2GCkOqno5dvYqzPliIwBgoxPbe6tin8lVG7fh9L+/j1UbtgEA7n13IWYsb3KlYYzhj6/OwaLV8XlCUcjZe/6KK9abm2vWCbsLBXun5M+r6pN22b1xbiqHyEKcMbYcwB8BLAWwAkATY+w1OR0RXUZEk4locmNjY/ScanjyQ7eJQjT3xiGsPlnWFJzIQVfPVY22lCaF5gRs4iavQwGeB4mToE38lNvH4fBbx5rZxBVJLnroQ3z5L+8CEEwbinSPfbAUHy1dj39+kF3ActNLs3KTfZwVTdtw59j5uOCBSWFeIRGiFnWwOUUQ4oq0WnNKG1TFCzGndAPwNQADAewKoCMRnSunY4zdwxgbzhgb3qtX/Js0bJIilYmNqNjDdl39UOWjlIsmWxMwp5jcMW9Oif3xRsTlYvjmrJVY0LjJ9xky785txEpHexYTqdxk+YhF1SHwkaZf1ebKRJgd48sBl2AO+Eai4Fa1L21bbHsyvCBzynEAFjHGGhljzQD+C2BUPNkyZ0eLWyLwip+i4n2woJFmOXT+Yjkl4Z1iIhi5cCrVYqP8svvCuPjhyTj2T+8AyAqQFz/J2651mvj5D0zC1+5835Pmb2Pn50wjHF6fTAS1H35ptjW3FkXJCWOEEb2bgjTx1gBzipYyaItxU4gQXwpgBBF1oOw4+VgAs+LJljlyReTyoSadKshkMXnxWu25rTtasXWHuZajysesFRs8HVBSbGtuxR7Xvpz7+9EPlvikjkYoTbzUKzZjfPyL01fgB49PNbr3F46wFpO0ZhgOuflNV7rcPpMRJQ7PA2lEaEtrBntd9wp++4LekyguwryBKLjDTGyqRrW6q+96Z0GIHFUGhdjEJwJ4CsBUANOde90TU75cPDJhMX4oNBSR5gzDuHmrc39zAVGbosiaxubtLTjr7gna8/v/5lUM/a3H/K+tODqhJZuCkmK71Fm8P38NZq3YgOufnYGN29Qxr0MTyiYezyPDEpc5RWS5NHFn5J0SkMZPExcvNb2PDBeA/0ygMy+ElhBCXDQJhlEK7m6DQrygFZuMsV8B+FVMedGyePUWT2wFzl1vL8Bdb+c/DP+g6RRF1vjkeNtfuWMcNmxrxju/OBoAd9HLpwkaMuqWX5dyc4Z731uI/05djg51NRhz0l4F389Ea0w5KkOpA3AV8vTNUscrv4vJq93x1vwCcpCFfJ4VlAXl2piYR0dRbifa8MNp4ubeKW2RilixWZsm440MuOCuq0lFFhayBjN9eROWrNmCFz5xe1DKk1vTPluPv411N1C/0UCxPFRUeUhz+3RMHYmJmdtvwq4Y8McW8vyv/c3tcioLC5N7PzR+sdGzgpQD/aYTzPf6KGaasIuBojzj9L/n9yJVtd1VG7cJ54XFPm1xtjIEFSHEUyG0av49a1KpSNrAefdPxP6/9ppKAOCjpetdf/PJLZE/vDpHyo+PEC9S5VN1Fnw39rg6EiNNPDex6U37v4+WY/6qjbHkRQf3uy7kleevUnulcOIozvfnrw5OhOCdg3S+3apqF9YPPIhCy0FVL102c+aftpqoCCGeJjIWeKI5JcrHfW+evgHp8qBqAF80bQNjzHd4XSwhrtJU+CRjXHkwKWq/Z/70yY9x3G3vxpKXIOIsdXkgE8cwfsmaLUbpoj5Klccw+Z6+rAmLAxYSFTraUtURcaJW1MRLbZ4rNRUhxLOauFlF4x+Um1O27mjFlCV6T5MwmG6+uqBxE0b87k3c+95C38ocx/J3ozJRpMkEDLnDYtKOTM0pLa0ZrNu8wzdNWMbP905+F8qTHy7FNmnFcKHyZO7K/Ggk6Fa69wh6P57HqMr3V+4ch6P++LZvmkKDjSmFOKnPl9rbqdRUhBBP5xp/cFr+PWtSBMaAq/77Cc68awJWNBUerc10ImmZExnuvXmrfStxHBqESf1VPYYrMvFVf3Nzyvot/h4xv3t5Nobd8Hqsi1UueUSI4RHTS//y6emuSXWgcIHym+dn+p5372ijThMkpFUdf9zmlEJRa+J5PliYV8xURR7mfTKSh1ulURlCPIRXA0/DzSmzVmQ1m6at8bjSqWfC3X+nheXl/pp44ZOKJiJjpbSYBACejDmiotmy++z/lz7iHxTpP07etmu8eqKQFhq1/E0YY5iyZF0szyl0s2zRZOArhkg/T5QbZWmFuOq58ZKEOUV3R9Wz/N7niN+Pdf39wPuLcO79E/HGpytD5LB8qBAh7kzCGQjxnJ94OoUMY8Z79pmiFrzue4uudH6V2dTjxg+TxnKGMOsvE585JTgf5aLtyVl9ZMISnHnXeK0bazkybl4jrn1mhvJckImNfys52ZuzVmrLIGxNTWJiU3dP1eHnfKKELl3rnnPgcxDL1pnNRZQbFSHEw6z0y3mnpLPmlKDVa2FgYNihEOKebAnDWf+JzcI1zbAaz9D+XQt+pgqTXAgBJvFFU350oI84l4ytUy4z7iq6ZE38+5+GxTSEw9Sl67WCKhNQ58W358/r1K4GFz88ObdNmve55t+iaUsznvlouXF6FarJeFVdP31Y34I7jDLRLSJTEUI8H/QnnCYO5ON0pGJ602bFUnm5vvE/CeRb+eOZ2AyXviaVTI01yYcYJnjSYr1Nk0LMgZjCNL8BMURufM8rJUHmFLEd9e/WAUA0r5rz7p+I65/1jgZ+8dQ0/FWzibkpqlGq3P7r0ins1j16/jlhWkTT1uay09grQoiHadQLHa2qNu0OexqHJg6oK5dcgfJ+uv55jmObMl3dfXn6CjSMeRFrpJ1VZCG+ckO4nVd0mESPFM0pYplF9bKIivy9eJkUY9HIQ+8vKuh6E62RD/C0SYXX5GUcxdz43rzVeGSCd+n+qo3BdWrZui24/c15WuFrMvfUypjg8SSmi/YdTa464c/v4PBbxwYnLCIVIcTD7AjDd8/hdvQ47M4cxoB/TfJOCHqtKdkjKZ/Jp2zekjOn3D8uKyzmrHQvoOEjFM4rzo48IvNXbUJTgAeJHzM/36A8LvYfKddEo/o+SQnxHVLnyUcIxVg08uvnowWdenvOKjSMeTHQswcwdzEE8m0qqJnM/sJ8IVbaYLT3g8em4rbX5+Z28pFRCXH5vVoz+Tkvt1JgnFUA3rmaNZu240NNALy4lJ44qQghHsacwqmTNuWNQyCs39qMP7/hjf8s39qtifsI8Tg08YDzW7a73fRMdpk/7rZ38JU7xwWmc+VDyIjuWlFwp3y8RVT3NOWiByfhgXH+2u6Pn/jI9XfJN6sQ0E3+/n1s1pVx1gp1B3n1M9NzIRSCV2x6BZ6f9irHiwnCRBPe7EQB1X179doGbzreX4inoipH/JHfuncivn73hIqJv1IRQjyKjbRG0sTjEOJi3GgReQJO/OuNT/UeD0lq4rz9ypES69Jmn1yewY+aDxFRQROzIV+bj+IX/puNndOoDLHq1yC5OaUshLjiWOPG7Vi9OasB6rTcxycuxWTHTTJoIZf4loWYU3SY3EmM+688bzixmZcNojnPIAM+8NFrGVQHIwqKYlgsosShTuds4m7txI8bo8ZXlu6dn1giXP3MdMUFWeIw9ejei1duOdSsiSYeZz5ESKuJq9MXqxGlIoz0isnBN72R++1nqjAddXIBKY4U/co6bLmYJOdpUprRgsncEwDBnCJeG1ETl/7OMIZ07B708VMRmniU6He1KXewJZNr7wsYhuvw3JkPZwOue29u4avEdBomf/aGbW5NPMwO6lOXrjPPh4H+JWpXJhtaFys6XdCcy2+f/xTX/U/tk50kqtz4CnFHeOVew2QSlPH/9WUd9jPox6XiPfU3ra9JaTRx998pyjssiLcLO6oIszduOVIRQjzMsntOLkpfJv7hokgmw7w2ceQ1HT/i0IqDXmuDtFL1sME9je/tt0hIxqS+NwuZdWni0kvwM8VqQ7kVtpoHPvD+okR2QwpC1UGbuIjmTRX+NnFCfuLdr6yDbMPPTfsc/xZWAJvYkvMjAG/aDnVpjSbu/rtjXU2ujc36YgM+dzboiDrCfXTCYld4jlLtBRuWihDiuVWXISYCuYthXhOPPVsAgE07WrB+qztYU36BkT9dO9QW/Hx9UK7s/7ImfsQQcyEeLh/BaVzb0QmFo/s2cXqLqO7UmmH4fP1WwZwS2+MiowvyxDHJY85cojkvFmvGQMkJeuaPn/gIVz71ifL++jzCea73XIe6Gt+gbZz2dencKOqMv4/HqFvecu4ZUhN3Smrxmi341bP52DVWE48RrlGoVkvq4BObvJIGaQdRZ6K/csc4/PDxj6R7Zf/XaUIcedu0KOiDcmVPyDZx2cWwmAzZuVPut1jeHj97zfG4+csbczHqlrdyq0eDzDc6t7OkUAYuC7FqWX9emAQ0MqeEtIkbmNb4t1WFsWhXm1IqbHI+OtbXKNd/FDLXtFhYtXv8bd79AsqRihDi3A4YJmBUTUhNPOp3V8V+zpkkA1TxeBb7hNPEkxLiJg1XNAWIQ1XdlUnrQeOc8LR8xxhRg1u6Zgv+8OpsV/l+3Wff1bgQq4zq25pombmdfXQBsITfKnPKN/8xAT//zzRPGlOMNHEnjep96mrMzClXfnlP5TuGGbED+tHP503ewHHlSEUIcV7IYYS4LKyCF0DEJzLyFcFfivNnrtq4Dbe8PDuS3T5IAMqaOO/ctPeLutrN4DKV8JB/x5EXE7bsaEEtH63ltNH8+csfn4K/jV2AhQGbHySJqlzCaOLa2CmCvS/nYijcd+KitXhqyjIhvWmO3c/3g3f6Kk+SujRh8ZrNno0n5Hc/ab8+Sl/4Qlx3C507m/bZejSMeRFzQiyOKpSKEOLcLBFKE5cmgIIqf5zygu+zGaSJ8wpzyE1v4u53FuQ0wzAELVnftC2cn3jUcjC5TLuqTmcSSlAVf23mSmyX6pNYljx0cVKxZnRQgOuliXzyq+s7WjK5d9vRkjEyp5gKNh5SwGzzluz/qtFobTqF+as2eTae8FvsI1KIOaWVMaPQBrp3fGlG1vvrrSJGxKwIIc7NKTOWb1AeV1EjCaugehWnJj59eROA4IlNefJGFVwrCLG+Pjphsee4bHcP0sSTnMxxyW3RJq7NS3zPlt/rp09+jGmfrQfgjv/O4UPyoHmNJFF9CyNXTh9zyoUPTsKZd+XNQnyyOQ4/8V8//6ln83Ad/PurOghxFC3OQ5jGDQ8bp59cv82iLOmKpBSbgVeEEOey+lfPuXc9qfURSLUhNfEkCGr/8kSaqQbx9bvH43uPTvHc4zphZp3Xsh2SEFfZxAuJO6G6h0jTlubcphQuX17XxKbmnjFaxf3eiysDYvhUP5ttkri+hYFdWH0P/bnxC9YEPjfKMznNrRmj9Pz7N6uEuOB6K85DmO5IVOg3M4l7r5MnYeI8xUVBQpyIuhLRU0Q0m4hmEdHIuDImPUd5vL4mrb1G9sEOM2MfF4sC7KlyZTMduX+4eF0ucJUu2/zWslai6vhcAZEMvHjueHOeKxznjpYMpi5dr0w/8pY3cejNb2avFY777ZHI/4zTT9d32b1TJmKIAi5kfh2wXVrcuOcNvOfDhGMOswmHv4uhedtIE7k6X9Wlf31jXi6QlxxT/9Yz98vFPZJR3UvVZvhoYN++OxnlWSwmBmamiWuO82JMFdEMV6gm/lcArzDG9gIwFMCswrPkJa2ojL061/uaUzxCPECKJ9Fxzl3pP7T8z5RlOE5wY4qy841qq7Hnpn2e259S1sRrFIHVxQYc1F6XrNmCP70+F5c+MiV37C+KoGCcLTvyAbj0mz+oCauJ+wlqv+/LLztscI98eueCt+c0hspDobCADtXITzxCXfY3p5jfZ92W5sD0YhA52Sb+zYN303pQKe+raDNXPJn1rPnekYMwtF8X/8zA2+7MbOLq40Gx3JMgshAnoi4AjgBwPwAwxnYwxtbHlC8Xqg0dhvbr4ttjykJ8RdO2XJQ3FWE8IUbHuGBm/iozG6IO2a5+xZMf48dPfIR5zn1l33pVAzHxFJHZsiOvtS5fb7YJNYM62NRMZw7Bkz6kMJLTL1u3BY1ObGu/9+JnRKWwVAs9gjTxMPvMhlEG/TtA87L4xj8muNIHmhQV99YLcW9a+R3FUBFNW5v1CoKYR5/8zdDVTc2d+W1VimdSFKKJDwTQCOBBIvqIiO4joo5yIiK6jIgmE9HkxsZoWo1aQ/UvJNkL4+pnpuO21/UaYxhtIylf6yifXW58//vYvWWXV4h7n6KzVatIKSYBTSssY0wIK5w/ftmjU5TpwwpSOf2Zd43Hl//yrvNs/3wB7oa5roB46oWwUJgYVAnWMEvaw8gRv84htKunkDzoUtXuVrrJd/XEpjvtGX8fj2P22hkAcMp+ffTzLT7HxXs++aF6Q3GtJp7rQCtDiNcAOBDAXYyxYQA2AxgjJ2KM3cMYG84YG96rV69omdQUiF85qeKS/Heqz75/IeppkNtZ1JgoUb77pyv8/VHlyiZ77QDZxpHJMLzx6UrjCRkxr6b2P8bC7aITVnbIHdDKDduxdvMObG9p1VzhPCfcYxJl2TohdoeiAKYtU2uGIq0RBInqWZu3t+BL17+CN2aFc5djmt8AsH6LO0SFqvPQtS9Tm/hbs1ehf/f26NqhTq8xi3/4FFOQxi2T89GvBHMKgGUAljHGJjp/P4WsUI8dlaaXPeRjE1cIKz/Xo1AREgM08a7to8VEidJ7X+sT6pbTt2v73G+VJr6wcTP+OXEJLnlksraj29bcilteno3NO7wbBJjmmjGzsK9c81OlmbJkLY7509vKjQp0t9zz2lcC8sV8rw/CZCebKESdpwmKJ65C9e6LVm/G5h2tuPWV2ZGeL+bhyQ+X4u05q3DpI5NdaVUeWWnNhrhNQjC3A5wNv3VNpmOdf5Rt39EFiT81HYq2cwg/qVwokYU4Y+wLAJ8R0Z7OoWMBRAzI7U+UNqLShv3KNYwQD/K1jrzYIMJ7qjRrme4d63K/VR3Q5Y9PwSpn2yndZhBPTFqKu99ZgJP++p6T1XxmTesrg9qcok/v5dZX5mBh42ZMW7becy6qHZtfFlUjb1/r9ZLq1629ImU4MhmGcfPCLwBr9VEH99qls/qaGOcAVLf65dPTceGDH3om+2XvFECtib8/fzUuf2wqAOCp743EM5ePAqAXsh3q0tq8AO76J95DTi9m5b73FiqvFxGvX7VxG8YWYdFPoZtC/AjAY0RUB2AhgIsKz5IXXa8W1pziJyXDVGGVh4dI2MUGhWCyolDsdJQTm5l8mofGLzZ+9sLGTZi8eF1wQgDvzG10mVN0QoN71QBqbYmPylSXR+07N24Lt/2YTIe6tGcHpbd+dhQmLlqDF6atwJOT1XbVIDKM4dz7JwYnlBAnNldu2IYUEXp1rgcA7NROPUpUxQCK2imK18l3kOufWhP31ukpS/L1jIjyMkGnidcHaOJCzmQ54lr8I5y88cW8813QPEGKstu8zV+1CQtuPjmx0RpQoIshY+xjx969P2PsNMaYWYsOiaoAgopEZU5ZvWm71nc7nDnF/+lRhbjfXV+Zkd29fnXA7vUqaoVOR5f3oNdXfYOTb38PVz79idEatwsemASGvMnouv/NUG7GfPY9H/jmiTe+N2etcnnIANGFDg93MGnR2kiLNDopBEZdTQqjh/TCtw7dLVKe2tWmIndKM4QVw4fe/KZrZ6AwRF/4pT8n19ebXvR6JavqtFj/XKc1z2rnjI50E7bMpYm7MXIx1BwXTVlLnY4xaE6mUCpqxaZIUP3STS6e8ff3lcfDtP9Ac0rE6IR+drQH318MAJgrBdbZu0/wgoYgTZyxYI9sOW8MDNuaM865wCw4z3E3UB5nQuTjz9bnIi+qF7tk/3/g/UUY87R7PoDFMAB6fNLS0Ne0r9MvOouqgdWmU6E7pSue/BhvzV6JhycsAQAUGiRTZeowwS/MsFwe4jqCXJqA9iXWRV3N5cqK+PhvCx2qadHq5ql0dY3fl4hyrtEqD5w4qQghHmWSQCfEda5jQR+1m7CBQ5A5JapN3O8tef5kTxATn3XRbq4SKhlmNjwU+Wytv284X2rvhrnyH+TzrMyTcGhB4ya8M7cRN734KT5bu8Ul9FYpnx+M6B1iit9Ed1RXsxRR6InWdVuaXaEpdnZMKJz73luISYqY6LqgaHKsIlP8QriadGoqTVysC+JpXRnxydHcytuv7IPj9u6dO+/ny24y37N683b85vmZHi1b3NUrF0cl4SX4FSHEo5hT6kO6+QVpPcMbuud+B5lTdARpzX454JVRLguT+iHHkYmCnzBSFd31z3r3pJQ18aCO45EJS1xp1m7e4RJCRFkzzb3vLcLo3491fcNDnKX+xcDPpBVVE09RNPOQeIns1XWjwnQB6EeWvEOIc92TiflPzve4eavxxKT8vELKpYn7P4eX4eFDeknL6/P4mQN1Z37/ymw8+P5ivDLjC9fxnCYuXJv0wrGKEOJR2kGQtiwTVMy//dqX8vfWaC6vXXGE9vo/f3MoDh3YXXse8BdqOt9fuYIM262r59ogQcLg3SdUxu8WYh52697BOaZOJ+YlaIT14vQV+ETwix7z9Cc+qeMJVjV+werQ9/Hzk9cp6d0CtuZLERX8PqbCI8ndnuQc6DqMgwZ0w53fGqa85tz7J2pXBes18exzjt4zu/BHLm/35Kvb/LNVmFzXVVFuSpRNJfyvf36wFJsdU1Gcnj8qKkSIe0syRf7TabVhNfGABtNOCLal0yb88mMyrDZZVSg/2qR+iI1UNQnHmN62eO+7WbcqP4ErFh1vPKrUDPIEVXCZiN4qsgeIN23hRvFPljXhjrfmhbrGT7vUveM5h/hPeBJRwfF8TC8PGlnG6fKsK49vH7obTt1/VwDB5shUCJv4VSfthQ+uOhY9OtVLoZDVv2VTkC6/uWiFUgPkf85ZmZ+7SnrD5coV4gE5D2vyCPTOEO6n0/L9Krto3jl/5ABlGv99Dt3/665RdUai9tOuNo0FN5/sOs+gf/+bXsoOwf1K8+mp+V1g/MqAMfdCDpMRlpgteZ5DFtrNMbWWuSvD7crCO6Y9enfSnpMJ6sDSqQjL3SVMrw8aqRUSB8T0FcRHBClUYvML0sRr0ins0qWdk1Y94er7OM2rk8berSpza06BWmCrNEPxUNiKF+SfId6vtkZ3b/0zj927N/buk11occI+u6CzRiPWwSuCR2hL18xTBNSSOx1Vo/Ub8mUyzHiCjqdTpc9q4t60fojvK7+HHDwsrtjfO1qC79O5Xf77cU188M5eIR4lZAS/Lkrjdy/bN7smyPSouo24gMyPbc2teNDZ8ccPsZyCNHHX4hxNmsB3EjVxn7Yf5D5rUsb3vLuw4A7Zj8oQ4ooa30NRicR0YSeUgj6GeD/dbL6uYd58+n6oTafwjeH98foVR+DwIT2Vaf2Xomf/l90X5WtULlsmoxI/7ac5kzEuT55s/ILVrmXSAA+AJZQdBWuL4umg94hj42nAzM//3BH50RR/J5ViobMBB5VmKg5zilB4ckhikaBvq+ocTVvX9pYMfvN88EJuseyCOmO3n7g6reqdxKQum7jP43RFw4+v3+qOBaO610PjF2Pm59E8fUyoECHu/vvCUQ246qS9fdOFDcoeJEzESqGbCNI9kTdkIsKQ3p21+fOruzwaoSp+eBDBmyP7az/NrWb7DgL5jnTDthZc+vBkxXl32qDsiw06KMRAXMNWEyHu8gJxsqVSNnQjwqBJXYronSIiftI9rn1Zmy7J1YQyulcScxAkxHVeJiKqeQqxjouP8GtD+s+UPfH7V+a4juq0+iRNKoUuuy8KcuM4f+QAtK9La/w7s4UV1pwSpPXUGAhxHcoAXsqU6kxMWbIuZzqQha2JtlaTSuGFHx2uXFoNOO5sPjdqac0Y++qL6WZ+3uQ6x5i8n2HIlbIBwqaQDXJF/LRWjsuc4tQHVfZ0HY+JOaXQdm9atsXcC1on5MQ2HuTNoZuUFFEpLoN65SNlm9rEdeYU3WS27l5JhqatEE3cXQAmE4thtYsgjVYUTtohsuZDqdKr0uoqwJl3jc+n8Qjx4IZamybs27cLTtm/j/J8/+4dfBsOY+YNXUwn75/IwFzvnUqFc7/yWxkJRF9hKBOkie/dZydcMnpg7m/eoFVFpDen+Bfo1uZWTFyo3g8zbsK64wLxh1oV601rgFlM7Kx17VYVCXHwzp1x7SnZEXzGoCMAgCWagHCifBHri3akkWBHWZFCXFfnTNzX5MPNrRk0bWnGVf8NDunK0drENelNFyuZCORImnjAyGH4gG6x7HYOSBNUrRnsLmg/jRu3u97bRNsUT6vcI0XisonvCLjPD48e7NrflW9CcNZB/T1payN4MgHZsvJb+WiC6XeLw5xy1kH9jNKZCLmgEZX4ncOYU4B8HRrxuzfxvhMzx6+cnp/2ufK4KLhd2xtqcmQSXygqlSHEpVxyzUEuGFGA6D6iLNzPunsChv72NUwWoqQFobWJa76TySo1ALjr7QV4beYXvmkWrZa8T0w0cZ/nt69N+7oYAtmGYtJZpFPkXhINoHuH/AT03JWb3D6+zEzQtGaym1a0ZBja1eqrbFyTR82tGd+NPeSGOqhXJyy+5RQcNKCbJ23Uic04MB2YxCHEg/zeObqvLY7QguqEOHoLcjGUEevfqwFtzQ+xo3HZ8JP1JlRSGULcUBMXk+kEqnx42mfrA58/1AlAz9F5Seh6W9WoQJW/mZ9v0G5Vxrn5JXeA/qiaeM9O9bl8ZDIscLWoyQSqaiGS5yohTYYxo/wPuvolXP7YVLS0ZtCuNq1d7fjbF+IJZ9/cmgkV74J/X9U31SoTRTBEm240bSrEH7zoYOEv9zWm6zJ09UhsI0ft6b8D2ABnVTCgl5naNioc5ms3okw6ipq4X+hdVZq4qUghrrPhiemixCA3JbQmHjHWigkmlUP1/Fd/OhqvX3FE1qQRcJ8z/j7eaJKNnHuJyI1W9kIIyv/jE5cAAF6Z+QVaMgw1KTKeZI3KjpaM0laviowH5IWgurOOpx6a7NouY9oPmQpx0Ywo5990sl+riQu/v3ZAX98QFd0E9+IwNnHA/Y24SewRJ+pjGESTjjji0eUnrjUMKipDiEu51AW3MqmLcdimwg4/1RUqHkFkFgDL+/weneoxpHfnnIeI332Wr99q1FmkyFtZ5atc7mEseHXeqzNX5n63tGZjryStw65o2qbstPbaJRvArI+zApDD64OuXrx35dH47pG7u46FfYt9+4YX4pMWeSMWqjCtzyN271HwPXRSXK6iQZs65G6n807RjoDyvzu1i+6c1yJIbrHD11XnJOOnVIYQl7p9LsTlCRATN54drRm8PSfklknSBwirWZvaxMOy93WvGAWc98svUfb1gjQFI5s4EW4/Z5jvdaLwahU6j84GDSqriZeuyv7fCXvgX5eNcEW0BPLKg+4z9+/eAZ2kPR/DauJJ+nKbuuOmU4SvDt0VVxy3h+ecafZ0yoA8YjE1P+iEo+6VRBmh2lZPhUrRECe/TbTsJFfeV6QQ5zbendrJDcOsJl344IcF5Ue/gEOd3tQmHpatza1Yu3lHYDq/oS4RgTHmqohXnrinJ91WxQbJMqkUYVAvaem5bE4h5CYnsyOA7PmGHh0RREsmU5Bp6uuGHhQqduveAcMHdFNqo7mgXz4fVbaBh5XJSfoZh+kgbj9nGH5y3BDFbjhm99BtkOCNzmmWH5Ode3Q0btyOhjEvBqZrzmQwfoF7r9MWjU1cR9Uvuxc/1OnD+uZ+P/ydQ1zpirVoQTcpFcZPPIjtLa24f9wiV2VRYbLAxW/SKUXZEa6o0aj8dIPc7gC1mUtlTnntp0cCyDZU3gBMJvq4TTwqpkN0Fe/84ih01uxPaRah0l0SXTvU+U7gvf3zo1x/J7pHY4R7y69s2sm0aFxm5KtNhZ7OHGcygTr7CzNvpuZWlttqjdOi0cT1E5tGj4pERQjxXp3r0b97dvfwboLLWn9hlhrQV6QDFTG2o8Bv36V9tjHLi2d01TjsphZ7XvsyzrtvEm544VM88aH/JrtBCyMA/8Uc5ARaEu+jcrcM6kwA4EfHDPEck9sSgdCxPjuMzWQYvnVvdiNgEznS2po1p0RVSlNE+MNZ+xunv/yoQbnffpqmSX52ap/vADrWpXHmgf1wxoH6kUFDz44uN0exDnXrUIuxkpAvhDjm3U1NMjpffrntmk4Eaned16SXXVxNyK5Ydh8TI2aa3KbqvVMA4KJRAwH4F4ZOW7lgVAN6djKLuuYHv3vndjWYfcOJ+MUJbrNDoX7inO0tmdwONhu3qbeT47xi4OvqF1s9xW3iQrmqbIUmGv8Foxo8x2Q3N6L8d2puzeTCCZhoci0hAnGpIMovzDGha8DGDRwx7z85dgie/v4oT5pvCX7UFx8+EOkUBWubwmnxGbt0aY+BPYPNT6bEoeWbdqy6kAZyFkxDKAzaWV0OuqIVn7PDcENzlQnIvUqTKX+LWCGOfEWTC+M3X83vuKOrSIVWUv5Ero2lidCuNu25b6F+4knhH3MkGy1P1Hx+cpxXo/7Dq3M8x0xQjZ55OYrbhZl8opYMc0xD0QqvJk3o0akeb//8KOwqeZioCBt+FwCuOH4PzaKfFEY69nRT+7HYAca1+U4vad9NIJq93bPQzrCNbdcITrlMTDVxvpGEjMkEqrjhiB8tmYznfV2rRg2yWtYTm0SUJqKPiOiFODKkg9cR+eOK2p9+F45ojf7Hxwx2/c3vwiusR4jrNHFV7BRDQfTiJ94d4cPit+w++wruic2OdTWx2WDlupsiUt7b5Bs1t3JNPHyLaF+bxjeGZ5fFN/TsiDd/dlTgNeZC3CwP3KoVpTqqzBXP/uAwXH3yXqHuIwaByt07wreWNWVTc4pOE5cvv/VMc7OXCl0nID5nqyTEzxDm20RaWhle+9Q94g27g325a+I/AaDegTVG9nI2GVZpOZyg2L9hOVbYHRvIVwBeYU3NJIVMxsWxlDzIxTCT8e7+HddAwbPYh9Tfw0SQLF+31RWzJAyzbjjR5TkTFEwLMK83xhEenVI17cDFolNpukP7d8VlRwzyHA/KwxOXjnAdizKxuV9f96bfhfb5coc5eOdOuO0bQyPfT2eOEZ+zYavb40pXDmPnrMIbs9xuyas3bc/9NpHP785tTMxDpSAhTkT9AJwC4L54sqPn4IbuGPfLo30ng/RBrwo0pzhlzxsf36pN/uj6iU1vMSdpTjntgF1xg7Cxsy5gF+AEoQJzDQ/TKe/Ky7ggqL+Tida7eM0WTFi4BnF1MTeetq/veVPhZi7sw6UXv0EhW6SJTFi4BiMHud0ko4xU7/jWgXjysnxnUGgbU5VJ2Hydc8hu+O4Ru/umEe+4VIpQqCvj65+d6XtP10bLmjT3vrcI97630Pc+USlUE/8LgCsBJLwVaJZ+3Tr4nvf30y68EfCPxTVrz0fX2eSLaQAH8PXh/XHeyIbc334jAUJ2hl+c2IzTnS3DWC5OC5Bt7Oo9U82eOWpQD8QVZWjUIP0KRCCaTdwE0+RMGh0lRRTvlE71Na5RcaFVRvV+pu/M6+tZB/XDD44ZjHMO2U05yQ74r5yMuo7MVMHeu89OwYkiEFmIE9GpAFYxxnwjNhHRZUQ0mYgmNzY2Rn2cEbwx/fDowdJxb1qTiRO5EvGPlYuVYTixmVbaxJNDFtp+NvHsYh+3v212FWc8gpIxt596VhP3pjMVAqcdoLZbRiHITinuV+lHeCFuOrHpvka1ETNQuAstr8dH7OEfeEpG7OwLrS2qMjEt19k3nIjZN5yIgwZ0w07tavG7M/bThi3W+ZWPHtIz8twZA7BpewuWr/evLx3qktmDpxBN/DAAXyWixQD+BeAYIvqnnIgxdg9jbDhjbHivXuEqSVj4RzhscE/Pce6bzBl09UuB95Pb+NUnZwPK81gksrCMy8WwUGSh7WdO4QJbtCGmiXDSvuoNJMLC4LbJiy6GImGWfsdlWgzyMFu3eQf+ddkI/OWbB/imI8NWJAuJQA9D6fy1p+zjHHefePTiQ80yoIGXfdhqKgreQr+J6tGmQrU2nUI7wyX0Olv56CE9I49AGWP47qOTcdgtb/mmS0oORBbijLGrGGP9GGMNAM4G8BZj7NzYchYB/s09q8lShPsvONh7QQD77LoTvvyl3vi9s0DkO4cPxOJbTtF7pwC45PCBnvuEiW4XB7LQ9pvYVEUxTBHhzz6Cq1+39sZ5YUyOd6KOQigea+ihN5vVpKPtAq8iKF5LhjGM2L0HTtN4LXBMhQ0PkRBV49Nd1rG+Bq9fcUSkewL5+lHI0v6gDTtETH3ck5B5uhF4SmPmM4EBeH9+8C5MSa26rRg/cRP4R5DbeIqys93HhljoAWR7+H+cN1xry5I/OhHhmlO8GzgXcyNawCu0/ZbdE2WFlVi5UynSborw+hVH4KWfjDbOC5Oer5+3EH/7dzpxsWvX9njhR4drz5sulTb9vNOXNwGAUdAyGcaYr1dL947RF7OlfDTxvXbJbuwdtHNP+7o0/v3dkUbP66DwDFKVdRIx13WaeHZDk6iauFm6pOLfxGKkYYy9DeDtOO5VCLqJCf7dTHaKH7xzp9wqwiCUy+kVHyrpic0eHeuwX78ueHtOds5BDnjl55aXouxiH9Fn1q/t9OvWIdA9L2uiyf5mzL3sX+/BEyzogeyQtEv7Wqzb4r+SlTNk507YuE0fvMsvxKvppgphGyfvMMNcFrTPaRwCQq67/7psBA7o3xUTFq7B0XsGK0BitetYl8bmHerOKh8wTKwn3rKeGmK3LVN0NvF0igpYUJW/p194iqT2FWhTmrhOWPKClb+f6nv++RsHYPiAbrjmZK9GLRN2kYdI3HL9rm8flPsta95+Q11Cdh/BhY2bc8d4I7v1zP286Q3y7Y5PwTw28aBr/ARSOkUYc5L5ApfX/+9IfHD1scbpRUw1rLDfUmcOumDkAO2oLcPgOxseR32S2w8BaFebNhLggPQNfRpHXvPPp1FpyMsCJgqjoPNOSRF58vzXsw8wuqd4S91iJv6MJGhTQlxnZ+YFKzcelX2MCHjq+6NwaYC/KX+eGA5Xv8tIspo4Q3Y429kR1nxik+8G4xe9T1VkvLL13sm7NN2kHopJGNwTOtpVtaaaeJpw4r59cNoB6uXWcZKUi6HOTFNfm8aUa4/DpGu8nU4mwJxSyFYZOf91SRqErbeunbV80uV3Qsofa1ZosOeNGBDq+SaEMacM2bmz0T3FO/rFY7E2cQN4GcnD4Gbnw8kyVqURhW2Qn/z6yzl7pEnkNE6SFhauid93wcH493dH+m766+faFXVRjhwprsZnWy+OOHggEO47fzi+Mdxrh+ULpwrZlcWUqwyXtIetMzoNnzGGrh3qsHNnb+fJ4D/yU3nIjB7SE7soOmKRbh1q84vZPHM8vpd6cH13n3RcmInloIpuuHuMQb449RqbSYq8IxHzfUPzv7c3+5hTrBA3R25UeXOKmSYeFRN7bxLwEQB/G+4C2atzPQ7x2asQgNL+77dnpInAEpNkGJP8xNXXiwKECDhun9646LCBnnS8IZjEBn/mcm80wTCIi5T8MP28fLONSD74jPmHw1Uce/TiQ3MhnHW8/fOjc79VE/VB1KQIhw3OLppytS+fV+TCUkzv2UwEybSbU/bvg7MP7u/xiVeZU/zWV4iISqOfJp7U5thtSojzDSPkHrxZJ8Rj0MTF++oqvcpWn8ROkdxlziQuiB+8rqnqnEmuZU3cFXbAOXXT6e4l7+J9+fUqzYU37HYGMVSG7dbNILeFY+oumvOe0pz3k+0M/gqGrt4G9RddhHC7suJp0hbm33wyHrsku/xeNFVce6p+TonPkfDk547YDbsp3EqT2IqvY30Nbjlzf09o6qw5RX5+eE3czyaelIND8mPSInLuiAE455DdPD3owJ7ZXl5WvCcv9m4kG6Wz/ONZQ/Gn1+fmNovw3LMINnEAePzSERg3f7XxwgcdOaGkEuKaV/nK0LyNWn5dMRQu5Y5JDVS4RrciFsg3rHpni7fRQ3qiviblClD0zOWjQvktF4ucuU8jWf3kbYYx4Xrved13CaPzm8YC0iGObM86qD927doe590/yfscKbO6vS5VK53jQhao6RR5jvmZIUXE76Gy7YvPSII2pYkTkXIIxE0KsnuRyvUsyiKc4/bpjZd/MjrUR4qzU+a3GtizY6yTQWEWKak0aUDlnZL9/ekKd3RGt3dK9n8TTTxFhO8f5Y7kt0fvzhjS22xSqpikcmaE7N9yWfrVn+w14Sc2w5huvOYU40sBuN3rUgSMGtQTP5LCOQPe99Rp/Em65srPTKcU5hRTTVzoKv1C1FohHgNeP3FvmiKvy8nx+hVHhF6MxElq9WcY05KYVGwMnzdtwxbBX5ifkeNMuMrdZ2KVD7H5aKNV4XsXtrGceWA/HNxQHNMLoHcx9BfiTLsiWXcMMNPEeZpC675oxiPKxo3/2QneTbdNbe9JTv5v2u5W4NLk3WnJ2CZuqolbF8PCkc0p6sZQHCkuP2VI784u+2Qh94qLqI1aLsIJC9Z4zskRBFWmKNXiCC7o1m3JLmEfN3+1J03YT/inbwzFf75X2CSoCbxuyTKc22dH7K6PqpjJMO2K5Oy91dfpFPGrT94LX/6SO15+oX7MpnMQpjGHknQImLtyo+vvHa0ZjxZt6p0i4ivE7WKf8IzYvbsrXKbc037RtM1zjem2UEkQd0yNQonrvimFTfzsg3dzpTlREXBLpblwwb5B2HtU1myTWlRRKHKuuHlv1KCe+OTXJ+BInyiCrRn/zlprTtGkv+yIQfjHecPd9yhSuflMh7gQv//lR4Xb/CIIPqfCWbpmCxat3uw6Zjqx6nIx9JnYtC6GEfjXZSNdm9bK8vl3L8/2XBPnNkp9u+rdu9T+2bE9OhaiNmr5qva16dymw1ygy1qOMrKhz7FLR+cXY8k+xoUWY79u7Y06ML9dplTwe3JlgisMNSnCTu38R2GiOUWFtu6EqM+y9SAuDyqvJ5LZfcXO/4Qv7RJLXnL3lgqzlTFs2eE2sRj7ibts4nohXm84URqW8pvCj8AhA7tj0iKvp4mMiYBWLTqIyvM/OhxrN29XnlNVD7/Kfcawvnj+k881Eyelt4n7UZtO4eyD++POsfNz9/RObnmvU2lCXJvhPtzH7rVz7Jr4098fhV4GPuKPX3ootvks7pDhueK57dM1uxBnz12CJ2Gz3imOOUWhX4sd7i9P3CsXuCqUd0qxTInk/7eKuBUc+V0zGeaJx0NEuOqkvZTKnutal01cX+JJjXTahBC/9cz9MU+ycakwMZWodgOPSveOdaGiy/mN3kStZM/enTFHeN+kNPgwt3XPS7qvrK9JeXzP5TTq3X68zxGF/0fXHY+O9TX4YKE7DGihbYXIzC20viYdas9P+Z1HDeqJp78/CsP6dw28NqjuitkVvXVkveW6U/fxXMsX2piGiA2LnAceoC2dIrRm/MMJcOLuYOTPO2JQDxw2uCeuema6K47QifvuEijEmTNKYqw05tg2IcQH9uxoVAFNRpZxCvGw+PXU2dlz57dUA/kkX9xErY7yW9SkydfjRD7Of6k18fyxbk4HKWvihWo8SSzEEhGza2qSCTKn6N5Z1tpVuwNdNKoBQ/t1KSicrR+HSquGLxk9EB3q0ujUrgb/eMds38m4hbjchoYP6I66mhTe+tlRaBjzYqjn3vHW/Ng2KolCm7aJywSZU0bs7r9E3ZRbztgP/7pshG+asEaRVCq/ebFcAVVLluOEB9LyI0hwNjkdzUdL12uu9x4L0sQ5cTegpEY2utg+JrQK3ilhyEjWHlUHlUoRhjd0T8wbZEjvzlh8yym5AG07tavFTafvh47OdmUmrxV33kx99E1GZG/NXqU9VwwLVZvQxE0JEuIPXXRILM85+5DdAtOEDb6VTmU1mvEL1ig2fSivvlh+DcaAKUuzsaHnaMxeqldXaeKqxhbnZHQ2L8m6+0QZcWdYNIHgnS/Qp41D2+3SvhZNW9Wx3mUlJMxnSxHwx68PxcCe/pulmyK/qVguZx3UL+cC61del44eiHvfW+T7nBSR7+bMcVBlQtz/fDF34Am70ChNhHvOH47l67bi6memu69LKN+xbZYMFmqhg9/iE/VGHBEzpiHpOYYoxZoxtB3LcK8gbn/2u0Uc9f+N/ztSL8SdF4/ynFSKAncXCoP8CcSO+49fH5p/rqZynbp/H4we0stAiAPh93EKR3mpcAnj5/4DJL8Dj4g4pOYxGvw0wFSK0Km+RunJkJT/Ke/0UikKOVcgz/xH62hU5aF61yP32BnfNYj/bvzchGzihVQvUZsL0wnccc6B+M1Xv4TBjsnN793iqEe9Otdj8M5q8x6vT1FGjqXy/RefO1SYgE6nyDC2fvL5riohrtrEWCTpQFUi919wMM4bMQDTrj8BU687HoB/Ixc7GFlDTqrz4c8hZDWsCVcdY3SdKjtBeTSt7Drf8asMdmIyJvFqEF4Vjzoo6tW5HheMasgpDb7mFMOVlFHhHZHsf23ymNjruGF5ikUyrH9XPH7JoQCy8XmM6mwRREpVCfELDxuIBTefXOpsAMhWghtO2xddOtTmIu4FbUumI4GInQAETZyy+1r26WK+y737Psy3gxw9pKfSa0JFMUxeyZlTwtuCc9dSPEI1yAMqSfgKVa6Jh5ngjV+Gmz1brG8pIowa3BNPXjYC3ztyUOhdrpKiqoQ4UPyd58MQ5J3CkatfUu/EJ8XCDmXl1Iz5C4ifn7Cn8WRiUqYjkaQmNrkGahriVCSuHPmu+hTKtq4mFbvfODdHeMwpBuWd1GrHIMS6wIvn0N17ZM0pBtfztnP8Pr0DUkanqiY2yx3/zWX116UTUsVzGmOBEoSB+Y4WZG8bv8cVI75HUk/46gG7Yu7KjfjRsUNCXbdb9w745Ul7KUMnm8Jyoyp9GlEZmHvjSZGfpeOBCw/G4tWbI3mnhFlUZYLps8Xy8lQ9Q9fI9648OtH1J1WniZczfo3UT5NNKna+iR1VhZzVDMv7K8vRC4G8K+ENX/sSgNKPlpKaRKuvSeOaU/YJjJMic9e5B0Y2ZXkpnTmlS/ta1+Qgx+SpcsCqYiHWRc8epIbdff/uHQreqMWPyCVDRP2JaCwRfUpEM4noJ3FmrBp5ZcYK7TmXOUXSIuIQevv23clzjAuOwwf3DHUvuXIzlp/U+rFCC+Wa+B7ORg6ltniVWxDEODs138nzIhd8mKmBUplT/Dp0k3oSl5uuH4WYU1oA/IwxNpWIOgOYQkSvM8Y+jSlvReOG0/ZFp/rkekpTfCc2fbxTCtEcT92/D174ZIVSCxvYsyPeH3MM+vjsmH5IQ3dMUmxzJ8IYy01qqQSFvPlx/27eBR379t0JM5Zv8BxPgnIT4vL3jSIW8r730SbPk8RogjDmj2JahuJj5XZXLtUkcvfGGFvBGJvq/N4IYBaAvnFlLEn+/M2hrr+H9uuC04fFt5AgKqaTTrtLy+wLWbF54agGz/1F+nZt72urP/uQ/p5j3ih1+VVrKiHChce+fbvgb986EDdKoUuBbFjhiVcfq81HnBTDtzcMuaBhMdzLd/K82K9dyoAjhojKjXdTmfKoJ7GMUYioAcAwABMV5y4joslENLmxsTGOxxVM1w7uQD/ls4mAmZYkx2c+eT/vhgqm8KhraSJcOKoh8iy637CRCAGaeL4anrJ/H3So8w4QO9XXoLfPiCBOyqY6OHj25oxwD35NlCBaSVNunaaIe79Y9zkjc0rM+VFRsHcKEXUC8DSAnzLGPONdxtg9AO4BgOHDh5dF1yvvtF5ujVaFqBGIQm7eTScVpIkP7JV1Izt3xACcNiz8QEpVdqpJfK6J++3WUy6UT6eeheeHrzj22/uxTxf/jq6cBGYphYGprdplTkF4c0oxSrsgIU5EtcgK8McYY/+NJ0vJM2pQD7SvTWNrczaqQbk0WlNzikihwa927twOi285paB7BEGU30OzncLLoBi+32Eor9zk6yf3ajlwt67KdG/83xG5zTJkct6iAS938n674KtDd42SzdB0bpcVP906RttbthhQgZp4MUY3kYU4ZXN3P4BZjLHb4stS8qRShDd/diRG3fJW9u8yEeJ+lJmyGgoC4a9nD8NL01dgSG9v7JdSuxTKlFt14PnZrUcHPPfDw7DXLl5PIgAYvHPwDkFB7/b3bx8UNnuRuXDUQLSrTeNbBlE/4ybKKMAbLbM8KkohatxhAM4DcAwRfez8K4817QaIq+bKpdH6ZaPcBJ2MWL13SFtU7dKlHXp2qsf5IxuU15ZfKN3yKmvx2+/fr2ukFZ+ccjKn1NWkcP7IBl/zUDnh3Xwk+JqyNqcwxsahXLqiCIiCo8zlI4DiBucKg0oofOuQ/rj9rfm5v+89f7gnjUi5d1ClJo6RIrcBJxVnJyme+t7IshHyHu8Ug2uKoQ+UR+mUgLq0qImXvxApZpjcQrni+D3wwo8OB5BdpBG05LjcbOLlRpzFU06auAnDG7rjAIM9SMOyc4hl8NwbzGsTDy7LYsiWqhXiYjjMSrCJl3sexQpORLkJTBPbYyV0oqUkzlGYLeosN5++Xy7MQxD56JMRvFOsJp4c7hCTJcyIgN/OQ2VrTtFki/t+F2PZcVsnzg68PGtR8enRqR7naeZoZHjT8251F1yaZx6Y/CLCqo1i6A4xWR5V20/glYlZMMeAHh2wi8/iG+77HWU/SYubWM0p5VHVKwouH/xcDFV7i/7hrP2LIsTLTDSUhnKp2N061mnPlUtHw3nnF0fjye+O1J7nmnjcmxhXI9bcVGJymrh0WPgs0351gueyzu1qijKCrlpNXKRcBOQDFxyMI/4wttTZiIQsqrkm7ifDbz9nGD793D+o1feOHIR1m3cUmLvKJg7vHduVRievics28aDvUhy5YoU4ykcT79tNHzO60hRaObSBiq8O3TVwdeCYk/YyfuZxe++MKUvWGaevFOJV5sqkslcQOpt4kNwollyxQhzlo4n7NdZKM0uUIh7KfRccXPRnFoNyqZ/VCi9+uQX6fZd9++6EgwZ0Sy5TAlaIo3w0cT/bZ4XJcLuAJ0ZiEeIVVn/KCTmKJEf3Wfp3b48XfjQ64VzlsRObqAxNp9w1cdleyFfEtk9wW6pqwfaHpYVyQlx2MVSnL3ZTtZo4KsNKWK4iXDd6SKcI156yN47co1eRc9T2qAQloxrwfgX1d7FCvARUwtC/EhfNXDJ691JnIRT3XzAcs1YUZwu4MMTiplb+Vbxs4W3Ps1GyVKYXjmrAQ+MXFylXeaw5BeXlhzv1uuNx7Sl7e46XUx5VVF4X4+XYvXvjh8d4N3JuE7SFD1QiMrmtBd3H5RES36qw2AqX1cRRXpp49451yoBQtWUaUDynpZQ4HxYzylwXKDo3nubdz1Umk91QySO05aLkQeqK3V9aIY7ymzhSLVXfu496I4BSw/e9LNf8WSx+nDtiQGCaYc5OSvL+sx6hXqIe0gpxlN/EkTwL/smvT8htzVVujNi9B57+/kgM618cn1hLNDJ2xBSZ3Xt1wqzfnoj2dW5PK1lslGpEb4U4yk+IyyY1lQBPEbDPruWh/R40oHups2AJILdRdbkNOysEWYCrKFXMfyvEUX4V28QnfMHNFbMTnqUMuOqkvfGL/0zLmb8shSN7DeVWdloXw+JTZjLcKHxruXurWMqLk/frg5P361PqbLQpPBObKT6xWVwpbl0MUX4CsdxXZ1osFtXEZonyUZrHlgd81tlisVjCUi66X1WbUx69+FCs3ri91NnwcMGoBixbtwVPTPqs1FmxlJB0itBqt0YqW7gM58K8VJtQV7UQ71Rfg0715VcEnepr8Lsz9rdCvMp578qjsXpT+SkZliw6M2yxraEFmVOI6EQimkNE84loTFyZslgswK5d22P/fl1LnQ2LBlmGd+tYi64danH9V/Ypaj4iq6FElAbwNwDHA1gG4EMieo4x9mlcmat2Lh09EH266Hf7sVgspUOe2KyvSePj6717bSZNIbaEQwDMZ4wtBAAi+heArwGwQjwmrjmluD26xWIxp0zmNQsyp/QFIBptlznHXBDRZUQ0mYgmNzY2FvA4i8ViKR/yE5qlJXEXQ8bYPYyx4Yyx4b162Q0CLBZL26Bc1pcUIsSXA+gv/N3POWaxWCxtnjKR4QUJ8Q8BDCGigURUB+BsAM/Fky2LxWIpb8olcF7kiU3GWAsR/RDAqwDSAB5gjM2MLWcWi8VSxpSHCC9wsQ9j7CUAL8WUF4vFYqkYchObJdbIqzp2isVisUSlXMwpVohbLBZLBWOFuMVisRRAqeMvlV/0J4vFYqkA2tWmMeakvXDc3r2DEyeIFeIWi8USke8dOajUWbDmFIvFYqlkrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCoYYY8V7GFEjgCURL+8JYHWM2akE7DtXB/adq4NC3nkAY0y5NVpRhXghENFkxtjwUuejmNh3rg7sO1cHSb2zNadYLBZLBWOFuMVisVQwlSTE7yl1BkqAfefqwL5zdZDIO1eMTdxisVgsXipJE7dYLBaLhBXiFovFUsFUhBAnohOJaA4RzSeiMaXOT1SIqD8RjSWiT4loJhH9xDnenYheJ6J5zv/dnONERLc77/0JER0o3OsCJ/08IrqgVO9kChGliegjInrB+XsgEU103u1JIqpzjtc7f893zjcI97jKOT6HiL5colcxgoi6EtFTRDSbiGYR0ci2/p2J6AqnXs8goieIqF1b+85E9AARrSKiGcKx2L4rER1ERNOda24nMtiNmTFW1v8ApAEsALA7gDoA0wDsU+p8RXyXPgAOdH53BjAXwD4Afg9gjHN8DIBbnd8nA3gZAAEYAWCic7w7gIXO/92c391K/X4B7/5/AB4H8ILz978BnO38vhvA953flwO42/l9NoAnnd/7ON++HsBAp06kS/1ePu/7MIBLnN91ALq25e8MoC+ARQDaC9/3wrb2nQEcAeBAADOEY7F9VwCTnLTkXHtSYJ5KXSgGhTYSwKvC31cBuKrU+Yrp3Z4FcDyAOQD6OMf6AJjj/P4HgHOE9HOc8+cA+Idw3JWu3P4B6AfgTQDHAHjBqaCrAdTI3xjAqwBGOr9rnHQkf3cxXbn9A9DFEWgkHW+z39kR4p85gqnG+c5fbovfGUCDJMRj+a7OudnCcVc63b9KMKfwysFZ5hyraJzh4zAAEwH0ZoytcE59AYDvvKp790ork78AuBJAxvm7B4D1jLEW528x/7l3c843Oekr6Z0HAmgE8KBjQrqPiDqiDX9nxthyAH8EsBTACmS/2xS07e/Mieu79nV+y8d9qQQh3uYgok4AngbwU8bYBvEcy3bBbcbvk4hOBbCKMTal1HkpIjXIDrnvYowNA7AZ2WF2jjb4nbsB+BqyHdiuADoCOLGkmSoBpfiulSDElwPoL/zdzzlWkRBRLbIC/DHG2H+dwyuJqI9zvg+AVc5x3btXUpkcBuCrRLQYwL+QNan8FUBXIqpx0oj5z72bc74LgDWorHdeBmAZY2yi8/dTyAr1tvydjwOwiDHWyBhrBvBfZL99W/7OnLi+63Lnt3zcl0oQ4h8CGOLMctchOwnyXInzFAlnpvl+ALMYY7cJp54DwGeoL0DWVs6Pn+/Mco8A0OQM214FcAIRdXM0oBOcY2UHY+wqxlg/xlgDst/uLcbYtwGMBXCWk0x+Z14WZznpmXP8bMerYSCAIchOApUdjLEvAHxGRHs6h44F8Cna8HdG1owygog6OPWcv3Ob/c4CsXxX59wGIhrhlOH5wr30lHqSwHAi4WRkPTkWALim1Pkp4D0OR3ao9QmAj51/JyNrC3wTwDwAbwDo7qQnAH9z3ns6gOHCvb4DYL7z76JSv5vh+x+FvHfK7sg2zvkA/gOg3jnezvl7vnN+d+H6a5yymAODWfsSv+sBACY73/p/yHohtOnvDOA3AGYDmAHgUWQ9TNrUdwbwBLI2/2ZkR1wXx/ldAQx3ym8BgDshTY6r/tll9xaLxVLBVII5xWKxWCwarBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlg/h8Nt2E/3DB5MwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(spectrum)\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iii) Using pre-defined models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One of the pre-defined spectrum models can also be used to simulate a light curve. In this case, model name and model parameters (as list iterable) need to be passed as function arguments.\n", + "\n", + "To read more about the models and what the different parameters mean, see `models` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4XElEQVR4nO29eZgkR3km/kZmVlX3TPcc0owGnUhCAiHAIDGISwbEZQ4bDAYbr41ZH6ufF7wYe31wGGzDLvjgMF6zZmXAYDBgw2LDcoOQAIEM6Eb3jW7NjObqnu7qqsqM3x8RX8QXkZF1d1fXTLzPM890XZmRkRlfvPF+RwgpJSIiIiIipg/JpBsQERERETEcogGPiIiImFJEAx4RERExpYgGPCIiImJKEQ14RERExJQiW8uTbdu2TZ588slrecqIiIiIqcfll1++R0q53X9/TQ34ySefjMsuu2wtTxkREREx9RBC/CT0fpRQIiIiIqYU0YBHRERETCmiAY+IiIiYUkQDHhERETGliAY8IiIiYkoRDXhERETElCIa8IiIiIgpRTTgEVOD6+87iMt/sm/SzYiIWDdY00SeiIhR8KK//S4A4M6/ePGEWxIRsT4QGXhERETElCIa8IiIiIgpRU8DLoT4iBBilxDiWvbeUUKIbwghbtH/b13dZkZERERE+OiHgX8UwAu8994I4EIp5ekALtSvIyIiIiLWED0NuJTyOwD2em+/FMDH9N8fA/Dz421WREREREQvDKuB75BS3q//fgDAjqovCiHOF0JcJoS4bPfu3UOeLiIiIiLCx8hOTCmlBCC7fH6BlHKnlHLn9u2leuQREREREUNiWAP+oBDiWADQ/+8aX5MiIiIiIvrBsAb8CwBeo/9+DYDPj6c5ERERERH9op8wwk8BuBTAo4QQ9wghfhPAXwB4nhDiFgDP1a8jIiIiItYQPVPppZS/XPHRc8bcloiIiIiIARAzMSOmDkVR6TOPiDiiEA14xNShEw14RASAaMDXFd7w6Stx8hu/NOlmrHvk0YBHRACIBnxd4d+vum/STZgKtIti0k2IiFgXiAZ8gmjnBW7dtTjpZkwd8jwy8IgIIBrwieIdX7wez33vt/HAgeakmzJViAw8Yr3i3v3LuGPPoTU7XzTgE8Sltz0EADjYbE+4JdOFqIFHrFc8/S++hfPeffGanS8a8AmikMoQiQm3Y9rQiRJKRASAaMAnCm2/IUQ04YMghhFGRChEAz5BkBlKPPsdE1W6I48aeEQEgGjAJwqSUHxzHRlmd7SjhBKxzrFWJCwa8AmCDLh/s6OTrjti/0SsdzQ7+ZqcJxrwCYKUgFx6BlxGA9UN07JCaXUKyHgvj0gstaIBP+xBg9tnlDFRpTs6+frXwHcdbOKRf/IVfPw/fjLppkRMAEsr0YAf9iC77fvkIgPvjkkx8GY7x95Drb6+e/e+ZQDAv11572o2KWKd4lCrsybniQZ8giANvONZcP91hItJxYH/0v+5FGe/4xt9fZcii6ZE7YkYM5aiAT+8IKXEy/739/Cla+637+n/C18Dj6O+KyY1wV19z4G+v5vo2P6ogR+ZOBQllMMLhQSuvGs/XvfJK8x7VgN3vxsNeHdMQ/8Iw8DXf1sjxo/oxDzMEGKNZIdKTswpMFDjws0PLlTGzFa9Pw1x4EIXSKDbfueeQzjv3Rdj98LKmrWhKCT+/cp7j6jnab0gSiiHGUKDyMSBH6ESyiW37MHz3/cdfObyu0ufff/WPTj1zV/GjwOyxTT0j39vb921iDv2HMJde5fWrA3/94p78IZ/uQofueSONTvnkY6ZmjKphyIDP7wQipwghnmkMvBv3vAgAGDvoXI1xu/dtgcAcOGND5Y+mwYnL91vMuB5RcjoamL/kurXBw/GcsVrhUaWAgCWViIDP6wQiu0m4p1L6QzsaUlUGRXX3afY9XFbZkqfHbWxAQDYFwjbm4ZqhJaBq9d0f9dy8kl0KMyR8jytB9SzyMCHxs0PLqzbHW6CDJyl0reZJ/NIYeDX3nuw8rPNszUAwEMBAz5K/0gpccF3bsNDi6urRdMk4ydrreXkk2kDPk5H6v6lFm7bvT7H2HoA3e/IwIfA89/3HTz3vd923muvk6y9kNGhdzqFROsINODLbcVSQgaG3ntosWzAR9mR57r7DuKdX74Rb/iXqwb63aD3hL5Pl1ZMQEJZDQb+ovd/F895z7d7f/EIRcestGIxq5Fx84MLOP0tX8FXr31g0k0JZlc6DLxTdP3u4YyQPSamGsp8HMUIptqo7To4GAMfNLOOpBLfcK+lnJEKioQZ3znvO0y2//vARbfiwhvK/pVRkXu+j9XGYW3AL7tzHwDg4pt2TbglYQ3c6KNSOgP7SGHghNDDTiunkIQyShhhLVVGjdh/v1hsDmbA7UB2X69lLfNUj+5p1MA/+YO78Jsf/dFQv73mnv04+Y1fqtybstUp8Ndfuwm/+bHLRmliEFNlwIUQvyeEuE4Ica0Q4lNCiLI3aoKgWMwN9WzCLQk7r7g+2mIMfBqcdONEdwNeZsqjGEFSqgY14IcG1DT9KBT6fy1j2JNVYOBrhWvvO4DL79o31G8/d4WqP3PRjYq43bZ7EX/3rVvM5zc/uAAAqKfj5692oh77oYMY+gqEEMcDeD2AnVLKxwJIAbxqXA0bByiddWMjLX221qU+w3Hg9L/rxBx19t57qLVutP9+ELIvbeMELH82CqOkibQ5YJTAAjPg/Tw3vgZOt2MtV1d0pmmU5PJcDl2V00xc+rpf+cFL8e6v34xFfQ+v0bkFjzl+0xha6sJs0jINDBxABmBWCJEB2ADgvtGbND5UMfClVgeP/JOv4H3fvCX0s1VByOjwVHrOzEYxUAeW2jj7Hd/A+75x89DHWC1cfNMufPeW3aX3uzHwEEZZoZABHYWB93N7SnHgeuJYSznDssEpNOCerDgIEq+MAflRaLxdq8NXj98yO2Iry/Dv+2pjaAMupbwXwLsB3AXgfgAHpJRf978nhDhfCHGZEOKy3bvLg3dcCM14h4wBdxl4s60G04e/e/uqtcdHVwZeCiMcnj1/4Ro1h974wMLQx1gt/Od//BFe/eEfAnDvV5iBsxWJ/gINzFGMIE2Ugx6Da+AmVKzVwXIFk8+rnJhruDKic62GAV9tWSYv5NArB3JU+11Nw4ru5bivoCgkizoa88ErMIqEshXASwGcAuA4ABuFEL/qf09KeYGUcqeUcuf27duHb2kPhLRFKqrubxpMA3Ctgu2B7gajUzLgw5/n69epiJtHPWx++IOsAXh3hCZffj9pIJuwyxE6aFhjttLhEpf6/8y3fQ1nvaPEWQDYVYJ1VOv315ANd1aRga+2LJMXcuh2CxGOf889f8S4ZY7cISXrnIEDeC6AO6SUu6WUbQCfA/C08TRrcIT2oKOKYP6gmcSKshurzqV0DdYIDJx0vvXuuOKDM9RWP7FJSsn05NE18MF/Fx6ctJrzYTVwGyrK318L0CSyKgZ8LRi4vu+DgnyTVXvNrlZMPj/eWrkdRjHgdwF4ihBig1BT3nMA3DCeZg2OkFOKJBT/Ro1rdvzSNffjWX99UV8PQjfdtiyhDN8memjXe+hYMYCEkrOlqfpsdA18UBQDDk6rherzyrW/L4aBr4I1WQsDDgxHtkz8u/dbm3eB4Oejgj/TazVRj6KB/wDAZwFcAeDH+lgXjKldAyPEhKoZ+Hg696YHF3DnQ0tY6WMH6m43NPcM+CAs8cf3HMBnLrPV/MaxbP7kD+4ydUpWC0WP5aYvofT6fr8Y1gE66PLYdyAebhr4ak9EdsIbvL9IQsmlG56bexPauCWUqlXaamKkKBQp5Z9KKc+QUj5WSvlqKeXaFTv2EJJQKHJgtar9rbTDE0QI3b5TlCSU/tv3c393Cf7ws9eUfjvKNb75336MF//tJUP/vh/w5vWKQikK6TicRhl4/D7wwT3I7/oZnKU48AmsjExa9wgrlgcONPG/LrxFS1jdZa9xwjDwIeY7cmIWhXQyeUuy1rgZ+JRJKOsKzUBYmGHg3gPMH4rQ7wY9Zz/xqr5Bld5ya1zFrIoJLNWHgaOB95BQOoXLwEe5Mu5fGCQ5xxmcA3yfmr2aDsUqEHttjcD6f+eTV+A937gZNz244ByHrudzV9yDf1+FjZtHqd6YsiJee1jRMp/cjJslTx0DX08ISSiLhoG7n/HO7XeX8RCWB2Dg3VYBuRzdgPu1NibtxLx77xJ+71+uqpwgix4PO590eXhW1ff7Bb9XCwOkxzsOqj5sSlUm5iQY+CArDR8UqZUX0hlj1B+//69XD1wYrB+MwsAF21Cax/vnHvNeTQYeDfiACBmKZoWBzcdkwOmB7suJ6X3HqX2Sy5JBHxSmst+IS/VxMcT3fP0m/NuV91YWEnMYdeCUPtvr5fTsF/z6BmGm+YCDc33Egatz9uOj6QUprWQIrE0YITCkBg7LwEPRTr6sNS7kY3pGB8FhYcAvvmmXs9egX4O5m3wxysNtJ4jeD5nfBodxS+nc8GGMKCWU2J1fhjMU40rBpw0ZqnaDcR72vsII7Wej2A7uaxhES/edmL0Gf8djkJPYkYfOtTICA+cpFA4DX+WaLr7DcRBwA10EiFHVVoajwl81rgWm3oDvWmjiP//jj/DfP3O1ec/XG/2wM26jRnm4jYTSx8PsG3n/ZvMbPozTqWkYuHo97Pga1xL/mE3KgO8KbOJblkQC7cg9gymHM7w++MQ2yKX6mn0v9u4zyEk4MWkSXKmIVe8HJEdIT45Y7Z2FRpnwTPx7BTGq0sCvvns/3j9geY1v37wbv/3xyyHHGCk1CCZfpm9ENFvlB6mTS9RSbsjd7/CHYpSYYhoYg2rgUkpnU4JxhMkte6uBoRn4CBMax2xNlS8IMfBWXvSUjMoSiv1sXBr4IMbBv3+9jCKPA1dJKfr9NZRQLAMffpVpDDikI1OutoEaZQcjbvzdlZ7+v0IDf+kHvgcA+N3nnt73uV77ictxqJXjwYMrPR3zq4GpZ+DBELSicBmt15v8N6M4eCh0cVANPC+k82DmhWvE+He/ffNuRx6qgpFQRqx6N8puN85xdENo4wTOmlt5UWLUh1Y6OPcvv4Uf3P6Q83uAGHt3zbxfDKplh3/X2yi6JKGYSDGrttHAR5FQhDlW02Hgg1/Hj+7cawILemHQSJH7DyyzbFd1ve28CEsoXjhh1bn7wSOOmQMAXH//gaGfrVEw9QY8xN7yvPsGCbxzR9F8l1vDaeAdz4AXFUu9Tl7gNR/5IX71Qz+oPC7te0ghk6OmCY+rFjn1/64FxcD5SqfVKZzogkJK3PjAAu7Zt4x3feVG/X2XgfeSXDg+f9W9+NI19wc/czXwvi7FtNH8DtIxiiFDwPuxlRcT0sC1hDKKAacCYnnhSijec8L74KHFFfzTpXc67+1fauGVH7wUr//UlX2dd5AdjO7eu4Snvutb+F/futX5Tavjrmz9SaHq0IPYhNO0Ab/h/gXHFsU48D4RGhDtoigZTA7+chIMvJ0XroTiO1v03zRg7ngovLMIANR04QfjUM1HY3rDGnApJb5w9X2ldlCUjxP90SngR5VkpoKcXTqT8ciLwTTw3/30VXjdJ68IfuZq4P1fqxvj6zLwUF/z87Q7hZVQ1pKBM813VOmmU7hhhH7fccnrK9c+gLd9/jpn5UiTyI/v7S/D14YR9mHA9y0BAL5/2x71W/0M+1KdITfSfe1jkHvUyJRUeN19B0qkbC0w9QY8NFv62le3GOyRDPggGjhrZzv3JRTXQHU8A95t5xB/izBqyrBMb9ikj69c+wBe/6kr8SFdotf3LfAJq80YKaAe9tTbgLeVF5jRg8NfoQxyZb/1scvw4r/9rnk9bLKFE+PrGbPQM8jP02ET9Jpq4OweNId8zikKpZ0XXSct7ouiMcX7iI7TrwN6kNoxNDk0tN+Fftv2iEJVgTEfg9wjs3PUYmu6aqGsF4SckB1vNw//IfD12GHRbA3HwDu+E8930ukXNCjqWfVtqmsjt+y1pVeb/vbCW/DxS+8MtLP//njC279ujkG1U1qm3jbFQevjehKKr2nz9GdADYyZWqKP5aVxD2B4v3nDg7juvoPmdT4kS/IrzbW8Cbnb91udYiCDNC7we7k04KbMBnoZ1PFzFbzrCEWocINPX++3ywcpCUEO5YYeJzl7hkLjqlehrEFsAhl7KcvPyFpg6g14iEF3Cuk8vN2iUMYhofQjOzhOLY9x515cMQ3ypbYadJlf0JyBGPhSezAD/t5v3Iy3fv660vX3K6EUhcT+pTbe+vnrAAD37FsGAGzdUHOOE0pgWWGSAh3LZioW5vczmlH5tVBGsYFt9uNBjuMz95UBGHiLOdPWNpXenqtq44n+j1WUVo0c3MEZcp7aCb36+kMyYl8GXI9DMuB8FReKdqK3KiWUAWREutbcTxqKEkp/CA4eb4nu3xD+WZXD4sq79uGr14YdYXSOtsc2u8HRwH0NuAiHEdKgq3WVULQGXkrk6e8B+vbN7i5J/TpwfOfx3XuVDklMrO0ZcG4424GB5TutFANPzXurEgc+gDH17w9nl1UyHj+Pz8Cb7Ry37lrdXZP4c780pAG3Ekr3wICQg3MlUAmwqss/fMkdOPXNXy4VoOtLQjEMXEsopIFXSChFj7YMZsDtxETHTxMRDXi/CC13OkX35R7v2yoG/rL//X389ifCjjDA1RT7echchl2WUGiA19PEPEA0KBpdJBSugcuAIazCphmVAnDnHtdB2m9cvP+A3q0ZuB+ZYwwXu0/+wJLStrfDBh9dd+FJTKOMDd8Z2S+c5TE8dtlDQuH7O1I//Pn/ux7Pfe93nGJLIYxSbM2VUIY04GYbu8KZ/LoZcDJqfGzZTarLfVUUEu/44vUAgAd03sAgYYSGgddcBu4TBT8Ds4oItPIcn7vinr60cD/eH1Bjcq0WWlNvwEOJJx3PSViqheKxwWHAB1Y/acVuFIoXNihtmFwtFWag9MPACcvtfKBkF/rYZ9L9OnD8RceSZk5kKDgDl9Itl+vHgfPUdD4BzdatU2pchYLGo4G7YYQhElHycXgT6x17FgGoeu5V+NaND+KMt36163e6oZNL4wAfVUJpd7ozcL6hSjuggRsHYuDYt+1eNH8fWG6r75uJvx8Drs7Hnd5AYJx5ZQ2q7v/Hvv8T/P6/Xo1P/fCunuc2DJyRsFqSRAbeL0KMsV2El04E/tnKGAz4oJmYbd+AsRVDLUvMg0CsppZVa+Am5LCVu6GTPR78qnjxdp/UwTf89DNylvGJIPd8EiXnEmeoXELJUuc9Ap264yVq9ANfy77pgQU8+q1fxe3MiIRQSuTpEhOtzsOlmrKme+axmwGg68YZF96wCwBwxV37uratCp1CYl6vtIZ1YiaagodCc3nfhySUVkADlxL46rUPmL1b/d8aAz6QBk5RKJ4G3imCurohLxXHpnvSz7gOSSi1LBrwvtHKy8xCGQxXsuBwEnk6w3W0w8D7uNElBu4PBpq908QxyvReFWgCW27lA6Xj06e+8ek3lb4UmqnPF9oFKZfuiqjV8Ze27pKZGDtFoVT5CE57y1fw6x/9UV/tJTiGVQJfufZ+LLdzfPw/ftL1d37Y40rHnZBK3/euv/AY5VxDTU7X3nuw9FsCHaGLD7srOkWBTbPKqbw8pBRDp+7k5U1H+D3mIYM0eYc1cInf/sTlOP/jl5vPeP8d9A14PxKKF27LMzFDOyn5htzHffuVjLNtrtHz3HylScfNEjFUGdxhMFUGPC8kdnm1NUIGuOQkK0ko9u/QBOCfMwTnge0rE9N9wKuq29USUdLAuxlwnvTjxx5zHFhu44EDzdLnJQmlzyfP1w+lZ8D9aoL89UopjNDViOlvcmKWwizZ374TtgqhKJBCSuP4unXXAAy8QE8JxZcbrDTk+gbu0s7fEEwXiWoL3mzneOnfXYKr795fbkPOGfiIEkpe1sD5s+Jo4IwB299Xyxa8L/cv+Qy89/NI/iiflPhSnc/qq0gO6fBJl34nhMIIa2lk4EG89xs34Zx3XmjSs4Fq/bF7JqbLBrvhK9feH9QPR2Xg/P6SgUoTgTQVVkJp9U7k4VEN3Sat8959MZ7yrgvt78x+ie7100DrxfqqkqOWA7sg+U7ldu7Xabbt4MbeNeD8fHLg8E96Tni7pJSm2Na1gQzBqk02/CiUXk7MQkqT/WeNSPkcZWhD0+X5uuaeA7j6ngPGCcjRKSQ2zSgGProTs7yqdcIUuQHvdGPg5XPwe1mWUHq3kZ45f5L2JRTfedlr2PZDZvjEROetZ0mMAw/h4psU26ICSUBVGGH3KJTCMybd8DufvBJv/+J1pfeXR9DA/ZhRKmaVCLWjNmfVAJCl3TRwq8GF9D6CvzcgfVzeaEIdT/RgH7nHoOkwh0gD98L1SrVQHEZtJZYO+65JzJDlWij7l3pvxOHWfS/M8c01FDDp3ge93Xlu3bWA09/yFVNTxY+aafWQUEqZtp7GT8frljRCXXioi35N/ZwGZtycaeDLQ2rgVMzKTz4rpJssx52YdI1u5qa+mIENeG8juuSH0BonZngl3suJadrchwOV7n0urRMzi2GEYZCU4Cxf2d9JgC1kTJIgcOPRD5O7e+9y6b3Q9lLd4DjPAppuISWEEEgTZsBNgarex/UZUrc2+ZX+nM861Qx8uZXj5Dd+Cf/wndsdjY8/q8teFIptG79nrl7PJzSKWgHs/ebvAaq/9umldjf4kwa1hR+HVnP+Oa7RkR9fv1452xzmjv40cOrDgl2/n+DUzedAx13ssvUbdWtokm/nBWZrKbJE4L4DTZz7l98KrjT6gR8H3sndksjNHmGE3WQLfp9KUSh9jK1lnfDmM/ByFIrLvHvZ2EHyO3wJZbV3LCJMlQEnKWEl8LAAdsnN2UIjS0rGzMRcZ0lfabOhVHYnCqWPY+Q+I/O0OSkV+86Schx4iIXc9MACdi00HYPQby0Gv9Kf81kXBr5Xs96PfO+OkgEmLAUqNOaF68RUA8tltHwi4gPBXhuc7+/Tbem2UODX2QpIRlJKZ8OJ0GDnG+Ty7/mSkI9OUZjnRoVB2vf58bs9fws6NLPb5suWgZef0byQyFKB2XqKi27chXv2LeP9Fw62YYE1pIHcBfY6FBfvZmJqQ8eO/Zz3XIy7HloyfqiZWoIDy20nn6EfcrTklZHgUTAh57e/tVoV+smJoEkqd55bsWYSylRt6EADgtcUbrFOnqmlWGrljhFo1NJyFIr+bCZL+mLgIQ16UAnFj8pAoQyDCvqXhrE1aolJ0fdjqjl+5m++g5laworUu17wqjbxDFKgPEDo4e+mgQvvd4VjwDulNvtOzFCVOD8qBbDhk/7kVEhpJJS5uvsIcxbtnLNjGXAiyAi7clxeyJLBToVbJZE+cyekMAOvpwmabXWtfoaskVC6PH/EvBe6GHAz0QTuVzuXSJMEG+qpMSiDJgZ1mO/A3wbQkYlYv9N4awWMOr+Pt+0+hI987w48+th5AMAx8zM4sNQOTqTdUJJQmFTiS5W8Db2O3d/KuhxGmEUnZhiUdch3E3cYuKmFUJiOradlBk6dO1NL+0rkofhSjpUBnZh+CrcJ+teZl4WUSBKBWT0JAZyBh4/fbBfO0pw7Ueh8zXaOP2DbzTU7RaVzDrD9SdqnlBIf+u7teMjLGHTj2O37Phuiv/mEshIoJxuqElhLuIRiz6EYuFpqb2y4BpyftxUw4HkhDbM/tNLBcjvHZh1q565g1P9+lUR1/nJcu49OIU2hMT64/e3+ujNwdY3dJBSaKImBX3PPfmOk86JALRXYUM/MxBoy4A8ebFauIm1cftmvVCXZtQwD52PERmtwrHRyc2+2zdVxYLnd1X8VQsmJyQy0MxmUJtHux+3HNtgMU/bcplEDD4IGHmfgXEO0EopdsjZqSWUm5kwt7YuBh1LZ3TDCwRk413kp0zARAhsbmXkgm4GYah/0kZNIwCati27chc9efg9rd97DgLsM/Ad37MX/+NINePsXr/c8+vY3NDBma6nKCC3c+tMdj4GrPUD5NYQzLY2EIssMnCSUjTqemp/LvxbAGvB2Ic1KjgzMhno5YYgMTlIhoVSdx/5esup49vclDbzLMp0MdzcnJl1Dmqhx8ZK/+x5+55NXmnOlmhSQk9aPRnnwYBNPfueF+Fu9GULoOlQ7VdQJrUYVYQg/R3TvqerkroPNyme42S6Mwd+yoY7lQDTVUqtjau2EQJNTSDcP1b6hW9mrpg5Vwfz0D++qzGQ1Tkw2odXSBH3I52PBdBnwoIRie6rOqpERQwpp4HTfZmpJX7NsSANfHpCB85rXSi9T76ubbcMIZ+upeSAtm+3PmcK1fWoTpaObdrfykoPROY5uGMXAUuw4X0ILFilD1wYAczMZpFRVGktJH35YoRfFEqpRwiUUn4FTvHDmab+ONu3Eatu+JMNKhoNr7f5x/I0mAL2C4tdTwcBpxcj1UZ+B+1oyB600uzFwYtRZkphV4TdveJC1ITETFFBO6PnuLWoThJseCCcU0T3vFAXy3E5Khaxm4FwD/+j378Q577wQNz0QLtzFGfhsLXXkJkAZ5f/v45fjp//qokqDS2SKmuBsphGQC0NRKKF7kBcSl972EN74uR/j7YEwTX6tTi5HmoxUcG0QjGTAhRBbhBCfFULcKIS4QQjx1HE1LAjdJ5USSsCJWc8CDJxJKNzRstzKg3v21dO09F6zndvldT+1UFhdikJyCUWYEKREABtqqZntVwYoV8vT8evMC06bC/N2d41Codeagd+vDfhRG+uVujcNwPmGTRopOTG9nXCcqJIizJTqjhPTY+A6LNKfgP2djwgrTAOvGRapZTZWNMv+llYiZQMu9XkoUzREAgrG9PnqyMS7B7T6vJB42+evNWzTGPAuGjgZrzQRJTmmUxSGFJjve0zyh3eoPUgffeym4PH5SqFTSCddvaq8rK2FUuBbN6pyAFUJS812YZ6fRk0RD9/hT5NM1dZwRhKhSdIhC+5z5/5vjxG6h/w9ql1T9R2+KquxXI7VxqgM/P0AviqlPAPA4wHcMHqTqkEGbaFpQ8haLBOTbwBgo1DSag08S52H/lnvvgiP/dOvAbB6O/8+R7OtQrQSEWbI+5daTpGenA3ovIAjodCmvYkQ2FBPTW1vvz4IIbgHo3PNloH7xGLZM+BVDJwGw0/0dm6FLKdSm2Nqo0Axx4dWOs6E1SnKjlOuMeeyrJFT39D3eSsVy9fLdN9oBSJPgLAGzpe8QDiahq+a6JkotAZOk2MrMMF2nPvNGDgxtsD1Xv6TffinS3+CP/rsNYqZUhhhFwNucgUSUa7tXkhkiTD3hX+f0C2Vn46h2q38LXxSrcr85VEgVOo1rQgXarZztHJFhoh4+KWgqZ9pQnvdP1+BV3/Y7hNbcl4G2sLf545/QlUs/wZNSg4sl+8BXzmWnZjByx07hjbgQojNAJ4B4MMAIKVsSSn3j6ldQdCD7mjgQQbuGjN/iUuDp+FJKA+yiASevh5yNC23c8zUEhX2F7hbL3z/d/Gc93zbvO4ww+EUryIGXigDPlvPsLQSrqnNj+WDGwm+6vAjcHwJpcqJaavmKQN+sNkJshnAGjuqu7HQ7KBdFIat8WJOdE76fZYIJ2wMsLJArYKBS9jlqj/wqsL7uAZOhph+WyfDzCclf4MMadtDYY+zbMXng6JQqK98fZbbfD9uOkncLcoOrVRHjlBfJZ4BL7TslCbCZGMCZQ18pce+rmQA2wUxcJsd26lYydH1rHRyc/ykIqxJrQjVPUkT4cTMA6rvSAKicf+lH99vWDk/t5/Io9pSnmRsRiaC3+Pfp+9SjRYO/hvK5QDUynEaJJRTAOwG8I9CiCuFEB8SQmz0vySEOF8IcZkQ4rLdu/urW1EFms25Jsgf2oajgVtj5j+cRh+ucGIWzNgC4WSLlXaOmVqKtCJk7/4Dbs0W7tRSN1u9rxyOMBr4hrpaFXT0P6BspIJLdukacCl1Aon3YPoMvMqJSQ/jvftVEtPB5ba5TiH8yBN1PzYzA8531FEMXP0g04lK3IDz5Se1EbDJKdzpq9pm20ftXWp1cPIbv4T/853bg/3E48ApOoT6hjPya+89gLd9/lqTubjSsb/LmEMzZ9dXFUboTEAeO+QGz0wuuV15kBHbPFvDoVanp/6bF25yEcXsp0KYiZWuJ1RJs8qZyhl4ntvJr5xaHzLghWlTla+JJJR6mpjVGH+2eFnhxWYnGBNvNO0QAy8KkysQilLx2+xcO6t2GTLgZZnQkrJ1z8ChYsjPBvD3UsqzABwC8Eb/S1LKC6SUO6WUO7dv3z7C6Wzp1340cBrgjYAGTi9VGGG5p/cttRwJJXRzmx1lwEOZniGUEztcCaUo1C7sxDaWmKGtMrLu8d1NIeg8ftt9Dbwqld6EuekBeLDZroz7XfYY+OJKB+0Kh9dMLXWYDcXM8msklmiuw8uo49+nyZVWTx/53h2sn8oSSie30oZh4Ezq+NUP/wD/dOlPcJ+egK30Yg09TTiNLhJKLj0JxTDw8j1texM1X9XNNZRjuMrAkjFu5254KOnoaSqMb4LAjZGNiqnSl22/KUlGG9pSYk/5meKTRVX8uWLpalJNtHPc35CcxsTCShs3BpyhfJXErwmAZve8JIN1iPeqicQnqVAsPr8nRJiA6YkDvwfAPVJKEqM+C2XQVw3kZV+oiEKZyVIIAc1gyYB30cBrNpGHMxyenQeEB89yS0koKduAIQQ6ruPEZAaslgp0dP1yJaHYTYrtlm1hmcO5JsbyuOHwf9ts+3q0x+47xMBdje/gcrtU45tABnezMeBtdIrCkbTot40s0RKS+q1h4KxNxH7dgWe/r2Ju1Wu6/0Z2YVEpIQlFSRvC+bzGpA7qQ6qRQsfnqzLSwGupQD1LnHhnQlFIh7Fb3dXNA+Bto/bUM2Hu8Zw2vs3AOQArgbTzwjFCRsP3GDgAp+a7KfLVh4RCceXKgHvFvmT5Ny3GwHnYLQcx8EaWGAnFd2LO6mStxWYHN7JoGbpek1kZYuA5WzkV1Ts7hWP5w/Xmf3jHXnz4kjvMbxq6/rdZ9WtSthYY2oBLKR8AcLcQ4lH6recACMfajAl0w3hxet7xWSowV8+w0OyU9ODQruYztZQZAHucXQsrzkMQ0sDJidkt65H/dnGlg02z6kHkLKOmHR5cQlHXmAfZmn/NBF82ot/5311u58aYqiWre5y2vyzMiYF3zMAXwp3wyOlKWuuikVB4O9wVkWXgpIFzuUOa9im5xn4/1Zo5nb/tGXBeE8QNI7SGqsacq4CrtVMJAapS2KJIoKIwxybNPksEGlnibHBMKCSXUPxlvQw+X1z7JyNIce5VDJZXf3Sctuwe03NHCIVAVmrgTELpFCoUNuvBwEMSSjcG3s7ZxOA7MQuJDTWrge9dtEXMSBMPZWDytqTCHruqZn6wJHBeJkAA8Iv/51K844vXM5KYODJZmkyHhAIA/w3APwshrgHwBADvHLlFXcBDwQicZZHHfaHZMTfRLuPtceheUSKPlNIU0QFQSjzoJqHw4lMh0KSz0Oxg82xdnZ8xSEq6yaWSUGZrdgcVw358DdyrgV7PEpeBM03XXz0oZq+ON8MyNj9yyR24dddCZRnYg8ttVCVuLPsa+EoH7bywm8xqxpomwiwvzXIzcdmLuj5rfFIhHINPg4PvMJ4X0hgyYlt+v9F93nuoxSQUy3jpmkgvtQa8MOehY0u9YsiSRIeihjcVqTHJzJcFHAPuEROugc/pSTE0SQCWeLQ8Bt5ifcidmIA7SXcqVnm8rYBO5NHXTPekMg7cSCi5WTVXhQAaDTxLkAgRDCnlTkxuaCkajb4e1Lb1PVVVPt34ficKxRtT842slH0qpZtwZhh4TZUqyKWa1FWphrWx4CPVQpFSXgVg53ia0hs0UELhYYBKJ56fqWGhaR1ujcw60tLE3TPPOqE8A64ZOLFrvu/d927bg3NP24blVo5tcw1Hr2znBXYvrOBpf/Et1uYC81AP25YNNXMcq4GrCUBKiVRYBs4NbYmBe7IHsVqeyEPn8SMkltu5Ybiz9dQk6Lz9i9dj00yGc0/fZr5bSGlY90qnMNEQAm6cKw3ODXW1Illsdpw4aZpIskQYpy9dUqav33c8ASobNNHMiU6XCqGiULzlL8lqWUX00EqnwHu/cTMOLLdx9Ea10wr1DZdqyPz7Eo3rhFav0y4MXEq1OQfdB//63BA29fch0v4zroGnuv3qszv3HEKzk+OMh20CYKUVv1ZJ22HgrgF3CBCt8io0dvq8nUsISFOznjvIM4/E0ATc6pOBt3JlwNNET3YVTsyFZseZCMgX5jsxO/p4rY4KBEgTgSSh/AOYfukwo+0z8I2NrLTKOLjcwe7FcinrempJSJIINRFNgQa+5qCBEnpQAWUMDQMPOKgIppgVS8Tg9aX3HmohLyR+86dPwVNPPRrtjsQXrr4P/+lD/4FXf/iHuOTWPVjpFCUG/ooPXuoYb8Ayv8WVDrbogcSXctyJp1Lp1cN6qGV32OmlgZMGx2Uj+h0Z4P/05JMAqIFk9egUhZQmbPFgs+PE1RMDJ2a9j/URn0NM0ksiMDdjJSza0zLPpdE5E+FqwKSBu5KCPV6mdVEz8FLF0nwmRNEJqcPAbUnXVqfADfcvYOuGGt70ojOcfgxJKKYtTDvPmAbe1pKKnwxGyKUbheLHJgcZOF2DsI5xo4HrZ/9Z774YL/ib75rfcidmqMRtIgIMnDuxjcYd9qtQv1N9oSwVhtjwbGdnBcUSebhDM4S2fjbqaWJq4fthhLTyWVzpODWIDjbD26/lhTSTJ5UTSD0HKQ/p9fsEADY0UhM6STjUcjV4IwvWbDmMVAgIMT0SyprChCRVbGeVkoSy0jbabsNbLgP2RpOBaXUKh4FTJmcqBLJUZbi9/lNX4j9u36uPpbzrM1niaOChba1anQKHWmrHeGLgTsy2llAKCV3Myhbg9+tmEPzlHjlq+TEB7WzT/fOHz38UNtRTV0LRdWJ4rQ1npyFtaKjd+w6pPhLeEtFo6kJgrpEZQ09x4LmUJtJArVgKtgJJSqn0dH8TEZBQNLvxGSwZ8FriSiicSS802zh9x7xdeRX+YLZ7QBLcBKCwBh5il1xCIcmIS1uc0dP9ONSyert1YmoJpcKJ2WSkJiShZCENXF837/e8ULXR9zCG6Sfn0KrDRIsYIpSWJijeBtXO6lj2Vl6gliYmVtyR8XK7m9FCs+1JKJ3gJiYd1vdtPSknfvgqS8qi/uOoJYkTzUbXw31lbUaEpLSJU2nSu87KuDA1BjwvrJOmnZcfFoA08JpmgKRPuWnTgF0eNxgDdwy4nqkznR1Wmp3rGZbbOWbrqQmpqrphK53CaHWbNygNnDMbqlymilnBcWKa5W3hOmH95Z6RUIxsVE53zlJhik1xCSUvpOMU5gOYJkxKWOGREL6jCVCSx1wjM3VKDAMvGAPXEQwlTTugLabCLtfp+zTI/e+HJBTO1habHSw0O9g0k9mNP8wSmGKb3b1KeR9wRl1IYnaJklAC7JJLKMT8+GqwkDaOnH5P96HVkSUJJRTFsbjSMZmy7ZIT0/aXz8BNBcvCvYfn/M8LsfN/fLP0PXX8woQRkmRCzxbPteCTAp90qhg4XXc9S0y2ppunYCf7xWbHkau4r0udW/1fSF50yzoxfd+L+q7uL699WSpKTsyWF6rZMgbcFvhK2AS3FpgaA/6IN38ZgDJ4rdwaTG6YlQaulvC+Bu5LKIlwd/ghAz6rS8xKqY5XCxjwTi4VA6+lyNIE7VyasDMfrU5htDouoTjlZPWA5lEoiysdSOnKIbsONh0JhGCcmJ4Gnud215RaqhxuzbZNEJrRzJ1n+vEQSlOjQh+PWJRAOPMu0Ssgn4F39ORb1yuWUO3kkNM40c6nTuGGEXItk9pJDJwrINxoXHzzLhxstjE/UzP1TbgBAtTA9wtHcQ3cSeTRr1WfBhi4dOOP88KNP88Lm8lpGPiKlUPoPSqXG2Lg7/h/15uyuu28cFamfFW0wStoZsJT+aq0IreA/90hP0ZKUoclDJz9AurerfTJwBebHTO5Ay5B4TW9//2q+3D/gSaO3qiI0EIzXHrWiTTyJJSCPUeAJRL+BEkrayc6qlM4Y4/qyvCVlIqcihJKJUgTNN5x1lNZKowTkx7IWW+5DNjKgLzjeT0PevDSRFVA9CM5lIRSGAklLyRu230o2N5WnhsGTs4kbmwzE4WiqvxRcggZ/RnG2s5554V41QX/UWoPMfBQbQ+ebUg7EFkJRRtwxsD3HmrhuM0zAKzRoEkwtEktYA1BoiUUYuD0u6KQaHVy1PUymRvkmmHgYfaYkMGGPUchy6FiZHg5Q6NBecq2jbh77zLu2beM+ZnMGHlfQjm0kjtGC/A1cBuF0i4KpKmoZOCFZJq5vt+8jkgubaVIPwqFIj4AVeGRXwsHlTkA7CTptztLlUHZsamBc0/bZs6vrr9wfl+6Zi8eu6OvmSZVs8pluRZm4qlnziTb1YCv5NqJKZzz276yB7r09odw9Jwy4IvNjiNxkA4tJTOqOhMzKREHey9D7ct0JBDnSisdW/oWsCtSmphb5DDVz9dayChTYcA5A6YH2rII+xmFEbZzaWKTjaOy487qQggzcFt5YQYzea8BYuDlIkGU6t1gqfS0lPWx0i5MLeb5mYylC5NeTU46iVRYZrBi2u+ytKvu3l9aEdQrnJh5oRiDEEqqqKUC7Y5N5KGsyCWv1sbDjAF3ZShuHLmdI0OQJirsLcjAO4yBs0FJcd2u3mo1cJN6r09NceO+Br6or6HpLNvV3097xNHmvU0zNbNU96NQ9nvp0jsfvtVJFuGJPOQoCzFwyvYjaSYvKHOTa+BF6d5yBk730joxy+eYn8nwmOM24eVnH49Wx9XAuRMTAH7w5ufi9573SOezduD7AHD/AVU+wc8JoFUHPcO+E08dR/2/wavT3o2RLrU6qKVcQnEnjqKQeNSOefPexkaGmVqChZWOQyQKRmLIQPsMnIxqiYF7K5wsETqM0J0UeT8tt+wEZs4lhOnztWDhU2HA/QpqAEvMYDdbxbyqB37/UhtC2M71S6imQhhG1O4oZ18tVUadM/CQBk5ZbrXUJjVUVYxbya2EsmkmM/GoZilHFdgKFYVCLMToz0wTJ/Ad5gF1jdzRx6setgtpshPLDFxJL/6GAcduntVtcJeI9Fp4YVKcgTeyxLTVyleFDRUTNvNU9WE5ld6GwKlj+k5MKculQElC4YaOWOuxekIC1CRaJaH4O90/+thNTgIQ6aayhwbO5SG6fs4KlTEEZmuWQADudnR+JqZ/jlZu+7SmHcOOE5MlQxFqqXvdfNLkEUa0ibcvT1AiT5oIp2QzSSg3P7iAK36yD0B5p6RuWGrZ1RngbcWmJ/tGLcG2uYY5H620efAMl1tosnUSeQq7cuMRRUBAQvFkIoAyvMuykC+hUJevRSjhVOyJyWsY379fJViYCm6sQxOhJBRADcZMs0763kon16FzmpGapQ9lg6llnN3lJDEadSNL8MSHb8X3b3vIDDQqwEOaeAgt5sScn6mZeFS+lCu0Uy9hszcNWHIE8voVl+lBQmjo4lUmMYWXce3YDMJ6mhgWoRi5jkKpYuBtl2Hwh9yVUCzb47sXkQMuL2CcmFJaVkXXTwyVQNchdBQQT4FOtPEotDEh5/aiMeB88FupiDA/U2MSCjFw9QZF2fzizhNw1klbcduuRSsnSLecLLHRLCkzcGorDWa+ulPXp9pP7aJzUBQKOQwBawh930ezpcIGa2mCWqbY4gr7nCfyEGgCon7hxGQP833cvU/VUfEzDe01q9dtJqEcWsnx/Pd9xxxjY30w06Imd5TaRTH0VGpZfTfF/EyGg54Tk1cy5AXKEhYHXtLA9alKEkqSoJO7US4tT0Ih20Pjyxhwj92vJqaCgXP2+atPeTgAe5P5wBfC1qTet9QyRgoArrnnAB71J1/F1657AJRxZ3a517JCpuOOeQhWLU207FDgKO08MQw8S8xMXVXrYYU5MecNA1dLOaElk1xSGCEYA9cSin5oD7Ia6LsX3EqHDW9jAc70KLQJUA+1YuC2fKcfhQJYxmokFI+BA14t5cKyPb57EdWwyAubbackp4INJBVGmAcGRsrCCGk3jywRkPr8hvl0wisgU55VWFakNHCVot/xJjxaibz87BPwy+ec5MhproQCowfP1MoMnPqGpCuSKlwNXLJ64upzcqRzJyaPA1/iqwu9k00jUyWNlRMzsIphXl0jKxQqc/Uzl9mt9niCyn26AqVT0VNLJlmaoJYlaOX2nlEeAoe/1V0vVGngIQe/ZeCuhMJ9PjMs+oyc4Zw41DwGTpLld//oPFzyx+cpudGPQvEkFF58DFCrHgqzBNxcidXCVBhwklD+/lfOxmOP3wxADT6/jjRgH/j9S22kTOd+15fVXhM3PbCg9OZEmBRqWrLSQ0QDMkkEaplAs6PiuGnA8Wp5qc7EbLZzZ/eb7/zheQDUTb9r7xJqOoyP4lFzSZKJraPADQ2xX3JiHmQF5f2azmQY6MH3a6FQH5BBMqsN/VD7DHzHJs+JWbMTHaCjUAJx4FyyAmBqWHQKHQeul8m5LKc0V8WBk/OJs1piwGTAv3XjLlx77wH44PVA6N7QBJ8IWzCKVmIkw9BxKSOStFUeO0wTYyOQSs/lHn4emxUsHQbe7qhEL1tAyxoiHoXC92WkqpJ17Zxu54XZNg5wMzEJNJF3cok//3/X4f0X3sK+b/ufJhLHSan1YBVaqyYlE4US2Hc2xMD9aBgOLqHwlQQx/0RYObGRJZhvZEpC4U7Mwq6q6kY6leY54gl01C9WA1eT4YlHbcAJWzcYcuMmmLmrIBpvpr58Z+0llKky4LP11JFEQlUCa5k1NuS4A2AciVs31IzxpK3SVHiQjXHlDLye2igUE6OtB3o9S1DXmnmzkztbV5HRu333Ij5z2d34+SccD8HjUaVlmIBisRSClAjrVJkNMHDfJ2C84AED3smt4Wn4BjxV7JYz8C0baoxxu8yRx0RztwAZm1S4DHyjkVBcJybFzRNDLaSO3fUSW8wKpXAHXlEoHZoM4Beuvg+ztRSnHzPn9EuLTcTUjySxpdyA6+tb9rT7utcPNaOBK/aZJQlmsgTNtpsHQIOefBq07PbLy2YpfZ7jdrZ7U7vjbglYT9U5eC3s5Xbu9GlHZzSaYwQMONeFb9kV3iIMsHIdZeXO1hOzaxKtapXMU2hNvFx9L6SB+/HoHHQddP0EcmC7EooNF/admLxoGgDbRiFKG6kAVu6isGBCliZoe6n07Y5bW8jfOapTFJ4TM2rgAKwGPsv2i6QHiEPAGpvlVm6WexzKs6weCG4w2nlhBxTph4zBA1bOOMQY+Gw9xUo7N2GFf/WKn8Kp2zaadlxzzwG0c4lf0dIPX8opA6aOraJF1I1PE8EYeFkD93fI9uOJeQp3u7AMnAbe0kqOjY3UGFPuxNwxP2MMvo1C0WGEtNVb7hX1IYOVuBq4lVAoE1MZInImJVrKIEbbII2eSTKUFEFjwexRySSU5XaOuZnMZIyadjEZgQYnObmFYBKBJ6HQ5Evv0wTHQ8+IkTeYDGLDJmH6IxWCRRTZZT1l+tbTBFfdvR8fuOg2AMDpx8yp55G03ESgUVPZnksOA2dOTO3LUJq40OnpZScm3x4utDECAJx01AZDdogozDVq2KXrrZOseGilg6WWWnWmAiUGTnIjx+bZGh442Cy9T31N95ZWTlRjhEIwKUu5kalnt8TApVu2WPW1DQ7gceDUFzTxNvUOW4RaUk7kWdGOY4KRUAyptCQMiFEoBvTgztZT4z32Z0OCNT65ZtnuJZL+nCZ2FiajUU+VnmijUFwDToaSqu/VswSztQTL7dzM4L+480TsPPkoMzkYo6BfW0lAOg4P5S1X50mElXHooTrYrJZQZrx4Yp68xDfxpSiUhZUONtYzYxx5GOExmxolR6rPyP3Y3ConJjGmXEpt4FgYYWElBuXYtBteOKn0HgPPWP/NMElL1egoT9bqOMBZJ21V91C3KWH1Rui8S15iRsN7v6SBswmLs3Aroaj7TYaQZAWSUGiF+L1bHzJtPn3HnBMHnqUJGpmqt8JXXsut3NQQoed4qZWbCd8PI1THsqs97jOgZywRwPFbZo2E0jQGPGVRKIn2pagCcJtna0YG5OCRP+Y83SQUpoETeaFCb3kXDZxzOJeB24mVF5ji0U+ANbJU24jApU1Cq+MmS/GVOlCWUGIcuIaRUGquhBLai5AGcbOt9DpeHxqAWRZxBk7HIgZOhipLrQRD5weYBp4lJj2dGCaB/vbLnJqiOoWt9QFYpgDAiYQxEgpj4L7TkdpF2iHP3uywrcAoCmWx2cH8TGbkCc7Aj5mfMX244oVJGQZelOOwqd1BA84LFmknJkkoCTHwvCyhpNqpyxN/zATINPBWp0AtSZx7TddKv/nLX3gcPv6b5+CErRvUe6K8YvEllBnvfvPYYa6BA4ownPKmL+Ntn7/WTG6JDrmj53cDk5RIjqgzn8G2uQZma5kTRpgm2lHqM/COlVBqbKXgT+a8T0gC6uSuHEPPz2wtxZYNNfOsUX/MNTLDbjPtO2rnBQ4ud7BptlaqRgjYSCYOXurXB0WAAWpDEEDlfOQSxj9E7WxoCWWplTuMuJC232wJDZVf4Wva1JacM3B2L9RKpig5MUMJT1yaoslCtafycseG6TLg9dTGbjMNnG6GYIx7uZ2XGDQAsz0XZ+dcF85Sazy5kQesQaL21NIEM7pAVElD0zPxIbP8VseheFQVNmiXcsQUAGXkVzw27WjgHgOndlEUAk06PHIAoKxSFbEx18iYBp6bY7xy5wkgIuu3gXaC93cq4eVf3f6yjJNHoRTSlmPlhZF4DRcAns/A6uwUB84dplQlj9DQqw36zYZ6hp8+3W7plyRcA7cMFrCMlNpPYaCmvreeUDIdBw4ADx5QEsM/XfoT0zcUFkrHJQauimyp8LY6M7AX/+GzjHG0WbW6YFYnNys/QE2mRgPX93dxJS/JaSEG3sl9Bq4NYy3F5tmaYeBm5aC3dSskkZpEG/A2Ns9mJruWgxzhdC8AV87xQfXAVX9T1FbNJH2lzI9BDByw44I2B/cjizpFwZyYdnXEs2Rf+cHv42vXPehIKFkqSkRFhRHyWPvCOVZbT3Chej2rhakw4E3OwJm25WtQQriMI03KEkpb35QkgaeBK0PHNfDMmwDoQT+0wiUUvbxtuRqa0Maf5AkyLjYeVTqzdYeVPk24Bl4jBs4kFM+JacPRXMac5zZBCYBxuC6udDCnMxILqfTQJz58K+5414vwlFOPtgy8lImZm+NWpdJzozpTSwzDtjWfbRhhqgcWacq+M1b5IJSmS+MoS+0E0OCapY4IIjRqCUKOPIIjoXhaN12D3YvRrXTInzu6PzfoMqPb5uo2Zl2oynTLLXc1RROW7/TdUEutg5CFqM3UUqy0C4eBL7dzrOg+pUlgaaVjnsFW4NptHLgrP9I1zGQJNs3WjFG0GnjGjmFDaw8st7FpplbaHAGAqVcC2MifWtrdgFNbedgtX62a51gzcAA4sEQGPEFRsAJTJrRWOmWJTUav0cCBH925T/+GE7DE7EJEK8dWnneXUEwmJvSxowEH4GrgfLliWErizpzm7xADL6wDqeYzcH2jnTBCz4AL4YYR0sO/f7ntMHD63OxNWJJQpMkQo+uhvzMmoVgN3DJw/7kwep+JGrHaM8W3q+8lprjWXCMzBXsOrSgGbp2o6rjlTEwbe8/JBWd7joykfQotHVXRyFITRVJ4Eopf7ImOV9NSiKlGKOyWai4DTxwDwTNoRcBuJIKHnFmtWwhraPhu6HQOwDWO1Dc33r8AQGnItkyAut8hDZxWINbBLMzzxuOPa3qSaHZcCWW5pfeSTC0DJ6ciUDYuqv3uBETwGXizrZLemoyBE8IauCjJmXws0ASZJtXmpsEY+MFm20TfmDrbia1EKYTdqHn/ckv3U6J9Pu6qEbDRXo4vxYsD99tsi1lpsqefw94SCkoSyvdv3YNXfvD7uOuhpcrrHxZTYcCJwcxkYQ3c1z4JPIyQ0MmlyXqkgbtncQXNdu7ocABNADwMS6CWJCUNHFCZn1xDA9SAoMFLbbTxqFYioOshA5okwiQGzRoG3jZOQB/GC04PFNsiTEXXuFEoiyttXZdFZUYuaqem7Tdi3OX4ZTquEwfOoka4Bt6opUgSy+T8VHqSUEwUCovdVf2gBjZVh6R7IqElFC9qgN+7ht4uj9rlgzPwGjOAjSwx98Ew8KYbhUJSFVUjBIAb7lcMfMemGVdCSYR5frkGbmS8zN4bOgdtyk0RDWQ8uHRGOjHXwA+1OoZFBiUU3Q9+KQYiCY0sMVE6B5c7jgbOj1HX+jA34Op67DH5c5CmlphUgY+9hWYHG+s02VsJxejWhWQZ15aBU6ijf/4kUf94FVC/Fgpgcy4AXcwqp+zTxMmhINBEXmMTY5YkpTjwe/Yv40d37gsSiVExFQacQnw4I+YaOBkcAbceNE+XJ5CulbAH4h++eweuuGt/KZKBJ4AAMBo5T6Wnz/cttR0JhT4n0HEpHpVYBWfgxokphIkDNxJKs4ONjazklKV2ArYamknY0M4yvvQspHLwzjUyw7QPNttO8SFyrPpRKAQ/PtZGobgaOGUJ8hUL1QMnRzKV3syLwvFvqOMFGLherudSOhMmabMEkl749XAIIRjLtRKKk4hkDLg2EonbvoxNWCShFExnpWJcxolZt8Y1LygSSv2e+o1WDu3Crsgo85FHoZBOXeNRKCvWD8Mdy/ya00Q4dU8AG6raqKWmYubBZjsoodCqYanVwXI7twy8KJyxwp8D6reuGniamOdxodnGhrpb+I07/JUBtwl76vdqXPk1ugEbzURF4wBX9gi2ORW6GqE0zzXtO0qX4a9yqB64DSNUxyansL+13TgwFQZ8mWU5uhKKt0wUriMrTYQjrwDQdTRgtj7iqHsMXIUuMfahP+cMfIbpmr6E4rAQ0sDZUo4n8pC3nL67EmDgs7W0dD10TEA9UEqWsQ6ajpeJSVAGXL1WjMcdpEA5E5NAmjWBb6lGBjAR1pG7zPqLYs8LqcvFCrsJQDkKRZgsQzpbxgaiO+Ds6kRVzHOjUHxwZY0ycpVj1H5AceyUITk/Y52QAJCmCbbp0qZkSFq5ndwoTNQwcBYXn5MT02PgaocitfohzZ0YuAqNVW0jnwhn4K28MCyySv/P2PNLcBi4NjIHlpUBV05SV4bhJZY3b6iZCA8nkY1LGIm7ognBd2JubKRqdcYYOK8xQucyOzFliePE5Hq2cZazBDS6pgUmTbr76ypi8cVr7kOW2oS9TlEugcCltYz5tYjcH2x2VJmPAQp89YupMOAqSsJ1hKg4cNWBjz1+EwCVhFBzWG9AQinsDvA+/EgG5fl2Z+Ua07VrjIEDKGvg3owOEIO0JW3NNlKFDSNMkrLxPNhsq+Qb73ooWxGw2admUihIA3eNBKBCtLgRcycqn4GXB55br8I6HQ2T1FJEptkavWfiujWzMfW9C8kmZ4pCIdnH3ZFHSrvBAq/zwjNOs0SYAZYEbjZ/j3wGgDtZUSmA+w+o5JMtekelFca8qHKj7ZfcKbxVpYEXhd3xSbXBvUeUiKb6TUkWzbZiuTO1xBgensGo2u8aF9+A19j9IBgnZi3FNr3h84MHmljR53N09CRxnqPNFWGE/Nmn6+hWodB3YnIGTv4iLqEk7Bmn6yLJEAAarI2cgdt8grJviU9stMLZs9gy0iBJKH4RMi6hkOOa2nnZnXvx43v2Y76RBYnEqJgKA77MsqTMMruwEsqvP/0UfP51T8czH7ndCaQnpxkH1VAJLeeIYRN4Bh/gsjzA1cCBMlP1I2LU/3Z3bJWGbL/PwwhpPMyyJTHtAOScgzGTVkcxANIcqTobl1AI84yBA27xIbrGJmPOPng4lV9OFrBGn69YGiyMkFYgibBRGX5RLnI0r3R48SurgXMnIFXJAxRz5mGCaeAp5wacfAYAHFmGWN59uj42ZRdydrux4WaAug5X14DyKJSOF4Vimbj6/nI7d6KHiIHP1FI0stQkdtVTN9vY32fTl4+yVJRq3/D46tN3zKGWClxz7wEsa6do4hhwN/Rx02zNTMLtXGLbXAPf/P1nlnxJQHcGyuuBL7dzw8DzQseBs+c8Z+PX6tCJTuRxo1AAmBjye/c3jZxBY9OtMWT/fgYLOaX7RDXXfQPOt2dLHSemxH/71JW46KbdqyKfAFNiwJstW2fEsLRO4TihHn/iFvN9y1ySkkzCE3l81NPyctHXwDn7UKn09rXvxHRXA1YD5wV6eDvomecDxveM+2GRCWMmrVxVyHM0cBYHzlnJnE7kIXB2RO1uelEoHCtO2VbrdKwbA26v1zgxUxtGSCsQqi2eFzKogVsnptWzKZGHR4xwJ9hs3a1pE7rX/C1+n/jAV5ERtoTxURtrTvvo3MdvsSy8lVsDzutiAK4GrvpLsPa7k+xSKzfPDMlIzbbKZq1xP0yWOLKaeuZZKKa3YlMSisvAG8yAz9RSnPGwTbj67v1m31c/koX3F4URAuqcL3n8cTjNq0lDXbCxkeEffm2nkZ2cNmSJ89wrBg4roQhhjOpzzthhawgxFuxsMuHIl8BvnHsK9h5awfkfv1x/v8zA+cR23hnH4BfOPkH/Xji19Ok++uVkVf9am9MpJB7UpQO61YEZBVNhwF/xxBPw6087BQAPhbL1iH1ZgQxByPAo/TGsi9JuI4Q0SVxpIXEzO+tZ4hhYX0KhgSUYE+Op9EnpfJaBh46ZeRMMYCMdAKuBm3ohhXKGkZbKmeact6Tj+iSdw89M5OCV70Kp9GQIU6YBm0QezapSff0kifhVFcnAtTpFORNTugyWZ81uqGVOsaqqKBSCY8DZtQohsLGemfodJKH4zvPjtAHfsqFmQibp9/zcJKGYUg3CZmKa69DHXG53rBPTMHDF/rhjmAy6uRYt21Q5cPlvCWZ1q9vwUydsxo/vOaAyO2uplwzkkhj+HK108qCTvcmcoc87cwc+8J/OLn2HSyiqr1Imoaj7/tjjN+POv3gxzjnlKJNs1nYYOMJhhInAk04+Cn/+ksc47wE2wghAaWMT/gzzMEJ/KzzeH+TXAVSNdVo5bj6SGfgLH3csfuGJajbkDhvDwD3HXhaQDAhGQgnIUTUdNUFIhSh51k1KvDY+rgbuno8MpqOrMycmZ88AnGJWoWNyzdccj73X6rhRKH41Qq71Uhw4YaMzUWkGbsIIy/3Y7kjG/K3TjkdTANBRO3YisGGE0CsQm9iUpsIpMpUIyz55LRSpfQg8KilLbCLPrB78bSbt+OB9XHcMuHuttnaKZVGGeSUuAz/56I1KQinsOZxJskFp9yEG7kooS63cYeWtvECTORV5MhmX1Wo60sfUk/FuHb8f5hopQEB/+eSjN2JhpYM9iy3M1FzSUEvcyK4NjKGTrOWDniOKZuHfoT95MSvVV5lxYha6dhGHjd6yz0UupSmExu8jjavnnfkw5zoAl4G/8YVnOOdomEnVSijtTmFW2v5zQH/TdZDvBAA2za5O3cCpMOAcThRKYAkDWAMUMjydLhJKLXGXvGkiMFP3Dag70Ko877wdzgOb2D0e/SU2sSX+3qzHwP3EpES4YX9cEzdOzEAUytFzDaddPIyQrq1ZEYUC6NR/rWGTE1MI2wdGA+cSCtPAyQBTHLhJbPKYM1Xa45EdlNZNYYbq2IyB11PPSPSSUOwL/5mhlQk56wC7bKdznP3wrThh6ywefvQGRwNPEzhEYYPH3HjcPE0iZORu333I3jePgXNHej1N3XBVrSWvGONS9pn4lQhplUfjiCKr9i+1lAbuMXCugft9zY3Z2372THzsN86xDJxqsbPvmImrKwOXpZVEqXJhpioXms0zuISiv0tRRIBdPZEGfskfn4ef/anjnHNwP46tuS5L9WYcBi4sA+eVF/37MC6MfFQhRCqEuFII8cVxNKgXiPmqWFmbrcZBD5hvUOcamU3kCUkonkThp+LzSAd6vysDp4fTY/UUx8ylFcCyEZeBuxq4P1lRfwCagTMNnIr7GAmF/XbrhpozKDZ64ZKAdWKGJJSVTm52EOL1wEMSih+FAujKbU4cuA0V48yZ+pBXiCx0JmYi7DUpBi5Mn4WkKQ5/oqav+NdKoYRbNtTtVmyeBv6Sxx+HS/742dhQz9RONTIsoRBzM1v2OROQ+v9ZjzoG2+YaOLDcNvfRauC5ibBxGThfTQinUFfZiVneQWim5hINCkXce6ilo1D4BOFq4BQtwvuS8BvnnoJnPnJ7KaOTt4lH4fD3N9Tt7lXkxOSwJSisEZWS70rVPYzRODE1A58LOFjpWRYCLIywMHuZ+qU81Lls2x5gDNzf9GNcGMe08LsAbhjDcfpGLVVGg2bbEssIME5A3cBOQQXi1XuP3GEdLn4mJmXCEfhylbRLbmD9MCka4Kk3KdiStu4Sm/7m7zVKEornJGQGfKWTO4as0yUOnPabtG0PRKEwB5FPYlvMADtx257/gWqAAy5bazMGL6XNTOQMjmvqRnYQKgrFT0XnhqWW+uGgKIE+FsI1tP5qgzNw2orN18AJKtQsN5mYfIVFSUyk6QPQxaxcBj5bT/Gys44z/amuRyVgkSadpW42sOMs1+exPgP3ukPZkLwKJuAmj83UU6f/al4Y4UwtKUkIPug5CkkoXO50VoR1Ff3CnZgcvoRCY82v3wPY1RYfy2ajFx2VEgpxpGPkhdTJVFpCYVEoQrgTUppYKYgz8KotF0fFSAZcCHECgBcD+NB4mtMfaG9Hs4Fp5htwYuDu+xsbmYmAoAfg67/3TPzc44/TxxVdH8YsESy5onyOp5x6tNcOq6ER+JZiPLsMsAPJVlcEGimXNhIz0OmBKzkxmUHPc1tEKtQf7oApR6Ess3h3aic1t6WzzuyelTBx7bXUOuc4s3cNOJdQyCDD6w/bFiqkZeuBq/PxBBg6dj1zQ9+6xYGnnvGqklAoVDARIqh9qvMmOgrFnsM/bpp4xdK8RB4AOPEoVfKWYpHp/i00O8ZpyTejcMs9+OUgwqtCDrtLTXlVOVtLnYnKZ+A8l0FdX0Bu62LAa2zC9w14KpiE4vU13TceRghYpuuU1Ajcf+oX26fldvO6+mazkdwm8qwwEmOv306aDzIDzsNux4lRlfW/AfBHAOarviCEOB/A+QBw0kknjXg6BarpYWZffyDRQxFgU7wWij0eZzo2IaGUBMGWq3WzvLLf8T3NfHlvjilgdln3o1CMhKKP6de4TpmEQg+R48TMCze7U2vg3MiFzgOglIkphNXAaVKgLLSlVo6W3jAjEa4+DagHnwwW19ZpWUxtTQRsHHjixvrS8fxtzUgDp/bbPuZJPQKdvD8DzmPvgXIkETHdo3QEikB1liNp1WZLtQRsUrHO1pUQA2cTByUH7dIZoHTfFpqagbPzKu2fy3weKahw/nF0vPs348mCDgNP7V6yhF4MnEAaeMiAq4nHfpdi+XNd+Kwkoejv0r2gfmy2C2ecVF0zfb640qnMELUx9dI6MYvC+L1s/W/7G27Q9y21cPyWWTzl1KPx2vMeUdkvo2BoBi6E+FkAu6SUl3f7npTyAinlTinlzu3bt3f7at+gZah1YrqXQR3Ioy4AZaQoCy5U5CeUiemcly0f+YD79PlPwQ/e/JxyOwNOTJJQqB64EwduJBR7nf5y02a1UXSEXaa3cyvLcAPsJ4tQOFwoyYS3nReQ8nVEyvoMxbHXM1snu5qBF46E5FdnBFyGTasBf8LjBoBXXfQnAh/Ux6lnyH0G/lMnbAag9Fx1znIdcQLVmuH6s5FQGAPnGrifSg8Ax21RtbT9PU4XmrqgmZOL4GbnUhSKuXZv8gqVdO14RIjnNmysuwlffiYm9Yk5XzcDXrerRt4eIgj8fcXI4Ti4OfhzRNcNkIzoHsvPBaHrAGBqqodgyjLrMg/LrRxSusl1ifDHt5VQqObQe37x8XjE9rnyCcaAURj40wG8RAjxIgAzADYJIT4hpfzV8TStGptna9i/1DbMwXfsUdKHz8Bn6ikOLLdL4U70gNaSBB10YeDMoPKH2JdOzPcpjDDlRseNY/Y/4+fN0rK+SINsI1uO+slH9N1my11OCqjPtuiVwvZ5lTZdz5LSQ5wmAsitH4DadMz8DPYstnDlXfuxba4RlCo2NlKzXCaDTxEX3OHK61/QMpk+p8OSwdm71HLK9wLwaom4RszX0n34fe0zZcKfvPhM/PELzjDnFcJWI/SPS78lpx1fYTVYO20UCoIM/DgvPZ/kOsrGdcrmZokXhSI8TdZny/a7//bap+G23Ydw10OHTHtVW91wU348X0Kh90J/+yDS4TNwW27WM+DkxAzkbRjSQpuYZNZo1ryQxJAPxJafyEsyk2lDjapwqkJri9oZ72y9FpJQ9MtmK0dj8zjcjNUY2oBLKd8E4E0AIIR4FoA/WAvjDSjDs2dxhUkobieRDOKzKbVRqUoKcZY9+mvlcMTyrM+z43qBvuuzepuJ2T2MsMzArQHkhjE0YFX0R5iBP/nUowCofSK/98ZnIwmMuSwVQLts4J5+2tF45I45/PtV95l63v65/9cvn22y7TYyQ+6Uz+0UOkTN/p77BHzD99DiCuZnMvCm8iiVLE2YQ6vsjPZhSvfqj8gh7juz1KTCJg3GwKv0ZQqb5PeXM3Beo8Wmy9s2+psz82dNOQ0T5zM/DpxPgj775M/4E07cgrNO2oq//tqN+nqIgbuOeX6ZfjayuiYmEXZh4GZXKuE+06ZOEGfgOoW/UxFNY1edPgNXpSN4m4MaeMqew9nuEgoVWqMV6axHInwyyEsC+JnT48bqHn2VsH2ugd2LK5Vx4ORE8o1slrpJNOZ9fbelx8y5Yw+gJX2ZgVfBz64DyIlJrKJ7GCGl5fIqe7Q+2GCWo55Xn2m6fOs3ADhl20Z8+vyn4M9YRtrxW2ZLBZn4b/i56ZrOOFYVDyOnqW2/+vsJJ24xe08S6+ITDmBL3wpv8qHPhXD7ee+hFuZnMo/xcz+DcBxavjPUR+r19SE92fXKmEuE3QjCJ24+A1fX435GG1zQ5+Ts9R2DHH6mqM/A/Zr1Rh4Kab/sPpqUb7aBMuAyTJXwlTi/942SY5AD5/z1p5/s/Ib3W505vEMM3Eb8uMc0Ekrha+CqCFiVhEIhk5lj8HtIKLlb+bJRS4wzn8d9Uzt5Kn0/RG8UjCU9SEp5MYCLx3GsfrB9voHdCytOXWYOCuMKJdYY7TUQ/eFv0+XHdQP2xvdTGpJnbRJ4PfAs8wwNM77qXPb3ahPdxFzbRs7AA2wzTYQxJPwhqpJ7qtpu+5aYYmpYqio3ag1eyFDSRENaOGfg/n3g15J6zPWhxRZO3rbRCWfkYYS1NDH7PNZTT5oKaeCifG+A3jUr+EYQ/m8bxojY+ujcsUu/4Q7ZUKExAPjG7z3DGFJu/EoM3JOLuHwQdt4lpWMaKZIYuBca6zoxE9QyN6IiJEdy/OnPPQZ/+nPlNHY6XmjPTIrlN6uVkoSi/rf7wFqD7MeU8+NurGdotltMQing+9AIZoORwtXJs0T1ufE5eato3tRQMuE4sTr5nauM7fMNNNsF9i21dYyyz8B1iFUFA5cI63Y8vBAIOz9Igw7tul36LotRJqSGgZPD0X7fj4zgLHhFH4euzaZ4l40g/W8ZePWytnfb1f+8T+caNg6WuksEluuAnWgoGsVEoRgD7l5/WQPXDryVjpZQ3PvDy7Byp19ImuIwfe191qtqnBAsDryXBi7cOHBA3UNeZCvkxASA03fYwC632qDvtLQ+Cto9xshQoec3MGH4O7Vz4jI34zkxmQbuy2v8GN3ga+rUFt+J2c0ZK4SbsMTDTbM0PCYANSE9dKhlrlmVMQ63mceB++UWUm3Ay+PPbfdqM/DplFC08+3+A8tBBwRJKDT7PUzvkE2dTrWkCbx2SOgBfNLJW83flP153Jay7OCDHgy+h6Wq7wDkspyp57NPn8Greg90bDuI3AkiMf8vs4JHg4I7QwEeKyzckMMuxgJQNS0AVWCKHzfMwK3h9icxQLFjZ7kq3EmSD+Zu0USAjWcvM/DunEYItSEFbyPBGnBroMthhMKpJ84TnqrQKDHwsgxi3xMsmql83fR8cIP0uvNOw/PP3IGX63pDM44TM/UkEut0LK/Sumvgoe/UmAYeklC6HZczdHqumloSEaw7+aP5xIersexvBhICDyPkY2iGZacmwpWE+DOsjlG9icU4MJ0MfE4Z5PsPNINe77xwnZjf/O/PxEo7x1999SYWs1x2vKh9CMs38xO/9WQz6Pbo2Nxj+2DgxF6lE9kCm4kpXMPnG5XMY8FZmhjjweushDRIvvNKP3p9qe3e4CxYn/K0Y+sMDA9cMvYbWNgjAKzkbt0W+swycJIebNvnZ7JS2CVFHzjJLZm7Q32oacMy8ETAKR3AQYZtmWvg3nWkSYJDej9Lvq1fN2dXmYGr19ywU6o3Z+AhMkL1QLgB2z7fwAW/ttNeo8dYC6aY1FKBvHAngYEZOPvOMfN2HPH+JCemaVPFKsqPA19pqzBCx/izv9/18sfhl885qbTPZwjc+JYcyWzS8Rm4n729mphOA64Z+H37l4PGSXoSylwjU+FQqaqEJxGO986lu4M7QSWmqJu5e5EMeD8M3DpH+bkou4wbLIBFoSTWKAEwogHf+YR77gfRwPuFYfj6PNw4uruUU5vDxyHDXa2B2++qa3GNAr+/8zM1xxg7UShJgtc/+3QcWungl550It73jZtLbeQILf+B/jTwdlGOSQdCTkyYuiin6jjgWhqOA+92j5zley0JyiBmxZTaSTF03ZSQ1C3cj2NjPXOqF2ZpgtQ4Pcvn6YeBc8P8jp9/jJP4ROiXgROxqrGV3cZGVimhzNRSnHPKUbhR72EKVPc9twH1EgO3489fRaZraMCnUkLZqgvr71tqB7OorITiJ6cIU9nOkR2ME9NGVVR1PO2PSMkW3VAtoVRlYpIcoV6XUvlTYdgQl1CCUSiJu5HCoKD+ofOQIaqlrgGnU1dJKIaB18uRBmEnpnvcusfAObtJHA1cYOvGOv7qFY/XBZbYCivQtioJZb4PCcXsQNTDgAshcOuuRQB227+yEzOsgXP4USihUFaTYJYmrA8DBlzvKtT0SspWYX4mKz1f9Iyd8TB7TebzPiYGv2gV7TBfklC4fyhkwAUjNKzvS2GEgd+GEvl88IAGnhSoslMtcfFJiK/lryamkoFzljQfYEx5RRx4miQ2ZIr1+svOPh4f/f6deOUTT8QN9x8M/pZAS7ZBnJjMflsnZmBHHmtUwoOaah4DKprkwYNNvO680xwvuuPEJAllGA2camvriITCYeBuHCxQLaGQ4TYG3Hf48IefLX15LDxBSShgv0elAew1+K2E4r7vp9KXf8dSzyvC/YyEIgSu18/T445XGZ1cA+eJSF0ZeMXy3U2htzJbNwnlaB2fv+iVlK3CxkaGfUu2ZnYtTTCzMcVHf/1JOOukraXzhCRIH1Us3TV8voRS/j7vfnq+DrXKYYShvuXH6xWF4h+Da+B+9nCWuIXfooQSwExN1UBu5UXQ6SSrEnm0hCLgaqQnbN2Ay9/6PADAzQ8uAKhmrf9y/lNxya17+nJO0IMtGQVPNGugiJew/EHtdSeALElYFEqCv37l4wG4pSpdCcXVBweBqXeuDRpNHPUSA3dlHx8mkYcyR52VD0pM2dfAeds3zdSc7cB4qr0/CPlxw/opfa8/KSF0LN9WNTwGngi1E8wP79iLk3SBqkaW2jrSibuCqALvg21zjWA5B741WzcnJjHwfg14lUP4WY86xrznlzzuharJ3nVuVuvYoe9TuOpCs13aHCL0/Pf6HOguoaSsj8ulid2JaDUxlQYcUDtc7FlsBRl4lYSSJmr5KyArl3rddvMBgMedsBmP0/UxeiF0jDSxu4z4USjlVPqQhFJO464HGDhPbBmGBRDDoMFJc1AtS5woFGp+1bjdaDTwMAP3y7762rQvoTT5ZCVsBI5f0KzX4K9yYvYC/7p/XAq/I804SYAPv2YnDjY7RvrhIXqNWorjtszi2M0zpX0kOXgfnLh1Q9DxmbGViJ/NyrFVa+CFLH1UiV67qYd8It1Q9R3Xoe+NjS5+DMBKdYXUfgD29dBq2pFQqsIIuQFPXQPONXDnmUiSkpa/mpheAz5Tw57FVnCrorxwnZiELFW7uwhRVD9EA6TK9wLP8LTHtxKKvyOPL0eUd1NJDBP249VrqQqRzJKyYRpFA/clhUaadJ10fGyZreOUbRuNXuqHb/rHouNR87lMsG2+gT2HWvb7CY+v9u91NVNW7w1nwLsVbqK+WmKFt+Znag7J4KSikSU4amMdl76pXAiNg7PzTbNZsN49l5K63ZOjAxsK90KVf4MQqiXfDfSVMx7mFjGtqndS1Qb++QanDW4kSMi/EMrE9lEVTTLDavr4EkqaeNLLEGNvEEytAZ/X4V6hqIHKRB7d0e1clhib/52xGHByYsKVUIrC7h/oGjD1v43AKDNwKivsGx5VYjc3E5CT7DFCFIpfpdDvF2tww/1ZzxJc9AfPst/3WJWf5NSNgZ914hbc9MCCc26TSu/1Va/ICL+v//gFZ5S+E4ITBeMdl+Qm2i0nNDn48cT9wN+IoxboG15SwK+0yEESyiDoxarnBmTgQgh85refitN6VOjrdQ/5e912xgqNZVen7t7mJ59yVDkOXI8PX0JJhHBk3dB2hOPE1Bpw6qSwBq7+D0kQhCpnS0h7HRZ0jMKJQrElMoXwHlJvWW/iyNmGvo8+dh433H+wVLOjnqldWsbGwPVxZrLug8FPPur3uPS3P0h9DZy+//Kzji85pxJhN0ToVp+jWxQCGeH/+qz+6jV3Y4U02S12M+BcQulzYi1X/0tKv+e6eFWIpPpNf5PGN3//mU5Nl25w9m3tc+/HJ518VM/vhHarcj5nKw1nZyyvhlHQiek8h9VtvuKtz8OGeoq79i6Z93hFyESU5Ri+4ooMvALEvEMa+AWvfiI+8r07TP1hgmM8KnQvP4Z8FBgG7m0SkUtK5AnrfIaBew9tliZ458tUIgLt2kLw05udov9DOTHDDDy0qTI/by/4Btsv+2oNuHpPCIEb3/ECY6z4adxqhNUMvJsTa9AqA/z8JQklcyWUUJdwA9o3A0/JH+E6PB0NnN33XrLWppkML3zssV3PyTX5XvfWL0g2LvTrxEyFcFh3adUYuP9++eEq0IrF9zPx8eY/k37hq9XE9BpwrX2HNPCnnbYNTzttW+l9Z2ecigdtxdTTGN17HAojTITaUaYT2FLN33IqVN52ppYG2YufFecYsBFS6WdrYQnlzGM3YWMjNXVB+pWSa95A8DNi/VUI4Bo612Fk2ZbfTt9H4KMqDrwXQkXQzOtEpcYTAw8y4B7F0oLnTATe9fLHmUJkIZnP1FTpwcAB4Jo/+5m+zksYpI/6TRDq77zhvwnGgZ646f9+bkhIQuTPSz+1gqrk2KpaROZ36eh2pBum1oDPd2HgVXAKWFUa8OGTX3yYB8NzYgLagCduwgElkZQklB5tBtxaG/w8TjsGAP2+4Rtw3aYv/+5PAwB+4e+/XzpfN5S2iKtg4FXH48ZYCIHnPHo7PvirT8TDj94YbH/VffSlmn7hTiDl387WU+xfsqnyPlwnZv+D+5fPsdsRhpyYZjs5lko/6LVVoR/HJGGcDLzbZAmwFatwJRTfgDcCz4AT+jiEAa+zFaErx7jHWu0olNU9+irCauADGPA+GHgrD+/mMwyqEnkA2pUdFQxc/74koVQ/aH5BIC5FVCUqdANF8lQxcIJhQX1r4D4DF8HXVU5RX4OeqaV4wWMfFjiPnoAqBlAvmaEKbiZo+XOn2H/gGoh1J2K4iRUISyg2CsXGgQ9ieLthkIlgXOcE+nBiMj8Gv8+zfWjgfOOLfmoFhZLqqF2+hNLr3OPE9BrwWWLg/S8i3BKy4Ut//pk78LKzjsfbfvbM0RoIHkboRqEAdk9I/mCalOKSE9M9XghVDHyYQlaAzTac9T36JQ3c1ax7oeatglxGzsP7wr93BkuXS6PjzFRsWDu8hGL/D00y3ICHdFti3Y0srZykeqFbKr0jQ43JmE6KgfcbB54mblE0n4FXGdFsgDFSTgqkidiVUGyWbFnmWg1MrYRy/JZZpInAjk29U9oJ/eyePVNL8b5fesKozQNgw5NcBq7+7+hawnwQz5tdu21ML0c3Bs7LyAKjh0PSbkf9hhH2zcDZNSVCOJOSet1LQimfO3geMuAVK6lhE3l6MXd3z87y52QI+tW/Qwin0qusTiGsLDcsw/cxyETQbxRKX+ftMw7c/6ykgVcY6FpKFRz7kFDSagMeyotoZCnaeSdKKFV49hnH4OI/eFZfNUkIvgNttRFK5KEb3NFhhBzWgKvXpTjwLoPDbhFG/3fXgHuBasb4kRLlmiODSRE1bxItSSg94sp76aJ+u2YqdOZu2YrdQMaz6tx8wusWBz5KijXdA24csjQptW2+0b+8OC6sFgPvFgdeFY9PqCIxg6xS/XNwyZLf5i0605Um6MjAKyCEKIXS9QK/UePU6qpAN1ZW7HRfiiPWD57VMPtn4JYZutEoQzPwosqAu22gSxiKgXtOzFSwUqgVh+s3ZM0Y8IpQPeraQRm4378+ekko1J6RGHjg3vLNhqltg8iL48Ko4+rc07Zhp95AZRAnJoe/MXUVibESyuBtNgw8cSPJKLuUS2Wriak14MOAM5a1YOD00PGC+I4BLxlD94H048i7DQ7fcVUlw/SLjm60bwB9ZmwTYvo7rh8J5OucvSIo+LvdbG8vCeWhRZWSHwpD7YZahdEgVIU8EsbJwLlheuojjjZ1cqhtvTanGCcSobOLR5RtPvFbTzZ/D5pNS+gl+xFCUlS/MJmYIhzyam3NAEVnhsARZcD9jUkngV66HsCXdoNIKK4kQD8dloFTfHcvCWZQZ2nNi0IppdKTDFAxWfXTf/x7VQyc2vvaZ53WV7t5G7u1b4PZqzQsAzXGwcADDrKXPP44vOTxxwGwJmOQCK1RMVNLsdTKMZr5dtErDjytIA8lJ2YlA9f+oiEMeJ0kFCGCE/WTTz0at+85VIqIGTeOKAPuSChjTDiowjGbGthYT/GmF9k6G71YBcDTyAeQUBL3O6G9DwdBx9trcNtcA3v0bkRuW9X//TpresWB07K/6krdKJTq/qiqSEl4+0sfg9edd1rXKoAhhHah4SAJpdLJOQYGHopC4aBaLIOuLkbBB37lbPz9RbeZsq7jwLASCu2/SujNwPuzBfUswfMevUP/1kooQgi87WfPxLmn2+TBP3/JY/ArTz4Jx/exd+4oOKIMeCjxYTXRyFJc9/YXOO+lPR5KoMzA+0nkKZWi1f+HdizqB/5O5V97w0+b7eRC5+3XIJVrofAoFLsB9cFmuF61G4VSfR5KyKpiukfPNXD0XKOvNnPYzWwrDLju7yonLDHwUfIMeoWoHdI10wdJchsV5z3qGJzHaoSPA06xqsBzTGPJ74d+JZRBV483/48Xmr9rTEIBgN8495TSOR97fH9lp0fBEWXAax77mwSSfhg4GeFS8kD1g+aHVNExyCs+KEhCoQe1yuAlFYOoCk4ijO/EZGGhtHVd1993kVCoEFO/9Ub6hfUxhD+n81XJOzaMcAQGHtDAORZX1LWHCr1NE3gf+pElQLUB9klLFfGpeSG3g8BPnJsUpjaMcBg01oEG7up6FQzcSCieBt41DjzMwLduGI6FvfQJSk89tkeYpkm5H2rTiHIMLRnwkFxD3wn97YN2IxpFaw6hV/XFkKHhsE7M8UahcFgJZe3DCMcJTnZC/ZpU9IP/3arV0ChOzNCG5ZPAdE/RA4IXlpkYAw8YoDe/6AycvsMWt7dx4IOHEfoa7dYh6j8DwPnPOBWvedrJPZkiXc4wmi5P3AGIgXeXNXgPdLuH1A9HbRxcJukGHj4WwmxdfU67IfmwYYTDM/Djt8zixKNm8cgd88HPjQEfo4RyxsPmcW6gQNxqgt/fUEYtDYdShcw+x/YgmZg+zGbfg2xttAoY2oALIU4E8E8AdkDJtBdIKd8/roatBmqscPtaODFDcJ2Y6v/zn+HWovaNMfpIpbchVa4B2TIkAxdegaDq82oGPgTTzVJR2pD5mPnujJ93Qbcwwl/ceSIOLLfxG08/pfpLQ6BX4hJFHVQN7HEw8K0b6/juHz278nOqhjjOOPCvvuEZYztWv0j6lFBISjrvUdtx0U27+z4+PXvD2AKSUCZsv0di4B0A/11KeYUQYh7A5UKIb0gprx9T28aOUP3ktcZgTsxw1mO339DxF7QTcOuQGni/GEVCSZPy9my9tPR+E3lqaTJwiGA/yHpIKDvmuzP+xhgYeC9QPfJpl1Dciprl54KeBTKm//BrOytXPiHYTccHbxu1p5iwhjI0DZBS3i+lvEL/vQDgBgDHj6thq4F1EQfehxOzKg6863EpaUg/UAtNVdJ0WA28X5AdGybePA1IKIByvj3zkdvD52N/j6tc6iDoFQd+XI+wsZkxMPBeILY615huhbTXLk9+FEqWJgOFMRLz7hT9G33/t1MroXAIIU4GcBaAHwQ+Ox/A+QBw0kkn+R+vKda6FkoIvbb64u/TJPO+X3oC3n/hLV0HJB3WGnDFwIeNQukXg4YRcpTKyepjddtwoF8n5mqBlt1VxqWXAc/SBK9+ysNx3hnjDbnj+LfXPg0/vHPvxCMkRkUvjjVqxU0aX1T3ZxCsFwY+sgEXQswB+L8A3iClPOh/LqW8AMAFALBz586JXq0joawDDbxSQvE08OeeuQPPPXNHX8f1GfiwGni/IAYynITiJfL0cQjXgA98ypGR9WDg/ax43vHzjx1rm3ycvmPecYpPK3pNQCYKZUgDfvxWNdkO47+pHQ4MXAhRgzLe/yyl/Nx4mrR66Ee+WMs2VOnwyRDMgow+SYAHl8cfiRACaY7jCCPs557wOW8S99A6McOfD1vjO6KM3hKK+n9YBv7WF5+Js07cgqfqreoGwXqJQhlaiBPqSf0wgBuklO8dX5PWBuvCiVnRhmHCm4Sngb/8bOWOOGrIMMJ+0RnBgKeJWw+9n53t3UzMtb+HNVYDI2J10SscsCoOvF/M1lO8cueJQ026h4OE8nQArwbwYyHEVfq9N0spvzxyq9YAwxSwGQe4TFBlBJ5y6tH43eecjscct6nv49LlUEW6P/yZR+H1zzl9VaMdAJuxOawGztFP/G7SxwS4mqAwzW7n/i8/fQpufGBhrZp02KJfJ2YV0Xn9c05fNZlt6sMIpZSXoLrm0LrHemDgVRLAxkaG33veIwc6ro1CUa/7jeMeFW1i4EPoiP7198XA2d+T1MC7tfUtLx59O76IPjRwMuBZ+Hu/P+AYGgRTL6FMO9aDBj5OBnnsZuWQ2bzGsb+dfDQnJkdfDLwPJ/BqoteOPBHjQ98SygRW0xTBMs0SylRjUgy833rWg+K15z0CJx09ixc9rrxD+2qCYmjHIaH0M6nyr0xiEjbJH6tcqD+i//ExCQNO+91OmoEfsQZ8YnHggVT6caCWJnjZWSeM74B9okUbPwyZyNPtdRj2O1smkGlIGvikixgdCegVVkr+ntoq7zsZAjHwSRvwI1ZCGTb0aFT0k0o/TRg1CoWjvzhw+/ckHNHWeRUt+GqjV6li2rd1EmN5vUShHLEGfHIa+OTbME50RohC8ZOp+mHgk570UiOhRKw2TJZvhYEm41mfQFLeeknkOXIN+IQMgb+J77RjmCgU6vqShDJgIs8kMEoBpIjBQP6VKgaeT5CB09id2jDCacekjGe6Sk7MSaFNg2yQpCMoBusb7H4SKoiVrXW0DcFq4NGCrza2zzXwmqc+HK86J1xDiQz4sIk8o8BmPkcn5hGFflLppwntzuCOpEQIFFKOJCEdPbe6GaZVyNIooawVhBD485dW140hhj4JBu7XHpoUjlgJZVLoJ5V+mmAHUf/XYiSUIa7/oC7StW2IDYnHgSihrB9Q3Z+JSihRAz+yMGjxpvUOSqUfTEKhglCDX/9GXe/56Y9Y2+29CGmMA183IPY7CHkYF2jD6Of1qBK62ogSyhpj0pmE48Y//NpOfPT7dwxU9XAUBv74E7fg31/3dPzU8ZsH/u04YMLHBt8DIGLMoDDCSaxk52dq+NFbnrvqG6b0whFnwJ/76GPwzRt2Tez8/dRCmSacc8pROOeUowb6DXXBsLsiPeHELUP9bhyIYYTrByRfTCoYYHuP7fPWAkecAb/g1Tsn6njopxrh4Q4joUzh9VsNPJrwSYMiQA4HIjQsjjgDniQCyQSLKLpOzIk1Y6KgLpjG66fsz2i/J49owKMTc81xuDkxhwFp/9NoA2Mxq/UDioA6HMJxh8URx8AnDWdbtymUEMaBT/2Xp+BfL7sb81O4a3oawwjXDWgv4sMhHHdYTN8ImnIcbnHgw+BxJ2zG406YTBTJqMjWSQJHxOSdmOsBUUJZY6SRgU81jAY+4XZEAOeernIBjtk0+WiQSSEy8DVGcpiFEY4Dm2drOLDcnnQz+oLRW6MFnzj+4PmPwq88+SSzG9WRiGjA1xjRiVnGd/7oPCy38kk3oy/EOPD1gzQROGHrhkk3Y6KIBnyNMektwdYjNs/WJlZdcFDEDR0i1hOiBr7G4CVTD4dU+iMNcUu1iPWEaMAniMjApw+piHHgEesH0YBPEDEKZfpAtywWs4pYD4gGfIKYxlTyiIiI9YNoQiaIKKFMH5JYzCpiHWEkAy6EeIEQ4iYhxK1CiDeOq1FHCqITc/owo7eOO23H/IRbEhExQhihECIF8AEAzwNwD4AfCSG+IKW8flyNO9wRGfj04ei5Bv75t548taUAIg4vjMLAzwFwq5TydillC8CnAbx0PM06MhCdmNOJp5+2baAdiCIiVgujGPDjAdzNXt+j33MghDhfCHGZEOKy3bt3j3C6ww9HajGriIiI8WDVnZhSyguklDullDu3b9++2qeLiIiIOGIwigG/F8CJ7PUJ+r2IiIiIiDXAKAb8RwBOF0KcIoSoA3gVgC+Mp1kREREREb0wdBSKlLIjhPgdAF8DkAL4iJTyurG1LCIiIiKiK0aqRiil/DKAL4+pLRERERERAyBmYkZERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSUIhrwiIiIiClFNOARERERU4powCMiIiKmFNGAR0REREwpogGPiIiImFJEAx4RERExpRipFkrEcPjorz8Jh1bySTcjIiJiyhEN+ATwrEcdM+kmREREHAaIEkpERETElCIa8IiIiIgpRTTgEREREVOKaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiSiGklGt3MiF2A/jJkD/fBmDPGJszLqzXdgHrt22xXYMhtmtwrNe2Dduuh0spt/tvrqkBHwVCiMuklDsn3Q4f67VdwPptW2zXYIjtGhzrtW3jbleUUCIiIiKmFNGAR0REREwppsmAXzDpBlRgvbYLWL9ti+0aDLFdg2O9tm2s7ZoaDTwiIiIiwsU0MfCIiIiICIZowCMiIiKmFFNhwIUQLxBC3CSEuFUI8cYJt+VOIcSPhRBXCSEu0+8dJYT4hhDiFv3/1jVox0eEELuEENey94LtEAp/q/vvGiHE2Wvcrj8TQtyr++wqIcSL2Gdv0u26SQjxM6vYrhOFEBcJIa4XQlwnhPhd/f5E+6xLu9ZDn80IIX4ohLhat+3P9funCCF+oNvwL0KIun6/oV/fqj8/eY3b9VEhxB2sz56g31+z51+fLxVCXCmE+KJ+vXr9JaVc1/8ApABuA3AqgDqAqwGcOcH23Algm/feXwF4o/77jQD+cg3a8QwAZwO4tlc7ALwIwFcACABPAfCDNW7XnwH4g8B3z9T3swHgFH2f01Vq17EAztZ/zwO4WZ9/on3WpV3roc8EgDn9dw3AD3Rf/CuAV+n3Pwjgv+q/Xwvgg/rvVwH4lzVu10cBvCLw/TV7/vX5fh/AJwF8Ub9etf6aBgZ+DoBbpZS3SylbAD4N4KUTbpOPlwL4mP77YwB+frVPKKX8DoC9fbbjpQD+SSr8B4AtQohj17BdVXgpgE9LKVeklHcAuBXqfq9Gu+6XUl6h/14AcAOA4zHhPuvSriqsZZ9JKeWiflnT/ySAZwP4rH7f7zPqy88CeI4QQqxhu6qwZs+/EOIEAC8G8CH9WmAV+2saDPjxAO5mr+9B9wd8tSEBfF0IcbkQ4nz93g4p5f367wcA7JhM0yrbsR768Hf08vUjTGKaSLv0UvUsKOa2bvrMaxewDvpMywFXAdgF4BtQjH+/lLITOL9pm/78AICj16JdUkrqs/+p++x9QoiG365Am8eNvwHwRwAK/fporGJ/TYMBX284V0p5NoAXAnidEOIZ/EOp1kMTj81cL+3Q+HsAjwDwBAD3A3jPpBoihJgD8H8BvEFKeZB/Nsk+C7RrXfSZlDKXUj4BwAlQTP+MSbTDh98uIcRjAbwJqn1PAnAUgD9eyzYJIX4WwC4p5eVrdc5pMOD3AjiRvT5BvzcRSCnv1f/vAvBvUA/1g7Qk0//vmlDzqtox0T6UUj6oB1wB4B9gl/xr2i4hRA3KSP6zlPJz+u2J91moXeulzwhSyv0ALgLwVCgJIguc37RNf74ZwENr1K4XaDlKSilXAPwj1r7Png7gJUKIO6Gk3mcDeD9Wsb+mwYD/CMDp2pNbhxL7vzCJhgghNgoh5ulvAM8HcK1uz2v0114D4POTaF+XdnwBwK9pb/xTABxgssGqw9MbXwbVZ9SuV2lv/CkATgfww1VqgwDwYQA3SCnfyz6aaJ9VtWud9Nl2IcQW/fcsgOdBafQXAXiF/prfZ9SXrwDwLb2qWYt23cgmYgGlM/M+W/V7KaV8k5TyBCnlyVB26ltSyl/BavbXuD2wq/EPyot8M5T+9pYJtuNUqAiAqwFcR22B0q0uBHALgG8COGoN2vIpqKV1G0pX+82qdkB53z+g++/HAHaucbs+rs97jX5oj2Xff4tu100AXriK7ToXSh65BsBV+t+LJt1nXdq1HvrspwBcqdtwLYC3sXHwQygH6mcANPT7M/r1rfrzU9e4Xd/SfXYtgE/ARqqs2fPP2vgs2CiUVeuvmEofERERMaWYBgklIiIiIiKAaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSU4v8H0t+PQeueM4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABgmUlEQVR4nO19ebglRXn+W72cc+46d5Y7wzAzMDDsiywZVllEcAE0qNHEXRMjGjXRGDUQozGJRuMW9afRENx3RYwLEpEdhCADM8DAADPAMAuzb3c/53R3/f7o/qqrq6vPcu9Z79T7PPPMPWvX6a76+q332xjnHAYGBgYG3Qer3QMwMDAwMJgejAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLYQy4gYGBQZfCaeXBFixYwJcvX97KQxoYGBh0PR544IHdnPNh9fmWGvDly5dj1apVrTykgYGBQdeDMfas7nkjoRgYGBh0KYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwKeBNZv3Y+3WA+0ehoGBwUEOY8CngU/c8Bg+dePj7R6GgYHBQY6WZmLOFkyUfPiBaYRhYGDQXhgDPg2UvKDdQzAwMDAwEkqt8AOOd3x3FR7ctA8lP0DRGHGDgxSb905g5+hUu4dhAMPAa8Zz+yfx20d3YO3WEQScIzC9RA0OUpz/6dsAABs/dXmbR2JgDHiNIHvNGFAsB/AD1t4BGRgYHPQwBrxGcIQW3GIMJS+AbxkDbmBg0F4YA14jKOjEYqET0zLeA4ODEJ5vfD+dhKpmiDH2DcbYTsbYWum5eYyx3zHG1kf/z23uMNsP0rwZY8KJyY0ObnCQYazotXsIBhJq4ZHfAvBS5bmrANzCOT8awC3R41mNIKLgXhAyEM6Bsm8MuMHBhdEpY8A7CVUNOOf8TgB7laevAPDt6O9vA3hFY4fVeSBjXfZio130/HYNx8Cg5Vi79YCIQDHoDExXyV3EOd8W/b0dwKKsNzLGrmSMrWKMrdq1a9c0D9d+EPOm/wGYWHCDgwpfv/uZdg/BQMGMXXE8FIIztQTO+TWc85Wc85XDw6mmyl0DwcB9mYEbA25w8GB4IN/uIRgomK4B38EYWwwA0f87GzekzgTVPpG98MWykVAMDh7M78uJv13bhNF2AqZrwH8J4C3R328B8IvGDKdzQYbbMHCD2YSrr38E7/7Bg5goVXdOMslm97h2E0dlUCtqCSP8IYB7ARzLGNvCGHsbgE8BeBFjbD2AS6LHsxrliIGXjQZuMIvwwz9swg0Pb8P1D26t+t5iOZ7vvTmTQtIJqHoVOOevy3jp4gaPpaNBDFwO/TYSikG3ozdnY6Lk1xTfXZLkQ57t9jJoIUw+YY3QxXwbBm7Q7ZiMSEgt9e3l+W7q4XcGjAGvEboJawy4QTej7AdiRxnUYJBLXoA5PS7ecs7hJomtQ2AMeI2Q478JJpHHoJsxLskmfg1lIYqej5xjwbEtw8A7BMaA1withFI2DNygeyHr3rUw8KIXIO9YcCyGsilq1REwBrxG6KqwGQnFoJsxVicDL3lBxMCZYeAdgq4y4Lc+vqNtd35Pq4EbCcWgezEmFaaqZVmFDNyGbVnwAm6qcXYAusaA37JuB/7iW6vwX3c81ZbjGwZuMNuQkFDqYOBu1MzEsPD2o2sM+FO7xgAAe8fLbTm+loEbDdygi5GQUGrSwH3kbQt2lEavWxMGrUXXGPB9E6HhntvrtuX4+jhwI6EcDPj4rx/D/6yunqnYbZCjUO59ag8+9stHK76/5AXIuxbcqB2VMeDtR9cY8P0TJQDAkFRQp5XwlTDCvpxtJJSDBNfe/Qze9+M17R5Gw0HNGRgDHts2gm/ds7Girl30AuRsC3YkoZj2au1H1xjwfZF0kmtTFTSZgedsCwXXNgzcoKtBEspgId7VVkrQEQzcSCgdg64x4HsjBt6uSSMn8rg2Q96xjAZu0HaMTpVx3EduxJ1P1t8sZbzooce14dqxGahESmIGHkkoJhuz7egaA04SSi0JB82APFltiyHvZkso9zy1G8uvugF7xoqtGp5BhC37JvDbR7e3exgtw+PbRzFVDvDFW9bX/dmJko+enA3JfqNUQRYsRWGEjmDghsC0G11jwMmJSQx8suTjlw8917Ljy8zfta2QgWewlWvvCltPrd60vxVDM5BwxZd/j3d894F2D6PlmI6wGHAOx2KwpULflfw6IpVeaOCGgbcbXVPU90BkwCnc6eM3PIbv37cJh84pYOXyeU0/vuywsa1IQsmY7LQczPRuPfaMxzs1y5r9XWNmkkvj+Ry2xRLniea05wfgQEJeiTMxTRRKp6ArGDjnXNQipkmzdf8kAGC0hjrGjUA5xcDtTA2cCA159HeNFnHf03uaPkaDGKUGRUh0erYhjY9N417lB6EBtxMGPNxVvvgLd+K4j/xv4v1yLRTASCidgK4w4FPl7DrEreJYMgN3bIa8my2h0KhopH/y1XvwZ9f8X3MHaJBAo0I8u4VksmmsBJ9HBlyWUKK19vSu8cRa8wMOL+BGQukwdIUBlzPGaNK0mhjJ28WqEopg4OH/m/ZORI/NhG8VKjnj6kGns8yZzCgvyJZQVND5TDoxzXxuN7rOgNdSNa0ZkNmGa4USylRGS7V4PSTHaiZ869CoomezmWUGgc6JqZ/TZMBDBh6aDTW5zaD16A4DnqiaFvWmjB6z6Yh/04DMxKo7McMxqfba1FBuHRrBwJ/eNYarrn+kAaNpATTL4MrvrMKtj+/I/IgXcFgsycDV80YyStEPDbusgZuuPO1HVxjw0WJcwEplsa2KC5cnqys08NokFN13GDQXjXBivvsHq/GrFoaqTgdZG1I/4LjpsR1YtXFf5meDgMOxWSIOXJ3T46WQPJE2nnPiVHpTjbD96AoDPl6Mt3W+0MDD/xsVbVANSScmRaHot5tkwFX91DDw1kFmkvsnSjj/07fisedG6vqObvBZUBlYlYDTXKs057yAw2aVJRTa/VLz496cLcIIzXxuP7rCgI9VYOCtmkR1OTGj5aRuR2ezntppkK/N3Rt2Y/PeSXz5tvqzFTsdNC9VJbEkDHj2nAu4xomphMZSxcLJUmjAe1xbSCgHCwOfKvu496nODAPuDgM+la5bTOSoZQZclVAiA65laYzG1p6bjUHy5knJKCWvPoPTKv/KdHD/xr3wA57pSCxHv39ksozHt+t3HpTIo2ZiynOa8izIYd/jxlEoB4sk+MuHnsPrr/0/7I2SxDoJXWHAaRIN5J00A69zUU4XshziWBbyrg1AL+FYjCZ48rVWyT0GyXOdm2Vb/md2j+M1X7sXdzy5UxCL8aKPzVG4KhD//utXb8VLv3AXdo2m6/L42jBCP2GYBQOPDHghZ0tRKAeHAR8veuC8M+v/d4UBHy96cCyG3rwtnJYcrdXA5UntRBIKoI+bZeIz4WtCEz9IGEsnQMfA6zXgncq/D0yGkuLolCeM6CNbD+D8T98m3qMSm4c27099j885HMtKJfJMSYaKdr86Bt7pMfKNAq3bTrxhdYUBH5vy0F9w4ETNVGW0ilXJF8+xJQOuSaen9UA3lyxGbtA8yAa802+gG3eP4y+/fT8+d9MTNb2fnOeezzNzC1Ris3pzOhrFi+rFyKn0JT9I5DeMqQxc0sA79Xw2GmUKXZZ+7pdvXY+frtrcphHFmJEBZ4z9LWPsUcbYWsbYDxljhUYNTMZo0UN/3oFjszgOvMUauHwcJ0rkAfTbKsHAIxZkCU3cGPBWYXSqjE/+Zh3Gi54wcvXu1lQJvFlRKXet34Wb1+3EV2+vrWG3KDgVBJnNiNW59uCz+1PvoUQe+XcWvSBBSoQBL4XPhQz84JJQdAz8szc9iQ9e93C7hiQwbQPOGFsC4G8ArOScnwTABvDaRg1MxthUaMBti2kYeGsmUSkRRhjGgQN6CcVXbi4UlVLPWMeKnmjkbFA/vnPvs/ivO5/GV27bIEJAZaN2z4bd+MptG+r6zmbNNU/IgrWB5lzZ55ksWDXgu8eK4JyLqp50XIspxazKvmDbQFoDl6NQygeNhBL+znZlgVfCTCUUB0APY8wB0AugKVkPRyzow2mHDcFmTNwFiXk0quZFNUyV4kkdMvBsCYV2CaoGXg8Df/PX78PFn7tjusM9KCEzZLrhjkkMXD7/r7/2Pnzmt7VJFoRmab40p2tltLTr8/wg8zPqupgs+/jqHU/hlH+5CTtHpwDoU+m/fe+zuP2JneLx79btRFmSVQo566ALIyyLyLfO+73TNuCc860APgtgE4BtAA5wzm9S38cYu5IxtooxtmrXrvrbPgHA1Zcdj0++6nkJBk7Mo1WyhMxKQidmWkJ5ds841mzeL5jaTDTwB6NmEO3qQNSN0OnBJS+Q5kr69YlS7eWIm83AgdqMBJEGL6hdA58s+fjNI9sAAM/tn4o+H6SiUADg337zuPj7oc37cdvjOzFV9mGxMKKHolAOljBCwcCjU9pJhnwmEspcAFcAOALAoQD6GGNvVN/HOb+Gc76Sc75yeHh4+iNFKF0Eip5Zq1F86RfuxCdvXDftYycMuK2PQrnwM7fjFV/5fWrLbmXEhdcCE3pYO3S7sZIXCOasmyt7xmqP7W0WWZCZbC1zhKJEyn6FOHDleyZKvjC8E5EsIuqBZ8S7f+41pwAI0+knSz56XBuMMbjOweWULysaeKNKFTcCM5FQLgHwDOd8F+e8DOB6AOc2Zlh62FIUSknSAWvB49tH8V93PF3X8XaOTmH5VTfgJ/dvTtQkd6zKGrjYsgsnJnnt67/wnTRZOh2yASeWVPSDiru1PRWSM1S71qyoC3lcUzXEGhMD94Mgk4GXNRIKSR/0m31qqaYw8N5cuLuc0+OK402Ww/6ZQBxXX6t8+eP7N+Ed311V03s7EUQASLadKHVOPPhMWqptAnA2Y6wXwCSAiwE09So5VqyBEzNtJkPdsDN0In7vvmcBhBmYZZ/DkbaROqOcqkOhhBXWg1Zp/LMB8vmlG26xLDPwZCy/F3DsHa+98XQrGPhU2cdgwa34ftmJqerQnHMwxrRzjYz9+p1jWH7VDQCAs45ISyikdw+SAfdCA16Iktcc24LFap+bf/+zLqnomAG6cZMBH29RF7BaMG0Dzjm/jzF2HYAHAXgAVgO4plED0yHUwJPGUWUajQTtTmmi9uUd7J8ow7GZlBySZkBepgZeP4PrxOyvToXsUKYqeiU/EOddnis9ro3RoofdFSQUtctNswy4zKKz2vTJEE5MDQP3owqDurHSPF61ca94zrEYvOhn9rg2Jsu+KINMDLzkhU5MMuBA2Nhhts/NGx7ehpGpckpCmS0MHJzzfwLwTw0aS1XYLDbgsYTSPAPuK5EufbnQgNuMIVdBB1SjHojgTEdCMQy8dpT8dPhbyfNTuzYA6MmFBrye+hbNasihMvBqiBsPpxm4zzkc6OfNrrFwtyGn1VuSE/PlpyzGEzvGRNamkFA8X2jghJxjzfq5+e4fPAgAuOLUQwHE9f3H63B8NxtdkYlJcGwmGcf4/+se2JKq9XD7Eztxw8PbMr9rx8hU1QgPchAVBQMPJ7DFWMX0bHXLPp0oFDL6RgOvHfK5EpFAXqAtrUr69p6xbAlF1cCbxsClndlkLQa8nC2h0K5Rt9ujNbJTWityGKFtWSg4sUnoLziwWCyh9CQYeHY1zix0UvRGPVAllIli5zDwrjLgtiVFoUSTZ+v+SXzgpw/hL7+TlN+/+fuN+Ood+kSNqbKPs/7tFvzdTx+qeDzV+UUT2GKoWBNZ/RxVtSvVIaGQ0Z/tLKeR0BmUkh/LDLKto/KolZyYqr1plhNTjiSZmqGEQkZGnpd5J7nMqZYKgEQij2Mx4agEwvlOTHuyHKCQmxkD79awQ9q50c3SMPBpwpHiwOmk0qJ9bv9k4r1+wEUUiMq0aXv989VbK7KCQGkaQbHfjDG4FUpq0uKhCT4dCYW2tYaB146sMEKZpf7Dz0OHGhnK0ansxaiy21Zo4LKEkjU3p6Q4cDWMUJX9AGCoN9sp6kgSim0xFKI5TpnPodYdoFj20ePG5iLvWCjWeT66tfgVrdtAaODhnFGjd9qBrjLgdhSFwjlPaeCqcfQDLgyvylLkx0/sGM08Hn0lOb8odJCxyiVK0xr49CUUw8BrR5YBl8/7D+7bBM8P4rlR4Zqo16tZDFKngY8XPRxx9W+09VHkTMysFoOy3j/Uk8s8tm3LEkrMwPvzoXsslEr8RBQKAOQcuyaHq4xWlX5uBGTSp+7gxopxf9B2o/0jqANUjVCetLQVVre3fhAb+UpMaqwCAxMOU4WBqxr4hp1jiW2pmvkXp9LXL6HMZk//bx7Z1tB6L8SMHIkZjZf81NyQdeZKjsn0jb8FDDyas9tHwmzJn2gq3iWcmJp5DyTnODkjgZh4EGxJQrEtJoz0QCE04LlI6y55QeKzOceqOyy2ESG/6k67WRiVQgXpXPpCAw9fk29o7UJXGXBi4DLTokWrFtbxOY+dV8pr8oKuxHDjxRD+X4gYeKiBxxLKa6+5F/91R8yU1FBH3aKqBvsg0MA/dN3D+O69zzbs+ygkcPFQXBSTqhFaDDjriHlYNJhPGvAKN9VWtcSjjEggZuByCzMVIg5ck0rvazRwcr4DwCFzkgVDHYsJshAa8HCO9xdkBh6I8ERC3rEye8JmYaYS1D1P7ca5n7oVv364+Y2mRzSEjFj5eHRt1JthO9D+EdQBigOXJwItRpVlewGX5JVsJlWJFajfSXdcxhjcKJFnquxj91gJ+yZiZxgtMPpunWOpGtSa4rMNnHOMl7y6apEQfvvodqz4h9+kEiooJHDxnB7x3ETJR8kLUHBtHLWwH37AhXEEKrPqVnVU8gKOvki6IANOZVx7cxoDXo4llHQiT/i/vNvrzcfRwiceOph4f1gPPPzbZkzcMAaiZKJ8JJX4UeVCQn4aDHymBpwS6+5pQX9KeUddFhJKkoFnlfJtJbrOgPt+koFPSSFVMgKJqauLVO6NWAsDJ5DmxVg48R2LiSgG2SjQIhQ3EIXJ1wJiZPXqjN2CsPfi9JIiPvPbJ+AHPLWd3jtewkDBSWUybt43ASe6Xl7AEwy80jVJSShNjEIhzXnTnglwzgUDlI0vIVFOVpPIAyTndX8u/o5Tlw0l3p9m4KEB743+J6mE0u4J+WlFocxsLvdFv2OiBZmQSQae3EnT/OkEAz6jRJ5Ww7EYfM5riswIGXh4gisx8EoLuJwy4BEDjzL0XNvC3mjbLhsFcVOJbhS+n2bgG3ePY35/TjAdFUIDn6UMnAx3LYkrKmhBOcoWdvdYEQv684lQOAB4dOsBuLYFKyIAdGzGKpdEVbN8m6aB+xx9kaG+9u5nsGnvBF50wiIAsSGVkWjokGXAlaQlwvz+fOL9chq9bcUMnOQSkkp8nyfem5tGHPhMncC0G2lFJqTOp0UGmx43K7GrHnQfAw+4cOxV0qCCKAqF83SygzyR5Ow9FfICdm0mJjXNY8dmYtuum1QkD6glcAHgBZ+9Ha/6z3syjy3CCKdh4LoBdMOrJXFFBV0/Rwnj2jtewry+nAh3m9cXRl88d2AKtsTAqbb7QN6pyApV30kzo1DyUojeTY/twCNbDwDIkFC8WDbMjAPXtJQDIKQagmMx0UjCtpiI9SYnPRlqlYHn7MYw8Kt+9jDe+s0/1PU98s1/rElsPCmhkBQaPVYYeTvRdQzcC7hguAMFJzMRg9iSrIWL16THlUKb5M8V3LihMrHjnG1hd1QMSRdPPDLloRxtP9XvA8KiQlmwZrkGPlmiVl3TMeBJ3wJh73gJy+b1ChY51OuiP+9g094JuLYF27Lg85iBD/a4FVmUarCbVcTICzhsK0lGNkUd5vM6Bi5kwyAVB64aGSDcMb7vkqNxxvJ5qd8rH9e2GFwpqQcId517vJLon0mYTi0UnQH/0f2195WUm3TsGi3ijE/cDNtiWP3RF1UtAFYvRqZCA26xdEs1NbGnnegyBm7B97nYdlOokw7yRNY5OAmVJAo1m40+RozGtS1RT5ouOGHhQLhV3Tte0m5rq0FIKLNUA6cei9PZDmcxoN1jJczvywkWmbMtrBjuAxDulqiaJbH+/ryTGQceBMmdm20x0cmm0fADntpNbIuaLujqfcdx4BU0cKVswPsuOQbPP2oB+vPJG4LN4oQhhnhtuJG/J++GceCBMsbpZGKWZhgHTjfUiZKH7Qfo/HDxdyMR7/KsOJFHIWLGgNcJ24LCwLPvunLRK5VJyYa50iSUX7MtBg6K6440cIeJrdbIZJKdUbjWrtGiuND1OMGm24i30zEyVcaHrnsIH/vVowCmp4GXFU0SCA3uvokS5vfnBAO3LYb+aI7YUd1rP+CCSQ/1ukk5zQvw5VvXY6rsp+SThQN57BipvfRsPaDOOGcun4eVh88FADx3IHTQ/mTVFpz9b7ck3i8YeKCphSIyMfVzrTeXJD22JEMyFu9OiYnn7VBC8QKeaPzQDicmfX686CfqpssFyR54di+e2J6dnFcr5LWqRqGo1QnbiS4z4Bb8oEYGHs2Vko6ByxenwqSSa5c4liVCtIiIuNL2U/ZaA8CiwdiAq8eSHU9Z6dK0kLqZgX/0F2txzIdvTDz3izXP4SertuCBZ/cBmK4GTgwofm6s5MEPOIZ6YgPuS+F5rhX3cqSb7lBPLjE3fnT/Jnz2pifxtTueSt1sFw4WsGOkuQz8J+88B//+6ucBSEpy20emEvMkTuTRl5MFVAklRr8S1WIzlqj5Qt9H0kretQRhkuWWWpyYX7/7Gdy1Pm6j2CgDPlHyEjf+fZIB/5Ov3ouXfOHOGR0HSDYwVluqqYk97UTXaeA+5+LuW8mAyxUBU4k8QW0MXJ5wlhXfgWlBuBJ7UZnyIZEBlxe9aAMnHf/AZBlDvelU57imePc6Mb+jSdL59UPJJAxVA//yrevxP2uew83vvzDze3VbWLqOsjPQD7hgnI7NYEdO6P1kwHvdxFygsYwXvZSxWTSQx7N7JjLHNBN4AUfBDcemGlhC2efIOUw454GMcrIaAy5r16pTVJZFGBjOPnI+AODFJ4ZRMHnHlmp/xJ/LOVZUiyVOQpKx7cAk/vXXj6V+QxaoEUUl0DXeN1HGJ26I2yNWKkg2XZB05XOeSuShc8t5+JzaEKOV6DIGziIGXl1CERPZSzPwUo0MXH4twcCtWELJAkko8rb73qf24P+e3pMYT9a2nIx8NzNwFZxz3L9xr9ClgTQD/+xNT4qEjSzQ6ZMlFLpWrm2JWGY/4CILkeLAAWD/RBk9ro28YyWMCvkdOE8bm0WDBexogQauizoBpAJpsgNeU42QTonMUGUj3afcICwpCgUATloyBxs/dbkw5DnHEn4KmYFTSG0WAbr+wa0AgEGJZFVaa7VUYZR/++OSTLKvCQbck2STOAolnc/RbhbeVQacJiJpmCoDl7eZMhOpFIWim4BBwLHtwGSSxbC4qhsd160QxjjU6yLnWGLRv++So+Fzjt9v2J1YdFnbcrWrT7Px/h+vwT0bdjf1GH7AEXBg6dxe8VzZT0cJAbVp44lmwJHmm7MtIaF4EgOXIz1GJsvoLzhwbCsxF4gABjxtbBYN5rF/ojwtzb4aPD8em6pRE2ieyjd0P+DpOPBoDRyYLOOiY4fxxrMPwztfsEK8rhZgSjBwDR+R368ycHlcKh7esh9Aco1UMuC1ZORmRYztnWgCA4/Wn3wz10WTtVsH7yoDTlvgMWHAkwxc1uTISBa9IJ3Ik4gDT0+qnz6wGRd+5nbsGo0nhm0xvPuio/CvV5yIK05ZAiCpgatwLQsL+nLYGRnoOT1uGDvrB4kCRLrwQ87j6IJWMPAg4Lh+9Va8/tr7mvL9dGOlBTC/PykZ6Yyi6lMYnSrjwU37Es/J7IekJteRDLgfCEZb8oKYgU+WMJB3EuWJE+NFfFNhDFg6twcLI0lsZxMcmV4Qjy0s4ZqeV3H55GQdFzW5iAzKgckyFg/14OOvODkRYqfKFLbFUnXPZSQNuJV6vpgh8ZFjUZY3KhnwWnwhZT+AxYA3nn2YeK43Z9fVValWyPOCzqnai0B+rV3oLgPOkgx8UGHgsrGT9apUIk8VDfyep/ag5AXYsi/WPG0r3Jq/6ZzlNUkoOcfCvP6c6H7iWEwkP8iTQ5fdJ78+Ewa+Yeco1kYJIZVAx6siQU4b8QIIH8/vSxpw3eLdrxjwd33/QbzqP+9JMDWZfZYEA49LooYMPPy76AVCq90/UUZf3kl0eAJi4yazri/82am4++9fiCVDYX2VLfsbr4N7ARfkBNAbBZqnJDXkbEs7twMellveP1HGUE/12OhqNa1zsgFn6eezCIZOl67U0KSWfICyH8C1rcQuZfGcQlMMuC5NXudfaHc2ZncZcElCYSy93fzbn6zBl25ZDyBZfyQtoYSvhRpoegKuiXoCyhEkOrWkkoTi2haGenIiTty2LOSc9KLTLVZ5hzCTLfsln78TL/t/d1d9H43BapIFp2tBjHmuasA1i/eAYsBXb9oPIC0hEOg65hxVA3fE67YUhdKfd+BEUU20QyBbxnmc7UtMc+ncyIDvq72c6a7RIj5xw2OpWPPP/PZx0XeSxilLGTqjQLtLGldv3k6VVgbCm9pYVIExq5HDr95znshSlcNjdSCtG0iGHNJ5Kflhw+NP3rgOX7x5vXh973hJVDYkqKUJ5BtwLfkAJT9ATtphAcChQz2JQnKNgu4a0FPya9XaMjYbXWXAaZKPFX0UHDvBDgDg1sd34vO/exJAMug+qx54b85OMfA9Y0URbSCzCFtj3MiAu3b6tZxjYU6viz1RpqZthe8ve7zqHVzeIeybCA3ZLet24Bdrtqbe2wjQ8ZrlTBeZa1SW10k66mQGTobhwETSgNP1lON/kxJK7MRMauCxhJIw4AUn1VWJfn7AY2mL5IfFc3pgMWDL3toZ+Md++Sj++65ncNsTcSid5wf4ym1P4abHtkvP6SM5ZKMuNHCpwbZubvsR+wayGzmcvHSO2FHI81oXBSKTFDUOHAhvqGu3HsB/3fE0/uPmJzE6VUbZD7B/ooxjFw0kvitVVE5TVbQSyn5Yk1x29A4P5LFvvIwg4Imb4kyh1lkH9GUKDAOvA5RWvH+ihJ6crTWcNOnlRBi1KBW91ptzUtEGazImgW6B0fEXDhS0rw31uIkYWtdhqbj0agycmu5+656N+M/b0t1ZGgGarNXCuKYLT3ECqedSZuDEnlUGHkdXZDBwTzLguZiB0y6tKGngo1Ne1DIsnP5kWCyhkZfxzO5xAGG6PRDekA8ZLNTFwHWVAYsZzkg1ExOIs3mBmHQQAw+zSHnKvxMEUpx7hVZqoo2aXVkDl2uAq5mYQLS+pDGMF33BiI9RDLi61uRzoNuFcc7x5VvXY2N0LcoejySU2IAP5B2MFT188sZ1uOIrv8/+IXVCZ5jjLFcuObyNAa8ZFP2xe6yIgmMlilmRUThqYT+CgItJGfZEjCcK51xsaXtzdioZYc3m/VotWG/Aw+MvHMynXsvZVmIBCQ3cVzVwnQEPxzTU62LveCnc0peDlFGrFdUSKETyRpMMuBq3rcbNyuyrJ8OA00KRF3oiDlzLwAMtAwdCA0g3YOEDiF771UPP4errw96ZsgNw6bxePLNnHFd8+e5EgkoWHPH9GgOusDi1siIA4TiVfx8Zvf6CAy9IM/Cndo0J2UyXX0CgU5Fg4LrfIJ0ztRYKEJ5X2YiNlzyhSR+3eDDxXepuV3bI6iSU3WMlfPamJ/Gmb4TO9bIfwHUYeiTpdKDgYqzo4boHtmh/53ShM8x0qst+IHaRhoHXAYo62TVaRMG1E9u7tR97CV5+yqGichqhrDCEsFcmMXA75SRcvWk/jj9kMMXudfowHX+RhoHnHAtzpQVkWWEbNrXJrq8cPwg4roqMx6KBAryAY2TSQ9Hz6zLgsnauRnSoiDXwmr++LqgGXL1RyEaZEnFUJyZd0u/cu1E8l4wDj/0aPRoNvOQHcKQoir4oCgWIdwi6pTjYExuLpXN7sHrTfjy05QA+dN3DFX5xCJofMksmoyUbL1+KQpEhM/CUhJJ3Ig08OX/kbjWVGDhdA91xZTgJkhQ/L5yYnp8wYuNFT5RYPv4QlYGrBjx+rAsjHI3qC23eG+56SsKJGTPw/oIDP+BCamwU9Bp4LMuSvm808DpADHzXWBF51xYFd4A4/KpY9lPOLV9hvJ4fLpi8Y6ccK49sPYBTlg2l2IujkWuEAdcwcNe2Er0IHYsJJ6a86NSJsnO0iFsf3xl+b5QMtHu8iKlygMmyX3P9if3ShK5m+IWE0CIJxbEYfvD2s/Cxl58AICz3qr5XvenQ4pGr18n2oCRJKIUcSSM8UT5VZuADURx4eMw4s1GFnBkpX89azhQZxw27xkS8v2qIaZy6HZ58vJLixOzL2ZkJR4RKUSh0rWVWrbv8rvS6LoxQ3eGOF33hOxoeSK6LtAFPN0GRMaKE2JIGLtc3z8pczSpRUSt0RcTkKJSCW5mByzv9Wx/fgYs+ezue3TM+ozHp0FUGnMIGyz5HwbUSLNkhA64w3LLHE1EAQRRj7dgs1Zh1rOjhwGQZh8/vxVyFvegZePjcqYcNpV7LOVbiJmBHEkq1KBSZiSyKFsCesZJw3tXKwmXPfFUDrjRfbjTUGjCWxXDuigV4y7nLsXAgjz88s1e8tyj9zv9duw1v/86q8LMVwrrkY7g2E9Lah15yXKKjjZMhoZCPROePcBKRF7HhqMVfQDf9r97+FM76t1swMlWuSQP/xCtPwoXHDCcIyl3rd2PXaFH4AGhnoRo+WYqYU4GByxpuJWPnZDgxYwaezLMYj9YQEN6A5DWq3mxkf4ZOQlHnbdkPNfC+hISiN+AzlTZ0N3M6V2WfJ3Z5Onzrno046sM3Ys9YEfsnYp9Ko9FVBlxO3Ck4tlioFguNQsG1UxKKqjnfvG4nrrnzabhWeAOQWQGVpVw8p5Bi4JU08EWDBfzNxUenXlM1cJJQKmngcoF6SsffO14UC7VmAy5F0KhyhApPMqzNgFq9jWwCY2Htjfue3iOMCBm4kcky3vm9B/G7x3YgiDI4VQSaKJScY4Exho2fuhx/9YIViZAzOda6J2cLRik6JlXpuKNGPVWDoyR6/fzBrcJwJxJygmQ98DecdTi+/RdnJtjvN37/DM74xM3YGrWRI+apGj6aP6cdNpS44aiQywbQWdRq4LbMwCUDbscMXNXAPckfcehQ3J+0soRSOZlrMupt6tosKaFkMPCZNgPXauBS2Ga+igEnTf65/VNiLPXOn1rQZQY8vlghAw+HTywhZOB+IgSopDCEv/nh6ugzLFXTmAz4IYMFzFMllAoGfLDg4v0vOga/es954rW8YyW2sJbF4DoWSkrkgDoB5MxMcmLtHisJtlI7A4/fV6sG3mwnprhRSMc57bAh7Bwtio7ytKjl8zCV0ThAGweuOANlo6P2dIwZeDLMMQtyVmItp0qV3UYmy5IGXj0KRZdn8GBUxZFqvKgdaSjJ7YdvP7vi2Oh+EbLK8G9tGKHS8IFABkwlJOPFWBN3bIaTDp0jXqtXQpHn+pZ9E0IDr0VCqdeA37JuR4L0aKNQeBwCTF2fsgw4zfGAx8XHmtHFfkbfyBgbYoxdxxh7nDG2jjF2TqMGpkOPa4tJJDsxRe1ix04l7pQ1JTeBqPuInZRQtkU1mBfP6cGbzz0c5x+9QLymk1By0QKlSAW5Ep5rW4ktLEWhlL3KGrhsuBZJTSFoslczxoS6JJSA0sablcgTSShCA4/PE+2qJks+OI8bUY9Khmm8qDfgCQYuaeAq/vWKE/Gr95yXNECOJcbhCQY+fQM+JkkHBHUsk2U/FYVCLf+0ceCa30LzQy1KRZgo+WAsXfNERWxgYh+OmmAVjiEjjNCOnZiyEZsoebEBtyx86k9OxkdedgKWzetJhxFKRlbXGk1uknJgMowvzzlpJ6YO9WQwr9s2grd9exU+8Zu4wqHOMAc8rsdSqMLAaX5woKMZ+BcB/C/n/DgApwBYV+X9MwJjTLDwgmsj58T1I4DYgMrbsbIfaLuuFMtBJgNfOJjHuSsW4LtvOwunR/q2zolJC4wiFeRF6NoM8/tiJ45tMeS0ceDJsY1Kkzbc5jNMlX0tA9+wczSzo8xWqWO7mhSjotlRKJTmrkooQBw2OFn2E4tOPg9ZadZ+wHHzYzuw/KobRHy2q1kkbzpnOU5eOidx48g5lrimcZRM5UUvtzdjiuBw1iduxin/fFPiuVS8e9lPRaH4wthVTuQh0I1tbkaI4HjRQ49rV70ZCwMecLzzwhX44mtPxcuftzj1PlnDToQRurEGLs/nsaIX/yabYaDg4m3nHSFCaGXIfgCdAZfnetEL4kQeV9LA83qdvx4Gfsu6HQCSEpJWAw9iNi0MeIb/IC7LEDdh7ygDzhibA+ACAF8HAM55iXO+v0HjygQt+IWDeSkTMpZQgFCHI5R8rmVWE2VfOBUJ20amMK8vJy4OIHnrNQvitMOGcP7RCwQDVxMdktt3SxwvoYH72Qyc8/A75RsSsZKNu8dxyefvxGdvejI1LgBYvWkfnrd0Dnpzdu0aeJMZuC5lvyeKGJmS2CmQPA/jSojZW845XHzfd/7vWQDAI1sOAKi8TZVfyjtxIpiu6bQOlRj4uOYmo0pSU2U/1sDLSVnJ1hAEHUanymFlzIwIEzLg1UBzM+BhDPoVpy7RGn35pqdn4Mn5PFHyxZqSf78b7T5l0E2sx7UxpuspK3W5KnmBSOSRJZQsJ2a1ZhMybo8yZeVdjY5Z+1LYZkFIKPrj0KkKeDyWTpNQjgCwC8A3GWOrGWPXMsb61Dcxxq5kjK1ijK3atat68kM1UHGoExYPCsNtSxIKkGbgWSFBKgPfOTKViL0FpIw1DRs6/+hhfPdtZ4n3WMqEBYAjFoSnhDHEceCSoajkxByZKsO1rYQxIzZN5+H+jXuhwvMDPLT5AE4/bC56c07VNGUyXM1i4GpTWHk3QwkRk5Jxm9PjJs6DWu/5+UeF0lbAuTAKJKfosnMJakcZ4cQMksaUcPTC/sTjhAHPPEoMlZ1NltISSiUGrnOkjRU95B07UzoYL/kJApKF9158NBbPKWDl4fMqvk+e9/L8lp2YOgZOgQXi/Zq6Q3QO5vfn9E3BNQzcdawEk82Skuph4ERw5KbVOmatl1D035nQwL1AONcbjZkYcAfA6QC+yjk/DcA4gKvUN3HOr+Gcr+ScrxweHp7B4ULQZJENOP1f0EgoqhNTBlUHJIxMeqnkB2IR1aq2AUnDRBP8jOVzAYTMyXXSDDztxIwn7ZweF47NMFZMx3TLhZdUPLZtBJNlH6cdNoSCa1UtiNVsDVzUQuFpBk4NiGUJZX5/stXZbsWAU3q7H8Rjnyj5cG1W8TeoDJJ8J6TNynLUK09bgp++M+nSSTLw6udKvbZT5SAloagtzGTo5NXRKQ9518o0XAASDDULpywbwr1XX1wx1BBI6viOIqeomcW9OTvqZpTOLNWV7iUDvqA/n/B5EEamyoJhl/wgcmLGY7jo2OFMWaIeDZyu+3jJwz0bduOep3Zr/WayQ7IgZfvqQFOt7AcoeQHyTWDfwMwM+BYAWzjnVET6OoQGvSU4YkGfMJI0sQQDlyZDlhMTSPf1Gy166Fc0NVpXtURoJNhK9Pc/vfxEfPAlx+KCo4elcrKyE1PVwD0MD+Tx03eeg/OPHoZrWwknHhlw2Umi4ubHdsBiwHlHLUCPa1c14HGKe9WfOC2oLank80Tb/WLZRzEa54K+5C5o92iyBjdJVn4UkwuE9XEqVYdUjxtq4EknpjxPTloyJxVKmogDl56XoynGi55Is1eJg86JWYmB627OfsCRd6xE9IU6NWuRUGpFwmgrB8o5ForlQFzXwYKL8aKvzSx17XQTZHG9+3MJkgJQU5UpkQxULPtCAweARz72Ylzz5pWZ466HgdMcGiv6eP219+H1/31f5q49jkKxo3Hqv5N8JGU/rGzZDP0bmIEB55xvB7CZMXZs9NTFAB6r8JGG4FOvOhmvO/MwOLYl6nHHEkrtTkwgvAiedFHGiuWUpmbVwcB1Rr4v7+DdFx0Fx7ZE4lClRJ7RoofBgoMzlodbW9diCVYeO3biOF4VN67djjOPmIf5/Xn05OyqtZZnooH7AcfOKq3G1DBC+TwVJCemYGQDScO5e0wx4JHTOJA0yX0T5aqLRA0jdJQwQtng6qI4Es9Jp0rOev3I/6zFm77+Bzy9ayxlBCa1GnikF9cooYTjsBMMXA2lU8u4zgRuhgYejsNCyY/DBgd7nJiBW2ljr0ooRCyGB/IpCeX79z2LDTvH8PLnHQogLppFN+mBgiv+fvUfLcVbz12e+Hw9BpyuwZi0zjyfp+S4QAojpHOcxcBpipe9QEgozcBMv/WvAXyfMfYwgFMB/NuMR1QFrz3zMHzyVScDkMq5Sh20gWQ2Y8lL10wm9EjbdwAYi6rUybAraOAq1MQNFWHiUDIOXOfE7JcSlhzbSmwvqzHwoudj/c4xnLsi1IkLjl1VA/f96RvwD173EM78xC01NYeuxMD3jJWEBjlfYeBUU51AmXh+EJ/LybJfPwOPHvsaBq7TkfMZhlFuKPBsVG5291gp8X0DBSdy1MYSCoUQAlkauP53qAz8c685BZdLESS1aOC1IiuRB4gZON2o5vS4GC+FGrgqobi2lQojHJ3ykI9qBo1NeYkdx6PPjWBBf14Y5tCJGWiv8Wdfcwr+/PnLE88VM3IHdKA5JO90d4xMpZyOCQMe7caybrK0lsqR9NMsAz6jrvSc8zUAsvcxTYZjqQw8PKnjCgPPKthDpUYnS74oS6k6h+rRwKtFEuRsOyqmFbMunQYudxpybSbYSW/OFgZcTHZlApGTkwr2F3J21djxWAOv+DYtqHnteNFDztGHtqk9BXUG/ONSl3G15ZpasJ/Os7yggOpe/lQYoVJOVmZTegaejk4Ckk5W+j0TJS9xbef35RJOzIBTXZ70OSGoxoGx8HLnXStR4+Xw+X34+BUn4YaHtyXG0AhUMuB5J6mBD/XmsH7HaKJFHEHNegbCWicDBTeqrBg2K5dJVV/eToQrFqNqhDqoY6tPQqEduOQ4nyhjbq+bsCWhhJJ0Ymb512iqlUgD71AG3lYwFjpSXKGBRwy8mAw/ymbgseQSerl5ioGTs6oWdlpNJ6fJR5JG3rFSYxsveolaD65tiYm1aLAgjDFNJPWXyXUogDBjrLoTc3oMXK7Epob6Jb9fycTUxBPLWNCfZODq9prOsx/whDxUjeXIN1g5jLCsYeBVJRQJcuMPMnhyRiIQ3lAnlVBJOYZal2egkju6QfW4doLh9ubsxDmtxYlZK7IyMQGIKC6aBwv6c9g/WYankVDUpDkgJiuUzDUq6eBTZR89rp2IdpE1cBXq7rceJyZd/12Kr0WeTxYLneaqhJLFwGUNvJMllLbDtVmcSp+VyJOhU/W4VE/CkxolqxJK+H+1spvhe6sx8PDLSNLIO1aKgU+W/cQCdOw4DnzhQF4YaPqcOn8oJIqiaXrcGiSUaabSPyNVV6vUEqusODFVLVrFAoWBjyoOLjrPPueJGPdKIYS64wonptDA43mikyHkRSjfvOQdAp3DfROlxLWd15eP4sDj81Qs+5IGnj4PqhOTjq+OrTdnJ0JAW8XAKQiAblTz+nIYiTImdRKKTi4cKDgYiEiTfKOeLIcV/xzbgsXC+cV5dhtDdWz1xIHTNVCNvny9844dFbJSo1CyEnnC/8t+gKKXfeOZKbregDt2nDBT0EgoJT+7EQKl5E6VfZFIMDMNvIoBjyYEscaCa4vJ879rt2H5VTdg897JhBNKZhYLBwsYjxIlaCKp/QxJQiEGXnBjJ+a1dz2N25/YmRpXtWqEQcCxfsdo6nm5Q3tlA56dyKMLxxtW6qvLC3turys+XywHiePWpYHbsQauFtsCqksosoHYLLVZE119JpIa+IL+XBRGmGTglKXqauYOlROWxwzoDLiT+G2N1MCzWqoB4fmgOHDGwuzQgIfyQzUJ5SerNuPR5w5goOAK0iQn80yVfLEO8o4tolSyrrF6PJJQOOe4/YmdmXW7qbpgpWJ1QLh2fc7F9aqeSi9p4IaBZ8OVJRSNE7PsB9h+YCrBrF952hLc8DfnCaY7UfIFA8+UUGow4NXeQxNiopRm4D97MO53KRsK+c5NSUYjk2UtA99+YCpm4FE/xIIURvjxG9bhrd+8PzWuak2Nv3LbBrzoP+7Eum0j2s8BSdkqHJfsqE0m21S7Gc7vyyXeQwb8l+95PlZ/9MXiNbUbeTUDrnaXIXYZ13mu4sSUFqHM1h7ZekD8Ted630Q5EYUyN5JQZDmr6AUpyUvGlecfiS+//rTU71PHVnAtJbu1cQZcvg4pBm5boqGDYzHxG/aMF1PvdaWsZ88P8KHrHsbusRIGCo5Yc7IGPeX5YieRc+JQ2ixDqPqfyID/z5qteOs378ePV23G27+zCn/1vQeUZhqRfq85//Lao7VK169aOdk4Dpyj6AfIVagMORN0vQHP2UxsP4UTU7rYZZ9j52hRNHEFgIuOW4gTD50jOZx8YSTkkrVA7Z1LahurKqHYgqXJE1NeoPIWlooOhYV9Ilkimj+/WLMVZ3/yFtz8WFjXgRI0enJ2ou6yDqKpccZsWBVVwNt+IBkuKJdfVRl4st1ZUmOuZsB78zb+4bLjxWNiZnFZg/D5DTvHEp+rxnLUG2xczCq5QwD02rz8nBxZ8+jWESEDUBOCfeNJCaU/H3aOGZMiHdZuPYA7ngxjxnXtzxzbwsuiMDr59/UoY2OMaR3DjYBTwYDn3VgDty0mfsPu0ZJWQiGjOiHdxAZkDVypf1OQDDgZ91yGTKbuDojErd8RzpE9Y0X87rEduHHtdpE6D8RzUpfQJN+w864FzoF7ntqNgbyDI4bDDOtq1QjLxolZGa5jSdUIkwy8xw0zw/aOlxIGnCY4SSiTEgNPx4HT/zM34K6QUMJj5d2Ygct3+4SEIj1P3VY+fsM6vPN7DwCIme6qjaGRveep3WAMwqAUnLBtnKzvqk7NagycmLP6slwSQHVi+hoG7tdqwHMO3nbeEbj77y/CyUvmCLZLNzPGGCwGPLRlPwDguKh1V/UolPS2HoiZt7zF19XSlr+fjNGmvRMYLXo4/fC5AGIjpGrgNDcPTMa7hr/+4Wp87Y6wUfU8TSVAwqp/vAQP/OMlYry63UEiu7WBceCyxJWK7bZjDdyx4vr3e8aLGXHgUchnSTbgsYSS1MBjBp53LBFiWqsGTjsbWtdy3PzqTftxZ3TjpGsuM3D6LlUDL3oBfvfYDlx8/MLaGbgXdGYiT6cgjEIhBh7+Py40Zgtboyp1i4diPZFOvhyyRBpbVn3hWjTw6mNl4ng0drmTDEFeoDLjWBhpw9RyTTe+kSkPc3pcwTYp0kaOcd2otHbyaowDV/Vq2Tk8VvQSOqOuVreQUKoch67P0rm9ij8gyQYnSj4OGSzgsHm9AKo7MdNhcFEWqJdm4Doj6Ei6ORlwqvp4bHQToQJM+ybK8AKO4w4ZwJqPvkjMtf0ZlSEr9a9c0J/H/P682IarBARI1rGRm/42EuoOhqJQqPYJGcEwlT5bA5drjoQMPG3Ap8qBKLMgM/BaNXCqh0+7N5kIfe2Op/Dmb/wBQDz3j5caMJNUSceyWPj963eOYt9EGRceO5xwpOtAT3dyKn1H4KpLj8PbLzgSAES2I7GgHtcWSTByZxAyar0iCkVyYioMnC5PQwy4lClqsXCCkNGQJ2bBkY1W+DdjwPBAmqXRRJHHJ+uptNjlSAlVeqhWTlYU/FeelzXjD/98LY776P/iie2hs9NLGPBIQqkQ80zIa6o4EuQbDP190pJBId9Uqg+ifhdA2nFsUOSqlVmGgkiCF3C86/sPCMNCDJrm3oHIT9GbszHUmxPX4aldY2J3FP+W2hyPsa8nfO9dH7oId37wIgDJm2tvAyUUGelMTFuEQjqa+vfJz4Yhs5zzhNzWn3fEdUto4GVfBCXkpFBaXblgID2n6EZJ638yI8yVZMDjFg+KdUPXUm4YYzGGZ/eEzuqjhgdiA57BwGn+l0wYYWVcfPwi/FG0fQXCvpl08eRFIUsoBZWBlzxxoZvJwGlCTJX9kM3ZcYGfhAHXaOB5xxJFnGRQFIq8YOTtIC32vZIB3yRFTQDV48AzJRRl8pa8AOt3hgY8WXExycArOXtVI5xsKJCOSR4eyOOYRSH7feeFKzK/F0jfoBhj6IsSuMLfE+8o3AyHgLwQf/PIdnHjpw5OxOanyn4UDx3HbgOhz+JP/mhp4juzMi5V0Pmj75rfn8dh83tT76NuPY2GjoGThGJLTkwgfbOk81b2ebLqXxCViHXtpAZe9gXRykdSKJCtgau7w/3RfKfrkxWJRqTCtRju+vuL8It3Pz+hvdNr8vpfvqA3kYugAz3/5I5R7BwtGgNeKwYKrrh4sjf+EKlbN2VgunZ4YSbLPqYyOpkQ+2ykE3O86MOxGBwpEzOf4cSUIw90kQo6Bj6oYeCv+s97xHMkKxFIo84y4HQMdbKqmXXycwkGLho6hI8rnUvVAZeIgpBjkqOx5mwLH3rpsfjDP1yMk5bMyfxeQB+y2C8ZcM/nOGnJID7xypMyq/Sp2jhFwqga9lTZT3TaWTo3NLRLhnrwasWA1wo6f9U07mZJKNpaKF5cvCrv2OL66SQUIJwfshOTDHN/Ib4O1PhbaOC2JQxxtUgjIJSjaMdJ3ynXFpdBBtyxLQwWXJyybEisRTK6jm2Jm9fCgTwGCq6YizoDfu1dT+MPUZlnkjubFQfenCvdRgwUHMFoZGMgG7XDI82UMYZe18ZEyYcd/a0ucro8jXBiErs8MFmGbYXRMzSBklEo8d/CceXYyDt2VB42Npw6iUfO5NRFJMjdeoDY2Gb9RGL5ai0LXRJDWem+A0g9JzXlZIHwmpH+qd5AE6xbllDIce3aKET/poO+vCOMiBdwrBjuxxvOOjzz/Wp0ChXaUtuRFaOqk/lIpjt56Rys/eeXoMe1UzfQWkE+hmpRJr0NDCOUoV63vMTA6bW+fJg4pgsjBCIDLvljzo1qu8tzgHxEMhMmv1YtBnx+Xy7lxMxi4DQ3Zf8JrUXSrV2bid0b1fcXGaIaEiOXhSBk1dGZKWYhA9cbL5rUiwbzqbTjyZKfyoBUUauEcvWlx+Gbf36G9jUqg7p/opRi4LKhyickFGLg4f8qC+ea2OpeaQutGracbWHLvkkEAcff/ngNVm/aF8eUZ/wmssUq49YZ8JJg4PF7RaKMVANGxh0fvAhvjrrsqDeRrDA2ESkwQ2bTl3fw+w278aVb1sPzg6rXWY1S2jVWhMXS14W0Yfn7+vNhws10FzPdAKvdrBoZRihDZeBzel0UvQBjU16qpLMqobiSwaOIpds/8AKcfeR8AGHUFBnwqVLSgMs39ZoMeH8e+yfK4JwLWUburylDMPBE1UUy3JZ4TORhWUT+aEzFKiG6hJxt4sBrgtwjj7zYPa6NZXN78c4LV+D6dz0/8f6eXMjA5bhTGToDWQnvuHAFLjp2oX5s0eIfL/mwLQu2zVL6MBBnlAJxhh6NLWXAo/9ldiTr+KqxWLGwH1v3TWLPeAk/X70Vb/7GH4Qh1tWflg+SMuAa9qGLqaauOUTg1XM5ry+HoyMdW2V5dkIDj/+msc40vnYg72BkysPnf/ekNnpCxWdefQr++oVHice7x0royzkpWcOPijPp5CJ1zGrpgCwQA69mwKs5c6cL9bodOif0K23eN5nqS6sLOQTCmzklfcm7YllCoR2mqkWHf1dfhwv6c/ACjtGiJ/xhuoJunpTRrGveHEsoTJA+8i8xxpBzLEzVWPUwq5zHTDH7DLjEkMgQUrGfqy49LuHMBOJaIZNlX7v1bGQUihzhojJw2eDJOwE1RDKlg2uMa28FDfSohf2YLPuihvfolCecd1kOGbq5pCQUTSU2XWGoLftDp6munCyBIm8qMXB556STnqYD2eE3UfKq+jqOXzyYSLrZPVpEX97RjmO85Gl/q6yjH3fIAH75nvNqGmvMwCv/5mZJKKq8SJFdm/dOiPNGay6lgUeG15M0cHmcA3lXsOVJJdtRvuHVwmSpHPHOkaKYhzoJpexzbRgvkQbhxLStuGmFHCAQldOtBWoSXKMwCw245MDLJY2fDr05GxMlL5E4oEO9hZ50cG1LTFoncqDSBJPjSXWJPCSrDBb0DFzW4volo7Ty8Ll43yVHi8ek4VFIFIBUVqcKLt5Xu4RCN4MlQz14cscYPKnsqO5cEttKMXBLz8B1GazTgcxWR6c8bVEpFfuliJ7dY8Ww7Klc/kAKF9XViJfHfOGxw4kQ10rwa9TAG5lKXwmHRrkVY0VPXLcsBk7ngTRwSwkY6C84wlEp0tVzSWcigMxysjLIobztQOxrGJlKOzHlUri65s2CgVtM7A5kAlVw7VTd8axd7PYRY8BrQr+GgVeq091fcDE25WEiqxlsxrZ/uqAdQiUGnpBQlOw7lYHT1oych0CSgTPG8MazY6fc0shYPCc5Mv0qEkrMwAM8uGmfyHQluWRYagQd17sIP3PCoYMoeQE27pmQwgjTxyCjpLK8rHKm9Lt1GZP1QJabvCDdhUWHE6Skj91jRfTnnYQxoms0VtQzcNtiUgnk2sdfq4TSrDhwFYsGC8K559gqA8/QwD2O8VJYMlm+1lonppOWUGrRwOn8y52cdBJKOUNCoWsmx4GTbk/doAA9A88iQR948bH6F2aIWWfA5WYIxESyYnrp/SNTHqYyJZT6NPBqoB2CiEIJkkkuQEYYYTSJ1Vhwz+f4yf2b8dtHt4vn1DhgWVZaOjc04HIkCiVWZDLw6Pndo0W86j/vwft+tAZAnPhy5wcvwqP//JKwca1S2Y+M3RPbR7UOW/U3q6fZ1iwsYPoM/OpLj8M33xo7mVW9uJbrfOnJi3Ft1I8x4OF3yM5UmoMlL7uZCBnuejR82qVVY9iq8WwWXNsS5R1o51LI0sCdOIxwsuQnHO1A5MQsenj/j9fEBjxH50hf3C0LROL2jie72qsI2y3y1PeKDl9CQmEik1neAYcMXN2Vpo9zw9+ch1OWDVUd93Qw6wx4QgPPiElNvj/U3iZKlaNQaqlGWAsGBQO3FAYu16KWJZRk9p3KwMt+gA/97OGEQVaNkrwAKB5ZZuBUDjWrOD09S8lOD27aJ8ZsWww9ubBHoyOlS5OxWbGwHwCwZd9ExYxP+s2qhJKIQpFeo6HW68R8x4UrcNFxsZNZZau1MDwAWB5JUUB4vuX5MUdTV0OFiDWuw9iKOPAmVbabDg6JSt7SEstnaeBSGOF4yU+EugIQRb6uX71V1Ezv0Tgxa7k+lOm6d7yYek2Wn+QG4/JNj0gDzUXHYkLeUTVwta6Qzlepyp6NxCw04Okklkq9Kgd7HIxMehWiUML/G6GBy+Ozo+wuT4TdZTBwK8nA1YQRXesodXHIWDiYh20xPLc/1uR2RVvNbAYevkCTVd41yAZW7rpCNyRaTFPluGaGLqGGDGCKgUdPMKa/ic5UAy8rP7rWnZZ8s1ezdxMZiRnkgQx4PSGFQY1OzFaC5rOTYuDZYYQTRS9Fll4o3VTlcssAEu3japG4iIGrvVTD8cbXqhw1Sg7Hm/a1iCxnaV7PUZ2YNTBwY8DrwIBOQqlw0QcLrmj6oJVQovXdIPstxldwQwY+MuWFBecl9iuzSkfRwF9x2hL88SlxiVGdI7FSGFnesTCvL5dg4JTIUk0DJ5bkSZEmiaL3UtcV+j8fNQ+e8nz4XF84Xz62atxpMWVLETObwqoTStdYQQeZyZFktWxeKE8N1sLAiV3WxcCjtO8WSSS1gErbiqYq0e/KSuTxfI6xopdaa+cdvQAffdkJAOLWZnSO5PmcVQtFBt1Q94ynDbh8sy15cU/SROMKMuCcxh7/FlVCyarsmThmoTlhncAsNOCnLBvCH59yKP71ihPFha/EqkjSGCt6Fb37DbLfYoKfumyu2Kq99Zv3JzRw2YjFqfRxGOGrTl8iXtd1wqkURsYYw/y+XGJyxxq43oATyx+LwrzkFmSJKBFZQpFCBmmiU91oHSj066wj5iWep61t1udmysDVTi21LrakAQ8/c8bycOzyIs7a/anp2rXgS687DWcun6etidMukMNcrtkjPybIqfSb906kwnmBeHdJERt0c5N3lLXc8AYEAw9vBGS0846VON9yu0V5vLTmiFTI1zDlxPQCjBe92LGvMeCN8p/pMOsM+GDBxZdedxredM5yUfimklMnGXaYXrxqy7KZ4uldYSXAs4+cl2CVWTHYuhrQ1SZxtUQOtes7edizJBTaJo4rDLysRG3IEooIz7KZSP/3Ap4pRS1f0Ieb/vYCfPAlSW89naOsz82Ugb/rBUfh7CPjm4ausUK1486NPvPyaGckN2WupoHXE4Vy4THD+Mk7z2mqQagXtMslvVj4nTIY+J7xEp47MIVjovK7MqgcwQ4y4CShyAy8BgPeJzTwkKTI7QVlQy1LKLpoJx0Dl2/cYTVGHyf+029xyj/fBCBNCJqNWWfAZeQkL3IW5DuqjoE3WkI5ddlcAMCZR8xL3NnJSH78FScl3u8oHnGg+jayWjW6eX3Jru/0G6sy8GKSZfhKL8GwvjnH7zfsxpNRD03bssKJHhV3quQMPmbRQOpmawttvHI0x3Qxty+HL73uNPFY11pLB/l3UBz3RccuxI3vPR9vOOsw8Vq1KJRmValrFXoVg03zVI2nJ8P72HMjAIBjFqYNOFV0pKQXoYFL87m23rQWCq4ldpmxAbcSREBudKLLxCRbLK9TeXcs1yXSJbA9/6j5+MZbV1Yd70ww64pZyWAg/bRGBl7ROdQYC37VpcfhL88/AkO9yb6P+yZKWDHcl4jZBmJjXRcD1+wkvve2s7A1yoicl1FpLyuTngy42nWnHATJBAg7dMq+4dr74uesiIF7Pvq5U3dVx1obRc8E8o27VgYu41Cp+fDxiwexZV+cJJWtgVdPMqsXH3/FSTWn5deDz77mlFQNeQLJdXRDoxuwykRpzj763AEAcQMMGXP7wnlJBpw+k1XiOQu2xdCbc7QMXEbJC4QTWxcH7gVB2MzBZrjgmGHRxYdADFyGvJN+3tIhvPC4RXWNvV7MagMugvQrauCxMdOloDd6Q5RzLMHYZIO4d7ykvdGIdnGa2PAs6HYS5x29QPytK0sLVGfgch1nIJRSVAlFzdaMNfB0cadaQAYh6zo0wgDK171SZ5wsqJmU8q6gmvO1kQxcvfk3CpXK31KsNjHZ2PglrxhlUD6+fRR5x6qogW8bmQorAEbfVW9tF9tiyk05MuDKbm2qHOD+Z8Kyr7KEIhyu0Xx1bQvf+YszU05+tTIokDTgjYpcq4RZbcBr6cGYiBtvQRSKjL1SmNOe8RKG+/Op94hqhDUU9OnPO3jj2YdXjVnPcoJlGfCin5RQCKpBdu10WJUTGfCiF0kodZ7IVjBw+TfUKqHIWDiQvG5yaGDWtZhtEgr5PuiGrhY6I6M4OuXhyAV92vPS49rCMSjvMqfHwONoGLoBzOl1E1Ejn7vpCayPdhYyA18+P4zxP2xeLywWZ82qEVJ5TSq9fOPKWk+NRHfPnioo1xB2pWt+kEQU3tbQkYXYK0WC7BkramOG1TBCILugz2mHDeGqS4+retxMBq5JQuCcCwauso2yHyTOrWuzVM9Hy4qdmNNh4NXeP1MNXEVWI4dKUHX7Qh0MvFndylsF2r3QHCHtO8XAJYYr96eVwRgTDmH5xlY3A2exAe9xbfFdy+Ymuxetl2QheR5fdvIh+PGVZ+O1ZyyDbbHMIAhdHLjMwLMCExqJGc8expjNGFvNGPt1IwbUSFCrNdmppKIvZwsWvniOfmIB+uSTmUIO5Qu43lFHTCTpxNSPRVcdUIcsA66LA1crECaOF/BU+NVeJfY2Z1soOGEYYaU48CyIpIoMNtNoBtuIG0Kisl1WGGETNPB2gKJQyIDT9VKNV38hLrlLZWh1oBR7+TrU2yKOsoNpfDTllsztyfTzyAacMYazjpwPxhhsxjJzAwqunfo+OZGnFQa8ERLKewGsAzBY7Y2txpKhHmz81OUV38MYw4MfeRF2jxWxWDOxmrkL+pcrTsQHf/ownogiNnRsjSaiHJ+c5cSsdcLIBjwnhf7pPq7rOAJQDC1PGCjXthLNk+k5igOfHgOvrIE3q1VVLbjxvedrb7ryzb56LZTOSYufDmjXSkyUbugqA7cthqMW9mPt1pGK1ReJOcs35nrPkayB97i2yMikOkBZn9Hhry8+CqcfNlf7mu7mK+9idTHhjcaMZj9jbCmAywFc25jhtAeubWmNNxAbjmZIKM9bOoRf/XVcC1o3iU5bNoSvvuF0nH3EfPFcVhhhrUXjZZlAnoSk2d2/ca+IxS2W9QXr//3Gx3Hnk7sS7MS1rVRikWuHHWiEhFKvBl4ldbqW1Opm4fjFg9poCiD2mVSthdLlDJwMbkkJGNA1+6D4+Eo7XV39k3phsVja6XFt7IwyO5cO9dSd13HlBSuwcvk87WuqAf/J/Zvx8i/fLR53g4TyBQAfApBpORhjVzLGVjHGVu3atSvrbR2PZjmUc06yRnj6uAyXnrw44fSRWec3//wMnBpVOpsOA5cdbvTx13ztXlz2xbsAZDPwa+9+JjVmnTHNOZZwYga8chy4DrGEon+9GdJWIyBKAFSphdLOHUQjoEootGPSzUUiSZUS6yiZbibnhbGkhELNSw6pcOOYDvKKz+wff7E28djvZCcmY+xlAHZyzh+o9D7O+TWc85Wc85XDw8PTPdysxqAocFXb5ZD1uouOXYgPRdmLtW7ZZAMuf5fsNSd9vtpNwdGEX6ljDTXwkIHXGwfeqqzDBz/yIqz+yIsa9n3EzHXFxgCpVGoHFaaaDlQnpmDgmnnzgRcfgz9buQyXnnRI9ve5jTkvtNMb6nVx9aXHY0F/XlTibBRUBq5e61ZkZc5EA38+gD9mjF0GoABgkDH2Pc75GxsztM7AK05bglsf35m5VW4EiC3UqgaoRo2MQa0MXI62kUlCwHkqjruaKqOrISEj1MAtoYHXH0ZIGnhzF4Na5XGm+MCLj8Vbv3l/ppPyVactxSGDhYrt77oBqoRCgQOvPG1J6r3z+/P491c/r+L30VqY6c6E2rZdef6ROPeoBbjs5MXa973noqO0Ra9qQbXGGq3QwKc9ezjnVwO4GgAYYy8A8IHZZrwB4I9POTRR/a8ZyEo/rhVkkGs14LLsINqcWQxBwNPV1apsA5MMPGmcqWRuwbXhBRxFr3rX99T325UllE7FC45diN++7wLRwk7FIXMKeNXp2Qky3QIyYtSZZtm83qqBA5XQo3FiAsAP3362to58Fq669DhcdtIhOPeoBRXf944Lj0xkY9eDgSrhjZ3OwA0ahLxST6Je0GSfjtOE6nb3553IgKstoip/p0yUVAYeF+IKn58o+dMOI1TxpyuX4r4oi65T0cxdW6dAZeAzha6RMQCcs2K+7u2ZWDLUo832VKdzvUlCMg6bX1mS6WgGLoNzfjuA2xvxXQcjKMuyUu/OSqikO2bh+nedi4G8g1d99R4A4UTeP1HSdBihZCiGss9TpWjl2PO0AU/WcRkvetNKi9bh068+pa7vMWgOyOAev7gxNytdGGGtOGphf2bNlizMxAleKZ4dAFYu14cfNhKGgXcAiIHXG2JHWzhygtYzYSi2lVj7QCEs/kOpwTQUuicUHBtl30N/wUkY8CkplViVUEjHpMzEiZJfd3cSp0ocuEF7YVkM173zHKwY7m/I91XTlSvh5+86V9t9XkYjpbhKEVX//eaVuOT4hZmvNwrGgHcAiIHXI6Hc/P4LRZGeuX053PS3F+CwefV72YlB9+cdBDyWUIg9k4HPuxZGi2nn0mRJNuDJ14hF5YWE4mk70leCYODGgncssuKkp4NeURyr/gs+UHCnrWc3GofP721JiKsx4B0AwcDrMOBHLUwynmMWTW8LS8k//QUHnMd9LylBhzTwQ4d6sHuslNLEZc28moQyOuVVLO2rQzsTdQxaD5Jkml0I6iMvOyHRh3O6OHnJHDyy9UDq+VaFv3Z3EOosgWDgbTBWJJEQA6eUaMr2pIVEN4ytUi9NICmhqCDjS0y86AV1/0bRHcVQ8IMCPXWGxNaLC48Nc1EuP3lxZoRQPfjB28/CK05NR6m1opQsYAx4RyCvNIZtBwYKbiShhAaZmDKto6OjDipT5SDB/qckCYUaJVNMNTFwuRJdvQy83vcbdDdESGyT7tcfePGxuOeqFzYsK3Og4OLEQ+eknjcM/CACOfladdfWYaDgIOCxJEL9RIkJrRiO2cqPrzwb//FnYRSIXE5z096wEw0ZeEraqZZuXwlqf0KD2Y2CyGloTFiiCttiFYtpTQeVykA3G8aAdwBiBt6+y0HMZ5IYuNKZW84YnN+fx4XHhPqhHHb44cuPxwuOHca5SsxusrxqfRObPmvs98GBrHK0nQxd8EGryJhxYnYAiIG3Q+f91XvOw90bdosU+smozZurMHCLhWFa5OWnBAi5MuJJS+bgW39+Jq6962kAcShitXopldBJHdgNmg8KzWsSAW8KdMSrVfPWGPAOQKHOVPhG4uSlc3Dy0jn48q3rAUCUgxVhhBEDtyyG06S6yDnHwocvO144hWTQZ4UB13T8rhUiDtxoKAcFyPC1opJfo6Cb063y3RgD3gEgCaVS95tmg2JWVQNO60hXhOrtFxyp/S6VZSc719fJwE0Y4UGF4w4ZQF/OxnsvPrrdQ6kZOrbdqnlrDHgHgOo+6IrgtwpkoEkDtxQtsh67K5rAIu3ErJ+BGw38YMJAwcWj//LSdg+jLugcliaM8CCCk9EItpUguzoRaeBUA4XiwOvJKksl9CQYeGMbOhgYtBs6ucSEER5EyOoj2EpYioTiKwa8HkZRSQOv14lp4sANOh06Yz3dyqL1wqyODoBg4G2UUMjYThQVAx4NqZ5GDCrLdmYQRmg0cINOh85Y19s6cLowBrwDQAaunU5MMqzUyYSiAOIolNq/iwpe0RROhBE2qB64gUGnoJ0kwxjwDoArJJQOcGJGGjgxcArfaxQDrzsKxRhwgw5HO0mGMeAdgFhC6QQnZlJCIVWnHkMqdO7I6DfCifm8pel6EwYGnYB2+mlMGGEHIO6o004NPBzDWDHJwINpMPA4jDDETMIIGWO4/l3nYsWCxjQMMDBoNNpRRVQcu21HNhA4IioU9dITD2nbGMhAj0cG3AsCjE6VJQNez7cpEoolG/D62crpUgaogUGnoZ0yn5FQOgCL5/TgsX95Cd5y7vK2jYHm4GjUkmrHSBEnf+wm7BotApjeJCXSzhgTRtw0aDCYbTAauAF6c05LWjBlgRi4XB4WALbsm0y8XhvSWj7dAOp1YhoYdDoMAzdoO7LsMxn0euJaKWtS/gQ5Nk1UicFsQzudmMaAGwDIZtglMuB12N1Fg2G3kwuOiSsVkqPHSCgGsw3GiWnQdmSRCGrYUE8q/bJ5vbj36hdi0UDctopYikmNN5htMBq4QdshM/DeqLEsEIcV1qvPL57Tk5BdXMPADWYpjAZu0HbIBnqgEG/MKKxwppOUtpntbBtnYNAMGA3coO2Q7TO1TQNiBj5TkiEkFMPADWYZ2snAjQZuACApocgMXBjwmTJwigM3DNxglkHWwG/5uwsTjb6bfuzpfpAxtgzAdwAsQhj4ew3n/IuNGphBa1Gdgc9UQjFhhAazE/KucsVwa0s+zISBewD+jnP+IGNsAMADjLHfcc4fa9DYDFoIWQMf1GngMzTgxolpMFvRlRo453wb5/zB6O9RAOsALGnUwAxai6SEEjNwqlE+0yRRx2RiGsxSdH0UCmNsOYDTANynee1KxtgqxtiqXbt2NeJwBk2APAdlBk6YeRQKxYEbBm4wu9DVceCMsX4APwPwPs75iPo65/wazvlKzvnK4eHh9BcYdARkJ+WAxoDPWAMXDNwYcIPZBVo777vk6JYfe0ZRKIwxF6Hx/j7n/PrGDMmgHZAN9GCPq3l9Zt8fM3AjoRjMPmz81OVtOe60VxMLvV5fB7COc/75xg3JoB2QDbTaOd5i9WdiqnBNOVkDg4ZjJnTo+QDeBOCFjLE10b/LGjQugxaDGHiPa6f07pnKJ0AsnRgnpoFB4zBtCYVzfjfU1isGXQuy0cvm9aRCBmeaxAMYJ6aBQTNg6JABAGBkMoz3Xjq3N+VobITNFU5MY8ANDBoGY8ANAABFL0z/PfHQwZRkMtMkHkCuhWKmnIFBo2BqoRgAAC4/eTFGpjz82cpluGXdjsRrjdDATSamgUHjYQy4AYCQGb/p7MMBpDXvxmjgVE7WGHADg0bB7GcNUlB16sZo4OFUM9UIDQwaB7OaDFJQGXcjWLNrM1isMWzewMAghDHgBimoJnamSTwAcMicHhwyWKj+RgMDg5phNHCDFALOE4+Vh9PCW845HK89Y9nMv8jAwEDAGHCDFIJAedwAC+7YlgkhNDBoMMyKMkjBVwy2HzSAghsYGDQcxoAbpBAoBlt9bGBg0BkwBtwghRQDb4QIbmBg0HAYA26QgiqZGAnFwKAzYQy4QQorl88DAPzpyqUAGuPENDAwaDyMATdIYclQDzZ+6nJceMxCAIaBGxh0KowBN8gE1S8x9tvAoDNhDLhBJnImbtvAoKNhVqhBJtTemAYGBp0Fs0INMqF25jEwMOgsGANukAnDwA0MOhtmhRpkwmjgBgadDbNCDTJhJBQDg86GMeAGmTASioFBZ8OsUINMGAnFwKCzYVaoQSaMhGJg0NkwBtwgE0ZCMTDobJgVapAJI6EYGHQ2ZrRCGWMvZYw9wRjbwBi7qlGDMugMGAnFwKCzMW0DzhizAXwFwKUATgDwOsbYCY0amEH7YSQUA4POxkxW6JkANnDOn+aclwD8CMAVjRmWQSfANQzcwKCjMRMDvgTAZunxlui5BBhjVzLGVjHGVu3atWsGhzNoNRgzBtzAoJPR9D0y5/wazvlKzvnK4eHhZh/OwMDA4KDBTAz4VgDLpMdLo+cMDAwMDFqAmRjw+wEczRg7gjGWA/BaAL9szLAMDAwMDKrBme4HOeceY+w9AH4LwAbwDc75ow0bmYGBgYFBRUzbgAMA5/w3AH7ToLEYdCA+/SfPwxHDfe0ehoGBgQYzMuAGsx9/esay6m8yMDBoC0ymhoGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwA0MDAy6FMaAGxgYGHQpjAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLwTjnrTsYY7sAPDvNjy8AsLuBw2kUOnVcQOeOzYyrPphx1Y9OHdt0x3U45zxVzrWlBnwmYIyt4pyvbPc4VHTquIDOHZsZV30w46ofnTq2Ro/LSCgGBgYGXQpjwA0MDAy6FN1kwK9p9wAy0KnjAjp3bGZc9cGMq3506tgaOq6u0cANDAwMDJLoJgZuYGBgYCDBGHADAwODLkVXGHDG2EsZY08wxjYwxq5q81g2MsYeYYytYYytip6bxxj7HWNsffT/3BaM4xuMsZ2MsbXSc9pxsBBfis7fw4yx01s8ro8xxrZG52wNY+wy6bWro3E9wRh7SRPHtYwxdhtj7DHG2KOMsfdGz7f1nFUYVyecswJj7A+MsYeisf1z9PwRjLH7ojH8OOqJC8ZYPnq8IXp9eYvH9S3G2DPSOTs1er5l8z86ns0YW80Y+3X0uHnni3Pe0f8Q9tt8CsCRAHIAHgJwQhvHsxHAAuW5TwO4Kvr7KgD/3oJxXADgdABrq40DwGUAbgTAAJwN4L4Wj+tjAD6gee8J0fXMAzgius52k8a1GMDp0d8DAJ6Mjt/Wc1ZhXJ1wzhiA/uhvF8B90bn4CYDXRs9/DcBfRX+/C8DXor9fC+DHLR7XtwC8WvP+ls3/6HjvB/ADAL+OHjftfHUDAz8TwAbO+dOc8xKAHwG4os1jUnEFgG9Hf38bwCuafUDO+Z0A9tY4jisAfIeH+D8AQ4yxxS0cVxauAPAjznmRc/4MgA0Ir3czxrWNc/5g9PcogHUAlqDN56zCuLLQynPGOedj0UM3+scBvBDAddHz6jmjc3kdgIsZY6yF48pCy+Y/Y2wpgMsBXBs9Zmji+eoGA74EwGbp8RZUnuDNBgdwE2PsAcbYldFzizjn26K/twNY1J6hZY6jE87he6Lt6zckiakt44q2qqchZG4dc86UcQEdcM4iOWANgJ0AfoeQ8e/nnHua44uxRa8fADC/FePinNM5+0R0zv6DMZZXx6UZc6PxBQAfAhBEj+ejieerGwx4p+E8zvnpAC4F8G7G2AXyizzcD7U9NrNTxhHhqwBWADgVwDYAn2vXQBhj/QB+BuB9nPMR+bV2njPNuDrinHHOfc75qQCWImT6x7VjHCrUcTHGTgJwNcLxnQFgHoC/b+WYGGMvA7CTc/5Aq47ZDQZ8KwC5NfrS6Lm2gHO+Nfp/J4CfI5zUO2hLFv2/s03DyxpHW88h53xHtOACAP+NeMvf0nExxlyERvL7nPPro6fbfs504+qUc0bgnO8HcBuAcxBKEI7m+GJs0etzAOxp0bheGslRnHNeBPBNtP6cPR/AHzPGNiKUel8I4Ito4vnqBgN+P4CjI09uDqHY/8t2DIQx1scYG6C/AbwYwNpoPG+J3vYWAL9ox/gqjOOXAN4ceePPBnBAkg2aDkVvfCXCc0bjem3kjT8CwNEA/tCkMTAAXwewjnP+eemltp6zrHF1yDkbZowNRX/3AHgRQo3+NgCvjt6mnjM6l68GcGu0q2nFuB6XbsQMoc4sn7OmX0vO+dWc86Wc8+UI7dStnPM3oJnnq9Ee2Gb8Q+hFfhKh/vbhNo7jSIQRAA8BeJTGglC3ugXAegA3A5jXgrH8EOHWuoxQV3tb1jgQet+/Ep2/RwCsbPG4vhsd9+Fo0i6W3v/haFxPALi0ieM6D6E88jCANdG/y9p9ziqMqxPO2fMArI7GsBbAR6V18AeEDtSfAshHzxeixxui149s8bhujc7ZWgDfQxyp0rL5L43xBYijUJp2vkwqvYGBgUGXohskFAMDAwMDDYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXYr/D7pqz+4kZMSJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iv) Using impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before simulating a light curve through this approach, an appropriate impulse response needs to be constructed. There\n", + "are two helper functions available for that purpose. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`simple_ir()` allows to define an impulse response of constant height. It takes in starting time, width and intensity as arguments, all of whom are set by default." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUqElEQVR4nO3df5BdZX3H8fcnuxIUWsCQasmPbhxiO0FpxW3EqbUOaTWxlNhpmAkyY5wyEztjWlvt2FBnEKn/0DrSdhptM4JS/BEo1XZHoykVZ5xxJGZBBUNIXUFJEMvyQyw6GO453/5xzg3Xy8Y9+yt37/1+XjOZvfec5959zjy7nz35nueeRxGBmZkNriW97oCZmS0sB72Z2YBz0JuZDTgHvZnZgHPQm5kNuOFed6Db2WefHSMjI73uhplZX7nzzjsfjYjlU+1bdEE/MjLC+Ph4r7thZtZXJH3vRPtcujEzG3AOejOzAeegNzMbcA56M7MB56A3MxtwjYJe0kZJhyVNSNo5xf7XSrpLUkvSlq592yR9u/63bb46bmZmzUwb9JKGgF3AJmAdcJmkdV3NHgTeCnyy67UvBN4LvApYD7xX0llz77aZmTXVZB79emAiIu4HkLQH2Azc224QEd+t95Vdr30DcFtEPF7vvw3YCHxqzj03szmZeOQpxr75ffCtyheNl774F7j4/HPm/X2bBP0K4EjH86NUZ+hNTPXaFd2NJG0HtgOsXr264Vub2Vx89CsP8In9DyL1uifWdvH55/Qs6BdcROwGdgOMjo769MLsJHimKHnxL57KHX+9odddsQXW5GLsQ8Cqjucr621NzOW1ZraAihKGlvh0PoMmQX8AWCtpjaRTgK3AWMP33we8XtJZ9UXY19fbzKzHirJkiSdYpzDtMEdEC9hBFdCHgFsi4qCkayRdAiDpNyUdBS4F/kXSwfq1jwN/Q/XH4gBwTfvCrJn1VhEw7KRPoVGNPiL2Anu7tl3V8fgAVVlmqtfeANwwhz6a2QIoy8CVmxz859wsqVZZukafhIPeLKnqYqwjIAOPsllSZQRDToAUPMxmSbXKYMiflkrBQW+WVFmGa/RJOOjNkioc9Gk46M2SKiJY4tJNCg56s6SKMhgectBn4KA3S6oofUafhYPeLKlqeqWDPgMHvVlSrcLTK7Nw0Jsl5TP6PBz0Zkl5emUeDnqzpIoyWOKgT8FBb5ZUEcGwgz4FB71ZUoXvdZOGg94sKZdu8nDQmyVVlC7dZOGgN0uqDJ/RZ+GgN0vKNfo8HPRmSbU8jz4NB71ZUl54JA8HvVlShW+BkIaD3iwp3wIhDwe9WVK+GJuHg94soYigDDy9MgkHvVlCRRkAPqNPwkFvllARVdB7zdgcHPRmCZVl9dVrxubgoDdLqFUn/ZATIAUPs1lC7TP6oSWOgAwajbKkjZIOS5qQtHOK/Usl3Vzv3y9ppN7+PEk3SrpH0iFJV85z/81sFto1epfoc5g26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19bbLwWWRsTLgVcCb2v/ETCz3nm2dOOkz6DJGf16YCIi7o+IY8AeYHNXm83AjfXjW4ENkgQEcJqkYeD5wDHgR/PSczObNZducmkyyiuAIx3Pj9bbpmwTES3gSWAZVej/GHgYeBD4QEQ83v0NJG2XNC5pfHJycsYHYWYzc7x045xPYaGHeT1QAOcAa4B3SXpJd6OI2B0RoxExunz58gXukpmV9QemPL0yhyZB/xCwquP5ynrblG3qMs0ZwGPAm4EvRMQzEfEI8BVgdK6dNrO5aZX+wFQmTYL+ALBW0hpJpwBbgbGuNmPAtvrxFuD2iAiqcs1FAJJOAy4E7puPjpvZ7BU+o09l2qCva+47gH3AIeCWiDgo6RpJl9TNrgeWSZoA3gm0p2DuAk6XdJDqD8ZHI+Lu+T4IM5uZ8niN3kGfwXCTRhGxF9jbte2qjsdPU02l7H7dU1NtN7PeahV16cZBn4KvuZsl1D6jd+kmBwe9WULHb1PsM/oUHPRmCbVn3XjhkRwc9GYJtUs3rtHn4KA3S8grTOXioDdLqHDpJhUHvVlC7aB36SYHB71ZQu2bmvmMPgcHvVlCReEafSYOerOECt8CIRUHvVlCpT8wlYqD3iwhn9Hn4qA3S8i3QMjFQW+WkD8wlYuD3iwhn9Hn4qA3S8ifjM3FQW+WUOGbmqXioDdLqPSasak46M0SarlGn4qD3iwhX4zNxUFvllDpD0yl4qA3S6jlefSpOOjNEvK9bnJx0JslVJTVVwd9Dg56s4SOLzzinE/BQW+WUFGWDC0Rco0+BQe9WUJF6QuxmTjozRIqI1ji3/40PNRmCbWKYNhJn4ZH2iyhMsIXYhNpFPSSNko6LGlC0s4p9i+VdHO9f7+kkY5950v6qqSDku6RdOo89t/MZqEow1MrE5k26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19avHQY+DvxJRJwHvA54Zt56b2az0nLQp9LkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGVfO2Xg/cHRHfBIiIxyKimJ+um9lslQ76VJoE/QrgSMfzo/W2KdtERAt4ElgGvBQISfsk3SXp3VN9A0nbJY1LGp+cnJzpMZjZDBURnl6ZyEJfjB0GXgNcXn/9Q0kbuhtFxO6IGI2I0eXLly9wl8ysKMPLCCbSJOgfAlZ1PF9Zb5uyTV2XPwN4jOrs/8sR8WhE/ATYC1ww106b2dwUZXgZwUSaBP0BYK2kNZJOAbYCY11txoBt9eMtwO0REcA+4OWSXlD/Afgd4N756bqZzVYRPqPPZHi6BhHRkrSDKrSHgBsi4qCka4DxiBgDrgdukjQBPE71x4CIeELSB6n+WASwNyI+t0DHYmYNFYVr9JlMG/QAEbGXquzSue2qjsdPA5ee4LUfp5piaWaLRBGedZOJPxlrlpCnV+bioDdLyGf0uTjozRLyLRBycdCbJVSUvhibiYPeLCF/YCoXB71ZQj6jz8VBb5ZQEcHwkIM+Cwe9WUJlGSzxGX0aDnqzhHw/+lwc9GYJeXplLg56s4RK348+FQe9WUIu3eTioDdLyPe6ycVBb5aQ73WTi4PeLKGyxNMrE3HQmyXUKksvJZiIg94soaLE97pJxEFvllAZwZB/+9PwUJsl1CpKhpf41z8Lj7RZQmX4YmwmDnqzhKpbIPS6F3ayeKjNEvLCI7k46M0SKiI8vTIRB71ZMhHhFaaScdCbJVNG9dWlmzwc9GbJFHXSu3STh4PeLJkyqqD3GX0eDnqzZFr1Gb1r9Hk46M2SaZdufJviPBz0ZsmUDvp0HPRmyRThoM+mUdBL2ijpsKQJSTun2L9U0s31/v2SRrr2r5b0lKS/nKd+m9ksuXSTz7RBL2kI2AVsAtYBl0la19XsCuCJiDgXuA64tmv/B4HPz727ZjZXhS/GptPkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGqfopkvQm4AHg4Lz02MzmpB30nl6ZR5OgXwEc6Xh+tN42ZZuIaAFPAssknQ78FfC+n/cNJG2XNC5pfHJysmnfzWwW/IGpfBb6YuzVwHUR8dTPaxQRuyNiNCJGly9fvsBdMsvNF2PzGW7Q5iFgVcfzlfW2qdoclTQMnAE8BrwK2CLpb4EzgVLS0xHxT3PtuJnNTnt6pRceyaNJ0B8A1kpaQxXoW4E3d7UZA7YBXwW2ALdHRAC/3W4g6WrgKYe8WW+1POsmnWmDPiJaknYA+4Ah4IaIOCjpGmA8IsaA64GbJE0Aj1P9MTCzRcjTK/NpckZPROwF9nZtu6rj8dPApdO8x9Wz6J+ZzbP2Tc08vTIPfzLWLBmXbvJx0Jsl43vd5OOgN0vGNfp8HPRmyRSeXpmOg94smfYHpoaHHPRZOOjNkvEZfT4OerNkSt8CIR0HvVkyrcI3NcvGQW+WTPuM3qWbPBz0ZskUZfXVpZs8HPRmybTKKumH/NufhofaLJlnL8b61z8Lj7RZMsdLN67Rp+GgN0umqEs3PqHPw0Ntlkz7jH7YSZ+GR9osmfYtEJzzeXiozZIp6lN61+jzcNCbJVN/MNalm0Q80mbJtBcecc7n4aE2S6bwTc3ScdCbJeMVpvJx0JslczzofTE2DQe9WTI+o8/HQW+WTFEGSwTyGX0aDnqzZIoIn80n46A3S6Ysw4uOJOOgN0umVfqMPhsHvVkyhYM+HQe9WTKla/TpOOjNkmmV4Tn0yTQKekkbJR2WNCFp5xT7l0q6ud6/X9JIvf33JN0p6Z7660Xz3H8zm6HSpZt0pg16SUPALmATsA64TNK6rmZXAE9ExLnAdcC19fZHgT+IiJcD24Cb5qvjZjY7rtHn0+SMfj0wERH3R8QxYA+wuavNZuDG+vGtwAZJioivR8T36+0HgedLWjofHTez2Sk8vTKdJkG/AjjS8fxovW3KNhHRAp4ElnW1+SPgroj4afc3kLRd0rik8cnJyaZ9N7NZKCIYHnLQZ3JSLsZKOo+qnPO2qfZHxO6IGI2I0eXLl5+MLpmlVfhibDpNgv4hYFXH85X1tinbSBoGzgAeq5+vBD4DvCUivjPXDpvZ3JQRLHGNPpUmQX8AWCtpjaRTgK3AWFebMaqLrQBbgNsjIiSdCXwO2BkRX5mnPpvZHLSKYNhBn8q0QV/X3HcA+4BDwC0RcVDSNZIuqZtdDyyTNAG8E2hPwdwBnAtcJekb9b9fmvejMLPGyvDF2GyGmzSKiL3A3q5tV3U8fhq4dIrXvR94/xz7aGbzyNMr8/EnY82SaZWu0WfjoDdLpgzX6LNx0Jsl4+mV+TjozZIpymCJf/NT8XCbJVOUwbCTPhWPtlkyReCLsck46M2SKcoS3+omFwe9WTJFCUMu3aTi0TZLplp4pNe9sJPJw22WTOE1Y9Nx0JslU90Cwb/6mXi0zZKpPjDV617YyeSgN0um8L1u0nHQmyVTfWDKQZ+Jg94sGV+MzcdBb5ZMWXrhkWwc9GbJtLzwSDoOerNkSgd9Og56s2SK8P3os3HQmyXj0k0+DnqzZFy6ycdBb5aMp1fm46A3S6Qsgwg8vTIZB71ZIkUEgD8Zm4yD3iyRoqyC3ve6ycVBb5ZIWZ/Ru0afi4PeLJFW6dJNRg56s0TKdunGF2NTcdCbJdKu0bt0k4uD3iwRB31ODnqzRApfjE2pUdBL2ijpsKQJSTun2L9U0s31/v2SRjr2XVlvPyzpDfPYdzOboeNn9K7RpzJt0EsaAnYBm4B1wGWS1nU1uwJ4IiLOBa4Drq1fuw7YCpwHbAQ+VL+fmfWA59HnNNygzXpgIiLuB5C0B9gM3NvRZjNwdf34VuCfJKnevicifgo8IGmifr+vzk/3n3XfD37En37y6/P9tmYD5VhRAjDkom0qTYJ+BXCk4/lR4FUnahMRLUlPAsvq7Xd0vXZF9zeQtB3YDrB69eqmff8Zpw4PsfZFp8/qtWaZXLD6LF79krN73Q07iZoE/YKLiN3AboDR0dGYzXuMnH0aH7r8lfPaLzOzQdDkP3APAas6nq+st03ZRtIwcAbwWMPXmpnZAmoS9AeAtZLWSDqF6uLqWFebMWBb/XgLcHtERL19az0rZw2wFvja/HTdzMyamLZ0U9fcdwD7gCHghog4KOkaYDwixoDrgZvqi62PU/0xoG53C9WF2xbw9ogoFuhYzMxsCoqYVUl8wYyOjsb4+Hivu2Fm1lck3RkRo1Pt8yQrM7MB56A3MxtwDnozswHnoDczG3CL7mKspEnge3N4i7OBR+epO73mY1mcfCyLU/Zj+ZWIWD7VjkUX9HMlafxEV577jY9lcfKxLE4+lhNz6cbMbMA56M3MBtwgBv3uXndgHvlYFicfy+LkYzmBgavRm5nZzxrEM3ozM+vgoDczG3ADE/TTLWC+mElaJelLku6VdFDSO+rtL5R0m6Rv11/P6nVfm5I0JOnrkj5bP19TLxw/US8kf0qv+9iEpDMl3SrpPkmHJL26z8flL+qfsW9J+pSkU/tlbCTdIOkRSd/q2DblWKjyj/Ux3S3pgt71/LlOcCx/V/+c3S3pM5LO7Nh3ZX0shyW9YabfbyCCvuEC5otZC3hXRKwDLgTeXvd/J/DFiFgLfLF+3i/eARzqeH4tcF29gPwTVAvK94N/AL4QEb8G/DrVMfXluEhaAfwZMBoRL6O67fhW+mdsPgZs7Np2orHYRLX+xVqqZUo/fJL62NTHeO6x3Aa8LCLOB/4HuBKgzoKtwHn1az5UZ15jAxH0dCxgHhHHgPYC5n0hIh6OiLvqx/9HFSYrqI7hxrrZjcCbetLBGZK0Evh94CP1cwEXUS0cD31yLJLOAF5Ltd4CEXEsIn5In45LbRh4fr0S3AuAh+mTsYmIL1Otd9HpRGOxGfjXqNwBnCnpl09KRxuY6lgi4r8iolU/vYNqRT6ojmVPRPw0Ih4AJqgyr7FBCfqpFjB/ziLk/UDSCPAKYD/wooh4uN71A+BFverXDP098G6grJ8vA37Y8UPcL+OzBpgEPlqXoT4i6TT6dFwi4iHgA8CDVAH/JHAn/Tk2bScai37PhD8GPl8/nvOxDErQDwRJpwP/Dvx5RPyoc1+9NOOinwsr6WLgkYi4s9d9mQfDwAXAhyPiFcCP6SrT9Mu4ANT1681Uf8DOAU7jueWDvtVPY/HzSHoPVTn3E/P1noMS9H2/CLmk51GF/Cci4tP15v9t/3ez/vpIr/o3A78FXCLpu1QltIuo6txn1uUC6J/xOQocjYj99fNbqYK/H8cF4HeBByJiMiKeAT5NNV79ODZtJxqLvswESW8FLgYuj2c/5DTnYxmUoG+ygPmiVdewrwcORcQHO3Z1Lrq+DfjPk923mYqIKyNiZUSMUI3D7RFxOfAlqoXjoX+O5QfAEUm/Wm/aQLX+cd+NS+1B4EJJL6h/5trH03dj0+FEYzEGvKWefXMh8GRHiWdRkrSRquR5SUT8pGPXGLBV0lJJa6guMH9tRm8eEQPxD3gj1ZXq7wDv6XV/Ztj311D9l/Nu4Bv1vzdS1ba/CHwb+G/ghb3u6wyP63XAZ+vHL6l/OCeAfwOW9rp/DY/hN4Dxemz+Azirn8cFeB9wH/At4CZgab+MDfApqmsLz1D9b+uKE40FIKqZeN8B7qGaadTzY5jmWCaoavHtDPjnjvbvqY/lMLBppt/Pt0AwMxtwg1K6MTOzE3DQm5kNOAe9mdmAc9CbmQ04B72Z2YBz0JuZDTgHvZnZgPt/PP6JMlAe4GMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = sim.simple_ir(10, 5, 0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using `relativistic_ir()`. Its arguments are: primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAk/klEQVR4nO3deXhc9XX/8ffRaLTakmxLlhfJ+wICjGMLCGExCZshBLckJJC0TVoSkhSapCRtyC/5kTT5pVnakqQNSSBLeUIJhKx1CRQIOCwJi21278ZYRl5lebeW0YzO748ZmZElW2N7pHtn9Hk9jx7P3HulOWjmHL46997v19wdERHJfQVBByAiItmhgi4ikidU0EVE8oQKuohInlBBFxHJE4VBvXB1dbVPmTIlqJcXEclJy5cv3+nuNf3tC6ygT5kyhWXLlgX18iIiOcnMmo60Ty0XEZE8oYIuIpInVNBFRPKECrqISJ5QQRcRyRMDFnQz+4mZ7TCzVwc47gwzi5vZe7IXnoiIZCqTEfqdwMKjHWBmEeAbwMNZiElERI7DgAXd3Z8Adg1w2N8BvwJ2ZCMokY07D/L42pagwxDJKSfcQzezicCfA9/P4NjrzWyZmS1raVGyypF9d8l6PnXvC0GHIZJTsnFS9NvAZ929e6AD3f0Od29098aamn7vXBUBkiP0Pe1ddHdrARaRTGXj1v9G4F4zA6gGLjezuLv/Ngs/W4appl1tuMP+jjiVZdGgwxHJCSdc0N19as9jM7sTuF/FXE5EWyxOy/5OAPa2d6mgi2RowIJuZvcAFwDVZtYMfBGIArj7DwY1OhmW3tjVfujx3vauACMRyS0DFnR3vzbTH+buHzqhaESAptaDhx6roItkTneKSuhs2tV26PGe9liAkYjkFhV0CZ2m1jaS59g1Qhc5FiroEjqbdrUxo2YEoIIucixU0CV0Nu1qY1btSIoLC1TQRY6BCrqESqLbad7dRv3oMipLo+xtU0EXyZQKuoTKlj3tdCWcyWNSBV0jdJGMqaBLqPRc4TJ5tAq6yLFSQZdQ6Snok8aUUVWmgi5yLFTQJVSaWtuIRozxlaVUlEbZox66SMZU0CVUNu06SN2oMiIFRmVplH0aoYtkTAVdQqWptY1Jo8sAqCyNsr8zTkJT6IpkRAVdQsPd2dTaxuQxbxZ0QKN0kQypoEto7GnrYn9n/NAIvSo1be4eFXSRjKigS2g09VyyOKYceHOEritdRDKjgi6h0TNtbnoPHVTQRTKlgi6hsak1dQ26CrrIcVFBl9DYtKuNsSOLKS2KAFBZWgTA3jbNiS6SCRV0CY2mXW9e4QIaoYscKxV0CY1NrclZFnsUFRZQGo2ooItkaMCCbmY/MbMdZvbqEfZ/wMxeNrNXzOxPZnZ69sOUfNfRlWDbvg4mjy7vtV0TdIlkLpMR+p3AwqPsfx1Y4O6nAV8B7shCXDLMNO/uuWSxrNf2qjLN5yKSqcKBDnD3J8xsylH2/ynt6TNAXRbikmGmqfXNWRbTVWiELpKxbPfQrwMePNJOM7vezJaZ2bKWlpYsv7TkspVb9gEwrVotF5HjlbWCbmZvJ1nQP3ukY9z9DndvdPfGmpqabL205IEn1+/klAkVVJUV9dquGRdFMpeVgm5mc4AfAYvcvTUbP1OGj4OdcV7YtJtzZ1b32VdZGtVcLiIZOuGCbmaTgF8Df+nua088JBlunn29la6Ec96Mvn+1VZVGaYsl6Ep0BxCZSG4Z8KSomd0DXABUm1kz8EUgCuDuPwBuAcYA3zMzgLi7Nw5WwJJ/nly3k+LCAhqnjOqzr7LszZuLqkcUD3VoIjklk6tcrh1g/4eBD2ctIhl2nlq3kzOnjqYkGumzL/1uURV0kaPTnaISqG17O1i34wDnzujbP4fkZYuArkUXyYAKugTqqfU7Afo9IQrJHjpo1SKRTKigS6CeWtfCmPIiTh5X0e9+TdAlkjkVdAmMu/PU+lbOmVFNQYH1e4wKukjmVNAlMKu37Wfngc4jtltAPXSRY6GCLoF5al2yf37eUQp6NFLAiOJCjdBFMqCCLoF5cv1OpteUM76y9KjHaT4XkcyooEsgOroSPPd6K+fNHHhOH824KJIZFXQJxIOvbqWjq5sFswcu6JWlhext17qiIgNRQZch1xlP8G8Pr+WUCRUsyGCErpaLSGZU0GXI/ezZTTTvbucfF550xMsV01WVFqmgi2RABV2G1IHOON99bD1nTxvD+Ue5uiVdZZlG6CKZUEGXIfWjJzfQejDGZy87idTsnAOqLI3S0dVNR1dikKMTyW0q6DJkdh7o5IdPbOCyU8cxt74q4++r0HwuIhlRQZch893H1tMR7+Yzl84+pu+r0u3/IhlRQZch8evnm7nrmSbe21jH9JoRx/S9ms9FJDMq6DLo7np6Izfd9xJnTR3NF97ZcMzfX6n5XEQyMuCKRSIn4rYl6/mXh9Zw0clj+e775/W7KtFANEIXyYwKugyKHfs6+Paj6/jZs5tYNHcC/3r16UQjx/cHoQq6SGZU0CWrNrW2cfsTr/GL5c3EE938zTlT+cI7T87oBqIjOTSFrgq6yFENWNDN7CfAFcAOdz+1n/0GfAe4HGgDPuTuz2c7UAmn9liCF97YzdLXd7N04y6e3tBKxIx3z6/jo+dPY0p1+Qm/RqTAGFlSqMsWRQaQyQj9TuC7wE+PsP8yYGbq6yzg+6l/JQ90JbrZuqeD5j1tbN7dTvPudjbvaWfLnuS/m3e3E+92zGB27Ug+ct40/vqcKdRWlGQ1Ds3nIjKwAQu6uz9hZlOOcsgi4Kfu7sAzZlZlZuPdfWu2gpRgJLqdBd9cwpa9HYe2mcHYkcVMrCplTl0VV8wZz/zJo5g/efShXvdgqCqLsvNA56D9fJF8kI0e+kTgjbTnzaltfQq6mV0PXA8wadKkLLy0DKaOrgRb9nZw5ekTuOaMeiaOKmV8ZSlFhUN/tetpE6v4n5e20JXoPu6TqyL5bkgzw93vcPdGd2+sqRl42lQJVizeDcBbJlXxthnVTB5THkgxB1gwq5oDnXFe2LQnkNcXyQXZyM7NQH3a87rUNslxsUSyoAdVxNO9bUY1kQLjibUtQYciElrZyNTFwF9Z0luBveqf54eeEXpRCFocFSVR3lJfxeMq6CJHNGCmmtk9wNPAbDNrNrPrzOxjZvax1CEPABuA9cAPgb8dtGhlSHXGwzNCBzh/Vg2vbtlLq06OivQrk6tcrh1gvwM3ZC0iCY0wjdAhWdBvfWQtT63fyaK5E4MORyR0wpGpEkph6qEDnDaxklFlUbVdRI4gHJkqoRQLWcslUmCcO7OGJ9ftJPmHoYikC0emSiiFreUCcP7Malr2d7Jq6/6gQxEJnfBkqoROLJFcwzMsI3RI9tEBnlintovI4cKTqRI6sXiyrRGmgl5bUcJJ40bqenSRfoQnUyV0ek6KFoeooENylL5s427aYvGgQxEJlXBlqoTKmz30Y19laDCdP7OGWKKbZza0Bh2KSKiooMsRhe0qlx6NU0ZRGo2wZLXaLiLpwpWpEiqxePKkaDRy/KsNDYaSaITzZlbz6KrtunxRJI0KuhxR2G4sSndRQy1b9nawYsu+oEMRCY3wZaqERlhbLgAXnjSWAoNHVm4POhSR0AhfpkpohPHGoh5jRhQzf/IoFXSRNOHLVAmNzkQ3RZECkuuAh89FJ9eycus+Nu9pDzoUkVBQQZcjisW7Q9lu6XFxQy0Av9coXQRQQZej6EqEu6BPqxnB9JpytV1EUsKbrRK4WLw7lP3zdBc11PLMhlb2dXQFHYpI4MKdrRKosLdcAC5pqCXe7fxhjW4yEgl3tkqgYiFvuQDMrR9F9YgitV1EUEGXo4jFu4mGvOUSKTDecdJY/rBmx6HLLEWGq4yy1cwWmtkaM1tvZjf3s3+SmS0xsxfM7GUzuzz7ocpQ68yBlgvAxQ3j2N8R59nXNVmXDG8DZquZRYDbgMuABuBaM2s47LAvAPe5+1uAa4DvZTtQGXqxeDfFIR+hA5w3s5ryogi/e3lr0KGIBCqTbD0TWO/uG9w9BtwLLDrsGAcqUo8rgS3ZC1GCkgs9dEhO1nVRQy3/u2IbXQm1XWT4yiRbJwJvpD1vTm1L9yXgL8ysGXgA+Lv+fpCZXW9my8xsWUuLrkoIu1y4yqXHu+ZMYE9bF0+t3xl0KCKByVa2Xgvc6e51wOXAXWbW52e7+x3u3ujujTU1NVl6aRksuXAdeo/zZlUzsqSQ+19S20WGr0yydTNQn/a8LrUt3XXAfQDu/jRQAlRnI0AJTtjvFE1XXBjh0lPG8fDKbXSm5nEXGW4yydalwEwzm2pmRSRPei4+7JhNwIUAZnYyyYKunkqOy6WWC8AVc8azvyPOE2vVdpHhacBsdfc4cCPwELCK5NUsK8zsy2Z2ZeqwTwMfMbOXgHuAD7mWksl5uXJStMc5M6oZVRbl/pd1Tl6Gp8JMDnL3B0ie7Ezfdkva45XAOdkNTYLWmUM9dIBopICFp45n8YubaY8lKC0K1+LWIoMtd7JVhlyutVwA3jVnPAdjCZas2RF0KCJDLreyVYaMuydbLjk0Qgc4a9oYqkcUq+0iw1JuZasMmXi34x7O9USPJlJgXH7aOB5bvYMDnfGgwxEZUrmVrTJkwrxA9EAWzZ1AR1c3D76ia9JleMm9bJUhEeYFogcyb9IoplWX84vlzUGHIjKkci9bZUj0zImSiyN0M+Pd8+t47vVdNLUeDDockSGTe9kqQ6Izh1suAFfNm0iBwa80SpdhJDezVQZdLDVCL87Rgj6+spRzZ9bwq+c3092te9xkeMjNbJVBl8s99B7vmV/H5j3tPL1BC1/I8JC72SqDKpevculxSUMtI0sK+aXaLjJM5G62yqDqabmEfU3RoymJRrjy9Ak8+OpW9nV0BR2OyKDL3WyVQZUPI3SAqxvr6ejq1vJ0MizkdrbKoMmXgn56XSUzxo7gF8veGPhgkRyX29kqg6YzD06KQvKa9Pc11vP8pj2s3rYv6HBEBlVuZ6sMmly/bDHd1Y11FBcW8NOnm4IORWRQ5X62yqDoypOWC0BVWRFXnj6B376wWSdHJa/lfrbKoIjl8K3//fmrs6fQFkvozlHJa/mRrZJ1+XBjUbrT6iqZW1/FXc80odURJV/lR7ZK1uXLVS7p/ursyWxoOcifXtOdo5KfMspWM1toZmvMbL2Z3XyEY95rZivNbIWZ/Sy7YcpQy7eWC8Dlp41ndHkRP316Y9ChiAyKAbPVzCLAbcBlQANwrZk1HHbMTOBzwDnufgrwqeyHKkMpXy5bTFcSjfC+M+p5ZOV2tuxpDzockazLJFvPBNa7+wZ3jwH3AosOO+YjwG3uvhvA3bVCb46LxbuJRgwzCzqUrPrAWZMA+NmzmwKORCT7MinoE4H02+yaU9vSzQJmmdkfzewZM1vY3w8ys+vNbJmZLWtpaTm+iGVIxOK5t0B0JupGlXHRybXc/WwTbTGtOSr5JVsZWwjMBC4ArgV+aGZVhx/k7ne4e6O7N9bU1GTppWUwxBKJvOqfp/vogmnsbuviF8t0CaPkl0wydjNQn/a8LrUtXTOw2N273P11YC3JAi85KhbvztuCPn/yaBonj+KHT24gnjr5K5IPMsnYpcBMM5tqZkXANcDiw475LcnROWZWTbIFsyF7YcpQ60p43hZ0gI8umE7z7nZ+94pmYZT8MWDGunscuBF4CFgF3OfuK8zsy2Z2Zeqwh4BWM1sJLAH+wd11sW8Oy9ceeo8LTxrLjLEj+MHjG3SjkeSNjDLW3R9w91nuPt3dv5radou7L049dne/yd0b3P00d793MIOWwdcZ76aoMBJ0GIOmoMC4/vxprNq6jyfX7Qw6HJGsyN8hmJyQWCJ/e+g9Fs2dQG1FMbc/8VrQoYhkRX5nrBy3WDxBcR63XACKCyNcd+5U/ri+lVea9wYdjsgJy++MleOWz1e5pLv2zEmMLCnkPx5bF3QoIics/zNWjksskbxTNN+NLIny4XOn8fDK7RqlS85TQZd+DZcROsDfnDuFqrIotz6yJuhQRE7I8MhYOWaxPL/KJd3IkijXnz+NJWtaWN60O+hwRI6bCrr0K9+vQz/cB8+ewpjyIo3SJacNn4yVYxLL8ztFD1deXMjHL5jOH9e38swG3RMnuWn4ZKwck1g8QfEwKugAf/HWydRWFHPrw2t196jkpOGVsZKx4XBj0eFKohFuePsMntu4i8fXanpnyT3DK2MlY8Oth97jfWfUM2l0Gf/8wCrNxCg5Z/hlrAwonuim2/NrPdFMFRdG+D+Xn8Ta7Qe4d+kbA3+DSIgMv4yVAeXjAtHH4tJTxnHW1NF865G17OvoCjockYwNz4yVo4qlFoiODsOWC4CZ8X+vaGBXW4zbHlsfdDgiGRueGStH1VPQh+sIHeDUiZW8e14d//nHjWxqbQs6HJGMDN+MlSPqTBX0fJ9tcSD/cOlsCiPG1x5cFXQoIhkZ3hkr/RruPfQetRUlfHzBdB58dRtPaREMyQHDO2OlX10q6Id85PxpTK0u5/O/fYWOrkTQ4YgclTJW+jjUQx/mLRdI3mz01T87labWNs2ZLqGXUcaa2UIzW2Nm683s5qMc924zczNrzF6IMtR0UrS3t82o5qp5E7n98Q2s3b4/6HBEjmjAjDWzCHAbcBnQAFxrZg39HDcS+CTwbLaDlKGlgt7XF97ZwMiSQj7361fo7tY8LxJOmWTsmcB6d9/g7jHgXmBRP8d9BfgG0JHF+CQAneqh9zG6vIjPv7OB5U27uWfppqDDEelXJhk7EUi/B7o5te0QM5sH1Lv77472g8zsejNbZmbLWlo0+VFYqYfev3fPm8jbpo/h6w+sZvOe9qDDEenjhDPWzAqAW4FPD3Ssu9/h7o3u3lhTU3OiLy2DRC2X/pkZX79qDt3ufOa+l9R6kdDJJGM3A/Vpz+tS23qMBE4F/mBmG4G3Aot1YjR3aYR+ZJPGlPHFd53C0xta+ckfXw86HJFeMsnYpcBMM5tqZkXANcDinp3uvtfdq919irtPAZ4BrnT3ZYMSsQw63Vh0dFc31nFxQy3ffGgNa7bpqhcJjwEz1t3jwI3AQ8Aq4D53X2FmXzazKwc7QBl6arkcnZnxtatOo6KkkE/9/EU647rhSMIho4x19wfcfZa7T3f3r6a23eLui/s59gKNznOb7hQdWPWIYr5+1RxWbd3HrY+sDTocEUB3iko/OtVDz8hFDbW8/6xJ3P74Bn6/cnvQ4YiooEtfOimauVuuaODUiRXcdN+LmmZXAqeMlT5iiW6iEaOgwIIOJfRKohG+/4H5AHz87uWawEsCpYIufQzXBaKPV/3oMr71vrms2LKPLy1eEXQ4Mowpa6WPWLxbJ0SP0YUn13LD26dz79I3uPc5TQ0gwVDWSh+xePewXU/0RNx08WzOm1nNF377Kn96TQtiyNBT1kofsYRG6McjUmB89/3zmFpdzsf/63leazkQdEgyzChrpQ+1XI5fZWmUn3zoDAoLjL+5cym7DsaCDkmGEWWt9NGpk6InpH50GT/8YCNb93bw0buW6U5SGTLKWumjK9FNsUboJ2TepFHc+t7TWbpxN5+850XiqbtvRQaTslb6UMslO66YM4EvvquB/12xjX/81cuablcGXWHQAUj4xBLdlERV0LPhr8+ZyoGOOP/2yFrKiwr58qJTMNMNWzI4VNClj1i8m4oSfTSy5cZ3zOBAZ5zbn9hAeXEhn104W0VdBoWyVvpQyyW7zIybLzuJA51xfvD4a5jBP16qoi7Zp4IufSSvQ48EHUZeMTO+suhUHPj+H16jPZbglisaNF+OZJUKuvSRvFNUhSbbCgqMr/7ZqZRGI/z4qddpjyX456tOI6KiLlmigi59dMZ12eJgMTO+8M6TKS+K8O+PraetK8G/Xj2HYv1FJFmggi59xOIJ3Vg0iMyMmy6ZTVlxIV9/cDU79nVw+1/Op6qsKOjQJMcpa6WProTrpOgQ+NiC6Xznmrm8sGkPV33vTzS1Hgw6JMlxylrpQ5NzDZ1Fcydy90fOYldbjD//3p9Y3rQr6JAkh2WUtWa20MzWmNl6M7u5n/03mdlKM3vZzB41s8nZD1WGQqLbSXQ7RRH1dIfKGVNG85u/PYeKkkKuueMZ7nqmCXfdVSrHbsCCbmYR4DbgMqABuNbMGg477AWg0d3nAL8EvpntQGVoHFpPVCP0ITW1upz/vuFczp1Rzf/97at8+r6XaI9pUi85Nplk7ZnAenff4O4x4F5gUfoB7r7E3XtWyH0GqMtumDJUVNCDU1kW5ccfPIObLp7Fb17czJ9/74+8vlN9dclcJlk7EXgj7XlzatuRXAc82N8OM7vezJaZ2bKWlpbMo5Qh05lIjgpV0INRUGB84sKZ/OeHzmDbvg7e+e9P8vOlm9SCkYxkNWvN7C+ARuBf+tvv7ne4e6O7N9bU1GTzpSVLekboxbpsMVAXzB7Lg588j7n1VXz2V6/w0buW03qgM+iwJOQyydrNQH3a87rUtl7M7CLg88CV7q5PXo7qKejRQt29GLTxlaX813Vn8YV3nswf1rRw6bef5OEV24IOS0Isk4K+FJhpZlPNrAi4BlicfoCZvQW4nWQx35H9MGWoxFILMegql3AoKDA+fN40/vvGc6geUcT1dy3n4/+1nO37OoIOTUJowILu7nHgRuAhYBVwn7uvMLMvm9mVqcP+BRgB/MLMXjSzxUf4cRJyOikaTiePr+B//u5c/uHS2Ty6egcX3fo4dz/bpEUzpJeMbv139weABw7bdkva44uyHJcEpCuhgh5W0UgBN7x9BpefNp7P/+YVPv+bV7nnuU3ccsUpnDl1dNDhSQgoa6WXzp4Ruk6KhtbU6nLu/vBZfOeaubQeiPHe25/mhruf541dbQN/s+Q1Tc4lvajlkhvMjEVzJ3JJwzjueGID3398PY+s3M77z5rE3759OmNHlgQdogRAWSu9HLpsUQU9J5QWRfjkRTNZ8pkLuGreRO56pokF3/wDX39wNbsPxoIOT4aYslZ6iamHnpPGV5by9XfP4fc3LeCSU2q5/YnXOOcbj/GV+1eydW970OHJEFHWSi8x9dBz2tTqcr5zzVt46FPnc+kp47jzTxs5/5tL+MwvXmLNtv1BhyeDTD106UU99Pwwq3Yk33rfXG66eBY/fup17l26iV8ub+at00bzwbOncHFDLYX6n3beUUGXXtRyyS/1o8v40pWn8IkLZ3Lfsje46+kmPn7384yvLOHqxnqunl9H/eiyoMOULFFBl14O3fqv0VteGV1exMcWTOcj503jsdU7+OnTG/mPx9bx74+u423Tx3B1Yx2XNIyjvFglIZfp3ZNeOnWVS16LFBgXN9RycUMtm/e086vlzfxyeTN///OXKIm+woUn1/KuORO4YHYNJVFN/5BrVNCll0N3imqEnvcmVpXyiQtncuPbZ7CsaTf3v7yF3728ld+9vJXyoggXzB7LJafUcsHssVSWRoMOVzKggi69xOLdFBYYBQWabXG4KCgwzpw6mjOnjuaWKxp4ekMrD7yylUdW7uB3r2ylMLV/wawaFsyuYXbtSMz0+QgjFXTpJRbXAtHDWWGkgPNm1nDezBq++mfOi817eHjFdv6wZgdfe3A1X3twNbUVxZwzo5qzp43h7OljqBulk6phoYIuvcQSKuiSVFBgzJs0inmTRnHzZSexbW8HT6xt4fG1LSxZvYNfP59cFqF+dClnTB7N/CmjmD95FLPGjtRfeAFRQZdeYvFu9c+lX+MqS3jvGfW894x6urudtTv28/RrrTz9WiuPr23h1y8kC/zIkkLm1FVy2sQqTq+r5LS6SiZWlapNMwRU0KUXtVwkEwUFxknjKjhpXAV/fc5U3J2m1jaWN+1m+abdvNy8hx89uYF4ar72ytIoDeMrOHl8BSePH8ms2pHMrB1BWZFKUDbptym9dKrlIsfBzJhSXc6U6nLePb8OgI6uBKu37eeV5j2s3LqfVVv38bPnmujo6j70fXWjSpkxdgTTqkcwraacaTXlTBlTzriKErVtjoMKuvSilotkS0k0wtz6KubWVx3aluh2mloPsnb7AdZt38+a7ft5reUgz2xo7VXoiwoLqB9VyuQx5dSPKqVuVBkTR5UysaqU8VUlVJcXq+D3QwVdelHLRQZTpMCYVjOCaTUjWHjquEPbu7udbfs62NBykKZdB9nU2sbG1oM0tbax9PVd7O+M9/o50YhRW1HC+MoSxlaUUDuyhNqKYsZWFFM94s2v0eVFRIZR4VdBl140QpcgFBQYE6pKmVBVyrlU99m/t72Lzbvbad7dxrZ9HWzZ08G2ve1s3dvBqi37WLJvB22xRJ/vM4Oq0iijy4sYU15MVVnycVVZEaPKolSWvvlVURqloiRKRWkhI4oLc3LysowKupktBL4DRIAfufvXD9tfDPwUmA+0Au9z943ZDVWGQpd66BJCPUW3YULFEY/Z39FFy/5Odh6IsfNAJy37O2k9GGPXwU52HYzReiBGU2sbL7yxhz1tMboSR19gu6wowojiQkaUFDKyuJDynq+iyKHHpdEI5cURSosKKYtGKC2KUBqNUBKNUBItSP2belyYfFxcWDBo7aIBC7qZRYDbgIuBZmCpmS1295Vph10H7Hb3GWZ2DfAN4H2DEbAMrliimxEl+sNNcs/IkigjS6JMqxn4WHfnYCzB3vYu9rZ1sbe9i30dXezviLMv9fhAR5wDnXH2d8bZ3xHnYGecXQfbOBiLc7AzQVss3qvvfyw+tmA6N1920nF979FkkrlnAuvdfQOAmd0LLALSC/oi4Eupx78Evmtm5u5H/1/gcXh8bQv/7/6VAx8ox6VpVxsXzMogI0RymJklR9/FhUysKj3un9Pd7bR3JTgYi9MR66a9K1no27sSdHYln3d0JeiMdx/6t7Orm3mTq7L3H5Mmk4I+EXgj7XkzcNaRjnH3uJntBcYAO9MPMrPrgesBJk2adFwBjyguZGbtiOP6XhnYzNoRXD2/PugwRHJCQYEdar+EwZBG4e53AHcANDY2Htfoff7kUcyfPD+rcYmI5INMzn5tBtKHbHWpbf0eY2aFQCXJk6MiIjJEMinoS4GZZjbVzIqAa4DFhx2zGPhg6vF7gMcGo38uIiJHNmDLJdUTvxF4iORliz9x9xVm9mVgmbsvBn4M3GVm64FdJIu+iIgMoYx66O7+APDAYdtuSXvcAVyd3dBERORY6A4SEZE8oYIuIpInVNBFRPKECrqISJ6woK4uNLMWoOk4v72aw+5CDYmwxgXhjU1xHRvFdWzyMa7J7t7v/ByBFfQTYWbL3L0x6DgOF9a4ILyxKa5jo7iOzXCLSy0XEZE8oYIuIpIncrWg3xF0AEcQ1rggvLEprmOjuI7NsIorJ3voIiLSV66O0EVE5DAq6CIieSLnCrqZLTSzNWa23sxuDjCOn5jZDjN7NW3baDN7xMzWpf4dFUBc9Wa2xMxWmtkKM/tkGGIzsxIze87MXkrF9U+p7VPN7NnU+/nz1BTNQ87MImb2gpndH5a4zGyjmb1iZi+a2bLUtjB8xqrM7JdmttrMVpnZ2UHHZWazU7+nnq99ZvapoONKxfb3qc/8q2Z2TyoXBuXzlVMFPW3B6suABuBaM2sIKJw7gYWHbbsZeNTdZwKPpp4PtTjwaXdvAN4K3JD6HQUdWyfwDnc/HZgLLDSzt5JcUPxb7j4D2E1ywfEgfBJYlfY8LHG93d3npl2zHPT7CPAd4H/d/STgdJK/t0Djcvc1qd/TXGA+0Ab8Jui4zGwi8Amg0d1PJTkF+TUM1ufL3XPmCzgbeCjt+eeAzwUYzxTg1bTna4DxqcfjgTUh+J39N3BxmGIDyoDnSa5NuxMo7O/9HcJ46kgm+zuA+wELSVwbgerDtgX6PpJcjex1UhdUhCWuw2K5BPhjGOLizfWWR5Ocrvx+4NLB+nzl1Aid/hesnhhQLP2pdfetqcfbgNoggzGzKcBbgGcJQWyptsaLwA7gEeA1YI+7x1OHBPV+fhv4R6A79XxMSOJy4GEzW55aYB2Cfx+nAi3Af6ZaVD8ys/IQxJXuGuCe1ONA43L3zcC/ApuArcBeYDmD9PnKtYKeMzz5v97Argk1sxHAr4BPufu+9H1BxebuCU/+SVwHnAmcNNQxHM7MrgB2uPvyoGPpx7nuPo9ki/EGMzs/fWdA72MhMA/4vru/BTjIYW2MID/7qV70lcAvDt8XRFypnv0ikv8jnACU07dVmzW5VtAzWbA6SNvNbDxA6t8dQQRhZlGSxfxud/91mGIDcPc9wBKSf2pWpRYWh2Dez3OAK81sI3AvybbLd0IQV8/oDnffQbIffCbBv4/NQLO7P5t6/kuSBT7ouHpcBjzv7ttTz4OO6yLgdXdvcfcu4NckP3OD8vnKtYKeyYLVQUpfLPuDJPvXQ8rMjOQar6vc/dawxGZmNWZWlXpcSrKvv4pkYX9PUHG5++fcvc7dp5D8PD3m7h8IOi4zKzezkT2PSfaFXyXg99HdtwFvmNns1KYLgZVBx5XmWt5st0DwcW0C3mpmZanc7Pl9Dc7nK6gTFydwkuFyYC3J/uvnA4zjHpI9sS6So5brSPZeHwXWAb8HRgcQ17kk/6x8GXgx9XV50LEBc4AXUnG9CtyS2j4NeA5YT/LP5OIA39MLgPvDEFfq9V9Kfa3o+awH/T6mYpgLLEu9l78FRoUkrnKgFahM2xaGuP4JWJ363N8FFA/W50u3/ouI5Ilca7mIiMgRqKCLiOQJFXQRkTyhgi4ikidU0EVE8oQKuohInlBBFxHJE/8ftBDZCqJovU8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = sim.relativistic_ir()\n", + "r_ir = sim.relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)\n", + "plt.plot(r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Now, that the impulse response is ready, `simulate()` method can be called to produce a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since, the new light curve is produced by the convolution of original light curve and impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter `full`." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'full')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, some times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to `filtered`." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'filtered')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To learn more about what the lags look like in practice, head to the `lag analysis` notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Channel Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we demonstrate simulator's functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where you can create a new channel for each energy range and simulate.\n", + "\n", + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, there is an option to simulate light curves and add them to corresponding energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.simulate_channel('3.5-4.5', 2)\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Above command assigns a `light curve` of random-walk distribution to energy channel of range 3.5-4.5. Notice, that `simulate_channel()` has the same parameters as `simulate()` with the exception of first parameter that describes the energy range of channel.\n", + "\n", + "To get a `light curve` belonging to a specific channel, `get_channel()` is used." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABLAklEQVR4nO2dd5hU5fXHv2dmtlCWvkuHpSNIERakKWBBEGvEqNEYjQlBiTGxG40xRn8SNcXEFmISjd0olohBIsUOuEiVzrJ0Yemd3Z15f3/c+8688869M3dm79Q9n+fhYebeuzPvzNx77nnPe873kBACDMMwTPbjSfcAGIZhGHdgg84wDJMjsEFnGIbJEdigMwzD5Ahs0BmGYXIEX7reuFWrVqK0tDRdb88wDJOVLF68eI8QothqX9oMemlpKcrLy9P19gzDMFkJEW2228chF4ZhmByBDTrDMEyOwAadYRgmR2CDzjAMkyOwQWcYhskR2KAzDMPkCGzQGYZhcgQ26AwTJ/PW7MbWfcfSPQyGiSBthUUMk22U3j0Tlwxsh3eW7kC+z4N1D01I95AYJgz20BkmDt5ZugMAUF0bSPNIGCYSNugMwzA5gqOQCxFVAjgMwA+gVghRpu1vCuAlAJ3M13xcCPFPd4fKMAzDRCOeGPpYIcQem31TAawSQlxIRMUA1hLRy0KI6roPkWGyB9mjl4jSPBKmPuJWyEUAKCLjLG4MYB+AWpdem2HSTo0/MmZu1WD9xQWb0eWeD7D3yMlUDIthwnBq0AWA2US0mIgmW+x/EsApAHYAWAHgFiFExBVARJOJqJyIyquqqhIeNMOkms82RE5OawORBv3VRVsBADsPnkj6mBhGx6lBHyWEGARgAoCpRHSmtv88AEsBtAMwEMCTRNREfxEhxHQhRJkQoqy42FKfnWEykv1HI6OHfguDvnrnIQCA18MhFyb1ODLoQojt5v+7AbwNYKh2yPUAZgiDDQA2Aejt5kAZJp1UHY4MoQQsQi4SHxt0Jg3ENOhE1IiIiuRjAOMArNQO2wLgbPOY1gB6Aahwd6gMkz4e+e+aiG3b9h9Pw0gYxh4nWS6tAbxtrtr7ALwihJhFRFMAQAjxLIDfAnieiFYAIAB3RcmIYZicYOmWA+jZushynz+K984wySKmQRdCVAAYYLH9WeXxDhieO8PUG7qVNLbdV+tng86kHq4UZZgEqdVSGQPKIum6XYdTPRyGYYPOMImiZ7ks2bo/+PihmatTPRyGYYPOMIly4HhN8PH+o9W47Jkvg8+tCpEYJtmwQWeYGMiK0DZNCsO23/Ty18HHm/YeDdtnlaPOMMmGDTrDxGD/McMTH9y5ue0xugFnD51JB2zQGSYGg377PwBAg3yv7TF6VstpneyNP8MkCzboDOOQBnn2Bl330Mf1aZ3s4TBMBGzQGcYh0Tx0vZCohvPQmTTABp3JanYcOI7Su2fiD7PXJv29okmc6y3p/AGOoTOphw06k9X8b9UuAMCf525I+nsdPWkv8a9ro7OHzqQDNuhMVtO+WYOkvr5a/WklxiVj57r55rRFRlLjD+B4tT8l78UGnclqpIRt+2YNcMtrS1zvFNT1lx8EHzdrkBd8fPu4ngCAWjO0ohr+fJ/HsvkFUz8Z89h8nHL/rJS8Vzw9RRkm45j84mIAwPYDx7F96XE0KczDby85NSnvpdroPK/hC0lPXF0U9XkoQueFqb9sP5A6mWX20JmcYtv+Y0l77VPahppwyY5EMlauhlh8HmIPnUkLbNCZnKJzy0ZJe+0+7UIGXXYkCsbQTfs997bROHSiFmu/ZbVFBvh9CrKvVNigMzlFMlu/je4Z6oPrNUMuMoYuDbv03L+s2Ju0cTDZw1+U7KtACmZtjgw6EVUS0QoiWkpE5TbHjDH3f0NEH7s7TIZxxvGa5GQTLPt1eP8W3UOXMXRPtGR1jbcWb0Pp3TMt+5UyuUcqwnDxLIqOtWsrR0TNADwNYLwQYgsRlbgxOIaJlx5RugjVhQJfuO8jDbrUcAloHroTXvtqCwCgouoIiosK3Bgmk8GkIpXVrZDL9wDMEEJsAQAhxG6XXpdh4iJZl4zuePu81h56PAadYBzL66f1g9oUVA87NegCwGwiWkxEky329wTQnIjmm8dca/UiRDSZiMqJqLyqqirRMTNMkDN6tAp77rYX5CGgecM8FPi82nbTQ9fy0OMJuSB54X4mA8kkD32UEGIQgAkAphLRmdp+H4DBACYCOA/Ar4iop/4iQojpQogyIURZcXGxvpth4ka/SNyOU7ZolI8J/dpGbP93+TYAwLtLd4SNQ/XQdTkAHXmoSNq8gskkUhFDd2TQhRDbzf93A3gbwFDtkG0APhRCHDXj7J8AGODmQBnGioBmNN32gmoDAnkWYZT9x6oBAJV7jbx3Kd3iVTz0WEORIRe25/WDjPDQiagRERXJxwDGAVipHfYugFFE5COihgBOB8BdcpmkIoTAgop9Ydv0RhN1xe8X8HpCl8miX56Nr+49B3dP6A0AGNChKY5V1wY7FOX7PPjZWd0BRN5s7GB7Xj/IlCyX1gDeJsPz8AF4RQgxi4imAIAQ4lkhxGoimgVgOYAAgOeEELrRZxhXOWoheOS2bG1NIBBcAAWAErOv6K5D+QCAh2auxrtLd+Cs3kZiV4HPgwb5xmVV6xeI0hMjuNDq1PAz2cXuQyfCnn+1aR/an9Y+qe8Z06ALISpgET4RQjyrPX8MwGPuDY1homOVvy29oBGPzEHbZg3w1o0j6vQe/oCwLFZSFz9XbD+IEd1aojDPA4+HkGfeAKr9ATSAvUWXL+H2rILJDOatDU/2+/nrS3FJkg06V4oyWcvjH0aWVcs45Y6DJ7B48/46v0etnUHXrpzjNf5gi7p8M2c9mkDXH2avxecbjGrSldsP1nmcTOYRV8aTW++Z8ndkGJeYuWJnxDY345T+gIAQCIuhS7zaxbpkywHsP1YDIKTEGK3JhdqQ4/f/W+fGcJkMo33zSK3+k7XJ1UVng85kLVaNmPVMggf/swpPzUusm5HMMVdj6BKP5rWvULxsX1CJkSV06zNWN/R5a5Jbf8MGnclaxvVtE7Ht+S8qw57/4/NNeMwiNOMEGdu2CrnoHrqKDLmwQa/f1NRG/v5TXlqc1Pdkg85kLYlkh8z4ehtmfL0t+Pzdpdux72h1xHEna/2Y8MSnAACfN/Iy0e356V1a4PQuLQA4C7no7HG50xKTfqrNG/oPhncO255M1UU26EzWIisxGxeEJ2ut2Ga/yHjrG8tw6xvLAAC7Dp3ALa8txZQXI72mXvfNwpZ9RtHQtwcjO87osfoTtaH0xkRCLieSpBLJpA/5+/doXRS2vTqJMzc26EzWIm1qg/zw1MBNe486/HvjBTbvi3786p2RzSp0L2vZ1gPwmYuneWbIJZ4Ll9KQEcEkl2oz5LJh95Gw7cksMGKDzmQduw6dwGXPfIFvDxqFGyO7tQzb76RR9MKKvcHS+12Hoh9vle9udU1Kz1we/8k6+wWwSwa2C3tuFW9lshsZcutWHN5FK5m/NRt0Juv4+2ebsHjzfjwxZz0A4M7xvcP2HzxeY/l3agbMFdMXhDV2lhw9WYsH/7MqbJvaek5ipbsuhblkXrm+QKuiqzcmsoC6dOsBLN68L/aBTFqoNlMUS1tpBp1DLgxjGOqqwyexX1vELPB5UDltYvB5w3zr6kw9B9hvsWj53Keb8I/PN4Vts9I419MWAWD2ql0AgK7mBXzgWA2enm+dMqnfTBKJq17y1Oe47Jkv4/47JjVID10/fziGzjAAhj8yB0Me/gj/XrwtbLtekdeikXX3Hz1MYtVw4P3lOyK2xdundFJZx+DjR2dZp0ye1KbdXP6fe0jD3bVV+GwunuyneGGDzmQNxyzEuICQtywLjaptYpS6R66GYPYdrcZdby7Hem0BS339WFw11DDkDaIpcplUa7OFeKfhs1ZGVskymYU8D0uKCsJmkBxyYZgoSHt781k9AEQaSwB4dNaaCI9czTaY8MQneL18q+XrTx3b3dE4Gpkqi07a0EmPvHUTYzYR7zR8yktfx3U8k3pq/AH4PBThENg5HG7ABp3JemTIRUqufLFxb8QxT8/fiE/Xh/c4Vz30aJku7ZtFanIAke3v9h2LLFCyoyYgMLBjMzx99SDjOYdcco7q2kCwalhFD7e5CRt0JuuRBl3mgcvFSZ2fv7407LldCMcpw7qGp0vO+Hq747+tqQ0gz0vBqtJoyoxMdqIqcALAL84xunI+OXd90t6TDTqTFUTrzynXRC0q9KNyrLq2DiMCfnxGVzx4cd+E/rY2EECe16PIBLBBzzVO1ARQqBj0/5rrHvPWJk+gy9ElQESVRLSCiJYSUXmU44YQUS0RTXJviAwTvbouGHKJs9ryeB099HyfB9cOLw0+10Mw0aj2C/i8HqUZBodcco0TNX4U5oVM7FVDOyX9PePxacYKIQYKIcqsdhKRF8DvAMx2ZWQMoxAtrc8T9NDjM+huC2K1bJRvuX3tt5HSAcu2HsBn66s45JLDzFyxExurQrISPxhRCgDIj3cqGQduvvLNAN4CsDvWgQwTL9GyQKRnHq9B/9W738Q8Ri/Rj4aVKiMA7LAQ9wKMvHhp0NftikyXZHKTan/AstuWGzg16ALAbCJaTEST9Z1E1B7ApQCeifYiRDSZiMqJqLyqKrlC70xuEc2DlWlh8Rr0WNx/QR88OiminW4EVw4x8s+njO5quf/6f34VUd0qkQqNz368EQBw6dOfY+rLnJKYC/RqXYTxFpr9APBkgk1XYuHUoI8SQgwCMAHAVCI6U9v/JwB3CSGizhuFENOFEGVCiLLi4uL4R8vUW5wo1Llt0EtbNbRMO9OZdll/VE6biO4lRbbHbD9g7aXr0+8lWw5YttaLRrQFYyZ91PgDQeXNVOHo3YQQ283/dwN4G8BQ7ZAyAK8RUSWASQCeJqJL3BsmU9/Rs0Ckgp0qkiULe5zSu429AQase4kmypKtB4KiXar0bp5NmGbD7si4ux2cw56ZVPsDwUVvnUtPa5+U94x5xhJRIyIqko8BjAOwUj1GCNFFCFEqhCgF8CaAm4QQ77g/XKa+ohuteyeeAgBo07QwuK1A8YZG9zRmgNF0WGJ5/fFquKg8f/2QsOe/emclLvjLZwCAGqVi1U4m4OWFW2xfW8/OOc7NMTKSGn8AeTZOwYUD2iblPZ24IK0BfEZEywAsAjBTCDGLiKYQ0ZSkjIphNHQjVlSYBwBo0yRk0NVFyXZKdefAjs3C/rZpA+Nv9cYDOp1bNkxorAAwplcJZv9Cj0waqJWCdjox0dqUPfdpRdhzzpDJTGr8Ank+6993YMfmSXnPmHNUIUQFgIiVISHEszbHX1f3YTFMOPe8vSLseVnn5nhsUn9M7G/t6by6yPBwA0LgzvN64XvPLQzue3RSf/zEou2cyvIHxqGJedNIlJIia9XHEzb572os/NT2TW1fV9d7T2IDHCYBHvzPKnQvaWxWA1v7zC1sUlzrSnxBR6beMGvltwCA8adar9KnmmVbD4Q9JyJcrsjU2vHTs3pEpBPGEkf61w+H1tmYA5Gt8SSHT1pXqFbuPRZ8HO2Cr9Ra7CXSLJtJHlJPv8DniVj0Lm3ZMOx3dhs26IwlU14yPFhV9jPbqJw2EUIIfL1lf9j2WCX/Z/Z0JwPLroDEriH02MfnBx9Hi+8fPRn+92zQM5Maf6SH/uEvzoSFDL9rsJYLExXpqWcrRIRDJ0IGPN/rwaTBsT17t97bCun93zm+l+3f+qMYdD0VLtqxTPpQC8ckBT6v7czNDdigMxGopeqvLLLPtshkwlISFXv3wS2j4HK6elTm3T4mYpv0vtuaGTqyMYZKNCOtZ9/Udwf94LEa+AMCizbtw7w16S1Uv/WNpWHPN2vhsWTDBp2J4PkvQj017cIDqaZDc2tNcjv+7zv9go/VkETrJoUgogijePngDnUboA1WecjSWMs898GdW9geY4VeQFWfPfSdB49jwIOzcfVzC/Ddv36J65//Kq3j0SWUZyxxLqnsBhxDZyJQY3yLNmVGV/lzTmmN57+odHy8qrzYuCB0mst0R5+Xgp6yXCe4eGD7uAp6nKDH0a+avgDXDu9sjMFDYf+rRDPS6ucBIhtO1yd2mBW4Cyoy4zzVOa1Ts5S+H3voTARCiVE0TGK8Lx5qAwFbNUOVf08Zjm7FjdCrdSjkMrRLpAfssyj4GNWjFa4b2aVuA9XQpQO+rNiLO99aDiCUW7/PQuclmkHv264JAOBXF/QBUL9L/wt8xvl5StsmaR6J9e8wZXS3lI6BDToTgXpeOtEySQU1tQI+L+Hs3iW4+Sz7Hp9DSltgzm1jwhaerBYnj9ikDrqNVR7yYXORdqmZiumzCMus22U9Uyi9eyYemrkaQKhAqj7XFcmQ4AGl/V/3X36QlrFYdcCqS7VxInDIhYlA9TP8GaITUhMIwOfx4O/XDYl9sAV3nNcLZ/ZIvSCcXWEJAFxmxu2tbjjPfbYJ95keuB3b9xvhhg27j6BXDF2aXOXzDUb/2J0HTwS31QYE/AHhulhbLP5qKmaqpHoMmeF+MRmF6qHbFcGkmqrDJ+uUbz11bHf062BffZks7MSZgJD2zA4bJcZYfLzOyOiY9U12p5bWhbJSo4T+1PbhIZd0LBTrFbyAdWgvmbBBZyI4EEf3+lTx6fo9YV5YtmCXiw6EvPerhiTWmuyu8b0BABMypJo3lbz+1RbMW7M7qMJJCP+e01FsZdVGMMX2nEMuTCSLKjMzYyDXkN57JwsRsAsHxO6U1LKxoRVTHxtM3/WWoe3z3LVGR0y9sjYdHrpVii976EzaqU9JE/MtCn9SRbT4eqGDxWjZgPhkTf0y6Kq65I/+ZfSs19Up05HKKcM/KhxDZ9JObTLFJjKMukjk1hWr7BaJlUHSjVahqaV+ojYzir9ShV68A4RrzAPR5YeThaz8ffDivsFtqc5yyQmDXusPYOzj8/FBnK27GGvqU+VhtBh3slGLjmbcNCJsn9VvoDeyCBr0DKnmTRVHLcTVdEnidJzD8h48sGOzoLwEe+gJcLTaj017juKuN5eneyg5QX0y6OlElfUd1Kk5Hr881HbA6jf40QvlYc/lDSGWHHCuYRVNqdG+r1SfwjsOHMeJmtACraxUjjYLSwaOFkXNXqGHAfgB1AohyrT9VwO4CwCZx90ohFjm7lDtkdMrJ42EmdgM6tQc5Zv3xz4wxYzs3jLdQ6gTXVs1QsWekFhTgRYnV2V9v7b4/r+s2Bv2XC6q1oeeorX+ALbtP47SVo1g9Wn1m1oqs1w27z2K0Y/NDz4nktITAt4UzwDj8dDHCiEG6sbcZBOA0UKIfgB+C2C6K6NziFzl596K7jCqRysA8QtiJZN8rwf92jdL9zDqxEe3jg57ri+Kvq0IOe2IkaL5u8v6gYjg9VC9WPN4+IPVGPP4fHxr873oOeCpnGXuOnQy7LmHKJiumJUhFyHEF0II6VIsAJAc6Tob9OkWUzf8AQEiYFT3VrZt1FKNXwhESQrJCtT+oU9fPShifzyhE3kz8HkItfXAQ/9s/R4AwIHj1Y60a1Jp0PWZFlEoLz5T0xYFgNlEtJiIJsc49gYA/7XaQUSTiaiciMqrqqriGWdUapQLofTumfj97LWuvXZ9pDYg4PNQmCJhuvEHUj99dYuiwsjIptrEWqJmRPQoaRz1NRvmG6+Z5/XUj5CLeR5WHT4ZFkNXm4SrpLOLk4cotCia4hi6U4M+SggxCMAEAFOJyLKdORGNhWHQ77LaL4SYLoQoE0KUFRe7p6uhF1b8Ze4G1167PhIwdTB8Hk9GFK1Ij8yT4umrW3zwszPw1PcMj1z2CpU55CptmoaMU6wb6Vm9SwAYi25HTtbgun8uQkXVEbeGnHHI2cv3/74I1co5afc9pdIP0d/KQyH55oxMWxRCbDf/3w3gbQBD9WOIqD+A5wBcLITYq+9PJvXBQ0kltaY3nOfNjOm8nD57stRD79iiISb2bwsAaGCmGhb6ImWJ/3LVIJQUFaBNk0Js2mPf6eaSge2CKpg+jwcfr6vC/LVV+O37q5Iw+sxANeJNlBnPniPh8evrR5YCSG3Ixa+tYRAZ/4DUn7MxDToRNSKiIvkYwDgAK7VjOgGYAeD7Qoh1yRhoNDLBi8wlpFKdz+vJiAU3WWTj5gLTp3eOxfs3j3Lt9Zwiv08rWeJ8nweL7j0H3x6yXviTAlSqZnuel4IOTbbe8JygGuhosxe5tpDKkIvu9BiLomQ+TtkwjPdzcExrAJ8R0TIAiwDMFELMIqIpRDTFPOZ+AC0BPE1ES4mo3O7FkoFudLrHiD/qLNt6AKV3z8QLX1Riv0WzgfqGPyDg83qQ5zGMRbobKOw2swjctFcdWzTEqe1Tr74ofQ8nNyf9e29SmIfBnZtjYMdmwW0+LwXDEekskko2arn/q1H63MqvIJUeun6DyfN6gjfXVF85MQ26EKJCCDHA/NdXCPGwuf1ZIcSz5uMfCSGam2mNdqmNSaO6Nvxr6x+nTOrFT30OAPj1e9/glteXujWsrKVW8dCB9Bca3fuOMSFcXJl5ufHxcvu4ngCAZg3zbI+RDa717726NhDR0i7P4wk268hhe45DJ0I5+ut22a8VbN13DEBqz9m3vt4W9tzrIVwzzGgzqLcLTDZZnghmoIdcdCnNeNi4O3cXlpzy6qItqDp8Mljllu5MFzlryoXemVcO7YTKaRODrdOsuGigobSof+81/kBEqEatRDxkocdd35AGNJWniq4t4yHCL87pgY3/d35QniFV5IRB10MuIo6Jjq6DsT3BZgO5SJ6ZQ5vuNQr5/rp3mqvYfe8nay0MupLnbKVxUt/o286Ynafz5t+maWGw6CvV5MQVoodc4vktv/vXL10eTe4Q9NDTkOny6qIt+GSdUasgY8R5GdLfNNnYfe/VFh66+p3U1Gb/DKauyHTQp+elJ3U51SEWnZy4Qir2hIdJ4lnhXr7toNvDyQoWVuy1LKNWqxVlDF2XJk0F98xYgWv/sQiA4ZkCqc/pTRfyc+ohl+raAAq0WYr6lew9Wm1bGl9f2FhlpHvOXrUr6e+18+Bx/G7WGkwd2y24LVrLwVSQEwb90VnhlaF1DfnOXbMLV01fkPbsjmRyxfQFGPbInIjtd88IKVbmedLnoavIMFgO/xxhyBupHkqstgi5qOw5chLDHpkTJvJV30hlmGP4I3PxzPyNqKgK1QxE+31SQU4Y9In92oY9r6u4/Q+fL8eXFXszpkFyKlEFooKGJY0GfaGiMFhP7HnIQ3cQcrG6yW0xMz1yhcMnoi/23nJ2j+DjZg1C2UMPpajQ6r8rQ026o3WhSgU5YdAHdQ5v/TRnjTvTLRnDrU+oBiIoz5rG4qIrpi8IPs7lGZNKXtBDj522aEWufU3Pf14Zse3cPq2DejdqQZXai/W5zzYlfWw66VgIVckJg6575Cfq0GOxUX4ozejvaTghUkG0GUx7RTRqg5nCmSmpnDlmp2zxBj302CGXHRZZWekUpkoGVllW/1u1C5cOag8gXDa7OM3qoJv3pnd2lN4lWZdwM0XpqNLKKlc7wege96/eWYmSogIcOlETlrYppXN1rem0kVt2yhbpoav6JYGAQG1ARBj03YfDtUwAoHLPsWD6nhssrNiLAR2bpTynWmInj9292PDQu7Qy+sI2zPfWm4VzO3LDoCep8OWbHYdcfb2NVUfQtVWjtJdo62JmLy7YbHncaZ2MUFbTBvZVjakknvqCbKYgL7K1nDTuThbdpr7yNSb2n+jKWDbtOYorpi/Ad8s64NFJRou8EzV+7D1aHTabc5tlWw+gW0ljNC7w4Zn5G4Pbe5Q0xvrdR/CT0V0xrm8bvDllOAZ1ao6zerdGvs+T0mtrTK9izF+bWWHZrA+5bN13LDjt/NGoLjGOTh9fbtyLs3//Mf69eFvsg5OMPpW3wuehoPGozhDxsyuGdEr3EFLCcXOWuF4pcZepm6kurpKzs7XKWG544SuMnDY3aWsax6prcfFTn+PGlxZH7Ovd1hAokze7stIW8HgIxUUFQcfjnFNaJ2VcOpmoz5/VBn3b/mM449F5eHmhIdbzy/NPCe5zcrL9wMxzTgVrvjW8/VUue/2J4ERueMn952ZcE+LRPd3T0M9kpM7L7sOhnHL5G+jdcZLFvqPVWLr1QDAev2zrgeC+zzcYmUcnk3ReyPPz0/V78PWW/cHfvWurRsGMl71H7EX0rhjSMSnj0kn3TNuKrDboK7eHFwV5PBSM++p9/qz4WMliuW/iKRjft03Mv3nxy0q8FkXtzQ65sJPuwgMgfJHJ7sZXVJgX8tAzxKDXF2QXno4tGga32YVcLh+cnG6Plzz1OS556vOoXmiyNH7Ut/zO018Er1MBYGiXFgCAtk2tOxUBqIOSU3SEEMHCrX4PfIiPVie/eClestqgT3np64htncyL4EicOeTjT20TJnRkx6/e/QZ3z1gR12sDIa8j3XmqQHh+c7SLMtNCLvUFX1DLJfTbyDaLukF/7PIBqJzmTrxcReayR0vDe+SD1aj1B7Cx6ggOHHNPdtpucj2sa0v4/bG18ZPlOL+yaAuGPTIH3+w4iMMnMrNGJf3WxWWuHmbEWePNB+3QvGFSje0f/2f0/cgEg65muUQrGmIPPT2EtFzUVmtyhpfa8yeaY/Tywi2Y9c23OPv3H2PCE5+69p52abW/uagvLhrYDgU+DyZFmZmoSpa7bJqFJMIKUyZkqRJ+0hnZvaVr75cI6bcuLiO9GycLfzr6TWB4V/d+HOkJp7vwYMeB43hK6bl6stZve6yMoT80c3XSx6WSbv31dOMLFnRFzqRSvRB3+7+XRd0vf6udLmrI2M0a830edG7ZCGsfmoCuxfZNbEZ0C123boaF5O8S7fzs2iq+5jpu4yhtkYgqARwG4AdQqzewIGN14AkA5wM4BuA6IURkPCQFBKsbEyhX1zUwvqxwvzVqurXFb3ihHKt3hhZmj9fENuiAsUBXUmQft3ST8sp9EduevnpQSt47E5Dyudv2h4pUah2EGpLBtv3R5aST0fbOao3q/H6x17ckajPxusqAhL2u7EIU5SVTtWhtRzzvPjZKN6IJAHqY/yYDeMaNwdmxZe8xjJw213KfV3rocZSry2nSByu+jdh3y2tLEhghsG7XYRyy0KBId073QS3Webw60qCXmVIK4RdGcselol8vw7u2xPmaXk8uIz3Bv35cEdwmvUK7dZ7BmvxFqkiGQa+0qLa0ujad4Obw5Ge1qsQ9r29rDOzYDD9Mc+q0W7eTiwH8SxgsANCMiJJ2Bb6yaIttIwqrLju/fX8VPvzG/oRQ0x113l26I6ExjvvjJ7jyrwsitjcuSE+1nUSvqrXy0Fs3SY0nbod+wdQn7xwIb1ohCYXsrC/ZVHxHWy1Ev5IxYdBbuiWCrBh9o9y9ug95c7By+kuKCvHO1JFol8RiKyc4NegCwGwiWkxEky32twewVXm+zdwWBhFNJqJyIiqvqkq8wiraXVdOV9WFvL9/tgk/eTG8SEFN1+vVuijq+72/fAceeO+bsG17j8ROi1ylhDYk6U4Y0dM59Y5NAPDrC/tEbEtVB5hafyBC01tWTtYXrKpBgx66jQVt3aQQj3ynH0Z2b4mOLeIzKjX+AJ79eKPluaBiJQERbYEwnTQxZ8J/nrMeizdHhvASQba2tEr1TffamMTplTJKCDEIRmhlKhGdmcibCSGmCyHKhBBlxcWJF4lE++6kh37l9EjvWEVNxfPFyBz46StL8PwXlWHbBj/0UdypkUB6hZOsxnu82vgefqZIkJZYeOj+FEnoPvzBatz6RvhCXCZkBqUSK+MgQ4jRDMdVQzuhXdMGccsdv7l4G6b9dw2eVkrsrZi/dnfEtveWJTaDjZdWjeMT3Xr4klODj19btDXKkc7xBD30LDfoQojt5v+7AbwNYKh2yHYAanlWB3NbUrCK20kv22nhTiKpeEc1g/jorDWWx+l3cDVOnU6DfvXfIm9yciG4T9vosxSr9YBkMGd1pNGo74JLQGwPXeLzUtwL73JGtCfGrPPx2esiz+0YXr1b3DW+V1zHt1VCH27JbXxlLtZbfb1ZY9CJqBERFcnHAMYBWKkd9h6Aa8lgGICDQoidro9Wjsli26ntDXU5q/ijZMPuw8HHMgvm3ijxc51Fm8Knbnblx3pa07X/WBh87Oaqe7wss2i3Jy/IPK8Hlw3qgOtGlFr+baKLw/FiJcCViSXWqcZp2qvP44k77fOJOesBWGeXqHRs0SDCmB045u6N/tP11qFYK1XJaCTDCZDXj+qUycXorDHoAFoD+IyIlgFYBGCmEGIWEU0hoinmMR8AqACwAcDfANyUlNGaqBd4c1P3YsnW/QCif7Hz1oROFumhN1Kauv5wpLFC/dldY3GRIpQv0bUrZq6wvmfp8eavKvcr+2yH5wpCCLy6aIvjNmQyburzevD77w7AAxf1tTxuo9Jmi0k+U8d2CzNKMuQVzWEBjPO/JsFCsFj3gatP7xxxs3D7Xvv9v1vrK1Xuie/8c1L1HXrPhSi9e6bj419eELrxSamRnTZJGqkmpkEXQlQIIQaY//oKIR42tz8rhHjWfCyEEFOFEN2EEP2EEOXJHLRadrvf9BBkX7/V2kKk6hGrJ19FlaEepy5A3X9hH1ROm4gOzRuitGVIR0Oih1js5EOjeUh62MZtPl5XhXtmrMAjH1iHg3RkOCjP5kY44VTn+b+Mexyr9qM2IILnr1MPvajQh6PVtXHNBK8fWerouCaFeRHndpeWjRy/Tyw2RTHa8fbqjHXjU/l0/R4A9rpGm/YcxUdK02k1w062n3snwWw4t8nK1abSViFj284U6blxjNF5W1/QU73lh2auDpbvfu85Iwxid6JcPaxzxLYK7YQb2KmZ5d9GM+h/MCUAksUh82a376gzbY3jZnenPJvvYWDHZq6Mi4mPf5pt19buMsKEsfLQJc0a5iMgYq95bNl7LJi10s2surxqaHSVQn8gEDH7bGV6qEWFdW+t8Pjstbb74l3oTUQEz2o9QAiBsY/Px4/+lVQf1TWy0qCrIRdZ/CKrGk/TjKxuXN8oD1/x1gttJK2bFOKO86IvxMxcvhM3vRyp2RwrhlnjDyRNSzrg0JOTHDdDM3Yxx1SHr3Ose1qdOWQaXSdZLgDwmRmDnr3KXgnw4PEanPnYPFzwF0N/RT8X7bz72oCIOLdPuijrO3N5eAhTFR0bH0elKBCeuXZuH2f66FbV5bGyeGQMPd0aLpKsNOjblXJkGfbo084QvlcN08laf8wVf6ntbMXUsd1jjuWDFd9GFC09q1T4WdHj3v/ipYXxS/A6QZ2a7zx4HJv3Ro89lm824vt2qYGUNDFSJho/P8dII5UzTqdZLmf1LgGAqO3ippg1GVv3HQ97bVkNbNcU3B8QWLLFOF9+MNyYwZ40vdpk34jH9iqJ63hV88bpIrGV/pNV1pXktxf3DSYRpLsCXJKVBv3Zj8PzZefdPgbnmVrmDZQTec+R6oj86X3HqvE9JX3PjbZmP3lxcZiXo4/PineXJCerU/XQhz8yF6Mfmx/1+C82Gjc0JxK5N7+a3EyXW15bElM7pL4gxaekMZIL67E89MZm6OPxD+3DF7LZikR3eqpsMkqq/QE8aQq7SUdAJhfsdRjiSxXq9zR3jb1RVrFy/qw8dHlTPa9vm+AMVlV4TCdZadBVigp96NIqtDCjhmOMxrpaZsrynUEjBrjX3cQuH9dO9bF8835LHZW6ImOc0VT5RnZviZ+as48zerQCEIqj6lyoZPv8J4lFJIdP1ETILJzZszjYvae+IY2GNOivmimFsRb7jpnn1BaLMn07ZNjEa8ad7W4aj85aGzTkMqShryu5RV0bwSQSKnSavy+vMZ/Xg3F92uC6EaW4b6Lz9OdkkvUGvUeUsn2/RcxPJ94KNDtesQmhRBPC/7JijyvvLZnx9bagQp8qrKUvkLZp0iAYV5Qelt1Uvk3TQssUTrcIBARmLt+Jfg/Mjtj3wvVD8PV95ybtvTMZaVSXbt1vud0OVSEzEBC4683lEZ299PRbGTaRr2y3AKmeIwUWITp1llrXQrS6NqBu2Sg/7r9xKrktP6bX7Lv7wEV90dIlO1JXst6gNymM9ODkQkVtIBDzrutWQYCdZni0d4935T4aJ2r8uPWNZXhqnhHuUS8+vQLwskHtg8URC81iqWjfQ8P85E0n3/x6G6a+Yq20TERhN6b6hPz97nprRTBurW63Q43lvl6+Fa+Xb8WPXgjP0DimzQxPmAZeOj81mmG7cEA7NMz3hl1LVh6w/PuP11Wh/wOz8cVGZw7L8m0HcOnTnwdrSgBggJld9e7UkXj/5lGOXkclkWK0eCW3M6GdpE7WG/TvDIrQAMPkM7sCAE7UBGJ66H3MLuLJ4vdRUrHcLJvWF6XUajZdKmFE91bYqsWqoxmKw0nMnd8WR2igPqHeYC99+ovQ9hhG5PQuRrbFz8/pgXvMVom6gdaRHro02PL/O87rhaICH+4Y1yviJmAl1LV6p5FiucDsIzD9k+jJAZL73/0GS7YcCNaUAMDdE3oDMAy7rAJPNnp4NlYmWqZUh6pkvUG3knotUHphRvPQ7zivV0J38tm/cK5N9nKUbBar2UWi6PnBNVr7Mv3Glq9NmaOdnHo6mZv8WemexISwyzqKpT8uQ+xPz9uobLP/m3tmrMC3Zps2GXKQ50634sZY8Zvz0MmiyK55w8iQhkwwkM7E/LXOFFWtFBv18zMZVFQdwRcbQrMIfcYcK6QeT/FSqsi8EbmALBbaf7Qa/iidGd5dmlimSddW7lTHuXmH17N5lm0NxU1rakWEl1aoSdI6vbEl07gzIezOjVj53vIsULOWVOOo39hfXbQFH36zK+xvaoMNze3PiZImkTFjmWGmNuZItKdnKrzfi578PFhgCETOZFZoaw86Geig56ZBlyf9DS+UR/XQLx8cO8Oli4XxdutkczN1V58uygpDwLhQ9bREmbcfL2o8l0kediGwWFLCjfKNtEU1O0i9V8+LksL3wYpv8bdPKvDHj4xq5miy0peeFhnq1BdbAeD+d3UdP2e4sXZy67k9g4+tQq+6nPRyTbzuMxuhMMD4fTJRNC7rDLrMsx7apQU++NkZlsfke0OLeNEWHts0jd2Z542fDMdz14Z33Uv0hzznlPDiCH1VfdOeo7j+n4scC2upWF1Mkhp/IOJ7SLQ/6Ovl7mhLM9FJ1Gnwegjdihvh9C4tgtu27T+OBRV7MXfNrpgl7A9/sDoYKrHT9wGAMRaFPla1DF9vORD1/WLF9+uCqvEfrRm65NdmE5udB49jz5GTeHy2vUxHunsD25F1Bn3ptgMAjHZYdl6mGtryKws8Ok4kNouLCjC6l7NmHNEWUV6bPCxY/CTRT+axj8/HvLVVCYU13oyi+bx137GoHZY6tYiMkaq8O3Vk8HG0NEzGPeoSn833eYNhFMmV0xfgh8/Hp0cSq/GLzsMWmV52RUoSOxG5aHUUiRBPzcfwR+ai7KGPXH3/VJF1Bv3vn20CAOw8aB+bU+2qvJNarZQ79YKcaivLm/Z5fSO1Iwp8nmAGgqTaZvZgdV9YvfMQHv9wreVN43i1P6ro1x1vLse5f/wEgPVnjlWEkomr+blOPPKvOm79XPGOYfHm+MNxX2shvHZNC/HGT4aHyVq7wdGTzgx6ojH/TCHrDLqTwLNaLBSqsIs8OZ0aKqchFjkbUON1coF2YMdmEdkCdrrVVtO5CU98iifnbYhIHwOAe99Z4Wh8APC7y/o7PlZyyCJFzQ2c5inXR6zO1z9eMcDR336zI7KXbSLk2cwSfnyG0TegVePYxTt9Y6zV6JdWs4b5GKqEi9xin40In87p/zfHcvv828dg/u1jXBxRcsg6g15synWe2t7+RFFj4zIUcbzaj+evHxJ2nFuep1Rak+laYQbd68HFA9tZ3hTs4ocyj9cKqzWBGV87z9ZJpJOL/M7dJtZ0vD5jdW4WplgvxM5Dl6J1TvRLYs3+9Hz2zhYpkm7wL60nsBVjbUKr828fg9JWjVDaqhGuHR4pq51JODboROQloiVE9L7Fvk5ENM/cv5yIznd3mCGkx3tB//jL0Vto5cBuGPSR3VvizB7GieDXCjMA4Gh1rW2qmZ1B1wWB1P6nJ/11K0ZKZCrfo3URXvnx6XV6XytidZmvz1idm/E2eagrdmmLUslRjvEWZfHxsme+CDv28IlazFm9C7+z6b9boXXCevDiUy2PqytORN+223QdalgQunHpYdNMI54z5BYA1vXtwH0A3hBCnAbgSgBP13VgdshYeK820Zsa63i9FFGUEY9B/9nZPTCiW0v87rJ+YdsfmzQg+Dp+Cw9diMiTVmIXQ9e58aWQ5vqXG+29dydYLbYNKW0e8+/kidyjxFrEKxGenMdFRXZYhd16RtEtSgbquaKe99Kgy9nesK4hI2cVR7/hhXI8Mz+2AikANCpIzizEqrJVZ92uI5bb1dCTrq2TaTgy6ETUAcBEAM/ZHCIAyBhIUwBJk+W7aEA7zL1tdNz6yIRI7zQere9bz+2JV348DFcM6RS2vZ0iIqS3C5OU2ywWzVrpLJtljpI7fMtrS2OK7kfjeE1klooTLWevh9C7TRFKYxRVfbKuCuuUHPhoSD1uSccWdRNkyiWsFsY7xshGchv1erFapJS54i0b56N/h9jl+U6ausSqhI2XK8qMWpMrY3Rjiob6PVw8MDL/PpNw6qH/CcCdAOySRh8AcA0RbYPRMPpmq4OIaDIRlRNReVWVs7JgK7raSL2q6LHiAp83YkHRrsO4E9776Uh8fMcYAMC/vtwMwCjMAJwL6n9VuR/7E9CR/pmiSx5P70gAmLsm8jMXOZQgyPN6YirSXfuPRRhnZtTEy/i+bcK61NRn6tK1Xq93SBS1tkEa2kaKUFtrs1rUQ+SoVD9arYTE7Yyqn4w2dJ30cKsVdo6NWsy1I0OaQdsR81cgogsA7BZCRPZaC3EVgOeFEB0AnA/gRSKKeG0hxHQhRJkQoqy42Flud6KM7R1+Uvfv0DQit7UutQH9OzRDZ7NBroy97Txo/B9P0UEiqV4qJxwUTKhcNyJyUcepbobPS0ktqIg37zmX6dyyYVAC9qzeJfibVtwWDbUf7oybRlgec/ngDnGNR145o0z9fAD485Wn4aFLTkX3ksaO1mbGxGi2Ariffy6NsV3YEwCGd22Jvu2a2IYeVYMulVwzFSdX0EgAFxFRJYDXAJxFRC9px9wA4A0AEEJ8CaAQQCukkf8pPRXH922DRgW+iLt/vkvyl/Jl/QGBldsPYpkmNnTV0FCY5p/XD8FbN4YuMqvKvXgaM3/vbwtjH6TQt13k1LjMQQwdMGKJ1Q68LDu+2LgnTAxJR3qlf/3+YLzxk+EJv08uQET46VlGNknH5g0c98UEwr37QZ2sf1v95nnX+N4Rx3RsHgrxSDurRk1aNi7ANebNI5YkAYCgCJiK3sDE7Wp6Oa4n5qwP235UKfvv2KIBfB6ylc9V7UaTDGk1Z0fMX0EIcY8QooMQohTGgudcIcQ12mFbAJwNAER0CgyDnng8w2VkR3v9ZCkrdSfftW1TI/ab5/XglUWR6oo3jekWfDy2V0nMu3yJliYYbbpopVQ3sV9b2+PVXpNrHxqP1ycPwySH3trSrQeC+umJ8L2/LQwTQ9KRi3Dn9W2TlFzkbEMaz3ilJmJ5ubed2xPXDOsUpnN/Zs9w/2tEt5ZaVo3xmnbzs0RDJS0b5WNi/9D56rY+itW4Jv+rPKIS1OMhR5IbTm5c6STh0RHRg0R0kfn0NgA/JqJlAF4FcJ1IVlv7BJCaFPqP65bReGySUazTtdh6wTCWQl6tPxBWoaaHNeL9KgMOjy/weXF615aOLyInfUfrQl2qI3MRKbgWr7GMJWz16fo96NuuKVY9OD64TZ+5PXPN4LDnVh66ip499fNzeqC7RUaUvr5U4xdJlcq1OrVnr9oV1ovA5/XA5yHHfVF/dnYPPPW9QW4N0VXi+iaFEPOFEBeYj+8XQrxnPl4lhBgphBgghBgohIjsJ5ZG5F1Vbzfn1okkT9J7315paXxj3dX3HavGyws2B5+r+enPfVoRJvzvhGzI77b6nlhiIJwTNcZ5oEsdx0J+j1YGFQAWVUafZf34jC5xd7HXF3FXbDuIKy369eoiWTX+QFI7/zjpOXDpae3hIYoaZ1e59dyeYbOKTCKz5w8ukeczTphWjQuw6N6zg3E7t9qbydTF9s0a4NVFkWqEebE0rEV4owe1GtSutZ0dkwZ3wPfNarZhXVvg0zvHBivgGrusj1EXVm6PLE+vS2ZHLvLdso7o1boIV58eX3Xilr1GdeaG3dZ51Sr/+ekoPHtNuLf5/WGlcb0fEDm7enRSf0tH5rP14WsohkFPnhnK93nQuWVDXDLQuhDx1R8Pw5DSFjkzO6wXBl2dDpYUFeL9m0fhr98fHOUv4kNKDay1yb+2mglMHRuKq+shEn9AQAiBj1bt0v8sDHWB8rFJ/fH89UPw+OUhvY8GeV50bNEQf7xioOX7xIuVNrwdsdIprXRc2EMPp03TQnz4izPDah2csPdodEmFAUrOeL8OTTH+1HBv00rCJfTLxG4gDRgLppbx6xfDk+X2HKlOqoQuYJxXNTbnozTkav57vLOTTCJnDfofvhsybHrJdIfmDSOkbOuClYehnstWU8pLTwstROpxxUWV+/BG+daY2tVqymKvNkVBjWrp4csLSmY01NWgn9W7JCwPORpVUeR6AWCQxcJwXVM4GYNYBqmPRaaTSpQmX7Yst+juE2vGJSWd3yjfhvdvHoVp3+kX9fhE8XkooqOXJHiNKGO9UUliyDZy1qCrFY3JnspbeSJv3xTSELdadGxSGAp/6NNQwOj2HgtVrfEUpdm1XPDRS7Q7NK9bpaHPa+/p6IyYNhezVn5rue/wiRrL4quPVkefkTDOuHxwR5R1bo5P7xwLAJhz22jM+nmoGcx9E0+J+vdFhZGhOVnMd1Zv6/RJNf4sBaxizbhU7ZRT2zfFlUM7RTk6cbwej239hM8iYaJBXmpF0NwkZw16M8VLSUWqUZ6XMLpncdA76tuuCc7o0cpWYrSkSWFQhvTuGc7lb1Vk3uwj3+kX9hllHvsV5qJUYZ4Xz1w9CK/8qG4CW6t2HEJ1bQDLzSYj0fAHBKa8ZF2L1u+B2ZbeeGEWX0iZhMdDePPGEUGpgG7FjdG7TeiGb6c1Xn7fOXjhh0PR3CJNtntJYyy7fxyuiqOEPlZcOlVVlz4P2fYWluFY1aBnYGc5x+SsQVflAZIdowOAHiVFyPN6giJAPq8HL95wOsrvO9f2b6yKfOy4QFlVlyEk+bn0G1bnlo1QOW0izugRqsad0K8tSpok1nZO8qk5k7jvHes+kfGkV0qD/uaUUAGR7IfJJIf3fjoyasVpq8YFGN3TvoK7acM82xTXlspNQNZ3xNJKkjNGmfabLLyeUIWzvrYjbzqqQe/QPLRm0bxhdsXTc9agq6RCdzvPS3HfOOLJsnlfaUsnF0OrgwY9tS7F0ZPWBRiHbbZb8c0OI+aqfgfJ0l1nDPp3aBZXxWk8qBWUFw0wMkqEzQLqi19W4uCxmuD1oqcTu02el4IhPr35hzTkm/aEdNvlLHti/7ZY8Muzkzo2t6kXBj0VU/k8r8dRI1qVeEP7Zyre0/YDx4MXRDILM1Rk79HrRpRa7v/Ne6scv9auQ8ZN1uchPHhxXwDA3RMiy8+Z7MDKcbdbXP3Vu99gwIOzg15zskOiqoe+aW94rrmMoa/eGTL0gzo1x7Tv9MO07/Rz1MQjk6gXBj1WGpcbHK32Y0FFfGXx8QoR/euHQ0Pvd7IWNbWpuSAkT19t5CtbxVgBYMNuZ7K5Kh4iXDu8FJXTJobpajPZhdW5HCurSs40kz3DXFCxD4tMyYqVWjaO1cItEeHKoZ0cq5BmEvUiaCllbZNJIn039Xhks4Z5OOCwKvSFLypx+IQR4ohVuOQWDcyURTt54GihLT2+Xta5Oco378+Zgo76jlzgfG3ysOC2WCsq/y43ivD2O+z3WVeOnqzF9E8qwrZlujZLvOTWp0kjaq776Q41YnTn4Pwoolo6Ly/cEmx0kaoYuvTC7Az6joORanoyLLREExGT2thuy6Uy6eGo2WtgvVpcp5wmlw2KFID7qtJYGLfqopUMrPTYc62YjQ26S6gnhtNKM/1kuus8+xiyXDiy6gyTqhh6sNWejUG3avArDfqRE+ELplJvJtcuqPrK780KZbXqVA25/Ozs7hF/c/UwI+98ZPfUKG1bJS3kmtxEThv0/95iFFMsSsFKtVqG79RIqeXGzRvmoWnDPNuu5zKf3SojIFXTRpmRYhcbtRJCCgigvHJfMFwjkeEiNui5wWWDO6By2sSwTCX1LLFqXiKrN1MVdiuvjKx9kOefk7662UBOG/RT2jZB5bSJdc6/dsKWfaG0J8cGXTlOKiq+f/OooJiWioy3/8AiwyRVF0Qo5GK9/8IBkSGjOat3YdKzX+LyZ78M2y6bHbBBz116m43c7zivV1DCWkVWHSfbS75+ZCkAYO23kYJw0hmS3ceynXqxKJpqnOqLW53HRYV5wfRAlT5maX/H5pFCTbsPn0Tf+IaYEDLU6bfx0K02PxxDLZINeu5yWqfmWPjLs1FSVGApAf3nOevh85DrTS10Xv/KWHxVFU0l8vzLlbWcnPbQ04Xegs4Ou5No3a5w2dPrRpTiEVO4SBcaA4B+7Z1XnNYFOd5f2VSKWull7NYyX966Mby1XK5cSIw1rZsUgohsb9ypuKHrzeHD3t88/247r2fSx5EKHBt0IvIS0RIiet9m/3eJaBURfUNEr7g3xOzDadaJ6pmcoTTf3ad1Tjmrd0nQkFsJbOWlKEtAvfgCAYHnP9+EI0p1qN1iqYqe0cAeev3A7ppId9qgDHuWFCU/LJsK4vk2bwFgOX8moh4A7gEwUgjRF8DP6z607MVpZerbS7YFH/dpFxJP0p1WPcb4xJUDw543TZHehBrzP/sPH+OB/6zCX5Tmu3aKdip6vD/Z020mM7DLxOI6BHdxZNCJqAOAiQCesznkxwCeEkLsBwAhxG53hpedWIVFrFDlQ2cqWi0H9SIl7ZxXe6G2j7P5QV1QwyOb9hgl1GohlD8QiLnAlaqcYyaz8Hk9WPmb83CVJpGbivOhdRNnWjGvTx6Gt28akeTRJBen3+afANwJwE59qieAnkT0OREtIKLxVgcR0WQiKiei8qqqqvhHm8GoqoFOmTQ4VGyhNpLeqRXotG0abrRbK9PDWA2o3cS6TNr4/0SNH0/N2xjTS9c9Mg651B8aF/jQsUX4uZyKCdrc28Y4Ou70ri1xWqfsTl+MaQ2I6AIAu4UQ1uLWBj4APQCMAXAVgL8RUTP9ICHEdCFEmRCirLjYXqYzGykrbYHnrx8CwL4zuo5qqK+waKgLAJ/cMTai9ZvHQ5h8ZlcAzmcDbmAVSpIX5PJtkR1rrNDj/dnc7ouJH11St9qietNtGhX44m60na04+ZQjAVxERJUAXgNwFhG9pB2zDcB7QogaIcQmAOtgGPh6hZw+OlUFH6R4A2onGNlR5uM7xqCTTaGRNKQFKW4K0a6pvnhkDMTphckx0/qN7pHXtS2iU1RHYrBF+8NcIaZBF0LcI4ToIIQoBXAlgLlCiGu0w96B4Z2DiFrBCMFUoJ4RNFYOT1J15V8NndwwqguWPzAuarGDjGenMuQCAF7NIMuGAVZNn61gg16/aahVDKfInoedt89FafKR7SRsDYjoQSK6yHz6IYC9RLQKwDwAdwgh9roxwGxCLgg6PUfVDA81dEJElmX0KlI24FsLQaxkoi9irTMlc5+ev9HR36cqxZLJTK4c0gm/OCeU850qD109b3WnJJeI6+oSQswXQlxgPr5fCPGe+VgIIW4VQvQRQvQTQryWjMFmOnKBL5G4YLwCWzKFUJUcSAX6GqaVaNhHt44ONq3QYQ+9fpPv8+CWc0LRWCe1C26gZl95ifDqj4fho1tHp+S9UwmX/ruIPDkrta4oToh3cXNhRXomQIdOWLeZu3JIJyzfZjS77l7SGIdOWOu6p7uQhMksrCRtk4HUDgKM2e3wbrnZTIWvLheRRuxETQIeerwGfVN83ZHcQm9iIReYdGnSZjbZKwU+D/7v0n7JGRzDOCCVmWGpJnc/WRqIphkRi0QV58rSvGIvQ6BS31zStbhxWMs8CVeGMoBRxJMucrn2gQ26i5xzipF6qJfmOyFRQ6frjKeaWtMzP2pxM1ObWqvInOBrhnWy3M/kPqlOt60vcAzdRQrzvKicNjEl7/XAhX3wwH9WoVlD64bNqaLaNOh/VjRdYjGxf1us2H4QN47plqxhMRlOqrps1TfYoKeZJb86N6xzkVOkIU/35FEa9KJCHw6fqMU7U0eG7S8pKoiQ0C3wefHrC1Oh4M5kKjKOnUotIiD3Z4V8m0wzzRvl10ktMd0h6ZpaI4g+plcJurZqhIEdm4Xt/+yus7D4vnPSMDImk5EFcSJVlUUmuS4Ol9ufLocRZvlSuuz5VUM7oUWjfFT7jdh5TW3AMiUx3+dBUYwiKab+4Y2zCM/t981V2KBnKdKxSVfWyCPf6Yd8ryfoodf4A8jz2TUxyO2LiImfRgVGtHdU91YxjnSXZPcvTTccQ89SUjxTtSTPR8EY+ucb90Qo6Uk4VZHRadogD3NvG42OFv1zk8mqnZGNonMJ9tCzFGnP02kqt+47jreXbAdgFFMdr0k8D5+pf3QtbpzyyuFP1zsTkctW2EPPUoKLSSm26Pdf0Acrtltrn+vNC1TWPzwh7Rk5DJPrsEHPUkIeemrN5A9HdbHc3qZJIYZ3tdfHYA0Xhkk+fJVlKX3aGk2lz+yZ2kUlO2oDAt4cTwljspd/mt3EnPYXzVbYQ89STm3fFMvuH1enHHY3qQ0EOJuFyVi6tWoMAOjZuijNI0kubNCzmEwx5nuOnMSBYzXYceB4uofCMJZ0atkQj18+AOecUpLuoSQVx3NkIvIS0RIiej/KMZcRkSCi3O3xxAQ5rVMzAMD7y3YAAD5avTuNo2GY6Ewa3CHt2kfJJp6g5y0AVtvtJKIi85iFdR0Ukx0M79qSwywMk0E4MuhE1AHARADPRTnstwB+ByC1TS6ZtOHzEGr8Av4MKHJiGMa5h/4nAHcCsGzFQ0SDAHQUQsyM9iJENJmIyomovKqqKq6BMpmHz0xF1JtbMAyTHmIadCK6AMBuIcRim/0eAH8AcFus1xJCTBdClAkhyoqLrZsfMNmDbPj8ysItaR4JwzCAMw99JICLiKgSwGsAziKil5T9RQBOBTDfPGYYgPd4YTT3kUJH283slhzXPWKYjCemQRdC3COE6CCEKAVwJYC5QohrlP0HhRCthBCl5jELAFwkhChP1qCZzECv/jyjB8+6GCadJFzaR0QPEtFFbg6GyS707um3j+uVppEwDAPEWVgkhJgPYL75+H6bY8bUdVBMdqD3hdQNPMMwqYWvQCZhdAPu45x0hkkrbNCZhCnQDHrnFDcrYBgmHDboTMJEeuh8OjFMOuErkEmYfK833UNgGEaBDTqTMBwzZ5jMgg06kzBeriRimIyCDTqTMB5ig84wmQQbdCZhgo2qAfRr3zSNI2EYBmCDztSBVTsPBR+/9KPT0zgShmEANuhMHRjRrWXwcdMGmdEOj2HqM2zQmYTpXpLbDXcZJtvgJtFMnXj7phFhoReGYdIHG3SmTpzWqTlO69Q83cNgGAYccmEYhskZ2KAzDMPkCGzQGYZhcgTHBp2IvES0hIjet9h3KxGtIqLlRDSHiDq7O0yGYRgmFvF46LcAWG2zbwmAMiFEfwBvAni0rgNjGIZh4sORQSeiDgAmAnjOar8QYp4Q4pj5dAGADu4Mj2EYhnGKUw/9TwDuBBBwcOwNAP5rtYOIJhNRORGVV1VVOXxrhmEYxgkxDToRXQBgtxBisYNjrwFQBuAxq/1CiOlCiDIhRFlxcXHcg2UYhmHsIVUxz/IAokcAfB9ALYBCAE0AzBBCXKMddw6AvwAYLYTYHfONiaoAbE5w3K0A7Enwb7MV/sz1A/7M9YO6fObOQghLjzimQQ87mGgMgNuFEBdo20+DsRg6XgixPsFBxjOOciFEWbLfJ5Pgz1w/4M9cP0jWZ044D52IHiSii8ynjwFoDODfRLSUiN5zZXQMwzCMY+LSchFCzAcw33x8v7L9HFdHxTAMw8RNtlaKTk/3ANIAf+b6AX/m+kFSPnNcMXSGYRgmc8lWD51hGIbRYIPOMAyTI2SdQSei8US0log2ENHd6R5PohBRRyKaZ4qafUNEt5jbWxDR/4hovfl/c3M7EdGfzc+9nIgGKa/1A/P49UT0g3R9JqfoQm9E1IWIFpqf7XUiyje3F5jPN5j7S5XXuMfcvpaIzkvTR3EEETUjojeJaA0RrSai4bn+OxPRL8zzeiURvUpEhbn2OxPRP4hoNxGtVLa59rsS0WAiWmH+zZ+JiGIOSgiRNf8AeAFsBNAVQD6AZQD6pHtcCX6WtgAGmY+LAKwD0AeGsNnd5va7AfzOfHw+DEkFAjAMwEJzewsAFeb/zc3HzdP9+WJ89lsBvALgffP5GwCuNB8/C+BG8/FNAJ41H18J4HXzcR/zty8A0MU8J7zp/lxRPu8LAH5kPs4H0CyXf2cA7QFsAtBA+X2vy7XfGcCZAAYBWKlsc+13BbDIPJbMv50Qc0zp/lLi/AKHA/hQeX4PgHvSPS6XPtu7AM4FsBZAW3NbWwBrzcd/BXCVcvxac/9VAP6qbA87LtP+wRBumwPgLADvmyfrHgA+/TcG8CGA4eZjn3kc6b+7elym/QPQ1DRupG3P2d/ZNOhbTSPlM3/n83LxdwZQqhl0V35Xc98aZXvYcXb/si3kIk8UyTZzW1ZjTjFPA7AQQGshxE5z17cAWpuP7T57tn0nf0K40FtLAAeEELXmc3X8wc9m7j9oHp9Nn7kLgCoA/zTDTM8RUSPk8O8shNgO4HEAWwDshPG7LUZu/84St37X9uZjfXtUss2g5xxE1BjAWwB+LoQ4pO4Txq05Z/JKKQ6htxzCB2Na/owQ4jQAR2FMxYPk4O/cHMDFMG5m7QA0AjA+rYNKA+n4XbPNoG8H0FF53sHclpUQUR4MY/6yEGKGuXkXEbU197cFIIXO7D57Nn0nIwFcRESVAF6DEXZ5AkAzIpJVy+r4g5/N3N8UwF5k12feBmCbEGKh+fxNGAY+l3/ncwBsEkJUCSFqAMyA8dvn8u8scet33Y7wvhKOPnu2GfSvAPQwV8vzYSygZKVujLli/XcAq4UQf1B2vQdArnT/AEZsXW6/1lwtHwbgoDm1+xDAOCJqbnpG48xtGYcQ4h4hRAchRCmM326uEOJqAPMATDIP0z+z/C4mmccLc/uVZnZEFwA9YCwgZRxCiG8BbCWiXuamswGsQg7/zjBCLcOIqKF5nsvPnLO/s4Irv6u57xARDTO/w2uV17In3YsKCSxCnA8jI2QjgHvTPZ46fI5RMKZjywEsNf+dDyN2OAfAegAfAWhhHk8AnjI/9woYLf/ka/0QwAbz3/Xp/mwOP/8YhLJcusK4UDcA+DeAAnN7ofl8g7m/q/L395rfxVo4WP1P82cdCKDc/K3fgZHNkNO/M4DfAFgDYCWAF2FkquTU7wzgVRhrBDUwZmI3uPm7wugtsdL8myehLaxb/ePSf4ZhmBwh20IuDMMwjA1s0BmGYXIENugMwzA5Aht0hmGYHIENOsMwTI7ABp1hGCZHYIPOMAyTI/w/oJW4yy6FpDoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.get_channel('3.5-4.5')\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A specific energy channel can also be deleted." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.delete_channel('3.5-4.5')\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, if there are multiple channels that need to be added or deleted, this can be done by a single command." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', 1)\n", + "sim.simulate_channel('4.5-5.5', 'smoothbknpo', [.6, 0.9, .2, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "sim.get_channels(['3.5-4.5', '4.5-5.5'])\n", + "sim.delete_channels(['3.5-4.5', '4.5-5.5'])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reading/Writing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulator object can be saved or retrieved at any time using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "sim.write('data.pickle')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.read('data.pickle')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Spectral Timing/Spectral Timing Exploration.html b/notebooks/Spectral Timing/Spectral Timing Exploration.html new file mode 100644 index 000000000..511db721d --- /dev/null +++ b/notebooks/Spectral Timing/Spectral Timing Exploration.html @@ -0,0 +1,1020 @@ + + + + + + + + Load events and plot light curve — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

In this tutorial, we will run a quicklook spectrotemporal analysis of a NICER observation of one epoch of the 2018 outburst of the accreting black hole MAXI 1820+070, largely reproducing the results from, e.g., Wang et al. 2021, De Marco et al. 2021. We will not give a scientific interpretation, just pure exploration.

+

We will use the Stingray software package, at the version specified in the installation process.

+

Let us first install the correct software version. From the shell,

+
$ pip install stingray pyfftw
+
+
+

The source code is available in the official Github repository

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+
+import copy
+import glob
+import numpy as np
+
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+
+from astropy.table import Table
+from astropy.modeling import models
+
+from stingray.gti import create_gti_from_condition, gti_border_bins, time_intervals_from_gtis, cross_two_gtis
+from stingray.utils import show_progress
+from stingray.fourier import avg_cs_from_events, avg_pds_from_events, poisson_level, get_average_ctrate
+from stingray import AveragedPowerspectrum, AveragedCrossspectrum, EventList
+from stingray.modeling.parameterestimation import PSDLogLikelihood
+
+params = {
+    'font.size': 7,
+    'xtick.major.size': 0,
+    'xtick.minor.size': 0,
+    'xtick.major.width': 0,
+    'xtick.minor.width': 0,
+    'ytick.major.size': 0,
+    'ytick.minor.size': 0,
+    'ytick.major.width': 0,
+    'ytick.minor.width': 0,
+    'figure.figsize': (6, 4),
+    "axes.grid" : True,
+    "grid.color": "grey",
+    "grid.linewidth": 0.3,
+    "grid.linestyle": ":",
+    "axes.grid.axis": "y",
+    "axes.grid.which": "both",
+    "axes.axisbelow": False,
+    'axes.labelsize': 8,
+    'xtick.labelsize': 8,
+    'ytick.labelsize': 8,
+    'legend.fontsize': 8,
+    'legend.title_fontsize': 8,
+    'figure.dpi': 300,  # the left side of the subplots of the figure
+    'figure.subplot.left': 0.195,  # the left side of the subplots of the figure
+    'figure.subplot.right': 0.97,   # the right side of the subplots of the figure
+    'figure.subplot.bottom': 0.145,   # the bottom of the subplots of the figure
+    'figure.subplot.top': 0.97,   # the top of the subplots of the figure
+    'figure.subplot.wspace': 0.2,    # the amount of width reserved for space between subplots,
+                                   # expressed as a fraction of the average axis width
+    'figure.subplot.hspace': 0.2,    # the amount of height reserved for space between subplots,
+                               # expressed as a fraction of the average axis height
+}
+mpl.rcParams.update(params)
+
+
+
+
+

Load events and plot light curve

+

Let us take a look at the light curve. We load the NICER event list into a stingray.EventList object, and create a stingray.Lightcurve from it.

+
+
[2]:
+
+
+
fname = "ni1200120106_0mpu7_cl_bary.evt.gz"
+events = EventList.read(fname, "hea")
+events.fname = fname
+

+
+
+
+
+
+
+
+/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/io.py:235: UserWarning: Column energy not found
+  warnings.warn('Column ' + a + ' not found')
+
+
+
+
[3]:
+
+
+
# Create light curve and apply GTIs
+lc_raw = events.to_lc(dt=1)
+lc_raw.apply_gtis()
+
+plt.figure()
+plt.plot(lc_raw.time, lc_raw.counts, color="k")
+plt.title("Light curve")
+plt.xlabel(f"Time (s from {events.mjdref})")
+plt.ylabel(f"Counts/bin")
+
+
+
+
+
[3]:
+
+
+
+
+Text(0, 0.5, 'Counts/bin')
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_4_1.png +
+
+

The light curve seems reasonably clean, with no need for further cleaning. Otherwise, we would have to filter out, e.g. flares or intervals with zero counts, doing something along the lines of:

+
new_gti = create_gti_from_condition(lc_raw.time, lc_raw.counts > 0, safe_interval=1)
+lc = copy.deepcopy(lc_raw)
+lc.gti = new_gti
+lc.apply_gtis()
+
+plt.figure()
+plt.plot(lc_raw.time, lc_raw.counts, color="grey", alpha=0.5, label="Raw")
+plt.plot(lc.time, lc.counts, color="k", label="Cleaned")
+plt.title("Light curve")
+plt.xlabel(f"Time (s from {events.mjdref})")
+plt.ylabel(f"Counts/bin")
+plt.legend();
+
+events.gti = new_gti
+
+
+
+
+

Calculate periodogram and cross spectrum

+

Let us now take a look at the periodogram and the cross spectrum. The periodogram will be obtained with Bartlett’s method: splitting the light curve into equal-length segments, calculating the periodogram in each, and then averaging them into the final periodogram.

+

We will use the fractional rms normalization (sometimes referred to as the Belloni, or Miyamoto, normalization, from the papers Belloni & Hasinger 1990, Miyamoto et al. 1992). The background contribution is negligible and will be ignored.

+

Note: since the fractional rms normalization uses the mean count rate, the final result changes slightly if the normalization is applied in the single periodograms from each light curve segment, with the count rate of each chunk, or on the averaged periodogram, using the average count rate of the full light curve. We choose the second option (note the use_common_mean=True).

+

We will first plot the periodogram as is, in units of \((\mathrm{rms/mean)^2\,Hz^{-1}}\).

+

Then, from the periodogram, we will subtract the theoretical Poisson noise level of \(2/\mu\), where \(\mu\) is the mean count rate in the observation, and we will multiply the powers by the frequency, to have the periodogram in units of \((\mathrm{rms/mean)^2}\)

+

In both cases, we will rebin the periodogram geometrically, averaging more bins at larger frequencies, in order to lower the noise level.

+
+
[4]:
+
+
+
# Calculate the periodogram in fractional rms normalization.
+# Length in seconds of each light curve segment
+segment_size=50
+# Sampling time of the light curve: 1ms, this will give a Nyquist
+# frequency of 0.5 / dt = 500 Hz.
+dt=0.001
+# Fractional rms normalization
+norm="frac"
+
+pds = AveragedPowerspectrum.from_events(
+    events, segment_size=segment_size, dt=dt,
+    norm=norm, use_common_mean=True)
+
+# Calculate the mean count rate
+ctrate = get_average_ctrate(events.time, events.gti, segment_size)
+# Calculate the Poisson noise level
+noise = poisson_level(norm, meanrate=ctrate)
+
+# Rebin the periodogam
+pds_reb = pds.rebin_log(0.02)
+
+
+
+
+
+
+
+
+65it [00:00, 65.69it/s]
+
+
+
+
[5]:
+
+
+
plt.figure()
+
+plt.plot(pds.freq, pds.power, drawstyle="steps-mid", color="grey", alpha=0.5, label="PDS")
+plt.plot(pds_reb.freq, pds_reb.power, drawstyle="steps-mid", color="k", label="Rebinned PDS")
+plt.axhline(noise, ls=":", label="Poisson noise level")
+plt.loglog()
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2 Hz^{-1}}$");
+plt.legend()
+
+plt.figure()
+plt.plot(pds.freq, (pds.power - noise) * pds.freq, drawstyle="steps-mid", color="grey", alpha=0.5, label="PDS")
+plt.plot(pds_reb.freq, (pds_reb.power - noise) * pds_reb.freq, drawstyle="steps-mid", color="k", label="Rebinned PDS")
+plt.loglog()
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2}$");
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_0.png +
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_8_1.png +
+
+

We will now do the same with the cross spectrum between the bands 0.3–5 keV and 5–12 keV.

+

In this case, there is no need to subtract the Poisson noise level, as it is zero in the cross spectrum, provided that the energy bands do not overlap.

+
+
[6]:
+
+
+
ref_band = [1.5, 3]
+sub_band = [0.5, 1]
+events_ref = events.filter_energy_range(ref_band)
+events_sub = events.filter_energy_range(sub_band)
+
+cs = AveragedCrossspectrum.from_events(
+    events_sub, events_ref, segment_size=segment_size,
+    dt=dt, norm=norm)
+cs_reb = cs.rebin_log(0.02)
+
+
+
+
+
+
+
+
+65it [00:00, 112.32it/s]
+/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/fourier.py:720: RuntimeWarning: invalid value encountered in sqrt
+  dRe = dIm = dG = np.sqrt(power_over_2n * (seg_power - frac))
+/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/fourier.py:722: RuntimeWarning: invalid value encountered in sqrt
+  dphi = np.sqrt(power_over_2n * (seg_power / (Gsq - bsq) -
+/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/crossspectrum.py:2761: UserWarning: Some error bars in the Averaged Crossspectrum are invalid.Defaulting to sqrt(2 / M) in Leahy norm, rescaled to the appropriate norm.
+  warnings.warn(
+
+
+
+
[7]:
+
+
+
plt.figure()
+plt.plot(cs.freq, cs.power * cs.freq, drawstyle="steps-mid", color="grey", alpha=0.5)
+plt.plot(cs_reb.freq, cs_reb.power * cs_reb.freq, drawstyle="steps-mid", color="k")
+plt.loglog()
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2}$");
+
+
+
+
+
+
+
+
+/home/pupperemeritus/.local/lib/python3.9/site-packages/matplotlib/cbook/__init__.py:1333: ComplexWarning: Casting complex values to real discards the imaginary part
+  return np.asarray(x, float)
+/home/pupperemeritus/.local/lib/python3.9/site-packages/matplotlib/cbook/__init__.py:1333: ComplexWarning: Casting complex values to real discards the imaginary part
+  return np.asarray(x, float)
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png +
+
+
+
+

Periodogram modeling

+

This periodogram has a number of broad components, that can be approximated by Lorentzian curves. Let us try to model it.

+
+
[8]:
+
+
+
pds = AveragedPowerspectrum.from_events(events, segment_size=segment_size, dt=dt, norm="leahy")
+pds_reb = pds.rebin_log(0.02)
+
+
+
+
+
+
+
+
+65it [00:00, 72.65it/s]
+
+
+

We will model the periodogram using the maximum likelihood estimation from Barret & Vaughan 2012.

+

For periodograms averaged over \(L\) independent segments and \(M\) independent neighbouring frequencies,

+
+\[\mathcal{L}_\mathrm{avg}(\theta) = -2ML \sum_{j=1}^{N/2} \left\{ \frac{P_j}{S_j(\theta)} + \ln{S_j(\theta) + \left( \frac{1}{ML} - 1 \right)\ln{P_j} + c(2ML) }\right\} \; ,\]
+

where \(\theta\) are the model parameters, \(P_j\) are the periodogram values, \(S_j\) the model of the underlying signal, \(c(2ML)\) is a factor independent of \(P_j\) or \(S_j\), and thus unimportant to the parameter estimation problem considered here (it only scales the likelihood, but does not change its shape).

+

For non-uniformly binned periodograms, the factor \(ML\) should go inside the sum:

+
+\[\mathcal{L}_\mathrm{avg}(\theta) = -2\sum_{j=1}^{N/2} M_j L_j \left\{ \frac{P_j}{S_j(\theta)} + \ln{S_j(\theta) + \left( \frac{1}{ M_j L_j } - 1 \right)\ln{P_j} + c(2 M_j L_j ) }\right\}\]
+

This is the formula that we will apply here.

+

Let us now create an initial model that more or less describes the periodogram

+
+
[9]:
+
+
+
fit_model = models.Lorentz1D(x_0=0.04, fwhm=0.15, amplitude=7000) + \
+    models.Lorentz1D(x_0=0.2, fwhm=3, amplitude=300)
+
+plt.figure()
+plt.plot(pds_reb.freq, (pds_reb.power - 2) * pds_reb.freq, drawstyle="steps-mid", color="k", label="Rebinned PDS")
+plt.plot(pds.freq, fit_model(pds.freq) * pds.freq, color="r", label="Starting Model")
+for mod in fit_model:
+    plt.plot(pds.freq, mod(pds.freq) * pds.freq, color="r", ls=":")
+
+plt.semilogx()
+plt.xlim([pds.freq[0], pds.freq[-1]])
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2}$");
+plt.legend();
+plt.ylim([0, None])
+
+
+
+
+
[9]:
+
+
+
+
+(0.0, 488.21599547079995)
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_15_1.png +
+
+

We will now add a constant at the Poisson noise level (2 in Leahy normalization) and fit using the Maximum Likelihood estimation in stingray

+
+
[10]:
+
+
+
from stingray.modeling import PSDParEst
+fit_model = models.Const1D(amplitude=2) + fit_model
+
+parest = PSDParEst(pds_reb, fitmethod="L-BFGS-B", max_post=False)
+loglike = PSDLogLikelihood(
+    pds_reb.freq, pds_reb.power, fit_model, m=pds_reb.m)
+
+res = parest.fit(loglike, fit_model.parameters)
+
+fitmod = res.model
+
+# The Poisson noise level was the first parameter.
+poisson = fitmod.parameters[0]
+print(res.p_opt)
+
+
+
+
+
+
+
+
+[1.95227938e+00 6.97518942e+03 4.11961192e-02 1.42093997e-01
+ 2.98070633e+02 4.06300000e-01 2.65743398e+00]
+
+
+
+
[11]:
+
+
+
plt.figure()
+gs = plt.GridSpec(2, 1, hspace=0)
+ax0 = plt.subplot(gs[0])
+ax1 = plt.subplot(gs[1], sharex=ax0)
+
+ax0.plot(pds_reb.freq, (pds_reb.power - poisson) * pds_reb.freq, drawstyle="steps-mid", color="k", label="Rebinned PDS")
+ax0.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color="r", label="Best Model")
+for mod in fitmod[1:]:
+    ax0.plot(pds.freq, mod(pds.freq) * pds.freq, color="r", ls=":")
+
+ax0.set_xlabel("Frequency (Hz)")
+ax0.set_ylabel(r"$\mathrm{(rms / mean)^2}$");
+ax0.legend();
+
+ax1.plot(pds_reb.freq, (pds_reb.power - poisson) * pds_reb.freq, drawstyle="steps-mid", color="k", label="Rebinned PDS")
+ax1.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color="r", label="Best Model")
+for mod in fitmod[1:]:
+    ax1.plot(pds.freq, mod(pds.freq) * pds.freq, color="r", ls=":")
+
+ax1.set_xlabel("Frequency (Hz)")
+ax1.set_ylabel(r"$\mathrm{(rms / mean)^2}$");
+ax1.loglog()
+ax1.set_ylim([1e-1, None]);
+ax1.set_xlim([pds.freq[0], pds.freq[-1]]);
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_18_0.png +
+
+
+
+

Lags and coherence

+

With the cross spectrum we can explore the time lags versus frequency

+
+
[12]:
+
+
+
# Use shorter segments, rebin a little more heavily
+cs = AveragedCrossspectrum.from_events(events_sub, events_ref, segment_size=2, dt=0.01, norm=norm)
+cs_reb = cs.rebin_log(0.4)
+
+lag, lag_e = cs_reb.time_lag()
+

+
+
+
+
+
+
+
+2627it [00:00, 2906.20it/s]
+
+
+
+
[13]:
+
+
+
plt.figure()
+plt.errorbar(cs_reb.freq, lag, yerr=lag_e, fmt="o", color="k")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(f"Time lag ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV, in seconds)")
+plt.axhline(0, ls="--")
+plt.semilogx()
+# plt.ylim([1e-4, None]);
+# plt.xlim([None, 80])
+# plt.legend();
+
+
+
+
+
[13]:
+
+
+
+
+[]
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png +
+
+

Another interesting thing to measure is the coherence at different frequencies

+
+
[14]:
+
+
+
coh, coh_e = cs_reb.coherence()
+plt.figure()
+plt.errorbar(cs_reb.freq, coh, yerr=coh_e, fmt="o", color="k")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(f"Coherence ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV)")
+plt.axhline(0, ls="--")
+plt.loglog()
+# plt.ylim([1e-4, None]);
+# plt.xlim([None, 80])
+# plt.legend();
+
+
+
+
+
[14]:
+
+
+
+
+[]
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_23_1.png +
+
+
+

Spectral timing

+

Now let us explore the spectral timing properties of this observation, with no physical interpretation, just for the sake of data exploration.

+
+
[15]:
+
+
+
from stingray.varenergyspectrum import CountSpectrum, CovarianceSpectrum, RmsSpectrum, LagSpectrum
+
+
+
+

Let us start with the lag spectrum with respect to energy, in different frequency bands. This might be confusing for people coming from other wavelengths, so let us specify that

+
    +
  • “frequency” refers to the frequency of the variability.

  • +
  • “energy” refers to the photon energy.

  • +
+

The photons at 0.3-12 keV are modulated by oscillations and other stochastic noise up to ~100 Hz (see section above). As an example, we will now analyze the spectral timing properties using the variability up to 1 Hz and between 4 and 10 Hz.

+

From Kara+2019, figure 3

+
+
[16]:
+
+
+
energy_spec = np.geomspace(0.5, 10, 41)
+segment_size = 10
+bin_time = 0.001
+freq_interval = [3, 30]
+ref_band=[0.5, 10]
+
+# If not specified, the reference energy band is the whole band.
+
+lagspec_3_30 = LagSpectrum(events, freq_interval=freq_interval,
+                          segment_size=segment_size, bin_time=bin_time,
+                          energy_spec=energy_spec, ref_band=ref_band)
+energies = lagspec_3_30.energy
+

+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:57<00:00,  1.44s/it]
+
+
+
+
[17]:
+
+
+
plt.figure()
+plt.errorbar(energies, lagspec_3_30.spectrum * 1e4, yerr=lagspec_3_30.spectrum_error * 1e4, fmt='o', label="3-30 Hz", color="k")
+plt.xlabel("Energy (keV)")
+plt.ylabel("Time Lag ($10^{-4}$ s)")
+plt.xlim([0.5, 10])
+plt.semilogx()
+
+
+
+
+
[17]:
+
+
+
+
+[]
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_30_1.png +
+
+
+
[18]:
+
+
+
lagspec_01_1 = LagSpectrum(events, freq_interval=[0.1, 1],
+                           segment_size=segment_size, bin_time=bin_time,
+                           energy_spec=energy_spec, ref_band=ref_band)
+energies = lagspec_01_1.energy
+energies_err = np.diff(lagspec_01_1.energy_intervals, axis=1).flatten() / 2
+

+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:54<00:00,  1.37s/it]
+
+
+
+
[19]:
+
+
+
plt.figure()
+plt.errorbar(energies, lagspec_01_1.spectrum, xerr=energies_err, yerr=lagspec_01_1.spectrum_error, fmt='o', label="0.1-1 Hz")
+plt.errorbar(energies, lagspec_3_30.spectrum, xerr=energies_err, yerr=lagspec_3_30.spectrum_error, fmt='o', label="3-30 Hz")
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Time lag (s)")
+
+
+
+
+
[19]:
+
+
+
+
+Text(0, 0.5, 'Time lag (s)')
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_32_1.png +
+
+
+
[20]:
+
+
+
freq_01_1 = (1 + 0.1) / 2 * 2 * np.pi
+freq_3_30 = (3 + 30) / 2 * 2 * np.pi
+plt.figure()
+plt.errorbar(energies, lagspec_01_1.spectrum * freq_01_1 , xerr=energies_err, yerr=lagspec_01_1.spectrum_error * freq_01_1, fmt='o', label="0.1-1 Hz")
+plt.errorbar(energies, lagspec_3_30.spectrum * freq_3_30, xerr=energies_err, yerr=lagspec_3_30.spectrum_error * freq_3_30, fmt='o', label="3-30 Hz")
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Phase lag (rad)")
+
+
+
+
+
[20]:
+
+
+
+
+Text(0, 0.5, 'Phase lag (rad)')
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_33_1.png +
+
+

Interesting: the low-frequency variability has much longer time lags than the high-frequency variability, but the phase lags are on the same order of magnitude.

+
+
+
+

Covariance and RMS spectrum

+
+
[21]:
+
+
+
covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30],
+                                 segment_size=segment_size, bin_time=bin_time,
+                                 energy_spec=energy_spec, norm="abs", ref_band=ref_band)
+covspec_01_1 = CovarianceSpectrum(events, freq_interval=[0.1, 1],
+                                  segment_size=segment_size, bin_time=bin_time,
+                                  energy_spec=energy_spec, norm="abs", ref_band=ref_band)
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:55<00:00,  1.40s/it]
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:55<00:00,  1.40s/it]
+
+
+
+
[22]:
+
+
+
plt.figure()
+plt.errorbar(energies, covspec_3_30.spectrum,
+             xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label="3-30 Hz")
+plt.errorbar(energies, covspec_01_1.spectrum,
+             xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label="0.1-1 Hz")
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Absolute Covariance (counts / s)");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_37_0.png +
+
+

This covariance, plotted this way, mostly tracks the number of counts in each energy bin. To get an unfolded covariance, we need to use the response of the instrument. Another way is to plot the fractional covariance, normalizing by the number of counts in each bin.

+

To do this, we calculate the Count Spectrum and divide by it.

+
+
[23]:
+
+
+
countsp = CountSpectrum(events, energy_spec=energy_spec)
+
+
+
+
+
+
+
+
+40it [00:08,  4.47it/s]
+
+
+
+
[24]:
+
+
+
plt.figure()
+plt.errorbar(energies, covspec_3_30.spectrum / countsp.spectrum,
+             xerr=energies_err, yerr=covspec_3_30.spectrum_error / countsp.spectrum, fmt='o', label="3-30 Hz")
+plt.errorbar(energies, covspec_01_1.spectrum / countsp.spectrum,
+             xerr=energies_err, yerr=covspec_01_1.spectrum_error / countsp.spectrum, fmt='o', label="0.1-1 Hz")
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Normalized Covariance (1 / s)");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_41_0.png +
+
+

Alternatively, we can calculate the Covariance Spectrum in fractional rms normalization

+
+
[25]:
+
+
+
covspec_01_1 = CovarianceSpectrum(events, freq_interval=[0.1, 1],
+                                 segment_size=segment_size, bin_time=bin_time,
+                                 energy_spec=energy_spec, norm="frac")
+covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30],
+                                  segment_size=segment_size, bin_time=bin_time,
+                                  energy_spec=energy_spec, norm="frac")
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [01:00<00:00,  1.50s/it]
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:59<00:00,  1.50s/it]
+
+
+
+
[26]:
+
+
+
plt.figure()
+plt.errorbar(energies, covspec_01_1.spectrum,
+             xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label="0.1-1 Hz")
+plt.errorbar(energies, covspec_3_30.spectrum,
+             xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label="3-30 Hz")
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Fractional Covariance");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_44_0.png +
+
+

This should largely be equivalent to the RMS spectrum

+
+
[27]:
+
+
+
rmsspec_01_1 = RmsSpectrum(events, freq_interval=[0.1, 1],
+                          segment_size=segment_size, bin_time=bin_time,
+                          energy_spec=energy_spec, norm="frac")
+rmsspec_3_30 = RmsSpectrum(events, freq_interval=[3, 30],
+                           segment_size=segment_size, bin_time=bin_time,
+                           energy_spec=energy_spec, norm="frac")
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:13<00:00,  3.03it/s]
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:13<00:00,  2.96it/s]
+
+
+
+
[28]:
+
+
+
plt.figure()
+plt.errorbar(energies, covspec_3_30.spectrum,
+             xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label="Cov. 3-30 Hz", alpha=0.5)
+plt.errorbar(energies, covspec_01_1.spectrum,
+             xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label="Cov. 0.1-1 Hz", alpha=0.5)
+plt.errorbar(energies, rmsspec_3_30.spectrum,
+             xerr=energies_err, yerr=rmsspec_3_30.spectrum_error, fmt='o', label="RMS 3-30 Hz")
+plt.errorbar(energies, rmsspec_01_1.spectrum,
+             xerr=energies_err, yerr=rmsspec_01_1.spectrum_error, fmt='o', label="RMS 0.1-1 Hz")
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Fractional RMS");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_47_0.png +
+
+

QED, except that the error bars in some points look underestimated. It is always recommended to test error bars with simulations, in any case, as analytic formulas are based on a series of assumptions (in particular, on the coherence) that might not be correct in real life.

+
+
[29]:
+
+
+
from stingray.varenergyspectrum import LagSpectrum
+covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30],
+                                  segment_size=segment_size, bin_time=bin_time,
+                                  energy_spec=energy_spec, norm="frac")
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:59<00:00,  1.49s/it]
+
+
+
+
[30]:
+
+
+
def variable_for_value(value):
+    for n,v in globals().items():
+        if id(v) == id(value):
+            return n
+    return None
+
+for func in [lagspec_3_30, lagspec_01_1, covspec_01_1, covspec_3_30]:
+    name = variable_for_value(func)
+    func.write(name + ".csv", fmt="ascii")
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb b/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb new file mode 100644 index 000000000..1c53c94aa --- /dev/null +++ b/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb @@ -0,0 +1,1320 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7GoFZn8bp_6J", + "metadata": { + "id": "7GoFZn8bp_6J" + }, + "source": [ + "In this tutorial, we will run a quicklook spectrotemporal analysis of a NICER observation of one epoch of the 2018 outburst of the accreting black hole MAXI 1820+070, largely reproducing the results from, e.g., [Wang et al. 2021](https://ui.adsabs.harvard.edu/abs/2021ApJ...910L...3W/abstract), [De Marco et al. 2021](https://ui.adsabs.harvard.edu/abs/2021A%26A...654A..14D/abstract). We will not give a scientific interpretation, just pure exploration.\n", + "\n", + "We will use the [Stingray](https://docs.stingray.science) software package, at the version specified in the installation process.\n", + "\n", + "Let us first install the correct software version. From the shell,\n", + "\n", + "```\n", + "$ pip install stingray pyfftw\n", + "```\n", + "\n", + "The source code is available in the [official Github repository](https://github.com/stingraysoftware/stingray)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 3072, + "status": "ok", + "timestamp": 1642601518655, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "outputId": "36746cbf-a295-43e0-f252-2203f73ea7ef" + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from astropy.table import Table\n", + "from astropy.modeling import models\n", + "\n", + "from stingray.gti import create_gti_from_condition, gti_border_bins, time_intervals_from_gtis, cross_two_gtis\n", + "from stingray.utils import show_progress\n", + "from stingray.fourier import avg_cs_from_events, avg_pds_from_events, poisson_level, get_average_ctrate\n", + "from stingray import AveragedPowerspectrum, AveragedCrossspectrum, EventList\n", + "from stingray.modeling.parameterestimation import PSDLogLikelihood\n", + "\n", + "params = {\n", + " 'font.size': 7,\n", + " 'xtick.major.size': 0,\n", + " 'xtick.minor.size': 0,\n", + " 'xtick.major.width': 0,\n", + " 'xtick.minor.width': 0,\n", + " 'ytick.major.size': 0,\n", + " 'ytick.minor.size': 0,\n", + " 'ytick.major.width': 0,\n", + " 'ytick.minor.width': 0,\n", + " 'figure.figsize': (6, 4),\n", + " \"axes.grid\" : True,\n", + " \"grid.color\": \"grey\",\n", + " \"grid.linewidth\": 0.3,\n", + " \"grid.linestyle\": \":\",\n", + " \"axes.grid.axis\": \"y\",\n", + " \"axes.grid.which\": \"both\",\n", + " \"axes.axisbelow\": False,\n", + " 'axes.labelsize': 8,\n", + " 'xtick.labelsize': 8,\n", + " 'ytick.labelsize': 8,\n", + " 'legend.fontsize': 8,\n", + " 'legend.title_fontsize': 8,\n", + " 'figure.dpi': 300, # the left side of the subplots of the figure\n", + " 'figure.subplot.left': 0.195, # the left side of the subplots of the figure\n", + " 'figure.subplot.right': 0.97, # the right side of the subplots of the figure\n", + " 'figure.subplot.bottom': 0.145, # the bottom of the subplots of the figure\n", + " 'figure.subplot.top': 0.97, # the top of the subplots of the figure\n", + " 'figure.subplot.wspace': 0.2, # the amount of width reserved for space between subplots,\n", + " # expressed as a fraction of the average axis width\n", + " 'figure.subplot.hspace': 0.2, # the amount of height reserved for space between subplots,\n", + " # expressed as a fraction of the average axis height\n", + "}\n", + "mpl.rcParams.update(params)" + ] + }, + { + "cell_type": "markdown", + "id": "90aece42-47bc-49af-981f-c12b81b0f729", + "metadata": { + "id": "90aece42-47bc-49af-981f-c12b81b0f729" + }, + "source": [ + "## Load events and plot light curve\n", + "\n", + "Let us take a look at the light curve. We load the NICER event list into a `stingray.EventList` object, and create a `stingray.Lightcurve` from it." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fa9bf7ab", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 358 + }, + "executionInfo": { + "elapsed": 256, + "status": "error", + "timestamp": 1642601523824, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "fa9bf7ab", + "outputId": "7be21b43-046a-4753-e2e1-da99ab63f3ef" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/io.py:235: UserWarning: Column energy not found\n", + " warnings.warn('Column ' + a + ' not found')\n" + ] + } + ], + "source": [ + "fname = \"ni1200120106_0mpu7_cl_bary.evt.gz\"\n", + "events = EventList.read(fname, \"hea\")\n", + "events.fname = fname\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5d922d6d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts/bin')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlsAAASvCAYAAACOz0zGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3gVZf7//1cSQhJaQhPpCoICgoCiyK5KZ8VGUwRUmoqi62JBWdsiFpSFVXbXBRQSWkCQjgofOhaKCEGq9CJNICSU9DK/P/hlvgk5JznJOZk55fm4Lq7rnLnvued9Zw5z5sx77nuCDMMwBAAAAAAAAAAAgGIJtjsAAAAAAAAAAAAAX0ayBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAAAAAAADADSRbAAAAAAAAAAAA3ECyBQAAAAAAAAAAwA0kWwAAAAAAAAAAANxAsgUAAAAAAAAAAMANJFsAAAAAAAAAAADcQLIFAAAAgM9bt26dgoKCFBQUpBtuuMHy7Q8YMMDc/siRIy3fPgAAAAB7kWwBAAAAYIvcCQo7EiQAAAAA4CkkWwAAAADAS9k9YgcAAACAa0i2AAAAAAAAAAAAuKGU3QEAAAAAgLvatm0rwzDsDgMAAABAgGJkCwAAAAAAAAAAgBtItgAAAAAAAAAAALiBZAsAAAAAn1ecB8n/8ssvGjJkiBo0aKCyZcuqcuXKatGihd5++20dO3bMrJfTblBQkI4ePVqkuFauXKnHH39cN910kyIiIlSpUiW1bt1ao0eP1pUrV5yuN2DAAAUFBaldu3bmsmPHjuWJJfe/qVOnFimughw6dEgffPCB2rZtq9q1ays8PFwRERGqW7euunbtqjFjxujQoUMO1x05cqQZ04ABA1zaXk5fg4KCNHLkSId1nO3f/fv3680331TLli113XXXKTg4WFFRUZKkNm3amOu8+uqrRfgLSE2aNDHXHTVqVIF1k5OTNXnyZHXv3l3169dXuXLlVK5cOdWvX1/9+vXTwoULmeIOAAAgAPDMFgAAAAABxTAMDR8+XJ9++qmys7PN5cnJybpw4YK2b9+uzz77TF9++aX69OlTrG1cuXJFQ4YM0axZs/IsT01N1ebNm7V582ZNmDBBK1as0C233OJWfzwlOTlZr776qiZPnqzMzMx85cePH9fx48e1bNkyjRgxQvPmzVOPHj1siPSqsWPH6s0331RGRobD8n79+mnjxo2SpK+++kr//Oc/FRxc+P2GcXFx2rNnj/n+iSeecFp37ty5evnll3Xq1Kl8ZYcPH9bhw4c1a9Ys3XXXXZozZ47q1q1b6PYBAADgm0i2AAAAAAgoQ4cO1cSJE/Msq1+/vmrXrq2LFy9q586dSkpKUr9+/RQZGVnk9rOystSzZ0+tWLFCklStWjU1aNBAkrRz505dvHhRkvT777+rS5cu2r17t8qVK5enjaZNm6pLly66cOGCtmzZIkkKDw/Xfffd53CbNWvWLHKcuZ07d07333+/tm7dmmd5nTp1VKdOHQUHB+v06dM6ePCgDMOQYRi6dOmSW9t0x7hx4zR8+HBJUunSpXXrrbeqQoUKOnXqlM6ePStJ6t27t15++WVlZGTo1KlTWrt2rTp06FBo27Gxsebru+++W/Xq1XNYb/To0XrzzTfzLKtdu7Y58mb//v36448/JEmbN29WmzZt9MMPPzhtDwAAAL6NZAsAAACAgDF//vw8iZY77rhDX3zxhVq0aGEuO3/+vN5++21NmjRJ/fv3L/I2JkyYoPj4eN188836z3/+o44dOyooKEiSlJGRoU8++UTvvPOOpKujRcaNG6d//OMfedp49dVX9eqrr2rdunXmVGLVqlXT8uXLixxPYbKzs/X444/nSbQ8+uijGjlypBo3bpynbmJiohYvXqwJEyZ4PA5XnT17ViNGjFCpUqX07rvvatiwYSpfvrxZnjPFWZUqVdSlSxd98803kqSZM2cWmmzJzs7W7NmzzffORrXMmzcvT6KlZ8+eeu+999SkSRNzmWEYWr58uZ5//nkdO3ZMp06dUt++ffXjjz+qVCl+igMAAPgbntkCAAAAICBkZ2fneXZHs2bNtGbNmjyJFunqRfqJEydq2LBhOn/+fJG3Ex8fr4YNG2rDhg3q1KmTmWiRpNDQUL399tsaOnSouSwmJqYYvfGciRMnas2aNeb7999/X3Pnzs2XaJGkqKgo9e/fX5s2bVKvXr2sDNOUkpKizMxMTZ06Ve+8806eRIt0dZRSjtzJkgULFig1NbXAtteuXWtOCRYaGqrevXvnq5OYmKhnnnnGfP/OO+9o3rx5eRIt0tVn/dx///3auHGjatSoIenqCJc5c+a42FMAAAD4EpItAAAAAALC8uXL8zz4fuLEifku1Oc2evRo1a5du1jb+uKLL1SpUiWn5a+88or5+tixYzp58mSxtuOurKwsjR071nx///336+2333Zp3WunPrPSAw88oH79+hVa7+GHHzb38aVLl7R06dIC6+eeQqxLly6qXLlyvjpffPGFEhMTJUlt2rTRqFGjCmyzevXqGjdunPn+888/LzRuAAAA+B6SLQAAAAACwrfffmu+btasme6+++4C64eHh2vAgAFF3s7NN9/s9NkqOerXr6/q1aub7/fu3Vvk7XjCpk2bdOTIEfP9tdOZeatnn33WpXoRERHq0aOH+X7mzJlO66ampmr+/Pnme2dTiM2YMcN8/fLLL7sUR48ePVSmTBlJ0s8//6ykpCSX1gMAAIDvINkCAAAAICDkPGhektq3b+/SOq7Wy61NmzYu1atVq5b5OiEhocjb8YQffvjBfF2zZk3dddddtsRRVH/+859drps7abJs2TJduHDBYb2lS5fq0qVLkqQKFSro4YcfzlfnwoUL2r17t/m+sGfA5ChdurQaNmwo6epool9//dXl+AEAAOAbeCofAAAAgIBw/Phx83WjRo1cWsfVerldf/31LtXLGekgScnJyUXejifkHlFz++232xJDUUVFRRU4Rdu12rdvrxo1aujUqVPKyMjQ119/rSFDhuSrl3sKsR49eigiIiJfnd27d8swDElScHCw+vTp43IcuaewO3funMvrAQAAwDeQbAEAAAAQEHKesyFdvWDvisjIyCJvp3Tp0kVeJ+cCvtVyj/K47rrrbImhqAp6zo4jOUmRnOemxMbG5ku2JCQkaNmyZeZ7Z1OIxcfHm6+zs7P1f//3f0WKJcfFixeLtR4AAAC8F9OIAQAAAIATwcH+/ZMpLS3NfB0WFmZjJK4rzj7JnTz58ccf84wykaS5c+cqPT1dklSjRg21a9fOYTueetZKdna2R9oBAACA9/DvXw4AAAAA8P/LPUrF1ZEFdj1LxSq5R/jkHvljpaysrBLfRvPmzdW4cWNJV0cRzZo1K0957inE+vTp4zShk/szFBYWJsMwivVvwIABnu8kAAAAbEWyBQAAAEBAqFOnjvk697NKCvLbb7+VVDheIffzZQ4cOOB2e7mnUMvIyHBpHauSPLlHt+ROrhw/flw//vijw3rXqlatmvk6LS1Nly5d8nCUAAAA8FUkWwAAAAAEhFatWpmv165d69I6rtYrKblHWJTEc11at25tvt6+fbvbyYPcz1PJ/TyYguzcudOtbbqqX79+CgoKknT1Qffbt2+XdDXxkvO3bdKkiZo3b+60jdtuu00RERHm+40bN5ZYvAAAAPAtJFsAAAAABISuXbuar7dv367NmzcXWD8tLU1Tp04t4agKVrZsWfN1SkqKx9tv3769SpUqJUlKT093u79169Y1X7uSRNm+fXu+56eUlDp16uiee+4x3+eMbsk9yqWgUS3S1ZE7uZ/nEhMT4+EoAQAA4KtItgAAAAAICPfff79q165tvn/uued05coVp/XfeustyxIBzuSe5uv8+fMuP2umKO336tXLfD9y5EidOHGi2O21aNHCfH3y5Mk803M58tZbbxV7W8WRO5kye/ZsxcXFaffu3ZKkoKAg9e3bt9A2Xn75ZfP1119/rWXLlnk+UAAAAPgcki0AAAAAAkJISIjGjh1rvt++fbs6dOhgTieVIz4+XkOHDtW4ceNUpUoVi6PMq2bNmrruuuskXZ1GbPz48R7fxsiRI1WmTBlJUkJCgtq2bWsmIJxZtmyZw0RK7dq1dccdd5jvX3rpJYcJraysLL388sv67rvv3Iy+aHr16qWwsDBJV5NBzz//vFl2zz335HmujzMdO3bUAw88IEnKzs7Wo48+mmd0jDOnT5/WqFGj9Ne//rWY0QMAAMCblbI7AAAAAAA4duyYwsPDi7TOihUrdO+99xZpnccee0wrV67U5MmTJUk///yzWrRooZtuukm1a9fWxYsXtWPHDmVmZkq6Ok3UQw89ZK6f+wHwVunbt68+++wzSdI//vEPTZkyRY0aNcrz93rppZfUvn37YrV/8803a8KECRowYIAMw9ChQ4d02223qVevXvrLX/6iOnXqKDg4WKdPn9aWLVu0aNEiHTlyRDExMfrzn/+cr73hw4erd+/ekqS4uDg1b95cf/vb39S0aVNlZGRox44diomJ0e7du3X99deradOmWrlyZbFiL6qKFSuqa9euWrhwoSTlmUqusCnEcpsxY4Zat26t/fv3KykpSU888YT++c9/qmfPnmrevLkqVqyolJQUnT9/Xr/++qt+/PFHbdy4UdnZ2ebfBgAAAP6FZAsAAAAAr5CWllak+tnZ2cXazqRJk1SuXDmNHz/efDD6wYMHdfDgQbNOmTJlNGnSJHXs2DHPupGRkcXapjtGjhypVatWadeuXZKk48eP6/jx43nqdOvWza1tPPXUUwoJCdGgQYOUnp6urKwszZkzR3PmzClyW4899piWLl2qmTNnSpIOHTqkl156KV+9ihUrauHChZo4caJbsRfVE088YSZbcoSFhenRRx91uY2KFSvqp59+0qOPPqp169ZJkn799Vf9+uuvngwVAAAAPoRpxAAAAAAElODgYH366afavHmznn76adWrV08RERGqWLGibrvtNo0YMUK7du3SE088obNnz5rrRURE5HlgvVUiIyP1888/6z//+Y86deqk6tWrF3kUkCv69eunPXv2qE+fPuZUW45ERUVp8ODBeR4Uf62pU6fqvffeM6cnyy0oKEidOnXStm3b1Lp1a4/EXhQPPPCAoqKiCl1WmCpVqmj16tWaPXt2nmfVOFKqVCn96U9/0qeffqr//Oc/RYwYAAAAviDIyLmVCwAAAACQx7x588wRD61bt9bGjRttjsgaycnJ+v7773Xs2DHFx8crNDRU1113nRo3bqyWLVsqJCTEpXYuX76sNWvW6PDhw8rIyFDNmjXVpk0b3XjjjSXcA+udPn1aGzZs0JkzZ5SYmKiwsDBVrlxZDRs2VLNmzVS+fHm7QwQAAEAJItkCAAAAAE7cf//9Wr58uSTplVde0bhx42yOCAAAAIA3YhoxAAAAAAHF1fvNoqOjzUSLJA0YMKCEIgIAAADg60rZHQAAAAAAWOmFF15QaGioHn/8cd11110KDs57D9qxY8c0btw4/fe//zWXde/eXU2bNrU6VAAAAAA+gmnEAAAAAASUJ554QrGxsZKkMmXKqGHDhqpUqZIyMjJ04sQJHTlyJE/9G2+8UZs3b1bVqlXtCBcAAACAD2BkCwAAAICAknskS3JysrZv3+60bseOHRUbG0uiBQAAAECBGNkCAAAAIKCkpKTou+++0+rVq7V161YdO3ZMiYmJysrKUsWKFVWzZk39+c9/1qOPPqp7773X7nABAAAA+ACSLQAAAAAAAAAAAG4ILrwKAAAAAAAAAAAAnCHZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4oZXcAgLdKTEzU+vXrzfe1a9dWWFiYjREBAAAAAAAAAK6Vlpam33//3Xx/3333KSoqytIYSLYATqxfv17dunWzOwwAAAAAAAAAQBEsWrRIjzzyiKXbZBoxAAAAAAAAAAAAN5BsAQAAAAAAAAAAcAPTiAFO1K5dO8/7RYsW6aabbrIpGgAAAAAAAACAIwcPHszzSIhrr+1agWQL4ERYWFie9zfddJOaNGliUzQAAAAAAAAAAFdce23XCkwjBgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4AaSLQAAAAAAAAAAAG4g2QIAAAAAAAAAAOAGki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAAAAbiDZAgAAAAAAAAAA4IZSdgcAAAAAAAAA+KPU1FT99NNPioiI0J133qlSpbgUBwD+iiM8AAAAAAAA4GE7d+5Uhw4ddO7cOUlSw4YNtXbtWtWoUcPmyAAAJYFpxAAAAAAAAAAP69mzp5lokaT9+/frmWeesTEiAEBJItkCAAAAAAAAeNCuXbt04MCBfMu/++47paSk2BARAKCkkWwBAAAAAAAAPGjjxo1Oyy5cuGBhJAAAq5BsAQAAAAAAAAAAcAPJFgAAAAAAAAAAADeQbAEAAAAAAAAAAHBDKbsDAAAAAAAAAIBAduDAAa1cuVLXX3+9OnbsqAoVKtgdEoAiItkCAAAAAAAAADaJjY3VU089pezsbElSgwYNtHbtWtWsWdPmyAAUBdOIAQAAAAAAAIANrly5ooEDB5qJFunqKJc333zTxqgAFAfJFgAAAAAAAMAihmHYHQK8yFdffaWMjIx8y6dPn25DNADcQbIFAAAAAAAA8KCgoCC7Q4CPWLt2rd0hAPAQki0AAAAAAAAAAABuINkCAAAAAAAAAADgBpItAAAAAAAAAGADppwD/AfJFgAAAAAAAAAAADeQbPGg8+fPa/HixXrrrbf08MMPq0mTJqpYsaJCQ0NVpkwZ1axZU126dNHo0aN18uTJQts7evSogoKCivTvpptuKlLMe/fu1fDhw9WsWTNVqlRJZcuWVcOGDdW/f3+tXr262H+HsWPHqk2bNqpevbrCw8NVt25dde3aVTNmzFBGRkaR20xPT9eMGTPUtWtX1a1bV+Hh4apevbratGmjsWPH6vz588WKFQAAAAAAAAAAd5WyOwB/MmDAAH377bcOyzIzM5WSkqJTp05pxYoVeu+99/T3v/9d77zzjoKD7cl5ffjhh3rvvffyJT8OHDigAwcOaPr06erTp48mTZqk8uXLu9TmN998o0GDBuncuXN5lh8/flzHjx/XsmXL9Nlnn2n27Nlq2LChS23+9ttv6tOnj7Zv355n+ZkzZ3TmzBlt3LhR//znPxUTE6OuXbu61CYAAAAAAIAdDMOwOwQAQAkg2VJCqlSpokaNGqlu3boqV66ckpOTdfDgQf3888/KzMxUWlqaRo4cqcOHD2vatGmFtle+fHk99dRThdarWrWqS/G9++67ev/998331atX1z333KPw8HBt3bpVu3fvliTNnj1b8fHx+vbbb1WqVMEflxUrVqh79+7KzMyUJJUpU0YdOnRQ1apVdejQIX3//fcyDEPbtm1Thw4dtHnzZtWoUaPANk+cOKEOHTro1KlTkq7OY3nvvfeqfv36OnfunFatWqWUlBSdPXtW3bp10/Lly9W+fXuX/gYAAAAAAAAlgedwwFV8VgD/QbLFg9q2bauHHnpIHTp0cDqd1x9//KGXX35Zs2fPliRNnz5dDz30kHr16lVg25UqVdJ///tfj8S5evXqPImW4cOH64MPPlDp0qXNZbNnz9agQYOUmpqqFStW6KOPPtK7777rtM34+Hj17t3bTLR06NBBX331lapUqWLW+fXXX/Xwww/r+PHjOnHihJ588slCpyrr27evmWipW7euFi9erNtuu80sP3/+vB5//HGtXr1aGRkZevTRR3Xo0CFFRUUV6W8CAAAAAAAAAEBx8cwWD3rttdc0ZMiQAp+bUq1aNcXGxuYZfTFp0iQrwjP9/e9/N18//vjjGjNmTJ5EiyT16dNHn376qfm+sOeifPLJJ0pMTJQk1a9fX0uWLMmTaJGk2267TUuXLlVoaKgkac2aNVqxYoXTNr/77jv98MMPkqTSpUtr6dKleRIt0tURRIsXL1a9evUkSRcuXNCYMWOctgkAAAAAAAAAgKeRbLFBUFCQBg4caL6Pi4uzbNtbtmzRli1bJEnBwcEFJiaGDBmiBg0aSJIuX76sGTNmOKyXkZGhL7/80nw/atQolSlTxmHdZs2aqX///ub7zz//3On2c5f1799fTZs2dVivbNmyGjVqlPl+0qRJ5ggbAAAAAAAAAABKGskWm+R+tsrly5ct2+6iRYvM1x07dlTt2rWd1g0KCsqTGFm4cKHDeuvWrTNHtZQvX149e/YsMIYBAwaYr1esWKGkpKR8da5cuZJnirHcySlHevbsqXLlykm6Orrl+++/L7A+AAAAAAAFWbVqlZ544gl17dpVEyZMUHZ2tt0hAQAAL0ayxSZ79uwxX99www2WbXft2rXm67Zt2xZav127dubrDRs2KC0trcA27777boWFhRXY5p133mmOfElNTdXGjRvz1cm9rbJly6pVq1YFthkeHq67777bfL9mzZoC6wMAAAAA4MzixYv1l7/8RbGxsVq2bJmGDh2qYcOG6ejRo9q5c6cMw7A7RAAA4GVIttjg1KlTGjt2rPm+V69eha6TmZmplStXavTo0Xr11Vf11ltv6dNPP9UPP/zgMAHizN69e83XLVu2LLR+ixYtzNdZWVnav3+/222GhobmmRIs9/qOljVt2lSlSpUqtN3c23bUJgAAAAAArhgzZoyysrLyLPvPf/6jG2+8Uc2aNdNNN92kgwcP2hQdfMG1n5/cSNYBgH8q/Ao2PCI5OVlHjx7VsmXLNGbMGJ09e1aS1KhRI40YMaLQ9U+ePKnOnTs7LKtYsaKGDh2qESNGmFNpOXL27Flzui9Jqlu3bqHbjYiIUNWqVXXu3DlJ0m+//Zbv2Sn79u0rUpuSVKdOHW3evNls81rFbTOHozYBAAAAAHDFhg0bCiw/fPiwHn744TyzVgC5FfYZAnIEBQXZHQIAD2FkSwn58ccfFRQUZP4rW7asmjRpotdee81MtHTt2lUbNmxQ+fLl3dpWQkKCPvzwQ91xxx0OR57kiI+Pz/O+WrVqLrV//fXXm68vXLhQYLve3CYAAAAAAJ6yd+9e7d692+4w4KWmTZtmdwgAAIuRbLFBxYoVNXv2bH377beKiooqsG758uU1YMAAffXVV9q3b5+uXLmitLQ0/f777/r666/VsWNHs+6+ffv0l7/8xRyFcq0rV67keR8REeFSvLnrXdvGtcu8uc3iCg8PN0cMZWVlKTEx0Rzye+nSJaWnp0uSUlJSlJSUJOnqtG+5RxFdvHhRGRkZkq6OckpOTpYkZWRk6OLFi2a9xMREZWZmSpKSkpKUkpIiSUpPT9elS5ckXR1unJiYaA5JvnLlilJTUyVJaWlpunz5siQpOztbiYmJ5kMcL1++bE45l5qaav6N6BN9ok/0iT7RJ/pEn+gTfaJP9Ik+5e1T+fLlzeeR5v5NGBISoqioKPNO9O+++85n+uSP+8mb+xQUFKSoqCiFhIRIksqVK6fw8HCzni/2yR/3k7f0KTIyUqGhoZKkMmXKmM869uU++eN+ok++0Sc7kWwpITVq1NALL7ygF154QUOHDtWTTz6pO++8U6VKlVJCQoL69Omj9u3bFzgSpXr16jp16pRiYmLUu3dvNWzYUGXLllXp0qVVq1Yt9erVSytXrtSkSZPME70jR47o73//u8P2cj7cOUqXLu1SX3I/8D7nP5Kzdr25zeJq3bq1+Vydc+fOafz48eYBIDo62hw2vn79ei1dulSSdOLECY0fP95sY8KECTp06JAkacWKFVqxYoUk6dChQ5owYYJZb/z48Tpx4oQkaenSpVq/fr0kac+ePYqOjpZ09eA0fvx4M6k2b948bdq0SZIUFxen2NhYSVcPQOPHjzcPeLGxsYqLi5Mkbdq0SfPmzaNP9Ik+0Sf6RJ/oE32iT/SJPtEn+uSgT/369TOfYZr7N2HVqlU1bNgw8/dnSkqKz/TJH/eTN/cpLCxMw4YNU9WqVSVdfV5v69atJUkHDhzwyT75437yhj4FBQXp+eefV/369SVJnTt3Nh8l4Kt98sf9RJ98p0+2MmCpkydPGgMGDDAkGZKMihUrGr/++qvb7b755ptmmyEhIcaZM2fy1fn555/NOpKMlJQUl9q+8847zXXGjh2br7xMmTJm+bJly1xq8/XXXzfXefDBB/OVd+3a1Sx/4403XGrzu+++M9cpV66cS+sUZNeuXYYkIzw83ChXrpyxa9cuIzMz00hISDCys7MNwzCMixcvGmlpaYZhGEZycrJx5coVwzAMIyMjw0hISDDbSkxMNNLT0w3DMIykpCQjKSnJMAzDSE9PNxITE816CQkJRkZGhmEYhnHlyhUjOTnZMAzDSEtLMy5evGgYhmFkZ2cbCQkJRmZmpmEYhnH58mVzX6amphqXLl0yDMMwsrKyjISEBCMrK8swDMO4dOmSkZqaahiGYaSkpBiXL182DMOgT/SJPtEn+kSf6BN9ok/0iT7RJ/p0TZ/Kly9vhIWF5flNmPN7OyoqyggKCjIkGWPGjPGZPvnjfvLmPgUFBRlRUVFGSEiIeZ0iPDzckGQcOHDAJ/vkj/vJG/r01FNPGZGRkUZoaKghyShTpox5re3LL7/0yT75436iT97fp5xruTn/du3aZVgtyDD+/3E4sNTf/vY3/fvf/5YkNWrUSDt37jSHlhbHlStXdN1115kjOmbMmKEnnngiT529e/eqcePG5vsLFy6oYsWKhbbdrFkz7dy5U5I0ceJEDRkyJE95tWrVzOfQLFiwQN27dy+0zZdeekn/+c9/JEmPP/64Zs+enae8d+/emjt3rlnXlezkggUL1LNnT0lXn99y+vTpQtcpyO7du3Xrrbea73ft2qUmTZq41SYAAAAAwPu5+sDqsWPH6tVXXy3haOCLCvoMHTt2THXq1LEwGniz/v37a/r06Q7LgoKCdPToUT4vgAu84Vou04jZZPTo0apQoYKkq0mQZcuWudVeuXLldNddd5nv9+7dm69O5cqV87z/448/XGr7zJkz5utKlSoV2K43twkAAAAAAAB4k4ISc4ZhaMqUKRZGA8AdJFtsUqZMGbVp08Z8/9NPP7ndZvXq1c3X58+fz1d+3XXXKSoqynx/7NixQttMTU0159mTpFtuuSVfnZtvvrlIbUrS8ePHLW8TxWMYhvkALAAAAAAA4B4mmUFR5DwPA4D3I9lio9xTeMXHx7vdXlJSkvm6bNmyDus0atTIfJ3z4KGCbNu2zXwdEhKihg0but1mZmamOS3Ztes7WrZz506XLvbnjtVRmygawzA0evRo3XDDDYqKilL37t098jkFAAAAAADAVYUl33IeSg44YhiGVq1apb///e+aMGGCyzMEoWSQbLFR7meKeGLaq9yJjho1ajis065dO/P1unXrCm1z/fr15us2bdooLCyswDY3btyo9PT0AtvcsmWLkpOTJUnh4eG6++6789XJva2kpCT98ssvBbaZlpamTZs2me/bt29fYH0Ubvz48XrzzTd1/PhxJSUladGiRbr//vu5AwcAAAB+a9GiRXryySc1YMAAt6d6BgAAKGnvvvuuOnXqpI8//lhDhw7VXXfdpaNHj9odVsAi2WKT+Ph4bdy40Xzv7kiMVatW6ffffzfft23b1mG9bt265VmnsOz41KlTHa6bW9u2bRUZGSlJunTpkhYsWOBym506dXI4CqdcuXLq0KGDw3UcWbBggS5fvizpauLq3nvvLbA+Cjdz5sx8y7Zs2aL9+/fbEA0AAABQsv773/+qe/fumjlzpqZNm6auXbsW+jsEAAB3FfTMlhy5r/kBOX7//Xd98MEHeZYdO3ZMH3/8sU0RgWSLh1y4cMHlutnZ2XrxxReVlpYmSQoLC9ODDz6Yp056enqhI0RynDt3Ts8995z5vlGjRmrZsqXDuq1atVKrVq0kSVlZWRoxYoTTdr/44gvzwnr58uX11FNPOawXGhqqZ555xnz/7rvvKiUlxWHdXbt25fnB8sILLzjd/tChQ83XU6dO1e7dux3WS05O1rvvvmu+f/bZZ1WqVCmn7cI1W7dudbj8s88+szYQAAAAoIRlZ2frvffey7d81KhRNkQDAEBeqampdocAL/Tf//7X4fJJkyZZHAlykGzxkOnTp6tVq1aaPn26Ll265LTejh071LVrV3311VfmsuHDh6ty5cp56p06dUr169fXmDFjnD4g3jAMffvtt2rVqpUOHTok6Wo2fOzYsQoOdr5rR48ebb6OjY3ViBEjlJGRkafO3LlzNWzYMPP9a6+9pipVqjhtc8SIEYqKipIkHThwQI888ki+53vs2LFDDz30kJlEateunbp06eK0zQceeED33HOPpKvThD344IPasWNHnjrx8fHq1q2bDh48KOnqqJY33njDaZtwnyvPzwEAAAB8yYYNG3T+/Pl8y48cOaIDBw7YEBEAAEDBfvzxR7tDwDW4/d+DfvnlF/Xv31+lSpXSLbfcoptvvlkVK1ZUUFCQ4uPjtWPHDjMpkKNnz576xz/+4bC9EydO6I033tAbb7yhG264QU2bNlWVKlUUGhqqc+fOafPmzTp16lSedcaMGaOuXbsWGGeHDh309ttvm8PMPvnkE82YMUP33HOPwsPDtXXrVu3atcus36lTJ7355psFtlm5cmV99dVXevDBB5WZmamVK1eqTp066tixo6pWrapDhw5p/fr15vM+atas6XCaqmvNmjVLd955p06fPq2jR4+qefPmuu+++1S/fn2dO3dOq1atMp//UqpUKc2dO9dM+gAAAACAK669USy3K1euWBgJACDQuDKNGADfQLLFQ3I/OD4zM1O7du3Kk7C4Vvny5TVy5Ej97W9/U0hISKHtHz16tMCHG9WsWVP/+9//9PDDD7sU76hRoxQWFqZRo0YpIyNDp06d0pw5c/LVe/zxxzVp0iSXpuXq0qWLFixYoEGDBun8+fNKTk7WkiVL8tVr0aKFZs+erRo1ahTaZq1atbRmzRr16dNH27dvl2EYWrdundatW5enXtWqVRUTE5PnOS8AAMA/pKamKjw83O4wAAAAPCLnRlQAgH8h2eIhzz//vDp06KBVq1Zp8+bN2r17t44fP67ExERJUoUKFVS9enU1b95cHTt2VM+ePVWuXDmn7dWtW1c7d+7Uxo0btWHDBu3evVvnz59XfHy8kpOTzfZatWql+++/X927d1doaKjL8QYFBentt99Wz549NXnyZK1YsUK///67MjIyVL16dd19993q37+/OnbsWKS/w0MPPaQ9e/YoJiZGCxcu1OHDh5WYmKhq1aqpSZMm6tOnj/r06VOkWG+55RZt3rxZX331lWbPnq3du3frjz/+UFRUlOrVq6cePXpo4MCBBU5zBgAAfM+CBQv05ptvav/+/WrRooX+97//6a677rI7LAAAAAAA8iHZ4kENGzZUw4YN8zzYvbiCgoJ066236tZbb83z8HlPa9SokcaNG+fRNqtWrarXX39dr7/+usfaLF26tJ566ik99dRTHmsTxZOQkGB3CACAALBhwwY99thjysrKkiRt27ZNnTt31s6dO1WnTh2bo4OvYFQUAKAkbNq0SUuWLFGZMmXUo0cPNW7c2O6Q4MOYRgzwH86fog4ADsyfP9/uEAAAAeDrr782Ey05Ll26pO+++86miOBLvv32WzVp0kQRERFq3ry5vv/+e7tDAgD4iRkzZqhNmzYaPXq03nnnHd1xxx1au3at3WEBALwAyRYAAAB4nc8++8zh8ueff97aQOBztm3bpu7du2vPnj2SpF9//VVdu3bVwYMHbY4MAODrsrKyNGzYsDzPXElJSdEbb7xhY1QAAhXPf/I+JFsAAAAA+I358+crIyMjz7KkpCQtWbLEpojg67iQgYLw+Qgsa9eu1YULF/It37Jli/nMXsCZhIQE7du3j+MG4MdItgAAAADwGx999JHD5a+++qrFkcCXMF8+AFccPXrUadmVK1esCwQ+JSMjQ0899ZSqVKmiW265RfXq1dOuXbvsDgtACSDZAgAAAAAAABSioMRsdna2y+0wsiGwjBo1SjNmzDA/I0ePHlXHjh2VmZlpc2QAPI1kCwAAAAAAAFCIgpItJFDgzIQJE/It++OPP7R+/XobogFQkki2AAAAAAAAFANT0AWW4GDnl9FItsCZ+Ph4h8snT54sieMICpaUlKSFCxfq448/1k8//cSxxsuVsjsAAAAAAAAAwNt5ahoxAHDFxYsX1blzZ/3888/mshEjRuijjz5SUFAQiTovxMgWAAAAAAAAoBBMIwbASuPHj8+TaJGkjz/+WDt37rQpIhSGZAsAAAAAAE5wARVADqYRQ0lgdAKc+cc//uFw+WeffSaJ4443ItkCAACAgJWRkaF//etf6tq1q5577jlt3brV7pAA2IALXQBcwTRi8KSDBw/aHQJ81MKFC+0OAU7wzBYAAAAEJMMw1LdvX82bN89cNnPmTK1evVp33XWXjZEBAABvxDRi8KRffvlFGRkZdocBwIMY2QIAAICAtG/fvjyJFklKSkrS+PHjbYoIAAB4M09NI0ZiBjk2bdpkdwgAPIhkCwAAAALSJ5984nD57NmzLY4EgN248AnAFUwjBk/74IMP7A4BgAeRbAEAAEBAYp5sAK7geS4AcnhqGjGOKwDckZiYyBR0XopkCwAAAAAgICQnJ2vo0KG64YYb1KpVK02ePNnukAD4kIKmEWNkCwArVatWTRs3brQ7DFyjlN0BAPA9u3fvVpMmTewOAwAAACiSHj166P/+7/8kSceOHdMvv/yioKAgVa1a1ek6TDEGIIenRrYAuTHSCcWRkJBgdwhwgJEtAIrs7rvv1ubNm+0OAwAAAHDZ8ePHzURLbl988QUXugC4pKCRLSRb4MixY8fsDgGAhUi2ACiyy5cv8xA3AAAA+JTPP//c4fKff/7Z4kgA+KqCErNMI4ZrTZ48WTfccIPdYQCwEMkWAMXyzTff2B0CAAAA4LIrV67YHQL80M8//8xF9gDiqWnEGAXj/06ePKlnnnnG7jAAWIxkCwAAAAAAQDHMnTtXgwYNUlZWlt2hwAJMIwZXTZkyxeW6TGWJa2VnZ+utt96yOwwUA8kWAAAAAACAYpo2bZoWLFhgdxiwANOIwVWzZ892qR5JOjgyYsQIffTRR3aHgWIg2QIAAADAZyUlJWnVqlU6cOAAFywA2ObDDz+0OwRYwFPTiAGAM9nZ2Zo6dardYaCYStkdAAAAAAAUx/Lly9W9e3elpqZKkh566CGbI4I/4gIqXPHrr7/aHQIswDRiKAlMI4bcDh06pHPnztkdBoqJkS0AAAAAfE5iYqK6detmJlokaenSpQWuk7sukBsXupAjLS1Ny5YtszsMeKmCjhUPPPCA2rRpow8//FCZmZkWRgVfR6IOuTEloW9jZAsAAAAAn/P1118rLS2tSOv07NlT33zzDRfWATiUnJyshx56SGvWrLE7FHipgr4/4uPjtXHjRm3cuFH79++3MCoAgLdgZAsAAAAAnxMdHV3kdb777jsugAUw7hxGYSZNmkSiBQUqaBqx3GbMmFHCkcCfcBMI4D9ItgAAAAAIGGPGjLE7BABe6o033rA7BHg5Vy+KF5bcJfkLAP6JZAsAALBFRkaGNmzYoC1btigrK8vucOBDmAcd7jhz5ozdIQDwUhkZGXaHAC/HCAQAQEFItgAAAMsdOHBA9erV05/+9CfdeeedatKkiU6ePGl3WPAR77//vt0hAACAAOTqNGIAgMDEtwQAALDcY489phMnTpjv9+3bp4EDB9oYEXzJ//73P4+0U5SpQM6ePcuUH4AfO3z4sN0hAPABjGyBpxmGwecKpi1btmj48OF2hwE3kGwBAACWOnr0qLZv355v+cqVK3Xp0iXrA4LPOX/+vGXbmjNnjmrXrq1q1arpxhtv1HfffWfZtgFY529/+5vdIQDwAYxsgatIoKCovv32W/3pT3/S0qVL7Q4FbuBbAgAAWGrLli1Oy37//XcLIwEKtmnTJvXt29ec4u7YsWPq3r279uzZY3NkAADADlxAh6sYEY2ieuedd3h2mB8g2QIAAAA4MG/ePGVnZ+dZlp6erkWLFtkTEAAAsBXJFpQEPldISEhQXFyc3WHAA0i2AAAAAA6MGzfO4fK33nrL4kjgSdxpGrjY9wDc5amL4o888oguX77skbYA+L7k5GS7Q4CHkGwBAHjMjz/+qHbt2qlixYrq0qWLduzYYXdIAOAUF159G3eBAgCs5qnvnt27d+vJJ5/0SFsAAO9Ryu4AAAD+YdeuXfrLX/6ipKQkSdKKFSu0bds2xcXFqVatWjZHBwAAAADu8WSif/Hixbp8+bLKly/vsTbhe1atWsVnAPAjjGwBAHjE3LlzzURLjvPnz2vp0qU2RQQAAPD/pKen2x0CAB8XHOzZy2jff/+9R9uDb1q4cKHdIQDwEJItAAC3nTx5Uu+//77DsqFDh1ocDQAAQF6XLl1SdHR0sdZlykEAOZjCEgBQEJItAAC3nD9/Xm3btrU7DAAAAKc+/PBDu0MA4AdItgAACkKyBQDglsWLF+vgwYN2hwEfwh3CAACrjRkzxu4QEAA+++wzu0NACSPZAgAoCMkWAIBbnn76abtDgB/hBywAAPBVL7/8sjZs2GB3GAC8AL9rUBTckOg/SLYAAAAACBj8mAVQkr788ku7QwAAADYh2QIAAAAAbjIMQxcvXrQ7DAA2mzp1qt0hAAAAm5BsAQAAgM+JiopS586dFRcXZ3cosIk3Tc/x6aef6vrrr1dUVJRatmyp3bt32x0SAMAHMNrSf7FvgcBEsgUAAAA+5+LFi1q5cqU6duyo48ePF6sNb7pYD981e/ZsvfLKKzp79qwkKS4uTu3atdOlS5dsjgyewgUzAAAAuIJkCwAAAHzWhQsXtHjxYrvDQACbO3duvmXnzp3T+vXrbYgGAAAAgF1ItgAAAMCnvfTSS3aHgAC2aNEih8v/9re/WRsIAAAAAFuRbAEAAJZiOhYAgYBp6gAAAIDAQrIFAAB4DS5OAihpViV8Dx8+rO3bt1uyLQAAAAD2I9kCAAAAAMWwdOnSAstbtGihjz76yKJoUFK4ESAwZGRk2B0CACBAMfuD/yDZAgAAACBgePLC+eTJkwut89ZbbzHCBfABmzZtsjsEAADg40i2AAAAAEAxLFmyxKV6LVq00H333aenn35acXFxJRwVPI27TQPDW2+9ZXcICEAcX/yXp0dFMsoS8A0kWwAAAIBrXLlyxe4QUAhfu+jw/fffa8qUKWrbtq1+/fVXu8MBcI34+Hi7QwAAp0jMAb6BZAsAAPAa/IiAt3j66aftDgF+6tKlS5o0aZLdYQAAvICv3TgAACgYyRYAAGApflSiMN6QdJszZ47dIcCPTZgwwe4QAABACfKG81kA1iPZAgAALMUPDxTm0KFDdodQqMzMTLtDAAB4EDeDAAAAd5FsAQAAXoMLHZCkf/3rX3aHUKiMjAy7Q0AxkfAFAAAAUBJItgAAAMCrHDlyxJLtcNEdAAAAAOApJFsAAAAAAHCCxCyAksLxBQD8C8kWAAAAAAEjISHB7hAAeCGmMgUAAO4i2QIAACyzf/9+jRs3zu4wAElcWAtUP//8s90hAPBzKSkpdocAAAhwu3btsjuEgESyBQAAWGL16tVq3ry5tmzZYncogNuY9sO3JScn2x0CAD+2aNEiu0MAYDNu6oHdevbsaXcIAYlkCwAAsMSLL77InZ4APMadixhHjhzxYCQA/IEnL4xOmTLFY20BAFAc+/fv186dO+0OI+CQbAEAACXu0KFD+u233+wOAwAAoMStXr1aR48etTsMAH6EkTIojh9//NHuEAIOyRYAAFDiTp06ZXcIAAAAlomJibE7BJQAphGFXfjsAb6BZAsAAPAa3LEFAPA2XOBCccTExCgrK8vuMAAAgIVItgAAAAAAAHjQ77//rjVr1tgdBrwcyVz/xb5FUfB58R8kWwAAAACgiE6ePGl3CLAIoy5RXFOmTLE7BAAAYCGSLQAAAEARcfcZ/ve//7m1/g8//KDdu3fzWQL82MKFC3XhwgW7wwAAABYh2QIAAACvwl3k8AVnzpxxa/17771Xt956q/785z/r4sWLHooKQHGVxHdPenq6YmNjPd4uAADwTiRbAAAAAMAmGzZs0LBhw+wOA0AJiY6OtjsEeDFuMAEA/0KyBQAAAABsNHXqVLtDAFBCtm/frm3bttkdBgCLkUgDAhPJFgAAAAAAnOC5OoGhJC+MMroFAIDAQLIFAFDili1bZncI8BHcAQbAChxrAFgpNjZWKSkpdocBAABKGMkWAECJmzVrlt0hwGbcFQwAAAJVYmKiFi1aZHcY8EKcIwOQpNGjR9sdAjyEZAsAoMTNnDnT7hDgI/jBCQAA/BFTiQFwB6Ny/dfKlSs1ceJEu8OAh5BsAQAAQEDiRysAIEdJfyesWrVKR48eLdFtAPBf3JTmvyZNmmR3CPAgki0AAAAAACCgWXEhc+rUqSW+DfiWmJgYu0MAYLP58+fbHQI8iGQLAAAAABQRI6MAOFOzZk2Hy2NiYpSVlWVxNPBmixYt0q5du+wOAyWAkShAYCLZAgAAShwXJeGN+BEMAMjhyXOVAQMGOFx+/PhxrVmzxmPbgX9gxBMA+A+SLQAAwO/Ex8dr/vz5+vHHH5WRkWF3OPBSCQkJxV6XRI397E7i8hkIHOxrFFW/fv1UunRph2VTpkyxOBp4u3HjxtkdAgDAQ0i2AAAAv7J8+XLVrFlTvXr10j333KO77rpLFy5csDsseCF3pu3g4isAwJnKlSurW7duDssWLlzIeQkQAOy+KQSAPUi2AAAAr+Huj5LU1FT16tVLaWlp5rK4uDiNGDHC3dBgIV/4ccpdqIiOjrY7BABebNCgQQ6Xp6enKzY21uJoAACAFUi2AAAAv7FkyRIlJSXlW/7ll1/aEA382fTp0+0OATbiAdeA//F0or9jx46qXbu2wzKStQAA+CeSLQAAwG98++23doeAAHHkyBG7Q4Ab3L2oum7dOs8EAsBvhYSEaMCAAQ7Ltm/frri4OGsDAgAAJY5kCwAAKHE83wKAPzl79qzdIcBCvjC1IbzTwIEDnZZNmTLFwkgAAIAVSLYAyOfy5ct2hwAAAOC1MjIy7A4BgIeVRFLtxhtvVPv27R2WxcbGKjU11ePbBAAgBzeMWI9kC4B8evbsaXcIAAAAXotkS2BhdCbcMXjwYIfLExMTtXDhQoujAeCruGgO+AaSLQDy+OOPP7Ry5Uq7wwAAAPBa6enpdocAwEd0795dkZGRDsuio6MtjgaAr8rKyrI7BAAuINkCII/p06fbHQIAAECh7LzDk5EtAFwVERGhfv36OSxbtWqVjh49am1AAHzS6tWr7Q4BgAtItgDIIzMz0+4QAAQwhscD8AUkWwD/U5LnIIMGDXJaNnXq1BLbLgD/8dNPP9kdAgAXkGwBAAAAgCIg2QL4n5J8Nk/Lli112223OSyLiYlheiAAhcrOzrY7BAAuINkCIA/uKgcAAP7O3YuqJFsAFEVQUJDT0S3Hjx/XmjVrLI4IgK8pyYQw/BefG+uRbAEAAH6Dk0kAViDZAvifkr7prF+/fipdurTDsujo6BLdNgDfx8gWwDeQbAEAACWOUXMoCj4vKGnufsZItgQWEvnwhMqVK6tbt24OyxYuXKgLFy5YGxAAn0KyBfANJFsAAAAAoAjS09PtDgGAD3I2lVhaWppmzZplcTQAfAnJFsA3kGwBAAAljruCAfgTRrYA/seKUZUdO3ZU7dq1HZZNmTKlxLcP93FOC7vw2QN8A8kWAAAAACgCki0ACuIscRMSEqIBAwY4LNu+fbvi4uJKMCoAvoyRLYBvINniQefPn9fixYv11ltv6eGHH1aTJk1UsWJFhYaGqkyZMqpZs6a6dOmi0aNH6+TJk0Vuf/Xq1XrqqafUsGFDlS1bVpUqVVKzZs00fPhw/fbbb8WKee/evRo+fLiaNWumSpUqqWzZsmrYsKH69++v1atXF6vN8+fPa+zYsWrTpo2qV6+u8PBw1a1bV127dtWMGTOK9eM0PT1dM2bMUNeuXVW3bl2Fh4erevXqatOmjcaOHavz588XK1YAAOB9uHMPrrDz2T4kWwAU18CBA52WMboFgDOcH6M40tLS7A4h4JSyOwB/MmDAAH377bcOyzIzM5WSkqJTp05pxYoVeu+99/T3v/9d77zzjoKDC855Xbp0Sc8++6zmzJmTZ3lycrISEhK0c+dOjR8/3mzTVR9++KHee++9fD8WDxw4oAMHDmj69Onq06ePJk2apPLly7vU5jfffKNBgwbp3LlzeZYfP35cx48f17Jly/TZZ59p9uzZatiwoUtt/vbbb+rTp4+2b9+eZ/mZM2d05swZbdy4Uf/85z8VExOjrl27utQmnOOhxAAAAAUj2QKguG688Ua1b99ea9asyVcWGxursWPHKjw83IbIAHgzki0ojqNHj9odQsAh2VJCqlSpokaNGqlu3boqV66ckpOTdfDgQf3888/KzMxUWlqaRo4cqcOHD2vatGlO28nIyFD37t3znIjdeuutatmypVJTU/XDDz/o9OnTysjI0JtvvqmMjAy9++67hcb37rvv6v333zffV69eXffcc4/Cw8O1detW7d69W5I0e/ZsxcfH69tvv1WpUgV/XFasWKHu3bsrMzNTklSmTBl16NBBVatW1aFDh/T999/LMAxt27ZNHTp00ObNm1WjRo0C2zxx4oQ6dOigU6dOSbqaCLj33ntVv359nTt3TqtWrVJKSorOnj2rbt26afny5Wrfvn2h/QcAeKc+ffpo1apVqlixYrHWJ2EMwAo557sA/IeV5xCDBw92mGxJTEzUwoUL1adPH8tiAeAbmEYM8A1MI+ZBbdu21cSJE3XgwAGdO3dO33//vWbMmKEJEyZo2rRp+umnn3TixIk8J07Tp0/XvHnznLb5/vvvmydh4eHhmj17tnbu3Klp06Zpzpw5Onr0qIYPH27WHzlypNavX19gnKtXr86TaBk+fLiOHj2qOXPmaNq0adq1a5dmzZpl3k2zYsUKffTRRwW2GR8fr969e5s/PDt06KBjx45pyZIlmjJlitatW6e4uDjVqVNH0tUkypNPPllgm5LUt29fM9FSt25dxcXFad26dZoyZYqWLFmi48ePq0OHDpKuJqYeffRRJSYmFtouAMA7bdu2TV26dOHOLQBejZEtgYXvJHha9+7dFRkZ6bAsOjra4mgA+AKSLYBvINniQa+99pqGDBmim266yWmdatWqKTY2Ns/oi0mTJjmse/bsWf3rX/8y33/22Wd6/PHH89QpXbq0xowZo969e0u6+kOgsKnEcpc//vjjGjNmjEqXLp2nTp8+ffTpp5+a7wt7Lsonn3xiJjnq16+vJUuWqEqVKnnq3HbbbVq6dKlCQ0MlSWvWrNGKFSuctvndd9/phx9+MPu5dOlS3XbbbXnqVKlSRYsXL1a9evUkSRcuXNCYMWOctgkA8H5btmzR3r177Q4DAJwi2QLAHREREerbt6/DstWrVzPtC4B8SPwDvoFkiw2CgoLyPBQvLi7OYb1p06YpKSlJktSwYUM9++yzTtscM2aM+eyXjRs3Om1zy5Yt2rJliyQpODi4wMTEkCFD1KBBA0nS5cuXNWPGDIf1MjIy9OWXX5rvR40apTJlyjis26xZM/Xv3998//nnnzvdfu6y/v37q2nTpg7rlS1bVqNGjTLfT5o0iakdAMDHjR071u4QAMCp9PR0u0OAhZiiMjBYvZ8HDx7scLlhGJo6daqlsQDwfoxsAXwDyRabVK1a1Xx9+fJlh3UWLVpkvh4wYECBJ3916tTJM1pm4cKFhbbZsWNH1a5d22mbQUFBeRIjztpct26dOaqlfPny6tmzp9M2pat9ybFixQozoZTblStXtHr1avN97uSUIz179lS5cuUkXR3d8v333xdYH87xYxKAN0hOTi7WetzxBcAKjGwB/I/V5xAtW7ZUs2bNHJbFxMRwYRVAHhwTAN9AssUme/bsMV/fcMMN+cpTU1O1adMm833btm0LbbNdu3bma0cP25OktWvXFrvNDRs2KC0trcA27777boWFhRXY5p133mmOfElNTdXGjRvz1cm9rbJly6pVq1YFthkeHq67777bfO+s/wAAAIC7N5eQbAHgrqCgIKejW44fP57n5kMA4KYywDeQbLHBqVOn8kyP0qtXr3x19u3bZ2atg4KC1KJFi0Lbbdmypfna2Vz3uZfnru9M7u1mZWVp//79brcZGhqaZ0owR7HmXta0aVOVKlWq0HZd6T8AwDfwYyKwMcoS3o5kCwBP6NevX77np+aIjo62OBoA3oyRLYBvINlikeTkZO3Zs0fjxo1TixYtdOrUKUlSo0aNNGLEiHz19+3bZ76+7rrrFB4eXug26tSpY76+cOGCzp07l6f87Nmz5nRfklS3bt1C24yIiMgz5dlvv/1WYKyutHltrFa1CQCwD8kTAJ5mZ1KOZAvgf+w4plSuXFndunVzWLZw4UJduHDB2oAAeC2SLYBvINlSQn788UcFBQWZ/8qWLasmTZrotdde09mzZyVJXbt21YYNG1S+fPl868fHx5uvq1Wr5tI2r7/++jzvrz0xy91mcdt1dLLnbqxWtQnXcDcxAG9AcgaANyPZElj4TkJJGjRokMPlaWlpmjVrlsXRAPBWfBcBvoFkiw0qVqyo2bNn69tvv1VUVJTDOleuXDFfR0REuNTutfVyt+HofXHavbaNa5d5c5vFFR4ernLlykm6OpVaYmKi+SV36dIlpaenS5JSUlKUlJQkScrMzMwziujixYvmj/Lk5GTzwc8ZGRm6ePGiWS8xMVGZmZmSpKSkJKWkpEiS0tPTdenSJUlXv2ATExOVlZVl9jU1NVXS1RPyy5cvS7p610NiYqJ598Ply5fN5+Ckpqaaf6Nr+5SdnW0OZY+IiFDZsmUlSaVKlcrzeY2MjPSZPvnjfvK2PoWFhZmJ4+DgYEVFRSk4+OpXTPny5c1nOflSn/xxP9nZp5zXoaGhioyMNOtFRUWZU0WWLVvWPJYHBwcXq0+lSpVy+NkLDw9nP/lYn0JCQhQVFWXeBFChQgWXvp+K0idHn73SpUurQoUKkq7egBAVFaWQkBBJUrly5czRxmFhYewnm/uU8/+7sP3k7PvJnT5lZGQ4PDcKDQ2VJJUpU8Z8RqGrxz1/3U/e1qfi7Kf09HSv7pM/7ic7+pRzLHF2HpHzm9DV7ydX+3TffffplltuMevl/uzNmDGD/eSlfXJ2LC/KeUTu7ydv6JM/7ic7+5TD1XPYwr6fcv5G7Cf/61NRz2GL8v2U8zrQ9pOdSLaUkBo1auiFF17QCy+8oKFDh+rJJ5/UnXfeqVKlSikhIUF9+vRR+/btHT4DRZL5QZTkdA7Xa137YPqcD72jNovb7rVtXtuuN7dZXK1btzafq3Pu3DmNHz/ePABER0drz549kqT169dr6dKlkqQTJ05o/PjxZhsTJkzQoUOHJEkrVqzQihUrJEmHDh3ShAkTzHrjx4/XiRMnJElLly7V+vXrJUl79uwx5+xNS0vT+PHjzWni5s2bp02bNkmS4uLiFBsbK+nqAWj8+PHmAS82NlZxcXGSpE2bNmnevHkO+5SSkqLGjRtLunri/9BDD0mSatWqpWHDhpmxPv/88z7TJ3/cT97WpxYtWqhfv36Srn6hDxs2zPyR0a9fP/P5T77UJ3/cT3b2Ked1/fr19fzzz5v1hg0bplq1akmSHnroId13332Srp5AFqdPdevWdfjZa926NfvJx/pUtWpVDRs2zPx+HzRokEvfT0Xpk6PPXuPGjc27jMPCwjRs2DBzStVevXqpdevWkq4e99hP9vYp5/93YfvJ2feTO33KyMhweG5Uv359SVLnzp3VuXNnSa4f9/x1P3lbn4qzn/bu3evVffLH/WRHnyIiIpyew+b+Tejq95OrfTp69Kh69+5t1sv92atXr575t2Q/eVefnB3Li3Iekfv7yRv65I/7yc4+5SROXD2HLez7KediM/vJ//pU1HPYonw/5VxTDbT9ZCsDljp58qQxYMAAQ5IhyahYsaLx66+/5qs3ZswYs85dd93lUtvJycnmOpKMX375JU/5zz//nKc8JSXFpXbvvPNOc52xY8fmKy9TpoxZvmzZMpfafP311811HnzwwXzlXbt2NcvfeOMNl9r87rvvzHXKlSvn0joF2bVrlyHJCA8PN8qVK2fs2rXLyMzMNBISEozs7GzDMAzj4sWLRlpammEYV//+V65cMQzDMDIyMoyEhASzrcTERCM9Pd0wDMNISkoykpKSDMMwjPT0dCMxMdGsl5CQYGRkZBiGYRhXrlwxkpOTDcMwjLS0NOPixYuGYRhGdna2kZCQYGRmZhqGYRiXL18292Vqaqpx6dIlwzAMIysry0hISDCysrIMwzCMS5cuGampqYZhGEZKSopx+fJlwzCMfH1q1qyZUbp0aUOSERERYZQtW9aQZJQqVcqIiooy/8aRkZE+0yd/3E/e1CdJRlhYmFG+fHlDkhEcHGxERUUZwcHBhiSjfPnyRlhYmE/1yR/3k919WrlypSHJCA0NNSIjI81jSVRUlFGqVClDklG2bFkjIiLCkGQ89thjxerTwIED8332co7l7Cff6dMDDzxghISEGFFRUUZQUJAhyahQoUKB30/F6ZOjz17p0qWNChUqGJKMoKAgIyoqyggJCTHPL8LDw83jXqDvJ7v71KVLF5f2k6Pvp71797rVpxtvvNHhuVFoaKghyShTpox5juzqcc9f95O39Mmd/bRmzRqv7JM/7ic7+9S6dWuH57C5fxNKcun76ezZs0Xq044dO5weI/7617+yn7yoT5s3by7wWF6U84jc30/sJ//rU+PGjV06h3X1+6lNmza298kf95M39Kko57BF/X4aNmxYQO2nnGu5Of927dplWI1ki01eeuklc8c3atTI/BDm+N///meWN2vWzKU24+Pj83ygfvvttzzle/bsyVN+4cIFl9pt2rSpuc7EiRPzlV933XVm+YIFC1xq869//au5zuOPP56v/LHHHjPLX3rpJZfanD9/vrnO9ddf79I6BfGG/6B2yN3nwv4BhuH6ZwaBbf369UU6vvTq1atY23nyySf5DPqBBx54oEifl+Lu36Jug8+Ud2nbtm2x993evXvd2natWrXc/vzwebKWO/vmxx9/tDt8WOCuu+7y2P/ns2fPFnn77du3d9hWxYoVXb5REiUvJ9nCdwAKk5Ns8dQ/V2/Ehu8piWNKzr+cZEug8IZruUwjZpPRo0ebw7/27t2rZcuW5SmvXLmy+fqPP/5wqc0zZ87keV+pUiWnbRa33WvbvLZdb24TAAAA8IScea0BwFNypp66VkJCghYtWmRtMADcZnj4gfY5z7YA4N1IttikTJkyatOmjfn+p59+ylN+8803m6/Pnj2b73krjhw/ftx8XalSJXPOvxzXXXddnodvHTt2rNA2U1NTzXn2JOV5cJ+jWF1p89pYrWoTAOA7ivvjxNM/agDAEZItgP/JeYiwXXr06KHIyEiHZVOmTLE4GgDehmQL4BtIttioYsWK5uv4+Pg8ZTfffLOCg6/uHsMwtH379kLb27Ztm/m6UaNGDuvkXp7z4CFX2wwJCVHDhg3dbjMzM1M7d+4sMNbcy3bu3KnMzMwixeqs/wAAAIC7SLYEFhL5KKriJG4iIiLUt29fh2WrV6/W0aNH3YwKgC/juwjwDSRbbHT69Gnz9bXTXoWHh6t169bm+3Xr1hXa3vr1683X7du3d1inXbt2xW6zTZs2CgsLK7DNjRs3Kj09vcA2t2zZouTkZElX+3n33Xfnq5N7W0lJSfrll18KbDMtLU2bNm0y3zvrPwDANxT3x4Tdd6UCsI47/9/dPVa4ciMQABTV4MGDHS43DENTp061NhgAXoWRLYBvINlik/j4eG3cuNF872gkRrdu3czXhZ1Y/f7771q9erXDdZ21uWrVKp04caLAdnNv11mbbdu2NYc7X7p0SQsWLHC5zU6dOqls2bL56pQrV04dOnRwuI4jCxYs0OXLlyVdTVzde++9BdYHAAAAiouRLQBKQsuWLdWsWTOHZTExMVxsBQIY//8B30CyxUMuXLjgct3s7Gy9+OKLSktLkySFhYXpwQcfzFevf//+ZiJi3759mjx5stM233jjDWVlZUmS7r77brVs2dJhvVatWqlVq1aSpKysLI0YMcJpm1988YX2798vSSpfvryeeuoph/VCQ0P1zDPPmO/fffddpaSkOKy7a9euPImTF154wen2hw4dar6eOnWqdu/e7bBecnKy3n33XfP9s88+q1KlSjltFwBgvaKOVGGYPABvxsgWACUhKCjI6eiW48eP57nBEkBg4fcR4BtItnjI9OnT1apVK02fPl2XLl1yWm/Hjh3q2rWrvvrqK3PZ8OHDVbly5Xx1r7vuOr3yyivm+5deeklz587NUycjI0MjRozQ7NmzzWWjR48uMNbc5bGxsRoxYkS+u/Pmzp2rYcOGme9fe+01ValSxWmbI0aMUFRUlCTpwIEDeuSRR/I9h2bHjh166KGHzGnG2rVrpy5dujht84EHHtA999wj6eo0YQ8++KB27NiRp058fLy6deumgwcPSro6quWNN95w2iYAAPB+TAcHV3DRAYA/6tevn0qXLu2wLDo62uJoAHgLRrYAvoHb/z3ol19+Uf/+/VWqVCndcsstuvnmm1WxYkUFBQUpPj5eO3bsMJMCOXr27Kl//OMfTtt855139NNPP2nNmjVKSUlR79699cEHH6hly5ZKTU3V999/n+fZL++9957uu+++AuPs0KGD3n77bX3wwQeSpE8++UQzZszQPffco/DwcG3dulW7du0y63fq1ElvvvlmgW1WrlxZX331lR588EFlZmZq5cqVqlOnjjp27KiqVavq0KFDWr9+vfmjuGbNmpo5c2aBbUrSrFmzdOedd+r06dM6evSomjdvrvvuu0/169fXuXPntGrVKvP5L6VKldLcuXPNpA8A75KSkqKIiAi7w4CP4CIqAACwkrck+itXrqxu3brlu9FSkhYuXKgLFy7ke+YrAP/H7yPAN5Bs8ZDcD47PzMzUrl278iQsrlW+fHmNHDlSf/vb3xQSEuK0XmhoqBYsWKBnn33WPNnauXOndu7cma/eyJEjC02K5Bg1apTCwsI0atQoZWRk6NSpU5ozZ06+eo8//rgmTZrk0rRcXbp00YIFCzRo0CCdP39eycnJWrJkSb56LVq00OzZs1WjRo1C26xVq5bWrFmjPn36aPv27TIMQ+vWrdO6devy1KtatapiYmLyPOcFgHeZM2eOBgwYYHcYAAAAReItF+EROAYNGuQw2ZKWlqZZs2bpxRdftCEqAEXh6e8Oki2AbyDZ4iHPP/+8OnTooFWrVmnz5s3avXu3jh8/rsTERElShQoVVL16dTVv3lwdO3ZUz549Va5cOZfajoyM1Jw5c/TMM89o2rRp2rhxo06fPq3Q0FDVrl1bXbp00eDBg9WoUSOX4w0KCtLbb7+tnj17avLkyVqxYoV+//13ZWRkqHr16rr77rvVv39/dezYsUh/h4ceekh79uxRTEyMFi5cqMOHDysxMVHVqlVTkyZN1KdPH/Xp00ehoaEut3nLLbdo8+bN+uqrrzR79mzt3r1bf/zxh6KiolSvXj316NFDAwcOLHCaMwD227JlC8kWAIBX4IIFioLPC6zWsWNH1a5dW7///nu+sujoaJItQADiuwjFwefGeiRbPKhhw4Zq2LBhnge7e1LHjh2LnPwoTKNGjTRu3DiPtlm1alW9/vrrev311z3WZunSpfXUU0/pqaee8libAADvxUkhAMBTkpKS7A4BKJKQkBANGDBA77//fr6yuLg4xcXFqUWLFjZEBsAuPLMF8A3BdgcAAAD8n1VTsJCkAQBcKz093e4Q4AO8bbq4gkaER0dHWxcIAK9AsgXwDSRbAACA1yFpAqAw3nZhFAA8qV69emrfvr3DstjYWKWmplocEYCi8PTvmYMHD2rjxo0ebROA55FsAQAAABBQ3EnUZGVleTASAHBu0KBBDpcnJCRo0aJF1gYDwHb33nsv//cBL0eyBQAAeB1GtgDwVhkZGXaHAKAEeONouR49eigyMtJh2ZQpUyyOBhLnqLBXZmam3n77bbvDgA/hmGU9ki0AAKDEcZIHwF+QbAFglYiICPXt29dh2erVq3X06FFrAwJgu927d+vUqVN2hwHACZItAADA65CcAeCtSLYAsNLgwYMdLjcMQ1OnTrU2GABe4fLly3aHAMAJki0AAAAA4CKSLYGHGwBgp5YtW6pZs2YOy2JiYpSdnW1xRAAAwBmSLQAAAPAq3jhvPpCDZAsAKwUFBTkd3XL8+HGtWbPG4ogAuILzWSAwkWwBAFiCk01Ygc8ZgJJGssX38N0AX9evXz+VLl3aYdmUKVMsjgaAK86dO2d3CADnQDYg2QIAALwOU7YA8FYllWzhuAf4D09f3KpcubIeeeQRh2ULFy7UhQsXPLo9AO4j2QIEJpItAADAb3CxEggcdt2px8gWwD95+92/zqYSS0tL06xZsyyOBgDgC7z9u80fkWwBAABeh6QJAG+Vnp5udwgoIr5T4A86duyo2rVrOyyLjo62OBoAAOAIyRYAAFDiuBMcgL/geAbADiEhIRowYIDDsri4OMXFxVkbEAAAyIdkC4Bi4y5BAK767rvvilSf4wuAkuTOlAokWwDYxVmyRWJ0CwAA3oBkCwAAKHHLly+3OwQA8AiSLYB/8oV57evVq6f27ds7LIuNjVVqaqrFEQEAgNxItgAAAK/DyBYA3opkS+DxhYvwCByDBg1yuDwhIUGLFi2yNhgAAJAHyRYAAAAAcBHJFgB26tGjhyIjIx2WMZUYAAD2ItkCALAEd4UCcBUjm+DNSLb4Hs5B4Apf+ZxERESob9++DstWrVqlY8eOWRwRAADIQbIFAAB4HS62A/BW6enpdocAIMANHjzY4XLDMDR16lRrgwEAACaSLQAAAAB8jl13oTOyBYDdWrZsqWbNmjksi4mJUXZ2tsURAQAAiWQLAADwQsUd2cKIGP/gK1O5IDCRbAk8fLfA2wQFBWnQoEEOy44dO6Y1a9ZYHBEAAJBItgAAAAtw8RyAvyDZAsAbPPHEEypdurTDsilTplgcDQAAkEi2AAAAL8RdxAC8VUklWzjulRz+tvBHlStX1iOPPOKwbOHChbpw4YLFEQEAAJItAAAAAOAiRrYA8BaDBw92uDwtLU2zZs2yOBoAAECyBQAAeJ3i3oXMdGUAXOHOsYJkC+CffPEcomPHjqpdu7bDsujoaIujAQAAJFsAAIDXycrKsjsEAHCIZAsAbxESEqIBAwY4LIuLi1NcXJy1AQGwhC8mh4FAQbIFAACUuKKOVFm7dm0JRQIA7klPT7c7BBQRF6Xgz5wlWyRGtwAAYDWSLQAAAADgIka2AP7Jk0k5KxN89erVU/v27R2WxcbGKjU11bJYAADepbjTc6P4SLYAAIASx13FADzNruMKyRYA3mbQoEEOlyckJGjRokXWBgNAktSiRQu7QwBgA5ItAIqNDDkAAPBF7pzDkGwB4G169OihyMhIh2VMJQbYo3z58naHAMAGJFsAAECJs+oOdJLAAEoayRYA3iYiIkJ9+/Z1WLZq1SodO3bM4ogAAAhMJFsAAAAAwEUkWwD/5OtTnjqbSswwDE2dOtXaYAAACFAkWwAAQIljxAmKwlcueJ05c8buEGADki0AvNHtt9+uZs2aOSyLiYlRdna2xREBABB4SLYAAADAq5w+fdruEFzSsGFDjRkzRmlpaXaHAguVVLLlyJEjJdIu3OcrCWAEtqCgIKejW44dO6Y1a9ZYHBEQ2PjugDdIT0+3O4SAQ7IFAFBsV65csTsE+Ah+bKAotmzZYncILrl8+bLeeOMNNWnSRIsWLWIElw9x55hUUj9ak5KSSqRdAIHjiSeeUOnSpR2WRUdHWxwNAMBuX3zxhd0hBBySLQCAYlu8eLHdIQCA7Q4dOqTu3burU6dO2rlzp93hoISV1MgWknXei30DX1G5cmU98sgjDssWLFighIQEiyPyPxwPAPiSrKwsu0MIOCRbAADFNnnyZJfrMrIBgL9bvXq1mjdvrqFDh+r8+fN2h4MSMn/+/BJplwt4ADxh8ODBDpenpaVp1qxZFkcDBC6+14HARLIFAACUOH5sIFBkZ2drwoQJatCggT777DMepl6C7EjiX7hwocTa5jgJwBM6duyo2rVrOyybMmWKxdEAABBYSLYAAAAAHpaYmKiXX35ZTZs21XfffWd3OPCQ2NjYEmubZAtgL38ZhR0SEqIBAwY4LIuLi1NcXJy1AQEAEEBItgAAAL/hLxdK4D/27dunBx54QPfff7/27t1rdzhw01dffWV3CABQKGfJFkmKjo62LhAAAAIMyRYAAACgmG644QaX6i1fvlxNmzbV3/72Nx5QDAAoUfXq1VO7du0clsXGxio1NdXiiAAACAwkWwAAQImzasQJ0/DAapMnT9a8efNcSrpkZWXp3//+t2666SZ9/vnnyszMLPkA4TOSkpLsDgEIaP42Onbw4MEOlyckJGjRokXWBgMAQIAg2QIAAAAUU1BQkHr27Km9e/fqww8/VNmyZQtd58KFC3rxxRfVvHlzrVq1yoIo/ZO/JVfnzp1rdwgA/EiPHj0UGRnpsIypxAAAKBkkWwAAxfbDDz/YHQIAeIXw8HC9+eab2r9/v/r37+/SOrt371anTp30yCOP6MCBAyUcIbzdl19+qaysLLvD8Ev+NmIBcEVERIT69u3rsGzVqlU6duyYxREBAOD/SLYAAIqNi0IAkFeNGjU0depU/fzzz2rTpo1L6yxZskRNmjTR8OHDdfHixRKOEO4oyYv2aWlpWr58eYm1DyDwDBo0yOFywzA0depUa4MBACAAkGwBUGz+Nn0HiqaoiRbuKg1s7H8EmlatWunHH3/UrFmzVKtWrULrZ2RkaOzYsWrYsCEjHCzgrcekSZMm2R0CELA8eVzwlmPM7bffrmbNmjksi4mJUXZ2tsURAYGjJI8D3nKMAZAfyRYAQLEw5Q0AFCwoKEh9+vTRvn37NHLkSEVERBS6ztmzZ/Xss8/qjjvu0Pr16y2I0nf544WGb7/9Vr///rvdYfgdbhBCoAoKCnI6uuXYsWNas2aNxREBAODfSLYAAIpl27ZtdocAAD6hTJky+sc//qF9+/apT58+Lq2zfft2tW3bVo8++qiOHDlSwhHCW2RnZ2vy5Ml2hwHAjzzxxBMqXbq0w7Lo6GiLowEAwL+RbAEAFAvJFgAomtq1a2vWrFn66aefdMcdd7i0zrx589SoUSO99dZbunLlSglHiMJYMZpm8uTJyszMLPHtAAgMlStX1iOPPOKwbMGCBUpISLA4IiAwMKoSCEwkWwAAxUKyBQCKp02bNtq8ebOmTp2q6tWrF1o/LS1NH330kRo2bKhp06Yxx76fO3XqlL755hu7wwDgR5xNJZaWlqZZs2ZZHA0AAP6LZAsAoMgMwyDZAgAq/kiH4OBg9e/fX/v379ebb76psLCwQtc5ffq0BgwYoNatW2vDhg3F2i58w8SJE+0OAYAf6dSpk2rVquWwbMqUKRZHAwCA/yLZAgAosiNHjujixYt2hwEfYtUweobrw9eUK1dOH374ofbu3atevXq5tM6WLVv0pz/9SX379uVh6haz6hizYsUKHT582JJtBQIrpn8DvFlISIgGDBjgsCwuLk5xcXHWBgQAgJ8i2QIAKLKtW7faHQIA+JUbb7xRX3/9tdatW6fbbrvNpXVmz56tm2++We+9956Sk5NLOEJIsmwKN8Mw9OWXX1qyrUBw7tw5u0OAD/D3pNzAgQOdlkVHR1sYCQDASjwL0FokWwAARcYUYgBQMu677z5t3bpVX3zxhapWrVpo/ZSUFI0cOVK33HKLZs+ezeiuEpaRkWHZtqKjo5Wenm7Z9vzZypUr7Q4BsF29evXUrl07h2WxsbFKTU21OCIAgBX4fWAtki0AgCIj2QJvVdBdqb/++quFkQDFFxISomeeeUYHDhzQa6+9ptDQ0ELX+f3339W3b1/9+c9/1pYtWyyIMjBZmWw5e/asFi1aZNn2/NnQoUPtDgHwCoMHD3a4PCEhQYsXL7Y4GgAA/A/JFgBAkRiGQbIFRWbV1ByNGzd2WvbBBx9YEgPgKZGRkfrnP/+p3bt36+GHH3ZpnQ0bNujOO+/UgAEDdOrUqRKO0F52TPljZbJFkiZNmmTp9oBA5u/TiElSjx49FBkZ6bBsypQpFkcDAID/IdkCACiSEydO6Pz583aHAThUt25dp2Xz58/X7t27LYwG8IwGDRpo8eLFWrFihZo0aeLSOtOmTVPDhg310UcfMTWMA8W9qGp1smXNmjXav3+/pdtEfps2bbI7BMAjIiIi1LdvX4dlq1at0rFjxyyOCAAA/0KyBQBQJIxqgTcr6AKqYRj68MMPLYwG8KxOnTpp+/bt+vzzz1WpUqVC6yclJemtt95So0aNNG/ePOZr9gCrky2S9MUXX1i+TeT18ccf2x0C4DGDBg1yuNwwDE2dOtXaYAA/Fgij5QDkR7IFAFAkJFvgy+bMmaN9+/bZHQZQbKVKldLQoUN14MABvfTSSwoJCSl0naNHj+rRRx9Vu3bttH379pIP0o+VZLLlhhtucLg8JiaG0Uk2u3Dhgt0hwAKBcmH09ttvV7NmzRyWxcTEKDs72+KIAADwHyRbAABFsnXrVrtDAIotOztbH330kd1hwI/YdXGuUqVKGj9+vHbu3Km//OUvLq2zfv16tWzZUs8++6zOnj1bwhF6t+KO8inJZMuQIUMcLr9w4YLmz59fYtsFEFiCgoKcjm45duyY1qxZY3FEAAD4D5ItAIAiYWQLfF1sbKwOHTpkdxiARzRq1EjLli3Tt99+q5tvvrnQ+oZh6Msvv1SDBg00duxYpaenWxCl/yjJZEvv3r1VoUIFh2UTJ04sse0CuCqQplrs16+fQkNDHZZFR0dbHA3gnwLpmALg/yHZAqDYOHkIPKdPn9bp06ftDgM+yKq7/105LmVlZWn06NEWRANYp2vXrtq5c6c+/fRTRUZGFlr/0qVLGj58uJo0aaIlS5bwne6izMzMEmu7bNmyevLJJx2W/fjjj9q9e3eJbRtAYKlSpYq6devmsGzBggVKSEiwNiAAAPwEyRYAgMvi4uLsDgHwiGnTpunYsWN2hwF4VGhoqIYNG6aDBw/q+eefV3Bw4af6Bw8e1COPPKLOnTtr165dFkTp20pyZIvkfCoxSZo0aVKJbhsIdJ68McQXnv/ibCqxtLQ0zZo1y+JoAADwDyRbAAAuYwox+IvMzEx9/PHHdocBlIgqVarof//7n7Zv36727du7tM6qVavUvHlzvfjii4qPjy/hCH1XSSZbgoKC1LRpU7Vp08Zh+fTp05WcnFxi2wcQWDp16qRatWo5LGMqMQAAiodkCwDAZe4kW3zhDj8ElujoaJ04ccLuMIAS07RpU61atUoLFy5U/fr1C62flZWlzz//XA0aNNC///3vEh/F4S47vleysrJKfBvPPfecw+UXL17UnDlzSnz7AAJDSEiIBgwY4LBs27Zt2r59u6XxAADgD0i2AABcxsgW+JP09HSNGTPG7jCAEhUUFKRu3bpp9+7d+uSTT1S+fPlC10lISNDf/vY33XbbbVq+fLkFUSK3Xr16qWLFig7LJk6caHE0QOAIxBuDBg4c6LSM0S2A9wrE4xXgK0i2AABcEh8fzzMu4He++OILnT592u4wgBIXFham119/Xfv379fgwYNd+pG+d+9e3X///XrggQe0b98+C6K0jjdfpIiIiHB6t/nPP//M89MAeEy9evXUrl07h2UzZ85UamqqxREBAODbSLYAAFzCqBb4o7S0NI0dO9buMODDvPmivSPXX3+9Jk+erF9++UX33HOPS+t89913uvXWW/Xyyy8rISGhhCOEJD377LNOyyZNmmRhJAD83eDBgx0uT0hI0OLFiy2OxvsZhmF3CAAAL0ayBQDgEpItcIfdF6QrVaqkGjVqOCybMGGCzp49a3FEgL1atmyp9evXa+7cuapbt26h9TMzM/XZZ5+pQYMGmjhxojIzMy2IMnDdcsstatu2rcOy2NhYXb582dqAAPitHj16KDIy0mHZlClTLI4GAADfRrIFAOASki3wZeHh4XrjjTcclqWkpOhf//qXxREB9gsKCtKjjz6qvXv36v3331eZMmUKXSc+Pl7PP/+8WrZsqTVr1lgQZeC4Nik9ZMgQh/WuXLmiWbNmWRESEFDsvjHELhEREerbt6/DslWrVjGNMFBMgXpMAQIdyRYAgEtItsAd3jDlwjPPPKNq1ao5LPvvf/+r+Ph4iyMCvENERITefvtt7d+/X08++aRL6+zcuVMdOnRQ9+7ddejQoRKO0Hs888wzlm2re/fuqlq1qsOySZMmecVxFYBjvvb/c9CgQQ6XG4ahqVOnWhsMAAA+jGQLAKBQFy9e1MGDB+0OAz7MqosOBW0nIiJCw4cPd1iWlJSkzz77rISiAnxDzZo1NX36dG3atEmtW7d2aZ1FixapcePGeuONN3Tp0qUSjtB+LVu2LLG2rz1+hYWFaeDAgQ7rxsXFacuWLSUWC4DAcvvtt6tp06YOy2JiYpSdnW1xRIDv87WkKwDPINkCACjU9u3b7Q4BcEvOMP7nnntOVapUcVjn3//+txITEy2MCvBOd911l3766SfNnDlTNWvWLLR+enq6xowZo4YNG2rKlCnKysqyIEp7hISEWLq9Z5991mnZpEmTLIwE8H+BPOVPUFCQBg8e7LDs2LFjWrt2rcURAQDgm0i2AAAKxRRi8Bdly5bVq6++6rDs0qVL+ve//21xRIB3Cg4OVr9+/bRv3z69++67Cg8PL3SdP/74Q08//bRatWqlH374wYIo/V/9+vXVuXNnh2WzZ88mQQx4UKDfhd6vXz+FhoY6LJsyZYrF0QAAPCWQbyawA8kWAEChtm7d6nYbfMEHNm/a/y+88IIqVarksOzTTz8NiKmQAFeVLVtW7733nn777Tf17t3bpXXi4uJ07733qnfv3iX6YGVvOq6UpCFDhjhcnpKSopkzZ1ocDQB/VaVKFXXr1s1h2YIFC5SQkGBtQAAAjwj0mwmsRrIFAFAoRrbAXd50UbR8+fIaNmyYw7LExER9/vnn1gYE+IC6devqq6++0g8//KDbb7/dpXXmzp2rW265Re+8846uXLlSwhH6PmfHyYceekjVq1d3WDZx4kR+QAPwmEGDBjlcnpaWplmzZlkcDQAAvodkCwCgQElJSfrtt9/sDgPwqL/+9a+KjIx0WDZu3DguDMNl3pRItMKf//xn/fzzz4qOjtb1119faP3U1FR98MEHuvnmmzVjxgweslwMoaGhTp+lsHv3bm3YsMHiiAD/FGjHc0c6deqkWrVqOSyLjo62OBoAAHwPyRYAxcadlIHh119/ZV/D70RFRemll15yWBYfH68JEyZYHBHgO4KDgzVw4EDt379fI0aMUOnSpQtd59SpU3rqqafUpk0bbdq0yYIoC+ZrF1WfeeYZBQc7/uk2ceJEi6MBUBhfO8bkCAkJ0YABAxyWbdu2Tdu3b7c0HgAAfA3JFgBAgZxNIVahQgWLIwE8a9iwYSpXrpzDsrFjxyo5OdniiADfUr58eY0ePVp79+5Vjx49XFpn8+bNuvvuu/XEE0/oxIkTJRyh59l180GdOnV0//33Oyz7+uuvFR8fb3FEAAriyzcqDRw40GkZo1sAACgYyRYAQIGcJVtatGhhcSSAZ1WqVEkvvviiw7KzZ8/qiy++sDgiwDfVq1dP8+fP15o1a9SsWTOX1omNjdXNN9+sUaNGkdh00XPPPedweVpamqZNm2ZxNID/8dXRKJ5Wr149tWvXzmHZzJkzlZqaanFEAAB3XLx40e4QAgrJFgBAgZwlW1q2bGlxJIDnvfLKKypTpozDsjFjxnBBASiCdu3aadu2bZo4caKqVKlSaP3k5GT94x//UKNGjTRnzhyfvhPcEwq70Hv//ferdu3aDssmTZoU8H8/AJ4zaNAgh8sTEhK0ePFii6MBfBMJXHgLbsqxFskWAIBTqamp2r17t8Myki3wRkW92Fi1alU9//zzDstOnz6tKVOmeCIsIGCEhIRoyJAhOnDggF555RWVKlWq0HWOHz+uxx9/XPfee6+2bt1qQZS+KSQkRM8884zDsv3792vdunXWBgTAb/Xs2VORkZEOy5hKDAB8y+nTp+0OIaCQbAEAOLVz505lZmY6LLv99tstjgYovoLuLHvttdcUHh7usOzjjz9WWlpaSYUF+K2oqCiNGzdOu3fv1oMPPujSOj/++KNatWqlQYMG6cyZMyUcYfEcOnTI1u0PHjxYISEhDssmTZpkcTSAf+Eu9P8nIiJCffr0cVi2cuVKHTt2zOKIAADwDSRbAABOOZtCrEyZMmrYsKHF0QAl4/rrr9ezzz7rsOzEiRMMuwbc0LBhQy1dulT/93//p8aNGxda3zAMxcTEqEGDBvr444+9biq/WbNm2br9GjVq6OGHH3ZYtmDBAv3xxx8WRwTAXw0ePNjhcsMwODcCXMD0nkBgItkCAHDKWbKlefPmTu+sBXzR66+/rtKlSzssGz16tDIyMiyOCPAvnTt31vbt2/Wf//xHFStWLLT+lStX9Pe//12NGzfWwoULveaCxYkTJ0qsbVf7OGTIEIfLMzIyFBMT48mQAASw22+/XU2bNnVYFhMTo+zsbIsjAgDA+5FsAQA45SzZwvNa4G9q1qypp59+2mHZ0aNHNXPmTIsjgq9g2hnXhYaG6sUXX9SBAwf04osvupS0P3LkiHr06KEOHTpox44dFkTp/Tp16qQbb7zRYdkXX3zBBVAAHhEUFOR0dMvRo0e1du1aiyMCkIPzTxSFt9y0FChItgAAHMrIyHB6YYtkC/zRG2+8odDQUIdlH330kdPnFwEomsqVK+s///mPfv31V3Xu3NmlddauXasWLVroueee07lz50o4Qnu4euEkODjY6dSHR44c0cqVKz0ZFoBi8JcLW/369XN6bjRlyhSLowEAwPuRbAEAOLRnzx6lp6c7LCPZAn9Up04dDRgwwGHZwYMH9dVXX1kbEODnmjRpouXLl2vp0qVq0KBBofWzs7M1adIkNWjQQP/617+cfkcFgoEDBzq9ADpp0iSLowHgr6pUqaJu3bo5LFuwYIESEhKsDQgAAC9HsgUA4JCzKcTCwsJcesgxkJuvDHUfMWKE06mNPvzwQ2VlZVkcEeDfgoKC9OCDD2rXrl0aN26cIiMjC13n4sWLevXVV7VmzRq3tuvLqlWrpu7duzssW7JkiU6dOmVxRAD81aBBgxwuT0tL06xZsyyOBgAA70ayBQDg0NatWx0ub9asmdO7aQFfV69ePT355JMOy3777TfNmzfP4oiAwFC6dGm98sorOnDggIYMGaLgYH6mFOa5555zuDwrK4vpfYBi8PUkbEnp1KmTatWq5bAsOjra4mgAAPBu/IoBADjkbGQLU4ihOHxp7vI333zT6YXe999/n4dPAyWoatWqmjhxorZt26a2bduW2HZ86ZjkTNu2bdWwYUOHZV9++SUj8QB4REhIiNNpVrdt26bt27dbGg8AoGj84bzXl5BsAQDkk5WV5fSHE8kW+LsGDRqoT58+Dst2796tRYsWWRsQEIBuu+02rVmzRvPnz9eNN95odzheKSgoSEOGDHFY9vvvv2vZsmUWRwQgh7+Nkhk4cKDTMka3AADw/5BsAQDks2/fPqWkpDgsI9kCb+apu3beeustpxdK3n//fe4OAiwQFBSkHj16aM+ePRo9erTKlStnd0glqjgXZ/v376+wsDCHZRMnTnQ3JACQdHWa1Xbt2jksmzlzplJTUy2OCPB+/pZ0BeAaki0Aio2Ljf7L2RRipUqV0q233lqsNjnZhJ2K+vlr1KiRHn30UYdl27dv1zfffOOJsAC4IDw8XCNGjND+/fs1cOBAvk9yqVy5stNj1Xfffadjx45ZHBHguzx5bPHH30mDBg1yuDwhIUGLFy+2OBoAALwTyRYAQD7Oki1NmjRReHi4xdEA9nj77bedlo0aNcovL6Sg6Ljwb53q1asrOjpaW7Zs0Z/+9Ce7w/Eazz33nMPlhmFo8uTJFkcDwF/17NlTkZGRDsuYSgwAgKtItgAA8nGWbGEKMRSXL16Qbtq0qbp37+6w7JdfftH//d//WRwRvJEvfrZ93e23364ffvjB7jC8Rps2bdSkSROHZVOmTFFGRobFEQHwRxEREU6fabdy5UpG0gHX4MYseAs+i9Yi2QIAyCM7O1txcXEOy0i2INAwugWFIdliD3/8uxf3eBIUFOR0dMvp06e1dOlSd8ICAoY/Hlc8bfDgwQ6XG4ahadOmWRwNAADeh2QLACCPQ4cO6dKlSw7Lbr/9doujAezVsmVLPfjggw7LNm7cqDVr1lgcEbwNF+fgDZ544glFREQ4LJs0aZLF0QDwV7fffruaNm3qsCwmJkbZ2dkWRwQAgHch2QIAyMPZFGLBwcFq1qyZxdHAX/jyCJB33nnHadmoUaMsjATeiGSLb/LG/eZOTFFRUU6n91mxYoUOHTpU7LYBIEdQUJDT0S1Hjx7V2rVrLY7Ier58TgsAKHkkWzzs6NGj+vLLL/XEE0/otttuU8WKFRUaGqpKlSqpWbNmGjJkiNavX+9ye0FBQUX6V6pUqSLFe/z4cY0cOVK33367qlatqoiICNWvX1+9evXSwoULi3UiceXKFU2YMEHt2rVTrVq1FBYWplq1aql9+/aaOHGirly5UuQ2DcPQwoUL1atXL9WvX18RERGqWrWq7rjjDr333ns6fvx4kdsE4JizZMstt9yismXLWhwNYL8777xTXbp0cVj2/fffF+l7Hf7HGy/aIzANGTLEadmXX35pYSQA/Fm/fv0UGhrqsCw6OtriaAAA8C4kWzwkLi5Od911l2688UY9++yzio2N1Y4dO5SYmKjMzEwlJCRo586d+uKLL9S2bVu1a9fO9gTBlClT1LhxY7333nvatm2bzp8/r9TUVB0+fFjz589Xjx491LlzZ505c8blNjdu3KhmzZpp6NChWrdunU6ePKn09HSdPHlSa9eu1fPPP6/bbrtNmzdvdrnNU6dOqWPHjurRo4fmz5+vw4cPKzU1VefPn9fWrVs1cuRINWnSRFOnTi3GXwHAtZwlW3heCwLZu+++67Ts/ffftzASeBuSLfAWrVq1UosWLRyWRUdHKz093eKIAPijKlWq6JFHHnFYNn/+fCUkJFgcEQAA3qNowyDg1L59+/Tzzz/nWdawYUPdeuutqlKlihITE7VhwwadOHFCkrRu3Trdfffd+uGHH1SvXj2XtvHCCy8UWickJMSltqKjo/X000+b76OiotS+fXtFRkZq165d2rJliyRp1apV6tKli3766SeVK1euwDZ//fVXde7c2Ry5Ehoaqvbt26tWrVr6/ffftWbNGmVmZurw4cPq3LmzfvrpJ916660Ftnnp0iV16dJFu3btMpfdeeedatKkiS5evKg1a9YoMTFRV65c0cCBAxUcHKynnnrKpb8BgPwMwyDZAjjQpk0btW/f3uEzWlavXq0NGzaoTZs2NkQGAFcFBQVpyJAheu655/KVnTt3TgsXLlTv3r1tiAwIPP4+1dTgwYM1b968fMvT0tI0e/ZsDR061IaoAACwH8kWD7vpppv09NNP64knnlDNmjXzlGVnZ2vq1Kn661//quTkZJ06dUr9+vXThg0bXLor8r///a9HYty3b1+eH2H9+vXTpEmT8kwPtGbNGvXq1UsJCQnasWOHXnrppQKHBGdkZKhnz55mouW2227TokWLdMMNN5h1jh49qm7duunXX3/VpUuX1LNnT+3evbvAqc9efPFFM9FSqVIlff3112rfvr1ZnpSUpCFDhig2NlaS9Mwzz6hNmza66aabivZHASDp6tSCFy5ccFjmbrKFu78Dm1X7vyQvbrz77rsOky3S1dEty5YtK7FtA4Ar+vbtq9dee83htL0TJ04k2QLAIzp16qRatWqZN5PmNmXKFJItAICAxTRiHlK9enXFxMTot99+0xtvvJEv0SJdfbj0oEGDNHPmTHPZpk2btGLFCitD1TvvvKOMjAxJ0p/+9CdNnz4933MY2rdvbyYwJGn69Onau3ev0za//PJL88GbFStW1PLly/MkWiTphhtu0LJly1SxYkVJ0v79+wtM4OzatStPDLNmzcqTaJGksmXLavr06ebdxOnp6QVO9QKgYM5GtUhS8+bNrQsE8DBPJHvuu+8+3XPPPQ7Lli9fnm+EKwBYrXz58urXr5/DsnXr1um3336zOCLAd3BjkOtCQkI0YMAAh2Xbtm3T9u3bLY0HAABvQbLFQ+677z4NGDDApWm8unfvrjvvvNN8/+2335ZkaHn88ccfmj9/vvl+zJgxCg52/DG4//771bFjR0lSVlaWJk6c6LTdzz//3Hz92muv6frrr3dYr3r16nr11VcdrnetCRMmKDs7W9LVO2ecPZw4ODhYY8aMMd/PnTtX58+fd9ouAOe2bt3qcHmDBg0UGRlpcTTwJ/5yAaOghP4HH3xgYSQA/I2njpNDhgxxWvbFF194ZBsAMHDgQKdlBd1UCQQKf/n9A6BoSLbY5E9/+pP5+ujRo5Ztd8mSJWYCo2HDhoXOL5/7bpVFixY5rHPw4EHt2bPH4TqFtbljxw4dPnw4Xx3DMLRkyRLzfUEnctLVv2fO1GFZWVl51gXgOp7XAhSsQ4cOat26tcOypUuXKi4uzuKIACCvFi1a5LmxK7epU6cqJSXF4oiAwBMIF1nr1aundu3aOSybOXOmUlNTLY4ICByBcIwBfBXJFpvkPjBmZWVZtt21a9ear9u2bVto/dwnT8ePH9fBgwfz1ck9f33Dhg1Vo0aNAtusWbOmGjRo4HD9HAcOHMgz/2tRY3U2pz4A5wzDcDqyhWQLcFVQUBCjWwB4vdzPZ8wtISHB4UOtAaA4Bg0a5HB5QkKCFi9ebHE0AABHSvK5psiPZItNdu7cab6uXbu2S+t8//33Gjt2rIYPH64RI0Zo7NixWrlypZKSklzebu7nrrhy8bRGjRqqVq2aw/WL2+a19Qpr8/rrr1f16tXdbhNAwU6fPq2zZ886LCPZAnf50wneX/7yF91xxx0OyxYsWJDnOx4A7NC7d2+n038WNDUwEMi4U7zoevbs6fRYw1RiCHT+9PsHgOtIttjg+PHjeUZe5DwXpTD33Xefhg8frrFjx+qTTz7R8OHD1blzZ1133XX661//6vQiaW779u0zX9etW9el7dapU8d87eihmr7SJoCCOZtCTLo6JQngDn/6sREUFKR33nnHafmHH35oYTQAkF+ZMmX01FNPOSzbsGEDSWEAHhEREaE+ffo4LFu5cqWOHTtmcUQAANiLZIsNXnnlFXPqsDp16uihhx5yq73k5GT997//VfPmzbVp0yan9VJSUvLM0Zx7xEpBcj/s/sKFC/nK4+Pjva7N5ORkpaWlubQeis+fLp7CebKlbt26qly5ssXRAN7toYce0m233eawbO7cuYywBLycN97BXqFCBY+2N2TIEKdlkyZN8ui2AOQVSL+TBg8e7HC5YRiaNm2axdEAAGAvki0WmzZtmubPn2++Hz16tMLCwpzWDwsL02OPPaapU6dq165dunTpktLT03XmzBl988036tWrl/lj8fTp03rggQe0f/9+h21duXIlz/uIiAiXYs5d79o2rl3mLW06a7c4wsPDVa5cOUlXn6+TmJhonjzn7A/pajIrZ0q3zMxMJSYmmm1cvHhRGRkZkq4mgpKTkyVJGRkZunjxolkvMTFRmZmZkqSkpCQzOZaenq5Lly5JunrSmpiYaCbsrly5Yj58MC0tTZcvX5YkZWdnKzExUdnZ2ZKky5cvmwmo1NRU8+9zbZ8qVKig0qVLS7r6Ny1btqwkqVSpUoqKijJjjYyM9Jk++eN+Kok+5TzYu2zZsub/p9KlS+uuu+5y2qfw8HBJV49V5cuXlyQFBwcrKipKwcFXv2LKly9vHufYT4Hbp5zjSmhoaJ7pJqKiolSqVClJ+T97xelTRkaGw89e6dKlPdqnlJQU/f3vf3fYp8jISI0ePdon95M3ffZCQkIUFRVlnue4+v1UlD45++zlXPQOCgpSVFSUQkJCJEnlypVzeNwL5P1kZ5+Kup+u/X4qTp8KOzcKDQ2VdHVkSZkyZSS5ftzLysry6H6qX7++2rdvLyn//6eFCxcqISHBkv3kDZ89T+wnb+uTP+4nu/uUcyxxdB6R+zehq99P3tAnK/ZTs2bN1LRpU4f/n2JiYswYfKlPruyngs5hi/P95A198sf9ZGefchTlGour3085sbKf/KNPRT2HLer3k2EYAbef7ESyxUK//PJLnodV9unTR3379i1wnZMnT2rOnDnq37+/mjRpovLlyys0NFTVqlXTAw88oK+//lpLliwx/zNeuHBBQ4cOddhWzoc7R87BvjC5k0G5R8Y4atdb2nTWbnG0bt1avXr1kiSdO3dO48ePNw8A0dHR2rNnjyRp/fr1Wrp0qSTpxIkTGj9+vNnGhAkTdOjQIUnSihUrtGLFCknSoUOHNGHCBLPe+PHjdeLECUnS0qVLtX79eknSnj17zDlv09LSNH78eJ07d06SNG/ePHNEU1xcnGJjYyVdPQCNHz/ePODFxsaaF9M3bdpkPhz12j4NGjRIjRs3lnR16rqckVe1atXSsGHDzFiff/55HTlyxCf65I/7qST6dPLkSUlX79i/7777JEmNGzc2Pw+O+tS6dWtJV6cZ69evn6SrX+jDhg0zf2T069fPnIaM/RS4fWratKmkqxf/nn/+ebPesGHDVKtWLUn5P3vF6dPJkycdfvaaNGni8T6VLl1aTZo0cdinH3/8UQcOHPC5/eRNn72qVatq2LBh5ve7q99PRemTs89ezgN/w8LCNGzYMFWtWlWS1KtXL4fHvUDeT3b2qaj76drvp+L0qbBzo/r160uSOnfurM6dO0ty/bhXEvspJ4Zr/z899thjmjFjhiX7yRs+e57YT97WJ3/cT3b3KTQ01Ok5bO7fhK5+P3lDn6zYT4cPH9agQYMc/n86evSo1q5d63N9cmU/FXQOW5zvJ2/okz/uJzv7lJOMK8o1Fle/n3JiZT/5R5+Keg5bnO+nQNtPtjJgicOHDxvXX3+9IcmQZDRr1sy4ePGix9r/4osvzLYlGb/88ku+OmfPns1TZ+/evS61/dhjj5nrvPjii/nKGzdubJZPmDDBpTb/97//mevceuut+cqHDh1qlvfu3dulNvfs2ZOnf+fPn3dpPWd27dplSDLCw8ONcuXKGbt27TIyMzONhIQEIzs72zAMw7h48aKRlpZmGIZhJCcnG1euXDEMwzAyMjKMhIQEs63ExEQjPT3dMAzDSEpKMpKSkgzDMIz09HQjMTHRrJeQkGBkZGQYhmEYV65cMZKTkw3DMIy0tDTz85KdnW0kJCQYmZmZhmEYxuXLl42UlBTDMAwjNTXVuHTpkmEYhpGVlWUkJCQYWVlZhmEYxqVLl4zU1FTDMAwjJSXFuHz5smEYRr4+VahQwShdurQhyYiIiDDKli1rSDJKlSplREVFmX/fyMhIsw1v75M/7idP9+ngwYNGqVKlDElG2bJljYiICEOSUbp0aWPRokVO+xQeHm5IMsLCwozy5csbkozg4GAjKirKCA4ONiQZ5cuXN8LCwoxXXnmF/RTAfbrjjjsMSUZoaKgRGRlpHkuioqKcfvaK06cvv/wy32dPknHTTTeVyH6aPXu20z4NHDjQ5/aTt3z2JBkhISFGVFSUERQUZEgq9PupOH1y9tmrUKGCIckICgoyoqKijJCQEEOSUa5cuXzHvc2bNwfsfrK7T0XZT9d+Px05cqRYfSrs3Cg0NNSQZJQpU8YoU6ZMkY57JbGfzp07Z1SqVMnh/6fWrVsHzGfPE/vJ2/rkj/vJ7j716NHD4Tls7t+Ern4/nT9/3iv6ZNV+OnfunFGhQgWH/5/69u3rk31ytp9++umnQs9hi/P95G//n+zeT97Qp3vvvdelc9jifD/t37+f/eRHfSrKOWxxvp9eeumlgNlPOddyc/7t2rXLsBrJFgucOnXKqF+/vrmj69WrZ5w6dcqj28jKyjLq1KljbuP999/PVyc5OTnPB27btm0utf3QQw+Z64wYMSJf+Z133mmW/+tf/3KpzXHjxpnr5PzQy+311183yx9++GGX2ty6dWue/uX8Jy0ub/gPaofcfS7sn7t/Y3iP5cuXO93PZ86ccbpeUT4vr7zyioU9grdp1qxZkT4vUvFOUWJiYhy2VbduXc926P+XmZlp3HzzzQ63GRISYhw+fLhEtuvvivpZKe7npTjbufbf5s2bPdx7uMqd/XbkyBHLt1kSn2FXvPrqq063uXXr1hLbrjfx5v0D79GjRw+P/X9298Y/X9SrVy+Hf4uwsDDjwoULdofnMTnJFl/5DoB96tWrV2LnDIcOHbK7e/Cgkjy/lGS89NJLdnfRMt5wLZdpxEpYfHy8OnXqZA7Hql69ulatWqXq1at7dDvBwcHmnMySHD6YNyIiIs9zTf744w+X2j5z5oz5ulKlSvnKcz8421vaLFOmTIHPwgGQ17Zt2xwur1GjhqpVq2ZxNIDvCAkJ0VtvveWwLCsrSx9//LHFEQFAXs8++6zTskmTJlkYCQB/NnjwYIfL09LS/j/27js8imr/H/h700kHEiCAoYTeIXSQXgSlSEClSEmkiOWiV9GLXq6K5cLlXi9eFYLSpCNRiiAEpAhSlFBCB4EQQg/pvc3vj/yy34TMJJvN7pnZ2ffrefI8yXxmz36GHWZn5jPnHKxfv15wNkTqu379utopEJEKWGyxopSUFAwePBjnz58HAPj5+WHv3r1o0KCBVd6veAEnPj5edp2mTZsaf79586ZJ7cbGxhp/b9asmc22SUTKlIotHTp0EJwJke0ZO3ascXzlx61YsaLE9xPpT9GkjkRa1aRJkxIPZRW3du1a41jZRESVMXDgQOMcJo9btmyZ4GyIiIjUwWKLlaSnp2Po0KGIiooCAPj4+GDXrl3GiYms9Z5FPDw8ZNdp3ry58feiiYfKcufOnRI9S4q/3tw2gZI3dstr8969eyV6rZjbJhEpY7GFrE2SJLVTsBonJyfMmTNHNpabm4v58+cLzohEys/PVzsFonJNnz5ddnl6ejrWrVsnOBsi/dPzeY8SR0dHTJ48WTZ28uRJnD59Wmg+REREamCxxQqysrIwfPhw/PbbbwAKh7TasWMHgoODrfq+xQsdtWvXll2nb9++xt8PHDhQbpsHDx40/h4YGIhGjRqV2ebly5dx9+7dMtu8c+cOrl69avxb7km7xo0bl3gqpqK5Kj29R0SlJSYmKnZxZrGFyDQvvvgi6tWrJxv79ttvcfv2bcEZERH9n5EjR6JGjRqysSVLltjljWGixxkMBrVTsHlTpkxRjC1fvlxgJkREVITneWKx2GJhubm5CAkJwb59+wAArq6u2Lp1K3r06GHV97106RKOHDli/LtPnz6y6w0fPhwODoUf++XLl3Hs2LEy2125cqXx9xEjRsiu07hx4xI9dlatWlVmm8XjrVu3RsOGDUutYzAYMHz4cNk85Bw9ehRXrlwBUPhEzbBhw8pcn4j+T1lPmbHYQpai9xsYzs7O+Nvf/iYby8nJwb/+9S/BGZEoet+3qaRevXqpnYJZXFxcEBoaKhs7c+YMfv/9d8EZEZEeNWzYsMTDmMWtWbMGWVlZgjMiIiISi8UWC8rPz8e4ceOwc+dOAIXDimzatAkDBgwwq720tDST1svIyMDkyZONw1j4+fnhqaeekl23Zs2aGDVqlPHv2bNnK1Y4IyMjERkZCaCwgDFjxgzFHGbOnGn8feHChYqT2t+7dw8LFy40/v3KK68otjljxgxjYWj37t3Ys2eP7HoFBQWYPXu28e8xY8bA399fsV0iKklpCDE/Pz/FcZeJKsoebkhPnjxZ8f9MeHi4SUNiEpG2de3aVe0UzDZ16lTFY/GSJUsEZ0NEeqVU2E1MTMS2bdsEZ0NERPZwLa4lLLZYiCRJCAsLw+bNmwEADg4OWL16dYneGRVVv359zJ07F5cuXVJc57fffkO3bt1w/Phx47J58+bB09NT8TXz5s2Ds7MzAODQoUOYNGlSifleAGD//v0YN26c8e+JEyeWOd/MtGnTjJMDP3r0CEOGDCk1sf3NmzcxdOhQJCQkACicrDMsLEyxzdatW2P8+PHGv8eOHVtqOLH09HRMnjwZhw8fBlD41N68efMU2ySi0ormlnpccHAwv5SJKsDV1RXvvPOObCwrKwv//ve/BWdERJZWdA5tixo2bIhBgwbJxjZu3IjExETBGRFpiyXPe+35HDokJAQ+Pj6ysWXLlgnOhoiIOIyYWE5qJ6AXixcvLjE8VlBQEA4fPmwsApTnyy+/LLXs0aNHmDdvHubNm4fatWujTZs2qFmzJtzc3JCQkICoqKhS8yy88sorZfZAAYBmzZph8eLFeOmllwAAq1evxk8//YR+/frB29sbFy5cKFG8adOmDRYtWlRmm87OzoiIiEDPnj2RlpaGU6dOoXHjxujfvz/q1KmDuLg47Nu3D7m5uQAAb29vREREwMmp7F3wyy+/xMmTJ3H+/Hk8evQIffv2RZcuXdCiRQukpKRg3759JS4Mly5dKjuvDBEpU+rZYukhxOz5opPsx0svvYRPP/1Udv6yr7/+GrNnz2bvSyJSzYwZM7B79+5SyzMzM7F69Wq8/vrrKmRFRHpSpUoVjB07VrbH3J49exAbG4vAwEAVMiMiIrI+Flss5MGDByX+vnr1aolJ4MsjV2wp7s6dO7hz545ivGrVqliwYIGxgFKesLAwSJKEWbNmIT09HYmJiYiIiCi1Xv/+/bF69Wp4eXmV22bbtm0RGRmJ8ePH48aNG8jNzcWuXbtKrdewYUOsXbsWrVq1KrdNb29vREZG4sUXXzTOg3P8+PESxSAA8PT0xBdffIFJkyaV2yYR/Z/U1FTjfEeP43wtZIvUfmrHzc0Nb7/9Nt58881SsYyMDHz++ef49NNPVciMiCyh6HzUVj3zzDOoXbu27HVFeHg4XnvtNT4cQUSVFhoaKltskSQJK1euxNy5c1XIioiIyPo4jJiGXblyBatWrcKMGTPQrVs3NGrUCL6+vnBycoKvry+aNGmCsWPHYtmyZYiLizO50FLkpZdewoULFzB37ly0b98e1atXh6urK+rXr49Ro0bhhx9+wJ49exAQEGBym926dUN0dDS++uor9O7dGwEBAXBxcUFAQAB69+6Nr776CmfOnKnQeNe1a9fG3r17ERERgVGjRqF+/fpwdXVF9erV0b59e8ydOxfnz5/HlClTKrT9RFQ4Ka7SzWkWW0hPRN48nD59OmrUqCEb+/LLL43DaRKR7Tl69KjaKVSKk5OT4jXDhQsXTO6VT0RUlo4dO6J169aysRUrVqCgoEBwRkT6ovYDZkSkjD1bLOSDDz7ABx98YNE2GzdujMaNG2PixIkWbbe4wMBAfPjhh/jwww8t1qanpydmzpyJmTNnWqxNg8GAUaNGYdSoURZrk4iUhxDz8fFBgwYNBGdDpA/u7u546623MHv27FKx1NRULFq0yKLfu0REFfHSSy/h448/lr3ZGR4ejieffFKFrIjUZ8kHM+z9RqjBYEBoaCjeeOONUrGYmBjs378f/fv3VyEzIiIi62LPFiIym71fROhBWfO1cBgRsiR7O168/PLLqF69umxs0aJFSE5OFpwRWYu97dtk+5544gk8/fTTsrHvv/8e8fHxgjMiIj2aMGECnJ2dZWPLly8XnA2RvvBanUi7WGwhIrJjZRVbiMh8np6esvO2AEBycjL+97//Cc6IrOXcuXNqp0BUYdOnT5ddnpOTg1WrVgnOhoj0yM/PDyNGjJCNRUREIDExUXBGRERE1sdiCxGRncrMzMSFCxdkY8HBwYKzIb2zx6f/X331Vfj6+srGPv/8c6SmpopNiKwiLS1N7RSIKuypp55CYGCgbCw8PJzzKRCRRYSFhckuz87Oxvr16wVnQ0REZH0sthAR2ano6Gjk5+fLxtizhajyvL29MWvWLNlYQkICvv76a7EJERH9f46Ojpg6daps7OrVq9i/f7/gjIhIjwYOHIi6devKxjiUGBGRGPb44KOaWGwhIrJTSkOIeXp6onHjxoKzIdKn119/HV5eXrKxhQsXIj09XXBGRESFwsLC4OjoKBsLDw8XnA0R6ZGjoyMmT54sG4uKisKZM2fEJkRERGRlLLYQEdkppWJLu3bt4ODArwciS6hatSpef/112Vh8fDxvaBKphBPLAgEBAYrzKfz444+4d++e4IyISI+Uii2AbfZu4RPiRGRreNwSi3fTiIjslFKxxVpDiPHGFtmrWbNmwcPDQza2YMECZGZmCs6ILIkXL2TLZsyYIbs8Ly8PK1asEJwNkbp4rmodQUFB6NOnj2xszZo1yM7OFpsQERGRFbHYQkRkh3JycnD27FnZGOdrIVumxRvffn5+eOWVV2Rj9+/fx7fffis4IyLS4rFCDf3790fDhg1lY0uXLkVBQYHgjIj0gceYksLCwmSXJyQkYOvWrYKzISIish4WW4iI7ND58+eRm5srG7NWseXu3btWaZdsg9pPi6r9/n/9619RpUoV2dj8+fP5VCcRqcLBwQHTp0+XjcXExCAyMlJwRkSkR6NGjYK3t7dsbNmyZYKzISIish4WW4iI7JDSEGJubm5o3ry5Vd4zKyvLKu0S2YIaNWooDtdz+/ZtDtdDRKqZMmUKnJ2dZWNLliwRnA2Reiz5YIbaD3lojbu7O8aNGycb27NnD2JjYwVnREREZB0sthAR2aGoqCjZ5W3btoWTk5PgbIjsw9tvvw1XV1fZ2GeffYacnBzBGZEl8IYa2Tp/f3+EhITIxn766SfExcUJzoiI9Cg0NFR2uSRJWLlypdhkiIiIrITFFiIiO6TUs4XztRBZT0BAAKZOnSobi42NxerVqwVnRERUSKnnXX5+Pof4ISKL6NixI1q3bi0bW7FiBeeIIiIiXWCxhYjIzuTl5eHMmTOyMRZbiKzrnXfegYuLi2zs008/RV5enuCMiIiAXr16oVmzZrKxb7/9lscmsgvsqWhdBoNBsXdLTEwMDhw4IDYhIiIiK2CxhYjIzly6dElx/hQWW4isq27dupgyZYps7Pr161i3bp3gjIiICm+CTp8+XTYWFxeHnTt3Cs6IiPRowoQJinNEsRcdEZF18GECsVhsISKyM0pDiDk7O6Nly5aCsyGyP++++67i3Egff/wx8vPzBWdElcGLF9KLiRMnKs4rFR4eLjgbItsmSZLaKWiSn58fRowYIRuLiIhAYmKi4IyIiPSP30lisdhCRGRnlIotrVq1UrzJQkSWU79+fUycOFE2dvXqVWzcuFFwRkREQLVq1fD888/Lxn7++WfExMSITYiIdCksLEx2eXZ2NtavXy84GyIi/WOxRSwWW4jIbDxg2yalYguHECMSZ86cOXB0dJSNffzxx5wk1obwu9A2sUeSPKWhxCRJwrfffis4GyLSo4EDB6JOnTqyseXLlwvOhoiIyLJYbCEisiMFBQU4deqUbCw4ONiq780bWySCrdz4DgoKwrhx42RjFy9eREREhOCMyFy2ss8RmaJbt25o3bq1bGzZsmXIzc0VnBER6Y2joyMmT54sG4uKisKZM2fEJkRERGRBLLYQEdmRq1evIi0tTTbGni1kTWrfkNZise+9995TzIu9W4isS+1jklYZDAbF3i337t3Dtm3bBGdERHo0ZcoUxRh7txARkS1jsYWIyI4oDSHm6OiINm3aCM6GyL41bdpUcX6E6Oho3tQkIlVMmDAB7u7usrElS5YIzoZIHC0+mKFXQUFB6NOnj2xszZo1yM7OFpsQERGRhbDYQkRkR5SKLc2bN0eVKlUEZ0NE77//vmJs3rx5fPqeiITz8fHB2LFjZWN79+7Fn3/+KTgjItKjsLAw2eUJCQnYunWr4GyIbAuLw0TaxWILEZEdUSq2cAgxsjYWDeS1bNkSISEhsrGTJ09i586dgjMiIgJmzJihGFu6dKnATIhIr0aNGgVvb2/ZGIcSIyIiW8ViCxGRnZAkSdViC2+2E8lj7xYi0pqOHTsqnhusWLGCQ/wQlcPZ2VntFDTP3d0d48aNk41FRkYiNjZWcEZERESVx2ILEZGdiImJQVJSkmyMPVvI2tjVXVm7du0wfPhw2djx48exZ88ewRkRESn3bomPj8cPP/wgOBsi67PkuYqvr6/F2tKz0NBQ2eWSJGHVqlWCsyEiIqo8FluIiOyEUq8Wg8GAdu3aWf39ebPdvon6/C9cuCC7/Pr160Le31x///vfFWMfffQRe7cQkXBjx46Fl5eXbGzJkiWCsyEiPerYsSNat24tG1u+fDkKCgoEZ0RERFQ5LLYQEdmJqKgo2eVNmjRRvJliSSy2kAhbtmxROwWzdOzYEUOHDpWN/fbbbzhw4IDYhIjI7nl6emLChAmysV9//RUXL14UnBER6Y3BYFDs3RITE8PzHyIiC+CDe2Kx2EJEZCfUnK+FSNQJntZ7sJSlrN4t8+bNE5gJVQQvXkjPpk+frhgLDw8XmAmR9fHBIHVMmDBBcY6bZcuWCc6GiEh/eL0iFostRER2QJIkFluINK5r164YOHCgbGz//v04dOiQ4IyI9Is3VU3Ttm1bdO3aVTa2atUqZGZmCs6IiPTGz88PI0aMkI1FREQgMTFRcEZERETmY7GFiMgO3L59Gw8fPpSNsdhCpB3s3WJ7eNOe9E6pd0tSUhI2bdokOBsi6+GTv+pRGkosOzsb69evF5wNERGR+VhsISKyA0q9WgCgffv2AjMhorI8+eST6NOnj2xsz549OHbsmNiEiMjuPffcc/D19ZWNcSgxIrKEQYMGoU6dOrKx5cuXC86GiIjIfCy2EBHZAaViS4MGDVC1alXB2RBRWdi7xbawZ4tt4hPspnN3d8ekSZNkY0ePHkV0dLTgjIisg8dz9Tg6OmLy5MmysaioKJw5c0ZsQkRERGZisYWIyA5wvhYi29G3b1/06NFDNrZz505ERUUJzojKwpv2ZA+UhhID2LuFiCxjypQpijH2biEiIlvBYgsRmY03mGyH0s1ZFluItMdgMLB3ixn4nURkPc2bN0evXr1kY6tXr0ZaWprgjIhIb4KCghSHUl2zZg2ys7PFJkREpBPsuSkWiy1ERDp379493LlzRzYWHBwsLA9+wROZbtCgQejcubNsbOvWrRxOg4iEU+rdkpqaig0bNgjOhsjyeK6qvrCwMNnlCQkJ2Lp1q+BsiIiIKo7FFiIinTt16pRirH379sLy4AUskenK693y8ccfC8zGNrBnC5F1hYSEwM/PTza2ZMkSwdkQkR6NGjUK3t7esjEOJUZERLaAxRYiIp1Tmq+lbt26qFGjhuBsyF7xRnjFPf3004oF0YiICJw/f15wRkRkz1xdXcucwPrEiRNiEyIi3XF3d8e4ceNkY5GRkYiNjRWcERGR7eO1uFgsthAR6ZxSsYXztRBpW1m9WyRJwieffCI4IyKyd9OmTVOMhYeHC8yEiPQqNDRUdrkkSVi1apXgbOTzICKyJTxuicViCxGRzmml2MIveKKKGzFiBFq3bi0b27hxIy5fviw4I+3iMYYqgkNbmqdx48bo37+/bGz9+vVITk4WnBGR5fC4oA0dO3ZEq1atZGPLly9HQUGB4IyIiIhMx2ILEZGOJSQkICYmRjbGni1E2ufg4KDYu6WgoACffvqp4IyIyN7NmDFDdnl6ejrWrl0rOBsi0huDwYCwsDDZWExMDA4cOCA2ISIiogpgsYWISMdOnTqlGGOxhUTi06LmCwkJQfPmzWVja9euxbVr1wRnpE2pqamqvC/3bbI3I0aMQM2aNWVjS5YsYS8zIqq0CRMmwNnZWTa2bNkywdkQERGZjsUWIiIdi4qKkl1es2ZN1K5dW3A2RGQOBwcHvP/++7Kx/Px8fPbZZ4Iz0qbvv/9e7RSI7IKzs7PiU+dnz57FsWPHBGdEZBksnmuHn58fRowYIRuLiIhAYmKi4IyItIXHKyLtYrGFiEjHypqvhSdoRLbj+eefR+PGjWVjq1atUhwu0J5ERESonQLZEPa+qJypU6cqnkeEh4cLzobIMnhc0JbQ0FDZ5dnZ2diwYYPgbIiIiEzDYgsRkY6VVWwRjcUdIvM5Ojrivffek43l5eVh/vz5gjOiIrw5R/aofv36eOqpp2RjGzdu5FPnRFRpgwYNQp06dWRjHEqMiIi0isUWIiKdSklJwdWrV2VjnK+FyPaMGzcODRo0kI0tX74ccXFxgjPSFhY9iMSaPn267PKsrCx89913grMhqjw+GKQtjo6OmDx5smwsKioKZ86cEZsQERGRCVhsISLSqdOnTyvGWGwh0XgjvPKcnZ0xZ84c2VhOTg4WLFggOCMCuG+T/Xr66acVnzpfsmQJ/28QUaVNmTJFMbZ8+XKBmRAREZmGxRYiIp1SGkKsatWqqFevnuBsiMgSJk6ciMDAQNnY0qVLcffuXcEZaQefSCYSy8nJCS+99JJs7NKlSzh06JDgjIhIb4KCgtCnTx/Z2Jo1a5CdnS02ISIiG8QHYMRisYWISKfKmq+FNyWJbJOLiwveffdd2Vh2djYWLlwoOCPtUOsigsdTsmcvvfQSHBzkLymXLFkiOBsi0qOwsDDZ5QkJCdi6davgbIiIiMrGYgsRkU5FRUXJLucQYkS2bcqUKahdu7ZsbPHixXjw4IHgjOwbnxQje1a3bl0888wzsrHNmzfj4cOHgjMiMh+L59o0atQoeHt7y8Y4lBgRUfl4vSIWiy1EZDYesLUrPT0dly5dko0FBwcLzoaILMnNzQ3vvPOObCwzMxP/+c9/BGdERPZsxowZsstzc3OxcuVKsckQke64u7tj7NixsrHIyEjExsYKzoiIiEgZiy1ERDoUHR2NgoIC2Rh7thDZvqlTp6JmzZqysS+//BKPHj0SnJH94pPQZO8GDRqkOBdceHi44vkIEZGplIYSkyQJq1atEpwNERGRMhZbiIh0SGm+Fi8vLwQFBQnOphBvSBJZTpUqVfD222/LxtLT0/Hf//5XbEIawN6WROpwdHTEtGnTZGPXrl3Dvn37BGdEZB6eq2pXx44d0apVK9nYihUrWNQlIiLNYLGFiEiHlIot7du3V5zI1tp4I5TIsmbMmAE/Pz/Z2BdffIGkpCSxCRHZkPz8fLVT0JXQ0FA4OTnJxpYsWSI4GyLSG4PBoNi75caNGzhw4IDYhIiIbAgfJhCLxRYiIh1SKrZwCDEi/fDw8MBf//pX2VhKSgq++OILwRnZJxaSbdP+/fvVTkFXatWqhZEjR8rGtm7dirt374pNiIh0Z8KECXB2dpaNLV++XHA2RERE8lhsISLSmezsbJw7d042pmaxhU9TEFneK6+8gmrVqsnGPv/8c6SkpAjOiMg2cGgry5sxY4bs8ry8PN4IJaJK8/Pzw4gRI2RjERER7NFLRESawGILEZHOnDt3Dnl5ebIx9mwh0hcvLy/MmjVLNpaUlIQvv/xSbEIqYg8TqgjuL5bXt29fNGrUSDb2zTffcOg20jw+GKR9oaGhssuzsrKwfv16wdkQERGVxmILEZHOREVFyS6vUqUKmjVrJjgbIrK21157DT4+PrKx//znP0hLSxOcEZH2sdhieQ4ODpg+fbps7ObNm9i9e7fgjIgqhscF7Rs0aBDq1KkjG1u2bJngbIiIbAO/38RisYWISGeU5mtp164dHB0dBWdDVCg5OVntFHTL19cXr7/+umzs0aNHWLx4seCMiLSPF53WMXnyZLi4uMjGwsPDBWdDRHrj6OiIyZMny8aioqJw5swZsQkRERE9hsUWIjLijQd9UCq2cAgxUtOtW7fUTkHXZs2aBU9PT9nYwoULkZGRITgjIm3jOY91+Pn5YfTo0bKxn376id8FpGkcRsw2TJkyRTHG+aGIiEhtLLYQkREvgG1fbm4uoqOjZWMsthDpV7Vq1fDqq6/Kxh48eIClS5cKzohI21hssR6locQKCgo4zA8RVVpQUBD69OkjG1uzZg2ys7PFJkREpHE87xWLxRYiMsrNzVU7BaqkixcvKl5gqF1s4dOCRNb15ptvwt3dXTa2YMECZGVlCc7IPOZeDPAigiqC+4v1PPnkk2jevLls7JtvvkFeXp7gjIhIb0JDQ2WXJyQkYNu2bYKzISIi+j8sthAR6YjSEGIuLi5o0aKF4GyISCR/f3+8/PLLsrG7d+/azBPlHG+dRGCxxXoMBoNi75Y7d+5gx44dgjMiIr0JCQmBt7e3bMxWzneIKoMPMhJpF4stREQ6olRsad26teKEtUSkH2+99Rbc3NxkY//85z9tYmiNK1euqJ0C2YG0tDS1U9C1iRMnKh6LlixZIjgbItPw5qXtcHd3x9ixY2VjkZGRHB6biIhUw2ILERnxAsP2RUVFyS5XewgxIhKjVq1amDZtmmwsLi4Oq1atEpwRkTZFRkaqnYKuVa1aFc8//7xsbPfu3bhx44bgjIhIb8LCwmSXS5KElStXik2GiIjo/2OxhYhIJ/Lz83H69GnZWHBwsNhkZLCYRyTG7NmzFXuyffbZZ7qdn4vDQhFpy4wZM2SXS5KEb775RnA2RKQ3HTt2RKtWrWRjK1asQEFBgeCMiIiIWGwhokrgjS1tuXLlCjIyMmRj7NlCZD/q1KmDl156STYWExODNWvWCM6IiOxRly5d0KZNG9nY8uXLkZOTIzgjorLxwSDbYjAYFHu33LhxAwcOHBCbEBEREVhsIaJieIFh25Tma3F0dETr1q0FZ0NEanrnnXfg7OwsG/v000+Rl5cnOCPTmVvI53cYkbYYDAbF3i3379/H1q1bBWdERHozYcIExfOd5cuXC86GiEib+KC0WCy2EJERD8C2TanY0rJlS8VJakXi/kUkTmBgICZPniwb+/PPP7FhwwaxCQnAYwyR9owfPx4eHh6ysfDwcMHZEJHe+Pn5YcSIEbKxiIgIJCUliU2IiIjsHostREQ6oVRs4RBiRPbp3XffhaOjo2zs448/Rn5+vuCMiMjeeHt7Y9y4cbKxX375BVeuXBGcERHpTWhoqOzyrKwsrF+/XnA2RERk71hsISIjDsFiuwoKClhsIaISGjZsiBdffFE2dvnyZWzevFlwRtbFni1E2jR9+nTF2NKlSwVmQkR6NGjQINSpU0c2Zo2hxHi+QUREZWGxhYhIB27cuIGUlBTZGIstRPZrzpw5cHCQP92bN28eCgoKBGdkPXxggEibgoOD0bFjR9nYypUrkZWVJTgjItITR0dHxaFTT5w4gejoaLEJERGRXWOxhYhIB6KiomSXGwwGtGvXTmwyRKQZjRs3xtixY2Vj58+fx5YtW8QmZAJznxjlk6ZE2qXUu+XRo0eIiIgQnA0R6c2UKVMUY9bo3UJERKSExRYiMuJTwbZLaQixZs2aKU5MS0T24b333lM8vs+bN49Fikrivx9R+V544QV4e3vLxsLDwwVnQySP10K2KygoCH369JGNrV69GtnZ2WITIiIiu8ViCxGRDtjCfC28gCVSR/PmzTFmzBjZ2OnTp/HTTz8Jzsg61Cp6sNhCVD5PT0/FOaQOHTqE8+fPC86IiPQmNDRUdnlCQgK2bdsmOBsiIrJXLLYQEdk4SZJsothCROp5//33FWMfffQRCwZEZHVKQ4kBwNKlSwVmQkR6FBISotiDbtmyZYKzISIie8ViCxGRjbt16xYePXokG2OxhYgAoHXr1nj22WdlYydOnMDu3bsFZ0RE9qZ169bo3r27bGzVqlXIyMgQnBFRSeyFbdvc3d0V56mLjIzErVu3BGdERET2iMUWIiIbp9SrBQDatWsnLpFy8AKWSF220rvF3Dy0kj8RKVPq3ZKcnIxNmzYJzoaI9CYsLEx2uSRJWLlypdhkiIg0gtdJYrHYQkRk45SKLUFBQfD19RWbDBFpVocOHfDMM8/Ixo4ePYp9+/YJzoiI7M2YMWNQtWpV2diSJUsEZ0NEetOxY0e0atVKNrZixQoUFBQIzoiIiOyNk9oJmKqgoAAXL15ETEwMUlJSkJuba/JrJ06caMXMiPSDPQ9sU1RUlOxyDiFGRI/7+9//jp9++kk29tFHH6F///6CM7IcPrFFpH1VqlTBpEmT8N///rdU7Pjx4zh9+rSmeuUSkW0xGAwIDQ3Fm2++WSp248YNHDx4EH379lUhMyIisheaL7bcvHkT8+bNw/fff4+0tLQKv95gMLDYQkS6ptSzJTg4WHAmRKR1nTt3xuDBg2XnaPn1119x8OBB9O7dW4XMiMheTJ8+XbbYAgDh4eFYvHix2ISI/j8+eKYPEyZMwDvvvCP7gO6yZctYbCEiIqvS9DBiO3fuRKtWrbBixQqkpqZCkiSzfoiI9Oru3bu4d++ebIw9W4hIzty5cxVj8+bNE5iJZfGcj8g2NGvWTLGou2bNGqSmpgrOiIj0xN/fH8OHD5eNRUREICkpSWxCZJeUrtGJ1MDrJLE027MlNjYWY8aMQWZmpnFZrVq10LZtW1SvXh3Ozs4qZkdEpA1KvVoAoH379gIzKR+/4Im0oXv37ujXr5/sHC2//PILjhw5gu7du6uQWSEeK4j0b8aMGTh48GCp5WlpaVi/fj2mTZumQlZEpBdhYWGIiIgotTwrKwvr16/Hyy+/rEJWZE9+++03q7bPnnhE2qXZYsvChQuRmZkJg8GA2rVrIzw8HEOHDlU7LSJdq+gXNm+IqU+p2BIYGAg/Pz/B2RCRrZg7d65ssQUo7N3y888/C86o8tT6TuLFLlHFPfvss/Dz80N8fHyp2JIlSzB16lT+3yIisw0aNAh16tTB7du3S8WWL1/OYgtZ3eHDh9VOgYhUotlhxPbs2QMAcHJyQmRkJAstRAKweGJ7lIotWhxCjDdNiLSjd+/eePLJJ2Vju3btwu+//y44I9vF706yhGeeeUbtFIRydXVFaGiobOzUqVM4ceKE4IyISE8cHR0xefJk2diJEycQHR0tNiGyO9bu2UJE2qXZYsutW7dgMBjQp08fNG/eXO10iIg0yZaKLUSkLWXN3fLxxx8LzIRIPCcnbXXwnzp1qtopCFfWNoeHhwvMhIj0aMqUKYqx5cuXC8yE7E16enqZw30Tkb5ptthSNCdLgwYNVM6EyH6w54FtiY+PR2xsrGxMi8UW7l9E2tK/f3907dpVNrZ9+3acOnVKcEaFzO0pwh4mVBFt27ZVO4USGjZsqHYKwjVq1AgDBw6Uja1fvx7JycmCMyIiPQkKCkKfPn1kY6tXr0Z2drbYhMhu/P7778jPz1c7DSJSiWaLLfXq1QMApKSkqJwJEZE2lfW0jBaLLUSkLQaDQZO9W1g0IREcHDR7GWRXpk+fLrs8IyMDa9asEZwN2Ts+GKQ/SsMVJiQkYNu2bYKzIXvB+VpIa3h9JZZmrzKGDRsGSZJw9OhRtVMhItIkpWJLQEAAAgICBGdDRLboqaeeQseOHWVjP/zwA86ePSs4I/OpdRHBm3O2iRed2jB8+HDUqlVLNrZkyRJ+TkRUKSEhIfD29paNLVu2THA2ZC84XwuRfdNssWXGjBnw9vZGbGws1q9fr3Y6RHaBN4xsC+drIaLKMhgM+Pvf/64Y/+STTwRmY5t4M5jIfM7OzggLC5ONnTt3jg/eEVGluLu7Y+zYsbKxyMhI3Lp1S3BGpHf5+fk4cuSI2mkQkYo0W2ypU6cOVq5cCQcHB0yfPh179uxROyUiIk2xtWILb0gSadOwYcMU56/YtGkTLl68KDgj8/AYQxXB/UU7pk6dqvjAz5IlSwRnQ/aMD57pk9JQYpIkYdWqVYKzIb07d+4cUlNT1U6DiFSk2WJLbGwsOnTogCVLliA3NxdDhgzByJEjsXbtWkRHR+PmzZuIjY016YeISG+SkpJw7do12ZhWiy1EpE1l9W6RJAmffvqp4IyIyJ7Uq1cPQ4YMkY1t2rQJCQkJgjMiIj3p1KkTWrVqJRtbvnw5CgoKBGdEesb5WojISe0ElNSvX7/EkyWSJGH79u3Yvn17hdoxGAzIy8uzdHpEusSnuWzH6dOnFWMsthBRRT377LNo2bIlzp8/Xyq2bt06zJ07F40bN1YhM9OxpwLZMns/B5sxYwZ27txZanl2djZWrVqFN954Q4WsiEgPDAYDQkND8eabb5aK3bhxAwcPHkTfvn1VyIz0iPO1EJFme7YUKbpwLroAkSSpwj9EZBr+f7EdSkOIVa9eHU888YTgbExj7zeSiLTMwcEB77//vmysoKAAn332mbBc+F1EZH+GDBmCunXrysbCw8N5XCCiSpkwYQKcnZ1lY8uWLROcDekZe7YQkWaLLYGBgQgMDES9evWMvxf9XZGfwMBAtTeFiMjioqKiZJd36NBBs0UNreZFRIXGjBmDpk2bysa+++473LhxQ3BGtoE3gYkqz8nJCVOnTpWNXb58GQcPHhScEdkjnqvql7+/P4YPHy4bi4iIQFJSktiESJdu3bqFW7duqZ0GEalMs8OIxcTEqJ0Ckd3hBYbtUOrZEhwcLDgTItILR0dHvPfee5g4cWKpWH5+Pj777DMsXbpUhcxMw6IHkW0LCwvDRx99hPz8/FKxJUuWoE+fPuKTIiLdCAsLQ0RERKnlWVlZWL9+PV5++WUVsiI94RBiRARouGcLERHJS0tLw+XLl2VjnK+FiCpj7NixCAoKko2tXLkSsbGxgjMiIntRp04dDBs2TDb2ww8/4MGDB4IzIiI9GTRoEOrUqSMbW758ueBsSI84hBgRASy2EBHZnDNnzig+wa3lYgufOifSPicnJ8yZM0c2lpubi/nz5wvOyHRqHWPYK5TIcmbMmCG7PDc3FytWrBCcDRHpiaOjIyZPniwbO3HiBKKjo8UmRLrDni1EBLDYQkTF8IaRbVAaQszHxwcNGzYUnA0R6c2LL76IevXqyca+/fZb3L5926rvz8Iskf0aOHAgGjRoIBtbunQpCgoKBGdERHqiVGwB2LuFKiclJYUFOyICwGILEVUCb4ipQ6nY0r59exbMiKjSnJ2d8be//U02lpOTg3/961+CMzINv5OIbJ+DgwOmTZsmG7t+/Tr27t0rOCMi0pNGjRqhd+/esrE1a9YgOztbcEakF8eOHeMDAUQEgMUWIiKbo1Rs0fIQYkRkWyZPnoy6devKxsLDw3Hv3j3BGWmX0hwTRBXBhyX+z5QpU+Dk5CQbCw8PF5wN2RP+P7QPYWFhsssfPXqEbdu2Cc6G9ILztRBREVWLLY6Ojsafx0+oi8cq86N0om4tMTEx+OabbzBhwgS0bdsWVatWhbOzM6pVq4Y2bdpg+vTpOHjwoFlt//HHH5g5cyZatGgBb29veHt7o0WLFpg5cyb++OMPs9qMjY3FBx98gODgYPj7+6NKlSoICgrC6NGj8eOPP5r1lGhaWhoWL16Mvn37om7dunB1dUXdunXRr18/LFmyBGlpaRVuU5Ik/Pjjjxg9ejSCgoJQpUoV+Pv7o2PHjvjwww85YS/ZjaysLJw/f142pvViCy9giWyHq6sr3nnnHdlYVlYW/v3vfwvOqHxq9WypWrWqKu9LlcOeUNpVs2ZNjBo1Sja2detW3LlzR3BGRKQnISEh8Pb2lo2ZMpQYvz9IDudrIaIiqhZbir6kJEkq9YX1eKwyPyKcOnUKXbp0QYMGDTBt2jSsXbsW0dHRSEpKQl5eHhITE3H27FksXboUffr0Qd++fU0uEOTk5OAvf/kLunTpgsWLF+PixYtITU1FamoqLl68iMWLF6NLly544403kJuba3LOy5YtQ4sWLfDhhx/i5MmTiI+PR1ZWFq5fv46IiAiMGjUKgwYNqtDTq0ePHkWbNm0wc+ZMHDhwALdv30ZOTg5u376N/fv34+WXX0bbtm1x/Phxk9u8c+cOBgwYgFGjRiEiIgLXr19HVlYW4uPjERUVhQ8++AAtW7bEypUrTW6TyFZFR0cjPz9fNsZiCxFZ0ksvvYSAgADZ2Ndff42HDx8KzoiI7MX06dNll+fn53NeBSKqFHd3d4wdO1Y2tnv3bty6dUtwRmTrcnNzcezYMaHvyWtrIu1SfRixsoohtvTEwOXLl/H777+XWNakSROMGjUK06ZNw3PPPVdiOI4DBw6gW7duuH79erltT506FV988YXx36Nhw4YYN24cxo0bZ5wMW5Ik/Pe//8WMGTNMynf58uV46aWXkJ6eDgDw9fXFqFGjMGXKFHTq1Mm43t69ezF48GCTeqOcOXMGgwYNwo0bNwAUjvk+ePBghIWFYdCgQcZeRtevX8egQYNw7ty5cttMSUnB4MGDsW/fPuOyzp07Y8qUKRg1ahR8fX0BFPammTJlCr777juTtp/IVikNIebh4YEmTZoIzoaI9MzNzQ1vv/22bCwjIwOff/65Vd7X3PM/XnQS6Uffvn0Vz2uWLl2q+OAJEZEpQkNDZZdLkoRVq1YJzoZs3ZkzZ5CRkaF2GkSKbOn+uh6oWmwpKCgw/jx+wlw8Vpkf0SfijRo1wj//+U/ExcXh8uXLiIiIQHh4ODZu3IibN29i2bJlcHd3B1DYY2P8+PFl7vTLly83FhAcHBzw+eef4+rVq1i7di3Wrl2Lq1ev4vPPP4eDg0Op9ZVcvny5RFFm/PjxiIuLQ0REBJYvX47ff/8dv/zyi3FYjOjoaLz++utltpmbm4uQkBBjUaZt27a4cuUKdu3ahW+//Ra7d+/G1atX0bZtWwCFRZSQkBDk5eWV2e6rr75qLMpUq1YNv/zyC44fP47ly5cjIiICcXFxGD9+vHH9qVOn4s8//yyzTVLGG1Xap1RsadeuHRwdHQVnQ0R6N336dNSoUUM29uWXXyIhIUFwRsp4EUEVwf1F2wwGA6ZNmyYbu3XrFnbt2iU4I7IHvBayH506dUKrVq1kY8uXL+dE51QhnK+FiIpTvWeLXgQEBGDFihW4dOkS3nnnHdSpU6fUOg4ODggNDcWaNWuMy44dO4bIyEjZNrOzs/HBBx8Y/549ezZmzZplLKwUtTlr1qwST57OnTsXOTk5irn+/e9/Nw431qNHD3z33Xfw8PAosU6/fv2wdu1a49/fffcdLl68qNjmN998g2vXrgEoHLt8165dqF+/fol16tevj59//tlYxLly5UqZwwCcO3euRA7r1q1Dv379Sqzj4eGB7777Dt27dwdQOOTa3LlzFdsksnVKxRatDyFGRLbJ3d0db731lmwsNTUVixYtEpwREdmLSZMmwdXVVTa2ZMkSwdkQkZ4YDAbF3i03btwwe55dsk+cr4WIimOxxUJ69+6NyZMnm/Rk+bPPPovOnTsb/96xY4fsetu2bTOOF+rj44O///3vim3OnTvXOMnbzZs3Fdu8f/8+IiIijH8vWLCgRPGmuCFDhmDAgAEACsdHLuui5quvvjL+/tZbb6FWrVqy6wUEBOCvf/2r7Oset3jxYuMTJQMHDsTgwYNl13NwcMCCBQuMf2/atAnx8fGK7RLZqpycHJw9e1Y2xmILEVnLyy+/jOrVq8vGFi1ahOTkZMEZyWNPBbK2rKwstVOwK35+fhg9erRsbOfOnSbPf0lEJGfChAlwdnaWjS1btkxwNmSrJElisYWISmCxRSU9evQw/h4TEyO7zpYtW4y/P//888bhx+S4u7vjueeeM/79448/yq63bds2YwGjSZMmxh4hSiZPniybT3F//vknLly4IPua8tqMjo6WnbdGkiRs27bN+PeUKVPKbLNHjx5o1KgRgMLCUPHXkunYdV7bLly4oNhrjcUWIrIWT09PvPnmm7Kx5ORk/O9//xOckbbwu9N+FM11SOIozUdZUFCAb7/9VnA2pHc8ntsXf39/DB8+XDYWERGBpKQksQmRTbpx4wbu3r2rdhpEpCEstqik+Imc0rwy+/fvN/7ep0+fctvs27ev8ffiE8pbqs3Y2FjZ+VCKv1eTJk1Qu3btMtusU6cOGjduXGauV69eRVxcnNm5Km0/kS1TGkLM1dUVzZs3F5wNEdmTV199Fb6+vrKxzz//HKmpqRZ7L3N7qLBnC9ky3uSV16NHD7Ro0UI29u233xqHRiYiMkdYWJjs8qysLGzYsEFwNmSLlHq18HudyH7ZTLElLS0N33zzDcaNG4fmzZvDz88Prq6u8PPzQ7NmzTBu3Dh88803xgnata74UEBPPPFEqXhycnKJ6rgpT60XX+f27dtISUkptU7xeVdMabN27dqoWbOm7OvNbfPx9cprs1atWggICKh0m1Q+3qjStqioKNnlbdq0UewCT0RkCd7e3pg1a5ZsLCEhAV9//bXYhIjILhgMBsXeLXfv3sVPP/0kOCMi0pNBgwbJzrcLcCgxMs3hw4dll7dq1UpwJkSkFZovthQUFGD+/PmoXbs2ZsyYgY0bN+LKlStISEhAbm4uEhIScPXqVWzcuBEzZsxA7dq18c9//tM4VJYWxcbGluh5UTQvSnGXL18u8XdgYGC57T6+zuNtPL6sXr165bb5eLuXLl2y2TaJbJ1Sz5bg4GDBmRCRPXr99dfh5eUlG1u4cKHFhlhizxYiKu7FF19ElSpVZGPh4eGCsyEiPXF0dMSkSZNkYydOnEB0dLTgjMjWKPVsKT51ABHZF00XWzIyMjBo0CDMmTMHaWlpkCTJ+FNc8eVpaWl47733MGDAAGRkZKiUednefPNN49BhgYGBGDZsWKl1Hj16ZPzd29tb8QKjOHd39xI3QRISEkrEMzMzkZmZafy7eI+VshSf7P7xNh/PVSttZmRkIDs726TX0f9hV1ftysvLw5kzZ2RjtjJfC/cvIttWtWpVvP7667Kx+Ph43vQkIqvw9fXFCy+8IBvbvXu37PyPRESmKmt+2OXLlwvMhGxNQkICzp8/Lxvr2bOn4GyIlPFejFiaLraMHTu2RA+QgIAAvPHGG9i0aROOHTuGs2fP4tixY/j+++/x5ptvGrt/SpKEgwcPYuzYsWqlrmjVqlWIiIgw/v3ZZ5/B1dW11HrFh0MzpdAit+7jQ6o9/rep7ZbV5uPLtNKmUrvmcHNzg6enJ4DC+XWSkpKMBb+UlBTjhOWZmZnGp3rz8vJKTKiXnJxsHFM6IyPDWAjMzc1FcnKycb2kpCTk5eUBKJyEtag4lpOTYxwWTpIkJCUlGQt2aWlpyMrKAgBkZ2cbx80vKChAUlKSsZdXamqqsQCVlZVl/Pd5fJu8vb3h4uICoPDf1MPDAwDg5ORUYrx+Hx8fm9kmPXxOFy9ehKurq/FLsvjn1KpVK9W2yc3NDUDhvDFFxV4HBwf4+vrCwaHwK8bLywuurq6QJEn3nxO3SXmb3N3dAQDOzs7w8fExrufr6wsnJycAgIeHh/FY7uLiYtY2ye17QOGxnJ9T5bdp1qxZ8Pf3L/E5eXt7AwAWLFiAe/fuVXqbil7v6OgIX19f2eNeWd9PFdkmpX2vaJsMBgN8fX3h6OgIAPD09JQ97mntcwL0t+/JbVNFP6fi30+SJJm1TeWdGxUN6+nu7l7h455ePydLbFPRvArFz8uLjhHffPNNudtkic9J7/+fuE2FyjqPeHzfK+/7SQvbpMfPydLbVL9+fQwePNiYa/FjxObNm5GYmCi7TWWdw5rz/cTPyfa26eDBg4rHiLZt21b4HLYi30/8nPS1TRU5hwXM+36yt89JTZottmzbtg3bt2+HwWCAJEl4//33cePGDfz73//G6NGj0blzZ7Rs2RKdO3dGSEgIFi5ciOvXr2Pu3LnG1/z000/Yvn272ptidOLEiRJjDo8dOxbjxo2TXbdoRwRg/I9hiuKFm+K9WB5vsyLtltXm4+1qpU2lds3RtWtXjB49GgDw8OFDLFq0yHgAWL58OS5cuACg8Iu2aH+Li4vDokWLjG0sXrwY165dAwBERkYiMjISAHDt2jUsXrzYuN6iRYsQFxcHANi+fTsOHjwIALhw4YLxqZrs7GwsWrQIDx8+BFB4Anjs2DEAwKlTp7B27VoAhQegRYsWGQ94a9euxalTpwAAx44dw+bNm2W3KTQ01DgRae/evY09r+rWrVtivP6XX34ZN2/etIlt0sPndPz4ccyaNcu4nxd9Tk5OTkhISFBtm7p27QoAaN++PcaPHw/g/+Z2KLrIGD9+PNq3b28XnxO3SXmbBg0aBAAICgrCyy+/bFxv1qxZqFu3LgBg2LBh6N27NwCgRYsWZm2T0r7XtWtXfk4W2CY/Pz9Mnz69xOcUGhoKoPAkPTw8vNLbVPR6f39/2eMeIP/9VHQCXpFtUtr3irbJ1dXVWGACgNGjR8se97T2OQH62/fktqmin1Px7ydJkszapvLOjYKCggAUzgNQ0eOeXj8nS2yTg4MD2rVrV+K8vOgYsXr1auTk5JS5TZb4nPT+/4nbVHgzq6zziMf3vfK+n7SwTXr8nKyxTd26dTPmWvwY0alTJ6xatUp2m8o6hzXn+4mfk+1t0+nTp2WPES1atEBERITJ57BFKvL9VJQrPyd9bFNFzmEB876f7O1zUpWkUSNHjpQMBoPk4OAgffLJJxV67aeffmp87ciRI62UYcVcv35dqlWrlgRAAiC1adNGSk5OVlx/06ZNxnVr1qxp8vvUqFHD+LrNmzeXiD148MAYAyBdvHjRpDafe+4542teffXVUvEWLVoY44sXLzapza+//tr4mlatWpWKz5w50xh//vnnTWrzwoULJbYvPj7epNcpOXfunARAcnNzkzw9PaVz585JeXl5UmJiolRQUCBJkiQlJydL2dnZkiRJUkZGhpSWliZJkiTl5uZKiYmJxraSkpKknJwcSZIkKT09XUpPT5ckSZJycnKkpKQk43qJiYlSbm6uJEmSlJaWJmVkZEiSJEnZ2dnG/aWgoEBKTEyU8vLyJEmSpNTUVCkzM1OSJEnKysqSUlJSJEmSpPz8fCkxMVHKz8+XJEmSUlJSpKysLEmSJCkzM1NKTU2VJEkqsU13796VvL29JRcXFwmAVKVKFcnDw0MCIDk5OUm+vr7Gf18fHx/jv7GWt0kvn9OsWbMkX19fyWAwSACMn1O7du1U3SY3NzcJgOTq6ip5eXlJACQHBwfJ19dXcnBwkABIXl5ekqurqzRx4kTdf07cJuVtcnd3lwBIzs7Oko+Pj/FY4uvrKzk5OUkAJA8PD6lKlSoSAMnFxcWsbZLb94qO5fycLLNNN27ckKpWrWr8nLy9vSUAksFgkJo2bWpsw9xtCg0NlQBIjo6Ossc9pe+ndu3aVXiblPa94tvk6+srOTo6SgAkT0/PUse9u3fvavJz0uO+9/g2VeRzevz7qW3bthXepvj4+HLPjZydnSUAkru7e4WOexcuXNDt52SpbVq8eLHxvPzxY8SGDRvK3CZLfE56///EbZKk1157rczzCLl9T+n7SSvbpMfPyRrbdOfOHeN3yuPHiGeeeabENh08eLDcc1hzvp/4OdneNvXv31/2GPHcc89JiYmJJp/DmvP9dP36dX5OOtqmipzDmvP9NGnSJLv5nIru5Rb9nDt3ThJNs8WWunXrSgaDQQoICDD+g5oqPz9fql27tmQwGKQ6depYKUPT3blzRwoKCjJ+0A0bNpTu3LlT5mt27txpXN/b29vk9yr6jwhA2rVrV4lYRkZGiR3u5MmTJrU5bNgw42vefffdUvHOnTsb4//5z39MavPf//638TVdu3YtFZ89e7YxPnz4cJPajIqKKrF9Rf9JzaWF/6Ci3b17t8Q2l/dT/KBL1tWrVy/ZzyA0NFTVvCqyv0ycOFHVXEldFdlXin4s/T5kOW+88Ybiv7OpD14oKf6QR0V+2rZtW+H3Mud9Hv+5e/dupbaXzFeZz82c/SU+Pt4i+4zcz4ULFyz/D6QzKSkpxpsJj//07du3zNda4jMi/Xvttdcs9n+abM/06dNlP0uDwSDFxsYa1ysqtlj6h2xLVlaW8Wb34z9ffPGFJEmW+e5R+im+T5Lts+a+AkCaNGmS2psojBbu5Wp2GLGHDx/CYDCgd+/eFZ7Ix8HBAb169QJQcqJ1NTx69AgDBw40dscKCAjA3r17ERAQUObrqlevbvw9JSWl1BBgcjIyMkqMN1utWrUS8SpVqpSY1+T+/fsmbcO9e/cU23w8V6206e7uLjsXDpEtKigoMHanfFyHDh0EZ0NEBLz99tuK37OfffaZcRxde8AJJ+2H9P+HqrMG7kfl8/LyMg6n8bj9+/fj8uXLgjMiIj0pGvrrcZIkGYcSIypy8uRJ47BGj+vRo4fgbIhISzRbbCkar65oMqCKKnqdn5+fxXKqqJSUFAwePBjnz5835rJ37140aNCg3Nc2bdq0xN9Fc2OUJTY2tsw2Hl9mSpuPt9usWTObbZPIVv35558lCqnFsdhCRGoICAjA1KlTZWOxsbFYvXq14IyseyOciLRh+vTpirGlS5cKzISI9KZTp05o1aqVbGzFihXGSZyJAOC3336TXe7h4YE2bdoIzoaItESzxZbmzZtDkiRjj5CKunbtGgwGg2o33dPT0zF06FBERUUBAHx8fLBr1y7jxETl8fHxKdH7Remp9uJOnjxp/L1OnTrGiZOKa968eYXavHPnTomeJcVfb26bj+daXpv37t0r0WvF3DapfDVq1FA7BZJRfN8uzsHBAW3bthWcDRFRoXfeeQcuLi6ysU8//RR5eXmCMyKyLvY+UV/79u3RuXNn2djKlStNGg2ASAn/j9s3g8Gg2Lvl+vXrxomgiQDg8OHDssu7desGJycnq78/HzIi0i7NFluKuogfOnQI169fr9Brr1+/jkOHDpVoR6SsrCwMHz7cWOl2d3fHjh07EBwcXKF2+vbta/z9wIED5a5f/Mu/X79+Fm8zMDAQjRo1KrPNy5cv4+7du2W2eefOHVy9erXMXBs3boy6deuanavS9lPZHBw0e0iwa0rFlubNm8Pd3V1wNubjBSyRvtStWxdTpkyRjV2/fh3r1q0Tmg8vOonsg1LvloSEBGzevFlwNkSkJxMmTICzs7NsbPny5YKzIa2SJEmxZwuHECMizd5ZHT9+PLp164a8vDy88MILSExMNOl1ycnJeOGFF5CXl4euXbtiwoQJVs60pNzcXISEhGDfvn0AAFdXV2zdutWsA+7IkSONv2/cuBGZmZmK62ZmZmLTpk2yry1u+PDhxhvqly9fxrFjx8rMYeXKlcbfR4wYIbtO48aNS/TYKW880+Lx1q1bo2HDhqXWMRgMGD58uGweco4ePYorV64AABwdHTFs2LAy1yeyJUrFFg4hRkRqe/fddxWf3vv444+Rn58vOCMi07A4Z7uef/55+Pj4yMaWLFkiOBsi0hN/f/8S9yGK27x5M5KSksQmRJp05coVxMfHy8Z69uwpOBsi0hrNFlucnJwQERGBLl264MSJE2jbti1WrVqFjIwM2fUzMzPx3XffoW3btoiKikKXLl0QEREhpPtekfz8fIwbNw47d+40bsOmTZswYMAAs9obPny4sXdHUlISPvnkE8V1582bZ/zir1evHp555hnZ9WrWrIlRo0YZ/549e7bixWZkZCQiIyMBFBYwZsyYofj+M2fONP6+cOFCxUnt7927h4ULFxr/fuWVVxTbnDFjhrEwtHv3buzZs0d2vYKCAsyePdv495gxY4xz/hDZOkmSdFNsYc8WIv2pX78+Jk6cKBu7evUqNm7cWOE2eROciMri4eGBF198UTb222+/4dy5c4IzIr3guSoBUBxKLCsrCxs2bBCcDWmRUq8WBwcHdOnSRXA2RKQ1qhZbQkNDy/yZM2cOgoKC4OLigri4OISGhsLPzw9dunTBmDFjMGnSJIwZMwZdunSBn58fpkyZgtjYWLi4uKBRo0aYM2cOwsLChGyLJEkICwszdl13cHDA6tWrFZ+KMIWrqys+/PBD49+fffYZvvjiixITsxUUFOCLL77A/Pnzjcs++ugjxTHUgcLCTFHX2EOHDmHSpElIT08vsc7+/fsxbtw4498TJ04sc76ZadOmISgoCADw6NEjDBkypNTE9jdv3sTQoUORkJAAAGjSpEmZn0/r1q1LDAM3duzYUsOJpaenY/LkycbxMl1cXDBv3jzFNolszc2bNxV79tlasYWI9GnOnDlwdHSUjX388cfCJpRlkYbIfigNJQYA4eHhAjMhIr0ZPHgw6tSpIxtbtmyZ4GxIi5Tma2nXrh28vLyE5MDiMJF2iev2IWPlypUmHyAMBgMkSUJWVhZOnDiBEydOlIgXXWAbDAbk5OSUGCdcxBfi4sWLSwyPFRQUhMOHDysehB/35Zdfyi4PDQ3FgQMHsHr1ahQUFOAvf/kLvvjiC3Tt2hUAcOzYMVy7ds24/pQpUxSfMC3SrFkzLF68GC+99BIAYPXq1fjpp5/Qr18/eHt748KFCzh+/Lhx/TZt2mDRokVltuns7IyIiAj07NkTaWlpOHXqFBo3boz+/fujTp06iIuLw759+5CbmwsA8Pb2Nqnn0ZdffomTJ0/i/PnzePToEfr27YsuXbqgRYsWSElJwb59+0rciF66dKnsvDJEtkqpVwtQeDJHRKS2oKAgjBs3DqtXry4Vu3jxIiIiIjBmzBgVMiMivWrVqhV69Ogh+3Tx6tWr8c9//hMeHh4qZEa2jEV7AgpH9Zg0aRI+/fTTUrETJ04gOjpahaxISzhfCxGVRdViC2DeCU1Zr3k8Jqra++DBgxJ/X716tcQk8OVRKrYAwLfffgsfHx989dVXkCQJ165dK1FgAQq387XXXisxRFdZwsLCIEkSZs2ahfT0dCQmJiIiIqLUev3798fq1atNqs63bdsWkZGRGD9+PG7cuIHc3Fzs2rWr1HoNGzbE2rVr0apVq3Lb9Pb2RmRkJF588UXjPDjHjx8vUQwCAE9PT3zxxReYNGlSuW0S2RKlYkvjxo3h7e0tOBsiInnvvfce1qxZI3uO9vHHHyMkJMQ4NKi18CYZVYTW9hc+oVpxM2bMkL3hlZycjI0bNyoOBUREVJ4pU6bIFlsAYPny5YKzIS158OCBcb7gx3G+FiICVC62rFixQs23txkuLi743//+hxdffBHLly/HgQMHcPv2bQBAnTp10KdPH4SFhaFTp04Vavell17CoEGDsGzZMmzfvh2xsbFIS0tDQEAAOnTogAkTJmDkyJEVuvjr1q0boqOj8d1332HTpk24cuUKHj16hOrVq6NJkyZ47rnnMHHiRHh6eprcZu3atbF37178+OOPWLt2LU6ePIm7d+/C09MTgYGBGDZsGMLCwhAYGFih7SeyBVFRUbLLbXEIMd5IItKvpk2b4vnnn5cdyzw6Ohrbtm3DyJEjxSdWjjp16hjPqczFY5t6Xn/9dXzxxRfC3k9rBRp7N3r0aPzlL38xDlFcXHh4OIstVGE8nlORRo0aoXfv3jh48GCp2KlTp1TIiLTiyJEjijH2bCGt4jmsWKoWW/TUC+GDDz7ABx98YNX36Ny5Mzp37mzRNgMDA/Hhhx+WmBumsjw9PTFz5kzMnDnTYm0aDAaMGjUKo0aNslibRFonSZJisSU4OFhwNkREZXv//fcVJ46dN28eRowYYdUbWeZcRDz11FMcf92G9e3bV2ixhbTFzc0NkydPxn/+859Ssd9//x2nTp1C+/btVciMiPQgLCxMtthC9k1pqoD69euXmuunY8eOpaZAICL9s+54DkREZLY7d+7g4cOHsjFb7NlCRPrWsmVLhISEyMZOnjyJnTt3Cs6ofM7OzpVug0+KqcfNzU3tFEhl06ZNU4yFh4cLzISI9CYkJITDNlMpFZmv5amnnrJ2OkSkQaoXW+bPn4+LFy+qnQYRkeYozdcCwCaf1OTQDET69/777yvG5s2bZ9XCBIseVBHcX/ShadOm6Nu3r2xs7dq1SE1NFZwR2TKeq1Jx7u7uGDt2rNppkIZkZmYqjjwhV2ypXr26tVMiIg1Svdjyt7/9Da1atULjxo3x5ptv4sCBA8jPz1c7LSIi1SkVW+rXr49q1aoJzoaIqHzt2rXD8OHDZWPHjx/Hnj17ym3D3JvgvHlOZJ+mT58uuzwtLQ3r1q0TnA0R6QnnfqLi/vjjD+Tm5srGevbsKTgbItIq1YstQOHF8bVr17Bo0SL0798fNWrUwPjx47FhwwakpKSonR4RkSqUii0cQoyItOzvf/+7Yuyjjz6yWlGExRayNj71rk3PPvss/P39ZWNLlizhsYGIzNapUye0bNlS7TRII5SGEPPx8eF+QprGc1ixVC+2bNmyBWFhYahZsyYkSYIkSUhMTMSGDRswfvx4+Pv7Y8CAAVi0aBFu3LihdrpEVAwvXq1Lb8UWfsET2YeOHTti6NChsrHffvsNBw4cEJsQEemai4uL4tPnp0+fxh9//CE4I7JVPFelxxkMBoSFhamdBmnE4cOHZZd3794dDg6q314lIo1Q/WgwfPhwfPPNN7h79y6OHTuGOXPmoHXr1sbCS25uLvbv348333wTjRo1QqtWrTBnzhwcPXpU7dSJiKzmwYMHiIuLk43ZarGFiOxHWb1b5s2bV+ZrebOL7BH3+8qZNm2aYmzJkiUCMyEivZkwYQKcnZ3VToNUVlBQgCNHjsjG5OZrISL7pXqxpbjOnTvj448/xpkzZxATE4MvvvgCAwcOhLOzs7H4cvHiRcyfPx89e/ZErVq1EBYWhi1btiAjI0Pt9ImILEapVwvAYgsRaV/Xrl0xcOBA2dj+/ftx6NAhxdey1yQRVVTDhg0xaNAg2diGDRsEZ0NEeuLv7684Hx3ZjwsXLiApKUk2xvlaiKg4TRVbigsMDMSrr76K3bt34+HDh9i0aRMmTJiAqlWrGgsvDx48wMqVKxESEgI/Pz88/fTTCA8Px507d9ROn4ioUpSKLXXq1EHNmjUFZ0NEVHHm9m5hsYWIzDFjxgzZ5ZmZmYIzISK9URqqkOyH0nwtTk5O6NSpk2yMvVaJ7JNmiy3FeXl5YfTo0fjuu+/w4MED/Prrr3jrrbfQtGlTY+ElKysLu3btwsyZM/HEE0+gY8eO+Oijj3Dq1Cm10yciqjC9zddCRPbnySefRJ8+fWRje/bswbFjx2Rj5hZbzHmdJS6CeSFtP1gI1LZnnnkGAQEBaqdBNozHc1IyePBg1KlTR+00SEVK87UEBwfD3d1dNsbzBiL7ZBPFluIcHBzQs2dPLFiwABcvXsSVK1ewcOFC9OrVCw4ODsbiy6lTp/Dhhx+iY8eOCAwMxMyZM7Fr1y610yciMokeiy28gCWyP5WZu4WIqCKcnZ3x0ksvqZ0GEemQo6MjJk2apHYapCKlni2cr4VsAQt/YtlcseVxjRo1wptvvokDBw7gwYMHWLNmDZ577jl4eXkZCy9xcXEIDw/HM888o3a6RETlSkxMxI0bN2RjLLYQkS3p27ev4kXozp07ERUVVWq5uccKXkRQRXB/0aeXXnoJDg42f4lLRBo0ZcoUtVMgldy5c0fx+pzztRDR43R1Jlq1alWMGzcOGzZsQHx8PPbs2YPXX38dDRo0MBZeiIi0rqzhD2252EJE9sdgMFS4dwvP14jIXIGBgRg6dKjaaRCRDjVq1Ai9e/dWOw1SgVKvFgDo3r27wEyIyBboqthSnJOTE/r374///ve/uHbtGs6ePYtPPvlE7bSIiMqlNISYv78/xwomIpszaNAgdO7cWTa2detWnDlzxiLvwyKN/WGPSZIzY8YMtVMgIp0KCwtTOwVSgVKxpVGjRqhZs6bi63ieQmSfdFtseVzLli3x7rvvqp0GEVG55IbVAQp7tfCEjYhsTXm9Wz7++GOB2RBpE7/fLeepp55CYGCg2mkQkQ6FhISonQKp4PDhw7LLOYQYEcnRRbHlhx9+wOTJkzFkyBBMmjQJGzZsUDslIiKzKfVsCQ4OFpwJkW1hzwbtevrpp9G+fXvZWEREBM6fP2/8mzedSau4b9oGR0dHTJ06Ve00iEiH3N3d0bRpU7XTIIHS0tJw+vRp2ZjSvIREZN80W2y5f/8+evXqhV69emHOnDmy6xQUFGDUqFEYM2YMVq9ejcjISKxZswbjx49H3759kZ6eLjhrIqLKSUlJwZUrV2RjnK+FqGxZWVlqp0AKyurdIklSiaFezS2asdhGREVCQ0Ph6OiodhpkY1hQJVNw3hb7cvz4ceTn58vG1OzZwuMVkXZpttjy448/4vDhw/jtt98Un+b+17/+hS1btkCSpFI/v/76K8fTJCKbU9bcBbZebOEJIVkbH7LQthEjRqB169aysY0bN+Ly5csAWDQhosqrXbs2RowYoXYaRKRDvKaxL0rztVSvXl3VXk7cD4m0S7PFlkOHDgEAXFxcMGTIkFLxnJwcLFiwAAaDAQaDAQMHDsQXX3yBt99+G25ubpAkCd9//z1OnDghOnUiIrMpDSHm6+uL+vXri03GwnhCSNaWkZGhdgpUBgcHB8XeLQUFBfj0008r1b5aRRoe22wTi3r6N336dLVTICIiG6c0X0uPHj14DkhEsjRbbCkau7tVq1Zwd3cvFf/555+RmJgIABg+fDh2796NV199FfPnz8eKFSuM661Zs0ZMwkREFqBUbOnQoQNP5ojKwZ4t2hcSEoLmzZvLxtauXYtr164JzYfHVaoIFmhsy4ABA9CwYUO10yAbwu8EIiouLy8PR48elY2ZMl+LNY8pPF4RaZdmiy1xcXEwGAxo0qSJbHzPnj3G399+++0SsTFjxqB27doAgGPHjlkvSSIiCyur2EJEZWPPFu1zcHDA+++/LxvLz8/HZ599ZvbFI2+EE1FxDg4OmDZtmtppEBGRjTp79izS0tJkY2rO1wKw2EKkZZottqSmpgIAfHx8ZONFw4z5+fmhe/fuJWIODg4IDg6GJEnCn5Aksie8sWVZGRkZuHDhgmxMD8UWnhCStbFni214/vnn0bhxY9nYqlWrEBMTIzYhsks8h7EPU6ZMgbOzs9ppEBGRDVKar8XV1VVxbmlReG1NFcHzXrE0W2wpOnDk5eWViiUnJ+P8+fMwGAyK1eSaNWsCAFJSUqyXJBGRBUVHR6OgoEA2pvbJHJEtYM8W2+Do6Ij33ntPNpaXl6fYw6885lxE8MKDKkLuuoS0rUaNGhg1apTaaRARkQ1Smq+lU6dOcHV1FZxNSSy2EGmXZostvr6+AAqHE3vcr7/+arwhqTROYtHFkKOjo3USJCKyMKUbjJ6enmjUqJHgbIhsD4sttmPcuHFo0KCB2mkQVYjSE66WwJsm1jNjxgy1UyAbwf+HRFSc0ve+KfO1WBuPV1QR3F/E0myxpWnTppAkCUePHkVWVlaJ2ObNm42/P/nkk7Kvv3fvHgCgevXq1kuSiMiClIot7du3h4ODZg/XJuMXPFkbhxGzHc7OzpgzZ47aaRBVyOPXJGQbevfurXYKZCPY25GIisTGxso+/A1oo9hCRNql2bt3/fv3B1A4DNi7775rXH7kyBFs3LgRBoMBNWvWRMeOHWVff/r0aRgMBgQFBQnJl4iospSKLXqYr4VIBPZssS0TJ05EYGCgxdrjTTL7k5SUpHYKZAP4sAcREVWU0hBiAErNG01EVJxmiy2hoaGoUqUKAOB///sf6tevj+DgYPTt2xc5OTkAgKlTp8qePF+8eNHYs6V9+/bikiYiMlN2djbOnTsnG2Oxhcg07NliW1xcXEo8UENUUb/88ovZr2Vxjogex8IcmYL7iX1QGkKsefPmHEGHiMqk2WJL3bp18fnnnxsvhG7duoXTp08jNzcXANC4cWO8/fbbsq/dtGmT8feePXtaP1kioko6f/688fj2OL0UW3hhQtbGni22Z8qUKahdu7ZF2uLNc7I2a36P5efnW61tIiKyHJ5v2Aelni28x0hE5dFssQUApk2bhh9++AFt27aFJEmQJAlubm544YUXcPDgQXh6epZ6TW5uLpYuXQoAcHJywoABA0SnTURUYUpDiLm5uaFZs2aCsyGyTezZYnvc3NzwzjvvqJ0GkUmseYMtOjraam0TERGR6ZKTk3H27FnZWEXma+HDhkT2yUntBMozcuRIjBw5Eunp6UhJSYGfnx+cnZ0V18/Ozsa6desAAFWqVIGPj4+oVImIzBYVFSW7vG3btnBy0vyh2iR8CoysjT1bbNPUqVPx6aef4v79+5Vqh8cYsmUFBQVqp0BEREQAjh49qnheWZGeLTw3JbJPNnMHz8PDAx4eHuWu5+npid69ewvIiIjIcpR6tgQHBwvOhMh2sWeLbapSpQrefvttvPXWW8Lfm08c2jZ+fkRkSTymEBGgPF9LzZo10bBhQ8HZEJGt0ewwYr/++it+/fVXXLt2zazX37hxw9gGEZGW5ebm4syZM7IxvczXQiQCe7bYrhkzZsDPz69SbfDpQSIiIiKqrLLma6lIUZYFXCL7pNliS58+fdC3b18sWrTIrNd//fXX6Nu3L/r162fhzIiILOvSpUvIzs6WjbHYQmQ69myxXR4eHvjrX/+qdhpEREREZMdyc3Nx/Phx2VhF5msh0hI+lCaWZostliBJEncoItI8pSHEnJ2d0bJlS8HZWA+f7CFrY88W2/bKK6+gWrVqaqdBNqQy3yu8RiCix/FclYhOnTqFzMxM2VhF5mshIvul62ILEZEtUCq2tG7dGi4uLoKzIbJd7Nli27y8vDBr1iyzX8+b5/aHxRYiIiKyJKX5Wtzd3dGuXTuxyRCRTdJtsaXo6VY3NzeVMyEiKptSsYVDiBFVDHu22L7XXntN7RSIVMHiDxERkfqUii2dO3eGs7Oz4GyIyBbptthSdPOyspOtEhFZU35+Pk6dOiUbY7GFqGJYbLF9vr6+8PDwMOu1vFlNRESVwWHEyBTcT/RLkiQcPnxYNsYhxIjIVE5qJwAAsbGxirHU1NQy48Xl5ubi9u3b+P7773H8+HEYDAZ28yOyIt7YqryrV68qDn0UHBwsOBvr4oUJWRuHEdOHWbNm4ZNPPlE7DZPx2EZEpA+8tiFTcD/Rr+vXr+P+/fuysR49egjOhohslSaKLfXr15e9UJUkCd999x2+++47s9seO3ZsZVIjIrIqpSHEHB0d0bp1a8HZENk29mzRh2rVqpn1Ot78sD8sdBEREZGlKPVqMRgM6Natm+BsiMhWaaLYUkTuIrkyF85jx47FCy+8UJmUiIisSqnY0qJFC1SpUkVwNkS2jT1biIiIiIjIHErztbRu3Ro+Pj6CsyEiW6WJYktgYGCpJ9Nu3rwJg8EAT09Pk55wNBgMcHNzQ/Xq1dGqVSuEhIRgwIAB1kqZiMgilIotepyvhU8gkzXl5uYiNzdX7TSIiIjIRvFclci+cb4WIrIETRRbYmJiSi1zcHAAAEyaNAlffPGF4IyIiKxPkiS7KrYQWROHECNz8Maa/bpy5YraKRAREZFGPHr0CBcvXpSNcb4WIqoIB7UTKAvH3iYiPbtx4waSk5NlYyy2EFUMiy36wQIImYr7ChEREVnCkSNHFGPm9mzheQppBfdFsTTRs0XOjRs3AADe3t4qZ0JEZB1KvVoMBgPatm0rOBsi28b5WogP6ZAt4/5LpD7ejCKyX0rztdStWxeBgYFmtcljCmkFzzPF0myxpV69emqnQERkVVFRUbLLmzRpAi8vL8HZENk29mzRD14MEBEREZFInK+FiCxF08OIERHpmVLPluDgYMGZENk+9mwhc4o0LOwQERFRRbC3gv5kZWXhjz/+kI1xvhYiqijN9mxRkp6ejpSUFOTm5pr8GnO7/BERWYskSYrFFr3O18ILE7Im9mwhtfDYRkRERGS7oqKikJOTIxtjsYWIKkrzxZaCggKsW7cO69evxx9//IFHjx5V6PUGgwF5eXlWyo6IyDxxcXGIj4+Xjem12EJkTSy26Ie5xQv2UiEiIiJr4/mG/ijN1+Ll5YXWrVsLzoaIbJ2miy0xMTEYOXIkzp49C4BfakSkH0q9WgCgffv2AjMh0gcOI0ZERERERBWlVGzp2rUrnJw0fduUiDRIs0eNjIwM9O/fHzdu3CixvEqVKqhatSqcnZ1VyoyIqPKUii0NGzaEr6+v2GQE4VA7ZE3s2UJ8KMf+8HuFiIiIKkOSJMViS8+ePSvdNpEWcF8US7PFlkWLFuHGjRswGAxwcnLCX/7yF4SGhqJZs2Zqp0ZEVGn2Nl8LkbWxZwsRWZs1L1R5EUykPv4/JLI/ly9fVpyugPO1EJE5NFts2bJli/H3devWISQkRL1kiIgsLCoqSna5nostvIAla2LPFiIiIiIiqojDhw/LLnd0dESXLl0EZ0NEeuCgdgJKrl69CoPBgA4dOrDQQkS6cvfuXdy9e1c2pudiC5E1sWcLmVPQ5TBURERERPZLaQixdu3awdPTU3A2RKQHmi22ZGdnAyg8wBGRNrGngnlOnTqlGNNzsYU3Ncma2LOFyP7o6XuF51RERETiKfVsqex8LURkvzRbbKlbty4AIDc3V+VMiIgsS2m+lieeeAL+/v6CsyHSB/ZsIbVuVjs4aPZ0mizMmvuYn5+f1domIiLL0VOh397dv38ff/75p2yM87WQnvChHrE0e3XYq1cvSJKEs2fPqp0KEZFFKRVb9Nyrhezb/fv3rf4e7NlCaqlataraKdgt0Te8rHmh2qpVK6u1TURERKUpDSEGWKbYwsIckX3SbLFlxowZcHBwwOnTpxUnkiYiskX2Wmzhyab92r59u9Xfgz1biE9skS3jdyQREZFYSsWWBg0aoHbt2oKzISK90GyxJTg4GO+99x4kScK4ceOEPBVLRGRtjx49ws2bN2Vjei+2kP3aunWr1d+DPVuI7A8LFERERGQupflaOIQYEVWGZostAPDhhx/iH//4B/7880+0bt0aixYtwu3bt9VOi4jIbKdOnVKM6b3Y8sQTT6idAqkgLS0Ne/bssfr7sNiiH+b2UGHPFrI27mNERMTvAn3IyMhQHHGiZ8+eFnkPPhRCZJ+c1E5AScOGDY2/Ozs7Iz4+Hm+++SbefPNN+Pj4wMfHx6QDl8FgwLVr16yZKhGRyZSGRaxZsyYCAgIEZyNW3bp11U6BVBAZGYns7Gyrvw+HESMiW8YbMkREROL88ccfyMvLk42xZwsRVYZmiy0xMTElLjqKfpckCUlJSUhOTi63DUmSeOFCRJqi9PRMcHAwj1ekS1u2bBHyPuzZoh88FhIRERGRNSkNIebr64sWLVoIzoaI9ESzxRag7O6Z7LpJRLZIqdii9yHEyD7l5eXhp59+EvJe7NlCPDe0P3oqzHH/JSIiEue3336TXd69e3c4OGh6xgWiCtPTObMt0Gyx5caNG2qnQERkUcnJyfjzzz9lYyy2kB4dOnQIiYmJQt6LPVvIHLzwsG0sUBAREVFFFRQU4MiRI7IxS83XQkT2S7PFlnr16qmdAhGRRZ0+fVoxxmIL6dHWrVuFvRd7thBvvBORkvr16yMmJkbtNIiISAPOnz+vODUB52shospi3zgiIkGUhhCrVq0aAgMDBWdDZF2SJAmbr0WSJPZs0RH2NiFTid5XWNCzXZMmTVI7BbIB/D9OpuB5iu1Tmq/F2dkZnTp1EpwNkfXx+00sFluIiAQpa74WnrST3kRHR+PmzZtC3iszM1PI+5AYvBggIkvjeRYRERVRmq8lODgYVapUEZwNEekNiy1ERIJERUXJLucQYqRHonq1AJyvhYjEYCGQiIjI9in1bLH0fC0s9BPZJxZbiIgESE9Px6VLl2RjLLaQHnG+FrIFvHlOREREZD/i4uIUe99zvhYisgQntRNQ0rBhQ4u0YzAYcO3aNYu0RURkrjNnzije1AsODhacDZF13bx5E6dOnRL2fuzZQubivmPb9DRnCwt/RES2gcdr26Y0hBgAdO/eXWAmRKRXmi22xMTEVPgCqviXnsFggCRJ7LZHZEU80TSd0nwt3t7eFisuE2nFtm3bhL4fe7boi8hzt7S0NGHvRURERETqUiq2NGnSBDVq1LDoe/F+CWlFamqq2inYFc0WWwDzDkxFRRYe1IhIS5SKLe3bt4eDA0d0JH0ROV8LwN4JZD4WW4iIiIjsh1KxhUOIkZ4dOXJE7RTsimaLLTdu3DBpvYKCAiQnJ+Ps2bPYtGkTduzYATc3N3z11Vfo16+flbMkIjKNUrGF87WQ3iQmJuLgwYNC35PFFjIXiy1ERERE9iE1NRWnT5+WjfXs2VNsMkSkW5otttSrV69C67dr1w4vvvgiduzYgeeffx4zZszApk2bMGLECCtlSERkmqysLJw/f142xmIL6c2OHTuQn58v9D05jBgB5g0/xn3HtokeLpjDExMREdmu48ePo6CgQDbGni1EZCm6G7vm6aefxuLFi5Gbm4vJkycjLi5O7ZSIyM6dO3cOeXl5sjF7KrZweEf7sHXrVuHvyZ4tBJh3jGGxhSqC32NERMTCu+06fPiw7HI/Pz80adLE4u/HfYW0gvuiWLortgDAiy++iMDAQKSkpGDJkiVqp0NEdi4qKkp2ubu7O5o2bSo4GyLrycrKws8//yz8fXnDnMzFYcSoIlhssV28yUBERGXN18LvCSKyFF0WWwCge/fukCQJ27ZtUzsVIrJzSvO1tGvXDo6OjoKzIbKeffv2qVL4YM8WMheLLbZNTzdGWMghIiKynry8PBw9elQ2xvlaiMiSdFts8fb2BgDExsaqnAkR2TulYos9DSFG9mHLli2yy6tWrYo6depY7X3Zs4XMxWKLbRNdbGFBhIiIyDZFR0crXjNwvhYisiTdFluuX78OAMIn6SUiKi43NxfR0dGyMRZbSE8KCgqwfft22djTTz8NZ2dnq703e7aQuXieSERERVhQJdIvpfla3NzceF1ORBaly2LLxYsXcfDgQRgMBjzxxBNqp0NEduzChQvIycmRjfGkjvTk999/x71792RjI0eOtOp7s2eLvuhpaCjSF96ItV387IjIUng8sU1K87V06tQJrq6uVnlPntOSVnBfFEt3xZY9e/ZgyJAhyM3NBQAMHjxY5YyIyJ4pDSHm4uKCFi1aCM6GyHqUhhBzdXXF4MGDkZqaarX3Zs8WfenVq5eQ92GvFiIiIiL9kyRJsWcLhxAjIktzUjsBJaGhoSavm5eXh0ePHuHMmTO4e/eucbm7uzveeusta6RHRGQSpWJLmzZtrDqsEpFoW7dulV0+YMAAeHp64tGjR1Z7b/Zs0ZeGDRsKeR/uN0RERET6d/PmTdy5c0c21rNnT6u9L3tBkVY4OOiur4WmabbYsnLlSrO6ORUdzDw8PLB582arTshLRFSeqKgo2eUcQoz05PLly7h06ZJsbMSIEVZ/f/ZsIXOw2EIVVaNGDau1zf2RiIjIOpSGEAOAbt26CcyEqLTMzEy1UyAL03RpS5KkCv94eXkhLCwM586d4xBiRKSq/Px8nD59WjbGYgvpiVKvFoPBgGHDhln9/Vls0RdRYwqnpaUJeR/Sj8aNG1ut7cTERKu1TRyrnIjInikNIdayZUtUq1ZNcDZEJYkY2pjnQWJptmfLihUrTF7X2dkZ3t7eqF+/Ppo3bw5HR0crZkZEZJrLly8rPqUQHBwsOBsi61Gar6Vr166oVauW1d+fT4QTUPGhGlhssX28cCQiItH43WN7lHq2cL4WIrIGzRZbJk2apHYKRESVojRfi5OTE1q1aiU4GyLruHfvHo4dOyYbEzGEGMCeLWQeFltIS3jzjoiIyPKSkpJw7tw52Zg152sBOGcLmYb7if5oehgxItI2fimUTanY0rJlS7i5uQnOhsg6tm/frngsGDlypJAc2LOFzMFiCxEREZG+HT16VPFahT1byF7woR6xWGwhIrISpWIL52shPVGar6Vp06Zo2rSpkBzYs4XMwWILaQkvgomIiCxPab6WgIAANGjQQHA2ROpwdXVVOwW7wmILEZEVFBQU4NSpU7IxFltIL9LS0rB3717ZmKheLQB7tuiNqJvOLLbYPhYoiIiIqCxlzdfC8wjSAhEjxrRr187q70H/R7NztsjZs2cP9u/fj5MnTyI+Ph6pqanw8vKCn58fOnTogH79+mHAgAFqp0lEhOvXryMlJUU2xmIL6cXu3buRnZ0tGxM1XwvAni1kHhbpSEt4w4eIyDZwKG3bkZOTg+PHj8vGrD1fC5GWODiwr4VINlFs2bJlC2bPno1r164prrNnzx7Mnz8fjRo1woIFC4Te5CEielxUVJTscgcHB7Rt21ZwNkTWsWXLFtnlNWvWRJcuXYTkkJubi9zcXCHvRfrCni1ERERE+nXq1ClkZWXJxkTM18LCHJmC+4n+aL609de//hUhISG4du0aJEkq9+fq1asYNWoU3nrrLbVTJyI7pjRfS7NmzeDh4SE4GyLLy83NxY4dO2Rjw4cPF/b0DHu1UJGKXqiw2EJERMXxhheRvijN1+Lu7i7kAUj2WiWyT5ru2bJgwQJ8/vnnMBgMkCQJzs7OeOqpp9CjRw/Ur18fHh4eSE9PR0xMDI4cOYKff/4Zubm5kCQJn3/+OWrUqIHZs2ervRlEZIeUii0cQoz04tChQ0hMTJSNcb4WqgzO2UKm0tNNDD1tCxERkRYozdfStWtXODs7C86GiOyFZostcXFx+OCDD4yFlhEjRuCrr75C7dq1FV9z9+5dvPrqq/jxxx8hSRI+/PBDjBs3DnXr1hWYORHZO0mSWGwh3du6davscg8PD/Tr109YHuzZQuZisYWIiIgqisVx2yBJkmKxRcQQYkU5EJH90ewwYt9++61xbMUXX3wRP/74Y5mFFgAICAhAREQEJk6cCADIysrCsmXLrJ4rEVFxsbGxSEhIkI2x2EJ6IEmS4nwtQ4YMgZubm7BcWGwhc7HYQlrCm3dERESW8+eff+LBgweysZ49ewrOhkgZi3L6o9liy+7duwEAnp6e+Oqrryr02i+//BKenp4AgF27dlk8NyKisij1agGAdu3aiUuEyErOnDmD2NhY2diIESOE5sJhxKgI52wha+PFMBERkW1Q6tXi4OCArl27CsmBD1KQKXh+qT+aLbbcuHEDBoMBffv2NRZOTOXp6Yn+/ftDkiRcv37dShkSEclTKrY0atQIPj4+grPRDp5E6IdSrxZHR0c8/fTTQnNhzxb9EXVhykKd7dPTTQw9bQsREZHaDh8+LLu8TZs28Pb2FpwNkTIR90l4nimWZostRZPu1qpVy6zX16hRAwCQlJRkqZSIiEwSFRUlu5xDiJFeKM3X0rt3b1StWlVoLrxhTuZizxbSEgcHzV6WERER2Ry152sB+LAhmYb7if5o9qy+6GbNvXv3zHr9/fv3AQC+vr6WSomIqFySJLHYQroWExOD06dPy8ZGjhwpNBeAPVvIfCy22D49PaXn4eGhdgpERES6EB8fj0uXLsnGOF8LEVmbZostDRo0gCRJ2L9/f4UvhtPT07F//34YDAY0aNDAShkSEZV29+5dxYn4goODBWdDZHnbtm1TjA0fPlxgJoXYs4XMxWILkf3QU2GOiNTFp9C178iRI4oxkT1biEzBY4r+aLbYMmjQIACFF8KzZs2q0GvfeOMNpKamAgAGDx5s6dSIiBQpzdcCAO3btxeYCZF1KM3X0r59e9SrV09sMmDPFjIfiy1ERERE+qM0X0tgYCCeeOIJYXmw0E+mYLFFfzRbbAkLC4ObmxsAYMWKFRg7dqzi0+JF4uPjMWHCBCxbtgwA4OrqipdeesnquRaXn5+P6OhoLFu2DC+//DI6duwIFxcXGAwGGAwG9OnTx+S2YmJijK8z9adRo0YVyvfixYt4++230aZNG1SrVg0eHh5o0qQJJk2ahF9++aWCW18oPj4eCxcuRPfu3REQEAA3NzfUq1cPQ4cOxerVq5Gbm1vhNnNycrB69WoMHToU9erVg5ubGwICAtC9e3csXLgQ8fHxZuVKZGlKxZZ69eqhevXqgrMhsqyEhAT8+uuvsrERI0YIzqYQe7boj4gLU0mSWGwhIiIi0iEtzNcC8CY6mYb7if44qZ2AksDAQLz33nv4+9//DoPBgE2bNmHLli0YOnQounfvjnr16sHDwwPp6emIjY3FkSNHsHPnTmRnZ0OSJBgMBrz//vtCq9ZbtmzB+PHjbeYp208++QQffvhhqeLH1atXcfXqVXz33XcYO3YswsPD4eXlZVKbP/30E0JDQ/Hw4cMSy2NjYxEbG4uff/4Z//3vf7F+/Xo0adLEpDYvXbqEsWPHlpoj4N69e7h37x6OHj2Kf/3rX1ixYgWGDh1qUptkGfxSKE2p2ML5WkgPduzYgfz8fNmYGvO1AOzZQubJyclBXl6e2mkQERERkQVlZWXhxIkTsjEOIUZaxPtq+qPZYgsAvPfee7h79y6+/vprGAwGZGdnY8uWLYpDmBTfQV955RXMmTNHUKaFkpKSrHbTx8vLCxMnTix3PX9/f5Pamzt3LubNm2f8OyAgAE8++STc3NwQFRWF8+fPAwDWr1+PR48eYceOHXByKnt3iYyMxLPPPmu8eeHu7o7+/fvD398f165dw6+//gpJknDy5En0798fx48fR+3atctsMy4uDv3798edO3cAFD7t2qtXLwQFBeHhw4fYu3cvMjMz8eDBA4wcORK7du1Cv379TPo3ILIGFltIz7Zu3Sq7vF69emjTpo3gbAqxZwuZg71aSGt4oW1d/PclIkvh0FDaduLECeTk5MjGevbsKTQX7itE9knTxRYA+PLLL9GrVy/87W9/w40bN8o9UW7QoAH++c9/YsyYMYIyLK1mzZro1KmT8Wf37t1YtGhRpdqsVq0avvzyS4vk98svv5QotLz99tv4+OOP4eLiYly2fv16hIaGIisrC5GRkfj0008xd+5cxTYfPXqE559/3lho6d+/PzZs2AA/Pz/jOmfOnMHw4cMRGxuLuLg4vPjii+UOVTZu3DhjoaVevXrYunUr2rZta4zHx8fjhRdewC+//ILc3FyMGTMG165dg6+vb4X+TYgs4eHDh7h165ZsjMUWsnVZWVnYtWuXbGzkyJGqXUywZwuZg0U6IiIiIv1RGkLM29sbrVq1EpwNUflEPBDCwp9Ymi+2AMBzzz2HMWPGIDIyEvv27cOpU6fw8OFDpKWlwdPTE/7+/mjfvj369euHQYMGqbYTPfXUU7h58yYCAwNLLD9+/Lgq+Sj529/+Zvz9hRdewIIFC0qtM3bsWCQnJ+Pll18GACxcuBAzZ84sUTwpbv78+UhKSgIABAUFYdu2bXB3dy+xTtu2bbF9+3Z07NgRubm52LdvHyIjIzFo0CDZNnfu3IlDhw4BAFxcXLB9+3a0bt26xDp+fn7YunUr2rRpg+vXryMhIQELFizAp59+ato/BpEFKfVqAVhsIdv3yy+/KN6gVmu+FoDFFj0ScR7Hni1ERPS4oof8iMh2HT58WHZ5t27d4OjoKDgbovKx963+OKidgKkMBgMGDx6M+fPnIzIyEqdOncLVq1dx6tQpREZGYv78+Rg8eLCq1bpatWqVKrRozR9//IE//vgDAODg4CBbaCkyffp0NG7cGACQmpqK1atXy66Xm5uLb775xvj3Rx99VKrQUqRNmzaYNGmS8e+vvvpK8f2LxyZNmlSq0FLEw8MDH330kfHv8PBwjsNOqlAqtgQEBKBWrVqCsyGyLKUhPKtWrYonn3xSbDLFsIcCmYPFFjIHL4aJ9Cs7Oxvbt29XOw0iqoSCggIcOXJENsb5WkirRJxf8hxWLJsptpBlFL9ZNmDAADzxxBOK6xoMhhKFkR9//FF2vQMHDhh7tXh5eSEkJKTMHCZPnmz8PTIyUvZGWVpaWokhxqZMmVJmmyEhIfD09AQAJCQk4Ndffy1zfSJrUCq2BAcHC86EyLLy8/Oxbds22dgzzzxT7pxe1sSeLWQOFlv0gReOZCoOn0HliYyMREpKitppEFElXLp0CQkJCbIx0fO1EJmK57P6o5lhxBYuXGi8YTJw4EB069atwm0cPXoUe/bsAVB40/+NN96waI56sH//fuPvffr0KXf9vn37Gn8/cuQIsrOz4erqqthmt27dSsUf17lzZ7i7uyMjIwNZWVk4evQoBgwYUGKdovcCCnuudOrUqcw23dzc0K1bN+Pnv2/fPvTr16/c7SOyJKViC4cQI1t3/PhxPHjwQDY2cuRIsck8hj1byBwsthARUXGbNm1SOwUiqiSl+VocHR3RuXNnwdkQmYbFFv3RRLFlw4YNmD17NgwGA1q1aoW3337brHbatm2L6dOn4/z58wCARo0aYdiwYZZMVTV5eXnYs2cPTpw4gfj4eLi5ucHPzw8dO3ZE586dyy1wFLl48aLxd1NuALdv3974e35+Pq5cuVJqOK+Ktuns7IzWrVsb57K5ePFiqWJL8TZbt25t0lPTHTp0MBZbir+eSITExERcv35dNsZiC9m6rVu3yi53dXVVnHdLFPZsIXOw2EJEREWysrIUe/ASPY43RrVLab6WDh06wMPDQ3A23FeI7JUmii0ffPABgMI5RNavX48qVaqY1Y67uzvWrVuHdu3aoaCgAB988IFuii23b99WvKFVtWpVzJw5E++++65xKC05Dx48MA73BQD16tUr932rVKkCf39/PHz4EEBht8zHiy2XL1+uUJsAEBgYaCy2XLp0qVTc3DaLyLVJZE2nT59WjLHYQrZOab6WgQMHlvm9IwJ7tuiPiOF+WGwhIqIiHEKMSB+UeraoNV8Liy1kCu4n+qP6nC3Hjh3DlStXYDAYMH78eLRo0aJS7bVq1Qrjx48HUHjzs6wboHqRmJiITz75BB07dsSVK1cU13v06FGJv2vWrGlS+8Un9pYb/7J4u1puk8ialIYQ8/PzQ926dQVnQ2Q5ly5dUvxuGTFihOBsSmPPFjIHi3RERFSEQ4gR2b579+7h2rVrsjG15mvhfGFkChHFFu6LYqlebCneXfe1116zSJvF21F6GtdWeHl5YfLkydiwYQMuX76MtLQ0ZGdn49atW/j+++9LDL91+fJlPPXUU8ZeKI97/ClOU3sQFV9P7knQ4su03Ka53NzcjE9u5+fnIykpyXgwTElJQU5ODgAgMzPTePMmLy+vRC+i5ORk5ObmAii8MVh0czA3NxfJycnG9ZKSkpCXlweg8EZQZmYmACAnJ8f4tJUkSUhKSkJ+fr5xW7OysgAA2dnZSE1NBQAUFBQgKSkJBQUFAIDU1FTjPDhZWVnGf6PHt8nb2xsuLi4ACv9Ni7rbOjk5wdfX15irj4+PzWyTiM/p5MmTcHFxgbe3N4DCLzNfX18EBwfDYDDY5DaZ8jm5ubkBKBxOysvLC0BhL0VfX184OBR+xXh5eRmHOrSFbdLj51SZbfrxxx/h6+trPEErOkYYDAYMHDjQ5G1yd3cHUDiUpI+Pj3E9X19f41CRHh4exmO5i4uLSduUk5Nj0r7n5uam689Jj9vk6Ogou+8BZX8/mbJNaWlpZe57jx/LHR0dAQCenp6yxz17/pzU3KYipn5Ojx8jzNmm8s6NnJ2dART2uK/ocU+vn5MWtqn4jQxzPyetbZMePyc1tik5ORm//PILgPLPI4quCU39fuLnpM9tKvrcLXke4eDgwM+pktt08OBBAPLH8i5duqi6TRW5x2Lq91PRttva56THfa+y2xQfH1/hc1hzvp/s7XNSk+rFlj/++ANAYe+F4OBgi7TZsWNHY2+IoqGqbFFAQADu3LmDFStW4Pnnn0eTJk3g4eEBFxcX1K1bF6NHj8aePXsQHh5u/I9048YN/O1vf5Ntr2jnLlL0H648xeeDKfqPpNSults0V9euXTF69GgAwMOHD7Fo0SLjAWD58uW4cOECAODgwYPYvn07ACAuLg6LFi0ytrF48WLjUxaRkZGIjIwEAFy7dg2LFy82rrdo0SLExcUBALZv3248Ybhw4QKWL18OoPDgtGjRImNRbfPmzTh27BgA4NSpU1i7di2AwgPQokWLjAe8tWvX4tSpUwAKe5Rt3rxZdptCQ0ONPcx69+5tHIqvbt26mDVrljHXl19+2Zir1rdJxOcUFRWFFi1aIDQ0FEDh/jhr1izjEGK2uE2mfE5du3YFUDi/U1GvQm9vb8yaNct4kTF+/Hjj/E+2sE16/Jwqs0379+/HrFmzjMfYomNEt27dcPHiRZO3qWgozKCgILz88svG9WbNmmXs/TVs2DD07t0bANCiRQuTtqlRo0Ym7Xtdu3bV9eekp20qehDH399fdt8Dyv5+MmWb0tLSytz3Hj+W+/v7AwBGjx4te9yzx89JC9tUtG+Y+jk9fowwZ5vKOzcKCgoCAAwaNKjCxz29fk5a2KbixRZzPyetbZMePyc1tmnTpk0YOXIkgPLPI4quCU39fuLnpO9tsuR5hLe3tya2yZY/p+joaADyx/Kim8Oit6nou6ci91hM/X66f/++TX5Oetz3KrtN27dvr/A5rDnfT/b2OalKUllgYKDk4OAgPfXUWdAcIwABAABJREFUUxZt96mnnpIMBoNUv359i7Zrjn/84x8SAAmA1Lt3b6u8x5w5c4zv4ejoKN27d6/UOr///rtxHQBSZmamSW137tzZ+JqFCxeWiru7uxvjP//8s0ltzp492/iaZ555plR86NChxvg777xjUps7d+40vsbT09Ok15Tl3LlzEgDJzc1N8vT0lM6dOyfl5eVJiYmJUkFBgSRJkpScnCxlZ2dLkiRJGRkZUlpamiRJkpSbmyslJiYa20pKSpJycnIkSZKk9PR0KT09XZIkScrJyZGSkpKM6yUmJkq5ubmSJElSWlqalJGRIUmSJGVnZ0vJycmSJElSQUGBlJiYKOXl5UmSJEmpqanGzzIrK0tKSUmRJEmS8vPzpcTERCk/P1+SJElKSUmRsrKyJEmSpMzMTCk1NVWSJKnUNnl7e0suLi4SAKlKlSqSh4eHBEBycnKSfH19jf/GPj4+UlxcnE1sk7U/p/v370sGg0FycXGRvL29JQCSwWCQfH19pY0bN9rkNpn6Obm5uUkAJFdXV8nLy0sCIDk4OEi+vr6Sg4ODBEDy8vKSXF1dpXXr1tnENunxczJ3m+7cuSM5OjpKvr6+ksFgkAAYjxELFiyo0DYVfVc4OztLPj4+xmOJr6+v5OTkJAGQPDw8pCpVqkgAJBcXl3K3KT8/36R9r+hYrtfPSW/bFB8fbzyfkdv3lL6fir77TdmmmTNnlrnvPX4sd3R0NJ5fPH7cs9fPSQvb9M4775j8OckdIyq6TWfPni333MjZ2VkCILm7u1fouHf58mXdfk5a2Kannnqq0p+T1rZJj5+TGts0YcIEk88jPD09Tf5+4uek322aMWNGueewFTmPKNr3+DlVbpu6d+8ueywPDQ1VbZv+97//mXQOa873U9G9GFv7nPS471V2m5566qkKn8NW9PtpzJgxdvM5Fd3LLfo5d+6cJJrqxRYvLy/JwcFBmjx5skXbnTx5smQwGCRvb2+LtmsOEcWW1NRU45c7AGn16tWl1rlw4UKJHS4hIcGktlu3bm18zZIlS0rFa9SoYYz/8MMPJrX52muvGV/zwgsvlIo/99xzxvjrr79uUpsRERHG19SqVcuk15RFC/9B1VB8m8v7uX//vtrpasKhQ4cU/42uXbumdnpWVZH9Zd26dWqnSxUUHh6u+Hlevny5Qm1VZF8p+ilPenq6RdsjbcjKyjJrfym6uWWKiRMnmvUe3K+0pfjDOyI+u7Nnz1psv6nsMZUqhv/XSU5GRobxBpWlf0i/ioot3Ge0Iy0tzVj4evwnPDxctby+/PJLq503yD1gTbbnwYMHxgKKNX/GjBmj9qYKo4V7uaoPI1Y0zlrR+HSWUtRe8fGc9czT09M4DiUAXLx4sdQ61atXL/F3UbfD8ty7d8/4e7Vq1cpsV8ttElnLyZMnZZf7+PigQYMGgrMhshylec+aN2+OJk2aiE1GBic5J3NZcm43sh+SgAlMiUic3bt38/uASAd+//1341Bhj+vZs6fgbIhMt2XLFuOcJaQfqhdb/Pz8AEBxUndzxcfHA7Cvm+4BAQHG34u2v7gaNWqUmHzr5s2b5baZlZVV4rNp1qxZqXWaNm1aoTYBIDY2VnibRNaiVGzp0KGDcT4lIluTmppqnDD2cSNGjBCcjbyiifuIKoo314iIaNOmTWqnQEQW8Ntvv8kur1q1Ku8NkaZFRESonQJZgerFFn9/f0iSZJzMylKio6NhMBhQo0YNi7arZcWf8PXw8JBdp3nz5sbfiyYeKkvxm8iOjo6yTzJXtM28vDycPXtW9vVyy86ePav4lIJSrnJtkuXxCc9CZRVb6P9wf7Etu3btUuwdWjSRrNpYbCFzsVcUEZF9y8zMNE6qS0S27fDhw7LLe/ToAQcH1W97EslKTExUfLiRbJvqR52OHTsCKOyVIDf0lTkuXbqEmJgYAEBwcLBF2rQFxQsdtWvXll2nb9++xt8PHDhQbpsHDx40/t69e3e4urqW2ebRo0fLHbrtjz/+MN4gc3NzQ7du3UqtU/y90tPTceLEiTLbzM7OxrFjx4x/9+vXr8z1iSwlMzMTFy5ckI2x2EK2bOvWrbLLAwIC0KlTJ8HZyOMNc30S0SOQPVuIiOzbrl27+F1AZuEDZNqSn5+Po0ePysZ69OghOBsi023bts2kB8stgSOuiKV6sWXgwIHG3z/77DOLtFm8neLt69nevXtx69Yt4999+vSRXa/408h79+5FXFxcme2uXLlS9rXF9enTBz4+PgCAlJQU/PDDDya3OXDgQNleOJ6enujfv7/sa+T88MMPSE1NBVA4dFyvXr3KXJ/IUqKjo5Gfny8bY7GFbFVubi527NghGxs+fLhmnhBjzxYyF2+wkdbwIphILA4hRqQP586dQ0pKimyM87WQlnEIMf1S/W7JkCFDULVqVUiShHXr1lW6K+9PP/2EtWvXAgB8fX0xdOhQS6QpXE5OTrk9RIo8fPgQM2bMMP7dvHlzxZu8nTp1Mj6RnJ+fj3fffVex3aVLl+LKlSsAAC8vL0ycOFF2PWdnZ0ydOtX499y5c5GZmSm77rlz50oUTl555RXF9585c6bx95UrV+L8+fOy62VkZGDu3LnGv6dNmwYnJyfFdoksSWkIMQ8PDzRu3FhwNkSW8euvvyIpKUk2ppX5WgD2bCHzsdhCRGS/OIQYkX4ozdfi4uJiHElHLY6Ojqq+P2lXSkoKdu/erXYaZCWqF1u8vLzw17/+FQBQUFCAF154wezq3o8//ogXXngBBQUFMBgMePPNN+Hl5WXJdIW5c+cOgoKCsGDBAsUJ4iVJwo4dO9CpUydcu3YNQOFTcQsXLizzqePiPX/Wrl2Ld999F7m5uSXW2bRpE2bNmmX8+6233oKfn59im++++y58fX0BAFevXsWIESPw6NGjEutER0dj2LBhxiJS3759MXjwYMU2n376aTz55JMACocJe+aZZ0rN7fPo0SOMHDkSf/75J4DCXi3vvPOOYptElqZUbGnfvj1PrshmKQ0h5unpqalhGtmzhczFYgsRkf36+eef+cAGmY09EbVFab6Wjh07ws3NTXA2JVWrVk3V9yft2rFjh8kP2JPt0cTj/2+88QY2btyIc+fOITMzE8899xxCQkLwxhtvyM7n8bhjx47hP//5DyIiIiBJEgwGA1q1aoU33nhDQPYlDR06FHfu3Cmx7N69e8bfT5w4gXbt2pV63c6dO0vNsxIXF4d33nkH77zzDurXr4/WrVvDz88Pzs7OePjwIY4fP17qvRYsWFBub57+/fvj/fffx8cffwwAmD9/PlavXo0nn3wSbm5uiIqKwrlz54zrDxw4EHPmzCmzzerVq2PDhg145plnkJeXhz179iAwMBADBgyAv78/rl27hoMHDxrHN61Tpw7WrFlTZpsAsG7dOnTu3Bl3795FTEwM2rVrh969eyMoKAgPHz7E3r17jTfbnJycsGnTJmPRh0gEpWILhxAjWyVJErZs2SIbGzJkiOzcXWrhjRJ9svZNjIKCAu47RER2TGkIserVq5d6YJCItE2pZwvnayEt27x5s9opkBVpothSpUoVbN++HV26dMGDBw8gSRIiIiIQERGBwMBAdOnSBS1btoSvry88PT2RlpaGpKQkXLhwAcePHzf2/Ci6kV+jRg1s374d7u7uwrflwoULij1RgMIbQ2fOnCm1vLyKZkxMDGJiYhTjderUwddff43hw4eblOdHH30EV1dXfPTRR8jNzcWdO3ewcePGUuu98MILCA8PN2lYrsGDB+OHH35AaGgo4uPjkZGRgW3btpVar3379li/fn2p4pKcunXrYt++fRg7dixOnz4NSZJw4MABHDhwoMR6/v7+WLFiRYl5XoisLScnB2fPnpWNsdhCtur06dMl5gArTmnuLrWwZwuZg/sNEZH9ysjIwE8//SQbGzVqFL755hvBGRGRuW7duoXY2FjZGIstpFXp6en4+eefhb5n0f1yEkMTxRYACAwMxNGjRzFmzBhERUUBKNwZbt68idjYWHz//feyryvaYYqeguzQoQO+//57BAYGikncSurVq4ezZ8/i6NGjOHLkCM6fP4/4+Hg8evQIGRkZ8Pb2RkBAADp16oQhQ4bg2WefhbOzs8ntGwwGvP/++wgJCcG3336LyMhI3Lp1C7m5uQgICEC3bt0wadIkDBgwoEJ5Dxs2DBcuXMCKFSvw448/4vr160hKSkLNmjXRsmVLjB07FmPHjq1Qrs2aNcPx48exYcMGrF+/HufPn8f9+/fh6+uLhg0bYtSoUZgyZUqZw5wRWcP58+dLDcFXhMUWslVKvVqcnJw0Nw8aeydQcaZeRHC/IS3iRTCRGGUNIfbcc8+x2EJkQ5R6tQBA9+7dBWZCZLpdu3YpznNN+qCZYgsA1K9fH0eOHMH8+fPxv//9Dw8fPgQA49Bgjyt+UVK9enW8/vrrmD17NlxcXITl/Liyep9URNFQaK1atSox+bylNW/eHP/+978t2qa/vz9mz56N2bNnW6xNFxcXTJw4ERMnTrRYm0SVpTSEmJubG5o3by44GyLLUJqvpXfv3pobppE9FMgcnK9FP0QXKFgQIbJ9SkOI+fn5oU+fPmKTIaJKUZqvpWnTpvD39xecTWmc34fkqDGEGPdFsTRVbAEAZ2dnvP/++3jrrbewefNm7Nu3D4cOHcLNmzeRl5dnXM/JyQn16tVDz5490a9fP4wZM0b1ya+IyL4oFVvatGlj0tB7RFpz48YN2aEugcoPIRYQEIC7d+9Wqo3HsYcCmYPFFiIi+1TeEGI8fyeyLUo9W3r27Ck4EyLTZGVlKX4PkX5o9mzCzc0NEyZMwIQJE4zLUlNTkZqaCi8vL3h5eamYHRERjEMePo5DiJGtkptnq4ipc4KJxJ4t+mTtJ69YbCEisk87d+5UPHd47rnnBGdDRJWRkpKC6Oho2RjnayGt2rNnD69F7IBmiy1yWGQhIq3Iy8tT7AEQHBwsOBsiy1Car6VDhw6anAuNxRYyBy9wiIjsk9IQYv7+/ujdu7fgbMhWcUhJbTh27BgKCgpkY1rp2cJ9hR6nxhBiJJ6D2gkQEdmiS5cuISsrSzbGni1kix49eoRDhw7JxkaMGCE4G9NwGDEyB4stRET2Jz09HTt27JCNcQgxItujNISYv78/GjVqJDgbovLl5OSUOZIE6QeLLUREZlCar8XZ2RktW7YUnA1R5e3YsQP5+fmyscrO12It7NlC5mCxhYjI/nAIMbIUTjStDYcPH5Zd3rNnT35GpEn79u1DUlKS2mmQACy2EBGZQanY0qpVK7i6ugrOhqjytm7dKru8fv36aN26teBsTMOeLfrEOVuIiMjSyhpCrFevXoKzIaLKyM3NxfHjx2VjnK+FtCoiIkJ2OafL0B8WW4iIzKBUbOEQYmSLMjMzsWvXLtnYyJEjNft0GHu2kDlYpCMisi9lDSEWEhLCIcSIbMyZM2cUz+e0Ml8LUXF5eXmK86MOGzbM6u+v1et5vWKxhYjMZq8TvhUUFODUqVOyMRZbyBb98ssvioULrc7XAvCmOZmHPVuIiOzLjh07kJmZKRvjEGJEtkdpvhY3Nze0b99ecDZE5fv1118RHx8vGxs9erTgbMjaWGwhIqqgq1evKt6sY7GFbJHSUzbVqlXT9NNh7NlCxTk4mHZay2ILEZF9URpCrEaNGqWGEJs0aZKIlIioEpTma+ncuTNcXFwEZ0NUPqUhxNzd3TF48GDB2ZC1sdhCRFRBSkOIOTg4oE2bNoKzIaqc/Px8bN++XTb2zDPPaHpoDfZs0Sdzu7n/5S9/MWk9Flv0Q3QPW3vt0Utky9LS0rBz507ZWEhICBwdHUssmzlzpoi0iMhMkiQp9mzR8kNiZL8KCgrwww8/yMaGDh0Kd3d3wRmRtbHYQkRUQUrFlhYtWvCLkmzOsWPH8ODBA9nYyJEjxSZTQezZQsU1bdrUpPVYbCEish8VHUKsc+fO1k6JiCrhxo0buHv3rmysR48egrMhKt+RI0dw79492RiHENMnFluIiCpIqdjCIcTIFm3dulV2uZubGwYNGiQ4m4phzxYqztQeMSy2EBHZD6UhxGrWrIknn3xScDZEVFlKvVoMBgO6desmOJuycVJyApSHEHN1dcXQoUOF5MDe2WKx2EJEVAGSJLHYYiZ+wWuPJEmK87UMHDgQHh4eYhOqgNzcXOTl5amdBtkgFlv0gzcxiKgsFR1CjMgUzs7Oaqdg15SKLS1btkTVqlUFZ0NUNkmSFIstgwcPhpeXl+CMSAQWW4iIKiAmJgZJSUmyMRZbyNZcunQJV69elY2NGDHCou9l6ZuiHEKMzMUeUURE9uGnn35CVlaWbExuCDEiU7z22mtqp2DXDh8+LLuc87WQFv3xxx+4deuWbIxDiOkXiy1ERBWg1KsFANq1aycuESILUOrVYjAYMGzYMLHJVBBvmOuXtXsrsGcLEZF9KGsIMd6YJXM1atQIXbp0UTsNu5SYmIjz58/LxjhfC2mRUq8WZ2dnodfb7A0uFostREQVoFRsadKkCbuAks1Rmq+le/fuqFGjhuBsKoY9W8hcLLboB4enJCIlqamp+Pnnn2Vjo0eP5hBiZDaDwYCdO3ciJCRE7VTszpEjRxRjLKCS1kiShM2bN8vGBgwYAF9fX6G5kDgsthARVUBUVJTscg4hRrbmzp07OH78uGxs5MiRYpMxA3u2kLlYbCEi0j8OIUbWVK1aNcWbqGQ9SvO11K5dG/Xq1ROcDVHZzpw5g+vXr8vGWKzVNxZbiIhMJEmSYs8WFlvI1mzfvl0xZun5WqyBPVvIXCy2EBHpn9IQYrVq1eJwQ0Q2Smm+lh49enCYJNIcpYKso6NjqevtFStWiEiJBGGxhYhK6Nu3r9opaNbt27fx8OFD2VhwcLDgbIgqR2m+lhYtWqBx48YWfz9Ld11mzxb9subFck5ODnJycqzWPhHpk7Ozs9opUAVwCDEi/cnOzsYff/whG+MQYqRFSvO19OnTB35+fiWWDRkyRERKJAiLLURUwuzZs9VOQbOUerUAQPv27QVmQlQ5KSkp2Ldvn2zMFnq1AOzZQuZhkY4qw5rjXXMsbW1r2bKl2ilQBWzfvh3Z2dmyMQ4hRmSbTp48qTg0IHurkdZcuHABly5dko3JDSFWs2ZNa6dEArHYQkQlDB48WO0UNEup2NKgQQNUrVpVcDZE5tu1a5fi0/22MF8LwJvmZB7uN0RE+qc0hFhAQABvyhLZKKX5Wjw8PNC2bVvB2RCVTWkIMYPBgGeffVZwNiQaiy1EVILBYCjVpZEKcb4W0outW7fKLg8ICEDHjh0FZ2Me9mwhc3C+FiIifUtJScGuXbtkY6NHj4aDA2+BENkipflaunbtCicnJ8HZEJVNaQixnj17olatWoKzse4wzVQazzSIqBQeiOWx2EJ6kJubix07dsjGRowYYTM3IdhDgczBYgsRkb5xCDEi/ZEkCUeOHJGNaXm+loEDB6qdAqng6tWriI6Olo3JDSFG+mMbd1SISJPsaXzx+/fv4/bt27IxFlvIlhw8eBDJycmyMVuZrwVgzxYyD4st+qKn8xA+6EJkGUpDiNWuXRvdu3cXnA2RaerVq6d2Cpp29epVPHz4UDam5aEBfX191U6BVKDUqwUARo0aJTATUguLLUREJlDq1QKw2EK2ZcuWLbLLvby80LdvX7HJlKG8G4/s2ULmYLGFiEi/OIQY2So3Nze1U9A0pSHEHBwc0LVrV8HZVMzcuXPVToEEUyq2dOnSBU888YTgbEgNPNsgIjKBUrGlbt26qFGjhuBsiMwjSZLifC1DhgyBq6ur4IzMx54tZA4WW4iI9Gvbtm3IycmRjXEIMSLb9dtvv8kub9u2Lby8vARnUzE+Pj5qp0ACxcTE4MSJE7Kx8oYQe++996yREqmAxRYiIhNwvhbSg5MnTyIuLk42NnLkSLHJVBKLLWQOFlv0hUNvkSh6GrJOz5SGEKtTpw66desmOBsishSlni1anq+F7NMPP/ygGDOl2DJo0CBLp0QqYLGFiMgELLaQHij1anFycsKQIUMEZ1M5HEaMzMH9Rl94A5yIiiQnJ2P37t2yMQ4hRmS7Hj58iCtXrsjGtDxfC9knpSHE2rdvj4YNG5b52ipVqmDXrl34xz/+YY3USCCecRARlSMhIQExMTGyMRZbyJYozdfSt29fm5vAkT1byBzs2UJEpE8cQoxIn5SGEANYbCFtuX37No4cOSIbGz16tEltGAwGtGrVypJpkQpYbCEiKsepU6cUYyy2kK24fv06zp49KxsbMWKE4Gwqjz0UyBwsthAR6VNZQ4iJnkDb3d1d6PsR6ZlSsaVevXqoW7eu4GyIlP3444+KsfKGELM2Dr0rFostRETlUBpCrEaNGqhdu7bgbIjMozSEGAAMHz5cYCaWwZ4tZA4WW6gyOGwZkTYlJSUhMjJSNjZmzBjhQ4jZ4kMsRFqlNF8Le7WQ1igNIdayZUs0bdpUcDakJhZbiIjKERUVJbu8Q4cOfEKAbIZSsSU4OBhPPPGE4Gwqjz1byBwstugLix9EBGhvCDEXFxfh70mkR5mZmYrX4j179hScDZGyBw8e4Ndff5WNmTqEGOkHiy1EROVQ6tnCIcTIVsTHx+PQoUOysZEjR4pNxkLYs0Xfpk2bZpV2WWwhItIfpSHE6tatiy5dugjOBvD39xf+nkR69McffyA3N1c2Zis9W7y8vNROgQTYsmULCgoKZGMVHUKMDxPZPhZbiIjKkJKSgqtXr8rGgoODBWdDZJ4dO3YonvzZ6lAX7Nmib//5z3+s0i6LLfrC3qVEpLUhxADg9ddfF/6eRHqkNF+Lj48PWrZsKTgb8/j4+KidAgmwefNm2eWNGzfWxIT3LOCIxWILEVEZTp8+rRhjz5aK4Re8epSGEGvYsKEmTv7MwZ4t+ubh4WGVYVhYbCGyT40bN67U63kOo11bt25VfPJdjSHEQkJCbHJ4ViItUiq2dOvWDY6OjoKzIZKXkJCA/fv3y8ZGjx7Nh4PsEIstRERlUBpCrGrVqqhXr57gbIgqLjMzE7t375aNjRgxwmZP/tizhczB/UZfeAOcTDVp0iS1UyArURpC7IknnhA6hFiXLl0wd+5crFu3Tth7EulZQUGBYrHFluZr4bmK/m3btg15eXmysYoOIQaw57YeOKmdABGRlpU1Xwu/BMkW7N27V7EXiK3O11JQUIDMzEy10yArs8bFKXu2ENknX19ftVMgK0hMTMSePXtkY2PGjBF2rt61a1ccPXpUyHsR2YuLFy8iKSlJNmYr87WQfVAaQqx+/fqaGQ2F967EYs8WIqIylFVsIbIFW7ZskV1evXp1dO/eXWwyFpKVlaV2CmSjWGwhItIPrQwhxptYRJZ3+PBh2eVOTk7o3Lmz4GzMx54t+pacnKxY9A8JCeH3g51isYWISEF6ejouXrwoG2OxhWxBfn4+tm/fLhsbNmwYnJxss4Mrh4KyD+zZQkREZVEaQiwwMNCmbsYSUWlKQ4h16NAB7u7ugrMhkvfTTz8hJydHNmbOEGKkDyy2EJHZ9P6URnR0NAoKCmRjLLaQLTh69CgePnwoGxsxYoTgbCxHaVg00hdLf8dIksRiC5GdCgoKUjsFsjCtDCFGRNah1LPF1oYQ0/s9E3sXEREhu7xOnTpC5w0jbWGxhYhK4cVJIaUhxLy8vNCoUSPB2RBV3NatW2WXV6lSBYMGDRKaiyUvNNizhcyRmZnJC16dEf15WvP9uG9a18CBA9VOgSxsy5YtihMSixxCDOC1E5Gl3blzBzdu3JCN9ezZU3A2RPLS0tLw888/y8ZGjRoFBwfecrdX/OSJiBQoFVvat2/PL07SPEmSFOdrGThwoE13v2fPFvtg6ZvP7NVCZL8cHR3VToEsTGkIsXr16qFTp05Cc2GxhciylIYQA9izhbTj559/VpxLlEOI2TfeLSQiUqBUbOEQYmQLLl68iD///FM2ZstDiAHs2ULm4X6jP7yBQWSfEhISsHfvXtmYGkOIsdhCZFlKxZZGjRqhZs2agrMhkqc0hFiNGjXYA8vOsdhCRCQjOzsb586dk42x2EK2QKlXi4ODA4YNGyY2GQtT6tni4uLCXmekiD1biMhcLOxpi5aGEANYbCGyNL3M1wLw+0OvMjMzsWPHDtnYs88+yx61do53JIiIZJw7d07xIo7FFrIFSvO1dO/eHf7+/oKzsSylHgoeHh6CMyFbwmKL/vAGJ5F9UhpCrH79+ujYsaPgbHgsIrKktLQ0nD59WjbG3gKkFZGRkYrXFqNHjxacTfn4PSUWiy1ERDKUhhCrUqUKmjZtKjgbooq5c+cOfv/9d9nYyJEjxSbz/1nyBE+pZ4stz0NDpXHOFiIietyjR4/wyy+/yMbUGEKMiCzr999/R35+vmyMPVtIK5SGEKtWrRp69+4tOBvSGhZbiIhkREVFyS5v27YtnJycBGdDVDHbtm1TjNn6fC0Ae7aQeVhsoeIaNGigdgpEZAatDSEG8IlhIktSGkKsevXqaNasmeBsiErLyclRvN4eMWIEnJ2dBWdEWsNiCxGRDKWeLRxCjGyB0nwtLVu2RKNGjcQmYwXs2WIf2LOFrKlXr15qp0BEZihrCLHg4GDB2RRisYXIcn777TfZ5d27d7fJ/2vs2aI/v/zyC5KTk2VjWhxCjMRjsYWI6DG5ubmIjo6Wjal1EUdkqpSUFOzbt082podeLYBysYU9W6gsLLboT2VuYNjiDRsie1fWEGLP/T/27jw8qvu8+/9Hu4RAiH0HG8yOWM0OxuxmERKLYzuuTe02btM+ycPTp4ndNHUTJ22fuO5Cf02cpInjxHUcO2wCjG1sMBjMYpDZN2MWs5gdCQHapfP7g2iK4HxHGmnmO2dm3q/r4rqkc4+O7sOMZjn3ue/vV74Str9rnk+A4KiqqtLWrVtdY6zXAq8wjRDLyMjQ5MmTLWcDL6LYAgB3OHTokMrKylxjdLbA69555x1VVFS4xsK1XkuwmcaI0dkCf0yPG0QurhYFYsvy5cuNazmEa4SYRLEFCJZ9+/bp+vXrrrFIXK9Fkh588MFwp4AgqqysNE6RmDNnjlJSUuwmBE+i2AIAdzCNEEtOTla/fv0sZwMEJi8vz3V7x44do6Yzi84WNASdLWgsijtAeJlGiN17771hvSCKYgsQHKb1WpKTkyP2c0yXLl3CnQKCaOPGjbpy5YprbP78+UH5HaF4TUlOTg76PmFGsQXAXaJl1FBDmYotWVlZvEjB08rLy/X222+7xnJychQfHzkv+/5OatLZAjd1nQin2AIAkevy5cvGManhHCEmUWwBgsW0Xsvw4cOVmppqOZvgSUhICHcKCBLTCLH09HRNnz7dcjb1N3Xq1HCnEFMi56wLAGsWLVoU7hTCylRsYYQYvG7jxo0qKipyjUVTEZXOFjQExRYADUVXU/h5dYSYRLEFCBZTZ0ukjhCrQXdLdKiqqtKyZctcY7NmzVJaWlpQfk8o3nNEcrEyElFsAXCXvn376m//9m/DnUZYVFVVadeuXa4xii3wOtP82IyMDE2cONFuMiHkr7Pll7/8pWvsq1/9aihTQgj8xV/8RVD3R7EFiG0ZGRnhTgGNYBoh1r17dw0ZMsRyNrVRbAEa79SpUzpz5oxrbNy4cZazAe62ZcsWXbhwwTUWrBFiiA4UWwDcJS4uTj/4wQ+0ZcsWPfXUU+FOx6rPPvvMeNU8xRZ4meM4xvVaZsyYEVUj8Ex/o02aNNFDDz3kekLt0UcfDXVaCLI///M/D+r+KLZEn2g6wRlNx+JV//qv/xruFNBAly5d0ocffugaC/cIMQDBYepqkaQxY8ZYzARwt2TJEtftqampmjlzpuVs4GUUWwC4iouL0+jRo/Xcc88ZbxONIxVMI8QSEhI0cOBAy9kA9Zefn6+zZ8+6xnJzc+0mE2Kmzpb09HS1b99ea9euVZ8+fSRJbdu21Y9//GNlZ2fbTBFBkJWVpdatWwdtfxRbgNj26KOPasKECeFOAw3g5RFiEsVSIBhM67X07dtXrVq1spxNcEXjeZNYU11dbRwh9tBDD6lp06aWM4KXUWwB4FesfXgwFVv69+/PnMtG4k1maJm6WpKSkjRjxgzL2YSWv84WSRo5cqQOHTqky5cv6/z580EfRwV7/s//+T9B2xfFlujD6woCkZ6erjVr1ug//uM/wp0KAmQaIdajRw8NHjzYbjIuYu3zEhAKpmJLpK/XguiwY8cO45g7RojhThRbAOA2pmILI8Tgdab1WiZOnKjmzZvbTSbE/HW23K5Vq1acAIGP6XGDyBVJxZbExMRwpwDdKso//vjjAf/cpUuXQpAN6iMSRoh5IQcgkl27dk179+51jbFeC7zANEIsKSkp6BMUeE2JfBRbAOAPqqurKbYgIh07dkz79+93jeXk5FjOJvTq6mwB3NDZgnB56aWXVFRUFO400AimBXEResuWLVN1dbVrzAsjxCROjAGNtW3bNuMFFNHQ2RJJF4fgbo7jaOnSpa6xqVOnRt2FjWg8ii0A8AcnTpwwngyh2AIvM40Qk6Q5c+ZYzMQOU7Hlzs4WRL5gfjil2IJwSktLC3cKQEQyjRC77777NGjQIMvZuKPYAjTO5s2bXbe3a9dOPXr0sJwNUNuuXbt04sQJ1xgjxOCGYgsA/IGpqyUuLs4zH+YAN6Ziy/3336/OnTtbzib0TOOg6GyBPxRb0FhcmQrYdfHiRW3YsME15pURYtKtE8IAGs7fei1e+TtH7DJ1tSQkJETlFAk0HsUWAPiD/Px81+29e/dW06ZNLWcTGbhSN/wuX75svBosNzfXbjJ+BOskZUVFhSorK11jdLbApLKyUqWlpeFOAwAQgEgYISZJ3/rWt8KdAhCxKioqtG3bNtdYNIwQQ2RzHMe4XsvEiRPVqlUryxkhElBsAYA/YL2WwD3xxBPhTiHmrV692ngiIhqvtPG3yDmdLTDx97hB5IqUq10zMjLqvA1dM8DdTCPEevbsqYEDB1rO5paEhIRa30+bNk29e/cOSy5ANNi9e7dKSkpcY+PGjbOcTWjwGh+5Dhw4oM8++8w1xggxmFBsAQDdegNkKrYMGzbMcjZA/a1YscJ1e48ePdS/f3+7yVhgWq9ForMFZowQQzgxYijysfitfRcuXNDGjRtdY+EaITZhwgStXLlS2dnZGjJkiL797W9rxYoVEVP4BbzI1KGflpamIUOGWM4GqM00QiwuLk5z584Nye/s1atXSPYLexLDnQAAeMHp06d15coV1xidLfCq4uJirV271jWWk5MTlR/+6WyJLd26dQvKfuhsiU5cKQpb2rRpE+4UYo5XR4jNnDlTM2fODNvvB6KNab2WkSNHKikpyXI2QG2mYsv48eNDdjFNVlaW7r33Xp04cSIk+0fo0dkCADKPEJOkwYMH20sECMD7779vbLv30notweSvs4ViS/RZsGBBUPbjr7OlT58+QfkdsC9Sii3RWPiOZNwfkcE0QqxXr17KysqynA2AUHAcx9jZEk3rtUTK+xXU9tlnn2nfvn2usWB9RjF59dVX+WwbwSi2AIDMxZYePXooMzPTbjJAPeXl5blub926tcaMGWM5Gzv8dSgwRiz6pKamBuWqRn/Flt/+9reN3j8AIHjOnz+vjz76yDUWrhFiAILv+PHjunDhgmssWtZrQeQydbVI0rx580L6ux944AEdPnw4pL8DoUOxBQBkLrYwQgxeVVVVpVWrVrnGsrOz71rANVqYOlvi4uKUkpJiORvY8OyzzzZ6H6ZiS0pKSlSubQQAkcyrI8QABJdphFhcXJxGjx5tORugtiVLlrhuHzVqlDp16hTy39+lS5eQ/w6EBsUWAJCUn5/vup1iC7xqy5Ytunz5smssJyfHcjb2mDpb0tPTudIVRqZiS9OmTRntAAAeYxoh1rt3bw0YMMByNgBCxTRCLCsrS82bN7ecTXgNGzZMgwYNCnca+IMTJ04YL8gN9QgxRD6KLQBi3rlz53T+/HnXGMUWeNWKFStct6elpWnq1Kl2k7HI1NnCTFv446/YAgDwDkaIAbHD1NkSTeu11Nfw4cO1e/fucKeBP1i2bJkxFuoRYg311FNPhTsF/AHFFgAxz3TFgkSxBd7kOI5xvZZp06ZFdeHBX2cLolMwOk/obAGAyLB06VLj8zIjxIDocfXqVR08eNA1FovrtfB+1FtMI8SGDh2qe++913I29fPKK68oLS0t3GlAFFsANEK0vCEwFVu6du2q1q1bW84GqNuBAwd07Ngx11hubq7dZCyjswUNYSrS0dmCQETL+x7Ay0wjxPr06cMaW0AU2bJlizEWi50t8I4zZ85o27ZtrjGvjxCj2OINFFsA+BULrfqmYgtdLXWbM2dOuFOISaaulvj4eM2ePdtyNnaZii10tsAfxohFJ4ofQHQ5d+6cNm3a5BpjhBiiWSy+npnWa+nUqZO6du1qOZvQqs/9y/ObdyxfvtwYmz9/vsVMEKkotgCIeRRbGm7atGnhTiEmmdZrGTduXNR3Y5k6FOhsiV7B+PDJGLHoxH0HRBevjxDjOQcIHtN6LePGjaPwgLAyjRDLyspSr169LGeDSESxBUBMu3z5sk6dOuUao9hSt6SkpHCnEHPOnj2rnTt3usZycnIsZ2MfnS1oCFOxhccNbOCkEVA/phFiffv29cQIMYotQHCUlZVpx44drjFGiCGcLly4YOywpKsF9UWxBUBM27VrlzFGsQVetHLlSmMsFootdLagIfx1tsTH83Y4UlHEAKLHl19+aRwr5IWuFqCxeM36H/n5+SorK3ONjRs3znI2wP9Yvny5sbBOsQX1xadLADEtPz/fdXv79u3VoUMHy9kAdTONEBswYIB69OhhN5kwoLMFDeGv2JKSkmI5GwDAnfyNEHv44YctZwMEV5MmTbRv3z799Kc/DXcqnmAqrDZt2lRZWVmWswk9uuIix9KlS1239+7d2xMdlogMFFsAxDTWa0EkuXbtmj788EPXWG5urt1kwoTOFjSEv2ILACD8TCPE+vXrxwkuRLRRo0ZpzZo1PI5vY1qvZfTo0UpMTLScDXDLlStXjJ+158+fT3ca6o1nMQAxzVRsGTZsmOVMoh9X9DTeO++8o4qKCtdYLIwQk8ydLRRb4I+pSFdTbMnKytK+fftspgQA+IOzZ88aT74yQgyRbuvWreFOwVMcxzH+vbNeC8IpLy9PVVVVrrEFCxZYzgaRjM4WADGrsLBQx44dc43R2QIvysvLc93eqVOnmCkQmk6aM0YM/tDZAgDexQgxIHYcOXJEV65ccY1F63otXHQYGUwjxO69914NHjzYbjKIaBRbAMSs3bt3G2MUW+A15eXlWrNmjWssJycnZtqa6WxBQ1BsAQDvMo0Q69+/v/r162c5GwChZOpqSUhI0MiRIy1nA9xSWFio999/3zXGCDEEimILgJhlGiHWqlUrdenSxXI2gH8bNmxQUVGRayxW1muR6GxBw1BsiU62rxTlylQg+BghBsSWzZs3u24fPHgw78sQNqtXrzaO62aEGAJFsQVAzDIVW4YOHcqVC/CcFStWuG7PyMjQhAkT7CYTRnS2xJ7Gtu07jmMsttQU6TiJjlC65557wp0C4FlLliwxxrw2QozXCqDxWK8FXmQaIda5c2cNHz7ccjaIdBRbAMSs/Px81+2MEIPXVFdXa+XKla6xWbNmKTk52XJGgQvWCQpTsYXOluiVnZ3dqJ8vKyszLnbJFZSwYcCAAXXepk2bNhYyAbzHNEJswIAB6tu3r+VsgOCKlTUV6+vChQs6evSoayyaiy0Uar3txo0bevfdd11j8+bNU3w8p84RGB4xAGLSjRs3dOTIEdcYxRZ4TX5+vs6ePesay8nJsZxNeJnGiNHZEr0aW0w0dbVIFFvgHS1btgx3CoB1Z86c0ZYtW1xjjBBDNHjmmWfCnYKnmP7epegutsDb1qxZo9LSUtcYI8TQEInhTgAAwmHPnj3GK0wotsBr8vLyXLcnJSVpxowZlrMJn+rqapWUlLjG6GyBCcUWhNPkyZPDnQLuwBXG3hFJI8SAQP385z/X1772tXCn4Smm9VruuecederUyXI2wC2mEWLt2rXTmDFjLGeDaEBnC4CYZFqvpXnz5urRo4flbAD/TOu1TJo0SRkZGXaTCSNToUWiswVmpm4oiWJLpOOkORDZTCPEsrKy1KdPH8vZAMGTlpZGocWFab2WcePGWc7Ervbt24c7BRiUlJTo7bffdo3NmzdPCQkJljNCNKDYAqDBIvkkh6nYMmTIEMXFxVnOBjD7/PPPdeDAAddYrI0QM63XItHZAjM6WxBOvKcA3J0+fVpbt251jTFCDIg+xcXFxjVTo32E2D//8z/XeZsnnnjCQia403vvvWe8MGv+/PmWs0G0oNgCwK9oPUlgKrYwQgxeYxohJklz5syxmEn4+etQoLMFJqZiS1xcnNLS0nxfA4gNkXyxUDSJxBFiPHZQX7yvuNuOHTtUWVnpGov2zpZx48ZpwIABxniXLl00atQoixmhhum1qFWrVpowYYLlbBAtKLYAiDmlpaXGTgGKLfAaU7Fl+PDhMTfb2F9nC8UWmJiKLenp6b6TIZxAi0zcb0DkMo0QGzhwoHr37m05GwChZlqvJTMzU/369bOcjV2pqalav369nn76aXXt2rVW7L777tP777+v+HhOz9pWVlamVatWucZyc3OVmBg5y5z/v//3/8KdAm4TOY8cAAiSffv2qaqqyjVGsQVecunSJeNs49zcXLvJeIC/zhbGiMHEVGxhhBgQmyjShd+pU6e0bds21xgjxIDoZPpMM2bMmJgoNLRp00a//OUvfd8XFBToypUr6tGjB51QYbJu3ToVFRW5xiJphFirVq082xEaq6L/GQ0A7mCaFdukSRP16tXLcjaA2erVq1VdXe0ai7X1WiQ6W9AwFFsQLKE6SZ+amhqS/QJeFYkjxAA0XHV1tbZs2eIai/b1WkxatGih++67j0JLGJlei5o3b67JkydbziZw7dq10/z58/Xhhx+qe/fu4U4Ht6GzBUDMMa3XMnjwYCUkJFjOBjBbsWKF6/b77rsv6tvt3Zg6W1JSUvjbhRHFFnjF//pf/0v/+Z//edf2119/PQzZAOFjGiE2aNAgT1/4RFcU6osT6LUdOHBA165dc41F+3ot8KaKigrjuO45c+YoOTnZckaBO378OBccehSdLQBijqnYMmzYMMuZAGbFxcV6//33XWM5OTkx+SHO1NnCm0z4YyrSUWyBDbefOH7iiSfu6mLp3r27pkyZYjutmMYJ8/D64osvtH37dtcYI8SA6GQaIZaUlKThw4dbzgaQNm7cqKtXr7rGImmEGLyJYguAmFJeXq59+/a5xlivBV6ydu1alZSUuMZicb0WyVxsYb0W+ENnS/Ty0klz02jH//t//6/v6xEjRmjNmjWaNm2aOnfurEcffVQbNmxQRkaGrTSBsGOEGBB7Nm/e7Lp96NChSktLs5wNYH4tatq0qaZNm2Y5G0QbxogBiCkHDx5UeXm5a4xiC7zE1Nbcpk0bjR492nI23mDqUKCzBf5QbIENf/VXf6X169fr+vXrvm1PPPHEXTO0J06cqIkTJ9pOD7fxUpEuFplGiA0ePFg9e/a0nA0AG0ydLYwQQzhUVVVp+fLlrrFZs2ZRAESjUWwBEFNMI8RSUlLUt29fy9kA7iorK7Vq1SrXWHZ2dsyuT0JnCxrCVGy5/XEzZ84c7d+/31ZKCBIvjVMcPny4Nm3apFdffVWnTp3SlClT9Mwzz4Q7LcBTTp48qU8++cQ1xggxIDqdPXtWJ0+edI2NHTvWbjKAbnVaXbx40TUWSSPEvPQ+GLVRbAEQU0zFloEDByopKclyNoC7LVu26MqVK64x06iaWEBnCxqiPp0tf/7nf65//Md/tJUSgqRZs2bhTqGWQYMG6d/+7d/CnQbgWYwQQ6zgJOj/MHW1SBRbEB5Lly513Z6WlqYZM2ZYzgbRiDVbAMSU/Px81+2MEIOXrFixwnV7kyZNNHXqVLvJeAidLWiI+hRbunTpon/913+1lRKCpGXLluFOARGIMWLh8/vf/951+5AhQ3TfffdZzgaADab1Wnr27Km2bdtazgaxrrq6WsuWLXONPfTQQ4wZRlBQbAmyqqoq7d27V7/85S/19a9/Xffff7+Sk5MVFxenuLg4Pfjggw3e97p16/Tkk0+qV69eSk9PV8uWLTVw4EB961vf0uHDhxu0z0OHDulb3/qWBg4cqJYtWyo9PV29evXSwoULtW7dugbt8/Lly3rppZc0ZswYdejQQampqerWrZtmzpyp1157TRUVFQHvs7y8XK+99ppmzpypbt26KTU1VR06dNCYMWP00ksv6fLlyw3KFbGlsrJSe/bscY1RbIFXOI5jXK9l2rRpMT1Dls4WNER912z5P//n/wS8744dOzYoJwCINYwQA2IT67XAS7Zv366zZ8+6xhYsWGA5G3u40MQuxogF0YoVK/T4448br7xtqKKiIj3zzDN68803a20vLi5WQUGB9u3bp8WLF+v73/++/uZv/qbe+/2Hf/gHff/737+r+HH06FEdPXpUv/nNb/TYY4/pZz/7Wb3HNKxevVpPP/20Ll26VGv7qVOndOrUKb3zzjv693//d73xxhvq1atXvfZ5+PBhPfbYY9q9e3et7efPn9f58+e1detW/fM//7N+9atfaebMmfXaJ2LTkSNHVFJS4hqj2BJ6vMDXz/79+3X8+HHXWG5urt1kPMb0+kqxBf6YinTBuHLt7/7u7xq9D4TGE088oddeey3caQD4A1NXi8QIMUSf2bNnhzsFT7h+/fpd53FqMEIM4WAaIZacnBwVf7eMMPQGOluCqLCwMOiFloqKCs2dO7dWoWXAgAF68skn9ZWvfEUdOnTw3e473/mOXnjhhXrt9/nnn9d3v/tdX6GlQ4cO+spXvqInn3xS/fv3993ujTfe0IIFC1RZWVnnPteuXau5c+f6Ci1NmjRRdna2nn76aU2YMMH3R//pp59q8uTJ+vLLL+vc55kzZzR58mTfC3RcXJwmTJigp59+WtnZ2b4rvC9evKjc3FytX7++XseP2GRaryUxMVFZWVmWswHcmbpa4uPjNWvWLMvZeIvppDljxKJfv379Gvyz9e1sqcs//dM/1fr+4Ycf1p/8yZ80OC80nr8i/je/+U21atXK2u8D4J+p2DJ06FD16NHDcjYNw3MA7vS9733Pdfu3vvUtu4l41Pbt21VdXe0ao7MFtjmOY1w7bOrUqcrIyLCcEaIVxZYQaNeunWbPnq3vf//7WrNmjf73//7fDd7XD37wA18BITU1VW+88Yb27dunX//613rzzTd18uTJWi/k3/ve97Rx40a/+1y3bp1+8IMf+L7/1re+pZMnT+rNN9/Ur3/9a+3fv1+//e1vlZqaKulWEaWuRWOvXLmiRx55xFeUmTx5sr744gutXLlSv/zlL7Vhwwbt2rVLXbt2lXSriPLEE0/Uefxf/epXfUWZbt26adeuXdqwYYN++ctfauXKlTp16pQmT54s6VbB6eGHH1ZhYWGd+0VsMhVbBgwYoJSUFMvZAO5M67WMHz9erVu3tpuMx9DZErtuf98SqGAVW5577jkdO3ZMr732mj799FP97ne/U1JSUoPzQmgNGDDAOCcegF0nTpzQjh07XGORNEKMYgvu9I1vfENDhgypte1//a//dde2WGUaIda6det6TzoBguXTTz/VF1984RqLxBFidLF4F8WWIHrooYf0xRdf6Pz581q1apWef/55zZgxQ5mZmQ3a38WLF2st1vrv//7vevTRR2vdJjk5WS+++KIeeeQRSbfeANY1Suz2+KOPPqoXX3xRycnJtW7z2GOP6d/+7d9839e1LsqPfvQjX5GjR48eWrly5V0nBQcNGqRVq1b5TkysX79ea9euNe5zzZo12rRpk+84V61apUGDBtW6TevWrZWXl6fu3btLkq5evaoXX3zRuE8EV6R94DAVWxghBq84ffq08vPzXWM5OTmWs/EeOltiV3Z2tubOndugnw1WsUWSunfvrj/6oz/SkCFDFB/P22iv69Onj5588slwpwGPibT3r9GAEWKIVi1bttSGDRv029/+Vn/3d3+ntWvX6j/+4z84CfoHposexo4dy/9RI/FaFjjTCLHExETNmTPHcjaIZnxKDKL27dv7OjeC4de//rXvxFKvXr30zDPPGG/74osv+j70b926Vbt27XK93Y4dO3xXFcXHx/stTPzZn/2ZevbsKenWrE3T3OuKigr913/9l+/7F154wXiV8cCBA7Vw4ULf9z/+8Y+Nv//22MKFC41jntLT02uNT/vZz35Wr7FnqJ9oeRNUXV1t/Lug2AKvWLlypTEW6cWWYHwgoLMldiUlJenNN9/0+zfipqqqyvi4oUiHYIqW90tAKJiKLcOGDfNdNAdEqoyMDD322GN64YUXNHXqVF4P/qCyslLbtm1zjbFeC2zzN0Js4sSJatmypeWMEM0otnjY7aNk/viP/9jvi3bXrl01adIk3/fLly+vc59TpkxRly5djPuMi4urVRgx7XPDhg2+rpZmzZpp/vz5xn1Kt46lxtq1a12vVL5x44bWrVvn+/6pp57yu8/58+f7rlC9evWqPvroI7+3R+w5duyYrl+/7hqj2AKvMK3XkpWVxckI0dkS65KSkpSdna3OnTvX+2f8raXXkM4WRA+uCAXsOH78uHbu3Okai6QRYgACs3fvXmN3McUW2LZ//34dPXrUNRaJI8TgbRRbPKq0tLTWVQAPPvhgnT8zceJE39emheI//PDDBu9zy5YtKisr87vP0aNH17n2xYgRI3xXIZeWlmrr1q133eb235Wenq7hw4f73WdqaqpGjx7t+950/IhdptFM8fHxGjhwoOVsgLsVFhbWej69XW5urt1kPIrOFgTK9CFfotgCxKqGFNoozjUcI8SA2GRaryUlJUXDhg2znE3kmDVrVrhTiEqmEWLx8fF81kbQUWzxqCNHjqi6ulrSrQ6T+iywdvvV+YcOHXK9ze3b63M1/+2/t6qqSp999lmj95mUlFRrJJhbrrdvy8rKUmJiYp37rc/xI3aZ1mvp06cPV8XDE9555x3jCMRIHyEWLIyDQqAotgBAeJmKLffff7/uvfdey9kAsMW0Xsvw4cPrvEA3ln3jG9/wrXOM4DGNEHvggQfUtm1by9kg2lFs8agjR474vm7btq1SU1Pr/Jnb14u5evWqLl26VCt+8eJF37gvSerWrVud+0xLS1ObNm183x8+fNhvrvXZ55252tonYpup2MIIMXjF7WMeb9e5c2cep39gGiNGZwtMTI8Zyb3Y0rFjR9fbfvWrXw1aTrCL2fm4E10q9hw7dszYXc4IMSB6OY5jLLaMGzfOcjaRZfr06XrnnXf0la98hXVEguTw4cM6cOCAa6yuZRC8jPe43kWxxaOuXLni+7pdu3b1+pn27dvX+v7q1avGfTZ0v3fu8879enmfiF2O4xiLLbQwwwvKysr0zjvvuMZycnJ4I/UHdLYgUP46W9weN88//7zrbf/3//7fQcsJwcNJc8Db/I0QY0Y+EL2++OILffnll64x1mup2+TJk/Xmm28aC1YIjGmEmCTNnTvXYiaIFRRbPOr2kwNpaWn1+pk7b3fnCYY7v2/Ift1OWjQ2V1v7bKjU1FTf1a9VVVUqLCz0fbgvKipSeXm5JKmkpMR3BW1lZWWtLqJr166poqJC0q2ThTUnDCsqKnTt2jXf7QoLC31jhG7evKmSkhJJUnl5uYqKiiTdOrFQWFioqqoq37GWlpZKunXCtmYR+OrqahUWFvrG0V2/ft23Dk5paanv/6iuY6rJITExUZmZmb5cmzdv7svV68d08OBB332TlpbmO8GWmJiovn37RsX9FO7HXkpKipo1aybp1tzTzMxMxcffeolp1qyZr1U8ko7J5v307rvv+n5vkyZNfJ0aSUlJmjFjRkQe0533U02HZlJSkpo3b+67XWZmpm9UZHp6uu+5PDk5udYxXbx40ZdD06ZNfftLSUlRQkJCWI4pGh57kXpMdz6X3/76dPsxFRQU1Pp7qnnsJScnq7i4+K5jevrpp7VgwQJlZGRIunXF2N///d/7CvPcT946pprfGRcXp8zMTN9zQdOmTX25xsXFGV+fQvnY437y7jHduHHDN6Llztdc0+tTamqqp4/Jq/fT73//eyUkJCgzM9N34UhGRoZGjRqle++917PH5PYeNjU1VcnJyVF5P3FM9o6pqqqq1nvYmtenuLi4iD0mt/vp448/Nn4mHDNmTEQek2T/sVezb7fXp0g9pnDcT2+//Xat5/Ka83tjx45Venq6p4/J3zkWt/up5na3v+bWvHZ55ZhsPfbCiWKLR9U8ECX5/jDqcufcy5oHvds+G7rfO/d55369vM+GGjVqlO/Kq0uXLmnx4sW+J4BXXnlFBw8elCRt3LhRq1atkiSdOXNGixcv9u3j5Zdf1rFjxyRJa9eu1dq1ayXdaq1/+eWXfbdbvHixzpw5I0latWqVNm7cKOlWseCVV16RdOvJafHixb4xcUuWLNG2bdskSbt27dLrr78u6dYT0OLFi31PeK+//rp27dolSdq2bZtvZmVdx1Sz786dO2vRokW+XL/+9a/r7NmzEXFMeXl56tevnyRpwoQJys7O9h1Tze+J9Psp3I+9IUOG6PHHH5d06wV90aJFvpOVjz/+uG/9p0g6Jpv306effqoePXpIkqZNm6Zp06ZJurVm1b59+yLymO68n8aMGSNJ6tGjh77+9a/7brdo0SJ17txZkpSdna0JEyZIkvr161frmF5++WXfWMsFCxZo1KhRkm499vbu3RuWY4qGx16kHtOdz+W3vz7dfkzHjx/3/T3d/thLT093PaakpCT9zd/8jf72b/9Wv/jFL7Rr1y7FxcVxP3n0mGo+FKakpGjRokW1niN27Ngh6daHUdPrUygfe9xP3j2mpUuXur7m+nt9GjVqlKePyYv302uvvaZPP/1Ubdq00aJFi3yf1Z5++mnNmTPH08fk9h521KhRGjRoUNTdT9H42PPyMRUWFtZ6D1vz+tSkSZOIPSa3+2nz5s2unwkfeughtWzZMiKPSbL/2NuzZ48k99enixcvRuQx2b6fjh8/rkGDBtV6Lq85v5eTk+P5Y/J3jqXmM/Dt91PLli3ves2tORfmlWOy9dgLKwch9/d///eOJEeSM2HChHr9zIsvvuj7mZEjR9brZ4qLi30/I8nZuXNnrfgnn3xSK15SUlKv/Y4YMcL3My+99NJd8SZNmvji77zzTr32+e1vf9v3M7Nnz74rPnPmTF/82Wefrdc+16xZ4/uZpk2b1utn/Nm/f78jyUlNTXWaNm3q7N+/36msrHQKCgqc6upqx3Ec59q1a05ZWZnjOLf+/2/cuOE4juNUVFQ4BQUFvn0VFhY65eXljuM4zs2bN52bN286juM45eXlTmFhoe92BQUFTkVFheM4jnPjxg2nuLjYcRzHKSsrc65du+Y4juNUV1c7BQUFTmVlpeM4jnP9+nXffVlaWuoUFRU5juM4VVVVTkFBgVNVVeU4juMUFRU5paWljuM4TklJiXP9+nXHcZw6j6nm/yExMdHJzMz0/R83b97cOXbsWEQc09/+7d86ycnJjiQnLS3NSU9PdyQ5vXv3jpr7KZyPPUlOSkqK06xZM0eSEx8f72RmZjrx8fGOJKdZs2ZOSkqK8+qrr0bMMdm8n6qqqpyePXs6SUlJjiSnSZMmvufVxx9/PCKPye1+6tq1qyPJSUpKcpo3b+57LsnMzHQSExMdSU56erqTlpbmSHKSk5NrHdOhQ4echIQE33N8amqq77G3a9eusBxTpD/2IvWYOnfuXOu5vOb16Te/+c1dx/SLX/zC9/d0+2OvS5cunjqmaLyfbBzTP/zDPziSnLi4OCczM7PWc0TNPv74j//Y9fVp4cKFAR/Tli1bXB97Ne+ruZ8i45gOHz7s+pqblJTkjBs3zvX1qX///p4+Ji/eTzV/nwkJCU5mZqYTFxfnSHIyMjKczz77zNPHdOd72JrPhOPHj4+6+ykaH3tePqYf//jHtd7D1rw+1XwujcRjcrufsrKyXD8T/tmf/VnEHpPj2H/s7dq1y/j56fTp0xF5TLbvpxdffPGu5/KmTZs6kpzPP//c88fk7xxLzT5uv5/atGlz12tucnKy8/vf/94zxxTqx17NOcyaf/v373dso9hiQUOKLT/5yU98PzNw4MB6/cyVK1dqPaAOHz5cK37w4MFa8atXr9Zrv1lZWb6f+elPf3pXvG3btr74smXL6rXPb3zjG76fefTRR++Kf+UrX/HFv/nNb9Zrn0uXLvX9TPv27ev1M/544Q/UC44dO1br/+H2f1988UW406uXGTNmuOb/yCOPhDu1qGB6fNz579VXXw13qp60fft24//Zm2++Ge70gub214r6/rvdZ599ZrzdqVOnwnRUCIfOnTu7Pg5qii23+//+v//P9bZ9+/YNQ+YItn/8x380Pi/UfFhbuHCha3zhwoUB/74tW7YYf199L2JC+J0+fdp4P95+kdnt/3r06BHutCPOkCFDjP/HXmd6fNT3IkjA5Kc//anrY6tXr17hTi1oCgoKfCd67/z361//OtzpRZQ7z+Hd/u/cuXPhTi8ijBw50vX/7/777w93avXi77NyTZHidq1atXK97e9///swZB8eXjiXyxgxj2rVqpXv6wsXLtTrZ86fP1/r+5YtWxr32dD93rnPO/fr5X0iNjmOo/z8fNfY0KFDLWcD3G3FihWu25OTk/XQQw/ZTcbDamaxunFb6ByQzGu41cxqBoKlZjY2Ihv3Y3AcPXrUNwrkTl/5ylcsZwPApq1bt/rWVrjTuHHjLGeDWHb69Glt377dNTZ//nzL2QRfzfot8B7uGY/q3bu37+uLFy/etd6Km1OnTvm+btmypW9udY22bdvWWsTziy++qHOfpaWlvjl7ktSnTx+/udZnn3fmamufiE1ffvmlb57pnSi2wAvy8vJct0+aNMk3kxXyLdLnpmZxY+BOpiIdxRYACJ3f//73xljNrHwA0enjjz923d6+fXvde++9lrNBLFu2bJkxFunFlvvuuy/cKcAPii0e1bt3b1+V0nEc7d69u86f+fTTT31f9+3b1/U2t283XW1k2mdCQoJ69erV6H1WVlbWWvDZLdfbt+3bt0+VlZUB5Wo6fsSe2x8Xd6LYgnA7evSob3G3O+Xm5tpNxuNMJ83j4+N9CwACd6KzJbp1797dGONqP5iYrrhG8JiKLSNHjlS3bt0sZxM8PHaAum3evNl1+9ixY+kehFVLly513T5w4ED17NnTcjbB1bZt23CnAD/4FOJRqampGjVqlO/7DRs21PkzGzdu9H09adIk19tMnDixwfscM2aM6wmt2/e5detWlZeX+93njh07fFcop6amavTo0Xfd5vbfdfPmTe3cudPvPsvKyrRt2zbf96bjR+wxFVvuuecexs0h7ExdLZKUnZ1tMRPvM3W2NGnShA9uMKLYEt1yc3NdO9vGjx+vpKSkMGSESMfrSeN99tlnxgsFGSEGRLfy8nJ98sknrjFGiAWO16SGO3/+vLHwF+ldLfA+ii0edvtVza+++qrf254+fVrr1q1z/VnTPj/44AOdOXPG735v/72mfT744INq3ry5JKmoqMhvq96d+5w6darrrP2mTZtq8uTJrj/jZtmyZbp+/bqkWyPUHnjgAb+3R+wwFVvoaoEXmIotI0eOVMeOHS1n422mYgvrtcAfii3RLSUlRf/0T/9Ua1taWpp+8IMfhCkjRDo6FxqPEWJA7Nq1a5dKSkpcY2PHjrWcDWLZ8uXLja/pvBYh1Ci2eNjChQt9J5GOHDmiX/ziF8bbPvvss6qqqpIkjR492ngiefjw4Ro+fLgkqaqqSs8995xxnz//+c/12WefSZKaNWumJ5980vV2SUlJ+trXvub7/vnnnze+wO7fv79W4eQv//Ivjb//L/7iL3xfv/rqqzpw4IDr7YqLi/X888/7vn/mmWeUmJho3C+CJxI+kFJsgVddvHjRONM4JyfHcjbeZxojxnot8MdUbKFIFz2++c1v6v3339c3vvENffe739X27ds1YcKEcKcFD+vUqZNat2591/a4uDjNnTs3DBlFF1OxZdSoUeratavlbADYZPps06RJEw0ePNhuMohpphFiffr0Ub9+/Sxng1hDscXD2rZtq7/6q7/yff/Nb35Tb731Vq3bVFRU6LnnntMbb7zh23bnFX53uj3++uuv67nnnlNFRUWt27z11ltatGiR7/u//uu/dv1QUuO5555TZmampFtrEOTk5OjKlSu1brN3715lZ2f7xoxNnDhR06dPN+5z1qxZGj9+vKRbY8Jmz56tvXv31rrNlStXlJubq88//1zSra6WZ5991rhPBC6SW1cvXrxo7N6i2IJwW716tbFgyXotd6OzBQ1BZ0tsmDJliv7jP/5DP/jBD5SVlRXudOBx8fHxevjhh+/aPnXqVLVq1SoMGUWPI0eOaM+ePa6xaBghFgkXmgHhZBrbNHLkSMZ7wprLly8bl01ghBhs4PL/IJs5c6a+/PLLWtvOnz/v+3rnzp2uFf01a9a4joz5u7/7O3388cdav369SkpK9Mgjj+iHP/yhhg4dqtLSUn300Uc6d+6c7/bf//7367yab/Lkyfrud7+rH/7wh5KkH/3oR3rttdc0fvx4paamKj8/X/v37/fdfurUqfrOd77jd5+tWrXS7373O82ePVuVlZV6//331bVrV02ZMkVt2rTRsWPHtHHjRt8b1E6dOum///u//e5Tkn77299qxIgROnfunE6ePKnBgwdrwoQJ6tGjhy5duqQPPvjAdwIuMTFRb731lq/oA5i6WiSKLeHAB9TaVqxY4bq9Z8+e6tOnj91kIgCdLWgIii0A3CxevFjl5eX63e9+p4qKCj300EP6zW9+43cEFurGCDEgdjmOY+xsYb0W2JSXl+eb/HMnXotgA8WWIDt48KC++OILY/zmzZuuV/uYFpVPSkrSsmXL9Mwzz/i6Wvbt26d9+/bddbvvfe97dRZFarzwwgtKSUnRCy+8oIqKCn355Zd6880377rdo48+qp/97Gf1Gss1ffp0LVu2TE8//bQuX76s4uJirVy58q7bDRkyRG+88Ua91iPo3Lmz1q9fr8cee0y7d++W4zjasGHDXVXqNm3a6Fe/+lWtdV4AU7GlY8eOateuneVsgP9x8+ZNvf/++66x3NzciO4oCxU6W9AQpiIdxRY0BBcNRI+kpCT94he/0E9+8hNVVlZSuA8SU7Fl9OjR6tKli+VsANj0+eef6+LFi64x1muBTUuWLHHd3r17dw0aNMhyNohFFFsiQPPmzfXmm2/qa1/7mn79619r69atOnfunJKSktSlSxdNnz5df/Inf6K+ffvWe59xcXH67ne/q/nz5+sXv/iF1q5dq9OnT6uiokIdOnTQ6NGjtXDhQk2ZMiWgXLOzs3Xw4EH96le/0vLly3X8+HEVFhaqXbt26t+/vx577DE99thjAbWQ9unTR9u3b9fvfvc7vfHGGzpw4IAuXLigzMxMde/eXfPmzdNTTz3ld8wZYhPrtcCr1q5dq9LSUtcY67W4o7MFDUFnCwB/kpOTlZycHO40osLhw4fvGvlcIxpGiAHwz9TVEh8fr9GjR1vOBrGqsLBQ69atc40tWLAgai5q5AIgb6PYEmQnT54M2b6nTJkScPGjLn379tW//Mu/BHWfbdq00be//W19+9vfDto+k5OT9eSTT+rJJ58M2j4R/UzFlmHDhlnOBKgtLy/PdXvbtm01atQoy9nY0dg3tqbOFoot8IdiC2yJlg/vQEMxQgyIbaZiS1ZWljIyMixng1i1atWqu9akrsF6LbAlPtwJAEAoFBQU6MSJE64xOlsQTpWVlVq1apVrLDs7WwkJCZYzsqOxV9+YOlsYIwZ/KLYAgB2mYsuYMWPUuXNny9kAsG3z5s2u21mvBTaZRoh16dJFw4cPt5wNYhXFFgBRadeuXcYYxRaE08cff6yrV6+6xnJzc+0mE0HobEGgysvLjVe2UaQDgOA5dOjQXWuK1mCEGPA/orUL8vLlyzp8+LBrjPVaYMv169f13nvvucbmz58ftX9/8B6KLQCikmmEWJs2bdSpUyfL2QD/Y8WKFa7bmzRposmTJ9tNJoLQ2YJAmbpaJDpbACCY/I0QY2wLEP22bNlijFFsgS1r1qxRWVmZayzaXosoHHkbxRYAUclUbBk6dCgvTAgbx3GM67VMnz5daWlpljOKHHS2IFAUWwDADlOxZezYsYwQA2KAab2WLl26qGvXrpazQawyjRDr0KGDxowZYzkbxDKKLQCiUn5+vut2RoghnPbt22dcS4gRYv6Zii10tsDE1A0lUWwBgGA5ePCg9u/f7xpjhBgQG0zrtdDVAluKi4u1Zs0a19jcuXMVH8/pb9jDow1A1CkqKtJnn33mGqPYgnAydbUkJCRo1qxZlrOJLKYT53S2wITOFgAIvVgaIfb444+HOwXAc0pLS7Vz507X2Lhx4yxng1j17rvvGi/Oi7bXIngfxRYAUWfPnj3G2LBhwyxmAtRmWq9l/PjxatWqld1kIgydLQiUv2ILRToACA5TsWXcuHERu07i3/7t3961LSEhgWIL4GLnzp0qLy93jdHZAluWLl3qur1169Z64IEHLGeDWEexBUDUMa3XkpmZqXvuucduMsAfnD592vjYzMnJsZxN5KGzBYEyFVvS09MZJYAGcRwn3CkAnnLgwAEdOHDANRbJI8S+853vaMqUKb7vExIS9MYbb6h169ZhzArwJtN6Lc2aNVNWVpblbBCLysrKtGrVKtdYbm6uEhMTLWeEWMcjDkDUMZ3QHjp0qOLi4ixnA9xiGiEmUWypDzpbECh/xRYAQOOZulri4uIiemxLkyZN9N5772nv3r06ceKExo8fT6EFMDCt1zJ69GglJCRYzgax6P3339f169ddY5H8WoTIRbEFQNTxV2wBwsVUbBk4cKDuvfdey9lElurqapWUlLjG6GyBianYwnotABAc/kaIdezY0XI2wRUfH6/Bgwdr8ODB4U4F8Kzq6mpt2bLFNcZ6LbDFNEIsMzNTkyZNspwNwBgxAI3gxXEaxcXFOnjwoGuMYgvCpbCwUBs2bHCN5ebmWs0lEpkKLRLFFphRbIFNdM4i1hw4cMD4njuSR4gBqL8jR47o6tWrrjHWa4ENFRUVxosa58yZo+TkZMsZARRbAESZvXv3qrq62jVGsQXhsmbNGlVWVrrGGCFWN9N6LRIjoWBGsQUAQuett95y3R7pI8QA1J9phFhCQoJGjhxpORvEog8//FAFBQWusQULFljOBriFYgsAvyLtSk3TCLGmTZuqZ8+elrMBblmxYoXr9i5dumjIkCF2k4lApvVaJDpbYGYq0lFsAYDGcRzHOEJs/Pjx6tChg+WMAITDxx9/7Lp9yJAhXBAFK0wjxJo2baqpU6dazga4hWILgKhiKrYMHjxY8fE85YXCwoULw52Cp5WVlemdd95xjeXk5ERcQTMc6GxBfdw52pLOFgAIjQMHDujQoUOuMUaIAbHD1NnCCDHYUFVVpeXLl7vGZs+erdTUVMsZAbdw5hFAVDEVW4YNG2Y5k9jx4osvasCAAeFOw7PWr19vPOnLei31Q2cLGoJiCwCEBiPEAJw/f17Hjh1zjY0bN85yNohFmzZt0qVLl1xjjBBDOFFsARA1ysrKtH//ftcY67WETtu2bbVjxw6tW7dOv/3tb5WSkhLulDzFtGBfZmamHnjgAcvZRCaKLWgIii0AEHz+Rog98MADat++veWMAISDaYSYRGcL7DCNEEtLS9NDDz1kORvgf1BsARA1Dhw4oIqKCtcYxZbQSk1N1aRJk/TYY4/xIfs21dXVxmLLrFmzlJSUZDmjyGQaI5aSkqKEhATL2SBSmIotjJ4DgIbbv3+/Dh8+7BpjhBgQO0zFlu7du7NuE0KuurraWGyZMWNG1LzfN13I+tRTT1nOBIGg2AIgaphGiKWmpqpPnz6WswGkHTt26Pz5866xnJwcy9lELlNnS7S8iUZo0NmCYLtzXSAgFvkbITZv3jzL2QAIF9ZrQTht27ZN586dc41F0wixZ5999q5tKSkpevjhh8OQDeqLYguAqGEqtgwaNEiJiYmWs8GdYvEk1YoVK1y3Jycn09ocAFNnCyPE4A/FFgAILn8jxCZMmEB3MxAjbt68qV27drnGWK8FNixZssR1e3JysmbNmmU5m9D5zne+ozlz5vi+T0tL04oVK9S8efMwZoW6cPYRQNTIz8933c4IMbvi4uLCnYJnmEaITZ48Wc2aNbOcTeSiswUNYSrSUWwBgIbZt2+fjhw54hpjhBgQOz755BNVVla6xuhsQag5jqNly5a5xqZPn66MjAzLGYVOSkqK8vLydOzYMZ08eVKjR4/mgsMIQLEFQFSoqKjQnj17XGMUWxAOn332mQ4dOuQay83NtZtMhKOzBQ1BZwts4kIDxALTCLH4+HhGiAExxLReS4sWLdS3b1/L2SDW5Ofn64svvnCNzZ8/33I2dvTo0UM9evQIdxqoJ8aIAYgKhw8fVllZmWts2LBhlrMBzF0tkpSdnW0xk8hn6myh2AJ/KLYAQPDUNUKsXbt2ljMCEC6mYsuYMWMUH89pRoSWaYRYYmJirZFbQLjwLAggKpjWa0lKSlL//v0tZwOY12sZNWqUOnToYDcZD2jMmj2mzhbGiMGkurqaMWIAEER79+7VZ5995hpjhBgQO6qqqrRlyxbXGOu1INQcx9HSpUtdY5MnT1aLFi0sZwTcjWILgKhgKrZkZWUpOTnZcjaIdRcuXNDWrVtdYzk5OZaziXx0tiBQJSUlxgIfRToACBwjxABI0oEDB1RUVOQaY70WhNq+ffv0+eefu8aidYQYIg/FFgBRwVRsYb0WhMOqVauMJ3pZryVwdLYgUKYRYhKdLQAQKH8jxB588EG1bdvWckYAwmXz5s2u25OSknT//fdbzgaxxjRCLD4+ns/Z8AyKLQAiXnV1tXbt2uUao9iCcDCt19KrVy/16dPHcjaRj84WBIpiCwAEz549e3T06FHXGCPEgNhiWq/l/vvvV1pamuVsEGtMI8QmTJigNm3aWM4GcEexBUDE++yzz4xXvlNsgW03btzQ+++/7xrjapuGobMFgTI9ZiSKLQAQKH8jxObOnWs5GwDhZOpsYYQYQu3QoUM6ePCga4wRYvASii0AGqwxC14Hk2mEWEJCggYOHGg5G8S6tWvXqqyszDXGei0NQ2cLAkVnC0LBK+97AJv8jRCbOHEiI8SAGHL69GmdOnXKNTZu3DjL2SDWmLpa4uLiKPzDUyi2APArLi4u3CnUyVRs6du3L63MsG7FihWu29u1a6eRI0faTSZKmIotdLbAxFRsSUxMVHJysuVsAES6WC607d6927gYMSPEgNhiGiEmSWPGjLGYCWKRqdgyZswYdezY0XI2gBnFFgARz1RsGTZsmOVMEOsqKyu1evVq11h2drYSEhIsZxQdTCOh6GyBianY0rRp04i4iAAAvMI0QiwhIYEriYEYYyq29O7dm/UyEFLHjh3T7t27XWOMEIPXUGwBENEcxzEWW1ivBbZt2rRJBQUFrjHWa2k4OlsQKFOxhccMQoUiHqJRXSPEOLkKxBbWa0G4mLpaJIot8B6KLQAi2okTJ3Tt2jXXGMUW2JaXl+e6PT09XZMnT7acTfSgswWB8tfZAgCon127dunYsWOuMUaIAbGlqKhIe/fudY2xXgtCzVRsGT58uLp27Wo5G8A/ii0AIpqpqyUuLk6DBg2ynA1imeM4xmLLQw89pNTUVMsZRQ86WxAoii0A0HiMEANQY9u2baqurnaN0dmCUDp16pQ++eQT19iCBQssZwPUjWILgIhmKrb06tVLzZo1s5wNYtnevXt18uRJ11hOTo7dZKKI4zh0tiBgpscMxRYAqB9/I8QmTZqk1q1bW84IQDiZ1mtp06aNevbsaTkbxJJly5YZY4wQgxdRbAEQ0fLz8123M0IMtpm6WhISEjRr1izL2USPiooKVVVVucYotsCEzhYAaJxPP/1Ux48fd40xQgwILsdxwp1CnUzFlrFjx7JuGUJqyZIlrtsHDRqkHj16WM4GqBvFFgARy3EcY2cLxRbYtmLFCtftDzzwgFq2bGk3mShi6lCQGCMGM4otABqCE4b/w98IsdzcXLvJAAiryspKbdu2zTXGCDGE0rlz57RlyxbXGCPE4FUUWwBErDNnzujy5cuuMYotsOnUqVPatWuXa4wTEo1jWq9ForMFZhRbAKDh/I0Qmzx5MiPEgBizZ88e4wVQ48aNs5wNYsny5cuNnV+MEINXUWwBELFMXS0SxRbYZRohJrFeS2PR2YKGoNgCAA2Xn5+vEydOuMYYIQbEns2bN7tuT01N5XM3Qso0Qqxv377q27ev5WyA+qHYAiBimYot3bt3V2Zmpt1kENNMxZbBgwerW7dulrOJLnS2oCFMxRYKdGiMSJipDwQDI8QA3M60XsuIESOUnJxsORvEikuXLmnjxo2uMUaIwcsotgCIWKzXAi8oKCjQhg0bXGN0tTSev2ILJ85hQmcLADSMvxFiU6ZMUatWrSxnBCCcHMcxdrawXgtCacWKFaqurnaNMUIMXkaxBUDEotjiTabFZaP1iuA1a9aoqqrKNcbVn41nGiMWHx/PlXQwotgCAA2zc+dOnTx50jXGCDEg9pw8eVLnzp1zjbFeC0Jp6dKlrtvvu+8+DRw40HI2QP1RbAEQkc6fP68vv/zSNUaxBTatWLHCdXu3bt00aNAgu8lEIVNnS3p6urGwB5iKdBRbECo8HyFamEaIJSYmchEJEINMXS2SNHr0aIuZIJYUFBRo3bp1rrH58+fzvgueRrEFQEQydbVI0pAhQyxmglhWWlqqd9991zWWk5PDm8AgMJ00Z70W+ENnCwAErq4RYi1btrScEYBwM63XMmDAALVo0cJyNogVK1euVGVlpWuMEWLwOootABosnGOhTMWWzp07q23btpazQaxav3698aQu67XU1tDnC3+dLYAJxRbUJVpHWwKNsWPHDn3xxReuMUaIAbGJ9VoQDqYRYl27dtX9999vORsgMBRbAPjl1SvzTcWWYcOGWc4EsSwvL891e4sWLTR+/HjL2UQnOlsQqIqKCpWVlbnGKLYAgJm/EWJcRALEnoKCAh04cMA1xnotCJWioiKtXbvWNcYIMUQCii0AIpKp2MJ6LbClurpaK1eudI3NmjVLSUlJljOKTqbOFootMDEV6CQ6ogDAxN8IsalTpzJCDIhBW7duNcbobEGovP3228YLpxghhkhAsQVAxLly5YpxxAHFFtjyySef6Pz5864xrv4MHtOJc06ax666rmYzjRCT6GyJRVz9CNTPJ598olOnTrnGGCEGxCbTCLEOHTronnvusZsMYoZphFiHDh00evRoy9kAgaPYAiDi7Nq1yxij2AJbVqxY4bo9JSVF06dPt5tMFKOzBYGi2AIAgTONEEtKSuIiEiBGffzxx67bx40bx8UMCImbN29qzZo1rrF58+YpPp7T2PA+HqUAIo5phFi7du3UoUMHy9kgVpnWa5k8ebKaNWtmOZvoRWcLAuVvjBjFFjSG4zjhTgEIibpGiLVo0cJyRgDCrby8XJ988olrjBFiCJV3331XJSUlrrEFCxZYzgZoGIotACJOfn6+6/ahQ4dyhQ2sOHLkiA4fPuway83NtZtMlKOzBYHy19lCkQ4A7rZ9+3adPn3aNcYIMSA2ffrppyotLXWNjRs3znI2iBWmEWJt2rTR+PHjLWcDNAzFFgARx9TZwggx2GLqaomLi1N2drblbKKbqdjCSXOYmIotaWlpSkhIsJwNAHgfI8QA3Mm0Xkt6eroGDRpkORvEgtLSUq1atco1lpuby/t4RAyKLQAiyrVr1/T555+7xii2wBbTei2jRo1S+/bt7SYT5UwjoehsgYmp2MIIMYQSnbWIVNXV1VqyZIlrbNq0acrMzLSbEABPMK3XMmrUKCUmJlrOBrHg/fffN76PZ4QYIgnFFgARZffu3cbYsGHD7CWCmHX+/Hlt27bNNcbVn8FHZwsCRbEFAOqPEWIA7uQ4jrHYwnotCBXTCLEWLVpo4sSJlrMBGo5iC4CIYhoh1rJlS3Xt2tVyNohFq1atMi6SzHotwUdnCwJlKrZQoAOAu/kbITZnzhzL2QDwgqNHj+rSpUuuMdZrQSiUl5cbR3XPmTNHSUlJljMCGo5iC4CI4m+9FkZ4wAbTm8DevXurd+/elrOJfnS2IFB0tgBA/fgbITZ9+nRGiAExyrReS3x8vEaNGmU5G8SCDz/8UIWFha4xRogh0lBsARBR/BVbgFC7ceOGPvjgA9cYXS2hQWcLAmV6zFBsAYDatm3bpjNnzrjGGCEGxC7TCLFBgwapWbNmlrNBLDAV/ps1a6apU6dazgZoHIotACLGzZs3dfjwYdcYxRbY8N5776msrMw1xnotoWHqbKHYAhM6WwCgfkwjxJKTkxkhBsQw1muBTZWVlVqxYoVrLDs7WykpKXYTAhqJYguAiLFnzx5VV1e7xii2wAbTm8B27dpp5MiRdpOJEaYuBcaIwYRiCwDUra4RYs2bN7ecEQAvuHTpko4cOeIao9iCUNi0aZMuX77sGps/f77lbIDGo9gCIGKYRog1a9ZMPXr0sJwNYk1FRYXefvtt19icOXMUH89LarBVV1ertLTUNUZnC0wotiBUHMcJdwpA0GzdulVnz551jTFCDIhdW7ZsMcbGjRtnMRPEClPhv0mTJnrooYcsZwM0HmeGADSY7ZMO/tZr4UQ3Qm3Tpk0qKChwjbFeS2iYRohJdLbAjGILANTN3wix7Oxsy9kA8IrNmze7bu/atas6d+5sORtEu+rqai1btsw1NnPmTC6wQ0Ti7CQAv+Li4sKdgo+/YgsQanl5ea7b09PTNWnSJMvZxAZ/xRbeeMPEVGyhQAcAt/gbIfbQQw8xQgyIYab1WuhqQShs2bJF58+fd40xQgyRimILgIhQWlqqAwcOuMYotiDUHMcxrtcyY8YMpaam2k0oRpjWa5E4cQ4zOlsQDl66OAWoy5YtW/Tll1+6xhghBsSukpIS7dy50zXGei0IhaVLl7puT0lJ0axZsyxnAwQHxRYAEWH//v2qrKx0jVFs8RbTCadInnW/Z88enTp1yjWWk5NjOZvYQWcLGoJiCwD4ZxohlpKSwggxIIbt3LlTFRUVrjE6WxBsjuMYiy3Tp09Xs2bNLGcUvSL5XEwkotgCICKYRoilpaWpd+/elrNBrDF1tSQkJHDFTQixZgsawtQRRbEFAOoeIZaRkWE5IwBeYVqvJSMjQ/3797ecDaLdjh07dPr0adcYI8Qahk5rb6DYAiAi5Ofnu24fPHiwEhISLGeDWGNar2XChAlq0aKF5WwiU0OupvE3RiwtLa0x6SCK0dkCAGYff/yxzp075xpjhBgQ20zrtYwZM4bP3Ag6U1dLUlISXZaIaBRbAEQEU2cLI8QQaidPntTu3btdY7m5uVZziTWmzpbU1FQ+8MGV4zgUWwDAD0aIAXBTXV1tLLawXguCzd8IscmTJ3NBIyIaxRYAnldRUaG9e/e6xii2INRWrlxpjM2ZM8diJrHH1NnCei0wKS0tVXV1tWuMYguAWFdVVWU8uTVjxgzm4wMx7NChQyosLHSNsV4Lgm3Pnj06duyYa4wRYoh0FFsAeN7BgwdVXl7uGhs2bJjlbBBrTOu1DBkyRN26dbObTIwxdbawXgtMTF0tEo8bAGCEGAATU1dLYmKiRowYYTkbRDtT4T8hIYHpEYh4FFsAeJ5phFhycrL69etnORvEkqtXr+qjjz5yjeXk5FjOJvbQ2YJA+Su20NmCxmrI2lOAl/gbITZ79mzL2QDwks2bN7tuHzJkCO+9EXRLlixx3T5hwgS1bt3acjZAcFFsAeB5pmLLwIEDlZSUZDkbxJK3335bVVVVrjGuuAk9U2cLH/hgQrEFANz5GyE2c+ZMRogBMc7U2cIIMQTbwYMHdfjwYdfYggULLGcDBB/FFgCeZyq2sF4LQi0vL891e7du3TRw4EDL2cQeU2cL46BgYnrMSBRbAMS2zZs36/z5866xhx9+2HI2ALzk3LlzOn78uGts7NixlrNBtDMV/uPi4jR37lzL2QDBR7EFgKdVVVVp9+7drjGKLQil0tJSvfvuu66x3NxcxcXFWc4o9tDZgkCZOlvi4+OVmppqORsA8A7TCLHU1FRGiAExztTVIlFsQfCZRoiNHTtW7du3t5wNEHwUWwB42pEjR4wnXCm2IJTWrVtnvEqe9VrsoLMFgTIVW5o2bUqBFEDMYoQYAH9M67X06NGDk98Iqs8//1x79+51jTFCDNGCYgsATzONEEtMTFRWVpblbBBLTCPEWrRoofHjx1vOJjbR2YJA+Su2AECs2rRpky5cuOAaY4QYANZrgS2mwr8kzZs3z2ImQOhQbAHgaaZiS//+/RkJg5Cprq7WypUrXWOzZ89WYmKi5Yxik6nYQmcLTCi2AMDdGCEGwOTGjRvatWuXa4wRYgg20wixESNGqEuXLpazAUKDYguABnMcJ+S/w1RsYYQYQmn79u3GK0Bzc3PtJhPDTGPE6GyBianYQoEOQGPYeM8bKv5GiM2aNYtiNBDjPvnkE1VVVbnG6GxBMH3xxRfauXOna4wRYogmFFsA+BXOGffV1dXGq2wotiCUVqxY4bo9JSVF06ZNs5tMDKOzBYGiswUAavvoo4908eJF1xgjxACY1mtp2bKlevfubTkbRDN/I8Tmz59vMRMgtCi2APCs48ePq6ioyDVGsQWhZFqvZerUqZy0tYjOFgTK9Jjh7xZArDKNEEtLS9OsWbMsZwPAa0zrtYwdO1bx8ZwyRPCYii1DhgxR9+7dLWcDhA7PnAA8yzRCLC4uToMGDbKcDWLF4cOHdeTIEddYTk6O5WyiR0O65OhsQaDobAGA/1FZWally5a5xhghBqCqqkpbt251jbFeC4Lp7Nmz2rJli2uMrhZEG4otADwrPz/fdXufPn042YqQMXW1xMXFKTs723I2sY3OFgSKYgtCKZLX7UBsYoQY4C3hHNHtZt++fbp+/bprjGILgmn58uXGGMUWRBuKLQA8y9TZwggxhJJpvZbRo0erXbt2dpOJcabOFootMKHYAgD/gxFiAPwxjRBLTk7W/fffbzkbRDPTCLH+/furT58+lrMBQotiCwBPchyHYgusO3funLZv3+4ay83NtZsMjJ0tdLbBhGILANzib4TY7NmzeS0FoM2bN7tuv//++5Wammo5G0Srixcv6qOPPnKN0dWCaESxBYAnnTp1SlevXnWNDRs2zHI2iBWrVq0yjolhvRb7GCOGQJmKLZxURCh5bSwMIEkbN27UpUuXXGOMEAMgmTtbxo0bZzkTRLMVK1aourraNUaxBdGIYgsATzJ1tUjS4MGD7SWCmGJar6Vv377q1auX5WxgelPOiXOY0NkCALeYRog1adJEM2fOtJwNAK85deqUTp8+7RpjvRYEk2mEWM+ePZWVlWU5GyD0KLYA8CRTseW+++5T8+bNLWeDQJiu8PX6wsLXr1/XBx984Bqjq8Vb6GyBiakbimILgFjCCDEAdTF1tUjSmDFjLGaCaHb16lWtX7/eNTZ//ny6gxGVKLYA8CTWa4Ft7733nsrLy11jrNfiLZwkggmdLQAgbdiwQZcvX3aNMUIMgGRer6VPnz5q3bq15WwQrVauXKnKykrX2IIFCyxnA9hBsQWA5ziOo/z8fNcYxRaEyooVK1y3d+jQQcOHD7ebTBQKZmcTnS0wodgCoDGi5QpbRogBqAvrtcAG0wixe+65h3M7iFoUWwB4zrlz53ThwgXXGC/ICIWKigq9/fbbrrE5c+YoPp6XSy+hswVuqqqqVFJS4hqj2AIgVvgbIZadnc0FCwB07do17d271zXGei0IlqKiIq1du9Y1Nm/evKi5wAG4E2ePAHiOaYSYJA0ZMsRiJogVH330kQoLC11jrNfiPZwoghvTei0SxRYAsePDDz/UlStXXGOMEAMgSdu2bTN2ndPZgmBZvXq1cUw3I8QQzSi2APAcU7Gla9euzI9FSOTl5blub9q0qSZNmmQ5G/iTkJCg5OTkcKcBDzKNEJMotiA4gjkOEQgV0wix9PR0zZgxw3I2ALzINEKsbdu26tGjh+VsEK2WLFniur1jx44aOXKk5WwAeyi2APAcU7Fl2LBhljNBLHAcx7hey4wZM5SSkmI3IfjVpEkTWs7hyl+xhdFzAGJBRUWFli9f7hpjhBiAGps3b3bdPnbsWN5nIyhu3rypd9991zU2f/58xnQjqvHoBtBgobrC01RsYb0WhMLu3bt1+vRp1xgjxLyHE0UwobMFQKxjhBiAulRUVGj79u2uMUaIIVjeeecd41qK8+fPt5wNYBfFFgB+2b6y5dKlS8YT3xRbEAqmrpbExETNnDnTbjKoEx0KMPG3ZguPG4QSVwHDKxghBqAuu3fvVnFxsWts7NixlrNBtDKNEGvbti1FPUQ9ii0APGXXrl3GGMUWhIJpvZYJEyaoRYsWlrNBXehsgYmpsyUlJUVJSUmWswEAu/yNEJszZ47S0tIsZwTAi0zrtaSlpWnIkCGWs0E0Ki0t1dtvv+0amzt3rhISEixnBNhFsQWAp+Tn57tu79Chg9q3b285G0S7EydOaM+ePa6x3Nxcu8mgXuhQgImp2MIIMQCxYP369bp69aprjBFiAGqY1msZMWKEkpOTLWeDaLR27Vrj+3JGiCEWUGwB4Cms1wKbVq5caYzNmTPHYiaoLzpbYEKxBUAsM40Qa9q0qR566CHL2QDwIsdxjJ0tjHZCsJhGiLVo0UIPPvig3WSAMKDYAsBTKLbAJtN6LUOHDlXXrl3tJoN6obMFJhRbAMQqRogBqI/jx4/r/PnzrjHWa0EwlJeXGy9ozM3NZbQvYgLFFgCeUVBQoOPHj7vGhg0bZjkbRLsrV65o06ZNrrGcnBzL2aC+6GyBianYQoEOQLRbt26dCgoKXGOMEANQw9TVEhcXp9GjR1vOBo3hOE64U3C1bt06Xbt2zTXGCDHECootADxj9+7dxhidLQi2t99+W1VVVa4x1mvxLk6cw4TOFgCxihFiAOrDtF7LgAEDlJmZaTcZRKWlS5e6bs/IyNCUKVMsZwOEB8WWCPDqq68qLi4uoH9/+qd/Wu/9r1u3Tk8++aR69eql9PR0tWzZUgMHDtS3vvUtHT58uEE5Hzp0SN/61rc0cOBAtWzZUunp6erVq5cWLlyodevWNWifly9f1ksvvaQxY8aoQ4cOSk1NVbdu3TRz5ky99tprqqioaNB+4R2mEWKtW7dW586dLWeDaJeXl+e6/Z577lFWVpblbFBfdLbA5ObNm67bKbYgWLx6FSliW3l5uXEsak5OjlJTU+0mBMCzWK8FoVRZWWl8PcrOzlZKSordhIAwSQx3AgifoqIiPfPMM3rzzTdrbS8uLlZBQYH27dunxYsX6/vf/77+5m/+pt77/Yd/+Ad9//vfv6v4cfToUR09elS/+c1v9Nhjj+lnP/uZmjVrVq99rl69Wk8//bQuXbpUa/upU6d06tQpvfPOO/r3f/93vfHGG+rVq1e9c4W3+FuvJS4uznI2iGYlJSV69913XWO5ubk83jyMzhaYXL9+3XU7xRYA0YwRYgDq4+rVqzp48KBrjPVaEAwbN27UlStXXGOMEEMsodgSYfr06aPJkyfXebsxY8b4jVdUVGju3Llav369b9uAAQM0dOhQlZaWatOmTTp37pwqKir0ne98RxUVFXr++efr/L3PP/+8fvCDH/i+79Chg8aPH6/U1FTl5+frwIEDkqQ33nhDV65c0dtvv63ERP8Pw7Vr12ru3LmqrKyUdOuq5smTJ6tNmzY6duyYPvroIzmOo08//VSTJ0/W9u3b1bFjxzpzhff4K7YAwbRu3ToVFxe7xlivxdvobIFJzfuEO1FsARDNTCPEmjVrpunTp1vOBoBXbdmyxRij2IJgMI0QS09PZ6QlYgrFlggzcuRI/ed//mej9/ODH/zAV2hJTU3Vr371Kz366KO+eHl5ub773e/qn//5nyVJ3/ve9zRhwgRNmDDBuM9169bVKrR861vf0g9/+EMlJyf7tr3xxht6+umnVVpaqrVr1+of//Ef/RZxrly5okceecR3AmXy5Mn63e9+p9atW/tus2fPHs2ZM0enTp3SmTNn9MQTTzR4VBnC5/r16zpy5IhrjGILgs3U3tyyZUva6D2OzhYEimILQo1uSIQLI8QA1JdphFinTp3UrVs3y9kg2lRVVWnZsmWusZkzZyotLc1yRkD4sGZLDLp48aL+9V//1ff9v//7v9cqtEhScnKyXnzxRT3yyCOSbs2ormuU2O3xRx99VC+++GKtQoskPfbYY/q3f/s33/cvvfSSLl++bNznj370IxUWFkqSevTooZUrV9YqtEjSoEGDtGrVKiUlJUmS1q9fr7Vr1/rNFd6zZ88e4yx0ii0IpqqqKq1atco1Nnv27Dq77RBedLYgUBRbAESrDz74wPdZ6U6MEANwu82bN7tuHzt2LBcNoNG2bNmiCxcuuMYYIYZYQ7ElBv3617/2LSLbq1cvPfPMM8bbvvjii4qPv/Uw2bp1q3bt2uV6ux07dmjHjh2SpPj4eL344ovGff7Zn/2ZevbsKelWN8Nrr73meruKigr913/9l+/7F154wXiSbeDAgVq4cKHv+x//+MfG3w9vMo0Qa968ubp37245G0Szbdu26eLFi66x3Nxcu8kgYBRbECi6oQBEK9MIsYyMDE2bNs1yNgC8qqyszHe+5k509SMYTCPEUlNTNXPmTMvZAOFFsSUG3d5q/sd//Md+r2Lo2rWrJk2a5Pt++fLlde5zypQp6tKli3GfcXFxtQojpn1u2LDBd6VWs2bN6qyG//Ef/7Hv67Vr1/oKSogM/tZr4UobBFNeXp7r9tTUVE5MRABOnCNQdLYAiEaMEANQX/n5+SorK3ONsV4LGqu6utpYbJk+fbqaNWtmOSMgvCi2xJjS0lJt27bN9/2DDz5Y589MnDjR93XNOi93+vDDDxu8zy1btri+8N++z9GjRyslJcXvPkeMGOG74rm0tFRbt26tMw94h79iCyKLqThmGhNnk+M4xhMTU6dO5UR+BKCzBYGi2AI3XnhNAhrj/fff17Vr11xjjBADcDvTei1NmzbVwIEDLWeDaLNjxw6dOXPGNbZgwQLL2QDhx2D6CFNYWKjf//73OnDggK5du6aMjAx17NhRo0ePVlZWVp0dAEeOHFF1dbWkWydEhwwZUufvvP1k96FDh1xvc/v2+pwcv/33VlVV6bPPPlNWVlaj9pmUlKSsrCxt377d9/NTpkyp8+fQcME6UVFSUqKDBw+6xii2IJgOHz6so0ePusZycnIsZxNbgvV8QUEMgaLYAiAaMUIMQH2Z1msZNWoU61Wi0UxdLUlJSZo9e7blbIDw41k1wuTl5RlH4PTs2VPPPvusnn76aWPR5ciRI76v27ZtW6/28q5du/q+vnr1qi5duqQ2bdr4tl28eLHWwozdunWrc59paWlq06aNLl26JOnWCdA7iy2351qffdbkWlNsOXz4cL1+Bv7ZGOG1b98+VVVVucYotiCYTF0tcXFxys7OtpsMGoTOFgSKYguAaFNWVmb8TJibm1vnRAAAscNxHGNnC+u1oLEcx9GSJUtcY1OmTFFmZqbdhAAPYIxYFDl69Kj+9E//VHPmzDGuV3LlyhXf1+3atavXftu3b1/r+6tXrxr32dD93rnPO/cbrH3Cm/Lz8123p6enq2fPnpazQTQznZgYM2aM2rZtazkbNASdLQgUxZbYFsyLRhg9Bq9ghBiA+jpy5Mhd52xqsF4LGmv37t06ceKEa4wRYohVFFsiRNeuXfV//+//1Zo1a3T69GmVlpbq5s2bOnLkiH7yk5+oT58+vtuuXr1aX/3qV33jwm5348YN39dpaWn1+t133u72fbh935D93rmPO7cFa58NkZqa6jtRU1VVpcLCQt+H7aKiIpWXl0u6NQqrpshVWVlZq9vn2rVrqqiokCQVFxeruLhYklRRUVHrg1JhYaEqKyslSTdv3lRJSYmkWwtgFhUVSbr1Qb+wsNDXCXLjxg2VlpZKunWV2/Xr1yXdWqSssLDQ9zi4fv26b22c0tJS3/9PXcdUk0NiYmKtqxKaN2/uy7Wxx/Tpp58qMzNTCQkJkm6dGEtNTdXgwYNVWVkZ9GOKxvvJS8cUFxenzMxMxcffeolp1qyZ7wrLcB7T8ePHtX37diUnJysjI6NWrjUjxGLpfrJ9TDWdlElJSWrevLnvdpmZmb7xBenp6b7ncbf7KSEhQU2aNPHMMUXj/RQpx5SWluYrvLm9PiUlJUm61QlV87XXjyka7ycvHFNcXJxvYdb4+Phar0/BfuxxP0X+MdUcg1T79Sk1NdVTx/T73//e9XmvefPmGjt2bNTfTxwTxxSpx1RVVeV7T5ySkuJ7fYqLiwvZMX388cd3vTdq0qSJEhISNHToUO4nDx9Tzb7dPj955ZiWLFni+t4oISFBOTk5MXE/eemYat7r1lxslJGRoeTk5Ig+pobeT+FEsSUC5Obm6sSJE3rppZc0Y8YMde7cWSkpKWrSpIl69eqlr3/969qzZ4+eeuop38+sXLlSv/3tb+/aV80DXJLvD64ud7ah1/wxue2zofu9c5937jdY+2yIUaNG+Sryly5d0uLFi31PAK+88opvrZGNGzdq1apVkqQzZ85o8eLFvn28/PLLOnbsmCRp7dq1Wrt2rSTp2LFjevnll323W7x4sW9hsVWrVmnjxo2SpIMHD+qVV16RdOvJafHixb4RbEuWLNG2bdskSbt27dLrr78u6dYT0OLFi31PeK+//rp27dolSdq2bZuv1bOuY9q0aZMkqXPnzlq0aJEv169//es6f/58UI5p7969WrRokW883YIFCzRq1CgNHTo0JMcUjfeTl46pSZMmWrRoke9E+eOPP+5bpymcx1QzS7Zfv356+umnJd16zli0aJEmTJgQc/eT7WOqGVPQo0cPff3rX/fdbtGiRercubMkKTs723dfuN1Pbdq0UXp6umeOKRrvp0g5pgkTJvhG/7m9PvXo0UOSNG3aNN9YUa8fUzTeT144pqZNm+rxxx+XdOsD5+2vT8F+7HE/Rf4x1by3lWq/Po0ePdozx1RWVqadO3e6Pu/l5uZq48aNUX8/cUwcU6QeU0FBgUaNGiXp1jq2Na9PTZo0Cdkxbd68+a73RtOmTdOgQYN08eJF7icPH9Pu3bsluX9+unjxYtiP6cCBA1q6dKnre6OJEyeqVatWMXE/eemYWrZsqUWLFvnOjT799NPq169fRB9TQ++nsHIQNaqqqpzx48c7khxJzoABA+66zYsvvuiLjxw5sl77LS4u9v2MJGfnzp214p988kmteElJSb32O2LECN/PvPTSS3fFmzRp4ou/88479drnt7/9bd/PzJ49u14/Y7J//35HkpOamuo0bdrU2b9/v1NZWekUFBQ41dXVjuM4zrVr15yysjLHcW79P924ccNxHMepqKhwCgoKfPsqLCx0ysvLHcdxnJs3bzo3b950HMdxysvLncLCQt/tCgoKnIqKCsdxHOfGjRtOcXGx4ziOU1ZW5ly7ds1xHMeprq52CgoKnMrKSsdxHOf69eu+//PS0lKnqKjIcZxbj4eCggKnqqrKcRzHKSoqckpLSx3HcZySkhLn+vXrjuM4dR7T559/7khyEhMTnczMTN//b/PmzZ0DBw40+pjKysqcpKQkJzMz00lISHAkOU2bNnVSU1OdV199NSTHFI33k5eOqWfPnk5mZqYTHx/vSHKaNWvmpKSkOD//+c/DekyzZs1yJDnJyclORkaGI8mJi4tz7r///pi8n2wfU8eOHR1JTlJSktO8eXPfc0lmZqaTmJjoSHLS09OdtLQ01/up5jni+vXrnjmmaLyfIuGYunTp4qSlpTnp6enG16ekpCRHktOkSRPnxIkTnj+maLyfvHJMTz/9tNOsWTNHkhMfH+97fXriiScCPqa1a9e6PvYSEhK4n6LkmH72s5+5vj717dvXM8e0cuVK4/Pe6tWrY+J+4pg4pkg9ppdfftlJTU11JDkpKSm+16devXqF7Jh69ux513ujJk2aON/4xje4nzx+TLt37zZ+fjp16lTYj6kmP7f3Ri+//HLM3E9eOqa2bds6mZmZTlxcnCPJycjIcJKTk5233norYo8p0Pup5lxuzb/9+/c7tlFsiTIffPBBrQfV6dOna8V/8pOf+GIDBw6s1z6vXLlSa5+HDx+uFT948GCt+NWrV+u136ysLN/P/PSnP70r3rZtW1982bJl9drnN77xDd/PPProo/X6GRMv/IF6wdmzZ2v9P9z+78iRI43e/6effmrc/969e4NwBLDtvvvuc70/f/7zn4ctp6KiIic5Odk1r7/5m78JW16xpGXLlsa/9UD+1bwZQ+zq0qVLQI+ZmjfgiE1PPfWU6+PiiSeeCHhfa9eudd1XYmJiCDJHOPzyl790vY/vvffecKfm80d/9EeuOTZv3tx38gGAN/385z93/fvt2bNnSH7fhQsXjO+P3nzzzZD8TgTPoUOHjPffl19+Ge70nO9973uuucXFxTnnzp0Ld3oxqXXr1q73yVtvvRXu1KzxwrlcxohFmQceeMA3i1OSDh06VCveqlUr39cXLlyo1z5vb6eXbrWlmfbZ0P3euc879xusfcJ7Pv30U9ftqamp6tu3r+VsEK3effdd31zPO+Xm5tpNBg2WmprqW2sBqI+4uLh6r/sGAF5XWlqqlStXusbmzp1b79HLAGLDxx9/bIyNHTvWYiZoiJp1N7yqZkz3ncaPH6/27dtbzgbwDs5YRJmkpCS1bt3a9/3ly5drxXv37u37+uLFi3ett+Lm1KlTvq9btmzpW1ejRtu2bWst0PjFF1/Uuc/S0lLf/D5J6tOnz123uT3X+uzzzlzd9gnvMRVbBg4c6FuUFGisFStWuG7v0KGD7r//frvJoMGaNGkS7hQQYdLT0ynQAYgaa9eu9c02v9PDDz9sORsAXmcqttxzzz3q1KmT5WwQTT777DPt27fPNTZ//nzL2QDewqfPKHTz5k3f1+np6bVivXv39p10cBzHt+CWP7efDDd1Gty+vWZBo/ruMyEhQb169Wr0PisrK2s92dMVERlMxZahQ4dazgTRqqKiQm+//bZrLCcnhxOxEeTO1zSgLk2bNg13CgAQNG+99Zbr9szMTE2ZMsVyNgC8bvPmza7b6WpBY5m6WiRp3rx5FjMBvIczTFHm+PHjta526tixY614amqqRo0a5ft+w4YNde5z48aNvq8nTZrkepuJEyc2eJ9jxoxRSkqK331u3brVOAKoxo4dO1RcXCzp1nGOHj26zjwQXpWVldqzZ49rjGILgmXjxo26du2aaywnJ8dyNmgMOlsQKIotAKIFI8QABKK4uNh4YeO4ceMsZ4NoYyq2jBo1Sp07d7acDeAtFFuizCuvvOL7unnz5ho8ePBdt7l9fYJXX33V7/5Onz6tdevWuf6saZ8ffPCBzpw543e/t/9e0z4ffPBBNW/eXJJUVFSkZcuW1XufU6dO5QroCHD48GGVlJS4xii2IFjy8vJctzdr1qxWURfex/M6AkWxBUC0eO+993T9+nXXGCPEANxpx44dqqiocI3R2YLGOHHihPLz811jjBADKLZ43o0bN+p92y1btuhf/uVffN8/+uijrmteLFy40HfC6siRI/rFL35h3Oezzz6rqqoqSdLo0aONJ8CHDx+u4cOHS5Kqqqr03HPPGff585//XJ999pmkWyc7n3zySdfbJSUl6Wtf+5rv++eff954Yn7//v21ii1/+Zd/afz98A7TlTZJSUkaMGCA5WwQjRzHMRZbZsyY4dpVB++iswWBokAHIFqYRoi1aNFCkydPtpwNAK8zrdfSvHlz9e/f33I2iCb+LoSm2AJQbPG8JUuWaMSIEfrNb35jHINTWlqq//iP/9CUKVN8C95nZmbq7//+711v37ZtW/3VX/2V7/tvfvObd715r6io0HPPPac33njDt+2f/umf/OZ6e/z111/Xc889d9eVFG+99ZYWLVrk+/6v//qv1bp1a+M+n3vuOWVmZkqSjh49qpycHF25cqXWbfbu3avs7GzfmLGJEydq+vTpfnOFN5iKLQMGDOAkOIJi165dOn36tGvM1FUH7+LEOQJFZwuCyXGccKeAGFVSUsIIMQABMa3XMmbMGNasRKOYRogNHTpU9957r+VsAO+5u+0BnrNjxw4tXLhQiYmJ6tOnj/r06aMWLVqoqqpKZ8+e1datW2ut05KWlqa8vDx16NDBuM+/+7u/08cff6z169erpKREjzzyiH74wx9q6NChKi0t1UcffaRz5875bv/9739fEyZM8Jvn5MmT9d3vflc//OEPJUk/+tGP9Nprr2n8+PFKTU1Vfn6+9u/f77v91KlT9Z3vfMfvPlu1aqXf/e53mj17tiorK/X++++ra9eumjJlitq0aaNjx45p48aNvg+/nTp10n//93/73Se8w1RsYYQYgmXFihWu2xMTEzVjxgy7yaDR6GxBoCi2AIgG7733nnHiASPEgMgX7GJ+dXW1tmzZ4hpjvRY0xpkzZ7R161bXGF0twC0UWyJIZWWl9u/fX6tgcacRI0bo1VdfVd++ff3uKykpScuWLdMzzzzj62rZt2+f9u3bd9ftvve979VZFKnxwgsvKCUlRS+88IIqKir05Zdf6s0337zrdo8++qh+9rOfuY45u9P06dO1bNkyPf3007p8+bKKi4tdr+waMmSI3njjDXXs2LFeuSK8qqurtWvXLtcYxRYEi2mE2MSJE31dc4gcdLYgUBRbAARDuLuaGCEGIBAHDhwwTkZhvRY0xvLly42xBQsWWMwE8C6KLR732GOPqVevXtqyZYu2bdumY8eO6fLly7py5Yqqq6vVvHlz3XvvvRo1apQWLFgQ0FUKzZs315tvvqmvfe1r+vWvf62tW7fq3LlzSkpKUpcuXTR9+nT9yZ/8SZ2Fm9vFxcXpu9/9rubPn69f/OIXWrt2rU6fPq2Kigp16NBBo0eP1sKFCzVlypSA/h+ys7N18OBB/epXv9Ly5ct1/PhxFRYWql27durfv78ee+wxPfbYY0pKSgpov2icxnzw/Pzzz41X6FFsQTCcOHFCe/fudY3l5ORYzgbBQGcLAkWxBTbExcWFOwVEsZKSEq1atco1Nm/ePD7/ALiLab2WxMRE31q7QEMsWbLEdfuAAQPUq1cvy9kA3kSxxeNSUlI0ZswYjRkzJmS/Y8qUKQEXP+rSt29f/cu//EtQ99mmTRt9+9vf1re//e2g7hf+heoEQn5+vuv2+Ph4DRw4MCS/E7HF1NUiSXPmzLGYCYKFzhYEimILgEj37rvvMkIMQEBMxZZhw4Zx8RIa7MKFC9q0aZNrjBFiwP9gVSwAYWFar6Vv3768AURQmNZrGTZsmLp06WI3GQQFzw0IFMUWAJHONEKsZcuWmjRpkuVsAESCzZs3u25nhBgaY8WKFcbpJowQA/4HxRYAYWEqtjBCDMFw5coV41U3ubm5dpNB0FBsQaAotgCIZIwQAxCos2fP6uTJk66xQMbOA3cyjRDr1auX+vfvbzkbwLsotgCwznEcii1RzDR6zubisqtXr1Z1dbVrjPVaIhdjxBAoHjMAItk777yjmzdvusYYIQbAjWmEmKSQjqdHdLty5Yo+/PBD19iCBQtYvw64DcUWANadPHlShYWFrrFhw4bZTQZRybReS/fu3TVgwADL2UAKTrGNzhYEis4WAJHMNEKsVatWmjhxouVsAEQCU7GlZ8+eateuneVsEC1Wrlypqqoq1xjrtQC1UWwBYJ2pq0WSBg8ebC8RRKWSkhK99957rrGcnByuuolgdCkgUBRbAESq4uJirV692jXGCDEAJqzXglAwjRC75557NGTIEMvZAN5GsQWAdaZiS69evdSsWTPL2SDafPDBByouLnaNsV5LZKOzBYGi2IJgsjkOE2CEGIBAXb9+Xbt373aNsV4LGuratWt6//33XWOMEAPuRrEFgHWs14JQWrFihev2Vq1aMac4wtHZgkBRbAEQqX7/+9+7bmeEGACT7du3G9etpLMFDbVq1SpVVFS4xhghBtyNYgsAqxzHUX5+vmuMYgsaq6qqSqtWrXKNzZ49W4mJiZYzQjDR2YJAUWwBEImKi4uN72fmz5/P+xkArkzrtbRq1Uq9e/e2nA2ixdKlS123d+rUSSNGjLCcDeB9FFsAWHX27FldunTJNUaxBY21detW4+OLEWKRj84WBIpiC2xgfAaCbc2aNcaRqIwQA2Dib70WXqvQEDdu3NC7777rGps/f77i4zmtDNyJvwoAVplGiEliYTU0Wl5enuv21NRUTZ061XI2CDY6WxAoCnQAIpFphFjr1q314IMP2k0GQESorKzUtm3bXGOMEENDrVmzRqWlpa4xRogB7ii2ALDKVGy599571bJlS8vZIJo4jmNcr2XatGmcdI0C3IcIFJ0tACLNzZs3tXr1atcYI8QAmOzbt083btxwjY0bN85yNogWphFi7dq1o4gHGFBsAWCVqdjCCDE01qFDh/T555+7xnJycixng1CgswWBSEpKUnJycrjTABBBvDBmhxFiABrCNEIsJSVFw4YNs5wNokFJSYnefvtt19jcuXOVkJBgOSMgMlBsAWAVxRaEiqmrJT4+XtnZ2XaTQUjQ2YJA0NUCIBKZRoi1adNGEyZMsJwNgEjx8ccfu24fPny4UlJSLGeDaPDee+/p5s2brjFGiAFmFFsAWHPhwgWdPXvWNUaxBY1lWq9lzJgxatOmjeVsEGwJCQlKSkoKdxqIIBRbAEQaRogBaAjHcYydLYx6QkOZRoi1atWK4j/gB8UWAA3mOE5Atzd1tUjSkCFDGpsOYtiXX36pTz75xDWWm5trNxmERJMmTTwx3gWRg2ILgEjz9ttvq6SkxDXGCDEAJqdOnTJe1Mh6LWiIsrIyrVy50jWWk5PDRXCAHxRbAPgVzJObpmJLp06d1K5du6D9HsQe0xtBifVaogUjxBAoii0ItkAvMgECZRoh1rZtWz3wwAOWswEQKUxdLdKtLn8gUOvWrVNRUZFrbMGCBZazASILxRYA1rBeC0LFtF5L//79dd9999lNBiHRpEmTcKcAj6jvRQAU6ABEkhs3bhgXImaEGAB/TOu19OvXTy1btrScDaKBaYRY8+bNNXnyZMvZAJGFYgsAayi2IBSKioq0fv161xhdLdGDE+cIFJ0tACIJI8QANBTrtSCYKioqjBczZmdnKzk52W5CQISh2ALAiqtXr+rkyZOusWHDhtlNBlHlnXfeUUVFhWuM9VqiB50tCBTFFgCRhBFiABqisLBQ+/fvd42xXgsaYuPGjbp69aprjBFiQN0otgCwYteuXcYYnS1ojLy8PNftHTt2pJAXRehsQaAotsCWYK5vh9jkb4TYggULlJCQYDkjAJFi69atxjXF6GxBQyxZssR1e3p6uqZNm2Y5GyDyUGwBYIVphFjbtm3VsWNHy9kgWpSXlxtPTuTk5Cg+npe5aEFnCwJFsQVApFi9erVKS0tdY4wQA+CPab2Wdu3aqXv37pazQaSrqqrS8uXLXWOzZs1SWlqa5YyAyMNZKABW+FuvhStC0VAbN25UUVGRa4z1WqILnS0IFMUWAJHCNEKsXbt2Gj9+vOVsAEQSU7Fl3LhxfM5GwD7++GNdvHjRNcYIMaB+KLYAsCI/P991OyPE0BimhfsyMjI0ceJEu8kgpOhsQaAotgCIBNevX9eaNWtcY4wQA+BPRUWFtm/f7hpjhBgawjRCLDU1VTNmzLCcDRCZKLYACLmioiIdPXrUNUaxBQ3lOI5xvZYZM2YoOTnZckYIJTpbECiKLQAiASPEADTUrl27VFJS4hobN26c5WwQ6aqrq7Vs2TLX2IwZM3hvDdQTxRYAIbd7925jjGJL9DG1q5sWbmyo/Px8nT171jWWm5sb1N+F8KOzBYGiQAcgEphGiLVv356TpQD82rx5s+v2Jk2aaPDgwXaTQcT75JNPjJ+v58+fbzkbIHJRbAEQcqb1Wlq0aKF77rnHbjKIGqaulqSkJFqcPaixxTaKLQgUV98h2IJ90QDACDEAjWFar2XkyJFKSkqynA0inWmEWFJSkmbPnm05GwQT72HtotgCIORMxZahQ4eyaB8azLRey8SJE9W8eXO7ySDk6FJAoCi2APC6VatWqayszDXGCDEA/jiOY+xsYb0WBMpxHC1dutQ1Nm3aND5fRwjOr3kDxRYAIeev2AI0xLFjx7R//37XWE5OjuVsYAOdLQgUxRYAXmcaIdahQwdOlgLw69ixY7p48aJrjBGECNSnn36qkydPusYYIQYEhmILgJAqLi7WoUOHXGMUW9BQphFikjRnzhyLmcAWOlsQKIotALysqKhI77zzjmuMEWIA6mLqaomLi9OoUaMsZ4NIZ+pqSUhI4PM1ECCKLQBCas+ePaqurnaNUWxBQ5mKLffff786d+5sORvYQGcLAkWxBbYwsgENwQgxAI1hWq9l4MCBjHxCQBzHMa7XMmnSJLVq1cpyRkBko9gCoMHqs8iWaYRY06ZNdd999wU7JcSAy5cvG6/kys3NtZsMrKGzBYGi2ALAyxghBqAxWK8FwbJ//34dPXrUNcYIMSBwFFsA+NXYqzVNxZYhQ4YoPp6nIARu9erVxm4p1muJXnS2IFAU6AB4lb8RYg8//DDvkQH4deXKFR0+fNg1RrEFgTKNEIuPj+diRqABeBcHIKRMxRZGiKGhTCPEevToof79+1vOBvXV2MItJ84RKAp0ALxq5cqVKi8vd40xQgxAXbZs2WKMjRs3zmImiAamYsv48ePVrl07y9kAkY9iC4CQKSsr0/79+11jw4YNs5wNokFxcbHee+8911hOTg5z86MYJ84RiCZNmrC4NADPMo0Q69ixo8aMGWM5GwC2BOuzimmEWOfOndW1a9eg/A7EhiNHjhjP2TBCDGgYii0AQmb//v2qrKx0jdHZgob44IMPVFJS4hqjxTm60dmCQLBeCwCvunbtmt59913XGCPEANTHxx9/7LqdrhYEytTVIknz5s2zmAkQPXgnByBkTCPE0tLS1Lt3b8vZIBqsWLHCdXvr1q25EjTK0dmCQFBsAeBVjBAD0BilpaXasWOHa4z1WhCoJUuWuG4fPXq0OnXqZDkbIDpQbAEQMqZiy6BBg5SYmGg5G0S6qqoqrVq1yjWWnZ3NyKAoR7EFgaDYglBwHCfcKSAKmEaIderUSaNHj7acDYBIk5+fbyzY0tmCQBw/fly7du1yjTFCDGg4ii0AQiY/P991OyPE0BBbtmzR5cuXXWM5OTmWs4FtFFsQCIotALyosLDQuPYcI8QA1IdpvZZmzZopKyvLcjaIZMuWLTPGKLYADce7OQAhUVFRob1797rGKLagIfLy8ly3p6WlaerUqZazgU2pqamcgEJAWOMHgBcxQgxAY5nWaxk9ejSd/giIaYTYsGHDdM8999hNBoginLkAEBKHDh1SWVmZa4xiCwLlOI5xvZZp06bR9RDlOHGOQNHZApvi4uLCnQIihGmEWOfOnTVq1CjL2QCINNXV1cZiC+u1IBCnT5/W9u3bXWMLFiywnA0QXSi2AAgJ03otycnJ6t+/v+VsEOkOHjyoY8eOucZyc3PtJgPrKKYhUBRbAHiNvxFiCxYsoIMTQJ2OHDmiq1evusZYrwWBYIQYEDq8owMQEqZiS1ZWlpKTky1ng0hn6mqJj4/X7Nmz7SYD6+hsQaAotgDwmry8PFVUVLjGvvKVr1jOBkAkMq3XkpCQoJEjR1rOBpFs6dKlrtuzsrLUs2dPy9kA0YViC4CQMBVbGCGGhjCt1zJu3Di1bt3acjawjc4WBIpiCwCvMY0Q69KlCydJAdSLaYTY4MGDuTgJ9Xb+/Hlj4Y4RYkDjUWwBEHRVVVXavXu3a4xiCwJ19uxZ7dixwzWWk5NjORuEAx8eESiKLQC8pKCgQGvXrnWNMUIMQH2Zii2MEEMgli9fLsdxXGOMEAMaj3d1AILus88+082bN11jFFsQqJUrVxpjFFtiA50tCBTFFtTFdJIBcNPYxwsjxAA01oULF/T555+7xsaOHWs5G0Qy0wixPn36qF+/fpazAaIPxRYAQWcaIZaQkKCsrCzL2SDSmdZrGTBggHr06GE3GYQFnS0IFMUWAF5iGiHWtWtXRogBqBdTV4tEsQX1d/nyZW3YsME1Nn/+fMXFxdlNCIhCFFsANJjpKj9TsaVfv35KS0sLZUrwANMbtIZcFXrt2jV9+OGHrrHc3NyA94fwacxVwXS2IFAU6BAKdMOgIeoaIcaJLQD1YVpj495771XHjh0tZ4NIlZeXp6qqKtcYI8SA4KDYAsCvhnwANBVbGCGGQL3zzjvGsRuMEIsdnDhHoOhsAeAVK1asUGVlpWuMEWIA6ov1WhAMphFi3bt31+DBg+0mA0Qpii0Agqq6utpYbBk2bJjlbBDp8vLyXLd36tSJx1MMobMFgaLYghp0DSDc/I0QGzFihOVsAESi4uJi42dsRoihvgoLC/XBBx+4xhghBgQPxRYAQXXixAkVFRW5xuhsQSDKy8u1Zs0a11hOTg5vBmMIxRYEimILbOL1CCZXr17V+++/7xp7+OGHeewAqJdPPvnE2CFHZwvqa9WqVcapEYwQA4KHYguAoDJdcRMXF6dBgwZZzgaRbMOGDcbCHSPEYgtjxBAoii0AvIARYgCCwbReS2Zmpvr27Ws5G0Qq0wixLl260GkJBBHFFgBBZSq29O7dm5NfCMiKFStct2dkZOjBBx+0mgvCi84WBIrXGwBeYBoh1q1bNw0fPtxyNgAilWm9lrFjxyo+ntN6qNv169f17rvvusbmzZtHpyUQRDwrAwiq/Px81+2MEEMgqqurtXLlStfYzJkzlZycbDkjhBOdLQgUxRYA4XblyhXjbHxGiAGor6qqKm3ZssU1xnotqK81a9aorKzMNbZgwQLL2QDRjWILgKBxHMfY2UKxBYHIz8/X2bNnXWO5ubl2k0HY0dmCQFGgAxBujBADEAwHDhwwjlam2IL6Mo0Qa9++vcaMGWM5GyC6UWwBEDSnT5/WlStXXGMUWxCIvLw81+1JSUmaMWOG5WwQbpw4RyASEhKUkpIS7jQAxDjTCLF77rlH999/v+VsAEQq0wixpKQkxhGiXoqLi/X222+7xubOncsoOiDI+IsCEDSmrhZJGjJkiMVMEOlM67VMmjRJGRkZdpNB2NHZgkA0bdqU8TwAwooRYgCCZfPmza7bhw0bprS0NMvZIBK99957Ki4udo0xQgwIPootAILGVGzp0aOHMjMz7SaDiPX555/rwIEDrrGcnBzL2cAL6GxBIFivBaHiOE64U0CEWL58uaqqqlxjjBADEAhTZ8u4ceMsZ4JItWTJEtftrVq10gMPPGA5GyD6UWwBEDSs14JgMI0Qk6Q5c+ZYzAReQWcLAkGxBUC4mUaI3XvvvRo2bJjlbABEqjNnzuiLL75wjbFeC+qjrKxMq1evdo3l5uYqMTHRckZA9KPYAiBoKLYgGEzFluHDh6tTp06Ws4EX0NmCQFBsARBOly9f1rp161xjjBADEAhTV4tEsQX188EHH6ioqMg1xggxIDQotgAIinPnzuncuXOuMYotqK9Lly4ZP1Tk5ubaTQaeQWcLAkGxBUA4MUIMQLCY1mvp1auX2rRpYzkbRCLTCLHmzZtr0qRJlrMBYgPFFgBBYepqkaQhQ4ZYzASRbPXq1aqurnaNsV5L7KLYgkBQbIFtdCrgdqYRYt27d+cCJAABYb0WNEZFRYVxakROTo6Sk5MtZwTEBootAILCVGzp0qULV92g3lasWOG6/b777lO/fv3sJgPPYIwYAsHjBUBDNbZwdunSJa1fv941xggxAIG4fv269uzZ4xpjhBjq48MPP1RBQYFrbP78+ZazAWIHxRYADeY4ju9r1mtBYxUXF+v99993jeXk5HCCIkYlJCQoKSkp3GkggtDZAiBcGCEGIFi2bdtm7PinswX1sXTpUtftTZs21bRp0yxnA8QOii0A/KrvCW5TsWXYsGHBTAdRbO3atSopKXGNsV5L7EpPT6fQhoBQbAEQLqYRYj169GCsLoCAmNZradOmjXr27Gk5G0SaqqoqLV++3DU2e/ZspaamWs4IiB0UWwA02uXLl3Xq1CnXGJ0tqC/TPNk2bdpo9OjRlrOBV7BeCwJFsQVAODBCDEAwmdZrGTNmDM8nqNOmTZt06dIl1xgjxIDQotgCoNF27dpljFFsQX1UVlZq1apVrrHs7GwlJCRYzghewfobCBTFFgDhsGzZMuPIH0aIAQhEZWWltm3b5hpjhBjqwzRCLC0tTTNmzLCcDRBbKLYAaDTTCLH27durQ4cOlrNBJNqyZYuuXLniGsvJybGcDbyEzhYEimILQuX2teqAO5lGiN13330aPHiw3WQARLQ9e/bo5s2brrGxY8dazgaRprq6WsuWLXONzZgxg4vZgBCj2AKg0fLz812309WC+lqxYoXr9iZNmmjq1Kl2k4Gn8GEAgaLYAsC2ixcv6sMPP3SNMUIMQKBMI8RSU1P5jI06bdu2TV9++aVrjBFiQOhRbAHQaKbOFt4IxibTCQXTFcGO4xjXa5k2bZrS0tKClhvCp6FXhNPZgkBRoANgGyPEAATT5s2bXbcPHz5cKSkplrNBpDGNEEtOTtbs2bMtZwPEHootABqlsLBQx44dc41RbEF97N+/X8ePH3eN5ebm2k0GnsOJcwSKzhYAtplGiPXs2VODBg2ynA2ASOY4jrGzhfVaUBfHcYzFlmnTpikjI8NyRkDsodgCoFF2795tjFFsQX2Yulri4+M1a9Ysy9nAa+hsQaAotsA2RkTFtgsXLmjDhg2uMUaIAQjUyZMnjSOgWK8FdcnPz9cXX3zhGmOEGGAHxRYAjWIaIdaqVSt17drVcjaIRKb1WsaPH6/WrVvbTQaeQ7EFgaLYAsAmRogBCCZTV4skjRkzxmImiESmrpbExETNmTPHcjZAbKLYAqBR/K3XwpV8qMuZM2eUn5/vGsvJybGcDbyIMWIIFMUWADaZRoj16tVLAwcOtJwNgEhnWq+lf//+atGiheVsEEkcx9GSJUtcY5MmTVLLli0tZwTEJootABrFX7EFqMvKlSuNMYotkOhsQeAotgCw5fz589q4caNrjBFiABqC9VrQUPv27dPnn3/uGluwYIHlbIDYRbEFQIPduHFDhw8fdo1RbEF9mEaIZWVlqXv37naTgSfR2YJAUWwBYAsjxAAEU0FBgfbv3+8aY70W1MU0Qiw+Pl65ubl2kwFiGMUWAA22Z88eOY7jGqPYgroUFhbqww8/dI3xZhA16GxBoCjQAbDFNEKsd+/eysrKspwNgEi3detWY4xiC+piGiH2wAMPqE2bNpazAWIXxRYADWYaIZaRkUFXAur0zjvvqLKy0jXGCDHU4MQ5ApGamqqEhIRwp4EoZbrABLGJEWIAgs20XkuHDh107733Ws4GkeTQoUM6ePCga4wRYoBdFFsANJip2DJkyBDFx/P0Av/y8vJct3fu3JnOKPjQ2YJAMEIMgC1Lly41FuAYIQagIUzrtYwdO5YCLvwyjRCTpLlz51rMBABnQwE02N69e123Dxs2zHImiDRlZWVas2aNaywnJ4cPE/ChswWBoNgCwBbTCLE+ffpowIABlrMBEOnKy8v1ySefuMbGjRtnORtEGlOxZcyYMerYsaPlbIDYRrEFgF/+TnqXlZW5bqcrAXXZsGGDrl+/7hpjvRbcjs4WBIJiCwAbzp07p48++sg1xggxAA3x6aefqrS01DXGei3w59ixY9q9e7drjBFigH0UWwAEHcUW1GXFihWu25s3b64JEybYTQaeRmcLAkGxBeHAifXYwwgxAMFmGiGWnp6uwYMH200GEcXfCLF58+ZZzASARLEFQJA1adJEvXr1Cnca8LDq6mqtXLnSNTZr1iwlJSVZzgheRmcLAkGxBYANphFiffv2Vf/+/S1nAyAabN682XX7yJEjlZiYaDkbRBJTsWX48OHq1q2b5WwAUGwBEFSDBw9WQkJCuNOAh+3cuVNffvmlaywnJ8dyNvA6OlsQCIotAELtyy+/1KZNm1xjjBAD0BCO4xg7W1ivBf6cOnXKuNbP/PnzLWcDQJIojwMIKkaIoS55eXmu25OTk/XQQw9ZzgZeR2cLAkFxDkCoMUIMQLCdPn1a5eXlrjHWa4E/y5YtM8YotgDhQWcLgKCi2IK6mNZrmTRpkjIyMuwmA8+j2IJA0NkCINRMI8T69evHCDEADWIqtMTHx2vUqFGWs0EkMY0QGzRokO677z7L2QCQKLYACDKKLfDn6NGjOnjwoGssNzfXbjKICHQqIBAUWwCE0tmzZ43rKjz88MOWswEQ7QYOHMjFaDA6d+6ccfwcXS1A+FBsARA0KSkp6tevX7jTgIeZRohJUnZ2tsVMECnS0tLCnQIiCMUWAKHkb4QYxRYAwcYIMfizfPly42sSxRYgfCi2AAiagQMHKikpKdxpwMNMxZaRI0eqY8eOlrOB16WlpSk+nrcqqD+KLQgl0wkNxA7TCLH+/fszQgxA0I0bNy7cKcDDTCPE+vbty0WwQBhxBgNA0DBCDP5cvHjR2Oack5NjORtEAtZrQaAotgAIFUaIAbCNzhaYXLp0SRs2bHCN0dUChBfFFgBBQ7EFkhQXF+e6ffXq1carglmvJfo15Ipw1mtBoCi2AAiVJUuWGGMUWwAEW9euXdWlS5dwpwGPysvLU3V1tWtswYIFlrMBcDuKLQCChmIL/Nm5c6fr9p49e6pPnz6Ws0EkoLMFgaJAByBUTCPEBgwYwLgWAEFHVwv8MV0A0KNHDw0cONByNgBulxjuBABEh8TERA0YMCDcaSAC5ebmGrthENs4cY5A0dmCcOA1LPpdvnxZX3zxhWuMrhYAocB6LfBn7969rtvnz5/P+xIgzOhsARAU/fv3V2pqarjTQARivRaY0NmCQFFsARAKN2/eNMYotgAIBTpb0BCMEAPCj2ILgKAYNmxYuFNABGrTpo1GjRoV7jTgUXS2IFAUWwDYlJWVpb59+4Y7DQBRJiMjg6kRCFjXrl11//33hzsNIOZRbAEQFKzXgoaYM2eOEhISwp0GPIrOFgSKYgsAm+hqARAKo0eP5jMSAjZv3jxGiAEeQLEFgF/1fbGm2IKGYIQY/KHYgkBRbAFgE8UWAKHAei1oCEaIAd5AsQVAo8XHx2vgwIHhTgMRpkmTJpoyZUq404CHMUYMgaLYAsCWgQMHqk+fPuFOA0AUYr0WBKpDhw4aPXp0uNMAIIotAIKgT58+nBRFwKZPn660tLRwpwEPo7MFgYiPj1dqamq400AUcxwn3CnAQ+hqARAKCQkJGjFiRLjTQISZN2+e4uM5xQt4AX+JABqNEWJoiNzc3HCnAI+jiItApKenM6cagDUUWwCEwtChQ3kPjIDNnz8/3CkA+AOKLYgY5eXleu211zRz5kx169ZNqamp6tChg8aMGaOXXnpJly9fDneKMYtiCwKVkJCgWbNmhTsNeBydLQgEI8QA2DJo0CD17t073GkAiEKMEEOgWrdurfHjx4c7DQB/kBjuBID6OHz4sB577DHt3r271vbz58/r/Pnz2rp1q/75n/9Zv/rVrzRz5szwJBnDKLYgUOPHj1erVq3CnQY8jqv6EAiKLQBsoasFQKiMGzcu3CkgwsydO1eJiZzeBbyCv0Z43pkzZzR58mR9+eWXkqS4uDg98MAD6tGjhy5duqQPPvhAJSUlunjxonJzc/Xuu+9q0qRJYc46tgwZMiTcKSDC5OTkhDsFRAA6WxAIii0IF8bXxR6KLQBChc4WBIoRYoC3UGyB5331q1/1FVq6deumvLw8DRo0yBe/fPmyHn30Ua1bt04VFRV6+OGHdezYMWVmZoYp49jSs2dPZWRkhDsNRBiKLagPOlsQCIotAGwYPHiwevXqFe40AEShHj16qH379uFOAxGkRYsWXGwMeAxrtsDT1qxZo02bNkmSkpOTtWrVqlqFFunWfMq8vDx1795dknT16lW9+OKL1nONVYwQQ6AGDhyoe++9N9xpIALQ2YJAUGwBYANdLQBCha4WBGrOnDlKSkoKdxoAbkOxBZ724x//2Pf1woULlZWV5Xq79PR0vfDCC77vf/azn6mysjLk+YFiCwKXm5sb7hQQIehsQSAotgCwgWILgFBhvRYEihFigPdQbIFn3bhxQ+vWrfN9/9RTT/m9/fz5830nWq5evaqPPvoopPnhFootCBQjxFBfdLYgEBTnAITakCFD1LNnz3CnASBK0dmCQDRr1kxTp04NdxoA7kCxBZ61ZcsWlZWVSbp1AmX48OF+b5+amqrRo0f7vl+/fn1I88MtQ4YMCXcKiCBdunThMYN6o9iCQNDZAiDU6GoBECotW7ZUnz59wp0GIsjs2bOVmpoa7jQA3CEx3AkAJocOHfJ9nZWVpcTEuh+uQ4cO1fvvv3/XzyM0unXrplatWoU7DUSQnJwcxcXFhTsNRAg6FRAIii0IxOeff65XX301oJ/59NNPQ5MMIgbFFgChMmbMGMXHcz006o8RYoA3UWyBZx05csT3dbdu3er1M127dvV9ffjw4aDnhNoYIYZAsV4LAkFnCwJBsQWB2LZtm7Zt2xbuNBBBhg4dqvvuuy/caQCIUowQQyCaNGmiGTNmhDsNAC4om8Ozrly54vu6Xbt29fqZ9u3b+76+evVq0HNCbcOGDQt3CoggmZmZeuCBB8KdBiIInS0IBMUWAKFEVwuAUBo3bly4U0AEmTFjBhemAR5FsQWedePGDd/XaWlp9fqZ2293+883Rmpqqu8ETlVVlQoLC+U4jiSpqKhI5eXlkqSSkhLdvHlTklRZWanCwkLfPq5du6aKigpJUnFxsYqLiyVJFRUVunbtmu92hYWFqqyslCTdvHlTJSUlkqTy8nIVFRVJkhzHUWFhoaqqqnzHWVpaKkkqKyvT9evXJUnV1dUqLCxUdXW1JOn69eu+NXBKS0t9/z91HVPNvhMTE5WZmenLtXnz5ho0aFBEHlM03k9eOqaEhARlZmb62uCbNWumlJQUzZo1S1VVVRF5TNF4P9k+pl69ekmSkpKS1Lx5c9/tMjMzfWMi09PTfc/jycnJvmP16jFF4/0UCccUHx+vtLQ0XzGu5vWp5rU6Eo8pGu8nrxxTQkKCmjVrJkmKj493fX2Sar/fq3kdqxl7mZGRoeTkZElyfezV7I/7KfKPqeZ3Sne/Ps2ZMycijyka7yeOiWOK1GNyHMe3xkZKSorv9SklJUU9e/aMyGOKxvvJK8dU8zNun5/mzZsXkccUjfeTl46p5r2u23vYSD2mht5P4USxBZ5V88coyffkUJeaD8ySfH/0jTVq1CgtWLBAknTp0iUtXrzY9wTwyiuv6ODBg5KkjRs3atWqVZKkM2fOaPHixb59vPzyyzp27Jgkae3atVq7dq0k6dixY3r55Zd9t1u8eLHOnDkjSVq1apU2btwoSTp48KBeeeUVSbeenBYvXqxLly5JkpYsWeIbg7Fr1y69/vrrkm49AS1evNj3hPf6669r165dkm6NzliyZEm9jmnTpk3q3LmzOnfurEWLFvly/frXv+7rOIq0Y4rG+8lLxzRkyBAtWrRIGRkZkqTHH39cQ4YM0fz58yP2mKLxfrJ9TE899ZQkqUePHvr617/uu92iRYvUpUsXSVJ2drYmTJggSZo+fbr++7//29PHFI33UyQc05AhQzRhwgRlZ2dLku/1afjw4RF7TNF4P3nlmHr37q3HH39c0q0PnG6vT1Lt93tt2rTRokWLfO8rn376afXr10+SXB97NWNVuZ8i/5jOnTvnu92iRYvUuXNnSdITTzyhU6dOReQxReP9xDFxTJF6TKWlpRo1apSkW5+Zal6fpkyZop/+9KcReUzReD955ZiOHj2qJk2auH5+Gjx4cEQeUzTeT146ppYtWxrfw0bqMTX0fgorB/ComTNnOpIcSc6zzz5br59Zs2aN72eaNm3aqN+/f/9+R5KTmprqNG3a1Nm/f79TWVnpFBQUONXV1Y7jOM61a9ecsrIyx3Ecp7i42Llx44bjOI5TUVHhFBQU+PZVWFjolJeXO47jODdv3nRu3rzpOI7jlJeXO4WFhb7bFRQUOBUVFY7jOM6NGzec4uJix3Ecp6yszLl27ZrjOI5TXV3tFBQUOJWVlY7jOM7169edkpISx3Ecp7S01CkqKnIcx3GqqqqcgoICp6qqynEcxykqKnJKS0sdx3GckpIS5/r1647jOPU6pn/91391EhMTnczMTN//71//9V9H9DFF4/3klWP66KOPnDZt2jjx8fGOJKdZs2bO2LFjnaqqqog9pmi8n2wf05UrV5yhQ4c6SUlJTvPmzX3P05s3b3a+9rWvOZKc9PR0Jy0tzZHk/PKXv/T8MUXj/RQJx/TBBx84zZo1c9LT0x1JTmJiojNjxgzf7SLxmKLxfvLKMX3xxRdO7969HUlOfHy8k5mZWev1KSUlpdb7PUlOQkKCk5mZ6cTFxTmSnIyMDCc5OdmR5KSlpdV67LVo0cJZsWIF91OUHNOVK1ecKVOmOJKczMxMJzEx0ZHkvPfeexF7TNF4P3FMHFOkHlNhYaHvOSYlJcVp1qyZEx8f76xfvz5ijyka7ycvHdN3vvOdWp+fJDn/+I//GNHHFI33k1eOqV27dq7vYd98882IPaZA76eac7k1//bv3+/YFuc4f+jDATzmkUce0VtvvSVJ+uY3v1mvCuWyZcs0f/58SbfWb7n96rRAHThwQAMGDPB9v3//fvXv37/B+4t0v/rVr/Tqq68qPj5ec+fO1Te+8Q1fayJwp40bN+qll17SpUuXNHr0aH3ve9+r1fqM2FRQUKDvf//7+uijj9SnTx8tWrRII0aMUFVVlV566SXl5eWpRYsWWrhwob7yla+EO1142AcffKCXX35Zp0+f1sSJE/W9732v3iNHEXtOnDihf/qnf9KmTZuC1vkcFxengQMH6plnntGsWbOCsk94w7Vr1/Tiiy/q3XffVZs2bfTcc8/pwQcfDHdaAKLEtWvX9KMf/UjvvvuuOnTooO985zsaO3ZsuNOCR1VXV+snP/mJXn/9dSUlJempp57SwoULfSNMgdsNGzas1vrXNf7zP/9Ts2fPDkNG9nnhXC7FFnjWX/zFX/ja1R555BH97ne/q/NnfvKTn+gv//IvJUn9+vXTgQMHGvz7vfAHCgAAAAAAAADwzwvncimFwrN69+7t+/qLL76o18/UzFKWpD59+gQ9JwAAAAAAAAAA7kSxBZ7Vt29f39f79u1TZWVlnT/z6aefuv48AAAAAAAAAAChQrEFnjVmzBilpKRIkm7evKmdO3f6vX1ZWZm2bdvm+37SpEkhzQ8AAAAAAAAAAIliCzysadOmmjx5su/7V1991e/tly1bpuvXr0uSWrZsqQceeCCU6QEAAAAAAAAAIIliCzzuL/7iL3xfv/rqq8YF74uLi/X888/7vn/mmWeUmJgY8vwAAAAAAAAAAKDYAk+bNWuWxo8fL+nWmLDZs2dr7969tW5z5coV5ebm6vPPP5d0q6vl2WeftZ4rAAAAAAAAACA2cek/PO+3v/2tRowYoXPnzunkyZMaPHiwJkyYoB49eujSpUv64IMPVFxcLElKTEzUW2+9pczMzPAmDQAAAAAAAACIGRRb4HmdO3fW+vXr9dhjj2n37t1yHEcbNmzQhg0bat2uTZs2+tWvflVrnRcAAAAAAAAAAEKNYgsiQp8+fbR9+3b97ne/0xtvvKEDBw7owoULyszMVPfu3TVv3jw99dRTat26dbhTBQAAAAAAAADEGIotiBjJycl68skn9eSTT4Y7FQAAAAAAAAAAfOLDnQAAAAAAAAAAAEAko9gCAAAAAAAAAADQCBRbAAAAAAAAAAAAGoFiCwAAAAAAAAAAQCNQbAEAAAAAAAAAAGgEii0AAAAAAAAAAACNQLEFAAAAAAAAAACgESi2AAAAAAAAAAAANALFFgAAAAAAAAAAgEag2AIAAAAAAAAAANAIFFsAAAAAAAAAAAAagWILAAAAAAAAAABAI1BsAQAAAAAAAAAAaASKLQAAAAAAAAAAAI1AsQUAAAAAAAAAAKARKLYAAAAAAAAAAAA0AsUWAAAAAAAAAACARqDYAgAAAAAAAAAA0AgUWwAAAAAAAAAAABqBYgsAAAAAAAAAAEAjUGwBAAAAAAAAAABoBIotAAAAAAAAAAAAjUCxBQAAAAAAAAAAoBEotgAAAAAAAAAAADQCxRYAAAAAAAAAAIBGoNgCAAAAAAAAAADQCBRbAAAAAAAAAAAAGoFiCwAAAAAAAAAAQCNQbAEAAAAAAAAAAGiExHAnAHhVWVlZre8///zzMGUCAAAAAAAAADC589ztned2baDYAhicPn261ve5ubnhSQQAAAAAAAAAUG+nT5/W0KFDrf5OxogBAAAAAAAAAAA0AsUWAAAAAAAAAACARohzHMcJdxKAFxUWFmrjxo2+77t06aKUlJQwZgQAAAAAAAAAuFNZWVmtZSEmTJigzMxMqzlQbAEAAAAAAAAAAGgExogBAAAAAAAAAAA0AsUWAAAAAAAAAACARqDYAgAAAAAAAAAA0AgUWwAAAAAAAAAAABqBYgsAAAAAAAAAAEAjUGwBAAAAAAAAAABoBIotAAAAAAAAAAAAjUCxBQAAAAAAAAAAoBEotgAAAAAAAAAAADQCxRYAAAAAAAAAAIBGoNgCAAAAAAAAAADQCBRbAAAAAAAAAAAAGiEx3AkAsayqqkoHDhzQjh07tHPnTu3YsUN79+5VRUWFJGnChAnasGFD0H/v5cuX9fHHH+uTTz7Rvn37dOzYMX355Ze6ceOGkpKS1KJFCw0YMEAPPvignnzySXXq1KnOfZaUlGj79u3aunWr9u3bpyNHjuj06dMqKiqS4zhq3ry57rvvPo0ePVp/9Ed/pCFDhgSc96FDh/TKK6/ovffe05kzZ1RWVqZOnTpp9OjRevLJJzV58uSA9ldZ+f+3d99hUVz7/8DfS5cigiCCBexdESOWBEGBWGI3seaKiS22lBs1Jia2mGa990aNsWLsvUVNsGCvqGBBwQgoFlCagnQ4vz/4Mr9d2TK44CK8X8+zzzPDfuYzZ5Y5W+bMOScXW7ZswZ49e3Dp0iU8ffoUpqamcHFxwTvvvIMPP/wQ3t7exS4nkTqs7/LLW/j6FL5Wjx8/lp4PDg6Gj4/Pq7wUSEhIQGBgIHbt2oXo6GgkJyfDyckJzZo1w5AhQzB48GCYmpq+Um4iZazv8stb0vU9PT0dV69eVcl5584dCCEAADNnzsSsWbOKlZNIG9Z3+eUt6fp+5coVHDlyBGfPnsXNmzcRFxeHrKwsVKlSBfXr10enTp0wcuRINGjQoFh5ibRhnZdf3pKs81FRUTh9+jSuXLmCGzduICYmBvHx8cjIyIClpSUcHR3h7u6O9957DwMHDoS1tbXs3ESasL7LL29p/YZ/WV5eHtq3b4+QkBDpbwEBAQgMDCyR/CVCEJFB7N69W1haWgoAGh/e3t6lsu/33ntP636VH+bm5mLWrFkiLy9Pa8758+fLzglADBo0SCQmJsou89y5c4WpqanWnEOGDBHPnz+Xle/q1auiQYMGOss5dOhQkZKSIrucROqwvsur7x06dNCZKzg4+JVeh/379wtHR0etuT08PERERMQr5ScqxPpuuPo+depUYWxsrDXnzJkzi5WTSBvWd8PU9w0bNgg3NzdZZVQoFGL8+PEiPT1ddn4iTVjnDfcZb2VlJbucTk5OYseOHcXKT/Qy1nfD/4ZXZ8GCBUXyBwQElFj+ksCeLUQGkpKSgvT0dEMXAw4ODmjSpAlcXV1hbW2N9PR0/PPPP7h48SJyc3ORlZWFWbNmISoqCuvWrZOV09LSEk2aNEG9evVQpUoV5Obm4sGDBzh//jyeP38OANi6dSvCw8Nx+vRpVK5cWWu+GTNm4Pvvv5fWnZ2d4eXlBQsLC1y+fBk3b94EAGzevBmJiYk4cOAATEw0v71dunQJPj4+0uuvUCjw1ltvoXnz5sjLy0NYWBjCwsIAAJs2bcKDBw8QFBQEc3NzWcdP9DLWd3n1/dGjRyVynC8LCgpCv379kJubK5XZ19cXjo6OuHv3Lk6ePAkhBK5cuQJfX19cuHABLi4upVIWKv9Y3w1X3+Pj45GXl1fieYk0YX03TH0/deoUYmJipHUTExN4eHigbt26qFy5Mh4+fIhTp05Jd+suW7YM4eHhOHToECwsLEq0LFSxsM4b9jt9IVdXVzRu3BjVq1dHpUqVkJKSguvXr0vXBeLj4/HBBx9g1apV+Pjjj0u1LFR+sb6XjfquLCoqCjNmzHht+3tlhm7tIaqo1q5dK9110bNnTzF79mxx8OBB8dlnn5V6K/n8+fPF8uXLxZ07dzTGxMXFiSFDhqi0Fm/fvl1j/J49e8QPP/wgQkJCRE5OjtqYjIwM8dNPPwkjIyMp54QJE7SW9ciRIyplmDJlisjKylKJ2bRpk7CwsJBiZs+erTHfixcvRM2aNaVYV1dXcfHixSJxR48eVbkL/vPPP9daTiJtWN/l1XdXV1dhamoqWrduLcaMGSNWrlwpQkND9borJiEhQVSpUkXa3tfXVzx9+lQlJjQ0VNSuXVuK6dKlS7H2QaSM9d1w9T0gIEAAEPXr1xdDhgwRixYtEqdOnVK54449W6gksb4bpr6PHTtWABBeXl5i3bp1anu2p6amii+++EJlH1OnTpW9DyJ1WOcN9xk/fvx4sX37dhEfH68xJjQ0VHh4eEj7sLS0FPfu3SvWfogKsb4brr5r4ufnJwAIOzs70b179zLbs4WNLUQG8vjxY7Uf/DNnziz1N2658vPzRZcuXaTy+Pn5lUje2bNnSzltbGxERkaGxti2bdtKsYMHD9YY99tvv6nkfPliaiHlLodWVlYiMjJSY86LFy8KExMTAUCYmZmJu3fvyj9IIiWs7/Lqe1hYmNrn9fmiNmXKFGnbevXqiRcvXmjct/JQhX///Xex9kNUiPXdcPU9MjJSJCUlFfm7t7c3G1uoVLC+G6a+r1y5Uhw/flxW7Keffirtw8zMTDx79kz2fohexjpvuM94uRITE4WDg4O0n7lz55bKfqj8Y30vW/V9zZo1Ur6VK1dKN1mVxcYWIxCRQVSvXh21a9c2dDG0UigU+Oijj6T1q1evlkhe5a68qamp+Oeff9TGFU6uBQBGRkaYN2+expxjx46VJr9MTU3F+vXr1cZt375dWtY1YWbbtm3x/vvvAwCys7OxfPlyjbFE2rC+F9BW3wGgZcuWJTq8R05ODlauXCmtz5kzB5aWlhr3HRAQIK0vXbq0xMpBFQvre4HXXd8BoEGDBrCzsyvRnETasL4XeN31fdSoUfD29pYVO2fOHJiZmQEo+D5/5MiREisHVTys8wUM8Rkvl729Pfr06SOtl9TxU8XD+l6gLNT3+Ph4fPnllwAALy8vjBw5slT3py82thCRVo6OjtJyampqiefUlnfPnj3Ssp+fH2rVqqUxp0KhULlQunv37iIxeXl5CAkJkdZ79Oihs6zvvfeetLxz506d8URvMkPW99Jw/PhxpKSkAABsbGwwYMAArfEjRoyQloOCgvDixYtSLB2RYZW3+k5EmlXk+m5ra4tmzZpJ68pzvRCVVxW5zgOlc/xEZVVFqO+TJk1CcnIyzMzM8Pvvv0OhUBi0PLqwsYWItAoPD5eW3dzcSjyntrzBwcHSso+Pj868nTt3lpbPnj2LrKwslecTExNVJs51dXXVmVM5Jioqij/QqFwzZH0vDcrvIR06dIC5ubnWeE9PT6nnS2ZmJs6dO1eq5SMypPJW34lIs4pe35Uvyij/FiAqryp6nS+N4ycqq8p7fd+7d680Qs3UqVPRpEkTg5VFLja2EJFGjx49woIFC6T1wiG19JGdnY1p06ZJ6x07doSzs7Pa2Fu3bknLHh4eOnO3bt1aWs7Ly0NkZKTK80KI4ha3iJs3b+qdg6gsMnR9Lw3FfQ8xNTVFixYt1G5PVJ6Ux/pOROpV9PqelZWFO3fuSOvaesoTlQcVvc4fO3YMf/75p7ReEsdPVFaV9/r+/PlzjB8/HkDBcMHTp083SDmKi40tRKQiPT0d4eHhWLhwIVq3bo1Hjx4BAJo0aaLyhlsc2dnZuHfvHjZs2IB27dohKCgIQMGwPr/++qvabZ48eSIN/wPI64VSqVIlle6Ot2/fVnm+atWqMDL6/2979+/f15nz5RhefKXypKzU99ISEREhLct5DwGgMi7vy+8hRG+y8l7fiej/Y33//3bu3CkNf6JQKNClSxcDl4io5FXkOi+EwLNnz3D+/Hl88cUX6N69O/Lz8wEAw4YNg7+/v4FLSFSyKlJ9nzp1qnR8y5cvN9hcUMVlYugCEJFhnT59Gl5eXlpjevTogY0bN8LGxkZ2XhMTE63d9Bs2bIidO3eiefPmap9PTExUWXdycpK13+rVq+Pp06cAgKSkpCJlatmyJUJDQwEAf/31F959912t+Q4ePKiy/nJOojdJWa3vpUX5faQ47yGFWN/pTVbR6jtRRcb6rt6LFy/w9ddfS+sffPABqlWrZsASEZWMil7n586di++++07j8yYmJvjyyy/x448/vsZSEZWOilrfT548iRUrVgAAhg8f/kbdLMGeLUSkkZ2dHTZv3owDBw6gSpUqJZLT2NgY33zzDW7evKn1TTstLU1lvVKlSrLyK8e9nAMA+vTpIy2vWrUK0dHRGnNdvXpVGhuykKEnBiMqLYas76VF+T2gpN5DiMqD8ljfiUi9ilzfJ06cKPVSt7S0xA8//GDgEhGVvopc5wGgadOmuHjxIn7++WeVUS2IyqPyWt8zMzMxevRoCCFQtWpVLFy40CDleFXs2UJUwbm4uGDChAkACrrgpqamIiIiAleuXEFycjKGDBmCFStWYPny5WjYsKHsvBMmTJBayV+8eIHY2FhcvHgRqamp+PHHH7Ft2zb8+uuv6Natm9rtMzMzVdbNzMxk7Vd5AuyMjIwiz0+aNAn/+c9/8OzZM6SmpsLf3x/btm0rMp/DyZMnMWjQIOTk5Kj8XV1OojdFWa3vpUX5faSk3kOI3hQVrb4TVWSs70UtWbIEgYGB0vrixYtRv359wxWIqARV9Drftm1b6fjz8vKQnJyMsLAw3L59G+Hh4fD09MRHH32EBQsWoHLlygYtK5G+KmJ9nzNnjjQH84IFC+Dg4PDay6AXQURlysyZMwUAAUB4e3sbrBwPHz4UI0aMkMpiZ2cnwsLC9MqZlpYmfvnlF2Fubi4ACCMjIxEYGKg29uLFi9K+AYiMjAxZ+/D09JS2WbBggdqYvXv3CiMjIylOoVCIdu3aiY8//liMGDFCtG7dWnquUaNGomnTptL6559//srHT/Qy1nd5lN8LgoODZW9naWkpbXfo0CFZ20ydOlXapmfPnq9UXiJ1WN/ledX6ro23t7eUc+bMmSWSk0gb1nd5SqO+CyHEvn37hLGxsZR7xIgRJZabSB3WeXlKq84Xunz5smjfvr20j9atW4tnz56V+H6oYmN9l+dV63toaKgwMTERAISPj4/GuICAACl/QEDAK5WxtLBPHRGp5eLigrVr1+LTTz8FACQnJ2Pw4MFax3TUxcrKClOnTsXmzZsBAPn5+fjkk08QFRVVJNba2lplXe4d5spxL+co1Lt3b+zfvx9Vq1YFUHB3wIULF7BmzRoEBgbi6tWrAIA2bdrgr7/+grGxsbRtSXXNJCpLDF3fS4vye0BJvocQvcnKa30noqIqYn0/ceIEBg0aJB1jr169sHLlSgOXiuj1qIh1XpmHhweOHTuGdu3aASgYFnzKlCkGLhVR6SiP9T0vLw8jR45Ebm4uzM3NsXz58tey35LGxhYi0uqnn36Sut7eunULhw4d0jtnv3794OvrC6BgmJ9ly5YViSlsCCkUHx8vK3dcXJy0bG9vrzGuR48eiI6OxsKFC+Hr64tq1arB1NQU1apVQ+fOnbFq1SqcP38ebm5uSEhIkLarVauWrHIQvYkMVd9Li/L7SEm/hxC96cpbfScizSpKfQ8JCUGvXr2kGyd8fHywbds2mJhw9HSqWCpKnVenUqVKWLBggbS+du1aJCcnG7BERKWrPNX3JUuW4PLlywCAr7/+Go0aNXot+y1pbGwhIq0sLS3RsWNHaf3MmTMlktff319rzmrVqqn0Irl3757OnJmZmXj69Km03rhxY63xNjY2+Pe//40jR44gPj4e2dnZiI+Px7FjxzBy5EiYmJggOTkZjx8/lrZp27atznIQvakMVd9Li/KXMznvIQCkiXQB3e8hRG+y8lbfiUizilDfr1+/jq5duyI1NRUA4OnpiX379sHCwsKg5SIyhIpQ57Xp2LEjLC0tAQA5OTm4ePGigUtEVHrKU30vHGUGAPbu3Yv27dtrfBw4cECKPXDggMpzytfwDIG3eBCRTnZ2dtJyYmLia8vZpEkTnDt3DkDBm27Xrl215rxy5Yq0bGxsXKzJwTQ5e/astGxra4umTZvqnZOoLDNUfS8NTZo0wZ49ewCofnHTJDc3F9evX1fZnqg8K0/1nYi0K8/1PSIiAv7+/khKSgIAtGjRAocOHYKNjY3BykRkaOW5zutiZGQEW1tbpKenAyjbZSUqCeWxvsv5/V4oISFBZUSarKys0iiSbOzZQkQ6KbcKl9SwOnJydu7cWVo+fvy4zpwnTpyQljt27Ahzc/NXL+D/2bp1q7Q8dOhQlflbiMojQ9X30qD8HnLu3DlkZ2drjb906ZL0o8zCwgIdOnQo1fIRGVp5qu9EpF15re/R0dHw8/OThgtt2LAhDh8+zPcfqvDKa52XIycnR+XicFkuK1FJqMj1vSxiYwsRaZWYmCj1LgFK7k7vP//8U2fOvn37SstHjhzBgwcPtOYMDAxUu+2runXrljQxmEKhwCeffKJ3TqKyzJD1vTT4+PjA1tYWAPD8+XPs2rVLa7zye4i/vz+srKxKs3hEBlXe6jsRaVZe6/vDhw/h6+sr/UZwdXXFkSNH4OTk9NrLQlSWlNc6L1dQUJDKTVZluaxE+ipP9T0wMBBCCFmPgIAAabuAgACV59zc3F5LeTVhYwtRBVPYvV6O/Px8TJw4UeqCZ25ujp49exaJe/HiBTIzM2Xn/e233xASEiKtDxgwQG1c27ZtpTlS8vLyMG3aNI05V6xYgcjISAAFc7EMHz5cdnnUSUlJwdChQ5GbmwsAGD16NFq2bKlXTqLX7U2q76XB1NQUo0ePltZnzJghTZr7shs3bqg0tkyYMKG0i0dUoip6fSeqSFjfgSdPnsDX1xfR0dEAABcXFxw9ehS1atV6reUgeh0qep0vzhBGSUlJmDx5srTepk0buLq6lkaxiEpFRa/v5QEbW4jKiZiYGCgUCumhfNFQ2R9//IG2bdvijz/+wPPnzzXmu3btGnr06IEtW7ZIf5syZQqqVq1aJPbOnTuoX78+5s+fj9jYWI054+Li8MUXX6hcxPTy8lL7YVDop59+kpY3btyIadOmIScnRyVm27Zt+Pzzz6X1yZMnw8HBQWPOxYsXY8WKFUhOTlb7fHBwMDp27IjQ0FAAQN26dTF//nyN+Yhet/Ja30vDtGnTUKVKFQAFZe/Tp0+RH2zXrl1Dr169pDvgOnfurHOOKKLXhfWdqOJgfZcnOTkZ7777LiIiIgAADg4OOHz4MOrVq/faykBUEljn5Rk9ejTef/99/PXXX9LNkC/Lz8/HwYMH0aFDB9y+fVv6+y+//PK6ikmkFet7xWFi6AIQVWQ9evTAo0ePVP4WFxcnLYeEhMDd3b3IdgcPHoSLi8sr7zckJAQBAQEwMTFB48aN0ahRI9jZ2UGhUCAxMRHXrl3DP//8o7LNgAEDMHPmTI05Hz58iKlTp2Lq1Klwc3ND8+bN4eDgAHNzczx//hy3b9/GtWvXkJeXJ23TqFEjlTlR1PH19cW3336LuXPnAij4srR+/Xp4eXnBwsICly9fxo0bN6R4f39/fPPNN1pzRkRE4Pfff8eECRPQqlUrNG7cGNbW1khISMDly5cRExMjxdapUwfBwcGoXLmy1pxEurC+667v+/btw4wZM7TGjBo1CtbW1ip/6927N+bMmaM2vmrVqtiyZQt69uyJ3NxcHD58GLVr14afnx8cHR1x9+5dnDhxAkIIAECNGjWwYcMGrWUg0oX13TD1/dGjR+jRo0eRvysf8/Lly7Fnzx6V511cXHDw4EGtZSHShPX99df3sWPHIiwsTFpv3rw5li1bpjV/oQYNGuCzzz6TFUukDuv866/z+fn52L17N3bu3AkrKyu0aNECbm5usLW1RXZ2NuLi4nD58mU8efJEZbtFixbB19dXazmItGF9N8x3+jeeICKDcXV1FQCK/YiOji6SKzo6WiVm7dq1ave5bNmyYu3LxsZGLFy4UOTm5mo8jhs3bggjIyPZOY2MjMTo0aNFUlKSrNcpPz9ffP/998LU1FRr3sGDB4tnz57pzDd27FhZ5Rw8eLCIi4uTVUYiXVjfddf3tWvXvtJrFBAQoDP3vn37hIODg9Y8rVu3Frdv39aZi0gX1nfD1PeXXyu5D1dXV53lJdKE9f3113dvb+9XygdAeHt76ywvkTas86+/zg8cOLBYeerWrSsOHDigs5xEurC+G/Y3vDYBAQEllquksWcLUQUzbtw4+Pr64siRI7hw4QJu3ryJ+/fvIyUlBQBQuXJlODs7w93dHX5+fhgwYECRFuiXNWvWDHFxcTh8+DDOnj2La9euISoqComJicjJyYGNjQ2qVq2KFi1a4O2338aQIUNQo0YN2WVWKBT49ttvMWDAAKxatQpBQUGIjY1FTk4OnJ2d0aFDBwQEBMDPz09WvhkzZqBdu3Y4evQorl27hvj4eCQnJ8POzg41atSAr68vBg8ejDZt2sguI1FZ9CbW99LSq1cvhIeHY+3atdi9ezeioqKQkpICJycnNGvWDEOGDMGQIUNgampq6KISvRLWd6KKg/WdqGKp6HV+8+bN+OKLL3D8+HFcunQJERERePDgAdLS0mBqagpbW1u4ubmhTZs26NWrF/z9/WFsbGyQshLpq6LX9/JAIcT/jZtBRERERERERERERERExWZk6AIQERERERERERERERG9ydjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1ERERERERERERERER6YGMLERERERERERERERGRHtjYQkREREREREREREREpAc2thAREREREREREREREemBjS1EREREREREREREROVUXl4erl27htWrV2PcuHF46623YGZmBoVCAYVCAR8fH0MXEQCQk5ODnTt3YujQoWjUqBEqV64MU1NT2Nvbw93dHWPGjEFwcLChi6mRQgghDF0IIiIiIiIiIiIiIiIqWXv27MGwYcOQnp6uMcbb2xvHjx9/fYVSIywsDMOGDcPNmzd1xvr6+uKPP/6Ai4vLayiZfCaGLgAREREREREREREREZW8lJQUrQ0tZUF4eDg6d+6M5ORk6W/16tVDs2bN4ODggNjYWFy5cgWJiYkAgKNHj6JTp064dOkS7OzsDFXsIjiMGBEREdEbbNasWVLX71mzZhm6OG+Ey5cvw9jYGAqFAosWLTJ0cYrYvn07evXqhRo1asDc3LzMde0nIiKSY/ny5dJn2OnTpw1dHCKiCs/JyQk9e/bE7NmzcfDgQXz22WeGLpJk/PjxUkOLvb09tm/fjjt37mDv3r1YvXo1goKCcO/ePcycORMKhQIAcPfuXcycOdOQxS6CjS1EREREr0FMTIx0waGkHmxcKT4hBCZOnIj8/Hy4urpiwoQJhi6SRAiBYcOGYeDAgfjzzz/x6NEjZGdnG7pY5YZyw6Tcx9y5c4u9n8jISMyZMwcdOnRAzZo1YW5uDicnJ7Rq1QpDhw7FypUrERMTU6ycCQkJ+O2339C1a1fUrVsXlpaWsLOzQ5MmTfDee+9h3rx5CAkJ0ZrDx8en2Mcv9+KoEAJBQUH4+OOP0bx5c1SpUgUmJiaoUqUKmjZtin/961/Yt28f8vLyinXcxZGQkIAFCxagY8eOcHZ2hoWFBVxdXdGjRw+sX78eOTk5xc6ZnZ2N9evXo0ePHnB1dYWFhQWcnZ3RsWNHLFiwAAkJCa9U1qNHj2L48OFo2LAhrKysYG9vj5YtW2LKlCm4ffu2rByv8v8sfLi5uanN+Sp1RPmh7rw+fvy4XjkDAwPVlvVVPlPr168v8z9UcAfwggUL4OfnB2dnZ5ibm8PR0REeHh6YPn06IiMjZecCgCtXrmDevHno27cvGjRoABsbG5iZmaFatWro2LEjpk2bhjt37sjO9yqvq5+fn+z8cXFxmD17Nt5++21Uq1YNZmZmqF69Otq3b48ff/wRDx8+lJVn1KhRaNCgAQBg0qRJpfoeQEREmnXr1g337t1DXFwc9u/fjxkzZqB79+6oUqWKoYsGoOBz/cSJE9L66tWr8f7770uNKoWsrKwwa9YsjB8/Xvrbpk2bUKZmSRFEREREVOqio6MFgBJ9zJw5U8ycOVNlnbTbunWr9HotX77c0MVRsWHDBpX/r6enpxgxYoSYMGGCmDBhgvjPf/5j6CK+0ZTritzH999/Lzt/amqq+Oyzz4SxsbHOvO+9956snPn5+WLZsmXC1tZWZ04rKyutuby9vYt9/KdOndJZxujoaPHOO+/Iyufh4SHCw8NlHXtx7N+/Xzg6Ourcd0REhOyct27dEu7u7lpzVqtWTRw4cEB2zmfPnolBgwZpzWlqaip+/PFHnble5f9Z+GjXrp3anK9SRwofZmZm4tmzZ0VyBgcH6/U5d+jQIbVlfZXP1Hr16sn6P23atElnnTMzMxM//PCDyM/P15prw4YNws3NTVb5FAqFGD9+vEhPT9dZxld5XX19fWUd/8KFC4WFhYXWXDY2NmL16tWy8q1Zs0baLjAwUNY2RET0eih/9nt7exusHHv37pXKYWVlJXJzc7XGnz17VuVzKSEh4TWVVDfO2UJERET0GlSuXFlnL4qLFy/i0qVLAAAXFxf069dPa7ynpycuXrxYYmUs7/Ly8qRu5k5OThgxYoRhC/SS9evXS8uzZ8/GjBkzDFia8q1t27bw9PSUFSdHSkoK/Pz8cPnyZelvrq6uaNOmDRwcHJCVlYWYmBiEhobi2bNnsnIKITBmzBisWrVK+luVKlXQsWNHVK9eHUDB3edhYWGy7zIv1LdvX9SoUUNnnK4JR+Pi4uDj44N79+5Jf6tZsyZatmwJZ2dnPHr0CGFhYXj06BGAgrv7O3XqhAsXLqBu3brFKrMmQUFB6NevH3JzcwEAlpaW8PX1haOjI+7evYuTJ09CCIErV67A19cXFy5c0HlcDx48gK+vr1RuhUKBTp06oV69enj69CmOHDmCjIwMPHnyBH379sVff/2FLl26aM2Zk5ODfv364dixY9LfmjdvDg8PD2RmZuLUqVN4/PgxcnJy8M033yAnJ0fre0C/fv3QvHlzWa9RSkoKNm7cKK1/+OGHauM8PT2L1dtv7dq10vjvvXr1QuXKlYvE1KhRo1g5g4KCpB4eTk5Osnpj2NjYYPjw4TrjHB0ddcYsXboUEydOlNbNzc3RqVMnuLm5ITU1FadPn8aDBw+QnZ2N6dOn49mzZ/jll1805jt16pRKjx8TExN4eHigbt26qFy5Mh4+fIhTp07h+fPnEEJg2bJlCA8Px6FDh2BhYaGzvIC87wsA0LhxY50xU6ZMwYIFC6R1a2treHt7w8XFBUlJSThx4gQSEhKQmpqKkSNHIjs7G5988onWnB9++CG+++47PHz4ELNnz8bQoUNhamqq+8CIiOiNkJOTgy1btmD//v0ICQnB06dPkZ+fj2rVqqF9+/YYOHAg+vbtW6SXirK0tDRpuXLlyjA2Nta6T3t7e5X1/Px8/Q6iJBm4sYeIiIiI/k9ZubOovNqxY4f0+k6fPt3QxSlC+c78Bw8eGLo45U5p9QLLyckR7du3l3K7u7uLkydPqo3Nzc0VJ0+eFKtWrdKZ98svv1TpQbFu3TqNd/ndunVLzJ07V2s+5Z4QwcHBOvcvR0BAgJTT3Nxc/P777yInJ0clJjs7WyxZskSYmZlJsb169SqR/SckJIgqVaqo3Ln/9OlTlZjQ0FBRu3ZtKaZLly4683p5eUnxrq6uIjQ0VOX5p0+fCl9fXynG3t5eJCcna8353XffSfEWFhZi8+bNKs9nZWWJKVOmqPRyOH78uLwXQoclS5ao9Mgoibs/b9y4oXJH6b59+/TOmZubK6pXry7l/Pe//60xVrlni6urq977FkKIy5cvCxMTEymvn5+fePjwoUpMXl6e+O9//6vSg23Pnj0ac44dO1YAEF5eXmLdunXi+fPnRWJSU1PFF198ofJ6Tp06VWtZlXu2lNT3BeW7igGIYcOGFTmvMzMzxddffy3FGBsbi8uXL+vMrfz+u2HDhhIpLxER6U/f35/BwcGiXr16OntXtm/fXuvvm1OnTql8trz8fe5lyr/rXFxcil3u0sTGFiIiIqIygo0tpUt5qKOoqChDF6cI5Yt8eXl5hi5OuVNajS1z586V8nbq1EmkpaXpnfPUqVNCoVAIAKJ69eoiMjJS75wl3djy4sULUalSJSnn4sWLtcbPnz9f5Ud0UlKS3mVQbpyoV6+eePHihdq4sLAwYWpqKsX+/fffGnMeOHBApWHi2rVrauPS0tJE3bp1pdivv/5aY874+HhhZWUlxWobwlB5mLEOHTpojCuOtm3bSjn79etXIjmVX/tq1aoVaWR7FcqvPQARFhamMbY0Glt69uwp5WzRooXIzMzUGLto0SIptnHjxhqPf+XKlbIbzT799FOVc0/dsGyFSqOxpUWLFlLOrl27ah0iTbmsfn5+OnPfu3dPek976623SqS8RESkP31+f27btk3l+1WlSpVE586dxUcffSRGjhwpvLy8VH7f1KpVS8TFxanNlZWVJZycnKTYsWPHatxvamqqaNmypRRbnGF/Xwc2thARERGVEWxsKT0RERHSa+vp6Wno4qilfJGRSl5pNLbEx8cLc3NzAUBYW1uL2NjYEsmrPFeItrvmi6OkG1vCwsJUzllNP54LPXr0SCU+JCREr/1nZ2er9GrZuHGj1vhRo0ZJsb1799YY16NHDylu9OjRWnMqz7Nkb2+v8YL7vHnzpLiGDRtqvYh97949YWRkJMVfuXJFaxl0CQ8PV3nd9+7dq1c+IQp6oDg7O0s5v/jiC71zCiHEwIEDpZytW7fWGlvSjS2pqakqF4R27dqlNT4nJ0fUrFlTii/O3D2apKSkqPQA27lzp8bYkm5suXXrlsp5ouu8S0pKUmlsvXnzps59dOjQQYrX1IhJRESv16v+/rxx44b0OaBQKMTkyZPV9vK9e/euyg1v3bt315hz/fr1Kp9FPj4+4tChQyI2NlZkZGSIyMhIsXr1apW50Pr37y+ys7Nf4chLjxGIiIiI6I01a9YsKBQKKBQKzJo1S21MYGCgFFM4T0l+fj42bdqE7t27o1atWjA3N4eTkxMGDBiAc+fOFcmRnZ2N9evXw9fXF7Vq1YKFhQVq166NgIAA3Lp1q1hlzsnJwfr16zFw4EDUrVsXNjY2sLKyQp06dTBkyBDs3r0bQojivhRaKc9X0LdvX9nl3LBhA/r374+6devC2toaJiYmsLGxQf369dG1a1fMmDFDr3lz3NzcpP+NssK/KT80bVc4H8Ddu3cxffp0tG7dGo6OjjAyMoK7u7va/d68eRNTpkxB69at4eDgAHNzc7i4uMDHxwe//PILEhMTdZa9rJ1XhrBmzRpkZWUBKJiXoGbNmnrnPH/+PEJDQwEUzLHQp08fvXOWBuWxtQHAzs5Oa3xJj619/PhxpKSkACiYs2PAgAFa45XnaAoKCsKLFy+KxKSlpeHo0aPS+kcffaQ154ABA2BtbQ0ASEpKwsmTJ9XG7dmzR6Uc2sYsr127tsr8L7t379ZaBl3WrVsnLTs6OqJ79+565QOAw4cP4/Hjx9J6QECA3jlTUlKwb9++Es1ZHJcvX5bm/TE2Nsa7776rNd7ExARdu3aV1nfu3Kl3GWxtbdGsWTNpXXmul9J24cIFabl69epo3bq11ng7Ozt07NhRWpdz/MrzymzYsOEVSklERGXFp59+ioyMDADAwoULMX/+fFSpUqVIXN26dfHXX3+hadOmAIBDhw6pfOYo+/DDD7F582ZUqlQJQMF3vcLfFJUqVULDhg0xcuRIxMTEoG7duli8eDF27NhR5uYBY2MLERERUQWTkJAAf39/DBs2DH/99Zc02e+TJ0+wa9cuvP3221i7dq0U/88//8Dd3R3Dhw/HsWPH8ODBA2RlZSE2NhZ//PEH3N3dVS4manP8+HE0adIEw4cPx/bt2xEdHY20tDSkp6cjJiYGW7ZsQf/+/dGxY8diT/qtzf79+6VlXRNZA0BkZCRatWqFf/3rX9i9ezeio6Px4sUL5OXlIS0tDXfv3kVQUBC+//57tGvXDv/880+JlfVVrFixAs2bN8ePP/6I0NBQJCQkqG2wys3NxaeffopWrVphwYIFCA0NRWJiIrKzs/H48WOcOHEC06ZNQ/369VUu0sphyPPKUJQvGOq62G/InKWhdu3aKus3b97UGn/jxg1p2dTUFE2aNNFr/8HBwdJyhw4dYG5urjXe09MTlpaWAIDMzEy1jX9nz56VGs+srKzQtm1brTktLCzQoUMHaf3YsWNFYjIzM3H+/Hlp3cfHR2tOAOjcubPWnHLl5+erNDSX1MTkf/zxh7TcqlUrtGrVSu+c27ZtQ2ZmJoCC82Po0KF65yyO+Ph4adnBwQFWVlY6t3F1dZWWlRvp9KHcEJeXl1ciOeVQPn7l49KmuMev/Nn7559/FqN0RERUloSFhUnfT1q3bo3PP/9ca7yVlRW+++47aV35u8nLBg8ejPv372PChAkab06pVKkS+vXrh379+mm9gcVQTAxdACIiIiJ6fXJzc9G/f3+cOnUKFhYW8Pb2Ru3atZGUlISjR48iJSUFQgiMGjUKDRo0QMOGDdGlSxfExsaicuXK6NSpE5ydnREfH48jR44gPT0d2dnZGDp0KG7evIk6depo3Pf27dsxbNgw5OTkACj4oty+fXu4ubnByMgIkZGROHfuHHJzc3H+/Hl06NABly5dgpOTk17HnJCQIPUUqFSpEtq0aaM1PjU1FX5+foiNjQUAGBkZoXXr1mjSpAmsra2Rnp6Ohw8fIiwsDAkJCXqVLSAgQOpFsnTpUunvEyZMkJ1j+/btmDp1KgDAxcUFb7/9NmxtbfHo0SMkJSVJcfn5+RgwYIDK3eP29vbw8fGBvb09YmNjERwcjOzsbKSkpGDEiBFISUnBZ599prMMhjyvXkV8fDw2bNiAyMhIpKWloUqVKqhZsybeeecdNGzYUFaOlJQUhIeHS+uF59XOnTuxdu1ahIaG4unTp7Czs0Pjxo3x3nvvYezYsahcubLWvGfOnCmS89KlS1i+fDmOHz+OR48ewdLSErVr14afnx/GjRuHunXrFuv4b9++jfDwcMTGxiInJwf29vZo2LAhvLy8ZNe3mjVronXr1rh69SoA4Ntvv8W+fftgbGxcJDY3Nxdff/21tD58+HCpR8irUu755OHhoTPe1NQULVq0kO6mvHXrFvz8/DTmbNGiBUxMdP9c9vDwwOHDh4tsXygiIkLqxaNQKHT2GCjMqa5MxXX06FE8ePBAWlfu3fOqnj9/XqSnTklQbtzt0aMHHB0dZW+bm5uLw4cPIyQkBAkJCbCwsICDgwPeeusteHp66myIA6B3b8r79+8jLS1Nr/M6KysLd+7ckdZr1aola7uMjAzs378fYWFhSEpKgpWVFZycnNCuXTu0bt1a1nms7/HramwFCi7IWVtbIy0tDeHh4Xj06BFcXFz02i8REb1+Bw8elJaHDBkiq8FDucH99OnTGuNCQ0Px5ZdfSo05jRs3hoeHB6ytrfH48WOcPn0aycnJWLhwIZYsWYIlS5Zg1KhRehxNKTDkGGZERERE9P+9ypi5cuahWLt2rRRTOL9Enz59RHx8vEpcUlKS8PLykmI7d+4s+vbtKwCITz75RDx//lwlPjY2VjRp0kSK/+ijjzSWszTG9ZVLedLlNm3a6Iz/z3/+I8U3bdpU3L59W21cfn6+uHjxohg3bpy4f/++3uWE0hjFuri6ukqxJiYmwszMTKxYsaLIXBDKEzz/8ssvKvuYNm2ayMrKUol//PixePfdd1Vynz9/Xm0ZysJ5VRzKdUXbw8PDQ+zevVtnvsOHD0vbWFtbi+TkZNG9e3etuatWrap1boeMjAyVeSMuXbokvvrqK5U5PF5+mJqairlz5+osr/KcLZoeCoVC9O7dW4SGhsp6TYODg1UmRnV3dxc7duwQ0dHRIiMjQ0RFRYmtW7eqTLz9zjvviJSUFFn5tVE+R3777TdZ23zwwQfSNuPHjy/y/Lhx46TnBw0aJCvn0qVLVd4vXrZ161bpeScnJ1k5b968qfJ/efLkiaztXjZs2DApR8uWLV8px8tWrlyp8v7wcn1/FZGRkSrHq2u+FCFU52zR9rCzsxPTp08XqampWvMdPXpU5bhevHihswzK8wAV1ld9bNy4UaUuanttleds0fZwcXER8+fP1zme/erVq6VtnJ2dZZXXz89PZV9Pnz7VuY3yvC1y3meJiKh0vcrvz169eqn8VpswYYLOx/jx46VtHBwc1Obds2ePNHdZjRo1xOHDh4vEpKeni2+//VYoFAop35YtW/R5CUocG1uIiIiIyojX0dgCFEw2mJubqzY2JiZGGBsbq8QHBARo3P/p06elOBsbG40TRHfp0kWKW7RokdZjSktLE02bNpXiNV3sl+unn36Scg0bNkxn/IABA6R4dV/yS4vya66LcmMLALFhwwat8c+ePRPW1tZS/OTJkzXGZmZmirZt20qxnTt3VhtXFs6r4pDb2FL4GDVqlMbjEUKINWvWSLGOjo4q57irq6sYOnSo+Pjjj0XHjh1VGkuMjY3F/v371eaMiopSKcOgQYOkZVtbW9G3b18xevRo0aNHD5XJqQGIqVOnaj1+OY0thQ9zc3OxYsUKWa/r0aNHhb29vc6czs7O4rvvviuxSUyrVatWrIvzQggxadIkaZvBgwcXeV55gvZPP/1UVs6dO3dK21SvXr3I88uWLZOel9vgkZiYqPLaaWrw1eb58+fC0tJSyrFw4cJi51BHuTG8V69eJZLz22+/lXJWrVq1SCOwOnIbWwofjRo1EhERERrzJSUlqdTTvXv3at1/bm6uqF27tso+/v7772Ife6G0tDSVfAMHDtQaL7expfDRvn17ERcXpzFfaGioSnxYWJjW/aekpKicXwC0vr6FPv74Yyl+1qxZOuOJiKh0vcrvzzZt2hTrM+jlh7GxcZGc//zzj7CyshIAhIWFhQgPD9dahunTp6t8d5Bzk8TrwjlbiIiIiCqYxYsXqx3qBygYg1150ltzc3PMmzdPY663335bGuokNTUVt2/fLhJTmuP6yhEdHS0ty5nA/Pnz59JycYayMRRPT08MGzZMa8ymTZukCc2dnJwwZ84cjbHm5uZYsmSJtB4cHIyIiAid5Xjd59WraNy4Mb799lscPXoUjx8/RnZ2NlJTU3H9+nXMnz9f5fxYtWqV1iHUCidnB4CnT5/i2LFjMDY2xq+//oro6Ghs3LgRq1evxpkzZ3D58mXUq1cPQME8DAEBAXj69KnWnACwdetWAMDHH3+MBw8eYPfu3VixYgUOHDiAmJgYlcnO58+fr3XeBIVCAW9vbyxevBjnz59HUlIScnJykJSUhFOnTuGLL76Q5qnIysrC2LFjsX37ds0v5v/p0qULYmJiMGvWLI3DFRkbG6Nnz54YNGhQiU1iWng+A5AmUtVFOU55+7KcU1NeXXbs2IH09HQABZO5f/jhh8XO8bKoqCiVYe5KYggxIYTKPEVDhw6FmZmZrG1tbGwwYsQIbNmyBREREUhLS5Pmfdq+fbvKMHERERHo1q2b2noHFEz47uXlJa3PmjVLGvJSneXLl+P+/fsqf0tNTZVVbnUmTpwo5bO0tMQPP/ygcxtHR0eMHz8eu3fvRlRUFNLT05GZmYmoqCisW7dOZc6h8+fPo1evXtJkxi9r2bKlynCN06dP17rvuXPnSudXITnHX6NGDWk5JiZGZzwREZU9z54902t7dXOSLViwAC9evABQMNysrrn9vvnmG2lo3sTERJX5OQ2NjS1EREREFUi9evXg7u6uNaZFixbSspeXF6pVq6Y1vnnz5tKycsNGodIc11cO5Yl/q1atqjNeeZz85cuX67Xv12Hw4ME6Y5Qn2R4yZIjOi76enp4q54HyZOTqGOK8Kq5Jkybh1q1b+P7779GlSxdUr14dpqamsLa2RvPmzTF58mTcvHlTpQFj6dKlGs+/wh+EyubPn4+JEycWOcfd3d0RFBQkNWYkJSWpNGhpy9mnTx+sXr26yFwQ1apVw549e6TJyYUQWhvRduzYgePHj+Pzzz9Hu3btYGdnBxMTE9jZ2eGdd97BokWLcPnyZWn+FyEExo0bp/MHdXR0NAICAjB79mzk5ubC1dUVgwYNwpgxY9C/f384OTkhLy8PK1euRMuWLbWWsTgKJ1MHIPvivPLcHeouOpfFnJry6qI8B0q3bt101jc5/vjjD2luD3t7e/Ts2VPvnCdOnFC56B4QECBrO2dnZzx69Ahr167FoEGD0LBhQ1hZWcHMzAw1a9bE+++/j8OHD+P333+X6mN0dLTK3EEvU25guHr1Kvr06YO4uDiVmPz8fCxfvhxffPFFke1f5f8EAEuWLEFgYKC0vnjxYtSvX1/rNm+99RYePHiApUuXom/fvqhTpw4qVaoEc3Nz1KlTB8OHD8eFCxdUbly4dOkSFi5cqDafQqHAN998I63/+eef+Oijj4rU/+zsbMyaNQsLFiwokkPO8Ts4OEjLL7+2RET0Zij8PgsAu3btgigYOatYj5f99ddf0rLy70BNLC0t0b59e2k9JCREz6MqObpnSiMiIiKickP5ArYmdnZ20nKzZs10xtvb20vLyr1CCp07d05aDg4Oxr1793TmVP4SXjhR/atSvoBtaWmpM37gwIFYs2YNgILGlsuXLyMgIABdu3bVeQHMEAonUdemcBJzACo9TLR5++23cf36dQDAlStXtMYa4rwqLjkNbZUrV8aOHTvg7u4uTVT9yy+/4J133ikSa2FhobJes2ZNfPrppxpz161bF+PGjZMuUm7duhWzZ8/WmrNw/5qYmZnhhx9+kC56nzx5EnFxcahevXqRWDnH36hRI+zfvx+tWrVCbm4uEhMTsWrVKnz55Zdq48+fP49u3brh2bNnsLW1xe+//46BAweqNDbl5ubit99+w+TJk5GdnY2ZM2fCwsICU6dO1VkebSwsLKQ767Ozs2Vtk5WVJS2ra3BUfv3LSk5NebWJiYnByZMnpXW5DRjaCCGwfv16aX3IkCGyG4+0UW4Uat68uaz3M6CgQUrOxPdjxozBvXv38OOPPwIAAgMD8cMPP8DJyalIrL+/P7788kupQeLQoUOoU6cOvL29Ubt2baSlpeHMmTNSD5T+/ftj165d0vY2Njayyq5s//79Kr09R4wYgTFjxujc7uXGV3UUCgXmzJmDu3fvYtOmTQCARYsWYdq0aWp7oY0aNQp///03duzYAaDgtdq5cyd8fHzg7OyMpKQknDx5Ek+ePAHwasev/BmsrnGZiIjKPuXP0JJqOH/48KG0LOc7K6DagK9vb5uSxMYWIiIiogrE1tZWZ4zyRZjixqsbduXRo0fS8qFDh3Tme1lycnKxt9FE3Z1UL+vatSsmTZqEX3/9FUDB3cCXLl0CUPDj4p133oGPjw/69u0ra1iy0iZnqDPloXNcXV1l5XVzc5OWExIStMYa4rwqLZaWlvjqq68watQoAAW9grKzs4tcWH75Ymfv3r01DqNWqF+/flJjS0REBBITE1V+UL6cs2nTpmjUqJHWnF27dkWlSpWku8rPnj2L/v37a91Gm6ZNm2Lw4MHS0E6HDh1S29iSnJyM/v37Sz9ud+/ejc6dOxeJMzExwaRJk1CpUiWMHj0aAPDdd99h6NChetUfa2trqbFFbo8C5Th1F6uV/1ZWcmrKq8369etVeqD07t27WNurc/r0aURFRUnrJTGEWHp6Onbu3Cmtl0SjkDpff/01Fi9ejIyMDOTl5eHw4cMah1VbsGAB7OzsMHv2bOTk5CAzMxN///13kbhhw4Zh3rx5Ko0NVapUKVa5Tpw4gUGDBknDqfTq1QsrV64sVg455syZIzW2JCcn4/z582obkIGCISerV6+OpUuXQgiB1NTUIkOzKBQK/Pvf/8bgwYOLffxyPoOJiKhsa9euHYKCggAAZ86cwbhx4/TOWalSJen7flJSkqxtEhMTpeXifgaXJg4jRkRERFSByBnCS594dUpjXN/iUO7qLvdi5//+9z/s2rULnp6eKn+Pj4/Hzp07MWnSJNSuXRvvv/9+kXH7Xzc5d70rz/mg/Hpooxynayx+Q5xXpUl5rof09HS1vbFevuuuadOmOvO+PP60ckPkq+Y0MTFBgwYNpHXlOwNflfLx37p1S23MihUr8PjxYwDAu+++q7ahRdnIkSOlcmZnZ+s9F5Pya6U8VKA2yndfKvecKss5NeXV5o8//pCWBw8eXOI9UJo2bYq33npL75y7du2S3luMjY11zj31qqytrdGuXTtpXdM5XWj69OmIjIzEV199hTZt2sDe3h5mZmaoVasWPvjgA/z999/YsGFDkbl0lIeg1CUkJERlDhUfHx9s27ZN47xH+qhXr55K47m24zc1NcWvv/6Ka9euYdKkSWjRogVsbW2l4clGjBiBc+fOYcGCBSoXw0xNTdX2FnqZ8mew3M8iIiIqW5SHEd21a5fs7zfa1K5dW1rWNXwxUPB5cv78eWm9LI0+wMYWIiIiIipVpTGub3EoD6mkq4eGsn79+uHChQu4d+8e1q1bh7Fjx6pc/BZCYOfOnfDw8EBkZKReZSxtynfGyx26RTnuVYbHeZM5OzurrKs7bxo3bqyyLqf3wcuv48uNWI6OjioX1uX2aFDOq88k3YWUj19TnSnu2NoKhUKlQUbfsbWVe/zIGZoQgErD6Mv/v9eR88mTJypzuMjJaW9vL6v3WqEzZ87gn3/+kdZLordIRkYGtm/fXqI5AdUGnHfffbdIvStJcs5pZW5ubvj5558REhKCxMREZGVl4f79+9i2bRveffddAMDNmzel+KpVq0rzHely/fp1dO3aVaqrnp6e2Ldvn9phBEtKcY+/efPm+N///odr164hJSUFmZmZiIqKwtq1a6WGK+Xjb9GihazyK/eyVDfcIRERlX2enp7w8fEBUPAd4V//+pfsoVKzs7PVjlqgfKPPunXrEBERoTXPzz//LN3Qp1Ao4O/vL7P0pY+NLURERERUqkpjXN/iqFOnjrT84MGDYm9fu3ZtDB8+HMuXL8fNmzdx//59zJ49Wxp7PjExEf/+979LrLylQflirdyeOMqTViuPiVwRvNwgpe4O7EaNGqnchf7yXe7qvNwQom44NeX5b+TkfDmvnCHadFE+fk13nxt6bG3lXkLKcxJpkpubK81B9PL26v52/fp15Obm6syrPJ+RupyNGjWCkVHBz24hBEJDQ/XOqY1yA0aTJk2K9M57Fbt375bmTTI2Nsa//vUvvXM+ePAAx44dk9ZLYlgybeSc08V19uxZablDhw6ytomIiIC/v7/UK6RFixY4dOhQqTdol/bxy50LTPl9Q7m3DRERvVl+/fVX6aagw4cPo1OnTrhw4YLG+MjISHz//fdwc3PDmTNnijw/adIkmJqaAihowPH391fbwyUjIwOzZs3C999/L/3tgw8+UPm9Z2ics4WIiIiISlVpjOtbHC1btpSWdd0lJUetWrUwY8YM1KtXTxr3PygoCFlZWbImbDaE1q1bS3e7nz17Fu+//77ObZQvpHl4eJRa2cqily/eu7i4FIkxMzODl5eX9EMwPDxcZ17l4XsUCgVq1KhRJMbX11ea3FxOztzcXNy5c0daL85QRpooH7+6YwdUh68zxNjanTt3xk8//QQAOHfunNp5dZRdunRJmuPFwsJC7cXxjh07wtzcHFlZWXjx4gVCQkLQvn17jTmzsrJUhrBQ18PHwsIC7du3l+rT8ePHteYECuby0JZTk8zMzFLpgaI8LJm/v3+J9EDZsGED8vPzARScCyUxr4w2cs7p4sjPz1d5reU0QEVHR8PPz08abqVhw4Y4fPhwsYeJK6709HSVz76SOP60tDQcPHhQWpfbAKf8HtiqVSu9y0FERPL16NGjyBC2yjfChYSEwN3dvch2Bw8eLPLZ0bx5c2zevBmDBg1Ceno6Lly4gPbt26NevXrw8PCAvb09MjMz8eTJE1y7dk3nMLd169bFokWLMGnSJABAbGwsunTpgiZNmqBNmzawtLREXFwcTp06pdIzpk6dOtI8m2UFe7YQERERUakqjXF9i6Nt27bSHCHh4eGy7laXQ/niYE5OjuwLzoagfMF2y5YtOocyCgkJwbVr16R1XfNxlDdr1qyRlps1a6axZ4/yRPT79++XLh5rsmfPHmm5VatWahsclHOGh4frHKIuKChImgfByMgIXl5eWuN1yc7OxoYNG6T1wmEiXlbcsbWFEDh+/Li0ru/Y2j4+PlIvnufPn6tM1K1OYGCgtOzv76/27n5ra2v4+vqq3UYd5TlH7O3t0alTJ7Vxffv2lZ0zNjYWR48eVbutLnv37kVKSgqAgnNB0yTwxfHo0SMcOXJEWi+NIcQGDRpUqkNoHTlyBLGxsdK6pnO6OFavXi0NNVe9enWd/6eHDx/C19dX6l3p6uqKI0eOyJrnRF+bNm1CVlYWgIJGXk3naXH89NNPUuOlh4eHrB5U+fn5uHHjhrReEr2uiIhIvvDwcISFhak8lH+XvXjxosjzYWFhGocI69mzJ86ePYs2bdpIf7t79y62b9+O33//HevWrcOhQ4eK9GqsWbOm2nwTJ07EunXrVHpp37p1Cxs2bMCKFSuwb98+lYaWLl264OTJk6hWrdorvyalgY0tRERERFSqSmNc3+JwcHCQ7tLKyMjA5cuXtcbLnddF+eKdkZGR7KGUDGHo0KFSV//Hjx9j9uzZGmOzs7Olu8qAgoYW5Xkn3kRyh+MCgB07dmDTpk3SurYL1h9++KF0V3psbCyWLFmiMTYmJga//fabtK5p2KTmzZurNI5NmzZNY86cnBx8++230nrv3r1hZ2dXJK44xz958mRER0dL65qOX3ls7b///lvqjaNJYGCgyt31Xbt2lV0mdUxNTTF69GhpfcaMGSqTbyu7ceOGSiPHhAkTNOYdP368tBwYGKgyL4Wy9PR0zJgxQ1ofM2aMxsnNAwICpMadiIgIrFq1SuP+v/rqK+Tl5QEoGJqqOL3KlBsw/P391facKq4NGzZI5bG1tS1W448mFy9exO3bt6X14g4hlp2dLfsz5OnTp/jkk0+k9SZNmujdUy80NBRTp06V1hctWqS1V9WTJ0/g6+sr1SsXFxccPXr0lXuhpaen62zYLXTnzh2V95B3331X74tSQUFBWLBgAYCCz77//e9/sra7evWq9F7UtGnTEulhQ0REhtWqVSuEhITg77//xrhx49CyZUs4ODjAxMQEVlZWcHNzQ9euXTFjxgycOXMGUVFRanvPFBo+fDju3buHJUuWoE+fPnB1dYWVlRVMTExgb28Pd3d3jB07FidOnMDRo0c1NtwYlCAiIiKiMmHmzJkCgAAgvL29i73NzJkz1casXbtWigkICCiRnMoCAgKk+LVr16qNuX79urC2tpbi2rVrJ86fP68xZ0REhJgzZ45wdnYW+/fv11kGXWbMmCHt+8cff9QaW79+fTFkyBBx8OBBkZWVpbF8b731lpTT399f7zIW5pLzFd3V1VWKjY6OlpX/l19+UdnHt99+W+T44uLiRLdu3aQYExMTjf+nsnBeyTVr1izh5+cnduzYIdLT09XGpKSkiBkzZghjY2Npv3Xq1NEYX2jx4sUqr9eyZctEfn6+SkxYWJho0KCBSt4XL15ozBkSEqJSjtGjR4u0tDSVmCdPnoj33ntPijEzMxOhoaFq8/n7+4uPP/5YnDhxQuTl5amNuXv3rnj//fdVzpFBgwZpLGNKSoqwt7eXYu3s7MT27duLxOXk5IglS5YIc3NzKdbT01NjXuXzStf5nZCQIKpUqaJSDxMSElRiwsLChJubmxTTuXNnjfkKeXl5SfFubm4iLCysyH79/f2lGHt7e5GcnKw153fffSfFV6pUSWzdulXl+ezsbPHVV1+pHPvx48d1lrXQ48ePVc6ZTZs2yd5Wm2bNmkk5x4wZUyI5x48fL+Vs2LBhsbePjo4WNWvWFL/88ouIiYlRG5Ofny/+/PNPlfdKhUIhDhw4oDX3hAkTxN69e9W+92dnZ4uVK1cKOzs7Kef777+vNV9SUpJo1aqVFO/g4CBu3rwp/2DVCA4OFo0bNxbLli0T8fHxamNyc3PF+vXrRdWqVWW9RxQaNmyYOHr0qMjNzS3yXHp6uvj555+FhYWFlHPy5Mmyyz1v3jxpu6lTp8rejoiI6E3COVuIiIiIqNSV9Li+xTVs2DDMmTMHQMFQTl9//bXG2JycHGzevBmbN29GpUqV0LJlS9StWxeVK1dGcnIyoqKiEBISIsVXqlRJusu3LJs8eTJOnz6N/fv3AwDmzp2L3377DZ07d4adnR1iY2MRHBwsDTcDAPPnz0e7du0MVeQSI4TAkSNHcOTIEZibm6NZs2aoX78+qp7T2BMAAAmzSURBVFSpguzsbMTExODChQsqPSMcHBxw8OBBlblJ1Pnss89w/vx5bN26Fbm5uRg/fjzmzZuHt99+GxYWFoiIiMDZs2elO9FtbGywc+dOWFpaaszZpk0b/O9//5N6YKxcuRLbt29H586d4ejoiIcPHyI4OFgaxkehUGDJkiUa50DIzs7GmjVrsGbNGtja2qJVq1aoVasWbGxskJaWhvDwcISGhqrcLe/p6YnVq1drLKOtrS3WrFmDAQMGIC8vD8nJyfjggw/g5uaG9u3bw9bWFgkJCThz5ozKeOD29vYqc4Doo2rVqtiyZQt69uyJ3NxcHD58GLVr14afnx8cHR1x9+5dnDhxAkIIAECNGjVUhkjTZNOmTfD09MTjx48RExMDd3d3eHt7o169enj69CmOHDkivfYmJibYtm2bzjlovvvuO5w5cwbHjh1DRkYGBg0ahLlz58LDwwOZmZk4efIkHj9+LMXPnj0b3t7esl+LjRs3lngPlMuXL6v07CmJIcSys7OxZcsWvXM+ePAAX331Fb766iu4ubmhRYsWcHBwgKmpKZ4+fYoLFy4UGZd+3rx56NGjh9a8R44cwdKlS2FtbY02bdqgTp06MDExQVxcHE6fPi0N0wYA3bt313k+jR07FmFhYdJ68+bNsWzZMlnH2KBBA3z22Wdqn7t9+zbGjx+PiRMnon79+mjWrBns7e1hZGSEuLg4nDt3TqWXprGxMf744w+d86Ts2LEDGzduhL29Pdq0aSP1vnn48CFOnTolnfcAMGrUKMybN0/WsQDA7t27peVhw4bJ3o6IiOiNYujWHiIiIiIqUJ57thQKDQ0Vbdq0Ubl7W9vDzc1NXL16VWcZ5HjnnXeku5ujoqI0xjVv3lx2+erUqSPOnDlTIuVTzqvLq/RsEaKgl8HEiRNV7oBX97C1tdX5vyxL51Vx9i3n0a1bN/HgwQPZ+bOyssSnn34qFAqF1rwNGzYU165dk5131apVwsbGRmvOKlWqiC1btmjN4+3tLfvYTU1NxWeffSYyMjJklfHgwYPC2dlZVm53d3edd/UXp2dLoX379gkHBwet+27durW4ffu2rGMSQohbt24Jd3d3rTkdHR3Fn3/+KTtnSkqKGDhwoM7X/4cffpCds1CLFi2kHKNHjy729upMmjRJ5dwtCTt37pRyGhkZidjY2GLniI6OLlZ9rlGjhti7d6+s3I0aNdKZz9zcXMyaNUtjz0dlxal7Lz80fQ8IDg4uVp5GjRrJ/pxS7oGm6WFrayuWLFlSpAefNvfv35feH9u0aSN7OyIiojcNe7YQERER0WtTOK5vUFAQ9uzZgzNnzuDRo0dISUmBubk5HB0d0ahRI7Rr1w5du3ZFhw4dpMnt9fX555/j9OnTEEJg1apV+OGHH9TGhYaG4vz58wgODsbFixcRERGBR48eIT09HZaWlqhevTrc3d3Ru3dvDBw4EObm5iVSvtfBxMQEv/76Kz755BOsWbMGR48eRWxsLFJTU2Fvb4+GDRuiR48eGD16dJmeg6a4pkyZAm9vb5w9exbnz5/HvXv3kJiYiMTERCgUClSpUgUNGjRAx44dMWTIEJ13f7/MzMwM//3vfzFixAgEBgbi6NGjePjwITIyMuDo6Ig2bdqgX79+GDZsmMZ5PdQZOXIkunXrhsDAQOzbtw8xMTFITk6GnZ0dGjdujB49emDMmDFq52lRtm3bNpw9exbnzp3DpUuX8PjxYyQmJiI5ORkWFhawt7dHixYt4OXlheHDh8PZ2Vl2Gbt37467d+9i27ZtOHDgAK5evYr4+Hikp6fDxsYGLi4u8PT0xIABA9CjRw8YGZX8tKG9evVCeHg41q5di927dyMqKgopKSlwcnJCs2bNMGTIEAwZMgSmpqayczZu3BgXLlzAli1bsHnzZty8eRPx8fGoUqUK6tati/79++Ojjz6Cg4OD7Jy2trbYunUrRo8ejXXr1uHcuXN4/PgxTE1NUatWLXTt2hUjR45EkyZNinX8V69exfXr16X1kuiBUtjDr9Dw4cP1zgmozivTpUuXVxpr3dXVFdevX8e5c+dw9uxZ3Lx5EwkJCUhMTER6ejoqV64MZ2dntG3bFt27d0e/fv1k/+937NiBoKAgBAcH486dO3jy5AlevHiBatWqoU6dOujZsycGDx6M2rVrF7vcJcXLywshISHS8UdEREjvZ1lZWbC1tUWtWrXQrl079O7dG926dZP9OXry5EkcOXIEx48fR3R0NJ48eYLs7Gw4OTmhQYMG6NOnDwYNGgRHR8dilXnNmjVSD7PPP/+8uIdMRET0xlCIwk88IiIiIqJyLD8/H82aNcPt27fh5OSEmJgYWFhYGLpYRERE5VZOTg7q1q2LBw8ewM3NDZGRkcVq+CQiInqTlPxtRUREREREZZCRkRFmz54NAIiPj0dgYKBhC0RERFTObdy4EQ8ePAAAzJw5kw0tRERUrrFnCxERERFVGEIIdOzYEefPn4erqysiIiLeqGHAiIiI3hS5ublo1qwZIiMj0apVK1y+fBnGxsaGLhYREVGpYc8WIiIiIqowFAoFlixZAiMjI9y7dw9Lly41dJGIiIjKpdWrVyMyMhIAsGTJEja0EBFRuceeLURERERERERERERERHpgzxYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTAxhYiIiIiIiIiIiIiIiI9sLGFiIiIiIiIiIiIiIhID2xsISIiIiIiIiIiIiIi0gMbW4iIiIiIiIiIiIiIiPTw/wAI2xKGDTlS3AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create light curve and apply GTIs\n", + "lc_raw = events.to_lc(dt=1)\n", + "lc_raw.apply_gtis()\n", + "\n", + "plt.figure()\n", + "plt.plot(lc_raw.time, lc_raw.counts, color=\"k\")\n", + "plt.title(\"Light curve\")\n", + "plt.xlabel(f\"Time (s from {events.mjdref})\")\n", + "plt.ylabel(f\"Counts/bin\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "cbfb45d0", + "metadata": { + "id": "cbfb45d0" + }, + "source": [ + "The light curve seems reasonably clean, with no need for further cleaning. Otherwise, we would have to filter out, e.g. flares or intervals with zero counts, doing something along the lines of:\n", + "\n", + "```\n", + "new_gti = create_gti_from_condition(lc_raw.time, lc_raw.counts > 0, safe_interval=1)\n", + "lc = copy.deepcopy(lc_raw)\n", + "lc.gti = new_gti\n", + "lc.apply_gtis()\n", + "\n", + "plt.figure()\n", + "plt.plot(lc_raw.time, lc_raw.counts, color=\"grey\", alpha=0.5, label=\"Raw\")\n", + "plt.plot(lc.time, lc.counts, color=\"k\", label=\"Cleaned\")\n", + "plt.title(\"Light curve\")\n", + "plt.xlabel(f\"Time (s from {events.mjdref})\")\n", + "plt.ylabel(f\"Counts/bin\")\n", + "plt.legend();\n", + "\n", + "events.gti = new_gti\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "17c0427c", + "metadata": {}, + "source": [ + "## Calculate periodogram and cross spectrum\n", + "\n", + "Let us now take a look at the periodogram and the cross spectrum. \n", + "The periodogram will be obtained with Bartlett's method: splitting the light curve into equal-length segments, calculating the periodogram in each, and then averaging them into the final periodogram.\n", + "\n", + "We will use the fractional rms normalization (sometimes referred to as the _Belloni_, or _Miyamoto_, normalization, from the papers [Belloni & Hasinger 1990](https://ui.adsabs.harvard.edu/abs/1990A%26A...230..103B/abstract), [Miyamoto et al. 1992](https://ui.adsabs.harvard.edu/abs/1992ApJ...391L..21M/abstract)). The background contribution is negligible and will be ignored.\n", + "\n", + "Note: since the fractional rms normalization uses the mean count rate, the final result changes slightly if the normalization is applied in the single periodograms from each light curve segment, with the count rate of each chunk, or on the averaged periodogram, using the average count rate of the full light curve. We choose the second option (note the `use_common_mean=True`).\n", + "\n", + "We will first plot the periodogram as is, in units of $(\\mathrm{rms/mean)^2\\,Hz^{-1}}$.\n", + "\n", + "Then, from the periodogram, we will subtract the theoretical Poisson noise level of $2/\\mu$, where $\\mu$ is the mean count rate in the observation, and we will multiply the powers by the frequency, to have the periodogram in units of $(\\mathrm{rms/mean)^2}$\n", + "\n", + "In both cases, we will rebin the periodogram geometrically, averaging more bins at larger frequencies, in order to lower the noise level." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a1ce6955", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "65it [00:00, 65.69it/s]\n" + ] + } + ], + "source": [ + "# Calculate the periodogram in fractional rms normalization.\n", + "# Length in seconds of each light curve segment\n", + "segment_size=50\n", + "# Sampling time of the light curve: 1ms, this will give a Nyquist \n", + "# frequency of 0.5 / dt = 500 Hz.\n", + "dt=0.001\n", + "# Fractional rms normalization\n", + "norm=\"frac\"\n", + "\n", + "pds = AveragedPowerspectrum.from_events(\n", + " events, segment_size=segment_size, dt=dt, \n", + " norm=norm, use_common_mean=True)\n", + "\n", + "# Calculate the mean count rate\n", + "ctrate = get_average_ctrate(events.time, events.gti, segment_size)\n", + "# Calculate the Poisson noise level\n", + "noise = poisson_level(norm, meanrate=ctrate)\n", + "\n", + "# Rebin the periodogam\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "87f5cb03", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAAR9CAYAAAAKglvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOydd5xTVfr/P0lmMplMHzpSBkGkKqAUQZptseNXRFER0FWxs191V91dAd1V1l0XxwLodwUsiAWV4qKwIoNYUDoOxaUNMMMM09Iz6ef3B6/cXzI1uS0nN8/79ZoXk8zN5zyf+5z73HDPvefoGGMMBEEQBEEQBEEQBEEQBEEQBEEQGkSf6AAIgiAIgiAIgiAIgiAIgiAIgiCUggZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZqGBEIIgCIIgCIIgCIIgCIIgCIIgNAsNhBAEQRAEQRAEQRAEQRAEQRAEoVloIIQgCIIgCIIgCIIgCIIgCIIgCM1CAyEEQRAEQRAEQRAEQRAEQRAEQWgWGgghCIIgCIIgCIIgCIIgCIIgCEKz0EAIQRAEQRAEQRAEQRAEQRAEQRCahQZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZqGBEIIgCIIgCIIgCIIgCIIgCIIgNAsNhBAEQRAEQRAEQRAEQRAEQRAEoVloIIQgCIIgCIIgCIIgCIIgCIIgCM1CAyEEQRAEQRAEQRAEQRAEQRAEQWgWGgghCIIgCIIgCIIgCIIgCIIgCEKz0EAIQRAEQRAEQRAEQRAEQRAEQRCahQZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZqGBEIIgCIIgCIIgCIIgCIIgCIIgNAsNhBAEQRAEQRAEQRAEQRAEQRAEoVloIIQgCIIgCIIgCIIgCIIgCIIgCM1CAyEEQRAEQRAEQRAEQRAEQRAEQWgWGgghCIIgCIIgCIIgCIIgCIIgCEKz0EAIQRAEQRAEQRAEQRAEQRAEQRCahQZCCIIgCIIgCIIgCIIgCIIgCILQLDQQQhAEQRAEQRAEQRAEQRAEQRCEZklLdAAEIQWr1YotW7YIr7t3746MjIwERkQQBEEQBEEQBEEQBEEQBEE0xuv14tSpU8Lr8ePHIz8/X5W2aSCESGq2bNmCyZMnJzoMgiAIgiAIgiAIgiAIgiAIIg5Wr16NG2+8UZW2aGosgiAIgiAIgiAIgiAIgiAIgiA0Cw2EEARBEARBEARBEARBEARBEAShWWhqLCKp6d69e9Tr1atXo0+fPgmKRn3cbjdKSkowYcIEmM3mRIcjCd68qB2Pku3JqS2HlhQN3vpJqqOVfPDmg+qPcnpUf7SDlvLBmxeqQcppidXgrY+kOlrKB29eqP4op0XfgbSDVvLBow81Y0qW+iOHXuPPHzlyJGqZg8bXdpWEBkKIpKbxwuh9+vTBwIEDExSN+vh8PqSnp2PAgAEwGo2JDkcSvHlROx4l25NTWw4tKRq89ZNURyv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJQP3rxQ/VFOi74DaQet5INHH2rGlCz1Rw69tj7f+NqukugYY0y11ghCZvbv349BgwYJr0tLS1NqIIQgCIIgCIIgCIIgCIIgCCIZSOS1XFojhCCSmIaGBnz11VdoaGhIdCiS4c2L2vEo2Z6c2nJoSdHgrZ+kOlrJB28+qP4op0f1RztoKR+8eaEapJyWWA3e+kiqo6V88OaF6o9yWvQdSDtoJR88+lAzpmSpP3Lo8ZRrGgghiCQmFArBarUiFAolOhTJ8OZF7XiUbE9ObTm0pGjw1k9SHa3kgzcfVH+U06P6ox20lA/evFANUk5LrAZvfSTV0VI+ePNC9Uc5LfoOpB20kg8efagZU7LUHzn0eMo1TY1FJDU0NRZBEARBEARBEARBEARBEAT/0NRYBEGIIhAIoKysDIFAINGhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8sGbF6o/ymnRdyDtoJV88OhDzZiSpf7IocdTrmkghCCSGKfTiXfeeQdOpzPRoUiGNy9qx6Nke3Jqy6ElRYO3fpLqaCUfvPmg+qOcHtUf7aClfPDmhWqQclpiNXjrI6mOlvLBmxeqP8pp0Xcg7aCVfPDoQ82YkqX+yKHHU65paiwiqaGpsQiCIAiCIAiCIAiCIAiCIPiHpsYiCIIgCIIgCIIgCIIgCIIgCIJQABoIITSByWRCdnY2ACAYDMJqtSL8sJPdbofP5wMANDQ0wOVyATg7R53VahU0bDYb/H4/AMDtdsPtdgMA/H4/bDabsJ3VahXmtXO5XGhoaAAA+Hw+2O12AABjDFarFcFgEMDZx8A8Hg8AwOv1wuFwAABCoRCsVitCoRAAwOFwwOv1AgA8Ho/w2FhLnmw2G1588UVUVlYmvafy8nK8+OKLsNlsXOSpurpaiEdqnoC2+15tbS0WLFiAqqoq2T2dOXMGCxYsQHV1NRd5OnXqFBYsWACbzRa3p3CfP3PmDAB5j6dY8pQsx5NanmpqaoT+kMyeKisrBR885Kmurk6IR448qVkjGnuqrKzEggULUFdXJ0vfC8daU1MjKk8nT54U9m0qn3O1UPfq6+vx4osvCvEms6fTp09jwYIFqK+v5yJPkceJGn0vfGydPHlSdk+R2jzkSez3vbCP8vJyIU9UIxLnKZyPurq6pPck5Xu5Ep7U/j+hnDWisSer1YoFCxagvLycizxJ+b6npXOuFupeRUWFcJwksycp38uV8iT1/xqJqhGNPdXV1WHBggWorKyUpe9ZLBYsWLAAFRUVsv6fMBHQQAihCUaNGoUpU6YAOHthrri4WDg4ly5digMHDgAAtmzZgnXr1gE4+yWruLhY0Fi8eDGOHj0KANi4cSM2btwIADh69CgWL14sbFdcXCz8J2TdunXYsmULAODAgQNYunQpgLOFo7i4GDU1NQCAVatWYdu2bQCA3bt3Y8WKFQDOFofi4mKhGK1YsQK7d+8GAGzbtg2rVq1q1ZPZbEbPnj1RUlKS9J5WrVqFIUOGwGw2c5Gnw4cPw2w2w2w2S84T0Hbfq6qqwuTJk/HDDz/I7qm0tBSTJ0/G4cOHucjTihUrMHnyZJjN5rg9mc1m5OXlobS0FIC8x1MseUqW40ktTydPnkRaWhrMZnNSeyopKUHPnj1hNpu5yJPFYoHP54PZbJYlT2rWiMaeSkpKMHnyZFgsFln63s6dOzF58mScPHlSVJ6WLVuGq666CmazOaXPuVqoe263Gz6fDwaDIek9bdiwAZMnT4bb7eYiT8uWLcOECRNgNptV6XtmsxljxozBsmXLZPdkNptx7bXXYtmyZVzkSez3PbPZjCFDhgj7lWpEYj2ZzWb4fD5YLJak9yTle7kSntT+P6GcNaKxJ4PBgMmTJ2PVqlVc5EnK9z0tnXO1UPfWrl2LAQMGwGw2J7UnKd/LlfIk9f8aiaoRjT1ZLBZMnjwZJSUlsvS9QCCAyZMnY+3atbL+nzAR0BohRFITnlfOZDIhLS0N27ZtQ79+/eBwOJCXlwedTge73Q6TyQSj0YiGhgaEQiFkZWUhEAjA6XQiPz8fwNnRVbPZjPT0dGFk1Ww2w+/3w+12Iy8vD8DZ0dXs7GykpaXB5XJBr9cjMzMTPp8PHo8Hubm5YIzBZrMhJycHBoMBTqcTaWlpMJlM8Hq98Pl8yMnJQSgUgt1uR25uLvR6PRwOB4xGIzIyMuDxeBAIBJCdnY1gMEieyBN5Ik/kiTyRJ/JEnsgTeSJP5EmjnnJycgBA8GQ0GuH1ehEIBJCVlYVgMAin04nc3FzodDo4HA6YTCakp6fD4/EgFArBbDYjEAjA5XIJsdrtdmRmZiI9PV24MzgzMxN+vx8NDQ3Izc0VvGdlZSEtLQ1utxt6vR4mkwl+vx8ejwc5OTlgjMFutyM7OxsGgwEulwtpaWnIyMiAz+eDz+dDdnY2QqEQHA4HcnJyoNfr4XQ6yRN5Ik/kiTwloSen04m8vDwYDAbZzrkVFRUJWyOEBkKIpCbVF0t3u93YuHGjMIqezPDmRe14lGxPTm05tKRo8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1ZErH4wxuN1uOJ1OuFwu4U5aNWk8sJRo1I5Hyfbk1JZDS4oGb/0k1dFKPnj0oWZMyVJ/wnq1tbU4//zz0b59e6SlpcX1+cbnzURey40vcoIgCIIgCIIgCIIgCEI0fr8f5eXlwpzsBEEQBMEzRqNRWOOjW7duwjrNyQY9EUIkNan+RAhBEARBEARBEASRPHg8Hpw6dUpYoJcgCIIgkgmdTidpMCSR13L5ePaIIAhR+P1+HDp0CH6/P9GhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6UfDDGcPLkSW4GQRhjCIVC4OX+WLXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUn+b0GGMoLy+P+VzG0/cYmhqLIJIYt9uN1atX44EHHhAWUEpWePOidjxKtienthxaUjR46yepjlbywZsPqj/K6VH90Q5aygdvXqgGKaclVoO3PpLqSMmH0+lEMBiMei89PR15eXnIyspCeno6dDqdnOG2SiAQQF1dHdq1axf3nO9aiEfJ9uTUlkNLigZv/STV0Uo+ePShZkzJUn8YY3A6naisrGzyvsPhQEFBQZsaPH2PoamxiKSGpsYiCIIgCIIgCIIgkoFTp07B6XQKrzMyMtCjRw9uLgISBEEQRHMwxnDixAk0NDQI75nNZvTs2TNuLZoaiyAIgiAIgiAIgiAIQqMwxuByuaLeKywspEEQgiAIgnt0Oh0KCwuj3nO73VxNbRYLNBBCEEmM1WrF/PnzYbVaEx2KZHjzonY8SrYnp7YcWlI0eOsnqY5W8sGbD6o/yulR/dEOWsoHb16oBimnJVaDtz6S6ojNR3PztZvNZhkji59AIIDTp09zs2aJ2vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWepPpF56enqTv4VCoTY/z9P3GJoai0hqUn1qrEAggPLycnTr1i3p7yTizYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKojJY+HDx+Oeu+8885LaE4ZY/D5fDAajaquTcJLPEq2J6e2HFpSNHjrJ6mOVvLBow81Y0qW+hOpp9frceTIkai/xXIea3zeTOS1XBoIIZKaVB8IIQiCIAiCIAiCIPiHx4EQgiAIgogVuc5jtEYIQRCicLlc+PDDD5vMNZuM8OZF7XiUbE9ObTm0pGjw1k9SHa3kgzcfVH+U06P6ox20lA/evFANUk5LrAZvfSTV0VI+gsEg6uvrEQwGEx0KAPXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUHzn0eDpv0kAIQSQxer0e+fn50OuT/1DmzYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKqjpXzodDoYDAZupqVROx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2RQ4+n8yZNjUUkNTQ1FkEQBEEQBEEQBME7NDUWQRAEkczQ1FgEQSQUn8+HPXv2wOfzJToUyfDmRe14lGxPTm05tKRo8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1dFSPkKhENxuN0KhUKJDAaB+PEq2J6e2HFpSNHjrJ6mOVvLBow81Y0qW+iOHHk/nTRoIIYgkxuPxoKSkBB6PJ9GhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8sEYg8PhAC8Thagdj5Ltyakth5YUDd76SaqjlXzw6EPNmJKl/sihx9V5kxFEElNaWsoAMJPJxLKzs1lpaSkLBALMYrGwUCjEGGPMZrMxr9fLGGPM7XYzp9PJGGPM7/czi8UiaFmtVubz+RhjjLlcLuZyuRhjjPl8Pma1WoXtLBYL8/v9jDHGnE4nc7vdjDHGvF4vs9lsjDHGQqEQs1gsLBAIMMYYczgcrKGhgTHGmMfjYXa7nTHGWDAYZBaLhQWDQcYYY3a7nXk8HsYYYw0NDczhcDDGGHkiT+SJPJEn8kSeyBN5Ik/kiTyRpyT2ZLVaWWlpKTtw4ADbv38/279/P/P7/SwUCgn/hmMP+wsGg8Ln490ujN/vF7YLBALCdsFgsMl2csdAnsgTeSJP5Ek7njweD9u/fz87cOAAKy0tZb/88gvz+/1xn3PD13LDP6WlpUwt6IkQQhOMGjUKU6ZMAQDU1NSguLgYXq8XALB06VIcOHAAALBlyxasW7cOAFBeXo7i4mJBY/HixTh69CgAYOPGjdi4cSMA4OjRo1i8eLGwXXFxMcrLywEA69atw5YtWwAABw4cwNKlSwEAXq8XxcXFqKmpAQCsWrUK27ZtAwDs3r0bK1asAADY7XYUFxfDbrcDAFasWIHdu3cDALZt24ZVq1a16okxhk2bNmnG0969e8EY4yJPu3btwvvvvw/GmOQ8AW33vSNHjsDj8Sji6ccff4TH48GuXbu4yZPH4wFjLG5PjDF8/PHH+PHHHwHIezzFkqdkOp7U8LR//368/fbbYIwlvadNmzaBMcZFnk6dOoXi4mLhjhul+57cNaKxJ4/HI3iSmqctW7bA4/Fg//79ovMUriWpfs5N9rpXXV2N4uJi4c6yZPfk8XgETzzkqby8HIwxVfoeYwzHjh1TxBNjDDabjZs8if2+xxjD3r17qUZw4in8HfbUqVNxeVqzZg1cLheAs9OMBAIBAEAwGER1dTWCwSAAoK6uDm63GwDgcrlgsVgAnJ2bvbq6Wvh+UFtbK9RAh8MBm80G4OwUJNXV1YKnmpoaYT/Y7XZh33m9XtTU1CAUCoExhurqamHaEpvNBofDAeDsnby1tbWC9+rqaiF2i8UieHK73airq5PsqaGhQbj7WKynMG15YowJscbiady4cdDr9dDpdEhLSxMWDzYYDEhLS0NOTg569eqFa6+9Fq+99hosFkuLebrrrruQnp4OnU4HnU6H9PR0QS8zMxOdOnVCnz59MGrUKMyaNQtLlizBoUOHROfJZrNhzZo1mDFjBgYPHox27drBaDQiJycHXbt2xahRo3DnnXeiuLgY+/fvj8qT3+9XpO/Fmie1+l4yeXK5XGCMJb2nQCAAxhhXeQqFQqr1vVAopJinUCgka98LhUKwWCzC9FiRnsT+nzAhKDzQQhCKkupPhFgsFjZv3jxWUVGR9J5OnjzJ5s2bxywWCxd5qqqqEuJR486z6upqNm/ePHb69GnZPYW9VFVVcZGnEydOCBrxegr3+aqqKsaYdu4QTNa7Hs+cOSPkMpk9VVRUCD54yFNNTY0Qjxx5UrNGNPYU3rc1NTWy9L3Kyko2b948dubMGVF5iqw/qXzO1ULdq62tZfPmzWP19fVJ76m8vJzNmzeP1dbWcpGnyONEjb4XPrZOnDghu6dIbR7yJPb7XtjHyZMnhTxRjUicp3A+ampq4vLE4xMhHo+HVVRUML/fz8Wd0V6vV4hHjTuj/X4/q6ioYB6PJ6ZYx40bF3UXc1s/OTk57O23325Wb8aMGXFphX8uvfRStnLlyrj269atW9n5558fVzvXXHONoBfeT+F9m0x3sGvxrvy2jpNk8RRZf3jJk8/nYxUVFczn8ynep8LHldfrld1T2Edb2vHG6na7RT0R0vj/hIl8IkTHGEeTsRFEnOzfvx+DBg0SXpeWlmLgwIEJjEhdgsEgampq0KFDBxgMhkSHIwnevKgdj5Ltyakth5YUDd76SaqjlXzw5oPqj3J6VH+0g5bywZsXqkHKaYnV4K2PpDpi8xEIBHD48OGo98477zykpaXJHWLMMMYQCASQlpYGnU6XsDgSFU+87U2YMEF4+mf48OEYMWJElJbVasX27dub5PnNN9/EfffdF/XezJkz8c477wAA+vXrh8svvzxKy263w2q14r///S8OHz7cZG7+a665BkuXLkWnTp1ajXnDhg248cYbhTu1AaBHjx4YOnQoOnToINyRvnfvXpw4cULYZsyYMfjuu+9E7SdCWbSSDx59qBmTkm3JrR3WA4AjR45E/S2W81jj82Yir+XSQAiR1KT6QAhBEARBEARBEATBPzwOhBDxETkQMnfuXMybN6/Z7T7//HPMmjVLmOImIyMDR44cQbdu3YRtIgdCZsyYgeXLl7fYbn19PT755BMsXLgQv/76q/B+UVERfv75Z3To0KHFz51//vnCdDj9+/fHokWLMGHChGa3P3XqFD7//HMsX74cZrNZGAghCIIA5DuPJfJaLq0RQhBJjNPpxPLly+F0OhMdimR486J2PEq2J6e2HFpSNHjrJ6mOVvLBmw+qP8rpUf3RDlrKB29eqAYppyVWg7c+kupoKR/BYBC1tbXCnPaJRu14lGrvpptuwrvvviu89nq9WLRokWi9vLw83HzzzdizZw8eeeQR4f2ysjLcdNNNwp3ajXn77beFQZBOnTrh888/x9ixY1tsp3v37nj00Uexa9cuYZAG4K+fpDpayQePPtSMScm25NaWqsfTeZMGQggiiUlLS0NRUZEm7iLizYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKqjpXzodDpkZGRwMy2N2vEo2d51112HwYMHC6+//vpr0VrhOI1GI1599VU8+OCDwt++//57fPDBB81+buPGjcLvM2fORNeuXWP22rt37ybt89JPUh2t5INHH2rGpGRbcmtL1ePpvElTYxFJDU2NRRAEQRAEQRAEQfAOTY2V/MQ6NVaYBx98EIsXLwYAtGvXTng6A4hvaqzGeL1e9O/fH8ePHwdwdo2R/fv3Q6+Pvtd5wIABOHjwIABg8eLFmD17dsxtEARBNIamxiIIIqF4vV5s27YtauGzZIU3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8hEKheB0OhEKhRIdCgD141GyvVAohKysLOG13W6XpBUZZ0ZGBh5++GHh74cOHcLevXubfC5yYOTYsWOivfLWT1IdreSDRx9qxqR0/ZFTW6oeT+dNGgghiCTG5/Nhz5498Pl8iQ5FMrx5UTseJduTU1sOLSkavPWTVEcr+eDNB9Uf5fSo/mgHLeWDNy9Ug5TTEqvBWx9JdbSUD8YY3G43eJkoRO14lGyPMRb1BEheXp4krcZx3nLLLVHbbN26tcnnIqe3euedd1BWVibKK2/9JNXRSj549KFmTErXHzm1perxdN6kqbGIpIamxiIIgiAIgiAIgiB4J94pRRhjXNw9yztqrjEQ79RYF154Ifbt2wcAGD58OH7++Wfhb1KmxgrTtWtXVFZWAgCmTZvWZK2QZcuW4e677xZe9+jRA8888wymTJmCdu3axd0eQRCpjRamxqLJKAkiiQmFQrDb7cjNzW0yH2iyYbfbcejQIWRmZnLhJRQKoaGhQbV4QqEQgsEg+vbtC7PZLLu2XP1EDi0pGlrq81pAK/ngzYfa8SjZntzaUvWo/mgHLeWDNy9Ug5TTEqvBWx9JddTKR3gqESVhjIExBp1Ox8WCxWLiGTVqFEwmk+j2gsEgDAaD7P6/+OILYRAEAC6//HLRWi3Fef755wsDIWfOnGnyuTvvvBOvv/46du3aBQA4efIkZs+ejQcffBCDBg3CiBEjcPHFF+OSSy7BoEGDWuzPSu4nIn60kg8efagZk5Jtya0d1hP7LAVP32PoWxRBJDF2ux3FxcWS5htNNA6HA1dffTX69OmDL7/8EuPGjcOgQYMS/jNu3DhV4xk3bhzWrFmDXr164dZbb4Xb7ZZtH8vZT+TQkqKhhT6vJbSSD958qB2Pku3JrS1Vj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/lgjMHlcnEzNY3a8QSDQVRXVyMYDMqqu3r1akyfPl14nZGRgQcffFC0XktxRk63ZbFYmnwuPT0d69evx6WXXhr1figUwr59+/Cvf/0Ls2fPxoUXXoj27dvjt7/9rTBoEkv7RGLQSj549KFmTEq2Jbe2VD2ezps0NRaR1KT61Fg8jaqK5ZprrsGXX34JvV6P3Nxc2O12LhbLUjuexu3deuut+PDDD2XR1srdkHK1T8iHVvLBmw+6G1s5Pao/2kFL+eDNC9Ug5bToiRBtIDYf8U4p4vF46ImQGFDziZDIqbGGDx+OESNGRP3darXi559/bpLnN954o8lASDxTY7UU55133okVK1YAAPr06dOk3TChUAgffvghXn31Vfz000+tetTpdLj77rvx+uuvC/uVxzv3Uxmt5INHH/RESOt6jDEcOXIk6m+xTI3V+LxJU2MRBCEKvV6P/Pz8RIchmoaGBmzatAnA2cJotVoTG1AEasfTuL01a9bA4/GI/lIfiZz9RA4tKRrJ3ue1hlbywZsPteNRsj25taXqUf3RDlrKB29eqAYppyVWg7c+kupoKR+8DICEUTsenU4X99z2YbZv347t27e3uk1OTg6Ki4sxa9YsUW2EaSlOh8Mh/J6bm9vi5/V6PW6//XbcfvvtOHXqFEpKSrBt2zbs3LkTe/fuhcfjEbZljOHtt9/G8ePHsWHDBqSlpUnaT4T8aCUfPPpQMyYl25JbO6wXCAREfZ6n8ybdTkIQSYzD4cCSJUuivgAlE+Xl5fD5fADOfkmcPXs2cnJyEhzVWdSOp3F7Ho8HVVVVsmjL2U/k0JKikex9XmtoJR+8+VA7HiXbk1tbqh7VH+2gpXzw5oVqkHJaYjV46yOpjpbyEQqF4HK5uHgiH1A/Hrmnj8nOzkbPnj1x/fXXY+HChdi5cyfuuusuybotxWmz2YTfCwsLY9Lo2rUrpk+fjjfeeAPbtm2D1WrFhg0bcPPNN0cNQn3zzTd49dVXW22fSAxayQePPmhqLGX0eDpv0kAIQSQxRqMRQ4YMgdFoTHQokvH5fNizZ48wMJJo1I5Hyfbk7CdyaEnR0FKf1wJayQdvPtSOR8n25NaWqkf1RztoKR+8eaEapJyWWA3e+kiqo6V86HQ6pKenc/NUiNrx6HQ6mM1mUe3NnTtXmMor/ONwOFBWVoa1a9fi0UcfRZcuXWTx0lKchw4dEn7v3LmzKI2MjAxcddVVWLVqFT799NOou8iLi4tb/SyRGLSSDx59qBmTkm3JrS1Vj6fzJq0RQiQ1qb5GSLJz+PBh9O3bN9FhcMvx48dRVFSU6DAIgiAIgiAIgpBIvGuEMMbg9XrVCC2pycjIUO1CauQaIXPnzsW8efNEa8WzRkhznDhxIur/iq+//joeeugh0fGEuf/++/HWW29FtdOjRw/JugRBJD/xnsdagtYIIQhCFOEF9KQsEMcLJpMJo0aNwrZt2+DxeLB+/Xr06dMnYfH4fD4cOnQI/fr1U2zU2u/3Y9OmTXj00Ueb+JcTOfuJHFpSNLTU57WAVvLBmw+141GyPbm1pepR/dEOWsoHb16oBimnJVaDtz6S6qiVD51Op3i+w1NRZWVlxbXwu1biUbI9ObWb0/rkk0+ithk3bpws8UyaNClqIKSyshLdunXjqp+kOrwdt2Lh0YeaMSVL/YnUy8jIEPV5nr7H0EAIQSQxgUAAZWVluPjiixMdimTS0tJQVFSEHTt2AAB69OiB8847L2HxOJ1ObN++HT179kR2drYibXi9Xuzbtw9AU/9yImc/kUNLioaW+rwW0Eo+ePOhdjxKtie3tlQ9qj/aQUv54M0L1SDltMRq8NZHUh0t5SP81InZbE50KADUj0fJ9uTUbqzl9XrxxhtvCH8fNGhQ1N3VUuJpfJEyIyODu36S6mglHzz6UDOmZKk/kXpibxLm6bxJU2MRSQ1NjZXctDY1Virk0uv14vPPP8e0adOa/TtNjUUQBEEQBEEQ2kCuKUWIxMHL1FgPPfQQFi1aJLz+4IMPWvw/ZbwsWLAATz/9NICzTyVVV1ejffv2smgTBJHcaGFqLD6ePSIIQhTBYBBVVVUIBoOJDkUyBoMBnTt3hsFgSHQoANTft0r6l9OLHFpSNLTU57WAVvLBmw+141GyPbm1pepR/dEOWsoHb16oBimnJVaDtz6S6mgpH4wx+P1+8HJ/rNrxKNmenNphLZ/Phzlz5kQNgkyYMAFTp05t9nNz584VZhyIJZ7q6mphgXQAuPjii9G+fXvu+kmqo5V88OhDzZiSpf7IocfTeZMGQggiiXE4HHjzzTfhcDgSHYpkcnJyMHv2bOTk5CQ6FADq71sl/cvpRQ4tKRpa6vNaQCv54M2H2vEo2Z7c2lL1qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9gMIiamhouLk4B6sejZHtyatfU1GDhwoW48MILowYqzjvvPHz66act3ky3YcMGDB8+HJdddhmWL1+OI0eONBsPYwwbN27EmDFjUFVVJbwffjKEt36S6mglHzz6UDOmZKk/cujxdN6kqbGIpCb8OJXJZEJaWhq2bduGfv36weFwIC8vDzqdDna7HSaTCUajEQ0NDQiFQsjKykIgEIDT6UR+fj4AwGazwWw2Iz09HW63GwBgNpvh9/vhdruRl5cHALBarcjOzkZaWhpcLhf0ej0yMzPh8/ng8XiQm5sLxhhsNhtycnJgMBjgdDqRlpYGk8kEr9cLn8+HnJwchEIh2O125ObmQq/Xw+FwwGg0IiMjAx6PB4FAANnZ2QgGg816Sk9Ph9VqRXp6OrKzs5PO0759+3DRRReBMSa04XQ6YTKZsHXrVlx00UUJ8+TxeOBwOIQ7YKTkqaW+l5mZic8//xyzZ8+G2+2GwWAQFrJyu904fPgwOnToINmTwWCATqcDcHaBdil9z2azQafTIScnBx6PR9Tx5HK5YDKZkJGRAZvNFpcnvV6Puro6ZGVlITMzU9bjSYs1QmlPXq8XNpsNHTp0EPSS0ZPT6YTf70d+fj78fn/C8+T3+1FfX4+OHTsKx52SfU/OGtHYUzAYRFpaGgwGA1wul+S+p9PpoNfrodPp4PV6486TzWZDRkYGMjMz4XQ6U+qcq7W6FwgEUFdXhw4dOkCv1ye1J7/fj/T0dKEeJTpPVqsVRqMRZrMZLpdL8b4Xbsfv96OgoEBWT+HvK2F/ic5TZmYmQqEQgsEgdDpdzJ5MJhMcDgcYY8jLy6MakWBPjDFUV1ejsLAQ6enpMXuy2WwoLy+HXq8X7qrt27cvDAYDgsGgcD4O9w+9Xo9QKATGGAwGAxhjcW0XnqokEAhAr9dDr9cLF7EMBgNCoRBCoZBwXlUihni3CwQCwnaMMdGeIrdrLYZwO6FQKKZYJ0yYgG+//RYA8Oc//xnz5s1r1VNYOxxr5HaRU2P169cPEydOhE6ng06nQygUgsPhgM1mw+HDh/Hrr782uRP7xhtvxJIlS9CxY8cWY7j00kvx008/CZ/R6XTo378/+vbtK/w/98yZM9i1axdOnz4dpf/www/jlVdeEfQCgQDS0tJk7Xux5kmNvpdsniL/lsyeIv/GQ57CxwkAVfpeazVCiqfwdSXGmKyx+v1+HD16VKhTjDH069cPOp0urv8TVlRU0NRYBCGFUaNGYcqUKQDO3i1RXFwMr9cLAFi6dCkOHDgAANiyZQvWrVsHACgvL4+6m2Lx4sU4evQoAGDjxo3YuHEjAODo0aNYvHixsF1xcTHKy8sBAOvWrRPmCD1w4ACWLl0K4OzaD8XFxaipqQEArFq1Ctu2bQMA7N69GytWrAAA2O12FBcXw263AwBWrFiB3bt3AwC2bduGVatWtepJp9Php59+whdffJGUntauXYuMjAwAwN13343evXuDMYbx48dj165dCfW0Z88efPrpp0IRl5InoPW+98ADD6B3797weDy46qqrcNVVVwEATp8+LYunn376CSaTCXv27JHc95YtW4Zjx45Bp9OJPp6WLFkCk8kEnU4XtyedTocvvvhC+EIv5/HUVp54P54S4engwYP44IMPhIvSyeop3Kd0Oh0XeaqoqMCSJUuEL+FK9z05a0RjT1988QVMJhMqKipk6XvffvstTCYTDh48KCpPr776Knw+H3Q6Xcqdc7VW92pra7FkyRL4fL6k9/Tpp5/CZDKhtraWizy9+uqrcDgc0Ol0qvQ9nU6H2tpavPrqq7J7Cl9UfPXVV7nI07Fjx2AymfCf//wnLk86nQ7Hjh3DsmXLhDxRjUicJ51OhyVLlqCioiIuT2vWrIHL5QIAhEIhBAIBAGfvtK2urhYubNXV1QmDMC6XCxaLBcDZi1vV1dXCBfHa2lp4PB4AEC6aA4DP50N1dbXgqaamRtgPdrtd2Hderxc1NTXCQEh1dbVQU202m3DnrsfjQW1tLQAIg0Dh2C0Wi+DJ7Xajrq5Okqe6ujp4vV7hoppYT2Ha8hT+rhWrJ7/fL2g3NDS06Sl8E1dzeYq8s/rQoUNYvHgxFi1ahDfeeAOLFy/G+++/j3Xr1uHQoUNRgyCXXHIJPvjgA6xevRpGo7HVPE2aNAmdO3cWPssYw4EDB7B69Wr861//wttvv40vvvgiahCkoKAAixYtwgsvvBDlqaamRva+F2ueIj0p1feSzZPH44FOp0t6T+EL9bzkyel0Qq/Xq9b3WqsRUjz5/X7o9XpZ+55er4fFYkEoFGriSez/CRMCI4gkprS0lAFgJpOJZWdns9LSUhYIBJjFYmGhUIgxxpjNZmNer5cxxpjb7WZOp5Mxxpjf72cWi0XQslqtzOfzMcYYc7lczOVyMcYY8/l8zGq1CttZLBbm9/sZY4w5nU7mdrsZY4x5vV5ms9kYY4yFQiFmsVhYIBBgjDHmcDhYQ0MDY4wxj8fD7HY7Y4yxYDDILBYLCwaDjDHG7HY783g8jDHGGhoamMPhYIyxFj3ZbDb28ssvs8rKyqT0tGvXLqbT6RgA1rVrVzZnzhyWm5vLMjMz2Y4dOxLqqbq6mr388svMZrNJzhNjzfc9j8fDVq5cyfLy8lhhYSGbM2cO69ixIzObzQwAO3z4sCyezpw5wxYuXMiqq6sl973y8nL2z3/+k9lsNtHH06lTp9jChQuZzWaL21O4z585c4YxJu/x1FKeYvHEw/GUCE81NTXCcZLMniorKwUfPOSprq5OiEeOPKlZIxp7qqysZAsXLmR1dXWy9L1wrDU1NaLydPLkSaGGpdo5V2t1r76+nr388stCHMns6fTp02zhwoWsvr6eizxFHidq9D2bzcb++c9/spMnT8ruKVKbhzzV1tayhQsXsqqqqrg8hX2Ul5cLeaIakThP4fNBXV1dXJ6sVisrLS1lBw4cYPv372f79+9nfr+fhUIh4d9w7GF/wWBQ+Hy824Xx+/3CdoFAQNguGAwyr9fLqqqqWCAQUCSGeLeLjEesp8bbtRZDIBBgVVVVzOv1xhTruHHjGAAGgP35z39u1ZPf7xe0m9tuxowZglbjn/T0dFZYWMh69erFRowYwe6++27297//nR08eDDu/RoKhdiPP/7I/va3v7EbbriBXXDBBaxdu3YsPT2dGY1G1r59ezZkyBB21113sXfffTfqWAvr+f1+VllZKexbOfpePHlSo+8lk6e2jpNk8RTpg5c8+Xw+VlVVxXw+n+J9qq0aIcVTWNvn88kaq9vtZvv372cHDhxgpaWl7JdffmF+vz/u/xOGr+WGf0pLS5la0NRYRFITnhorjJqPU/GAz+fDgQMHMGDAABiNxkSHEzeHDx9G3759AQBGoxEDBgzAgQMH4PP5Ep5LNfat1+vF559/jmnTpjXxDwDHjx9HUVGR5Hbk9CKHlhSNZO/zWkMr+eDNh9rxKNme3NpS9aj+aAct5YM3L1SDlNMSq8FbH0l1xOYjEAjg8OHDUe+dd955wnQmiSAUCsHj8cBkMglTqSQSteNRsj05teXQkqLBWz9JdbSSDx59qBlTstSfSL20tDThqckwsZzHGp83E3ktlwZCiKQm1QdCkp3IgZDGpEIuIwdCmkOugRCCIAiCIAiCIBILjwMhBEEQBBErcp3HEnktl48hN4IgRNHQ0ICvvvoKDQ0NiQ5FMpmZmZg0aRIyMzMTHQoA9fetkv7l9CKHlhQNLfV5LaCVfPDmQ+14lGxPbm2pelR/tIOW8sGbF6pBymmJ1eCtj6Q6WspHKBSCzWYT5nxPNGrHo2R7cmrLoSVFg7d+kupoJR88+lAzpmSpP3Lo8XTepIEQgkhiQqEQrFYrVycOsej1euTn53P1SKSa+1ZJ/3J6kUNLioaW+rwW0Eo+ePOhdjxKtie3tlQ9qj/aQUv54M0L1SDltMRq8NZHUh0t5YMxhmAwCF4mClE7HiXbk1NbDi0pGrz1k1RHK/ng0YeaMSVL/ZFDj6fzJk2NRSQ1NDVWckNTY9HUWARBEARBEASRCtDUWARBEEQyQ1NjEQSRUAKBAMrKyhAIBBIdimTS0tJQVFTEzX8E1N63SvqX04scWlI0tNTntYBW8sGbD7XjUbI9ubWl6lH90Q5aygdvXqgGKaclVoO3PpLqaCkfjDF4vV5u7shWOx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2RQ4+n8yYNhBBEEuN0OvHOO+/A6XQmOhTJZGdnY+bMmcjOzk50KADU37dK+pfTixxaUjS01Oe1gFbywZsPteNRsj25taXqUf3RDlrKB29eqAYppyVWg7c+kupoKR/BYBB1dXUIBoOJDgWA+vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWeqPHHo8nTdpaiwiqaGpsZIbmhqLpsYiCIIgCIIgiFSApsYiCIIgkhmaGosgCIIgCIIgCIIgCIIgCIIgCIJjaCCEIJIYm82GBQsWwGazJToUyeTl5eGpp55CXl5eokMBoP6+bc5/eXk5ysrKJP+UlpbihRdeQGlpqaxaHo9HlFcp+1ZLfV4LaCUfvPlQOx4l25NbW6oe1R/toKV88OaFapByWmI1eOsjqY6W8hEIBFBZWcnFvO2A+vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWeqPHHo8nTfpGUyCSGLMZjMmT54Ms9mc6FAk43a7sXr1arjd7kSHAkD9fduc/7Fjx8qinZ6ejt69e2PevHnw+/2yaRkMBtx4441YunRpXPtJyr7VUp/XAlrJB28+1I5Hyfbk1paqR/VHO2gpH7x5oRqknJZYDd76SKqjpXzo9Xrk5+dDr+fjHlm141GyPTm15dCSosFbP0l1tJIPHn2oGVOy1B859Hg6b9IaIURSk4prhAQCAZSXlyc6DFkoKyvDxIkTm/1bKuSyrTVCkoVbb70VH374YaLDIAiCIAiCIAhuoTVCCIIgiGSG1gghCEJ1ysvL0atXL/Tq1QsDBw7E7373OwwcOFB4L5l+IgdBeBohBtR/QiWZ74Zcs2ZNXNNkSdm3vD05lOpoJR+8+VA7HiXbk1tbqh7VH+2gpXzw5oVqkHJaYjV46yOpjpbyEQwGYbFYEAwGEx0KAPXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUHzn0eDpv0kAIQRBEgkhLS0NhYSGMRmOiQ5GEx+NBVVVVosMgCIIgCIIgCIIgCIIgiGahqbGIpCYVp8YqKytDr169Eh2G4qRCLgFg9+7dePzxx7F58+ZEhyKJ48ePo6ioKNFhEARBEARBEASX0NRYBEEQRDJDU2MRBJFQ0tPT0a9fP6Snpyc6FMlEejEajejatWtC4/H7/Th06JDkxcXbon///nj22Wdx+eWXY9CgQYrkUs5+IoeWlH2rVl6I2NBKPnjzoXY8SrYnt7ZUPao/2kFL+eDNC9Ug5bTEavDWR1IdLeUjFAqhoaEBoVAo0aEAUD8eJduTU1sOLSkavPWTVEcr+eDRh5oxJUv9kUOPp/MmDYQQRBLD27oaUoj0MnbsWOTn5yc0HrXmMDSZTBg3bhyWLVuGadOm4euvv8bPP/8s68/XX3+NO++8U5L2ypUr8eqrr8rS52iOfu2glXzw5oPm51dOj+qPdtBSPnjzQjVIOS1aI0QbaCkfoVAIVquVmwuRasejZHtyasuhJUWDt36S6mglHzz6UDOmZKk/cujxdN6kqbGIpIamxtIWRqMRY8aMwbJly9CzZ89Eh0NE8O233+L06dOYNm1as3+nqbEIgiAIgiAIomVoaiyCIAgimdHC1Fh0xiWIJKNbt2749ttv4fP5Eh2K7HTr1g3nnHMOsrOzEx0KQRAEQRAEQRAEQRAEQRAagQZCCCLJSEtLw9ixYwEAVqsVxcXFeOyxxxI+lZRUIr3wgNr7Vsn25NTOz8/HnDlz8Morr8Bqtaoej5b6vBbQSj5480H1Rzk9qj/aQUv54M0L1SDltMRq8NZHUh0t5SMQCKC6uhodO3bk4skUteNRsj05teXQkqLBWz9JdbSSDx59qBlTstSfSL3CwkJRn+fpvElTYxFJTSpOjRVJIBBAeXk5unXrxs2JQyy8eVE7HiXbk0M7PDXW9OnT0a1bN5SXlyMQCAh/j2dqLCnx8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1ZGSR96mxmKMwefzwWg0QqfTJSyORMWjZHtyasuhJUWDt36S6mglHzz6UDOmZKk/kXp6vR5HjhyJ+lss57HG581EXsulgRAiqUn1gRCCUAtaI4QgCIIgCIIgxMPjQAhBEARBxIoW1gjRq9IKQRCK4HK58OGHH8LlciU6FMnw5kXteJRsT07trKws3HbbbcjKykpIPLz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9gMIj6+noEg8FEhwJA/XiUbE9ObTm0pGjw1k9SHa3kg0cfasaULPVHDj2ezps0EEIQSYxer0d+fj70+uQ/lHnzonY8SrYnp3YoFILVakUoFEpIPLz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lA+dTgeDwcDNtDRqx6Nke3Jqy6ElRYO3fpLqaCUfPPpQM6ZkqT9y6PF03qSpsYikhqbGIgh1oKmxCIIgCIIgCEI8NDUWoRYTJkzAli1bAACbN2/GhAkTJGsuX74cs2bNAgDMmDEDy5cvl6yZypSUlGDixIkAgPHjx6OkpCSxARFEDNDUWARBJBSfz4c9e/bA5/MlOhTJ8OZF7XiUbE9ObaPRiCFDhsBoNCYkHt76SaqjlXzw5oPqj3J6VH+0g5bywZsXqkHKaYnV4K2PpDpaykcoFILb7Zb0tLecqB1PvO1NmDABOp2uxZ+cnBz06NEDkyZNwl//+lccOXJEFi9y7BcpGqFQCF6vV3TbhLw0l8vly5e32jczMjLQqVMnjBkzBk888QRKS0tbbaOkpKRFLb1ej7y8PPTo0QODBw/GlClT8OKLL+Lrr7+Oa+qkxj4OHTqEP/7xj5g4cSK6du2KzMxMGI1GFBYWYtCgQbjxxhvx3HPP4T//+Q88Ho+4nRdnTEqiZFtya0vV4+m8SQMhhCYwmUzIzs4GcHbuOqvVivDDTna7XTjYGhoahDnpAoEArFaroGGz2eD3+wEAbrcbbrcbAOD3+2Gz2YTtrFYrAoEAgLPz3DU0NAA4e2Db7XYAAGMMVqtVOAk4nU6hUHu9XjgcDgBNpxlyOBzCFwyPxwOn09mqJ4/Hg2+++Qb19fVJ76mmpgabN2+Gx+PhIk82mw3ffPMNPB6P5DwBbfc9h8OBkpISWCwW2T1ZrVaUlJQI7UjJU/v27TFhwgSYTCZkZmYKa4WEt4slT9XV1SgpKYHH44nbU7jPh9uS83iKJU/Jcjyp5clutwvHSTJ7qq+vF3zwkCen0ynEI0ee1KwRjT3V19ejpKREaEdKnlwulxCr3W4XlaczZ84I55pUPudqoe65XC588803UfUoWT3V1dWhpKRE6OOJzlPkcaJG3/N4PNi8eTPOnDkju6dIbR7yJPb7XthHTU2NkCeqEYnzFD4fRNajWDy5XC4hbsaYEBtjDIFAQHgdDAaF7UKhkPD5eLcLEwgEhO2CwaCwXSgUQiAQgMPhUCyGeLeLjEeKp8jtWouBMQaHwxFzrG1NqOJ0OnHq1Cls2LABf/rTnzBgwADMmzcvKj418tSYsJ7D4YjSjlUvFApFXXgO50eqp8jtEt335Dqe4vHUXJ6kHCet4fP5UF1djR9++AEvv/wyBg8ejLvuukvo/815agnGGOx2O06dOoXS0lJ8+umneOaZZ3DllVeiR48e+NOf/oS6urqYPDkcDlgsFtx1113o378/XnjhBZSUlKCyshIejwd+vx8WiwX79+/H2rVrMXfuXFx11VUoLCzEiRMnZM+TlOMk3u1CoVCT/S9X3wtryx1ruG423k7s/wkTAQ2EEJpg1KhRmDJlCoCzF9SLi4uFL8RLly7FgQMHAABbtmzBunXrAADl5eUoLi4WNBYvXoyjR48CADZu3IiNGzcCAI4ePYrFixcL2xUXF6O8vBwAsG7dOuGR0wMHDmDp0qUAzn5ZLy4uFv6zsmrVKmzbtg0AsHv3bqxYsQLA2eJQXFwsfFlesWIFdu/eDQDYtm0bVq1a1aqn3NxcDBgwQHiMMpk9ffLJJ5g4cSJyc3O5yNPRo0dhNpuRm5srOU9A232vpqYGc+bMwY8//ii7pwMHDmDOnDk4evSo6DyFT6xTp04VLkKOHz8e119/fdR2seTp/fffx5w5c5Cbmxu3p9zcXBQWFgr7Vc7jKZY8JcvxpJan8vJy6PV65ObmJrWnkpISDBgwALm5uVzkyW63w+FwIDc3V5Y8qVEjWvJUUlKCOXPmCHpS8rRu3Trs2rULc+bMQXl5uag8LV26FLNmzUJubm5Kn3O1UPfCF0YzMjKS3tOGDRswZ84cQS/ReVq6dCmmTZuG3NxcVfpebm4ubrrpJiEGOT3l5ubigQcewNKlS7nIk9jve7m5uZg4cSI++eQTIU9UIxLnKTc3Fw6HQ4ghVk9r1qwRBmAiL1wFg0FUV1cLF5Tq6uqEARiXywWLxQLg7MWt6upq4UJTbW2tcHHa4XAIAzXhC55hampqhP0QeSOB1+tFXV0dOnXqBIPBgOrqauHCVeTNER6PB7W1tQDOXhSrrq4WYrdYLIInt9sddfFTjCeLxYKcnBwYDAbRnsL7G0CbngwGAzp06IDa2tqYPIUHyQBgyJAhuO+++/DQQw/h3nvvxd13340777wzaroXv9+P559/Ho899piqeWqMxWKBx+NBp06dBL148hQ58BFuS2rfiydP4RiU7HtyHE/xegoT2f9j8WS1WpGVlQWDwRDlKUxOTg4eeughzJo1C/fffz8eeugh3HnnnRg9ejTS09OF7d577z1cf/31qKioaNZTJA899BBmzpyJ2bNnC3rXX389LrnkEmRmZgrbnT59Gn/9619xwQUXYOPGja16qq2thV6vxxVXXIH33ntP0MjKysLo0aMxc+ZM3HvvvbjhhhswbNiwqFkpwhfX5c6T2+1Gp06d4Pf7Fe97er0enTp1Eo5PQL6+FwwG0alTJzgcDlmOJwDo1KkTbDabUAsiPYn9P2EioDVCiKQmPK+cyWRCWloatm3bhn79+sHhcCAvLw86nQ52ux0mkwlGoxENDQ0IhULIyspCIBCA0+lEfn4+gLNFz2w2Iz09XShWZrMZfr8fbrcbeXl5AM6edLKzs5GWlgaXywW9Xo/MzEzhbtHc3FwwxmCz2YQvcU6nE2lpaTCZTPB6vfD5fMjJyUEoFILdbkdubi70ej0cDgeMRiMyMjLg8XgQCASQnZ0tjEo39pSeng6r1Yr09HRkZ2cntSebzSY8Thx+CiOReQrfLdy+fXvhjgexeYql72VmZgoj6jqdTlZPkYta+f1+UXnau3cvKisrcf/994MxBqfTCZPJBL1eD5fLhdWrV6OgoABmsxnA2S8mRqMRBoNB+GJhNBoRDAbh9XqRnp6OtLQ0NDQ0ICMjAwaDAV6vFzqdDkajEYFAAH6/H5mZmWCMoaGhQWiPMYbc3FxkZGSgoKAAer1eluNJizVCaU9erxc2mw0dOnQQ9JLRk9PphN/vR35+Pvx+f8Lz5Pf7UV9fj44dOwr1Ucm+J0eNaMlTMBhEWlqa8B81qX0v/Di+TqeD1+uNO082mw0ZGRnIzMyE0+lM2XOuFupeIBBAXV0dOnToAL1en9Se/H6/cF50Op0Jz5PVaoXRaITZbIbL5VK874Xb8fv9KCgokNVT+Htl2F+i8yT2+57JZBLu/s3Ly6MakWBP4QtIhYWFSE9Pj9mTzWYTbiIJX4bp27cvDAYDgsGgcD4O9w+9Xo9QKATGGAwGAxhjcW0XnrM9EAhAr9dDr9cLF+gMBgNCoRBCoZBwXlUihni3CwQCwnbhJzDEeIrcrrUYwu2EQqGYYp0wYQK+/fZbAMCf//xnzJs3r9nttm7diunTp+PkyZMIs337dgwbNkyVPDVeI2Ts2LFRixyLyVMgEEBaWpqsfS/WPKnR99T2tHXr1iZrhMQTa+TfGGN47733hDVcevbsibKysmb1ysvLMX36dGzdulXoDwsWLMCTTz4Z5SkyvnCfacmT1+vFd999h9dffx1r1qwR6ptOp8PKlStxyy23tOjp3nvvFdabMRqNeOGFF3D//fcjMzOziXePx4Mvv/wSH3/8MT777DOUlpaid+/esuYpHLfY4yTe7cL1JxyrXH0vvCg5Y0zWWP1+P44ePQqdTids169fP+h0urj+T1hRUZG49Z4ZQSQxpaWlDIDwU1pamuiQVMVisbB58+Yxi8WS6FAkw5sXteNRsj05tLds2cJWrlzJ8vPz2bx581h+fn7UsRfPjxSNxp81mUzs1ltvZS6XS74dRsQMb8etWHjzQfVHOT0pn+etn6Q6WsoHb16oBimnJVaDtz6S6ojNh9/vZwcOHIj68fv9ygQZR0wVFRUJjyOM2vHE29748eOF/5fMnTu31W23b9/OdDqdsP29996bkDg3b94sSkNK+0TbbN68WcjR+PHj4/psc/lYtmyZoNezZ89WP2+321mvXr2E7bt06dJqfPFcOl6/fj0rLCwUPpeZmcl27tzZ7Lbl5eVMr9cL27733nsxt1NZWcmcTmfM28eKmn1dybbk1g7rNTQ0iDqPNT5vJvJaLj0RQiQ14SdCwqg6isgBwWAQNTU16NChAwwGQ6LDkQRvXtSOR8n25ND+9ttvcfr0adx5553o0KEDampqYpqLtDnCj6CL0Wjps7feeis+/PBDUfEQ4uHtuBULbz6o/iinJ+XzvPWTVEdL+eDNC9Ug5bTEavDWR1IdsfkIBAI4fPhw1HvnnXeecBdvImCN7vRPNGrHE297kU9azJ07F/PmzWtV+7LLLhOm1Dz//PNx6NAh1ePcvHkzJkyYIGnf8tZPtEBJSUmTJ0Jipbl8LF++vMkTIa3xyiuv4He/+53wev/+/RgwYECz8YXbjJUffvgB48ePF6ZdmjhxIr755psm273//vuYPn06AKBLly6oqKhIeP9Ss68r2Zbc2mE9ADhy5EjU32I5jzU+bybyWi6tEUIQSYzBYEDnzp018R8i3ryoHY+S7cmpHQwGUVVVJXoQRKpGS59ds2ZN1AJ+hDrwdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpjpbyodPpkJ6envCLj2HUjkfJ9nQ6HYYOHSq8Pn36dEyfO3jwIJ555hmMGDECnTp1gtFoRMeOHXHppZdi7ty5Mes0pry8HPPnz8eQIUNQWFiIrKws9OvXD7/73e+aXNhszsuKFSuE6blmzpzZ7HYlJSXQ6XTQ6XSYMGGC8P4333yD2267Deeeey5MJhPatWuHcePG4fXXX49ad6U5ysrKBM2ioiLh/R07duC3v/0t+vbtC7PZjIKCAowYMQIvvPCCsNZBrNTV1eHll1/GlVdeie7du8NkMiE/Px8DBgzAQw89hB07dsSld/jwYcyZMwf9+vVDVlYWCgsLMWTIEDz77LPCeklSkKPfjh49Our1sWPHpIYVpf373/9eeL1582b8+OOPTbaL7Ms9evTgog6pWYOUrj9yakvV4+m8SQMhBJHEOJ1OLF++HE6nM9GhSIY3L2rHo2R7cmhnZ2ejsLAQBQUFmDlzJrKzsyVpidVo6bMejwdVVVWiYyLEwdtxKxbefFD9UU5Pyud56yepjpbywZsXqkHKaYnV4K2PpDpaykd4wWIpNznJidrxKNleeB2HMG3dtOX1ejF79mwMHjwYL774IrZv347q6mph0eaff/4Zzz//PPr06YPXX389rljWrl2LwYMH469//Sv27dsHi8UCt9uNX3/9Fa+88gouuOACvPXWW616CS+4HA8+nw/33XcfLr/8cnz00Uc4fvw4vF4v6uvrsXXrVjzyyCMYNWpUi4u8NwdjDHPnzsXIkSPx9ttv4/Dhw2hoaIDVasX27dvxxz/+EYMHD475wv4bb7yB3r1744knnsDXX3+N8vJyYR3EgwcPYtGiRRgxYgTuueceYe3L1li0aBEuuOACFBcX49dff4Xb7YbFYsHevXvx/PPPY/DgwVi3bl3MfptDjn4bXpMrTHMLpEvhkUceiVrcvK3ZG44fPy5r+2JRswYpXX/k1Jaqx9N5M3HPYBIEIZm0tDQUFRUl9HFqueDNi9rxKNmeHNrnnHMO7HY7LrroIpSVlQmPRYohEAiI1pDyWUJ+eDtuxcKbD6o/yulJ+Txv/STV0VI+ePNCNUg5LbEavPWRVEdL+dDpdMjIyODiTmxA/XiUbE+n06GmpkZ43alTpxa3dblc+M1vfoPvv/9eeK9379646KKLUFBQgLq6Onz//feorKxEQ0MDHnnkEdjtdjzzzDNtxrFjxw788Y9/hM/nQ2FhISZMmIDCwkKUlZVhy5Yt8Pv9aGhowP333w+DwYB77rmnWS/p6elx7gHgvvvuwzvvvAO9Xo+RI0eiX79+CIVC2LZtG3799VcAwK5du3DXXXdh/fr1MWnOnz8fzz33HABgyJAhGDx4MNLT07Fnzx7s2rULwNmL6pMnT8auXbtaPU7nzJmD4uJi4XX79u1xySWXoHPnzvB4PNi9ezdKS0vBGMPSpUtx+vRp/Pvf/xYWom7Mm2++iYceekh4nZ6ejgkTJqBnz56or69HSUkJ6uvrMWXKFLzwwgsx+W0OOfqtxWKJep2Xlydaqzk6d+6MSy+9VJgSK3Jx9jC9e/cWfq+ursayZcuE6b0ShZo1SOn6I6e2VD2ezpu0RgiR1KT6GiEEoSbV1dU4duwY/vSnP2Hr1q0x3RGjJsePH496XJogCIIgCIIgeCHeNUICgYAs0+honW7duql2cS2eNUICgQDOPfdcnDp1CgAwZcoUfPLJJ81uO2PGDLz77rsAgL59++LNN9+MmloKOHtH9ltvvYXf/e538Hq9MBgM2Lp1Ky655JJW4zQajfD5fHjiiSfwl7/8BRkZGcJ25eXluP3224WL1GazGfv27Yu6QB0mcg2KGTNmYPny5U22iVxXIiMjA16vF8OHD8e7776Lfv36CdsxxvDqq69izpw5wntbtmzBuHHjmmiWlZWhV69eghe/349zzz0XH3zwAUaMGBG17SeffII77rhDmG7rnXfewV133dVEEwCWLl0qDPrk5ubi5ZdfxowZM5oM+GzevBnTp09HRUUFAOBvf/tb1LRPYQ4fPowLLrhAePJn/PjxeP/999GtWzdhG6/Xi6eeegqvvPKKkJfwtvGsEdIc8a4RsnDhQvzv//6v8FrONULCPPPMM3jxxRcBAHq9Hk6nE5mZmcLf7XY7unXrJjxtlJaWhgceeAC//e1vccEFF8TdHqE8cq11lchruYkfiiEIQjRerxe7d+/G0KFDo77QJCO8eVE7HiXbk0u7Y8eOyMvLw1/+8hf079+/yV0kseLz+XDkyBH06dMn6nHZligvLxf+E1hdXY2VK1di9+7d8Hq9oton5IO341YsvPmg+qOcnpTP89ZPUh0t5YM3L1SDlNMSq8FbH0l11MpHeXm5cAGYaBkpN0OFQiG43W6YzeYW7/IXy4svvigMggBnn45ojq1btwqDIL1798b333+P9u3bN4kz/NRGZmYmZs2ahWAwiOeeew5ffvllq3H4fD7Mnj0bf/vb3+B2u5Geni547datG9avX4/hw4fj0KFDcLvdmD9/vhBPZPvxrsfo9Xpx3nnn4ZtvvmkyrbFOp8Njjz2G7777DqtWrQIArFy5stmBkMZe2rVrh2+//RZdu3Zt8vdbbrkFP//8M/7xj38Ims0NhDgcDjz++OMAzg6ubNy4ESNHjmy2zYkTJ+I///kPhg0bBo/Hg5deegkPP/wwzGZz1Hbz5s0T9tHAgQOxfv36JttkZGRg4cKFcDqd+Ne//tWq19aQ2m+dTidee+014XWXLl2iBkHk4vzzzxd+D4VCqK2tRffu3YX3srOz8fTTTwtPNgUCAbz22mt47bXX0KVLF4wcORIXX3wxRowYgUsuuUTS9NyxomRNULMtubXDerFcv2kOnr7H0BohBJHE+Hw+7Nmzh7s788XAmxe141GyPTm1w1p6vR5FRUWifrp06YKTJ0+iS5cuMW3frVs3dO7cGZ07dxYWmhN7AibkhbfjViy8+aD6o5yelM/z1k9SHS3lgzcvVIOU0xKrwVsfSXUoH9qBMQa32y3qbvfmsNvt2Lp1K26//XY8++yzwvu/+93vcOWVVzb7mX/+85/C7y+//HKTQZDGcc6cOVN4umLDhg2oq6trNaacnBwsWLCgRa/Z2dl46aWXhNeffPIJbDZbk/bF9PcFCxa0evH67rvvFn7/+eefY9J85plnmh0EaU5z+/btzW6zdOlSWK1WAMCDDz7Y4iBImP79+2PGjBkAzi6s/tVXX0X93Wq14tNPPxVev/TSS00GQSJ56aWXkJWV1WqbrSGl3544cQLXXntt1JockU/myEnj6bYa30jJGMM999yDefPmNblYX1lZidWrV+NPf/oTrrrqKuTn52PixIl49913FV2/Q+6akKi25NaWqsfTeZOmxiKSGpoaiyC0T1lZmfBob1VVFaZNm9bsdjQ1FkEQBEEQBMEr8U4pEjklENEyav4fIHLKqVho164dnnzySfzhD39o9u+BQAD5+flwuVzIzc1FfX09DAZDm7oPPvggFi9eDABYs2YNbrjhhhbjvOOOO/D++++3qhcMBtGlSxdhTZMvv/wSkyZNitom3qmxTCYT7HZ7q2uLVFVVoUuXLgCAwsLCZgd1Gh8HJ0+ejHqqoDGMMWRlZaGhoQHA2cGpnJycqG1+85vfYOPGjQDODsAMHz68Rb0wH3/8MW699VYAZwe2Igew1q9fj2uvvRbA2VkUKisr27wL//bbb8fKlSsByD81Vk5OTpMnYTweD44cOYIffvhBmDoMAC699FJ8/fXXTe7Sl2NqrK+//jpqAPC7777DmDFjmt12//79+Nvf/obPPvsMLperVd3+/fvjo48+wuDBg+OOiZAGTY1FEERCCYVCsNvtyM3NVfyxPaXhzYva8SjZnpzacmhJ0WCMIT8/H3a7HaFQSFT7hHzwdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpDuVDOzDGEAwGYTAYZF+w2GAw4IUXXsC9997b4jb79u0TLvqmp6fjscceazFOxhh0Oh10Ol3Ukw6R0281R3gNkda8GgwGDB8+XFiwfPfu3VEDIeHPxsP555/f5gLr7dq1E3632+1taubl5bU6CAKcnXaroKCg1YGQH3/8Ufj9rbfewjvvvNNm25Hr9TTe57t37xZ+HzFiREx14ZJLLhEGQuKlrX7rcDjwxhtvtKlz++23Y9GiRYpNVRRe+yNMbm5u1OtIHwMHDsS7776LJUuW4Pvvv8fWrVuxY8cO7Nq1C2fOnIn63MGDBzF69Gh8//33sq8lomRNULMtubXDemKfpeDpvElnbYJIYux2O4qLi2P60sA7vHlROx4l25NTWw4tKRqBQABz5sxp8iWKSAy8Hbdi4c0H1R/l9KR8nrd+kupoKR+8eaEapJyWWA3e+kiqQ/nQDsFgENXV1aKm2hk+fDgeeugh4WfGjBmYOHGicFE5GAzi/vvvF9Y/aI7Tp08Lv9fV1eGNN95o9mfRokVYvHgxFi1ahDfeeAM7duwQPtfWuo09evSIyWt4OwDCkyFhgsFg3P298bRIzRE5UBIIBGTRbKwb+fQDcHZ9jMgL9P/6179a3O+RP2vWrBE+03ifR+6vyP3YGrFu1xxi+q3RaETHjh1xySWX4PHHH8fevXuxYsWKmPepGBpPsVZYWBj1ujkfZrMZV155JZ577jmsX78eVVVVOHDgAJ599lkUFBQI2zmdTkyfPl32aaWk1ASe2pJbW6oeT+dNeiKEIJKY3NxcPPbYY5q4KMybF7XjUbI9ObXl0JKikZaWhldeeYWLEyjB33ErFt58UP1RTk/K53nrJ6mOlvLBmxeqQcppidXgrY+kOpQP7WAwGNCxY8eYpqNqzDXXXIN58+Y1eb+qqgr/+7//K9ztv2DBAgwdOhRTp05tsm3jC8ViaGsAIbxWRVteI9esaHwnv8FgiLu/K3E3vRyaSuxzp9Mp/N7a2iCRSFkjpK1c9uzZU5haOpEcOnRI+N1gMDRZ/ybW469///6YP38+Zs+ejSuvvBL79+8HcPaJqsZTeElFSk3gqS25tcN6YgeeeDpv0kAIQSQxer0e+fn5iQ5DFnjzonY8SrYnp7YcWlI0dDqdsLAdkXh4O27FwpsPqj/K6Un5PG/9JNXRUj5480I1SDktsRq89ZFUR618dOvWLWpBY6J5unXrJvqzOp0u7rnt26Jz5854//33UV9fjw0bNgAAHnjgAVx55ZVRd7QD0RfDL7jgAuzdu1fWWADA7XYDaNtr5LoMjaeS0ul0qlwYVoPGAxD19fVN8hIvkQvCh/d3W7S1DkZrKNFvleCnn34Sfh86dGiTKbji9dGlSxf83//9H0aPHi28t3XrVlkHQtTct0q2Jbd2WC+WJ7eag6fvMTQ1FkEkMQ6HA0uWLGlyx0YywpsXteNRsj05teXQkqIRCAQwe/bsJl/OicTA23ErFt58UP1RTk/K53nrJ6mOlvLBmxeqQcppidXgrY+kOmrlIy0tDUVFRYr+dO/eHWazGd27d1e8LaXikXKxT6mpafR6Pd58803h6YD6+nq88MILTbbr1KmT8HtVVZUicZ48eTImjch1LxrfuS9maixeyc/Pj7og39p+j5UOHToIv4f3d1u0tbZLa6g5fZNYKisr8f333wuvx40b12QbMT4uueSSqOm8KisrpQUqQ0w8tsXb1Fg8fY+hgRCCSGKMRiOGDBkCo9GY6FAkw5sXteNRsj05teXQkqKh0+mwZ88e+Hw+0e0T8sHbcSsW3nxQ/VFOT8rneesnqY6W8sGbF6pBymmJ1eCtj6Q6WsqHTqeD2WxWfFHgWFE7HiXb6969Ox566CHh9euvv97kovuQIUOEi/LV1dU4cuSI7HFu27atTY1gMBi1APuwYcOatK+F/h5mxIgRwu+RF+vFMnToUOH37du3IxQKtfmZyAXb44W347Y5Xnvttaj1WW677bYm24j1ETmQJfdC72ruWyXbkltbqh5P500aCCGIJCYjIwOjRo2SvfgnAt68qB2Pku3JqS2HlhQNg8GAbdu2wev1im6fkA/ejlux8OaD6o9yelI+z1s/SXW0lA/evFANUk5LrAZvfSTV0VI+9Ho9srOzodfzcWlI7XiUbE+v1+Ppp58WnmT3eDx46aWXorbJzMzEZZddJrxetGiR7HGuXbsWdru9VY2vvvoK1dXVAACTyYRLLrmkSfsmkynutnnluuuuE35fvHix5AW3R48eLdSDM2fOYOPGja1ub7PZsHbtWtHt8XbcNuaHH37A3//+d+H1VVddheHDhzfZToyP06dPi1qcPlbU3LdK1x85taXq8XTe5POoIQgiJjweD0pKSuDxeBIdimR486J2PEq2J6e2HFpSNILBICZMmKCpL+LJDG/HrVh480H1Rzk9KZ/nrZ+kOlrKB29eqAYppyVWg7c+kupoKR+hUAgOhyOmO9jVQO14lGwvFAohLS0NDz/8sPDem2++GXURFwD+8Ic/CL+/9tpr+Prrr2OOM5Zpnex2O5555pkWNVwuF37/+98Lr6dMmRI19VC4fS309zD333+/sF7Brl27MH/+/Jg/W1tb22R6oPz8fNx8883C69///vdoaGhoUeMPf/hD1ALr8cLbcRvJV199heuvv15YSyIrKytqUCSSNWvW4PXXX4/rJsc///nPUQNXkyZNkhZwI9Tct0rXHzm1perxdN6kgRCCSGICgQDKyspEL1jEE7x5UTseJduTU1sOLSkajDHJcwET8sHbcSsW3nxQ/VFOT8rneesnqY6W8sGbF6pBymmJ1eCtj6Q6WsoHYwxer1fyHfFyoXY8SrYX1p4zZ46wmLbb7cbLL78ctd348eMxY8YMAGf71rXXXosXX3wx6kJ5ZJwejwerV6/GjTfeiBtuuKHNOIxGI9544w089dRTcDgcUV4rKipw7bXX4sCBAwDOPqEyd+7cZr1ETnOU7OTl5WHhwoXC6/nz52PGjBktru/BGMP333+PBx98ED169Gh2kOPZZ58V7nb/5ZdfcO2116KioiJqG6/XiyeeeAJvvvmmpCmCeDtuA4EAtmzZgptvvhnXXnst6uvrAZx9imDFihW44IILmv1cRUUFHnnkEfTt2xfPPvssDh061GIbJ0+exB133IGlS5cK791www0YMGCArF7U3Ldq1B+5tKXq8XTe1DFejhyCEMH+/fsxaNAg4XVpaSkGDhyYwIgIgpCbsrIylJWVATh719O0adOa3e748eMoKipSLzCCIAiCIAiCiJFAIIDDhw9HvXfeeefRDT5JxIQJE7BlyxYAwNy5czFv3ryYPvfUU0/hb3/7GwAgOzsbJ06cQGFhofB3r9eLG264IWpKJbPZjJEjR6JHjx7IyMiA1WrF0aNHUVpaKtxBf9FFF2HHjh2txvnSSy/hj3/8I/x+P9q3b48JEyagoKAAJ06cQElJSdTai2+++Sbuu+++Zj0sX74cs2bNAgDMmDEDy5cvb7JNSUkJJk6cCODsAE9JSUmb+yZyzYHmLk+WlZWhV69eAICePXsK/y9sjaKiIpw4cQJA6/9HfPbZZ/H8888Lrw0GA4YMGYJ+/fohOzsbTqcT5eXl2LNnD2w2m7Cdw+EQBrciWbRoUdS6MEajERMmTEDPnj1hsViwefNm1NXVwWg04q9//SuefPJJALHvq9aIzE+s+6k1InMJIMoXcPYOf6vViqqqKuzatavJ4FD37t2xfPnyqKnfGrNkyRI88MADUe916NABw4YNQ8eOHZGVlQWbzYaDBw9i7969Uf2jb9++KCkpQZcuXaTYJOJErvNYIq/l0hmXIJKYYDCImpoadOjQAQaDIdHhSII3L2rHo2R7cmrLoSVFgzGGzp07o6ampskjyYT68HbcioU3H1R/lNOT8nne+kmqo6V88OaFapByWmI1eOsjqY6W8sEYQyAQQFpaGhcLL6sdj5LtRWo//vjjeP311+FyueB0OrFw4cKoC/AZGRlYv3495s+fj5dffhlutxtutxubN29uUT89PR2jRo1qM47hw4fjk08+wV133YXa2lqsWrWqyTYmkwn//Oc/WxwEYYxp8v9ezz33HAYNGoTf/e53OH36NILBIHbu3ImdO3e2+JkRI0YgPT292b89+OCDCAaDePLJJ+H1euHz+ZqsF5KXl4d3330Xubm5ouNOxHH7xhtvxLRdt27dcM8992DOnDnC9GMtMXjwYFx00UVR+7umpgYbNmxo9XN33HEHFi5ciA4dOsQUUzyouW/Vqj9yaIf1xMLTeZOmxiKIJMbhcODNN9+Ew+FIdCiS4c2L2vEo2Z6c2nJoSdEIBAKYPXu2sOggkVh4O27FwpsPqj/K6Un5PG/9JNXRUj5480I1SDktsRq89ZFUR0v5CF+c4uUit9rxKNlepHaHDh2i7nx/7bXXYLVao7Y3GAx47rnnUFZWhn/84x+YNGkSevToAbPZjPT0dBQUFGDo0KHC0xgVFRV4/fXXY4rlxhtvxK5du/Dwww9j0KBByMvLQ2ZmJvr27YtHH30U+/bta3JnfmMvdrtd1H7gnalTp+LYsWNYvnw5pk2bhj59+iAvLw8GgwG5ubno378//ud//gcLFy7Er7/+ip9++qnVBZ8feeQR7Nu3D4888gjOO+88ZGZmIj8/H4MHD8bTTz+Nffv2xTSlWWsk+rjV6XTIyclBt27dMHDgQPzP//wP/vrXv2LTpk0oKyvDvHnz2hwEAYCRI0di7dq1KCsrw3vvvYfZs2dj7NixOOecc2A2m2EwGJCXl4dzzz0X1113Hf7617/i6NGjeP/99xUZBAHU3bdq1R8e9Hg6b9LUWERSk+pTY4Xn6cvIyODiDh4p8OZF7XiUbE9ObTm04tWInBqrsrISd999d7PzU9LUWOrD23ErFt58UP1RTk/K53nrJ6mOlvLBmxeqQcppidXgrY+kOmLzwePUWIwxMMag0+m46Ftqx6Nke3Jqy6ElRYO3fpLqaCUfPPpQM6ZkqT+ResFgEEeOHIn6WyznscbnTZoaiyAIUeh0OphMpkSHIQu8eVE7HiXbk1NbDi0pGjqdDh6PR1L7hHzwdtyKhTcfVH+U05Naf3jqJ6mOlvLBmxeqQcppidXgrY+kOlrKB08XIAH141GyPTm15dCSosFbP0l1tJIPHn2oGVOy1J9IvVAoJPrzvJw3aWosgkhi7HY7XnnlFU08psqbF7XjUbI9ObXl0JKi4ff7MWfOHElzqhLywdtxKxbefFD9UU5Pyud56yepjpbywZsXqkHKaYnV4K2PpDpaykcwGMSZM2e4mhpLzXiUbE9ObTm0pGjw1k9SHa3kg0cfasaULPVHDj2ezps0EEIQSYzJZMKECRO4GVmVAm9e1I5Hyfbk1JZDS4qGwWBASUkJPRXCCbwdt2LhzQfVH+X0pHyet36S6mgpH7x5oRqknJZYDd76SKqjpXyE5/rn5a5steNRsj05teXQkqLBWz9JdbSSDx59qBlTstQfOfR4Om/SGiFEUpPqa4QQRCoQuUZIVVUVpk2b1ux2tEYIQRAEQRAEwSs8rhFCEARBELEi13kskddy6YkQgkhiGhoa8NVXX6GhoSHRoUiGNy9qx6Nke3Jqy6ElRSMYDGLSpEnIzMwU3T4hH7wdt2LhzQfVH+X0pHyet36S6mgpH7x5oRqknJZYDd76SKqjpXyEQiHYbDbR877LjdrxKNmenNpyaEnR4K2fpDpayQePPtSMKVnqjxx6PJ03aSCEIJKYUCgEq9XK1YlDLLx5UTseJduTU1sOLSkajDHk5+dDr6fTFw/wdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpjpbywRhDMBgELxOFqB2Pku3JqS2HlhQN3vpJqqOVfPDoQ82YkqX+yKHH03mTpsYikhqaGosgtA9NjUUQBEEQBEEkOzQ1FkEQBJHM0NRYBEEklEAggLKyMgQCgUSHIhnevKgdj5Ltyakth5YUjVAohKKiIvoPIyfwdtyKhTcfVH+U05Pyed76SaqjpXzw5oVqkHJaYjV46yOpjpbywRiD1+vl5o5steNRsj05teXQkqLBWz9JdbSSDx59qBlTstQfOfR4Om/SQAhBJDFOpxPvvPMOnE5nokORDG9e1I5Hyfbk1JZDS4pGMBjEzJkzkZ2d3eRvBw8exL59+2T5OXLkiPAkSllZGTwej2i/Woa341YsvPmg+qOcnpTP89ZPUh0t5YM3L1SDlNMSq8FbH0l1tJSPYDCIuro6BIPBRIcCQP14lGxPTm05tKRo8NZPUh2t5INHH2rGlCz1Rw49ns6bNDUWkdTQ1FgEoX1inRpLSUwmE2688UYsXboUZrNZ9fYJgiAIgiCI5IamxiIIgiCSGS1MjUVnXIIgCIJoA4/Hg48++ggA8OGHHyY4GoIgCIIgCIIgCIIgCCIeaGosgkhibDYbFixYAJvNluhQJMObF7XjUbI9ObXl0JKi4ff78dRTTyEvL090+1JYs2YNTZMVAW/HrVh480H1Rzk9KZ/nrZ+kOlrKB29eqAYppyVWg7c+kupoKR+BQACVlZVczNsOqB+Pku3JqS2HlhQN3vpJqqOVfPDoQ82YkqX+yKHH03mTBkIIIokxm82YPHmyJqbq4c2L2vEo2Z6c2nJoxasRuV379u3xxRdfwO12i25fCh6PB1VVVQlpm0d4O27FwpsPqj/K6Un5PG/9JNXRUj5480I1SDktsRq89ZFUR0v50Ov1yM/Ph17Px6UhteNRsj05teXQkqLBWz9JdbSSDx59qBlTstQfOfR4Om/SGiFEUkNrhBCE9vH7/dixYwe8Xi8A4LnnnsPmzZsTFs/x48dRVFSUsPYJgiAIgiCI5IPWCCEIgiCSGS2sEcLPsBtBEHHjdruxevXqhN0dLye8eVE7HiXbk1NbDq14NdLT0zFkyBAUFhYiGAzi5ptvxpVXXgmj0Sg6BkIeeDtuxcKbD6o/yulJ+Txv/STV0VI+ePNCNUg5LbEavPWRVEdL+QgGg7BYLAgGg4kOBYD68SjZnpzacmhJ0eCtn6Q6WskHjz7UjClZ6o8cejydN2kghNAEJpMJ2dnZAM4eoFarFeGHnex2O3w+HwCgoaEBLpcLwNmRTKvVKmjYbDb4/X4AZw/S8AHq9/uj5rGzWq3CvHgulwsNDQ0AAJ/PB7vdDgBgjMFqtQpFwul0CusKeL1eOBwOAEAoFILVakUoFAIAOBwO4a53j8cDp9PZpqdAIKAJTw6HQ9DmJU/hduTIEy+eeMhTONZ4PHm9XgwcOBCjRo1Cx44dsXLlSlitVhw6dAilpaU4duwYjhw5gn379uHIkSM4duwYSktLcejQIRw7dgyHDh3C/v37cezYMRw+fBj79u3D0aNHcezYMfzyyy/44YcfsHLlSrz//vt477338OqrryItLQ35+flCrHl5eUhPT0+KPKnZ98LtJLun8O+85Cn8vlx54sETD3XPZrNF1bNUPefynqdYPfl8Ps154iFPNptNiFUtT+HjU0lPyZ6nYDAoxKrVvpdMnnw+X9yeXC6XEDdjTIiNMYZAICC8DgaDwnahUEj4fLzbhQkEAsJ2wWBQ2C4UCgnvh7eTO4Z4t4uMR6ynxtu1FUP4b0rt/8j9nMg8Rfa3eD2Ft43cX1I9xZsnpfteMnlq6zhJFk+Nj0Ee8iTlOElkjWi8XazaYmKN7Ifh7cSecxMBDYQQmmDUqFGYMmUKAKCmpgbFxcXCF+KlS5fiwIEDAIAtW7Zg3bp1AIDy8nIUFxcLGosXL8bRo0cBABs3bsTGjRsBAEePHsXixYuF7YqLi1FeXg4AWLduHbZs2QIAOHDgAJYuXQrg7Jf14uJi1NTUAABWrVqFbdu2AQB2796NFStWADhbHIqLi4UvyytWrMDu3bsBANu2bcOqVata9WQ2m5GdnY1NmzYlvaeVK1eid+/eMJvNXOTp119/RV1dHcxms+Q8AW33vcrKSkyePBnfffed7J727duHyZMn49dff+UiT8uXLxfmh4zXU1ZWFlwuF3755RdkZmbCYrFg69at6NWrF9q1a4fPPvsM7dq1Q69evbB161ZYLBb06tULlZWV+Pnnn9GrVy9kZ2fjs88+Q9euXdGrVy98/fXX8Pl86Ny5MxoaGmC1WtGhQwd069YNc+bMETw98MAD6N27t+J9T84aEUvfk3I8lZWV4fTp0zCbzUntadOmTcjOzobZbOYiT/X19Th48KAwh6rSdU/OGtHY06ZNmzB58mTU19fL0ve2b9+OyZMno6ysTFSe3nrrLUycOBFmszmlz7la+G7kcrlw8OBBGAyGpPe0fv16TJ48GS6Xi4s8vfXWWxg9ejTMZrMqfc9sNmPYsGF46623ZPdkNptx9dVX46233uIiT2K/75nNZvTu3RsrV64U8kQ1InGezGYzDh48iPr6+rg8rVmzJmrwL3xxKRgMorq6WrigVFdXJwzAuFwuWCwWAGcvIFVXVwsXmmpra4XBIofDIQzU+Hw+VFdXC55qamqE/WC324V95/V6UVtbi4KCAhgMBlRXVwsXrmw2mzD45PF4UFtbC+DsRbHq6mohdovFInhyu92oq6uT5Km+vh4ZGRkwGAyiPYX3N4A2PRkMBuTl5aG2tlZ2TzqdDgUFBaivr+ciTw0NDSgoKIDH44nbUygUgsfjgU6nAyBP34snTy15krPvJZMni8WC9PR0GAyGpPZUW1uLnJwcGAwGbvLkcrlQUFAAn8+neN+Ts0Y09hQIBFBQUACHwyFL32OMoaCgIOpmmUhPYv9PmBAYQSQxpaWlDAAzmUwsOzublZaWskAgwCwWCwuFQowxxmw2G/N6vYwxxtxuN3M6nYwxxvx+P7NYLIKW1WplPp+PMcaYy+ViLpeLMcaYz+djVqtV2M5isTC/388YY8zpdDK3280YY8zr9TKbzcYYYywUCjGLxcICgQBjjDGHw8EaGhoYY4x5PB5mt9sZY4wFg0FmsVhYMBhkjDFmt9uZx+NhjDHW0NDAHA4HY4y16Mnn87E9e/YIPpLZU21tLdu3bx/z+Xxc5MnhcLBdu3Yxn88nOU+Mtd33XC4XO3jwoPC7nJ7sdjs7ePCg8Hui81RTU8MOHjzIfD5f3J58Ph/btWuX4EOu4+nkyZNs8+bNbOPGjWzDhg1s5cqVLC0tjeXn5zMADADLy8tj6enp7Pjx49wfT2rVPafTyXbu3Ml8Pl9Se7JYLGzPnj3M5/NxkSe328127Ngh+FC67slZIxp7slgs7ODBg8LvUvLkdDqZzWZjBw8eFH6PN0/V1dVs//79zOfzpfQ5VwvfjRoaGtiOHTsEH8nsqb6+nh08eJA1NDRwkafq6mpWWlrKfD6fKn3P5/Ox0tJSVl1dLbsnn8/HDhw4wKqrq7nIk9jvez6fj+3bt4/V1tYKeaIakThPPp+P7dixI+r7UCyerFYrKy0tZQcOHGD79+9n+/fvZ36/n4VCIeHfcOxhf8FgUPh8vNuF8fv9wnaBQEDYLhgMCt/pg8GgIjHEu53f72cul4sFg0HRnhpv11oMwWBQOMbk9hTWjow1kXkKBALM7XZHacfqKRgMMqfTGRWfVE/x5EnM/k/E8aSWp7aOk2TxFNmvecmTlOMkkTWiue1i0Y431oaGBrZ//3524MABVlpayn755Rfm9/vj/j9h+Fpu+Ke0tJSpBQ2EEElNIg8eHrBarezFF1+M+o9GssKbF7XjUbI9ObXl0JKiodR+qqysZJs3bxZ+Vq5cGVVbIn+OHz8ua9vJDG/HrVh480H1Rzk9HusPIQ4t5YM3L1SDlNMSq8FbH0l1xObD7/ezAwcORP1EXrxKBH6/n50+fTrhcYRROx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2J1GtoaBB1Hmt83kzktVwdYxET/RFEkrF//34MGjRIeF1aWoqBAwcmMCKCIJKRqqoqHDp0KOr1tGnTmt32+PHjKCoqUikygiAIgiAIQgsEAgEcPnw46r3zzjsPaWlpCYqIIAiCIGJHrvNYIq/l0hohBEEQBEEQBEEQBEEQBEEQBEFoFhoIIYgkxmq1Yv78+bBarYkORTK8eVE7HiXbk1NbDi0pGrz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9AIIDTp08LC+YmGrXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUHzn0eDpv0tRYRFKT6lNjBQIBlJeXo1u3bkn/SDVvXtSOR8n25NSWQ0uKhlL7iabGEgdvx61YePNB9Uc5PR7rDyEOLeWDNy9Ug5TTEqvBWx9JdaTkkbepsRhj8Pl8MBqN0Ol0CYsjUfEo2Z6c2rFozZs3D/PnzwcAzJ07F/PmzZMtHt76SaojJR8zZ87EO++8AwBYtmwZZs6cqUCEsaFkvyoqKsKJEycAxPf/dzX7eiLqj9T9otfrceTIkai/xXIea3zeTOS1XPoWRRBJTFpammYuyPLmRe14lGxPTm05tKRo8NZPUh2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1dFSPnQ6HTIyMhIdhoDa8cTb3oQJE7Bly5YW/56dnY127drhwgsvxBVXXIG77rpLFj9y7BcpGrz1k1RHK/ng0YeaMSnZltzaYT2xT4TwdN6kqbEIIolxuVz48MMP4XK5Eh2KZHjzonY8SrYnp7YcWlI0eOsnqY5W8sGbD6o/yulR/dEOWsoHb16oBimnJVaDtz6S6mgpH8FgEPX19QgGg4kOBYD68cjdntPpxIkTJ7B27Vo8+uij6N69O5YvXy5ZV444pWjw1k9SHa3kg0cfasakZFtya0vV4+m8SU+EEEQSo9frkZ+fD70++cc0efOidjxKtienthxaUjR46yepjlbywZsPqj/K6VH90Q5aygdvXqgGKaclVoO3PpLqaCkfOp0OBoOBm+mO1I5HSnvDhw/HiBEjhNeMMVitVmzfvl2YAs3hcGDWrFnw+Xy47777EhKnHBq89ZNURyv54NGHmjEp2Zbc2lL1eDpv0hohRFKT6muEEAQhD7RGCEEQBEEQBKEkPK4RQsRH5NRYza3DEebzzz/HrFmzYLPZAAAZGRk4cuQIunXrplaoBJHSiF0LQ+tI3S9ynccSeS038UMxBEGIxufzYc+ePfD5fIkORTK8eVE7HiXbk1NbDi0pGrz1k1RHK/ngzQfVH+X0qP5oBy3lgzcvVIOU0xKrwVsfSXW0lI9QKAS3241QKJToUACoH49S7d1000147733hNderxeLFi0SrSdHnFI0eOsnqY5W8sGjDzVjUrItubWl6vF03qSBEIJIYjweD0pKSuDxeBIdimR486J2PEq2J6e2HFpSNHjrJ6mOVvLBmw+qP8rpUf3RDlrKB29eqAYppyVWg7c+kupoKR+MMTgcDvAyUYja8SjZ3jXXXBN1h/PXX38tWkuOOKVo8NZPUh2t5INHH2rGpGRbcmtL1ePpvElTYxFJDU2NRRCEHNDUWARBEARBEISS0NRYyU+sU2OFefDBB7F48WIAQLt27VBbW9vsdhs2bMBHH32E7777DlVVVfD7/ejYsSOGDRuGG2+8EXfccQfS09NbbWvevHmYP39+TLF98803WLFiBX7++WecOnUKTqcTRqMRhYWF6NWrFy666CJcccUVuOqqq2A0GpvVOHXqFJYuXYpNmzbh119/hdVqBWMMOTk56NatGwYOHIixY8fipptuQufOnVuNvba2Fv/617/w5Zdf4r///S/q6+uRk5OD7t2744orrsCsWbMwYMCAVjXKysrQq1cvAEDPnj1RVlYGANixYweWLFmCb7/9FuXl5cjIyMB5552HyZMn47HHHkNWVlarurGyfPlyzJo1CwAwY8YMLF++HMDZadKWLl2KvXv34syZM8jLy8OQIUNw11134Y477oh5zQXGGFatWoXPPvsMP//8M86cOQMA6NSpE0aOHIn/+Z//wc0339ym3syZM/HOO+8AAJYtW4aZM2e22N6aNWvw8ccfY+fOnaisrITL5YLJZEKHDh1w7rnnYvjw4Zg0aRLGjx/f5toPp06dwvLly7Fx40YcPXoUdXV1yMrKQs+ePXH55ZfjvvvuQ9++fWPaF7EQ7xRQfr8fH374IdatW4cdO3agpqYGoVAIHTt2xKhRozB16lRMnjy52f1bXV2Nc845B4FAAHq9HidPnsQ555wTU5znn38+/vvf/wIAPv74Y9xyyy0tbrtp0yZ88skn2Lp1q5CPdu3aYfDgwbj++utxzz33IDMzs9X2aGosAIwgkpjS0lIGQPgpLS1NdEiqEgqFWENDAwuFQokORTK8eVE7HiXbk1NbDi0pGkrtp8rKSrZ582bhZ+XKlVG1JfLn+PHjsradzPB23IqFNx9Uf5TT47H+EOLQUj5480I1SDktsRq89ZFUR2w+/H4/O3DgQNSP3+9XKMrYCIVCLBgMctO31I4n3vbGjx8v/J9g7ty5bWo//fTTwvbp6elNtjlz5gy7/PLLW/x/R/jnvPPOYz/99FOrcc6dO7fV2EKhELPb7eyGG25os73wz//93/81u5/efPNNlpmZGZPGmDFjWt1Pb7/9NsvLy2tVw2AwsDlz5rBAINCizvHjx4Xte/bsyUKhEHv22WeZXq9vUbdXr17s6NGjrcYXK8uWLRN0Z8yYwaxWa5v7etKkScztdrep/d///pcNHTq0zX190UUXtelnxowZwvbLli1rdpuqqip2ySWXxNxP/vOf/7TYXjAYZH/+85+ZyWRqVSMtLY0988wzsh37PXv2jPn/75s3b2a9e/du0+eoUaNYeXl5sxpXX321sN1LL70UU4zbtm0TPpOXl8caGhqa3e7kyZNswoQJbcbXtWtX9u233zLGWq5t8eyXSMJ6Pp9P1Hms8XkzkddyaWosgkhibDYb/va3vwmLsCUzvHlROx4l25NTWw4tKRq89ZNURyv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJSPYDCIqqoqBIPBRIcCQP14lGwvGAyioqJCeJ2Xlxf19zNnzmD06NHYtGmT8F7v3r1x++23Y9asWRg5cqTw/uHDh3HZZZfh22+/lRTP1KlTsXbtWuG9Pn364JZbbsH999+Pu+++G9dff32zd4hH7qfVq1fj/vvvR0NDAwAgNzcXv/nNb3DPPffg/vvvx2233YZhw4a1+CRJJP/4xz9wzz33RC0qf9VVV+G3v/0tbr75ZhQWFgrtv/LKK5g6dWrMU/PMnz8fzz33HEKhEIYMGYLp06fj7rvvxrBhw4Rtjh8/jsmTJyMQCMSkGSuBQAA333wz1q5dC6PRiAkTJuCee+7BHXfcgR49egjbffXVV/jf//3fVrUOHjyIMWPGYPfu3cJ7gwYNws0334w777wTgwcPFt7fuXMnRo8eLTxhIIZgMIhrr70WP/74Y1R7t912G2bPno2ZM2di0qRJ6NKlS0xaU6dOxfPPPy9MiXTOOefgpptuwn333YfbbrtN6G+BQAAvvPAC7r//ftGxi+GTTz7BVVddhaNHjwIAMjMzMXr0aMyYMQP33HMPxo4dKzztsG3bNlxyySXC0ziR3HnnncLvK1asiKnt999/X/h9ypQpMJlMTbY5ePAgRo4ciZKSEgCATqfDRRddhOnTp+O+++7Dtddei5ycHADA6dOnceWVV2Lz5s2y1zapelydN1UbciEIBUj1J0ICgQCrrKxs9c6IZIE3L2rHo2R7cmrLoSVFQ6n9RE+EiIO341YsvPmg+qOcHo/1hxCHlvLBmxeqQcppidXgrY+kOmLzwesTIT6fj6snQtSMJ9724n0iZPDgwcL2w4cPj/p75B3kWVlZbOXKlU00tm/fzs4991xhu+7duzOLxdJse209EbJ7927h79nZ2Wz9+vUtxn706FH2l7/8ha1du1bwEt5PQ4YMEXQefvhh5nK5mtVwOBzs448/Zn/4wx+a/fv333/PDAaDoHX11VezqqqqqG08Hg978skno/4v9vLLLzerF/lEiNFoZDqdjvXu3Zv99NNPTbb9+OOPWXp6urD9O++80+K+iJXIJ0IyMjIET42fIPD7/eyJJ54QttXpdC3+/9Lr9bILL7xQ2LZjx47sP//5T5N+u2HDBta+fXthu2HDhjGfz9esZltPhKxevVr4e5cuXdi2bdta9FxaWsr+8Ic/NLuPGWPsz3/+s6DVuXNn9umnn0Yda2EfH330UdRTQR999FGLbcZKLE8+lJaWCk826XQ69sQTT7D6+vomNeHo0aPs0ksvjeqrjXG5XCw7Ozvma5OBQIB17NhR2H7z5s1NtnE6nax///5R7R45cqTJdjabjT3wwANRebNYLM3WNilPhPh8PtFPhDQ+bybyWi4NhBBJTaoPhBAEIQ80EEIQBEEQBEEoidSBkJN1rmZ/GnyxDcjYG3zNfr7K1vx0LM1x2upuVsPpic2H2xto9vPllranBwpzxh57vHITz0DIF198EfV/iKeeekr42zfffBP1ty+++KJFnePHj0ddJJ4/f36z27U1EPLaa68Jf//jH/8Yk9/GOByOqEEZKQNW48aNE7RGjx7NvF5vi9s++uijwra5ubnMbrc32SZyIAQAa9euHauoqGhRM3IwYtKkSaJ9hIkcCAHAxo4d2+LxHQqF2PDhw4VtFyxY0Ox2S5cuFbZJT09nu3btarH9n3/+maWlpbU5uNPWQMjjjz8u/D08NZoYjh8/Lgx0FRYWNnsBP5LIY6J///6SB0NjueB/2WWXCdv885//bFXP6XSyAQMGCNs3N0B01113NXu8N8eXX34pbNujR49m/T733HPCNjfddBMLBoOtakbmtqU+JXYgJIxcA/o0NRZBEKJwOp1Yvnw5nE5nokORDG9e1I5Hyfbk1JZDS4oGb/0k1dFKPnjzQfVHOT2qP9pBS/ngzQvVIOW0xGrw1kdSnUTlY+xLm5v92X3SGtPnP95R3uznp//fjzFPdzJl8Y/Naqz/pTKmz397uKbZz0965eyUT8FgELW1ta3G88gHu2NqKxZiaU8Mq1evjpoqJyMjAw8++KDw+s033xR+v+GGG3Dttde2qFVUVISnnnpKeL1kyZKYp4eKxGq1Cr936NAhrs+G95PFYhHea9euXcwLfTfm4MGDUdN8vf76661OpfXCCy+gffv2AAC73Y4PPvigzTaeeeYZdO3atcW/33333cLv27dvjyXsuHjllVdaXEBap9MJC6sDwM8//9zsdpH95IEHHsDQoUMBNN9vhw8fjnvvvVd4vXjxYlFx2+124fd4+0kkxcXFQnzPPvssevfu3WSbSB8TJ07Eb37zGwBn+0fkVGBKsHfvXnzzzTcAgKFDh2LOnDlNYookKysLf/7zn4XXzU1/FXnMf/DBB60ep5HTYt12221NjiW/34/XX38dwNn6sWTJkjYXpH/hhRcEnRUrVsha26TWSp6+x9BACEEkMWlpaSgqKmrxBJtM8OZF7XiUbE9ObTm0pGjw1k9SHa3kgzcfVH+U06P6ox20lA/evFANUk5LrAZvfSTV0Vo+dDqd6AvacqPT6ZCRkaFaPFLaW79+PR5++OGonzvvvBN9+/bFTTfdFDXw8M9//hPdu3cXXm/evFn4PfKCfEvMmjVLuAhaWVmJX3/9Ne54I9t/99134Xa7Y/5seD916NBBWMegtLQU33//fdxxANH+hwwZIlzgb4msrCxMmzat2c+3xC233NLq3/v164fMzEwAQF1dHRwOR5uasXLuuedGrUXSHJGey8rKmvzd4XBgx44dwuvIftJSv/3tb38r/L59+3a4XK54Q4/qJ//3f/8n+sL3+vXrhd9vv/32Zrdp7OOyyy4T/vbdd9+JaldMfNOmTRNiaK0mtBXf5ZdfLqydcvLkSWzdurXZtl0uF1avXi28jhxACbNjxw5UV1cLuh07dmzTU9euXdGvXz8AZ49Pj8cjWy2VWpt5Om8mPgKCIERjMpkwYcKERIchC7x5UTseJduTU1sOLSkaPPST8vJyWfU6d+7c7MJoyQAP+ZAD3nxQ/VFOL9nrD/H/0VI+ePNCNUg5LbEavPWRVEdr+dAbDG3eaawWer1eWPiX9/a2b9/e5pMEOTk5KC4ujrr7v6KiQrjACQCjR49us61OnTqhb9++OHToEABg165dwgXPWLnuuuuQlZUFl8slfP6ee+7Btddei6FDh8JgMLT42cj9NHnyZHz44YcIBAK47LLLcOutt2LKlCkYN24c8vPzY4ol8m7/WPwDwJgxY/Daa68BOOu/NfLy8qIu6DeHTqdDQUGBsOi73W6Xre9FLmDeEu3atRN+j3wKI8y+ffuEQYjs7GxccMEFwt9a6rdDhgwRchwMBrF3796Y92+YKVOmYN68eQiFQvj3v/+NQYMG4e6778bVV1+NgQMHxnQhvK6uTliw3Wg0Yv78+TG1feDAAeH3U6dOxRV3vEQuBr9582acOHGizc9EPuHRXHx6vR7Tpk3DP//5TwBnn/oYN25ck+1Wr14tDFINHTq02f4SGV95eTkefvjhNuMD/v+TX4wx2Gw2dOvWLabPtUW4zwUCAVGf5+m8SQMhBJHEeL1e7N69G0OHDkVGRkaiw5EEb17UjkfJ9uTUlkNLigYP/WTs2LGy6plMJtx4441YunQpzGazrNpKw0M+5IA3H1R/lNNL9vpD/H+0lA/evFANUk5LrAZvfSTV0Vo+QqEgQqEQF4MhoVAIbrcbZrNZlXjkbi87Oxvt2rXDBRdcgMsvvxw333xzk+mZampqhN8zMzNjmn4oFAqhe/fuwkBIbW1t3LEVFBTg9ddfx3333Qe/349Tp05h3rx5mDdvHrKzszFy5EiMHz8e119/PYYMGdKk/fB+WrhwIXbu3InDhw/D5/Phvffew3vvvQe9Xo+BAwdi7NixuPLKK3H11Ve3eHxE7oOePXvGFH9RUZHwe1v+8/LyYtJMT08Xfvf7/TF9JhZiab+ttiP3Uffu3aMGIFrqt3q9XnI/6d+/P1566SU8+eSTYIzh0KFD+P3vf4/f//73KCgowOjRozF+/HjceOON6Nu3b7MalZX/f6o8n8+HN954I+44IqdhU4LTp08Lv3/55Zdxf76l+O68805hIGTVqlXNTvsWOa3WLbfc0mz9jYxv37592LdvX9wxVlRUoH///rLUtnCfa20Ku9bg6byZ+DMdQRCi8fl82LNnD3w+X6JDkQxvXtSOR8n25NSWQ0uKBm/9RA48Hg8++uijmB6L5w2t5IM3H1R/lNOj+qMdtJQP3rxQDVJOS6wGb30k1dFaPkKhkKg1J5SAMQa3261aPFLamzt3LhhjUT8OhwNlZWVYu3YtHn74YRiNxibakXPkZ2VlxRxn5MVDMdM4McZwzTXX4Mcff8RNN90UdSHe6XRi06ZNePbZZzF06FBcfPHFUdP6RO6nzp07Y8eOHfjTn/6ETp06CduEQiH88ssvWLRoEW666SZ06dIFCxYsaHZqJTH7IHK7tvwneqo3OdpvbR+11m/j2U8t8fjjj2Pz5s24/PLLo7xYLBb8+9//xu9//3ucf/75uOKKK/DLL780+bzNZhPVbiRinzyIFakxtjRl2NChQzFw4EAA/39/RVJdXY3//Oc/AACDwYDrr7++2TzKsQ9dLpdstVRqbebpvEkDIQSRxOTk5GD27NmqPj6sFLx5UTseJduTU1sOLSkavPUTOVmzZg08Hk+iw4gLreSDNx9Uf5TTo/qjHbSUD968UA1STkusBm99JNXRWj7S0tJbnRZJTQwGAzp27KhaPEq215J2dna28HusazgYDIaoC8Ni+l44nosuugifffYZqqursWbNGjz55JO45JJLogZGdu7ciYkTJ+KTTz5p1ktubi6ef/55VFRUYNu2bfj73/+OyZMnCwuaA2cvAj/99NO4+eabm1w8FbMPIrfTyrHXGq3to9b6rVz7afz48fj6669RWVmJjz76CI8++iiGDRsW9XTBpk2bMHLkyCZrxUQOxuTm5jYZMIzlZ/ny5aJjj4XIGD/77DNRMbZE5JofjRdV/+ijj4Rj+fLLL8egQYOazWNkfI8++qio+G666SbZapvUWsnTeZOmxiKIJCYUCsFutyM3N5eLR5mlwJsXteNRsj05teXQkqKh1H5qfEIvLCyE0WhU9Y4Fj8eDqqqqqMe+eYe341YsvPmg+qOcHo/1hxCHlvLBmxeqQcppidXgrY+kOonKx9bfT2z2/Q45sU0zMvXibrhqQKdG7zLocfaiWSx3sa964BIEgk0vABZmxTZdyrjzOjTrQ68/2zZjDMFgEAaDocV4Xru99YW14yGW9uTWjpwKq6GhAbW1tVEDCC1pRS6o3db2scSTn5+PG264ATfccAOAs+tUfPbZZ5g7dy5OnjyJYDCIBx98ENdddx1MJlOzXgwGA0aOHImRI0fiiSeeQCgUwg8//IC///3vWLt2LYCzN3t9+umnmDJlSrP74OTJkzHFL9V/shG5j8rLy6OO0Zb6VigUilq7Qo791KlTJ0ydOhVTp04FcHbKrg8++ADPP/886urq0NDQgPvvvx+lpaVRnwljt9uFabwao+Tx1xaRMVZVVcka0x133IFnnnkGjDF88cUXsNlswnRp77//vrDdnXfeiUAg0GxbLcUXK3Lv27Ce2CdCePoeQ9+iCCKJsdvtKC4ubnZxrWSDNy9qx6Nke3Jqy6ElRUOp/dR4Hlej0YgxY8bI2oYW4e24FQtvPqj+KKfHY/0hxKGlfPDmhWqQclpiNXjrI6lOovLRvdDc7I8pPbY7dHNM6U0+2yU3AzqPvcVpXhrTJS+z2RiyMmK7xzbTaGj28+fkZwI4O91MdXV1q/F0zDHF1FYsxNKe3NrnnHMOOnbsKLz+4Ycf2tQ6c+aMsPg0AAwbNky2eMLk5uZi5syZ+Oabb4RpuGpra/Hjjz/GvJ/0ej0uvfRSrF69GldeeaXwfnhQJMzQof9/MCsW/423E+M/2bjggguEm/UcDkfUFFQt5WPv3r3CEyEGgwEXXnih7HF16NABjz32GNasWSO8t3//fhw7dkx43aVLl6jF6lvKsZLHX1uMHDlS+D3yiRY5YurevbuwSLrX68WqVasAAEeOHMHPP/8M4OwTHzfccEOLbUXG98MPP8Q9ACH3vpWqx9P3GBoIIYgkJjc3F4899hhyc3MTHYpkePOidjxKtienthxaUjSU2k9GoxG9e/eOeu/3v/89Jk6cKHpBsFSAt+NWLLz5oPqjnB6P9YcQh5bywZsXqkHKaYnV4K2PpDpayofaU1G1RSpMjQUAEyf+/6diYpkC6L333kMoFAIAdO3aFeeff76s8UTSu3dvYY0D4OwgTLz7SafT4frrr4/SiOSyyy4Tft+9e3ebC0G73W58+OGHzX5eq+Tk5ODiiy8WXkf2k5by8fbbbwu/jxgxIub1V8QwZswYFBYWCq8b5/i6664Tfl+0aFGzGomsP5HxffbZZ0L8csUUOT1W+CmQyKdBJk+ejNzc3BbbGjNmDPLz8wGcfSJo3bp1cbUv976VqsfTeZOmxiKIJEav1wvFMdnhzYva8SjZnpzacmhJ0VByP3Xv3h15eXmwWCzw+/0AgLfeegterxc1NTVx67lcrmYXqHM6nbj33nslx8sDvB23YuHNB9Uf5fR4rT9E/GgpH7x5oRqknJZYDd76SKqjpXzodDqkpfFzWUjteJRsrzXt+++/Hx999BEA4PPPP8eGDRvwm9/8ptltT5w4gRdeeCHqs2Kmuqmrq4tpqqRgMIjKykrhdceOHQUvDocDGRkZMd0oFjlFU+QTMADQr18/jBs3Dt9++y0A4OGHH8amTZui1imJ5E9/+hOqq6sBnL2gevvtt7fZvha4//778dNPPwEA3njjDcycORMXXHBBs31r586dePPNN4XXs2fPFtVmLFO1AYDVao1a0L1xjh9//HG89dZbCAaD+Pzzz7F8+XLMnDkzapuWjpGqqip07txZVPyxMmLECEyYMAElJSVoaGjA9OnT8cUXX8BoNLZZE3w+H1wuFwoKClrc5pZbbsEjjzwCj8eDb7/9FuXl5VHrhUyfPr3VGpGRkYE5c+Zg3rx5AIAHH3wQF110Ec4555yY/FVXV0dNryWVcKxiF7Hn6bxJT4QQRBLjcDiwZMmSZi+2Jhu8eVE7HiXbk1NbDi0pGkrnJTc3Fz179kSfPn2En4EDB2LChAlx/1xwwQXo3Llzk5/GXxKTGd6OW7Hw5oPqj3J6PNcfIj60lA/evFANUk5LrAZvfSTV0VI+Ejk1TXOoHU8ipsYCzj4RcvXVVwuvp0yZIixMHsnOnTtxxRVXwGq1Ajh749ajjz4qKp4nnngCl1xyCZYvXy7oNaaurg733nuvMBCSm5uL0aNHC15+/vlnFBUVYd68eThw4ECzGsFgEB999BFee+014b1Ir2FefPFF4e7yrVu34uabbxYGO8L4fD48/fTTWLhwofDe3LlzoxYS1zJ33HGHML2Vz+fDb37zG2zevLlJ3/r6669x9dVXCxephw0bhmnTpolqc+rUqbjuuuuwatUquN3uZrepqKjA7bffLqyn2bdv3yazK/Tu3Rt/+tOfhNd33303nnjiCdTW1grvRfoIBALYuHEjpk+fHjV1mpK89tprQl/6z3/+g3HjxuGHH35o8bj973//i+effx5FRUVNFohvTF5envDUSSgUwpw5c3DkyBEAQOfOnXHFFVe0WX8ef/xx4emsiooKXHzxxfjkk0+Ep8MaU1tbi7feegvDhg3D3/72N66mxuLpvMnP0D9BEHFjNBoxZMgQTUzdw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR0v50Ol0MJvNqi9U3BJqx6Nke21pL1u2DGPGjMHRo0fhdDoxdepUnHfeeRg5ciSMRiMOHDiAn376SVgbICsrCytWrBB9VzVjDNu2bcO2bdvw29/+Fv369UP//v1RUFCAhoYGVFRU4PvvvxcubgPAP/7xD2RmZiIUCgleKisrMX/+fMyfPx+dO3fGkCFD0LlzZ6SlpeHMmTPYuXMnTp8+LWiMHTsWt912W5N4Ro8ejQULFuDJJ58EAKxbtw49evTAxIkT0b17d1gsFmzevBl1dXXCZ2666Sb87ne/E+U/GTEajVi5ciXGjx+PmpoaVFVV4bLLLsOFF16IgQMHIi0tDXv37sXevXuFz3Ts2BErV65s8ematgiFQvj3v/+Nf//73zAajRg4cCD69u2LvLw8OBwOnDx5Ej/++KNwMd5gMKC4uLhZrblz56KsrAzvvPMOGGN4+eWX8dprr+Hiiy9G7969kZmZCYvFgvLycuzbt09Y36Rdu3aiYo+XQYMGYeXKlbj11lvhdrvx008/YcyYMTj33HMxbNgwtGvXDh6PB9XV1di3bx8qKiri0r/zzjuF9UE+/fRT4f1p06bBYDBEHVfNkZ2djbVr1+KKK67A8ePHUVVVhalTp6J9+/YYNWoUOnfuDMYY6uvrceDAARw+fFjIy8SJE2WtbVJrJU/nTRoIIYgkJiMjA6NGjUp0GLLAmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/nQ6/Vc3V2vdjxKtteWdqdOnfD999/j9ttvxzfffAMAOHz4MA4fPtxk2z59+uCDDz7A8OHDRccTOTd/MBjE/v37sX///ma3zcnJwcsvvyxM5xv2kpWVFTU9TlVVFb766qsW25wyZQqWLl0Kvb75yWieeOIJFBQU4H//939ht9vh9Xqb1TMYDHj44Yfx8ssvczNopxb9+/fHd999h9tuuw27d+8GgCaDH2GGDRuGjz/+uMnTGfGQk5Mj/O7z+bB7926h3cZ07NgRb731FiZNmtTs33U6HZYvX46LLroIc+fOhcVigc/nww8//NDiAuo6nQ5jxowRHX+8XHfddfjhhx9wzz33YOfOnQCAY8eORS3+3piioiJ069atTe1rrrkGhYWFqK+vj3o/vH5ILPXn3HPPxY4dOzB79mysWrUKjDHU1tbiiy++aPEz+fn5uOCCC2StbeFYxU6NxdN5k6bGIogkxuPxoKSkBB6PJ9GhSIY3L2rHo2R7cmrLoSVFg7d+kupoJR+8+aD6o5we1R/toKV88OaFapByWmI1eOsjqY6W8hEKheBwOFqcakVt1I5HyfZi0e7UqRM2bdqEL7/8EjNnzkSfPn2QnZ2NjIwMdO/eHTfccAOWLl2K0tJS9OvXT1KcxcXF2L59O4qLi3H77bfjwgsvREFBAdLS0mAymXDOOefgqquuwj/+8Q8cOXIkak3DsJfhw4ejuroaH3/8MR599FGMHTsWXbt2RUZGBtLS0lBYWIjhw4fjkUcewU8//YRPPvkk6sJ6c9xzzz04evQoXnjhBYwdOxadOnVCeno6CgsLceGFF+Lxxx/Hvn378MorryRkUW0e6Nu3L3bs2IGPPvoIU6dORVFREcxmM8xmM4qKinDrrbfik08+wY4dOyQNggDA2rVrsXPnTrz00ku4+eabMWDAAOTm5sJgMMBsNqNnz564/vrrsXjxYhw+fBg33nhjm5qPPPIITpw4gTfeeAOTJ09Gr169kJ2djbS0NOTn52Pw4MG47bbbsGTJEpw4cQJr1qyR5CFeLrzwQuzYsQMbNmzA7NmzMWjQILRv3x5paWnIyspCUVERfvOb3+DZZ5/F999/j2PHjmHIkCFt6qanp+PWW2+Neq9///4YNmwYgNjrT2FhIT7++GPs27cPzzzzDEaPHo0uXbrAaDTCZDKhc+fOuPTSS/Hoo49i7dq1qKysxPTp02WtbVJrJU/nTXoihCCSmEAggLKyMlx88cWJDkUyvHlROx4l25NTWw4tKRq89ZNURyv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJQPxhi8Xi/MZnOiQwGgfjzxtldSUqKI9qRJk1q8qx44+wSHw+FoVWvevHnCwsotxVNUVIShQ4fGvc5IpJeCggLccsstuOWWW+LSaI327dvj6aefxtNPPy1ao6ioSJhGLFbKyspEt9eYmTNnNlkMvDXijVev12Pq1KmYOnUqgsEgLBYLCgoK4h4cWr58OZYvX97i33U6HYYNGyZcrJeLnJwcPPjgg3jwwQeF96T4aAsxub3qqqtw+eWXyxrTokWLsGjRomb/Fm/9GTRoEP7617/GtG0wGGxWW2yfD8cqdmorns6bOhZvpSAIjti/fz8GDRokvC4tLRUWEyIIgkgkp06dwtGjR5u8b7fbW7xz5vjx4ygqKlI4MoIgCIIgCEJtAoFAk2mPzjvvPKSl0f2pBEEQBP/IdR5L5LVcmhqLIJKYYDCIqqoqBIPBRIciGd68qB2Pku3JqS2HlhQN3vpJqqOVfPDmg+qPcnpUf7SDlvLBmxeqQcppidXgrY+kOlrKB2MMfr8/7jvplULteJRsT05tObSkaPDWT1IdreSDRx9qxpQs9UcOPZ7OmzQQQhBJjMPhwJtvvgmHw5HoUCTDmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/kIBoOoqanh4uIUoH48SrYnp7YcWlI0eOsnqY5W8sGjDzVjSpb6I4ceT+dNmhqLSGpSfWqs8Dx9GRkZ0Ol0iQ5HErx5UTseJduTU1sOLSkavPWT1kiFqbGSKR+twZsPqj/K6aVK/UkFtJQP3rxQDVJOS6wGb30k1RGbDx6nxmKMgTEGnU7HRd9SOx4l25NTWw4tKRq89ZNURyv54NGHmjElS/2J1AsGgzhy5EjU32I5jzU+bybyWi5NRkkQSYxOp4PJZEp0GLLAmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHS/ng6QIkoH48SrYnp7YcWlI0eOsnqY5W8sGjDzVjSpb6E6kXCoVEf56X8yZNjUUQSYzdbscrr7wCu92e6FAkw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR0v5CAaDOHPmDDdT06gdj5Ltyakth5YUDd76SaqjlXzw6EPNmJKl/sihx9N5kwZCCCKJMZlMmDBhAjcjq1LgzYva8SjZnpzacmhJ0eCtn6Q6WskHbz6o/iinR/VHO2gpH7x5oRqknJZYDd76SKqjpXzodDrk5ORwc1e22vEo2Z6c2nJoSdHgrZ+kOlrJB48+1IwpWeqPHHo8nTdpjRAiqUn1NUIIguCXVFgjhCAIgiAIgogNHtcIIQiCIIhYkes8lshrufRECEEkMQ0NDfjqq6/Q0NCQ6FAkw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR0v5CIVCsNlsoud9lxu141GyPTm15dCSosFbP0l1tJIPHn2oGVOy1B859Hg6b9JACEEkMaFQCFarlasTh1h486J2PEq2J6e2HFpSNHjrJ6mOVvLBmw+qP8rpUf3RDlrKB29eqAYppyVWg7c+kupoKR+MMQSDQfAyUYja8SjZnpzacmhJ0eCtn6Q6WskHjz7UjClZ6o8cejydN2lqLCKpoamxCILgFTmnxgqFQqisrITNZpO04FlaWhoKCgrQqVMnruZiJQiCIAiC0Do0NRZBEASRzNDUWARBJJRAIICysjIEAoFEhyIZ3ryoHY+S7cmpLYeWFA3e+okahEIhlJaW4vDhw6iurkZdXZ3onzNnzuDQoUP49ddfZbk7RCv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1tJQPxhi8Xi83d2SrHY+S7cmpLYeWFA3e+kmqo5V88OhDzZiSpf7IocfTeZMGQggiiXE6nXjnnXfgdDoTHYpkePOidjxKtienthxaUjR46ydqYLVaUV9fL6tmVVWVLPNzaiUfvPmg+qOcHtUf7aClfPDmhWqQclpiNXjrI6mOlvIRDAZRV1cn6YljOVE7HiXbk1NbDi0pGrz1k1RHK/ng0YeaMSVL/ZFDj6fzJk2NRSQ1NDUWQRC8ItfUWGVlZSgrK5M9vvPPPx9dunSRXZcgCIIgCIJoSjAYxH//+9+o9/r06YP09PQERUQQBEEQseP3+3HkyJGo9/r27QuDwRCXDk2NRRAEQRBEsyi1oBjdB0EQBEEQBKEeen3Tyy8+ny8BkRAEQRBE/Pj9/ibvNXdu45nkipYgiChsNhsWLFgAm82W6FAkw5sXteNRsj05teXQkqLBWz9JdbSSD958UP1RTo/qj3bQUj5480I1SDktsRq89ZFUR2w+dDodTCZT1Ht2u13O0OImEAigsrKSi3nbAfXjUbI9ObXl0JKiwVs/SXW0kg8efagZU7LUn0i9xuesjIwM6HS6Nj/P0/eY+JZ1JwiCK8xmMyZPngyz2ZzoUCTDmxe141GyPTm15dCSosFbP0kkGRkZ6NixY5vbKflFTiv54M0H1R/l9Kj+aAct5YM3L1SDlNMSq8FbH0l1pOQjJycHHo9HeG2325GXl5ew3Or1euTn53NzR6/a8SjZnpzacmhJ0eCtn6Q6WskHjz7UjClZ6k9YLycnB5WVlVHvZ2VlxfR5nr7H0BohRFJDa4QQBMErcq0RcuzYMZw8ebLJtgUFBbjwwgvbjOOnn35qdmH0vn37omvXrm1+niAIgiAIgpAHn8/X5PuhXq9Hbm4ucnNzkZ6eztVFQYIgCCK1CYVCcLvdqK+vh9frjfpbjx49Yh4MiSSR13LpiRCCSGLcbjc2btyIq666iouRVSnw5kXteJRsT05tObSkaPDWT1IdreSDNx9Uf5TTo/qjHbSUD968UA1STkusBm99JNWRkg+j0YicnBw4HA7hvVAoBKvVCqvVKnOkbcMYQzAYhMFgiGl6E63Fo2R7cmrLoSVFg7d+kupoJR88+lAzpmSpPy3pmUymmM+BPH2PoVsNCIIgCIIgCIIgCIIgVKBr167Izs5OdBgEQRAEETM+nw/hSaXS0tLQrVs3bgaw4oGmxiIUo6qqCl9//TV27NiBHTt2YM+ePXC5XOjZsyfKyspkaYOmxiIIgldoaiyCIAiCIAiiOUKhEE6fPh31ZAhBEARB8E5aWhq6d+8Ok8kkWiOR13LpiRBCMT788ENMnz4dxcXF+P777+FyuRIdkubw+/04dOgQ/H5/okORDG9e1I5Hyfbk1JZDS4oGb/0k1dFKPnjzQfVHOT2qP9pBS/ngzQvVIOW0xGrw1kdSHTnyodfr0a1bN/Tu3RsdOnSQdEFJCowxeDwe8HJ/rNrxKNmenNpyaEnR4K2fpDpayQePPtSMKVnqTxifz4fOnTujT58+cZ+zePoeQ2uEEIqRm5uLyy+/HBdffDEuuuginD59GnPmzEl0WJrC7XZj9erVeOCBB5CXl5focCTBmxe141GyPTm15dCSosFbP0l1tJIP3nxQ/VFOj+qPdtBSPnjzQjVIOS2xGrz1kVRHznwYjUa0b98e7du3B2MMoVBI1YuCdrsdS5cuxd13343c3FzV2uUlHiXbk1NbDi0pGrz1k1RHK/ng0YeaMSVL/dHr9bDb7ViyZAkeeOABUdNh8fQ9hqbGIlRj1apVuOWWW2hqLIIgUoKWpsaqq6vDlClTmv3Mxx9/jC5dukS9Z7PZmp02ITc3FwMGDIh6r3Pnzk3uzqCpsQiCIAiCIAiCIAiC4IFEXsulJ0IIgiAIQkVaexx06tSpkrRNJhNuvPFGLF26FGazWZIWQRAEQRAEQRAEQRCEVqA1QlQkGAxi3759ePvtt/HAAw/g4osvhtFohE6ng06nw4QJE0Rr+3w+vPfee7jmmmvQs2dPmEwmdOnSBaNHj8Y//vEP1NbWymeE4Aar1Yr58+fDarUmOhTJ8OZF7XiUbE9ObTm0pGjw1k94w+Px4KOPPsLdd9+tSntayQdvPqj+KKdH9Uc7aCkfvHmhGqScllgN3vpIqqOlfPDmheqPclr0HUg7aCUfPPpQM6ZkqT9y6PGUa5oaSyVWr16NO+64A263u8Vtxo8fj5KSkri1Dx06hGnTpmHPnj0tbtOxY0csW7YM11xzTdz6ckFTY8lPIBBAeXk5unXrhrS05H7AizcvasejZHtyasuhJUWDt37SGuXl5Thy5EiT96uqqjBt2jRF2zaZTLBYLDCZTIpOjZVM+WgN3nxQ/VFOL1XqTyqgpXzw5oVqkHJaYjV46yOpjpbywZsXqj/KadF3IO2glXzw6EPNmJKl/sih1/jzibyWSwMhKrF8+XLMmjWr1W3EDISUl5dj5MiROH36NABAp9Nh3Lhx6N27N2pqavD1118LF8DS09Px1Vdf4bLLLhPlQSo0EEIQRCpht9uxa9euJu/7fD5cf/318Pl8irZ//PhxFBUV0RohBEEQBEEQBEEQBEFwQSKv5dLUWCrTqVMnXHfddZg/fz7Wr1+Pxx57TJLe7bffLgyC9OzZE7t370ZJSQnefvttrF27FidPnsTll18O4Oy89LfccgsXjyIR8uByufDhhx/C5XIlOhTJ8OZF7XiUbE9ObTm0pGjw1k9aIycnB+3atWvyvtFoxJgxYxIQkfwkUz5agzcfVH+U00uV+pMKaCkfvHmhGqScllgN3vpIqqOlfPDmheqPclr0HUg7aCUfPPpQM6ZkqT9y6PGUaxoIUYlJkybhxIkTqKqqwrp16/Dss8/i6quvRn5+vmjN9evXY+vWrQDOXlhbt24dLrzwwqht2rdvjzVr1uDcc88FANTX1+Oll15qVu+pp54S1iuJ9ycQCIj2QYhHr9cjPz8fen3yH8q8eVE7HiXbk1NbDi0pGrz1k9bQ6XQYOHAg+vTpg3bt2iEvL0/4+ctf/oKrrroKGRkZiQ5TEsmUj9bgzQfVH+X0UqX+pAJaygdvXqgGKaclVoO3PpLqaCkfvHmh+qOcFn0H0g5ayQePPtSMKVnqjxx6POWapsZKMPPmzcP8+fMBxD811rXXXov169cDAO6991689dZbLW67YsUK3HnnnQCAwsJCnDlzpsm8bs8//zyKi4vjdHCWM2fOwGAwtLoNTY1FEAQRjcfjQVVVlejPl5eXY+zYsc3+bevWrejWrRt2794Nr9fb5O+9evVCp06dmrzfuXNnmEwm0TERBEEQBEEQBEEQBEE0B02NRfw/9t49Oq7yvPf/jjQajWRZkoUVBBgj20kKBoJNbqYOxaSEXFoCTWixy2nrOD1taE6os7pKvU5/IYTmrBXSnmI5JMLBSKaJkQ0OtmMuwWBsAw4yNxmQ5ass2ZY0us99Zs/Mnnl+f7jax5ZtWZr97j3vfvfzWWsWQpr93c/X33c/8+7ZM++eMrFYDDt37jT+/2L3H/nmN7+JiooKAKe/FfL666+f85wf/OAHGB4ezutxsYsgjDWk02ns37/f8nsN2IFsXuyux8r9idQWoWVGQ7ZxYha/34/6+vq8H7Nmzbqg9s0334w5c+bgG9/4BpYtW3bOY9GiRZgzZ845jxkzZmDp0qVIJBIXrV+VPGTzwf3HOj3uP+qgUh6yeeEeZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkypovhDiU3//+98YnfKdNm4bPfvazEz7f7/fjpptuMv7/tddes7Q+xh40TcPu3buhaVqhSzGNbF7srsfK/YnUFqFlRkO2caIimqZh06ZNWLFixaSeq0Iesvng/mOdHvcfdVApD9m8cA+yTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlzUtjFZh8l8ZqaGjAypUrAQCLFi3CW2+9ddFtVq1ahUceeQQA8I1vfAO/+c1v8qo5X3hpLIZhGLF0d3djzpw5lmj7/X4Eg0FeJothGIZhGIZhGIZhGCHw0ljMlDl8+LDx81VXXTWpbWbPnm38fOjQIeE1MfZDRNA0DSpcz5TNi931WLk/kdoitMxoyDZOCo2V9/OYzP1LVMlDNh/cf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UKIQxkZGTF+Pt/Nbs9HXV2d8fPo6KjwmsZz6tQpzJw503iMLbMy/vff+973LK9FVcLhMB555BGEw+FCl2Ia2bzYXY+V+xOpLULLjIZs46TQ+P1+3HnnnQXbvyp5yOaD+491etx/1EGlPGTzwj3IOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6EmVNTEF5Yc//CEBIAB0yy23THq7r33ta8Z2//Iv/zKpbV588UVjm4qKijwrnjxdXV3G/iZ6/M3f/E3e+2hvbycA5Pf7qaKigtrb20nXdQoGg5TL5YiIKBwOUyqVIiKiRCJBsViMiIgymQwFg0FDKxQKUTqdJiKieDxO8XiciIjS6TSFQiHjecFgkDKZDBERxWIxSiQSRESUSqUoHA4TEVEul6NgMEi6rhMRUTQapWQySUREmqZRJBIhIqJsNkvBYJCy2SwREUUiEdI0jYiIkskkRaNRIqILetJ1nbq6uoz9OtnT6OgonTx5knRdlyKneDxOx44dI13XTedEdPGxl0wmKRAIUCQSEe4pFotRIBCgeDwuRU4jIyMUCAQM7al40nWdOjs7jf2KPJ4mk5OMx1M8Hqd77rmHLr30UvJ4PASAKisryefzEQAqKyujadOmEQDyer1UXV1t9N+qqioqKSkhAFReXk7l5eUEgEpKSqiqqoq6urom9JRIJOjo0aOk67ptfc+KnMLhMHV1dZGu6wXp5eM9aZpGR44cMfZr9dgT2SPGewqHwxQIBEjTNCHHUzQapUAgYGhPNafh4WHq7e0lXddd/Zrr9L43pn3kyJGzjmOnegqFQhQIBCiVSkmR0/DwMPX09JCu67aMPV3X6dSpUzQ8PCzck67r1NfXR8PDw1LklO98T9d1OnnyJI2Ojho5cY8onCdd1+nIkSPGfp3sycy83ApPdp8TiuwR4z1lMhkKBAI0OjoqRU5m5nsqveaq0PeCwSCdOHGCdF13tCcz83KrPJk91yhUjxjvSdM0CgQCFA6HhYy9dDpNgUDA0J5qTuPPCcfeyx17tLe3k13wN0Icypk3mPH5fJPaprS01Pg5mUwKr2k89fX1IKKLPtavX296X4sWLcLdd98NABgaGkJDQ4NxM/mmpiZ0dHQAAPbs2YPt27cDAHp6etDQ0GBoNDY2orOzEwCwY8cO7NixAwDQ2dmJxsZG43kNDQ3o6ekBAGzfvh179uwBAHR0dKCpqQkAkEql0NDQgKGhIQCn74/S2toKAGhra8OGDRsAAJFIBA0NDYhEIgCADRs2oK2tDQDQ2tqKzZs3T+ipuLgYhw4dwosvvuh4T0899RRGRkZQXFwsRU4ffvghXnnlFRQXF5vOCbj42Ovu7kZdXR127twp3NM777yDuro6fPjhh1Lk9Mtf/hJ1dXUoLi6esqfi4mK8/vrreOeddwCIPZ4mk5OMx1N5eTlWr16N++67D4cOHUJXVxd+8IMf4IUXXkBXVxf+/d//HT/60Y/Q0tKCtWvXYuXKlWhpaUFrayseeOABbNq0CQBw++234/bbbwcAzJs3D/fdd99FPR0+fBjPP/88iouLbet7VuT04osv4tChQyguLi5ILx/vKRAI4Omnn0ZxcXHengrVI8Z7evHFF1FXV4dAICDkeHrzzTdRV1eHw4cP55XTY489hvLychQXF7v6NdfpfQ84/e3mp59+GrquO97Tli1bUFdXh9HRUSlyeuyxx1BcXIzi4mJbxl5xcTF0Xcdjjz0m3FNxcTFmzJiBxx57TIqc8p3vFRcXY2RkBE899ZSRE/eIwnkqLi7G008/jUAg4HhPZublVniy+5xQZI8Y70nXddTV1eGpp56SIicz8z2VXnNV6HsbN25EX18fiouLHe3JzLzcKk9mzzUK1SPGewoEAqirq8OLL74oZOzF43HU1dVh48aNQs8JC4Jtl1yY86LyN0LswO3fCIlGo7Ru3ToaGBhwvKe+vj568sknKRqNSpHT8PAwPfHEExSNRm35VMno6Cg1NzfTwMCAcE9DQ0PU3NxMw8PDUuTU29tLzc3NFI1Gp+xpbMwPDQ0Rkfs+/ZOPp9dff51efvll2rVrF+3cuZNeeukl2rVrF/X29lIoFKKjR4/m/Y2QkZER4zhx8qe0BgYGaN26dRSNRqX45FkwGDT+XfP1VKgeMd7TwMAANTc3UzAYFHI8DQ4OUnNzM42MjOSVU09PDzU1NVE0GnX1a64KfS8UCtETTzxhbOdkT/39/dTc3EyhUEiKnM48TuwYe9FolJqamqinp0e4pzO1Zcgp3/leNBqlJ598kvr6+oycuEcUzlM0GqUnnnjC2M7JnszMy63wZPc5ocgeMd5TJBKh5uZm6uvrkyInM/M9lV5zVeh7gUDAOE6c7MnMvNwqT2bPNQrVI8Z7CgaDxnxDxNgLh8PU3NxsfKtjqjmNPycs5DdC+EJIgcn3Qshf/MVfGNvdf//9k9rmN7/5jbFNXV1dnhXLRSEPHhlIJpO0a9cuo2E5Gdm82F2PlfsTqS1Cy4yGbOPECbS2ttKuXbvOefT29hLRxMsYjl0IuRCq5CGbD+4/1ulx/1EHlfKQzQv3IOu08tWQbYy4HZXykM0L9x/rtHgOpA6q5CGjDztrckr/EaE3fvtCvpfrIZLglu0u5qGHHsKPfvQjAMAtt9yC3bt3T2q7f/iHfzC++nTPPfdg48aNF93mF7/4Bb773e8CAObPn48DBw7kV7REHDhwANddd53x/+3t7bj22msLWBHDMIxc7Nu377zLIX7yk5/E5Zdfju7ubsyZM+e823Z1daG+vt7iChmGYRiGYRiGYRiGcQOFfC+X7xHiUP7gD/7A+PnEiROT2ubkyZPGz1dffbXwmhj7SaVSaG1tNdbhczKyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfHD/sU6P+486qJSHbF64B1mnla+GbGPE7aiUh2xeuP9Yp8VzIHVQJQ8ZfdhZk1P6jwg9mbLmCyEO5ZprrjF+/uijj4ybVk3E+++/f97tGeeSTqexf/9+pNPpQpdiGtm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+uP9Yp8f9Rx1UykM2L9yDrNPKV0O2MeJ2VMpDNi/cf6zT4jmQOqiSh4w+7KzJKf1HhJ5MWfPSWAUm36WxYrEYZs6caVxNe+utt7Bo0aILPj+VSqG2thbRaBQAsHPnTnzxi180V7wE8NJYDMMwE8NLYzEMwzAMwzAMwzAMIwO8NBYzZSoqKvDHf/zHxv+vX79+wuc/99xzxkWQmpoa/NEf/ZGV5TE2kcvlEAqFkMvlCl2KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhzMP/zDPxg/r1+//oI3P08kEnjwwQeN//+7v/s7eL1ey+tjrCcSiaChoQGRSKTQpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw/uP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1XWxBSUH/7whwSAANAtt9wy5e1vvvlmY/v6+nr64IMPzvr78PAwfelLXzKeU1NTQ8FgUEzxEtDe3k4AyO/3U0VFBbW3t5Ou6xQMBimXyxERUTgcplQqRUREiUSCYrEYERFlMpmz/i1CoRCl02kiIorH4xSPx4mIKJ1OUygUMp4XDAYpk8kQEVEsFqNEIkFERKlUisLhMBER5XI5CgaDpOs6ERFFo1FKJpNERKRpGkUiESIiymazFAwGKZvNEhFRJBIhTdOIiCiZTFI0GiUiuqCnbDZLgUDA0HOyp2AwSAMDA5TNZqXIKZFI0KlTpyibzZrOaUxvIk+aplEwGKRoNCrcUzwep2AwSIlEQoqcRkdHjX1P1VM2m6Wenh5DT+TxNJmcnHI8nenp9ddfp5dffpl27dpFO3fupJdeeol27dpFvb29FAqF6OjRowSAysvLqby8nABQSUkJVVVVUVdX14SekskknTx5krLZrK2eROcUiUQoEAhQNpstWE5nekqlUnTixAlDz+qxJ7JHjPcUiUQoGAxSKpUScjzFYjEKBoOUTCbzymlkZIRGRkYom826+jVXhb6XTqfpxIkThp6TPYXDYQoGg5ROp6XIaWRkhIaHhymbzdoy9rLZLA0NDdHIyIhwT9lslkZHR2lkZESKnPKd72WzWRoYGDD0uEcU1lM2m6UTJ04Yek72ZGZeboWnoM3nhCJ7xHhPY/8dmwcVOicz8z2VXnNV6HuhUIj6+/spm8062pOZeblVnsyeaxSqR4z3NHbuFYlEhIy9sVrG5jJTzWn8OeHYe7ljj/b2drIL/kaIjXzta1/DggULzno8/vjjxt/ffffdc/6+YMEC9PX1XVDz6aefxmWXXQYA6O7uxoIFC3Drrbfib//2b3HnnXdi9uzZeOWVVwAAXq8XzzzzDKqrqy31WQgWLVqEu+++GwAwNDSEhoYG4/4pTU1N6OjoAADs2bMH27dvBwD09PSgoaHB0GhsbERnZycAYMeOHdixYwcAoLOzE42NjcbzGhoa0NPTAwDYvn079uzZAwDo6OhAU1MTgNP3ZGloaMDQ0BAAYPPmzWhtbQUAtLW1YcOGDQDOvSq6YcMGtLW1AQBaW1uxefPmCT0VFRVh//79eOGFFxzvaf369ejr60NRUZEUOX3wwQd4/vnnUVRUZDon4OJjr6urC9XV1Xj11VeFe3r77bdRXV2NDz74QIqc1q5di+rqahQVFU3ZU1FREV555RW8/fbbAMQeT5PJySnH05meOjs7ceTIEUNv3759Z3kae425/fbbcfvttwMA5s2bh/vuu++ing4dOoTf/OY3KCoqstWT6JxeeOEF7N+/H0VFRQXL6UxPfX19aG5uRlFRUd6eCtUjxnt64YUXUF1djb6+PiHH0xtvvIHq6mocOnQor5x+9rOfoaioCEVFRa5+zVWh742MjKC5uRmZTMbxnp577jlUV1djZGREipx+9rOfIZPJoKioyJaxV1RUhFgshp/97GfCPRUVFaGsrAw/+9nPpMgp3/leUVER+vr6jOWQuUcU1lNRURGam5uNOZSTPZmZl1vhye5zQpE9YrynTCaD6upqrF+/XoqczMz3VHrNVaHvtbS0oKurC0VFRY72ZGZebpUns+caheoR4z319fWhuroaL7zwgpCxF4vFUF1djZaWFqHnhAXBtksuDF111VVnXfGa7GPsE7kX4uDBg7RgwYIJNWpra+n555+3x6iNuP0bIZFIhH7+859Tf3+/4z319vbSz3/+c+OKdaFzGhoaoscee4wikYgtnyoZGRmhxsZGGhgYEO5pcHCQGhsbaWhoSIqcenp6qLGx0fhUwFQ8RSIReuyxx2hwcJCI3PfpH9m+ETI8PGwcJ07+lFZ/f78xrmX45Nno6Kjx75qvp0L1iPGe+vv7qbGx0fgko5mcYrEYDQwMUGNjIw0PD+eV06lTp+gXv/gFRSIRV7/mqtD3gsEgPfbYY4a+kz0FAgFqbGyk4H9/KrDQOZ15nNgx9iKRCP3iF7+gU6dOCfd0prYMOeU73xvrP729vUZO3CMK52lsPjo6Oup4T2bm5VZ4svucUGSPGO8pHA5TY2Mj9fb2SpGTmfmeSq+5KvS9vr4+4zhxsicz83KrPJk91yhUjxjvaXR0lBobG6m/v1/I2AuFQtTY2Eh9fX1CzgkL+Y0QDxGRXRdd3E59fT1OnDgx5e26urpQX18/4XPS6TQ2btyIlpYWHDhwAAMDA6iursbcuXPxjW98A9/61rcwc+bMPCuXlwMHDuC6664z/r+9vR3XXnttASuyl1Qqhba2NixcuBClpaWFLscUsnmxux4r9ydSW4SWGQ3ZxokT2LdvH5LJ5Dm//+QnP4nLL78c3d3dmDNnznm3vdjrjyp5yOaD+491etx/1EGlPGTzwj3IOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6I3fvpDv5fKFEMbRuP1CCMMwzMWw8kIIwzAMwzAMwzAMwzDMZCnke7l8jxCGcTCapmH37t3QNK3QpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw/uP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRyMruvo7u6GruuFLsU0snmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMNMDC+NxTAMwzAMwzAMwzCMDPDSWAzD5EU2m0V/fz+y2WyhSzGNbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh/cf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UIIwziYaDSKtWvXIhqNFroU08jmxe56rNyfSG0RWmY0ZBsnbkeVPGTzwf3HOj3uP+qgUh6yeeEeZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkypqXxmIcjduXxiIipFIplJaWwuPxFLocU8jmxe56rNyfSG0RWmY0ZBsnTsDKpbFUyUM2H9x/rNPj/qMOKuUhmxfuQdZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0Jv/PaFfC/Xa8teGIaxBI/HA7/fX+gyhCCbF7vrsXJ/IrVFaJnRkG2cOJkjR47gyJEj6O/vv+BzWltb0d3djZKSEtTU1OATn/gEvN7/N3VQJQ/ZfHD/sU6P+486qJSHbF64B1mnla+GbGPE7aiUh2xeuP9Yp8VzIHVQJQ8ZfdhZk1P6jwg9mbLmpbEYJfD7/aioqABweu25UCiEsS87RSIRpNNpAEAymUQ8HgcA6LqOUChkaITDYWQyGQBAIpFAIpEAAGQyGYTDYeN5oVAIuq4DAOLxuPFJ63Q6jUgkAuD01c5QKGSsfxeLxaBpGgAglUoZXwfL5XIIhULI5XIATn9dLJVKAQA0TUMsFpvQUyQSwX/+538ab2Q62VNvby8effRRRCIRKXIaGhrCf/7nfyISiZjOCbj42BsZGcHq1asxMDAg3NPg4CBWr16NoaEhKXLq6enB6tWrEYlEpuxpbMwPDg4CEHs8TSYnpxxPZ3pKp9PGz7lcztjPmMaYdnl5OcrLywEAJSUlqKqqMp4XjUYRCATw4YcfIhaLGZ6Gh4eN48ROT6Jz6u/vN3wUKqczPY2Ojhr15OupUD1ivKf+/n6sXr0ao6OjQo6nsVqHh4fzyunUqVNGD3Pza64KfS8YDOI///M/jTqc7CkQCGD16tUIBoNS5HTmcWLH2ItEInj00Udx6tQp4Z7O1JYhp3zne2M+ent7jZy4RxTO09jrwejoqOM9mZmXW+HJ7nNCkT1ivKdwOIzVq1ejt7dXipzMzPdUes1Voe/19fUZx4mTPZmZl1vlyey5RqF6xHhPo6OjWL16Nfr7+4WMvVAohNWrV6Ovr0/oOWEh4AshjBIsWrQId999N4DTb2A3NDQYB2dTUxM6OjoAAHv27MH27dsBAD09PWhoaDA0Ghsb0dnZCQDYsWMHduzYAQDo7OxEY2Oj8byGhgb09PQAALZv3449e/YAADo6OtDU1ATgdONoaGjA0NAQAGDz5s1obW0FALS1tWHDhg0ATjeHhoYGoxlt2LABbW1tAE5/Envz5s0TevL7/aitrcVrr73meE/PPvss5s2bB7/fL0VOhw8fNq5am80JuPjYCwQCWLJkCfbu3Svc00cffYQlS5bg8OHDUuT061//GkuWLIHf75+yJ7/fD5/Ph48++giA2ONpMjk55Xg601NnZyeOHDli6O3bt8+o9d133zUmWrfffjtuv/12AMC8efNw3333Gc/bt2+fcbK4bds2w1N3dzd0XYff77fVk+icXnvtNdTW1sLv9xcspzM9jYyMIBqNGp+asXrsiewR4z299tprWLJkCUZGRoQcT++88w6WLFmC7u7uvHJqamrC5z//efj9fle/5qrQ92KxGKLRqPH1fCd7+t3vfoclS5YgFotJkVNTUxNuvPFG+P1+W8ae3+/H9ddfb9Qg0pPf78cXvvAFNDU1SZFTvvM9v9+PefPm4dlnnzVy4h5ROE9+vx/RaBQjIyOO92RmXm6FJ7vPCUX2iPGePB4PlixZgmeffVaKnMzM91R6zVWh723btg2zZ8+G3+93tCcz83KrPJk91yhUjxjvaWRkBEuWLMFrr70mZOyl02ksWbIE27ZtE3pOWBCIYRxMe3s7ASC/308VFRXU3t5Ouq5TMBikXC5HREThcJhSqRQRESUSCYrFYkRElMlkKBgMGlqhUIjS6TQREcXjcYrH40RElE6nKRQKGc8LBoOUyWSIiCgWi1EikSAiolQqReFwmIiIcrkcBYNB0nWdiIii0Sglk0kiItI0jSKRCBERZbNZCgaDlM1miYgoEomQpmlERJRMJikajRIRsSf2xJ7YU96e9u3bRy+//DLt2rWLdu7cSS+99BLt2rWLdu3aRS+99BJt2LCBAFB5eTmVl5cTACopKaGqqipqaWkxnrdz507atWsXdXV1FdyTijmxJ/bEntgTe2JP7Ik9sSf2xJ7YE3tiT6p7Gnsvd+zR3t5OdsE3S2ccjdtvlp5MJrFnzx7ccsstKCsrK3Q5ppDNi931WLk/kdoitMxoyDZOnMCpU6eMT46cj/7+fixbtuy8f2tpaUFdXd1Zv5s/fz4+9rGPAVAnD9l8cP+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCL3x2xfyvVxeGothHMz4NQidjGxe7K7Hyv2J1BahZUZDtnHiBGbNmoXLL7/c+Cq7SFTJQzYf3H+s0+P+ow4q5SGbF+5B1mnlqyHbGHE7KuUhmxfuP9Zp8RxIHVTJQ0YfdtbklP4jQk+mrPkbIYyjcfs3QhiGYSaLruvGzczO5OTJk7jhhhvOu83FvhHCMAzDMAzDMAzDMAwzWfgbIQzD5IWu68bNip2ObF7srsfK/YnUFqFlRkO2ceIkvF4vqqurz3lUVlbmralKHrL54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhjGwcRiMTz11FPn/ZS305DNi931WLk/kdoitMxoyDZO3I4qecjmg/uPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlDUvjcU4Gl4ai2EYxhzd3d2YM2fOef/GS2MxDMMwDMMwDMMwDCMKXhqLYRiGYRiGYRiGYRiGYRiGYRjGAvhCCMM4mHA4jJ/85CcIh8OFLsU0snmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfj9qWxMpkMOjs7MW/ePJSUlBS6HFPI5sXueqzcn0htEVpmNGQbJypgZmksVfKQzQf3H+v0uP+og0p5yOaFe5B1WvlqyDZG3I5KecjmhfuPdVo8B1IHVfKQ0YedNTml/4jQG799Id/L5QshjKNx+4UQhmEYs/A9QhiGYRiGYRiGYRiGsQO+RwjDmMTv96OiogIAkM1mEQqFMHaNLxKJIJ1OAwCSySTi8TgAQNd1hEIhQyMcDiOTyQAAEokEEokEgNNXLs/8+lYoFIKu6wCAeDyOZDIJAEin04hEIgAAIkIoFEI2mwUAxGIxaJoGAEilUohGowCAXC6HUCiEXC4HAIhGo0ilUgAATdMQi8Um9JRIJLB582YMDQ053tPAwAB+85vfIJFISJFTMBjEs88+i0QiYTon4OJjLxwOY+vWrRgeHhbuaXR0FFu3bkUwGJQip/7+fmzduhWJRGLKnhKJBJ599lmMjo4CEHs8TSYnpxxPU/E0Vmt5eTnKy8sBACUlJaiqqjKep2maUcNY9mNen3nmGSQSCak8TTWnoaEhbN68GYlEQoqcIpGI8e+ar6dC9YjxnoaGhrB161ZEIhEhx9PIyAi2bt2KUCiUV06BQABbtmxBIpFw9WuuCn0vGo3imWeeOeu4caqnwcFBbN26FdFoVIqcAoEAnnvuOSQSCVvGXiKRwHPPPYdAICDcUyKRwJYtWxAIBKTIKd/5XiKRwG9+8xsMDAwYOXGPKJynRCKBZ555xqjdyZ7MzMut8GT3OaHIHjHeUzwex9atWzEwMCBFTmbmeyq95qrQ9wYHB43jxMmezMzLrfJk9lyjUD1ivKdIJIKtW7diaGhIyNiLxWLYunUrBgcHhZ4TFgK+EMIowaJFi3D33XcDOP2GVkNDg3FwNjU1oaOjAwCwZ88ebN++HQDQ09ODhoYGQ6OxsRGdnZ0AgB07dmDHjh0AgM7OTjQ2NhrPa2hoQE9PDwBg+/bt2LNnDwCgo6MDTU1NAE43joaGBuPNks2bN6O1tRUA0NbWhg0bNgA43RwaGhqMZrRhwwa0tbUBAFpbW7F58+aLehoYGDBqdbKnp59+2mjeMuT00Ucf4fjx48Jyupin7u5uAMDu3buFe3rvvfcMTzLktH79elOeTpw4YXgSfTzJMPbs9tTX1wcAuP3223H77bcDAObNm4f77rvPeN6+ffuMGvbs2WN4OnLkCI4dOyadp6nmtGPHDuPNJRly6uvrw8GDB015KlSPGO9prNa+vj4hx9Nbb70F4PTYyyenX/7yl8YJhJtfc1Xoe8PDwzh48KASnp5//nnDkww5/fKXvzRqsGvsJRIJ/PKXv7TEUy6Xwy9/+UspcjIz3wuHw3j66aeNnLhHFNbTwYMHjTmUkz2ZnZercE4oqkdM5EmGnMzM91R6zVWh723evNn4YKCTPZmdl1vhyey5RqF6xHhPY69PO3bsEDL2xi6MbN68Weg5YUEghnEw7e3tBID8fj9VVFRQe3s76bpOwWCQcrkcERGFw2FKpVJERJRIJCgWixERUSaToWAwaGiFQiFKp9NERBSPxykejxMRUTqdplAoZDwvGAxSJpMhIqJYLEaJRIKIiFKpFIXDYSIiyuVyFAwGSdd1IiKKRqOUTCaJiEjTNIpEIkRElM1mKRgMUjabJSKiSCRCmqYREVEymaRoNEpExJ7YE3tiT5Z5Onr0KAGg8vJyKi8vJwBUUlJCVVVV1NLSQrt27aKXXnqJdu7cSbt27aKuri7pPamYE3tiT+yJPbEn9sSe2BN7Yk/siT2xJ/bkdE9j7+WOPdrb28ku+B4hjKNx+z1CZLy5VL7I5oVv1GedFt+oTy4mukfImjVrUFtbe9bv5s6dixkzZgA4/XXdQCCAyy67DF6vF3V1dfD7/QAAr9cLj8djbfGCkG1ccf+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCL3x2/M9QhiGyYtEImGsFep0ZPNidz1W7k+ktggtMxqyjRPVuf/++7Fs2bKzHp///OfxyU9+Ep/85Cdx00034ZVXXsFNN92ET37yk5g5cya+/OUvY+fOndi3b5/xNWPZkW1ccf+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsuZvhDCOxu3fCGEYhjHLRN8IyZdbb70VDz74IADg6quvRl1dnVB9hmEYhmEYhmEYhmGcB38jhGEYhmEYZdi7dy/S6TQAYHBwsMDVMAzDMAzDMAzDMAzjdvhCCMM4mFAohB/96EcIhUKFLsU0snmxux4r9ydSW4SWGQ3ZxokKnHlfj6lSXV2Nhx56CNXV1Wf9Pp1OY3R0FACk+PrrxZBtXHH/sU6P+486qJSHbF64B1mnla+GbGPE7aiUh2xeuP9Yp8VzIHVQJQ8ZfdhZk1P6jwg9mbLmpbEYR+P2pbF0XUdPTw9mzZoFr9db6HJMIZsXu+uxcn8itUVomdGQbZyowtKlS7Fp06Ypb+f1ejFr1iz09PRA1/Wz/tbS0mJcZFm0aJGoUi1BtnHF/cc6Pe4/6qBSHrJ54R5knVa+GrKNEbejUh6yeeH+Y50Wz4HUQZU8ZPRhZ01O6T8i9MZvX8j3cvlCCONo3H4hhGEYRgSJRAIrVqzAtm3boGmaEE0nXQhhGIZhGIZhGIZhGMZ6+B4hDMPkRTwex8aNGxGPxwtdimlk82J3PVbuT6S2CC0zGrKNE1UoLy/Hxo0bEQwG0dXVddajs7MTBw4cQHt7+zmP559/HkuXLsW0adMKbcEUso0r7j/W6XH/UQeV8pDNC/cg67Ty1ZBtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1nJ894hhmLwoKipCdXU1ioqcf01TNi9212Pl/kRqi9AyoyHbOFENv9+P+vr6ST/f6/UiFAohl8tZV5QNyDauuP9Yp8f9Rx1UykM2L9yDrNPKV0O2MeJ2VMpDNi/cf6zT4jmQOqiSh4w+7KzJKf1HhJ5MWfPSWIyj4aWxGIZhCkd3dzfmzJlz3r/x0lgMwzAMwzAMwzAMw5wJL43FMExepNNp7N+/H+l0utClmEY2L3bXY+X+RGqL0DKjIds4cTuZTAYLFiyAz+crdCmmkG1ccf+xTo/7jzqolIdsXrgHWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsuYLIQzjYDRNw+7du4Xd3LiQyObF7nqs3J9IbRFaZjRkGyduJ51OY8mSJfD7/YUuxRSyjSvuP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWvDQW42h4aSyGYZjCwUtjMQzDMAzDMAzDMAwzWXhpLIYxid/vR0VFBQAgm80iFAph7BpfJBIxvn6VTCYRj8cBALquIxQKGRrhcBiZTAYAkEgkkEgkAJxe+iUcDhvPC4VC0HUdABCPx5FMJgGc/mR0JBIBABARQqEQstksACAWixlXPlOpFKLRKAAgl8uddaPhaDSKVCoF4PQV01gsNqEnIkIwGDSe52RP4XAYkUgERCRFTpqmYWhoCERkOifg4mMvnU5D0zTE43HhnpLJJDRNg6ZpUuQUCoWgaZpR61Q8ERGGh4eN54k8niaTk1OOJzs91dbWwuPxwOPxoLq6GsXFxca+xraR3VMsFkMwGAQRSZFTJpPBwMDAWcedlWNPZI8Y72ns32zs2DeT01h/1DQNqVQqr5yCwSASiQSIyNWvuSr0PV3XMTAwYDzPyZ6i0Sg0TTNqLXROwWAQ8XgcRGTL2BvbTzAYFO5pbL4SDAalyCnf+R4RIRKJGM/jHlFYT0SEgYEB43lO9mRmXm6FJ7vPCUX2iPGecrkcNE0zjv1C52RmvqfSa64KfW/s9YCIHO3JzLzcKk9mzzUK1SPGe8pkMsY+RYy9bDYLTdMQiUSEnhMWAr4QwijBokWLcPfddwMAhoaG0NDQYBycTU1N6OjoAADs2bMH27dvBwD09PSgoaHB0GhsbERnZycAYMeOHdixYwcAoLOzE42NjcbzGhoa0NPTAwDYvn079uzZAwDo6OhAU1MTgNONo6GhAUNDQwCAzZs3o7W1FQDQ1taGDRs2ADjdHBoaGoxmtGHDBrS1tQEAWltbsXnz5gk9hcNhrFmzBlu2bHG8pyeffBKPPvoowuGwFDm99dZb+MUvfmFMxs3kBFx87H300Ud45JFH8MILLwj3tGfPHjzyyCN46623pMnpkUceQTgcnrKncDiMn//858bzRB5Pk8nJKceTXZ6OHDmC7373u6iqqkJpaSlWrlyJ2tpaAEBfX5+xjeyetmzZgjVr1iAcDkuR0+HDh/H4448bE1qrx57IHjHe05YtW/DII4/g8OHDQsbeK6+8gkceeQTvvfdeXjmtWbMG//7v/45wOOzq11wV+l5XVxcef/xxQ8/JnjZt2oRHHnkEXV1dUuS0Zs0a/Md//AfC4bAtYy8cDuP//t//izVr1gj3FA6H8dOf/hRr1qyRIqd853vhcBiPPvoonnzySSMn7hGF8xQOh/H444/j8OHDSnjKd15uhSe7zwlF9ojxnoaGhvDII4/gySeflCInM/M9lV5zVeh7v/rVr7B69WqEw2FHezIzL7fKk9lzjUL2iDM9HT58GI888gi2bNkiZOz19vbikUcewa9+9Suh54QFgRjGwbS3txMA8vv9VFFRQe3t7aTrOgWDQcrlckREFA6HKZVKERFRIpGgWCxGRESZTIaCwaChFQqFKJ1OExFRPB6neDxORETpdJpCoZDxvGAwSJlMhoiIYrEYJRIJIiJKpVIUDoeJiCiXy1EwGCRd14mIKBqNUjKZJCIiTdMoEokQEVE2m6VgMEjZbJaIiCKRCGmaRkREyWSSotEoEdEFPem6Tl1dXcZ+nexpdHSUTp48SbquS5FTPB6nY8eOka7rpnMiuvjYSyaTFAgEKBKJCPcUi8UoEAhQPB6XIqeRkREKBAKG9lQ86bpOnZ2dxn5FHk+Tyckpx5Ndng4ePEjz5s2j4uJi8ng8VF1dTcXFxQSAfvWrX9Err7xCb731lvSewuEwdXV1ka7rUuSkaRodOXLE2K/VY09kjxjvKRwOUyAQIE3ThIy9aDRKgUDA0J5qTsPDw9Tb20u6rrv6NVeFvpdKpejIkSNnHcdO9RQKhSgQCFAqlZIip+HhYerp6SFd120Ze7qu06lTp2h4eFi4J13Xqa+vj4aHh6XIKd/5nq7rdPLkSRodHTVy4h5ROE+6rtORI0eM/TrZk5l5uRWe7D4nFNkjxnvKZDIUCARodHRUipzMzPdUes1Voe8Fg0E6ceIE6bruaE9m5uVWeTJ7rlGoHjHek6ZpFAgEKBwOCxl76XSaAoGAoT3VnMafE469lzv2aG9vJ7vge4QwjobvEcIwDFM47LxHCP33V7/j8TgGBgYmfK7X60Vpaanx/2N1MAzDMAzDMAzDMAxTOPgeIQzD5EUsFsP69euNdfmcjGxe7K7Hyv2J1BahZUZDtnHidpLJJJYvX27co8kqRkdHsXv3bvzJn/wJrrjiClx33XUTPq6++mrMmTPHeMyYMQNLly411lEdj2zjivuPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlLW30AUwDJM/Xq8X9fX18HqdfyjL5sXueqzcn0htEVpmNGQbJ26nuLgY3d3dxg3mrCCZTKK9vR3/9m//hl27duWloWkaNm3aBADYuHHjOX+XbVxx/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMMUjomWxlqzZg1qa2vh9Xoxd+7cCXVmzZqF2tpaeDyec/7W09ODjo4O3HHHHUin06bq9fv9CAaDvEwWwzAMwzAMwzAMwxQAXhqLYZi8SKVSaG1tRSqVKnQpppHNi931WLk/kdoitMxoyDZO3E46ncaiRYvOuh/HGPfffz+WLVuGP//zP8enP/3pCR9XXnklvvSlL2FoaOgcnVQqhdHRUdMXQYDT3wzp7+8/7z5kGlfcf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UIIwziYdDqN/fv3C3mDsNDI5sXueqzcn0htEVpmNGQbJ25H13UsWLAAPp/PlE46ncbOnTuxbNkyFOKLqrKNK+4/1ulx/1EHlfKQzQv3IOu08tWQbYy4HZXykM0L9x/rtHgOpA6q5CGjDztrckr/EaEnU9a8NBbjaHhpLIZhmMIx0dJY+eDz+dDX14dLLrnE+F1nZyfeeecdLFu2TMg+tm/fjssvvxw+nw81NTW47LLLzrskF8MwDMMwDMMwDMMwYuGlsRiGyYtcLodQKIRcLlfoUkwjmxe767FyfyK1RWiZ0ZBtnLidj33sY7j00ktRVCRmOpFOp9HT0zOlbXbt2oUjR47g2WefRUtLC1paWrBmzZoLPj8WiyESiWB4eBhHjhzBsWPHpBtX3H+s0+P+ow4q5SGbF+5B1mnlqyHbGHE7KuUhmxfuP9Zp8RxIHVTJQ0YfdtbklP4jQk+mrPlCCMM4mEgkgoaGBkQikUKXYhrZvNhdj5X7E6ktQsuMhmzjxO2k02ncd999qKysLFgN9fX1+MQnPoHLLrsMdXV1qKurQ21t7aS37+3txcjIiFTjivuPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlDUvjcU4GrcvjZXL5RCJRFBZWSnsE9mFQjYvdtdj5f5EaovQMqMh2zhxO7lcDgMDA/j+97+Pbdu2QdM005r79+/HDTfcYPz/xZbG6urqQn19Pfbt24dkMgkA6O/vv+DzW1paUFdXd9bvrrvuOni9XmnGFfcf6/S4/6iDSnnI5oV7kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNAbv30h38v12rIXhmEsoaioCNXV1YUuQwiyebG7Hiv3J1JbhJYZDdnGidspKirCZZddho0bN0LTNPT3909qu56eHtx8881Ca6murjYuhEwVj8cj1bji/mOdHvcfdVApD9m8cA+yTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlLcclN4Zh8iIajeLxxx9HNBotdCmmkc2L3fVYuT+R2iK0zGjINk7czpl5+P1+1NfXT+oxa9Ys4bXMmTMH06ZNy2vbWCwm1bji/mOdHvcfdVApD9m8cA+yTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlzd8IYRgH4/P5sGDBAvh8vkKXYhrZvNhdj5X7E6ktQsuMhmzjxO3IlIfP58ONN96IcDiMkpKSKW8riw+A+4+Vetx/1EGlPGTzwj3IOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6MmUNd8jhHE0br9HCMMwjBPp7u7GnDlzzvu3fO8RMln9890j5Prrr8cll1wyBQcMwzAMwzAMwzAMw0yVQr6Xy0tjMYyD0TQNu3fvFnKD4kIjmxe767FyfyK1RWiZ0ZBtnLgdVfJIpVJS+eD+Y50e9x91UCkP2bxwD7JOK18N2caI21EpD9m8cP+xTovnQOqgSh4y+rCzJqf0HxF6MmXNF0IYJfD7/aioqAAAZLNZhEIhjH3ZKRKJIJ1OAwCSySTi8TgAQNd1hEIhQyMcDiOTyQAAEokEEokEACCTySAcDhvPC4VC0HUdABCPx42b86bTaUQiEQAAESEUCiGbzQI4vf782AGfSqWMdfFyuRxCoRByuRyA0+vmpVIpAKcbRSwWm9CTruvo7Ow09utkT8FgEMePH4eu61LkFI/HcezYMei6bjon4OJjL5lMoru7G5FIRLinWCyG7u5uxONxKXIaHR1Fd3e3sc1UPI2N+bH6RB5Pk8nJKceTXZ4SiYRxnEzFUywWQ1HR6SnI9OnTUVpaCuB0Lx/bZrynyspK46u0ZWVlxv1Axp53pqexWsvLy1FeXg4AKCkpQVVVlfE8TdPO+nft7OyErutS5KRpmvHvKiInO3vEeE+RSATd3d3QNE3I2ItGo+ju7kYikcgrp5GREXR1dUHXdVe/5qrQ91KpFI4dO2bU52RP4XAY3d3dSKVSUuR05nFix9jTdR1dXV0YGRkR7ulMbRlyyne+p+s6jh8/jmAwaOTEPaJwnnRdx7Fjx846b3CqJzPzcis82X1OKLJHjPeUyWTQ3d2NYDAoRU5m5nsqveaq0PdCoZBxnDjZk5l5uVWezJ5rFKpHjPekaZox3xAx9tLpNLq7uxEKhYSeExYCvhDCKMGiRYtw9913AwCGhobQ0NBgHJxNTU3o6OgAAOzZswfbt28HAPT09KChocHQaGxsRGdnJwBgx44d2LFjB4DTy7I0NjYaz2toaEBPTw8AYPv27dizZw8AoKOjA01NTQBON46GhgYMDQ0BADZv3ozW1lYAQFtbGzZs2ADgdHNoaGgwmtGGDRvQ1tYGAGhtbcXmzZsn9FRRUYErrrgCr732muM9bdq0CTfeeCMqKiqkyOno0aPQdR0VFRWmcwIuPvYGBgawfPly/P73vxfuqb29HcuXL8fRo0elyOm//uu/sHz5clRUVEzZU0VFBYqLi9He3g5A7PE0mZyccjzZ5enkyZOIxWKoqKiYkqff/OY3qKysBADce++9WLhwIYDTvfydd945y9PYZG/FihWYP38+AOCWW27BHXfccdbzzvTU19cHALj99ttx++23AwDmzZuH++67z3jevn37jH/Xffv24YorrkBFRYUUOYVCIfT29hoX+K0eeyJ7xHhPr732GpYvX45QKCRk7L333ntYvnw5Tp48mVdO69atw5/92Z+hoqLC1a+5KvS9ZDKJ3t5e455ATvb00ksvYfny5Ugmk1LktG7dOnz1q19FRUWFLWOvoqICt956K9atWyfcU0VFBZYtW4Z169ZJkVO+872KigrceOON2LRpk5ET94jCeaqoqEBvb6/xZo6TPZmZl1vhye5zQpE9YrynkpISLF++HJs2bZIiJzPzPZVec1Xoe1u3bsX8+fNRUVHhaE9m5uVWeTJ7rlGoHjHeUygUwvLly/Haa68JGXu5XA7Lly/H1q1bhZ4TFgRiGAfT3t5OAMjv91NFRQW1t7eTrusUDAYpl8sREVE4HKZUKkVERIlEgmKxGBERZTIZCgaDhlYoFKJ0Ok1ERPF4nOLxOBERpdNpCoVCxvOCwSBlMhkiIorFYpRIJIiIKJVKUTgcJiKiXC5HwWCQdF0nIqJoNErJZJKIiDRNo0gkQkRE2WyWgsEgZbNZIiKKRCKkaRoRESWTSYpGo0REF/Sk6zp1dXUZ+3Wyp9HRUTp58iTpui5FTvF4nI4dO0a6rpvOiejiYy+ZTFIgEKBIJCLcUywWo0AgQPF4XIqcRkZGKBAIGNpT8aTrOnV2dhr7FXk8TSYnpxxPdnlKJBJ09OhR0nV9Sp4++ugjKioqIgA0ffp0Ki0tNXp5a2vrWZ6OHj1KLS0tVFlZST6fjwBQWVkZTZs2jQDQsWPHzvF09OhRAkDl5eVUXl5OAKikpISqqqpozZo11NLSQv/1X/9FGzZsoJaWFtq7dy+99dZbdOzYMQqHwwXPSdM0OnLkiLFfq8eeyB4x3lM4HKZAIECapgkZe9FolAKBgKE91ZyGh4ept7eXdF139WuuCn0vlUrRkSNHjP062VMoFKJAIECpVEqKnIaHh6mnp4d0Xbdl7Om6TqdOnaLh4WHhnnRdp76+PhoeHpYip3zne7qu08mTJ2l0dNTIiXtE4Tzpuk5Hjhwx9utkT2bm5VZ4svucUGSPGO8pk8lQIBCg0dFRKXIyM99T6TVXhb4XDAbpxIkTpOu6oz2ZmZdb5cnsuUahesR4T5qmUSAQoHA4LGTspdNpCgQChvZUcxp/Tjj2Xu7Yo729neyCL4QwjqaQB48MBINBeuihh85qjk5FNi9212Pl/kRqi9AyoyHbOHE7+ebR1dV1Vu8+87F///6znnvs2DFqaWm54PO7urqmpH++R3V1NT300ENUXV1Nfr+f7rnnHmNiWQi4/1inx/1HHVTKQzYv3IOs08pXQ7Yx4nZUykM2L9x/rNPiOZA6qJKHjD7srMkp/UeE3vjtC/lerofovxfwYhgHcuDAAVx33XXG/7e3t+Paa68tYEX2QkRIpVIoLS2Fx+MpdDmmkM2L3fVYuT+R2iK0zGjINk7cTr55dHd3Y86cOef92/79+3HDDTcY/9/Z2Yl33nkHy5YtO+/zu7q6UF9fP2n98+HxeFBaWopUKmWsa3rPPfdg48aNk9YQCfcf6/S4/6iDSnnI5oV7kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNAbv30h38v12rIXhmEswePxwO/3F7oMIcjmxe56rNyfSG0RWmY0ZBsnbkeVPIjIuDncGNu2bYOmaQXxx/3HOj3uP+qgUh6yeeEeZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkyppvls4wDiYSiWD16tXGzZicjGxe7K7Hyv2J1BahZUZDtnHidmTNo66ubkoTrcrKSqxcudK4gTsAaJqG/v5+K8q7KNx/rNPj/qMOKuUhmxfuQdZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqz5QgjDOBi/348lS5ZIc2XVDLJ5sbseK/cnUluElhkN2caJ25E1D7/fjzvvvHPSz9c0Dbt37z7nWyGFgvuPdXrcf9RBpTxk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROjJlDXfI4RxNG6/RwjDMIwTsfoeIQCQSCSwYsUKY4mrfLiQNsMwDMMwDMMwDMMwU6eQ7+XyN0IYxsEkk0n87ne/QzKZLHQpppHNi931WLk/kdoitMxoyDZO3I7MeZSXl2Pjxo0IBoPo6upCV1cXNm7ciJaWlrMea9asQVlZGb7yla+grKys0GUD4P5jpR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc03S2cYB5PL5RAKhZDL5Qpdimlk82J3PVbuT6S2CC0zGrKNE7fjhDz8fr/xrY6TJ0+et9aioiJUV1ejqEiOz4dw/7FOj/uPOqiUh2xeuAdZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMM4DzuWxjofr7/++jmTr/7+fiHaDMMwDMMwDMMwDMNMDC+NxTBMXui6ju7ubui6XuhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8vB6vaivr4fXK8cXZbn/WKfH/UcdVMpDNi/cg6zTyldDtjHidlTKQzYv3H+s0+I5kDqokoeMPuysySn9R4SeTFnzhRCGcTCxWAxPPfUUYrFYoUsxjWxe7K7Hyv2J1BahZUZDtnHidlTJo6KiAsuXL0dFRUWhSwHA/cdKPe4/6qBSHrJ54R5knVa+GrKNEbejUh6yeeH+Y50Wz4HUQZU8ZPRhZ01O6T8i9GTKmpfGYhwNL43FMAzjPHhpLIZhGIZhGIZhGIZxH7w0FsMwDMMwDMMwDMMwDMMwDMMwjAXwhRCGcTDhcBg/+clPEA6HC12KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHlVVVVi1ahWqqqrO+n0qlSpIPdx/rNPj/qMOKuUhmxfuQdZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqz5QgjDOJjy8nLcddddKC8vL3QpppHNi931WLk/kdoitMxoyDZO3I4qeSQSCWzduhWJROKs37e1taGzsxN2ryLK/cc6Pe4/6qBSHrJ54R5knVa+GrKNEbejUh6yeeH+Y50Wz4HUQZU8ZPRhZ01O6T8i9GTKmu8RwjgavkcIwzCM85joHiFbt27FJz/5SeP/+/r60NHRgfvvv/+8z7fyHiEtLS2oq6vD9ddfj0suuWRS+2AYhmEYhmEYhmEY5vzwPUIYhsmLC32K2YnI5sXueqzcn0htEVpmNGQbJ27HijzuuusuzJ8/33jcdtttF7wIMlU8Hs95f3+xT6iMjo4K2f9k4f5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhiGYRiGcQUVFRV5bafruuBKGIZhGIZhGIZhGIaxE14ai3E0vDQWwzCM85hoaaypMpWlsQYHB9HR0XHW7yazNNall16Ka665xmypDMMwDMMwDMMwDONqeGkshmHyIpPJ4NChQ8hkMoUuxTSyebG7Hiv3J1JbhJYZDdnGidvJN4+6ujqUlpaa3r/f70ddXd2kn/+xj30M1113HS655BL4/X74/X6UlpaipKQEV199NUpKSkzXJALuP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEUQK/328seZLNZhEKhTD2ZadIJIJ0Og0ASCaTiMfjAE4vdRIKhQyNcDhsHJSJRMJYuy6TySAcDhvPC4VCxjIp8XgcyWQSAJBOpxGJRAAARIRQKIRsNgsAiMVi0DQNAJBKpRCNRgEAuVwOoVDIuHlvNBpFKpUCAGiahlgsNqGnRCKBLVu2YHh42PGeBgYGsGXLFiQSCSlyCgaDRj1mcwIuPvbC4TC2bt2KkZER4Z5GR0exdetWBINBKXLq7+831oecqqexMT92zwaRx9NkcnLK8WSXp1AoZIyHqXjSNA1f+tKXAADTp083Loqc2cuLi4tRXV1t3NejsrISPp8PAFBWVoZp06bhzjvvhNfrnZKnmTNn4vrrr8fVV1+Nz3zmM1i4cCEuueQS4x4hPp8PlZWVRk6aptmeUyQSMf5dReRkZ48Y72l4eBhbt25FJBIRMvbGag2FQnkdT4FAwPi3dfNrrgp9LxqNYsuWLWcdN071NDQ0hK1btyIajUqR05nHiR1jb+zYCgQCwj2dqS1DTvnO98Z8DAwMGDlxjyicp7E8xmp3sicz83IrPNl9TiiyR4z3FI/HsXXrVgwMDEiRk5n5nkqvuSr0vcHBQeM4cbInM/NyqzyZPdcoVI8Y7ykSiWDr1q0YHh4WMvZisRi2bt2KwcFBoeeEhYAvhDBKsGjRItx9990AgKGhITQ0NBgHZ1NTk7EUyp49e7B9+3YAQE9PDxoaGgyNxsZGdHZ2AgB27NiBHTt2AAA6OzvR2NhoPK+hoQE9PT0AgO3bt2PPnj0AgI6ODjQ1NQE43TgaGhowNDQEANi8eTNaW1sBAG1tbdiwYQOA082hoaHBaEYbNmxAW1sbAKC1tRWbN2+e0FNVVRUWLlxo1OBkT5s3b8ZXv/pVVFVVSZHT8ePHMWPGDFRVVZnOCbj42BseHsaqVavQ2toq3NPBgwexatUqHD9+XIqcNmzYgFWrVqGqqmrKnqqqqnDZZZfh4MGDAMQeT5PJySnHk12eent7UVZWhqqqqil7Wrt2Lf7kT/4E/+N//A8sXLgQwNm9vLa2FitXrjQukqxYsQLz588HAHzxi1/Ed77zHTQ1NQnxtGTJEuzfvx/hcBjz58/HihUrAJye+O3bt8/497crp2g0inQ6jaqqKiE52dkjxnvas2cPVq1ahWg0KmTstbW1YdWqVejt7c3reGpubsZ9992HqqoqV7/mqtD30uk00uk0/H6/4z3t2LEDq1atQjqdliKn5uZmfOtb30JVVZUtY6+qqgrLli1Dc3OzcE9VVVX4/ve/j+bmZilyyne+V1VVha9+9avGvyv3iMJ6qqqqQjqdNt4ocrInM/NyKzzZfU4oskeM9+T3+7Fq1Sps3rxZipzMzPdUes1Voe9t374dt956K6qqqhztycy83CpPZs81CtUjxnuKRqNYtWqVcT5mJqeGhgZ4PB6sWrXK+Deaak4XOicsCMQwDqa9vZ0AkN/vp4qKCmpvbydd1ykYDFIulyMionA4TKlUioiIEokExWIxIiLKZDIUDAYNrVAoROl0moiI4vE4xeNxIiJKp9MUCoWM5wWDQcpkMkREFIvFKJFIEBFRKpWicDhMRES5XI6CwSDpuk5ERNFolJLJJBERaZpGkUiEiIiy2SwFg0HKZrNERBSJREjTNCIiSiaTFI1GiYjYE3tiT+xJWU8DAwPU3t5Ohw8fpo8++oj2799Phw8fpo6ODnrvvffo0KFDdPjwYWpra6MDBw5QV1cXjY6OCvPU1dVF06ZNo7KyMgJAPp+PKisrCQA9/fTT9NJLL9FHH33k+pzYE3tiT+yJPbEn9sSe2BN7Yk/siT2xJ7Oext7LHXu0t7eTXfCFEMbRFPLgkYFgMEgPPfTQWc3Rqcjmxe56rNyfSG0RWmY0ZBsnbkeFPLq6uqi6upoeeughqq6uPus1paWlhXbt2kUdHR221sT9xzo97j/qoFIesnnhHmSdVr4aso0Rt6NSHrJ54f5jnRbPgdRBlTxk9GFnTU7pPyL0xm9fyPdyPUT/vYAXwziQAwcO4LrrrjP+v729Hddee20BK7IXXdfR09ODWbNmwev1FrocU8jmxe56rNyfSG0RWmY0ZBsnbkeFPLq7u/GJT3wCs2bNQk9Pj7FGLAC0tLSgrq4Ol156Ka655pqLamUyGRw/fhzBYPAsnfFUVlbiyiuvxIwZM877d+4/1ulx/1EHlfKQzQv3IOu08tWQbYy4HZXykM0L9x/rtHgOpA6q5CGjDztrckr/EaE3fvtCvpfLF0IYR+P2CyEMwzCMObq7uzFnzpzz/m0qF0JyuRzef/9944ZxF8Pj8WDBggXGfUAYhmEYhmEYhmEYRnUK+V4u3yydYRxMPB7Hxo0bEY/HC12KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHtOmTcPSpUsxbdq0vDWi0eikL4IAABEhEAic92/cf6zT4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6as+UIIwziYoqIiVFdXo6jI+YeybF7srsfK/YnUFqFlRkO2ceJ2VMkjl8shFAohl8vlrZHvSeX54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc1LYzGOhpfGYhiGYcwgamms3t5eHD16dEr7nj59Oj796U9PaRuGYRiGYRiGYRiGcSq8NBbDMHmRTqexf/9+pNPpQpdiGtm82F2PlfsTqS1Cy4yGbOPE7aiSh8/nw4IFC+Dz+QpdCgDuP1bqcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRyMpmnYvXs3NE0rdCmmkc2L3fVYuT+R2iK0zGjINk7cjip5+P1+LFmyBH6//6zfDw0Nob+/H0eOHMGbb7551uPo0aOIRqMX1S4tLUVdXd2U6uH+Y50e9x91UCkP2bxwD7JOK18N2caI21EpD9m8cP+xTovnQOqgSh4y+rCzJqf0HxF6MmXNS2MxjoaXxmIYhmHMMNHSWBPh8/mwePFi/PznP8c111xzwaWxysvLcdlll6Gzs/Ocv/HSWAzDMAzDMAzDMIyb4KWxGIbJCyKCpmlQ4XqmbF7srsfK/YnUFqFlRkO2ceJ2VMnD4/HA7/fD4/FMept0Oo1du3bhu9/9bl43Sp8I7j/W6XH/UQeV8pDNC/cg67Ty1ZBtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1nwhhGEcTDgcxiOPPIJwOFzoUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKoqqrCqlWrUFVVNeVt9+7di/7+/vP+LZ1Oo6+vD6dOnUJ/f/85j76+PnR3d5/zFWHuP9bpcf9RB5XykM0L9yDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWvDQW42jcvjRWNpvF0NAQamtrUVxcXOhyTCGbF7vrsXJ/IrVFaJnRkG2cuB0V8tA0DZdccgkqKysxNDSEbDY7ZY0333wT9fX1xtJYmqbhpz/9Kfbu3TupG8L5/X7ceeedaGpqQnl5OfcfC/W4/6iDSnnI5oV7kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNAbv30h38vlCyGMo3H7hRCGYRjGPEuXLsWmTZvy3n78hZCHH34Yu3btmrLOPffcg40bN+ZdB8MwDMMwDMMwDMPIDN8jhGGYvIjFYli/fj1isVihSzGNbF7srsfK/YnUFqFlRkO2ceJ2VMljzZo1+Od//mdccsklprXS6TT27t2b17bbtm2DpmncfyzU4/6jDirlIZsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxHEgdVMlDRh921uSU/iNCT6asvYUugGGY/PF6vaivr4fX6/xDWTYvdtdj5f5EaovQMqMh2zhxO6rkUVlZia997Wv43//7fyMUCp33OT09Pbj55psvqjU6Ojqp5bDOh6Zp6O/vR11dHfcfi/S4/6iDSnnI5oXnQNZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqx5aSzG0fDSWAzDMIwddHd3Y86cOef925lLY/X392PZsmV576erqwv19fUAACJCNBpFf38/BgcHz3mux+PB9OnTMX36dFx22WXw+/1575dhGIZhGIZhGIZhrIaXxmIYJi9SqRRaW1uRSqUKXYppZPNidz1W7k+ktggtMxqyjRO3o0oesvlIpVJ466238O677+Kuu+7C9ddfj5tvvvmcxxe+8AXccMMNmDt3LmbMmIGlS5cikUjktT8n9B8Retx/1EGlPGTzwnMg67Ty1ZBtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1nwhhGEcTDqdxv79+/NehkUmZPNidz1W7k+ktggtMxqyjRO3o0oedvlYs2YNWlpasGbNmovW8/777+MHP/gBdu3aNam6NE3Dpk2bsGLFiinX5ZT+I0KP+486qJSHbF54DmSdVr4aso0Rt6NSHrJ54f5jnRbPgdRBlTxk9GFnTU7pPyL0ZMqal8ZiHA0vjcUwDMPYgYilsVpaWlBXVzfhc8aWxuro6MDChQunPFn0+/0IBoO8TBbDMAzDMAzDMAwjHbw0FsMweZHL5RAKhZDL5Qpdimlk82J3PVbuT6S2CC0zGrKNE7ejSh6y+cjlcujq6oKu61PeduyG61PdnxP6jwg97j/qoFIesnnhOZB1WvlqyDZG3I5KecjmhfuPdVo8B1IHVfKQ0YedNTml/4jQkylrvhDCMA4mEomgoaEBkUik0KWYRjYvdtdj5f5EaovQMqMh2zhxO6rkIZuPSCSCd999F5WVlbbtzwn9R4Qe9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0ToyZQ1L43FOBq3L42Vy+UQiURQWVmJoiJnX9eUzYvd9Vi5P5HaIrTMaMg2TtyOKnlMxsdES2Nt3rwZV1xxBbq7uzE0NIT777//vM+bzNJYbW1tuP766/G73/0OX//61/P61MzY8lqTxSn9R4Qe9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0Tojd++kO/lem3ZC8MwllBUVITq6upClyEE2bzYXY+V+xOpLULLjIZs48TtqJKHWR933323sFreeOMNHDp0CNFo9IIXQcZutn6hCy5TxSn9R4Qe9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0ToyZS1HJfcGIbJi2g0iscffxzRaLTQpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhk4/7778ff/d3f4f3338f06dPP+9zamtrUVtbK2yfTuk/IvS4/6iDSnnI5oXnQNZp5ash2xhxOyrlIZsX7j/WafEcSB1UyUNGH3bW5JT+I0JPpqz5QgjDOBifz4cFCxbA5/MVuhTTyObF7nqs3J9IbRFaZjRkGyduR5U8ZPORTqexf/9+pNNpW/bnlP4jQo/7jzqolIdsXngOZJ1WvhqyjRG3o1Iesnnh/mOdFs+B1EGVPGT0YWdNTuk/IvRkypovhDBK4Pf7UVFRAQDIZrMIhUIYu/1NJBIx3kxKJpOIx+MAAF3XEQqFDI1wOIxMJgMASCQSSCQSAIBMJoNwOGw8LxQKQdd1AEA8HkcymQRw+o2rsRv/EBFCoRCy2SwAIBaLQdM0AEAqlTKuguZyOYRCIWP5k2g0ilQqBQDQNA2xWGxCT6WlpbjhhhuMepzsKZVK4cYbb0RpaakUOQHAtddei9LSUtM5ARcfe0VFRVi0aBGy2axwT0SERYsWGbUXOidN07Bo0SKUlpZO2VNpaSmuu+66s+oRdTxNJienHE92efJ4PJg/fz5KS0sd7UnXddxwww0oLS29YE51dXWoqamB3+8HAJSWlhrf2Bj7qu/YeqnTp09HaWkpgP/3+uTz+VBdXQ1N0wxPlZWVxmSwrKwM06ZNM7wfOnTI+HepqqpCSUkJAKC8vNyou6SkBFVVVYan6upqeL3ec3Kys0eMz0nXdSxatAjFxcVCxl4ul8OiRYvg8XjyOp6SySQ+97nPobS01NWvuSr0Pa/Xi6uvvto4hpzsKZPJYNGiRfB6vVLklEwm8dnPfhalpaW2jL3S0lJ85jOfMeoR6am0tBSf//znkUwmpcgp3/leaWkpbrzxRqMe7hGF9VRaWoqrr74axcXFjvdkZl5uhSe7zwlF9ojxnnw+HxYtWoRUKiVFTmbmeyq95qrQ99LpNBYuXIjS0lJHezIzL7fKk9lzjUL1iPGeiouLsWjRIui6LmTslZSUYNGiRUin00LPCQsBXwhhlGDRokXGGu1DQ0NoaGgwDs6mpiZ0dHQAAPbs2YPt27cDAHp6etDQ0GBoNDY2orOzEwCwY8cO7NixAwDQ2dmJxsZG43kNDQ3o6ekBAGzfvh179uwBAHR0dKCpqQnA6cbR0NCAoaEhAKdvpNva2grg9I1wN2zYAOB0c2hoaDCa0YYNG9DW1gYAaG1txebNmyf0pGkaNmzYgG3btjne05NPPonnnnsOmqZJkdPbb7+NtWvXQtM00zkBFx97Bw8exO7du/HSSy8J9/Tmm29i9+7dePvtt6XJaffu3dA0bcqeNE3DunXr8OabbwIQezxNJienHE92efrggw/wi1/8ApqmOdrTtm3bsGHDBmiadsGc/H4/vvWtbxknkAsXLsS9994L4PQFjZUrV6KyshIAcO+992LhwoUA/t/r02233QZd17Fv3z5UVVXB5/NhxYoVmD9/PgDglltuwR133AEAmDt3LlauXGlcdLnvvvswb948AMBXvvIV499u3rx5uO+++wxPK1euxKxZs87Jyc4eMT6nbdu2Yffu3Th+/LiQsbdz507s3r0bH3zwQd7H044dO4zXT7e+5qrQ98ZqHTvxc7KnZ555Brt37zZqlSGnl156CZqm2TL2NE3D888/b4knTdOwc+dOaXLKd76naRqee+45PPnkk2flxD2iMJ7G5rDHjx9XwlO+83IrPNl9TiiyR4z3FA6HsXv3bjz55JNS5GRmvqfSa64Kfe/Xv/41nn32WWia5nhP+c7LrfIk4lyjUD3iTE/Hjx/H7t27sW3bNiE5DQ0NYffu3fj1r38t9JywIBDDOJj29nYCQH6/nyoqKqi9vZ10XadgMEi5XI6IiMLhMKVSKSIiSiQSFIvFiIgok8lQMBg0tEKhEKXTaSIiisfjFI/HiYgonU5TKBQynhcMBimTyRARUSwWo0QiQUREqVSKwuEwERHlcjkKBoOk6zoREUWjUUomk0REpGkaRSIRIiLKZrMUDAYpm80SEVEkEiFN04iIKJlMUjQaJSK6oKdoNErr1q2jgYEBx3vq6+ujJ598kqLRqBQ5DQ8P0xNPPEHRaNR0TkQXH3ujo6PU3NxMAwMDwj0NDQ1Rc3MzDQ8PS5FTb28vNTc3UzQanbKnsTE/NDRERGKPp8nk5JTjyS5PIyMjxnHiZE8DAwO0bt06ikajE+bU29tLX/nKV8jn81FpaSlNnz6dAFBRURFVV1dTUVERAaDp06dTaWkpAaCqqir6y7/8S4rFYhQIBOj999+nAwcO0Fe/+lWqrKwkn89HAKisrIymTZtmbPO3f/u3VFFRYfx/SUkJAaA//dM/pR07dlBLSwuVlJRQVVUVASAAVF1dTV6vl7q6ugrWI8bnNDAwQM3NzRQMBoWMvcHBQWpubqaRkZG8jqeenh5qamqiaDTq6tdcFfpeKBSiJ554wtjOyZ76+/upubmZQqGQFDmdeZzYMfai0Sg1NTVRT0+PcE9nasuQU77zvWg0Sk8++ST19fUZOXGPKJynaDRKTzzxhLGdkz2ZmZdb4cnuc0KRPWK8p0gkQs3NzdTX1ydFTmbmeyq95qrQ9wKBgHGcONmTmXm5VZ7MnmsUqkeM9xQMBo35hoixFw6Hqbm5mQKBgJBzwrH3csce7e3tZBceov/+3grDOJADBw7guuuuM/6/vb0d1157bQErYhiGYVRG13X09PSgq6sLE02hKioqMGPGDFx55ZXGNzvOJJFIYMWKFdi2bdtZS/JdiNLSUnz961/HqlWrEIlE0N/fj2XLlp33uV1dXaivr5+0J4ZhGIZhGIZhGIaxg0K+l+u1ZS8Mw1hCNpvF0NAQamtrjTVqnYpsXuyux8r9idQWoWVGQ7Zx4nZUyWMqPrxeL+rr601faCgvL8fGjRuhaRr6+/vPqSccDqOqqsqop66uDn6/HwcPHjS+bn0hurq6zrnRusfjQWVlJS655BLjPiJn7s8J/UeEHvcfdVApD9m88BzIOq18NWQbI25HpTxk88L9xzotngOpgyp5yOjDzpqc0n9E6MmUNd8jhGEcTDQaxdq1a40bGTkZ2bzYXY+V+xOpLULLjIZs48TtqJJHIX34/X7jwsrY45JLLsH27dtxySWXGL8737dKLkR7ezvef//9sx5dXV04ePAgPvjgEhuxhAABAABJREFUA+Mme2M4pf+I0OP+ow4q5SGbF54DWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsualsRhH4/alsYgIqVQKpaWl8Hg8hS7HFLJ5sbseK/cnUluElhkN2caJ21ElD9l8TFTPwYMHMTAwMOHSWOfD5/Nh8eLFeOCBB3DNNdfgqquumtT+zCJa26we9x91UCkP2bzwHMg6rXw1ZBsjbkelPGTzwv3HOi2eA6mDKnnI6MPOmpzSf0Tojd+el8ZiGCYvPB7PlD4lLDOyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfFhRTzqdxq5duwAAq1evtnx/Vmmb1eP+ow4q5SGbF54DWaeVr4ZsY8TtqJSHbF64/1inxXMgdVAlDxl92FmTU/qPCD2ZsualsRjGwUQiEaxevfqi68U7Adm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+rKxn7969SCQStu1PtLZZPe4/6qBSHrJ54TmQdVr5asg2RtyOSnnI5oX7j3VaPAdSB1XykNGHnTU5pf+I0JMpa74QwjAOxu/3Y8mSJdJcWTWDbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh+TqaempgY+n2/K2ul0GiMjI1PeX76I1jarx/1HHVTKQzYvPAeyTitfDdnGiNtRKQ/ZvHD/sU6L50DqoEoeMvqwsyan9B8RejJlzfcIYRyN2+8RwjAMw7iLsXuEAMDDDz9sLHc1FdauXYvPfOYzAIDy8nJcddVVKCsrO+9zR0dHceTIEWSz2bN+X1xcjKqqKsyZM0eKCS3DMAzDMAzDMAwjP4V8L5e/EcIwDiaZTOJ3v/sdkslkoUsxjWxe7K7Hyv2J1BahZUZDtnHidlTJQzYfE9VTXl5u/PzAAw/g1ltvnfI3Q/7+7/8en/70p/HpT38a11xzDS677DLcf//9Z31TJJFI4Otf/zouu+wy3HTTTfjCF75w1uOmm27C/PnzUV1djaVLl56z3NZkvOSDWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+WTrDOJhcLodQKIRcLlfoUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzcdE9dTW1uLkyZPIZrPw+/148MEHkU6nMTo6etbzhoaGcP/9909qf7quG8/fsGEDAOBv/uZvsH379otum0qlsGnTJgDAxo0bp+QlH8zqcf9RB5XykM0Lz4Gs08pXQ7Yx4nZUykM2L9x/rNPiOZA6qJKHjD7srMkp/UeEnkxZ89JYjKPhpbEYhmEYtxEKhXD8+HFEo1GcbxpXXFyMZDKJL3/5y1PS9fv9CAaDAIAZM2ZA07Qpb8vLZDEMwzAMwzAMwzAXgpfGYhgmL3RdR3d3N3RdL3QpppHNi931WLk/kdoitMxoyDZO3I4qecjm42L1VFdX48Ybb8TNN9983scXvvAF/NEf/dGkL0p4vV7U19dD13X09/ejv79/ShdBAEDTNJw4cWLKXqaKWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+EMIwDiYWi+Gpp55CLBYrdCmmkc2L3fVYuT+R2iK0zGjINk7cjip5yOZjsvUUFRWhuLj4nIfH44Hf78fXv/71Se2voqICy5cvR0VFham629ra0N7eftZXnkX/25rV4/6jDirlIZsXngNZp5WvhmxjxO2olIdsXrj/WKfFcyB1UCUPGX3YWZNT+o8IPZmy5qWxGEfDS2MxDMMwzPlJJBJYvnw5fvvb3yKVSk1qm66uLgDAnDlzpry/lpYW1NXVYfbs2Zg7d+6Ut2cYhmEYhmEYhmHUhpfGYhiGYRiGYYRSXl6OZ555BqFQCF1dXejq6kJbWxvWrFlzwW1+//vf4/3337/g33/wgx9cdL8jIyN51cswDMMwDMMwDMMwVsEXQhjGwYTDYfzkJz9BOBwudCmmkc2L3fVYuT+R2iK0zGjINk7cjip5yOZDdD1+vx/19fWor6/H7NmzUVtbe9bfq6qqsGrVKlRVVeHee+/FN7/5zQtq1dTUXHR/6XTa+Fm0F7N63H/UQaU8ZPPCcyDrtPLVkG2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRxMeXk57rrrLpSXlxe6FNPI5sXueqzcn0htEVpmNGQbJ25HlTxk82F3PYlEAlu3bkUikRCuLdqLWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+RwjjaPgeIQzDMAwzeUKhEH73u99h2bJleW3/6KOP4vvf//55/zZ2j5CSkhIsXrzYTJkMwzAMwzAMwzCMgvA9QhiGyQsrP8VrN7J5sbseK/cnUluElhkN2caJ21ElD9l8WFnP9OnTUVNTA5/PZ/xusp/Q8fl8mD179pT2J9qLWT3uP+qgUh6yeeE5kHVa+WrINkbcjkp5yOaF+491WjwHUgdV8pDRh501OaX/iNCTKWu+EMIwDMMwDOMSiouLcc011+T1jY3Fixdj5syZFlTFMAzDMAzDMAzDMNbCS2MxjoaXxmIYhmGYqdPb24u///u/x6uvvopUKjXhc30+HxYvXoyHH34Yl156KT75yU+e93m8NBbDMAzDMAzDMAwzEbw0FsMweZHJZHDo0CFkMplCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD7sqOeKK67A888/j1AohKNHj2LPnj3Yv38/3nzzTezateusx/vvv4+NGzdi0aJFKCkpmdJ+RHsxq8f9Rx1UykM2LzwHsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc0XQhjGwci0zp5ZZPPC69Nap8Xr06qDKnnI5sPOevx+P2pra/H73/8e9fX1WLx4MZYsWXLW49prr8XHPvYxeL3eCbWGhobQ39+PQCAATdMs8cL3CGHGUCkP2bzwHMg6Lb5HiBqolIdsXrj/WKfFcyB1UCUPGX3wPUKs0ZMpa14ai3E0vDQWwzAMw9hHd3c35syZc9Hn+f1+3HnnnWhqarroTdgZhmEYhmEYhmEYd1DI93In/mgfwzAMwzAMw0wRTdOwadMmAMDGjRst2Ucul0N3dzeCweBZX7P2+XyoqanBVVddBY/HY8m+GYZhGIZhGIZhGGfBS2MxjIMJhUL40Y9+hFAoVOhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNh0r9Z/fu3UK1x2oNBoNob2/HyZMnEY1GoWma8YhEIuju7sbBgwcvuD33H+ejUh6yeVGpB6kyB5JtjLgdlfKQzQv3H+u0eA6kDqrkIaMPO2tySv8RoSdT1rw0FuNo3L40lq7r6OnpwaxZsy66drvsyObF7nqs3J9IbRFaZjRkGyduR5U8ZPMhc//RNA0zZsww7gFyMbxeL9544w185jOfEeJlrNaamhq0trZidHT0nOfU1NTA5/Od9f/z5s3DtGnTuP8ohEp5yOZF5h5USO1CzoFkGyNuR6U8ZPPC/cc6LZ4DqYMqecjow86anNJ/ROiN376Q7+XyhRDG0bj9QgjDMAzD2M3SpUuNZa8mQ1dXF+rr64XtP5FI4C//8i/x0ksvIZ1On/N3n8+HxYsX44EHHoDf7wcAlJSU4DOf+QxKS0uF1cEwDMMwDMMwDMNMjUK+l8tLYzGMg4nH49i4cSPi8XihSzGNbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh+y95+mpibcc889xkWGiZg2bRpee+01YV7i8TgefPBBvPrqq+e9CAIA6XQau3btwk9/+lPjd5lMBiMjI9x/FEKlPGTzInsPKpR2IedAso0Rt6NSHrJ54f5jnRbPgdRBlTxk9GFnTU7pPyL0ZMpaju8eMQyTF0VFRaiurkZRkfOvacrmxe56rNyfSG0RWmY0ZBsnbkeVPGTzIXv/KS8vx8aNG3Hy5En8/ve/BwAMDQ3h/vvvP+e5uVwOANDT02N8G6Ourm5SF1HOR29vLw4dOmToTsTevXuRTqeNZbLi8ThmzJjB/UcRVMpDNi+y96BCaRdyDiTbGHE7KuUhmxfuP9Zp8TmYOqiSh4w+7KzJKf1HhJ5MWfPSWIyj4aWxGIZhGKYwDA4OoqOjAwDQ39+PZcuWTWo7v9+PO++8E01NTSgvL5/0/oaHh/Hqq69Oej8A0NLSgrq6OgDAFVdcgU984hOT3pZhGIZhGIZhGIYRCy+NxTBMXqTTaezfv/+Cy4M4Cdm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+VOo/Pp8PCxYsOOvm5ZqmYdOmTVixYsWUtAYGBpDL5c7Rmwrcf9RBpTxk86JSD1JlDiTbGHE7KuUhmxfuP9Zp8RxIHVTJQ0YfdtbklP4jQk+mrPlCCMM4GE3TsHv3bmiaVuhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNh0r9x+/3Y8mSJeddCmvbtm1T2mcikUA2m72g3mTg/qMOKuUhmxeVepAqcyDZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZc1LYzGOhpfGYhiGYZjCcObSWOl0GnfccceUP+XT1dWF+vr6ST33nXfeQWdnJy+NxTAMwzAMwzAM41B4aSyGYfKCiKBpGlS4nimbF7vrsXJ/IrVFaJnRkG2cuB1V8pDNhxP7j8/nw+LFi8/5vcfjgd/vh8fjMVOiARGZ0uP+ow4q5SGbFyf2IDu0CzkHkm2MuB2V8pDNC/cf67R4DqQOquQhow87a3JK/xGhJ1PWfCGEYRxMOBzGI488gnA4XOhSTCObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNh1P7zwMPPIBbb731rPt3VFVVYdWqVaiqqspbN5lM4uDBg+js7MTAwIApPe4/6qBSHrJ5cWoPslq7kHMg2caI21EpD9m8cP+xTovnQOqgSh4y+rCzJqf0HxF6MmXNS2MxjsbtS2Nls1kMDQ2htrYWxcXFhS7HFLJ5sbseK/cnUluElhkN2caJ21ElD9l8OKX/nLk01pmk02mMjo4COP3pn/7+fvzzP/8zstnsOc/97W9/i8svvxwAUFJSgpqaGlxxxRXweDxIJBL4q7/6Kzz//PPGklvFxcWora3F0NDQefXGM35prLlz53L/UQSV8pDNi1N6kN3ahZwDyTZG3I5KecjmhfuPdVp8DqYOquQhow87a3JK/xGhN377Qr6X68gLIf/4j/+IWCyGJ598stClMAXG7RdCGIZhGKZQXOhCyHj6+/sveF+PNWvWoLa2FgBQU1MDn8+Hj33sY7jmmmuwdOlSPPPMM6Zq5HuEMAzDMAzDMAzDyAPfI2SKPP3001i/fn2hy2Akwu/3o6KiAsDpK42hUMhYey4SiRifJE0mk4jH4wAAXdcRCoUMjXA4jEwmAwBIJBJIJBIAgEwmc9bXt0KhEHRdBwDE43Ekk0kApz8BG4lEAJz+BGwoFDI+rRqLxaBpGgAglUohGo0CAHK5HEKhEHK5HAAgGo0ilUoBADRNQywWm9DT2AXBwcFBx3sKBAJoampCLBaTIqeRkRGsW7cOsVjMdE7AxcdeMBjE+vXrMTg4KNzT8PAw1q9fj5GRESly6uvrw/r16xGLxabsaWzMDw8PAxB7PE0mJ6ccT3Z5Gh0dNY4TJ3saHBzEk08+iVgsJkVOoVDI+HcVkZOVPSKXy5213msqlTK0M5kM4vE4Tp48iaqqKlRXVxu1VlVVoaSkBPfffz++/e1v49vf/jbuuOMO/PjHP8bRo0cRCoXw29/+FtXV1fB6vQCAadOmYebMmVi+fDlmzJiByspKAKfvQ1JdXW18OqmiogJ+v9/ItqenB/39/Ugmk+jt7UVzczNisZirX3NV6HvhcBjr1q0ztnOyp4GBAaxfvx7hcFiKnM48TuwYe7FYDM3Nzejt7RXu6UxtGXLKd74Xi8XQ1NSEQCBg5MQ9onCeYrEY1q1bZ2znZE9m5uVWeLL7nFBkjxjvKRqNYv369QgEAlLkZGa+p9Jrrgp9r7+/3zhOnOzJzLzcKk9DQ0NYv349RkdHLR97InvEeE+hUMiYb4gYe5FIBOvXr0d/f39eOQ0ODmL9+vVGbYXEkRdCGGY8ixYtwt133w0AGBoaQkNDg3FwNjU1GZ9Y3bNnD7Zv3w4A6OnpQUNDg6HR2NiIzs5OAMCOHTuwY8cOAEBnZycaGxuN5zU0NKCnpwcAsH37duzZswcA0NHRgaamJgCnG0dDQwOGhoYAAJs3b0ZraysAoK2tDRs2bABwujk0NDQYzWjDhg1oa2sDALS2tmLz5s0TevJ6vSAivPrqq473tHHjRpSXl8Pr9UqRU0dHB0KhELxer+mcgIuPvVOnTqG+vh5vvPGGcE/79+9HfX09Ojo6pMjpv/7rv1BfXw+v1ztlT16vF9FoFPv37wcg9niaTE5OOZ7s8tTZ2Ynh4WF4vV5He3r11VdBRPB6vVLkNDg4iN7eXuMCgNVjL98eUVRUhEQigX379hmT6La2NkP7xIkTOH78OMrLy3HppZdi5cqVRq333Xcf5s2bBwC4/fbbcfvttyOdTqO3txfvvvsujh07Bk3TsHLlSsyaNQsAcMcdd+Dzn/88uru78fGPfxwrVqwAAJSWlmLlypXGN0vuvvtuLFq0CMDpb4Ts3bsXy5Ytw5e+9CWsW7cOM2fOhNfrdfVrrgp9LxQKnfXGlZM9vfDCC6ivr0coFJIip3Xr1qG2thZer9eWsef1ejFjxgysW7dOuCev14srr7wS69atkyKnfOd7Xq8X5eXl2Lhxo5ET94jCefJ6vejt7TUujDvZk5l5uRWe7D4nFNkjxnvKZrOor6/Hxo0bpcjJzDmhSq+5KvS9LVu2wOfzwev1OtrTunXrcNlll+U1L7fK0759+1BfX4/Ozk7Lx57IHjHe0+DgIOrr6/Hqq68KGXvJZBL19fXYsmVLXjm9+uqrqK+vx+Dg4FmeCgI5kJkzZ1JRUVGhy2AkoL29nQCQ3++niooKam9vJ13XKRgMUi6XIyKicDhMqVSKiIgSiQTFYjEiIspkMhQMBg2tUChE6XSaiIji8TjF43EiIkqn0xQKhYznBYNBymQyREQUi8UokUgQEVEqlaJwOExERLlcjoLBIOm6TkRE0WiUkskkERFpmkaRSISIiLLZLAWDQcpms0REFIlESNM0IiJKJpMUjUaJiNgTe2JP7Ik9sSfpPKXTadq5cye99NJL9Nprr9GuXbvod7/7Hb366qu0a9cu2rFjB7388svU0tJCXq+XqqurCQABoKqqKiopKSEAVF5eTuXl5QSASkpKaObMmfT6668TAKquriav10sAaNq0aVRWVkYAyOfzUWVlJQEgj8dD1dXVVFxcTACooqKC/H4/AaDS0lKaPn06AaCioiKqrq6me+65x1U5sSf2xJ7YE3tiT+yJPbEn9sSe2JMsnsbeyx17tLe3k10U7B4hc+fOzXvbkydPgogmdZNMRm3cfo+QVCqFtrY2LFy4EKWlpYUuxxSyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfDip/5w4cQJdXV0X/Luu6+jt7cX/+l//y/jq9GT4zW9+g29+85vn/L60tBQLFy5EW1sbUqkU/H4/brjhBuzbt29SuqWlpfjsZz+L559/HlVVVZOuB5BvnLgdlfKQzYuTepCd2oWcA8k2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoTd+e1feI6S7uxsnTpxAd3f3lB9j660xjNtJp9PYv3+/sfaek5HNi931WLk/kdoitMxoyDZO3I4qecjmw0n956qrrsKnPvUpzJo1C5deeulZj9mzZ4OIMDQ0hMWLFwup1efz4U//9E/x3nvvoaurC8FgELt37zbuCTKZ7a+77rqz7kUwWWQbJ25HpTxk8+KkHmSndiHnQLKNEbejUh6yeeH+Y50Wn4Opgyp5yOjDzpqc0n9E6MmUdcG+ETJ9+nQkEgk8+uijuOKKK6a07YoVKxCLxfgbIYzrvxHCMAzDMDLT09Nj3O/jpz/9Kfbu3TupCXBTU5NxD5DxbNmyBXfddddZv1u6dCk2bdo06bq6urpQX18/6eczDMMwDMMwDMMw5inke7leW/ZyHhYsWIDf//73uOKKK8679MFEfOc737GoKoZxFrlcDpFIBJWVlSgqKtgXvIQgmxe767FyfyK1RWiZ0ZBtnLgdVfKQzYdK/eeyyy7D0NAQiAgPPvgg0uk0RkdHAZy+qd79999/3u3C4fB5f19UVIR0Oo1cLndWrWM3/tu2bRs0TbtgPUVFRaisrJzw28W6ruP48eMIBoPIZDIAAI/Hg4qKCtTU1OCKK66QYpy4HdmOWzPI5kWlHqTKHEi2MeJ2VMpDNi/cf6zT4nMwdVAlDxl92FmTU/qPCD2Zsi7Y3j/zmc8AAN57771ClcAwjicSiaChoQGRSKTQpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw+V+k80GsVvf/tbXH/99Vi4cCE+97nP4Stf+Qq+8pWv4Itf/OKU9SorK3Hw4MFzai0vL8fGjRsRDAbx8ssvo6WlBWvWrDnv9itXrkQikTivPhHhww8/RF9fH5LJJHRdh67ryGQyCAQCaGpqQiAQmHLdjHhkO27NIJsXlXqQKnMg2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0ZMq6YEtjbdiwAX/1V3+F2267DTt27JjStjNnzkQwGOSlsRjXL40l01VVs8jmhT+NZJ0WfxpJHVTJQzYfbuk/3d3dmDNnznm3e/TRR/H973//nN8XFRWhpaUFd9999wVrPXDgAIaGhtDf349ly5ads31lZSXee+89zJ0795xto9HoBT+kQ0RIpVL4+Mc/jo9//OPnfQ5jH7Idt2aQzYtbelAhtPgbIWqgUh6yeeH+Y50Wn4Opgyp5yOiDvxFijd747V25NNZtt92GRx99FJWVlVPedv/+/XwRhGFw+g2d6urqQpchBNm82F2PlfsTqS1Cy4yGbOPE7aiSh2w+uP/AWD5rPLlcDj6fz9SbAKFQ6ILbx+PxC27r8Xjg9/sv+G0Sxl5kO27NIJsX7kHWaeWrIdsYcTsq5SGbF+4/1mnxOZg6qJKHjD7srMkp/UeEnkxZF+yS26WXXop//Md/xLe+9a0pbztr1ixcddVVFlTFMM4iGo3i8ccfRzQaLXQpppHNi931WLk/kdoitMxoyDZO3I4qecjmg/sP8G//9m/n/f306dNx+PDhvGudPn06vvOd70y4NNaFSKVSePfdd5FMJvPaNyMW2Y5bM8jmhXuQdVr5asg2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoSdT1nJ894hhmLzw+XxYsGABfD5foUsxjWxe7K7Hyv2J1BahZUZDtnHidlTJQzYf3H8uTDqdRk1NTd566XQa+/fvh9c79S9FFxcXo66uLq9tGfHIdtyaQTYv3IOs08pXQ7Yx4nZUykM2L9x/rNPiczB1UCUPGX3YWZNT+o8IPZmyLtg9QhhGBG6/RwjDMAzDOJWJ7hEyEVu2bMFdd911wb9PdI+QMTo7O897j5BAIIDDhw9PuP+amhp86lOfQi6Xg6Zpxu/Lysrg8XgmZ4JhGIZhGIZhGMaFFPK9XP5GCMM4GE3TsHv37rPeiHEqsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xy4pf/U1dXB7/dPSW/69OkIh8N51+r3+7FkyRK89dZbePvtt9Hb2zvpbXVdR3d3N1KpFA4dOoQ333wTb7/9tvF48803cfz48QmX12LEIdtxawbZvLilBxVCK18N2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0ZMpa6gshuVyOTyYZZgLG3pTRdb3QpZhGNi9212Pl/kRqi9AyoyHbOHE7quQhmw+39B+/348777xzSno33XQTIpFI3rV6vV7U19eDiJBIJHD06FEEAoFJbTt2o/VgMIj+/n7kcrmz/p7NZnHy5MkpXVxh8ke249YMsnlxSw8qhFa+GrKNEbejUh6yeeH+Y50Wn4Opgyp5yOjDzpqc0n9E6MmUtdRLYxUVFaG2thYDAwOFLoWRFF4ai2EYhmGcSyKRwIoVK7Bt27YJPyHk8/mwePFiPPDAA6ipqcHnPve5Cz53MktjtbS0oK6uDgBQVVWFhQsXApjc0lgX40w9hmEYhmEYhmEY5v9RyPdypb/bo8TXaRim4GSzWQwNDaG2thbFxcWFLscUsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xy4qf+Ul5dj48aN0DQNJ0+exPvvv39enbEbpOdyOUQiEWSz2bxqLS4uRm1t7Vnzy0QiMaltc7kcEokEysvLUVR04S9Vy/CVbzcg23FrBtm8uKkH2a2Vr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZS310lgMw0xMNBrF2rVrEY1GC12KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL5cGP/8fv9mDNnDurq6s778Pl8AIB0Oo29e/fmXev06dPxne98x/hadjqdRiAQQHd3N7q7u3Hq1Cn09/cjnU6fs206ncZ777133r8x9iPbcWsG2by4sQfZpZWvhmxjxO2olIdsXrj/WKfF52DqoEoeMvqwsyan9B8RejJlLf3SWDNnzsTg4GChS2Ekxe1LYxERUqkUSktL4fF4Cl2OKWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL5cHP/efvttyf8hgYRoba2Ftdee+0F9SZaGsvj8aC0tBS/+MUv8Ktf/Qp79+694IWNa665Bg888IBxQ/cZM2aguLgYxcXF8Hg8SKfTGB0dPWe7uro6LFmy5IIehoeH0dPTg2g0CiKCx+PB9OnTMXv2bNTU1FxwO+ZsZDtuzSCbFzf3IKu18tWQbYy4HZXykM0L9x/rtPgcTB1UyUNGH3bW5JT+I0Jv/PaFfC+XL4QwjsbtF0IYhmEYRiWGh4dx4MCBCy6NWlpaigULFqCsrOyCGocOHUJ/f/+E9wi55pprcPDgwSnVNnafkn/8x39EQ0PDBS+i+Hw+/Nmf/RmamppQXl5+1t9GR0fx0Ucfndefx+PBDTfcgOrq6inVxTAMwzAMwzAM4xQK+V4uL43FMA4mEolg9erViEQihS7FNLJ5sbseK/cnUluElhkN2caJ21ElD9l8uLn/zJw5EzfeeCNmz56N2trasx5z587FvHnzsHbt2gn1qqqqLvi3yspKrFy5Er29vVP24vf7ccMNN+Cv//qvsWvXrgt+kySdTmPTpk1YsWLFOX/r7++/4EUeIsLAwMCU63Irsh23ZpDNi5t7kNVa+WrINkbcjkp5yOaF+491WnwOpg6q5CGjDztrckr/EaEnU9bS3yydYZgL4/f7sWTJEmPZDicjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzYfb+8/06dMxffr08/4tnU5fVO/SSy/F8PAw+vv7z/mbpmnYvXt3Xjc0n+q227Ztg6ZpZ9Uaj8cn3CYWi025Lrci23FrBtm8uL0HWamVr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZc1LYzGOhpfGYhiGYRhmPLlcDh9++CEWLlxY0Dq6urpQX19v/P8777wz4cWQ6dOn49Of/rQNlTEMwzAMwzAMw9gPL43FMExeJJNJ/O53v0MymSx0KaaRzYvd9Vi5P5HaIrTMaMg2TtyOKnnI5oP7j3m9oqKi895ro6ysDF/5ylcmvMfIhTCzLSMe2Y5bM8jmhXuQdVr5asg2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoSdT1nwhhGEcTC6XQygUQi6XK3QpppHNi931WLk/kdoitMxoyDZO3I4qecjmg/uPdXpjF0iKis4/BZ45c2be2zL2IttxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi8/B1EGVPGT0YWdNTuk/IvRkypqXxmIcDS+NxTAMwzDM+eju7sacOXOmtE1LSwtqamowOjqKoaEh3H///aZqOHNprNHRUXz44YcTPp+XxmIYhmEYhmEYRmV4aSyGYfJC13V0d3dD1/VCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/4jRq6urO+eGfF6vF/X19fB6vec83+fzoaamBj6fD3V1daitrZ30thdi7PNGPT09F70IwkwN2Y5bM8jmhXuQdVr5asg2RtyOSnnI5oX7j3VafA6mDqrkIaMPO2tySv8RoSdT1nwhhGEcTCwWw1NPPYVYLFboUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzQf3HzF6fr8fd95551m/q6iowPLly1FRUXHO8xcvXgyfz3dBvYm2vRDRaBS5XA7Hjx+f9DbM5JDtuDWDbF64B1mnla+GbGPE7aiUh2xeuP9Yp8XnYOqgSh4y+rCzJqf0HxF6MmXNS2MxjoaXxmIYhmEY5kIkEgmsWLEC27Ztg6Zp532Oz+fD4sWL8cADD5z1DZL+/n4sW7bM1P7feOMNfOpTn8L7778/qefz0lgMwzAMwzAMw6hMId/Lnfx3+wvAAw88MKVP3TEMwzAMwzDMGOXl5di4cSM0TcOBAwdw9OjRc54zthyWVchwU0CGYRiGYRiGYRi3I/XSWD/5yU/w//1//1+hy2AYaQmHw/jJT36CcDhc6FJMI5sXu+uxcn8itUVomdGQbZy4HVXykM0H9x/xen6/H7Nnz0Z1dTWOHTuG6upq1NXVoa6ubtIXQaqqqrBq1SpUVVXlUzojGNmOWzPI5oV7kHVa+WrINkbcjkp5yOaF+491WnwOpg6q5CGjDztrckr/EaEnU9ZSL43FMBfD7UtjZTIZdHZ2Yt68eSgpKSl0OaaQzYvd9Vi5P5HaIrTMaMg2TtyOKnnI5oP7jzV6Q0ND+PDDDxEMBjFjxgwUFxdP+PzxS2OVlJRg3rx56OzsRCaTmdQ+W1paUFdXN+kaeWmsySPbcWsG2bxwD7JOK18N2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0xm9fyPdy+UII42jcfiGEYRiGYZjJMTQ0hAMHDkz6+SLuEdLS0oKamhqMjo5O6vmzZ8/GH/7hH5raJ8MwDMMwDMMwjKwU8r1cqZfGYhhmYhKJBLZu3YpEIlHoUkwjmxe767FyfyK1RWiZ0ZBtnLgdVfKQzQf3H+v0MpkMDh06NOlvdJxJeXk57rrrLpSXl096m4cffhh33HEHli1bNqnHF7/4RSxdulSasSgzsh23ZpDNC/cg67Ty1ZBtjLgdlfKQzQv3H+u0+BxMHVTJQ0YfdtbklP4jQk+mrB1xIaS4uNh45HPPkO9973soLi6G1yv1veEZhmEYhmEYhTh48CDS6fSkn59KpbBp0yasWLHCwqoYhmEYhmEYhmHchyOWxioq+n/XazweD/7sz/4Mv/rVr1BWVjap7b/3ve/h5z//OTweD7LZrFVlMgWAl8ZiGIZhGGYyFGJprHzx+/0IBoPw+/0F2T/DMAzDMAzDMIwV8NJYk8Dj8QAAiAhbtmzBzTffjL6+vgJXxTCFxcwSH7Ihmxe767FyfyK1RWiZ0ZBtnLgdVfKQzQf3H+v0stkshoeH8/pgTElJCa6++mpbbuaoaRr6+/st34+Tke24NYNsXrgHWaeVr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZe2YCyEAsGDBAkybNg1EhPfffx+f+9zn8N577xW6LIYpGDKts2cW2bzw+rTWafH6tOqgSh6y+eD+Y52e3fcIYaxDtuPWDLJ54R5knRbfI0QNVMpDNi/cf6zT4nMwdVAlDxl98D1CrNGTKWvHLI3l8Xjw3e9+F9/+9rdxxx13oKenBwBQVlaG5uZm/MVf/MUFt+elsdSFl8ZiGIZhGGYyRKPRKX2AppBLYwFAV1cX6uvrC7Z/hmEYhmEYhmEY0RTyvVzH3T38hhtuwNtvv4277roLb7/9NpLJJJYtW4aDBw/ihz/8YaHLYxiGYRiGYSSkoqICZWVlSCaTF3zOVVddhdmzZwMAOjs74fP5pnSz88mwZs0a1NbWAjh935L7779fqD7DMAzDMAzDMAxzLo5aGmuMuro67Nmzx/iUHhHh4YcfxrJly5BKpQpcHcPYRygUwo9+9COEQqFCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/1ij5/F4UF9fjz179kDTtLP+5vV6MWvWLNTX16O4uBjFxcWYNWsWFi9ebDynuroaDz30EKqrq015qK2tRV1dHerq6owLIszUke24NYNsXrgHWaeVr4ZsY8TtqJSHbF64/1inxedg6qBKHjL6sLMmp/QfEXoyZe24pbHWrFlz1t9+/OMfn/VNkM985jPYtm0b6urqjN/x0ljq4valsXRdR09PD2bNmgWv13Ff8DoL2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/1inN7b9mfNEACgtLYXH4znn+SdOnMCKFSvw5ptvIpfLYdasWejp6YGu6wAAn8+HefPm4eDBg5OuoaWlxdj/RMtv8dJYEyPbcWsG2bxwD7JOK18N2caI21EpD9m8cP+xTovPwdRBlTxk9GFnTU7pPyL0xm9fyPdyHX8hBACee+45/PVf/zWSySSICLNmzcJvf/tbLFiwAABfCFEZt18IYRiGYRjGWogIw8PDOHnyJEZHR5HL5VBcXAwAuPzyy6HrOm644YZJ6/GFEIZhGIZhGIZh3Eoh38t15NJY4/nGN76BN954A1dccQUAoKenBzfffDO2bNlS4MoYxlri8Tg2btyIeDxe6FJMI5sXu+uxcn8itUVomdGQbZy4HVXykM0H9x/r9PLZ3uPxoLa2FldffTVGRkbwhS98Abfddhtuu+02zJ8/H5WVlXnVwphDtuPWDLJ54R5knVa+GrKNEbejUh6yeeH+Y50Wn4Opgyp5yOjDzpqc0n9E6MmUtRIXQgBg4cKFePvtt/HZz34WwOl/5D//8z/H//k//6fAlTGMdRQVFaG6uhpFRc4/lGXzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnR73H3VQKQ/ZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi+dA6qBKHjL6sLMmp/QfEXoyZa3E0lhnkkql8K1vfQsbN2401nquqKhANBrlpbEUhJfGYhiGYRimkHR3d2POnDmTfj4vjcUwDMMwDMMwjFvhpbEEUlpaiqeffho/+tGPjN/FYrECVsQw1pFOp7F//36k0+lCl2Ia2bzYXY+V+xOpLULLjIZs48TtqJKHbD64/1inx/1HHVTKQzYv3IOs08pXQ7Yx4nZUykM2L9x/rNPiOZA6qJKHjD7srMkp/UeEnkxZO+ZCyFS/uPKDH/wAmzZtQllZ2ZS3ZRinoGkadu/eDU3TCl2KaWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnZ4M/cfr9ZranjmNbMetGWTzwj3IOq18NWQbI25HpTxk88L9xzotGeZAjBhUyUNGH3bW5JT+I0JPpqwdsTTWnj17AABXXHEFPv7xj09p27a2NvzsZz8zLoY0NzcLr48pHLw0FsMwDMMwhUTTNFRXVyOVSl30uX6/H6OjoxgaGsLx48d5aSyGYRiGYRiGYVwFL411EW655RbccsstU74IApy+iXpTUxOam5v5IgijHEQETdOU+NaTbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh/cf6zTs6L/+P1+3HLLLZPSuPPOO1FWVjblfTPnIttxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi8/B1EGVPGT0YWdNTuk/IvRkytoRF0IYhjk/4XAYjzzyCMLhcKFLMY1sXuyux8r9idQWoWVGQ7Zx4nZUyUM2H9x/rNOzqv/88Ic/xK233gqfz3febX0+H/7iL/4CTU1Nk97fRx99hEQiMeU63YJsx60ZZPPCPcg6rXw1ZBsjbkelPGTzwv3HOi0+B1MHVfKQ0YedNTml/4jQkylrRyyNxTAXwu1LY2WzWQwNDaG2thbFxcWFLscUsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOz6r+09bWhnA4jHQ6jdHR0XO2rampwRe/+EXj/iAnT5686NJYLS0tuOqqq/D5z38eRUX82aXxyHbcmkE2L9yDrNPKV0O2MeJ2VMpDNi/cf6zT4nMwdVAlDxl92FmTU/qPCL3x2xfyvVy+EMI4GrdfCGEYhmEYpvCMXQiZiC984QtTvhBSV1eHBQsWoLq6WnTJDMMwDMMwDMMwtsP3CPlvvvjFL1r6+OM//uNCW3QVH374IR5++GHcdtttqKurQ0lJCaqrq3HTTTfhP/7jP3i5BwHEYjGsX78esVis0KWYRjYvdtdj5f5EaovQMqMh2zhxO6rkIZsP7j/W6Tmx/ySTySlvQ0Q4deoU3n33Xbz++ut4/fXX8fbbb6O7u1uKtXlFINtxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOy4lzIOb8qJKHjD7srMkp/UeEnkxZewtdwJns3r0bHo/HEm0iskybOZfOzk7ccMMNxv9ffvnlWLBgAQKBAFpbW9Ha2oonnngCr7zyCmbPnl3ASp2N1+tFfX298QlTJyObF7vrsXJ/IrVFaJnRkG2cuB1V8pDNB/cf6/Rk6T8VFRWmNSbi5MmT6OrqOut3iUQC3d3d0HUdH//4xy3dvx3IdtyaQTYv3IOs08pXQ7Yx4nZUykM2L9x/rNOSZQ7EmEeVPGT0YWdNTuk/IvRkylqqpbGsXv/Y4/Egm81aug/mNMeOHcMf/uEf4rvf/S7+6q/+CnPnzjX+tnfvXtx77704ceIEFi1ahLfeeivv/fDSWAzDMAzDFJqpLo2Vy+Xw/vvv49ixYxddGusP/uAPcNlll026FiLCvn37oGnaef/u9XqxePFi/oAQwzAMwzAMwzC2U8j3cgt/KeYMfvjDH07qeS+++CLeeecdeDwePPjggxZXxeTDrFmz0NXVhWnTpp3zt8WLF2PDhg34whe+gNbWVnzwwQdnfXuEmTypVAptbW1YuHAhSktLC12OKWTzYnc9Vu5PpLYILTMaso0Tt6NKHrL54P5jnZ4s/aeoqAg33HADotHoRZ97+PBh9PT0YPr06bjiiiswffr0CZ+fzWYveBEEAHRdh6ZpKCsrm3LdMiHbcWsG2bxwD7JOK18N2caI21EpD9m8cP+xTkuWORBjHlXykNGHnTU5pf+I0JMpa0deCBkeHsY777wzpW0Ye/H7/RP+ffHixaiqqkI4HMahQ4f4QkiepNNp7N+/H9dee23Bm4lZZPNidz1W7k+ktggtMxqyjRO3o0oesvng/mOdnkz9p6SkBHPmzJnUc+PxOOLxOIaGhrBgwYKLXgxxA7Idt2aQzQv3IOu08tWQbYy4HZXykM0L9x/rtGSaAzHmUCUPGX3YWZNT+o8IPZmylmpprMnyve99Dz//+c8dt9RVNpvFgQMH8M477+Ddd9/FO++8gw8//BCZTAYAcMstt2D37t15aafTaWzatAktLS04cOAABgYGMGPGDMyZMwff+MY3sHz5csycOVOgG3Pouo6qqiokEgn89re/xR133JGXDi+NxTAMwzBMoZnq0lhjdHd3X/BiSEtLC2pqajA6OnrW7+fPn49PfepTF9yPrut48803J6zl85//vOO/EcIwDMMwDMMwjPPgpbFcwNatW3HvvfcikUgI1z506BCWLVuG/fv3n/X7/v5+9Pf346233sK///u/o7m5GV/72teE7z8ftm7dikQiAa/Xi5tuuqnQ5TiWXC6HSCSCyspKy++xYzWyebG7Hiv3J1JbhJYZDdnGidtRJQ/ZfHD/sU7PSf3n4YcfRmdnJ9Lp9Fm/Ly0txV133YWmpiaUl5efs52maejv7z/n9zU1NfD5fMZzdF2Hx+NBeXm5FON+qsh23JpBNi/cg6zTyldDtjHidlTKQzYv3H+s03LSHIiZGFXykNGHnTU5pf+I0JMpazlGmgsIhUKWXATp6enBH//xHxsXQTweD2655RasWLECd9xxh/Fpv8HBQdx111147bXXhNcwVYLBIP7pn/4JAPA//+f/lOqbKk4jEomgoaEBkUik0KWYRjYvdtdj5f5EaovQMqMh2zhxO6rkIZsP7j/W6Tmp/xw8ePCciyDA6TV2N23ahBUrVpz1+0QigaVLl6K2thbLli0753HHHXfg4YcfhqZp+OCDD/Dee+/h3Xffxd69e3Hq1ClbPIlEtuPWDLJ54R5knVa+GrKNEbejUh6yeeH+Y52Wk+ZAzMSokoeMPuysySn9R4SeTFnz0lg2sX79enzrW9/CpZdeis9+9rPG4+WXX0ZDQwOA/JbG+qM/+iO88cYbAICrrroK27ZtO+t+G8PDw1i6dCl27twJ4PSnATs7O1FdXS3E11TJZDL42te+hldffRVz585FW1sbKisr89Zz+9JYMl1VNYtsXvjTSNZp8aeR1EGVPGTzwf3HOj2r+o8VS2NdDL/fj2AwaNyXbenSpdi0adNFt7v11lvx4IMPnvP76667zlEfTpHtuDWDbF64B1mnxd8IUQOV8pDNC/cf67T4HEwdVMlDRh/8jRBr9MZvX8j3cuUYaS7gK1/5Ck6cOIH+/n5s374dDz74IL761a+auiDx4osvGhdBfD4ftm/ffs5Nx2fOnIlt27Zh7ty5AIDR0VH89Kc/Pa/eqlWr4PF48nroun7RenO5HP76r/8ar776Kmpra/HCCy+YugjCAEVFRaiurpbmRcMMsnmxux4r9ydSW4SWGQ3ZxonbUSUP2Xxw/7FOT6X+c+YSWJqmYdu2bZPabu/evef9psnw8LDQ+qxGtjzMIJsX7kHWaeWrIdsYcTsq5SGbF+4/1mmpNAdyO6rkIaMPO2tySv8RoSdT1oWvwCXU1dVh9uzZQjV//vOfGz//zd/8Da6//vrzPm/atGl4+OGHjf9fu3bteS9cTJs2DZdcckleD4/HM2GtRIRvf/vb2LhxI2pqavDKK6/g6quvztM5M0Y0GsXjjz+OaDRa6FJMI5sXu+uxcn8itUVomdGQbZy4HVXykM0H9x/r9KzqP+O/6TEej8dj6cQ/EAhA07RJPTedTp9zA3bg9JJbwOkPrqRSKaRSKcj8xXHZjlszyOaFe5B1WvlqyDZG3I5KecjmhfuPdVp8DqYOquQhow87a3JK/xGhJ1PWfLN0hxKLxYzlrgDgW9/61oTP/+Y3v4nvfOc7iMViGB0dxeuvv44vfvGLZz3nBz/4AX7wgx8Ir5WI8Hd/93dYv349Kisr8fLLL5/zzRUmP3w+HxYsWGDc/NTJyObF7nqs3J9IbRFaZjRkGyduR5U8ZPPB/cc6Pav6T3V1NUZGRi64bVVVlaUXQk6ePGlaI5vNoqOjA8PDw8jlcgBOe77yyitx5ZVXmtYXjWzHrRlk88I9yDqtfDVkGyNuR6U8ZPPC/cc6LT4HUwdV8pDRh501OaX/iNCTKWu+R0iBeeihh/CjH/0IwNTuEbJjxw58+ctfBnD6mxyhUOiin0a8/fbb8corrwAA/vVf/xU//vGP8y98CvzDP/wDGhsbUVFRgZdffhl/+Id/KEzb7fcIYRiGYRim8ORyObS3t5/3mxZjE//y8vJz/mbmHiEA0NXVhfr6emzZsgXf+MY3Jr1dS0sL6urqJv38q6++ekrPZxiGYRiGYRiGOR98jxBmyhw8eND4+frrr7/oRRAAuPHGG8+7vZXcf//9aGxsRHl5OZ5//nmhF0GY02uC7969e9LLYciMbF7srsfK/YnUFqFlRkO2ceJ2VMlDNh/cf6zTs6r/FBUV4brrrsPChQsxb948zJ07F3PnzsW1116Lz33uc+e9CCKKTCZjLGtlFUNDQ5bq54Nsx60ZZPPCPcg6rXw1ZBsjbkelPGTzwv3HOi0+B1MHVfKQ0YedNTml/4jQkylrvhDiUA4fPmz8fNVVV01qmzPvUXLo0CHhNY3ngQcewM9+9jP4/X789re/xS233GL5Pt2Gruvo7u6e1M3qZUc2L3bXY+X+RGqL0DKjIds4cTuq5CGbD+4/1ulZ2X+KiopQVVWFK6+8ErNnz8bs2bNRW1s7qQ+r5IumaXj33Xct0x8jmUxavo+pIttxawbZvHAPsk4rXw3ZxojbUSkP2bxw/7FOi8/B1EGVPGT0YWdNTuk/IvRkylqqpbHOvKH3RLzwwgt455134PF48MMf/nBK+3jwwQfzKc0y8l0a65577sEzzzwD4PS3LhoaGi66zXPPPYdvfvObAE7fvD0QCORX9CR46623jG9/fOxjH8MnPvGJCz53xYoVWLFiRV774aWxGIZhGIZxKmaXxnrxxRdRXFyMjo4OfP/735/0do8++ijmz58/6XV6y8vL8bnPfS7fMhmGYRiGYRiGYQAU9r1cqW6W/tBDD8Hj8UzquWPPG7uIMFlkuxCSL7FYzPi5rKxsUtuc+bwzt7eCM5doGBwcxODg4AWfe9ttt5nen9/vNz5xmc1mEY1GUVVVBY/Hg0gkAr/fD5/Ph2QyiVwuh2nTpkHXdcRiMVRXVwMAwuEwysvLUVJSgkQiAeD0iX8mk0EikUBVVRUAIBQKoaKiAl6vF/F4HEVFRSgrK0M6nYamaaisrAQRIRwOY/r06SguLkYsFoPX64Xf70cqlUI6ncb06dORy+UQiURQWVmJoqIiRKNR+Hw+lJaWQtM06LqOioqKC3oqLi7GqVOnUFNTg8rKSkd7CgaDiMViuPzyy5FOpwueUyKRQCAQQH19vfFvnm9Okxl7paWlCIVCmDZtGoqLi4V68ng8iEajqKysRDabLXhO0WgU6XQatbW1iEajU/IEACdOnMCll16KadOmCT2eVOwRVntKJpPo7e3FnDlzUFRU5FhPkUgEo6OjuPLKK5HNZgueUyqVwsmTJzF37lwUFxdbPvZE9ojxnsZqnDFjBpLJpOmxR0SIxWKoqqpCJpOZck7BYBCpVAqXXnopEolEwV9zk8mkcSz5fD74/X5EIhF4PB5UVVUhGo0im82ioqICuq5D0zSUlpbC5/MhGo3in//5nzE4OGjcqH369OlIp9NIpVLG3CgWi6G4uBjTp09HOBwGEeGHP/whNE3DvHnz8E//9E8oLS2F1+tFLpdDNptFSUkJgNP3oRtb1ku2vpdOp3HixAnMmTPHOI6d2stTqRSSySRqamqMGgr5+jQ6OgpN01BXV4dkMml53/P7/QgEAigrK8Mll1wi1NO0adMwODgIn8+H6urqgueU73zP5/Ohr68PFRUVmDFjhjLzCKfOjbLZLI4fP47Zs2ejtLTU0Z7MzMtVOCcU2SPGe6qoqMDw8DBKS0sxbdq0gudkZr6n0muuCn0vFAohEongiiuuQCaTcawnM/NyqzyZPdcoVI8Y76msrAzBYNB4vtmxN23aNIyMjMDv96OsrMz0OWEhkW5pLCKy7KESZ66rNtlP85WWlho/Wz3wlixZMulcHnroIdP7W7RoEe6++24Ap9exbmhoMC7GNDU1oaOjAwCwZ88ebN++HQDQ09Nz1jdpGhsb0dnZCeD0zeh37NgBAOjs7ERjY6PxvIaGBvT09AAAtm/fjj179gAAOjo60NTUBOD0haCGhgZjTe3NmzejtbUVANDW1oYNGzYAACKRCBoaGhCJRAAAGzZsQFtbGwCgtbUVmzdvntBTNBrFU089hW3btjneU3NzM5qamhCNRqXIad++ffj1r3+NaDRqOifg4mPvwIEDWLt2LV566SXhnt544w2sXbsW+/btkyKntWvXYu3atYhGo1P2FI1G8atf/QpvvPEGALHH02RycsrxZJensVqj0aijPW3btg1PPfUUotGoFDkdPXoUTz/9NKLRqJCc7OwR4z1t27YNa9euxdGjR4WMvZ07d2Lt2rVoa2vLK6fHHnsMTzzxBKLRqBSvuW+99ZaxdOj8+fONb8iWlpZi5cqVqK2tBQDcfffdWLRoEQBg4cKFuPfeewEAvb29+O53v4vKykoAwL333ouFCxcCOHtuVFtbi5UrVxpzwRUrVmD+/Pk4ePAgNm/ejBdeeAHLli3Dv/7rv+L48eNYtmwZli1bht///vd4/PHHoWmadH3vxIkTePrpp42LQE7u5c8++yzWrl2LEydOSPH69Nhjj2HdunWIRqO29L1oNIonn3wSjz32mHBP0WgUv/zlL/HYY49JkVO+871oNIqmpiY0NzcbOTn1NVeFuVE0GsXTTz+No0ePOt6TmXm5FZ7sPicU2SPGexoZGcHatWvR3NwsRU5m5nsqveaq0veam5sRjUYd7cnMvNwqT2bPNQrVI8Z7Onr0KNauXYtt27YJGXuBQABr164Vfk5YCKRaGmvJkiWT/kZIvuzatctS/amS79JYf/Inf4IXX3wRAPAv//Iv+MlPfnLRbV566SV87WtfAwBUVFQYb7A4mbGvU4196rG1tRVXX321o66Cm/m0QklJCUKhEEpKSoxPizrVUzgchsfjwfTp06FpWsFz0jQN0WgUM2fOBBFZ/qmSsrIy45O4Ho9HqKfi4mKjt2YymYLnFI/H4ff7UVpainA4PCVPRUVFGBkZwbRp01BWVua6T//I5imVSiEcDhtv1jrVUywWQyaTQXV1NTKZTMFzymQyGB0dxcc+9jHjuLNy7InsEeM9ZbNZeL1eFBcXIx6Pmx57Ho8HRUVF8Hg8SKVSU85p7BPZZWVliMViBX/NPXjwID796U/n/Y2QoqIiVFZWIhKJIJfLTfobIZWVldA0Del0GmVlZSgqKkI8HofX60VFRQVCoRAAoKqqColEArfccotxAUiWvqfrOkZGRlBbW4uioiJH9/JMJoOSkhIjr0K/PoVCIfh8PpSXlxvjwsq+N7afTCaDGTNmCPU0Nl8Z81fonPKd7/n9fkSjURARqqqqlJlHOHVuREQYHBxETU0NSkpKHO3JzLxchXNCkT1ivKfKykrjNbmsrKzgOZmZ76n0mqtC34tEIsZ8LpVKOdaTmXm5VZ7MnmsUqkeM9zRt2jRks1nouo7i4mLTY2/69OnIZDJIp9MoLS01fU7Y29tbsKWxpLoQ4kZUvUeIXfA9QhiGYRiGcSqapmHGjBlnfdNXRsaW8/H7/YUuhWEYhmEYhmEYB1PI93KlWxqLmRxj6+cCwMDAwKS26e/vN36uqakRXhNjP5FIBKtXrza+eudkZPNidz1W7k+ktggtMxqyjRO3o0oesvng/mOdnmz9x+/348477xSmZxWpVAr9/f3I5XLIZDLIZrOFLkm649YMsnnhHmSdVr4aso0Rt6NSHrJ54f5jnZZscyAmf1TJQ0YfdtbklP4jQk+mrPlCiEP5gz/4A+PnEydOTGqbkydPGj9fffXVwmti7Mfv92PJkiVKfEJTNi9212Pl/kRqi9AyoyHbOHE7quQhmw/uP9bpydh/mpqacM8990z6nm+Twe/345577sHw8DC+8Y1vCNE+ePAg3nzzTezduxdvvPEG3nvvPYTDYQHV5odsx60ZZPPCPcg6rXw1ZBsjbkelPGTzwv3HOi0Z50BMfqiSh4w+7KzJKf1HhJ5MWfPSWAUm36WxduzYgS9/+csAgGnTpiEUCsHr9U64ze23345XXnkFAPCv//qv+PGPf/z/s3fu8VGVd/7/zCWTIeQyBIIBAUGQi6JgtYrFC2irtkrl17WtLNuluuuqvUm7W9ru/haFXX+11BZilahVJEWMFwQ0tkAQBlQwKJcAgXAxQCAkk+vc75fn90d2zpKQkGTOZZ7zzPf9es1LzJz5nO8nn2e+85ycOc9JvXBOoKWxCIIgCIIQgZ07d/a4bGkkEsGCBQv6rbN8+XI89NBDKC4uBtC5nvCePXvQ0dGBUCiEZcuWoba2dsD1lZeXS5pJTCYTvvrVr3JxUEMQBEEQBEEQBP/Q0ljEgPna176G7OxsAIDf78fevXsvuX04HEZVVZX0/3feeaeq9RHaEAwGsXnzZgSDwXSXIhvevGhdj5r7U1JbCS05GryNk0xHlDx480H9Rz09nvtPdnY2iouLL3oM9GqO4uLii05MWCwWFBcXY+zYsVi5ciW2bNmC8vLyix7PP//8gPYVj8fR3t4+oNcoBW/vWznw5oV6kHpaqWrwNkYyHZHy4M0L9R/1tHieAxEDQ5Q8ePShZU166T9K6PGUNZ0I0Sm5ubm46667pP9fvXr1Jbdfv349vF4vgM77g9x+++1qlkdoRCKRgMvlQiKRSHcpsuHNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NPLxP6TlZV10c+SJ0a6P4qKigasHwgElChzwOg1j57gzQv1IPW0UtXgbYxkOiLlwZsX6j/qaWXiHEhURMmDRx9a1qSX/qOEHk9Zc7E01uHDh3Hs2DHk5OTglltu6fNG3qtXr8bZs2exePFijSpUj1SXxgKAv/71r7j//vsBdH6LcN++fT1eShQIBDBt2jR8+eWXAIBf//rX+O1vfyu/eA6gpbEIgiAIghCBqqoqhEKhi37ucDgwb968fuuUl5fj3nvvhc1mAwAwxvD555/36xtYl9pXT0tjAcDll1+Oq666qt/1EQRBEARBEASRuWTs0lgNDQ2YOXMmpk+fjoceegjf/va3MWLECPz0pz+Fz+fr9XWvvfaadPIgk7nvvvtw2223Aehc+ur+++/HoUOHumzT3t6OuXPnSidBCgsL8atf/UrzWgl1iMViOHPmDGKxWLpLkQ1vXrSuR839KamthJYcDd7GSaYjSh68+aD+o55eJvYfg8GAqVOnKnozdh7Qax49wZsX6kHqaaWqwdsYyXREyoM3L9R/1NPKxDmQqIiSB48+tKxJL/1HCT2esk7biZBgMIivf/3rqKqqAmMM+fn5GDRoEKLRKFauXImvfOUrOHnyZLrKU4VvfetbmD59epfHSy+9JD2/d+/ei56fPn06Ghsbe9V88803MWLECADAmTNnMH36dMyePRv//M//jAceeABjxoyRbpBuNpvxzjvvSN8QFAmr1Yrc3FwAnetVu1wuJC928ng8iEQiADrHnd/vB9D5RnS5XJKG2+1GNBoF0HkVTXKph2g0CrfbLW3ncrmkN6/f75e+YRmJRODxeAB0fvvS5XIhHo8DAHw+n/Qtz3A4LC1T1v3yMK/Xi3A4DAAIhULSCcHePPl8PpSVlaGlpUX3npqamlBWVgafz8dFTu3t7VI9cnMC+h57TqcTZWVlaG1tVdxT0kt7ezsXOTU2NkoaA/WUHPPJNemVfD/1Jye9vJ+08tTR0SFlqWdPLS0tkg8ecnK5XFI9SuSkZY/o7in5u3W5XIqMvba2NpSVlaGjoyOlnC7sP7x95sZiMakexhhCoZD0+8/NzZXu+5GdnY28vDwAgNFohM1mg9HYOaXPy8tDPB5HVlZWF09WqxVTpkzB9OnTcc011+CKK66QToxEo1Eps0Qi0WWeWFBQIC2tFYvFJH/xeLzL1Svp6HtutxtlZWXS6/Tcy5ubm1FWVga3283F59OF7xMt+l7yvXXhMY9Sni7U5iGnVOd7SR9NTU1STnr9zBVhbpTMI/k6PXuSMy9Xw5PWx4RK9ojunrxer/S+5SEnOfM9kT5zReh7DodDGg969iRnXq6WJ7nHGunqEd09uf7neLKlpUWRsefxeFBWVgaHw6HoMWE6SNuJkJUrV+LEiRO44oor8Omnn8LpdMLtduOdd97B6NGj8eWXX+L2229HTU1NukpUnKNHj+LgwYNdHs3NzdLzfr//oucPHjwoDZ6eGDVqFLZv347p06cD6BzMO3bswGuvvYYPPvhAemMUFRVh48aNXe4rIhIzZszAgw8+CABobW1FSUmJ9OZctWoVjh49CgDYuXMnKioqAHRekVRSUiJplJaWoq6uDgBQWVmJyspKAEBdXR1KS0ul7UpKStDQ0AAAqKiowM6dOwF05rtq1SoAnY2jpKQEra2tAIB169ZJN6s/cOAA1q5dC6CzOZSUlEjNaO3atThw4ACAziUy1q1bd0lPNpsNN998Mz7++GPde3rvvffwwAMPwGazcZHT6dOncdlll8Fms8nOCeh77LW3t+Opp57Cnj17FPdUW1uLp556CqdPn+YipzfffBNPPfUUbDbbgD3ZbDZcccUVqK2tBaDs+6k/Oenl/aSVp8bGRhQUFMBms+na08cff4ybb74ZNpuNi5ySE8rkH6TVHntK9ojunj7++GM89dRT8Pl8ioy96upqPPXUU2hsbEwpp9dffx1PPvkkbDYbd5+5zc3NUj3xeBx79uyR5nEPPvggZsyYAQC4/vrrMX/+fABAfn4+Fi5ciPz8fADA/Pnz4ff7kZOTc5Gn559/HlarFUVFRXj//ffR0dEBAKivr8eJEycAdB7QLFy4UKr1iSeewPjx46X6ampq4HA4cOrUKXzxxRfSHDUdfS95IDho0KAuOQH66+Vbt27FU089hWg0ysXn0+uvv47HHnsMNptNk75ns9mwYMECvP7664p7stls+NWvfoXXX3+di5xSne/ZbDY88MADeO+996Sc9PqZK8LcKPn5nPy81rMnOfNyNTxpfUyoZI/o7mnQoEF46qmn8N5773GRk5z5nkifuSL0vQ8//BD33HMPbDabrj3JmZer5UnusUa6ekR3Tz6fD0899RQ+/vhjRcae0WjEU089hQ8//FDRY8K0wNLELbfcwoxGI9u9e/dFzzmdTvb1r3+dGQwGVlRUxPbv39/l+VtvvZUZjUatSlWMK664ggEY8OP06dN9aofDYVZWVsbuvfdeNnr0aGaxWNjw4cPZjBkz2LJly1hra6v6BtNATU0NA8CsVivLzc1lNTU1LBaLMafTyRKJBGOMMbfbzcLhMGOMsUAgwHw+H2OMsWg0ypxOp6TlcrlYJBJhjDHm9/uZ3+9njDEWiUSYy+WStnM6nSwajTLGGPP5fCwQCDDGOjNwu92MMcYSiQRzOp0sFosxxhjzer0sGAwyxhgLhULM4/EwxhiLx+PM6XSyeDzOGGPM4/GwUCjEGGMsGAwyr9fLGGPkiTyRJ/JEnsgTeRLc0yeffMI2b97M7HY72759O9u0aRPbtm0bKy8vZ7m5ucxqtTIALDs7m+Xl5TEAzGg0MpvNxoxGIwPA8vLy2L59+/rlaf/+/cxut7PKykq2ZcsWZrfb2dq1a5nNZpPmoAUFBSwrK4sBYDk5OSwnJ4cBYFlZWaygoIBZLBb2rW99izU2NmZMTuSJPJEn8kSeyBN5Ik/kiTyRp9Q9Jf+Wm3zU1NQwrUjbiRCbzcZGjx7d6/PRaJQ99NBDzGAwsCFDhrCqqirpOb2eCCGUJ51vHh5wuVzst7/9bZemp1d486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0eO4/n332GbPb7Rc9ysvLFf8CDWOMHTp0SPa+ko/vf//7/dpnR0cH+/LLL9nRo0fZyZMnWVtbm3TANFB4e9/KgTcv1IPU00pVg7cxkumIlAdvXqj/qKfF8xyIGBii5MGjDy1r0kv/UUKv++vT+bdcs5JXlwwEv9+PiRMn9vq82WzGm2++CavVirKyMtx9993461//iltvvVXDKgmCb3JycjB37lzk5OSkuxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/UYf3338foVBIuo9JT5w8eRL79u3r8rPCwkKMHz9eWn5rIIiUB29eqAepp5WqBm9jJNMRKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjK2sDY/9zJRGNGjBgBs9mMc+fO9bnto48+itdeew25ubl4//33sXjxYuzevVu6qQuRuRw5cgRTp06V/r+mpgbXXHNNGisiCIIgCIIYOFVVVV1uQJ7E4XBg3rx5/dY5ffo0xo4d2+d2hw8fRnt7u6x99We/gUAADz/8MDZu3HjRfe8sFgtmzpyJd999F0OHDk1pvwRBEARBEARB6Id0/i03bTdLnzp1KhobG3HmzJk+t/3zn/+Mxx9/HD6fD/fffz9OnjypfoEEoQMCgQA2btwo3UxVz/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR//lfBg8erMl+HnnkEbzzzjsXnQQBgEgkArvdjn/6p38asK5IefDmhXqQelqpavA2RjIdkfLgzQv1H/W0aA4kDqLkwaMPLWvSS/9RQo+nrNN2IuT2228HALzxxhv92n7lypX4yU9+gmAwKN3VniAIgiAIgiCIgTN8+HAYjeoeCoRCIbz//vt9brdly5Yer4YhCIIgCIIgCIJQirQtjXX48GFMmzYNw4cPx+nTpzFo0KB+vW7RokV47rnnYDAYaGksgpbGIgiCIAhCCLReGgsAXC4X6uvr4Xa7wRhDW1sbHnzwwX7vq/t+R48ejfb2dni9XjDG0N7ejhkzZiheN0EQBEEQBEEQ+iQjl8a69tpr8eWXX2LXrl0wmUz9ft2yZcuwe/dubN++XcXqCEIfRKNRHDt2DNFoNN2lyIY3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+k9XbDYbpk2bhttvvx133HEHbrjhhpS1mpub8cknn+Do0aM4d+4cGhoacPr06ZS0otEo2tra0NzcLJ1U6WkbUfLgzQv1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1mn7UQIAFx55ZUYP348LBbLgF43Y8YM3HHHHSpVRRD6gad19uTCmxdan1Y9LVqfVhxEyYM3H9R/1NOj/qMeqZ706M758+exa9cu1NTUoLa2Fvv27cO+ffsuuseISHnw5oV6kHpadI8QMRApD968UP9RT4vmQOIgSh48+qB7hKijx1PWaVsaiyCUgJbGIgiCIAhCBNKxNFZ3QqEQhgwZktL9OsrLy1FcXNzlZwOp/fTp0xg6dCj27dvX4/NFRUU0xyMIgiAIgiAInZORS2MRhJJYrVbk5uYCAOLxOFwul7SMgsfjkb5FGAwG4ff7AQCxWAwul0vScLvd0mVagUBAOlMZjUbhdrul7VwuF2KxGADA7/cjGAwCACKRCDweDwCAMQaXyyXdx8bn80l/VAiHw/B6vQCARCIBl8uFRCIBAPB6vQiHwwA6/xjh8/nIE3kiT+SJPJEn8pQBnmKxmFQPYwyhUEiqNTc3F1arFQCQnZ2NvLw8AIDRaITNZpNuep6XlyfVmoons9nc5R4hBQUFyMrKAgDk5OQgJycHAJCVlYWCggJpO5vNJtUaiUSk30MikUB+fj4AwGAwwGazSUvidvcUCATQ0dEheU/WGg6HEYvF0NHRgWAwmPacRBx75Ik8kSfyRJ7IE3kiT+SJPGntKR3o9kQIYwytra04c+YMzpw5g9bW1h7XDyYygxkzZkgH7q2trSgpKZHenKtWrcLRo0cBADt37kRFRQUAoKGhASUlJZJGaWkp6urqAACVlZWorKwEANTV1aG0tFTarqSkBA0NDQCAiooK7Ny5EwBw9OhRrFq1CkBn4ygpKUFraysAYN26daiqqgIAHDhwAGvXrgXQ2RxKSkqkZrR27VocOHAAQOc3Q9etW3dJTy6XC8uWLcP69et17+nVV1/Fb3/7W7hcLi5y2r17N/74xz/C5XLJzgnoe+wdOnQIS5YswYcffqi4px07dmDJkiXYvXs3FzmtXLkSS5YsgcvlGrAnl8uFP/zhD9ixYwcAZd9P/clJL+8nrTzt3bsXy5cvh8vl0rWn9evXY9myZXC5XFzkdOzYMZSUlEiTRLXHnpI9orun9evXY8mSJZInOTlVVFSgsrISS5Yswd69e1PO6b/+67/gcrm4+8xtbm6W6onH49izZ490gPPggw9KNx2//vrrMX/+fABAfn4+Fi5cKJ1smD9/Pr788ssB53Th+2nChAm49957YbFY8MQTT2D8+PEAgLvvvht33303AGD8+PF44oknJE8LFy6UDp5OnDiB+vp6RCIRNDQ04JFHHgHQebJj4cKFKCoq6tHTRx99hGg0inA4jD179ki1Hj58GA6HA/F4vIunU6dOoaSkBC0tLX164r2Xv/XWW1iyZInkiYfPp//+7/+Gy+XSpO+5XC4888wzqnhyuVxYunQpNzmlOt9zuVz47W9/i1dffbVLTnr8zBVhbpScwx47dkz3nuTMy9XwpPUxoZI9orunlpYWLFmyBK+++ioXOcmZ74n0mStC3/vLX/6CZ599Fi6XS/eeUp2Xq+VJiWONdPSI7p6OHTuGJUuWYP369Yrk1NDQgCVLluAvf/mLoseE6UA3S2Pt27cPW7duxeeff46DBw+ioaFBOsOVxGw2Y9SoUZg2bRpuuukmfOMb35B100eCf5KXU1mtVpjNZlRVVWHy5Mnwer0oKCiAwWCAx+OB1WqFxWJBMBhEIpHA4MGDEYvF4PP5YLPZAHSeXc3JyUFWVpb0h4ecnBxEo1EEAgHpm48ulwu5ubkwm83w+/0wGo0YNGgQIpEIQqEQ8vPzwRiD2+1GXl4eTCYTfD4fzGYzrFYrwuEwIpEI8vLykEgk4PF4kJ+fD6PRCK/XC4vFguzsbIRCIcRiMeTm5iIej/foyWg0oq6uDsXFxSgoKNC1p46ODrS3t2PcuHGIRqNpz8nv96O+vh4TJ06E0WiUlVN/xp7FYkFzczMKCwthNpsV9QQAbW1tKCoqQiKRSHtOHo8HXq8Xo0aNgs/nG5AnxhhOnjyJ0aNHIzc3V9H3k4g9Qm1PgUAAp0+fxqRJk2AymXTrye12w+FwYPz48UgkEmnPKRQK4csvv8TkyZOl+tQce0r2iO6eIpEInE4niouLEQqFZI+9RCKB9vZ2DB8+HLFYbMA5dXR0wOPxYMyYMQgGg1x95n766afw+/3Izs4GYwzhcBgWiwUtLS149NFHEYvFEAqFkJ2dDYvFAq/XC6PRiPz8fHg8Him7vXv3YuLEibLeT+fOnUNTUxOam5thMplgNBoRi8UQjUbxyCOPICsrCzk5OdK3z2w2G5YvXy59fv7pT3/CwYMHYbFYYLVa4fF4YDAYUFBQAK/Xi3g8jtzc3C6e9u/fD4vFgnPnziEcDiM7OxsGgwHhcBgmkwlmsxk33XQTEomE1P9PnjyJSZMmISsrS9e9PBQKweVyYcSIEQgGg2n/fGpvb4fb7cYVV1yBUCiket/Lzs5GfX09CgoKMGzYMEU95eTk4Ny5c8jLy8OQIUPSnlOq872srCxp+bjCwkJh5hF6nRvFYjEcO3YMEyZMkPqeXj3JmZeLcEyoZI/o7mnw4ME4f/488vPzkZubm/ac5Mz3RPrMFaHvOZ1OtLa24sorr0QsFtOtJznzcrU8yT3WSFeP6O7JarXC4XBgyJAhsFgsssdeTk4OGhsbUVBQgJycHNnHhOfPn0/b0lhcnwg5evQoXn/9dbz55ptwOBxdnuutbIPB0OX/i4uL8fd///f44Q9/SOsKCwjdI4QgCIIgCBHYv3+/9A2yC9HyHiFJDh8+jPb2dtm1DITTp08jFotJ38rridtvv11aBowgCIIgCIIgCP1B9wjpxvbt23HPPffg2muvxR//+Ec4HA4wxro8eqP7dg6HA3/84x9x3XXX4Z577sH27ds1dEIQ6uL3+/HWW29J6+3pGd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT2e+8/QoUNV0U0FPZxs4O19KwfevFAPUk8rVQ3exkimI1IevHmh/qOeFs9zIGJgiJIHjz60rEkv/UcJPZ6yNqe7gAvZv38/fvnLX0prvydPeBgMBkydOhW33XYbpk+fjilTpuDyyy/HsGHDkJOTA8YYgsEgWltbcf78edTW1uLgwYP45JNPcOTIEUnno48+wkcffYRZs2bh97//Pb7yla+kyypBKEL3m6TqGd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT2e+8+YMWMQCATQ3Nzc5eeFhYXIzs6W1ty9FFarFcXFxbJryc/Pl9YM5hXe3rdy4M0L9SD1tFLV4G2MZDoi5cGbF+o/6mnxPAciBoYoefDoQ8ua9NJ/lNDjKWtulsZ67LHHsGrVKiQSCTDGYDAYcOedd+J73/se5s6dK91YcaC0trZi48aNePfdd7Ft2zZJ22g04p/+6Z/w0ksvKeyE0BJaGosgCIIgCJGIRCLw+XxgjMFkMiEvLw/z58/H22+/3edr/+7v/k66aaEcotEoqqurL/rWlppLY3355ZdgjNHSWARBEARBEAQhMLQ0FoA///nPiMfjyMvLw6JFi/Dll19i69atePTRR1M+CQIARUVFePTRR1FZWYm6ujr88pe/RF5eHuLxOP785z8r6IAgtCcSiaC6uhqRSCTdpciGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPTw/9x2KxoLCwEEOHDoXNZoPJZMKqVavw4IMPwmKx9Pqa2bNnY+XKlYrUkJWVhenTp2PChAkoKirCsGHDMHLkSEycOFER/Z5oamoa0Pa8vW/lwJsX6kHqaaWqwdsYyXREyoM3L9R/1NPSwxyI6B+i5MGjDy1r0kv/UUKPp6y5ORGSl5eHJUuW4OzZs3j22Wcxbtw4xfcxduxY/O53v8PZs2fx9NNPIzc3V/F9EISWhEIh7NixA6FQKN2lyIY3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU9Pr/0nJycHZWVlqKioQHl5+UWPiooKLF68GDk5OYrtMysrC6NGjcI111yDqVOnYuLEiSgsLBywzpQpU/D666+jvLwcZWVlvW7ndrsHpMvb+1YOvHmhHqSeVqoavI2RTEekPHjzQv1HPS29zoGIixElDx59aFmTXvqPEno8Zc3N0lhtbW0YNmyY8PsklIWWxiIIgiAIIhMIBAL4/PPPL7nNjTfeqOoXfc6cOdPvLystX74cV199dZerWC61tNbGjRtxzTXX0NJYBEEQBEEQBCEwtDQWkJYTEnQShNA7jDGEQiFwcj5TFrx50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf+RRXFwMq9Xa53YWi+WikyBKI1IevHmhHqSeVqoavI2RTEekPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylrbk6EEAQxcNxuN373u98NeDkJHuHNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NOj/iMPq9WKBx54oM/tZs6ciUGDBsFms/Vb+/Tp0wiHw5fc5sKDJ5Hy4M0L9SD1tFLV4G2MZDoi5cGbF+o/6mnRHEgcRMmDRx9a1qSX/qOEHk9Zc7M0FkGkQqYvjRWPx9Ha2oqioiKYTKZ0lyML3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9PT33Hx6WxkrW8dBDD2HLli0X3fDQYrFg5syZWLRoEQYPHoxbbrkFx44dQ0dHBxKJxCWXxur++p6uPLnwhu3pzkNJePNCPUg9rVQ1eBsjmY5IefDmhfqPelp6ngMRXRElDx59aFmTXvqPEnrdX09LYxGETKxWq3TgH4/H4XK5pG8Nejwe6UA9GAzC7/cDAGKxGFwul6ThdrsRjUYBdB7kBwIBAEA0Gu1y1tLlciEWiwEA/H4/gsEgACASicDj8QDo/Maiy+VCPB4HAPh8PummQOFwGF6vFwCQSCTgcrmQSCQAAF6vV/o2ZCgUgs/nu6Qnk8mEgoICSVvPnvx+PwoLC2EymbjIKRaLYfDgwTCZTLJzAvoee4lEAsXFxQiHw4p7ikajKC4uRiwW4yInn8+H4uJimEymAXsymUzIzc2VtJV8P/UnJ728n7TyFI/HkZOTA5PJpGtPoVAIBQUFMJlMXOTEGIPVapUmmWqPPSV7RHdPoVAIxcXF0n7l5OT3+xGJRFBcXIx4PJ5STl6vF8OHD4fJZNLtZ24sFpPq7n6Zuc/nU/39lJOTg5KSEqxbt066Wftf/vIXrF27FhUVFfj1r38tjd1EIoExY8bg1ltvxYwZMzB58mTpudzcXOlkR3Z2NvLy8hCJRLBz50784Q9/QFNTExwOBxoaGnD+/HlEIhGcPXsW7e3tUn1Wq1W6Z4iee3kwGERxcbG033R/Pnm9XulAVYu+ZzKZMGzYMElbSU8mkwmXXXYZvF4vFzmlOt8zmUwoLCzs8jmh189cEeZGJpMJVqu1y/xYr57kzMvV8KT1MaGSPaK7J6PRiOLiYmn+ku6c5Mz3AHE+c0Xoe4FAAEOGDIHJZNK1JznzcrU8yT3WSFeP6O6JMYbi4mJp/iInJ5fLBYPBgOLiYgQCAUWPCdOBbk+E+Hw+HDlyBJ999hk+/vjjfj8IMZkxYwYefPBBAEBraytKSkqkN+eqVatw9OhRAMDOnTtRUVEBAGhoaEBJSYmkUVpairq6OgBAZWUlKisrAQB1dXUoLS2VtispKZFu5FlRUYGdO3cCAI4ePYpVq1YB6GwcJSUlaG1tBQCsW7cOVVVVAIADBw5g7dq1ADqbQ0lJidSM1q5diwMHDgAAqqqqsG7dukt68vl8KC0txYYNG3Tv6bXXXsMrr7wCn8/HRU5VVVX405/+BJ/PJzsnoO+xV1NTg9WrV+Nvf/ub4p4+/vhjrF69GlVVVdzktHr1avh8vgF78vl8eOGFF6R+ruT7qT856eX9pJWn/fv34/nnn5f++KpXTxs2bEBpaSl8Ph8XOZ08eRIlJSXSxFLtsadkj+juacOGDVi9erXkSU5OFRUV+Oijj7B69Wrs378/5ZxWrVoFn8+nu8/cffv2Aei84fjhw4el7fbs2SPVun79ek3eT+fPn8fBgwdRXFyM4uJinDp1Cjk5ObBYLDhx4gTq6+u7eEr+4eT9999HUVERAODBBx/EjBkzAADXX3895s+fDwDIz8/Hrbfeih/96EeYN28edu3ahRdeeAFz5szB2rVr8e677wIA6uvrUVJSIp0Y0XMvf/vtt7F69WrJEw+fT6+99hp8Pp8mfc/n8+HVV19VxZPP58Prr7/OTU6pzvd8Ph9eeeUVvPbaa11y0uNnrghzo+Qc9uTJk0J4SnVeroYnrY8JlewR3T21t7dj9erVeO2117jISc58T6TPXBH63po1a/Dyyy/D5/Pp3lOq83K1PClxrJGuHnGhp5MnT2L16tXYsGGDIjk1NTVh9erVWLNmjaLHhGmB6QiPx8P+67/+i1199dXMZDIxo9E4oIfJZEq3BUJhampqGABmtVpZbm4uq6mpYbFYjDmdTpZIJBhjjLndbhYOhxljjAUCAebz+RhjjEWjUeZ0OiUtl8vFIpEIY4wxv9/P/H4/Y4yxSCTCXC6XtJ3T6WTRaJQxxpjP52OBQIAxxlg4HGZut5sxxlgikWBOp5PFYjHGGGNer5cFg0HGGGOhUIh5PB7GGGPxeJw5nU4Wj8cZY51jPBQKMcYYCwaDzOv1MsZYr56CwSCrrKxkbW1tuvfU3NzMPvroIxYMBrnIyeVysc2bN7NgMCg7J8b6Hnsej4fZ7XbW3t6uuCen08nsdru0n3Tn1NzczOx2OwsGgwP2FAwG2ZYtW6R9Kfl+6k9Oenk/aeXJ7XZL7xM9e2pra2OVlZUsGAxykZPX62WbNm3q0o/UHHtK9ojuntra2pjdbpf2Iycnn8/HOjo6mN1uZ263O6WcHA4H2759OwsGg7r7zG1vb2d2u51t3bqVbd68mdntdrZ9+3a2adMmtn37dma321lTU5Mm76dTp06xTZs2Mbvdzux2O9u0aRPbtm0bs9vtbMuWLayyspJ9/PHHF3lyOBwsJyeHAWC5ubnMarUyACw7O5vl5eUxAMxoNDKbzcaMRiMDwPLy8lh2drY03/u7v/s76Xe3adOmLv1Ir728tbWV2e125vP5uPh8cjgcbNu2bdIYUrvvBYNBtm3bNuZwOBT3FAwG2fbt25nD4eAip1Tne8FgkH300UesublZykmvn7kizI2CwSDbtGmTtC89e5IzL1fDk9bHhEr2iO6eAoEAs9vtrLm5mYuc5Mz3RPrMFaHvtbS0sK1bt7JgMKhrT3Lm5Wp5knuska4e0d2T1+tldrudtbW1KTL2/H4/s9vtrKWlRZFjwuTfcpOPmpoaphW6uUfI/v378e1vfxtNTU0Aut4ssb8YDAbpsh9CDDL9HiEEQRAEQWQGvNwjBADOnTsnfSOtN0wmE2677baLfv7QQw/h7bffTnnf2dnZcLlcPd5DhCAIgiAIgiAIvqF7hPRBe3s77rnnHjQ2NoIxBsYYzGYzJk2ahK997Wu44447+vW4/fbb022FIBQlHA6jqqpKuvxMz/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/0k/q1atwve+9z1YLJaUXh8Oh7Fz504Eg0Fh8uBtbFEPUk8rVQ3exkimI1IevHmh/qOeFs2BxEGUPHj0oWVNeuk/SujxlLUuToT84Q9/QHt7OwwGA/Lz8/HCCy+go6MDtbW1+PTTT2G32/v9IAiRiEQiqK6ulm5CpGd486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP8oQ1ZWVsqvzcnJQXl5OSoqKlBWVpaShtPpxMmTJ4XJg7exRT1IPa1UNXgbI5mOSHnw5oX6j3paNAcSB1Hy4NGHljXppf8oocdT1rpYGmv69Ok4dOgQjEYjduzYgVtvvTXdJRGcQEtjEQRBEASRCfC0NFYoFJJuqNgbZrO51zl7IpHAxx9/DABYunTpgL+sVF5ejnHjxuHmm28e0OsIgiAIgiAIgkgvtDRWH5w+fRoGgwEzZ86kkyAEcQGJRAIulwuJRCLdpciGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPMlitVlx99dWX3CY/P79fWosWLcLs2bMHvFRWKBQSJg/exhb1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nr4kRI8hc1efLkNFdCEHzh8XhQUlICj8eT7lJkw5sXretRc39KaiuhJUeDt3GS6YiSB28+qP+op6fn/mO1WmE09j51NxgMGDRokGb1DB8+HNOnT+/xOaPRiNGjR/dLx2q1YvHixaioqEB5ebn06GvZrHA4zNX7Vg7pHlvdoR6knlaqGryNkUxHpDx480L9Rz0tPc+BiK6IkgePPrSsSS/9Rwk9nrLWxdJYV199NY4fP4758+fjL3/5S7rLITgi05fGSiQS8Hg8yM/Pv+QfR/QAb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOent77z4kTJ9DY2Njjc8XFxWn50pDP54PD4YDX6wUADB48GMXFxZe8IuTCpbF6Yvjw4aitrcWDDz7Y4/Pl5eUYMWIEpk2bxs37Vg48jK101qOXHpTOORBvYyTTESkP3rxQ/1FPS+9zIOJ/ESUPHn1oWZNe+o8Set1fn86/5Zo12YtM7r77bhw7dgx79+5NdykEwRVGoxE2my3dZSgCb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOent77z1VXXYWsrCy0trYiGAwC6LyioqioCOPGjUtLTbm5uZgwYYKimv05wOIhD6XgzQv1IPW0UtXgbYxkOiLlwZsX6j/qael9DkT8L6LkwaMPLWvSS/9RQo+nrPk45dYHP/rRj5CdnY3jx49j69at6S6HILjB6/XipZdekr6FqWd486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X09N5/DAYDxo0bh5tuugl33HEH7rjjDtx888248sorYTAY0lbXQDEYDMjOzu71+ZycnD41wuHwJfNIJBJwOp1obGxEa2srotFoyvWqDQ9j60KoB6mnlaoGb2Mk0xEpD968UP9RT0vvcyDifxElDx59aFmTXvqPEno8Za2LEyETJ07E8uXLwRjDD37wAxw5ciTdJREEF1gsFkyfPn3ANxjlEd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP3xgMBhw2WWX9fic0WjEsGHDLvn6SCSC5uZmMMbwwQcfoLKyEvX19YhEIgCAYDCIPXv24ODBgzhx4gSOHDmC3bt3o729XXEvSsDb2KIepJ5Wqhq8jZFMR6Q8ePNC/Uc9LZoDiYMoefDoQ8ua9NJ/lNDjKWtd3CMkSVlZGR5//HEYDAY89thjePDBB3Httddecg1iQmwy/R4hBEEQBEEQeoQxhlOnTqG5uVk6gZGXl4fx48fDZrPhvffe6/UeIT1hsVhw6623Ys2aNWhpaYHL5bpoG6PRiJkzZ8JkMillgyAIgiAIgiCIAZDOv+Xq4ooQk8kEk8mERx55BJFIBKFQCM8//zxuv/12DBkyRHq+r4fZrItbohBEvwmFQtixYwdCoVC6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUffjAYDBg/fjxuueUWzJw5E7fddhtuuOGGfq8fbLVaMWvWLFitVgCdV4ls374dP/jBD+B2u3t8TfJGjbzB29iiHqSeVqoavI2RTEekPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylrXZwISV60kvzvhWsgM8YG9CAIkYjFYjhz5gxisVi6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUf/jAYDMjKyhrwVRpmsxljx4696ItOn376KcLhcK+v6+teIbFYDIlEYkC1yIW3sUU9SD2tVDV4GyOZjkh58OaF+o96WjQHEgdR8uDRh5Y16aX/KKHHVdZMBxgMBkUeRqMx3VYIhampqWEAmNVqZbm5uaympobFYjHmdDpZIpFgjDHmdrtZOBxmjDEWCASYz+djjDEWjUaZ0+mUtFwuF4tEIowxxvx+P/P7/YwxxiKRCHO5XNJ2TqeTRaNRxhhjPp+PBQIBxhhj4XCYud1uxhhjiUSCOZ1OFovFGGOMeb1eFgwGGWOMhUIh5vF4GGOMxeNx5nQ6WTweZ4wx5vF4WCgUYowxFgwGmdfrZYwx8kSeyBN5Ik/kiTyRp4zy9O677zIALC8vj2VnZ3eZ7wFgJpOJ2Ww2ZjAYGACWn5/PLBYLA8DeeOMNtmXLFma329m2bdvYpk2bmN1uZ3a7nX355Zc9ejp9+jTbvn07s9vtbMeOHWzXrl1STZQTeSJP5Ik8kSfyRJ7IE3kiT8p4Sv4tN/moqalhWqGLK0ISiYQij3g8nm4rhErMmDFDWke6tbUVJSUl0rcBV61ahaNHjwIAdu7ciYqKCgBAQ0MDSkpKJI3S0lLU1dUBACorK1FZWQkAqKurQ2lpqbRdSUkJGhoaAAAVFRXYuXMnAODo0aNYtWoVACAcDqOkpAStra0AgHXr1qGqqgoAcODAAaxduxYA4PF4UFJSIi3TsHbtWhw4cAAAUFVVhXXr1l3SUzwex9/+9jd88MEHQnj67LPPEI/Huchp3759KCsrQzwel50T0PfYO3nyJBwOB7Zs2aK4p927d8PhcGDfvn3c5ORwOBCPxwfsKR6P480338Tu3bsBKPt+6k9Oeno/aeGppqYGf/7znxGPx3Xt6YMPPsDf/vY3xONxLnKqr69HSUmJNG9Re+wp3SMu9PTBBx/A4XBInuTkVFFRgR07dsDhcKCmpiblnOrq6hCPxzP+M5f3vpe8cmP+/Pm4/vrrAXSd71122WVYuHAhBg0aBAB45JFHcPXVVwMA2tvbceLECUlvz549Uq3vvPPORZ4cDgf27t2LXbt2Aei84nzr1q34+OOPEY/HVc/p3XffhcPhgMPh4Can2tpaxONxTcZePB7HoUOHVPEUj8dx9uxZbnJKdb4Xj8fx2WefUY/gxFNyDltfXy+Ep1Tn5Wp50vKYUMke0d1TIBCAw+HgJic5871k3wsEAlJO1CPS6yn52aB3T6nOy9XypMSxRrp6xIWe6uvr4XA48MEHHyiSk9PphMPhUPyYMC1odsqFIFQg068IcTqd7Omnn2bnz5/XvaezZ8+yp59+mjmdTi5ycjgcUj1anNlvaWlhTz/9NGtsbFTcU9KLw+HgIqf6+npJY6CekmPe4XAwxugbGOn21NzcLGWpZ0/nz5+XfPCQU2trq1SPEjlp2SO6e0r+bltbWxUZe01NTezpp59mzc3NKeV0Yf/J5M9cPfS9vq4IKSwsZE8//TSz2WwXXRGyatWqAV0RUl1dzT766KMu223atIlt27aNtbe3q55TQ0MDe/rpp1lbWxsXOV34PtFi7CXfW/X19Yp7ulCbh5xSne8lfZw9e1bKKdN7RDo9JfNobW3VvSc583I1PGl9TKhkj+juqaOjQ3rf8pCTnPleW1sbe/rpp1lHRwdjjHpEuj2dO3dOGg969iRnXq6WJ7nHGunqEd09JY8nz58/r8jYa29vZ08//TQ7d+6cIseE6bwixMAY3TiD0C9HjhzB1KlTpf+vqanBNddck8aKtIUxhnA4jOzs7C73ztEjvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/9IPdbse9996LSCTS4/MGgwHZ2dkIh8M93gdw9uzZWLRokXQz9SQTJkzA5Zdf3iXDqqqqXm/eOGHCBIwaNUqGk77hbWxRD1JPK1UN3sZIpiNSHrx5of6jnhbNgcRBlDx49KFlTXrpP0rodX99Ov+Wq4ulsQiC6BmDwQCr1crNh4YcePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/6Ifs7GzMnDmz1+cZYwiFQj2eBAE6T6QsW7bsop9/+eWXqKqqQlNTk2K1yoW3sUU9SD2tVDV4GyOZjkh58OaF+o96WjQHEgdR8uDRh5Y16aX/KKHHU9Z0IoQgdIzH48GKFSukNQj1DG9etK5Hzf0pqa2ElhwN3sZJpiNKHrz5oP6jnh71H32xaNEizJ49GxaL5aLn8vPzsXDhQuTn5/f6ervdjrNnz150VUk4HMbx48fR0dGheM2pwNvYoh6knlaqGryNkUxHpDx480L9Rz0tmgOJgyh58OhDy5r00n+U0OMpa3O6CyAIInWsVitmzZp10bIPeoQ3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o++sFqtWLx4MSKRyEUnLQYNGoT/+q//6nVJqyQLFiyAxWLBzJkzL1oq69ChQ7j99ttVqX0g8Da2qAepp5WqBm9jJNMRKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWrf3CPH5fDh48CDa2trg9XqRSCT69bp//Md/VLkyQksy/R4hBEEQBEEQIrJ79+5e7w+SZOnSpbDb7f3WnDJlClasWNHlCpOxY8fC4XCk9R4hBEEQBEEQBJEp0D1CBsCbb76JW265BTabDbfffju+853vYMGCBXj44Yf7fDzyyCPpLp8gFCUYDGLz5s0IBoPpLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xCEajeL73/8+vvGNb/T7NbW1tbj33nuxdOlS6cQHD8tj8Ta2qAepp5WqBm9jJNMRKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWjcnQoLBIObMmYMf/OAH+Pzzz5FIJMAY6/EB4JLPEYQoJBIJuFyufl8RxTO8edG6HjX3p6S2ElpyNHgbJ5mOKHnw5oP6j3p61H/EgTGGaDSKf/u3f0NFRcWAXnfhjdT7uupEC3gbW9SD1NNKVYO3MZLpiJQHb16o/6inRXMgcRAlDx59aFmTXvqPEno8Za2bpbH+/u//Hm+99RaAzrXFZs+ejdOnT+PYsWMwGAz4x3/8R3i9XtTX1+PQoUOIRqMwGAwYPHgwvvOd70h3pn/99dfTaYNQGFoaiyAIgiAIQjwOHjwIp9PZ7+0HukyWxWJBRUWFdLN1WhqLIAiCIAiCINSHlsbqgz179uCtt96CwWDAVVddhdraWvz1r3/FXXfdJW3z+uuvY926dfjiiy/Q2tqK3//+98jNzYXf70dLSwuef/55OglCCEcsFsOZM2cQi8XSXYpsePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/6IcRI0Zc8vnu3yxbtGgRZs+e3eX+H5eipxuwpwvexhb1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nr4kRIWVmZ9O9Vq1bhiiuuuOT2+fn5+Nd//Vfs3bsXI0aMwJYtW/Dwww+rXSZBaI7P50NZWRl8Pl+6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUf/TB8+HBMmTKl1+cjkQgOHjyIK6+8ElOmTMGkSZNQUlKCiooKlJeXX/K1vMHb2KIepJ5Wqhq8jZFMR6Q8ePNC/Uc9LZoDiYMoefDoQ8ua9NJ/lNDjKWtdLI113XXXoaamBhMmTMCJEyekn//0pz/Fiy++CIPBgHg83uNrt23bhm984xswGAz44IMPcN9992lVNqEBtDQWQRAEQRCEuESjUezatavH50wmE2bOnAmjsfO7XS6XC9XV1QA6l7patmzZJZfLKi8vR3FxMbKzsxEOh3vchpbGIgiCIAiCIAjloKWx+qCxsREGgwHXX399l58n7/sB9H6jw7vuukv6Zb7xxhvqFUkQBEEQBEEQhKJkZWVh7NixPT535ZVXSidBumO1WrF48eIuV5b3Rm8nQQiCIAiCIAiCEAddnAjxeDwAgKFDh3b5+aBBgy7apie+8pWvgDGGffv2qVMgQaQJt9uNZ599Fm63O92lyIY3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o8+ueKKKzB16lSMHDkSw4YNw+WXX44rr7wSa9as6TOPS90zxOFw9PplKiVIJBJobm7GiRMncPz4cTQ3N0v3NLkQ3sYW9SD1tFLV4G2MZDoi5cGbF+o/6mnRHEgcRMmDRx9a1qSX/qOEHk9Zm9NdQH/IycmB1+tFNBrt8nObzSb9u76+HsOGDevx9cnVv5qamlSrkSDSQU5ODubOnYucnJx0lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/+sRgMGDYsGFd5vrRaFR2Hj//+c9hsVgwc+ZMLFq0CFar9aJtwuEwWlpaYDQaUVBQgKysrD51w+EwOjo6cPz48S4/b2pqQnNzM6ZOndrlShbexhb1IPW0UtXgbYxkOiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nr4h4h1157LY4ePYoHHngA69evl37+3nvv4bvf/S4MBgNKSkrwk5/8pMfX33jjjdi/fz8GDx4Mr9erVdmEBtA9QgiCIAiCIAig6z1CkjgcDsybN6/P186ePRuLFy/uc7srrrgCWVlZ8Hg8MBqNsNlsGD58uHRio6OjAzU1NT1e+ZHkmmuuQVFRUZ/7IgiCIAiCIAjRoHuE9MG1114LxthF36q66aabpPuEvPLKK4jFYhe9trKyEvv374fBYMCVV16pSb2E9litVuTm5gIA4vE4XC6XdCWQx+ORlj0IBoPw+/0AgFgsBpfLJWm43W7pqqNAIIBAIACg8xuHF16+5XK5pLHm9/sRDAYBdN6nJrlEG2MMLpcL8XgcAODz+RAKhQB0fksweUIukUjA5XJJB8ter1dapzoUCsHn813SUyAQwLp169Da2qp7T83NzXjvvfcQCAS4yMnpdOLdd99FIBCQnRPQ99hzu93YuHEj2traFPfU0dGBjRs3wul0cpGTw+HAxo0bEQgEBuwpEAjg3XffRUdHBwBl30/9yUkv7yetPLlcLrzzzjsIBAK69tTa2op169YhEAhwkZPH45F+r0rkpGWP6O6ptbUVGzduhMfjUWTstbe3Y+PGjXC5XCnl1NTUhA0bNiAQCGT0Z64Ifc/r9eKdd97p8r5JeopGo9K/E4lEl6vIL7yqIycnR/pm2p49e9DR0QGHwwGHw4Fz585J9UUiEen3cOrUKRw5cgQtLS1oampCdXU1jhw5AsYYvF4vDh48iEQigVgsJtXNGEMoFOpylfqFnlpaWrBx40Z4vV4ucmpqasL69esRCAQ0GXuBQADr16/vcvW+Up4CgQA2bNiApqYm2WNPiZxSne8FAgG89957aG5ulnKiHpE+T4FAAO+8845Uu549yZmXq+FJ62NCJXtEd09+vx8bN25Ec3MzFznJme9d6jOXeoT2nlpaWqT3iZ49yZmXq+VJ7rFGunpEd08ejwcbN25Ea2urImPP5/Nh48aNaGlpUfSYMB3o4kTI7bffDgA4fvy49McvABg9ejRuvfVWMMZw5MgRPPDAAzhw4IA0CNasWYP58+dL28+ZM0fz2gltmDFjBh588EEAnX/QKikpkd6cq1atwtGjRwEAO3fuREVFBQCgoaEBJSUlkkZpaSnq6uoAdJ5Aq6ysBADU1dWhtLRU2q6kpAQNDQ0AgIqKCuzcuRMAcPToUaxatQpAZ+MoKSmR/liybt06VFVVAQAOHDiAtWvXAuhsDiUlJVIzWrt2LQ4cOAAAqKqqwrp16/r01NzcLNWqZ09vvvmm1Lx5yOnw4cM4deqUYjn15enMmTMAgB07dijuKXl/pMOHD3OR0+rVq2V5qq+vlzwp/X7iYezpydOJEyfw5Zdf6t5TZWWl9MclHnJqbGxEbW2tYjlp2SO6e0rW2tjYqMjY++yzzwB0jr1UcnrllVekA4hM/swVoe+1tbWhtra2i6dkP6qvr8eJEycAdN5sfeHChVKtTzzxBMaPHw8AuPvuu3H33XcDAMaMGYMvvvgC8+bNw7x583Dq1Cn89Kc/xdKlS3Hs2DHU19dLv8tkPfF4HHv27EF9fb10AjO5ncPhwOHDhyXve/bskWq12+1dPH344YeSJx5yeuWVV6QatBp7gUAAr7zyiiqeEokEXnnlFdljT4mc5Mz33G433nzzTSkn6hHp9VRbW4vGxkbde5I7LxfhmFCpHnEpTzzkJGe+19NnLvWI9Hlat26d9LdRPXuSOy9Xw5PcY4109YjunpKfT5WVlYqMveSJkXXr1il6TJgWmA6or69nRqORGY1GVlZW1uW53bt3S8/19jAYDGz48OGstbU1TQ4ItaipqWEAmNVqZbm5uaympobFYjHmdDpZIpFgjDHmdrtZOBxmjDEWCASYz+djjDEWjUaZ0+mUtFwuF4tEIowxxvx+P/P7/YwxxiKRCHO5XNJ2TqeTRaNRxhhjPp+PBQIBxhhj4XCYud1uxhhjiUSCOZ1OFovFGGOMeb1eFgwGGWOMhUIh5vF4GGOMxeNx5nQ6WTweZ4wx5vF4WCgUYowxFgwGmdfrZYwx8kSeyBN5Ik/kiTyRJ/LUh6fm5mZmt9tZZWUl27JlC7Pb7Wzbtm3s3nvvZQAYAFZQUMCysrIYAJaTk8NycnIYAJaVlcUKCgqk7Ww2GzObzQwAu/vuu1llZSWz2+3so48+Yps3b2Z2u51t376dbdq0iW3bto3V19ezc+fOsa1btzK73c62bt160Xbbt29ndrudHThwIKNzIk/kiTyRJ/JEnsgTeSJPmesp+bfc5KOmpoZphS7uEQIAv/zlL9HQ0IAbb7wR//qv/9rluVWrVuHxxx/vcWksACgqKsL777+PGTNmaFEqoSGZfo+QaDSKuro6jB8/vl837+QZ3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4tBTHq4e7hECdF66v2zZMuzevVv6ptpAsFgsqKiogMVi6XWbsWPHoqCgAAcPHuxTb+TIkZg4ceIlvaQT6kHqaaWqwdsYyXREyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJve6vp3uE9IPf//73KC8vv+gkCAA88sgjOHjwIP75n/8ZV155JaxWK3JycjB16lT85je/QU1NDZ0EIYQkEAhIa4XqHd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IwkDysVisWL16Mw4cPY/ny5QPeVyQS6bI8r9LwNraoB6mnlaoGb2Mk0xEpD968UP9RT4vmQOIgSh48+tCyJr30HyX0eMpaN1eEEERPZPoVIQRBEARBEEQnvV0RkmT8+PHYtWsX5s2bN2Dt8vJyFBcX9/q8nCtCCIIgCIIgCCJToCtCCIIgCIIgCIIgCIIgCIIgCIIgVIBOhBCEjnG5XFiyZAlcLle6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApD968UA9STytVDd7GSKYjUh68eaH+o54WzYHEQZQ8ePShZU166T9K6PGUtS6XxgqFQti8eTM+/fRTnDt3Dk6nE/F4HNu2beuyHWMMwWAQAJCVlcXNzXcI5cj0pbFisRgaGhowatQomM3mdJcjC968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+LQUx5erxf79u3r9TUTJ07Exx9/zN3SWLyNLepB6mmlqsHbGMl0RMqDNy/Uf9TTojmQOIiSB48+tKxJL/1HCb3ur0/n33J1dyLkueeew7Jly9De3i79jDEGg8GAeDzeZdv29naMGTMGoVAIN998M3bv3q11uYTKZPqJEIIgCIIgCKITxhh27dqFWCx20XNWqxUTJ07E3r17MWfOHEQikQFpL1++HFdffTUsFkuPz9M9QgiCIAiCIAiib+geIf0gGo3ivvvuw69+9Su0t7eDMSY9emPo0KFYsGABGGPYs2cPvvzySw0rJgj18fv9eOutt+D3+9Ndimx486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+IQ095GAwGTJ48GQaDocu2RqMRkyZNAgBYLBbMnDlzwPv7+c9/jnvuuQc/+tGPcObMmQGfSLkUvI0t6kHqaaWqwdsYyXREyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJPZ6y1s2JkCeeeAKbNm0CYwzZ2dl47LHH8Pbbb+OBBx645Ov+4R/+Qfr33/72N7XLJAhNMRqNsNlsMBp181buFd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+LQWx7Dhg3DTTfdhKuuugpjxozBxIkTcdNNN2HIkCHSNosWLcLs2bN7vbrjUtTW1uLhhx/GnDlzsHTpUoRCIdW8pAvqQeppparB2xjJdETKgzcv1H/U06I5kDiIkgePPrSsSS/9Rwk9nrLWxdJY+/btw0033QQAuPzyy1FZWYnJkycDAH7605/ixRdf7HFprCRDhgyBx+PBd77zHbz77rua1U2oDy2NRRAEQRAEQfSHjo4OHDp0SPr/SCSCjo4O6f8dDgd+/vOfD0hz9uzZWLx4MfLy8nDllVfS0lgEQRAEQRAEcQloaaw+eP3116UlsNasWSOdBOkv06dPB2MMtbW1apRHEGkjEomgurpa0eUZ0gVvXrSuR839KamthJYcDd7GSaYjSh68+aD+o54e9R9xUCIPi8WC4uJi6XGpe4D0xq5duxCJROD1etMyLtWAepB6Wqlq8DZGMh2R8uDNC/Uf9bRoDiQOouTBow8ta9JL/1FCj6esdXEixG63AwCmTp2KO+64Y8CvHzVqFADg/PnzitZFEOkmFAphx44diizLkG5486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+Igxp5pHL/kEgkAofDAQBwOp0p7Ze3sUU9SD2tVDV4GyOZjkh58OaF+o96WjQHEgdR8uDRh5Y16aX/KKHHU9a6WBorubTVD37wA6xevbrLc/1ZGuuJJ57Ayy+/DLPZzMXZJ0I5aGksgiAIgiAIoj90XxqrJ0KhEJYtWyZd6dFfZs+ejd/+9rcIBoN9bktLYxEEQRAEQRCZCi2N1QfJM0ZWqzWl1/t8PgBAbm6uYjURBA8wxhAKhaCD85l9wpsXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxSySMrK6vPbaxWKxYvXoyKigqUl5fj9ddfx5QpU/p8nd1ux1NPPdXvWi6Et7FFPUg9rVQ1eBsjmY5IefDmhfqPelo0BxIHUfLg0YeWNeml/yihx1PWujgRUlRUBADSZecD5dixY110CEIU3G43fve738Htdqe7FNnw5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8Rh1TyGMiXopL3Dxk7dixWrlyJsrKyPl+zY8eOlK4+521sUQ9STytVDd7GSKYjUh68eaH+o54WzYHEQZQ8ePShZU166T9K6PGUtS6Wxrr77rvx0UcfoaioCI2NjTCZTNJzfS2Nde7cOVx55ZVIJBKYN28e3njjDS1LJ1Qm05fGisfjaG1tRVFRUZf3hR7hzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDqnm0dLSgqNHjw54f5FIBHPmzOnzREd5eTmKi4svuU33pbF4G1vUg9TTSlWDtzGS6YiUB29eqP+op0VzIHEQJQ8efWhZk176jxJ63V+fzr/l6uJEyB//+Ef827/9GwwGA1599VU8/PDD0nN9nQj54Q9/iL/85S8wGAxYvXo1fvCDH2hZOqEymX4ihCAIgiAIghgYn332GcLh8IBft3TpUtjt9ktu058TIUDnElzRaBT5+fkYPXo0CgsLB1wPQRAEQRAEQegNukdIH/zwhz9EQUEBAOAXv/gF9u7d26/XLV26VDoJMnLkSDz00ENqlkkQmuPz+bB69WrpPjh6hjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jzjIyWPq1Kkwm80Dft2iRYswe/bsAb+uJ0KhEOLxOJxOJ/bu3YtXX321i5d4PA6/39/jF73UhnqQelqpalD/4QuR8uDNC/Uf9bRoDiQOouTBow8ta9JL/1FCj6esB34EkAYKCwvx3//93/jpT38Kj8eD2267DT/+8Y8xb968Lt/m8ng8aGpqwq5du1BaWor9+/dLzy1fvrxfN0gkCD1hNpsxduzYlA7meYM3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o84yMkjLy8PM2bMgMvlQigUgtVqxcmTJ/u8SiR5I/Uf/vCHWLBgQZ/7iUQi6Ojo6PKzwsJCWCyWLj8zGo2w2Wwwm81IJBI4duwYWltbwRiD0WjE8OHDMXHiRBiN2nyHjXqQelqpalD/4QuR8uDNC/Uf9bRoDiQOouTBow8ta9JL/1FCj6esdXFFCAD8+Mc/xs9+9jMwxhCJRLB8+XLcdNNNeO211wB03oF+yJAhuPrqq/Hoo49i//790t3o//M//xMPPvhgOssnVMZqtUo3wIzH43C5XFL+Ho9HWs85GAzC7/cDAGKxGFwul6ThdrsRjUYBAIFAAIFAAAAQjUa73NDH5XIhFosBAPx+P4LBIIDOg12PxwOgczy6XC7pW3w+nw+hUAgAEA6H4fV6AQCJRAIulwuJRAIA4PV6pYPwUCgknS3tzZPVasXNN98s7UfPniKRCL72ta/BarVykZPBYMANN9wAq9UqOyeg77FnMpkwa9YsJBIJxT0BwKxZs2AwGLjIKRwOY9asWbBarQP2ZLVaceONN0r7UfL91J+c9PJ+0sqT0WjEV77yFVitVl17isfjuPnmm2G1WrnIyWw2Y/r06bBarYrkpGWP6O4pHo9j1qxZMJvNiow9xhhmzZoFo9GYUk6hUAi33347rFZrRn/mitD3srKyMH36dGRnZ6fkyWw2IycnB4WFhRg2bBgMBoNUT3JfyRoikQii0Sguv/xyjB07FgaDAUDnXMFms0lrJefm5iIejyMUCuGZZ57BvHnzMG/ePMyfPx9PPPEE5s+fjzlz5uDZZ5+VfMRiMSQSCQwbNgwOhwMHDhxAc3MzGGMIh8OIRqNwOByora3VLKdQKITbbrsNVqtVk7FntVpx6623dvn9K+XJarXijjvukK7AAVIfe7FYDLNmzUJWVpbm8z2r1Yqvfe1r0n6oR6TXk9VqxfTp06U/6OjZk5x5uRqetD4mVLJHdPeUnZ2NWbNmIRKJcJETkPp8T+5nrtycevPE2/tJK0/RaBS33HILrFarrj3JmZer5UnusUa6ekR3T2azGbNmzUI8Hldk7FksFsyaNUvqRwPNqbdjwnSgmxMhALBixQq8+uqrKCgoAGNM+gUbDAYYDAbpZ8mHzWbD66+/jqeffjq9hROqM2PGDOlkV2trK0pKSqQ356pVq6SbYu7cuRMVFRUAgIaGBpSUlEgapaWlqKurAwBUVlaisrISAFBXV4fS0lJpu5KSEjQ0NAAAKioqsHPnTgDA0aNHsWrVKgCdjaOkpAStra0AgHXr1qGqqgoAcODAAaxduxZAZ3MoKSmRmtHatWtx4MABAEBVVRXWrVt3SU/hcBhvvfUW3n//fd17eu2111BRUYFwOMxFTl988QX+/Oc/IxwOy84J6HvsHTt2DFVVVdi0aZPinj799FNUVVXhiy++4CanqqoqqdaBeAqHw1i1ahU+/fRTAMq+n/qTk17eT1p5OnjwIEpLSxEOh3Xt6f3338dbb72FcDjMRU6nTp3qsp3aY0/JHtHd0/vvv4+qqirJk5ycKioqsH37dlRVVeHgwYMp57Rz506Ew+GM/swVoe+dP3++y3ZyPbW2tnZZfnfPnj2S9okTJ1BfXw+TyQSXyyV5zc7OxsKFC1FUVAQAePDBB3Hu3Dk888wz8Pl8+N73vgcAyM/Px8KFC5Gfn49IJIJx48bh7bffluo7cuQIGhoaUF1djQ8//FA6KD1w4ID0+/r88881zWnbtm0Ih8OajL1wOIzKykpVPIXDYXz66aeKjL133nkHVVVV0tjTcr4XDodRUVEhfQmQekR6PSVrPXXqlBCeUp2Xq+FJ62NCJXtEd08ejwdVVVV47bXXuMhJznxP6c9c0XuE2p7eeOMNbNiwAeFwWPeeUp2Xq+VJiWONdPWICz2dOnUKVVVVeP/99xXJqbW1FVVVVXjjjTcUPSZMC0yHeL1eVlJSwu655x6Wn5/PDAaD9LBarez2229ny5YtY263O92lEipTU1PDADCr1cpyc3NZTU0Ni8VizOl0skQiwRhjzO12s3A4zBhjLBAIMJ/PxxhjLBqNMqfTKWm5XC4WiUQYY4z5/X7m9/sZY4xFIhHmcrmk7ZxOJ4tGo4wxxnw+HwsEAowxxsLhsDTmEokEczqdLBaLMcY6x2wwGGSMMRYKhZjH42GMMRaPx5nT6WTxeJwxxpjH42GhUIgxxlgwGGRer5cxxnr15PF42IsvvsgcDofuPZ0/f569+OKLzOPxcJFTa2sre+GFF5jH45GdE2N9j7329nZWWlrKmpubFffU0tLCSktLWWtrKxc5NTQ0sNLSUubxeAbsyePxsBdeeIG1tLQwxpR9P/UnJ728n7Ty1NbWJr1P9OzJ4XBI45qHnDo6OqTfqxI5adkjuntyOBystLSUdXR0KDL2mpubWWlpKWtra0spp3PnzrGVK1cyj8eT0Z+5IvQ9p9PJXnjhBUlfrqfPPvuMbdq0idntdma329mmTZvYtm3bmN1uZ1u2bGGVlZWsrq6OhcNhtm7dOgaAGQwGZrPZmMlkYgBYbm4us1qtDADLzs5meXl5DAAzGo3MZrMxo9HIALC8vDyWm5vLtmzZwrZu3co++OAD9vvf/5797W9/Y5s2bWLbt29ndrudbd68mX300UfMbrezyspKybvaOV34PtFi7Hk8HrZy5Up27tw5xT1dqC137DU1NbHS0lLmdDo1n+8l+8/58+elnKhHpM9Tcj7a0dGhe09y5uVqeNL6mFDJHtHdk9vtZqWlpez8+fNc5CRnvqf0Z67oPUJtT42NjdL7RM+e5MzL1fIk91gjXT2iu6eOjg5WWlrKHA6HImPP5XKx0tJS1tjYqMgxYfJvuclHTU0N0woDY/9zWYWO8fv9cLvdGDx4sHRTdSIzOHLkCKZOnSr9f01NDa655po0VkQQBEEQBEHojS+++EJaiqA3xowZgyuvvBIVFRX49re/LXuf5eXlKC4u7vf2d9xxh7QsF0EQBEEQBEHokXT+LVdXS2P1xuDBgzFy5Eg6CUJkHN3XINQzvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEGkPNj/3JeDl++nUQ9STytVDZHGuwiIlAdvXqj/qKdFcyBxECUPHn1oWZNe+o8SejxlLcSJEILIVLqvQahnePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iEM68xg6dCgsFotieuFwGHv27JHWVU431IPU00pVg/oPX4iUB29eqP+op0VzIHEQJQ8efWhZk176jxJ6PGUtxNJYROaS6UtjJRIJeDwe5Ofnw2jU93lN3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4qB0HjU1NWhra7vkNsmlsfbt24df/vKXsNvtsvaZXBqLMYZwOIzs7OxLLn2l1dJY1IPU00pVg/oPX4iUB29eqP+op0VzIHEQJQ8efWhZk176jxJ63V+fzr/lmjXZC0EQqmA0GmGz2dJdhiLw5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8RB6XzGD58eJ8nQi5k0aJFAIBdu3YhEomktE+HwyH9u7CwkJv7f1APUk8rVQ3qP3whUh68eaH+o54WzYHEQZQ8ePShZU166T9K6PGUNR+n3AZAMBjEunXrsGjRInz3u9/FPffcgzvvvLNfj7vuuivd5ROEoni9Xrz00kvwer3pLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEHpPIYPH46rrrqq39tbrVYsXrwYFRUVKCsrS2mfP//5zzFv3jz8y7/8CzZu3Ihnn30WoVAoJS0loR6knlaqGtR/+EKkPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylr3VwRwhjD73//ezzzzDPw+XwpvZ6Xb1kRhFJYLBZMnz5d0XWq0wVvXrSuR839KamthJYcDd7GSaYjSh68+aD+o54e9R9xUCOPyy+/HK2trXC5XAOqY8yYMZg9e3bKS2VFIhEcOHAABw4cQCQSweLFi1PSUQrqQepppapB/YcvRMqDNy/Uf9TTojmQOIiSB48+tKxJL/1HCT2estbNPULmz5+Pt956C3LKNRgMiMfjClZFpJtMv0cIQRAEQRAEoRzV1dW9ngi58B4h3b/RFgqFsGzZMllLZQGdB4oVFRU9HihqdY8QgiAIgiAIglCLdP4tVxdLY7355psoLy+X/n/SpEn4z//8T7z99tvYunUr7HZ7vx7bt29PowuCUJ5QKIQdO3ZwsYyCXHjzonU9au5PSW0ltORo8DZOMh1R8uDNB/Uf9fSo/4gDb3lcuFRWeXm59OjPsllWqxWzZs2C1WpFJBJBR0dHj9sdPXoUu3fvxmeffYZjx47JOuFyKagHqaeVqgZv4z3TESkP3rxQ/1FPi+ZA4iBKHjz60LImvfQfJfR4yloXJ0JeffVV6d8///nPceTIESxZsgTf/e53cdddd+GOO+7o94MgRCIWi+HMmTOIxWLpLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xIHXPCwWC4qLi6VHf5YAMJvNGDt2LMzmS69a3NraikgkgnA4DIfDgYMHDyKRSChVugT1IPW0UtXgdbxnKiLlwZsX6j/qadEcSBxEyYNHH1rWpJf+o4QeT1nrYmmsYcOGwel0Yty4cTh58iRdEk5I0NJYBEEQBEEQhFIcOXIEra2tPT535ZVXYsyYMT0ujdUbDocD8+bNG1AN5eXlKC4u7te206ZNw5AhQwakTxAEQRAEQRDpgpbG6oPkpTO33XYbnQQhiAuIx+NwOBxC3PuGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPOKiVx6VOKhQWFiq6ryQmkwnFxcUwmUwDfq3P51O8HupB6mmlqkH9hy9EyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sWJkDFjxgAAjEZdlEsQmuH1evHyyy/3+1uJPMObF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/Ucc1MpjxIgRuOyyyy76+YQJE5Cbm6vovpLk5eXh8ccfR15enir6A4V6kHpaqWpQ/+ELkfLgzQv1H/W0aA4kDqLkwaMPLWvSS/9RQo+nrHWxNNbDDz+MsrIyzJgxA7t37053OQRHZPrSWIwxhMNhZGdn6/5qKd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+Kg9rgNhULweDwwGo0oKCjocq8PpZfGMhgMyM7ORjgcBmNsQEtjjR8/HqNHj+7Xtv2FepB6WqlqUP/hC5Hy4M0L9R/1tGgOJA6i5MGjDy1r0kv/UUKv++tpaaw++MlPfgIA+OKLL1BTU5PmagiCHwwGA6xWKzcfGnLgzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDmqP20GDBuGyyy5DUVHRRTc8V/oq9eSJF16+n0Y9SD2tVDWo//CFSHnw5oX6j3paNAcSB1Hy4NGHljXppf8oocdT1ro4EXLDDTfg8ccfRzwex7x589De3p7ukgiCCzweD1asWAGPx5PuUmTDmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHNKZR0FBQb+3LSwsvOhESnfy8/OxcOFC5Ofnyy1NEagHqaeVqgb1H74QKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWhcnQgDghRdewKOPPipdPvPCCy+gqakp3WURRFqxWq2YNWsWrFZrukuRDW9etK5Hzf0pqa2ElhwN3sZJpiNKHrz5oP6jnh71H3FIZx6jR4/G4MGD+7WtxWLBzJkzL7lNKBTCjh07EAqFAHQup9XbIxKJyK6/L6gHqaeVqgb1H74QKQ/evFD/UU+L5kDiIEoePPrQsia99B8l9HjKWhf3CLmQFStW4Be/+IV0OU1BQQEKCgr6dXmNwWBAXV2d2iUSGpLp9wghCIIgCIIgtCcWi6G9vR1erxeJRAKNjY29bhsKhbBs2TLs2rVLkRMZU6ZMwaJFizBy5EhMmTJF8XuEEARBEARBEIRa0D1C+kE0GsUTTzyBX/3qVzAYDGCMgTEGl8uFs2fPor6+/pKPM2fO4MyZM+m2QRCKEgwGsXnzZgSDwXSXIhvevGhdj5r7U1JbCS05GryNk0xHlDx480H9Rz096j/ikO48zGYzLrvsMkyYMAFjx4695LZWqxWLFy9GRUUFysvLUV5ejuXLl0vPDxo0CPfeey8GDRrUr33X1tbi4Ycfxpw5c/DjH/8YgUDgom0YY/B6vQgEAgO+9wj1IPW0UtVI93gnuiJSHrx5of6jnhbNgcRBlDx49KFlTXrpP0ro8ZS1Od0F9Id4PI4HHngAW7ZsAYCLJvM6u6iFIBQjkUjA5XIhkUikuxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQc95mGxWFBcXHzRz41GI2w224Bvwh6JRFBRUYFHHnkEb731lvTzlpYWnDhxArFYDACQnZ2NqVOnIi8vr1+61IPU00pVQ4/jXWREyoM3L9R/1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sXSWKWlpfjxj38sXQny9a9/HfPmzcO1116LIUOGwGzu//mcK664QsVKCa2hpbEIgiAIgiCIdBKJRLB79+4BvcbhcGDevHmK7N9qtcLpdMJqtcLn82Hfvn0XfVHMbDbjlltugclkUmSfBEEQBEEQBJEKtDRWH5SVlUn/fu6551BZWYmHH34YN954I8aPH48rrrii3w+CEIlYLIYzZ85I3/jTM7x50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf8RBpDzMZjPGjh07oC93XUgoFILD4QAAdHR09Hi1fCwWg9vt7pce9SD1tFLVEGm8i4BIefDmhfqPelo0BxIHUfLg0YeWNeml/yihx1PWujgRcuTIERgMBlx99dX4xS9+ke5yCIIbfD4fysrK4PP50l2KbHjzonU9au5PSW0ltORo8DZOMh1R8uDNB/Uf9fSo/4iDSHnk5ubihz/8IXJzc2VrhcPhlJ67EOpB6mmlqiHSeBcBkfLgzQv1H/W0aA4kDqLkwaMPLWvSS/9RQo+nrHWxNFZeXh4CgQAefvhhvPrqq+kuh+AIWhqLIAiCIAiCSCdqLo21fPly2Gw2LFu2DLW1tb1uV1dXhyFDhuDgwYO9bjNp0iSMGDFiQHUSBEEQBEEQhJKk82+5urhZ+uWXX46TJ08iHo+nuxSCIAiCIAiCIAhZFBYWwmKxIBKJ9LqNxWLB1VdfDYvFgpUrV+Ls2bNYsGBBj9t+/vnnPd6I/UI6OjrgdrsRDAaRl5eHESNGYPDgwbJ8EARBEARBEIRe0MXSWHfeeScYY6iurk53KQTBFW63G88++2y/13zmGd68aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+Kg9zwsFgtmzpwJACgoKMCvf/1rFBQUdNlm5syZsFgsXV4jh9bWVjgcDrjdbjQ0NODAgQM9LlFAPUg9rVQ19D7eRUOkPHjzQv1HPS2aA4mDKHnw6EPLmvTSf5TQ4ylrXZwIeeyxx2AymXDo0CF88skn6S6H4BCr1SqtqxyPx+FyuaQbRXo8HunbdsFgEH6/H0DnzXpcLpek4Xa7EY1GAQCBQACBQAAAEI1Gu7xZXS6XdIMfv9+PYDAIoHNZBI/HAwBgjMHlcklXMfl8PoRCIQCd6zN7vV4AQCKRgMvlQiKRAAB4vV5p/eZQKCQdnPbmKScnB9/85jeln+vZUywWw3333YecnBwucjKZTLjnnnuQk5MjOyeg77GXlZWFuXPnSr6U9GQ0GjF37lyYTCYucopGo5g7dy5ycnIG7CknJwf33HMPjMbOjy8l30/9yUkv7yetPJnNZtx9993IycnRtSfGGL75zW8iJyeHi5wsFgu+8Y1vICcnR5GctOwR3T0xxjB37lxYLBZFxp7BYMDcuXNhNptTyikSieDb3/42cnJyMvozV4S+l52djW984xsYNGgQN54ikYj0mlgsJtXNGEMoFJJ+/9FoFDabDYsWLcLXv/51WCwWbNy4EaFQCDabDRaLBbNnz8aTTz4paUejUUnbbDbDZrNJtRYUFEi/r+TnbDL35O84+ftLbheJRBAMBnH+/PmLPEUiEcyZMwc5OTmajL2cnBzMmTOny9UxSuWUk5ODBx54AJFIRPbYSyQSmDt3LrKzszWf7+Xk5OC+++7r8rlFPSJ9nnJycvCNb3xDOjmpZ09y5uVqeNL6mFDJHtHd06BBgzB37lzEYjEucpIz3+PxM5fH95NWnuLxuPQ+0bMnOfNytTzJPdZIV4/o7slisWDu3LlgjCky9qxWK+bOnYt4PK7oMWE60MWJkGnTpuGZZ54BYwwPPfQQjh07lu6SCM6YMWMGHnzwQQCd33YrKSmR3pyrVq3C0aNHAQA7d+5ERUUFAKChoQElJSWSRmlpKerq6gAAlZWVqKysBNC55nJpaam0XUlJCRoaGgAAFRUV2LlzJwDg6NGjWLVqFYDOxlFSUoLW1lYAwLp161BVVQUAOHDgANauXQugszmUlJRIzWjt2rU4cOAAAKCqqgrr1q27pKesrCw0NTVh8+bNuve0Zs0axONxZGVlcZFTTU0N9uzZg6ysLNk5AX2PvbNnz2Ly5Mmw2+2Ke9q3bx8mT56MmpoaLnJ69dVXMXnyZGRlZQ3YU1ZWFg4ePIh9+/YBUPb91J+c9PJ+0srTyZMn8fHHHyMrK0vXnjZv3oympiZkZWVxkVNzczM+/PBDZGVlKZKTlj2iu6fNmzdj8uTJaG5uVmTs7d69G5MnT8bJkydTymnlypUYOXIksrKyMvozV4S+53K58OGHH0oHm+n05HK5YDabcfToUek1DocDhw8flrbbs2cPTCYTvva1r6Gurg6hUAi5ubmYP38+fvOb3+Cpp57CSy+9hIULF2LDhg1YvHgxamtrpd9XfX09mpubAQCjRo3CwoULpVqfeOIJ6aC5rq5O8ud0OrF3715puz179ki/1xMnTqC+vh5tbW0XeVq5ciWGDh2KrKwsTcZeVlYWBg8ejJUrVyqeU1ZWFsaNG4eVK1fKHnvvv/8+Jk+eDJfLpfl8LysrC/F4HGvWrJFyoh6RPk9ZWVn48MMPpfeknj3JmZer4UnrY0Ile0R3T4lEApMnT8aaNWu4yEnOfI+nz1ye309aeXrnnXfg9/uRlZWla09y5uVqeZJ7rJGuHtHdU3NzMyZPnozNmzcrMvaCwSAmT56Md955R9FjwrTAdMTLL7/MrFYry8nJYb/4xS/Yrl27mNvtTndZRBqpqalhAJjVamW5ubmspqaGxWIx5nQ6WSKRYIwx5na7WTgcZowxFggEmM/nY4wxFo1GmdPplLRcLheLRCKMMcb8fj/z+/2MMcYikQhzuVzSdk6nk0WjUcYYYz6fjwUCAcYYY+FwWBqPiUSCOZ1OFovFGGOMeb1eFgwGGWOMhUIh5vF4GGOMxeNx5nQ6WTweZ4wx5vF4WCgUYowxFgwGmdfrZYyxXj35/X727rvvspaWFt17cjgcbN26dczv93ORU0dHB3vnnXeY3++XnRNjfY89l8vFNmzYwFpbWxX31N7ezjZs2MA6Ojq4yKmpqYlt2LCB+f3+AXvy+/3snXfeYe3t7YwxZd9P/clJL+8nrTw5nU729ttvM7/fr2tPLS0t7N1332V+v5+LnNxut/R7VSInLXtEd08tLS1sw4YNzO12KzL22tra2IYNG5jT6Uwpp8bGRrZ+/Xrm9/sz+jNXhL7n8XjY22+/3eV9k05PJ06cYFu2bGFbt25ldrudbd26lW3evJnZ7Xa2fft2tmnTJrZnz54unj755BO2detW9uGHH7LS0lK2efNmtmnTJrZ9+3Zmt9vZ5s2b2UcffcTsdjurrKxka9asYQCY2WxmNpuNAWAAWEFBAVu7dq20XWVlJbPb7eyjjz5imzZtYna7ndntdrZp0ya2bds2Zrfb2ZYtW6TtuntqbGxk7733HvP7/ZqMPb/fz9577z3W2NioeE5+v5+tX7+eNTY2yh57zc3NbMOGDczj8Wg+3/P7/WzdunXM4XBcNPbkeBK5R6jpye/3s7fffluqXc+e5MzL1fCk9TGhkj2iuyefz8c2bNjAHA4HFznJme/x9pmrZE567HvNzc3S+0TPnuTMy9XyJPdYI109orsnt9vNNmzYwFpaWhQZe16vl23YsIE1NzcrckyY/Ftu8lFTU8O0Qhc3SzeZTF3+nzGGFStWYMWKFQPSMRgM0iVPhFhceNm/yWTqslxAfn6+9O/kpZxAz8sKJEkuRwJ0fuPnwucufM2FN5i0WCzS5dEGg6HLdsllu4DOy0qzs7MBAEajsct2eXl50r+tVmufnmKxGMxms1SHnj3l5eVJ73Veckp+G1tuTv3xlLysMScnR/KllKekdnZ2tqSdzpwu/L2k4ikrK0uqUcn3kxxPvL2fyNPAPZnNZq48XXgvALVzUrJHdPfE/ufyaLPZ3KX2VD0ZDAbJU/J1A8mpoKBA0sjkz1xReoTFYpHyTLenCRMmwGAwSN8qNJvNUl8xGAywWq3Sso5JT4lEAmazWXqfGI1Gae6R/L1cWF9Sr6elEpLaF77eZDJ1OY668PfX/d4jF3oqKCiQ9LQYe4FAQHp/JlEqp0AgIHlK/i5S9ZT8JrTJZOrynBbzvUAg0GW/1CPS78lisUjvST17kjsv1/sxoZI9orun5Ps9Ly9P+v2lMye58z2ePnOTnpLw8n7SylNubq40XvXsSc68XC1Pco810tUjuntKag8ePFjSlDP2knq5ubnSc3KOCc+fP490YWDJajjGaDRKg7E7AynfYDBI658RYnDkyBFMnTpV+v+amhpcc801aayIIAiCIAiCyFSam5tRW1vb43O5ubm48cYbpf/ft2+ftAZzf3A4HJg3b16Pz5WXl6O4uHhgxf4Ps2bNSul1BEEQBEEQBDFQ0vm3XF3cIwToPOHR04MgMploNIpjx45JN0zSM7x50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf8SB1zx6+/JWT0yYMAFA5w0m29rauPnCFvUg9bRS1eB1vGcqIuXBmxfqP+pp0RxIHETJg0cfWtakl/6jhB5PWeviREgikVDkwcvBBUEoRSAQwMaNG6XL1PQMb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRAhj4KCAlgsFq4ODgHqQWpqpaohwngXCZHy4M0L9R/1tGgOJA6i5MGjDy1r0kv/UUKPp6x1sTQWQfQGLY1FEARBEARB8EJLSwuOHj3a43Pdl8YCgGAwiOrqaoTD4T61aWksgiAIgiAIQu+k82+5XN0s3eFwpDyBJwiCIAiCIAiC0BODBg3CzTffDLfbjWAwiFgshlOnTg1YJxKJqFAdQRAEQRAEQYgDV0tjjRo1CjNmzMAzzzyDQ4cOpbscguAel8uFJUuWwOVypbsU2fDmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/xEHXvPIzc0d8HMejwfPP/88cnJykJ+fn9J+FyxYgKVLlyIUCiESicDhcPT46M8JE4fDgSVLluD48eOaLGGglx6UzjkQr+M9UxEpD9680BxIPS2aA4mDKHnw6EPLmvTSf5TQ4ylrrpbGMhqNXW4wOGbMGNx///349re/jVmzZiErKyuN1RE8kulLY8ViMTQ0NGDUqFEwm7m6wGvA8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQde82CM4dChQ3A6nV1+bjQaMW3aNBQUFFz0mgu9+Hw+VFdX96h9qaWxLsRisfR6wsNisWDmzJlYtGgRrFYrgK5LYzU1NaG2thYejwf5+fkwGo248sorMWbMmD73myp66UHpnAPxOt4zFZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwm97q9P599yuToR8n/+z//BRx99BL/fL/0seWIkNzcX99xzD7797W/jW9/6FgoLC9NVJsERmX4ihCAIgiAIguCLeDyOM2fOoKOjA9FoFPn5+Rg1ahRsNlufr3W5XLJPhPSH2bNnY/HixQD+90RIJBLB7t27e9z+q1/9KgYPHnzRzyORCM6ePQuXywWTyYShQ4di9OjRXb7cRhAEQRAEQRBJ0vm3XK6WxtqwYQPa29vx17/+FY8//jguv/xyMMbAGIPX68V7772HBQsWoLi4GHfccQeee+45nDhxIt1lE0Ta8Pv9eOutt7qcPNQrvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xIHnPEwmE8aPH4+vfvWr+NrXvoapU6de8iRIf70UFhbCYrEoUqPdbofP5+vys+RyBZFIBDU1NV2uKulpKYNYLIaDBw+ioaEBPp8Pbrcbp06dGvDxmV56UDrnQDyP90xEpDx480JzIPW0aA4kDqLkwaMPLWvSS/9RQo+nrLk6EQJ0Xq79zW9+EytXrsS5c+ewb98+PP300/jKV74inRSJxWL49NNP8atf/QpTpkzBpEmT8Mtf/hKffPIJEolEui0QhGYYjUbYbDYYjdy9lQcMb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApj/56SS5rpRRz5szB0qVLpfuAxGIxAJ1X5Fut1i5XdSSfu5COjo4eD2ibmpoQjUb7XYdeelA650AijXcRECkP3rzQHEg9LZoDiYMoefDoQ8ua9NJ/lNDjKWuulsbqi8bGRlRUVKCiogLbt29HKBQCgC6T9CFDhuBb3/oW5syZg3vvvRd5eXnpKpfQAFoaiyAIgiAIghCFSy2NNXjwYDidTjz77LOw2+2K7fP+++/HM888A5fL1euXysaNG4crrriiy8/q6upw7ty5HrefNm0ahgwZoliNBEEQBEEQhBjQ0lj9ZOTIkXjsscfw4Ycfoq2tDRs2bMAjjzyC4cOHS1eLdHR0YO3atXjooYdQVFSEu+++Gy+88ALOnj2b7vIJQnEikQiqq6t7vSGmnuDNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NOj/iMOIuXRXy8GgwHXX389Fi9ejLKyMsX2X1lZCYfDIZ0EicfjcDgciMfjKWsO5Lt2eulB6ZwDiTTeRUCkPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6esdXUi5EJycnLwwAMP4NVXX0VjYyM+++wz/OY3v8HUqVOlkyKRSATbtm3Dk08+iXHjxmHatGn4z//8T3z++efpLp8gFCEUCmHHjh3S1VF6hjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlMdAvBQVFeGqq65S7F4hQOfBaUdHh/T/sVgMZ86c6XE5LDXQSw9K5xxIpPEuAiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ6PGWtq6Wx+suZM2ekJbR27twprVF74RJaxcXFOH/+fLpKJBSClsYiCIIgCIIgROFSS2Pl5ubixhtvBABs3rwZ3/zmN/ulOWXKFNTW1l5ym/LychQXF/f6/ECXxrruuutQWFjYr/oIgiAIgiCIzIGWxlKYsWPH4qc//SkqKyvR1taGt99+G/Pnz8eQIUOkq0UcDke6yyQI2TDGEAqFBrT8AK/w5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8RB5HySMXL1KlT+3VViMViwe9+9zvMnj17QPXEYjHqQSpopaoh0ngXAZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwk9nrIW8kTIheTl5eG73/0u1qxZg5aWFuzYsQO/+MUvcNVVV6W7NIKQjdvtxu9+9zu43e50lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4iBSHhd6ufAK9u5c+JzVasXMmTP71J45cyby8vIGdF+RcDiMXbt2IRwO92t7ueilB6VzDiTSeBcBkfLgzQvNgdTTojmQOIiSB48+tKxJL/1HCT2eshZyaSwic8j0pbHi8ThaW1tRVFQEk8mU7nJkwZsXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEyuNCL4wx7Nq1q8dvzI0cORITJ04EALS1tWHv3r1YtmwZdu3addHNJy0WC2bOnIlFixbBarUCABwOB+bNm9djDRcujZVIJBAIBJCTkwOjsfN7c2oujaWXHpTOOZBI410ERMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfS6vz6df8sV7kTI+vXr8cEHH6C5uRnDhw/HN7/5TTz00EPpLotQiUw/EUIQBEEQBEGIxcmTJy+6l6HZbMb06dORm5sLoPNESE1NDYCLb3YOAIWFhRctndXfEyE9QfcIIQiCIAiCIJSA7hHSB83Nzbj99ttx++2349///d973CaRSOA73/mOtAxWZWUl3njjDcyfPx+zZ8+G3+/XuGqCUB+fz4fVq1fD5/OluxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8ujuZcKECbjqqqswZMgQ5ObmYsSIEV1OgnTHYrGguLi4y6M/9w/piUgkgoaGBnz++edoaGi46EoTNdBLD0rnHEik8S4CIuXBmxeaA6mnRXMgcRAlDx59aFmTXvqPEno8ZW1OdwH9YcOGDfj0009hMBjw5JNP9rjN73//e2zcuLHH5z7++GP80z/9E9566y0VqyQI7TGbzRg7dizMZl28lS8Jb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApj+5eDAYDLr/8clx++eWXfM1AGDx48CWfD4VCWLp0KXbt2gWj0YgZM2agqqoKiUQCM2fOxDPPPIMrrrgCiUQCjDFFl3DQSw9K5xxIpPEuAiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ6PGWti6Wx5s+fj/LycmRnZ6O9vR05OTldno9EIhgxYgRcLhcA4Otf/zrmzJmDc+fO4U9/+hNCoRAMBgP27NmDG2+8MQ0OCLWgpbEIgiAIgiCITCORSGDXrl2Ix+P92n7YsGGora3F9773vR6fnzJlCmpra3t9/ezZs7FixQq4XC4kEgnk5+fDZDLB6XT2uD0tjUUQBEEQBEH0BC2N1QdHjhwBAEydOvWikyAAsGnTJmkS/u1vfxtbtmzBT37yE/zud7/D66+/Lm33xhtvaFMwQWhEOBxGVVUVwuFwukuRDW9etK5Hzf0pqa2ElhwN3sZJpiNKHrz5oP6jnh71H3EQKY9UvBiNxgEfMN5www29PnfhSZDs7GzMmDED2dnZ0s927doFh8OBRCIBAPB4PL2eBBkoeulB6ZwDiTTeRUCkPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6esdXEipKGhAQaDARMnTuzx+a1bt0r//uUvf9nlue9+97sYOXIkAKCqqkq9IgkiDUQiEVRXV2uyfrPa8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8kjVy0CuuDCZTDAa+3foZ7FYMH369C73GenphuxKoZcelM45kEjjXQREyoM3LzQHUk+L5kDiIEoePPrQsia99B8l9HjKWhdLY2VnZyMWi+Gxxx7DypUrL3p+2rRpOHz4MIqKitDc3HzR8w888AAqKiowdOhQtLa2alEyoRG0NBZBEARBEASRqezcuRP9OZybNGkSwuEwxo0bl/K+ysvLUVxc3K9taWksgiAIgiAIoidoaaw+MBgMAIBYLHbRc263G0eOHIHBYMCtt97a4+svu+wyAJ2XcBOESCQSCWmtZr3Dmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHETKQ20vQ4cOlY6H+oPRaITNZuv3FSQ9kbx3Y3/QSw9K5xxIpPEuAiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ6PGWtixMhNpsNQOcSWd35+OOPpV/kzJkze3x98gSKyWRSp0CCSBMejwclJSVCnOTjzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDiLloZaX4uJiTJs2Dddccw2MRiOKi4u73PejN/Lz87Fw4ULk5+envO+zZ8/2+CW2ntBLD0rnHEik8S4CIuXBmxeaA6mnRXMgcRAlDx59aFmTXvqPEno8Za2LpbHuuOMOfPLJJygoKEBTUxOsVqv03IIFC7BmzRoYDAZUVVXhq1/96kWv/9a3voXNmzfj8ssvx7lz57QsnVCZTF8aK5FIwOPxID8/X9a39niANy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPOIiUhxwvl1oaa8aMGV2Om4DOJYM/+OCDS2oajUbk5+fD4/F0+ebeQJbGAoCpU6di2LBhfW6nlx6UzjmQSONdBETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0ur+elsbqg7vuugtA5xmkX//619LPd+/ejbfffhsGgwGXXXYZbrzxxh5fX11dDYPBgPHjx2tSL0FohRJLF/ACb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApDy29/OEPf8Ds2bMvuY1Syxf094aYeulB6ZwDiTTeRUCkPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6es019BP3jkkUcwaNAgAMCf/vQnjB07FjfccANmz54tTbAfffRR6V4iF1JbWwuHwwEAuP7667UrmiA0wOv14qWXXoLX6013KbLhzYvW9ai5PyW1ldCSo8HbOMl0RMmDNx/Uf9TTo/4jDiLloaWXQYMGYfHixSgrK+t1m7y8PDz++OPIy8vr8vP+ntgYKHrpQemcA4k03kVApDx480JzIPW0aA4kDqLkwaMPLWvSS/9RQo+nrHVxImTUqFFYvny5dNn3uXPnUF1djWg0CgC46qqr8Mtf/rLH177zzjvSv3u7mTpB6BWLxYLp06fDYrGkuxTZ8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8tDSi9lsBtB5/5De9heJRFBdXX3RiY8FCxZg6dKlCIVCitaklx6UzjmQSONdBETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0eMpaF/cISbJx40YsXboU1dXVAACr1Yq5c+di+fLluOyyyy7aPhqNYuzYsWhqakJWVhZaWlpQUFCgcdWEmmT6PUIIgiAIgiCIzGWg9wgJh8P47LPPAABLly6F3W4f8D6nTJmCFStW9HkwO3HiRIwcOXLA+gRBEARBEIS40D1C+sncuXOxf/9+eL1enD9/Hm63G2+++WaPJ0GAzon+m2++CbvdLt1snSBEIhQKYceOHYp/My8d8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8tDSS3Z2tvTvRYsWYfbs2Red0LBarZg1a9ZFJ1GS1NbW4t5771Xs6hC99KB0zoFEGu8iIFIevHmhOZB6WjQHEgdR8uDRh5Y16aX/KKHHU9a6OhGSZPDgwRgxYgSysrIuuV1ubi7uuOMO3HHHHbjppps0qo4gtCMWi+HMmTOIxWLpLkU2vHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEGkPLT2kjwZYrVasXjxYlRUVKC8vBzl5eUoKyuD2WzG2LFjpWW0eoIxBrvdjmXLliESicDhcEiP7ktqtbW14cCBA/j444+xd+9eNDY2dnleLz0onXMgkca7CIiUB29eaA6knhbNgcRBlDx49KFlTXrpP0ro8ZS1rpbGIoju0NJYBEEQBEEQRKaye/fuXm9ifsstt3S5AiTJZ599hnA43KvmQJfMMhgMXZbnslgsmDlzJv785z+jsLAQhw4dumj5Llo2iyAIgiAIIjOhpbEIgkiJeDwOh8OBeDye7lJkw5sXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEykOOl8LCwh5/np2dnfINKf/t3/4N999/P0wmU7+2736SIxKJwG634xe/+AUcDkeP9zBpamqS/q2XHpTOOZBI410ERMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfR4yppOhBCEjvF6vXj55Zfh9XrTXYpsePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIecjxMnr06B6XCx43bhwMBkNK9RiNRtx4441Yv349pkyZkpIGAFRWVuLcuXM9PnehV730oHTOgUQa7yIgUh68eaE5kHpaNAcSB1Hy4NGHljXppf8oocdT1rpbGisYDOKvf/0rPv/8c5w+fRoejwfRaLRfrzUYDNi2bZvKFRJakulLYzHGEA6HkZ2dnfLBLi/w5kXretTcn5LaSmjJ0eBtnGQ6ouTBmw/qP+rpUf8RB5HykOslEAjA4XDA6/Vi0KBBKCoqwpAhQ3rdvq+lsRhjiMfjMJlMCIfDWLZs2YCWyrqQ8vJyFBcX9/jcrFmzpP3poQelcw4k0ngXAZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwm97q+npbH6AWMMy5YtQ3FxMb7//e/jD3/4A9avX4+PPvoIO3fu7POxY8cO7NixI902CJWwWq3Izc0F0HnJlcvlki7D93g80trJwWAQfr8fQOfNelwul6Thdrulk2qBQACBQAAAEI1G4Xa7pe1cLpd0gx+/349gMAigcxkAj8cDoHO8ulwu6bIvn8+HUCgEAAiHw9JZ0EQiAZfLhUQiAaDzLGnywDQUCsHn813SU3JN5mStevbk9XphNBphMBi4yCkSiSAajcJgMMjOCeh77MViMVitVgSDQcU9hcNhWK1WRCIRLnLyeDywWq0wGAwD9mQwGBCLxaRalXw/9ScnvbyftPIUjUa79CK9egoEAmCMwWAwcJFTPB5HKBSSJplqjz0le0R3T4FAAFarVdpOTk5+vx+hUAhWq1XqJQPNye12w2KxwGAwZPRnrgh9L5FISK/Xuye/3w+r1SptN9CcotEoRo8ejWnTpmHUqFHSfUF682Q2m6V5DtA5PpL1JA9Uk5/1eXl5WLduHdavX4/s7Gzk5eUB6LxqxGazwWjsPJzMy8vrchP25LycMYZQKCR5CofD0u8r6clgMMBsNnepVamcDAYDsrOz4Xa7056TnPmewWCA0WiUaqUekV5PBoMBoVBIqlXPnuTMy9XwpPUxoZI9orsnoLMfer1eLnKSM98T6TNXhL7n8/lgMBikXqRXT3Lm5Wp5knuska4e0d1TPB6H1WpFIBBQZOwxxmC1WqVeMtCcejsmTAe6ORHyD//wD/jNb34Dr9cLxtiAH4TYzJgxAw8++CAAoLW1FSUlJdKbc9WqVTh69CgAYOfOnaioqAAANDQ0oKSkRNIoLS1FXV0dgM5L+SsrKwEAdXV1KC0tlbYrKSlBQ0MDAKCiogI7d+4EABw9ehSrVq0C0Nk4SkpK0NraCgBYt24dqqqqAAAHDhzA2rVrAXQ2h5KSEqkZrV27FgcOHAAAVFVVYd26dZf05PF4sGLFCmzYsEH3nl577TWsWLECHo+Hi5w+++wzqR65OQF9j73Dhw9jxYoV+Otf/6q4p507d2LFihX47LPPuMkpqTFQT8kxn9xOyfdTf3LSy/tJK0/79u2TstSzpw0bNkg+eMjp+PHjXfTUHntK9ojunpK/26QnOTlVVFRg69atWLFiBfbt25dyTsmsM/kzV4S+d/r06S56evb09ttvY8WKFZIntXMaOnQoTpw4gfr6egCd4yNZTzwex549e1BVVYVwOIyDBw/i0KFDyM7OxvXXX4/58+cDAPLz87Fw4ULk5+cDAObPn4/rr78eQNd5eTgcxp49e6QD7QMHDki/r6Sn5HtLjZwu1OYhp1Tne0kfr732mvR7pR6RPk/JGo4fPy6Ep1Tn5Wp40vqYUMke0d1Ta2ur9L7lISc58z2RPnNF6Htr1qyRxoPePaU6L1fLkxLHGunqERd6On78uHTcokRO58+fx4oVK7BmzRpFjwnTgS6WxnrzzTfxD//wD9I38SZNmoTvfe97mDp1KgoLC2E2m/utdccdd6hYKaE1ycuprFYrzGYzqqqqMHnyZHi9XhQUFMBgMEjfnrBYLAgGg0gkEhg8eDBisRh8Ph9sNhuAzrOrOTk5yMrKks6s5uTkIBqNIhAIoKCgAEDn2dXc3FyYzWb4/X4YjUYMGjQIkUgEoVAI+fn5YIzB7XYjLy8PJpMJPp8PZrMZVqsV4XAYkUgEeXl5SCQS8Hg8yM/Pl77lZbFYkJ2djVAohFgshtzcXMTj8R49AUB1dTWuuuoqDBkyRNee2tracObMGVx33XWIx+Npz8nr9aKmpgY33HADzGazrJz6M/bMZjNOnjyJsWPHwmKxKOopkUjg1KlTGD9+PACkPSeXy4Xz58/j6quvRiAQGJCneDyO/fv34+qrr0Z+fr6i7ycRe4Tannw+Hw4fPowbbrgBWVlZuvXkdDpx8uRJTJ8+HQDSnlMgEEB1dTVuvPFGWCwW1ceekj2iu6dQKIT6+npMnDgRkUhE9tiLxWI4ffo0JkyYgEQiMeCc2tra0NDQgKlTpyIcDmfsZ64IfS8YDOLAgQO44YYbkJ2drWtPgUAAZ8+exaRJkxAOh1XPKRaLoaqqCtFoFFlZWYjH44jFYsjOzpauevJ4PBg+fDiGDh2KyZMnY/v27fjOd74Di8UifWM7Pz8fHo8HiUQCeXl5iEQi0jeOzWYzfD4f3nzzTQwZMkRaCiEcDsNsNsNkMuHmm29GIpFAVlYWDh8+jNGjR2P48OGK5mS1WnHkyBFcfvnlGDp0aNpzSnW+ZzKZcOjQIYwdOxbDhg2jHpFmT5FIBHv37sX06dORk5Oja09y5uUiHBMq2SO6exo0aBBqa2sxatQo5Ofnpz0nOfM9kT5zReh77e3tOHXqFKZNm4ZEIqFbT3Lm5Wp5knuska4e0d2TxWLBiRMncMUVV8Bqtcoee1arFceOHcPo0aORm5sr+5jw/PnzaVsaSxcnQu68807s2LEDBoMBCxcuxO9//3vpMmwis8n0e4QQBEEQBEEQxEAJhUJoamqC1+uF3++XvsHXnREjRmDSpEn429/+hvvuu2/A++nPPUIuhDEm/SEieXBOEARBEARBiAPdI6QPDh06BIPBgHHjxuG5556jkyAE8T8Eg0Fs3rxZWvNPz/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/xEHkfJIhxer1Ypx48bhuuuuw6RJk7o8F41G8eWXX0rrUKtN0n9HRwc+//xz7N27F9XV1di1axeam5sV0db7HEik8S4CIuXBmxeaA6mnRXMgcRAlDx59aFmTXvqPEno8Za2LMwrJG7bcdtttitztniBEofvNmPQMb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApD968dL/BefJnapH0f/To0S4HyIlEArW1tdJNQ+Vo630OxNsYyXREyoM3LzQHUk+L5kDiIEoePPrQsia99B8l9HjKWhdLY1199dU4fvw4fvjDH0o3iCMIgJbGIgiCIAiCIAg5dHR04NChQz0+l1waa+vWrbj77rsHrN3fpbHC4TA+++yzHrcbP348Ro8ePeB9EwRBEARBEPxBS2P1wc033wzGGGpra9NdCkFwRSwWw5kzZxCLxdJdimx486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+Ig0h58Oalp2/tJW9irgaxWAx1dXW9fktQzjIKosyBeBsjmY5IefDmheZA6mnRHEgcRMmDRx9a1qSX/qOEHk9Z6+JEyE9+8hMAwBdffIGampo0V0MQ/ODz+VBWVgafz5fuUmTDmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHETKgzcvkUgEBw8eRCQSkX42evRoWCwWVfbn8/nw7rvvdtmfktoizIF4GyOZjkh58OaF5kDqadEcSBxEyYNHH1rWpJf+o4QeT1nrYmksAPjRj36El156Cddccw127NiBoUOHprskggNoaSyCIAiCIAiCSJ3+LI0VCARw//33w263D0i7rKwMY8aM6fG5C5fG8nq92LdvX4/bjRw5EhMnThzQfgmCIAiCIAg+oaWx+sELL7yARx99VPplvfDCC2hqakp3WQRBEARBEARBEEJjMpmwaNEizJ49e0BXhixYsABLly5FKBRSsTqCIAiCIAiC6BvdnAgxGo14+eWX8cc//hHNzc148sknMWrUKBQWFmLcuHG48sor+3yMHz8+3TYIQlHcbjeeffZZuN3udJciG968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IgUh68eQmFQvj000+7nLzIzs6GzWbD4sWLUVFRgfLycumxfPnyS+rZ7XYsW7bsop/X19cD6PT/4osvqnKyRJQ5EG9jJNMRKQ/evNAcSD0tmgOJgyh58OhDy5r00n+U0OMpa90sjRWNRvGzn/0Mq1atQiwWw4VlGwyGPl/PGIPBYEA8HlezTEJjMn1prGg0irq6OowfPx5ZWVnpLkcWvHnRuh4196ekthJacjR4GyeZjih58OaD+o96etR/xEGkPNLtpfvSWPF4HE6nE0OGDMGoUaMwadIkAIDT6cTBgwcver3D4cC8efMuuQ+LxYKKioqLriYZNWoURowYgRMnTqCjowMmk+mi18pZGkuUOVC6xwjRFZHy4M0LzYHU06I5kDiIkgePPrSsSS/9Rwm97q9P599ydXEiJB6PY86cOdiyZQsAINWS6USIeGT6iRCCIAiCIAiCkEN/7hGSpL6+HqdPn+6yTSQSwZw5c/q82Xl5eTmKi4sv+rnZbMb48eNx/PjxHl9H9wghCIIgCIIQB7pHSB+88sor2Lx5M4DOkyBf//rX8dprr+Hzzz/HyZMncfr06X49Tp06lWYnBKEsgUAAGzduRCAQSHcpsuHNi9b1qLk/JbWV0JKjwds4yXREyYM3H9R/1NOj/iMOIuXBm5doNIpjx44hGo1e9FxPJzIsFgtmzpyZ8v6CwSDef//9Hvd3IfF4HC6XC8FgsN9fjBNlDsTbGMl0RMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfR4ytqc7gL6Q1lZmfTv5557Dr/4xS/SWA1BEARBEARBEETmkZ2djeHDh6OlpaXLzxctWgSg834gveFwOKR/FxYWDuim601NTTh58iQSiQQAIC8vD9dee+2ANAiCIAiCIIjMRhdLY+Xl5SEQCODqq6/G4cOH010OwRG0NBZBEARBEARBpM5AlsYCAJfLherq6h63P3v2LBYsWNDnPpNXkSxatAhWq/WS2+bl5cHr9V708yFDhmDatGl97osgCIIgCILgB1oaq5/cfPPN6S6BILjiUksX6A3evGhdj5r7U1JbCS05GryNk0xHlDx480H9Rz096j/iIFIevHmJx+Noa2tL6d6K/b1CIxKJwG63Y9myZX3ur6eTIEDnzdv7qlGUORBvYyTTESkP3rzQHEg9LZoDiYMoefDoQ8ua9NJ/lNDjKWtdnAi5/PLLAYBudE4Q3eBpnT258OaF1qdVT4vWpxUHUfLgzQf1H/X0qP+Ig0h58OZFy4PVXbt2IRAIyPrj3KUQZQ7E2xjJdETKgzcvNAdST4vmQOIgSh48+qB7hKijx1PWulga60c/+hFeeuklTJs2DQcOHEh3OQRH0NJYBEEQBEEQBJE6Si6N5XA4MG/evAHtv7y8vMebsPeHGTNm9Lm0FkEQBEEQBMEPtDRWHzz22GMwmUw4dOgQPvnkk3SXQxAEQRAEQRAEIQS5ubkpPUcQBEEQBEEQekIXJ0KmTZuGZ555BowxPPTQQzh27Fi6SyIILnC5XFiyZAlcLle6S5ENb160rkfN/SmprYSWHA3exkmmI0oevPmg/qOeHvUfcRApj3R7sVgsKCoqkv4/FAph586diMfjGDZs2EXbG43KHkL6/X7s3LkToVBIUV1AnDlQuscI0RWR8uDNC82B1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sXSWEleeeUVPPnkkzAajXj88cfxd3/3d5g6dSry8/PTXRqRJjJ9aaxYLIaGhgaMGjUKZrM53eXIgjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAcPXhKJBE6fPo329naEw2HE43F85Stf6fE4K5FI4NNPP0UikbjouVSWxjKbzbj//vvx6KOPIicnZ0Cv7WtpLFHmQDyMEeJ/ESkP3rzQHEg9LZoDiYMoefDoQ8ua9NJ/lNDr/vp0/i1XFydCTCZTl/9njMFgMAxYx2AwIBaLKVUWwQGZfiKEIAiCIAiCILSmsbERJ06cuOjnkUgEc+bMQSQSGbDm7NmzsXjx4gG9hu4RQhAEQRAEoS/oHiF90P1czYUnQRhjA3oQhEj4/X689dZb8Pv96S5FNrx50boeNfenpLYSWnI0eBsnmY4oefDmg/qPenrUf8RBpDx489KfekaOHImvfOUruOKKK7r83GKxYObMmQPa3+DBg/HQQw/h888/x9mzZ+FwOOBwOFI6mdIdUeZAvI2RTEekPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6es+bj2qB/QSQyCuBij0Qibzab4Ws3pgDcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAdvXvpbT35+PvLz81FUVITq6mrpyvtFixYBAHbt2tWvkxmJRAIulwuJRAILFiyQfp48qbJo0aKUr/oQZQ7E2xjJdETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0eMpaF0tjEURv0NJYBEEQBEEQBJFe/H4/mpqa4PP5MHjwYJw/fx6RSAQdHR3SNi+++CI+/fTTAWtfasksWhqLIAiCIAhCX9DSWARBpEQkEkF1dbUiSwekG968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IgUh68eUmlnsGDB2PChAmYPn06rrrqKgCdV3QUFxdLj//4j//A7NmzL3qtxWLB9OnTYbFYetTu75UlSnlRUytVDd7GSKYjUh68eaE5kHpaNAcSB1Hy4NGHljXppf8oocdT1ro4EfKd73wH3/nOd/D9738f0Wg03eUQBDeEQiHs2LEDoVAo3aXIhjcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAdvXtSqx2q1YvHixSgrK7vo57Nmzer1yo7uV5YMBFHmQLyNkUxHpDx480JzIPW0aA4kDqLkwaMPLWvSS/9RQo+nrHWxNJbRaITBYMBdd92FysrKdJdDcAQtjUUQBEEQBEEQfLFjx45en3M4HJg3b96A9MrLy1FcXHzRz2lpLIIgCIIgCH1BS2P1wZAhQwAAY8eOTW8hBMEZjDGEQiHo4Hxmn/DmRet61NyfktpKaMnR4G2cZDqi5MGbD+o/6ulR/xEHkfLgzYvW9RgMBlitVhgMBsW1RZkD8TZGMh2R8uDNC82B1NOiOZA4iJIHjz60rEkv/UcJPZ6y1sWJkJEjRwIAAoFAmishCL5wu9343e9+B7fbne5SZMObF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/UccRMqDNy9a11NQUIBf//rXKCgoUFxblDkQb2Mk0xEpD9680BxIPS2aA4mDKHnw6EPLmvTSf5TQ4ylrXSyNtXDhQjz//POYMGECTpw4ke5yCI7I9KWx4vE4WltbUVRUBJPJlO5yZMGbF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/UccRMqDNy9K1DOQpbFMJhOKiorQ2tqKeDze42tSXRpLlDkQb2Mk0xEpD9680BxIPS2aA4mDKHnw6EPLmvTSf5TQ6/76dP4tVxcnQg4dOoQbbrgBiUQCGzduxJw5c9JdEsEJmX4ihCAIgiAIgiB4g+4RQhAEQRAEQfQE3SOkD6677jr8x3/8BxhjWLBgAXbt2pXukgiCC3w+H1avXg2fz5fuUmTDmxet61Fzf0pqK6ElR4O3cZLpiJIHbz6o/6inR/1HHETKgzcvWteTm5uLH/7wh8jNze11m9bWVjgcDkQikQFpizIH4m2MZDoi5cGbF5oDqadFcyBxECUPHn1oWZNe+o8SejxlbU53Af3l6aefRm5uLv793/8ds2bNwne/+118//vfxw033ICioiJkZ2enu0SC0Byz2YyxY8fCbNbNW7lXePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIefDmRet6YrEYzpw5g1gs1us2P/vZzwAAFosFM2fOxKJFi/p1JYgocyDexkimI1IevHmhOZB6WjQHEgdR8uDRh5Y16aX/KKHHU9a6WBqr+/pjjDEYDIYB6xgMhktOsAn9QUtjEQRBEARBEARfKL00Vndmz56NxYsX09JYBEEQBEEQOoOWxuqD7udqLjwJwhgb0IMgRCIcDqOqqgrhcDjdpciGNy9a16Pm/pTUVkJLjgZv4yTTESUP3nxQ/1FPj/qPOIiUB29etK4nOzsbM2bMGNAV/rt27erXMlmizIF4GyOZjkh58OaF5kDqadEcSBxEyYNHH1rWpJf+o4QeT1nr4kQI0PsJD4LIZCKRCKqrqwe8XjKP8OZF63rU3J+S2kpoydHgbZxkOqLkwZsP6j/q6VH/EQeR8uDNi9b1WCwWTJ8+HRaLpd+viUQi6Ojo6Nd2IsyBeBsjmY5IefDmheZA6mnRHEgcRMmDRx9a1qSX/qOEHk9Z62JpLILoDVoaiyAIgiAIgiD4Qu2lsQCgvLwcc+fOpaWxCIIgCIIgdAQtjUUQREokEgm4XC4kEol0lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4iBSHrx50boeo9EIm80Go1H5Q1NR5kC8jZFMR6Q8ePNCcyD1tGgOJA6i5MGjDy1r0kv/UUKPp6zpRAhB6BiPx4OSkhJ4PJ50lyIb3rxoXY+a+1NSWwktORq8jZNMR5Q8ePNB/Uc9Peo/4iBSHrx5UbueW265pcsyWPn5+Vi4cCHy8/OlnxkMBpSVleH5558fsH48Hkd7ezvOnz+PpqYmIeZAvI2RTEekPHjzQnMg9bRoDiQOouTBow8ta9JL/1FCj6esaWksQtdk+tJYiUQCHo8H+fn5qnyLTkt486J1PWruT0ltJbTkaPA2TjIdUfLgzQf1H/X0qP+Ig0h58OZFiXoutTTWzTffjPvuuw92ux1A5xUh+fn58Hg80jcFZ8+ejcWLF19yGa2elsYKhUKorq5GKBQC0Hmfyfz8fEyfPh0mkyklL0nSOQfibYxkOiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ63V+fzr/lmjXZC0EQqpBcSkAEePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIefDmRYt6Fi1aBADYtWsXIpEIXC4XgM4bp8+cOVN6fqCcPHlSOgkCdF5Z4vV60d7ejuHDh8uqOZ1zIN7GSKYjUh68eaE5kHpaNAcSB1Hy4NGHljXppf8oocdT1nyccgPQ2Nio+T6bmpo03ydBKInX68VLL70Er9eb7lJkw5sXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEyoM3L2rXYzQaYbVasXjxYlRUVGDNmjX47W9/izVr1qCiogKLFy/u9w3Qz549ixMnTmDfvn2ora1Fe3t7l+fD4TD27t2LhoYG2XWncw7E2xjJdETKgzcvNAdST4vmQOIgSh48+tCyJr30HyX0eMqamxMhEydOxP/9v/8XTqdT9X05nU78+7//OyZOnKj6vghCTSwWC6ZPn95lnWW9wpsXretRc39KaiuhJUeDt3GS6YiSB28+qP+op0f9RxxEyoM3L2rXY7FYkJ2dLf27uLgYo0aNQnFx8YD2GYlE0NjYiMbGRni9XjQ3N1+0jclkQnFxMfx+vyJ1p2sOxNsYyXREyoM3LzQHUk+L5kDiIEoePPrQsia99B8l9HjKmpt7hBiNRhgMBgwePBj/8i//gieeeALjx49XdB91dXV48cUX8eqrr0qT4Xg8rug+CG3J9HuEEARBEARBEARvXOoeIbNmzUJLSwuOHj3ap86l7hECdN5LZNGiRX1eQZKdnY1bbrmlz/0RBEEQBEEQ6pLOv+Vyc0XIz372M5hMJvh8PixfvhyTJk3CnXfeiZdffrnHb/f0l+bmZrz88su48847MXHiRJSUlMDn88FkMuHJJ59U0AFBaE8oFMKOHTu6rIWsV3jzonU9au5PSW0ltORo8DZOMh1R8uDNB/Uf9fSo/4iDSHnw5kWLeoYPH44pU6YAAGKxGM6cOYNYLDZgHbvdjmXLlvX6fFI7Go2mXGuSdM6BeBsjmY5IefDmheZA6mnRHEgcRMmDRx9a1qSX/qOEHk9Zc3MiZMWKFdi/fz/uvfdeMMaQSCSwc+dO/OhHP8LIkSNxzTXX4PHHH8fKlSuxfft2nDhxAu3t7QgGgwgEAmhvb8fx48exbds2rFy5Eo899hiuueYajBw5Ej/60Y+wc+dOMMbAGMM3v/lNHDhwAH/84x/TbZsgZCHnwJE3ePOidT1q7k9JbSW05GjwNk4yHVHy4M0H9R/19Kj/iINIefDmRat68vPzAQCJRAIulwuJRCIlneQN13siqa3EgXc650C8jZFMR6Q8ePNCcyD1tGgOJA6i5MGjDy1r0kv/UUKPp6y5WRrrQnbt2oVnn30Wf/vb35Asz2AwpKR14evvu+8+/OY3v6HLogWClsYiCIIgCIIgCL6orq6Gy+W66OdFRUXSXD0YDGLPnj2X1IlEIpgzZ06vJzqSlJeXo7i4+JLb3HzzzRg0aNClCycIgiAIgiBUhZbG6sbMmTNRUVGB48eP49e//jXGjBkjXc0x0MeYMWPwm9/8BsePH8cHH3xAJ0EIoYjH43A4HELc64Y3L1rXo+b+lNRWQkuOBm/jJNMRJQ/efFD/UU+P+o84iJQHb16UqGfkyJEX/cxgMGDEiBEX/TyRSMDn8110RYjRaERhYSHuvPPOlOu4UHvPnj2orq5OS/+Qq8HbGMl0RMqDNy80B1JPi+ZA4iBKHjz60LImvfQfJfR4yprLEyFJJkyYgP/3//4fzpw5g4MHD+K5557Dd7/7XUyaNKnHG+JZrVZMnjwZ3/ve9/Dcc8/h4MGDOHPmDJ555hlMmDAhDQ4IQl28Xi9efvlleL3edJciG968aF2PmvtTUlsJLTkavI2TTEeUPHjzQf1HPT3qP+IgUh68eVGinuHDh+Pqq6/GkCFDkJWVhcLCQkydOhWFhYUXbRuJRLBv374uV30MGTIEt912G2688Ua88cYbmD17dkp1dNd2uVz48ssvpecTiQQ8Hg+CwWCfWumcA/E2RjIdkfLgzQvNgdTTojmQOIiSB48+tKxJL/1HCT2esuZyaaz+4na74ff7AQCDBw9GQUFBmisitCbTl8ZijCEcDiM7Ozvl5eN4gTcvWtej5v6U1FZCS44Gb+Mk0xElD958UP9RT4/6jziIlAdvXrSqJ7k0FmMM8XgcJpNJ2l9hYSGuu+66LtudPXsWCxYs6FGrt6WxetK2WCz42te+hra2NtTW1krfTszNzcV1110Hi8XS4z7SOQfibYxkOiLlwZsXmgOpp0VzIHEQJQ8efWhZk176jxJ63V+fzr/lmjXZi0oUFBTQyQ+O+etf/4pNmzZh3759OHfuHNra2mAymTB69GjMnj0bTz75JCZPnpzuMnWNwWDo8eooPcKbF63rUXN/SmoroSVHg7dxkumIkgdvPqj/qKdH/UccRMqDNy/p6EFmc9+Hpb2doADQ6z1EetKORCIIhUI4cuSIdD9JAPD5fDh69CimT5/eq1a65kC8jZFMR6Q8ePNCcyD1tGgOJA6i5MGjDy1r0kv/UUKPp6y5XhqL0DfLly/Hiy++iL1798JoNOLaa6/FiBEjUFdXh5deegnXXXcd3nzzzXSXqWs8Hg9WrFgBj8eT7lJkw5sXretRc39KaiuhJUeDt3GS6YiSx/9n783Do7rOPP9vLSqVlpLEamETTGC8YBNbdCcxDk4sJT1Jd6bp9nQ8T0fxzEOW7rbTmZnY0/OoPZNuxiGdOKYncVcyHZx0zBIHK53gmFi2AWEoyQYjYbCEEULGCISQUGmtfbtVdc/vD/3qtval7lLnnno/z8PzINW93/N+9Z771rl16p7Dmw+qP/rpUf0RB5HywZsXo+NJJBJoaWlBIpHIWmPbtm3YsWMH4vH4grTHxsYmTYJk8Pv9SKVSM7aRyzEQb30k3xEpH7x5oTGQflo0BhIHUfLBow8jYzJL/dFCj6dc00QIoRvbtm1DY2MjgsEgent78c477+Dy5cvo6enBf/yP/xHJZBJf+9rXcP369VyHalqcTieqq6u5mVlVA29ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eTE6HrvdjrVr1y7oqZC58Hg82Llz54K051qjeranS3I5BuKtj+Q7IuWDNy80BtJPi8ZA4iBKPnj0YWRMZqk/WujxlGtT7xFCmJd4PI5Vq1bB7/dj165deOyxx7LSyfc9QgiCIAiCIAjCjGT2/piJmfYI8Xq9qK2tnVPT4XCgoaFhzmW0AGDVqlUYGBiY8bWPf/zjKC4uXoADgiAIgiAIYrHk8rNceiKEyAlOpxPr1q0DAGXDe2LxxGIxHD58GLFYLNehqIY3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3rwYHU8ymcTly5eRTCbnPG7p0qXzTnBIkoSxsbFFay+EXI6BeOsj+Y5I+eDNC42B9NOiMZA4iJIPHn0YGZNZ6o8WejzlmiZCDCSdTuO9997D888/j69//ev46Ec/CofDAYvFAovFgurq6qy1JUnCCy+8gM9//vO49dZb4XQ6sWrVKnziE5/A//2//xcjIyPaGdGAkZERdHV1AQA+9rGP5Tga8yLLMvx+P2RZznUoquHNi9Hx6NmeltpaaKnR4K2f5Dui5IM3H1R/9NOj+iMOIuWDNy9Gx8MYQzwen3HPjok4HA5s2bJFF+2FkMsxEG99JN8RKR+8eaExkH5aNAYSB1HywaMPI2MyS/3RQo+nXNPSWAZx8OBBPPLII4hGo7Me8+CDD6KpqWnR2l1dXaitrUV7e/usx6xcuRJ79uzB5z//+UXra8nw8DDOnDmDb33rW2hra0Ntba2qDdNpaSyCIAiCIAiCMB+LXRoLGF9ed+fOnfB4PLPqPvvss6isrFR0ZnqKZOXKlRgaGprxfFoaiyAIgiAIQj9oaaw8wO/3zzkJki19fX34zGc+o0yCWCwWPPjgg/jqV7+KrVu3oqioCAAwNDSEhx56CMePH9c8hvk4ePCg8tTLypUr8fnPfx4+nw+7du3C/v37DY9HJFKpFHp6epBKpXIdimp482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M2L0fHM9y3BgoIC5f9OpxPbt2/Hvn37ZtV74oknUFtbi9raWjz00ENwu93T7sNmmwSZi1yOgXjrI/mOSPngzQuNgfTTojGQOIiSDx59GBmTWeqPFno85ZomQgzmpptuwh//8R/j29/+Nl5//XV885vfVKX3pS99CTdu3AAA3HrrrWhra0NTUxOef/55vPLKK+jt7cVnPvMZAONr5P6n//Sf4Pf71dpYFMuWLcOWLVtw//3349Zbb4XNZsO1a9dQX1+vLI9FZEc4HMa+ffsQDodzHYpqePNidDx6tqelthZaajR46yf5jij54M0H1R/99Kj+iINI+eDNi9HxSJKEc+fOQZKkGV+32+3TfjffXiEZCgsLUVVVhR//+MeqYgRyOwbirY/kOyLlgzcvNAbST4vGQOIgSj549GFkTGapP1ro8ZRrWhrLILxeLyRJwpo1ayb9/qmnnsK3v/1tAItfGuv111/Hf/gP/wHA+M3AmTNn8JGPfGTacZFIBPfccw+uXLkCAPhf/+t/4Xvf+96045588kk888wzC25/IslkcsablJkYGBjA3/3d32H37t0oKyvDe++9h1tvvTWrdmlpLIIgCIIgCIIwH+l0GidPnpzxSZB169ZNum86c+bMpJtnr9eL2traBbflcDjQ0NCwoAkUWhqLIAiCIAhCP2hprDygsrJy2iSIWv75n/9Z+f+2bdtmnAQBgJKSEuzYsUP5+ac//emMjyOVlJRg2bJlWf2zWCwLjnvVqlV4/vnn8dnPfhbBYBDf/e53F+GaIAiCIAiCIAizY7PZsHz58mm/t1qtWLZs2aTfOZ1OVW1JkoSxsTFVGgRBEARBEIS5oYkQkxIOh3Hs2DHl56985StzHv+FL3wBpaWlAICxsTG8+eab0475+7//e4yMjGT1z2azLdrD1q1bAYx/w4vIjkAggO9///sIBAK5DkU1vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmxch47rjjDpSWluLkyZOIx+MoLi7Gxo0bUVJSMum4dDqdlX55eTmefPJJlJeXq441l2Mg3vpIviNSPnjzQmMg/bRoDCQOouSDRx9GxmSW+qOFHk+5XthaRgR3vP3220gkEgDGn+T42Mc+NufxTqcT999/P44ePQoAOH78OD796U/rHudcZJ5KyfbGhgCKi4vx0EMPCfH4Pm9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eTEyHpvNhnvvvRfFxcVYu3btrG1O3DB9MUSjURw8eHDaZulz0dfXB0mS4HA4sHLlSlRUVADI7RiItz6S74iUD9680BhIPy0aA4mDKPng0YeRMZml/mihx1OuaY+QHJPtHiFutxuPP/44AGDz5s04derUvOdM3APkz/7sz/DSSy9lFbMWMMbwyU9+EidPnsS2bduwd+/erHRojxCCIAiCIAiCEJvR0VGcP39e+VmSJGzdunXWDdZnor6+HpWVlYtu+6677sLKlSsXfR5BEARBEAQxHdojhFg077//vvL/hW40PnGPkq6uLs1jmsiZM2fwd3/3d5PizHDt2jV88YtfxMmTJ2Gz2fDNb35T11hEJptvufEKb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x54bEGuVyuST87HA5s2bJlXu2J30BczKTJRHp6ehYc53xkq8FbH8l3RMoHb154rD88aNM9GDERUfLBow8jYzJL/dFCj6dc09JYJmV0dFT5/0033bSgcyZ+A0rvzQLD4TC++93v4rvf/S6WLVuGNWvWwOFwYGhoCD09PWCMoaSkBM8//zw2bdqkaywEQRAEQRAEQZgXh8OBJUuWwOfzKb+rq6sDAJw8eXJBkxzbtm1DTU0N6urqFrX5ejQaVZb0JQiCIAiCIMwLPRFiUsLhsPL/oqKiBZ0z8biJ5+vBvffeix//+Mf4whe+gGXLluHKlSs4e/YsAoEA7rvvPvzd3/0durq68Od//ueatOd0OpXN4NPpNPx+PzKrvgWDQeXmKBaLIRKJABjfo8Tv9ysagUAAyWQSwPgNT2amMplMTtrQx+/3KzdDkUgEsVgMwPgj+sFgEMD40l9+v1/Z/yQcDiMejwMAEokEQqEQAECWZfj9fsiyDAAIhULK3i/xeFzJ02yeiouL8bnPfU75vZk9pVIpfP7zn0dxcTEXebLZbPjMZz6D4uJi1XkC5u97BQUFeOihhxRfWnqyWq146KGHYLPZuMhTMplUvp25WE/FxcX4gz/4A1it429fWl5PC8mTWa4nozzZ7XZ8+tOfRnFxsak9Mcbwuc99TvnGcK7z5HA4UF1drayhqnff07JGTPXEGMNDDz0Eh8OhSd+zWCx46KGHYLfbs8qTJEn4kz/5ExQXF+f1e64Ida+wsBDV1dXK+NbMnmRZxkMPPYTCwkIu8pRZdqq4uNiQvldcXIw//uM/njSZMZOnu+++G0uWLFGOczqdqKurw+9+9zvU19fjhRdewA9+8AMA43W0rKwM0WgUv/vd7+BwOGCz2eDxePDss88qf4dUKqXEzRhDPB5XYk0kEspxQ0NDSKfTqvOU7XivuLgYn//85ye9b1GNyJ2n4uJiVFdXw+FwmN6TmnG5Hp6MvicsLi7Gn/7pn0KSJM09FRUV4aGHHkIqleIiT2rGeyK954pQ99LpNP7oj/4IxcXFpvakZlyulye19xq5qhFTPTkcDjz00ENgjGnS95xOJx566CGk02lN7wlzAU2EmJRMBwWgDMDmo7CwUPl/5kLQiyVLluC//tf/igMHDuD999+H3+9HMpnE6OgoTp06he985ztYvXq1Zu1t3rwZDz/8MABgeHgYbrdbuTh3796Nzs5OAEBzczMaGhoAjG+E6Ha7FY1du3ahu7sbANDY2IjGxkYAQHd3N3bt2qUc53a70dfXBwBoaGhAc3MzAKCzsxO7d+8GMF443G43hoeHAQAHDhxAS0sLAKCtrQ379+8HMF4c3G63Uoz279+PtrY2AEBLSwsOHDgwp6dkMomXX34Zr7zyihCejh07hmQyyUWezpw5g927dyOZTKrOEzB/33v//ffR1dWFw4cPa+7p5MmT6OrqwpkzZ7jJU1dXF5LJ5KI9JZNJ/OIXv8DJkycBaHs9LSRPZrqejPB0/vx5/PSnP0UymTS1p1deeQUvv/wykskkF3nq6emB2+1WBrp69z2ta8RET6+88gq6uroUT2ry1NDQAI/Hg66uLpw/fz7rPLW1tSGZTOb9e67Z697AwADcbrdyA2ZmT7/5zW/Q1dWleOIhT6dPn0YymTSk7yWTSbz99tvzerLb7SgsLMS7776r3Ne0trYiHo+jsrISfr8fdvv4ggd33XUXvvrVr6KgoAAbN27E448/jhUrVgAAbrnlFly7dg0A4PV6lb1HEokEWltblVjPnz8Pr9erxLB7926cPXtWVZ6yHe8lk0kcO3aMagQnnjJj2MyyaWb3lO24XC9PRt4TJpNJnD9/XhdP4XAYXV1d3ORJzXhPpPdcEereL3/5Sxw+fBjJZNL0nrIdl+vlSYt7jVzViImeenp60NXVhVdeeUWTPI2OjqKrqwu//OUvNb0nzAmMyCn/5//8HwaAAWAPPvjggs/7/Oc/r5z3t3/7tws65/XXX1fOKS0tzTJivujo6GAAmNPpZKWlpayjo4OlUinm8/mYLMuMMcYCgQBLJBKMMcai0SgLh8OMMcaSySTz+XyKlt/vZ5IkMcYYi0QiLBKJMMYYkySJ+f1+5Tifz8eSySRjjLFwOMyi0ShjjLFEIsECgQBjjDFZlpnP52OpVIoxxlgoFGKxWIwxxlg8HmfBYJAxxlg6nWY+n4+l02nGGGPBYJDF43HGGGOxWIyFQiHGGJvVk9/vZ9/73vfYjRs3TO/p+vXr7Hvf+x7z+/1c5GlwcFCJR22eGJu/7w0PD7Onn36aDQwMaO7J6/Wyp59+mg0ODnKRp97eXvb0008zv9+/aE+ZPu/1ehlj2l5PC8mTWa4nozwNDQ0p/cHMnm7cuKH44CFPIyMjSjxa5MnIGjHV040bN9jTTz/NRkZGNOl7mViHhoayytO1a9eUv20+v+eKUPdGR0fZ9773PSVeM3vq7+9nTz/9NBsdHeUiTxOvEyP6Xubaunbt2oI9tba2Mo/Hww4dOsSOHTvGPB4PO3LkCHv11VeZw+FgDoeDlZWVsfLycvbkk0+yD33oQ8xmsyn3Qb/85S+Zx+Nhr732GnvhhRdYfX09e/HFF9nvfvc7dvz4cebxeNjhw4fZ0aNHmcfjYUePHmW/+93v2D/8wz+woaEhw8d7mb/R9evXNe17ItcIPT1l8jEyMmJ6T2rG5Xp4MvqecGL90dqTz+djTz/9NLt+/ToXeVIz3hPpPVeEutfX16dcJ2b2pGZcrpcntfcauaoRUz2NjIywp59+mt24cUOTvjc2Nsaefvpp1tfXp8k9Yeaz3My/jo4OZhQWxv7/51aInPDUU0/h29/+NgDgwQcfRFNT04LO+/M//3P8+te/BgD89//+3xc0o/bb3/4WX/jCFwCM7xcyMDCQXdAcceHCBWzcuFH5uaOjA3fffXcOIyIIgiAIgiAIQk9Onz4964abO3bsgMfjmfP8PXv2KE+YTlySK7MJ+1z7iNx6660oKipCWVkZioqKYLFYsjdCEARBEASRZ+Tys1zaLN2kLFu2TPn/4ODggs7JPNoNAEuXLtU8JoIgCIIgCIIgiFyS2UR9rsmQnTt34uLFi9N+L0mSct727dtnPDezrBYA3HzzzbjttttoMoQgCIIgCMIE0B4hJuWOO+5Q/j9xMD4Xvb29yv/vvPNOzWMijMfv9+Pb3/52zjcb0gLevBgdj57taamthZYaDd76Sb4jSj5480H1Rz89qj/iIFI+ePNihhpUWlo662tOpxPbt2/Hvn37UFFRgaeeegoVFRWTjplpEmQiU58UAcb3aGxubp60V+ONGzcwMjKy4Liz/dvy1kfyHZHywZsXM9SfXGjTPRgxEVHywaMPI2MyS/3RQo+nXNPSWDkm26WxGhsb8bnPfQ4AUFJSAv+EzQFn47Of/SyOHj0KAPjWt76Ff/iHf8g+cE7I96WxUqkU+vr6sHr16nnzzzu8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88ObFDDVoaGhI2YRzNrxeL/7Lf/kvWL16Nfr6+pBKpRYVV319PSorK5WfZVlGMBhEWVkZrNZ/+z7hTTfdhA0bNixIM9u/LW99JN8RKR+8eTFD/cmFNt2DERMRJR88+jAyJrPUHy30pp6fy89yaSIkx2Q7ERIOh7F8+XIkEgkAwKlTp7B58+ZZj08kElixYgVCoRAA4NixY/j0pz+tLngOyPeJEIIgCIIgCILINxhjePPNNzHXrazX60VtbW3WbWzYsAE//OEPZ90rJIPVasWnPvWprNshCIIgCILIJ3L5WS4tjWVSSktL8ZnPfEb5ee/evXMe/9vf/laZBFm6dCkN1gUhEongV7/6FSKRSK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHkxQw2yWCwLegqjpKQEX/ziF1FSUrLouC5evIidO3cqP0uShI6OjmlLZi2GbP+2vPWRfEekfPDmxQz1JxfadA9GTESUfPDow8iYzFJ/tNDjKdc0EWJi/vqv/1r5/969e3HhwoUZj4tGo5M2+/urv/orbh47I9RhtVpRUVEx6fF8s8KbF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb17MUoPm26B86dKlsNls8Pv9kGU5q9gm7hVisVjgdDpVbYyerVfe+ki+I1I+ePNilvpjtDbdgxETESUfPPowMiaz1B8t9HjKNS2NlWOyXRorw6c+9Sm89dZbAIC1a9fid7/7He655x7l9dHRUdTW1ip7gyxduhTd3d3TNgw0K7Q0FkEQBEEQBEHkHyMjI+jo6JjzmB07dsDj8ahqZ+peIVOhpbEIgiAIgiAWDi2NlSd8/vOfR1VV1aR/zz33nPL6mTNnpr1eVVWFGzduzKr54osvYtWqVQCAnp4eVFVVoaamBn/xF3+BP/3TP8WaNWuUSRC73Y5f//rXwkyCTMTpdKK0tBQAkE6n4ff7lTWDg8Gg8k2uWCymPIqVSqXg9/sVjUAggGQyCWD8KZpoNAoASCaTCAQCynF+v1/ZbDESiSAWiwEYf1w+GAwCGF+32O/3I51OAxjf0yUejwMY368ls0yZLMuTvqUWCoWUfV/i8TjC4fCcniRJwunTp+Hz+UzvaWRkBGfOnIEkSVzkKRQK4dSpU5AkSXWegPn7XiQSQXt7O/x+v+aegsEg2tvbEQqFuMjT8PAw2tvbIUnSoj1JkoSWlhblNS2vp4XkySzXk1GewuGwcp2Y2ZPP58Pp06eVuprrPEWjUbz99tvKa3r3PS1rxFRPPp8P7e3tiEajmvS9QCCA9vZ2Je7F5mloaAjvvvsuJEnK6/dcEepeLBbD22+/rbxmZk9jY2Nob29HLBbjIk8TrxMj+p4kSTh79iyGhoYW5cnlciEejysxSJKknJNOp5FIJPA3f/M3+OIXv4hVq1bBZrMBGF9iOLPvR2FhIVwuF4Dp31Z0uVwoLCxU/uaxWAxerxfJZBLxeFzxFI/HdR/vSZKEM2fOYGRkRMkT1YjceZIkCW+//bbympk9qRmX6+HJ6HtCSZLQ1taGoaEhzT0lEgm0t7djZGSEizypGe+J9J4rQt0bHR3FO++8A0mSTO1JzbhcL09q7zVyVSOmeopGo2hvb4fP59Ok78XjcbS3t2N0dFTTe8JcQBMhBtLZ2Ylz585N+jc4OKi8HolEpr1+7ty5OdehXb16NY4fP46qqioA4525qakJzz//PF555RXlwlixYgUOHjw4aV8Rkdi8eTMefvhhAMDw8DDcbrdyce7evRudnZ0AgObmZjQ0NAAA+vr64Ha7FY1du3ahu7sbANDY2IjGxkYAQHd3N3bt2qUc53a70dfXBwBoaGhAc3MzgPH87t69G8B44XC73RgeHgYAHDhwAC0tLQCAtrY27N+/H8B4cXC73Uox2r9/P9ra2gAALS0tOHDgwJye4gegUHAAAQAASURBVPE4jh07htdee830nl544QUcP34c8XicizydPXsWb7zxBuLxuOo8AfP3vffffx9NTU04evSo5p5OnTqFpqYmnD17los8Pf/882hqakI8Hl+0p3g8jjfeeAOnTp0CoO31tJA8meV6MsrT+fPncfToUcTjcVN7eu2113Ds2DHE43Eu8nT16lXl76pFnoysEVM9vfbaa2hqasLVq1c163tNTU04f/58VnnatWuXUn/y+T1XhLrX39+Po0ePKjd+Zvb08ssvo6mpCf39/VzkadeuXfB4PIjH44b0vXg8Do/HMynWhXgqLCxEa2urEsOlS5dw7do1pd22tjbY7Xbcc889ePTRR/Hzn/8c9fX1+Pu//3v84z/+I+rr6/HDH/4Qf/d3f4cNGzagrKwMjz/+OMrKygAAjzzyCDZt2gRJktDX14eLFy+ip6cHoVAIra2tyocHbW1tuo/34vE4jh8/jhdeeEHJE9WI3HmKx+M4evQorl69anpPasblengy+p4wHo+jqakJu3bt0txTIBBAU1MTXnjhBS7ypGa8J9J7rgh171//9V+V68TMntSMy/X0pOZeI1c1Yqqnq1evoqmpCa+99pomfW94eBhNTU3413/9V03vCXMBLY1lIGvXrlUG54vh6tWrWLt27ZzHSJKEX/3qV6ivr8eFCxcwODiIiooKrFu3Dn/2Z3+Gr3zlK1i+fHmWkfNL5nEqp9MJu92OlpYW3HnnnQiFQigvL4fFYkEwGITT6YTD4UAsFoMsyygpKUEqlUI4HFaekAkEAiguLkZBQYEygVRcXIxkMoloNIry8nIA47OrpaWlsNvtiEQisFqtKCoqUmbjy8rKwBhDIBCAy+WCzWZDOByG3W6H0+lEIpGAJElwuVyQZRnBYBBlZWWwWq0IhUJwOBwoLCxEPB5HKpVCaWkp0uk0eSJP5Ik8kSfyRJ7IE3kiT+Rpgiefz4e2tjZYrVZIkgSLxYKCggKk02mkUikUFhaCMYZEIgGHw6EcZ7VaYbfbkUqlkE6n4fP58Mgjj6CsrAzBYBCyLMPlckGSJCQSCfzBH/wB/tt/+28oKyuDLMuQJAmFhYWwWCyQJAnV1dWUJ/JEnsgTeSJP5Ik8kacFeOrv78/Z0lg0EUKYmnzfIyRzY5e5ETMzvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmxWw16Ny5c8qSdTNpp9Np2Gy2ObW9Xi9qa2vnbKempgb/+3//7xm1qqurFxRrtl556yP5jkj54M2L2eqPUdp0D0ZMRJR88OjDyJjMUn+00Jt6Pu0RQhBEVgQCATzzzDOT1gM0K7x5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5kWkGpRIJHDy5EllqQY1dHR0zKqVWQ98PrL1ylsfyXdEygdvXkSqP3QPRuiFKPng0YeRMZml/mihx1Ou6YkQwtTk+xMh6XQaw8PDWLFihbIBpFnhzYvR8ejZnpbaWmip0eCtn+Q7ouSDNx9Uf/TTo/ojDiLlgzcvZqtBcz0RIssyotEoiouLlU3QZ0KSJGzdunXOvRltNht+/vOfY82aNTNqrV69GuvXr5/zm5LZeuWtj+Q7IuWDNy9mqz9GadM9GDERUfLBow8jYzJL/dFCb+r5ufwslyZCCFOT7xMhBEEQBEEQBJHPzDURshh27NgBj8cz5zH19fWorKyc9fWbb74Zt99+u+pYCIIgCIIgRIWWxiIIIivC4TD27t2LcDic61BUw5sXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXkSqQZIkob29fc4nPTLU1dWhpqZm1tdLS0vR29s7p9bg4CAYY5BlGclkctrr2XrlrY/kOyLlgzcvItUfugcj9EKUfPDow8iYzFJ/tNDjKdf2XAdAEET22O12rF27Fna7+S9l3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzIlINslqtqKiomHNZrAxOpxPbt2/Hl7/8ZWzbtm3a66lUat4lttLpNNrb2xEKhSDLMkpLS3HnnXeitLQUQPZeeesj+Y5I+eDNi0j1h+7BCL0QJR88+jAyJrPUHy30eMo1LY1FmBpaGosgCIIgCIIg8pe5lsYqKSlBJBJZlJ7X60Vtbe2Mr823NNZMFBQU4L777uPi5p8gCIIgCCLX0NJYBEFkRSKRQEtLCxKJRK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHkRqQYtWbIEfX19SKVSqrUKCwsxNja2aK1kMgm/3w8ge6+89ZF8R6R88OZFpPpD92CEXoiSDx59GBmTWeqPFno85ZomQgjCxCxm3WPe4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3LyLVoIqKCni9XqTTadVaDocDwWAwK63MEyvZeuWtj+Q7IuWDNy8i1R+6ByP0QpR88OjDyJjMUn+00OMp1zQRQgiB0+lU1t5Np9Pw+/3IrPoWDAaViy0WiymPx6dSKeXbWQAQCASUTQ2j0Sii0SiA8W9xBQIB5Ti/3698EywSiSAWiwEYv7CDwSAAgDEGv9+v3CiFw2HE43EA4zOhoVAIACDLMvx+P2RZBgCEQiFlhjQejysbCc3myeVyYdu2bcpaxWb2xBjDV7/6VbhcLi7y5HA48Mgjj8DlcqnOEzB/33M6nXjsscdgs9k091RQUIDHHnsMDoeDizzJsozHHnsMLpdr0Z5cLhf+83/+zygoKACg7fW0kDyZ5XoyylNhYSG+9KUvweVymdqT1WrFtm3b4HK5uMhTUVERvvjFL8LlcmmSJyNrxFRPVqsVjz32GIqKijTpe3a7HY899hgKCwuzylM6ncZf/dVfweVy5fV7rgh1r7i4GF/84heV8Z+ZPVksFjz22GMoLi7mIk/pdBp/+Zd/CZfLZUjfc7lc+Iu/+ItJEwyL8ZQ5T5Ik5Zx0Oo1EIgGXy4VPfOITygbmmeMyf4dUKqXEzRhDPB5XYnW5XCgsLAQwfq/BGMPatWtRUFAw6bhEIqHEkEwmFX+yLCt/u4ynbMd7LpcLX/3qVyeNx6hG5M6Ty+XCF7/4RRQVFZnek5pxuR6ejL4ndLlcePTRR5FOpzX3VFpaisceewyMMS7ypGa8J9J7rgh1DwC+8pWvwOVymdqTmnG5Xp7U3mvkqkZM9VRUVITHHnsMVqtVk75XUlKCxx57THl9sXma7Z4wF9BECCEEmzdvxsMPPwwAGB4ehtvtVi7O3bt3o7OzEwDQ3NyMhoYGAEBfXx/cbreisWvXLnR3dwMAGhsb0djYCADo7u7Grl27lOPcbjf6+voAAA0NDWhubgYAdHZ2Yvfu3QDGC4Pb7cbw8DAA4MCBA2hpaQEAtLW1Yf/+/QDGi4Pb7VaK0f79+9HW1gYAaGlpwYEDB+b0JMsyGhsb8corrwjh6cyZM5BlmYs8vfvuu/jFL34BWZZV5wmYv+998MEH8Pv9OHLkiOaeTp06Bb/fj3fffZebPGUGCIv1JMsyfvWrX+HUqVMAtL2eFpInM11PRni6cOECfv7zn0OWZVN7euWVV9DY2AhZlrnIU29vL9xutzKI1rvvaV0jJnp65ZVX4Pf7FU9q8tTQ0ICmpib4/X5cuHAh6zz19fVBluW8f881e90bHByE2+1Wbu7M7snv9yueeMjTlStXIMuyIX1PlmV0dXVl7WlsbAwAcOnSJVy7dk1pt62tDbIsIxwOo7W1VfnAoLOzU/k7eL1enD9/XvHe2tqqfCDyyCOPYNOmTQD+7V4jmUwiEomgtbVV+fCgra1N6QPXrl3DpUuXlL9Ra2vrJE/ZjvdkWcaZM2eoRnDiKTOG7e3tFcJTtuNyvTwZeU8oyzKGhoZ08RSLxeD3+7nJk5rxnmjvuRPzZNa69/bbb0OWZdN7ynZcrpcnLe41clUjJnrq7e2F3+/HK6+8okme/H4//H6/5veEOYERhInp6OhgAJjT6WSlpaWso6ODpVIp5vP5mCzLjDHGAoEASyQSjDHGotEoC4fDjDHGkskk8/l8ipbf72eSJDHGGItEIiwSiTDGGJMkifn9fuU4n8/HkskkY4yxcDjMotEoY4yxRCLBAoEAY4wxWZaZz+djqVSKMcZYKBRisViMMcZYPB5nwWCQMcZYOp1mPp+PpdNpxhhjwWCQxeNxxhhjsViMhUIhxhib1ZPP52NPPfUU6+/vN72n3t5e9tRTTzGfz8dFnrxerxKP2jwxNn/fGxoaYk899RS7ceOG5p4yXrxeLxd5unbtmqKxWE+ZPu/1ehlj2l5PC8mTWa4nozwNDg4quTSzp/7+fsUHD3kaHh5W4tEiT0bWiKmeMn/b4eFhTfrewMAAe+qpp9jg4GBWeZpYf/L5PVeEujcyMsKeeuopNjY2ZnpPfX197KmnnmIjIyNc5GnidWJE38tcW9euXcvKU1dXF/N4POzIkSOssbGReTwe9sYbb7DDhw8r9fTgwYPs2LFjynFHjx5lHo+HHT16lB0+fJh5PB52/PhxdujQIfbiiy8yAMzlcrHCwkLlXuPmm29mTz31FNu3bx/7xS9+oZx3+PBh9sYbbzCPx8MaGxvZkSNHmMfjYceOHWOHDh1iHo+HXbp0SdV4L/M36u3t1bTviVwj9PSUycfw8LDpPakZl+vhyeh7won1R2tPY2NjynXLQ57UjPdEes8Voe5dv35d6Q9m9qRmXK6XJ7X3GrmqEVM9ZcY//f39mvS90dFR9tRTT7Hr169rck+Y+Sw386+jo4MZhYWx//+5FYIwIRcuXMDGjRuVnzs6OnD33XfnMCJjyTytUFZWpizVYVZ482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M2L2WqQz+fDuXPnpv2+rKwMVVVVaGpqgsVigcViWZCe1+tFbW3ttN9brVaUlZUhGAxClmU4HA5s2bIFdXV1cDqdc2recsstuO2227L2ylsfyXdEygdvXsxWf4zSpnswYiKi5INHH0bGZJb6o4Xe1PNz+VkuTYQQpibfJ0IIgiAIgiAIIp9hjKG7u1tZ2gIACgoKUFVVhZKSEpw6dUpZqmEhzDYRMhs1NTXYvn37nMd86EMfwvr16xesSRAEQRAEISq5/CyXjyk3giCyIhQK4bnnnlM2MjIzvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmxWw1yGKxYP369fjYxz6G2267DRs3bsR9992HkpIShEKhRU+EzIbL5VI2K57IyZMnlQ1BZ8PhcADI3itvfSTfESkfvHkxW/0xSpvuwYiJiJIPHn0YGZNZ6o8WejzlmiZCCMLEOBwOVFVVKTdXZoY3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3ryYsQZZLBaUlJTglltuwfLly2G32xXtm2++GTabbUE6t95666yvSZKE9vb2aZMekiTB6/UuSD9br7z1kXxHpHzw5sWM9ccIbboHIyYiSj549GFkTGapP1ro8ZRrWhqLMDW0NBZBEARBEARBELOx0CdCysrKsHTpUrS0tCxqaawMNTU1s+4Xsn79enzoQx8CML5ONi9roRMEQRAEQRgNLY1FEERWxONxNDU1IR6P5zoU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxfRatDly5eRSqXmPTbzFMnSpUtn/Mai0+lEdXX1rBujezwe7Ny5c1b94eFhvP322/jFL36BkydPLvgpEoC/PpLviJQP3ryIVn/oHozQA1HywaMPI2MyS/3RQo+nXNNECEGYmFQqhZ6engXd3PEOb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5Ea0G+Xw+yLI877HLly8HML58w5YtW6a9brfbsXbtWmXCZCZm2y/E7/ejs7MT4XAYfr8fkUgEXV1deP/99+H3++eNj7c+ku+IlA/evIhWf+gejNADUfLBow8jYzJL/dFCj6dc09JYhKmhpbEIgiAIgiAIgpiNd955B5FIZM5jHA4HPvrRj8Lr9eLKlSuIx+PYuXPngjZCn8qzzz6LysrKWZ8smY3i4mKsWrUKq1atmnOyhSAIgiAIwszQ0lgEQWRFOp2G1+tFOp3OdSiq4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L6LVIJvNNusTF4WFhVi5cqWygWd5eTmA8WWwtm/fjoaGBtTX16O+vh4vvvgi/vAP/3DejdefeOIJ1NbWYuvWrdixY8ekZSBkWUY4HJ4xnmg0iu7ubrz33nvT/ha89ZF8R6R88OZFtPpD92CEHoiSDx59GBmTWeqPFno85ZomQgjCxIRCIfz0pz9FKBTKdSiq4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L6LVoIaGhhmXYli3bh3uv/9+3HXXXSguLgYwvmF6ZjIEGH9SpLKyEpWVlViyZAk2b96Mf//v//2C2pYkadq+IZIk4ezZs3M+ZRIMBjE6OjrNB099JN8RKR+8eRGt/tA9GKEHouSDRx9GxmSW+qOFHk+5pqWxCFOTeZzK6XTCbrejpaUFd955J0KhEMrLy2GxWBAMBuF0OuFwOBCLxSDLMkpKSpBKpRAOh1FRUQEACAQCKC4uRkFBAaLRKIDxR9STySSi0ahyU+T3+1FaWgq73Y5IJAKr1YqioiJIkoR4PI6ysjIwxhAIBOByuWCz2RAOh2G32+F0OpFIJCBJElwuF2RZRjAYRFlZGaxWK0KhEBwOBwoLCxGPx5FKpVBaWop0Oj2jp4KCAvj9fhQUFKC0tNTUngKBACwWC1wuF+LxeM7zFI/HEQqFsHz5cjDGVOVpIX2vqKgIsiwjnU7DYrFo6slms8FisQAAkslkzvMUiUTgdDpRWFiIQCCwKE9WqxWjo6MoKSlBUVGRpteTiDVCb0+JRAKBQAArVqxQ9MzoKRwOI5lMoqKiAslkMud5SiaTGBsbw8qVK5XrTs++p2WNmOopnU7DbrfDZrMhEomo7nsWiwVWqxUWiwWJRGLReQoEAigsLERRURHC4XDevueKUPdSqRRGR0exYsUKWK1WU3tKJpMoKChQ6lGu8+T3++FwOFBcXIxIJKJ738u0k0wmsWTJEk09ZcYrw8PDGB0dRSgUgtVqRWVlJdavXw9JkqZ5KikpwfXr1/HBBx/AZrPBbrcjlUopT5dYLBb09PTgL//yL8EYQ1lZGeLxOCRJQlFREaxWq/J3Ky0tRTQaRUNDA2RZVpa8kmUZFosFBQUFSKfTSCaTyibs8Xgcq1atwr333qt4cjqdCIVCYIyhvLycakSOPTHGMDQ0hKVLl6KgoMDUntSMy0W4J8y0k/GnpaeysjJIkoREIoGioqKc50nNeE+k91wR6l4wGFTefxKJhGk9qRmX6+VJ7b1GrmrEVE8lJSVIp9NIpVKw2Wyq+57L5UIymYQkSSgsLFR9T9jf309LYxGEGjZv3oyHH34YADA8PAy3241EIgEA2L17Nzo7OwEAzc3NaGhoAAD09fXB7XYrGrt27UJ3dzcAoLGxEY2NjQCA7u5u7Nq1SznO7Xajr68PANDQ0IDm5mYAQGdnJ3bv3g0ASCQScLvdGB4eBgAcOHAALS0tAIC2tjbs378fwPg3vtxuN4LBIABg//79aGtrAwC0tLTgwIEDc3qyWCxobW3Fq6++anpPe/bswZUrV2CxWLjIU3t7O1566SWliKvJEzB/37ty5QqcTieOHj2quafW1lY4nU60t7dzkafnnnsOTqcTFotl0Z4sFgteffVVtLa2AtD2elpInsxyPRnl6eLFi3jxxReVgaJZPWX6lMVi4SJP/f39eO6555SbVb37npY1YqqnV199FU6nE/39/Zr0vTfffBNOpxMXL17MKk8/+tGPIEkSLBZLXr/nilD3RkZG8NxzzynfrDezp5deeglOpxMjIyNc5OlHP/oRQqEQLBaLIX3PYrFgZGQEP/rRjzT3ZLFYYLFYsGfPHqxatQqf+tSncPnyZfT19cFisczoKRKJYN26dTh//jy8Xq/yN7948SLsdjtisRj6+vpQWFgIAPjqV7+Ku+66CwDw4IMPYuvWrQCA1atX4/HHH4ckSRgbG8OZM2fg9/tht9tx5coVxZ/P58OZM2cUT62trejv75/kyWKx4MqVK9izZ4+SJ6oRufNksVjw3HPPTcuTGT2pGZfr4cnoe8JMjfjRj36kuSdJkuB0OrFnzx4u8qRmvCfSe64Ide/FF1/ExYsXYbFYTO1JzbhcL09q7zVyVSOmeurv74fT6cSrr76qSd8LhUJwOp148cUXNb0nzAmMIExMR0cHA8CcTicrLS1lHR0dLJVKMZ/Px2RZZowxFggEWCKRYIwxFo1GWTgcZowxlkwmmc/nU7T8fj+TJIkxxlgkEmGRSIQxxpgkSczv9yvH+Xw+lkwmGWOMhcNhFo1GGWOMJRIJFggEGGOMybLMfD4fS6VSjDHGQqEQi8VijDHG4vE4CwaDjDHG0uk08/l8LJ1OM8YYCwaDLB6PM8YYi8ViLBQKMcbYrJ4CgQD7wQ9+wAYGBkzvqa+vj/3whz9kgUCAizwNDQ2xH/zgBywQCKjOE2Pz972RkRH27LPPMq/Xq7mnwcFB9uyzz7KhoSEu8nT9+nX27LPPskAgsGhPmT4/ODjIGNP2elpInsxyPRnlaXh4WLlOzOxpYGBA8cFDnkZHR5V4tMiTkTViqqeBgQH27LPPstHRUU36XibW4eHhrPLU29ur1LB8fs8Voe6NjY2xH/zgB0ocZvZ048YN9uyzz7KxsTEu8jTxOjGi7wUCAfbDH/6Q9fb2au5povZi83T48GF29OhR5vF42NGjR9krr7zCnn76afb666+zX/ziF8xisTAArKysjDkcDgaAFRUVsZKSEgaA2e12VlFRwQCwffv2sUOHDrHXXnuNPf3006yhoYE1NjYyj8fD3njjDXbo0CHm8XiYx+Nhhw4dYidPnpzkKeOjr69P074nco3Q01Pm/WB0dNT0ntSMy/XwZPQ9oZoaMZ8nv9/Pnn32WdbX18dFntSM90R6zxWh7vX39yvXiZk9qRmX6+VJ7b1GrmrEVE+jo6Ps2WefZQMDA5r0PZ/Px5599lnW39+vyT1h5rPczL+Ojg5mFLQ0FmFqMktjZTDycSoekCQJnZ2duOuuu+BwOHIdjip482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1aBxmpqaJv2cTqcxPDyMFStWIJ1OY+vWrXPu9TGVmpoa/M3f/A1CoRBWrFgx56brRUVFuO+++zTxQWiPSPngzQvVH/20aAwkDqLkg0cfRsZklvqjhd7U83P5WS5NhBCmJt8nQgiCIAiCIAiC0J6pEyFT2bFjBzwez6I0a2pqsH379nmPmzoRQhAEQRAEIQq5/CyX9gghCBMTi8Vw+PBhxGKxXIeiGt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1aGaSySQuX76MZDIJAKirq0NNTc2ivhl59uxZvP/++4rGQuGtj+Q7IuWDNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85dqe6wAIgsgeWZbh9/shy3KuQ1ENb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRo0M4wxxONxZBZUcDqd2L59u7IZuiRJ2LZt25wa6XQa4XAYi12Ugbc+ku+IlA/evFD90U+LxkDiIEo+ePRhZExmqT9a6PGUa1oaizA1tDQWQRAEQRAEQRBaM9/SWDOxkOWy6uvrUVlZOecxtDQWQRAEQRCiQktjEQSRFalUCj09PUilUrkORTW8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFatDMLOTbjJnlsmbDbrcjGo0u+huRvPWRfEekfPDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZiYcDiMffv2IRwO5zoU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQTMjSRLOnTsHSZJmPSazXNa+fftmfL20tBTXr1+fU2MmeOsj+Y5I+eDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBKE12SyNlcHr9aK2tnbG12hpLIIgCIIg8hlaGosgCIIgCIIgCIIgOGH58uW5DoEgCIIgCILQEJoIIQgTEwgE8P3vfx+BQCDXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA0ax2qdfKscj8dx4sQJxOPxrOMpLy/HBx98sGgN3vpIviNSPnjzQvVHPy0aA4mDKPng0YeRMZml/mihx1OuaWkswtTk+9JYyWQS3d3dWL9+PQoKCnIdjip482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1aBxOjs7MTQ0pPycTqfh8/mwZMkS2Gy2Oc+dbWmsgoICuN1u3H777XNqTF0ai7c+ku+IlA/evFD90U+LxkDiIEo+ePRhZExmqT9a6E09P5ef5dJECGFq8n0ihCAIgiAIgiAI7Zk6EbIY5tojBAA2bNiAuro63HzzzXA4HNNepz1CCIIgCIIQFdojhCBU4nQ6UVpaCmD821p+vx+ZOb5gMAhJkgAAsVgMkUgEAJBKpeD3+xWNQCCAZDIJAIhGo4hGowDGZy4nPr7l9/uRSqUAAJFIBLFYDAAgSRKCwSAAgDEGv9+PdDoNAAiHw8oj8IlEAqFQCAAgyzL8fj9kWQYAhEIhJBIJAOOP34fD4Tk9RaNRHDhwAMPDw6b3NDg4iJdeegnRaJSLPPl8PvzmN79BNBpVnSdg/r4XCARw8OBBjIyMaO5pbGwMBw8ehM/n4yJPXq8XBw8eRDQaXbSnaDSK3/zmNxgbGwOg7fW0kDyZ5XoyypPf78evf/1rRKNRU3saHh7GgQMHEI1GuchTMBhU/q5a5MnIGjHV0/DwMA4ePIhgMKhJ3xsdHcXBgwfh9/uzytPAwABefvllRKPRvH7PFaHuhUIh/PrXv5503ZjV09DQEA4ePIhQKMRFngYGBvDb3/4W0WjUkL4XjUbx29/+FgMDA5p7ikajePnllzEwMLDoPMViMUU7lUohEomgq6sLiUQC8Xhc8ZRIJBTtZDKp+LPb7aioqFBiLS8vR1lZGR566CEMDQ3hG9/4BrZu3Yp/+Id/mOQpHo8rehlP0WgUL730EgYHB5U8UY3InadoNIpf//rXSuxm9qRmXK6HJ6PvCdXUiPk8RSIRHDx4EIODg1zkSc14T6T3XBHq3tDQkHKdmNmTmnG5Xp7U3mvkqkZM9RQMBnHw4EEMDw9r0vfC4TAOHjyIoaEhTe8JcwFNhBBCsHnzZjz88MMAxj/QcrvdysW5e/dudHZ2AgCam5vR0NAAAOjr64Pb7VY0du3ahe7ubgBAY2MjGhsbAQDd3d3YtWuXcpzb7UZfXx8AoKGhAc3NzQDGvzW2e/duAOOFw+12Kx+WHDhwAC0tLQCAtrY27N+/H8B4cXC73Uox2r9/P9ra2gAALS0tOHDgwLyeBgcHlVjN7OnFF19UijcPeTp//jyuXLmiWZ7m89TT0wMAaGpq0tzT2bNnFU885Gnv3r2qPF27dk3xpPX1xEPfM5OnS5cu4fLly6b31NjYqHy4xEOebty4gYsXL2qWJyNrxFRPmVhv3LihSd87deoUgPG+l02efvaznyk3EPn8nitC3RsZGcHFixeF8PTqq68qnnjI089+9jMlBqP6XjQaxc9+9jNdPMmyjJ/97GeLztNbb70Fr9er/M0vXboEYPyGvrW1VfnwoK2tbdIYJXPc6tWr8fjjjyuxfv3rX8fatWsBANXV1fjsZz8LSZLQ39+PM2fOKMe1trZiaGgIjLFJngKBAF588UUlT1Qjcuvp4sWLuHHjhuk9qR2Xi3BPmG2NWIwnHvKkZrwn0nuuCHXvwIEDyhcDzexJ7bhcD09q7zVyVSOmesq8PzU2NmrS9zITIwcOHND0njAnMIIwMR0dHQwAczqdrLS0lHV0dLBUKsV8Ph+TZZkxxlggEGCJRIIxxlg0GmXhcJgxxlgymWQ+n0/R8vv9TJIkxhhjkUiERSIRxhhjkiQxv9+vHOfz+VgymWSMMRYOh1k0GmWMMZZIJFggEGCMMSbLMvP5fCyVSjHGGAuFQiwWizHGGIvH4ywYDDLGGEun08zn87F0Os0YYywYDLJ4PM4YYywWi7FQKMQYY+SJPJEn8kSeyBN5Ik/kiTyRJwM9nTlzhh09epR5PB529OhRduTIEebxeNixY8fYoUOH2PHjx5nH42GHDx9mb7zxBvN4PKyxsZEdOXKEHTlyhBUVFbGKigoGgAFg5eXlrKCggAFgxcXFrLi4mAFgBQUFbPny5Yr+oUOH2LFjx9iZM2eY3++nPJEn8kSeyBN5Ik/kSShPmc9yM/86OjqYUdAeIYSpyfc9QnjcXCpbePNCG/Xpp0Ub9YmDKPngzQfVH/30qP6Ig0j54M0L1aBxrly5gt7eXuXnxWyWDgA7duyAx+OZ9LuCggKsX78e3d3dyrdgM9TX16OysnLS726++Wbcfvvt3PWRfEekfPDmheqPflo0BhIHUfLBow8jYzJL/dFCb+r5tEcIQRBZEY1GlbVCzQ5vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGjTOsmXLJv2cTCbR1dU1bQJjNurq6lBTUzNpM/Ti4mI89NBDKC4uXpDGyMgIkskkent7lX1U6HuMuYe3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKdf0RAhhavL9iRCCIAiCIAiCILSHMYZLly5N2sTdarXCZrMteDIEGN+c9MaNG9i5c+ek/Z+mMtMTIQBQVFSkbHQKACtXrsSGDRtgsVgWHANBEARBEAQv5PKzXLshrRAEQRAEQRAEQRCESbBYLLj99tuxYsUK+P1+FBQUYNmyZRgaGkJPT8+CdRwOB9auXYuf/OQn6O3txbZt2xYVx8RJEAAYGhqC0+nEunXrFqVDEARBEASR79DSWARhYvx+P7797W/D7/fnOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB/4bFYsHSpUuxbt06uFwu/OM//iPs9uy/S2ixWPDUU0+hoqJi2mterxderxeSJE17LR6Po7m5GfF4HADQ29u7qKdSCG3h7ZpVA29eqP7op0VjIHEQJR88+jAyJrPUHy30eMo1LY1FmJp8XxorlUqhr68Pq1evVnVTxgO8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFatD8Wv39/bh69eqiNW7cuIFvfetb6OvrQyqVmvEYh8OBLVu2oK6uDk6nEwAgyzKCwSDKyspgtY5/l/Huu+/GihUrsjdEZA1v16waePNC9Uc/LRoDiYMo+eDRh5ExmaX+aKE39fxcfpZLEyGEqcn3iRCCIAiCIAiCIIwnGAzi3XffXdQ5Xq8XtbW1Czq2pqYG27dvn/X1oqIi3HfffYtqnyAIgiAIItfk8rNcWhqLIExMJBLBr371K0QikVyHohrevBgdj57taamthZYaDd76Sb4jSj5480H1Rz89qj/iIFI+ePNCNWhhWmVlZaiursaWLVsWrJFKpfDFL34RJSUl8x578uRJZZksSZLQ0dExadmsWCyGoaGhRbogtIC3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKdc0EUIQJsZqtaKiokJ5RN7M8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pBi9MqKChYsIbFYoHf74csy/MeK0kSxsbGlPOcTicsFsukY7JZnotQD2/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmlpLMLU0NJYBEEQBEEQBEHkkqampgUdt5ilsQCgvr4elZWVcx6zZcsWFBQUKPuIhEIhuFyuSfuJEARBEARB8AItjUUQRFZIkoT29vZJj8mbFd68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SFsth8Oh/F+WZVRVVU363UJIp9Pwer1Ip9PTXmOMQZZldHR0oL29Hd3d3Whvb8f58+dnPJ5QD2/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmkihCBMTDweR1NTE+LxeK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqStVnFxsfL/dDqN6upqOJ3ORWmkUin09PQglUrN+Hp/f7+yjFYGn8+HGzduLKodYmHwds2qgTcvVH/006IxkDiIkg8efRgZk1nqjxZ6POWalsYiTA0tjUUQBEEQBEEQRC6Za2ksu92uTGDosTTWXJSXl2PTpk1Zn08QBEEQBKE1tDQWQRBZwRhDPB6HCPOZvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQtlqlpaWTNGba9HwhbadSqUW3HQgEFnU8sTB4u2bVwJsXqj/6adEYSBxEyQePPoyMySz1Rws9nnJNEyEEYWICgQCeeeYZIW5yePNidDx6tqelthZaajR46yf5jij54M0H1R/99Kj+iINI+eDNC9UgbbVWrlyp/L+kpARPPvkkysvLF6URCoVw8uRJ9PX1cbG+dr7D2zWrBt68UP3RT4vGQOIgSj549GFkTGapP1ro8ZRrWhqLMDX5vjRWOp3G8PAwVqxYAZvNlutwVMGbF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb16oBi1ea66lsT75yU+io6MDPp8Psizj2WefxaFDhxa0kfnPfvYz1NfX49SpU6ioqMDw8DBsNhu2bNmCurq6Be018uCDDy76CRRibni7ZtXAmxeqP/pp0RhIHETJB48+jIzJLPVHC72p59PSWAShEqfTqTx2nk6n4ff7lUeugsGg8s2pWCyGSCQCYHzTQb/fr2gEAgEkk0kAQDQaRTQaBQAkk8lJs5Z+v19Z5zcSiSAWiwEAJElCMBgEMP7Yl9/vV25wwuGwsilQIpFAKBQCAMiyDL/fD1mWAYx/2yuRSAAY30woHA7P6clms6G8vFzRNrOnSCSCpUuXwmazcZGnVCqFkpIS2Gw21XkC5u97siyjsrISiURCc0/JZBKVlZVIpVJc5CkcDqOyshI2m23Rnmw2G0pLSxVtLa+nheTJLNeTUZ7S6TSKi4ths9lM7Skej6O8vBw2m42LPGWWTskMMvXue1rWiKme4vE4KisrlXbV5CkSiUCSJFRWViKdTmeVp1AohJUrV8Jms+X1e64IdQ8YH/9ZrVbTe4rFYso+EDzkKRQKKTeqRvQ9m82G5cuXK9paerLZbLjpppsQCoV0zVNGO5lMKv5kWUY8HofNZsNHPvIRLFu2DIwxfOMb38CnP/1p5amQgoKCSU+IVFRUwG63AwCeeOIJtLS0IB6PY2xsDCUlJZAkCU1NTXC73UqskiQpf4dUKqXEzRhDZ2dnXtYIPT3ZbDY4nc5J42OzelIzLtfDk9H3hFrWiKmerFYrKisrlfFLrvOkZrwHiPOeK0Ldi0ajWLJkCWw2m6k9qRmX6+VJ7b1GrmrEVE+MMVRWVirjFzV58vv9sFgsqKysRDQa1fSeMBfQRAghBJs3b8bDDz8MABgeHobb7VYuzt27d6OzsxMA0NzcjIaGBgBAX18f3G63orFr1y50d3cDABobG9HY2AgA6O7uxq5du5Tj3G43+vr6AAANDQ1obm4GAHR2dmL37t0AxguH2+3G8PAwAODAgQNoaWkBALS1tWH//v0AxouD2+1WitH+/fvR1tYGAGhpacGBAwfm9BQOh7Fr1y68/PLLpvf0/PPP42c/+xnC4TAXeWppacGPf/xjhMNh1XkC5u97HR0d2Lt3L15//XXNPb355pvYu3cvWlpauMnT3r17EQ6HF+0pHA7j//2//4c333wTgLbX00LyZJbryShP7777Ln70ox8hHA6b2tPLL7+MXbt2IRwOc5GnDz74AG63WxlY6t33tKwRUz29/PLL2Lt3r+JJTZ4aGhrwxhtvYO/evXj33XezztPu3bsRDofz+j1XhLp37do1uN1ujI6Omt7Tv/7rv2Lv3r2KJx7y9PzzzyMcDhvS98LhMH7+85/r4ikcDmPPnj265ymjfe3aNVy6dEnRa21tBQBYrVa89tprGB4eRldXFx566CF873vfQ319Pb773e/i61//uuLp8ccfx+rVqwEAW7duxYMPPojS0lL81V/9Fb72ta8BAAoLC7F582blg4/Ozk7l7+D1enH+/HklnwcOHMjLGqGnp8wY9oMPPhDCU7bjcj08GX1PqGWNmOppdHQUe/fuxfPPP89FntSM90R6zxWh7r3wwgv46U9/inA4bHpP2Y7L9fKkxb1GrmrERE8ffPAB9u7di5dfflmTPA0MDGDv3r144YUXNL0nzAmMIExMR0cHA8CcTicrLS1lHR0dLJVKMZ/Px2RZZowxFggEWCKRYIwxFo1GWTgcZowxlkwmmc/nU7T8fj+TJIkxxlgkEmGRSIQxxpgkSczv9yvH+Xw+lkwmGWOMhcNhFo1GGWOMJRIJFggEGGOMybLMfD4fS6VSjDHGQqEQi8VijDHG4vE4CwaDjDHG0uk08/l8LJ1OM8YYCwaDLB6PM8YYi8ViLBQKMcbYrJ5isRhrbGxkIyMjpvc0ODjI3njjDRaLxbjIk9/vZ4cPH2axWEx1nhibv+8Fg0Hm8XjY6Oio5p58Ph/zeDxKO7nO0+DgIPN4PCwWiy3aUywWY0eOHFHa0vJ6WkiezHI9GeUpEAgo14mZPY2MjLDGxkYWi8W4yFMoFGKHDh2aVI/07Hta1oipnkZGRpjH41HaUZOncDjMxsbGmMfjYYFAIKs8eb1edvz4cRaLxfL6PVeEuhcOh9mhQ4cm1SOzehoeHmYej4eFw2Eu8uT1etmxY8eUv7fefS8Wi7Fjx44xr9eruadYLMaOHz/OvF6vrnk6fvw483g8rLGxkR05coR5PB527NgxdujQoUmeDh8+zPbs2cNef/111tjYyDweD9u/fz8rLy9nABgAVlFRwex2OwPASkpKWFFREXM6newzn/kMW7FiBQPALBYLq6ioYC+++CLzeDzsyJEj7OjRo8zj8bCjR4+yw4cPM4/Hw44fP84OHTqk/I3yqUbo6SkWi7FDhw5Nqkdm9aRmXK6HJ6PvCbWsEVM9RaNR5vF42ODgIBd5UjPeE+k9V4S6NzQ0xI4ePcpisZipPakZl+vlSe29Rq5qxFRPoVCIeTweNjIyoknfi0QizOPxsKGhIU3uCTOf5Wb+dXR0MKOgPUIIU5Pve4QQBEEQBEEQBJFburu7cf369Wm/v+WWW3DbbbcpP8+0l4gkSdi6dWtWm6DX19cry3XNxSc/+Ulu1l8nCIIgCCK/oT1CCILIikQigZaWFuXxMzPDmxej49GzPS21tdBSo8FbP8l3RMkHbz6o/uinR/VHHETKB29eqAYtXmvVqlVwOByTfldQUICbb7550u9SqRT6+vqU9cgBwOFwYMuWLXO2nVkKq7CwMKvY33rrLfT29mZ1LjEd3q5ZNfDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZgYSZLQ3t6e1TfIeIM3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3rxQDVq8VnFxMaqqqvChD30IFRUVWL16NaqqqlBSUjLpuPLycni9XmVz0gx1dXWoqamZtW2Hw4Gqqqppky2L4cqVKxgcHMz6fOLf4O2aVQNvXqj+6KdFYyBxECUfPPowMiaz1B8t9HjKNS2NRZgaWhqLIAiCIAiCIAgz4Pf70d7ePuvrvb292LZt24L1Fro0Vobly5dPunciCIIgCIIwGloaiyCIrJBlGX6/H7Is5zoU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfpplZWVIR6PY7bvIs72xIfVakVFRQWs1sm374v9ZuXIyAgYY4hGo7h+/TquXbuGK1euoL29HadOnUJnZydisdiiNPMR3q5ZNfDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZiYYDAIt9uNYDCY61BUw5sXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6acVDAbR2tq66DWyy8rK8Pjjj6OsrGzS77dt24YdO3YgHo8vWOvq1at455130N3djatXr6K3txd+vx+JRAJDQ0PcLF3BM7xds2rgzQvVH/20aAwkDqLkg0cfRsZklvqjhR5PuaalsQhTk+9LY8myjGAwiLKysmnfEDMbvHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflqyLKOxsRGFhYWwWCzTXvd6vaitrZ32e6vVirKyMgSDwRm/TVlTU4Pt27dnFdNM3HHHHVi1apVmeqLB2zWrBt68UP3RT4vGQOIgSj549GFkTGapP1roTT0/l5/l0kQIYWryfSKEIAiCIAiCIAjz0NTUNOtrkiRh69ati34iw+FwoKGhQdVm6hNxuVz4/d//fU20CIIgCIIgJkJ7hBAEkRWhUAjPPfccQqFQrkNRDW9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9WKBTCmTNnZl0ay+FwYMuWLdN+73K58Nhjj8Hlcs14niRJ8Hq9Wcc1U5zE7PB2zaqBNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85ZomQgjCxDgcDlRVVWn27a9cwpsXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6aflcDhQWVkJm8026zF1dXWoqamZ1I4kSfPu3ZHNfiFzQQtHzA5v16waePNC9Uc/LRoDiYMo+eDRh5ExmaX+aKHHU65paSzC1NDSWARBEARBEARBmIUTJ04glUrNe5wkSRgbGwMAxONxPP/88zhx4sS852m1X8hHP/pRlJaWqtYhCIIgCIKYCC2NRRBEVsTjcTQ1NWn2za9cwpsXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6acVj8fh9XoXNBGSeXqksrISq1evxte+9jXs3r173vNOnjy56D1GZouVmBnerlk18OaF6o9+WjQGEgdR8sGjDyNjMkv90UKPp1zTRAhBmJhUKoWenp4F3UzxDm9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9WKpVCKBSCLMuLOk+WZfj9fqxYsWLeZSUmPkmihqtXr6rWEBXerlk18OaF6o9+WjQGEgdR8sGjDyNjMkv90UKPp1zT0liEqaGlsQiCIAiCIAiCMBMtLS1Zfytyx44d8Hg8cx5TX1+PysrKrPQn8qlPfQpWK313kiAIgiAI7aClsQiCyIp0Og2v14t0Op3rUFTDmxej49GzPS21tdBSo8FbP8l3RMkHbz6o/uinR/VHHETKB29eqAbpp5XRuPnmmxd1nizLCIfDkGVZ2Ux9LrRYGgsAYrGYJjqiwds1qwbevFD90U+LxkDiIEo+ePRhZExmqT9a6PGUa5oIIQgTEwqF8NOf/hShUCjXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STyujUVZWtqjzJEnC2bNnIUkSnE4ntm/fjn379s16/LZt27Bjxw7Va3FrNaEiGrxds2rgzQvVH/20aAwkDqLkg0cfRsZklvqjhR5PuaalsQhTk+9LYzHGkEgkUFhYCIvFkutwVMGbF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb16oBumnNVGjubl5Ueel02nYbDalba/Xi9ra2jnPe+CBB/Cd73wnq1gB4Oabb8btt9+e9fmiwts1qwbevFD90U+LxkDiIEo+ePRhZExmqT9a6E09n5bGIggiKywWC5xOJzdvGmrgzYvR8ejZnpbaWmip0eCtn+Q7ouSDNx9Uf/TTo/ojDiLlgzcvVIP005qoUV5evqjz7Hb7ots+ceIE/vIv/xI9PT1ZPd1x48aNRZ+TD/B2zaqBNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85ZomQgjCxASDQfzTP/0TgsFgrkNRDW9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ/WRI3ly5cv+LxEIoGWlhYkEgnld0uXLoXD4Zj33MuXL+MrX/kKtm7dqslyWQR/16waePNC9Uc/LRoDiYMo+eDRh5ExmaX+aKHHU65pIoQQAqfTidLSUgDjm/D4/X5kVn0LBoPKN6BisRgikQgAIJVKwe/3KxqBQADJZBIAEI1GEY1GAQDJZBKBQEA5zu/3I5VKAQAikYiyiaAkScpFzRiD3+9XNgIKh8PKTUcikVDWxZNlGX6/H7IsAxhfNy9zgxOPxxEOh+f05HQ68YlPfEJpx8yeJEnCAw88AKfTyUWeLBYL7rvvPjidTtV5AubvezabDdXV1ZBlWXNPAFBdXQ2LxcJFnhKJBKqrq+F0Ohftyel0YvPmzUo7Wl5PC8mTWa4nozxZrVblOjGzp3Q6jU984hNwOp1c5Mlut+PjH/84nE6nJnkyskZM9ZROp1FdXQ273a5J32OMobq6GlarNas8xeNxfOpTn4LT6czr91wR6l5BQQE+/vGPo7Cw0PSeUqkUqqurUVBQwEWeJl4nRvQ9p9OJT37yk5M+oNfKk9PpxIMPPoh4PM5FniaO95YuXYpbbrlFqU0Z4vG4EoMkSUgmk7Db7VizZo3igTEGWZbxwAMPAABKS0uV94zCwkK4XC4A4+/TFRUVsFqtkCQJZ86cwQ9+8AMlvkzcmRgynhKJhNKW2a4nI+qe0+nExz/+cdjtdtN7UjMu18OT0feEWtaIqZ4KCwtRXV0NSZK4yBOQ/XhPpPdcEcZGyWQSW7ZsgdPpNLUnNeNyvTypvdfIVY2Y6slut6O6uhrpdFqTvudwOFBdXa3Uo8XmabZ7wlxAEyGEEGzevBkPP/wwAGB4eBhut1u5OHfv3o3Ozk4AQHNzMxoaGgAAfX19cLvdisauXbvQ3d0NAGhsbERjYyMAoLu7G7t27VKOc7vd6OvrAwA0NDQo6/t2dnZi9+7dAMYLh9vtxvDwMADgwIEDaGlpAQC0tbVh//79AMaLg9vtVorR/v370dbWBgBoaWnBgQMH5vTkcDgwNjaGI0eOmN7TL3/5S9jtdjgcDi7ydOHCBZw7dw4Oh0N1noD5+97169dRVVWFpqYmzT29++67qKqqwoULF7jI0/PPP4+qqio4HI5Fe3I4HOjq6sK7774LQNvraSF5Msv1ZJSny5cvo7W1FQ6Hw9Sejhw5grGxMTgcDi7yNDQ0hKNHjyrf9NW772lZI6Z6OnLkCKqqqjA0NKRJ3zt16hSqqqpw+fLlrPK0a9curFu3Dg6HI6/fc0Woe4FAAEePHlVuuMzs6ZVXXkFVVRUCgQAXedq1axduvvlmOBwOQ/qew+HAsmXLJsWqlSeHw4ENGzZg165dXORp4njv6NGjuO2221BZWYn29nbluNbWViWGS5cu4dq1a7DZbLBarXjvvfcAjH/g0Nrair/+679GTU0NHn74YeWLIps2bcIjjzwCACgrK8Pjjz+ubM7+yCOPIBaLQZIk9PX1KXFHo1G0trYqH4i0tbUpfy+zXU9G1D2Hw4GjR49iaGjI9J7UjMv18GT0PaGWNWKqJ8YYqqqq8Mtf/pKLPKkZ74n0nivC2Og3v/kN0uk0HA6HqT2pGZfr5UntvUauasRUT0NDQ6iqqsKRI0c06XvxeBxVVVX4zW9+o+k9YU5gBGFiOjo6GADmdDpZaWkp6+joYKlUivl8PibLMmOMsUAgwBKJBGOMsWg0ysLhMGOMsWQyyXw+n6Ll9/uZJEmMMcYikQiLRCKMMcYkSWJ+v185zufzsWQyyRhjLBwOs2g0yhhjLJFIsEAgwBhjTJZl5vP5WCqVYowxFgqFWCwWY4wxFo/HWTAYZIwxlk6nmc/nY+l0mjHGWDAYZPF4nDHGWCwWY6FQiDHGZvUUjUZZQ0MDGx4eNr2nwcFB9uqrr7JoNMpFnnw+H/vd737HotGo6jwxNn/fCwQC7NChQ2xkZERzT2NjY+zQoUPM5/NxkSev18sOHTrEotHooj1Fo1H2u9/9jo2NjTHGtL2eFpIns1xPRnny+/3s4MGDLBqNmtrT8PAwa2hoYNFolIs8BYNB5e+qRZ6MrBFTPQ0PD7NDhw6xYDCoSd8bHR1lhw4dUurmYvM0MDDAXn/9dRaNRvP6PVeEuhcKhdjBgweVmMzsaWhoiB06dIiFQiEu8jQwMMBee+01Fo1GDel70WiUvfbaa2xgYEBzT9FolL3++utsYGCAizzNNt4bGxtjHo+HeTwedujQIXbs2DHm8XjYkSNHWGNjIxsZGWG/+tWvWENDA/N4POz48eOTjmtoaGD33HMPA8AKCwuZy+ViAJjVamUVFRXMarUyAMzlcrHCwkK2b98+dvToUXbkyBHm8XjYsWPH2KFDh9jx48eZx+Nhhw8fZm+88QbzeDymu56MqHvRaJQdPHhQicnMntSMy/XwZPQ9oZY1YqqnSCTCDh06xAYHB7nIk5rxnkjvuSKMjQYHB5V7FzN7UjMu18uT2nuNXNWIqZ6CwSA7dOgQGx4e1qTvhcNhJVYt7gkzn+Vm/nV0dDCjsOdwDoYgNGPi4+Q2mw0VFRXKz5lvQAFAUVGR8n+73T7puIkbFhYXFyv/LygomPTaxHNKSkqU/zscDuXbuxaLZdJxmWW7gPHH1TOPlGYeV8+QeYwdgPJ4+1yeIpEIwuGw4svMnkpKShAKhSDL8qQYcuWpoKAA0WgUsiyrzhMwf9+LRCLw+/1wOp2KL608ZbQLCgqU83KZp9LSUuWR0cV6yiwdlnlNy+sJEK9G6O3JbrcjFotBlmVTeyoqKkI4HIYsyygqKsp5nqxWq/J3zdZTrmrEVE+Zx6mtVuskDTWeMo97Z35eTJ5cLhcCgQBkWc7r91wR6p7FYkEsFlO+nWpmT5nlBKbq5cqTy+VCMBiELMuG9L1IJIJgMKhZjZjoKRKJIBAIwOVywWazAchtnhYy3pv498vkJbN045IlSwD826ajGUpLS/HMM89g586d8Hg8yjcyMzU4Q2api23btmHDhg2oq6tTnv6ZqJf5myzEUwZerqcMetY9WZYRi8VgtVpN70nNuFwPT0bfE2pZI6Z6ylzvJSUlyt8vl3lSM94T6T03g5nHRiUlJcq9y0Rts3lSMy7X05Oae41c1YipnjLaRUVFiqaavjcx1sxrau4J+/v7kSssLFPJCMKEXLhwARs3blR+7ujowN13353DiAiCIAiCIAiCIBaOLMt48803Z3xtyZIluPfee8EYm7Zh+kyEQiH87d/+LS5evLigth0OB7Zs2YK6urpJH2pkuP3225UPU1auXDnpwy+CIAiCIIjFksvPcmmPEIIwMalUCj09PcrmTmaGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbjVQqhWvXrk360GA2XC4XfvKTn2Dfvn0L0pYkCR6PBzt37pzx9UuXLmFoaAjXrl3Du+++q6x9ns/wds2qgTcvVH/006IxkDiIkg8efRgZk1nqjxZ6POWaJkIIwsSEw2Hs27cP4XA416GohjcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rW43Meel0GnfdddeCzqmsrFSWwFgIHo8Hvb298Hq9kCRpxmPS6TR6e3sXrCkqvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBGFmFrI0VoZQKISzZ88uSHfHjh3weDyLjme+5bKqq6sXrUkQBEEQBAHQ0lgEQRAEQRAEQRAEQWhIXV0dampqFvVkCDD/clkEQRAEQRBmhCZCCMLEBAIBfP/730cgEMh1KKrhzYvR8ejZnpbaWmip0eCtn+Q7ouSDNx9Uf/TTo/ojDiLlgzcvVIP008pWI9vznE4ntm/fjoaGBuzZswcbNmxY1PknT56cdZmsfIa3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKde0NBZhavJ9aaxkMonu7m6sX78eBQUFuQ5HFbx5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5as2nMtzTWXXfdpZwXj8cXvDTWTPT29mLbtm0LPr6+vh6VlZWTfpfvS2Pxds2qgTcvVH/006IxkDiIkg8efRgZk1nqjxZ6U8/P5We5NBFCmJp8nwghCIIgCIIgCMLc6LVHyExIkoStW7cu+EmPmSZCHnzwQQCAxWLJOg6CIAiCIPIT2iOEIIisiEajOHjwIKLRaK5DUQ1vXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqSfVrYaE8+z2+1Ztw/820boajhx4gROnjyJixcvIp1OAwASiQSuXbuGjo4OXLt2TegltXi7ZtXAmxeqP/pp0RhIHETJB48+jIzJLPVHCz2ecq1uFEUQBEEQBEEQBEEQhCE4nU44nU7E4/GsNerq6gBkvwdIZvJjcHAQ6XQat912G9rb2xGLxQAAIyMj8Hq92LRp06I3aicIgiAIgtALWhqLMDW0NBZBEARBEARBEGZmrqWxli9fPul+BxhfHuvdd9+F2lt5SZIwNjYGr9eLJ554YsZjZloaayIWiwW33HIL+vr6pr22bt06rFmzRlWMBEEQBEGIBS2NRRBEViSTSXR1dSGZTOY6FNXw5sXoePRsT0ttLbTUaPDWT/IdUfLBmw+qP/rpUf0RB5HywZsXqkH6ac2mYbFYUFhYOOM5K1asmHaey+VSvbwVML5MVmVl5ZwTHfPBGJtxEgQABgYGstblGd6uWTXw5oXqj35aNAYSB1HywaMPI2MyS/3RQo+nXNNECEGYGJ7W2VMLb15ofVr9tGh9WnEQJR+8+aD6o58e1R9xECkfvHmhGqSf1mwaFotlxsmIgoICLFmyZMbz7HY7Pvaxj2Udy0JRs9dHZqks0eDtmlUDb16o/uinRWMgcRAlHzz6oD1C9NHjKde0NBZhamhpLIIgCIIgCIIgzA5jDFevXoXX60UymUR5eTluu+02lJSUzHmeJEl4++23VbXt9XpRW1s76+s1NTWoq6uD0+lctHZ1dbWKyAiCIAiCEI1cfpZLm6UTBEEQBEEQBEEQRA6xWCxYt24dPvzhD4MxBqt1YYs3OBwOLFmyBD6fT7fYPB4PAGD79u26tUEQBEEQBKE3tDQWQZgYv9+Pb3/72/D7/bkORTW8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFapB+WgvRsFgs0yZBeOgjJ0+eVLVM1mwMDQ3h3LlzeOedd/DBBx8glUpp3obW8JAPreDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFOT70tjpVIp9PX1YfXq1bDbzf2AF29ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9WthrznXfu3DlVT4RIkoStW7fOO9FRX1+/6I3Vb7nlFqxfvx7BYBCJRALl5eXKElterxddXV2Tjne5XNi0adOCn4jJBbxds2rgzQvVH/20aAwkDqLkg0cfRsZklvqjhd7U83P5WS5NhBCmJt8nQgiCIAiCIAiCyG/UToQAwI4dO5QlsGZjw4YN+OEPf5jVXiETue2223DLLbfgzJkzCIfD017ftGkTysvLVbVBEARBEASf5PKzXH6/ZkEQxLxEIhH86le/QiQSyXUoquHNi9Hx6NmeltpaaKnR4K2f5Dui5IM3H1R/9NOj+iMOIuWDNy9Ug/TTylbDiJzU1dWhpqZmzmMuXryInTt3qm7rgw8+QDQanXESBAAGBwdVt6EnvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pokQgjAxVqsVFRUVXD86vlB482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1SD9tLLVMCInTqcT27dvx759++Y8Tqu9Qq5cuTLra3rsRaIlvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBJHPvP/++xgYGNBEayH7hWSzV8hiWL58+aR7PIIgCIIgxIGWxiIIIiskSUJ7ezv335paCLx5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5a2WrMd97KlStn/H1ZWdmiJxQcDge2bNmyqHO0ZmRkBNFoFLx+Z5O3a1YNvHmh+qOfFo2BxEGUfPDow8iYzFJ/tNDjKdc0EUIQJiYej6OpqQnxeDzXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbjfnOKy8vR0VFxaTfWSwWrFmzJqs46+rqsGHDhllf93q9yj+9PtQ4ffo0rly5wuVkCG/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmlpLMLU0NJYBEEQBEEQBEHkO+l0Gv39/fD7/SgsLMRNN92EiooKjIyMoKOjY9F6Xq8XtbW18x6XeYKkrq4OTqczm9Dn5J577sHSpUs11yUIgiAIIjfQ0lgEQWQFYwzxeJzLb0otFt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SD+tbDUWcp7NZsOaNWtwzz334I477lCeELHb7VnHuxAkSYLH48F3v/tdXfRHR0d10VUDb9esGnjzQvVHPy0aA4mDKPng0YeRMZml/mihx1OuaSKEEAKn04nS0lIA49+G8vv9ygUWDAaVR7ZjsRgikQgAIJVKwe/3KxqBQADJZBIAEI1GEY1GAQDJZBKBQEA5zu/3I5VKAQAikQhisRiA8ZuAYDAIYPwi9/v9SKfTAIBwOKw8ApZIJBAKhQAAsizD7/dDlmUAQCgUQiKRADD+6Fg4HJ7TUyAQwDPPPKNsjmhmT319fXjmmWcQCAS4yNPQ0JASj9o8AfP3vZGRETzzzDPwer2ae8p4GRoa4iJP169fVzQW6ynT54eGhgBoez0tJE9muZ6M8jQ8PKzk0syeBgYGFB885Gl0dFSJR4s8GVkjpnrK/G1HR0c16XuDg4N45plnMDw8nFWeJtaffH7PFaHujY2N4ZlnnlHiNbOnGzdu4JlnnsHY2BgXeZp4nRjR9zLX1vXr1zX3NFGbhzxlO97L+Ojr61PytNC+l/GTeS2jnUqllLhlWZ70AUUikVDOKyoqQklJCYDxSZWJS3CVl5ejoKAAAPDuu+9ix44diMfjSKfTk5a/iMfjip4kSUpu0+m08jfOfEgy8bhUKoX+/n7u6l4mH5lJGjPXcjXjcj08GX1PqGWNmOrJ7/cr1y0PeVIz3hPpPVeEsVF/f7/SH8zsSc24XC9Pau81clUjpnrK3E8ODAxo0vd8Ph+eeeYZ5T15sXma7Z4wF9BECCEEmzdvxsMPPwxg/IM5t9utXJy7d+9GZ2cnAKC5uRkNDQ0AxgdZbrdb0di1axe6u7sBAI2NjWhsbAQAdHd3Y9euXcpxbrdbuQlpaGhAc3MzAKCzsxO7d+8GMF443G43hoeHAQAHDhxAS0sLAKCtrQ379+8HMF4c3G63Uoz279+PtrY2AEBLSwsOHDgwpyeXy4WNGzcqMZjZ00svvYTq6mq4XC4u8tTd3Y1ly5bB5XKpzhMwf98bHh7Go48+ipaWFs09XbhwAY8++ii6u7u5yNOLL76IRx99FC6Xa9GeXC4XVq1ahQsXLgDQ9npaSJ7Mcj0Z5amvrw+lpaVwuVym9tTc3IyNGzfC5XJxkafMQNblcmmSJyNrxFRPzc3NePTRRxEIBDTpe21tbXj00UfR19eXVZ727NmDL33pS3C5XHn9nitC3cvcrDkcDtN7amxsxKOPPop4PM5Fnvbs2YMvfOELcLlchvQ9l8uFrVu3Ys+ePZp7crlc+PKXv4w9e/Zwkadsx3sulwvV1dV46aWXlDwttO/9+Mc/xi233AIAOH/+PLxeLywWCyKRiBJ3NBpFa2ur8oFIW1ub8iHIgw8+iK1btwIAVq9ejccff1yJ9etf/zrWr18PAPjsZz+L8vJy7Ny5Ez6fD2fOnFGOa21tVf6uly5dwrVr15T+kfkbp9NptLa2Kh/sdHZ2Kn8H3upe5v05835t5lquZlyuhyej7wm1rBFTPTkcDjz66KN46aWXuMiTmvGeSO+5IoyNXn31Vdx///1wuVym9qRmXK6XJ7X3GrmqEVM9BQIBPProo8r9mJo8ud1uMMbw6KOP4tVXX9X0njAX0B4hhKnJrCvndDpht9vR0tKCO++8E6FQCOXl5bBYLAgGg3A6nXA4HIjFYpBlGSUlJUilUgiHw8q3mgKBAIqLi1FQUKAMwIuLi5FMJhGNRlFeXg5gfHa1tLQUdrsdkUgEVqsVRUVFkCQJ8XgcZWVlYIwhEAjA5XLBZrMhHA7DbrfD6XQikUhAkiS4XC7IsoxgMIiysjJYrVaEQiE4HA4UFhYiHo8jlUqhtLQU6XSaPJEn8kSeyBN5Ik/kiTyRJ/JEnrLyFI1G0dfXh4KCAlRWVsJms+HNN9+Ew+GALMuQJAmFhYWwWCxIJBIYHR3FI488gqKiIlitVkQiEdjtdpSWlirf5iwvL0c0GkUymURxcTGA8W+wHjx4EBaLRdkzJB6Pw+FwwGq1QpIkWCwWFBQUIJ1OI5VKobCwEIwxJBKJScdZrVbY7Xbcf//9eZMn8kSeyBN5Ik/kSXRP/f39OdsjhCZCCFOT75ulh8NhHDhwAA8//LCyNJhZ4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L1SD9NPKVkOvv1FTU9Osry10s/SZ2LdvH9asWZNlVNOprq7WTEsLeLtm1cCbF6o/+mnRGEgcRMkHjz6MjMks9UcLvann02bpBEFkhd1ux9q1a3XfBNEIePNidDx6tqelthZaajR46yf5jij54M0H1R/99Kj+iINI+eDNC9Ug/bSy1eCtj8zHtm3blP1CRMRs+ZgL3rxQ/dFPi8ZA4iBKPnj0YWRMZqk/WujxlGt6IoQwNfn+RAhBEARBEARBEEQ2zPVEiCRJ2Lp1q7LZaTbU1NRg+/btWZ+fgbcnQgiCIAiCyB56IoQgiKxIJBJoaWlRNiQyM7x5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5a2Wrkoo84HA5s2bJFlcbJkydVTaTwCm/XrBp480L1Rz8tGgOJgyj54NGHkTGZpf5oocdTrmkihCBMjCRJaG9vF+IGgzcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rW41c9ZG6ujrU1NTA4XBM+r3D4cADDzww7/mSJMHr9eoVXs7g7ZpVA29eqP7op0VjIHEQJR88+jAyJrPUHy30eMo1LY1FmBpaGosgCIIgCIIgCGLxzLU01kQkScLY2Jjy89KlS+FwOLBjxw54PJ55z3/ggQfwta99DU6nc9L5C2Xq0lipVArd3d0YGxuD3W7HypUrsWbNGlgslgVrEgRBEASRG2hpLIIgskKWZfj9fsiynOtQVMObF6Pj0bM9LbW10FKjwVs/yXdEyQdvPqj+6KdH9UccRMoHb16oBumnla1GrvuIw+FAZWWl8i8ziZF5YmQ+Tpw4ga985Suora1FbW0ttm7dmtVm6ul0GowxnD9/HgMDA0gkEohEIrh69Sp6enqysZYVuc6HlvDmheqPflo0BhIHUfLBow8jYzJL/dFCj6dc00QIQZiYYDAIt9uNYDCY61BUw5sXo+PRsz0ttbXQUqPBWz/Jd0TJB28+qP7op0f1RxxEygdvXqgG6aeVrUYu+sj9998/7zFOpxPbt2/Hvn37FqUtSRI8Hg927ty5oOOHhobQ2tqKt956C83NzQgEAtOOGRgYgFGLXfB2zaqBNy9Uf/TTojGQOIiSDx59GBmTWeqPFno85ZqWxiJMTb4vjSXLMoLBIMrKymC1mntekzcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rWw29/kZzLY11//3349SpUwvSkSQJW7duXfTa3w6HAw0NDYtaJmsuPvGJT8yq1d/fD6/XC0mSsGTJEqxfvx4FBQVZtcPbNasG3rxQ/dFPi8ZA4iBKPnj0YWRMZqk/WuhNPT+Xn+XSRAhhavJ9IoQgCIIgCIIgCCIbtJoIAbDg/UKmUl9fj8rKykWfNxOzTYT09fXh8uXLk37ncrnwe7/3e7SvCEEQBEEYDO0RQhBEVoRCITz33HMIhUK5DkU1vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflrZauj1N8r2iYiZWOh+Ibngxo0b034XCoVy8l7CG7x5ofqjnxaNgcRBlHzw6MPImMxSf7TQ4ynXNBFCECbG4XCgqqpKs8fJcwlvXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqSfVrYaev2NVq9ePePvs3lCI9v9QvSGMYZoNDrja0NDQ1lp8nbNqoE3L1R/9NOiMZA4iJIPHn0YGZNZ6o8WejzlmpbGIkwNLY1FEARBEARBEASxeGKxGN59910kk0nld1arFffeey+cTueilsbK4PV6UVtbu+Dj9V4aizGG5ubmGY+/6aabsGHDBk3aJgiCIAhiYdDSWARBZEU8HkdTUxPi8XiuQ1ENb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Gnr9jYqKinDvvfdi5cqVcDqdWLZsGe655x6Ul5dr2o5RpFIpQ9rh7ZpVA29eqP7op0VjIHEQJR88+jAyJrPUHy30eMo1TYQQhIlJpVLo6ekxbNCvJ7x5MToePdvTUlsLLTUavPWTfEeUfPDmg+qPfnpUf8RBpHzw5oVqkH5a2Wro+TcqLS3FXXfdhc2bN+MjH/kIKioqNG/DKHw+n6rzGWNYyIIZvF2zauDNC9Uf/bRoDCQOouSDRx9GxmSW+qOFHk+5pqWxCFNDS2MRBEEQBEEQBEFoSzqdxltvvbXo8yRJwtatWyFJ0oKO13JprKVLl+Kee+6Z9LuFLI2VSqVw6dIljI6OwmazYeXKlVi/fj0sFosmcREEQRAE8W/Q0lgEQWRFOp2G1+tFOp3OdSiq4c2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L1SD9NPKViMXfcRms2W1RJbD4cCWLVt0iEg/zp8/j6GhIaTTaUiShL6+Ply+fHnW43m7ZtXAmxeqP/pp0RhIHETJB48+jIzJLPVHCz2eck0TIQRhYkKhEH76058iFArlOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq5GrPpLtRuJ1dXWoqamZtnH5THi9Xni93gU/QaI1sVgMgUBg2u8HBwdnXSaLt2tWDbx5ofqjnxaNgcRBlHzw6MPImMxSf7TQ4ynXtDQWYWryfWksxhgSiQQKCwtN/+g2b16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2GrnsI2fPns36gwtJkjA2Ngav14snnnhizmMzT5LU1dXB6XRm1V42S2OVlZXhgw8+mPH1+++/H4WFhfD5fBgcHIQkSViyZAluueUWSJLEzTWrBqo/VH+Map/QDlHywaMPI2MyS/3RQm/q+bn8LNduSCsEQeiCxWLJ+kaBN3jzYnQ8eranpbYWWmo0eOsn+Y4o+eDNB9Uf/fSo/oiDSPngzQvVIP20stXIZR+59dZb0dHRkdW5Dodjwft/SJIEj8cDANi+fXtW7Y2NjU36ORwOo7+/f85z5vte6PDwMDo7O5XjxsbGEAwGcdddd3HzwZ0aqP5Q/TGqfUI7RMkHjz6MjMks9UcLPZ5yTUtjEYSJCQaD+Kd/+icEg8Fch6Ia3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzQjVIP61sNXLZR5YvX46qqipUVFQY0l5TUxN6e3uzXjLr+vXruH79OgYGBtDe3o6BgQFV8fT29k6bLOnr6+PqmlUD1R+qP0a1T2iHKPng0YeRMZml/mihx1Ou6YkQgjAxTqcT1dXV3MysqoE3L0bHo2d7WmproaVGg7d+ku+Ikg/efFD90U+P6o84iJQP3rxQDdJPK1uNXPeRiooKVFVVQZZlvPnmm7q2xRjDtm3blJ8Xu2RWd3e3pvHMtCyY3W7HRz7yEW6uWTXkum9NheqPflo0BhIHUfLBow8jYzJL/dFCj6dc0x4hhKnJ9z1CCIIgCIIgCIIgjCDbiRBJkrB161ZVG6LX1NRkvWRWttx///04derUjK+tWrUKd9xxh6HxEARBEIQI5PKzXFoaiyBMTCwWw+HDhxGLxXIdimp482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1SD9tLLV4K2PLJbMUx1qOHnypKqJFC1JJpN49913TZuPifDWt6j+6KdFYyBxECUfPPowMiaz1B8t9HjKNU2EEISJkWUZfr8fsiznOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbH5mJpUuXYt26dbO+XldXh5qaGjgcjqz0JUmathl6rmCMIRKJcJ2PhcJb36L6o58WjYHEQZR88OjDyJjMUn+00OMp17Q0FmFqaGksgiAIgiAIgiAI/ZlraawVK1bg7rvvRlNT05wamQkNr9eLJ554YlHtb9iwAT/84Q8NW2P89ttvx6VLl2Z8bdWqVVi3bh2SySSKiopgsVgMiYkgCIIgzA4tjUUQRFakUin09PQglUrlOhTV8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbH1GDw+FAZWUlKisrF33uxYsXsXPnTh2impnZJkFkWcbFixfx1ltv4fTp02hpaUEwGDQsLi3hrW9R/dFPi8ZA4iBKPnj0YWRMZqk/WujxlGuaCCEIExMOh7Fv3z6Ew+Fch6Ia3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzQjVIP61sNXjpIxaLBVbrzB8hLF261JAYPB5Pzv8OkiTh3Llzyp4liUQC586d4+IDnsXCS9/KQPVHPy0aA4mDKPng0YeRMZml/mihx1OuaWkswtTQ0lgEQRAEQRAEQRDG0NnZiaGhoUm/s1gs2Lx5MwoLC+ddGiuDJEnYunVr1hug19TU4IknnkAkEgEwPhGT7f4jWrFx40YsX748pzEQBEEQBO/k8rNcuyGtEARBEARBEARBEARham677TZEo1HlW50WiwV33XUXCgsLF6XjcDiwZcsWeDyerOLweDyTzs3o1dXVGbaHyFQGBwdpIoQgCIIgOIaWxiIIExMIBPD9738fgUAg16GohjcvRsejZ3taamuhpUaDt36S74iSD958UP3RT4/qjziIlA/evFAN0k8rWw2e+khBQQF+//d/Hx/96Edxzz334IEHHsCKFSuU10tKShasVVdXh5qaGk2e5JAkCR6Px5A9ROLxOE6cOIF4PD7p92ZcbIOnvgVQ/dFTi8ZA4iBKPnj0YWRMZqk/WujxlGtaGoswNfm+NFYymUR3dzfWr1+PgoKCXIejCt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SD+tbDV46yNzcfXqVVy7dm1R50iShLGxMeXnzH4jf/iHf7joyQWHw4GGhgZdl8lKp9Pw+XxYsmQJbDab8vvly5dPujc1A7z1Lao/+mnRGEgcRMkHjz6MjMks9UcLvann5/KzXJoIIUxNvk+EEARBEARBEARB8EIymcTJkyc10dqxY0dWS2fV19ejsrJSkxgWgxknQgiCIAjCaHL5WS4tjUUQJiYajeLgwYOIRqO5DkU1vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflrZavDWR+bCbtduG9LM0lm8kUwm0dXVhWQymetQVMNb36L6o58WjYHEQZR88OjDyJjMUn+00OMp1zQRQhAEQRAEQRAEQRAEVzidTmzfvh379u1b1HmSJOkUEUEQBEEQZoaWxiJMDS2NRRAEQRAEQRAEwQeMMTQ3N2uq6fV6UVtbu6hzampqUFdXB6fTqWksc0FLYxEEQRDE/NDSWARBZIVIj2Xz5sXoePRsT0ttLbTUaPDWT/IdUfLBmw+qP/rpUf0RB5HywZsXqkH6aWWrwVsfMQMejwc7d+7URTudTmNkZATpdFpTXcYYQqEQfD4fZFnWVHs2eOtbVH/006IxkDiIkg8efRgZk1nqjxZ6POWaJkIIIXA6nSgtLQUwPjD1+/3IPOwUDAaVx6NjsRgikQgAIJVKwe/3KxqBQEC5KKPRqLJ2XTKZRCAQUI7z+/1IpVIAgEgkglgsBmD8EexgMAhgfBDr9/uVwXE4HEY8HgcAJBIJhEIhAIAsy/D7/cpANxQKIZFIAADi8TjC4fCcnqLRKF5++WWMjIyY3tPg4CBefvllRKNRLvLk8/mUeNTmCZi/7wUCARw8eBCjo6OaexobG8PBgwfh8/m4yJPX61XWh1ysp0yfHxsbA6Dt9bSQPJnlejLKk9/vV/qDmT2NjIwoPnjIUzAYVOLRIk9G1oipnkZGRnDw4EEEg0FN+l4mVr/fn1WeBgYGlL9tPr/nilD3QqEQXn755UnXjVk9DQ8P4+DBgwiFQlzkaeJ1YkTfy1xbAwMDmnuaqM1DnrId72V8DA4OKnniuUak02klnkxbmRgkSVLOSafTSjyMsWnHZf4OZWVlWLp0KQDAarWioqICVuv4RxkulwuFhYUAJt8T2mw2dHR0KPqJREL5eyWTScWfLMvTYp143MRYM8clk0lcvHhR0c54Gh0dhSRJGB0dxfDwMAYHBydNmMyVp+HhYbzzzjs4e/YsTp8+jTfffBOhUEj3Wq5mXD6fp1zda+SqRkz1FIlEcPDgQQwODnKRJzXjPZHec0UYGw0NDSnXiZk9qRmX6+VJ7b1GrmrEVE/BYBAHDx7EyMiIJn0vHA7j4MGDGBoa0vSeMBfQRAghBJs3b8bDDz8MABgeHobb7VYuzt27d6OzsxMA0NzcjIaGBgBAX18f3G63orFr1y50d3cDABobG9HY2AgA6O7uxq5du5Tj3G43+vr6AAANDQ3Ko9+dnZ3YvXs3gPHC4Xa7MTw8DAA4cOAAWlpaAABtbW3Yv38/gPHi4Ha7lWK0f/9+tLW1AQBaWlpw4MCBOT2Vl5dj06ZNSgxm9nTgwAH80R/9EcrLy7nI05UrV7BkyRKUl5erzhMwf98bGRnBk08+iZaWFs09Xbx4EU8++SSuXLnCRZ7279+PJ598EuXl5Yv2VF5ejlWrVuHixYsAtL2eFpIns1xPRnnq7+9HUVERysvLTe2pubkZmzZtQnl5ORd5CoVCkCQJ5eXlmuTJyBox1VNzczOefPJJhEIhTfpeW1sbnnzySfT392eVpz179uDrX/86ysvL8/o9V4S6J0kSJElSlr0xs6fGxkY8+eSTkCSJizzt2bMHX/nKV1BeXm5I3ysvL0dtbS327Nmjuafy8nI88cQT2LNnDxd5yna8V15ejj/6oz9S/q681wifz4czZ84ox7W2tioxXLp0CdeuXVPazcSTTqfR2tqqfLDT2dmp/B3Gxsbw1a9+FcD4pMjjjz+OsrIyAMAjjzyCTZs2AZh8T7hixQp84xvfUCav29ralL/XtWvX0NXVBa/Xi56eHrS2tsLr9cLr9eKdd95Rjuvu7lb8TfTkdDohy7LyIU/GE2MMb731Fv7lX/4FFy5cwPnz5/HP//zPOHHiBBhjc+bpJz/5ifJFn/Pnz6Ovrw/nz5/HqVOndK3lasblgPnvCbWsEVM9OZ1OPPnkkzhw4AAXeVIz3hPpPVeEsVFDQwNqampQXl5uak9qxuV6eVJ7r5GrGjHVUygUwpNPPqncj6nJk9vthsViwZNPPqn8jRabp9nuCXMB7RFCmJrMunJOpxN2ux0tLS248847EQqFUF5eDovFgmAwCKfTCYfDgVgsBlmWUVJSglQqhXA4jIqKCgDjs6vFxcUoKChQBuDFxcVIJpOIRqPKB1J+vx+lpaWw2+2IRCKwWq0oKiqCJEmIx+MoKysDYwyBQAAulws2mw3hcBh2ux1OpxOJRAKSJMHlckGWZQSDQZSVlcFqtSIUCsHhcKCwsBDxeBypVAqlpaVIp9PkiTyRJ/JEnsgTeSJP5Ik8kSfyxLWnoqIiHD9+HMlkUvnQNB6Pw+FwwGq1QpIkWCwWFBQUIJ1OI5VKobCwEIwxJBKJScdZrVbY7XakUilEo1H80z/9E95++20UFRUhGAxClmW4XC5IkoREIqHcE4bDYdhsNrhcLvzkJz/BqlWrkEgkYLfbkUwm8cMf/hDvvPMO/H4/7HY7SktLlW+olpeXI5lM4r777sMTTzwBp9OpxKrG04c+9CGsWrVq1jw1NjaisLAQFosFiUQCNpsNdrsdGzZsQElJCfU98kSeyBN5Ik/CeOrv78/ZHiE0EUKYmnzfLN3v98PtduOb3/ymUhzNCm9ejI5Hz/a01NZCS40Gb/0k3xElH7z5oPqjnx7VH3EQKR+8eaEapJ9Wthq89ZG5mGuz9BUrVijfPs0WSZKUJyfi8Tief/55nDhxYtbj9+3bhzVr1ig/79ixAx6PZ0Ft1dTUYPv27dN+H4/H0draivvuu2/Bm7FbLBZ86lOfgsVimfH1pqamGX9/66234sMf/vCC2sgG3voW1R/9tGgMJA6i5INHH0bGZJb6o4Xe1PNz+VkuTYQQpibfJ0JSqRT6+vqwevVq2O32XIejCt68GB2Pnu1pqa2FlhoN3vpJviNKPnjzQfVHPz2qP+IgUj5480I1SD+tbDV46yNzMd9ESDqdViYytKK3txfbtm2b9fWamhrU1dXBarXic5/73IJ1HQ4HGhoa4HA4Jv1+6jdkF8oDDzwwa/5mmwhZs2YN1q1bt+A2FgtvfYvqj35aNAYSB1HywaMPI2MyS/3RQm/q+TQRQhBZku8TIQRBEARBEARBELww10TImjVrcPPNNyvrkGuF1+tFbW3tnMd87GMfQzgcVvaZWyj19fWorKxUE54CjxMhBEEQBGE0ufwslzZLJwgTE4lE8Ktf/QqRSCTXoaiGNy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbDd76yFxYLBZlI/OprFixAk6nc9bX9eSdd95Z9CTIbEiShI6ODmWzdLX4fL5ZX+vt7cXFixcRj8c1aWsqvPUtqj/6adEYSBxEyQePPoyMySz1Rws9nnJNEyEEYWKsVisqKioW9Ug2r/Dmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfppZavBWx+Zj1tvvXXaXhgrVqxAaWkpAExbakotS5cu1VxzLiwWC5xO56z7fczG2bNn0d3djWQyqfwuHA7j3Llzc543ODiI9vb2SedpBW99i+qPflo0BhIHUfLBow8jYzJL/dFCj6dc09JYhKmhpbEIgiAIgiAIgiD4IhAIYGhoCJIkoaKiAqtWrVI+AOno6MDIyIim7S1mE/TFoOXSWBlcLheqqqpgtVrx1ltvQZblBZ23YcMG3HTTTZrGQhAEQRBGQ0tjEQSRFZIkob29XbPHsnMJb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Grz1kYVQXl6O2267DXfffTduueUW3b8FWldXh5qamkU/pQGMTzDMxo4dO6YtS5VOp+H1epFOpxfdFgCEQiEMDAygpaVlwZMgAOZd2iuZTC56CS01fSuZTOLatWvo6OhAT08PEonEojW0jIe39kSpP1q1T2iHKPng0YeRMZml/mihx1OuaSKEIExMPB5HU1OTbmvGGglvXoyOR8/2tNTWQkuNBm/9JN8RJR+8+aD6o58e1R9xECkfvHmhGqSfVrYavPURHnE6ndi+fTsOHz4858TGVDZs2IC6urpZX7948SJ27tw56XepVAo9PT1IpVJZx3v58mVNJg6A8YmZ8+fP4+TJk2hpacE777yDWCy2oHOz7VupVArnzp3D1atXMTIygp6eHk0+5KL6o58WjYHEQZR88OjDyJjMUn+00OMp17Q0FmFqaGksgiAIgiAIgiAI86DH0lgTicfj+O53v4sTJ07MeZzFYsHhw4cxNjaG2traWY9zOBxoaGiYtA+JJEkYGxtTfjZqn5Lq6uppv7t48SIGBwcn/c7pdOK+++7L6gmZhTAwMID3339/2u/XrVuHNWvW6NImQRAEIQa0NBZBEFnBGEM8HocI85m8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFapB+Wtlq8NZH9MRms6nWcDqd+M53voMHHnhgzuOqq6vhcDjmncSQJAmdnZ3wer0IhULYsWMHHn74YXzpS19CbW0tamtrsXXr1hmX0dIbxhhGR0en/T4ejyMSiUz6XSqVQiwWm9SPsu1bN27cWNTvFwrVH/20aAwkDqLkg0cfRsZklvqjhR5PuaaJEIIwMYFAAM888wwCgUCuQ1ENb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Grz1ET256667NHuK4Vvf+hZqamqmTXI4HA7U1NQoS2I5HA5s2bJlTq0nnngCtbW1+JM/+RO0tbXhb/7mb1BeXq68LkkSPB7PtGW09CadTs+6RFdmgkSWZXR2duLEiRNobW1Fa2srwuEwgOz7VigUmvH3aieCqP7op0VjIHEQJR88+jAyJrPUHy30eMo1LY1FmJp8XxornU5jeHgYK1as0OTbU7mENy9Gx6Nne1pqa6GlRoO3fpLviJIP3nxQ/dFPj+qPOIiUD968UA3STytbDd76iFrmWhqruroa8XgcPp9vxqWXsmEhy1jF43H8j//xP+bdkBwYf2plxYoVGB4enrZh+kzLaGnJRz/6UZSWlio/p1KpWZcA+/CHP4xbb70Vly9fRl9f36TXCgoKcP/994MxllXfampqmvW1mZbvWihUf/TTojGQOIiSDx59GBmTWeqPFnpTz8/lZ7k0EUKYmnyfCCEIgiAIgiAIgjAT802EZJjrw3Y98Hq9c+4VslDq6+tRWVmpQUTTufvuu7FixQrl57kmQtauXYu1a9fi1KlTM27Mfu+992LJkiVZxaHXRIheMMYQDofhcDhQWFiYsziSySRGR0chSRKWLFkCl8uVs1gIgiByBe0RQhBEVoTDYezdu1d5tNnM8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbHzGKgoKCXIcwI6Wlpfjyl7886ckMXpFlecZJEAAYGhrirm/pEU8oFMLbb7+Ns2fP4tSpUzh//jxkWdatvQxTtWOxGM6cOYOuri5cuXIFZ8+eRX9/f1ZaWsRj1LmE9oiSDx59GBmTWcY/WujxlGuaCCEIE2O327F27VrY7fZch6Ia3rwYHY+e7WmprYWWGg3e+km+I0o+ePNB9Uc/Pao/4iBSPnjzQjVIP61sNXjrI0Zxyy23GNrefJumZ0ilUujp6Zl1bw49uXDhAs6cOYPLly8vqP25lvpijC26bzHGsvKdSqUwOjqKcDg852a5mXhsNhuuX7+O9vZ2XLhwYcYN4ReCLMt47733kEwmld+Njo7i6tWrk9ozov5cvXp12qTUBx98MCm2hWppEY9R5xLaI0o+ePRhZExmGf9oocdTrmlpLMLU0NJYBEEQBEEQBEEQ5mGhS2PF43G0tbXN+kSDHuzYsQMej0eVhp5LY02krKwMGzduxNtvvz3j63a7fc5JC6fTic2bNy+4Pa/XO+OH+VOZujTW6OgoLly4oDyFUVFRgY985CNzrjPf1dUFr9c76XfLly/HHXfcsagnhcbGxvDee+8tKE69mW05sTvuuAOrVq0yNBaCIIhcQktjEQSRFYlEAi0tLYbeHOgFb16MjkfP9rTU1kJLjQZv/STfESUfvPmg+qOfHtUfcRApH7x5oRqkn1a2Grz1EaNwOp2oqqrChz70IVitxnx0UVdXh5qamjmfDCksLMTmzZtzutcEAASDQZw7d27W1+d7ciMejyMejy+ob/l8PnR1dS26D6ZSqUmTIADg9/vR09Mz4/GJRAInTpyYtrk7AIyMjODMmTOIxWILbn/qZMpM7eW6/vh8Ps209NLI1xrEK6Lkg0cfRsbEQ/0xSo+nXNNECEGYGEmS0N7eDkmSch2KanjzYnQ8eranpbYWWmo0eOsn+Y4o+eDNB9Uf/fSo/oiDSPngzQvVIP20stXgrY+oZa4nAaZSVFSE9evX45Of/KQhS2o4nU5s374dDQ0NqK+vR319Pfbs2YMHHnhAmRxxOByoqqpa0DJaehOJRFSdf/HixUl9K5lMYmBgAN3d3RgZGVGWsRoeHs5Kf2RkZNIkSIbr16/PeLwkSWhra0M6nZ7x9UQigcuXLwMYX6arr68P7e3teO+99zA4OLjo+Kj+GNc+oR2i5INHH0bGZJb6o4UeT7mmpbEIU0NLYxEEQRAEQRAEQZiH2ZYrKi4uxsc//vFZz/P5fJM2ujYaSZIwNjYGYPxJgyeeeGLG44xaGksrMktEZT6oikajyms33XQT7rzzTjQ3Ny9aDwDee+895W8213ET6e7unnWiJMODDz6I7u7uaU+O/Lt/9++wevVq5eeLFy/OOkHCy9JYK1euxF133WVoLARBELmElsYiCCIrZFmG3+/P2c2AlvDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfppZavBWx9RS3l5OZxO57Tf33TTTXOet2TJEmzevBl33XUX7r77bnzsYx9DUVGRXmFOw+FwoLKyEjfddBOWLVtm2HJdesIYU/rW9evXJ02CAMDg4CACgYBh8ciyPO+G6pnj+vv7p/3+8uXLk85diA7VH2PaJ7RDlHzw6MPImMxSf7TQ4ynX5n/nJog8JhgMwu12IxgM5joU1fDmxeh49GxPS20ttNRo8NZP8h1R8sGbD6o/+ulR/REHkfLBmxeqQfppZavBWx9Ri81mQ1VVFZYuXQqr1Qqn04m1a9dizZo1857rcDiwcuVKrFixAiUlJfjoRz+KjRs3ory83IDIx0kkErhy5QrKyspmPUaSJHi9Xni9Xi6WApmNRCKh9K2hoaEZj5lvnw0tCQaDOHjw4LzryI+Njc06yTGbj9nao/pjTPuEdoiSDx59GBmTWeqPFno85ZqWxiJMTb4vjSXLMoLBIMrKykz/jSTevBgdj57taamthZYaDd76Sb4jSj5480H1Rz89qj/iIFI+ePNCNUg/rWw1eOsjWpL5OMJisajSGRoaQmdnpxYhzUtmb4ovf/nLM367dcOGDeju7lYmQBwOB7Zs2YK6uroZn4TJJYwxbNq0CWVlZXjzzTc10VSzNJYsyzh//jzGxsbm7BN33HEH3n///RlfKy8vx6ZNmwDMvzSWkfVHzdJYdA9GTESUfPDow8iYzDL+0UJv6vm5/CxX/93GCILQDavVioqKilyHoQm8eTE6Hj3b01JbCy01Grz1k3xHlHzw5oPqj356VH/EQaR88OaFapB+Wtlq8NZHtETtBEgusFgsKCgomHWJj4sXL076WZIkeDweJJNJfOMb31B+v3Tp0pxvuG6xWLjqW1arFaWlpfD5fFlrLGYpL6o/xrWfDYwxU9YIvRHlPYFHH0bGZJb6o4UeT7nmY8qNIIisCIVCeO655xAKhXIdimp482J0PHq2p6W2FlpqNHjrJ/mOKPngzQfVH/30qP6Ig0j54M0L1SD9tLLV4K2PiMZiJyMSiQR6enrgcrkWdd6JEydQW1ur/Nu6dSv+/u//Hj09PTlbRiuRSGDXrl3TJm+MoKmpCd3d3ZOWuAqFQnjttdfmXRpLC2RZpvpjYPuLIRKJoK2tDW+++SbOnDmDkZERQ9o1C6K8J2TjIxgMoru7G1euXNFlmSUj/7ZmqT9a6PHUZ+mJEIIwMQ6HA1VVVTn/JpEW8ObF6Hj0bE9LbS201Gjw1k/yHVHywZsPqj/66VH9EQeR8sGbF6pB+mllq8FbH8l3bDYbysrKVE9aSJKEEydO4MSJE5N+v2HDBjzzzDOLnmjJBpvNBpfLhf7+ftjt2n48JMvyrMtiZbh+/TrS6TRuv/12AON9fd26dbDZbJrGMhMnTpxASUkJNm7cuOBrizGGUCiEcDiMsrIylJSUzPrEgij1R6v2F4okSWhvb0cymQQAhMNhXLhwAffeey833yjPNaK8JyzWx9DQEC5evKhMnl6/fh133303li9fnrOYeG1LpHswraE9QghTk+97hBAEQRAEQRAEQeQ7avYIcTgci57U8Hq9qK2tzaq9hVJTU8PlviLzcfPNN6O4uBh9fX2Ix+PzHm+1WvHAAw/AarWCMYbm5uZ5z7n99ttx6dKlWV+vrq5GIpHAqVOn5tUqLi7Gxz72sXmXYJJlGRcvXsTw8LDyuzVr1uDDH/7wgpZvUrNHiF6k02lYrVZdlp/K7AkQi8VQXl6O4uLiBZ3n9XrR1dU17fe33HILbrvtNq3DJBZBOp02ZJJyJhhjaGlpmfa0WFFREe67776cxERkTy4/y6WlsQjCxMTjcTQ1NS1ogMk7vHkxOh4929NSWwstNRq89ZN8R5R88OaD6o9+elR/xEGkfPDmhWqQflrZavDWR0Rjsd9QTaVSGBkZ0X2CwuPxYOfOnbq2kUql0NPTg1QqpZnmjRs3cPny5QX3V1mWEQ6HAQAffPCBJvEkEgm0t7fPe1wqlUJnZydGR0fnPdbr9U6aBAGA3t7eWZfn4bn+ZP4+J06cwNtvv42enh7M9R3pxbafTqdx7tw5tLe34/3338fp06dx/fr1BZ070yQIAPT39y/o/HzA6PeEQCCAM2fO4K233sLp06ezWqqMMYYrV67g9OnTeOedd3Dt2jXEYrEF+wiHwzMumReLxRCNRhcdz2zM9LdNpVK4dOkSWlpa0NbWNq0OaNmWVoh0D6Y1NBFCECZGj4FrruDNi9Hx6NmeltpaaKnR4K2f5Dui5IM3H1R/9NOj+iMOIuWDNy9Ug/TTylaDtz4iEtls4CrLMpLJJIqKivQJagInT57Udd8QWZbh9/tn3fjdKGKxGPr7+9HT07OgeOb7MG1wcBCxWGzedjP+e3t75z322rVrM/6+r69vxt/nov4kk0lcvXoV586dQ3d397QPc3t6epBMJnHu3Dn4/X4wxpBMJtHT0zOrj2y8XL9+fdqm9d3d3Zp9YJ1KpeacuBEdI98TYrEY2tvblcnKaDSKjo6OOfvLTHzwwQfo7e1FNBpFJBLB1atXceXKlQX5YIzh3Llzs76eWUZNC6b+bRljeO+993Djxg3E43EEAgFcuHBBk31rzDL+0UKPp3EMLY1FmBpaGosgCIIgCIIgCCK/yXZprDvuuAPRaHTB31afyI4dO+DxeBZ93mKpr69HZWWl7u3kMytWrJjzc4R0Oo233npr1terq6vnbWOupbE2bNgAWZZVLTuUTqfR1tamfGANAIWFhfi93/s9FBYWKr8LhUI4e/bstPNdLhd+//d/P+v2J8Yx298qs0/AxGWyfD4fRkZGYLVasWLFCrz77ruzam/cuBFXr15FJBKBw+HA2rVrcfPNN6uOmZidixcvYnBwcMbX7rrrLixfvhzxeBxFRUWzLrEmyzJOnDgxbYKzoKAAn/jEJyadl0wm4fP5YLfbUV5eDpvNBp/PN+dEyIc//GHceuutys+MMfh8Pvh8PhQWFmLFihXKNZBOp5WJupKSEmUpv3Q6DYvFAqt18vMC4XAYZ86cmdbm0qVLcc8998waEzE3ufwslzZLJwgTk06nMTw8jBUrVuRsrUat4M2L0fHo2Z6W2lpoqdHgrZ/kO6LkgzcfVH/006P6Iw4i5YM3L1SD9NPKVoO3PiIKGzduxPLly9Hd3b2o82RZRjQaxf/8n/8TwPSnNjZs2IBvfvOb+OUvf4nTp09rsqm6XmS8FBcXT/sAMBcYHU+mvWXLloExhoGBAYyNjaGgoACVlZVwuVzo6upa0Le/JUlSNodfunQpbDbbgq7boaEhjI2NIZ1Oo6KiAhs2bJi2XNtCasDo6OikSRBgfImwwcFBrFmzRtGYzUsoFJo1xmg0iitXrmDZsmVYvnw5CgoKZjwumUzi5MmTs+pIkoR33nkHGzduxLJly3Djxo1Je73M95RBR0fHJK1Lly7B4XBoulm2GdDiPYExhlgshnA4jLKyshmX+mOMzToJAgCdnZ2w2WxIp9MoKCjAnXfeiWXLlk07zufzzfiUVyKRQE9PD9asWQObzQa/34/33ntPObaoqAhVVVWzPo2V4erVq3A4HPD5fAgEAtOW0Lp+/TqqqqpQWFiI9957T3layefz4caNG3A6nYjFYrBarVi6dCmWLFmCm266CTabbdanxcbGxhCNRpUnA69evaocu2rVKtx2223z1jCzjH+00ONpHJP7dzqCILImFArhpz/96ZyDFrPAmxej49GzPS21tdBSo8FbP8l3RMkHbz6o/uinR/VHHETKB29eqAbpp5WtBm99RBRcLldW50mShLNnz8JqtWL79u1oaGhAfX096uvrceTIEfzkJz/BHXfcge985zuTXquvr8cDDzyw6Pa2bduGv/7rv0ZPTw+8Xi+8Xu+0yRFJkpTXZnp9Pi96TrYsBqPjybQXi8Vw+fJlXLp0CSMjIxgYGEB7eztaWlowNDQ071JdwWAQra2t6OrqQldXF06fPo0bN24s+LrNLPXk8/nw3nvvTVv2aSE14IMPPpjx91euXJmksZAlwya27/f7ceLECbz00ks4d+4cTp8+jUgkMuN5C9mcnjGG999/X9kzYrZ2F8rE/RokSeKmLy+UZDIJv9+PdDq94HPUvicwxnD58mWcPn0anZ2daGlpwdWrV5W/fzwex4ULF9Dc3DyvVibuZDKJjo6OGfvXbNePJEn4xS9+gVAoBMYYLly4MOnYWCyGU6dOwe/3zxvH+++/j6GhoRn3EUkkEujt7YXf75+2ZFtmMpQxpjwt8i//8i/K33auZbdOnz6NkydPorm5edKEycDAAE6fPj1vfzbL+EcLPZ7GMbQ0FmFq8n1pLMYYEokECgsLZ30M0Szw5sXoePRsT0ttLbTUaPDWT/IdUfLBmw+qP/rpUf0RB5HywZsXqkH6aWWrwVsf4ZFslsa6//77UVhYiO7u7kUtjZX5wMxmsy06H/F4HDt37pz0FInD4cD69etx8eLFBes4HA5s2bIF3/zmN+F2u6c9lZJ5va6ubs5N3dV40QOj48m053A4VO2TUlJSMm1yoLi4GPfcc49y3c62NNZMrFu3DpIkobi4GCtWrIDdbp+3Bsylv2nTJpSVlSGRSODy5cuzPhVy++234/r160gkEigvL8cdd9yB9vZ2xGKxSXkpLy/Hpk2bwBhDOByG/P+xd+/xbdRnvvg/usu2bDmOnTj3KyQO5Aa5kQAJpd22ULZsgbIpuyeFbktpu0C3XZLf9pByOWcPl7aLt11CekoSTptCu6EE0kJIoI5DAjYk2OTihIBDLnbiuyXrPrrM7w+jQbZkW5ZmpNHo83698nolzuiZ76Nn9Hikr+Y7kQhKSkqS+uA8avr06Thz5kzS2w9n1apVOHbsmPQhd2lpKS677LIhr1xRA1EUB1xFoNPpcOmll2LChAlJPTad3wmdnZ04fvx43M8XLlyI4uJiHDp0KOWbWg9epmq4/UVff7NmzYLdbseRI0dS2meybDZb3FVTQ43puuuug8FgwAcffIDe3t6U9rdkyRLYbLZh95UL5z9yxBv8eC6NRUQp0el0w57Y5hK15ZLp8Si5PzljyxErnRhqO07ynVbqobY82H+Ui8f+ox1aqofacmEPUi5WqjHUdoxoTWlp6agmQnQ6HYzG1D5KsVqt2LhxY9wySj09PVi7dm3ScQRBQE1NzZD3KIn+PwBs3LhxyDjp5KKETI8nur90bxaf6AqJ6I3BU/nQMPZKiTNnzuDKK6+ETqdDd3c3iouLYbFYEAgE0NzcDIfDIS3PM5TGxkZcdtllKCgoGHaZr9hlqnp7e1FXVyflEFsXp9MJj8cz4AqA2PuQJGPwN/PTceLEiQHxHA4HTp48ifnz50s/EwQBXV1d8Pv9GDNmDEpLSxWfbPN4PHA4HLBarSgtLR2wJFBXV9eAqwiiV8oUFxcP++E5kP7vhKH6XWtrK8aNG5fyJAjQv0TU4ImQoUSPq5GWvpLLSJMgwGdj6u7uxrhx49La34ULF3DppZcOu69cOP+RI56azmO4NBZRDuvr68NTTz2Fvr6+bA8lbWrLJdPjUXJ/csaWI1Y6MdR2nOQ7rdRDbXmw/ygXj/1HO7RUD7Xlwh6kXKxUY6jtGNGa0tLSUW0fCARQV1eXcAmWZJnNZlRWVqKyshJmsxllZWVx94WQQ/RKkaGWzpIjFzllejxK7i8QCODpp59O+3UrCAL27duH//iP/8Dhw4fxzjvv4OOPP0ZjYyM6OjogCMKIkwqiKOLkyZP41a9+lVKuiZ6no0ePDlgGabRxU/2WfSLRScVY3d3dCIVCAPrH1tDQgFOnTuHcuXP44IMP8Mknn4xqH6IojmrZrdbWVrz33nv46KOPcPToUTQ0NAxYZqm1tTXh49ra2kaMLcf5cCJdXV2jvrIuHWrrP8BnY4peoZfOIkqJltUTRVH6Wa6c/8gRT03nMeqZ+ieiUbNarVizZo1qZlbTobZcMj0eJfcnZ2w5YqUTQ23HSb7TSj3Ulgf7j3Lx2H+0Q0v1UFsu7EHKxUo1htqOEa0xGAwwmUzDrgUfy2g0Yvr06bJeuRBdymqoKzxSJQgC7r//fjQ3NydcOutHP/qR7LmkQ4nnNlv7MxqNWLFihSyv28HjHOmm4okEAgFMmzYtpVwTPU/pXDWQKW63G6WlpTh37lzcvSvOnTuHiRMnJlWfs2fP4vz58wiFQigsLMQll1yCYDAIi8WC4uJi6PV6BINBhEIhFBQUIBAIxN2zxe124+DBg7j88stRXl4+5H0vWlpaMHv27GHHk8zvhFAoBJ1Ol5UbU4uiCJ1OB5fLhe7u7iGXQMv06z0Z0TFFJ9GSuT/JUEKhEA4cOICxY8fCarWitbVVmgQZM2YMZs+enRPnP3LEU9N5DO8RQjkt3+8RQkRERERElO/SuUcIADQ1NaGjo0OJoSUt0f1DlHbdddcNu3QWpWfRokXSFUejuUcIySP6/A/13E+ePHnESYe2tjacPHlyyP8vKiqCyWSSPjAvLCxESUnJsFd2jHR/lDVr1gw7piiHw4H29naEQiGUl5dj3LhxCIVCeO+996QeUl5ejqqqqgETIkofixaLBWVlZWhra0vriop8cM0112RlsirbsvlZLpfGIsphPp8Pu3fvjvt2Qy5SWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbceIFo0dOzbpbYPBID7++OOkryBJVvT+Ibt27cLWrVtRVVUla/xEDh8+jA8//FD2XFKl1HObjf0Fg0HU1tbK8rqVY5zpxMh0XeQSDoeH/f/YJcWG+sC+vb192BjR+4BEeb3eEZe3GumeGNGrEYbi8/nw0ksv4dChQ7h48SI6Oztx4sQJ1NbWxk2kdnV14cMPPxw2ntwCgQAuXrw44iSIGo+rTI4pGAxi69atOH78eNr3KRpMS+/B5Kae64+IaNQikQgcDofsTTMb1JZLpsej5P7kjC1HrHRiqO04yXdaqYfa8mD/US4e+492aKkeasuFPUi5WKnGUNsxokYj3Vx4JGVlZdDpdEl9e1kURfj9fsW+6Ww2mzF9+nQ8/fTT0k3VOzs7ce+998q+r3A4DLfbrZpvbSv93GZyf6Io4vz58zhy5AhMJlPasdIdZzoxMl0XuRw9enTY//d6vQgGgzh16hR6e3thNpsxefJkTJw4UdpGznuZRI30PB44cAClpaWYN2+edO+gYDAIo9EInU6HSCSC9vZ2FBUVJbW/jo4OzJ07F3q9ur4Lr8bjKpNjiu4rumTW/PnzZYutpfdgcuPSWJTTuDQWERERERFRfhNFEe+99x68Xm/Sj4ldGgvo/+b08ePHpQ/ARnPfEKW1tbVh7dq1isR+/vnnUVlZqUhsIrWz2Wxwu90DfjZ37lzpNZHNJc2Ki4sxa9YsfPjhh7J8k95qtcJms6Grq0uG0ZHcVq5cKU18aR2XxiKilIRCIZw5c2bESydzgdpyyfR4lNyfnLHliJVODLUdJ/lOK/VQWx7sP8rFY//RDi3VQ225sAcpFyvVGGo7RtRIp9Nh/vz5KCwslH5WXFyMKVOmJB2jvLwcq1atwuWXX44rr7wSK1euTLidmr7Zmi6j0Qiv16uaXHhFmnKxeFVsYoMnQQDg5MmTeOedd9DQ0JCFEX3G5XKhsbExbhIk1Xr4/X5VTYKo8bjK5JgG70vOJcy09B5MbpwIIcphbrcbzz33XMJf3rlGbblkejxK7k/O2HLESieG2o6TfKeVeqgtD/Yf5eKx/2iHluqhtlzYg5SLlWoMtR0jalVQUIClS5di+fLlWLFiBa688spRf7vWaDSivLwcxcXF0Ol0CbcRBAEffPBBxm5oDvQv3aXEN4VtNhvOnz8Pt9uNtrY2tLW1ZTSvwTL93Cq5PzljyxErnRjZOOazLRAIDLiHiJpopR5qzCOTYxq8r+7ubtlia+k9mNy4NBblNC6NRURERERERImcP38ezc3NCf9v8NJYiWRzWZzBHnnkEdTU1Mget6qqCs3NzQM++KuqqsIDDzyAiRMn5s1SLURE2bZmzZpsDyEjuDQWEREREREREREl9MADD+C6665LODFRVVWFV155BTU1Nbj66qtHFffEiRNx334+ceIE7rzzTtx000145JFH4Pf7AfR/g1kNV44QERGlghMhRDnM6XTiscceU+0lm6OhtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfDJ58uS4n/n9fhw4cECaHMgUq9WKjRs3YteuXXj++eelP6+//jqefvppFBcXAwB+8pOfDDlhMpjdbseGDRtgt9sT/r8gCKipqcGjjz6KRx55BDfddBPWrl2LtWvXxk2SRLdPZ6Ik08+tkvuTM7YcsdKJka1jnhLTSj3UmEcmx6TkvrT0HkxuXBqLclq+L40VDAbR3NyMWbNmwWQyZXs4aVFbLpkej5L7kzO2HLHSiaG24yTfaaUeasuD/Ue5eOw/2qGleqgtF/Yg5WKlGkNtx0guuXjx4pA3oF25cuWIkwW9vb344IMPBvwsHA6jt7cXY8aMgcFgkG2schMEAT09PQCAtrY2/PCHP4zbxmQyYdasWWhubkYwGExpP9dddx0eeOABPPHEEzh48KA0AWI2m7Fq1So88MADsFqtScXK9HOr5P7kjC1HrHRi5Moxny+0Ug815pHJMSXal1xLY6n9PVg2P8vlRAjltHyfCCEiIiIiIqLEBEHA22+/Hfdzq9WK5cuXD3lD9Fjnzp3D6dOnpX9PmjQJs2fPhk6ng8PhwAcffAC1f6zS1taGtWvXKhJbp9Nh1qxZ+PjjjxP+/3XXXYeNGzcqsm8iIi3hPUKUx6WxiHKY1+vFzp074fV6sz2UtKktl0yPR8n9yRlbjljpxFDbcZLvtFIPteXB/qNcPPYf7dBSPdSWC3uQcrFSjaG2YySXmM1mTJw4Me7nU6dOTWoSJLrt1VdfjYULF2LlypWYNGkSXn75ZXi9XpSWlmLJkiUJl9BSk7KysoRXvxQWFuLmm29GYWFhyrFFURxyEgTAgKtERhIMBnHy5Mlhr06JXX4r3XuVJLM/NcSWI1Y6MZR8nmj0tFIPNeaRyTEpuS8tvQeTmzHbAyAiIiIiIiIiUsIll1yCoqIi9PT0wGAwYNy4cSgvLx9VDKPRiDFjxgAAQqHQgP8rKirC7NmzUVZWhiNHjsg2bjlFl6mqqanJ+L4FQUBTUxMqKysH/Hzw5IwgCOjo6IDP50N7ezuMRuOA7fx+f9zyW1FVVVV4/PHHpfukEBERJcKlsSincWksIiIiIiIiyrZwOIyGhga43e5sDyWh6ERCNiZDEolOztx3332orq4e8sqR6HaBQCDhMmexovcrSfaeJEREasKlsZTHpbGIcpgaLyVMldpyyfR4eFl25vZP8tFKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfDdUPQwGAxYuXIhJkyahqKgoS6MbmtVqxcaNG/HKK6+gqqoKQP/N0ufOnQuTyQSz2YzrrrsOK1euzMh4BEFATU0Nbr75ZtTU1EAQhAHjGbzdSJMgAFBTU4Mnnngi6TGEw2F0dXUhHA6nlEOmYssRK50YSj5PNHpaqYca88jkmJTcl5beg8mNEyFEOUxN6+ylS225cH1s5WJxjX7t0Eo91JYH+49y8dh/tENL9VBbLuxBysXiPUK0Ybh6mEwmXHLJJViyZEkWRpac4uJiPP3003j99dfx7LPP4hvf+AaeffZZ7Nq1Cxs3bsSDDz6I6667LuE9RZQmxz1L5L4nSaq0MhEr1/5JPlqphxrz4D1ClImnpvMYLo1FGdPY2IilS5dKa6rKcehxaSwiIiIiIiJSE1EUUVtbm+1hpEUQBPT09Ej/bmtrww9/+MMsjih5zz//fNw9SYiI1I5LYymPN0unjAiFQrjrrrvibixHREREREREROpiNpsHTCZEb1qe7NUWajJ4Uidq8A3biYhI27g0FmXEk08+iYaGBvzd3/1dtoeiKQ6HAw8//DAcDke2h5I2teWS6fEouT85Y8sRK50YajtO8p1W6qG2PNh/lIvH/qMdWqqH2nJhD1IuVqox1HaM5Dst1cPv96O2thZ+v3/EbaM3LR/OypUr01pWq7S0FA899BBKS0tTenxUW1sb2tra4HK58Mgjj+Cmm27C2rVr4/78wz/8A2pra+F0OtPaXyKjeW4zESudGHLmQunTSj3UmEcmx6TkvrT0HkxuXBqLFHfy5EksWrQICxcuxP/5P/8H119/PQAujSWHUCiElpYWTJ48GUZjbl/gpbZcMj0eJfcnZ2w5YqUTQ23HSb7TSj3Ulgf7j3Lx2H+0Q0v1UFsu7EHKxUo1htqOkXyXTD1yZWmsSCSCvr4+lJSUQK8f+Xuyfr8fTzzxRNx9OKKTJA888ACsVuuQV2A88sgjOHHixJDxjUYjJk+ejJaWloysJhHd38yZM/Hggw/KGnu0z63SsdKJIWculD6t1EONeWRyTIn2JdfSWGp/D5bNz3I5EUKKikQiuOaaa/Duu+/i8OHD6OnpwXXXXQeAEyFERERERESkPbkyEZKqwRMdyS4xFZ1IqampGXa7lStXQq/X48CBA2mPNVnPPfcczGYzl8sioqzhPUKUp44ptzwQDodx5MgRPPvss7jnnnuwZMkSmM1m6HQ66HS6tA52QRDw29/+FjfccAOmTZsGq9WKCRMmYOXKlfjZz36Grq4u+RIZpV/96ld4++238eMf/xgLFizI2ji0yuPx4IUXXoDH48n2UNKmtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfKelegiCgGPHjo36vh/R+4dE/yQ7cWC1WrFx40a88sorqKqqivv/0tJS/OAHP8CGDRvw6KOP4uqrrx7VuEarqKgIf//3f4+ioiKsW7cOa9euxU033YQHH3wQZ86ckZbYSuW+KKk+t0rFSieGnLlQ+rRSDzXmkckxKbkvLb0Hkxuvq82AnTt34o477oDX65U99smTJ7F27Vo0NjYO+Hn0F/Y777yDJ598Elu3bsUNN9wg+/6Hc+bMGfzbv/0bZs2ahY0bN2Z03/lCr9ejtLRUNZcRpkNtuWR6PEruT87YcsRKJ4bajpN8p5V6qC0P9h/l4rH/aIeW6qG2XNiDlIuVagy1HSP5Ltl66HQ6WVZBUJJOp4PVaoVOp8vofouLi/H000/HXVlSXFyMixcvwmq1AgB+8pOfDLkU16xZs4ZdZisZkUgEDocDkUhE+pkgCDhw4EDc1ShVVVV4/PHHUVxcnFRsOZ9bOWKlEyNbxwklppV6qDGPTI5JyX1p6T2Y3Lg0VgZs27YNd95557DbrF69Gvv27RtV3JaWFixfvhwXLlwA0P8iuvbaazFr1ix0dnbijTfegM/nAwCYTCbs3r0bn/vc51LKIRVf+MIX8MYbb+CNN96Q7guyb98+Lo1FREREREREmnbs2LGsrs6gJYmW4urp6cHatWszPpaqqirpXijRsZjN5gFjHG55rVSXFSMi7ePSWMrL/lRMHhk/fjy+8pWv4OGHH8arr76K++67L6143/jGN6RJkGnTpqGhoQH79u3Ds88+i1deeQXnzp2TJiCCwSBuu+02OByOdNNIyrPPPos33ngD69atk8ZA8hMEAY2Njaq6lDBVassl0+NRcn9yxpYjVjox1Hac5Dut1ENtebD/KBeP/Uc7tFQPteXCHqRcrFRjqO0YyXfJ1uOSSy5BQUFBhkaVmnA4jLa2NoTD4WwPBcDQ40l1Ka6RmM1mLFq0aFTxTpw4gTvvvBNr167F2rVr8cUvfhHXXXcdvvjFLw742b333otjx45JX071+/145JFHcNNNN0nbRZfieuSRR+D3+wfsRxAEaaWPCxcuoKWlJa06pVNrtR0n+U4r9VBjHpkck5L70tJ7MLlxIiQDvvSlL+Hs2bNoa2vDrl27sHHjRnz5y19GaWlpyjFfffVVvPXWWwD6f3nv2rULCxcuHLBNeXk5Xn75ZcycORMA0NPTgyeeeCJhvA0bNkj3Kxntn1AoNCDWhQsX8KMf/QgVFRX4+c9/nnKONDK/3499+/bFnTTlIrXlkunxKLk/OWPLESudGGo7TvKdVuqhtjzYf5SLx/6jHVqqh9pyYQ9SLlaqMdR2jOS7ZOthsViwdOlSLFq0CPPmzcvQ6EYnFArhzJkzce/psyXT47FarVizZo10dYeczp49i+bmZvzjP/4jHnnkETz66KOoqamJ+yBQEATU1NTgX/7lX9DW1oYzZ87gwQcfHDBhcs899+Dw4cN48sknpeMudqIk9s9QHzTGPrexj03mg0m1HSf5Tiv1UGMemRyTkvvS0nswuXFprCx66KGH8PDDDwMY/dJYN954I1599VUAwLe//W38+te/HnLb7du34x/+4R8A9F922d7eDqNx4O1hHn30UVRXV48yg37t7e0wGAzSv2+55Rb86U9/wm9/+1tpv1FcGouIiIiIiIjyzWiXwqbhCYKAm266KelvGJvNZqxatQqBQABvv/22wqNTzsyZM2GxWIa8P0o0z9jlu6L8fn/cPVeG2z6RZJcAS7R9so8hyldcGkt5vFl6DnK73XjzzTelf490/5FbbrkF3/3ud+F2u9HT04P9+/fH3SvkwQcfxIMPPijL+A4fPgwA+PGPf4wf//jHA/4v9iSlsrISQP8kzLe//W1Z9p1vRFFEIBCAxWJR1Q2mUqG2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8l616VFRUYPLkySgpKZFuxC4IAkwmE86ePYuuri54PJ5RxRRFEeFwGAaDQRXH1mjGE/0Av6amZshtqqqqsHHjRgCffQAfOxkQDAZhsVgQCARkv7G9TqeTLXZsrNOnTw+7bfQKk7a2tgG5m0wm/PznP8e+ffsGjCe6PQBs3Lgx4cSFyWSCx+PBL37xi4STKD/84Q+lYy/6PLtcLqxfvz5uwma0Ey8UT22v21SpMY9MjknJfWnpPZjcOBGSg95++20EAgEAQFFREZYuXTrs9larFVdddRX27t0LAPjrX/+akZumt7e3J/X/oz1ZG85Fpw8lPV7p3xXFFlhNhmEe0c/lD8LhDcb93GzUY3xJcr+cLzp9CIXjT3DKiswosoz8UvMJYXS5A3E/1+t1mFSaeG1Zp9OJ6upq3HfffSgtLUWHy49AMBK3XUmBCfYC04hjEEIRtPclvlRtUmkB9PqRG1aPR4AnEH9pX5HFiLKiob/5Ec3ln//5XnhgSbjN+BIrzMaRV/Rz+oLo88XX02LSY1xxcvX88Hw7/rB1M25b9x0Ul9iln5fbLCgwj3xMeQIh9Hjiv51kNOgwwR5fz8G1BID2Pj+EUHw9SwtNKLaOXE9/MIxOVwCuPif++7lfD8hlSlnhiI8HgC53AD7hszUro7Hu/M49mDph3IiPD4UjuOgceExFY3z/B/+M8rFlI8ZweAW4/KEBj71t3XcwrrwM5bbEx8pg52P6Qiyt94jB5O4RsfWYO7VS0R4RFYmIaHX4Ev5fqj0imscd3/ouZk8eP+LjAaDV4UMkEl9POXpEgRiI6weJqLFHRBVbjSgtNCfsbbES9YioCXYrjIaB9UwUL7ZHxCowG+J6xFDjSaZHDJcLe0S/TJ5HDFUPJXpE1GjOI0bTIxLlMtrziERS7RHR8Xz3ez+AYEi8L7l6ROz+Er22RtsjBovGHnw+ByTuEUM53+NN2CtHex4xOEayPWK4PNgj+mXyPOJ8exe2bn46rh6j6RHdvggStAiUWHQYP3YM5syZg9OnT6O3txcWiwUTJkzA5MmTpe0G9ogwjPbxqLSPx9kznyDU15nUGHr9EXh9fnx85D3MXrAUZkv/2G1mHQqMI9dCCItwBhJ/wF9RmNwq7H0BEYGY331CoH88ly9ehrElIx+XP/rxvyJoLsHhw4cgCJ/1bbPZhOXz52D9A/8a92G71WqVPvBvb2/H6dOnMWn2ZXjut78bEEcMBRDxOpPKw1AS/77IXlKMe//pH/HUU0+NeK9WnbkAemtx/H9EQgi7e2C323H//fcPG8tQPBbQfdaPTrV24x/uvg8RXx/EoB8LFizA1772NRw6dChhjH1vvY1z963HmTNnBvzcZDLi6sXzcPXVV6OhoWHAl1ujkyjRiRR9USl0hoGvQ0PJOEQCHogBz4DHAJAmaqJCERG9fhHBYDBujKVmEdEWMfiqktjJG09Ih8Cnv3ZKS0thMvX3JqtRh2LzyMd1RBTR7Ut8XI+x6mBMok95giK8wfgYJgNQaknutTFcjxCDAdTX12P58uVDTib5QyJcQnwAgx4osyY3hl5/BAlOI4bsEYOvFoLBNGyPCARGzmNwj4gqMOpgS6Ke4YiIHn/iMZRZdTAMqmeiMbkFEb5QfAyLQYcSS3If6nd645/IaL8bLv+o0b7XSHRulc57jeHOQ5I5j4g+/o5vfReWwmJcdCb+PZwJXBori1JdGqu6uhr3338/AGDFihV45513RnzMhg0b8PjjjwMAvva1r+HFF19MaczpUnpprAl3/RfMFdOkfz//7RW4atbYEeM8e+ATPPrnprifV00owWv3XZPUWFY99teEJ9VP3roAty2ZMuLjXz/ehrt/ezju58VWI44+9MWEjwmHw+js7ERFRQUMBgNu3/wO6j/pidvuvusvwQ+/cOmIYzh+wYkb//NAwv/74Kd/k9QbnB/98QO8+H5L3M9vuWIyfv71hQke0S+ai9lWiiv+15sJt/nLvVfjson2hP8X6z/2nkL1mx/F/Xz5jDL84e6rRnw8ACx46DUYA244RCsiMbdT2vyPV+KLl1WO+Pj/PnQe/7rjSNzPJ5UW4OCG+InIwbUEgC9Xv4UTF/vitn3wK/PwratnjDiGd5q7sfb/1kGPCEp1/gG5nHnsxhEfDwDf/n+HsLfps0nNaKyvrpiLn351/oiPP9/jxTVPDPyWVjTGn/7lS5hekeCEf5CHdx3H1oNnBjzWIVpx/bwJ+L//Y0lSeUzf8JeEP9d6jxhM7h4RW4+Gn35J0R4R5fQFsfDhPQn/L9UeEc3jkmkT8Yfvrhrx8QAw/6HXE374LkeP2P+vq+P6QSJq7BFRd66ajp/edFnC3hYrUY+IeuuB6+I+bE0UL7ZHxPrCvPFxPWKo8STTI4bLhT2iXybPI4aqhxI9Imo05xGj6RGJchnteUQiqfaI6Hia+/S4Y8t7CbeRq0fE7i/Ra2u0PWKwcDiM/7WjDs819Aw4nwMS94ihTN/wl4S9crTnEYNjJNsjwuEwbnz8LzjVp4vLgz2iXybPI37x+gn8bt+xuPcJI/WI2Pf797zhgS/BsvC/+Ls5uHnpTOj1/XFFUUz47dmhesREuxU/W12Q1HJRDx70odUVijuu184144vTR67Fie4wHn8v8cTWti8Vjfh4AKh+34+Gjs8mS6OvkSun2HDHvJEnQjq9Efzr/sQfqD15bcGIEzKRSAQ7jjmw+4Ip7rW1sFyHHy4pHPLKhljT1v857md6RBDa/QQuHHtnxJshFy/5W5Rd/524nwvtp3Fx270wGAyoqKhAZ2fnkLEmffdZGO3xX+jp+st/wHPszRFjFFyyAuO+9j/jfh7xu3HhV3eMuH8AGL/2/8A6Nf49ouPA7+E8+Pu4nz/33HMDJjQ+cQSx+UziL8qde+p2aTIlelXJPffcg5/+9KcDajP2hvthm//5uMdfMSaIr0/zS5MoQy3x5QmK+P6bib8g8/BKK6aVJD43j413wGHHn8/Ef/A9oyiEuy/x9U8SAAOuvBnsoSM2+CPxr/1/XmzB4go9vF4vCgsLpV4x2FstQTx7LL4PlJoi2HDZZ19GHm6psgcP+nDeFZ9HbI8QBAEXLlzAE088MaAOZrMZV3zpdlysuj1h7G1fKkIkEhkxj8E9ImpVuYB1C4oSjj22Fj0BHZ44YUsYO7ZHRB8jiiKsVivsdrs0pu0nAth7Nr5hLx5nwH1XJDf5/c3d8V8A1yOC+y+P4PKJxdK+hloaa7TvNRKdW6XzXiMcDuPluhP48a5P4nplMucR0fHct7MZ9WccEDrP4uKW70v/z6WxaFgffvih9Pdp06YNs+Vnpk6dKv395MmTso+JssNgMEhLjOW6aC7OBN/AzAYRevSIyX3bUQ5K1jIiYy5SrCFOVEYTY7gPeEfcP6mCVuoh5aFL/biWU6Z7u5J1lDuXdOOl83gt/c7VAi3VQ225RMfziac7o/tTKjYKSxGBI+1YcvTKVGMYDAa49DZEkL1vUNJndHqDYr83i2y2AR8IjnYJEZ1OhyuuuAIdHR3wer1oa2sbdnu1nctl+pxMr9cjaCpCBPEfckbrUFxcjKeffnrAh6vR5bWGmxyJQI+OHueIkyDJCIfDI9ZSyRhy7D+RdevWDfi3adwMTLzzlyM+bvCVKMnYv78WL7361JD/X1VVhQceeAClFROG3Ka7qxuWQd/sT3Qs2Fd9A6VXfyPu8SdOnMDajf9fUuOdct8L0FvjP8B39DrQIYZQVlYGvV4ft5RZlNNpBBA/mdjV1Ym1a7814GfR3AdflSCKib+06Orrw5kzrmFfA4IgoKGhEZVDTIREj6doHrGPi32dHfmgHZhwedzjX9v9Gnb85DksW7YM3/rWt2C1WhPWwlAyDpPv2ZJwDJ2dnfCIvoSTOLFLvnk9FgDxEy6RSCRuzEOLfy4j0MNUMPQkUDqUeA9WVFqOCM6mNx7dJ7KNKVWcCMlB3d2fvSkZPz65JTxiXwAjv0ApV7jdbuzYsQO33norbLbEs9y5IprL39z41WwPBQBggYBV5lOoFWbBh5G/EZUuJWtZgCBWm5tlySUaC8HUf6lGY3g9S4Ekl9YY/NhaYVbK+yf5aKUe0Tz6wldmeygAMt/b5ewRg8mdS7rx0nm8ln7naoGW6qG2XKLjmb5E+aV0Y/enRP5utxs4tQ8FmCTbOVA6vTLVGG63G0uEI+jB9Iycl9LwIoIPXzKfHHUdJ06ciAsXLig4sn5Wq1X6IuTcuXPh8XjQ29sLv9+PlpaBV9MoeQ6Qiuh4xPClwBDLJctJEARU9B5HAWaOmL/ZbB7wuUrs5MiGxvjtCxDEN264Fv+9/ZP+XpQGm82GW2+9FTt27Eg5Vjox5Ni/2p04cQJ33nkndJYiTL3/Dwm32fD/bUCwI7sf5P78Fz+H4eKxEetRdPn1KL/xh0nFjOY+2IRv/ifM42fG/fz//fb/4b8OvTK6gQ+ydu1a6bj64IMPcPfdd6O6ujpuYqXi736CwiHmpgRBwIEDB3DgQOIrDUdy7733ItzXMeBnscf63/7t3wIAxlz/bZQsif+c6p2338Yr//q/k9pXoqvGChBE+8ljKJ42CRMmTEjpi6JDUeI92PF9r6AA41L6XREdjyE8Pe2xpEsdX32kUYltdAUFya3nGrudFn9xWa1W6cWtRwQ2XQBA/9JbfX190qXBPp9PuidJKBQasO5kkS4AA/q/rWFBEBb0X5kQDAbhdH62NqjD4UAo1P+NEY/HA5+v/5tZBjGMQkQvPRRh0wWgR/8Msdvtht/ff9lwIBCAy+UC0D+D7HA4pJnkAggwfToGM0Io+HQM4XAYDodDWk4smpPRaMSkSZOke8boxPCnucfn5PV64fV6R8zJiiDMn34jxojPchJFEQ6HQ/pGy1A5Qex//nWfPv+xOfn9fun4G5yT1+vFlClTYDAaYUYI1k9zN0j17Od0OhEMBkfMyaYLwPDp8x+bkyAI6OvrGzEnPUR0RQoRhg66T+sZzcnlcknP+XA5FUKAMaae0ZwGH3tOpxOiKGL69OkQBEHKSS+GURSTe2xOscfecDkVIAg9wmiLFEOHCAo+refgY2+onKL1jL6ezAiiI1IE6PTDvp5i6xT7ejIgDIsuiLZIMQxG45Cvp9icIH72egpDh65IIfSfPq/DvZ5ic4p9PeVTjxick9w9QocIuj99nSjdI2JzkrtHGBFCZ6QIok6fdI8wIiS9nuTuEUD/FxiMRuOwOamxR8Tm5PP5EAgEMH36dABIukfE5jT49RQMBjF9+nREIpGEPSKaU/QYHfx68ng8mDZtGoxG46h7xODfuewR2T2P0Ol0qKyslN40KtkjUjmPGE2P8Pv9mD59OnQ6XcrnEXL2CI/Hg6lTp0JvMA54PZkQlr1HeDweGI1GTJ06dcB9A1PtEYNzMhqNQFE5rDohqR4x3HmECSG0RYohflrPVM4jABFtkWIYER5VjzAajXDoimGWfk+wR2TzPEKnN6AnUgDx0zEk2yNsNpv0PBhjXk9Kv9cIhUIYP348Zs2ahWAwKOWnFz87Lw9DN6BHCIIgbRcOh6XxiKIIv98fc0wl7hHR7aJjDQQCUu6hUEiqhW6I9xqiTo9gMChtF4lEpOMh+rxEn9fhekTsWBPlpNfrETAWD9kjQqFQXO6xOen1elRWViY8jwgDaO3oRkFBgbR8T0FBAYqK+pcNMxqN+PznP4/nn38e3/jGHUOeR5hMJhQWFuLMmTMIhUIoLS2VzhGLioqwcOFCzJw5E0ZdZMjzCJvNBoPBgDNnzkCv16O4uP/b6Xq9HqWlpdI30ofqEZFIBG1tbVINS0pKEuZk0IlD9ojCwkIUFhZKOdntny1DF5vTUD0iul30977NZpOuYLBYLFJOOmDIHhH7uZHBYEBpaal01VVsTsP1CLvdLt13ZLichjqPMJvNKCkp6R+rTjdkTqZheoTVasX58+cRCoWGzWmoHmE0Ggfck2uonIw6ccjziKKiIulzxuFyGqpH6PV6FBUV4ezZszhx4gT+9V//FadPn46rk16HIc8jBr+ehsppuB4x+PVkNBpx5swZ6HQ6Kado7ol6ROyxN/j1VFxcDIvFIj3/iXrEgXffx7/8y79I91CW6/MIAJg+fToCgYAs7zX0ej1KKiZ+ej40+vOIz94TDuwR2cCJkBwUewIw1Fp+g0VffACkF0E2rFmzBqIoynJ/kFgrVqzArbfeCgAo1flxm/UozJ++OLds2YKmpv619Gpra7Fr1y4AQEtLC6qrq6UYX7U0YZK+/6R1qakFS03935Zpbm7Gpk2bpO2qq6ulb9Ls2rULtbW1AIDxkS7cYOlfdsyMMG6zHkWprr9WO3bsQF1dHQCgoaEB27dvB9DfHKqrq6WT5S9YPsIlhi4AwDxje/8379F/yV51dbV0EhbNyWq1IhwOY+/evQCAAsGJ26xHE+a0Z88e7NmzZ8ScVprPYpGp/5tK0w29Uk6BQP/Nezs7O4fNSRf04TbrURTphLic6urqsGPHjoQ5/f73v8fYsWNhtVqxyHQBK839l9xV6N0Dctq0aROam5tHzOk261FU6N1xOTU1NWHLli0j5jQJPZhocEGAEUU6YUBO27dvR0NDw4g53WA5iemGXgAYkNPgY2/Tpk1obW3FmjVrsH//fikne7AHX7V8tg5kbE6xx95wOa02N+MSYzcaQ5Mw3eDAFyz9a54PPvaGyskkuAa8nr5g+Rh9YgFgNA/7eoqtU+zraZK+DzdYPkRjaBIsFuuQr6fYnBAOSq8nAUaU6724xNh/Zdxwr6fYnGJfT/nUIwbnJHePmGhwYZrBAQFGxXtEbE5y94il5lYYdCIielPSPWI6OqXXk9w9oqurC/X19dIboaFyUmOPiM2ptrYWe/fuxZo1a9DV1ZV0j4jNafDrqb6+HmvWrMHp06cT9ohoTvOM/W8mBr+ennnmGSxevBhWq3XUPWLw71z2iOyeR7hcLtTX10tv9pXsEamcR4ymR/z5z3/GmjVr4HK5Uj6PkLNHPPPMM5g3bx5MZsuA19Mlhi7Ze8SuXbtgtVoxc+ZMPPPMMwlzGk2PGJyT1WoFxl+Km60nkuoRw51HrDSfRWNoEgp1oZTPIyr0HjSGJmGh6eKoeoTVaoVXX4gvWD4GwB6R7fMIndGMy0ydKNX743Iarkfs2bMHgiCgpKQEs/Rdip1HDNUjdDodWltbpfzGip+dlwswDugRp06dwtmzZ6X9RscTDodRX18vTRAN1SOiNxyOjvXo0aPSUjgtLS1SLawRX8L3GqLeiLNnz+LUqVMA+o/l+vp6KadDhw6ht7c/9+F6RH19vXT8J8rJaDTCVTRxyB7R1taGo0ePjphTovMIQIev3L4O9957L66//vr+2KtX46abboLZbMZXvvIVXH311aisrMSYMWOGPI+YNWsW7rrrLuzbtw9+vx/3338/Vq5cia1bt+Lf//3f8YMf/AD/9V//hUuLQ0OeR9x6661YvHgx9u3bh3nz5uGOO+4A0P/h//333y994DtUjygpKcGKFSuk5/Wuu+7CvHnzBuQEAOOt4pA94m/+5m/wN3/zN1JO99xzj7Td/fffj8mTJwMYukdYLBbcf//9qKiokHKKjmnx4sVSTjazfsgeEfu5UUVFBe6//37ps7LYnIbrEffccw9mzZo1Yk5DnUfMmzcPd91114g5XWpxDtkjbr31Vng8Hvj9/mFzGqpHTJ48Wbrv8HA5TS4IDnkecdNNN2H16tUj5jRUjygpKcE999yDhoYG+P1+3HHHHVi8eHFcncosGPI8IvbYGy6n4XpE7LF30003YcWKFdi3b5/0ugMAs0E35HuN2GNv8OspNqehesSBhhO44447pIkHuT6P6Orqwpo1a7B3715Z3msIgoAply3BasvplM4jou8JLSHvgNdTNvBm6VmU6s3Sb7zxRrz66qsAgPXr1+Oxxx4b8TGvvfYabrjhBgD9s8zSN2pyXPRm6VarFUajEcVffxzWiiko1AXhFs14/ttX4bIKE6xWK8xmM3w+HyKRCIqKihAKheB2u1FaWopnD3yCX/ylAX7RiDAM0szqzAlj8cr3VsDr9Uqz+w6HAzabDUajER6PB3q9HgUFBbj2/+xFl9MNL8zon+UU4BVNePzWRfjy3DEwGo2wWq0IBAIQBAHFxcXSN1pLSkqw90QH7v/tOwjBgCAMMCMEA0QYrQVofPDzcLlcsNvt0Ol06Ovrg9VqhSiKqK+vx+WXX46ysjL8/TMHcOxsB9xi/y++Il0AftGIH1w/F3ev6m/uhYWFCAaDCXP6sMODW/6zBhHoIMAII8IwIwwvzGjc+AVA8KK4uBgGgwFutzthTj/6QwNeb/wEHtEMEToUQEAIBvztFdPwv/92DkKhEGw2G8Lh8ICcOjs78eGHH+LSyxfh6sfehB4i/DDBgAgKdEG4RQv+cu/VmFzUn4PJZJJOwAfn9B97T+HZvx6DTzQhDD2sCCICHRbPGIff3nkl/H4/SkpKIIoinE5nwpyWPvQKJgbb0RQejxD0KNIJ8IhmPPOPS7Byav9NuSwWC/x+f8KcdhxuwU93HIIAA0Kf1lMPEWNLS1D742ulYw/o/+aZwWDAsWPHMGfOHFgsFhQWFuLGp/bhTHsPPJ/W06YLwCea8G9fuRx/v3icdOwJgpAwp3fPOHDX/30LOkQw3eDAmfAYiAB8MOP0v39ZOvb0ej1cLlfCnL793Lt452QL3KIZgA52+DDF4MDSpUvwwBfnJHw9RXMqLCxEmyuIzz/R/wYyABMMCMOmEzBJ34df/vPfYaxVl/D1FJvTw68cw3+/cwpe0QQDRMwztOOj8FismjcVv7p9fsLX0+CcLt3wMgwQ4YMJekTypkcMzknuHlEAAXMMnTgersR7G7+kaI+I5uQL67D04Vdl7RE2+DHD0APb5Ll47lvLk+oRix/6C/x+AT6YoYMoa4/Y88/L8e6772LlypWwWCzS62lwTmrsEYUQIMCAf1w1Cw98fiZ8Ph9OnTqF+fPnIxgMJtUjrLoQPKIFbz1wHYr1woDXUzAYxMmTJ3HZZZdBFMW4HhGBHgUIIgwdVs+bFNcjOjs70dzcjCuvvBKCIIyqRwz+ncsekd3zCK/Xi/r6elx11VWwWq2K9ohUziNG0yM8Hg8++ugjLFiwAIIgpHQeIWeP6OjoQHNzM8JjZuA7z9Uj/Gk9TQjDiLCsPSISicBoNOLQoUOYPXu2tOxvqj1icE4WiwWP/fZVvNQcQt+nN4MerkcMdx5hQQhTDE40h8tg0kVSOo8Ii3rMNPTgXLgUQeiT7hF6vR53PvECjnuK4EQBe0SWzyN+8dpx7D9wECfC4xCASfEeIcd7jWhO0Q/vTSYTfnrADYfHj0n6PnwULodFF4JPNOHrc624bmL/TdpNJhPC4TBCoRAsFgtEUUQgEIDZbMaHvSL+8z1Xwh6x9YuFCAQCsFgs0Ol0CAQCMBgMMBqNCIVCiEQiMJvN+M/DXpzq8se915g4cQJuu9QMURRhNpsRiUQgCIL0JRG/3w+TyYSegA7/c39fwh7x5LUFKNb3/66P3kthcE4GgwF/aTyPmm5bXI+4bJwF319gRDgcHpB7opy+s9sZdx4REA347gwn5k4eK32ZorOzE6IoYty4cTAajVJOr58J4pUPXXHnEe6OFlSd24nvfOc76Orqgt1uR3FxMWyf3ksmNqcH9rng9ofiziM6/lIN3Zl66PV6zJs3D8ePHwfQ/4UCvV6PkpIS9PX1wTJrGaZ97YG4HuHxB9D16zuxYsUKvP322wgEAigpKYHf74cgCCgoKIBer4fH48HEb/w7xkydE9cjug/8AcGGnQD6r7SKXuUS/RZ7aWkp3G43dGVTMPPOXyTsEeeeuh32AhNcLhfC4bB0hVW015vNZrhcLpTfcD/GL7gmrkf0Hq2B56/PwGg0wu12w2AwoLi4WFqdIZpTUGfC7Pu3J+wRF7b+MwoDPfB6vQgGg9KVE4Nzsq/6BiZfc0vceUTfuRPoffGn0nmLTqeD3W5PmNPM+7bDbC2I6xHtf/rfKOz5CHPnzsWhQ4eg0+kS5lR42ecw9cbvx/UIt7MH7b+5GzabTbpywG63J8xpyp3VKB4/Oe48ovPN3yBy4k1EIhH4fD6YzeaEORknzsOMbzySsEecf/JvUV5ejlmzZuH999+XbmAfCASkz/fcbjfGf+0nKL/0irjziJ5Df4b/7d9Jx57RaEyYU6RgDGbdszlhj2jZdBeK9QLcbjdCoZB0RUhVVRWOHTsGvV6Pvr4+jLn+25i49Etx7zUcp95D36s/k4692NdTJBJBcXGxlNMl63cm7BGVHzyHk4feQnV1NSZOnIjly5fL8nlEtN9feumlKCgoSPu9hsViwR9efwu/qHPBB9OozyOi7wn/830/jpzvQU9HW9Zuls6JkCxKdSLk9ttvxx//+EcA/Wvaxc4QDuVPf/oTbrnlFgD9y21cvHgxtUGrTHQiJGrvwfcwZ+486d8VxRZYTSOvs+fyB+Hwxt+k22zUY3yJNcEj4l10+hAKx7+cyorMKLKMfDsenxBGlzv+EjG9XodJpYmXQHO5XNi+fTvuuOMOFBcXo8PlRyAYiduupMAEe8HI6/gJoQja+/wJ/29SaQH0+pFv1tfjEeAJxN9srshiRFnR0FcwRXNZu/Yb6Asnfr7Gl1hhNo58IZvTF0RfgpuuW0x6jCtOrp6nWjrw+ss78Dc33YrCmDUVy20WFJhHPqY8gRB6PELcz40GHSbY4+s5uJYA0N7nhxCKr2dpoQnF1pHr6Q+G0ekKwOt2Y8+ugblMSfLeHF3uAHzCZzf4i8b6u9tux+RxY0d8fCgcwUXnwGMqGuMf7rgDY0rtQzzyMw6vAJc/NOCxf3PTrRhbZke5Lbm1g8/3eBP+XOs9YjC5e0RsPS6ZXKFoj4iKRES0OhJf2Zhqj4jm8ZWv3YYZEypGfDwAtDp8iETi6ylHj7DpQ3H9IBE19oioYqsRpYXmhL0tVqIeETXBboXRMLCeieLF9ohYBWZDXI8YajzJ9IjhcmGP6JfJ84ih6qFEj4gazXnEaHpEolxGex6RSKo9IjqeW77+9/AnuDkoIF+PiN1fotfWaHvEYC6XC//vt7/D579yy4DzOSBxjxjK+R5vwl452vOIwTGS7REulwvP/b/f4Qs3xefBHtEvk+cRrR09+NN/vxD3PkGpHpFIqj3i1KlT0n1Kev0R+PwBnDt1HFMvvQwm86cfdpp1KDCOXAshLMIZSPxxUkVhcouP9AVEBGJ+9wWF/vFcOu9ylNlGfi7DERE9/sRjKLPqYBjhmAoEAvjgyFFMvuSz/KMsBh1KLMndrL7TG/+6CAoBtH58HAvmzx+wQkcivpAIt9CfRzAYlD7MLS8rxbhiCwKBAI4ePYr5w8Tq8UcQjh8GLAjC29eLUCiElpYWTJ48GUajEWVlZf2P+/QeskIEcAc/XVKpsBDPPvssDh8+BCEgoBD939ivr6/Hvffei4kTJw54rN/vx7PPPotDx04htkWYzSYsXLgI9Qf2QQx4MCK9EQZbmfTP2bNn4+6774Zer8f93/4fiC6PNJTZs2fjez98AJuf3YaPP/54wP+JQT8ivr6RxwAdDCWJ3w+E3T1AJL7/xEWwFEFvKYr7uRgWEPE4khgDYCiuAHTxx1/E64StwIw77rgD27dvH/JLzjqTFfqCkvj/EMMIu7rjf55oDLYyQB//+yXid0EUklhpxmCCoWhMwv8K93WguLh4xDz0hXbojPHHvCh4EfEnsey/Tg9DcXniMbi6AHHgiybRmPRWG3Tm+PMeMRRAxOuM+3kihpJxcT+zFRVi7Ve/jO3bf4df//rXqKysxJo1axI+frTvNRKdW6XzXsPlcuF3v9uOz934tbjzkGTOI6Lj+eJXb4HRUoQPTzbhC6uWSv/PiZA8kepEyPe+9z3psqfbb78dL7zwwoiPefrpp/H97/fPtsV+CyDXDZ4IyeSLh4iIiIiIiChXxE6EEI0kejN4ACgrKxtxafbY7WMf88gjj6CmpibhY6qqqrBx48a4nw/e33AxAODqq6/Go48+mnAsfr8fTzzxRNyNuNWgqqoKDzzwAKxWKwRBwLp16xTf33333ZfwxuRyxP3d736Hd999V7o/hJxmz54dN8GlFc8///ywEyFak83Pckf+6gipzpw5c6S/R9e4HMm5c+ekv8+dO1f2MVF2DL6EP5epLZdMj0fJ/ckZW45Y6cRQ23GS77RSD7Xlwf6jXDz2H+3QUj3Ulgt7kHKxUo2htmMk3+VyPex2+4CJkMHLPclBp9OlfE9QJcaTrf3JGVuOWKnEMJvNqKyslB4riuKwj41uP9gDDzwAADh48KD0AbnZbMaqVaukSYCRJIoxOM5wY3n66acTTtQA/feJGGpSYKiJmkQGX2Uz+P+iyz8NN7l03XXXDTnhM3PmTFgsFnz44YcDlmCKjnOk5zJ2f4meD2D4SaOh9hEb99FHH00YN9E+EuUx1L5GO6kW3d7lcmH9+vUj5hO9qum9995DQUHBkM9tKs/P4Lyjj41dSktuWnoPJjdOhOSgqqoq6e9Hjx5FKBSC0Th8Kd9///2Ej6fcFr1x0X333SetAZur1JZLpsej5P7kjC1HrHRiqO04yXdaqYfa8mD/US4e+492aKkeasuFPUi5WKnGUNsxku9yuR4VFRX48MMPpQ/4ojcAX758eVIfRidjNKtdDKbEeLK1PzljyxErnRjp7t9qtWLjxo2jvsJkpBijjTPURM0vfvELPPHEE2lN1MRKtI+RxhCVzKRRX18fGhoaMHPmTJhMplE/lyONZahJo3Sf58H7GJxHMvsa7aRacXFx0vk8+uijST236Tw/sY8NBoM4ffo0Zs6cKd1cXi5aeg8mNy6NlUWpLo3ldrtRXl6OQKB/jdd33nkHK1asGHL7QCCAiooKaX27N998E5/73OfSG7xK5PvSWGqaVU2X2nLhtyGVi8VvZGuHVuqhtjzYf5SLx/6jHVqqh9pyYQ9SLhavCNGGXK9HZ2cnmpqaIIqiIldErFmzJuWJEF4RolysdGJkui7Zks5ETSbHopV6pJOHUrXK5HObaF9yLY2l9vdgXBqLRsVms+H666/Hq6++CgDYtm3bsBMhf/rTn6RJkLKyMlx77bUZGScpT6/XZ302VS5qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd7lej4qKCixfvhy9vb0wmUxobW1Fb29vtocFoH9ZrUxcCZKJ/ckZW45Y6cTIdF2yJZkrGTJluLFopR7p5KFUrTL53Cq5Ly29B5Nb7n19gQD03zA9atu2bUPe/Nzr9Q5Yz/A73/nOiMtoUe5wuVx45plnpImuXKa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p4V6WK1WTJgwARaLBQcOHJBWm8i2QCCAQ4cOZWw8Su5PzthyxEonRqbrQsPTSj3UmEcmx6TkvrT0HkxunAjJUTfeeCOuueYaAP0vnq985Ss4cuTIgG26u7tx88034+OPPwbQfzXI+vXrMz7WTLBarbDZbACAcDgMh8Mh3aCtr69PWjvQ5/PB4/EAAEKhEBwOhxTD6XQiGAwC6J9A8nq9AIBgMAin0ylt53A4EAqFAAAejwc+nw9A/6V50ZsciaIIh8OBcDgMoH85M7/fD6C/XtEXfyQSgcPhkNZodblcUhP0+/1wu93D5mQ2mzFv3jxp3Lmck9/vx+WXXw6z2ayKOomiiLlz58JsNqddJ2DkY0+n02HRokUIhUKy5xSJRLBo0SKIoqiKOvl8PixatAhms3nUOZnNZlRVVQ1Y11iu11MydcqV11OmcgIgvU5yOadgMIh58+ZJNzDMdp30ej3mzJkjXeKt9LEnZ48YnFMwGMSiRYug1+tlOfbC4TAWLVok7Wu0dfJ6vViwYIF088R8/Z2rhb5nMBgwZ84caU3pXM5JEAQsWrQIBoNBFXWKfZ1k4tgzm82YP3++NG45czKbzVi4cCG8Xq8q6pTq+Z7ZbMbll18+4DyVPSJ7OZnNZsyZM0daHiSXc/L5fLjiiitQWFgIv98vjUEQBOkx4XBYGo8oinHbRWsbCoXitouONRAIDNguOu5IJDJgu1AohHHjxsFgMCAYDMZtF+X3+6XnNRgMDhjr4O2Gy8lgMGD8+PEIBoOy56TX61FZWYlQKDRgrKnkFAqFUFlZCYPBkHKdRFEccOPz0eSk0+kwduxY6ZgPBAJp5zSaOg2Vk5zHXi7lFPs6yeWcgsEgxo8fD4PBoJo6RSIR6UoTpY+9RD1Crt+5er0eixYtkvp8dNyp/n4yGo1YtGgRAoGArO8Js4ETIRlyww03YNGiRQP+PPPMM9L/Hzp0KO7/Fy1ahAsXLgwZ8/e//z0mTJgAADhz5gwWLVqE6667Dv/0T/+Er371q5g6dSr27t0LADAajfjjH/+omkuR5LZixQrceuutAPrXPK2urpZenFu2bEFTUxMAoLa2Frt27QIAtLS0oLq6WoqxadMmNDc3AwD27NmDPXv2AACam5uxadMmabvq6mq0tLQAAHbt2oXa2loAQFNTE7Zs2QKgv3FUV1ejs7MTALBjxw7U1dUBABoaGrB9+3YAn90wKNqMtm/fjoaGBgBAXV0dduzYMWxOFosFXq9XGmsu57R9+3bYbDZYLBZV1KmpqQknT56ExWJJu07AyMdeS0sLVqxYgdraWtlzamhowIoVK9DU1KSKOm3ZsgUrVqyAxWIZdU4WiwWffPKJNFY5X0/J1ClXXk+Zyqm5uRmNjY2wWCw5ndOePXvg9XphsVhUUafOzk7s378fFotFljplskcMzmnPnj1YsWKFtF06ddq1axfq6uqwYsUKqZeMtk7PPPMM5s2bB4vFkte/c7XQ9/r6+rB//35pDLmc065du7BixQppu2zX6ZlnnsHMmTNhsVgycuxZLBZMmjRpwHsjuXKyWCxYvHgxnnnmGVXUKdXzPYvFApvNJo2VPSK7OVksFuzfv18aay7ntGXLFlx11VW48sorUV9fj76+Puj1epw/f1768Kyzs1MaTzgcRn19vfQBXFNTk1TbtrY2HD16VMq9vr5eGuvRo0fR1tYmjS86bq/Xi/r6eunDuKNHj8JsNsNoNOLs2bM4deqU9BzV19dLOR06dEhazqu5uVnKr7e3F4cOHZK2i+YEAKdOncLZs2cH5GQ0GjFhwgQcPnxY9px0Oh0mT56Mo0ePSsdAqjk1NDRg8uTJMBqNI+Y0VJ3a2towefJkdHV1jTonQRBw7tw56T4GDQ0Naec0mjoNlZOcx14u5XTixAno9XoYjcaczunw4cOoqKiA0WhUTZ1aW1sxefJk6XWXTp1S6RFy/c7t7OzEihUrsGfPHll+PwUCAaxYsUJ67wjI854wG3iz9AyZPn261CRG45NPPsH06dOH/P+TJ09i7dq1aGxsHHKbiooKbN26FTfeeOOo96920RvsWK1WGI1G1NXVYe7cuXC5XLDb7dDpdOjr64PVapW+wR6JRFBUVIRQKAS32y1NDjmdThQWFsJkMkkNrrCwEMFgEF6vF3a7HUD/7KrNZoPRaITH44Fer0dBQQEEQYDf70dJSQlEUYTT6URxcTEMBgPcbjeMRiOsVisCgQAEQUBxcXHcDYNcLhfMZjMsFgv8fj9CoRBsNhvC4XDCnCKRCN566y1cccUVGDt2bE7n1NHRgaNHj2LVqlUQRTHrdXI6nairq8Pq1athNpvTqlMyx55er8fhw4exYMECWK1WWXMKhUJobGzE4sWLodfrs16n3t5eNDU1YcWKFfD7/aPKKRgMYv/+/Vi2bBlKS0tlfT1psUconVNfXx/eeecdrF69GhaLJWdz6u7uxvvvv49rrrkGer0+63Vyu904cOAA1qxZI/UjJY89OXvE4Jy8Xi+OHj2KJUuWIBQKpX3sCYKADz74AFdccQUAjLpO0RvEXnXVVQgGg3n7O1cLfc/j8eCtt97C6tWrpX6Uqzm53W4cO3YMS5cuRTAYzHqdOjo6cPz4caxcuRKhUEjxY89gMODtt9/GZZddhvHjx8uak9lsxjvvvIN58+ahvLw863VK9XxPp9Ph4MGDmD9/PsaNG8cekeWc/H4/9u3bh6uvvlrqR7ma0+DzcpPJBKvVKn1bubu7Gx9++CFCoRAsFot0NYHZbIZer4cgCNIHsqFQCGazGddeey1qamoQCHx2E+Do1RfR7SKRiHTlvSAI0nYejwft7e2YOnWqdDP32O2i6+lHxxq9cgQATCYTwuEwgsHggO1ix6rT6aTtQqEQDAYDzp8/j4qKChQWFibMKRwOD8g92ZwMBgNaW1tRUVEBq9UqjTWVnPx+Pzo7OzF58mTpeR4qp6HqFIlE0NbWhsrKSuh0ulHlFJ0ImTZtGkwmEwKBAIxGY1o5jaZOyRx7qdYpdrtcySn2dQIgZ3PyeDzo7OzElClTEA6HVVGncDiM9vZ26UvnSh57iXrE8uXLZfmdazQacejQIcyfPx+FhYVp/34ym8149913cdlll6GkpCTt94Stra1Zu1k6J0IyRKmJEKB/dv6FF17A888/j+PHj6O9vR2lpaWYOXMmvva1r+HOO+9EeXl5iiNXt+hESFQmXzxq4Ha7sWPHDtx6663S0mC5Sm25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/UYKRePx4P33nsv6XhTp07FzJkzsW/fvpTGIwgCmpqapCVLlabk/uSMLUesdGJkui40PK3UQ415ZHJMifa1Zs0aWWKr/T1YNj/L5UQI5bR8nwghIiIiIiIiUsJwEyHFxcUDbnxbUlKCBQsWwGg0pjwRQkSUz+SaCFG7bH6Wy3uEEOWwcDiMtrY2ab3EXKa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p6V6pJPLlClTsGzZMlx66aXSPU6NRmNK45gzZw6A/iV+3G63dFNiANINupWQaH9qjC1HrHRiKPk80ehppR5qzCOTY1JyX1p6DyY3ToQQ5TCXy4XNmzcP+CZOrlJbLpkej5L7kzO2HLHSiaG24yTfaaUeasuD/Ue5eOw/2qGleqgtF/Yg5WKlGkNtx0i+01I90slFp9OhsLAQEydORGlp6YAJi+j6+skymUwYM2YMBEHA4cOHIQiCFGfBggUoLCxM+LiZM2eOetyxBu9PTnLGliNWOjGUfJ5o9LRSDzXmkckxKbkvLb0HkxuXxqKclu9LYw2+GVMuU1sumR6PkvuTM7YcsdKJobbjJN9ppR5qy4P9R7l47D/aoaV6qC0X9iDlYqUaQ23HSL7TUj1GymW4pbEuu+wyVFRUJPw/l8uFxsbGAd/+jd4wOJHLL78cdrsdTU1N6OzshMlkwrhx4zBnzhxpgiV6c/fOzk7o9XqMGzcOY8eOxYULF3Dq1KnRpg6gP//oTZqV6D9yxZYjVjoxlHyeaPS0Ug815pHJMSXal1xLY6n9PVg2P8tN7bpFIlIFnU4Hq9Wa7WHIQm25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/UYKZdUvzdbXFyMRYsWobW1FT6fD6WlpSgrK0NDQ8OQjzGZTFi4cCFCoRD0en3ckljRyZFx48YN+HlRUVFKYwT68091Oa9MxpYjVjoxlHyeaPS0Ug815pHJMSndf7TyHkxuXBqLKIf19fXhqaeeQl9fX7aHkja15ZLp8Si5PzljyxErnRhqO07ynVbqobY82H+Ui8f+ox1aqofacmEPUi5WqjHUdozkOy3VQ8lciouLMXfuXCxevBgzZsyAxWIZctvo//X19eFXv/oV3G530vspKSmByWRK+H9D/TwqEAigrq4OgUAg6f0lS87YcsRKJ4aSzxONnlbqocY8MjkmJfelpfdgcuNECFEOs1qtWLNmjWpmVtOhtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfKelemQyF6vVmvBeHxaLBTabLeXx6HQ6TJ06Ne7ns2fPxuLFi4edDDEajZg+fboi38qWM7YcsdKJoeTzRKOnlXqoMY9MjknJfWnpPZjceI8Qymn5fo8QIiIiIiIiIiW43W4cOnQo4f8Nd4+QoXR3d+PYsWPSkls6nQ5VVVVxy12lor29HZ2dnQAwYAmt4e5zQkSkJnLdI0TtsvlZLq8IIU2wWq3St0jC4TAcDod0ctXX1wdBEAAAPp8PHo8HABAKheBwOKQYTqcTwWAQAOD1euH1egH035TN6XRK2zkcDukmbx6PBz6fDwAgCIJ0mZcoinA4HNLN4dxuN/x+P4D+y99cLhcAIBKJwOFwIBKJAOi/qVz0sji/3y9dEjxUTj6fD3/+85/R1dWV8zl1dHTgL3/5C3w+nyrq5HA48Morr8Dn86VdJ2DkY6+vrw+7d+9Gd3e37Dn19vZi9+7dcDgcqqhTe3s7du/eDZ/PN+qcfD4fXnnlFfT29gKQ9/WUTJ1y5fWUqZycTidefvll+Hy+nM6pq6sLf/7zn+Hz+VRRJ5fLJT2vctQpkz1icE5dXV3YvXs3XC6XLMdeT08Pdu/eLfXN0dapra0Nr732Gnw+X17/ztVC33O73Xj55ZelMeVyTp2dndi9ezfcbrcq6tTW1oZXX30VPp8vI8eez+fDq6++ira2Ntlz8vl8eO2119DW1qaKOqV6vufz+fCXv/wFHR0dUp3YI7KXk8/nw8svvyyNKZdzGum8XKfTIRwOS+MRRRF+vx+RSAR6vX7UOY0dOxbz5s3DuHHjMHXqVCxYsABms1mW9xrjx4/HnDlzMGXKFGkSxOFwwGKxoKqqCoIgSI+J5hQMBvHRRx/B5XJJYxUEQXoeQqFQXO7RsQYCgQHbRWsRiURgNpshCAI+/vhjuN1u6RgIBoMDtos+d9Fax24XO1a3242PP/4YwWBQev6jYx2c0+A6Rbfz+Xz4+OOP4fP5Rp1TIBDAyZMnB/w73ZwGb5dKTunWafB2uZKTx+PBqVOnEAwGczonl8uFjz76CMFgUDV18nq9+Pjjj+H3+xU/9hL1CLl+57pcLuzevRtdXV2y/H7yeDzYvXs3Ojo6ZH1PmA2cCCFNWLFiBW699VYAQGdnJ6qrq6UX55YtW9DU1AQAqK2txa5duwAALS0tqK6ulmJs2rQJzc3NAIA9e/Zgz549AIDm5mZs2rRJ2q66uhotLS0AgF27dqG2thYA0NTUhC1btgDobxzV1dXSN1J27NiBuro6AEBDQwO2b98OoL85VFdXS81o+/bt0g3k6urqsGPHjmFzikQiOH36NF5//fWcz2n79u1oaWlBJBJRRZ2OHDkiPcfp1gkY+dg7ffo0HA4HampqZM/pvffeg8PhwJEjR1RRp61bt0pvjEabUyQSwcmTJ6Vvdcn5ekqmTrnyespUTidPnsSxY8cQiURyOqfXX38dp0+fRiQSUU2dGhsbpZNtpY89OXvE4Jxef/11OBwO2Y69gwcPwuFw4OTJkynVafPmzejq6kIkEsnr37la6XuNjY3Sm7tczumVV16Bw+FQTZ02b96Mjo4ORCKRjBx70UnKzZs3y55TJBJBT08PNm/erIo6pXq+F4lE0NLSIo2VPSK7OUUiETQ2Nmoip5HOywsLC9HT0yONJxwOo76+Hj6fD2PGjEkpp+PHj+Pdd9/FzJkzpedI6feE5eXl+OSTT3D27FnpuWxoaIAoivD5fHj//felDxWbmpqk56GtrQ1Hjx6V6llfXy+N9ejRo9IEbktLi1QLURSxd+9ehEIh+P1+HDt2TDoGzp49i1OnTknPUX19vTTWQ4cOSV/2am5ulvLr7e1FY2Oj9AFrfX299LyeOnUqLqfYOsXmdOHCBfj9fnR0dIw6J6/Xi/b2dulD3YaGhrRzir3SKNWc0qmT1+tFfX299EFwLuXU1NQEp9MJURRzOqfo604URdXU6fz58/D7/ejq6lL82EvUI+Tsew6HA6+//rosv5+cTiccDgd27Ngh63vCbODSWJTTopdTWa1WGI1G1NXVYe7cuXC5XLDb7dDpdOjr64PVaoXZbJa+3V9UVIRQKAS3243S0lIA/bOrhYWFMJlMUoMrLCxEMBiE1+uF3W4H0D+7arPZYDQa4fF4oNfrUVBQAEEQ4Pf7UVJSAlEU4XQ6UVxcDIPBALfbDaPRCKvVikAgAEEQUFxcLH3IXlJSAr1eD5fLBbPZDIvFAr/fj1AoBJvNhnA4zJyYE3NiTsyJOTEn5sScmBNzYk7MiTllNKcPP/wQZ86cgcVigSiKCAQCmDZtGqqqqnIqp76+PnR3dyMYDMJiseDkyZMDcjKbzdDr9RAEAXq9HkajEaFQCOFweMB2FosFOp0OgUAABoNB2i56JcicOXNQUFCATz75BE6nE4FAAEajEQaDAcFgEKIowmw2IxKJQBAEac18v98Pk8kkbQf03+w9HA4jGAwO2C52rDqdTtouFAopklN0rLHbMSfmxJzkz2n58uV58fuptbU1a0tjcSKEclq+3yMkFAqhpaUFkydPVtUNplKhtlwyPR4l9ydnbDlipRNDbcdJvtNKPdSWB/uPcvHYf7RDS/VQWy7sQcrFSjWG2o6RfKeleiSTiyiKOHfuHNrb2yGKIioqKjBjxgzodLqsjEcu+/bti/uQL10TJkzApZdeCp1Oh+bmZhw9elSW2HKMM50Ycj9PlB6t1EONeWRyTIn2Jdc9QtT+Hoz3CCGilLjdbjz33HPSuny5TG25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VIJhedTodp06Zh2bJlWL58OWbOnKnIJEiy45GTIAj44IMPpLXsAUj3Hh2tK664QpoEAfrXxR8cW85xZjKGHPsn+WilHmrMI5NjUnJfWnoPJjdeEUI5Ld+vCCEiIiIiIiKi0dm3b1/Cn48dOxbTpk3D+++/P+zjKyoqMG3aNJhMJlgslrj/b2trw8mTJ+UYKhHlCbmuCFG7bH6Wm9vXcRIREREREREREcmkpKQEa9asgSiKcLlcCSdFxo4dO+zVIxUVFZwIISJSGS6NRZTDnE4nHnvsMTidzmwPJW1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyyfR4/H4/Dhw4AL/fL/0sdv17nU6HkpISzJ49e8DjJk2ahPHjxw8b2+12x8WWc5yZjCHH/kk+WqmHGvPI5JiU3JeW3oPJjUtjUU7L96WxgsEgmpubMWvWLJhMpmwPJy1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyyeR4PvjgA3R1daG3txdjxoyBwWAAACxduhRFRUUJx+ZyuVBUVJRwKaxE27/55pswmUxS7FSFw+G4cQ5n0qRJaG1tTSuGXI8l+WmlHmrMI5NjSrQvuZbGUvt7sGx+lsuJEMpp+T4RQkRERERERESj09HRgaampgE/s9vtWLRokWw3g+/s7MTx48dliTUagz9MPXr0KLq7u2Xdx9SpU9Hd3Q2j0aiKb3kTaQHvEaI8Lo1FlMO8Xi927twJr9eb7aGkTW25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy6ZHM+4ceMwffp0nD59Gnq9HhMmTMD8+fNlmwTxer04ePAgZsyYkXasYDCIkydPIhgMjrjtrFmz0o6RzGNnzpyJpUuXYvHixSgsLBwxxkhLiVHy0qmlmqgxj0yOScl9aek9mNw4EUJERERERERERHll3LhxKCsrw5IlSzBnzpwB9weRS0VFBdasWYOpU6fKEm+kZWkqKytl2c9oTJo0acRthpqgIaJ+alieMB9waSzKaVwai4iIiIiIiIjUzu1249ChQ0lvP2fOHFgsFpw9exZut1u6cft777035GMSLa2jxNJYsfsRRRG1tbVDbnvNNddAr9cPuw0AlJWVYfbs2fjggw8QCATkGipRTpg3bx7GjRuX7WFkBJfGIqKUqPFSwlSpLZdMj0fJ/ckZW45Ycl+WTdmjlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy5a7z82my3ppbJ0Op10xcrll1+O8vJyzJs3L+GN3JMRDofR1dWFcDgs+2N1Oh3mzZuX8P9mzZqV9E2nx48fj8LCQqxYsQJXXHEFli1bhgULFox6vJkwffr0rF3lkk4t1USNeWRyTIP3VVZWJltsLb0HkxsnQkgTrFYrbDYbgP5m4nA4EL3Yqa+vD4IgAAB8Ph88Hg8AIBQKweFwSDGcTqf0ovR6vdLadcFgcMDNvxwOB0KhEADA4/HA5/MBAARBQF9fH4D+b0Q4HA6pobndbvj9fgBAIBCAy+UCAEQiETgcDkQiEQCAy+WSvvng9/vhdruHzcnr9eKll15CV1dXzufU3t6Ol156CV6vVxV16u3tlcaTbp2AkY89p9OJnTt3oru7W/acenp6sHPnTvT29qqiTm1tbdL6kKPNKXrM9/T0AJD39ZRMnXLl9ZSpnBwOh3Q85HJOXV1dUh5qqFNfX580HjnqlMkeMTinrq4u7Ny5E319fbIce9GxOhyOlOp08eJF6bnN59+5Wuh7LpcLL7300oDXTa7m1NnZiZ07d8LlcqmiTrGvk0wce9HX1sWLF2XPKTa2GuqU6vleNI/29napTuwR2cspWo/o2HM5p3TOy5XIKdPvCeXsEYNz8ng82LlzJ9rb2wfUqbi4WIoX3U80RnQMwWAQlZWVMBgMUp1efvllqU7RMQiCID0P4XBYGs/gOvn9fvh8Ppw8eRI+n2/Adn6/X3r+A4GA9HyFQiFp3IFAACdOnBjw78HH3tixY2Gz2QbkZDAYUF5eLtUpdqyDc585cybGjx8Pj8cDv9+PkpISGI1G6XmNjjU299ixjjan6PMfu13s8z94u6iCggKsWrUK06dPl7YdKqdk6pRKTh6PBydOnEAwGJQlp8HHXqZycrvdUh5y1ynVnKKvE7/fn3adRspJEAScPHkSbrcbl112GYxGo2x9r6+vDzt37kRXV5csvdztdmPnzp3o6OiQ9T1hNnAihDRhxYoVuPXWWwEAnZ2dqK6ull6cW7ZsQVNTEwCgtrYWu3btAgC0tLSgurpairFp0yY0NzcDAPbs2YM9e/YAAJqbm7Fp0yZpu+rqarS0tAAAdu3aJV3e2dTUhC1btgDobxzV1dXo7OwEAOzYsQN1dXUAgIaGBmzfvh1Af3Oorq6WmtH27dvR0NAAAKirq8OOHTuGzclut2Px4sXSGHI5px07duDLX/4y7Ha7Kup0+vRpjBkzBna7Pe06ASMfe11dXdiwYQPq6upkz+nEiRPYsGEDTp8+rYo6bd++HRs2bIDdbh91Tna7HRMmTMCJEycAyPt6SqZOufJ6ylROra2tKCgogN1uz+mcamtrsXjxYtjtdlXUyeVyQRAE2O12WeqUyR4xOKfa2lps2LABLpdLlmOvoaEBGzZsQGtra0p12rp1K+655x7Y7fa8/p2rhb4nCAIEQYDVas35nPbs2YMNGzZAEARV1Gnr1q248847YbfbM3Ls2e12rF27Flu3bpU9J7vdjh/+8IfYunWrKuqU6vme3W7Hl7/8Zel5ZY/Ibk52ux2CIEgfFOVyTumclyuRU6bfE8rZIwbnZLVasWHDBuzYsWNAnfbs2YO5c+eir68P9fX1APq/Cd7Y2AiDwYAJEyagp6dHer+TqE7RMZw6dQpnz56V9hsdz+A6vfvuu+jq6sLVV18Nh8OBo0ePStvV19dLz//Ro0fR1taG8ePHo6WlRRp3JBJBJBKR7mHQ0NAQd+wZDAaMGTMG9fX1qKysxOzZs3Hw4EFpfHv37pVq1tvbO2CJsPr6eulD5sF1ij6v4XAY9fX10oe/TU1NUm3b2tqknEKhEOrr61FSUoJJkyahubkZbW1t0nEUHbfX60V9fT3Gjh0r5RR9vs6ePYtTp06hqKgIHo9HqlNBQQFqamqkPN5+++1hcxqpTrE5FRcXD5nT4DqdOnUKM2bMgNVqTZhT9MPtRDkBGHDsAcChQ4fQ29srHW9y5TRcnQKBABobG7F06VJYrVbp2BuqTpnKqa2tDVdffTVcLldKOSV6PQ2Vk8lkwtVXX40TJ06gtbUVgHy/c10uFzZs2CC9H4uOO9VertPpsGHDBun9GCDPe8Js4D1CKKdF15WzWq0wGo2oq6vD3Llz4XK5YLfbodPp0NfXB6vVCrPZDJ/Ph0gkgqKiIoRCIbjdbpSWlgLon10tLCyEyWSSGlxhYSGCwSC8Xq/0gZTD4YDNZoPRaITH44Fer0dBQQEEQZC+uSCKIpxOJ4qLi2EwGOB2u2E0GmG1WqVvTxQXFyMSiaCvrw8lJSXQ6/VwuVwwm82wWCzw+/0IhUKw2WwIh8PMiTkxJ+bEnJgTc2JOzIk5MSfmxJyYE3PSQE5erxcXLlzA+PHjYbPZ0NfXl3RO77//PvR6PQRBgE6ng8lkQjgcRigUwhe/+MW4nM6fP48PP/wQRqMRoVAI4XAYFosFJpMJNpsNPT090Ol0CAQCKCgowJIlS3D8+HH09vbCbDYjEolAEARYLBZpu+uuu25UdYpOKOj1eoTDYQSDQenLDLNnz0ZlZWXCOrW1teH06dMQRRGBQABms1nKXa/Xx+U0c+ZMlJSUDKhTfX29tF0kEpFyCoVC+MIXvoDa2loEAgEYjUbpKhxRFDFt2jRMnz4dFy5cwJgxY1BSUgKXyyXl1NraiqamJun5j83J7/fDbDbDaDTC7/fDZrNBEASpThaLZUBOn/vc59DV1QWTyYSGhoYBOUW3i33+DQZDwpwG12lwTrHbxY7VZDJJ2wEYNqehjr3BOQ1XJ+b0WU5GoxHLli3Li74Xzam1tTVr9wjhRAjltHy/WbrD4UB1dTXuu+8+qTnmKrXlkunxKLk/OWPLESudGGo7TvKdVuqhtjzYf5SLx/6jHVqqh9pyYQ9SLlaqMdR2jOQ7LdVDbbmw/yQXa9++fUNum+hm6ZFIBDU1NThw4ACWL18ufQg8Y8YMTJ06FT09Pejt7YXFYkFFRQWsViu6urpw7NgxAP0fFtfX1w94bKL9jOTEiRPSEn9RFosFK1asgE6nS/iYnp4eHDlyJOl9zJ49G5MnTx7ws48++kj6xn2s6M2ph3o+J0yYgDlz5gy5r0gkgv379w87nmuvvRbhcBgmkynpug23HZC4HnKaMmUKOjs7EQwGFb1Xhtx5XHLJJfB4PLhw4YJqxpTMvj73uc/hmmuukTW22t+DZfOzXE6EUE7L94mQUCiElpYWTJ48GUajMdvDSYvacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+SizXaiRCg/9vkBw8ehNVqhcFgQGVlJS699NIhJyBEUZSW1Bn8rfDh9jNSHkeOHJGWIjKZTFi4cKF0v9dE5JgI6evrQ2Njo7T8FtA/AbNkyZJhJygmTpyISy+9dNj9HTt2TLp/XCLJTnCMZiIkUT2GU15ejrKyMmkZqeGMHTsW8+fPBzDwGFDCaPMYSfQ5HOn5y+SYktnXxIkTsWzZMlljq/09GCdCiFKU7xMhRERERERERJQ/UpkIAT67mbPZbIbBYBhxP4cOHZJuhjya/QxHFEX4fD6EQiEUFxcPORET5Xa7B9zTYSSXXHIJJk2aFPfznp4enDt3Dh6PByUlJZg9ezYKCgoAAIcPH5bu+RNr2bJlKCwsHHZ/Xq8X77777pD/r8RESCKFhYWYMGGCdA+JWNdeey26u7tx/PjxEePEToSkOpZskWMiJBtsNhuWLFmS7WFkVDY/y+XN0olymMfjwQsvvACPx5PtoaRNbblkejxK7k/O2HLESieG2o6TfKeVeqgtD/Yf5eKx/2iHluqhtlzYg5SLlWoMtR0j+U5L9VBbLuw/ysXyeDz4wx/+gEgkktQkSCxBEHDs2DEIgpDy/qN0Oh0KCwtRUlIy4iQIABQVFaW9T6D/hvSLFi3CqlWrMH/+fGkSBADGjx8ft31xcfGAbYaSTA5yG1yP0tJSXHnllZgyZQpWrVqF2bNnw2azYdasWVi9evWormyorKxMa2wLFy4c8SqaqNEcV1arFTNnzkxrbMmw2+0jjqmyshITJ05Me1/R/KM3GJeTlt6DyS371z4SUcr0ej1KS0sVv2QvE9SWS6bHo+T+5IwtR6x0YqjtOMl3WqmH2vJg/1EuHvuPdmipHmrLhT1IuVipxlDbMZLvtFQPteXC/qNcrHRi6HQ6WK3WrHzor9PpUFVVhRMnTii2j0mTJiESieDChQsIBoMYM2YM5syZk5V8kxFbj5KSEixcuFAaq8lkwuTJk+OWB0uGwWBAWVlZ0tsXFhZKN+222WxYsGABzGYzCgsLodPpMHgBopkzZ2LMmDHSzcIbGxuTPq7mzJmDMWPG4PTp06NLahTMZjMuueQSHD58eMgxlZeXS8eGKIq4ePFiwu1mzJiBTz75ZNj9ReuYaCIuXVp6DyY3Lo1FOY1LYxERERERERFRvkh1aazROnPmDM6cOaP4fpLhcDjQ2Ng44nZDLY2VjOjHo6OZAAmHw3jrrbcS/t+cOXMwYcIE6d9D1c1ut2Px4sUjbjdYYWEhFi1aBLPZPOK2nZ2dwy6NZTQaMX/+fNjt9gE/H24sq1evhtfrhU6nQ0FBwYDnraOjAydOnJCe04qKClRVVUkfhIuiiNOnT+P8+fMjjt1qtWLZsmXQ6/X4+OOP0dLSErfN1KlTpStGGhsb4XA4Rowba/r06Zg+fTqA5F9fH3744ZATIZdeemlS92QB+q+iGTNmTLJD1QQujUVEKYnOostxiWq2qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9J7lYQy3ZNNxSTqmMJ/ohfjgcRltbG8LhMABgypQpSceQS3FxseL70Ol0o74KZLirKGInQYD+qwQSiX4AP5KqqiosXboU06ZNg8FgwOWXX57UJAgw/BJj8+fPx8qVK+MmQUai0+lQVFQkXQESa9y4cVi1ahUWLFiA5cuX47LLLhtwNYBOp8OUKVNQVFSEOXPmYOXKlUPWeNGiRdJjx40bl3AcsT8f7bJVV199tVQDQRAGHOtKir6uklmCbbS09B5MbpwIIcphfr8f+/btg9/vz/ZQ0qa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p6V6qC0X9p/kYg31gfpQP091PBaLBZdccglCoRDOnDkj3eB86tSpo0sggyoqKjK+zzlz5gy4qbrZbMayZcvitpswYULczdfLy8tRWlo64GeJPuzX6/WoqKhAUVERxo4di8OHDyMUCiU9xsLCwoQ3frfb7Rg7dqwiSxYZjUaUlZUN+UG/3+/HwYMHUVRUBLPZjAULFkhjsVgsmDZtGlavXg2r1So9pqSkBFVVVTCZTAD6n+t58+bBZrNJ21RUVIxquSmj8bO7Rvj9fulYT0fseIYSCoVw/vx5RSYHtPQeTG5cGotyGpfGIiIiIiIiIqJ8EYlE0NTUhK6uLuln5eXlmDdvniIfaHu9XvT29qKgoAB2u33UN1uXw3BLUEWVlpZi0aJFmRnQIKIowuVyIRKJoKSkZMg6BINBtLe3w+v1oqSkBOPGjYvb1u/344MPPoDP5wPQf8XDvHnz0p7kcblc+OCDD6QP+c1mMxYtWpRwgiQqU8uwxYpEIiNenSOKIgRBgNlsTrhdIBDAO++8k9T+BufR1NSEjo6OEbcdbmms1atXo66uLuGN0KMTLxUVFbjkkktUcd+MTMvmZ7m8WTpRDhNFEYFAABaLRbU38kqW2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/koul1+sxb9489Pb2wuVyobi4GGPGjBn2A9V0xlNQUCB9S18Nx0kiZWVlqKqqytr+ozcuH0n0ZubDsVqtuPLKK9Hb2yvdvD32qopUa1lcXIwVK1bA4XBAp9OhtLQ0K5NaUUPlkczEgE6ng8ViUWRMFRUVaG9vj3tuo/cgid12uPFVVVXhyJEjiEQiAD6beIqtZS70Hzniqel3Tf5NOxFpiNPpxOOPPw6n05ntoaRNbblkejxK7k/O2HLESieG2o6TfKeVeqgtD/Yf5eKx/2iHluqhtlzYg5SLlWoMtR0j+U5L9VBbLuw/ycfS6/UYO3Yspk+fntTSRlo+B5o2bRoWLFggLZekBUajERUVFZg4cWLc0lLp1MNoNKK8vBxjx47N6iQIoM7jyul04umnn46774vdbsekSZNGFau0tBTLly/H3LlzMW/ePCxdulS6n4pOp8uZ/iNHPDXVmktjUU7L96WxwuEwOjs7UVFRkfVfYulSWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbcdIvtNSPdSWC/uPcrFy/RxouKWxZs6cqer7lsgtk/U4evQouru7434+fvz4tK/AUTKPVJfGio6pvLwcHo8HTqcTRUVFCa+eOXnyJNra2kaMOZRc6T9yxBv8+Gx+lssrQkgTrFardDOicDgMh8MhXabW19cn3XzI5/PB4/EA6L8xkcPhkGI4nU4Eg0EA/Wtger1eAP1rOMbOWjocDmlNRY/HI63bKAgC+vr6APRf9uVwOBAOhwEAbrdbuilQIBCAy+UC0L/2ocPhkC6Vc7lc0hqCfr8fbrd72JwMBgPsdrsUO5dz8ng8KCsrg8FgUEWdQqEQioqKYDAY0q4TMPKxF4lEUFlZiUAgIHtOwWAQlZWVCIVCqqiT2+1GZWUlDAbDqHMyGAyw2WxSbDlfT8nUKVdeT5nKKRwOo7CwEAaDIadz8vv90nrHaqiTKIqwWq3SSabSx56cPWJwTn6/H5WVldJ+06mTx+OBIAiorKxEOBxOqU4ulwvjxo2DwWDI69+5Wuh7QP/5X/QbsLmck8/nQ2VlpbTfbNfJ5XJJb1QzcewZDAaUl5dLseXMyWAwYPz48XC5XKqoU6rnewaDAWVlZQN+T7BHZC8ng8EAq9U64Pw4V3NK57xciZwy/Z5Qzh4xOCe9Xo/Kykrp/CXbdUrnfA9Qx+9cv98vjVUQBOkxgiCo4vWUqb7n9XoxZswYGAwGxXMqLi6Wtot9/ktLS9POKZ3z8mRyio4hGAxK+YXD4QE37Pb7/Qnfa0TvUzJ16lSUlZUN2SNCoZA07ugxGh1rJnvE4GNPFEVUVlZK5y/p1Mnx6VJqlZWV8Hq9sr4nzAZOhJAmrFixArfeeisAoLOzE9XV1dKLc8uWLWhqagIA1NbWYteuXQCAlpYWVFdXSzE2bdqE5uZmAMCePXuwZ88eAEBzczM2bdokbVddXY2WlhYAwK5du1BbWwug/4ZKW7ZsAdDfOKqrq9HZ2QkA2LFjB+rq6gAADQ0N2L59O4D+5lBdXS01o+3bt6OhoQEAUFdXhx07dgybk9vtxqZNm/DSSy/lfE7PPvssfv3rX8PtdquiTnV1dfjlL38Jt9uddp2AkY+9Y8eOYdu2bXj11Vdlz2n//v3Ytm0b6urqVFOnbdu2we12jzont9uNX/3qV9i/fz8AeV9PydQpV15Pmcrp/fffx3/+53/C7XbndE4vvfQSNm3aBLfbrYo6ffTRR6iurpZOLJU+9uTsEYNzeumll7Bt2zYpp3TqtGvXLrzxxhvYtm0b3n///ZTrtGXLFrjd7rz+nauFvnf27FlUV1dL31LM5Zz+8Ic/YNu2bVJOaqjTs88+C7fbnZFjz+124ze/+Y0iObndbmzdulU1dUr1fM/tduPXv/41nn322QF1Yo/ITk7Rc9iPPvpIEzmlel6uRE6Zfk8oZ48YnFN3dze2bduGZ599VhV1Sud8Ty2/c+vr66UPf5uamqTHfPTRR6p5PY02p1SOvd/+9rfYvHkz3G634jm98MILmD59OgCgvr4efX19mDVrFmpra2XJKdXz8pFy2rJlC3p7e6U8ovn19vbi0KFD0nb19fUpv9cwmUxoa2vD0aNHpe3q6+ulsWa6R0RFfz9t27YNL730kix1unjxIrZt24bf/va3sr4nzAqRKIcdO3ZMBCBarVbRZrOJx44dE0OhkNjb2ytGIhFRFEXR6XSKgUBAFEVR9Hq9otvtFkVRFIPBoNjb2yvFcjgcoiAIoiiKosfjET0ejyiKoigIguhwOKTtent7xWAwKIqiKLrdbtHr9YqiKIqBQEB0Op2iKIpiJBIRe3t7xVAoJIqiKLpcLtHn84miKIp+v1/s6+sTRVEUw+Gw2NvbK4bDYVEURbGvr0/0+/2iKIqiz+cTXS6XKIrikDn5fD5xz549YldXV87n1N7eLr7xxhuiz+dTRZ0cDoe4e/du0efzpV0nURz52Ovr6xNramrE7u5u2XPq7e0Va2pqpP1ku07t7e1iTU2N6PP5Rp2Tz+cTX3/9dWlfcr6ekqlTrryeMpWT0+mUXie5nFNXV5e4Z88e0efzqaJOLpdLfO211wb0IyWPPTl7xOCcurq6xJqaGmk/6dTJ7XaLPT09Yk1Njeh0OlOqU1tbm/jXv/5V9Pl8ef07Vwt9z+12i6+99tqAfpSrOXV2doo1NTWi2+1WRZ3a2trEN998U3q+lT72fD6f+Oabb4ptbW2y5+Tz+cS//vWvYltbmyrqlOr5ns/nE9944w2xvb1dqhN7RPZy8vl84muvvTagH+VqTumclyuRU6bfE8rZIwbn5PV6xZqaGrG9vV0VdUrnfE8Nv3ODwaD42muviW+++aZYU1Mjvv766+LevXvFmpoa8aOPPlLF6ylTfa+jo0Pcu3ev6PP5MpaTIAjimTNnpPHJkVM65+Uj5RTtJTU1NeKePXvEPXv2iDU1NeIbb7whvvbaa2JNTY1YU1Mjvvbaaym/1/D5fOLevXvF3bt3izU1NeJf//pX8bXXXhMPHTokimJme8TgY8/lcok1NTViV1eXLMeex+MRa2pqxI6ODlneE0Y/y43+OXbsmJgpvEcI5bR8v0cIEREREREREZGW8R4hNBqRSERaRWIkydzPYyiJ7qEyb948jBs3LuWY+YD3CCGilAQCAdTV1UmXn+UyteWS6fEouT85Y8sRK50YajtO8p1W6qG2PNh/lIvH/qMdWqqH2nJhD1IuVqox1HaM5Dst1UNtubD/KBeL50DaoZV6KJmHXq9HRUWF4mO67LLLMGXKFBQVFWHMmDGjmgTJlf4jRzw1HbOcCCHKYYIgoLGxUboJUS5TWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbcdIvtNSPdSWC/uPcrF4DqQdWqmH0nlceumlKCkpUXRMer0es2bNwtKlS7Fw4cJRXQmSK/1HjnhqOma5NBblNC6NRURERERERESkXcMtjTVr1ixMmTIlwyOiXCCKInw+H959990ht0lnaSxKDZfGIqKURCIROBwORCKRbA8lbWrLJdPjUXJ/csaWI1Y6MdR2nOQ7rdRDbXmw/ygXj/1HO7RUD7Xlwh6kXKxUY6jtGMl3WqqH2nJh/1EuFs+BtEMr9chEHjqdDoWFhaoaUyb2paX3YHLjRAhRDuvr60N1dTX6+vqyPZS0qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9R7lYPAfSDq3UQ415ZHJMudJ/5IinplpzaSzKafm+NFYkEkFfXx9KSkqg1+f2vKbacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+Ui5Xr50BcGuszaqiHHDKZx6FDh+B2uxP+X+zSWJkcU670HzniDX58Nj/L5UQI5bR8nwghIiIiIiIiItIyURRRV1eHQCAQ938rV66E2WzOwqgoV/T09ODIkSNxP582bRpmzJiRhRHlN94jhIhS4nK58Mwzz8DlcmV7KGlTWy6ZHo+S+5Mzthyx0omhtuMk32mlHmrLg/1HuXjsP9qhpXqoLRf2IOVipRpDbcdIvtNSPdSWC/uPcrFy/RxIp9Nh/PjxcT8fM2ZM3k2CqKEecshkHqWlpSgtLR3wM4vFggkTJmRtTLnSf+SIp6Zj1pjtARBR6sxmMxYtWqSJX/xqyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLpYWzoFmzJgBURTR1taGSCSCsrIyzJkzJ6tjyga11CNdmcxDr9dj/vz5uHDhApxOJ4qKijBhwgRYrdasjSlX+o8c8dR0zHJpLMppXBqLiIiIiIiIiCg/iKIIURRz+v4YRPmMS2MRUUr8fj/27dsHv9+f7aGkTW25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy7sP8rF0tI5kE6ny+tJELXVI1VqzCOTY8qV/iNHPDXVOn87B5EGhEIhnDlzBqFQKNtDSZvacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+Ui8VzIO3QSj3UmEcmx5Qr/UeOeGqqNZfGopzGpbGIiIiIiIiIiIiI1I9LYxFRSsLhMNra2hAOh7M9lLSpLZdMj0fJ/ckZW45Y6cRQ23GS77RSD7Xlwf6jXDz2H+3QUj3Ulgt7kHKxUo2htmMk32mpHmrLhf1HuVg8B9IOrdRDjXlkcky50n/kiKemWnMihDTBarXCZrMB6H+BORwORC926uvrgyAIAACfzwePxwOg/9Ish8MhxXA6nQgGgwAAr9cLr9cLAAgGg3A6ndJ2DodDupzL4/HA5/MBAARBQF+9lJ0lAAA1nUlEQVRfH4D+m3c5HA7pRe52u6W18AKBAFwuFwAgEonA4XAgEokAAFwuFwKBAID+NfTcbvewOblcLmzevBnt7e05n9OFCxewefNmuFwuVdSpq6tLGk+6dQJGPvZ6enqwefNmdHR0yJ5TNJeuri5V1Km1tVWKMdqcosd8V1cXAHlfT8nUKVdeT5nKqbu7W6plLufU3t4u5aGGOvX29krjkaNOmewRg3OKPre9vb2yHHudnZ3YvHkzuru7U6pTbP/J59+5Wuh7DocDmzdvluLnck5tbW3YvHkzHA6HKuoU+zrJxLEXfW21trbKnlNsbDXUKdXzvWgeFy5ckOrEHpG9nKL16O3tzfmc0jkvVyKnTL8nlLNHDM6pr69Pet2qoU7pnO9p6XeuFvrexYsXpeMhl3NK57xcqZzSfa+RrR4xOKfo+8n29nZZjj2n04nNmzfj4sWLsr4nzAZOhJAmrFixArfeeisAoLOzE9XV1dKLc8uWLWhqagIA1NbWYteuXQCAlpYWVFdXSzE2bdqE5uZmAMCePXuwZ88eAEBzczM2bdokbVddXY2WlhYAwK5du1BbWwsAaGpqwpYtWwD0N47q6mp0dnYCAHbs2IG6ujoAQENDA7Zv3w6gvzlUV1dLzWj79u1oaGgAANTV1WHHjh3D5mS323HllVdi//79OZ/Tiy++iBtuuAF2u10VdTp9+jTGjRsHu92edp2AkY+9rq4urF+/HvX19bLn1NTUhPXr1+P06dOqqNPvf/97rF+/Hna7fdQ52e12TJkyRXpe5Xw9JVOnXHk9ZSqn1tZWlJSUwG6353RO+/fvx5VXXgm73a6KOkVPPO12uyx1ymSPGJzT/v37sX79erhcLlmOvcbGRqxfvx6tra0p1Wnr1q347ne/C7vdnte/c7XQ96JvrqxWa87ntHfvXqxfvx6CIKiiTlu3bsU3v/lN2O32jBx7drsda9euxdatW2XPyW6347777sPWrVtVUadUz/fsdjtuuOEGvPjii1Kd2COyl1P093P093Uu55TOebkSOWX6PaGcPWJwTlarFevXr8eLL76oijqlc76npd+5Wuh7f/7zn/G5z30Odrs9p3NK57xcqZzSfa+RrR4xOCeXy4X169dj//79shx7Op0O69evx5///GdZ3xNmhUiUw44dOyYCEK1Wq2iz2cRjx46JoVBI7O3tFSORiCiKouh0OsVAICCKoih6vV7R7XaLoiiKwWBQ7O3tlWI5HA5REARRFEXR4/GIHo9HFEVRFARBdDgc0na9vb1iMBgURVEU3W636PV6RVEUxUAgIDqdTlEURTESiYi9vb1iKBQSRVEUXS6X6PP5RFEURb/fL/b19YmiKIrhcFjs7e0Vw+GwKIqi2NfXJ/r9flEURdHn84kul0sURZE5MSfmxJyYE3NiTsyJOTEn5sScmBNzYk7MiTkxJ+bEnHI6p+hnudE/x44dEzOFEyGU07L54lEDp9Mp/sd//IfUzHKZ2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/lIvFcyDt0Eo91JhHJseUK/1HjniDH5/Nz3K5NBZRDrNarVizZo10iWouU1sumR6PkvuTM7YcsdKJobbjJN9ppR5qy4P9R7l47D/aoaV6qC0X9iDlYqUaQ23HSL7TUj3Ulgv7j3KxeA6kHVqphxrzyOSYcqX/yBFPTbXWieKndzIhykHHjx/H5ZdfLv372LFjuOyyy7I4IiIiIiIiIiIiIiIaLJuf5fKKEKIc5vP5sHv3bvh8vmwPJW1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLhbPgbRDK/VQYx6ZHFOu9B854qmp1pwIIcphkUgEDocDkUgk20NJm9pyyfR4lNyfnLHliJVODLUdJ/lOK/VQWx7sP8rFY//RDi3VQ225sAcpFyvVGGo7RvKdluqhtlzYf5SLxXMg7dBKPdSYRybHlCv9R454aqo1l8ainMalsYiIiIiIiIiIiIjUj0tjEVFKQqEQzpw5g1AolO2hpE1tuWR6PEruT87YcsRKJ4bajpN8p5V6qC0P9h/l4rH/aIeW6qG2XNiDlIuVagy1HSP5Tkv1UFsu7D/KxeI5kHZopR5qzCOTY8qV/iNHPDXVmhMhRDnM7Xbjueeeg9vtzvZQ0qa2XDI9HiX3J2dsOWKlE0Ntx0m+00o91JYH+49y8dh/tENL9VBbLuxBysVKNYbajpF8p6V6qC0X9h/lYvEcSDu0Ug815pHJMeVK/5EjnppqzaWxKKdxaSwiIiIiIiIiIiIi9ePSWERERERERERERERERArgRAhRDnM6nXjsscfgdDqzPZS0qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9R7lYPAfSDq3UQ415ZHJMudJ/5IinplpzaSzKafm+NFYwGERzczNmzZoFk8mU7eGkRW25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy7sP8rF4jmQdmilHmrMI5NjypX+I0e8wY/P5me5nAihnJbvEyFEREREREREREREuYD3CCGilHi9XuzcuRNerzfbQ0mb2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/lIvFcyDt0Eo91JhHJseUK/1HjnhqqjUnQoiIiIiIiIiIiIiISLO4NBblNC6NRURERERERERERKR+XBqLiFISDAZx8uRJBIPBbA8lbWrLJdPjUXJ/csaWI1Y6MdR2nOQ7rdRDbXmw/ygXj/1HO7RUD7Xlwh6kXKxUY6jtGMl3WqqH2nJh/1EuFs+BtEMr9VBjHpkcU670HzniqanWnAghymFqWmcvXWrLhevTKheL69Nqh1bqobY82H+Ui8f+ox1aqofacmEPUi4W7xGiDVqqh9pyYf9RLhbPgbRDK/VQYx68R4gy8dRUay6NRTmNS2MRERERERERERERqR+XxiIiIiIiIiIiIiIiIlIAJ0JIE6xWK2w2GwAgHA7D4XAgerFTX18fBEEAAPh8Png8HgBAKBSCw+GQYjidTmm9Oq/XK12yFQwG4XQ6pe0cDgdCoRAAwOPxwOfzAQAEQUBfXx8AQBRFOBwOhMNhAIDb7Ybf7wcABAIBuFwuAEAkEoHD4UAkEgEAuFwuBAIBAIDf74fb7R42J4fDgYcffhgXLlzI+ZzOnz+Phx9+GA6HQxV1am9vl8aTbp2AkY+9zs5OPPzww7h48aLsOUVzaW9vV0Wdzp07J8UYbU7RY769vR2AvK+nZOqUK6+nTOXU0dEh1TKXc7pw4YKUhxrq1NXVJY1HjjplskcMzin63HZ1dcly7LW1teHhhx9GR0dHSnWK7T/5/DtXC32vu7sbDz/8MHp7e3M+p9bWVjz88MPo7u5WRZ1iXyeZOPair61z587JnlNsbDXUKdXzvWge58+fl+rEHpG9nKL16Orqyvmc0jkvVyKnTL8nlLNHDM6pt7dXet2qoU7pnO9p6XeuFvpeS0uLdDzkck7pnJcrlVO67zWy1SMG5xR9P3nhwgVZjr2enh48/PDDaGlpkfU9YTZwIoQ0YcWKFbj11lsBAJ2dnaiurpZenFu2bEFTUxMAoLa2Frt27QLQ/8ujurpairFp0yY0NzcDAPbs2YM9e/YAAJqbm7Fp0yZpu+rqarS0tAAAdu3ahdraWgBAU1MTtmzZAqC/cVRXV6OzsxMAsGPHDtTV1QEAGhoasH37dgD9zaG6ulpqRtu3b0dDQwMAoK6uDjt27Bg2J5vNhqqqKmkMuZzTiy++iFWrVsFms6miTs3NzRgzZgxsNlvadQJGPvY6Ojqwbt061NXVyZ7T8ePHsW7dOjQ3N6uiTr///e+xbt062Gy2Uedks9kwfvx4HD9+HIC8r6dk6pQrr6dM5XT+/HkUFRXBZrPldE61tbWoqqqCzWZTRZ2iJ7LRCX6ljz05e8TgnGpra7Fu3To4nU5Zjr33338f69atw/nz51Oq09atW3HLLbfAZrPl9e9cLfS96Js6k8mU8znt2bMH69atg8/nU0Wdtm7diptuugk2my0jx57NZsMXv/hFbN26VfacbDYb1q5di61bt6qiTqme79lsNqxatQovvviiVCf2iOzlFP39HP19ncs5pXNerkROmX5PKGePGJyTyWTCunXr8OKLL6qiTumc72npd64W+t6uXbuwdOlS2Gy2nM4pnfNypXJK971GtnrE4JycTifWrVsnvR9Lp07V1dWIRCJYt24ddu3aJet7wqwQiXLYsWPHRACi1WoVbTabeOzYMTEUCom9vb1iJBIRRVEUnU6nGAgERFEURa/XK7rdblEURTEYDIq9vb1SLIfDIQqCIIqiKHo8HtHj8YiiKIqCIIgOh0Parre3VwwGg6IoiqLb7Ra9Xq8oiqIYCAREp9MpiqIoRiIRsbe3VwyFQqIoiqLL5RJ9Pp8oiqLo9/vFvr4+URRFMRwOi729vWI4HBZFURT7+vpEv98viqIo+nw+0eVyiaIoMifmxJyYE3NiTsyJOTEn5sScmBNzYk7MiTkxJ+bEnJhTTucU/Sw3+ufYsWNipnAihHJaNl88auB2u8Xnn39eaiq5TG25ZHo8Su5PzthyxEonhtqOk3ynlXqoLQ/2H+Xisf9oh5bqobZc2IOUi5VqDLUdI/lOS/VQWy7sP8rF4jmQdmilHmrMI5NjypX+I0e8wY/P5me5XBqLKIfp9XqUlpZCr8/9l7Lacsn0eJTcn5yx5YiVTgy1HSf5Tiv1UFse7D/KxWP/0Q4t1UNtubAHKRcr1RhqO0bynZbqobZc2H+Ui8VzIO3QSj3UmEcmx5Qr/UeOeGqqtU4UP72TCVEOOn78OC6//HLp38eOHcNll12WxRERERERERERERER0WDZ/Cw3+1MxRJQyQRDQ2NgIQRCyPZS0qS2XTI9Hyf3JGVuOWOnEUNtxku+0Ug+15cH+o1w89h/t0FI91JYLe5BysVKNobZjJN9pqR5qy4X9R7lYPAfSDq3UQ415ZHJMudJ/5IinplpzIoQoh/n9fuzbtw9+vz/bQ0mb2nLJ9HiU3J+cseWIlU4MtR0n+U4r9VBbHuw/ysVj/9EOLdVDbbmwBykXK9UYajtG8p2W6qG2XNh/lIvFcyDt0Eo91JhHJseUK/1HjnhqqjWXxqKcxqWxiIiIiIiIiIiIiNSPS2MRUUpEUYTf74cW5jPVlkumx6Pk/uSMLUesdGKo7TjJd1qph9ryYP9RLh77j3ZoqR5qy4U9SLlYqcZQ2zGS77RUD7Xlwv6jXCyeA2mHVuqhxjwyOaZc6T9yxFNTrTkRQpTDnE4nHn/8cTidzmwPJW1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLhbPgbRDK/VQYx6ZHFOu9B854qmp1lwai3Javi+NFQ6H0dnZiYqKChgMhmwPJy1qyyXT41Fyf3LGliNWOjHUdpzkO63UQ215sP8oF4/9Rzu0VA+15cIepFysVGOo7RjJd1qqh9pyYf9RLhbPgbRDK/VQYx6ZHFOu9B854g1+fDY/y+VECOW0999/H1deeaX07507d2L27NlZHBERERERERERERERDfbxxx/j5ptvlv59+PBhXHHFFZnZuUiUw3bu3CkCyNs/NptN/OY3vynabLasj0VruWR6PEruT87YcsRKJ4bajpN8/6OVeqgtD/Yf5eKx/2jnj5bqobZc2IOUi5VqDLUdI/n+R0v1UFsu7D/KxeI5kHb+aKUeaswjk2PKlf4jR7yRHr9z586MfY7MK0Iop7388ssDZhGJiIiIiIiIiIiISP127tyJr371qxnZF2+WTkREREREREREREREmsUrQiinORwO1NbWSv+eMmUKLBZLFkdERERERERERERERIMFAgGcP39e+vfq1atRWlqakX1zIoSIiIiIiIiIiIiIiDSLS2MREREREREREREREZFmcSKEiIiIiIiIiIiIiIg0ixMhRERERERERERERESkWZwIISIiIiIiIiIiIiIizeJECBERERERERERERERaRYnQoiIiIiIiIiIiIiISLM4EUJERERERERERERERJrFiRAiIiKZtLW14Xe/+x3uv/9+XH311bDZbNDpdJg+fXq2h0ZEOe6dd97BLbfcgvHjx8NqtWLGjBn43ve+h9bW1mwPjYg0jOc2RJQtR44cwSOPPILPf/7zqKyshMlkQmlpKa666ir87Gc/g9frzfYQiSjH6ERRFLM9CCIiIi146qmn8MMf/jDu59OmTcOZM2cyPyAi0oTf/OY3uPvuuxGJRFBZWYlJkybh1KlTcLlcGDNmDGpqarBw4cJsD5OINIjnNkSUDc3NzZg9e7b074kTJ2LixIm4ePGi9CWQSy+9FHv37sXUqVOzNUwiyjG8IoSIiEgmJSUluP7667F+/Xr88Y9/xFNPPZXtIRFRjjt69Ci++93vIhKJ4Oc//zlaW1tx6NAhXLhwAV//+tfR29uLv/u7v0MgEMj2UIlIg3huQ0TZIIoiKioq8NBDD6G5uRmtra1477330NLSggMHDmDatGk4deoUbr/99mwPlYhyCK8IISIiUsiOHTtw22238VuTRJSyW2+9FS+++CK+/vWv4w9/+MOA//P5fJg7dy7OnTuHTZs24bvf/W6WRklE+YLnNkSUCX6/H+FwGEVFRQn//+DBg7j66qsBAI2NjbwyloiSwitCiIiIiIhUyOPx4C9/+QsA4Pvf/37c/xcUFODOO+8EALzwwgsZHRsRERGRUqxW65CTIACwatUq2O12AMDJkyczNSwiynGcCCEiIsWEw2EcOXIEzz77LO655x4sWbIEZrMZOp0OOp0Oa9asSTm2IAj47W9/ixtuuAHTpk2D1WrFhAkTsHLlSvzsZz9DV1eXfIkQkWapuU81NDTA7/fDbDZjxYoVCbeJjq++vh6RSCTlsRJRdqi5BxGRtuVy/wmFQggGgwCAwsLCtGIRUf4wZnsARESkTTt37sQdd9wBr9cre+yTJ09i7dq1aGxsHPDztrY2tLW14Z133sGTTz6JrVu34oYbbpB9/0SkDWrvU6dOnQIATJ06FWazOeE20RuJ+v1+nD17FjNmzJAvCSJSlNp7EBFpV673n507d8Lr9cJoNOKqq66SYdRElA94RQgRESnC4XAocmLd0tKC66+/Xjqx1ul0WL16Ne666y7cdNNNKCgoAAB0dHTg5ptvxl//+lfZx0BE2qD2PtXT0wMAGDt27JD7Kisrk/7e29srUwZElAlq70FEpF253H96e3vxox/9CADw7W9/G+Xl5bKNn4i0jVeEEBGRosaPH4+lS5dKf15//XVUV1enHO8b3/gGLly4AACYNm0aXn755QE3x+vq6sLf//3f480330QwGMRtt92G5uZmlJaWppsKEWmUWvuUz+cDgCGvBgH619COUuIDDSJSnlp7EBFpX671n2AwiK9//es4d+4cZs6cicceeyzlsRJR/uFECBERKeJLX/oSzp49i6lTpw74eX19fcoxX331Vbz11lsA+j8Y3LVrF+bPnz9gm/Lycrz88stYsGABTp8+jZ6eHjzxxBP493//97h4GzZswOOPP57SWILBIIxG/holymVq71PRb00KgjDk/vx+v/R3rpFNlFvU3oOISLtysf9EIhH8j//xP/DGG2+goqICf/nLX1BSUpLyeIko/3BpLCIiUkRlZWXciXW6/uu//kv6+7p16+JOrKOKiorwyCOPSP/evHkzQqFQwu3Gjh2b0h+dTidrbkSUeWrvU2PGjAEAdHd3D7m/6PJZsdsTUW5Qew8iIu3Ktf4jiiK+9a1v4YUXXkBZWRn27t2LuXPnyjNwIsobnAghIqKc4Ha78eabb0r/vvPOO4fd/pZbboHNZgPQ/0Hh/v3747Z58MEH0dXVldIfg8Egb4JElPPk7lNz5swBAJw7d27Iq0I++ugjAP1LZE2bNi3lsRNR7lPiXImIKBlK9h9RFPGd73wH27ZtQ0lJCV5//fUBy20RESWLEyFERJQT3n77bQQCAQD93yJaunTpsNtbrVZcddVV0r95I1AiUprcfWrx4sWwWq0QBAF1dXUJY9TW1gIAli1bBr2ep/ZE+YznSkSULUr2n+9///v4zW9+A5vNhtdeew1LliyRZ9BElHf4bomIiHLCiRMnpL/Pnz8/qftzXHHFFQkfT0SkBLn7VFFREW644QYAA5ebiPL5fNi6dSsA4Pbbb09pzESkHTxXIqJsUar/3Hvvvdi0aRMKCwvx5z//GStXrkx/sESUtzgRQkREOeHDDz+U/p7s8i+x696ePHlS9jEREcVSok9t3LgRBoMBf/zjH/GLX/wCkUgEQP8SFN/85jdx7tw5TJs2Dd/61rfSHD0R5TqeKxFRtijRfx544AH88pe/hNVqxSuvvILVq1enP1AiymsjT9ESERGpQOzNgsePH5/UYyorK6W/x95QWCnnz5/H4sWLpX9H1/Q/f/48ysvLpZ+vXbsWv/zlLxUfDxFllhJ9auHChfiv//ovfO9738OPfvQjPPnkk5g0aRJOnToFl8uF0tJSvPTSS7BYLOknQEQ5TYkexHMbIkqG3P3nnXfewZNPPgkAKCkpwU9/+lP89Kc/TRjnrrvuwl133TXaIRNRHuJECBER5QS32y39vaCgIKnHxG4X+3ilhMPhAW8CoiKRyICfu1wuxcdCRJmnVJ+6++67MX/+fDz55JM4ePAgjh49isrKStxxxx34yU9+gsmTJ6c3cCLSBCV6EM9tiCgZcvef6P1GAKCjowMdHR1Dxvn85z+f7DCJKM9xIoSIiHKC3++X/m42m5N6TOw3pH0+n+xjGmz69OkQRVHx/RCROinZp1auXImXXnop9cERkeYp0YN4bkNEyZC7/6xZs4a9h4hkx3uEEBFRTrBardLfo8syjCT2m0TJfjOJiChV7FNElE3sQUSULew/RJQLOBFCREQ5wWazSX9P9uqO2O1iH09EpAT2KSLKJvYgIsoW9h8iygWcCCEiopwwduxY6e/t7e1JPaatrU36e1lZmexjIiKKxT5FRNnEHkRE2cL+Q0S5gBMhRESUE+bMmSP9/ezZs0k95ty5c9Lf586dK/uYiIhisU8RUTaxBxFRtrD/EFEu4EQIERHlhKqqKunvR48eRSgUGvEx77//fsLHExEpgX2KiLKJPYiIsoX9h4hyASdCiIgoJ6xcuRIWiwUA4PF4cOjQoWG3DwQCqKurk/79uc99TtHxERGxTxFRNrEHEVG2sP8QUS7gRAgREeUEm82G66+/Xvr3tm3bht3+T3/6E1wuF4D+NWevvfZaJYdHRMQ+RURZxR5ERNnC/kNEuYATIURElDO+973vSX/ftm0bjh8/nnA7r9eLjRs3Sv/+zne+A6PRqPj4iIjYp4gom9iDiChb2H+ISO04EUJERDnjxhtvxDXXXAOg/3Lqr3zlKzhy5MiAbbq7u3HzzTfj448/BtD/DaP169dnfKxElJ/Yp4gom9iDiChb2H+ISO10oiiK2R4EERFp0w033IALFy4M+FlbWxva29sBAEVFRZg9e3bc41599VVMnDgxYcyWlhYsW7YMFy9eBADodDqsXr0as2bNQmdnJ9544w14vV4AgNFoxO7duwdcpk1EFIt9ioiyiT2IiLKF/YeI8g0nQoiISDHTp0/H2bNnR/24Tz75BNOnTx/y/0+ePIm1a9eisbFxyG0qKiqwdetW3HjjjaPePxHlD/YpIsom9iAiyhb2HyLKN1yEj4iIcs7cuXNRX1+PF154Ac8//zyOHz+O9vZ2lJaWYubMmfja176GO++8E+Xl5dkeKhHlKfYpIsom9iAiyhb2HyJSK14RQkREREREREREREREmsWbpRMRERERERERERERkWZxIoSIiIiIiIiIiIiIiDSLEyFERERERERERERERKRZnAghIiIiIiIiIiIiIiLN4kQIERERERERERERERFpFidCiIiIiIiIiIiIiIhIszgRQkREREREREREREREmsWJECIiIiIiIiIiIiIi0ixOhBARERERERERERERkWZxIoSIiIiIiIiIiIiIiDSLEyFERERERERERERERKRZnAghIiIiIiIiIiIiIiLN4kQIERERERERERERERFpFidCiIiIiIiIiIiIiIhIszgRQkREREREREREREREmsWJECIiIiIiIiIiIiIi0ixOhBARERERERERERERkWZxIoSIiIiIiIiIiIiIiDSLEyFERERERERERERERKRZnAghIiIiIiIiIiIiIiLN4kQIERERERERERERERFpFidCiIiIiIiIiIiIiIhIszgRQkREREREREREREREmsWJECIiIiIiIiIiIiIi0ixOhBAREREREZEqPfXUU9DpdNDr9Th06FC2h5OWDRs2QKfTwWq1orm5OdvDISIiIsornAghIiIiIsoxa9asgU6nG/Wfffv2ZXvoRElrb2/HT3/6UwDA7bffjiVLliTc7pvf/KZ0jH/zm98c1T62bdsmPXb69Olpjnh4GzZswJgxYxAIBPDDH/5Q0X0RERER0UCcCCEiIiIiIiLVefjhh9HX1wedToeNGzdmezhpKy0txT//8z8DAHbt2oXa2tosj4iIiIgofxizPQAiIiIiIkrd0qVLsWzZsqS2nTRpksKjIZLHmTNn8Jvf/AYA8NWvfhVVVVVZHpE87r33XvzsZz+D1+vFT37yExw4cCDbQyIiIiLKC5wIISIiIiLKYTfccAMeeuihbA+DSFY///nPEQwGAQDf//73szwa+YwdOxa33XYbnnvuORw8eBAHDx7EqlWrsj0sIiIiIs3j0lhERERERESkGk6nE1u3bgUAzJgxA9dff32WRySvf/qnf5L+/tRTT2VvIERERER5hBMhREREREREpBp/+MMf4PF4AAC33XYbdDpdlkckr1WrVmHixIkAgJdffhnd3d1ZHhERERGR9nEihIiIiIgoz5w5cwY6nQ46nQ7Tp0+Xfn7gwAH80z/9E+bOnQu73Q6dTof7778/YYzz58/j0UcfxTXXXIOJEyfCYrGgrKwMixcvxo9//GOcOnVqVGN6//338e1vfxszZ85EQUEBKioqsGzZMjzxxBPo6ekBAGzbtk0a9ze/+c2EcR566CFpm2SWDNu3b5+0/Zo1a5Ia64kTJ/Bv//ZvWLZsGcaPHw+z2YyKigosX74cGzduxIULF0aMsWbNGmm/+/btAwD09PTg8ccfx9KlS1FeXo6CggLMnDkT3/rWt3Ds2LGkxhbrtddew913343LL78cY8eOhclkQmlpKa644grcfffdeOWVVxAKhaTtOzo6YDabodPpYDAY0NramtR+RFHEjBkzpHxeeeWVUY811vbt26W/33zzzWnFSlfsa2W0f86cOZMwpk6nk/IKBoP44x//mLmEiIiIiPIU7xFCRERERJTnBEHAvffei82bN4+4bSQSwUMPPYQnn3wSfr8/Lk5vby8aGxtRXV2NBx54AP/rf/2vEb/R/z//5//EY489hnA4LP3M7/ejq6sL7733Hn75y1/iv//7v1NLTkaBQAD33XcffvOb3wwYKwB0dXWhq6sL7777Ln72s5/hiSeewA9+8IOkYx88ePD/b+/ug6qu8jiOfxSRJMWQfEATZB2ZakIzErXGSWkbXTWyJiXbfEKlbFK31amkJtJJMTeaCmWTVsPK8iGLHpZG1kXzgUJtEbLVTENU1CxQkQcfuNz9g+HsvXLhXuACdX2/Zpo5v/s7v+8554oz+ftyzlfR0dG1kg/5+fnKz8/XmjVr9Pe//10zZ850Guv777/X1KlTtXfv3lr3zp8/r5ycHOXk5CglJUXR0dFat26dJKlbt26KiorSpk2bVFVVpdTUVD3//PNOx/v3v/9tXvoHBgZqzJgxLqzYsbNnz2rXrl2SpE6dOmnQoEGNjvVbFhkZqeTkZEnSF198oVmzZrXyjAAAADwbiRAAAADgGvf000+bJEhYWJgGDBggb29vHTp0SG3b/n8TucViUXR0tDZt2mQ+69WrlyIiItS1a1eVlpYqOztbR44cUWVlpZYsWaJffvlFKSkpdY4dFxenhIQEc+3r66vIyEgFBgbq9OnTyszM1IkTJzR69Og6d6e0hLKyMo0cOdK8pJekvn37Kjw8XP7+/iouLtauXbt08uRJVVRUaPbs2SopKVFcXJzT2Pv379eCBQtUWlqqbt26adiwYQoICFBhYaEyMzNVUVEhi8WiJ554QmFhYRoyZEidsbZt26aoqChduHDBfBYUFKSIiAh16dJFZWVl+uGHH5Sbm6srV67USmbFxsaaP9/Vq1crLi7OaSJr1apVpj116lR5eXk5XXNdMjMzTZJpyJAhateudf/J6ufn53Kx9ry8PO3YscNc1/e9DRs2zLS3bdumysrKVl8rAACAJ+P/tAAAAIBr2IkTJ5ScnKzevXtr7dq1di9opepdEDUWLlxoXpL36NFDK1as0IMPPljrhe/GjRs1c+ZMnT9/Xm+//bb++Mc/asKECbXG3r59u5YuXWquH374YaWkpMjf3998dv78eT3xxBNat26dFi9e7JY1N8aTTz5pkiChoaFauXJlraO0LBaLUlJS9PTTT+vSpUt68cUXNWLECA0dOrTe2PPnz1dlZaUSExM1Z84cuxfix48f1+jRo7V//35VVVUpLi5OmZmZDuMcP35c48ePN0mQkJAQJScna9SoUbX6nj17Vhs2bNDhw4ftPr/vvvsUEhKi/Px8/fTTT9q2bZtGjBhR59yLi4v1ySefSKp+8T99+vR61+pMdna2affv379JsdyhS5cuWr58udN+x48fV0REhLmeOHGigoOD6+zfrVs3BQYG6tSpUyovL9f+/ft1++23u2PKAAAAcIBECAAAAPA7lp6erl9//dVpvwULFqhXr161PrdYLPL19dWWLVsUGhpa676Pj4+k6loJS5YskVT9cnjnzp3q27evw7HGjx+vG2+8UZGRkZKq63Y4Knq9YMECWa1WSdK9996rdevW1dpN0LlzZ61du1bFxcXKyMhwus7msGPHDr377ruSqneB7Nq1SzfeeGOtfl5eXpo1a5Y6dOigadOmyWKxaNGiRfryyy/rjX/p0iWtXLlSsbGxte717t1bH374ofr37y+r1apt27bp1KlTCgwMrNV3wYIF5mchODhYX3/9tbp37+5wTH9/fz3++OO1Pm/Tpo1mzJhhjsRatWpVvYmQtWvXmmTZ8OHD6/yZcFVeXp5p33zzzQ1+Pjs7u0FHkh08eLDBY1ytrKxMUVFROn36tCRp8ODBWr16tdPnbrnlFp06dUqSlJubSyIEAACgGZEIAQAAAH7H9uzZoz179jjtN2PGDIeJEEl66qmnHCZBbL3xxhvmyKIXX3zR6QvvESNGaOTIkdq8ebMOHDignJwc3XHHHeb+gQMHlJWVZa7ffPPNOo9Uatu2rZKSknTzzTebxElLeu2110w7MTHRYRLE1tSpU/XKK6/o4MGD2rx5s4qKihQQEFBn/7CwMIdJkBq33XabBg0apN27d8tqtWrv3r26//777foUFhZq/fr15vqtt96qMwnizLRp0xQfH6/Kykpt2rRJy5cv1w033OCwr+2xWDNmzGjUeLby8/NN+6abbmrw8wcPHnRLcsNVVqtVkyZN0r59+yRVJ67S0tJ03XXXOX3W9u9jXYXVAQAA4B5tnXcBAAAA4MkeeeQRp33S09NN+9FHH3Upbs2OEEnauXOn3b2tW7eadnh4uG699dZ6Y4WGhtZbG6O5VFZW6l//+pek6noRY8eOdem5ml0UVqvVrq6II+PHj3cab+DAgabt6KX5li1bVFlZKUnq16+fw+OwXBUYGGjWefHiRX3wwQcO+3377bfKzc2VVL3D5KGHHmr0mDV+/vln064vefRb8fzzz5ujwa6//np99tln6tGjh0vP2ibUanaTAAAAoHmwIwQAAAD4HYuPj9dLL73U6Oe9vb0VFhZWb5+ioiIdOnRIktS+fXstXLjQpdj//e9/Tfv48eN293JyckzbWQ0N235ff/21S33dJS8vT2VlZZKqv6u5c+e69JztLp2r1341Z9+/ZJ8UKCkpqXX/m2++Me2ra5c0RmxsrNLS0iRV7/p48skna/Wx3Q3y2GOPubQLwpma71qSfH19G/z8lClTlJqa6nL/1NRUTZs2rcHjSNL777+vhIQESdVHir3//vsNOt7Kdn226wYAAID7kQgBAAAArmH+/v52xbkdqaljIEmXL1/WihUrGjzO2bNn7a5/+eUX0w4KCnIphqv93OnkyZOmXVRU5Ja1X61z585OY3h7e5v2lStXat233Unxhz/8oQGzc2zkyJEKDg5WQUGB/vOf/2jfvn12L/krKirsdoq441isq7XGMWiu+uabb+zWvGTJEo0bN65BMX7L6wMAAPA0HI0FAAAAXMM6dOjgtM/58+ebPE7NsU01SktLTdvV3/y//vrrmzyPhmqOtV/t6iLyjXHhwgXT7tixY5PjtW3bVtOnTzfXtrs/JGnTpk3muxk0aJD69+/f5DEl+z/jiooKt8R0t2PHjmncuHGmSPzkyZP13HPPNTiO7fpa42cbAADgWkIiBAAAAEC9bF/S+vn5yWq1Nvi/q48rsn1ZX15e7tI8muP4oKqqqnrv2669f//+jVp7U44uc1WnTp1M2zbJ1BQxMTGmgP3atWt18eJFc8/dRdJr2NbX+PXXX90W113KysoUFRVlduDcfffdSklJaVQs211RrtYVAQAAQOOQCAEAAABQr+7du5t2SUmJy4mL+nTt2tW0jx075tIzzmptSPZHSDnbiSE53/Fhu/bfckFr23nm5+e7JWavXr00evRoSdXHe9UUBT9y5Ii++uorSdWJookTJ7plPEkKCQkx7RMnTrgtrjtYrVY99thjpkB8cHCwPv74Y/n4+DQqXmFhoWn36dPHHVMEAABAHUiEAAAAAKhXYGCgevfuba6zsrKaHHPgwIGmbVvouz6uFEr38/Mz7aKiIqf9v/vuu3rv33777eZF95kzZ3T48GGnMVvDkCFDTHvr1q1uixsbG2vaNbtAVq9ebepbjB8/3m43SlPZHrH1ww8/uC2uO8TFxZkC8p06ddLnn3+ubt26NTregQMHTHvAgAFNnR4AAADqQSIEAAAAgFNjx4417eTk5CbHGzFihGnv3btXBw8erLf/4cOHXUqE2P5m/b59+5z237BhQ733O3TooMjISHPtjrU3h/vuu88Uvf/xxx+1efNmt8T905/+ZJJgmZmZOnz4sN0xZ+4ukh4REWHaNTsvfgvee+89LV26VFJ1/ZQPP/xQYWFhjY535swZs8PI19dXt912m1vmCQAAAMdIhAAAAABwat68eaZexCeffFKr5kd9HB0pdcstt+iuu+4y13Pnzq2zXkdVVZXmzJljdiHUZ9CgQab4eHZ2tt1v3V8tOTlZ33//vdOYzz77rGknJSVpy5YtTp+p0VLHafXs2VPR0dHm+vHHHzd1LJrCy8tLMTExkv5/NNTJkyclVf8Z3n333U0ew1ZkZKT5OcvOznbpeLPmlpWVpZkzZ5rrZcuWacyYMU2KuWPHDtMePny4SWIBAACgeZAIAQAAAOBU37599cILL5jrmJgYzZ8/v86C1pWVlcrIyNCkSZPsjsGytXjxYpO0yMjI0KOPPqpz587Z9SkpKdGkSZP05Zdfqn379k7n2aNHD7ODw2q1auLEibVqTVRWVioxMVFz5sxxqb7DPffcoylTpphnx4wZo4SEhDqLkl+8eFFpaWl64IEHFBUV5TS+uyQkJKhLly6SpIKCAg0dOrTOnSHnzp1TSkqKnnnmGadxp0+frrZtq//pmJ2dbfe5u/n7+5vkyoULF7Rnzx63j9EQx44d04MPPqhLly5Jqv65nzdvXpPjZmZmmrbtbisAAAA0D37tBAAAAIBL4uPjdfToUa1Zs0ZWq1WJiYlKSkrSnXfeqb59+8rX11clJSU6evSo8vLyVFZWJkkKCAhwGG/48OGaP3++/va3v0mS1q9fry+++EKRkZHq0aOHfv75Z2VmZqq0tFT+/v6aO3euXnrpJafzXLx4sbZu3aqqqirl5uYqNDRUkZGR6tWrl4qLi7V9+3adOXNGHTt2VEJCgmbPnu005sqVK3Xq1CllZGTo8uXLiouL08svv6zBgwcrKChIPj4+OnfunI4cOaL9+/ebF+fh4eEufrtN17t3b23YsEHjxo1TaWmp8vPzNWrUKAUHBysiIkJdunRRaWmpDh06pH379unKlSt64IEHXIo7atQopaenm8/at2+vyZMnN8s6/vznP2v79u2SpLS0NA0dOrRZxnHFO++8ozNnzkiq3h3Trl07PfXUUy49u2jRIpOYsmW1WvXpp59Kkry9vTVhwgT3TRgAAAAOkQgBAAAA4JI2bdooNTVV4eHhio+P19mzZ3X58mVlZWXVWUC9TZs29R6ftGzZMnl5eWnZsmWqqqpSWVmZPv/8c7s+PXv21EcffeRy8ezBgwfr7bffVmxsrCwWiyoqKvTPf/7Trk9gYKDWr18vi8XiUkwfHx+lp6dr4cKFSkxMVHl5ucrLy+stTO7t7W1XxLwl3Hvvvdq5c6emTJliamwUFBSooKDAYf+OHTu6FDc2NtYuERIVFaWuXbs2fcIOREdH669//avKysq0ceNGLV261Owcamm2x7FZLBalpKS4/Oz8+fMdJkKysrJUWFgoqfp7rCtRCAAAAPfhaCwAAAAADTJ79mwVFBRoxYoVGjdunEJCQtSxY0e1a9dO/v7+CgsL0yOPPKK33npLBQUF5rff65KQkKDdu3crJiZGffr0kY+PjwICAhQeHq7FixcrNze3wbsCYmJilJeXp+nTpyskJETXXXedbrjhBg0cOFAvv/yy8vLyNGzYsAbF9PLy0qJFi3T06FG9+uqrGjVqlIKCguTr6ytvb28FBATojjvu0JQpU5SamqrCwkItX768QWO4w4ABA5STk6OPP/5YkydPVr9+/eTn5ycvLy/5+/srPDxcs2bNUnp6ut59912XYo4ePdruGDF3F0m31blzZ02bNk2SlJ+f36CaLL8H//jHP0z7L3/5S+tNBAAA4BrSxupKxUEAAAAAaGWpqanmBXlNsgEt46uvvtLw4cMlScHBwfrpp59M3ZDmcPToUYWGhprju9LS0pptrJZUVFSkoKAglZeX66677tKuXbtae0oAAADXBHaEAAAAAADqtWrVKtOOiYlp1iSIJPXp08fsOvnss8904MCBZh2vpSQlJam8vFxSdS0bAAAAtAwSIQAAAACAOp0+fVobN26UJLVr165Zj8WyFR8fLz8/P1mtVi1atKhFxmxO586dU1JSkiRp7NixZocNAAAAmh+JEAAAAACAQxaLRXPnztXFixclSRMmTFDPnj1bZOzu3btr4cKFkqT169fr22+/bZFxm8srr7yi4uJi+fj46PXXX2/t6QAAAFxTqBECAAAA4HeBGiEt44MPPtDu3btVWlqqHTt26NChQ5IkHx8ffffdd+rXr18rzxAAAABomHatPQEAAAAAwG9HRkaG1qxZU+vz1157jSQIAAAAfpdIhAAAAAAAHOrUqZPCw8M1b948jR07trWnAwAAADQKR2MBAAAAAAAAAACPRbF0AAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB6LRAgAAAAAAAAAAPBYJEIAAAAAAAAAAIDHIhECAAAAAAAAAAA8FokQAAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB6LRAgAAAAAAAAAAPBYJEIAAAAAAAAAAIDHIhECAAAAAAAAAAA8FokQAAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB6LRAgAAAAAAAAAAPBYJEIAAAAAAAAAAIDHIhECAAAAAAAAAAA8FokQAAAAAAAAAADgsUiEAAAAAAAAAAAAj0UiBAAAAAAAAAAAeCwSIQAAAAAAAAAAwGORCAEAAAAAAAAAAB7rfw5MunTuR3htAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAAR9CAYAAAAKglvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOz9e3QU15nvD3/7Vt3qmy4gECCDAIO5xRYGG2KwASfx+CQhOAmJIZ45HpNJxiRzbDIzi/Gac8Iv9jkn4zBzkpFnbOzYxjiYSLaJDcixDb5wMyDZgAAJgRFCFwRqXfve6q6+1PuH3q5RS91Sd1dVd3Xp+azVa4G6+tn7W8+up/auXfvZKo7jOBAEQRAEQRAEQRAEQRAEQRAEQSgQdbYrQBAEQRAEQRAEQRAEQRAEQRAEIRU0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBQLTYQQBEEQBEEQBEEQBEEQBEEQBKFYaCKEIAiCIAiCIAiCIAiCIAiCIAjFQhMhBEEQBEEQBEEQBEEQBEEQBEEoFpoIIQiCIAiCIAiCIAiCIAiCIAhCsdBECEEQBEEQBEEQBEEQBEEQBEEQioUmQgiCIAiCIAiCIAiCIAiCIAiCUCw0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBQLTYQQBEEQBEEQBEEQBEEQBEEQBKFYaCKEIAiCIAiCIAiCIAiCIAiCIAjFQhMhBEEQBEEQBEEQBEEQBEEQBEEoFpoIIQiCIAiCIAiCIAiCIAiCIAhCsdBECEEQBEEQBEEQBEEQBEEQBEEQioUmQgiCIAiCIAiCIAiCIAiCIAiCUCw0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBQLTYQQBEEQBEEQBEEQBEEQBEEQBKFYaCKEIAiCIAiCIAiCIAiCIAiCIAjFQhMhBEEQBEEQBEEQBEEQBEEQBEEoFpoIIQiCIAiCIAiCIAiCIAiCIAhCsdBECEEQBEEQBEEQBEEQBEEQBEEQioUmQgiCIAiCIAiCIAiCIAiCIAiCUCw0EUIQBEEQBEEQBEEQBEEQBEEQhGKhiRCCIAiCIAiCIAiCIAiCIAiCIBSLNtsVIAghOBwOHD16lP//LbfcAr1en8UaEQRBEARBEARBEARBEARBEMMJBAK4fv06//9Vq1ahoKAgI2XTRAiR0xw9ehQPPfRQtqtBEARBEARBEARBEARBEARBpMC+ffuwbt26jJRFqbEIRWAwGGA2mwEAGo0GBQUFUKlUAACr1QqGYQAAeXl5MJlMAACtVhsz45ifnw+dTgcAMBqNMBqNAACdTof8/Hz+uIKCAmi1g3OIJpMJeXl5AACGYWC1WgEAKpUKBQUF0Gg0AACz2QyDwQAA0Ov1sFgsAAC1Wo2CggKo1YOXosVi4Ve0kCbSRJpIE2kiTaSJNJEm0kSaSBNpIk2kiTSRJtJEmkiT0jRlA5oIIRTB8uXLsX79egBAcXExtmzZwl+cmzZtwoIFCwAMLrdau3YtAKC0tBRbtmzhbWzevBmzZ88GADzwwAN44IEHAACzZ8/G5s2b+eO2bNmC0tJSAMDatWuxatUqAMCCBQuwadMmAIOBY8uWLSguLgYArF+/HsuXLwcALF68GI888giAweCwZcsWPhg98sgjWLx4MWkiTaSJNJEm0kSaSBNpIk2kiTSRJtJEmkgTaSJNpIk0KVJTNlBxHMdltQYEIYCzZ89iyZIlMBgM0Gq1eOONNzBr1iwMDAzAaDRCpVLB5/OBYRhotVqwLItIJAKDwYBwOAy/38/PTA49LhAIABgMDqFQCCzL8rOtXq8XBoMBGo0Gfr8farUaDMPEHMdxHHw+H/Ly8qBWq2OOCwaDCIVCyMvLQyQSwcDAAH/cwMAAtFotdDpdTF2jxw3XxLIsDh8+jHvuuQeFhYU5ramvrw81NTVYs2YNtFpt1v3kdDpx/Phx3H///TAYDIL8lEzbC4fDOH78OO655x7k5eWJqikQCODEiRNYsWIFGIbJup+cTidqa2uxevVqcByXkia/34/Dhw9j5cqVyM/PF/V6UmKMkFqTy+XCsWPHcP/99yMvLy9nNdntdpw8eRJr1qzhY2s2/eR2u3H06FHcf//9MBqNkrc9MWPEcE1erxenTp3CvffeC7VaLbjt+f1+nDx5EitXroRWq03ZT/39/aitrcWaNWugUqnG7T1XCXHP4/HgyJEjWLNmDUwmU05ril4n9913H1QqVdb91NfXx18narVa8rYXiURw+PBhLFu2DBMnThRVEwDedlFRUdb9lG5/LxQK4fDhw1i+fDkmTJhAMSLLmnw+Hz799FOsWrUKFoslpzUJ6ZcrYUwoZowYrgkYTOW9bNky5OfnZ91PQvp7SrrnKiHu9ff349SpUyOuk1zTJKRfLpUmoWONbMWI4ZoikQiOHz+Or371qzCZTILbHsdxOHbsGJYvXw6LxSJ4TNjZ2RmzzcGZM2dw5513IhPQHiFEThOdbfT7/QCAW2+9FQsXLsxmlTIKy7LQ6XRYsGABv+wsV2FZFlarVTZaojeITNWHZVkYDAZJyhNTixh+EmJDSW1eCbAsi7y8vJz3B8uyMJvNstEhZTxIVJ5U8U7sc8uyLEwmU9r2WJZFfn4+xR8FwLIs9Hq9IvwhxxiU7nWSbnlSXVti2hbDT+nGd4o/8kJJ/pDjGCyT9ZE6/jAMI6sxWLr9PSXdc5UAy7KwWCw5749M9zeSQehYI9WyxIoR8WyLOZ4UGgOG96EuXrwY83302W4moBUhRE5z8eJFLFq0iP9/Q0PDuJoIIQiCIAiCIAiCIAiCIAiCyAWy+SyX9gghiBxmYGAAH374Ib+sLpeRm5ZM10fK8sS0LYYtITbk1k7GO0rxh9x0UPyRzh7FH+WgJH/ITQvFIOlspWtDbm1kvKMkf8hNC8Uf6WxRH0g5KMUfctSRyTrlSvwRw56cfE0TIQSRw0QiETgcDkQikWxXRTBy05Lp+khZnpi2xbAlxIbc2sl4Ryn+kJsOij/S2aP4oxyU5A+5aaEYJJ2tdG3IrY2Md5TkD7lpofgjnS3qAykHpfhDjjoyWadciT9i2JOTryk1FpHTUGosgiAIgiAIgiAIgiAIgiAI+UOpsQiCSItQKITW1laEQqFsV0UwctOS6fpIWZ6YtsWwJcSG3NrJeEcp/pCbDoo/0tmj+KMclOQPuWmhGCSdrXRtyK2NjHeU5A+5aaH4I50t6gMpB6X4Q446MlmnXIk/YtiTk69pIoQgchiPx4PXX38dHo8n21URjNy0ZLo+UpYnpm0xbAmxIbd2Mt5Rij/kpoPij3T2KP4oByX5Q25aKAZJZytdG3JrI+MdJflDbloo/khni/pAykEp/pCjjkzWKVfijxj25ORrSo1F5DSUGosgCIIgCIIgCIIgCIIgCEL+UGosgiAIgiAIgiAIgiAIgiAIgiAICaCJEILIYZxOJ5599lk4nc5sV0UwctOS6fpIWZ6YtsWwJcSG3NrJeEcp/pCbDoo/0tmj+KMclOQPuWmhGCSdrXRtyK2NjHeU5A+5aaH4I50t6gMpB6X4Q446MlmnXIk/YtiTk68pNRaR04z31FjBYBDNzc2YPXs2dDpdtqsjCLlpyXR9pCxPTNti2BJiQ27tZLyjFH/ITQfFH+nsUfxRDkryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsDf99Np/l0kQIkdOM94kQgiAIgiAIgiAIgiAIgiCIXID2CCEIIi18Ph/27dsHn8+X7aoIRm5aMl0fKcsT07YYtoTYkFs7Ge8oxR9y00HxRzp7FH+Ug5L8ITctFIOks5WuDbm1kfGOkvwhNy0Uf6SzRX0g5aAUf8hRRybrlCvxRwx7cvI1TYQQBEEQBEEQBEEQBEEQBEEQBKFYKDUWkdNQaiyCIAiCIAiCIAiCIAiCIAj5Q6mxCIJIi2AwiMuXLyMYDGa7KoKRm5ZM10fK8sS0LYYtITbk1k7GO0rxh9x0UPyRzh7FH+WgJH/ITQvFIOlspWtDbm1kvKMkf8hNC8Uf6WxRH0g5KMUfctSRyTrlSvwRw56cfE0TIQSRw8gpz55Q5KaF8tNKZ4vy0yoHpfhDbjoo/khnj+KPclCSP+SmhWKQdLZojxBloCR/yE0LxR/pbFEfSDkoxR9y1EF7hEhjT06+ptRYRE5DqbEIgiAIgiAIgiAIgiAIgiDkD6XGIgiCIAiCIAiCIAiCIAiCIAiCkACaCCGIHMbhcODpp5+Gw+HIdlUEIzctma6PlOWJaVsMW0JsyK2djHeU4g+56aD4I509ij/KQUn+kJsWikHS2UrXhtzayHhHSf6QmxaKP9LZoj6QclCKP+SoI5N1ypX4I4Y9OfmaUmMROc14T40VCoXQ0dGB0tJSaLXabFdHEHLTkun6SFmemLbFsCXEhtzayXhHKf6Qmw6KP9LZo/ijHJTkD7lpoRgkna10bcitjYx3lOQPuWmh+COdLeoDKQel+EOOOjJZp1yJP2LYG/57So1FEAIxGAwwm80AgHA4DIfDgegcn8vlAsuyAICBgQF4vV4Agxfi0NlIp9OJYDAIYHAjn+gmPsFgEE6nkz/O4XAgFAoBALxeLwYGBgAALMvC5XIBADiOg8PhQDgcBgB4PB74/X4AQCAQgNvtBgBEIhE4HA5EIhEAgNvtRiAQAAD4/X54PJ5RNWm1WkyePJn/TS5r8vl8mDp1KrRarSz8FA6HMWHCBGi1WsF+AsZuexzHoaysDCzLiq4pFAqhrKwM4XBYFn7yer0oKyuDVqtNWZNWq8XEiRP534h5PSXjp1y5njKlKRKJoKioCFqtNqc1BQIBTJ48GVqtVhZ+AoCCggK+kyl12xMzRgzXFAgEUFZWxtdPiJ+8Xi+CwSDKysoQiUTS8pPH48H06dOh1WrH9T1XCXFPpVKhoKAAGo0m5zX5/X6UlZVBpVLJwk8ejwe33HILtFptRtqeVqtFaWkp/xsxNWm1WsyYMQMej0cWfkq3v6fVajF16lT+NxQjsqtJq9WioKCA/00uaxLSL5dCU6bHhGLGiOGaNBoNysrK4PP5ZOEnIf09Jd1zlRD3BgYGMGXKFGi12pzWJKRfLpUmoWONbMWI4ZoAoKysDIFAQJS2p1arUVZWxo/vUvVTojFhNqCJEEIRLF++HOvXrwcA9PT0oKKigr84d+7cicbGRgDA0aNHUV1dDQDo6OhARUUFb2PHjh1obm4GABw6dAiHDh0CADQ3N2PHjh38cRUVFejo6AAAVFdX4+jRowCAxsZG7Ny5E8Bg4KioqEBPTw8AYO/evaipqQEA1NXVYc+ePQAGg0NFRQUfjPbs2YO6ujoAQE1NDfbu3TuqJq/Xi5dffhn79u3LeU2vvvoqXnvtNXi9Xln4qba2Fs8//zy8Xq9gPwFjt72LFy+iqqoK77//vuiajh07hqqqKtTW1srGT1VVVfB6vSlr8nq9eOGFF3Ds2DEA4l5PyfgpV66nTGmqq6vDf/zHf8Dr9ea0pn379uHll1+G1+uVhZ+amppQUVHBd4Klbntixojhmvbt24eqqipekxA/VVdX4+OPP0ZVVRXq6urS9tOePXvg9XrH9T1XCXGvvb0dFRUV6O/vz3lNb775JqqqqnhNcvDT7t274fV6M9L2vF4v/vCHP0iiyev14o9//KNs/JRuf8/r9eK1117Dq6++GuMnihHZ0RTtwzY1NSlCU7r9cik0ZXpMKGaMGK6pv78fVVVVePXVV2XhJyH9PSXdc5UQ93bv3o1XX30VXq835zWl2y+XSpMYY41sxYihmpqamlBVVYV9+/aJ4iebzYaqqirs3r1b1DFhVuAIIodpaGjgAHAGg4Ezm81cQ0MDFwqFOLvdzkUiEY7jOM7pdHKBQIDjOI7z+Xycx+PhOI7jgsEgZ7fbeVsOh4NjWZbjOI7zer2c1+vlOI7jWJblHA4Hf5zdbueCwSDHcRzn8Xg4n8/HcRzHBQIBzul0chzHcZFIhLPb7VwoFOI4juPcbjc3MDDAcRzH+f1+zuVycRzHceFwmLPb7Vw4HOY4juNcLhfn9/s5juO4gYEBzu12cxzHJdTk8/m46upqrqenJ+c1dXV1ce+99x7n8/lk4Se73c7t37+f8/l8gv3EcWO3PafTyX3wwQdcb2+v6Jr6+/u5Dz74gLPb7bLwk81m4z744APO5/OlrMnn83H79+/n+vv7OY4T93pKxk+5cj1lSpPD4eD27dvH+Xy+nNbU09PDVVdXcz6fTxZ+crlc/HkVw0+ZjBHDNfX09HAffPAB53K5RGl7fX193AcffMDHzVT91NnZyb3//vucz+cb1/dcJcQ9t9vN7du3j69TLmvq7u7mPvjgA87tdsvCT52dndyf//xnzufzZaTt+Xw+7s9//jPX2dkpuiafz8e9//77XGdnpyz8lG5/z+fzce+99x7X1dXF+4liRPY0+Xw+bt++fXydclmTkH65FJoyPSYUM0YM1+T1erkPPviA6+rqkoWfhPT3lHTPVULc6+rq4scuuaxJSL9cKk1CxxrZihHDNblcLu6DDz7genp6RGl7Ho+Hr6sYY8Los9zop6GhgcsUtEcIkdOM9z1CCIIgCIIgCIIgCIIgCIIgcgHaI4QgiLRgWRbnzp3jc+/lMnLTkun6SFmemLbFsCXEhtzayXhHKf6Qmw6KP9LZo/ijHJTkD7lpoRgkna10bcitjYx3lOQPuWmh+COdLeoDKQel+EOOOjJZp1yJP2LYk5OvaSKEIHIYv9+PI0eO8Jsa5TJy05Lp+khZnpi2xbAlxIbc2sl4Ryn+kJsOij/S2aP4oxyU5A+5aaEYJJ2tdG3IrY2Md5TkD7lpofgjnS3qAykHpfhDjjoyWadciT9i2JOTryk1FpHTUGosgiAIgiAIgiAIgiAIgiAI+UOpsQiCSAuO4+D3+6GE+Uy5acl0faQsT0zbYtgSYkNu7WS8oxR/yE0HxR/p7FH8UQ5K8ofctFAMks5Wujbk1kbGO0ryh9y0UPyRzhb1gZSDUvwhRx2ZrFOuxB8x7MnJ1zQRQhA5jNPpxG9+8xs4nc5sV0UwctOS6fpIWZ6YtsWwJcSG3NrJeEcp/pCbDoo/0tmj+KMclOQPuWmhGCSdrXRtyK2NjHeU5A+5aaH4I50t6gMpB6X4Q446MlmnXIk/YtiTk68pNRaR04z31FjhcBg9PT0oLi6GRqPJdnUEITctma6PlOWJaVsMW0JsyK2djHeU4g+56aD4I509ij/KQUn+kJsWikHS2UrXhtzayHhHSf6QmxaKP9LZoj6QclCKP+SoI5N1ypX4I4a94b/P5rNcmgghcprxPhFCEARBEARBEARBEARBEASRC9AeIQRBpIXH48GuXbvg8XiyXRXByE1LpusjZXli2hbDlhAbcmsn4x2l+ENuOij+SGeP4o9yUJI/5KaFYpB0ttK1Ibc2Mt5Rkj/kpoXij3S2qA+kHJTiDznqyGSdciX+iGFPTr6miRCCyGG0Wi3Kysqg1WqzXRXByE1LpusjZXli2hbDlhAbcmsn4x2l+ENuOij+SGeP4o9yUJI/5KaFYpB0ttK1Ibc2Mt5Rkj/kpoXij3S2qA+kHJTiDznqyGSdciX+iGFPTr6m1FhETkOpsQiCIAiCIAiCIAiCIAiCIOQPpcYiCCItAoEAampqEAgEsl0VwchNS6brI2V5YtoWw5YQG3JrJ+MdpfhDbjoo/khnj+KPclCSP+SmhWKQdLbStSG3NjLeUZI/5KaF4o90tqgPpByU4g856shknXIl/ohhT06+pokQgshhWJbFuXPnwLJstqsiGLlpyXR9pCxPTNti2BJiQ27tZLyjFH/ITQfFH+nsUfxRDkryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsycnXlBqLyGkoNRZBEARBEARBEARBEARBEIT8yeaz3OzvUkIQRNpEIhG4XC5YrVao1bm9wEtuWjJdHynLE9N21BbDMOju7k7bhs/ng9FoTLk+w39bUlICg8GQVj0I4cjtuk0Xuemg+COdPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX8ujpREEkRYulwsVFRVwuVzZropg5KYl0/WRsjwxbXd1daGiogKzZs3CzJkz0/osWbIEf/rTn7BkyRLBvy0sLMSGDRvg8/lEOFNEqsjtuk0Xuemg+COdPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX1NqLCKnGe+pseQ0qyoUuWmht5FGwnEcfvCDH+CTTz6By+VCJBJJy45arYbVak3LRqLfPvzww6iqqkqrPkT6yO26TRe56aD4I509ehtSOSjJH3LTQjFIOlu0IkQZKMkfctNC8Uc6W9QHUg5K8YccddCKEGnsDf99Np/l0kQIkdOM94kQgsgUoVAIX3zxBVavXi2LDa6GYzAYYLfbKU0WQRAEQRAEQRAEQRCETMnms1x5TLkRBJEWbrcbL774Itxud7arIhi5acl0faQsTwzbV69eRVtbG/R6PR5//HFYLJa0bVkslrRtJPqt3++HzWZLu05Eesjtuk0Xuemg+COdPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX9NECEHkMAzDoLy8HAzDZLsqgpGblkzXR8ryxLBtt9sBACzL4ty5c4JWhQixIUb5hHjI7bpNF7npoPgjnT0hv5dbOxnvKMkfctNCMUg6W+nakFsbGe8oyR9y00LxRzpb1AdSDkrxhxx1ZLJOuRJ/xLAnJ19Taiwip6HUWASRGY4dO4abN29i48aN2a5KQo4fP47S0lJJbJeUlFDaLYIgCIIgCIIgCIIgCAFk81muNiOlEAQhCX6/HzU1NVi+fHnOP6SVm5ZM10fK8sS0bTAYsHz5ctTU1MDv9/N/f+6551BcXJyUjXA4DLvdjsLCQmg0mpTK7+rqwr59+0aUDwD33ntvSrZSwWAwYN26ddi5cyeMRqNk5eQacrtu00VuOij+SGdPyO/l1k7GO0ryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsycnXlBqLIHKYUCiE1tZWhEKhbFdFMHLTkun6SFmemLa1Wi3Kysqg1cbOo0+dOhXTp09P6jN16lREIpGkfzNt2jSUlJSgpKQEEyZMiFu+1Pj9frz55pvYtGlTRsuVO3K7btNFbjoo/khnT8jv5dZOxjtK8ofctFAMks5Wujbk1kbGO0ryh9y0UPyRzhb1gZSDUvwhRx2ZrFOuxB8x7MnJ15Qai8hpKDUWoSTkvOF3bW0turu78cQTT8T9vqWlBWVlZZKU3draitbWVgCAzWbLanoug8EAu92e9bcYCIIgCIIgCIIgCIIgcg1KjUUQRFqEw2H09PSguLg45RRDckNuWjJZH5/Ph02bNuHUqVO4ceMGwuGwqPY1Gg2Ki4vR09Mj2LYYtoSc24KCApSWlqKzs1P085QM0ckqqSZ9cg25XbfpIjcdma6PlOWJbVuoPSG/l1s7Ge8oyR9y00IxSDpb6dqQWxsZ7yjJH3LTQvFHOlvUB1IOSvGHHHVksk65En/EsCcnX1NqLILIYdxuN1566SW43e5sV0UwctOSqfpwHIcf/vCHOHjwIDZt2gSLxSJ6GRaLBY8//rgotsWwJfTc/s3f/I0k54lIHbldt+kiNx2Zro+U5YltW6g9Ib+XWzsZ7yjJH3LTQjFIOlvp2pBbGxnvKMkfctNC8Uc6W9QHUg5K8YccdWSyTrkSf8SwJydfU2osIqcZ76mxOI5DIBCAXq+HSqXKdnUEITctmapPQ0MDlixZgmAwCL1ej0AgALHDskqlEs12IluppMZK9dwOTY3FcRy8Xi9++9vf4sSJE2BZNh0ZgpAyDdhoeL1eOBwOQSthtFotCgsLkZeXJ0qd5HbdpovcdGS6PlKWJ7ZtofaE/F5u7WS8oyR/yE0LxSDpbKVrQ25tZLyjJH/ITQvFH+lsUR9IOSjFH3LUkck65Ur8EcPe8N9TaiyCINJCpVIpZq8CuWnJRH04jsOlS5f4h/l+v1+ycsSyHc+WwWBASUlJ0jZSPbcmkynmt2azGdu2bQPLsujv70/aTir09PQk3A8lGwydDBKD2267DVOmTBFsR27XbbrITUem6yNleWLbFmpPyO/l1k7GO0ryh9y0UAySzla6NuTWRsY7SvKH3LRQ/JHOFvWBlINS/CFHHZmsU67EHzHsycnXlBqLIHIYl8uFf//3f4fL5cp2VQQjNy2ZqA/Lsvzb/VarFVu2bIHVahW9HDFtx7O1bt26lG5qqZ7bwsJC3n4gEEBNTQ0CgQAYhkFJSYkkn+Li4oT16ejo4CcmxPiMNUnlcrlEnQQBgC+//FKU1TRyu27TRW46Ml0fKcsT27ZQe0J+L7d2Mt5Rkj/kpoVikHS20rUhtzYy3lGSP+SmheKPdLaoD6QclOIPOeqIVyeO49DT04MrV66gra0NAwMDkpUlFkoag4kNTYQQisBgMMBsNgMY3ITH4XDwaXtcLhf/wG9gYABerxcAEAqF4HA4eBtOpxPBYBDA4ObVPp8PABAMBuF0OvnjHA4HQqEQgMFUNdEgyLIsf1FzHBeTwsbj8fAPOwOBAJ8XLxKJwOFwIBKJABjMmxcIBAAMrg7weDyjajIYDLjnnnv4cnJZE8uyWLlyJQwGgyz8pFKpsGzZMhgMBsF+AkZve/n5+QiFQjhy5AhUKhWMRiMAQKfTIT8/nz+uoKAAWu3gQj6TycSnN2IYhp+YUKlUKCgo4DegMpvN4DgOR44cQSQS4ffWUKvVKCgogFo9eBuwWCzQ6/UAYq8njUaDgoICfvmjTqfD8ePH4ff7kZ+fjx/96EfYuXNnSn4KBAJYvXo1DAZDUn7SaDSYOXMmioqKoNfrUVpaymsNh8NgWRYqlYpfrcJxHFQqFT/RpFKpEAqFRhwXtREIBPg2EAwGeZ9ptVoUFBTE+Emn0+Hee+/FwoULsXDhQsycORNz585FeXk5Zs6ciZkzZ2Lx4sWYM2cOZs6ciUWLFmHBggWYOXMmbrvtNtxxxx2YOXMmZs2ahcWLF+PWW29FYWEhHnnkEX51y/Dr6fr163ybCgQC/PmKaooeF9UePS6epuhxwOA1IvR6UqvV/HWSqbgHiB/Lw+Ew7rnnHhgMhqzE8uGatFot7r77bn4CUOq4BwCrV6+GSqUSXVM4HMbq1auh1WpFieUcx2H16tVQq9Vp+cnv9+O+++6DwWAY1/dcJfSNdDod7r77bv7elcuaQqEQVq9eDZ1OJws/Db1OMtH2DAYD7r333pgXA8TSZDAYsGrVKvj9fln4SaPRYPXq1YhEIilpMhgMWLlyJV8OxYjsajIYDLj77rv5fnkua0q1X660MaGYMWK4Jr1ej9WrV4NlWVn4CUi/v6eke64S4l4wGMSKFStgMBhyWpOQfrlUmuKNNZqbm3HmzBl0dHSgpaUFp06dQl9f35h+ymSMGK5Jq9Vi9erVCIfDorQ9hmGwevVqPh6l6qdEY8JsQBMhhCJYvnw51q9fD2AwpU1FRQV/ce7cuRONjY0AgKNHj6K6uhrA4FvdFRUVvI0dO3agubkZAHDo0CEcOnQIwGDQ27FjB39cRUUFOjo6AADV1dU4evQoAKCxsRE7d+4EMBg4Kioq0NPTAwDYu3cvampqAAB1dXXYs2cPgMHgUFFRwQejPXv2oK6uDgBQU1ODvXv3jqqJYRj09/fj4MGDOa/pjTfegFarBcMwsvDTxYsXcf78eTAMI9hPwOhtb/PmzZg+fTrOnTuHNWvW4IEHHgAA/Mu//Av+4R/+AZWVlaisrMSWLVvw0ksvobKyEk8//TSeffZZVFZW4rnnnsPWrVtRWVmJ3bt3Y8uWLXjllVdQWVmJX/7yl/j1r3+Nf/qnf8JvfvMb/PM//zMqKyuxa9cubNmyBbt27UJlZSX++Z//Gb/97W9RWVmJf/3Xf8Uvf/lLVFZW4pVXXsGWLVuwe/duVFZW4he/+AV+8pOf4K233sLrr7+OtWvXwmg0puSnV199FeXl5WAYJmk/vfjii5g0aRJWr16NUCgEvV6PVatWwWQy4dq1a1i1ahUWL16M2tpaLF68GKtWrcK1a9dgMpmwatUqaLVa3Lx5E6tWrcL8+fNRW1uL5cuXY9WqVbh06RI/kG1ra8OVK1cAAKWlpdiyZUuMn2bPng0AeOCBB3g/zZ49G5s3b+aP27JlCz9Zs3btWqxatQoAsGDBAmzatAkAoNfrsWXLFhQXF8Pv94NhGGzbtg3AyOtp7969fJuqr6+HzWbj21G0ffl8PtTW1vIdmbq6Or5dD9XkcrlQW1sLYLBjJfR6unr1Kmpra8EwTMbiHiB+LD948CD6+/vBMExWYvlwTd3d3fjoo4/AMEzamlKJe2fPnkV5eTkuXrwouqaDBw+ivLwc3d3dosTyU6dOoby8HFevXk3LTzt27MCsWbPAMMy4vucqoW/kdDrx0Ucf8QOuXNZ04MABlJeXw+l0ysJPO3bswNSpU8EwTEbaHsMwmDBhQkxdxdLEMAzmz5+PHTt2yMJP169fR3l5OY4cOZKSJoZhoNVq8cYbb/B+ohiRPU0Mw+Cjjz5Cd3d3zmtKp1+upDGhmDFiuCaO41BeXo433nhDFn4S0t9T0j1XCXHv7bffRjgcBsMwOa1JSL9cKk3DxxqBQACtra2ora3lJx4uXLiATz/9dEw/ZTJGDNfU3d2N8vJyHDx4UJS25/f7UV5ejrffflvUMWE2oM3SiZwmusGOwWCAVqtFTU0N5s2bB7fbjfz8fKhUKv5ND4ZhMDAwgEgkApPJhFAoBI/Hw7/x7XQ6YTQaodPp+ABnNBoRDAbh8/n4N/MdDgfMZjO0Wi28Xi/UajXy8vLAsiz8fj+sVis4joPT6YTFYoFGo4HH44FWq4XBYEAgEADLsrBYLIhEInC5XLBarVCr1XC73WAYBnq9nn/zzGw2IxwOx9UUDofxySefYPny5Zg4cWJOa+ru7sYXX3yB+++/HwCy7ieHw4Fjx47hG9/4BvR6vSA/JWp7eXl5ePfdd/H4448jEolgxYoV+Pzzz+H3++Hz+XD27FkUFxfzqz2cTidMJhO0Wi18Ph/UajX/BnsgEIDFYgHHcXC5XDCbzdBoNPB6vQiFQqirq8Odd94JtVoNs9mMSCQCt9sNi8UCtVoNj8cDnU7HawqHwzCZTAiHw/B4PLBarVCpVOjt7UV9fT0/CZCOn/r7+1FXV4dVq1YhEAik5CeWZfHRRx/h3nvvRWFhoWjXk9PpRHNzM4LBIDiOQ39/P/7qr/4KZrOZf2MhPz8fPp8PwWCQX7Xj8/mg0+lgNBr5tzAKCgrg8XgQCoVgMpkQiUQwMDAAhmFgMBjgcrmgUqmQn58Pt9uNcDjM+8tms/GrWaKaGhoa0NfXx69e0Wg00Gq1CIVCiEQiYBgGkUgELMvym48FAgFotVpoNBpe09DjDAYD5s6dC5PJJOh6cjqdOHLkCB544AEYDIaMxD0pYnlvby9qamrwta99DRqNJuOxfLgmt9uNTz/9FA888AB/nqWMe8FgkJ8c1Gg0omryer04ffo0VqxYgXA4LDiWBwIBfP755/jqV78KlUqVsp+6u7tRV1fHT6qO13uuEvpGHo8Hn3zyCb7xjW/AaDTmtCa3240zZ85g5cqVCIVCWfdTV1cXzp49izVr1iAcDkve9tRqNQ4fPow777yT33NMLE06nQ5HjhzB4sWLUVxcnHU/qVQqnDx5EnfddRfy8vKS1gQAn376Ke666y5MmjSJYkSWNQ0MDODQoUO4//77YbFYclqTkH65EsaEYsaI4ZoYhsGxY8dw5513oqCgIOt+EtLfU9I9Vwlxr7u7G59//jm+9rWv8dkPclGTkH65VJqGjzV6e3vR1tbGp+ZWq9VgWRZqtRpf//rXeU3hcBjXrl2Dx+PB1KlTMXPmTPh8vozFiOGaNBoNTpw4gaVLl/LZRIS0vWhmkDvvvBP5+fmCx4Q3btygzdIJQghDl9JHU/lEGbqXQTSVEBA/7U2U6ENOIH56oihDN3FmGIZ/ezeanihKNM0QMPgmeHRJaTQ9UZRo2iIAMXsuJNLk9Xr5B+q5rin68C8a9KNkS1P05hIdoAvxExC/7UVny6MTHNG/RW9qhYWF/MqC4fZG2+9j6HmwWq3wer3w+XwoLCyMOReJ6jrcdmFhYYzGzz//XJCfopMLkUgkZT9FU0lEvxPreoqec51OBwAoKiqCWq0esRQ1SvR4IP5S1CjRZa0AYpa8RpeiRokuKbXZbCgrK4vRZDab+bRZ0b9H/z303A5lqHav18svz41OnkURej1ptVq+s5apuAeIH8vz8vLg8XgQiUSQl5eX8Vg+XJNarebPa7qaUol7Xq8XDocDOp2O/51YmqLLqdVqdYwNIZqiy72j/0/FTxaLBU6nMyZVYLKalHTPVULfSKVSYWBggH87NZc1RdMJDLeXLU0WiwUulwuRSCQjbc/r9cLlcokWI4Zq8nq9MQN9ILt+isZbg8EwairU4Zq8Xi/cbndacW+8xggpNUVfcolOUuWyJiH9cik0ZXpMKGaMGK4per2bTCb+/GXTT0L6e0q650bJ5bhnMpn4sctQ27mmSUi/XEpNQ8cara2tIzb6jmqNaurv78eXX37J/62jowMejwd33HEHn2Jc6hgxXFPUdl5eXkxK9XTb3tC6Dk2pPlxTlLHGhDdu3EC2oBUhRE4TXRESJZOziAQhlEAggHfffRcbN26M+31LSwvKysoyW6lxis1mw+XLl2P+9swzz+Dw4cMZrUc8n1+7dg3t7e0jji0sLMQdd9wxps3a2tq4G7rNnTsXU6dOTbuuBEEQBEEQBEEQBKFULly4wL+UOJzonl/Hjh2L+/2SJUtiJniI/yKbz3JpjxCCyGFCoRBaW1v5zZ1yGblpyXR9tFotysrK+L0qxERMLWLYEmIjk37ZunUr1qxZE/PGBxGL3K7bdJGbjkzXR8ryxLYt1F6uxB9ibJTkD7lpoRgkna10bcitjYx3lOQPuWmh+COdLeoDKQel+EOOOlKt09DMEMNpa2sTtaxUUNIYTGxoIoQgchiPx4PXX3+dT6uTy8hNS6brYzab8dd//dcxSxLFQkwtYtgSYkMqv8Sb7DAYDNi2bRuqq6v5DevF+Lz88sui1j2byO26TRe56ch0faQsT2zbQu3JMf4Q6aEkf8hNC8Ug6Wyla0NubWS8oyR/yE0LxR/pbFEfSDkoxR9y1JFKncLhcNzMDVGiqdDFKCtVlDQGExtKjUXkNJQai8hlKDWWfAiHwzh58iTC4bDkZblcLqxbty7ud5QaiyAIgiAIgiAIgiCyz2ipscbCYrFgyZIlItdIGWTzWS5tlk4QhCzw+/2w2WzZrkZGCQQC6OnpyXY1CAxu7vWVr3wFDQ0NsliumQ6JrqGbN2/GfRslLy+P37x9KCUlJTEbnxEEQRAEQRAEQRAEQeQ6lBqLIHIYp9OJZ599dtS8hHLH5/PhoYcewvTp0/HSSy+hvLwcM2fOzPqnvLxc8vrMmzcPTzzxBAAgPz8fTz31FPLz80U/x2K2EzFsCbEhZZsvKCjAPffcg8WLF2PRokWCPyUlJaLXMR4+nw8bNmxAYWFh3Hb2ve99Dxs3bhzxWb58edzjCwsLsWHDBvh8vjHLVkIMAuSnI9P1kbI8sW0LtSfX+EOkjpL8ITctFIOks5WuDbm1kfGOkvwhNy0Uf6SzRX0g5aAUf8hRRybrlCvxRwx7cvI1rQghiBzGaDTioYcegtFozHZV0mbjxo04cOAAdDod9u3bl9TD10zg8/kyWh8pyxOznYhhS4gNqdu8Wq0WbTIqXjoqKdi0aRPefPNN0ez5/X7eXlVV1ajHKiEGAfLTken6SFme2LaF2pND/AkEAuju7obb7QbHcVCpVLBYLJg8eXLc/YqI+MjtuhWC3LRQDJLOVro25NZGxjtK8ofctFD8kc6WHPpAhDgoxR9y1CFlnXp7e9HZ2YlQKIQJEyagpKQkJ+KPGPbk5GvaI4TIaWiPkNzG7/cjPz8/bnoegvYIyXWuX7+O5ubmEX8Xc4+Q2267DYWFhfD7/aLUeSgGgwF2u53SZBGEiAwMDODcuXMJ09WVl5dDr9dnoWYEQRAEQRAEIX+i+3pqNBrJyxJrj5Curi5cunQp5vspU6bgtttuE1zHXCSbz3IpNRZB5DCZXrUgNtevX+cnQeQ0Qwxk/20kg8EgWmolMduJGLaE2Mj1Ni82NptNkkkQILl9e5TiD7npUNKKNLFtj2WP4zj4/X7+M3yiPdvxp6OjI+4kCDA4SXLjxo20bY835HbdCkFuWigGSWcrXRtyayPjHSX5Q25aKP5IZyvbfSBCPJTij1R1hMNhNDQ04LPPPsNnn32Gixcv8pMiQvD7/ejs7ERXVxccDock57ajo2PE39rb2/HOO+/IPv6IYU9ObZZSYxEEQciQdevW0Zv4BEEQY+Dz+WC32xEMBtHa2hr3GKPRiDlz5qCwsDCzlYvDWHlx5ZA3lyAIgiAIgiDkxqVLl9Db28v/v6enByqVCgsWLEjaBsdxcLvdcDqd/EuoFy9eRCQS4b8PhUKi1NftduP69etQqVRwu91xj/F4PKKURSQPpcYichpKjZXbNDU1Ye7cudmuhqxgGAZr167FH/7wB9msjiHSI53UWMePH0dpaWnM39rb23Hz5s0Rx1qtVlitVtx7773iVDgOlJ6NkDM2mw2XL19O6li1Wo2lS5dmPa5+8cUX8Hq9Cb8fuoSeIAiCIAiCIIjB1SDHjx8f8XeVSoV7770XavXYCY84jkNLS0vctNNDyc/Px+LFiwEIS42VLKtXr5bUvhzJ5rNcWhFCEDlMMBhEc3MzZs+eDZ1Ol+3qCEKn02H27Nlobm5GMBjEm2++ienTp2etPuFwGL29vZg4cWJGck+Gw2E4nU7cc889KCgoENW2mO1EDFtCbCipzcdDzEmN6KRKXV1d3FQ8M2fOxOTJk9HR0ZF2uUrxh9x0ZLo+UpYntu2ovenTpyccmBQVFY3YdDwSiaCvrw86nS6p+kQiEbhcLgSDQQCDg6y8vDxcv36d/20kEolJTZeXlweVSiVYI5EccrtuhSA3LRSDpLOVrg25tZHxjpL8ITctFH+ks0VjMOWgFH+koiPRqunoCo/8/Pwxy/N4PGNOgoTDYTQ3N2PevHnIy8uTNJVTOByG3W7H+fPn8ZWvfCWpyZxkkWoMlq49ObVZmgghiBwmmmdv8+bNSQV+ORPdI2PHjh1wOp1YuHBhVlf3OJ1O7NixI2PnNlreihUrRLctZjsRw5YQG0pq81JTWlqKsrIydHV1YWBgYMT3t9xyC6ZOnSqoDKX4Q246Ml0fKcsT23bU3tmzZ7F///4Re4AAgyvrVqxYga1bt8akGPT7/UnVx263o6GhYUTOYb/fj7Nnz2Lz5s3o6upCd3c3v4weGNywcdq0aZg5cyZNiGQAuV23QpCbFopB0tlK14bc2sh4R0n+kJsWij/S2aIxmHJQij8yreP69etjHhMMBnH58mXcd999yMvLE2UPkrHKMpvN0Gq1oj7/kmoMlq49ObVZSo1F5DSUGiu3GS01FvmSyHXSSY0lJtG0VrW1tXEnQubOnYupU6eitbUVM2fOHNUGQciJDRs24M033xzzuDVr1mDbtm38/6dNm4Y5c+aM+ptQKISTJ0/GTHAMR6fT8StF4nHrrbeOSHEX5cSJE6P+llJjEQRBEARBEEQs/f39uHDhQtzvFi9enNTD9SNHjiRd3l133QWTyTRm311MVqxYkfXVEpkim89yxVt3QxAEQRDEmEyYMCHmLXUpMBgMKCkpkbQMgsgGfr8f+/fvT+rYEydOxF0xMhpOp3PUSRAAYw6Genp6RvwtEAjgzJkzGRtIEQRBEARBEMR4hOM49Pf3o7m5GTdu3IibJnosEqXikpLu7u6MlzkeoYkQgshhHA4Hnn76aTgcjmxXRTAFBQX41a9+Jfr+GOmS6XMrZXli2hbDlhAbSmjzwWAQ99xzj6RlrFu3TvLJFkAZ/gDkp4PiT2KuXr2Kp556Kql7BcuyI/YQGas+o02c+P1+HD16lN8XhGVZ2Gy2EZ94A6f6+nq43e4x60wkj9yuWyHITQvFIOlspWtDbm1kvKMkf8hNC8Uf6WyN9zGYklCKP6TS0draigsXLuD69etoamrC2bNn42ZIiEe0v59o9YmYDB9bjPUyViqIfW6F2pNTm6XUWEROM95TY4VCIXR0dKC0tBRabe5t+TM0NZZWq0VpaSk6OjoQCoWy7stMn1spyxPTthi2hNjIpTafKDUWMNjp2b59e1pvrI+GwWDAunXrsHPnThiNRgCQNDVWLvljNOSmg+JPfDiOw6FDh/D444/z94qxqKys5FdHRffvGK0+nZ2d+PLLL+Paim6gzjAM/u3f/i3h9cswDL773e/y16Hf70dNTU1SGik1VvLI7boVgty0UAySzla6NuTWRsY7SvKH3LRQ/JHO1ngZg40HlOKPVHT09vaioaEh7ndDU2MFAgGcOnVqxDFTpkxBZ2fnmHWK9vetVivuv/9+SVNjDS1LrVZj+vTpmDVrlii2xW4jQu0N/302n+Xm7hVDEAS0Wq1i8veHQiG0trZmuxo8mT63UpYnpm0xbAmxoZQ2bzAYsG3btrhvrCeL1WrFggULYv5WUlKSkZUgUbLhD7/fD5vNlvD7UCgEn88X87fJkyePOC8Mw8BgMEClUsmuXVH8ic/169dht9sF3SuE1EetVqOgoADPPPMMDh8+nPA4lmX5PUyqqqr4t7yGHxPv2mcYJq26jUfkdt0KQW5aKAZJZytdG3JrI+MdJflDbloo/khni8ZgykEp/khWRyQSSTgJMpwbN27E/XsykyDAf/X3M8Hwsvr7+0WbCBG7jQi1J6c2S6mxCCKH8Xq9qKqqgtfrzXZVBGMymbBhwwaYTKZsVwVA5s+tlOWJaVsMW0Js5FKbT+aBJsMwKCkpSeszc+ZMlJWVxXwyOQkCZNYfPp8PGzZsQGFhIWbOnJnwM2fOHNxxxx0xn+nTp+O73/0uTp06hbq6OtTV1aG2thZffPEFfD6f7NoVxZ/49Pf3IxQKpXSv6Onp4VNWBQIBQfVhWRYXLlxAXV1dUsfv379/xCSI3+/HM888g7Vr12Ljxo0jPvfffz82bNgwYjIvHdxuN5qbm9HQ0ICGhgZcvXo1qXzHkUgEfr8fgUAA2Vg4HolEYLPZcPnyZTQ2NqK1tTWuv+R23QpBblooBklnK10bcmsj4x0l+UNuWij+SGdrvIzBxgNK8UeyOpJJpxQOh3Ht2jW0t7cLqhPLsmhoaBA1a0OyZXk8HtFsi91GhNqTU5ulFSEEkcNEZ5DV6tyf04xEInA4HKLmRRRCps+tlOWJaVsMW0Js5FKbLywshEqlkuxBYlFRkSR2UyFT/uA4Do888gj27duX1u9ZluXf4N+2bRv/d5/PhwsXLuD222+XVbui+BOfYDAIlUqV0r3iiSee4P+t1+vxve99Dz/60Y/Sqo9KpQKApDdcjK5eGvqm1/bt20ddTRIIBGJWk6RLf38/6uvrR8Sfjo4OLFiwAJMmTRrxm3A4jMuXL6Ovr48/vwzD4JZbbsEtt9ySdl2G4vV60d/fj2AwCK1Wi8LCQlgsFv77SCSCixcvoq+vL+Z37e3t/HUaJZfuB2MhNy0Ug6Szla4NubWR8Y6S/CE3LRR/pLM1XsZg4wGl+CNZHS0tLaN+f/PmTfj9flE2OFepVHzWAKmRsiyx24hQe3Jqs7RHCJHTjPc9QnKdoXuEDId8SSiBvr4+NDY2IhwOi2r3lltuwaxZs5LqNEm5R0gm4DgO586dw/LlywW/mcMwDKqrq0es1lm6dCnMZrMg24T0fPHFF2hubsbGjRsF2Xn44YcTTjKMtkcIANhstpTKb2lpgcFgwJEjR8CyLB599NGkfmcwGGC329Ne5XX69OlR3yrLz89HKBSCSqWC1WrFtGnT0Nraip6enrjHz5s3j99rJV26urpw6dKlEX+fPXs2P9HS19eH+vr6uL+3Wq248847BdWBIAiCIAiCyC2OHDmSlXJXrVqFo0ePZrTM1atXZ7S8bEF7hBAEkRYsy6KxsRELFizI+bziDMNgwYIFaGxszMgyxLHI9LmVsjwxbYthS4iNXGvzEyZMwIoVK+ByuZLa2Hksog8tdTqdYFt+vx9ut3vUh6Uejwdutxs6nS7uA9lM+MNut+PLL78UJS5E92UY/kDX7Xbj6tWrsmlXcoo/DocDTU1NI9qvVquF1WrFjBkzRn1YL7aWSCSC8vLytO8VDMPg2rVr/MaE8Ui0f0d+fj6cTicYhkm67O9///u4ePFi0qtIokRXk6QzERkOh8dcWj/0jTmPx4Ourq5RJ2y7u7sFTYSEw2GcP39+xHktKipCc3MzJk2aBL1eP+qbfG63G5FIhH+TLNfuB6MhNy1yikFysp3NPpDc2sh4R0n+kJsWij/S2RpPYzCloxR/yFFHOBxGT08PiouLJd/DdmhZGo1GVNtin1uh9uTka5oIIYgcxu/348iRI5g1a1bWg4lQDAYDVq9ejWvXrsliIiTT51bK8sS0LYYtITZysc1ncsO1VGhvb0d7e/uoG483NDSgt7cXwOA+PgsXLoTRaOS/z4Q/xFjiPBYsy8qqXckh/vh8PmzcuBEffvjhqDGZYRisWLEC//RP/4SJEydi6tSpmDJlimRawuGwoHuFwWDAihUrcP369RFvHfl8Pjz++OMJNU+YMAGbNm2CwWBIuuyzZ8+mXEehpLPYe6xVa36/HxzHwe12g2VZaDQaWK3WpAZtPp8Pf/mXf4k///nPI85btP28+uqrmDlz5qgpz4brysX7QSLkpkUOMUiOtrPZB5JbGxnvKMkfctNC8Uc6W+NtDKZklOIPOeoIhUJobW1FYWFh0husi1GW2BMhYp9bofbk5GtKjUXkNJQaK7eh1FgEIT2JUmNFGS3VT2VlZcxb4Hq9HsuXL89IztQozc3N+OKLLwSnQ4ry3HPPobi4OOZvt912GwoLCwEAJSUlGd90Xo784Ac/wN69e5M+fs2aNfz+K/Pnz8fkyZNFq0tvby+uXLmC9vZ29PT0xOz7kS7x0r5t2LCB359DDqSbmi4UCuGzzz4TvT46nQ7BYJD/v0qlwpw5czB16tRRf5fMef3Od76D/fv34+rVq+jo6Eh43H333SeL3MKpEp0AyvbAjyAIgiAIItfIVmqsbECpsaSHVoQQRA7DcRwCgQD0en1GH0xKgUqlgl6vRyAQkGxz6VTI9LmVsjwxbYthS4gNJbX5XCQQCMDtdvMpheTgj3gTG6M9LI/396HxR6/XY926ddi5c2fM6pdMMvy8RtMkjYaQCZx45b333nsp2Thx4gRYlgXDMOjs7OQnQoS0EZ/Phw0bNuDgwYP8g+TopoLx7hXLli3D+fPn4ff7E9qM+jr62+i59fv9Yz6sl9t9KhGJ2ktRUVHCB/GJ0oEN/c3QSRBg0LdXrlyBxWKJ2fB8eF32798/Zp0PHTo0qt/iIUX84TgOwWAQGo1GlDfzHA4Hrly5Ap/PBwAwGo2YM2cOP/E6tNxsx9Js1of6QJkpmxAPJflDbloo/khni8ZgykEp/pCjDo7jEA6HodFoJK+TlGWJfW6F2pOTr3PvlSqCIHicTid+85vfZCR1jNTk5+fjqaeeQn5+frarAiDz51bK8sS0LYYtITaU1OYzhdgP84c+rJSDP+bNm4fbb7895jP07ZJkGBp/og/EN23aJFGNxyZ6Xm02Gx5++GEUFhZi5syZo34KCwuxYcMG/oFrOuVF/RidGEiFoQ/SvV5vQtup8Oijj6K6ujomndJo94qqqirY7XYcPHgQlZWVeO6550YcE/39J598ggceeAAFBQWYOXMm5s+fP2Z95HafGk504qi4uBgbN24c8Vm7di2eeeaZGN/6/X4888wzWLt2bdK/GU68CZQoybalZCb7hiN2/Ll+/Tpqampw8uRJfPbZZ6irq0vreooyMDCA+vr6GBs+n2/E3wB5xNKhUB9IOlvp2pBbGxnvKMkfctNC8Uc6WzQGUw656o9QKISenh709vYiFArJUkcgEMCJEydS3t9PbmWJfW6F2pOTryk1FpHTjPfUWFJurpQJhqbG0mg0KC4uRk9PD8LhcNZ9melzK2V5YtoWw5YQG7ne5rNBd3c3GhsbE36fSmosAFiwYAEmTZoEIDP+GCs1Vrz0Qa2trZg5c2bSZQyPP8DgXhJ2uz3lVRYulwt2u33E5uJRVCoVLBYLioqKEp6z6Hn927/9Wxw4cCCl8h9++GFUVVWl9Jvhfkz1/EWJthedTocVK1bEtZ0sfr8fhYWFIx6ix/NVlGhbuHjxInp6euK27ejvJ0yYgIsXL6akb7Sy04FhGMyePRuXLl2K+32qqbGSTe01NI3ZM888g8OHD6f0m+FMmzYNc+bMiftdKm2ppaUFoVAo6dRYYsafzs5OfPnllyP+zjAMli1blrL9UCiEixcvwm63x/1+9uzZuOWWW/j/y+3eRn0g6Wyla0NubWS8oyR/yE0LxR/pbNEYTDnkoj/cbjfOnz/Pj5EYhsFXvvIVeL3eGB1erxf9/f3QarWYMGECGIbJaGqsSCQCn88Ho9EoeTrWeGWJlRpL7DYi1N7w31NqLIIg0kKj0Yx4SJmrhMPhlN8GlZJMn1spyxPTthi2hNhQUpvPFJMmTUIoFML169dH3SskWQYGBuByufj/G43GmBUAwODDfqPRmLWOeTRNVLKrGuLFn+gb6qk8iG5ra0NLS0tSx1osFtx+++3Q6XQjvosuj/7www+TLjvK/v374ff7U5rAkWP8SbSSING9wmAwJFVO9Pfp3G/Euk9F07kVFRWhv79flP1vkk1BBQymMfN4POjv709qEiT6m2jqM7kgZrvt7u6O+3eWZeF0OlFUVJS0LafTiQsXLow6WTY8Fsvt3kZ9IOlspWtDbm1kvKMkf8hNC8Uf6WzRGEw55KI/Ll26FPOiGMuyaGpqwp133sn/bfgLfDqdDuXl5ZmsJtRqNcxmc86XJXYbEWpPTm2WUmMRRA7j8Xiwa9cueDyebFdFMGazGX/913+dsZvOWGT63EpZnpi2xbAlxIaS2nwmmTp1KpYtW4Z7770XK1eujPksXbo0JVstLS04e/Yszp49i5qaGuzcuRM1NTX8386ePYszZ87gs88+Q1NTU1b2UjAYDFi3bl3Sx4sRf/x+f9KTIMDgW1GJ3nz3eDyoqqpK66FzOimGUrmu/u///b+S2U6GRL5at25dUpM/Qnwt1n2quLgYJSUlok4qpJLOjGVZrF27Fo8++mjS9lmW5SeQhn6Gpi0DBldCdHV1oampCZcuXUJ9fX1KOlJBzLY12iRxKumxOI5DQ0NDyiuG5HZvoz6QdLbStSG3NjLeUZI/5KaF4o90tmgMphxyzR8+ny9uf6q3txevvfYaPB4PIpHIiNW5wWAQzc3NmaomgME+77lz50b0cXOtLLHbiFB7cmqztCKEIHIYrVaLsrIyaLW5fymHQiG0trYmTCeTaTJ9bqUsT0zbYtgSYkNJbT4bxFuhIeRcqtVqFBQUxF02zHEcbty4AYPBEJMCJlPs3LkTwH+tkBgNMeKPw+FI+TeJcqRqtVpYLJa069PV1TXiIbtKpYLVaoXRaByxQV0q19WECRMSftfT08Pbi65KEfuaHe6r6KRX1N+p/l5I2VLT3d2NGTNmJLWhYCYmHONNnDAMg69//et4++23wTAMzp8/D7fbzX8/fLWYUBwOB786Y6y21dvbi+7ubvh8PjAMg6KiIkybNk3SDRq9Xu+ITeWTQW73NuoDSWcrXRtyayPjHSX5Q25aKP5IZ4vGYMoh1/yR6KUStVqNadOmQavVoq+vL+6LJKPtRScFo41vc6kssduIUHtyarPZrwFBEGljMBhEyyGYbfx+f0ZzP45Fps+tlOWJaVsMW0JsKKnN5wLRB9ujYTAY0NvbCwAoKioa8QC+t7c3KxMhRqMRVVVVMSskamtrRzww7unpwRNPPCE4/qSzZ0Si3xgMBsyYMSPlDcujtLS0xLzhPnQj86KiItx6660xHe6SkhL+uuI4Lu0H/U888UTM/5ctW4adO3eirKwsZpVKNHVZOvj9fmzcuBGvvfZaWraSvdfE278j0/epa9euwWq14rbbbhvz4f3169czVKtYWJbF+++/j8ceewybN28e8V26qcSGttkoRUVFqK+vx8qVK6HRaEa9H8Tb86O/vx9utxvz589Pq07JkM4kCCC/exv1gaSzla4NubWR8Y6S/CE3LRR/pLNFYzDloBR/aLVaLF26FAaDAZ2dndmuDoD/emCf62WJ3UaE2pNTm6WJEILIYQKBAOrq6rB48WLo9fpsV0cQer0eixcvRl1dHQKBQLark/FzK2V5YtoWw5YQG0pq87nA8Afbwxl+3TIMgxUrVmDr1q38w+lsX88Gg4HvYLa3tyMSiYw4Rqr4E+9h7lDcbjcmTJgw4mF+IBDAjRs3oNfr49bnueeeA5DYP9EJLL/fj+3btyfcjDuKXq/HunXrsGHDBgSDQXR1dY2pLRlqa2tx5513jji30Y7w1q1bY65jnU6HoqKiUQcEer0eKpUKU6ZMSSsGjOXr0fbvyMZ9ymazgeM4GI1GWCyWhG+N9fX1ZaQ+idi/fz9+/OMfg2EYvt1F9xVJFo/Hg2AwiGeeeSbub6Px5d/+7d+waNEicByX8H7Q3t4et4yuri7MnDkz7Yk4qZDbvY36QNLZSteG3NrIeEdJ/pCbFoo/0tmiMZhyUIo/QqEQzpw5g+XLl2e7KjyhUAg2mw0lJSWSr16Qsiyx24hQe3Jqs7RHCEHkMJnMXyg1DMOgvLxcNhuxZvrcSlmemLbFsCXEhpLavBIYft2yLIvDhw9j+/btWa5ZaiSKP/EmTZLB7/fjmWeewdq1a7Fx48aEn+985zuYOXMmCgsLsWHDBn7ZOMuy6O7uThgPi4uLUVxcnLD8J554Ahs3bsRjjz025iQIAD5t0KOPPoqHH354zAmwVIh3bv1+Pz788EP8/Oc/R3t7O/+x2+24fv066uvrE6Z6YhgG/f39aceAse41o+3fkY37FMuyOH/+PE6dOoVDhw7h/fffj5tbN9sTjoFAgJ/02759Ow4fPpyyjxoaGvAP//APCX8bjS//+I//iDNnzsDpdMa9HwSDwVH3/BiauitdgsEg+vv74XA40o4TQ5HbvY36QNLZSteG3NrIeEdJ/pCbFoo/0tmiMZhyUIo/wuEwLl68KCsd4XAYNpstrdX+cipL7DYi1J6c2qyKy8YupgQhEhcvXsSiRYv4/zc0NGDhwoVZrBGRCk1NTZg7d27c78iXBJEZWltbMXPmTFFtMgyD6upqMAwDg8Eg6C2f5uZmfPHFFzFv5g+lpaUl6SXFx44dG/HQ0mazJbT95ptvYuXKlZg6deqYtm/cuIGmpiYAwDPPPIPDhw8nVaehPPzww6iqqgIAfPLJJ/j6178e97jKykoASFhvKXn77bfxV3/1V2mn7RqNoSuKpk+fnvAe8O677+Khhx5KaKelpQVtbW2j+jYRlZWVKCkpATB62xBCsmXMnz8fzc3NIwYMer0eDz30EHbu3Amj0Yienh588skngusaLx1YKlRWVqKoqAhr165Na5Dz8ssv4yc/+cmYx0Xjy7Rp0+K2kWAwiBMnTiT8/YwZMzBjxoyYlTU1NTUJ2/Stt96K0tJSAIOp41paWmJWnKjVasyfPx/FxcWw2+04f/78mBqmTp2asP9DEARBEAShJHp7e9HQ0BD3u6VLl8JsNvP99/GOXNJHSU02n+XSihCCyGEikYhobyNmm0xuSpUMmT63UpYnpm0xbAmxoaQ2LxeE7NeQ6LodKyWU3EikIxKJ4MqVKylthM6y7KgPYUcjurF7JBKB3+/PWDxMJf6azWasW7dOEttDVxR1dHQktMey7KgxYNKkSQnLE3KvEes+pdVqk9qw+9KlS3EnFAKBAN58801s2rQJNpsNdXV1ae/FAQxOuFRWVqK6uhrbtm1L2w7LsmhsbEz7Ta9kJkGi5fT398Nut/Mbot+8eRN9fX3o7+9PmBYrSltbG44dO4b6+vqU7yXd3d0j7EciETQ2NgqaHBx+b4tEIrDb7bhx40ZW7nnUB5LOVro2qP8jL5TkD7lpofgjnS0agykHpfiD4zg4nU5Z6eA4Dn6/P+Hq9FwpS+w2ItSenNqsPJ44EgSRFi6XCxUVFXC5XNmuimCsViu2bNkCq9Wa7aoAyPy5lbI8MW2LYUuIDSW1eblgMBhSerA9lNGu256eHthsNrS1teH9998f9XPu3Dl0d3dnpMMZj7HiTyr7LwhJ2+T3+/HGG29g//79OH369KjxMN7G9OmSbPxlGAbz5s3Dzp078fDDDyc1gZZObD9x4kTCB/tWqxWXLl0aNQaYTCbcfvvtsFgsotRHjN8OZcmSJbjzzjsF2QAGVyxt3LgRa9euxS9+8YuEx82fPz9hqq81a9bgt7/9bcJ0YKnw6KOPjloPMWFZFi0tLXj++edx8OBBHDt2DGfOnMGFCxeS3ji+r68Px44dQygUGvW4zs5OXL58GV9++WXC1TIcxwma/B16b/P7/fj8889x/vx5NDU14dy5czh9+nRG059RH0g6W+naoP6PvFCSP+SmheKPdLZoDKYclOKPQCCAV155RVY6AoEAamtrM9LvkrIssduIUHtyarOUGouQjAsXLmDfvn04duwYGhoa0NfXB5PJhPnz5+P73/8+fvazn8FoNAoqY7ynxopEInC5XLBarbJZSZEKQ1NjqdVqWK1WuFwuRCKRrPsy0+dWyvLEtC2GLSE2cr3NyxWfz4dNmzbxKxKSZfh1my7RlEjPP/885s+fH/OdmKmxTp8+PWJ/BZvNhkceeSSujmgKo8mTJ4+o13CiqbHESKc01nmN1ivdFFyplhfl29/+Ng4cOMCvZmhvb8fJkyf57+Ntzp5uG/nnf/5n/PrXv45b18rKSqxfv37MGOD3+1FYWBjTpkerz9CUbsDgw/ahaZ7Eau8tLS2YMWMGrly5grq6OslTnEU1DX9QH28yTap0YFIw3B9DU6ulssrtlltuQU9Pj+B0b2VlZcjPz08rNdbQe1tDQ0PcSZXi4uKM9YuoDySdrXRtUP9HXijJH3LTQvFHOls0BlMOmfYHx3Fwu91wuVwwm83Iz89PanVzlESpsTiOw9y5czFlyhS0tbXJIjUWx3EIBALQ6/UpaRSrLLFSY4ndRoTaG/77bD7LFXdbeoL4/9Pc3Iw77riD///UqVNRXl6Ozs5O1NTUoKamBi+//DI++ugjTJ8+PYs1zW2iaTqUQHSpnFzI9LmVsjwxbYthS4gNJbV5OWE0GlFVVQW/359Sip2Ojg7ce++9gsuPpkT6+c9/jo8++ggajUawzXhMmTKF38djKHKLP8nWZ+vWrQAGV1AkswqlvLwczz77LOx2e8ykxVjlGQwGfOc738Frr70WMyAwGAz8XhdRXnjhhbip0Z555pmU9p6INwkCgH/gnUwHPLra6c0334z5fSKtK1asiJkYiD5Yj042idFOoudMpVJh7ty5cTc+F5uFCxeip6cno5u8x+N3v/sdioqK8Oijj4pib7g/onEEQEyKr+HtcfgEkN1uF6U+Qoje2yKRSMKVJb29veA4TvJB+dD6ZArqA2WmbEI8lOQPuWmh+COdLRqDKYdM+oPjOFy9ehU3btzg/zZx4kQsWLBA8AN2lUqF1tZWWU2uqVSqtNNGy6kssduIUHtyiiHyaW2EouA4DsXFxfjVr36F5uZm3LhxA1988QU6Ojrw2Wef8W9CPvzww9muak7jdrvx4osvwu12Z7sqgrFYLHj88cfjpjLJBpk+t1KWJ6ZtMWwJsaGkNi9HDAYDysrKkv4UFRWJet2eOHECPT09otiKx7Rp0zB79uwRqxEzFX+ee+45VFZW4ne/+92oxyVbH4PBgG3btqG6uhqVlZVxP2fOnEFLSwsGBgZQV1eHv/iLv8DKlStRVlaGF154AQcPHsTu3bvxL//yL9i9ezf/u7feegv19fVoaWmB3W7Hm2++mfQqToZhUFJSgpKSEhQWFqKjowPPPvss1qxZI/hhvMViwZdffpl0DBiexiveuY2miIpOLA1l69atfL0T/fab3/wm7rvvvqTqs27dOr4uKpUKEyZMSOp36WIwGDBlyhQsWrQoY4O6eDAMgwULFoiSgitKouvk8OHDaG9vR2trK372s5/hL/7iL7Bx40b+s3btWjzzzDP8CpCxUmNJgdvtRltbG5qbm9Hd3Q273Y4XX3xx1HQBmVzET30g6Wyla4P6P/JCSf6QmxaKP9LZojGYcsikPxwOR8wkCDD4ckZXV5dg24FAAKdOncKFCxdksRoEGKxTplKSSlmW2G1EqD05xRBaEUJIQmlpKVpaWmAymUZ8t2LFCuzZswcrV65ETU0Nzp8/H7N6hEgehmFQXl6e9bc8xYBlWZw7dy7t3Ppik+lzK2V5YtoWw5YQG0pq80pg2rRpaGhoEO26ZVkWXV1dI1YZiMktt9yCW265hX+o2NramrH4U1xcjJKSEv6N9ETljVYfhmFQVFQ04m+JztmcOXNGPCguLS2F2WxGX18fWJZFSUkJLBYLZs6cCZ1OB5PJhOLiYuTl5aWp9L/QaDQoKSmB0WjEtm3bYt7Ot9lsKe8pwbJsSvujDF3tdPHiRVy+fBlOpxM7duzgVx6NZi862cSyLHp6emJ+W1paiiVLliAvLw8nT57E//pf/yvh6hyGYfDQQw9h586dKekVytCJl2XLlsHr9fKDrdbW1owNRoautlm5ciU+/fRTwTZHu05GW3UyfOWI0JRY6eB2u2POfSgUwrRp07JSl3hQH0g6W+naoP6PvFCSP+SmheKPdLZoDKYcMumP9vb2uH//8ssvMWXKFEG2o+MEqbIBpEMm6yRlWWK3EaH25BRDaCKEkISx3jpcsWIF8vPz4XQ6cfnyZZoISRO9Xo/ly5dnuxqiEAgEUFNTk+1q8GT63EpZnpi2xbAlxIaS2rwSyM/Px7Rp0/DZZ59luyopE00vo1KpMh5/hqdcGs5o9fn2t7+ddAfSYDDAbDbH/a6goCBmefLtt9+elM1U0Wq1KC0t5f8/dNJmrAmheHAch3nz5kGv16dUD4PBgOnTp8PtdmPatGkp/RYYnFCaN28egMFBS0FBQczLHnl5eSMmeoZSVFSE+++/H1ptZrre0bRgQydeVCoVzGYz3yY8Hs+IiZB0fJJMPZ577jloNBpotVrs378fP/7xj7Fv37645cyfPx9bt26FWq0edUJD6HUbnbQaej2NlUZLKrRaLSwWCy5fvix5WclAfSDpbKVrg/o/8kJJ/pCbFoo/0tmiMZhyyKQ/Rksh2tbWBpVKBa/XC6vVmvJD/eHjBDmQyTpJWZbYbUSoPTnFEEqNlUHC4TAuXLiAV199FZs3b8bSpUvBMAxUKhVUKpWgTXFYlsXu3bvxzW9+EzNmzOBTIdxzzz34t3/7N/T29oonRARCoRCCwSAACN4wfTzj9/tx5MgR2bxBKASDwYDVq1dnNXXHUDJ9bqUsT0zbYtgSYkNJbV4J+P1+/PjHP8bGjRtlc+2mQ6L409PTA5vNhosXL+K9996L+Xz++edob29HOBxOq8yhKZeSqY/BYMDDDz+M3bt3Y/78+dDpdKPaN5lMuOOOO5LaT0DK6yoUCqG1tTVu+iGGYZJOKRXlvvvuQ3t7e9p1Ha0+UaKrhqZPn44FCxZg5cqVmDlzJiZNmoRr165hwoQJcVe8ArFpwYZ+Mvn20+9+9zu0tLSgqqpq1D7W5MmTR9QrOkknBhUVFbDb7aiqqsKkSZMwYcIE5Ofnw2w2o7KyMm5Kt4MHD+KFF15AWVnZmOdMaL9h6KSH3+/HM888g7Vr146aRksqkmmXwOAqnnPnzuH8+fNob29HJBKRpD6pxASfz4f6+nocP34cp06dwpUrV1KOi9QHykzZhHgoyR9y00JjMOls0RhMOcjFHy0tLbh27Rq6urrQ1NSEhoaGlPomyfZ/Mkkm6yRlWWK3EaH25NJmAVoRkjH27duHRx55BD6fT3Tbly9fxsaNG3Hu3LmYv9tsNthsNpw6dQr/+q//itdeew3f/OY3RS8/Hfbt2wefzwetVouvfvWr2a5OzhINnEuXLs12VQSj1WpRVlaG06dPZ7sqADJ/bqUsT0zbYtgSYkNJbV4JhEIh3LhxA7///e+xc+fOpDdaF2uTdbFIFH+eeOKJhL+JPjD+9a9/jbvvvjvlMoemXBq+giAUCsHlcuGFF17g01OVlJTwD3yNRiMmTZqEgYGBuIMNnU6X0oqJdK+rZFY3RDe0fvDBB2GxWGL2OYiuDti0aRP2798/asc4er7/x//4H2hra0t7wBCtz9SpU+N+r1KpMHv27Ljf5Ur8GdpWRsNgMGDx4sXo6OiAy+XiN6LfsWMHnnzySRw+fFjQypCx6jFaSrdJkyahr69vVPti9BtsNhuKioqwffv2uCu0Em3AHg8he3iM1S6jDM2fbbfb4XA48JWvfEX0DdSTbevD05OFw2HcvHkTfr8/pVVm1AfKTNmEeCjJH3LTQmMw6WzRGEw5yNUfdrsddrs96T3wku3/ZJJM1knKssRuI0LtyanNqrhM7rw3jtm1axcee+yxUY9ZtWoVjhw5kpLdjo4OLFu2DDdv3gQwOIC/7777MHv2bPT09ODjjz/GwMAAgMEHIx9++CHuv//+tDSIhd1uR3l5Odrb27F582a88MILadu6ePEiFi1axP+/oaEBCxcuFKOaRAZoamrC3Llz435HviQI5dLa2oqZM2fG/e7cuXMx6RKbm5vxxRdfYOPGjXGPb2lpQVlZmSR1SYY1a9bgnXfegdfrRVNTE2w2W8K6VlZWJrX/yYQJE7Bo0SLRH26KTSgUwokTJ8Z8AKzT6XDPPfeMqsfv98Nms+H8+fN8v2UoQ1MUTZs2DXPmzEm5vj09Pbh48eKox6hUKqxatSpl23V1dXA6naMes3LlyhGTR0LbXzwqKyvx4IMPxqQ+S5X6+np0dnaOmKRjWXbUdFVDefPNN/HDH/4w7neRSATHjh1L+NuSkhJcvHgR69evT77SaaJSqcZswwzD4E9/+hM8Hg//t3hps+644w6cP3+e/3+8iU6x020tXrwY+fn5MX/z+XxoaWmB0+mEWq1GYWEhZs+eLXpqNpvNljCd11e/+tWUU9gRBEEQBCEfxuqvxcNkMuGuu+6K+Vtvby8aGhrErJpiEZIpKJfI5rNcWhGSYSZPnoy77rqL/xw8eBAVFRVp2/vRj37ET4LMmDED+/fvj3mA1Nvbiw0bNuCTTz5BMBjED37wAzQ3NwsaHAshGAzihz/8Idrb2zFr1iw8++yzWamHUgiHw+jp6UFxcbGsNphKB41Gg+LiYvT09KSdakZMMn1upSxPTNti2BJiQ0ltXgkoxR9C4s+JEyfQ09OTVJrH0tJSmEymhGVotVoUFhZi6tSp6Orqkn380Wq1mD9/Pi5dujTqg+Ti4mJEIpFRbRsMBpSVlSE/Px/19fUJl9UzDAOGYRAOh1M+NwaDAZFIBD6fD0ajEWr1yAyxo20Qr5T2ngx5eXlxV2xE99QYa6UIwzAoKipK+L1KpRrVTl5e3pj7lQy9biORSNorMpL5HcuyWLt27Yi/R/czmTp1KhiG4SdK/H4/tm/fzu9DMpTo6qatW7fyK2bGapej4Xa7YyZCWJbF+fPnEQgE+L91dnbC6/Vi0qRJ6O7uxsDAACwWC0pLS+P6Kdm27vV6R/0u2YkQ6gNlpmxCPJTkD7lpoTGYdLZoDKYcMuWPsVbnxmO0vsFwhPR/pCKTdZKyLLHbiFB7cooh8mhp44AHH3wQbW1tsNlsqK6uxrZt2/Df/tt/EzQh8f777+P48eMABgdV1dXVIzYdnzhxIvbv349Zs2YBAPr7+7F9+/a49p566il+v5JUP8mkqIhEIvjv//2/4+OPP0ZxcTH+/Oc/w2q1pq2fGBz8vvTSSyM2O81FLBYLHn/8cVgslmxXBUDmz62U5YlpWwxbQmwoqc0rASX4o6SkBBMnTkw7/rAsi+7u7qSOLS0txeLFi7F06dK4n/LycsyYMQNerzdn4s+kSZOwbNky3HbbbZg1a1bMZ/78+ViwYAEqKyuTtl1YWIglS5Zg1qxZMXtsTJkyBXPnzsWtt96KXbt2pVVXs9kMtVqNM2fOJHy4PmnSpIS/V0J7T5ZJkybFXcHDMExSb6qtWLFi1IfgKpUq4blWqVSYOHEi9Hr9qPuVRPsN3/jGN/Dhhx+O2G8k+vnd7343Zn3T5dKlS3jsscf4vUSi6QGjqbbitbNouq2h/XGWZUdtl6MxfCKnr68vZhIkisvlwtWrV+FyuRAMBtHf34/6+vq4m6BSH0g6W+naGE/xJxdQkj/kpoXij3S2aAymHDLlD5fLJal9If0fqchknaQsS+w2ItSenGIIpcbKMr/61a/w9NNPA0g9Nda3vvUtvP/++wCAn/zkJ/j973+f8Ng9e/bgL//yLwEMLsnv6uoasTz+f//v/5326pSurq5RZ/U4jsOmTZuwa9cuFBUV4dNPPx0xaZMO4z01FsdxCAQC0Ov1sk+hEo+hqbFUKhX0ej0CgQA4jsu6LzN9bqUsT0zbYtgSYiPX27zSSNcfckqNBQAbNmzA/v37+fiTKp999hnKysrGTI2VbF0p/khnz+/3o76+fsTbajqdDlOmTMHMmTMT2h2tbLmlxlq7dm3CDd2Tpbe3F9euXeP3t1Or1SgqKsL06dPxl3/5lzh48OCoqx1MJtOoewFxHIempiZ0dXXxq6Ty8vJw6623YsKECTh58iRcLteoKyvuu+8+/P3f//2oK3miqzkyMaBds2YNnnrqqaTKU6lU2LVrFxiGAcdxyM/PR15eXsrtevbs2bjlllv4/zc1NeHGjRtJ/37SpElYsGBBzN+Svc6am5tx/fr1uN/dfvvto64KSqe8dFBKH4j6P/JCSf6QmxbqA0lni8ZgyiFT/hjtPj8aw1+aSZQai+M4fpW3XNpVJusUryyxUmPJbQw2/PeUGotIGY/Hg08++YT//1j7j3z/+9/H448/Do/Hg/7+fhw7dmzEXiG//OUv8ctf/lL0unIch5/+9KfYtWsXrFYrDh48KMokCDE4iE5mQ9RcgOO4UTfKzTSZPrdSliembTFsCbGhpDavBJTij507dya1YXcibDYbNBoNbDYbenp6BNeH4o909gwGA+666y6Ew+GY1awMw4zZqZfiPEU3FBfz/qfT6ZJK1TYWEydOxMSJExEKhRCJRKDVavll+88//zwuXbokaP8LlUrFr/JhWRZqtXrEbw0GA7Zt2zbmXhsajSZhyrno5Ey8zdDF5sSJE7DZbElNunAcF7PfSryUWZlgeNoLjuPQ3d0Nu90OjuNQUFCAyZMnS5oeIldiUDb7QEq53yoFJflDblqoDySdLRqDKYdc80eiF81UKpXo+5cJJZN1krIsuY3B5NRmKTVWjnLy5El+2Xu8zYiGYzAY8NWvfpX//6effipp/Yby85//HK+88grMZjM++OADLF26NGNlKx2Xy4V///d/l3zJYiawWq3YsmWLbNKlZfrcSlmemLbFsCXEhpLavBJQij9CoRCWL1+OtrY2tLS0xP1EU1HGY/369fjqV7+KjRs34oknnhBcH4o/0tmL/j66f0H0k8ybTVKcJ4PBgHXr1olmDwDmzp0r6htsWq0WDMOMeBAe3UNk6CedTcDVajUMBsOov41XFsdxqKmpQVlZGVauXIkVK1bg9ttvj/v7rVu3Ys2aNZJv3h1vwiYZrFYrfvazn+HMmTMJU9hG7dtsNv4zfMKF4zh+BU+yDJ1A4jgOV65cwblz57Bv3z60t7fjyy+/HHMfIKHkSgzKZh9IKfdbpaAkf8hNC/WBpLNFYzDlkGv+SLRvSCAQQE1NTdyUntkik3WSsiy5jsHk0GblNfVGJM2lS5f4f3/lK19JahbxzjvvxEcffTTi91LyxBNPYMeOHTAajXjvvfdwzz33ZKTc8YLBYMDq1atlM7MqBL/fjyNHjshmVUimz62U5YlpWwxbQmwoqc0rAaX4I6qjoKBg1D0iMl0fij/i25Nj/Nm5cycA4N133xUlfZNc9tqSGq1Wi7KyMphMJqhUKuh0uoSrFqIrS6ZNm4Y///nP+MUvfiFZvaL7hKTC0D5QNA1YdGKIZVncvHkT27dvH9F/ZxgGf/EXf4GqqiqEQiE0NDQIakMDAwPo7Ozkz210fNHT0wOXyxWzKbuY5EoMymYfSCn3W6WgJH/ITQv1gaSzJcc+EJEemfKHWC9BtLa2xv378P6GHMhknaQsS0ljMLGRT2sjUuLLL7/k/z1jxoykfjN9+nT+35cvXxa9TsPZunUr/uM//gMGgwEHDhzAqlWrJC9zvMEwDMrLy7NdDVFgWRbnzp3LdjV4Mn1upSxPTNti2BJiQ0ltXgkoxR9y00HxRzp7UsWfsVZCaDSahA/pjUYjqqqqcPToUXR2do74nmXZmBRKciCZ1FtSD3Q0Gk3Kq1AMBgMWLFgAhmEk2zPkN7/5Tcq/Gd4H6u/vR0FBQcL9UYb+rrq6Go899hj+7u/+LmF6sGSJvqUXPbfDv5NqIiRXYlA2+0Byu0+Nd5TkD7lpoT6QdLZoDKYcpPZHIBBAS0tLWi93DGe0tMHx+hvZJpN1krIsJY3BxIZSY+UoQ/P5Tp48OanfDL3A0lm2nwqnTp3Cv/7rvwIYXO7///1//x9WrlwZ9xN9E5JInYGBAXz44YcYGBjIdlUEk5eXhwcffHDUDU8zSabPrZTliWlbDFtCbCipzSsBKfxx8+ZNtLa28p+Ojg5R9t0YjWR0lJSUCEqrYzAYku7oUvyRzp5U8WesTaELCwvH3GNBr9ePSP+UbropqSkoKBjzfi10ddVYEynBYBBXr15NOZ1AdC+OsVi5ciUqKytjPgcPHsThw4fx+uuvp1TmWMTrA23fvh2HDx9OasLmwIEDolxjkUgEwH+d22AwOOI7KciVGJTNPhD1f+SFkvwhNy3UB5LOFo3BlIOU/giFQjh//rwokyBA4tUgQPz+RrbJZJ2kLEtJYzCxoRUhOYrH4+H/neyD46HHDf29FAwdlHZ3d6O7uzvhsV//+tclrYuSiUQicDgckg5OM4VarUZBQYGkm3GmQqbPrZTliWlbDFtCbCipzSsBKfzxzW9+UzRbyZKMDoPBgG984xt477330ipj3bp1Sb8hT/FHOntSxZ+SkhK43W7cvHlzxHdmsxm33XZbWvWVKxqNBuXl5WhqakJvb2/Md1qtFlOmTIlZiZwOxcXFo+YR5jgOgUAgrRcotm7dCgBxV1sks2m52JNTw/tA7e3tKW3u7vf70d/fL9pbhRzHwe/3S7ovyFByJQZlsw9E/R95oSR/yE0L9YGks0VjMOUgpT/sdnvK+43FIxAIoKGhIeH+IEDm+xvJkMk6SVmWksZgYiOPJ45EygzdRyHZwdjQN1mlnoVbvXo1OI5L6vOrX/1KcHkGgwFmsxnA4KaPDoeDDyYul4sf5A4MDPCBOBQKweFw8DacTic/E+vz+fjgHwwG4XQ6+eMcDgdCoRCAwU2foueSZVl+wM5xHBwOB5+iwOPx8D4LBAJwu90ARgYDt9vNTyL5/X5+wiqRJpPJFLPJaq5p8ng8/IauGo0G77zzDrxeL/Ly8njb2dKk1WrxrW99CyaTSbCfgLHbHsMw2LBhA1QqleiaNBoNNmzYAK1WK7jthcNhfO9734PJZEr7egqFQtiwYQNMJlPKmkwmE7797W9Do9EAEPd6SsZPcr6esqFJp9Phm9/8JkwmU0qaPB4P/8DPYrHw96ehsVyj0aCgoICPEVarlb/f5eXlwWQyxWgXogkYnKgwmUyj+unFF1/Egw8+CIZhoNfr+b0Yhj/EHKopPz8fP/rRj7Bz586k/aTX6/Hggw/yGqVue2LGiOGaAGDDhg3Q6/WitD21Wo0NGzZAp9OldT0Fg0H88Ic/hMlkEvWeq1KpMHnyZNx1111YtGgRZs2ahVmzZuGuu+7C7bffHjOgTOSnUCjE1yc6MIqef7PZzD+UH6vtRc+/1DHC7/dj0aJFWL16Ne644w4sXboUy5cvR3l5OaZOnQqVSiUo7k2dOhXTp09HKBTiz1coFOLrrdVqsWbNGj5mDNUUDAb5f0cikZh+s9/vh06nw7Zt2/DOO+9g9+7dqKysxJ49e/CHP/wB1dXV2LZtG/9bYPAaip4HjUYDk8kEhmGgUqlQUFDA35NS8dPQuKdSqVBVVQW/34+CggI89dRTABLHPa1Wi4KCAl5Tfn5+zGqOaF3D4fAI7fE0DfdTJBKJSSEWPf/xYnm0TQUCgRg/RdtUMm3PZDJh/fr1MW9EihX3TCYTHn74YQSDQcH3XI7jsGHDBhgMhoz390wmE773ve/xGpTSj8jVvpHJZMKDDz7IX8e5rElIv1wKTWKMNbIVI4ZrMhqN2LBhA8LhsCz8JKS/ZzAY8OCDD/KpMSlGZFdTJBLBd7/7XZhMprQ12e12OBwOdHR04Pr16/xxFy9eTLkfEQ6HY/qwDocD9fX1cLvdMf2I4X3dSCSChQsXgmGYEf2I4f24of2N6Pkaq7839LhkNalUKixatAgajSZhv3w0TcPrOpomnU6HRYsWgeM4vq5itT29Xo8NGzbwNqP1Trft5eXlYcOGDYhEIqKOCbMBTYTkKEPfUEs2x/HQVRpyST8kFsuXL8f69esBDOYgrKio4PXu3LkTjY2NAICjR4+iuroaANDR0YGKigrexo4dO9Dc3AwAOHToEA4dOgQAaG5uxo4dO/jjKioq0NHRAQCorq7G0aNHAQCNjY18mq9AIICKigo+ncvevXtRU1MDAKirq8OePXsADAaHiooKPhjt2bMHdXV1AICamhrs3bt3VE2hUAjV1dU4cOBATmo6cOAAP4DYtGkT7rvvPmi1WqxatQpnz57NqqYzZ87gtddeQygUEuwnYOy2d+XKFbS2tuLgwYOiazp58iRaW1tx5swZUdresWPHEAqFBF1Pra2tCIVCKWsKhUJ44403cPLkSQDiXk/J+EnO11M2NNXX1+P3v/893wFMVtOf/vQnWK1WAMAjjzyCxYsXA4iN5cXFxdiyZUtMjFiwYAEAYNWqVVi7dm2MdiGaDhw4gOrqaoRCoVH99NFHH+Ef//Ef8eWXX+Lll1/Gtm3b8PHHH+PAgQPYsmULDhw4gI8//hjbtm3D66+/jitXrmDv3r34xje+AaPRmLSf2traUFFRwXecpW57YseIoZoOHDiA1tZWXpMQP1VXV+Pw4cNobW1FfX192tdT9P4pxT33+vXrmDhxIs6ePYuzZ8/CZDLh2rVrSfmpq6uLr084HEZtbS0/wFm/fj2WL18OAFi8eDEeeeQRAIMPyrds2RJzPV29ejVlPwmNEc899xx6e3thMBjw3nvviRL33G43Zs2ahatXr4JhGMyaNQsOhwNNTU2YMmUKJk2ahLfffpsfLO7cuZPX3tbWhitXrvD2amtr+bqePn0adrsdAHD9+nV4PB4+BVlbWxs/8VBbW8u3/ytXrqCtrQ3Tp0+HxWLBpUuXsGLFCuj1emzZsgXFxcUp+2lo3PvBD36AsrIylJSUJBX3SktLsWXLFl7T5s2b+fPQ3NzM+8xut+P06dP8cfE0AcDHH3+MF198EVeuXOHbXldXFyKRCBobG/n2OtxP+/bt49tUfX09n0ajo6MDH374IYDk2l4oFMLp06clueeGQiE0NTWJcs99++230drais7Ozoz390KhEI4dO6a4fkSu9o2ifdjoNZTrmtLtl0ulSYyxRpRMxojhmrxeL1pbW2XjJyH9vWjcG3rPpRiRPU1vvPEGPvnkE4RCobQ0tbe347nnnsO5c+dw9epVvP766zh+/Dg4jsPly5dT7kf09PTE9GErKir4PsHQfoTNZkN9fT2vvba2Fj09PYhEIiP6EdF6+3w+1NbW8g/s6+rq+POVbH8vlb5Ra2srHA4Huru7E/bLx9KUqG80XFMwGITD4YjRJFbba2trQ2trKw4cOCBK2+vv70drayveeOMNUceE2UDFyWkN0jjkV7/6FZ5++mkAgwOcI0eOJPW7hx9+GG+99RYA4IknnkiqIb3zzjv4/ve/D2AwhUO8DTlzjYsXL2LRokUwGAzQarWoqanBvHnz4Ha7kZ+fD5VKBZfLBYPBAIZhMDAwgEgkApPJhFAoBI/Hw79R53Q6YTQaodPp+ABnNBoRDAbh8/n4DSIdDgfMZjO0Wi3/dmpeXh5YloXf74fVagXHcXA6nbBYLNBoNPB4PNBqtTAYDAgEAmBZFhaLBZFIBC6XC1arFWq1Gm63m3/T2O/3IxQKwWw2IxwOx9Xk8/lQUVGBn/zkJ5g6dWrOabpw4QKWLFkCjuNQWlqKv/mbv8G///u/IxAI4Pjx41iyZEnWNHV1deHFF1/Ek08+CavVKshPybQ9lmXxwgsv4Kc//Sny8/NF1eT1evHiiy/i8ccfh9FoFNT2rl+/jp07d+LJJ5+EXq9P63rq7OzEa6+9hieffBIAUtLkdrtRUVGBxx9/HJMnTxb1elJijJBaU3d3N3bs2IEnn3wS+fn5SWvq6enBjBkzEAgE+DfYA4EAH8ujb61ZLBY4nU5wHAer1Qq/3w+WZZGXlwe1Wo1wOMxPkAnRdPPmTbz88st48sknYTQas+6n3t5ePP/883jyySdRUFAgedsTM0YM12S32/Hyyy/j5z//ecxb7OlqcrvdeOmll7B582YYDIaU/dTR0cHHH41GI6t77meffQav1wu9Xs+nfWIYBt3d3fjJT36CUCgEv98PvV4PhmHgdruhVqv5e1QkEoHFYsHp06cxd+5cWcQIKeNeX18f/vM//xNPPPEECgsL4XK54Pf70djYiGAwCI7jwDAMIpEIWJaFwWDA7NmzcfHiReh0Omg0Gv6tOp1Oh3A4jGAwyL9s5Pf7wTAM1Go1/4bg7NmzUVpais8//xwejwfbt29HQ0MD+vv7EQ6HYTabk/bT0LhXVFSEn/70p3juuecQiURGjXterxdarRZms5l/oy4/Px8vvPACpk6dOkKTz+fjH1wFg0FoNBqo1WqEQiEUFhbCZDIhHA4jFArxbc/lcuHcuXNYtmwZ1Go11Go15syZg/z8fPT09CAvLw9WqxUtLS3o7++HSqVCIBCARqOBVqtFKBSCWq3GmjVrEIlExmx7wWAQFRUVeOyxx/iUamK1vUgkwtueNm2aoLbX19eHV155BX/3d38HjUaT0f5e9IHFpk2bcMsttyimH5GrfSOHw4GKigr8/Oc/x8SJE3Nak5B+uRSaxBhrZCtGDNfEcRyee+45bNq0CZMnT866n4T09+LdcylGZE9TR0cHXn31VTz55JMwGAwpa7px4wbq6+tj+jw6nQ7l5eX8C6nJ9o2ixw3tR5SWluL69ev8cWq1mu8fhMPhuP0NlUoV04+IRCIx/Ti9Xs/3N7RaLd+Pi9ffG6op1f4ey7I4c+YMli5dCq1WO6JfPpamQCAQU9fRNHEch88//xzl5eUwm83QaDRYtmyZKG0vFArh+eefx09+8hMUFhYKbnuRSAT/8R//gR//+McoLi4WPCa8ceMGFi1ahCgNDQ1YuHAhMgFNhGSZdCdCfvazn/Ezfg8//DCqqqrG/M0LL7yAn//85wCABQsW4OLFi+lVWkZEJ0KiZPLiIYTT1NSEuXPnxv2OfEkQyuaBBx7ARx99JMhGsvc/gsgFampqYpbqR7HZbNi4cWPSdlpaWlBWViZizXIHlmX5FYPDUalUWLhwIRoaGtK2P336dMyaNQtnzpzhUwawLIv+/n74/X5s374dly5dStu+ECorK2P2CInWJ94+KFGS2Q8lislkGjXPdzzuvvtufoDe29sLt9sNo9GIiRMnjlpeNH2uXPaNIwiCIAglUVtbGzddfvTFNqGo1WpZ7AWRi6xevTrbVcgI2XyWS5ul5yhDN92MLkcbi/b2dv7f8+bNE71OBEEQBJEsL774Iv7mb/5m1Id0iWAYBt/5znf4pb0EQRDAYGwoKipCf3//iO8mTZoUs1+emGVGJyBeeOEFfmIkitlsxve///2U41w85s+fn9REC8uy+Pu///sxj2VZlt+UPbovSiJSnQQBBt9c1Gq1OHfuXMw+OW1tbSgvL+f3PIkSDofR1NSE3t5ehMNhWK1WzJkzh98HhiAIgiAI4STaM1iMSRAANAlCyBp6zSZHmT9/Pv/v+vr6mA1fExFd4jb890Tu4nQ68eyzz4p2w8om+fn5eOqpp/jlfNkm0+dWyvLEtC2GLSE2lNTmlYAQf8yaNQuVlZU4fvw49u7dm9TnT3/6Ew4dOoSOjg68/fbb/IaN2dQhBRR/pLNH8Uc5JPLHwoULUVJSAp1OB2BwomLatGm47bbbMvJAPToxEv2YzWasWLFi1N+M1QdiGAZr1qzB1q1bR7Xj9/vxzDPP4MEHH0xpZcrQCWmWZXH9+nUcP348ZvPUdOA4DtevX4+ZBAEGU3Rdu3aN/3/Ul2fOnIHNZkMoFOJTNpw/fz5mn8NUUUofiOKPvFCSP+SmhfpA0tmiPpByUIo//H4/Pvvss7grorNFJuskZVlKGoOJDa0IyVHuuece6PV6BAIBeL1enD59mt+cMR6BQIDf+AYA7r///kxUk5AYo9GIhx56SLSHgdnE5/Nh3759IwbL2SLT51bK8sS0LYYtITaU1OaVgFB/TJ48GZMnT8bdd98tcs1SQ27tiuKPdPYo/iiHRP7QaDSYN28en15JpVJBpVLx3y9evJjf5DFTRCcwEq2AG60P9Lvf/Q4LFiwAwzD8hpuJ2L59O7/CIxVYlsXNmzfxhz/8ASdOnADHcZg9ezaam5uhUqmSTp8Vj+gmnMPp6+vj/200GrF27VrYbDZoNJqY44LBIPr7+zFlypSUy47aVkIfiOKPvFCSP+SmhfpA0tmiPpByUIo/dDod5s2bx7+8IgcyWScpy1LSGExsaCIkRzGbzfja176G999/HwCwa9euUSdC3nnnHT6XcVFREe67776M1JOQlmjgVALBYBCXL1/OdjV4Mn1upSxPTNti2BJiQ0ltXgkoxR9y00HxRzp7FH+Uw1j+GD4BEiU/Px933nlnzEppqTEYDNi2bVtM2iybzYZf/OIXAEbvA5WUlIBhmDHL8Hg8OHHiRNp1HL6/ydD6JJs+Kx7JvOWo0+kwffr0hJMmbrc77YkQpfSBKP7ICyX5Q25aqA8knS3qAykHpfhDo9Fg4sSJ2a5GDJmsk5RlKWkMJjaUGiuH+dnPfsb/e9euXQk3P/f5fDEDl5/+9KfQapU1B2YwGPh0B+FwGA6HAxzHAQBcLhf/9t3AwACf4zgUCsHhcPA2nE4ngsEggMFzFn0rLxgMxizfcjgcfCoyr9fL51dkWRYulwvAYCoAh8OBcDgMYHBwGh0IBgIBflIqEonA4XDwORTdbje//N/v98Pj8YyqyefzYe/evfzAMdc0eTwe/iHFpEmT8L3vfQ9GoxF5eXm87WxpstvtePvtt+Hz+QT7CRi77TmdTuzbtw+9vb2ia+rv78e+fftgt9sFt72uri786U9/gs/nS/t6stls/JuvqWry+Xx4++23+QdJYl5PyfhJztdTNjQ5HA689dZb8Pl8Oa2pp6cHe/fuhc/nk4WfXC4Xf17F8FMmY8RwTT09Pdi3bx9cLpcoba+vrw/79u2Dw+FIy0+dnZ1499134fP5ZHfPDYVCfH04joPf70ckEkFRUREKCwv5t/H1ej0sFguAwc0oCwoK+E2lJ06ciMLCwpT9lItxz+1246233oq5bpLVlJeXh/vuuw9z587FjBkzcMcdd4BhmJiH9tHzH9URPQ8sy/L6hvop+l30PMTzp06nQ0lJCQoLCzF37lwwDAODwYDi4mI89NBDMJvNKCgo4PtGEyZM4NNlBYNB3rZWq0VBQQFf1/z8fPzsZz8Dy7IwGo3823Y6nS4m3VZBQQE/BjCZTMjLywMwmHrrxo0bAAYnkEpKSvDd734XRqMRZrMZBoMBJ06cgM/nG6Ep2qYCgUCM9qgvIpHIiOOibSDqJ5/Ph/fff59vA9HzHz0uEAik3fZ8Ph/effdddHZ2Cm573d3d2LdvH9xud8b7ez6fD3/605/Q1dXFn/9cvecqoW/k8/nw1ltv8XXPZU1C+uVSaBJjrJGtGDFck9frxb59+9DV1SULPwnp7wm5547HGCG1pu7ubv46SUdT9N4cZeg9NxgM8vrC4XBSfaNwOBy3Dxs9LlHfyO1249KlSwgGg2n1I4LB4IjjhGry+Xy4fPky/H5/WppS6RuxLIvLly/D4/GM6BtFf5Nu23O5XNi3bx96enpEaXsejwf79u1Dd3e3qGPCbEATITnMt771Ldx7770ABhvqt7/9bVy4cCHmmL6+Pjz00EO4evUqgMHVIP/0T/+U8bpKzfLly7F+/XoAgw+0Kioq+Itz586daGxsBAAcPXoU1dXVAICOjg5UVFTwNnbs2IHm5mYAwKFDh3Do0CEAQHNzM3bs2MEfV1FRgY6ODgBAdXU1jh49CgBobGzkN+4NBAKoqKjgH5bs3buXT01WV1eHPXv2ABgMDhUVFXww2rNnD5+uoaamBnv37h1TU1dXF1/XXNN04MABfuPSRx55hB/Ur1q1in9TM1ua6uvr+fzVYvhprLbX2toKADhy5Ijoms6cOcNrEtr2/vjHP/I32XSvp127dgnS1NbWxmsS+3pSYoyQUtOVK1f4+0suazp06BD/cEkOfrp582bMm9lStz0xY8RwTdG63rx5U5S2d+rUKQCDbS8dP/3+97/nBxByu+d2dXXx9QmHw6itrYXP5wPDMHj00Uf5lb+LFy/GI488AgCwWq3YsmULrFYrAODHP/4x33bkECOkvJ56e3tx6dKltDWp1Wp8/vnnOH/+PAoLC9HX14fTp0/zx9XW1vJ1uHLlCtra2nhNJ0+eHOGn6HfR82Cz2VBfX89rr62t5etaX1+P/v5+rFixAsuXL8fatWsBDE5kbdmyhe8b/eQnP+HvuW1tbXycKi0txZYtW/i6bt68GbNnzwYAPPDAA3jggQcAALNnz8bmzZv547Zs2YLS0lIAwNq1a7Fq1SoAwIIFC7Bp0yYAgxNtjz/+OD/xtn79eixfvhwsy6K1tTWuJpZlUVdXhytXrsBms6GtrY33hc/nQ21tLT/Qrqur49vAUD8NDAzErNI5ffo07HY7/5sPPvgAV65cwYcffoj//M//RGdnJ4Dk2l4kEsHvf/97wW3vvffeAzDY9rLR33M6nfjjH//In/9cvecqpW906dIl3Lx5M+c1Ce2Xi61JjLFGqm1PrBgxmiY5+ElIf0/oPVcMP+XC9ZQpTXv37uVfDExHk8vlQm1tLV/Xoffc5uZmXp/dbk+qb9TT0xO3DxvVm6hvdPbsWX5yob6+nk8B2tHRkVQ/oq2tDVeuXBFVU7SufX19aWka3t9LRlNDQ0PcvpGQthe9Px06dEiUthedGNm7d6+oY8JsoOKi0zWE5Hzzm9/kG2MUm83GD2pMJhNuvfXWEb97//33MXXq1Lg2Ozo6cPfdd/ODAZVKhVWrVmH27Nno6enBxx9/zF+sWq0WH374Ib72ta+JKSurXLx4EYsWLYLBYIBWq0VNTQ3mzZsHt9uN/Px8qFQquFwuGAwGMAyDgYEBRCIRmEwmhEIheDwe/uG70+mE0WiETqfjz5nRaEQwGITP5+PfqHM4HDCbzdBqtfB6vVCr1cjLywPLsvD7/bBarfwGjxaLBRqNBh6PB1qtFgaDgR8wWiwWRCIRuFwuWK1WqNVquN1uMAwDvV4Pv9+PUCgEs9mMcDisSE0XLlzAkiVLwHEcrFYrPyuel5eH48ePY8mSJTmnSYl+Ik2kiTSRJtIkvabPPvsMXq8Xer0eHMchEAiAYRio1Wq4XC68+OKL+OSTT6BSqcAwDNxuN9RqNaxWKwYGBnDPPffg1VdfxdSpU2WjKZf8dOHCBdy8eZOfAPD7/fz5Z1kWKpUKs2fPRmlpKT7//HN+Q++hfmJZFmq1GlqtFqFQCOFwOMafer0eKpUKgUAAGo0GoVAI/+///T+cOXMGdrsdGo0GFosFPp8PK1aswJNPPgmz2QyNRoNgMIiuri781V/9FbRaLcxmM/9GXX5+Pnw+H4LBIL8axOfzQafTwWg0wul0Ys2aNfjRj36EzZs3IxQKwWQyIRKJYGBggF+Z4nK5oFKpkJ+fD7fbjXA4DLPZjFAoBL/fjzfeeAMTJ07kNUUHxydOnIBerwfLsggEArBYLPjqV7+KF154AW1tbWBZNka7VquFRqPBsmXLeD/Z7XbU1tbGnH+dTgeNRgOr1QqPx4NIJIJwOIxgMAiDwYBZs2bBarXmfNtT4vVEmkgTaSJNpEm+mj799FOwLBv3nht9YUin08XccxP1jaLHhUKhuH3YVPtG0eMikQgYhkEkEknYjwgGg+A4Lua4XNc0tG+kxLYX1XTjxg0sWrQIURoaGrBw4UJkApoIySBlZWX8jGkqtLS0oKysLOH3ly9fxsaNG3Hu3LmExxQXF+O1117Dt771rZTLlzPRiZAombx45EAwGERzczNmz54tqw2mkqWpqQlz584FMHhTim7MGQwGs+7LTJ9bKcsT07YYtoTYyPU2rzSU4g+56aD4I509OcefmpqaUfdTsFqt6O3t5d8AHEpRUREYhsHSpUv5VKFKR2x/2O12XLhwAaMNjaZPn45Zs2bhzJkzMWmchDIwMICOjg6YTCao1Wren8NhWRZr166Nu+H6aLz++uuYPn06bDYbNm7cOObxw/tkUZ577jkUFxcDGGxzzz777Kibs3/nO9/h90GJx+rVqwGA7/f19/eP2CwdGHzRK55fdDod7rnnnrh7wURRSh9Ibvep8Y6S/CE3LdQHks6WnPtARGoI9ceRI0fEr1QahMNh2O12FBYWxr3/Z4NM1ileWdG+kVDkPgbL5rNcSo2lAObNm4fa2lq8/vrrePDBB3HLLbeAYRhMmjQJy5cvx/bt29HY2Ki4SRBi8G2/aK7QXMdoNOKhhx7i32TMNpk+t1KWJ6ZtMWwJsaGkNq8ElOIPuemg+COdPTnHn7EGWxqNBgzDoKSkZMQnmc20lYbY/igsLIwZkI2G2HvtqVQqdHV1oaioaFR/MgyDFStWpGw/1faRqE/2xBNPYOPGjdi4cSMefPDBUSdBgMF0DMlM2vh8Phw8eDBm0mUoiSanhuYGH822EvpAcrtPjXeU5A+5aaE+kHS25NwHIlJDKf4IBoO4fPlywvt/NshknaQsS0ljMLGhFSFETjPeV4TkOkNXhAyHfEkQBEGMJ5qamvgNq+Mxc+ZMtLS0jGpjPK0IkYpz584l3MQxuiKkvb2d30cs0/j9fmzfvn3MSYihVFZWYtq0abhx40ZSK0LEpLKyEiUlJXG/G/rWo9vt5vPXp8Ly5cv59BYEQRAEQYyNXFaEECMRa0WI3KEVIQRBEARBEAQxjpkxYwZMJlPc7yZNmoSJEydmuEbjE7U68fAomoKptLQ0K/4wGo0wGo3Ytm0bv5HmWDAMg6KiIhQWFmLZsmUS15AgCIIgCIIg5AtNhBBEDuNwOPD0008nfHMxlygoKMCvfvUrfiOobJPpcytleWLaFsOWEBtKavNKQCn+kJsOij/S2ZNz/GEYBosXL8bChQsxY8YMTJ8+HWVlZSgvL8f8+fNH3QdhPCKVP6xWa8LvoptQqtVqLFy4EHfddRduu+02zJkzJ2n7xcXFKC0txR133IF77rkHwOAqj6NHj466R0y03GhZZrMZa9asGbO8FStW8Kmxkm1DmeqT9fb2wu12w26347e//e2Y+tNBKX0gud2nxjtK8ofctFAfSDpbcu4DEamhFH8k2//JJJmsk5RlKWkMJjaUGovIacZ7aqxQKISOjg6UlpaKnq86EwxNjaXValFaWoqOjg6EQqGs+zLT51bK8sS0LYYtITZyvc0rDaX4Q246KP5IZy+X44/P58Pnn38+6jHjKTWWVP5gWRbnzp0bkcN4woQJWLhwYdwVIyzL4uTJk2PaNpvNWLp0aczfPB4PPv/8c7hcLlit1lFXpER/7/F4cPr0aT5N1okTJ0bslRHdT2Tr1q0wGAyYOHEibr31VhQUFCAQCIxaz+F9MiGMlhoril6vh9FoRF9f36j64zFWaiyl9IGyHX+IWJTkD7lpoT6QdLZyuQ9ExCLUH3JJjRWJRJLq/2SSTNYpXllipcaS+xgsm89yaSKEyGnG+0RIrkN7hBAEQRBEctBESOZgWRbd3d1wuVxQq9UoKCjApEmTEg6IhUyEAEA4HIbL5cLAwACCwWDCvWCG/r63txcNDQ18+f39/THHFhUVxWySPnHiRCxatAjr1q3DgQMHxqyrWCQzEQIMTr6kM+lCe4QQBEEQRGrIZSKEGAntESI98phyIwiBGAwGfuAfDofhcDgQneNzuVz8W3IDAwPwer0ABmckhy7LcjqdCAaDAAYfNkTfBAwGg3A6nfxxDoeDH6h5vV4MDAwAGByEulwuAADHcXA4HAiHwwAG3/aLLncLBAJwu90ABmeAHQ4HIpEIgMGNIqNv6fn9fng8nlE1eb1e7NmzB93d3TmpyePx8GkaJk+ejI0bN8JkMiEvL4+3nS1N/f39eOONN+D1egX7CRi77TkcDlRVVaGnp0d0TX19faiqqkJ/f7/gtmez2fDHP/6RLz+d66mzsxNVVVXwer0pa/J6vXjjjTfQ19cHQNzrKRk/yfl6yoYmu92O3bt3w+v15rSm7u5u7NmzB16vVxZ+cjqd/HkVw0+ZjBHDNXV3d6OqqoqPc0L85PV60dvbi6qqKtjt9rT8dPPmTVRWVsLr9ebsPTcUCvH15jgOfr+fr6vH48n69ZSpuOdyubB79+6Y/4uliWEYmM1mzJ07F/PmzYPFYuHrMJomlmX58xDPT4k09fX14eDBgzCbzVCpVLyfAoEAbzsYDPK/CYVCfB2i56y4uBglJSWYMGECJkyYAIZhEA6HY9ItOBwObN++HWvWrEFBQQHy8vJ4vdGUYCqVClOmTMGGDRuwZs0a7N69G2+88Qaee+456PV6WCwWAOAniKKTQxaLBXq9HkBsv3x4Gx2uiWVZsCyLurq6GE1+vz/muKjPhmtyOp2jtj2v14vKykrcvHlTcNuLxjOXy5Xx/p7X68Uf//hH2Gw2/rzm6j1XCX0jr9eL3bt3x/w/VzUJ6ZdLoUmMsUYqbU/MGDFck8fjQVVVFWw2myz8JKS/J+U9Nxk/JdIkt+spU5q6urr4sUs6miKRSMy9NNl77tC+DMuyMccl6vOM1jdyuVyor68Hy7IIBAIxx0XrHa3raP0IMTV5vV40NDRgYGAgLU3D6zqapkAggIaGBrjdbr6uYrU9p9OJqqoqdHd3i9L23G43qqqq0NXVJeqYMBvQRAihCJYvX47169cDAHp6elBRUcFfnDt37kRjYyMA4OjRo/zmkh0dHaioqOBt7NixA83NzQCAQ4cO4dChQwCA5uZm7Nixgz+uoqICHR0dAIDq6mocPXoUANDY2IidO3cCGAwcFRUV6OnpAQDs3bsXNTU1AIC6ujrs2bMHwGBwqKio4IPRnj17UFdXBwCoqanB3r17R9WkVqvh8Xjw0Ucf5aSmAwcO8IPmH/3oR9BqtYhEIli1ahXOnj2bVU0XL15EZ2cn1Gq1YD8BY7e99vZ2FBQU4NixY6JrOnv2LAoKCnDx4kXBba+yshLhcBhqtTrt6+n111/nH56kqkmtVqO7u5tvH2JeT8n4Sc7XUzY0NTU1oaOjA2q1Oqc1ffTRR/B4PFCr1bLwk81mw7Vr1/gHjFK3PTFjxHBNH330EQoKCmCz2URpezU1NSgoKEBTU1Nafnr55ZdhNBqhVqtz7p575swZvn3U19fzx9XW1vJ1feedd7J+PWUq7vX39+PatWv8gDCbmqKT842Njfxv4vkpOsAcrum9995DQUEB+vv78dprr/GD0rq6Ov58tbW18fY6Ojqwe/duvq6nT5+G3W7ndUT12e12nD59GgCg0+lQUVEBr9eLbdu24emnn8b/+T//B/Pnz8eCBQuwadMmAINpqv72b/8WhYWF+Pu//3v09vYiGAyiuLgYixcvxiOPPAJgcC+VLVu28BMojzzyCBYvXgwgtl/u8XhQW1ubUNOVK1egUqmgVqv5c5KsJgB48cUXR/WTWq2GxWLByy+/LLjtDfVTpvt7arUa4XAYlZWVfJvK1XuuEvpGarUa165d4yemclmTkH65FJrEGGuk0vbEjBHDNQWDQRQUFKCyslIWfhLS35PTPVfO11OmNL3zzjtgWRZqtTotTS6XC7W1tXxdk73n1tbW8nW4cuUK2tra+HKj5zgcDqO2tpZ/SD9a36iurg46nQ4qlQr19fV8TO3o6ODr7fP5xuxHiKnpxo0bMBgM6O/vT0vT0H75WJoikQgMBgMuXrzIaxKr7dlsNhQUFOCjjz4Spe15vV4UFBSkPdZINCbMBpQai8hposupDAYDtFotampqMG/ePLjdbuTn50OlUsHlcsFgMIBhGAwMDCASicBkMiEUCsHj8fAbQTqdThiNRuh0Oj7AGY1GBINB+Hw+foNMh8MBs9kMrVYLr9cLtVqNvLw8sCwLv98Pq9UKjuPgdDphsVig0Wjg8Xig1WphMBgQCATAsiwsFsuInIButxsMw0Cv18Pv9yMUCsFsNiMcDitS04ULF7BkyRJwHAer1Qq/3w+WZZGXl4fjx49jyZIlOadJiX4iTaSJNJEm0pR9TSzL4sKFCwiFQgiHw9Dr9eA4DoFAAHq9HiqVCvPmzUNhYWHOaFKSn06fPg2n0wm1Ws2neRrup6KiItx9992jarpx4waam5uhUqkQCASg1Wqh0WgQDAZhNBqxYsUKhEIh9PT04MsvvwQw+EaeTqfjjwMGJz7C4TCCwSAMBgMWLFgAhmGg1Wpx+vRpsCwLlUoFnU6HgYEB9Pb2QqfTgeM4mEwmmM1mqNVqsCyL/Px8tLS04K//+q/BMAzcbjfUajWsVitcLhcikQgsFgv/Rme0X+7xeKDRaPCNb3wDmzdvhs/nQzAYhEajwcSJE/nVLwzDIBKJgGVZPs1VMpoAYP78+ZgwYcK4bnukiTSRJtJEmkhTKpo+/fTTtO65fr8fDMPw/YNoPyIcDiMUCsX0eYYeN1rfKNqHDQQC0Gg0/HGRSCSmfzD0uKF9I6H9CLlpWrZsmaLbXlTTjRs3aI8QgkiH8b5HCMuyaGxs5Ae3ucbQPUIYhsGCBQvQ2NgIlmWz7stMn1spyxPTthi2hNjI9TavNJTiD7npoPgjnb1cjj/J7EMxnvZLyLY/hmOz2XD58uVRj0m0R8hQLT6fD+fOnRvz9xzHjUgnlYhp06bh1ltv5dORjpUbPBwOo6enB8XFxSgtLcVtt92G999/H9/61rfGLCtZhm7mrtPp+PI0Gk1KdsZq80rpA8mtvY93lOQPuWmhPpB0tnK5D0TEItQfctkjZGh/I9X7v1Rksk7xyhJrjxC5j8FojxCCINLC7/fjyJEjMTkOcxWDwYDVq1fL5gFOps+tlOWJaVsMW0JsKKnNKwGl+ENuOij+SGcvl+MPwzAwGo0Jv8/Ly5PNPTQTZNsfwykpKcFXvvIVfrIhFdLRolKpcPvtt496zMyZM7F8+XLMmTMnpl7RtKSJCIVCaG1tjdm8vLi4WNSHXyzL4vDhw9i+fTtfns/ng81m4z/R3NJCUEofSG7tfbyjJH/ITQv1gaSzlct9ICKWsfwRTdfU0NDA720nR+L1N7JNJuskZVlKGoOJDa0IIXKa8b4iJNcZuiJkOORLgiAIgojF4/Hg3LlzIwZMWq0Wt99+O79fA5E9uru7+ZzIw0m0ImQoHo8nJnf1UAoLC3HHHXfE/O3o0aNINJxLtFri1KlTfA7nsZgyZQpuu+022Gw2/OhHP8Lhw4eT+l0q7N27F88//zxOnDgRM/kxdNVIokm+8bQKiiAIglAegUAAXq8XFosFOp1OsL329nZcu3Yt5m9z5szBtGnT+P/LZUUIMRKxVoTInWw+y9VmpBSCICRheA7CXEalUkGv1yMQCCQc0GeSTJ9bKcsT07YYtoTYUFKbVwJK8YfcdFD8kc5erscfs9mM5cuXw+Fw8G9U6fV6FBQUiDJ4ziXk4I94qNWJF9wn+m6oFpPJBIZh4q6GKCwsFK2eo8FxHMLhcExKCKvViq1btwLAiAkLofzgBz+AXq/nc3hHia4aAYBt27alZVspfSC5tvfxipL8ITct1AeSzlau94GUBsdxuHbtGq5fv87/7dZbb0VpaWlSv43nD47j0N7ePuL49vZ2TJ06VXa+G9rfkEvdMlknKctS0hhMbCg1FkHkME6nE7/5zW/gdDqzXRXB5Ofn46mnnuI3eMo2mT63UpYnpm0xbAmxoaQ2rwSU4g+56aD4I509JcQfrVaLiRMnorS0FKWlpSguLh53kyCAfPwxnNH6MdHNLoczVItKpcKiRYtG5KWO+jwTBAIBnDhxImbViEqlgsFgwLZt21BdXY3KysqYz4EDB7BmzZq0yhurD5jqxEskEoHD4eBTbCmhDyTX9j5eUZI/5KaF+kDS2VJCH0hJ9Pb2xkyCAMDVq1eT2vsrkT8cDkfcNEuBQAADAwPCKiwB8fob2SaTdZKyLCWNwcSGUmMROc14T40lx82lUmFoaiyNRoPi4mL09PQgHA5n3ZeZPrdSliembTFsCbGR621eaSjFH3LTQfFHOnsUf5SDnP0RLy2F0WhEeXl53H024mkJh8NwOBxgWRZWqxVGozHuG3TppMZqbGwcNWd4JBKBz+eD0WjEtGnTcNttt4HjOJw8eXLEqo142h999NFRjxnO8D5gPCorK1FSUjLi78M1BgIBnD9/Hj6fj9diNptx5513QqsVlgwhm30gObf38YiS/CE3LdQHks4W9YHkRV1dXdyHwtGUlKORyB9NTU24ceNG3N8sXboUZrMZgHxSYw3tb4y2ojaTZLJO8coSKzWW3MdglBqLIIi00Gg0cQeFuUg4HIbNZst2NXgyfW6lLE9M22LYEmJDSW1eCSjFH3LTQfFHOnsUf5SDnP0xffp05Ofno7+/H6FQCBaLBRMmTEi4cieeFo1GgwkTJkhSv+Li4lEnQtRqNf+wJIpKpUJZWRmamppGtZ3OhurJ9AGj3xcVFY1aRlNTEz8JAgxq8fl8sNvtKC4uHnE8x3Hwer3Q6XRjbiKfzT6QnNv7eERJ/pCbFuoDSWeL+kDyItGb8Z2dnWNOhET94XQ60d3djVAohAkTJqCrq0uKqkpGvP5GtslknaQsS0ljMLGRx5QbQQjEYDDwAST6Bl307TiXy8Uvpx8YGIDX6wUAhEIhOBwO3obT6eTfcvP5fPwgKhgMxtykhi439Hq9/BJDlmX5ZYwcx8HhcPBvtXk8Hj6XdyAQgNvtBvBfS/cjkQgAwO1288vi/H4/PB7PqJo8Hg9effVVfjCba5o8Hg//dmNJSQkee+wxmM1m5OXl8bazpamvrw+vvPIKPB6PYD8BY7c9u92OXbt2obu7W3RNvb292LVrF/r6+gS3vc7OTuzcuRMejyft6+nmzZvYtWsXPB5Pypqibb63txeAuNdTMn6S8/WUDU39/f38dZLLmrq7u/Hqq6/C4/HIwk8Oh4M/r2L4KZMxYrim7u5u7Nq1Cw6HQ5S219PTg127dqG/vz8tP924cQOvvfYaPB7PuLvnKi3uOZ1OvPLKK/zv5KbJYDBg4sSJmDNnDiZNmgSv15tQU1dXF3bt2gWn05mWn/x+P1+HYDDI60ukqbi4OGbT1HA4zNeH4zi4XC7U1dWBZVkMDAzwmiZOnIgZM2bwx/n9fr6ugUCAP19D++UajQYFBQV8f89qtfITGXl5eTCZTDCbzXjssccwdepUvk75+fn8xJHRaMT//J//Exs3bsR3v/td/OY3v+Hr5HQ6+XI9Hg8/YRLVxLIs6urqcOXKlRF+6u/vx7Fjx3DixAmcOnUKp0+fRk9Pj2R+EtLf83g82LlzJzo7O/nzTzEie5o8Hg9eeeUV/ne5rElIv1wKTWKMNVJpex6PB6+99hpu3Lghuia3241du3ahs7NTFn4S0t+T+z1XLtdTOpr8fj9fV5Zl+d+Mpslms+Gll15CbW0t2tracP36dTQ2NoJl2RH35uj5GqopEonw5y56XuL1I8Lh8IjjhtZ16HFD+xGJNIVCoYT9jaH9iFAoxPsiWtd4moLB4IjjhGryer04d+4cBgYG0tKUqG8UT1MgEMC5c+fgdrvj+klI23M4HHx/Q4zryeVyYdeuXbDZbKKOCbMBTYQQimD58uVYv349AKCnpwcVFRX8xblz5040NjYCGEwfUF1dDQDo6OhARUUFb2PHjh1obm4GABw6dAiHDh0CADQ3N2PHjh38cRUVFejo6AAAVFdX4+jRowAG0wzs3LkTwGDgqKioQE9PDwBg7969qKmpATC4BHLPnj0ABoNDRUUFH4z27NmDuro6AEBNTQ327t07QlMoFMJLL72EQ4cO4cqVK/B6vXjnnXfQ0NCA48ePo6KiAg0NDWhoaMDzzz+PTz/9FA0NDXjrrbfw1ltvoaGhAZ9++imef/55/riKigocP34cDQ0N2LNnD2/v0KFDeOmll9DQ0IC6ujpUVFTg1KlTaGhowOuvv44DBw6goaEB77//Pl599VU0NDTgiy++QEVFBb744gs0NDTg1Vdfxfvvv4+GhgYcOHAAr7/+OhoaGnDq1CkcOHCAf/tu48aNGBgYQCgUwqpVq3D27Nms+qmxsREOhwNarTYtP6Xa9q5fv46ysjIcP35cdE3nzp1DWVkZGhsbBbU9AKiqqoLRaIRWq037evrDH/6AsrIyaLXalDVptVq43W6cO3cOgPDrKVU/5UKMyKSm5uZm9Pb2QqvV5rSmjz/+GBzHQavVysJP3d3duHHjBp/GReq2J2aMGK7p448/RllZGbq7u0Vpe7W1tSgrK0Nzc3NafnrllVcwZcoUaLXalDVptVpwHIePP/4YAMWIbGtyOBwxD65yWdOf//xnlJWVweFwpOWn06dPw2638zqi+lpaWhJqOnPmDPx+P5YtWwaGYfj6hMNh1NXVwWQyQa1W4+TJkzGaDh48iLlz5yIQCKC2tpava319PT8JMbRfXlxcjC1btvD9vU2bNmHBggUAgFWrVmHt2rUIhUKw2+346U9/ytd18+bNmD17NgDggQcewAMPPABgcLVNeXk5tm/fDgB48cUXY/zU2toKYLDN19XVQa1WIz8/Hx9//HGMnz777DM0NDTg+vXrqK+vBzCYr/2FF16QzE9C+ntarRZGoxFVVVUAKEZkW5NWq8WNGzf4ifFc1iSkXy6FJjHGGqm0Pa1Wi1tuuQWvvPKK6JrC4TDKyspQVVUlCz8J6e8p6Z4rp7gXDodRW1vLP9BubGzkfzOapnfffRfhcBhqtRodHR18vX0+H2pra3k/1dXV8efr2LFjvCaXy4Xa2lq+ron6EXa7HadPn+aPq62t5etw5coVtLW18edyaD8ikSabzcbfcwOBAOrq6mCxWKBWq2P6Eclqamtrw5UrV0TVdOPGDRQUFKC/vz8tTYn6RvE0cRyHgoICXLx4kdckVtvr7u5GWVkZPv74Y1Gup4GBAZSVleHdd98VdUyYDWiPECKnieaVMxgM0Gq1qKmpwbx58+B2u5Gfnw+VSgWXywWDwQCGYTAwMIBIJAKTyYRQKASPx8NvXOl0OmE0GqHT6fgAZzQaEQwG4fP5+A0cHQ4HzGYztFotvF4v1Go18vLy+Nl3q9UKjuPgdDphsVig0Wjg8Xig1WphMBj4t9MsFgsikQhcLhesVivUajXcbjcYhoFer4ff70coFILZbEY4HOY1tbW14Y477oDf7wfLssjLy4NarYbX64VWq4XZbOZnWPPz8+Hz+RAMBmE0GgEMBl2dTgej0cjPGhcUFMDj8SAUCsFkMiESiWBgYAAMw8BgMMDlckGlUiE/P5+frTabzQiFQvD7/dDr9WAYBm63G2q1GlarFS6XC5FIBBaLhZ/hj/rJ4/FAo9HAYrHA6XSC4zhYrdYYTcePH8eSJUty1k9KbHukiTSRJtJEmkgTaZKXpqNHj2JgYAA6nQ4ajYZ/U1Cn02HJkiWIRCJjarLZbDh//jz0ej04jkMgEADDMFCr1SgoKMC8efNiNEUnSwKBAPR6PVQqFQKBADQaDSKRCNavXw+O45Lq76Xbhx0YGEB1dTXuuOMOTJgwgbdTU1MDnU6HcDiMUCgUo2nZsmUoKCjgV5e1tbUhFAohHA7HHHf//ffz/Vpqe6SJNJEm0kSa/n/svXt0FNeV7//td+vVEgJBg7GNTYzBDi87Nth4YpOZcbKSSyY38UxCEsdOMncSex52/gjOb5KwbkjuvQMzN46cxJgkxngcTDIhflyNYwfHRmAEEkhIvMRTIIEkWu9+d3V1VfXvD62u0aMldXedqj5dvT9rsWx1V++zv7VP7XqcOvvooen48eOTzrmiKMJqteIv/uIvptUUCARw7Ngx2O12SJIERVHgdDqhKApEURx3brbb7er1gdPpRGlpKUKhEERRVNfYEgQh7XWELMtIJBLjthvrq8VimfKcO1FTyteJ59yJ1xHZakomk+O2K3RNa9asKYrjqaenJ29rhNBACFHQFONi6Z2dnbjlllsAAC6XC6tXr1ZvRguZiVryHcvUGwqrV6+esWY07+2xtM3ClhYbRseFmB6zxIM3HZR/9LNH+cc8mCkeWrS0tbWlLTFgsVjwwAMPZLSg5fDwME6ePKn+LUkSfD4fvF4vbrzxxkm1yv1+vzozMx1btmzB/v37p/x+2bJlOHv2rPp3rteze/bswQMPPACfz6eWZpjIWC2pwZaVK1fi8uXLapmpidx7773q4MtY8nkNZKb+bgbMFA/etNA1kH626BqIL6ZbsHymBbNjsRh+//vfq+e2QmXiOZoHjPQpXVusFkvn/R4sn89yqTQWQRQwTqcTq1atymlhSt7gTYsoimhra1PrGhZyeyxts7ClxYbRcSGmxyzx4E0H5R/97FH+MQ9miocWLekWAAeA2bNnZzQIko7U4uWpMhTZsmnTJqxfv37SNZ3T6cT69euxadOmSZ/neg146dKlKQdBgMlawuEwLl26lHU7QH6vgczU382AmeLBmxa6BtLPFl0DmQdRFDWdp3lB6/WGHhjpk55tmekejDU0I4QoaIp9RohZcTqdGB4eRllZWb5dIQiCIAiC4JZkMonLly+jp6dHXcSzuroad9xxR8ZvMk6cETKW+fPnT5oREg6Hx9XXngpRFDE8PKz+XV1dDafTCZ/Ph40bN2bk23Ts2bMHXq8369/Z7XbU1NRkPSOEIAiCIFihZUaIoig4ePAgW4cILmA1I4R3aEYIQRA5kardbLUW/qE8VsvHPvaxvA+CKIoCv9+vPlQo5PZY2mZhS4sNo+NCTI9Z4sGbDso/+tmj/GMezBQPLVosFgsWL16MBx54AB/5yEewbt06rFixQlM5h2QyCUEQMNX7cmVlZRnN3nA6nfB6veq/qX6j5/VsOi2SJOVkK5/XQGbq72bATPHgTQtdA+lni66BjEcQBPh8Pub7TlGUac/ThcJM1xv5wEif9GzLTPdgrCn8p6cEUcR4PB48/fTT8Hg8+XZFMyktn/70p/G73/0u3+4gGAyitrYWwWCw4NtjaZuFLS02jI4LMT1miQdvOij/6GeP8o95MFM8WGixWq0oLy+Hw+HQ7E88HkdTU9OU63VYLBZ8+MMfnnKwpaSkJKv2prqeffbZZ/Hss89O+btMyivMpCUb8nkNZKb+bgbMFA/etNA1kH626BrIWK5fv47GxkacO3cObW1taGtry3kgfiLBYJDZuS2fsDxHs8JIn/Rsy0z3YKyh0lhEQVOMpbEkSUJXVxeSySQURUE0GkVpaWnBzwpRFAUejwdz587lQouiKAgGg/B4PIb4o2d7LG2zsKXFhtFxIabHLPHgTQflH/3sUf4xD2aKR761TCyNlUwmEY/H4XK5sGDBgkmlsVLIsoxAIABJklBZWQmXywVFUWC1Wqct+TGxNJbVaoXH40EwGBz3puCePXsAYNoyWqk1R9xud9rvx2qxWCzq5/Pnz5+yNNbq1ashiiKcTic8Ho/6u3xeA+W7jxDjMVM8eNNC10D62aJrIOMQRRGHDx+e9PmNN96IxYsXA9BWGkuSJPzpT3+adG4rNKY6R+cTI31K1xar0li834Pl81lu7nOmCYLIC3a7XT15EvqRKtNghvZY2mZhS4sNo+NCTI9Z4sGbDso/+tmj/GMezBQP3rRYLJYpBxbGYrPZUF1dPe6zXG+O/X5/1r8DgP379wMANm/enPb7TLWMpbW1Vf3/kpISrFq1Ci6XK6/XQLz1kWLHTPHgTQtdA+lni66BjMPn86X9/Nq1a0ye5Vit1qzPbTySyzlab4z0Sc+2zHQPxhoayiWIAiYUCuGFF15AKBTKtyua4U2L0f7o2R5L2yxsabHBWz8pdswSD950UP7Rzx7lH/NgpnjwpiUej6O5udmwUhUVFRX45je/iYqKipx+39DQMGWZrKm0CIKQke1YLIYjR46gu7sbfX19eP7559He3o729nZ0d3dnXeYk11jz1keKHTPFgzctdA2kny26BjKOgYGBKb+LRqOa7YdCIUPP03ph9PVGJhjpk55tmekejDU0I4QgChin04lVq1ZltGAl7/CmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM88q1l4iwOm80Gr9cLm82mS1mI6upqOJ1OdfBCFEW0tbWNG8xwOp3qbJOx26ZDFEUMDw/D6/VO+m6slrGMjIxk5fOlS5cgSRI8Hg96e3tht9vR39+Pvr4+rFy5MuPF6XONdb77CDEeM8WDNy10DaSfLboG4oNjx45h2bJlOf1WlmWcPXsWPp8v7bmt0JjqHJ1PjPRJz7bMdA/GGlojhChoinGNEIIgCIIgCIJghSzLOHToENLdFi5btgzz5s3L2uZ0tc8BYMuWLWpZq3SsX79eLXc107YA8PLLL+Omm27K2k8WLFmyBAsWLMhL2wRBEGZGkiTdBuX1pKWlZdo3361W67g1sSZyww03YPbs2aiuroYsy/D5fBgeHsbQ0JAe7hIcwWqNEN7J57NcKo1FmAK3243y8nIAozdzfr9fvZkLBoPqW2SxWAyRSATA6El1bD3iQCCARCIBYHS6YmrKYiKRQCAQULfz+/3qNPhIJIJYLAZg9G20YDAIYHTRI7/fD1mWAQDhcFidgh+Px9WTYqomcuokGAqF1GlxgiAgHA5Pq0kQBLz77rvqCbGQNfX39+O9996DIAhcxCkQCOCPf/wjBEHQHCdg5r4XCoVQX1+P4eFh5pr8fj/q6+vVdvIdp/7+ftTX10MQhKw1CYKAffv2qW2xPJ4yiVOhHE9GaQoGg+pxUsiahoaG8O6770IQBC7iFA6H8c4774zLR3r2PZY5YqKmoaEh1NfXq+1oiVMkEsHIyAjq6+sRDAZzilNfXx/2798PQRCK+pxrhrwXiUTwzjvvjMtHhappcHAQ9fX1iEQieYmTLMuoqalRNYXDYVy5cgWlpaVwu905aUr5rSiKeo5I2ZBlGZs2bcJf/uVfoqqqCm63Gx/72Mcwb948OJ1OrF+/Hk899ZS6X7/1rW/hL//yLwEADocDlZWVqqaqqirY7XY89thj+D//5/9gZGQEPp8Pvb29uHbtGqLRKK5cuYJwOKz6Koqiuh8kSVL9TiaTk3wdu100GkVnZ6eaD1LbpT7LJE65Xu8JgoD33nsP/f39qq+UI/KnSRAEvPPOO+PyUaFq0nJdrocmo+8JBUHA/v370dfXx1xTLBZDfX09+vv7uYiTlus9o8+5/f39OHbsGA4cOID6+nr4fL6COJ7Gako9R0jFJvUbWZbV/Zg670w8P/X09OD48eM4d+4cTp8+jQsXLqCnp0f1NRKJ4PLly5AkCZIkzXjOTfk3cbuxvo7dbqyvE7ebStPEc2km59zU9Ubq87Hb5UtTLBZDZ2cn4vF4Tpqmu46Y6GsikUBnZycikYjqK6vjKRwOo76+HkNDQ0xyeTQaRX19PQYGBpjeE+YDGgghTMHatWvxyCOPABitx1hbW6senDt37kR7ezsA4MCBA6irqwMAdHd3o7a2VrWxfft2dHR0AAD27duHffv2AQA6Ojqwfft2dbva2lp0d3cDAOrq6nDgwAEAQHt7O3bu3AlgNHHU1taqtSH37t2LxsZGAKMLMO7evRvAaHKora1Vk9Hu3bvVBRobGxuxd+/eaTVJkoRTp07h7bffLnhNu3fvxtmzZyFJEhdxamtrQ0tLCyRJ0hwnYOa+d+nSJXR2duL9999nruno0aPo7OxEW1sbF3HauXMnOjs7IUlS1pokScLx48dx9OhRAGyPp0ziVCjHk5Gajh07pl4AFqqmt99+G6dOnYIkSVzE6dq1a2hqalIvnPXueyxzxERNb7/9Njo7O3Ht2jUmfe/QoUPo7OzMOU4vvPACOjo6IElSUZ9zzZD3+vr60NTUpN4sFrKmN998E52dnejr68tbnPbt24fly5ejpqYGLS0tiEQiWLJkCV5//fWcNKX8jkajaGpqUm+0W1tbMTAwALfbjb/5m7/BD37wA/zyl7/EX/zFX+CJJ55AXV0dNm/ejFOnTqnlq3p6evDZz34WL7/8MhYvXownnnhC1fT0009j4cKFAEZLbv3iF7/Axo0b8a//+q84fvw4vvzlL+PUqVNoaWlRHxik1vcARhe0PXXqlBrPpqYmdf+fOnVKXfC2u7sb58+fh9/vRyQSGafpgw8+0P16T5IknD17Vt3/lCPyq0mSJDQ1NeHatWsFr0nLdbkemoy+J5QkCVeuXMELL7zAXFMkEkFnZyd2797NRZy0XO8Zec598803UVdXh0gkgoGBATQ1NeHcuXPw+XzcH09jNTU1Nak+XLhwAV1dXWq7KX9kWUZTU9OU56f//M//xMjIyKTzU3t7OwYGBqAoCrq7u2c85wJAV1cXLly4oO6jpqYm1dfm5mb1nNvR0aHqGxkZQXNzM1NNY8+5LS0tGBkZgaIok865+dJ09epV+P3+nDVNdx0xUVMikYDf78epU6dUTayOp2vXrqGzsxNvv/02k1w+MjKCzs5O/O53v2N6T5gPqDQWUdCkplO53W7Y7XY0NjZi6dKlCIVCqKyshMViQTAYhNvthtPpRCwWg6IoKCsrgyRJCIfDqKqqAjA6ulpaWgqHw6EmuNLSUiQSCUSjUfXtM7/fj/LyctjtdkQiEVitVpSUlKhvh3k8HiSTSQQCAVRUVMBmsyEcDsNut8PtdiMej0MURVRUVEBRFASDQXg8HlitVoRCITidTrhcLgiCAEmSUF5eDlmWSRNpIk2kiTSRJtJEmkgTaSoITQcPHoTT6YSiKBBFES6XCxaLBfF4HHa7HTabDYlEAslkctx2brcbwOhbhg6HQ90OGJ2995WvfAWlpaXqm49VVVUIh8OQJAllZWVQFAWxWAxOpxNutxvBYBAWiwUf//jH8e1vfxtWqxWiKMJqtcJut0OSJMiyDJfLhWQyiXg8Ps5Xm82mbqcoSlpNoijioYceKsg4mbHvkSbSRJoKW9Ply5fR0dEBh8MBWZYhSRJcLhe8Xi+8Xm9BaGppacHAwACcTqd63rFYLJM0pc47Y7djeX7Scs5N+ZpIJMZtR5r01bRmzZqiyBE9PT15K41FAyFEQVPsa4TIsoyBgQHU1NRwtcBULvCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNPCwp/p1ghZvXo1fD4frl+/DmC07EI0GkVpaemkhdtLS0tx88034+zZsxBFERs2bJh24fSJ2Gw21NTUwO/3480339S0SOdUflqtVnz0ox/NyEau+5a3PlLsmCkevGmhayD9bBXKNdB0549CWT9hpjVCtDLdebOQ4FGHkT6la4tVH+f9HozWCCEIIidCoRB27Nih60nWKHjTYrQ/erbH0jYLW1ps8NZPih2zxIM3HZR/9LNH+cc8mCkevGnR25/KykosWbIEc+bMATBas7qlpWXcAIfH48H999+Pe++9Fx6PBwDgdDqxbt26rNqqqKjAN7/5TbjdbgwPD0/6XhRF+Hw+9d90gyzp/MyWXPctb32k2DFTPHjTQtdA+tmiayD9GB4eRnt7O06ePDluLQ+9YHE+4gEedRjpk55tmekejDU0I4QoaIp9RsjEqXeFDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy0s/Mnkjd5YLIampiYkk0nIsgybzaa2V11djRUrVozbDhgtYbFt2zbs378/Iz8sFgtcLhfi8TheffVVeL3ecXYaGhomPYBYtmwZtm7dioqKinGfp/MTmDwjRJZldUHTqqoquFyucTZy2be89ZFix0zx4E0LXQPpZ6tQroEKbUbIwMAAzpw5Y2ibU52PCg0edRjpU7q2WPVx3u/B8vks125IKwRB6ILFYlFrGxY6vGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etOQjB9ntmd2Wut1ubN68GY8//jgee+yxGbdPJpMQBAEAxg14TDeYcvbsWXz605/G+vXrsWnTJnVfTOWnoii4cuUKampqYLVa0dbWNq6t22+/HfPnz1dt5LJveesjxY6Z4sGbFroG0s8WXQPljiAI6OvrgyAIqKqqgt1ux8jICJxOJ65du2a4P9mcN3mGRx1G+qRnW2a6B2MNlcYiiAImGAziJz/5CYLBYL5d0QxvWoz2R8/2WNpmYUuLDd76SbFjlnjwpoPyj372KP+YBzPFgzctRvsTj8fR2NiIeDye8W8yXevD4/Hg6aefhsfjwWOPPYYtW7YgFAqhoaFhxt/u378f27Zty8jPrq4utLS04OjRo5NmmJw/f14djMl13/LWR4odM8WDNy10DaSfLboGyo1YLIbW1lZcuXIF169fx9mzZ3Hq1Cl0d3fj8uXL6kLcRpLLeZNHeNRhpE96tmWmezDW8DX0RhBEVrjdbjz00EPcjKxqgTctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBmxaj/bHb7Vi0aNGUb0WOLS2VLYIgoL6+Xh2I2L9//4xrgYwlVTrL6XTO6Od0FaeHhoZwww035LxveesjxY6Z4sGbFroG0s+WGa6BkskkhoaGEAgEUFpaijlz5sDhcOjaZnd3N1cP6oGZz5uFAo86jPRJz7bMdA/GGlojhChoin2NEIIgCIIgCILgjWzWCEnH2DVC0tkTRREbNmwwZDHTl19+GTfddJMmGzfccANuu+02Rh4RBEGYl+nOH/Pnz8f169fVv8vKyrBy5cqMZwmy9ocgWMPjOjh6kM9nuVQaiyAKmFgshnfeeQexWCzfrmiGNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFqP9SSQSuHTp0rTlRaqrq8f97XQ6sW7duhltl5SU4BOf+ARKSkpy9i9VUiscDs/o50zkum956yPFjpniwZsWugbSz5YZroHGDoIAQCQSQW9vb568yR+ZnDcLAR51GOmTnm2Z6R6MNfzMPyIIImsURYHf74eiKPl2RTO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960sPCnuroaw8PDkz73er2TPkstaD5doYJ0323atAnAf5WvSofVakVVVRWsVm3v/+3fvx8OhwMbNmyY1s+ZSLdvh4eHcf36dQiCgMrKStx0002T3m7mrY8UO2aKB29a6BpIP1tmvQbq7OzEokWLMto2FotBEAR4PB7YbDZ9HdORTM6bhQCPOoz0Sc+2zHQPxhoqjUUUNFQaiyAIgiAIgiD4YmRkBKdOnRp3w2uz2bBq1SpUVFQAyK40Vnt7O/r7+9NuK4riuEGXsrIyPPvss9i/fz8LKSpOpxN1dXU5lWBJlcZKJBIIhUIoKSlBb28vrl27Nmnb0tJSrF69Wve69wRBEDySSymqhx56CH6/HwMDAwCAmpoaVFVVqd8rioL29nYMDg4CGB0kv/POOzF79mxd/CGIXKHSWPpDpbEIooCRJAmdnZ2QJCnfrmiGNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFhb+zJo1CytXrsT8+fPh8Xhwww03YPXq1eogyFgyeUtwwYIFU37ndDrh9XrVfxUVFdi8eTNefvllpguRKoqC7u7unN9mvHTpEj744AMcPHgQR44cSTsIAgDRaBRDQ0PjPuOtjxQ7ZooHb1roGkg/W2a+Burr60NbWxt6enrQ09ODtrY29PX1qd9fvXpVHQQBRvP56dOnuSrJlA08vV2vBR51GOmTnm2Z6R6MNTQQQhAFTDgcxssvv4xwOJxvVzTDmxaj/dGzPZa2WdjSYoO3flLsmCUevOmg/KOfPco/5sFM8eBNCyt/Kisrcfvtt+Ouu+7CbbfdhvLy8rTbiaKIEydOTLvweWVlZdbte71ezJo1C48//viUbWdDeXk5rl27ltMC7SMjI+ju7s5IK4BxD/AA/vpIsWOmePCmha6B9LNl5mugy5cvT/rsypUrasmhdAPPyWRSnUFSaGR6LuEdHnUY6ZOebZnpHow1VBqLKGhS06ncbjfsdjsaGxuxdOlShEIhVFZWwmKxIBgMwu12w+l0IhaLQVEUlJWVQZIkhMNhdcpkIBBAaWkpHA4HotEogNGp6YlEAtFoVL0B8/v9KC8vh91uRyQSgdVqRUlJCURRVOtNJpNJBAIBVFRUwGazIRwOw263w+12Ix6PQxRFVFRUQFEUBINBeDweWK1WhEIhOJ1OuFwuCIIASZJQXl4OWZZJE2kiTaSJNJEm0kSaSBNpMo2m4eFhNDc3w+l0QlEUiKIIt9sNAHC73bj77rvHaYpGozh58uS47QRBgNPphNVqhSiKsFgscDgckGUZkiRh69atqK+vR2VlJUKhEGRZRnl5OSRJgiAIcLlcKCsrw8qVK/FP//RP2LFjB/bt2wdFUVBRUQFRFBGPx9V7jV/+8peYO3cuRFGEy+WCxWJBPB6H3W6HzWZDIpFAMplMq0kQBDgcDnU7AKqviURi3HYejwf3338/F3EyY98jTaSJNPGrad++fZNyucvlQjKZRDweH5fzrVYr7HY7JEmCLMvjtnO5XLj33nuhKAqamprU7RRFUXO0w+HAAw88MK2m999/P+dcPt35KVdNqfOOzWZLq0nv8xNp0lfTmjVriiJH9PT0UGksgtDC2rVr8cgjjwAABgYGUFtbi3g8DgDYuXMn2tvbAQAHDhxAXV0dAKC7uxu1tbWqje3bt6OjowMAsG/fPuzbtw8A0NHRge3bt6vb1dbWoru7GwBQV1eHAwcOABitXbxz504AQDweR21trfqGwd69e9HY2AgAaG1txe7duwEAwWAQtbW1CAaDAIDdu3ejtbUVANDY2Ii9e/eSJtJEmkgTaSJNpIk0kSbSZDpNTU1NuHDhgmpv7Hoh77///iRNc+bMwZw5c9R2UjZSPly4cAFdXV1qu62trdi0aRP+/M//HE8//TRqamoAAI888gjWrl2LZcuWYdu2bfjOd76DzZs3w+12Y+3atfjFL34BAPjSl76E1atXAxh/rxGNRtHU1ARZltX9ktpfXV1dU2pqbm7GyMiIGpuUvpGRETQ3N4/T5Pf7uYmTGfseaSJNpEl/TcFgED//+c+xb98+dHR04I9//GNGmtLlcgCQZRlNTU3qA+D29nb1Nz6fD6dOnVK1NzU1IR6PI5FIYPfu3fD5fKp/Kb+j0Sjef//9GTVpyeXTnZ9y1QQAp06dmlKT3ucn0qSvpmLKEfmCZoQQBU2xzwiJxWJ4/vnn8fjjj2P+/PkFram7uxuvvPIKnnzySXWUPJ9x6u/vx4svvognn3wSFRUVur8pk0gk8Ktf/QqPP/44PB4PU02RSAQvvfQSvva1r6GkpCTvcfL5fNi9ezeeeOIJJJPJrDSFw2E8//zz+NrXvoZ58+Zx/0ZTvnOE3poGBgbwq1/9Ck8++SQ8Hk/Barp+/Tp27dqFJ598EiUlJXmP09DQEH7xi1/gySefRGVlpe59j2WOmKjJ7/fj5Zdfxv/4H/8DNptNc98Lh8N46aWX8PWvfx0ulyvrOHV3d2P37t148sknYbVai/aca4a8Nzw8jB07duCJJ55AVVVVQWsaHh7Gv//7v+Pv/u7vYLVa8x6na9euqcdJ6k1GvfremTNnMDg4iGPHjmHFihXqdkuWLMGcOXOm1HT58mUEAoEZ3+RMJpM4duwYli1bhkQiAYvFAkmSUF1djdLS0rRvco6MjOCLX/zipBkhs2bNwje+8Q3ccsstsFgsmDt3LlwuV1Zvp8qyjNbWVqxcuRJutzvjGSGiKOL555/Ho48+ioULF1KOyLOmQCCA559/Hn/3d3+H2bNnF7QmLdflZrgnTCaTeP755/GlL30JN9xwA1NNAPDCCy/gy1/+MubOnZv3OGm53sv2nGu1WnHixAlEIhH1rXy3240Pf/jDKC8vV+Pk8XjQ09ODq1evoqSkBPPnz8fJkyeZvZW/evVq2Gw2080ICQaDOHHiBO655x7Y7faCnT0RDAZx8uRJ3HPPPbBYLFzMCBFFEW1tbVi9ejXsdruuM0KSySRaWlqwfPlylJeXM50RIssyfvnLX+Kxxx5DVVWV5lyeTCaxY8cOPProo5gzZ47me8J8zgihgRCioEkNhKQw8uDhgUQigY6ODixevBgOhyPf7miCNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFiP9kWUZp0+fxsWLFzFr1iyUlZXhtttuw+zZs6f93bVr19S3ImeyPzIyglmzZsFms2Xkk8/nw8aNGyd97nA4sHjxYnR0dCCRSMDpdGLdunXYtGmT+kCFlT8lJSVYs2aN+jdvfaTYMVM8eNNC10D62TLyGuj8+fO4fv36pM9Xr149bs2njo6OtOt3sGLVqlWoqqpCfX192u8rKipw9913T2tjqt/mk1zObTzCow4jfUrX1kMPPcTENu/3YPl8lksDIURBU+wDIQRBEARBEARR6Ix9mzQTBEFQSziwZqqBkKlYtmwZfvKTn8DpdDLzYeJACEEQRCEx1eBBVVUVVq1aBQBQFAWHDh2Coii6+WHWgRDCvLAaCOGdfD7LpTVCCKKAiUajeOONN9RpcYUMb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LfnIQXV1dWqt7Exwu9245ZZbZtwukUjg3LlzalkMLZSWluIzn/kMSktLx31+9uxZfOITn8CWLVsQCoXg8/ng8/kgiiIzf3jrI8WOmeLBmxa6BtLPFg/XQIIgqP8/NDSk6yCImWF5bssnPOow0ic92zLTPRhr7Pl2gCAIgiAIgiAIgiCyoaysLN8uqCSTSezfvx/79+9XP8uldBZBEISZGVuQRpKkPHpCEESxQqWxiIKGSmMRBEEQBEEQRPGhV3msbEtjzUQupbOoNBZBEIXMdOWk5s2bhyVLlqC/vx/nz5/X1Y9MSmOtXLkSFy9exPDwMFwuF2644QbMnz9f3YZKYxFGQqWx9IdKYxFEAcPjVMJc4U2L0f7o2R5L2yxsabHBWz8pdswSD950UP7Rzx7lH/NgpnjwpqVQcpDb7cbcuXOn3UaWZQwODmZVdmsqHA4Hli5dmvUioWNLZ0UikZz84a2PFDtmigdvWgol/xht20z3YH19fTh79qxmO6w4efIk+vr6kEgkEA6Hcf78efh8vny7NS0sz235hEcdRvqkZ1tmugdjDQ2EEEQBw1OdPa3wpoXq0+pni4f6tAQbzBIP3nRQ/tHPHuUf82CmePCmpZBy0NKlS6f93og1QjIhVTrrZz/7Ga0RYgLMFA/etBRS/jHSttnuwYaGhrh4+B2JRBAMBid9zvtACE8PlbXAow5aI0Qfezyda6g0FlHQUGksgiAIgiAIgiheTpw4gZGREWb2RFHEhg0b0i52rhWn04m6uroZy2RRaSyCMCf9/f3o7e2FKIqorq7GrbfeCqvVXO8nR6NRHD16dMbtZs2axTR3p2Om0ljTkSpRRKWxCCOh0lj6Y66MSxAEQRAEQRAEQRAAbDZb1r9JLXI+HR/60Idy8kcURQwPD+f0W4IgCpu+vj60t7fD7/cjGo2iu7sbZ86cybdbTAmHwzh+/Hi+3WBCMBjUZUCcIIj8QgMhBFHA+P1+/OAHP4Df78+3K5rhTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmxUw5aMmSJThw4AAEQcjqd5s2bcL69evHzdyoqqrC//yf/xOf+MQn8OMf/zirxc/H2jh//nxW/sRiMZw+fRo/+MEPcP78eS7KyRQ7vB2zWuBNi5nyz0Tbvb29k7YZGhrKKB8Uyj1YZ2cnJEnKzUHOOH78OA4fPpxvN9IiCEJO5zbe4FGHkT7p2ZaZ7sFYQ6WxiIKm2EtjSZKE7u5uLFy4EHa7Pd/uaII3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZuWQstB05XGuueee1BfX4+SkpKcys+MncGhKAocDgdmz54Nq9WKLVu2YP/+/VnZs9vt2LFjBxYtWjSjP6tWrYLdbkdbWxtEUUQwGITH44HVasV9990Hl8s16TeyLCMajaK0tDSn2TBEZvB2zGqBNy2Fln+ysT1ViaWFCxfOOMusUO7BsikjxXtpLJ5RFGXcOaFQ4VGHkT6la4tVaSze78Hy+SyXBkKIgqbYB0IIgiAIgiAIopiZbiDkvvvuw/HjxxGPxzOytXjxYnR0dGS0rSAI2LZtGxoaGsaVT3E6nbjppptw6dKltL/bs2cPvF7vjPatVitsNtuUi6h+9KMfVR+cJJNJdHV1oaurC8lkEhaLBTfddBMWLVoEi8WSkR6CIPRlqofxXq8XS5cuNdYZneBtIAQA5syZg8HBQd3bIQgW0Boh+sPHkBtBEDkRiUTwm9/8BpFIJN+uaIY3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZsWs+Wg1tbWjOq8ezweVFdXT/m9KIo4ffq0asvtdmPz5s2oq6vDnj171H91dXX44Q9/mNZGWVkZenp6MvJHURR1EGRi2wDGPdgbGBhAZ2cnUu84pgZG+vv7Z2yHyB7ejlkt8KbFbPmH7sHyjxkHQdKdEwoRHnUY6ZOebZnpHow1NBBCEAWM1WpFVVUVN9MItcCbFqP90bM9lrZZ2NJig7d+UuyYJR686aD8o589yj/mwUzx4E2L2XJQSUlJxrMiSktLsWDBgrTfWSwWuN3uSbacTie8Xq/6b7q1QxRFgSiKGBgYgM/ny/jhR7q229vbEQqFAEz9oM+MDwB5gLdjVgu8aTFb/qF7MEIPpjofFRo86jDSJz3bMtM9GGuoNBZR0FBpLIIgCIIgCIIoXliVxpozZw4+/OEPI5lMYnBwEGfOnMnZJ5/Ph40bN864ndPpxLp167Bp0ya43e6s26moqMDdd989bTmaYimzQRC8w2NpLEVRYLFYmD2I5bE0FkEUEsVyzqbSWAShEbfbjfLycgCjiwT6/X51angwGFTftorFYupULEmS4Pf7VRuBQECdfh6NRhGNRgEAiUQCgUBA3c7v90OSJACj07tisRgAqIsYAqPT0f1+P2RZBgCEw2EIggAAiMfj6ttbiqLA7/dDURQAQCgUUm/UBEFAOByeVpMoijh69Kh6AVHImgYHB9Hc3AxRFLmIUygUwpEjRyCKouY4ATP3vUgkgra2Nvj9fuaagsEg2traEAqFuIjTwMCAuvBntppEUURjY6P6HcvjKZM4FcrxZJSmcDisHieFrGlkZARHjx5V82q+4xSNRnH48GH1O737HsscMVHTyMgI2traEI1GmfS9QCCAtrY21e9s49Tf34/jx49DFMWiPueaIe/FYjEcPnxY/a6QNQ0PD6OtrQ2xWIyLOI09Tozoe6IooqWlZVwZp2w0pfa/KIrqb2RZRjwehyiK6O7uRiQSUX0VRVHdD5IkqX7Pnj1b9bWmpgbxeHzcdrFYDD6fD4lEAoIgqJri8bjqQyKRUPXZ7XZUVVWpvlZWVqK0tBSrVq1S/18URRw6dAi1tbXqdoIgjPM1kUhAlmX09vaq+yGZTEIQBAQCAcRisSk1pfrodHFKJpMIBALo6OhQY13Ix5MReU8URRw+fFj9rpA1abku10OT0feEoiiitbUV/f39zDXF43G0tbVhcHBQjdPYHKEoitqOEXEae703ODiIEydO4MCBA3j//fdx5coVJJNJzefciZoEQRiXH8fm6LEz1tLlvdR2Y/PZxO2mynsTc/TY7Sbu/5lyeTaaJm6nl6ZoNIqenh7IslzQmiKRCK5fv67+noc4CYKgztjUu+9JkgSfz4doNKr6yirvRaNRtLW1YWRkhEkuFwQBbW1tGBoaYnpPmA9oIIQwBWvXrsUjjzwCYLRGbm1trXpw7ty5E+3t7QCAAwcOoK6uDgDQ3d097qZj+/bt6uKI+/btw759+wAAHR0d2L59u7pdbW0turu7AQB1dXU4cOAAgNHp6Tt37gQwmjhqa2sxMDAAANi7dy8aGxsBAK2trdi9ezeA0eRQW1urJqPdu3ejtbUVANDY2Ii9e/dOq0kQBLz33nt46623Cl7TK6+8gvfffx+CIHARp5aWFvzpT3+CIAia4wTM3PfOnz+P+vp6vPvuu8w1HTlyBPX19WhpaeEiTi+++CLq6+shCELWmgRBwJ/+9CccOXIEANvjKZM4FcrxZJSmU6dO4d1334UgCAWt6a233sJ7770HQRC4iNOVK1fU/coiTkbmiIma3nrrLdTX1+PKlSvM+l59fT1OnTqVU5y2b9+u5p9iPueaIe/19PTg3XffVW/8ClnT66+/jvr6evT09HARp+3bt2P//v0QBMGQvicIAvbv3z/O12w0pR4KXLhwAV1dXWq7bW1tkGUZHR0daG5uVh8YtLe3q/vB5/Ph1KlTKC8vh8PhGKfp1KlT8Pl86j4/e/YsOjs7EQqF0NTUpD48aG1tVftAV1cXLly4AABYuHAhnn76adXXJ554ArfffjseeughPPzww3j44YcBjC7QvmrVKly9ehU+nw9NTU2qDylNkiThypUrOHHiBIDRBw5NTU2IRqNoampKqykVz+ni9Lvf/Q4nTpzABx98gF//+tc4dOgQurq6Cvp4MiLvCYKAd999F1euXCl4TVquy/XQZPQ9oSAIqK+vx/bt25lrCgQCqK+vxyuvvKLGaWyOCAaDaGpqMixOqeu95uZm/Pu//ztGRkYQj8dx6NAhnD9/Hj09PZrPuRM1NTc3qy+QdHR0qPpGRkbU+zkAafNeal+m/Bmb91J6p8p7TU1Nap+amMtTfqfy50y5PBtNzc3Nhmg6c+YMrly5AkmSClpTc3MzOjs7IUkSV3Hq7OxEX1+f7n0vHo+js7MTJ06cUDWxyntXrlxBfX093nrrLSa5fGBgAPX19fjtb3/L9J4wH1BpLKKgSU2ncrvdsNvtaGxsxNKlSxEKhVBZWQmLxYJgMAi32w2n04lYLAZFUVBWVgZJkhAOh9U3tQKBAEpLS+FwONQEV1paikQigWg0isrKSgCjo6vl5eWw2+2IRCJq7eHU6LHH41HfrKqoqIDNZkM4HIbdbofb7VbfTquoqICiKAgGg/B4PLBarQiFQnA6nXC5XOoIcXl5OWRZJk2kiTSRJtJEmkgTaSJNpIk0TdBksVjQ1taGeDwOi8UCh8MBWZbh8Xhwzz334PDhwwgGg3A6nbBarRBFEVarFXa7HWVlZSgrK8Ntt90Gm802TtMf//hH2Gw22O12SJIERVHgdDrVdT5cLhcsFgvi8TjsdjtsNhsSiQSSySSGh4fx6KOPory8XH3zsbKyEtFoFIlEAqWlpQBGH4Y4HA6UlpaqDxhramqwfPlyfPvb34bVah2nSZIkuFwuJJNJxOPxtJokSYIsy+p2LpcLa9euTRunixcvYmhoaJKmD33oQ5g7dy71PdJEmhhqOnz4sJojxuaSRYsWYenSpYZpGhoaQnNz87hc4nK5UFlZidtuuy2tpsHBQVy7dg0VFRWYO3cuAKSN0/vvvw9RFNVSf4IgwOFwqPkRgJrPEonEuO3G5jOteS+lKZWjc83lY7cjTaTJCE1r1qwxVd6bKpf39PTkrTQWDYQQBU2xrxEyMdEWMrxpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rQUYg4aHBzEhQsX1IcYs2fPxrJly2C1WtVSg+lsP/jgg1O2ObHWfTKZhCzLsNlsM/opiiI2bNigloVIYbFY4HK5EI/HMdNt+Pr167F58+as207HPffcg9LSUlgsFiSTSXR3d2NgYEB9C3YiN954IxYvXpx1O8UCb8esFnjTUoj5J1PbWtYIYXkP1tHRob4FPpF06xP09vbi/Pnzag6yWq348Ic/jNmzZ0/aNps1Qojc0XpO4AUedRjpU7q2WK0Rwvs9GK0RQhBETgQCAWzdunVcPcBChTctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBm5ZCzEFz5szBfffdhzVr1mDdunX48Ic/DJvNhkAggD/96U9qqYaxlJSUZHUzH4/H0dDQkNbWRFKLoE+ksrIS3/nOd9S3NqejoaFBHUjJpu10HDt2DO3t7VAUBZcvX0ZHR8eUgyAA1JIfRHp4O2a1wJuWQsw/RthmeQ+WepM8E5LJJC5fvjwuB6U+A0ZzU29vL3p7e8etu0Doi9ZzAi/wqMNIn/Rsy0z3YKyhGSFEQVPsM0JkWcbAwABqampgs9ny7Y4meNNitD96tsfSNgtbWmzw1k+KHbPEgzcdlH/0s0f5xzyYKR68aTFbDrp69SquXr06aQbGLbfcgptvvnnK3058s1lRFESjUZSWlsJqnfl9QkEQsG3btnEDGjabDTU1NRgYGFDrnU/Hnj174PV6s257Km699VZ0dXVl1Dart1LNCG/HrBZ402K2/DPWtpYZISzvwQYHB8ctVD6Wicf9yMgITpw4kTYHLV++HO3t7Wo+sdlsGeUWQjuszgn5hkcdRvqUri1W517e78Hy+SyXBkKIgqbYB0IIgiAIgiAIgpgev9+PK1euqDWrvV4vbrrppmlnhLAq8SKKIoaHhwGMLqr6rW99K+PfpgZC8sF9990Hl8uVl7YJwoxoGQhhSXt7O/r7+9N+N/EhrM/nw7lz59JuSwMfBMGeYnkJgUpjEQSRE+FwGLt27UI4HM63K5rhTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmxYw5yG63Y/Xq1fjoRz+KNWvW4Oabb56xLJbD4Rj3tyiKaGtrm7Tux0w4nU54vV54vV7MmTMHjz/+OMrLy7PWcfToUXR3d2fdfq6EQiFD2ilEeDtmtcCbFjPmH97uwXIpYZUu/9EgSP7I9XzEGzzqMNInPdsy0z0Ya+z5doAgiNyx2+1YtGgR7PbCP5R502K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpMXMOymZNkFmzZo17a9pqtaKqqkpTqQyLxYLOzk5IkpTR9oIgYMuWLWhubsbdd9+NxsZGKIqCdevWYdOmTXC73Tn7MhPnz5/HnDlzdLNfyPB2zGqBNy1mzj/5tpWykUsOY5H/CHaYJR486jDSJz3bMtM9GGuoNBZR0FBpLIIgCIIgCIIgWDNd+Zhc8fl82LhxY8bbL1u2DGfPnk373fr167F582ZWrqXlz/7sz7hYN4IgzICRpbEURZny4WompbGSySQsFsu0pbEIgmAPlcbSH36G3QiCyJp4PI7GxkbE4/F8u6IZ3rQY7Y+e7bG0zcKWFhu89ZNixyzx4E0H5R/97FH+MQ9migdvWigHpUeSJHR3d2c8myMdsixj7dq1Ga+9kRoEcblck343dhF2vYjFYrraL1R4O2a1wJsWyj/abAWDQbS0tODgwYM4duzYuEXRUzYSicSUv/f5fGhubkZDQwNOnz6t5hgW+Y9gh1niwaMOI33Ssy0z3YOxhgZCCKKA4bGmYq7wpsVof/Rsj6VtFra02OCtnxQ7ZokHbzoo/+hnj/KPeTBTPHjTQjkoPbIsw+fzaaqLn0wmsWrVKjidzqx+53Q6J/1u7CLsehGNRnW1X6jwdsxqgTctlH9ytyUIAk6ePKmu7xOJRHDmzBkEg8FxNqZ76Hru3DmEw2FIkoTBwUFcvnwZAJv8R7DDLPHgUYeRPunZlpnuwVhDpbGIgoZKYxEEQRAEQRAEwRoeSmPNxJ49e+D1epnZm8jcuXNxxx136GafIIoJvUtj9fT04OLFi5M+v/HGG7F48WL1bz1yG0EQbKDSWPpDM0IIooBRFAV+vx+KouTbFc3wpsVof/Rsj6VtFra02OCtnxQ7ZokHbzoo/+hnj/KPeTBTPHjTQjkoPclkEoIgQMt7hLNmzUJNTU3WC6Pma0FZeliaHt6OWS3wpoXyT+620g2CAMC1a9c0+8Mi/xHsMEs8eNRhpE96tmWmezDW0EAIQRQwwWAQtbW16nTXQoY3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZsWykGjuN3ucX/H43E0NTVlXd96bDmrZDKJv//7v4fH48nKhsfjwdNPPz3pdzyUmChGeDtmtcCbFj39EUVxUgkaXvOPHra02Mg1/xH6YJZ48KjDSJ/0bMtM92CsodJYREFT7KWxFEVBMBiEx+Mx/A0x1vCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOWiUQCCA1tZW9e9kMol4PI5Zs2Zh9uzZ6O7uzsiO0+lUByySyaT6MCCbxc6tVis8Hg+CweCktynXr1+PTZs2TRq4YUWxlOnIBt6OWS3wpkUPf2KxGM6cOYNwOAyr1Yp58+ZhyZIlsFgshuYfLaWxMvFzKvvA6HGcstHa2gqLxZKpDAD/lf9cLlfWvyXYY5Z48KjDSJ/StcXqnMv7PVg+n+XaDWmFIAhdSE2TNwO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960UA4axePxYP78+bh+/ToAwGKxoLS0FEuWLEFVVRVqamowMjICQRDg8/mmtLNgwQJ0dnaqNiorK7F58+Zxi53//Oc/x6FDh6a0kSopkY79+/cDADZv3pyDypkZGRlBIBCA2+3G7Nmz4XA4dGmnkODtmNUCb1pY+5NMJnHixAkIggBg9Fi6fv067HY7Fi9ezG3+0cNWykYuD3ctFotug61E9pglHjzqMNInPdsy0z0Ya/I/5E8QRM6EQiG88MILCIVC+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDhrFYrFgyZIlWL58OW688UbMnz8fp0+fht1uVwc0Fi1aNOOb3HPnzoXdPvr+YTweR3NzM+LxOJxOJ7xeL7xeL7773e9i/fr1U9qoqKjAN7/5TVRUVKT9fv/+/QiHw1lrzIQTJ06gs7MT586dQ3NzM2KxGFP78Xgcvb29uHLlCvx+P1e14qeCt2NWC7xpYe1POBxWB0HGMjAwoEt7Y+H1HiyXMjxjcxeRf8wSDx51GOmTnm2Z6R6MNTQQQhAFjNPpxKpVq8bVHi5UeNNitD96tsfSNgtbWmzw1k+KHbPEgzcdlH/0s0f5xzyYKR68aaEc9F9YLBbMnj0bixcvxqJFi3DXXXdlbau0tBSrVq3CnDlzYLPZ4PV6YbPZxm3jdruxefNmvPzyy2ltiKKItra2aUtpbdiwAVu2bEn70JcV8XgcV65cSfudLMvo7+9HR0cH+vv7J63FkI5IJILm5mZcuHABXV1daGtrw5UrV7gfDOHtmNUCb1pY+zPVbK3UccJz/mFty+l0Yt68eZPyTyZMlbuI/GCWePCow0if9GzLTPdgrKE1QoiCptjXCCEIgiAIgiAIIr/MVJs/k+2A0Ye2Gzdu1OTL+vXrdSuTBYwODj344IPjPpMkCSdPnhy3CGplZSWWL1+uzoZJx8mTJ9XyYGO59957UVpays5pomi5cOECent7035n9Po3WtYI0WIfAB544AHIsowjR45obocgCP0olnW58vksl2aEEEQBIwgC6uvrdX3zyyh402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykny1JktDZ2QlJktJ+X11dnfZtSbfbjYceeiijWuKpRdhFUYTP51P/Zbow+0yke4+yt7d33CAIMLrY/HRrpwBIOwgC/FfZIl7h7ZjVAm9aKP/oY+vo0aO4ePHitPlnOmbKXYSxmCUePOow0ic92zLTPRhraCCEIAoYHk8cucKbFqP90bM9lrZZ2NJig7d+UuyYJR686aD8o589yj/mwUzx4E0L5SD9bNlsNvj9fiiKkvZ7p9OJdevWTfrcbrdj0aJF086uSCGKIr7whS/g4x//ODZu3Kj+07N0Vn9/f1afzwQPNcSng7djVgu8aaH8o48tURTR29s7bf6ZDkVRcv4twR6zxINHHUb6pGdbZroHYw2VxiIKGiqNRRAEQRAEQRBEPsm0NNZ0ZXpSCIKAbdu2qTM7UqQGSeLxOA4fPpyzr+lKZ4miOG52xlQzU1LMnTsXFosFNTU1mDNnTsb6JzLV7+bMmTPuHo8gcoVKYxEEUUhQaSz9oRkhhClwu90oLy8HMLpQn9/vV6dtB4NB9SYiFoshEokAGB2R9Pv9qo1AIIBEIgEAiEajiEajAIBEIoFAIKBu5/f71VHMSCSCWCwGYPQGIjUlPJlMwu/3q4sEhsNh9e2reDyuvuU0cQQ4FAohHo8DGL0JCofD02qSZRmdnZ1qu4WsaWRkBNeuXYMsy1zEKRqNoqOjA7Isa44TMHPfEwQBPp8PoVCIuaZIJAKfz4doNMpFnIaHh+Hz+VTb2WiSZRmXL19W22V5PGUSp0I5nozSFIvFcOnSJciyXNCagsEgOjs7IcsyF3GKx+O4ePGi2q7efY9ljpioKRgMwufzIR6PM+l74XAYPp9PtZ1tnIaGhtDb2wtZlov6nGuGvCeKIi5evDjuOC5UTakSQqIochGnoaEh9PT0QJZlQ/qeLMvo7u7G0NAQc02yLOP69esYGhrSNU4p24lEQtWnKMq42ReBQADz589HOBxGPB5X9cmyPGmWxve+9z3U1dXhlVdewa9//Wu8+uqr2L17N7797W/j+9//PtavX4+qqip1gdXy8nK1bJbL5UJFRQUAwGq1oqqqClbr6G1/RUUFDh8+jKtXr6KnpwcdHR34/ve/j7/6q7/CE088gS9+8YvYuHEjvvjFL+JHP/oRBEFIq6m/vx99fX1obm5GR0eHqn0qTSMjIwgGgxgeHkYgEFDjJMuyuo+TySQEQYCiKBgcHMTx48fVwRne8p4sy7h48aLabiHnci3X5XpoYn1PGA6HVR9EURzXR1nniImaJEmCz+fDyMiIGqeZcoSWOE11PKW0i6KIcDgMURQnbZfa//F4XLUtSZLqqyRJ4/ZRPB7PKO8JgjBuu6lyxERfx243naaxvmarKeXr2O0KRVMsFkMgEICiKAWtKXXvoSgKN3GKx+MIh8NIJBK6973UdVYsFlN9ZXW9F4/H4fP5EAwGmeTyRCIBn8+n2k7tO633hPmABkIIU7B27Vo88sgjAEZrytbW1qoH586dO9He3g4AOHDgAOrq6gAA3d3dqK2tVW1s375dvZDft28f9u3bBwDo6OjA9u3b1e1qa2vR3d0NAKirq8OBAwcAAO3t7di5cyeA0cRRW1ur1rfdu3cvGhsbAQCtra3YvXs3gNHkUFtbqyaj3bt3o7W1FQDQ2NiIvXv3TqspFArh5Zdfxptvvlnwml566SXs3LkToVCIizg1NTXh17/+NUKhkOY4ATP3vTNnzmDHjh14++23mWv64IMPsGPHDjQ1NXERpx07dmDHjh0IhUJZawqFQnjllVfwwQcfAGB7PGUSp0I5nozSlPI1dSNYqJrefPNNvPzyywiFQlzE6eLFi3j11VfVC1C9+x7LHDFR05tvvokdO3bg4sWLTPree++9hx07dqC1tTWnOP3sZz/DL3/5S4RCoaI+55oh73V1deHVV19VH54Xsqbf/e532LFjB7q6uriI089+9jP86le/QigUMqTvhUIhvPjii/jZz37GXFMoFMIvfvEL/OxnP9M1TinbXV1duHDhgmqvqalpnKYLFy6gpaUFly5dUvWNjIygublZ3a6pqQnBYBBOpxN+vx+xWAyzZs3CmTNn0NbWBrfbjX/+53/G008/jZqaGgDAI488grVr1wIAVq9ejS996UsAAI/Hg6effhoejwcA8KUvfQmrV6/GY489hl/96lc4dOgQDh06hKqqKjz99NNwuVwAgEcffRRDQ0PYtm3btJqam5vVfdTR0ZFWkyRJeO655/D+++/j5MmTeOWVV/D222+r/SP1e1mW0dTUpD7YOXjwIN566y3E43Hu8l4oFMKrr76KixcvTtn3gMLI5Vquy/XQxPqesK6uTvXhwoUL6OrqUttlnSMmahoaGsKOHTvw0ksvqXGaKUdoidN0x1N7ezuuXr2KlpYW9PT04NSpU2o8m5qa1P1/6tQpdW2f7u5u1e9AIIDTp0+rD1RbW1szynvNzc0YGRlRdcyU99LFaTpNqf3g8/my1hSNRtHU1KQ+CC4kTadPn0ZbWxtEUSxoTceOHcPx48chiiI3cers7ERLSwt8Pp/ufS8Wi6GlpQVtbW2qJlbXexcvXsSOHTvw5ptvMsnl169fx44dO5jfE+YDKo1FFDSp6VRutxt2ux2NjY1YunQpQqEQKisrYbFYEAwG4Xa74XQ6EYvFoCgKysrKIEkSwuEwqqqqAIye3EtLS+FwONQEV1paikQigWg0isrKSgCjo6vl5eWw2+2IRCKwWq0oKSmBKIoQBAEejwfJZBKBQAAVFRWw2WwIh8Ow2+1wu92Ix+MQRREVFRVQFAXBYBAejwdWqxWhUAhOpxMulwuCIECSJJSXl6tvrk7U5HA44Pf74XA4UF5eXtCaAoEALBYLKioq1NH2fMZJEASEQiHMmTMHyWRSU5wy6XslJSVQFAWyLMNisTDVZLPZYLFYAIy+LZDvOEUiEbjdbrhcLgQCgaw0Wa1WDA0NoaysDCUlJUyPJzPmCL01xeNxBAIB9UFMoWpKvfVTVVWFRCKR9zil3vxLlR7Ru++xzBETNcmyDLvdDpvNhkgkornvWSwWWK1WWCwWxOPxrOMUCATgcrlQUlKCcDhctOdcM+S91NupNTU1sFqtBa0pkUjA4XCo+SjfcfL7/XA6nSgtLUUkEtG976XaSSQSmDVrFlNNqeuVlD694tTS0gKLxYJEIoFkMgmn0wlFUSCKIj7xiU+Mu947ePAgFEWBxWKBw+GALMtIJBLqjA5BEOB0OmG1WiGKIiwWC+x2O0RRRDKZhNvtRjKZRCgUwuc//3kIgqAeE4IgwOVywel0IhQKwWq1wuPxIBgMQlEUVFRUqG+8pu6fUueBiooKBAIBJJNJeDwe9c3Q1157DQ6HY5ymsb46HA7YbDb1LdWJmqqqquDz+SZpeuCBB3D48GFIkgSXy4VkMol4PD5uO6vVijvuuAOzZ8/mKu8lk0n09/ejuroaDoejoHO5luvyQrgnPH78OPx+/7i+l+qj99xzD9McMVGTx+NRj7eSkhIcPnw4bY5YtGgRli5dqjlO77333rTHk8VigcViQTKZhKIo47ZzuVzqtZXNZoPdbockSVAUBU6nU52hU1paCqvVing8rl7fpdOUTY6YKu+ltpspR6R8lWU5K00pX8duVyiaUvnZ5XKpFSwKUZMgCLDb7eo5joc4AVBnUU7c/6z7Xur/JUlSfV2zZg2T672ysjI1LjabTXMur6ioUGfguFwuzfeEPT09eSuNRQMhREFDa4QQBEEQBEEQBJFPOjo6cO3atUmf33DDDbjtttvGfcayjv+WLVuwf/9+ZvbSsWfPHni9XuZ2KyoqMloUvbS0FPfee6/m9lIlRkRRxKxZs1BSUqLZJsE/Zl8jJBgMqoOsp0+f1uAdQRA8QGuE6A+VxiKIAiYYDOInP/mJOpWvkOFNi9H+6NkeS9ssbGmxwVs/KXbMEg/edFD+0c8e5R/zYKZ48KaFclD2tubPnz9pcXGHw4EFCxZMstHY2KiWjsiUeDye9nebNm3C+vXrp13YnFcyGQQBoL71qgVBENDc3IzTp0/jwoULaGpqwvXr13O2x9sxqwXetBRj/vH5fDh27BiOHDmCCxcuqCWAZrLV2dmJ48ePo6OjI6NBkKnySCZo+S3BHrPEg0cdRvqkZ1tmugdjjT3fDhAEkTtutxsPPfSQOq2vkOFNi9H+6NkeS9ssbGmxwVs/KXbMEg/edFD+0c8e5R/zYKZ48KaFclD2tkpLS7Fq1Spcv34doVAI5eXlmD9/PsrKyibZWLRoEez27G7D7XZ72t+53W5s3rwZoiiqC4unEEURjz/+OKgAxOjaWxMXpD9//jxmz56d0yASb8esFnjTUqz5J7U4cm9vL+LxOJYvXz6trUgkgs7Ozqz8mSqP6P1bgj1miQePOoz0Sc+2zHQPxhoqjUUUNFQaiyAIgiAIgiCIQoFlaayZYFE6S6/SWNmgpVRIMplUF4qdyO2334758+fnbJsY3b+xWAxut1utq88TrEtjhcNhXL16FeFwGB6PB4sWLcr4wV42x/79998/7SDddLoIgihcqDSW/vB3piIIImNisRjeeecdxGKxfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnKxaL4dq1a+rCrZmSSCRw6dKlrH9XyKWzZkIURfT392N4eDhtKaFM8Pv94/6Ox+Np93FqUdnBwUEkEgnujlktaNHi8/nQ0NCAo0ePoqGhAd3d3cz8iUQi6OjowLFjx9Da2gqfz5d2e0EQ0Nvbi76+vqyPj7HtZaI/Go2ira0N/f39iEaj8Pl8aGtrUxdY1mJ7IhP1TrQ1ODiYtc1c84jW3xLsMUs8eNRhpE96tmWmezDW8DP/iCCIrFEUBX6/H4qi5NsVzfCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W4qiwGKxZF2uKplMQhCErH83Vemsn//85zh06FBGNqZ6yJtPhoaGcPr0aXV/uFwurFq1KucF0AVBwOnTpxEOhwEA1dXVuOOOO2C32yGKIk6cOKGWLrJYLLjlllu4Oma1kGu/DgaDOHfunPq3LMu4dOkSSktLUV1drdmfs2fPqvEAgEAggP7+fjUuADA8PIzTp0+rvjudTqxcuXJSSbpM2stEf19fHyRJGveZIAgYGhpKO7NIS864fPkyfD4fSktLcdNNN8Fms2F4eBgDAwOYO3du1vaA3POI1t8S7DFLPHjUYaRPerZlpnsw1lBpLKKgodJYBEEQBEEQBEEUEocOHZr0QNVIBEHAtm3b0NDQkNFAx/r167Fp06a81fYeWypElmU0NDRMephSVVWFVatWTfrtdKWx5s2bh6VLl+Lo0aOT3lKtqanBnXfeiTNnzmBgYGDcdxaLBevWreOqrr3RXL58GVevXp30+YIFC7BkyRJNtgVBQGNjY9rv3G43Vq1aBZfLhcOHD096k3piP2BZGmuq0lYlJSVYs2ZNzr+fCZvNhsrKyknrABEEYT6oNJb+UGksgihgJElCZ2dnXm+kWMGbFqP90bM9lrZZ2NJig7d+UuyYJR686aD8o589yj/mwUzx4E0L5SD9bKVs3HLLLVn9TlEUxGIxZm9SpmaK1NXVYc+ePXj22Wen3X7//v3Ytm0bk7a1MjIyknY/+P3+nEpkRSKRtKU6hoaGoCgKhoaGJn0nyzJOnz7NzTGrhVz7dbpBEACa162QJAknT56csq8LgoBLly4hEAikLSeTbT9gcVxPVeqFVf6RZRmDg4M0K59QMUs8eNRhpE96tmWmezDW0EAIQRQw4XAYL7/88rhpw4UKb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVspFN6R5gtDzV0aNHUVpamnPb6XA6nfB6vRkthp7p7BG9mW7/5zIQMnGdkBSKoiCRSKR9QCWKIt58801ujlkt8Jh/3n777Wn72uDgILN+UCj5J1WiTcsxqMUGi/YJdpglHjzqMNInPdsy0z0Ya6g0FlHQUGksgiAIgiAIgiAKjQ8++CDjB7Zutxtr166Foig4ceIEAoEAU19EUcSGDRtmfBizZ8+ejAZNWPPQQw8hmUxCFEVcv34dnZ2dabe7//77Jy0MP1NprIqKCly6dCnt9/fddx+OHDmS9rv58+fj9ttvz1yEyZiuzJPW0i4dHR24du3atNt86EMfmjJuixcvxo033gjAmNJYmdrKtTQWQRDFA5XG0h+aEUIQBEEQBEEQBEEQBpLNgsepB+5WqxUf+tCHmPvidDqxbt26GbfbsmULBEFg3v5MXL9+HUeOHMGRI0emHAQhiBTpypkRBEEQBEADIQRR0AQCAfzLv/wL87fC8gFvWoz2R8/2WNpmYUuLDd76SbFjlnjwpoPyj372KP+YBzPFgzctlIP0szXWxk033QSXy5Xxb/WOyaZNm7B+/fpptzl79mxe1go5f/48V6VTBEHA73//e26OWS3wmH9++9vfahpwm6rc2USuXLmCq1evMtUvSZK6dgnLfSsIAg4dOqRpv2ixwaJ9gh1miQePOoz0Sc+2zHQPxhp7vh0gCCJ3SktL8ZnPfIZ5veB8wJsWo/3Rsz2WtlnY0mKDt35S7JglHrzpoPyjnz3KP+bBTPHgTQvlIP1sjbXhcDhw9913Y2BgAKFQCD6fL+1vnE4nysvL1d/p9XAmtYD6448/jscee2zK7VJrhUwsQVVMOBwOrFy5Ej6fD729vZg1axbmzZsHi8WSb9eyhsf8c//99+e03ku2dHV1QZZl3H///Zr1y7KM9vZ2dTZKVVUVlixZwmzfOhwOLF26FA6HIy82WLRPsMMs8eBRh5E+6dmWme7BWENrhBAFDa0RQhAEQRAEQRBEIaMoCg4ePJj2u1mzZmHlypXq36FQCC0tLbr5ksl6Ic8++6y6Vkh1dTU3gyJGrhEyEa/Xi9tvv70gB0NyIdv1MsLhMEZGRuB2uzFr1izY7VO/k6t1jZCxPky3RshY7rvvvhlnaE2nee7cuejv7x/32cRjl9YIIQhiJmiNEP2h0lgEUcBEo1G88cYbiEaj+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq42jIxJJuuFfOtb38LGjRuxceNGfPzjH8eTTz6JUCiku2+8kEgkcO7cObUEEgD4fD7EYrE8epUbRvStnp4eNDc3o6OjA2fOnMHx48enHGiLRqM4fPjwuH2rJ6lYXr16VZOdiYMgqc9ee+01Jvs2XZ8z0gaL9gl2mCUePOow0ic92zLTPRhraCCEIAiCIAiCIAiCIAoAI2YcbNq0CcuWLct4+7Nnz+LTn/503hZTTxEOh/PWNgD09fVpthGPxxGNRmGWwh2JRAIXL14c91k0GuVu0ftM1xXJFp7WtiEIgiCoNBZR4FBpLIIgCIIgCIIgCplsSmMlk0kcOnRI9zUUfD4fNm7cmPXvli1bhp/85Cd5KZc1b968SQM405XGKikpmXYWRzalsQBgzpw54+5Ns0GWZZw5cwbDw8Oqb8uXL+einno6Mi2NdfXqVVy+fHnG7caSj9JY1dXVWLFiRdrvRFHE8PAwzp07N6Odidx5552oqakBQKWxCIKYGSqNpT80I4QgChgepxLmCm9ajPZHz/ZY2qZp2cRYzBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytTH2dxaLBbfeemvOPujN2bNn8YlPfGLc7BBRFOHz+dR/er0lP3G/yrKMs2fPTrl9rqWsZFnG4OAg08Gojo4OdRAEGPXt1KlTus8M0ft4z3amRSKRwLVr1wxZLB34r1hKkpT2+1AohKNHj+Y0CCLLMi5fvsxk37Loc1ps6NHnidwxSzx41GGkT3q2ZaZ7MNbQQAhBFDA81dnTCm9aqD62fraoRr95MEs8eNNB+Uc/e5R/zIOZ4sGbFspB+tlitUbIDTfcgBUrVnCzSPlEkskk9u/fjx/+8IfYsmULNmzYoK4psnHjRmzYsEH3MlqSJOHEiRNp127IlLa2trSf6/FAJ92shVgspnu5Lx7zD6s1QhRFwdDQ0LTbpGI51eDchQsXphwkmYlEIoH333+f1gghmGOWePCog9YI0cceT+caKo1FFDRUGosgCIIgCIIgiEImm9JYEwkGgzh+/Dhzn3ItjZUN69evx+bNm5nZG1veqLOz0/B1KLSUxpqqbNLNN9+MW265RYNX+pBpaayTJ0+Om+ky1XZjYVEa68/+7M9w+vRpjIyMTGsnRbrSWKIo4vDhwxn9fiqoNBZBENlApbH0h2aEEARBEARBEARBEEQB4vF4MGvWrHy7kRMNDQ26lckaGBjQxS5RGPh8vowHQSaSSCSgKApXb6kTBEEQbKCBEIIoYPx+P37wgx9kXXuVR3jTYrQ/erbH0jYLW1ps8NZPih2zxIM3HZR/9LNH+cc8mCkevGmhHKSfrVxt8NZHWJFahFoPIpGILnYBQBAEHDhwQNfSXkbBW9/y+/349a9/rXnfZjoQloplJBJBPB5Ha2srGhoacOjQIVy4cEGTD4Ig4Pnnn2eyb1n0OS02zNTnzYBZ4sGjDiN90rMtM92DsYZKYxEFTbGXxpIkCd3d3Vi4cCHsdnu+3dEEb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LM1lY2ZSmPdeeed07Z94sSJnN9+n4pMS2MtW7Zs2gXJZ2LPnj3wer05/34iFRUViEajui50qygKgsEgPB4PrNb/ere0EEtj5dqv9SqNJUkSmpqaEI/Hx+3bicxUGitTUrG8+eabIUkS0wE0RVFQXV2ND3/4w7Db7ZpKY03V54yywaJ9gh1miQePOoz0KV1brEpj8X4Pls9nufm/0iYIImfsdjsWLVqUbzeYwJsWo/3Rsz2WtlnY0mKDt35S7JglHrzpoPyjnz3KP+bBTPHgTQvlIP1s5WpDS9vz58/H9evXs/5ddXU1nE7ntKWrnE4nfvKTn8Dn8+Gxxx7LyT/WhEIh3duwWq2oqqrSvR1gdOH5TJEkCbIsw+VyZfybbPqWKIrw+Xy6LuBut9vh9XpnXCOEFalYxuNx5m9lW61W3HDDDUweQrLoc1psGNnniZkxSzx41GGkT3q2ZaZ7MNbwMeRGEERORCIR/OY3v9F16rdR8KbFaH/0bI+lbRa2tNjgrZ8UO2aJB286KP/oZ4/yj3kwUzx400I5SD9budrQ0vbs2bOz/g0wOsixbt26abdZt24dnE4nvF4vnE5nTu0UIqIo4vTp07qtbzKWwcFBxOPxabeRZRmnT5/GoUOHcOTIERw7dgyxWGzcNsFgEBcuXMCZM2fQ29urDrBk2rdEUURraysuX76M/v5+baKmIRKJoL6+3pB9C/xXLIPBoC623377bSb5h0Wf02LDyD5PzIxZ4sGjDiN90rMtM92DsYYGQgiigEmNIPMyjVALvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WLjZKSkry1kc2bdqE9evXTxrkcDqdWL9+PTZt2qT+PdOgiZmwWCxwu92wWCy6txWNRnHkyJFpZ0hcvHgRg4OD6t+RSAQnT55UBzuGh4fR1taG3t5eDAwM4MKFCzh//jyAzPvk9evXJw2u6IHVakV5ebkh+xbQN5YWiwUVFRVMjlsWfmqxYWSfJ2bGLPHgUYeRPunZlpnuwVhDa4QQBU2xrxFCEARBEARBEETh09LSkras08qVKzFr1qxpf9ve3j7lW/rLly/HqVOnNPk2cVHzVNmssQiCgG3btmH//v1Z2Wa9Rkg+qa6uxooVKyAIAq5evQq/34+5c+fC6/XC7XZP+9tM1o+466674PF4xn2WTCbR0NAASZImbf+Rj3wE5eXlaGtrS7tA7dq1a2f0K0VjY2PGpaO0rBECAB0dHTOWxmK1Roje3HnnnaipqQGQWYwJgihuWK0Rwjv5fJab/6EYgiByRhRFtLW1cTWVMFd402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykn63pbNxyyy2T3pScPXs2KisrZ2x77ty5aT8vKyub9OA8RTZvZabKX6X+pSuD5Xa7sXnzZrz88ssZ2y1UZFmGz+ebtCB7SUkJhoeH0djYiN7eXkSjUXR2dqKxsXHatUvSDWKko7e3N60vU/1+aGgIANIOggBAX19fxv2a9foZUyGKIjo6OnRd7H4sU8WSle1z584xyT8s/NRiQ8/9RGSPWeLBow4jfdKzLTPdg7GGBkIIooARBAH19fWGXZjqCW9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzNZ2N6upqrF69GjfeeCPmzp2LJUuW4M4774TVap2x7aqqKpSUlEz6fMGCBXA4HLjhhhsmfbdw4cKcdUxHMawVIkkSOjs70w5ATDX75uLFi2k/TyaTaGpqyqhdn8+XuZMZEIvFuMw/J0+ezHhwSCvTxZKF7WPHjjHZtyz81GJDz/1EZI9Z4sGjDiN90rMtM92DsYZKYxEFDZXGIgiCIAiCIAii2InH47h8+TL8fj9cLhe8Xi8WLFgAYPRhe29vL4aGhmCxWDBnzhx4vV4cOHCAuR8+nw8bN27MeHszlcaaiY9+9KOTZuIMDAzgzJkzGduYWDZFkiQcOnQo7ba33HILbr755ilLMnm9XixdujSjdrMp66S1NNYHH3ww4xvSN910E65evZqxT/mCSmMRBJENVBpLf2hGCGEK3G43ysvLAYxOL/P7/ericMFgUJ1+FYvFEIlEAIxeNI6dJhwIBJBIJACMLkoXjUYBAIlEAoFAQN3O7/erI7aRSERdNE4URQSDQQCjNxt+v1+9gAuHw+rIZzweV6dGK4oCv98PRVEAAKFQCPF4HMDoiGk4HJ5WUzKZxMjIiLpdIWsKBAIIBoNIJpNcxEkQBAwMDCCZTGqOEzBz3xNFEYIgIBKJMNeUettLEAQu4uT3+yEIguprNpqSySQGBwfV7VgeT5nEqVCOJ6M0xeNx9Pf3I5lMFrSmcDiMkZERJJNJLuKUSCTQ19c37rjTs++xzBETNaX2WerY1xKnVH4UBAHxeDynOI2MjCAajSKZTBb1OdcMeU+SJPT19anbFbKmUCgEQRBUX/Mdp5GREUQiESSTSUP6XqqdkZER5ppS1ysjIyNcxCnX671kMolgMKhul67vJZNJLFu2DHfddRduu+02LFiwQNWUTCZxww034JZbbsGSJUswf/58xONx1W9FUdRrs9R+SdlOJBKTtkshCMK47VIxczgcqKysVLerqqqC3W4HMFquKzV7xel0qr9JJpMQBEHd/6IoqvtBkiQ1Fqntxvo6dju9NMmyrG6X6rOp7URRHLfdRF/H5qmJfa+npycrTVP1vXSaUttNpSnVRzO5Lp9K01Rxmng8pdN0/PhxdHV1qddgwOjMmdR5ero4DQ0NzRinlPaxvk6MU6qdWCzGvO8pioJ4PK4e+1PFaayvU2mKxWKQJCnt/s+k76W2kyQJiUQia02yLCMcDo+LJ6vjKZM4TaWJ1xyht6bUdXsymSxoTbFYDIlEAslkkps4pfxNt//1yBGSJI3zldX1XiKRUK/HWFzDpvZbMBhkek+YD2gghDAFa9euxSOPPAJg9K2a2tpa9eDcuXMn2tvbAQAHDhxAXV0dAKC7uxu1tbWqje3bt6OjowMAsG/fPuzbtw/A6GJt27dvV7erra1Fd3c3AKCurk59k6q9vR07d+4EMJo4amtrMTAwAADYu3cvGhsbAQCtra3YvXs3gNHkUFtbqyaj3bt3o7W1FcDognR79+6dVlMgEMBzzz2H119/veA1vfjii3j22WcRCAS4iNORI0fw/PPPqw/+tcQJmLnvnTp1Clu3bsVbb73FXNOBAwewdetWHDlyhJs4bd26FYFAIGtNgUAAP//5z9XtWB5PmcSpUI4nozS1tLRg+/btCAQCBa3p9ddfx3PPPYdAIMBFnM6fP48XXnhBvaDVu++xzBETNb3++uvYunUrzp8/z6Tvvfvuu9i6dStaWlpyitNzzz2Hf/3Xf0UgECjqc64Z8t6VK1fwwgsvqPYKWdNvf/tbbN26FVeuXOEiTs899xz+7d/+DYFAwJC+FwgE8H//7//Fc889x1xTIBDAtm3b8Nxzz3ERp1yv9wKBAJ599lm8+OKLapxY9L2U39FoFE1NTeoDkdQ2ANDV1YULFy6o9saWcWpublYHsDo6OtDR0YHq6mrcfvvteOKJJ9Ttnn76abUU14YNG/Dggw8CAO644w5cuXIFPp8PsVgMTU1N6oOd9vZ2dT/4fD615FQ8HkdTU5O6/0+dOqWWjOru7p5WU2p/ZasJAEZGRtDc3Kz60NLSoq7BceHCBXR1dQEY7fOp/SfL8jhNr7/++qQ4+f3+rDRN7Htnz57NWZPP58v4unwqTVPFKdX3Ug/g0mkKBoM4deoUnnvuOVXTa6+9hsbGRsTj8Wk1vfvuuzPGCQCamprU/p8uTvF4HIcPH8bRo0eZ971oNIoXX3wRL774ojrrJ9e+19LSgoaGBtWH6TRNFaeuri40NDSgu7s7a01+vx8tLS2qPZbHUyZxmkoTrznCCE2pvwtZ09GjR3H48GHE43Fu4nTlyhU0NDTg+vXruve9aDSKhoaGcZpYXe+dP38eW7duxeuvv87kGranpwdbt27FK6+8wvSeMB9QaSyioElNp3K73bDb7WhsbMTSpUsRCoVQWVkJi8WCYDAIt9sNp9OpvulRVlYGSZIQDodRVVUFYHR0tbS0FA6HQ01wpaWlSCQSiEaj6ltNfr8f5eXlsNvtiEQisFqtKCkpUd/w8ng8SCaTCAQCqKiogM1mQzgcht1uh9vtVt++qqiogKIoCAaD8Hg8DWL8MwABAABJREFUsFqtCIVCcDqdcLlc6htn5eXlkGU5rSabzYZr166huroaHo+noDWl3rJdsGABRFHMe5yi0SiuX7+ORYsWqfs81zhl0vdcLhf8fj/Kyspgs9mYarJYLAiFQvB4PJBlOe9xCoVCEEURNTU1CIVCWWkCRi945s2bh7KyMqbHkxlzhN6aYrEYenp61AVeC1VTMBjE8PAwbrzxRvVtl3zGKR6P4+rVq7j11lths9l073ssc8RETSkfZ82ahVgsprnvpd7CraysRCKRyDpOIyMjiMfjmDdvHqLRaNGec82Q90RRRFdXF2655Rb1OC5UTfF4HLFYDNXV1aoP+YzT8PAwBEGA1+tFLBbTve+53W5cv34dJSUlmD17NlNNZWVl6O/vh9PpRFVVVd7jlOv1ntPpRG9vL8rLyzFr1ixmfe/gwYNwOp1QFAWiKMLlcsFisSAej+P+++9HS0uL+rbu2O3cbjeA0bdBHQ4HbDbbuNkgP/rRj9Dc3KwO6FdVVSEcDkOSJJSVlUFRFMRiMTidTrjdbgSDQTidTnzsYx/DN7/5TfXtd4vFgpqaGlitVsiyDJfLpb45PNZXm80Gu90OSZKgKMqUmux2u+prtppkWUYikYDb7VbPJ5WVlbDb7RBFERaLRd1OkqRxvjqdTlitVqxatQput3tcnFpaWrLSdNddd43re3a7HUePHk2raenSpXC73Whra0urac6cOeo1/UzX5fv370+rSRRFWK1W1VdZlvHxj39c7XudnZ3qYM9UmpLJJNavXw+r1Yq3335b7b+p2eC5xim13VhfJ8bJ4XAgEonAZrPB7XZPqSmXvudwOBCLxeBwOOBwOGC1WnPue/F4HIqioLS0FKIoTqtpqjgBUH+bTCaz0iRJEgKBgJpHWR5PmcQp077HS47QW1MsFhuX5wtVUywWgyzLKCsrQyKR4CJOqVliLpcLiqLo2vdSOcJms8HpdMJms2HNmjVMrvdKSkowMjKibq/1GrasrAxDQ0Nwu90oKSnRfE/Y09OTt9JYNBBCFDS0RghBEARBEARBEET2TLdmwX333YcjR47kZFcQBGzbtg0NDQ3qA9hccTqdWLduHTZt2qQ+uCpUHnjgAbVEGAD09/erb8xmSjZrhCxatAjd3d1TLsQ7b948LFu2bNxnkUgEvb296ssLCxcuhNVq1WWNkLHce++9KC0tpXU0CIIoamiNEP2h0lgEUcCEw2Hs2rVLrctXyPCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PzITb7cbmzZtRV1eHPXv24Nlnn83ZVmo2wrZt2xh6qA1RFNHW1qZ5kCdVVkYvgsHglIMgANDX1zeub0UiEbS2tqKnpwfDw8O4fPkyTp8+DSPenU21wWrfZoqe7bG0zcKWFhtGx4WYHrPEg0cdRvqkZ1tmugdjDQ2EEEQBY7fbsWjRonFvFhUqvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WrjZ46yOZ4nQ64fV64fV6Nduqr6/n5mGZ1WpFVVUVrNbsHqccOXIE7e3t6mK/qQVx9SKT/SXLstq3enp6Jg2cDA8Pq4vmZkuq1F425Lpvc0XP9ljaZmFLiw2j40JMj1niwaMOI33Ssy0z3YOxhkpjEQUNlcYiCIIgCIIgCILIHr1KY03E5/Nh48aNmu0sW7YMP/7xjwu+RFZJSQk+9KEPqQvsZsNHP/rRcQ/NpiuNVV5ePuPbtzfeeCMWL14MYOr+MGvWLHXR4UxIlXa5evUqLl++nNFv7rnnHpSVlVFpLIIgihoqjaU//Ay7EQSRNfF4HI2NjYjH4/l2RTO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960UA7Sz1auNnjrI9lSXV0Np9Op2c7Zs2fHlcgSRRE+nw8+n8/Q2SKSJE279sZMxGKxnAZBgNFFcFly5cqVGftWNoMgY+nv789q+2QyqXnfZoue7bG0zcKWFhtGx4WYHrPEg0cdRvqkZ1tmugdjDQ2EEEQBw2NNxVzhTQvVp9XPFtWnNQ9miQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PZEtqwXMW7N+/H0NDQ9iyZQs2bNiAjRs3YuPGjdiwYQO2bNkCQRCYtDMdsizD5/NBlmXd20rXdqZkUotdlmVda9RnyoULF9DQ0GD4vtWzPZa2WdjSYiOffZ6YjFniwaMOI33Ssy0z3YOxhkpjEQUNlcYiCIIgCIIgCILIHqNKYwGAIAjYtm0bGhoadH0Qsn79emzevFk3+/nmzjvvRE1Njfr3dKWxMiVVioVVWSrW9giCIIoFKo2lPzQjhCAKGEVR4Pf7oShKvl3RDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasNvfbRrFmz0n6uxxocbrcbmzdvRl1dHfbs2YNnn32WeRsAdB9oAUZLOAmCADO8U5pMJnXpW7mW8DJ63+rZHkvbLGxpsWGmPm8GzBIPHnUY6ZOebZnpHow1NBBCEAVMMBhEbW0tgsFgvl3RDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasNvfbR3Llzp/zcZrMxbSuF0+mE1+uF1+vVxb4oihgeHs76N6m1RjJZbyQej6OpqYmLWudaicfjzPtWMplEe3t7zv4YuW/1bI+lbRa2tNgwU583A2aJB486jPRJz7bMdA/GGiqNRRQ0xV4aS1EUBINBeDweWK2FPa7Jmxaj/dGzPZa2WdjSYoO3flLsmCUevOmg/KOfPco/5sFM8eBNC+Ug/WzlakOvfSTLMk6fPj1uMezy8nKsXLkSDocDR48eRTQaZdbeWHw+HzZu3KiL7T179sw40CKKInp7e7Ft2zacPXt23HepNU02bdqUdnZMMplEPB6Hy+WCxWJh6vtM3HDDDaioqEBVVRXcbrfm0ljJZBKrV6+Gx+PBwYMHGXqauz9G7ls922Npm4UtLTby2eeJyZglHjzqMNKndG2xKo3F+z1YPp/l2g1phSAIXbBaraiqqsq3G0zgTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytaHXPrLZbFi+fDmGh4cRDAZRXl6O6upq2O2jjwluv/12tLa2Mm8XAKqrq+F0Og1fODWTtUpEUcT+/fsBIO16IxaLRZfyYZnQ09Oj/v+SJUumnNWTKRaLhav8Y/S+1bM9lrZZ2NJiI599npiMWeLBow4jfdKzLTPdg7Em/68cEQSRM6FQCC+88AJCoVC+XdEMb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw0995HVasWcOXNw6623Yu7cueogCAB4PB7m7aVIzbqYjvvvvx/r16/P2vZ0gyvbtm3D/v37MxqAmWqwJB6Po7m5Oe/lXC5cuABBEDTZiMfjXOUfo/etnu2xtM3ClhYbvPR5YhSzxINHHUb6pGdbZroHYw0NhBBEAeN0OrFq1So4nc58u6IZ3rQY7Y+e7bG0zcKWFhu89ZNixyzx4E0H5R/97FH+MQ9migdvWigH6WcrVxv56iMWiwULFy7Uzf6mTZuwfv36SbqcTifWr1+P73//+9i8eTNefvnlrOw+9thj2LJly6RBAlEU0dDQkLGdqdYbsdls8Hq9uq2jkg3Nzc2afm+z2bjKP0bvWz3bY2mbhS0tNnjq84R54sGjDiN90rMtM92DsYbWCCEKmmJfI4QgCIIgCIIgCEIvkskkLl68iL6+PsiyPOV2c+bMwcKFC9HW1pZ1GxMHHFJls1Lkup7I+vXrx5W2ysVOJuuNFDqpmvT19fV59YMgCKLYYbVGCO/k81kuzQghiAJGEATU19drnhLNA7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq428tlHLBYLlixZgnXr1uH++++fdrtc6387nU54vV71H6s3RqdbB0QLkiShs7MTkiQxt200kiRxlX+M3rd6tsfSNgtbWmyYqc+bAbPEg0cdRvqkZ1tmugdjDQ2EEEQBw+OJI1d400IX4frZootw82CWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasNHvqI1Wodt35IITBVaSutKIoCv98PRVGY2zYaRVHQ2dmJRCKRb1cAGL9v9WyPpW0WtrTYMFOfNwNmiQePOoz0Sc+2zHQPxhoqjUUUNFQaiyAIgiAIgiAIQn8URcHBgwfTfldTU4M777xTl/JKuZbGAsaXtmJZGmumcl6FxO23347z58/n2w2CIIiih0pj6Q/NCCGIAkaWZfh8vmnr9RYKvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WrjZ46yNGw2KQQRAEbNmyRbMvgiDghz/8Ib7+9a/jy1/+MjZu3IiNGzdiw4YNaRdo5x1FUdDS0sLNG9mKoiAcDhs6I0Sv9ljaZmFLiw2j40JMj1niwaMOI33Ssy0z3YOxhgZCCKKACYVC2LFjB0KhUL5d0QxvWoz2R8/2WNpmYUuLDd76SbFjlnjwpoPyj372KP+YBzPFgzctlIP0s5WrDd76iNE4nU6sW7dOk41t27bh7Nmzmn3Ztm0bjh8/jr/9279FRUWF+rkoiti/fz+2bdumuQ0jEUURLS0tuqylkgtG+6Nneyxts7ClxQZv/aTYMUs8eNRhpE96tmWmezDWUGksoqAp9tJYyWQS8XgcLpcLFosl3+5ogjctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBmxbKQfrZytUGL30kX6WxgNGZGNu2bZu0ALrT6cTixYunHOTYs2cPqqursWHDhpweNi1btgw//vGP4Xa7IYoiNmzYgEQiAZfLhXg8jomPU5xOJ+rq6gqmTFYymYQsy7DZbNzkHyP90bM9lrZZ2NJig7d+UuyYJR486jDSp3RtsSqNxfs9WD6f5RbWamcEQYzDYrHA7Xbn2w0m8KbFaH/0bI+lbRa2tNjgrZ8UO2aJB286KP/oZ4/yj3kwUzx400I5SD9budrgrY/kA7fbjc2bN6ddm2N4eHjKtT9S2+f6xu3Zs2exbds2bN68eZydqUpgpdpLt64Ij1gsFtjt/DwWMtofPdtjaZuFLS02eOsnxY5Z4sGjDiN90jv/mOUejDVUGosgCphgMIif/OQnCAaD+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq42eOsj6bBaRx8tlJaW6tqO0+mE1+tV/8008+Kxxx7Dk08+Oe02y5Ytm/b7ibNQPB4Pnn76aXg8nswd55R4PI7GxkbE4/F8uwLAeH/0bI+lbRa2tNjgrZ8UO2aJB486jPRJz7bMdA/GGhoIIYgCxu1246GHHuJmZFULvGkx2h8922Npm4UtLTZ46yfFjlniwZsOyj/62aP8Yx7MFA/etFAO0s9WrjZ46SMWiwUulyvtdzU1NeP+yxMjIyNTfrds2TJs3bp12gGVibNQBEFAfX19wS2Mng673Y5FixZx81a20f7o2R5L2yxsabHBWz8pdswSDx51GOmTnm2Z6R6MNbRGCFHQFPsaIQRBEARBEARBEEbR0dGBa9eujfvM4XBgzZo1sNvtSCQSaGhoMNQnn883ZWmsmdizZw+8Xi+2bNmC/fv3T7nds88+CwD41re+lbFNgiAIgsgGVmuE8E4+n+XSjBCCKGBisRjeeecdxGKxfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnK1cbPPWRW2+9FQsWLIDNZgMAVFRUYNWqVeobrfl4s7e6ulrz4uSbNm2atkTWt771LXUQpKSkBJ/4xCdQUlKiqU0eSCQSuHTpEhKJRL5dAWC8P3q2x9I2C1tabPDWT4ods8SDRx1G+qRnW2a6B2MNDYQQRAGjKAr8fj8URcm3K5rhTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytcFTH7FYLFiyZAkeeOABPPDAA7j77rtRVlaWV5+cTifWrVunyUZqMfZMsFqtqKqqUtdFKWSSySQEQQAvhUKM9kfP9ljaZmFLiw3e+kmxY5Z48KjDSJ/0bMtM92CsodJYREFDpbEIgiAIgiAIgiD4IJlM4sCBA4a3KwgCtm3bNmlh8+lwOp2oq6tTZ5NoKbE1FiqNRRAEQeQClcbSn8J/hYEgihhJktDZ2QlJkvLtimZ402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykn61cbfDWR3gkNaOjrq4OL7300rRlrlKsW7cup5JaPC7wmys8vaUL0Iw0PW3RrFjzYJZ48KjDSJ/0bMtM92CsoYEQgihgwuEwXn75ZYTD4Xy7ohnetBjtj57tsbTNwpYWG7z1k2LHLPHgTQflH/3sUf4xD2aKB29aKAfpZytXG7z1EZ5xOp1YtGgRnn/+efy///f/0g6IOJ1OrF+/Hps2bcqpjfLycjz++OMoLy/X6m7eEUURJ06cyHgWjd4Y7Y+e7bG0zcKWFhu89ZNixyzx4FGHkT7p2ZaZ7sFYQ6WxiIKGSmMRBEEQBEEQBEHwQb5KY02HKIoYHh5W/55qcXUqjUUQBEHkEyqNpT+FP5eTIAiCIAiCIAiCIAiusVqteSmB4nQ6MxqYSA2Q8PR2MkEQBEEQ7KDSWARRwAQCAfzLv/wLAoFAvl3RDG9ajPZHz/ZY2mZhS4sN3vpJsWOWePCmg/KPfvYo/5gHM8WDNy2Ug/SzlasN3vpIrsyePTvfLkyL0+nEunXrZtyusrIS3/nOd1BZWWmAV/oiCAIOHToEQRDy7QoA4/3Rsz2WtlnY0mKDt35S7JglHjzqMNInPdsy0z0Ya2hGCEEUMKWlpfjMZz6D0tLSfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnK1cbvPURM5NaN6ShoWHczBCn04l7770XX//61+F0OtHT04NoNJovN5nhcDiwdOlSOByOfLsCwHh/9GyPpW0WtrTY4K2fFDtmiQePOoz0Sc+2zHQPxhpaI4QoaGiNEIIgCIIgCIIgCD6Ybo2QmpoauN1uXLt2zWCvsmemdUWmW0+E1gghCIIgcoHWCNEfKo1FEAVMNBrFG2+8YYq3kXjTYrQ/erbH0jYLW1ps8NZPih2zxIM3HZR/9LNH+cc8mCkevGmhHKSfrVxt8NZHtLBo0aJ8u5ARqXVFUv/GDoIkEglcv36dizdbtZJIJHDu3DkkEol8uwLAeH/0bI+lbRa2tNjgrZ8UO2aJB486jPRJz7bMdA/GGhoIIQiCIAiCIAiCIAhCd2w2G+bMmZNvNwiCIAiCKEKoNBZR0FBpLIIgCIIgCIIgCD6YqTTWnXfeidOnT2NwcNBgz9gyU2ms6upqtbTWxLJaBEEQBJEOKo2lPzQjhNCNt956C//wD/+A++67DwsXLoTb7UZZWRmWLl2KJ554AufOncu3iwUPj1MJc4U3LTQtWz9bNC3bPJglHrzpoPyjnz3KP+bBTPHgTQvlIP1s5WqDtz5S7MiyjFAoNOUCt1u2bMGGDRuwceNGbNy4ERs2bMCWLVsgCILBns6MLMsYHByELMv5dgWA8f7o2R5L2yxsabHBWz8pdswSDx51GOmTnm2Z6R6MNTQQQujGs88+i5///Odobm6G1WrF8uXLMX/+fHR0dOCFF17AihUr8Oqrr+bbzYKGpzp7WuFNC9XH1s8W1eg3D2aJB286KP/oZ4/yj3kwUzx400I5SD9btEaIOUgkEvD5fFOuEXL27FmIoqj+LYoi9u/fj23btk3aVhRF+Hw+9d/Y3xkBTw+nABqI1dMWvQxiHswSDx510Boh+tjj6TqGSmMRuvHKK6/A6/XigQceQElJifp5T08P/vEf/xGvv/463G43Lly4gBtvvDGnNqg0FkEQBEEQBEEQBB9QaaypsVgs2LVrF5xOJwRBwIsvvoijR49OGvxYtmwZtm7dioqKCpYuEwRBEJxDpbH0x25IK0RR8uijj6b9/IYbbsCrr76K+fPnw+/346233sI3v/lNg70jCIIgCIIgCIIgjKLYH+wnk0k89thjM2539uxZfPrTn8b69euxadMmuN1uA7wjCIIgCPNDpbGIvOB2u3HrrbcCACKRSJ69KVz8fj9+8IMfwO/359sVzfCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PTIfFYsGsWbPSfjdnzhyDvdEHQRBw/vx5VFVV6drOVOW0WCIIAg4cOMDN+iVG+6Nneyxts7ClxQZv/aTYMUs8eNRhpE96tmWmezDWUGksA5FlGWfOnMGxY8fQ3NyMY8eO4eTJk2o9uAcffBD19fU52RZFEb/97W+xZ88enDlzBn19fZg1axZuueUWfPazn8Xjjz/O1YXn4OAgbr75ZkSjURw4cAAf/ehHc7JT7KWxJElCd3c3Fi5cCLu9sCd48abFaH/0bI+lbRa2tNjgrZ8UO2aJB286KP/oZ4/yj3kwUzx400I5SD9budrgrY/MRDgcxokTJ8bVPb/55puxaNEiWCyWaUtjlZeXIxwOG+VqTiiKgs7OTnzjG9+AJEm6tuV0OlFXVwen06mLfUVREAwG4fF4YLXm/z1Zo/3Rsz2WtlnY0mKDt35S7JglHjzqMNKndG2xKo3F+z1YPp/l0kCIQbzxxhv40pe+NO3CMLkOhJw7dw4bN25EW1vblNvMnTsXL730Ej75yU9mbZ8lAwMDaG5uxne/+120trZi48aNmhZML/aBEIIgCIIgCIIgCN6Ix+MYGhpCPB7HrFmzUFlZCYvFAgDTDoTcf//9OHv2LPx+P3h+VJHLGiG5smfPHni9XkPaIgiCIPIHrRGiP3wMuRUBfr9/2kGQXOnu7saf//mfq4MgFosFDz74IL72ta9hw4YN6iLl/f39+MxnPoP333+fuQ8z8cYbb8BiscBisWDu3Ln45Cc/iZGREWzfvh27d+823B8zEYlE8Jvf/MYU5cV402K0P3q2x9I2C1tabPDWT4ods8SDNx2Uf/SzR/nHPJgpHrxpoRykn61cbfDWRzLB5XJhwYIFuOWWW1BVVaUOgsyE0+nEypUrsW7dOp09zB1RFNHT04OysrJ8u6IiiiJ8Pp/6b+IC7NP97vTp0xlvrzdG+6Nneyxts7ClxQZv/aTYMUs8eNRhpE96tmWmezDW8D+v1mTMmzcP99xzj/rvj3/8I2pra3O298UvfhG9vb0ARqcbv/nmm1i5cqX6/eDgIL7whS/gvffeQyKRwF//9V+jo6ND93qmY5k9ezbWrVsHRVHQ29uL7u5udHV1Yc+ePXjwwQexbNkyw3wxG1arFVVVVdxMI9QCb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw3e+ogR8FwCzGKxwOFwQFGUfLsCQRCwbds2NDQ0jHuY5nQ6sW7duhkXW7dYLHC73RkPVOmN0f7o2R5L2yxsabHBWz8pdswSDx51GOmTnm2Z6R6MNVQayyBSb2XcdNNN4z7/n//zf+IHP/gBgOxLY/3hD3/Apz71KQCjFzrNzc1Yvnz5pO0ikQhWrFiBy5cvAwD+v//v/8P//t//e9J23/nOd7B169aM2x9LIpHI+GL1+vXr+N73voedO3fC4/Hg5MmTuPnmm3Nql0pjEQRBEARBEARBFA7TlcYaWxYk1/UzjYCX0lhbtmzB/v37p/zt+vXrsXnzZr1cIwiCIBhCpbH0J/9DMUWC1+udNAiilZ///Ofq/z/22GNpB0EAoKysDFu2bFH/3rFjR9pF3crKyjB79uyc/mUzgjl//ny8+OKLePjhhxEMBvG//tf/ykI1MRZRFNHW1sbVVMJc4U2L0f7o2R5L2yxsabHBWz8pdswSD950UP7Rzx7lH/NgpnjwpoVykH62crXBWx8pdmRZRiAQ0G0B80wRRRENDQ3TbjNxpshEZFmGz+eDLMus3csJo/3Rsz2WtlnY0mKDt35S7JglHjzqMNInPdsy0z0Ya2ggpEAJh8N477331L+/+tWvTrv95z73OZSXlwMAhoeHcfDgwUnbfP/738fg4GBO/2w2W9YaNmzYAABobm7O+rfEKIIgoL6+HoIg5NsVzfCmxWh/9GyPpW0WtrTY4K2fFDtmiQdvOij/6GeP8o95MFM8eNNCOUg/W7na4K2PGAWv5bEkScLg4OC0JaeMYHh4eMaHSqIoqtulW0NEkiR0dnamfVEyHxjtj57tsbTNwpYWG7z1k2LHLPHgUYeRPunZlpnuwVhDpbHyTK6lsfbt24ePf/zjAEZncvj9/hkvFB9++GG8++67AIDvfve7+NGPfpS74wz4yU9+gm9961tYsWIFTpw4kZMNKo1FEARBEARBEARROGRaGuvKlSvo6uoyyKvsYFkay+l0YvHixTh79mza719++WXcdNNN6qAGAFRXV2N4eDgjH5YtW4aOjo6c1hAhCIIgjINKY+kPn69YEDMy9iJp+fLlGb0tc9ddd6kDIVNdZBlFMpnE3r17AQCrV6/Oqy+FTDKZRDweh8vl4mqBqVzgTYvR/ujZHkvbLGxpscFbPyl2zBIP3nRQ/tHPHuUf82CmePCmhXKQfrZytcFbHzEKr9eL69evc1FKYyzJZBIejwdOp3Na3ywWC9atW4evf/3r6mBDdXW1+rtMBzUee+yxSZ+lBk8yId29vyiK6toi//zP/wybzcZF30omk5Bl2TB/9GyPpW0WtrTYMDouxPSYJR486jDSJ73zj1nuwVhDpbEKlPPnz6v/n+lC42PXKDl37hxzn8bS3NyM733ve+P8TNHV1YUvfOELaGhogM1mw1NPPaWrL2YmEAhg69atCAQC+XZFM7xpMdofPdtjaZuFLS02eOsnxY5Z4sGbDso/+tmj/GMezBQP3rRQDtLPVq42eOsjRlFSUoJVq1bhhhtuyLcr44jH4zh27Bg+9rGPTbnNsmXL8M477+CHP/whFi1aBK/XC6/Xq64r4nQ6J32WDaIoMnm58fTp02hoaEA8HtdsiwXxeNxQf/Rsj6VtFra02DA6LsT0mCUePOow0ic92zLTPRhrqDRWnsm1NNbnP/95/Md//AcA4J/+6Z9QW1s7429ee+01fO5znwPwX2/X6EV9fT3Wr18PAJg9ezZuuukmOJ1O9Pf3o7OzE8lkEmVlZXjxxRfx+c9/Pud2ir00lizLGBgYQE1NTU7rtPAEb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw3e+ohWMi2NNZZEIjHjwuC5MtPMjokoioJoNAqr1Yp/+7d/G7cgea4lp1iW2soGm82GX/3qV7jppptgteb/PdnUvi0tLTXEHz3bY2mbhS0tNoyOCzE9ZokHjzqM9CldW6xKY/F+D5bPZ7l89DQia8LhsPr/JSUlGf1m7HZjf68HK1euxE9/+lN87nOfw+zZs3H58mW0tLQgEAhgzZo1+N73vodz585pGgQZi9vtVheDl2UZfr8fqTG+YDCoXpjGYjFEIhEAowsT+f1+1UYgEEAikQAARKNRRKNRAKMX3WNHLf1+v7qYUSQSQSwWAzD6Vk4wGAQwOu3L7/dDlmUAo/s7tShQPB5HKBQCMJr4/H4/FEUBAIRCIXU0WBAENU5TabLZbKisrFRtF7KmSCSC6upq2Gw2LuIkSRLKyspgs9k0xwmYue8pigKv14t4PM5cUyKRgNfrhSRJXMQpHA7D6/XCZrNlrclms6G8vFy1zfJ4yiROhXI8GaVJlmWUlpbCZrMVtCZBEFBZWQmbzcZFnJLJJNxut3qRqXffY5kjJmoSBAFer1dtV0ucIpEIRFGE1+uFLMs5xSkUCmHu3Lmw2WxFfc41Q94DRq//UjeOhawpFovB6/Wq7eY7TqFQSL1RNaLv2Ww2zJkzR7XNUpPNZsO8efMQCoW4iFOu13s2mw3V1dXjzhOFnCNStmVZVv1JJpMQBGFKTWPPJ4IgqL7G43H1N5IkqbYVRZlyu0QiMW67VL9J7Zex26X0ybKs+mO1WmG32+F2u7F582a89tpr+PWvf409e/bgjTfewDPPPAO32636mtr/oiiq+0GSpHHaS0tL4XK5AAAVFRXq/4+9z7XZbKiqqlLLiqTKcwGj9/plZWUARheZr6qqUjVVVlbC4XAAAEpLS1FaWgoAcDgcKC8vV3PpRF/Hap8Yp0w0Tdz/Y7ebKk6JRAIlJSWwWq2T4jR2kd1M4pTabjpNVqsVZWVlEEWRuSaLxaLet0zV9zLVJIoiysvLNcVJURSUl5dDUZSsNQGj/SrV96Y7nvSI01SaWPa9QtKUSCTU47aQNYmiiLKyMlitVm7iJMsyysvL1VJOWuKUS45gdc5NJpPwer3q9UvK71yvYS0WC7xeL6LRKNN7wnxAAyEFytgDN9OptKmLKQDjLvb0YNasWfiHf/gH7N27F+fPn4ff70cikcDQ0BCOHDmCH/7wh1i4cCGz9tauXYtHHnkEADAwMIDa2lr14Ny5cyfa29sBAAcOHEBdXR0AoLu7e9xMmu3bt6OjowPA6GL0+/btAwB0dHRg+/bt6na1tbXo7u4GANTV1eHAgQMAgPb2duzcuRPAaOKora3FwMAAAGDv3r1obGwEALS2tmL37t0ARpNDbW2tmox2796N1tZWAEBjY6O6jspUmsLhMLZv347XX3+94DW9+OKL+MUvfoFwOMxFnBobG/HTn/4U4XBYc5yAmfve6dOnsWvXLvzhD39grungwYPYtWsXGhsbuYnTrl27EA6Hs9YUDofxs5/9DAcPHgTA9njKJE6FcjwZpen48eN47rnnEA6HC1rT66+/ju3btyMcDnMRp4sXL6K2tla9sNS777HMERM1vf7669i1a5eqSUuc6urq8Kc//Qm7du3C8ePHc47Tzp07EQ6Hi/qca4a819XVhdraWgwNDRW8pt/+9rfYtWuXqomHOL344osIh8OG9L1wOIxf/epXumgKh8N46aWXuIlTrtd74XAYv/jFL/Diiy+Oi1Oh5ohUSaeBgQHVH1mW0dTUNK2m22+/HTU1NWhqaoLL5cJtt92GK1euoKSkBIsWLUJ3d7fqdzQaRVNTk/qQp7W1VbXd1dWFCxcuqPvo0KFDqq/Nzc0YGRlRdaT0jYyMoLm5GcDow6SmpiY1/1y5ckUdKAsEApM0pR5Wtbe3q/vB5/Ph1KlTajxbW1vVigpf+tKX1HU0x97n1tTU4Omnn1bv67/2ta/hjjvuADBaXWLDhg0AgIULF+Lpp59WNT3xxBPqeiIPP/wwHn74YQDA4sWL8cQTT+Dq1auqplRfuXDhgrpQfbo4ZaKpqalJ7VOnTp2Cz+cDgBnj1NLSAlEUJ8WpqakpqzgBmFGTKIpoa2vTRVMsFkNbW9u0fS8bTW1tbZri1NXVhba2NvT09GStKRAIqJpScWKhKdM4TaWJdd8rFE0nT55Uj5NC15Q6DnmJ0+XLl9HW1obr16/r3vfS5QhW59yLFy9i165deP3115lcw16/fh27du3CK6+8wvSeMB9Qaaw8k2tprE996lP4wx/+AAB45pln8C//8i8z/ubtt9/GJz/5SQBAeXn5uLeuCpXUdCq32w273Y7GxkYsXboUoVAIlZWVsFgsCAaDcLvdcDqdiMViUBQFZWVlkCQJ4XBYfVsmEAigtLQUDodDTXClpaVIJBKIRqOorKwEMDq6Wl5eDrvdjkgkAqvVipKSEoiiCEEQ4PF4kEwmEQgEUFFRob5Nl3prKB6PQxRFVFRUQFEUBINBeDweWK1WhEIhOJ1OuFwuCIIASZJQXl4OWZbTalIUBR988AHuuusuzJ49u6A19ff349SpU1i3bh2SyWTe4xQIBNDY2IgHH3wQTqdTU5wy6XtWqxUtLS1YsWIF3G43U02SJKGtrQ2rV6+G1WrNe5xGRkbQ3t6OtWvXQhCErDQlEgkcPHgQ9957L6qqqpgeT2bMEXprCgaDOHLkCB588EG4XK6C1TQ0NITjx4/jz/7sz9Q37fIZp3A4jEOHDuGhhx5S85GefY9ljpioKRqN4tSpU/jIRz4CSZI09z1RFHHixAncddddAJB1nAYGBtDe3o777rsPiUSiaM+5Zsh7kUgEH3zwAR588EE1HxWqpnA4jNOnT+Oee+5BIpHIe5z6+/tx5swZ3H///ZAkSfe+Z7PZcPjwYdx5552YN28eU01OpxNHjhzBHXfcgTlz5uQ9Trle71ksFjQ0NGD58uWYO3duweeI8+fPIxgMQpZlSJIEl8ulvn37l3/5lzlpCgQCOHnyJBRFgdPphKIoEEVRXZg1Ho/DbrfDZrMhkUggmUyq2yWTSXUWpiAIcDgc6nbA6MwJWZbVt7AlSUJnZ6da/lkURVgsFnW7iZqcTiesVitEUVRnk0iSBFmWx22XTCbxr//6r2huboYoiojH4+p9bjgchs1mQ0VFBQKBgLpguyAIEEVRnUURiURgt9tRXl6uvnVbWVmJaDSKRCKhzgaJRqNwOByYNWsWvv/972Pp0qWQJGmcryw0jd3/NptN3W6qOEUiEfT19eGmm25CMpkcFydRFNVyY5nEKbXddJpsNhuuXbuGmpoatTwNK002mw09PT2oqalRZ/pO7HuZahIEAQMDA1i4cGHOcVIUBT6fD16vFxaLJStNoiji6tWruPnmm+FwOKY9nvSIkxF9r5A0jT1OABSspkgkgoGBAdx4441q9Yd8x0mWZfT19WH+/PkAoGvfS5cj1qxZw+Sca7fb0dzcjOXLl6O0tFTzNazT6cTRo0dx5513wuPxaL4n7OnpyVtpLBoIyTNmXSPEKIp9jRCCIAiCIAiCIIhCIpc1Qmaiv79fffs0W7JdI0RvwuGwOrvDCPbs2aOWfSMIgiDyB6s1QniH1gghsmb27Nnq//f19WX0m9SULACorq5m7hNhPPF4HI2Njer0s0KGNy1G+6Nneyxts7ClxQZv/aTYMUs8eNNB+Uc/e5R/zIOZ4sGbFspB+tnK1QZvfaTYkSQJ3d3dau131pSXl6tlsvTG5XJheHhYNy3Zove+NbI9lrZZ2NJiw+i4ENNjlnjwqMNIn/Rsy0z3YKyhgZAC5fbbb1f/P1WXbyauXr2q/v/SpUuZ+0QYT6qmKU9vMOUKb1qM9kfP9ljaZmFLiw3e+kmxY5Z48KaD8o9+9ij/mAczxYM3LZSD9LOVqw3e+kixI8syfD6fWrNeDzZt2oT169dnvB5orqRKAOupJRuM2LdGtcfSNgtbWmwYHRdieswSDx51GOmTnm2Z6R6MNVQaK8/kWhpr3759+PjHPw4AKCsrU2vATcfDDz+Md999FwDw3e9+Fz/60Y9yd5wTqDQWQRAEQRAEQRBE4UClsTJHFEUMDw/D5/PhW9/6li5tUGksgiAIPqDSWPpDM0IKlPvvvx8ulwsAEIlE0NzcPO32qWlIKT72sY/p6h9hDIqiwO/3Q1GUfLuiGd60GO2Pnu2xtM3ClhYbvPWTYscs8eBNB+Uf/exR/jEPZooHb1ooB+lnK1cbvPWRYieZTEIQBBjxTqnT6YTX69VtoMJqtaoLDvOAkftW7/ZY2mZhS4sNo+NCTI9Z4sGjDiN90rMtM92DsYYGQgqU8vJy/Pmf/7n6965du6bd/rXXXkMoFAIwuj7IRz/6UT3dIwwiGAyitrYWwWAw365ohjctRvujZ3ssbbOwpcUGb/2k2DFLPHjTQflHP3uUf8yDmeLBmxbKQfrZytUGb32k2InH42hqauKi1rlWPB4PLl++zI0Wo/etnu2xtM3ClhYbZurzZsAs8eBRh5E+6dmWme7BWEMDIQXMk08+qf7/rl27cObMmbTbRaNRbN68Wf377/7u72Yso1VouN1ulJeXAxits+f3+9VR1WAwqE51jsViiEQiAEYXJvL7/aqNQCCARCIBYHSfRaNRAEAikUAgEFC38/v96mJGkUgEsVgMwOi05dRBnUwm4ff71Vp/4XAYgiAAGE12qUGpiaOioVBITYKCICAcDk+ryePx4Bvf+AZsNlvBawKAJ554Ah6Ph4s4uVwufP3rX4fH49EcJ2DmvldSUoKnnnoKdruduSan04mnnnoKLpeLizglk0k89dRT8Hg8WWvyeDz427/9W7VeMsvjKZM4FcrxZJQmt9uNr33ta/B4PAWtyWaz4Rvf+AY8Hg8XcSotLcVXv/pVeDweJnEyMkdM1GSz2fDUU0+htLSUSd9zOBx46qmn4Ha7c4qToij4x3/8R3g8nqI+55oh75WVleGrX/0qKioqCl6T1WrFU089pZa7zXecFEXBP/zDP8Dj8RjS9zweD/7+7/9+3FuCrDR5PB780z/9ExRF4SJOuV7veTwePPHEE+o2hZ4jUrZlWVb9Sb0Zq0WTJEmqbUVRxr1pG4/HVduJRGLcdql+k9ovY7dL6ZNledx9wqpVq+BwOACM9rex203UlPJVFEV1P0iSNGm7sb6O3S7lq81mQ1VVFSwWC4DRQYzUNXFJSQnKysoAAHa7HVVVVaqmyspK1dfS0lKUlpYCgPrZrbfeCpfLNclXIzRNjBMAfOQjH4HL5ZoUp9T+zzROqe2m0+RyuXDvvfequY+lJqfTiTVr1qjtpXzNRVMymcSaNWs0xclms2HNmjWw2WxZa3I4HFi1atW4ezCtmrKJ01SaWPa9QtIEAHfffTdcLldBa0omk7j33nvhcrm4iZPVasWaNWtgt9t173vpcgSrc25paSmeeuop2Gw2Jtew5eXleOqpp2CxWJjeE+YDGggpYD71qU/hz/7szwCMdtT/9t/+G06ePDlum6GhIXzmM5/BpUuXAIzOBnnmmWcM91Vv1q5di0ceeQQAMDAwgNraWvXg3Llzp1ov9sCBA6irqwMAdHd3o7a2VrWxfft2dHR0ABhdg2Xfvn0AgI6ODmzfvl3drra2Ft3d3QCAuro6HDhwAADQ3t6OnTt3AhiNR21tLQYGBgAAe/fuVUuTtba2Yvfu3QAmj4ru3r0bra2tAIDGxkbs3bt3Wk1WqxVtbW146623Cl7Trl270NvbC6vVykWcTpw4gf/8z/+E1WrVHCdg5r535coVVFVV4U9/+hNzTUePHkVVVRVOnDjBRZx27NiBqqoqWK3WrDVZrVa8++67OHr0KAC2x1MmcSqU48koTefOncPvf/97WK3Wgtb01ltvoa2tDVarlYs49fb24qWXXoLVamUSJyNzxERNb731FqqqqtDb28uk733wwQeoqqrCuXPncorTT3/6U1itVlit1qI+55oh7w0NDeGll15SbwgLWdNrr72GqqoqDA0NcRGnn/70p0gkErBarYb0PavVinA4jJ/+9KfMNVmtVpSUlOCnP/0pF3HK9XrParWit7dXrQJQ6DkidW86MDCg+iPLMpqamjRp6u7uVv2ORqNoampSH/K0traqtru6unDhwgXV3qFDh1Rfm5ubMTIyoupI6RsZGVHLUVssFrS1takPii5cuICurq4pNaUeVrW3t6v7wefz4dSpU2o8x74VfOrUKfh8vkmaampq8PTTT6slsr/2ta/hjjvuADC63uiGDRsAAAsXLsTTTz+tanriiSewePFiAKPrhj788MMAgMWLF+Ob3/wmHA4HLBYLmpqa1P1qlKaJcUrtV4vFMilOTU1NWcUJwIyaLBYLHA4Hjh49ylyToihwu91oa2ubsu9lqqmlpQVut1tTnHp6euB2u9HX15e1plgshra2NvVB8HTHkx5xmkoTy75XSJpOnz4Nv98Pi8VS0JqOHj0Ki8UCi8XCTZyuXr0Kt9uNwcFB3fteuhzB6pzb29uLqqoqvPXWW0yuYcPhMKqqqrBnzx6m94T5gBZLN5BPfvKT6O3tHfeZz+dDX18fgNE32z70oQ9N+t0f/vAHLFiwIK3N7u5u3Hvvvbh+/TqA0YuyBx98EIsXL8bAwAD+9Kc/qQer3W7HO++8M66kVqGTWmDH7XbDbrejsbERS5cuRSgUQmVlJSwWC4LBINxuN5xOJ2KxGBRFQVlZGSRJUg9mYHR0tbS0FA6HQ91npaWlSCQSiEajqKysBAB1NNRutyMSiag3WKIoQhAE9c3oQCCAiooK2Gw2hMNh2O12uN1uxONxiKKIiooKKIqivq1mtVoRCoXgdDrVNz0kSUJ5eTlkWU6rKR6P45VXXsHnPvc5zJs3r6A19fb24o033sCjjz4Ku92e9zgNDg7it7/9Lb7yla+grKxMU5wy6XuyLOM//uM/8NnPfhbl5eVMNcViMfz+97/HI488ApfLlfc49ff3o66uDl/60pcgy3JWmqLRKP793/8df/M3f4Oamhqmx5MZc4TemoaGhvCb3/wGX/nKV1BeXl6wmvr6+vD73/8ejz76qOpHPuM0MjKCV199FV/5yldQUVGhe99jmSMmagoGg3j99dfx+c9/HhaLRXPfi0QieO211/DXf/3XcDgcWcept7cXdXV1+PKXvwwARXvONUPe8/v92L17Nx599FF4PJ6C1uT3+/HGG2/gC1/4AgDkPU49PT3qcWKxWHTve4qi4Ne//jU2bNiAhQsXMtVksVhU2/Pnz897nHK93pMkCa+88go+85nPYMGCBQWfI6LRKM6cOQNZliFJElwuF5LJJFwul/rGeraaAoEATp48CUVR4HQ6oSgKRFGEy+VS32C12+2w2WzqDOXUdpWVleqghiAIcDgc6nbA6NvwsiwjkUio/pw4cQLLly9X+1vqgfpETfF4HE6nE1arVX3b2G63Q5IkyLI8bruxvtpsNnU7RVEwPDyML3/5y+p1QTKZhMfjgSAIEEURJSUlsFqtiEQisNvtap5M9dVoNIpEIqHOBolGo3A4HKipqcE//uM/YvXq1eo+Sfmqt6Z0cQoGgzh//jxWrFgBq9U6Lk6iKMLtdmccp9R202kCgJMnT2LJkiWoqKhgqgkYfWC9ZMkSlJWVpe17mWqKRCK4cOECli9fnnOcEokEzp49i2XLlsFut2elKRaL4dSpU1ixYoV6DEx1POkRJyP6XiFpCoVCOHfuHFasWAGbzVawmoLBIC5cuIAVK1YAABdxSh0nd9xxB2w2m659L12OWLNmDZNzbjKZxG9/+1v89//+3+HxeDRfw1osFuzZswd/9Vd/herqas33hD09PXlbLJ0GQgxk0aJF6ohpNly5cgWLFi2a8vtz585h48aNaGtrm3KbmpoavPTSS/jUpz6Vdfs8kxoISWHkwcMD8Xgcra2tWL16tfpmUKHCmxaj/dGzPZa2WdjSYoO3flLsmCUevOmg/KOfPco/5sFM8eBNC+Ug/WzlaoO3PqKVZDKJ8+fPq2/KAqMPwFasWKE+yMmW/v5+9e3TbPB6vXA4HLh27VrGv5EkCT6fD16v17CS0z6fDxs3bmRu1+Vy4cc//jGWLFnCRfnsTPatKIoYHh5W/66urlZLNunRXq6wtM3ClhYb+ejzxNSYJR486jDSp3RtPfTQQ0xs834Pls9nuTQQYiB6DYQAoxcDv/nNb7Bnzx6cOXMGfX19qKqqwq233orPfvaz+OpXv4o5c+bk6Dm/FPtACEEQBEEQBEEQRKGRTCYxMDCAkZERuFwu1NTUqGtc5EIuAyELFizAbbfdhsuXL2c1EJIP9BoIAYA9e/bA6/XqYpslgiBg27ZtaGhoUN+mBkZnd65btw6bNm1S3/ImCIIoRFgNhPBOPp/l0hohBtLZ2akuCJTNv5kGQYDRk/9XvvIVvP3227h69Sri8Tj6+vpw5MgRfPvb3zblIAgxejFYX18/brGnQoU3LUb7o2d7LG2zsKXFBm/9pNgxSzx400H5Rz97lH/Mg5niwZsWykH62crVBm99hAUWiwVz587F7bffjkWLFmkaBMmVm2++WV14PBskSUJnZ6daWokn0pXano5USWBetEy3b7dt24b9+/ePGwQBRl8K3b9/P7Zt28a0Pa2wtM3ClhYbPPf5YsQs8eBRh5E+6dmWme7BWEMDIQRRwPB44sgV3rQY7Q9dhBvXPsEOs8SDNx2Uf/SzR/nHPJgpHrxpoRykn61cbfDWR4odRVHg9/vVhaN54oc//CHWr1+f8fZ2ux3RaBSCIMDn8036N3HQYSZEUcz5t8DU+1YURTQ0NEz72/r6+qzb1DOWLG2zsKXFBs99vhgxSzx41GGkT3q2ZaZ7MNZQaSyioKHSWARBEARBEARBEMVNLqWx7rvvPrhcLnR0dJimNNaePXtQVVWVtoTUVCxbtgwdHR1pt8207FS6slUsS1Zlqn/ZsmX48Y9/TCWyCIIoSKg0lv7QjBCCKGBkWYbP54Msy/l2RTO8aTHaHz3bY2mbhS0tNnjrJ8WOWeLBmw7KP/rZo/xjHswUD960UA7Sz1auNnjrI8WOoigIh8OGvsWcyYLgTqcT1dXVcLvd2Lx5M+rq6rBnzx7s2bMHzz77bNrf2Gw2jIyMTNm3Mi07la5sVS4lq7Tu27NnzxranlG2WdjSYiMffZ6YGrPEg0cdRvqkZ1tmugdjDQ2EEKbA7XajvLwcwOgB5vf7kZrsFAwG1QuyWCyGSCQCYHRqlt/vV20EAgEkEgkAQDQaRTQaBQAkEgkEAgF1O7/fr07nikQiiMViAEYv9ILBIIDRxf/8fr96kIfDYbUWXjweRygUAjB5KlwoFEI8Hgcw+lZNOByeVlMoFMKOHTvQ19dX8Jp6e3uxY8cOhEIhLuI0ODio+qM1TsDMfW94eBg7duxAf38/c00pLYODg1zEqaenR7WRraZUnx8cHATA9njKJE6FcjwZpWloaEiNZSFr6uvrU3XwEKeRkRHVHxZxMjJHTNSU2rcjIyNM+t7AwAB27NiBoaGhnOI0Nv8U8znXDHnP7/djx44dqv1C1uTz+bBjxw74/X4u4jT2ODGi76WOrZ6eHuaaxtrmIU65Xu+ldPT29qpxohwxWZMkSarfiqJAEARVUzweV20nEgl1O0mS1P2Q2i9jt0vpk2VZ9UcURbS0tIz7e+x2KX+SySQEQVB9FUVR3Q+SJE3abqyvY7cTRRFOpxMPPPAAqqqq1HVNPB6POjhSUlKChx56CE6nU9XudDrh9XpRVVWFuXPnAgBKS0tRWloKAHA4HFiwYAG++c1voqKiAlVVVbDb7QCAsrIylJSUABgdYDl58iREUUQ8Hse1a9dw/fp1iKIIURQRjUbR0NAAl8uFiooKAIDVakVVVRWsVisaGhoQDocnaUoXp1AohJaWFnWfjt2uqqpKjVNlZSUcDkdaTadOnVJ/N3H/T4xTKpapez6tcRqrKR6Pq7bT9b3Udpn0vbH7ZSZNU/W9aDSKlpYWRKPRrDUJgoCWlhb1d1MdT9lomrhdLppYxGmmHMGjpnA4rPaHQtY0tl/zEqfUcRKLxXTve+lyBKtzbup+sq+vj8k5NxAIYMeOHbh+/TrTe8J8QAMhhClYu3YtHnnkEQDAwMAAamtr1YNz586d6jTpAwcOoK6uDgDQ3d2N2tpa1cb27dvR0dEBANi3bx/27dsHAOjo6MD27dvV7Wpra9Hd3Q0AqKurw4EDBwAA7e3t2LlzJ4DRxFFbW4uBgQEAwN69e9HY2AgAaG1txe7duwGMJofa2lo1Ge3evRutra0AgMbGRuzdu3daTZWVlbj77rtx8ODBgtf0+9//Hp/85CdRWVnJRZwuX76MuXPnorKyUnOcgJn73uDgIJ555hk0NTUx19Te3o5nnnkGly9f5iJOr776Kp555hlUVlZmramyshI33nijul9ZHk+ZxKlQjiejNPX09MDj8aCysrKgNR08eBB33303KisruYhT6sKzsrKSSZyMzBETNR08eBDPPPMMQqEQk77X1taGZ555Bj3/P3t/Hx9Ffe7/46/ZnZ3dbPbOQEqoqNHYCtQbUCsobQl6SmnPoaUtbaGocDi1FXpOG3tOac8dKufm29JTNedRQaqCqIhtsRXTqgctN61ootEAkYAoCjXAQkiyd9mb2Zmd3x/57XwSCCTZec/se2ev5+PBoxZmX+/rtdc11+zcvd/HjhWUpw0bNuDOO+9EMBgs62OuHfpe/uQqP/1JKXt66aWX8KMf/QiyLHORpw0bNmDJkiUIBoOW1F4wGMTChQuxYcMG5p6CwSC+//3vY8OGDVzkqdDfe8FgEF/4whfwzDPP6HmiHnG2p87OTj3uZDKJlpYW/SJPW1ubrn306FEcOnRI/8yzzz6rx9ra2ore3l7dR95fb28vWltbAQBut1uPGQAOHTqEo0eP6t9lPh5VVdHS0qJfrOro6NC/h3A4jPb2dl2npaVF12tvb0c4HD7L0/Lly9HQ0KA/ALh06VJMnjwZkiRh0aJF+Ou//mv9O2ppaRnkKX9hbfbs2Zg9ezYAoK6uDosWLcJPfvITRKNRNDQ0YMKECQCAuXPnYubMmQCAyZMn47bbbkNDQwO+9rWv4f3338cPfvADzJ07Fy+88AIOHToEWZYxdepULFq0CED/TZqGhgYEAgHIsoy33357SE9n5unAgQO4/PLL4Xa7B+UpnU6joaFB97Rs2TLU1dUN6elb3/oWenp6AAAtLS16rQyVJ7fbjWnTpmHPnj3M8pT3JIoiZsyYgQMHDgxZe0Pl6Vy1197ejhkzZsDtdg/r6Vy119XVhRkzZuh6o/GUz0/+Rtm59qfReMrvTyPJ07k8scjTcD2CR0+HDh3CpZdeCrfbXdKe9uzZg+uuuw5ut5ubPIXDYcyYMQOxWMz02huqR7A65sbjcfzoRz/Cn/70JybHXEEQ8KMf/Qi///3vmZ4TFgNaI4QoafLzynk8HoiiiObmZkycOBHxeBzBYBCCICAWi8Hj8UCSJKRSKeRyOVRWVupP/+SfLIlGo/B6vXC5XHqD83q9yGazSCaT+gWpSCQCn88HURTR19cHh8OBiooK/emMQCAATdMQjUbh9/vhdDqRSCQgiiI8Ho/+5Inf70cul0MsFkMgEIDD4UA8HockSXC73Uin01AUBT6fT38KhDyRJ/JEnsgTeSJP5Ik8kSfyRJ7I02BP0WgU+/btQy6X09+KkGUZbrcbgiAgk8lAFEU4nU5ks1lomoaZM2fC6XRi//79+gWzdDoNl8ulbwf0v2Wgqiqy2ax+8zX/xoXD4YAsyxAEQd9OURS43W5omoZMJjNoO4fDAVEUoSgKVFUdtN3AWJ1Op77dmZ4EQUBvby+y2SycTifGjh0LQRCgadqg7QbG2tPTg0WLFulvTiSTSbhcLni9Xv1J4lAopL+5UVlZiVwuh1QqBUmS4PF4EIvFIAgCgsGg/gSzz+fDZZddhn379sHtdkOSJMTjcTgcDgQCAcRiMeRyOTzxxBOoqak5p6fz5UmSJBw/fhzf/e539SeJg8EgkskkstnskJ4eeugh1NTUFDVPw3kaKk+81x55Ik/kyVxP06ZNK4ljrtHfEceOHSvaGiF0I4Qoacp9sfRYLIb169dj6dKlCAQCxQ7HELx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViM8YmSx9J6eHuzbt2/En8tkMmhra8PUqVP1t0N451yLjQcCASxduhTr16/Xn4o2g82bN6OmpmbY7c713Y50sXRW47GApTYLLSMapVjzdsYu+eDRh5UxDTUWq8XSeT8Ho8XSCYIoCI/Hg/r6ev1udinDmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81YjcGrj0xEkRRRG1trT5NUCmTTqexc+fOQXPmFxOrv1szx2OpzULLiIadat4O2CUfPPqwMiYzx7LTORhr6I0QoqQp9zdCCIIgCIIgCIIgyh0jb4QAwGuvvabPbW5HRvtGBWtG+obGuTDrjRCCIAieYPVGCO/QGyEEQRREKpXCiy++iFQqVexQDMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzViR/Jzq4+EbDaL9957T593vpSpqKjAnDlzUFFRUexQAFj/3Zo5HkttFlpGNOxU83bALvng0YeVMZk5lp3OwVjDz/tHBEGMmlwuh0gkglwuV+xQDMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7miahnQ6DTtMruFwOBAKheBwFP8ZWVmWcerUKUSjUZw8eVKfLqaqqsq0Mc3MJUttFlpGNOxU83bALvng0YeVMZk5lp3OwVhDU2MRJQ1NjUUQBEEQBEEQBFHeGJ0aq6OjA6dOnTIjNC7geWqsdDqN1atXY/fu3ZBl+ax/lyQJdXV1OHDgAJPxCIIgeIWmxjKf4t/2JwiiYBRFwZEjR6AoSrFDMQxvXqyOx8zxWGqz0DKiwVudlDt2yQdvPqj/mKdH/cc+2CkfvHmhHmSeVqEavNVIucPTk61G4WGx4tWrV2PHjh2QZXnIeGRZHtVNkNFAb6RZNz7BDrvkg0cfVsZk5lh2OgdjDd0IIYgSJpFIYOPGjUgkEsUOxTC8ebE6HjPHY6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5Y4sy9i7d++Qby+UGj6fD0uWLIHP5zN9LFmWEQ6H9T+yLEOWZezevbso8eRjMiuXLLVZaBnRsFPN2wG75INHH1bGZOZYdjoHYw1NjUWUNPnXqTweD0RRRHNzMyZOnIh4PI5gMAhBEBCLxeDxeCBJElKpFHK5HCorK6EoChKJBEKhEAAgGo3C6/XC5XIhmUwCALxeL7LZLJLJpL6AXiQSgc/ngyiK6Ovrg8PhQEVFBWRZRjqdRiAQgKZpiEaj8Pv9cDqdSCQSEEURHo8HmUwGsizD7/cjl8shFoshEAjA4XAgHo9DkiS43W6k02koigKfzwdVVckTeSJP5Ik8kSfyRJ7IE3kiT+SJPA3hKRqNYt++fcjlcpAkCblcDrIsw+12QxAEZDIZiKIIp9OJbDYLTdMwc+ZMfazjx4/j1KlTSKfTcLlc+nYA4HK5oKoqstksPB4PgP7pnCRJgsPhgCzLEARB305RFLjdbmiahkwmM2g7h8MBURShKApUVR203cBYnU6nvt1oPA3cbmCsPT09WLRoEbxeLwAgmUzC5XLB6/UiGo0CAEKhEBKJBBRFQWVlJXK5HFKpFCRJgsfjQSwWgyAICAaDiMfjUFUVPp8PiqIgnU7D7XZDkiTE43E4HA4EAgHEYjHkcjlMnToV7777LhKJhH7uLssyPvaxj+HYsWOIRqPQNA2BQADpdBqyLKOiogIOhwN9fX0QRRE+nw+RSARA/+L2yWQS2Wx2SE8PPfQQampqSi5Pdqw98kSeyNPIPU2bNq0kjrlGf0ccO3aMpsYiCCNMnz4d8+fPBwB0dXWhsbERmUwGALB+/Xp9vthdu3ahqakJANDZ2YnGxkZdY+3atTh8+DAAYNu2bdi2bRsA4PDhw1i7dq2+XWNjIzo7OwEATU1N2LVrF4D+eWXXr18PAMhkMmhsbERXVxcAYMuWLWhubgYAtLW1YdOmTQCAWCyGxsZGxGIxAMCmTZvQ1tYGAGhubsaWLVvIE3kiT+SJPJEn8kSeyBN5Ik/kiTwN46mzs1OPO5lMoqWlBaqq6hp57aNHj+LQoUNDemptbUVvb6/uI++vt7cXra2t+nYtLS16DIcOHcLRo0f17zIfj6qqaGlp0S9YdXR06N9DOBxGe3u77r2lpUX//tvb2xEOhwv2FIvF0NLSMshTX18fAGD27NmYPXs2AKCurg7Lli3Tt2toaMCECRMAAHPnzsXMmTMBAJMnT8bSpUsBAG63Gw0NDaiurgYAzJ8/H9OnTwcATJ06FYsWLQIABAIBNDQ0IBAIAACmTZumX/TKn7vLsozu7m40NDToa7UsXboUkydPBgDMnDkTc+fOBQBMmDABDQ0NeqzLli1DXV3dsJ5KLU92rD3yRJ7I08g9ldIxl8XviGJAb4QQJU25vxGSSqWwZs0aLFmyBOPHjy9pT52dnXjiiSewfPly/S55MfN06tQpPProo1i+fDn8fr/pT9Nls1k88sgjWLJkCQKBAFNPfX192LBhA5YuXYqKioqi5ykcDmPTpk1YtmwZNE0bladEIoE1a9Zg6dKlGDduXNk+9ciLp66uLjzyyCNYvnw5AoFAyXo6ceIEHnvsMSxfvhwVFRVFz1N3dzd++ctfYvny5QgGg6bXHssecaanSCSCjRs34o477oDT6TRce4lEAhs2bMDf/d3fwe12jzpPnZ2d2LRpE5YvXw6Hw1G2x1w79L2enh6sW7cOy5YtQygUKmlPPT09ePzxx/Htb38bDoej6Hn68MMP9f0k/ySjmbWnKArWrFmDRYsW4eKLL2bqSdM0XfvCCy8sep4K/b0nyzLWrFmD2267DRMmTKAeYcIbISdOnMDJkydH9BRxOp3GG2+8geuuuw5er5eLp4iHezJa0zTMmzdPX3sj//bEuHHjcOutt2Lt2rUQBMG0N0L8fj9kWUYmk9HP3ROJBJxOJ/x+v/5GyIUXXojbbrsNa9eu1b8vM98I0TQNb7zxBq6++mr4/X6medI0DW+++Sauuuoq+Hw+Q0+wJxIJtLe34/rrrweAgp5gl2UZe/bswZQpU+ByuUblKZlM4s0338T111+PiooK2z+Vz7unWCyGvXv34pOf/CREUSxZT7FYDPv27cMnP/lJCILARZ7y+8nUqVMhiqKptTdUj2D1Roiqqnj44YexePFihEIhw8dcTdOwbt063HbbbRg7dqzhc8JivhFCN0KIkiZ/IySPlTsPD2SzWRw+fBh1dXVwuVzFDscQvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWIzxy6tQp/enTkXLjjTfqbyJ0d3frT/UOh6qq6O3txQUXXACn0znqWIvFqlWrsGPHjkF/53K5UFdXh8OHD+sXC4sJq3g2b96MmpqaYbczM5cstVloGdEo1Zq3K3bJB48+rIxpqLHq6+uZaPN+DlbMa7l0I4Qoacr9RghBEARBEARBEES5Y/RGiKqqeO2116AoihnhcUE6ncbq1auxe/duyPLZi/NKkoQbbrgBr7zyShGiY8tIb4QQBEHwBKsbIbxTzGu5tEYIQZQwyWQSzz77rP5aXCnDmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81YkecTieuvvpqSJKk/93YsWOH3DabzeLgwYNcvEExGjweD1auXImmpiZs3rwZmzdvxhNPPIH77rsPTzzxBJqamvAf//EfmDVrVtFi9Hq9mDdvnj7dldmYmUuW2iy0jGiUas3bFbvkg0cfVsZk5lh2OgdjjVjsAAiCIAiCIAiCIAiCIIpJIBDAjTfeiGQyCUmS4HK5sHPnzmKHxRxJkvS3JbLZLBKJBMaNG6dPd7JixQoAGPTmiCRJqKurw4EDB4oTNEEQBEEwgKbGIkoamhqLIAiCIAiCIAiivDE6Nda5sOONkJEiyzJ6enoAAFVVVejp6cHChQstG/+CCy5Ab29vQZ+lqbEIgihFaGos86GpsQiihOHxVcJC4c2L1fHQa9nWjU+wwy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3VFXF6dOnoapqsUMxzPm85N8cqampGTRl2HBMmjRpyO0vuOCCYT/rcrkwceJEuFwurFy5csRjFoqZuWSpzULLiIadat4O2CUfPPqwMiYzx7LTORhr6EYIQZQwPM2zZxTevND82OZp0Rz99sEu+eDNB/Uf8/So/9gHO+WDNy/Ug8zTojVC7AFPF3SMYoaXM9ch2bx5M/7v//4Pa9asGfaztEaIeVr0MIh9sEs+ePRBa4SYo8fT7xiaGosoaWhqLIIgCIIgCIIgiPKGpsYyn3A4PKKpsc41LdVIP5/n/vvvx1133TWqGIeLgSAIgmdoaizzocXSCYIgCIIgCIIgCIIgCFszcN0ToH/tk9FM+0UQBEGUNjQ1FkGUMJFIBPfeey8ikUixQzEMb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLmTTqexa9cupNPpYodiGN68hEIh3HPPPQiFQkx10+k0Vq1ahblz52LhwoX6n1tvvRW7du1CNBplOl5+TFbfLQstIxq81Um5Y5d88OjDypjMHMtO52CsoRshhC3weDzw+XwA+hccikQiyM/6FovFIMsyACCVSqGvrw8AoCjKoJ0wGo3qc/Mlk0l97rpsNjvoh1EkEoGiKACAvr4+pFIpAP1Pl8RiMQCApmmIRCL6okeJREJvbplMBvF4HACQy+UQiUSQy+UAAPF4HJlMBkB/U0wkEuf15PP5sGDBAgiCUPKecrkcvvnNb8Ln83GRJ5fLha997Wvw+XyG8wQMX3tutxuLFy+Gw+Fg7kkURSxevBgul4uLPKmqisWLF8Pn843ak8/nw9e//nWIYv8LjSz3p5HkqVT2J6s8SZKE+fPnw+fzlbQnQRCwYMEC+Hw+LvLk8Xjw1a9+VT+umV17LHvEmZ4EQcDixYvh8XiY1J7T6cTixYshSVJBeVIUBbfddht8Pl9ZH3Pt0PcqKirw1a9+FZWVlSXvCQAWL16MiooKLvKkKApuvfVW+Hw+S2rP5/Ph1ltv1WNj6cnn8+H222+Hoihc5KnQ33s+nw/f/OY39dioRwztSVEUPe5cLod0Oq17ymQyunY2m9W3G85T/r9VVdXjkSQJkyZN0n+PyrI8aLt8PJqmIZ1O67HKsqx/D4qinLXdwFgHbjdaT/nt8qTT6UHbDYw1l8vhmmuugSRJZ8U6lCdBEBAKheB0OgEAPp8PHo8HAOB2u+H3+8/pKR/DwHN3p9OJUCikH1sFQcCTTz6JRCKBXC6n93hRFAfdHAkGg3C5XAD61xXJrynicrkQDAYHec/lcviv//ovvP7663rckiQhEAigt7cXjz32GNatW8c8Ty6XC9dccw00TbM8T0PVnsPhwDXXXAOHwzFqT6IoYtKkSfp3zqL2ztyuEE+87U9WedI0DVdeeSUkSSppT7lcDldffTUkSeImT4Ig4JprroHT6TS99obqEayOuR6PB4sXL4YgCEyOuV6vF4sXL4amaUzPCYsB3QghbMH06dMxf/58AEBXVxcaGxv1nXP9+vX6fLG7du1CU1MTAKCzsxONjY26xtq1a3H48GEAwLZt27Bt2zYAwOHDh7F27Vp9u8bGRnR2dgIAmpqasGvXLgBAR0cH1q9fD6C/cTQ2NqKrqwsAsGXLFjQ3NwMA2trasGnTJgD9zaGxsVFvRps2bUJbWxsAoLm5GVu2bDmvJ1EU8cEHH+CFF14oeU+PP/44+vr6IIoiF3lqb2/Hn/70J4iiaDhPwPC1d/ToUdTW1mL79u3MPbW2tqK2thbt7e1c5Onhhx9GbW0tRFEctSdRFNHS0oLW1lYAbPenkeSpVPYnqzwdOnQIL730EkRRLGlPL7zwAj744AOIoshFnsLhMJ555hn9AovZtceyR5zp6YUXXkBtbS3C4TCT2tu9ezdqa2tx6NChgvL04IMPoqqqCqIolvUx1w59r7e3F88884x+AlfKnp599lnU1tait7eXizw9+OCDqKyshCiKltSeKIpwOp148MEHmXsSRRHjx4/Hgw8+yEWeCv29J4oi+vr68Pjjj+t5oh5xtqfOzk497mQyiZaWFr1HtLW16dpHjx7FoUOHRuQp/9+9vb3670+Hw4EDBw7oF4AOHTqEo0eP6t9lPh5VVdHS0qJfrOro6NC/h3A4jPb2dt17S0uL/v23t7cjHA4X7CkWi6GlpUX31Nrait7eXj03Az299dZbCIVCcDgcaGlp0b/Xc3lyu91oaGhAdXU1AGD+/PmYPn06AGDq1KlYtGjROT0pigJJkgadu1dXV6OhoUFfqyX/sFT+4uLcuXMBABMmTEBDQ4PuadmyZairqwMAzJ49G7NnzwYA1NXVYdmyZfp2LS0tuP/++/HKK69g7ty5mDlzJgBg8uTJWLp0KRRFQTgcxrRp0/QLiazypGkaQqEQ9u7da3mehqq948ePIxQK4dSpU6P2lE6nceDAAf0iJ4vay+9P+TwV4om3/ckqT/v370cqlYLD4ShpT2+88QYqKirgcDi4ydOHH36IUCiE7u5u02tvqB7B6pgbDodRW1uLF154gckxN5lMora2Fr/61a+YnhMWA1osnShp8gvseDweiKKI5uZmTJw4EfF4HMFgEIIgIBaLwePxQJIkpFIp/ckSRVGQSCT0J0ui0Si8Xi9cLpfe4LxeL7LZLJLJpP5kSSQSgc/n009IHA4HKioqIMsy0uk0AoEANE1DNBqF3++H0+nUn7j1eDzIZDKQZRl+vx+5XA6xWAyBQAAOhwPxeBySJMHtdiOdTkNRFPh8PqiqOqSnbDaLZ599Fp/97GfxkY98pKQ9hcNhbN++HV/60pfgcDiKnqeenh48//zz+PKXv4yKigpDeRpJ7WmahhdffBG33HILKisrmXrKZDJ46aWXMHv2bLhcrqLn6fTp09i1axfmzp2LbDY7Kk/pdBq/+93v8PnPfx5jxoxhuj/ZsUeY7am3txe///3v8ZWvfAVer7dkPZ06dQovvfQS5s2bB5fLVfQ8RaNRPPfcc/jKV76i/38za49ljzjTUzwex/bt2/H5z39e/7FvpPZSqRRefvllfO5zn4PT6Rx1nsLhMHbt2oUvfvGLyOVyZXvMtUPfi8Vi2Lp1K7785S/r/79UPcViMWzfvh1f+MIXkMvlip6nEydO6PuJpmmm1x4AbN26FfX19fjoRz/K1JPT6cRzzz2HmTNnYty4cUXPU6G/93K5HLZu3Yqbb74ZNTU11COG8BSNRrFv3z69t+dyOciyDLfbDUEQkMlk9Jtu2WwWmqZh5syZ+ljn8rR79264XC6oqopsNguPxwNZlnHgwAFcccUV+v8XBEHfTlEUuN1u/clZSZLgcDj0p/JFUdTfUhq43cBYnU6nvt1oPA3cLv+mRv7J4/x2APRYk8kkjh49io9//OP6OPlYz/TU29uLb37zmwgGg4jH4/rb2oqiIJ1Ow+12Q5Ik/PKXv8S4ceOG9PTf//3feO211yCKIhKJBJxOJ/x+v75/jBs3DjfffDOee+45rFq1CitXrtQfwsq/TQ70vxGSf2Mn/zZIMpmEy+WC1+vFQw89hJqaGvz0pz/Fyy+/DEVRUFlZiVwuh1QqBUmS4PF4oKoq5s6di127duHnP/85xo8fzyxPgiDg3XffxSWXXAKv12tZns5Ve4qi4P3338dll10Gp9M5Kk/pdBrvvPMOJk6cCLfbzaT28vtTfrtCPPG2P1nlKZFI4P3338fEiRP1Y0QpeorH4zh69CiuuOIKaJrGRZ6y2Sw++OAD1NXVweFwmFp7Q/WIadOmMTnmCoKAF154ATfffDP8fr/hY67T6cQf/vAHzJo1C6FQyPA54bFjx2ixdIIwwsBX2/Kv1+YJBAL6f1dUVOj/PdTrtXnyP6aAs1+vHfiZ/Ku6QP/rtfmF1vKvDOfJv/oL9D9Fk3/ixeFwDNou/yoxAL0xn8+TqqoYM2aM/rlS9hQMBlFVVaWfGOUplqeKigqMHTsWDofDcJ7yeufzlEqlEAqF4PP59G1ZecrHVVFRoWsXM0+hUEh/omm0nhwOB8aOHatrstyfAPv1CLM9eTweVFdXw+FwlLQnv9+PMWPGwOFwcJEnSZL077VQT8XqEUN5CoVCkCRpkMdCPeXj8ng8ut5o8nTBBRfgggsugMPhOKuWh/Nkp2OuHfqey+VCdXW1Ps1JKXvK3yR0uVyDYi+Wp4H7ycBxzaq9VCqFqqoqXHDBBcw9pVIp3c/AqXwK8cQiT4X+3st/R/ntqEec7SkQCOhvUua3G+gx//l8fCP1lN/W6XTqNSQIAiorKwdNs5TnzO0GxjBwO1EU9XjP3G5grIV4OnO7M3vnwFg9Hg88Hs95Yx3oKT+dSp78WzFA/xPGA6fQGirWFStW4Ac/+AEOHDgA4P9Np5InFouht7cXuVwOY8eO1S9gDjVFTJ78BUFg8BQxsixj+/btg6ZlyyPLMmRZ1qe6y184PNO7kTzlL7Z6PB79+7MqT0Ntl/87l8ul64/Uk9Pp1H+HnbldoZ7ysZ65XSnvT1Z68nq9EAShpD3lzz0EQThru2J5yscviuI59xMzewSrY27+90b+Jkg+7kKPuXm9QCCg/5uRc8Jjx46hWNAbIURJk38jJI+VdxEJgiAIgiAIgiAIPmhtbR10YX44brzxxkEXqoZi586dBqOyD+FwGAsXLhx2u82bN6OmpoaJzi9/+Uvs2LFjVHHmPwtgROMM/Mz54iYIgjCb+vr6YodgCcW8lktrhBBECSPLMvbs2aMvQlTK8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjfDK1VdfPeitmaqqKlxyySXMx1FVFeFwGDfddBNzbavJe8nPv19sJEnClClT9KeWV6xYgVmzZg16Aju/3aRJk5iPxxKW3y0LLSMavNVJuWOXfPDow8qYzBzLTudgrKEbIQRRwqTTaezcuXPQ1GClCm9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81QivSJKEqVOnYsaMGZgxYwauvvrqQdORsEJRFBw5cgTpdNoUfSvJe8lPH1VsPB4P6uvr9SlXPB4PVq5ciaamJmzevFn/09TUhJUrVzIfjyUsv1sWWkY0eKuTcscu+eDRh5UxmTmWnc7BWENTYxElDU2NRRAEQRAEQRAEQQzFhx9+iMOHDw/5b0anxqqvr8d7772Hzs5OIyGWDMWYGqtQHZoaiyCIUoSmxjIfeiOEIEoYTdOQTqdhh/uZvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+WOpmlQFAWapmHChAnD3kzhmYFehqOqqmrYKaQkSUJVVVXB8eQXG84vXG42Zo43mu/WCi0jGiy9EMaxSz549GFlTGaOZadzMNbQjRCCKGGi0Sh++tOfIhqNFjsUw/Dmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UEy6X66y/y2Qy2L17N6LRKDweD6699lpcdtllRYjOOHkvmUxm2G0lScKMGTPOu82MGTOGvVlyvhsqwWAQP/7xjzF27FhDN1RGSn68/NoyLBnNd2uFlhENll4I49glHzz6sDImM8ey0zkYa2hqLKKkKfepsVRVRVdXF6qrq+F0OosdjiF482J1PGaOx1KbhZYRDd7qpNyxSz5480H9xzw96j/2wU754M0L9SDztArV4K1GSgmjU2MN9flcLgefz4frrrtuUD5ef/11JJNJ40FbSC6XQzKZhNfrhcMx/HOy6XQaq1evxu7duwctepu/SbJixYoRrbexatUq7Nix46y/dzqdqK6uxuTJk/Hv//7v59VgMTVWfryuri48+eSTTKfGGu13a7aWEQ2WXgjj2CUfPPqwMqahxmI1NRbv52DFvJZb2it7EUSZ43Q6bTOPKW9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81Ug5UV1djb/85S/IZrP634miiIkTJ9rippTD4YDP5xvx9vnFy2VZRk9Pj/73I5k2ayArVqwAgLNuqDidTkyaNAk//OEPR6xlBFVVEQ6HTdEe7XdrtpYRDZZeCOPYJR88+rAyJjPHstM5GGv4uOVGEERBJBIJPPbYY0gkEsUOxTC8ebE6HjPHY6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5YTH48E111yDsWPH6utf1NXV4be//a0t8iHLMvbs2TPoZsRIkCQJNTU1+p/R3AQB/t8NlaamJmzevFn/88wzz+CLX/yiZU+H+3w+LFmyxJSLkYV+t2ZpGdFg6YUwjl3ywaMPK2Mycyw7nYOxht4IIYgSRhRF1NbWQhRLf1fmzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKTd8Pt+gKTzS6bRt8uFwOBAKhYo2LU3+hkoeRVEsjUdRFBw5cgSKojDXZvndstAyolHsOiEGY5d88OjDypjMHMtO52Cs4afaCMIAHo9Hf4pDVVVEIhHkl7+JxWL6HdZUKoW+vj4A/T96IpGIrhGNRvVXnpPJpD6/azabHbSgTyQS0X8o9fX1IZVKAei/mxuLxQAAmqYhEolAVVUA/Xc/0+k0gP4FkeLxOID+OQEjkQhyuRwAIB6P6wslpdNp/W7puTx5PB5MmzZNH6eUPcmyjJtuugkej4eLPAmCgOuuuw4ej8dwnoDha8/pdKK+vl6fJ5KlJ6B/rklBELjIUyaTQX19PTwez6g9eTweXH/99fo4LPenkeSpVPYnqzw5HA5ce+218Hg8Je1JVVVMmzYNHo+HizyJoogpU6boc2ybXXsAux5xpidVVVFfXw9RFJnUnqZpqK+vh8PhKChP6XQan/nMZ+DxeMr6mGuHvudyuTBlyhR9fv9S9qQoCurr6+FyubjIUzqdxqc//Wl4PB5Las/j8eBTn/qUPg5LTx6PBzNnzkQ6neYiT4X+3vN4PLjpppv0cahHjN5TJpPRtbPZrO6vEE8ejwdTpkzRL+gM9KSqqh5Pfn/KxyrLsv49KIpy1nYDYx24XT7W/HFsOE/57fIMrP9sNqv7U1UViqLoF6fOjHXgdlZ5UlUVF110EURRHNZTPgav1wuv1wug/9gQDAYRDocRDocRCoX0PFVWVqKiogJA/w2YQCCAdDqNXbt26b9lWXpyOp2ora2Fqqpc5AkAamtr9dhH48nhcKCmpkafDo5F7Z0rn8WqvVLypKoqJkyYAFEUS9qToii45JJLIIoiN3nSNA21tbUQBMH02huqR7A65oqiiPr6eqiqyuSYK0kS6uvr9es5+e/O6DlhMaAbIYQtmD59OubPnw8A6OrqQmNjo75zrl+/Hh0dHQCAXbt2oampCQDQ2dmJxsZGXWPt2rX6Qnjbtm3Dtm3bAACHDx/G2rVr9e0aGxvR2dkJAGhqasKuXbsAAB0dHVi/fj2A/sbR2NiIrq4uAMCWLVvQ3NwMAGhra8OmTZsA9DeHxsZGvRlt2rQJbW1tAIDm5mZs2bLlvJ4ymQyefvppbN26teQ9Pfroo2hqakImk+EiT2+88QYefvhhZDIZw3kChq+9gwcPorm5GS+88AJzT6+88gqam5vxxhtvcJOn5uZmPdbReMpkMli/fj1eeeUVAGz3p5HkqVT2J6s87d27F2vXrkUmkylpT1u3bsXTTz+NTCbDRZ7ef//9QduZXXsse8SZnrZu3Yrm5mbdk5E8NTU1Yfv27WhubsbevXsLztOuXbuQyWTK+phrh7537NixQduVsqdf//rXaG5u1j3xkKc//vGPyGQyltReJpPBtm3bTPGUyWTwyiuvcJOnQn/vZTIZNDU14dFHHx2UJ+oRw3vKX4hpa2vTtY8ePYpDhw4V7Ckf6/vvv3+Wp66uLj0eVVXR0tKiX6zq6OjQv4dwOIz29nZdr6WlRf/+29vb9XUrOjs79Vwkk0m0tLToF67O5SkWi6GlpUX31Nrait7eXt1H3l9vby9aW1vR2dkJRVHQ0tKif6+HDh3C0aNHi+LpnXfegaIow3rKXyycPXs2Zs+eDQCoq6vDsmXLcNddd+Guu+5CQ0MDJkyYAACYO3cuZs6cCQCYPHkyli5dCrfbjRkzZqChoUGPlZWnTCaDzs5ObvL0l7/8BZ2dnTh+/PioPeVjzW/HylMeXmqvlDwdPHgQiqKUvKf8G1m85OmDDz5AZ2cnwuGw6bU3VI9gdcx9//330dzcjK1btzI55nZ1daG5uRlPPvkk03PCYiBo+ds1BFGC7N+/H1deeSU8Hg9EUURzczMmTpyIeDyOYDAIQRD0p8EkSUIqlUIul0NlZSUURUEikUAoFALQf3fV6/XC5XLpDc7r9SKbzSKZTCIYDALov7vq8/kgiiL6+vrgcDhQUVEBWZaRTqcRCASgaRqi0Sj8fj+cTicSiQREUYTH40Emk4Esy/D7/cjlcojFYggEAnA4HIjH45AkCW63W3/yzOfzQVXVIT1lMhk88cQT+OpXv4px48aVtKfjx4/j2WefxW233QZRFIuep9OnT+NXv/oVbr/9dlRWVhrK00hqT1VV/PrXv8ZXvvIV+Hw+pp5SqRSeeeYZzJ8/H263u+h5OnXqFJqamrBo0SKoqjoqT8lkEo8//ji+/vWvo7q6mun+ZMceYban7u5uPP3007j99tvh8/lK1tPJkyfxzDPP4LbbbtPjKGaeent78dRTT+H222+H3+83vfZY9ogzPcViMfzud7/DN77xDQiCYLj2+vr68Nvf/hZf+9rX4HK5Rp2n48ePo6mpCbfeeisAlO0x1w59LxKJYNOmTbjtttsQCARK2lMkEsGzzz6LBQsWAEDR83Ts2DF9PxEEwfTay+VyePLJJzF37lz9giUrT4Ig6Nrjx48vep4K/b2nKAqeeOIJzJs3Dx/96EepR4zCUywWw/vvv49MJgNRFOF0OpHNZqFpGmbOnKmPNRpP8Xgcjz/+OL75zW/iggsu0D3t378f0WgUiqLA7XZD0zRkMhlIkgSHwwFZluFwOPSnuFVVHbSd2+3Wn0J2Op36drlcDpIkIZfLQZblQdud6Wngdvk3S9PpNFwul74d0P/mhKqq6Ovrw6FDh3DVVVfpn8/HKgiCvp1VnmKxGN555x1cffXVcDgc5/XU09ODRYsW6W+DJJNJuFwueL1e/enoUCiERCIBRVFQWVmJXC6HVCoFSZL0t0AWLVqEpqYm/OxnP8P48eOZeQKAt99+Gx//+MdRWVlZ9Dxls1kcOHAAkyZNgiiKo/KUSqXQ3t6Oq6++Wt8njdZeNpsdtF2xa6+UPMXjcRw8eBBXX301nE5nyXqKxWI4dOgQrr76agDgIk/5/WTy5MlwOp2m1t5QPWLatGlMjrmapuFXv/oVvvzlLyMQCBg+5gqCgM2bN+NLX/oSqqqqDJ8THjt2bNCUk2+//TY+8YlPwAroRghR0uRvhOSxcuchCIIgCIIgCIIg+OXDDz/Un6A9kxtvvFGfXo8F4XAYBw8eZKZHnJ9wOIyFCxcy09u8efOg9UoIgiCspr6+vtghWEIxr+XS1FgEUcKcOUduKcObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7pwrHxdccAFXi/6OhDPntC82VsczcLHi/Loi+Se1jcLSCwstIxq81Um5Y5d88OjDypjMHMtO52CsKa2jNEEQgzhzjtxShjcvVsdj5ngstVloGdHgrU7KHbvkgzcf1H/M06P+Yx/slA/evFAPMk+rUA3eaqTcOVc+3G43rrrqKkiSVKTIRs+Zc9oXG6vjCQQCaGhoQCAQwF133YWFCxdi7ty5WLVq1aAFlQuBpRcWWkY0eKuTcscu+eDRh5UxmTmWnc7BWENTYxElTblPjXXmHLmlDG9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81UgpYcbUWMPlQ9M0JJNJvPHGG6PWtpoz57QvNqOJh8XUWA6HQ19n6swnlWfNmoWVK1cWrM3yu2WhZUSDtzopd+ySDx59WBnTUGOxmhqL93OwYl7LFS0ZhSAIU8i/ymsHePNidTxmjsdSm4WWEQ3e6qTcsUs+ePNB/cc8Peo/9sFO+eDNC/Ug87QK1eCtRsqd4fIhCIK+gDfvCIKgLxrMA1bHk5+uZSh2794NWZYLfsOHpRcWWkY0eKuTcscu+eDRh5UxmTmWnc7BWEOPkxBECROPx/HQQw8hHo8XOxTD8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dspHJpNBa2srN1PTWB2P3+/HnXfeCb/ff9a/ybKMnp6egrVZemGhZUSDtzopd+ySDx59WBmTmWPZ6RyMNXQjhCBKGEmSMGXKlJKah/Zc8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqH0+lETU0NnE5nsUMBYH08sixjz549zBZIHwhLLyy0jGjwVifljl3ywaMPK2Mycyw7nYOxhtYIIUqacl8jhCAIgiAIgiAIghgaM9YIGQmapmHXrl2maBP9sFgjZDg2b96MmpoaU8cgCILIw2qNEN4p5rVceiOEIEqYdDqNnTt3Ip1OFzsUw/Dmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UEqJ47mVRC10I1075UBQFR44cgaIoxQ4FgPXxeDwe1NfXmzJPP0svLLSMaPBWJ+WOXfLBow8rYzJzLDudg7GGboQQRAnD44GjUHjzYnU8Zo5HP8IJs7BLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUZKiaqqqiH/3u12w+VyFaRpp3zkFwvP5XLFDgWA9fGIooja2trz3jArFJZeWGgZ0eCtTsodu+SDRx9WxmTmWHY6B2MNTY1FlDQ0NRZBEARBEARBEARxLg4cOICTJ08O+rvLL78cEyZMMG1MmhrLfGhqLIIg7AZNjWU+9EYIQZQwqqoiHA5DVdVih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkVJj4sSJuOyyyxAKhTBmzBhMmjTJ0E0QO+Ujl8shkUhw80S21fGYuVgxSy8stIxo8FYn5Y5d8sGjDytjMnMsO52DsYZuhBBECROPx7Fu3TrE4/Fih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkVJDEARcfPHFmDJlCq666iqMGzfOkJ6d8iHLMt58803IslzsUABYH4/f78edd94Jv9/PXJulFxZaRjR4q5Nyxy754NGHlTGZOZadzsFYQ1NjESVNuU+NpWkaMpkM3G53wYv98QJvXqyOx8zxWGqz0DKiwVudlDt2yQdvPqj/mKdH/cc+2CkfvHmhHmSeVqEavNVIuTOSfJTK1FiapkFVVTidTi5qazTxsJgaSxAEuN1uZDIZDHVpzMjUWCy/WxZaRjR4q5Nyxy754NGHlTENNRarqbF4Pwcr5rVc9itCEQRhGYIgwOPxFDsMJvDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO3bKhyAIpiwUXihWx6NpGtLptCnaLL2w0DKiwVudlDt2yQePPqyMycyx7HQOxhqaGouwBR6PBz6fD0D/3HORSER/oiMWi+mvmqVSKfT19QEAFEVBJBLRNaLRKLLZLAAgmUwimUwCALLZLKLRqL5dJBKBoigAgL6+PqRSKQD9r7XFYjEA/T+oIpGIPv9dIpHQf2BlMhn9dbBcLodIJKLPCRiPx5HJZAAA6XQaiUTivJ5isRjuu+8+hMPhkvd07Ngx3H///YjFYlzkqaurC/fddx9isZjhPAHD1153dzceeOABnDx5krmnU6dO4YEHHkBXVxcXeers7MQDDzyAWCw2ak/5mj916hQAtvvTSPJUKvuTVZ5Onz6t7yel7CkcDus+eMhTT0+PHg+LPFnZI870FA6H8cADD6Cnp4dJ7eVjPX36dEF5+vDDD/UeVs7HXDv0vd7eXtx33316HKXs6cSJE3jggQfQ29vLRZ4G7idW1F4sFsP999+PDz/8kLmngdo85KnQ33t5H8eOHdPzRD2ieJ7yx4Oenp5hPaXTaT1WWZb170FRFD3u/Hb5WDOZzKDt8nHncrmztst/X9ls9qzt8qTT6UHb5f3lf1s3Nzcjk8mcFevA7c6M1SxPsVgMr732GjKZzLCe8jF4vV54vV4AgMvlQjAY1LcLhUL6hcbKykpUVFQAACRJQiAQQCAQQENDAyZMmKCvE+Lz+fQLdkN5H6mndDqN5uZmxGIxLvLU19eH5uZm9PX1jdpTKpXCa6+9NmifNOrpXPksVu2Vkqd4PK7vJ6XsKRqN6j54yVN+P0kmk6bX3lA9gtUxt6enBw888ADC4TCTY24kEsEDDzyA48ePMz0nLAZ0I4SwBdOnT8f8+fMB9F/Abmxs1HfO9evXo6OjAwCwa9cuNDU1AQA6OzvR2Nioa6xduxaHDx8GAGzbtg3btm0DABw+fBhr167Vt2tsbERnZycAoKmpSX/luaOjA+vXrwfQ3zgaGxvR1dUFANiyZQuam5sBAG1tbdi0aROA/ubQ2NioN6NNmzahra0NANDc3IwtW7ac15PH40F1dTW2b99e8p5+85vfoK6uDh6Ph4s8vfPOO/pda6N5AoavvRMnTqC+vh67d+9m7qm9vR319fV45513uMjTk08+ifr6eng8nlF78ng8kCQJ7e3tANjuTyPJU6nsT1Z5OnLkCBRFgcfjKWlP27dvR3V1NTweDxd56u7uRjwe10/Cza49lj3iTE/bt29HfX09uru7mdTeG2+8gfr6ehw5cqSgPK1fvx7Tpk2Dx+Mp62OuHfpeIpFAPB7XX88vZU8vvvgi6uvrkUgkuMjT+vXrce2118Lj8VhSex6PB1dddZUeA0tPHo8Hn/rUp7B+/Xou8lTo7z2Px4O6ujr85je/0fNEPaJ4njweD+LxOLq7u8/rSVVVtLS06BerOjo69O8hHA7rv2czmQxaWlr0WNvb2/Wb7p2dnXrcyWQSLS0t+oWrtrY2/fs6evQoDh06pH9HLS0tuqfW1lb09vbqPvL+ent7sW/fPtTW1kIURbS0tOjf66FDh3D06FH9u8x/x2Z76ujoQFVVFURRHNZT/mLh7NmzMXv2bABAXV0dli1bpm+Xv8kBAHPnzsXMmTMBAJMnT8bSpUuRTqexe/dufOtb30J1dTUAYP78+Zg+fboea1tbG2RZHrUnQRBQW1uLjo4OLvJ08uRJ1NbWoru7e9R5kmUZsizrx1wWtdfa2qpvx0PtlZKnd955B8FgEKIolrSnPXv2YMKECRBFkZs8HT9+HLW1tYhEIqbX3lA9gtUxt7u7G/X19di+fTuTY64sy6ivr8fWrVuZnhMWA1ojhChp8vPKeTweiKKI5uZmTJw4EfF4HMFgEIIgIBaL6RdPU6kUcrkcKisroSgKEokEQqEQgP67q16vFy6XS29wXq8X2WwWyWRSf7IkEonA5/NBFEX09fXB4XCgoqICsiwjnU4jEAjod7f9fj+cTicSiQREUdQvFsqyDL/fj1wuh1gshkAgAIfDgXg8DkmS4Ha7kU6noSgKfD4fVFUlT+SJPJEn8kSeyBN5Ik/kiTyRJ/JUAp78fj927tyJTCYDSZLgcDggyzIcDgdEUYSiKFBVFW63+6y50zOZDJxOp75dLpeDJEnI5XKQZXnQdqIowul0IpvNQtO0QdvlH6hIp9NwuVz6dkD/mxOqqiKbzQ7abmCsgiDo2ymKMihWHjz19PRg0aJF+tsgyWQSLpcLXq9Xfzo6FAohkUhAURSEQiFccskl2Lt3LyRJ0h94EwQBwWAQ8XgcqqrC5/NBURSk02m43W5IkoRMJoMZM2bg+9//PgKBAOWJPJEn8mSKp2nTppXFMffYsWNFWyOEboQQJU25L5aeSqWwa9cuzJw5U3/Nt1ThzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKXdGko9SWSw9m83i6NGjuOSSS+ByuYodzqjiGeli6ffffz9qampQVVWFnp6eQZ+pqKjAzJkzsWvXLn36mPMxa9YsrFy5cngjYPvdstAyosFbnZQ7dskHjz6sjGmosVgtls77OVgxr+XS1FgEUcKcOUduKcObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH2fOaV9szIinpqYGNTU1kCTprH9zOBwIhUJwOEZ2aWz37t36vPfDwdILCy0jGrzVSbljl3zw6MPKmMwcy07nYKyhN0KIkqbc3wghCIIgCIIgCIIg+KJU3ggpZUb6RsjmzZtRU1Mzqs+MVI8gCIIlrN4I4R16I4QgiIJQFEVfrLjU4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil37JQPnp7SBayPRxRFfRFy1pzLiyzLCIfD+p+RvGFCb+UTA7FLPnj0YWVMZo5lp3Mw1tCNEIIoYRKJBDZu3IhEIlHsUAzDmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu7YKR+yLGPv3r0jnu7JbKyOx+fzYcmSJfD5fMy1z/SSTqexatUqzJ07FwsXLtT/zJ07F6tWrUI6nR6xFot4rPoswR675INHH1bGZOZYdjoHYw1NjUWUNDQ1FkEQBEEQBEEQBMETNDWW+RQyNZYsy5g7d66hC4+FTo21atUq7Nix45z/PpqF2AmCsCc0NZb50BshBEEQBEEQBEEQBEEQhK2RJAkzZsywfFxZlrF79+7zbjOahdgJgiCIwqAbIQRRwkSjUfzkJz9BNBotdiiG4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil37JSPdDqNV1555bzTMlmJFfGsWLECs2bNgiRJCAaD+PGPf4xgMMh8nIFeenp6hr3JIcsyenp6htViEY+VnyXYY5d88OjDypjMHMtO52CsYb8iFEEQluH1ejFv3jx4vd5ih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkXLHTvlwuVyYOHEiXC5XsUMBYE08Ho8HK1euhCzLOH36NI4dO4ZkMsl8HJZeWGgZ0eCtTsodu+SDRx9WxmTmWHY6B2MNrRFClDS0RghBEARBEARBEATBE7RGiPkUskaIEZ2R6hkZo9D1RwiCsAe0Roj50NRYBFHCJJNJPPvss6Y8wWI1vHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+WOnfKRzWZx8OBBZLPZYocCwPp4stksTpw4MaqnlFetWjWiqWxYemGhZUSDtzopd+ySDx59WBmTmWPZ6RyMNXQjhCAIgiAIgiAIgiAIgiCG4cCBA1i9enWxwyAIgiAKgKbGIkoamhqLIAiCIAiCIAiC4AmaGst8ijU1FgBIkoSmpiZIkjSi7WlqLIIgRgJNjWU+9EYIQZQwPL5KWCi8eSnGa9lmjUevZRNmYZd88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqHqqo4ffo0VFUtdigArI9HVVXE4/FRL1YsyzJ6enqG1WblhYWWEQ3e6qTcsUs+ePRhZUxmjmWnczDW0I0QgihheJpnzyi8eaH5sc3Tojn67YNd8sGbD+o/5ulR/7EPdsoHb16oB5mnRWuE2AM75YOni1NAcW7Enjx5EsFg0BRtO9yIZTU+wQ675INHH7RGiDl6PB03aWosoqShqbEIgiAIgiAIgiAInqCpscyH5XRTq1atwo4dO0Y1/mimsaKpsQiCGAk0NZb5cPFGSHt7O37zm9/gD3/4w7CvFwLAY489hlWrVlkQGUEQBEEQBEEQBEEQBGFXVqxYgVmzZg1a80OSJEyaNKmIUREEQRCsKeqNkM7OTsyYMQNTpkzBggUL8MUvfhHjx4/HP/zDPyCRSJzzc48++ijuvfdeCyMlCD6JRCK49957EYlEih2KYXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKHTvlI51OY9euXUin08UOBYD18eTHA4CVK1eiqakJmzdvxubNm9HU1ISVK1eOWEuWZYTDYYTDYciyzNQLCy0jGrzVSbljl3zw6MPKmMwcy07nYKwp2tRYqVQKU6dOxbvvvgtN0xAMBpHNZpFMJiEIAurq6vCHP/wBH/vYx8767Kc//Wm8+uqrXC2oQxSHcp8aS1EUdHZ2YsKECRBFsdjhGII3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3BlJPkplaqxcLodYLIZAIACHo/gThowmHhbTTQ033vnGyOum02msXr0au3fvhizLAPrfJvnUpz6F73znOxg7dixOnTplKFYWeTKiwVudlDt2yQePPqyMaaixWE2Nxfs5WFlOjbVmzRocOnQIl1xyCV555RX09vYiGo3i17/+NS666CK89957+MxnPoO33367WCESBPeIooja2lpbnBDx5sXqeMwcj6U2Cy0jGrzVSbljl3zw5oP6j3l61H/sg53ywZsX6kHmaRWqwVuNlDt2yofD4UAoFOLmIqTV8RgZL3/TY/Xq1dixY4f+//P/tn37djz00ENMvLD4Xoxo8FYn5Y5d8sGjDytjMnMsO52DsaZo1fbMM89AEARs2rQJN910EwDA6XRi/vz52LNnD2655RacPHkSN998M9ra2ooVJkFwTV9fH55++mn09fUVOxTD8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqHLMt4++23B13ELyajiaeqqmrQmh5DIUkSqqqqmIx3JosXL8a3vvWtcy6yXllZiZqaGiZ1wiJPRjR4q5Nyxy754NGHlTGZOZadzsFYU7QbIQcOHMCFF16IG2+88ax/C4VCeOGFF/CNb3wDp0+fxi233IKWlpYiREmUCh6PBz6fDwCgqioikQjys77FYjG9saRSKX3HUxRl0Px00WgU2WwWAJBMJpFMJgEA2WwW0WhU3y4SiUBRFAD9O3MqlQLQ38RisRiA/lehI5GIPn1bIpHQ5/3LZDKIx+MA+l+Fi0QiyOVyAIB4PI5MJgOgf77A/Fo55/LkcDjg8/n0GErZU19fH/x+PxwOBxd5ymaz8Hq9cDgchvMEDF97qqoiFAohnU4z9yTLMkKhELLZLBd5SiQS+pMPo/XkcDjg9Xr175Xl/jSSPJXK/mSVJ0VRUFFRAYfDUdKeUqkUfD4fHA4HF3nK5XL698oiT1b2iDM9pVIphEIhXc9Invr6+pDJZBAKhaAoSkF5isfjCAaDcDgcZX3MtUPf0zQNFRUVEASh5D0lk0mEQiFdr9h5isfj+jQNVtSew+FAIBDQtVl6cjgcCAaDiMfjXOSp0N97DocDfr9f16YeUVxPDocDFRUVegzn85ROp/XtZFnWvwdFUfS489vlY81kMoO2y8edy+XO2i7/fWWz2bO2y5NOpwdtl/enqipkWYbH44EgCGfFOnC7M2M1y5Msy5AkCYIgDOvJ6XRixowZ8Hq98Hq9AACXy4VgMKhvd/PNN+tPIA/lSRAEuN1uZDKZIT2pqgq/36/nfeDT236/H52dnQAGX49wOp36b5/e3l4cP35c166oqEBlZSWA/iekQ6GQHmswGNS3MyNPqqrC4/EMud1wedI0bdCT3Cxq78ztil17peQpm83q+0kpe8pkMnC73RAEgZs8KYoCj8eDXC5neu0B/b0jv38C7I65uVwOoVBIPx/Lx13oMRfov1afPx/Lf3dGzwmLQdFuhPT19WH8+PHn/HdRFPHUU09h8eLFiEQimD17Nl555RULIyRKienTp2P+/PkAgK6uLjQ2Nuo75/r169HR0QEA2LVrF5qamgAAnZ2daGxs1DXWrl2Lw4cPAwC2bduGbdu2AQAOHz6MtWvX6ts1NjbqP3iampr0uV87Ojqwfv16AP2No7GxEV1dXQCALVu2oLm5GQDQ1taGTZs2AehvDo2NjXoz2rRpk/4GVHNzM7Zs2XJeTxUVFRBFES+//HLJe3rqqadw4YUXoqKigos8HTx4EMePH0dFRYXhPAHD197x48cxZ84c/PnPf2buae/evZgzZw4OHjzIRZ42bNiAOXPmoKKiYtSeKioq0NPTg7179wJguz+NJE+lsj9Z5emDDz7ABx98gIqKipL29PLLL0MURVRUVHCRp+7ubuzZswcVFRVM8mRljzjT08svv4w5c+agu7ubSe29/vrrmDNnDj744IOC8rRu3TrceOONqKioKOtjrh36XiKRwJ49e/QLUqXs6Q9/+APmzJmDRCLBRZ7WrVuHa6+9FhUVFZbUXkVFBSZPnox169Yx91RRUYFZs2Zh3bp1XOSp0N97FRUVuPDCC/HUU0/peaIeUTxPFRUV2LNnD7q7u8/rSVVVtLS06BerOjo69O8hHA6jvb1d997S0qLH2t7ejnA4rMeXjzuZTKKlpUW/cNXW1qZ/X0ePHsWhQ4f072jgg6Stra3o7e3VfeT99fb2Ys+ePbj88svhcrnQ0tKif6+HDh3C0aNH9e8y/x2b7entt99GIBCAy+UakacVK1bg9ttvx5w5cwAAdXV1WLZsGSRJwqxZszB9+vTzenK5XLj00kvx1ltvDekpGo1i0aJFAIBAIICGhgYEAgEAwKJFizB16lQAg69HVFdXo6GhAZqm4cUXX0RHRweefPJJAMDMmTMxd+5cAMCECRPQ0NCge1q2bJl+AdSMPJ08eRKXX345uru7sW/fPoTDYXR2do4oT9lsFidPntSPuSxqr7W1Vd+Oh9orJU8HDhyA1+uFy+UqaU9vvfUWLrroIrhcLm7ydPz4cVx++eWIRCKm157D4cDll1+Ot99+W/fE6pjb3d2NOXPm4OWXX2ZyzM1ms5gzZw5++9vfMj0nLAZFWyx9/PjxEEURH3744bDb3nHHHXj00Ufh8/mwdetWrFy5khZLJwD8v8XSPR4PRFFEc3MzJk6cqD/xKQgCYrEYPB4PJElCKpVCLpdDZWUlFEXRn0wH+n/k5A8m+Qbn9XqRzWaRTCb1J0sikQh8Ph9EUdSfYquoqIAsy0in0wgEAtA0DdFoFH6/H06nE4lEAqIowuPxIJPJQJZl+P3+sxZHisfjkCQJbrcb6XQaiqLA5/NBVdUhPQHAnj178LGPfQwXXHBBSXs6ffo0jhw5gquvvhqqqhY9T/F4HG+//Tauu+46iKJoKE8jqT1RFPHuu++itrYWkiQx9ZTL5fD++++jrq4OAIqep0gkgmPHjmHy5MlIJpOj8qSqKt566y1MnjwZgUCA6f5kxx5htqdEIoH29nZcd911cLlcJeupt7cX7777LqZMmQIARc9TMpnEnj17cP3110OSJNNrj2WPONNTOp3G0aNH8fGPf1x/88RI7SmKgg8++ACXX345crncqPN0+vRpdHZ24sorr0QmkynbY64d+l4qlUJbWxuuu+46uN3ukvaUTCbxl7/8BVdccQUymUzR89TV1aXvJ7Ism157+QsgF110ET7ykY8w9eTxeLB//35ceOGFGDNmTNHzVOjvPafTiX379qG2thZjx46lHlFkT7Iso7W1FVOmTIHX6x3Sk9/vx86dO/VjTf6tU4fDAVEUoSgKVFWF2+0e8slop9Opb5fL5SBJEnK5HGRZHrSdKIpwOp3IZrPQNG3QdvljVzqdhsvl0rcD+t+cyD8ZHY/HUV1drT9lno9VEAR9O0VRBsVqlqdkMolIJIJx48Yhl8uN2JMsy4jH48jlclBVFePGjYMkSUin0+f1JIoiTp06hUAgoL+NO9BTMpnEbbfdhp6eHv3ttVgshlwuB7/fD1mWkclk9OsRiUQCTqcTfr8fyWQSkydPxocffoh4PA5ZlvUx+vr6IIoifD6f/nR0MBjEmjVr8NGPftSUPGmahlOnTuHJJ59Ea2ur7mnMmDG48sorsWLFCgiCMGSestkswuGwfh2PRe1ls9lB2xW79krJUzKZRG9vL2pqaqBpWsl6SiaTiMVi+MhHPgJFUbjIU/6NhaqqKmiaZmrtiaKI06dPIxAIwO12w+l0Ytq0aUyOuZIk6etyezwew8dcj8eDgwcP4qKLLoLP5zN8Tnjs2LGiLZZetBshn/3sZ7F9+3YcPnwYtbW1w26/fPlyPPTQQ6ioqIDf70dXVxfdCCH0GyF5rNx5eCAWi2H9+vVYunSp/mRKqcKbF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7owkH5qm6U/h8kwmk0FbWxumTp0Kt9td7HAsj2ck461ateqc64Ccj0AggKVLl2L9+vX6E+fDsXnzZtTU1ADon8amp6cHQP8bGceOHTP0vWQyGezcuRNr1qwZMp5Zs2Zh5cqV5/wsT3VS7tglHzz6sDKmocaqr69nos37OVgxr+UW7UbIf/zHf+Cee+7Bvffei3/7t38b0We+973v4Re/+IU+FzDdCCHK/UYIQRAEQRAEQRAEwRelciOEGJ50Oo3Vq1dj9+7d+pz3ZrF582aEQqEhx5MkCTNmzMCKFSv0p9lHgyzLmDt37jk9SJKEpqamYRegJwjCPFjdCOGdYl7LLdoaIfPmzYOmafjFL36hL9wyHP/7v/+Lf/qnf0KR7t0QBHecuRhTKcObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH5qmQVEUbrxYHc9IxvN4PFi5ciWampqwYcMGXHDBBSPSFgRBX+B8NKxevRo7duwYdMNCEAQ4HA7s3LkTq1evHpVenu7ubjgcjnPGM/ANlDPhrU7KHbvkg0cfVsZk5lh2OgdjTdFuhFx11VV47733sHv3bjidzhF/bvXq1Xj11Vexfft2E6MjiNIgGo3ipz/9KaLRaLFDMQxvXqyOx8zxWGqz0DKiwVudlDt2yQdvPqj/mKdH/cc+2CkfvHmhHmSeVqEavNVIuWOnfGQyGezevVtf4LbYWB3PaMaTJAm1tbVYs2bNiLSDwSB+/OMf6/P2jwRZlrF79+7zahX6ZoqiKKOOJw9vdVLu2CUfPPqwMiYzx7LTORhrijY1FkGwoNynxlJVFV1dXaiurh7VDUUe4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3RpKPUpkaK5fLIZlMwuv1wuEo2nOyRYunkPHC4TAWLlw47HZOpxPV1dWjWt/2/vvvx1133TWs1sC1REbKiRMn8IMf/OC88ZxLl7c6KXfskg8efVgZ01BjsZoai/dzsGJeyxUtGYUgCFNwOp2j/gHEK7x5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPljp3y4XA44PP5ih2GjtXxmDmeqqoIh8PcaAmCULAGb3VS7tglHzz6sDImM8ey0zkYa/i45UYQREEkEgk89thjSCQSxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPljp3yIcsy9uzZY/oi4CPF6njMHM/n82HJkiVMLnSy0FIUpWAN3uqk3LFLPnj0YWVMZo5lp3Mw1pTsGyGapuH06dPo6+sDAFRWVmLs2LGjXoiKIEoZURRRW1sLUSzZXVmHNy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNyxUz4cDgdCoRA309JYHY+Z4ymKgiNHjkBRFC60BEEoWIO3Oil37JIPHn1YGZOZY9npHIw1JbNGyJtvvomXXnoJr7/+Ovbu3YvOzs6zGrgoipgwYQKuueYa3HDDDfjsZz+L6667rkgRE1ZQ7muEEARBEARBEARBEHxRKmuEEKNnpGuEFMK51gg5k0LWCBlJ3IXoEgTBDlZrhPBOMa/l8nPbbQg6Ojrwwx/+EBdeeCFuuOEG/Ou//iu2bt2KI0eOIJvNQtO0QX+y2SyOHDmCrVu34l//9V9xww034MILL8QPf/hD7N+/v9h2CII5mUwGzc3NyGQyxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPljp3yoSjKkA+ZFgur4zFzPLfbjenTp8PtdnOhpapqwRq81Um5Y5d88OjDypjMHMtO52Cs4fJGyPbt2/G5z30OV111Fe677z6Ew+GzbnqcizO3C4fDuO+++3D11Vfjc5/7HLZv326hE4IwFx7nVCwU3rzYaX5altostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH/lFuFVVLXYoAKyPx8zxJEnClClTIEnSiD+zatUqZlpnomlawRq81Um5Y5d88OjDypjMHMtO52Cs4WpqrLfeegs//OEPsXPnTgDQb3gIgoBPfOIT+PSnP40pU6Zg0qRJuPDCCzF27Fh4vV5omoZUKoWuri4cO3YMBw4cwN69e/HnP/8Z+/fvH6QD9L9q9LOf/QzXXnttUXwS7KCpsQiCIAiCIAiCIAieoKmx7IuZU2ONFJoaiyDsCU2NZT7cvBHyne98B9OmTcPOnTv1Gxe33HIL1q1bh3A4jH379uHBBx/EHXfcgU996lO49NJL4ff74XQ6IYoi/H4/LrvsMnz605/Gt7/9bTz44IPYt28fwuEw1q1bh7/6q78C0P+DZOfOnZg2bRruvPPOYlomCMPkcjlEIhHkcrlih2IY3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkXLHTvnQNA3pdPq8s25YidXxmDkey4WQWWhpmlawBm91Uu7YJR88+rAyJjPHstM5GGu4uRHy8MMPQ1VV+P1+rFixAu+99x5eeukl3HHHHaiuri5Yt7q6GnfccQe2bduGw4cP44c//CH8fj9UVcXDDz/M0AFBWE8sFkNjYyNisVixQzEMb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljp3xkMhm0tLRwMW87YH08hYxXVVU1oumlAoEAGhoaEAgEjITITEtRlII1eKuTcscu+eDRh5UxmTmWnc7BWMPN1FjBYBD/9E//hO9///tMDhTnIxaL4YEHHsDPf/5zRKNRU8cizKXcp8bK5XKIxWIIBAJMnjQpJrx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlzkjyUSpTY2mahkwmA7fbrU8lXk7xFDreqlWrsGPHjvNu43A4EAgEEIvFDD8FfaZWIVNYnThxAsuXLz9vPOfS5a1Oyh275INHH1bGNNRYrKbG4v0crJjXcrm5EXL69GmMHTvW9mMSbCn3GyEEQRAEQRAEQRAEX5TKjRCiMNLpNFavXo3du3cPWvxXkiTU1dXhwIEDpo6/efNmVFVVoaenB8DI3lKhNUIIgn9ojRDz4eZxkmLckKCbIESpE4/H8dBDDyEejxc7FMPw5sXqeMwcj6U2Cy0jGrzVSbljl3zw5oP6j3l61H/sg53ywZsX6kHmaRWqwVuNlDt2ykcmk0Frays3U9NYHU+h43k8HqxcuRJNTU3YvHmz/qepqQkrV64EAPj9ftx5553w+/2G4zxTa9WqVZg7dy4WLlyIhQsXYu7cuVi1ahXS6fQ5NRRFKTge3uqk3LFLPnj0YWVMZo5lp3Mw1ojFDoAgiMKRJAlTpkwZ0RylvMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7tgpH06nEzU1NXA6ncUOBYD18RgdT5Kkc75BIcsy9uzZM+iNkUI5U+vMN05kWcaOHTsQDofxwAMPDFmbgiAUHA9vdVLu2CUfPPqwMiYzx7LTORhruJkaiyAKgabGIgiCIAiCIAiCIHiCpsYqX0YyBZWZCIKA+vp6rFixAh6PZ1Rx0dRYBFFcaGos8+FmaiyCIEZPOp3Gzp07z/sKbKnAmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu6MJB+CICAUClkXVIEoioIjR45AUZRihwLA+njMHM/j8aC+vn7QzQgrtDRNw44dO7B69epBf6+qasHx8FYn5Y5d8sGjDytjMnMsO52DsaZkb4QkEgns378fr732Gv70pz+N+A9B2AkeDxyFwpsXO/0IZ6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5c5I83HZZZdxNeXLUORyOUQiEeRyuWKHAsD6eMwcTxRF1NbWQhSNz0hfiNaZC7lrmlZwPLzVSbljl3zw6MPKmMwcy07nYKwpqamx4vE4GhsbsXnzZrzzzjsYbeiCIHDxpRPsoKmxCIIgCIIgCIIgCB5JpVLo6upCNpvFhx9+WOxwCAso9tRYAxk41RVNjUUQ/ENTY5lPybwR8tZbb2HSpEm4++67cfDgQeRyOWiaNuo/BGEnVFVFOByGqqrFDsUwvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+XOaPJRUVGBiy++GHV1dRZENnpyuRwSiQQ3T2RbHY+Z47FcCJmFlqZpBWvwVifljl3ywaMPK2Mycyw7nYOxpiRuhHR3d+Nzn/scjh8/rt/QEEURV1xxBW666SbMnDlzRH8+85nPFNsKQTAlHo9j3bp1iMfjxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlDi/5uPTSSyFJkiENWZbx5ptvDppCqZhYHY+Z4/n9ftx5553w+/1caCmKUrAGb3VS7tglHzz6sDImM8ey0zkYa0piaqx/+Zd/wU9+8hMIggC/34///u//xu233w6fz1fs0IgiU+5TY2mahkwmA7fbDUEQih2OIXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKnULzsXPnTqZxTJ8+Hb29vXjnnXcK1tA0Daqqwul0clFbVsdjxnj5KagEQYDb7UYmkzE8O0mhWgOnujpx4gSWLl16Xo1zTY1l5HuSZRk9PT36/6+qqjJ8A6/c4W2/LRQefVgZ01BjsZoai/dzsGJeyzW+apMFPP/88wD6m//vf/97fOpTnypyRATBB4IgwOPxFDsMJvDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO7zkg8WUS4IgMFnMmxVWx2PmeJqmIZ1Oc6MlCELBGoV8T+l0GqtXrz5r0XZJkjBjxgysWLGCi/2oFOFtvy0UHn1YGZOZY9npHIw1JTE11gcffABBEDBjxgy6CUIQA4jFYnjggQcQi8WKHYphePNidTxmjsdSm4WWEQ3e6qTcsUs+ePNB/cc8Peo/9sFO+eDNC/Ug87QK1eCtRsodHvLh9/vhcrkMz5KRyWTQ3NyMTCbDKDJjWB2PmeMFAgE0NDQgEAhwoZXNZgvWKOR7Wr16NXbs2HHWtD+yLGPHjh1YvXr1qOMg+uFtvy0UHn1YGZOZY9npHIw1JXEjJL9wzMSJE4scCUHwhcfjQX19PTd3Vo3Amxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu4UOx9OpxOXX345AMDn8xmaZkgURdTW1nLzVLbV8Zg5Xjqdxs6dO5m8FcJCy+l0Fqwx2u9JlmXs3r37vNuc+aYIMXJ4228LhUcfVsZk5lh2OgdjTUmsETJ58mS88847WLRoER5//PFih0NwRLmvEUIQBEEQBEEQBEHwD4s1Qurq6jB27FhUVFTofxeNRrFv3z6oqmpYnzBOfo2QkTJp0iQcOHDAlFgGrvkxkrjOtUbIQAau+XGu9T5G+h2MZDyCKCdYrRHCO8W8llsSb4TMnj0bmqahtbW12KEQBFekUim8+OKLSKVSxQ7FMLx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlTjHzcdFFFw26CQIAwWAQN95446CLSiMlm83ivffeQzabZRWiIayOx8zxKioqMGfOnLPydSYrV67Exo0bmWidD1VVC9bIZrN455138N///d+YO3cuFi5ciIULF2Lu3LlYtWoVs7VQiJHB235bKDz6sDImM8ey0zkYa0riRsjy5cvhdrvxzjvv4KWXXip2OASHeDwefX5UVVURiUSQf9kpFovpr1ymUin09fUBABRFQSQS0TWi0ajegJLJJJLJJID+5hSNRvXtIpEIFEUBAPT19ek7sizL+nx3mqYhEonoT+UkEgn9x0Emk0E8HgfQP+1bJBLRp3+Lx+P6/IDpdBqJROK8nnK5HLq7u3W9UvYUjUbR09ODXC7HRZ5SqRROnz6NXC5nOE95vfN5ymQyiEQiSCQSzD0lk0lEIhGkUiku8hSJRPSxR+spl8vh9OnTuh7L/WkkeSqV/ckqT+l0Gl1dXcjlciXtKR6Po7u7G7lcjos8ybKsf68s8mRljzjTUzweRyQSgSzLTGqvr68PkUgE6XS6oDz19vait7cXuVyurI+5duh72WwWXV1dul4pe8rvJ/ljZLHzNHA/saL2crkcenp60Nvby9zTwP2ehzwV+nsv/x3lt6MeUVxPuVwOXV1dut5IPcmyrH8PiqLocecXws7HmslkBm2XHyfvfShP2WxWv8Cdy+UGXZhOp9N6DNlsVvenqirS6bQ+djqd1r9XWZYHbXdmrAO3M+pp4HbpdBqpVAqapiGbzZ613Ug9DdzufJ40TUMqldL3MxaeNE1DKBSCw+FAKBRCIBDQ35qoqKhAZWUlgP5pcUKhEID+BcSDwSBcLhcAwOv1wuv1AgBcLheCweAgzfxUOpWVlXreJUnS1/8QBAGhUEiPNe8pFArB4/HA7/cDgK7ncDh0H0N5UlUVHR0dePXVVyHLsu5JlmU0Nzfj/vvvHzJPw3kaaZ4Gfv9m1V4mkxlUU2bXnlFPyWQSmqaVtKf8vqdpGjd5kmUZ6XR6yO+fde3l/3dgrKyOuflzr3g8zuSYm48lFosxPScsBiVxI+TjH/847r//fmiahttuuw379+8vdkgEZ0yfPh3z588HAHR1daGxsVHfOdevX4+Ojg4AwK5du9DU1AQA6OzsRGNjo66xdu1aHD58GACwbds2bNu2DQBw+PBhrF27Vt+usbERnZ2dAICmpibs2rULANDR0YH169cD6G8cjY2N6OrqAgBs2bIFzc3NAIC2tjZs2rQJQH9zaGxs1JvRpk2b0NbWBgBobm7Gli1bzuupsrISY8aMwfbt20ve09NPP43JkyejsrKSizwdOnQIiUQClZWVhvMEDF974XAYCxYswO7du5l7am9vx4IFC3Do0CEu8rRx40YsWLAAlZWVo/ZUWVkJRVHQ3t4OgO3+NJI8lcr+ZJWno0ePoru7G5WVlSXtafv27RgzZgwqKyu5yFNvby/ef/99/UTZ7Npj2SPO9LR9+3YsWLAAvb29TGqvtbUVCxYswNGjRwvK08MPP4zPf/7zqKysLOtjrh36XjKZxPvvv69fDCplT88//zwWLFiAZDLJRZ4efvhhzJo1C5WVlZbUXmVlJW666SY8/PDDzD1VVlbiy1/+Mh5++GEu8lTo773KykpMnjwZTz/9tJ4n6hHF81RZWYn3339fv3k3Uk8dHR369xAOh/Xfs5lMBi0tLXqs7e3tCIfDenz5uEdae7FYDC0tLbqn1tZWPdbDhw/r/np7e7F3715ceeWVkCQJLS0t+vd66NAhHD16VP8u89+xqqpoaWnRL8Cx8NTS0qJfjNu/fz+qq6shSRKOHj2KQ4cOjdrTwJlEhvMkSRImTZqEtrY2Zp4ymQwaGhqgqiqefvppLFy4EJMnTwYAzJw5E3PnzgUATJgwAQ0NDXqsy5YtQ11dHYD+WVFmz54NoH86tCVLluDpp59GX18fGhoaMGHCBADA3LlzMXPmTAD9U8ovXboUAOB2u9HQ0KDH2tHRgXg8jqeffhpXXHEFFi1aBODsRdg7OzuH9JRKpVBVVaXnaenSpYM8jRkzRr/IOjBP5/O0bNmyEecJML/22tra9H3Vitoz4ungwYP6tGSl7KmtrQ0f+9jHIEkSN3k6ceIErrzySkSjUdNrz+l04sorr8T+/ft1T6yOub29vViwYAG2b9/O5JirqioWLFiA3/3ud0zPCYtBSawRkmfjxo248847IQgCvvOd72D+/Pm46qqr9KZNlB/5eeU8Hg9EUURzczMmTpyIeDyOYDAIQRAQi8Xg8XggSZL+pEf+YmoikdCfwohGo/B6vXC5XHqD83q9yGazSCaT+hMLkUgEPp8Poiiir68PDocDFRUV+p3jQCAATdMQjUbh9/vhdDqRSCQgiiI8Hg8ymQxkWYbf70cul0MsFkMgEIDD4UA8HockSXC73fpdaJ/PB1VVh/TkcDhw+PBh1NTUIBgMlrSnnp4edHd349JLL0U2my16nvr6+nD06FF8/OMfh8PhMJSnkdSeJEk4efIkqqqqIIoiU08AcPr0aVRXVyOXyxU9T7FYDPF4HBMmTEAikRiVJ03T8O677+Kiiy6Cz+djuj/ZsUeY7SmZTOKDDz7AFVdcAafTWbKeotEowuEw6urq9CdzipmndDqN9957DxMnTtTjM7P2WPaIMz3Jsoze3l7U1NQgnU4brr38Wxkf+chHoCjKqPPU09ODWCyGiy++GKlUqmyPuXboe5lMBu+++y6uuOIKuFyukvaUTqcRiUQwfvx4pFKpouepu7sb0WgUl1xyCdLptOm153a7cfToUQSDQYwdO5apJ6/Xiw8//BB+vx8XXHBB0fNU6O89l8uFDz74AGPGjEFVVRX1iCJ7UhQFBw8exOWXX66fN4zE07Zt2+BwOCCKIhRFgaqqcLvd+tPQbrcbgiAgk8nA6XTq2+VyOUiShFwuh2uvvfa8nt544w39Ddf8orTpdBoulwtOp1N/mtjlculPceef8JdlGZIkweFwQJZlCIKgb6coyqBYB25n1JMsy/p2qVQKyWQSF1xwAVRVhaZpg7YbiadsNjtou/N5crlciEajcLvd+rHeqKcTJ05g+fLlSCQSmDBhAqLRKPr6+iDLMioqKuBwONDX1wdRFOHz+fQLmHfeeSeSySSy2az+5kQymYTL5YLf70cgEEBnZyd8Ph8SiQQURUFlZaX+pr4kSfB4PIjFYhAEAcFgEGvWrMH48eMhyzJOnjyJlStX4tSpU3A6nYjH43A4HAgEAvobdE888QRqamrO8nTs2DH85Cc/wcGDB/XfX+l0epCnRx55BB/5yEf0J74XLlyIYDB4Tk9erxcPPfSQ/hux2LWXyWQgiqJeU2bXnhFPA/eT/AwWpegplUohk8kgGAwim81ykad8XPl9y8zac7lciMfjcLvdkCQJTqcT06ZNY3LM9Xg8CIfDuOCCCyBJkuFjrtfrxfHjxxEMBuH1eg2fEx47dqxoa4SUxI0Qp9M56P9rmgZBEEatIwiC/loSYQ/KfbH0SCSCxsZGfP/739ebY6nCmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu4Umg8Wi6UPt5DuaMdIp9NoaWnBtGnT9AuDxcTqeMwYL79QeCgUQkNDAx544IHzTgWzefNmADjv4uIj1RpKO78Y+Ycffoj333//vBrnWrx8tJ+lxdLNhbf9tlB49GFlTEONxWqxdN7PwYp5LbckboQ4HA4IgjDkDZDRhC8Igv46FWEPyv1GCEEQBEEQBEEQBME/PN4IIdgz0psAeUZyI6RQRntz4lw3Jkb7WboRQhCFwepGCO8U81quaMkoDMjf8CiB+zYEQRAEQRAEQRAEQRAEQRAEQXBCSSyWnp/zzugfehuEsBvRaBQ/+clPEI1Gix2KYXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKHTvlI51O45VXXkE6nS52KACsj8fM8YLBIH784x/r8/YXWyubzRasYeSzBHt4228LhUcfVsZk5lh2OgdjTUncCCEIYmi8Xi/mzZunLzxWyvDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO3bKh8vlwsSJE+FyuYodCgDr4zFzvGQyiWeffVZf1LjYWk6ns2ANI58l2MPbflsoPPqwMiYzx7LTORhrSmZqLIIgzibfOO0Ab16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljp3w4nU6MHTu22GHoWB2PmeNls1kcPHiQGy2Hw1GwhpHPEuzhbb8tFB59WBmTmWPZ6RyMNfRGCEGUMCyfMik2vHmxOh4zx+PtaSQjGrzVSbljl3zw5oP6j3l61H/sg53ywZsX6kHmaRWqwVuNlDt2ykf+Ans2my12KACsj8fM8Xh7I01RlII1jHyWYA9v+22h8OjDypjMHMtO52CsoRshBEEQBEEQBEEQBEEQBEEQBEHYFkHTNK3YQRBEoezfvx9XXnml/v/ffvttfOITnyhiRARBEARBEARBEAQxmJ07dxrWqK+vN30MwhjhcBgLFy4c8fabN28GgFF9ZjTaNTU1I45r4PYDGe1nR/odnGs8gihXhuvxdqGY13JL9o2QRCKB3bt3Y+vWrXjyySfx+OOPj+gPQdgJHl8lLBTevNjptWyW2iy0jGjwVifljl3ywZsP6j/m6VH/sQ92ygdvXqgHmadVqAZvNVLu2Ckfqqri9OnTUFW12KEAsD4eM8djuRAyC61cLlewhpHPEuzhbb8tFB59WBmTmWPZ6RyMNSV3I+Spp57CjTfeiFAohM985jP4yle+gsWLF+Nv//Zvh/2zdOnSYodPEEzhaZ49o/DmhebHNk+L5ui3D3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ4WrRFiD+yUD54uTgH2uhHL2xohqqoWrGHkswR7eNtvC4VHH7RGiDl6PB03S2ZqrFQqha9//et4/vnnAQDnC1sQhCH/XRAEru40EsahqbEIgiAIgiAIgiAI3qGpscoDq6fGmjRpEg4cOHBObZoaiyBKB5oay3xES0ZhwN/93d/hD3/4AwDA4/Fg1qxZ+OCDD3Dw4EEIgoDbb78d8XgcR48exb59+5DNZiEIAiorK/GVr3wFgiAU2QFBEARBEARBEARBEARBGGfjxo2QJMmU9UUIgiDsSElMjdXS0oKnn34agiDgYx/7GA4cOIA//OEPuOWWW/RtNmzYgC1btuCNN95AV1cXfvazn8Hn86Gvrw+nTp3C//7v/2LDhg1FdEEQ7IlEIrj33nsRiUSKHYphePNidTxmjsdSm4WWEQ3e6qTcsUs+ePNB/cc8Peo/9sFO+eDNC/Ug87QK1eCtRsodO+UjnU5j165dSKfTxQ4FgPXxmDleKBTCPffcg1AoZJqWJEkj1shmswXHY+SzBHt4228LhUcfVsZk5lh2OgdjTUncCNm4caP+3+vXr8cll1xy3u0DgQD+8R//Ea2trRg/fjz+7//+D3/7t39rdpgEYTk+nw+LFy+Gz+crdiiG4c2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3ipWPMWPGMNeUJAnXXHPNqC6om4nV8Zg5XiKRwGOPPYZEIsGFltPpLFjDyGcJ9vC23xYKjz6sjMnMsex0DsaakrgR8sorrwAA6urqMGPGjBF/7mMf+xg2btwITdPwu9/9Tp9aiyDsgiiKqK2thSiWzCx354Q3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3ClGPvJjssbhcCAUCsHh4OPSkNXxmDmeoig4cuQIFEXhQsvhcBSsYeSzBHt4228LhUcfVsZk5lh2OgdjDT/Vdh6OHz8OQRAwderUQX8/cN0PWZaH/Owtt9yiL7jy5JNPmhckQRSBvr4+PP300+jr6yt2KIbhzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKXesyscnPvEJfPSjH8Wll16Ka6+9Fn6/n/kYsizj7bffPuf1FKuxOh4zx6usrMSCBQtQWVnJhZaiKAVrGPkswR7e9ttC4dGHlTGZOZadzsFYUxI3QmKxGICzXwWtqKg4a5uhuPbaa6FpGt58801zAiSIIsHjHfRC4c2LnZ5GYqnNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5Y5V+aiursbHP/5xXHLJJfB6vaaMIQgCPB7PoIdMi4nV8Zg5Xi6XQyQSQS6X40JLEISCNYx8lmAPb/ttofDow8qYzBzLTudgrBE0TdOKHcRwhEIhxONxLF26FA8//LD+9//f//f/4V//9V8hCAJef/11XHfddUN+/vbbb8eTTz6JyspKxONxq8ImLGD//v248sor9f//9ttv628AEQRBEARBEARBEAQP7Ny5c1Tb19fXmz4GwZ5wOIyFCxeOePvNmzcDwKg+M9LPbt68GTU1NSOOa+D2AxntZ0f6HZxrPIIoVwrp+6VIMa/lFv9WzAi46KKLAADd3d2D/v7jH/+4/t+vvfbaOT/f0dFhTmAEUWRkWcaePXu4epWwUHjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKHTvlQ1VVhMNhqKpa7FAAWB+PmeNJkoQpU6YwWQiZhVYulytYw8hnCfbwtt8WCo8+rIzJzLHsdA7GmpK4EXLVVVdB0zS88847g/7+hhtu0F8h+uUvfznkwk3btm3DW2+9BUEQcNlll1kSL0FYRTqdxs6dO5FOp4sdimF482J1PGaOx1KbhZYRDd7qpNyxSz5480H9xzw96j/2wU754M0L9SDztArV4K1Gyh075YPlgt4ssDoeM8fzeDyor6+Hx+PhQktV1YI1RvPZdDqNVatWFRIiMUJ4228LhUcfVsZk5lh2OgdjTUlMjfXQQw9h+fLlcDgcOHXqFKqqqvR/mzlzJv785z9DEATMmTMH//mf/4krr7wSyWQSzz33HH7wgx+gu7sbgiDgn//5n/Gf//mfRXRCsIamxiIIgiAIgiAIgiB4h6bGKg/KfWqsVatWYceOHSMJn6bGIogzoKmxzKck3gj5whe+AEEQoGkafv/73w/6t5/85Cf6WyEvvvgirr/+eng8HlRVVWHJkiXo6ekBAIwdOxYNDQ1Wh04QpqJpGtLpNErgfuaw8ObF6njMHI+lNgstIxq81Um5Y5d88OaD+o95etR/7IOd8sGbF+pB5mkVqsFbjZQ7dsqHpmlQFIUbL1bHY+Z4LBdCZqGlaVrBGiP9rCzL2L17d6EhEiOEt/22UHj0YWVMZo5lp3Mw1pTEjZCLL74YP/jBD/D1r38dXV1dg/7txhtvxMMPPwyn0wlN04b8U11dja1bt2Ls2LFFckAQ5hCNRvHTn/4U0Wi02KEYhjcvVsdj5ngstVloGdHgrU7KHbvkgzcf1H/M06P+Yx/slA/evFAPMk+rUA3eaqTcsSIfLpfLNO2BZDIZ7N69G5lMxpLxhsPqeMwcLxgM4sc//jGCwSAXWoqiFKwx0s/29PRwsQaA3eFtvy0UHn1YGZOZY9npHIw1JTE11kg4cOAA7r//fmzfvh3Hjx+Hw+HAZZddhrlz56KhoQHV1dXFDpEwgXKfGktVVXR1daG6uhpOp7PY4RiCNy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNwpNB+jmbaqrq4OF1100ahjG+3UWLlcDslkEl6vFw5H8Z+TtToeM8bLTyPldDpRXV2Nrq6u8y6GPJKpsc6lNZqpsU6cOIEf/OAH543nXFNVjfSzw/kY6XjE+eFtvy0UHn1YGdNQY7GaGov3c7BiXssVLRnFAiZNmoRf/vKXxQ6DICzF6XTa5ocDb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljdj6qq6tx4YUXmqY/EIfDAZ/PZ8lYI8HqeMwcT1VVhMNhbrQEQShYw8hnCfbwtt8WCo8+rIzJzLHsdA7GGj5uuREEURCJRAKPPfYYEolEsUMxDG9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81Ui5Y0Y+brrpJlx55ZX45Cc/icmTJ1v2dLQsy9izZw830xlZHY+Z4/l8PixZsoTJhU4WWoqiFKxh5LMEe3jbbwuFRx9WxmTmWHY6B2ONbd4IIYhyRBRF1NbWQhRLf1fmzYvV8Zg5HkttFlpGNHirk3LHLvngzQf1H/P0qP/YBzvlgzcv1IPM0ypUg7caKXfMyIckSUVZ09ThcCAUCnEzLY3V8Zg5nqIoOHLkCBRF4UJLEISCNYx8lmAPb/ttofDow8qYzBzLTudgrCnJNULS6TRefPFFvPLKK/jwww/R29sLVVXxxz/+cdB2mqYhlUoB6F9szKoFxwjrKPc1QgiCIAiCIAiCIAj+Od/6HazmhR/tGiEEe/JrhIyUQtbWGOlnB67BMZK4zrVmx0g/e75YRjMeQZQrrI4FvFPMa7n83HYbIf/zP/+Diy++GF/96ldx//33Y8uWLXj55ZeHPOD39PSguroafr8fM2fOtD5YgjCZTCaD5uZmZDKZYodiGN68WB2PmeOx1GahZUSDtzopd+ySD958UP8xT4/6j32wUz5480I9yDytQjV4q5Fyh+d8CIIwqu0VRUFnZyc3T/pbHY+Z47ndbkyfPh1ut5sLLVVVC9YYyWfD4TCtI2IRvO23hcKjDytjMnMsO52DsaZkboRks1n89V//NX70ox+hu7sbmqbpf87FmDFjsHjxYmiahpaWFrz33nsWRkwQ5sPjnIqFwpsXO81Py1KbhZYRDd7qpNyxSz5480H9xzw96j/2wU754M0L9SDztArV4K1Gyh2e83HJJZeMavv8ItyqqpoU0eiwOh4zx5MkCVOmTIEkSVxoaZpWsMZIPnvXXXfhrrvuKjg+YuTwtt8WCo8+rIzJzLHsdA7GmpKZGutb3/oW1q9fDwDweDxYvHgxbr75Zjz11FPYunUrBEEYsnheffVVfOpTn4IgCLj//vvxve99z+rQCROhqbEIgiAIgiAIgiAI3rFiaqxcLof9+/eju7ubiR4xesp1aqxCoKmxCGIwNDWW+ZTEGyFvvvkmNmzYAEEQMGHCBLz11ltYu3Ytvva1r2HChAnn/exNN92EYDAIAPjzn/9sRbgEYRm5XA6RSAS5XK7YoRiGNy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNzhOR8OhwNXXnklbrjhBjidzmG31zQN6XT6vDNtWInV8Zg5HsuFkFloaZpWsIaRzxLs4W2/LRQefVgZk5lj2ekcjDUl0cU2bNigF8YTTzyBiRMnjurzU6ZMgaZpOHDggBnhEUTRiMViaGxsRCwWK3YohuHNi9XxmDkeS20WWkY0eKuTcscu+eDNB/Uf8/So/9gHO+WDNy/Ug8zTKlSDtxopd3jPhyAI8Hq9qKqqGnbbTCaDlpYWLuZtB6yPx8zxAoEAGhoaEAgEuNBSFKVgDSOfJdjD235bKDz6sDImM8ey0zkYa0piaqxPfOITOHDgAK666irs3bt30L/9wz/8Ax588MFzTo0FALfddhs2bdqEYDCI3t5eK0ImLKLcp8bK5XKIxWIIBAIl/3QGb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLlTaD6smBprIPv370dXV9d5t9E0DZlMBm63e9QLrZuB1fGYMV5+GimHw4FAIIBYLHbep6BHMjXWubRGMzXWiRMnsHz58vPGs3nzZlRVVaGnp0f/u6qqKnR3dw/72UKgqbEKg7f9tlB49GFlTEONxXKaRJ7PwYp5LVe0ZBSDHD9+HIIgYOrUqQV93ufzAQD6+vpYhkUQRSf/iqwd4M2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil37JQPQRDg8XiKHYaO1fGYOV5+KhhetARBGFZj1apVOHz48KAFjSVJQl1dHTMvhHF4228LhUcfVsZk5lh2OgdjTUk8TpJOpwGg4AJJJBIA/t8NEYKwC/F4HA899BDi8XixQzEMb16sjsfM8Vhqs9AyosFbnZQ7dskHbz6o/5inR/3HPtgpH7x5oR5knlahGrzVSLljp3xkMhm0trZyMzWN1fGYOZ7f78edd94Jv9/PhZaiKMNqHDhwYNBNEACQZRmdnZ3MvBDG4W2/LRQefVgZk5lj2ekcjDUlcSOkuroaQP8rhoVw8ODBQTpEcdizZw9cLhcEQeDmtbdSR5IkTJkyBZIkFTsUw/Dmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO3bKh9PpRE1NzYgWVrcCq+MxY7yqqipIkgRZlrFnz56zbiwUAgstQRAK1mDphTAOb/ttofDow8qYzBzLTudgrCmJNUJmz56Nl19+GdXV1Th+/PigIhlujZAPP/wQl112GXK5HBYuXIgnn3zSytCJ/z+KouCGG25AW1ub/ncsSq/c1wghCIIgCIIgCIIg+IfHNUIIc1i1ahV27Ngxom1HskZIoZ8duAZHfu0SnqA1QghiMGYcC3ikmNdyS+KNkDlz5gAATp8+jccff3xUn/33f/93/QbJ5z73OeaxESPjZz/7Gdra2vDlL3+52KHYinQ6jZ07d+rTx5UyvHmxOh4zx2OpzULLiAZvdVLu2CUfvPmg/mOeHvUf+2CnfPDmhXqQeVqFavBWI+WOnfKhKAqOHDkCRVGKHQoA6+Mxa7wVK1bgr/7qr1BfX89kDQCPx2NYS1XVgjVYjE+wg7f9tlB49GFlTGaOZadzMNaUxI2QJUuWIBgMAgB+8IMfoLW1dUSfW7VqFR5//HEIgoCPfvSjWLBggZlhEufg4MGDuPfee3HDDTfg7//+74sdjq3g8cBRKLx5scuPcNbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu7YKR/5RbhzuVyxQwFgfTxmjefxePDDH/4Qc+bMgSiKhvVEUURtba0hLU3TCtZgMT7BDt7220Lh0YeVMZk5lp3OwVhTElNjAcCDDz6If/iHf4AgCJAkCd/97nexcOFCrFu3Do888ggEQUBvby9OnDiB3bt3Y+3atXjrrbegaRoEQcCvfvUrzJ8/v9g2yo5cLodPf/rTeP311/Hmm2+ip6cHs2bNAkBTYxEEQRAEQRAEQRDlAU2NVX6MZDoqmhqLpsYiiDw0NZb5lMQbIQDw3e9+F9/73vegaRpkWcb999+PG264AY8++iiA/ovqF1xwASZPnow77rhDvwkC9E+PVeybIKqqYt++fXj00UexbNkyXH/99ZAkSV843Eixy7KMJ554Al/4whdwySWXwOPxYPz48bjpppvwP//zPzh9+jQ7I6PkF7/4BV599VX80z/9E66++uqixWFXVFVFOBwecn2cUoM3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3CmVfIzk6f1cLodEIsHNE9lWx2PmeLlcDul0mslCyCwWVdY0rWANHhe1Lmd4228LhUcfVsZk5lh2OgdjTcncCAGABx54AI888giCwSA0TdNvdORvJuT/Lv8nFAphw4YNuOeee4oa97PPPotAIIBrrrkG3/rWt/DQQw/hzTffRDabNax98OBBTJs2DbfffjteeOEF/OUvf0Emk0E4HMZrr72GH/7wh/jEJz6B559/noGT0XHkyBH8y7/8C+rq6rBy5UrLxy8H4vE41q1bh3g8XuxQDMObF6vjMXM8ltostIxo8FYn5Y5d8sGbD+o/5ulR/7EPdsoHb16oB5mnVagGbzVS7pRKPkbypL0sy3jzzTchy7IFEQ2P1fGYOZ4syzh69Cj8fr9hLb/fjzvvvNOQlqIoBWuwGJ9gB2/7baHw6MPKmMwcy07nYKwpmamxBpJIJLB+/Xo8//zzeO211wZ9kW63GzfccAP+5m/+Bt/5zncQCASKGGk/jz32GP72b//2vNvMnDnzvK/KDkVnZyemTZuG48ePA+i/IfSZz3wGdXV16Orqwssvv4xUKgUAcLlcePHFF3HzzTcX5KEQPvvZz+Lll1/Gyy+/jFtuuQVA/+vANDUWOzRNQyaTgdvthiAIxQ7HELx5sToeM8djqc1Cy4gGb3VS7tglH7z5oP5jnh71H/tgp3zw5oV6kHlahWrwViPlTqH5sHpqLE3T8MYbbyCZTJ53G1VV4XQ6uagtq+MxczxN03D8+HHcdttt5732MZKpsQRBgNvtRiaTGaQ1mqmxTpw4gaVLl56lMRLONb5RaGqswuBtvy0UHn1YGdNQY7E6FvB+DlbMa7kludKRz+fD9773PXzve98DAPT19SEajaKyslJfVJ1Hxo0bh09+8pP6n//7v/9DY2NjwXrf/OY39Zsgl1xyCbZu3YprrrlG//fTp09jwYIF+OMf/4hsNouvfe1rOHz4MEKhkFErw/Loo4/i5ZdfxuLFi/WbIAR7BEGAx+MpdhhM4M2L1fGYOR5LbRZaRjR4q5Nyxy754M0H9R/z9Kj/2Ac75YM3L9SDzNMqVIO3Gil3SiUfgiDgmmuuwaFDh9Db2zvk9CuCIHC1ALbV8Zg5niAIcDqdTG4caJqGdDptOJ5CNViMT7CDt/22UHj0YWVMZvcfu5yDsaakpsY6F5WVlfjoRz/K7U2QOXPm4OjRowiHw2hqasLKlSvx+c9/3tANieeffx5//vOfAQCSJKGpqWnQTRAAGDt2LLZu3YrLLrsMANDT04PVq1cPqffjH/9Yn2JstH8URRmkdfz4cfzjP/4jqqur8fOf/7xgj8TwxGIxPPDAA4jFYsUOxTC8ebE6HjPHY6nNQsuIBm91Uu7YJR+8+aD+Y54e9R/7YKd88OaFepB5WoVq8FYj5U4p5cPtduOqq67Cpz/9aVRVVZ3175lMBs3NzchkMkWI7mysjsfM8TKZDA4fPsxklpJAIICGhgZDWtlstmANFuMT7OBtvy0UHn1YGZOZY9npHIw1trgRwjs1NTW4+OKLmWo++OCD+n8vXrwYV1111ZDbVVZWYtWqVfr/X7du3Vk3LvLbjRkzpqA/Z74W9Q//8A+IRqO47777MGbMGEaOiaHweDyor6/n5s6qEXjzYnU8Zo7HUpuFlhEN3uqk3LFLPnjzQf3HPD3qP/bBTvngzQv1IPO0CtXgrUbKnVLMx7mmMhFFEbW1tdw8lW11PGaOJ4oixo4dy+RNinQ6jZ07d45aa9WqVfpnnE5nQRpGxifMgbf9tlB49GFlTGaOZadzMNaU5BohduGee+7BvffeC2B0a4QkEgmMHTtWv2v46quv4sYbbzzn9ul0GtXV1UgkEgCAP/7xj6auFVJbW4ujR49i3LhxZ/2bLMvo7e0FAP3f/+M//gN33HFHQWOV+xohBEEQBEEQBEEQBP9YvUbImezbtw89PT2mj0P8P8Lh8HnX/gBGtkaIkc/OmjULK1euHFEsVkNrhBDEYKw4FvBAMa/l0hshJcirr76q3wSprKzEJz/5yfNu7/F4Bt0o2b59u6nx5Tl58uRZf/I3QQb+e19fnyXx2JFUKoUXX3wRqVSq2KEYhjcvVsdj5ngstVloGdHgrU7KHbvkgzcf1H/M06P+Yx/slA/evFAPMk+rUA3eaqTcsVM+stks3nvvPWSz2WKHAsD6eMwcL5vN4tSpU6ioqDCsVVFRgTlz5hSktXv3bsiyDFVVC9YwMj7BHt7220Lh0YeVMZk5lp3OwVjDz/tHIySVSuEPf/gDXn/9dXzwwQeIxWIjLhpBEPDHP/7R5AjN58CBA/p/X3XVVSN6jeraa6/FSy+9dNbnzeDIkSPn/LedO3di1qxZAMBk0bByJ5fLIRKJDLnwXanBmxer4zFzPJbaLLSMaPBWJ+WOXfLBmw/qP+bpUf+xD3bKB29eqAeZp1WoBm81Uu7YKR/5RbB5OTe3Oh4zx9M0DdlsFg6H8eePHQ4HQqHQkFpVVVWQJAmyLA/5WVmW0dPTA03TzqlhZHzCenjbbwuFRx9WxmTmWHY6B2NNyUyNpWkafvazn+G//uu/9CmeRvt5QRCgqqoJ0RVGoVNjLV++HGvXrgUAfOMb38DTTz897GfWrFmD7373uwCAyZMnY//+/YUFbRDWN0JoaiyCIAiCIAiCIAiCd2hqrPLDiqmxampqsGrVKuzYscOUMcyEpsYiiMHQ1FjmUzK3c2+99Vb88z//M+LxODRNG/UfO9Hd3a3/91DrcAzFwIML/fixD4qi4MiRI1AUpdihGIY3L1bHY+Z4LLVZaBnR4K1Oyh275IM3H9R/zNOj/mMf7JQP3rxQDzJPq1AN3mqk3LFTPnh6Shew3xtpyWSSyULIwy2qvGLFCkyaNGnYeApdmJnHRa3LGd7220Lh0YeVMZk5lp3OwVhTEjdCnnrqKf0ONgBcccUV+Pd//3f86le/wksvvYQdO3aM6I9Va2OYzcA3YkY6R+PA7Qp5o4Z3PB4PfD4fAEBVVUQiEf0GWCwW018TTaVS+pokiqIgEonoGtFoVJ9mLZlMIplMAuifty8ajerbRSIRfeft6+vT57iTZRmxWAxA/9sukUhEfwMpkUggnU4DADKZDOLxOICzG188HtfXf0mn03quzuUpkUhg48aNOHXqVMl7OnHiBDZu3IhEIsFFnrq7u/V4jOYJGL72ent7sXHjRnR1dTH3lPfS3d3NRZ6OHz+ua4zWU77m8zeEWe5PI8lTqexPVnnq6enRc1nKnk6dOqX74CFPkUhEj4dFnqzsEWd6yn+3kUiESe2dPn0aGzduRE9PT0F5Gth/yvmYa4e+F41GsXHjRv1zpezp5MmT2LhxI6LRKBd5GrifWFF7+X3r+PHjzD0N1OYhT4X+3sv7OHHihJ4n6hHF85TPR/5zI/Uky7L+PSiKosed384KT9lsVv9vVVURj8exd+9eyLKMdDqtxyDL8qDtBsZ65nbn8jRwypdMJjNou3zcuVxu0HYD48lms2dtlyedTuvf65meztzufJ5kWcbevXsRj8eZe8pkMvjwww9RU1MDSZIA9F+XqaysBNB/cyEUCumxBoNBuFwuAIDX64XX6wUAuFwujB8/HkuWLIHP50MoFNJvSCiKgmw2C4/Hg3/7t39DIBAA0D8tfCgUgtPpHBTfkiVLUFVVBb/fD+DsKa/8fj/cbjeAwddYAoGAPn7+/xv1FAwGR5yngd+/WbWXyWQG1ZTZtWfEUyKR0PeTUvY0cH/nJU/JZBJ79+5FKpUyvfYymYzef/Kxsjrm5s8nT506xeSYG4vFsHHjRoTDYabnhMWgJG6EPPLII/p/33XXXdi/fz/uvfdefO1rX8Mtt9yCmTNnjviPHRi40+YPPsORP5gBKOriNPX19aa8pTN9+nTMnz8fANDV1YXGxkZ951y/fj06OjoAALt27UJTUxMAoLOzE42NjbrG2rVrcfjwYQDAtm3bsG3bNgDA4cOH9anIAKCxsRGdnZ0AgKamJuzatQsA0NHRgfXr1wPobxyNjY3o6uoCAGzZsgXNzc0AgLa2NmzatAlAf3NobGzUm9GmTZvQ1tYGAGhubsaWLVvO6ykUCmHatGn405/+VPKennnmGXzpS19CKBTiIk8ffPABxo0bh1AoZDhPwPC1193djbvvvhstLS3MPR04cAB33303PvjgAy7y9NRTT+Huu+9GKBQatadQKIRLLrlEX+uI5f40kjyVyv5klafjx48jGAwiFAqVtKc//elPmDZtGkKhEBd5yv+gzJ9Iml17LHvEmZ7+9Kc/4e6770YikWBSe3v27MHdd9+N48ePF5SnDRs24Pvf/z5CoVBZH3Pt0PfyJ4L5h31K2dNLL72Eu+++G9lslos8bdiwAd/5zncQCoUsqb1QKITFixdjw4YNzD2FQiH86Ec/woYNG7jIU6G/90KhEL70pS/hmWee0fNEPaJ4nvLH5/zxeqSeOjo69O8hHA6jvb190HZWeDp8+LD+3729vWhvb8fMmTPh8XjQ0tKix3Do0CEcPXpUHzcfj6qqaGlp0S/Anc9TS0uLHmt7ezvC4bAeXz7uZDKJlpYW/WLcgQMHcMUVV8Dj8eDo0aM4dOiQnveWlhbdU2trK3p7e4f01Nraqm83nCePx4MZM2Zgz549zD25XC5cccUVmD9/PiZPngygf0r0uXPnAgAmTJiAhoYGPdZly5ahrq4OADB79mzMnj0bAFBXV4dFixbhnnvuQSQSQUNDAyZMmAAAOHnypO4pHo9j6dKlAPqv/zQ0NKC6uhpA/2/2RCKBe+65B5dddhkWLVoEoP+GRkNDg34DZdGiRZg6dSqAwddY8ted8teili5datjTsmXLRpwnwPzaa2tr0/dVK2rPiKdDhw6hrq4OHo+npD3t2bMH06ZNg8fj4SZP4XAYM2fORDweN732XC4XZs6ciQMHDuieWB1zE4kE7r77bvzpT39icsx1OBy4++678fvf/57pOWExKIk1QsaOHYve3l5ceumlePfddyEIQrFDYkKha4T89V//NZ5//nkAwI9+9CP85Cc/GfYzL7zwAr7whS8AAHw+n353r9TJzyvn8XggiiKam5sxceJExONxBINBCIKAWCwGj8cDSZKQSqWQy+VQWVkJRVGQSCT0H7LRaBRerxcul0tvcF6vF9lsFslkUn9iIRKJwOfzQRRF9PX1weFwoKKiQn+KJhAIQNM0RKNR+P1+OJ1OJBIJiKIIj8ejP3ni9/uRy+UQi8UQCATgcDgQj8chSRLcbjfS6TQURYHP59Of1iFP5Ik8kSfyRJ7IE3kiT+SJPJEn8lR6nrZt2waHwwFRFKEoClRVhdvthqZpmDp1qumeDhw4gJMnTwLofyJfVVX9bQKg/yK3JElwOByQZRmCIOjbKYqix5rJZAZtdy5PmUwGbrcbgiAgk8nA6XTq2+VyOUiShFwuB1mWB20niiKcTiey2Sw0TRu03cBYXS6Xvh2vnk6ePInvfOc7SKfTkGUZFRUVcDgc6OvrgyiK8Pl8+gXMO++8E8lkEtlsVn9zIplMwuVywev16k98h0IhJBIJKIqCJ554AuPGjYPL5cLx48exbNkyxGIxCIKAYDCoP2n+xBNPQBAE3HrrrXC73ZAkCfF4HA6HA4FAALFYDLlcDn6/X386P3+NJZFIwOl0wu/3IxqNQtM0BAKB83rKP/EdDAbP6+mhhx5CTU1N0fNkx9ojT6Xpadq0aWVxzD127FjR1ggpiRshPp8PqVQKt99++6AnhUqdQm+EfOMb38Cvf/1rAMD3vve9Ed1N++1vf4uvfvWrAPrXC8m/Vl3qlPti6dFoFGvXrsWyZcsGvVpaivDmxep4zByPpTYLLSMavNVJuWOXfPDmg/qPeXrUf+yDnfLBmxfqQeZpFarBW42UO4Xmg8fF0tPpNFpbW3H99dfrFwaLidXxmDleOp3GG2+8gZ///OeDpq05k5EsZB4MBrFs2TKsXbt2kNbAxcbPtzD75s2bkc1m0dHRcZbGSDjX+EahxdILg7f9tlB49GFlTEONxepYwPs5GC2WPgwXX3wxAOjzFpY7Y8aM0f87/0THcORfxwKAqqoq5jERxcHr9WLevHn60xWlDG9erI7HzPFYarPQMqLBW52UO3bJB28+qP+Yp0f9xz7YKR+8eaEeZJ5WoRq81Ui5Y6d8uFwuTJw4UV/HodhYHY+Z47lcLtTU1OhPbhshmUzi2WefNaTldDoL1mAxPsEO3vbbQuHRh5UxmTmWnc7BWCMWO4CRMG3aNBw8eFCfE77cueKKK/T/zs/JNxx/+ctf9P+eOHEi85iI4pBvnHaANy9Wx2PmeCy1WWgZ0eCtTsodu+SDNx/Uf8zTo/5jH+yUD968UA8yT6tQDd5qpNyxUz6cTifGjh1b7DB0rI7HzPHy00nlp+UxQjabxcGDBw1pOByOgjVYjE+wg7f9tlB49GFlTGaOZadzMNaUxCsWf//3fw8AeOONN/D2228XOZriM2nSJP2/29vboSjKsJ956623hvw8UdrY6ckM3rxYHY+Z47HUZqFlRIO3Oil37JIP3nxQ/zFPj/qPfbBTPnjzQj3IPK1CNXirkXLHTvnIX+BmcbGeBVbHY+Z42WwWJ06c4OaNNEVR6K1Ym8DbflsoPPqwMiYzx7LTORhrSuJGyHXXXYc777wTqqpi4cKF6O7uLnZIReWmm26C2+0GAPT19aG1tfW822cyGTQ3N+v//+abbzY1PoIgCIIgCIIgCIIgCIIgCILghZK4EQIAv/jFL3DHHXfoC6r84he/sM2C36PF5/Phlltu0f//Y489dt7tf/vb3yIejwPoXx/kM5/5jJnhFQWPxwOfzwcAUFUVkUgEmqYBAGKxGGRZBgCkUin09fUB6H8iIhKJ6BrRaFS/E5tMJvU7ldlsdtCCYJFIRH8Lp6+vD6lUCgAgyzJisRgAQNM0RCIRqKoKAEgkEkin0wD6b0zl85HL5RCJRJDL5QAA8XgcmUwGQP/CSYlE4ryevF4vPve5z+l/X8qeFEXBF77wBXi9Xi7y5HQ6ccstt8Dr9RrOEzB87blcLsybN0/3xdKTw+HAvHnz4HQ6uchTNpvVnygarSev14u/+qu/0teMYrk/jSRPpbI/WeVJFEXcfPPN8Hq9Je1J0zR87nOfg9fr5SJPkiShvr5ef+rO7Npj2SPO9KRpGubNmwdJkpjUniAImDdvHkRRLChPsizji1/8Irxeb1kfc+3Q99xuN+rr61FRUVHynnK5HObNmwe3281FnmRZxty5c+H1ei2pPa/Xi7/5m7/R/56lJ6/Xiy996UuQZZmLPBX6e8/r9eILX/jCoOMW9YjiefJ6vaivr4ckSaPyJMuy/j0oiqLHnd/OCk/53+J5PVVV9Tnq83Wej3XgdgNjPXO7c3lKp9N6rJlMZtB2+bhzudyg7XK5HD72sY/B5XIhm82etV2edDqtf69nejpzu/N5crlcuOKKK6CqKnNPoihi/PjxEEVRr5WKigpUVlYC6P8dHQqF9FiDwaC+VoDX69V/B7pcLrhcLv1p6lAoBFEU9XHznnK5HAKBAABAEASEQiE4nU59O0EQ8Oyzz0JVVfj9fgD902WFQiH93Mrv9+sP3Q68xpLJZLBz5069zgOBgGFPAxdc5qH2MpnMoJoyu/aMeMrlcrj88svhcrlK2pOqqrjiiivgcrm4yRPQv5yAw+EwvfZEUcTEiRORy+X0WFkdcyVJwrx586BpGpNjrsfjwbx58wblmsU5YTEomRshDocD69atw3333YeTJ0/i+9//PiZMmICqqipceumluOyyy4b9U1dXV2wbzFi+fLn+34899hj2798/5HbJZBIrV67U//+3v/1t/aBpJ6ZPn4758+cDALq6utDY2KjvnOvXr0dHRwcAYNeuXWhqagIAdHZ2orGxUddYu3YtDh8+DADYtm0btm3bBgA4fPgw1q5dq2/X2NiIzs5OAEBTUxN27doFAOjo6MD69esB9DeOxsZGdHV1AQC2bNmiv5XT1taGTZs2AehvDo2NjXoz2rRpE9ra2gAAzc3N2LJly3k9ZbNZ/O53v8Nzzz1nC09//OMfkc1muchTa2sr1q9fj2w2azhPwPC198477+DgwYN48cUXmXvavXs3Dh48iNbWVm7ylH8FdLSestksHn/8cezevRsA2/1pJHkqpf3JCk/t7e1Yt24dstlsSXt67rnn8Lvf/Q7ZbJaLPB05cgSNjY36D12za491jxjo6bnnnsPBgwd1T0by1NTUhB07duDgwYNob28vOE9tbW3IZrNlf8wt9b534sQJNDY26idgpezpN7/5DQ4ePKh74iFPr7/+OrLZrCW1l81m8eqrr5riKZvNor29nZs8Ffp7L5vN4o9//CP1CE485X/DHjlyZFSeOjo69O8hHA6jvb190HZWeDp8+LD+3729vWhtbcXp06ehqipaWlr0GA4dOqSvR9rV1aXHk98ufwHufJ5aWlr0WNvb2xEOh/X48nEnk0m0tLToF+Pa2trw/vvvQ1VVHD16FIcOHdLz3tLSontqbW1Fb2/vOT3lGc6Tqqo4deqUKZ5kWUY8HsfSpUsxefJkAMDMmTMxd+5cAMCECRPQ0NCgx7ps2TL9mtXs2bMxe/ZsAEBdXR2WLVum37BqaGjAhAkTAAAnT57UPeXHAvofFmhoaEB1dTUA4Pjx4+jp6cHEiRNx3XXXYdGiRQD6b2g0NDToN1AWLVqEqVOnAhh8jWX8+PFoaGjQb3iw8jTSPAHW1F5+X7Wi9ox6Onz4MFRVLXlPJ06cgKqq3OTpyJEjOH36NE6ePGl67cmyjNOnTw/yxOqYe+TIERw8eBDPPfcck2Nud3c3Dh48iCeffJLpOWExELT87RrOyWaz+N73vof169dDURQMDFsQhGE/r2kaBEHQdx4euOeee3DvvfcC6D947Ny5c1Sf/8xnPoM///nPAIDa2lps3boVV199tf7v3d3dWLhwIV566SUA/W+DHD58eNAd+lIn/4aQx+OBKIpobm7GxIkTEY/HEQwGIQgCYrEYPB4PJElCKpVCLpdDZWUlFEVBIpHQv49oNAqv1wuXy6U3OK/Xi2w2i2QyqT+xEIlE4PP5IIoi+vr64HA4UFFRAVmWkU6nEQgEoGkaotEo/H4/nE4nEokERFGEx+NBJpOBLMvw+/3I5XKIxWIIBAJwOByIx+OQJAlutxvpdBqKosDn80FV1SE9pVIprFmzBkuWLMH48eNL2lNnZyeeeOIJLF++HJIkFT1Pp06dwqOPPorly5fD7/cbytNIai+bzeKRRx7BkiVLEAgEmHrq6+vDhg0bsHTpUlRUVBQ9T+FwGJs2bcKyZcugadqoPCUSCaxZswZLly7FuHHjmO5PduwRZnvq6urCI488guXLlyMQCJSspxMnTuCxxx7D8uXLUVFRUfQ8dXd345e//CWWL1+OYDBoeu2x7BFneopEIti4cSPuuOMOOJ1Ow7WXSCSwYcMG/N3f/R3cbveo89TZ2YlNmzZh+fLlcDgcZXvMtUPf6+npwbp167Bs2TKEQqGS9tTT04PHH38c3/72t+FwOIqepw8//FDfT5xOp+m1pygK1qxZg0WLFuHiiy9m6knTNF37wgsvLHqeCv29J8sy1qxZg9tuuw0TJkygHlFkT9FoFGvWrMG3v/1tjBkzZsSetm3bBofDAVEUoSgKVFWF2+2GpmmYOnWq6Z4OHDiAkydPAuh/Il9VVSQSCbS3t+P6668H0P9War7mBEHQt1MURY81k8kM2u5cnjKZDNxuNwRBQCaT0fuJoijI5XL6uYQsy/p20WgU+/btwyc/+Uk4nU5omjZoO4/HA6D/SWSXywWn06k/OJKPNZvNDtrufJ40TcMbb7yBq6++Gn6/n6knTdPQ2tqKdevWoaurC7Iso6KiAg6HA319fRBFET6fT7+AeeeddyKZTCKbzepvTiSTSbhcLowbNw633nor1q5dC0EQkEgkoCgKnnjiCYwbNw4ulwvHjx/HsmXLEIvFIAgCgsEg4vE4VFXFE088AUVR8M477+DRRx9FOp3G/4+99w+Torrz/d/VXf1jevrHoAyOisoGNyFIdFATJnGzEJNliQlZNkEDjokEf8CY3TDJvTcxu8/NjXtvNmpyn6QTI6NRwCioCUnUMaw7rhFUdEbAGX4Nig4BnIGGGZj+PdXVXdXfP+bbdWfGAWaqz6k+Xf15PQ/Pg1L1Pp/3fM751FSdqnMSiQQcDgeCwSDi8Th0XUcgEICqqshkMsYzlmQyiSlTpmD16tV48MEHEYvFEAwGoSjKGT0V3vgOhUJn9OTz+dDS0oK6urpz5smKvpfJZCDLstGnePe9YjzF43Hs3r0bH//4xyHLctl6isfjxniXJEmIPKmqiq6uLsydOxeyLHPte/l8Hrt27cLHPvYx+P1+OJ1OzJs3j8k1V9M0/PrXv8att96Kmpqaoq+5+XweDz30EL72ta9h6tSpRd8T9vX1Yc6cOSiwb98+XHHFFbCCspgI0TQNixcvxn/+538CAMyGXMqJkBtuuAHHjh0b9f8ikYjxi0h1dTUuv/zyD5y3ZcsWXHTRReNq9vb24hOf+ISxRJgkSZg/fz5mzpyJ/v5+/Nd//ZcxOGRZxgsvvDBqSS07UJgIKWDl4CEIgiAIgiAIgiCIiXC2Fx8XLFjAvf09e/bg9OnT3Nsh/h+RSATLly8/6zFPPvkkAJzzuDOdW1dXd862immDJyPjJwjCmmuBCJTyWW5ZrJH08MMP44UXXoAkScjn8/jc5z6H5cuX42Mf+ximTJlSFks9dXd3G5+NjUcqlcLu3bs/8P9HrpU7lunTp+PPf/4zli9fjq6uLuTzeWzduvUDv2DV1tZi/fr1tpsEIQiCIAiCIAiCIAiCIAiCIIhzURZ7hDz22GPG33/605+ira0N3/jGN3Dttddi5syZuOyyyyb8x27MmjULHR0deOyxx7Bo0SJccsklcLvdmDZtGhoaGnD//feju7sbX/jCF0odKsGBaDSKe+65p+SbDbFANC9Wx8OzPZbaLLSK0RCtn1Q6dsmHaD6o/vDTo/pjH+yUD9G8UA3ip2VWQ7Q+UunYKR+KomDbtm2jNg8uJVbHw7M9RVHwzjvvMFmavKamBj/84Q+L0spms6Y1WLRPsEO0cWsWEX1YGRPPtux0D8aaslgaKxAIIJ1OY/bs2cYmNAQB0NJYuVwOvb29mD59ell8GXU2RPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WO2XyIuDTW2D1XSo3V8fBsT9d1HD58GKtWrUIulzvjcRNZtkqWZUyfPh29vb2jtCazNJau6/jXf/3XD2hMhDO1Xyy0NJY5RBu3ZhHRh5UxjdcWq2uB6PdgtDTWBJk3b16pQyAIoZBlGTNmzCh1GEwQzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yofD4RDqLX+r4+HZnsPhgM/nYzJxkMvlcPjw4aLjMavBon2CHaKNW7OI6MPKmHi2Zad7MNaIMeV2Di6++GIAKNlG5wQhKqlUCk899RRSqVSpQyka0bxYHQ/P9lhqs9AqRkO0flLp2CUfovmg+sNPj+qPfbBTPkTzQjWIn5ZZDdH6SKVjp3yoqop9+/addW9SK7E6Hp7tqaqKvr4+VFdXF61VXV2NZcuWFaWVy+VMa7Bon2CHaOPWLCL6sDImnm3Z6R6MNWUxEXL99dcjn8+jq6ur1KEQhFAUZpBF+YywGETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3yIUkSvF4vJEkqdSgArI+HZ3uSJMHlckHX9aK1dF1HNBotSkuSJNMaLNon2CHauDWLiD6sjIlnW3a6B2NN6SOYAKtWrYLT6cSePXvw6quvljocQkC8Xi/8fj+A4S+HotEoCtvfxONxY4Z1aGjImIHM5XKjNuqJxWLIZrMAgHQ6jXQ6DWB4U7FYLGYcF41Gjc9bU6kUhoaGAAzP5sbjcQBAPp9HNBo1vmJKJpPGBkiZTAaJRALAB3+hSCQSyGQyAIY3Tkomk2f1VFVVhfnz5xvnl7OnbDaL66+/HlVVVULkyeFw4LrrrkNVVVXReQLO3fdkWcaiRYuQz+eZe5IkCYsWLYLD4RAiT6qqYtGiRaiqqpq0p6qqKvzN3/yN8csCy/E0kTyVy3iyypPT6cSnPvUpVFVVlbUnXdcxf/58VFVVCZEnl8uFhoYGVFVVMcmTlTVirCdd17Fo0SK4XC4mfQ8AFi1aBKfTaSpPmUwGCxcuRFVVVUVfc+1Q99xuNxoaGuD1esvek6ZpWLRoEdxutxB5ymQy+Lu/+ztUVVVZ0veqqqrwuc99zjifpaeqqir8/d//PTKZjBB5Mvv7XlVVFa6//nrjZ0I1orSeqqqq0NDQAJfLNSlPqqoaP4dcLmfEXTjOCk/ZbNb4u6Zp0DQNl19+OVwuFxRFMWJQVXXUcSNjHXvcmTwpimLEmslkRh1XiFvX9VHH6bqOv/qrv4LL5TLuG0YeV6AwJsfzNPa4s3lyuVyYOXMmNE1j7kmWZUybNg0ulwtutxvAcN8pfFUhy/KoZXFCoZDRp3w+H3w+HwAY57/wwgsYGhpCTU2NsUZ/LpczPOm6jmAwCGD4AWtNTQ2cTqdxHAC88MIL0HUdgUAAwAcfTgYCAXg8HgCjn7Goqor29nbjZxsMBov2FAqFJpynkT9/Xn1v5HXCir5XjCdd1zFjxgy4XK6y9qRpGmbOnAmXyyVMngDg8ssvh8Ph4N73ZFnG5ZdfDl3XjVhZXXNdLhcWLVoEXdeZXHM9Hg8WLVo0yi+Le8JSUBYTIVdddRV+9KMfIZ/PY9myZXj77bdLHRIhGA0NDVi6dCkAoL+/H+Fw2Bic69atQ3d3NwBg27ZtaG1tBQD09vYiHA4bGmvXrkVPTw8AoK2tDW1tbQCAnp4erF271jguHA6jt7cXANDa2opt27YBALq7u7Fu3ToAw4UjHA6jv78fALB582a0t7cDADo7O7Fx40YAw8UhHA4bxWjjxo3o7OwEALS3t2Pz5s1n9aSqKjZv3oxnn33WFp5eeOEFqKoqRJ527NiBRx55xLhYFJMn4Nx975133kFXVxdeeOEF5p62b9+Orq4u7NixQ5g8dXV1QVXVSXtSVRUbNmzA9u3bAbAdTxPJUzmNJys87dmzBy0tLVBVtaw9Pfvss9i8eTNUVRUiT3/5y18QDoeNXx559z3WNWKkp2effRZdXV2Gp2Ly1Nraij//+c/o6urCnj17TOepvb0dqqpW/DW33OvesWPHEA6HjRu1cvb0u9/9Dl1dXYYnEfL02muvGX2ed99TVRVbt27l4klVVezcuVOYPJn9fU9VVbzwwgtUIwTxVPgd9i9/+cukPHV3dxs/h0gkgr179446zgpPPT09xt8HBwexc+dORCIRaJqGjo4OI4aDBw/iyJEjRruFeArHFR7Anc1TR0eHEevevXsRiUSM+Apxp9NpdHR0GA/jOjs78d5770HTNBw5cgQHDx408t7R0WF42rlzJwYHB8/oqcC5PGmahmPHjnHxpKoqYrEYVq5cidmzZwMA5s+fj8WLFwMApk+fjubmZiPWpqYmzJw5EwCwcOFCLFy4EAAwc+ZMNDU1ob6+Hm63G83NzZg+fTrcbjdOnz5teEokEli5ciUAwOPxoLm5GbW1tQCGr5mnT59GfX09rr32WjQ2NgIYntBobm42JlAaGxsxd+5cAKOfsVx44YVobm42JkZYeZpongBr+l5hrFrR94r1dPDgQWiaVvaeent7oWmaMHk6fPgwIpEITpw4wb3vqaqKSCQyyhOra+5f/vIXdHV14dlnn2VyzR0YGEBXVxeeeOIJpveEpUDKF6ZryoCHH34Ya9asgcPhwOrVq/GVr3wFc+bMMYo2UXns378fc+bMgdfrhSzLaG9vx6xZs5BIJBAKhSBJEuLxOLxeL9xutzETWV1djVwuh2QyabyxEIvF4PP54HK5jALn8/mQzWaRTqeNNxai0Sj8fj9kWUYqlYLD4TDeIlYUBcFgEPl8HrFYDIFAAE6nE8lkErIsw+v1IpPJQFVVBAIB6LqOeDyOYDBovInrdrvh8XigKApyuRz8fj80TRvXk6IoeOSRR3DzzTejrq6urD319fXht7/9LW677TbjE+JS5qm/vx+PP/44br/9dvj9/qLyNJG+l8vl8Pjjj2P58uUIBAJMPaXTaWzatAmNjY3wer0lz9OJEyewefNmrFy5ErquT8pTKpXCI488gltuuQXTpk1jOp7sWCN4exoYGMBvfvMb3H777QgEAmXrKRKJYNOmTbj99tuN2lrKPJ0+fRobNmzA7bffjmAwyL3vsawRYz3FYjE89dRT+PrXvz5qQ0CznlKpFDZt2oRbbrkFbrd70nnq6+vD5s2bcdttt0GSpIq95tqh7g0ODmL9+vW47bbbEAqFytrT4OAgnn76adx6662QJKnkeert7TXGicPh4N73NE3Do48+iqVLl+KSSy5h6gmAoX3RRReVPE9mf9/LZrN49NFHcdNNN+Hiiy+mGlFiT/F4HI888ghWrFiB8847b8Ke2trajDGVy+WgaRo8Hg/y+Tzmzp3L3dOBAwdw4sQJAMNv5GuahlQqhe7ubsydOxf5fB5utxsOhwOqqhpLO2mahlwuZ8SayWRGHXcmT5lMBh6PB5IkIZPJwOl0Gsfpug632w1d16GqqnFcPB7H/v37cfXVV8PhcBgxFY4rfAWoKApcLhecTqfxhnQh1mw2O+q4s3kCgLfeeguzZ89GIBBg6gkAdu3ahQcffBADAwPG16UOhwOpVAqyLMPv9xsPMFevXo10Oo1sNmt8OZFOp+FyuTBt2jTceOONWLduHRwOB5LJJD796U/j7rvvNjwdO3YMTU1NiMfjRo1KJBLQNA2PP/44crkcdu/ejSeeeMJ449vhcCAYDCIejxtfihRecCo8Yyn0pZUrV+KRRx4xxp+iKGf0VHjjOxQKndGTz+dDS0sL6urqzpknK/peJpOBLMtGn+Ld94rxlEgksG/fPlx99dVwOp1l6ykej6O7uxtXX301AAiRp2w2i7179+LKK6+E0+nk2vcAoKurC7Nnz0Z1dTWcTifmzZvH5Jqr6zp+85vfYNmyZQiFQkVfcwFgw4YNuOmmm3D++ecXfU/Y19eHOXPmoMC+fftwxRVXwArKYiKk8DlfgXw+b2oNNUmSjIsdYQ8KEyEFrBw8BEEQBEEQBEEQBDERtm7desZ/W7BgAff29+zZg9OnT3Nvh/h/RCIRLF++/KzHPPnkkwBwzuMKuN1uXHfddfjud79rPMw9V1uTbcMqnnzySdTV1ZU6DIIQBiuuBSJQyme5siWtFMnYiY+Rfy+DeRyC4MbYGedyRjQvVsfDsz2W2iy0itEQrZ9UOnbJh2g+qP7w06P6Yx/slA/RvFAN4qdlVkO0PlLp2CkfhXX6nU6nEF6sjodnewVtSZKKfm4lSRL+7//9v6irq8P5559v7M8x2XgKb3tPNh5JkuDxeEydS7BHtHFrFhF9WBkT7/pjl3sw1pTFHiHA8A9tvD8EUcnEYjHcd999ozZGKldE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8pHJZLB9+3ZjXfdSY3U8PNvLZDJ47733Rm0KbpbCkmxTpkwxNQkCDG+8fPfdd5uKJxQKmT6XYI9o49YsIvqwMiaebdnpHow1ZbE0FkGciUpfGkvTNPT396O2tvYDS8iVG6J5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx2w+RFwaS9d1pNNp+Hw+OBylf0/W6nh4tqfrOo4ePYrbb7/d2Oh5PCaybJXT6cQjjzyCSy+99IxxnmtprHw+j+985zvo7+8/azxnar+2ttbUuWeDlsYyh2jj1iwi+rAypvHaYnUtEP0ejJbGIgjCFE6n0za/OIjmxep4eLbHUpuFVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlw+FwwO/3lzoMA6vj4dmew+GA1+tlMnGgaRq8Xm9RD2YlSUIkEjHdvtlzCfaINm7NIqIPK2Pi2Zad7sFYI8aU2/8PFVaCmBzJZBIbNmxAMpksdShFI5oXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JQPVVXR1dUFVVVLHQoA6+Ph2Z6qqjh69CiTB51+vx9Hjx4tKs5cLocVK1aYisfv95s+l2CPaOPWLCL6sDImnm3Z6R6MNUJNhEyfPh0NDQ340Y9+hD179pQ6HIIQHlmWMWPGDMhy+X/cJZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JQPh8OBmpoaYZalsToenu05HA74fD7kcrmitXK5XNFL9UiShMOHD5uKJ5fLmT6XYI9o49YsIvqwMiaebdnpHow1Qu0R4nA4Ru0ef+mll+KLX/wivvSlL2HBggVwuVwljI4QkUrfI4QgCIIgCIIgCIIQHxH3CCH4crZ9OwpMZI+QwnFnW1rmXHuETKQNq6E9QghiNFZcC0SglM9yxZl2A/AP//AP8Pl8yOfzyOfzOHLkCB588EEsWrQIU6dOxU033YQnnniCLt7EB/B6vcZnmpqmIRqNojDHF4/HjU/NhoaGkEqlAAy/1RCNRg2NWCyGbDYLAEin00in0wCAbDaLWCxmHBeNRo03IVKpFIaGhgAMf9YWj8cBAPl8HtFo1FgPNJlMQlEUAEAmk0EikQAwvDlSNBqFrusAgEQigUwmAwBQFMX4bOxMnjKZDF555RVjTJSzp/7+frz22mvIZDJC5Ckej2Pr1q3IZDJF5wk4d99LJpNob2/H4OAgc0+xWAzt7e2Ix+NC5OnkyZNob29HJpOZtKdMJoNt27YZPxeW42kieSqX8WSVp0QiYYyTcvZ0+vRpvPLKK8hkMkLkKZVK4eWXXzY0ePc9ljVirKfTp0+jvb0dqVSKSd+LRqNob29HIpEwlacTJ07g9ddfN/5/pV5z7VD30uk0Xn755VHX7XL1dOrUKbS3tyOdTguRp5HjxIq+l8lksH37dpw4cYK5p0wmgzfeeAMnTpwQIk9mf9/LZDJ47bXX0N/fb+SJakTpPGUyGbz88sujrtsT8aSqqvFzyOVyRtyF46zwlM1mjb9rmoZUKoXe3l7kcjkoimLEoKrqqONGxjr2uDN5UhTFiDWTyYw6rhC3ruujjkulUjh69ChyuRyy2ewHjiugKIrxcx3raexxZ/OUy+Xw/vvvI5lMMveUzWZx+vRpTJ06FW63GwBQVVWF6upqAMNvSNfU1BixhkIh4+Vfn88Hn88HAHC5XKitrcXp06fPmidd1xEMBgEMf/1RU1NjbGpciK+hoQGBQACBQADAB99IDwQC8Hg8AEY/Y6mqqsJnPvMZ49+CwWDRnkKh0ITzNPLnz6vvZTKZUX2Kd98rxtPIcVLOnpLJJN5//33j/4uQp6GhIfT29iKTyXDve9lsFr29vUilUkasrK65qVQK7e3tOH36NJNr7tDQENrb2zEwMMD0nrAUCDUR8sc//hGnTp3Cn/70J6xevRoXX3yxMSmSSCTw+9//Hrfeeivq6uowf/58/PSnP8XBgwdLHTYhAA0NDVi6dCmA4Qe14XDYGJzr1q1Dd3c3AGDbtm1obW0FAPT29iIcDhsaa9euRU9PDwCgra0NbW1tAICenh6sXbvWOC4cDqO3txcA0Nraim3btgEAuru7sW7dOgDDhSMcDhs3K5s3b0Z7ezsAoLOzExs3bgQwXBzC4bBRjDZu3IjOzk4AQHt7OzZv3nxWT6qqoqOjA1u2bCl7T0888QR27NgBVVWFydP27duNi0UxeQLO3ffeffdddHV14b/+67+4eOrq6hImT+vWrTPWwpysJ1VVsX37di7jaSJ5KpfxZJWn/fv349VXXzUeEperpy1btqCjowOqqgqRpyNHjuCVV14xfnm0ou+xqhFjPW3ZsgVdXV04cuQIk773yiuvoKurC/v37zeVp5aWFnR2dkJV1Yq+5tqh7h0/fhyvvPKKcaNWzp6eeeYZdHV14fjx40LkqaWlBbt27YKqqpb0PVVVsWvXLrS0tDD3pKoqOjs70dLSIkSezP6+p6oqduzYgSeeeMLIE9WI0nlSVRWvvPIKjhw5MilP3d3dxs8hEolg7969o46zwlNPT4/x98HBQXR2diISiUDTNHR0dBgxHDx40PDX399vxFM4rvAA7myeOjo6jFj37t1r7Anb29trxJ1Op9HR0WE8jNuzZw/6+vqgaRqOHDliPO+Jx+Po6OgwPO3cuRODg4Pjetq5c6dx3Lk8FTYB37VrF3NPhfvIr33ta5g9ezYAYP78+Vi8eDGA4aXhm5ubjVibmpowc+ZMAMDChQuxcOFCAMDMmTNx2223IR6PnzVPiUQCK1euBAB4PB40NzejtrYWAHDs2DFEo1HU19fj6quvRmNjI4DhCY3m5mZjAqWxsRFz584FMPoZy4UXXoj58+cbEygrV64s2lNTU9OE8wTw73udnZ3GWLWi7xXjqbu72xgn5exp165dOH78ODRNEyZPR48eRSQSwcmTJ7n3PVVVEYlEsGfPHsMTq2vukSNH0NXVhS1btjC55p46dQpdXV347W9/y/SesBQItTTWeHR2dqK1tRXPPfcc3nrrLeP/j1xC6/LLL8eXvvQlfOlLX8J1110n1PpyBF8Kn1N5vV7Isoz29nbMmjULiUQCoVAIkiQhHo/D6/XC7XZjaGgIuq6juroauVwOyWTSeGMhFovB5/PB5XIZBc7n8yGbzSKdThtvLESjUfj9fsiyjFQqBYfDgaqqKqiqCkVREAwGkc/nEYvFEAgE4HQ6kUwmIcsyvF6v8cZxIBCAruuIx+MIBoNwOBxIJBJwu93weDxQFAW5XA5+vx+appEn8kSeyBN5Ik/kiTyRJ/JEnsgTeSpTT21tbXA4HJBlGblcDpqmwePxIJ/PY+7cudw9HThwwPjyyuVyQdM0ZLNZeL1eAMNv97rdbjgcDqiqCkmSjONyuZwRayaTGXXcmTxlMhl4PB5IkoRMJgOn02kcp+s63G43dF2HqqqjjpNlGU6nE9lsFvl8ftRxI2N1uVzGcaJ6OnHiBFatWgVFUaCqKqqqquBwOJBKpSDLMvx+v/EAc/Xq1Uin08hms8aXE+l0Gi6XCz6fDy0tLairqzujp2PHjqGpqQnxeBySJCEUCiGRSEDTNDz++OOQJAm33HILPB4P3G43EokEHA4HgsEg4vE4dF1HIBAwXnAqPGNJJpNwOp0IBAKIxWLI5/MIBoNn9VR44zsUChXlifoeeao0T/PmzauIa25fX1/JlsYSfiJkJMeOHUNraytaW1vx5z//2fhsZ+SkyJQpU3DDDTdg8eLFWLRokTFjTdiTSt8jZGxRKmdE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY7ZfIi4R8jYB3elxup4eLZXWNnkpptuMt6SHovb7UZraytOnz591v07HA4HNmzYgOnTp58xznPtEZLP53HXXXcZkx6TYeyECStojxBziDZuzSKiDytjGq8tVtcC0e/BaI+QCXLRRRdh1apVeP755zEwMIA//vGPWLlyJaZNm2YsoXX69Gls3LgRy5YtQ21tLRYuXIgHHngAR48eLXX4BMGcsZ+GlzOiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+Ri7lEupsToenu1lMhl0dnbiM5/5zBmPue6664y9Ns5GMBjEoUOHTMdZ2NNg5DJYk2HsElpEaRFt3JpFRB9WxsSzLTvdg7GmrL4IORP5fB5vvvkmnnvuObS2tmLfvn3Gv42cwZszZw6+9KUvYfHixfjEJz5RilAJxtAXIfZ5O0w0L/Q2JD8teiPbPtglH6L5oPrDT4/qj32wUz5E80I1iJ8WfRFiD+iLEH7Y7YuQTCaDfD6Pn/zkJ8b+k8DwlyDXXXcdvvvd78Lr9Z71aw6g+C9CAGD27Nk4duxY2X4Roqqq0X/PO++8CU0g2RXRxq1ZRPRBX4Tw0RPpixBbTISM5fDhw8YSWtu2bTPWgxvZievq6tDX11eqEAlGVPpECEEQBEEQBEEQBCE+Ik6EENZxtgf555rEAM49aTARDdGYyESIoii4//77zzqRRBB2wYprgQjQ0liMmTFjBv75n/8ZbW1tGBgYwNNPP43GxkZMmTLFWEIrEomUOkyCKJpEIoGWlhYkEolSh1I0onmxOh6e7bHUZqFVjIZo/aTSsUs+RPNB9YefHtUf+2CnfIjmhWoQPy2zGqL1kUrHTvnIZDLYuXOnMEvTWB0Pz/bGarvdbtTV1aGurm7SXzMEAgEcPny4qDgDgQBWr15tah/dYs4tlvvvvx8vv/yyMQkCDE8qvfzyy7j//vstj0cERBu3ZhHRh5Ux8WzLTvdgrJFLHQBvAoEAbrzxRtx4443QdR2vvfYannvuOTz//POlDo0gisbtdqO+vt4Wn4WK5sXqeHi2x1KbhVYxGqL1k0rHLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075cPpdKKurg5Op7PUoQCwPh6e7bHUVlUVwWDwrFqFr0xGThiM1ejq6jrjv5+rfbPnFoOqqti+ffsZ/73wlYgdxuJkEG3cmkVEH1bGxLMtO92DscaWS2MRlQMtjUUQBEEQBEEQBEGIDi2NRZwJFktjAcC//du/4eWXX2YZGldYLPc1mX1GCEJ0aGks/thuaaw//OEPWLFiBT7/+c/j1ltvxVNPPVXqkAiCG4qiYOvWrVAUpdShFI1oXqyOh2d7LLVZaBWjIVo/qXTskg/RfFD94adH9cc+2CkfonmhGsRPy6yGaH2k0rFTPnK5HA4fPoxcLlfqUABYHw/P9lhqe71eDAwMnFPru9/9Lj7zmc+cUWPBggWm9tQo5lyCPaKNW7OI6MPKmHi2Zad7MNaUxUTIiRMn8Ld/+7f427/9W/zLv/zLuMfouo4vf/nLuPHGG/H444+jra0NTzzxBBobG/GZz3wGqVTK4qgJgj8iXjjMIpoX+iWcn1YxGqL1k0rHLiHomfgAAQAASURBVPkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075UPXdUSjUei6XupQAFgfD8/2WGrLsox0On1OLa/Xix/84Ad47LHHxtWYMWMGZHnyK+QXcy7BHtHGrVlE9GFlTDzbstM9GGvKYiLkj3/8I1577TVs374d11xzzbjH/OQnP8EzzzxjbIY+8s8rr7yC2267zeKoCSvxer3w+/0AAE3TEI1GUVj1LR6PG2tZDg0NGZNiuVwO0WjU0IjFYshmswCAdDqNdDoNAMhms4jFYsZx0WjUGLypVApDQ0MAhtevjMfjAIB8Po9oNApN0wAAyWTSmPnMZDLGBkFjC18ikTA2SlIUBclk8qye/H4/vvrVr0KSpLL3pOs6br75Zvj9fiHy5HK58JWvfAV+v7/oPAHn7nsejwcrVqyAw+Fg7kmWZaxYsQIul0uIPGmahhUrVsDv90/ak9/vx9KlS41fwlmOp4nkqVzGk1We3G43vvzlL8Pv95e1J0mS8NWvfhV+v1+IPHm9XixZssS4rvHueyxrxFhPkiRhxYoV8Hq9TPqe0+nEihUr4Ha7TeUpl8vh61//Ovx+f0Vfc+1Q96qqqrBkyRJUV1eXvScAWLFiBaqqqoTIUy6Xw9e+9jX4/X5L+p7f78ctt9wy6uaYlSe/349bb70VuVxOiDyZ/X3P7/fj5ptvNmKjGlFaT36/H0uWLDHejp+oJ1VVjZ9DLpcz4i4cZ4WnbDZr/F3TNOi6bqzbriiKEYOqqqOOGxnr2OPO5ElRFCPWTCYz6rhC3Lqujzoun8/jYx/7GNxuN7LZ7AeOK6AoivFzHetp7HFn8+R2u3HVVVdB13XmnlwuF+rr65HP50fFeiZPoVAILpcLAODz+eDz+QAM35c6nU5ceumlE86Ty+VCTU2NsfeA3+9HLpfDhg0bkM1mjU3PHQ4Hampq4HAMPxoMBALweDwARj9jGRoawjPPPGP0sWAwaKz1X1VVZVyLZVlGTU3NhDyFQqFz5knXdQSDQQDDv6+P9VQYgyz6XiaTmVCeWPW9kbFOtu/l83nMmTMHbre7rD3puo6rrroKbrdbmDxJkoT6+no4nU7udW+8GsHqmuv1erFixQpIksTkmuvz+bBixQrk83mm94SloCwmQl599VUAww9cPv/5z3/g31VVxf333w9JkiBJEv7u7/4Ov/jFL/A//sf/gNfrRT6fx+9+9zvs3LnT6tAJi2hoaMDSpUsBAP39/QiHw8bgXLduHbq7uwEA27ZtQ2trKwCgt7cX4XDY0Fi7di16enoAAG1tbWhrawMA9PT0YO3atcZx4XAYvb29AIDW1lZs27YNANDd3Y1169YBGC4c4XAY/f39AIDNmzejvb0dANDZ2YmNGzcCGC4O4XDYKEYbN25EZ2cnAKC9vR2bN28+qydN07BlyxY899xztvD0xhtvQNM0IfK0a9cuPPbYY9A0reg8Aefue++++y4ikQj+8z//k7mn119/HZFIBLt27RImT5FIBJqmTdqTpmnYtGkTXn/9dQBsx9NE8lRO48kKT/v27cOvf/1r45ffcvX03HPPYcuWLdA0TYg8HTlyBOFw2PjFlHffY10jRnp67rnnEIlEDE/F5Km1tRVbt25FJBLBvn37TOepp6cHmqZV/DW33OteJBJBOBw2bgLL2dPvfvc7RCIRw5MIeTpw4AA0TbOk72mahj179nDxpGkajh49KkyezP6+p2ka3njjDaoRgngq/A575MiRSXnq7u42fg6RSAR79+4ddZwVnnp6eoy/Dw4OYufOnUgmk9B1HR0dHUYMBw8eNPz19/cb8Wiaho6ODqP2ns1TR0eHEevevXsRiUSM+Apxp9NpdHR0GL/zdHZ24v3334eu6zhy5AgOHjxo5L2jo8PwtHPnTgwODp7RU4FzedJ1HbFYjIunbDaLZDKJzs5Oow+czVNTUxNmzpwJAFi4cCEWLlwIAJg5cyaampqMB7ETyZOu62hubkZtbS0AYOnSpfjkJz+Juro6XH311WhsbAQwPKHR3NxsTDY0NjZi7ty5AEY/Y7ngggvQ3NyMqqoqAMDKlSsxe/ZsAMD8+fOxePFiAMD06dPR3Nw8YU/nylMikcDKlSsBAB6P5wOeGhoais7TyL43kTyx6ntAcePpyJEj0HW97D2dPn0auq4Lk6fDhw8jmUzi5MmT3OveeDWC1TX3yJEjiEQieO6555hccwcHBxGJRJjfE5aCstgsvb6+Hnv27ME111yDHTt2fODfn332WfzjP/4jJEnCl770Jfzxj380/u3pp5/G8uXLIUkS/vmf/xk///nPLYyc4E1hgx2v1wtZltHe3o5Zs2YhkUggFApBkiTE43F4vV643W4MDQ1B13VUV1cjl8shmUwabyzEYjH4fD64XC6jwPl8PmSzWaTTaeONhWg0Cr/fD1mWkUql4HA4UFVVBVVVoSgKgsEg8vk8YrEYAoEAnE6n8cat1+tFJpOBqqoIBALQdR3xeBzBYBAOhwOJRAJutxsejweKoiCXy8Hv90PTtHE9pdNphMNh3HHHHbjooovK2tP777+PdevWYc2aNfB4PCXP04kTJ9DS0oI1a9YgGAwWlaeJ9D1VVfHggw/izjvvRCgUYuoplUqhpaUFq1evhs/nK3mejh8/jvXr12PNmjUAMClPiUQC4XAYq1evxgUXXMB0PNmxRvD2dPLkSaxduxZr1qxBKBQqW0/Hjh3Dr3/9a6xZswY+n6/keRoYGMCvfvUrrFmzBjU1Ndz7HssaMdbT4OAgfv3rX+Ob3/zmqLcEzXpKJBJ46KGH0NTUBK/XO+k89fb2GvXH6XRW7DXXDnXv1KlTeOCBB/Ctb30LU6ZMKWtPp06dwiOPPIJ/+qd/gtPpLHme3n//fWOcyLLMve9ls1mEw2F84xvfwKWXXsrUk67rhvbFF19c8jyZ/X2v8MBi5cqVuOSSS6hGlNhTNBpFOBzGN7/5TUydOnXCntra2uBwOCDLsvGVksfjQT6fx9y5c7l7OnDgAE6cOAFg+I18TdOQTCbR1dWFefPmARh++dThcBhvRheOy+VyRqyFLykKx53JUyaTgcfjgSRJyGQycDqdxnG6rsPtdkPXdaiqahwXi8WMeJxOJ/L5/KjjCl8AFN6mdjqdxhvShViz2eyo487mKZ/Po6OjA/X19QgEAkw95fN5vPnmm6ivr4ff7zdiHc9TJBLB6tWrkU6nkc1mjS8n0uk0XC4X6urqcNttt004T8ePH8ddd92FRCJhfFVfXV2NpqYmPPjggxgaGkIikYDD4TDudXVdRyAQgKqqyGQyxjOWZDKJ8847D9/61rfw85//HNFoFMFgEIqiQFVVVFVVweFwIJVKQZZl46t/YPiLkDN58vl8aGlpQV1d3RnzdOzYMTQ1NSEej0OSJIRCoVGecrkc1q9fj6lTpxbd9zKZDGRZPmueWPa9YsZTPB5HZ2cn5s2bB1mWy9ZTPB43xrskSULkSVVV7Nq1C9deey1kWeZa98arEfPmzWNyzc3lcvjVr36FO+64A1OmTCn6mqvrOn75y1/itttuQ21tbdH3hH19fSXbLL0sJkKmTp2KwcFBLFu2zJiVGsk//dM/4cEHH4QkSXj11VfxqU99yvg3Xddx6aWX4vjx4/j4xz9uzHAR9qAwEVLAysEjAmMLbTkjmher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTM5mPr1q1n/LcFCxYUH9g52LNnD06fPj3q/xWWZHE6nUL0Lavj4dneZLQjkQiWL19+xn+XJAmPP/44LrroognFOZ6eJEnweDzIZDKY7GPAYs49G08++STq6urO+O/n+rlMRMOOiDZuzSKiDytjGq8tVtcC0e/BSvkstyyWxiqsTTZyDcGRFJbOmjp16qhJEGB4zcNrrrkG+Xze+ISIIOyCJEnwer3CXDSKQTQvVsfDsz2W2iy0itEQrZ9UOnbJh2g+qP7w06P6Yx/slA/RvFAN4qdlVkO0PlLp2CkfkiRBlmVhvFgdD8/2WGrn8/miH8yO3b/AqnMJ9og2bs0iog8rY+Jdf+xyD8aaspgIKfygxttdPhaLYf/+/ZAkCX/zN38z7vkXXHABABjrvhGEXYjH4/j5z39ui74tmher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTslI9MJoP29nZjXfdSY3U8PNtjqR0MBtHT01OU1tj9QKw6l2CPaOPWLCL6sDImnm3Z6R6MNWUxEVJYD62wGc1IXnnlFei6DgC47rrrxj2/MIHidDr5BEgQJcLr9WLBggXG+obljGherI6HZ3sstVloFaMhWj+pdOySD9F8UP3hp0f1xz7YKR+ieaEaxE/LrIZofaTSsVM+ZFnGjBkzIMtyqUMBYH08PNtjqa0oCqZOnVqUlqIo2Lp1KxRFsfRcgj2ijVuziOjDyph4tmWnezDWlMUeIfPnz8err76KUCiE48ePj/rB3XrrrXj88cchSRLa29vx8Y9//APn33DDDXjhhRdw8cUX4/3337cydIIzlb5HCEEQBEEQBEEQBCE+Iu4RQogB670wJqInArRHCEGMxoprgQjQHiHn4LOf/SyA4U9p7r77buP/v/7663j66achSRIuuOACXHvtteOe39XVBUmSMHPmTEviJQirGBoawgsvvIChoaFSh1I0onmxOh6e7bHUZqFVjIZo/aTSsUs+RPNB9YefHtUf+2CnfIjmhWoQPy2zGqL1kUrHTvnIZrN47733kM1mSx0KAOvj4dkeS+2qqiqcPHmyKK2qqiosWrQIVVVVlp5rBaqqIhKJGH9UVS11SFwRbdyaRUQfVsbEsy073YOxRpzvj87CypUrcd9990FRFPzyl7/EM888g/PPPx/79u1DNpuFJEm44447xt105cCBA4hEIpAkCXPnzi1B9ATBD13XEY1GjeXhyhnRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfIi2CbbV8fBsj6W2w+FANpstSsvhcKCmpgYOx+Tfhy7mXN7827/9G3p6ekZNfrjdblx33XX47ne/K8RSPKwRbdyaRUQfVsbEsy073YOxpiyWxgKAhx9+GKtXrx412VEI/cMf/jB27twJv9//gfPuuece3HPPPZAkCb/97W/xla98xbKYCf7Q0lgEQRAEQRAEQRCE6NDSWMSZoKWxxqdYH5/5zGfwgx/8wPT5BGE1tDQWf8Sbzj0Dd955J/7whz/gqquuQj6fRz6fh9frxbJly7Bt27ZxJ0Gy2SwefvhhAMOb0Hzuc5+zOmyC4Eoul8Phw4eRy+VKHUrRiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyodO+VDpLd0Afoi7UzIsox0Ol2UVjEbM4u4qfVE2L59uy2XyRJt3JpFRB9WxsSzLTvdg7GmbCZCAGDJkiV46623kEgk0NfXh1gshk2bNuGCCy4Y9/hMJoNNmzbh5ZdfNjZbJwg7kUwm8dhjjyGZTJY6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yoeqqti9e7cwD4utjodneyy1/X4/3n///aK0/H4/VqxYMe5LxDzPLSWqqtryKyjRxq1ZRPRhZUw827LTPRhrymZpLIIYD1oaiyAIgiAIgiAIghAdWhqLOBO0NNb4sPAxmZ8bQZQaWhqLP2X1RQhBEARBEARBEARBEARBEARBEMRkoIkQwhZ4vV7jM01N0xCNRlH42Ckejxufmg0NDSGVSgEYXqMuGo0aGrFYDNlsFgCQTqeRTqcBDO81E4vFjOOi0aixrl0qlcLQ0BCA4c/a4vE4ACCfzyMajULTNADDn4EpigJgeMm2RCIB4INrAiYSCWQyGQCAoijGZ2Nn8hSLxfDjH/8Yx48fL3tPvb29+PGPf4xYLCZEnk6ePGnEU2yegHP3vYGBAdx7772IRCLMPZ04cQL33nsvTp48KUSe3n//fdx7772IxWKT9lTo8ydOnADAdjxNJE/lMp6s8tTf32/0h3L2dPz4ccOHCHk6deqUEQ+LPFlZI8Z6On78OO69916cOnWKSd8rxNrf328qT0ePHjV+tpV8zbVD3Tt9+jR+/OMfG/GWs6djx47h3nvvxenTp4XI08hxYkXfK4yto0ePMvc0UluEPJn9fa/go7e318gT1YjSeSrk49SpU5PypKqq8XPI5XJG3IXjrPCUzWaNvxd+t37ttdegKAoURTFiUFV11HEjYx173Jk8KYpixJrJZEYdV4hb1/VRx8ViMbz66qtQFAXZbPYDxxVQFMX4uY71NPa4s3lSFAWvvvqqcc/H0tPQ0BBee+01xGKxUbGeyVMoFILL5QIA+Hw++Hw+AIDL5cL06dPx7rvvTipPNTU1cDqdAIaXtpo2bRruvvtu1NbWIhAIAAAcDgdqamrgcAw/GgwEAvB4PABGP2OZMmUKvv/97xvLzQeDQbjdbgBAVVUVqqurAQzvJVJTUzMhTyOXrj+TJ13XEQwGAQCSJH3Ak9frBQB4PJ4zesrlchPqe5lMZkJ5YtX3CnkyM57i8bgxTsrZ08jxPtEawdtTMpnEa6+9hlQqxb3ujVcjWF1zT506hXvvvRfHjx9ncs0dHBzEvffei76+Pqb3hKWAJkIIW9DQ0IClS5cCGH4wFw6HjcG5bt06dHd3AwC2bduG1tZWAMMPdMPhsKGxdu1a9PT0AADa2trQ1tYGAOjp6cHatWuN48LhsHET0traim3btgEAuru7sW7dOgDDhSMcDqO/vx8AsHnzZrS3twMAOjs7sXHjRgDDxSEcDhvFaOPGjejs7AQAtLe3Y/PmzWf15PP5cNlllxmfWZezp82bN6O+vh4+n0+IPL377rvGL2vF5gk4d9+LRCJYsmQJXn/9deae9u3bhyVLluDdd98VIk8bN27EkiVL4PP5Ju3J5/MhFAph3759ANiOp4nkqVzGk1Wejh49ClmW4fP5ytrT1q1bcdlll8Hn8wmRp8HBQaiqatws8u57LGvEWE9bt27FkiVLMDg4yKTv7dq1C0uWLMHRo0dN5Wn9+vVYuHAhfD5fRV9z7VD30uk0VFU1HoiUs6f//M//xJIlS5BOp4XI0/r167FgwQL4fD5L+p7P58N1112H9evXM/fk8/nwhS98AevXrxciT2Z/3/P5fKivrzd+rlQjSuvJ5/NBVVUMDg5OylN3d7fxc4hEIti7d++o46zw1NPTY/x9cHAQe/fuxaxZs+ByudDR0WHEcPDgQRw5csRotxCPpmno6OgwHsCdzVNHR4cR6969exGJRIz4CnGn02l0dHQYD+MOHDiAuro6uFwuHDlyBAcPHjTy3tHRYXjauXOn8fMf62nnzp3Gcefy5HK58OEPfxhdXV3MPTkcDsyaNQsHDhww+sCZPJ133nloamrCzJkzAQALFy7EwoULAQAzZ87ELbfcgr/+67+ecJ50XUdzczNqa2sBAEuXLsWcOXPwzDPP4K//+q/R2NgIYHhCo7m52ZhsaGxsxNy5cwGMfsZSXV0Nj8dj5GnlypWYPXs2AGD+/PlYvHgxAGD69Olobm42fv5n89TU1HTOPCUSCaxcuRLA8GTHWE8NDQ0AgLlz557RU29v74T6Xmdn5znzBLDre4D58XTw4EFMmzYNLperrD11dXVh5syZcLlcE64RvD0dP34cs2bNQiwW4173xqsRrK65g4ODWLJkCbZu3crkmpvL5bBkyRI899xzTO8JS0HZ7REyNDSEP/3pT3jzzTfxl7/8BfF43JgROxeSJOGll17iHCFhJYV15bxeL2RZRnt7O2bNmoVEIoFQKARJkhCPx+H1euF2uzE0NARd11FdXY1cLodkMmm8sRCLxeDz+eByuYwC5/P5kM1mkU6njTcWotEo/H4/ZFlGKpWCw+FAVVUVVFWFoigIBoPG7HYgEIDT6UQymYQsy/B6vchkMlBVFYFAALquIx6PIxgMwuFwIJFIwO12w+PxGLP7fr8fmqaRJ/JEnsgTeSJP5Ik8kSfyRJ7IE3kqU09tbW1wOByQZRm5XA6apsHj8SCfz2Pu3LncPR04cMD4qtrlckHTNGSzWeOtekVR4Ha74XA4oKoqJEkyjsvlckasmUxm1HFn8pTJZODxeCBJEjKZDJxOp3Gcrutwu93QdR2qqo46TpZlOJ1OZLNZ5PP5UceNjNXlchnH2cHTfffdh5deegnZbNZ4GSadTsPlcuGzn/0svve9703Y0/Hjx3HXXXchkUhA0zT4/X7kcjkoigKPxwO3241EIgGHw4FgMIh4PA5d1xEIBKCqKjKZjPGMJZlMwul0IhAIGF+BB4NBKIoCVVVRVVUFh8OBVCoFWZbh9/uNN75DoRDS6fS4nnw+H1paWlBXV3dGT8eOHUNTUxPi8TgkSUIoFJq0p8cffxx1dXXU98hTWXiaN29eRVxz+/r6SrZHSNlMhOTzefzkJz/Bj370I1O7zOfzeUiSZMwiEvag0jdLT6fTaGtrM95uLWdE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY7ZfIi4WXo2m0VPT4/xVnapsToenu1NVltRFNx///3Yvn27saSM2+3Gddddh29/+9vo6+ubsNZ4m4z7fD4sXLgQbW1txkPUiVLMuWeDNks3h2jj1iwi+rAypvHaYnUtEP0erJTPcmVLWmHALbfcgqeeegplMm9DEARBEARBEARBEARBEOfE6/XiBz/4AVRVNSaszjvvPLjd7gmvgkIQBEGcnbL4ImTTpk245ZZbIEkS8vk8PvKRj+Cmm27CnDlzcN5550GWJz6fM3/+fI6RElZT6V+EEARBEARBEARBEOIj4hchhD1h8SWFFdAXIQQxGiuuBSJQyme5ZbFZ+iOPPGL8/dvf/jb279+Pe+65BzfeeCM++9nPYv78+RP+QxB2IpvN4u2337bFGyKiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+dA0DQMDA8IsIW51PDzbY6nNQsvlcmHWrFmmlvsp5txS82//9m9QFKXUYTBFtHFrFhF9WBkTz7bsdA/GmrKYCNmzZw8kScJf/dVf4ac//SkcjrIImyC4k06n8cwzzzBdp7NUiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyodO+VDpIdTAE3E8tTy+XxYsmSJqfX9izm31Bw4cAD3339/qcNgimjj1iwi+rAyJp5t2ekejDVlsTSW3+/H0NAQvv71r2P9+vWlDocQCFoaiyAIgiAIgiAIghAdWhqLsApaGms0brcbra2tcLvdRWsRBE9oaSz+lMWnFZdeeikA0JcgBEEQBEEQBEEQBEEQBEFMiJEb0BMEUdmUxczCvHnzkM/nceDAgVKHQhBCEY1Gcc899yAajZY6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yoeiKNi2bZsweyhYHQ/P9lhqs9CqqanBD3/4Q9TU1Fh6LsEe0catWUT0YWVMPNuy0z0Ya8piaaxdu3bh4x//OJxOJzo7O0d9PkNUNpW+NFYul0Nvby+mT58OWZZLHU5RiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyods/kQcWksXdcRj8cRDAaFWIHD6nh4tsdSe7Ja4y0pJcsypk+fjt7eXuRyuUm1X8y5Z8OqpbEm0lY5Idq4NYuIPqyMaby2WF0LRL8HK+Wz3LKYCAGAu+66Cy0tLbjiiiuwdetWnH/++aUOiRCASp8IIQiCIAiCIAiCIMSn1BMhe/fuxalTp7i3Q5Qe2iNk8m0RhAjQHiH8EWPKbQI88MADuOOOO4wf1gMPPIDjx4+XOiyCKCmpVApPPfUUUqlUqUMpGtG8WB0Pz/ZYarPQKkZDtH5S6dglH6L5oPrDT4/qj32wUz5E80I1iJ+WWQ3R+kilU675uPDCCz/w/1RVxb59+6Cqagki+iBWx8OzPZbaLLSqq6uxbNkyVFdXW3ouwR7Rxq1ZRPRhZUw827LTPRhryua7WofDgYceeggf/ehH8Z3vfAdr1qzBmjVrEAqFEAqFIEnSOTUkSUJPT48F0RKENTgcDtTU1AjzGWExiObF6nh4tsdSm4VWMRqi9ZNKxy75EM0H1R9+elR/7IOd8iGaF6pB/LTMaojWRyqdcs3HePs7SJIEr9c7oecpVmB1PDzbY6nNQkvXdUSjUei6bum5BHtEG7dmEdGHlTHxbMtO92CsKZulsbLZLL71rW9h3bp1yOVyGBn2RDpNPp+HJEnQNI1nmITF0NJYBEEQBEEQBEEQhOiUemksYPj+ub+/35K2iNJBS2NNvi2CEAFaGos/pZ+KmQCapuEf/uEf8PDDD39gEgQYnuQ41x+CsCOqqqKrq0uoTwnNIpoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l0yjkfwWBw1H9rmoZIJCLMC6NWx8OzPZbaLLTcbjfq6+vhdrstPZdgj2jj1iwi+rAyJp5t2ekejDVlMRHy8MMP44UXXgAwPOnxuc99Do8++ijefPNNvPvuu/jLX/4yoT+HDh0qsROCYIuiKNi6dSsURSl1KEUjmher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTslI9cLofDhw8jl8uVOhQA1sfDsz2W2iy0vF4vFixYAK/Xa+m5BHtEG7dmEdGHlTHxbMtO92CsKYulsRoaGvDmm29CkiT85Cc/wXe+851Sh0QIQuFzKq/XC1mW0d7ejlmzZiGRSBh7x8TjcXi9XrjdbgwNDUHXdVRXVyOXyyGZTBprpcZiMfh8PrhcLqTTaQCAz+dDNptFOp1GKBQCAESjUfj9fsiyjFQqBYfDgaqqKqiqCkVREAwGkc/nEYvFEAgE4HQ6kUwmIcsyvF4vMpkMVFVFIBCAruuIx+MIBoNwOBxIJBJwu93weDxQFAW5XA5+vx+appEn8kSeyBN5Ik/kiTyRJ/JEnsgTeSpTT21tbXA4HJBlGblcDpqmwePxIJ/PY+7cuZZ4evfdd3H48GG4XC5omoZsNms83FYUBW63Gw6HA6qqQpIk47hcLmfEmslkRh13Jk+ZTAYejweSJCGTycDpdBrH6boOt9sNXdehquqo42RZhtPpRDabRT6fH3XcyFhdLpdxHADyNMLT8ePHcddddyGRSEDTNPj9fuRyOSiKAo/HA7fbjUQiAYfDgWAwiHg8Dl3XEQgEoKoqMpmM8YwlmUzC6XQiEAggFoshn88jGAxCURSoqoqqqio4HA6kUinIsgy/349oNAoACIVCSKfTyGaz8Pl8AIB0Og2XywWfz4eWlhbU1dWd0dOxY8fQ1NSEeDwOSZIQCoVMe9qwYQOmTp0qVJ7s2PfIU3Ge5s2bVxHX3L6+Ploa62zs378fkiRh9uzZNAlCjEtDQwOWLl0KAOjv70c4HEYmkwEArFu3Dt3d3QCAbdu2obW1FQDQ29uLcDhsaKxduxY9PT0AgLa2NrS1tQEAenp6sHbtWuO4cDiM3t5eAEBrayu2bdsGAOju7sa6desAAJlMBuFw2Fh/dfPmzWhvbwcAdHZ2YuPGjQCAeDyOcDiMeDwOANi4cSM6OzsBAO3t7di8efNZPeXzebz00ku28bR7927k83kh8vTWW2/hiSeeQD6fLzpPwLn73nvvvQdFUbh4euONN6AoCt566y1h8qQoCvL5/KQ95fN5/Pa3v8Ubb7wBgO14mkieymk8WeFp//79ePTRR41f+srZ00svvYR8Pi9Ent5//32Ew2FjaU/efY91jRjrSVEUw1Oxedq2bRsURcH+/ftN56lQSyr9mlvude/kyZMIh8PGm2Xl7klRFMOTCHnq7e1FPp+3pO/l83kcOnSIi6fCjb4oeTL7+14+n8fu3bupRgjiqfA77Pvvvz8pT93d3cbPIRKJYO/evaOOs8LTm2++afx9cHAQO3fuNJYf7+joMGI4ePAgjhw5YrRbiEfTNHR0dBgP4c7mqaOjw4h17969iEQiRnyFuNPpNDo6OoylYTo7OxGJRJDP53HkyBEcPHjQyHtHR4fhaefOnRgcHDRyM9ZTgXN5KvwOy8NTLpdDLpdDZ2en0QeK8TSZPOm6jubmZtTW1gIAli5dioaGBni9XsydOxeNjY0AhpdKa25uNpZMa2xsxNy5cwGMfsZSW1uL5uZmeDweAMDKlSsxe/ZsAMD8+fOxePFiAMD06dPR3NxseGpqasLMmTMBAAsXLsTChQsBADNnzkRTU9M585RIJLBy5UoAgMfjGdcTgAl7OlffY5Gnc3liNZ6OHTuGfD5f9p5SqRTy+fykagRvT7lcDidPnuRe98arEayuue+//z4URWF2zY3FYlAUhfk9YSkoiy9CAoEA0uk0vvGNb+CRRx4pdTiEQFT6FyHpdBrhcBh33HEHLrroorL29P7772PdunVYs2YNPB5PyfN04sQJtLS0YM2aNcYbJTzf0lJVFQ8++CDuvPNOhEIhpp5SqRRaWlqwevVq+Hy+kufp+PHjWL9+PdasWQMAk/KUSCQQDoexevVqXHDBBbZ5Q7Bc33o8efIk1q5dizVr1iAUCpWtp2PHjuHXv/411qxZA5/PV/I8DQwM4Fe/+hXWrFmDmpoa7n2PZY0Y62lwcBC//vWv8c1vfhOyLBfd9xKJBB566CE0NTXB6/VOOk+9vb1G/XE6nRV7zbVD3Tt16hQeeOABfOtb38KUKVPK2tOpU6fwyCOP4J/+6Z/gdDpLnqf333/fGCeyLHPve9lsFuFwGN/4xjdw6aWXMvWk67qhffHFF5c8T2Z/3ys8sFi5ciUuueQSqhEl9hSNRhEOh/HNb34TU6dOLasvQgoP+gpvPCeTSXR1dWHevHkAUPI3o2OxmBGP0+nk/rZ3YWKhvr4egUCAqad8Po8333wT9fX18Pv9Rb3BPtk8jfdFSHV1NZqamvDggw9iaGhoUl+EnHfeefjWt76Fn//854hGo/RFSIm/NIjH4+js7MS8efMgy3LZeorH40a/liRJiC9CVFXFrl27cO2110KWZa51b7waweqLkFwuh1/96le44447MGXKlKKvubqu45e//CVuu+021NbWFn1PWMovQspiImTWrFl499138fWvfx3r168vdTiEQBQmQgpYOXhEQNM09Pf3o7a2Fk6ns9ThFIVoXqyOh2d7LLVZaBWjIVo/qXTskg/RfFD94adH9cc+2CkfonmhGsRPy6yGaH2k0jGbj61bt57x3xYsWFB8YBPg6NGjo/ZO1XUd6XQaPp8PDkfpFwyxOh6e7bHUnqxWJBLB8uXLR/0/p9OJ2tpa9Pf3T3pz5mLOPRtPPvkk6urqzvjv4/ng1VY5Idq4NYuIPqyMaby2WF0LRL8HK+WzXNmSVork+uuvx8GDB9HV1VXqUAhCKJxOp20u5qJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075cDgc8Pv9pQ7DwOp4eLbHUpuFlqZpxjI9Vp5LsEe0cWsWEX1YGRPPtux0D8YaMabczsGqVavgdDqxZ88evPrqq6UOhyCEIZlMYsOGDUgmk6UOpWhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8qGqKrq6uqCqaqlDAWB9PDzbY6nNQsvv92PFihWmHrwWcy7BHtHGrVlE9GFlTDzbstM9GGvKYiLkqquuwo9+9CPk83ksW7YMb7/9dqlDIgghkGUZM2bMgCyXxcddZ0U0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpHw6HAzU1NcIsS2N1PDzbY6nNQiuXy+Hw4cPI5XKWnkuwR7RxaxYRfVgZE8+27HQPxpqy2COkwMMPP4w1a9bA4XBg9erV+MpXvoI5c+YgGAyWOjSiRFT6HiEEQRAEQRAEQRCE+Ii4RwhhT1jurcET2iOEIEZj1bWg1JTyWa44025nwel0wul0oqmpCaqqYmhoCD//+c/x6U9/GlOmTDH+/Vx/RJh5IgiWZDIZtLe3I5PJlDqUohHNi9Xx8GyPpTYLrWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKRy6XQ29vrzBv+lsdD8/2WGqz0PJ4PGhoaIDH47H0XII9oo1bs4jow8qYeLZlp3sw1pTFRMjYj1YkSRr1b5P5QxB2QsQ1Fc0imhdan5afVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlo7AJtqZppQ4FgPXx8GyPpTYLLbfbjfr6erjdbkvPJdgj2rg1i4g+rIyJZ1t2ugdjTVksjcVqvTRJkoQaYETx0NJYBEEQBEEQBEEQhOjQ0liEVfBeGuujH/0oenp6in6oSUtjEcRoaGks/pTFFyG6rjP5Q5MghN3QdR3RaBS6rpc6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2ykc+n4eiKMKsnmF1PDzbY6nNQquYjZnHnvuDH/wAra2tePLJJ/Gzn/3MdEyEOUQbt2YR0YeVMfFsy073YKwpi4kQgiDGJx6PIxwOIx6PlzqUohHNi9Xx8GyPpTYLrWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKRyaTQUdHhxDrtgPWx8OzPZbaLLSCwSCam5sRDAaZnOt2u1FXV0dfWZQA0catWUT0YWVMPNuy0z0Ya8piaawvf/nLAACXy4UnnngCLperxBERolDpS2Ppuo54PI5gMMhsCblSIZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l0zOZDxKWx8vk8MpkMPB7PqL1YS4XV8fBsj6X2ZLXGW1LK4XAgGAwiHo9P+q3sseeOXGaqmOWraGksc4g2bs0iog8rYxqvLVbXAtHvwUr5LFe2pJUieeaZZyBJEj772c/SJAhBjKDwiaodEM2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dsqHJEnwer2lDsPA6nh4tsdSm4VWYWkaq88l2CPauDWLiD6sjIlnW3a6B2NNWbxOMmXKFADAjBkzShsIQQhGIpFAS0sLEolEqUMpGtG8WB0Pz/ZYarPQKkZDtH5S6dglH6L5oPrDT4/qj32wUz5E80I1iJ+WWQ3R+kilY6d8ZDIZ7Ny5U5ilaayOh2d7LLVZaAUCAaxevRqBQMDScwn2iDZuzSKiDytj4tmWne7BWFMWEyEXXXQRACCdTpc4EoIQC7fbjfr6erjd7lKHUjSiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+XA6nairq4PT6Sx1KACsj4dneyy1WWipqoquri6oqmrpuQR7RBu3ZhHRh5Ux8WzLTvdgrCmLPUKam5vxi1/8ApdffjkOHjxY6nAIgaj0PUIIgiAIgiAIgiAI8RFxjxDCnrDcW2M8aI8QguCDVdeCUlPKZ7ll8UXIypUr4XQ60dPTg9bW1lKHQxDCoCgKtm7dCkVRSh1K0Yjmxep4eLbHUpuFVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHbP5ONN+p6FQiEVYpsjlcjh8+DByuVzJYhiJ1fHwbI+lNgstr9eLBQsWmNqToJhzCfaINm7NIqIPK2Pi2Zad7sFYUxYTIVdeeSX+9V//Ffl8Hrfeeiu2b99e6pAIQghEvHCYRTQv9Es4P61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDpm81FY8nssF154IYuwTFHYBFvX9ZLFMBKr4+HZHkttFlqyLGPGjBmQZdnScwn2iDZuzSKiDytj4tmWne7BWFMWS2MV+OlPf4p/+Zd/QT6fx4033oivfvWruOaaa1BbWwuPx1Pq8IgSQEtjEQRBEARBEARBEKKjKAq6urpGvREbCARw1VVXWfaAmZbGqgxoaazJt0UQIkBLY/GnLL4IcTqdcDqd+N73vgdN06BpGp5++ml8+ctfxmWXXQafz2ccc7Y/NHtN2A1N0xCJRKBpWqlDKRrRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWM2H16vF3PnzsWMGTNQW1uLmTNnWjoJMh66riOZTArzRrbV8fBsj6U2C61iNmYWcVPrSka0cWsWEX1YGRPPtux0D8aaspgIGfvRiiRJo/5tMn8Iwk4kEgk89NBDSCQSpQ6laETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVTjH58Hg8mDFjBq644gpccsklJX9ZU1VV7Nq1C6qqljSOAlbHw7M9ltostAKBAFavXo1AIGDpuQR7RBu3ZhHRh5Ux8WzLTvdgrCmLpbEcDjbzNZIkCTH7RLCj8DmV1+uFLMtob2/HrFmzkEgkEAqFIEkS4vE4vF4v3G43hoaGoOs6qqurkcvlkEwmUVNTAwCIxWLw+XxwuVxIp9MAAJ/Ph2w2i3Q6bWxiF41G4ff7IcsyUqkUHA4HqqqqoKoqFEVBMBhEPp9HLBZDIBCA0+lEMpmELMvwer3IZDJQVRWBQAC6riMejyMYDMLhcCCRSMDtdsPj8UBRFORyOfj9fmiaNq4nl8uFaDQKl8sFv99f1p5isRgkSUIgEICiKCXPk6IoSCQSmDp1KvL5fFF5mkjfq6qqgq7r0DQNkiQx9eR0Oo0J5Gw2W/I8pVIpeL1eeDwexGKxSXlyOBw4deoUqqurUVVVxXQ82bFG8PaUyWQQi8VQW1tr6JWjp2QyiWw2i5qaGmSz2ZLnKZvN4vTp05g2bZox7nj2PZY1YqwnTdMgyzKcTidSqVTRfU+SJDgcDkiShEwmM+k8xWIxeDweVFVVIZlMVuw11w51L5fL4dSpU6itrYXD4ShrT9lsFi6Xy6hHpc5TNBqF2+2Gz+dDKpXi3vcK7WSzWUyZMoWpp8LvKwV/pc6T2d/3vF4vEokE8vk8QqEQ1YgSe8rn8zh58iTOO+88uFyusvJ08OBBHDlyBC6XC5qmQVVVuFwuOJ1OZDIZuN1uOBwOqKoKSZKM43K5HDweD/L5/AeOczgckGUZuVwOmqaNOs7j8RjX7MIqHblcDrquw+12Q9d1qKpqHKcoCiRJgtvtRi6XQz6fH3VcYbNuRVGMuLPZLAAYsWaz2VHHnc1ToZ2CP5aeCn/P5XKjYjXjabJ5On78OO666y4kEglommZcNwEY7ScSCTgcDgSDQcTjcei6jkAgAFVVkclkjGcshd8Vp06dipMnTyKfz+M3v/kNLrroIjidTvT19WHVqlXG9cLv9yMajQIAQqEQ0uk0stksfD4fACCdTsPlcsHn86GlpQV1dXVnzNOxY8fQ1NSEeDwOSZIQCoU+4ElRFHg8nnN62rBhA6ZOnXrGvpfJZIzfWc3maTJ9r5jxVFhez+PxQNO0svWkKApkWYYsy1BVdUI1grcn4P89gx7782dd98arEfPmzWNyza2urjby4nQ6i74+BQIBZLNZIxfF3hP29fXR0lhnQ9d1Jn9oEsS+NDQ0YOnSpQCA/v5+hMNhZDIZAMC6devQ3d0NANi2bRtaW1sBAL29vQiHw4bG2rVr0dPTAwBoa2tDW1sbAKCnpwdr1641jguHw+jt7QUAtLa2Ytu2bQCA7u5urFu3DgCQyWQQDofR398PANi8eTPa29sBAJ2dndi4cSMAIB6PIxwOIx6PAwA2btyIzs5OAEB7ezs2b958Vk+SJKGjowPPP/982Xtav349Dh06BEmShMhTV1cXfv/73xtFvJg8Aefue4cOHYLX68WLL77I3FNHRwe8Xi+6urqEyFNLSwu8Xi8kSZq0J0mS8Pzzz6OjowMA2/E0kTyVy3iyytOBAwewadMm4xe9cvVU6FOSJAmRp76+PrS0tBiTE7z7HssaMdbT888/D6/Xi76+PiZ975VXXoHX68WBAwdM5ekXv/iFceNWyddcO9S9gYEBtLS0GDet5ezp97//PbxeLwYGBoTI0y9+8QskEglIkmRJ35MkCQMDA/jFL37B3JMkSZAkCb/4xS+EyJPZ3/ckScKhQ4ewfv16I09UI0rnSZIktLS0oK+vr+w87dixw/j74OAgdu3aBVmWjWtcIYbChEmh3UI8mqaho6PDeAjX3d1t5DYSiWDv3r2G946ODiPWvXv3IhKJGPEV4k6n0+jo6DCe1XR1dWFwcBCSJOHIkSM4ePCg8TMq/P4PADt37sTg4KCRm5Gedu7caRx3Lk+FGvHmm28y96TrOmRZRldXl9EHzHqabJ50XUdzc7PxstLSpUvR0NAARVEwd+5cNDY2AgCCwSCam5sRDAYBAI2NjZg7dy6A0c9Yamtr0dTUZOzNe/ToUcPTqVOnsHjxYgDA9OnT0dzcbHhqamrCzJkzAQALFy7EwoULAQAzZ85EU1PTOfOUSCSwcuVKAMMP/cfzBGDCns7W9zo7O4vO02T6HmB+PO3btw8DAwOQJKmsPb355pvGiwETrRG8PR09ehSyLGNgYIB73RuvRrC65vb19cHr9eL5559ncn1KJBLwer3YtGkT03vCUlAWX4QQxJmo9C9CFEXBI488gptvvhl1dXVl7amvrw+//e1vcdttt8HlcpU8T/39/Xj88cdx++23w+/3c39LK5fL4fHHH8fy5csRCASYekqn09i0aRMaGxvh9XpLnqcTJ05g8+bNWLlyJXRdn5SnVCqFRx55BLfccgumTZsm3BuCoownqzwNDAzgN7/5DW6//XYEAoGy9RSJRLBp0ybcfvvtRm0tZZ5Onz6NDRs24Pbbb0cwGOTe91jWiLGeYrEYnnrqKXz961+Hw+Eouu+lUils2rQJt9xyC9xu96Tz1NfXh82bN+O2224z3jitxGuuHere4OAg1q9fj9tuuw2hUKisPQ0ODuLpp5/GrbfearzxWso89fb2GuOk8MYjz76naRoeffRRLF26FJdccglTTwAM7cLby6XMk9nf97LZLB599FHcdNNNuPjii6lGlNhTPB7HI488ghUrVuC8884rK09jvwhJpVLo7u7G3LlzjTerS/lFSDwex/79+3H11VfD4XBwf4MdAN566y3Mnj3b+PqclSdgeGJn9uzZqK6uLuoN9snmabwvQqqqqtDY2IgnnngCmUxmUl+E1NTUYOXKlXjkkUcQj8fpi5ASfxGSSCSwb98+XH311XA6nWXrKR6Po7u7G1dffTUACPFFSDabxd69e3HllVfC6XRyrXvj1QhWX4Touo7f/OY3WLZsGUKhUNHXJwDYsGEDbrrpJpx//vlF3xOW8osQmgghyprCREgBKwePCKiqiu7ubsyePRtut7vU4RSFaF6sjodneyy1WWgVoyFaP6l07JIP0XxQ/eGnR/XHPtgpH6J5oRrET8ushmh9pNIp53wcPXoUhw4dMv5b0zT09/ejtrZWiI2wrY6HZ3sstSerFYlEsHz58lH/z+12Y/bs2eju7jYewk6Usec++eSTqKurO2NbE2WkzngUoz3ZtsoJ0catWUT0YWVM47W1YMECJtqi34OV8lkuTYQQZU2lT4QQBEEQBEEQBEEQxEQYOxFC2BOWEwjjQRMhBMEHVhMholPKZ7llsUcIQRDjMzQ0hBdeeAFDQ0OlDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfKRzWbx3nvvGUvHlBqr4+HZHkttFlpVVVVYtGgRqqqqLD2XYI9o49YsIvqwMiaebdnpHow1wkyEHDt2zPI2jx8/bnmbBMESXdeN9f/KHdG8WB0Pz/ZYarPQKkZDtH5S6dglH6L5oPrDT4/qj32wUz5E80I1iJ+WWQ3R+kilY6d85PN5KIoCURYKsToenu2x1GahVdirzeGY/GPAYs4l2CPauDWLiD6sjIlnW3a6B2ONMEtj+f1+NDc347/9t/+GKVOmcG1rcHAQP/nJT/DLX/4SiUSCa1sEX2hpLIIgCIIgCIIgCII4N7Q0VmVAS2NNvi2CEAFaGos/wkznptNp/PjHP8Zll12G//7f/zt6enqYt9HT04PvfOc7uOyyy3DfffchnU4zb4MgrCSXy+Hw4cPI5XKlDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfIh0lu6AH2RxlNLlmXMmDEDsixbei7BHtHGrVlE9GFlTDzbstM9GGuEmQj51re+BafTiWQyiZ/97Gf4yEc+guuvvx4PPfQQTpw4YVr3xIkTeOihh3D99dfjwx/+MMLhMJLJJJxOJ9asWcPQAUFYTzKZxGOPPYZkMlnqUIpGNC9Wx8OzPZbaLLSK0RCtn1Q6dsmHaD6o/vDTo/pjH+yUD9G8UA3ip2VWQ7Q+UunYKR+qqmL37t1QVbXUoQCwPh6e7bHUZqHl9/uxYsUK+P1+S88l2CPauDWLiD6sjIlnW3a6B2ONMEtjAcOfwnz3u9/FCy+8AACQJMn4t1mzZuHTn/40rrzySsyaNQvTp0/H+eefD5/Ph3w+j6GhIQwMDKC3txfvvPMOdu/ejddeew1vv/22oVGw+vnPfx73338/LaFkA2hpLIIgCIIgCIIgCII4N7Q0VmVAS2NNvi2CEAFaGos/Qn3XNmfOHGzZsgXbt2/Hvffeiy1bthiTF2+//faoSY2JUjhfkiR88YtfxPe//3188pOfZBo3QRAEQRAEQRAEQRAEQRAEQRBiIszSWCO57rrr0NrainfeeQd33303Lr30UuTzeVN/Lr30Unz/+9/HO++8g+eee44mQQhbEYvFcO+99yIWi5U6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yoeiKHjttdegKEqpQwFgfTw822OpzUIrFArh7rvvRigUsvRcgj2ijVuziOjDyph4tmWnezDWCPVFyFguv/xy/Pu//zv+/d//HXv37sWLL76Ijo4O7NmzB0eOHPlAZ/F6vZgxYwauvPJKfOITn8Df/d3f4WMf+1iJoicI/vh8PixZsgQ+n6/UoRSNaF6sjodneyy1WWgVoyFaP6l07JIP0XxQ/eGnR/XHPtgpH6J5oRrET8ushmh9pNKxUz5cLhdmzZoFl8tV6lAAWB8Pz/ZYarPQSqfTeOaZZ5BOpy09l2CPaOPWLCL6sDImnm3Z6R6MNULtETJZYrEYUqkUAKC6uppmpysQ2iOEIAiCIAiCIAiCIM4N7RFSGdAeIZNviyBEgPYI4Y+QS2NNlFAohIsuuggXXXQRTYIQFYmd3swQzYvV8fBsj6U2Cy16G8k+2CUfovmg+sNPj+qPfbBTPkTzQjWIn5ZZDdH6SKVjp3xks1m8/fbbyGazpQ4FgPXx8GyPpTYLLfoq1j6INm7NIqIPK2Pi2Zad7sFYU9YTIQRBEARBEARBEARBEARBEARBEGejrJfGIghaGosgCIIgCIIgCIIgzg0tjVUZ0NJYk2+LIESAlsbiD30RQhBljIifEppFNC/0WTY/rWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKh6ZpGBgYgKZppQ4FgPXx8GyPpTYLrWI2ZhZxU+tKRrRxaxYRfVgZE8+27HQPxhqaCCGIMkakdfaKRTQvtD42Py1ao98+2CUfovmg+sNPj+qPfbBTPkTzQjWInxbtEWIP7JQPkR5OATQRy1OL9gixD6KNW7OI6IP2COGjJ9J1k5bGIsoaWhqLIAiCIAiCIAiCIM4NLY1VGdDSWJNviyBEgJbG4g99EUIQBEEQBEEQBEEQBEEQBEEQhG2hiRCCKGOi0SjuueceRKPRUodSNKJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075UBQF27Ztg6IopQ4FgPXx8GyPpTYLrZqaGvzwhz9ETU2NpecS7BFt3JpFRB9WxsSzLTvdg7GGlsYiyppKXxorl8uht7cX06dPhyzLpQ6nKETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVTjnnY+zSWLquIx6PIxgMwuEo/XuyVsfDsz2W2pPVGm9JKVmWMX36dPT29iKXy02q/bHn0tJYpUW0cWsWEX1YGdN4bbFaGkv0e7BSPsuliRCirKn0iRCCIAiCIAiCIAiCmAi0R0hlQHuETL4tghAB2iOEP2JMuREEYYpUKoWnnnoKqVSq1KEUjWherI6HZ3sstVloFaMhWj+pdOySD9F8UP3hp0f1xz7YKR+ieaEaxE/LrIZofaTSsVM+VFXFvn37oKpqqUMBYH08PNtjqc1Cq7q6GsuWLUN1dbWl5xLsEW3cmkVEH1bGxLMtO92DsYYmQgiijHE4HKipqRHmM8JiEM2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dsqHJEnwer2QJKnUoQCwPh6e7bHUZqGl6zqi0Sh0Xbf0XII9oo1bs4jow8qYeLZlp3sw1tDSWERZQ0tjEQRBEARBEARBEMS5oaWxKgNaGmvybRGECNDSWPwp/VQMQRCmUVUVXV1dQn1KaBbRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfGiahkgkAk3TSh0KAOvj4dkeS20WWm63G/X19XC73ZaeS7BHtHFrFhF9WBkTz7bsdA/GGpoIIYgyRlEUbN26FYqilDqUohHNi9Xx8GyPpTYLrWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKRy6Xw+HDh5HL5UodCgDr4+HZHkttFlperxcLFiyA1+u19FwzqKqKSCSCSCRiSXvlhmjj1iwi+rAyJp5t2ekejDW0NBZR1tDSWARBEARBEARBEARxbmhprMpgIktKffSjH8WBAwdM6fNaGktRFNx///3Yvn078zfHaWksohygpbH4Q1+EEEQZk8/noSgK7DCfKZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JSPfD6PXC4njBer4+HZHkttFlpjN2b+wQ9+gMcee8zUuby4//778fLLLwuxfI7IiDZuzSKiDytj4l1/7HIPxhqaCCGIMiYWi+G+++5DLBYrdShFI5oXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JSPTCaD7du3I5PJlDoUANbHw7M9ltostEKhEO6++26EQiHj/010z4/xzmWNqqrYvn07N307Idq4NYuIPqyMiWdbdroHYw1NhBC2wOv1wu/3AxjecCgajRozjfF43HijYGhoCKlUCsDwenzRaNTQiMViyGazAIB0Oo10Og0AyGazowZrNBo11vBLpVIYGhoCMHzhjsfjAIZnO6PRqLHpUTKZNNbCy2QySCQSAABd1xGNRqHrOgAgkUgYRVBRFCSTybN6CgQCuPXWW+FwOMreUz6fx8qVKxEIBITIk9vtxi233IJAIFB0noBz9z2v14tVq1bB6XQy9+RyubBq1Sq43W4h8qTrOlatWoVAIDBpT4FAAF/72tfgcrkAsB1PE8lTuYwnqzx5PB40NjYiEAiUtSeHw4Fbb70VgUBAiDxVVVXh5ptvRiAQYJInK2vEWE8OhwOrVq1CVVUVk74nyzJWrVoFj8djKk+apuGOO+5AIBCo6GuuHeqez+fDzTffbPz+V86eJEnCqlWr4PP5hMiTpmm4/fbbEQgELOl7gUAAt91226jNQll5CgQCuPPOO6FpmhB5Mvv7XiAQwMqVK0f9PkY1onSeAoEAbr75ZlRVVZWdJ0VRjL9rmgZd13HNNdfA7XZDURQjBlVVRx1XiKfwVu/I4wq5zeVyHziuEGsmkxl1XCFuXddHHZfP541NubPZ7AeOK6AoivFzzWazo2Ide9zZPLndblx99dXQdZ25J5fLhWuuucaoq4VYzXgyk6eamho4nU4AgN/vh6qqaGlpQSaTMX7HLBxX+N0mEAjA4/EAGP2MJZVKYePGjUafzWazRqyapqG6uhoAIMsyampqDE+hUMi4b/P5fPD5fAAAl8s1alJFURQMDAxAVVVUV1cbY8vtdiMYDAIY/iplrKfCniUej8fw5HA4zujpbH0vk8kUnafJ9L3Cz9/MeBo5TsrZk67ruPrqq+F2uydcI3h7kiQJ11xzDZxOJ/e6N16NYHXNraqqwqpVq+BwOJhcn6qrq7Fq1Srj3ws/u2LvCUsBTYQQtqChoQFLly4FAPT39yMcDhuDc926deju7gYAbNu2Da2trQCA3t5ehMNhQ2Pt2rXo6ekBALS1taGtrQ0A0NPTg7Vr1xrHhcNh9Pb2AgBaW1uxbds2AEB3dzfWrVsHYLgwhMNh9Pf3AwA2b96M9vZ2AEBnZyc2btwIYLg4hMNhoxht3LgRnZ2dAID29nZs3rz5rJ6cTifefvttbNmypew9PfbYYzh16hScTqcQedqzZw9efPFFOJ3OovMEnLvvHT58GHV1dXjppZeYe9qxYwfq6uqwZ88eIfL08MMPo66uDk6nc9KenE4nXnnlFezYsQMA2/E0kTyVy3iyytM777yD559/3vhFsVw9bdmyBW+//TacTqcQeTp+/Dg2bdpk3Ojx7nssa8RYT1u2bEFdXR2OHz/OpO+99tprqKurwzvvvGMqTw888AB8Ph+cTmdFX3PtUPdOnz6NTZs2GTeY5ezpj3/8I+rq6nD69Gkh8vTAAw/A6XTC6XRa0vecTidyuRweeOAB5p6cTiemTJmCBx54QIg8mf19z+l04tSpU8YyNlQjSuvJ6XRi06ZNOH78eNl52rFjh/H3wcFBvPXWW/D7/XA4HOjo6DBiOHjwII4cOWK0W4hH0zR0dHQYD+C6u7uN3EYiEezdu9fw3tHRYcS6d+9eY+Pr3t5eI+50Oo2Ojg7jYdzu3buNh2ZHjhzBwYMHjZ9RR0eH4Wnnzp0YHBw0cjPS086dO43jzuXJ4XCgqqoKO3bsYO4pn8/D7/dj9+7dRh8w62myedJ1Hc3NzaitrQUALF26FJ/4xCcQiURw1VVXobGxEcDwg9bm5mZjsqGxsRFz584FMPoZy/nnn4/GxkZjUuPo0aOGp1OnTmHx4sUAgOnTp6O5udnw1NTUhJkzZwIAFi5ciIULFwIAZs6ciaamplF5KjyEXbx4MebPnw8AmD17NlauXAlgeLJjrKeGhgYAwNy5cw1PwWDwjJ7O1vc6OzuLztNk+h5gfjzt378fiUQCDoejrD3t2LEDLpcLDodjwjWCt6f3338ffr8fp06d4l73xqsRrK65x48fR11dHbZs2cLk+pRKpVBXV4ennnqK6T1hKaDN0omyprDBjtfrhSzLaG9vx6xZs5BIJBAKhSBJEuLxOLxeL9xuN4aGhqDrOqqrq5HL5ZBMJo03FmKxGHw+H1wul1HgfD4fstks0um08cZCNBqF3++HLMtIpVLGL0+qqkJRFASDQeTzecRiMQQCATidTiSTSciyDK/Xi0wmY7xZqus64vE4gsEgHA4HEokE3G43PB4PFEVBLpeD3++HpmnjelJVFU8//TQWL16MadOmlbWn48eP4z/+4z9w0003wel0ljxPp06dwh//+EcsW7YMPp+vqDxNpO/puo5nn30WN9xwA/x+P1NPiqLg+eefx+LFi+F2u0uep/7+frS1tWHp0qVGOxP1NDQ0hKeffhr/8A//gKlTpzIdT3asEbw9nT59Gn/4wx+wbNkyVFdXl62nkydPorW1FV/96leNN+1KmadoNIrNmzdj2bJl8Pv93Pseyxox1lMikcCWLVuwZMkSACi676XTafzpT3/Cl770JciyPOk8HT9+HG1tbbjxxhuRz+cr9pprh7oXi8Xwu9/9Dl/96lcRCATK2lMsFsN//Md/4B//8R+Rz+dLnqdjx44Z4wQA976Xz+fxu9/9DgsXLsTFF1/M1JPD4TC0Cy9hlDJPZn/f0zQNv/3tb/H5z38eF154IdWIEntKJpN46qmnsHTpUtTU1JSVp8LDS5fLBU3TkE6n0dPTg9mzZ0PXdbjdbjgcDuPN6MJxuVwOHo8H+Xze+JKicJzD4YAsy8jlctA0bdRxHo8HkiQhk8nA6XQaxxXa0nUdqqoaxyUSCbz33nu44oorIEmSca0uHFf4AqDwNrXT6TTekC7Ems1mRx13Nk+SJGH//v2YOXOmMdHAypMkSThw4ABmzpxpvISRzWZNeZpsno4fP4677roLiUQCmqbB7/fD4/Fg8eLFeO6555DNZvHwww8jn8/jrrvuQjweh67rxtfRmUzGeMaSTCYRDAZx00034amnnkIymcRvfvMbXHTRRXA6nejr68OqVauML3f9fr/xxncoFEI6nUY2mzW+Bkmn03C5XPD5fGhpaUFdXR0URcHp06fR2NiI6upq6LqOoaEhuN1ueL1exONxSJKEUCg0ylMul4OiKPB4PMaXzQ6HA8Fg8AOeNmzYgKlTp56x72UyGciyXFSeJtP3ihlPyWQS7777Lq644go4HI6y9ZRIJNDT04MrrrgC+Xx+QjWCt6dsNot3330XH/nIR+BwOLjWvfFqxLx585hccwHgmWeewQ033IBAIFD09cnhcOAPf/gDFi1ahClTphR9T9jX11eyzdJpIoQoawoTIQWsHDwioCgK2tvb0dDQYBTyckU0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6ZRzPo4ePYpDhw4Z/53L5dDb24vp06dDluUSRlaaeHi2x1J7slqRSATLly8f9f+8Xi8aGhrQ3t4ORVHw5JNPAsAHjhuP8c6tq6s7Y1sThZXOZNsqd0Qbt2YR0YeVMY3X1oIFC5hoi34PVspnuTQRQpQ1lT4RQhAEQRAEQRAEQRATYexECGFPJjKpMJmJkPHOtXIi5Hvf+x7uu+8+U22M1xZBiAqriRDRKeWzXNojhCDKmEwmg/b2dmMdvnJGNC9Wx8OzPZbaLLSK0RCtn1Q6dsmHaD6o/vDTo/pjH+yUD9G8UA3ip2VWQ7Q+UunYKR+FN5IL+y2VGqvj4dkeS20WWh6PBw0NDcbG4VadywKawBiNaOPWLCL6sDImnm3Z6R6MNTQRQhBljKqq6OrqgqqqpQ6laETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3yoWkaIpGIsRFxqbE6Hp7tsdRmoeV2u1FfXw+3223puQR7RBu3ZhHRh5Ux8WzLTvdgrKGlsYiyhpbGIgiCIAiCIAiCIIhzQ0tjVQZ2WxrrZz/7Gb797W+bamO8tghCVGhpLP7QFyEEUcbouo5oNApd10sdStGI5sXqeHi2x1KbhVYxGqL1k0rHLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075SOfz0NRFIjyfqzV8fBsj6U2Cy2Hw4Gamho4HJN/DFjMuQR7RBu3ZhHRh5Ux8WzLTvdgrKEqRhBlTDweRzgcRjweL3UoRSOaF6vj4dkeS20WWsVoiNZPKh275EM0H1R/+OlR/bEPdsqHaF6oBvHTMqshWh+pdOyUj0wmg46ODiHWbQesj4dneyy1WWgFg0E0NzcjGAxaei7BHtHGrVlE9GFlTDzbstM9GGtoaSyirKn0pbF0XUc8HkcwGCz7tzNE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlU4552Ps0lj5fB6ZTAYejweSJJUwstLEw7M9ltqT1RpvmSmHw4FgMIh4PA5d1ye1NNZ459LSWKVDtHFrFhF9WBnTeG2xWhpL9HuwUj7LlS1phSAILhQ+UbUDonmxOh6e7bHUZqFVjIZo/aTSsUs+RPNB9YefHtUf+2CnfIjmhWoQPy2zGqL1kUrHTvmQJAler7fUYRhYHQ/P9lhqs9AqLE1j9bkEe0Qbt2YR0YeVMfFsy073YKwpr9cXCIIYRSKRQEtLCxKJRKlDKRrRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfGQyGezcuVOYpWmsjodneyy1WWgFAgGsXr0agUDA0nMJ9og2bs0iog8rY+LZlp3uwVhDEyEEUca43W7U19fD7XaXOpSiEc2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dsqH0+lEXV0dnE5nqUMBYH08PNtjqc1CS1VVdHV1QVVVS88l2CPauDWLiD6sjIlnW3a6B2MN7RFClDWVvkcIQRAEQRAEQRAEQUyEsXuEEPZkIvt2TGaPkPHOpT1CCII9rPYIEZ1SPsulL0IIooxRFAVbt26FoiilDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfKRy+Vw+PBh5HK5UocCwPp4eLbHUpuFltfrxYIFC0ztSVDMuQR7RBu3ZhHRh5Ux8WzLTvdgrKGJEIIoY0S8cJhFNC/0Szg/rWI0ROsnlY5d8iGaD6o//PSo/tgHO+VDNC9Ug/hpmdUQrY9UOnbKR2ETbF3XSx0KAOvj4dkeS20WWrIsY8aMGZBl2dJzCfaINm7NIqIPK2Pi2Zad7sFYQ0tjEWUNLY1FEARBEARBEARBEOeGlsaqDGhprLO3RRCiQktj8Ye+CCGIMkbTNEQiEWiaVupQikY0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpH7quI5lMCvNGttXx8GyPpTYLrWI2ZhZxU+tKRrRxaxYRfVgZE8+27HQPxhqaCCGIMiaRSOChhx5CIpEodShFI5oXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JQPVVWxa9cuqKpa6lAAWB8Pz/ZYarPQCgQCWL16NQKBgKXnEuwRbdyaRUQfVsbEsy073YOxhpbGIsqaSl8aK5/PI5PJwOPxQJKkUodTFKJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKp5zzMXZprHw+D03T4HQ6hfBidTw822OpPVmt8ZaZkiQJHo8HmUwG+Xx+UktjjXcuLY1VOkQbt2YR0YeVMY3XFqulsUS/Byvls1za6YggyhhJkuD1eksdBhNE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8iFJklAbYFsdD8/2WGqz0Mrn81AUxfJzCfaINm7NIqIPK2PiXX/scg/GGloaiyDKmHg8jp///OeIx+OlDqVoRPNidTw822OpzUKrGA3R+kmlY5d8iOaD6g8/Pao/9sFO+RDNC9UgflpmNUTrI5WOnfKRyWTQ3t6OTCZT6lAAWB8Pz/ZYarPQCgaDaG5uRjAYtPRcgj2ijVuziOjDyph4tmWnezDW0EQIQZQxXq8XCxYsEGZmtRhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8iHLMmbMmCHMW9lWx8OzPZbaLLQURcHWrVtNfdlRzLkEe0Qbt2YR0YeVMfFsy073YKyhPUKIsqbS9wghCIIgCIIgCIIgiIkwdo8Qwp5MZN+OyewRMt65tEcIQbCH1R4holPKZ7n0RQhBlDFDQ0N44YUXMDQ0VOpQikY0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpH9lsFu+99x6y2WypQwFgfTw822OpzUKrqqoKixYtQlVVlaXnEuwRbdyaRUQfVsbEsy073YOxhiZCCKKM0XUd0WgUuq6XOpSiEc2L1fHwbI+lNgutYjRE6yeVjl3yIZoPqj/89Kj+2Ac75UM0L1SD+GmZ1RCtj1Q6dspHYRNsURYKsToenu2x1Gah5XA4UFNTA4dj8o8BizmXYI9o49YsIvqwMiaebdnpHow1tDQWUdbQ0lgEQRAEQRAEQRAEcW5oaazKgJbGOntbBCEqtDQWf2g6lyDKmFwuh8OHDyOXy5U6lKIRzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yodIb+kC9EUaT61iNmYWcVPrSka0cWsWEX1YGRPPtux0D8YamgghiDImmUziscceQzKZLHUoRSOaF6vj4dkeS20WWsVoiNZPKh275EM0H1R/+OlR/bEPdsqHaF6oBvHTMqshWh+pdOyUD1VVsXv3bqiqWupQAFgfD8/2WGqz0PL7/VixYgX8fr+l5xLsEW3cmkVEH1bGxLMtO92DsYaWxiLKGloaiyAIgiAIgiAIgiDODS2NVRnQ0lhnb4sgRIWWxuIPfRFCEARBEARBEARBEARBEARBEIRtoYkQgihjYrEY7r33XsRisVKHUjSiebE6Hp7tsdRmoVWMhmj9pNKxSz5E80H1h58e1R/7YKd8iOaFahA/LbMaovWRSsdO+VAUBa+99hoURSl1KACsj4dneyy1WWiFQiHcfffdCIVClp5LsEe0cWsWEX1YGRPPtux0D8YamgghiDLG5/NhyZIl8Pl8pQ6laETzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3y4XK5MGvWLLhcrlKHAsD6eHi2x1KbhVY6ncYzzzyDdDpt6bkEe0Qbt2YR0YeVMfFsy073YKyRSx0AQRDmKRROOyCaF6vj4dkeS20WWsVoiNZPKh275EM0H1R/+OlR/bEPdsqHaF6oBvHTMqshWh+pdOyUD6fTialTp5Y6DAOr4+HZHkttFlrZbBZvv/225ecS7BFt3JpFRB9WxsSzLTvdg7GGvgghiDLGTm9miObF6nh4tsdSm4UWvY1kH+ySD9F8UP3hp0f1xz7YKR+ieaEaxE/LrIZofaTSsVM+Cg+4s9lsqUMBYH08PNtjqc1Ci76KtQ+ijVuziOjDyph4tmWnezDW0EQIQRAEQRAEQRAEQRAEQRAEQRC2Rcrn8/lSB0EQZtm/fz/mzJlj/Pe+fftwxRVXlDAigiAIgiAIgiAIghCPo0eP4tChQ6UOg+BMJBLB8uXLz3rMk08+CQDnPO5M59bV1U24rWJ1fvazn+Hb3/62qTbGa4sgRGXBggWlDsESSvksl74IIYgyRsRPCc0imhf6LJufVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlQ9M0DAwMQNO0UocCwPp4eLbHUpuFVjEbM4u4qXUlI9q4NYuIPqyMiWdbdroHYw1NhBBEGSPSOnvFIpoXWh+bnxat0W8f7JIP0XxQ/eGnR/XHPtgpH6J5oRrET4v2CLEHdsqHSA+nAJqI5alFe4TYB9HGrVlE9EF7hPDRE+m6SUtjEdz44Q9/iHvuueesx3zve9/Dvffea7oNWhqLIAiCIAiCIAiCIM4NLY1VGdDSWGdviyBEhZbG4o9sSStERTNt2jT89V//9bj/NmPGDGuDIQiCIAiCIAiCIAiCIAiCICoKWhqL4M7nP/95vPbaa+P+Wb16danDK2ui0SjuueceRKPRUodSNKJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075UBQF27Ztg6IopQ4FgPXx8GyPpTYLrZqaGvzwhz9ETU2NpecS7BFt3JpFRB9WxsSzLTvdg7GGJkIIoozx+/249dZb4ff7Sx1K0Yjmxep4eLbHUpuFVjEaovWTSscu+RDNB9UffnpUf+yDnfIhmheqQfy0zGqI1kcqHTvlw+1246qrroLb7S51KACsj4dneyy1WWglk0ls2LAByWTS0nMJ9og2bs0iog8rY+LZlp3uwVhDS2MRRBkjy7JtlhcTzYvV8fBsj6U2C61iNETrJ5WOXfIhmg+qP/z0qP7YBzvlQzQvVIP4aZnVEK2PVDp2yofD4RDqLX+r4+HZHkttFlq5XA6HDx+2/FyCPaKNW7OI6MPKmHi2Zad7MNbQFyEWomka9uzZg0cffRRNTU249tpr4Xa7IUkSJEkqalMcVVXx+OOP44YbbsBll10Gr9eLCy+8EJ/61Kfw05/+FAMDA+yMTJLdu3ejsbER119/Pb70pS/h+9//Pnbt2lWyeOxEKpXCU089hVQqVepQikY0L1bHw7M9ltostIrREK2fVDp2yYdoPqj+8NOj+mMf7JQP0bxQDeKnZVZDtD5S6dgpH6qqYt++fVBVtdShALA+Hp7tsdRmoVVdXY1ly5ahurra0nMJ9og2bs0iog8rY+LZlp3uwVhDX4RYxDPPPIPGxkak02nm2m+//TaWL1+Orq6uUf8/EokgEongjTfewE9+8hOsX78eN9xwA/P2z0VXV9eo2FpbW3Hvvffi1ltvRUtLC7xer+Ux2YXCDLLDUf5zmqJ5sToenu2x1GahVYyGaP2k0rFLPkTzQfWHnx7VH/tgp3yI5oVqED8tsxqi9ZFKx075kCQJXq8XkiSVOhQA1sfDsz2W2iy0dF1HNBqFruuWnkuwR7RxaxYRfVgZE8+27HQPxhopn8/nSx1EJbBhwwZ84xvfOOsx8+fPx9atWyel29vbi3nz5uHYsWMAhgfS3/7t32LmzJno7+/Hf/3Xf2FoaAgA4HK58MILL+D666835WGyPPzwwzh+/Dj+/u//Hh/60IdQU1ODQ4cOYcOGDfjpT38KTdPQ2NiIJ554wnQb+/fvx5w5c4z/3rdvH6644goW4RMEQRAEQRAEQRCEbTh69CgOHTpU6jAIzkQiESxfvvysxzz55JMAcM7jznRuXV3dhNsqVudnP/sZvv3tb5tqY7y2CEJUilkpqJwo5bPc0k/FVBgXXHABvvjFL+Kee+7Bli1bsGbNmqL0br75ZmMS5LLLLkNnZye2bt2KRx99FM899xyOHj2Kz372swCAbDaLG2+8EdFotFgbE+LOO+/E//pf/wsNDQ2YNm0a3G43Zs2ahXvvvdeY/Ni4cSPeeOMNS+KxI6qqoqurS6hPCc0imher4+HZHkttFlrFaIjWTyodu+RDNB9Uf/jpUf2xD3bKh2heqAbx0zKrIVofqXTslA9N0xCJRKBpWqlDAWB9PDzbY6nNQsvtdqO+vt7UxszFnEuwR7RxaxYRfVgZE8+27HQPxhqaCLGIRYsW4ciRI4hEImhtbcUPfvADfP7zny9qY5wtW7bg1VdfBTB8YWptbcVVV1016pipU6fi2WefxYc+9CEAwOnTp3H//fePq3f33Xcb+5VM9k8ul5tU7MuWLcMnPvEJAMDmzZsna534/1EUBVu3boWiKKUOpWhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8lHYBHuy9/O8sDoenu2x1Gah5fV6sWDBAlNLkxdzLsEe0catWUT0YWVMPNuy0z0Ya2hprBLzwx/+EPfccw+AyS+N9YUvfAFbtmwBANxxxx14+OGHz3jsxo0bccsttwAAzjvvPJw4cQKyPHqLmP/9v/83wuHwJB0Mc+LECTidzkmd853vfAc/+9nPsHjxYjz33HOm2qWlsQiCIAiCIAiCIAji3NDSWJUBLY119rYIQlRoaSz+0BchZUoymcRLL71k/Pe59h/5yle+Ar/fD2D4q5BXXnnlA8f8z//5PzEwMGDqz2QnQQAYn1Vms9lJn0sMk8/noSgK7DCfKZoXq+Ph2R5LbRZaxWiI1k8qHbvkQzQfVH/46VH9sQ92yodoXqgG8dMyqyFaH6l07JSPfD6PXC4njBer4+HZHkttFlrFbMws4qbWlYxo49YsIvqwMibe9ccu92CsoYmQMuX1119HJpMBAFRXV+PjH//4WY/3er345Cc/afz3n//8Z67xTYS9e/cCAC655JISR1K+xGIx3HfffYjFYqUOpWhE82J1PDzbY6nNQqsYDdH6SaVjl3yI5oPqDz89qj/2wU75EM0L1SB+WmY1ROsjlY6d8pHJZLB9+3bj2UKpsToenu2x1GahFQqFcPfddyMUCll6LsEe0catWUT0YWVMPNuy0z0Ya2hprBJjdmmscDiM5uZmAEBDQ8OENhy/++67cd999wEAvvzlL+P3v/+9qZhZ0NXVhWuvvRaapmHz5s34yle+Ykqn0pfG0jQN/f39qK2tNfVVjkiI5sXqeHi2x1KbhVYxGqL1k0rHLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKp1yzsfYpbF0XUc6nYbP54PDUfr3ZK2Oh2d7LLUnqzXeMlNOpxO1tbXo7++HpmmTWhprvHNpaazSIdq4NYuIPqyMaby2WC2NJfo9GC2NRUyad955x/j7ZZddNqFzLr30UuPvb7/9NvOYRrJ//37ceeed6Ozs/MC//elPf8LnP/95aJqGq6++Gv/4j//INRY743Q6UVdXV3a/gI+HaF6sjodneyy1WWgVoyFaP6l07JIP0XxQ/eGnR/XHPtgpH6J5oRrET8ushmh9pNKxUz4cDgf8fr8wDyGtjodneyy1WWhpmoZIJAJN0yw9l2CPaOPWLCL6sDImnm3Z6R6MNeL0NmJSnDp1yvj7BRdcMKFzRs5+nz59mnlMI8lms/j1r3+Nq6++GlOmTMHVV1+NefPmYdq0afjiF7+ISCSCK6+8Es8++6xQRa/cSCaT2LBhA5LJZKlDKRrRvFgdD8/2WGqz0CpGQ7R+UunYJR+i+aD6w0+P6o99sFM+RPNCNYifllkN0fpIpWOnfKiqiq6uLqiqWupQAFgfD8/2WGqz0PL7/VixYoWxd6xV5xLsEW3cmkVEH1bGxLMtO92DsYaeQJcpIztPVVXVhM4ZeRzvzjdjxgz8n//zf/DFL34R559/Pnp6eoyvQz73uc/hoYcewptvvonp06czac/r9RoXZU3TEI1GjU144vG4UViGhoaQSqUAALlcDtFo1NCIxWLGxu3pdBrpdBrA8KTOyHXsotEocrkcACCVSmFoaAjAcBGLx+MAhjcCikajxhsTyWQSiqIAGF4HMJFIABj+FC4ajULXdQBAIpEw1gdUFMXI05k8ybKMiy++2DinnD2l02lccsklkGVZiDxpmoYLL7wQsiwXnSfg3H0vn89jxowZUFWVuadcLocZM2ZA0zQh8pROpzFjxgzIsjxpT7Is46KLLjLOYTmeJpKnchlPVnnSdd0YJ+XsKZPJ4OKLL4Ysy0LkCRh+eUGWZSZ5srJGjPWUyWQwY8YMI75i8pRKpZDNZjFjxgzoum4qT6lUCpdddhlkWa7oa64d6p4kSaPeLCtnT4qiYMaMGZAkSYg8pVIpXHrppZBl2ZK+J8syLr300lE1kJUnWZZx2WWXIZVKCZEns7/vybKMSy65xDiHakRpPcmyPOolw3LypCiK8XdN05DNZlFTUwOHwwFFUYwYVFUddVwhnsKGtyOPK+Q2l8t94LhCrJlMZtRxhbh1XR91XDabRTAYhMPhQDab/cBxBRRFMX6u2Wx2VKxjjzubJ4fDgVAoBFVVmXuSJAk1NTXIZrOjYjXjyUyeampqjGuk3++H0+nE4cOH4XA4EAgERh1XeDk1EAjA4/EAGP2MRdd1RCIRw+9IT5qmobq6GsDw2KipqTE8hUIhuFwuAIDP54PP5wMAuFyuUfuNjPRUXV1tPLtyu90IBoMAYPw8R3ryer0AAI/HY3hyOBxn9HS2vpfJZIrO02T6XuHnb2Y8jRwn5exJVVWEQiE4HI4J1wjenjRNQ01NDfL5PPe6N16NYHXNBYafy2YyGSbXJ4fDgRkzZhj3d4WfXbH3hKWAJkLKlJED1+12T+icQvEHYAwEXtTU1OBf//Vf0draivfeew+xWAyqquLkyZN48cUXceedd46Kp1gaGhqwdOlSAEB/fz/C4bAxONetW4fu7m4AwLZt29Da2goA6O3tRTgcNjTWrl2Lnp4eAEBbWxva2toAAD09PVi7dq1xXDgcRm9vLwCgtbUV27ZtAwB0d3dj3bp1AIYLRzgcRn9/PwBg8+bNaG9vBwB0dnZi48aNAIaLQzgcNorRxo0bjQmj9vZ2bN68+ayevF4vNE3Diy++WPaeNm3ahPPPPx9er1eIPB04cAB/+ctf4PV6i84TcO6+19fXhwULFuCVV15h7qmrqwsLFizAgQMHhMjTunXrsGDBAni93kl78nq9OHbsGLq6ugCwHU8TyVO5jCerPB06dAgHDhyA1+sta08vvvgiNE2D1+sVIk8DAwPo6Ogwbu549z2WNWKspxdffBELFizAwMAAk77X0dGBBQsW4NChQ6by1NLSgrlz58Lr9Vb0NdcOdS+RSKCjowOSJJW9p+effx4LFixAIpEQIk8tLS2YPXs2vF6vJX3P6/XiQx/6EFpaWph78nq9+OQnP4mWlhYh8mT29z2v14vzzz8fmzZtMvJENaJ0nrxeLzo6OjAwMFB2nnbs2GH8fXBwEJ2dncYLSh0dHUYMBw8exJEjR4x2C/FomoaOjg7jAVx3d7eR20gkgr179xreOzo6jFj37t2LSCRixFeIO51Oo6Ojw3gYt3fvXvh8PsiyjCNHjuDgwYPGz6ijo8PwtHPnTgwODhq5Gelp586dxnHn8lSYZNy1axdzT5IkYcaMGdi7d6/RB8x6mmyedF1Hc3MzamtrAQBLly7F3LlzsXXrVsyePRuNjY0Ahh+0Njc3G5MNjY2NmDt3LoDRz1iCwSAaGhqMWI8ePWp4OnXqFBYvXgwAmD59urGXLQA0NTVh5syZAICFCxdi4cKFAICZM2eiqalpVJ4Kz7gWL16M+fPnAwBmz56NlStXAhh+njXWUyGmuXPnGp6CweAZPZ2t73V2dhadp8n0PcD8eDpw4ADcbjdkWS5rT7t27TJeqptojeDtqa+vDzNmzDDGXTF5MlMjWF1zBwYGsGDBArz44otMrk+qqmLBggX4/e9/z/SesBTQZuklxuxm6V/4whewZcsWAMD3vvc93Hvvvec85z/+4z9www03ABiePS/M8JUzhQ12vF4vZFlGe3s7Zs2ahUQigVAoBEmSEI/H4fV64Xa7MTQ0BF3XUV1djVwuh2QyabyxEIvF4PP54HK5jALn8/mMN9gLbyxEo1H4/X7IsoxUKgWHw4GqqiqoqgpFURAMBpHP5xGLxRAIBOB0OpFMJiHLsvGwUFVVBAIB443Wwmx+IpGA2+2Gx+OBoijI5XLw+/3GW7pjPeXzeXR0dGDOnDk477zzytpTf38/3nnnHXz84x+Hruslz1M8Hsdbb72FT37yk3C5XEXlaSJ9z+l0Yt++ffjIRz4Cj8fD1JOmaThw4ABmz54NSZJKnqfBwUEcOnQIc+fOxdDQ0KQ85XI5tLe3o76+HqFQiOl4smON4O0pkUhg165d+OQnPwm32122nk6fPo19+/Zh3rx5kCSp5HlKpVJ488038alPfQoej4d732NZI8Z6GhoawsGDB/Gxj33MeJuxmL6XzWbx9ttv44orrkA+n590nvr7+9HT04NrrrkGqqpW7DXXDnWvcBP5yU9+0rhul6unVCqFd999F1deeaXxdmQp83Ty5EljnGSzWe59T5Zl7Ny5E5dffrmx5C8rTx6PB2+99RY+9KEPYerUqSXPk9nf9xwOB3bs2IGPfOQjqK2tpRpRYk+ZTAavv/46PvGJTxjX7XLxVHh46XK5jDejBwcHUVdXh1wuB7fbDYfDAVVVIUmScVwul4PH4zHekh55nMPhgCzLyOVy0DRt1HEejweSJCGTycDpdBrH6boOt9sNXdehqqpxXCqVwqlTp3DRRRchn88jn8+POq7wkoiiKHC5XHA6ncYb0oVYs9nsqOPO5snpdOL48eOYMmWKsWExK09OpxMnTpzAlClT4PV6jVjNeJpsno4fP4677roLiUQCmqYZ+xDMnj0b+/fvBwA8/PDDyOfzuOuuuxCPx6HrOgKBAFRVRSaTMZ6xJJNJVFVVoaGhAa+//joymQx+85vf4KKLLoLT6URfXx9WrVplfOHn9/uNN75DoRDS6TSy2azxNUg6nYbL5YLP50NLSwvq6uqgKApOnz6NxsZGVFdXQ9d1DA0Nwe12w+v14p577sF3vvMdhEKhUZ5yuZxR691uNxKJBBwOB4LB4Ac8bdiwAVOnTj1j38tkMpBluag8TabvFTOeRo4TAGXrKZVKYXBwEBdeeCE0TZtQjeDtSdM0nDp1yphw41n3xqsR8+bNY3LNdblc2Lt3Lz784Q+jqqqq6OuTx+PB7t27cfnllxtfWRVzT9jX11eyzdJlS1ohmDNybcaJft0x8ji7re048gsZp9M56nPMwpsAwOjlwcb7bLNA4SINfPCzzZHnFD4BBYa/zCl8nVP4xK3AyJ+3x+MxvoYpfLZZoPA5JwCjMJ/NUyKRQHd3t/GGQzl78nq92LdvH6666qpR55TKkyRJePvtt3HNNdfA4/EUlSfg3H0vkUigq6sLV1xxxRk/GTbraaT22E+GJ+uJRZ6qqqqMeCbrKZ1O48CBA7j66qsBsB1PgP1qBG9PAM44TsrJk8vlMmppIBAoeZ50Xcc777yDa6+9Fh6Ph3vfY1kjxnrK5XLjjneznkbGOnaphJGeCozNk8/nw549e/Cxj32soq+5dqh7mqYZ48Tr9Za1p2w2O+44KZWnM40TXn0vkUhg7969uPLKK5l7SiQS2L17N+bMmTNqORUznljkyezve4lEwvj9C6AaUWpPqqoa9afcPHm9XmOposIDukgkgtra2lFtjVx1wul0GuNHkqQzHifLsrGs59jjRq4GUTim4H3kcbIs4+TJk7jgggtGnTP2uJF/L/gZG+vY48bzlMlkcOLECUybNs1YSomVp0wmY/xsCzGNjHUynszkaeTyM8lkEoFAAPX19di/f7/xUuzY40a+LDvyGYssy/jIRz6CnTt3IpPJGA+YC+2ebSmfAoUHt8AHl/Lxer3Gz3/kMomqqhrL6xSW8hnpqUAmkzHeRC8s5TOep7P1vZH5NJunyfQ9wPx4mug4Ed2Ty+Uyxt9EawRvTyPHbaEtXnVvvBrB6po78veNkUvNmb0+jdQbuXzeyJ/rZO4J+/r6UCroi5ASY/aLkLvuusv49OmrX/0qnnrqqXOe8+CDD+Kb3/wmAIx6E6CcKXwRUsDKWUSCIAiCIAiCIAiCKBeOHj2KQ4cOlToMgjORSATLly8/6zFPPvkkAJzzuDOdW9gnZyJtFavzs5/9DN/+9rdNtTFeWwQhKgsWLCh1CJZQyme5tEdImfKRj3zE+HthXb5zcfToUePvs2bNYh4TYT1jN9YrZ0TzYnU8PNtjqc1CqxgN0fpJpWOXfIjmg+oPPz2qP/bBTvkQzQvVIH5aZjVE6yOVjp3yMXZz31JjdTw822OpzUJr7CbiVp1LsEe0cWsWEX1YGRPPtux0D8YaqmJlykc/+lHj73v37kUulzvnOW+99da45xPly9iN9coZ0bxYHQ/P9lhqs9AqRkO0flLp2CUfovmg+sNPj+qPfbBTPkTzQjWIn5ZZDdH6SKVjp3yM3dy31FgdD8/2WGqz0Bq7ibhV5xLsEW3cmkVEH1bGxLMtO92DsYaWxioxZpfGSiaTmDp1qjFg3njjDTQ0NJzx+Ewmg9raWmN9xJdeegnXX399ccELQKUvjTV2Y71yRjQvVsfDsz2W2iy0itEQrZ9UOnbJh2g+qP7w06P6Yx/slA/RvFAN4qdlVkO0PlLplHM+xi6NNXZz31JjdTw822OpPVmt8ZaZGruJ+GSWxhrvXFoaq3SINm7NIqIPK2Mary1WS2OJfg9GS2MRk8bv9+Ozn/2s8d8bNmw46/F/+MMfjEmQ8847D3/7t3/LMzzCIuz0iapoXqyOh2d7LLVZaNFn2fbBLvkQzQfVH356VH/sg53yIZoXqkH8tMxqiNZHKh075aOwua8oDyGtjodneyy1WWjR8qD2QbRxaxYRfVgZE8+27HQPxprSR0CY5q677jL+vmHDhjNufp5Op/GDH/zA+O8777wTsixzj89KvF4v/H4/AEDTNESjUWOdvXg8DlVVAQBDQ0NIpVIAgFwuh2g0amjEYjFks1kAwz+zdDoNAMhms4jFYsZx0WjUWIoslUphaGgIAKCqqvGZVz6fRzQahaZpAIa/4FEUBcDw1zmFSamxv1AkEgnjKx9FUZBMJs/qKZFI4MEHH8SJEyfK3tOxY8fw4IMPIpFICJGngYEB/OpXv0IikSg6T8C5+97p06fR0tKCkydPMvfU39+PlpYWDAwMCJGnvr4+tLS0IJFITNpTIpHAr371K/T39wNgO54mkqdyGU9WeTp16pQxTsrZ04kTJ4x+LUKeBgcHjZ8rizxZWSPGejpx4gRaWlowODjIpO+dPHkSLS0tOHXqlKk89fb2Yu3atUgkEhV9zbVD3YtGo/jVr35l6Jezp0gkgpaWFkSjUSHyNHKcWNH3EokE1q5di97eXuaeRmqLkCezv+8V6s+xY8eMPFGNKJ2nwu+jg4ODZedJURTj75qmIR6PY+fOnchkMlAUxYhBVdVRxxXiKaxpP/K4Qm5zudwHjivEmslkRh1XiFvX9VHHxeNx7NixA5lMBtls9gPHFVAUxfi5ZrPZUbGOPe5snjKZDHbs2IFYLMbck6Io2LlzJ+Lx+KhYzXgyk6eamho4nU4Awy/STp06FatXr8b555+PQCAw6rjCw8lAIACPxwNg9DOWUCiEb37zm8Z52WzWiFXTNFRXVwMAZFlGTU2N4SkUCsHlcgEAfD4ffD4fAMDlciEUCo2bp+rqalRVVQEA3G63sRyXJEkf8OT1egEAHo/HiG3sA9eRns7W9zKZTNF5mkzfK/z8zYynRCJhjJNy9hSLxQwfE60RvD2lUins3LkT6XSae90br0awuuYODg6ipaUFJ06cYHJ9isViaGlpwfHjx5neE5YCmggpY77whS/g05/+NIDhjvrFL34Re/bsGXXMqVOnsGTJErz33nsAhr8G+d73vmd5rLxpaGjA0qVLAQD9/f0Ih8PG4Fy3bh26u7sBANu2bUNraysAoLe3F+Fw2NBYu3Ytenp6AABtbW1oa2sDAPT09GDt2rXGceFw2LhRa21txbZt2wAA3d3dWLduHYDhfITDYeNh7ebNm9He3g4A6OzsxMaNGwF8cJ28jRs3orOzEwDQ3t6OzZs3n9WT2+1GVVUVXnrppbL39PTTT+OCCy6A2+0WIk9vv/02MpkM3G530XkCzt33+vr6UF9fj1dffZW5p927d6O+vh5vv/22EHl6/PHHUV9fD7fbPWlPbrcbmqZh9+7dANiOp4nkqVzGk1WeDh06hGQyCbfbXdaeXnrpJVRVVcHtdguRp/7+fgwMDMDtdjPJk5U1Yqynl156CfX19cZxxeSptbUVO3bsQH19PQ4dOmQqT48++ihmzZoFt9td0ddcO9S9eDyOgYEB44arnD1t2bIF9fX1xnGlztOjjz6KmTNnwu12W9L33G43LrvsMjz66KPMPbndbsyZMwePPvqoEHky+/ue2+3GBRdcgKefftrIE9WI0nlyu90YGBgwYi0nTzt27DD+Pjg4iD179qCurg5OpxMdHR1GDAcPHsSRI0eMdgvxaJqGjo4O4wFcd3e3kdtIJIK9e/ca3keufb93715EIhEjvkLc6XQaHR0dxsO47u5uVFdXw+l04siRIzh48KDxM+ro6DA87dy505iI6unpGeVp586dxnHn8uR0OjFt2jR0dXUx9wQAdXV16O7uNvqAWU+TzZOu62hubkZtbS0AYOnSpbjqqqvQ1dWFj370o2hsbAQw/KB15N4fjY2NmDt3LoDRz1iCwSBqa2uNN9ePHj1qeDp16hQWL14MAJg+fTqam5sNT01NTZg5cyYAYOHChVi4cCEAYObMmWhqahqVp8JD2MWLF2P+/PkAgNmzZ2PlypUAhic7xnoqLA8/d+5cw9PY/UxGejpb3+vs7Cw6T5Ppe4D58fTOO++gqqoKTqezrD11dXVh6tSpcDqdE64RvD319fWhrq4Og4OD3Ose8MEaweqa29/fj/r6erz00ktMrk+KoqC+vh7PPPMM03vCUkB7hFjIDTfcYLzFUyASiRhvFlZXV+Pyyy//wHn/H3tvHx3Xddb7f2fmzItG86KkduK6DnExLca3FLstjYBeHGBhCsXrBjD3Juhym5iX2IZF1SzgmsW6rOYu1q8uLZBZl9ZOUxwnrVsDpk3jpnWcvsiQJlKtREpkK7YTJbIiRbJe533O+/z+0Jq9NLJiS+fsfWbPmeezVtdS6jPf5/nq2fsZnbe9v/3tb2Pjxo0rao6Pj+PDH/4wJicnASzeJd+5cye2bNmCmZkZfPe732WTVVEUnD59um5JrWantq5cLBaDoijo7e3F1q1bUSgUkE6nEQgEkM/nEYvFEIlEUKlUYNs22tvbYZomisUie2Ihl8shHo8jHA6z31k8HodhGCiXy+yJhWw2i0QiAUVRUCqVEAwG0dbWBl3XoaoqUqkUu7udTCYRCoVQLBahKApisRg0TYOu60gmk9esk1coFBCJRBCNRqGqKkzTRCKRYE/CkyfyRJ7IE3kiT+SJPJEn8kSeyBN5Ik9OPNUuXobDYViWBcMw2FP1qqoiEokgGAxC13UEAgF2nGmaiEajbE37pccFg0EoigLTNGFZVt1xtbXvNU1DKBRix9m2jUgkAtu2oet63XGKoiAUCsEwDFSr1brjluYaDofZcQDI0xJPk5OTOHDgAAqFAizLQiKRgGmaUFUV0WgUkUgEX/ziF1GtVnHgwAHk84t7fySTSei6Dk3T2DWWYrGIUCiEZDKJXC6HarWKxx9/HBs3bkQoFMLExATuv/9+lEolKIqCRCLBnvhOp9Mol8swDIO9DVIulxEOhxGPx3HkyBFs2LABqqpifn4eXV1daG9vh23bqFQqiEQiiMViePDBB/HAAw8gnU5f11OhULhmP5Oap2PHjmHdunVS1cmPY488ufN0xx13tMT308TERMP2CKEbIR6yefNmdsd0LbzxxhvYvHnz2/77xYsXcc8992BwcPBtj1m/fj0effRRfOxjH1tzfJlp9c3SVVVFb28vOjs7WSNvVmTz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir08z1WL5ZummaGB8fx6ZNm6RYPtvrfETG46m9Vq2VNh6PxWLo7OxEb28vVFVd02bpK32WNktvHLLNW6fI6MPLnFaKxWuzdNnPwWizdMIVW7duRV9fHx577DF89KMfxW233YZIJIJbbrkFnZ2d+Lu/+zsMDw/77iYIsdg4R0dH2bqDzYxsXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD9k2wfY6H5HxeGrz0FIUBZs3b3Z0cdfNZwn+yDZvnSKjDy9zEhnLT+dgvKE3QoimptXfCCEIgiAIgiAIgiCI1bD8jRDCn6zmLY21vBGy0mfpjRCC4A+vN0Jkh94IIQjCEZZlYWpqim0c1czI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9bBtG8ViUZonsr3OR2Q8nto8tEKhENtw3cvPEvyRbd46RUYfXuYkMpafzsF4QzdCCKKJKRQKePjhh1EoFBqdimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+Oneui6jhdeeAG6rjc6FQDe5yMyHk9tHlrJZBL79u1DMpn09LMEf2Sbt06R0YeXOYmM5adzMN7Q0lhEU9PqS2NVq1VomoZoNIpAINDodFwhmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWp1mrsfypbGq1Sosy0IoFJLCi9f5iIzHU3utWistMxUIBBCNRqFpGqrV6pqWxlrps7Q0VuOQbd46RUYfXua0UixeS2PJfg5GS2MRhEtisRgSiQSAxVeustksavf48vk8u8NaqVRQKpUALG7Wk81mmUYul4NhGACAcrmMcrkMADAMA7lcjh2XzWbZBj+lUgmVSgXA4t3cfD4PYHGSZ7NZ9tpXsViEqqoAAE3T2F3Q5ZsjFQoFaJoGAFBVFcVi8bqeAoEAqtUqy7WZPRUKBQSDQQQCASnqpOs6DMNAIBBwXSfgxmPPNE3EYjFUKhXunjRNQywWg67rUtQpn88jFoshEAis2VMgEIBpmixXnvNpNXVqlvnklSfDMOp6UbN6KpfLqFarCAQCUtTJsiyoqsr+yBQ99nj2iOWeyuUyYrEYO85NnUqlElRVRSwWY71krXXK5XKIRCIIBAIt/Z3rh75n2zb7fLN7KpVKiMVi7LhG1ymXyyEcDiMQCHgy9gKBABRFqcuVl6faxbtcLidFnZz+vRcIBBAMBlmu1CMa6ykQCEBVVZZrM3lSVZX9bFkWNE2DoijMUy2H2rnQ0uNqnpYfV6vt0r/Ra8fVctU0re64Wt61Xl47rvZ9GwgE2N+ZS4+rsfT3bxhGXa7Lj7uep0AggFAoBE3TuHsCFjcZ13W9LlcnnpzUqaOjgy1llUgkEI1GoaoqIpEIe7OjdlwwuHhpMJlMIhqNAqi/xhIMBhGLxViuhmGwXC3LQnt7O/Pb0dHBjkun0wiHwwCAeDyOeDwOAAiHw0in0yvWqb29HW1tbQCASCSCVCoFYHHeLfdUyykajTJPwWDwbT1db+xpmua6TmsZe7Xfv5P5VMutdm7crJ40TWM3AVbbI0R7Mk0TiqLAtm3hfQ+4tkfw+s61LAuxWAzlcpnL91O1WkUsFmPnjrXfndtzwkZAN0IIX9DZ2Yk9e/YAAGZmZpDJZNjkPHr0KIaHhwEAZ8+exalTpwAA4+PjyGQyTOPw4cMYGRkBAJw5cwZnzpwBAIyMjODw4cPsuEwmg/HxcQDAqVOncPbsWQDA8PAwjh49CmCxcWQyGczMzAAATp48id7eXgDAwMAAjh8/DmCxOWQyGdaMjh8/joGBAQBAb28vTp48eV1P+XweDz30EL7xjW80vad//ud/xkMPPYR8Pi9FnZ5//nmWj9s6ATcee0NDQ3jooYfw1FNPcfd09uxZPPTQQ3j++eelqVNNY62eamO+dhzP+bSaOjXLfPLK0wsvvMBq2cyevvGNbzAfMtTp0qVLdXqixx7PHrHcU+13W/Pkpk6nTp3CM888g4ceeggvvPCC4zrVat3K37l+6HtvvPFGnV4ze/qXf/kXPPTQQ8yTDHWqzRMvxl5tbonwtFRbhjo5/Xuv5uOf//mf6+pEPaIxnmo5XLp0qek8nTt3jv28sLCA/v5+9Pb2QtM09PX1sRwuX76MK1eusLi1fCzLQl9fH7sANzw8zGo7NTWFoaEh5r2vr4/lOjQ0hKmpKZZfLe9yuYy+vj52Me7FF19k+Vy5cgWXL19mv6O+vj7mqb+/HwsLC6w2yz3VuJEnTdPQ29srxFO5XEZvby9efPFFNgbceFpLnWzbRnd3N9avXw8A2LNnD3bu3Inu7m50dnaiq6sLwOKF1u7ubnazoaurCzt27ABQf41l8+bN6O7uxrp16wAsvllU8zQ3N4fdu3cDADZt2oTu7m7maf/+/diyZQsAYNeuXdi1axcAYMuWLdi/f39dnWoXYXfv3o2dO3cCALZt24a9e/cCWLzZsdxTZ2cnAGDHjh3MUyqVeltP1xt7AwMDXOq01JOo+fTyyy+z8dDsnmo+VtsjRHt6/fXX0dvbi7feekt431upR/D6zr106RI7b+Hx/TQxMYGHHnoIX/7yl7meEzYCWhqLaGpqr1PFYjEoioLe3l5s3boVhUIB6XQagUCAPX0eiURQqVRg2zba29thmiaKxSJ7YiGXyyEejyMcDrMGF4/HYRgGyuUye2Ihm80ikUhAURSUSiUEg0G0tbVB13WoqopUKsWepksmkwiFQigWi1AUBbFYDJqmQdd1JJNJ2LaNfD6PVCrFnvKKRCLsaQ3TNJFIJGBZ1oqeAGBwcBDvec97cNNNNzW1p9nZWYyOjuL9738/LMtqeJ0KhQLOnz+PD37wg1AUxVWdVjP2FEXBq6++is2bNyMSiXD1ZNs2Xn/9dfZHaKPrlM1mMTExgW3btqFcLq/Jk2VZePHFF7Ft2zakUimu88mPPUK0p2KxiKGhIXzwgx9EOBxuWk8LCwt49dVXsX37dgBoeJ3K5TIGBwfxoQ99CJFIRPjY49kjlntSVRVXrlzBe9/7Xui67nrsmaaJN954Az/xEz8B27bXXKfZ2VmMj4/jfe97HzRNa9nvXD/0vUqlgoGBAXzwgx9ENBptak/lchljY2P4yZ/8SWia1vA6zczMsHmi67rwsRcOhzE0NITbbrsNt9xyC1dPsVgMFy5cwLve9S684x3vaHidnP69FwqF8PLLL2Pz5s1Yt24d9YgGe9J1Hf39/di+fTvi8XhTeapdvAyHw+zJ6EKhgPXr18MwDEQiEQSDQfZmRu040zQRjUbZU9xLjwsGg1AUBaZpwrKsuuNqy6DUnvyuHWfbNiKRCGzbhq7r7LhyuYxsNotbb70Vtm2jWq3WHVf7PlZVFeFwGKFQiD0hXcvVMIy6467nSVEUTE9PI5VKoa2tjasnRVEwOzuLVCqFaDTKcnXiaa11mpycxIEDB1AoFGBZFhKJBAKBALZs2YLXXnsNgUAAX/ziF1GtVnHgwAHk83nYto1kMgld19nbwoqioFgsIhaL4QMf+AD6+/uh6zoef/xxbNy4EaFQCBMTE7j//vtRKpWgKAoSiQR74judTqNcLsMwDPY2SLlcRjgcRjwex5EjR7Bhwwaoqor5+Xl0dXWhvb0dtm2jUqkgEokgFovhwQcfxAMPPIB0Ol3nyTRNqKqKaDSKSCTCVi9IpVLXeDp27BjWrVv3tmOv9taNmzqtZey5mU/lchkLCwvYsGEDqtVq03oql8vI5/O45ZZbYJrmqnqEaE+1NyBuvvlmVKtVoX1vpR5xxx13cPnOjUQiuHz5Mm6//XbEYjHX30+xWAwXL17EbbfdVveGmdNzwomJiYYtjUU3QoimptX3CCEIgiAIgiAIgiCI1bB8jxDCn6xm34617BGy0mdpjxCC4A+vPUJkh/YIIQjCEZVKBadPn2Zr/jUzsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz0Mw8Brr73GnphuNF7nIzIeT20eWm1tbfjoRz/K9t/w6rMEf2Sbt06R0YeXOYmM5adzMN7QjRCCaGKWb6zXzMjmxet8RMbjqc1Dy42GbOOk1fFLPWTzQf1HnB71H//gp3rI5oV6kDgtpxqyjZFWx0/1WL65b6PxOh+R8Xhq89Bavom4V58l+CPbvHWKjD68zElkLD+dg/GGlsYimhpaGosgCIIgCIIgCIIgbgwtjdUa0NJY149FELJCS2OJh27nEkQTY5omRkdHYZpmo1NxjWxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FQPmZ7SBeiNNJFaiqJg8+bNUBTF088S/JFt3jpFRh9e5iQylp/OwXhDN0IIookpFot47LHHUCwWG52Ka2Tz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir46d66LqOl156CbquNzoVAN7nIzIeT20eWolEAvfeey8SiYSnnyX4I9u8dYqMPrzMSWQsP52D8YaWxiKaGloaiyAIgiAIgiAIgiBuDC2N1RrQ0ljXj0UQskJLY4mH3gghCIIgCIIgCIIgCIIgCIIgCMK30I0QwhfEYjH2mqZlWchms6i97JTP59mrZpVKBaVSCcDiGnXZbJZp5HI5GIYBACiXyyiXywAAwzCQy+XYcdlslq1rVyqVUKlUACy+1pbP5wEA1WoV2WwWlmUBWHwNTFVVAICmaSgUCgCuXROwUChA0zQAgKqq7LWxt/OUy+Xw6U9/GpOTk03vaXx8HJ/+9KeRy+WkqNP09DTLx22dgBuPvdnZWRw6dAhTU1PcPV29ehWHDh3C9PS0FHV68803cejQIeRyuTV7qo35q1evAuA7n1ZTp2aZT155mpmZYeOhmT1NTk4yHzLUaW5ujuXDo05e9ojlniYnJ3Ho0CHMzc1xGXu1XGdmZhzVaWxsjP1uW/k71w99b35+Hp/+9KdZvs3s6a233sKhQ4cwPz8vRZ2WzhMvxl5tbo2NjXH3tFRbhjo5/Xuv5mN8fJzViXpE4zzV6jE3N9d0nlRVZT/X/rZ+9tlnoaoqVFVlOei6XndcLZ9qtXrNcbXamqZ5zXG1XDVNqzuulrdt23XH5XI5/Od//ifLc/lxNVRVZb9XwzDqcl1+3PU8qaqK//zP/2TnfDw9VSoVPPvss8jlcnW5OvHkpE4dHR0IhUIAFpe2uuWWW3Dw4EGsX78eyWSy7rhgcPHSYDKZRDQaBVB/jeWmm27CX/3VXyGdTrP8arlaloX29nYAi3uJdHR0ME/pdBrhcBgAEI/HEY/HAQDhcJhpLa9Te3s72traAACRSASpVAoAEAgErvEUi8UAANFolHkKBoNv6+l6Y0/TNNd1WsvYq/3+ncynfD7P5kkze1o631fbI0R7KhaLePbZZ1EqlYT3vZV6BK/v3Lm5ORw6dAiTk5Ncvp8WFhZw6NAhTExMcD0nbAR0I4TwBZ2dndizZw+AxQtzmUyGTc6jR49ieHgYAHD27FmcOnUKwOIF3UwmwzQOHz6MkZERAMCZM2dw5swZAMDIyAgOHz7MjstkMuwk5NSpUzh79iwAYHh4GEePHgWw2DgymQxmZmYAACdPnkRvby8AYGBgAMePHwew2BwymQxrRsePH8fAwAAAoLe3FydPnryup3g8jttvvx09PT1N7+nkyZPYvn074vG4FHV69dVX2R9rbusE3HjsTU1N4a677sJzzz3H3dP58+dx11134dVXX5WiTsePH8ddd92FeDy+Zk/xeBzpdBrnz58HwHc+raZOzTKfvPI0NjYGRVEQj8eb2lNPTw9uv/12xONxKeq0sLAAXdfZyaLoscezRyz31NPTg7vuugsLCwtcxt4LL7yAu+66C2NjY47q9Oijj2LXrl2Ix+Mt/Z3rh75XLpeh6zq7INLMnp5++mncddddKJfLUtTp0UcfxZ133ol4PO7J2IvH4/iFX/gFPProo9w9xeNxfOxjH8Ojjz4qRZ2c/r0Xj8exfft29nulHtFYT/F4HLquY2Fhoek8nTt3jv28sLCAoaEhbN26FeFwGH19fSyHy5cv48qVKyxuLR/LstDX18cuwA0PD7PaTk1NYWhoiHnv6+tjuQ4NDWFqaorlV8u7XC6jr6+PXYx75ZVXsGHDBoTDYVy5cgWXL19mv6O+vj7mqb+/n/3+R0ZG6jz19/ez427kKRwO473vfS8GBwe5ewoGg9i6dSteeeUVNgacelprnWzbRnd3N9avXw8A2LNnD973vvfhiSeewHve8x50dXUBWLzQ2t3dzW42dHV1YceOHQDqr7G0t7cjGo2yOo2NjTFPc3Nz2L17NwBg06ZN6O7uZp7279+PLVu2AAB27dqFXbt2AQC2bNmC/fv319WpdhF29+7d2LlzJwBg27Zt2Lt3L4DFmx3LPXV2dgIAduzYwTylUqm39XS9sTcwMOC6TmsZe4Dz+XT58mXccsstCIfDTe1pcHAQW7ZsQTgcXnWPEO1pcnISW7duRS6XE973VuoRvL5zFxYWcNddd6Gnp4fL95Npmrjrrrvw5JNPcj0nbAS0RwjR1NTWlYvFYlAUBb29vdi6dSsKhQLS6TQCgQDy+TxisRgikQgqlQps20Z7eztM00SxWGRPLORyOcTjcYTDYdbg4vE4DMNAuVxmTyxks1kkEgkoioJSqYRgMIi2tjboug5VVZFKpdjd7WQyiVAohGKxCEVREIvFoGkadF1HMpmEbdvI5/NIpVIIBoMoFAqIRCKIRqPs7n4ikYBlWeSJPJEn8kSeyBN5Ik/kiTyRJ/JEnsiTY0+1i5fhcBiWZcEwDPZUvaqqiEQiCAaD0HUdgUCAHWeaJqLRKKrVKjRNqzsuGAxCURSYpgnLsuqOi0ajCAQC0DQNoVCIHWfbNiKRCGzbhq7rdccpioJQKATDMFCtVuuOW5prOBxmxwEgT0s8TU5O4sCBAygUCrAsC4lEAqZpQlVVRKNRRCIRfPGLX0S1WsWBAweQz+dh2zaSySR0XYemaewaS7FYRCgUQjKZZG+BP/7449i4cSNCoRAmJiZw//33o1QqQVEUJBIJ9sR3Op1GuVyGYRjsAZ9yuYxwOIx4PI4jR45gw4YNUFUV8/Pz6OrqQnt7O2zbRqVSQSQSQSwWw4MPPogHHngA6XT6up4KhQKCwSBSqdQ1no4dO4Z169ZJVSc/jj3y5M7THXfc0RLfTxMTEw3bI4RuhBBNTatvll4ul3HmzBn2dGszI5sXr/MRGY+nNg8tNxqyjZNWxy/1kM0H9R9xetR//IOf6iGbF+pB4rScasg2RlqdZq7H8s3SDcPAyMgIeyq70Xidj8h4PLXXqrXSxuPxeBy7du3CmTNnUC6X17RZ+kqfpc3SG4ds89YpMvrwMqeVYvHaLF32czDaLJ0gCIIgCIIgCIIgCIIgCIIgCEIA9EYI0dS0+hshBEEQBEEQBEEQBLEalr8RQviT1bylsZY3Qlb6LL0RQhD84fVGiOzQGyEEQTjCMAxcvHiRrXnYzMjmxet8RMbjqc1Dy42GbOOk1fFLPWTzQf1HnB71H//gp3rI5oV6kDgtpxqyjZFWx0/1sCwLs7OzbCPiRuN1PiLj8dTmoRUOh9mG615+luCPbPPWKTL68DInkbH8dA7GG7oRQhBNTLlcxhNPPME2SmpmZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvjp3rIdHEKoBuxIrXi8TjuuusuR+v7u/kswR/Z5q1TZPThZU4iY/npHIw3tDQW0dTQ0lgEQRAEQRAEQRAEcWNoaazWgJbGun4sgpAVWhpLPPRGCEEQBEEQBEEQBEEQBEEQBEEQvoVuhBBEE5PNZvHggw8im802OhXXyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/VQVRVnz56FqqqNTgWA9/mIjMdTm4dWR0cHPvWpT6Gjo8PTzxL8kW3eOkVGH17mJDKWn87BeENLYxFNTasvjWWaJsbHx7Fp0yYoitLodFwhmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWp1mrsfypbFs20Y+n0cqlUIw2PjnZL3OR2Q8ntpr1VppmSlFUbBp0yaMj4/DNM01LY210mdpaazGIdu8dYqMPrzMaaVYvJbGkv0crJHXcpvrW5sgiDoURcHmzZsbnQYXZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvjp3oEg0GpnvL3Oh+R8Xhq89AyTROjo6Oef5bgj2zz1iky+vAyJ5Gx/HQOxhs5brkRhEtisRgSiQQAwLIsZLNZ1F52yufz0HUdAFCpVFAqlQAsfpkvfS0rl8vBMAwAQLlcRrlcBgAYhoFcLseOy2azME0TAFAqlVCpVAAAuq4jn88DAKrVKrLZLCzLAgAUi0X2upumaSgUCgAW7wBns1nYtg0AKBQK0DQNwOJrcsVi8bqeSqUSjh8/junp6ab3NDU1ha9+9assfqPrND8/j6985SsolUqu6wTceOxls1mcOHECMzMz3D3Nzc3hxIkTmJ+fl6JOk5OTOHHiBEql0po9lUolfOUrX8Hc3BwAvvNpNXVqlvnklaeFhQV8+ctfRqlUampP09PTOH78OEqlkhR1yuVy7PfKo05e9ojlnqanp3HixAnW59zUqVQqYXZ2FidOnMDCwoKjOr311lv42te+hlKp1NLfuX7oe/l8Hl/+8pfr/rtZPdXmST6fl6JOS+eJF2OvVCrhq1/9Kt566y3unkqlEr72ta/hrbfekqJOTv/eq/2OpqamWJ2oRzTOU6lUwpe//OW6/24WT6qqsp8ty0KhUMD58+eh6zpUVWU56Lped1wtn2q1es1xtdqapnnNcbVcNU2rO66Wt23bdccVCgUMDQ2x+MuPq6GqKvu9GoZRl+vy467nSdd1DA0NIZ/Pc/ekaRrOnz+PQqFQl6sTT07q1NHRgVAoBABIJBK4+eabcffdd+Omm25CMpmsO672NHoymUQ0GgVQf40lmUzi93//99He3s7yq+VqWRb7/xVFqbuwm06nEQ6HAQDxeBzxeBwAEA6HkU6nV6xTe3s72traAACRSASpVAoAEAgErvEUi8UAANFolHmqXVxeydP1xp6maa7rtJaxV/v9O5lPxWIRL7/8Mju+WT3l83k231fbI0R7KpVKOH/+PCqVivC+t1KP4PWdm8vlcOLECUxPT3P5fioUCjhx4gSuXr3K9ZywEdCNEMIXdHZ2Ys+ePQCAmZkZZDIZNjmPHj2K4eFhAMDZs2dx6tQpAMD4+DgymQzTOHz4MEZGRgAAZ86cwZkzZwAAIyMjOHz4MDsuk8lgfHwcAHDq1CmcPXsWADA8PIyjR48CWGwcmUwGMzMzAICTJ0+it7cXADAwMIDjx48DWGwOmUyGNaPjx49jYGAAANDb24uTJ09e11MwGESxWMQzzzzT9J6+9rWvwbIsBINBKep04cIFTE5OIhgMuq4TcOOxNzY2ho6ODvzHf/wHd08vvvgiOjo6cOHCBSnq9Nhjj7E/TtfqKRgMYnp6Gi+++CIAvvNpNXVqlvnkladXX30V4+PjCAaDTe3pmWeeQbFYRDAYlKJOU1NTeP3119kJnOixx7NHLPf0zDPPoKOjA1NTU1zGXm9vLzo6OvDqq686qtMjjzyCeDyOYDDY0t+5fuh78/PzeP3119kJYTN7+ta3voWOjg7Mz89LUadHHnkEkUgEwWDQk7EXDAahKAoeeeQR7p6CwSCSySQeeeQRKerk9O+9YDAIy7LYUjbUIxrrKRgM4vXXX2c3pprJ07lz59jPCwsLeOmllxCLxRAIBNDX18dyuHz5Mq5cucLi1vKxLAt9fX3sAtzw8DCr7dTUFIaGhpj3vr4+luvQ0BD7fY2Pj7O8y+Uy+vr62MW4CxcuwLZtBAIBXLlyBZcvX2a/o76+Puapv78fCwsLrDZLPfX397PjbuQpEAggGo1iYGCAuyfbthGLxXDhwgU2Bpx6WmudbNtGd3c31q9fDwDYs2cPPvCBDyCbzeJ973sfurq6ACxeaO3u7mY3G7q6urBjxw4A9ddYbr75ZmzZsoXd1BgbG2Oe5ubmsHv3bgDApk2b0N3dzTzt378fW7ZsAQDs2rULu3btAgBs2bIF+/fvr6tT7SLs7t27sXPnTgDAtm3bsHfvXgCLNzuWe+rs7AQA7Nixg3lKpVJv6+l6Y29gYMB1ndYy9gDn8+mVV15h86SZPQ0MDCAcDiMQCKy6R4j2NDExgVgshvn5eeF9b6Uewes7d2pqCh0dHXjmmWe4fD+VSiV0dHTg61//OtdzwkZAe4QQTU1tXblYLAZFUdDb24utW7eiUCggnU4jEAggn88jFoshEomgUqnAtm20t7fDNE0Ui0X2xEIul0M8Hkc4HGYNLh6PwzAMlMtl9sRCNptFIpGAoigolUoIBoNoa2tjT2ekUilUq1Xkcjkkk0mEQiEUi0UoioJYLMaePEkmk9esCVgoFBCJRBCNRqGqKkzTRCKRYE+BkCfyRJ7IE3kiT+SJPJEn8kSeyBN5Ik9OPNUuXobDYViWBcMw2FP1qqqym6C6riMQCLDjTNNENBpFtVqFpml1x9VuZpqmCcuy6o6LRqMIBALQNA2hUIgdZ9s2IpEIbNuGrut1xymKglAoBMMwUK1W645bmms4HGbHASBPSzxNTk7iwIED7EnzRCIB0zShqiqi0SgikQi++MUvolqt4sCBA+yNmGQyyZ7Or11jKRaLCIVCSCaTyOVyqFarePzxx7Fx40aEQiFMTEzg/vvvR6lUgqIoSCQS7InvdDqNcrkMwzDY2yDlchnhcBjxeBxHjhzBhg0boKoq5ufn0dXVhfb2dti2jUqlgkgkglgshgcffBAPPPAA0un0dT0VCgUEg0GkUqlrPB07dgzr1q2Tqk5+HHvkyZ2nO+64oyW+nyYmJhq2RwjdCCGamlbfLF3XdQwPD2Pbtm2IRCKNTscVsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNVp5npcuXIFb7zxBvtvy7IwMzOD9evXsyWHGonX+YiMx1N7rVorbTweiUSwbds2DA8PQ9f1NW2WvtJnabP0xiHbvHWKjD68zGmlWLw2S5f9HKyR13JpaSyCaGJUVUVPT0/dGofNimxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FSP2ibYtXXsG43X+YiMx1Obh1YsFsOdd97JnoT36rMEf2Sbt06R0YeXOYmM5adzMN7QGyFEU9Pqb4QQBEEQBEEQBEEQxGpY/kYI4U9W85bGWt4IWemz9EYIQfCH1xshskNvhBAE4YhqtQpVVeGH+5myefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTParVKkzTlMaL1/mIjMdTm4dWIBBgG657+VmCP7LNW6fI6MPLnET3H7+cg/GGboQQRBOTy+Xwmc98BrlcrtGpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qh6Zp+OEPfwhN0xqdCgDv8xEZj6c2D610Oo2DBw+yDZW9+izBH9nmrVNk9OFlTiJj+ekcjDe0NBbR1LT60lgybi7lFNm80EZ94rTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXWauR7Ll8aybRvlchnxeBzBYOOfk/U6H5HxeGqvVWulZaZCoRDWr1+PmZkZWJa1pqWxVvosLY3VOGSbt06R0YeXOa0Ui9fSWLKfgzXyWq7iSRSCIIQQCoV882Uumxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1SMYDCKRSDQ6DYbX+YiMx1Obh5ZlWZiamvL8swR/ZJu3TpHRh5c5iYzlp3Mw3shxy40gCEcUi0UcO3YMxWKx0am4RjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHrusYHByEruuNTgWA9/mIjMdTm4dWIpHAvffe6+jCq5vPEvyRbd46RUYfXuYkMpafzsF4QzdCCKKJURQFmzdvhqI0/8tdsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz2CwSA6OjqkWZbG63xExuOpzUPLNE2Mjo7CNE1PP0vwR7Z56xQZfXiZk8hYfjoH4w3tEUI0Na2+RwhBEARBEARBEARBrIble4QQ/mQ1+3asZY+QlT5Le4QQBH947REiO428livPbTeCINaMpmno7e2FpmmNTsU1snnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz1M08T4+Lg0T/p7nY/IeDy1eWhFo1F0dnYiGo16+lmCP7LNW6fI6MPLnETG8tM5GG/oRghBNDEyrqnoFNm80Pq04rTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXX8VI/aJtiWZTU6FQDe5yMyHk9tHlqRSATbt29HJBLx9LMEf2Sbt06R0YeXOYmM5adzMN7QjRDCF8RiMbZxl2VZyGazqK36ls/n2WSrVCoolUoAFu++ZrNZppHL5WAYBgCgXC6jXC4DAAzDQC6XY8dls1l2x7ZUKqFSqQBYnNj5fB4AUK1Wkc1mWUMrFotQVRXA4p3QQqEAALBtG9lsFrZtAwAKhQK7Q6qqKttI6O08JZNJfPzjH2drCjazp2q1ir179yKZTEpRp0gkgq6uLiSTSdd1Am489mKxGPbt24dQKMTdUzgcxr59+xCJRKSok23b2LdvH5LJ5Jo9JZNJ/M//+T8RDocB8J1Pq6lTs8wnrzxFo1H83u/9HpLJZFN7CgaD+PjHP45kMilFndra2nD33XcjmUxyqZOXPWK5p2AwiH379qGtrY3L2FMUBfv27UM0GnVUJ8uy8Md//MdIJpMt/Z3rh74Xj8dx9913s7//mtlTIBDAvn37EI/HpaiTZVn4oz/6IySTSU/GXjKZxB/+4R/WXQjg5SmZTOL++++HZVlS1Mnp33vJZBJ79+6t+3uMekTjPCWTSdx9991oa2trOk+qqrKfLctCtVrFhz70IUSjUaiqynLQdb3uuFo+1Wr1muNqtTVN85rjarlqmlZ3XC1v27brjgOAHTt2IBqNwjCMa46roaoq+70ahlGX6/LjrucpGo3igx/8IKrVKndPkUgEH/rQh1i8Wq5OPDmpU0dHB0KhEIDFzc4Nw8CRI0fY3zRLj6v9bZNMJtlbH0uvsZTLZZw4cYKNRcMwWK6WZaG9vR3A4j4AHR0dzFM6nWbnbfF4HPF4HAAQDoeRTqdXrFN7ezubW5FIBKlUCgAQCASu8RSLxQAsnpPUPC3fd2Gpp+uNPU3TXNdpLWOv9vt3Mp8AYPv27YhGo03tqVqt4oMf/CCi0eiqe4RoT8FgEB/60IegKIrwvrdSj+D1ndvW1oZ9+/YhGAxy+X5qb2/Hvn372L/XfnduzwkbAd0IIXxBZ2cn9uzZAwCYmZlBJpNhk/Po0aMYHh4GAJw9exanTp0CAIyPjyOTyTCNw4cPY2RkBABw5swZnDlzBgAwMjKCw4cPs+MymQzGx8cBAKdOncLZs2cBAMPDwzh69CiAxcaQyWQwMzMDADh58iR6e3sBAAMDAzh+/DiAxeaQyWRYMzp+/DgGBgYAAL29vTh58uR1Pdm2jTNnzuDJJ5/0haf+/n7Yti1FnV588UU8/vjjsG3bdZ2AG4+9V199FdlsFk8//TR3T88//zyy2SxefPFFaepUO9lbqyfbtnHixAk8//zzAPjOp9XUqZnmkxeeLly4gC996UuwbbupPT355JM4c+YMbNuWok5jY2PIZDLsj23RY493j1jq6cknn0Q2m2We3NTp1KlT6OnpQTabxYULFxzXaXx8HLZtt/x3brP3vatXryKTybCTu2b3lM1mmScZ6vT666/Dtm1Pxp5t27h48aIQT7ZtY3p6Wpo6Of17z7Zt9Pf3U4+QxFPtb9ixsbGm83Tu3Dn288LCAvr7+9mFu76+PpbD5cuXceXKFRa3lo9lWejr62MX4IaHh1ltp6amMDQ0xLz39fWxXIeGhjA1NcXyq+VdLpfR19fHLsYNDAzgrbfeQrVaxZUrV3D58mX2O+rr62Oe+vv7sbCwwGqz3FONG3mqVqsolUpCPJmmCVVVMTAwwMaAG09rqZNt2+ju7sb69esBAHv27MHP/dzPoaOjAx/4wAfQ1dUFYPFCa3d3N7vZ0NXVhR07dgCov8Zyyy23oLu7m914GBsbY57m5uawe/duAMCmTZvQ3d3NPO3fvx9btmwBAOzatQu7du0CAGzZsgX79++vq1PtIuzu3buxc+dOAMC2bduwd+9eAIs3O5Z76uzsBLB486zmKZVKva2nG409HnVa6knkfHrzzTdRrVab3lM+n0e1Wl1TjxDtSVVVTE9PC+97K/UIXt+5Y2NjyGazePLJJ7l8P2WzWWSzWe7nhI2ANksnmpraBjuxWAyKoqC3txdbt25FoVBAOp1GIBBAPp9HLBZDJBJBpVKBbdtob2+HaZooFovsiYVcLod4PI5wOMwaXDweh2EYKJfL7ImFbDaLRCIBRVFQKpUQDAbR1tYGXdehqipSqRSq1SpyuRySySRCoRCKxSIURUEsFoOmaewpjNpF9lQqhWAwiEKhgEgkwp70ME0TiUQClmWt6KlcLiOTyeCP/uiPsHHjxqb29Oabb+Lo0aP4xCc+gWg02vA6Xb16FUeOHMEnPvEJpFIpV3VazdjTdR1f+MIX8Md//MdIp9NcPZVKJRw5coQ9xdjoOk1OTuLRRx/FJz7xCQBYk6dCoYBMJoN9+/bh1ltv5Tqf/NgjRHuanp7G4cOH8YlPfALpdLppPb311lt45JFH8IlPfALxeLzhdZqdncXnP/95fOITn0BHR4fwscezRyz3tLCwgEceeQR/8id/UveUoFNPhUIBDz/8MPbv349YLLbmOo2Pj7P+EwqFWvY71w99b25uDv/0T/+EP/uzP8NNN93U1J7m5ubwpS99CX/6p3+KUCjU8Dq9+eabbJ4oiiJ87BmGgUwmg/vuuw8/9mM/xtVT7YL1fffdh3e9610Nr5PTv/dqFyz27t2L2267jXpEgz1ls1lkMhn8yZ/8CdatW9dUni5duoSxsTGEw2FYloVisYjBwUHccccdABafwA8Gg9B1HYFAgB1nmiai0Siq1So0Tas7LhgMQlEUmKYJy7LqjotGowgEAtA0DaFQiB1n2zYikQhs24au6+y4XC7H8gmFQqhWq3XH1S7Eq6qKcDiMUCjEnpCu5WoYRt1x1/NUu7Gwfft2JJNJrp6q1Sp+9KMfYfv27UgkEixXJ57WWqfJyUkcOHAAhUIBlmUhkUigvb0d+/fvxxe+8AVUKhV88YtfRLVaxYEDB5DP52HbNns7WtM0do2lWCzi5ptvxp/92Z/hoYceQjabxeOPP46NGzciFAphYmIC999/P3tzN5FIsCe+0+k0yuUyDMNgb4OUy2WEw2HE43EcOXIEGzZsgKqqmJ+fR1dXF9rb22HbNiqVCiKRCGKxGB588EE88MADSKfTdZ5qF5Kj0Sh7szkYDLLz96Wejh07hnXr1r3t2NM0DYqiuKrTWsaem/mUz+cxMDCAO+64A4qiNK2nfD7PxnUgEFhVjxDtSdd1vPDCC+ytEJF9b6Uecccdd3D5zjVNE5///OfxR3/0R7jppptcfz/Zto3/9//+H/7gD/4A69evd31OODEx0bDN0ulGCNHU1G6E1PBy8sjA8j+amxnZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6jRzPa5cuYI33niD/ffyC3eNxut8RMbjqb1WrampKdxzzz11/9/yGwRf+9rXAOCa41Zipc9u2LDhbWOtltXq/OM//iM++clPOoqxUqxmR7Z56xQZfXiZ00qx7rzzTi7asp+DNfJaruJJFIIghFBb/9IPyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/UIBALsyWgZ8DofkfF4avPQqq317/VnCf7INm+dIqMPL3MSGctP52C8aa7HFwiCqKNQKODIkSNsI6NmRjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHpmno7+9n67o3Gq/zERmPpzYPrWQyiX379rFNxb36LMEf2eatU2T04WVOImP56RyMN3QjhCCamEgkgu3btyMSiTQ6FdfI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9QiFQtiwYQNCoVCjUwHgfT4i4/HU5qGl6zoGBweh67qnnyX4I9u8dYqMPrzMSWQsP52D8Yb2CCGamlbfI4QgCIIgCIIgCIIgVsPyPUIIf7KafTvWskfISp+lPUIIgj+89giRnUZey6U3QgiiiVFVFT09PVBVtdGpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qh2maGB0dhWmajU4FgPf5iIzHU5uHViwWw5133uloTwI3nyX4I9u8dYqMPrzMSWQsP52D8YZuhBBEEyPjF4dTZPNCf4SL03KjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPWqbYNu23ehUAHifj8h4PLV5aCmKgs2bN0NRFE8/S/BHtnnrFBl9eJmTyFh+OgfjDS2NRTQ1tDQWQRAEQRAEQRAEQdwYWhqrNdB1Hbt3737bPT0ikQhOnTqF+fl5WhqLICSClsYSD70RQhBNjGVZmJqagmVZjU7FNbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9bNtGsViU5olsr/MRGY+n9lq1IpEIfuEXfqHu/1u6MfMv/MIvrGnTYhk3tW5lZJu3TpHRh5c5iYzlp3Mw3tCNEIJoYgqFAh5++GEUCoVGp+Ia2bx4nY/IeDy1eWi50ZBtnLQ6fqmHbD6o/4jTo/7jH/xUD9m8UA8Sp+VUQ7Yx0ur4qR66ruOFF1542zcHvMbrfETG46ntROsv//Iv8Uu/9EvshkcymcS+ffvwq7/6q/jLv/zLNcWvfTaZTK7pc4QYZJu3TpHRh5c5iYzlp3Mw3tDSWERT0+pLY1WrVWiahmg0ikAg0Oh0XCGbF6/zERmPpzYPLTcaso2TVscv9ZDNB/UfcXrUf/yDn+ohmxfqQeK0nGrINkZanWaux/KlsarVKizLQigUksKL1/mIjMdT242WruuYn59HtVpFOp1GW1sb01jtslaBQADRaBSapqFardLSWA1GtnnrFBl9eJnTSrF4LY0l+zlYI6/l0k5HBNHEBAIBxGKxRqfBBdm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+KkegUBAqg2wvc5HZDye2m60IpGI6xsA1WoVqqq60iD4Idu8dYqMPrzMSXT/8cs5GG9oaSyCaGLy+Tweeugh5PP5RqfiGtm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+Kkemqaht7cXmqY1OhUA3ucjMh5PbR5abjRSqRS6u7uRSqUcxyf4Idu8dYqMPrzMSWQsP52D8YZuhBBEExOLxXDnnXdKc2fVDbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9FEXB5s2bpXkq2+t8RMbjqc1Dy42Gqqro6emht0IkQbZ56xQZfXiZk8hYfjoH4w3tEUI0Na2+RwhBEARBEARBEARBrIble4QQrY3T/T1ojxCCEAOvPUJkp5HXcumNEMIXxGIxJBIJAIBlWchms6jd48vn89B1HQBQqVRQKpUAAKZpIpvNMo1cLgfDMAAA5XIZ5XIZAGAYBnK5HDsum83CNE0AQKlUQqVSAbC4CVntNa9qtYpsNgvLsgAAxWKRPT2haRoKhQIAwLZtZLNZ2LYNACgUCuy1OFVVUSwWr+upUqngW9/6FmZnZ5ve0/T0NJ566ilUKhUp6pTNZvHkk0+iUqm4rhNw47GXz+dx+vRpzM3Ncfe0sLCA06dPI5vNSlGnq1ev4vTp06hUKmv2VKlU8OSTT2JhYQEA3/m0mjo1y3zyylMul8M3v/lNVCqVpvY0OzuLb33rW6hUKlLUqVAosN8rjzp52SOWe5qdncXp06dRKBS4jL35+XmcPn2a9c211mlqagrf+c53UKlUWvo71w99r1gs4pvf/CbLqZk9zczM4PTp0ygWi1LUaWpqCt/+9rdRqVQ8GXuVSgXf/va3MTU1xd1TpVLBd77zHUxNTUlRJ6d/71UqFTz11FOYnp5mdaIe0ThPlUoF3/zmN1lOzeRJVVX2s2VZKBaLeO2112AYBlRVZTnoul53XC2f2l4RS4+r1dY0zWuOq+WqaVrdcbW8bduuO65YLOLy5cswDAOGYVxzXA1VVdnvtXZsLdflx13Pk2EYePXVV1EoFLh70nUdr732GorFYl2uTjzxqFOlUsFrr72GSqVSd1xHRweCwcVLg8lkEtFoFED9NZb29nb8t//239DW1sbyq+VqWRba29sBLD7h3tHRwTyl02mEw2EAQDweRzweBwCEw2Gk0+kV69Te3s7iRCIRthxXIBBAR0cHQqEQACCRSLCny6PRKJLJJAAgGAy+rafrjT1N01zXaS1j7+3qtJqxVyqV2DxpZk+FQgGvvvoqDMNYdY8Q7alcLuO1116DqqrC+95KPYLXd26hUMDp06cxOzvL5fupVCrh9OnTmJ6e5npO2AjoRgjhCzo7O7Fnzx4AwMzMDDKZDJucR48exfDwMADg7NmzOHXqFABgfHwcmUyGaRw+fBgjIyMAgDNnzuDMmTMAgJGRERw+fJgdl8lkMD4+DgA4deoUzp49CwAYHh7G0aNHASw2jkwmg5mZGQDAyZMn0dvbCwAYGBjA8ePHASw2h0wmw5rR8ePHMTAwAADo7e3FyZMnr+vJtm28/vrrePrpp5ve0/HjxzE+Pg7btqWo08svv8x+x27rBNx47L3++uvIZrP4wQ9+wN3TuXPnkM1m8fLLL0tRp0cffZSd7K3Vk23buHjxIs6dOweA73xaTZ2aZT555enixYs4f/48bNtuak9PP/00Xn/9ddi2LU2dBgcH2R/boscezx6x3NPTTz+NbDbLbez98Ic/RDabxcWLFx3V6eGHH8bs7Cxs227p71y/9L3BwUF2ctfMnp588klks1lp6vTwww9jenoatm17MvZqNykffvhh7p5s28b8/DwefvhhKerk9O8927YxPj7OcqUe0VhPtm1jcHCwKT2dO3eO/bywsIDBwUF24a6vr4/lcPnyZVy5coXFreVjWRb6+vrYBbjh4WH2e5iamsLQ0BDz3tfXx3IdGhpiNzvHx8dZ3uVyGX19fexi3Pnz55HP51GtVnHlyhVcvnyZ/Y76+vqYp/7+fvZg1MjISJ2n/v5+dtyNPFWrVVQqFbz44ovcPZmmCVVVcf78eTYGnHriUae33noLqqpienqaeTJNs27vj66uLuzYsQNA/TWWW265BTt27GA3KMbGxpinubk57N69GwCwadMmdHd3M0/79+/Hli1bAAC7du3Crl27AABbtmzB/v376+pUuwi7e/du7Ny5EwCwbds27N27F8DizY7u7m6sX78eALBnzx50dnYCAHbs2IGuri4A1+5nstTT9cbewMCA6zqtZey9XZ1WM/aGh4eRy+VQrVab2lNt3lWr1VX3CNGe3nzzTaiqitnZWeF9b6UewfM7N5vN4umnn+by/ZTL5ZDNZnHy5Emu54SNgJbGIpqa2utUsVgMiqKgt7cXW7duRaFQQDqdRiAQQD6fRywWQyQSYU/3t7e3wzRNFItF9sRCLpdDPB5HOBxmDS4ej8MwDJTLZfbEQjabRSKRgKIoKJVKCAaDaGtrg67rUFUVqVQK1WoVuVwOyWQSoVAIxWIRiqIgFotB0zTouo5kMskusqdSKQSDQRQKBUQiEUSjUaiqCtM0kUgkYFkWeSJP5Ik8kSfyRJ7IE3kiT+SJPJEn8uTY06VLlzA2NoZwOAzLsmAYBnuqXlVVRCIRBINB6LqOQCDAjjNNE9FoFNVqFZqm1R0XDAahKApM04RlWXXHRaNRBAIBaJqGUCjEjrNtG5FIBLZtQ9f1uuMURUEoFIJhGKhWq3XHLc01HA6z4wCQJweeJicnceDAAeTzedi2jWQyCV3XoWkau8ZSLBYRCoWQTCbZxffHH38cGzduRCgUwsTEBO6//36USiUoioJEIsGe+E6n0yiXyzAMg70NUi6XEQ6HEY/HceTIEWzYsAGqqmJ+fh5dXV1ob2+HbduoVCqIRCKIxWJ48MEH8cADDyCdTqNQKMCyLCQSCXYhORqNIhKJoFAoIBgMIpVKXePp2LFjWLduXVPWyY9jjzyt7OmOO+5oie+niYmJhi2NRTdCiKam1fcIMU0T4+Pj2LRpk1QbTDlBNi9e5yMyHk9tHlpuNGQbJ62OX+ohmw/qP+L0qP/4Bz/VQzYv1IPEaTnVkG2MtDrNXI/le4Qsv8jVaLzOR2Q8nto8tFbSWO3+HoqiYNOmTRgfH4dpmrRHSIORbd46RUYfXua0Uixee4TIfg5Ge4QQBOGIYrGIxx57jK3L18zI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9dB1HS+99BJby73ReJ2PyHg8tXloudFIJBK499572Z4hRGORbd46RUYfXuYkMpafzsF4Q2+EEE1Nq78RQhAEQRAEQRAEQRCrYfkbIURr4/RtDnojhCDEwOuNENmhN0IIgiAIgiAIgiAIgiAIgiAIgiAEQDdCCKKJyeVyOHToEHK5XKNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD1VV8eyzz0JV1UanAsD7fETG46nNQ8uNRjqdxsGDB9lmzERjkW3eOkVGH17mJDKWn87BeEM3QgiiiYnH47jrrrsQj8cbnYprZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvjp3qEw2Fs3boV4XC40akA8D4fkfF4avPQcqNRLpfxxBNPoFwuO45P8EO2eesUGX14mZPIWH46B+MN7RFCNDW0RwhBEARBEARBEARB3BjaI4RYCu0RQhByQXuEiIfeCCGIJsZPT2bI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9TAMAxcvXoRhGI1OBYD3+YiMx1Obh5YbDZme5ibkm7dOkdGHlzmJjOWnczDe0I0QgiAIgiAIgiAIgiAIgiAIgiB8Cy2NRTQ1tDQWQRAEQRAEQRAEQdwYWhqLWAotjUUQckFLY4mH3gghiCZGxlcJnSKbF3otW5yWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+phWRZmZ2dhWVajUwHgfT4i4/HU5qHlRkPGTa1bGdnmrVNk9OFlTiJj+ekcjDd0I4QgmhiZ1tlzi2xeaH1scVq0Rr9/8Es9ZPNB/UecHvUf/+CnesjmhXqQOC3aI8Qf+KkeMl2cAuhGrEgt2iPEP8g2b50iow/aI0SMnkzfm7Q0FtHU0NJYBEEQBEEQBEEQBHFjaGksYim0NBZByAUtjSUeeiOEIAiCIAiCIAiCIAiCIAiCIAjfQjdCCKKJyWazePDBB5HNZhudimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OneqiqirNnz0JV1UanAsD7fETG46nNQ8uNRkdHBz71qU+ho6PDcXyCH7LNW6fI6MPLnETG8tM5GG9oaSyiqWn1pbFM08T4+Dg2bdoERVEanY4rZPPidT4i4/HU5qHlRkO2cdLq+KUesvmg/iNOj/qPf/BTPWTzQj1InJZTDdnGSKvTzPVYvjSWbdvI5/NIpVIIBhv/nKzX+YiMx1Obh9ZKGqtd1kpRFGzatAnj4+MwTZOWxmowss1bp8jow8ucVorFa2ks2c/BGnktt7m+tQmCqENRFGzevLnRaXBBNi9e5yMyHk9tHlpuNGQbJ62OX+ohmw/qP+L0qP/4Bz/VQzYv1IPEaTnVkG2MtDp+qkcwGJTqKX+v8xEZj6c2Dy03GqZpYnR01FV8gh+yzVunyOjDy5xExvLTORhv5LjlRhCEI0qlEk6cOIFSqdToVFwjmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1UPXdZw/fx66rjc6FQDe5yMyHk9tHlpuNNrb23H33Xejvb3dcXyCH7LNW6fI6MPLnETG8tM5GG/oRghBNDG1O8iyvEboBtm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+KkegUAAsVgMgUCg0akA8D4fkfF4avPQcqNh2zay2Sxs23Ycn+CHbPPWKTL68DInkbH8dA7GG9ojhGhqWn2PEIIgCIIgCIIgCIJYDcv3CCFaG6f7e9AeIQQhBl57hMhOI6/lNv5WDEFwIBaLIZFIAAAsy0I2m0XtHl8+n2evmlUqFfYqlmmayGazTCOXy8EwDABAuVxGuVwGABiGgVwux47LZrMwTRPA4utdlUoFwOJrbfl8HgBQrVaRzWZhWRYAoFgsQlVVAICmaSgUCgCufbKiUChA0zQAgKqqKBaL1/Wk6zp+9KMfYWFhoek9zc7Oor+/H7quS1GnQqGA559/Hrquu64TcOOxVyqVMDg4iGw2y91TPp/H4OAgCoWCFHWamZnB4OAgdF1fsydd19Hb28v+jed8Wk2dmmU+eeWpWCyyedLMnhYWFvCjH/2I9dVG16lcLuO5555j/yZ67PHsEcs9LSwsYHBwEOVymcvYy+VyGBwcZHmvtU7T09N48cUXoet6S3/n+qHvVSoVPPfcc+zfmtnT/Pw8BgcHUalUpKjT0nnixdjTdR0vvPACpqenuXvSdR0DAwOYnp6Wok5O/97TdR39/f2YnZ1ldaIe0ThPuq7jueeeY//WTJ5UVWU/W5aFUqmEqakpWJYFVVVZDrqu1x1Xy6darV5zXK22pmlec1wtV03T6o6r5W3bdt1x5XIZb731FizLgmEY1xxXQ1VV9ns1DKMu1+XHXc+TZVmYnJxEqVTi7sk0TUxNTaFcLtfl6sQTjzppmoapqSlomlZ33NKntJPJJKLRKID6ayyxWAw///M/j0gkwvKr5WpZFlsyS1GUuj0P0uk0wuEwACAejyMejwMAwuEw0un0inVqb29HW1sbACASiSCVSgFYfHq+o6MDoVAIAJBIJBCLxQAA0WgUyWQSwLVPni/1dL2xVxsPbuq0lrH3dnVazdgrl8uYmJiAZVlN7alUKmFycpJ9fjU9QrQnVVUxNTXF5oybOjnpEby+c8vlMgYHB7GwsMDl+0lVVQwODmJubo7rOWEjoBshhC/o7OzEnj17AAAzMzPIZDJsch49ehTDw8MAgLNnz+LUqVMAgPHxcWQyGaZx+PBhjIyMAADOnDmDM2fOAABGRkZw+PBhdlwmk8H4+DgA4NSpUzh79iwAYHh4GEePHgWw2DgymQxmZmYAACdPnkRvby8AYGBgAMePHwew2BwymQxrRsePH8fAwAAAoLe3FydPnryuJ1VV8b3vfQ9PPfVU03v68pe/jO9///tQVVWKOr3wwgv47ne/C1VVXdcJuPHYu3TpEnp6evDMM89w9/T888+jp6cHL7zwghR1+ud//mf09PRAVdU1e1JVFd/97nfx/PPPA+A7n1ZTp2aZT155GhoawjPPPANVVZva01NPPYXvfe97UFVVijq98cYb7PfKo05e9ojlnp566in09PTgjTfe4Db2enp6MDQ05KhOhw8fZv2nlb9z/dD3JiYm8Mwzz7ATv2b29I1vfAM9PT2YmJiQok6HDx/GD37wA6iq6snYU1UVP/jBD+py5eVJVVX09PTg8OHDUtTJ6d97qqri+9//Pr785S+zOlGPaJwnVVXxzDPPsDcrmsnTuXPn2M8LCwsYGBjA6OgoTNNEX18fy+Hy5cu4cuUKi1vLx7Is9PX1sQtww8PDrLZTU1MYGhpi3vv6+liuQ0NDmJqaYvnV8i6Xy+jr62MX41566SW88cYbME0TV65cweXLl9nvqK+vj3nq7+9nDyaMjIzUeerv72fH3chTbRPw/v5+7p40TcPo6CheeuklNgaceuJRpzfffBOjo6OYnJxknkzTRHd3N7vZ0NXVhR07dgCov8byrne9C7t27WI3L8bGxpinubk57N69GwCwadMmdHd3M0/79+/Hli1bAAC7du3Crl27AABbtmzB/v376+pU+7t39+7d2LlzJwBg27Zt2Lt3L4DFmx3d3d1Yv349AGDPnj3o7OwEAOzYsQNdXV0AgFQq9baerjf2BgYGXNdpLWPv7eq0mrF34cIFNk+a2VN/fz8b16vtEV54Gh0dxdWrV4X3vZV6BK/v3DfeeAM9PT146qmnuHw/zczMoKenB//yL//C9ZywEdDSWERTU3udKhaLQVEU9Pb2YuvWrSgUCkin0wgEAsjn84jFYohEIqhUKrBtG+3t7TBNE8VikT2xkMvlEI/HEQ6HWYOLx+MwDAPlcpl96WezWSQSCSiKglKphGAwiLa2Nnb3OJVKoVqtIpfLIZlMIhQKoVgsQlEUxGIxaJoGXdeRTCZh2zby+TxSqRSCwSAKhQIikQii0Si7Q5xIJGBZFnkiT+SJPJEn8kSeyBN5Ik/kiTyRJ/Lk2NOlS5cwNjaGcDjM3rqoPVWvqioikQiCwSB0XUcgEGDHmaaJaDSKarUKTdPqjgsGg1AUBaZpwrKsuuOi0SgCgQA0TUMoFGLH2baNSCQC27ah63rdcYqiIBQKwTAMVKvVuuOW5hoOh9lxAMiTA0+Tk5M4cOAA8vk8bNtGMplkT8LXrrEUi0WEQiEkk0nkcjlUq1U8/vjj2LhxI0KhECYmJnD//fejVCpBURQkEgn2xHc6nUa5XIZhGOxtkHK5jHA4jHg8jiNHjmDDhg3srbuuri60t7fDtm1UKhVEIhHEYjE8+OCDeOCBB5BOp1EoFGBZFhKJBEzThKqqiEajiEQiKBQKCAaDSKVS13g6duwY1q1b15R18uPYI08re7rjjjta4vtpYmKiYUtj0Y0Qoqlp9T1CljfaZkY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0Os1cj+V7hFSrVViWhVAoJIUXr/MRGY+nNg+tlTRWu79HIBBANBqFpmmoVqu0R0iDkW3eOkVGH17mtFIsXnuEyH4ORnuEEAThiFwuh8985jN16wE2K7J58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9NE3DD3/4Q7acSaPxOh+R8Xhq89Byo5FOp3Hw4MG6fT2IxiHbvHWKjD68zElkLD+dg/GG3gghmppWfyPEsizMzMxg/fr1bNOwZkU2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0Os1cj+VvhNi2jXK5jHg8zjaXbiRe5yMyHk9tHloraaz2bY5QKIT169djZmYGlmXRGyENRrZ56xQZfXiZ00qxeL0RIvs5WCOv5SqeRCEIQgihUMg3X+ayefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPYLBIBKJRKPTYHidj8h4PLV5aLnRsCyLbfpMNB7Z5q1TZPThZU4iY/npHIw3ctxyIwjCEcViEceOHUOxWGx0Kq6RzYvX+YiMx1Obh5YbDdnGSavjl3rI5oP6jzg96j/+wU/1kM0L9SBxWk41ZBsjrY6f6qHrOgYHB6HreqNTAeB9PiLj8dTmoeVGI5FI4N5775XuonWrItu8dYqMPrzMSWQsP52D8YZuhBBEE6MoCjZv3gxFaf6Xu2Tz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir46d6BINBdHR0SLMsjdf5iIzHU5uHlhsN0zQxOjoK0zQdxyf4Idu8dYqMPrzMSWQsP52D8Yb2CCGamlbfI4QgCIIgCIIgCIIgVsPyPUKI1sbp/h60RwhBiIHXHiGy08hrufLcdiMIYs1omobe3l5omtboVFwjmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1cM0TYyPj0vzpL/X+YiMx1Obh5YbjWg0is7OTkSjUcfxCX7INm+dIqMPL3MSGctP52C8oRshBNHEyLimolNk80Lr04rTcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9aptgW5bV6FQAeJ+PyHg8tXloudGIRCLYvn07IpGI4/gEP2Sbt06R0YeXOYmM5adzMN7Q0lhEU0NLYxEEQRAEQRAEQRDEjaGlsYil0NJYBCEXtDSWeOiNEIJoYmzbRjabhW3bjU7FNbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9qtUqVFWFLM/Hep2PyHg8tXloudGQcVPrVka2eesUGX14mZPIWH46B+MNdTGCaGLy+TwymQzy+XyjU3GNbF68zkdkPJ7aPLTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXX8VA9N09DX1yfFuu2A9/mIjMdTm4eWG41UKoXu7m6kUinH8Ql+yDZvnSKjDy9zEhnLT+dgvKGlsYimptWXxrJtG/l8HqlUqumfzpDNi9f5iIzHU5uHlhsN2cZJq+OXesjmg/qPOD3qP/7BT/WQzQv1IHFaTjVkGyOtTjPXY/nSWNVqFZqmIRqNIhAINDCzxuQjMh5PbR5aK2msdlmrYDCIVCqFfD4P27ZpaawGI9u8dYqMPrzMaaVYvJbGkv0crJHXchVPohAEIYTaK6p+QDYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqpHIBBALBZrdBoMr/MRGY+nNg8tNxq1ZW0IOZBt3jpFRh9e5iQylp/OwXjTXI8vEARRR6FQwJEjR1AoFBqdimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+Onemiahv7+fmmWpvE6H5HxeGrz0HKjkUwmsW/fPiSTScfxCX7INm+dIqMPL3MSGctP52C8oRshBNHERCIRbN++HZFIpNGpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qRygUwoYNGxAKhRqdCgDv8xEZj6c2Dy03GrquY3BwELquO45P8EO2eesUGX14mZPIWH46B+MN7RFCNDWtvkcIQRAEQRAEQRAEQayG5XuEEK2N0/09aI8QghADrz1CZKeR13LpjRCCaGJUVUVPTw9UVW10Kq6RzYvX+YiMx1Obh5YbDdnGSavjl3rI5oP6jzg96j/+wU/1kM0L9SBxWk41ZBsjrY6f6mGaJkZHR2GaZqNTAeB9PiLj8dTmoeVGIxaL4c4775RuP4dWRbZ56xQZfXiZk8hYfjoH4w3dCCGIJkbGLw6nyOaF/ggXp+VGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OnetQ2wbZtu9GpAPA+H5HxeGrz0HKjoSgKNm/eDEVRHMcn+CHbvHWKjD68zElkLD+dg/GGlsYimhpaGosgCIIgCIIgCIIgbgwtjUUshZbGIgi5oKWxxENvhBBEE2NZFqampmBZVqNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD9u2USwWpXki2+t8RMbjqc1Dy42GjJtatzKyzVunyOjDy5xExvLTORhv6EYIQTQxhUIBDz/8MAqFQqNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD13X8cILL0DX9UanAsD7fETG46nNQ8uNRjKZxL59+5BMJh3HJ/gh27x1iow+vMxJZCw/nYPxhpbGIpqaVl8aq1qtQtM0RKNRBAKBRqfjCtm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLqNHM9li+NVa1WYVkWQqGQFF68zkdkPJ7aPLRW0ljtslaBQADRaBSapqFardLSWA1GtnnrFBl9eJnTSrF4LY0l+zlYI6/l0k5HBNHEBAIBxGKxRqfBBdm8eJ2PyHg8tXloudGQbZy0On6ph2w+qP+I06P+4x/8VA/ZvFAPEqflVEO2MdLq+KkegUBAqg2wvc5HZDye2jy03GhUq1WoquoqPsEP2eatU2T04WVOovuPX87BeENLYxFEE5PP5/HQQw8hn883OhXXyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/XQNA29vb3QNK3RqQDwPh+R8Xhq89Byo5FKpdDd3Y1UKuU4PsEP2eatU2T04WVOImP56RyMN3QjhCCamFgshjvvvFOaO6tukM2L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+qhKAo2b94szVPZXucjMh5PbR5abjRUVUVPTw+9FSIJss1bp8jow8ucRMby0zkYb2iPEKKpafU9QgiCIAiCIAiCIAhiNSzfI4RobZzu70F7hBCEGHjtESI7jbyWS2+EEEQTU6lUcPr0aVQqlUan4hrZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHoZh4LXXXoNhGI1OBYD3+YiMx1Obh5Ybjba2Nnz0ox9FW1ub4/gEP2Sbt06R0YeXOYmM5adzMN7QjRCCaGJs20Y2m4Vt241OxTWyefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPWqbYMuyUIjX+YiMx1Obh5YbjWAwiI6ODgSDdAlRBmSbt06R0YeXOYmM5adzMN7Q0lhEU0NLYxEEQRAEQRAEQRDEjaGlsYil0NJYBCEXtDSWeOh2LuELYrEYEokEAMCyLGSzWXZXNZ/PQ9d1AIuvY5VKJQCAaZrIZrNMI5fLsVfSyuUyyuUygMXX1XK5HDsum83CNE0AQKlUYq926bqOfD4PYPHObjabhWVZAIBiscg2FtM0DYVCAcC1d0ULhQI0TQOwuCFZsVi8rifTNHHp0iWWXzN7mp+fx6uvvgrTNKWoU6lUwvDwMEzTdF0n4MZjr1KpYHR0FPl8nrunYrGI0dFRlEolKeo0NzeH0dFR9pm1eDJNE6+88grLj+d8Wk2dmmU+eeWpXC7jwoULME2zqT3lcjlcunQJpmlKUSdVVXH+/Pm6/ESOPZ49YrmnXC6H0dFRqKrKZewVCgWMjo6iXC47qtPs7Cxef/11mKbZ0t+5fuh7mqbh/PnzLL9m9pTNZjE6OgpN06So0+zsLEZGRmCapidjzzRNjIyMYHZ2lrsn0zTxxhtvYHZ2Voo6Of17zzRNvPrqq5ifn2d1oh7ROE+maeL8+fN15w3N4klVVfazZVkol8sstqqqLAdd1+uOq+VTe4J56XG12pqmec1xtVw1Tas7rpZ3LW7tuEqlgrm5Odi2DcMwrjmuhqqq7PdqGEZdrsuPu54n27axsLCAcrnM3VOtXpVKpS5XJ5541EnXdWSzWei6Xnfc0jc9kskkotEogPprLJFIBO973/vYps6GYbBcLctCe3s7gMXNnzs6OpindDqNcDgMAIjH44jH4wCAcDiMdDq9Yp3a29vZElyRSASpVAoAEAgE0NHRgVAoBABIJBJs4+VoNIpkMgng2rdXlnq63tjTNM11ndYy9t6uTqsZe0vnSTN7KpfLWFhYgG3bq+4Roj3VvuMNwxDe91bqEby+c1VVxejoKPvbo5a30+8nXdcxOjqKhYUFrueEjYBuhBC+oLOzE3v27AEAzMzMIJPJsMl59OhRDA8PAwDOnj2LU6dOAQDGx8eRyWSYxuHDhzEyMgIAOHPmDM6cOQMAGBkZweHDh9lxmUwG4+PjAIBTp07h7NmzAIDh4WEcPXoUwGLjyGQymJmZAQCcPHkSvb29AICBgQEcP34cwGJzyGQyrBkdP34cAwMDAIDe3l6cPHnyup6KxSJOnDiBJ598suk9HTt2DF/96ldRLBalqNOPfvQj/Nu//RuKxaLrOgE3HnvDw8N47LHHcPr0ae6enn32WTz22GP40Y9+JEWdvvjFL+Kxxx5DsVhcs6disYh//dd/xbPPPguA73xaTZ2aZT555WlwcBAnT55EsVhsak9PPvkkTpw4gWKxKEWdXnvtNfz7v/87+8NS9Njj2SOWe3ryySfx2GOP4bXXXuMy9r7//e/jsccew+DgoKM6ff7zn8eXv/xlFIvFlv7O9UPfGxsbw7//+7+zC8PN7umxxx7D2NiYFHX6/Oc/j6985SsoFouejL1isYivfOUr+PznP8/dU7FYxOOPP47Pf/7zUtTJ6d97xWIRX/3qV3Hs2DFWJ+oRjfNULBbx7//+73jttdeaztO5c+fYzwsLC3jxxRfx0ksvQdd19PX1sRwuX76MK1eusLi1fCzLQl9fH7sANzw8zGo7NTWFoaEh5r2vr4/lOjQ0hKmpKZZfLe9yuYy+vj52MW5wcBDnz5+Hruu4cuUKLl++zH5HfX19zFN/fz8WFhZYbZZ66u/vZ8fdyJOu63j55Zdx7tw57p4qlQpeeuklDA4OsjHg1BOPOo2NjeGll17CxMQE82SaJrq7u9nNhq6uLuzYsQNA/TWW22+/HXv27ME73vEOAIvfwTVPc3Nz2L17NwBg06ZN6O7uZp7279+PLVu2AAB27dqFXbt2AQC2bNmC/fv319WpdhF29+7d2LlzJwBg27Zt2Lt3L4DFmx3d3d1Yv349AGDPnj3o7OwEAOzYsQNdXV0AgFQq9baerjf2BgYGXNdpLWPv7eq0mrF3/vx5Nk+a2dO5c+fw8ssvQ9f1VfcI0Z5GR0fx0ksvYWpqSnjfW6lH8PrOfe211/DYY4/hySef5PL9NDU1hcceewxf/epXuZ4TNgJaGotoamqvU8ViMSiKgt7eXmzduhWFQgHpdBqBQAD5fB6xWAyRSASVSgW2baO9vZ095VZ7YiGXyyEejyMcDrMGF4/HYRgGyuUye2Ihm80ikUhAURSUSiUEg0G0tbVB13WoqopUKoVqtYpcLodkMolQKIRisQhFURCLxaBpGnRdRzKZhG3byOfzSKVSCAaDKBQKiEQiiEajUFUVpmkikUjAsizyRJ7IE3kiT+SJPJEn8kSeyBN5Ik/kybGnS5cuYWxsDOFwGJZlwTAM9lS9qqqIRCIIBoPQdR2BQIAdZ5omotEoqtUqNE2rOy4YDEJRFJimCcuy6o6LRqMIBALQNA2hUIgdZ9s2IpEIbNuGrut1xymKglAoBMMwUK1W645bmms4HGbHASBPDjxNTk7iwIEDyOfzsG0byWSSPRVfu8ZSLBYRCoWQTCaRy+VQrVbx+OOPY+PGjQiFQpiYmMD999+PUqkERVGQSCTYE9/pdBrlchmGYbC3QcrlMsLhMOLxOI4cOYINGzZAVVXMz8+jq6sL7e3tsG0blUoFkUgEsVgMDz74IB544AGk02kUCgVYloVEIgHTNKGqKqLRKCKRCAqFAoLBIFKp1DWejh07hnXr1jVlnfw49sjTyp7uuOOOlvh+mpiYaNjSWHQjhGhqaI8QgiAIgiAIgiAIgrgxtEcIsRTaI4Qg5IL2CBEPLY1FEE1MLpfDoUOH6tYDbFZk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OneqiqimeffbZuzfxG4nU+IuPx1Oah5UYjnU7j4MGDdft6EI1DtnnrFBl9eJmTyFh+OgfjDd0IIYgmJh6P46677mKvmTYzsnnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz3C4TC2bt3KNrRuNF7nIzIeT20eWm40yuUynnjiCbYcD9FYZJu3TpHRh5c5iYzlp3Mw3tDSWERTQ0tjEQRBEARBEARBEMSNoaWxiKXQ0lgEIRe0NJZ46I0Qgmhi/PRkhmxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FQPwzBw8eJFtplwo/E6H5HxeGrz0HKjIdPT3IR889YpMvrwMieRsfx0DsYbuhFCEARBEARBEARBEARBEARBEIRvoaWxiKaGlsYiCIIgCIIgCIIgiBtDS2MRS6GlsQhCLmhpLPHQGyEE0cTI+CqhU2TzQq9li9NyoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz0sy8Ls7Cwsy2p0KgC8z0dkPJ7aPLTcaMi4qXUrI9u8dYqMPrzMSWQsP52D8YZuhBBEEyPTOntukc0LrY8tTovW6PcPfqmHbD6o/4jTo/7jH/xUD9m8UA8Sp0V7hPgDP9VDpotTAN2IFalFe4T4B9nmrVNk9EF7hIjRk+l7k5bGIpoaWhqLIAiCIAiCIAiCIG4MLY1FLIWWxiIIuaClscRDb4QQBEEQBEEQBEEQBEEQBEEQBOFb6EYIQTQx2WwWDz74ILLZbKNTcY1sXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdfxUD1VVcfbsWaiq2uhUAHifj8h4PLV5aLnR6OjowKc+9Sl0dHQ4jk/wQ7Z56xQZfXiZk8hYfjoH4w0tjUU0Na2+NJZpmhgfH8emTZugKEqj03GFbF68zkdkPJ7aPLTcaMg2Tlodv9RDNh/Uf8TpUf/xD36qh2xeqAeJ03KqIdsYaXWauR7Ll8aybRv5fB6pVArBYOOfk/U6H5HxeGrz0FpJY7XLWimKgk2bNmF8fBymadLSWA1GtnnrFBl9eJnTSrF4LY0l+zlYI6/lNte3NkEQdSiKgs2bNzc6DS7I5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9QgGg1I95e91PiLj8dTmoeVGwzRNjI6OuopP8EO2eesUGX14mZPIWH46B+ONHLfcCIJwRKlUwokTJ1AqlRqdimtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+Oneui6jvPnz0PX9UanAsD7fETG46nNQ8uNRnt7O+6++260t7c7jk/wQ7Z56xQZfXiZk8hYfjoH4w3dCCGIJqZ2B1mW1wjdIJsXr/MRGY+nNg8tNxqyjZNWxy/1kM0H9R9xetR//IOf6iGbF+pB4rScasg2RlodP9UjEAggFoshEAg0OhUA3ucjMh5PbR5abjRs20Y2m4Vt247jE/yQbd46RUYfXuYkMpafzsF4Q3uEEE1Nq+8RQhAEQRAEQRAEQRCrYfkeIURr43R/D9ojhCDEwGuPENlp5LXcxt+KIQjCMbquY3BwUKpXCZ0imxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1cOyLExNTcGyrEanAsD7fETG46nNQ8uNRiQSwfbt2xGJRBzHJ/gh27x1iow+vMxJZCw/nYPxhm6EEEQTo6oqenp6oKpqo1NxjWxevM5HZDye2jy03GjINk5aHb/UQzYf1H/E6VH/8Q9+qodsXqgHidNyqiHbGGl1/FSP2ibYpmk2OhUA3ucjMh5PbR5abjRisRjuvPNOxGIxx/EJfsg2b50iow8vcxIZy0/nYLyhpbGIpoaWxiIIgiAIgiAIgiCIG0NLYxFLoaWxCEIuaGks8dAbIQTRxFSrVaiqCj/cz5TNi9f5iIzHU5uHlhsN2cZJq+OXesjmg/qPOD3qP/7BT/WQzQv1IHFaTjVkGyOtjp/qUa1WYZqmNF68zkdkPJ7aPLTcaMi4qXUrI9u8dYqMPrzMSXT/8cs5GG/oRghBNDG5XA6f+cxnkMvlGp2Ka2Tz4nU+IuPx1Oah5UZDtnHS6vilHrL5oP4jTo/6j3/wUz1k80I9SJyWUw3Zxkir46d6aJqGH/7wh9A0rdGpAPA+H5HxeGrz0HKjkU6ncfDgQaTTacfxCX7INm+dIqMPL3MSGctP52C8oaWxiKam1ZfGsiwLMzMzWL9+PUKhUKPTcYVsXrzOR2Q8nto8tNxoyDZOWh2/1EM2H9R/xOlR//EPfqqHbF6oB4nTcqoh2xhpdZq5HsuXxrJtG+VyGfF4HMFg45+T9TofkfF4avPQWkljtctahUIhrF+/HjMzM7Asi5bGajCyzVunyOjDy5xWisVraSzZz8EaeS1X8SQKQRBCCIVCvvkyl82L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+oRDAaRSCQanQbD63xExuOpzUPLjYZlWZiamnIVn+CHbPPWKTL68DInkbH8dA7GGzluuREE4YhisYhjx46hWCw2OhXXyObF63xExuOpzUPLjYZs46TV8Us9ZPNB/UecHvUf/+CnesjmhXqQOC2nGrKNkVbHT/XQdR2Dg4PQdb3RqQDwPh+R8Xhq89Byo5FIJHDvvfdKd9G6VZFt3jpFRh9e5iQylp/OwXhDN0IIoolRFAWbN2+GojT/y12yefE6H5HxeGrz0HKjIds4aXX8Ug/ZfFD/EadH/cc/+KkesnmhHiROy6mGbGOk1fFTPYLBIDo6OqRZlsbrfETG46nNQ8uNhmmaGB0dhWmajuMT/JBt3jpFRh9e5iQylp/OwXhDe4QQTU2r7xFCEARBEARBEARBEKth+R4hRGvjdH8P2iOEIMTAa48Q2WnktVx5brsRBLFmNE1Db28vNE1rdCqukc2L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+phmibGx8eledLf63xExuOpzUPLjUY0GkVnZyei0ajj+AQ/ZJu3TpHRh5c5iYzlp3Mw3tCNEIJoYmRcU9Epsnmh9WnFabnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHrVNsC3LanQqALzPR2Q8nto8tNxoRCIRbN++HZFIxHF8gh+yzVunyOjDy5xExvLTORhvaGksoqmhpbEIgiAIgiAIgiAI4sbQ0ljEUmhpLIKQC1oaSzz0RghBNDG2bSObzcK27Uan4hrZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHtVqFaqqQpbnY73OR2Q8nto8tNxoyLipdSsj27x1iow+vMxJZCw/nYPxhroYQTQx+XwemUwG+Xy+0am4RjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHpmno6+uTYt12wPt8RMbjqc1Dy41GKpVCd3c3UqmU4/gEP2Sbt06R0YeXOYmM5adzMN7Q0lhEU9PqS2PZto18Po9UKtX0T2fI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVqeZ67F8aaxqtQpN0xCNRhEIBBqYWWPyERmPpzYPrZU0VrusVTAYRCqVQj6fh23btDRWg5Ft3jpFRh9e5rRSLF5LY8l+DtbIa7mKJ1EIghBC7RVVPyCbF6/zERmPpzYPLTcaso2TVscv9ZDNB/UfcXrUf/yDn+ohmxfqQeK0nGrINkZaHT/VIxAIIBaLNToNhtf5iIzHU5uHlhuN2rI2hBzINm+dIqMPL3MSGctP52C8aa7HFwiCqKNQKODIkSMoFAqNTsU1snnxOh+R8Xhq89ByoyHbOGl1/FIP2XxQ/xGnR/3HP/ipHrJ5oR4kTsuphmxjpNXxUz00TUN/f780S9N4nY/IeDy1eWi50Ugmk9i3bx+SyaTj+AQ/ZJu3TpHRh5c5iYzlp3Mw3tCNEIJoYiKRCLZv345IJNLoVFwjmxev8xEZj6c2Dy03GrKNk1bHL/WQzQf1H3F61H/8g5/qIZsX6kHitJxqyDZGWh0/1SMUCmHDhg0IhUKNTgWA9/mIjMdTm4eWGw1d1zE4OAhd1x3HJ/gh27x1iow+vMxJZCw/nYPxhvYIIZqaVt8jhCAIgiAIgiAIgiBWw/I9QojWxun+HrRHCEGIgdceIbLTyGu59EYI4Qnf/e538d//+3/Hpk2bEI1Gccstt+DDH/4w/uIv/gILCwuNTq9pUVUVPT09UFW10am4RjYvXucjMh5PbR5abjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqqHaZoYHR2FaZqNTgWA9/mIjMdTm4eWG41YLIY777xTuv0cWhXZ5q1TZPThZU4iY/npHIw3dCOEEIplWfiDP/gD/Oqv/ir+7d/+DdVqFT/zMz+DdDqNoaEhfO5zn8PExESj02xaZPzicIpsXuiPcHFabjRkGyetjl/qIZsP6j/i9Kj/+Ac/1UM2L9SDxGk51ZBtjLQ6fqpHbRNs27YbnQoA7/MRGY+nNg8tNxqKomDz5s1QFMVxfIIfss1bp8jow8ucRMby0zkYb2hpLEIo+/fvx5EjR7B9+3Y8/PDD+PCHP8z+Tdd19PT04IMf/CDe8Y53ONKnpbEIgiAIgiAIgiAI4sbQ0ljEUmhpLIKQC1oaSzz0RgghjLNnz+LIkSPYtGkTfvCDH9TdBAEWN8vZtWuX45sgxOIbN1NTU7Asq9GpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qh23bKBaL0jyR7XU+IuPx1Oah5UZDxk2tWxnZ5q1TZPThZU4iY/npHIw3dCOEEMbf//3fAwD+/M//HB0dHY1NxqcUCgU8/PDDKBQKjU7FNbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TV8VM9dF3HCy+8AF3XG50KAO/zERmPpzYPLTcayWQS+/btQzKZdByf4Ids89YpMvrwMieRsfx0DsYbWhrLQyzLwoULF3Du3Dn09/fj3LlzePnll2EYBgBg586d6OnpcaSt6zr+5V/+BV/72tdw4cIFXL16FTfddBPe/e5347d/+7dx7733Yt26dRzdXB9VVZFKpWAYBi5cuIBgMIhHHnkE58+fh6IoeP/734+Pf/zj2Lp1q6s4rb40VrVahaZpiEajCAQCjU7HFbJ58TofkfF4avPQcqMh2zhpdfxSD9l8UP8Rp0f9xz/4qR6yeaEeJE7LqYZsY6TVaeZ6LF8aq1qtwrIshEIhKbx4nY/IeDy1eWitpLHaZa0CgQCi0Sg0TUO1WqWlsRqMbPPWKTL68DKnlWLxWhpL9nOwRl7LpZ2OPOKJJ55AV1cXyuUyd+2LFy/innvuweDgYN3/PzU1hampKTz//PP47Gc/i0cffRS/8Ru/wT3+Srz00kvsBs9zzz2HP/3TP4Wmaezfv/3tb+Ozn/0sPve5z6G7u9uTnPxIIBBALBZrdBpckM2L1/mIjMdTm4eWGw3Zxkmr45d6yOaD+o84Peo//sFP9ZDNC/UgcVpONWQbI62On+oRCASk2gDb63xExuOpzUPLjUa1WoWqqq7iE/yQbd46RUYfXuYkuv/45RyMN7Q0lkdks1khN0HGx8fxK7/yK+wmSCAQwM6dO7F3717s3r0bbW1tAIDp6Wncdddd+P73v889h5WYnJxkPx84cAD/5b/8Fzz33HNQVRWjo6PYv38/LMvCJz/5SXznO9/xJCc/ks/n8dBDDyGfzzc6FdfI5sXrfETG46nNQ8uNhmzjpNXxSz1k80H9R5we9R//4Kd6yOaFepA4Lacaso2RVsdP9dA0Db29vXUPLTYSr/MRGY+nNg8tNxqpVArd3d1IpVKO4xP8kG3eOkVGH17mJDKWn87BeCPXrbcW4NZbb8XP/uzPsv89/fTTyGQyjvV+7/d+D2+99RYA4Pbbb8c3v/lN/MzP/Az799nZWdx999343ve+B8Mw8Lu/+7sYGRkRvmdHsVhkP0ejUZw+fRrr169neX7hC1/A2NgYnnrqKfzN3/wNfv3Xf11oPn4lFovhzjvvlObOqhtk8+J1PiLj8dTmoeVGQ7Zx0ur4pR6y+aD+I06P+o9/8FM9ZPNCPUicllMN2cZIq+OneiiKgs2bN0vzVLbX+YiMx1Obh5YbDVVV0dPTQ2+FSIJs89YpMvrwMieRsfx0DsYb2iPEI6ampqDrOn7sx36s7v//1Kc+hQcffBDA2vcI+fa3v42PfexjAIBIJIL+/n789E//9DXHlUolvP/978frr78OAPirv/or/H//3/93zXEHDx7EZz7zmVXHX4phGHWT9+TJk/jd3/1dAItvhHz+85+/5jNnz55l69/NzMw42sOk1fcIIQiCIAiCIAiCIIjVsHyPEKK1cbq/B+0RQhBi4LVHiOw08louLY3lERs2bLjmJohblt5c+PjHP77iTRAAaG9vx//9v/+X/ffDDz8M0zRXPO4d73iHo/8t3yzn5ptvZj//1E/91Ip5bdu2jf08Ojq6Ks9EPZVKBadPn0alUml0Kq6RzYvX+YiMx1Obh5YbDdnGSavjl3rI5oP6jzg96j/+wU/1kM0L9SBxWk41ZBsjrY6f6mEYBl577TW2v2ej8TofkfF4avPQcqPR1taGj370o2zpdaKxyDZvnSKjDy9zEhnLT+dgvKEbIU1KsVjE9773Pfbf991333WP/53f+R0kEgkAwPz8PP7jP/7jmmP+z//5P5idnXX0v1AoVKe1detW9nM0Gl0xp6X/v2VZNzZNXINt28hms7Btu9GpuEY2L17nIzIeT20eWm40ZBsnrY5f6iGbD+o/4vSo//gHP9VDNi/Ug8RpOdWQbYy0On6qR20TbFkWCvE6H5HxeGrz0HKjEQwG0dHRgWCQLiHKgGzz1iky+vAyJ5Gx/HQOxhtaGqvBOF0a68yZM/i1X/s1AItvcmSz2RuuK7dr1y4888wzAIC//uu/xt/+7d86T3wVvPvd78bo6CgOHjyIT3/609f8+8DAAD7wgQ8AWNz0/V3veteaY9DSWARBEARBEARBEARxY2hpLGIptDQWQcgFLY0lHrqd26S88sor7Oef/umfXtXmOrWbDss/L4q7774bAHD8+HFomnbNv3/pS18CsPj2iJObIARgmiZGR0dXXOqs2ZDNi9f5iIzHU5uHlhsN2cZJq+OXesjmg/qPOD3qP/7BT/WQzQv1IHFaTjVkGyOtjp/qIdNTugC9kSZSy42GjJtatzKyzVunyOjDy5xExvLTORhv6EZIk3Lp0iX28+23376qzyzdo+TixYvcc1rOn//5n+Omm27Cm2++iX379qFcLrN/++pXv4pHHnkEwOLbKYQzisUiHnvsMRSLxUan4hrZvHidj8h4PLV5aLnRkG2ctDp+qYdsPqj/iNOj/uMf/FQP2bxQDxKn5VRDtjHS6vipHrqu46WXXoKu641OBYD3+YiMx1Obh5YbjUQigXvvvZctt040FtnmrVNk9OFlTiJj+ekcjDe0NFaDcbo01v/4H/8D//qv/woA+LM/+zNkMpkbfubrX/86fud3fgfA4ubtk5OTzpJeAz09PfjN3/xNlEolJJNJbN26FVevXsXY2BgA4JOf/CT+4R/+wbE+LY1FEARBEARBEARBEDeGlsYilkJLYxGEXNDSWOKhN0KalKV30dra2lb1maXHeXUX7s4778TLL7+MP/zDP8RNN92El156CcViEb/2a7+GU6dOuboJspRYLMaeTrAsC9lslm04lM/n2R3WSqWCUqkEYPHVrGw2yzRyuRwMwwAAlMtl9gaLYRjI5XLsuGw2y17nKpVKqFQqABbv5ubzeQCLmx5ls1m2CXyxWISqqgAATdNQKBQAXPsqXKFQYMuIqarK6kSeyBN5Ik/kiTyRJ/JEnsgTeSJP5Ik8ufGkqir72bIslk/t32o56Lped1wtn9rmvkuPq/0eTNO85rharpqm1R1Xy9u27WuOq/2+DMO45riluS49jjw597R0E/RkMoloNAqg/hpLKBRCR0cHAoEAy6+Wq2VZaG9vB7C4hFZHRwfLNZ1OIxwOAwDi8Tji8TgAIBwOI51Or+ipvb2dXbuKRCJIpVIAgEAggI6ODoRCIQCLb6nEYjEAQDQaRTKZBHDtxu5LPTVznfw49sjTtZ5a7fupEdCNkCZl6cSNRCKr+kyt+QNgE8ELfvzHfxyPPPIIrly5Ak3TMDc3h9OnT+M3f/M3ucXo7OzEnj17AAAzMzPIZDJsch49ehTDw8MAgLNnz+LUqVMAFjdoX/omzeHDhzEyMgJgcTP6M2fOAABGRkZw+PBhdlwmk8H4+DgA4NSpUzh79iwAYHh4GEePHgWw2DgymQxmZmYAACdPnkRvby+AxU3ijx8/DmCxOWQyGdaMjh8/joGBAQBAb28vTp48eV1PuVwOf//3f4+vf/3rTe/pS1/6Ej772c8il8tJUafnnnsO//iP/4hcLue6TsCNx97LL7+MQ4cO4Vvf+hZ3Tz09PTh06BCee+45Ker0hS98AYcOHUIul1uzp1wuh3/4h39gb8/xnE+rqVOzzCevPPX397N50syevv71r+Pv//7vkcvlpKjTxYsXkclk2B+0oscezx6x3NPXv/51HDp0iHlyU6dTp07hzJkzOHToEPr7+x3X6TOf+QxyuVxLf+f6oe+9/vrryGQymJ6ebnpPJ06cwKFDh5gnGepUmydejL1cLoe/+7u/E+Ipl8vh0KFD0tTJ6d97uVwOn/3sZ9kei9QjGuup9jdsbbnpZvJ07tw59vPCwgL6+/vx7LPPQlVV9PX1sRwuX76MK1eusLi1fCzLQl9fH7sANzw8zGo7NTWFoaEh5r2vr4/lOjQ0hKmpKZZfLe9yuYy+vj52Me7FF1/ED3/4Q6iqiitXruDy5cvsd9TX18c89ff3Y2FhgdVmuacaN/KkqiqeffZZIZ5KpRKeffZZvPjii2wMuPHktk6jo6N49tln8eabbzJPpmmiu7ub3Wzo6urCjh07ANRfY3n3u9+N7u5urF+/HgAwNjbGPM3NzWH37t0AgE2bNqG7u5t52r9/P7Zs2QIA2LVrF3bt2gUA2LJlC/bv319Xp9o1rt27d2Pnzp0AgG3btmHv3r0AFq9nLc1hz5496OzsBADs2LEDXV1dAIBUKvW2nq439gYGBrjUaaknUfPp5ZdfxnPPPQdVVZveU21cr7ZHiPb0+uuv49lnn8Vbb70lvO+t1CN4fedevHgRhw4dwte//nUu30/j4+M4dOgQHn/8ca7nhI2AlsZqME6XxvrYxz6Gb3/72wCA//2//zcOHTp0w8985zvfwW/8xm8AWLx7XrvD18zUXqeKxWJQFAW9vb3YunUrCoUC0uk0AoEA8vk8YrEYIpEIKpUKbNtGe3s7TNNEsVhkTyzkcjnE43GEw2GUy2VUq1XEYjHouo5KpcK+SHO5HNrb26EoCsrlMoLBIGKxGAzDgKqqSCaTqFaryOfzSCQSCIVCKJVKUBQF0WgUuq5D13UkEgnYto1CoYBkMolgMIhisYhIJIJIJMLuHre3t8OyLBSLRaRSKQQCARQKBfb0w6VLl3DbbbchnU7DNE2USiX2dEU+n0dbWxvC4TC7+dXW1gbDMKTzND8/j6mpKbznPe+BZVmwbRvxeLxhnkqlEkZGRvBTP/VTCIVCruoUDofZEwRv5ykcDmN8fBy33norwuEwV0/VahWTk5PYuHEjqtVqw+uUz+cxPz+PzZs3o1wur8mTbdt45ZVX8OM//uNIJBJc59Nq6tQs88krT+VyGa+++iq2bdsGRVFW5alaraJYLCKdTiMYDKJQKCASiSAajUJVVZimiUQiAcuyuPRyYPEJNMMwUC6XmfdsNotEIgFFUZDNZnHlyhVs27aNPcmTSqVQrVaRy+WQTCYRCoVQLBahKApisRg0TYOu60gmk7BtG/l8HqlUiounSqWC4eFhvP/970c4HHbkqVQqIRgMoq2tDbquX9dTtVrFxMQENm3ahGq1ytWTpmmYmprC7bffDk3TXNWpVCrBsiy89dZbuO2222BZ1prrNDc3h5mZGbznPe+Bqqpr8hQIBDA8PIzbb78dHR0dXMbeWurkxdhrJk+qquLChQv46Z/+aUQikab2VKlUcPXqVWzevBmqqja8TrOzs5iensZ73/teaJomfOxFIhFcvnwZt9xyC7vAxctTW1sbXnvtNaxbtw4333xzw+sUDocxNjaGd77znQiHw6v2pCgKLl68iI0bN+Id73gH9YgGezIMAy+//DK2bduGtra2pvJ06dIljI2NIRwOsyejK5UKbrrpJhiGgUgkgmAwCF3XEQgE2HGmaSIajaJarULTtLrjamPUNE1YllV3XDQaRSAQgKZpCIVC7Lja3LdtG7qus+PK5TIKhQLWrVsH27ZRrVbrjqudA6uqinA4jFAoxJ6QruVqGEbdcdfzpCgK5ufnEY/H0dbWxtVT7W/MeDyOaDTKcnXiiUedqtUqO68AFm8sTE5O4sCBA8jn87BtG8lkErquQ9M0do2lWCy9CiKAAAC/wElEQVQiGo3ife97H15++WUYhoHHH38cGzduRCgUwsTEBO6//372t38ikWBPfKfTaZTLZRiGwd4GKZfLrP8dOXIEGzZsgKqqmJ+fR1dXF9rb22HbNiqVCiKRCGKxGB588EE88MADSKfTKBQKsCwLiUQCpmlCVVVEo1FEIhEUCgUEg0GkUqlrPB07doyNq5XGXu37zk2d1jL23MynpfOkWq02rafaWw0333wzTNNcVY8Q7cm2bXZeXa1Whfa9lXrEHXfcweU7NxqN4sqVK9iwYQOi0ajr76e2tja88cYbuOWWW9De3u76nHBiYqJhS2PRjZAG4/c9QkTDe1252gW6bDbLLiATBEEQ/InFYkgmk0ilUqt+s5EgCIIgCIJwDu0RQiyF9gghCLmgPULEQ0tjNSnveMc72M9Xr15d1Wdqr2QBwM0338w9p2ZHVVW8+uqrGB8fZ0/Iys7y9fqaGdm8eJ2PyHg8tXloudGQbZy0Om7qoaoqZmZmMDIygvHx8YbWtFwu44knnmBP1jQar/MRGY+3tls9N5+XbZy0On6qh2xeqAeJ03KqIdsYaXX8VA/DMHDx4kX2xHSj8TofkfF4avPQcqMRj8dx1113sbc6iMYi27x1iow+vMxJZCw/nYPxhm6ENCk/+ZM/yX6urct3I8bGxtjPW7du5Z5TM2MYBt5880227mCzEAgEkEgk2KZlzYxsXrzOR2Q8nto8tNxoyDZOWh1e9SgUCpiYmKAbXARBEARBEARBEARBCIGWxmowTpfGOnPmDH7t134NANDe3o5sNgtFUa77mV27duGZZ54BAPz1X/81/vZv/9Z54pLA43WqarWK0dHRug3oCYIgCO9JJpPYtGlTo9MgCIIgCILwJbQ0FrEUWhqLIOSClsYSz/WvnBPS8vM///OIRqPQNA2lUgn9/f3o7Ox82+M1TUNvby/771/+5V/2Is2moFwuX3MTJBqN4uabb0Y8HkcwKO+LU7VNlmqbNjUzsnnxOh+R8Xhq89ByoyHbOGl1nNSjWq1C13Xk83m2iWGNQqHA9LzEMAyMjIxgy5YtCIfDnsaWIR+R8Xhru9Vz83nZxkmr46d6yOaFepA4Lacaso2RVsdP9bAsCwsLC7jpppsQCoUanY7n+YiMx1Obh5YbjXA4jC1btmBkZESqZYxaFdnmrVNk9OFlTiJj+ekcjDd0FalJSSQS+JVf+RX238eOHbvu8V//+tdRKBQALO4P8ou/+Isi0/OcWCyGRCIBYLGZZLNZtsdHPp+HrusAgEqlglKpBAAwTRPZbBbFYhHA4gW9arWKcDiMd73rXUgmk3UX9xRFYW/dhEIhKIqCQCCAYDAIRVEQDAYRCASgKAprYqKPCwaDrK5Lj1uaa00vEAgwPRk9AYsXQWu+lh/ntadAIMDyEeV9aa61eCI8raTd6DrVNNaaQ23ML9UTPUabcT555cnJPFEUBdFoFBs2bMBtt92GQCDA+rVt25iZmQGw9l5eI5fLsRO0crnM1iE1DAO5XI4dl81mYZomAGB2dhbf+MY3UC6X2U0aYPGmTTabZcsmFotFduNc0zTWf5fvlVIoFKBpGoDFvVBq3zOr9ZTP51k+Tj2VSiVUKhUAuKGn+fl5PPHEE1hYWODuaXZ2Fk888QTy+bzrOpVKJZZrNpt1VKfJyUn2u12rp3K5jG984xuYnZ0FwGfsraVOXoy9ZvJUKBTwjW98o27eNKunmZkZPPHEEygUClLUaek88WLs1ebW5OQkd09LtWWoUy6XwxNPPIG5ubk1ear5qO0NST2isZ5q9ajl3kyeVFVlP1uWhWKxyNaoV1WV5aDret1xtXyq1eo1x9Vqa5rmNcfVctU0re64Wt62bdcdVywW8corr8AwDBiGcc1xNVRVZb/X2rG1XJcfdz1PhmHglVdeQbFY5O5J13VcvHgRxWKxLlcnnnjUqVKp4OLFi6hUKnXHdXR0sL/9k8kkotEogPprLIlEAr/1W7/F9ggxDIPlalkW2tvbASyeO3R0dDBP6XSaXfSMx+Ps8+FwGOl0esU6tbe3o62tDQAQiUSQSqUALJ4vd3R0sHOORCKBWCwGYPFB1mQyCWDx3ObtPF1v7Gma5rpOaxl7b1en1Yy9UqnE5kkze1o631fbI0R7qs0TVVWF972VegSv79x8Po8nnngCs7OzXL6fisUinnjiCUxPT3M9J2wEdCOkiTlw4AD7+dixY7hw4cKKx5XLZfzN3/wN++8//uM/vuEyWs1GZ2cn9uzZAwCYmZlBJpNhk/Po0aMYHh4GAJw9exanTp0CAIyPjyOTybAmUy6XUa1WkU6nUS6XWYPQNI1dmAOA6elpNqFzuRxrEKqqsosj1WoV09PTrOktLCzUxZmbmwOw2Cymp6dZ81l6UlQqlbCwsABgsQFOT0+zpjI7OwtVVaEoCuLxOGs+uq5jenqa5TozM8N+D7Wnr2X1tLCwgHQ6DUVRUCgUWCNvlCdN09gFXbd1AnBDT6Zp4p3vfCeKxSJ3T6qq4p3vfCc0TZOiTnNzc3jnO98JRVHW7ElRFITDYfZ75TmfVlOnZplPXnkyDIPd7HDiKR6PQ1EU9kdl7Y/6Wm5r6eU1Dh8+jJGREQCLy0ieOXMGADAyMoLDhw+z4zKZDMbHx5nejh07kE6nMTw8jKNHj7LfQyaTYb+LkydPsrcrBwYGcPz4cfa7y2Qy7Pd3/PhxDAwMAAB6e3tx8uTJNXmqvRlTO0F04unUqVM4e/YsANzQ0yuvvIKDBw/i9ddf5+7p7NmzOHjwIAqFgus6nTp1CgMDAzh48CAmJiYc1enRRx/F/v37kU6n1+wpnU5jx44d7PfKY+ytpU5ejL1m8qTrOnRdZxdBmtnTmTNncPDgQei6LkWdHn30Udx3331Ip9OejL10Oo177rkHjz76KHdP6XQan/zkJ/Hoo49KUafZ2VkcPHiQ6a3WUzqdxq//+q+z3yv1iMZ6SqfT0HWd/T3UTJ7OnTvHfl5YWMDQ0BA+8pGPIBaLoa+vj+Vw+fJlthfpzMwMy8eyLPT19bG/R4eHh1ltp6amMDQ0xLz39fWxXIeGhjA1NcXyq+VdLpfR19fH/tZ95ZVX8J73vAexWAxXrlzB5cuX2e+or6+Peerv72d/B4+MjNR56u/vZ8fdyFMsFsPP/dzPYXBwkLuncDiMj3zkI3jllVfYGHDqiUedZmdn8ZGPfATZbJZ5Mk0T3d3d7GZDV1cXduzYAaD+Gks0GmUrkgCL+8/WPM3NzWH37t0AgE2bNqG7u5t52r9/P7Zs2QJgcan2Xbt2AQC2bNmC/fv319Wpdu6ye/du7Ny5EwCwbds27N27l+XQ3d2N9evXAwD27NnDVkXZsWMHurq6AACpVOptPV1v7A0MDLiu01rG3tvVaTVj7/Lly3j3u9+NWCzW1J4GBwfxsz/7s4jFYqvuEaI9TU1N4SMf+QgKhYLwvrdSj+D1nVsoFHDw4EF2PlbL2+n3UyAQwMGDB9n5GMDnnLAR0B4hDcbpHiE1fvEXfxH/+Z//CQDYvHkzvvnNb+L9738/+/e5uTncc889bG+Qm2++GSMjI3V36ZuZ2rpysVgMiqKgt7cXW7duRaFQQDqdRiAQQD6fRywWQyQSQaVSgW3baG9vh2maKBQKrDHVpsLmzZvZEwOhUAi2bcO2bXbzyDRNhEIhBAIBWJbFnnquvVESCoVQrVZhWVbDjluaa+3J/doXB3kiT+SJPMnkKZ/PY3x8HIFAgN0Q2bZtG2zbXnUvLxaL7Hstl8shHo8jHA6zP1bj8TgMw0C5XGY3F7LZLBKJBBRFQalUQjAYRFtbG3Rdh6qqSKVSqFaryOVySCaTCIVCKBaLUBQFsVgMmqZB13Ukk0nYto18Po9UKsXeWopEIohGo1BVFaZpIpFIwLIs8kSeyBN5Ik/kiTyRp4Z5unTpEsbGxhAOh2FZFgzDYDeUVVVlKyLouo5AIMCOM00T0WgU1WoVmqbVHVd7KMY0TViWVXdcNBpFIBCoe8jMNE3Yto1IJMKWWV16XO0tZsMwUK1W645bmms4HGbHASBPDjxNTk7iwIEDbLnaZDIJXdehaRq7xlIsFhEKhZBMJpHL5VCtVvH4449j48aNCIVCmJiYwP33349SqQRFUZBIJNgT37WHTA3DYG+DlMtlhMNhxONxHDlyBBs2bICqqpifn0dXVxfa29th2zYqlQoikQhisRgefPBBPPDAA0in0ygUCrAsC4lEAqZpQlVVRKNRRCIR9qZ6KpW6xtOxY8ewbt26pqyTH8ceeVrZ0x133NES308TExMN2yOEboR4yG/8xm/grbfeqvv/pqam2CvO7e3t+Imf+IlrPvftb38bGzduXFFzfHwcH/7wh9mr5IFAADt37sSWLVswMzOD7373u2yCKIqC06dP1y2p1ey43WDHsix2B7nGT/zETzR8zbrVUnsK/JZbbmn6t3xk8+J1PiLj8dTmoeVGQ7Zx0urwqIeu6+zJlhrvfe972WvvXpDNZpHJZPCJT3xCigcFvM5HZDze2m713HxetnHS6vipHrJ5oR4kTsuphmxjpNVp5nos3yxdVVX09fXhjjvuYBcGG4nX+YiMx1Obh9ZKGqvd6LyjowPd3d146KGHkM1mabP0BiPbvHWKjD68zGmlWHdy2ixd9nOwRm6WTjdCPGTz5s3s1bG18MYbb2Dz5s1v++8XL17EPffcg8HBwbc9Zv369Xj00UfxsY99bM3xZcbt5DFNE6+++mrd//ee97ynaS6wVqtVtrFwIBBodDqukM2L1/mIjMdTm4eWGw3Zxkmrw6MeMvRh0zQxPj6OTZs2SdH/vc5HZDze2m713HxetnHS6vipHrJ5oR4kTsuphmxjpNVp5nosvxGy/GnfRuN1PiLj8dTmobWSxmpvYiiKgk2bNmF8fBymadKNkAYj27x1iow+vMxppVi8boTIfg7WyBshzfWtTazI1q1b0dfXhxMnTuBrX/saLly4gKtXr6KjowM//uM/jt/+7d/Gfffdh3Xr1jU6VYIzgUCALePV7Mjmxet8RMbjqc1Dy42GbOOk1fFLPRRFue4DB17jdT4i4/HWdqvn5vOyjZNWx0/1kM0L9SBxWk41ZBsjrY6f6lHbWFoWvM5HZDye2jy03GiYponR0VFX8Ql+yDZvnSKjDy9zEhnLT+dgvJHjlluLMDo6imq1uub/rWawRCIR/K//9b/wne98B2NjY9A0DVevXsXzzz+Pv/iLv6CbID7FsizMz8+ztf2bGdm8eJ2PyHg8tXloudGQbZy0On6pR6lUwokTJ9jm7o3G63xExuOt7VbPzedlGyetjp/qIZsX6kHitJxqyDZGWp1mrsfyBUF0Xcf58+eh63qDMqrH63xExuOpzUPLjUZ7ezvuvvtutLe3O45P8EO2eesUGX14mZPIWH46B+MN3QghiCYmEAiwDYebHdm8eJ2PyHg8tXloudGQbZy0On6pR+1pHFleyfY6H5HxeGu71XPzednGSavjp3rI5oV6kDgtpxqyjZFWx0/1CAQCiMVi0vwt53U+IuPx1Oah5UbDtm1ks1nYtu04PsEP2eatU2T04WVOImP56RyMN7RHCNHUtPoeIQRBEM0O9WGCIAiCIAhvGB0dpSWOCIbT/T1ojxCCEAOvPUJkp5F7hDT+VgxBEI6xbRvlctkXT2bI5sXrfETG46nNQ8uNhmzjpNXxSz10Xcfg4KA0r2V7nY/IeLy13eq5+bxs46TV8VM9ZPNCPUicllMN2cZIq+OneliWhampKWmWOfU6H5HxeGrz0HKjEYlEsH37dkQiEcfxCX7INm+dIqMPL3MSGctP52C8oRshhC+IxWJIJBIAFptJNptl65/m83k22SqVCluTzjRN5HI5plHbk6WmUWtGtm3DNE12nGmadcfVLgDats0+U61WPTmuWq0in89fc9zSXGt6snsyTROFQgHVanXF47z2ZFkW8vk8GxcivC/3VCgUhHiyLOsa7UbXqaax1hyWj3kvxuhqPbmtk5fH8fLEa57Ufl563Fp6eTabZbnmcjkYhgEAKJfLKJfLAADDMOp6fjabZR7n5+fx/e9/H6qqQtd15PN5lms2m2U5FYtFqKoKANA0DYVCgeW9dLmAQqEATdMAAKqqolgsrslTsVhk+Tj1VCqVUKlUAOCGnrLZLHp6epDL5bh7mp+fR09PD4vjpk6lUonlms/nHdXp6tWr+MEPfgBVVdfsSVVVfP/738f8/DwAPmNvLXXyYuw1k6dSqYTvf//7LFYze5qbm0NPTw8b442u09J54sXYU1UVP/jBD3D16lXunpZqy1CnQqGAnp4eLCwsrMlTzcfMzAyrE/WIxnmqfR8s7UfN4klVVfazZVkolUoYHR2FaZpQVZXloOt63XG1fKrV6jXH1WprmuY1x9Vy1TSt7rha3rZt1x1XKpXwxhtvwDRNGIZxzXE1VFVlv1fDMOpyXX7c9TyZpok33ngDxWKRuyfDMDA6OopSqVSXqxNPPOqkqipGR0ehqmrdcUuXq0kmk4hGowDqr7HE43H88i//MmKxGMtv6d/stb1DFEWp2/w5nU4jHA4zjXg8DgAIh8NIp9Mr1qm9vR1tbW0AFm/ApFIpAIvLCHV0dCAUCgEAEokEyycajSKZTAK4dgmepZ6uN/Y0TXNdp7WMvber02rGXrlcZvOkmT0Vi0XmY7U9QrSn2jzRNE1431upR/D6zi0Wi+jp6cH8/DyX76dyuYyenh7Mzs5yPSdsBHQjhPAFnZ2d2LNnDwBgZmYGmUyGTc6jR49ieHgYAHD27FmcOnUKADA+Po6HH36YaSy9MLf0AoumaeykAwCmp6fZhF560UhVVczOzgJYbCrT09Os6S0sLLBmVi6XMTc3B2CxWUxPT7PmMzc3x5pZqVTCwsICy216eprlNzs7C1VVEQqF0NbWxnLQdR3T09Ms15mZGfZ7kN3TwsICkskkQqEQCoUCa+TX87Rz504oisL2KQiHwwgEAggEAgiHw0ilUti8eTN+8zd/E5/73OeQy+Xe1tO9994LRVHYfgeRSATvfOc7oSgKotEobr31VrznPe9BZ2cn7rvvPvzTP/0TLl26tKo6AbjG0+TkJE6dOoW9e/fi/e9/P2699VZs2rQJ6XQa73rXu9DZ2YmPf/zj+OxnP4sLFy64qpOqqrj11luhaVpD6rR87M3NzeHWW29FKBRas6dQKARFUdjvled8WqlOzTqfvPJkGAabf049LSwssD8ql3paSy/PZDIs18OHD2NkZAQAcObMGZw5cwYAMDIygsOHD7PjMpkMxsfHAQA9PT3Ytm0bUqkUhoeHcfToUfZ7yGQy7Hdx8uRJ9Pb2AgAGBgZw/Phx9rvLZDLs93f8+HEMDAwAAHp7e3Hy5Mk1ecrn8ygUCuzEz4mnU6dO4ezZswBwQ0/Dw8Po7u7GyMgId089PT3o7u5mem7qdOrUKbz44ovo7u7G+Pi4ozodPXoU9913H1Kp1Jo9pVIpbNu2DT09PQD4jL211MmLsddMnmonabWLG83s6emnn0Z3dzfTa3Sdjh49invuuQepVMqTsZdKpfBbv/VbLAeenlKpFPbv34+jR49KUaeZmRl0d3fj+eefX5OnVCqFX/qlX8K//du/sTpRj2icp1QqhUKhwHJoJk/9/f3s54WFBbz88svo7OxENBpFX18fy+Hy5cu4cuUKi1vLx7Is9PX1sb9Hh4eHWW2npqYwNDTEvPf19bFch4aGMDU1xfKr5V0ul9HX18f+LhweHsa73/1uRKNRXLlyBZcvX2a/o76+Puapv7+f/c04MjJS56m/v58ddyNP0WgUP/uzP4vBwUHunhRFQWdnJ4aHh9kYcOqJR51mZmbQ2dmJhYUF5sk0TXR3d7O/Obu6urBjxw4A9ddYYrEYUqkUOx8YGxtjnubm5rB7924AwKZNm9Dd3c087d+/H1u2bAEA7Nq1C7t27QIAbNmyBfv376+rU+3cZffu3di5cycAYNu2bdi7dy+AxZsd3d3dWL9+PQBgz5496OzsBADs2LEDXV1dABbn59t5ut7YGxgYcF2ntYy9t6vTasbepUuXcNtttyEajTa1p8HBQezYsQPRaHTVPUK0p8nJSXR2diKfzwvveyv1CF7fufl8Ht3d3ejp6eHy/QQA3d3dePLJJ7meEzYC2iOEaGpq68rFYjEoioLe3l5s3boVhUIB6XQagUAA+XwesVgMkUgElUoFtm2jvb2dvRFSuyhYmwrvfe972WZFoVAItm3Dtm22Xn3tYmwgEIBlWQgEAggGg+wNjdoFQcuyhB+39Oelxy3NNRgMIhgMsi8OWT2ZpsmOqz1dfiNPO3fuxH/8x3+serykUilkMhn8/u///jU53HfffXjsscfWPAb/63/9r9i/fz/uueeeVXt/7rnn8Ad/8Ae4ePHiquN87GMfwxNPPOH491+jEXVaaewFg0EWdy051LRDoZBnY7QZ55OXnpbqOclV0zSMjIwgEAiw47Zu3YpAILDqXl4sFtnTZ7lcDvF4HOFwmP2xGo/HYRgGyuUye/osm80ikUhAURQUi0UYhoGOjg4YhgFVVZFKpVCtVpHL5djNv2KxCEVREIvFoGkadF1HMpmEbdvI5/NIpVIIBoMoFAqIRCKIRqNQVRWmaSKRSMCyrFV5MgwD8/PzuOWWWxAIBBx5KpVKCAaDaGtrY083vZ2npRveG4bB1VNtfIRCIZRKJVd1KpVKbEzVxs5a65TL5RCNRtHW1oZisbgmT+FwGNlsFuFwGIlEgsvYW0udvBh7zeTJNE3Mzc1h/fr1CAaDTe3JMAyEw2HWjxpdp2w2i0gkgng8jlKpJHzs1eIYhoGbbrqJq6dkMglVVZm/Rtepra2NfXcGAoFVe4rFYuxt2nQ6TT2iwZ5qD3/cfPPNCIfDTeXp4sWLePPNNxEOh2FZFnRdRzgcRigUgqZpiEQiCAaD0HWdPVxmWRZM00Q0GkW1Wr3muP+fvT+Pj6LK/v/xV++dpdMBEowsAiIaFRFkdSXiyPjRQZ0ZGWVQNpXNDXXeo+OMCs6M464ZF8RRiAvquMwwMqOCiiwCiUaDbEYEDZCQkLXTW3qt/v2RX91vd/buulVdXX2ej0cej+rOrdc5p86t21V1696r1+thNBoRCoUQDodjylksFvabLb7QJI5INpvNEAQBgUCAlfP5fOylNPFFxehy4ggAn8/H/BbfkBZ9DQaDMeV6ikm0I8bHMyZxOxQKxfiaSEw88iQ+P4hE2kf2WywW1NbWYunSpXA6nRAEATabDYFAAH6/nz1jEa8V8/Ly2ItXr732GgYNGgSDwYCamhosWrSI/V5kZ2ezN77tdju8Xi+CwSAbDeL1emEymZCZmYkXX3wRBQUF8Pl8aG5uxuzZs5GVlQVBENDW1gaz2Qyr1YoVK1bgrrvugt1uZzMdiNcCPp8PFosFZrMZLpcLer0eOTk5nWIqKSlBXl5et3XP7/eza9ZE8xRP3ZNyPomdRhaLBeFwOGVj8vl8MBqNMBqNCAQCfWoj5I4JABtN1PH48273umojJk+ezOU3Nysri+VFfIFayu+TzWZjI3AsFovke8KampqkrRFCHSFESpPui6WLb4EPHDgwZXzujkRiKSoqYr3bEydOxKRJk9j/xBv5r776qlOOV61ahYULF8Z8N2/ePNYRUlhYiIsvvhhtbW3IyMhgDbnD4cCBAwfwww8/oGPTefnll2P16tU44YQTevR5w4YNuOqqq1hPOQCcdNJJGDt2LLKzs2E2m9Hc3Ixvv/2WvWEBAOeffz6++OKLPh2XjvCsJzy0pGhoqc5rAV71IdntsMPhQHFxMe64446Y4fzJQml/5LTHW1uqnpT91VZP0h0t5UNtsVAbJJ9WohpqqyPpTirno+Ni6T6fD2VlZZg8eTJ7MJhMlPZHTns8tXlodaXR14XOc3NzsWzZMjzzzDNwOBy0WHqSUdt5myhqjENJn7qyxWuxdLXfgyVzsXTqCCFSmnTvCIlE2ufaF6eHSmUSiSW6I+TBBx/E8uXLuyz373//G/Pnz2fTA1ksFhw8eBBDhgxhZaI7QubOnYs1a9Z0609zczPeffddPP300/j+++/Z98OHD8eXX37Jhut2pLm5GaeddhqbHun000/HCy+8gKKioi7jP3r0KP7973+jpKQEmZmZCXeE8KwnPLSkaGipzmsBHvlQQzscDofR0NCA/Px8NvIomSjtj5z2eGtL1ZOyv9rqSbqjpXyoLRZqg+TTSlRDbXUk3UnlfHTsCBEEAV6vF5mZmewt6GSitD9y2uOpzUOrK42+dmIYDAbk5+ejoaEB4XCYOkKSjNrO20RRYxxK+tSVLV4dIWq/B0tmR4g6ahpBEAkhDkXUwgNhOWP55S9/yeY4BNrnQ3zhhRcS9qd///5YtGgR9uzZg9tuu419X1VVhV/+8pdsjYSOvPLKK6wT5IQTTsDWrVvZD11X9oYOHYrbb78d33zzTULTdvUllmRoSdHQUp3XAlrJh8FgQEFBgWoeZijtj5z2eGtL1ZOyv9rqSbqjpXyoLRZqg+TTSlRDbXUk3dFSPvR6PbKzs1XzEFJpf+S0x1Obh5YUjXA4jLq6OjaVLpFc1HbeJooa41DSJzltaekejDfqqW0EQcRNOBxGY2OjJi5I5I7liiuuwNlnn80+f/rpp5L9MZlM+Pvf/46lS5ey77Zv344333yzy/LiYlYAMH/+fOTl5fXZnrjIXCLwPLY8tKRoaKnOawGt5MPtdqOkpARutzvZrgBQ3h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqjpXwEAgHs2rWLzY2fbJT2R057PLV5aEnRyM7Oxrx585CdnZ2wfYIfajtvE0WNcSjpk5y2tHQPxhvqCCGIFEan07GFmFIdJWI577zz2PaPP/7IzZ+nnnoKI0aMYJ//9re/QRCETuVqamrY9rBhwxK2Fy88tXloSdHQUp3XAlrJh9FoxPDhw1UzLaLS/shpj7e2VD0p+6utnqQ7WsqH2mKhNkg+rUQ11FZH0h0t5UOv1yM3N1c1b2Qr7Y+c9nhq89CSohEKhVBVVdXtzAeEsqjtvE0UNcahpE9y2tLSPRhvku8BQRAJo9frYbPZku0GF5SIpV+/fmzb6XRy88diseDWW2/F3XffDQCorKzEt99+i3HjxnXSFPnpp58SthcvPLV5aEnR0FKd1wJayYfVauU2HysPlPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkf4sMptaC0P3La46nNQ0uKhs/nw+bNmyXZJ/ihtvM2UdQYh5I+yWlLS/dgvFFPtxtBEHEjCALcbneXow9SDSViaWlpYdt2u52rPzNnzoz5vG3btk5loqe3KikpwfHjxxO2Fw88tXloSdHQUp3XAlrJh9/vR2lpKfx+f7JdAaC8P3La460tVU/K/mqrJ+mOlvKhtlioDZJPK1ENtdWRdEdL+QiFQqiurlbNm/5K+yOnPZ7aPLSkaFgsFkyZMgUWiyVh+wQ/1HbeJooa41DSJzltaekejDfUEUIQKUwkEoHX60UkEkm2K5JRIpbt27ez7eiprHj4M3ToUJx44onsc2lpaacyV199Nduur6/HpEmTsGrVKjQ1NckaP09tHlpSNLRU57WAVvKhtvlpaX5s+fSk7K+2epLuaCkfaouF2iD5tBLVUFsdSXe0lA+1LYKttD9y2uOpzUNLiobZbMbYsWNhNpsTtk/wQ23nbaKoMQ4lfZLTlpbuwXhDHSGEJrBarWzhrnA4DIfDwR7MOZ1OdrK1tbXB4/EAaO99bW1tZRqRSITtEw6HWWMkCALroY1EInC73Whra4PP54PH44HX64XP54PX64XH44HP50NbW5si5YLBILKzs+Hz+WLKiZ/dbjfT83g8TM/r9XYqx9PXYDAYcyzFt8UFQWDHNRKJIBQKxTxAzcvLg8Fg6LKcSCgUYnrR+3ZVLtqH9evXY/fu3ez/l1xySZc+iOh0OgwYMAAGg6FTue5iOu2009j+x48f71Ru1qxZOOecc1iZI0eOYPHixRg4cCDOOecc/PGPf8RLL72EiooKCIIQU/e6iqkvxzUcDkOn02HgwIHQ6XQ9lpMrTx3Pp0gkgoEDB8JgMMTtg8FgwIABA9iaFL3F3tdj1FO5vsTEI09KluMVUyLnSVflxO3ocvG05Q6Hg/na2tqKYDAIAPB6vfB6vQCAYDAY0+Y7HA4Wo16vx9y5c2Gz2RAIBNjUeZFIBA6Hg/kktptA+1stLpeL+e1wOFi8LpeLve0itrHxxJSRkYHrrruOTTuWSEwejwdtbW0A0GtMJpMJixcvhtls5h6TXq/H4sWLkZGRITlPHo8HRqMRixcvhsViSShP4XAYCxcuhM1mizsmm82GuXPnsmkOedS9ePKkRN1LpZgyMzNx3XXXseu/VI5Jp9Nh8eLFyMzMVEWewuEwbr75ZthsNkXqns1mw0033RTzIIBXTDabDYsWLYr5jUtmnqxWKxYvXgyDwRBXTDabDQsWLGA2qY1Ibkw2mw3XXXcdMjIyUi4mn8/HtsVrsAkTJsBiscDn8zEfAoFATDnRn0gk0qmcmNtQKNSpnOir3++PKSf6LQhCTDkAGDduHCwWC4LBYKdyIj6fjx3XYDAY42vHcj3FZLFYMH78eEQiEe4xmc1mTJgwgdkTfU0kJh55MhgMmDBhAgwGQ0y56DUKbDYbG/UR/YzF6/Xi7bffZnUxGAzGXLNnZWUBaJ/qJzc3l8Vkt9thMpkAtP9uZ2ZmAgBMJlPMDA3RvmZlZbFzy2w2IycnB0D7fUdubi4MBgOA9gXcrVYrgPYRK+J1c8d1F6Jj6qnu+f1+yXmKp+51l6e+1D0AGDt2LCwWS0rHFIlEMH78eFgslj63EXLHpNfrMWHCBBiNRtnbva7aCF6/uRkZGVi8eDH0ej2X36esrCwsXryY/V88dlLvCZMBdYQQmmDKlCm45pprAAANDQ0oLi5mJ+fq1auxf/9+AMCWLVuwfv16AEB1dTVWrVrFNKIfzDmdTtZA+P1+NDQ0sO3PP/8c27dvR2lpKbZu3YqtW7eitLQU27dvx+eff47S0lKUlpbi888/x44dO1BaWootW7Zg27ZtKC0txRdffIHNmzejtLQUO3fuxOeff46dO3eitLQUmzdvxhdffIHS0lJs27YNW7ZsQWlpKXbs2NFJe/v27di5cye2bt3KynXlQ1995RlTdXU1a1CbmppYA+3xeNj0VKFQCPX19eyYNzY2sjfLXS4Xa8gDgQDq6+tZnhoaGlhuo2+YQ6EQyxPQPuJCbHjffPNN3HDDDex/FosFS5cuRSQSQX19fZdDEb1eLxupEQ6HUV9f32tM0WsltLS0oLGxkf2YuFwueL1efPjhhzGLtgPtPy67d+/Gyy+/jKVLl+Kcc85BXl4eFixYgM8++6zLmFpbW9mPk8/nQ2NjIwB0iqmlpQVutxuhUIjFJB67vsTEI09dnU/i+RZvTJFIBM3NzewHl1dM0XlKNCapeRIveFItpoaGBnYhm0hMLS0t7KIyOqZ42vLi4mLm68qVK3Ho0CEAwMaNG7Fx40YAwKFDh7By5UpWrri4GNXV1QCADz74ABs3boQgCNi/fz9Wr17NjkNxcTE7Fu+99x4b7VVRUYG1a9eyY1dcXMyO39q1a1FRUQGgfXTYe++9F1dMR44cQXFxMTsuicS0fv16bNmyBQB6jWnnzp1wOBz45ptvuMf0wQcfwOFwsJik5Gn9+vXYvHkzHA4H9u3bl3CeqqurIQhC3DEJgoCNGzfigw8+AMCn7sWTJyXqXirFdPz4cRQXF7Obu1SPyeFwsJjUkKcff/wRgiAoUvcEQUBlZaUsMQmCgPr6etXk6YcffoDD4cCGDRviikkQBJSXl1MboZKYBEFAcXExjhw5knIxlZeXs+2WlhaUl5ezB3dlZWXMhwMHDuDw4cPMruhPOBxGWVkZux7dv38/y21dXR327NnDYi8rK2O+7tmzB3V1dcw/0W+v14uysjJ2XVhRUYFjx44hEong8OHDOHDgADtGZWVlLKby8nJ2zXjo0KFOMYn0FlMkEoHH45ElplAoBJ/Ph4qKClYHpMQkNU9Hjx6Fz+dDbW0tiykUCmHZsmWss2H27NlsncvoZywDBw7EsmXLWMfDkSNHWExNTU2YMWMGAGDIkCFYtmwZi2nJkiVseujp06dj+vTpANqnjF6yZElMnsR7lxkzZmDq1KkAgDPOOAMLFiwA0H4Pv2zZMuTn5wMArrnmGkyZMgVAe+fZ7NmzAQA5OTndxtRb3eORp+iY5Dyfjh49ikgkkvIxOZ1ORCKRuNoIuWPy+Xyor6+Xvd3rqo3g9Zt75MgROBwOfPDBB1x+nxwOBxwOB/d7wmSgi6T6fBZEWrNv3z6MHj0aVqsVRqMRpaWlKCwshMvlgt1uh06ng9PphNVqhdlsRltbGwRBQFZWFhsRIj4UFE+FU089lb1tLr71LggCjEYjfD4fduzYAZ1OB51OB0EQ2Lb4IFCv17NtucuJF26ZmZnsjWxxHwAxeuIDtWi97spJ9XXixInIyspiIxB0Oh30ej0bDSD6Gg6HYTAYoNPpEAgE0NjYiIEDBzKd6HJGoxFA+8WaXq+HXq/H1KlTsXXrVgDAxIkTMWHChJiYnE4nvvzyS/zwww8x9ebZZ5/FrbfeGuPD/Pnz8eqrrwIA5s6di3/84x9oaGhgIxeife0upuuvv579YJxyyimorKzsslw4HMZbb72F559/vssptKLR6XRYsGABnnvuORiNxl596HhcxbfyGxoakJ+fD71e3205ufIkXrSI51MwGERTUxMGDhzIvu+rD+JD9Pz8fJhMpl5j7+sx6qlcX2IS2wixHG8f1BpTMBiM+zzp6Kvf78ehQ4dYuxKJRFBYWAidTtfnttztdrO3z1pbW5GZmQmTycQuVjMzMxEMBuH1etnbZw6HA9nZ2TAajTh27Bj+8Y9/4I477kBmZiZ8Ph9ycnIQiUTQ2toKm80Gg8EAt9sNo9EIq9UKv9/PRgmI7U1OTg70ej1cLhfMZjN7ay8UCiE7OxvhcLhPMTU2NuL555/HHXfcgdzc3IRi8ng80Ov1yMjIQCAQ6DEmj8eDF198kb3pzDOmlpYW/OMf/8Att9wS85ZgojG5XC6sWrUKS5YsgdVqjTtP1dXVWLNmDe644w4YDIa4YvJ6vSguLsbNN9+MQYMGcal78eRJibqXSjE1NTXhueeew+23345+/fqldExNTU14+eWXceutt8JgMCQ9T0ePHmXnidFolL3uBYNBFBcXY/78+TjppJO4xiQ+sJ4/fz4GDx6c9DwFAgG88MILWLhwIex2e59jEh9YLFiwAEOHDqU2IskxORwOFBcX45ZbbkFeXl5KxVRZWYmjR4/CZDIhHA7D7XZj165dmDx5MoD2N/D1ej0CgQB0Oh0rFwqFYLFYEIlE4Pf7Y8rp9XoYjUaEQiGEw+GYchaLhV3vGQwGVk4QBJjNZgiCgEAgwMq1trYyf8Trxuhy4oN4n88Hk8kEg8HA3pAWfQ0GgzHleopJ7FgYO3YsbDYb15gikQi+/PJLjB07FtnZ2czXRGLikadAIICvv/4a48ePh8lkgsViQW1tLZYuXQqn0wlBENjoaL/fz56xuN1u9O/fH7fffjueeeYZOBwOvPbaaxg0aBAMBgNqamqwaNEiNnI3OzubvfFtt9vZTBbiaBCv1wuTyYTMzEy8+OKLKCgogM/nQ3NzM2bPno2srCwIgoC2tjaYzWZYrVasWLECd911F+x2O1wuF8LhMLKzs9mDZIvFwkY26/V65OTkdIqppKQEeXl53dY9v9/P7rcTzVM8dU/K+eR0OlFRUYHJkyfDaDSmbExOp5PVa51O16c2Qu6YxPNEHBUiZ7vXVRsxefJkLr+5oVAIzz//PG6++Wb069dP8u+TIAh49tlnceONNyI/P1/yPWFNTQ1Gjx4Nkb179+LMM8+EElBHCJHSiB0hIvGePKFQqNND8lGjRrGHfx3x+Xy9PrhWko6dE2phypQp7Ielr3R8ONoXioqKWO92X7DZbOxmuCPz5s2L6QhZs2ZN3P5cddVV7E3hc845B19//XWv+xw9ehSbN2/Gzp078fXXX2P37t0xQzVFpk2bhg0bNnRbN3sikWMrp5YUDZ6xENLhkY9422E56PgAItko7Y+c9nhrS9WTsr/a6km6o6V8qC0WaoPk00pUQ211JN1J5XxUVVWhqqqKfe744C7ZKO2PnPZ4avPQ6kqjrq4Os2bN6nXfjp0Lb731FgoKCuLS6Iq+6jz99NO48847E7LRla1UR23nbaKoMQ4lferKVlFRERdttd+DSX2WKwXlnjIQBMEdtXWASEGn03F/8JmdnY0BAwZgzJgx+NnPfoY5c+bEzFnK25/oeRn79+/fp32GDh2KG264gU3d5ff7sWXLFrz00kv417/+xUYqbdq0CX//+99x1113xeUTwPfY8tCSoiFHPSESRyv5EOcSVgtK+yOnPd7aUvWk7K+2epLuaCkfaouF2iD5tBLVUFsdSXe0lA+dThf3C2xyorQ/ctrjqc1DS4qGuE4AoQ7Udt4mihrjUNInOW1p6R6MN6n1+gJBEDEIggCPx8OmvUplOq4bEC8PPvggGyEj/rlcLlRVVeGDDz7A7bffHlfDm4g/lZWVbDvet01Ee0ajEdOnT8d7772H999/P+Yhc6JzKUo9try1pGjwjIWQjlby4XK58OKLL7K1T5KN0v7IaY+3tlQ9KfurrZ6kO1rKh9pioTZIPq1ENdRWR9IdLeXD7/ejvLyczeuebJT2R057PLV5aEnRsNlsWLx4ccyamETyUNt5myhqjENJn+S0paV7MN5QRwhBpDDinIxaGBWi0+mQmZmpmlji9efw4cM4fvw4+ywu3CbF3i9/+Uu2OBzQviiduCijVO1E4aElRUNt9STd0Uo+zGYzxo4dC7PZnGxXACjvj5z2eGtL1ZOyv9rqSbqjpXyoLRZqg+TTSlRDbXUk3dFSPgwGAwoKCmAwGJLtCgDl/ZHTHk9tHlpSNAKBAHbt2oVAIJCwfYIfajtvE0WNcSjpk5y2tHQPxpvUn8+CIBTEYrHE/YA7HbFYLHHvo9frkZ2dLYM3iRGvP++++27M54suuoiLvcsuuwwvvfQS+1xbW8sWEpWqnQg8tKRoqK2epDtayYfa2nal/ZHTHm9tqXpS9ldbPUl3tJQPtcVCbZB8WolqqK2OpDtayofRaMSQIUOS7QZDaX/ktMdTm4eWFA2/36+qtVLTHbWdt4mixjiU9ElOW1q6B+MNjQghiDgQ5/BTy5/ZbEYwGITZbE66L9F/ibwdLggCXC6Xaqb5iscfv9+P559/nn0ePXp0zMJPUux1nDMykU4mnseWh5YUDbXVk3RHK/nw+XzYvHkzfD5fsl0BoLw/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5CIVCqKqqQigUSrYrAJT3R057PLV5aEnRsFqtKCoqUt16DumK2s7bRFFjHEr6JKctLd2D8YY6QggihYlEIvD7/WxB7VRGbbHE489dd92Fqqoq9vm+++6LuzOoO3vffvst29bpdAm9McDz2PLQkqKhtnqS7mglH2q7CKeHAPLpSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkf4iLYanmpRWl/5LTHU5uHlhQNo9GI4cOHx6xfSSQPtZ23iaLGOJT0SU5bWroH440ukupPL4i0Zt++fTFv3u/duxdnnnlmn/cPhUL44YcfYr4bNWoU/cCnCEVFRdiyZQuA9sXSly9fnrDWvHnz8OqrrwIA5s6di5KSkl73CQaD+L//+7+YRcyLiorw6aefdjnP44MPPogZM2ZgwoQJffKpvr4eZ599Nurq6gAAEydOxJdfftmnfQkiVaB2mCAIgiAIQhmqqqpiXuAi0pu6ujrMmjUr7v3eeustFBQUSNKIR+fpp5/GnXfemZCNrmwRhFopKipKtguKIPVZrhRoRAhBpDCRSATBYDDl38YG1BdLT/40NzfjpZdewpgxY2I6QUaNGoX333+/28WuNmzYgIkTJ2LatGl47bXX4HA4urQXiUSwceNGnH/++awTBAD+8Ic/cI8lGVpSNNRWT9IdreQjHA6jrq4O4XA42a4AUN4fOe3x1paqJ2V/tdWTdEdL+VBbLNQGyaeVqIba6ki6o6V8CIIAt9utmjeylfZHTns8tXloSdFQ46LW6YzazttEUWMcSvokpy0t3YPxhjpCCE1gtVrZgr3hcBgOh4M9mHM6nQgEAgCAtrY2eDweAO1vIbe2tjIN8QG0qCGeoIIgxAzfCoVCMeXERksQBLZPJBJRpFw4HEZDQwOCwWBMuWhfRT21xxQMBtHQ0BATW28xRT987apcvD6IlJWV4ZZbbsHChQtxyy23YOnSpbj++utx5ZVX4vTTT0deXh4WLVqEyspKts9VV12FL774Ajk5Od3aFb///PPPMXfuXPTv3x9nnnkmfvnLX+Kmm27CvHnzMGPGDAwZMgQ///nPcfDgQaZ/2223YcaMGQkd/1AohIaGBoRCoaTkqWPdCwQCTCNeH8Q6L9pSoo72JSa1nU9KxSTWrXA4LMlXcTu6XDxteXSnYmtrK2sTvV4vvF4vgPa6G93mOxwOFuPx48exatUquFwuBAIBOJ1O5qvD4WA+ud1uNq+p3++Hy+VifkcPa3a5XPD7/QDa50N1u91xxdTS0sL8STQmj8eDtrY2AOg1psbGRqxatQqNjY3cYxKPbUtLi+Q8eTweNDQ0YNWqVWhqakooTzU1NezYxhuTy+XCqlWrcPz4cQB86l48eVKi7qVSTA6HA6tWrWL6qRxTXV0dVq1aBYfDoYo8RZ8nStQ98dyqqanhHlO0thry1NzcjFWrVqG+vj6umMQ4jh07xvJEbUTyYhLz0dLSknIx+Xw+th0Oh+FyufD1118jEAjA5/MxHwKBQEw50Z9IJNKpnJjbUCjUqZzoq9/vjykn+i0IQky5aH+CwWCnciI+n48d12AwGONrx3I9xRQIBPD111/HrHnHKya/38+0o31NJCYeefJ6vfj666/h9XpjyuXm5kKvb380aLPZ2JqU0c9Y7HY7Fi9eDJvNxvyLvmbPysoC0D6FVm5uLovJbrfDZDIBADIzM5GZmQkAMJlMsNvtXeYpKysLGRkZAACz2YycnBwA7dNE5+bmss6Y7OxstmaJxWJhvun1+m5j6qnu+f1+yXmKp+51l6e+1D23283qQyrHFF2v+9pGyB2TeJ60tbXJ3u511Ubw+s0V7yePHz/O5feptbUVq1atQm1tLdd7wmRAHSGEJpgyZQquueYaAEBDQwOKi4vZybl69Wrs378fALBlyxasX78eAFBdXY1Vq1YxjegHc06nkzUQfr8fDQ0NrFx9fT07oVtbW1kD4fP50NjYCKC9Uamvr2eNXktLC2vMvF4vmpqaALQ3FvX19azxaWpqYo2Zx+NhF9ehUAj19fXMv8bGRvh8PhgMBmRmZrLGJxAIoL6+nvna0NDAjoPaY2ppaYHdbofBYIDL5WINeU8xRfcmiw9kpcQkUllZiZUrV6KkpAQrV67EypUrsXbtWqxfvx6VlZUxHScXXHABXnnlFaxbtw79+vXrMk9A+0X9JZdcEjMcNxKJYP/+/Vi3bh1Wr16NN998E//73//YTS4A5Obm4oUXXsDf//73hPPU1taGgoIC+P3+pOSpY91rbm5mbxTFG5PBYIDZbGY/5jzPJzFPicSktvNJqZiCwSAMBgMMBkPCMbW0tLCLyuiY4mnLo0dmrVy5EocOHQIAbNy4ERs3bgQAHDp0CCtXrmTliouLUV1dDQDYunUrxo8fD7vdjv3792P16tXsOBQXF7Nj8d5776G0tBQAUFFRgbVr17JjV1xczI7f2rVrUVFRAQAoLS3Fe++9F1dM4vEVbxATiWn9+vVs6sDeYtq/fz/uuece/Pjjj9xj2rp1K+655x64XC7JeVq/fj127dqFe+65BzU1NQnlac2aNVi8eDHsdnvcMdntdowfPx5bt24FwKfuxZMnJepeKsUktkniQ5BUjumTTz7BPffcg0AgoIo8rVmzBvPmzYPdblek7tntdsyaNQtr1qzhHpPdbscdd9yBNWvWqCJPjY2NuOeee1BWVhZXTHa7HZdffjnef/99lidqI5IXk/j7LP5ep1JM5eXlbLulpQV79uzB+eefD4vFgrKyMubDgQMHcPjwYWZX9CccDqOsrIxdj+7fv5/ltq6uDnv27GGxl5WVMV/37NnDRrpXV1czv71eL8rKyth14XfffYdTTjkFFosFhw8fxoEDB9gxKisrYzGVl5eza8ZDhw7FxFReXs7K9RaTxWLB5MmTsWvXLu4xGY1GnH/++fjuu+9YHUg0Jh55amhowPnnn8/0gPZ7iGXLlrHOhtmzZ2PcuHEAYp+xmM1mAGD3F0eOHGExNTU1YcaMGQCAIUOGYNmyZSymJUuWYOTIkQCA6dOnY/r06QCAkSNHYsmSJTF5ErVnzJiBqVOnAgDOOOMMLFiwAEB7Z8eyZcuQn58PALjmmmswZcoUAMC4ceMwe/ZsAEBOTk63MfVU9yoqKiTnKZ66112e+lL3Dhw4gBEjRsBisaR0TLt27cL48eNhsVj63EbIHVNdXR3OP/98OJ1O2du9rtoIXr+5LpcL99xzD7Zu3crl90mn0+Gee+7Bf//7X673hMmA1gghUhpxXjmr1Qqj0YjS0lIUFhbC5XLBbrdDp9PB6XTCarWyh6eCICArK4uNCBEfCoqnwqmnnsoWujYYDBAEAYIgsPnqxYexOp0O4XAYOp0Oer2evfEvPhAMh8NJKxftq16vh16vZz8cWopp6tSp7IHUAw88gPvvvz/hmObPn8/WCOmIyWSCzWaD3W5Hfn4+xowZg/Hjx+OSSy7ByJEj44pJr9fjq6++wpYtW1BeXo7vv/8e1dXVcDqd0Ol0yMnJwZAhQzBmzBj87Gc/w5VXXslutlI1T1qsexQTP1/9fj8OHToEnU7HyhUWFkKn0/W5LXe73ezts9bWVmRmZsJkMrGL1czMTASDQXi9XnY+ORwOZGdnw2g0wuPxQK/XIyMjg71pJ47uam1thc1mg8FggNvthtFohNVqZW8R2mw2CIIAp9OJnJwc6PV6uFwumM1mWCwW+Hw+hEIhZGdnszf6KCaKiWKimCgmioliopiSEVNlZSWOHj0Kk8mEcDiMYDDIOpR9Ph/MZjP0ej0CgQB0Oh0rFwqFYLFYEIlE4Pf7Y8rp9XoYjUY2+jy6nMViYdd7BoOBlRMEAWazGYLQPlo8upzRaITBYGDTr0aXi/bVZDKxcgAopgRiqq2txdKlS+F0OiEIAmw2G3s7X3zG4na7YTAYYLPZ0Nraikgkgtdeew2DBg2CwWBATU0NFi1aBI/HA6PRiOzsbPbGt91uh9frRTAYZKNBvF4vTCYTMjMz8eKLL6KgoAA+nw/Nzc2YPXs2srKyIAgC2traYDabYbVasWLFCtx1112w2+3s7fns7GyEQiH4fD5YLBaYzWa4XC7o9Xrk5OR0iqmkpAR5eXkpmSct1j2KqeuYJk+enBa/TzU1NUlbI4Q6QoiUJt0XSw+Hw2hsbEReXl7Kz9eptliU9kdOezy1eWhJ0VBbPUl3eORDDe2w0+nE6tWrsWDBAvb2WDJR2h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqTyvnouFi63+9HRUUFxo0bx6YPSiZK+yOnPZ7aPLS60ujrQuc5OTlYsGABVq9eDafTSYulJxm1nbeJosY4lPSpK1u8FktX+z0YLZZOEERC6HQ62Gw2NoIllVFbLEr7I6c9nto8tKRoqK2epDtayYfVakVRURF7MyjZKO2PnPZ4a0vVk7K/2upJuqOlfKgtFmqD5NNKVENtdSTd0VI+jEYjhg8frpoXAZX2R057PLV5aEnR8Pl82Lx5c8zaCkTyUNt5myhqjENJn+S0paV7MN6op7YRBBE3er2eDTFNddQWi9L+yGmPpzYPLSkaaqsn6Y5W8mE2mzF27Nhku8FQ2h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqjpXwYDAZVvSWvtD9y2uOpzUNLikYgEMCuXbsk2Sf4obbzNlHUGIeSPslpS0v3YLyhESEEkcIIgoDW1la20HAqo7ZYlPZHTns8tXloSdFQWz1Jd7SSj7a2Nnz88cdoa2tLtisAlPdHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfwWAQBw8eZHPoJxul/ZHTHk9tHlpSNDIyMnDZZZchIyMjYfsEP9R23iaKGuNQ0ic5bWnpHow31BFCECmMuOiwFpb6UVssSvsjpz2e2jy0pGiorZ6kO1rJhyAIcDgcqunQUdofOe3x1paqJ2V/tdWTdEdL+VBbLNQGyaeVqIba6ki6o6V8RCIR+Hw+1VzLKe2PnPZ4avPQkqKh1+uRm5sLvZ4eIaoBtZ23iaLGOJT0SU5bWroH4w0tlk6kNOm+WDpBEESqQ+0wQRAEQRCEMnRcLJ1IbxJd6JwWSycIeeC1WLraocXSCYJIiEgkAr/fr6oe9ERRWyxK+yOnPZ7aPLSkaKitnqQ7WslHKBRCVVUVQqFQsl0BoLw/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5UNNbugCNSJNTS4qGGhe1TmfUdt4mihrjUNInOW1p6R6MN9QRQhApTDgcRlNTE8LhcLJdkYzaYlHaHznt8dTmoSVFQ231JN3RSj7cbjdeffVVuN3uZLsCQHl/5LTHW1uqnpT91VZP0h0t5UNtsVAbJJ9WohpqqyPpjpbyEQgE8O233yIQCCTbFQDK+yOnPZ7aPLSkaGRnZ2PevHnIzs5O2D7BD7Wdt4mixjiU9ElOW1q6B+MNTY1FpDQ0NRZBEERqQ+0wQRAEQRCEMtDUWEQ0NDUWQagLmhpLfmhECEEQBEEQBEEQBEEQBEEQBEEQmoU6QggihQmFQqitrVXFPHtSUVssSvsjpz2e2jy0pGiorZ6kO1rJR2trKx555BG0trYm2xUAyvsjpz3e2lL1pOyvtnqS7mgpH2qLhdog+bQS1VBbHUl3tJQPn8+HL774Aj6fL9muAFDeHznt8dTmoSVFw263495774Xdbk/YPsEPtZ23iaLGOJT0SU5bWroH4w11hBBECqPX65Gbmwu9PvVPZbXForQ/ctrjqc1DS4qG2upJuqOVfGRmZuLqq69GZmZmsl0BoLw/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5MJlMKCwshMlkSrYrAJT3R057PLV5aEnR8Hq9WLduHbxeb8L2CX6o7bxNFDXGoaRPctrS0j0Yb1L7yQVB/P+xWq1s4a5wOAyHwwFx+Run08kWH2pra4PH4wHQ/iZzdG9kJBJh+4TDYbb4ryAIMW87h0KhmHKCILBy4j6RSESRcnq9HhaLhX0vlov2VdRTe0yRSAQWiwV6vb7LckrHBABmsxl6vV622KN9BYCMjAxEIhHuMYna0Z+TmSdBEJCRkQG9Xh+3D3q9HmazmdlRoo72JSa1nU9KxQTwOU/E7ehy8bTlDoeD+dPa2opgMAig/aZNvGELBoMxbb7D4WAxBgIBDBs2DCaTCYFAAE6nk/nqcDiYT263m72x4/f74XK5mN8Oh4PF63K54Pf7AbS/6SMuCtfXmHQ6HQoKCthFcSIxeTwetLW1sfh6iikcDqOwsBCCIHCPKRAIoLCwEDqdTnKePB4PQqEQCgsLEYlEEsqTx+PBqaeeCpPJFHdMJpMJw4YNY/HxqHvx5EmJupdKMen1ehQUFLD1hFI5Jr/fj8LCQuj1elXkyePxYNSoUTCZTIrUPZPJhFNOOYXFxzMmk8mE0047DR6PRxV5AoDCwkIEg8G4YjKZTDj55JNZfNRGJDcmk8mEgoIC6HS6lIvJ5/Ox7XA4jGAwiLy8PBgMBvh8PuZDIBCIKSf6E4lEOpUTcxsKhTqVE331+/0x5US/BUGIKRcKhdCvXz8YDAYEg8FO5UR8Ph87rsFgMMbXjuV6islgMGDAgAEIBoPcY9Lr9cjLy0MoFIrxNZGYeOQpEokgLy8PkUgkplz0S002mw0WiwVA7DMWQRBQV1fH4g0GgzHX7FlZWQAAo9GI3NxcFpPdbmfXs5mZmewhqMlkihldEu1rVlYWu3c1m83IyckB0H59nJubC4PBAKB9AXer1QoAsFgssNlsADq/qBUdU091z+/3S85TPHWvuzz1pe6FQiF2LFI5pmAwiAEDBsBgMPS5jZA7JkEQkJeXx2xJyVMibQSv31ydTofCwkIEAgEuv08GgwGFhYXsekg8dlLvCZMBdYQQmmDKlCm45pprAAANDQ0oLi5mJ+fq1auxf/9+AMCWLVuwfv16AEB1dTVWrVrFNKIfzDmdTtZA+P1+NDQ0sHL19fXshG5tbWUNhM/nQ2NjI4D2RqW+vp41ei0tLawx83q9aGpqAtDeWNTX17PGp6mpiTVmHo8HLS0tzLf6+nrmX2NjI2vYGxsbWUMSCARQX1/PfG1oaGDHIRViam5uRjgchsvlYg15smLyeDwsDql5AtBrTD6fDy0tLWhtbeUek9vtZrGpJU8tLS3Mh3hiCofDaGhoYD+4PM+nvuQplc4nJWJqa2tj/iUaU0tLC7uojI4pnra8uLiY+bpy5UocOnQIALBx40Zs3LgRAHDo0CGsXLmSlSsuLkZ1dTUAYN26dVi9ejW8Xi/279+P1atXs+NQXFzMjsV7772H0tJSAEBFRQXWrl3Ljl1xcTE7fmvXrkVFRQUAoLS0FO+9915cMR08eBDFxcUs14nEtH79emzZsgUAeo1p27ZtWLduHcrKyrjHtG7dOqxbt47FJCVP69evx2effYZ169Zh165dCefpvffeg9frjTsmr9eL1atXY926dQD41L148qRE3UulmI4cOYLi4mLWZqRyTO+88w7WrVvHYlJDnt555x14vV5F6p7X68Xbb78tS0xerxf/+te/VJOn/fv3Y926dfjwww/jisnr9eKNN97AK6+8EpMnaiOSE5PX60VxcTEOHjyYcjGVl5ez7ZaWFpSXl6OyshLBYBBlZWXMhwMHDuDw4cPMruhPOBxGWVkZu0bZv38/y21dXR327NnDYi8rK2O+7tmzB3V1dcw/0W+v14uysjJ2XVhRUYHdu3cjGAzi8OHDOHDgADtGZWVlLKby8nLW/h86dKhTTCK9xRQMBvHdd9/JEpPP50NlZSUqKipYHZASk9Q8HT58GJWVlaipqWExhUIhLFu2jHU2zJ49G+PGjQMQ+4xl6NChWLZsGevkOHLkCIupqakJM2bMAAAMGTIEy5YtYzEtWbIEI0eOBABMnz4d06dPBwCMHDkSS5YsicmTeO8yY8YMTJ06FQBwxhlnYMGCBQDaOzuWLVuG/Px8AMA111yDKVOmAADGjRuH2bNnAwBycnK6jam3uscjT9ExyXU+7d69G99++y2CwWDKx7R//34Eg8G42gg5Y/rpp59QWVmJuro62du9rtoIXr+5Bw8eZPdhPH6fjh8/jnXr1uH111/nek+YDHQR8akJQaQg+/btw+jRo2G1WmE0GlFaWorCwkK4XC7Y7XbodDo4nU5YrVaYzWa0tbVBEARkZWWxESHiQ0HxVDj11FPZ2z0Gg4G9wS6+cRgKhWAwGKDT6RAOh6HT6djb8ZFIBAaDgb3VL3e5SCSC1tZW2Gw2mEwmVi7aV71eD71ez3441BpTMBiE2+1GTk4Oiy26nNIxhUIhOJ1O2O12Zot37NG+Au0PrLOzs6HX67nGFIlE4HK5YLPZoNPpkp6ncDjMNMT9++qDIAhobW1FTk4OjEajInU0Fc8npWLicZ74/X4cOnQIOp2OlRPfFulrW+52u9mNWWtrKzIzM2EymdjFamZmJnv7Vnz7zOFwIDs7G0ajEQ0NDdiyZQsuv/xyGI1G+Hw+Vj/FNtZgMMDtdsNoNMJqtcLv9yMQCMBms0EQBDidTuTk5ECv18PlcsFsNsNiscDn8yEUCiE7O5t1IPYWk9PpxMcff4xf/OIXyMzMTCgmj8cDvV6PjIwMBAKBHmMKBALYunUrpk6dCqPRyDUmt9uN7du3Y9q0aRAEQVKePB4PfD4ftm3bhqKiIuj1+rjzdPz4cZSWluLnP/85wuFwXDGFQiF8+OGHmDp1KvLz87nUvXjypETdS6WYXC4XPvroI1xxxRXsvEnVmJxOJ3bs2IFLLrkE4XA46Xmqq6vDzp07cdlll7HfAjnrnk6nw8cff4xzzz0XJ554IteYjEYjNmzYgClTpmDgwIFJzxMAfP7557jgggvY29F9iSkSieCjjz7CBRdcgBNOOIHaiCTH5PV68d///heXXXYZcnJyUiqmyspKHD16FCaTCeFwGG1tbaiursbIkSPZ76Jer0cgEIBOp2PlQqEQm4nA7/fHlNPr9TAajeylpehyFouFXe8ZDAZWThAEmM1mCIKAQCDAyrndbhw5cgSjRo0C0H6PHl1OHAHg8/lgMpnYyBEAzNdgMBhTrqeY9Ho9Dh48iCFDhiArK4trTHq9Hj/++COGDBmCjIwM5msiMfHIUzgcxuHDhzFs2DA2s0RtbS2WLl0Kp9MJQRBgs9kQCATg9/vZMxa3243s7Gxcfvnl+O9//wuv14vXXnsNgwYNgsFgQE1NDRYtWgSPxwOj0Yjs7Gz2oqZ4vgSDQTYaxOv1wmQyITMzEy+++CIKCgrg8/nQ3NyM2bNnIysrC4IgoK2tDWazGVarFStWrMBdd90Fu90Ol8uFcDiM7OxshEIh+Hw+WCwWmM1muFwudn3YMaaSkhLk5eV1W/f8fj+MRqOkPMVT96ScTx6PB4cPH8aoUaPYPVQqxuR2u1FdXY1TTjkFgiD0qY2QO6ZQKIQjR45g+PDh0Ol0srZ7XbURkydP5vKbq9frsWnTJpx//vnIzs6W/PtkNBrx6aef4rzzzoPdbpd8T1hTU4PRo0dDZO/evTjzzDOhBNQRQqQ0YkeISLwnTygUwg8//BDz3ahRo9jDP4IgCEJeqB0mCIIgCIJQhqqqKlRVVSXbDUIl1NXVYdasWXHv99Zbb6GgoECSRjw6Tz/9NO68886EbHRliyDUSlFRUbJdUASpz3KlQFNjEUQKI74pIU4rk8qoLRal/ZHTHk9tHlpSNNRWT9IdreQjGAyy6QbUgNL+yGmPt7ZUPSn7q62epDtayofaYqE2SD6tRDXUVkfSHS3lQ5xqWRwZnGyU9kdOezy1eWhJ0VDjotbpjNrO20RRYxxK+iSnLS3dg/GGOkIIIoURFy5K9YeQgPpiUdofOe3x1OahJUVDbfUk3dFKPrxeL9atW8eGGCcbpf2R0x5vbal6UvZXWz1Jd7SUD7XFQm2QfFqJaqitjqQ7WsqHmh5OAdQRK6eWFI3MzExcffXVbHorIrmo7bxNFDXGoaRPctrS0j0Yb2hqLCKloamxCIIgUhtqhwmCIAiCIJSBpsYioqGpsQhCXdDUWPJDI0IIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEClMKBTCsWPHEAqFku2KZNQWi9L+yGmPpzYPLSkaaqsn6Y5W8uFwOLBixQo4HI5kuwJAeX/ktMdbW6qelP3VVk/SHS3lQ22xUBskn1aiGmqrI+mOlvLh8/mwZcsW+Hy+ZLsCQHl/5LTHU5uHlhSN3NxcLF++HLm5uQnbJ/ihtvM2UdQYh5I+yWlLS/dgvKGOEIJIYQwGAwYMGACDwZBsVySjtliU9kdOezy1eWhJ0VBbPUl3tJKP7OxszJ07F9nZ2cl2BYDy/shpj7e2VD0p+6utnqQ7WsqH2mKhNkg+rUQ11FZH0h0t5cNsNuPss8+G2WxOtisAlPdHTns8tXloSdFwu90oKSmB2+1O2D7BD7Wdt4mixjiU9ElOW1q6B+MNTcBNECmMTqeDxWJJthtcUFssSvsjpz2e2jy0pGiorZ6kO1rJh9FoxPDhw5PtBkNpf+S0x1tbqp6U/dVWT9IdLeVDbbFQGySfVqIaaqsj6Y6W8qHX61X1lr/S/shpj6c2Dy0pGqFQiNaWURFqO28TRY1xKOmTnLa0dA/GGxoRQhApTDgcRnNzM8LhcLJdkYzaYlHaHznt8dTmoSVFQ231JN3RSj48Hg/efvtteDyeZLsCQHl/5LTHW1uqnpT91VZP0h0t5UNtsVAbJJ9WohpqqyPpjpbyEQgEsHfvXgQCgWS7AkB5f+S0x1Obh5YUjaysLFx33XXIyspK2D7BD7Wdt4mixjiU9ElOW1q6B+MNdYQQRAqj0+lgMBig0+mS7Ypk1BYLT3+Kioqg0+mg0+mwefNmLvZKSkqY5rx583osyzMWHlpSNOSqJ5s3b2bHs6ioiKu2llHbeZso4ts4er06LouU9kdOe7y1pepJ2V9t9STd0VI+1BYLtUHyaSWqobY6ku5oKR86nQ5Wq1U113JK+yOnPZ7aPLSkaAiCAIfDAUEQErZP8ENt522iqDEOJX2S05aW7sF4Q1NjEUQKo9frYbfbk+0GFxKJpaioCFu2bOn2/9nZ2ejXrx/OOOMMXHTRRZg7dy4GDx4smz9SkNMeT20eWlI0UqXOl5SUYP78+d3+32w2Izc3F6eccgrOPfdczJs3D6NHj+62/ObNm3HxxRd3+T+dTgebzQa73Q673Y7TTjsN48ePx8SJE3HxxRcnvH5HZWUlXn/9dezYsQPff/89WlpaEA6HkZ2djUGDBmHkyJEYP348zj33XFx44YWwWq0J2VEDGRkZuOyyy5LtBkNpf+S0x1tbqp6U/dVWT9IdLeVDbbFQGySfVqIaaqsj6Y6W8mEymXDKKack2w2G0v7IaY+nNg8tKRptbW34+OOPJdkn+KG28zZR1BiHkj7JaUtL92C8SX5XDEEQCSMIArxerybezJAjFrfbjaNHj2LDhg344x//iBEjRmDFihWIRCJJ8SdZ9nhq89CSoqGVOh8IBFBfX48dO3bgySefxFlnnYU5c+bA5XLFrRWJROB0OnH06FHs3bsX77//Pu677z5ceumlOOmkk/DAAw+gubm5z3oOhwNz587F6aefjocffhibN29GbW0tfD4fgsEgWlpasG/fPnzwwQd48MEHMX36dPTv3x9Hjx6N23e1EAgEsGvXLtUMy1baHznt8daWqidlf7XVk3RHS/lQWyzUBsmnlaiG2upIuqOlfITDYdTV1almmlOl/ZHTHk9tHlpSNMxmM8aOHauqRa3TGbWdt4mixjiU9ElOW1q6B+MNjQghiBQmEonA5XJpYrFiqbFMnDgRkyZNivmutbUV3377Lfbs2QMACAaDWL58ORwOB55++mlZ/YkXOe3x1OahJUUjFeu8zWbDnDlzYr5ra2vDwYMHsXPnTgSDQQDA66+/jiNHjmDjxo293mTccsstMZ99Ph9aWlpQW1uLXbt2oa2tDQBw7Ngx/PnPf8Yrr7yCNWvWYPr06T3qtrS0YNq0adi1axf7LisrCxMmTMCIESNgsVjgcDjwww8/xMxn2tbWBr/f36fjoUZ8Ph82b96Mk08+WRU3eEr7I6c93tpS9aTsr7Z6ku5oKR9qi4XaIPm0EtVQWx1Jd7SUD3ER7H79+iU8ijiV/ZHTHk9tHlpSNKxWK4qKivDjjz+q4kFmuqO28zZR1BiHkj7JaUtL92C80UX68mo0QaiUffv2xUwns3fvXpx55pl93j8UCuGHH36I+W7UqFEwGqmPMBWInhrrwQcfxPLly7sst2PHDsyaNQtHjhxh33311VeYMGGCEm7G+Pn555/TGhQqJHrqqalTp3a7lktfiZ4aa9iwYaiqquqy3OHDh3HDDTdg27Zt7LvHHnsM//d//9etfwB6HNUUDAaxfft2FBcX4z//+Q8rq9Pp8M9//hMzZ87sdt8FCxZgzZo1ANrf/Hr44YexZMkSZGZmdirb1taGDRs24J///Cfef/997N+/P6GhvdQOEwRBEARBKENVVVW316VE+lFXV4dZs2bFvd9bb72FgoICSRrx6Dz99NO48847E7LRlS2CUCvp8qxI6rNcKdDUWASRwkQiEQiC0KepntSOnLGcd955+M9//hOzCNVLL72UNH+UtsdTm4eWFA0t1XmgvZPkf//7H0aMGMG+6220Um+YTCYUFRXh3//+N/73v/+hf//+ANqP3dy5c/HNN990ud/x48fx6quvss+vvPIK7r777i47QYD2eT6vuuoqrF27FocPH8aJJ54oye9kEolE4PP5VFOvlPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfkUgEoVBINbEo7Y+c9nhq89CSoqHGRa3TGbWdt4mixjiU9Enu9kcr92C8oY4QQhNYrVZkZ2cDaJ9nz+FwsBPM6XTGTN/i8XgAtL+F3NrayjQikQjbJxwOs3n6BEFAKBRi5aIbqnA4zNYqEASB7dOxQZOrnDinoDi1jlgu2ldRT+0xBYNBNj9iV+W6iim6Ee2qXLQPY8aMield37p1a4++hkIh5g+P2KPpylfRXjAY5J4nUTsUCiUlTx3rXiAQYBrx+iDWedEW7zoq/j/emLrLUzTd+WCz2XDrrbeycrW1tWw6t54ujvoS0//7f/8P//nPf9joira2Ntx9991dxrRx40a2feKJJ+Laa6/tMqauzpP8/HxkZmYmfPzF7ehy8bTlDoeD+dra2sraRK/XC6/XC6C97ka3+Q6Hg+WttrYWjz76KFpbWxEIBOB0OpmvDoeD+eR2u+Hz+QAAfr+frekiCAIcDgeL1+VysanCfD4f3G53XDE1NTUxfxKNyePxsCnSeoupvr4ejz76KOrr67nHJB7bpqYmyXnyeDw4fvw4Hn30UTQ0NCSUp6NHj7JjG29Mra2tePTRR1FbWwuAT92LJ09K1L1Uiqm5uRmPPvoo8zeVYzp27BgeffRRNDc3qyJP0eeJEnVPPLei15riFVO0thry1NjYiEcffRR1dXVxxSTGUV1dzfJEbUTyYhLz0dTUlHIxiWu+iXpOpxPbt2+H3++Hz+djPgQCgZhyoj/iw6zocmJuQ6FQp3Kir36/P6ac6LcgCDHlov0JBoOdyon4fD52XIPBYIyvHcv1FJPf78f27dvhdDq5x+Tz+Zh2tK+JxMQjTx6PB9u3b4fH44kpl5ubC72+/dGgzWZjUxBHP2Pp168f7r33XtjtduZf9DV7VlYWAMBoNCI3N5fFZLfbYTKZAACZmZnsBSuTycS0OuYpKysLGRkZANpHqOfk5ABo74zJzc1lUwhlZ2fDarUCACwWC2w2GwBAr9d3G1NPdc/v90vOUzx1r7s89aXuuVwuVh9SOaboet3XNkLumMTzxOv1yt7uddVG8PrNFe8na2trufw+tbS04NFHH0VNTQ3Xe8JkQB0hhCaYMmUKrrnmGgBAQ0MDiouL2cm5evVq7N+/HwCwZcsWrF+/HgBQXV2NVatWMY3oB3NOp5M1EH6/Hw0NDaxcfX09O6HFBylAeyPQ2NgIoL1Rqa+vZ41eS0sLa8y8Xi+7aA6Hw6ivr2eNT1NTE2vMPB4PWlpamG/19fXMv8bGRvh8PhgMBmRkZDAfxAWYRRoaGthxUHtMLS0tsNlsMBgMcLlcrCHvKaboRaVCoVCvMY0dO5b9/9ixYz3G5Pf7YTQaceDAAfzhD3/AxIkTUVBQALPZjBNOOAGTJ0/GAw88gIMHD/aap44EAgFUVFTgT3/6E84++2zk5+cjNzcXF198Me644w62PkNPeVq5ciUMBgN0Oh3mzJnTZZ42b94Mo9EIs9mMWbNmwe/3o6mpCZs2bcJ1112HkSNHIiMjAwMGDMAFF1yAp59+GsFgsMc8ffvttxg8eDBMJhOGDx/O8rRz507MmTMHp556KjIzM5GXl4dJkybh4YcfRm1tbUzda25uRn5+PgwGQ5d5En+0p02bhqFDhzIfzzjjDNx+++3Yt28f+zHvS9374YcfcOutt6KwsBBZWVkYMGAAzj77bDzwwAOorq5GY2NjzFy34v5SzqfojhHxgqmn8yl6WKh4nKNj6qpDrS9tBACcddZZuO2229h+mzdvxs6dOzvF9OOPP7IyQ4YMYb6KMXXVRgQCAej1ehgMhoTbiJaWFhZfdEzxtOXFxcXM15UrV+LQoUMA2jt3Nm7cCAA4dOgQVq5cycoVFxezB0pbtmzB6NGjYbPZsH//fqxevRpAe26Li4tZft977z2UlpYCACoqKrB27VoA7fWhuLiY1Ym1a9eioqICAFBaWor33nsvrpjE80q8oUskpvXr17Mp+XqLad++fVi0aBEOHTrEPaYtW7Zg0aJFaG1tlZyn9evXo6KiAosWLUJ1dXVCeVqzZg1++9vfwmazxR2TzWbD6NGj2XHlUffiyZMSdS+VYhLbOHGe4VSOaePGjVi0aBF8Pp8q8rRmzRr8+te/hs1mU6Tu2Ww2zJgxg03NyDMmm82GefPmYc2aNarIU0NDAxYtWsT0+hqTzWZDUVER3n//fZYnaiOSF5P4+yz+XqdSTOXl5Wy7paUFe/bswfjx42E2m1FWVsZ8OHDgAA4fPszsiv6Ew2GUlZWx+7v9+/ez3NbV1bGXefx+P8rKypive/bsQV1dHfNP9Nvr9aKsrIxdF3733XcYNmwYzGYzDh8+jAMHDrBjVFZWxmIqLy9n14yHDh2Kiam8vJyV6y0ms9mMs88+G7t27eIek8FgwPjx4/Hdd9+xOpBoTDzy1NDQgPHjxzM9oP0eYtmyZayzYfbs2Rg3bhyA2GcsYoeDeD9w5MgRFlNTUxNmzJgBoP0eYtmyZSymJUuWYOTIkQCA6dOns/UKR44ciSVLlsTkSfxdnzFjBqZOnQoAOOOMM7BgwQIA7Z0dy5YtQ35+PgDgmmuuwZQpUwAA48aNw+zZswEAOTk53cbUU92rqKiQnKd46l53eepL3Ttw4ACGDBkCs9mc0jHt2rULo0ePhtls7nMbIXdMtbW1GD9+PJxOp+ztXldtBK/f3NbWVixatIjdj4l+J/r7FIlEsGjRIvz3v//lek+YDGiNECKlEeeVs1qtMBqNKC0tRWFhIVwuF+x2O3Q6HZxOJ6xWK8xmM9ra2iAIArKystiIEPFBp3gqnHrqqWzIp8FggCAIEASBvVEdCoXYA+hwOAydTge9Xs+m6xEfCIbD4aSVi/ZVr9dDr9ezHw4txTR16lRs3boVAPDAAw/g/vvv7zGm+++/Hw8//DCA9rdQxLcJuvKhra0Ny5YtwyuvvBLT4dKRjIwMPPLII7j99tu7jWnatGkxa4S0trZi7ty5Mb32HTWfeeYZ3HTTTd3mafXq1bjxxhsBAHPmzMHq1as7HdctW7bErHvx8ccf47bbbsPLL7/cbTznnHMOPvroIwwYMKDLPB06dIitAzFs2DAcPHgQf/7zn/GXv/yly4f1ADBixAhs2LABo0aN6rXurVy5En/605+6PTZA+9tA8+bNw4svvgij0dhjnXrxxRfxu9/9rssOKQDIzc3FmjVrkJOTg0suuQQAcNFFF2HLli2SzqfXX3+dXbSLa4T0VP8rKytx+umnM79ef/11XH/99azctm3bMG3aNPb/SCQS1/lUW1uLk08+md283H777SguLo6J6bHHHsM999wDABg4cCBqamoUaSP8fj8OHToEnU7HyhUWFkKn0/W5LXe73ezts9bWVmRmZsJkMrGL1czMTASDQXi9Xvb2mcPhQHZ2NoxGIzweD/R6PTIyMhAIBODz+ZCTk4NIJILW1lbWSet2u2E0GmG1WuH3+xEIBGCz2SAIApxOJ3JycqDX6+FyuWA2m2GxWODz+RAKhZCdnY1wOEwxUUwUE8VEMVFMFBPFlLSYKisrcfToUZhMJoTDYQSDQfaQ2+fzwWw2Q6/XIxAIQKfTsXKhUAgWiwWRSAR+vz+mnF6vh9FoZKPPo8tZLBZ2vWcwGFg5QRBgNpvZaPHockajEQaDAcFgEJFIJKZctK8mk4mVA0AxJRBTbW0tli5dykbE2Gw2BAIB+P1+9ozF7XbDYDDAZrOhtbUVkUgEr732GgYNGgSDwYCamhosWrQIHo8HRqMR2dnZ7I1vu90Or9eLYDDIRoN4vV6YTCZkZmbixRdfREFBAXw+H5qbmzF79mxkZWVBEAS0tbXBbDbDarVixYoVuOuuu2C32+FyuRAOh5GdnY1QKASfzweLxQKz2QyXywW9Xo+cnJxOMZWUlCAvLy8l86TFukcxdR3T5MmT0+L3qaamhtYIIQgpRA/JMhgMyM3NZZ0ZOTk57G3BjIyMmGGb0cMxdTpdTAeIOORSbOBEjEZjTDlxyKX4VrSopUS5cDiM5ubmmBg6+irqqT0moH2ai3A43GW5rmKK3rerch19OHbsGPv/CSec0K2vHo8HP/vZz/DSSy+xB94jR47Eb37zGyxatAgzZ87EoEGDALQP87vjjjvw8MMP9xi7SHl5OX7zm9+gtbUVAwYMwK9//WvcdNNNuOSSS9iw4ba2NixatAhr1qzpNqZoXZ1O1+NxBdqHSy5atAgvv/wy9Ho9zj33XMyfPx9z587Faaedxsp98803mDdvXq96In/5y1/w0EMPQRAEjB07FjfccAMWLFiAc845h5X56aef8Otf/5o9dNfpdGhsbGSdDKL23Xffjdtuu411guTl5WHGjBm4+eabccMNN7AfykgkgjVr1uCqq65ix7krX19++WXceuutrBPEZDLh0ksvxU033YRf/epX6N+/PxwOB6699lr2VoOoE60XffzjPZ+i6an+i2+hiPTr16/X4x/PeTd48GBccMEFbF9xcfbomEaNGsX+X19fj9dff73LmKK1I5EIWlpaWKdHom1EdL0Wy8XTlicyBD83N5flLRKJ4J///Cfcbjf3IfjR0wr0NSafz4d169ax37VEYopnWoFQKISSkhIEg0HuMUUiEZSUlMDn80nOU1ZWFsLhMEpKShAIBBLKk9FoxGuvvQa32x13TG63G//85z/ZixM86p6c0z8kUvdSKaa2tjasW7eOjTxL5ZgAoKSkBG1tbarIk9FoxOuvvw63261I3XO73XjjjTdifkt5xeR2u/Hqq6+yBwzJzpPf70dJSQkEQYgrJrfbjTfffDPmGpjaiOTF5Ha7sW7dOnaNmUoxWa1Wti1eq+3atYs9QBR9MJvNMeVEf3Q6XadyYm6NRmOncqKvFoslppzot16vjymn0+mwZ88eBAIBmEymTuVErFYrO64mkynG147leoopEAjg22+/ZS8G8YwpGAxi165dMfdqicbEI0+CIGDXrl0QBCGmXF+mZcvIyMDVV1/N6pj4gFm0K3Uqn2hf5Zxqrqe6Z7FYJOcpnrrXXZ76Uvd0Oh327t2LQCCQ0jHp9Xp8++23rFOgL22E3DFFIhHs2rWLdW5IyVMibQSv31yfz4eSkhJEIhEuv09erxclJSXQ6XRc7wmTgbH3IgRBiIRCITYETg0IggCv1wun09npgXsyGTJkSMzNbF8QG9TuHrhLJRQK4bPPPmOfxWG0XbF06VLs2LEDQPsIoVWrVqEoan0RoH145EsvvYQ777wTfr8fDzzwAC6++GKce+65Pfrxxz/+EYFAAL/73e/wl7/8hf2ICIKAAwcOYOHChewh9e23346ioiI2nFgKX3/9NXbs2IGJEyfitddeQ2FhIftfJBLB3//+dzaM+aOPPsLWrVtx0UUXddKJzk9tbS0eeughjBw5Em+++SYmTZoUU/bdd9/F7NmzEQwGsWfPHrz55puYM2dOl7levXo1GyKZk5ODJ598EnPnzmU/9CKfffYZ5syZg2PHjuHjjz/GE088gd///ved/Pzhhx9ihmVPnToVb7zxBoYMGcK+8/v9uPfee/HMM8/gvvvu68NRlI/t27fHfI5ePJ0XkydPxqZNmwC0T73V1tbGLooA4JJLLoHNZmM3EQsXLkRFRQVuuukmjBkzpktNuc9bpTAajRg+fHjc7ZZcKO2PnPZ4a0vVk7K/2upJuqOlfKgtFmqD5NNKVENtdSTd0VI+OnbCJBul/ZHTHk9tHlpSNEKhEKqqqmKm/yWSh9rO20RRYxxK+iSnLS3dg/Em+R4QRApRXV0tywNKrfHTTz9h+PDhce2j1+tZr7McPPLIIzGLcC5cuLDLctu2bcNrr70GoH0UyPbt25GXl9epnMFgwJIlS5CRkYH58+cjHA7joYcewkcffdSjH4FAAIsXL8bjjz8e871er0dhYSE+/PBDTJw4EZWVlfB6vVixYgXzRwp+vx+jRo3Cpk2bWK+9iE6nwx133IEvvviCzfH41ltvddkREv0jHQgEMGDAAGzdupWNkIlm5syZ+PLLL/HEE08wzTlz5nTKtcvlYgt4m81mbNy4EZMnT+4yjksuuQSffvopzjnnHPh8Pjz22GO49dZb2dsQIsuXL2dvCJ155pn48MMPO5WxWCx4+umn4Xa7e5wuTG7cbjeeffZZ9vnEE0/EGWecwd1O9MgfQRDQ2NiIoUOHsu9ycnKwfPlylotQKIRnn30Wzz77LE488URMnjwZEyZMwKRJk3DuueciOztb9vNWKaxWa6fOzmSitD9y2uOtLVVPyv5qqyfpjpbyobZYqA2STytRDbXVkXRHS/kQH06pBaX9kdMeT20eWlI0fD4fNm/eLMk+wQ+1nbeJosY4lPRJTltaugfjjXq63QiCSGsEQYDb7e52nYlEcDqd2LZtG37729/i/vvvZ9/feeeduPTSS7vc56mnnmLbf/nLX9C/f/8ebcybN4+NrtiwYQNbELo7bDYbHnnkkU7fi/FnZmbiscceY9+/++67Pa6XEQ8PP/xwp06QaMQ1LQDgyy+/7LJMx/zcd999XXaCdKX51VdfMY3oXK9evZoNoV66dGm3nSDivkOHDsWcOXMAtC/O9/HHH8eUcTgcbDFRAHjsscc6dYJE89hjj7Hhp0pz+PBhXHHFFfjpp5/Yd9EjWXgSPVwWAFs8Lpq77roLDz30UKe3Umpra7Fu3Tr86U9/wvTp05Gbm4uLL74YJSUlaG1t5XreJgO/34/S0lI2bD7ZKO2PnPZ4a0vVk7K/2upJuqOlfKgtFmqD5NNKVENtdSTd0VI+xBkP1PKmv9L+yGmPpzYPLSkaFosFU6ZMYbMZEMlFbedtoqgxDiV9ktOWlu7BeEMdIQRBqIJIJAKv18vmXo+XFStWsHVexD+73Y6LLroIb731FgBgwIABeOSRR2I6O6IJhUL45JNPALS/HT916tQ++SMuSB6JRDpNcdSRK6+8stMDaXFfMf7LL78c+fn5ANrfvtm5c2evPvSG1WrFL37xix7LjBs3jm1XVVV1Wabj8Zg5c2aPmoWFhWz6paamJrhcrk65/vDDD1n53/72tz3qifuKxxwAvvjii5gyO3bsYD+wAwcOxGWXXdajZr9+/XDllVf2WEYKzc3NuPXWW2P+brrpJhQVFWHUqFHYunUrK3vBBRfgjjvukMWPjp1g4hRYHbn//vuxe/du3HDDDd12EIXDYWzevBnz58/HpEmTsHv3bu7+KkkgEGDzLqsBpf2R0x5vbal6UvZXWz1Jd7SUD7XFQm2QfFqJaqitjqQ7WspHOBxGXV0dW3ch2Sjtj5z2eGrz0JKiYTabMXbsWDbnP5Fc1HbeJooa41DSJzltaekejDc0NRZBEKrAYDBg4MCBsuo/+uijuPHGG7sts3v3brbQm8lkwl//+tc+aYsjHQDETL/VFd2tIdIx/okTJ7IOgoqKil4f5vfGaaedFrMoWFcMGDCAbXdcvDvaTxG73R4ztVJX6HQ69OvXjy1453Q6YbPZYmKN7uh56aWX8Oqrr/aoCSBmrZ6Oxzx64fNJkyb1ac7Nc889l3WY8cblcuH555/vtdxvf/tbvPDCC7K9adWx40NcKK0rzjzzTLz22mt48cUXsX37dmzbtg3l5eX45ptvcPz48ZiyBw4cwIUXXojt27d3u5aI2rHZbFi8eHGy3WAo7Y+c9nhrS9WTsr/a6km6o6V8qC0WaoPk00pUQ211JN3RUj4sFgsmTJiQbDcYSvsjpz2e2jy0pGi4XC68+OKLkuwT/FDbeZsoaoxDSZ/ktKWlezDeUEcIQRCqIBKJIBwOw2AwJLTw8sSJE2MW63a73Thy5AgbHRAOh3HTTTfhxx9/7LaD49ixY2y7qampTw+vO9LVdEPRnHTSSV1+3zH+6HINDQ1x+9GRnJwcRCKRHo9t9MLk3Q3PjB4R0tXIlt50g8FgTKwejyfmAX0ia3V0PObRx6u7492RvpbjhdlsRm5uLkaOHInzzjsPc+bMkb0ToeMUa71N+wYAmZmZuPTSS2Omkvvuu+/w9ttv49lnn2XH3u1244YbbsCuXbtScuF0QRDgdDqRk5OjisX6lPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfkUgEfr8fFotFFddwSvsjpz2e2jy0pGjo9Xrk5OTA6XSm/JS4WkBt522iqDEOJX2S05aW7sF4k9q/2gRBaIZwOIz6+vqEhwVefvnleO6559hfSUkJNm3ahKqqKsyaNYuVe/jhh/HOO+90qcFjLY7e5nfsbq2KjvFHT0nU3RRG8frFa1i2SKI/1tGxynHM3W432+5pbZBo5FwjZNiwYYhEIjF/fr8fx48fx44dO/DEE08oMpKisrKSbRsMBuTl5SWkc/rpp2PFihXYt28fzjzzTPb97t27U3YRRafTieLi4m5HQimN0v7IaY+3tlQ9KfurrZ6kO1rKh9pioTZIPq1ENdRWR9IdLeXD7/ejrKxMFfO2A8r7I6c9nto8tKRo5OTkYNmyZT2OKCeUQ23nbaKoMQ4lfZLTlpbuwXhDI0IIIg6GDBkSs6hxspE6ikIuhgwZEvc+4tRQ0VMv8aCgoABvvPEGmpubsWHDBgDAkiVLcOmll6Jfv34xZaMfho8ZMwZff/0192Pr9Xq7/L5j/OIUXUD7MEKpmEwmLseWl4YYa8cOiObm5k55iaYvdT56LYzujndHoo+3VikrK2Pb48aNkzwF14knnoiXXnoJ559/Pvtu27ZtMeu3pAo5OTm44447VHNzp7Q/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5sFgsmDx5smoWwVbaHznt8dTmoSVFw+l04plnnlHFQ0xCfedtoqgxDiV9ktOWlu7BeEMdIQQRB0ajEcOHD0+2G5pEp9PBaJSnSdLr9Xj55ZdRWFgIj8eD5uZmPPzww3j88cdjyp1wwglsu66uThZ/jhw50uX3HeOPXvci0Tf3O+rz6NDhpSHGmpubC4vFwt6CqKur67EjpC/1RFxoHuj+eHekt7VdUp3a2lps376dfb7ooou46J533nmw2+1sZE9tbS0XXaXR6/XIzc1NthsMpf2R0x5vbal6UvZXWz1Jd7SUD7XFQm2QfFqJaqitjqQ7WsqHTqfrdR1BJVHaHznt8dTmoSVFQxAEOBwOSfYJfqjtvE0UNcahpE9y2tLSPRhvaGosgkhhpE4npSbkjmXIkCFYtmwZ+/zcc8+hrq4upszYsWNZb3x9fT3Kysq4+1NaWtrl99Hxh8PhmAXYzznnHMl2g8Eg96mxpGhE5zp6bZfoh/V92bcrxo0bx7a/+uqrPs1jG71guxZ59tlnEQwG2efrrruOi244HI5ZA0ZNb/PEg7gAJI9p6HigtD9y2uOtLVVPyv5qqyfpjpbyobZYqA2STytRDbXVkXRHS/nw+/0oLy9XzdQ0Svsjpz2e2jy0pGiICx3zmKmAkI7azttEUWMcSvokpy0t3YPxhjpCCCKF0el0yMzMVNW0WImiRCx33303u3jz+Xx47LHHYv6fkZGBadOmsc+vv/46d38++OCDLocUR8f/8ccfo76+HgBgtVpx7rnnSrar1+tVNSIkOte/+MUv2P9WrlwZsyB7b/t2xXnnncceyB8/fhwbN27s0Z/W1lZ88MEH8YSQUuzYsSNm9NP06dMxceJELtq1tbVoampin5VedJ4XZrMZY8eOhdlsTrYrAJT3R057vLWl6knZX231JN3RUj7UFgu1QfJpJaqhtjqS7mgpHwaDAQUFBdynJ04Upf2R0x5PbR5aUjQCgQB27dqFQCCQsH2CH2o7bxNFjXEo6ZOctrR0D8Yb6gghiBRGr9cjOzsben3qn8pKxNKvXz/cdttt7POqVavQ0NAQU+aee+6J+f+mTZv6rN9xhElXOJ1O3HfffZ2+F+Nva2vD73//e/b9NddcA7vd3mcfusNgMHA5trw0onO9aNEiNkzym2++wYoVK/q8b2NjY6fRIbm5ufj1r3/NPv/+979HW1tbt5r33HNPzALrWuLjjz/GjBkz2ILyWVlZnaaEE1m/fj1efvnlmJEjvfHggw/GdFxddtll0hxOEhaLBVOmTFHNiBal/ZHTHm9tqXpS9ldbPUl3tJQPtcVCbZB8WolqqK2OpDtayofRaMSQIUNkm6I4XpT2R057PLV5aEnR8Pv9KC0tVdWb++mM2s7bRFFjHEr6JKctLd2D8Sb1n54SRBojCAJcLlefpv5RO0rFctddd7HFtL1eL5588smY/0+dOhVz584FAIRCIVxxxRX429/+1u2Dcp/Ph3Xr1uGqq67ClVde2at9s9mM559/Hvfee2/MGzWCIOD777/HFVdcgf379wNoH6Hy4IMPJhRnR8LhMJdjy0sjOtd2ux1PP/00+/+KFSswd+7cLtf3EAQBTqcT27Ztw9KlS3HSSSd12cnxwAMPsB/ZPXv24IorrkBNTU1MGb/fj9/97ndYtWqVKt5M4EUoFMKWLVvw61//GldccQWam5sBtHcirV27FmPGjOlyv5qaGtx888045ZRT8MADD6CysrJbG0eOHMHs2bOxevVq9t2VV16JM844g28wCuHz+bB582b4fL5kuwJAeX/ktMdbW6qelP3VVk/SHS3lQ22xUBskn1aiGmqrI+mOlvIRCoVQVVXFXppJNkr7I6c9nto8tKRoWK1WFBUVqW49h3RFbedtoqgxDiV9ktOWlu7BeEMdIQSRwkQiEfj9/h6nEkoVlIplwIABuOWWW9jn559/nj0oFlm1ahUuvfRSAO3DgO+77z6ccMIJmDZtGubNm4dFixbh2muvxYQJE5Cbm4tf/vKX+OCDD/rUSfCXv/wFJpMJjz76KAYPHoyZM2di4cKFuOyyyzBmzBhs2bKFlX3mmWdwyimncIlbEAQux5aXRsdcz5s3D/fffz/7/Nprr+Hkk0/GhAkTcP3112Px4sW4/vrrcfHFF2Po0KG46KKLsHLlym5Hepx22ml46qmn2OfPP/8cJ598Mn7+859j4cKFmDlzJgYPHownn3wSZrMZf/3rXyXHpSS33nprzN9NN92Ea665BhdccAFycnJQVFSEf/3rX6xODh06FJ988gmuuuqqXrWPHDmCP//5zzj99NMxcOBAXHbZZZgzZw6WLFmC3/72txg3bhyGDx+ON998k+1z6qmn4sUXX5QtXrlR20U4PQSQT0/K/mqrJ+mOlvKhtlioDZJPK1ENtdWRdEdL+RAXwVbLi3VK+yOnPZ7aPLSkaBiNRgwfPlxVb+6nM2o7bxNFjXEo6ZOctrR0D8YbasUIIoUxGAzIy8tLthtcUDKWu+++G8899xw8Hg/cbjeefvpp/PnPf2b/t1gs+Oijj7BixQo8+eST8Hq98Hq9+Pzzz7vVNJlMmDJlSq+2J06ciHfffRdz5sxBY2Mj3nvvvU5lrFYrnnrqKSxcuDCxALvxj9f8tDw0usr1Qw89hNGjR+POO+/EsWPHEA6H8fXXX+Prr7/uVmvSpEkxi3VHs3TpUoTDYfzf//0f/H4/AoFAp/VC7HY7XnvtNeTk5EgLSmGef/75PpUbMmQIbrzxRixbtoxNP9YdY8aMwYQJE1BeXs6+a2howIYNG3rcb/bs2Xj66aeRn5/fJ5/USHZ2NubNm5dsNxhK+yOnPd7aUvWk7K+2epLuaCkfaouF2iD5tBLVUFsdSXe0lA9x3na1oLQ/ctrjqc1DS4qG2+1GSUmJJPsEP9R23iaKGuNQ0ic5bWnpHow3NCKEIFKYSCSCYDComREhSsWSn5+PJUuWsM/PPvssHA5HTBm9Xo/7778fP/30E5544glcdtllOOmkk5CZmQmTyYQBAwbgnHPOwdy5c1FSUoKamho899xzfbJ/1VVXYffu3bj33ntx1llnwW63IyMjA6NGjcJtt92G3bt3x/jHg0gkoqoRId3l+je/+Q1+/PFHlJSUYNasWTjllFNgt9thMBiQk5OD008/HVdffTWeeuopfP/99ygrK+txnknxeN52220YNWoUMjIykJubi7POOgt/+MMfsHv37j5NaaZmdDodbDYbhgwZgjPPPBO/+tWv8Ne//hWfffYZqqqqsHz58l47QYD2Rea/+uorVFdX4/XXX8fixYtx4YUXYvDgwcjMzITBYIDdbsfJJ5+MX/ziF/jrX/+KgwcPYs2aNSnfIRsOh1FXV9dpvZlkobQ/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5EAQBbrdbNW9kK+2PnPZ4avPQkqKhxkWt0xm1nbeJosY4lPRJTltaugfjDXWEEEQKEw6H0dDQoIrGRCqJxLJ582b2gH/58uVx2Xv88cfZvg6Ho9ODYtGf/v374+6778ZHH32Ew4cPw+PxIBAIoLGxEV9//TVKSkowd+7cHt+Gj/azqKgIADBs2DD87W9/w+7du+FwOOB0OrF582Y89dRTGDVqVK/+z5s3j2l293ZOUVER63R46623+nRsRc3uOjyGDh2KmpoaBINBVFVV9aoHAFVVVUxz+PDhvebaYrFg7ty5ePPNN/HDDz/A4XAgFAqhtbUVu3fvxvPPP4/bbrsNp556ap/sn3rqqfj73/+OAwcOwOv1oqWlBbt378bDDz+Mk046CcD/d6wikQg2b97cJ92eiM5PX49TT0T71/FPXDfl6NGj2Lt3L95//33cd999mDZtWkI3K4MHD8b111+PlStXYuvWraiurobH40EoFILD4cChQ4ewfv163HfffRg2bJgm2iCXy4VVq1bB5XIl2xUAyvsjpz3e2lL1pOyvtnqS7mgpH2qLhdog+bQS1VBbHUl3tJSPQCCAr7/+OmbtwmSitD9y2uOpzUNLiobNZsPixYths9kStk/wQ23nbaKoMQ4lfZLTlpbuwXiji2jhVXIibdm3bx9Gjx7NPu/duxdnnnlmn/cPhUL44YcfYr4bNWpUysx9KT4I1el00Ol0yXZHEmqLRWl/5LTHU5uHlhQNtdWTdIdHPtTQDovr1lgsFlXUK6X9kdMeb22pelL2V1s9SXe0lA+1xUJtkHxaiWqorY6kO6mcj6qqqpiXdCKRCMLhMAwGgypiUdofOe3x1Oah1ZVGXV0dZs2a1eu+Op0OFouFrfP41ltvoaCgIC6NruirztNPP40777wzIRtd2Up11HbeJooa41DSp65siS/O8tBW8z2Y1Ge5UkiNp70EQXSJlh4Gqy0Wpf2R0x5PbR5aUjTUVk/SHa3kQ6fTwWq1JtsNhtL+yGmPt7ZUPSn7q62epDtayofaYqE2SD6tRDXUVkfSHS3lQ6fTqeolQKX9kdMeT20eWlI0IpEIfD6fJPsEP9R23iaKGuNQ0ie52x+t3IPxhqbGIogUJhwO4/jx4yk/LQ2gvliU9kdOezy1eWhJ0VBbPUl3tJIPp9OJZ555Bk6nM9muAFDeHznt8daWqidlf7XVk3RHS/lQWyzUBsmnlaiG2upIuqOlfPj9fpSWlsLv9yfbFQDK+yOnPZ7aPLSkaOTk5GDZsmXIyclJ2D7BD7Wdt4mixjiU9ElOW1q6B+MNdYQQmsBqtSI7OxtA+4M5h8PB1jhwOp1szr22tjZ4PB4AYGsOiESvixAOh9mDPUEQEAqFWLlQKBRTTlzYSBAEtk8kElGknE6nQ3Z2NvteLBftq6in9pgEQUB2djZ0Ol2X5ZSOCQCysrKg0+lkiz3aV6B97lVxeCTPmETt6M/JzJMgCLDZbNDpdHH7oNPpkJWVxewoUUf7EpPazielYgL4nCfR9UssF09b7nA4mD+tra0IBoMAAK/XC6/XCwAIBoMxbb649oxo67zzzoPVakUgEGAXaJFI+xpCok9ut5u9Def3+9kcp4IgwOFwsHhdLhe7oPX5fHC73XHFZDQaMWnSJPbWTCIxeTwetLW1AUCvMQHtw7B1Oh33mMLhMIqKimA0GiXnyePxIBJpX2tJr9cnlCefz4eLLroIVqs17pisVivOO+88ZodH3YsnT0rUvVSKyWQyYdKkSbBYLCkfUygUQlFREUwmkyryFH2eKFH3rFYrLrzwwpi3jXnFZLVaMXXqVPh8PlXkyWAwoKioCIIgxBWT1WrFBRdcwOxQG5HcmKxWKyZNmsTe5E2lmHw+H9sOh8MIhUIYPnw4jEYjfD4f8yEQCMSUE/0R24jocmJuQ6FQp3Kir36/P6ac6Lf42xx9XXjSSSfBaDQiGAx2KicSfU4Hg8EYXzuW6ykmo9GIYcOGxVwT84rJYDCw9RGjfU0kJh55AoDhw4cz38Vyubm50OvbHw3abDb2uxr9jCUQCODLL79k/gaDwZhrdvH+zGg0xqy9abfbYTKZAACZmZnIzMwE0P4bbrfbu8xTVlYWMjIyAABms5l1vuh0OuTm5rI1ELOzs9m1ssViYfe7er2+25h6qnt+v19ynuKpe93lqS91LxwOY+jQoTAajSkdUygUwrBhw2A0GvvcRsgdUyTSvq6pTqeTvd3rqo3g9ZtrNBpRVFSEcDjM5ffJbDajqKgIwWCQ6z1hMqCOEEITTJkyBddccw0AoKGhAcXFxezkXL16Nfbv3w8A2LJlC9avXw8AqK6uxqpVq5hG9IM5p9PJGgi/34+GhgZWrr6+np3Qra2trIHw+XxobGwE0N6o1NfXs0avpaWFNWZerxdNTU0A2huL+vp61vg0NTWxxszj8aClpYX5Vl9fz/xrbGyEz+eDXq9HKBRivgYCAdTX1zNfGxoa2HFQe0zNzc3Q6XTQ6/VwuVysIU9WTG1tbfB6vdDr9ZLzBKDXmAKBADIzM+FyubjH5PV6kZmZiba2NlXkqbGxEZmZmdDr9XHHpNfr4fP5mK88z6e+5ClVzielYvL7/fB4PNDr9QnH1NLSwi4qo2OKpy0vLi5mvq5cuRKHDh0CAGzcuBEbN24EABw6dAgrV65k5YqLi1FdXQ0A2LBhA5qbm2E2m7F//36sXr2axVdcXMyOxXvvvYfS0lIAQEVFBdauXcuOXXFxMTt+a9euRUVFBQCgtLQU7733Xlwx1dfX45NPPoHZbE44pvXr12PLli0A0GtM33zzDcaOHYt9+/Zxj2nDhg0YO3Ys6uvrJedp/fr12LlzJ8aOHYuDBw8mlKeVK1fi5JNPhtlsjjsms9mM5uZmbNiwAQCfuhdPnpSoe6kUU2trKz755BPW7qVyTB988AHGjh2L1tZWVeRp5cqVGDRoEMxmsyJ1z2w2Y8CAATG+8orJbDbj9NNPx8qVK1WRp6NHj2Ls2LHYvHlzXDGZzWYYjUa88cYbLE/URiQvJrPZjE8++YRdU6VSTOXl5Wy7paUFFRUVKCgogMFgQFlZGfPhwIEDOHz4MLMr+hMOh1FWVsauR/fv389yW1dXhz179rDYy8rKmK979uxBXV0d80/02+v1oqysjF0X7t69G3q9HgaDAYcPH8aBAwfYMSorK2MxlZeXs2vGQ4cOxcRUXl7OyvUWk8FgQH5+PsrLy7nHBAAFBQXYvXs3qwOJxsQjT7W1tSgoKEBDQwOLKRQKxYz0mD17NsaNGwcg9hlLbm4upk+fzjoXjhw5wmJqamrCjBkzAABDhgzBsmXLWExLlizByJEjAQDTp0/H9OnTAQAjR47EkiVLYvIk3rvMmDEDU6dOBQCcccYZWLBgAYD2zo5ly5YhPz8fAHDNNddgypQpAIBx48Zh9uzZADqPXomOqae6V1FRITlP8dS97vLUl7q3f/9+RCIRGAyGlI6pvLwc/fr1g8Fg6HMbIXdM1dXVKCgoQHNzs+ztHtC5jeD1m1tfX4+xY8diw4YNXH6ffD4fxo4di3fffZfrPWEyoMXSiZRGXGDHarXCaDSitLQUhYWFcLlcsNvt0Ol07G0ws9mMtrY2CIKArKwsNiJEvIAVT4VTTz2VzXlvMBjYG+ziGz+hUIgtZhQOh9lDYUEQ2I9Rx0WP5CoHtDdMWVlZMJlMrFy0r3q9nj3MV3NMwWAQHo+HXbB0LKd0TKFQCG63Gzk5Oex/vGOP9lWn08HtdrO363nGFIlE4PF4YrSTmadwOAyv1wubzQZBEOLyIRKJwOl0Ijs7G0ajUZE6mornk1Ix8ThP/H4/Dh06xEYZRSIRFBYWstEJfWnL3W43e/ustbUVmZmZMJlM7GI1MzMTwWAQXq+XvX3mcDhYPWpsbERpaSkuueQSGAwG+Hw+5OTkIBKJoLW1FTabDQaDAW63G0ajEVarFX6/H4FAgNVjp9OJnJwc1kloNpthsVjYW8TZ2dkIh8N9isnlcmHTpk2YPn06MjIyEopJ7KDKyMhAIBDoMaZgMIiysjJMmTIFBoOBa0wejwfl5eU4//zzEQ6HJeXJ4/HA7/fjyy+/xLnnngudThd3nurr61FRUYGioiKEQqG4YgqHw/jss88wZcoU5OXlcal78eRJibqXSjG53W589tlnuPTSS5GZmZnSMblcLnz99de44IILEAqFkp6n48eP45tvvsHFF1/MfjPkrHt6vR6ff/45zjnnHLaQLa+YTCYTNm/ejHHjxiE/Pz/pedLpdNixYwcmTpyIjIyMPscEAJs2bcLEiRMxcOBAaiOSHFNbWxs2btyIadOmwWazpVRMlZWVOHr0KEwmE3tTuK6uDsOGDUM4HIbZbIZer0cgEIBOp2PlQqEQLBYLIpH2BW+jy+n1evZmejgcjiknLozr9/thMBhYOUEQYDabIQgCAoEAK+d2u3Hs2DGMGDECQPu9RnQ5cQSAeH4bDAb2hrToazAYjCnXU0x6vR5VVVUoKChAVlYW15j0ej2OHDmCgoICZGRkMF8TiYlHnsLhMGpqajB48GDo9XpYLBbU1tZi6dKlcDqdEIT2UfuBQAB+v589YxHvUX/2s59h48aNaGtrw2uvvYZBgwbBYDCgpqYGixYtgsfjgdFoRHZ2Nnvj2263w+v1IhgMstEgXq8XJpMJmZmZePHFF1FQUACfz4fm5mbMnj0bWVlZEAQBbW1tMJvNsFqtWLFiBe666y7Y7Xa4XC6Ew2FkZ2cjFArB5/PBYrHAbDbD5XJBr9cjJyenU0wlJSXIy8vrtu6JI4Sk5CmeuiflfPJ4PKipqcGIESPYPVQqxuR2u1FXV4fhw4ez5wK9tRFyxxQKhXDs2DEMGTIEOp1O1navqzZi8uTJXH5zDQYDtm/fjgkTJrBRVlJ+n0wmE7Zt24ZzzjkHdrtd8j1hTU0NLZZOEFKIHtpmMBhihmNGz2MpDrEE2odt2u121hESveCvONwSAHtIGL1fd+VEOi56JFe5cDjMbiC7KteTttpi6viwtLtySsUU/VBW/JGTK3aj0ciGQ4odFTxj6ko7mXkSH4RHIpG4fRAf0Ivnq5J1NJXOJ6Vi4nWedJXPeNryjkPwRcQbLqDzEPzofTIyMuB2uyEIAjIyMthIDHEIvog4PQDQ/laaOMxeHIIvIg7NBxCzKFxfY9Lr9eyBRqIxRU8hZzabe4zJ4/HA4XDAZDKx/XjFJA6n1uv1MRpSYhKHe4uf48mTzWZDa2sruzGOJyaPxwO3281yxaPuxZOn7mLiWfdSKSadToe2tjb2IksqxyROJ9BRL1kx2Ww29gBJibrn8XjgdDq5tRHRMXk8npgbfSC5eRLbW6vV2u0UMV3F5PF44HK5Emr30rWNkDMm8SGteN2SSjFZrVY2VZHBYIDZbGZTuUTbEmMQy0XfQ3RXzmg0smu8juXEWMVyInq9vpOeOD1NtHbHctHbYjwdfe1YrquYxIf+FouF5ZNXTOJDR7PZzHyK9jWemHjkSfRH1BPLRU9TI476BmKfsQDtdUw8RuIDZtFuT1P5iIgPboHOU/lYrVamLWoB7aPZO04JKCJOyQO0v90uvokuXnt2FVNPdS86n4nmKZ66ByR+PplMJnae9OSr2mOyWCzw+/2IRCJ9biOUiEmcfSX6PJGj3euqjeD1myteb2RkZMRMNZfo75Ool5WVFTN9nki894Q1NTVIFjQihEhpxBEhIvH2IoZCIfzwww8x340aNSqmkSIIgiDkg9phgiAIgiAIZaiqqkJVVVWy3SBUQl1dHWbNmhX3fm+99RYbwZeoRjw6Tz/9NO68886EbHRliyDUSlFRUbJdUASpz3KlQGuEEEQKIw6900J/ptpiUdofOe3x1OahJUVDbfUk3dFKPkKhEKqqqmIWiE8mSvsjpz3e2lL1pOyvtnqS7mgpH2qLhdog+bQS1VBbHUl3tJSPjgu1Jxul/ZHTHk9tHlpSNIxGI1usnUg+ajtvE0WNcSjpk5y2tHQPxhvqCCGIFCYcDqOpqYnN7Z/KqC0Wpf2R0x5PbR5aUjTUVk/SHa3kw+1249VXX40ZYp9MlPZHTnu8taXqSdlfbfUk3dFSPtQWC7VB8mklqqG2OpLuaCkfgUAA3377LZt+KNko7Y+c9nhq89CSopGdnY158+bFTJ9DJA+1nbeJosY4lPRJTltaugfjDU2NRaQ0NDUWQRBEakPtMEEQBEEQhDLQ1FhENDQ1FkGoC5oaS35oRAhBEARBEARBEARBEARBEARBEJqFOkIIIoUJhUKora1VxTx7UlFbLEr7I6c9nto8tKRoqK2epDtayUdrayseeeQRtLa2JtsVAMr7I6c93tpS9aTsr7Z6ku5oKR9qi4XaIPm0EtVQWx1Jd7SUD5/Phy+++AI+ny/ZrgBQ3h857fHU5qElRcNut+Pee++F3W5P2D7BD7Wdt4mixjiU9ElOW1q6B+MNdYQQaY1Op+v0XSrNFqfX65Gbmwu9PvVPZbXForQ/ctrjqc1DS4qG2upJusMjH10tDqd0fjMzM3H11VcjMzNTUbvdobQ/ctrjrS1VT8r+aqsn6Y6W8qG2WKgNkk8rUQ211ZF0R0v5MJlMKCwshMlkSrYrAJT3R057PLV5aEnR8Hq9WLduHbxeb8L2CX6o7bxNFDXGoaRPctrS0j0Yb2gCbiKt6ephW1tbm6oa4p7Q6/XIyMhIthtcUFssSvsjpz2e2jy0pGiorZ6kOzzy0fGGSqfTddlJLSfiRahaUNofOe3x1paqJ2V/tdWTdEdL+VBbLNQGyaeVqIba6ki6o6V8GAwG5OXlJdsNhtL+yGmPpzYPLSkawWAQlZWVkuwT/FDbeZsoaoxDSZ/ktKWlezDe0Cu1RFqj0+k69Ug2NzenzKiQcDiMlpYWhMPhZLsiGbXForQ/ctrjqc1DS4qG2upJuiM1H6FQCM3NzTHfZWVlKd4Rora33JT2R057vLWl6knZX231JN3RUj7UFgu1QfJpJaqhtjqS7mgpH+ID7mAwmGxXACjvj5z2eGrz0JKioaa3uQn1nbeJosY4lPRJTltaugfjDY0IIdKenJycmJOxra0Nhw8fRv/+/WG1WlU9BU84HEY4HEYoFEqZzpvuUFssSvsjpz2e2jy0pGiorZ6kO4nkIxKJIBgMwuPxoLW1tdOFX25urgyeEgRBEARBEARBEASRzugi9CSJSGH27duH0aNHs8979+7FmWeeGZdGKBTCwYMH6aEqQRBEkjEajTjllFMUHxFCEARBEASRDlRVVaGqqirZbhAqoa6uDrNmzYp7v7feegsFBQWSNOLRefrpp3HnnXcmZKMrWwShVoqKipLtgiLweJabKOp91Z0gFMJoNGLIkCEp+eAtEolAEARNdOKoLRal/ZHTHk9tHlpSNNRWT9IdnvkwGo0YOnRoUtpitQ3Lpmkh5NOTsr/a6km6o6V8qC0WaoPk00pUQ211JN3RUj7C4TAaGxtVM+2s0v7IaY+nNg8tKRpqXNQ6nVHbeZsoaoxDSZ/ktKWlezDeUEcIQQDIzs5Oyc4QQRBQX18PQRCS7Ypk1BaL0v7IaY+nNg8tKRpqqyfpDq98WK1WDB8+HFarlZNn8aGmOUsBmp9fTj1aI0Q7aCkfaouF2iD5tGiNEG2gpXyo6eEUQB2xcmrRGiHaQW3nbaKoMQ5aI0QePTX9btLUWERKw3s4VSgUgsvlgtPpVMUJShAEoVUsFguysrKQnZ2NzMzMlOuIJgiCIAiCSDVoaiwiGpoaiyDUBU2NJT+0WDpBRGE0GtGvXz/069ePpuAhCIKQAZ1OB71eTx0fBEEQBEEQBEEQBEEoBk2NRRDdoNPpYDAYYDQaVfvndrvx17/+FW63O+m+aC0Wpf2R0x5PbR5aUjTUVk/S/S+RfBgMBtV1gjgcDqxYsQIOhyPZrgBQ3h857fHWlqonZX+11ZN0R0v5UFss1AbJp5WohtrqSLqjpXz4fD5s2bIFPp8v2a4AUN4fOe3x1OahJUUjNzcXy5cvR25ubsL2CX6o7bxNFDXGoaRPctrS0j0Yb2hqLCKlSeZwKjUQCoVQXV2NIUOGwGhM7QFeaotFaX/ktMdTm4eWFA211ZN0Ryv5UFsc1P7Ip0ftj3bQUj7UFgu1QfJpJaqhtjqS7qRyPjpOjSUIApxOJ3JycqDXJ/89WaX9kdMeT20eWl1p9HVaK6PRiCFDhqC6uhqhUIimxkoyajtvE0WNcSjpU1e2eE2NpfZ7MJoaiyCIhDAajRg+fHiy3eCC2mJR2h857fHU5qElRUNt9STd0Uo+1BYHtT/y6VH7ox20lA+1xUJtkHxaiWqorY6kO1rKh16vV9Vb/kr7I6c9nto8tKRohEIhWltGRajtvE0UNcahpE9y2tLSPRhv1NHlRhBEQng8Hrz99tvweDzJdkUyaotFaX/ktMdTm4eWFA211ZN0Ryv5UFsc1P7Ip0ftj3bQUj7UFgu1QfJpJaqhtjqS7mgpH4FAAHv37kUgEEi2KwCU90dOezy1eWhJ0cjKysJ1112HrKyshO0T/FDbeZsoaoxDSZ/ktKWlezDeUEcIQaQwYg+yWoYRSkFtsSjtj5z2eGrz0JKiobZ6ku5oJR9qi4PaH/n0qP3RDlrKh9pioTZIPq1ENdRWR9IdLeVDp9PBarWqZv02pf2R0x5PbR5aUjQEQYDD4YAgCAnbJ/ihtvM2UdQYh5I+yWlLS/dgvKE1QoiUJt3XCCEIgiAIgiAIgiCIvtBxjRAivUl0fQ9aI4Qg5IHXGiFqJ5nPcpPfFUMQRMIEAgHs2rVLVUMJE0VtsSjtj5z2eGrz0JKiobZ6ku5oJR9qi4PaH/n0qP3RDlrKh9pioTZIPq1ENdRWR9IdLeUjHA6jrq4O4XA42a4AUN4fOe3x1OahJUXDbDZj7NixMJvNCdsn+KG28zZR1BiHkj7JaUtL92C8oY4QgkhhfD4fNm/eDJ/Pl2xXJKO2WJT2R057PLV5aEnRUFs9SXe0kg+1xUHtj3x61P5oBy3lQ22xUBskn1aiGmqrI+mOlvIhLoIdCoWS7QoA5f2R0x5PbR5aUjSsViuKiopgtVoTtk/wQ23nbaKoMQ4lfZLTlpbuwXhDU2MRKQ1NjUUQBEEQBEEQBEEQvUNTYxHR0NRYBKEuaGos+aERIQSRwkQiEfh8PmihP1NtsSjtj5z2eGrz0JKiobZ6ku5oJR9qi4PaH/n0qP3RDlrKh9pioTZIPq1ENdRWR9IdLeUjEokgFAqpJhal/ZHTHk9tHlpSNNS4qHU6o7bzNlHUGIeSPsnd/mjlHow31BFCEClMa2srHn30UbS2tibbFcmoLRal/ZHTHk9tHlpSNNRWT9IdreRDbXFQ+yOfHrU/2kFL+VBbLNQGyaeVqIba6ki6o6V8+P1+bN++HX6/P9muAFDeHznt8dTmoSVFw263495774Xdbk/YPsEPtZ23iaLGOJT0SU5bWroH4w1NjUWkNOk+NVY4HEZDQwPy8/NhMBiS7Y4k1BaL0v7IaY+nNg8tKRpqqyfpjlbyobY4qP2RT4/aH+2gpXyoLRZqg+TTSlRDbXUk3UnlfHScGksQBHi9XmRmZkKvT/57skr7I6c9nto8tLrS6Ou0VgaDAfn5+WhoaEA4HKapsZKM2s7bRFFjHEr61JUtXlNjqf0eLJnPco2KWCEImejYc3rw4MEkeZJcmpqaku0CN9QWi9L+yGmPpzYPLSkaaqsn6Y5W8qG2OKj9kU+P2h/toKV8qC0WaoPk00pUQ211JN1JxXzU1NSgpqYm2W4QKqGxsbFP5cLhMOrq6tjno0ePoq2tLS6NruirTm1tbcI2urJFEGolPz+fq55a78E6PrtVdFRQhCBSmHXr1kUApO1fdnZ2ZN68eZHs7Oyk+6K1WJT2R057PLV5aEnRUFs9Sfc/reRDbXFQ+yOfHrU/2vnTUj7UFgu1QfJpJaqhtjqS7n9ayofaYqH2Rz4tugbSzp9W8qHGOJT0KVXaHx56ve2/bt06xZ4j09RYRErzn//8B1dffXWy3SAIgiAIgiAIgiAIgiAIgiDiYN26dbjqqqsUsaWOSdgIgiAIgiAIgiAIgiAIgiAIgiBkgEaEECmNw+HAli1b2OehQ4fCYrEk0SOCIAiCIAiCIAiCIAiCIAiiI36/H0ePHmWfp06ditzcXEVsU0cIQRAEQRAEQRAEQRAEQRAEQRCahabGIgiCIAiCIAiCIAiCIAiCIAhCs1BHCEEQBEEQBEEQBEEQBEEQBEEQmoU6QgiCIAiCIAiCIAiCIAiCIAiC0CzUEUIQBEEQBEEQBEEQBEEQBEEQhGahjhCCIAiCIAiCIAiCIAiCIAiCIDQLdYQQBEEQBEEQBEEQBEEQBEEQBKFZqCOEIAiCIAiCIAiCIAiCIAiCIAjNQh0hBEEQBMGJuro6vPHGG1i2bBkuuOACZGdnQ6fTYfjw4cl2jSCIFGfnzp349a9/jRNOOAFWqxUjRozA0qVLUVNTk2zXCILQMHRtQxBEsti9ezceeugh/OxnP0NBQQFMJhNyc3Nx7rnn4oknnoDX6022iwRBpBi6SCQSSbYTBEEQBKEFnnnmGdx5552dvh82bBiqqqqUd4ggCE3w8ssvY9GiRRAEAQUFBRg8eDAOHDgAl8uFfv364fPPP8fZZ5+dbDcJgtAgdG1DEEQyOHToEE455RT2edCgQRg0aBBqa2vZSyCnnnoqPvnkE5x00knJcpMgiBSDRoQQBEEQBCdycnJwySWX4J577sE777yDZ555JtkuEQSR4uzZsweLFy+GIAh48sknUVNTg/Lychw7dgy/+c1v0NLSgl/+8pfw+/3JdpUgCA1C1zYEQSSDSCSC/Px8LF++HIcOHUJNTQ2++uorVFdX44svvsCwYcNw4MABXHvttcl2lSCIFIJGhBAEQRCETLz33nuYOXMmvTVJEETCXHPNNXj//ffxm9/8Bv/85z9j/tfW1obCwkIcOXIEK1euxOLFi5PkJUEQ6QJd2xAEoQQ+nw/hcBhZWVld/n/79u244IILAAC7du2ikbEEQfQJGhFCEARBEARBECrE4/Hgf//7HwDglltu6fT/jIwMzJ8/HwDw9ttvK+obQRAEQRCEXFit1m47QQDg/PPPh91uBwBUVlYq5RZBECkOdYQQBEEQshEOh7F792688sorWLJkCSZMmACz2QydTgedToeioqKEtQOBAF5//XVcfvnlGDZsGKxWK0488UScd955eOKJJ9DY2MgvEIIgNIua26mKigr4fD6YzWZMmTKlyzKif2VlZRAEIWFfCYJIDmpugwiC0Dap3P6EQiEEg0EAQGZmpiQtgiDSB2OyHSAIgiC0ybp16zB79mx4vV7u2pWVlZg1axZ27doV831dXR3q6uqwc+dOPP7441izZg0uv/xy7vYJgtAGam+nDhw4AAA46aSTYDabuywjLiTq8/lw+PBhjBgxgl8QBEHIitrbIIIgtEuqtz/r1q2D1+uF0WjEueeey8FrgiDSARoRQhAEQciCw+GQ5cK6uroal1xyCbuw1ul0mDp1KhYsWIAZM2YgIyMDAFBfX4+rr74amzZt4u4DQRDaQO3tVHNzMwBgwIAB3drq378/225paeEUAUEQSqD2NoggCO2Syu1PS0sL7r77bgDAzTffjLy8PG7+EwShbWhECEEQBCErJ5xwAiZOnMj+NmzYgOLi4oT1fvvb3+LYsWMAgGHDhuE///lPzOJ4jY2NuO666/DZZ58hGAxi5syZOHToEHJzc6WGQhCERlFrO9XW1gYA3Y4GAdrn0BaR44EGQRDyo9Y2iCAI7ZNq7U8wGMRvfvMbHDlyBCeffDIeeeSRhH0lCCL9oI4QgiAIQhYuu+wyHD58GCeddFLM92VlZQlrfvjhh9i2bRuA9geD69evx1lnnRVTJi8vD//5z38wZswY/Pjjj2hubsZjjz2Ghx9+uJPevffei0cffTQhX4LBIIxG+hkliFRG7e2U+NZkIBDo1p7P52PbNEc2QaQWam+DCILQLqnY/giCgDlz5uDTTz9Ffn4+/ve//yEnJydhfwmCSD9oaiyCIAhCFgoKCjpdWEvl+eefZ9tz587tdGEtkpWVhYceeoh9XrVqFUKhUJflBgwYkNCfTqfjGhtBEMqj9naqX79+AICmpqZu7YnTZ0WXJwgiNVB7G0QQhHZJtfYnEongxhtvxNtvv43+/fvjk08+QWFhIR/HCYJIG6gjhCAIgkgJ3G43PvvsM/Z5/vz5PZb/9a9/jezsbADtDwq3bt3aqcz999+PxsbGhP4MBgPfAAmCSHl4t1OnnXYaAODIkSPdjgr54YcfALRPkTVs2LCEfScIIvWR41qJIAiiL8jZ/kQiESxcuBAlJSXIycnBhg0bYqbbIgiC6CvUEUIQBEGkBDt27IDf7wfQ/hbRxIkTeyxvtVpx7rnnss+0EChBEHLDu50aN24crFYrAoEASktLu9TYsmULAGDSpEnQ6+nSniDSGbpWIggiWcjZ/txyyy14+eWXkZ2djY8++ggTJkzg4zRBEGkH3S0RBEEQKcF3333Hts8666w+rc9xzjnndLk/QRCEHPBup7KysnD55ZcDiJ1uQqStrQ1r1qwBAFx77bUJ+UwQhHagayWCIJKFXO3P7bffjpUrVyIzMxP//e9/cd5550l3liCItIU6QgiCIIiU4Pvvv2fbfZ3+JXre28rKSu4+EQRBRCNHO/XAAw/AYDDgnXfewVNPPQVBEAC0T0Exb948HDlyBMOGDcONN94o0XuCIFIdulYiCCJZyNH+/P73v8ezzz4Lq9WKDz74AFOnTpXuKEEQaU3vXbQEQRAEoQKiFws+4YQT+rRPQUEB245eUFgujh49inHjxrHP4pz+R48eRV5eHvt+1qxZePbZZ2X3hyAIZZGjnTr77LPx/PPPY+nSpbj77rvx+OOPY/DgwThw4ABcLhdyc3Px73//GxaLRXoABEGkNHK0QXRtQxBEX+Dd/uzcuROPP/44ACAnJwcPPvggHnzwwS51FixYgAULFsTrMkEQaQh1hBAEQRApgdvtZtsZGRl92ie6XPT+chEOh2NuAkQEQYj53uVyye4LQRDKI1c7tWjRIpx11ll4/PHHsX37duzZswcFBQWYPXs2/vjHP2LIkCHSHCcIQhPI0QbRtQ1BEH2Bd/sjrjcCAPX19aivr+9W52c/+1lf3SQIIs2hjhCCIAgiJfD5fGzbbDb3aZ/oN6Tb2tq4+9SR4cOHIxKJyG6HIAh1Imc7dd555+Hf//534s4RBKF55GiD6NqGIIi+wLv9KSoqoraHIAju0BohBEEQREpgtVrZtjgtQ29Ev0nU1zeTCIIgEoXaKYIgkgm1QQRBJAtqfwiCSAWoI4QgCIJICbKzs9l2X0d3RJeL3p8gCEIOqJ0iCCKZUBtEEESyoPaHIIhUgDpCCIIgiJRgwIABbPv48eN92qeuro5t9+/fn7tPBEEQ0VA7RRBEMqE2iCCIZEHtD0EQqQB1hBAEQRApwWmnnca2Dx8+3Kd9jhw5wrYLCwu5+0QQBBENtVMEQSQTaoMIgkgW1P4QBJEKUEcIQRAEkRKcfvrpbHvPnj0IhUK97vPNN990uT9BEIQcUDtFEEQyoTaIIIhkQe0PQRCpAHWEEARBECnBeeedB4vFAgDweDwoLy/vsbzf70dpaSn7PG3aNFn9IwiCoHaKIIhkQm0QQRDJgtofgiBSAeoIIQiCIFKC7OxsXHLJJexzSUlJj+X/9a9/weVyAWifc/aiiy6S0z2CIAhqpwiCSCrUBhEEkSyo/SEIIhWgjhCCIAgiZVi6dCnbLikpwb59+7os5/V68cADD7DPCxcuhNFolN0/giAIaqcIgkgm1AYRBJEsqP0hCELtUEcIQRAEkTJcccUVuPDCCwG0D6f+xS9+gd27d8eUaWpqwtVXX42DBw8CaH/D6J577lHcV4Ig0hNqpwiCSCbUBhEEkSyo/SEIQu3oIpFIJNlOEARBENrk8ssvx7Fjx2K+q6urw/HjxwEAWVlZOOWUUzrt9+GHH2LQoEFdalZXV2PSpEmora0FAOh0OkydOhUjR45EQ0MDPv30U3i9XgCA0WjExx9/HDNMmyAIIhpqpwiCSCbUBhEEkSyo/SEIIt2gjhCCIAhCNoYPH47Dhw/Hvd9PP/2E4cOHd/v/yspKzJo1C7t27eq2TH5+PtasWYMrrrgibvsEQaQP1E4RBJFMqA0iCCJZUPtDEES6QZPwEQRBEClHYWEhysrK8Pbbb+Ott97Cvn37cPz4ceTm5uLkk0/Gr371K8yfPx95eXnJdpUgiDSF2imCIJIJtUEEQSQLan8IglArNCKEIAiCIAiCIAiCIAiCIAiCIAjNQoulEwRBEARBEARBEARBEARBEAShWagjhCAIgiAIgiAIgiAIgiAIgiAIzUIdIQRBEARBEARBEARBEARBEARBaBbqCCEIgiAIgiAIgiAIgiAIgiAIQrNQRwhBEARBEARBEARBEARBEARBEJqFOkIIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEARBEARBEARBEARBEARBEIRmoY4QgiAIgiAIgiAIgiAIgiAIgiA0C3WEEARBEARBEARBEARBEARBEAShWagjhCAIgiAIgiAIgiAIgiAIgiAIzUIdIQRBEARBEARBEARBEARBEARBaBbqCCEIgiAIgiAIgiAIgiAIgiAIQrNQRwhBEARBEARBEARBEARBEARBEJqFOkIIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEARBEARBEARBEARBEARBEIRmoY4QgiAIgiAIgiAIgiAIgiAIgiA0C3WEEARBEARBEARBEARBEARBEAShWagjhCAIgiAIgiAIgiAIgiAIgiAIzUIdIQRBEARBEARBEARBEARBEARBaBbqCCEIgiAIgiAIgiAIgiAIgiAIQrNQRwhBEARBEARBEARBEARBEARBEJqFOkIIgiAIgiAIgiAIgiAIgiAIgtAs1BFCEARBEARBEARBEARBEARBEIRmoY4QgiAIgiAIgiAIgiAIgiAIgiA0C3WEEARBEARBEARBEKrkmWeegU6ng16vR3l5ebLdkcS9994LnU4Hq9WKQ4cOJdsdgiAIgiCItII6QgiCIAiCIAgixSgqKoJOp4v7b/Pmzcl2nSD6zPHjx/Hggw8CAK699lpMmDChy3Lz5s1jdXzevHlx2SgpKWH7Dh8+XKLHPXPvvfeiX79+8Pv9uPPOO2W1RRAEQRAEQcRCHSEEQRAEQRAEQRCE6lixYgWcTid0Oh0eeOCBZLsjmdzcXNx2220AgPXr12PLli1J9oggCIIgCCJ9MCbbAYIgCIIgCIIgEmfixImYNGlSn8oOHjxYZm8Igg9VVVV4+eWXAQBXXXUVTj/99CR7xIfbb78dTzzxBLxeL/74xz/iiy++SLZLBEEQBEEQaQF1hBAEQRAEQRBECnP55Zdj+fLlyXaDILjy5JNPIhgMAgBuueWWJHvDjwEDBmDmzJl49dVXsX37dmzfvh3nn39+st0iCIIgCILQPDQ1FkEQBEEQBEEQBKEaWltbsWbNGgDAiBEjcMkllyTZI77cdNNNbPuZZ55JniMEQRAEQRBpBHWEEARBEARBEARBEKrhn//8JzweDwBg5syZ0Ol0SfaIL+effz4GDRoEAPjPf/6DpqamJHtEEARBEAShfagjhCAIgiAIgiDSjKqqKuh0Ouh0OgwfPpx9/8UXX+Cmm25CYWEh7HY7dDodli1b1qXG0aNH8ec//xkXXnghBg0aBIvFgv79+2PcuHH43e9+hwMHDsTl0zfffIObb74ZJ598MjIyMpCfn49JkybhscceQ3NzMwCgpKSE+T1v3rwudZYvX87K9GXKsM2bN7PyRUVFffL1u+++w3333YdJkybhhBNOgNlsRn5+PiZPnowHHngAx44d61WjqKiI2d28eTMAoLm5GY8++igmTpyIvLw8ZGRk4OSTT8aNN96IvXv39sm3aD766CMsWrQIo0ePxoABA2AymZCbm4tzzjkHixYtwgcffIBQKMTK19fXw2w2Q6fTwWAwoKampk92IpEIRowYweL54IMP4vY1mrVr17Ltq6++WpKWVKLPlXj/qqqqutTU6XQsrmAwiHfeeUe5gAiCIAiCINIUWiOEIAiCIAiCINKcQCCA22+/HatWreq1rCAIWL58OR5//HH4fL5OOi0tLdi1axeKi4vx+9//Hn/5y196faP/T3/6Ex555BGEw2H2nc/nQ2NjI7766is8++yzePfddxMLjiN+vx933HEHXn755RhfAaCxsRGNjY348ssv8cQTT+Cxxx7Drbfe2mft7du349prr+3U+fDTTz/hp59+wquvvoqVK1fi5ptv7lVr3759mDdvHsrLyzv9r7W1FRUVFaioqMBLL72Ea6+9Fm+//TYAYODAgbjyyivx/vvvQxAElJSU4I9//GOv9j777DP20P/EE0/EFVdc0YeIu6alpQXbt28HANhsNkycODFhLTUzbdo0vPDCCwCA//73v1iyZEmSPSIIgiAIgtA21BFCEARBEARBEGnOnXfeyTpBzjrrLJx99tkwmUw4cOAA9Pr/bxB5OBzGtddei/fff599N3jwYEyaNAn5+flwu90oKyvDoUOHEAqF8PDDD6OhoQEvvfRSt7bvu+8+/O1vf2OfMzMzMW3aNJx44omoq6vDpk2bUF1djcsvv7zb0SlK4PF48POf/5w9pAeAkSNHYvz48ejXrx+am5uxfft2HDt2DG1tbbjtttvgdDpx33339aq9d+9e/OEPf4Db7cbAgQNx4YUXYsCAAaipqcGmTZvQ1taGcDiMxYsX46yzzsKUKVO61dq8eTOuvPJKuFwu9t1JJ52ESZMmoX///vB4PPj+++/x7bffIhgMdurMWrhwIcvv6tWrcd999/XakfXKK6+w7Xnz5sFgMPQac3ds2rSJdTJNmTIFRmNyb1lzcnL6vFj77t27sW3bNva5p+N24YUXsu3NmzcjFAolPVaCIAiCIAgtQ1daBEEQBEEQBJHGVFdX44UXXsDQoUOxdu3amAe0QPsoCJEVK1awh+QFBQV4/vnn8ctf/rLTA993330XN998M1pbW/GPf/wDP/vZz/Cb3/ymk+2tW7fikUceYZ+vueYavPTSS+jXrx/7rrW1FYsXL8bbb7+Nv/71r1xiToSlS5eyTpBTTz0Vq1at6jSVVjgcxksvvYQ777wTfr8fDzzwAC6++GKce+65PWr/7ne/QygUwpNPPonbb7895oH40aNHcfnll2Pv3r0QBAH33XcfNm3a1KXO0aNHMXPmTNYJMmLECLzwwgu47LLLOpVtaWnBO++8g4MHD8Z8f+mll2LEiBH46aef8OOPP2Lz5s24+OKLu/W9ubkZ//73vwG0P/i/8cYbe4y1N8rKytj2mDFjJGnxoH///njuued6LXf06FFMmjSJfZ41axaGDRvWbfmBAwfixBNPRG1tLbxeL/bu3YuxY8fycJkgCIIgCILoAuoIIQiCIAiCIIgU5sMPP0RjY2Ov5f7whz9g8ODBnb4Ph8PIzMzEp59+ilNPPbXT/y0WC4D2tRIefvhhAO0Ph7/44guMHDmyS1szZ85EXl4epk2bBqB93Y6uFr3+wx/+gEgkAgC45JJL8Pbbb3caTWC327F27Vo0Nzdj48aNvcYpB9u2bcNrr70GoH0UyPbt25GXl9epnMFgwJIlS5CRkYH58+cjHA7joYcewkcffdSjvt/vx6pVq7Bw4cJO/xs6dCjeeustjBkzBpFIBJs3b0ZtbS1OPPHETmX/8Ic/sLowbNgw7Ny5EyeccEKXNvv164dFixZ1+l6n0+Gmm25iU2K98sorPXaErF27lnWWFRUVdVsn+sru3bvZdmFhYdz7l5WVxTUlWWVlZdw2OuLxeHDllVeirq4OADB58mSsXr261/1OP/101NbWAgC+/fZb6gghCIIgCIKQEeoIIQiCIAiCIIgU5quvvsJXX33Va7mbbrqpy44QALj11lu77ASJpri4mE1Z9MADD/T6wPviiy/Gz3/+c2zYsAHfffcdKioqcM4557D/f/fdd9ixYwf7/Pe//73bKZX0ej2effZZFBYWso4TJXnqqafY9pNPPtllJ0g08+bNw6OPPorKykps2LABTU1NGDBgQLflzzrrrC47QURGjx6NiRMn4ssvv0QkEkF5eTlmzJgRU6ampgb//Oc/2ecXX3yx206Q3pg/fz4efPBBhEIhvP/++3juueeQm5vbZdnoabFuuummhOxF89NPP7HtIUOGxL1/ZWUll86NvhKJRHDDDTdg165dANo7rtatWwer1drrvtHnY3cLqxMEQRAEQRB80PdehCAIgiAIgiAILXPdddf1WubDDz9k27/97W/7pCuOCAGAL774IuZ/n3/+OdseP348zjjjjB61Tj311B7XxpCLUCiETz75BED7ehG/+MUv+rSfOIoiEonErCvSFTNnzuxVb9y4cWy7q4fmn376KUKhEABg1KhRXU6H1VdOPPFEFqfP58Obb77ZZbmvv/4a3377LYD2ESa/+tWvErYpcvz4cbbdU+eRWvjjH//IpgbLysrCBx98gIKCgj7tG92hJo4mIQiCIAiCIOSBRoQQBEEQBEEQRArz4IMPYvny5QnvbzKZcNZZZ/VYpqmpCQcOHAAAmM1mrFixok/a+/fvZ9tHjx6N+V9FRQXb7m0NjehyO3fu7FNZXuzevRsejwdA+7G64447+rRf9CidjrF3pLfjD8R2Cjidzk7/Ly0tZdsd1y5JhIULF2LdunUA2kd9LF26tFOZ6NEg119/fZ9GQfSGeKwBIDMzM+79586di5KSkj6XLykpwfz58+O2AwBvvPEG/va3vwFon1LsjTfeiGt6q+j4ouMmCIIgCIIg+EMdIQRBEARBEASRxvTr1y9mce6uENcxAIBAIIDnn38+bjstLS0xnxsaGtj2SSed1CeNvpbjybFjx9h2U1MTl9g7Yrfbe9UwmUxsOxgMdvp/9EiKk08+OQ7vuubnP/85hg0bhsOHD+Obb77Brl27Yh7yt7W1xYwU4TEtVkeSMQ1aXyktLY2J+eGHH8bVV18dl4aa4yMIgiAIgtAaNDUWQRAEQRAEQaQxGRkZvZZpbW2VbEectknE7Xaz7b6++Z+VlSXZj3iRI/aOdFxEPhFcLhfbzs7Olqyn1+tx4403ss/Roz8A4P3332fHZuLEiRgzZoxkm0Bsjtva2rho8ubIkSO4+uqr2SLxc+bMwb333hu3TnR8yajbBEEQBEEQ6QR1hBAEQRAEQRAE0SPRD2lzcnIQiUTi/us4XVH0w3qv19snP+SYPkgQhB7/Hx37mDFjEopdytRlfcVms7Ht6E4mKSxYsIAtYL927Vr4fD72P96LpItEr6/R2NjITZcXHo8HV155JRuBc/755+Oll15KSCt6VFRf1xUhCIIgCIIgEoM6QgiCIAiCIAiC6JETTjiBbTudzj53XPREfn4+2z5y5Eif9ultrQ0gdgqp3kZiAL2P+IiOXc0LWkf7+dNPP3HRHDx4MC6//HIA7dN7iYuCHzp0CFu2bAHQ3lE0a9YsLvYAYMSIEWy7urqamy4PIpEIrr/+erZA/LBhw/Cvf/0LFoslIb2amhq2PXz4cB4uEgRBEARBEN1AHSEEQRAEQRAEQfTIiSeeiKFDh7LPO3bskKw5btw4th290HdP9GWh9JycHLbd1NTUa/k9e/b0+P+xY8eyB9319fU4ePBgr5rJYMqUKWz7888/56a7cOFCti2OAlm9ejVb32LmzJkxo1GkEj3F1vfff89Nlwf33XcfW0DeZrNh/fr1GDhwYMJ63333Hds+++yzpbpHEARBEARB9AB1hBAEQRAEQRAE0Su/+MUv2PYLL7wgWe/iiy9m2+Xl5aisrOyx/MGDB/vUERL9Zv2uXbt6Lf/OO+/0+P+MjAxMmzaNfeYRuxxceumlbNH7H374ARs2bOCi+//+3/9jnWCbNm3CwYMHY6Y5471I+qRJk9i2OPJCDbz++ut45JFHALSvn/LWW2/hrLPOSlivvr6ejTDKzMzE6NGjufhJEARBEARBdA11hBAEQRAEQRAE0St33303Wy/i3//+d6c1P3qiqymlTj/9dJx33nns8x133NHteh2CIOD2229noxB6YuLEiWzx8bKyspi37jvywgsvYN++fb1q3nPPPWz72WefxaefftrrPiJKTac1aNAgXHvttezzokWL2DoWUjAYDFiw4P/X3t2FZl32cQD/+mxzIcuaEpnRVETPImqRWERjnYwUtRN7Q0eThCAzcnQQwXI4VqtFsIKyotlBsIywtwU7MNIaaES5gkAot8BehGzYtsycew7kuR8lzfno5tPd53P0v//8/7/rul9O7vt7X9evIcl/t4b6/vvvkxx/D2+66aZzHuNEtbW1hc/Zrl27xrW92UTr7e3NfffdV3jc1taWJUuWnFPNnTt3Fo5ramoKIRYAABNDEAIAAJzR/Pnz89hjjxUeNzQ0pLGx8bQNrY8ePZqenp6sWrXqpG2wTtTS0lIILXp6enL33XdncHDwpGsOHTqUVatW5YMPPsjUqVPPOM9Zs2YVVnCMjY3lrrvu+lOviaNHj6a9vT0PPvjguPo73HLLLamvry/cu2TJkrS2tp62Kfnhw4ezbdu2LF++PMuWLTtj/fOltbU1M2bMSJIMDAxk8eLFp10ZMjg4mM2bN+eRRx45Y901a9bkX/86/tVx165dJ50/3yorKwvhyq+//ppPP/30vI9xNr777rvcfvvt+f3335Mc/9xv2LDhnOtu3769cHziaisAACaGv50AAADj0tTUlP7+/mzZsiVjY2Npb29PR0dHrr/++syfPz/Tpk3LoUOH0t/fn76+vgwPDydJZs6cecp6NTU1aWxszFNPPZUk6erqynvvvZfa2trMmjUrP/30U7Zv356hoaFUVlZm/fr1efzxx884z5aWlnz44Yc5duxY9uzZk4ULF6a2tjZXXnllDh48mB07duTAgQOpqKhIa2tr1q1bd8aaL774Yn744Yf09PTkyJEjefTRR7Np06YsWrQoVVVVKS8vz+DgYL755pt89dVXhR/Oq6urx/nqnrurrroqb7zxRlasWJGhoaHs27cvdXV1mTNnTm644YbMmDEjQ0ND2bt3b7744ov88ccfWb58+bjq1tXVpbu7u3Bu6tSpWb169YQ8j3vuuSc7duxIkmzbti2LFy+ekHHG49VXX82BAweSHF8dU1pamgceeGBc9zY3NxeCqRONjY3l7bffTpKUlZVl5cqV52/CAACckiAEAAAYlylTpqSzszPV1dVpamrKL7/8kiNHjqS3t/e0DdSnTJnyl9sntbW1paSkJG1tbTl27FiGh4fz7rvvnnTN7Nmz8+abb467efaiRYvy0ksvZe3atRkdHc1vv/2W999//6RrrrjiinR1dWV0dHRcNcvLy9Pd3Z2NGzemvb09IyMjGRkZ+cvG5GVlZSc1MZ8Mt956az7++OPU19cXemwMDAxkYGDglNdXVFSMq+7atWtPCkKWLVuWyy677NwnfAp33HFHHn744QwPD2fr1q154oknCiuHJtuJ27GNjo5m8+bN4763sbHxlEFIb29v9u/fn+T463i6oBAAgPPH1lgAAMBZWbduXQYGBvL8889nxYoVmTdvXioqKlJaWprKyspcffXVufPOO/PCCy9kYGCg8O/302ltbc3u3bvT0NCQuXPnpry8PDNnzkx1dXVaWlqyZ8+es14V0NDQkL6+vqxZsybz5s3LRRddlEsvvTTXXnttNm3alL6+vtx8881nVbOkpCTNzc3p7+/P008/nbq6ulRVVWXatGkpKyvLzJkzc91116W+vj6dnZ3Zv39/nnvuubMa43y45ppr8vnnn+ett97K6tWrs2DBgkyfPj0lJSWprKxMdXV17r///nR3d+e1114bV83bbrvtpG3EzneT9BNdcskluffee5Mk+/btO6ueLH8HL7/8cuH4oYceunATAQD4B5kyNp6OgwAAABdYZ2dn4Qfy/4QNTI6PPvooNTU1SZI5c+bk22+/LfQNmQj9/f1ZuHBhYfuubdu2TdhYk+nnn39OVVVVRkZGcuONN+aTTz650FMCAPhHsCIEAACAv/TKK68UjhsaGiY0BEmSuXPnFladvPPOO/n6668ndLzJ0tHRkZGRkSTHe9kAADA5BCEAAACc1o8//pitW7cmSUpLSyd0W6wTNTU1Zfr06RkbG0tzc/OkjDmRBgcH09HRkSRZunRpYYUNAAATTxACAADAKY2Ojmb9+vU5fPhwkmTlypWZPXv2pIx9+eWXZ+PGjUmSrq6ufPbZZ5My7kR58sknc/DgwZSXl+fZZ5+90NMBAPhH0SMEAAD4W9AjZHK8/vrr2b17d4aGhrJz587s3bs3SVJeXp4vv/wyCxYsuMAzBACAs1N6oScAAADA/4+enp5s2bLlT+efeeYZIQgAAH9LghAAAABO6eKLL051dXU2bNiQpUuXXujpAADA/8TWWAAAAAAAQNHSLB0AAAAAAChaghAAAAAAAKBoCUIAAAAAAICiJQgBAAAAAACKliAEAAAAAAAoWoIQAAAAAACgaAlCAAAAAACAoiUIAQAAAAAAipYgBAAAAAAAKFqCEAAAAAAAoGgJQgAAAAAAgKIlCAEAAAAAAIqWIAQAAAAAAChaghAAAAAAAKBoCUIAAAAAAICiJQgBAAAAAACKliAEAAAAAAAoWoIQAAAAAACgaAlCAAAAAACAoiUIAQAAAAAAipYgBAAAAAAAKFqCEAAAAAAAoGgJQgAAAAAAgKIlCAEAAAAAAIqWIAQAAAAAAChaghAAAAAAAKBoCUIAAAAAAICiJQgBAAAAAACKliAEAAAAAAAoWv8G1IoJM7SLqxEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "plt.plot(pds.freq, pds.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5, label=\"PDS\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.axhline(noise, ls=\":\", label=\"Poisson noise level\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2 Hz^{-1}}$\");\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, (pds.power - noise) * pds.freq, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5, label=\"PDS\")\n", + "plt.plot(pds_reb.freq, (pds_reb.power - noise) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "plt.legend();\n" + ] + }, + { + "cell_type": "markdown", + "id": "3cb801af", + "metadata": {}, + "source": [ + "We will now do the same with the cross spectrum between the bands 0.3--5 keV and 5--12 keV.\n", + "\n", + "In this case, there is no need to subtract the Poisson noise level, as it is zero in the cross spectrum, provided that the energy bands do not overlap." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "84a1cd9c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "65it [00:00, 112.32it/s]\n", + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/fourier.py:720: RuntimeWarning: invalid value encountered in sqrt\n", + " dRe = dIm = dG = np.sqrt(power_over_2n * (seg_power - frac))\n", + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/fourier.py:722: RuntimeWarning: invalid value encountered in sqrt\n", + " dphi = np.sqrt(power_over_2n * (seg_power / (Gsq - bsq) -\n", + "/home/pupperemeritus/anaconda3/lib/python3.9/site-packages/stingray/crossspectrum.py:2761: UserWarning: Some error bars in the Averaged Crossspectrum are invalid.Defaulting to sqrt(2 / M) in Leahy norm, rescaled to the appropriate norm.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "ref_band = [1.5, 3]\n", + "sub_band = [0.5, 1]\n", + "events_ref = events.filter_energy_range(ref_band)\n", + "events_sub = events.filter_energy_range(sub_band)\n", + "\n", + "cs = AveragedCrossspectrum.from_events(\n", + " events_sub, events_ref, segment_size=segment_size, \n", + " dt=dt, norm=norm)\n", + "cs_reb = cs.rebin_log(0.02)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6d8aa019", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/pupperemeritus/.local/lib/python3.9/site-packages/matplotlib/cbook/__init__.py:1333: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return np.asarray(x, float)\n", + "/home/pupperemeritus/.local/lib/python3.9/site-packages/matplotlib/cbook/__init__.py:1333: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return np.asarray(x, float)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAASDCAYAAAAlGiOpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOy9e3Rb1Zn3/5Usy4os3xJMQggkEC4JhBIKlAAtMW2n7dBJ42mhJKU0Le+0bztdi8s7748ys6aQMGuVhM7bImbawHRwmJI0CTjkYiDBkItDEhyS4CR2nKsTx1fZsq27dCQdaf/+8OiML7It65wj7XP0fNbygthHz36+evZ5zj5nn/1sA2OMgSAIgiAIgiAIgiAIgiAIgiAIQocYs+0AQRAEQRAEQRAEQRAEQRAEQRCEWtBECEEQBEEQBEEQBEEQBEEQBEEQuoUmQgiCIAiCIAiCIAiCIAiCIAiC0C00EUIQBEEQBEEQBEEQBEEQBEEQhG6hiRCCIAiCIAiCIAiCIAiCIAiCIHQLTYQQBEEQBEEQBEEQBEEQBEEQBKFbaCKEIAiCIAiCIAiCIAiCIAiCIAjdQhMhBEEQBEEQBEEQBEEQBEEQBEHoFpoIIQiCIAiCIAiCIAiCIAiCIAhCt9BECEEQBEEQBEEQBEEQBEEQBEEQuoUmQgiCIAiCIAiCIAiCIAiCIAiC0C00EUIQBEEQBEEQBEEQBEEQBEEQhG6hiRCCIAiCIAiCIAiCIAiCIAiCIHQLTYQQBEEQBEEQBEEQBEEQBEEQBKFbaCKEIAiCIAiCIAiCIAiCIAiCIAjdQhMhBEEQBEEQBEEQBEEQBEEQBEHoFpoIIQiCIAiCIAiCIAiCIAiCIAhCt9BECEEQBEEQBEEQBEEQBEEQBEEQuoUmQgiCIAiCIAiCIAiCIAiCIAiC0C00EUIQBEEQBEEQBEEQBEEQBEEQhG6hiRCCIAiCIAiCIAiCIAiCIAiCIHQLTYQQBEEQBEEQBEEQBEEQBEEQBKFbaCKEIAiCIAiCIAiCIAiCIAiCIAjdQhMhBEEQBEEQBEEQBEEQBEEQBEHoFpoIIQiCIAiCIAiCIAiCIAiCIAhCt9BECEEQBEEQBEEQBEEQBEEQBEEQusWUbQcI/eJwOPDxxx/j6NGjOHr0KI4fP45AIIDZs2ejtbU12+4RBEEQBEEQBEEQBEEQBEEQOQBNhBCqsWnTJjzzzDPZdoMgCIIgCIIgCIIgCIIgCILIYWgihFCN4uJifO1rX8Ndd92FO++8E11dXXj66aez7RZBEARBEARBEARBEARBEASRQxgYYyzbThC5QXV1NR555BEqjUUQBEEQBEEQBEEQBEEQBEFkDNosnSAIgiAIgiAIgiAIgiAIgiAI3UITIRkkFovh5MmTeOONN/CLX/wCd911F8xmMwwGAwwGAyoqKtK2HYlE8NZbb+Ghhx7C7NmzYbFYcNVVV+G+++7Dv/7rv6Kvr085IQRBEARBEARBEARBEARBEAShEWiPkAyxbds2PPbYYwgGg4rbPnPmDJYvX47jx48P+73D4YDD4cCnn36K3/72t1i3bh0eeughxdsnCIIgCIIgCIIgCIIgCIIgCF6hiZAM4Xa7VZkE6ejowNe+9jV0dXUBAAwGAx544AHMnTsXTqcTH3/8MUKhEHp7e1FZWYldu3bhq1/9quJ+ZAu32426ujrp39dccw0KCgqy6BFBEARBEARBEARBEARBEAQxknA4jPb2dunfixcvRmlpaUbapomQDDN9+nTcfffd0s+HH34Iu92etr0f/OAH0iTI7NmzsX37dtx+++3S3/v6+rBs2TLs3r0b0WgUjzzyCFpaWjLWwdSmrq4OlZWV2XaDIAiCIAiCIAiCIAiCIAiCmATbtm3D0qVLM9IW7RGSIb71rW/h8uXLcDgcqKmpwfPPP4+//uu/ljUh8cEHH+CTTz4BAJjNZtTU1AybBAGAK664Atu3b8f1118PABgYGMDLL7+c1N5zzz0n7Vcy2R9RFNPWQRAEQRAEQRAEQRAEQRAEQRBqQStCMsSMGTMUt/mHP/xB+v8VK1bgtttuS3pcYWEhXnzxRfzwhz8EALz++ut48cUXYTKZRh03bdq0tHwxGAxpfY4gCIIgCIIgCIIgCIIgCIIg1IQmQjSK3+/H7t27pX//5Cc/Gff4733ve/j5z38Ov9+PgYEB7N+/f9ReIb/+9a/x61//WhV/1eKaa64Z9u9t27bhhhtuyJI3mScYDGLfvn2oqKiA1WrNtjuy4E1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnVk0iet5B8l7I38/IULF4ZtczDy2a6a0ESIRjl06BDC4TCAwZUcd99997jHWywW3Hvvvfjoo48AAHv27NHFpukjN0a/4YYbcOutt2bJm8wTiUSQn5+PW265BWazOdvuyII3LZn2R832lLSthC05NnjrJ7mOXuLBmw7KP+rZo/yjH/QUD960UA5Sz1a6NnjrI7mOnuLBmxbKP+rZojGQftBLPHjUkUmftJJ/lLA30edHPttVEwNjjGWsNWIUK1euxKpVqwAAixcvxr59+1L6nN1ux9NPPw0AWLRoET799NMJP/Pcc89hzZo1AIDvfve72LJlS1o+p0t1dTUeeeQRzJ49G62trYrYPHXqFBYsWCD9u6mpKacmQgiCIAiCIAiCIAiCIAiCILRANp/l0mbpGuXs2bPS/8+ePTulz1x77bXS/585c0Zxn4jMEwqFsGvXLoRCoWy7IhvetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8eBRRyZ90kr+UcIeT7Gm0lgapb+/X/r/6dOnp/SZoRu2DwwMKO7TSNrb23HHHXdI/45EItLvr7jiCun3y5cvx7/927+p7o8eicfjcLvdiMfj2XZFNrxpybQ/aranpG0lbMmxwVs/yXX0Eg/edFD+Uc8e5R/9oKd48KaFcpB6ttK1wVsfyXX0FA/etFD+Uc8WjYH0g17iwaOOTPqklfyjhD2uYs2IrPLCCy8wAAwAW7x4ccqfe+ihh6TP/epXv0rpMx988IH0GZvNlqbHqXPp0iWpvfF+VqxYkXYbTU1NDACzWCzMZrOxpqYmJooic7lcLB6PM8YY83g8LBwOM8YYCwaDzO/3M8YYi0ajzOVySbbcbjeLRCKMMcYCgQALBAKMMcYikQhzu93ScS6Xi0WjUcYYY36/nwWDQcYYY+FwmHk8HsYYY/F4nLlcLiaKImOMMZ/Px0KhEGOMMUEQmNfrZYwxFovFmMvlYrFYjDHGmNfrZYIgMMYYC4VCzOfzMcYYaSJNpIk0kSbSRJpIE2kiTaSJNJEm0kSaSBNpIk2kiTRpWlPiWW7ip6mpiWUKKo2lUQRBkP4/1Y1qhm4+k4nlSHPmzAFjbMKfN998U3ZbixYtwsMPPwwAcDqdsNvt0mbyVVVVaG5uBgDU1dWhpqYGANDR0QG73S7ZWLt2LVpaWgAAtbW1qK2tBQC0tLRg7dq10nF2ux0dHR0AgJqaGtTV1QEAmpubUVVVBQAIh8Ow2+1wOp0ABvdHqa+vBwA0NDRgw4YNAACv1wu73Q6v1wsA2LBhAxoaGgAA9fX1qK6uHleTKIqoqanBjh07dKFp//79EEWRizgdO3YM69atgyiKsuMETNz3zp07h9bWVnz44YeKazp06BBaW1tx7NgxbuLU2toKURQnrUkURaxfvx6HDh0CoOz5lEqctHQ+ZUJTY2Mj/uM//gOiKGpa044dO1BTUwNRFLmI0+XLl2G32yGKoiJxynSOGKppx44daG1tlTTJiVNNTQ327t2L1tZWNDY2ph2nxPUz16+5Ws973d3dsNvtCAQCmtf0zjvvoLW1VdLEQ5xOnDgBURQz0vdEUcTRo0dV0SSKIs6fP89NnNId74miiP3791OO4ERTYgx7+fJlXWhKd1yulqZM3hMqmSNGagoEAmhtbeUmTnLGe3q65uoh761fvx67d++GKIqa15TuuFwtTUrca2QrRwzVdPnyZbS2tmLHjh2KxGlgYACtra1Yv369oveEWSFjUy5EUvS8IiQT5PqKEJfLxVauXMk6Ozs1r6mtrY2tXLmSuVwuLuLkcDgkfzIxs9/b28tWrlzJurq6FNeU0OJwOLiI0+XLlyUbk9WU6PMOh4MxRm9gZFtTT0+PFEsta+rs7JR08BAnp9Mp+aNEnDKZI0ZqSny3TqdTkb7X3d3NVq5cyXp6etKK09D8k8vXXD3kvb6+PrZy5Uo2MDCgeU0dHR1s5cqVrK+vj4s4DT1PMtH3EufW5cuXFdc01DYPcUp3vJfQ0dbWJsWJckT2NCXi4XQ6Na9JzrhcDU2ZvidUMkeM1DQwMCCdtzzESc54T0/XXD3kvfb2dqk/aFmTnHG5Wprk3mtkK0eM1JS4n+zs7FSk7/X397OVK1ey9vZ2Re4Js7kixMAYY9mahCGAlStXYtWqVQCAxYsXY9++fSl97tFHH8Xbb78NAHjyySdTmlF799138b3vfQ/A4H4h3d3d6TnNEadOncKCBQukfzc1NeHWW2/NokcEQRAEQRAEQRAEQRAEQRDESLL5LJdKY2mUadOmSf/f09OT0mccDof0/1OnTlXcJ4IgCIIgCIIgCIIgCIIgCILgDZoI0Sg333yz9P+J2qQT0dbWJv3/vHnzFPeJyDwejwerV6+Gx+PJtiuy4U1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnVk0iet5B8l7PEUa5oI0Sjz58+X/r+xsVHaUHU8Pv/886SfJ7SL1WpFZWUlrFZrtl2RDW9aMu2Pmu0paVsJW3Js8NZPch29xIM3HZR/1LNH+Uc/6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9oJd48Kgjkz5pJf8oYY+nWNNEiEa57777UFBQAAAIBAI4evTouMeHw2HU19dL//7qV7+qqn+ZxmKxwGazAQBisRjcbjcS2994vV5EIhEAQCgUQiAQAACIogi32y3Z8Hg8iEajAIBgMIhgMAgAiEajw2Yt3W63NPEUCAQQCoUAAJFIBF6vFwDAGIPb7UYsFgMA+P1+CIIAYDAWPp8PABCPx+F2uxGPxwEAPp8P4XAYACAIAvx+/7ia8vPzMXv2bEmfljWFQiFcf/31yM/P5yJO8XgcV199NfLz82XHKaFvPE3A4EqtaDSquKZYLIZ58+YhHo9zEadgMIh58+YhPz9/0pry8/Mxa9YsSZ+S51MqcdLK+ZQpTYwxzJw5E/n5+ZrWFIlEMHv2bOTn53MRJ4PBgBkzZiA/P1+ROGUyR4zUFIlEMG/ePBgMBkX6niiKmDdvHhhjacUpEAjgpptuQn5+fk5fc/WQ94xGI2bMmAGTyaR5TeFwGPPmzYPRaOQiToFAADfeeCPy8/Mz0vfy8/Nxww03SPqU1JSfn4+bb74ZgUCAizgB6Y338vPzcf311w+7/lKOyJ6m/Px8zJgxAwaDQfOa5IzL1dCU6XtCJXPESE0mkwnz5s2TxkPZjpOc8Z6errl6yHuCIOC6665Dfn6+pjXJGZerpUnuvUa2csRITQaDAfPmzUMkElGk7+Xl5WHevHnSeGiycRrrnjAb0ESIRrHZbPja174m/fvNN98c9/h3331X6shTp07FAw88oKZ7GWfRokV4+OGHAQBOpxN2u106OauqqtDc3AwAqKurQ01NDQCgo6Nj2Cbza9euRUtLCwCgtrYWtbW1AICWlhasXbtWOs5ut6OjowMAUFNTg7q6OgBAc3MzqqqqAAwmDrvdDqfTCQCorq6WJqIaGhqwYcMGAIPJwW63S8low4YNaGhoAADU19ejurp6XE3BYBBVVVXYtm2b5jW98cYbWL9+PYLBIBdxOnz4MP74xz8iGAzKjhMwcd9rbm7Gtm3b8MEHHyiu6ZNPPsG2bdtw+PBhbuK0bds2BIPBSWsKBoN47bXX8MknnwBQ9nxKJU5aOZ8ypen48eP493//dwSDQU1r2rZtG6qqqhAMBrmI04ULF2C326XBrdp9T8kcMVLTtm3bsG3bNkmTnDjV1NRg9+7d2LZtG44fP552nKqrqxEMBnP6mquHvNfW1ga73Q6Xy6V5TW+//Ta2bdsmaeIhTm+//TaCwWBG+l4wGMSmTZtU0RQMBvHuu+9yE6d0x3vBYBDr16/HG2+8MSxOlCOyoykxhr1w4YIuNKU7LldDU6bvCZXMESM1uVwubNu2DW+88QYXcZIz3tPTNVcPee+tt97Cn//8ZwSDQc1rSndcrpYmJe41spUjhmq6cOGCdB+mRJx6enqwbds2vPXWW4reE2YFRmSVF154gQFgANjixYsn9dn33ntP+mxBQQFrampKelwgEGA33HCDdOxzzz2ngOd80NTUxAAwi8XCbDYba2pqYqIoMpfLxeLxOGOMMY/Hw8LhMGOMsWAwyPx+P2OMsWg0ylwul2TL7XazSCTCGBv8zgKBAGOMsUgkwtxut3Scy+Vi0WiUMcaY3+9nwWCQMcZYOBxmHo+HMcZYPB5nLpeLiaLIGGPM5/OxUCjEGGNMEATm9XoZY4zFYjHmcrlYLBZjjDHm9XqZIAiMMcZCoRDz+XyMMTampkAgwN555x3W29ureU0Oh4NVV1ezQCDARZwGBgbY22+/zQKBgOw4MTZx33O73Wzr1q3M6XQqrqm/v59t3bqVDQwMcBGn7u5utnXrVhYIBCatKRAIsLfffpv19/czxpQ9n1KJk1bOp0xpcrlcbPPmzSwQCGhaU29vL3vnnXdYIBDgIk4ej0f6XpWIUyZzxEhNvb29bOvWrczj8SjS9/r6+tjWrVuZy+VKK05dXV3s3XffZYFAIKevuXrIe16vl23evHnYeaNVTT09PWzr1q3M6/VyEaeuri62ZcsWFggEMtL3AoEA27JlC+vq6lJcUyAQYO+++y7r6uriIk7pjvcCgQCrrq5mDodDihPliOxpCgQCbPPmzZLvWtYkZ1yuhqZM3xMqmSNGavL7/Wzr1q3M4XBwESc54z09XXP1kPd6enqk80TLmuSMy9XSJPdeI1s5YqQmj8fDtm7dynp7exXpez6fj23dupX19PQock+YeJab+BnrebYaGBj773UrRFZYuXIlVq1aBQBYvHgx9u3bN6nPP/DAA9Kb0XPmzMH27dvxhS98Qfp7f38/li9fjo8++gjA4GqQlpYWlJaWKuJ/tjl16hQWLFgg/bupqQm33nprFj0iCIIgCIIgCIIgCIIgCIIgRpLNZ7lUGiuDPPTQQ1i4cOGwn9dee036+9GjR0f9feHChejq6hrT5l/+8hdcddVVAIDW1lYsXLgQDz74IP7u7/4OS5cuxbXXXitNgphMJrz99tu6mQQhBmsBnjlzRqoTqGV405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHZn0SSv5Rwl7PMWaJkIySHNzM06cODHsp6enR/p7IBAY9fcTJ05IG8wkY9asWdizZw8WLlwIYHDDm3379uGNN97Ajh07pPri5eXl2LZt27B9RQjtEwwGpVqhWoc3LZn2R832lLSthC05NnjrJ7mOXuLBmw7KP+rZo/yjH/QUD960UA5Sz1a6NnjrI7mOnuLBmxbKP+rZojGQftBLPHjUkUmftJJ/lLDHU6ypNFYGmTNnDi5fvjzpz126dAlz5swZ95hIJIJNmzZh48aNOHXqFHp6elBaWorrr78e3/3ud/GTn/wEV1xxRZqe8wuVxiIIgiAIgiAIgiAIgiAIguCfbD7LNWWkFQLAYOkqtTCbzfjRj36EH/3oR6q1QRAEQRAEQRAEQRAEQRAEQRBag0pjEbrAYrHAZrMBAGKxGNxuNxKLnbxer1ReLBQKIRAIAABEUYTb7ZZseDweqV5dMBiUlmxFo1F4PB7pOLfbDVEUAQyWMwuFQgAGV+V4vV4AgyXK3G43YrEYAMDv90MQBABAOByGz+cDAMTjcbjdbsTjcQCAz+dDOBwGAAiCAL/fP64mt9uNVatWSfvIaFlTe3s7Vq1aBbfbzUWcenp6JH/kxgmYuO85nU6sWrUK3d3dimtKaOnp6eEiTm1tbZKNyWpK9PlEWUElz6dU4qSV8ylTmnp7e6VYallTV1eXpIOHOPX19Un+KBGnTOaIkZoS321fX58ifc/hcGDVqlXo7e1NK05D808uX3P1kPf6+/uxatUquFwuzWvq7OzEqlWr0N/fz0Wchp4nmeh7iXOrra1NcU1DbfMQp3THewkd7e3tUpwoR2RPUyIefX19mtckZ1yuhqZM3xMqmSNGanK5XNJ5y0Oc5Iz39HTN1UPe6+jokPqDljXJGZerpUnuvUa2csRITYn7ya6uLkX63sDAAFatWoWOjg5F7wmzAU2EELpg0aJFePjhhwEATqcTdrtdOjmrqqrQ3NwMAKirq0NNTQ2AwYuH3W6XbKxduxYtLS0AgNraWtTW1gIAWlpasHbtWuk4u92Ojo4OAEBNTQ3q6uoADO4BU1VVBWAwcdjtdjidTgBAdXU16uvrAQANDQ3YsGEDgMHkYLfbpWS0YcMGNDQ0AADq6+tRXV09riabzYb58+dLPmhZ05YtW3D//ffDZrNxEaeWlhaUlZXBZrPJjhMwcd/r7e3FihUrUF9fr7imU6dOYcWKFWhpaeEiTn/5y1+wYsUK2Gy2SWuy2WyYPn06Tp06BUDZ8ymVOGnlfMqUpvb2dhQWFsJms2laU11dHebPnw+bzcZFnBID2cQEv9p9T8kcMVJTXV0dVqxYAY/Ho0jf+/zzz7FixQq0t7enFad169bhe9/7Hmw2W05fc/WQ9xI3dfn5+ZrXVFtbixUrViAUCnERp3Xr1mHJkiWw2WwZ6Xs2mw3f/OY3sW7dOsU12Ww2LF++HOvWreMiTumO92w2G+6//35s2bJFihPliOxpSlyfE9drLWuSMy5XQ1Om7wmVzBEjNeXn52PFihXYsmULF3GSM97T0zVXD3mvpqYGd999N2w2m6Y1yRmXq6VJ7r1GtnLESE0ejwcrVqyQ7sfkxMlutyMej2PFihWoqalR9J4wKzCC0DBNTU0MALNYLMxms7GmpiYmiiJzuVwsHo8zxhjzeDwsHA4zxhgLBoPM7/czxhiLRqPM5XJJttxuN4tEIowxxgKBAAsEAowxxiKRCHO73dJxLpeLRaNRxhhjfr+fBYNBxhhj4XCYeTwexhhj8XicuVwuJooiY4wxn8/HQqEQY4wxQRCY1+tljDEWi8WYy+VisViMMcaY1+tlgiAwxhgLhULM5/MxxhhpIk2kiTSRJtJEmkgTaSJNpIk0kSbSRJpIE2kiTaSJNGlaU+JZbuKnqamJZQqaCCE0TTZPHh7w+/1s48aNUlLRMrxpybQ/aranpG0lbMmxwVs/yXX0Eg/edFD+Uc8e5R/9oKd48KaFcpB6ttK1wVsfyXX0FA/etFD+Uc8WjYH0g17iwaOOTPqklfyjhL2Rn8/ms1wqjUUQGsZoNKK0tBRGo/ZPZd60ZNofNdtT0rYStuTY4K2f5Dp6iQdvOij/qGeP8o9+0FM8eNNCOUg9W+na4K2P5Dp6igdvWij/qGeLxkD6QS/x4FFHJn3SSv5Rwh5PsTYw9t87mRCEBjl16hQWLFgg/bupqQm33nprFj0iCIIgCIIgCIIgCIIgCIIgRpLNZ7nZn4ohCCJtIpEIjh8/jkgkkm1XZMOblkz7o2Z7StpWwpYcG7z1k1xHL/HgTQflH/XsUf7RD3qKB29aKAepZytdG7z1kVxHT/HgTQvlH/Vs0RhIP+glHjzqyKRPWsk/StjjKdY0EUIQGkYQBOzbtw+CIGTbFdnwpiXT/qjZnpK2lbAlxwZv/STX0Us8eNNB+Uc9e5R/9IOe4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQG0g96iQePOjLpk1byjxL2eIo1lcYiNA2VxiIIgiAIgiAIgiAIgiAIguAfKo1FEDKxWCyw2WwAgFgsBrfbjcQcn9frlZZfhUIhBAIBAIAoinC73ZINj8eDaDQKAAgGgwgGgwCAaDQKj8cjHed2uyGKIgAgEAggFAoBGFzq5fV6AQCMMbjdbsRiMQCA3++XZj7D4TB8Ph8AIB6Pw+12Ix6PAwB8Ph/C4TCAwRlTv98/ribGGFwul3ScljV5PB54vV4wxriIkyAIcDqdYIzJjhMwcd+LRCIQBAGBQEBxTaFQCIIgQBAELuLkdrshCILk62Q0McbQ19cnHafk+ZRKnLRyPmVKUzgcRm9vLxhjmtbk9/vhcrnAGOMiTtFoFD09PcPOOzX7npI5YqSmxHeWOPflxCmRHwVBQDgcTitOLpcLwWAQjLGcvubqIe+Jooienh7pOC1r8vl8EARB8jXbcXK5XAgEAmCMZaTvJdpxuVyKa0qMV1wuFxdxSne8xxiD1+uVjqMckV1NjDH09PRIx2lZk5xxuRqaMn1PqGSOGKkpHo9DEATp3M92nOSM9/R0zdVD3ktcDxhjmtYkZ1yulia59xrZyhEjNUWjUalNJfpeLBaDIAjwer2K3hNmA5oIIXTBokWL8PDDDwMAnE4n7Ha7dHJWVVWhubkZAFBXV4eamhoAQEdHB+x2u2Rj7dq1aGlpAQDU1taitrYWANDS0oK1a9dKx9ntdnR0dAAAampqUFdXBwBobm5GVVUVgMHEYbfb4XQ6AQDV1dWor68HADQ0NGDDhg0ABpOD3W6XktGGDRvQ0NAAAKivr0d1dfW4mjweD1599VVs3bpV85reeOMN/P73v4fH4+EiTp9++in++Mc/SoNxOXECJu57jY2NWLNmDd5//33FNdXV1WHNmjX49NNPuYnTmjVr4PF4Jq3J4/HgD3/4g3SckudTKnHSyvmUKU3Hjh3D2rVr4fF4NK1p69atePXVV+HxeLiI09mzZ/Haa69JA1q1+56SOWKkpq1bt2LNmjU4e/asIn3vo48+wpo1a3Ds2LG04vTqq6/it7/9LTweT05fc/WQ9y5duoTXXntNsqdlTZs3b8aaNWtw6dIlLuL06quv4l//9V/h8Xgy0vc8Hg/+3//7f3j11VcV1+TxePDyyy/j1Vdf5SJO6Y73PB4Pfv/73+ONN96Q4kQ5InuaPB4PXnvtNZw9e1YXmtIdl6uhKdP3hErmiJGanE4n1qxZgzfeeIOLOMkZ7+npmquHvPfWW2/hlVdegcfj0bQmOeNytTTJvdfIZo4Yquns2bNYs2YNtm7dqkjf6+zsxJo1a/DWW28pek+YFRhBaJimpiYGgFksFmaz2VhTUxMTRZG5XC4Wj8cZY4x5PB4WDocZY4wFg0Hm9/sZY4xFo1HmcrkkW263m0UiEcYYY4FAgAUCAcYYY5FIhLndbuk4l8vFotEoY4wxv9/PgsEgY4yxcDjMPB4PY4yxeDzOXC4XE0WRMcaYz+djoVCIMcaYIAjM6/UyxhiLxWLM5XKxWCzGGGPM6/UyQRAYY4yFQiHm8/kYY2xMTaIoskuXLkntalnTwMAAa2trY6IochGnQCDALly4wERRlB0nxibue6FQiHV3dzOv16u4Jr/fz7q7u1kgEOAiTv39/ay7u1uyPRlNoiiylpYWqV0lz6dU4qSV8ylTmoLBIDt//jwTRVHTmjweD7t06RITRZGLOAmCwM6dOye1q3bfUzJHjNTk8XhYd3c3EwRBkb7n8/lYd3e3ZHuycerr62OdnZ1MFMWcvubqIe+Fw2F27ty5YeexVjW53W7W3d3NwuEwF3Hq6+tjHR0dTBTFjPQ9URRZe3s76+vrU1yTKIqsq6uL9fX1cRGndMd7oiiytrY2NjAwIMWJckT2NImiyM6dOye1q2VNcsblamjK9D2hkjlipKZoNMq6u7vZwMAAF3GSM97T0zVXD3nP5XKxy5cvM1EUNa1JzrhcLU1y7zWylSNGahIEgXV3dzOPx6NI34tEIqy7u1uyPdk4jbwnTDzLTfw0NTWxTEF7hBCahvYIIQiCIAiCIAiCIAiCIAiC4B/aI4QgiLTw+/148803pbp8WoY3LZn2R832lLSthC05NnjrJ7mOXuLBmw7KP+rZo/yjH/QUD960UA5Sz1a6NnjrI7mOnuLBmxbKP+rZojGQftBLPHjUkUmftJJ/lLDHU6xpIoQgNIzJZMKcOXNgMpmy7YpseNOSaX/UbE9J20rYkmODt36S6+glHrzpoPyjnj3KP/pBT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA+kHvcSDRx2Z9Ekr+UcJezzFmkpjEZqGSmMRBEEQBEEQBEEQBEEQBEHwD5XGIggiLcLhMOrr6xEOh7Ptimx405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHZn0SSv5Rwl7PMWaJkIIQsNEIhEcP34ckUgk267IhjctmfZHzfaUtK2ELTk2eOsnuY5e4sGbDso/6tmj/KMf9BQP3rRQDlLPVro2eOsjuY6e4sGbFso/6tmiMZB+0Es8eNSRSZ+0kn+UsMdTrKk0FqFpqDQWQRAEQRAEQRAEQRAEQRAE/1BpLIIg0iIej8PtdiMej2fbFdnwpiXT/qjZnpK2lbAlxwZv/STX0Us8eNNB+Uc9e5R/9IOe4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQG0g96iQePOpTwKRKJpPR5reQfJezxFGuaCCF0gcVigc1mAwDEYjG43W4kFjt5vV5p+VUoFEIgEAAAiKIIt9st2fB4PIhGowCAYDCIYDAIAIhGo/B4PNJxbrcboigCAAKBAEKhEIDBZOf1egEAjDG43W7EYjEAgN/vhyAIAAZr4/l8PgCjk4HP55Nq5gmCAL/fP64mr9cLu90Oh8OheU2dnZ2w2+3wer1cxMnpdEr+yI0TMHHf6+/vh91uR09Pj+KaElqcTicXcero6JBsTFZTos87nU4Ayp5PqcRJK+dTpjT19fVJsdSyJofDIengIU4DAwOSP0rEKZM5YqSmxHc7MDCgSN/r7e2F3W5HX19fWnEamn9y+Zqrh7zncrlgt9slP7Ssqbu7G3a7HS6Xi4s4DT1PMtH3EudWR0eH4pqG2uYhTumO9xI6Ojs7pThRjsiepkQ8BgYGNK9JzrhcDU2ZvidUMkeM1OTxeKTzloc4yRnv6emaq4e819XVJfUHLWuSMy5XS5Ocew2fz4e6ujocPHgQBw4cQGNjo3RcQlMgEMDFixfR1NQkxVGJHDFSU+J+0uFwKNL33G437HY7urq6FL0nzAY0EULogkWLFuHhhx8G8D8PsBMnZ1VVFZqbmwEAdXV1qKmpAQAp6SZYu3YtWlpaAAC1tbWora0FALS0tGDt2rXScUNv1GpqalBXVwcAaG5uRlVVFYDBxDH0YW11dTXq6+sBAA0NDdiwYQOA/xlEJ5LRhg0b0NDQAACor69HdXX1uJqKi4uxcOFCyQcta9qyZQv+6q/+CsXFxVzE6eLFi7jiiitQXFwsO07AxH3P6XTiqaeeQn19veKampub8dRTT+HixYtcxOkvf/kLnnrqKRQXF09aU3FxMa6++mrpe1XyfEolTlo5nzKlqbOzE0VFRSguLta0prq6OixcuBDFxcVcxClhp7i4WJE4ZTJHjNRUV1eHp556SrInJ041NTVoaGjAU089hc7OzrTitG7dOvzkJz9BcXFxTl9z9ZD3EloKCgo0r+mjjz7CU089JdnLdpzWrVuHH/zgByguLs5I3ysuLsb3vvc9rFu3TnFNxcXF+PnPf45169ZxEad0x3vFxcX4q7/6K2zZskWKE+WI7GlKXJ8TPmhZk5xxuRqaMn1PqGSOGKmpoKAATz31FLZs2cJFnOSM9/R0zdVD3nvvvffwwAMPoLi4WNOa5IzL1dKU7r1GPB7HZ599hn379iEcDiMej+PDDz/Evn37JE2bNm3CsWPH0NzcjC1btuD06dN4/PHHFckRIzV5vV489dRT0v2YnDglfHjqqafw3nvvKXpPmBUYQWiYpqYmBoBZLBZms9lYU1MTE0WRuVwuFo/HGWOMeTweFg6HGWOMBYNB5vf7GWOMRaNR5nK5JFtut5tFIhHGGGOBQIAFAgHGGGORSIS53W7pOJfLxaLRKGOMMb/fz4LBIGOMsXA4zDweD2OMsXg8zlwuFxNFkTHGmM/nY6FQiDHGmCAIzOv1MsYYi8VizOVysVgsxhhjzOv1MkEQGGOMhUIh5vP5GGOMNJEm0kSaSBNpIk2kiTSRJtJEmkgTaSJNpIk0kSbSxJmm/v5+tmfPHrZz5062Z88etnfvXrZr1y526NAhSdP+/fvZ3r172e7du6XjDh06xNxuN5ea1IxT4llu4qepqYllCpoIITRNNk8eHvB6vWzt2rVSktIyvGnJtD9qtqekbSVsybHBWz/JdfQSD950UP5Rzx7lH/2gp3jwpoVykHq20rXBWx/JdfQUD960UP5RzxaNgfSDXuLBo450fWpoaGB79+5N+sPY4KTByN/v2rWL/fa3v2VdXV3c6FDL3sjPZ/NZLpXGIggNYzabsXDhQpjN5my7IhvetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8eBRh1o+Jfb2GEpeXh5mzJihaDsJ9HQPpjQGxv57JxOC0CCnTp3CggULpH83NTXh1ltvzaJHBEEQBEEQBEEQBEEQBEHkAocOHZI2Bx9JRUUFfD4fjh07lvTvt912G6ZNm6ame9yRzWe5tCKEIDSMIAjYt28fBEHItiuy4U1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnWk69NYkyDjIYoiWltbpQ3GlURP92BKQxMhBKFhEolTFMVsuyIb3rRk2h8121PSthK25NjgrZ/kOnqJB286KP+oZ4/yj37QUzx400I5SD1b6drgrY/kOnqKB29aKP+oZ4vGQPpBL/HgUUc6PsVisbTaisfjcLvd3OcfJezxFGsqjUVoGiqNRRAEQRAEQRAEQRAEQRBEpgmHw/j000/H/DuVxhoNlcYiCCItYrEYHA5H2jPQPMGblkz7o2Z7StpWwpYcG7z1k1xHL/HgTQflH/XsUf7RD3qKB29aKAepZytdG7z1kVxHT/HgTQvlH/Vs0RhIP+glHjzqyKRP8Xgcfr+f+/yjhD2eYk0TIQShYXw+H15//XX4fL5suyIb3rRk2h8121PSthK25NjgrZ/kOnqJB286KP+oZ4/yj37QUzx400I5SD1b6drgrY/kOnqKB29aKP+oZ4vGQPpBL/HgUUcmfYpEIjh27BguXLgApYs16ekeTGmoNBahaXK9NBZjDOFwGAUFBTAYDNl2Rxa8acm0P2q2p6RtJWzJscFbP8l19BIP3nRQ/lHPHuUf/aCnePCmhXKQerbStcFbH8l19BQP3rRQ/lHPFo2B9INe4sGjjnR8Src0FmMMsVgMeXl5mD59OubPn6/Y98D7PVg2n+WaMtIKQRCqYDAYYLFYsu2GIvCmJdP+qNmekraVsCXHBm/9JNfRSzx400H5Rz17lH/0g57iwZsWykHq2UrXBm99JNfRUzx400L5Rz1bNAbSD3qJB486MumTwWCAyTT4WL63txdz5syB1WpVzLZe7sGUhkpjEbrAYrHAZrMBGKw953a7paVlXq8XkUgEABAKhRAIBAAAoijC7XZLNjweD6LRKAAgGAwiGAwCAKLRKDwej3Sc2+2GKIoAgEAggFAoBGBwWZvX6wUwONvpdrul+nd+vx+CIAAYnC1OLAeLx+Nwu92Ix+MABpeLhcNhAIAgCPD7/eNq8nq9+N3vfgeHw6F5TZ2dnfj9738Pr9fLRZycTid+97vfwev1yo4TMHHf6+/vxyuvvIKenh7FNfX29uKVV16B0+nkIk4dHR145ZVX4PV6J60p0ed7e3sBKHs+pRInrZxPmdLU19cnnSda1uRwOCQdPMRpYGBA8keJOGUyR4zU5HA48Morr2BgYECRvpfwta+vL604tbe3Szksl6+5esh7LpcLv/vd7yQ/tKypu7sbr7zyClwuFxdxGnqeZKLveb1e/P73v0d7e7vimoba5iFO6Y73Ejo6OzulOFGOyJ6mxPVgYGBA85rkjMvV0JTpe0Ilc8RITR6PB6+88go6Ozu5iJOc8Z6errl6yHtdXV3SeaJlTXLG5WppknOvwRiDIAiSr+FwWLItCILkdzwehyAIEAQB9fX18Hq9iMViaGtrU0zTwMAAXnnlFTgcDkX6ntvtxiuvvIKuri5F7wmzAU2EELpg0aJFePjhhwEMPsC22+3SyVlVVYXm5mYAQF1dHWpqagAAHR0dsNvtko21a9eipaUFAFBbW4va2loAQEtLC9auXSsdZ7fb0dHRAQCoqalBXV0dAKC5uRlVVVUABhOH3W6H0+kEAFRXV6O+vh4A0NDQgA0bNgAYTA52u11KRhs2bEBDQwMAoL6+HtXV1eNqslgsKC8vx549ezSv6Z133sHcuXNhsVi4iNPZs2elWWu5cQIm7nvd3d2oqKjAwYMHFdfU2NiIiooKnD17los4rV+/HhUVFbBYLJPWZLFYYDab0djYCEDZ8ymVOGnlfMqUptbWVoiiCIvFomlNe/bsQXl5OSwWCxdx6u/vh8/nk96aUbvvKZkjRmras2cPKioq0N/fr0jfO3LkCCoqKtDa2ppWnKqqqnDPPffAYrHk9DVXD3nP7/fD5/NJy/O1rGnXrl2oqKiA3+/nIk5VVVX44he/CIvFkpG+Z7FYcNttt0k+KKnJYrHgy1/+MqqqqriIU7rjPYvFgrlz5+Kdd96R4kQ5InuaLBYLfD4f+vv7Na9JzrhcDU2ZvidUMkeM1GQwGFBRUYF33nmHizjJGe/p6Zqrh7y3fft2XHvttbBYLJrWJGdcrpamdO41hl6bDx8+LPna2NgovUB19OhRye9gMIjDhw/DYDBgzpw5aG5uhtPpRCgUUkxTf38/KioqsGfPHkX6XiQSQUVFBbZv367oPWFWYAShYZqamhgAZrFYmM1mY01NTUwUReZyuVg8HmeMMebxeFg4HGaMMRYMBpnf72eMMRaNRpnL5ZJsud1uFolEGGOMBQIBFggEGGOMRSIR5na7peNcLheLRqOMMcb8fj8LBoOMMcbC4TDzeDyMMcbi8ThzuVxMFEXGGGM+n4+FQiHGGGOCIDCv18sYYywWizGXy8VisRhjjDGv18sEQWCMMRYKhZjP52OMMdJEmkgTaSJNpIk0kSbSRJpIE2kiTaSJNJEm0kSaSJOKmkRRZN3d3czhcLB4PD6hJqfTyfbu3cv27NnDdu7cyfbs2cP27t3Ldu3axT766CMmiiL76KOP2Icffsj27t3Ldu/ePeq4jz/+mH3++ec5E6fEs9zET1NTE8sUtFk6oWlyfbP0xIzx4sWLMWXKlGy7IwvetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8eBRR1dXF3bu3Ilrr70W+fn5mDp1Km699Vbk5eWN+ZnwBJulT58+HT09PaN+H41GcfnyZcyePRv5+fkoKSnBHXfcoYgO3u/Bsvksl0pjEYSGGVkrUsvwpiXT/qjZnpK2lbAlxwZv/STX0Us8eNNB+Uc9e5R/9IOe4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQG0g96iQdvOkRRRHNzM0KhkLTXxcDAAC5fvizLbrJJEGD0niJKoqd7MKWhFSGEpsn1FSEEQRAEQRAEQRAEQRAEQaSPw+HAmTNnkv6toqJizM9NtCIkVZRcEcI7tCKEIIi0EEVR2qxY6/CmJdP+qNmekraVsCXHBm/9JNfRSzx400H5Rz17lH/0g57iwZsWykHq2UrXBm99JNfRUzx400L5Rz1bNAbSD3qJB286enp6MrpyQc229HQPpjQ0EUIQGsbv9+O//uu/4Pf7s+2KbHjTkml/1GxPSdtK2JJjg7d+kuvoJR686aD8o549yj/6QU/x4E0L5SD1bKVrg7c+kuvoKR68aaH8o54tGgPpB73Eg0cdkUgEJ06cQCQS0XRberoHUxoqjUVoGiqNRRAEQRAEQRAEQRAEQRBEupw4cQIulyvp36g0lrJQaSyCIAiCIAiCIAiCIAiCIAiCIAgVoIkQgtAwHo8Hq1evhsfjybYrsuFNS6b9UbM9JW0rYUuODd76Sa6jl3jwpoPyj3r2KP/oBz3FgzctlIPUs5WuDd76SK6jp3jwpoXyj3q2aAykH/QSDx51CIKAAwcOQBAETbelp3swpaHSWISmyfXSWNFoFC0tLZg7dy7y8/Oz7Y4seNOSaX/UbE9J20rYkmODt36S6+glHrzpoPyjnj3KP/pBT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA+kHvcRDbR0+nw8ejwdTpkxBWVkZjMbx1wKcOHECfX19cLlcKCsrQ15envQ3NUpjxWKxYW0pWRqL93uwbD7LpYkQQtPk+kQIQRAEQRAEQRAEQRAEQRCDtLa2orW1Vfp3SUkJbrvtNphMpjE/Q3uEZA7aI4QgiLQIBoPYtm0bgsFgtl2RDW9aMu2Pmu0paVsJW3Js8NZPch29xIM3HZR/1LNH+Uc/6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9oJd4qKUjEAgMmwQBBkszdXZ2Sn/v6uqC2+1GPB4fdlw0GsWZM2cQjUZTaisajaKvry8tPyfb1mTQ0z2Y0ow9FUYQBEEQBEEQBEEQBEEQBEEQGiAx4TGSS5cuDfsvAJSVlWHBggXDymClSm9vL06fPg0qtKQtaEUIoQssFgtsNhuAwTp7brdbSkZerxeRSAQAEAqFEAgEAACiKMLtdks2PB6PNBMbDAalmcpoNDpsQx+32w1RFAEMziSHQiEAQCQSgdfrBQAwxuB2uxGLxQAAfr9f2gApHA7D5/MBAOLx+LBZaJ/Ph3A4DGBw4yS/3z+uJqvVim9+85vS77WsSRRFPPTQQ7BarVzEKS8vD1/72tdgtVplxwmYuO/l5+ejsrJS0qWkJqPRiMrKSuTl5XERp2g0isrKSlit1klrslqt+PrXvy7V91TyfEolTlo5nzKlyWQy4atf/SqsVqumNTHG8M1vfhNWq5WLOJnNZlRUVMBqtSoSp0zmiJGaGGOorKyE2WxWpO8ZDAZUVlbCZDKlFadIJILvfOc7sFqtOX3N1UPeKygoQEVFBaZMmaJ5TfF4HJWVlSgoKOAiTpFIBEuWLIHVas1I37Narfibv/kb6fdKarJarVi6dCkikQgXcUp3vGe1WvHQQw8Nu25RjsieJqvVioqKCpjNZs1rkjMuV0NTpu8JlcwRIzVNmTIFlZWVEEWRizjJGe/p6Zqrh7wXi8Xw13/917BarZrWJGdcPp6m3t5eCIIg+ZA4hwDgwoULwzYn7+7uxuXLlyX/AGDevHkwGo3Sv5Np8nq9OH36NKLR6LDjBEGQfA2Hw9L3NTQPxONxCIIAk8mEefPmIR6PS7aVipPZbEZlZSUYY4r0PYvFgsrKSsRiMUXvCbMBTYQQumDRokV4+OGHAQBOpxN2u106OauqqtDc3AwAqKurQ01NDQCgo6MDdrtdsrF27Vq0tLQAAGpra1FbWwsAaGlpwdq1a6Xj7HY7Ojo6AAA1NTWoq6sDADQ3N6OqqgrAYOKw2+1wOp0AgOrqatTX1wMAGhoasGHDBgCDycFut0vJaMOGDWhoaAAA1NfXo7q6elxN0WgUW7duxY4dO3Shaffu3YhGo1zE6ejRo6iqqkI0GpUdJ2Divnf27FmcOXMGu3btUlzTwYMHcebMGRw9epSbOCWWgE5WUzQaxZ///GccPHgQgLLnUypx0tL5lAlNjY2NeP3116UBoFY17dixA1u3bkU0GuUiTq2trbDb7dJAV+2+p3SOGKppx44dOHPmjKRJTpxqamqwd+9enDlzBo2NjWnHqaGhAdFoNOevuVrPe93d3bDb7dINmJY1vfPOOzhz5oykiYc4ffbZZ4hGoxnpe9FoFIcOHVJFUzQaRWNjIzdxSne8F41GsXv3bsoRnGhKjGETpVe0rindcblamjJ5T6hkjhipye/348yZM9zESc54T0/XXD3kvfXr12PXrl2IRqOa15TuuHwiTUePHpX2+2hpaZH0uVwuHD16VDru8OHDOHnypORfa2sr+vr60NPTI/kTi8VGadq7dy8YY3A4HGhsbJS0Hz58WPK1sbERDodD8i/hdzAYxOHDhxGJRNDX14eGhgbJtlJxam1txZkzZ7Bjxw5F4tTf348zZ85g/fr1it4TZgVGEBqmqamJAWAWi4XZbDbW1NTERFFkLpeLxeNxxhhjHo+HhcNhxhhjwWCQ+f1+xhhj0WiUuVwuyZbb7WaRSIQxxlggEGCBQIAxxlgkEmFut1s6zuVysWg0yhhjzO/3s2AwyBhjLBwOM4/HwxhjLB6PM5fLxURRZIwx5vP5WCgUYowxJggC83q9jDHGYrEYc7lcLBaLMcYY83q9TBAExhhjoVCI+Xw+xhgbU5Pb7Wa/+c1vWFdXl+Y1tbe3s9/85jfM7XZzEaeenh7JH7lxYmzivud0OtlLL73Euru7FdfkcDjYSy+9xHp6eriIU1tbG3vppZeY2+2etKZEn3c4HIwxZc+nVOKklfMpU5p6e3ul/qBlTV1dXZIOHuLU19cn+aNEnDKZI0Zq6urqYi+99BLr6+tTpO8lfO3t7U0rTpcvX5a+21y+5uoh7/X397Pf/OY3kr9a1tTZ2cleeukl1t/fz0Wchp4nmeh7iXPr8uXLimsaapuHOKU73kvoaG9vl+JEOSJ7mhLx6Ovr07wmOeNyNTRl+p5QyRwxUpPL5WIvvfQSa29v5yJOcsZ7errm6iHvdXR0SOeJljXJGZePp+mTTz5hO3fuZB9//DHbu3cvq62tZbW1tWzv3r3s448/Zjt37mR79+5le/fuZTt37mS7d+9mjDF2+PBhVlNTw/7lX/6Fvffee2zXrl1s7969bM+ePaM0HThwgO3du5d99NFHw47buXMn27NnD9u7dy/btWsX++ijj6TjPvzwQ7Z37162e/dutnPnTvbBBx+wf/mXf2Hbtm1jH3/8Mfv8888Vi1NfXx976aWXWFdXlyJ9b2BggL300kuso6NDkXvCxLPcxE9TUxPLFAbGqJgZoV1OnTqFBQsWSP9uamrCrbfemkWPCIIgCIIgCIIgCIIgCIJQC/bfKzISpZumT58Oq9WKAwcOSCWpUqWiogInTpyQVpEk+3uC/v5+aRWIkpSUlOCOO+5Q3C6PZPNZLm2WThAEQRAEQRAEQRAEQRAEQXAPYwxnzpxBT0+P9Luuri4sXLgwrc3LE/uvTERbWxsuXrw4afupMNnJGyI9aI8QgtAwbrcbq1atyvpmQ0rAm5ZM+6Nme0raVsKWHBu89ZNcRy/x4E0H5R/17FH+0Q96igdvWigHqWcrXRu89ZFcR0/x4E0L5R/1bNEYSD/oJR4jdTDG0NPTg+bmZpw7d27YBuAjCQaDwyZBgMH9m86fPy9tAD4Z2traAAxuAF5XVzdsQ3UAuHjxImKxGC5dujRp22MxVltKoKd7MKWh0liEpsn10liiKKKjowOzZs2CyaTtBV68acm0P2q2p6RtJWzJscFbP8l19BIP3nRQ/lHPHuUf/aCnePCmhXKQerbStcFbH8l19BQP3rRQ/lHPFo2B9INe4jFSx6VLl3D58mXp7waDAQsWLMC0adNGffbMmTPSRuRKkJeXh+LiYvT398Pr9aK4uBhG4/C1AzabDX6/X7E24/H4sLYKCwtx9913K2Kb93uwbD7LpYkQQtPk+kQIQRAEQRAEQRAEQRAEQWiVWCyGAwcOjCprNda+GUePHlV0UiLR1nirUNRGyYkQ3snms1wqjUUQGiYQCGDTpk0IBALZdkU2vGnJtD9qtqekbSVsybHBWz/JdfQSD950UP5Rzx7lH/2gp3jwpoVykHq20rXBWx/JdfQUD960UP5RzxaNgfSDXuIxVEdvb2/SvT0yOTHh8XgQiUTQ1NSESCSientqtqWnezCloYkQgtAwRqMRpaWlo5bsaRHetGTaHzXbU9K2Erbk2OCtn+Q6eokHbzoo/6hnj/KPftBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA+kEv8RiqIxwOZ9sdAIPluCwWCwwGQ8bbUnKSQE/3YEpDpbEITUOlsQiCIAiCIAiCIAiCIAhCm7S2tqK1tTXp3yoqKkb9To3SWDyQTKseodJYBEGkRSQSwfHjxzOybE9teNOSaX/UbE9J20rYkmODt36S6+glHrzpoPyjnj3KP/pBT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA+kHvcSDRx2xWAwOhwOxWEzTbenpHkxpaCKEIDSMIAjYt28fBEHItiuy4U1Lpv1Rsz0lbSthS44N3vpJrqOXePCmg/KPevYo/+gHPcWDNy2Ug9Szla4N3vpIrqOnePCmhfKPerZoDKQf9BIPHnWIoojW1laIoqjptvR0D6Y0VBqL0DRUGosgCIIgCIIgCIIgCIIgtAmVxhqESmOpD60IIQgNwxiDIAjQw3wmb1oy7Y+a7SlpWwlbcmzw1k9yHb3EgzcdlH/Us0f5Rz/oKR68aaEcpJ6tdG3w1kdyHT3FgzctlH/Us0VjIP2gl3jwqIMxBlEUM+KTmm3p6R5MaWgihCA0jMfjwZo1a+DxeLLtimx405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHeFwGAcPHkQ4HNZ0W3q6B1MaKo1FaJpcL40Vi8XgdDpRXl6OvLy8bLsjC960ZNofNdtT0rYStuTY4K2f5Dp6iQdvOij/qGeP8o9+0FM8eNNCOUg9W+na4K2P5Dp6igdvWij/qGeLxkD6QS/xGKqjvb2di9JY8XgcwWAQVqsVRqO6aweStaVUaSze78Gy+SyXJkIITZPrEyEEQRAEQRAEQRAEQRAEoVVoj5BBaI8Q9aHSWAShYfx+P958801dXAB405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xENun1SDSCSC48ePIxKJqGI/U23p6R5MaWgihCA0jMlkwpw5c2AymbLtimx405Jpf9RsT0nbStiSY4O3fpLr6CUevOmg/KOePco/+kFP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoD6Qe9xINHHUajEaWlpaqXxVK7LT3dgykNTYQQusBiscBmswEYrD3ndruRqPrm9XqlGdZQKIRAIAAAEEURbrdbsuHxeBCNRgEAwWAQwWAQABCNRodt6ON2uyGKIgAgEAggFAoBGJzN9Xq9AADGGNxuN2KxGIDB2U9BEAAMbojk8/kADNYEdLvdiMfjAACfzydtlCQIgjRbOpYmi8WCe+65R2pHy5oikQjuu+8+WCwWLuJkMBhw5513wmKxyI4TMHHfy8vLQ0VFhVQnUklNwOASS4PBwEWcwuEwKioqYLFYJq3JYrHgrrvuktpR8nxKJU5aOZ8ypcloNOKLX/wiLBaLpjXFYjHcc889sFgsXMTJZDJh4cKFsFgsisQpkzlipKZYLIaKigqYTCZF+h5jDBUVFTAajWnFSRAEPPDAA7BYLDl9zdVD3svPz8fChQtRUFCgeU2iKKKiogL5+flcxEkQBHzlK1+BxWLJSN+zWCz48pe/LLWjpCaLxYLFixdDEAQu4pTueM9iseC+++6T2qEckV1NFosFCxculB7oaFmTnHG5GpoyfU+oZI4YqamgoAAVFRWIRCJcxAlIf7ynp2uuHvJeNBrFvffeC4vFwo2mjo4OnDx5EocOHcJnn30m+ZTquDwYDEq2RVGU/E5oT6YpGo0OO27oOGLoOR2NRiV9sVhs1HGJ7zUSiYAxhjlz5sBgMEj9JjE2GnrcUF9HHpfwNRwOj6lJEATk5eVhzpw5iMVikq9KxclkMqGiogKxWEyRvmc2m1FRUSHlo8R3J/eeMBvQRAihCxYtWoSHH34YAOB0OmG326WTs6qqCs3NzQCAuro61NTUAAA6Ojpgt9slG2vXrkVLSwsAoLa2FrW1tQCAlpYWrF27VjrObrejo6MDAFBTU4O6ujoAQHNzM6qqqgAMJg673Q6n0wkAqK6uRn19PQCgoaEBGzZsADCYHOx2u5SMNmzYgIaGBgBAfX09qqurx9UUDoexadMmbN++XfOa3njjDdTU1CAcDnMRpyNHjuBPf/oTwuGw7DgBE/e9M2fOoL6+Hjt37lRc04EDB1BfX48jR45wE6f6+nrJ18loCofDqKqqwoEDBwAoez6lEietnE+Z0nTixAmsXbsW4XBY05q2b9+OTZs2IRwOcxGnixcvDjtO7b6nZI4YqWn79u2or6+XNMmJU01NDfbs2YP6+nqcOHEi7TjV1dUhHA7n9DVXD3mvs7Nz2HFa1vT222+jvr5e0sRDnHbv3o1wOJyRvhcOh1FbW6uKpnA4jAMHDnATp3THe+FwGDU1NXjjjTeGxYlyRHY0JXy9ePGiLjSlOy5XQ1Om7wmVzBEjNXm9XtTX1+ONN97gIk5yxnt6uubqIe+tX78eW7duRTgc5kLT559/jg0bNmBgYADBYBA7d+7EwYMHEY1GUx6Xf/zxx3A4HJJ/Cb+DweCYmi5fvoxz585J9g4fPiz5evToUbhcLklHQp/L5cLRo0el4w4fPix9r+fOncOlS5fQ0dEBh8Mh9ZtYLIbDhw9LEw/Nzc3S9+BwONDY2CjF8/Dhw5KvjY2NY2pKHNfR0YGGhgapDygVp4sXL6K+vh7bt29XpO85nU7U19dj/fr1it4TZgPaLJ3QNIkNdiwWC0wmE+rr6zFv3jz4fD6UlJTAYDBIb3qYzWaEQiHE43EUFhZCFEX4/X6UlpYCGJxdtVqtyM/PlxKc1WpFNBpFMBhESUkJgMHZVZvNBpPJhEAgAKPRiClTpiASiUAQBBQXF4MxBo/Hg6KiIuTl5cHv98NkMsFisSAcDiMSiaCoqAjxeBxerxfFxcUwGo3w+Xwwm80oKCiQ3jyz2WyIxWJJNYXDYbz11lv43ve+h+nTp2taU1dXF7Zt24bHH38cJpMp63Hq6+vD5s2b8aMf/QiFhYWy4pRK34vFYnj77bfx3e9+FzabTVFNoVAIW7ZswcMPP4yCgoKsx6m3txc1NTV47LHHEIvFJqUpGAziz3/+M77//e+jvLxc0fNJjzlCbU39/f3YtGkTfvSjH8Fms2lWU09PD7Zs2YLHH39c8iObcXK5XPjLX/6CH/3oRygqKlK97ymZI0Zq8nq92Lp1Kx599FEYDAbZfS8QCODdd9/FI488gvz8/EnHqaurCzU1NfjhD38IADl7zdVD3nO73diwYQMef/xxFBcXa1qT2+3Gtm3bsGzZMgDIepw6Ozul88RgMKje9+LxONavX48lS5Zg1qxZimoyGAyS7auuuirrcUp3vCeKIt566y1UVlZi5syZlCOyrMnn8+HPf/4zfvCDH6CsrEzTmuSMy/VwT6hkjhipyWg04i9/+Qu+853v4Iorrsh6nOSM9/R0zdVD3uvu7sbWrVvx+OOPIz8/P+uazp49i9bWVhQUFIAxhnA4DLPZjFtvvRWFhYUpjcvb29vR1dUFk8kEURQRj8dhNpsRj8fxxS9+ESUlJRBFEV6vF0VFRTh06BCi0SgYY9JxiRXcwOBqhfz8fOTl5UmrKPLz8xGLxRCNRocdZzabYTQaEYlEEI1Gcfr0adxyyy3Iy8sbpSlxnNFolHyNxWLDjisoKJBWlOTl5SXVlFgt0dTUhJtuugmFhYXIy8vDPffco0icGGPYvHkz/vZv/xbFxcWy+57BYMDGjRuxdOlSTJ06VfY9YWdnZ9Y2S6eJEELTJCZCEmTy5CEIgiAIgiAIgiAIgiCIXGXfvn1Jf28wGLB48eKUbLS2tqK1tTXp3+6//340NTUNK/+kVyoqKrLtQkbI5rNcKo1FEBpmZK1ILcOblkz7o2Z7StpWwpYcG7z1k1xHL/HgTQflH/XsUf7RD3qKB29aKAepZytdG7z1kVxHT/HgTQvlH/Vs0RhIP2glHhO9d5+qjtOnT2dsEmTkPh9abUtP92BKQxMhBKFhRtaK1DK8acm0P2q2p6RtJWzJscFbP8l19BIP3nRQ/lHPHuUf/aCnePCmhXKQerbStcFbH8l19BQP3rRQ/lHPFo2B9IOW4uF2u6V9I0YyVMfQDcxHMjAwoJZ7oxi5z4dW29LTPZjSUGksQtPkemmskbUitQxvWjLtj5rtKWlbCVtybPDWT3IdvcSDNx2Uf9SzR/lHP+gpHrxpoRyknq10bfDWR3IdPcWDNy2Uf9SzRWMg/cBbPMYqjTWUK6+8EjfffDP6+vrg9XpRWFiIK664AsFgEMXFxdi/f7/6jqbAyH0+Mt2WUqWxeL8Hy+azXJoIITRNrk+EEARBEARBEARBEARBEIRaMMbg9Xrh9Xphs9lQUlIiPRBPZSIkGTabDbfffjvy8/PTtqE3aI8Q9cn+1CFBEGnj8/nw2muvwefzZdsV2fCmJdP+qNmekraVsCXHBm/9JNfRSzx400H5Rz17lH/0g57iwZsWykHq2UrXBm99JNfRUzx400L5Rz1bNAbSD5mOB2MM586dQ0NDA1paWnDixAk0NzfL3u+hv7+fu34VDodx9OjRjJXGUqstPd2DKQ1NhBCEhjGbzVi4cCHMZnO2XZENb1oy7Y+a7SlpWwlbcmzw1k9yHb3EgzcdlH/Us0f5Rz/oKR68aaEcpJ6tdG3w1kdyHT3FgzctlH/Us0VjIP2Q6Xi4XC50d3cP+11fXx96e3tl2c3Ly0NZWRlX/SovLw8zZsxAXl6eptvS0z2Y0lBpLELTUGksgiAIgiAIgiAIgiAIglCe48ePw+12j/p9QUEB7r33XtllrSoqKqg01n9DpbHUh1aEEISGEQQB+/btgyAI2XZFNrxpybQ/aranpG0lbMmxwVs/yXX0Eg/edFD+Uc8e5R/9oKd48KaFcpB6ttK1wVsfyXX0FA/etFD+Uc8WjYH0Q6bjkWwSBIDskk6iKKK1tZWrfpXwSRRFTbelp3swpaGJEILQMJlM0mrDm5ZM+6Nme0raVsKWHBu89ZNcRy/x4E0H5R/17FH+0Q96igdvWigHqWcrXRu89ZFcR0/x4E0L5R/1bNEYSD/oJR7xeBxut5srHQmf5O5/ku229HQPpjRUGovQNFQaiyAIgiAIgiAIgiAIgiCUZ7yyVUqUtbJYLFysFOABKo2lPrQihCA0TCwWg8PhQCwWy7YrsuFNS6b9UbM9JW0rYUuODd76Sa6jl3jwpoPyj3r2KP/oBz3FgzctlIPUs5WuDd76SK6jp3jwpoXyj3q2aAykH/QSj3g8Dr/fj2AwmG1XJBI+ZWpFiFpt6ekeTGloIoQgNIzP58Prr78On8+XbVdkw5uWTPujZntK2k7Y6uvrQ2tra1o/p0+fxuuvv47Tp0/L/iy9OZJdeDtv04U3HZR/1LMn5/O89ZNcR0/x4E0L5SD1bKVrg7c+kuvoKR68aaH8o54tGgPph0zGQ80iQpFIBMeOHUMkElGtjcmSSZ/UbEtP92BKQ6WxCE2T66WxGGMIh8MoKCiAwWDItjuy4E1Lpv1Rsz0lbQcCAfz0pz/F1q1b056EMBgMKCgoQDgcnvTAauRnLRYLli5diqqqKlit1rT8IdKHt/M2XXjTQflHPXtyPs9bP8l19BQP3rRQDlLPVro2eOsjuY6e4sGbFso/6tmiMZB+yGQ8ent70dzcPObf5ZTGYowhFoshLy+Pm36VSZ+StaVUaSze78Gy+SzXlJFWCIJQBYPBAIvFkm03FIE3LZn2R832lLIdj8fx+OOPY+vWrbLsMMbSnkQZ+VlBELB582YAwKZNm2T5RUwe3s7bdOFNB+Uf9ezJ+Txv/STX0VM8eNNCOUg9W+na4K2P5Dp6igdvWij/qGeLxkD6IZPx6OzsHPfvcja/NhgMMJn4eiydSZ/UbEtP92BKQ6WxCELDeL1evPLKK/B6vdl2RTa8acm0P2q2p4TtSCSCgwcPYv/+/Xj66adRXFyctq3i4uK0bYz12e3bt1OZrCzA23mbLrzpoPyjnj05n+etn+Q6eooHb1ooB6lnK10bvPWRXEdP8eBNC+Uf9WzRGEg/qBWPnp4eNDY2orGxET09PQAAj8cz4WfSJRwOo76+HuFwOG0bSpNJn9RsS0/3YErD19QbQRCTwmKxoKKigpuZVTnwpiXT/qjZnhK2W1pa0NnZCZ/Ph3379smadBAEIW0bY31WEATU19djzpw5afs1HjNmzOCmb/IEb+dtuvCmg/KPevbkfJ63fpLr6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9kGo8GGPo6emB2+2GxWLB9OnTMWXKlKTHtre3o6WlRfp3f39/SntXnD9/fnLOD8FkMmHOnDlcrQrJpE9qtqWnezCloT1CCE2T63uEEESmOHToENra2rB8+fJsu5IVaC8SgiAIgiAIgiAIghcGBgbQ09MDURRxxRVXYMaMGdL+DYwxnD17Fg6HQzrebDZj4cKFo+5nGWM4dOgQotHosN+bzWauNjLPBZTaI4R3svksl0pjEYSGCYVC2LVrF0KhULZdkQ1vWjLtj5rtKWE7UftzypQp+Na3vjXmmySpIMeGEu2nQ2IvkieeeCKj7fIOb+dtuvCmg/KPevbkfJ63fpLr6CkevGmhHKSerXRt8NZHch09xYM3LZR/1LNFYyD9EAqFsHXrVhw7dgw9PT3o7+/H2bNncfHiRemYYDA4bBIEGCx33dHRMcqez+cbNQmSOF5NotEoLly4kLTtbJFJn9RsS0/3YErDz/ojgiAmTTweh9vtRjwez7YrsuFNS6b9icfjGBgYQGtrq+IP+UOhELq6umTZ7u7uhtPphNFoRGlpKYzG4fPor776KsrLy1OyJYoienp68Nhjj016GWhXVxeOHDkyqv1MkdiLhIclnTzA23mbLrzpyEb+Uas9pW3LtSfn87z1k1xHT/HgTQvlIPVspWuDtz6S6+gpHrxpofyjni0aA2UXxhji8Tjy8vJk24rH4+jp6UFhYeGw33d0dGDOnDkwGAw4cuRI0s92dXXhpptuAmMMwWAQXq83axMRjDEIggCeChVl0ic129LTPZjSUGksQtNQaSxCDwSDQTzxxBOa3vB727ZtmDlzpiq2I5GINDiLRCJYsmRJVpfoXrp0SbW9SAiCIAiCIAiCIAh9wBjDxYsX0d3djVgshrKyMsyfPx/5+flp24zH49i/f3/Sv918883o7+9HX1/fmJ9fvHgxLl26hLa2trR9INSBSmOpD60IIQgNI4oiOjo6MGvWLK42mEoH3rRkyh/GGJYtW4adO3di1qxZ6OjokMpQKYXJZFLM9li2br/99pQnByb73ba2tqK1tVVq/6GHHsJ7772n+PfEM5FIBK2trXC73YjFYmnbyc/PR1lZGebMmaPI20i8nbfpwpuOTPujZntK25ZrT87neesnuY6e4sGbFspB6tlK1wZvfSTX0VM8eNNC+Uc9WzQGyg6XL19Ge3u79O+BgQGcPHkSd955Z9o2RVGE2+1GcXHxqEoJfr9/3EkQAPB4PFxMgsTjcXi93qQ6skUmfVKzLT3dgykNHz2NIIi08Pv9+K//+i/4/f5suyIb3rRkyp+zZ8/iww8/hM1mw49//GPYbDbF21DSthK2JvvdJjZ8AwYnBBYuXIivf/3rMJvNafugJURRxPHjx9HV1YVgMIhwOJz2j9/vR3t7O06ePKnIElzeztt04U1Hpv1Rsz2lbcu1J+fzvPWTXEdP8eBNC+Ug9Wyla4O3PpLr6CkevGmh/KOeLRoDZYfe3t5Rv/P5fLL2SvD7/Thx4kTSKgkj9wVJxvHjx9NuW0kikciYOrJFJn1Ssy093YMpDZXGIjQNlcYitAxjDFu2bMEjjzySbVdkYbFY4HK5VNs3w+Vy4cSJE6N+H4lEMDAwoEqbTqcTTz75ZNK/ffLJJ5g1a5Zibc2YMWPc787pdOLUqVOKtZfgzjvvRFFRkeJ2CYIgCIIgCIIgCGDfvn1Jf3/NNddg7ty5adkcrzQWoW2oNJb60Jo2giCILBGJRHRR3mnp0qWqbh5eUlKCsrIyuFyuYb83m82YMWOGau2OxVe+8hVF7VksFixduhRVVVWwWq2j/q7WWxM+n48mQgiCIAiCIAiCIAiCyAmoNBahCywWi1SqJxaLwe12S2VfvF6vtNQsFAohEAgA+J+6igk8Ho+0IXMwGEQwGAQARKNReDwe6Ti32y09vA4EAtKSxkgkAq/XC2DwTf+htfz9fr+0CXY4HIbP5wMwOJPvdrsRj8cBDD6YDIfDAABBEKQHoGNp8ng8eOmll9Dd3a15TR0dHXjppZfg8Xi4iFNvb6/kj9w4AeP3vZKSEkybNg3PPfccpk+fLj0Mz8/PR0lJiXRcaWmpVE+xsLAQU6ZMATA4IVBcXAxgsIxUaWmptP+DzWbDlVdeieeeew7l5eXSg2+j0YjS0lKpFmVRUREKCgoADD+f8vLyUFpaKpWnuvrqq/Hcc8+hpKQExcXF+MEPfoCqqqpJxam9vR2rV6+Gx+NJKU4GgwGzZs3CnDlzMGXKFBw4cED63qxWKwoKClBSUoKioiLk5+ejqKgIJSUlKCgogNVqHfO44uJilJSUwGw2S2W2otGoFDOTyYTS0tJhcUpsame1WhWLkyAIeP/99/F3f/d3AEafTz6fT+pT4XBY+r5EUZR8jcfjEARh2HGJfj1UU+K4VOKUyvnkdDql8yRTeQ9QPpd3d3dLOrKRy0dq6u/vl/xRIk4Taerp6cHq1avR29uruKbu7m6sXr0a/f39iuTyhK9OpzOtOLW1tUnfbS5fc/UwNhoYGMBLL70k+atlTV1dXVi9ejUGBga4iNPQ8yQTfS9xbg2tV66UpqG2eYhTX18fVq9eDYfDMSlNCR0dHR1SnChHZE9TIh79/f2a1zTZcbne7gmVzBEjNbndbqxevRodHR1cxEnOeE9P19xs5L1IJCJ9JhaLSf6kq6mzsxOffPIJBEFQ5J5QEIRhxw31deRxCR/G0zTyuKH3r0OP83g8kg6l73PT1eT3+3HgwAEEAoG0NI30dTxNoVAIBw4cgMfjkXxVqu/19/dj9erV6O7uVuR8crlcWL16NTo7OxW9J8wGNBFC6IJFixbh4YcfBjD4YM5ut0snZ1VVFZqbmwEAdXV1qKmpATA4yLLb7ZKNtWvXoqWlBQBQW1uL2tpaAEBLSwvWrl0rHWe326WbkJqaGtTV1QEAmpubUVVVBWAwcdjtdjidTgBAdXU16uvrAQANDQ3YsGEDgMHkYLfbpWS0YcMGNDQ0AADq6+tRXV09riar1YrZs2dLyy21rKm6uhoLFy6E1WrlIk7nz5+XHnbLjRMwft/7xS9+gRkzZmDbtm2477778I1vfAMA8NJLL+Ef/uEfsHHjRmzcuBFPP/00Xn/9dWzcuBGrVq3C6tWrsXHjRrz66qt49tlnsXHjRrz11lt4+umn8Z//+Z/YuHEjfv3rX+Of//mfcf311+OFF17AP/3TP2Hjxo1488038fTTT+PNN9/Exo0b8U//9E/43e9+h40bN+K3v/0tfv3rX2Pjxo34z//8Tzz99NN46623sHHjRsnXP/3pT3jzzTexZMkSWK3WScVpw4YNqKyshNVqTTlO//7v/w6LxYIvfvGLmDp1KmKxGO644w7E43GcOHECd9xxB+bOnYuPP/4Yc+fOxR133IETJ04gHo/jjjvuQDAYxNmzZ3HHHXfg6quvxscff4xbbrkFd9xxBz777DNpQHH58mWcO3cOADBr1iw8/fTTw+KUWL78jW98Q4rT3Llz8Ytf/EI67umnn5ZKZy1ZsgSLFy8GANxyyy144oknAAAFBQV4+umnUV5eDgB4+OGH4XQ6IQjCqPNp69atUp9qbGyU6r52dHRI/SsYDOLw4cPSQKahoUHq10M1eb1eHD58OKU4pXI+tbW1wWQywWq1ZizvAcrn8n379mH27NmwWq1ZyeUjNblcLkQiEWmyTe2819TUhMrKSpw/f15xTfv27UNlZSVcLpciufzYsWOorKxEW1tbWnFat24dvvGNb8Bqteb0NVcPY6NgMIhIJCJN/GtZ04cffojKykoEg0Eu4rRu3TpUVFTAarVmpO9ZrVbcf//9WLduneKarFYrvv3tb2PdunVcxMnhcKCyshKHDh2alCar1YqFCxdK3yvliOxqslqtiEQi0mplLWtKZ1yup3tCJXPESE15eXmorKxEdXU1F3GSM97T0zU3G3nv3LlzuHz5stRuwp90Nb333nu48sorkZ+fr8g94dGjR6V81tLSIulzuVw4evSodNzhw4clH8bSFIvFcPjwYekhfXNzs/Q9OBwONDY2StqPHz+OuXPnIj8/X/H73HQ1dXd3Y968efB4PGlpOnz4cMr37kajEfPmzcPp06clTUr1PZfLhcrKSuzbt0+R80kURVRWVmLHjh2K3hNmA9ojhNA0ibpyFosFJpMJ9fX1mDdvHnw+H0pKSmAwGOD1emGxWGA2mxEKhRCPx1FYWAhRFOH3+6U3vj0eD6xWK/Lz86UEZ7VaEY1GEQwGpTe+3W43bDYbTCYTAoEAjEYjpkyZgkgkAkEQUFxcLM1uFxUVIS8vD36/HyaTCRaLBeFwGJFIBEVFRYjH4/B6vSguLobRaITP54PZbEZBQYE0u2+z2RCLxUiTDjVNmTIFW7duxc9//nMEg0FEo1HpwWfi4jh0FYfX64XVaoXJZEIwGITRaITFYkEkEkEkEoHNZgNjDD6fD4WFhcjLy0MgEIDJZEJBQYH01kZhYSHi8Tj8fj9sNhuMRiMCgQDy8/NhNpulNxcKCwsRi8UQCARQVFQEg8EgfWbatGnSWxF6iJPH40FLSwui0aj0FkNlZSUKCgqkNxZKSkqSxik/Px9Wq1V6C6O0tBR+v1/6DuPxOEKhEMxmMywWC7xeLwwGA0pKSuDz+RCLxWCz2SCKIk6fPo2rrrpqmKampib09/fDYDAgHA4jLy8PJpMJ+fn5uOqqq2C1WhGLxRAMBmGz2aQ4FRQUID8/H2fPnkU4HIbZbEY8HkckEoHFYsFNN92EwsJCTcUp13IEaSJNpIk0kSbSRJpIE2kiTaRJu5oOHDiASCQCg8GA/Px8xGIxiKKIG264Addff31amjweD44cOQKTyQRRFBGPx4fd6xUUFEj3jiaTCXl5edJ97sh7QmDwzf78/HzpOACSr9FodNhxZrMZRqMxqaaCggIwxqR7z8RxRqNR8jUWiw07bqivifvcXNZ0zz335MT51NnZmbU9QmgihNA0ub5ZejAYRG1trfR2q5bhTUsm/AmHw9i6dSuWL18Oq9WKb3zjG6itrZUuapcuXcKcOXNkt6OkFiVsybGhVlwcDgfOnDkz7Hcvvvgi9u7dq1gbqZAs5hcvXhxWLiRBWVkZbr/99gltHj58WFoOO5SbbroJM2fOTNtXgL/zNl1405Fpf9RsT2nbcu3xmH+I9NBTPHjTQjlIPVvp2uCtj+Q6eooHb1oo/6hni8ZA2UGNzdL9fj/Wr18vrabQKtFoFC0tLVzpyKRPydpSarN03u/BaLN0giAIguCMZ599FgBw8OBBqb4lQRAEQRAEQRAEQRAEoT1oRQihaXJ9RQihbYauCEmGUitCiIkZWgN0JJFIBAMDA4q15ff78dOf/jTp37S2IoQgCIIgCIIgCIJIjhorQuLxOPbv3y/DK4JXlFoRwjvZfJZLm6UThIaJRqM4c+aMVPNQy/CmJdP+5OfnY968eaosv1RSixK25NhQKy7FxcWYMmVK0r+ZzWbMmDFDsZ8rr7xSUd8TCIKA1tbWUT9dXV1wOByjftrb25MeLwhCym3ydt6mC286Mu2Pmu0pbVuuPR7zD5EeeooHb1ooB6lnK10bvPWRXEdP8eBNC+Uf9WzRGEg/RKNR9PX1SRuIa5VYLMadjkz6pGZberoHUxqaCCEIDRMMBrFt2zZpTwktw5uWTPtjtVpRWVmpSs1VJbUoYUuODbXiYjAYcPvtt6O0tBQGg0FR22oTDAaxbNkylJWV4brrrhv1893vfhfLly8f9bNo0aKkx5eVlWHZsmUpfce8nbfpwpuOTPujZntK25Zrj4f809fXh+PHj+OTTz7B/v378cknn+D48eOKrjzLBXg7b+XAmxbKQerZStcGb30k19FTPHjTQvlHPVs8jIGI/0HOuC8YDHLzUFkOPD0cT5BJn9RsS0/3YEpDpbEITUOlsQgtQ6Wx+CQWiynyVkZXVxdaW1tH/d7r9WLp0qVJP5NOaaxly5Zh8+bNsv0dyaOPPopNmzYpbpcgcpmBgQE0NjYi2fB76IQsQRAEQRAEoW0EQUB9ff2Yf7/lllvSqhZApbH0C5XGUh/aLJ0gCC4IBoNob2/PthsZJRKJwOl0ZtsNYgR5eXnIy8tTxI7aCIKA7du3q2J7+/btEAQBFotFFfsEoTRutxvd3d0IBALS7/Ly8lBSUoJZs2bBbDZn0btBHA5H0kkQAGCMoaenhyZCCIIgCIIgNE4oFMLx48fHPaa9vV21sskEQSSHSmMRhIZxu91YtWoV3G53tl1JG7/fj4ceeghz5szBpk2bsGjRIsybNy/rP4sWLVLdny984Qt48sknAQClpaVYuXKlKg/AlOwnStiSY0MPfV5JHA7HpPb0mAyCIMDhcIx7jF7iwZuOTPujZntK2x5pL9FPjx8/juPHj6Onpwd+v1/68Xg8aGtrw4kTJyCKYtbzz9BJmmT4/f60becavJ23cuBNC+Ug9Wyla4O3PpLr6CkevGmh/KOerWyPgXKNzs5OhMPhcY/x+XxjviCTDMYYfD4fHA4H6urqVLsPzBSCIHCnI5M+qdmW2vdg2fZHDlQai9A0uV4aSxRFdHR0YNasWTCZtLnA69vf/jY++OADmEwmzJo1Cx0dHRBFMdtuZdyfZO0pVRpLyX6ihC05NrTU59vb29HS0jLq9+OVxvrkk08wa9asYb9ra2tDV1fXqGOLi4tRXFyMr3zlK8o4nISJ+qCW4jEevOnItD9qtqe07aH2BgYG0NzcnPJn58+fj2nTpimSf/x+P3p7e4fVubXZbJgxYwZsNtuYNo4cOTLuZEhRURHuvPPOSfmVq/B23sqBNy2Ug9Szla4N3vpIrqOnePCmhfKPerZy5R6MF/bt25fScYsXL05pj8pAIICTJ08iHA4jHo/D6/WiuLgYRqN232/nUUcmfUrWllKlsdS8B0vH3sjPZ/NZLk2EEJom1ydCtE4oFEJpaSkikUi2XeES2iNE26QzEcIb1AcJXhFFEXv27Em60eTUqVOTlsG6+uqrceONN6Zk3+VyweVySZsXGo1GFBcX44orroDL5cKpU6eSvsGXl5eHhQsXoqioKKldmgghCIIgCILQP0pOhDDGcPjwYa5WThDqQHuEqA8fU24EQaRFIBDApk2bJiy1wSsdHR3SJEhhYSGWLVuGwsLCLHs1SKb9GdmexWLBjBkzFLGtZD9RwpYcG1rv85nkk08+waVLl/Duu+9i48aNo37q6+tx6dIlfPLJJ2m3oZd48KYj0/6o2Z7StgOBADZs2IDly5djyZIlWL58+aifJUuW4MUXX0x6s5iKP62trThx4gTa2trQ3d2N7u5udHZ24sSJE/jTn/6E5uZmMMYQiUTgcDiG/XR2duLChQtJ7TLGuOljeoC381YOvGmhHKSerXRt8NZHch09xYM3LZR/1LNF92Dq4/P50NzcjM8++0xRu16vd9i4NhKJoKmpSfMvlPKoI5M+qdmWGvdgcuzxlENoTRtBaBij0YjS0lJulhHKIR6Pw+12Ix6PZ9sVAJn3Z2R7S5cuVWyTaiX7iRK25NjQU59Xm1mzZmHOnDno6elBKBQa9fdrrrkGM2fOlNWGXuLBm45M+6Nme0rbNhqN+Oyzz/D++++PedMQiUSwd+9eAMDzzz8/KX/C4TBaW1uT/s1gMMBkMsHr9eJ3v/sdDh48mNQHs9mMv/3bv0VVVRWsVisAIBgM4uTJk6nKJFKAt/NWDrxpoRyknq10bfDWR3IdPcWDNy2Uf9SzRfdg6hIIBKQ96ZSmoaFh2L8NBgMsFktKJbV4hkcdmfRJzbbUuAeTY4+nHEKlsQhNQ6WxtM358+dx0003ZdsNrigoKMDSpUuxbt066QEaoU3GKo0VjUaxZMmSCTfPk4PFYoHL5YLFYsHhw4eTToTcdNNNmDlzJlpbW3HdddcltUOlsQjeEAQBZWVlKZUGMJvNqKmpkcpkpVIaq7e3d8J9R1588UVpomU8Hn30UWzatAmMMXz22WdJz8ORUGksgiAIgiAI7XHx4kW0tbVN+nMjS2N5vV50d3cjEomgrKwMV199Nerq6pR0leAYKo2lPrQihCA0TCQSQXNzM2655Zak9dC1hNlsxi233ILm5mZEIhG89957mDt3btb8iUaj0mZO+fn5GWmvu7sbixYtQnFxsaK2lewnStiSY0MPfT4/Px/33XdfSg9S00XJFUXjkY14CIIAh8Mx5t/j8fioh+TTp08f9X3k5+dLPvPWrzLtj5rtKW37s88+w7x586RrxURtDwwMDCszOJE/sVhsTHuxWAzd3d0plzvYvn07BEFAPB4fNQmS8G0kPPQ/rcDbeSsH3rRQDlLPVro2eOsjuY6e4sGbFso/6tnK9XswNWGMpTUJMhKPx4MTJ05IVSL6+/vh8/lGHReLxeB0OlFeXo68vDzZ7WYLHnVk0ic121L6nJVrj6ccQhMhBKFhBEHAvn37cP3112c9mcjFYrGgoqICFy9eRCQSwZw5czBv3rys+eP1erF7927cf//9ik9MjNfeokWLFLetZD9RwpYcG3rp888++ywAjFlaJ10sFguWLl2KqqoqxWyORybjEQwG8cQTT0gPlyeD2WzG/fffj2effXbYhEhRURFuvfVWRCIRrvpVpvu5mu0padvhcODy5cvDrhUT4XQ6pf+/4oorZPkjiiIuX76c8o1KYtKutLR02O9efvnlMc/9goICVFZWDiurlYtEo1F4PB7EYjFYrVbYbLZRZQP0cj0A+NNCOUg9W+na4K2P5Dp6igdvWij/qGeL7sGUp7e3F21tbSmt+k2F9vb2UaW5e3p6Rh0niiJaW1tRVlbGzQRCOvCoI5M+qdmW0uesXHs85RAqjUVoGiqNpW3GK41FsSS0Tnd3N86ePTvuMWO9FZ4KU6dOHXX+zJgxY9TKB72Uxnr00Ufx9ttvy7Lx4IMPjtozwmq14u677+aqNi2RnMbGRpw6dQrLly9P6/OpTDJMdN46HI5Jtd/c3IyrrroKx48fBzD5slpycDgc6OnpQTAYBDA4UXrllVdi5syZSfs7YwxdXV1wOp0QBAEGgwE2mw1XX331sMkcOYiiCLfbjUgkApPJhNLS0lE3Qx0dHaM2nLfZbPjCF76Q9RsngiAIgiAIYHC1RmNjo2w7Q0tj7du3T7Y9QttQaSz1oRUhBKFhGGMIh8MoKCjQ/EM8g8GAgoIChMNh8DA/m+nvVs32lLSthC05NrTU51N5cGg2m4eV7ZkMN954I66++uq0PqsUmYrH5cuXsW3bNtl2Em/hD32YGgwGEQgEYDKZuOlXlH+SIwgCGGOwWCxpXSvC4TDefvttGI1GbNiwYUx/xpqgLCsrQywWg8FgSLltj8eDsrIyOByOYZu4T0Ri5VO6Je46Oztx/vz5Yb8Lh8PweDy4fPkyiouLEY1GYTAYUFxcjJkzZ8LhcIzaKD4UCqG/vx+33347SkpK0vIlQXd3N/bv3z/su5s6dSoWLlyIK6+8EgDg8/lGTYIAgN/vx7lz54bdMGnpejARvGmhHKSerXRt8NZHch09xYM3LZR/1LOVK/dgmSLZSo1MwRhDLBZDXl6epuPBo45M+qRmW0qfs3Lt8ZRDsr9dO0EQaePxeLBmzRp4PJ5suyKbkpISPPfcc7IftChFpr9bNdtT0rYStuTY0FKfnzJlyoQbM6fLFVdcgauuukqWjXg8DlEUIYrimMck/j7WQ99MxCMQCODTTz9VpITYWA+4nU4nV/2Kp/wjCAIuXryICxcu4MKFCzhy5Ai2bduGTZs2YdOmTaitrcW+ffuwb98+HD16FN3d3apqEUVR1rWipKQEN998M3p7e0f9LRgM4uc//zmWLFmC5cuXj/p5/PHHceHChUm1/cQTT2DOnDlYvnw5VqxYkfLnJtoLZyI6OjrG/FskEkFfXx88Hg/cbjfa2trw+eefj5oESRCPx9HV1ZW2L8FgEI8++ijmzJmDZcuWDftOlyxZgmXLlkn9Y7wVci6Xa1gu0tL1YCJ408JTDuLJdjbHQLz1kVxHT/HgTQvlH/Vs5co9WKZINpbMFOFwGAcPHkQ4HM6aD0rAo45M+qRmW0qfs3Lt8ZRDqDQWoWlyvTQWj5tLTYahpbHy8vJQXl4Op9OJWCyW9Vhm+rtVsz0lbSthS44NLfb5UCgEt9s97oRDqiTe3i4qKkr5TYqxSmMlGK/Uz8aNGzFjxgzk5eWhrKwMN91007DVFJmIR3t7Ow4ePJh2OaSRJDQN5ZZbbkE8HuemX/GQf4LBIFasWIGamppxB+fJ9l+ZN2+e9B3L1cIYQ3d3N86fP4/u7m709vbipZdekq4VkyVxrTlw4ADmzp077G/Lli3D5s2bJ/xsum1PlnRL08ViMXzyySeK+mK1WvGlL30J4XAYkUgEeXl5mDJlSkp5aKLvFQAqKyuxdetWXLhwYdxJnAceeABG4+B7XEqfJ/F4HF6vF36/X8p56a7ImSy8Xdt4yEE82s7mGIi3PpLr6CkevGmh/KOerVy7B1MbpcpYpVMaKx6PIxgMwmq1SuMiLcKjjkz6lKwtpUpjKX3OyrU38vNUGosgiLTIy8tLu6wOb8RiMVlvvypNpr9bNdtT0rYStuTY0GKfnzJlCqZMmZJtN2QRi8XQ19cHQRBw5513SoP1TMRDyc3kgeGbZycoKSlBWVkZ2tvbk+6zkmlGfq+prA6Q43eyOP7kJz9BdXX1hJ8dWu4psf+Kw+GQ7MnpI8FgEN///vfx0UcfKdYPEteakQN4QRCwffv2lD7LO6FQKKmfU6dOHXOPjbFWSyU+EwwGceTIEQQCAelv+fn5uPnmm3HFFVeM6Usq3ysA7Nq1C4IgTHjcUJTMP6Io4uTJk/B6vcN+n9hLSW14u7bRGEg9W+na4K2P5Dp6igdvWij/qGcr1+7BJoIxJu2jZrVas1auJxgMoru7e1IbrhuNRthsNhW9ygw86sikT2q2pfQ5K9ceTzmEjyk3giDSwu/3480334Tf78+2K7Kx2Wz48Y9/zM2FMNPfrZrtKWlbCVtybOipz2sRv98/7EEoD/F49dVXsXHjxmE/r7766pjHP/nkk6NKHj3wwANYtWoVbrvtNpSVlWHZsmXSjVE2SHyvvb29WLZsGcrKynDdddeN+yPH75FxFAQBO3bsmJSNxP4rABTrIytWrMD7778/bBJkvGvFPffcM+FkUOLzbW1t8Hq96O3txYEDB/DOO+9M+CCet+vUSILBIJYtW4by8vKkpb2WLFmCF198cZhOQRDw4osvjlkObOhnhsYVAKLRKE6dOjXq90NxOBwpTXCkUwpMyfzT2to6ahIEAM6dOzfpCZp04CGXDoXGQOrZStcGb30k19FTPHjTQvlHPVt0D/Y/hMNhHD16FEeOHMGRI0dw9OjRlF66UaOgzueff46Ojg709/en/JlIJILjx48r/sJYpuFRRyZ9UrMtpc9ZufZ4yiG0IoQgNIzJZMKcOXNgMmn/VBZFEa2trYqUD1KCTH+3aranpG0lbMmxoac+nyksFsuk3jCaiGAwKD0I5iEeV1555aj9UsZ6630shuYfQRCkMj6bNm2atJ2LFy/C5XKNm8uKi4sxa9YslJWVJf174nv9+7//e2zZsiWltuX4PTKOqT68HkpiRcHIN33S7SOCIOC9994b9fvxrhWbNm3CjBkzsH//fgwMDMDpdOLJJ59M+vkLFy5g5cqVwyZwJoK369RInnjiiXFLUA1dvfPcc89hYGAAL774Ik6fPp3SZxIrfobCGMPAwAAKCwuH/S6xsX08Hk9XzoQomX9cLteYf3O73Wm/wcYYg9/vh8fjAWMMpaWlsNlso9465SGXDoXGQOrZStcGb30k19FTPHjTQvlHPVt0D/Y/NDc3D3uRIxAIoLm5GQsXLkx6fHd3N9rb2yEIAkpKSnDNNdco5ks65VaNRiNKS0u5KSeVLjzqyKRParal9Dkr1x5POYT2CCE0Ta7vEaJ1hu4RMhKKJUEoQ2dnJ86fPz/m31PZI2Qot9xyC6688kpFfRyPlpYWHDlyZEwfk+2j0Nraiuuuu05WuxaLBS6XK+VyU4wxfP755/D5fCkdbzQacfvtt4+58XZfXx+uvvrqSb8hNFm/k5Hu95foL/n5+bj//vvTbj8dH4bqPnXqFJxO57h9e/78+eNOAGQCs9mMuXPnjunHZPYIEQQBZWVlKU9gGQyGSb3VaDabUVNTk3SS8eqrr8aNN94IYDDftLa2IhqNAgB6enqwbNmylNq4dOkSRFEcd4+Q+++/H/n5+Sn7nSr19fVjfnc33HADZs2aNWmbsVgMZ8+eHbWZ6syZM3HjjTdmrQQHQRAEQeQykUgEhw4dSvq3ZOMMp9OJU6dOZcI1glBsjxDeyeazXH6m3QiCmDThcBj19fXjbmSrFQoKCrBo0SIUFBRk2xUAmf9u1WxPSdtK2JJjQ099PlPMnDkT11xzjWJvmjidTrS2tqK1tRXnzp3DBx98gHPnzkm/S/z09/dnZEPpZEx2v4xk+WeypXq8Xm/KkyDA4OZ4Y9kPh8Oora1N60FpOiWGtJJ/gLGvFUuXLk0p5onPX7x4UbG2J0uinFtNTU3SVRbpMNlVPJN9DyoSicDhcIz6GTpRd/nyZZw/f16aBEmnnYk4deqUZDOVvsUYgyiKqq5MGUk0GsXJkyfxySefjJoEAYCurq5RK1B4u7bRGEg9W+na4K2P5Dp6igdvWij/qGeL7sEGGa+kZ7ISsz09PWq6kxaJF0d4XaWcKjzqyKRParal9Dkr1x5POYQmQghCw/BYUzFdzGYzFi5cOOmSNmqR6e9WzfaUtK2ELTk29NTnM4XBYMDcuXPx5S9/GXfeeeeon6FvYqTC0ImQS5cuobm5GZcuXRo1EdLY2IiGhoZhD0UzhcViwdKlS1M+Xon8M95N1ViMVSM1Eomgq6srbX9aWlpw5syZYT9nz55Fd3d30nhM5rz6l3/5lzH/lliF0d3dLT2UV/qcHRkri8WCRx99FFVVVWl9Xk7b6VJeXo4ZM2Zwc71LlRUrViTdQ+Tpp59GS0sLLl26JMu+3++XVoMkm3iJRCJwu91Sqb/x+hZjDBcuXMChQ4dw4MABHDhwAI2NjRm5djQ2NibdeH4oIydCeLu20RhIPVvp2uCtj+Q6eooHb1oo/6hni+7B0qOvry/bLowiFovB4XBk7aUzpeBRRyZ9UrMtpc9ZufZ4yiFUGovQNFQaS9tQaSyCyD7jlSB69dVXUV5enrKtqVOnjnq4O2vWLNxwww1p+5dOaSxg8I2uJ554Atu3b097s+PJlCZKVoIssW/GWBQWFuK2225LuoJl9+7d+PrXvz5pn4GJ4zZv3jypPqvFYsGsWbNgsVgQDAbhcrnQ0tKCxYsXJ/3sa6+9hp///Ocp+XHPPfegqqoKVqt12O8LCwvR398/anNqk8mEqVOn4tprr0VbW9uY/fL111/HN77xDQDJV/+kUhormwwtOTeejy0tLbjiiisQj8dhMBhQWFg4Zl3dc+fO4eabb1bN54l48MEHk65umUwMNm7ciNLSUrz88stJ924xm824//778cYbb0xYNu3ChQtJS2wVFhbirrvuGrXaSqnSWIIgoL6+fsLjZs6cOeb4hyAIgiAI9XC5XDhx4kTSv91xxx2jytbu27cvA14RxCBUGkt9sr9LCUEQaROPx+H1elFcXMzVBlPpYDQaUVxcDK/Xm9ESFmOR6e9WzfaUtK2ELTk29NTntcDIjaZHMvK8TTyofPbZZ6WH0+NtQqwmVqsVmzZtGlYq6vDhw6NK9TidTjz99NOK5h9BEMZ8mJuMxAqWxKRBPB6HIAgwGo1J/Xn11VcBjB2fieI2EqPRiHvvvRd/93d/B4vFAqfTOanPj8Xhw4dx2223Jf1u58+fP6yfAIMTaYkSYzabbUxfS0tLce2116aVA1K91iTbvyPT16nPPvts2B49BoMBV199NebOnTvqQX5ra6vq/ozHwYMH4ff7R61ymkxfikQi+D//5/+MuWdKYuP2Z555Btu2bRvzesAYG3OfkUAgAI/Hg9LS0pT9Gs9fo9E4bHIqsVplsvB2baMxkHq20rXBWx/JdfQUD960UP5Rz5ZW7sGi0Sj6+voQDAZRWlqKqVOn0r5aI2CMIRwOo6CgQNPfDY86MumTmm0pfc7KtcfTtSb7VzqCINLG6/XCbrePeqtWixQXF0sPI3kg09+tmu0paVsJW3Js6KnP64GR523iQeXLL78sHZPtpc4WiwVz5szBnDlzcNVVV2HGjBnDfsrLy8fMPw0NDWkth3/55Zexd+/elJf+CoKAzZs344knngAw2M+PHj06Zj4sLy+f1EqdiSguLsZf/dVf4ZlnnsHy5csnPZEyke1k3+3p06fxk5/8ZFSZpRdffBGdnZ1jvp1fXFyM06dPp50DJrrWjLd/RzauU0NLRHV3d+Po0aNJS1B5PB7ZbZnNZsyfPz+tz0YiESxZsmRU6azJ9KUVK1aktIH9rl274PV6k14PAoHAhCsyjh8/jsOHD6dc8ztx4+bz+cAYQ09PD+rr66WyW0ePHp3U/kDJ4O3aRmMg9Wyla4O3PpLr6CkevGmh/KOeLS3cg0UiETQ0NODs2bNob29HY2Mjzp8/r/ieY1onHA7j8OHDXOy3IAcedWTSJzXbUvqclWuPp2sNlcYiNE2ul8biaVY1HYaWxhr5pm22Y0lvI6lnSytvI+UK45XGmoix3pA3m82oqamB2WyGxWLBokWL0vYv3dJYydi/f/+oN/kdDgcee+yxpDo2btyIq666Cl/84hdRVFQ0ru1EaazEA+F06p9aLBa4XC6YzWbs3LkT3/nOd5KuPNi4cSMAKFb2aTIrHaqrq/HDH/4w5XJj6ayiePDBB/Gzn/0sqT6j0YiNGzfi4YcfHjMHXLp0CZcvX05almkif8YrW6XUipCPPvoI5eXlcLlc45aOmj9/PlpaWkb1pYKCAlRWVg4rO7Zp06a0+8P8+fPx/PPPY+rUqRgYGOCynNhIqqur8Y1vfAMulwtWqxV5eXkwmUw4efLkpPYluv3221FWVjZuaaxUMJlM+NKXvoRAIDBmuY2hjCyNxdu1jcZA6tmiFSH6QE/x4E0L5R/1bGnhHuzixYtoa2sb9fu77rprzNXCk0UPpbF4XEmRDjzqyPaKEKVKY/G+IoRKYxG65OTJk9i2bRv279+PpqYm9Pf3o7CwEPPnz8f3vvc9/P3f//2ouuHE5EiUCNED8Xgcbrc7225IZPq7VbM9JW0rYUuODT31eV5I7LGQzkPAsc7bSCSC5uZm6YHyRGV7pk+fjpkzZ+KGG25AXl7epP2Qy3j5hzGGvr6+CSdCEgwMDKS9CZwgCFi/fj1mzpyJtra2cR+2J/ZjUWLDucnk32nTpmHp0qXYvHmz4rYTHDx4ED/+8Y/HtGc2m8cdgJeXl6O9vV22PyO/Y6WuUzfccAOKioomLBs31uqIcDgsff8bNmzA559/LpV/S8ZYEyrJStlphUAggPfff3/Y75LtUTQRvb29KCsrk+2PKIrSJGaqMMbAGIPRaOTu2kZjIPVspWuDtz6S6+gpHrxpofyjni0t3IMlmwQBgPb29rRXreoRg8GgubFbMnjUkUmf1GxL6XNWrj2erjXZn/IndElLSwtuv/12vPDCC9i9ezfy8vKwcOFC2Gw21NfX4//7//4/3HHHHWNe6IjU8Pl8eO2112SXZOCBoqIi/PznP0/5YaPaZPq7VbM9JW0rYUuODT31eV5I7E+RDuOdt4kyS6n8fOtb38IvfvELHD16VK6ccZkyZcqkdQCQ9ab4ZPnpT3+KZcuW4eTJk+Pmw8RDbCVINf+azWZ84QtfQFVVFR599NGUBu7p5PZIJIKzZ8+Oae/s2bPj5gCbzYbbbrsNs2fPHvVgejx/zGYzpk6dOuzfQ79jJa9TpaWlY/bHVNm8eTO++c1v4stf/jKeeeaZMY97/vnnUVNTg40bNw77SZT/4u0GNBVWrFiBn/3sZ6irq5NWDyVKq03mfO3u7k57X4+RTMZOV1cXDhw4gP379+PIkSO4dOkSV9c2GgOpZytdGzT+4Qs9xYM3LZR/1LOl5XuwgYGBrLTLK+FwGEePHuWqpFQ68Kgjkz6p2ZbS56xce9nOIUOhFSGEKjDGUF5ejl/+8pd4/PHHcf3110t/O3jwIB577DGcO3cOjz76KD799NMseqptzGYzFi5cOOk3IHkkEong+PHjirzdrASZ/m7VbE9J20rYkmNDT32eJ6qqqgAA27dvn9RDRKXO28TeIv/4j/+IXbt2qRbf8vJyBAKBpO3zlH9S9efZZ58FgJQ3ZZfb3ne+8x1pomDTpk1oa2vDoUOHpL8nNokfupIh3e/2N7/5zZi+pvLmf1lZGe69915UVlbi7bffTsmf+++/f5Tdkd/xyM+azWbcd999KZdNsFgsmDFjhvSCiNw6ubt3757wmGuvvRaRSGTYxut6YGQ8EnkkGo3il7/85ZifG9l/Dh8+rLqvyUjsn5TYwP2mm24a5pcgCAgGg7BarRmfrKIxkHq20rVB4x++0FM8eNNC+Uc9W3QPNjkYYwgGg9l2Iyl5eXnSeFLL8Kgjkz6p2ZbS56xcezzlENojhFAFQRAQi8VQWFiY9O8HDx7El7/8ZQCDm1befvvtabWT63uEaJ2he4SMhGJJEJlHEIRxS+yMpLW1FQ8++KBi7ZvNZrS2tuKqq66SfqfkHiGMMbS0tMDhcEAURQCj94EYSmK/iOnTp0+4HD+xR8h49l599VWUl5fD4XCM+wb/RAzdxwIYfAA81ptyCxYsgM1mQzwel0rxHD9+HH6/f9SkxVgkVg0N3ZMCGCwr1NzcPOr4ZP4kmyRJl61bt6KysjKlY4PBIJ544olxJ/lGloi6++67pb91dXWhs7MzqabS0lLcd999KC4uxje/+U3U1tZO6M+jjz6KTZs2Sf+Ws0dPqly6dAmFhYVobm6ecLPR8fqvEihVzk2uD2OVBBsZ58mU25ozZw5KSkpS2iMkGYk8I4oiGhsb4fF4pL+VlZVhwYIFXD0oSBCPx+FwOOB2u2EymTBt2jRMmzYt224RBEEQGmSsF0vy8/MVWwmdyh4hwWAQjY2Niq0aJYhUUWqPEN6hPUII3THRm2v3338/SkpK4PF4cObMmbQnQnIdQRBQX1+PRYsWabK0xVASGyrL3bBUKTL93arZnpK2lbAlx4ae+jyPWCyWlCcVgMEHwV//+tdx4MABRc7bSCSC3t7eYRMhSmIwGHDDDTdg7ty50hLky5cvZyz/lJeXY8aMGRPu7zGePwUFBcPKNwGDD3aTve1vsVhw6623jtrob+bMmTh58iT++Mc/IhKJwOl0wuVyoaysTHrQWlpaihtvvFF6U2ky59tQf0RRREdHB2bNmiW1l3jQnM6EkMVigcPhgCAIKflktVqxadMmCIKAU6dO4cyZM6O0Dn3YbTAYhr3EccMNN2DGjBlwu90IhUJobm7GggULMH36dNhsNum7feGFFxCNRsdcnWM2m6UNzjNJYgVKYoKnv78f4XAYBoMBPp9P1b25/u3f/g1f+tKXcPHiRel3U6dORTwexx//+Ed8+OGHSb+r+fPn49lnn4XRaMSKFSvGtJ/ueZtYOQIMlg0D/meibmT8MrWPiiiKaGhowHXXXYeLFy8OmwQBBh/anD9/HvPmzVPNh6Gkeq2Nx+NoamoaNnnU1dWF6667DrNnz1a8vXTQyxiIxj98oad48KaF7sHUs5WKDcZY0g2ieesnasIY434SZOj42mTS7mNdHnVk0ic121L6nJVrj6ccwkdPyxFisRhOnTqFI0eO4OjRozhy5AhOnjyJaDQKAFi8eHHKpRVGEolEsHnzZmzcuBGnTp1CT08PysrKcN111+G73/0ufvzjH+OKK65QUI08RFGUdNOG6ekjiiJaW1tx1113ZdsV2ZhMJsyZM0f1PQJSJdPfrZrtKWlbCVtybOipz+sBk8mEO+64A/X19dl2ZVIM3ZiuoKBgzPzjdDoBAP39/aM2fJ8+fTpmzJiBGTNmjLtxdzISD1cTD2NHMl4+rKysxO23344LFy5I19FkFBYWYsGCBUlvZq1WK+655x6EQiGEw2EEAgHs2rULixcvRmFhIQoLCxVbtpzYYHzmzJkAhk+SpLPh+5QpUxAOh6UVPalisVhw7bXXor+/H06nE+Xl5SlpNBgMKCoqQlFREfx+Pw4dOoQZM2bAZrON8uv5558fc3XO1KlT8dWvfjXjN3lLly6V+rrVah025mKMobm5WernCT+VWrVx5ZVX4ktf+hLuvPNOuN1uRCIR5OXlobS0FN/4xjfw8ccfj/quhk5KTbQ6Te64Ye/evfjxj3+MGTNm4OWXX056PiabNFGDeDyO/v5+RKNR9Pf3Jz3G6XSirKwMHo8HBoMBZWVlmDZtWtJzPIEoijAYDJNeSZLqtdblciXt762trZg1a1bK7dIYKDNtE8qhp3jwpoXuwdSzNZ4Nh8OB9vZ2CIKAsrIy3HjjjSgoKFC0fa3g9/u5ngQBRo+vtQqPOjLpk5ptKX3OyrXHUw6h0lgZYtu2bXjsscfGrTGY7kTImTNnsHz5chw/fnzMY6688kqsW7cODz300KTtq0F1dTUeeeQRmEwmdHd3pz1JQ6WxtA2VxiII7ZNK6aHJMLJcopKlsZKRbmmixGTGmjVrcNddd6Grq2vC0lhDS1qN9Qb6WIwsT5WoWxyPx5P6NvTmVS3GKo2VjGuuuWbUhFFeXh6eeeYZvPvuuym3+eCDD2L16tX40pe+NClfAaCvrw9NTU3jHmM0GvHAAw9M2nZDQ8Oot/hH8uUvf3nURIhapbHGKmc2EsYY/H4/PB4PGGPIz8/Hk08+iXfeeUe2D5s3b8b3v//9pH+Lx+PYv3//uJ9Xu0xXAoPBMGHJMLPZjJqamgknz26//fZh5TaSTYyNV26rqKhoUptIzpw5EzfeeOOoyRCPx4Pz58/D7/fDYDCgpKQE8+bNQzgcRm9vLwRBQFFREaZPn44pU6ak3N5ILl68iLa2tqR/W7hwIUpLS9O2TRAEQWQGp9OJU6dODfud1WrFXXfdNemXfeTCQ2msgYEBXL58WZG2CGKyUGks9aEVIRnC7XarstFSR0cHvva1r6GrqwvA4M3cAw88gLlz58LpdOLjjz9GKBRCb28vKisrsWvXLnz1q19V3I/J4HK58A//8A8AgJ/+9KdcrVTRGrFYTHqzlce60ZMhLy8P5eXlcDqd0gai2STT362a7SlpWwlbcmzoqc/rgVgsBq/Xiw0bNiAajaa8v0hHRwe+8pWvqOxd6qSTfxJviv/qV7/C1q1bJ92mxWIZcwXB1KlTMW3aNJSWlkr9fGR5qpElnOSg5nkVj8cRDAZRVlY2qqQXALz11lvIz8+fcCItMfH0f//v/0UgEEAsFpu0r0VFRZI/Vqs16c19cXHxmJ/XSv75/e9/j2XLlqW0OfrQFS8J3nzzTfh8PuzZs2fUJF0qkwbAYLySxTuB0WjElClTxnzj8vrrrx9zZUQCpcYNqeiJRCJwOBzDJjCSTWgkxvrjTXQmK7eV6JfxeHxSD526urowc+bMYSuUQqEQTp48KX0njDG43e5RK/f6+/vR1dWFhQsXjposS7Wvj/fdJZukHQsaA2WmbUI59BQP3rTQPZh6tsaykWz8HgwG4fP5UFJSolj7hHJMNJ7VCjzqyKRParal9Dkr1x5POYSPnpZDTJ8+HX/zN3+DVatW4YMPPsBTTz0ly94PfvADaRJk9uzZaGhowL59+/DGG29gx44daGtrw9e+9jUAQDQaxSOPPKJqPeiJiEaj+P73v4+2tjZcf/31WL16ddZ80QM+nw+vv/76pN4e5JWioiL8/Oc/H/YwJptk+rtVsz0lbSthS44NPfV5PTA0Hon9RVL5mTVrVrZdH4ac/HPw4EH09vamdOzs2bNxxRVXoLS0VPq58sorMW/ePMybNw+33XYbHnjgAdx999147733MG3aNOk7U7OWarrnVSqD2EgkgmPHjo35wDuxh4fL5cKlS5fw/vvvY+PGjaN+ampq8Pzzz8NoNGL//v1p5YCCggKUlJTg2LFjSVfhGAwGXHvttWN+Xiv5Z7J7uozEarXid7/7HWpqakbFYdeuXXjwwQcntHH//fdPuCpprL2ATCYTrrzyygnbyPS4YcWKFVi+fLn0881vfhN///d/j9bWVqk/nT9/HgCkUlvJ+lliEvXll18e9rux+uVEjFyJ1N/fP6kJ3Y6OjlG/pzGQerbStaGV/JMr6CkevGmh/KOerbFsjPXiwdA9vnjrJ6nAGENXVxcaGxulPeL0gpxxA0/wqCOTPqnZltLnrFx7POUQKo2VIRwOByKRyKgb7JUrV2LVqlUAJl8a64MPPsC3v/1tAINvlx09ehS33XbbqOMCgQC+8IUvSBeyf/zHf8RvfvObUcc999xzWLNmTcrtDyUajU5Y9zoej+Oxxx7Dpk2bUF5ejv3798ve9DHXS2MxxhAOh1FQUDBujWheGVoay2AwoKCgAOFwGIyxrMcy09+tmu0paVsJW3JsaL3P64104zFeOaBMl8ZK1EIGIOWfyXLgwAHMmTNnwtJYqfqqlfwjiiIOHjw47neW+NvixYtTetNJEAQcP358zNUhibrVU6ZMSeu7icfjuHz5Mvx+/7A9Vmw2G6ZPny69+ZiM8b4nnkpjbdy4Ed/61rdklSVyOBw4c+ZM0r/FYjH87ne/w8cffzzuaofCwsJxV34xxtDR0QGHw4FgMAij0YiSkhJcd911KCoqwt69e/Gtb31rzJvDkeOGZMyfPx/PPffcuJuuK8FQ3UajEUuWLJnwpnZouS3GmLTKabL9eu7cubjmmmukf58/fx6dnZ2T8v2+++6T/s0YQ2dnJ3p7e2EymVBWVoarr7466fnb0tKC9vb2pHa/8IUvjLsqaCg0BspM24Ry6CkevGnRyhgo07bVzD9jPYMqKirCnXfeqVj7Q/1obW1Fb28v4vE4ysvLcf3118NoNCpaGuvChQvDJvsNBgNuvfVW5OXlab40lpxxA0/wqCOTPiVrS6nSWErnNrn2Rn6eSmPlAKmUJ5gsf/jDH6T/X7FiRdJJEGBww9QXX3wRP/zhDwEAr7/+Ol588cVRN+OFhYWYNm1aWr5MdCIwxvC//tf/wqZNmzB16lR89NFHsidBiOEb/modxpgi+wsoRaa/WzXbU9K2Erbk2NBTn9cDeohHYi+FzZs3p23D4XAgLy8PDodj2MbT6aKV/GMymXDTTTfh7NmzYx5jNBpx6623przc22Kx4Etf+hJ8Pt+oVSRFRUWwWq2yBvNGozHtiQc99PdUmT59OlwuF3p6eob93mg0YuHChXjttddw+vTpSe1/MRKDwYBrrrlm2EP8oRQUFOD+++9Puok5MHzcMHKD95Hlpx588MEx7SjB0E3Vf/azn6X0Zl8kEkFzc7N0jzB16tQJXypSg6G+MsZw+vTpYavcBgYG4HK5sGDBAtVKRNAYKDNtE8qhp3jwpkUrY6BM29bTPdjFixeHTaJ3dHRAFEVFnw+JojjqpQDGGNrb28d9Kcnv9ysyllcbg8GQlTGD0vCoI5M+qdmW0rlNrj2erjVUGkuj+P1+7N69W/r3T37yk3GP/973vifVDx4YGEi6QeWvf/1r9PX1pfUzUf3gn/3sZ3jzzTdRXFyMDz/8cNjbvkT6eL1evPLKK/B6vdl2RTbFxcV4+umnx63Pnkky/d2q2Z6StpWwJceGnvq8HtBLPOx2O/7pn/4J5eXlaX3+4Ycfxr333ovly5fjySeflO2PlvLPVVddhbvvvhtz587FtddeO+znxhtvxPz587F+/fpJ2U6sDJgxY8awn8LCQvh8PlnfDeWf1DAYDJg3bx7uuusu3Hjjjbjhhhtwyy234N5775VWmpjN5lExGjoJosTbZ88++ywefPDBpJMr06ZNw3PPPYdt27aNKuOVKKWWuOFK2JmoXJdc9u7dO+bm4cl45plnsHz5cvzv//2/sXPnTqxevXrSL4WEQqG0VrIlIxgMore3F+FwGPX19QiHwwAG7x3U7Pc0BspM24Ry6CkevGnR0hgok7b1cg/GGEu6J0lidYhSOByOpNfGiVbvnj9/XpW9fZVm5HVaq/CoI5M+qdmW0rlNrj2erjV8Tb0RKXPo0CHpZCksLMTdd9897vEWiwX33nsvPvroIwDAnj17MrZp+i9/+Uv853/+J2w2G3bu3Im77rorI+3mAhaLBRUVFdzMrMpBEATs27ePm1Uhmf5u1WxPSdtK2JJjQ099Xg/oJR5lZWV45JFH8Ktf/WrUG+4JMrnBu9byT2Fh4Zgbt0ciEUW1yPU1V/LPyM2v08FgMMBmsw3biHsyKPFig8ViwfPPP49IJDLq3CwpKYHH44HNZkNeXt64q68Tdq6++mq8//77eOaZZ2T7Nha/+tWvJv2ZxBioubkZkUgEzz//fNLjRn4PU6dORVdXF/r7+3HDDTfA6XSmvGdRMhI3pyaTCXPmzBn2lqLX65VVbm08aAyUmbYJ5dBTPHjTorUxUKZs6+UeLBgMDitNmiAej485Bk92rMPhgNvthtVqxYwZM2AymYZds3jac0INkl2ntQiPOjLpk5ptKZ3bsnkPpjT89DZiUpw+fVr6/9tuuy2lE+eLX/yiNBEy9PNq8uSTT2Lt2rWwWq147733htUgJuRjNpuxcOHCbLuhCJFIBMePH8+2GxKZ/m7VbE9J20rYkmNDT31eD+glHkN18LAqjfKPevbUyj9TpkwZ9y3D/Pz8pKtnExubK/kSQElJScrlqdJlvJXACWbPni2rjaErShKrT0YyZcqUSdm0WCy45ZZbRpXSyjZDx0AHDx5EJBKRYhiJRNDV1YWXX3551Ph9aAmwU6dOyfYj8fZssoklNbeV1EoOyuYYSC/XW72gp3jwpoXGQOrZ4v0eLJXrTDwex+HDh4e9Qd/a2gpg8MWcm2++mYuxvNpM9AKIVuBRRyZ9UrMtPd2DKQ2VxtIoQ+txp3qjOXSj9rE2wFSSZ599Fv/2b/8Gi8WCHTt2YPHixaq3mWuEQiHs2rVrVB11LTJlyhR861vfmvRDDbXI9HerZntK2lbClhwbeurzekAv8UhFx4wZM2SV1bFYLCkPdCn/qGdPrfxz5ZVXjvvZK6+8MmmpqMQeNUpy0003KWovGeNtKg8MvqQz0TETUVRUNO7fo9EoLly4gPnz5+NLX/oSFixYkNL+L4nJA54YOgZKrPoQBAEvvvgilixZgp/85CdJX2JK7E3y8ssvK+pP4rtN9tauGmglB2VzDKSX661e0FM8eNNCYyD1bGX7HiwWi43ae2woE70UEgwGsX///jHLCAUCAZw8eZKrMktqkenrtFrwqCOTPqnZlp7uwZSGVoRolP7+fun/p0+fntJnhj6ASXXZYbp8+umn+O1vfwtg8O3aF154AS+88ELSY5944gk88cQTqvqjV+LxONxut6L1NLOF0WhEaWmpahtxTpZMf7dqtqekbSVsybGhpz6vB9SIx4ULF4b9u6enR/VNC1PRYbFY8PWvfx3vv/9+Wm0sXbo05aXAlH/Us6dW/pk6dSrmzZuH1tbWYTfyeXl5mD59Om644YYx7VZVVQEAtm7dqsgqhVRWa8jFarVi9uzZuHz58qi/zZ07F9OmTZPdxjXXXIOBgYExYzV0s3Sr1Qqr1ZpyaYFnn30WwP+svhhKYqLkmWeeQSAQGPa3xGbwfr8fS5YsmaykMUk2Bnr55ZdT3uB95CoSuSS+WyVXgTDGIIoiTCbTqElBreSgbI6BaPzDF3qKB29aaAyknq1s3oPFYjE0NTXB5XKNeUxLS8u4Nj777LMJ2xFFEX19feO2owfUuE5nAx51ZNInNdvS0z2Y0hgYTz0uB1m5ciVWrVoFAFi8eDH27duX0ue+/e1v44MPPgAwWIt49erVE35m586deOihhwAANpsNPp8vPadTYN++fXjwwQdTOvaFF17AypUr02rn1KlTWLBgASwWC0wmE+rr6zFv3jz4fD6UlJTAYDDA6/XCYrHAbDYjFAohHo+jsLAQoijC7/dL9Y49Hg+sVivy8/OlDbKsViui0SiCwaD0ZqPb7YbNZoPJZEIgEIDRaJTe4BMEAcXFxWCMwePxoKioCHl5efD7/TCZTLBYLAiHw4hEIigqKkI8HofX60VxcTGMRiN8Ph/MZjMKCgogCAJEUYTNZkMsFtOlppMnT+LOO+8EYwzFxcUQBAGRSARTpkzBJ598gjvvvFNzmvQYJ9JEmpTW1NzcjNtvvx3xeBxFRUWIRCIIh8NSLvf7/cjLy0NRURE8Hk/SHGE0GhEIBHDhwgVMmzYtI5ouX76Mn/3sZ9i3bx8MBgPMZjN8Ph+MRiOKi4vh9XpHaSopKcG3v/1t/OlPf0JBQYGm4qTHvqe2psSqxsQD9NLSUoiimJKm3bt3o6urC/n5+cMeGkejUfzyl7+EKIoQBAEFBQXj9r2jR4/ipptuUj1OCd9dLhfcbjeKiopQXl4Oo9GoWJz8fj/OnTsHt9sNk8kEURQRj8dhNpsRj8chiiK+9rWvIS8vD16vF4IgoLm5GdFoFIwx6bhIJAKLxYK5c+fi1KlTUqmyQCAAl8sFk8mEeDyOWCyG6dOnw2w2QxAEmM1mGI1GRCIRGAwG5OfnIxaLQRRFrFmzBvv27UNJSQl8Ph9isRhsNlvKcRov7z333HN47rnnxsx7JpMJNpsNbrcbwOAKnT/+8Y+YOXOm9FZhwtdgMCj1x2g0ivLyclgslmGa7rvvPgiCAL/fj7NnzyIcDg/TbjQaMXfuXAiCgL6+PuTn56OkpASBQAA+nw8GgwHhcBh5eXlSnG6++WZcc801iMViuHDhAgYGBhAOhxGLxTBr1iypj+ZajiBNpIk0kaZsaiooKIDb7UYgEMDMmTMBALW1tSgoKBiVyy0WC2699VbYbDbE43FZmgYGBnDy5Mlh16doNCq9JDTRNbegoACMsaTXp8R1JxaLDTsumSZRFDF9+nT09/dL44Ohx5lMJuTl5Y05jkj4mhhHjLzmZkvT0LERadK2pnvuuScn8l5nZycWLFiABE1NTbj11luRCfh49ZqYNEPfNkz17a+hJT3UXo5UUVEBxlhKP+lOggxl0aJFePjhhwEATqcTdrtdWhJZVVWF5uZmAEBdXR1qamoADG58a7fbJRtr166V3kKora1FbW0tgME3E9auXSsdZ7fb0dHRAQCoqalBXV0dAKC5uVl6qzMcDsNut0tvMVdXV6O+vh4A0NDQgA0bNgAY3HjSbrdLm1Nu2LABDQ0NAID6+npUV1ePq0kURdTU1GDHjh2a1LRjxw6pXz7xxBN44IEHYDKZsHjxYnz++edZ1XTs2DGsW7cOoijKjhMwcd87d+4cWltb8eGHHyqu6dChQ2htbcWxY8cU6Xv79++HKIqyzqfW1laIojhpTaIoYv369Th06BAAZc+nVOLE8/mUDU2NjY34j//4D4iiOClNW7Zsker3PvbYY7jjjjsADM/l5eXlePrpp4fliFtuuQXA4IsDibexE9rlaNqxYwdqamogiuK4cdq7dy/+4R/+AceOHcMf/vAH/PM///P/z967R0dxXfn+335Vt1rdLSFe4i2DjQXGGIwdsLGNlIczk4kSZkImYUhM4kxi47krKHPvsDIr82ONueve2Mxc25qZBCeOIYxNcBzsEJSHTWIL2QhLWCCBQAiBhCQk1KBXv9VdXVX9+0OrTiTRkrq7qrpPl85nLdZCUtU++1v71K7HqbMPjh07hl/+8pcoLy/HL3/5Sxw7dgz/8i//gldeeQUXLlzAkSNH8JnPfAZ2uz3hOHV2dqKiogKCIKgSp3TniNGajh07ho6ODqJJSZwqKytRVVWFjo4ONDU1pXw+yddPLa657e3t4DgO1dXVqK6uhsFgSDhOHo8HPT09KCwsxOzZs9He3g6n0wmO47BlyxZs2LABALB27Vps27YNwMis2/Ly8jHnkzyrSusc8fLLL8PlcmHJkiU4evQojEYjnE6nqnnP5XKhvr6e+N3d3U38DgQC+Oijj8g97f79+4n2zs5OtLa2Ent1dXVEU319PflS9Pr16wgEAigsLATHcejs7CT31XV1daT/t7a2ktkvfX19aGhowK5du/CpT30K5eXlmD17NgAkFafRee/LX/4yioqKUFhYiPLycnJvPFHeW7hwIcrLy4mmHTt2kMGOtrY2tLW1IRwO4+WXX8apU6ewdetWbN26Fe3t7dixYweeeeYZNDY2or29/bY4iaKIuro63Lx5kwxcd3d3o7OzE2fOnEFdXR3C4TA6Ozvxu9/9jsSmqakJbrebxOndd98lx+6NN94g/n388cdoaGhAV1cX6XuCIKC+vl6Ta64gCLhy5Yoq19xf/epX6OjoQG9vb9rv9wRBwAcffKC7+4hsvTeS72HlvJDtmlK9L9dKkxrPGjLpzBHjNQWDQXR0dFATp5MnT+K9997Db3/7W7zxxhuoqalBd3f3mDU3RufylpYW7N+/H6dOncLp06eJJjlOyWga/Q8AhoaGUF9fT7ab6poL/Pn6JL8Alq9PAOB2u9HU1ES0T6Spu7sb7733HoCRUlt1dXUQRZHEWj5eid5HZFLTtWvXIEnSmHujbNTU19cHSZJui1OmNHV0dMDj8eDWrVuq973xmqLRKDwezxhNauW9zs5OdHR04NixY6rk8sHBQXR0dOD1119X9ZkwE7AZIRlGrzNC0sV0nxESCoVQUVGBb3/725g/f37WaRo9I2ThwoX4+7//e7z00kuIRCIZnxFy8+ZNvPzyy9i5cyf5ilPLr394nsePf/xjfOc730FeXp6qmoLBIF5++WU8/fTTsNvtivre9evXsX//fuzcuRNWqzWl86m3txcHDhzAzp07ASApTX6/HxUVFXj66acxd+5c3X2llW1fnt26dQv79u3Dzp07kZeXl7UzQm7cuIFXXnkFO3fuhN1uz3ic+vv78aMf/Qg7d+5Efn6+5n1PzRwxXtPQ0BBeeeUV/MM//APMZrPivuf3+/GTn/wEO3bsgM1mSzpO3d3dJP+YTCaqrrknT55EMBi87cuzW7du4dvf/jZ1M0LSmfcsFgv8fj/cbjfC4TDy8vJgNBpx6NAhfPe738WMGTNSmhGixheCfr8fQ0ND+MY3vpHyjJCCggJ85zvfwX/8x39AkqQp814iM0J++MMf4uTJk7Db7fB6vQBGZigFAgEIgoDc3FyYTCasW7cO//N//k+4XC6IoohYLAafz4fGxkasX7+ezPBJ9qvHBQsWYMWKFWhqakJPT89tXz26XC6sWrUKkiQhGo2ioqIC3/zmN8mahmr1PUmSiO0FCxYoyuUDAwP42c9+hv/xP/4HTCZTWu/35BcWTz75JBYtWqSb+4hsvTfyeDyoqKjAP/zDP2DWrFlZrUnJfbkWmtR41shUjhivKRaL4T/+4z/w5JNPktmGmYzTpUuX8Pvf/x7r1q2DxWIheXl4eHjKL9hDoRA+/vjjMdfcZPpeTU1NVn2VT/tMA5/Ph4aGBqxfv57Mas1GTaPvNwwGAxVx4nkeZ86cwQMPPEBmUWnV92KxGE6fPo01a9bA4XCoOiNEEAT86Ec/wre//W3MmDFDcS6XJAn/+Z//iW9961uYPXu24mfCTM4IYQMhGSbVgZCvfOUrePPNNwEA3/3udxMaUXv77bfxpS99CcDIeiG9vb2pOU0R8kCITDpPHoZyrly5MuGiriyWDIZ+CYfDyM/PV7yYoc1mw9DQUMJrbzAYNFNbWxt3oVC3242tW7cmbOfatWsoKipS0bPsIRgM4uOPP57w78XFxWhpaUnZ/rx58zBr1izy5d9o9uzZk/CaHlpw+PBhsh4gz/MoKytLeM2Z0tJS7N69W3WfHn30UXz44YcT/r2kpET1NhkMBoMRn0TfNU2E2WzGxo0bb1vnKR1tMxjThelyb5TJd7msNFaWMnoRyps3bya0jzwlCxhZ7JHBYDAYjExgs9nw+OOPK7aTzALkDAZD/9jt9jGlYEfjcDgULyZusVgwc+ZMOJ3O2/62a9culJaW3tZGKi+MUmH0oIfb7U54EASIv2i8GsgzVhgMBoOhHdFoFH19fZovRCyvecZgMBjZDBsIyVLuvvtu8n+5Lt9UdHV1kf8XFxer7hMj/Xi9Xjz33HOk5EE2k5eXh+9///tkOl+mSfex1bI9NW2rYUuJDT31eT2gJB6HDx9GWVnZhC8tJ8Nms+ErX/kKqXGqFNr6Fcs/2tlj+Uc/xIuHwWDAqlWrYLFYxmxrtVqxcuXK236vJjabDbt370ZlZSUOHz5M/r3zzjsoLS2ddN9E74FWrFgx4d+2b9+OH/zgB/jBD36A7du3J+U7z/MYHBwkP4fDYZw8eTLuDKVkSHTWXyLnViwWQygUwo0bNzAwMEDWUFLDdqJk8h6I5R+60FM8aNPC7oGSszU4OIiPPvoIFy9eRGNjI86ePUvKAI1HSW6X95XXUoiHXFaIoT1qXaczDY060umTlm3p6RlMbcyZdoCRGqMfhJqamiAIAszmycMpLz49fn9G9mK327F582bY7fZMu6KYUCiEo0ePUvOVSbqPrZbtqWlbDVtKbOipz+sBJfHIzc3FsWPHEA6Hx8xYTITCwkJVZ4LQ1q9Y/tHOHss/+mGieDidTjz00EPw+XxkDQ6XywWDwUDqSGv5oobjOFKiSmbXrl0AJp55MdU9EMdx2LhxI5544gl885vfnLDtU6dOKfB8BHlQZO7cuRgcHMSsWbMUz6SZitGxHBwcRH9/P6LRKPLz81FYWAij0Yj29nZcv36d7MNxHO677z7k5uYmbFtNP9Ntg+UfutBTPGjTwu6BErclSRIuXrw4ZhZIIBBAW1tb3A9fLRYLiouLU/ooQN43Jyfntr9Fo1FcuHCBvOCcMWMG7rnnninfTzFSR0ksaYJGHen0Scu29PQMpjZsRkiW8vDDD5OvaIPBIOrr6yfdPhKJoLa2lvz8yU9+UlP/0o3NZoPD4QAAiKIIj8cDefkbn89HHjqHh4cRDAYBjEztHD1l3+v1kq8nQqEQeRiNRqNjRi3lhYeAkWM/PDwMYOTBUf5CIhaLwePxQBRFACM3JPIobyQSIQvVS5I0Zgqr3+8nX8+Fw2EEAoFJNVksFixZsoToyzZNgUCAlIzIyclBe3s7otEocnJyiO1MaZIkCQsWLIDFYlEcJ2DqvgeMzNSSF7pSU5MoiiguLoYkSYr73vDwMJYuXQqLxZLy+RQKhcgFP1lNFosFCxcuJPrUPJ8SiRPN51MmNMViMcyfPx8WiyVlTdFoFPPmzUNRUREKCwsxa9YsFBUVYdGiRcjPz8eSJUtQVFSEgoICzJ8/H0VFRYjFYqpq4nkeS5YsgcVioSJOBoMBhYWF5KZY676nZo4Yr4nneRQXF8NgMKjS9wRBQHFxMVlgMdk4BYNBLF++nCy+TdM1VxAE4k8sFiOLuAIjZZ3kwT+r1UpKMxmNRuTn58NoHLmllxfhTjZO2Zj3jEYjCgsLyYuW0ZoikQgsFgvmzp2L3Nxc4qvBYMCSJUvI8YpGo4hGo8jNzYXRaBzzRd7o48/zPDkOPM+PyYHjt5OPw+h4Wq1W7Nq1C8eOHcPhw4fx2muv4fXXX8cjjzwCm80Gq9WKlpYWSJKE/Px8cm90//3349ChQ6isrMQ///M/E61ms5ksnAmMzCiR84XdbicPmRaLZcwsk/z8fGIjNzeXvNDiOA6BQAB79uxBWVkZ/uEf/gE7duzAtm3b8NWvfhX/5//8H7Ig5vg+GovFwPM8uru70dPTA7fbjVAoRGIhSRLZTo6N3AfkvmexWHDnnXeira0N58+fx40bN3D9+nW0tLTgwoUL6OnpQXt7O4CRviwvIN/S0jJl37NYLLj77rsRDAYV971IJILi4mIYjca03+9ZLBYsXbp0TN/Tw30EDdfcVDRZLBYUFhaSczWbNSm5L9dCkxrPGsn0PTVzxHhNZrMZxcXF5H5I7Tj19/djeHiY7COKIiKRCNxud9w4xWIxzJo1iyzoLMdzfI4efR2T/TYYDGSBdmBs32tsbERfXx85Rr29vTh//jxEURyjSb7myr4mcs2VNY32daprbqKaJrs+RaPR27Yb7evo7TKhSRAE5Ofnw2QyZbWmaDSKmTNnwmQyURMnSZIwa9Ys0paSOE2lyWg0YtasWWTBdUC9a67BYEBxcfGY+1YludxkMqG4uJjcD8nHTukzYSZgAyFZisPhwKc+9Sny889//vNJt3/77bdJRy4oKMBjjz2mpXtpZ8OGDdiyZQsAoK+vDxUVFeTk3L9/P5qbmwEA1dXVqKysBAB0d3ePWWR+3759aGtrAwAcP34cx48fBwC0tbVh3759ZLuKigp0d3cDACorK1FdXQ0AaG5uJmVaIpEIKioqyA3BkSNHyEBUQ0MDDh06BGAkOVRUVJBkdOjQITQ0NAAYWTT1yJEjk2oKhULYv38/jh49mpWajh07Rgb0vvWtb+FrX/sa7HY7Nm3aRGYwZUpTXV0dfvzjHyMUCimOEzB132tubsbRo0fx+9//XnVNH374IY4ePYq6ujrFfe/VV1/F66+/jlAopOh8kr98TVZTKBTCyy+/TBZfVfN8SiRONJ9PmdDU2NiI//qv/0IoFMpqTUePHsX+/fsRCoWoiNPVq1dRUVFBbm617ntq5ojxmo4ePYqjR48STUriVFlZiffeew9Hjx5FY2NjynE6cuQIQqEQddfcmzdvEn9EUURdXR1CoRAKCgrw5S9/GRs2bAAArF27Ftu2bQMAuFwulJeXw+VyAQC+9rWvkbXjaMgRWp5PXV1dqKiowNDQUFKaXnvtNcyaNQtr167FwMAAvF4vHnjgAXi93jEfFtXV1REfWltbSSna5uZmMvNidJzkv8nHwe12k0XVI5EI6urqEIvFUFhYSF5S/eAHP8BXv/pVfOUrX8HmzZuxaNEilJeXw+FwoLS0FFu2bIHRaATHcejs7MTg4CA4jsPChQtRXl5OfN2xYweWLVsGAHj88cfJGkzLli3Djh07yHbl5eVYuHAhAKCsrAybNm0CAKxcuRKtra2oqqqC0WhEeXk5/vZv/xZ2ux1f/OIXIQgC9u7dG1fT3r17UVZWhpqaGvzXf/0Xtm7dihdeeAF/+MMfMDw8jFAohLq6OvKg3dDQQPqAHKdQKIQ33ngDv/zlL4mv9fX1GBoawtDQEP7whz+Qfjg0NETi5Pf7p+x7oVAIb7/9tip9780338TRo0dJ30vn/V4oFMLrr7+OV199lRz/bL3m6uHeSL6HvXr1qi40pXpfroUmtZ41ZNKZI8ZrGhoawtGjR/Hqq69qEqehoaEx16e+vj7iTzgcvk1TZ2cnWlpa0NPTc1sul49/U1MTmand3d1N/Pb5fKirqyMvMOW+F41Gce7cObS2to7Zzufz4cMPP8SPfvQjcp60tbXFzeXAxNfc0ZqSveZOpWmy61NnZ+dtmmTk61MmNZ0/fx7nzp1DNBrNek1yP6IlTteuXUNLSwvcbrfmfS8cDqOlpSXuvZG8T6p57+rVq+Q5TI1cfvPmTRw9ehSvvfaaqs+EmcAQk4drGBnhX//1X/Hss88CADZt2oQTJ04kvO/vfvc7fP7znwcw8qXZmTNncM8999y2XSgUwn333UcuQN///vfxwx/+ULnzFHDx4kWsWrUKNpsNZrMZtbW1KC4uht/vR15eHgwGA3w+H2w2GziOw/DwMCRJQm5uLgRBQCAQIF/Ueb1e2O12WCwWkuDsdjv5AkP+os7j8ZCvIYLBIIxGI3JycsDzPMLhMFwuF2KxGLxeL5xOJ0wmEwKBAMxmM2w2GyKRCHieh9PphCRJ8Pl8cLlcMBqN8Pv94DgOVquVfHnncDggimJcTYIg4Pe//z02bdqE2bNnZ52m8+fPY926dYjFYpgzZw4eeeQRvPPOO4jFYvjwww+xbt26jGkaGhrCn/70J/zVX/0VbDabojgl0vcAoKqqCo888gj5mlMtTTzP44MPPsCmTZtgNpsV9b2bN2/i5MmT+Mu//EsYDIaUzqeBgQHU1tbi8ccfB8/zSWmKRCL43e9+h0996lMoKChQ9XzSY47QWpPH48Hx48fx+c9/Hjk5OVmrqa+vD9XV1fjc5z4Hs9mc8Tj5fD688847+PznPw+73a5531MzR4zXFAgEUFNTg09+8pPka3clfS8cDuPDDz9ESUkJjEZj0nG6efMmamtr8dnPfhaiKFJ1zT158iSCwSCsViv5WpPjOBiNRvzwhz/EBx98gHA4DKvVCo7j4Pf7yTHw+XyQJAlf+cpXcPDgQWpyhJZ5z+/34w9/+AP+6q/+ipw3SjTV1tbC4/GQmTfhcJgcf57nYTAYsGzZMixcuBCnT5+GIAi3xYnneRiNRpjNZvJ13+h4Wq1WGAwGRCIRmEwmsl0gEMC1a9fIF4hz5syB1WpFJBKB2WyGyWRCNBpFLBbDc889hw8//BAOh4O8kMrLy0MoFEI0GiWzQUKhECwWC8khALBu3TqcO3cOgiAgNzcXkiRheHgYHMeRex2DwYC5c+fioYcewrvvvguj0QhBEBAOh3H06FEygyUWi2Hv3r04fvw4JEkis5HkcmRmsxmPPPII/umf/gk8z4/RLmtav349JEmCwWDAb3/7W+Tk5JDZTuFwGBaLhWgHRr7CF0UR0WiUxGnFihWYOXPmhH3PbDbj3XffxYYNGzBnzhxFfc/n8+HUqVP41Kc+BVEU03q/F4vF8Ic//AGPPPII5s6dq5v7iGy9NwqFQvjtb3+Lv/iLv4DL5cpqTUruy7XQpMazRjJ9T80cMV6TxWLBH//4Rzz00EOYMWOG6nFqa2tDZ2cnDAYDyY+CIMBqteLBBx9ENBodE6cPP/wQnZ2dZGZkItcnSZLAcRwikQiuXr2KL3/5y5gzZw7pez6fDw0NDaT0pCRJ4Hl+zLX0zjvvRHd396S5PN41d7wmta65sibZ13jXJ/maO5GmRK5PWmoKBoPo7OzEXXfdRc6TbNQUCATQ3d2NO++8E5IkUREnQRDQ1dWFoqIiGAwGTfueXPpz4cKFyMnJGXNvpDTvGY1GvP/++9i4cSMcDofiXG42m/GnP/0JDz/8MPLy8hQ/E/b09GDVqlWQuXDhQtz32VrABkIyjJKBEAB47LHHyJfRRUVF+M1vfoPVq1eTvw8MDGDr1q344x//CGBkNkhbW9uY6fTZjDwQIpPOk4ehnCtXrmD58uVx/8ZiyWAwGIzpRG1t7YSLJYbDYbz44os4ceJE3DUm5DUk3njjDcyZM0drV3VJU1MTBgYGJt1m8eLFWLp0Kc6cOUNmWqebcDiMvXv3oqqqKqn9SktLp1xjJBFWrFiBXbt2YdasWfjSl7406XorHMehsrJywjVGVq5cSfqr3+/HmTNnkvZnw4YNqq4ZxWAwGNnC5cuX0dvbG/dvS5YswR133DHmd8m+a4rHgw8+OGZtpv7+fly4cGHSfeSBfQaDMTUlJSWZdiEtZPJdLlu9KI187nOfw40bN8b8bvQCsfX19VizZs1t+/3+97/H/Pnz49r8xS9+gU984hPo7e1FR0cH1qxZg02bNmHZsmXo6+vDn/70JzJSaDab8eabb+pmEIQxUguwra0Ny5Yto2qBqVSwWCxYtmwZ2trayIh9Jkn3sdWyPTVtq2FLiQ099Xk9oJd40KaD5R/t7GVr/rHZbPjhD3+I/v5+DA4O3vb3goICcBxHxQKE6ULteMyePXvKgRCtEEURQ0NDmDFjBkwm06Tb2mw27N69G9/4xjewffv2hOwfPHgQixcvHvPcMRmT3ZNdunQp4cEUeeH18YvHyzQ3N8PhcMBiseDq1asQRXFK/cmil3sg2q5T0x09xYM2LeweSB1bg4ODtw2EJHOtGY+8byrP6WwQRH2UxJImaNSRTp+0bEtPz2Bqw9YISSPNzc04d+7cmH9yHWdgZPGu8X8/d+7cpF9aLVy4EO+//z4ZQInFYjhx4gReffVVHDt2jAyCzJ49G0ePHh2zrggj+wmFQqRWaLZjt9uxefNmal7ipPvYatmemrbVsKXEhp76vB7QSzxo08Hyj3b2aM4/Uz0UWCwWcByHwsLC2/5N9MW9nlE7HoWFhVi6dGlC26p9rxKNRtHS0pLUC6ZkYi5vu2jRooS2T+c92a1btxAKhfDuu+9q8iGMXu6BaLtOTXf0FA/atLB7IO1spXKtGb+vvOgyI7MoiSVN0KgjnT5p2ZaensHUhpXGSiNFRUVkMaFkuHbtGoqKiibdhud5vPHGGzh8+DAuXryImzdvIj8/H0uXLsXf/M3f4Jvf/CapO6wnWGms7IaVxmIwGAwGY4T29nZ0dXVN+Pe77roLV65cmdTGAw88AIfDobZr04qGhgaylsN45NJYQ0NDOH/+PJQ+RuXk5CASiUCSpIS2z83NxfLly9HQ0AC3242tW7cmtN/hw4exatUq3HnnncjPz0/r17mHDx+ecEaIzKxZs7Bw4UI0NjYmbZ+VxmIwGNOVyUpjOZ1OrFu3bszvMlUai8FgJA4rjaU9rDRWGuno6NDMNsdxeOKJJ/DEE09o1gaDwWAwGAwGQxuKiooQCATilr4qKirCjBkzMuDV9GP04uLjycnJAQDMmDED99xzD7q6uuD3+1MaEMnJycHq1avR1taG/v7+hPYxGAzIy8vDHXfcAZ7nwXHcpDPHgZFnhIKCAgAjZbU++9nP4tixY0n7qyX9/f0IBoOZdoPBYDAYDAaDoXNYaSyGLrDZbOQLSFEU4fF4yEOpz+cjD4nDw8PkQUsQBHg8HmLD6/WSKWmhUIhM2YpGo2MeiD0eDwRBADBSzkyeHsrzPHw+H4CREmUejweiKAIAAoEAWQA1EomQBTYlSYLH4yFfAvr9fvKVXjgcRiAQmFSTx+PBs88+S9aeyTZNgUAABoMBwEiZt3/9139Ffn4+cnJyiO1Mabp58yaeffZZokVJnICp+15fXx+effZZ9Pb2qq5J1nLz5k3Ffe/69evkuKR6PnV1dREbyWqS+7xcVlDN8ymRONF8PmVC061bt0gss1nTjRs3iA4a4tTf30/8USNO6cwR4zXJx7a/v1+Vvud2u/Hss8/i1q1bKcVpdP6h7ZorCAKWLFmCT3ziEyguLsaCBQtQXFyMhx9+GLNmzRpzXZT9jsViCIfDxNdAIJDx8yldeW9gYADPPvsshoaGVNU0e/Zs0pbsA8/zkCQJBQUFRNOsWbOwdu1a3HfffVi/fj3ZTj4O8eJkNpuxevVqrFixAvfddx9ycnLIrO/q6mqEQqEx8YxEIuR4RaNRYq+wsBCSJGHjxo0AgLy8PFJazW63k5JWFosFn/zkJ0lpLI/Hg71796K0tBS5ublkYIfjOLhcLgAjgy2LFy8m92QOh4PMuLBarXA6nQAAo9GI/Px8GI0jj5NOpxNWqxXA2PtyWXskEoHb7cb169dx48YN8DyPaDQKnucRDofxzjvvjOlT4XB4jHY5ZqIokn4jx3Oyvieft11dXYr7Xk9PD5599lkMDAyk/X5P1nH9+nVyXLP1mquHeyM5HvIgZjZrUnJfroUmNZ41kul7auaI8ZqGhobIeatVnORcKrc7+rozPk6BQADV1dVj7hXG30dEIpEx1zHZ71AohOrqauLv6L4n53L5GI3O0Ynm8vHX3Ik0jd9usmvuVJpkXye65tKsyefzobq6GuFwOKs1eb1eooOWOMnnSTAY1LzvDQ8Po7q6Gl6vl/iqVt6Tnydv3LihSi4fHBzEs88+i+7ublWfCTMBGwhh6IINGzZgy5YtAIC+vj5UVFSQk3P//v1obm4GMPKQWVlZCQDo7u5GRUUFsbFv3z60tbUBAI4fP47jx48DANra2rBv3z6yXUVFBbq7uwEAlZWVqK6uBjCyBsz+/fsBjCSOiooK9PX1AQCOHDmC2tpaACMlFw4dOgRgJDlUVFSQZHTo0CE0NDQAAGpra3HkyJFJNTkcDqxYsYL4kG2ajh07Rh6at2zZgpMnTyIQCGDTpk04e/ZsRjW1tbVhxowZcDgciuMETN33bt26he3bt6O2tlZ1TRcvXsT27dvR1tamuO+99dZb2LhxIxwOR8rn0y9+8Qts374dDocjaU0OhwNz587FxYsXAah7PiUSJ5rPp0xoun79OnJzc+FwOLJaU3V1NVasWAGHw0FFnOQbWflFotZ9T80cMV5TdXU1tm/fDq/Xq0rfO3v2LLZv347r16+nFKcDBw7gS1/6EhwOB5XX3AMHDsButyM/Px+/+MUvAIy8pD5y5AjOnDkDAHC73WhqaiLa6+rqiK9vv/12xs+ndOU9+aFOHgBQS1NBQQGKi4tRV1dHfGhvb0cgEIDVao2rSV5kvbm5mRyHeHGSB1N+/etfkzJQ9fX1uHbtGrZt24Y777wTdXV15KG0oaGBHK/Ozk5ir7e3F3V1ddi1axdKS0uxY8cOLFu2DADw+OOP4/HHHwfHcfjiF79IBkvkOPl8PuzevRv/9//+X/z1X/81AGDlypV48sknAYwMdjz55JM4duwYVq9ejR/84Af4/Oc/DwBYu3Yttm3bBgBwuVwoLy8nAyjbtm3D2rVrAYy9L/f7/airq8OXv/xlbN26FWfPnsW//du/oaysDG+++SZaWlrAcRyWLVs2pjRWfX09GeRqa2sjMRsaGkJ9fT3Z7uWXX5607zkcDmzduhUHDhxQ3PeOHz+O7du3Y3h4OO33ew6HAxs3bsRbb701pu9l4zVXD/dG8vVZvl5nsyYl9+VaaFLjWSOZvqdmjhivyWKxYPv27Xjrrbc0i1Nrayspv97X10f8EQThtjj19fXhvvvuw9DQ0IT3EU1NTXC73cQ/2W/5Za7ZPFJUZnTf6+zsRGtrKzlGdXV1RFOiuXz0NXciTaIooq6ujrz8neqaO5WmUCg06TWXZk2tra2YP38+OI7Lak2NjY1YsWIFOI6jJk69vb2477774PP5NO97JpMJ9913Hy5dukQ0qZX3vF4vtm/fTp7HZL9TzeWSJGH79u2orKxU9ZkwE7A1QhhZjVxXzmazwWw2o7a2FsXFxfD7/cjLy4PBYIDP54PNZgPHcRgeHoYkScjNzYUgCAgEAsjPzwcwciNrt9thsVhIgrPb7YhGowiFQsjLywMwMrrqcDhgNpsRDAZhNBqRk5NDvmhzuVxkdNvpdMJkMiEQCMBsNsNmsyESiYDneTidTkiSBJ/PB5fLBaPRCL/fD47jYLVayei+w+GAKIq61HT+/HmsW7cOsVgMLpcL4XAYPM8jJycHH374IdatW5d1mvQYJ6aJaWKamCamKfOaeJ7H+fPnIQgCRFGE1WpFLBZDJBKB1WqFwWBAcXExZsyYkTWaaI7T0NAQrFYrLBYLeJ6fUlN9fT28Xi+MRiPMZnPcOM2cORMPPvjgpJp6enrQ1tYGg8GASCQCs9kMk8mEaDQKu92OjRs3QhAE+P1+XL16FcFgEH6/H36/H0ajkbysmjNnDtnPZrORdTgCgQCuXr0KnufB8zxeeOEFnD59GiaTCT6fDwaDAbNmzcK9996Lf/qnf4LRaITRaMSNGzfwne98BxzHkbZcLhd8Ph8kSYLT6QTP84hEIuS+PBAIYPny5bh16xa8Xm/c+71HH30U//zP/wxJksDzPJl9Eg6HYbFYiAZgZNBLFEWiCQBWrFiBmTNn6qrv6fF8YpqYJqZJfU1tbW3o7OyEwWAg+VEQBFitVjgcDtx5551jNNXW1k54fZLvIyKRCEwmE9lOkiRwHEdy9COPPEI+FLTZbORlcSwWG7Ndsrk8HA6D4zgYjUbwPB9Xk+zr6O0mu+Ymqmn0dqOvuUwT05QJTevXr58Wea+npydja4SwgRBGVjPdF0sPBoOorKxEWVnZmEXLsoXRi6Xn5uairKwMlZWVCAaDGY9luo+tlu2paVsNW0psZHuf1xt6iQdtOlj+0c5eNuefUCiE06dPT7rNdFosPdPxGM/Nmzdx6dKlSbeZN28e7r777tt+P1pLNBqdcNFwh8OBBx54gPzM8zxOnTqVkH+zZs3CqlWrEA6HyRd/o+2MXpvG6XTi2rVrWL58OSmrlczi7MnAcRzefvvt29pLlKkWS9fLPRBt/X26o6d40KaF3QMlbivZxdKPHz+O1tbWlHItz/NobW3F3/7t32LOnDnk92yx9MwgxyOVWNIEjTrS6VO8ttRaLJ32ZzC2WDqDwUiJ8fWZs5nxNVczTbqPrZbtqWlbDVtKbOipz+sBvcSDNh0s/2hnj+Uf/UBbPObOnQuLxYK+vr64L6aMRiPmzZsXd99UtXAcl9CC6fK2AOIOGnAch8LCQvKz/KWkvI6blsjr72jVnl7ugWjr79MdPcWDNi3sHkg7WwaDIeVcK+8rtz84OIgrV66QMpWM9KIkljRBo450+qRlW3p6BlMbNiOEkdVM9xkh2c7oGSHjYbFkMBgMBuPPsBkh2YMkSejo6MDg4CAEQYDT6cTChQtJyYLJ8Hg8Cc8IAUbqLifyOHfvvfdi5syZAIDGxsaEF6qcO3cu5s2bh/fffx9f+tKXEtonWQ4ePIjFixentO9UM0IYDAZDryQ7I+TEiROK23zwwQfR3t5O1sZiMBjqotaMENrJ5LvczA/FMBiMlOF5Ho2NjQl9CUg7HMdhzZo1VE2JTOex1bI9NW2rYUuJDT31eT2gl3jQpoPlH+3sZXP+kRcFnwxarqHpINPxmAyj0YilS5figQcewIYNG3DPPfdMOgiipRaDwYClS5eSQRAAKCgomHQfURThdrshiiL5gu/RRx/VrH99+9vfxk9+8hN4PB643W7yT+v7FkEQ0N7ejrNnz45Z0DQVW2r4o3XbDPXQUzxo08LugbSzNTq3p7pvb28vGwShACWxpAkadaTTJy3b0tMzmNqwgRAGI4sJh8M4ceIEwuFwpl1RjM1mQ0lJCTVf9aX72GrZnpq21bClxIae+rwe0Es8aNPB8o929rI5/1gslklfpjudzmk1EJLpeKjJaC2T3Qfl5OQkZbe4uBiPPPLIbbMtFixYgBkzZky4nyAI6OjoIAuvA0BeXh42btyYVPuJYrPZUFhYiO3bt2Pr1q3kX1lZGfbs2aPJPYcoijh37hy6urrg8/kwMDCAlpYWdHV1JW1LDX+02o+hDXqKB21a2D2Qdrbi5fZk9+3s7Ey5fYZ6KIklTdCoI50+admWnp7B1IaVxmJkNaw0VnbDSmMxGAwGg5E4kUgE58+fRzAYHPN7u92O1atXU/MxAUMZZ8+ehc/nu+3399xzD2bPnj3md5OVxpqsbJQkSfD5fPD5fAiFQhPOhhi9wPs777yDvXv3oqamJq1f9K1YsQK7d+8GMDKbZfSA3yc+8QkEg0H4/X7Y7XbMnDkTFosFgiAgEonAbrfHrb09MDCApqam235vsVjw8MMPU1WvnMFgMOKRidJYDAZDW1hpLO1hi6UzGFlMLBZDJBKB1WrN+gc2g8EAq9WKSCSSUK1rrUn3sdWyPTVtq2FLiQ099Xk9oJd40KaD5R/t7GV7/rFarXjggQcwPDxMvqiyWq0TvuzVMzTEQy3Ga7n33ntx6dIlDA0NIRaLgeM4LF68+LZBECXIJa/y8/MxODg4ZiAkFotBFEWYTKYx+6xfvx67d+8Gz/MYHBwc8zd5gKKrqwvbt29Pypep7gEvXbqErVu3Ahgp/7Zx40bs2rULNpsN586dQyQSIdtyHAebzQa/349YLAaTyYTFixdj8eLFY/rJ0NBQXF+i0SjC4XDc2TeZvAfSU3/XA3qKB21a2D2QdrZG5/ZU7oFS3ZehPnqJB4060umTlm3p6RlMbVhpLIYusNlsZHFQURTh8XjIg5TP5yNfrQ0PD5OvKAVBGLNQpNfrRTQaBTCyIGkoFAIw8kDk9XrJdh6Ph0xdCwaDGB4eBjBS807+ei8Wi8Hj8ZBaf4FAgLywiEQi8Pv9AEa+xvN4PJAkCQDg9/vJw1w4HEYgEJhUk9frxfPPP0++BMk2TYFAgCTBBQsW4Pvf/z7y8vKQk5NDbGdK061bt/D888/D6/UqjhMwdd/r7+/H888/D7fbrbomWcutW7cU973u7m5yXFI9n65fv05sJKtJ7vO3bt0CoO75lEicaD6fMqGpr6+PxDKbNfX29hIdNMRpYGCA+KNGnNKZI8Zrko/twMCAKn3v5s2beP7559HX15dSnEbnn2y95vI8D1EUUVBQgPz8fESjUeIrDedTuvLe4OAgnn/+eeJvNmu6ceMGnn/+eQwODsLj8cBsNmP16tVYvXo17r//fjz00EOYOXPmhJrC4TDxIRqNEn3JaJL9icVi8Pl8qKmpQSQSGTPoZrfbcffdd4PjOMydOxf5+fmYO3cuCgsLEYvFIAgCGYiQ78tNJhPy8/PJ/Z7L5SIzOnJycpCbm4u8vDx8//vfx6JFi4iveXl5ZF0cu90Ou91O/Dt79iz27t1L4ikfV57nEQwG4fP5yIyQYDCIn//852hubh4TJ1m7vJ1se/SxnCpO6bzfk/NPd3e3qn1PzzlCS01yPOS1ErJZk5L7ci00qfGskUzfk2N5/fp11TV5PB5y3moVJ57nyT6iKI7JZ+PjFAwGUVNTg2AweFvek49/JBIhtgVBGON3TU3NmOMy+rojbydJ0pjSNxNdn0RRvG270bl8Ik3jtxvta7KaZF9Hb5ctmvx+P7lOZ7Om0fcbtMRJPk9CoZDmfS8cDqOmpgY+n4/4qlbek58ne3t7VcnlQ0NDeP7559HT06PqM2EmYAMhDF2wYcMGbNmyBcDIi7mKigpycu7fvx/Nzc0ARsoHVFZWAhi5yaqoqCA29u3bh7a2NgDA8ePHcfz4cQBAW1sb9u3bR7arqKggDyGVlZWorq4GADQ3N2P//v0ARhJHRUUF+vr6AABHjhxBbW0tAKChoQGHDh0CMJIcKioqSDI6dOgQGhoaAAC1tbU4cuTIpJqcTidWrVpFfMg2TceOHYPVagUAbNmyBVVVVfD7/di0aRPOnj2bUU1tbW2YOXMmnE6n4jgBU/e9vr4+PPXUU6itrVVd08WLF/HUU0+hra1Ncd976623UFJSAqfTmfL59Itf/AJPPfUUnE5n0pqcTifmzZuHixcvAlD3fEokTjSfT5nQ1N3dDYfDAafTmdWaqqursWrVKjidTiriJN/IOp1OVeKUzhwxXlN1dTWeeuopeL1eVfpeQ0MDnnrqKXR3d6cUpwMHDuDv/u7v4HQ6p901V295T35Yk1+qZ7Om48eP46mnnkI4HB4Tp4MHD6K9vR0Gg2FSTfX19WSGQ1tbG9F37dq1hDS1tbURf0RRRGNjI1asWAGO43Dq1Kkxmn7zm99gzZo1iEQiqKurI76OXmx89H357NmzUV5eTu73nnzySaxcuRIAsGnTJpSVlcHv9+PYsWN48sknia87duzAsmXLAACPP/44Hn/8cQDAsmXLsGPHDlKeq66ujhzX1tZWUr++r68PDQ0N4DgO9913H44cOTImTpcvXwYAuN1uUiJL1iQ//Ccap3Tc7zmdTpSUlOCtt94ivrIckTlN8vVZvl5nsyYl9+VaaFLjWSOZvud0OvGNb3wDBw4cUF0Tx3F46qmn8NZbb6UUp3fffRetra1455138Nprr2Hr1q23xSle3gNGXoSOj1NfXx/WrVuHoaGh2/JevFze3d1N/JZf5sozBRsaGojtzs5OtLa2kmNUV1dHNE10fRoaGkJ9fT3ZbqpcDoxcn+rq6sjL3+bmZnIc4uXyqTSFQiHU1dWRF8HZpKm1tRULFy4Ex3FZramxsRGrVq0Cx3HUxKm3txfr1q2Dz+fTvO+ZTCasW7cOly5dIprUynterxdPPfUUeR6T/U41l8diMTz11FP47W9/q+ozYSZga4Qwshq5rpzNZoPZbEZtbS2Ki4vh9/uRl5cHg8EAn88Hm80GjuMwPDwMSZKQm5sLQRAQCASQn58PYORG1m63w2KxkARnt9sRjUYRCoXIAqUejwcOhwNmsxnBYBBGoxE5OTngeR7hcBgulwuxWAxerxdOpxMmkwmBQABmsxk2mw2RSAQ8z8PpdJL6zC6XC0ajEX6/HxzHwWq1IhwOQxAEOBwOiKKoS03nz5/HunXrEIvF4HK5EA6HwfM8cnJy8OGHH2LdunVZp0mPcWKamCamiWlimpgmpolOTdXV1RgeHobFYoHJZCJfClosFqxbtw6SJE2pye1249y5c7BaraR0AcdxpHxWcXHxGE2iKKKhoWFMiYNIJAKTyYT+/n5885vfhNlsRiAQgMlkgtPpJDMHx9/vGY1GBINBmM1mOBwO8pVgXl4eQqEQotEomQ0SCoVgsVhgt9vh9Xpx+PBh5OfnE195nofBYIDFYoEoihAEgWgCgMcee4zE6dq1axgYGIAgCBBFcYz2Rx55BA6Hg/U9polpYpoypikQCKCpqYl8/R6NRpGTk4P77rsPAOBwONDW1obOzs4J815hYSGWL19ONNXW1sJsNsfNe+NzubydJEngOA6SJIHn+THbmc1mct2RyzjK28nrU4XD4bjXJ1nT6O0SyeWjr088z8NoNDJNTJOuNK1fv35a5L2enp6MrRHCBkIYWc10Xyw9EAjgyJEj2LJlCylBkE2MXizd4XBgy5YtOHLkCAKBQMZjme5jq2V7atpWw5YSG9ne5/WGXuJBmw6Wf7Szx/KPftBTPJRomWhhdQB49NFHb1vnIx6Dg4M4f/48+ZnneTQ3N2PlypVYsmQJWSxdxuPxoLGxMa4tnudRVlaW1GLq4+8BE+Xw4cMoLCycdBtZy5o1a8YsQDrZIsOf+MQnyODLaDJ5D6Sn/q4H9BQP2rSwe6ARvF4v+eoa+HMue+yxx3D//fcDmDyPASPrLz3yyCPkOnD8+HGS2+XZlIky+rqQ7L4M9dFLPGjUkU6f4rWl1mLptD+DZfJdLiuNxWBkMWazGUVFRTCbzZl2RTGCIKCjo4NMu8006T62Wranpm01bCmxoac+rwf0Eg/adLD8o509ln/0g57ioUTLrFmz4v5+xowZCQ2CxEOeCWI0Jv+oKC9mPhkrVqwY87OW94BKtIwnk/dAeurvekBP8aBNC7sHGuHatWtjfpZz2eDgYMI2YrEYKcsz2kYq+VDNXMpQjl7iQaOOdPqkZVt6egZTGzYjhJHVTMcZIYIg4Pr165l2QxU6OjrwyU9+Mu7fpkMsGQwGg8FgMJQQi8Vw+fLlMS+7HA4HVq9enfCXjONnhIxm3rx5Sc0IkX363//7f5N1PGTkQZInnngC3/zmNxPybTIOHjyIxYsXJ7y9y+XCvHnzMG/evJRmhDAYDEa6OH36NCl9Mx75i/GpZoTIPPbYYzAajThx4oSKHjIYDC1Qa0YI7WTyXW7mh2IYDEZSdHd3Y+nSpQAAq9WKtWvXkjrN2QxtWiKRCBoaGrB27VqywGe2tqembTVsKbGR7rgwJkcv8aBNB8s/2tlj+Uc/6CkeSrQYDAYUFxdj6dKlCAQCsNlsyMnJgcFgSNkfQRDgdrunLDsVj7lz56K4uJjUrx799XJBQQE4jhszaAOkfg+4fft2lJaWYteuXaTW92RafD7fhGXEEiGT90B66u96QE/xoE0LuweKj5K87Ha7MX/+/DE2kv0qW8m+DPXRSzxo1JFOn7RsS0/PYGpDz/wjBoORNBzHYc2aNdTUU1QCbVp4nkdjY2NSNa5pbU9N22rYUmIj3XFhTI5e4kGbDpZ/tLPH8o9+0FM81NDCcRwKCgpgt9sVDYIAgCiKcLvdEEUx6X3NZjMMBgNZvLSwsJD8m+geT8k9YFVVFfbu3Tvh3+NpuXz5MpIpihCNRsHzfEbvgfTU3/WAnuJBmxZ2DxSf8blMFMWEZoMAQGtrKy5cuKAotyvZl6E+eokHjTrS6ZOWbenpGUxtWGksRlYzHUtjdXR04I477si0G5ozHWLJYDAYDAaDkWmSLY01PDyMurq6uNsvXboUixcvnrQEi9vtxtatW1P2dzwcx6GyslK1j2nWrVsHh8OBaDSK5uZmeDweAEBubi7uvvtuRCIRhEIhuFwu5OfnKx54YjAYjPFMVhpr06ZNOHfuHMlNDAZDP7DSWNrDZoQwGFkMjYtLpcpoLRzHJVXzWQskSYLH44EkSVnfnpq21bClxEa648KYHL3EgzYdLP9oZ4/lH/2gp3jQpiUWiyEcDk84a8JmsyE3N/e23xsMBsycOTPp9ia6n33xxRdx8ODBKQcaeJ6fcAHhqbTE48yZM/joo49w6tSpMS8aA4EATp06hQsXLuDatWs4d+4cmpubk4pbqrGmrY9Md/QUD9q0sHug+IzOZf39/SkNgqSSD9XYl6E+eokHjTrS6ZOWbenpGUxtsv/tKYOBkQcyh8MBYGR6mcfjIcnE5/OR6VfDw8MIBoMARurxjb6B8Hq9iEajAIBQKES+wIhGo/B6vWQ7j8cDQRAAAMFgEMPDwwBGHsLkusOxWAwej4dMcQsEAgiHwwBGauP5/X4AtycDv99PaiOHw2EEAoG4mlwuFziOg8vlQnl5OebOnQtgpBxBfn4+8TUvLw8WiwUAYLfbycKPFosFeXl5ZLv8/HxSkzA3Nxc5OTkAQNoARh5u8/PzYTKZAIwsxCnXY7ZarXA6nQBuf5h1Op2kBuDoOJlMpjFf0c2fPx/l5eVwuVz49Kc/TfbPVJz6+vpQUVEBn8+XcpyS6XsDAwOoqKjAzZs3Vdcka+nr61Pc93p6eshxSfV86u7uJjaS1eTz+YgWQJ3zSY85Il2a+vv7SSyzWZPb7SY6aIjT4OAg8UeNOKUzR4zXJB/bwcFBVfrerVu3UFFRgf7+/pTiNDr/JKtJzj/y+gYsR2RW09DQECoqKogf2aypt7cXFRUVGBoaylicZH9isRh8Ph/q6uoQiUQwPDx8myaDwYB77rkHJpOJ+CpJEu666y7k5uYiHA4TvyVJGvOQH4lEkJeXB47jkJOTg9zcXHI/u3DhQuLrrFmzcPfdd2Px4sX49Kc/PeU9rFy6Sj4OoigiEokgEomgrq6O3M/JeuXjIAjCGO2yr/IxGb2d3+9HXV0dOSaxWAx9fX24du2a5vd7cv7p6elRte/pOUdoqUmOhzwAl82alNyXa6FJjWeNZPqeHMvu7m7VNXm9XnLeJhun8flsdF4+c+bMmHw2Pu/JcQqHw2O2CwaDqKurQzAYjJv3ZL2j895ov+vq6sYcF/l4yeUD5WMkbyMfl9HbjfZ1/HapaJoql0+mKd71KVs0ydcjWVu2ahrdr2mJk3yehEIhzfteOBwm9yiyr2rlPfl50u12q5LLPR4PKioqcOPGDVWfCTMBGwhh6IINGzZgy5YtAP78Als+Offv34/m5mYAQHV1NSorKwGA3PTJ7Nu3D21tbQCA48eP4/jx4wCAtrY27Nu3j2wn3ygBQGVlJaqrqwEAzc3N2L9/P4CRxDH6Ze2RI0dQW1sLAGhoaMChQ4cA/PkmWk5Ghw4dQkNDAwCgtrYWR44ciavpySefxMqVK+Hz+dDQ0IBNmzYBABYuXIjy8nLi644dO7Bs2TIAwOOPP47HH38cALBs2TLs2LGDbDf64bOsrIzYW7lyJZ588kkAI4Md5eXlmD17NgBgy5Yt2LBhAwBg7dq12LZtGwCQh1l5AGXbtm1Yu3btbXGaPXs2ysvLySDJli1b8N577+HBBx/Ed77znYzHqb29HbNmzYLL5Uo5Tsn0vb6+PuzcuRO1tbWqa2pubsbOnTvR3t6uuO+99dZb+MxnPgOXy5Xy+fSLX/wCO3fuhMvlSlqTy+XCggULyHFV43zSY45Il6aenh44nU64XK6s1lRdXY01a9bA5XJRESfZjpxHte57auaI8Zqqq6uxc+dOYk9JnCorK9HQ0ICdO3eip6cnpTgdOHAA3/zmN+FyuZLW5HK5sGbNGnJcWY7IrCZZi3wfkc2a/vjHP2Lnzp3EXrrj1NbWRvwRRRGNjY1YtWoVrFYrTp06FVcTz/N4//33sXLlSjz44INobW1FV1cX0ST7HQqFUFdXRx60Gxoa4PV6sXHjRmzatAllZWXw+Xw4cuQIuecEgKeffpq8CPjiF7+IJ554AsDE97Dbt29HZWUl2tvbAYz0+YaGBlitVqxbtw6NjY3khUFzczM5Dm63G01NTSSe8gsZAGhqaiIDn93d3Whvb8f69eshiuIYTW+//faYOP3yl7/E6dOn8c4774yJp5L7PZfLhc985jN46623iK8sR2ROk3x9ln3IZk1K7su10KTGs0Yyfc/lcuHpp5/GgQMHVNdktVqxc+dOvPXWW0nHqaWlhfx/aGgITU1NWL9+PaxWK3lxCoys/9HZ2UnaHZ3L5Ze5st6+vj6sX7+e2JPjOVnek/2W85388WRDQwM5Xp2dnWhtbSXHaHTpxPr6egwNDZHYjNZUX19PtktVUyq5fLLrU7Zoam1txeLFi2G1WrNaU2NjI9asWQOr1UpNnNxuN9avX0/etSmJ01SazGYz1q9fj0uXLhFNauU9n8+HnTt3kucx2e9UczkA7Ny5E7/97W9VfSbMBGyNEEZWI9eVs9lsMJvNqK2tRXFxMfx+P/Ly8mAwGODz+WCz2cBxHIaHhyFJEnJzcyEIAgKBAJlB4fV6YbfbYbFYSIKz2+2IRqMIhULk6zOPxwOHwwGz2YxgMAij0YicnBzwPI9wOAyXy4VYLAav1wun0wmTyYRAIACz2QybzYZIJAKe5+F0OiFJEnw+H1wuF4xGI/x+PziOg9VqRTgchiAIcDgcEEWRaBJFEWfPnoXZbCZfwMViMVitVjK6LZcrCIVC4DgOZrN5zAsDeTRa/rouGAzCZrPBZDIhEonAYDCA4zgIgoBoNIqcnBzEYjGEQiHk5OTAaDQiHA6TMlbRaBSCICAnJweSJGF4eJhsNzw8DLPZDIvFAp7nIUkSbDYb2U5e1HN4eBh33HEH5syZo4s46bHvMU1ME9PENDFNTBPTpD9Nbrcb586dg9VqRSwWQyQSAcdxZJZvcXFx0po++OADcBwHSZLA8zysVisMBgMikQjMZjOi0SheeOEFfPzxx/B4PDCbzXA4HAiFQti4cSN27twJh8MBk8lEvn7s7e3F3//938Nut5MvH/Pz8xEIBCAIAnJzc/Hggw/iqaeegiRJEEURc+fOhcViGaOJ53kYjUaYzWYIggBRFMdoH+2ryWQi20mSFFcTz/MoKSkBx3G4ePEienp6xmxXUFCAdevWIRAIsL7HNDFNTNOkmmw2G6xWK06ePInh4WFYLBaIoohoNEqqMYTD4TH5zGAwkO0EQYiby9XOe3Iul3N0LBYbs91oXy0Wy5hczjQxTUzTxJrWr18/LfJeT09PxtYIYQMhjKxmOi6WPhq/349Dhw5h27ZtpDRVtkKblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPDKtZfxi6ZFIBE1NTbj33ntRVFR022LpiTDZYumj4Xket27dQnd3NxYuXIg5c+ZMuOh5KousFxQU4Mknn8Sjjz5KvuJPldHHRZ6JBIyUhX3ssccQi8Vw8uRJ8tXqaFavXo2CgoKUY53pPsIYi57iQZuW6XoP1NfXh/b2dgwPD8PhcJByMzIT5Z9kUGJDjfYZ6qGXeNCoI50+xWtLrcXSaX8GY4ulMxiMlOA4DmvWrJnwgTGboE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CkemdYirycnYzKZUFhYSL5iVJvRa3xwHIfCwkIsXLgQhYWFkx6DgoKCpI9RMBjEyZMn8Z//+Z8p+ysz+rjEY3Td8vHI5TlSjXWm+whjLHqKB21apuM9kNfrRXNzM6njP34QBJg6/ySCEhtqtM9QD73Eg0Yd6fRJy7b09AymNmxGCCOrme4zQhgMBoPBYDAYDCXEYjGcOnWKlI4YzX333YcZM2YkbXOyGSHr168fU8c7Gfbs2YOqqqqk9+M4DpWVlZo8gMszQsLhMKmvPZ4FCxbgrrvuUr1tBoNBP6IoYmhoCNFoFDNmzCAleWSuXLmCnp6eDHnHYDBoQq0ZIbTDZoQwGIyUCIfDOHHiBMLhcKZdUQxtWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8ci0FoPBgFWrVpEvEgVBQEdHB+bNm0fqUmuJ3J4gCFNuu2vXLpSWliZs22azoaSkBEajEYODg5Nuy/M83G433G43eJ5X5OdEpBrrTPcRxlj0FA/atOjtHuhPf/oTPvroI1y4cAGXL19GXV0d+vv7x2yXyCCIGvlHiQ012meoh17iQaOOdPqkZVt6egZTGzYQwmBkMTReOFKFNi3p9kfL9tS0zW7CGaPRSzxo08Hyj3b2WP7RD3qKBw1a8vLy8PDDD+Pee+/FsmXLIEkSFixYAIPBoHpb421KkgSPxwNJkqbc12azYffu3Th48GBCbZnNZhQVFU1a4iscDmPPnj0oKyvD1q1bsXXrVnz2s5/FM888g46ODjIokoyfE5FqrGnoI4w/o6d40KZFb/dAra2tZFFjYGQGXnNzc9J5RI38o8SGGu0z1EMv8aBRRzp90rItPT2DqQ0rjcXIalhpLAaDwWAwGAwGgy4mK421adMmfPTRR3FnXSRKKgunHz58GIWFhbf9fqpyWxzHYePGjdi1a9dtJW1kFi5cCKfTiUuXLsX9e7zSWJIkwefzwWg0wul0ajLoxGAwMstEuXDlypWYM2fOpNswGIzpByuNpT1sRgiDkcWIogi32z3hwozZBG1a0u2Plu2paVsNW0ps0NZPpjt6iQdtOlj+0c4eyz/6QU/xoE2L1v4YDAYsXbqU/CxJEgKBgCZfRI5eiDTewEsgEJhyzRGe51FVVYV/+7d/m9DP7u7uCQdBRiMf2/7+ftTU1KCxsRFnz55FbW0tWSh5sv1o6SPTHT3FgzYtersHmihneDyepGypkSeV2NAyTzOSRy/xoFFHOn3Ssi09PYOpDRsIYTCyGL/fj5/85Cfw+/2ZdkUxtGlJtz9atqembTVsKbFBWz+Z7uglHrTpYPlHO3ss/+gHPcWDNi3p8KewsBD33XcfFixYgNzcXJw5cwbz589XvR2n04mnn34aTqcT27dvJ+WuOjo68Mwzz6CsrCxhW01NTThz5oyimSzysT1z5syYlwGRSAQXLlyYcj9a+sh0R0/xoE1LNt8DhcNhXL16FY2NjWhra8PAwIDinCHD87xiW0psqNE+Qz30Eg8adaTTJy3b0tMzmNqw0liMrGa6l8aKxWKIRCKwWq1ZP52eNi3p9kfL9tS0rYYtJTZo6yfTHb3EgzYdLP9oZ4/lH/2gp3jQpkUNfyYr9TK+7IPcXjgcRmNjY0L2Ey2NZTAYYLVaEYlEoPSx12Aw4LXXXsP8+fOTPi5yaaxYLIbe3l5cvnw5ro2HHnoIVqv1tt/T1kemO3qKB21asvEeKBqNQpIkNDQ0jFkIOCcnB36/HyaT6Tbb8+fPx/LlywEkVhorFotBFMW4thJFiQ012meoh17iQaOOdPoUry21SmPR/gyWyXe5E68ax2AwqMdgMExYqzjboE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGnJVA6yWCwwGAwJDVgUFBSA47gpv6KMxWJjXkwqIRaLpfxipKenB4WFhXA6nZAkaUIb0Wg07kAIbX1kuqOneNCmJZvugfx+P1paWhAMBuP+fXh4GGZz/FduN27cwIwZMzBjxoyE/ZzIVqIosaFG+wz10Es8aNSRTp+0bEtPz2Bqw0pjMXSBzWaDw+EAMFJ7zuPxkIcon89HHpKGh4fJjYogCGNqc3q9XkSjUQBAKBRCKBQCMPJA4vV6yXYejweCIAAAgsEgqefL8zx8Ph+AkQclj8dDprwHAgHyEBaJRMh0MEmS4PF4SE1Av9+PSCQCYGRqbSAQmFSTz+fDCy+8ALfbnfWaenp68OKLL8Ln81ERp76+Przwwgvw+XyK4wRM3fcGBgbw0ksv4ebNm6prunXrFl566SX09fVREafu7m689NJL8Pl8SWuS+/ytW7cAqHs+JRKnbDmf0qWpv7+fnCfZrMntdhMdNMRpcHCQ+KNGnNKZI8ZrcrvdeOmllzA4OKhK35N97e/vTylO169fJzlsOl9z9ZD3hoaG8MILLxA/sllTb28vXnrpJQwNDVERp9HnSaqa5IddSZIQDoeJJofDcZsmn8+HF198ETdu3MCCBQuIDfm4Wq1W3HnnnQBG+nI4HCYLmOfn55OXCLm5ucjJyQEwssC5y+WCy+VCeXk5Fi5cCJPJRHyQ/bNarXA6nQAAo9GI/Px8GI0jj8hOp5MMSthsNhQWFqKtrQ3Dw8NjNEUiEeJrNBol+mTtMh999BHa29vxy1/+EoFAgMRM1jRZnORj1NPTQ+LEckTmNMnXg8HBwazXpOS+XAtN6Xwm9Hg86Orqwr//+7/j8uXLZLtENEWjUZw+fZq0JQjCbed+OBxGbW0tfD5f3BzR1NSEkydPEl9H571oNDomR/h8PtTW1pLZc/Jx5Xl+zHbyMZYHgUdvFwwGUVtbi2AweNt2o/OZfBxGaxoeHsZHH3005rgkkvcm0zR+u1Q0jfY1WU3jr0/ZpMnv9+Ojjz4i2rJVk9frJTpoiZN8noRCIc37XrwcoVbeGxwcxEsvvQS3261KLvd4PHjppZdw48YNVZ8JMwEbCGHogg0bNmDLli0ARl5gV1RUkJNz//79aG5uBgBUV1ejsrISwMiihhUVFcTGvn370NbWBgA4fvw4jh8/DgBoa2vDvn37yHYVFRXo7u4GAFRWVqK6uhoA0NzcjP379wMYSRwVFRXo6+sDABw5cgS1tbUAgIaGBhw6dAjASHKoqKggyejQoUNoaGgAANTW1uLIkSOTarLZbJg9ezbef//9rNf0q1/9CsuWLYPNZqMiTnLJApvNpjhOwNR9r7e3FyUlJaipqVFdU1NTE0pKSnD58mUq4vT666+jpKQENpstaU02mw0cx6GpqQmAuudTInHKlvMpXZo6OjogCAJsNltWa3r//fcxe/Zs2Gw2KuI0MDAAv99PXtRp3ffUzBHjNb3//vsoKSnBwMCAKn3v448/RklJCTo6OlKK0/79+7F+/XrYbLZpfc3VQ94LBALw+/3ky/ps1vTOO++gpKQEgUCAijjt378f999/P2w2W8qa5Ot0KBRCXV0dRFGEwWDABx98cJsmm82Ge++9F/v378eyZctw55134syZMwiHw1i0aBF6e3vx0UcfARgZAKuvrwcA7Nq1C+Xl5SgqKgIAlJWVYdOmTQCAlStX4sknn0Q4HEZNTQ3+/u//HrNnzwYAbNmyBRs2bAAArF27Ftu2bQMAMmjicrkAANu2bcPatWsBjDxr/OVf/iVmzZoFnueJJvm4yH2gs7MTra2t5BjV1dWR43/69GmcO3cOa9euxfXr10nMRmuaKE42mw3Lli3Dr371KxInliMyp8lms8Hv92NgYCDrNSm5L9dCU7qeCS9cuICf/vSnuHLlCubNm4c33ngDZ8+eRSwWS0jT0NAQGhoayMcR3d3dJBZy3jMYDCgqKkJzc/OEOUL2BwDq6+sxNDREdIzOEefPn0dRURHMZjPq6urIcW1tbUVnZyc5lvIxFkURdXV15EVpc3Mzbt68iaKiIgwMDJAcHYlEUFdXR45/U1NTXE08z4PneXLNTTTvTaZpdN5LVZMcW7fbnbSm0denbNN0+fJl5OXlwWw2Z7WmxsZGLFy4EGazmZo43bhxA0VFRfB4PJr3vXg5Qq28NzAwgJKSErz//vuq5HKe51FSUoLf/OY3qj4TZgK2Rggjq5HrytlsNpjNZtTW1qK4uBh+vx95eXkwGAzw+Xzk5enw8DAkSUJubi4EQUAgEEB+fj6AkdFVu90Oi8VCEpzdbkc0GkUoFEJeXh6AkdFVh8MBs9mMYDAIo9GInJwc8DyPcDgMl8tFRredTidMJhMCgQDMZjN5WcjzPJka7/P54HK5YDQa4ff7wXEcrFYrwuEwBEGAw+GAKIpME9PENDFNTBPTxDQxTUwT05Q1msLhMLq7uzE4OIjZs2eTWRmpaJIkCWfPniVfdcoDxfLXi/JX3waDAS6XCxUVFWhsbMTAwAAMBgPy8vLg9/shiiIcDgfxz2q1guM4+P1+GI1GzJw5E7Nnz0ZzczOcTid4nkckEiHPGq+88grmzJkDnudJnetIJAKz2QyTyYRoNIpYLAaO4yBJEnieH+OrxWIh2wGAxWKBKIpE0wMPPED6A+t7TBPTpJ2m9vZ2XLlyBVarldSu5zgO999/P8xm85SaPvjgA0QiEZhMJpjNZgiCAEmSxpz7WuQIeTuO42A0GsnghLydIAi3aZK3MxqNxFdRFMdsN9pXpolpYpoyp2n9+vXTIpf39PRkbI0QNhDCyGqm+2Lpw8PDqK6uxqZNm0gpgGyFNi3p9kfL9tS0rYYtJTZo6yfTHb3EgzYdLP9oZ4/lH/2gp3jQpoXWHDR6FkUi8DyP69ev4/3338evf/1rUhoiHitWrMCuXbswf/58DA4Oxl2IPScnB8899xxWrFgBi8WSsB+jiUaj6OzsxJIlS+LaeOCBB0i539EkExP5pYXVaqWiP+kR2s5ZJdCmJV3+NDQ0kDIzo8/JhQsXklJ8E9HT04MrV65M2cZU53syqGFLiQ01tTCUo5d40KgjnT7Fa0utxdJpfwZji6UzGIyUGF97NZuhTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aaE1By1atAh2ux39/f0QBIGUc5gIjuOwaNEiPPTQQ/i7v/s7Uu96PPLC61NhNBrJ16epMr5+eKIkeoz6+/vR3NxMtsvLy8O9995L3WK02Q5t56wSaNMykT+xWAx+vx+hUAgulwt2u11RO3I9/fHnZHd396QDIbFYDF1dXQm1ker5rpUtJTbU1MJQjl7iQaOOdPqkZVt6egZTGzYjhJHVTPcZIQwGg8FgMBgMxnSkr68PFy9eVN2u2+2OOyMEAA4fPozCwkLV25SZaEbIeGKxGFnwWK4THw6HUVdXd9sLlTlz5mDlypVaucxgaI4kSbh48SJZkwUAioqKyPpAqXDixIkJ/zbZF9mhUAinT59OuV0Gg8GYDLVmhNBOJt/lssXSGYwsRhAEslhxtkOblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjToqccpOYXiGazmaxXopU/PM/H/f3oYxSNRnH27FnU19ejqakJJ0+exI0bNzA4OBj3q9KBgQGqvrbVA7Sds0qgTUs8f3p6esYMggBAR0cHurq60N3dDZ/Pl3Ifj3dOTnYs5AWbU7WdKmxWPmM0eokHjTrS6ZOWbenpGUxt2EAIg5HFBAIBHDx4EIFAINOuKIY2Len2R8v21LSthi0lNmjrJ9MdvcSDNh0s/2hnj+Uf/aCneNCmRU85iOd5nDt3bsIBhmRwOBy4fv26IltT+XP+/Pm4ZXdGH6OrV6/eVuartbUV169fj2tTFEU2EKIytJ2zSqBNSzx/xg+CyLS3t+Pq1as4e/Ysrl69mlI/j3dONjY2ksWVlaBm/lHDlhIbamphKEcv8aBRRzp90rItPT2DqQ0rjcXIalhpLAaDwWAwGAwGY/qRidJYAFBaWopdu3bBZrOp3rbM2rVrkZeXF/dvH374YVJfpQPAY489BqNx4m8gvV4v+vv7EYvFMHPmTMyYMSMp+wyGlkxWxmo09913X8J9dyqbE5Xe8vv9OHPmTEJtMBgMRrKw0ljaw1ZNYzAYDAaDwWAwGAwGIwGqqqrgdruxe/du8jt5wXWe5zE4OHjbPokuyC4zMDAw4UBIsoMgU9Hb24vLly+Tn+XFohcuXKhqOwyG1ly/fl21QbyOjg5Fa5AwGAwGg05YaSwGI4vxer147rnn4PV6M+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21a9JSDwuEwTp48iXA4rNhWXl4evv/97yMvLw+XLl3C1q1byb/PfvazKC0txWc/+9kxv5f/lZWVYc+ePfB6vQn509fXN+ZnrY5RLBbD1atXb/t9e3u76gMueoK2c1YJtGlR4k+8QcipUDNHaGlbDVtKbGh5nBjJo5d40KgjnT5p2ZaensHUhs0IYTCyGLvdjs2bN8Nut2faFcXQpiXd/mjZnpq21bClxAZt/WS6o5d40KaD5R/t7LH8ox/0FA/atGRLDjIYDFNuY7FYUFxcDIvFkrDd0bM7RhMKhXD06FGEQqGk/ARG6oBXVVXBaDTi6aefTsofQLuYBIPBuAMekiTB5/OxElkTQNs5qwTatKTbn6lyxPDwMNxuN4aHh5GXlwen06mabTX91NqGmloYytFLPGjUkU6ftGxLT89gasPWCGFkNWyNEAaDwWAwGAwGY/rB8zxOnTqlie09e/agqqpKdbscx6GysnLKMlk5OTlYv3593L8lul7CaOKtESIIArxeL5qamuLus2rVKsyaNSvpthgMtUmmzydaXz8RmxaL5bZF061WKyKRSML+MBgMRjKwNUK0h5XGYjCyGCVfptEGbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB206WP7Rzh7LP/pBT/GgTUu25CCO47BgwYJJt4lGo2hpabntZeZU7Nq1C6WlpWNmnajxNaPZbMbFixeT8ofnebS3t+O1115DV1dXym0DI4MfAwMDaGhoQE1NzYSDIIzJoe2cVQJtWtLtz2Q5It7vkhkESTX/aGVLiQ01tTCUo5d40KgjnT5p2ZaensHUhg2EMBgMBoPBYDAYDAYj67jzzjs1sWuz2bB792688847WLFihaq2JUlKeNvh4WGcOXMGbW1tCAaDYxY1TwZ5LZCTJ0+iqakJXq8XrDAEgwYGBwdx+fJlXLp0CX19fejq6kJ/fz/Onj2Ljo6OpPsp69cMBoPBmAw2EMLQBTabDQ6HAwAgiiI8Hg+5CfL5fKTG7/DwMILBIICRL6I8Hg+x4fV6yUhsKBQiI5XRaHTMgj4ejweCIAAYqas7PDwMYORrLZ/PB2DkBszj8ZCau4FAgCyAFIlE4Pf7AYw8CHk8HvJA5Pf7yVcm4XAYgUBgUk12ux2f/exnye+zWZMgCPjc5z4Hu91ORZxMJhM+9alPwW63K44TMHXfs1gs2Lx5M9Glpiaj0YjNmzfDZDJREadoNEq+qExWk91ux6c//WlS3kHN8ymROGXL+ZQuTWazGZ/85Cdht9uzWlMsFsNnP/tZ2O12KuLEcRxKSkrIV8da9z01c8R4TbFYDJs3bwbHcar0PYPBgM2bN8NsNqcUJ57n8YUvfAF2u31aX3P1kPesVitKSkqQk5OT9ZokScLmzZthtVqpiBPP8ygrK4Pdbk9L37Pb7fj85z8/Zk2ORDV5vV64XC6iQ95HFEVEIhFYLBbcfffdEEWR+MrzPDkOgiAQv2OxGMLhMPE1EonAaDTihRdewKc//WlYrVYcPXoUkUgE+fn5ZLaIy+Uipa5ycnKQm5sLYOQamZ+fT3zNy8tDNBrF//pf/wv/9m//Ro6lKIpjFkoNh8OkT7W0tCAQCMBiseCuu+4iGmRfE9XU0dGB7u5uRCKRMdvJx1ySpNu0Z+v5lI68Z7fbUVJSQuJOk6ZoNIre3l60t7eTY67VfblSTW63G42Njbh27RrcbjcuXryIzs5O3HHHHRAEAVeuXMHFixeJvYnOE1mH3E4ifU+tHDHZ+WQ2m1FcXAxJksb4On67qTSJoghRFMlaAuPP/fF5b7Svo7czGAwoLi6GwWBIWpPJZEJRURHMZjPZTqmm8dulokmNOI3eLls0SZKEO++8ExaLJas1iaKIu+++GxaLhZo4AUBxcTGMRqPmfS9ejlDrmstxHDZv3oxYLKZKLrfZbNi8efOYWKvxTJgJ2EAIQxds2LABW7ZsAQD09fWhoqKCnJz79+9Hc3MzAKC6uhqVlZUAgO7ublRUVBAb+/btQ1tbGwDg+PHjOH78OACgra0N+/btI9tVVFSgu7sbAFBZWYnq6moAQHNzM/bv3w9gJHFUVFSgr68PAHDkyBHU1tYCABoaGnDo0CEAI8mhoqKCJKNDhw6hoaEBAFBbW4sjR45MqikajeLXv/41jh07pgtN7733HqLRKBVxqq+vx/79+xGNRhXHCZi6712+fBktLS145513VNdUU1ODlpYW1NfXUxMneQpospqi0Sj++7//GzU1NQDUPZ8SiVM2nU/p0NTU1ISf/OQniEajWa3p2LFj+PWvf41oNEpFnDo6OlBRUUFudLXue2rniNGajh07hpaWFqJJSZwqKytRVVWFlpYWNDU1pRynhoYGRKPRaX/Nzfa819vbi4qKCvIAls2afvWrX6GlpYVooiFOp0+fRjQaTUvfi0ajOHXqVMqahoaGAACtra3o7Owk7TY0NEAURdy6dQt1dXXkhUFzczM5Dm63m5SHikQiqKurI742NTXB7XbDZrNh27Zt+Jd/+Rf89Kc/xSuvvILy8nL87Gc/w4oVK/Dkk09i5cqVAIBNmzahrKwMs2bNwsKFC1FeXk583bFjB5YvX47i4mI4HA78/ve/BwAMDQ2hvr6ebFdXV0deEtTU1KCzsxOiKKK9vZ0cY1EUk9J05cqVMZqAkX4kxyIUCqGuro68EGloaCDHP9vOp3TkPfketqOjgypNb7/9Nmpra1FXV4fXXnsNdXV1CAaDmt2XT6RJkiRcv34dFRUVpC/H09TR0RG377W3t0MURXR2dhIffD4f6urqSJzq6+vJud/W1kb01dfXJ9T31MwRcj8afz7xPI/+/n40NDSQ49XZ2YnW1takNMk5or+/n5z7cl+Jl/eA+DlCnm1z48aNpDX5/X6iSY6TGppkUtWkRpxG971s0tTW1gZRFLNeU29vL0RRpCZOHR0d6O/vx82bNzXve/FyhFrX3I6ODrS0tODYsWOqXJ8GBgbQ0tKC119/XdVnwkzAFktnZDXyAjs2mw1msxm1tbUoLi6G3+9HXl4eDAYDfD4fbDYbOI7D8PAwJElCbm4uBEFAIBAgX2p5vV7Y7XZYLBaS4Ox2O6LRKEKhEPLy8gCMjK46HA6YzWYEg0EYjUbk5OSA53mEw2G4XC7EYjF4vV44nU6YTCYEAgGYzWbYbDbyhZXT6YQkSfD5fHC5XDAajfD7/eA4DlarFeFwGIIgwOFwQBTFuJqGh4fx4x//GN/4xjcwb968rNbU3d2N1157Dc888ww4jst4nG7duoVXX30VzzzzDJxOp6I4JdL3otEofvazn+Eb3/gGXC6XqpqCwSAOHDiAJ598Ejk5ORmPk9vtxqFDh7Bjxw7EYrGkNAUCAfz4xz/Gk08+iblz56p6PukxR2itqa+vDz/72c/wzDPPwOVyZa2m3t5e/PznP8czzzyDnJycjMdpYGAAP/3pT/HMM88gLy9P876nZo4Yr8nj8eDgwYP49re/DZPJpLjvBQIBHDhwAN/61rdgtVqTjlN3dzcOHTqEZ555Bkajcdpec/WQ9wYHB/GTn/wEO3bsQH5+flZrGhwcxH//93/jO9/5DoxGY8bjdP36dXKemEwmzfueIAj48Y9/jG3btmHx4sVJa/J4POjo6CBfPFssFoiiiFgsBkEQ8PHHH2P16tVwOp0wGo3geR5GoxFmsxmCIEAURVitVsRiMUQiEVitVvLFtKxfEASEQiGcP38e999/P4xGI9nO7/fD7/fDaDRCFEXk5+fD7/fj61//OhwOB3kRnJeXB7PZjG9/+9s4cOAAwuEw3nzzTZhMJkSjUdhsNgAjX1hyHIdPfvKTOH78OAwGA0RRJDry8vKIrxzHKdIkSRK5n+N5fsx29957L+bPn59151M68p7X68WPf/xjfOc738HMmTOp0BQKhXD69GkAf54BKVdNuOuuu1S5L7fb7ejr68PNmzcxd+5czJ07F6FQaIwmj8eDq1evgud5RCIR5OXlYe3atYhGo2M0BQIBXLhw4ba+5/V6cf78eTz44IMwmUyIxWJj+ujo88RisZDzBxhZ3NzlcmHZsmVT9r333nsPgiAgFoupliPGn0+xWAxnzpzBvffeC4fDQXxNVpMoiggEAmhqasIDDzwAAGPO/dF5TxCEMb6O3o7neTQ2NmLNmjWwWCxJaQqFQjhz5gweeOAB5OTkIBKJwGw2K9IUL+8lq0ntvJctmnw+H86dO4cHH3wQZrM5azX5fD5yvhsMBiriJJ8na9euhdls1rTvxcsR69evV+WaK4oiXnnlFWzfvh35+fmKr0+xWAw/+clP8PWvfx2zZs1S/EzY09OTscXS2UAII6uRB0Jk0nnyMBgMBoPBYDAYjMwyPDyM+vp68rWozLx58xCLxcjXmOlELi82utxXPA4fPozCwsK4f5s5cyYGBga0cC8hVq1ahVmzZmWsfUZyBAKBMV85j+bhhx8mZbxSRRAEnDt3jpRLAYCCggKsWrWKlKwFgNOnT9+2GO6MGTNw3333jfnd6IEbNSkoKMDq1aun3O7EiROqt81gMBhKKSkpybQLaSGT73JZaSwGg8FgMBgMBoPBYGQlOTk55GtuYGRtjvnz5+Ouu+7CokWLYLFY0u4Tx3HYuHFjQtvyPA+3203+yYMnmRwEmYxQKITu7m7cuHFjTJ11RmYZP/gwGvlr6FSJxWK4cuXKmEEQYGSh8/7+/jE+xPNjaGiI1MlnMBgMBiOTsIEQBiOL8Xg8ePbZZzO+2JAa0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rRkYw7Ky8vDunXr8Oijj2Ljxo1Yvnw5jEYjotEo/vSnP2HWrFmYNWsWFi1aNKWt+fPnx/19OBxGdXV1wi//d+3ahdLS0jG/ACYFsQABAABJREFUy8/Px7/+67+SMhf/3//3/6GsrAxbt24l/8rKyrBnz57bFnNNpm2t6Ovrw8cff4yrV6+itbUVp0+fJjXYpxO0nbNKmEqLJEm4cOECbt68Gffvt27dIv8fP1AymqlmR8mku69r2Z6attWwpcQGLTmIMYJe4kGjjnT6pGVbenoGUxtWGouR1Uz30liCIKC7uxsLFy6E2WzOtDuKoE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGnRcw6SJAkffPDBhNubzWY8+OCDOH/+PILB4Ji/jV/HIVG6urqwfft2Yn/hwoXo7u6e8gv50tJS7N69W1HbShhfGkuSJNTU1NxWgsxqtWLDhg0wGAxp8YsGaDtngZEBCXlh2vE8+OCDyM3Njfu3qbRcv36dLM47EXIpl5s3b+LSpUtxt1mwYAGpJe9yuTA4OEgWWh6N0r4ul8aKRCKIxWJkHQBgpHzYrVu3IIoienp6VGlvMtS0rYYtJTYykYMYE6OXeNCoI50+xWtLrdJYtD+DZfJdLhsIYWQ1030ghMFgMBgMBoPBYCROY2PjhF8krlu3Dk6nEx9//PFtAyGp4na7sXXr1qT34zgOlZWVitd2SJXxAyEejweNjY1xt/3EJz4Bu92eJs8Y8Uh1IGQqGhoa4PV6J90mkYGQdCEv/Cuf406nE6tWrUIoFEJTUxMkScqofwwGgzEZbI0Q7aFjyI3BYKREMBjEG2+8odqDWiahTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60adF7Dlq+fPltgwuFhYXYtGkTWWckHjzP48KFCwmX+IlHbm4uvvrVryb0UprneQwODqrWtlImW2di/CwRvUPbOauEqbRMNQgyGjVmBSnt636/f8xAp9/vx8WLF3Ht2rW4gyBanltq2lbDlhIbNOQgxp/RSzxo1JFOn7RsS0/PYGpDxzxOBoOREkajEfn5+dRMI1QCbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB206WP7Rzh7LP/pBT/GgTYvec5DdbseDDz4Ij8eDSCSCvLw8OByOKV/iGgwG2Gy2pF/2FhQUgOM48DwPSZLg8XiS/io91bYZ2kDbOasE2rRo0dd9Pl9a29PCthq2lNhgOYgu9BIPGnWk0yct29LTM5jasNJYjKyGlcZiMBgMBoPBYDAYaqJmaSwA2LNnD6qqqpLe7/DhwygsLBwzO0QeWEkHy5cvJ4vH9/X14eLFi3G3k0uKMTKHVqWxTpw4MeU2cimXyXxgMBgMxtSw0ljak/mhGAaDkTI8z6OxsZGqqYSpQpuWdPujZXtq2lbDlhIbtPWT6Y5e4kGbDpZ/tLPH8o9+0FM8aNPCclB8RFGE2+1OqQzUrl27UFpaCo7jsGbNmoQHMsLhMPbs2YO/+Zu/wfPPP4/t27ejrKwMe/bsQTgcTtqPZGltbcWNGzc0bUOSJHi9Xty6dYuac2AqaDtnlUCbFiXnGW3tqWlbDVtKbKQ7LozJ0Us8aNSRTp+0bEtPz2BqwwZCGIwsJhwO48SJE2l5ENIa2rSk2x8t21PTthq2lNigrZ9Md/QSD9p0sPyjnT2Wf/SDnuJBmxaWgwCLxXLb7wRBQEdHBwRBSNoPm82G3bt3Y9++fSgpKYHNZktov71796Kqqgomk4nsx/M8qqqqsHfv3qT9SIXe3l7NbPM8jzNnzqChoQHNzc04deoUbt68qVl7akHbOasE2rQoOc9oa09N22rYUmIj3XFhTI5e4kGjjnT6pGVbenoGUxtWGouR1bDSWAwGg8FgMBgMBkNNbty4gdbWVtXtut1ubN26VRVbHMehsrIyLWWy7rnnHvj9fnR1dcX9e6qlsS5evIi+vr7bfv/QQw/BarUmbS9VRFFEMBiE3W6H2azOMqqiKMJgMKStHjoNpbEmK5/GYDAYjKlhpbG0h80IYTCymFgshnA4DD2MZ9KmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBwEzJo1K64tQRAU3wOlsjBqvAVVR68bojUXL16ccBBECQMDA0n9Xgu6u7tx8uRJnD17FjU1Nbh27dqUMZ6sX0WjUTQ1NeHkyZM4efIkLl26pFrZk1AohGvXruHy5cu4desWNff2aqLGeUZLe2raViv/pGoj3XFhTI5e4kGjjnT6pHX+0cszmNqwgRAGI4vxer14/vnn4fV6M+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA4amW3hcrnG/C4SiaCmpgaRSCRlfwRBwPe//33k5eUltV9eXl5K+9GOJElxfz84OIhoNKp5CY2hoSFcvXqVvJiJxWLo7OyMO0tlNJP1qwsXLmBgYACxWAySJOHmzZu4fPmyYl/9fj/Onj2Lzs5O9Pb2orm5GW1tbeTvqR4r2vKPGucZLe2paVsNW0pspDsujMnRSzxo1JFOn7RsS0/PYGrDSmMxsprpXhpLFEX09fVh9uzZMJlMmXZHEbRpSbc/Wranpm01bCmxQVs/me7oJR606WD5Rzt7LP/oBz3FgzYtLAeN0NzcjFu3bpGfJUlCKBSC3W5PudxRb28v/vEf/xF9fX1JzRIwmUyYPXv2bfsdPHgQixcvTskXNUm1NFYiZZfsdjtWrVoFu92egmeTc+XKFfT09Nz2+zlz5mDlypUT7ieKIq5du4ZoNApRFDFjxgzMnz8fPM/jo48+um17o9GIRx55RFGZrMnKiIXDYTQ0NEy472SlsaY6R9JdGkuN84yW9tS0rYYtJTbSHRfG5OglHjTqSKdP8dpSqzQW7c9gmXyXq04BTAaDkRFMJhMKCwsz7YYq0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHBQfo9EIh8OhyIbBYIDb7U56P1EU4+63fft2rFixArt27cL8+fPTsl5IugmFQjh37hw2bNiQdEmxqYg3CAKMrLcx2UCI1+tFd3c3+bm/vx8ejwczZ86Mu70kSYhEIsjJyUnZ14lmqdy4cQNDQ0Mp26Ut/6hxntHSnpq21bClxEa648KYHL3Eg0Yd6fRJy7b09AymNnQMuTEYjJQIBAL4+c9/jkAgkGlXFEOblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjTwnLQCBaLZczPPM+jsbERPM+n7I8gCPjGN76R9IsPh8Mx4X6XLl3CN7/5TZSVlWHPnj2al5OKh9ZrekQiEfj9fk3bSIb6+vrb+kJfXx+CwWDaffH7/fD5fCnvr+b5p8ZAlRrnGS3tqWlbDVtKbKQ7LozJ0Us8aNSRTp+0bEtPz2BqwwZCGIwsxmw2o6ioCGZz9k/uok1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOWiE8V/3G41G5OfnKyqVUVBQgOvXr0MQhKT2EwQBHR0dk+7H8zyqqqqwd+/elP1LlY6ODty4cUPTNjwej6b2x3P69OkxpdFkYrHYhH0h3vZaM9E6K4lCW/5R4zyjpT01bathS4mNdMeFMTl6iQeNOtLpk5Zt6ekZTG3o6W0MhgJsNhv5QkoURXg8HrLonc/nIyOsw8PD5EsdQRDG3FB7vV5Eo1EAI1OwQ6EQACAajY5Z0Mfj8ZCHkGAwiOHhYQAjDx/y1zixWAwej4fU8A0EAuTrrNFfNEmSBI/HQ25g/X4/WSgpHA6T0dKJNNlsNqxfv560k82aeJ7Hww8/DJvNRkWcDAYD1q1bB5vNpjhOwNR9z2QyoaSkhNSJVFMTMFJr0mAwUBGnSCSCkpIS2Gy2pDXZbDY88MADpB01z6dE4pQt51O6NBmNRtx///2w2WxZrUkURaxfvx42m42KOJnNZqxZswY2m02VOKUzR4zXJIoiSkpKYDabVel7sVgMJSUlMBqNKcUpHA7jscceg81mm9bXXD3kPYvFgjVr1sBqtWa9JkEQUFJSAovFQkWcwuEwHn30UdhstrT0PZvNhkceeWTMTAa1NNlsNmzatAnhcDjpOJlMJrIuhSAIkCQJRUVFMBqNCIfDRFMkEiG2o9Eo0SfnHJlwOAyr1QpJkmA0Golti8UyZhH0/Px88qIgNzcXOTk5CIfDOHXqFCl9ZTAYkJ+fT+p0OxwOcs04deoUBgcHx8RztK/y8RIE4TZfU9Ekb3fx4kX09vbGjVNPTw+uXLlCFviW+7IoiqTfyL7Kx5/n+TG+yn0gmb7X0dGBhoYG1NTUoK6ujpSQGn0+TaRJLsk1XlM0GoXZbEZhYSF5ecXzPLnHnUyT0vMpXpzkYzRZnHw+36T35Y888giAic+nqeIkt8Xz/G3bJdv3RFHEokWLYDabE+570WiU6BNF8bbtRvs6ertIJAKz2YwlS5aQc1zebrSvqWoymUwoKiqCKIpJn0/jNQmCQF4iTqVpojgBQFFREfE9GU1GoxGFhYUk56SSI5TEaSJNasRJSd7LlCZRFLFw4UKYzeas1iQIApYsWQKz2UxNnGKxGIqKimAwGDTve/FyhFr3e2azGSUlJRBFUZV7WI7jUFJSQq4b8rFT+kyYCdhACEMXbNiwAVu2bAEwMi25oqKCnJz79+9Hc3MzAKC6uhqVlZUAgO7ublRUVBAb+/btQ1tbGwDg+PHjOH78OACgra0N+/btI9tVVFSQmrCVlZWorq4GMLKg4v79+wGMJI6KigpSy/XIkSOora0FADQ0NODQoUMARpJDRUUFSUaHDh0iC93V1tbiyJEjk2qKRCJ444038Jvf/CbrNb366quorKxEJBKhIk4ff/wxXnnlFUQiEcVxAqbuey0tLaitrcUf/vAH1TWdPHkStbW1+Pjjj6mJU21tLfE1GU2RSAT79+/HyZMnAah7PiUSp2w5n9Kl6dy5c9i3bx8ikUhWa/rNb36DN954A5FIhIo4tbe3j9lO676nZo4Yr+k3v/kNamtriSYlcaqsrMT777+P2tpanDt3LuU4VVdXIxKJTOtrrh7yXk9Pz5jtslnTm2++idraWqKJhji99957iEQiael7kUgEx48f10RTJBLByZMnU4rT4cOHIQgCli5dioGBAVy5cgWiKMJkMqGuro68PGhoaCC2Ozs70draSuzV1dURX+vr69Hf34+vf/3r2L59O/7iL/4CALBs2TLs2LGDbFdeXo6FCxcCAMrKyrBp0yZYrVaUlZXhySefBABYrVaUl5dj9uzZAIAtW7Zgw4YNAIC1a9fij3/8I/bs2UN8kI9/U1MTWWuku7ubxCIUCqWsSR5caGtrw5/+9Kfb4uT1evGzn/0MFy9exK1bt/CHP/wBR48eRSwWQ19fH+k3oiiirq6OvNhpbm4msXW73fjjH/8YN04T9b329nYcPHgQAwMDiEajqKqqwrvvvouhoaEx59NUmuR2R2sSBGHMwEprays6OzthNpsn1aT0fIoXJ3kmzmRxOnjwYNzz6cqVK/iv//ovvPHGG+Q8+dOf/oSrV6/i6NGj5HyaKk6ypkuXLqGpqQnASC5Jte9dvnwZgiAk1fdkfUNDQ6ivryfb1dXVkeMqx2m0JkEQ0NXVNWnfS1VTJBJBd3d3yufTeE3d3d2k702maaI4dXV1obu7Gzdu3Eha0/hcopamROM0kSY14qQ072VKU0tLCwRByHpN8mxHWuJ07do1dHd3w+12a9734uUIte732tvbUVtbi9/85jeq3MP29fWhtrYWr7/+uqrPhJnAEJOHaxiMLOTixYtYtWoVbDYbzGYzamtrUVxcDL/fj7y8PBgMBvI1GMdxGB4ehiRJyM3NhSAICAQCyM/PBzByk26322GxWEiCs9vtiEajCIVC5Estj8cDh8MBs9mMYDAIo9GInJwc8jWMy+VCLBaD1+uF0+mEyWRCIBCA2WyGzWZDJBIBz/NwOp2QJAk+nw8ulwtGoxF+vx8cx8FqtZIvBB0OB0RRjKspEongtddew5e+9CXMnTs3qzXduHEDR48exde//nWYzeaMx6m/vx+//OUv8cQTTyA3N1dRnBLpe6Io4s0338Tf/M3fwOFwqKppeHgYb731FrZs2QKr1ZrxON26dQuVlZXYtm0bRFFMSlMoFMJ///d/42//9m8xe/ZsVc8nPeYIrTUNDAzgjTfewBNPPAGHw5G1mm7evIm33noLX//614kfmYzT0NAQfvGLX+CJJ56A0+nUvO+pmSPGa/L5fPj1r3+Nr3zlK+QLZiV9LxgM4u2338aXv/xlWCyWpON048YNVFZW4mtf+xoATNtrrh7ynsfjwaFDh/D1r38dLpcrqzV5PB4cPXoUX/3qVwEg43Hq6ekh54nBYNC870mShNdffx1lZWVkAEAtTQaDgdieN2+eKnF65JFH0N3dDavVSr4YNZvNMJlMiEajiMVi4DgOkiSR2WTAn786bW5uRnFxMZmF19vbi2effZZ8zZmfn49AIABBEJCbmwtJkmA2m/G1r30NR48eRW9vLwwGA/Ly8uD3+8m9lCAIZNYJx3Hw+/1YuXIlvv/978NsNmPmzJmIxWIwmUzkK2JJksb4moomi8VCtgOAz3zmM2PidP78edy4cQMcx8FoNILneRgMBnziE59AfX09BEGA1WpFLBZDJBIZs53RaCS+Lly4EMXFxQn3vYsXL+L69etxNc2aNQtFRUWor69PWlNOTg6qqqpw7tw53HvvvaS/GQwG5OTkkC+Ax2t66KGHIIpiyufTaF9Ha5o5cyYCgcCkcVq+fDlmz5592/l04cIFtLe3o7W1Fffeey/Z32g0QpIk3Hvvvbh48SKZkTBRnB599FFEo1G0tbXh1q1bY7Yb7Wsifc/n8+Hy5ctYvXo1jEZjUn3PYrFAFEVEo9Ex243ve/J28pfa58+fx/Lly+F0OuP2PVEUU9IEABcuXMDy5cuRm5ub0vkk+xoMBuPGKZ6mieIUjUZx6dIlrFixAmazOSlNw8PDaGpqwurVq0n/TTVHpBKnRHJEqnFSI++lW5Pf70dLSwtWr14Nk8mUtZp8Ph9aW1uxevVqAKAiTvJ5snLlSphMJk37XrwcsX79elXu92KxGH75y1/ir//6r+FyuRTfwxoMBhw+fBhf/OIXUVBQoPiZsKenB6tWrYLMhQsXcM899yAdsIEQRlYjD4TIpPPkYTAYDAaDwWAwGNMLv9+PM2fOqGbP7XZj69atSe1z55134urVq0ntw3EcNm7ciO9973tjFvUuKCggJbfU4L777sOMGTPIzydOnIi73fz585NaV8Rms8FqtSIajaKgoAB33HEHKdMTj4nalbnnnntw8eLFhNouKSkh/+d5HqdOnYq7nfyyKx7r169HTk5OQu3FYyI9+fn5U5YZeeCBB5Cbm4tr166hv78fRqMRc+fORWdn56TrzuTm5ia0APyMGTPIl9cMBoPBSJ3R1xs9k8l3uaw0FoORxYyvJ5vN0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHDS5rdzcXFJnPxHmzp1L/j++fniijF5QtbS0FK+88gopnZEo8mLqX/jCF7B161byr6ysDHv27BlTM10JFy5cSOh4J7u4ejgchtfrRSgUQnd3N5qampI+jqORy5okAs/zcLvd6Orqgt/vTzmOmeTy5cvo6upCKBRCIBBAW1sbBEGYVEsigyAAVB0ESfex1bI9NW2rYUuJjWzs83pGL/GgUUc6fdKyLT09g6kNGwhhMLKY8fVksxnatKTbHy3bU9O2GraU2KCtn0x39BIP2nSw/KOdPZZ/9IOe4kGbFpaDprZVVFSET3ziE6QMRW5uLubMmUMWQAeAnJwcrFmzBi6Xi/xufP3wRHG5XCgvL8fjjz+OXbt2ARhZIL20tFSxLnmAZO/evYptASO11Ecv2qoVHo+HlAZJhWR8PHXqFFpaWtDe3o6mpqaU4zgauSxJV1cX+vr6SP370X+Xy8cpRZIk3Lx5M+7f1NCiJun2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2rDQWI6uZ7qWxxteTzWZo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgOUtdWT08Prly5AgC31Q8HRgYiysrKSL3weBiNRrz55psoKCgg+wEjsyT27t2LEydOKP6ilOM4VFZWqlIm66677sKCBQsATF2iSgl33HEHlixZQn6ORCLo7+9HKBRCT0+PZu3GiyOQWGkseYBDXrRaxul0YvXq1RgeHiYDJNFoFCaTCUuWLEF7e3tcu4mUxlq0aBGuX7+elJZMkW5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn+K1pVZpLNqfwTL5LpcNhDCymuk+EMJgMBgMBoPBYDDoZfRAyETs2bMHVVVVE/69tLQUu3fvnvDvPM+jvLwcly5dStlPADh8+DAKCwsV2UgnixYtwrJlywCMDAo1NjaqVuIrFWw224Ttr1+/HtFoFE1NTWThXjXIy8ubcnbLggULNB0YYjAYDIY6sDVCtCfznxwxGIyU8fv9ePnll+H3+zPtimJo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s5WJBJBfX39bWUwdu3ahdLS0ttmY3Ach9LSUpSXl8fdb/R2L7zwQlwb04Wurq60DYJMFEez2TzpPmfPnlV1EEQNJtKSKdLtj5btqWlbDVtKbNDWT6Y7eokHjTrS6ZOWbenpGUxtJr5SMxgM6uE4DmvWrNHFAw9tWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8aBNC8tB2tkymUwoLCyEyWQa83ubzYbdu3eD53kMDg6S3xcUFIDjOAiCEHe/yWz09fXhu9/9blL+PfPMM3jhhRcwf/58avrjVEiSBKPROOEaGFowURwno7GxUTuHFJCKFi1Jtz9atqembTVsKbFBWz+Z7uglHjTqSKdPWralp2cwtWGlsRhZDSuNxWAwGAwGg8FgMGglkdJYWuB2u7F169aU9uU4Dhs3bsSuXbtgs9lU9kxdjEYj8vPzxwwgTSdYaSwGg8HQD6w0lvaw0lgMRhYTDodx4sSJjNbCVQvatKTbHy3bU9O2GraU2KCtn0x39BIP2nSw/KOdPZZ/9IOe4kGbFpaDtLMlCAI6OjomXFBbzf3k2SSpwPM8qqqqsHfv3pT2TyeSJKV9ECTVONIIbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB4060umTlm3p6RlMbdhACIORxdB44UgV2rSwm3DtbLGbcP2gl3jQpoPlH+3ssfyjH/QUD9q0sBykri2DwUD+L0kSPB4PJElKykYq+8mzOpRQU1MDnucV2dAjqcaRRmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGrDSmMxshpWGovBYDAYDAaDwWDQSigUwunTpzPSdjgcxt69exUNaBw+fBiFhYUqe8ZQC1Yai8FgMPQDK42lPWxGCIORxYiiCLfbDVEUM+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA5S11ZOTg5mzpwJYOTrz0AgkNKMkFT2kxdQr6ysxOHDh8m/Y8eOobS0NClbjD+TajxohDYt6fZHy/bUtK2GLSU2aOsn0x29xINGHen0Scu29PQMpjZsIITByGL8fj9+8pOfwO/3Z9oVxdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykri2DwYB77rkHd9xxB6xWK86cOZP07Aye51PaT4bjOBQWFpJ/TqcTu3fvxrFjx7BixYop22aMRWk81ERpgQ+atADp90fL9tS0rYYtJTZo6yfTHb3Eg0Yd6fRJy7b09AymNqw0FiOrme6lsWKxGCKRCKxW65j6w9kIbVrS7Y+W7alpWw1bSmzQ1k+mO3qJB206WP7Rzh7LP/pBT/GgTQvLQdrZisVieO+992AymZKyEYvFIIpi0vslSldXF7Zv3z7h31esWIHnn38eTqdT9bazEa3jkQwulws+n2/SbSYrjUWTlkz4o2V7atpWw5YSG7T1k+mOXuJBo450+hSvLbVKY9H+DJbJd7nmtLTCYDA0wWAwwGazZdoNVaBNS7r90bI9NW2rYUuJDdr6yXRHL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1sGgwFmc/KP4Knulygcx03690uXLuELX/gCSktL8b3vfQ/BYJD8raCgYMr99YbW8VCbyb59pU1Luv3Rsj01bathS4kN2vrJdEcv8aBRRzp90jr/6OUZTG1YaSwGI4vx+Xx46aWXpvwKKBugTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbPp8PtbW1iEQiSe0XiURS2k9tqqqq8IUvfAFbt24l/8rKyrBnzx6Ew+GM+pZOaIlHokxWf542Len2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2bCCEwchibDYbSkpKqBlZVQJtWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8aBNC8tB2tmy2WwoKipK+gtQs9mc0n6JomRWB8/zqKqqwt69e1X2il60jofaTFbGhDYt6fZHy/bUtK2GLSU2aOsn0x29xINGHen0Scu29PQMpjZsjRBGVjPd1whhMBgMBoPBYDAY2cOJEycy7UJc9uzZg6qqqpT35zgOlZWV065MVqZJZI2Q2bNno6+vL00eMRgMBiNV1FojhHYy+S6XzQhhMLKY4eFhvPPOOxgeHs60K4qhTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbw8PDuHr1KqLRaFL7RaPRlPZLhl27dqG0tFTRzJDBwUGVvaKTdMQjURIpMyIIwoR/o0kLkH5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGpDz/wjBoORNJIkwePxTFr3NVugTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbkiQhHA5Punh1PGKxWEr7JYPNZsPu3bvB8zxu3LiBf/zHf8TQ0JAqtscPkmT7AuvpiIeaGI0Tf/9Km5Z0+6Nle2raVsOWEhu09ZPpjl7iQaOOdPqkZVt6egZTG1Yai5HVsNJYDAaDwWAwGAwGI1ugtTTWeNxuN7Zu3ZrUPocPH0ZhYSH5ORwOY+/evaipqQHP8+T3HMdh48aN2LVrFxX1whkMBoPBoAFWGkt7WGksBiOLEQQBHR0dk053zhZo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s6WIAgpfRFJ05eUk7Fnzx6Ew2Hy8969e1FVVTVmEATI/gXWsyUeiUCbFjYjTTtbbFasftBLPGjUkU6ftGxLT89gasMGQhiMLCYQCODgwYMIBAKZdkUxtGlJtz9atqembTVsKbFBWz+Z7uglHrTpYPlHO3ss/+gHPcWDNi0sB2lnKxAI4Ny5c7cNDEwFz/Mp7ZduLl26RAY3eJ5HTU3NpNuPnymSLWRLPBKBNi3p9kfL9tS0rYYtJTZo6yfTHb3Eg0Yd6fRJy7b09AymNqw0FiOrYaWxGAwGg8FgMBgMRrbQ0NAAr9ebaTemJJXSWDKVlZUIBAIJ7T++nJbe1hNhMBgMBiNRWGks7WGLpTMYDAaDwWAwGAwGg5EGFi5ceNtAiM1mG1NSKtspKyvDihUrktqHrSfCYDAYDAZDa1hpLIYusNlscDgcAABRFOHxeCBPdvL5fORmenh4GMFgEMCfa/TKeL1eRKNRAEAoFEIoFAIARKPRMQ8rHo+H1LULBoMYHh4GMPL1ks/nAwDEYjF4PB6IoghgZBqY/HATiUTg9/sB3F4T0O/3IxKJABh5GJCnjU2kyev14oc//CF6e3uzXlN3dzd++MMfwuv1UhGnW7duEX+UxgmYuu/19/fjueeeg9vtVl3TzZs38dxzz+HWrVtUxOn69et47rnn4PV6k9Yk9/mbN28CUPd8SiRO2XI+pUtTX18f6Q/ZrKm3t5fooCFOAwMDxB814pTOHDFeU29vL5577jkMDAyo0vdkX/v6+lKKU1dXFzm20/maq4e8Nzg4iB/+8IfE32zWdOPGDTz33HMYHBykIk6jz5N09D353Orq6lJd02jbNMSpv78fr776KubNm4e8vDw4nU4UFhZi6dKlZLtwOEx84Hke0WgU4XAYH374IdEei8Vu204+DoIgEL/l7WRfI5HImO1kvyVJum072XZOTg5yc3MBAGazGfn5+cTXvLw8WCwWAIDdbofdbgcAWCwW3Lhxg2yXn58Ps3nkG8zc3Fzk5OQAGBnkkOO8d+9eNDQ0kDg5HA7YbDbwPI9Tp07hpZdeUqxJth2NRm/bbvTxH72d7J8oimQ7OR5yv5TjJG83/vhrGSelmrxeL06ePIlwOBy376Vbk9frxYcffohwOKw4TvJ2k2kafW6prWl4eBgnT56E1+ulIk6BQAAnT55EIBBIWlMoFMKHH35Icqya51MicZpIE23nU7o0+Xw+cp5ks6bR5zstcZLPk2AwqHnfi5cj1LrfGxgYwHPPPYfe3l5V7mGHhobw3HPPoaenR9VnwkzABkIYumDDhg3YsmULgJEXcxUVFeTk3L9/P5qbmwEA1dXVqKysBDDyQreiooLY2LdvH9ra2gAAx48fx/HjxwEAbW1t2LdvH9muoqIC3d3dAEamfVdXVwMAmpubsX//fgAjiaOiogJ9fX0AgCNHjqC2thbAyHT4Q4cOARhJDhUVFSQZHTp0CA0NDQCA2tpaHDlyZFJNdrsdS5YswYkTJ7Je05EjR7BmzRrY7XYq4nTlyhXyQKc0TsDUfc/tdmPz5s04deqU6pouXLiAzZs348qVK1TE6dChQ9i8eTPsdnvSmux2O/Ly8nDhwgUA6p5PicQpW86ndGnq6uqC2WyG3W7Pak0nTpzAkiVLYLfbqYjT0NAQeJ4nL5S07ntq5ojxmk6cOIHNmzdjaGhIlb535swZbN68GV1dXSnF6cCBA3j88cdht9un9TVXD3kvFAqB53mYTKas1/Tuu+9i8+bNCIVCVMTpwIEDKCkpgd1uT0vfs9vt2LhxIw4cOKC6Jrvdjr/6q7/CgQMHqIiTfL938eJFdHZ2Yt26dcSGTF1dHfGhtbUVnZ2dsFgsKCwsxKVLlwCMvHCoq6sjL0Gam5vJcXC73WhqaiLxrKurI742NTXB7XYT/2S/Q6EQ6urqyAuRhoYG8hJk06ZNKCsrAzAym6W8vJz4umPHDixbtgwA8Pjjj+Pxxx8HACxbtgw7duwg25WXl2PhwoUARmaLbNq0CQCwcuVKdHV1ged51NfXo7y8HLNnzwYAbNmyBRs2bAAArF27FkuXLgXP84o0yX2gs7MTra2tJO51dXXE1/r6egwNDQEY6W9yPxwaGkJ9fT2AkYEeSZLIyyU5TsBIn5f7TTripFRTU1MTiouLYbFY4va9dGu6dOkSCgsLYbFYFMcJiH8+jdZksViwfPlyNDY2qq7JaDSiuLgYly5doiJOt27dQnFxMQYHB5PWFI1GIUkSjMaRV4hqnk+JxGkiTbSdT+nS1Nraijlz5sBisWS1psbGRixbtgwWi4WaOPX29qK4uBher1fzvhcvR6h1vzc0NITNmzfjxIkTqtzDCoKAzZs349ixY6o+E2YCtkYII6uR68rZbDaYzWbU1taiuLgYfr8feXl5MBgM8Pl8sNls4DgOw8PDkCQJubm5EAQBgUCAfNXk9Xpht9thsVhIgrPb7YhGowiFQsjLywMwMrrqcDhgNpsRDAZhNBqRk5MDnucRDofhcrnI6LbT6YTJZEIgEIDZbIbNZkMkEgHP83A6nZAkCT6fDy6XC0ajEX6/HxzHwWq1ktF9h8MBURSZJqaJaWKamCamiWlimpgmpolp0qEmeRF1YOQLS47jYDQawfM8DAYDLBYLRFGEIAiwWq2IxWKIRCJjtjMajTCbzRAEAaIojtnOarXCYDAgEonAZDKR7SRJAsdxkCQJPM+P2W5gYADbtm1DTk4OjEYjgsEgzGYzHA4H+ZozLy8PoVAI0WiUDN6HQiFYLBbY7XbyhWp+fj4CgQAEQUBubi4ZROA4Dj/72c9gsVjwd3/3d8jLy4Pf74coinA4HBAEAeFwGFarFRzH4ac//Snmzp2bsiaz2QyTyYRoNIpYLDZmO7nsVjgchsViIdsBIMc/Go2O2Y6GODFNTBPTxDQxTfrRtH79+mlxb9TT05OxNULYQAgjq5nui6WHQiEcP36cfN2azdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykna3JbMizzeJhtVrR3NyMxYsXg+M4pOMRXsli6clw+PBhAEhpYfVMEY1G0dbWRr5kzmZo05Juf7RsT03bathSYoO2fjLd0Us8aNSRTp/itaXWYum0P4Nl8l0uK43FYDAYDAaDwWAwGAxGBlm8ePGEf5s5cyZmzpyJhx9+GPfff38avZqaFStWwGAwZNoNBoPBYDAYjClhM0IYWc10nxHCYDAYDAaDwWAwsp9gMIiPP/447t+WLl1KBkr8fj/OnDmjuT+Jzgg5fPgwCgoKUF5eTtYwSYZsnBHCYDAYDIYWqDUjhHbYjBAGg5ES0WgULS0tpOZhNkOblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjTwnKQdrZStSEIQtr7SEFBATiOm3QbjuPIdi+88AJKS0vT5F1mEUUR/f39ZPHebIY2Len2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2bCCEwchiQqEQjh49ShZKymZo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s5WqjbC4XDa+wjHcdi4ceOk22zcuJEMlthsNuzevRsHDx5Mh3sZhaYXOkqhTQsbiNXOFvsYRD/oJR406kinT1q2padnMLVhpbEYWQ0rjcVgMBgMBoPBYDCynURLY4VCIZw+fTotPoXDYezduxc1NTXgeZ78Xh4k2bVrF2w225h9kl1k/cUXX4TJZMJ3v/vdKbdlpbEYDAaDoWdYaSztMaelFQaDwWAwGAwGg8FgMBiKyMnJAcdxYwYmtEKe5cHzPAYHB8nvJyubJf8tUf++973vqeIrg8FgMBgMxlSw0lgMRhbj8Xjw7LPPwuPxZNoVxdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykna1Ubfj9frKfwWDAihUrYDSm71Ge4zgUFhaSf5OtHZJISa1sJxwOo7q6GuFwONOuKIY2Len2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2rDQWI6uZ7qWxBEFAd3c3Fi5cCLM5uyd40aYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHKSdrclsTFYaa/HixTAajWP2C4fDGBwchCRJKCgowOXLl+H1elPyS20mKqmllBdffBGFhYUJLeSuJZIkwefzweVypXVASgto05Juf7RsT03bathSYoO2fjLd0Us8aNSRTp/itaVWaSzan8Ey+S6XDYQwsprpPhDCYDAYDAaDwWAwsp9E1wiZCK/Xi4aGBi1cSxm5pJbb7Va1BNZka5QwGAwGg5GtsDVCtIeOITcGg5ESwWAQb7zxBoLBYKZdUQxtWtLtj5btqWlbDVtKbNDWT6Y7eokHbTpY/tHOHss/+kFP8aBNC8tB2tlK1cbw8PCU+xkMhpT90gq5pNbKlStVncHB8zyqqqqwd+9e1Wwm2/6FCxfSsk6L1tCmJd3+aNmemrbVsKXEBm39ZLqjl3jQqCOdPmnZlp6ewdSGDYQwGFmM0WhEfn4+NdMIlUCblnT7o2V7atpWw5YSG7T1k+mOXuJBmw6Wf7Szx/KPftBTPGjTwnKQdrZStUFbH0kWrdYNUav0Fs/zcLvd5N9UNg0GA2w2G5WDT8lCm5Z0+6Nle2raVsOWEhu09ZPpjl7iQaOOdPqkZVt6egZTG1Yai5HVsNJYDAaDwWAwGAwGI9tRWhrL5/Ph7NmzWrimCpOtG7JixQpS5irZMlqHDx9GYWGhqj6x0lsMBoPByASsNJb2ZH4ohsFgpAzP82hsbKRqKmGq0KYl3f5o2Z6attWwpcQGbf1kuqOXeNCmg+Uf7eyx/KMf9BQP2rSwHKSdrVRtRKNRqvpIKthsNuzevRuVlZU4fPgw+ffuu+/ixz/+MYqKilBYWJjyoEYq7N27F1VVVbcd16lKb4miCLfbDVEU0+GmptCmJd3+aNmemrbVsKXEBm39ZLqjl3jQqCOdPmnZlp6ewdSGDYQwGFlMOBzGiRMnEA6HM+2KYmjTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA7SzlaqNniep6qPKEFeN0T+p+baIcnA8zxqamom3Wai0luCIKCjowOCIGjlXtqgTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoFFHOn3Ssi09PYOpDSuNxchqWGksBoPBYDAYDAaDke3ovTRWovA8j7KysoS/Gk21NJbb7cbWrVs1s89gMBgMRrKw0ljaw2aEMBhZTCwWQzgchh7GM2nTkm5/tGxPTdtq2FJig7Z+Mt3RSzxo08Hyj3b2WP7RD3qKB21aWA7SztZkNqxW64QLprpcLkVtW63WlPbLBFotrJ4qe/bsue0L1lgsBkEQqDlnlUCblnT7o2V7atpWw5YSG7T1k+mOXuJBo450+qR1/tHLM5jasIEQBiOL8Xq9eP755+H1ejPtimJo05Juf7RsT03bathSYoO2fjLd0Us8aNPB8o929lj+0Q96igdtWlgO0s7WZDbMZjNmzpx52+9tNhskSVLU9uzZs1PaL1Ps2rULpaWlGSubNZpLly7dtlZIJBJBTU0NIpFIhrxSD9q0pNsfLdtT07YatpTYoK2fTHf0Eg8adaTTJy3b0tMzmNqw0liMrGa6l8YSRRF9fX2YPXs2TCZTpt1RBG1a0u2Plu2paVsNW0ps0NZPpjt6iQdtOlj+0c4eyz/6QU/xoE0Ly0Ha2ZrKhiiKaGlpwcDAAGKxGFwuF4qLi8Fx3JRtT1Ya65577oHH40FPTw/5XU5ODoaHh1PSkS54nsfg4CDcbje+973vxd1G69JYwMgslcrKSjIwI0kSQqEQ7HY7jMbs/raUNi3p9kfL9tS0rYYtJTZo6yfTHb3Eg0Yd6fQpXltqlcai/Rksk+9y2UAII6uZ7gMhDAaDwWAwGAwGQ19IkgRJkmA2mxPeJxqNTrj49/r162Gz2eD3++H1emGz2TBjxgycPHlSLZc1ZbJBixdffBGFhYUoKChIagZJMgMhAFsrhMFgMBjaw9YI0R46htwYDEZKBAIB/PznP0cgEMi0K4qhTUu6/dGyPTVtq2FLiQ3a+sl0Ry/xoE0Hyz/a2WP5Rz/oKR60aWE5SDtbidowGo1jBkES2c9iscQtreVyuZCTkwODwQCXy4VFixZh9uzZSQ2y0Mz3vvc9bN26FWVlZXHX89ACnufR0NCA7u5uuN1uuN3uhBd3pw2e59HY2EiN/+n2R8v21LSthi0lNmjrJ9MdvcSDRh3p9EnLtvT0DKY2+rj7YTCmKWazGUVFRbp4kKFNS7r90bI9NW2rYUuJDdr6yXRHL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1up2kh0v5UrV6K1tZWU1iooKMDy5ctT9jeb4HkeVVVVAIDdu3ff9rfBwUHyc0FBQcrthMNh/L//9/8Qi8VQU1NDBl7kRd537doFm82Wsv10YzQakZ+fT01ZmnT7o2V7atpWw5YSG7T1k+mOXuJBo450+qRlW3p6BlMbVhqLkdWw0lgMBoPBYDAYDAaD8WfkR3yDwTDpdh9//DGCwWA6XFJEqut5hMNh7N27FzU1NWO+uOU4DsuWLcOlS5cS9uHgwYNYvHgx9uzZQwZc4lFaWnrbQAyDwWAwGInASmNpDz3DbgwGI2kikQhqa2sRiUQy7YpiaNOSbn+0bE9N22rYUmKDtn4y3dFLPGjTwfKPdvZY/tEPeooHbVpYDtLOVqo2kt3PYDBMOQgCAPPmzUvKj2xg9OyPvXv3oqqq6rayIzzPJzUIAgDbt2/Hv/zLv6CqqgpWqxUbNmyA1Wq9bbvxgy60IwgCuru7IQhCpl0BkH5/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGrDBkIYjCyGxpqKqUKbFlafVjtbrD6tftBLPGjTwfKPdvZY/tEPeooHbVpYDtLOVqo2tDpGc+fOhd1uV9UmDfA8D57nJ1w8PlVkexzHYc2aNXEXZx9fhot2RFGE2+2GKIqZdgVA+v3Rsj01bathS4kN2vrJdEcv8aBRRzp90rItPT2DqQ0rjcXIalhpLAaDwWAwGAwGg8FIDZ7n4Xa74fP5kJubixs3biAajWbarTHwPI+ysrKkXqCsWLEi6VkfanH48GEUFhYmvd/oQZSCgoK4Ay0MBoPB0C+sNJb2sBkhDEYWI0kSPB4PJEnKtCuKoU1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOUg7W6na0PIYcRyHxYsXY9WqVbjjjjuQk5OjehtKkRciTwYtB0HUXuA2HA5jz549KCsrw9atW7F161aUlZVhz549ZDF2rYjFYgiHw6Dl+9h0+6Nle2raVsOWEhu09ZPpjl7iQaOOdPqkZVt6egZTGzYQwmBkMT6fDxUVFfD5fJl2RTG0aUm3P1q2p6ZtNWwpsUFbP5nu6CUetOlg+Uc7eyz/6Ac9xYM2LSwHaWcrVRu09ZFMsGvXLpSWllIxS8LlcqG8vBwul0sVe/HWMuF5HlVVVdi7d68qbUxEJBJBXV0dFXXbgfT7o2V7atpWw5YSG7T1k+mOXuJBo450+qRlW3p6BlMbVhqLkdVM99JYkiTB5/PB5XKp9kVSpqBNS7r90bI9NW2rYUuJDdr6yXRHL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1up2khnTNrb29HV1aVpG0qQy0fxPI/t27dr0sYjjzyCkydPTvh3o9EIl8sFn88X9+vWiUpjjV8/pKCgAAAmLfvFcRwqKys1GwCKxWKIRCKwWq0wGAyatEGzP1q2p6ZtNWwpsUFbP5nu6CUeNOpIp0/x2lKrNBbtz2CZfJdrTksrjGnJ7373O/zhD3/AmTNncP36dfT398NkMmHRokUoLS3Fzp07UVxcnGk3sxp5WrYeoE1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOUg7W6naSGdMZs2aRfVACMdxZJChtLQUVVVVqtovLS3F7t270dXVNeFAi1ziI1HC4TD27t2LmpqaMQMeHMdh2bJlk659Ig+epLLmSCIYDAbYbDZNbKdCuv3Rsj01bathS4kN2vrJdEcv8aBRRzp90rItPT2DqU3mPzli6JYXX3wRP/rRj1BfXw+j0Yh7770X8+bNQ1tbG15++WWsXr0av/jFLzLtZlbj9/vx8ssvw+/3Z9oVxdCmJd3+aNmemrbVsKXEBm39ZLqjl3jQpoPlH+3ssfyjH/QUD9q0sBykna1UbaQzJk6nE4sWLdK8HTWQy2WpRWlpKXbt2gUAk87AcDqdePrpp+F0OhOyG6/0FTAyyJGpBd1lIpEI6uvrqSlNk25/tGxPTdtq2FJig7Z+Mt3RSzxo1JFOn7RsS0/PYGrDBkIYmrF9+3YcP34cPp8PXV1d+Pjjj3H16lV0dHTgr//6rxGNRvGtb30L169fz7SrWQvHcVizZg0VtXKVQpuWdPujZXtq2lbDlhIbtPWT6Y5e4kGbDpZ/tLPH8o9+0FM8aNPCcpB2tlK1kc6YGAwGLF26FGvXrkVRUZHm7SnBZrNh9+7dOHjwoGJbBw8exO7duxP6OpfneTQ2Nk46k2P0tjU1NYr90wqTyYTCwkKYTKZMuwIg/f5o2Z6attWwpcQGbf1kuqOXeNCoI50+admWnp7B1IatEcLICOFwGPPmzYPH48G+ffvw9NNPp2Rnuq8RwmAwGAwGg8FgMBhaIEkSPvjgg0y7MSVutxtbt25VZGP8uh5KbI62pYVvDAaDwdAnaq0RQjuZfJfLZoQwMoLNZsPSpUsBAMFgMMPeZC/hcBgnTpxAOBzOtCuKoU1Luv3Rsj01bathS4kN2vrJdEcv8aBNB8s/2tlj+Uc/6CketGlhOUg7W6naoK2P0EZBQUFavzK12WwoKSmZcPaI2+2G2+1OaMZIphEEAR0dHRAEIdOuAEi/P1q2p6ZtNWwpsUFbP5nu6CUeNOpIp09atqWnZzC1YQMhaUQURZw/fx6vvvoqduzYgQceeAAcx8FgMMBgMCga+eN5Hq+99ho+97nPYcmSJbDZbJg3bx4efvhh/Pu//zv6+/vVE6IC/f39aGlpAQA8+OCDGfYme6HxwpEqtGlhN+Ha2WI34fpBL/GgTQfLP9rZY/lHP+gpHrRpYTlIO1up2qCtj9AGx3HYuHFj2tozm80oKiqC2WyO+/fvfe972Lp1K8rKyrBnz560+ZUK8sLvkiRl2hUA6fdHy/bUtK2GLSU2aOsn0x29xINGHen0Scu29PQMpjasNFaaOHr0KLZt24ZQKDThNps2bcKJEyeStt3S0vL/s/f24VGVd/7/+8ycOTOZp4yBCEoUvqVqQFTQtlCxErSlXdtsqaYtFBWlWxW7W2J3y9pvu3yVvbpVdreabRVdFXwg4rbYomnVYgVijSZrMGgwPNRgggEGQpJ5yjycOXPm90d+524S8jhznzP3nLlf18V1ATl535/3+XzOZ+Y83TdWrlyJ/fv3j7rNueeei61bt+KGG26YtD5Nuru70dzcjJ/85CdoaWnBypUrs1ownU+NxeFwOBwOh8PhcDj0yZepsYCBp003bdqEhoaGIW9iSJKE2bNnj7soOc2psWjDp8bicDicwoBPjaU//I0QgwgEAmPeBMmUrq4uXH/99eQmiCAIWLJkCdasWYPKykoUFRUBAE6fPo3ly5dj9+7d1GMYj507d5K3Xs4991zccMMN6Ovrw+bNm1FbW2t4PGYilUrB7/cjlUrlOpSsYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYqxEW0RZOr6urw/bt28mfuro6bNiwgepYLC7wmymqqiISiTDzRLbR8eg5Hk1tGlrZaLBWJ4WOWfLBog8jY9JzLDOdg9GG3wgxmGnTpuFrX/sa7r//frzyyitYt25dVnrf+c53cOLECQDAzJkz0dLSgr179+Kpp57Cyy+/jGPHjuH6668HACSTSXzzm99EIBDI1sakmDJlChYvXozPf/7zmDlzJqxWKzo7O7F9+3YyPRYnM8LhMB5//HGEw+Fch5I1rHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNcIykiRh+vTp5I8ea4d4PB7cdddd8Hg81LUzRZZlsjbJZNYnkWUZ+/btY2Y9E6Pj0XM8mto0tLLRYK1OCh2z5INFH0bGpOdYZjoHow2fGssgtC8jF1544ZD/v++++3D//fcDmPzUWK+88gq++tWvAhj4wtfc3IzLLrvsrO36+/tx+eWX4+jRowCAH//4x/i3f/u3s7a799578eCDD054/MEkk8lR50gdzsmTJ/HTn/4UW7ZsgdfrxQcffICZM2dmNG6hT42VTqeRSCRgt9shCEKuw8kK1rwYHY+e49HUpqGVjQZrdVLomCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NPKVCNXNZJPU2ONxUSmuZrM1FiCIMButyORSMCIyyljTY011pRgixcvxvr160dd1B0YqK1UKgWr1cpM/zEyHj3Ho6lNQysbDdbqpNAxSz5Y9GFkTCONRWtqLNbPwfjUWAXA9OnTz7oJki2PPPII+fvq1atHvAkCAC6Xa8gibY8//viIC9S4XC5MmTIloz+TORDOO+88PPXUU1i2bBlCoRB+9rOfTcI1ZzCCIMDhcDDzoZENrHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNVLopNNpxONxQ26CjMemTZuwZ8+es54olmUZe/bswaZNm8b8fUEQIIoiM7VldDx6jkdTm4ZWNhqs1UmhY5Z8sOjDyJj07j9mOQejDb8RkqdEIhG88cYb5N+33377mNvfdNNNcLvdAIDe3t4Rn+z5l3/5F5w5cyajP5nMj1pZWQkAaG5unvTvcgYIhUJ4+OGHEQqFch1K1rDmxeh49ByPpjYNrWw0WKuTQscs+WDNB+8/+unx/mMezJQP1rzwHqSfVqYarNVIoeP1elFdXQ2v12vIeKNNmyLLMhoaGsb83eFvigwnkUigsbERiUQiqxhpYXQ8eo5HU5uGVjYarNVJoWOWfLDow8iY9BzLTOdgtOE3QvKUt99+mxwsLpcLn/3sZ8fc3uFw4POf/zz5dy4WTR+O9lYKC4vl5CsOhwMVFRVjvu6cL7Dmxeh49ByPpjYNrWw0WKuTQscs+WDNB+8/+unx/mMezJQP1rzwHqSfVqYarNVIoROPx7F3717E43FDxlu9ejXuvvtudHR0DLmp0dvbO+7c8rIso7e3d9Sfi6KIWbNmTXiaa70xOh49x6OpTUMrGw3W6qTQMUs+WPRhZEx6jmWmczDasFNtnElx8OBB8vfLLrtsQgfOlVdeiddff/2s388F6XQaO3bsAAAsWLAgp7HkM5IkYf78+bkOgwqseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1km+UlJRAkqRRbxpIkoSSkpIJ68myjP3791OKbmIcPHgQt99++5C1P2hgtVpHXX8kFxgdj57j0dSmoZWNBmt1UuiYJR8s+jAyJj3HMtM5GG34GyF5yuHDh8nfJ7rQ+OA1Sg4dOkQ9psE0Nzfjpz/96ZA4NTo7O7FixQo0NDTAarVi3bp1usZiZmKxGF577TXEYrFch5I1rHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNZJvaDcPRmPx4sWQJGnCekVFRfjKV76CoqKirOKaM2fOpMYFJr72x0RJJpP46KOPkEwmqehli9Hx6DkeTW0aWtlosFYnhY5Z8sGiDyNj0nMsM52D0Ya/EZKn9PT0kL9PmzZtQr8z+E7jWK/H0iASieBnP/sZfvazn2HKlCm48MILIUkSTp8+jY6ODqTTabhcLjz11FP8jZAsUFUVgUAAqqrmOpSsYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5F8RHuDYvCaGZm+XWGxWODz+WCxZPdc6YYNG1BSUkKmuFq9evWEf7ehoQG33XZbVuMDbC38Dhgfj57j0dSmoZWNBmt1UuiYJR8s+jAyJj3HMtM5GG34GyF5SiQSIX+f6JMog7cb/Pt6cMUVV+CXv/wlbrrpJkyZMgVHjx7Fvn37EAwGsXDhQvz0pz/FoUOH8O1vf5vKeA6HgywGn0qlEAgESDMJhULky24sFkN/fz+AgTVKAoEA0QgGg+RObDQaRTQaBTBwlzYYDJLtAoEAWd+kv7+f3NGUZZks/JNOpxEIBMj6J5FIhMwhm0gkEA6HAZzdDMLhMFn7JR6PkzyN5snlcuHrX/86iS2fPaVSKdx4441wuVxM5EkURXz1q1+Fy+XKOk/A+LUnSRJWrFgBQRCoe7JarVixYgVEUWQiT4qiYMWKFXC5XJP25HK58LWvfQ1WqxUA3eNpInnKl+PJKE82mw033HADXC5XXnsCgK9//etwuVxM5Mlut+MrX/kKXC4XlTwZ2SOGewKAFStWwG63U6k9i8WCFStWwGazZZSnZDKJb33rW3C5XAX9mWuGvudwOPCVr3wFTqcz7z2l02msWLECDoeDiTwlk0l885vfhMvlMqT2XC4XqqqqhjwRScuTy+XCt7/9bSSTSSbylOn3PZfLhRtvvJF4MLJHJJNJ8ndVVYesixGPx0kMyWSS5CyVSp21nRaDLMtDttPi0S4IDd5O2w+Kopy1nRZrIpEYst3wWLXtBEHAT37yE9TV1WHbtm147rnnUFdXh5/+9KcYzGBPTqeT9BibzYbi4mKSl9dee23Imp3aubYkSWQRdUEQ4PP5yPdWt9tN5ke32+1QFAWSJGHatGk499xzsXTpUgCAx+OB3W4HMPQ812q1wufzQRAEyLKMM2fOkDdKioqKyPcGURTh8/mIp8H1PzxPqqpi3rx5kCSJiTyl02nypowRtSdJEi699FKoqkrdk81mw7x585BOp4fEmoknGnmyWCyYN28eLBbLpD2JoohPf/rTsNlsZLtsPbHWI/LJUzqdRnl5OSRJymtPqqri0ksvhSRJzORJEATMmzcPVqtV99obqUfQ+r5nt9uxYsUKoqnFnel32KKiIqxYsQKqqlI9J8wF/EZInjL4wJ3o67TalykAur+OdM455+Dv//7vsWPHDhw+fBiBQADJZBI9PT1455138K//+q8oKyujNt6iRYtQVVUFAOju7kZNTQ05OLds2YK2tjYAQH19Perq6gAAXV1dqKmpIRqbN29Ge3s7AGDXrl3YtWsXAKC9vR2bN28m29XU1KCrqwsAUFdXh/r6egBAW1sbtmzZAmCgcdTU1KC7uxsAsGPHDjQ2NgIAWlpaUFtbC2CgOdTU1JBmVFtbi5aWFgBAY2MjWUdlNE+KoqCurg4vv/yyKTy9+eabUBSFiTzt27cPW7duhaIoWecJGL/2jhw5go6ODvzxj3+k7untt99GR0cH9u3bx0yeOjo6oCjKpD0pioJt27bh7bffBkD3eJpInvLpeDLCU2trK/77v/+bfAHMV08vv/wy6urqoCgKE3nq7OxETU0N+eKsd+3R7hGDPb388svo6OggnrLJU11dHfbs2YOOjg60trZmnCft87PQP3Pzve+dPHkSNTU15GQxnz395je/QUdHB/HEQp7ef/99KIpiSO0pioLm5mZdPCmKgr/85S/M5CnT73uKouDNN9/MSY/o7OzEkSNHiF5TUxOJtbm5GX19fcSHlrO+vj40NzeT7ZqamkgMR44cQWdnJxlXiyeVSqGpqYlc2GlrayP7we/3o7W1lXhvamoisba2tsLv95N9rsUdjUbR1NRELvK0tLSgu7sbkiQhFoshEAhAkqQxPS1btgzLli0DAMyePRtr164FMHBRuLq6mkxRXVlZiSVLlgAA5s6dizVr1gAYOP+urq5GaWkpAKCqqgqLFi0CMLBOpuZP87Ru3TosXboUN998M5k1YfB5bmlpKaqrq8l5fSQSwdy5cwEAS5YsQWVlJQCgrKwM1dXVxFNHR8eYedJulrGSp87OTqiqakjtqaqK3t5eXTwlk0kEAgFSe0B2x1O2efrkk08QCARw8uTJSXuKRCLEk5YnGp4mmqfRPOnRI/LF08cffwxVVfPeU3d3N1RVZSZPHR0dCAQCOH36tO61N1KPoPV9r7OzEx0dHXj55ZepfIft7e1FR0cHtm3bRvWcMBcIaZbeQSpA7rvvPtx///0ABr687N27d0K/99WvfhWvvPIKAOCf//mf8cADD4z7O6+++ipuuOEGAANPo2h3+PKZDz/8EPPmzYPD4YAoimhsbER5eTnC4TCKi4shCAJCoRAcDgf50quqKlwuFxRFQSQSIU/LBINBOJ1O2Gw20uCcTieSySSi0Sh5AigQCMDtdkMURfJ0alFREWRZRjweh9frRTqdRjAYhMfjgdVqRSQSgSiKcDgcSCQSkGUZHo8HqqoiFArB6/XCYrEgHA5DkiTY7XbE43EoigK3241UKjWip2g0ipqaGnzve9/D+eefn9eePvnkE2zZsgXr1q2D3W7PeZ5OnTqFxx57DOvWrYPX680qTxOpPVmW8eijj+KOO+5AcXExVU/9/f147LHHcNddd8HpdOY8TydPnsTWrVvJ+kCT8RQOh1FTU4O77roL06ZNo3o8mbFH6O3p9OnT2Lx5M9atW4fi4uK89XTixAk88cQTWLduHZxOZ87zdObMGTzyyCNYt24dfD6f7rVHs0cM99TX14cnnngC3//+94c8oZqpp3A4jMcffxxr166Fw+GYdJ66urpI/7FarQX7mWuGvtfT04Nf/epX+MEPfoBzzjknrz319PTgySefxN///d/DarXmPE+ffPIJOU5EUdS99pLJJGpqanD77beTNQ1peVJVlWjPmDEj53nK9PuedsFizZo1uOCCCwzrEaIo4o033kA6nYYkSVBVFbIsk7catCdarVYruUBqs9mQSqWQTCaHbCdJEiwWC3niVttOURTY7Xak02nyhL62ncVigSiKUBQFqVRqyHZ2ux2CICCRSMBqtZLtVFUdEuvg7URRJLGO56m7uxvf/e53AQxctLLZbHA6nQgGg/D5fKiursYvf/lL9PT0kDfIY7EYJEmCw+FAKBSCIAgoLi5GOBxGKpWC2+2GoiiIx+Ow2+148sknUVZWdpanSCSC06dP4z/+4z/w8ccfQxRF8ganx+NBMBhEOp3Gf/7nf+LHP/4xZFlGUVERLBYL+vv7IYoi3G43eer22Wefxfnnnz9iniKRCPbv34+FCxcCQM7zFAwGSTxWq1X32kun02hqasL8+fPh8Xioekqn0/jf//1fzJ8/H263e8K1p1eeZFnGvn37cNVVV8Fms03KUzQaxbvvvovPfe5zKCoqmvTxZMYekUtPoVAILS0tWLhwIURRzFtPoVCI1LUgCEzkSTtOPvOZz0AURV1rb6QesXDhQirf9xRFwSOPPILvfe97OOecc7L+DquqKn75y1/iu9/9LkpLS7M+Jzx+/DjmzZsHjQMHDuDSSy+FEfAbITkm0xsh3/72t/HrX/8aAPCDH/xgQnfUfvvb3+Kmm24CMLBeyMmTJzMLmiG0GyEaRh48HA6Hw+FwOBwOh2NWVFXFm2++meswcoLf78fKlSt1HWP79u1D1vEciWPHjo26dshDDz2Ee+65Z9xx5syZg1/84hfkwh+Hw+Fw2KSioiLXIRhCLq/l8qmx8pQpU6aQv586dWpCv6O9kgUAJSUl1GPicDgcDofD4XA4HA6HQ4eJToM9FgcPHsSmTZsoRMPhcDgcTn7Db4TkKZdccgn5uzYv33gcO3aM/L28vJx6TBzjCQaDeOCBB4YsjJSvsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Qgw8GDeggULcNlll036dz/zmc/oEJFxFBcX49577yXTkOSKjRs3TnjbhoYGsnDtYOLxON56660ha5DmkonEI8sy/H4/+TOSL5rjsaBNQysbDdbqpNAxSz5Y9GFkTHqOZaZzMNqIuQ6Akxlz5swhf29tbYWiKBDFsdP53nvvjfj7nPzF6XRi+fLlcDqduQ4la1jzYnQ8eo5HU5uGVjYarNVJoWOWfLDmg/cf/fR4/zEPZsoHa154D9JPK1MN1moEACwWC4qLixGLxSb9u263W4eI6FJSUgJJkka8yB6NRrFz504yR3uu0BYCngiyLKO3t/esqbhsNhvKy8ths9kmpQP8dR/RZKx44vE4Nm3adNZNHUmSsHjxYqxfv37S039N1n+utGloZaOh537iTB6z5INFH0bGpOdYZjoHow1/IyRPufrqq2G32wEA/f39aG5uHnP7RCKBxsZG8u/rrrtO1/iMxuFwkC/UqVQKgUAA2vI3oVCIfFGKxWLo7+8HACiKQhaQAwbuUGqLKEWjUfLFNplMDrlrqS08BAzse+3LvyzLCIVCAIB0Oo1AIIBUKgUAiEQi5C5vIpEgC9WrqopAIABVVQEA4XAYiUQCwMAXvUgkMqYnm82GmTNnEn/57CkWi+FTn/oUbDYbE3lSVRUzZsyAzWbLOk+av7E8AQNvamkLXdH0lEqlUF5eDlVVmchTNBolH/iT9WSz2VBWVkb80TyeJpKnfDmejPKUTqdx/vnnw2az5bUnWZYxc+ZM2Gw2JvIkCAKmT59OvhTrXXs0e8RwT7Iso7y8HIIgUKk9RVFQXl5OFlicbJ76+/tx8cUXw2azFfRnrhn6nsViwfTp08mDQPnsKZFIoLy8HBaLhYk89ff346KLLoLNZjOk9mw2Gz796U8TfzQ92Ww2XHLJJejv72ciT0Bm3/dsNhs+9alPDfn8NapHJJNJ8ndVVYc8uTo4T8lkkvw9lUoN2U5buF7LjeYjlUqReNLp9FnbaftBUZSzttNiTSQSQ7YbHuvg7bT9NZaneDyOVCoFSZKwZMkSctHGZrORN0CSySRcLhfRdrlcKCoqAjBwUd7r9QIY+Dz3+XywWq0ABm4AaRfq7XY7iXssT9oi6wBgtVrh8/kgCAIAwOv1khsRRUVFcLlcAABRFMniusDAGyzad4rheUomk5g6dSqsVutZ+3/wdsFgEBs3bkRlZSXWrl2Lm2++GZWVlfj5z39O6ohGnhRFwTnnnEMWOB68XU1NDfbs2QNZlod4EkURTU1N2LRp07i1N9iTtpDxlClTkEwmqdeexWLB1KlTyWLK2v4fr/ayydNYx1M6ncbUqVPJgs6T8SQIAtxuNywWC9kuW0+TydNonnLZI3LpSVEU0lvy2VMymcSUKVNgtVqZyZOqqpg6dSoZK5s8ZdIjaH3fEwQB5eXlQz5zs/kOa7VaUV5eTr4Pafsu23PCXMBvhOQpbrcb119/Pfn3008/Peb2v/3tb0khl5SU4Nprr9UzPMNZtGgRqqqqAADd3d2oqakhB+eWLVvQ1tYGAKivr0ddXR0AoKura8gi85s3b0Z7ezsAYNeuXdi1axcAoL29HZs3bybb1dTUoKurCwBQV1eH+vp6AEBbWxu2bNkCYKBx1NTUoLu7GwCwY8cOciOqpaUFtbW1AAaaQ01NDWlGtbW1aGlpAQA0NjZix44dY3qKRqPYsmULdu7cmfeennrqKWzbtg3RaJSJPDU1NeHRRx9FNBrNOk/A+LXX1taGnTt34pVXXqHu6c9//jN27tyJpqYmZvKkPUU3WU/RaBSPPfYY/vznPwOgezxNJE/5cjwZ5Wn//v341a9+hWg0mteedu7ciS1btiAajTKRp48++gg1NTXky63etUezRwz3tHPnTuzcuZN4yiZPdXV1eOONN7Bz507s378/4zzt2LED0Wi0oD9zzdD3jh07hpqaGvJEdD57+vWvf42dO3cSTyzk6de//jWi0aghtReNRvHCCy/o4ikajeK3v/0tM3nK9PteNBrFtm3b8NRTTw3JkxE9orOzE0eOHCF6TU1NQzx1dHQQH1rO+vr6hjyo19TURGI4cuQI6uvrUVpaiu7ubhJPKpVCU1MT+exra2sj+8Hv96O1tZV4b2pqIrG2traStTC7urpI3NFoFE1NTeQiT0tLC9lfY3lqbm4mfeXrX/86br31VkiShNmzZ2Pt2rWQJAlf+tKXUFlZidmzZwMAKisrsWTJEgDA3LlzsWbNGgADNzuqq6tRWloKAKiqqsKiRYsAAAsWLCD+xvIUj8fxzW9+EwBQWlqK6upq8kDkmjVrMHfuXADAkiVLUFlZCQAoKytDdXU18bR27VoS60h5OnToEJLJ5Fl50qbg7u7uRmNjI/bs2QOLxUI8ybKM888/Hy+++CLVPH3wwQdIJpND8tTT00P23XBPy5Ytw7Jly9DQ0IDu7u4xa2+wp5aWFiSTSRw8eFCX2ovH4zh06FBGtZdpnsY6njo7O3Ho0CEcP3580p60WLULpbQ8TTRPo3nKdY/IlacPPvgA77//PpLJZN57amtrQzKZZCZPH3/8MQ4dOgS/36977Y3UI2h93/voo4/IeRiN77CnTp3Czp078dxzz1E9J8wFQlq7XcPJCffddx/uv/9+AANfXvbu3Tvh3/3DH/6Ar33tawAGvmTt27cPl1566VnbRaNRXHHFFfjoo48AAPfeey9+/vOfZx88A3z44YeYN28eHA4HRFFEY2MjysvLEQ6HUVxcDEEQEAqF4HA4IEkSYrEYVFWFy+WCoiiIRCLkaZlgMAin0wmbzUYanNPpJE9saU8ABQIBuN1uiKKI/v5+WCwWFBUVQZZlxONxeL1epNNpBINBeDweWK1WRCIRiKIIh8OBRCIBWZbh8XigqipCoRC8Xi8sFgvC4TAkSYLdbkc8HoeiKHC73UilUiN6UhQFr7zyCpYsWYLS0tK89nTq1Cm89dZb+Ju/+RsIgpDzPPX19eFPf/oTvvrVr8LhcGSVp4nUHgDs2bMH11xzDZxOJ1VPsizjzTffxJIlSyCKYs7z1NPTg8bGRixbtgyyLE/KUyKRwB/+8Adcf/31KCkpoXo8mbFH6O0pEAhg165d+NrXvoaioqK89dTd3Y36+nrccMMNEEUx53kKhUJ47bXX8LWvfQ1Op1P32qPZI4Z7ikQiaGhowHXXXQdVVbOuvXg8jj//+c+oqKiAxWKZdJ5OnTqFxsZGfPnLXyZP/BbiZ64Z+l44HMarr76Kr371q+S4yVdPoVAIb7/9Nq6//nqkUqmc58nv9+Odd97BV77yFaiqqnvtCYKA1157DZ///Odx3nnnUfUkiiL++Mc/YtGiRTj33HNznqdMv++l02m8+uqruOaaazBt2jTDeoQoinjjjTeQTqchSRJUVYUsy3A4HCgtLUVZWRkEQcB7771HnlK12WzkCXbt7Yd4PA5JkmCxWCDLMr7whS8gnU7jnXfegaIosNvt5Cn1wdtZLBaIokielh28nd1uhyAI5Kl+bTtVVYfEOng7URTJmwYjedJitdlsZDtg4MnZM2fOIJVKYdq0aRAEAYcOHcJ9992H3t5euFwuqKqKWCwGSZLIuYMgCCguLkY4HCZvdiiKgng8DrvdjieffBJlZWXjevr3f/937Nq1C1arFR6PB8FgEOl0Gl6vF/F4HLIso6ioCBaLBf39/RBFEW63mzx1W1xcjGg0imeffRZTpkwZkqdYLIauri7Mnj2bfC5q+18QBNhsNgSDQdx6662jehIEATt27IDFYsk6T5FIBMeOHcNFF11E9r0kSThx4gS+//3vn+UpmUySt3a0hxxKSkpGrT3NUyqVgqIosFgs+Oijj1BWVgaXy0W19iwWC44ePYqysjIUFRVlVHuTyZPmabTjKZVKobOzEzNnzoTFYpmUp0QigY8++ggXXXQR+Xemx9NEesREPbHSI4z21N/fj87OTlx00UXknDwfPUUiEXR1deHTn/40VFVlIk+KouDYsWOYNWsWBEHQtfZG6hELFy6k8n3PYrFg9+7dWLx4Mdxud9bfYUVRxJ/+9CdcffXVKC4uzvqc8Pjx45g3bx40Dhw4MOL1bD3gN0JyTDY3QgDg2muvJU9Gz5o1Cy+99BIuv/xy8vOenh6sXLkSr7/+OoCBt0Ha29uHvCqbz2g3QjSMPHg4HA6Hw+FwOBwOx6yoqoo333xzxJ+Vlpbi0ksvRSwWG/IU7nj4fD7Mnz8fAHDmzBkcOHCARqg5YePGjdizZ0/Gv799+/az1uwYiXg8jh/+8Ic4ePBgxmNNZrzB427atGlCHierPVn8fj9WrlyZ8zg4HA5HTyoqKnIdgiHk8lounxrLQG644QbMnz9/yJ/HHnuM/Ly5ufmsn8+fPx8nTpwYVfP5558nT051dHRg/vz5WLp0Kf7u7/4OX//613HhhReSmyCiKOLXv/61aW6CcAbmAtRekc13WPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaiQbtHNXAGQe9nwjlUrhzJkz+Md//EcsXbp0yILhkiRhzpw5VMdzOBzYsGEDVU0NzYs27cxgJnoTxIh4tLnmjRqPNW0aWtlo6LmfOJPHLPlg0YeRMek5lpnOwWjDb4QYSFtbG95///0hf06dOkV+3t/ff9bP33///TE/9MvKyrB7927yVE06ncbevXvx1FNP4eWXXyavS5WWlmLnzp1D1hXh5D/RaJSstZDvsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Ug2aIuKa2gLf+cT2gUdq9WKDRs2oK6uDtu3b8f27dtRV1en200LPRjt4pQsy2hoaMhZPCdOnIDf70dHRwf+5V/+BatXr9Z1PH4jVv/xOfQwSz5Y9GFkTHqOZaZzMNrwqbEMZNasWWQxocnw8ccfY9asWWNuI8syXnjhBWzfvh0ffvghTp06BZ/Ph0996lO48cYbcfvtt+ftEzdjwafG4nA4HA6Hw+FwOBz66DE11pVXXgmv10v+/c4775DFVc2CHtM4TVQzV+PRmJJKm4qroaEh4zdA+NRYHA4nn+FTY+mPaMgoHAADU1fphSRJuPXWW3HrrbfqNgaHw+FwOBwOh8PhcDi0KCsrQ3t7e67D4DBALqbi4nA4HE5hwafG4nDymEAggPvvvx+BQCDXoWQNa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajdBk6tSpsFjy67JEPB5HfX094vF4rkPJGla8aFNx+Xw+3HfffYata6qnf5raNLSy0WClTjgDmCUfLPowMiY9xzLTORht8usbB4czCg6HA263G8DAgkOBQADarG+hUIi8WhuLxdDf3w8AUBRlyEEYDAbJ3HzRaJTMXZdMJhEMBsl2gUAAiqIAGFjXJRaLARj48hYKhQAMrNUSCATIokeRSIQ0t0QigXA4DGDgdfNAIABVVQEA4XCYvBoej8cRiUTG9OR2u7FixQoyt24+e1JVFd/5znfgdruZyJPNZsM3v/lNuN3urPMEjF97drsdq1evhsVioe5JFEWsXr0aNpuNiTylUimsXr0abrd70p7cbje+9a1vQRQHXmikeTxNJE/5cjwZ5UmSJFRVVcHtdue1J0EQsGLFCrjdbiby5HA4cNNNN5HPNb1rj2aPGO5JEASsXr0aDoeDSu1ZrVasXr0akiRllCdFUXDLLbfA7XYX9GeuGfpeUVERbrrpJrhcrrz3BACrV69GUVERE3lSFAU333wz3G63IbXndrtx8803k9hoenK73bj11luhKAoTecr0+57b7cZ3vvMdEpuRPSKZTJK/q6o65ILN4Dwlk0ny91QqNWS7eDxOYohGo0PylEwmcfnll8PpdCIej8Nms5GfaftBURQSdzqdRjweJ7EmEokh2w2PdfB22v4ay1M8Hh+y3UietAXRte+jmg9tO+3vgiDA5/PBarUCANxuNxwOBwDAbreTuCfqyWq1wufzkc8hr9dLFmovKioi/VAUxSE3EoqLi8l+He5JVVVcccUVkCRpSJ4URSHruUiSRKYzG82T3+/H8ePH0dXVBVmWJ52nnp4eyLIMQRCwbds2RCKRCXtyOp1wOp2j5lPzNDxPiUQCkiTh8ssvh6qqQ7ajUXs2mw1XXHEF0ul01rU3Wp5G8jQ41sHbWSwWXHHFFbBYLJP2JIoi5syZQ/Y5zeNpInkazROrPUJvT+l0GvPmzYMkSXntSVVVXH755ZAkiZk8CYKAK664AlarVffaG6lH0Pq+53A4sHr1agiCQOU7rNPpxOrVq5FOp6meE+YCfiOEYwoWLVqEqqoqAEB3dzdqamrIwbllyxa0tbUBAOrr61FXVwcA6OrqQk1NDdHYvHkzeS17165d2LVrFwCgvb0dmzdvJtvV1NSgq6sLAFBXV4f6+noAQFtbG7Zs2QJgoHHU1NSgu7sbALBjxw40NjYCAFpaWlBbWwtgoDnU1NSQZlRbW4uWlhYAQGNjI3bs2DGmJ1EU8fHHH+PVV1/Ne0/PPvss+vv7IYoiE3lqbW3Fm2++CVEUs84TMH7tdXZ2YtasWdi9ezd1T83NzZg1axZaW1uZyNMTTzyBWbNmQRTFSXsSRRFNTU1obm4GQPd4mkie8uV4MsrTkSNH8Prrr0MUxbz29Oqrr+Ljjz+GKIpM5Mnv9+PFF18kF1j0rj2aPWK4p1dffRWzZs2C3++nUnsNDQ2YNWsWjhw5klGeHnnkEZSUlEAUxYL+zDVD3+vr68OLL75ITuDy2dPOnTsxa9Ys9PX1MZGnRx55BC6XC6IoGlJ7oijCarXikUceoe5JFEWcd955eOSRR5jIU6bf90RRRH9/P5599lmSJ6N6RGdnJ44cOUL0Bq8HsnnzZjL9c3t7O8lZX18f+a4GAE1NTSSGP/3pT2flyefz4fLLL0dTUxM+9alP4eKLL0ZbWxvZD36/H62trcR7U1MTibW1tRV+v5/scy3uaDSKpqYm0iNaWlrI/hrLU3NzM/r6+sb0ZLFYcPDgQXIB6MiRI2Qt0O7ubhw7dgzAwM2O6upqlJaWAgCqqqqwaNEiAMCCBQuIv4l6Ki0tRXV1Nex2OwBgzZo1mDt3LgBgyZIlqKysBDAw3Vh1dTXxtHbtWsyePXtET++99x58Ph8sFsuQPJ06dQpLliwBAMydOxdr1qwZ09M999yDX/3qV2hoaEBlZSU2bdo0qTxpFxi1h6UURZmwp2XLlmHZsmUABm4ejlZ7w/PU0tICi8UCj8eDd999l1xUpFV76XQaPp8P77//fta1N1qeRvIEDFyUbGpqGuLpxIkT8Pl8OH369KQ9xeNxHDx4kFzkpHk8TSRPo3litUfo7enDDz9ELBaDxWLJa0/vvvsuioqKYLFYmMnTJ598Ap/Ph56eHt1rb6QeQev7nt/vx6xZs/Dqq69S+Q4bjUYxa9Ys/M///A/Vc8JcwBdL5+Q12gI7DocDoiiisbER5eXlCIfDKC4uhiAICIVCcDgckCQJsVgMqqrC5XJBURREIhHyZEkwGITT6YTNZiMNzul0IplMIhqNori4GMDA3VW3201OSCwWC4qKiiDLMuLxOLxeL9LpNILBIDweD6xWK3ni1uFwIJFIQJZleDweqKqKUCgEr9cLi8WCcDgMSZJgt9sRj8ehKArcbjdSqdSInpLJJHbu3IkvfelLOPfcc/Pak9/vx+7du/H1r38dFosl53nq7e3FK6+8gm984xsoKirKKk8Tqb10Oo3XXnsN119/PVwuF1VPiUQCr7/+OpYtWwabzZbzPJ05cwb19fWorKxEMpmclKd4PI7f/e53+Ju/+RtMmTKF6vFkxh6ht6e+vj78/ve/x4033gin05m3nk6fPo3XX38dy5cvh81my3megsEgXn75Zdx4443k33rWHs0eMdxTOBzG7t278Td/8zfky342tReLxfCnP/0JX/7yl2G1WiedJ7/fj/r6evzt3/4tVFUt2M9cM/S9UCiEl156Cd/4xjfIv/PVUygUwu7du3HDDTdAVdWc5+nkyZPkOEmn07rXHgC89NJLqKiowPnnn0/Vk9Vqxcsvv4wlS5Zg2rRpOc9Tpt/3VFXFSy+9hOuuuw7Tp083rEeIoog33ngD6XQakiRBVVXIsgyHw4HS0lKUlZVBEAS899575ClVm81G3orQ3n6Ix+OQJAkWiwXl5eUoLi4e83hSFAVvv/02UqkURFEkb/TY7XbyNKrdbocgCEgkErBarWQ7rbdrsQ7eTrvplkwmR/SkxWqz2ch2I3mSZRkHDx7EJZdcQv4tCALZ7sSJE7j11lshCAKKi4sRDofJm82KoiAej8Nut+PJJ59EWVnZhDz19vbi5ptvhsfjIbXk9XoRj8chyzK5mKg9sKS9eQ0MvD0RjUbx7LPPYsqUKUM8RaNRdHZ24uKLLyb7Tru4escddyAWi0GSJDgcDoRCoXE9SZKEcDgMi8WCZcuWYf369RPKU19fH77zne9g2rRpuO666/Dyyy9DVdVxPSWTSfI2SDQaRW1tLUpKSkasveF5UhQFgiDg8OHDmDlzJtxuN9nOYrFkXXuCIOAvf/kLZs6cCafTmVXtjZankTwNjnXwdoqi4OjRo/jUpz4Fq9U6KU/xeByHDx9GeXk57HY71eNpInkazRONPOnRI/T2FIlEcPToUZSXl5PPiHz0FA6H0dnZiUsuuQTpdJqJPCWTSXz88ceYPXs2LBaLrrU3Uo9YuHAhle97giDg1VdfxXXXXQePx5P1d1ir1Yo//OEPWLp0KXw+X9bnhMePH+eLpXM42TD41TbtlWEN7TVeAOT1XmDk12s1tC9TwECzHPyzwb+jvaoLDLwyrL2arL0yrKFNbwIMPEWjPcVjsViGbOfxeMjftcY8lqdUKoUpU6aQ38tnT8XFxSgpKSEnsBq58lRUVETmLM42T5reWJ5isRh8Ph/cbjfZlpYnLa6ioiKincs8+Xw+8kTTZD1ZLBZMnTqVaNI8ngDz9Qi9PWkXQiwWS1578ng8mDJlCiwWCxN5kiSJ7NdMPeWqR4zkyefzQZKkIR4z9aTF5XA4iN5k8nTOOefgnHPOgcViOauWx/Nkps9cM/Q9m82G0tJSMj1LPnvSbhLabLYhsefK0+DjZPC4etVeLBZDSUkJzjnnHOqeYrEY8TN4Kp9MPNHIU6bf97R9pG1nVI9QVZVMhaPpDf49zZPmY7Cetr+Hj+V0OodMuTTS8aRdDGpuboaqqhBFkbwlKQjCED3NKwCyzUixDt5uLE/D+8xIngRBgMvlIv/WPGjbab+nTT2iob1BAoBczJuMJ23qEQ3tKWYAJA/AyNOpjObJ4XDA4XCcFYMoikOmU9GmOBnPk/Y0sKqq2L17N+655x5y820kT9r+16b7CoVC6Ovrg6qqE/akXRAcrKcx+O/D86RdINW+/2jfuwZvl03taRdbHQ4HqZVMa2+0PI3kaaRYJUki/2ez2Yj+RD1ZrVbyPWz4dtkeT8O3m4ynwbGy1COM8OR0OiEIQl570o49QRDO2i5XnrT4RVEc9TjRs0fQ+r6nfd/QboJocWf6HVbT83q95GfZnBMeP34cuYK/EcLJa7Q3QjSMvIvI4XA4HA6Hw+FwOGZFVVW8+eabI/7svPPOwyWXXIJYLDZkOpLxuPLKK4dcIBmL3t5efPDBBxPWZgW/34+VK1eOu9327dsxffr0CWnKsozKykpyQyITJjPeRD3QGtPo8TgcDodFKioqch2CIeTyWi5fI4TDyWNkWcb+/fuz+kLMCqx5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlalGrmpk+FtBg9HWiChEUqkU/H4/mbPeCCRJwuLFi6nrDvciyzL8fj+Z195oJEnC/PnzhzxxrSd65pKmNg2tbDRyUfOc0TFLPlj0YWRMeo5lpnMw2vAbIRxOHhOPx7F3794hU4PlK6x5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlalGLmvkvPPOO+v/ioqKhkzDUWgoioKOjg4oimLouOvXr8fSpUupampeIpEINm7ciMrKSqxcuRL33HMP1XEmisPhQEVFxZApV/REz1zS1KahlY1GrmqeMzJmyQeLPoyMSc+xzHQORhs+NRYnr+FTY3E4HA6Hw+FwOByOPqTTaXR1dcHv9yORSOCcc87Bpz/9aTJHuCzLePvttyesx6fG+iuZTuN07NgxrF69etK/N9Z4GzduxJ49eyatOR5z5szBL37xi3FvbPCpsTgcDodPjWUE/I0QDiePSafTiMfjMMP9TNa8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylQjlzUiCAIuuOACfPazn8U111yDSy+9dMgCsJIkDVmovhBIp9NQFCVnxyzNaaPS6TSi0SgaGhqoaQ7m4MGD+NnPfkam2xpvWhRtsWFt8XS90TOXNLVpaGWjkeua5wzFLPlg0YeRMendf8xyDkYbfiOEYwocDgfcbjeAgXn2AoEAOcBCoRD5whWLxdDf3w9g4DW0QCBANILBIJLJJAAgGo0iGo0CAJLJJILBINkuEAiQV9f6+/sRi8UADDwNFQqFAAwc5IFAgMz1F4lEyCtgiUQC4XAYwMAChIFAAKqqAgDC4TASiQSAgVfHIpHImJ6CwSAefPBBnDx5Mu89dXV14cEHH0QwGGQiT6dPnybxZJsnYPzaO3PmDB588EH4/X7qnjQvp0+fZiJPn3zyCdGYrCet5k+fPg2A7vE0kTzly/FklKfu7m6Sy3z2dPLkSeKDhTz19PSQeGjkycgeMdyTtm97enqo1N6pU6fw4IMPoru7O6M8De4/hfyZa4a+19vbiwcffJDEm8+eTpw4gQcffBC9vb1M5GnwcWJE7WnH1ieffELd02BtFvKU6fc9zUdXVxfJE0s9ory8HKqqkpylUqkh01/E43ESQzQanfDxpMWqKAr5+/CLKYlEguwvRVFI3KqqnrWdpp1MJs/abnCsg7cbyVMikUBDQ8MQH4O30/4uCAJ8Ph+sVisAwO12kzcj7HY7iTtTT16vl9wUKSoqIjekRFGEz+cjnoqLi2Gz2Ub0FAqF8O6778LpdMLn80EURQCAy+Ui68NIkkTe4hnPk8fjATCwvozP54PFYsFbb72FO+64A7fddhsqKyvxs5/9jOR9uKcZM2bg3nvvRXFx8YQ9OZ1OOJ3OUfOp1d7wPCUSCZLLUCg0ZLvB+z/T2ovH40Q729oLhUJoaGhAIpEY19PgWAdv19/fj4aGBvT390/aUywWQ0NDw5BjgNbxNJE8jeaJRp706BF6ewqHw6Qe8tnT4LpmJU/acRKNRnWvvZF6BK3ve9r55MmTJ6l8h+3r68ODDz6I48ePUz0nzAX8RgjHFCxatAhVVVUABi7M1dTUkINzy5YtaGtrAwDU19ejrq4OwMAF3ZqaGqKxefNmtLe3AwB27dqFXbt2AQDa29uxefNmsl1NTQ05Camrq0N9fT0AoK2tDVu2bAEw0DhqamrQ3d0NANixYwcaGxsBAC0tLaitrQUw0BxqampIM6qtrUVLSwsAoLGxETt27BjTk8fjwbx580gM+ezpxRdfREVFBTweDxN5am9vx5QpU+DxeLLOEzB+7XV3d+POO+9EY2MjdU8ffvgh7rzzTrS3tzORp+effx533nknPB7PpD15PB6cd955+PDDDwHQPZ4mkqd8OZ6M8tTV1QW32w2Px5PXnurr6zFv3jx4PB4m8qR9kdUuJuhdezR7xHBP9fX1uPPOOxEMBqnUXktLC+688050dXVllKetW7fiO9/5DjweT0F/5pqh72kna9pFwHz2tGvXLtx5552Ix+NM5Gnr1q246aab4PF4DKk9j8eDyspKbN26lbonj8eD2267DVu3bmUiT5l+3/N4PKioqMCLL75I8sRSj/B4POTCyyWXXAKHw4Hm5mayXVNTE4nhT3/604SPp/379wMYmDaptbWVbNfU1ERibW1tJQt7d3V1kbij0SiamprIRZ6Wlhai3dnZiSNHjpB91NTURGJtbm5GX18fyY1Wh319fcST1ne0PnTkyBF0dnaSfXn8+HFIkgS73Y7q6mqysHxVVRUWLVoEAPjMZz5DbqxP1pN2MW7NmjWYO3cuAGDJkiWorKwEAJSVlaG6upp4Wrt2LWbPng2/348DBw7gwIED8Pv9OHr0KFpbWzFz5kyEw2FUV1ejrKwMAFBZWYklS5YAAObOnYs1a9YAwJieFixYgFWrVgEYuElTXV1NbqCsWrUKCxYsIBcQ//jHP0KW5bM8VVVVYc+ePQiHwxPyBADLli3DsmXLAAzcPByt9obnqaWlBZIk4YorrsD+/fvJRcW2tjZyDGZTe1arFVdddRUOHjyYde21trbiqquugiRJ43oCBi5KNjU1DfHU3d2Nq666iuhNxpN2MVe7AUbzeJpInkbzRCNPevQIvT0dOXIEZWVlkCQprz3t378f8+bNgyRJzOTp5MmTuOqqqxAKhXSvvZF6BK3ve8FgEHfeeSc5H9PizvQ7bDqdxp133onf//73VM8JcwFfI4ST12jzyjkcDoiiiMbGRpSXlyMcDqO4uBiCICAUCsHhcECSJMRiMaiqCpfLBUVREIlEyJMlwWAQTqcTNpuNNDin04lkMoloNEoWBAwEAnC73RBFEf39/bBYLCgqKoIsy4jH4/B6vUin0wgGg/B4PLBarYhEIhBFEQ6HA4lEArIsw+PxQFVVhEIheL1eWCwWhMNh8qU5Ho9DURS43W6kUinuiXvinrgn7ol74p64J+6Je+KeuCfmPfn9fuzfv5+8KRCPxyFJEiwWC8rLy8nT/uN5CofDOHz4MBRFQSqVgt1uRzqdRiKRgN1uhyAISCQSsFqtEEURiqJAVVVIkgRVVSHL8pDtRFGE1WpFMplEOp0est3gWG02G9kOAGw2G3nTYyRPsixDEASynaIoePDBB7F3714UFxcjHA4jlUrB7XZDURTE43F88YtfxD/90z9l5Kmvrw/f+c534PV6EY/HIcsyioqKYLFY0N/fD1EU4Xa7yVO3xcXFiEajSCaT5M2JaDQKm82G4uJilJaW4uDBg/D5fIhEIlAUBS6XC6qqIhaLQZIkOBwOhEIhCIIwqie73Q5JkhAOh2GxWOD1esmbFh6PB7IsI5FIkHP3/v5+LF26FD/4wQ8QjUapeKqtrUVJScmE8zR4/w/ezmKxkP2fb7XHPXFP3FP+elq4cGFBfI84fvx4ztYI4TdCOHlNoS+WHolEsGPHDlRVVZGpwfIV1rwYHY+e49HUpqGVjQZrdVLomCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NPKVIO1GhmPnp4e8oTscMywWLosy2hra8PcuXNHXa8jHo9j06ZNaGhoGLIuhiRJWLx4MdavXz/uAuKjQWthcWBgaquqqirs2LGDTHFiNEuXLsUdd9yBlStXZh3P9u3bUVJSgt7eXgBASUnJmGuqTCSXmUJTm4ZWNhp67ifO5DFLPlj0YWRMI41Fa7F01s/BcnktVzRkFA6HowuiKGLWrFlkLtd8hjUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKncHrX4yGw+HAhg0bIMsyuSgPjH9h3mgURUFHRweZ+igXNDQ04LbbbqMSz8aNG9He3k5uPo1342kiucwUmto0tLLR0HM/cSaPWfLBog8jY9JzLDOdg9GGvxHCyWsK/Y0QDofD4XA4HA6Hw2EJs78RkmtovhHCCg899BDuuece3fSXLl2KDRs26KbP4XA4NKD1Rgjr5PJaLju33TgczqRJJBJobGwkCxLlM6x5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazUyHjabbdSfsfA0aLYoioKurq6cvkVBC7vdjkWLFsFut+c6FAD6xTN8ijINPXNJU5uGVjYaZqp5M2CWfOTKhyzL8Pv98Pv9Z/UFI2PScywznYPRht8I4XDyGFmWsX///hG/1OUbrHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNTIeHo9nxBsekiShqKgoBxHRJZVKwe/3I5VK5TqUrJEkCfPnz2dmui694hk+RZmGnrmkqU1DKxsNM9W8GTBLPoz2EY/HsXHjRlRWVmLlypVYuXIlKisrsXHjRsTjccNj0nMsM52D0YZPjcXJa/jUWBwOh8PhcDgcDofDFj09PThw4AC0yw0WiwWXXXYZzjnnnAlr8KmxRoZPjZUZ27dvx/Tp03Udg8PhsMvGjRuxZ8+eEX/GyvR5fGos/eFvhHA4eYyqqggEAlBVNdehZA1rXoyOR8/xaGrT0MpGg7U6KXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aWWqwVqNTIQpU6Zg4cKFuPjii3HJJZdg4cKFk7oJwjLpdBrxeBxmeKaUtcWKjY5Hz1zS1KahlY2GmWreDJglH0b6kGUZDQ0No/5cmz7PyJj0HMtM52C0YePTjsPJEofDAbfbDWDg9bJAIECaSSgUIq9fxWIx9Pf3AxiYjy8QCBCNYDCIZDIJAIhGo4hGowCAZDKJYDBItgsEAmQOv/7+fsRiMQADjTUUCgEYaGiBQIC84haJRMirdolEAuFwGMDZzSAcDpM58+LxOCKRyJieQqEQampq4Pf7897T8ePHUVNTg1AoxESeuru7STzZ5gkYv/Z6enpQU1ODU6dOUfekeenu7mYiT11dXURjsp60mu/u7gZA93iaSJ7y5XgyytOZM2dILvPZk9/vJz5YyFNvby+Jh0aejOwRwz1p+7a3t5dK7Z0+fRo1NTU4c+ZMRnka3H8K+TPXDH2vr68PNTU1JI589nTy5EnU1NSgr6+PiTwNPk6MqD3t2Orq6qLuabA2C3nK9Pue5uP48eMkT/nQIxwOB84//3wUFRXBarWOmqfRPGmxKopC/j78wlEikSD7S1EUEreqqmdtp2knk8mzttOIx+NDttP8pVKpIfu4qalpiI/B2w2PVdv/siwPiTVbT16vl0whVVRUBJfLBWBgHRafz0c8FRcXk3VbnE4nnE4ngIG1XGbMmIHq6mp4vV74fD4ypZnL5SLTmEmSRBa4FwQBPp+P5NPtdsPhcAAYWN/D4/EAOPuGhsfjIet+DD53t1qt8Pl8xNP5559P4snUU3FxMdlusKcTJ07g+PHjkGWZ5EnLpXbORzNP8XicaGdbe6FQCE1NTUgkEmfV1ERrr7+/H01NTejv75+0p1gshqampiHHAK3jSdsuE080j6d88hQOh0k95LOnwXWtd55Onz4NWZZH7RGyLOP06dPkOIlGo7rX3kg9gtb3Pe180u/3U/kOGwgEUFNTgxMnTlA9J8wF/EYIxxQsWrQIVVVVAP56AVs7OLds2YK2tjYAQH19Perq6gCAnORpbN68Ge3t7QCAXbt2YdeuXQCA9vZ2bN68mWw3+EStrq4O9fX1AIC2tjZs2bIFwEDjGHyxdseOHWhsbAQAtLS0oLa2FgDISY3WjGpra9HS0gIAaGxsxI4dO8b05PV6MX/+fBJDPnt68cUX8aUvfQler5eJPB09ehRTp06F1+vNOk/A+LXX3d2NdevWobGxkbqntrY2rFu3DkePHmUiT88//zzWrVsHr9c7aU9erxczZswg+5Xm8TSRPOXL8WSUp+PHj8Pj8cDr9ea1p/r6esyfPx9er5eJPGk62kUHvWuPZo8Y7qm+vh7r1q0jetnkqa6uDi0tLVi3bh2OHz+eUZ62bt2K22+/HV6vt6A/c83Q9zQv2oW1fPb0+uuvY926dUQv13naunUrvvOd78Dr9RpSe16vFzfddBO2bt1K3ZPX68Vdd92FrVu3MpGnTL/veb1efOlLX8KLL75I8lQIPWL//v0ABh5YaG1tJdtpF84AoLW1ldyg7urqInFHo1E0NTWRizwtLS1Eu7OzE0eOHCH7qKmpicTa3NyMvr4+4kPz19fXh+bmZgB/7TtaDEeOHEFnZyfZl9o+TqVS5IKa5lfbD9l40i7GrVmzBnPnzgUALFmyBJWVlQCAsrIyVFdXE09r167F7NmzAQDLli3DsmXLAACzZ8/GqlWr8PDDDyMUCqG6uhplZWUAgMrKSixZsgQAMHfuXKxZs4Z4r66uRmlpKQCgqqoKixYtAgAsWLAAq1atAjDwHUa7oQEAq1atwoIFCwAMPXcvLS0dEmtVVRV27dqFUCiUsae1a9eS7QZ7evfdd7Ft2zZUVlbiySefxHvvvQe73Y6rrroK+/fvp54nURSxcOFCHDx4MOvaa21txcKFC2G328mFU2Bytdfd3Y2FCxcSvcl40o4j7aYSzeMJQMaeaORJjx6ht6cjR47gwgsvhN1uz2tP+/fvx/z582G323XPk/Y7Y/WIU6dOwe/3Y+HChQiFQrrX3kg9gtZnbigUwrp168j5mBZ3pt9hAWDdunX4/e9/T/WcMBfwNUI4eY02r5zD4YAoimhsbER5eTnC4TCKi4shCAJCoRAcDgckSUIsFoOqqnC5XFAUBZFIhDxZEgwG4XQ6YbPZSINzOp1IJpOIRqPkrnEgEIDb7YYoiujv74fFYkFRURFkWUY8HofX60U6nUYwGITH44HVakUkEoEoinA4HEgkEpBlGR6PB6qqIhQKwev1wmKxIBwOQ5Ik2O12xONxKIoCt9uNVCrFPXFP3BP3xD1xT9wT98Q9cU/cE/dUMJ7C4TAOHz4MRVGQSqVgt9uRTqeRSCRgt9shCAISiQSsVitEUYSiKFBVFZIkQVVVyLI8ZDtRFGG1WpFMJpFOp4dsp73VEI/HYbPZyHbAwFsGqVQKyWRyyHaSJMFisUCWZQiCQLZTFGVIrIO3s1gsJNZMPfX19ZGblfF4HLIso6ioCBaLBf39/RBFEW63mzx1W1xcjGg0imQySd6ciEajsNlscDqd5Elin8+HSCQCRVHgcrmgqipisRgkSYLD4UAoFIIgCCguLkY4HEYqlYLb7YaiKIjH47Db7ZAkCeFwGBaLhTxQpqoqPB4PZFlGIpEg5+6RSARWqxUejwcbNmzAD3/4Q0M9LV26FPfee69ueTJj7XFP3FO+ejp16hRuueWWMXvEc889h2nTpuXU08KFCwvie8Tx48dztkYIvxHCyWsKfbH0cDiM2tparFq1iryGnK+w5sXoePQcj6Y2Da1sNFirk0LHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1amGqzViFGwulh6IpFAa2srLrvsMvJ2iJHQXCzd4/Fg1apVqK2tJVOh5AJtsXQj45EkCS+++CIOHTpENZeyLKO3txeKoqCrqwvz5s0jU4FlCo2ay0Yj1zXPGYpZ8mGkj4n0ze3bt+Occ84xLKaR/NNaLJ31c7BcXssVDRmFw+HogiRJmD9/PpkbNp9hzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkULHarVi+vTpZJ2MfEaWZezfv5/M5Z5rjIxHlmUEg0FquYzH49i0aRNZdNlut2PBggX42c9+hs9+9rNYv349HA4HuVGiUVJSMu6xPVbNTVQvm7o1U82bAbPkg0UfRsak51hmOgejDX8jhJPXFPobIRwOh8PhcDgcDodjRlh9IyTXyLKMyspKZm5e0EB7I2SizJkzBwcPHsx63O3bt2P69OlZ6wDAxo0bsWfPnlF/fvXVV8Nut5MbJRqSJGHx4sXkRslEGX7jJVs9DsfMTPSNEFr9IFNovRHCOrm8lssXS+dw8ph4PI69e/ciHo/nOpSsYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5FCR1EUdHR0QFGUnIyvXeimgcPhQEVFBTMXzCcaz/r16zFnzpysx0ulUlRyKcsyGhoahvzfcC9vv/029uzZc9YNLFmWsWfPHmzatGlU/ZFqbtOmTZPSy6Zuc13znKGYJR8s+jAyJj3HMtM5GG34jRAOJ49h8YMjU1jzYnQ8eo5HU5uGFv8Sbh7Mkg/WfPD+o58e7z/mwUz5YM0L70H6aWWqwVqNFDqqqiIQCEBV1ZzFsH79eixdunTINCPaAuBXX331hHVEUcSsWbMgimzMmj7ReBwOBzZs2JD1eOl0mkoue3t7z7ohMdl9O/zNjsEMr7mRbryMp5dN3bJQ85y/YpZ8sOjDyJj0HMtM52C04VNjcfIaPjUWh8PhcDgcDofD4ZgPPjXW+AxeH0JbG2KsKZNmz55NZUop2kx2aqzt27cDQNaLxtOaCofWAvYTjWei47Ew1Q+HwwJ8aiy24FNjcTicjEilUvD7/UilUrkOJWtY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNBRVRWRSISJp5glScL06dMxffp08naI9rZEXV0dtm/fTv7U1dWd9RYFa4sVGx1POp3WLZc0vdCouWw0WKp5jnnywaIPI2PScywznYPRht8I4XDymHA4jMcffxzhcDjXoWQNa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajRQ6sixj3759zC9WPvgmyeAbJYPxeDy466674PF4chDh2Rgdj6IouuWSphcaNZeNRr7UfKFglnyw6MPImPQcy0znYLThU2Nx8ppCnxornU4jkUjAbrdDEIRch5MVrHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNWIUrE6NlU6nkUqlYLVa8y4fsiyjsrKSXHgTBAF2ux2JRAK5vDSkTY010XhoTY31/PPPo7S0NOtcjjTtTib7drSpeYbXXCZTY2VTt/lc82bELPkw0sdEp8aaNm2aYTGN5J/W1Fisn4PxqbE4HE5GCIIAh8OR1x9+Gqx5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazVS6AiCAFEU8zIfkiRh8eLF5N/pdBrxeDynN0EGY3Q8euaSphcacWajkc81b0bMkg8WfRgZk55jmekcjDb8RgjHFDgcDrjdbgADc88FAgHyhSMUCpEnXmKxGPr7+wEMvAYbCASIRjAYRDKZBABEo1FEo1EAQDKZRDAYJNsFAgEoigIA6O/vRywWAzDwdE0oFAIw8KUnEAiQ+e8ikQji8TgAIJFIkNfBVFVFIBAgcwKGw2EkEgkAQDweRyQSGdNTKBTCL37xC/j9/rz3dPz4cTz00EMIhUJM5Km7uxu/+MUvEAqFss4TMH7t9fT04OGHH8apU6eoezp9+jQefvhhdHd3M5Gnrq4uPPzwwwiFQpP2pNX86dOnAdA9niaSp3w5nozydObMGXKc5LMnv99PfLCQp97eXhIPjTwZ2SOGe/L7/Xj44YfR29tLpfa0WM+cOZNRnj755BPSwwr5M9cMfa+vrw+/+MUvSBz57OnkyZN4+OGH0dfXx0SeBh8nRtReKBTCQw89hE8++YS6p8HaLOQp0+97mo/jx4+TPBVCj9BiVRSF/H34xeVEIkG0FUUhcauqetZ2mnYymTxrO414PD5kO81fKpUaso/feeedIT4Gbzc8Vm3/y7I8JNZcebrnnnuwdOlSOJ1OzJgxA9XV1fB6vfD5fBBFEQDgcrlQVFQEYODmidfrBTBwMcvn85F1L9xuNxwOBwDAbreTaaAsFgt8Ph8sloFLTh6PB3a7HcDQc3er1Qqfz0c8nX/++SSeoqIiuFwuAIAoivD5fMRTMpkk+9XpdMLpdAIAbDYbiouLyXbjeUomk3jnnXcQDAYzzlM8HsfPf/7zszx5vV5UV1fj/PPPJ9OSjeWpuLiYxDC89kKhEBobG5FIJIbU1Hh50mKVZRn9/f1obGxEf3//pGsvFovhnXfeGXIM0DqetO0G7/98Op5y4SkcDuOdd94h3vLVUzAYJD70zpOmPVaPUBSFHCfRaFT32ovH42hsbEQoFCKx0vrM7e3txcMPPwy/30/lO2wgEMDDDz+MEydOUD0nzAX8RgjHFCxatAhVVVUABi5g19TUkINzy5YtaGtrAwDU19ejrq4OANDV1YWamhqisXnzZrS3twMAdu3ahV27dgEA2tvbsXnzZrJdTU0Nurq6AAB1dXWor68HALS1tWHLli0ABhpHTU0Nuru7AQA7duxAY2MjAKClpQW1tbUABppDTU0NaUa1tbVoaWkBADQ2NmLHjh1jenI4HCgtLcXu3bvz3tNvfvMbzJ49Gw6Hg4k8HT58mNy1zjZPwPi1d/LkSVRUVKChoYG6p9bWVlRUVODw4cNM5Gnbtm2oqKiAw+GYtCeHwwFJktDa2gqA7vE0kTzly/FklKeOjg4oigKHw5HXnnbv3o3S0lI4HA4m8tTT04NwOEwuLOhdezR7xHBPu3fvRkVFBXp6eqjU3rvvvouKigp0dHRklKctW7Zg4cKFcDgcBf2Za4a+F4lEEA6HyZNl+ezptddeQ0VFBSKRCBN52rJlC6688ko4HA5Das/hcOCyyy4jMdD05HA4cM0112DLli1M5CnT73sOhwOzZ8/Gb37zG5KnQugR+/fvBzDwwIL23S+RSKCpqYnE2traSm5Qd3V1kbij0SiamprIRZ6Wlhai3dnZiSNHjpB91NTURGJtbm5GX18f8aH56+vrQ3NzM4CBC9iyLJOLUEeOHEFnZyfZl9o+TqVSaGpqItu1tbWR/ZBLT8ePH8eGDRvw1FNP4Y477sDhw4cRj8dRXV2NsrIyAEBlZSWWLFkCAJg7dy7WrFkDYOBmR3V1NUpLSwEAVVVVWLRoEQBgwYIFWLVqFQCQmwDahflVq1ZhwYIFAIaeu5eWlqK6uprE+q1vfQtHjx5FPB7HkiVLUFlZCQAoKysbsl1HRwe5WLhs2TIsW7YMADB79mysXbuWbDeeJ6vVigsvvBD79+8fNU8ffPAB/H4/urq6RszTpk2bUFJScpandDqNvXv34lvf+hbmzp0LAGN6Wrt2LfE0vPY++OADzJo1C6IooqmpiVywHC9PWqxtbW04deoUZs2ahZ6enknXnizLkGWZfObSPJ4AoKmpifSpfDuecuHp8OHDKC4uhiiKee1p//79KCsrgyiKuudJ+52xesSpU6dw4sQJzJo1C4FAQPfaEwQBs2bNQltbG4mP1mduT08PKioqsHv3birfYWVZRkVFBV566SWq54S5gK8RwslrtHnlHA4HRFFEY2MjysvLEQ6HUVxcDEEQEAqFyMXTWCwGVVXhcrmgKAoikQh5CiMYDMLpdMJms5EG53Q6kUwmEY1GyV3jQCAAt9sNURTR398Pi8WCoqIiyLKMeDwOr9dL7m57PB5YrVZEIhGIokguFsqyDI/HA1VVEQqF4PV6YbFYEA6HIUkS7HY74vE4FEWB2+1GKpXinrgn7ol74p64J+6Je+KeuCfuiXsqGE/hcBiHDx+GoihIpVKw2+1nzTOeSCRgtVohiiIURYGqqpAkCaqqQpblIduJogir1YpkMol0Oj1kO+3hg3g8DpvNRrYDBp4gTqVSSCaTQ7aTJAkWi4VcINa2UxRlSKyDt7NYLCRWljzJsoxTp07hzJkz+OEPfwiXywVVVRGLxSBJEnk4TBAEFBcXIxwOI5VKwe12k7ci7HY7JElCOByGxWKB1+slb9d7PB7IsoxEIkHO3SORCKxWKzweDzZs2IAf/vCH8Hq9iMfjkGUZRUVFsFgs6O/vhyiKcLvd5EniZ599FlarFatWrSJvg0SjUdhsNjidTvJ0tM/nw5133okHH3xwRE+PP/44pk2bNmKeFEXBf/7nf+K9995Db28vLBYLpkyZgnnz5mH9+vUQBAGpVArf+MY3SF4HewoGg0in0xP2VFxcjEcffRTnn3/+uLXX29uLVatWjZunRx99FOeddx7TtWfG44l7Ys/TqVOncMstt4zYIyKRCBRFwXPPPYdp06bl1NPChQsL4nvE8ePHc7ZGCL8RwslrCn2x9Fgshvr6eixZsoS8EpuvsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1YhRsLpYejKZRGdnJ2bOnAmbzZbrcLJiuJeJLsJNG22x9KKiIixZsgT19fVkOpeRmMxi6Zr2SGzbtg2xWGzEXG7cuBF79uwZ8feWLl2KDRs2jLm/JuplMKMtlp5pngbrZVO3Zqp5M2CWfBjpY6KLpU+ZMsWwmEbyX0FpsXTWz8FyeS1XNGQUDoejC8Pn/c1nWPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaqTQYW2B8WxgzcvwtUX0ZjT/siyjoaFh1N9raGgg89+PBk0vNPKUjQZrdVLosJoPWZbR29sLACgpKSFr44wGiz6MjEnPscx0DkYb/kYIJ68p9DdCOBwOh8PhcDgcDseMsPpGiJnJ9RshE4XWGyGjvYEx0afHJxrDRBktnuFk8kYIh6MX8XgcmzZtGnKDUJIkLF68GOvXryfTVeWSiR7TuT5eaL0Rwjq5vJbLF0vncPIYRVHIYsX5DmtejI5Hz/FoatPQykaDtTopdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppZarBWo0YhdVqHfVnLpfLwEiGwtKTrdnCmhdRFMmi4Eagp3+aXvhb+ZzBsJaPTZs2Yc+ePUPekpJlGXv27MGmTZtG/T3WfADGxqTnWGY6B6MNvxHC4eQxkUgEzzzzDCKRSK5DyRrWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaMQqPxzPitEKiKGLBggU5iGgAWZbx/vvvjzs1Uj7Amhe3243bbrsNbrfbkPFSqZRu/ml6oZGnbDRYq5NCh6V8ZDONHEs+NIyMSc+xzHQORhs+NRYnr+FTY3E4HA6Hw+FwOByOOfnkk0/Q3t4+5P8uuugizJgxA3v37s1NUCaGT401AJ8ai8OZGPky5VS+xMmnxtIfvlg6h8PhcDgcDofD4XA4HOa44IIL4HQ6cebMGQBAaWkpSkpKchwVZyzmzJmD9vb2IU85S5KE2bNn4+DBgzmMjMPhcDiFDp8ai8PJY4LBIB544AEEg8Fch5I1rHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNWI0U6ZMwSWXXIJLLrmEiZsg8Xgcb731FuLxeK5DyRraXiRJwsMPP4y6ujps376d/Kmrq8OGDRvG/f3i4mLce++9KC4uphLPeCSTSd1ySdMLjTxlo2GmmjcDZskHiz6MjEnPscx0DkYb/kYIh5PHOJ1OLF++HE6nM9ehZA1rXoyOR8/xaGrT0MpGg7U6KXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aWWqwVqNFDo2mw3l5eWw2Wy5DiVraHtZvHgxJEkCgIymmIlGo9i5cyei0eio20iShJKSEvT29mYcp4bVatUtlxPxMlFo5CkbDRZqXpZlkvOSkhJSZ4UIC/mgAYs+jIxJz7HMdA5GG34jhMPJY7TGaQZY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNCxWq2YOnVqrsOgQiZeRpv6avHixVi/fn1W8SSTSRw6dGjMbQbfbMkWi8WiWy4n4mWi0Ki5bDRyWfPxeBybNm0asuj24HpzOBw5iSuXmKUHsejDyJj0HMtM52C04VNjcTh5DM2nTHINa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajRQ62gXuZDKZ61CyJhMvGzZsGHXqq2wvSo/11LAkSVi6dGnWN1sGoyiKbrmk+QQ0jZrLRiOXNb9p0ybs2bNnyI03WZaxZ88ebNq0yfB4WMAsPYhFH0bGpOdYZjoHow1/I4TD4XA4HA6Hw+FwOBwOhzMhJEnKaOqrTHjooYcwffr0gp8OqRCRZRkNDQ2j/lx7S4TXBYfDmSj8jRCOKXA4HHC73QCAVCqFQCCAdDoNAAiFQuTpgVgshv7+fgADT38EAgGiEQwGyZ3YaDRK7lQmk8khC/oEAgEoigIA6O/vRywWAzDwIR0KhQAA6XQagUAAqVQKABCJRMgCSIlEAuFwGACgqioCgQBUVQUAhMNhJBIJAAOvgEYikTE9OZ1OfPnLXyb/n8+eFEXBDTfcAKfTyUSerFYrrr/+ejidzqzzBIxfezabDcuXLye+aHqyWCxYvnw5rFYrE3lKJpPk6ajJenI6nfjiF78Ii2Xg44vm8TSRPOXL8WSUJ1EUcd1118HpdOa1p3Q6jS9/+ctwOp1M5EmSJFRUVJAnCPWuPZo9YrindDqN5cuXQ5IkKrUnCAKWL18OURQzypMsy/jbv/1bOJ3Ogv7MNUPfs9vtqKioQFFRUd57UlUVy5cvh91uZyJPsiyjsrISTqfTkNpzOp342te+NuRpX1qenE4nvv71r0OWZSbylOn3PafTiRtuuGHI5xbvESr5maatKAqJW1VVxONx4imRSBDtZDJ51nYa8Xh8yHaav1QqRbaz2WyYNWsWrFYr8TF4O20fp9NpUjvadoNjHb7d4FiN8pRKpcgc9YNjdblcpL9KkgSv1wsAEAQByWQyI09aDIPP3a1WK3w+H9lOFEW88soriEajKCoqgsvlwvTp03HuueeSMTVP2r+dTif5zmSz2YYsTj5YeyRPoijikksuQSqVGuJJi9Vut8Pj8QAYmEbL5/OR8xBFUcb0FIvFsHPnToiiSC7Ua540rz6fj8RaXFxMYqCRp8HeZVmGIAgoLy+HIAiTrj2r1YpZs2ZBFMWz8pnt8TQ8n4OPpzNnzpC3jDRP2nHndrthsVjQ29vLzPE0EU80eoSqqvj0pz8Nm83GhKeRam9wnjTt4Z5SqRQuueQS2Gw23fOkaY/UI7S61rYpLy+HxWLRvZeLoojy8nKoqkpipfWZK0kSli9fjnQ6TeUz1+FwYPny5UPql8Y5YS7gN0I4pmDRokWoqqoCAHR3d6OmpoYcnFu2bEFbWxsAoL6+HnV1dQCArq4u1NTUEI3Nmzejvb0dALBr1y7s2rULANDe3o7NmzeT7WpqatDV1QUAqKurQ319PQCgra0NW7ZsATDQOGpqatDd3Q0A2LFjBxobGwEALS0tqK2tBTDQHGpqakgzqq2tRUtLCwCgsbERO3bsGNNTMpnE7373O7z88sum8PTGG28gmUwykafm5mZs2bIFyWQy6zwB49fe4cOHcejQIbz22mvUPTU0NODQoUNobm5mJk/aK6CT9ZRMJvHss8+SJ4NoHk8TyVM+HU9GeGptbcXjjz+OZDKZ155efvll/O53v0MymWQiTx0dHaipqSFfdPWuPdo9YrCnl19+GYcOHSKesslTXV0d9uzZg0OHDqG1tTXjPLW0tCCZTBb8Z26+972TJ0+ipqaGnIDls6ff/OY3OHToEPHEQp7+93//F8lk0pDaSyaTePvtt3XxlEwm0draykyeMv2+l0wm8cYbb/AeMYKn1tZW+P1+Ep8WdzQaRVNTE7nI09LSQrQ7Oztx5MgRotfU1ERibW5uRl9fH/Gh+evr60NzczOAgQs+TU1NZLsjR46gs7OT7EttH2vbaRer2trayH7w+/1obW0l3puamsj+N9rTmTNnSKzahbDKykosWbIEADB37lysWbMGwMCNgaNHj2bkSbtQN/jcvbS0FNXV1STWNWvW4Prrr4fNZsOSJUtQWVk5qiftYuGyZcuwbNkyAMDs2bOxdu1asl11dTXZXyN5UlUVp0+fPitP2v5asGABVq1aBQDwer2orq4mF3y7urrG9ORyuVBeXo41a9Zg7ty5ADDEU1lZ2RDva9euJZ5o5Km6uprs/7a2Nhw7dgxnzpzBiRMnJl174XAYTU1N5MImzeMJAJqamsgxPfh4CofDZ3kqLS0FAFRVVWHRokUA2DqexvNEq0e0t7cjlUox4Wmk2hucJ017JE8nT55EKpXSPU/a74zUI8rKygAAp06dQkdHB86cOYNTp07p3stlWcaZM2eGeKL1mdvR0YFDhw7h5ZdfpvKZ29PTg0OHDmHbtm1UzwlzgZDWbtdwOHnIhx9+iHnz5sHhcEAURTQ2NqK8vBzhcBjFxcUQBAGhUAgOhwOSJCEWi0FVVbhcLiiKgkgkQp7CCAaDcDqdsNlspME5nU4kk0lEo1Fy1zgQCMDtdkMURfT398NisaCoqAiyLCMej8Pr9SKdTiMYDMLj8cBqtSISiUAURTgcDiQSCciyDI/HA1VVEQqF4PV6YbFYEA6HIUkS7HY74vE4FEUhd9BH8hSLxfDoo4/itttuw3nnnZfXnrq6uvDcc8/h7rvvhiRJOc/T6dOn8dRTT+Huu++Gx+PJKk8Tqb1kMoknn3wSt912G7xeL1VP/f392Lp1K9asWYOioqKc58nv96O2thZr165FOp2elKdIJIJHH30Ua9aswbRp06geT2bsEXp76u7uxpNPPom7774bXq83bz2dPHkSTz/9NO6++24UFRXlPE89PT347//+b9x9990oLi7WvfZo9ojhngKBAJ555hl873vfI09IZlN7kUgEW7duxXe/+13Y7fZJ56mrqwu1tbW4++67YbFYCvYz1wx9r7e3F48//jjWrl0Ln8+X1556e3vx7LPP4o477oDFYsl5nj755BNynFitVt1rT1EUPProo1i1ahUuvPBCqp7S6TTRnjFjRs7zlOn3PVmW8eijj+KWW25BWVkZ7xH/v6c333wTiUSC1KmiKFBVlXxHlWUZdrudPAEviiKsViuSySTS6fSQ7bSnzuPxOGw2G9kOGHiCOJVKIZlMwuFwIB6P491338VVV11F3iYVBIFspygK7HY70uk0EokEJEkiebRYLCTWVCo1ZLvBsRrlKRKJoLW1FZ/5zGcAAL29vVi1ahVcLhdUVUUsFoMkSXA4HAiFQhAEAc888wxmzJgxaU9nzpzBzTffTM7dI5EIrFYrPB4PNmzYgB/+8IeYMWMGbrnlFmzevJloP/nkkzj33HPP8qTFqr0NEo1GYbPZ4HQ6yQ0Kn89HtEfy9Ktf/QodHR24/PLL4fF4iKfu7m7cfPPNsNvtkCQJ4XAYFosFXq8XoVAIqqriueeeg6IouP3220f0lE6nsXbtWjz33HPo7u6GLMsoKiqCxWJBf38/RFGE2+0mT0cXFxfj0Ucfxfnnn08lT5reeeedB1mWIcsy9u/fj/nz58Nms02q9qLRKPbt24fPfOYzKCoqono8adsNPk604+nEiRNYu3btEE/hcBipVAputxuKomDr1q2YOnUqE8fTRDzR6BGhUAjvv/8+PvvZz0IUxZx66unpwerVq8+qvcF5euyxxzBjxoyzPIVCIXzwwQf47Gc/C0EQdM3TqVOncMstt4zYIyKRCBRFwXPPPQefz4f9+/djwYIFEEVR116eTqexb98+XHbZZXC73bBarVi4cCGVz9xUKoUnnngCq1evhs/ny/ozN51O4/HHH8ctt9yCqVOnZn1OePz4ccybNw8aBw4cwKWXXgoj4DdCOHmNdiNEw8iDh8PhcDgcDofD4XA4uWHv3r25DsF0+P1+rFy5csxttm/fntH6IGNpP/TQQ7jnnnsmNd5EYtVTe86cOTh48OC440+Gie7biXrPNFesoGc9cuiQLznKlzgrKipyOr5R5PJaLhOLpbe2tuLQoUNwOp34/Oc/j5KSkjG3f/rpp3Hs2DFs2LDBoAg5HA6Hw+FwOBwOh8PhcDi02bhxY65DmDS0b4JwOBwOR39yukZIV1cXFi9ejPnz52PFihX427/9W5x33nn4h3/4BzLf70g89dRTuP/++w2MlMNhk0AggPvvvz/niw3RgDUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKnXg8jvr6+iEL8+YrrHjR5vL3+Xy47777hiwirifauod6+KfphUaestFgpU44A5glHyz6MDImPccy0zkYbXJ2IyQWi+GLX/wiGhsbkU6n4fV6UVRUhGQyiUcffRRXXnkl/vKXv+QqPA4nL3C73Vi9ejXcbneuQ8ka1rwYHY+e49HUpqGVjQZrdVLomCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NPKVIO1Gil0JEnCFVdcAUmSch1K1rDmJRKJ4Omnnx7zwViaWK1W3fzT9EIjT9losFYnhY5Z8sGiDyNj0nMsM52D0SZnN0IeffRRHDlyBDNnzsRbb72Fvr4+BINB/PrXv8YFF1yAjz76CNdeey0OHDiQqxA5HOYRRRGzZs2CKDIxy11WsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1UihY7FY4PP5YLHkdIINKrDmRVEUdHR0QFEUAAMXCsebOj0b9PQ/3Es20IgzGw3W6qTQMUs+WPRhZEx6jmWmczDa5KzaXnzxRQiCgNraWlx99dUABu7GV1VVYf/+/bj++utx6tQpXHfddWhpaclVmBwO0/T39+OFF15Af39/rkPJGta8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdGRZxoEDByDLcq5DyRrWvLhcLqxYsQIulwsAsHjxYl2fzFYUhbr/OXPmADjby0Tw+/3w+/1nxUMjT9losFYnhY5Z8sGiDyNj0nMsM52D0SZnN0IOHjyIGTNm4POf//xZP/P5fHj11Vfx7W9/G2fOnMH111+PpqamHETJ4bANi3fQM4U1L0bHo+d4NLX500icwZglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdARBgMPhgCAIuQ4la1jzoqoqAoEAVFXFnDlzsH79el3Ho+3/mWeewYYNGwAM9TJR7rnnHqxcuRKVlZXYuHEjWTuARpzZaLBWJ4WOWfLBog8jY9JzLDOdg9FGSKfT6VwMLEkSFixYMOYNjnQ6jTVr1uCZZ56Bx+PBH/7wB1xzzTX4whe+gLfffhupVMrAiDks8uGHH2LevHnk3wcOHMCll16aw4g4HA6Hw+FwOBwOh6M3e/fuzXUIpsPv92PlypVjbrN9+3ZMnz5dF+3JjDNRvYceegj33HPPpMaYbKyD9QBk9LsjsXTpUnJjZTATjS/TXLGCnvXIoUO+5Chf4qyoqMjp+EaRy2u5ObsVM2XKFJw4cWLMbQRBwNatW/Hd734X4XAYN9xwA/bs2WNQhBwO+8iyjP379zP1KmGmsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Uihk0ql4Pf7TfFgJmteJEnC/PnzDVs8WVVV3fzT8NLQ0ABZlqnkKRsN1uqk0DFLPlj0YWRMeo5lpnMw2uTsRsi8efNw4sQJdHR0jLvtE088gbvuuguRSARf+9rX8Je//EX/ADmcPCAej2Pv3r3kldl8hjUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKHZqLYOca1rw4HA5UVFTA4XAYMl4qldLNPw0vsiyjt7eXSp6y0WCtTgods+SDRR9GxqTnWGY6B6NNzqbG+td//Vfcd999uP/++/HTn/50Qr/zgx/8AL/61a/I/Gks3TXk5AY+NRaHw+FwOBwOh8PhFB58aiz68KmxMot1sB5Ab2osTXN4jHxqrL+S7x7znXzJUb7EyafG0p+cvRGyfPlypNNp/OpXv0IsFpvQ7/zXf/0X/umf/gk5unfD4TBHOp1GPB43xTHBmhej49FzPJraNLSy0WCtTgods+SDNR+8/+inx/uPeTBTPljzwnuQflqZarBWI4VOOp2GoiimyAdrXoxePFlP/zS90IgzGw3W6qTQMUs+WPRhZEx6jmWmczDa5OxGyGWXXYaPPvoIDQ0NsFqtE/69TZs24e2338bu3bt1jI7DyQ+CwSAefPBBBIPBXIeSNax5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazVS6CQSCTQ0NCCRSOQ6lKxhzUtxcTHuvfdeFBcXGzKeoii6+afphUaestFgrU4KHbPkg0UfRsak51hmOgejTc6mxuJwaFDoU2OlUil0d3ejtLR0UjcUWYQ1L0bHo+d4NLVpaGWjwVqdFDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tDLVYK1GWCFXU2OpqopoNAqn0wmLJWfPllJhuBdZllFZWTnqgraSJKGuri6jBcAnMjWN1WpFaWkpuru7sW3bNt2nxnr++efh8XjOyiWNqbEGe8lmWvft27fj3HPPHZKnTKbGyqZuc1Xz+TKdkdGw1IOyyZGRPiYa5/BjTU9G8k9raizWz8FyeS1XNGQUDoejC1ar1TQf+qx5MToePcejqU1DKxsN1uqk0DFLPljzwfuPfnq8/5gHM+WDNS+8B+mnlakGazVS6FgsFrjd7lyHQYXhXiRJwuLFi7Fnz54Rt1+8eHFGN0EAoKSkBJIkjXqTBRi4WOb3+zPSzwRBEHTLJU0vNGpOURREIhFEIhEAf82HUeObCW0Re2By+5EWZskHiz6MjEnPscx0Dkab/H58gcMpcCKRCJ5++mnyZSafYc2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5FCR5Zl7N+/f8wL+vnCSF7Wr1+PpUuXDrm4K0kSli5divXr12c8lnaTZSzcbjduu+02wy5EKoqiWy5pesmm5uLxODZu3IgVK1bgj3/8I773ve9h5cqVqKysxMaNGxGPx3Ud30xo+7KyshIrV66c9H6khVnywaIPI2PScywznYPRJm/fCEmn0zhz5gz6+/sBAC6XC1OnTjVsUS0OhwVEUcSsWbMginl7KBNY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNCxWCzw+Xw5n5KGBiN5cTgc2LBhgy5Pva9fvx5+vx8HDx4c8eeKoqCjowOKomQ91kQQBEG3XNL0kk3Nbdq0CXv27IHD4RgSjyzL5M2fDRs26Da+mdD25WAmsx9pYZZ8sOjDyJj0HMtM52C0YafaxmHfvn144IEHcOONN2L27NlwOByYPn06Zs+ejdmzZ2P69OlwOByYPXs2brzxRjzwwAPYt29frsPmGITD4SBPWqRSKQQCAWjL34RCIXKHNRaLkZtniqIgEAgQjWAwiGQyCQCIRqOIRqMAgGQyOWRBn0AgQL489Pf3IxaLARj4AAyFQgAGbtQFAgEyF2gkEiFPCCQSCYTDYQADcwIGAgGoqgoACIfDZKGkeDxO7paO5snhcGDhwoVknHz2JMsyrr76ajgcDibyJAgCrrrqKjgcjqzzBIxfe1arFRUVFWSeSJqegIG5JgVBYCJPiUQCFRUVcDgck/bkcDjwmc98hoxD83iaSJ7y5XgyypPFYsGVV14Jh8OR155SqRQWLlwIh8PBRJ5EUcT8+fPhcDio5MnIHjHcUyqVQkVFBURRpFJ76XQaFRUVsFgsGeUpHo/j2muvhcPhKOjPXDP0PZvNhvnz58Nut+e9J0VRUFFRAZvNxkSe4vE4vvCFL8DhcBhSew6HA9dcc82Qp2lpeXI4HFiyZAni8TgTecr0+57D4cDVV19NxuE94q+eEokE0VYUhcSt9XzNUyKRINrJZPKs7TQG10oymST+UqkU2U4URUyfPp1cvJJlech22j7WjictVlmWh8Q6fLvBsRrlSVEUcnFqeKyCIGD69OkoLS0lY2bryeFw4Cc/+Qk5d7darfD5fOSBVkmS8Pbbb5OYx/KkxeB0OuF0OgEMfDYMXpzc5/ORGFwuF4qKisg4Xq8XVqsVM2fOhKIoQzxp+8tut8Pj8QA4+6Klx+Mhn0GDr0ek02n4fD4kEgns3bsXkiSRm0hFRUVwuVykjnw+H4m1uLgYNpvtLE+qqo6ap5E8AX+9waMtxqzFtnfvXqTT6SGeDhw4QPI2Wu1ZLBZMnz6drA1A83gans/Bx5Oqqmd50mJwu93ku7IRx5Msy2hoaBg1T01NTaRPjeWJRo9IpVIoKyuDKIqG9b2xPI1Ue4PzNPi782BPiqJg5syZEEVR976naY/UI7SL84qiIJ1OY9asWRAEQfdebrVaMWvWLKRSKRIrrc9cURRRUVGBVCpF5TNXkiRUVFSQ6znaPs72nDAXMH0jpK2tDT/60Y8wY8YMfO5zn8NPfvITvPTSS+jo6EAymUQ6nR7yJ5lMoqOjAy+99BJ+8pOf4HOf+xxmzJiBH/3oR/jwww9zbYejI4sWLUJVVRUAoLu7GzU1NeTg3LJlC9ra2gAA9fX1qKurAwB0dXWhpqaGaGzevBnt7e0AgF27dmHXrl0AgPb2dmzevJlsV1NTg66uLgBAXV0d6uvrAQzU65YtWwAMNI6amhp0d3cDAHbs2IHGxkYAQEtLC2prawEMNIeamhrSjGpra9HS0gIAaGxsxI4dO8b0lEgk8MILL+Cll17Ke09PPfUU6urqkEgkmMjTu+++iyeeeAKJRCLrPAHj196hQ4fQ2NiIV199lbqnt956C42NjXj33XeZyVNjYyOJdTKeEokEtmzZgrfeegsA3eNpInnKl+PJKE/vv/8+Nm/ejEQikdeeXnrpJbzwwgtIJBJM5Ono0aNDttO79mj2iOGeXnrpJTQ2NhJP2eSprq4Ou3fvRmNjI95///2M81RfX49EIlHQn7lm6HvHjx8fsl0+e/r1r3+NxsZG4omFPL3xxhtIJBKG1F4ikcCuXbt08ZRIJPDWW28xk6dMv+8lEgnU1dXhqaeeGpIn3iOA1tZWsg5DV1cXiTsajaKpqYlc5GlpaSHanZ2dOHLkCNFramoisTY3N6Ovr4/40Pz19fWhubkZwMDFqaamJrLdkSNH0NnZSfalto9TqRSamprIxaq2tjayH/x+P1pbW4n3pqYmsv+N9tTV1UU8aftVT099fX3k3L20tBTV1dXkhsKaNWtQWVkJu92Onp6eMT1pFwuXLVuGZcuWAQBmz56NtWvXku2qq6vJ/qqsrMSSJUsAAHPnzsWaNWuQSqVw7Nixszxp+2vBggVYtWoVAMDr9aK6uppc8F21ahUWLFgAYOj1iEQigerqang8HixatAhr1qzB3LlzAQBLlixBZWUlAKCsrAzV1dUk1rVr12L27Nlneerv7z8rT9oFy5E8AQM3cKqrq3HmzBnIsoyqqiosXrwYixYtwmc/+9khnr7//e/j9OnTZ+VpcO1p+1/LJ83jCcCotRcOh8/yVFpaCgCoqqrCokWLABhzPPX29kKW5VHzdOGFF2L//v3jeqJ1PB06dAiKoujWI2RZxtGjR/Huu+/C7/dDluVRPY1Ue4PzpGmP5El7S0nvvqf9zkg9oqysDABw6tQpfPzxx+jq6oLf79e9lycSCXR1dQ3xROsz9+jRo2hsbMRLL71E5TO3u7sbjY2N2LZtG9VzwlwgpLXbNQyxe/duPPjgg/jTn/5E/i/TMAdPlfXFL34R//zP/4zrrrsu6xg5bPDhhx9i3rx5cDgcEEURjY2NKC8vRzgcRnFxMQRBIE+DSZKEWCwGVVXhcrnIYmHaUxjBYBBOpxM2m400OKfTiWQyiWg0Su4aBwIBuN1uiKKI/v5+WCwWFBUVQZZlxONxeL1epNNpBINBeDweWK1WRCIRiKIIh8OBRCIBWZbh8XigqipCoRC8Xi8sFgvC4TAkSYLdbidPnml30EfylEgk8Nxzz+Gmm27CtGnT8trTiRMnsHPnTtxyyy0QRTHneTpz5gz+53/+B7feeitcLldWeZpI7aVSKfz617/GjTfeCLfbTdVTLBbDiy++iKqqKvJUUy7zdPr0adTV1WHVqlVIpVKT8hSNRvHss8/iW9/6FkpLS6keT2bsEXp76unpwQsvvIBbb70Vbrc7bz2dOnUKL774Im655RYSRy7z1NfXh+effx633norPB6P7rVHs0cM9xQKhfC73/0O3/72t8kTYtnUXn9/P37729/im9/8Jmw226TzdOLECdTV1eHmm28GgIL9zDVD3wsEAqitrcUtt9wCr9eb154CgQB27tyJFStWAEDO83T8+HFynAiCoHvtqaqKbdu2obKyklyMoOVJEASifd555+U8T5l+31MUBc899xyWL1+O888/n/eI/9/Tm2++iUQiAavVSp6MVlUVkiRBVVXIsgy73U6e7BVFEVarlTxUOXg77cnyeDwOm81GtgMGniBOpVJIJpMknvfffx+XXXYZ8SEIAtlOURTY7Xak02kkEglIkgSLxQJZlmGxWEisqVRqyHaDYzXKU39/P44cOYLLLruM/L4Wq16ejh8/jrvuuguRSARWq5V810mn0zjvvPOwfPlybNu2DZs3b0Zpaemonnp7e7Fq1SryRH40GoXNZoPT6SRPR/t8PmzYsAE//OEP4XK5oKoqYrEYJEmCw+HAI488gpMnT+Liiy+Gx+Mhnrq7u3HzzTfDbrdDkiSEw2FYLBbyeaOqKjweD2RZRiKRINcjnnjiCaTTadx9991IpVJYtWoVXnrpJfT09ECWZRQVFcFisaC/vx+iKJLPM62nRKNRJJPJIZ5qa2vhdruH5EnzPpKnUCgEQRBQXFxMvGtvT1RVVeE3v/kNZFke4unRRx/FeeedN2rtxWIxtLa24vLLLyfHAK3jSdtupNo7ceIE1q5dO8RTOBwm55CKomDr1q2YOnWq7sdTIBDAypUrR82TzWbDU089hQsuuGBMTzSOp3A4jEOHDuHyyy+H1Wql2iPC4TB++ctfor6+Hul0mhxPkiThuuuuwz/8wz/A6XQSTz09PVi9evVZtTc4T4899hhmzJhxlqdQKIQjR47g8ssvBwBd+96pU6dwyy23jNgjIpEI+Zw955xzcPDgQcydOxdWq1XXXg4ABw4cwMUXXwyXywWr1YqFCxdS+cxNp9P4n//5H3zjG9+A1+vN+jNXEARs374dX//611FSUpL1OeHx48cxb948aBw4cACXXnopjICpGyHvvfcefvSjH2Hv3r0A/nrzQxAEXHrppfjCF76A+fPnY86cOZgxYwamTp0Kp9OJdDqNWCyG7u5uHD9+HAcPHsT777+PP//5z/jwww+H6AAD0z/8+7//O6688sqc+OTQQ7sRomHkwcPhcDgcDofD4XA4nNygXTfg5Bd+vx8rV64cd7vt27dj+vTpWes89NBDuOeeeyY1xkS1R9IDkNHvjqU5PEYa3scbgwUm4tOo2FmKRU82btx41joog1m6dOmQtVDyZb/kS5wVFRU5Hd8ocnktl5mpse68804sXLiQzFkIANdffz0ef/xx+P1+fPDBB3jkkUfwve99D9dccw3+z//5P+TOlSiK8Hg8+NSnPoUvfOELuOOOO/DII4/ggw8+gN/vx+OPP44vfvGLAAZuruzduxcLFy7EXXfdlUvLHE7WDJ8jN59hzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkUJn+Dzw+QxrXoxePFlP/zS90Igzm3hYq5NCR698aOugjEVDQwN5myFbWKwrI2PScywznYPRhpkbIU888QRSqRQ8Hg/Wr1+Pjz76CK+//jq+973vkbnlMqG0tBTf+973sGvXLrS3t+NHP/oRPB4PUqkUnnjiCYoOOBzjGT5Hbj7Dmhej49FzPJraNLSy0WCtTgods+SDNR+8/+inx/uPeTBTPljzwnuQflqZarBWI4XO8Hng8xnWvAxfh0NvtDU39PBPy4vf70dXV1fWcY4Vz8aNG4csND0c1uqk0NErH9o6KGMhyzJ6e3upjMdiXRkZk55jmekcjDbMTI1VXFyMf/qnf8K6det0/9ALhUJ4+OGH8Z//+Z9kXjhOflLoU2MNn/c3n2HNi9Hx6DkeTW0aWtlosFYnhY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rUw1WKsRVsjV1FjD54HPZ3LhZawpagavw1FbW6v71FjPP/88zjnnnLP805gaa/iaItlgsVgwZcoUzJs3D+vXryfrVYzHYO/jxTN8yqPB5KrmWZrOiKVY9MpHJtPWZbNfjKyricY5bdo0w2IayT+tqbFYPwfL5bVc0ZBRJkB7ezumTp1qyFherxcbNmzA3Xffbch4HI5eaK+3mgHWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaKXQEQSAL8uY7rHnRpk8xCj390/Siqiq6u7vJ2g133HEH9Xi0KY8kSTrrZ6zVSaFjlnyw6MPImPQcy0znYLRh5nESo26C5HpMDocm4XAYjz32GMLhcK5DyRrWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaKXQSiQSam5uZms4lU1jz4vF4cNddd8Hj8RgynqIouvmn6WWwVqZrNIwXz1hTHrFWJ4WOWfLBog8jY9JzLDOdg9GGmRshHA5n8kiShPnz54/41Ea+wZoXo+PRczya2jS0stFgrU4KHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5amWqwViOFjtVqxfTp02G1WnMdStaw5kWWZezfv5/aYszjIQiCbv5pehmslekaDdnEw1qdFDpmyQeLPoyMSc+xzHQORhtmpsbicDiTx263Y9GiRbkOgwqseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1UuiIooiysrJch0GFXHgpKSmBJEkjXpBPJBJobGyEJEkoKSnRPRbtQqQeaF5Y0cpGw0w1bwbMkg8WfRgZk55jmekcjDb8jRAOJ4+Jx+PYu3cv4vF4rkPJGta8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdBRFQUdHBxRFyXUoWZMLL5IkYfHixSP+zOFwoKKiAtdee60hTw6nUind/GteaKwBQEMrGw0z1bwZMEs+9PIhyzL8fj/5M5m3oIzct3qOZaZzMNrk7Y2QSCSCDz/8EO+88w7efPPNCf/hcMyEWT4AAfa8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdLRFp1VVzXUoWZMrL+vXr8fSpUvPutlRVFSE+fPn4x/+4R8MiSOdTuvmXxRFzJo1C6KY/UQsNLSy0TBTzZsBs+SDto94PI6NGzeisrISK1euJH8qKyuxcePGnMSUq7HMdA5GGyGdTqdzHcRECYfDqKmpwfbt23H48GFMNnRBEJjY6Rx6fPjhh5g3bx7594EDB3DppZfmMCIOh8PhcDgcDofD4ejN3r17cx0CJ0uGr3ehTZs1Efx+P1auXDnudg899BDuueeeEX+2ffv2EafGmqj2SHoAMvrdyTCWp0y20xhtf+SKieTBqJhZikUvJlr3g32ytF82btyIPXv2ZPz7LOSvoqIip+MbRS6v5ebNGyHvvfce5syZg//3//4fDh06BFVVkU6nJ/2HwzETqVQKfr8fqVQq16FkDWtejI5Hz/FoatPQykaDtTopdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppZarBWo0UOqqqIhKJ5P3T2EDuvUiShOnTp5M/oigaGk86ndZtPJoLIdPQykYj13XCGYpZ8kHThyzLaGhoYCqmXI5lpnMw2uTFjZCenh58+ctfxokTJ8gNDVEUcckll+Dqq6/GkiVLJvTn2muvzbUVDocq4XAYjz/+OMLhcK5DyRrWvBgdj57j0dSmoZWNBmt1UuiYJR+s+eD9Rz893n/Mg5nywZoX3oP008pUg7UaKXRkWca+ffsmNe88q7Dmxeh4FEXRbTyPx4O77roLHo+HCa1sNFirk0LHLPmg6aO3t5eKjpH7Vs+xzHQORpu8mBrr//7f/4sHHngAgiDA4/Hg3/7t33DrrbfC7XbnOjROjin0qbHS6TQSiQTsdjsEQch1OFnBmhej49FzPJraNLSy0WCtTgods+SDNR+8/+inx/uPeTBTPljzwnuQflqZarBWI6yQq6mx0uk0UqkUrFZr3ueDNS+TiYfG1FjPP/88SktLzxqPxtRYgiDAbrcjkUhkPTvJcK1MpsaaSDyjTQ2UqzphadqlbGLJZgq4kdArH0ZPjUXTR6bH7GC2b9+OadOmGVbrI/mnNTUW6+dgubyWm/2qTQbwyiuvABho3L///e9xzTXX5DgiDocNBEGAw+HIdRhUYM2L0fHoOR5NbRpa2WiwVieFjlnywZoP3n/00+P9xzyYKR+seeE9SD+tTDVYq5FCRxAEKgtgswBrXoyOR8/x0uk04vG4LloTXfiZVjys1Um+EI/HsWnTJjQ0NAx56l+SJCxevBjr16/P+DPBDPlg0YeRMek5lpnOwWiTF1NjffzxxxAEAYsXL+Y3QTicQYRCITz88MMIhUK5DiVrWPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaqTQSSQSaGxsRCKRyHUoWcOaF6PjOXHiBBoaGnSZrsXr9aK6uhper5e6Vl9fn6HxsFYn+cKmTZuwZ8+es6Y+kmUZe/bswaZNmzLSNUs+WPRhZEx6jmWmczDa5MWNEG3hmPLy8hxHwuGwhcPhQEVFBTN3VrOBNS9Gx6PneDS1aWhlo8FanRQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bQy1WCtRgodURQxa9Ys5p5kzgTWvBgdz49//GPs2LEDK1euxMaNG6m9wQEMvA2wd+9eKpo0tLLRYK1O8oGJLN49/E2RiWKWfLDow8iY9BzLTOdgtGGn2sbgggsuwOHDhxGLxXIdCofDFJIkYf78+bkOgwqseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1UuhYrVZD1iQwAta8GB2PLMvYv38/AGDPnj0AgA0bNlDXZkErGw3W6iQfmMji3draIZPdt2bJB4s+jIxJz7HMdA5Gm7x4I2TZsmVIp9Nobm7OdSgcDlPEYjG89tprprhJyJoXo+PRczya2jS0stFgrU4KHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5amWqwViOFTjKZxEcffYRkMpnrULKGNS9Gx1NUVISvfOUrKCoqApD5E/oT0c61VjYag/MiyzL8fj/8fj+1fUUT1uOjAWvHbaaw6MPImPQcy0znYLTJizdC7r77bjz++OM4fPgwXn/9dXzpS1/KdUgcDhOoqopAIECmj8tnWPNidDx6jkdTm4ZWNhqs1UmhY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k8rUw3WaqTQ0RadTqfTuQ4la1jzYnQ8FosFPp8PFsvAM8LaE/p6aOdaKxuNdDqNaDSK//iP/8DevXvJDYZsF/2myUgLk7MUH01YO24zhUUfRsak51hmOgejjZBmqeLG4LHHHsPdd9+Nc889F2+88QYuvfTSXIfEYYAPP/wQ8+bNI/8+cOAArw0Oh8PhcDgcDofDMTl79+7NdQicHOL3+7Fy5cpxt3vooYdwzz33TFh3+/btADAhbZq/qweZeB9tqp6NGzeS6cOGs3TpUmpTig1mIjnWYtY7vsnEMtHth/9Orskk5snuF72YaOxjwUIuKioqcjq+UeTyWm5eTI0FAHfddRe2bt2KYDCIz372s7jnnnvQ0NDAxIrzHE6uUBQFHR0dUBQl16FkDWtejI5Hz/FoatPQykaDtTopdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppZarBWo0UOiw92ZotrHkxOh49FyumqU1DKxuNeDyOTz75ZNTfpTmlWCaMtzB5ruOjDWvHbaaw6MPImPQcy0znYLTJixshVqsVVqsVa9asgSzLiMfj+K//+i9ce+21OOecc8jPx/ujx4cbh5NLIpEInnnmGUQikVyHkjWseTE6Hj3Ho6lNQysbDdbqpNAxSz5Y88H7j356vP+YBzPlgzUvvAfpp5WpBms1UujIsoz333/fFBdWWfNidDxutxu33XYb3G4309o0tLLR6O7uxs033zzq79KcUiwTxluYPNfx0Ya14zZTWPRhZEx6jmWmczDa5MXUWBaLBYIgIJ1OQxCEIT+bTPiCICCVStEOj5ND+NRYHA6Hw+FwOBwOh1N48KmxChs+Ndb40JoaK1fTH010XGD8fT48vsE3R0pKSiBJEpVY+NRYY2+vF3xqrPwil9dy8+YVCe2GRx7ct+FwOBwOh8PhcDgcDofD4XA4OuL3+ye1fSEtqs7hcM4mL6bGUlWVyh/+Noh5cTgc5DXNVCqFQCBAbpqFQiHyAReLxdDf3w9gYI66QCBANILBIJLJJAAgGo0iGo0CAJLJJILBINkuEAiQee36+/sRi8UADDxRoK1Zk06nEQgESM1FIhHE43EAQCKRQDgcBnD2nIDhcBiJRALAwAe09trYaJ6CwSB+/vOf4+TJk3nvqaurCz//+c8RDAaZyNPp06dJPNnmCRi/9s6cOYMHHngAfr+fuqdTp07hgQcewOnTp5nI0yeffIIHHngAwWBw0p60mj916hQAusfTRPKUL8eTUZ66u7tJPeSzp5MnTxIfLOSpp6eHxEMjT0b2iOGeTp48iQceeAA9PT1Uak+Ltbu7O6M8HTt2jOzbQv7MNUPf6+3txc9//nMSbz57OnHiBB544AH09vYykafBx4kRtacdW8eOHaPuabA2C3nK9Pue5qOrq4vkifcIlfxM01YUhcStqiri8TjxlEgkiHYymTxrO414PD5kO81fKpUi28Xjcfz5z38mfmVZHrKdto/T6TTi8TiJVZblIbEO325wrEZ5CgaDeOuttxCPx8+KNReegsEg/vznPyMej4/rSYvB6XTC6XQCAGw2G4qLi8l2Pp+PaLtcLhQVFQEYuPDt9XpRXFyMe++9FxdccAGsViuJT9tfdrsdHo8HwMBMJT6fDxbLwGU0j8cDu90OYOj1iHQ6DZ/PR7RnzJhB3jYoKiqCy+UCMLBmh8/nI7EWFxfDZrON6KmsrAz33nsviouL4fP5yLTvI3kCBmZDGezd7Xbj3HPPxb333ovS0tJRPSmKMmKeZFnGj3/8Y7JvvV7viJ4yOZ6G53Nw7amqepYnLU9utxsOhwP33HMP7r333gnlSVEUPPTQQ9izZw9SqRR8Ph8EQYAsy9i3bx/+4z/+g8Q6Wu2NlSctbk1jInlKJpOTPp5CoRA5TibbI2RZxokTJ/DJJ5/A7/eT5Qe07cY7njRPg/M0Uu0NzpOmPdzT4OOdRt+b6PE0midFURCJRPDWW2+hv79f974Xi8Xw1ltvIRgMEk+0PnN7enrwwAMP4OTJk1Q+c/v6+vDAAw/g+PHjVM8Jc0Fe3AjhcMZj0aJFqKqqAjBwYa6mpoYcnFu2bEFbWxsAoL6+HnV1dQAGLujW1NQQjc2bN6O9vR0AsGvXLuzatQsA0N7ejs2bN5PtampqyElIXV0d6uvrAQBtbW3YsmULgIHGUVNTg+7ubgDAjh070NjYCABoaWlBbW0tgIHmUFNTQ5pRbW0tWlpaAACNjY3YsWPHmJ6cTidmzpxJXgvPZ087duzA/Pnz4XQ6mcjTX/7yF/KBmW2egPFrz+/3Y/ny5Xj77bepezpw4ACWL1+Ov/zlL0zkqba2FsuXL4fT6Zy0J6fTieLiYhw4cAAA3eNpInnKl+PJKE/Hjh2DKIpwOp157Wnv3r2YOXMmnE4nE3nq6+uDLMvkC7vetUezRwz3tHfvXixfvhx9fX1Uam/fvn1Yvnw5jh07llGetm7dimXLlsHpdBb0Z64Z+l40GoUsy+REO589/fGPf8Ty5csRjUaZyNPWrVtRUVEBp9NpSO05nU4sXrwYW7dupe7J6XTiq1/9KrZu3cpEnjL9vud0OjF//nyyX3mP+Kun1tZW8kR4V1cXiTsajaKpqYlc5GlpaSHanZ2dOHLkCNFramoisTY3N6Ovr4/40Pz19fWhubkZwMCFNFVVycWlI0eOoLOzk+xLbR+nUik0NTWRi1VtbW1kP/j9frS2thLvTU1NZP8b6am1tRXl5eWw2Wxoamoi+zVXng4ePIjp06fDZrON60m7WLhs2TIsW7YMADB79mysXbuWbFddXU20KysrsWTJEgDA3LlzsWbNGkSjUfzhD3/Ad7/7XZSWlgIATpw4QfbXggULsGrVKgADF/+rq6vJBd9Vq1ZhwYIFAIZej0gkEmTcnTt34pvf/Cbmzp0LAFiyZAkqKysBAGVlZaiuriaxrl27FrNnzx7R080334ydO3ciGo2iuroaZWVlo3oCBm7gVFdXkwu3VVVVmDdvHnbu3ImLLrpoVE9dXV0j5imVSsFut5N9uWbNmhE9ZXI8ARi19sLh8FmetDxVVVVh0aJFk8pTZ2cnZsyYAQAoLS1FdXU1uUmyZs0aBAIByLI8Zu2NlaeOjg6y3dGjRyeUp6NHj076eDpy5AjOPfdc2Gy2CfeIo0ePoq6uDpWVlfjJT36Co0ePYuXKlaisrERDQwN50HC840nzNDhPI9Xe4DxpNTDc0/79+zF79mzYbLas+148Hp/w8TSap1OnTuHkyZMoLy9HMBjUve9ZLBaUl5fj4MGDxBOtz9y+vj4sX74ce/fupfKZqygKli9fjpdffpnqOWEuyIs1Qjic0dDmlXM4HBBFEY2NjSgvL0c4HEZxcTEEQUAoFILD4YAkSYjFYlBVFS6Xi9zt1e4aB4NBOJ1O2Gw20uCcTieSySSi0Si5axwIBOB2uyGKIvr7+2GxWFBUVETupHu9XnJ32+PxwGq1IhKJQBRFOBwOJBIJyLIMj8cDVVURCoXg9XphsVgQDochSRLsdju5u6/dQeeeuCfuiXvinrgn7ol74p64J+6Je+KeBjy9+eabSCQSsFqtEEURiqJAVVVIkgRVVSHLMux2OwRBQCKRgCiKsFqtSCaTSKfTQ7bTpsOJx+Ow2WxkO2DgxkcqlUIymRyynSRJsFgskGUZgiCQ7RRFgd1uRzqdRiKRGLKdxWIhsWoXl7XtBsfKPY3vqbe3F6tWrSIPjkSjUdhsNjidTvJ0tM/nw4YNG/DDH/4QLpeL3MCSJAkOhwOhUAiCIKC4uBjhcBipVArPPfccBEHAzTffDLvdDkmSEA6HYbFY4PV6EQqFoKoqPB4PZFlGIpEg1yOeeOIJpNNp3H333eSNaa/Xi3g8DlmWUVRUBIvFgv7+foiiCLfbTZ6OLi4uRjQaRTKZHNdTJBKBoijjetK8u91uKIqCeDw+pqfnnnsO06dPPytPJ0+eHNfTk08+iXPPPZdq7Z04cQJr164dMU8T9aTl6emnn0YqlcJdd92FSCQCq9UKj8dzlqdnnnkGU6ZMOav2AoEAVq5cOWaennrqKVxwwQUAgE8++QRr1qwZN0/PPPMMZsyYofvx9G//9m94++23R629z3zmM/i7v/s7fPe73x239p577jmUlJRAEAT09PRg9erVox5Pbrcbjz32GGbMmKFrjzhx4gS+//3vZ3U8Pffcc5g2bVpO+97ChQuZ/cyl+T3i+PHjOVsjhN8I4eQ1hb5YejQaxa5du8jTrfkMa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajbBCrhZLTyaTaG9vJ08y5zOseZlMPLIso7Kykky/MhKSJOGJJ57A6tWrR/y50+nEsmXLsGvXLnJhkdZi6SNpZ0qmWoMXS5+IxmiLRXd1deHFF1/M6HezgcYC2BqZLqo+mViMWix9ssctjWNltJizWSydZv+htVj6lClTDOuJI/mntVg66+dgubyWy6fG4nA4HA6Hw+FwOBwOh8Ph5A3aAtdjsXjxYrKWhVmZM2dOrkPgME5vb++YN0GAgZslvb29BkXE4eQOMdcBcDiczHE6nVi+fHmuw6ACa16MjkfP8Whq09DKRoO1Oil0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mllqsFajRQ6NpsN5eXluQ6DCqx5mWw869evBwA0NDQMudCr3SRZv379mAvzRqNR7Ny5c8j/ybJM5ebJSNq0tZ555hlIkjShJ+GziUcURWpeONnD2nGbKSz6MDImPccy0zkYbfL2RkgkEsH777+PM2fOIBwOk0WgxuPWW2/VOTIOxzhYe5U5G1jzYnQ8eo5HU5uGVjYarNVJoWOWfLDmg/cf/fR4/zEPZsoHa154D9JPK1MN1mqk0EmlUujr68M555wDq9Wa63CygjUvk43H4XBgw4YNZz3NXlJSMqGbGTabDbNnz0Z7eztZw2L16tVU3rIYSZu21mRu2GQTj6qqKC8vp+KFkz2sHbeZwqIPI2PScywznYPRJu+mxnr++efx+c9/Hj6fD9deey1uvPFGrF69Grfffvu4f9asWZPr8DkcqmhPdWQ75ygLsObF6Hj0HI+mNg2tbDRYq5NCxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9Wphqs1Uihk0wmcejQIVNcEGbNS6bxSJKE6dOnkz8TvUGgPaU8fM77gwcPTmr8yWjnSisbjVQqRc0LJ3tYO24zhUUfRsak51hmOgejTd4slh6LxfCtb30Lr7zyCgBgrLAFQRjx54IgIJVK6RYjx3gKfbF0DofD4XA4HA6HwylEcrVYOie/oLng9nhks9C6HuMNXix9onqZLhT+zDPP4MILL5zwWBOBL5ZOh4nGMtF6obVYOk1oLZaud5zjQWuxdNbJ5bXcvJka67vf/S7+8Ic/ABh4/XHp0qX4+OOPcejQIQiCgFtvvRXhcBidnZ344IMPkEwmIQgCXC4XbrzxRgiCkGMHHA6Hw+FwOBwOh8PhcDgcjrlYvXo1li5divXr18PhcOQ6HA6HwxmRvJgaq6mpCS+88AIEQcBFF12EgwcP4g9/+AOuv/56ss3WrVuxY8cOvPvuu+ju7sa///u/w+12o7+/H6dPn8Z//dd/YevWrTl0weHQJxAI4P777x9zAbh8gTUvRsej53g0tWloZaPBWp0UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20MtVgrUYKnXg8jvr6esTj8VyHkjWseTE6Hp/Ph/vuuw8+n49pbRpa2Wgkk8kJ/e6ePXuwadOmzALkTBjWjttMYdGHkTHpOZaZzsFokxc3Qp555hny9y1btmDmzJljbu/1evGP//iPaG5uxnnnnYc//vGPuP322/UOk8MxHLfbjdWrV8Ptduc6lKxhzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkUJHkiRcccUVk1qomlVY82J0PJFIBE8//TQikQjT2jS0stGwWq0T/t2GhgbIspxJiJwJwtpxmyks+jAyJj3HMtM5GG3y4kbIW2+9BQCYPXs2Fi9ePOHfu+iii/DMM88gnU7jd7/7HZlai8MxC6IoYtasWRDFvJnlblRY82J0PHqOR1ObhlY2GqzVSaFjlnyw5oP3H/30eP8xD2bKB2teeA/STytTDdZqpNCxWCzw+XywWPLicsqYsObF6HgURUFHRwcURWFam4ZWNhoWi2XCvyvLMnp7ezMJkTNBWDtuM4VFH0bGpOdYZjoHow071TYGJ06cgCAIWLBgwZD/H7zux2h3nK+//nqy4Mq2bdv0C5LDyQH9/f144YUX0N/fn+tQsoY1L0bHo+d4NLVpaGWjwVqdFDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tDLVYK1GCh1ZlnHgwAFTPPXOmhej43G5XFixYgVcLhfT2jS0stFQFEW3/cSZPKwdt5nCog8jY9JzLDOdg9EmL26EhEIhAMCUKVOG/H9RUdFZ24zElVdeiXQ6jX379ukTIIeTI1i8g54prHkxOh49x6OpTUMrGw3W6qTQMUs+WPPB+49+erz/mAcz5YM1L7wH6aeVqQZrNVLoCIIAh8Mx5MHMfIU1L0bHo6oqAoEAVFVlWpuGVjYagiDotp84k4e14zZTWPRhZEx6jmWmczDa5P6dlAngdDoRDoeRTCaH/P/ghZo6OzsxderUEX8/nU4DAE6ePKlbjBxOLigqKsJXvvKVXIdBBda8GB2PnuPR1KahlY0Ga3VS6JglH6z54P1HPz3ef8yDmfLBmhfeg/TTylSDtRopdGw2Gz796U/nOgwqsObF6HhisRhee+01KlqSJKGkpIRMC0VTm4ZWNhpWq5WaF072sHbcZgqLPoyMSc+xzHQORpvc34qZABdccAEAoKenZ8j/X3zxxeTv77zzzqi/39bWpk9gHE6OkWUZ+/fvZ+pVwkxhzYvR8eg5Hk1tGlrZaLBWJ4WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61MNVirkUInlUrB7/cjlUrlOpSsYc2L0fFIkoT58+dTWax48eLFQ3RoatPQykZDVVVqXjjZw9pxmyks+jAyJj3HMtM5GG3y4kbIZZddhnQ6jcOHDw/5/8997nPkFaL//u//HnHhpl27duG9996DIAj41Kc+ZUi8HI5RxP8/9t49PKrqXh9/99wzdy6RALFyDj0VISqIlqhtibaHY21TqaKFBkTTY0OslUjP6bE/n8NT/Z6ep9IL5NtKQMpdwAsqGK2WWk1UbKJoQK7SBoOEkBCSTGYmk9l79sz+/ZHvXp3cJzN771mzZ73Pk+cJZM27P+96P+uzZ6+199rhMGpqahAOh9MdSsqgTYvW8ah5PCW5leBKhYO2PMl26MUP2nSw+qMeH6s/+oGe/KBNC6tB6nEly0FbjmQ71HzBttagTYvW8dhsNhQVFcFmsyX8mauuumrQgsctt9yCn/70pylzKxmnkhzRaFQxLQypg7Zxmyxo1KFlTGoeS0/XYEqDk+R9oyjGhg0b8OCDD8JgMODixYsYP348+dv8+fPx7rvvguM43Hbbbfif//kfFBQUIBQK4ZVXXsGqVavQ0dEBjuPws5/9DP/zP/+TRiUMSuP48eMoKCgg/z527BhmzZqVxogYGBgYGBgYGBgYGBgY1EZNTU26Q2DIALS2tmLJkiWK8e3Zs6ffFljjx4/vtzCi9PFGiwXAsMdbu3YtHnnkkTHx5eXlDfr/sWoajmesULIvR+ur+HbJ9kH8ZxONXam+GgmJxpJovoxVJ00aR4IWcY6GoqKitB5fK6RzLjcjngi5/fbbwXEcJEnCq6++2u9vv/zlL8lTIW+88Qauv/562Gw2jB8/Hvfddx85OU2cOBEVFRVah87AoCokSUI4HEYGrGeOCtq0aB2PmsdTklsJrlQ4aMuTbIde/KBNB6s/6vGx+qMf6MkP2rSwGqQeV7IctOVItkOSJIiiqAs/aNOidTzJvqzYYrEgLy8PeXl5w24XpeSLkJXgSoVDkiTqXmqdzaBt3CYLGnVoGZOax9LTNZjSyIiFkC984QtYtWoV7rnnHrS3t/f724033ohNmzbBaDRCkqQhf3Jzc7F///5hX6bOwJCp6O7uxpNPPonu7u50h5IyaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliPZDp7ncfDgQfA8n+5QUgZtWrSOx+Px4NFHH4XH40kb99q1a7F27VpFuNTiEEVRtX5iGDtoG7fJgkYdWsak5rH0dA2mNEzpDiBR/OpXvxr2b6Wlpbjxxhuxdu1avPXWW2hpaYHBYMA///M/o7i4GBUVFcjNzdUwWgYGbeByuVBWVgaXy5XuUFIGbVq0jkfN4ynJrQRXKhy05Um2Qy9+0KaD1R/1+Fj90Q/05AdtWlgNUo8rWQ7aciTbYbFYMHfuXF28OJo2LVrHEwgEsGHDBgQCgbRxJ7IVjxJxpsJhMplU6yeGsYO2cZssaNShZUxqHktP12BKI2MWQkbDVVddhaeffjrdYTAwaAqj0Zj2PQyVAm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk22EwGOB0OtMdhiKgTYvW8USjUbS2tlLPrQRXKhwcx6nWTwxjB23jNlnQqEPLmNQ8lp6uwZRGRmyNxcDAMDSCwSC2bduGYDCY7lBSBm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk2yEIAg4fPgxBENIdSsqgTYvW8TidTtx3332qTEYqya0EVyocoiiq1k8MYwdt4zZZpKJDEAS0traitbVV0X7Qsm/VPJaersGUhm6eCGFgyEaYTCZMmzYNJlPmD2XatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLbDYDDA6/XCYMj8+0pp06J1PKIooqmpCaIoUs2tBFcqHBzHqdZPDGMHbeM2WSSjIxwOY82aNTh48CBZQLBYLJg+fXrK8bS2tiIajcLlcmnSt2r6qKdrMKWR/giSQDgcxhtvvIH33nsP586dQ1dXF6LRKP7yl7/0aydJEnp7ewEAZrMZZrM5HeEyMKgGm82GoqKidIehCGjTonU8ah5PSW4luFLhoC1Psh168YM2Haz+qMfH6o9+oCc/aNPCapB6XMly0JYj2Q55QkcPoE2L1vGEw2HU1NRQz60EVyocRqNRtX5iGDtoG7fJIhkda9aswdtvv93v/wRBwMmTJ1OO55FHHgHQt7By880346c//SlsNlvKvMNBTR/1dA2mNDJu+fDXv/41vvCFL+Cuu+7C2rVrsXfvXrz55ptDFuXOzk7k5ubC5XJh/vz52gfLwKAyeJ5HXV0deJ5PdygpgzYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7RBFEc3Nzbq4O542LVrHY7VaUVhYCKvVSjW3ElypcESjUdX6iWHsoG3cJoux6hAEAQcPHlQ1JqvViuuuuw7vv/8+1qxZo+qx1PRRT9dgSiNjFkIikQi+9a1v4b/+67/Q0dEBSZLIz3CYMGECli9fDkmSUF9fj7///e8aRszAoD70sjckQJ8WreNR83hKcivBlepeoDTlSbZDL37QpoPVH/X4WP3RD/TkB21aWA1SjytZDtpyJNshv3Q6Go2mO5SUQZsWreOxWCyYPXs2LBYL1dxKcKXCIUmSav3EMHbQNm6TxVh1dHZ2qn4ejB8n8dtvqQE1fdTTNZjS4KSRVhIowr//+79jy5YtAPoeqVm+fDluvfVW7N69G/v37wfHcUMmz/vvv4+vfOUr4DgOa9euxcMPP6x16Awq4vjx4ygoKCD/PnbsGGbNmpXGiBgYGBgYGBgYGBgYGBjUBtuqhyERtLa2YsmSJYrx7dmzB3l5eYodb8+ePQCQVIyjfXbt2rVku59E+YbSloymkfooUSjpXaL9nEofxH820diV6quRkGgsiebLWHXSmA+JQgt/4kHL9lFqI51zuRnxRMhHH32ErVu3guM45Ofn4+OPP0ZVVRXuvvtu5Ofnj/jZm266CR6PBwDw7rvvahEuA4NmiMVi8Pl8iMVi6Q4lZdCmRet41DyektxKcKXCQVueZDv04gdtOlj9UY+P1R/9QE9+0KaF1SD1uJLloC1Hsh2SJCEcDo+4O0WmgDYtWsej5suKleRWgisVDkmSdPFybr2AtnGbLGjUoeWL6NXUr6drMKWREVVs69atJDF27tyJGTNmjOnzs2fPhiRJirw8h4GBJvj9flRWVsLv96c7lJRBmxat41HzeEpyK8GVCgdteZLt0IsftOlg9Uc9PlZ/9AM9+UGbFlaD1ONKloO2HMkWjB8/fsj/53ke9fX1VOx1nipo06J1PG63GxUVFXC73VRzK8GVCocoiqr1E8PYQdu4TRY06lCzJgyEmvr1dA2mNDJiIeTtt98GABQUFCT10nP5qZHz588rGhcDQ7rhdruxcuVKXXwhoU2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW45kA2w2G770pS8N+Ter1Yp58+bp4sXRtGnROh6/349169apthCrFLcSXKlwmEwm1fqJYeygbdwmCxp1qFkTBkJN/Xq6BlMapnQHkAhaWlrAcRzmzJmT1OedTicAoKenR8mwGMaIw4cP44YbboAoigBA1eNvmQr5sT09gDYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmiV0ycOBGXXXYZzGYzPB7PsFujcBwHm82mcXTqgDYtWscjb9dCO7cSXKlwcBynWj8xjB20jdtkQaMONWvCQKipX0/XYEojI54ICYfDAJB0ggSDQQD/WBBh0B6iKKK0tJQsgjAog0AggA0bNiAQCKQ7lJRBmxat41HzeEpyK8GVCgdteZLt0IsftOlg9Uc9PlZ/9AM9+UGbFlaD1ONKloO2HNErzGYzLrvsMowbN27E/eF5nsehQ4eo2s4lWdCmRet4XC4XVqxYAZfLRTW3ElypcIiiOKbPPvHEE2Qej0F50DZukwWNOtSsCQOhpn49XYMpjYxYCMnNzQUAtLa2JvX5U6dO9eNh0B6/+tWv0NDQgO9+97vpDkVXsFgsmD17NiwWS7pDSRm0adE6HjWPpyS3ElypcNCWJ9kOvfhBmw5Wf9TjY/VHP9CTH7RpYTVIPa5kOWjLkWyH0WhEXl4ejEZjukNJGbRp0ToeQRBw+PBhCIJANbcSXKlwcBw3ps+ePHkSa9asGfNxGBIDbeM2WdCoQ82aMBBq6tfTNZjSyIitsWbMmIHm5mb89a9/RTQaHVOSnDt3DocPHwbHcbjhhhtUjJJhOJw6dQqPP/44vvzlL+Ohhx7Cyy+/nO6QdAOr1YrCwsJ0h6EIaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliPZDpPJRN5DmumgTYvW8fA8j7q6Ouq5leBKhcNoNI75swcPHoQgCFRMfOoNtI3bZEGjDjVrwkCoqV9P12BKIyOeCLntttsAAJcuXcKOHTvG9Nn//u//RjQaBQD827/9m+KxMYyMWCyGH/zgB4hGo9i0adOIjxgzjB3hcBg1NTW6eOyUNi1ax6Pm8ZTkVoIrFQ7a8iTboRc/aNPB6o96fKz+6Ad68oM2LawGqceVLAdtOZLtEEURTU1Nutj2mTYtWsdjs9lQVFSkyj79SnIrwZUKRzQaHfNnBUFAZ2fnmI/FMDwEQUBrayvOnz+PxsZGasZtsqCt/gDq1oSBUFO/nq7BlEZGzErfd9998Hg8AIBVq1bh0KFDCX3uiSeewI4dO8BxHKZMmYLFixerGeaIiEaj+OSTT7B582aUl5fj+uuvh8ViAcdx4DgORUVFSXMLgoCdO3fi9ttvxxVXXAGbzYbJkyfjpptuwq9//WtcunRJOSFjxO9//3u8//77+I//+A9cc801aYtDr6DxxJEsaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliPZDvllurFYLN2hpAzatGgdj8lkwrRp02AyKb9ZipLcSnClwiFJkmr9xDA6wuEwnnjiCRQXF2PJkiVYsWIFDh48iF/96ldUTCwnC9rqD6BuTRgINfXr6RpMaXCSJEnpDiIRPPXUU/jxj38MjuNgsVjwox/9CEuWLMHGjRvxhz/8ARzHoaurCxcuXMDBgwdRVVWFjz/+GJIkgeM4PPfcc1i0aFFaYt+3bx9KSkoQCoWGbTN//nzU1NSMmfvUqVNYsmQJDh8+PGybyy67DFu3bsXtt98+Zv5U0NTUhIKCAuTl5eHo0aPIyclBTU0NbrnlFgB9J9NUcfz4cRQUFJB/Hzt2DLNmzUqZl4GBgYGBgYGBgYGBgYFeJHP9PBImT56MK6+8UtVjMGiP1tZWLFmyRDG+PXv2IC8vT7Hj7dmzBwCSinG0z65duxaPPPLImPiG0jaSpnHjxqGrq2tMfIlCSe8S7edk+mCozyYaeyJ99MQTT+Dtt98e8m+33HILVq9ePeLnE40l0XwZq85U80CG0mM5ESgVe6JI5Sb5TEI653Iz4okQAPjRj36Ehx9+GJIkQRAErF27Fl/+8pexefNmAH2T6uPGjcPMmTPxwAMPkEUQoG97rHQtggCAz+cbcREkWTQ3N+PrX/86WQThOA7z589HaWkpiouLkZOTAwC4ePEiFi5ciLfeekvxGEbCAw88gJ6eHmzcuJHEwqAsotEoWltbyfZvmQzatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLYjFoshGAxSdRdzsqBNi9bxqPmyYiW5leBKhUOSpGE/O9okPENqEAQBBw8e7Pd/8V7K72LJRNBWfwBtX+Cupn49XYMpjYxZCAGAdevW4Q9/+AM8Hg8kSSILHfL2UvL/yT9erxdbt27Fz3/+8/QG/v8wadIkfPvb38bjjz+OP/7xj1i5cmVKfN///vfR0tICALjiiivQ0NCAmpoabN68Ga+88go+//xzfP3rXwcARCIR3H333fD5fKnKSAibN2/Gm2++ieXLl5MYGJRHIBDAxo0bEQgE0h1KyqBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDsEQcBHH32UsZOP8aBNi9bxuFwurFixAi6Xi2puJbhS4RBFUbV+YhgZnZ2dg8ZDvJeZ/C4W2uoPoG5NGAg19evpGkxpZMzWWPEIBoPYsmUL/vjHP+Kvf/1rv460Wq348pe/jG9/+9soKyuD2+1OY6R9aG1thSAI+MIXvtDv/3/+85/j8ccfBzD2rbH++Mc/4lvf+hYAwGKx4NChQ7j66qsHtevp6cE111yDM2fOAAB+9rOf4X//938HtXv00Ufx5JNPJnz8eEQikX7757W0tGDmzJmwWCw4efIkJkyYQP7GtsZSFpIkged5WK1WcByX7nBSAm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nKEFqRrayxJkhCNRmE0GjPeD9q0qBHPSNvpcBwHq9UKnucTnp9IdGusRLkT2bJpOK6xbI2VSDzDabtw4QJKS0uH/OxI2ymxrbFS3xprKJ6BXiq1XZvWW2ONdbxrsTXWWPs2FQylX6mtsWi/BkvnXG5GvunI6XTi4YcfxsMPPwygb7K/u7sbDoeDvFSdJqgxaJ566iny+/Lly4dcBAEAh8OBJ554AkuXLgUAbNy4EU888cSgF/84HI5+CxZjwcBB8OMf/xjd3d3YuXNn0pwMiYHjONhstnSHoQho06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWI9kOjuN089Jo2rRoHY8kSaq9bFpJbiW4UuHgOC6jX8qtN6iZt1qCtvoDaNu3aurX0zWY0siorbGGg8PhwJQpU6hcBFEDwWAQf/nLX8i/77///hHb33XXXXA6nQD6Hqt75513BrX57//+b1y6dCmpn4F753300UcAgP/4j/9AXl5ev58777yTtJP/b9OmTUn3RbbD7/dj3bp18Pv96Q4lZdCmRet41DyektxKcKXCQVueZDv04gdtOlj9UY+P1R/9QE9+0KaF1SD1uJLloC1Hsh08z6Ourg48z6c7lJRBmxat43G73aioqFBlJxEluZXgSoUjEomo1k8MY4eaeaslaKs/gLZ9q6Z+PV2DKQ1dLIRkG95//30yUBwOB2644YYR29tsNtx4443k31q9NL2trW3QT1dX16C/9/T0aBKPHmGz2VBUVETNymoqoE2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW45kO0wmE6ZNm0bdnczJgDYtWscTDodRU1Ojyh3gY+EeP348LBaLIlxqcBiNRtX6iWHsUDNvtQRt9QfQtm/V1K+nazClQU+2MSSMkydPkt+vvvrqhAbNddddhz//+c+DPq8Gmpqahv2b0u8IyXZYLBbMnj073WEoAtq0aB2PmsdTklsJrlQ4aMuTbIde/KBNB6s/6vGx+qMf6MkP2rSwGqQeV7IctOVItsNoNKq2Z7zWoE2L1vEIgoDDhw+nndtiseDmm2/G22+/nTKXEvEMhMFgUK2fGMYONfNWS9BWfwBt+1ZN/Xq6BlMa7ImQDMSnn35Kfr/iiisS+kz8i9pPnTqleEwM6UFvby/eeOMN9Pb2pjuUlEGbFq3jUfN4SnIrwZUKB215ku3Qix+06WD1Rz0+Vn/0Az35QZsWVoPU40qWg7YcyXZEIhH8/e9/RyQSSXcoKYM2LVrHk5OTg9tuuw05OTlp5/7pT3+KW265ZcgnQ5SIMxWOaDSqWj8xjB1q5q2WoK3+ANr2rZr69XQNpjQy7omQ3t5evPbaa/jggw/w2Wefwe/3J5w0HMf1e7dGpqKjo4P8PmnSpIQ+E7/K2NnZqXhMDOlBLBaDz+dDLBZLdygpgzYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7ZBfpquHHQ5o06J1PAaDAV6vFwaD8vcIj5XbZrNh9erVEAQBnZ2daG1txSOPPKJYnKlwSJKkWj8xjB1q5q2WoK3+ANr2rZr69XQNpjQyZtRIkoQ1a9YgLy8P3/ve9/Cb3/wGL730Et58803U1taO+lNTU4Oampp0y1AEwWCQ/J7oKmV8u/jP6wU2m428ED4ajcLn85Fi4vf7IQgCgL6FNPmdJKIowufzEY7u7m6yqBYKhRAKhQD0rdJ2d3eTdj6fD6IoAgB6enrIiqYgCOTFP5IkwefzIRqNAujrc3mPQZ7nEQgEAAwuBoFAgLz/JRwOE6+G0+RwOHDHHXeQ2DJZUzQaxZ133gmHw0GFTyaTCd/61rfgcDhS9gkYPfcsFgsWL14MjuMU12Q0GrF48WKYTCYqfBJFEYsXL4bD4RizJofDgW9/+9swGo0AlB1PifiUKeNJK01msxm33347HA5HRmsCgDvuuAMOh4MKn6xWK2677TY4HA5FfNKyRgzUBACLFy+G1WpVJPcMBgMWL14Ms9mclE+RSAT33HMPHA5HVp9z9VD3bDYbbrvtNtjt9ozXJEkSFi9eDJvNRoVPkUgEd999NxwOhya553A4sGjRon43tymlyeFw4Hvf+x4ikQgVPiX7fc/hcODOO+8kGliN+IcmnucJtyiKJO5YLNZvgonnecIdiUQGtRtOk/x7NBol7SwWC774xS+SLaoFQejXTu5jeZJLjlUQhH6xDmwXH6uSmsLhcL928bHGYjEUFBTAYrEMijUdmiRJwlVXXQWLxZK0poHt5FgdDgeZF7FYLHC73ejp6cFzzz0Hs9lMri+cTifZx95qtcLlcgH4xwTpaJrkRYNQKIRnn30WRqORPOWRk5NDvt+ZTCZ4vd5BmiwWCyZMmICJEycC6Pu+bTKZ8Oyzz6Knpwder5fkniiKpB9kTUDfTcDxsTqdTkSjUTz77LMQRXGQJnnSVxTFITUZjUa88cYbZIy73W6iKRaLDaspvvYm6lN87sVisUGaEvVJ1uRyuWC1Wslx5Xkjo9EIr9cLjuMGaRop9zweD8xmMwDAbreT7yFms7nfeSwSiRCfhso9WVMkEhl1PA3UZDAY8PLLL6Onpwc2m418ZqQaMVLujaTJ4/GQdvG5F+/TULkX75Mcw8AaEYvFMGvWLFgsloRrRLxPSmuS536effZZRCIRokmtumc2m1FQUABJkkgfKXXOtVqtWLx4MeGU4072nJuTk4PFixcjFospek2YDmTMQsjSpUvxs5/9DIFAAJIkjflHT4gvwiO9UCsecuEH/pGE6UBRUZEqnhQWFmLRokUAgPb2dlRWVpLBuWXLFpw4cQIAUFtbi+rqagBAc3MzKisrCUdVVRUaGxsBAAcOHMCBAwcAAI2NjaiqqiLtKisr0dzcDACorq5GbW0tAODEiRPYsmULgL7CUVlZifb2dgDA3r17UVdXBwBoaGjArl27APQVh8rKSlKMdu3ahYaGBgBAXV0d9u7dO6ImURRRXV2NV155RRea3nnnHYiiSIVPH330EbZu3QpRFFP2CRg9906fPo2mpib86U9/UlzT+++/j6amJnz00UfU+NTU1ARRFMesSRRFPPPMM3j//fcBKDueEvEpk8aTFpqOHj2Kp59+mnwBzFRNr7zyCqqrqyGKIhU+nT17FpWVleSLs9q5p3SNiNf0yiuvoKmpiWhKxafq6mq8/fbbaGpqwtGjR5P2ST5/Zvs5N9Pr3oULF1BZWUkuFjNZ0wsvvICmpiaiiQafjhw5AlEUNck9URRx6NAhVTSJooi//e1v1PiU7Pc9URTxzjvvsBoxhKajR4+itbWVxCfHHQqFUF9fTyZ5GhoaCPfZs2dx+vRpwldfXz+sJvn3rq4uHDp0CEDfxFB9fT2ZzDl9+jTOnj1L+lLu42g0ivr6ejJZdeLECdIPra2tOHr0KNFeX19P+l9pTYcOHUJXVxfxZqAmeWGpvr6e9Gs6NZ09exaxWCwlTTLq6+vJ/ElxcTHmz58PAJg5cyZKS0thMpnwL//yL6ioqEBubi4AYNGiRSgsLAQAzJkzByUlJQD6JmArKirI97PhNPE8j4qKCtjtdkybNg2lpaWYOXMmAGD+/PkoLi4GAOTn56OiomJYTbK306dPR3l5OXmpckVFBfLz8wEAbW1tZMcQWRPQN/9TUVFBJm4XLVqEm266CdOmTcPcuXMHaZInfJubm4fUFA6HiSYA/TTxPD+spqampoR9Gir3AoHAIE2J+iRrKikpwZw5c8hx5Xmj3NxcVFRUkLmyeE0j5V55eTmmT58OAFiwYAEWLFhAfIp/X+6ZM2eIT0PlnqzpzJkzo46noTR9/etfh8lkQmFhIVpaWgCMXCNGyr2RNJWXl5N28bkX79NQuRfvk5wDQ9WI9vZ2xGKxhGtEouMpGU3FxcUoKirCtGnTUFBQQDSpVfcikQh8Pl8/n5Q65549exZNTU145ZVXFDnndnZ2oqmpCc8884yi14TpACdlwCrB7t27sXTpUnAcB0mScOWVV+Kee+5BQUEBxo8fn9DLwmXIxYcG/PznP8fjjz8OoC+uRJ9Y+da3voU//vGPAID/+q//wi9/+ctRP/P666/j9ttvB9C3Iiuv7mU6jh8/joKCAthsNphMJtTV1WHGjBkIBALweDzgOA5+vx82mw0WiwW9vb3kjgVRFBEMBsmqcXd3N+x2O8xmMylwdrsdkUgEoVCIrBr7fD44nU6YTCZyd2pOTg4EQUA4HIbb7YYkSeju7obL5YLRaEQwGITJZILNZgPP8xAEAS6XC7FYDH6/H263GwaDAYFAABaLBVarFeFwGKIokhX0oTSFQiFUVlbigQcewJQpUzJa07lz57BlyxasXLkSVqs17T61tbVhw4YNWLlyJdxud0o+JZJ7giBg/fr1+OEPfwiPx6Oopp6eHmzYsAErVqyA3W5Pu08XLlzA1q1bsXLlSgAYk6ZAIIDKykqsWLECkyZNUnQ86bFGqK3p4sWLqKqqwsqVK+HxeDJWU0tLCzZt2oSVK1fCbren3adLly7hqaeewsqVK+H1elXPPSVrxEBNXV1d2LRpE370ox/1u1MrWU2BQAAbN25EeXk5bDbbmH1qbm4m9Ue+QzMbz7l6qHsdHR34/e9/j4cffhjjxo3LaE0dHR34wx/+gIceeghGozHtPp07d46ME5PJpHruRSIRVFZW4v777yfvNVRKUywWI9xTp05Nu0/Jft+TJyxKS0tx+eWXsxrx/zS988474HkeRqMRJpMJoigiFovBYrEgFotBEARYrVZwHAee52EymWA0GhGJRCBJUr92NpsNkydPRl5eXj9NBw8ehNlsRjQaRSQSgc1mQzgcRn19PW644QbY7XYIggCO40g7URRhtVohSRJ4nofFYoHBYIAgCDAYDCTWaDTar118rEppAkDuPJbbASCxBoNBHD58GPPmzQOAfrGmQ1N3dzeJx2g0JqVJ9klu19nZiZKSEnK3d29vLywWC2w2GwwGAyoqKrBlyxacP3+ePDEgiiLC4TCsVissFgsCgQAMBgPcbjfWr1+PyZMnD6vpwoULePDBBwH0TbL+4Q9/wMWLFyEIAnJycmAwGNDT0wOTyQSn04mqqirk5eUN0tTW1oZly5bBbDYjLy8PP/jBD7Bu3ToAfXdvi6KInTt3guM4LF26lGjy+/3gOA4ejwerV6/GqlWr4HQ64XA4UF5ejvXr16O3t7efJr/fj1gshp07dyIvL2+Qps8//xyfffYZ1q1bB5/PB7fbjXA4DEEQ8Jvf/AarV6/up0leJNyxYwemTJmSkE9D5V5LSwvKy8v7aQoEAgn5JGtyuVwQBAHbtm1DNBrFihUryBPRLpcL3d3dkCSJaNq+fTsmTJgwKPd8Ph+WLFkCj8dDnhaTF4ZCoRDMZjM2b96Myy+/HABw7tw5lJaWQhTFIXNP1rR9+3ZMnTp12PHU1dWFkpKSfpqmTp2KBx54AOvWrUM4HMamTZuQn58/bI1ob29HaWnpoNyTfZI1rVmzBo899lg/TXa7nTxt4PV6EQwGsXPnTowfPx4cx6GjowPLly8flHvxPm3YsAFTp04dVCP8fj8Z7xzHjVoj2traUFZWRnJvqPE0UNNQPg2lSfbJ6XSivLwcTz31FHiex8aNG8m8g9J1T5IkfPDBB5g9ezacTieMRiPmzZunyDlXFEU89dRTeOCBBzBu3LiUz7mxWAy/+93v8IMf/AC5ubkpXxOeP38eBQUFkHHs2DHMmjULWiAjFkJuvfVW1NTUgOM4VFRU4Fe/+lXG74UHJL8Q8r3vfQ/PP/88AODhhx9OaDXtpZdewl133QWg730hFy5cSC5oyiAvhMjQcvAwMDAwMDAwMDAwMDAwpAdKb309a9YschezWsdg0B6tra1YsmSJYnx79uzp9w7WVI83HF8iPHv27AGAYdutXbuWvGdErVhGOsZofTUalPRutL6Kb5eKH/JnE41diXxSKicTzZex6kw1D2QoPZYTgVKxJ4qioiLNjpVOpHMuNyNelv7JJ5+A4zj80z/9E37961+TPfyyFRMmTCC/t7W1JfQZ+XEsABg/frziMTEwMDAwMDAwMDAwMDAwZCIMBgPGjRuX7jAYGBgYGBgYVERGPFYh7+n41a9+NesXQQDgyiuvJL/Le/KNhs8//5z8PmPGDMVjYkgPuru78ctf/rLfi5EyFbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMsRPaKgoCDhLbfD4TDee++9fu/uzFTQpkXreDweDx599NF+L0+mkVsJrlQ4IpGIav3EMHaombdagrb6A2jbt2rq19M1mNLIiIUQea9YPWyHpQSuuuoq8vvRo0fJy7pGwscffzzk5xkyG3a7HQsXLiR7HmYyaNOidTxqHk9JbiW4UuGgLU+yHXrxgzYdrP6ox8fqj36gJz9o08JqkHpcyXLQliN6w5e//OUx7ZpgNpsxY8YMmM1mFaPSBrRp0TqeUCiEffv2kf32aeVWgisVDqPRqFo/MYwdauatlqCt/gDa9q2a+vV0DaY0MmJrrHnz5uHUqVM4efJkukOhAjfddBOsVit4nkdPTw8OHTqEwsLCYdvzPI+6ujry71tvvVWLMBk0gFw49QDatGgdj5rHU5JbCa5UOGjLk2yHXvygTaHUSTcAAQAASURBVAerP+rxsfqjH+jJD9q0sBqkHleyHLTliN5gNBrH3H7ixIkqRaMtaNOidTyRSASnTp2inlsJrlQ4DAaDav3EMHaombdagrb6A2jbt2rq19M1mNLIiEcsHnroIQDAhx9+iGPHjqU5mvTD6XTi61//Ovn3tm3bRmz/0ksvIRAIAOh7P8jXvvY1NcNLC2w2G5xOJwAgGo3C5/NBkiQAgN/vhyAIAIDe3l709PQAAERRhM/nIxzd3d2IRCIA+laB5RXgSCTS7/Etn89HnsLp6elBb28vAEAQBPj9fgCAJEnw+XyIRqMAgGAwSB5343me+BGLxeDz+RCLxQAAgUAAPM8D6HtMLhgMjqgpFAph7969aG9vz3hNbW1tePHFFxEKhajwqaurCy+88AJCoVDKPgGj5153dzf27duHS5cuKa6ps7MT+/btQ1dXFxU+tba2krssxqopFArhhRdeQGdnJwBlx1MiPmXKeNJKk8/nw/PPP49QKJTRmtrb27F3716EQiEqfPL7/aRflfBJyxoxUFN7ezv27dsHv9+vSO51dHRg37598Pl8Sfl04cIFvPzyywiFQll9ztVD3QsEAnj++ef7jZtM1XTx4kXs27cPgUCACp8uXLiAl156CaFQSJPcC4VCeOmll3DhwgXFNYVCIbz88su4cOECFT4l+30vFArhxRdfJO+HZDXiH5p4nifcoiiSuGOxGMLhMNHE8zzhjkQi/dqNpEn+PRqNkngikQiOHz9O+lIQhH7t5P+XJAnhcJjEKghCv1gHtouPNVVN8VuthMPhfu3iYw0Ggzh16hQikcigWNOhKRgM4sSJEyTOZDQNbCfH6nA4kJOTAwCwWCxwu93kLuW8vDyyIOZ0OmGz2QAAVqsVLpcLQN9igNfrHVWTJEnwer2E+7LLLoPFYgEA5OTkwOFwAABMJhO8Xu+wmmRus9mMSZMmkbupvV4v2cZNFEXyGVkTAHAc1y9Wp9OJcePGYeHChfB6vYM0ybuviKI4pKZIJIJ77rmH3M3tdruJplgsNqymSCQyZp/icy8Wiw3SlKhPsiaXywWr1UqOK88bGY1GeL1esv1+vKaRcs/j8ZA7+O12O+kTs9lM4pY5ZJ+Gyj1ZUyQSGXU8DdR02WWX4c4774TdbofNZiOfGalGjJR7I2mK3yIqPvfifRoq9+J9kmMYWCMCgQBOnjyJSCSScI2I90lpTQ6HA+PHj8fChQvh8XiIJrXqniAIOHXqFILBIOkjpc65fr8f+/btQ3t7uyLn3GAwiH379uHixYuKXhOmAxmxEDJ37lysWLEC0WgUS5YsQUdHR7pDSjsefPBB8vu2bdtw/PjxIduFQiGsXr2a/PuHP/xhwnufZhIKCwuxaNEiAH0TWpWVlWRwbtmyBSdOnAAA1NbWorq6GgDQ3NyMyspKwlFVVYXGxkYAwIEDB3DgwAEAQGNjI6qqqki7yspKNDc3AwCqq6tRW1sLADhx4gS2bNkCoK9wVFZWksmSvXv3kqdyGhoasGvXLgB9xaGyspIUo127dqGhoQEAUFdXh717946qqa2tjcSayZp2795NijcNPh09ehRnzpxRzKfRNDU1NQEAampqFNf00UcfEU00+BS/eJuMprNnzxJNSo8nGnIvkzSdPn0af//73zNe04EDB8jkEg0+tbS09HsKVu3cU7JGDNQkx9rS0qJI7v31r38F0Jd7yfj09NNPkwuIbD7n6qHuXbp0CSdPntSFpldffZVoosGnp59+msSgVe6FQiE8/fTTqmiKxWJ4+umnqfAple973d3d2L17N/GJ1Yg+TUePHkVrayuJT447FAqhvr6eTPI0NDT0+y55+vRpwrdhw4ZhNcm/d3V14dChQ6TdpUuXyETR6dOnybs729vbSR9Ho1HU19eTyaoTJ06QfmhtbcXRo0eJ9vr6etL/Smiqr68nsR46dAhdXV3Em3hNhw8fJu3q6+tJv6ZL07Fjx8hnktUU71N9fT2Z3CsuLsb8+fMBADNnzkRpaSmAvgnxFStWIDc3FwCwaNEisuPGnDlzUFJSAqBvAraiooJMbA6nied5VFRUkMn3kpISzJw5EwAwf/58FBcXAwDy8/NRUVExrCbZ2+nTp+P+++8n7SoqKpCfnw+g73uJPD8Wr8lqtaKiooJM3C5atAjXX389AODqq68epEme8G1ubh5SkyAImDlzJtFUWlpKNPE8P6ympqamhH0aKvcCgcAgTYn6JGsqKSnBnDlzyHHleaPc3Nx+PsVrGin3ysvLMX36dADAggULsGDBAuKTXOMB4MyZM8Sn4XLParXizJkzo46ngZruuusuTJgwAUDfXFhLSwuAkWvESLk3kqby8nLSLj734n0aKvfifZJzYGCN+Pjjj0mOJloj4n1SWlNxcTFuuukmAH3vZpY1aVH3ZJ+UOufKOXHgwAFFzrny+W7v3r2KXhOmA5wkL9dQjlgshvLycmzatAmTJk3CY489hrvuuguTJ09Od2hJ4+c//zkef/xxAH0DuKamZkyf/9rXvoZ3330XADBt2jTs378f11xzDfl7R0cHlixZgj//+c8A+p4GaWxs7LdKmuk4fvw4CgoKYLPZYDKZUFdXhxkzZiAQCMDj8YDjOPj9fthsNlgsFvT29pI7FkRRRDAYJP3R3d0Nu90Os9lMCpzdbkckEkEoFCKrxj6fD06nEyaTCT09PTAYDMjJyYEgCAiHw3C73ZAkCd3d3XC5XDAajQgGgzCZTLDZbOB5HoIgwOVyIRaLwe/3w+12w2AwIBAIwGKxwGq1IhwOQxRFsoLONDFNTBPTxDQxTUwT08Q0MU1ME9PENPVpeuedd8DzPIxGI0wmE0RRRCwWg8ViQSwWgyAIsFqt4DgOPM/DZDLBaDQiEolAkiTSbtasWZg0adKQmg4ePAiz2YxoNIpIJELuQA+Hw7BYLDAYDBAEARzHkXaiKMJqtUKSJPA836+dwWAgsUaj0X7t4mNNVZMgCP1iNZvNpB2ArNLU2dmJkpISOBwOxGIx9Pb2wmKxwGazwe/3g+M4eDweBAIB8sSAKIoIh8OwWq2wWCwIBAIwGAxwu91Yv349Jk+ePKymCxcu4MEHH0R3dzckSYLb7SZ3f+fk5MBgMKCnpwcmkwlOpxNVVVXIy8sbpKmtrQ3Lli2D2WyG3W4nN6N5vV4Eg0GIooidO3eC4zgsXbp0SE2rV6/GqlWrRtXk9/sRi8Wwc+dO5OXljUnTb37zG6xevbqfJvmO7x07dmDKlClJ515LSwvKy8uT8knW5HK5IAgCtm3bhmg0ihUrViAYDMJoNMLlcg3StH37dkyYMGFQ7vl8PixZsgQej4c8LSY/ZRAKhWA2m7F582ZcfvnlAIBz586htLQUoiiOmHvbt2/H1KlThx1PXV1dKCkpGVITz/Ow2WzYtGkT8vPzhx1P7e3tKC0tHZR7sk+ypjVr1uCxxx7rp2mo3Nu5cyfGjx8PjuPQ0dGB5cuXjzieNmzYgKlTp6ZcI9ra2lBWVjbieBqoaSifhhtPQ/m0ceNGTJo0SbO6N2/ePGrPuUp+jzh//jwKCgog49ixY5g1axa0QMYshMhYt24dVq1aRR5f83g8pKNHA8dxZPVMa9x+++1kRU5Ga2sruQPV4XDgi1/84qDP/fGPf8SUKVOG5GxubsaXv/xl8hg5x3GYP38+pk+fjvb2drz55ptkcJhMJrzxxhv9ttTSA+SFEBlaDh4aEIlE0NjYiOnTp1P1gqlkQJsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthyhBWO9kXA43HjjjeSu8ESOIU9Ojhs3bszvF6ENtGlRI57W1lYsWbJkyL+ZzWZMnz4djY2N/bY1Ggl79uxBXl7eqMdLlHs4vvi4h+Pas2cPAAyrb+3atXjkkUdG5EgklpaWFvyf//N/hvxs/DES5UsUI3k3VozWV/HtRvMjkc8mGnui+RSPgV4mwzEURvJyuJjH2i/xGOt4VzIfhsNY+zYVDKW/qKhIEW7ar8HSOZebEVtjAX2dVl5ejv/6r/8Cx3GQJInsafb555/j7NmzI/40NTX1e0xNa5w4cQJHjhzp9yMvggB9e6UO/PuRI0fInmpDIT8/H2+99RZmz54NoG+Pt5qaGmzevBmvvPIKWQTJzc3Fvn37dLcIwtC3oi2/ayHTQZsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdsgv00104pxm0KZF63jk93jId4zTyq0EVyoc4XBYtX5iGDvUzFstQVv9AbTtWzX16+kaTGlkxBMh0WgUxcXF+NOf/gQASDZkjuPIHmxaY9q0aWT/vLHgs88+w7Rp00ZsIwgCnn32WezZswfHjx9HW1sbvF4v/vmf/xl33nkn7r//fkycODHJyOlGtj8RwsDAwMDAwMDAwMDAkI1I1xMhDJkFpe8iV+ru+9H4Er3THkjsiZBEsHbtWuTl5WH8+PGwWCwIh8NYs2YN3n777RE/w54IGfxZNZ8IUYMD0P6JkLFCiydCBkLNJ0KGglJPhNCOdM7lZsRbs59++mm88cYb5EmQb3zjG1iyZAmuvvpqjBs3LiNe/q3m0ygWiwX33nsv7r33XtWOwcDAwMDAwMDAwMDAwMDAwMCgT8iT4BaLBTfffDN4nsf777+f5qgYGBgYlENGbI21fft28vuvf/1rHDhwAPfffz+uv/56TJ8+HVdccUXCPwwMeoLP58Pjjz9OXgiVyaBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDvC4TBqa2sRDofTHUrKoE2L1vF4vV78/Oc/Jy8jppVbCa6xcAiCgLfffpssgqjZTwxjh178oK3+ANr2rZr69XQNpjQyYiHk+PHj4DgOM2fOxKpVq9IdDgOFsNlscDqdAPq2UvP5fGQLNb/fT9610tvbi56eHgCAKIr9BmF3dzfZmy8UCpG96yKRCLq7u0k7n88HURQB9L3bpbe3F0DflwW/3w8A5P018lZswWCQFDee5xEIBAAAsVgMPp8PsVgMABAIBMDzPIC+ohgMBkfU5HQ6sXjxYnAcl/GaYrEYvv/978PpdFLhk9lsxt133w2n05myT8DouWe1WrF8+XIYDAbFNZlMJixfvhxms5kKn6LRKJYvXw6n0zlmTU6nE/fccw95ElDJ8ZSIT5kynrTSZLFYsGjRIjidzozWxHEcFi9eDKfTSYVPNpsNd911FzmvqZ17StaIgZo4jsPy5cths9kUyT2j0Yjly5fDYrEk5ZMoili2bBmcTmdWn3P1UPdycnJw1113weFwZLwmAFi+fDlycnKo8EkURSxduhROp1OT3HM6nVi6dCmJTUlNTqcT9957L0RRpMKnZL/vOZ1OfP/73yexsRrxD008zxNuURRJ3LFYDOFwmGjieZ5wRyKRfu1G0iT/Ho1GSTwWiwVXXXUV+T4qCEK/dnIfS5KEcDhMYhUEoV+sA9vFx5qqpviJtXA43K9dfKyxWAzXXnst2QYpPtZ0aJIkCQUFBbBYLElrGthOjtXhcCAnJ4d46Ha7EQwGsW3bNhiNRvKyYqfTCZvNBgCwWq1wuVwAAIPBAK/XO6omSZLg9XoJN8dxsFgsAPrOXfJ5y2Qy9ZtsHahJ5jabzTAYDNi2bRuCwSC8Xi/JvfjaJmsC+r7bxsfqdDoRiUSwbds2CIIwSJPB0Dc16HK5yDZx8XMsoVAIe/fuJTXD7XbDYrHAYrHA4/EMq0m+9huLT/G5F4vFBmlK1KehNMnXkwBgNBrh9XrJ9zpZkxzrcLnn8XjIy6Ltdjt5l4TZbO73rodIJEJ8Gir3ZE2RSGTU8TRQEwDs2rULwWAQNpuNfGakGjFS7o2kyePxkHbxuRfv01C5F++THMPAGhGLxXDNNdfAYrEkXCPifVJak8PhgCiK2LZtG3ieJ5rUqntmsxnXXnstJEkifaTUOddms2H58uXgOE6Rc67dbsfy5cshSZKi14TpQEYshMiYN29eukNgoBSFhYVYtGgRAKC9vR2VlZVkcG7ZsgUnTpwAANTW1qK6uhoA0NzcjMrKSsJRVVWFxsZGAMCBAwdw4MABAEBjYyOqqqpIu8rKSjQ3NwMAqqurUVtbCwA4ceIEtmzZAqCvcFRWVqK9vR0AsHfvXtTV1QEAGhoasGvXLgB9xaGyspIUo127dqGhoQEAUFdXh717946oyWQy4bPPPsPrr7+e8Zp27NiBnp4emEwmKnw6evQo3nnnHZhMppR9AkbPvbNnz2LatGl46623FNd06NAhTJs2DUePHqXCp02bNmHatGkwmUxj1mQymVBfX49Dhw4BUHY8JeJTpownrTSdPn0af/7zn2EymTJa0+uvv47PPvsMJpOJCp9aW1vx4osvki/laueekjVioKbXX38d06ZNQ2trqyK5d/DgQUybNg2nT59OyqennnoK48ePh8lkyupzrh7qXldXF1588UVyAZfJmvbt24dp06ahq6uLCp+eeuopOBwOmEwmTXLPZDLBaDTiqaeeUlyTyWTC5MmT8dRTT1HhU7Lf90wmE3p6erBjxw7iE6sRfZqOHj2K1tZWEp8cdygUQn19PakRDQ0NhPvs2bM4ffo04duwYcOwmuTfu7q6yPdPg8GAkydPkgmg06dPk/eBtre3kz6ORqOor68nk1UnTpwg/dDa2oqjR48S7fX19aT/ldBUX19PNB06dAhdXV3Em3hNH3/8MZlgra+vJ/2aLk1HjhxBJBKBwWBIWpPsEwDU19eTyb3i4mLMnz8fADBz5kyUlpZCFEW0trbixz/+MXJzcwEAixYtQmFhIQBgzpw5KCkpAdA3AVtRUUEmNofTxPM8KioqYDKZ0NTUhOXLl2PmzJkAgPnz56O4uBgAkJ+fj4qKimE1yd5Onz4dP/zhD9HU1ARRFFFRUYH8/HwAQFtbGzo6OvppAvoWBioqKsjE7aJFi3DDDTegqakJ11xzzSBN8oRvSUkJ5syZA6D/HMv48eOxaNEi8t20tLQUM2fOxM0334xAIDCspqampoR9Gir3AoHAIE2J+jSUpq6uLqIpNzcXFRUVZJFE1gSMPJ7Ky8sxffp0AMCCBQuwYMEC4lP8lvhnzpwhPg2Ve7KmM2fOjDqeBmpavHgxJkyYAFEUUVhYiJaWFgAj14iRcm8kTeXl5aRdfO7F+zRU7sX7JOfAwBrx4YcfIicnBwaDIeEaEe+T0pqKi4vxla98BU1NTbjyyiuJJrXqnrxoeuTIEeKTUufc1tZWTJs2Da+//roi59xQKIRp06bhueeeU/SaMB3IiJelz5gxA3/7299w7733YuvWrekOh4EiyC/YsdlsMJlMqKurw4wZMxAIBODxeMBxHPx+P2w2GywWC3p7exGLxchKr3xHBdC3umq322E2m0mBs9vtiEQiCIVCZNXY5/PB6XSSCxKDwYCcnBwIgoBwOAy32w1JktDd3Q2XywWj0UjuuLXZbOB5ntyFEYvF4Pf74Xa7YTAYEAgEYLFYYLVaEQ6HIYoiWUEfSlMkEsG+ffvwr//6r7jssssyWlNrayveeust3HHHHTAYDGn3qbOzE3/84x/x3e9+Fzk5OSn5lEjuSZKEN954A1//+tfhcDgU1cTzPP785z9jwYIFMJvNaffp0qVLqK2tRXFxMSKRyJg0hcNhvPzyy/jmN7+JCRMmKDqe9Fgj1NbU1dWFV199FXfeeSfsdnvGarp48SL+/Oc/Y+HChTCbzWn3qbu7G6+88gruvPNO8m81c0/JGjFQUyAQwFtvvYVvfvOb5Mt+KrnX29uLN998E//2b/8Go9E4Zp9aW1tRW1uL73znO4jFYll7ztVD3fP7/di/fz+++93vkn9nqia/34+33noLt99+O2KxWNp9unDhAhknkiSpnnsAsH//fhQVFWHKlCmKajIajXjllVcwf/58TJo0Ke0+Jft9LxaLYf/+/bj11luRl5fHasT/0/TOO++A53kYjUaYTCaIokhqeywWgyAIsFqt4DgOPM+TRbdIJAJJkki7WbNmYdKkSUNqOnjwIMxmM6LRKCKRCGw2GwRBwMmTJ3HllVeSf3McR9qJogir1UrunLVYLDAYDBAEAQaDgcQajUb7tYuPNVVNgiCQu+XlO4/ldgBIrKFQCGfPnsWXvvQlchw51nRoCgQCZBJSfkfsWDXJPsntOjs7UVJSAofDgVgsht7eXlgsFthsNkSjURQXF6O2thYXL14kTwyIoohwOAyr1QqLxYJAIACDwQC3243169dj8uTJw2q6cOECHnzwQUQiERQXF+Ptt99GV1cXBEEgk77yjWVOpxNVVVXIy8sbpKmtrQ3Lli2D2WzGhAkTUFRUhOrqapjNZgSDQYiiiJ07d4LjOCxdupRo8vv94DgOHo8Hq1evxqpVq+B0OmGxWLBgwQL86U9/giiK/TT5/X7EYjG4XC4IggCe58kcSzAYhMvlwsKFC/HSSy+hp6cHbrcbN9xwA/7jP/4DHR0dKCsr66dJvuN7x44dmDJlSkI+DZV7LS0tKC8v76cpEAgk5NNATdu2bUM0GsWKFSsQDAZhNBrhcrlIbXa73QiHw9i+fTsmTJgwKPd8Ph+WLFkCj8dDnhaTnzIIhUIwm83YvHkzLr/8cgDAuXPnyGLbULkna9q+fTumTp067Hjq6upCSUlJP02XXXYZvvGNb2D//v2IRqPYtGkT8vPzh60R7e3tKC0tHZR7sk+ypjVr1uCxxx7rp0m+xgNAnnTauXMnxo8fD47j0NHRQe70H86nDRs2YOrUqYNqRCAQwNmzZ3HllVdCkqRRa0RbWxvKysoQDoeHHU8DNQ3l01CaZJ9sNhv+9V//FW+88QZisRg2btyISZMmqVL3OI7D3/72N1xxxRWw2+0wGo2YN2+eIudcjuPw+uuv49Zbb4XL5Ur5nGs0GvHaa6/hlltugdfrTfma8Pz58+xl6SPh1ltvxenTp3H48OF0h8JAKeIfVZQfcZQhr5oDII8jAkM/OidDLpTA0I/OyZAfwwNAHg0F/vE4oAz58Uugb4VcvutAfsRRhvw4JwDypWAkTdFoFBMmTCCfy2RNHo8H48ePJxdGMtKlKScnBxMnToTBYEjZJ5lvJE29vb3wer1wOp2krVKa5LhycnIIdzp98nq95M6zsWoyGAyYOHEi4VRyPAH6qxFqa7LZbMjNzYXBYMhoTS6XCxMmTIDBYKDCJ4vFQvo1WU3pqhFDafJ6vbBYLP00JqtJjstmsxG+sfg0btw4jBs3DgaDYVAuj6ZJT+dcPdQ9s9mM3NxcsvVCJmuSFwnNZnO/2NOlKX6cxB9Xrdzr7e3F+PHjMW7cOMU19fb2Ej3x23Qko0kJn5L9vif3kdyO1Qhvv7/FxyfDYDD00xjfTt4uZSi+gZrktvFbJ3EcB4fDQf4taxiqXXwM8e1MJhOJd2A7JTTFtxtYO+NjtdlssNlsI8aqpSb5/C5PhCejSY5Vbid/n5K3mwH6toiRJ1J9Pt+gLWJk8DxP7nCWt4iRt1IaThPHcfD5fIR74BYxMgZuezNQk8wpb3sjbwkX/5n448qagH9seyPHGgwGSTzhcJjEMZBP3g4H6D/HIooi2tvbyeL17373O3zhC18gfT7cVj7ywo78u4yhfJIRn1MGg2HQVj4yRvNpKE3yhC/wj618ZMjHGRjrwNyL34JInowG+nyK/5zZbO63JaCMgT7JW58N1B4/nobS1NnZSbZYktuNVCNGyr2RNA3ccklGfKxD5Z4MedFpoCaO48i1R/z2cXI7GQM1xfuktKaenh7S1zzPE3616p68GGiz2UgfKXXOlb9vyIsgctzJnnNlPrfb3W/7PBljvSY8f/480oWMWAgpKyvDpk2b8Mknn+Ddd9/FV7/61XSHxMBABXJycnDbbbelOwxFQJsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdpjNZnzxi19MdxiKgDYtWsfT29uLN954g3puJbhS4Rj42fiJYAbtoWbeagna6g+gbd+qqV9P12BKIyPeEXLttdfiF7/4BSRJwuLFi3Hq1Kl0h8TAQAUEQcDhw4fJ6nsmgzYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7YhGo2htbSVPEGQyaNOidTwWiwWzZ8+GxWLp91Sa0tw0cKXCoaQWhtShFz9oqz+Atn2rpn49XYMpjYxYCAGAn/70p9iwYQM6Ozsxd+5c/OQnP8H777/f77EoBoZsQzgcRk1NTb/HVjMVtGnROh41j6cktxJcqXDQlifZDr34QZsOVn/U42P1Rz/Qkx+0aWE1SD2uZDloy5FshyiK5MXVmQ7atGgdj81mQ1FREWw2G1avXq0aNw1cqXAoqYUhdejFD9rqD6Bt36qpX0/XYEojI16WHr93INC355y81+FYwHEcVQOMIXXIL0uXoeULdhgYGBgYGBgYGBgYGBjSg5qaGkV4brzxxn57uatxDIb0obW1FUuWLBm13dq1a/HII4+M2m7Pnj3Iy8tL+Xij8SXCs2fPHgAYtl2imsaK+JhHinO0vhoNY+3LkTBaX8W3S8WPRPolkeMle9xkOYDkxoAS8SUKJfMhUSgVe6IoKirS7FjpRDrncjPiiZCBazXxiyCSJI3ph4FBT5AkCeFwWBe5TZsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdkiSBFEUdeEHbVq0jkd+uXEyN9pqya0EVyocavYTw9ihFz9oqz+Atn2rpn49XYMpjYxYCAGGX/BgYAD6Hl9zOp0A+vbZ8/l8JD/8fj/Zh663txc9PT0A+h5D8/l8hKO7uxuRSAQAEAqFEAqFAACRSATd3d2knc/nI08W9fT0oLe3F0DfnnfyVm2SJMHn85G9/oLBIHkEjOd5BAIBAEAsFoPP50MsFgMABAIB8DwPoO/RsWAwOKKm7u5uPPnkk7hw4ULGa2pubsaTTz6J7u5uKny6ePEiiSdVn4DRc+/SpUt48skn0draqrgmWcvFixep8OncuXOEY6ya5Jy/ePEiAGXHUyI+Zcp40kpTe3s78TKTNV24cIHooMGnjo4OEo8SPmlZIwZqkvu2o6NDkdxra2vDk08+ifb29qR8iq8/2XzO1UPd6+zsxJNPPknizWRNLS0tePLJJ9HZ2UmFT/HjRIvck8fWuXPnFNcUz02DT8l+35N1NDc3E59YjYiRv8ncoiiSuGOxWL9JF57nCXckEunXbiRN8u/RaLRfPAcPHuynI76d3MfyxI8cqyAI/WId2C4+1lQ1xW8/Eg6H+7WLj9Xv9+PgwYPgeX5QrOnQFB9PspoGtpNjdTgcyMnJAdD3HgC32w2Px4NHH30Ul19+OYnB6XSSbXGsVitcLhcAwGAwwOv1jqpJkiR4vV7CPXXqVPK+gZycHDgcDgCAyWSC1+sdVpPMbTabkZ+fj0cffRQejwderxcmk4kcV/6MrAnom8yNj9XpdOKyyy7Do48+itzc3EGaDIa+qUGXy0WejoqfYxk3bhw5vhyffNxoNDqspvh2ifoUn3uxWGyQJnnHmNF8GkpTNBolmoxGI7xeL5nwdrvdxKeRcs/j8cBsNgMA7HY77HY78UmOW+aQfRoq92RNkUhk1PE0UNOUKVOIHzabjXxmpBoxUu6NpEn2HEC/3Iv3aajci/dJjmFgjYgf74nWiHiflNbkcDjIOJk4cSLRpFbdC4fDOHjwIPx+P+kjpc658vXkhQsXFDnndnV14cknn8T58+cVvSZMBzJiISQWiynyQ9MLeBiURWFhIRYtWgSgb2KusrKSDM4tW7bgxIkTAIDa2lpUV1cD6JvQraysJBxVVVVobGwEABw4cAAHDhwAADQ2NqKqqoq0q6ysJBch1dXVqK2tBQCcOHECW7ZsAdBXOCorK9He3g4A2Lt3L+rq6gAADQ0N2LVrF4C+4lBZWUmK0a5du9DQ0AAAqKurw969e0fU5HK5UFBQQGLIZE0vvvgiioqK4HK5qPCpsbEREyZMgMvlStknYPTca29vR1lZGerq6hTXdPz4cZSVlaGxsZEKn3bv3o2ysjK4XK4xa3K5XJg8eTKOHz8OQNnxlIhPmTKetNLU3NwMp9MJl8uV0Zpqa2tRUFAAl8tFhU/yF1n5gk7t3FOyRgzUVFtbi7KyMnR3dyuSew0NDSgrK0Nzc3NSPm3duhXf//734XK5svqcq4e6J1+syRfDmazpwIEDKCsrQzgcpsKnrVu34q677oLL5dIk91wuF4qLi7F161bFNblcLtx3333YunUrFT4l+33P5XKhqKgIL774IvGJ1Yg+TUePHkVrayuJT447FAqhvr6ezAE0NDQQ7rNnz+L06dOEb8OGDcNqkn/v6urCoUOHAPyj7sh16PTp0zh79izpS7mPo9Eo6uvryWTViRMnSD+0trbi6NGjRHt9fT3pfyU01dfXE02HDh1CV1cX8SZe09GjRzF37lxYLBbU19eTfk2XppMnT+KKK66AxWJJWpPsEwDU19cTn4qLizF//nwAwMyZM1FaWopAIIAtW7agtLSUTHIuWrQIhYWFAIA5c+agpKQEQN8EbEVFBZnYHE4Tz/OoqKiAIAjYsGEDFi1ahJkzZwIA5s+fj+LiYgBAfn4+KioqhtUkezt9+nSUlJRgw4YNCAQCqKioQH5+PgCgra0NHR0d/TQBfQsDFRUV/TTNnDkTGzZsIHzxmuQJ35KSEsyZMwdA/zkWecFBntj8/PPPSXwdHR3DampqakrYp6FyLxAIDNKUm5ubkE9Daerq6iKacnNzUVFRQRZJSktLiU8j5V55eTmmT58OAFiwYAEWLFhAfGpqaiLtzpw5Q3waKvdkTWfOnBl1PA3UVFxcjIMHDyIQCKCwsBAtLS0ARq4RI+XeSJrKy8tJu/jci/dpqNyL90nOgYE14vDhwygoKIDFYkm4RsT7pLSm4uJiXHfdddiwYQPy8/OJJrXqntFoxNy5c3Hy5Enik1Ln3O7ubpSVlZHrMTnuZM+5kiShrKwMr776qqLXhOlARrwjhIFhOMj7ytlsNphMJtTV1WHGjBkIBALweDzgOA5+vx82mw0WiwW9vb2IxWJwOBwQRRHBYJCsGnd3d8Nut8NsNpMCZ7fbEYlEEAqFyKqxz+eD0+mEyWRCT08PDAYDcnJyIAgCwuEw3G43JElCd3c3XC4XjEYjgsEgTCYTbDYbeJ6HIAhwuVyIxWLw+/1wu90wGAwIBAKwWCywWq0Ih8MQRZGsoDNNTBPTxDQxTUwT08Q0MU1ME9PENDFNfZreeecd8DwPo9EIk8kEURQRi8VgsVgQi8UgCAKsVis4jgPP8zCZTDAajYhEIpAkibSbNWsWJk2aNKSmgwcPwmw2IxqNIhKJkAnhcDgMi8UCg8EAQRDAcRxpJ4oirFYrJEkCz/P92hkMBhJrNBrt1y4+1lQ1CYLQL1az2UzaAcgqTZ2dnSgpKYHD4UAsFkNvby8sFgtsNhv8fj84joPH48Hq1auxatUqOJ1OiKKIcDgMq9UKi8WCQCAAg8EAt9uN9evXY/LkycNqunDhAh588EHyxLTb7UY4HIYgCMjJyYHBYEBPTw9MJhOcTieqqqqQl5c3SFNbWxuWLVsGs9kMu91ObpTxer0IBoMQRRE7d+4Ex3FYunRpSpr8fj9isRhcLhcEQQDP82SOJRgMwmg0wuVyEU07duzAlClTYDQacf78eZSVlfXTJN/xHd8umdxraWlBeXl5P02BQIA82TEWTdu2bUM0GsWKFSuG1CT7tH37dkyYMGFQ7vl8PixZsgQej4c8LSY/ZRAKhWA2m7F582ZcfvnlAIBz586htLQUoiiOmHvbt2/H1KlThx1PXV1dKCkpGdGnTZs2IT8/f9jx1N7ejtLS0kG5J/ska1qzZg0ee+yxfpqGyr2dO3di/Pjx4DgOHR0dWL58+aDci/dpw4YNmDp1aso1oq2tjdyQMNx4GqhpKJ+GG09D+bRx40ZMmjRJs7o3b948as+5Sn6POH/+PHtHCACyUsbAMFbEP5I10iOOajw6N9wjjqk+thn/KOpwmoLBIJ577jny+FkmazIYDNi9ezeCwSAVPkUiEbz44osIBoMp+wSMnns8z2Pbtm2IxWKKaxJFEdu2bUMkEqHCJ6PRiG3btpGT+lg0BYNB7N27l9yJpeR4SsSnTBlPWmkSBAEvvfQSgsFgRmuSJAnPPfccgsEgFT6Fw2Hs27ePnNfUzj0la8RATZIkYdu2bQiHw4rkXjQaxbZt2yAIQlI+mUwm7NixA8FgMKvPuXqoe729vdi3bx/ZPiCTNQHAtm3b0NvbS4VPJpMJO3fuRDAY1CT3gsEgnnnmGRKbkpqCwSC2b99OJhjS7VOy3/eCwSB2795NYmM14h+arFYr4TaZTCRug8HQb593q9VKuM1mc792I2mSfzcajf3uij916hT5PmqxWPq1k/tY3mtejtVisfSLdWC7+FhT1STHCvR5Hd8uPlaDwYDDhw+TRYb4WNOhieM4HD16FIIgJK1pYDs51qG2ZXM6nVi+fDlEUSQxjLZFzGiaOI6Dz+eDw+HAfffdRyY9gZG3vRmoSeaWt5e67777yESvnHvxtW2obW/iNZlMJtx3330wm81j3j4vJycHCxcuJLVAvqaT+3w4TfHtEvUpPvcMBoOi21HK15PAyFv5jJR7I21PJMctcySyJaDZbB51PA3UJEkSlixZAqfTiXA4TD4zUo1QepvDeJ9G23JJjmFgjTAYDDhy5AhZFEikRqi9daPRaMR9990Hi8VCNKlV9yKRCA4fPgyO40gfKXXODYfD2LZtGyRJUuScGwqFsG3bNnAcp+g1YTpA1UJIfn4+CgsL8Ytf/AKffPJJusNhYKAeJpMJ06ZN63fhmKmgTYvW8ah5PCW5leBKhYO2PMl26MUP2nSw+qMeH6s/+oGe/KBNC6tB6nEly0FbjmQ7Bi7GZDJo06J1PKIooqmpiUyE0sqtBFcqHGr2E8PYoRc/aKs/gLZ9q6Z+PV2DKY30RxCHWCyGDz/8EB9++CFWr16NL3zhC/j2t7+N73znOygqKuq3usrAwNC3AltUVJTuMBQBbVq0jkfN4ynJrQRXKhy05Um2Qy9+0KaD1R/1+Fj90Q/05AdtWlgNUo8rWQ7aciTbIU/o6AG0adE6nnA4jJqaGuq5leBKhUPNfmIYO/TiB231B9C2b9XUr6drMKVBz7IbgDvuuAN2ux2SJEGSJJw9exbr16/HbbfdhokTJ+Kee+7BM888g87OznSHysBABXieR11dHXnUM5NBmxat41HzeEpyK8GVCgdteZLt0IsftOlg9Uc9PlZ/9AM9+UGbFlaD1ONKloO2HMl2iKKI5ubmjL8bG6BPi9bxWK1WFBYWkq1eaOVWgisVDjX7iWHs0IsftNUfQNu+VVO/nq7BlAZVCyEvv/wyOjo68Nprr2HFihWYOnUqWRQJBAJ48cUXsXz5cuTl5WH+/Pn49a9/jdOnT6c7bAaGtEEQBLKna6aDNi1ax6Pm8ZTkVoIrFQ7a8iTboRc/aNPB6o96fKz+6Ad68oM2LawGqceVLAdtOZLtiEajaG1tJXvgZzJo06J1PBaLBbNnzyZ72dPKrQRXKhxq9hPD2KEXP2irP4C2faumfj1dgykNTpLfDEQpGhoaUF1djVdeeQUff/wx+X/5BSwA8MUvfhHf+c538J3vfAc333wzVfvLMaiL48ePo6CggPz72LFjmDVrVhojYmBgYGBgYGBgYGBgYFAbSm1fcuONNw57968etp/JdrS2tmLJkiWjtlu7di0eeeSRUdvt2bMHeXl5KR9vNL5EePbs2QMAw7ZLVNNYER/zSHGO1lejYax9ORJG66v4dqn4kUi/JHK8ZI+bLAeQ3BhQIr5EoWQ+JAqlYk8UtGwfpTbSOZdL/YrBnDlzsHr1ahw6dAjNzc2oqqrC7bffDqvVSp4W+fvf/47f/va3KCoqwmWXXYZ7770XL7zwAgKBQLrDZ2BQFbFYDD6fD7FYLN2hpAzatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLZDkiSEw2FQfk9pQqBNi9bxqPmyYiW5leBKhYPGl1pnMzLNj9bWVrS2tg56GoC2+gNo27dq6tfTNZjSyIxR8/8wZcoUlJWV4dVXX8WlS5fw8ssvo7S0FJdddhlZFOns7MSuXbuwePFi5ObmYsGCBfj973+Pzz//PN3hMzAoDr/fj8rKSvj9/nSHkjJo06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWI9kOnudRX19PxV7nqYI2LVrH43a7UVFRAbfbTTW3ElypcKjZTwxjR6b58cgjj2DJkiUoLi7GE088gXA4DIC++gNo27dq6tfTNZjSyKiFkHjY7Xbccccd+MMf/oCWlhb89a9/xc9+9jMUFBSQRRFBEPCXv/wFK1euxD/90z/h2muvxX//93/jgw8+SHf4DArDZrPB6XQC6Ntnz+fzkVVVv99PVp57e3vR09MDoO/FRD6fj3B0d3cjEokAAEKhEEKhEAAgEomgu7ubtPP5fORlRj09Pejt7QXQt+edPKglSYLP5yN7/QWDwX7FXn5aaeCqaCAQIEUwHA4jGAyOqMntdqOsrAxGozHjNQFAeXk53G43FT5ZrVb84Ac/gNvtTtknYPTcy8nJwcqVK2EymRTXZLFYsHLlSlitVip8kiQJK1euhNvtHrMmt9uNf//3fyd7dio5nhLxKVPGk1aabDYbSktL4Xa7M1qT0WhEWVkZ3G43FT7Z7Xbcf//95Au42rmnZI0YqMloNGLlypWw2+2K5J7ZbMbKlSths9mS8ikWi+HHP/4x3G53Vp9z9VD3HA4H7r//frhcrozXZDAYsHLlSjgcDip8isVieOihh+B2uzXJPbfbjR/96Ef97hJUSpPb7cbDDz+MWCxGhU/Jft9zu90oLy8nbViN+IcmnucJtyiKJO5YLNbvTlue5wl3JBLp124kTfLv0Wi033XC7NmzYTabiY74dnIfy3f7yrEKgtAv1oHt4mNNVZMcK9DndXy7+FglScK8efNgtVoHxZoOTQBw/fXXw2q1Jq1pYDs5VofDgZycHAB97wFwu93w+/1Yt24dOI4jMTidTthsNuK1fJ6R7xQfTZMkSfB6vYRbkiRy7ZKTkwOHwwEAMJlM8Hq9w2qSueU8W7duHfx+P7xeL0wmEzmu/BlZE9C3lXx8rE6nEzzPY926dQiHw4M0yXe/u1wusk1c/BxLMBjEli1byHiNRCLkuNFodFhN8e0S9Sk+92Kx2CBN8vew0XwaSlM0GiWajEYjvF4v2Xbf7XYTn0bKPY/HQzyx2+2w2+3EJzlumUP2aajckzVFIpFRx9NATbFYDOvXr4ff74fNZiOfGalGjJR7I2nyeDykXXzuxfs0VO4N5RPHcTh06BDWrFlD5m2//OUvw2q1Jlwj4n1SWpPD4YAgCFi3bh059wLq1T2LxYJ58+YBAPFJqXOu3W7HypUrYTQaFTnnOp1OrFy5EhzHKXpNmA5k7EJIPDiOw7x58/CLX/wCn3zyCc6cOYPKykp84xvfgMlkIgPs2LFj+N///V/ceOONmDp1arrDZlAQhYWFWLRoEQCgvb0dlZWVZHBu2bIFJ06cAADU1taiuroaANDc3IzKykrCUVVVhcbGRgDAgQMHcODAAQBAY2MjqqqqSLvKyko0NzcDAKqrq1FbWwsAOHHiBLZs2QKgr3BUVlaivb0dALB3717U1dUB6Hvvza5duwAMXhXdtWsXGhoaAAB1dXXYu3fviJoMBgMOHz6M1157LeM1bdu2DS0tLTAYDFT4dOTIEbz66qswGAwp+wSMnnufffYZvF4v3nzzTcU1ffDBB/B6vThy5AgVPm3cuJF8kRurJoPBgD//+c9kQVvJ8ZSIT5kynrTSdOrUKbz44oswGAwZrem1117D4cOHYTAYqPCppaUFW7duJRc7aueekjVioKbXXnsNXq8XLS0tiuTeu+++C6/Xi1OnTiXl0+9+9zsYDAYYDIasPufqoe51dHRg69at5IIwkzW99NJL8Hq96OjooMKn3/3ud4hEIjAYDJrknsFgQDAYxO9+9zvFNRkMBuTk5OB3v/sdFT4l+33PYDCgpaUF27ZtIz6xGtGn6ejRo2htbSXxyXGHQiHU19eTSZ6GhgbCffbsWZw+fZrwbdiwYVhN8u9dXV04dOgQgL75h8OHD5OJotOnT+Ps2bOkL+U+jkajqK+vJ5NVJ06cIP3Q2tqKo0ePEu3xdwUroam+vp5oOnToELq6uog38Zo++ugj2Gw2cByH+vp60q/p0iT3K8dxSWuSfQKA+vp6MrlXXFyM+fPnAwBmzpyJ0tJSMiG5cuVKMsm5aNEiFBYWAujbqr2kpATAP+4Ulyc2h9PE8zwqKipgsVjg8/lw//33Y+bMmQCA+fPno7i4GACQn5+PioqKYTXJ3k6fPh0rVqwgC4AVFRXIz88HALS1taGjo6OfJqBvYaCioqKfpnnz5sHn82H27NmDNMkTviUlJZgzZw6A/nMsEydORGlpKZmA/vzzz0l8HR0dw2pqampK2Kehci8QCAzSlJubm5BPQ2nq6uoimnJzc1FRUUEWSUpLS4lPI+VeeXk5pk+fDgBYsGABFixYQHxqamoi7c6cOUN8Gir3ZE1nzpwZdTwN1PT9738f//zP/4xYLIbCwkK0tLQAGLlGjJR7I2mKX4SPz714n4bKvZF8OnjwIAKBAD744ANwHAeO4xKuEfE+Ka2puLgYX/va1+Dz+XDVVVcRTWrVvVgsBpvNhsOHDxOflDrntrS0wOv14rXXXlPknBsMBuH1erFnzx5FrwnTAepflp4qAoEA3njjDbzyyit4/fXX0dnZCaDvy4s8kBgyF/ILdmw2G0wmE+rq6jBjxgwEAgF4PB5wHEdWyS0WC3p7exGLxeBwOCCKIhnMQN/qqt1uh9lsJgXObrcjEokgFAqRVWN5NdRkMqGnp4dcYAmCgHA4TO6M7u7uhsvlgtFoRDAYhMlkgs1mA8/zEAQBLpcLsViM3K1mMBgQCARgsVjIHTmiKMLpdCIajQ6pied57Ny5E3fddRcmTZqU0ZpaWlqwb98+LFu2DCaTKe0+Xbp0Cc899xzuvfdeOByOlHxKJPei0Sief/553HnnnXA6nYpq6u3txYsvvohFixaRu2XS6dPFixdRXV2NkpIScldOoppCoRB27NiBe+65B7m5uYqOJz3WCLU1dXR04Nlnn8W9994Lp9OZsZra2trw4osvYtmyZSSOdPrU1dWF3bt3495774XL5VI995SsEQM1+f1+vPzyy/je975H7hBLJfd6enrw0ksv4e6774bZbB6zTy0tLaiursbSpUsBIGvPuXqoez6fD7t27cKyZcvIXb2Zqsnn82Hfvn1YvHgxAKTdp/Pnz5NxwnGc6rkXi8XwzDPPoLi4mExGKKWJ4zjCPXny5LT7lOz3PVEUsXPnTixcuBBTpkxhNeL/aXrnnXfA8zyMRiNMJhNEUUQsFoPFYkEsFoMgCLBareQOVpPJBKPRSJ5QltvNmjULkyZNGlLTwYMHYTabEY1GEYlESDxHjhzB1VdfTXRwHEfaiaJI3mnK8zwsFgsMBgMEQYDBYCCxRqPRfu3iY01VkyAI5C7scDgMs9lM2gEgsfb09OD06dO4+uqryeflWNOhye/349NPP8U111wDg8GQlCbZJ7ldZ2cnSkpK4HA4EIvF0NvbC4vFApvNBkmSUFJSgurqavzkJz/BqlWr4HQ6IYoiwuEwrFYrLBYLAoEADAYD3G431q9fj8mTJw+r6cKFC3jwwQcRjUZRUlKC/fv3o6OjA4IgICcnBwaDAT09PTCZTHA6naiqqkJeXt4gTW1tbVi2bBnMZjNyc3Pxne98B7t27SLjQ64LHMdh6dKlRJPf7wfHcfB4PFi9ejXRZLPZsGjRIrzwwgsQBKGfJr/fj1gsBpfLBUEQwPM8mWMJBoPweDxYunQpduzYgUAggB07dmDKlCkwGo04f/48ysrK+mmS7/iObzeaT0PlXktLC8rLy/tpCgQC5BpyJJ8Gatq2bRui0ShWrFiBYDAIo9FIvmdLkgS3241wOIzt27djwoQJg3LP5/NhyZIl8Hg85Gkx+SmDUCgEs9mMzZs34/LLLwcAnDt3DqWlpRBFccjckzVt374dU6dOHXY8dXV1oaSkpJ+mvLw8fPe738UzzzyDSCSCTZs2IT8/f9ga0d7ejtLS0kG5J/ska1qzZg0ee+yxfprsdjt52sDr9SIYDGLnzp0YP348OI5DR0cHli9fPij3RvNp9+7dsNvtOH36NK655hoAGLVGtLW1oaysDOFweNjxNFDTUD4NpUn2yW6346677sLzzz8PURSxceNGTJo0SZW6B/S9JPxLX/oSHA4HjEYj5s2bp8g5V5IkPPfcc/jud78Lt9ud8jmX4zjs2bMHd9xxB8aPH5/yNeH58+fT9rJ0kyZHSSNcLhfuvvtu3H333YjFYnjvvffwyiuv4NVXX013aAwKIv5RRfkRRxnxe/vJjyMCQz86J0MulMDQj87JkB/DA/omU+Q7JOInewCQxy+BvhVy+a4D+RFHGfLjnADIl4KRNEmShOuuu478LZM1TZgwAddddx25OJORLk0ulwtz584lJ7tUfAJGzz2e5zF79mx4PB6iXylNZrMZs2fP7vdYcDp9mjhxImbPnj2IIxFNFosFc+fOJX2r5HgC9Fcj1NbkdDrJOMlkTV6vl+Q1DT7Z7XbSr8lqSleNGKjJYDBg9uzZsNvt/cZ7sppMJhNmz54Np9NJ+MbiU25uLubMmTOo/mTbOVcPdS8nJwdz584ln8tkTePGjcPs2bORk5PTLy/TpWm4caJW7vE8jzlz5pC7R5XUFM8dv01HMpqU8CnZ73s8z+O6667DhAkTALAaIbeL55Ljk2EwGPppjPdM3i5lIN9QmuS2RqOR5JDRaMSUKVPI32QNA9txHNcvhvh2JpOJxDuw3cDv2Mloim8X/3t8O6PRCLvdjry8PDJZN1SsWmqy2+1k0XKkdiNpkmOV28lP2MrbzQB9W8TIk6uHDx/GpUuXyBZJ8lYvQN/Yk+9wlreIkdsNp4njOPh8PsLd2dnZb4sYGQO3vRmoSeaMRCLo6OjA4cOHySLFUMeVNQH/2PYmXlMkEsHhw4cRDAYHaZIhP+UE9J9jCYfD+Oijjwi/vGAj9/lwW/nEtxvNJxnxOSXvzhCvScZoPg2lSZ7wBf6xlY+M+HcXjDSe4rcgkiejgT6f4j9nNpv7bQkoY6BPZrOZ5Ohw42mgpq6uLjQ0NJB8kNuNVCNGyr2RNA3ccklGfKxD5Z6M4XziOA4Oh2PI8T7S2I/3SWlNPT09EEURhw8fRk9PT79Y1ah7oigiLy8PdrudjAelzrny9w2v10viSOWcK/PJiyBAateE58+fR7qg+4WQeBgMBnzta1/D1772Nfz6179OdzgMDCnDarWSxwwzHbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMsRWnDZZZfhs88+0/y4JpOJPL2U6aBNi9bx8DxPtoOhmVsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGrp4R0g8XnrpJdx333345je/ieXLl+PZZ59Nd0gMDKohHA6jpqam390amQratGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlCC34whe+gMsvv5zcaRt/R6uaEEURTU1N5G7vTAZtWrSOx2azoaioqN+dzTRyK8GVCoea/cQwdujFD9rqD6Bt36qpX0/XYEojIxZC2trayJMc/9//9/8N2SYWi+HOO+/E3XffjZ07d+LAgQN45plnUFJSgltuuaXfo2gMDHoBjSeOZEGbFq3jUfN4SnIrwZUKB215ku3Qix+06WD1Rz0+Vn/0Az35QZsWVoPU40qWg7YcoQUcx2H69Om4+eabcfPNN+P666/X5LjyNjXyi6gzGbRp0Toek8mEadOm9du2hkZuJbhS4VCznxjGDr34QVv9AbTtWzX16+kaTGlkxKh5+eWX8d5774HjOKxcuXLINr/61a+wb9++If/2zjvv4Ac/+AF7OoRBd3A6nbjvvvvSHYYioE2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW47QBvnFylrBYrFg9uzZmh1PTdCmRet4gsEgtm3bRj23ElypcKjZTwxjh178oK3+ANr2rZr69XQNpjQy4omQd999F0Bfknzzm98c9HdBELBmzRpwHAeO4/Cv//qv+L//9//iP//zP2Gz2SBJEl544QUcOnRI69AZGFRFNBpFa2srotFoukNJGbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMuRbEcsFkMwGKTqLuZkQZsWreMxGo3kZfE0cyvBlQqHmv3EMHboxQ/a6g+gbd+qqV9P12BKIyMWQo4fPw4AKCgogN1uH/T3119/HV1dXQCA73znO/jTn/6Ehx56CE8++SS2bt1K2j3zzDPaBMzAoBECgQA2btyIQCCQ7lBSBm1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk2yEIAj766CMIgpDuUFIGbVq0jsflcmHFihVwuVxUcyvBlQqHmv3EMHboxQ/a6g+gbd+qqV9P12BKg5MkSUp3EKNh4sSJ6OrqwuLFi7Fr165Bf3/ooYewfv16cByHd999FzfddBP5WywWwxe+8AVcuHABN9xwA+rq6rQMnUFlHD9+HAUFBeTfx44dw6xZs9IYkbaQJAk8z8NqtYLjuHSHkxJo06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWIzSjpqZmzJ+58cYbYbVaE+aTJAnRaBRGozHj/aBNixrxtLa2YsmSJUP+jeM4WK1W8DyP3/72t3jkkUdG5duzZw/y8vJGPV4890jTbsPxxcc9HNeePXsAYFh9a9euJZoSjWcoDPxsfMwj9e9ofTUaRuIeK0brq/h2o/mRyGcTjT3RfIrHSH4kyjEU4vMl0ZiT9WjPnj2YNGnSmMa7kvkwHMbat6lgqHpXVFSkGDfN12DpnMvNiCdC5BUjj8cz5N/lrbMmTpzYbxEEAAwGA+bOnQtJktDY2KhuoAwMGoPjONhsNiq+tKYK2rRoHY+ax1OSWwmuVDhoy5Nsh178oE0Hqz/q8bH6ox/oyQ/atLAapB5Xshy05Ui2g+M4mEwmXfhBmxat45EkCeFweMwLA1pzK8GVCoea/cQwdujFD9rqD6Bt36qpX0/XYEojIxZC5I4a6u3y3d3dOH78ODiOw1e+8pUhPz9p0iQAgN/vVy9IhrTCZrPB6XQC6Nt7zufzkcLl9/vJo2a9vb3o6ekB0JdPPp+PcHR3dyMSiQAAQqEQQqEQACASiaC7u5u08/l8JBd7enrQ29sLoO+xNjnHJEmCz+cj+98Fg0GEw2EAAM/zZHEvFovB5/ORPQEDgQB4ngcAhMNhBIPBETX5/X789re/RWtra8ZrOn/+PNauXQu/30+FT+3t7fjtb38Lv9+fsk/A6LnX0dGBdevWoa2tTXFNFy9exLp169De3k6FT83NzVi3bh38fv+YNck5f/HiRQDKjqdEfMqU8aSVpkuXLpFxksmaWltbiQ4afOrs7CTxKOGTljVioKbW1lasW7cOnZ2diuSeHOulS5eS8uncuXOkhmXzOVcPda+rqwu//e1vSRyZrOnChQtYt24durq6qPApfpxokXt+vx9r167FuXPnFNcUz02DT8l+35N1nD9/nvjEasTQmuS4Y7FYv8ksnucJdyQS6dduJE3y79FotF88f/3rX/vpiG8nxyNPqMmxCoJA+kEUxUHt4mONb5eMJjlWuV/i28XH6vf7UVdXB57nB8WaDk1+vx9//etfwfN80poGtpNjdTgcyMnJAdD3/lm32w23242Kigrk5+eTGJxOJ2w2GwDAarWSLXIMBgO8Xu+omiRJgtfrJdxTpkyBxWIBAOTk5MDhcAAATCYTvF7vsJpkbrPZjKlTp6KiogJutxterxcmk4kcV/6MrAnom0OLj9XpdCI3NxcVFRWYOHHiIE0GQ9/UoMvlIk9Hxc+xeL1erFq1ivBHIhFy3Gg0Oqym+HaJ+hSfe7FYbJAm+d0No/k0lKZoNEo0GY1GeL1eMt/odruJTyPlnsfjgdlsBgDY7Xayfb/ZbCZxyxyyT0PlnqwpEomMOp4Gapo8eTLJB5vNRj4zUo0YKfdG0hR/Q3p87sX7NFTujeaTJEno7u4m4z3RGhHvk9KaHA4HLrvsMlRUVGDChAlEk1p1LxwOo66uDn6/n/ik1Dm3s7MT69atQ2trqyLnXJ/Ph3Xr1qGlpUXRa8J0ICMWQuRkbm5uHvS3d955hyTjzTffPOTn5cTL9BcJMQyPwsJCLFq0CEDfBHZlZSUZnFu2bMGJEycAALW1taiurgbQl0+VlZWEo6qqijw1dODAARw4cAAA0NjYiKqqKtKusrKS5GJ1dTVqa2sBACdOnMCWLVsA9BWOyspKtLe3AwD27t1LtmVraGggW7z5/X5UVlaSYrRr1y40NDQAAOrq6rB3794RNdlsNuTm5uKtt97KeE0vvPACpk+fDpvNRoVPn376KVm1TtUnYPTcu3DhAoqKinDw4EHFNR09ehRFRUX49NNPqfDpmWeeQVFREWw225g12Ww2WCwWHD16FICy4ykRnzJlPGmlqampCaIowmazZbSmt956C7m5ubDZbFT41NHRgUAgQC4a1M49JWvEQE1vvfUWioqK0NHRoUjuffjhhygqKkJTU1NSPm3ZsgXz5s2DzWbL6nOuHupeMBhEIBAgExiZrOmNN95AUVERgsEgFT5t2bIF1113HWw2mya5Z7PZcPXVV5MYlNRks9nwla98BVu2bKHCp2S/79lsNkyfPh0vvPAC8YnViKE1yXGHQiHU19eTSZ6GhgbCffbsWZw+fZrwbdiwYVhN8u9dXV04dOgQgL4JN0EQyCTU6dOncfbsWdKXcjzRaBT19fWk3YkTJ0g/tLa2ku+zPM+jvr6e9P/Ro0fJontzc3NSmurr64mmQ4cOkXeqNjY29tP0ySefYNq0aTCZTKivryf9mi5NJ06cwPjx42EymZLWJPsEAPX19WRyr7i4GPPnzwcAzJw5E6WlpQiHwzh48CD+/d//ncwrLVq0CIWFhQCAOXPmoKSkBADIwoY8vzScJp7nUVFRAUmSUFNTg3vuuQczZ84EAMyfPx/FxcUAgPz8fFRUVAyrSfZ2+vTpWLZsGWpqahAOh8nCDQC0tbWho6Ojnyagb8K5oqKin6ZrrrkGNTU1uPLKKwdpkid8S0pKMGfOHAD951icTifcbjeZ5Pz8889JfB0dHcNqampqStinoXIvEAgM0pSbm5uQT0Np6urqIprkhSF5kaS0tJT4NFLulZeXY/r06QCABQsWYMGCBcSnpqYm0u7MmTPEp6FyT9Z05syZUcfTQE0LFy7EuXPnEA6HUVhYiJaWFgAj14iRcm8kTeXl5aRdfO7F+zRU7o3mkyiKOHz4MPLz82EymRKuEfE+Ka2puLgY119/PWpqajBt2jSiSa26x3Ecpk2bhhMnThCflDrndnR0oKioCG+99ZYi51xBEFBUVIT9+/crek2YDmTEO0Lmz5+Pd999Fx6PBxcuXCATAwCwfPly7Ny5ExzHoa6uDjfccMOgz99+++144403MHXq1H53GjFkPuR95Ww2G0wmE+rq6jBjxgwEAgF4PB5wHAe/308mT3t7exGLxeBwOCCKIoLBIFlo6+7uht1uh9lsJgXObrcjEokgFAqRVWOfzwen0wmTyYSenh4YDAbk5ORAEASEw2HyBaG7uxsulwtGoxHBYBAmk4lMFgqCAJfLhVgsBr/fD7fbDYPBgEAgAIvFAqvVinA4DFEU4XQ6EY1GmSamiWlimpgmpolpYpqYJqaJaWKamKYRNL3zzjuwWCyIxWIQBIHsR87zPEwmE4xGIyKRCCRJIu1mzZpFdpEYqOngwYMwm82IRqOIRCJkLiIcDsNiscBgMEAQBHAcR9qJogir1Ur2RI9vZzAYYDKZyJ388e3iYzUajaRdLBYbsyZBEPrFajabSTsAWaWps7MTJSUlcDgciMVi6O3thcViITe8cRwHj8eD1atXY9WqVXA6nRBFEeFwGFarFRaLBYFAAAaDAW63G+vXr8fkyZOH1XThwgU8+OCD6O7uhiRJcLvd5GmlnJwcGAwG9PT0wGQywel0oqqqCnl5eYM0tbW1YdmyZTCbzbDb7eSOb6/Xi2AwCFEUyVzY0qVLU9Ik74LgcrkgCAJ4nidzLMFgEEajES6Xi2jasWMHpkyZAqPRiPPnz6OsrKyfJvmO7/h2yeReS0sLysvL+2kKBALkyY6xaNq2bRui0ShWrFgxpCbZp+3bt2PChAmDcs/n82HJkiXweDzkaTH5KYNQKASz2YzNmzfj8ssvBwCcO3cOpaWlEEVxxNzbvn07pk6dOux46urqQklJyYg+bdq0Cfn5+cOOp/b2dpSWlg7KPdknWdOaNWvw2GOP9dM0VO7t3LkT48ePB8dx6OjowPLlywfl3mg+7d69G+PGjRtTjWhra0NZWdmI42mgpqF8Gm48DeXTxo0bMWnSJM3q3rx58zLqnJvs94jz58+n7R0hGbEQ8sQTT+DnP/85OI7Dj3/8Y6xbtw4A8P777+PWW29FJBLBpEmTcP78+SH3G5syZQra2trw1a9+NamXpzHQi2x/WXpvby9qa2sxf/588qhlpoI2LVrHo+bxlORWgisVDtryJNuhFz9o08Hqj3p8rP7oB3rygzYtrAapx5UsB205QjO0eFl6JBLB2bNnccUVV5CtVzIVtGlRI56RXrCck5OD+fPno7a2Fv/7v/+r6MvS47nlrWnGwhcf93BcY3lZeqLxDIWBn2UvSx/9s2q+LH0kPxLlGApavyx9woQJYxrvWrwsfax9mwqGqndFCr0snfZrMPay9FFQWlpKOvp3v/sdpk2bhrlz5+KWW24he4498MADQy6CnDx5kjyKJD8Ox8CgFwzcIzeTQZsWreNR83hKcivBlQoHbXmS7dCLH7TpYPVHPT5Wf/QDPflBmxZWg9TjSpaDthzJdujlRcUAfVq0jmfguxdo5VaCKxUONfuJYezQix+01R9A275VU7+ersGUhindASSC/Px8rF27FitWrADHcTh37hzOnTtHkuVf/uVf8J//+Z9Dfvb5558nvw/3MnUGhkyFw+HA4sWL0x2GIqBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDssFku/O1kzGbRp0Tqenp4ePPvss9RzK8GVCoea/cQwdujFD9rqD6Bt36qpX0/XYEojY5YPf/jDH+Kll17CtddeC0mSIEkSbDYbFi9ejNraWjidzkGfiUQiePrppwH0vdDsG9/4htZhMzCoClEUycuKMx20adE6HjWPpyS3ElypcNCWJ9kOvfhBmw5Wf9TjY/VHP9CTH7RpYTVIPa5kOWjLkWwHTXe2pgratGgdj8lkIi+Lp5lbCa5UONTsJ4axQy9+0FZ/AG37Vk39eroGUxoZsxACAAsXLsTHH3+MQCCA8+fPo7u7G7t37yYvNhsInuexe/duvP322+Rl6wwMekIwGMT27dsRDAbTHUrKoE2L1vGoeTwluZXgSoWDtjzJdujFD9p0sPqjHh+rP/qBnvygTQurQepxJctBW45kOwRBwJEjR8g23ZkM2rRoHY/T6cR999035I21NHErwZUKh5r9xDB26MUP2uoPoG3fqqlfT9dgSiMjXpbOwDAcsv1l6QwMDAwMDAwMDAwMDAx90OJl6QyZBTVfFJ3K8UbjS/Tl3EBiL0tXEuxl6aN/Vs2XpavBAWj/svSx5oYWL0sfCDVflj4UlHpZOu1gL0tnYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBQAWwhhIEhg9Hd3Y1f/vKX6O7uTncoKYM2LVrHo+bxlORWgisVDtryJNuhFz9o08Hqj3p8rP7oB3rygzYtrAapx5UsB205ku0Ih8N47733EA6H0x1KyqBNi9bxeDwePProo6pso64ktxJcqXCo2U8MY4de/KCt/gDa9q2a+vV0DaY02EIIA0MGw263Y+HChbDb7ekOJWXQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdZrMZM2bMgNlsTncoKYM2LVrHEwqFsG/fPoRCIaq5leBKhUPNfmIYO/TiB231B9C2b9XUr6drMKVhSncAY0Vvby9ee+01fPDBB/jss8/g9/sRiUQS+izHcfjLX/6icoQMDNpBLpx6AG1atI5HzeMpya0EVyoctOVJtkMvftCmg9Uf9fhY/dEP9OQHbVpYDVKPK1kO2nIk22E0GjFx4sR0h6EIaNOidTyRSASnTp2inlsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGhnzRIgkSVizZg3y8vLwve99D7/5zW/w0ksv4c0330Rtbe2oPzU1NexFZwy6g17uBADo06J1POxuJO2Oz6Ac9OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7Id8kRZojdk0gzatGgdD3siTbvjMygHvfhBW/0BtO1bNfXr6RpMaWTMEyFLly7Fs88+C0mS0h0KAwMDAwMDAwMDAwMDAwMDAwMDAwMDA0OGICMWQnbv3o09e/aA4zgAwJVXXol77rkHBQUFGD9+PEymjJDBwKA45NVqPYA2LVrHo+bxlORWgisVDtryJNuhFz9o08Hqj3p8rP7oB3rygzYtrAapx5UsB205ku2gaYuPVEGbFq3jke9Spp1bCa5UONTsJ4axQy9+0FZ/AG37Vk39eroGUxoZsTXWH/7wB/L7I488guPHj+Pxxx/H3Xffja9//euYP39+wj8M+oTNZoPT6QQARKNR+Hw+8vSQ3++HIAgA+t4x09PTAwAQRRE+n49wdHd3k0fSQqEQeWQrEomgu7ubtPP5fBBFEQDQ09OD3t5eAIAgCPD7/QD6tnLz+XyIRqMAgGAwiHA4DADgeR6BQAAAEIvF4PP5EIvFAACBQAA8zwMAwuEwgsHgiJoikQiOHDlCdGSypo6ODhw9ehSRSIQKn4LBIBoaGhCJRFL2CRg990KhEE6dOkV+V1JTIBDAqVOnyO/p9unSpUvkEdCxaopEImhoaCA6lBxPifiUKeNJK009PT34+OOPEYlEMlqTz+fDkSNHEIlEqPCpt7cXH330EdGhdu4pWSMGavL5fDh16hT5PRWfenp64Pf7cerUKfL7WH1qb2/HiRMnEIlEsvqcq4e6Fw6H8dFHHxEdmaypq6sLp06dQjgcpsKn9vZ2HD9+HJFIRJPci0QiOH78ONrb2xXXFIlEcPLkSbS3t1PhU7Lf9yKRCI4ePYqOjg7iE6sRQ2uS447FYgiHw0QTz/OEWz7fx/MNp0n+PRqNknii0ShaWlrI3+RzhPw3OR5JkhAOh0msgiCQfhBFcVC7+Fjj2yWjSY5V7pf4dvGx9vT04NKlS0RffKzp0BQKhdDW1ka+9yejaWA7OVaHw4GcnBwAgMVigdvtJhOREydOJDE4nU7YbDYAgNVqhcvlAgAYDAZ4vd5RNUmSBK/XS7jHjx8Pi8UCAMjJyYHD4QAAmEwmeL3eYTXJ3GazGRMmTCAvVfZ6veRmYFEUyWdkTUDf+3HjY3U6nXA6nZgxYwYcDscgTQZD39Sgy+WC1WoF0H+OxWq1Yu7cueSlzpFIhBw3Go0Oqym+XaI+xedeLBYbpMloNCbk01CaotEo0WQ0GuH1eskN1263m/g0Uu55PB7SD3a7nWyhZDab+21xFIlEiE9D5Z6sSZ5vkLUPNZ4Gaho3bhwKCgpgNpths9nIZ0aqESPl3kiaPB4PaRefe/E+DZV7o/kkSRJ6enrI+TnRGhHvk9Ka5LExY8YM2O12okmtuieKIi5duoRQKER8Uuqc29vbi1OnTpHf5biTPefyPI9Tp06hs7NT0WvCdCAjFkI++eQTcByHf/qnf8Kvf/1rMvgZGGQUFhZi0aJFAID29nZUVlaSwbllyxacOHECAFBbW4vq6moAQHNzMyorKwlHVVUVGhsbAQAHDhzAgQMHAACNjY2oqqoi7SorK9Hc3AwAqK6uRm1tLQDgxIkT2LJlC4C+wlFZWUku6Pbu3Yu6ujoAQENDA3bt2gWgrzhUVlaSYrRr1y40NDQAAOrq6rB3794RNYVCIVRXV+tC0/bt2/HKK68gFApR4dOHH36I6upqhEKhlH0CRs+9kydPYt++ffjTn/6kuKaDBw9i3759+PDDD6nwadOmTWR/yLFqknP+4MGDAJQdT4n4lCnjSStNR44cIeMk0zXJOmjwqbGxEa+++ir5cqt27ilZI4bStG/fPjQ2Niri09tvv419+/bhyJEjSfm0fv167N+/H6FQKKvPuXqoe+fOncOrr76Krq6ujNf04osvYt++fTh37hwVPsWPEy1yLxQKYf/+/Vi/fr3imuQ7O9evX0+FT8l+3wuFQnjllVewfft24hOrEUNrkuMOhUKor68nkzwNDQ2E++zZszh9+jTh27Bhw7Ca5N+7urpw6NAhAH2TTn/7299I/Tl9+jTOnj1L+lKOJxqNor6+npzPT5w4QfqhtbUVR48eJdrr6+tJ/x89ehStra2kz5PRVF9fTzQdOnSIxNrY2NhPU0NDA7lBqb6+nvRrujQdOXIEn376KSKRSNKaZJ8AoL6+nkzuFRcXk5tjZ86cidLSUnKX8kMPPUQmORctWoTCwkIAwJw5c1BSUgKgbwK2oqKCTGwOp4nneVRUVGDcuHFYuHAhli9fjpkzZwIA5s+fj+LiYgBAfn4+KioqhtUkezt9+nQ88MAD5L0FFRUVyM/PBwC0tbWRBVJZE9A34VxRUdFP080334yFCxfihhtuGKRJnvAtKSnBnDlzAPSfY7n88stRXFyMcePGAQA+//xzEl9HR8ewmpqamhL2aajcCwQCgzTl5uYm5NNQmrq6uoim3NxcVFRUkEWS0tJS4tNIuVdeXo7p06cDABYsWIAFCxYQn5qamki7M2fOEJ+Gyj1Z05kzZ0YdTwM1LVmyBHfccQfsdjsKCwvR0tICYOQaMVLujaSpvLyctIvPvXifhsq90XwSRRGHDh0i9SfRGhHvk9KaiouLccstt2DhwoW49tpriSa16l44HMapU6dw5MgR4pNS59zGxkbs27dPsXNuW1sb9u3bhz179ih6TZgOcFIGvHTD6XSit7cX9957L7Zu3ZrucBgowvHjx1FQUACbzQaTyYS6ujrMmDEDgUAAHo8HHMfB7/fDZrPBYrGgt7cXsVgMDocDoigiGAySVePu7m7Y7XaYzWZS4Ox2OyKRCEKhEFk19vl8cDqdMJlM6OnpgcFgQE5ODgRBQDgchtvthiRJ6O7uhsvlgtFoRDAYhMlkgs1mA8/zEAQBLpcLsVgMfr8fbrcbBoMBgUAAFosFVquVrBA7nU5Eo1GmiWlimpgmpolpYpqYJqaJaWKamCamaQRN77zzDiwWC2KxGARBgNVqBcdx4HkeJpMJRqORPMkqt5s1axYmTZo0pKaDBw/CbDaTJxTkO5vD4TAsFgsMBgMEQQDHcaSdKIqwWq2QJAk8z/drZzAYYDKZyJ388e3iYzUajaRdLBYbsyZBEPrFajabSTsAWaWps7MTJSUlcDgciMVi6O3thcVigc1mg9/vB8dx8Hg8WL16NVatWgWn0wlRFBEOh2G1WmGxWBAIBGAwGOB2u7F+/XpMnjx5WE0XLlzAgw8+iO7ubkiSBLfbTZ5WysnJgcFgQE9PD0wmE5xOJ6qqqpCXlzdIU1tbG5YtWwaz2Qy73U7u+PZ6vQgGgxBFETt37gTHcVi6dGlKmvx+P2KxGFwuFwRBAM/zZI4lGAzCaDTC5XIRTTt27MCUKVNgNBpx/vx5lJWV9dMk3/Ed3y6Z3GtpaUF5eXk/TYFAgDzZMRZN27ZtQzQaxYoVK4bUJPu0fft2TJgwYVDu+Xw+LFmyBB6PhzwtJj9lEAqFYDabsXnzZlx++eUA+m7YKC0thSiKI+be9u3bMXXq1GHHU1dXF0pKSkb0adOmTcjPzx92PLW3t6O0tHRQ7sk+yZrWrFmDxx57rJ+moXJv586dGD9+PDiOQ0dHB5YvXz4o90bzaffu3Rg3btyYakRbWxvKyspGHE8DNQ3l03DjaSifNm7ciEmTJmlW9+bNm5dR59xkv0ecP38eBQUFkHHs2DHMmjULWiAjFkJmzpyJTz/9FPfddx82b96c7nAYKIK8ECJDy8HDwMDAwMDAwMDAwMDAQA9qamrG/Jkbb7yR3BWuBB8DXWhtbcWSJUtGbbd27Vo88sgjo7bbs2cP8vLyUj7eaHyJ8OzZswcAhm2XqKaxIj7mkeIcra9Gw1j7ciSM1lfx7VLxI5F+SeR4yR43WQ4guTGQrEfJ5IaS+ZAoUs3hsaKoqEizY6UT6ZzLzYg9pubNmwdJknDy5Ml0h8LAQBV8Ph8ef/zxtO+xpwRo06J1PGoeT0luJbhS4aAtT7IdevGDNh2s/qjHx+qPfqAnP2jTwmqQelzJctCWI9mOcDiM2trafu8NyFTQpkXreLxeL37+85/3e7cAjdxKcKXCoWY/MYwdevGDtvoDaNu3aurX0zWY0siIhZCHHnoIQN+e/ceOHUtzNAwM9MDpdGL58uXkhV+ZDNq0aB2PmsdTklsJrlQ4aMuTbIde/KBNB6s/6vGx+qMf6MkP2rSwGqQeV7IctOVItsNiseDaa68lL+zNZNCmRet4gsEgtm3bRl74Syu3ElypcKjZTwxjh178oK3+ANr2rZr69XQNpjQyYiFk7ty5WLFiBaLRKJYsWUJeBsXAkO0wmUyYNm0aTCZTukNJGbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMuRbIfBYIDX64XBkBHTKSOCNi1axyOKIpqamsgL0GnlVoIrFQ41+4lh7NCLH7TVH0DbvlVTv56uwZQGPdk2Cn7/+9/jgQceIPuI/f73v8eFCxfSHRYDQ1rR09ODZ599Fj09PekOJWXQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdgiDg2LFjEAQh3aGkDNq0aB2Pw+HA4sWL4XA4qOZWgisVDjX7iWHs0IsftNUfQNu+VVO/nq7BlEb6l2IShMFgwMaNG3HVVVdh1apVWLlyJVauXAmPx0PeSj8aOI5DY2OjBtEyMGgDGlfQkwVtWrSOR83jKcmtBFcqHLTlSbZDL37QpoPVH/X4WP3RD/TkB21aWA1SjytZDtpyJNvBcRxsNltCcxC0gzYtWscTi8Xg8/kQi8Wo5laCKxUONfuJYezQix+01R9A275VU7+ersGURsYshEQiETz88MPYsmULOI6DJEkA+l640t3dPernJUmianAxMCiBnJwc3HbbbekOQxHQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdZrMZX/ziF9MdhiKgTYvW8fT29uKNN96gnlsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGulfikkA0WgUd9xxB55++mmIokgWQWRIkjTqDwODHiEIAg4fPkzVo4TJgjYtWsej5vGU5FaCKxUO2vIk26EXP2jTweqPenys/ugHevKDNi2sBqnHlSwHbTmS7YhGo2htbUU0Gk13KCmDNi1ax2OxWDB79mxVXlasJLcSXKlwqNlPDGOHXvygrf4A2vatmvr1dA2mNDJiIeTpp58mK3KSJOEb3/gGNm/ejA8++AB/+9vf8NlnnyX0c+bMmTQrYWBQFuFwGDU1NQiHw+kOJWXQpkXreNQ8npLcSnClwkFbnmQ79OIHbTpY/VGPj9Uf/UBPftCmhdUg9biS5aAtR7IdenlRMUCfFq3jsdlsKCoqgs1mo5pbCa5UONTsJ4axQy9+0FZ/AG37Vk39eroGUxqclAGPSxQWFuKDDz4Ax3H41a9+hVWrVqU7JAZKcPz4cRQUFJB/Hzt2DLNmzUpjRAwMDAwMDAwMDAwMDAzpQE1NzZg/c+ONN8JqtSrGx0AXWltbsWTJklHbrV27Fo888sio7fbs2YO8vLyUjzcaXyI8e/bsAYBh2yWqaayIj3mkOEfrq+EgCAI6OzvR2tqqWPyj9VV8u1T8SKRfEjlessdNlgNIbgyMNd+H4kgUyR4rFSSbw8miqKhIs2OlE+mcy82Id4QcP34cHMdh5syZbBGEgSEOkiSB53lYrdaMfwcObVq0jkfN4ynJrQRXKhy05Um2Qy9+0KaD1R/1+Fj90Q/05AdtWlgNUo8rWQ7aciTbIUkSotEojEZjxvtBmxat4+E4DlarFTzPq8qd6v3HSnClwqGklpEQDoexZs0aHDx4kIotdGiFVn6oDdrqD6Bt36qpX0/XYEojI7bGkjFv3rx0h8DAQBW6u7vx5JNPoru7O92hpAzatGgdj5rHU5JbCa5UOGjLk2yHXvygTQerP+rxsfqjH+jJD9q0sBqkHleyHLTlSLaD53kcPHhQlclzrUGbFq3j8Xg8ePTRR+HxeKjmVoIrFQ41+ykea9aswdtvv80WQUaBVn6oDdrqD6Bt36qpX0/XYEojIxZCpk6dCgBUvUCHgYEGuFwulJWVweVypTuUlEGbFq3jUfN4SnIrwZUKB215ku3Qix+06WD1Rz0+Vn/0Az35QZsWVoPU40qWg7YcyXZYLBbMnTs3419UDNCnRet4AoEANmzYgEAgQDW3ElypcKjZTzIEQcDBgwdV49cTtPBDC9BWfwBt+1ZN/Xq6BlMaGbE11q233orTp0/j8OHD6Q6FgYEqGI1GTfcrVBO0adE6HjWPpyS3ElypcNCWJ9kOvfhBmw5Wf9TjY/VHP9CTH7RpYTVIPa5kOWjLkWyHwWCA0+lMdxiKgDYtWscTjUbR2tpKPbcSXKlwqNlPMjo7O9mTIAlCCz+0AG31B9C2b9XUr6drMKWREU+ElJWVwWg04pNPPsG7776b7nAYGKhBMBjEtm3bEAwG0x1KyqBNi9bxqHk8JbmV4EqFg7Y8yXboxQ/adLD6ox4fqz/6gZ78oE0Lq0HqcSXLQVuOZDsEQcDhw4d1MWlLmxat43E6nbjvvvtUmYxUklsJrlQ41OwnhrFDL37QVn8AbftWTf16ugZTGhmxEHLttdfiF7/4BSRJwuLFi3Hq1Kl0h8TAQAVMJhOmTZsGkykjHu4aEbRp0ToeNY+nJLcSXKlw0JYn2Q69+EGbDlZ/1ONj9Uc/0JMftGlhNUg9rmQ5aMuRbIfBYIDX64XBkBHTKSOCNi1axyOKIpqamiCKItXcSnClwqFmPzGMHXrxg7b6A2jbt2rq19M1mNKgJ9tGwU9/+lNs2LABnZ2dmDt3Ln7yk5/g/fffh9/vT3doDBTAZrORFdtoNAqfzwdJkgAAfr+frLD29vaip6cHQF+B8/l8hKO7uxuRSAQAEAqFEAqFAACRSKTfC318Ph8pij09Pejt7QXQt5or56MkSfD5fOS9NsFgEOFwGEDfC5Hk/QZjsRh8Ph9isRiAvv0I5RclhcNhslo6nCabzYZ58+aR42SyJkEQcNNNN8Fms1HhE8dxmDt3Lmw2W8o+AaPnntFoRFFREWKxmOKaAKCoqAgcx1HhE8/zKCoqgs1mG7Mmm82G66+/nhxHyfGUiE+ZMp600mQwGHDdddfBZrNltKZoNIp58+bBZrNR4ZPJZMLs2bNhs9kU8UnLGjFQUzQaRVFREUwmkyK5J0kSioqKYDAYkvIpHA7ja1/7Gmw2W1afc/VQ98xmM2bPng2r1ZrxmkRRRFFREcxmMxU+hcNhfPWrX4XNZtMk92w2G77yla+Q4yipyWazYf78+QiHw1T4lOz3PZvNhptuuokch9WI4TXJccs1X9bE8zzhjkQi/dqNpEn+PRqNknhMJhPy8vLI5JUgCP3ayfHI40mOVRAE0g+iKA5qFx9rfLtkNMWPp/j8j0Qi/WIVRZFMTg2MNR2aotEoLr/8cphMpqQ1DWwnx+pwOJCTkwOgb29+t9uNcDiM2tpa8l0W6LsjXP4OZrVayZ728qTlaJokSYLX6wXP86ipqYHFYiHvAMjJyYHD4QDQl0der3dYTTK32WyG1WpFTU0NwuEwvF4vmUwURZF8RtYE9F3Lxscqz5XU1NRAkqRBmuRcdrlc5LwaP8cSiURw+PBh4m8kEiHHjUajw2qKb5eKT/GajEZjQj4NpSkajRJNRqMRXq8XHMcBANxuN/FppNzzeDwwm80AALvdDrvdTnyS9ckcsk8jaYpEIqOOp4GazGYz/vrXvyIcDsNms5HPjFQjRsq9kTTFvzQ8Pvfia0QyPkmSBFEUccUVV8BkMiVcI+J9UlqTw+EAx3GoqalBLBYjmtSqe0ajEdOmTUM0GiU+KXXONZlMKCoqQjQaVeSca7FYUFRUROZzAGWuCdOBjFgIMRqNMBqNKC8vhyAI6O3txbp16/DVr34V48aNI38f7YeGlScGdVBYWIhFixYBANrb21FZWUkG55YtW3DixAkAQG1tLaqrqwEAzc3NqKysJBxVVVVobGwEABw4cAAHDhwAADQ2NqKqqoq0q6ysRHNzMwCguroatbW1AIATJ05gy5YtAPoKR2VlJdrb2wEAe/fuRV1dHQCgoaEBu3btAtBXHCorK0kx2rVrFxoaGgAAdXV12Lt374iaeJ7Hs88+i/3792e8ps2bN6O6uho8z1Ph04cffohNmzaB5/mUfQJGz71Tp06hrq4Or7/+uuKa3nvvPdTV1eHDDz+kxqe6ujoS61g08TyPLVu24L333gOg7HhKxKdMGU9aaTpy5AiqqqrA83xGa9q/fz+effZZ8DxPhU9nzpzp107t3FOyRgzUtH//ftTV1RFNqfhUXV2Nt956C3V1dThy5EjSPtXW1oLn+aw+5+qh7p0/f75fu0zW9Pzzz6Ouro5oosGnv/zlL+B5XpPc43keBw4cUEUTz/N47733qPEp2e97PM+juroamzdv7ucTqxGDNclxh0Ih1NfXk0mehoYGwn327FmcPn2a8G3YsGFYTfLvXV1dOHToEIC+yan6+np0dXUBAE6fPo2zZ8+SvpTjiUajqK+vJ5NVJ06cIP3Q2tqKo0ePEu319fWk/48ePUr2qG9ubk5KU319PdF06NAhEmtjY+MgTc3NzUST3K/p1PTpp59CFMWUNMmor68nk3vFxcWYP38+AGDmzJkoLS2F1WrFzTffjIqKCjLJuWjRIhQWFgIA5syZg5KSEgB9E7AVFRVkYnM4TTzPo6KiAi6XC4WFhSgtLcXMmTMBAPPnz0dxcTEAID8/HxUVFcNqkr2dPn06ysvLUVhYCKvVioqKCuTn5wMA2tra0NHR0U8TANIuXtPNN9+MwsJC3HDDDYM0yRO+JSUlmDNnDoD+cyxTpkwhmgDg888/J/F1dHQMq6mpqUkRn+I15ebmJuTTUJq6urqIptzcXFRUVJBFknifRsq98vJyTJ8+HQCwYMECLFiwgPjU1NRE2p05c4b4NJKmM2fOjDqeBmpaunQpFi5cCKvVisLCQrS0tAAYuUaMlHsjaSovLyft4nMvvkYk45Ncc+SnLxKtEYmOp2Q0FRcX49Zbb0VhYSGuueYaokmtusfzPJqbm/v5pNQ598yZM6irq8P+/fsVOee2t7ejrq4OzzzzjKLXhOkAJ8nLNRTDYDCQVdqBGEv4HMeRwcOgDxw/fhwFBQWw2WwwmUyoq6vDjBkzEAgE4PF4wHEcuRvMYrGgt7cXsVgMDocDoigiGAySVePu7m7Y7XaYzWZS4Ox2OyKRCEKhEFk19vl8cDqdMJlM6OnpgcFgQE5ODgRBQDgchtvthiRJ6O7uhsvlgtFoRDAYhMlkgs1mA8/zEAQBLpcLsVgMfr8fbrcbBoMBgUAAFosFVquV3HnmdDoRjUaH1MTzPHbu3Im77roLkyZNymhNLS0t2LdvH5YtWwaTyZR2ny5duoTnnnsO9957LxwOR0o+JZJ70WgUzz//PO688044nU5FNfX29uLFF1/EokWLyF0Y6fTp4sWLqK6uRklJCbkrJ1FNoVAIO3bswD333IPc3FxFx5Mea4Tamjo6OvDss8/i3nvvhdPpzFhNbW1tePHFF7Fs2TISRzp96urqwu7du3HvvffC5XKpnntK1oiBmvx+P15++WV873vfI3eIpZJ7PT09eOmll3D33XfDbDaP2aeWlhZUV1dj6dKlAJC151w91D2fz4ddu3Zh2bJlcLvdGa3J5/Nh3759WLx4MQCk3afz58+TccJxnOq5F4vF8Mwzz6C4uJhMRiilieM4wj158uS0+5Ts9z1RFLFz504sXLgQU6ZMYTViBE3vvPMOLBYLYrEYBEGA1WoFx3HgeR4mkwlGoxGRSASSJJF2s2bNwqRJk4bUdPDgQZjNZkSjUUQiERLPkSNHcPXVVxMdHMeRdqIowmq1QpIk8DwPi8UCg8EAQRBgMBhgMpnInfzx7eJjlW/kFEURsVhszJrkJxmBvrt2zWYzaQeAxNrT04PTp0/j6quvJp+XY02HJr/fj08//RTXXHMNDAZDUppkn+R2nZ2dKCkpgcPhQCwWQ29vLywWC3kKpKSkBNXV1fjJT36CVatWwel0QhRFhMNhWK1WWCwWBAIBGAwGuN1urF+/HpMnTx5W04ULF/Dggw8iGo2ipKQE+/fvR0dHBwRBQE5ODgwGA3p6emAymeB0OlFVVYW8vLxBmtra2rBs2TKYzWbk5ubiO9/5Dnbt2kXGh1wXOI7D0qVLiSa/3w+O4+DxeLB69WqiyWazYdGiRXjhhRcgCEI/TX6/H7FYDC6XC4IggOd5MscSDAbh8XiwdOlS7NixA4FAADt27MCUKVNgNBpx/vx5lJWV9dMk3/Ed3y4Vn+I1BQIBcg05kk8DNW3btg3RaBQrVqxAMBiE0Wgk37MlSSJPCG3fvh0TJkwYlHs+nw9LliyBx+MhT4vJTxmEQiGYzWZs3rwZl19+OQDg3LlzKC0thSiKI2ravn07pk6dOux46urqQklJST9NeXl5+O53v4tnnnkGkUgEmzZtQn5+/rA1or29HaWlpYNyT/ZJ1rRmzRo89thj/TTZ7XbytIHX60UwGMTOnTsxfvx4cByHjo4OLF++fMw+7d69G3a7HadPn8Y111wDAKPWiLa2NpSVlZGn/4YaTwM1DeXTUJpkn+x2O+666y48//zzEEURGzduxKRJk1SpewBw7NgxfOlLX4LD4YDRaMS8efMUOedKkoTnnnsO3/3ud+F2u1M+53Ichz179uCOO+7A+PHjU74mPH/+PAoKCiDj2LFjmDVrFrRAxiyEKAG2EKI/yAshMrQcPAwMDAwMDAwMDAwMDAz0oKamZsyfufHGG8ld4UrwMdCF1tZWLFmyZNR2a9euxSOPPDJquz179iAvLy/l443GlwjPnj17AGDYdolqGiviYx4pztH6Kh5j7bexYrS+im+Xih+J9Esix0v2uMlyAMmNgWR9G0tuyFA7R4ZCMnGmgqKiIs2OlU6kcy43I7bGku8USvWHLYIw6A0D98jNZNCmRet41DyektxKcKXCQVueZDv04gdtOlj9UY+P1R/9QE9+0KaF1SD1uJLloC1Hsh0D94HPZNCmRet41HxZsZLcSnClwkHjS62zGXrxg7b6A2jbt2rq19M1mNLI7FHDwJDlGLhHbiaDNi1ax6Pm8ZTkVoIrFQ7a8iTboRc/aNPB6o96fKz+6Ad68oM2LawGqceVLAdtOZLtGLgPfCaDNi1axzPw3Qu0civBlQqHmv3EMHboxQ/a6g+gbd+qqV9P12BK4/9n7+2j46rOe//vvI/m3RjhF+Sg1jQ4tiE2JLVIems1tC55cXHABDuyY1CayKZtPNDeG3JZ5Qe5t42hvcFauWA7LsYGjEhiEoECISaXSAQHDTGRXNnCGOTIWLIly7LmXTNnzsz8/tA6uyNZGklz9j6z58z+rJW1RLzP9zzf8zznOXNed0nMHn777bcDGPuW4HPPPQeLxVLkiAQCPvB4PNi+fXvJHwAB/rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOzWbDqlWrpvycVinBmxet4wmHw9i5cyezG7G0tGloqdFguZ0Es0cv+eCt/wDabluW/vV0DkabkrgR0tzcDIPBgFtuuUXcBBEIclBe29MDvHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsodg8FAJnkudXjzonU8yudaeNemoaVGg+V2EsweveSDt/4DaLttWfrX0zkYbUri01hz5swBAFRXVxc3EIGAMyKRCHbv3o1IJFLsUFTDmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNxJJpM4evQoV59zKRTevGgdj9vtxtatW+F2u7nWpqGlRoPldhLMHr3kg7f+A2i7bVn619M5GG1K4kbIwoULAQDxeLzIkQgEfGG1WrFixQpYrdZih6Ia3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOyWTC/PnzYTKZih2KanjzonU8kiShs7MTkiRxrU1DS40Gy+0kmD16yQdv/QfQdtuy9K+nczDalMSnsW655RacOHEC77zzTrFDEQi4wmazoaampthhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWM2m1FVVVXsMKjAmxet40kmk2hvb+dem4aWGg2W20kwe/SSD976D6DttmXpX0/nYLQpiTdC6uvrYTKZ0NPTg5aWlmKHIxBwQyKRQGtrKxKJRLFDUQ1vXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRckeWZfT29kKW5WKHohrevGgdj91uR21tLZPv9NPUpqGlRoPldhLMHr3kg7f+A2i7bVn619M5GG1K4kbIDTfcgAcffBDZbBZbtmzBkSNHih2SQMAFPB44CoU3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuaNMppvJZIodimp486J1PGazGdXV1TCb6X8shaY2DS01Giy3k2D26CUfvPUfQNtty9K/ns7BaFMye83DDz8Ml8uF//k//ydqa2tx55134q677sJNN92EyspK2Gy2YocoEGiOy+XC3XffXewwqMCbF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3FG+da4HePOidTzRaBT79+/nXpuGlhoNlttJMHv0kg/e+g+g7bZl6V9P52C0KYk3QkwmE0wmE7797W8jnU4jnU7jRz/6EW6//XZcc801cDgcZEy+/5X63VKBYCLpdBoDAwNIp9PFDkU1vHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsqdTCaDaDTK1VPMhcKbF63jYTlZMU1tGlpqNHic1Lqc0Us+eOs/gLbblqV/PZ2D0aYkboRks9lx/20wGMb922z+JxDoiUgkgj179iASiRQ7FNXw5kXreFiuj6Y2DS01GrzVSbmjl3zw5kP0H3Z6ov/oBz3lgzcvogex0ypUg7caKXckScK7774LSZKKHYpqePOidTxutxtbt26F2+3mWpuGlhoNlttJMHv0kg/e+g+g7bZl6V9P52C0MWRL4O6A0Ujnfo3BYODi7pOAHidOnMDy5cvJfx8/fhzLli0rYkTaks1mkUwmYbPZxt0gLEV486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuN8Exra+usl7n55pun/NT2ZHrZbBbpdBomk6nk88GbFxbxDAwMYOPGjZP+m8FggM1mQzKZxPe//33cd9990+o1NTVh/vz5064vVzvfZbep9HLjnkqrqakJAKb09/jjjxNPM41nMiYumxtzvu073bbKJZ8ODabbVrnjpsvHTJadqZ+Z1lMu+fIxU43JyK2XmcZcaN6ampowb968We3vrGsEmP22VcNk/a62tpaaNs/nYMW8llsS34ri6TUpgYAnDAYD7HZ7scOgAm9etI6H5fpoatPQUqPBW52UO3rJB28+RP9hpyf6j37QUz548yJ6EDutQjV4q5Fyx2Aw6Oaz27x50TqebDaLRCLBvTYNLTUaLLeTYPboJR+89R9A223L0r+ezsFoUxKfxhIIBJMTDoexc+dOhMPhYoeiGt68aB0Py/XR1KahpUaDtzopd/SSD958iP7DTk/0H/2gp3zw5kX0IHZahWrwViPlTjKZRHt7O5LJZLFDUQ1vXrSOx+PxwO/3w+PxcK1NQ0uNBsvtJJg9eskHb/0H0HbbsvSvp3Mw2ogbIQJBCWO321FbW8vNnVU18OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3zGYzqquruXuSuRB486J1PIlEAq2trUyeAKepTUNLjQbL7SSYPXrJB2/9B9B227L0r6dzMNrwU20CgWDWWK1WrFixothhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWMymZh9M15rePOidTySJKGzs5N7bRpaajRYbifB7NFLPnjrP4C225alfz2dg9FGvBEiEJQwo6OjeO211zA6OlrsUFTDmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNxJpVL48MMPkUqlih2KanjzonU8FRUVuPXWW1FRUcG1Ng0tNRost5Ng9uglH7z1H0DbbcvSv57OwWjDzY2Qc+fOab7O8+fPa75OgYAmmUwGwWAQmUym2KGohjcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5o0ymm81mix2KanjzonU8RqMRPp8PRiP9S2M0tWloqdFguZ0Es0cv+eCt/wDabluW/vV0DkYbbj6N9fGPfxx+vx//+I//iDlz5jBd18jICP7t3/4NP/jBDxCJRJiuSyBgidPpxIYNG4odBhV486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDtWqxXLly8vdhhU4M2L1vHEYjG88MIL3GvT0FKjwXI7CWaPXvLBW/8BtN22LP3r6RyMNtzcPozH4/je976Ha665Bv/0T/+Enp4e6uvo6enB/fffj2uuuQaPPvoo4vE49XUIBFoiyzJ6e3shy3KxQ1ENb160jofl+mhq09BSo8FbnZQ7eskHbz5E/2GnJ/qPftBTPnjzInoQO61CNXirkXKHpydb1cKbF63jYTlZMU1tGlpqNHic1Lqc0Us+eOs/gLbblqV/PZ2D0YabGyHf+ta3YDKZEI1G8fjjj+O6667D5z73OezZsweDg4MF6w4ODmLPnj343Oc+h49//ONobGxENBqFyWTC9u3bKToQCLQnGo3iwIEDiEajxQ5FNbx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHUmScOzYMUiSVOxQVMObF63jcblcuPvuu+FyubjWpqGlRoPldhLMHr3kg7f+A2i7bVn619M5GG0MWY4+xnb8+HH8j//xP/Daa68BAAwGA/m3JUuW4L/9t/+GG264AUuWLEFVVRXmzp0Lh8OBbDaL0dFRXLx4EX19fXj//fdx7NgxvPXWWzh58iTRUKx+/vOfx2OPPYZly5Zpa1BAnRMnTox7lez48eMirwKBQCAQCAQCgUBQhrS2ts56mZtvvhk2m42anoAvBgYGsHHjxmnHPf7447jvvvumHdfU1IT58+erXt90ejPRaWpqAoApx83U02zJjTlfnNNtq1xmu91my3TbKnecmnzMZLvMZH2FrrdQDaCwfaDQvM2mNhRY18hkFBKnGmprazVbVzEp5rVcrt6jWr58OV599VUcOXIEO3bswKuvvkpuXpw8eXLcTY2ZoixvMBjwpS99Cd/5zndw8803U41bIBAIBAKBQCAQCAQCgUAgEAgEAgGfcPNprFw++9nPoqWlBe+//z4eeOABfOxjH0M2my3ofx/72Mfwne98B++//z5efvllcRNEp9jtdvLqWjqdRjAYJDfBwuEwedVsdHQUsVgMwNg36oLBINEIhUJIpVIAxuasUeaQSaVSCIVCZFwwGCTftYvFYhgdHQUw9lpbOBwGMHYDLhgMIp1OAxh7DSyRSAAAkskkIpEIgMu/CRiJRJBMJgEAiUSCvDY2ladQKITvfe97OH/+fMl76uvrw/e+9z2EQiEu8nThwgUSj9o8AdPX3sWLF7Fjxw4MDAxQ9zQ4OIgdO3bgwoULXOTp7Nmz2LFjB0Kh0Kw9KTWvfDKR5v40kzyVyv6klaehoSFSD6Xs6fz588QHD3kaHh4m8dDIk5Y9YqKn8+fPY8eOHRgeHqZSe0qsQ0NDBeXpo48+Itu2nI+5euh7ly5dwve+9z0Sbyl7OnfuHHbs2IFLly5xkafc/USL2lP2rY8++oi6p1xtHvJU6O89xUdfXx/Jk+gRk3tS4s5kMkgkEsRTMpkk2qlUaty4fJ6Uv9PpNIknkUjgN7/5DfErSdK4cUo82WwWiUSCxCpJEtkOsixfNi431txxhXhSYlXizR2XG2soFMJbb72FRCJxWazF8BQKhfCb3/wGiUSiYE8TxymxOp1OVFRUABibpNjj8cDr9eKBBx7AokWLSAwulwt2ux0AYLPZ4Ha7AQBGoxE+n29aT9lsFj6fj2hfffXVsFqtAICKigo4nU4AY3MR+Hy+KT0p2haLBVVVVXjggQfg9Xrh8/nI/AWyLJNlFE/A2IPAubG6XC5cddVVeOCBB1BZWXmZJ6Nx7NKg2+0mb0flXmOZM2cOvvOd78Dr9ZL4lPWm0+kpPeWOU5OnXE8mk2lGeZrMUzqdJp5MJhN8Ph/5Eo3H4yF5yld7Xq8XFosFAOBwOOBwOEieFH+KhpKnfJ5SqdS0+9NETwsXLiT1YLfbyTL5ekS+2svnSck5gHG1l9sjCslTNpsdt7/PtEfk5om2J6fTSfaTK6+8knhi1fdGR0fx1ltvIRQKkTzROuYODw9jx44dOH/+PJVj7sjICHbs2IH+/n6q54TFgMsbIQrXXnst/vVf/xW9vb04duwY/v3f/x133nknrrvuOrIj5WK327FkyRJ85Stfwb//+7/j2LFj6O3txb/8y7/g2muvLYIDgVbU1NRg/fr1AMYuzDU2NpKdc9++feju7gYAtLW1oaWlBcDYBd3GxkaisWvXLvT09AAADh8+jMOHDwMAenp6sGvXLjKusbGRnIS0tLSgra0NANDd3Y19+/YBGGscjY2NGBoaAgAcOnQI7e3tAICOjg4cPHgQwFhzaGxsJM3o4MGD6OjoAAC0t7fj0KFDeT05HA5cc8015JXtUvZ06NAhrFixAg6Hg4s8ffDBB+SAqTZPwPS1NzAwgHXr1uG3v/0tdU/Hjx/HunXr8MEHH3CRp4MHD2LdunVwOByz9uRwOOD1enH8+HEAdPenmeSpVPYnrTx99NFHMJvNcDgcJe2ptbUV11xzDRwOBxd5GhkZgSRJ5Ac769qj2SMmemptbcW6deswMjJCpfbeffddrFu3Dh999FFBeXr66aexZs0aOByOsj7m6qHvxeNxSJJETrRL2dMvf/lLrFu3DvF4nIs8Pf3006itrYXD4dCk9hwOBz772c/i6aefpu7J4XDgi1/8Ip5++mku8lTo7z2Hw4EVK1aQ7Sp6xNSelLjj8TgCgQC5yNPR0UG0z5w5g1OnThG93bt3T+lJ+XtkZARHjx4FMHYhLZPJkItLp06dwpkzZ8i2VOJJp9MIBALkYlV3dzfZDgMDA+jq6iLeA4EA2f5dXV0YGBgg27wQT4FAgHg6evQoRkZGSG5yPXV1dWHJkiWwWCwIBAJkuxbL03vvvYf58+fDYrEU7EnJEwAEAgFycW/t2rVYvXo1AGDp0qWor69HPB7HK6+8gq9//evkIuf69etRU1MDAFi5ciXq6uoAjF2A9fv95MLmVJ6SyST8fj/S6TSam5tx5513YunSpQCA1atXY+3atQCAqqoq+P3+KT0puV28eDE2bdqE5uZmxONx+P1+VFVVARibE3d4eHicJ2DsgrPf7x/nafny5Whubsaf/MmfXOZJueBbV1eHlStXAhh/jcXpdMJmsyGdTsNqtaK/v5/ENzw8PKWn3t5eKnnK9VRZWTmjPE3maWRkhHiqrKyE3+8nN0nq6+tJnvLV3rZt27B48WIAwJo1a7BmzRqSp97eXjLu9OnTJE/5PJ0+fXra/Wmip9tuuw3d3d2Ix+OoqanBuXPnAOTvEflqL5+nbdu2kXG5tZfbIwrJkyzL6OzsxOLFi2GxWGbcI3LzRNvT2rVr8alPfQrNzc245ppriCdWfc9oNGLJkiV47733SJ5oHXNHRkawbt06tLa2UjnmyrKMdevW4eWXX6Z6TlgMuJojZLaEQiFyp8zpdI67qycoD5TvytntdpjNZrS3t2PJkiWIRCLwer0wGAwIh8Ow2+2wWq0YHR1FJpOB0+mELMuIRqPkrnEoFILD4YDFYiENzuFwIJVKIR6Pk/oKBoNwuVwwm82IxWIwGo2oqKiAJElIJBLweDzk7rbb7YbJZEI0GoXZbIbdbkcymYQkSXC73chkMgiHw/B4PDAajYhEIrBarbDZbEgkEpBlGS6XC+l0WngSnoQn4Ul4Ep6EJ+FJeBKehCfhSXjK4+nNN9+E1WpFJpOBJEmw2WwwGAxIJpMwm80wmUxIpVLIZrNk3LJlyzBv3rxJPR05cgQWiwXpdBqpVIo8kJlIJGC1WmE0GiFJEgwGAxknyzJsNhuy2SySyeS4cUajEWazmTzJnzsuN1aTyUTGZTKZWXuSJGlcrBaLhYwDUFaeLl26hLq6OjidTnIDy2q1wm63IxwOw2AwwOv14qGHHsL9998Pl8sFWZaRSCRgs9lgtVoRiURgNBrh8Xjw5JNPYsGCBVN6On/+PO69917yxrTH4yFvK1VUVMBoNCIWi8FsNsPlcmHXrl2YP3/+ZZ4GBwexefNmWCwWOBwO8sS3z+dDNBqFLMt49tlnYTAYsGnTJlWewuEwMpkM3G43JElCMpkk11ii0ShMJhPcbjdCoRBqa2vx7W9/m+Spv78fDQ0N4zwpT3w/88wzWLhwIdU8RSIR8mbHbDzt378f6XQaW7duvcxTbp4OHDiAuXPnXlZ7wWAQGzduhNfrJW+LKQ8txeNxWCwWPPXUU1i0aBEA4OzZs6ivr4csy3k9HThwAFdfffWU+9PIyAjq6ury5mnv3r2oqqqacn8aGhpCfX39ZbWn5Enx9Nhjj+HBBx8c52my2nv22WdxxRVXwGAwYHh4GFu2bJl1np5//nnMmTNnVj1icHAQDQ0NefeniZ4my9NU+9NkedqzZw/mzZunWd9btWpVSR1zC/0d0d/fX7Q5Qkr6RohAUO6TpcfjcRw+fJg83VrK8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3GuEZLSZLT6VS6OnpIU8ylzK8eWERT74Jlh0OB9asWYPDhw/jX/7lX6hOlp6rrVy0nI1ebtxTac1msvSZxjMZyrJ/+MMfsGPHjnFfaBGTpU++LMvJ0ifmslQnS587d+6s9nctJkuf7bZVw2T9jtZk6byfgxXzWi7Xn8YSCAQCgUAgEAgEAoFAIBAIBMXln/7pnyb9TL1AIBCUCuZiByAQCArH4XBg3bp1xQ6DCrx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHYvFgiVLlhQ7DCrw5kXreOLxOJqbm7nXpqGlRkNZ9q677lIVg4AOLOtWS3jrP4C225alfz2dg9FGvBEiEJQwqVQKJ0+eJN/bLGV486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDvpdBoXL14kk/eWMrx50Toe5UIki8+C0dSmoaVGQ1lWmXxdUFxY1q2W8NZ/AG23LUv/ejoHo424ESIQlDDK3erZfuOTR3jzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UOzxd0FELb160jkd5SpnF3Ds0tWloqdFQluXpgnU5w7JutYS3/gNou21Z+tfTORhtxGTpgpKm3CdLFwgEAoFAIBAIBALBGFpMli4oLVhOFK1mfdPpzXRybmBmk6XTYLJYxWTpky/LcrJ0FhqA9pOlz3YSci0mS58Iy8nSJ4PWZOm8IyZLFwgEAoFAIBAIBAKBQCAQCAQCgUAgYIC4ESIQlDDBYBCPPPIIgsFgsUNRDW9etI6H5fpoatPQUqPBW52UO3rJB28+RP9hpyf6j37QUz548yJ6EDutQjV4q5FyJ5FIoK2tDYlEotihqIY3L1rH4/P58PDDD8Pn83GtTUNLjYayLE+fMCpnWNatlvDWfwBtty1L/3o6B6ONuBEiEJQwLpcLW7ZsgcvlKnYoquHNi9bxsFwfTW0aWmo0eKuTckcv+eDNh+g/7PRE/9EPesoHb15ED2KnVagGbzVS7litVnzyk5+E1Wotdiiq4c2L1vFEo1Hs378f0WiUa20aWmo0lGVNJlPB6xfQg2Xdaglv/QfQdtuy9K+nczDamIsdgEAgKByz2Yzq6upih0EF3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WO0Wgs+SexFXjzonU8siyjt7eXe20aWmo0lGWNRvEsNQ+wrFst4a3/ANpuW5b+9XQORhvRxQSCEiYWi+GFF15ALBYrdiiq4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuSJKE48ePQ5KkYoeiGt68aB2P0+nEhg0b4HQ6udamoaVGQ1lWluWC1y+gB8u61RLe+g+g7bZl6V9P52C0ETdCBIISRrmDrIcnM3jzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UOwaDAXa7HQaDodihqIY3L1rHk8lkEAwGkclkuNamoaVGQ1mWlzopd1jWrZbw1n8AbbctS/96Ogejjfg0lkBQwlRUVODWW28tdhhU4M2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNcIzPp+P+WSsFosF1157LdN1aAVvXrSOZ3R0FK+99hr32jS01Ggoy27ZskVVDAI6sKxbLeGt/wDabluW/vV0Dkab4t+KEQgEBSNJEjo7O7l6lbBQePOidTws10dTm4aWGg3e6qTc0Us+ePMh+g87PdF/9IOe8sGbF9GD2GkVqsFbjfDMggULmK8jnU5jYGAA6XSa+bpYw5sXreOxWq1YsWIFk8mKaWrT0FKjoSxb6m8g6AWWdaslvPUfQNtty9K/ns7BaCNuhAgEJUwikUBraysSiUSxQ1ENb160jofl+mhq09BSo8FbnZQ7eskHbz5E/2GnJ/qPftBTPnjzInoQO61CNXirEZ6ZO3cu3G4303Uok+nqYb4E3rxoHY/dbkdtbS3sdjvX2jS01Ggoy/J0wbqcYVm3WsJb/wG03bYs/evpHIw2hmw2my12EAJBoZw4cQLLly8n/338+HEsW7asiBEJBAKBQCAQCAQCgaBYyLKMc+fOIRQKwel0Ip1Oo7+/f8rxN998M2w226T/1trayihKgVYMDAxg48aN0457/PHHcd999007rqmpCfPnz1e9vun0ZqLT1NQEAFOOm6mnmTJZrPninG5bzVSHBtNtq9xxavKhLDtTPzTqiVZNFrIPFJq32dSGAusamYxC4lRDbW2tZusqJsW8liveCBEISphsNotEIgE93M/kzYvW8bBcH01tGlpqNHirk3JHL/ngzYfoP+z0RP/RD3rKB29eRA9ip1WoBm81wjtmsxkf+9jHcP311+OP//iPUVFRQVU/m81ClmVd5IM3L1rHw3KyYpraNLTUaCjL8lIn5Q6Pk4wXAm/9B9B227L0r6dzMNqIGyECQQkTCoXw6KOPIhQKFTsU1fDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopd5LJJI4cOYJkMlnsUFTDmxet4/F6vXjggQfg9Xq51qahpUZDWZanTxiVMyzrVkt46z+AttuWpX89nYPRRtwIEQhKGLfbjYaGBubfwdUC3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WO1WrFTTfdVPITFQP8edE6nkgkgt27dyMSiXCtTUNLjYayrNlsLnj9AnqwrFst4a3/ANpuW5b+9XQORhvRxQSCEsZkMmn6vUKW8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3jEYjXC5XscOgAm9etI4nnU5jYGCAe20aWmo0lGVL/VNMeoFl3WoJb/0H0HbbsvSvp3Mw2og3QgSCEiYajWL//v2IRqPFDkU1vHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsodSZLQ2dkJSZKKHYpqePOidTwulwt33303k4uRNLVpaKnRUJYVn8biA5Z1qyW89R9A223L0r+ezsFoI26ECAQljNlsRnV1tS5eUeXNi9bxsFwfTW0aWmo0eKuTckcv+eDNh+g/7PRE/9EPesoHb15ED2KnVagGbzVS7hiNRvh8PhiNpX85hTcvWscjyzJ6e3uZXOCnqU1DS42Gsqx4I4QPWNatlvDWfwBtty1L/3o6B6NN8SMQCAQFY7fbUVtbW+wwqMCbF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3FEu6OgB3rxoHU8ikUBrayv32jS01GgoyzY0NKiKQUAHlnWrJbz1H0DbbcvSv57OwWjDz203gUAwa5LJJNrb25FMJosdimp486J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDuyLKOvr6/kn8YG+POidTw2mw01NTWw2Wxca9PQUqOhLJtOpwtev4AeLOtWS3jrP4C225alfz2dg9FG3AgRCEoYHr+pWCi8edE6Hpbro6lNQ0uNBm91Uu7oJR+8+RD9h52e6D/6QU/54M2L6EHstArV4K1Gyh1lMl09XBTmzYvW8VitVqxYsQJWq5VrbRpaajSUZbPZbMHrF9CDZd1qCW/9B9B227L0r6dzMNoYsqKTCUqYEydOYPny5eS/jx8/jmXLlhUxIoFAIBAIBAKBQCAQ8EJfXx8+/PDDKf/95ptvnvLpXz18fqbcGRgYwMaNG6cd9/jjj+O+++6bdlxTUxPmz5+ven3T6c1Ep6mpCQCmHDdTTzNlsljzxTndtpqpDg2m21a549TkQ1l2pn5o1BOtmixkHyg0b7OpDQXWNTIZhcSpBl4+H8WaYl7LFW+ECAQlTCaTQTAYRCaTKXYoquHNi9bxsFwfTW0aWmo0eKuTckcv+eDNh+g/7PRE/9EPesoHb15ED2KnVagGbzVS7mSzWSQSCV08Hc+bF63jYTlZMU1tGlpqNJRleamTcofHScYLgbf+A2i7bVn619M5GG1Ke68RCMqccDiMxsZGhMPhYoeiGt68aB0Py/XR1KahpUaDtzopd/SSD958iP7DTk/0H/2gp3zw5kX0IHZahWrwViPlTjKZRCAQ4OJb52rhzYvW8Xg8Hvj9fng8Hq61aWip0VCW5Wkuh3KGZd1qCW/9B9B227L0r6dzMNqIGyECQQnj8Xiwffv2kj8AAvx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHZvNhlWrVpX8RMUAf160jiccDmPnzp3MbsTS0qahpUZDWdZsNhe8fgE9WNatlvDWfwBtty1L/3o6B6ONuBEiYMbDDz8Mg8GQ938PPPBAscMsafTySiTAnxet4xGvZWu3fgE99JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOwWCA3W6HwWAodiiq4c2L1vGIT/PNblle6qTc4ekzQ2rgrf8A2m5blv71dA5Gm+JHINA9V111FT772c9O+r/q6upih1fSRCIR7N69G5FIpNihqIY3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuZNMJnH06FGuPudSKLx50Toet9uNrVu3wu12c61NQ0uNhrKs+DQWH7CsWy3hrf8A2m5blv71dA5GG/Fem4A5n//857F///5ih6FLrFYrVqxYAavVWuxQVMObF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3DGZTJg/fz5MJlOxQ1ENb160jkeSJHR2dkKSJK61aWip0VCW/bM/+7OC1y+gB8u61RLe+g+g7bZl6V9P52C0ETdCBIISxmazoaampthhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWM2m1FVVVXsMKjAmxet40kmk2hvb+dem4aWGg1l2e3bt6uKQUAHlnWrJbz1H0DbbcvSv57OwWgjPo0lEJQwiUQCra2tSCQSxQ5FNbx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKHVmW0dvbq4vPBPHmRet47HY7amtrYbfbudamoaVGQ1k2nU4XvH4BPVjWrZbw1n8AbbctS/96OgejjbgRoiHpdBr/+Z//iaeeegrbtm3Dpz71KVitVjJxeG1tbcHakiTh2WefxRe+8AVcc801sNvtWLBgAT7zmc/g3//933Hx4kV6RmbJsWPHUFdXh8997nP4m7/5G3znO9/Bu+++W7R49ASPB45C4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLu6GWiYoA/L1rHYzabUV1dDbOZ/sdSaGrT0FKjoSybzWYLXr+AHizrVkt46z+AttuWpX89nYPRprT3mhKiubkZdXV1iMfj1LVPnjyJjRs3orOzc9z/PzAwgIGBAbz99tv4t3/7Nzz99NP4whe+QH3909HZ2TkutpaWFuzYsQNbtmzB7t27S/4udjFxuVy4++67ix0GFXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO8q3zvUAb160jicajTKbz5SmNg0tNRrKsn/913+tKgYBHVjWrZbw1n8AbbctS/96OgejjXgjRCOCwSCTmyB9fX245ZZbyI0Gg8GA1atXo76+HmvXrkVFRQUA4MKFC1i3bh3eeOMN6jFMxcKFC/Hwww/j7bffxuDgIJLJJN577z18+9vfhslkwoEDB/C3f/u3msWjR9LpNAYGBnTxiipvXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRcieTySAajXL1FHOh8OZF63hYTlZMU5uGlhoNZVnxRggfFHuSceWha7UTivPWfwBtty1L/3o6B6ONuBGiMfPmzcOXvvQlPPLII3j11VdVTzb11a9+FefOnQMAXHPNNejo6EBrayueeuopvPzyy/joo49wyy23AABSqRTuvPNOBINBtTZmxDe/+U38f//f/4eamhpcddVVsFqtWLJkCXbs2IHnnnsOAHDw4EG8/fbbmsSjRyKRCPbs2YNIJFLsUFTDmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNyRJAnvvvuu6ouAPMCbF63jcbvd2Lp1K9xuN9faNLTUaCjL8vBZGwHbup0J9913HzZu3Ii1a9fiu9/9bsE6vPUfQNtty9K/ns7BaGPIilu6mqDcLf3Yxz427v9/+OGH8cgjjwAAVq9ejdbW1hlrvvrqq/jiF78IYOyVqqNHj+L666+/bFwsFsMNN9yA06dPAwC+853v4F//9V8vG/fAAw/g0UcfnfH6c0mlUrP+ht6qVavwzjvv4P7778f/+T//p6D1njhxAsuXLyf/ffz4cSxbtqwgrVIkm80imUzCZrPBYDAUOxxV8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gik1+vr68OGHH0757zfffDNsNtuk/zbZ+Xk2m0U6nYbJZCr5fPDmhUU8AwMD2Lhx46T/ZjAYYLPZkEwm8f3vfx/33XfftHpNTU2YP3/+tOvL1c532W0qvdy4p9JqamoCgCn9Pf7448TTTOOZDGXZffv2YcGCBVPGOVNvk5FPhwbTbavccdPlYybLztTPTOspl4m5LERjMnLrhTVNTU2YN2/erPZ31jUCzH7bqmGyfqdm7uiJ2jyfgxXzWq6YI0QjWOw4TzzxBPl7y5Ytk94EAQCn04nvfve72LRpEwBgz549+O53v3vZjQun04m5c+cWFEshO8JnP/tZvPPOO/jggw8KWqdgbLvrZY4V3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+WOwWAo+UmKFXjzonU82WwWiUSCe20aWmo0lGV5uFkmYFu3WsJb/wG03bYs/evpHIw24tNYJUo0GsX/+3//j/z3Pffck3f8HXfcAZfLBQC4dOkS3nzzzcvG/PM//zMuXrxY0P8K+X6e1WoFMPY2iaAwwuEwdu7ciXA4XOxQVMObF63jYbk+mto0tNRo8FYn5Y5e8sGbD9F/2OmJ/qMf9JQP3ryIHsROq1AN3mqk3Ekmk2hvb0cymSx2KKrhzYvW8Xg8Hvj9fng8Hq61aWip0VCWFddu+IBl3WoJb/0H0HbbsvSvp3Mw2ogbISXKb3/7W7KzOJ1OfPrTn8473m634+abbyb/reWk6VPR1dUFAFi0aFGRIyld7HY7amtrubmzqgbevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y7ZbEZ1dTV3TzIXAm9etI4nkUigtbWVyRPgNLVpaKnRUJYt1uTcgvGwrFst4a3/ANpuW5b+9XQORht+qk0wK9577z3y9/XXXz+jHefGG2/E66+/ftnyxaCzsxO//OUvAQB//dd/XdRYShmr1YoVK1YUOwwq8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3TCYTs2/Gaw1vXrSOR5IkdHZ2cq9NQ0uNhrKs0SiepeYBlnWrJbz1H0DbbcvSv57OwWgjuliJ8v7775O/r7nmmhktkztR+8mTJ6nHlMuJEyfwzW9+Ex0dHZf92yuvvILPf/7zSKfTuPHGG/HlL3+ZaSx6ZnR0FK+99hpGR0eLHYpqePOidTws10dTm4aWGg3e6qTc0Us+ePMh+g87PdF/9IOe8sGbF9GD2GkVqsFbjZQ7qVQKH374oS4+E8SbF63jqaiowK233oqKigqutWloqdFQlk2n0wWvX0APlnWrJbz1H0DbbcvSv57OwWgj3ggpUYaHh8nf8+bNm9EyuXcaL126RD2mXFKpFPbu3Yu9e/fC5/Phj/7oj2CxWPCHP/wBQ0NDAIAbbrgBL730kniqQAWZTAbBYBCZTKbYoaiGNy9ax8NyfTS1aWip0eCtTsodveSDNx+i/7DTE/1HP+gpH7x5ET2InVahGrzVSLmjTKabzWaLHYpqePOidTxGoxE+n4/JNQma2jS01Ggoy/JSJ+UOy7rVEt76D6DttmXpX0/nYLQp7b2mjIlGo+Tvmd6pzB2XuzwLqqur8b//9//Gl770JcydOxc9PT3k7ZC//Mu/xJ49e/DOO++gqqqKyvrsdjuZDD6dTiMYDJJmEg6HIUkSgLG7kLFYDAAgyzKCwSDRCIVC5E5sPB5HPB4HMHZTJxQKkXHBYBCyLAMAYrEYuaMpSRKZ+CebzSIYDJInJqLRKPnGYDKZRCQSAXB5M4hEImTul0QiQfI0lSen04nbbruNxFbKntLpNG6//XY4nU4u8mQ2m/HFL34RTqdTdZ6A6WvParViw4YNMBgM1D2ZTCZs2LABZrOZizzJsowNGzbA6XTO2pPT6cSXvvQl8n1amvvTTPJUKvuTVp4sFgu+8IUvwOl0lrQnALjtttvgdDq5yJPNZsOtt94Kp9NJJU9a9oiJngBgw4YNsNlsVGrPaDRiw4YNsFgsBeUplUrhK1/5CpxOZ1kfc/XQ9+x2O2699VY4HI6S95TNZrFhwwbY7XYu8pRKpXDnnXfC6XRqUntOpxPr168f90QkLU9OpxN33XUXUqkUF3kq9Pee0+nE7bffTjyIHjF7T8lkkminUiniT9GbypPydzqdJvFYrVZce+215PPUkiSNG6fEo1zkUmKVJIlsB1mWLxuXG2vuuNxYJ46bylPu9+0TicS4cbmxZjIZLF++HFar9bJYi+Epm83iE5/4BKxWa8GeJo5TYnU6neSaiNVqhcfjQSwWw49+9CNYLBYSg8vlIt+xt9lscLvdAC6/GTCVp2w2C5/Ph3g8jhdeeAEmkwlWqxXA2DUZ5fed2WyGz+eb0pOibbFYYDab8cILLyAWi8Hn85Hak2WZLKN4AgCDwTAuVpfLhXQ6jRdeeAGyLF/mSbno63a7YbPZAIy/xpJIJPDaa6+NOwdT1quco03mKbf3qslTriclhunyNJmndDpNPJlMJvh8PhgMBgBjk2QrecpXe16vFxaLBQDgcDjI7xCLxTLuOJZKpUie8nlKpVLT7k8TPRmNRvzsZz9DLBaD3W4ny+TrEflqL58nr9dLxuXWnto8ZbNZZDIZLFu2DFardcY9IjdPLDxlMhm88MILSKVSxBOrvmexWLB8+XJks1mSJ1rHXJvNhg0bNhBNJe5Cj7kVFRXYsGEDMpkM1XPCYiBuhJQouY1YaQLToTR/4L8KkRU+nw8PPvggWlpa8OGHHyIUCkGSJFy4cAGvv/46vvnNb46LRy01NTVYv349AGBoaAiNjY1k59y3bx+6u7sBAG1tbWhpaQEA9PX1obGxkWjs2rULPT09AIDDhw/j8OHDAICenh7s2rWLjGtsbERfXx8AoKWlBW1tbQCA7u5u7Nu3D8BY42hsbCRvvxw6dAjt7e0AgI6ODhw8eBDAWHNobGwkzejgwYPkhlF7ezsOHTqU15Msy2hpacHLL7+sC09vvvkmZFnmIk/vvvsunn76aciyrDpPwPS1d+rUKfT29uKXv/wldU+//e1v0dvbi3fffZebPPX29kKW5Vl7kmUZzz33HH77298CoLs/zSRPpbQ/aeGpq6sLP/zhD8kPwFL19PLLL6OlpQWyLHORpzNnzqCxsZH8cGZde7R7RK6nl19+Gb29vcSTmjy1tLTg17/+NXp7e9HV1VVwnpTjZ7kfc0u9750/fx6NjY3kZLGUPf3kJz9Bb28v8cRDno4dOwZZljWpPVmWcfToUSaeZFnGBx98wE2eCv29J8sy3nzzTdEjVHjq6Ogg2mfOnMGpU6eI3u7du6f0pPw9MjKCo0ePAhi7MBQIBMjFnFOnTuHMmTNkvUo86XQagUCAXKzq7u4m22FgYABdXV3EeyAQILF2dXVhYGCAbHMlF/F4HIFAgFy4yucpEAgQT0ePHsXIyAjJzURPyo2lQCBAtmsxPZ05cwaZTEaVJ4VAIECunaxduxarV68GACxduhT19fUwm834kz/5E/j9fnKRc/369aipqQEArFy5EnV1dQDGLsD6/X7y+2wqT8lkEn6/Hw6HA9XV1aivr8fSpUsBAKtXr8batWsBAFVVVfD7/VN6UnK7ePFibNu2jUyq7Pf7yQOlg4OD5Gshiidg7NrPRE+f+cxnUF1djZtuuukyT8oF37q6OqxcuRLA+Gss8+fPH+c9t/aGh4en9NTb20slT7meKisrZ5SnyTyNjIwQT5WVlfD7/eS6VG6e8tXetm3bsHjxYgDAmjVrsGbNGpKn3t5eMu706dMkT/k8nT59etr9aTJPt9xyC8xmM2pqanDu3DkA+XtEvtrL52nbtm1kXG7tqc2TLMsIBAIYGhpCJpOZcY+Y6f5UqKfa2lpUV1dj+fLlxBOrvpdKpRAMBsflidYx98yZM+jt7cXLL79M5Zh76dIl9Pb24rnnnqN6TlgMDFme3kEqQx5++GE88sgjAMZ24tbW1hkt98UvfhGvvvoqAODb3/42duzYMe0yv/jFL/CFL3wBwNhdWeUOXylz4sQJLF++HHa7HWazGe3t7ViyZAkikQi8Xi8MBgPC4TDsdjusVitGR0eRyWTgdDohyzKi0Si5axwKheBwOGCxWEiDczgcSKVSiMfj5K5xMBiEy+WC2WwmT6dWVFRAkiQkEgl4PB5ks1mEQiG43W6YTCZEo1GYzWbY7XYkk0lIkgS3241MJoNwOAyPxwOj0YhIJAKr1QqbzYZEIgFZlsnTG5N5isfjaGxsxDe+8Q0sXLiwpD2dPXsW+/btw/bt22Gz2Yqep8HBQezevRvbt2+Hx+NRlaeZ1J4kSXjyySfxzW9+E16vl6qnWCyG3bt3Y+vWrXA4HEXP0/nz5/H0009j+/btADArT5FIBI2Njdi6dSvmzZtHdX/SY49g7enChQvYtWsXtm/fDq/XW7Kezp07h71792L79u1wOBxFz9PFixfxxBNPYPv27fD5fMxrj2aPmOhpZGQEe/fuxd/93d+Ne1KrUE+RSAR79uzBtm3bYLfbZ52nvr4+0n+UJzTL8Zirh743PDyM//t//y++9a1vYc6cOSXtaXh4GP/xH/+Bv//7v4fJZCp6ns6ePUv2E7PZzLz2UqkUGhsbcc8995A5DWl5ymQyRPvqq68uep4K/b2nXLCor6/HokWLRI+Ypaf+/n6cOHECZrMZJpMJqVQK2WwWVquVPJGsfG56oqcjR47AYrEgnU4jlUrBbrcjkUggEAjg05/+NBwOByRJgsFgIONkWYbNZkM2m0UymYTVaoXRaIQkSTAajTCbzeRJ/txxNpsNBoMByWQSJpOJjMtkMiRWSZLGjZvKkyRJ5Cls5cljZRwAEms0GkVnZydWrVoFAONiLYanUChE4jGZTAV5UvKkjLt06RLq6urI096jo6OwWq2w2+0wGo3w+/3Yt28f/H4/7r//frhcLsiyjEQiAZvNBqvVikgkAqPRCI/HgyeffBILFiyY0tP58+dx7733Ahi7yPof//EfuHDhAiRJQkVFBYxGI2KxGMxmM1wuF3bt2oX58+df5mlwcBCbN2+GxWLB/Pnz8fWvfx07d+4EMPb0tizLePbZZ2EwGLBp0ybiKRwOw2AwwOv14qGHHiKenE4ntm3bhieffBKjo6PjPIXDYWQyGbjdbkiShGQySa6xRKNRXHHFFfjWt76FP/qjP8LHPvaxcbXX39+PhoaGcZ6Um4TPPPMMFi5cqDpPuZ4ikQh5syNfniZ62r9/P9LpNLZu3UreiHa73QiFQshms/B4PEgkEjhw4ADmzp17We0Fg0Fs3LgRXq+XvC2mvGUQj8dhsVjw1FNPYdGiRQCAs2fPor6+HrIs5/V04MABXH311VPuTyMjI6irqxvn6eqrr8Y3vvEN7Ny5E4lEAnv37kVVVdWUPWJoaAj19fWX1Z6SJ8XTY489hgcffHCcJ4fDQd428Pl8pPbU5un555+Hw+Eg+7vBYJi2RwwODqKhoQGJRGLK/Wmip8nylM+Ty+XCtm3b8MQTTyCZTGLPnj3kugPtvpfNZvHOO+9gxYoVcLlcMJlMWLVqFZVjrizLeOKJJ/CNb3wDc+bMUX3MzWQy+MEPfoCvf/3rqKysVH1O2N/fj+XLl0Ph+PHjWLZsGbRA3AgpMoXeCLnrrrvw4x//GADwrW99a0Z31H7605/ijjvuADB2R//8+fOFBc0Ryo0QBS13HoFAIBAIBAKBQCAQ8E1fXx8+/PDDKf/95ptvnvJrBTM9Pxfwy8DAADZu3DjtuMcffxz33XfftOOamprGzb9a6Pqm05uJTlNTEwBMOW6mnmbKZLHmi3O6bTVTHRpMt61yx6nJh7LsTP3QqCdaNUm7XvIxm9pQYF0jk1FInGqora3VbF3FpJjXcsWnsUqUuXPnkr8HBwdntIzyShYAXHHFFdRjEggEAoFAIBAIBAKBQCAQCAQCgYA3xI2QEuW6664jfyvf7pyOjz76iPy9ZMkS6jEJtCcUCmHHjh3jJkYqVXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO4lEAm+99da4eTtLFd68aB2P1+vFAw88MG7yZB61aWip0VCWzZ0MXFA8WNatlvDWfwBtty1L/3o6B6ONuBFSonziE58gf3d1dZFJq/Lx+9//ftLlBaWLw+HAunXryDcPSxnevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y7FYsGSJUtgsViKHYpqePOidTzxeBzNzc3ke/u8atPQUqOhLGsymQpev4AeLOtWS3jrP4C225alfz2dg9HGXOwABIXxmc98BjabDclkErFYDEePHkVNTc2U45PJJNrb28l/f+5zn9MiTAFjlMapB3jzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UOyaTCVdeeWWxw6ACb160jieVSuHkyZPca9PQUqOhLGs0imepeYBl3WoJb/0H0HbbsvSvp3Mw2oguVqK4XC7ccsst5L/379+fd/xPf/pTRCIRAGPzg/z5n/85y/A0x263w+VyAQDS6TSCwSCy2SwAIBwOQ5IkAMDo6ChisRgAQJZlBINBohEKhcirnvF4nNwBTqVS417fCgaD5A2cWCyG0dFRAIAkSQiHwwCAbDaLYDCIdDoNAIhGo+R1t2QySXKRyWQQDAaRyWQAAJFIBMlkEsDYa3LRaDSvp3g8jkOHDmFoaKjkPQ0ODuLFF19EPB7nIk8jIyP4yU9+gng8rjpPwPS1FwqF0NzcjIsXL1L3dOnSJTQ3N2NkZISLPA0MDJCnLGbrKR6P4yc/+QkuXboEgO7+NJM8lcr+pJWnYDCIH//4x4jH4yXtaWhoCIcOHUI8HuciT+FwmGxXGnnSskdM9DQ0NITm5maEw2EqtTc8PIzm5mYEg8GC8nT+/Hn87Gc/QzweL+tjrh76XiQSwY9//ONx+02perpw4QKam5sRiUS4yNP58+fx05/+FPF4XJPai8fj+OlPf4rz589T9xSPx/Gzn/0M58+f5yJPhf7ei8fjePHFF8nckKJHzN5TMpkk2qlUivhT9KbypPydTqdJPKlUCidOnCDrlSRp3Djl/89ms0gkEiRWSZLIdpBl+bJxubHmjsuNdeK4qTzlfmolkUiMG5cbazQaxcmTJ5FKpS6LtRieotEouru7SZyFeJo4TonV6XSioqICAGC1WuHxeMhTyvPnzycxuFwu2O12AIDNZoPb7QYAGI1G+Hy+aT1ls1n4fD6ifdVVV8FqtQIAKioq4HQ6AQBmsxk+n29KT4q2xWLBvHnzyNPUPp8PZrOZrFdZRvEEAAaDYVysLpcLc+bMwbp16+Dz+S7zpNzgcLvdsNlsAMZfY3G5XPjKV75CtnNu7aXT6Sk9pVIpKnnK9aS8lTJdnibzlE6niSeTyQSfzweDwQAA8Hg8JE/5as/r9ZIn+B0OB3nC3WKxjPt0WCqVInnK5ymVSk27P030dNVVV+H222+Hw+GA3W4ny+TrEflqL5+n3E9E5dae2jxls1lEIhG89957SKVSM+4RuXli4emKK67AunXr4PV6iSdWfU+SJJw8eRLRaJTkidYxNxwOo7m5GUNDQ1SOudFoFM3Nzbhw4QLVc8JiIG6ElDD33nsv+Xv//v04ceLEpOPi8Tgeeugh8t/f/OY3yY6uF2pqarB+/XoAYxe0Ghsbyc65b98+dHd3AwDa2trQ0tICAOjr60NjYyPR2LVrF3p6egAAhw8fxuHDhwEAPT092LVrFxnX2NiIvr4+AEBLSwva2toAAN3d3di3bx+AscbR2NhILpYcOnSIvJHT0dGBgwcPAhhrDo2NjaQZHTx4EB0dHQCA9vZ2HDp0aFpPg4ODJNZS9vT888+T5s1Dnrq6unD69GlqeZrOU29vLwCgtbWVuqd3332XeOIhT7k3bgvxdObMGeKJ9v7EQ+2VkqdTp07hww8/LHlPhw8fJheXeMjTuXPn8N5771HLk5Y9YqInJdZz585Rqb23334bwFjtFZKnH/7wh+QEopyPuXroexcvXsR7772nC08///nPiSce8vTDH/6QxKBV7cXjcfzwhz9k4imTyeCHP/whF3lS83svFArh+eefJ3kSPWJ2njo6Osb9ljx16hTR271795SelL9HRkZw9OhRMu7ixYvkQtGpU6fIvJ1DQ0MknnQ6jUAgQC5WdXd3k+0wMDCArq4u4j0QCJBYu7q6MDAwQLa5kot4PI5AIEAuXOXzFAgESKxHjx7FyMgIyU2up87OTjIuEAiQ7VosT8ePHyfLFOopN0+BQIBc3Fu7di1Wr14NAFi6dCnq6+sBjF0Q37p1K7nIuX79evK1jZUrV6Kurg7A2AVYv99PLmxO5SmZTMLv95OL73V1dVi6dCkAYPXq1Vi7di0AoKqqCn6/f0pPSm4XL16Me+65h4zz+/2oqqoCMPa7ZHh4+DJPNpsNfr9/nKdPfepTAIDrr7/+Mk/KBd+6ujqsXLkSwPhrLFdeeSWWLl1K9HJrb3h4eEpPvb291PKkeKqsrJxRnibzNDIyQjxVVlaOy1N9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPypPR4ADh9+jTJUz5Pp0+fnnZ/mujpjjvuwNy5c0mezp07ByB/j8hXe/k8bdu2jYzLrT21eZJlGb///e9JTc20R+TmiYWnz3zmMwDG5mVWPGnR95Q80TrmKjVx+PBhKsdc5Xh36NAhqueExcCQVW7XCIrCww8/jEceeQTA2E7c2to6q+X//M//HL/5zW8AANXV1XjppZdwww03kH8fHh7Gxo0b8frrrwMYexukp6dn3J3SUubEiRNYvnw57HY7zGYz2tvbsWTJEkQiEXi9XhgMBoTDYdjtdlitVoyOjiKTycDpdEKWZUSjUbItQqEQHA4HLBYLaXAOhwOpVArxeJzcNQ4Gg3C5XDCbzYjFYjAajaioqIAkSUgkEvB4PMhmswiFQnC73TCZTIhGozCbzbDb7Ugmk5AkCW63G5lMBuFwGB6PB0ajEZFIBFarFTabDYlEArIsw+VyIZ1OC0/Ck/AkPAlPwpPwJDwJT8KT8CQ8CU+z9NTf348TJ07AbDbDZDIhlUohm83CarUik8lg2bJlmDdv3qSejhw5AovFgnQ6jVQqRZ5sTiQSsFqtMBqNkCQJBoOBjJNlGTabDdlsFslkctw4o9EIs9lMnuTPHWez2WAwGJBMJmEymci4TCZDYpUkady4qTxJkjQuVovFQsYBKCtPly5dQl1dHZxOJzKZDEZHR2G1WmG32xEOh2EwGOD1evHQQw/h/vvvh8vlgizLSCQSsNlssFqtiEQiMBqN8Hg8ePLJJ7FgwYIpPZ0/fx733nsvQqEQstksPB4Pefq7oqICRqMRsVgMZrMZLpcLu3btwvz58y/zNDg4iM2bN8NiscDhcJCH0Xw+H6LRKGRZxrPPPguDwYBNmzap8hQOh5HJZOB2uyFJEpLJJLnGEo1GYTKZ4Ha7x3lX8tTf34+GhoZxnpQnvp955hksXLiQap4ikQh5s2M2nvbv3490Oo2tW7eO8zQxTwcOHMDcuXMvq71gMIiNGzfC6/WSt8WUtwzi8TgsFgueeuopLFq0CABw9uxZ1NfXQ5blvJ4OHDiAq6++esr9aWRkBHV1dXnztHfvXlRVVU25Pw0NDaG+vv6y2lPypHh67LHH8OCDD47zNFXtqc3T888/jzlz5syqRwwODqKhoSHv/jTR02R5mo2nPXv2YN68eZr1vVWrVpX8MXcmvyP6+/uxfPlyKBw/fhzLli2DFogbIRryhS98gdyVUxgYGCBPoTqdTlx77bWXLffqq69i4cKFk2r29fXhT//0T8mr5AaDAatXr8bixYsxNDSEX/3qV2QHMZvNeO2118Z9UqvUUW6EKGi58/BAKpVCT08PFi9ezNUEU4XAmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNTo6+sjb7BOxs0330yeCp/IZA8qKhcn58yZU/KTR/PmhUU8AwMD2Lhx46T/ZrFYsHjxYvT09OCxxx7DfffdN61eU1MT5s+fP+36crVzP5k0U73cuKfSampqAoAp/T3++OPE00zjmQxl2X/+53++7NpUvu073baaqQ4NpttWueOmy8dMlp2pn5nWUy4Tc1mIxmTk1gtrmpqaUFlZOav9nXWNALPftmqYrN/V1tZS0eb9HKyY13LFp7E0pLu7G8eOHRv3P+UmCDD2vdSJ/37s2DHyXbXJqKqqwhtvvIEVK1YAGPvOW2trK5566im8/PLL5CZIZWUlmpubdXUTRDB2R1uZa6HU4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuKJPpzvZiMo/w5kXreJR5PJQnxnnVpqGlRkNZVvmUj6C4sKxbLeGt/wDabluW/vV0DkYb8UaIhlRXV5PvbM6GP/zhD6iurs47RpIkvPDCC2hqasKJEycwODgIn8+HP/7jP8btt9+Oe+65B1deeWWBkfNLub8RIhAIBAKBQCAQCASCqaH9RoigtKD9NDytp++n05vpGwjAzN4IocFksYo3QiZfluUbISw0AO3fCJntmxZavBEyEZZvhEwGrTdCeKeY13L1NWM25+ROnEQbq9WKr33ta/ja177GbB0CgUAgEAgEAoFAIBAIBAKBQCAQlBri01gCQQkTDAbxyCOPkAmhShnevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5U4ikUBbWxsSiUSxQ1ENb160jsfn8+Hhhx8mkxHzqk1DS42GsixPnzAqZ1jWrZbw1n8AbbctS/96OgejjbgRItAFdrsdLpcLwNiEQ8FgEMpX38LhMJlnZXR0FLFYDAAgy/K4nTAUCpEDezweJ9+uS6VSCIVCZFwwGIQsywDG5nUZHR0FMPZ5snA4DGBsrpZgMEi+oRmNRklzSyaTiEQiAIBMJoNgMIhMJgMAiEQiSCaTAMaaYjQazevJ5XJhw4YNMBgMJe8pk8ngq1/9KlwuFxd5slgsuPPOO+FyuVTnCZi+9mw2G7Zs2QKj0Ujdk9lsxpYtW2CxWLjIUzqdxpYtW+ByuWbtyeVy4Stf+QrM5rEXGmnuTzPJU6nsT1p5slqtWL9+PVwuV0l7MhgM2LBhA1wuFxd5stvtuOOOO8hxjXXt0ewREz0ZDAZs2bIFdrudSu2ZTCZs2bIFVqu1oDzJsozNmzfD5XKV9TFXD32voqICd9xxB5xOZ8l7AoAtW7agoqKCizzJsoxNmzbB5XJpUnsulwubNm0isdH05HK58LWvfQ2yLHORp0J/77lcLnz1q18lsYkeMXtPyWSSaKdSKeJP0ZvKk/J3Op0m8VitVnziE58gv0clSRo3Toknm80ikUiQWCVJIttBluXLxuXGmjsuN9aJ46bylHthLZFIjBuXG2smk8EnP/lJWK3Wy2IthqdsNovly5fDarUW7GniOCVWp9OJiooKkkOPx4NoNIr9+/fDZDKRGFwuF+x2OwDAZrPB7XYDAIxGI3w+37SestksfD4f0TYYDLBarQDGjl3KcctsNo+72DrRk6JtsVhgNBqxf/9+RKNR+Hw+Unu5vU3xBIz9ts2N1eVyIZVKYf/+/ZAk6TJPRuPYpUG3200+E5d7jSUej+PQoUNkXG7tpdPpKT0p535q85TrSZlUero8TeZJOZ8EAJPJBJ/PR37XeTwekqd8tef1eslk0Q6Hg8wlYbFYxt0oSqVSJE/5PKVSqWn3p4meAODgwYOIRqOw2+1kmXw9Il/t5fPk9XrJuNzaU5unbDaLTCaDG264AVardcY9IjdPLDzJsoz9+/cjmUwST6z6nsViwSc/+Ulks1mSJ1rHXLvdji1btsBgMFA55jocDmzZsgXZbJbqOWExEDdCBLqgpqYG69evBwAMDQ2hsbGR7Jz79u1Dd3c3AKCtrQ0tLS0Axr4V29jYSDR27dqFnp4eAMDhw4dx+PBhAEBPTw927dpFxjU2NqKvrw8A0NLSgra2NgBAd3c39u3bB2CscTQ2NmJoaAgAcOjQIbS3twMAOjo6cPDgQQBjzaGxsZE0o4MHD6KjowMA0N7ejkOHDuX1ZDab8Yc//AG/+MUvSt7TM888g1gsBrPZzEWeurq68Oabb8JsNqvOEzB97Z05cwbV1dV44403qHs6evQoqqur0dXVxUWe9u7di+rqapjN5ll7MpvNCAQCOHr0KAC6+9NM8lQq+5NWnk6dOoXXX38dZrO5pD394he/wB/+8AeYzWYu8jQwMIAXX3yR/ChnXXs0e8RET7/4xS9QXV2NgYEBKrV35MgRVFdX49SpUwXl6YknnsAVV1wBs9lc1sdcPfS9kZERvPjii+QErpQ9NTc3o7q6GiMjI1zk6YknnoDT6YTZbNak9sxmM0wmE5544gnqnsxmMxYsWIAnnniCizwV+nvPbDYjFovhmWeeIXkSPWJ2njo6Ooj2mTNncOrUKaK3e/fuKT0pf4+MjJDfn0ajEe+99x65AHTq1CkyF+jQ0BCJJ51OIxAIkItV3d3dZDsMDAygq6uLeA8EAiTWrq4uDAwMkG2u5CIejyMQCJC+l89TIBAgno4ePYqRkRGSm1xPv//978kF1kAgQLZrsTwdO3YMqVQKRqOxYE9KngAgEAiQi3tr167F6tWrAQBLly5FfX09ZFnGwMAA/uEf/oFc5Fy/fj1qamoAACtXrkRdXR2AsQuwfr+fXNicylMymYTf74fZbEZvby+2bNmCpUuXAgBWr16NtWvXAgCqqqrg9/un9KTkdvHixfjmN7+J3t5eyLIMv9+PqqoqAMDg4CCGh4fHeQLGLjj7/f5xnj796U+jt7cXN9xww2WelAu+dXV1WLlyJYDx11iuuOIK8jcwvvaGh4en9NTb20slT7meKisrZ5SnyTyNjIwQH5WVlfD7/eQmSX19PclTvtrbtm0bFi9eDABYs2YN1qxZQ/KU+zn806dPkzzl83T69Olp96eJnjZs2IC5c+dClmXU1NTg3LlzAPL3iHy1l8/Ttm3byLjc2lObJ1mW8bvf/Q4VFRUwGo0z7hG5eWLh6c/+7M/Q29uL6667jnhi1feUm6bHjh0jeaJ1zB0YGEB1dTV+8YtfUDnmxuNxVFdX40c/+hHVc8JiICZLF5Q0ygQ7drsdZrMZ7e3tWLJkCSKRCLxeLwwGA8LhMOx2O6xWK0ZHR5HJZMidXuWJCmDs7qrD4YDFYiENzuFwIJVKIR6Pk7vGwWAQLpeLnJAYjUZUVFRAkiQkEgl4PB5ks1mEQiG43W6YTCbyxK3dbkcymSRPYWQyGYTDYXg8HhiNRkQiEVitVthsNiQSCciyDJfLhXQ6PamnVCqF5uZm/NVf/RWuuuqqkvY0MDCAN954A7fddhuMRmPR83Tp0iW8+uqr+PKXv4yKigpVeZpJ7WWzWbz22mu45ZZb4HQ6qXpKJpN4/fXXsWbNGlgslqLn6eLFi2hra8PatWuRSqVm5SmRSOBnP/sZPv/5z2Pu3LlU9yc99gjWnkZGRvDzn/8ct99+OxwOR8l6unDhAl5//XWsW7cOFoul6HkKhUJ4+eWXcfvtt5P/Zll7NHvERE+RSARvvPEGPv/5z5Mf+2pqb3R0FL/61a/w13/91zCZTLPO08DAANra2vA3f/M3yGQyZXvM1UPfC4fDeOmll/DlL3+Z/HepegqHw3jjjTfwhS98AZlMpuh5On/+PNlPstks89oDgJdeegm1tbVYuHAhVU8mkwkvv/wyVq9ejXnz5hU9T4X+3stkMnjppZfwuc99DvPnzxc9Ypae+vv7ceLECXLTLZVKIZvNwmq1IpPJYNmyZZg3b96kno4cOQKLxYJ0Oo1UKgW73Q5JkvDee+/huuuuI/9tMBjIOFmWYbPZyJOzVqsVRqMRkiTBaDTCbDaTJ/lzx9lsNhgMBiSTSZhMJjJOOV5lMhlIkjRu3FSeJEkiT2ErTx4r4wCQWOPxOM6cOYOPf/zjZD1KrMXwFIlEyEVIg8FQkCclT8q4S5cuoa6uDk6nE5lMBqOjo7BarbDb7Uin01i7di3a2trw3//7f8f9998Pl8sFWZaRSCRgs9lgtVoRiURgNBrh8Xjw5JNPYsGCBVN6On/+PO69916kUimsXbsWv/71rzEyMgJJkshFX+XBMpfLhV27dmH+/PmXeRocHMTmzZthsVgwd+5c1NbWoqWlBRaLBdFoFLIs49lnn4XBYMCmTZuIp3A4DIPBAK/Xi4ceeoh4slqtWLNmDX75y19CluVxnsLhMDKZDNxuNyRJQjKZJNdYotEo3G431q1bh7/6q7/CokWLxtVef38/GhoaxnlSnvh+5plnsHDhQtV5yvUUiUTImx358jTR0/79+5FOp7F161ZEo1GYTCa43W7Smz0eDxKJBA4cOIC5c+deVnvBYBAbN26E1+slb4spbxnE43FYLBY89dRTWLRoEQDg7Nmz5GZbPk8HDhzA1VdfPeX+NDIygrq6unGerrrqKvzlX/4lXnrpJaTTaezduxdVVVVT9oihoSHU19dfVntKnhRPjz32GB588MFxnpRzPADkTafpPM0kT88//zycTifOnDmD6667DtlsdtoeMTg4iIaGBiQSiSn3p4meJstTPk92ux1/9Vd/hddeew2ZTAZ79uzBvHnzmPQ9g8GADz74ANdccw0cDgdMJhNWrVpF5ZhrMBjwi1/8Ap/73OfgdrtVH3NNJhNeeeUV/MVf/AV8Pp/qc8L+/n4xWbpAoIbcVxWVVxwVlLvmAMire8Dkr84pKI0SmPzVOQXlNTxg7HVA5RU95XVABeX1S2DsDrny1IHyiqOC8pogAPKjIJ+ndDqNuXPnkuVK2ZPX68UVV1xBTowUiuWpoqICV155JYxGo+o8KXr5PI2OjsLn88HlcpGxtDwpcVVUVBDtYubJ5/ORJ89m68loNOLKK68kmjT3J0B/PYK1J7vdjsrKShiNxpL25Ha7MXfuXBiNRi7yZLVayXYt1FOxesRknnw+H6xW6ziPhXpS4rLb7URvNnmaM2cO5syZA6PReFktT+dJT8dcPfQ9i8WCyspK8umFUvak3CS0WCzjYi+Wp9z9JHe9rGpvdHQUV1xxBebMmUPd0+joKPGT+5mOQjzRyFOhv/eUbaSMEz1i9p6U5ZX4FCbqTfSkjDWZTKSGDAYDnE4n+W/Fw2TjcmPKHWc2m8mbnxPH5caqjFFinWrcRE+54yb2ztxY7XY77HZ73li19KQc35WbMIV4UmJVxim/p5TPzQBjn4hRLqQGg0Fy4RAAedMHGHtqWnnCWflEjDJuKk8GgwHBYJBoT/xEjMLEz95M9KRoKp+9UT4Jl7tM7noVT8B/ffYm15MSTyKRIHFM1FM+hwOMv8YiyzKGhobItsz1bjKZpvyUj3JjR/k7d5nZ5CnXk8J0eZrMk3LBF/ivT/koKG9DTYx1Yu3lfoJIuRgNjOUpdzmLxTLuk4BTeVI+fQZMvT9N5unSpUvkE0vKuHw9Il/t5fM08ZNLCmrzZDAYyLlH7ufjFO8KEz3l5omFJ2VbJ5NJos+q7yk3A+12O9kfaB1zld8byk0QJe5Cj7mKnsfjGff5PIXZnhP29/ejWIgbIQJBCVNRUYFbb7212GFQgTcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5Y7FYcO211xY7DCrw5kXreEZHR/Haa69xr01DS42GsuyWLVtUxSCgA8u61RLe+g+g7bZl6V9P52C0EXOECAQljCRJ6OzsJHffSxnevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5U46ncbAwAD5Zn0pw5sXreOxWq1YsWLFuCe8edSmoaVGQ1lW+ZyhoLiwrFst4a3/ANpuW5b+9XQORhtxI0QgKGESiQRaW1vHvbZaqvDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopd2RZJhNXlzq8edE6Hrvdjtra2nGfeOFRm4aWGg1lWZ4uWJczLOtWS3jrP4C225alfz2dg9FGTJYuKGmUydIVtJxgRyAQCAQCgUAgEAgEfNPX14cPP/xwyn+/+eabx33LPZfW1lZGUQm0YmBgABs3bpx23OOPP4777rtv2nFNTU2YP3++6vVNpzcTnaamJgCYctxMPc2UyWLNF+d022qmOjSYblvljlOTD2XZmfqhUU+0apJ2veRjNrWhwLpGJqOQONVQW1ur2bqKSTGv5Yo3QgSCEiabzSKRSEAP9zN586J1PCzXR1ObhpYaDd7qpNzRSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDvZbBayLOsiH7x50ToeZXJjZVJxXrVpaKnRUJblpU7KHZZ1qyW89R9A223L0r+ezsFoI26ECHSB3W6Hy+UCMPadvWAwSHawcDhMvkM3OjqKWCwGYOw1tGAwSDRCoRBSqRQAIB6PIx6PAwBSqRRCoRAZFwwGyatrsVgMo6OjAMa+eRcOhwGM7eTBYJC8OhqNRskrYMlkEpFIBACQyWQQDAbJtzYjkQiSySSAsVfHotFoXk+hUAiPPvoozp8/X/Ke+vr68OijjyIUCnGRpwsXLpB41OYJmL72Ll68iEcffRQDAwPUPSleLly4wEWezp49SzRm60mp+QsXLgCguz/NJE+lsj9p5WloaIjkspQ9nT9/nvjgIU/Dw8MkHhp50rJHTPSkbNvh4WEqtTc4OIhHH30UQ0NDBeUpt/+U8zFXD33v0qVLePTRR0m8pezp3LlzePTRR3Hp0iUu8pS7n2hRe8q+dfbsWeqecrV5yFOhv/cUH319fSRPokfMzlMymSTaqVSK+FP0pvKk/J1Op8fFc+TIkXE+cscp8SgXfpRYJUki20GW5cvG5caaOy431onjpvKU+/mRRCIxblxurOFwGEeOHEEymbws1mJ4yo2nUE8TxymxOp1OVFRUABibB8Dj8cDr9eKBBx7AokWLSAwul4t8Fsdms8HtdgMAjEYjfD7ftJ6y2Sx8Ph/Rvvrqq8l8AxUVFXA6nQAAs9kMn883pSdF22KxoKqqCg888AC8Xi98Ph/MZjNZr7KM4gkYu5ibG6vL5cJVV12FBx54AJWVlZd5MhrHLg263W7ydlTuNZY5c+bggQceINs5t/bS6fSUnlKpFJU85XoymUwzytNkntLpNPFkMpng8/nIBW+Px0PylK/2vF4vLBYLAMDhcMDhcJA8Kf4UDSVP+TylUqlp96eJnhYuXEjqwW63k2Xy9Yh8tZfPk9frJeNya09tnrLZ7Lj9faY9IjdPLDwp+8mVV15JPLHqe4lEAkeOHEE4HCZ5onXMVc4nz58/T+WYOzIygkcffRT9/f1UzwmLgbgRItAFNTU1WL9+PYCxC3ONjY1k59y3bx+6u7sBAG1tbWhpaQEwdkG3sbGRaOzatQs9PT0AgMOHD+Pw4cMAgJ6eHuzatYuMa2xsJCchLS0taGtrAwB0d3dj3759AMYaR2NjI4aGhgAAhw4dQnt7OwCgo6MDBw8eBDDWHBobG0kzOnjwIDo6OgAA7e3tOHToUF5Pbrcby5cvJzGUsqcXX3wRtbW1cLvdXOSpp6cHc+fOhdvtVp0nYPraGxoaQkNDA9rb26l7OnHiBBoaGtDT08NFnp5//nk0NDTA7XbP2pPb7caCBQtw4sQJAHT3p5nkqVT2J6089fX1weVywe12l7SntrY2LF++HG63m4s8KT9klRMF1rVHs0dM9NTW1oaGhgaEQiEqtdfR0YGGhgb09fUVlKenn34aX/3qV+F2u8v6mKuHvqecrCknw6Xs6fDhw2hoaEAikeAiT08//TTuuOMOuN1uTWrP7XZj7dq1ePrpp6l7crvduPvuu/H0009zkadCf++53W7U1tbixRdfJHkSPWJ2njo6Ooj2mTNncOrUKaK3e/fuKT0pf4+MjODo0aMA/qvvKH3o1KlTOHPmDFmvEk86nUYgECAXq7q7u8l2GBgYQFdXF/EeCARIrF1dXRgYGCDbXMlFPB5HIBAgF67yeQoEAsTT0aNHMTIyQnKT66mrqws33XQTrFYrAoEA2a7F8vTee+/hmmuugdVqLdiTkicACAQCJE9r167F6tWrAQBLly5FfX09IpEI9u3bh/r6enKRc/369aipqQEArFy5EnV1dQDGLsD6/X5yYXMqT8lkEn6/H5IkYffu3Vi/fj2WLl0KAFi9ejXWrl0LAKiqqoLf75/Sk5LbxYsXo66uDrt370YkEoHf70dVVRUAYHBwEMPDw+M8AWMXnP1+/zhPS5cuxe7du4leriflgm9dXR1WrlwJYPw1FuVCtnIhPrf2hoeHp/TU29tLJU+5niorK2eUp8k8jYyMEE+VlZXw+/3kJkl9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPy1NvbS8adPn2a5Cmfp9OnT0+7P030tHbtWhw5cgSRSAQ1NTU4d+4cgPw9Il/t5fO0bds2Mi639tTmSZZldHZ2Yvny5bBarTPuEbl5YuHpxhtvxO7du1FVVUU8sep7JpMJN910E9577z2SJ1rH3FAohIaGBnI+psRd6DE3m82ioaEBP//5z6meExYDMUeIoKRRvitnt9thNpvR3t6OJUuWIBKJwOv1wmAwIBwOw263w2q1YnR0FJlMBk6nE7IsIxqNkrvGoVAIDocDFouFNDiHw4FUKoV4PE7uGgeDQbhcLpjNZsRiMRiNRlRUVECSJCQSCXg8HmSzWYRCIbjdbphMJkSjUZjNZtjtdiSTSUiSBLfbjUwmg3A4DI/HA6PRiEgkAqvVCpvNhkQiAVmW4XK5kE6nhSfhSXgSnoQn4Ul4Ep6EJ+FJeBKehKdZeurv78eJEydgNpthMpmQSqWQzWZhtVqRyWSwbNkyzJs3b1JPR44cgcViQTqdRiqVIheEE4kErFYrjEYjJEmCwWAg42RZhs1mQzabRTKZHDfOaDTCbDaTJ/lzx9lsNhgMBiSTSZhMJjIuk8mQWCVJGjduKk+SJI2L1WKxkHEAysrTpUuXUFdXB6fTiUwmg9HRUVitVtjtdoTDYRgMBni9Xjz00EO4//774XK5IMsyEokEbDYbrFYrIpEIjEYjPB4PnnzySSxYsGBKT+fPn8e9995L3pj2eDxIJBKQJAkVFRUwGo2IxWIwm81wuVzYtWsX5s+ff5mnwcFBbN68GRaLBQ6Hgzwo4/P5EI1GIcsynn32WRgMBmzatEmVp3A4jEwmA7fbDUmSkEwmyTWWaDQKk8kEt9s9zruSp/7+fjQ0NIzzpDzx/cwzz2DhwoVU8xSJRMibHbPxtH//fqTTaWzdunWcp4l5OnDgAObOnXtZ7QWDQWzcuBFer5e8Laa8ZRCPx2GxWPDUU09h0aJFAICzZ8+ivr4esizn9XTgwAFcffXVU+5PIyMjqKury5unvXv3oqqqasr9aWhoCPX19ZfVnpInxdNjjz2GBx98cJynqWpPbZ6ef/55zJkzZ1Y9YnBwkDyQMNX+NNHTZHmajac9e/Zg3rx5mvW9VatWlfwxdya/I/r7+4s2R4i4ESIoacp9svRoNIpDhw5h/fr15BXPUoU3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIqUF7snRJktDd3Y2lS5eSt0NKFd68sIgn3wTLLpcL69evx6FDh/C//tf/ojpZeq628vmY2ejlxj2V1mwmS59pPJOhLHvLLbeQp+cni3Om3iZDTJY+OZPpTMxlqU6WfsUVV8xqf9disvTZbls1TNbvaE2Wzvs5mJgsXSAQFITZbEZ1dTX5pmEpw5sXreNhuT6a2jS01GjwVifljl7ywZsP0X/Y6Yn+ox/0lA/evIgexE6rUA3eaqTcmfi9/lKGNy9axyPLMnp7e8nnrnjVpqGlRkNZttQn59YLLOtWS3jrP4C225alfz2dg9Gm+BEIBIKCsdvt1O4YFxvevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y5yQUcP8OZF63gSicSkb/3wpk1DS42GsmxDQ4OqGAR0YFm3WsJb/wG03bYs/evpHIw2/Nx2EwgEsyaZTKK9vZ1MSFTK8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3ZFlGX19fyT+NDfDnRet4bDYbampqpvw0Gi/aNLTUaCjLKhNWC4oLy7rVEt76D6DttmXpX0/nYLQRN0IEghJGkiR0dnZCkqRih6Ia3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+VOOp3GwMCALi4K8+ZF63isVitWrFjBZH4Umto0tNRoKMuKKYb5gGXdaglv/QfQdtuy9K+nczDaiMnSBSVNuU+WLhAIBAKBQCAQCASCqaE9WbqgtKA9UTStiamn05vp5NzAzCZLp8FksYrJ0idfluVk6Sw0AO0nS5/tJORaTJY+EZaTpU8GL5+PYo2YLF0gEBREJpNBMBhEJpMpdiiq4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuZLNZJBIJXTwdz5sXreNhOVkxTW0aWmo0lGV5qZNyh8dJxguBt/4DaLttWfrX0zkYbUp7rxEIypxwOIzGxkaEw+Fih6Ia3rxoHQ/L9dHUpqGlRoO3Oil39JIP3nyI/sNOT/Qf/aCnfPDmRfQgdlqFavBWI+VOMplEIBDg4lvnauHNi9bxeDwe+P1+eDwerrVpaKnRUJblaS6HcoZl3WoJb/0H0HbbsvSvp3Mw2ogbIQJdYLfb4XK5AIx9Zy8YDJK7quFwmHyHbnR0FLFYDMDYxETBYJBohEIhpFIpAEA8Hkc8HgcApFIphEIhMi4YDJIfALFYDKOjowDGvnmn7NTZbBbBYJB86y8ajSKRSAAYa3aRSATA5XdFI5EIaYKJRALRaDSvJ4/Hg4aGBphMppL3BADbtm2Dx+PhIk82mw1f//rX4fF4VOcJmL72KioqsH37dpjNZuqerFYrtm/fDpvNxkWestkstm/fDo/HM2tPHo8Hf/u3f0u+2Ulzf5pJnkplf9LKk91uR319PTweT0l7MplMaGhogMfj4SJPDocD99xzD/kBzrr2aPaIiZ5MJhO2b98Oh8NBpfYsFgu2b98Ou91eUJ4ymQz+4R/+AR6Pp6yPuXroe06nE/fccw/cbnfJezIajdi+fTucTicXecpkMvj7v/97eDweTWrP4/Hg7/7u78Y9JUjLk8fjwbe+9S1kMhku8lTo7z2Px4Nt27aRMaJHzN5TMpkk2qlUivhT9KbypPydTqfHnSesWLECFouF+Mgdp8SjPO2rxCpJEtkOsixfNi431txxubFOHDeVJyVWZbvkjsuNNZvNYtWqVbDZbJfFWgxPAPCpT30KNputYE8TxymxOp1OVFRUABibB8Dj8SAcDmPnzp0wGAwkBpfLBbvdTnKtHGcmvhUxladsNgufz0e0s9ksOXepqKiA0+kEAJjNZvh8vik9KdpKne3cuRPhcBg+nw9ms5msV1lG8QQABoNhXKwulwvJZBI7d+5EIpG4zJPy9Lvb7Saficu9xhKNRrFv3z7yGyi39tLp9JSeUqkUlTzlelJimC5Pk3lKp9PEk8lkgs/ng8FgADB2AVzJU77a83q9JCcOhwMOh4PkSfGnaCh5yucplUpNuz9N9JTJZPDkk08iHA7DbreTZfL1iHy1l8+T1+sl43JrT22estksstks/vRP/xQ2m23GPSI3Tyw8SZKEnTt3kmOvEiuLvme1WrFq1SoAIHmidcx1OBzYvn07TCYTlWOuy+XC9u3bYTAYqJ4TFgNxI0SgC2pqarB+/XoAwNDQEBobG8nOuW/fPnR3dwMA2tra0NLSAmDsW7GNjY1EY9euXejp6QEAHD58GIcPHwYA9PT0YNeuXWRcY2Mj+vr6AAAtLS1oa2sDAHR3d2Pfvn0AxhpHY2MjhoaGAACHDh1Ce3s7AKCjowMHDx4EcPld0YMHD6KjowMA0N7ejkOHDuX1ZDQa0dnZiVdeeaXkPe3fvx/nzp2D0WjkIk/Hjh3Dz3/+cxiNRtV5AqavvT/84Q/w+Xz41a9+Rd3TO++8A5/Ph2PHjnGRpz179pAfcrP1ZDQa8frrr+Odd94BQHd/mkmeSmV/0srTyZMn8eKLL8JoNJa0p1deeQWdnZ0wGo1c5OncuXN4+umnyckO69qj2SMmenrllVfg8/lw7tw5KrX3m9/8Bj6fDydPniwoTz/4wQ9gNBphNBrL+pirh743PDyMp59+mpwQlrKnn/70p/D5fBgeHuYiTz/4wQ+QSqVgNBo1qT2j0YhoNIof/OAH1D0ZjUZUVFTgBz/4ARd5KvT3ntFoxLlz57B//36SJ9EjZuepo6ODaJ85cwanTp0iert3757Sk/L3yMgIjh49CmDsQl9nZye5UHTq1CmcOXOGrFeJJ51OIxAIkItV3d3dZDsMDAygq6uLeM99KrirqwsDAwNkmyu5iMfjCAQC5MJVPk+BQIB4Onr0KEZGRkhucj29++67sNvtMBgMCAQCZLsWy5OyXQ0GQ8GelDwBQCAQIBf31q5di9WrVwMAli5divr6enJBcvv27eQi5/r161FTUwMAWLlyJerq6gBc/lbEVJ6SyST8fj+sViuCwSDuueceLF26FACwevVqrF27FgBQVVUFv98/pSclt4sXL8bWrVvJDUC/34+qqioAwODgIIaHh8d5AsYuOPv9/nGeVq1ahWAwiBUrVlzmSbngW1dXh5UrVwIYf43lyiuvRH19PbnImVt7w8PDU3rq7e2lkqdcT5WVlTPK02SeRkZGiKfKykr4/X5yk6S+vp7kKV/tbdu2DYsXLwYArFmzBmvWrCF56u3tJeNOnz5N8pTP0+nTp6fdnyZ6+upXv4o//uM/RiaTQU1NDc6dOwcgf4/IV3v5POXehM+tPbV5kmUZ77zzDgwGAwwGw4x7RG6eWHj68z//cwSDQXziE58gnlj1vUwmA7vdjs7OTpInWsfcc+fOwefz4ZVXXqFyzI1Go/D5fGhqaqJ6TlgMxGTpgpJGmWDHbrfDbDajvb0dS5YsQSQSgdfrhcFgIHfJrVYrRkdHkclk4HQ6Icsy2ZmBsburDocDFouFNDiHw4FUKoV4PE7uGit3Q81mM2KxGDnBkiQJiUSCPBkdCoXgdrthMpkQjUZhNptht9uRTCYhSRLcbjcymQx5Ws1oNCISicBqtZIncmRZhsvlQjqdntRTMpnEs88+izvuuAPz5s0raU/nzp1Dc3MzNm/eDLPZXPQ8Xbx4ET/60Y/wta99DU6nU1WeZlJ76XQaP/7xj3H77bfD5XJR9TQ6OooXX3wR69evJ09hFDNPFy5cQEtLC+rq6shTOTP1FI/H8cwzz+ArX/kKKisrqe5PeuwRrD0NDw/jhRdewNe+9jW4XK6S9TQ4OIgXX3wRmzdvJnEUM08jIyN4/vnn8bWvfQ1ut5t57dHsERM9hcNh/OxnP8Ndd91FnhBTU3uxWAw//elPceedd8Jiscw6T+fOnUNLSws2bdoEAGV7zNVD3wsGgzh48CA2b95MnuotVU/BYBDNzc3YsGEDABQ9T/39/WQ/MRgMzGsvk8ngueeew9q1a8nFCFqeDAYD0V6wYEHR81To7z1ZlvHss89i3bp1WLhwoegRs/TU39+PEydOwGw2w2QykTeUrVYrMpkMli1bhnnz5k3q6ciRI7BYLEin00ilUiSeY8eO4frrryc+DAYDGSfLMmw2G7LZLJLJJKxWK4xGIyRJgtFohNlsJk/y546z2WzkaVuTyUTGZTIZEqskSePGTeVJkiTyFHYikYDFYiHjAJBYY7EYTp06heuvv54sr8RaDE/hcBjvv/8+brjhBhiNxoI8KXlSxl26dAl1dXVwOp3IZDIYHR2F1WqF3W5HNptFXV0dWlpa8I//+I+4//774XK5IMsyEokEbDYbrFYrIpEIjEYjPB4PnnzySSxYsGBKT+fPn8e9996LdDqNuro6vPTSSxgeHoYkSaioqIDRaEQsFoPZbIbL5cKuXbswf/78yzwNDg5i8+bNsFgsqKysxN/8zd/g4MGDZP9Q+oLBYMCmTZuIp3A4DIPBAK/Xi4ceeoh4stvtWL9+PX7yk59AkqRxnsLhMDKZDNxuNyRJQjKZJNdYotEovF4vNm3ahFWrVmHRokXjaq+/vx8NDQ3jPClPfD/zzDNYuHCh6jzleopEIuQcMl+eJnrav38/0uk0tm7dimg0CpPJRH5nZ7NZeDweJBIJHDhwAHPnzr2s9oLBIDZu3Aiv10veFlPeMojH47BYLHjqqaewaNEiAMDZs2dRX18PWZbzejpw4ACuvvrqKfenkZER1NXVjfM0f/58fPnLX8Zzzz2HVCqFvXv3oqqqasoeMTQ0hPr6+stqT8mT4umxxx7Dgw8+OM6Tw+Egbxv4fD5Se2rz9Pzzz8PhcODUqVO44YYbAGDaHjE4OIiGhgYkEokp96eJnibLUz5PDocDd9xxB3784x9DlmXs2bMH8+bNY9L3gLFJwj/+8Y/D6XTCZDJh1apVVI652WwWP/rRj/DlL38ZHo9H9THXYDCgqakJt912G6644grV54T9/f1FmyzdrMlaBALG5L6qqLziqJD7bT/l1T1g8lfnFJRGCUz+6pyC8hoeMHYxRXlFL/diDwDy+iUwdodceepAecVRQXlNEAD5UZDPUzabxY033kj+rZQ9zZ07FzfeeCM5kVEolie3242bbrqJHOzU5AmYvvaSySRWrFgBr9dL/NPyZLFYsGLFinGvBRczT1deeSVWrFhxmcZMPFmtVtx0001k29LcnwD99QjWnlwuF9lPStmTz+cjdc1DnhwOB9muhXoqVo+Y6MloNGLFihVwOBzj9vdCPZnNZqxYsQIul4vozSZPlZWVWLly5WX9p9yOuXroexUVFbjpppvIcqXsac6cOVixYgUqKirG1WWxPE21n7CqvWQyiZUrV5KnR2l6ytXO/UxHIZ5o5KnQ33vJZBI33ngj5s6dC0D0iEI85eZM+VzKZHoTPSljTSYTqSGTyYSFCxeSf1M8TBxnMBjGxZQ7zmw2k8+xTBw38Td2bqxTjZvoKXdc7t+540wmExwOB+bPn08u1k0Wq5aeHA4HuWmZb1w+T0qsyjjlDVvlczPA2CdilIurnZ2duHjxIvlEkvKpF2Bs31OecFY+EaOMm8qTwWBAMBgk2pcuXRr3iRiFiZ+9mehJ0UylUhgeHkZnZye5STHZehVPwH999ibXUyqVQmdnJ6LR6GWeFJS3nIDx11gSiQTeffdd3HzzzZd5N5lMU37KR7mxo/ydu8xs8pTrSWG6PE3mSbngC/zXp3wUcucuyLc/5X6CSLkYDYzlKXc5i8Uy7pOAU3myWCzE+1T700RPIyMj6OjoIPWgjMvXI/LVXj5PEz+5pKA2TwaDAU6nc9L9Pd++n5snFp5kWUZnZydisdi4WFn0PVmWMX/+fDgcDrI/0DrmKr83fD4fiUPNMVfRU26CAOrOCfv7+1EsxI0QgaCEsdls5DXDUoc3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWM2m8nbS6UOb160jieZTJLPwfCsTUNLjYay7Pbt21XFIKADy7rVEt76D6DttmXpX0/nYLQRc4QIBCVMIpFAa2vruKc1ShXevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y4sy+jt7SVPe5cyvHnROh673Y7a2tpxTzbzqE1DS42GsqwyT4OguLCsWy3hrf8A2m5blv71dA5GG3EjRCAoYXg8cBQKb160jofl+mhq09BSo8FbnZQ7eskHbz5E/2GnJ/qPftBTPnjzInoQO61CNXirkXJH+UyNMhF1KcObF63jMZvNqK6uHvfZGh61aWip0VCWFVMM8wHLutUS3voPoO22ZelfT+dgtBGTpQtKGmWydAUtJ9gRCAQCgUAgEAgEAgHf9PX14cMPP5zy32+++eZx33LPpbW1lVFUAq0YGBjAxo0bpx33+OOP47777pt2XFNTE+bPn696fdPpzUSnqakJAKYcN1NPM2WyWPPFOd22mqkODabbVrnj1ORDWXamfmjUE62apF0v+ZhNbSiwrpHJKCRONdTW1mq2rmJSzGu54o0QgaCESafTGBgY0MUrqrx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKnUwmg2g0ytVTzIXCmxet4zGZTGSyeJ61aWip0VCWFc9R8wHLutUS3voPoO22ZelfT+dgtBE3QgSCEiYSiWDPnj2IRCLFDkU1vHnROh6W66OpTUNLjQZvdVLu6CUfvPkQ/Yednug/+kFP+eDNi+hB7LQK1eCtRsodSZLw7rvvQpKkYoeiGt68aB2P2+3G1q1b4Xa7udamoaVGQ1mWh8/aCNjWrZbw1n8AbbctS/96Ogejjfg0lqCkKfdPY2WzWSSTSdhsNhgMhmKHowrevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYjpQbtT2Nls1mk02mYTKaSzwdvXljEk+9zOgaDATabDclkEt///vepfhorVzvfZbeZfIppKq3ZfBprpvFMhrLsvn37sGDBginjnKm3yRCfxpqcyXQm5rJUP401b968We3vWnwaa7bbVg2T9Ttan8bi/RysmNdyS3tmHYGgzDEYDLDb7cUOgwq8edE6Hpbro6lNQ0uNBm91Uu7oJR+8+RD9h52e6D/6QU/54M2L6EHstArV4K1Gyh2DwVDykxQr8OZF63iy2SwSiQT32jS01Ggoy/Jws0zAtm61hLf+A2i7bVn619M5GG3Ep7EEusBut8PlcgEY+/ZcMBgkTzmEw2Hyqtno6ChisRgAQJZlBINBohEKhZBKpQAA8Xgc8XgcAJBKpRAKhci4YDBIXgmNxWIYHR0FMPZaWzgcBjDWPIPBIPn+XTQaJc00mUyS18EymQyCwSD5JmAkEkEymQQAJBIJRKPRvJ7C4TC+//3vY2BgoOQ99ff34/HHH0c4HOYiT0NDQ/j+97+PcDisOk/A9LU3PDyMnTt3YnBwkLqnCxcuYOfOnRgaGuIiT319fdi5cyfC4fCsPSk1f+HCBQB096eZ5KlU9ietPF28eJHsJ6XsaWBggPjgIU+XLl0i8dDIk5Y9YqKngYEB7Ny5E5cuXaJSe0qsFy9eLChPZ8+eJT2snI+5euh7IyMj+P73v0/iKGVP58+fx86dOzEyMsJFnnL3Ey1qLxwO4/HHH8fZs2epe8rV5iFPhf7eU3z09/eTPIkeMTtPyWSSaKdSKeJP0ZvKk/J3Op0eF8/bb789zkfuOCUe5YKaEqskSWQ7yLJ82bjcWHPH5cY6cdxUnnIv5CUSiXHjcmMNh8Nob29HMpm8LNZieAqHw3j77beRTCYL9jRxnBKr0+lERUUFAMBqtcLj8cDj8cDv96OqqorE4HK5yAU7m81GPpFjNBrh8/mm9ZTNZuHz+Yj2woULYbVaAQAVFRVwOp0AALPZDJ/PN6UnRdtiseDqq6+G3++Hx+OBz+cjF09lWSbLKJ6AsYuOubG6XC5UVlbC7/fjyiuvvMyT0Th2adDtdpO3o3Kvsfh8Ptx///3EY27tpdPpKT2lUikqecr1pMzdMF2eJvOUTqeJJ5PJBJ/PR27ueDwekqd8tef1emGxWAAADocDDoeD5Enxp2goecrnKZVKTbs/TfS0YMECUg92u50sk69H5Ku9fJ68Xi8Zl1t7avOUzWYRCoXI/j7THpGbJxaerrrqKvj9fsydO5d4YtX3EokE2tvbEQ6HSZ5oHXMvXbqEnTt3YmBggMoxNxgMYufOnTh37hzVc8JiIG6ECHRBTU0N1q9fD2DsAnZjYyPZOfft24fu7m4AQFtbG1paWgCMvSLd2NhINHbt2oWenh4AwOHDh3H48GEAQE9PD3bt2kXGNTY2oq+vDwDQ0tKCtrY2AEB3dzf27dsHYKxxNDY2YmhoCABw6NAhtLe3AwA6Ojpw8OBBAGPNobGxkTSjgwcPoqOjAwDQ3t6OQ4cO5fVkt9tRWVmJN954o+Q9/eQnP8HixYtht9u5yNP7779P7lqrzRMwfe2dP38etbW1OHLkCHVPXV1dqK2txfvvv89Fnp577jnU1tbCbrfP2pPdbofVakVXVxcAuvvTTPJUKvuTVp56e3shyzLsdntJe3rjjTdQWVkJu93ORZ6Gh4cRiUTISQPr2qPZIyZ6euONN1BbW4vh4WEqtfe73/0OtbW16O3tLShP+/btw6pVq2C328v6mKuHvheNRhGJRMgFjFL29Nprr6G2thbRaJSLPO3btw833ngj7Ha7JrVnt9tx/fXXkxhoerLb7fizP/sz7Nu3j4s8Ffp7z263Y/HixfjJT35C8iR6xOw8dXR0EO0zZ87g1KlTRG/37t1TelL+HhkZwdGjRwGMXXCTJIlchDp16hTOnDlD1qvEk06nEQgEyLju7m6yHQYGBsjv2WQyiUAgQGLt6uoiN937+vpILuLxOAKBALlwlc9TIBAgno4ePYqRkRGSm1xP//mf/4nq6mqYzWYEAgGyXYvlqbu7G1dccQXMZnPBnpQ8AUAgECAX99auXYvVq1cDAJYuXYr6+nokEgkcOXIEf/u3f0sucq5fvx41NTUAgJUrV6Kurg4AyI0N5cLmVJ6SyST8fj+y2SxaW1vxla98BUuXLgUArF69GmvXrgUAVFVVwe/3T+lJye3ixYuxefNmtLa2IpFIkBs3ADA4OIjh4eFxnoCxC85+v3+cpxtuuAGtra247rrrLvOkXPCtq6vDypUrAYy/xuJyueDxeMgxN7f2hoeHp/TU29tLJU+5niorK2eUp8k8jYyMEE/KjSHlJkl9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPy1NvbS8adPn2a5Cmfp9OnT0+7P030tG7dOpw9exaJRAI1NTU4d+4cgPw9Il/t5fO0bds2Mi639tTmSZZldHZ2oqqqCmazecY9IjdPLDx96lOfQmtrK6qrq4knVn3PYDCguroa3d3dJE+0jrnDw8Oora3FG2+8QeWYK0kSamtr8dJLL1E9JywGYo4QQUmjfFfObrfDbDajvb0dS5YsQSQSgdfrhcFgQDgcJhdPR0dHkclk4HQ6IcsyotEouWscCoXgcDhgsVhIg3M4HEilUojH4+SucTAYhMvlgtlsRiwWg9FoREVFBSRJQiKRgMfjIXe33W43TCYTotEozGYzuVgoSRLcbjcymQzC4TA8Hg+MRiMikQisVitsNhsSiQRkWYbL5UI6nRaehCfhSXgSnoQn4Ul4Ep6EJ+FJeBKeZumpv78fJ06cgNlshslkQiqVQjabhdVqRSaTwbJlyzBv3rxJPR05cgQWiwXpdBqpVIo8pJBIJGC1WmE0GiFJEgwGAxknyzJsNhv5JnruOKPRCLPZTJ7kzx2nfDs9mUzCZDKRcZlMhsQqSdK4cVN5kiRpXKwWi4WMA1BWni5duoS6ujo4nU5kMhmMjo7CarWSB94MBgO8Xi8eeugh3H///XC5XJBlGYlEAjabDVarFZFIBEajER6PB08++SQWLFgwpafz58/j3nvvRSgUQjabhcfjQSKRgCRJqKiogNFoRCwWg9lshsvlwq5duzB//vzLPA0ODmLz5s2wWCxwOBzkiW+fz4doNApZlvHss8/CYDBg06ZNqjwpX0Fwu92QJAnJZJJcY4lGozCZTHC73eO8K3nq7+9HQ0PDOE/KE9/PPPMMFi5cSDVPkUiEvNkxG0/79+9HOp3G1q1bx3mamKcDBw5g7ty5l9VeMBjExo0b4fV6ydtiylsG8XgcFosFTz31FBYtWgQAOHv2LOrr6yHLcl5PBw4cwNVXXz3l/jQyMoK6urq8edq7dy+qqqqm3J+GhoZQX19/We0peVI8PfbYY3jwwQfHeZqq9tTm6fnnn8ecOXNm1SMGBwfR0NCQd3+a6GmyPM3G0549ezBv3jzN+t6qVatK/pg7k98R/f39RZsjRNwIEZQ05T5Z+ujoKNra2rB69WryWmKpwpsXreNhuT6a2jS01GjwVifljl7ywZsP0X/Y6Yn+ox/0lA/evIgexE6rUA3eaqTUoD1ZeiqVwpkzZ3DNNdeQT6+UKrx5YRFPvgmWKyoqsHr1arS1teFf//VfqU6WnqutfJpmNnq5cU+lNZvJ0mcaz2Qoy27atAlXX331lHHO1NtkiMnSJ2cynYm5LNXJ0ufOnTur/V2LydJnu23VMFm/ozVZOu/nYMW8lis+jSUQlDATv5FbyvDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopdyZ+B76U4c2L1vFMnHuBV20aWmo0Js6PIiguLOtWS3jrP4C225alfz2dg9GGzfT0AoFAE5xOJzZs2FDsMKjAmxet42G5PpraNLTUaPBWJ+WOXvLBmw/Rf9jpif6jH/SUD968iB7ETqtQDd5qpNyxWq3jnmQtZXjzonU8sVgML7zwAvfaNLTUaCjL3nbbbapiENCBZd1qCW/9B9B227L0r6dzMNqU9u1DgaDMkWWZTFZc6vDmRet4WK6PpjYNLTUavNVJuaOXfPDmQ/Qfdnqi/+gHPeWDNy+iB7HTKlSDtxopd3h6slUtvHnROh6z2Uwmi+dZm4aWGg1lWV7qpNxhWbdawlv/AbTdtiz96+kcjDbiRohAUMJEo1EcOHAA0Wi02KGohjcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5I0kSjh07BkmSih2KanjzonU8LpcLd999N1wuF9faNLTUaCjLptPpgtcvoAfLutUS3voPoO22ZelfT+dgtBGTpQtKmnKfLF0gEAgEAoFAIBAIBFNDe7J0QWlBe6JoWhNTT6c308m5gZlNlk6DyWIVk6VPvizLydJZaADaT5Y+20nItZgsfSIsJ0ufDFqTpfOOmCxdIBAIBAKBQCAQCAQCgUAgEAgEAoGAAeJGiEBQwoRCIezYsQOhUKjYoaiGNy9ax8NyfTS1aWip0eCtTsodveSDNx+i/7DTE/1HP+gpH7x5ET2InVahGrzVSLmTSCTw1ltvIZFIFDsU1fDmRet4vF4vHnjgAXi9Xq61aWip0VCWTaVSBa9fQA+WdaslvPUfQNtty9K/ns7BaCNuhAgEJYzD4cC6devgcDiKHYpqePOidTws10dTm4aWGg3e6qTc0Us+ePMh+g87PdF/9IOe8sGbF9GD2GkVqsFbjZQ7FosFS5YsgcViKXYoquHNi9bxxONxNDc3Ix6Pc61NQ0uNhrKsyWQqeP0CerCsWy3hrf8A2m5blv71dA5GG3OxAxAIBIWjNE49wJsXreNhuT6a2jS01GjwVifljl7ywZsP0X/Y6Yn+ox/0lA/evIgexE6rUA3eaqTcMZlMuPLKK4sdBhV486J1PKlUCidPnuRem4aWGg1lWaNRPEvNAyzrVkt46z+AttuWpX89nYPRRnQxgaCE0cuTAAB/XrSORzyNpN36BfTQSz548yH6Dzs90X/0g57ywZsX0YPYaRWqwVuNlDvKhTI9fCaINy9axyPeSJvdsrIsF7x+AT14erpeDbz1H0DbbcvSv57OwWgjboQIBAKBQCAQCAQCgUAgEAgEAoFAINAt4tNYAkEJo9yt1gO8edE6Hpbro6lNQ0uNBm91Uu7oJR+8+RD9h52e6D/6QU/54M2L6EHstArV4K1Gyh2ePvGhFt68aB2P8pQy79o0tNRoKMveddddqmIQ0IFl3WoJb/0H0HbbsvSvp3Mw2og3QgS6wG63w+VyAQDS6TSCwSCy2SwAIBwOQ5IkAMDo6ChisRgAQJZlBINBohEKhcgrafF4nLyylUqlEAqFyLhgMEheCY3FYhgdHQUASJKEcDgMAMhmswgGg0in0wCAaDSKRCIBAEgmk4hEIgCATCaDYDCITCYDAIhEIkgmkwCARCKBaDSa11MqlcKxY8eIj1L2NDw8jK6uLqRSKS7yFI1G0dHRgVQqpTpPwPS1F4/HcfLkSfI3TU+RSAQnT54kfxc7TxcvXiSvgM6oT+IBAAEAAElEQVTWUyqVQkdHB/FBc3+aSZ5KZX/SylMsFsPvf/97pFKpkvYUDAZx7NgxpFIpLvI0OjqKd999l/hgXXs0e8RET8FgECdPniR/q8lTLBZDOBzGyZMnyd+zzdPQ0BC6u7uRSqXK+pirh76XSCTw7rvvEh+l7GlkZAQnT55EIpHgIk9DQ0M4ceIEUqmUJrWXSqVw4sQJDA0NUfeUSqXw3nvvYWhoiIs8Ffp7L5VKoaurC8PDwyRPokfMzlMymSTayvE+V28qT8rf6XSaxJNOp3Hu3Dnyb8oxQvk3JZ5sNotEIkFilSSJbAdZli8blxtr7rjcWCeOm8qTEquyXXLH5cYai8Vw8eJF4i831mJ4isfjGBwcJL/7C/E0cZwSq9PpREVFBQDAarXC4/GQC5FXXnklicHlcsFutwMAbDYb3G43AMBoNMLn803rKZvNwufzEe0rrrgCVqsVAFBRUQGn0wkAMJvN8Pl8U3pStC0WC+bOnUsmVfb5fDCbzWS9yjKKJwAwGAzjYnW5XHC5XFiyZAmcTudlnpS5P9xuN2w2G4Dx11hsNhtuuukmsq7c2kun01N6SqVSVPKU60mZsH26PE3mKZ1OE08mkwk+nw8GgwEA4PF4SJ7y1Z7X6yWTWzscDvIJJYvFMu4TR6lUiuQpnyflegMw9f400dOcOXOwfPlyWCwW2O12sky+HpGv9vJ58nq9ZFxu7anNUzabRSwWI8fnmfaI3Dyx8OR2u7FkyRI4HA7iiVXfk2UZFy9eRDweJ3midcwdHR3FyZMnyd9K3IUec5PJJE6ePIlLly5RPScsBuJGiEAX1NTUYP369QCAoaEhNDY2kp1z37596O7uBgC0tbWhpaUFANDX14fGxkaisWvXLvT09AAADh8+jMOHDwMAenp6sGvXLjKusbERfX19AICWlha0tbUBALq7u7Fv3z4AY42jsbGRnNAdOnQI7e3tAICOjg4cPHgQwFhzaGxsJM3o4MGD6OjoAAC0t7fj0KFDeT3F43G0tLTowtOBAwfw8ssvIx6Pc5Gn3/3ud2hpaUE8HledJ2D62nvvvffQ3NyMX/7yl9Q9HTlyBM3Nzfjd737HRZ727t1Lvg85W09KzR85cgQA3f1pJnkqlf1JK0/Hjh0j+0mpe1J88JCnnp4e/PznPyc/blnXHs0eMZmn5uZm9PT0UMnTr3/9azQ3N+PYsWMF5enJJ5/ESy+9hHg8XtbHXD30vbNnz+LnP/85RkZGSt7Tiy++iObmZpw9e5aLPOXuJ1rUXjwex0svvYQnn3ySuiflyc4nn3ySizwV+nsvHo/j5ZdfxoEDB0ieRI+YnaeOjg6ifebMGZw6dYro7d69e0pPyt8jIyM4evQogLGLTh988AHpP6dOncKZM2fIepV40uk0AoEAOZ53d3eT7TAwMICuri7iPRAIkFi7urowMDBAtrmSi3g8jkAgQC5c5fMUCASIp6NHj5JYe3p6xnnq6OggDygFAgGyXYvl6dixY3j//feRSqUK9qTkCQACgQC5uLd27VqsXr0aALB06VLU19eTp5T//u//nlzkXL9+PWpqagAAK1euRF1dHYCxC7B+v59c2JzKUzKZhN/vx5w5c7Bu3Tps2bIFS5cuBQCsXr0aa9euBQBUVVXB7/dP6UnJ7eLFi/GNb3yDzFvg9/tRVVUFABgcHCQ3SBVPwNgFZ7/fP87TZz/7Waxbtw6f/vSnL/OkXPCtq6vDypUrAYy/xrJo0SKsXbuWXITNrb3h4eEpPfX29lLJU66nysrKGeVpMk8jIyPEU2VlJfx+P7lJUl9fT/KUr/a2bduGxYsXAwDWrFmDNWvWkDz19vaScadPnyZ5yufp9OnT0+5PEz1t3LgRt912GxwOB2pqanDu3DkA+XtEvtrL52nbtm1kXG7tqc2TLMs4evQo6T8z7RG5eWLh6S/+4i+wbt06fPKTnySeWPW9RCKBkydP4tixYyRPtI65PT09aG5upnbMHRwcRHNzM5qamqieExYDQ1a5XSMQlCAnTpzA8uXLYbfbYTab0d7ejiVLliASicDr9cJgMCAcDsNut8NqtWJ0dBSZTAZOpxOyLCMajZK7xqFQCA6HAxaLhTQ4h8OBVCqFeDxO7hoHg0G4XC6YzWbEYjEYjUZUVFRAkiQkEgl4PB5ks1mEQiG43W6YTCZEo1GYzWbY7XYkk0lIkgS3241MJoNwOAyPxwOj0YhIJAKr1QqbzUbuELtcLqTTaeFJeBKehCfhSXgSnoQn4Ul4Ep6EJ+Fplp76+/tx4sQJmM1mmEwm8iar1WpFJpPBsmXLMG/evEk9HTlyBBaLhbyhoDzZnEgkYLVaYTQaIUkSDAYDGSfLMmw2G7LZLJLJ5LhxRqMRZrOZPMmfO85ms8FgMCCZTMJkMpFxmUyGxCpJ0rhxU3mSJGlcrBaLhYwDUFaeLl26hLq6OjidTmQyGYyOjsJqtcJutyMcDsNgMMDr9eKhhx7C/fffD5fLBVmWkUgkYLPZYLVaEYlEYDQa4fF48OSTT2LBggVTejp//jzuvfdehEIhZLNZeDweJBIJSJKEiooKGI1GxGIxmM1muFwu7Nq1C/Pnz7/M0+DgIDZv3gyLxQKHw0Ge+Pb5fIhGo5BlGc8++ywMBgM2bdqkylM4HEYmk4Hb7YYkSUgmk+QaSzQahclkgtvtHuddyVN/fz8aGhrGeVKe+H7mmWewcOFCqnmKRCLkzY7ZeNq/fz/S6TS2bt06ztPEPB04cABz5869rPaCwSA2btwIr9dL3hZT3jKIx+OwWCx46qmnsGjRIgBjD2zU19dDluW8ng4cOICrr756yv1pZGQEdXV1efO0d+9eVFVVTbk/DQ0Nob6+/rLaU/KkeHrsscfw4IMPjvM0Ve2pzdPzzz+POXPmzKpHDA4OoqGhIe/+NNHTZHmajac9e/Zg3rx5mvW9VatWlfwxdya/I/r7+7F8+XIoHD9+HMuWLYMWiBshgpJGuRGioOXOIxAIBAKBQCAQCAQCvunr68OHH3445b/ffPPN5KnwibS2tjKKSqAVAwMD2Lhx47TjHn/8cdx3333TjmtqasL8+fNVr286vZnoNDU1AcCU42bqaaZMFmu+OKfbVjPVocF02yp3nJp8KMvO1A+NeqJVk7TrJR+zqQ0F1jUyGYXEqYba2lrN1lVMinktV3waSyAoYYLBIB555JGif2OPBrx50ToeluujqU1DS40Gb3VS7uglH7z5EP2HnZ7oP/pBT/ngzYvoQey0CtXgrUbKnUQigba2tnHzBpQqvHnROh6fz4eHH3543NwCPGrT0FKjoSybOweGoHiwrFst4a3/ANpuW5b+9XQORhtxI0QgKGFcLhe2bNlCJvwqZXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO1arFZ/85CfJhL2lDG9etI4nGo1i//79ZMJfXrVpaKnRUJZVJsAWFBeWdaslvPUfQNtty9K/ns7BaGMudgACgaBwzGYzqqurix0GFXjzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO0ajseSfxFbgzYvW8ciyPG6Ca161aWip0VCWNRrFs9Q8wLJutYS3/gNou21Z+tfTORhtRBcTCEqYWCyGF154AbFYrNihqIY3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuSNJEo4fPw5Jkoodimp486J1PE6nExs2bIDT6eRam4aWGg1lWVmWC16/gB4s61ZLeOs/gLbblqV/PZ2D0UbcCBEIShjlDrIenszgzYvW8bBcH01tGlpqNHirk3JHL/ngzYfoP+z0RP/RD3rKB29eRA9ip1WoBm81Uu4YDAbY7XYYDIZih6Ia3rxoHU8mk0EwGEQmk+Fam4aWGg1lWV7qpNxhWbdawlv/AbTdtiz96+kcjDbi01gCQQlTUVGBW2+9tdhhUIE3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuWOxWHDttdcWOwwq8OZF63hGR0fx2muvca9NQ0uNhrLsli1bVMUgoAPLutUS3voPoO22ZelfT+dgtCn+rRiBQFAwkiShs7OTq1cJC4U3L1rHw3J9NLVpaKnR4K1Oyh295IM3H6L/sNMT/Uc/6CkfvHkRPYidVqEavNVIuZNOpzEwMIB0Ol3sUFTDmxet47FarVixYgWTyYppatPQUqOhLFvqbyDoBZZ1qyW89R9A223L0r+ezsFoI26ECAQlTCKRQGtrKxKJRLFDUQ1vXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRckeZTFcP8yXw5kXreOx2O2pra2G327nWpqGlRkNZlqcL1uUMy7rVEt76D6DttmXpX0/nYLQxZLPZbLGDEAgK5cSJE1i+fDn57+PHj2PZsmVFjEggEAgEAoFAIBAIBLzQ19eHDz/8cMp/v/nmm2Gz2Sb9t9bWVkZRCbRiYGAAGzdunHbc448/jvvuu2/acU1NTZg/f77q9U2nNxOdpqYmAJhy3Ew9zZTJYs0X53TbaqY6NJhuW+WOU5MPZdmZ+qFRT7Rqkna95GM2taHAukYmo5A41VBbW6vZuopJMa/lijdCBIISJpvNIpFIQA/3M3nzonU8LNdHU5uGlhoN3uqk3NFLPnjzIfoPOz3Rf/SDnvLBmxfRg9hpFarBW42UO9lsFrIs6yIfvHnROh6WkxXT1KahpUZDWZaXOil3eJxkvBB46z+AttuWpX89nYPRRtwIEQhKmFAohEcffRShUKjYoaiGNy9ax8NyfTS1aWip0eCtTsodveSDNx+i/7DTE/1HP+gpH7x5ET2InVahGrzVSLmTTCZx5MgRJJPJYoeiGt68aB2P1+vFAw88AK/Xy7U2DS01GsqyPH3CqJxhWbdawlv/AbTdtiz96+kcjDbiRohAUMK43W40NDTA7XYXOxTV8OZF63hYro+mNg0tNRq81Um5o5d88OZD9B92eqL/6Ac95YM3L6IHsdMqVIO3Gil3rFYrbrrpppKfqBjgz4vW8UQiEezevRuRSIRrbRpaajSUZc1mc8HrF9CDZd1qCW/9B9B227L0r6dzMNqILiYQlDAmk0nT7xWyhDcvWsfDcn00tWloqdHgrU7KHb3kgzcfov+w0xP9Rz/oKR+8eRE9iJ1WoRq81Ui5YzQa4XK5ih0GFXjzonU86XQaAwMD3GvT0FKjoSxb6p9i0gss61ZLeOs/gLbblqV/PZ2D0Ua8ESIQlDDRaBT79+9HNBotdiiq4c2L1vGwXB9NbRpaajR4q5NyRy/54M2H6D/s9ET/0Q96ygdvXkQPYqdVqAZvNVLuSJKEzs5OSJJU7FBUw5sXreNxuVy4++67mVyMpKlNQ0uNhrKs+DQWH7CsWy3hrf8A2m5blv71dA5GG3EjRCAoYcxmM6qrq3XxiipvXrSOh+X6aGrT0FKjwVudlDt6yQdvPkT/Yacn+o9+0FM+ePMiehA7rUI1eKuRcsdoNMLn88FoLP3LKbx50ToeWZbR29vL5AI/TW0aWmo0lGXFGyF8wLJutYS3/gNou21Z+tfTORhtih+BQCAoGLvdjtra2mKHQQXevGgdD8v10dSmoaVGg7c6KXf0kg/efIj+w05P9B/9oKd88OZF9CB2WoVq8FYj5Y5yQUcP8OZF63gSiQRaW1u516ahpUZDWbahoUFVDAI6sKxbLeGt/wDabluW/vV0DkYbfm67CQQqsNvt5NW1dDqNYDCIbDYLAAiHw+RVs9HRUcRiMQBjd3qDwSDRCIVCSKVSAIB4PI54PA4ASKVSCIVCZFwwGCR3h2OxGEZHRwGMvdYWDocBANlsFsFgEOl0GsDYa2CJRAIAkEwmycRLmUwGwWAQmUwGwNjETMlkEsBYA1ZeG5vKUzKZxJtvvolLly6VvKehoSG89dZbSCaTXOQpHA6jtbUVyWRSdZ6A6WsvGo2ivb0dIyMj1D2FQiG0t7cjHA5zkacLFy6gvb0dyWRy1p6SySTa2trIdqG5P80kT6WyP2nlKRKJkP2klD1dunQJb775JpLJJBd5isVi+PWvf000WNcezR4x0dOlS5fQ3t6OWCxGpfaCwSDa29sRiUQKytPg4CB++9vfkv+/XI+5euh78Xgcv/71r8cdt0vV0/DwMNrb2xGPx7nIU+5+okXtJZNJHDlyBIODg9Q9JZNJvP322xgcHOQiT4X+3ksmk3jrrbcwNDRE8iR6xOw8JZNJop1KpYg/RW8qT8rf6XSaxCPLMv7whz8QDUmSxo1T4slms0gkEiRWSZLIdpBl+bJxubHmjsuNdeK4qTwpsSrbJXdcbqyxWAx9fX2QZfmyWIvhKRaL4aOPPoIsywV7mjhOidXpdKKiogLA2CTFHo8HNpsNNTU1uOqqq0gMLpcLdrsdAGCz2cjkvsrT29N5ymaz8Pl8RPvKK68kkyFXVFTA6XQCGLsI6vP5pvSkaFssFlRWVqKmpgY2mw0+n488VS3LMllG8QQABoNhXKwulwsejwc1NTVwu92XeVKeSHe73bDZbADGX2OpqKjAX/zFX5CYcmsvnU5P6SmVSlHJU64nk8k0ozxN5imdThNPJpMJPp+PvOXi8XhInvLVntfrhcViAQA4HA44HA6SJ8WfoqHkKZ+nVCo17f400dPcuXPx2c9+FjabDXa7nSyTr0fkq718nrxeLxmXW3tq85TNZhGNRnH27FnidSY9IjdPLDx5vV7U1NSQfUaJlUXfS6VS6OvrQywWI3midcyNxWJob2/HpUuXqBxzR0dH0d7ejosXL1I9JywG4kaIQBfU1NRg/fr1AMYu1DY2NpKdc9++feju7gYAtLW1oaWlBQDQ19eHxsZGorFr1y709PQAAA4fPozDhw8DAHp6erBr1y4yrrGxEX19fQCAlpYWtLW1AQC6u7uxb98+AGONo7GxkZysHDp0CO3t7QCAjo4OHDx4EMBYc2hsbCTN6ODBg+jo6AAAtLe349ChQ3k9SZKEQCCAV199teQ9Pffcc/jd734HSZK4ydORI0fIwUJNnoDpa++DDz5AZ2cnfvWrXzHx1NnZyU2e9u3bR76FOVtPkiThyJEjTPanmeSpVPYnrTydOHECv/nNb8hF4lL19OqrryIQCECSJC7ydObMGbz55pvkx6MWtUerR0z09Oqrr6KzsxNnzpyhUntvvvkmOjs7ceLEiYLytHv3bnR0dECSpLI+5uqh750/fx5vvvkmOVErZU/Nzc3o7OzE+fPnucjT7t278e6770KSJE1qT5IkvPvuu9i9ezd1T5IkoaOjA7t37+YiT4X+3pMkCb/73e/w3HPPkTyJHjE7Tx0dHUT7zJkzOHXqFNHLV3vK3yMjIzh69CiAsQs+H330EbmYc+rUKZw5c4asV4knnU4jEAiQi1Xd3d1kOwwMDKCrq4t4DwQCJNauri4yWW9fXx/JRTweRyAQIBeu8nkKBALE09GjRzEyMkJyk+upo6MDAwMDJFZluxbL03/+53+iv78f6XS6YE9KngAgEAiQi3tr167F6tWrAQBLly5FfX09rFYrVq5ciXvvvZdc5Fy/fj1qamoAACtXrkRdXR2AsQuwfr+fXNicylMymYTf74fb7caKFSuwefNmLF26FACwevVqrF27FgBQVVUFv98/pSclt4sXL8bXv/51rFixAlarFX6/H1VVVQCAwcFBDA8Pj/MEjF1w9vv9l3lasWIFbrzxxss8KRd86+rqsHLlSgDjr7EsWLAAq1evnrT2hoeHp/TU29tLJU+5niorK2eUp8k8jYyMEE+VlZXw+/3kJkl9fT3JU77a27ZtGxYvXgwAWLNmDdasWUPy1NvbS8adPn2a5Cmfp9OnT0+7P030dNddd2HVqlWwWq2oqanBuXPnAOTvEflqL5+nbdu2kXH/P3vvHhzFeeb7f2em56K5c5ERWPzMCdkNAexAnA0imxO08TG5siYxSUwExtZeBN7sWnh3T3nLta5kT9We2LUbrEqZS1hjZALy2tjBxokJybGlrEmkBEfCgIwxEGEkkCyE5q7unp6Z3x+qfndGaEbS9Ns97/S8n6pUyeHtbz/ffp5+evr2dnbtac2Toih4++23ce3aNaRSqWn3iOw86eHpc5/7HFasWIHly5cTT3r1PVmWMTg4iHfeeYfkidYx9/Lly+jp6cHPfvYzKsfckZER9PT04IUXXqB6TlgKLBn1dg2HU4acPXsWy5cvh8vlgiAI6OzsxJIlSxCNRhEIBGCxWBCJROByueBwODA2NoZ0Og2PxwNFURCLxchd43A4DLfbDbvdThqc2+1GMplEIpEgd41DoRC8Xi8EQUA8HofVakVVVRVkWYYoivD7/chkMgiHw/D5fLDZbIjFYhAEAS6Xizxx7PP5kE6nEYlE4Pf7YbVaEY1G4XA44HQ6IYoiFEWB1+tFKpXinrgn7ol74p64J+6Je+KeuCfuiXvinmboaWBgAGfPnoUgCLDZbEgmk8hkMnA4HEin01i2bBnmzZs3qacTJ07AbrcjlUohmUySJ5tFUYTD4YDVaoUsy7BYLGScoihwOp3IZDKQJClnnNVqhSAI5En+7HFOpxMWiwWSJMFms5Fx6XSaxCrLcs64fJ5kWc6J1W63k3EAKsrTjRs30NDQAI/Hg3Q6jbGxMTgcDrhcLkQiEVgsFgQCATz++ON45JFH4PV6yRsyTqcTDocD0WgUVqsVfr8fO3fuxPz58/N6unbtGh566CGEw2FkMhn4/X6IoghZllFVVQWr1Yp4PA5BEOD1erFr1y7U1NTc5GloaAibN2+G3W6H2+0mT3wHg0HEYjEoioIDBw7AYrFg06ZNmjxFIhGk02n4fD7ygJN6jSUWi8Fms8Hn8+V4V/M0MDCApqamHE/qTcLnnnsOCxYsoJqnaDRK3uyYiaf9+/cjlUph69atOZ4m5qm1tRVz5sy5qfZCoRA2btyIQCBA3hZT3zJIJBKw2+145plnsHDhQgDAlStX0NjYCEVRCnpqbW3Frbfemnd/Gh0dRUNDQ8E87d27F7W1tXn3p+HhYTQ2Nt5Ue2qeVE9PPvkkHnvssRxP+WpPa54OHTqEWbNmzahHDA0NoampqeD+NNHTZHmaiac9e/Zg3rx5hvW9VatWlf0xdzq/IwYGBrB8+XKonDlzBsuWLYMR8BshnLJGvRGiYuTOwwITm1I5w5oXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViPlRn9/Py5cuJD331evXk2eCp/IZHPFT7zYVc6w5kWPeAYHB7Fx48ZJ/y37ovm///u/Y/v27VPqtbW1oaamZsr1TbwgP1O97LjzabW1tQFAXn87duwgnqYbz2RMvAmUL87pepuMQjo0mGpbZY+bKh/TWXa6fqZbT9lMzGUxGpORXS9609bWRm4wTHd/17tGgJlvWy1M1u9ofUeD9XOwUl7L5b+iOJwyZuKr4eUMa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ6E6c/KWdY82J0PBOnHGJVm4aWFo2J04JxSouedWskrPUfwNhtq6d/M52D0Ya/EcIpa/gbIeZ5Oow1L/xpSP20+BPZ5sEs+WDNB+8/+unx/mMezJQP1rzwHqSfFn8jpDTwN0Lyw5oX/kbI5HHzN0K0w98I4W+ETAf+Rog+eiy9ESIYshYOh6MLVquVzBdY7rDmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpWOxWMi3Dcod1rwYHU86nSbfFGBZm4aWFg11WRZulnH0rVsjYa3/AMZuWz39m+kcjDb8cRIOp4yJRqPYvXs3otFoqUPRDGtejI5Hz/XR1KahpUWDtTqpdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppFavBWo1UOpIk4eTJk0xN51IsrHkxOh6fz4etW7fC5/MxrU1DS4uGuiyfGosN9KxbI2Gt/wDGbls9/ZvpHIw2/EYIh1PGOBwOrFixAg6Ho9ShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh2bzYaamhrYbLZSh6IZ1rwYHY8sy+jp6YEsy0xr09DSoqEuy98IYQM969ZIWOs/gLHbVk//ZjoHow2fGovDKWOcTifq6upKHQYVWPNidDx6ro+mNg0tLRqs1UmlY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k+rWA3WaqTSEQQBtbW1pQ6DCqx5MToeSZLQ2dnJvDYNLS0a6rIPP/ywphg4dNCzbo2Etf4DGLtt9fRvpnMw2vA3QjicMkYURbS3t0MUxVKHohnWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXQURUFfX58ppglizYvR8bhcLtTX1+syTz9NbRpaWjTUZVOpVNHr59BDz7o1Etb6D2DsttXTv5nOwWjDb4RwOGUMiweOYmHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSkf9mG46nS51KJphzYvR8QiCgEWLFkEQ6E+WQlObhpYWDXXZTCZT9Po59NCzbo2Etf4DGLtt9fRvpnMw2lgyvJNxypizZ89i+fLl5L/PnDmDZcuWlTAiDofD4XA4HA6Hw+GwQn9/Py5cuJD331evXg2n0znpv7W3t+sUFccoBgcHsXHjxinH7dixA9u3b59yXFtbG2pqajSvbyq96ei0tbUBQN5x0/U0XSaLtVCcU22r6erQYKptlT1OSz7UZafrh0Y90apJ2vVSiJnUhoreNTIZxcSphfr6esPWVUpKeS2XvxHC4ZQxqVQKg4ODpnhFlTUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqnXQ6jVgsxtRTzMXCmhej49HzY8U0tWloadFQl+XPUbMBix8ZLwbW+g9g7LbV07+ZzsFow2+EcDhlTDQaxZ49exCNRksdimZY82J0PHquj6Y2DS0tGqzVSaVjlnyw5oP3H/30eP8xD2bKB2teeA/ST6tYDdZqpNKRZRlvv/02ZFkudSiaYc2L0fH4fD5s3boVPp+PaW0aWlo01GVZmNaGo2/dGglr/Qcwdtvq6d9M52C04VNjccqaSp8aK5PJQJIkOJ1OWCyWUoejCda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRopN2hPjZXJZJBKpWCz2co+H6x50SOeQtPpWCwWOJ1OSJKEH/zgB1SnxsrWLnTZbTpTMeXTmsnUWNONZzLUZfft24f58+fnjXO63iaDT401OZPpTMxluU6NNW/evBnt70ZMjTXTbauFyfodramxWD8HK+W13PL+sg6HU+FYLBa4XK5Sh0EF1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0LBZL2X+kWIU1L0bHk8lkIIoi89o0tLRoqMuycLOMo2/dGglr/Qcwdtvq6d9M52C04VNjcThlTCQSwVNPPYVIJFLqUDTDmhej49FzfTS1aWhp0WCtTiods+SDNR+8/+inx/uPeTBTPljzwnuQflrFarBWI5WOJEno7OyEJEmlDkUzrHkxOh6/34/m5mb4/X6mtWloadFQl00mk0Wvn0MPPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxLpcL9fX1zNxZ1QJrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDqCIGDRokXMPclcDKx5MToeURTR3t6uyxPgNLVpaGnRUJct949zmwU969ZIWOs/gLHbVk//ZjoHow071cbhcGaMw+HAihUrSh0GFVjzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0rHZbLrNGW80rHkxOh5ZltHT08O8Ng0tLRrqslYrf5aaBfSsWyNhrf8Axm5bPf2b6RyMNryLcThlzNjYGI4dO4axsbFSh6IZ1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0kskkLly4YIppgljzYnQ8VVVV+OIXv4iqqiqmtWloadFQl02lUkWvn0MPPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQx6XQaoVAI6XS61KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHfVjuplMptShaIY1L0bHY7VaEQwGdXnTgaY2DS0tGuqyrNRJpaNn3RoJa/0HMHbb6unfTOdgtOFTY3E4ZYzH48F9991X6jCowJoXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjsPhwPLly0sdBhVY82J0PPF4HM8//zzz2jS0tGioy95zzz2aYuDQQc+6NRLW+g9g7LbV07+ZzsFoU963DzmcCkdRFPT19UFRlFKHohnWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXRYerJVK6x5MToePT9WTFObhpYWDXVZVuqk0mHxI+PFwFr/AYzdtnr6N9M5GG34jRAOp4yJxWJobW1FLBYrdSiaYc2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKR5ZlnDp1CrIslzoUzbDmxeh4vF4vHnjgAXi9Xqa1aWhp0VCX5d8IYQM969ZIWOs/gLHbVk//ZjoHo40lw9JkbBzODDl79mzOq2RnzpzBsmXLShgRh8PhcDgcDofD4XBYob+/HxcuXMj776tXr4bT6Zz039rb23WKimMUg4OD2Lhx45TjduzYge3bt085rq2tDTU1NZrXN5XedHTa2toAIO+46XqaLpPFWijOqbbVdHVoMNW2yh6nJR/qstP1Q6OeaNUk7XopxExqQ0XvGpmMYuLUQn19vWHrKiWlvJbL3wjhcDgcDofD4XA4HA6Hw+FwOBwOh2Na+I0QDqeMCYfD+P73v49wOFzqUDTDmhej49FzfTS1aWhp0WCtTiods+SDNR+8/+inx/uPeTBTPljzwnuQflrFarBWI5WOKIp46623IIpiqUPRDGtejI4nEAjg0UcfRSAQYFqbhpYWDXXZZDJZ9Po59NCzbo2Etf4DGLtt9fRvpnMw2vAbIRxT4HK5yBx+qVQKoVAI6qxvkUiEzLk3NjaGeDwOYPxjPaFQiGiEw2FyYE8kEkgkEgCAZDKZs7OGQiHygZ94PI6xsTEA4/P7RSIRAEAmk0EoFCJzaMZiMdLcJElCNBoFcPPHkaLRKCRJAjDeFNX58/J5crvd+NKXvkT+/3L2pCgKvvKVr8DtdjORJ5vNhi984Qtwu92a8wRMXXt2ux3r168nvmh6slqtWL9+PWw2GxN5SiaTWL9+Pdxu94w9ud1ufOELX4DVOn74ork/TSdP5bI/GeVJEASsXbsWbre7rD1lMhl86UtfgtvtZiJPDocDd999N9xuN5U8GdkjJnrKZDJYv349HA4HldqzWCxYv349BEEoKk+yLOPP//zP4Xa7K/qYa4a+53Q6cffdd6OqqqrsPaXTaaxfvx5Op5OJPMmyjHXr1sHtdhtSe263G+vWrcuZI5uWJ7fbjXvuuQeyLDORp2J/77ndbnzlK1/JOW7xHjEzT5IkEe1kMkn8qXr5PKl/p1IpEo/dbsdHPvIR2Gw24iN7nBpPJpMhtaOOU7eDoig3jcuONXtcdqwTx+XzlH1hTRTFnHHZsaZSKSxZsgR2u/2mWEvhKZ1O44/+6I9gt9uL9jRxnBqrx+MhxwyHwwG/349EIoEjR47AbreTGLxeL1wuF4DxY43P5wMAWK1WBIPBKT1lMhkEg0GibbPZ4HA4AABVVVXweDwAxn9HB4PBvJ5UbbvdDkEQcOTIESQSCQSDQfIhZ0VRyDKqJwCwWCw5sXq9XqRSKRw5cgSKotzkST238vl8ZJq47GssoijiF7/4Rc45mLreVCqV11MymaSSp2xP6n43VZ4m85RKpYgnm82GYDAIi8UCAPD7/SRPhWovEAjAbrcDANxuN/m9rtZstnc1T4U8JZPJKfeniZ6sVitee+01JBIJuFwuskyhHlGo9gp5yr4hkF17WvOUyWSQSqXwsY99DHa7fdo9IjtPenhKp9M4cuQIkskk8aRX3xMEAUuWLEE6nSZ5onXMdTgcWL9+PTKZDJVjrsvlwvr163OOBzTOCUsBvxHCMQV1dXXYsGEDAGB4eBgtLS1k59y3bx96e3sBAB0dHTh69CiA8bliW1paiMauXbtw8eJFAMDx48dx/PhxAMDFixexa9cuMq6lpQX9/f0AgKNHj6KjowMA0Nvbi3379gEYbxwtLS0YHh4GABw+fBidnZ0AgO7ubhw8eBDAeHNoaWkhzejgwYPo7u4GAHR2duLw4cMFPdntdly7dg3Hjh0re08HDhxAKpWC3W5nIk9nzpxBV1cX7Ha75jwBU9feBx98gCVLluDNN9+k7untt9/GkiVLcObMGSby9B//8R/khGumnux2O06dOoW3334bAN39aTp5Kpf9yShP77//Pn71q1+RH6/l6unYsWO4du0a7HY7E3kaGhrCa6+9Rn686117NHvERE/Hjh3DkiVLMDQ0RKX2fv3rX2PJkiV4//33i8rTzp07sWDBAtjt9oo+5pqh74VCIbz22mvkpLScPb3yyitYsmQJQqEQE3nauXMn5syZA7vdbkjt2e12eDwe7Ny5k7onu92O//E//gd27tzJRJ6K/b1nt9uRSqVw4MABkifeI2bmqbu7m2hfvnwZ58+fJ3q7d+/O60n9e3R0FCdPngQwfgH1/fffJxerzp8/j8uXL5P1qvGkUil0dXWRi1W9vb1kOwwODuL06dPEe1dXF4n19OnTGBwcJNtczUUikUBXVxe5cFXIU1dXF/F08uRJjI6Oktxke+ru7sbcuXNhs9nQ1dVFtmupPL3zzjvIZDKw2WxFe1LzBABdXV3k4t66deuwZs0aAMDSpUvR2NiIZDKJvr4+fOc73yHHkw0bNqCurg4AsHLlSjQ0NAAYvwDb3NxMLmzm8yRJEpqbm2Gz2XDu3Dncf//9WLp0KQBgzZo1WLduHQCgtrYWzc3NeT2puV28eDH+6q/+CufOnUMymURzczNqa2sBjP9mHBkZyfEEjF9wbm5uzvH0qU99CufOncPtt99+kyf1gm9DQwNWrlwJIPcay6xZs0jcQG7tjYyM5PXU19dHJU/Znqqrq6eVp8k8jY6OEk/V1dVobm4mN0kaGxtJngrV3rZt27B48WIAwNq1a7F27VqSp76+PjLu0qVLJE+FPF26dGnK/Wmip29961vwer1IJpOoq6vD1atXARTuEYVqr5Cnbdu2kXHZtac1T4qi4OTJk/D5fLDZbNPuEdl50sPTn/7pn+LcuXP44z/+Y+JJr74HAHPnzsU777xD8kTrmDs0NIQlS5bg2LFjVI65Y2NjWLJkCV544QWq54SlgH8snVPWqB/YcblcEAQBnZ2dWLJkCaLRKAKBACwWCyKRCFwuFxwOB8bGxpBOp+HxeKAoCmKxGLlrHA6H4Xa7YbfbSYNzu91IJpNIJBLkrnEoFILX64UgCIjH47BaraiqqoIsyxBFEX6/H5lMBuFwmDT1WCwGQRDgcrkgSRJkWYbP50M6nUYkEoHf74fVakU0GoXD4YDT6YQoilAUhTy9MZknRVHws5/9DGvWrEF1dXVZexoaGsJbb72FL33pS7BYLCXP0+joKH75y1/iK1/5Clwul6Y8Taf2AODNN9/EZz/7WfLEAi1PsizjV7/6FdasWQNBEEqep5GREXR2dmLt2rWQZXlGniRJwk9/+lPcddddmD17NtX9yYw9Qm9PoVAIx48fx1e/+lVUVVWVrafh4WF0dHTgy1/+MgRBKHmeIpEIjh07hq9+9atwu9261x7NHjHRUywWw4kTJ/D5z38e6XRac+2Jooj/+q//Qn19PaxW64zzNDQ0hM7OTnzhC19AKpWq2GOuGfpeNBrF66+/jq985StkvylXT5FIBL/+9a9x1113IZVKlTxPg4OD+M1vfoMvfvGLSKfTuteexWLBsWPHsHr1asyfP5+qJ0EQ8POf/xx1dXW45ZZbSp6nYn/vZTIZvP766/jsZz+LefPm8R4xQ08DAwM4e/YsBEGAzWZDMplEJpOBw+FAOp3GsmXLMG/evEk9nThxgtyISiaTcLlcSCaTOH/+PD760Y/C6XRClmVYLBYyTlEUOJ1OZDIZSJIEh8MBq9UKWZZhtVohCAJ5kj97nNPphMVigSRJsNlsZFw6nSaxyrKcMy6fJ1mWyVPYoijCbreTcQBIrGNjY+jv78fixYvJcVGNtRSeYrEYPvjgA/zRH/0RABTlSc2TOu7GjRtoaGggT3uPjY3B4XCQY/vatWvR2dmJ//2//zceeeQReL1eKIoCURThdDrhcDgQjUbJ746dO3di/vz5eT1du3YNDz30EGRZxtq1a/HrX/8aoVAIsiyjqqoKVqsV8XgcgiDA6/Vi165dqKmpucnT0NAQNm/eDLvdjtmzZ2P16tU4fvw4HA4HYrEYFEXBgQMHYLFYsGnTJuIpEonAYrEgEAjg8ccfJ57sdjvWrFmD9vZ2sn+oniKRCNLpNHw+H2RZhiRJ5BpLLBaD1+vFl7/8ZXz1q1/FwoULc2pvYGAATU1NOZ7UJ76fe+45LFiwQHOesj1Fo1HyZkehPE30tH//fqRSKWzduhWxWAw2mw0+nw/hcBiZTAZ+vx+iKKK1tRVz5sy5qfZCoRA2btyIQCBA3hZT3zJIJBKw2+145plnsHDhQgDAlStX0NjYCEVRCnpqbW3Frbfemnd/Gh0dRUNDQ46nW265BZ/97Gdx7NgxpNNp7N27F7W1tXl7xPDwMBobG2+qPTVPqqcnn3wSjz32WI4n9VwEGH97Qq09rXk6dOgQvF4v+vv78dGPfhTpdHrKHjE0NISmpiaIoph3f5roabI8FfLkdDrxuc99Dm+++SYymQz27NmDefPm6dL3rFYruWFWVVUFm82GVatWUTnmWq1WvPHGG/jTP/1TeL1ezcdcQRDwy1/+Ep/5zGcQCAQ0nxMODAyU7GPpgiFr4XB0JvtVRfUVRxX1rjkA8uoeMPmrcypqowQmf3VORX0NDxh/HVB9RU99HVBFff0SGL9Drj51oL7iqKK+JgiA/Cgo5ElRFAiCUPB1wHLxpDZggJ08qU9ja83TdDxlH8gKvbZZjCdV2+l0Eu1S5il7uxTjyW6357xeS2t/0uKJtf2Je5q5J/WVaFY8qTFo8aRiZI+Y6El93kYQhJzYi/WkTl/gcDjIcjPJk/rjvBhPZjrmmqVHOByOnCktytWT+sSuelFGpVSeAoEAmX7DiNpLJBJk/6TtKZFIEE/Z03QU44lGnor9vZdIJHLWy3vEzD2py6vxqUzUm+hJHWuz2UgNqf+t7ifZx+zscRaLJSem7HGCIJDfHhPHZceqjlFjzTduoqfscdl/Z4+z2Ww5GvliNdqTul2L9ZSdJ5fLRfTUN3iA8Sli1GkvAZALuADIVC/A+FPT6hPO6hQx6rh8niwWC0KhENFWHzoBQKaoAW6e9maiJ1UzmUySaWoA5CyTvV7VE/Df095ke1LjkWWZ9KKJU8Nlryf7Got64XYy7zabLe9UPuqNHfXv7GVmkqdsTypT5WkyT+oFX+C/p/JRUd+GmhjrxNrLnoJI3Y7AeJ6yl7Pb7TlTAubzZLfbJ+0l2fvTRE+xWIwck9Sb/pPFmp2nQrVXyNPEKZdUtOZJ7RFT7U8TPWXnSQ9P6rmLenMhO1YVWn1PvTnodDqpXwtTY584hVmxx1xVz+v15kyfpzLTc8KBgQGUCn4jhMMpY9xuN5lnuNxhzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHbrdjyZIlpQ6DCqx5MToe9TserGvT0NKioS77rW99S1MMHDroWbdGwlr/AYzdtnr6N9M5GG34N0I4nDImmUySuULLHda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdFKpFK5fv07mrC9nWPNidDzqhcjsJ/lZ1KahpUVDXVZ9C4FTWvSsWyNhrf8Axm5bPf2b6RyMNvxGCIdTxqh3q7Nf9StXWPNidDx6ro+mNg0tLRqs1UmlY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k+rWA3WaqTSYemCjlZY82J0POpTytnTzLCoTUNLi4a6LEsXrCsZPevWSFjrP4Cx21ZP/2Y6B6MN/1g6p6xRP5auYuQHdjgcDofD4XA4HA6Hwzb9/f24cOFC3n9fvXp1zlzu2bS3t+sUFccoBgcHsXHjxinH7dixA9u3b59yXFtbG2pqajSvbyq96ei0tbUBQN5x0/U0XSaLtVCcU22r6erQYKptlT1OSz7UZafrh0Y90apJ2vVSiJnUhoreNTIZxcSphfr6esPWVUpKeS2XvxHC4XA4HA6Hw+FwOBwOh8PhcDgcDse08BshHE4ZEwqF8L3vfQ+hUKjUoWiGNS9Gx6Pn+mhq09DSosFanVQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bSK1WCtRiodURTR0dEBURRLHYpmWPNidDzBYBDf/e53EQwGmdamoaVFQ12WpSmMKhk969ZIWOs/gLHbVk//ZjoHow2/EcLhlDFerxdbtmyB1+stdSiaYc2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKx+Fw4BOf+AQcDkepQ9EMa16MjicWi2H//v2IxWJMa9PQ0qKhLmuz2YpeP4ceetatkbDWfwBjt62e/s10DkYbodQBcDic4hEEAYsWLSp1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHarWW/ZPYKqx5MToeRVHQ19fHvDYNLS0a6rJWK3+WmgX0rFsjYa3/AMZuWz39m+kcjDa8i3E4ZUw8Hsfzzz+PeDxe6lA0w5oXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjizLOHPmDGRZLnUommHNi9HxeDwe3HffffB4PExr09DSoqEuqyhK0evn0EPPujUS1voPYOy21dO/mc7BaMNvhHA4ZYx6B9kMT2aw5sXoePRcH01tGlpaNFirk0rHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1axGqzVSKVjsVjgcrlgsVhKHYpmWPNidDzpdBqhUAjpdJppbRpaWjTUZVmpk0pHz7o1Etb6D2DsttXTv5nOwWjDp8bicMqYqqoqfPGLXyx1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHbrfjox/9aKnDoAJrXoyOZ2xsDMeOHWNem4aWFg112S1btmiKgUMHPevWSFjrP4Cx21ZP/2Y6B6NN6W/FcDicopFlGT09PUy9SlgsrHkxOh4910dTm4aWFg3W6qTSMUs+WPPB+49+erz/mAcz5YM1L7wH6adVrAZrNVLppFIpDA4OIpVKlToUzbDmxeh4HA4HVqxYocvHimlq09DSoqEuW+5vIJgFPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxoiiivb0doiiWOhTNsObF6Hj0XB9NbRpaWjRYq5NKxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9WsRqs1Uilo35M1wzfS2DNi9HxuFwu1NfXw+VyMa1NQ0uLhrosSxesKxk969ZIWOs/gLHbVk//ZjoHo40lk8lkSh0Eh1MsZ8+exfLly8l/nzlzBsuWLSthRBwOh8PhcDgcDofDYYX+/n5cuHAh77+vXr0aTqdz0n9rb2/XKSqOUQwODmLjxo1TjtuxYwe2b98+5bi2tjbU1NRoXt9UetPRaWtrA4C846brabpMFmuhOKfaVtPVocFU2yp7nJZ8qMtO1w+NeqJVk7TrpRAzqQ0VvWtkMoqJUwv19fWGrauUlPJaLn8jhMMpYzKZDERRhBnuZ7Lmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZPJZKAoiinywZoXo+PR82PFNLVpaGnRUJdlpU4qHRY/Ml4MrPUfwNhtq6d/M52D0YbfCOFwyphwOIwnnngC4XC41KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHUmScOLECUiSVOpQNMOaF6PjCQQCePTRRxEIBJjWpqGlRUNdlqUpjCoZPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxPp8PTU1N8Pl8pQ5FM6x5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6TgcDtx5551l/6FigD0vRscTjUaxe/duRKNRprVpaGnRUJcVBKHo9XPooWfdGglr/Qcwdtvq6d9M52C04V2MwyljbDabofMV6glrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDpWqxVer7fUYVCBNS9Gx5NKpTA4OMi8Ng0tLRrqsuU+FZNZ0LNujYS1/gMYu2319G+mczDa8DdCOJwyJhaLYf/+/YjFYqUORTOseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UunIsoyenh7IslzqUDTDmhej4/F6vXjggQd0uRhJU5uGlhYNdVk+NRYb6Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMEQQBixYtMsUrqqx5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6VitVgSDQVit5X85hTUvRsejKAr6+vp0ucBPU5uGlhYNdVn+Rggb6Fm3RsJa/wGM3bZ6+jfTORhtSh8Bh8MpGpfLhfr6+lKHQQXWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXTUCzpmgDUvRscjiiLa29uZ16ahpUVDXbapqUlTDBw66Fm3RsJa/wGM3bZ6+jfTORht2LntxuFwZowkSejs7IQkSaUORTOseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UukoioL+/v6yfxobYM+L0fE4nU7U1dXB6XQyrU1DS4uGumwqlSp6/Rx66Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMYXFOxWJhzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUpH/ZiuGS4Ks+bF6HgcDgdWrFgBh8PBtDYNLS0a6rKZTKbo9XPooWfdGglr/Qcwdtvq6d9M52C0sWR4J+OUMWfPnsXy5cvJf585cwbLli0rYUQcDofD4XA4HA6Hw2GF/v5+XLhwIe+/r169Ou/Tv2aYfqbSGRwcxMaNG6cct2PHDmzfvn3KcW1tbaipqdG8vqn0pqPT1tYGAHnHTdfTdJks1kJxTrWtpqtDg6m2VfY4LflQl52uHxr1RKsmaddLIWZSGyp618hkFBOnFliZPkpvSnktl78RwuGUMel0GqFQCOl0utShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKp1MJgNRFE3xdDxrXoyOR8+PFdPUpqGlRUNdlpU6qXRY/Mh4MbDWfwBjt62e/s10Dkab8t5rOJwKJxKJoKWlBZFIpNShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh1JktDV1cXEXOdaYc2L0fH4/X40NzfD7/czrU1DS4uGuixL33KoZPSsWyNhrf8Axm5bPf2b6RyMNnxqLE5ZU+lTY6XTaUQiEfj9/rJ/GoA1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1Gyg3aU2NlMhlIkgSn0wmLxUIrzJLAmhc94ik0nY7VaoXf70ckEsG///u/U50aK1u70FPQ05mKKZ/WTKbGmm48k6Euu3PnTsyfPz9vnNP1Nhl8aqzJmUxnYi7LdWqsefPmzWh/N2JqrJluWy1M1u9oTY3F+jkYnxqLY3p++ctf4pvf/CZqa2vhdDpxyy234NOf/jT+8R//EaOjo6UOr2wxyyuRAHtejI6Hv5Zt3Po59DBLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6VgsFrhcLiZuHGiFNS9Gx8On5pvZsqzUSaXD0jRDWmCt/wDGbls9/ZvpHIw2pY+AY2pSqRT+4i/+AnfffTdefPFFZDIZfOITn0AgEMDp06fxb//2bxgYGCh1mGVLNBrF7t27EY1GSx2KZljzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0pEkCSdPnmRqOpdiYc2L0fH4fD5s3boVPp+PaW0aWlo01GX51FhsoGfdGglr/Qcwdtvq6d9M52C04TdCOLryne98B/v27cOKFSvQ1dWFgYEB/Pa3v8X777+PcDiMn//85ze9WsmZPg6HAytWrIDD4Sh1KJphzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHZrOhpqYGNput1KFohjUvRscjyzJ6enogyzLT2jS0tGioy7L05H4lo2fdGglr/Qcwdtvq6d9M52C0EUodAMe8dHR0YPfu3aitrcWbb76JYDCY8+8OhwNr164tTXAmwel0oq6urtRhUIE1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh1BEFBbW1vqMKjAmhej45EkCZ2dncxr09DSoqEu+/DDD2uKgUMHPevWSFjrP4Cx21ZP/2Y6B6MNfyOEoxv//u//DgD4h3/4h5tugnDoIIoi2tvbIYpiqUPRDGtejI5Hz/XR1KahpUWDtTqpdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppFavBWo1UOoqioK+vzxTTBLHmxeh4XC4X6uvr4XK5mNamoaVFQ102lUoVvX4OPfSsWyNhrf8Axm5bPf2b6RyMNvxGiIGkUim88847eOaZZ7Bt2zZ86lOfgsPhgMVigcViQX19fdHasizjwIED+PKXv4zbbrsNLpcL8+fPx2c+8xn827/9G65fv07PyDQQRRHHjh0DANx99904d+4c/v7v/x5f+MIX8JWvfAX/9E//hHPnzhkakxlh8cBRLKx5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6ZjlQ8UAe16MjkcQBCxatAiCQH+yFJraNLS0aKjLZjKZotfPoYeedWskrPUfwNhtq6d/M52D0caS4Z3MEI4cOYKGhgYkEom8Y9asWYP29vYZa587dw4bN25ET09P3jG33HILnn32WXz5y1+esX4xdHV1kdee9u7di+985zs3fQDIZrPh3/7t39Dc3Fz0es6ePYvly5eT/z5z5gyWLVtWtB6Hw+FwOBwOh8PhcMxDf38/Lly4kPffV69eDafTOem/FXN+zmGLwcFBbNy4ccpxO3bswPbt26cc19bWhpqaGs3rm0pvOjptbW0AkHfcdD1Nl8liLRTnVNtqujo0mGpbZY/Tkg912en6oVFPtGqSdr0UYia1oaJ3jUxGMXFqQcsD8uVEKa/l8jdCDCIUChW8CVIs/f39uOuuu8hNEIvFgjVr1qCxsRHr1q1DVVUVAODDDz/E+vXr8cYbb1CPYTKuXbtG/n7ooYewbNky/PrXv4Yoiujr68O2bduQSqWwfft2vP7664bEZEZSqRQGBwdN8Yoqa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ66XQasViMqaeYi4U1L0bHo+fHimlq09DSoqEuy5+jZgMWPzJeDKz1H8DYbaunfzOdg9GG3wgxmHnz5uGrX/0qvve97+FnP/uZ5o9Nffvb38bVq1cBALfddhu6u7vR3t6OZ555Bq+++io++OAD3HXXXQCAZDKJb3zjGwiFQlptTEksFiN/O51OHDt2jDxpc9ttt2Hnzp34yle+AgB4/PHHdY/HrESjUezZswfRaLTUoWiGNS9Gx6Pn+mhq09DSosFanVQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bSK1WCtRiodWZbx9ttvQ5blUoeiGda8GB2Pz+fD1q1b4fP5mNamoaVFQ12WhWltOPrWrZGw1n8AY7etnv7NdA5GGz41lkEMDg5ClmX8f//f/5fz/3/3u9/F9773PQAznxrrZz/7GbmZ4HA4cPLkSdx+++03jYvH47jjjjtw6dIlAMA//dM/4V//9V9vGvfoo4/iiSeemPb6s0kmkzlz6B0+fBjf+MY3AIy/EfL000/ftExHRwd57Wt4eBhz586d8XorfWqsTCYDSZLgdDphsVhKHY4mWPNidDx6ro+mNg0tLRqs1UmlY5Z8sOaD9x/99Hj/MQ9mygdrXngP0k+rWA3WaqTcoD01ViaTQSqVgs1mK/t8sOZFj3gKTadjsVjgdDohSRJ+8IMfUJ0aK1u70GW36UzFlE9rJlNjTTeeyVCX3bdvH+bPn583zul6mww+NdbkTKYzMZflOjXWvHnzZrS/GzE11ky3rRYm63e0psZi/RyslNdyy/vLOmWEHjtO9s2FLVu2THoTBAA8Hg/+5V/+BZs2bQIA7NmzB//yL/9y08d/PB4P5syZU1QsE3eE2bNnk78//vGPT7rM0qVLyd99fX1F3QipdCwWC1wuV6nDoAJrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDoWi6XsP1KswpoXo+PJZDIQRZF5bRpaWjTUZVm4WcbRt26NhLX+Axi7bfX0b6ZzMNrwqbHKlFgshv/3//4f+e8HH3yw4Ph7770XXq8XAHDjxg386le/umnMP//zP+P69etF/W/i/HlLliwhf+d7uib7/2dhnrhyJBKJ4KmnnkIkEil1KJphzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUpHkiR0dnZCkqRSh6IZ1rwYHY/f70dzczP8fj/T2jS0tGioyyaTyaLXz6GHnnVrJKz1H8DYbaunfzOdg9GG3wgpU37961+TncXj8eBP/uRPCo53uVxYvXo1+W+9P5q+YMECLFq0CADIlFwTuXjxIvm7trZW13jMisvlQn19PTN3VrXAmhej49FzfTS1aWhp0WCtTiods+SDNR+8/+inx/uPeTBTPljzwnuQflrFarBWI5WOIAhYtGgRc08yFwNrXoyORxRFtLe36/IEOE1tGlpaNNRly/3j3GZBz7o1Etb6D2DsttXTv5nOwWjDb4SUKe+++y75+/bbb5/WjvPJT35y0uX14r777gMAHDx4cNI7nP/xH/8BYPztkVtvvVX3eMyIw+HAihUr4HA4Sh2KZljzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0rHZbKipqTHFRWHWvBgdjyzL6Onp0eVjxTS1aWhp0VCXtVr5JUQW0LNujYS1/gMYu2319G+mczDa8C5Wprz33nvk79tuu21ay2R/qP3cuXPUY5rIP/zDP2DWrFm4cuUKtm7dikQiQf7t0KFD2Lt3LwDgscce0z0WszI2NoZjx45hbGys1KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqnWQyiQsXLphimiDWvBgdT1VVFb74xS+iqqqKaW0aWlo01GX5lOZsoGfdGglr/Qcwdtvq6d9M52C04TdCypSRkRHy97x586a1TPYH22/cuEE9ponMmTMHL7/8MjweD/bv34+amhp8+tOfxm233YaGhgYkk0ls376dfMSdM3PS6TRCoRDS6XSpQ9EMa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ66sd0M5lMqUPRDGtejI7HarUiGAzq8qYDTW0aWlo01GVZqZNKR8+6NRLW+g9g7LbV07+ZzsFow85EbJwZEYvFyN/TvVOZPS57eT2pr6/HO++8g//7f/8vjh8/jlOnTsHr9eILX/gCvvOd7+CrX/2qIXGYFY/HQ6YgK3dY82J0PHquj6Y2DS0tGqzVSaVjlnyw5oP3H/30eP8xD2bKB2teeA/ST6tYDdZqpNJxOBxYvnx5qcOgAmtejI4nHo/j+eefZ16bhpYWDXXZe+65R1MMHDroWbdGwlr/AYzdtnr6N9M5GG3K+/ZhBZP94Z7pzrHmdDrJ30a+jvSRj3wEe/fuxeXLlyFJEkZGRnDs2DGqN0FcLhe8Xi8AIJVKIRQKkbuqkUiEzO83NjaGeDwOAFAUBaFQiGiEw2HySloikSBTeSWTSYTDYTIuFApBURQA401S3ZayLCMSiQAYv7MbCoXIq6OxWIzkTJIkRKNRADffFY1Go+R7KqIokhtW+TwpioL33nuPxFfOnm7cuIH3338fiqIwkad4PI7e3l4oiqI5T8DUtTc2Noa+vj5EIhHqnmKxGPr6+hCPx5nI08jICPr6+sgyM/GkKAreffddEh/N/Wk6eSqX/ckoT4lEAmfPnoWiKGXtKRwO47333oOiKEzkSRRFnDlzJic+PWuPZo+Y6CkcDqOvrw+iKFKpvWg0ir6+PiQSiaLydP36dVy6dAmKolT0MdcMfU+SJJw5c4bEV86eQqEQ+vr6IEkSE3m6fv06Ll68CEVRDKk9RVFw8eJFXL9+nbonRVHwhz/8AdevX2ciT8X+3lMUBe+//z55q5/3iJl7kiSJaCeTSeJP1cvnSf07lUqReNLpND788EPiSZblnHFqPOrTvmqs6rFE3ZYTx2XHmj0uO9aJ4/J5yr5eIIpizrjsWBOJBNmeE2MthaexsTGMjIwgnU4X7WniODVWj8dDHg51OBzw+/3kY8Vz5swhMXi9XvJBX6fTCZ/PB+DmtyLyecpkMggGg0R71qxZ5JpNVVUVPB4PgPEPJQeDwbyeVG273Y7Zs2eTjyqr2up61WVUTwBgsVhyYvV6vfB4PFi0aBHcbvdNntSn330+H7lulH2NRb1gq64ru/ZSqVReT8lkkkqesj2p31OYKk+TeUqlUsSTzWZDMBiExWIBAPj9fpKnQrUXCARgt9sBAG63G263m+Qpe4qjZDJJ8lTIUzKZnHJ/mugpGAzij/7ojyAIAlwuF1mmUI8oVHuFPAUCATIuu/a05imTySCRSGB0dBTpdHraPSI7T3p48nq9WLRoEaqqqognvfqeepwaGxsjeaJ1zBVFEX19feS3hxp3scdcWZbR19eH0dFRqueEpYDfCClT1EYCYNof8cn+YHm5zyU4kbq6OmzYsAEAMDw8jJaWFuJ337596O3tBQB0dHTg6NGjAID+/n60tLQQjV27duHixYsAgOPHj+P48eMAgIsXL2LXrl1kXEtLC/r7+wEAR48eRUdHBwCgt7cX+/btAzC+rVtaWjA8PAwAOHz4MDo7OwEA3d3dOHjwIIDx5tDS0kKa0cGDB9Hd3Q0A6OzsxOHDhwt6isVieP755/Hqq6+Wvaf9+/fj0KFDiMViTOTpt7/9LV588UXEYjHNeQKmrr3e3l60trbi2LFj1D299dZbaG1txW9/+1sm8vSjH/0Ira2tiMViM/YUi8Xwwgsv4K233gJAd3+aTp7KZX8yylNPTw8OHz6MWCxW1p5effVVPP/884jFYkzk6cKFC3jppZfID0u9a49mj5jo6dVXX0VraysuXLhApfbeeOMNtLa2oqenp6g8Pf300zhw4ABisVhFH3PN0Pc++OADvPTSS+TCcLl7am1txQcffMBEnp5++mn8+Mc/RiwWM6T2YrEYfvzjH+Ppp5+m7ikWi+G5557D008/zUSeiv29F4vFcOjQIezfv5/kifeImXnq7u4m2pcvX8b58+eJ3u7du/N6Uv8eHR3FyZMnAYyff7/77ruk/5w/fx6XL18m61XjSaVS6OrqIherent7yXYYHBzE6dOnifeuri4S6+nTpzE4OEi2uZqLRCKBrq4ucuGqkKeuri7i6eTJkxgdHSW5yfb0+9//HqdOnYIsy+jq6iLbtVSeenp6cObMGciyXLQnNU8A0NXVRS7urVu3DmvWrAEALF26FI2NjfB6vXjggQfwt3/7t+Qi54YNG1BXVwcAWLlyJRoaGgCMX4Btbm4mFzbzeZIkCc3NzZgzZw4eeOABPPjgg1i6dCkAYM2aNVi3bh0AoLa2Fs3NzXk9qbldvHgxmpqa8MADD8Dr9aK5uRm1tbUAgKGhITJtuuoJGL/g3NzcnOPpf/7P/4kHHngAq1atusmTesG3oaEBK1euBJB7jeW2227Dhg0byEXY7NobGRnJ60m9cKo1T9meqqurp5WnyTyNjo4ST9XV1WhubiY3SRobG0meCtXetm3bsHjxYgDA2rVrsXbtWpKnvr4+Mu7SpUskT4U8Xbp0acr9aTJPDQ0N8Hq9qKurw9WrVwEU7hGFaq+Qp23btpFx2bWnNU+KouB3v/sd3nnnHciyPO0ekZ0nPTzdddddeOCBB7By5UriSa++NzY2hlOnTqGnp4fkidYx98KFC2htbcWrr75K5Zg7ODiI1tZWHDp0iOo5YSmwZFiajK0C+e53v4vvfe97AMZ34vb29mkt961vfQsvvPACAODv/u7vplVIL7/8Mu69914A498LuXbtWnFBM8TZs2exfPlyuFwuCIKAzs5OLFmyBNFoFIFAABaLBZFIBC6XCw6HA2NjY0in0/B4POQpN/WucTgchtvtht1uJw3O7XYjmUwikUiQu8ahUAherxeCICAej8NqtaKqqgqyLEMURfj9fmQyGYTDYfh8PthsNsRiMXK3XpIkyLIMn8+HdDqNSCQCv98Pq9WKaDQKh8MBp9MJURShKAq8Xi9SqRT3xD1xT9wT98Q9cU/cE/fEPXFP3BP3NENPAwMDOHv2LARBgM1mQzKZRCaTgcPhQDqdxrJly8h3Nyd6OnHiBOx2O1KpFJLJJHkgURRFOBwOWK1WyLIMi8VCximKAqfTiUwmA0mScsZZrVYIgkCe5M8e53Q6YbFYIEkSbDYbGZdOp0mssiznjMvnSZblnFjtdjsZB6CiPN24cQMNDQ3weDxIp9MYGxuDw+GAy+VCJBKBxWJBIBDA448/jkceeQRerxeKokAURTidTjgcDkSjUVitVvj9fuzcuRPz58/P6+natWt46KGHEA6Hkclk4Pf7IYoiZFlGVVUVrFYr4vE4BEGA1+vFrl27UFNTc5OnoaEhbN68GXa7HW63mzzxHQwGEYvFoCgKDhw4AIvFgk2bNmnyFIlEkE6n4fP5IMsyJEki11hisRhsNht8Pl+OdzVPAwMDaGpqyvGkPvH93HPPYcGCBVTzFI1GyZsdM/G0f/9+pFIpbN26NcfTxDy1traSN4Syay8UCmHjxo0IBALkbTH1LYNEIgG73Y5nnnkGCxcuBABcuXIFjY2NUBSloKfW1lbceuutefen0dFRNDQ0FMzT3r17UVtbm3d/Gh4eRmNj4021p+ZJ9fTkk0/isccey/GUr/a05unQoUOYNWvWjHrE0NAQmpqaCu5PEz1NlqeZeNqzZw/mzZtnWN9btWpV2R9zp/M7YmBgIGdasDNnzmDZsmUwAn4jpMQUeyPkoYceInf8vvWtb01rDrudO3fib/7mbwCM37E9e/ZscUEzhHojRMXInYfD4XA4HA6Hw+FwOGzT39+PCxcu5P331atX50wjnc10z8857DI4OIiNGzdOOW7Hjh3Yvn37lOPa2tpQU1OjeX1T6U1Hp62tDQDyjpuup+kyWayF4pxqW01XhwZTbavscVryoS47XT806olWTdKul0LMpDZU9K6RySgmTi3U19cbtq5SUspruXxqrDLlYx/7GPlbfWV1Kj744APy95IlS6jHxDGecDiM73//+znzAZYrrHkxOh4910dTm4aWFg3W6qTSMUs+WPPB+49+erz/mAcz5YM1L7wH6adVrAZrNVLpiKKIt956K+e7AeUKa16MjicQCODRRx/N+WYAi9o0tLRoqMtmfwODUzr0rFsjYa3/AMZuWz39m+kcjDb8RkiZ8vGPf5z8ffr0aTJPZSF+//vfT7o8p3xxu91Yv349edWvnGHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSsdut2PJkiXkQ7zlDGtejI4nkUjgyJEjZJoZVrVpaGnRUJdVP4DNKS161q2RsNZ/AGO3rZ7+zXQORhuh1AFwiuMzn/kMnE4nJElCPB7HyZMnyQeIJkOSJPLhGwD4/Oc/b0SYHJ1RG6cZYM2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKx2azYe7cuaUOgwqseTE6nmQyiXPnzjGvTUNLi4a6rNXKn6VmAT3r1khY6z+AsdtWT/9mOgejDe9iZYrX68Vdd91F/nv//v0Fx7/88suIRqMAgNmzZ+Nzn/ucnuEZjsvlgtfrBQCkUimEQiGon7+JRCKQZRkAMDY2hng8DgBQFIV8SAkYf1VLfdUzkUiQO8DJZDLn9a1QKETewInH4xgbGwMAyLKMSCQCAMhkMgiFQkilUgCAWCxGXneTJInkIp1OIxQKIZ1OAwCi0SgkSQIw/ppcLBYr6CmRSODw4cMYHh4ue09DQ0N46aWXkEgkmMjT6OgoXnzxRSQSCc15AqauvXA4jCNHjuD69evUPd24cQNHjhzB6OgoE3kaHBwkT1nM1FMikcCLL76IGzduAKC7P00nT+WyPxnlKRQK4YUXXkAikShrT8PDwzh8+DASiQQTeYpEImS70siTkT1ioqfh4WEcOXIEkUiESu2NjIzgyJEjCIVCReXp2rVr+MlPfoJEIlHRx1wz9L1oNIoXXnghZ78pV08ffvghjhw5gmg0ykSerl27hpdffhmJRMKQ2kskEnj55Zdx7do16p4SiQR+8pOf4Nq1a0zkqdjfe4lEAi+99BKGhoZInniPmJknSZKIdjKZJP5UvXye1L9TqRSJJ5lM4uzZs2S9siznjFP//0wmA1EUSayyLJPtoCjKTeOyY80elx3rxHH5PGVPtSKKYs647FhjsRjOnTuHZDJ5U6yl8BSLxdDb20viLMbTxHFqrB6PB1VVVQAAh8MBv99PnlKuqakhMXi9XvIRb6fTCZ/PBwCwWq0IBoNTespkMggGg0T7lltugcPhAABUVVXB4/EAAARBIB9BnsyTqm232zFv3jzyNHUwGIQgCGS96jKqJwCwWCw5sXq9XsyaNQvr169HMBi8yZN6g8Pn85Hv5WRfY/F6vfjmN79JtnN27aVSqbyekskklTxle1LfSpkqT5N5Uj/eDYxfhA4Gg7BYLAAAv99P8lSo9gKBAHmC3+12kyfc7XZ7ztRhyWSS5KmQp2QyOeX+NNHTLbfcgq9//etwu91wuVxkmUI9olDtFfKUPUVUdu1pzVMmk0E0GsW7776LZDI57R6RnSc9PM2ePRvr169HIBAgnvTqe7Is49y5c4jFYiRPtI65kUgER44cwfDwMJVjbiwWw5EjR/Dhhx9SPScsBfxGSBnz0EMPkb/379+f9+PniUQCjz/+OPnvv/7rvyY7ulmoq6vDhg0bAIxf0GppaSE75759+9Db2wsA6OjowNGjRwGMfzSvpaWFaOzatQsXL14EABw/fhzHjx8HAFy8eJF8mB4AWlpa0N/fDwA4evQoOjo6AAC9vb3Yt28fgPHG0dLSQi6WHD58mLyR093djYMHDwIYbw4tLS2kGR08eBDd3d0AgM7OThw+fHhKT0NDQyTWcvZ06NAh0rxZyNPp06dx6dIlanmaylNfXx+A8Q8y0vb09ttvE08s5Cn7xm0xni5fvkw80d6fWKi9cvJ0/vx58vHRcvZ0/PhxcnGJhTxdvXoV7777LrU8GdkjJnpSY7169SqV2vvNb34DYLz2isnTj370I3ICUcnHXDP0vevXr+Pdd981hafXXnuNeGIhTz/60Y9IDEbVXiKRwI9+9CNdPKXTafzoRz9iIk9afu+Fw2EcOnSI5In3iJl56u7uzvktef78eaK3e/fuvJ7Uv0dHR3Hy5Eky7vr16+RC0fnz58l3O4eHh0k8qVQKXV1d5GJVb28v2Q6Dg4M4ffo08d7V1UViPX36NAYHB8k2V3ORSCTQ1dVFLlwV8tTV1UViPXnyJEZHR0lusj319PSQcV1dXWS7lsrTmTNnyDLFesrOU1dXF7m4t27dOqxZswYAsHTpUjQ2NgIYvyC+detWcpFzw4YNZLaNlStXoqGhAcD4Bdjm5mZyYTOfJ0mS0NzcTC6+NzQ0YOnSpQCANWvWYN26dQCA2tpaNDc35/Wk5nbx4sV48MEHybjm5mbU1tYCGP9dMjIycpMnp9OJ5ubmHE+f+tSnAAC33377TZ7UC74NDQ1YuXIlgNxrLHPnzsXSpUuJXnbtjYyM5PXU19dHLU+qp+rq6mnlaTJPo6OjxFN1dXVOnhobG0meCtXetm3bsHjxYgDA2rVrsXbtWpIntccDwKVLl0ieCnm6dOnSlPvTRE/33nsv5syZQ/J09epVAIV7RKHaK+Rp27ZtZFx27WnNk6Io+P3vf09qaro9IjtPenj6zGc+A2D8u8yqJyP6nponWsdctSaOHz9O5ZirHu8OHz5M9ZywFFgy6u0aTkn47ne/i+9973sAxnfi9vb2GS3/uc99Dv/1X/8FAFi0aBFeeeUV3HHHHeTfR0ZGsHHjRvziF78AMP42yMWLF3PulJYzZ8+exfLly+FyuSAIAjo7O7FkyRJEo1EEAgFYLBZEIhG4XC44HA6MjY0hnU7D4/FAURTEYjGyLcLhMNxuN+x2O2lwbrcbyWQSiUSC3DUOhULwer0QBAHxeBxWqxVVVVWQZRmiKMLv9yOTySAcDsPn88FmsyEWi0EQBLhcLkiSBFmW4fP5kE6nEYlE4Pf7YbVaEY1G4XA44HQ6IYoiFEWB1+tFKpXinrgn7ol74p64J+6Je+KeuCfuiXvinmboaWBgAGfPnoUgCLDZbEgmk8hkMnA4HEin01i2bBnmzZs3qacTJ07AbrcjlUohmUySJ5tFUYTD4YDVaoUsy7BYLGScoihwOp3IZDKQJClnnNVqhSAI5En+7HFOpxMWiwWSJMFms5Fx6XSaxCrLcs64fJ5kWc6J1W63k3EAKsrTjRs30NDQAI/Hg3Q6jbGxMTgcDrhcLkQiEVgsFgQCATz++ON45JFH4PV6oSgKRFGE0+mEw+FANBqF1WqF3+/Hzp07MX/+/Lyerl27hoceegjhcBiZTAZ+v588/V1VVQWr1Yp4PA5BEOD1erFr1y7U1NTc5GloaAibN2+G3W6H2+0mD6MFg0HEYjEoioIDBw7AYrFg06ZNmjxFIhGk02n4fD7IsgxJksg1llgsBpvNBp/Pl+NdzdPAwACamppyPKlPfD/33HNYsGAB1TxFo1HyZsdMPO3fvx+pVApbt27N8TQxT62trZgzZ85NtRcKhbBx40YEAgHytpj6lkEikYDdbsczzzyDhQsXAgCuXLmCxsZGKIpS0FNraytuvfXWvPvT6OgoGhoaCuZp7969qK2tzbs/DQ8Po7Gx8abaU/OkenryySfx2GOP5XjKV3ta83To0CHMmjVrRj1iaGgITU1NBfeniZ4my9NMPO3Zswfz5s0zrO+tWrWq7I+50/kdMTAwgOXLl0PlzJkzWLZsGYyA3wgxkC9/+cvkrpzK4OAgeQrV4/Hgox/96E3L/exnP8OCBQsm1ezv78enP/1p8iq5xWLBmjVrsHjxYgwPD+OXv/wl2UEEQcCxY8dyptQqd9QbISpG7jwskEwmcfHiRSxevJipD0wVA2tejI5Hz/XR1KahpUWDtTqpdMySD9Z88P6jnx7vP+bBTPlgzQvvQfppFavBWo2UG/39/eQN1slYvXo1eSp8IpM9qKhenJw1a1bZfzyaNS96xDM4OIiNGzdO+m92ux2LFy/GxYsX8eSTT2L79u1T6rW1taGmpmbK9WVrZ0+ZNF297LjzabW1tQFAXn87duwgnqYbz2Soy/7zP//zTdemCm3fqbbVdHVoMNW2yh43VT6ms+x0/Uy3nrKZmMtiNCYju170pq2tDdXV1TPa3/WuEWDm21YLk/W7+vp6Ktqsn4OV8lounxrLQHp7e3Hq1Kmc/6k3QYDx+VIn/vupU6fIvGqTUVtbizfeeAMrVqwAMD7PW3t7O5555hm8+uqr5CZIdXU1jhw5YqqbIJzxO9rqtxbKHda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdNSP6c70YjKLsObF6HjU73ioT4yzqk1DS4uGuqw6lQ+ntOhZt0bCWv8BjN22evo30zkYbfgbIQayaNEiMs/mTPjDH/6ARYsWFRwjyzKef/55tLW14ezZsxgaGkIwGMRHPvIRfP3rX8eDDz6IuXPnFhk5u1T6GyEcDofD4XA4HA6Hw8kP7TdCOOUF7afhaT19P5XedN9AAKb3RggNJouVvxEy+bJ6vhGihwZg/BshM33Twog3Qiai5xshk0HrjRDWKeW1XHN9MZtxsj+cRBuHw4H7778f999/v27r4HA4HA6Hw+FwOBwOh8PhcDgcDqfc4FNjcThlTCgUwve+9z3yQahyhjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHVEU0dHRAVEUSx2KZljzYnQ8wWAQ3/3ud8nHiFnVpqGlRUNdlqUpjCoZPevWSFjrP4Cx21ZP/2Y6B6MNvxHCMQUulwterxfA+AeHQqEQ1FnfIpEI+c7K2NgY4vE4AEBRlJydMBwOkwN7IpEgc9clk0mEw2EyLhQKQVEUAOPfdRkbGwMwPj1ZJBIBMP6tllAoRObQjMVipLlJkoRoNAoASKfTCIVCSKfTAIBoNApJkgCMN8VYLFbQk9frxX333QeLxVL2ntLpNL797W/D6/UykSe73Y5vfOMb8Hq9mvMETF17TqcTW7ZsgdVqpe5JEARs2bIFdrudiTylUils2bIFXq93xp68Xi+++c1vQhDGX2ikuT9NJ0/lsj8Z5cnhcGDDhg3wer1l7cliseC+++6D1+tlIk8ulwv33nsvOa7pXXs0e8RETxaLBVu2bIHL5aJSezabDVu2bIHD4SgqT4qiYPPmzfB6vRV9zDVD36uqqsK9994Lj8dT9p4AYMuWLaiqqmIiT4qiYNOmTfB6vYbUntfrxaZNm0hsND15vV7cf//9UBSFiTwV+3vP6/Xi29/+NomN94iZe5IkiWgnk0niT9XL50n9O5VKkXgcDgc+/vGPk9+jsiznjFPjyWQyEEWRxCrLMtkOiqLcNC471uxx2bFOHJfPU/aFNVEUc8Zlx5pOp/GJT3wCDofjplhL4SmTyWD58uVwOBxFe5o4To3V4/GgqqqK5NDv9yMWi2H//v2w2WwkBq/XC5fLBQBwOp3w+XwAAKvVimAwOKWnTCaDYDBItC0WCxwOB4DxY5d63BIEIedi60RPqrbdbofVasX+/fsRi8UQDAZJ7WX3NtUTMP7bNjtWr9eLZDKJ/fv3Q5blmzxZreOXBn0+H5kmLvsaSyKRwOHDh8m47NpLpVJ5PannflrzlO1J/aj0VHmazJN6PgkANpsNwWCQ/K7z+/0kT4VqLxAIkI9Fu91u8i0Ju92ec6MomUySPBXylEwmp9yfJnoCgIMHDyIWi8HlcpFlCvWIQrVXyFMgECDjsmtPa54ymQzS6TTuuOMOOByOafeI7Dzp4UlRFOzfvx+SJBFPevU9u92OT3ziE8hkMiRPtI65LpcLW7ZsgcVioXLMdbvd2LJlCzKZDNVzwlLAb4RwTEFdXR02bNgAABgeHkZLSwvZOfft24fe3l4AQEdHB44ePQpgfK7YlpYWorFr1y5cvHgRAHD8+HEcP34cAHDx4kXs2rWLjGtpaUF/fz8A4OjRo+jo6AAA9Pb2Yt++fQDGG0dLSwuGh4cBAIcPH0ZnZycAoLu7GwcPHgQw3hxaWlpIMzp48CC6u7sBAJ2dnTh8+HBBT4Ig4A9/+ANef/31svf03HPPIR6PQxAEJvJ0+vRp/OpXv4IgCJrzBExde5cvX8aiRYvwxhtvUPd08uRJLFq0CKdPn2YiT3v37sWiRYsgCMKMPQmCgK6uLpw8eRIA3f1pOnkql/3JKE/nz5/HL37xCwiCUNaeXn/9dfzhD3+AIAhM5GlwcBAvvfQS+VGud+3R7BETPb3++utYtGgRBgcHqdTeiRMnsGjRIpw/f76oPD399NOYPXs2BEGo6GOuGfre6OgoXnrpJXICV86ejhw5gkWLFmF0dJSJPD399NPweDwQBMGQ2hMEATabDU8//TR1T4IgYP78+Xj66aeZyFOxv/cEQUA8Hsdzzz1H8sR7xMw8dXd3E+3Lly/j/PnzRG/37t15Pal/j46Okt+fVqsV7777LrkAdP78efIt0OHhYRJPKpVCV1cXuVjV29tLtsPg4CBOnz5NvHd1dZFYT58+jcHBQbLN1VwkEgl0dXWRvlfIU1dXF/F08uRJjI6Oktxke/r9739PLrB2dXWR7VoqT6dOnUIymYTVai3ak5onAOjq6iIX99atW4c1a9YAAJYuXYrGxkYoioLBwUH87d/+LbnIuWHDBtTV1QEAVq5ciYaGBgDjF2Cbm5vJhc18niRJQnNzMwRBQF9fH7Zs2YKlS5cCANasWYN169YBAGpra9Hc3JzXk5rbxYsX46//+q/R19cHRVHQ3NyM2tpaAMDQ0BBGRkZyPAHjF5ybm5tzPP3Jn/wJ+vr6cMcdd9zkSb3g29DQgJUrVwLIvcYye/Zs8jeQW3sjIyN5PfX19VHJU7an6urqaeVpMk+jo6PER3V1NZqbm8lNksbGRpKnQrW3bds2LF68GACwdu1arF27luQpezr8S5cukTwV8nTp0qUp96eJnu677z7MmTMHiqKgrq4OV69eBVC4RxSqvUKetm3bRsZl157WPCmKgt/97neoqqqC1Wqddo/IzpMenj772c+ir68PH/vYx4gnvfqeetP01KlTJE+0jrmDg4NYtGgRXn/9dSrH3EQigUWLFuE///M/qZ4TlgL+sXROWaN+YMflckEQBHR2dmLJkiWIRqMIBAKwWCyIRCJwuVxwOBwYGxtDOp0md3rVJyqA8burbrcbdrudNDi3241kMolEIkHuGodCIXi9XnJCYrVaUVVVBVmWIYoi/H4/MpkMwuEwfD4fbDYbeeLW5XJBkiTyFEY6nUYkEoHf74fVakU0GoXD4YDT6YQoilAUBV6vF6lUalJPyWQSR44cwd13341bbrmlrD0NDg7ijTfewD333AOr1VryPN24cQM/+9nP8LWvfQ1VVVWa8jSd2stkMjh27BjuuusueDweqp4kScIvfvELrF27Fna7veR5un79Ojo6OrBu3Tokk8kZeRJFET/5yU/wpS99CXPmzKG6P5mxR+jtaXR0FK+99hq+/vWvw+12l62nDz/8EL/4xS+wfv162O32kucpHA7j1Vdfxde//nXy33rWHs0eMdFTNBrFG2+8gS996Uvkx76W2hsbG8Mvf/lLfOELX4DNZptxngYHB9HR0YE///M/Rzqdrthjrhn6XiQSwSuvvIKvfe1r5L/L1VMkEsEbb7yBL3/5y0in0yXP07Vr18h+kslkdK89AHjllVdQX1+PBQsWUPVks9nw6quvYs2aNZg3b17J81Ts7710Oo1XXnkFn//851FTU8N7xAw9DQwM4OzZs+SmWzKZRCaTgcPhQDqdxrJlyzBv3rxJPZ04cQJ2ux2pVArJZBIulwuyLOPdd9/Fxz72MfLfFouFjFMUBU6nkzw563A4YLVaIcsyrFYrBEEgT/Jnj3M6nbBYLJAkCTabjYxTj1fpdBqyLOeMy+dJlmXyFLb65LE6DgCJNZFI4PLly/jjP/5jsh411lJ4ikaj5CKkxWIpypOaJ3XcjRs30NDQAI/Hg3Q6jbGxMTgcDrhcLqRSKaxbtw4dHR34x3/8RzzyyCPwer1QFAWiKMLpdMLhcCAajcJqtcLv92Pnzp2YP39+Xk/Xrl3DQw89hGQyiXXr1uHNN9/E6OgoZFkmF33VB8u8Xi927dqFmpqamzwNDQ1h8+bNsNvtmDNnDurr63H06FHY7XbEYjEoioIDBw7AYrFg06ZNxFMkEoHFYkEgEMDjjz9OPDkcDqxduxY///nPoShKjqdIJIJ0Og2fzwdZliFJErnGEovF4PP5sH79etx9991YuHBhTu0NDAygqakpx5P6xPdzzz2HBQsWaM5TtqdoNEre7CiUp4me9u/fj1Qqha1btyIWi8Fms8Hn85He7Pf7IYoiWltbMWfOnJtqLxQKYePGjQgEAuRtMfUtg0QiAbvdjmeeeQYLFy4EAFy5coXcbCvkqbW1Fbfeemve/Wl0dBQNDQ05nm655Rb8r//1v/DKK68glUph7969qK2tzdsjhoeH0djYeFPtqXlSPT355JN47LHHcjyp53gAyJtOU3maTp4OHToEj8eDy5cv42Mf+xgymcyUPWJoaAhNTU0QRTHv/jTR02R5KuTJ5XLh7rvvxrFjx5BOp7Fnzx7MmzdPl75nsVjw/vvv47bbboPb7YbNZsOqVauoHHMtFgtef/11fP7zn4fP59N8zLXZbPjpT3+KP/uzP0MwGNR8TjgwMMA/ls7haCH7VUX1FUcV9a45APLqHjD5q3MqaqMEJn91TkV9DQ8Yfx1QfUVPfR1QRX39Ehi/Q64+daC+4qiiviYIgPwoKOQplUphzpw5ZLly9hQIBDB79mxyYqRSKk9VVVWYO3curFar5jypeoU8jY2NIRgMwuv1krG0PKlxVVVVEe1S5ikYDJInz2bqyWq1Yu7cuUST5v4EmK9H6O3J5XKhuroaVqu1rD35fD7MmTMHVquViTw5HA6yXYv1VKoeMZmnYDAIh8OR47FYT2pcLpeL6M0kT7NmzcKsWbNgtVpvquWpPJnpmGuGvme321FdXU2mXihnT+pNQrvdnhN7qTxl7yfZ69Wr9sbGxjB79mzMmjWLuqexsTHiJ3uajmI80chTsb/31G2kjuM9Yuae1OXV+FQm6k30pI612WykhiwWCzweD/lv1cNk47Jjyh4nCAJ583PiuOxY1TFqrPnGTfSUPW5i78yO1eVyweVyFYzVSE/q8V29CVOMJzVWdZz6e0qdbgYYnyJGvZAaCoXIhUMA5E0fYPypafUJZ3WKGHVcPk8WiwWhUIhoT5wiRmXitDcTPama6rQ36pRw2ctkr1f1BPz3tDfZntR4RFEkcUzUU6fDAXKvsSiKguHhYbIts73bbLa8U/moN3bUv7OXmUmesj2pTJWnyTypF3yB/57KR0V9G2pirBNrL3sKIvViNDCep+zl7HZ7zpSA+TypU58B+fenyTzduHGDTLGkjivUIwrVXiFPE6dcUtGaJ4vFQs49sqePU72rTPSUnSc9PKnbWpIkoq9X31NvBrpcLrI/0Drmqr831JsgatzFHnNVPb/fnzN9nspMzwkHBgZQKviNEA6njKmqqsIXv/jFUodBBda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdOx2Oz760Y+WOgwqsObF6HjGxsZw7Ngx5rVpaGnRUJfdsmWLphg4dNCzbo2Etf4DGLtt9fRvpnMw2vBvhHA4ZYwsy+jp6SF338sZ1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0UqkUBgcHyZz15QxrXoyOx+FwYMWKFTlPeLOoTUNLi4a6rDqdIae06Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMEUUR7e3tOa+tliuseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UukoikI+XF3usObF6HhcLhfq6+tzpnhhUZuGlhYNdVmWLlhXMnrWrZGw1n8AY7etnv7NdA5GG/6xdE5Zo34sXcXID+xwOBwOh8PhcDgcDodt+vv7ceHChbz/vnr16py53LNpb2/XKSqOUQwODmLjxo1TjtuxYwe2b98+5bi2tjbU1NRoXt9UetPRaWtrA4C846brabpMFmuhOKfaVtPVocFU2yp7nJZ8qMtO1w+NeqJVk7TrpRAzqQ0VvWtkMoqJUwv19fWGrauUlPJaLn8jhMMpYzKZDERRhBnuZ7Lmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZPJZKAoiinywZoXo+NRP26sflScVW0aWlo01GVZqZNKR8+6NRLW+g9g7LbV07+ZzsFow2+EcEyBy+WC1+sFMD7PXigUIjtYJBIh89CNjY0hHo8DGH8NLRQKEY1wOIxkMgkASCQSSCQSAIBkMolwOEzGhUIh8upaPB7H2NgYgPE57yKRCIDxnTwUCpFXR2OxGHkFTJIkRKNRAEA6nUYoFCJzbUajUUiSBGD81bFYLFbQUzgcxhNPPIFr166Vvaf+/n488cQTCIfDTOTpww8/JPFozRMwde1dv34dTzzxBAYHB6l7Ur18+OGHTOTpypUrRGOmntSa//DDDwHQ3Z+mk6dy2Z+M8jQ8PExyWc6erl27RnywkKeRkRESD408GdkjJnpSt+3IyAiV2hsaGsITTzyB4eHhovKU3X8q+Zhrhr5348YNPPHEEyTecvZ09epVPPHEE7hx4wYTecreT4yoPXXfunLlCnVP2dos5KnY33uqj/7+fpIn3iNm5kmSJKKdTCaJP1Uvnyf171QqlRPPiRMncnxkj1PjUS/8qLHKsky2g6IoN43LjjV7XHasE8fl85Q9/YgoijnjsmONRCI4ceIEJEm6KdZSeMqOp1hPE8epsXo8HlRVVQEY/w6A3+9HIBDAo48+ioULF5IYvF4vmRbH6XTC5/MBAKxWK4LB4JSeMpkMgsEg0b711lvJ9waqqqrg8XgAAIIgIBgM5vWkatvtdtTW1uLRRx9FIBBAMBiEIAhkveoyqidg/GJudqxerxe33HILHn30UVRXV9/kyWodvzTo8/nI21HZ11hmzZqFRx99lGzn7NpLpVJ5PSWTSSp5yvZks9mmlafJPKVSKeLJZrMhGAySC95+v5/kqVDtBQIB2O12AIDb7Ybb7SZ5Uv2pGmqeCnlKJpNT7k8TPS1YsIDUg8vlIssU6hGFaq+Qp0AgQMZl157WPGUymZz9fbo9IjtPenhS95O5c+cST3r1PVEUceLECUQiEZInWsdc9Xzy2rVrVI65o6OjeOKJJzAwMED1nLAU8BshHFNQV1eHDRs2ABi/MNfS0kJ2zn379qG3txcA0NHRgaNHjwIYv6Db0tJCNHbt2oWLFy8CAI4fP47jx48DAC5evIhdu3aRcS0tLeQk5OjRo+jo6AAA9Pb2Yt++fQDGG0dLSwuGh4cBAIcPH0ZnZycAoLu7GwcPHgQw3hxaWlpIMzp48CC6u7sBAJ2dnTh8+HBBTz6fD8uXLycxlLOnl156CfX19fD5fEzk6eLFi5gzZw58Pp/mPAFT197w8DCamprQ2dlJ3dPZs2fR1NSEixcvMpGnQ4cOoampCT6fb8aefD4f5s+fj7NnzwKguz9NJ0/lsj8Z5am/vx9erxc+n6+sPXV0dGD58uXw+XxM5En9IaueKOhdezR7xERPHR0daGpqQjgcplJ73d3daGpqQn9/f1F5evbZZ/Htb38bPp+voo+5Zuh76smaejJczp6OHz+OpqYmiKLIRJ6effZZ3HvvvfD5fIbUns/nw7p16/Dss89S9+Tz+fDAAw/g2WefZSJPxf7e8/l8qK+vx0svvUTyxHvEzDx1d3cT7cuXL+P8+fNEb/fu3Xk9qX+Pjo7i5MmTAP6776h96Pz587h8+TJZrxpPKpVCV1cXuVjV29tLtsPg4CBOnz5NvHd1dZFYT58+jcHBQbLN1VwkEgl0dXWRC1eFPHV1dRFPJ0+exOjoKMlNtqfTp0/jzjvvhMPhQFdXF9mupfL07rvv4rbbboPD4Sjak5onAOjq6iJ5WrduHdasWQMAWLp0KRobGxGNRrFv3z40NjaSi5wbNmxAXV0dAGDlypVoaGgAMH4Btrm5mVzYzOdJkiQ0NzdDlmXs3r0bGzZswNKlSwEAa9aswbp16wAAtbW1aG5uzutJze3ixYvR0NCA3bt3IxqNorm5GbW1tQCAoaEhjIyM5HgCxi84Nzc353haunQpdu/eTfSyPakXfBsaGrBy5UoAuddY1AvZ6oX47NobGRnJ66mvr49KnrI9VVdXTytPk3kaHR0lnqqrq9Hc3ExukjQ2NpI8Faq9bdu2YfHixQCAtWvXYu3atSRPfX19ZNylS5dIngp5unTp0pT700RP69atw4kTJxCNRlFXV4erV68CKNwjCtVeIU/btm0j47JrT2ueFEVBT08Pli9fDofDMe0ekZ0nPTx98pOfxO7du1FbW0s86dX3bDYb7rzzTrz77rskT7SOueFwGE1NTeR8TI272GNuJpNBU1MTXnvtNarnhKWAfyOEU9ao88q5XC4IgoDOzk4sWbIE0WgUgUAAFosFkUgELpcLDocDY2NjSKfT8Hg8UBQFsViM3DUOh8Nwu92w2+2kwbndbiSTSSQSCXLXOBQKwev1QhAExONxWK1WVFVVQZZliKIIv9+PTCaDcDgMn88Hm82GWCwGQRDgcrkgSRJkWYbP50M6nUYkEoHf74fVakU0GoXD4YDT6YQoilAUBV6vF6lUinvinrgn7ol74p64J+6Je+KeuCfuiXuaoaeBgQGcPXsWgiDAZrMhmUwik8nA4XAgnU5j2bJlmDdv3qSeTpw4AbvdjlQqhWQySS4Ii6IIh8MBq9UKWZZhsVjIOEVR4HQ6kclkIElSzjir1QpBEMiT/NnjnE4nLBYLJEmCzWYj49LpNIlVluWccfk8ybKcE6vdbifjAFSUpxs3bqChoQEejwfpdBpjY2NwOBxwuVyIRCKwWCwIBAJ4/PHH8cgjj8Dr9UJRFIiiCKfTCYfDgWg0CqvVCr/fj507d2L+/Pl5PV27dg0PPfQQeWPa7/dDFEXIsoyqqipYrVbE43EIggCv14tdu3ahpqbmJk9DQ0PYvHkz7HY73G43eVAmGAwiFotBURQcOHAAFosFmzZt0uQpEokgnU7D5/NBlmVIkkSuscRiMdhsNvh8vhzvap4GBgbQ1NSU40l94vu5557DggULqOYpGo2SNztm4mn//v1IpVLYunVrjqeJeWptbcWcOXNuqr1QKISNGzciEAiQt8XUtwwSiQTsdjueeeYZLFy4EABw5coVNDY2QlGUgp5aW1tx66235t2fRkdH0dDQUDBPe/fuRW1tbd79aXh4GI2NjTfVnpon1dOTTz6Jxx57LMdTvtrTmqdDhw5h1qxZM+oRQ0ND5IGEfPvTRE+T5Wkmnvbs2YN58+YZ1vdWrVpV9sfc6fyOGBgYKNk3QviNEE5ZU+kfS4/FYjh8+DA2bNhAXvEsV1jzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk3KD9sXRZltHb24ulS5eSt0PKFda86BFPoQ8se71ebNiwAYcPH8b/+T//h+rH0rO11eljZqKXHXc+rZl8LH268UyGuuxdd91Fnp6fLM7pepsM/rH0yZlMZ2Iuy/Vj6bNnz57R/m7Ex9Jnum21MFm/o/WxdNbPwfjH0jkcTlEIgoBFixaROQ3LGda8GB2PnuujqU1DS4sGa3VS6ZglH6z54P1HPz3ef8yDmfLBmhfeg/TTKlaDtRqpdCbO11/OsObF6HgURUFfXx+Z7opVbRpaWjTUZcv949xmQc+6NRLW+g9g7LbV07+ZzsFoU/oIOBxO0bhcLmp3jEsNa16MjkfP9dHUpqGlRYO1Oql0zJIP1nzw/qOfHu8/5sFM+WDNC+9B+mkVq8FajVQ66gUdM8CaF6PjEUVx0rd+WNOmoaVFQ122qalJUwwcOuhZt0bCWv8BjN22evo30zkYbdi57cbhcGaMJEno7OwkHyQqZ1jzYnQ8eq6PpjYNLS0arNVJpWOWfLDmg/cf/fR4/zEPZsoHa154D9JPq1gN1mqk0lEUBf39/WX/NDbAnhej43E6nairq8s7NRor2jS0tGioy6ofrOaUFj3r1khY6z+AsdtWT/9mOgejDb8RwuGUMbIso6enB7IslzoUzbDmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZNKpTA4OGiKi8KseTE6HofDgRUrVujyfRSa2jS0tGioy/JPDLOBnnVrJKz1H8DYbaunfzOdg9GGfyydU9ZU+sfSORwOh8PhcDgcDoeTH9ofS+eUF7Q/FE3rw9RT6U3349zA9D6WToPJYuUfS598WT0/lq6HBmD8x9Jn+hFyIz6WPhE9P5Y+GaxMH6U3/GPpHA6nKNLpNEKhENLpdKlD0QxrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDqZTAaiKJri6XjWvBgdj54fK6apTUNLi4a6LCt1Uumw+JHxYmCt/wDGbls9/ZvpHIw25b3XcDgVTiQSQUtLCyKRSKlD0QxrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDqSJKGrq4uJuc61wpoXo+Px+/1obm6G3+9nWpuGlhYNdVmWvuVQyehZt0bCWv8BjN22evo30zkYbfiNEI4pcLlc8Hq9AMbn2QuFQuSuaiQSIfPQjY2NIR6PAxj/MFEoFCIa4XAYyWQSAJBIJJBIJAAAyWQS4XCYjAuFQuQHQDwex9jYGIDxOe/UnTqTySAUCpG5/mKxGERRBDDe7KLRKICb74pGo1HSBEVRRCwWK+jJ7/ejqakJNput7D0BwLZt2+D3+5nIk9PpxF/8xV/A7/drzhMwde1VVVXh4YcfhiAI1D05HA48/PDDcDqdTOQpk8ng4Ycfht/vn7Env9+Pv/zLvyRzdtLcn6aTp3LZn4zy5HK50NjYCL/fX9aebDYbmpqa4Pf7mciT2+3Ggw8+SH6A6117NHvERE82mw0PP/ww3G43ldqz2+14+OGH4XK5ispTOp3G3/7t38Lv91f0MdcMfc/j8eDBBx+Ez+cre09WqxUPP/wwPB4PE3lKp9P4zne+A7/fb0jt+f1+/M3f/E3OU4K0PPn9fvzd3/0d0uk0E3kq9vee3+/Htm3byBjeI2buSZIkop1MJok/VS+fJ/XvVCqVc56wYsUK2O124iN7nBqP+rSvGqssy2Q7KIpy07jsWLPHZcc6cVw+T2qs6nbJHpcdayaTwapVq+B0Om+KtRSeAOBTn/oUnE5n0Z4mjlNj9Xg8qKqqAjD+HQC/349IJIKnnnoKFouFxOD1euFyuUiu1ePMxLci8nnKZDIIBoNEO5PJkHOXqqoqeDweAIAgCAgGg3k9qdpqnT311FOIRCIIBoMQBIGsV11G9QQAFoslJ1av1wtJkvDUU09BFMWbPKlPv/t8PjJNXPY1llgshn379pHfQNm1l0ql8npKJpNU8pTtSY1hqjxN5imVShFPNpsNwWAQFosFwPgFcDVPhWovEAiQnLjdbrjdbpIn1Z+qoeapkKdkMjnl/jTRUzqdxs6dOxGJROByucgyhXpEodor5CkQCJBx2bWnNU+ZTAaZTAaf/vSn4XQ6p90jsvOkhydZlvHUU0+RY68aqx59z+FwYNWqVQBA8kTrmOt2u/Hwww/DZrNROeZ6vV48/PDDsFgsVM8JSwG/EcIxBXV1ddiwYQMAYHh4GC0tLWTn3LdvH3p7ewEAHR0dOHr0KIDxuWJbWlqIxq5du3Dx4kUAwPHjx3H8+HEAwMWLF7Fr1y4yrqWlBf39/QCAo0ePoqOjAwDQ29uLffv2ARhvHC0tLRgeHgYAHD58GJ2dnQCA7u5uHDx4EMDNd0UPHjyI7u5uAEBnZycOHz5c0JPVakVPTw9++tOflr2n/fv34+rVq7BarUzk6dSpU3jttddgtVo15wmYuvb+8Ic/IBgM4pe//CV1T7/97W8RDAZx6tQpJvK0Z88e8kNupp6sVit+8Ytf4Le//S0AuvvTdPJULvuTUZ7OnTuHl156CVartaw9/fSnP0VPTw+sVisTebp69SqeffZZcrKjd+3R7BETPf30pz9FMBjE1atXqdTef/3XfyEYDOLcuXNF5emHP/whrFYrrFZrRR9zzdD3RkZG8Oyzz5ITwnL29PLLLyMYDGJkZISJPP3whz9EMpmE1Wo1pPasVitisRh++MMfUvdktVpRVVWFH/7wh0zkqdjfe1arFVevXsX+/ftJnniPmJmn7u5uon358mWcP3+e6O3evTuvJ/Xv0dFRnDx5EsD4hb6enh5yoej8+fO4fPkyWa8aTyqVQldXF7lY1dvbS7bD4OAgTp8+TbxnPxV8+vRpDA4Okm2u5iKRSKCrq4tcuCrkqauri3g6efIkRkdHSW6yPb399ttwuVywWCzo6uoi27VUntTtarFYivak5gkAurq6yMW9devWYc2aNQCApUuXorGxkVyQfPjhh8lFzg0bNqCurg4AsHLlSjQ0NAC4+a2IfJ4kSUJzczMcDgdCoRAefPBBLF26FACwZs0arFu3DgBQW1uL5ubmvJ7U3C5evBhbt24lNwCbm5tRW1sLABgaGsLIyEiOJ2D8gnNzc3OOp1WrViEUCmHFihU3eVIv+DY0NGDlypUAcq+xzJ07F42NjeQiZ3btjYyM5PXU19dHJU/Znqqrq6eVp8k8jY6OEk/V1dVobm4mN0kaGxtJngrV3rZt27B48WIAwNq1a7F27VqSp76+PjLu0qVLJE+FPF26dGnK/Wmip29/+9v4yEc+gnQ6jbq6Oly9ehVA4R5RqPYKecq+CZ9de1rzpCgKfvvb38JiscBisUy7R2TnSQ9Pn/vc5xAKhfDxj3+ceNKr76XTabhcLvT09JA80TrmXr16FcFgED/96U+pHHNjsRiCwSDa2tqonhOWAv6xdE5Zo35gx+VyQRAEdHZ2YsmSJYhGowgEArBYLOQuucPhwNjYGNLpNDweDxRFITszMH531e12w263kwbndruRTCaRSCTIXWP1bqggCIjH4+QES5ZliKJInowOh8Pw+Xyw2WyIxWIQBAEulwuSJEGWZfh8PqTTafK0mtVqRTQahcPhIE/kKIoCr9eLVCo1qSdJknDgwAHce++9mDdvXll7unr1Ko4cOYLNmzdDEISS5+n69ev4z//8T9x///3weDya8jSd2kulUnjhhRfw9a9/HV6vl6qnsbExvPTSS9iwYQN5CqOUefrwww9x9OhRNDQ0kKdypuspkUjgueeewze/+U1UV1dT3Z/M2CP09jQyMoLnn38e999/P7xeb9l6GhoawksvvYTNmzeTOEqZp9HRURw6dAj3338/fD6f7rVHs0dM9BSJRPCTn/wE3/rWt8gTYlpqLx6P4+WXX8Y3vvEN2O32Gefp6tWrOHr0KDZt2gQAFXvMNUPfC4VCOHjwIDZv3kye6i1XT6FQCEeOHMF9990HACXP08DAANlPLBaL7rWXTqfx4x//GOvWrSMXI2h5slgsRHv+/Pklz1Oxv/cURcGBAwewfv16LFiwgPeIGXoaGBjA2bNnIQgCbDYbeUPZ4XAgnU5j2bJlmDdv3qSeTpw4AbvdjlQqhWQySeI5deoUbr/9duLDYrGQcYqiwOl0IpPJQJIkOBwOWK1WyLIMq9UKQRDIk/zZ45xOJ3na1mazkXHpdJrEKstyzrh8nmRZJk9hi6IIu91OxgEgscbjcZw/fx633347WV6NtRSeIpEI3nvvPdxxxx2wWq1FeVLzpI67ceMGGhoa4PF4kE6nMTY2BofDAZfLhUwmg4aGBhw9ehR///d/j0ceeQRerxeKokAURTidTjgcDkSjUVitVvj9fuzcuRPz58/P6+natWt46KGHkEql0NDQgFdeeQUjIyOQZRlVVVWwWq2Ix+MQBAFerxe7du1CTU3NTZ6GhoawefNm2O12VFdX48///M9x8OBBsn+ofcFisWDTpk3EUyQSgcViQSAQwOOPP048uVwubNiwAS+++CJkWc7xFIlEkE6n4fP5IMsyJEki11hisRgCgQA2bdqEVatWYeHChTm1NzAwgKamphxP6hPfzz33HBYsWKA5T9meotEoOYcslKeJnvbv349UKoWtW7ciFovBZrOR39mZTAZ+vx+iKKK1tRVz5sy5qfZCoRA2btyIQCBA3hZT3zJIJBKw2+145plnsHDhQgDAlStX0NjYCEVRCnpqbW3Frbfemnd/Gh0dRUNDQ46nmpoafO1rX8OPf/xjJJNJ7N27F7W1tXl7xPDwMBobG2+qPTVPqqcnn3wSjz32WI4nt9tN3jYIBoOk9rTm6dChQ3C73Th//jzuuOMOAJiyRwwNDaGpqQmiKObdnyZ6mixPhTy53W7ce++9eOGFF6AoCvbs2YN58+bp0veA8Y+E//Ef/zE8Hg9sNhtWrVpF5ZibyWTwn//5n/ja174Gv9+v+ZhrsVjQ1taGe+65B7Nnz9Z8TjgwMFCyj6ULhqyFw9GZ7FcV1VccVbLn9lNf3QMmf3VORW2UwOSvzqmor+EB4xdT1Ff0si/2ACCvXwLjd8jVpw7UVxxV1NcEAZAfBYU8ZTIZfPKTnyT/Vs6e5syZg09+8pPkREalVJ58Ph/uvPNOcrDTkidg6tqTJAkrVqxAIBAg/ml5stvtWLFiRc5rwaXM09y5c7FixYqbNKbjyeFw4M477yTblub+BJivR+jtyev1kv2knD0Fg0FS1yzkye12k+1arKdS9YiJnqxWK1asWAG3252zvxfrSRAErFixAl6vl+jNJE/V1dVYuXLlTf2n0o65Zuh7VVVVuPPOO8ly5exp1qxZWLFiBaqqqnLqslSe8u0netWeJElYuXIleXqUpqds7expOorxRCNPxf7ekyQJn/zkJzFnzhwAvEcU4yk7Z+p0KZPpTfSkjrXZbKSGbDYbFixYQP5N9TBxnMViyYkpe5wgCGQ6lonjJv7Gzo4137iJnrLHZf+dPc5ms8HtdqOmpoZcrJssViM9ud1uctOy0LhCntRY1XHqG7bqdDPA+BQx6sXVnp4eXL9+nUyRpE71Aozve+oTzuoUMeq4fJ4sFgtCoRDRvnHjRs4UMSoTp72Z6EnVTCaTGBkZQU9PD7lJMdl6VU/Af097k+0pmUyip6cHsVjsJk8q6ltOQO41FlEU8fbbb2P16tU3ebfZbHmn8lFv7Kh/Zy8zkzxle1KZKk+TeVIv+AL/PZWPSva3CwrtT9lTEKkXo4HxPGUvZ7fbc6YEzOfJbrcT7/n2p4meRkdH0d3dTepBHVeoRxSqvUKeJk65pKI1TxaLBR6PZ9L9vdC+n50nPTwpioKenh7E4/GcWPXoe4qioKamBm63m+wPtI656u+NYDBI4tByzFX11JsggLZzwoGBAZQKfiOEwyljnE4nec2w3GHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSkcQBPL2UrnDmhej45EkiUwHw7I2DS0tGuqyDz/8sKYYOHTQs26NhLX+Axi7bfX0b6ZzMNrwb4RwOGWMKIpob2/PeVqjXGHNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRSkdRFPT19ZGnvcsZ1rwYHY/L5UJ9fX3Ok80satPQ0qKhLqt+p4FTWvSsWyNhrf8Axm5bPf2b6RyMNvxGCIdTxrB44CgW1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql01Glq1A9RlzOseTE6HkEQsGjRopxpa1jUpqGlRUNdln9imA30rFsjYa3/AMZuWz39m+kcjDb8Y+mcskb9WLqKkR/Y4XA4HA6Hw+FwOBwO2/T39+PChQt5/3316tU5c7ln097erlNUHKMYHBzExo0bpxy3Y8cObN++fcpxbW1tqKmp0by+qfSmo9PW1gYAecdN19N0mSzWQnFOta2mq0ODqbZV9jgt+VCXna4fGvVEqyZp10shZlIbKnrXyGQUE6cW6uvrDVtXKSnltVz+RgiHU8akUikMDg6a4hVV1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql00uk0YrEYU08xFwtrXoyOx2azkY/Fs6xNQ0uLhrosf46aDfSsWyNhrf8Axm5bPf2b6RyMNvxGCIdTxkSjUezZswfRaLTUoWiGNS9Gx6Pn+mhq09DSosFanVQ6ZskHaz54/9FPj/cf82CmfLDmhfcg/bSK1WCtRiodWZbx9ttvQ5blUoeiGda8GB2Pz+fD1q1b4fP5mNamoaVFQ12WhWltOPrWrZGw1n8AY7etnv7NdA5GGz41FqesqfSpsTKZDCRJgtPphMViKXU4mmDNi9Hx6Lk+mto0tLRosFYnlY5Z8sGaD95/9NPj/cc8mCkfrHnhPUg/rWI1WKuRcoP21FiZTAapVAo2m63s88GaFz3iKTSdjsVigdPphCRJ+MEPfkB1aqxs7UKX3aYzFVM+rZlMjTXdeCZDXXbfvn2YP39+3jin620y+NRYkzOZzsRcluvUWPPmzZvR/m7E1Fgz3bZamKzf0Zoai/VzsFJeyy3vL+twOBWOxWKBy+UqdRhUYM2L0fHouT6a2jS0tGiwVieVjlnywZoP3n/00+P9xzyYKR+seeE9SD+tYjVYq5FKx2KxlP1HilVY82J0PJlMBqIoMq9NQ0uLhrosCzfLOPrWrZGw1n8AY7etnv7NdA5GGz41FscUuFwueL1eAONzz4VCIfKUQyQSIa+ajY2NIR6PAwAURUEoFCIa4XAYyWQSAJBIJJBIJAAAyWQS4XCYjAuFQuSV0Hg8jrGxMQDjr7VFIhEA480zFAqR+e9isRhpppIkkdfB0uk0QqEQmRMwGo1CkiQAgCiKiMViBT1FIhH84Ac/wODgYNl7GhgYwI4dOxCJRJjI0/DwMH7wgx8gEolozhMwde2NjIzgqaeewtDQEHVPH374IZ566ikMDw8zkaf+/n489dRTiEQiM/ak1vyHH34IgO7+NJ08lcv+ZJSn69evk/2knD0NDg4SHyzk6caNGyQeGnkyskdM9DQ4OIinnnoKN27coFJ7aqzXr18vKk9XrlwhPaySj7lm6Hujo6P4wQ9+QOIoZ0/Xrl3DU089hdHRUSbylL2fGFF7kUgEO3bswJUrV6h7ytZmIU/F/t5TfQwMDJA88R4xM0+SJBHtZDJJ/Kl6+Typf6dSqZx4fvOb3+T4yB6nxqNeUFNjlWWZbAdFUW4alx1r9rjsWCeOy+cp+0KeKIo547JjjUQi6OzshCRJN8VaCk+RSAS/+c1vIElS0Z4mjlNj9Xg8qKqqAgA4HA74/X74/X40NzejtraWxOD1eskFO6fTSabIsVqtCAaDU3rKZDIIBoNEe8GCBXA4HACAqqoqeDweAIAgCAgGg3k9qdp2ux233normpub4ff7EQwGycVTRVHIMqonYPyiY3asXq8X1dXVaG5uxty5c2/yZLWOXxr0+Xzk7ajsayzBYBCPPPII8Zhde6lUKq+nZDJJJU/ZntRvN0yVp8k8pVIp4slmsyEYDJKbO36/n+SpUO0FAgHY7XYAgNvthtvtJnlS/akaap4KeUomk1PuTxM9zZ8/n9SDy+UiyxTqEYVqr5CnQCBAxmXXntY8ZTIZhMNhsr9Pt0dk50kPT7fccguam5sxZ84c4kmvvieKIjo7OxGJREieaB1zb9y4gaeeegqDg4NUjrmhUAhPPfUUrl69SvWcsBTwGyEcU1BXV4cNGzYAGL+A3dLSQnbOffv2obe3FwDQ0dGBo0ePAhh/RbqlpYVo7Nq1CxcvXgQAHD9+HMePHwcAXLx4Ebt27SLjWlpa0N/fDwA4evQoOjo6AAC9vb3Yt28fgPHG0dLSguHhYQDA4cOH0dnZCQDo7u7GwYMHAYw3h5aWFtKMDh48iO7ubgBAZ2cnDh8+XNCTy+VCdXU13njjjbL39OKLL2Lx4sVwuVxM5Om9994jd6215gmYuvauXbuG+vp6nDhxgrqn06dPo76+Hu+99x4Tefrxj3+M+vp6uFyuGXtyuVxwOBw4ffo0ALr703TyVC77k1Ge+vr6oCgKXC5XWXt64403UF1dDZfLxUSeRkZGEI1GyUmD3rVHs0dM9PTGG2+gvr4eIyMjVGrvd7/7Herr69HX11dUnvbt24dVq1bB5XJV9DHXDH0vFoshGo2SCxjl7OnYsWOor69HLBZjIk/79u3DJz/5SbhcLkNqz+Vy4fbbbycx0PTkcrnw2c9+Fvv27WMiT8X+3nO5XFi8eDFefPFFkifeI2bmqbu7m2hfvnwZ58+fJ3q7d+/O60n9e3R0FCdPngQwfsFNlmVyEer8+fO4fPkyWa8aTyqVQldXFxnX29tLtsPg4CD5PStJErq6ukisp0+fJjfd+/v7SS4SiQS6urrIhatCnrq6uoinkydPYnR0lOQm29M777yDRYsWQRAEdHV1ke1aKk+9vb2YPXs2BEEo2pOaJwDo6uoiF/fWrVuHNWvWAACWLl2KxsZGiKKIEydO4C//8i/JRc4NGzagrq4OALBy5Uo0NDQAALmxoV7YzOdJkiQ0Nzcjk8mgvb0d3/zmN7F06VIAwJo1a7Bu3ToAQG1tLZqbm/N6UnO7ePFibN68Ge3t7RBFkdy4AYChoSGMjIzkeALGLzg3NzfneLrjjjvQ3t6Oj33sYzd5Ui/4NjQ0YOXKlQByr7F4vV74/X5yzM2uvZGRkbye+vr6qOQp21N1dfW08jSZp9HRUeJJvTGk3iRpbGwkeSpUe9u2bcPixYsBAGvXrsXatWtJnvr6+si4S5cukTwV8nTp0qUp96eJntavX48rV65AFEXU1dXh6tWrAAr3iEK1V8jTtm3byLjs2tOaJ0VR0NPTg9raWgiCMO0ekZ0nPTx96lOfQnt7OxYtWkQ86dX3LBYLFi1ahN7eXpInWsfckZER1NfX44033qByzJVlGfX19XjllVeonhOWAv6NEE5Zo84r53K5IAgCOjs7sWTJEkSjUQQCAVgsFkQiEXLxdGxsDOl0Gh6PB4qiIBaLkbvG4XAYbrcbdrudNDi3241kMolEIkHuGodCIXi9XgiCgHg8DqvViqqqKsiyDFEU4ff7yd1tn88Hm82GWCwGQRDIxUJZluHz+ZBOpxGJROD3+2G1WhGNRuFwOOB0OiGKIhRFgdfrRSqV4p64J+6Je+KeuCfuiXvinrgn7ol74p5m6GlgYABnz56FIAiw2WxIJpPIZDJwOBxIp9NYtmwZ5s2bN6mnEydOwG63I5VKIZlMkocURFGEw+GA1WqFLMuwWCxknKIocDqdZE707HFWqxWCIJAn+bPHqXOnS5IEm81GxqXTaRKrLMs54/J5kmU5J1a73U7GAagoTzdu3EBDQwM8Hg/S6TTGxsbgcDjIA28WiwWBQACPP/44HnnkEXi9XiiKAlEU4XQ64XA4EI1GYbVa4ff7sXPnTsyfPz+vp2vXruGhhx5COBxGJpOB3++HKIqQZRlVVVWwWq2Ix+MQBAFerxe7du1CTU3NTZ6GhoawefNm2O12uN1u8sR3MBhELBaDoig4cOAALBYLNm3apMmTOguCz+eDLMuQJIlcY4nFYrDZbPD5fDne1TwNDAygqakpx5P6xPdzzz2HBQsWUM1TNBolb3bMxNP+/fuRSqWwdevWHE8T89Ta2oo5c+bcVHuhUAgbN25EIBAgb4upbxkkEgnY7XY888wzWLhwIQDgypUraGxshKIoBT21trbi1ltvzbs/jY6OoqGhoWCe9u7di9ra2rz70/DwMBobG2+qPTVPqqcnn3wSjz32WI6nfLWnNU+HDh3CrFmzZtQjhoaG0NTUVHB/muhpsjzNxNOePXswb948w/reqlWryv6YO53fEQMDAyX7Rgi/EcIpayr9Y+ljY2Po6OjAmjVryGuJ5QprXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNlBu0P5aeTCZx+fJl3HbbbWTqlXKFNS96xFPoA8tVVVVYs2YNOjo68K//+q9UP5aera1OTTMTvey482nN5GPp041nMtRlN23ahFtvvTVvnNP1Nhn8Y+mTM5nOxFyW68fS58yZM6P93YiPpc9022phsn5H62PprJ+DlfJaLp8ai8MpYybOkVvOsObF6Hj0XB9NbRpaWjRYq5NKxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9WsRqs1UilM3Ee+HKGNS9GxzPx2wusatPQ0qIx8fsonNKiZ90aCWv9BzB22+rp30znYLTR5/P0HA7HEDweD+67775Sh0EF1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0HA5HzpOs5QxrXoyOJx6P4/nnn2dem4aWFg112XvuuUdTDBw66Fm3RsJa/wGM3bZ6+jfTORhtyvv2IYdT4SiKQj5WXO6w5sXoePRcH01tGlpaNFirk0rHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1axGqzVSKXD0pOtWmHNi9HxCIJAPhbPsjYNLS0a6rKs1Emlo2fdGglr/Qcwdtvq6d9M52C04TdCOJwyJhaLobW1FbFYrNShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh1ZlnHq1CnIslzqUDTDmhej4/F6vXjggQfg9XqZ1qahpUVDXTaVShW9fg499KxbI2Gt/wDGbls9/ZvpHIw2/GPpnLKm0j+WzuFwOBwOh8PhcDic/ND+WDqnvKD9oWhaH6aeSm+6H+cGpvexdBpMFiv/WPrky+r5sXQ9NADjP5Y+04+QG/Gx9Ino+bH0yaD1sXTW4R9L53A4HA6Hw+FwOBwOh8PhcDgcDofD0QF+I4TDKWPC4TC+//3vIxwOlzoUzbDmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpSOKIt566y2IoljqUDTDmhej4wkEAnj00UcRCASY1qahpUVDXTaZTBa9fg499KxbI2Gt/wDGbls9/ZvpHIw2/EYIh1PGuN1urF+/Hm63u9ShaIY1L0bHo+f6aGrT0NKiwVqdVDpmyQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh273Y4lS5bAbreXOhTNsObF6HgSiQSOHDmCRCLBtDYNLS0a6rI2m63o9XPooWfdGglr/Qcwdtvq6d9M52C0EUodAIfDKR61cZoB1rwYHY+e66OpTUNLiwZrdVLpmCUfrPng/Uc/Pd5/zIOZ8sGaF96D9NMqVoO1Gql0bDYb5s6dW+owqMCaF6PjSSaTOHfuHPPaNLS0aKjLWq38WWoW0LNujYS1/gMYu2319G+mczDa8C7G4ZQxZnkSAGDPi9Hx8KeRjFs/hx5myQdrPnj/0U+P9x/zYKZ8sOaF9yD9tIrVYK1GKh31QpkZpglizYvR8fA30ma2rKIoRa+fQw+Wnq7XAmv9BzB22+rp30znYLThN0I4HA6Hw+FwOBwOh8PhcDgcDofD4ZgWPjUWh1PGqHerzQBrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDosTfGhFda8GB2P+pQy69o0tLRoqMt+61vf0hQDhw561q2RsNZ/AGO3rZ7+zXQORhv+RgjHFLhcLni9XgBAKpVCKBRCJpMBAEQiEciyDAAYGxtDPB4HACiKglAoRDTC4TB5JS2RSJBXtpLJJMLhMBkXCoXIK6HxeBxjY2MAAFmWEYlEAACZTAahUAipVAoAEIvFIIoiAECSJESjUQBAOp1GKBRCOp0GAESjUUiSBAAQRRGxWKygp2QyiVOnThEf5expZGQEp0+fRjKZZCJPsVgM3d3dSCaTmvMETF17iUQC586dI3/T9BSNRnHu3Dnyd6nzdP36dfIK6Ew9JZNJdHd3Ex8096fp5Klc9iejPMXjcfz+979HMpksa0+hUAinTp1CMplkIk9jY2N4++23iQ+9a49mj5joKRQK4dy5c+RvLXmKx+OIRCI4d+4c+XumeRoeHkZvby+SyWRFH3PN0PdEUcTbb79NfJSzp9HRUZw7dw6iKDKRp+HhYZw9exbJZNKQ2ksmkzh79iyGh4epe0omk3j33XcxPDzMRJ6K/b2XTCZx+vRpjIyMkDzxHjEzT5IkEW31eJ+tl8+T+ncqlSLxpFIpXL16lfybeoxQ/02NJ5PJQBRFEqssy2Q7KIpy07jsWLPHZcc6cVw+T2qs6nbJHpcdazwex/Xr14m/7FhL4SmRSGBoaIj87i/G08RxaqwejwdVVVUAAIfDAb/fTy5Ezp07l8Tg9XrhcrkAAE6nEz6fDwBgtVoRDAan9JTJZBAMBon27Nmz4XA4AABVVVXweDwAAEEQEAwG83pSte12O+bMmUM+qhwMBiEIAlmvuozqCQAsFktOrF6vF16vF0uWLIHH47nJk/rtD5/PB6fTCSD3GovT6cSdd95J1pVde6lUKq+nZDJJJU/ZntQPtk+Vp8k8pVIp4slmsyEYDMJisQAA/H4/yVOh2gsEAuTj1m63m0yhZLfbc6Y4SiaTJE+FPKnXG4D8+9NET7NmzcLy5ctht9vhcrnIMoV6RKHaK+QpEAiQcdm1pzVPmUwG8XicHJ+n2yOy86SHJ5/PhyVLlsDtdhNPevU9RVFw/fp1JBIJkidax9yxsTGcO3eO/K3GXewxV5IknDt3Djdu3KB6TlgK+I0Qjimoq6vDhg0bAADDw8NoaWkhO+e+ffvQ29sLAOjo6MDRo0cBAP39/WhpaSEau3btwsWLFwEAx48fx/HjxwEAFy9exK5du8i4lpYW9Pf3AwCOHj2Kjo4OAEBvby/27dsHYLxxtLS0kBO6w4cPo7OzEwDQ3d2NgwcPAhhvDi0tLaQZHTx4EN3d3QCAzs5OHD58uKCnRCKBo0ePmsJTa2srXn31VSQSCSby9Lvf/Q5Hjx5FIpHQnCdg6tp79913ceTIEfz85z+n7unEiRM4cuQIfve73zGRp71795L5IWfqSa35EydOAKC7P00nT+WyPxnl6dSpU2Q/KXdPqg8W8nTx4kW89tpr5Met3rVHs0dM5unIkSO4ePEilTy9+eabOHLkCE6dOlVUnnbu3IlXXnkFiUSioo+5Zuh7V65cwWuvvYbR0dGy9/TSSy/hyJEjuHLlChN5yt5PjKi9RCKBV155BTt37qTuSX2yc+fOnUzkqdjfe4lEAq+++ipaW1tJnniPmJmn7u5uon358mWcP3+e6O3evTuvJ/Xv0dFRnDx5EsD4Raf333+f9J/z58/j8uXLZL1qPKlUCl1dXeR43tvbS7bD4OAgTp8+Tbx3dXWRWE+fPo3BwUGyzdVcJBIJdHV1kQtXhTx1dXURTydPniSxXrx4McdTd3c3eUCpq6uLbNdSeTp16hTee+89JJPJoj2peQKArq4ucnFv3bp1WLNmDQBg6dKlaGxsJE8pf+c73yEXOTds2IC6ujoAwMqVK9HQ0ABg/AJsc3MzubCZz5MkSWhubsasWbOwfv16bNmyBUuXLgUArFmzBuvWrQMA1NbWorm5Oa8nNbeLFy/GX/3VX5HvFjQ3N6O2thYAMDQ0RG6Qqp6A8QvOzc3NOZ7+9E//FOvXr8ef/Mmf3ORJveDb0NCAlStXAsi9xrJw4UKsW7eOXITNrr2RkZG8nvr6+qjkKdtTdXX1tPI0mafR0VHiqbq6Gs3NzeQmSWNjI8lTodrbtm0bFi9eDABYu3Yt1q5dS/LU19dHxl26dInkqZCnS5cuTbk/TfS0ceNG3HPPPXC73airq8PVq1cBFO4RhWqvkKdt27aRcdm1pzVPiqLg5MmTpP9Mt0dk50kPT3/2Z3+G9evX4xOf+ATxpFffE0UR586dw6lTp0ieaB1zL168iCNHjlA75g4NDeHIkSNoa2ujek5YCiwZ9XYNh1OGnD17FsuXL4fL5YIgCOjs7MSSJUsQjUYRCARgsVgQiUTgcrngcDgwNjaGdDoNj8cDRVEQi8XIXeNwOAy32w273U4anNvtRjKZRCKRIHeNQ6EQvF4vBEFAPB6H1WpFVVUVZFmGKIrw+/3IZDIIh8Pw+Xyw2WyIxWIQBAEulwuSJEGWZfh8PqTTaUQiEfj9flitVkSjUTgcDjidTnKH2Ov1IpVKcU/cE/fEPXFP3BP3xD1xT9wT98Q9cU8z9DQwMICzZ89CEATYbDbyJqvD4UA6ncayZcswb968ST2dOHECdrudvKGgPtksiiIcDgesVitkWYbFYiHjFEWB0+lEJpOBJEk546xWKwRBIE/yZ49zOp2wWCyQJAk2m42MS6fTJFZZlnPG5fMky3JOrHa7nYwDUFGebty4gYaGBng8HqTTaYyNjcHhcMDlciESicBisSAQCODxxx/HI488Aq/XC0VRIIoinE4nHA4HotEorFYr/H4/du7cifnz5+f1dO3aNTz00EMIh8PIZDLw+/0QRRGyLKOqqgpWqxXxeByCIMDr9WLXrl2oqam5ydPQ0BA2b94Mu90Ot9tNnvgOBoOIxWJQFAUHDhyAxWLBpk2bNHmKRCJIp9Pw+XyQZRmSJJFrLLFYDDabDT6fL8e7mqeBgQE0NTXleFKf+H7uueewYMECqnmKRqPkzY6ZeNq/fz9SqRS2bt2a42linlpbWzFnzpybai8UCmHjxo0IBALkbTH1LYNEIgG73Y5nnnkGCxcuBDD+wEZjYyMURSnoqbW1Fbfeemve/Wl0dBQNDQ0F87R3717U1tbm3Z+Gh4fR2Nh4U+2peVI9Pfnkk3jsscdyPOWrPa15OnToEGbNmjWjHjE0NISmpqaC+9NET5PlaSae9uzZg3nz5hnW91atWlX2x9zp/I4YGBjA8uXLoXLmzBksW7YMRsBvhHDKGvVGiIqROw+Hw+FwOBwOh8PhcNimv78fFy5cyPvvq1evJk+FT6S9vV2nqDhGMTg4iI0bN045bseOHdi+ffuU49ra2lBTU6N5fVPpTUenra0NAPKOm66n6TJZrIXinGpbTVeHBlNtq+xxWvKhLjtdPzTqiVZN0q6XQsykNlT0rpHJKCZOLdTX1xu2rlJSymu5fGosDqeMCYVC+N73vlfyOfZowJoXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjiiK6OjoyPluQLnCmhej4wkGg/jud7+b820BFrVpaGnRUJfN/gYGp3ToWbdGwlr/AYzdtnr6N9M5GG34jRAOp4zxer3YsmUL+eBXOcOaF6Pj0XN9NLVpaGnRYK1OKh2z5IM1H7z/6KfH+495MFM+WPPCe5B+WsVqsFYjlY7D4cAnPvEJ8sHecoY1L0bHE4vFsH//fvLBX1a1aWhp0VCXVT+AzSktetatkbDWfwBjt62e/s10DkYbodQBcDic4hEEAYsWLSp1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHarWW/ZPYKqx5MToeRVFyPnDNqjYNLS0a6rJWK3+WmgX0rFsjYa3/AMZuWz39m+kcjDa8i3E4ZUw8Hsfzzz+PeDxe6lA0w5oXo+PRc300tWloadFgrU4qHbPkgzUfvP/op8f7j3kwUz5Y88J7kH5axWqwViOVjizLOHPmDGRZLnUommHNi9HxeDwe3HffffB4PExr09DSoqEuqyhK0evn0EPPujUS1voPYOy21dO/mc7BaMNvhHA4ZYx6B9kMT2aw5sXoePRcH01tGlpaNFirk0rHLPlgzQfvP/rp8f5jHsyUD9a88B6kn1axGqzVSKVjsVjgcrlgsVhKHYpmWPNidDzpdBqhUAjpdJppbRpaWjTUZVmpk0pHz7o1Etb6D2DsttXTv5nOwWjDp8bicMqYqqoqfPGLXyx1GFRgzYvR8ei5PpraNLS0aLBWJ5WOWfLBmg/ef/TT4/3HPJgpH6x54T1IP61iNVirkUrHbrfjox/9aKnDoAJrXoyOZ2xsDMeOHWNem4aWFg112S1btmiKgUMHPevWSFjrP4Cx21ZP/2Y6B6NN6W/FcDicopFlGT09PUy9SlgsrHkxOh4910dTm4aWFg3W6qTSMUs+WPPB+49+erz/mAcz5YM1L7wH6adVrAZrNVLppFIpDA4OIpVKlToUzbDmxeh4HA4HVqxYocvHimlq09DSoqEuW+5vIJgFPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxoiiivb0doiiWOhTNsObF6Hj0XB9NbRpaWjRYq5NKxyz5YM0H7z/66fH+Yx7MlA/WvPAepJ9WsRqs1Uilo35M1wzfS2DNi9HxuFwu1NfXw+VyMa1NQ0uLhrosSxesKxk969ZIWOs/gLHbVk//ZjoHo40lk8lkSh0Eh1MsZ8+exfLly8l/nzlzBsuWLSthRBwOh8PhcDgcDofDYYX+/n5cuHAh77+vXr0aTqdz0n9rb2/XKSqOUQwODmLjxo1TjtuxYwe2b98+5bi2tjbU1NRoXt9UetPRaWtrA4C846brabpMFmuhOKfaVtPVocFU2yp7nJZ8qMtO1w+NeqJVk7TrpRAzqQ0VvWtkMoqJUwv19fWGrauUlPJaLn8jhMMpYzKZDERRhBnuZ7Lmxeh49FwfTW0aWlo0WKuTSscs+WDNB+8/+unx/mMezJQP1rzwHqSfVrEarNVIpZPJZKAoiinywZoXo+PR82PFNLVpaGnRUJdlpU4qHRY/Ml4MrPUfwNhtq6d/M52D0YbfCOFwyphwOIwnnngC4XC41KFohjUvRsej5/poatPQ0qLBWp1UOmbJB2s+eP/RT4/3H/Ngpnyw5oX3IP20itVgrUYqHUmScOLECUiSVOpQNMOaF6PjCQQCePTRRxEIBJjWpqGlRUNdlqUpjCoZPevWSFjrP4Cx21ZP/2Y6B6MNvxHC4ZQxPp8PTU1N8Pl8pQ5FM6x5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6TgcDtx5551l/6FigD0vRscTjUaxe/duRKNRprVpaGnRUJcVBKHo9XPooWfdGglr/Qcwdtvq6d9M52C04V2MwyljbDabofMV6glrXoyOR8/10dSmoaVFg7U6qXTMkg/WfPD+o58e7z/mwUz5YM0L70H6aRWrwVqNVDpWqxVer7fUYVCBNS9Gx5NKpTA4OMi8Ng0tLRrqsuU+FZNZ0LNujYS1/gMYu2319G+mczDa8DdCOJwyJhaLYf/+/YjFYqUORTOseTE6Hj3XR1ObhpYWDdbqpNIxSz5Y88H7j356vP+YBzPlgzUvvAfpp1WsBms1UunIsoyenh7IslzqUDTDmhej4/F6vXjggQd0uRhJU5uGlhYNdVk+NRYb6Fm3RsJa/wGM3bZ6+jfTORht+I0QDqeMEQQBixYtMsUrqqx5MToePddHU5uGlhYN1uqk0jFLPljzwfuPfnq8/5gHM+WDNS+8B+mnVawGazVS6VitVgSDQVit5X85hTUvRsejKAr6+vp0ucBPU5uGlhYNdVn+Rggb6Fm3RsJa/wGM3bZ6+jfTORhtSh8Bh8MpGpfLhfr6+lKHQQXWvBgdj57ro6lNQ0uLBmt1UumYJR+s+eD9Rz893n/Mg5nywZoX3oP00ypWg7UaqXTUCzpmgDUvRscjiiLa29uZ16ahpUVDXbapqUlTDBw66Fm3RsJa/wGM3bZ6+jfTORht2LntxuFowOVykVfXUqkUQqEQMpkMACASiZBXzcbGxhCPxwGM3+kNhUJEIxwOI5lMAgASiQQSiQQAIJlMIhwOk3GhUIjcHY7H4xgbGwMw/lpbJBIBAGQyGYRCIaRSKQDjr4GJoggAkCSJfHgpnU4jFAohnU4DGP8wkyRJAMYbsPraWD5PkiThV7/6FW7cuFH2noaHh/HWW29BkiQm8hSJRNDe3g5JkjTnCZi69mKxGDo7OzE6OkrdUzgcRmdnJyKRCBN5+vDDD9HZ2QlJkmbsSZIkdHR0kO1Cc3+aTp7KZX8yylM0GiX7STl7unHjBn71q19BkiQm8hSPx/Hmm28SDb1rj2aPmOjpxo0b6OzsRDwep1J7oVAInZ2diEajReVpaGgIv/71r8n/X6nHXDP0vUQigTfffDPnuF2unkZGRtDZ2YlEIsFEnrL3EyNqT5IknDhxAkNDQ9Q9SZKE3/zmNxgaGmIiT8X+3pMkCW+99RaGh4dJnniPmJknSZKIdjKZJP5UvXye1L9TqRSJR1EU/OEPfyAasiznjFPjyWQyEEWRxCrLMtkOiqLcNC471uxx2bFOHJfPkxqrul2yx2XHGo/H0d/fD0VRboq1FJ7i8Tg++OADKIpStKeJ49RYPR4PqqqqAIx/pNjv98PpdKKurg633HILicHr9cLlcgEAnE4n+biv+vT2VJ4ymQyCwSDRnjt3LvkYclVVFTweD4Dxi6DBYDCvJ1XbbrejuroadXV1cDqdCAaD5KlqRVHIMqonALBYLDmxer1e+P1+1NXVwefz3eRJfSLd5/PB6XQCyL3GUlX1/7d37+FRlGf/wL973iS7SThEAqKgtEoRFbQqaFtQK7UqSiseKCoYWxF7Cm3f1mpfTz14aK3mZzmoFUFF1GKLYgHRIqhoomgi5yJggACBELLJbjZ73t8fueZ5NyGHze7M7LOz3891cV0bMnvPfc/z7L3ZmZ2ZPFx88cUip8S5F41Gu60pHA6rMk6JNVkslqTGqauaotGoqMlisaC4uFic5VJYWCjGqae5V1RUBJvNBgDIz89Hfn6+GCelPiWGMk491RQOh3t9PXWuacCAAbjooovgcDjgdDrFc3rqET3NvZ5qKioqEsslzr10xykej8Pn82H//v2i1mR6ROI4aVFTUVERxo0bJ14zSq5a9L1wOIy6ujq0traKcVLrPbe1tRWVlZU4duyYKu+5bW1tqKysxNGjR1X9TJgJPBBChjBu3DhMnToVQPuO2oqKCvHiXLhwIbZt2wYAWL9+PVasWAEAqKurQ0VFhYgxf/587N69GwCwZs0arFmzBgCwe/duzJ8/XyxXUVGBuro6AMCKFSuwfv16AMC2bduwcOFCAO2No6KiQnxYWbZsGSorKwEA1dXVWLJkCYD25lBRUSGa0ZIlS1BdXQ0AqKysxLJly3qsKRQKoaqqCitXrsz6ml588UV88sknCIVC0ozThg0bxJtFOuME9D73vvjiC9TU1OCdd97RpKaamhppxmnhwoXiWph9rSkUCmHDhg2avJ6SGadseT3pVdPWrVvx/vvvi53E2VrTypUrUVVVhVAoJMU47d27F++9957441GPuadWj+hc08qVK1FTU4O9e/eqMvfee+891NTUYOvWrSmN04IFC1BdXY1QKJTT77lG6HuHDh3Ce++9Jz6oZXNNy5cvR01NDQ4dOiTFOC1YsACffvopQqGQLnMvFArh008/xYIFC1SvKRQKobq6GgsWLJBinFL9ey8UCuGTTz7Biy++KMaJPaJvNVVXV4vYe/fuxc6dO0W8nuae8ripqQkbN24E0L7DZ9++fWJnzs6dO7F3716xXiWfaDSKqqoqsbNq27ZtYjvU19dj8+bNovaqqiqR6+bNm8XNeuvq6sRY+P1+VFVViR1XPdVUVVUlatq4cSOamprE2CTWVF1djfr6epGrsl0zVdOmTZtw4MABRKPRlGtSxgkAqqqqxM69yZMnY8KECQCAUaNGoaysDHa7HWPHjsWdd94pdnJOnToV48aNAwCMHTsW06dPB9C+A7a8vFzs2OyupmAwiPLycrjdbowZMwY333wzRo0aBQCYMGECJk+eDAAYOnQoysvLu61JGdsRI0bgtttuw5gxY2C321FeXo6hQ4cCAA4fPozGxsYONQHtO5zLy8uPq2nMmDE455xzjqtJ2eE7ffp0jB07FkDHfSyDBw/GhAkTupx7jY2N3dZUW1uryjgl1lRSUpLUOHVVU1NTk6ippKQE5eXl4iBJWVmZGKee5t7s2bMxYsQIAMCkSZMwadIkMU61tbViuT179ohx6qmmPXv29Pp66lzTDTfcgAsuuAB2ux3jxo3DwYMHAfTcI3qaez3VNHv2bLFc4txLd5wikQg+/fRTHDp0CNFoNOkekThOWtT0rW99C2PGjMHo0aNFTVr1vVAohPr6emzatEmMk1rvuXv37kVNTQ1WrlypyntuY2Mjampq8Oqrr6r6mTATTHHlcA1RFtq6dStGjx4Np9MJq9WKyspKjBw5El6vF0VFRTCZTGhpaYHT6YTdbkdbWxtisRgKCgoQiUTg8/nEUePm5mbk5+fDZrOJBpefn49wOAy/3y+OGns8HrhcLlitVrS2tsJsNiMvLw+hUAiBQACFhYWIx+Nobm6G2+2GxWKBz+eD1WqF0+kU3zh2u92IxWJoaWlBYWEhzGYzvF4v7HY7HA4HAoEAIpEIXC4XotEoa2JNrIk1sSbWxJpYE2tiTayJNbGmPtZ04MABbN26FVarFRaLBeFwGPF4HHa7HbFYDGeccQYGDRrUZU0bNmyAzWZDNBpFOBwW32wOBAKw2+0wm80IhUIwmUxiuUgkAofDgXg8jmAw2GE5s9kMq9UqvsmfuJzD4YDJZEIwGITFYhHLxWIxkWsoFOqwXHc1hUKhDrnabDaxHICcqunYsWOYPn06CgoKEIvF0NbWBrvdDqfTiZaWFphMJhQVFeHee+/FL37xC7hcLnGGjMPhgN1uh9frhdlsRmFhIebNm4fBgwd3W9OhQ4dw5513orm5GfF4HIWFhQgEAgiFQsjLy4PZbEZrayusVitcLhfmz5+P0tLS42o6fPgwbr75ZthsNuTn54tvfBcXF8Pn8yESieCFF16AyWTCTTfdlFZNLS0tiMVicLvd4gtOyj4Wn88Hi8UCt9vdoXZlnA4cOIBZs2Z1qEk5SPj8889jyJAhqo6T1+sVZ3b0paZFixYhGo3ijjvu6FBT53FavHgxBgwYcNzc83g8mDZtGoqKisTZYspZBn6/HzabDc8++yxOOukkAMD+/ftRVlaGSCTSY02LFy/GiSee2O3rqampCdOnT+9xnJ555hkMHTq029dTQ0MDysrKjpt7yjgpNT366KO45557OtTU3dxLd5xeeukl9OvXr0894vDhw5g1a1aPr6fONXU1Tn2p6amnnsKgQYN063sXXHBB1r/nJvN3xIEDBzB69GgotmzZgjPOOAN64IEQymrKgRCFni8eGXRuStlMtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkeyTV1dHXbt2tXt78ePHy++Fd5ZV9eK77yzK5vJVosW+dTX12PatGld/i5xp/ljjz2GOXPm9Bpv6dKlKC0t7XV9nXfI9zVeYt7dxVq6dCkAdFvf448/LmpKNp+udD4I1F2eydbWlZ7iqKG3bZW4XG/jkcxzk60n2fmUqPNYphKjK4nzRWtLly4VBxiSfb1rPUeAvm/bdHTV79S6j4bsn8EyuS+Xf0URZbHOp4ZnM9lq0TsfLdenZmw1YqUTQ7Z5kuuMMh6y1cH+o1089h/jMNJ4yFYLe5B2sVKNIdscyXWdL3+SzWSrRe98Ol9ySNbYasRKJ0bny4JRZmk5b/UkW/8B9N22WtZvpM9gauMZIZTVeEaIcb4dJlst/DakdrH4jWzjMMp4yFYH+4928dh/jMNI4yFbLexB2sXiGSGZwTNCuidbLTwjpOu8eUZI+nhGCM8ISQbPCNEmnkxnhFh1WQsRacJsNovrBWY72WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdSaTSdzbINvJVove+cRiMXFPAZljqxErnRjKc2U4WEbazls9ydZ/AH23rZb1G+kzmNr4dRKiLOb1erFgwQJ4vd5Mp5I22WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdcFgEBs3bpTqci6pkq0WvfNxu92444474Ha7pY6tRqx0YijP5aWx5KDlvNWTbP0H0Hfbalm/kT6DqY0HQoiymN1ux5gxY2C32zOdStpkq0XvfLRcn5qx1YiVTgzZ5kmuM8p4yFYH+4928dh/jMNI4yFbLexB2sVKNYZscyTXWSwWlJaWwmKxZDqVtMlWi975hEIh1NTUIBQKSR1bjVjpxFCeyzNC5KDlvNWTbP0H0Hfbalm/kT6DqY2XxiLKYg6HA+PGjct0GqqQrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFcZ7VaMXTo0EynoQrZatE7n2AwiMrKSuljqxErnRjKc3/+85+nlQOpQ8t5qyfZ+g+g77bVsn4jfQZTG88IIcpigUAA69atQyAQyHQqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXiURQW1triMsEyVaL3vk4nU5MnDhRk+v0qxlbjVjpxFCeG41GU14/qUfLeasn2foPoO+21bJ+I30GUxsPhBBlMRnfOFIlWy1656Pl+tSMrUasdGLINk9ynVHGQ7Y62H+0i8f+YxxGGg/ZamEP0i5WqjFkmyO5TrmZbiwWy3QqaZOtFr3zsVqtGD58OKxW9S+WomZsNWKlE0N5bjweT3n9pB4t562eZOs/gL7bVsv6jfQZTG2mODsZZbGtW7di9OjR4uctW7bgjDPOyGBGREREREREJIu6ujrs2rWr29+PHz8eDoejy9+tW7dOo6xIL/X19Zg2bVqvyz3++OOYM2dOr8stXboUpaWlaa+vt3jJxFm6dCkAdLtcsjUlq6tce8qzt22VbBw19LatEpdLZzyU5yZbjxrzSa05qfZ86Ulf5oZC6znSlVTyTMfEiRN1W1cmZXJfLs8IIcpi0WgU9fX1hjhFVbZa9M5Hy/WpGVuNWOnEkG2e5DqjjIdsdbD/aBeP/cc4jDQestXCHqRdrFRjyDZHcl0sFoPP55PqW8ypkq0WvfPR8mbFasZWI1Y6MZTn8nvUcpDxJuOpkK3/APpuWy3rN9JnMLXxQAhRFvN6vXjqqafg9XoznUraZKtF73y0XJ+asdWIlU4M2eZJrjPKeMhWB/uPdvHYf4zDSOMhWy3sQdrFSjWGbHMk14VCIXz66acIhUKZTiVtstWidz5utxt33HEH3G631LHViJVODOW5MlzWhrSdt3qSrf8A+m5bLes30mcwtfHSWJTVcv3SWPF4HMFgEA6HAyaTKdPppEW2WvTOR8v1qRlbjVjpxJBtnuQ6o4yHbHWw/2gXj/3HOIw0HrLVwh6kXaxUY8g2R7KN2pfGisfjiEajsFgsWT8estWiRT49XU7HZDLB4XAgGAzir3/9q6qXxkqM3dNut2QuxdRdrL5cGivZfLqiPHfhwoUYPHhwt3kmW1tXeGmsrnUVp/NYZuulsQYNGtSn17sel8bq67ZNR1f9Tq1LY8n+GSyT+3Kz+846RDnOZDLB6XRmOg1VyFaL3vlouT41Y6sRK50Yss2TXGeU8ZCtDvYf7eKx/xiHkcZDtlrYg7SLlWoM2eZIrjOZTFl/k2KFbLXonU88HkcgEJA+thqx0omhPFeGg2Wk7bzVk2z9B9B322pZv5E+g6mNl8YiymItLS144okn0NLSkulU0iZbLXrno+X61IytRqx0Ysg2T3KdUcZDtjrYf7SLx/5jHEYaD9lqYQ/SLlaqMWSbI7kuGAyisrISwWAw06mkTbZa9M6nsLAQ5eXlKCwslDq2GrHSiaE8NxwOp7x+Uo+W81ZPsvUfQN9tq2X9RvoMpjYeCCHKYk6nExMnTpTmyGo6ZKtF73y0XJ+asdWIlU4M2eZJrjPKeMhWB/uPdvHYf4zDSOMhWy3sQdrFSjWGbHMk11mtVgwfPly6bzKnQrZa9M4nEAhg3bp1mnwDXM3YasRKJ4by3Gy/ObdRaDlv9SRb/wH03bZa1m+kz2Bqk2e2EVGf2e12jBkzJtNpqEK2WvTOR8v1qRlbjVjpxJBtnuQ6o4yHbHWw/2gXj/3HOIw0HrLVwh6kXaxUY8g2R3KdxWLR7JrxepOtFr3zCYVCqKmpkT62GrHSiaE812zmd6lloOW81ZNs/QfQd9tqWb+RPoOpjV2MKIu1tbVh9erVaGtry3QqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXDoexa9cuQ1wmSLZa9M4nLy8Pl19+OfLy8qSOrUasdGIoz41Goymvn9Sj5bzVk2z9B9B322pZv5E+g6mNB0KIslgsFoPH40EsFst0KmmTrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFcp9xMNx6PZzqVtMlWi975mM1mFBcXa3Kmg5qx1YiVTgzlubLMk1yn5bzVk2z9B9B322pZv5E+g6mNl8YiymIFBQW48cYbM52GKmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNfZ7XaMHj0602moQrZa9M6ntbUVL7/8svSx1YiVTgzluddcc01aOZA6tJy3epKt/wD6blst6zfSZzC1ZffhQ6IcF4lEUFtbi0gkkulU0iZbLXrno+X61IytRqx0Ysg2T3KdUcZDtjrYf7SLx/5jHEYaD9lqYQ/SLlaqMWSbI7lOpm+2pku2WvTOR8ubFasZW41Y6cRQnivLPMl1Mt5kPBWy9R9A322rZf1G+gymNh4IIcpiPp8Pixcvhs/ny3QqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXCoXw+eefIxQKZTqVtMlWi975uFwuzJw5Ey6XS+rYasRKJ4byXN4jRA5azls9ydZ/AH23rZb1G+kzmNpMcZkuxkbUR1u3bu1wKtmWLVtwxhlnZDAjIiIiIiIikkVdXR127drV7e/Hjx8Ph8PR5e/WrVunUVakl/r6ekybNq3X5R5//HHMmTOn1+WWLl2K0tLStNfXW7xk4ixduhQAul0u2ZqS1VWuPeXZ27ZKNo4aettWiculMx7Kc5OtR435pNacVHu+9KQvc0Oh9RzpSip5pmPixIm6rSuTMrkvl2eEEBERERERERERERGRYfFACFEWa25uxsMPP4zm5uZMp5I22WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdYFAAB988AECgUCmU0mbbLXonU9RURHuuusuFBUVSR1bjVjpxFCeGw6HU14/qUfLeasn2foPoO+21bJ+I30GUxsPhJAhOJ1OcQ2/aDQKj8cD5apvLS0t4pp7bW1taG1tBdB+sx6PxyNiNDc3izd2v98Pv98PAAiHwx1erB6PR9zgp7W1FW1tbQDar+/X0tICAIjH4/B4POIamj6fTzS3YDAIr9cL4PibI3m9XgSDQQDtTVG5fl53NeXn5+O73/2u+P9srikSieDKK69Efn6+FONksVjwne98B/n5+WmPE9D73LPZbJgyZYqoS82azGYzpkyZAovFIsU4hcNhTJkyBfn5+X2uKT8/H9/5zndgNre/fan5ekpmnLLl9aRXTVarFZMmTUJ+fn5W1xSPx/Hd734X+fn5UoyT3W7HZZddhvz8fFXGSc8e0bmmeDyOKVOmwG63qzL3TCYTpkyZAqvVmtI4hUIhXH311cjPz8/p91wj9D2Hw4HLLrsMeXl5WV9TLBbDlClT4HA4pBinUCiEyZMnIz8/X5e5l5+fj8mTJ3e4RrZaNeXn5+Oaa65BKBSSYpxS/XsvPz8fV155ZYf3LfaIvtUUDAZF7HA4LOpT4nVXk/I4Go2KfGw2G0499VRYLBZRR+JySj7xeFzMHWU5ZTtEIpHjlkvMNXG5xFw7L9ddTYk71gKBQIflEnONRqMYOXIkbDbbcblmoqZYLIavfvWrsNlsKdfUeTkl14KCAvGeYbfbUVhYCL/fj+XLl8Nms4kcXC4XnE4ngPb3GrfbDQAwm80oLi7utaZ4PI7i4mIR22KxwG63AwDy8vJQUFAAoP3v6OLi4m5rUmLbbDZYrVYsX74cfr8fxcXF4kbOkUhEPEepCQBMJlOHXF0uF6LRKJYvX45IJHJcTcpnK7fbLS4Tl7iPJRAI4O233+7wGUxZbzQa7bamcDisyjgl1qS87nobp65qikajoiaLxYLi4mKYTCYAQGFhoRinnuZeUVERbDYbACA/P1/8va7M2cTalXHqqaZwONzr66lzTWazGW+++Sb8fj+cTqd4Tk89oqe511NNiQcEEudeuuMUj8cRjUZx+umnw2azJd0jEsdJi5pisRiWL1+OcDgsatKq71mtVowcORKxWEyMk1rvuXa7HVOmTEE8HlflPdfpdGLKlCkd3g/U+EyYCTwQQoYwbtw4TJ06FQDQ0NCAiooK8eJcuHAhtm3bBgBYv349VqxYAaD9WrEVFRUixvz587F7924AwJo1a7BmzRoAwO7duzF//nyxXEVFBerq6gAAK1aswPr16wEA27Ztw8KFCwG0N46Kigo0NDQAAJYtW4bKykoAQHV1NZYsWQKgvTlUVFSIZrRkyRJUV1cDACorK7Fs2bIea7LZbDh06BBWr16d9TW98MILiEajsNlsUozTli1bUFVVBZvNlvY4Ab3PvX379mHkyJF49913Va/p008/xciRI7FlyxYpxunvf/+7+MDV15psNhs+//xzfPrppwDUfT0lM07Z8nrSq6YvvvgC7733nvjjNVtrWr16NQ4dOgSbzSbFOB0+fBhvvvmm+ONd67mnZo/oXNPq1asxcuRIHD58WJW59+GHH2LkyJH44osvUhqnefPmYciQIbDZbDn9nmuEvufxePDmm2+KD6XZXNPrr7+OkSNHwuPxSDFO8+bNw4ABA2Cz2XSZezabDQUFBZg3b57qNdlsNpxyyimYN2+eFOOU6t97NpsN0WgUL7zwghgn9oi+1VRdXS1i7927Fzt37hTxFixY0G1NyuOmpiZs3LgRQPsO1C+++ELsrNq5cyf27t0r1qvkE41GUVVVJXZWbdu2TWyH+vp6bN68WdReVVUlct28eTPq6+vFNlfGwu/3o6qqSuy46qmmqqoqUdPGjRvR1NQkxiaxpurqagwcOBAWiwVVVVViu2aqpk2bNiEej8NisaRckzJOAFBVVSV27k2ePBkTJkwAAIwaNQplZWUIh8Oora3FT37yE/F+MnXqVIwbNw4AMHbsWEyfPh1A+w7Y8vJysWOzu5qCwSDKy8thsViwY8cO3HLLLRg1ahQAYMKECZg8eTIAYOjQoSgvL++2JmVsR4wYgR/96EfYsWMHwuEwysvLMXToUADtfzM2NjZ2qAlo3+FcXl7eoaavf/3r2LFjB84888zjalJ2+E6fPh1jx44F0HEfS79+/UTeQMe519jY2G1NtbW1qoxTYk0lJSVJjVNXNTU1NYmaSkpKUF5eLg6SlJWViXHqae7Nnj0bI0aMAABMmjQJkyZNEuNUW1srltuzZ48Yp55q2rNnT6+vp8413XDDDXC5XAiHwxg3bhwOHjwIoOce0dPc66mm2bNni+US51664xSJRLBx40a43W5YLJake0TiOGlR00UXXYQdO3bgtNNOEzVp1fcAYODAgdi0aZMYJ7Xecw8fPoyRI0di9erVqrzntrW1YeTIkXj11VdV/UyYCbxZOmU15QY7TqcTVqsVlZWVGDlyJLxeL4qKimAymdDS0gKn0wm73Y62tjbEYjEUFBQgEonA5/OJo8bNzc3Iz8+HzWYTDS4/Px/hcBh+v18cNfZ4PHC5XLBarWhtbYXZbEZeXh5CoRACgQAKCwsRj8fR3NwsmrrP54PVaoXT6UQwGEQoFILb7UYsFkNLSwsKCwthNpvh9Xpht9vhcDgQCAQQiUTEtze6qikSiWDlypWYMGECSkpKsrqmw4cP44MPPsB3v/tdmEymjI9TU1MT3nnnHVx55ZVwOp1pjVMycw8A3n33XXzjG98Q31hQq6ZQKIT33nsPEyZMgNVqzfg4NTY2orKyEpMmTUIoFOpTTcFgEP/+979x6aWXon///qq+nozYI7SuyePxYM2aNbjqqquQl5eXtTU1NDRg/fr1uOKKK2C1WjM+Ti0tLVi9ejWuuuoq5Ofnaz731OwRnWvy+XzYsGEDLrnkEsRisbTnXiAQwPvvv4+JEyfCbDb3eZwOHz6MyspKfOc730E0Gs3Z91wj9D2v14tVq1bhyiuvFK+bbK2ppaUFH374IS699FJEo9GMj1N9fT0++ugjXH755YjFYprPPZPJhNWrV2P8+PEYPHiwqjVZrVa89dZbGDduHE444YSMj1Oqf+/F43GsWrUK3/jGNzBo0CD2iD7WdODAAWzduhVWqxUWiwXhcBjxeBx2ux2xWAxnnHEGBg0a1GVNGzZsEAeiwuEwnE4nwuEwdu7cia985StwOBwIhUIwmUxiuUgkAofDgXg8jmAwCLvdDrPZjFAoBLPZDKvVKr7Jn7icw+GAyWRCMBiExWIRy8ViMZFrKBTqsFx3NYVCIfEt7EAgAJvNJpYDIHJta2tDXV0dRowYId4XlVwzUZPP58O+ffvw1a9+FQBSqkkZJ2W5Y8eOYfr06eLb3m1tbbDb7eK9fdKkSaisrMSvf/1r/OIXv4DL5UIkEkEgEIDD4YDdbofX6xV/d8ybNw+DBw/utqZDhw7hzjvvRCgUwqRJk/Dhhx/C4/EgFAohLy8PZrMZra2tsFqtcLlcmD9/PkpLS4+r6fDhw7j55pths9nQv39/jB8/HmvWrIHdbofP50MkEsELL7wAk8mEm266SdTU0tICk8mEoqIi3HvvvaImm82GCRMmYN26deL1odTU0tKCWCwGt9uNUCiEYDAo9rH4fD64XC5cccUVuOqqq3DSSSd1mHsHDhzArFmzOtSkfOP7+eefx5AhQ9Iep8SavF6vOLOjp3HqXNOiRYsQjUZxxx13wOfzwWKxwO12o7m5GfF4HIWFhQgEAli8eDEGDBhw3NzzeDyYNm0aioqKxNliylkGfr8fNpsNzz77LE466SQAwP79+1FWVoZIJNJjTYsXL8aJJ57Y7eupqakJ06dP71DTCSecgG984xtYvXo1YrEYnnnmGQwdOrTbHtHQ0ICysrLj5p4yTkpNjz76KO65554ONSmfRYD2syeUuZfuOL300ktwuVyoq6vDV77yFcRisV57xOHDhzFr1iwEAoFuX0+da+pqnHqqyeFw4Fvf+hbeffddxONxPPXUUxg0aJAmfc9sNosDZnl5ebBYLLjgggtUec81m81Yu3YtLrroIrhcrrTfc61WK9555x1ceOGFKCoqSvsz4YEDBzJ2s3SrLmsh0ljiqYrKKY4K5ag5AHHqHtD1qXMKpVECXZ86p1BOwwPaTwdUTtFTTgdUKKdfAu1HyJVvHSinOCqU0wQBiD8KeqopEonAarX2eDpgttSkNGBAnnFSvo2d7jglU1PiG1lPp22mUpMS2+FwiNiZHKfE7ZJKTTabrcPptWq9ntKpSbbXE2vqe03KKdGy1KTkkE5NCj17ROealO/bWK3WDrmnWpNy+QK73S6e15dxUv44T6UmI73nGqVH2O32Dpe0yNaalG/sKjtlFJmqqaioSFx+Q4+55/f7xetT7Zr8fr+oKfEyHanUpMY4pfr3nt/v77Be9oi+16Q8X8lP0Tle55qUZS0Wi5hDys/K6yTxPTtxOZPJ1CGnxOWsVqv426Pzcom5KssouXa3XOeaEpdLfJy4nMVi6RCju1z1rknZrqnWlDhOTqdTxFPO4AHaLxGjXPYSgNiBC0Bc6gVo/9a08g1n5RIxynLd1WQymeDxeERs5UsnAMQlaoDjL3vTuSYlZjgcFpepAdDhOYnrVWoC/u+yN4k1KfmEQiHRizpfGi5xPYn7WJQdt13VbrFYur2Uj3JgR3mc+Jy+jFNiTYrexqmrmpQdvsD/XcpHoZwN1TnXznMv8RJEynYE2scp8Xk2m63DJQG7q8lms3XZSxJfT51r8vl84j1JOejfVa6J49TT3Oupps6XXFKkO05Kj+jt9dS5psRx0qIm5bOLcnAhMVeFWn1POTjocDhU3xem5N75Emapvucq8VwuV4fL5yn6+pnwwIEDyBQeCCHKYvn5+eI6w9lOtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkdync1mw8iRIzOdhipkq0XvfJT7eMgeW41Y6cRQnnvDDTeklQOpQ8t5qyfZ+g+g77bVsn4jfQZTG+8RQpTFwuGwuFZotpOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXjUZx9OhRcc36bCZbLXrno+yITPwmv4yx1YiVTgzlucpZCJRZWs5bPcnWfwB9t62W9RvpM5jaeCCEKIspR6sTT/XLVrLVonc+Wq5PzdhqxEonhmzzJNcZZTxkq4P9R7t47D/GYaTxkK0W9iDtYqUaQ7Y5kutk2qGTLtlq0Tsf5VvKiZeZkTG2GrHSiaE8V6Yd1rlMy3mrJ9n6D6DvttWyfiN9BlMbb5ZOWU25WbpCzxvsEBERERERkdzq6uqwa9eubn8/fvz4DtdyT7Ru3TqNsiK91NfXY9q0ab0u9/jjj2POnDm9Lrd06VKUlpamvb7e4iUTZ+nSpQDQ7XLJ1pSsrnLtKc/etlWycdTQ27ZKXC6d8VCem2w9aswnteak2vOlJ32ZGwqt50hXUskzHRMnTtRtXZmUyX25PCOEiIiIiIiIiIiIiIgMiwdCiLKYx+PBAw88AI/Hk+lU0iZbLXrno+X61IytRqx0Ysg2T3KdUcZDtjrYf7SLx/5jHEYaD9lqYQ/SLlaqMWSbI7kuEAhg/fr1CAQCmU4lbbLVonc+xcXFuP/++1FcXCx1bDVipRNDea5MlzDKZVrOWz3J1n8AfbetlvUb6TOY2ngghCiLuVwuzJgxAy6XK9OppE22WvTOR8v1qRlbjVjpxJBtnuQ6o4yHbHWw/2gXj/3HOIw0HrLVwh6kXaxUY8g2R3Kd3W7H2WefDbvdnulU0iZbLXrn4/P5sGjRIvh8PqljqxErnRjKcy0WS8rrJ/VoOW/1JFv/AfTdtlrWb6TPYGqzZjoBIkqd1WrF8OHDM52GKmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNeZzeas/ya2QrZa9M4nEomgtrZW+thqxEonhvJcs5nfpZaBlvNWT7L1H0Dfbatl/Ub6DKY2djGiLNba2oqXX34Zra2tmU4lbbLVonc+Wq5PzdhqxEonhmzzJNcZZTxkq4P9R7t47D/GYaTxkK0W9iDtYqUaQ7Y5kutCoRC2bNmCUCiU6VTSJlsteudTUFCAG2+8EQUFBVLHViNWOjGU50YikZTXT+rRct7qSbb+A+i7bbWs30ifwdTGAyFEWUw5gmyEb2bIVove+Wi5PjVjqxErnRiyzZNcZ5TxkK0O9h/t4rH/GIeRxkO2WtiDtIuVagzZ5kiuM5lMcDqdMJlMmU4lbbLVonc+sVgMHo8HsVhM6thqxEonhvJcWeZJrtNy3upJtv4D6LtttazfSJ/B1MZLYxFlsby8PFx++eWZTkMVstWidz5ark/N2GrESieGbPMk1xllPGSrg/1Hu3jsP8ZhpPGQrRb2IO1ipRpDtjmS62w2G77yla9kOg1VyFaL3vm0tbVh9erV0sdWI1Y6MZTnzpgxI60cSB1azls9ydZ/AH23rZb1G+kzmNoyfyiGiFIWCoVQU1Mj1amEqZKtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXjUZRX1+PaDSa6VTSJlsteudjt9sxZswYTW5WrGZsNWKlE0N5brafgWAUWs5bPcnWfwB9t62W9RvpM5jaeCCEKIsFAgGsW7cOgUAg06mkTbZa9M5Hy/WpGVuNWOnEkG2e5DqjjIdsdbD/aBeP/cc4jDQestXCHqRdrFRjyDZHcp1yM10j3C9Btlr0zsfpdGLixIlwOp1Sx1YjVjoxlOfKtMM6l2k5b/UkW/8B9N22WtZvpM9gajPF4/F4ppMgStXWrVsxevRo8fOWLVtwxhlnZDAjIiIiIiIikkVdXR127drV7e/Hjx8Ph8PR5e/WrVunUVakl/r6ekybNq3X5R5//HHMmTOn1+WWLl2K0tLStNfXW7xk4ixduhQAul0u2ZqS1VWuPeXZ27ZKNo4aettWiculMx7Kc5OtR435pNacVHu+9KQvc0Oh9RzpSip5pmPixIm6rSuTMrkvl2eEEGWxeDyOQCAAIxzPlK0WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXBePxxGJRAwxHrLVonc+Wt6sWM3YasRKJ4byXFnmSa6T8SbjqZCt/wD6blst6zfSZzC18UAIURZrbm7GI488gubm5kynkjbZatE7Hy3Xp2ZsNWKlE0O2eZLrjDIestXB/qNdPPYf4zDSeMhWC3uQdrFSjSHbHMl1wWAQGzZsQDAYzHQqaZOtFr3zKSoqwl133YWioiKpY6sRK50YynNluoRRLtNy3upJtv4D6LtttazfSJ/B1MYDIURZzO12Y9asWXC73ZlOJW2y1aJ3PlquT83YasRKJ4Zs8yTXGWU8ZKuD/Ue7eOw/xmGk8ZCtFvYg7WKlGkO2OZLr7HY7zj333Ky/UTEgXy165+P1erFgwQJ4vV6pY6sRK50YynOtVmvK6yf1aDlv9SRb/wH03bZa1m+kz2BqYxcjymIWi0XX6xVqSbZa9M5Hy/WpGVuNWOnEkG2e5DqjjIdsdbD/aBeP/cc4jDQestXCHqRdrFRjyDZHcp3ZbIbL5cp0GqqQrRa984lGo6ivr5c+thqx0omhPDfbL8VkFFrOWz3J1n8AfbetlvUb6TOY2nhGCFEW8/l8WLRoEXw+X6ZTSZtsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuS6UCiEmpoahEKhTKeSNtlq0Tsfl8uFmTNnarIzUs3YasRKJ4byXF4aSw5azls9ydZ/AH23rZb1G+kzmNp4IIQoi1mtVgwfPtwQp6jKVove+Wi5PjVjqxErnRiyzZNcZ5TxkK0O9h/t4rH/GIeRxkO2WtiDtIuVagzZ5kiuM5vNKC4uhtmc/btTZKtF73wikQhqa2s12cGvZmw1YqUTQ3kuzwiRg5bzVk+y9R9A322rZf1G+gymtsxnQEQpczqdmDhxYqbTUIVsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuQ6ZYeOEchWi975BAIBrFu3TvrYasRKJ4by3FmzZqWVA6lDy3mrJ9n6D6DvttWyfiN9BlObPIfdiKjPgsEgKisrEQwGM51K2mSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNdFIhHU1dVl/bexAflq0Tsfh8OBcePGweFwSB1bjVjpxFCeG41GU14/qUfLeasn2foPoO+21bJ+I30GUxsPhBBlMRmvqZgq2WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdcrNdI2wU1i2WvTOx263Y8yYMbDb7VLHViNWOjGU58bj8ZTXT+rRct7qSbb+A+i7bbWs30ifwdRmirOTURbbunUrRo8eLX7esmULzjjjjAxmRERERERERLKoq6vDrl27uv39+PHju/32rxEuP5Pr6uvrMW3atF6Xe/zxxzFnzpxel1u6dClKS0vTXl9v8ZKJs3TpUgDodrlka0pWV7n2lGdv2yrZOGrobVslLpfOeCjPTbYeNeaTWnNS7fnSk77MDYXWc6QrqeSZDlkuH6W1TO7L5RkhRFksFovB4/EgFotlOpW0yVaL3vlouT41Y6sRK50Yss2TXGeU8ZCtDvYf7eKx/xiHkcZDtlrYg7SLlWoM2eZIrovH4wgEAob4drxsteidj5Y3K1Yzthqx0omhPFeWeZLrZLzJeCpk6z+AvttWy/qN9BlMbdn9qiHKcS0tLaioqEBLS0umU0mbbLXonY+W61Mzthqx0okh2zzJdUYZD9nqYP/RLh77j3EYaTxkq4U9SLtYqcaQbY7kumAwiKqqKimudZ4u2WrRO5/CwkKUl5ejsLBQ6thqxEonhvJcme7lkMu0nLd6kq3/APpuWy3rN9JnMLXx0liU1XL90lixWAwtLS0oLCzM+m8DyFaL3vlouT41Y6sRK50Yss2TXGeU8ZCtDvYf7eKx/xiHkcZDtlrYg7SLlWoM2eZItlH70ljxeBzBYBAOhwMmk0mtNDNCtlq0yKeny+mYzWYUFhaipaUFjz32mKqXxkqM3dO3oJO5FFN3sfpyaaxk8+mK8tx58+Zh8ODB3eaZbG1d4aWxutZVnM5jma2Xxho0aFCfXu96XBqrr9s2HV31O7UujSX7Z7BM7su16rIWItKEctqeEchWi975aLk+NWOrESudGLLNk1xnlPGQrQ72H+3isf8Yh5HGQ7Za2IO0i5VqDNnmSK4zmUxwOp2ZTkMVstWidz7K5VpkjN2/f3/Y7XaEQqEuY9ntdvTv3x/Hjh3TPB/luTIcLCNt562eZOs/gL7bVsv6jfQZTG38Oglpora2FiaTKal/F198cabTzVperxcLFiyA1+vNdCppk60WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXBcMBrFx40apLueSKtlq0Tsft9uNO+64A263W7rYdrsdF110UbexLrroItjtdl3yUZ7LS2PJQct5qyfZ+g+g77bVsn4jfQZTG88IIU04nU7xpt2VWCyGjz76CAB6XI56ZrfbMWbMmD79ASQr2WrROx8t16dmbDVipRNDtnmS64wyHrLVwf6jXTz2H+Mw0njIVgt7kHaxUo0h2xzJdRaLBaWlpbBYLJlOJW2y1aJ3PqFQCDU1NQiFQlLG/vWvfw0A+OSTT0Qs5QCJ8js98lGe+41vfKPPzyX1aTlv9SRb/wH03bZa1m+kz2Bq44EQ0kRpaSk++OCDbn//1ltv4fLLLwcA3HrrrXqlZTgOhwPjxo3LdBqqkK0WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXGe1WjF06NBMp6EK2WrRO59gMIjKykppYzudTtx7770IhULiEljKJbP0zEd57s9//vOUnk/q0nLe6km2/gPou221rN9In8HUxktjUUYsXLgQAPCtb30LI0aMyHA22SsQCGDdunUIBAKZTiVtstWidz5ark/N2GrESieGbPMk1xllPGSrg/1Hu3jsP8ZhpPGQrRb2IO1ipRpDtjmS6yKRCGpraw1xmSDZatE7H6fTiYkTJ2pynX41Y5vNZgQCAQwcODDlb1Snk4/y3Gg0mtK6SV1azls9ydZ/AH23rZb1G+kzmNp4IIR019TUhNdffx0AUFZWluFsspuMbxypkq0WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXKfcTDcWi2U6lbTJVove+VitVgwfPhxWq/oXS1EzthrbJZ18lOfG4/GU10/q0XLe6km2/gPou221rN9In8HUZoqzk+kmGo1i69at+OSTT7Bx40Z88skn2LRpE8LhMABgwoQJWLduXUqxQ6EQXnnlFSxduhRbt27F4cOH0a9fP5xyyin4/ve/j5kzZ2LgwIEqVpO6uXPn4ic/+Qncbjfq6+uRn5+fcqytW7di9OjR4uctW7bgjDPOUCNNIiIiIiIiynJ1dXXYtWtXt78fP348HA5Hl79L9fM5yaO+vh7Tpk3rdbnHH38cc+bM6XW5pUuXorS0NO31JRuvNz2tL9maktVVrj2tvy+19XW79dXSpUsBoNd1dJdzMvklPjfZetSYT2rNSbXnS09Smfdaz5GupPv67KuJEyfqtq5MyuS+XJ4RopPly5ejsLAQZ599Nn74wx9iwYIF+PTTT8VBkHTs2LEDF1xwAW655RasWrUK+/btQzAYRH19PT766CP8z//8D8444wysXLlShUrS99xzzwEArr/++rQOglD7wbX6+npDnKIqWy1656Pl+tSMrUasdGLINk9ynVHGQ7Y62H+0i8f+YxxGGg/ZamEP0i5WqjFkmyO5LhaLwefzSfUt5lTJVove+Wh5s2I1Y6uxXdLJR3kuv0ctBxlvMp4K2foPoO+21bJ+I30GUxsPhOjE4/HA7/erHreurg6XXnopampqAAAmkwkTJkxAWVkZJk+ejLy8PADAkSNHMGXKFKxdu1b1HPpi8+bN+PTTTwHwslhq8Hq9eOqpp+D1ejOdStpkq0XvfLRcn5qx1YiVTgzZ5kmuM8p4yFYH+4928dh/jMNI4yFbLexB2sVKNYZscyTXhUIhfPrppwiFQplOJW2y1aJ3Pm63G3fccQfcbrfUsdXYLunkozxXhsvakLbzVk+y9R9A322rZf1G+gymNl4aSyeLFi3CrbfeikGDBuG8884T/9566y1UVFQASO3SWN/61rfw/vvvAwCGDRuG119/HWeffbb4/dGjR3HjjTfiP//5DwCgf//+2L17N4qLi1Wpq69+8Ytf4PHHH8fpp5+OHTt2pB0v1y+NFY/HEQwG4XA4YDKZMp1OWmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNuofWmseDyOaDQKi8WS9eMhWy1a5NPT5XRMJhMcDgeCwSD++te/qnpprMTYPe12S+bSOz1tl2QvjZVsPl1Rnrtw4UIMHjw46fXz0ljaXBqr81hm66WxBg0a1KfXux6Xxurrtk1HV69rtS6NJftnMF4aKwdcfvnl2Lt3L+rr67FixQrce++9+O53v5vWAYmVK1eKgyB2ux0rVqzocBAEAAYOHIjXX38dp556KgDg2LFjePTRR7uMd9ddd8FkMqX0L5lvBoTDYbz44osAgFtvvTXluun/mEwmOJ1OKf5oTZdsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuQ6k8kEq9VqiPGQrRa984nH4wgEAppc8knN2Gpsl3TyUZ4ryzzJdVrOWz3J1n8AfbetlvUb6TOY2nggRCelpaU4+eSTVY05d+5c8XjGjBk488wzu1yuoKAADz74oPj5qaee6vLARUFBAQYMGJDSv2Qm85tvvomGhgZYLBbccsstKVRMnbW0tOCJJ55AS0tLplNJm2y16J2PlutTM7YasdKJIds8yXVGGQ/Z6mD/0S4e+49xGGk8ZKuFPUi7WKnGkG2O5LpgMIjKykoEg8FMp5I22WrRO5/CwkKUl5ejsLBQ6thqbJd08lGeq8Y9bil9Ws5bPcnWfwB9t62W9RvpM5jaeCAkS/l8PnG5K6D3MyyuvfZauFwuAO1nhbz33nvHLfO///u/OHr0aEr/krmRkHKT9Msvv/y40ykpNU6nExMnToTT6cx0KmmTrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFcZ7VaMXz4cFit1kynkjbZatE7n0AggHXr1iEQCEgdW43tkk4+ynOz/ebcRqHlvNWTbP0H0Hfbalm/kT6DqU2e2UZ98uGHH4qjhgUFBTjvvPN6XN7pdGL8+PF4++23AQBr167FJZdconmeisOHD2PVqlUAeJN0NdntdowZMybTaahCtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkdyncVi0eya8XqTrRa98wmFQqipqZE+thrbJZ18lOeazfwutQy0nLd6kq3/APpuWy3rN9JnMLWxi2Wp7du3i8dnnnlmUkcQzznnnC6fr4cXXngBkUgEAwcOxOTJk3Vdt5G1tbVh9erVaGtry3QqaZOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXDoexa9cuQ1wmSLZa9M4nLy8Pl19+OfLy8qSOrcZ2SScf5bnRaDTl9ZN6tJy3epKt/wD6blst6zfSZzC18UBIlvrvf/8rHg8bNiyp5yTeo2THjh2q59QT5bJYN910E2w2m67rNrJYLAaPx4NYLJbpVNImWy1656Pl+tSMrUasdGLINk9ynVHGQ7Y62H+0i8f+YxxGGg/ZamEP0i5WqjFkmyO5zig3Kgbkq0XvfMxmM4qLizU500HN2Gpsl3TyUZ4ryzzJdVrOWz3J1n8AfbetlvUb6TOY2nhprCzV2NgoHg8aNCip5ySecnXs2DHVc+rOxx9/jG3btgHo/V4m1DcFBQW48cYbM52GKmSrRe98tFyfmrHViJVODNnmSa4zynjIVgf7j3bx2H+Mw0jjIVst7EHaxUo1hmxzJNfZ7XaMHj0602moQrZa9M6ntbUVL7/8svSx1dgu6eSjPPeaa65JKwdSh5bzVk+y9R9A322rZf1G+gymtuw+fJjDfD6feJzsKVuJyyU+X2vK2SDnnnsuzjrrLE3W4XQ6xc3go9EoPB6POKra0tKCUCgEoP10rNbWVgBAJBKBx+MRMZqbm8UpaX6/H36/H0D76WrNzc1iOY/Hg0gkAqC9SSqndoVCIbS0tABoP7Lr8XjEqaM+n0/cbCkYDMLr9QI4/qio1+sV934JBAJinLqrKRKJ4L///a/IL5trOnbsGL744gtEIhEpxqm1tRXbtm1DJBJJe5yA3udeW1sbamtr0dLSonpNPp8PtbW1aG1tlWKcGhsbUVtbK57Tl5oikQi2b98u8lPz9ZTMOGXL60mvmvx+P7Zu3YpIJJLVNTU3N+O///0vIpGIFOMUCASwZcuWDvlpOffU7BGda2pubkZtbS0CgYAqc8/r9aK2thZ+vz+lcTp69Cj27NmDSCSS0++5Ruh7wWAQW7ZsEfllc00ejwe1tbUIBoNSjNPRo0exe/duRCIRXeZeJBLB7t27cfToUdVrikQi+PLLL3H06FEpxinVv/cikQi++OIL8WU29oi+1xQMBkXscDgs6lPidVeT8jgajYp8YrEYjhw5ImoKhUIdllPyUb7tq+SqvJco27Lzcom5Ji6XmGvn5bqrKfFGv4FAoMNyibn6/X6xPTvnmoma2tra0NjYiFgslnJNnZdTci0oKBD7ROx2OwoLC8XNigcMGCBycLlc4oa+DocDbrcbwPFnRXRXUzweR3FxsYjdr18/2O12AO37ZAoKCgC03yi5uLg47XFSnqPUBAAmk6lDri6XCwUFBRg+fDjy8/OPq0n59rvb7YbD4QDQcR+LssNWWVfi3ItGo93WFA6HVRmnxJqUG7b3Nk5d1RSNRkVNFosFxcXFMJlMAIDCwkIxTj3NvaKiInGVk/z8fOTn5wMAbDZbh0schcNhcQn7nmoKh8O9vp4611RcXIyvfvWrsFqtcDqd4jk99Yie5l5PNRUVFYnllHmtxjjF43H4/X40NTUhFosl3SMSx0mLmlwuF4YPH468vDxRk1Z9T3mfamtrE+Ok1ntuIBBAbW2t+NtDyTvV99xQKITa2lo0NTWp+pkwE3ggJEslNmKlCfRGaf4AdL0u2/z58xGPx7Fx40bN1jFu3DhMnToVANDQ0ICKigrx4ly4cKE4I2X9+vVYsWIFAKCurg4VFRUd8ty9ezcAYM2aNVizZg0AYPfu3Zg/f75YrqKiAnV1dQCAFStWYP369QCAbdu2YeHChQDaG0dFRQUaGhoAAMuWLUNlZSUAoLq6GkuWLAHQ3hwqKipEM1qyZAmqq6sBAJWVlVi2bFmPNfl8Prz88st44403sr6mRYsW4aWXXoLP55NinD7++GP84x//gM/nS3ucgN7n3rZt27B48WKsXr1a9Zo++OADLF68GB9//LEU4/T0009j8eLF8Pl8fa7J5/Ph1VdfxQcffABA3ddTMuOULa8nvWqqqanBsmXL4PP5srqmN954Ay+//DJ8Pp8U47Rr1y689tpr4g9Lreeemj2ic01vvPEGFi9ejF27dqky99auXYvFixejpqYmpXGaO3cuXnjhBfh8vpx+zzVC39u3bx9ee+01sWM422tavHgx9u3bJ8U4zZ07Fy+++CJ8Pp8uc8/n8+HFF1/E3LlzVa/J5/Ph+eefx9y5c6UYp1T/3vP5fHjppZewaNEiMU7sEX2rqbq6WsTeu3cvdu7cKeItWLCg25qUx01NTeLzbCgUwvbt20X/2blzJ/bu3SvWq+QTjUZRVVUldlZt27ZNbIf6+nps3rxZ1F5VVSVy3bx5M+rr68U2V8bC7/ejqqpK7LjqqaaqqipR08aNG9HU1CTGJrGmzz77DJ9//jlCoRCqqqrEds1UTTU1NdiyZQtCoVDKNSXud6iqqhL7TiZPnowJEyYAAEaNGoWysjK4XC7MnDkTP/3pT8VOzqlTp2LcuHEAgLFjx2L69OkA2nfAlpeXix2b3dUUDAZRXl6OAQMGYObMmbj11lsxatQoAMCECRPEPVOHDh2K8vLytMdJuVqIUhPQvu+nvLy8Q03f/OY3MXPmTFxwwQXH1aTs8J0+fTrGjh0LoOM+lmHDhmHq1KliJ2zi3GtsbOy2JmXHabrjlFhTSUlJUuPUVU1NTU2ippKSEpSXl4v9ZGVlZWKcepp7s2fPxogRIwAAkyZNwqRJkwAAI0aMQG1trVhuz549GDp0aK817dmzp9fXU1c1TZ8+HS6XC+PGjcPBgwcB9Nwjepp7PdU0e/ZssVx5eXlSNSUzTpFIBJ988gk2bdqEUCiUdI9IHCctarr00ksxc+ZMjB07VtSkVd9ra2vD559/jpqaGjFOar3n7tq1C4sXL8Ybb7yhyntufX09Fi9ejJdeeknVz4SZYIrLdDG2HHT//ffjgQceAND+Il63bl1Sz7vyyiuxcuVKAMBvfvMbPPzww70+Z9WqVbjiiisAtB+VVY7wZbOtW7di9OjRcDqdsFqtqKysxMiRI+H1elFUVASTyYSWlhY4nU7Y7Xa0tbUhFouhoKBAfMtNOWrc3NyM/Px82Gw20eDy8/MRDofh9/vFUWOPxwOXywWr1YrW1laYzWbk5eUhFAohEAigsLAQ8Xgczc3NcLvdsFgs8Pl84mh9MBhEKBSC2+1GLBZDS0sLCgsLYTab4fV6Ybfb4XA4EAgEEIlE4HK5EI1GWRNrYk2siTWxJtbEmlgTa2JNrIk19bGmAwcOYOvWrbBarbBYLAiHw4jH47Db7YjFYjjjjDPE5aY717RhwwbYbDZEo1GEw2HxzeZAIAC73Q6z2YxQKASTySSWi0QicDgciMfjCAaDHZYzm82wWq2IRCKIRqMdlnM4HDCZTAgGg7BYLGK5WCwmcg2FQh2W666mUCjUIVebzSaWA5BTNR07dgzTp09HQUEBYrEY2traYLfb4XQ60dLSApPJhKKiItx77734xS9+AZfLhUgkgkAgAIfDAbvdDq/XC7PZjMLCQsybNw+DBw/utqZDhw7hzjvvRHNzM+LxOAoLCxEIBBAKhZCXlwez2YzW1lZYrVa4XC7Mnz8fpaWlKY9TQ0MDbrrpprRqamlpQSwWg9vtRigUQjAYFPtYfD4fLBYL3G53h9qVcTpw4ABmzZrVoSblG9/PP/88hgwZouo4eb1ecWZHX2patGgRotEo7rjjjg41dR6nxYsXizOEEueex+PBtGnTUFRUJM4WU84y8Pv9sNlsePbZZ3HSSScBAPbv34+ysjJEIpEea1q8eDFOPPHEbl9PTU1NmD59eo/j9Mwzz2Do0KHdvp4aGhpQVlZ23NxTxkmp6dFHH8U999zToab8/HxxtkFxcTF8Pl+vNSUzTi+99BL69evXpx5x+PBhzJo1q8fXU+eauhqnvtT01FNPYdCgQbr1vQsuuCDr33OT+TviwIEDHS4LtmXLFpxxxhnQAw+EZFiqB0JuuOEGvPrqqwCAn/3sZ0kdUfvnP/+Ja6+9FkD7/UIOHTqUWtISUQ6EKPR88RAREREREZHc6urqsGvXrm5/P378+A5XT0iU7Odzkld9fT2mTZvW63KPP/445syZ0+tyS5cu7XD/1VTXl2y83vS0vmRrSlZXufa0/r7U1tftubWDywAATd5JREFU1ldLly4FgF7X0V3OyeSX+Nxk61FjPqk1J9WeLz1JZd5rPUe6ku7rs68mTpyo27oyKZP7cnlprCw1YMAA8fjw4cNJPUc5JQsA+vfvr3pOpL/m5mY8/PDDHa4HmK1kq0XvfLRcn5qx1YiVTgzZ5kmuM8p4yFYH+4928dh/jMNI4yFbLexB2sVKNYZscyTXBQIBfPDBBx0uV52tZKtF73yKiopw1113dbhngIyx1dgu6eSjPDfxHhiUOVrOWz3J1n8AfbetlvUb6TOY2nggJEudfvrp4rFy7c7e7Nu3TzweOXKk6jmR/vLz8zFlyhRxql82k60WvfPRcn1qxlYjVjoxZJsnuc4o4yFbHew/2sVj/zEOI42HbLWwB2kXK9UYss2RXGez2TBy5EhxI95sJlsteufj9/uxfPlycZkZWWOrsV3SyUd5rnIDbMosLeetnmTrP4C+21bL+o30GUxt1kwnQKn52te+Jh5v3rwZkUgEVmvPw/nZZ591+XzKXkrjNALZatE7Hy3Xp2ZsNWKlE0O2eZLrjDIestXB/qNdPPYf4zDSeMhWC3uQdrFSjSHbHMl1FosFAwcOzHQaqpCtFr3zCYfD2LFjh/Sx1dgu6eSjPNds5nepZaDlvNWTbP0H0Hfbalm/kT6DqY1dLEtdeOGF4jqmra2t2LhxY4/LB4NBVFZWip8vueQSTfPTm9PphMvlAgBEo1F4PB4ot79paWlBKBQCALS1taG1tRUAEIlExI2UgPZTtZRTPf1+vzgCHA6HO5y+5fF4EIlEALRv+7a2NgBAKBRCS0sLACAej8Pj8SAajQIAfD6fON0tGAyKG9XHYjF4PB7EYjEAgNfrRTAYBNB+mpzP5+uxJr/fj2XLlqGhoSHrazp8+DBee+01+P1+KcapqakJ//jHP+D3+9MeJ6D3udfc3Izly5fj6NGjqtd07NgxLF++HE1NTVKMU319vfiWRV9r8vv9+Mc//oFjx44BUPf1lMw4ZcvrSa+aPB4PXn31Vfj9/qyuqaGhAcuWLYPf75dinFpaWsR2VWOc9OwRnWtqaGjA8uXL0dLSosrca2xsxPLly+HxeFIap0OHDuFf//oX/H5/Tr/nGqHveb1evPrqqx1eN9la05EjR7B8+XJ4vV4pxunQoUP45z//Cb/fr8vc8/v9+Oc//9nh/oVq1eT3+/Gvf/0Lhw4dkmKcUv17z+/347XXXhOXRGaP6HtNwWBQxA6Hw6I+JV53NSmPo9GoyCccDmPr1q1ivaFQqMNyyv/H43EEAgGRaygUEtshEokct1xironLJebaebnuakq81EogEOiwXGKuPp8PO3bsQDgcPi7XTNTk8/mwbds2kWcqNXVeTsm1oKAAeXl5AAC73Y7CwkLxLeXS0lKRg8vlEjfxdjgccLvdAACz2Yzi4uJea4rH4yguLhaxTzjhBNjtdgBAXl4eCgoKAABWq1XcBDmdcVKeo9QEACaTqUOuLpcL/fr1w5QpU1BcXHxcTcoBDrfbLfYzJe5jcblcuP7660VOiXMvGo12W1M4HFZlnBJrUs5K6W2cuqpJuXk30L4Turi4GCaTCQBQWFgoxqmnuVdUVCS+wZ+fny++4W6z2TpcOiwcDosvK/dUUzgc7vX11LmmE044Ad///veRn58Pp9MpntNTj+hp7vVUU+IlooqLi5OqKZlxisfj8Hq92L59O8LhcNI9InGctKipf//+mDJlCoqKikRNWvW9UCiEHTt2wOfziXFS6z23paUFy5cvR0NDgyrvuT6fD8uXL8eRI0dU/UyYCTwQkqVcLhcuvfRS8fOiRYt6XP6f//ynmMj9+/fHt771LS3T0924ceMwdepUAO07tCoqKsSLc+HChdi2bRsAYP369VixYgWA9pvmJd5kfv78+di9ezcAYM2aNVizZg0AYPfu3Zg/f75YrqKiAnV1dQCAFStWYP369QCAbdu2YeHChQDaG0dFRYXYWbJs2TJxIKq6uhpLliwB0N4cKioqRDNasmQJqqurAQCVlZVYtmxZrzUdPnxY5JrNNb300kuiecswTps3b8aePXtUG6feaqqtrQXQfkNGtWv69NNPRU0yjFNiv0qlpr1794qa1H49yTD3sqmmnTt3ipuPZnNNa9asETuXZBingwcPYvv27aqNk549onNNSq4HDx5UZe599NFHANrnXirj9PTTT4sPELn8nmuEvnf06FFs377dEDW9+eaboiYZxunpp58WOeg19/x+P55++mlNaorFYnj66aelGKd0/t5rbm7GSy+9JMaJPaJvNVVXV3f4W3Lnzp0i3oIFC7qtSXnc1NTU4cuHR48eFZ+vd+7cKS5X3dDQIPKJRqOoqqoSO6u2bdsmtkN9fT02b94saq+qqhK5bt68Wdzfs66uToyF3+9HVVWV2HHVU01VVVUi140bN6KpqUmMTWJNNTU1YrmqqiqxXTNV05YtW8RzUq0pcZyqqqrEzr3JkydjwoQJAIBRo0ahrKwMQPsO8TvuuEPs5Jw6dSrGjRsHABg7diymT58OoH0HbHl5udix2V1NwWAQ5eXlYuf79OnTMWrUKADAhAkTMHnyZADA0KFDUV5envY4NTY2HleTw+FAeXl5h5q+/vWvAwDOPPPM42pSdvhOnz4dY8eOBdBxH8vAgQMxatQoES9x7jU2NnZbU21trWrjpNRUUlKS1Dh1VVNTU5OoqaSkpMM4lZWViXHqae7Nnj0bI0aMAABMmjQJkyZNAgCMGDFC9HgA2LNnD4YOHdprTXv27On19dS5pmuvvVbcN3jcuHE4ePAggJ57RE9zr6eaZs+eLZYrLy9PqqZkxikSieCzzz4TcyrZHpE4TlrUdOGFFwJovx2BUpMefU8ZJ7Xec5U5sWbNGlXec5X3u2XLlqn6mTATTHHlcA1lxP33348HHngAQPuLeN26dUk/99///jeuuuoqAO3N5tNPP8UZZ5xx3HJ+vx9nn3222Fl111134aGHHko/eQls3boVo0ePhtPphNVqRWVlJUaOHAmv14uioiKYTCa0tLTA6XTCbrejra0NsVgMBQUFiEQi8Pl84qhxc3Mz8vPzYbPZRIPLz89HOByG3+8XR409Hg9cLhesVitaW1thNpuRl5eHUCiEQCCAwsJCxONxNDc3w+12w2KxwOfzwWq1wul0IhgMIhQKwe12IxaLoaWlBYWFhTCbzfB6vbDb7XA4HAgEAohEInC5XIhGo6yJNbEm1sSaWBNrYk2siTWxJtbEmvpY04EDB7B161ZYrVZYLBaEw2HE43HY7XbEYjGcccYZGDRoUJc1bdiwATabDdFoFOFwWHyzORAIwG63w2w2IxQKwWQyieUikQgcDgfi8TiCwWCH5cxmM6xWKyKRCKLRaIflHA4HTCYTgsEgLBaLWC4Wi4lcQ6FQh+W6qykUCnXI1WazieUA5FRNx44dw/Tp01FQUIBYLIa2tjbY7XY4nU60tLTAZDKhqKgI9957L37xi1/A5XIhEokgEAjA4XDAbrfD6/XCbDajsLAQ8+bNw+DBg7ut6dChQ7jzzjvR3NyMeDyOwsJC8e3vvLw8mM1mtLa2wmq1wuVyYf78+SgtLU15nBoaGnDTTTelVVNLSwtisRjcbjdCoRCCwaDYx+Lz+WCxWOB2uzvUrozTgQMHMGvWrA41Kd/4fv755zFkyBBVx8nr9YozO/pS06JFixCNRnHHHXd0qKnzOC1evBgDBgw4bu55PB5MmzYNRUVF4mwx5SwDv98Pm82GZ599FieddBIAYP/+/SgrK0MkEumxpsWLF+PEE0/s9vXU1NSE6dOn9zhOzzzzDIYOHdrt66mhoQFlZWXHzT1lnJSaHn30Udxzzz0dasrPzxdfhCwuLobP5+u1pmTG6aWXXkK/fv361CMOHz6MWbNm9fh66lxTV+PUl5qeeuopDBo0SLe+d8EFF2T9e24yf0ccOHAAo0ePhmLLli1d7s/WAg+EZFg6B0IA4Fvf+hbef/99AMDw4cPx+uuv46yzzhK/b2xsxLRp0/D2228DaD8bZPfu3R1OGctmyoEQhZ4vHhmEw2Hs3r0bI0aMkOoGU6mQrRa989FyfWrGViNWOjFkmye5zijjIVsd7D/axWP/MQ4jjYdstbAHaRcr1RiyzZFsU1dXJ74U2JXx48eLb4V31tXnc2XnZL9+/bL+5tGy1aJFPvX19Zg2bVqXv7PZbBgxYgR2796NRx99FHPmzOk13tKlS1FaWtrr+hJjJ14yqa/xgJ63S0/1Pf7446KmZPPpivLc//3f/8WQIUOSXn8ytSUTRw1Lly4FgF7X0V3OyeSX+Nxk60l2PiXqPJapxOhK4nzR2tKlS1FSUtKn17vWcwTo+7ZNR1ev64kTJ6oSW/bPYJncl8tLY+noiiuuwJgxYzr8SzwNd+PGjcf9fsyYMeKUpq689NJLGDx4MID20w7HjBmDiy++GD/84Q9xzTXX4OSTTxYHQaxWK1599VXDHASh9iPayr0Wsp1steidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuQ65Wa6fd2ZLCPZatE7H+U+Hso3xmWNrcZ2SScf5bnKpXwos7Sct3qSrf8A+m5bLes30mcwtfGMEB0NHz5cXGezL7788ksMHz6829/v2LED06ZN63DdyM5KSkrw3HPP4corr+zz+mWW62eEEBERERERUffUPiOEsova34ZX69v3ycbrTbJnhKihq1x5RkjXz9XyjBAtYgD6nxHS13mvxxkhnWl5RkhX1DojRHaZ3Jdr1WUtpKmRI0eiqqoKL7/8MpYuXYqtW7fi8OHDKC4uxqmnnorvf//7uPXWWzFw4MBMp0pEREREREREREREpCteGktHtbW1iMfjff7X09kgCrvdjltuuQWrVq3Cvn37EAwGcfjwYXz00Uf4n//5Hx4EMSiPx4MHHnhA3BAqm8lWi975aLk+NWOrESudGLLNk1xnlPGQrQ72H+3isf8Yh5HGQ7Za2IO0i5VqDNnmSK4LBAJYv349AoFAplNJm2y16J1PcXEx7r//fk0uH65mbDW2Szr5KM+V6RJGuUzLeasn2foPoO+21bJ+I30GUxsPhJAhOJ1OuFwuAO03HPJ4PFCu+tbS0oJQKAQAaGtrQ2trKwAgEol0eBE2NzeLN3a/3y+uXRcOh9Hc3CyW83g8iEQiAIDW1la0tbUBAEKhEFpaWgAA8XgcHo9HXEPT5/OJ5hYMBuH1egEAsVgMHo8HsVgMAOD1ehEMBgG0N0Wfz9djTS6XCzfeeCNMJlPW1xSLxfCDH/wALpdLinGy2Wy47rrr4HK50h4noPe553A4MGPGDJjNZtVrslqtmDFjBmw2mxTjFI1GMWPGDLhcrj7X5HK5cP3118NqbT+hUc3XUzLjlC2vJ71qstvtmDp1KlwuV1bXZDKZcOONN8LlckkxTk6nE9dee614X9N67qnZIzrXZDKZMGPGDDidTlXmnsViwYwZM2C321Map0gkgptvvhkulyun33ON0Pfy8vJw7bXXoqCgIOtrAoAZM2YgLy9PinGKRCK46aab4HK5dJl7LpcLN910k8hNzZpcLhduueUWRCIRKcYp1b/3XC4XfvCDH4jc2CP6XlMwGBSxw+GwqE+J111NyuNoNCrysdvt+NrXvib+Hg2FQh2WU/KJx+MIBAIi11AoJLZDJBI5brnEXBOXS8y183Ld1ZS4Yy0QCHRYLjHXWCyGs88+G3a7/bhcM1FTPB7H6NGjYbfbU66p83JKrgUFBcjLyxNjWFhYCJ/Ph0WLFsFisYgcXC4XnE4nAMDhcMDtdgMAzGYziouLe60pHo+juLhYxDaZTLDb7QDa37uU9y2r1dphZ2uq46Q8R6kJaP/bNjFXl8uFcDiMRYsWIRQKHVeT2dy+a9DtdovLxCXuY/H7/Vi2bJlYLnHuRaPRbmtSPvulO06JNSk3le5tnLqqSfk8CQAWiwXFxcXi77rCwkIxTj3NvaKiInGz6Pz8fHEvCZvN1uFAUTgcFj2ip5rC4XCvr6fONQHAkiVL4PP54HQ6xXN66hE9zb2eaioqKhLLFRcXJ1VTMuMUj8cRi8Vw1llnwW63J90jEsdJi5oikQgWLVqEYDAoatKq79lsNpx99tmIx+NinNR6z3U6nZgxYwZMJpMq77n5+fmYMWMG4vG4qp8JM4EHQsgQxo0bh6lTpwIAGhoaUFFRIV6cCxcuxLZt2wAA69evx4oVKwC0Xyu2oqJCxJg/fz52794NAFizZg3WrFkDANi9ezfmz58vlquoqEBdXR0AYMWKFVi/fj0AYNu2bVi4cCGA9sZRUVGBhoYGAMCyZctQWVkJAKiursaSJUsAtDeHiooK0YyWLFmC6upqAEBlZSWWLVvWY01WqxVffvklVq1alfU1Pf/882htbYXVapVinDZv3oz33nsPVqs17XECep97e/fuxfDhw7F27VrVa9q4cSOGDx+OzZs3SzFOzzzzDIYPHw6r1drnmqxWK6qqqrBx40YA6r6ekhmnbHk96VXTzp078fbbb8NqtWZ1TatWrcKXX34Jq9UqxTjV19fjtddeE3+Uaz331OwRnWtatWoVhg8fjvr6elXm3oYNGzB8+HDs3LkzpXGaO3cu+vfvD6vVmtPvuUboe01NTXjttdfEB7hsrmn58uUYPnw4mpqapBinuXPnoqCgAFarVZe5Z7VaYbFYMHfuXNVrslqtGDx4MObOnSvFOKX6957VakVrayuef/55MU7sEX2rqbq6WsTeu3cvdu7cKeItWLCg25qUx01NTeLvT7PZjO3bt4sdQDt37hT3Am1oaBD5RKNRVFVViZ1V27ZtE9uhvr4emzdvFrVXVVWJXDdv3oz6+nqxzZWx8Pv9qKqqEn2vp5qqqqpETRs3bkRTU5MYm8SaPvvsM7GDtaqqSmzXTNX0+eefIxwOw2w2p1yTMk4AUFVVJXbuTZ48GRMmTAAAjBo1CmVlZYhEIqivr8dPf/pTsZNz6tSpGDduHABg7NixmD59OoD2HbDl5eVix2Z3NQWDQZSXl8NqtaK2thYzZszAqFGjAAATJkzA5MmTAQBDhw5FeXl52uPU2NjYoSagfYdzeXl5h5rOO+881NbW4qyzzjquJmWH7/Tp0zF27FgAHfex9O/fXzwGOs69xsbGbmuqra1VZZwSayopKUlqnLqqqampSdRRUlKC8vJycZCkrKxMjFNPc2/27NkYMWIEAGDSpEmYNGkSAGDEiBGora0Vy+3ZswdDhw7ttaY9e/b0+nrqXNONN96IAQMGIBKJYNy4cTh48CCAnntET3Ovp5pmz54tlisvL0+qpmTGKRKJ4JNPPkFeXh7MZnPSPSJxnLSo6Rvf+AZqa2tx+umni5q06nvKQdPPP/9cjJNa77n19fUYPnw4Vq1apcp7rt/vx/Dhw/HKK6+o+pkwE3izdMpqyg12nE4nrFYrKisrMXLkSHi9XhQVFcFkMqGlpQVOpxN2ux1tbW2IxWLiSK/P5xNHjZubm5Gfnw+bzSYaXH5+PsLhMPx+vzhq7PF44HK5xAcSs9mMvLw8hEIhBAIBFBYWIh6Po7m5GW63GxaLRXzj1ul0IhgMim9hxGIxtLS0oLCwEGazGV6vF3a7HQ6HA4FAAJFIBC6XC9FotMuawuEwli9fjssuuwwnnHBCVtdUX1+PtWvX4pprroHZbM74OB07dgwrV67E9773PeTl5aU1TsnMvXg8jtWrV+PSSy9FQUGBqjUFg0G8/fbbmDRpEmw2W8bH6ejRo1i/fj0mT56McDjcp5oCgQD+9a9/4bvf/S4GDBig6uvJiD1C65qamprw5ptv4vvf/z7y8/OztqYjR47g7bffxpQpU2Cz2TI+Ts3NzXjjjTfw/e9/X/ys5dxTs0d0rsnr9WLt2rX47ne/K/7YT2futbW14Z133sF3vvMdWCyWPo9TfX091q9fj6uvvhqxWCxn33ON0PdaWlrw+uuv43vf+574OVtramlpwdq1a3HFFVcgFotlfJwOHTokXifxeFzzuQcAr7/+OiZOnIghQ4aoWpPFYsEbb7yBCRMmYNCgQRkfp1T/3ovFYnj99ddxySWXoLS0lD2ijzUdOHAAW7duFQfdwuEw4vE47HY7YrEYzjjjDAwaNKjLmjZs2ACbzYZoNIpwOAyn04lQKITt27fj9NNPFz+bTCaxXCQSgcPhEN+ctdvtMJvNCIVCMJvNsFqt4iylxOUcDgdMJhOCwSAsFotYTnm/isViCIVCHZbrrqZQKCS+ha1881hZDoDI1e/3Y+/evTjttNPEepRcM1GT1+sVOyFNJlNKNSnjpCx37NgxTJ8+HQUFBYjFYmhra4PdbofT6UQ0GsXkyZOxfv16/M///A9+8YtfwOVyIRKJIBAIwOFwwG63w+v1wmw2o7CwEPPmzcPgwYO7renQoUO48847EQ6HMXnyZLz77rtoampCKBQSO32VL5a5XC7Mnz8fpaWlKY9TQ0MDbrrpJlFTS0sLTCYTioqKcO+994qa7HY7Jk2ahLfeeguRSKRDTS0tLYjFYnC73QiFQggGg2Ifi8/ng9vtxpQpU3DZZZfhpJNO6jD3Dhw4gFmzZnWoSfnG9/PPP48hQ4akPU6JNXm9XnFmR0/j1LmmRYsWIRqN4o477oDP54PFYoHb7Ra9ubCwEIFAAIsXL8aAAQOOm3sejwfTpk1DUVGROFtMOcvA7/fDZrPh2WefxUknnQQA2L9/vzjY1lNNixcvxoknntjt66mpqQnTp0/vUNMJJ5yAb3/723j99dcRjUbxzDPPYOjQod32iIaGBpSVlR0395RxUmp69NFHcc8993SoSfmMB0Cc6dRbTcmM00svvYSCggLs3bsXp59+OuLxeK894vDhw5g1axYCgUC3r6fONXU1Tj3V5HQ6cdlll2H16tWIxWJ46qmnMGjQIE36nslkwhdffIFhw4YhPz8fFosFF1xwgSrvuSaTCatWrcIll1wCt9ud9nuuxWLBv//9b1x88cUoLi5O+zPhgQMHeLN0onQknqqonOKoUI6aAxCn7gFdnzqnUBol0PWpcwrlNDyg/XRA5RQ95XRAhXL6JdB+hFz51oFyiqNCOU0QgPijoKeaotEoBgwYIJ6XzTUVFRWhf//+4oORIlM15eXlYeDAgTCbzWmPkxKvp5ra2tpQXFwMl8slllWrJiWvvLw8ETuT41RcXCy+0dTXmsxmMwYOHChiqvl6AozXI7Suyel0oqSkBGazOatrcrvdGDBgAMxmsxTjZLfbxXZNtaZM9YiuaiouLobdbu9QY6o1KXk5nU4Rry/j1K9fP/Tr1w9ms/m4udxbTUZ6zzVC37PZbCgpKRGXXsjmmpSDhDabrUPumaop8XWSuF6t5l5bWxv69++Pfv36qV5TW1ubqCfxMh2p1KTGOKX6956yjZTl2CP6XpPyfCU/Red4nWtSlrVYLGIOmUwmFBQUiJ+VGrpaLjGnxOWsVqs487Pzcom5KssouXa3XOeaEpfr3DsTc3U6nXA6nT3mqmdNyvu7chAmlZqUXJXllL+nlMvNAO2XiFF2pHo8HrHjEIA40wdo/9a08g1n5RIxynLd1WQymeDxeETszpeIUXS+7E2q46TUq9QE/N9lbxJrUvIJBAIij86XhlMuhwN03McSiUTQ0NAgtmVi7RaLpdtL+SgHdrqqqS/jlFiTordx6qomZYcv8H+X8lEoZ9l0zrXz3Eu8BJGyMxpovzxR4vNsNluHSwJ2V5PNZhO1d/d66qqmY8eOiUssKcv11CN6mns91dT5kkuKdMfJZDKJzx6Jl49Tald0rilxnLSoSdnWwWBQxNeq7ykHA51Op3g9qPWeq/y9oRwEUfJO9T1XiVdYWNjh8nmKvn4mPHDgADKFB0KIslheXh4uv/zyTKehCtlq0TsfLdenZmw1YqUTQ7Z5kuuMMh6y1cH+o1089h/jMNJ4yFYLe5B2sVKNIdscyXU2mw1f+cpXMp2GKmSrRe982trasHr1auljq7Fd0slHee6MGTPSyoHUoeW81ZNs/QfQd9tqWb+RPoOpjfcIIcpioVAINTU14uh7NpOtFr3z0XJ9asZWI1Y6MWSbJ7nOKOMhWx3sP9rFY/8xDiONh2y1sAdpFyvVGLLNkVwXjUZRX18vrlmfzWSrRe987HY7xowZ0+Eb3jLGVmO7pJOP8lzlcoaUWVrOWz3J1n8AfbetlvUb6TOY2ngghCiLBQIBrFu3rsNpq9lKtlr0zkfL9akZW41Y6cSQbZ7kOqOMh2x1sP9oF4/9xziMNB6y1cIepF2sVGPINkdyXSQSQW1trbjsTTaTrRa983E6nZg4cWKHS7zIGFuN7ZJOPspzZdphncu0nLd6kq3/APpuWy3rN9JnMLXxZumU1ZSbpSv0vMEOERERERERya2urg67du3q9vfjx4/vcC33ROvWrdMoK9JLfX09pk2b1utyjz/+OObMmdPrckuXLkVpaWna60s2Xm96Wl+yNSWrq1x7Wn9fauvrduurpUuXAkCv6+gu52TyS3xusvWoMZ/UmpNqz5eepDLvtZ4jXUn39dlXEydO1G1dmZTJfbk8I4Qoi8XjcQQCARjheKZsteidj5brUzO2GrHSiSHbPMl1RhkP2epg/9EuHvuPcRhpPGSrhT1Iu1ipxpBtjuS6eDyOSCRiiPGQrRa981FubqzcVFzW2Gpsl3TyUZ4ryzzJdVrOWz3J1n8AfbetlvUb6TOY2ngghAzB6XTC5XIBaL/OnsfjES+wlpYWcR26trY2tLa2Amg/Dc3j8YgYzc3NCIfDAAC/3w+/3w8ACIfDaG5uFst5PB5x6lprayva2toAtF/zrqWlBUD7i9zj8YhTR30+nzgFLBgMwuv1AgBisRg8Ho+41qbX60UwGATQfuqYz+frsabm5mY88sgjOHToUNbXVFdXh0ceeQTNzc1SjNORI0dEPumOE9D73Dt69CgeeeQR1NfXq16TUsuRI0ekGKf9+/eLGH2tSZnzR44cAaDu6ymZccqW15NeNTU0NIixzOaaDh06JOqQYZwaGxtFPmqMk549onNNyrZtbGxUZe4dPnwYjzzyCBoaGlIap8T+k8vvuUboe8eOHcMjjzwi8s3mmg4ePIhHHnkEx44dk2KcEl8nesw95bW1f/9+1WtKjC3DOKX6955SR11dnRgn9oi+1RQMBkXscDgs6lPidVeT8jgajXbIZ8OGDR3qSFxOyUfZ8aPkGgqFxHaIRCLHLZeYa+Jyibl2Xq67mhIvPxIIBDosl5hrS0sLNmzYgGAweFyumagpMZ9Ua+q8nJJrQUEB8vLyALTfB6CwsBBFRUW46667cNJJJ4kcXC6XuCyOw+GA2+0GAJjNZhQXF/daUzweR3FxsYh94oknivsN5OXloaCgAABgtVpRXFyc9jgpz1FqAtp35ibm6nK5cMIJJ+Cuu+5CSUnJcTWZze27Bt1utzg7KnEfS79+/XDXXXeJnBLnXjQa7bamcDisyjgl1mSxWJIap65qikajoiaLxYLi4mKxw7uwsFCMU09zr6ioCDabDQCQn5+P/Px8AO03vlbqU2JYrdZeawqHw72+njrXNGTIENx1110oKiqC0+kUz+mpR/Q093qqqaioSCxXXFycVE3JjFM8Hu8wr5PtEYnjpEVNyutk4MCBoiat+l4gEMCGDRvQ0tIixkmt91zl8+ShQ4dUec9tamrCI488ggMHDqj6mTATeCCEDGHcuHGYOnUqgPYdcxUVFeLFuXDhQmzbtg0AsH79eqxYsQJA+w7diooKEWP+/PnYvXs3AGDNmjVYs2YNAGD37t2YP3++WK6iokJ8CFmxYgXWr18PANi2bRsWLlwIoL1xVFRUoKGhAQCwbNkyVFZWAgCqq6uxZMkSAO3NoaKiQjSjJUuWoLq6GgBQWVmJZcuW9ViT2+3G6NGjRQ7ZXNNrr72GiRMnwu12SzFOu3fvxoABA+B2u9MeJ6D3udfQ0IBZs2ahsrJS9Zq2bt2KWbNmYffu3VKM00svvYRZs2bB7Xb3uSa3243Bgwdj69atANR9PSUzTtnyetKrprq6OrhcLrjd7qyuaf369Rg9ejTcbrcU46T8Iat8UNB67qnZIzrXtH79esyaNQvNzc2qzL3q6mrMmjULdXV1KY3Tc889hx/84Adwu905/Z5rhL6nfFhTPgxnc01r1qzBrFmzEAgEpBin5557Dtdeey3cbrcuc8/tdmPy5Ml47rnnVK/J7XZj5syZeO6556QYp1T/3nO73Zg4cSJee+01MU7sEX2rqbq6WsTeu3cvdu7cKeItWLCg25qUx01NTdi4cSOA/+s7Sh/auXMn9u7dK9ar5BONRlFVVSV2Vm3btk1sh/r6emzevFnUXlVVJXLdvHkz6uvrxTZXxsLv96OqqkrsuOqppqqqKlHTxo0b0dTUJMYmsabNmzfj3HPPhd1uR1VVldiumapp+/btGDZsGOx2e8o1KeMEAFVVVWKcJk+ejAkTJgAARo0ahbKyMni9XixcuBBlZWViJ+fUqVMxbtw4AMDYsWMxffp0AO07YMvLy8WOze5qCgaDKC8vRygUwoIFCzB16lSMGjUKADBhwgRMnjwZADB06FCUl5enPU6NjY0dagLadziXl5d3qGnUqFFYsGABRowYcVxNyg7f6dOnY+zYsQA67mNRdmQrO+IT515jY2O3NdXW1qoyTok1lZSUJDVOXdXU1NQkaiopKUF5ebk4SFJWVibGqae5N3v2bIwYMQIAMGnSJEyaNAkAMGLECNTW1orl9uzZg6FDh/Za0549e3p9PXWuafLkydiwYQO8Xi/GjRuHgwcPAui5R/Q093qqafbs2WK58vLypGpKZpwikQhqamowevRo2O32pHtE4jhpUdM555yDBQsWYOjQoaImrfqexWLBueeei+3bt4txUus9t7m5GbNmzRKfx5S8U33PjcfjmDVrFt58801VPxNmAu8RQlnts88+w7nnngun0wmr1YoXX3wRp556Ktra2pCfnw+TyQS/3w+73Q6r1YpQKIRYLAan0ym+haAcQU5cTnnxOhwOceRWOYLc2toKp9MJi8WCQCAAs9kMu93eYbl4PA6/34+8vDyYzeYOy4XDYUQiEeTl5SEWi6GtrU0s19bWBqvVCpvN1iFXZTnWxJpYE2tiTayJNbEm1sSaWBNrYk3J13T48GHs2bMHZrMZZrNZ7FCzWCyIx+M4/fTTxTeJO9f02WefwWKxIBaLIRaLiW8ORyIRWCwWmEymDvESl4vH44hGox2WM5lMMJvNPS4XiURErrFYDPF4XOTa3XKda4pGox1y7Wq5XKmpqakJv/nNb1BQUCDmhd1uh9PpREtLC0wmE4qKinD77bfj0UcfhcvlQiQSQSAQgMPhgN1uh9frhdlsRmFhIX7729+ipKSk25oaGhrw0EMPiTOmCwsLEQgEEAqFxLxtbW2F1WqFy+XC3XffjYEDB6Y8TseOHcNvfvObtGpqaWlBLBaD2+1GKBRCMBgU+1h8Ph8sFgvcbneXtTc0NODBBx/sUJPyje+HH34YAwcOVHWcvF6vOLOjLzX9/ve/Rzwex+9///sONXUepz/84Q/o16/fcXPP4/Hg17/+NYqKisTZYkqP8/v9sNls+P3vf48TTjgBQPsVJn73u98hEon0WNNDDz2EkpKSbl9PHo8Hd911V4/j9MADD6CkpKTb19OxY8dw3333HTf3lHFSapozZw7+9re/dagpPz9ffEmruLgYPp+v15qSGadHHnkE/fr161OPaGxsxB/+8IceX0+da+pqnPpS0+9+9zsMGDBAt743ZsyYrH/PTebviEOHDmHKlClQfPrppzjnnHOgizhRFlu+fHkcQM7+c7lc8ZkzZ8ZdLlfGczFaLXrno+X61IytRqx0Ysg2T3L9n1HGQ7Y62H+0i8f+Y5x/RhoP2WphD9IuVqoxZJsjuf7PSOMhWy3sP9rF4t9AxvlnlPGQsQ49c8qW/qNGvN6ev3z5ct32I/OMEMpqr7/+eoejiEREREREREREREQkv+XLl+Oaa67RZV28RwgRERERERERERERERkWzwihrObxeMSNfwDgpJNOEje7IiIiIiIiIiIiIiI5BINB7N+/X/w8YcIEca8urfFACBERERERERERERERGRYvjUVERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFEREQqqa+vx4svvojy8nJ84xvfgMvlgslkwvDhwzOdGhFluY8++gjXXnstBg0aBKfTiVNOOQV33nknDhw4kOnUiMjA+LcNEWXKpk2b8OCDD+Lb3/42SktLYbPZUFxcjPHjx+Mvf/kL/H5/plMkoixjisfj8UwnQUREZARPPPEE5syZc9z/Dxs2DLW1tfonRESG8Pe//x2zZs1CLBZDaWkpTjzxROzcuRNerxf9+vXDu+++i7PPPjvTaRKRAfFvGyLKhN27d+MrX/mK+HnIkCEYMmQIDh06JL4Ectppp+Htt9/GySefnKk0iSjL8IwQIiIilRQWFuLSSy/Fb37zG7z66qt44oknMp0SEWW5zZs344477kAsFsNjjz2GAwcOYOPGjTh48CCuv/56NDU14Xvf+x6CwWCmUyUiA+LfNkSUCfF4HCUlJbj//vuxe/duHDhwAJ988gnq6urwwQcfYNiwYdi5cyduuOGGTKdKRFmEZ4QQERFpZNmyZbjuuuv4rUkiStnUqVPx2muv4frrr8crr7zS4XdtbW0YOXIk9u3bh/nz5+OOO+7IUJZElCv4tw0R6SEQCCAajaKgoKDL32/YsAHf+MY3AAA1NTU8M5aIksIzQoiIiIiIJNTa2op///vfAIAf//jHx/0+Ly8Pt956KwDg5Zdf1jU3IiIiIq04nc5uD4IAwEUXXYSioiIAwI4dO/RKi4iyHA+EEBGRZqLRKDZt2oRnn30Ws2fPxte//nXY7XaYTCaYTCZMnDgx5dihUAgvvPACrrjiCgwbNgxOpxODBw/GhRdeiL/85S84evSoeoUQkWHJ3Keqq6sRCARgt9sxbty4LpdR8quqqkIsFks5VyLKDJl7EBEZWzb3n0gkgnA4DADIz89PKxYR5Q5rphMgIiJjWr58OaZPnw6/36967B07dmDatGmoqanp8P/19fWor6/HRx99hD//+c947rnncMUVV6i+fiIyBtn71M6dOwEAJ598Mux2e5fLKDcSDQQC2Lt3L0455RT1iiAiTcneg4jIuLK9/yxfvhx+vx9WqxXjx49XIWsiygU8I4SIiDTh8Xg0+cO6rq4Ol156qfjD2mQyYcKECSgrK8PkyZORl5cHADhy5AimTJmCtWvXqp4DERmD7H3q2LFjAIABAwZ0u67+/fuLx01NTSpVQER6kL0HEZFxZXP/aWpqwi9/+UsAwI9+9CMMHDhQtfyJyNh4RggREWlq0KBBOO+888S/t956CxUVFSnH+8EPfoCDBw8CAIYNG4bXX3+9w83xjh49ihtvvBH/+c9/EA6Hcd1112H37t0oLi5OtxQiMihZ+1RbWxsAdHs2CNB+DW2FFjs0iEh7svYgIjK+bOs/4XAY119/Pfbt24dTTz0VDz/8cMq5ElHu4YEQIiLSxOWXX469e/fi5JNP7vD/VVVVKcdcuXIl3n//fQDtOwZXrFiBM888s8MyAwcOxOuvv46zzjoLe/bswbFjx/Doo4/iT3/603Hx7rrrLjzyyCMp5RIOh2G18m2UKJvJ3qeUb02GQqFu1xcIBMRjXiObKLvI3oOIyLiysf/EYjHccssteOedd1BSUoJ///vfKCwsTDlfIso9vDQWERFporS09Lg/rNM1d+5c8XjGjBnH/WGtKCgowIMPPih+fuqppxCJRLpcbsCAASn9M5lMqtZGRPqTvU/169cPANDY2Njt+pTLZyUuT0TZQfYeRETGlW39Jx6P47bbbsPLL7+M/v374+2338bIkSPVSZyIcgYPhBARUVbw+Xz4z3/+I36+9dZbe1z+2muvhcvlAtC+o/C99947bpn//d//xdGjR1P6Z7FY1C2QiLKe2n3q9NNPBwDs27ev27NCvvjiCwDtl8gaNmxYyrkTUfbT4m8lIqJkaNl/4vE4br/9dixatAiFhYV46623Olxui4goWTwQQkREWeHDDz9EMBgE0P4tovPOO6/H5Z1OJ8aPHy9+5o1AiUhravepsWPHwul0IhQKobKysssY69evBwCcf/75MJv5pz1RLuPfSkSUKVr2nx//+Mf4+9//DpfLhVWrVuHrX/+6OkkTUc7hpyUiIsoK27dvF4/PPPPMpO7Pcc4553T5fCIiLajdpwoKCnDFFVcA6Hi5CUVbWxuee+45AMANN9yQUs5EZBz8W4mIMkWr/vOzn/0M8+fPR35+Pt58801ceOGF6SdLRDmLB0KIiCgr/Pe//xWPk738S+J1b3fs2KF6TkREibToU/feey8sFgteffVV/PWvf0UsFgPQfgmKmTNnYt++fRg2bBhuu+22NLMnomzHv5WIKFO06D+//vWv8eSTT8LpdOKNN97AhAkT0k+UiHJa74doiYiIJJB4s+BBgwYl9ZzS0lLxOPGGwlrZv38/xo4dK35Wrum/f/9+DBw4UPz/tGnT8OSTT2qeDxHpS4s+dfbZZ2Pu3Lm488478ctf/hJ//vOfceKJJ2Lnzp3wer0oLi7Gv/71LzgcjvQLIKKspkUP4t82RJQMtfvPRx99hD//+c8AgMLCQtx333247777uoxTVlaGsrKyvqZMRDmIB0KIiCgr+Hw+8TgvLy+p5yQul/h8rUSj0Q4fAhSxWKzD/3u9Xs1zISL9adWnZs2ahTPPPBN//vOfsWHDBmzevBmlpaWYPn067rnnHgwdOjS9xInIELToQfzbhoiSoXb/Ue43AgBHjhzBkSNHuo3z7W9/O9k0iSjH8UAIERFlhUAgIB7b7faknpP4Dem2tjbVc+ps+PDhiMfjmq+HiOSkZZ+68MIL8a9//Sv15IjI8LToQfzbhoiSoXb/mThxInsPEamO9wghIqKs4HQ6xWPlsgy9SfwmUbLfTCIiShX7FBFlEnsQEWUK+w8RZQMeCCEioqzgcrnE42TP7khcLvH5RERaYJ8iokxiDyKiTGH/IaJswAMhRESUFQYMGCAeHz58OKnn1NfXi8f9+/dXPSciokTsU0SUSexBRJQp7D9ElA14IISIiLLC6aefLh7v3bs3qefs27dPPB45cqTqORERJWKfIqJMYg8iokxh/yGibMADIURElBW+9rWvicebN29GJBLp9TmfffZZl88nItIC+xQRZRJ7EBFlCvsPEWUDHgghIqKscOGFF8LhcAAAWltbsXHjxh6XDwaDqKysFD9fcsklmuZHRMQ+RUSZxB5ERJnC/kNE2YAHQoiIKCu4XC5ceuml4udFixb1uPw///lPeL1eAO3XnP3Wt76lZXpEROxTRJRR7EFElCnsP0SUDXgghIiIssadd94pHi9atAhbt27tcjm/3497771X/Hz77bfDarVqnh8REfsUEWUSexARZQr7DxHJjgdCiIgoa1x55ZX45je/CaD9dOqrrroKmzZt6rBMY2MjpkyZgl27dgFo/4bRb37zG91zJaLcxD5FRJnEHkREmcL+Q0SyM8Xj8XimkyAiImO64oorcPDgwQ7/V19fj8OHDwMACgoK8JWvfOW4561cuRJDhgzpMmZdXR3OP/98HDp0CABgMpkwYcIEjBgxAg0NDXjnnXfg9/sBAFarFatXr+5wmjYRUSL2KSLKJPYgIsoU9h8iyjU8EEJERJoZPnw49u7d2+fnffnllxg+fHi3v9+xYwemTZuGmpqabpcpKSnBc889hyuvvLLP6yei3ME+RUSZxB5ERJnC/kNEuYYX4SMioqwzcuRIVFVV4eWXX8bSpUuxdetWHD58GMXFxTj11FPx/e9/H7feeisGDhyY6VSJKEexTxFRJrEHEVGmsP8Qkax4RggRERERERERERERERkWb5ZORERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCRERERERERERERESGxQMhRERERERERERERERkWDwQQkREREREREREREREhsUDIUREREREREREREREZFg8EEJERERERERERERERIbFAyFERERERERERERERGRYPBBCREREREREUnriiSdgMplgNpuxcePGTKeTlrvuugsmkwlOpxO7d+/OdDpEREREOYUHQoiIiIiIsszEiRNhMpn6/G/dunWZTp0oaYcPH8Z9990HALjhhhvw9a9/vcvlZs6cKeb4zJkz+7SORYsWiecOHz48zYx7dtddd6Ffv34IBoOYM2eOpusiIiIioo54IISIiIiIiIik88ADD6ClpQUmkwn33ntvptNJW3FxMX76058CAFasWIH169dnOCMiIiKi3GHNdAJERERERJS68847D+eff35Sy5544okaZ0OkjtraWvz9738HAFxzzTX42te+luGM1PGzn/0Mf/nLX+D3+3HPPffggw8+yHRKRERERDmBB0KIiIiIiLLYFVdcgfvvvz/TaRCp6rHHHkM4HAYA/PjHP85wNuoZMGAArrvuOixevBgbNmzAhg0bcNFFF2U6LSIiIiLD46WxiIiIiIiISBrNzc147rnnAACnnHIKLr300gxnpK4f/vCH4vETTzyRuUSIiIiIcggPhBAREREREZE0XnnlFbS2tgIArrvuOphMpgxnpK6LLroIQ4YMAQC8/vrraGxszHBGRERERMbHAyFERERERDmmtrYWJpMJJpMJw4cPF///wQcf4Ic//CFGjhyJoqIimEwmlJeXdxlj//79+P3vf49vfvObGDJkCBwOB/r374+xY8fiV7/6FXbu3NmnnD777DP86Ec/wqmnnoq8vDyUlJTg/PPPx6OPPopjx44BABYtWiTynjlzZpdx7r//frFMMpcMW7dunVh+4sSJSeW6fft23H333Tj//PMxaNAg2O12lJSU4IILLsC9996LgwcP9hpj4sSJYr3r1q0DABw7dgyPPPIIzjvvPAwcOBB5eXk49dRTcdttt2HLli1J5ZZo1apVmDVrFkaPHo0BAwbAZrOhuLgY55xzDmbNmoU33ngDkUhELH/kyBHY7XaYTCZYLBYcOHAgqfXE43Gccsopop433nijz7kmWrJkiXg8ZcqUtGKlK/G10td/tbW1XcY0mUyirnA4jFdffVW/goiIiIhyFO8RQkRERESU40KhEH72s5/hqaee6nXZWCyG+++/H3/+858RCASOi9PU1ISamhpUVFTg17/+Nf7whz/0+o3+3/3ud3j44YcRjUbF/wUCARw9ehSffPIJnnzySfzjH/9IrTgVBYNB/PznP8ff//73DrkCwNGjR3H06FF8/PHH+Mtf/oJHH30UP/nJT5KOvWHDBtxwww3HHXz48ssv8eWXX2Lx4sWYP38+fvSjH/Uaa+vWrZg5cyY2btx43O+am5tRXV2N6upqPP3007jhhhvw8ssvAwBOOOEEXH311XjttdcQi8WwaNEi3HPPPb2u7z//+Y/Y6T948GBceeWVSVTctaamJmzYsAEA4Ha7cd5556UcS2aXXHIJ5s2bBwB48803MXv27AxnRERERGRsPBBCRERERJTj5syZIw6CnHnmmTj77LNhs9mwc+dOmM3/dxJ5NBrFDTfcgNdee03834knnojzzz8fJSUl8Pl8qKqqwu7duxGJRPCnP/0JDQ0NePrpp7td9913342HHnpI/Jyfn49LLrkEgwcPRn19PdauXYu6ujpcccUV3Z6doofW1lZ85zvfETvpAWDEiBE499xz0a9fPxw7dgwbNmzAwYMH0dbWhp/+9KdoaWnB3Xff3WvsLVu24Le//S18Ph9OOOEEfPOb38SAAQNw4MABrF27Fm1tbYhGo7jjjjtw5plnYty4cd3GWrduHa6++mp4vV7xfyeffDLOP/989O/fH62trfjvf/+Lzz//HOFw+LiDWbfffrsY34ULF+Luu+/u9UDWs88+Kx7PnDkTFoul15q7s3btWnGQady4cbBaM/uRtbCwMOmbtW/atAnvv/+++Lmn7fbNb35TPF63bh0ikUjGayUiIiIyMv6lRURERESUw+rq6jBv3jycdNJJWLJkSYcdtED7WRCKBx54QOwkLy0txdy5c/G9733vuB2+//jHP/CjH/0Izc3NeOaZZ/Dtb38b119//XHrfu+99/Dwww+Ln6dOnYqnn34a/fr1E//X3NyMO+64Ay+//DL++Mc/qlJzKu68805xEOS0007DU089ddyltKLRKJ5++mnMmTMHwWAQ9957Ly6++GKMHz++x9i/+tWvEIlE8Nhjj+FnP/tZhx3i+/fvxxVXXIEtW7YgFovh7rvvxtq1a7uMs3//flx33XXiIMgpp5yCefPm4fLLLz9u2aamJrz66qvYtWtXh/+/7LLLcMopp+DLL7/Enj17sG7dOlx88cXd5n7s2DH861//AtC+4/+2227rsdbeVFVVicdnnXVWWrHU0L9/f/ztb3/rdbn9+/fj/PPPFz9PmzYNw4YN63b5E044AYMHD8ahQ4fg9/uxZcsWjBkzRo2UiYiIiKgLPBBCRERERJTFVq5ciaNHj/a63G9/+1uceOKJx/1/NBpFfn4+3nnnHZx22mnH/d7hcABov1fCn/70JwDtO4c/+OADjBgxost1XXfddRg4cCAuueQSAO337ejqpte//e1vEY/HAQCXXnopXn755ePOJigqKsKSJUtw7NgxrFmzptc6tfD+++/j+eefB9B+FsiGDRswcODA45azWCyYPXs28vLycOuttyIajeLBBx/EqlWreowfDAbx1FNP4fbbbz/udyeddBKWLl2Ks846C/F4HOvWrcOhQ4cwePDg45b97W9/K+bCsGHD8NFHH2HQoEFdrrNfv36YNWvWcf9vMpnwwx/+UFwS69lnn+3xQMiSJUvEwbKJEyd2OyeStWnTJvF45MiRfX5+VVVVny5JtmPHjj6vo7PW1lZcffXVqK+vBwBccMEFWLhwYa/P+9rXvoZDhw4BAD7//HMeCCEiIiLSEA+EEBERERFlsU8++QSffPJJr8v98Ic/7PJACAD85Cc/6fIgSKKKigpxyaJ777231x3eF198Mb7zne/grbfewvbt21FdXY1zzjlH/H779u348MMPxc//7//9v24vqWQ2m/Hkk09i5MiR4sCJnv7617+Kx4899liXB0ESzZw5E4888gh27NiBt956C42NjRgwYEC3y5955pldHgRRjB49Gueddx4+/vhjxONxbNy4EZMnT+6wzIEDB/DKK6+InxcsWNDtQZDe3HrrrbjvvvsQiUTw2muv4W9/+xuKi4u7XDbxslg//OEPU1pfoi+//FI8Hjp0aJ+fv2PHDlUObiQrHo/j5ptvRk1NDYD2A1fLly+H0+ns9bmJr8fubqxOREREROow974IEREREREZ2Y033tjrMitXrhSPf/CDHyQVVzkjBAA++OCDDr979913xeNzzz0Xo0aN6jHWaaed1uO9MbQSiUTw9ttvA2i/X8RVV12V1POUsyji8XiH+4p05brrrus13tixY8Xjrnaav/POO4hEIgCAr371q11eDitZgwcPFnUGAgG89NJLXS736aef4vPPPwfQfobJ97///ZTXqTh8+LB43NPBI1ncc8894tJgBQUFeOONN1BaWprUcxMPqClnkxARERGRNnhGCBERERFRFrvvvvtw//33p/x8m82GM888s8dlGhsbsXPnTgCA3W7HAw88kFTsbdu2icf79+/v8Lvq6mrxuLd7aCQu99FHHyW1rFo2bdqE1tZWAO3b6uc//3lSz0s8S6dz7Z31tv2BjgcFWlpajvt9ZWWleNz53iWpuP3227F8+XIA7Wd93Hnnncctk3g2yE033ZTUWRC9UbY1AOTn5/f5+TNmzMCiRYuSXn7RokW49dZb+7weAHjxxRfx0EMPAWi/pNiLL77Yp8tbJdaXWDcRERERqY8HQoiIiIiIcli/fv063Jy7K8p9DAAgFAph7ty5fV5PU1NTh58bGhrE45NPPjmpGMkup6aDBw+Kx42NjarU3llRUVGvMWw2m3gcDoeP+33imRSnnnpqH7Lr2ne+8x0MGzYMe/fuxWeffYaampoOO/nb2to6nCmixmWxOsvEZdCSVVlZ2aHmP/3pT5gyZUqfYshcHxEREZHR8NJYREREREQ5LC8vr9dlmpub016Pctkmhc/nE4+T/eZ/QUFB2nn0lRa1d9b5JvKp8Hq94rHL5Uo7ntlsxm233SZ+Tjz7AwBee+01sW3OO+88nHXWWWmvE+g4xm1tbarEVNu+ffswZcoUcZP4W265BXfddVef4yTWl4m5TURERJRLeCCEiIiIiIh6lLiTtrCwEPF4vM//Ol+uKHFnvd/vTyoPLS4fFIvFevx9Yu1nnXVWSrWnc+myZLndbvE48SBTOsrKysQN7JcsWYJAICB+p/ZN0hWJ99c4evSoanHV0traiquvvlqcgXPRRRfh6aefTilW4llRyd5XhIiIiIhSwwMhRERERETUo0GDBonHLS0tSR+46ElJSYl4vG/fvqSe09u9NoCOl5Dq7UwMoPczPhJrl/mG1ol5fvnll6rEPPHEE3HFFVcAaL+8l3JT8N27d2P9+vUA2g8UTZs2TZX1AcApp5wiHtfV1akWVw3xeBw33XSTuEH8sGHD8M9//hMOhyOleAcOHBCPhw8frkaKRERERNQNHgghIiIiIqIeDR48GCeddJL4+cMPP0w75tixY8XjxBt99ySZG6UXFhaKx42Njb0uv3nz5h5/P2bMGLGj+8iRI9i1a1evMTNh3Lhx4vG7776rWtzbb79dPFbOAlm4cKG4v8V1113X4WyUdCVeYuu///2vanHVcPfdd4sbyLvdbqxYsQInnHBCyvG2b98uHp999tnppkdEREREPeCBECIiIiIi6tVVV10lHs+bNy/teBdffLF4vHHjRuzYsaPH5Xft2pXUgZDEb9bX1NT0uvyrr77a4+/z8vJwySWXiJ/VqF0Ll112mbjp/RdffIG33npLlbjf/e53xUGwtWvXYteuXR0uc6b2TdLPP/988Vg580IGL7zwAh5++GEA7fdPWbp0Kc4888yU4x05ckScYZSfn4/Ro0erkicRERERdY0HQoiIiIiIqFe//OUvxf0i/vWvfx13z4+edHVJqa997Wu48MILxc8///nPu71fRywWw89+9jNxFkJPzjvvPHHz8aqqqg7fuu9s3rx52Lp1a68xf/Ob34jHTz75JN55551en6PQ63JaQ4YMwQ033CB+njVrlriPRTosFgvKysoA/N+loQ4ePAigfQwvuuiitNeR6JJLLhHzrKqqKqnLm2ntww8/xI9+9CPx86OPPoorr7wyrZjvv/++eDxx4kRxEIuIiIiItMEDIURERERE1KsRI0bgd7/7nfi5rKwMv/rVr7q9oXUkEsGaNWtw8803d7gMVqI//vGP4qDFmjVr8IMf/AAej6fDMi0tLbj55puxatUq2O32XvMsLS0VZ3DE43FMmzbtuHtNRCIRPPbYY/jZz36W1P0dJkyYgBkzZojnXnnllXjooYe6vSl5IBDA8uXLcc011+Dqq6/uNb5aHnroIfTv3x8AsHfvXowfP77bM0M8Hg+efvpp/PrXv+417m233Qazuf2jY1VVVYf/V1u/fv3EwRWv14tPPvlE9XX0xb59+/C9730PwWAQQPu8/+Uvf5l23LVr14rHiWdbEREREZE2+LUTIiIiIiJKyn333Yfa2losXrwY8Xgcjz32GJ588kl8/etfx4gRI5Cfn4+WlhbU1tZi06ZNaG1tBQAMGDCgy3gTJ07Er371K/z5z38GALzyyit48803cckll6C0tBSHDx/G2rVr4fP50K9fP/z85z/H/fff32uef/zjH/Huu+8iFovh888/x2mnnYZLLrkEJ554Io4dO4b33nsPR44cgcvlwkMPPYSf/vSnvcZ86qmncOjQIaxZswahUAh33303/vCHP+CCCy7AySefDIfDAY/Hg927d2PLli1ix/m5556b5NZN30knnYRXX30VU6ZMgc/nw5dffonLL78cw4YNw/nnn4/+/fvD5/Nh586dqKmpQTgcxjXXXJNU3MsvvxwrV64U/2e323HLLbdoUsf06dPx3nvvAQCWL1+O8ePHa7KeZDz33HM4cuQIgPazY6xWK37yk58k9dwHH3xQHJhKFI/H8frrrwMAbDYbrr/+evUSJiIiIqIu8UAIERERERElxWQyYdGiRTj33HNx3333oampCaFQCB9++GG3N1A3mUw9Xj7p0UcfhcViwaOPPopYLIbW1lasWLGiwzJDhgzBsmXLkr559gUXXIBnnnkGt99+O6LRKNra2vDvf/+7wzKDBw/GK6+8gmg0mlRMh8OBlStX4oEHHsBjjz0Gv98Pv9/f443JbTZbh5uY6+HSSy/FBx98gBkzZoh7bOzduxd79+7tcnmXy5VU3Ntvv73DgZCrr74aJSUl6SfchRtuuAG/+MUv0Nrain/84x94+OGHxZlDeku8HFs0GsXTTz+d9HN/9atfdXkg5MMPP8SBAwcAtG/H7g4UEhEREZF6eGksIiIiIiLqk5/+9KfYu3cv5s6diylTpuCUU06By+WC1WpFv379cOaZZ+LGG2/EggULsHfvXvHt9+489NBD+Pjjj1FWVobhw4fD4XBgwIABOPfcc/HHP/4Rn3/+eZ/PCigrK8OmTZtw22234ZRTToHT6URxcTHGjh2LP/zhD9i0aRO++c1v9immxWLBgw8+iNraWvzlL3/B5ZdfjpNPPhn5+fmw2WwYMGAAzjnnHMyYMQOLFi3CgQMH8Le//a1P61DD2Wefjerqavzzn//ELbfcgq9+9asoLCyExWJBv379cO6552L27NlYuXIlnn/++aRiXnHFFR0uI6b2TdITFRUV4dZbbwUAfPnll326J0s2+Pvf/y4el5eXZy4RIiIiohxiiidzx0EiIiIiIqIMW7RokdhBrhxsIH2sX78eEydOBAAMGzYMe/bsEfcN0UJtbS1OO+00cfmu5cuXa7YuPTU2NuLkk0+G3+/HhRdeiA0bNmQ6JSIiIqKcwDNCiIiIiIiIqEfPPvuseFxWVqbpQRAAGD58uDjr5I033sD27ds1XZ9ennzySfj9fgDt97IhIiIiIn3wQAgRERERERF1q76+Hv/4xz8AAFarVdPLYiW67777UFhYiHg8jgcffFCXdWrJ4/HgySefBABcddVV4gwbIiIiItIeD4QQERERERFRl6LRKH7+858jEAgAAK6//noMGTJEl3UPGjQIDzzwAADglVdewaeffqrLerXyyCOP4NixY3A4HHjiiScynQ4RERFRTuE9QoiIiIiIKCvwHiH6eOmll/Dxxx/D5/Ph/fffx86dOwEADocDmzdvxle/+tUMZ0hERERE1DfWTCdARERERERE8lizZg0WL1583P//9a9/5UEQIiIiIspKPBBCREREREREXXK73Tj33HPxy1/+EldddVWm0yEiIiIiSgkvjUVERERERERERERERIbFm6UTEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWHxQAgRERERERERERERERkWD4QQEREREREREREREZFh8UAIEREREREREREREREZFg+EEBERERERERERERGRYfFACBERERERERERERERGRYPhBARERERERERERERkWH9f0WagF2vn4qQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(cs.freq, cs.power * cs.freq, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.plot(cs_reb.freq, cs_reb.power * cs_reb.freq, drawstyle=\"steps-mid\", color=\"k\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n" + ] + }, + { + "cell_type": "markdown", + "id": "65989f28", + "metadata": {}, + "source": [ + "## Periodogram modeling\n", + "\n", + "This periodogram has a number of broad components, that can be approximated by Lorentzian curves.\n", + "Let us try to model it.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d3470baa", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "65it [00:00, 72.65it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(events, segment_size=segment_size, dt=dt, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "markdown", + "id": "9f39a4f5", + "metadata": {}, + "source": [ + "We will model the periodogram using the maximum likelihood estimation from [Barret & Vaughan 2012](https://ui.adsabs.harvard.edu/abs/2012ApJ...746..131B/abstract).\n", + "\n", + "For periodograms averaged over $L$ independent segments and $M$ independent neighbouring frequencies,\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2ML \\sum_{j=1}^{N/2} \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ML} - 1 \\right)\\ln{P_j} + c(2ML) }\\right\\} \\; ,\n", + "$$\n", + "where $\\theta$ are the model parameters, $P_j$ are the periodogram values, $S_j$ the model of the underlying signal, $c(2ML)$ is a factor independent of $P_j$ or $S_j$, and thus unimportant to the parameter estimation problem considered here (it only scales the likelihood, but does not change its shape). \n", + "\n", + "For non-uniformly binned periodograms, the factor $ML$ should go inside the sum:\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2\\sum_{j=1}^{N/2} M_j L_j \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ M_j L_j } - 1 \\right)\\ln{P_j} + c(2 M_j L_j ) }\\right\\} \n", + "$$\n", + "\n", + "This is the formula that we will apply here.\n", + "\n", + "Let us now create an initial model that more or less describes the periodogram" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "fd07a563", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0, 488.21599547079995)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjQAAAR9CAYAAADx1a4fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXgT1foH8G+6pqUbO2iBIqDIJnLZFSkqiBvgjiCbouIOuFyu1wX0Jy4XFNwXZHMDRAW8KuBCAVEEgbKjgC1Q2Qp0pU3bJPP7IzS3IZM2TWbmnEy+n+fpY5tJ3vO+eafHkNOcsSiKooCIiIiIiIiIiIiIiEhiEaITICIiIiIiIiIiIiIiqgkXNIiIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulxQYOIiIiIiIiIiIiIiKTHBQ0iIiIiIiIiIiIiIpIeFzSIiIiIiIiIiIiIiEh6XNAgIiIiIiIiIiIiIiLpcUGDiIiIiIiIiIiIiIikxwUNIiIiIiIiIiIiIiKSHhc0iIiIiIiIiIiIiIhIelzQICIiIiIiIiIiIiIi6XFBg4iIiIiIiIiIiIiIpMcFDSIiIiIiIiIiIiIikh4XNIiIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulxQYOIiIiIiIiIiIiIiKTHBQ0iIiIiIiIiIiIiIpIeFzSIiIiIiIiIiIiIiEh6XNAgIiIiIiIiIiIiIiLpcUGDiIiIiIiIiIiIiIikxwUNIiIiIiIiIiIiIiKSHhc0iIiIiIiIiIiIiIhIelzQICIiIiIiIiIiIiIi6XFBg4iIiIiIiIiIiIiIpMcFDSIiIiIiIiIiIiIikh4XNIiIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulFiU6ACADy8/OxevVq98/NmjVDbGyswIyIiIiIiIiIiIiI6GxlZWU4dOiQ++e+ffsiJSXFkLG5oEFSWL16NYYMGSI6DSIiIiIiIiIiIiKqhSVLlmDw4MGGjMUtp4iIiIiIiIiIiIiISHpc0CAiIiIiIiIiIiIiIulxyymSQrNmzQAA48ePx+zZszF//ny0bt1acFbaKikpQUZGBtLT0xEfHy86HQ8iczNibL3G0CpusHFkPrfIN7P3Tfb6ROXHOY9zXrgye99kr4+v9cTF1CKO7OcXqTNz32SvjXOeuJic88KX2fsmc32ictu3b5/H5QMq39s1Ahc0SAqVFwDPyMiAzWZD69at0b59e8FZaau8vBzR0dFo164dYmJiRKfjQWRuRoyt1xhaxQ02jsznFvlm9r7JXp+o/Djncc4LV2bvm+z18bWeuJhaxJH9/CJ1Zu6b7LVxzhMXk3Ne+DJ732SuT5bcKt/bNYJFURTFsNGIfNi5cyc6dOjg/nnHjh2mW9AgIiIiIiIiIiIiCnUi38vlNTRIKgMHDkRcXJzoNHRRWlqK5cuXo7S0VHQqXkTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+yV4b5zxxMTnnhS+z903m+mTOTS9c0CCppKSkICLCnKel0+lEfn4+nE6n6FS8iMzNiLH1GkOruMHGkfncIt/M3jfZ6xOVH+c8znnhyux9k70+vtYTF1OLOLKfX6TOzH2TvTbOeeJics4LX2bvm8z1yZybXrjlFEmBW04RERERERERERERyY9bThGdkZaWhqgoc16r3m63Izs7G3a7XXQqXkTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+yV4b5zxxMTnnhS+z903m+mTOTS9c0CCpjB49GgkJCaLT0EVxcTHmzZuH4uJi0al4EZmbEWPrNYZWcYONI/O5Rb6ZvW+y1ycqP855nPPCldn7Jnt9fK0nLqYWcWQ/v0idmfsme22c88TF5JwXvszeN5nrkzk3vXDLKZICt5wiIiIiIiIiIiIikh+3nCIiIiIiIiIiIiIiIqoGFzRIKpMmTUJycrLoNHRRUFCAl156CQUFBaJT8SIyNyPG1msMreIGG0fmc4t8M3vfZK9PVH6c8zjnhSuz9032+vhaT1xMLeLIfn6ROjP3TfbaOOeJi8k5L3yZvW8y1ydzbnrhllMkhcqPKbVt2xb79+/Hli1bTLflVEVFBfbv349WrVohOjpadDoeROZmxNh6jaFV3GDjyHxukW9m75vs9YnKj3Me57xwZfa+yV4fX+uJi6lFHNnPL1Jn5r7JXhvnPHExOeeFL7P3Teb6ROUmcsspLmiQFHgNDSIiIiIiIiJzUhQFTqcTfAuKiMh4FosFERERsFgsmsUU+V5ulCGjEPlpyJAhWLlypeg0dFFSUoKVK1diwIABiI+PF52OB5G5GTG2XmNoFTfYODKfW+Sb2fsme32i8uOcxzkvXJm9b7LXx9d64mJqEUf284vUmblv/tSmKApKSkpQXFyM06dPo6yszLD8nE4nCgsLkZSUhIgIY3daN2JsPcbQKqYWcUT2jwJn9r7JXF9tcouPj0dSUhISExMRFRW6ywKhmzkREREREREREUmloqICOTk5sNlsolMhIqIqSkpKUFJSgmPHjiE1NRUJCQmiUwoIt5wiKXDLKSIiIiIiIqLQZrPZcOjQIdjtdtGpEBFRNSwWS1CLGiLfy5XrMzIU9tq2bSvdxXW0UlFRgT179qCiokJ0Kl5E5mbE2HqNoVXcYOPIfG6Rb2bvm+z1icqPcx7nvHBl9r7JXh9f64mLqUUc2c8vUmfmvvmqTVEUHDx4UPhihsjrdRgxth5jaBVTizi83kpoMnvfZK4v0NwURUFOTo7wOTsQ3HKKpDJkyBC88847otPQRUlJCZYsWYL77rsPycnJotPxIDI3I8bWawyt4gYbR+Zzi3wze99kr09UfpzzOOeFK7P3Tfb6+FpPXEwt4sh+fpE6M/fNV23FxcVwOBwe942OjkZycjLq1KmD6OhoTS9I64vdbsfJkydRv359w/eIN2JsPcbQKqYWcUT2jwJn9r7JXJ8/uSmKgtLSUpw6dQqlpaUetxcVFaFu3bpGpasJbjlFUuCWU0RERERERESh69ChQyguLnb/HBsbi+bNm0v35h8RUbhSFAUHDhzwWNSIj49HixYtah2LW04REREREREREVFIUhQFp0+f9ritXr16XMwgIpKIxWJBvXr1PG4rKSmRciut6nBBg6QyefJkpKSkiE5DF/n5+ZgyZQry8/NFp+JFZG5GjK3XGFrFDTaOzOcW+Wb2vslen6j8OOdxzgtXZu+b7PXxtZ64mFrEkf38InVm7ptabWr7t8fHxxucmYvdbsfhw4eF7AtvxNh6jKFVTC3iiOwfBc7sfZO5vtrmZrVavW5zOp1ap6UrbjlFUqj8mFJaWhpycnKQmZlpui2n7HY7cnJykJqaKt1fqYjMzYix9RpDq7jBxpH53CLfzN432esTlR/nPM554crsfZO9Pr7WExdTiziyn1+kzsx9U6vNbrdj7969Hvdr06aNkNoVRUF5eTliYmIMuWaH0WPrMYZWMbWII7J/FDiz903m+mqbm1bztcgtp7igQVLgNTSIiIiIiIiIQpNMCxpEROSbGRY0uOUUSWXo0KGoU6eO6DR0cfr0aSxYsMBrX1EZiMzNiLH1GkOruMHGkfncIt/M3jfZ6xOVH+c8znnhyux9k70+vtYTF1OLOLKfX6TOzH2TvTaHw4FTp07B4XCYcmw9xtAqphZxRPaPAmf2vslcn8y56YULGiSV/Pz8kNu3zV8RERFISUlBRIR8v3YiczNibL3G0CpusHFkPrfIN7P3Tfb6ROXHOY9zXrgye99kr4+v9cTF1CKO7OcXqTNz32SvzWKxIDIyUsi2MEaMrccYWsXUIo7I/lHgzN43meuTOTe9cMspkgK3nCIiIiIiIiIKTdxyiogoNHDLKSKNde7cGTExMaLT0EV5eTkyMzNRXl4uOhUvInMzYmy9xtAqbrBxZD63yDez9032+kTlxzmPc164MnvfZK+Pr/XExdQijuznF6kzc99kr83pdKKkpETI7g9GjK3HGFrF1CKOyP5R4MzeN5nrkzk3vXBBg6SSnp4Oq9UqOg1d2Gw2ZGRkwGaziU7Fi8jcjBhbrzG0ihtsHJnPLfLN7H2TvT5R+XHO45wXrszeN9nr42s9cTG1iCP7+UXqzNw32WtTFAVFRUUQsSGJEWPrMYZWMbWII7J/FDiz903m+mTOTS/ccoqkwC2niIiIiIiIiEITt5wio6Snp2P16tUAgFWrViE9PT3omHPnzsWYMWMAAKNGjcLcuXODjhnOMjIy0K9fPwBA3759kZGRITYh8sAtp4g0ZrVaTXsRG0VRYLPZpFwxFZmbEWPrNYZWcYONI/O5Rb6ZvW+y1ycqP855nPPCldn7Jnt9fK0nLqYWcWQ/v0idmfsme22KosDpdAqb8/QeW48xFEVBeno6LBaLz6/ExEQ0b94cAwcOxNSpU/H333/rkpvI/lHg9Ozb3Llzqz03Y2Nj0bhxY1xyySV47LHHsGPHjmrjZWRk+IwVERGB5ORkNG/eHB07dsTNN9+MF198Ed9//z0qKioCrm/Pnj3497//jX79+uGcc85BXFwcYmJiUK9ePXTo0AGDBw/Gc889h++//77Wn34Lx98ZLmiQVCZNmoTk5GTRaeiioKAAL7/8MgoKCkSn4kVkbkaMrdcYWsUNNo7M5xb5Zva+yV6fqPw453HOC1dm75vs9fG1nriYWsSR/fwidWbum+y1ORwOHD16FA6Hw5Rj6zGGw+Go8ZooxcXFOHToEFasWIF///vfaNmyJaZMmeLxJqoWuYnsHwVOZN/Ky8tx/Phx/PLLL5g+fTo6duyIkSNHoqioqNaxFEVBYWEhDh06hB07duCLL77Ak08+iQEDBqB58+Z4+umncerUKb/j5efnY9SoUbjwwgsxdepUZGRk4MiRI7DZbKioqEBeXh527tyJZcuW4dlnn8WAAQNQr149HDp0yO8xwvF3hltOkRQqP6bUpEkT5ObmYuvWrabbcsrhcCA3NxcNGzZEZGSk6HQ8iMzNiLH1GkOruMHGkfncIt/M3jfZ6xOVH+c8znnhyux9k70+vtYTF1OLOLKfX6TOzH1Tq02mLacURYHdbkdUVJThO0AYMbYeY1R+QmPNmjUAgG7duqF79+4e9ykoKMDWrVuxfft2j9vHjx+P1157TbPcaorBLafkVLVvq1ev1nTLqar9SUxMxMiRIz2Ol5aWYt++ffj1119RUVHhvr1v375YuXIlYmJiPO5fdUssAHjggQc8jttsNuTl5eHIkSPIzMxEaWmpx/FzzjkHc+bMwYABA6rNOy8vD5dffjkyMzPdt9WpUwddu3ZFy5YtERsbi/z8fOzduxc7duzwWFTcu3cvWrduXW38SrX9vTPDllPczJCkcvToUdEp6CYyMhJNmjQRnYYqkbkZMbZeY2gVN9g4Mp9b5JvZ+yZ7faLy45zHOS9cmb1vstfH13riYmoRR/bzi9SZuW+y12axWBAdHW3asfUYo3K7nUrXXHMNJk+erHrfX375BbfffjsOHjwIAJgxYwaGDx+Orl27apKbiP6NHj0ao0ePNnRMszGqb/Xq1cObb76peuzAgQMYMWIE1q5dCwBYvXo1Zs6ciccff7zamL7iAUBFRQXWrVuHmTNnYunSpVAUBYcPH8bAgQOxcOFC3HLLLT4f++ijj7oXM2JiYjB16lTcd999iI+P97pvaWkpVqxYgYULF+KLL76oNt+ziZzzROGWUySV0aNHIyEhQXQauiguLsbcuXNRXFwsOhUvInMzYmy9xtAqbrBxZD63yDez9032+kTlxzmPc164MnvfZK+Pr/XExdQijuznF6kzc99kr83hcODEiRPCtpzSe2w9xnA4HB5/2V6d3r17Y+nSpR4LIO+//75muYnsHwVOhr61aNEC33zzDVq2bOm+rfLTQ4GKjo5Geno6Fi9ejE8//RT16tUD4PpUxKhRo7B582bVxx07dgzz5s1z//zhhx/i0UcfVV3MAIC4uDgMGTIEn332GQ4ePIimTZv6naMMz73RuKBBUsnOzobdbhedhi6ioqKQlpYm5CO3NRGZmxFj6zWGVnGDjSPzuUW+mb1vstcnKj/OeZzzwpXZ+yZ7fXytJy6mFnFkP79InZn7JnttlRcJNnq7KaPG1mOMyosh+6tz584eWz1VblWlRW4i+0eBk6VviYmJePjhh90/HzlyBLt27Qo6rsViwbXXXoulS5e6577S0lI89thjqvf/4Ycf4HQ6AQBNmzbF8OHD/R6rSZMmqFOnTq1yk+G5NxIXNEgqGRkZsNlsotPQhdVqRXp6OqxWq+hUvIjMzYix9RpDq7jBxpH53CLfzN432esTlR/nPM554crsfZO9Pr7WExdTiziyn1+kzsx9k722iIgIJCYm1uoN+lAaW48xIiIian2tl86dO7u/P3z4sF+57d69G08++SS6d++Oxo0bIyYmBg0bNkSPHj3wzDPP4PDhwwHVd+jQITz11FO46KKLUK9ePdSpUwdt27bFhAkTsG/fvhofP3fuXPe2W762nsrIyHDfp+pizk8//YShQ4fivPPOg9VqRf369XHZZZfhzTffrPFTL9nZ2e6YaWlp7tt///13jB07Fueffz7i4+NRt25ddO/eHVOnTsXp06f9eUrcTp48ienTp6N///5o1qwZrFYrUlJS0K5dOzzwwAP4/fffaxVv7969GD9+PNq2bYs6deqgXr166Ny5MyZPnoyCggIhv3dn6927t8fPf/31V9AxK8/LSy+9FE888YT79lWrVuHXX3/1uv/ff//t/r558+a6LjaInPNECZ9KKST07NkTsbGxotPQRVlZGdavX4+ysjLRqXgRmZsRY+s1hlZxg40j87lFvpm9b7LXJyo/znmc88KV2fsme318rScuphZxZD+/SJ2Z+yZ7bU6nE8XFxe6/jjbb2HqM4XQ6a71dTVxcnPv7yj9M9ZVbWVkZxo0bh44dO+LFF1/Exo0bcfz4cVRUVODEiRPYsGEDnn/+ebRu3RpvvPFGrepbtmwZOnbsiBdeeAHbtm1DXl4eSkpK8Mcff2DGjBno1KmTe0ssLZWXl+Oee+7BFVdcgYULFyIrKwtlZWU4deoU1q5di4ceegg9e/bEiRMn/I6pKAqeffZZ9OjRAx9++CH27t2L0tJS5OfnY+PGjfj3v/+Njh07+v0G/VtvvYVWrVrhscceww8//ICcnByUlZWhoKAAu3fvxttvv43u3bvjrrvu8rggtS9vv/02OnXqhJkzZ+KPP/5ASUkJ8vLysHXrVjz//PPo2LEjli5d6ne9eqlbt67Hz4WFhUHHrHpuP/TQQx4XGl+wYIHX/asuLmRlZQU9vr+5hQsuaJBUOnfu7DEpmEl5eTkyMzP9+p+E0UTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+yV6boigoKSmBoiimHFuPMRRFqfWboZWfygCAxo0b+8zt9OnTuOKKK/Dee++5F01atWqFW2+9Fffeey9uueUWnHPOOQBcW/g8/PDDmDp1ql/1/f7777jllltQUFCA+vXr46abbsLYsWNx5ZVXui+SXFpainvvvRcffvhhreqryT333IMPPvgAERER6NWrF8aMGYNRo0bhggsucN9n8+bNGDlypN8xp0yZgueeew5OpxOdO3fGiBEjcOedd6JLly7u+2RlZWHIkCE1btc+fvx4PPjggygoKAAANGjQANdffz3uvvtujBgxAh06dADg6tns2bMxePDgas+B9957Dw888IB78So6Ohr9+/fH2LFjceONN6JevXrIz8/Hrbfeik2bNvldsx7y8vI8fk5OTg46ZtVzu0mTJrj00kvdxyovQl5Vq1at3N8fP34cc+bMCToHf3ILFxYlnKolae3cudM9mQLAjh070L59e4EZEREREREREZE/7HY79u7d63FbmzZtqr3Oht1uR05Ojt6phbTU1FTDrlWSnp6O1atXAwCeffZZTJ482ed97XY7zjvvPBw6dAgAcPPNN+Pzzz9Xve+oUaMwf/58AMD555+P9957z2PLJsB1UeP3338fEyZMQFlZGSIjI7F27Vr06tWr2jxjYmJQXl6Oxx57DP/3f//nseNHTk4Ohg0b5n6zOT4+Htu2bfN4o7nS3LlzMWbMGHe+c+fO9bpPRkYG+vXrBwCIjY1FWVkZunXrhvnz56Nt27bu+ymKgtdffx3jx49337Z69WpcdtllXjGzs7PdF7COiYlBRUUFzjvvPHz66afo3r27x30///xzDB8+3L2N1bx583wulsyePRt33XUXACApKQnTp0/HqFGj3Is8lVatWoURI0a4t0d6+eWXPbZTqrR371506tTJvZjRt29ffPzxx0hNTXXfp6ysDJMmTcKMGTPcfam8b0ZGhmqe/qranxYtWiA7O7va+7/22muYOHGi++edO3eiXbt27p+r9hJAQAsBTz75JF588UUArk9jFBcXe3xqqbCwEKmpqSgqKgLguvbQfffdh7Fjx6JTp061Hk9LgczXakS+lyvnFZwobKWkpGjyUTAZOZ1OFBYWIikpSbp97UTmZsTYeo2hVdxg48h8bpFvZu+b7PWJyo9zHue8cGX2vsleH1/riYupRRzZzy9SZ+a+aVVbTk6O+81cUpeVleVxbQXA9earw+FAZGSkZvvyK4pSqzd1X3rpJfdiBuD6tIJabmvXrnUvZrRq1Qrr1q1DgwYNvOJFRkbivvvuQ1xcHMaMGQOHw4HnnnsO3333XbV5lJeXY9y4cfjPf/7jdSw1NRXffvstunXrhj179qCkpARTpkxx5xOMsrIytGnTBj/99BMSEhI8jlksFjzyyCP4+eefsXjxYgDAZ599prqgcXYt9evXx5o1a9yfWKnqlltuwYYNGzBt2jR3TLUFjaKiIjz66KMAXIskK1euRI8ePVTH7NevH77//nt06dIFNpsNr7zyCh588EHEx8d73G/y5MnuxYz27dvj22+/9bpPTEwM/vOf/6CoqEjzT8PURnFxMd544w33z02bNvVYzAjU2ed21U/iOJ1OnDhxAs2aNXPflpSUhMmTJ7t7Ybfb8cYbb+CNN95A06ZN0aNHD3Tt2hXdu3dHr169vM6jYHILB+b6vyqFvPHjxyMpKUl0GrooLCzEzJkzpVywEZmbEWPrNYZWcYONI/O5Rb6ZvW+y1ycqP855nPPCldn7Jnt9fK0nLqYWcWQ/v0idmftm5tpCgcPhwPHjx2t9zYuaYtZ0AevCwkKsXbsWw4YNw9NPP+2+fcKECejfv79qbq+++qr7ftOnT1ddzKhq9OjR7k87rFixAidPnqz2/omJiXjppZd8Hk9ISMArr7zi/vnzzz93b8EUrJdeeqnaN6HvvPNO9/cbNmzwK+aTTz6pupihFnPjxo2q95k9ezby8/MBAPfff7/PxYxKF154IUaNGgXAdQHx5cuXexzPz8/HF1984f75lVde8VrMAP7X+xdffBF16tSpdky9HDhwANdee63HNSuqflImGGef22dvY3X2NlcAMHHiRDz33HNeC79HjhzBkiVL8NRTT2HAgAFISUlBv379MH/+/IB+r/WYE6SnEElgx44dCgAlJSVFiYiIUHbs2CE6Jc05HA4lLy9PcTgcolPxIjI3I8bWawyt4gYbR+Zzi3wze99kr09UfpzzOOeFK7P3Tfb6+FpPXEwt4sh+fpE6M/dNrbaKigpl165dHl8VFRXVxsnKylIA8Kuar6ysLK/nzel0KhUVFYrT6dSsp06nU7nssstqlVv9+vWVl156yWduFRUVSp06dRQASlJSkmK32/3KZdy4ce4xli5d6nW8b9++7uPDhw+vMZ7dblcaNmzofsx3333ndZ85c+a4j48aNUo1zqpVq9z3sVqtSnl5ebXjHjlyxH3/evXqqd7n7N+BgwcPVhvT6XQqcXFx7vsXFhZ63WfAgAHu4xs2bKg2XqWFCxe6HzNhwgSPY9988437WKNGjXzOaVV7f/vtt7sf07dvX79yqE7V/iQmJioPPPCAx9ddd92l9O3bV4mOjvZ4Pi+99FLFZrN5xavaS3/fGj/79+7777/3iPHzzz/7fOyOHTuUESNGuH8fqvu68MILlW3bttXq+antnBDIfO2rrqq5G/leLrecIqlUriKbUUREBFJSUkSnoUpkbkaMrdcYWsUNNo7M5xb5Zva+yV6fqPw453HOC1dm75vs9fG1nriYWsSR/fwidWbum5lrCwUWi0Xz62pYLJZabVUTGRmJl19+2X2dBrXctm3bhtOnTwNwXUD6kUce8Sv277//7v6+6rZWatSusaGWa7du3fDtt98CALZs2YKBAwf6lYsvF1xwgdf1KM5Wv3599/f+fJopOTnZY8siNRaLBXXr1kVpaak7bmJiosd9fv31V/f377//PubNm1fj2FWvZXP2c75lyxb39927d/e5zVzV3vfq1QufffZZjeMGoqioCG+99VaN9xs2bBjefvttj+uqBOPs37vKa2NUqm63mfbt22P+/Pl49913sW7dOqxduxa///47Nm/ejGPHjnncd/fu3ejduzfWrVvn97U29JgTZBde1ZL0xo0bh08++UR0GrooKirCJ598guHDh3v9D0c0kbkZMbZeY2gVN9g4Mp9b5JvZ+yZ7faLy45zHOS9cmb1vstfH13riYmoRR/bzi9SZuW9mri0UOBwOnDx5EvXr10dkZKRmMatuOdWtWzePi1IXFxfj4MGD+OWXX1BWVgaHw4GxY8fir7/+wgsvvKCa2+HDh923nzx50q83oc+mto1PVc2bN/crTtX75ebm1jqPs5293ZCaqgsedrtdk5hnxz17m7Di4mKPN9pnzZrlV8yqzn7Oqz5f1T3fVXvvb1+0EhMTg5SUFLRq1Qq9e/fGyJEjNb/w9tm/d2dvXVavXr0aY8THx6N///7uLdoA1wLGggUL8MYbb7if++LiYowYMQKZmZl+LTTqMSfIjgsaJJXMzEyUl5eLTkMXMTEx6Ny5M2JiYkSn4kVkbkaMrdcYlXGdTieys7MDjlNeXo7mzZvjyJEjNe4R6u/jmzRpAqvVGnBOpD+Z5wQtyF6fqPzMMOcFGzfYOLKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfTNzbaHAYrEgPj5e04v/WiwWj7+8v+aaazB58mSv+x09ehQTJ050//X91KlTcdFFF+HWW2/1yk2La1XUtBCgdi0HNVWv6XD2X9YHQo8LL2sRU4/nvLi42P19dc931d7reQ2NFi1aBPX+S6DO/r3bs2eP+1hkZGSN14fx5cILL8SUKVMwbtw49O/fHzt37gTg+oRTRkYG+vXrV+vcwgEXNEgq69evF52CbmJjY9GzZ0/RaagSmZsRY+s1hsPhwIwZM7B06VLYbDbN4wfDarVi8ODBmD17tt8v8shYMs8JWpC9PlH5hfKcp1XcYOPIfm6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dNq9pSU1M9Lt5L3lJTU71ui4iIqPZi1IGIiIjw6y+7mzRpgo8//hinTp3CihUrAAD33Xcf+vfvj7p163rkVvVN7U6dOmHr1q2a5gwAJSUlft2vcusrAKb+VNHZCwmnTp1C3bp1g4pZ9Vyr7vmu2vuqz7dZnP1799tvv7m/v/jii4Pe2qpp06b44IMP0Lt3b/dta9eu9WtBQ485QXZc0CCppKenm3ZRw2azYf369ejZs6d0fzkvMjcjxtZrjLFjx3rtdxgIq9WKnj17Yv369QEtjKg93mazYeHChQCABQsWBJ0jaU/mOUELstcnKr9QnvO0ihtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvmlVW1RUFNLS0rRL7Ayn04nTp0+jTp06Pvf714sRY+sxhtPphMPh8Ou+ERERmDVrFtq2bYvTp0/j1KlTmDp1Kv7zn/945Na4cWP3Y44ePVqrXPyt7+DBg37FrHpdiED/kj4UpKSkIDY2FmVlZQBcz3uwCxoNGzZ0f1/d8121bzVd+yQUVa3v2LFjWLdunfvYZZddpskYvXr1QnJysvuTNkeOHKl1bkbPeaKER5UUMtLS0kx7IRu73Y7s7Gy/9k40msjcjBhbjzFsNhtWrlypyTlb+UI+0DjVPV7GT4+Qi8xzghZkr09UfqE652kZN9g4sp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702RVFQVlYGRVFMObYeYyiKAqfT6ff9U1NTMX78ePfPb775Jo4ePeqRW+fOnd1/tX78+HHs27fP71z8rc+fP4h1OBzYuHGj++cuXbr4lUeoqnrtk6pvugfq4osvdn+/ceNGn+dJ1b5VvTC5WVSt74033vC4fsnQoUM1G6fqJz38/dSHyDlPGIVIAjt27FAAuL927NghOiWiamVlZXmcszJ/ZWVliX66iIiIiIjIxCoqKpRdu3Z5fFVUVIhOi2qhb9++7n9DPvvsszXe/9SpU0piYqL7MRMmTPC6z9VXX13t8WDzTEpKUgoKCqq9/3//+1/3/a1Wq5Kfn+91nzlz5rjvM2rUKNU4q1atct+nb9++fuVa9d/laqq+r9CiRQu/YrZo0aLaf+u//PLL7uNdunRRnE6nX3F9ycvLU2JjY90xv/vuu2rvn5+fryQkJNT6uapO1f74+zxVp2ova/vW+Lp165SoqCj3YwcMGBB0PpX+/vtvxWKxuGNPnz5ds9hVaTVfi3wvl5/QIKk0adLEr30bQ5HD4cDRo0f9/hinkUTmZsTYeo0RGRmpyTkbbByt8iBjyTwnaEH2+kTlF8pznlZxg40j+7lF6szeN9nr42s9cTG1iCP7+UXqzNw32WtTFAUVFRXCPqGh99h6jKEoSq3j1a1bFw899JD75/feew/Hjx/3yO2f//yn+/gbb7yBH374wa9cKioq/Npup7CwEE8++aTP46dPn8YTTzzh/vnmm29GcnJyjXFD2b333ouUlBQAwObNmzFlyhS/H3vixAmv3+uUlBTcdNNN7p+feOIJlJaWej22sm9PPPGEx4XEzUJRFPz3v//F9ddf7/50Wp06dfCf//xH9f5ff/01Zs2a5fFJjpo8/fTTHr+HAwcO9Ds3UXOeKFzQIKmMGzfOtBdoKioqwnvvvYeioiLRqXgRmZsRY+s1RmJioibnbLBxtMqDjCXznKAF2esTlV8oz3laxQ02juznFqkze99kr4+v9cTF1CKO7OcXqTNz32SvzeFwIDc3V9girt5j6zGGw+Go1RuvlSZOnOi+GHFJSQmmTZvmkVvfvn0xatQoAK6tyq699lq8+OKLPt/wttls+PLLL3Hddddh0KBBNY4fExODt956C5MmTUJ5ebnHsb///hvXXnstdu3aBQCIi4vDs88+W+saQ01ycjJee+01989TpkzBqFGjfF7/QlEUrFu3Dvfffz+aN2+uuljxzDPPuLc/2r59O6699lr8/fffHvcpKSnBQw89hPfffx8xMTEaViSW3W7H6tWrcdNNN2Hw4ME4deoUANe1ZD755BN06tRJ9XF///037r77brRu3RrPPPMM9uzZ43OMgwcPYvjw4Zg9e7b7tkGDBqFdu3Z+5ShyzhPFooTT8g1Ja+fOnejQoQOsVivKysqwfft2tG/fXnRamlLO7GkXGxsLi8UiOh0PInMzYmw9xsjOzsZ5553nvuBW1al07dq1SE1NrVV+FRUViI6ODig/RVGQnZ2NK664QnVFPisrS5eL7VFwZJ4TtCB7faLyC9U5T8u4wcaR/dwidWbvm+z18bWeuJhaxJH9/CJ1Zu6bWm12ux179+71uF+bNm2EXCOz8tMGFotFyJyn99h6jKEoCvr164fVq1cDAJ599llMnjzZr8dOmjQJL7/8MgAgISEBWVlZqF+/vju3srIyDBo0CCtXrnQ/Jj4+Hj169EDz5s0RGxuL/Px87N+/Hzt27HBf0Pof//gHfv/9d6/x0tPT3Xm+8sor+Pe//42Kigo0aNAA6enpqFu3Lg4cOICMjAyPRY733nsP99xzj2oNc+fOxZgxYwAAo0aNwty5c73uk5GRgX79+gFwLdRkZGTU+NxU7Y/av9Wzs7PRsmVLAECLFi2QnZ1dY8y0tDQcOHAAQPX/1n/mmWfw/PPPu3+OjIxE586d0bZtWyQkJKC4uBg5OTnIzMx0X4QacC1YVi5SVfX222/jgQcecP8cExOD9PR0tGjRAnl5eVi1ahVOnjyJmJgYvPDCC3j88ccB+P9cVadqf/x9nqpTtZcAPOoCXAtr+fn5OHr0KDZv3uy1yNOsWTPMnTsXl19+uc8x3n33Xdx3330etzVs2BBdunRBo0aNUKdOHRQUFGD37t3YunWrx/lx/vnnIyMjA02bNvWrntrOCVrN15Xv5VbasWOHYe/lmvPqyxSyzHzxYovFAqvVKjoNVSJzM2JsvcZQFEX1nE1NTfV/AWHjRuDLLwFFATp2BLp1A1q3BiJq9wE6i8USVh8vNAOZ5wQtyF6fqPxCec7TKm6wcWQ/t0id2fsme318rScuphZxZD+/SJ2Z+yZ7bSIWMowcW48xgon36KOP4s0338Tp06dRXFyMmTNneryRHhsbi2+//RZTpkzB9OnTUVJSgpKSEqxatcpnzOjoaPTs2bPGsbt164bPP/8cI0eOxIkTJ7B48WKv+1itVrz66qs+FzPM6rnnnkOHDh0wYcIEHD58GA6HA5s2bcKmTZt8PqZ79+6Ijo5WPXb//ffD4XDg8ccfR1lZGcrLyz0WqQDXp0Pmz5+PpKQkTWvR21tvveXX/VJTU3HXXXdh/Pjx7m29fOnUqRO6du3qsSiXm5uLFStWVPu44cOH47XXXkPDhg39ygkQO+eJwi2nSCrjx48PuYnPX4WFhZgxYwYKCwtFp+JFZG5GjK3XGElJScGds+++C3TvjsK338aMsjIU3n8/cMEFQL16wJVXApMmAV98ARw86Frw8KGwsBCLFy827e+OWck8J2hB9vpE5RfKc55WcYONI/u5RerM3jfZ6+NrPXExtYgj+/lF6szcN9lrczgcOHbsmLAtp/QeW48xHA6H15ZN/mrYsKHHX6K//vrrOHnypMd9IiMj8dxzzyE7OxvTpk3DwIED0bx5c8THxyM6Ohr169dHly5dMGrUKMyePRtbtmzBzJkz/Rp/8ODB2LZtGyZNmoSOHTsiOTkZcXFxOP/88/Hwww9j27ZtXn8pHy5uvfVW/PXXX5g7dy5uv/12tG7dGsnJyYiMjERSUhIuvPBC3HjjjXjttdfwxx9/4LfffnNvLaXmoYcewrZt2/DQQw+hTZs2iIuLQ0pKCjp27Ih//vOf+PHHH3HttdcaWKH2LBYLEhMTkZqaivbt2+PGG2/ECy+8gJUrV+K3337D008/XeNiBgD07t0bGzduRE5ODj766COMGzcOffr0wbnnnov4+HhERkYiOTkZ5513Hq677jq88MIL2L9/Pz7++ONaLWYAYuc8UbjlFEmh8mNKnTt3xq5du7B582bTbTlVXl6OXbt2oV27dtLtJygyNyPG1mOM7OxsXHDBBWjXrh127drl8eLPry2ejh0DWrYESktRHhODXe3aod2uXYjx9SKycWOga1fXJzgqv878T668vBxr1qzBtddeq/oilFtOyUnmOUELstcnKr9QnfO0jBtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvqnVJtOWU06nEzabDVarFRG1/OR7KIytxxhaxdQijsj+UeDM3jeZ66ttbmbYcooLGiQFkb8ERIGoutfl2fxaQHj5ZdcnMILRooV7ceNos2Y4f9gwqF2WjwsaRERERESkJ5kWNIiIyDczLGjItaREYW/gwIGIi4sTnYYuSktLsXz5cq+LCclAZG5GjK3XGHFxcYGds4oCzJr1v/zi4rB84ECU1jbOgQPA4sUonTwZmfPn40hcHHYBmAfgQQA9APj+sCiJJvOcoAXZ6xOVXyjPeVrFDTaO7OcWqTN732Svj6/1xMXUIo7s5xepM3PfZK/N6XSioKAATqfTlGPrMYZWMbWII7J/FDiz903m+mTOTS9cKieppKSkSPfRLa04nU7k5+dLOcGIzM2IsfUaIyIiIrBzds0aYN++/+UXEYH8lBQ4A/1I7pnHIyICFwK4EMDIM8cqADivuw645JL/bVXVvj3Av5QSTuY5QQuy1ycqv1Ce87SKG2wc2c8tUmf2vsleH1/riYupRRzZzy9SZ+a+yV6boihwOBwQsSGJEWPrMYZWMbWII7J/FDiz903m+mTOTS/ccoqkwC2nKNQEteXUHXcAn3yiT2L+sFqBiy/+3wLH5ZcD55wjLh8iIiIiIgpp3HKKiCg0cMspIo2lpaWZ9gWP3W5HdnY27Ha76FS8iMzNiLH1GiMqKqr252xeHrB4sWd+UVHITkuD/brrgLVrgVdfBW6/HWjd2q+Q7sf7m4fNBvz6K/D668CIEUBaGvDYY66tsMgwMs8JWpC9PlH5hfKcp1XcYOPIfm6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dN9toURUFZWZmwT2joPbYeY2gVU4s4IvtHgTN732SuT+bc9MIFDZLK6NGjkZCQIDoNXRQXF2PevHkoLi4WnYoXkbkZMbZeYyQkJNT+nP3kE6CszDO/hATMGz0axWPGAJdeCkyYAHz6KbB3L3DqFLByJfDCC8CQIcC553qFdD8+0N+digpg+nSP63qQ/mSeE7Qge32i8gvlOU+ruMHGkf3cInVm75vs9fG1nriYWsSR/fwidWbum+y1ORwOnDx5Eg6Hw5Rj6zGGVjG1iCOyfxQ4s/dN5vpkzk0v3HKKpMAtpyjUBLTllKIAnTsD27Z5Hzv3XCA7279rWxw5Amzc6Pl16lRt0lfXvDmwfz+vr0FERERERLXCLaeIiEIDt5wiIiL//f67+mIGANx5p/8LCU2bAoMGAc8/DyxfDpw4gZzVq3EbgGkAVgMI6G+lDh4EvvwykEcSERERERERERHpjgsaJJVJkyYhOTlZdBq6KCgowEsvvYSCggLRqXgRmZsRY+s1RnJycu3OWR9bOhUkJ+MlqzXg/AoKCzH/55+xIjkZjwNIB5AMoD2A0QAK77jDdfHvmJiag02fzmtpGETmOUELstcnKr9QnvO0ihtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvslem91ux5EjR4RdN0jvsfUYQ6uYWsQR2T8KnNn7JnN9MuemFy5okFSWLFmCkpIS0WnoIj4+HkOGDEF8fLzoVLyIzM2IsfUao6SkxP9ztrjYdV0Mtfx69sSQG28MOL/4+HhceumlHnk4AewCMA/AqeefBzZsAIqKXNtTvf020LOnerANG1wXDCfdyTwnaEH2+kTlF8pznlZxg40j+7lF6szeN9nr42s9cTG1iCP7+UXqzNw32WuLiIhASkoKIiKMf8vLiLH1GEOrmFrEEdk/CpzZ+yZzfTLnphdeQ4OkwGtoUKip9TU0Zs8G7rpLPdiiRcAttxibz/btQKdO6sFuuglYvDiofIiIiIiIKHzwGhpERKGB19Ag0pjMf+URrFr9Nb/BROZmxNh6jVGrv0zysd0UGjRAyZVXBpVfSUkJfv7559r97nTsCFx5pfqxr74CsrICyoX8J/OcoAXZ6xOVXyjPeVrFDTaO7OcWqTN732Svj6/1xMXUIo7s5xepM3PfZK/N4XAgLy8PDofDlGPrMYZWMbWII7J/FDiz903m+mTOTS9c0CAi0tvOnb63cRo5EoiNNTafShMnqt/udAKvv25sLkRERERERERERDXgllMkBW45RaGmVls8TZgAzJihHmjXLuDCC43Np5LTCXToAOze7X0sIQHIyQH8veA5ERERERGFLW45RUQUGrjlFJHG2rZti+joaNFp6KKiogJ79uxBRUWF6FS8iMzNiLH1GiM6Orrmc7asDJg/X/3YJZcAF14YdH4VFRU4ePBg7X93IiJciy1qiot9b5NFmpB5TtCC7PWJyi+U5zyt4mox58l8bpE6s/dN9vr4Wk9cTC3iyH5+kToz90322pxOJ0pLS+F0Ok05th5jaBVTizgi+0eBM3vfZK5P5tz0wgUNkgqvoSEG91UOjF/X0FiyBDh1Sv3Y2LGa5BfQNTQq3XEH0KCB+rHXXwfs9oByoprJPCdoQfb6eA0NcXF5DY3wZPa+yV4fX+uJi8lraIQvM/dN9tqcTify8/OFLWjoPbYeY2gVU4s4IvtHgTN732SuT+bc9MItp0gK3HKKQo3fWzxdeSXw44/ed0pKAg4fBurUMTYfNc88Azz/vPqxhQuBW28NPkEiIiIiIjItbjlFRBQauOUUERH59tdf6osZADBsmGaLGUG7/34gJkb92PTpANe9iYiIiIiIiIhIAlzQIKlMnjwZKSkpotPQRX5+PqZMmYL8/HzRqXgRmZsRY+s1RkpKSvXn7OzZvh98ZrspLfLLz8/HvHnzAv/dadIEGD5c/diGDcCvvwYWl6ol85ygBdnrE5VfKM95WsXVYs6T+dwidWbvm+z18bWeuJhaxJH9/CJ1Zu6b7LXZ7XYcPnwYdgHb5xoxth5jaBVTizgi+0eBM3vfZK5P5tz0wi2nSAqVH1NKS0tDTk4OMjMzTbfllN1uR05ODlJTU6X72K3I3IwYW48xsrOz0aZNG6SmpiInJ8fjfxxZWVlIS00FWrRwbSt1ts6dgc2bAYtFk/zsdjt+//139OnTR/V/YDVuOQUA27cDnTqpH7vpJmDx4lrnRdWTeU7Qguz1icovVOc8LeNqMefJfG6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dNrTaZtpxSFAXl5eWIiYmB5cy/ucw0th5jaBVTizgi+0eBM3vfZK6vtrmZYcspLmiQFHgNDQo1NV6zYvt2YNAg9Qe/9ZZrmycj86lpQQMABgwAvv/e+/aICGDfPsBHfCIiIiIiCm8yLWgQEZFvZljQ4JZTJJWhQ4eijizXFdDY6dOnsWDBApw+fVp0Kl5E5mbE2HqNUadOHd/n7KxZ6g+yWl3Xz9Awv9OnT+Onn34K/ndnwgT1251O4PXXg4tNXmSeE7Qge32i8gvlOU+ruFrMeTKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfZO9NofDgVOnTsHhcJhybD3G0CqmFnFE9o8CZ/a+yVyfzLnphQsaJJX8/Hw4nU7RaegiIiICKSkpiIiQ79dOZG5GjK3XGE6nU/WcjTx2DPjmG/UH3XILcNa1LoLNLyIiAgkJCcH/7lx1FXDhherHZs0CCgqCi08eZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702i8WCyMhIIdvCGDG2HmNoFVOLOCL7R4Eze99krk/m3PTCLadICtxyikJNdVs8nXrsMdSdNk39gWvWAH36GJqP31tOAcAHHwD33KN+bNo04NFHA0uQiIiIiIhMi1tOEQGTJ0/GlClTAADPPvssJk+eLDYh0lVaWhoOHDgAoJbvuwQhIyMD/fr1AwD07dsXGRkZtY7BLaeINNa5c2fExMSITkMX5eXlyMzMRHl5uehUvIjMzYix9RojJibG65y1AEhYtEj9AeefD1x6qeb5lZeXY9++fdr87txxB9Cggfqx118HVC46ToGReU7Qguz1icovlOc8reJqMefJfG6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dN9tqcTidKSkqE7P5gxNh6jHF2zIyMDNx///3o2rUrGjZsiJiYGMTFxaFRo0bo2rUrhg0bhtdeew2///47qv6dtBa5iewfBSY7OxsWi8Xjq1GjRrDX4v0Dh8OBpk2besXJzs7WL/FakPm8lDk3vXBBg6SSnp4Oq9UqOg1d2Gw2ZGRkwGaziU7Fi8jcjBhbrzGsVqvXOdsPQPTBg+oPGDsWUPkIYLD52Ww2ZGZmavO7Exfn+4LlBw8CX34Z/BgEQO45QQuy1ycqv1Ce87SKq8WcJ/O5RerM3jfZ6+NrPXExtYgj+/lF6szcN9lrUxQFRUVFELEhiRFj6zFGZcxdu3ahV69e6NevH9555x1s2rQJJ06cQEVFBWw2G3Jzc7Fp0yZ89tlnmDhxIrp164aOHTv6zG306NHuN6bnzp0rrL5ATJ482Z07P2lRe7m5ufjuu+/8vv+KFStw9OhRHTMKjiznpRqZc9MLt5wiKXDLKQo1vrZ4+hTA7WoPiIoC/v4baNTI0HyAAD76eOwY0Lw5oPYXV927A+vXqy7MEBERERFReOKWU6Fvy5YtuPzyy5Gfn+++rXHjxujatSuaNGkCi8WCkydPYseOHdi3b5/7zdNzzz0XOTk5qjFHjx6NefPmAQDmzJmD0aNH612GZgLZPipct5zy9X7EzTffjM8//9yvGEOHDsXChQu9bjdqK6dAcMspbjlFBMD1F+9mvYiNoiiw2WxSrpiKzM2IsfUaw2KxeJyz9QDc6OvOgwf7XMwINj9FUVBeXq7d707jxsDw4erHNmwAfv1Vm3HCnMxzghZkr09UfqE852kVV4s5T+Zzi9SZvW+y18fXeuJiahFH9vOL1Jm5b7LXpigKnE6nsDlP77H1GKO8vBzDhg1zL2acc845+Oqrr3D48GH897//xaxZs/DBBx/gyy+/xJ9//oljx47hgw8+wGWXXebx71AtchPZv2BNnjwZiqJAUZSwWcxQ065dOwDA119/7bFA5ktBQQGWLl3q8VjZyHxeypybXrigQVKZNGkSkpOTRaehi4KCArz88ssoKCgQnYoXkbkZMbZeYyQnJ3ucs3cAiPV157FjdcuvoKAAn332mba/OxMm+D726qvajRPGZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702h8OBo0ePwuFwmHJsPcb48ssvsWfPHgBAXFwcVq1ahSFDhiAiQv1tw4YNG2Ls2LFYvXq1x1+Ia5GbyP6RNkaMGAEAKCsrU/3UxdkWLVrk3sJu5MiRuuYWKJnPS5lz0wsXNEgq7777LoqKikSnoYvExETce++9SExMFJ2KF5G5GTG2XmMUFRV5nLN3+7pj8+ZA//665ZeYmIjrr79e29+djh195/zVV0BWlnZjhSmZ5wQtyF6fqPxCec7TKq4Wc57M5xapM3vfZK+Pr/XExdQijuznF6kzc99kry0yMhINGzZEZGSkKcfWY4wffvjB/f3gwYNx/vnn+/3YVq1aaZqbyP6RNoYNG+bevmj+/Pk13r/yPtHR0Rg2bJiuuQVK5vNS5tz0wgUNkoqZVxQjIyPRpEkTKScYkbkZMbZeY1RdBe8BoIOvO955J1DN2MHmFxkZiXr16mn/uzNxovrtTifw+uvajhWGZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702i8WC6OhoIdtZGzG2HmMcPnzY/X2LFi0CjlOZW8uWLWGxWNzXzwCAMWPGuC+yXfXr7K2ZLBYLSkpKsGDBAtx7773o0aMHGjRogJiYGCQlJaFVq1a4/fbbsWjRIjidzhpzmjt3rnusymt4OBwOLFiwAIMHD8Z5552HuLg4WCwWLFmyBOnp6bBYLO5rYQDAlClTVHM/+5og/lxIXC0fAPjqq69w/fXXo3nz5oiNjUWjRo0wYMAAfPzxx7XaSigvLw//93//h65du6Ju3bpISEjABRdcgLFjx2Ljxo0ez3Pll9YaNWqEgQMHAgB++eUX7N+/3+d9s7KysG7dOgDAwIED0bBhw1qPd+LECbz00kvo27cvmjZtitjYWDRo0AAXX3wxHn/8cezatatW8crKyvDGG2+gT58+aNiwIeLi4tC6dWuMGjUqoGtWVDp9+jTeeecdXH/99WjRogXi4+ORmJiINm3a4M4778RPP/0UUFyRc54oXNAgqYwePRoJCQmi09BFcXEx5s6di+LiYtGpeBGZmxFj6zVGQkKC+5z1uaGUxQKMGaNrfsXFxVi+fLn2vztXXQVceKH6sVmzAEk/Yh4qZJ4TtCB7faLyC+U5T6u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k702h8OBEydOCNtySu+x9Rij6huhWUF8Gr8yt2AsXrwYjRs3xrBhw/D+++9jw4YNOHnyJCoqKlBUVIS//voLCxYswG233YYuXbrUOt/Dhw8jPT0dt99+O5YtW4asrCz3dkciFBQUYPDgwbjxxhvx3//+F4cOHUJ5eTlyc3Px/fffY8SIEbjmmmtQWlpaY6xVq1bhwgsvxNNPP41NmzYhPz8fp0+fxp9//okPP/wQPXv29Fio0VPVraOq+5TG/Pnz3Qs2gWw3NXv2bLRu3Rr/+te/sGbNGhw9ehTl5eU4efIkMjMzMW3aNHTq1AkTJkzw63dm9+7duOiii/Dwww/j559/xokTJ2Cz2fDXX3/hs88+w+WXX4777rsPFRUVtcrz888/R+vWrXH//ffjv//9Lw4ePIjS0lIUFxdj3759mDNnDq644gpcf/31td7OT+ScJ0rtLl9OpLPs7GzY7XbRaegiKioKaWlp7o/dyURkbkaMrdcYdrsd2dnZiLXbMdTXnQYOdG05pWN+UVFRaNKkifa/OxaL61oa99zjfay42LWo8eij2o4ZRmSeE7Qge32i8gvlOU+ruFrMeTKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfZO9NovFgtjYWGGf0NB7bD3GqLpt1Ndff41du3YFdHHmytxGjhyJU6dO4ccff3Rfm+OKK65A27ZtvR7TvXt3j5+PHz+OsrIyAEBqairatWuHJk2aID4+HsXFxdi9ezc2b94MRVGwdetWXHbZZcjMzET9+vVrzK+srAyDBg3Cpk2bEBUVhd69e6NVq1YoKyvD5s2bAQA33HADOnTogA0bNrg/0dCtWzevPAGgZ8+etXuCzmK323HTTTfhxx9/RExMjDsfm82GtWvX4uDBgwCA5cuXY+LEiXjnnXd8xlq/fj2uu+46lJSUAHD1olu3bmjfvj3Ky8uxYcMG7N27F5MnT0aDBg2CytsfgwYNQkpKCvLz8/Hxxx+7P71ytsrFjrp16+L666+v1adRpk2bhscff9z9c2xsLPr27YvmzZsjLy8Pq1atwqlTp+BwODBjxgwcPHgQixcv9vm7c+DAAVxxxRU4cuSI+7b27dujS5cuAIBNmzZh165dePfddxEfH+93nq+99hoeffRRd21JSUno1asXUlNT4XA4sHPnTvz+++9QFAX//e9/kZ6ejnXr1vk9hsg5TxiFSAI7duxQALi/duzYITolomplZWW5z9exgKL4+vriC8PzOfsrKysr8MAlJYrSoIF6bc2bK0pFhWY1EBERERFRaKqoqFB27drl8VVR078VKioUJSuLX9V9GfTvrZ9++snj35D169dXXnnlFSUnJyeouKNGjXLHnDNnjl+PWbZsmfLiiy8qe/fu9Xmfv/76S7nqqqvcse+66y6f950zZ477flFRUQoApW/fvqr/TrbZbO7vn332Wffjnn32Wb9y9+cxVfOJjY1VAChXX32113NdUVGhPPbYY+77WiwWn/+2Ly0tVdq0aeO+b8uWLZUNGzZ43W/hwoVKfHy8e9zKr2Cd/X5EaWmpoiiKcs8997hvW7Nmjdfj1q5d6z5+7733umvx5/2MdevWKZGRke77XX311crRo0c97mOz2ZTHH3/cI9706dN91nHFFVe475ecnKx8/fXXXvf59ttvlbp16yoAlOjo6Brz/OGHH5SIiAgFgBITE6O89NJLyunTp73ut2XLFqVdu3buePfdd59qvFWrVrnv07dvX5+1VCeg+VqFyPdyuaBBUqj8JejZs6cSGxtrygUNm82m/Prrrx7/g5SFyNyMGFuPMbKyspTY2FilZ8+eys+xsepv+DdqpChlZbrnZ7PZlG+++cbrRYkmCxqKoijPPON7wWbhwuBihzGZ5wQtyF6fqPxCdc7TMq4Wc57M5xapM3vfZK+Pr/XExdQijuznF6kzc9/UagvoDbKsLN//zuCX60vl33IOh0MpKipSHA6HZj11OBzK1Vdf7fVvSYvFolxwwQXKiBEjlJkzZyq//fZbtX09O7dAFjT8ra+8vFzp1KmTAkCxWq3KqVOnVO9XdQEBgNKxY0elpKSkxjyMWNAAoPTp08fnc+p0OpVu3bq57/vSSy+p3u+dd95x3yc+Pl7Zt2+fzxy//PJLrz4Hy9eCxrp169y3jR071utxd999t/v4L7/8oiiK/wsal112mfs+vXv3Vsqqee/l4Ycfdt83KSlJKSws9LrPypUrPc77n376yeN41fNyzZo1isViqTFPh8PhsdD05Zdf+sxRURTlyJEjSuPGjZXKxZJDhw553UdtQaO2c4IZFjR4DQ2SSufOnRETEyM6DV2Ul5cjMzMT5eXlolPxIjI3I8bWa4yYmBj07NwZnXyds6NHA36cz8HmV15ejn379un3u3P//b7rmD7d9VKbak3mOUELstcnKr9QnvO0iqvFnCfzuUXqzN432evjaz1xMbWII/v5RerM3Dcz1xYKFEVBSUlJrbbm8SfmW2+9hSFDhnjd/scff+Cjjz7CI488gh49eiAlJQVDhw7FqlWrdMnN3xjR0dEYPnw4AMBms+Hnn3/2K/7LL7+MuLi4gPPT2owZM3xu32axWDCmyjU5N2zYoHq/Dz/80P39+PHjPbYQO9sNN9yAfv36BZht7fTu3RutW7cG4LqGRNVrldhsNnz++ecAgDZt2qBXr15+x929ezfWrFnj/vnNN9+s9v2QqVOnurfZKiwsxKeffup1n1mzZrm/v/nmm72eo6rnZZ8+fXD77bfXmOfXX3+NvXv3AgCGDBmCG264odr7N2nSBOPHjwcAVFRUYNGiRTWOcXZuYcOwpROianDLKQo1lX+BMLO6v6b54w/D81H7CvoTGoqiKGPG+K5z3brg4xMRERERUcjiJzSM+4SG3r755hulf//+7m1yqvsaNGiQz09GKEpgn9CoKi8vT/nuu++UadOmKf/617+Uhx56SHnggQfcX1W3CHruuedUY1T9RETdunUVu93u19hGfELjvPPOqzHmr7/+6r5/ly5dvI4XFhZ69GrXrl01xvzwww89+hgsX5/QUBRFmTJlivv2BQsWuG9fsGCBau/8+YTGW2+95T7euXNnv3J86KGH3I+57bbbvI43bNjQfVxtq6mzrVixosY8q265tWjRIr/y/O2339yPueGGG7yOc8spFzmv4ERhKyUlBYWFhaLT0IXT6URhYSGSkpIQESHXh6NE5mbE2HqNERcRgcFJSXAWFiLC6fQ8eNllwPnnG5Kf0+lEcXExIiIi4Dw7D61MmADMmaN+7LXXgN699RnXxGSeE7Qge32i8gvlOU+ruFrMeTKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfTNzbaFAURQ4HA5ERkZqdhHgqjGvueYaXHPNNcjNzUVGRgZ++eUXbNq0CVu2bEFxcbHH45YtW4Y+ffrg119/RWJioia5KYqCAwcO4KmnnsLixYvdFwivyYkTJ2q8T+fOnREZGRlQXnro2LFjjfeperFztffLtm3b5n4fICkpSfXC62fr0aNHLbIMzogRIzB58mQoioL58+fjtttuA/C/i4FbLBaMGDGiVjG3bNni/r63n+9FXHLJJXjjjTcAwH0B+Ep///03cnNz3T+rXez97HO7Z8+esFgs1X4q4tdff3V//8UXX2D16tU15llQUOD+/tChQzXeXy23cMD/85BUxo8fj6SkJNFp6KKwsBAzZ86UcsFGZG5GjK3XGLckJWHu+PEoVDtnx471O06w+RUWFuKLL77Q93enY0egf3/1Y19+CWRl6Te2Sck8J2hB9vpE5RfKc55WcbWY82Q+t0id2fsme318rScuphZxZD+/SJ2Z+2bm2kKBw+HA8ePH4XA4dI3ZsGFD3HLLLXjttdewZs0a5OXlYe3atbjzzjs9tkjauXMn/v3vf2uW2++//46LL74Yn3zyid+LGQBQVFRU430aNmwYcF56SE5OrvE+0dHR7u8rKiq8jld9Iz41NdWvN7RTU1P9zDB4LVu2xKWXXgoAWLlyJY4dO4Zjx45h5cqVAIA+ffogLS2tVjGr1tyiRQu/HlN1jLMXv6rGi4+Pd29PVdXZ53ZSUlKN/Tt8+LD7+4ULF+Ktt96q8evjjz92PyYvL8+v2vSYE2THBQ2SyowZM0z7oigpKQmPPPKIlAs2InMzYmy9xhhVWIhHZsxA0lnnrDMxEbj5ZsPyS0pKwk033aT/787Eieq3O53A66/rO7YJyTwnaEH2+kTlF8pznlZxtZjzZD63SJ3Z+yZ7fXytJy6mFnFkP79InZn7ZubaQkFkZCQaNWqk6ScN/IkZFRWFSy+9FB9++CFWr16NhIQE97EPPvgApaWlQedWVlaG2267Dfn5+QBcCxBPPfUUVq1ahUOHDuH06dNwOp1QFAWKomBOlV0E/NmtQKZrZwDQ5K/pq35qJj4+3q/HVO2dEUaNGgUAsNvt+PTTT/Hpp5/Cbrd7HKuNqjXXqVPHr8dUvd/Zi1/+PIdq53ZNY1f9tEUgKp+jmugxJ8iOW06RVCr/p2VGERERSElJEZ2GKpG5GTG2HmNEZWXhcqcTUDlni4cMQVItXigFm19ERAQSEhL0226q0lVXARdeCOze7X1s1ixg8mTAj78wIReZ5wQtyF6fqPxCdc7TMq4Wc57M5xapM3vfZK+Pr/XExdQijuznF6kzc980qy01lZ/0ronKX9JbLBafF5EOVG1j9u7dG08++SSefPJJAK4LPG/cuBGXXXZZULl98cUXyDpzTpx77rnYuHEjmjZt6vP+/nwqw+yqLk6UlJT49ZjTp0/rlY6qW265BQ899BBKS0sxf/589zZNcXFxuOWWW2odr2rN/tZS9X6JiYk+4/l6DtV+R2oau06dOu5Fjc2bN+Piiy/2K9fa0mNOkB0/oUFSGTdunNfEYhZFRUV49913pfwfrsjcjBhbjzESFy1CUWIi3h03DkVnnbPFQ4caml9RURGWLVum/++OxeK6loaa4mLgww/1Hd9kZJ4TtCB7faLyC9U5T8u4Wsx5Mp9bpM7sfZO9Pr7WExdTiziyn1+kzsx906y2qCggLU3zL0ezZjgeHw9Hs2a6xDd0bJU3KY3acqomAwcO9Pj5yJEjQef2448/ur9/+OGHq13MAIADBw4ENI6ZVN0e6e+///brMTk5OXqloyopKQmDBw8GAGRmZmLr1q0AgCFDhgT0PkbVrcMOHjzo12Oys7Pd35+9pVTVeCUlJTh58qTX488+t4uKimr8BEbjxo3d3x89etSvPAPBLaeIBMvMzER5ebnoNHQRExODzp07IyYmRnQqXkTmZsTYmo9RUYGExYsRU16OzpmZiKlyzm4EUN6unaH5xcTEoHXr1sb87txxB6CynyQAYOZMwM+PRJLcc4IWZK9PVH4hOedpHFeLOU/mc4vUmb1vstfH13riYmoRR/bzi9SZuW+y12axWBAfHy/k4rhGjK3HGIHEtFqtHj/HxsZ6xaltjlWvOeDPBbPXrFlTq/i1ESoXV+7UqRMiIlxv7xYUFGDPnj01PmbDhg16p+Vl5MiRft3mj6qfdPjll1/8ekzV+3Xp0sXj2LnnnuuxqLF+/Xqvx599bq9fv77aC4IDnhdfX7dunV95BkLknCcKFzRIKuvXr6/VRZ9CSWxsLHr27InY2FjRqXgRmZsRY2s+xjffIPLECcSWlaHn+vWIrXLOzhKQX2xsLNq1a2fM705cHHD//erHDh50XSCc/CLznKAF2esTlV9Iznkax9VizpP53CJ1Zu+b7PXxtZ64mFrEkf38InVm7pvstVVuyVv5Jq/ZxtZjjEBiVv6VfaXmzZt7xam66KF2QWu1PCrZbLZq77tp0yZs3LjR73xrq7a5i5KUlOTxBv8nn3xS42OqXnjaKAMGDECTJk3cPzdt2hT9+/cPKNbll1/u/n7Lli3Ytm1btfcvKSnBggULVB9fqV+/fu7vP/roI6/jZ5/b8+fPrzHP6667zv397NmzazynAyVyzhMlfCqlkJCenu61ym8WNpsNGRkZuk1gwRCZmxFjaz7GLNeyhc1qRUZ6OmxnztnTAD4TkJ/NZkNmZqZxvzv33w/4+mus6dOBGv5KgVxknhO0IHt9ovILyTlP47hazHkyn1ukzux9k70+vtYTF1OLOLKfX6TOzH2TvTan04mioiL9rzEoaGw9xpg+fTqWLVvmd8ySkhJMnTrV/XPjxo3RuXNnr9zq16/vvo8/2yGdd9557u+XLl1a7fj33HOPX7kGqra5i3TnnXe6v58xY4b7OiRqli1b5rG1l1EiIyOxdu1abNy4ERs3bsSaNWsCvoh127Ztcdlll7l/fvDBB6tddHrqqadw/PhxAK4FoGHDhnndZ+zYse7vFy1a5PXpn6rn9rp16/Dpp5/WmOdNN92E1q1bA3BtyXb//ffX+KmOSsXFxX5fH0TknCcKFzRIKmlpaaa9kI3dbkd2djbsEm7JIzI3I8bWdIycHOC771xxo6KQnZYG+5lzdiGAWu8iW1EB+44dyN69O+D87HY7jh49atzvTuPGwPDh6sc2bAB+/dWYPEKczHOCFmSvT1R+ITfn6RA32Diyn1ukzux9k70+vtYTF1OLOLKfX6TOzH2TvTZFUVBWVub3G4ehNrYeY2zYsAGDBw9Gjx498Pbbb+PYsWM+7/vbb7+hb9++2L59u/u2f/7zn4iIiPDKrUOHDu77LF26tMZtkq+//nr39/Pnz8f06dO9rguwb98+DBgwAJs3b0adOnVqVWdtVM195cqVNV4vQaQxY8a43zgvLi7GlVdeiU2bNnndb/HixRg2bJiwT1e1bt0aXbt2RdeuXd35BurFF190L4isXbsWN910k3vRolJ5eTn+9a9/4bXXXnPf9uyzz3pcBLxS//793Z/SUBQFQ4YMwbfffus+Xnlur1ixAoMGDYLT6UR0dHS1OUZGRuKdd95x5zlnzhxce+212L17t8/HZGZm4p///CeaNWtW7cJUVSLnPFEsSjhVS9LauXOnx/8sduzYgfbt2wvMiMiH558HnnlG9VBvAL8CyMrKQlpaWs2xtm0Dbr0V+OMP18/durmuQ9GrV63Tys7ORsuWLVWP+Z1PbWzfDnTqpH7s5puBzz/XdjwiIiIiIpKW3W7H3r17PW5r06aNaf9g0WyGDh2KhQsXetzWqlUrtG/fHg0aNEBUVBRyc3ORmZnp9SbrDTfcgEWLFqn2uqCgAE2bNkVpaSkA1ycw0tPTkZKS4t7vf8CAARgwYID7MX379vX46/iWLVuiS5cuSE5Oxt69e/HLL7/A4XDg3HPPxSOPPIInnngCADBq1CjMnTvXK4e5c+dizJgx1d5HjdPpRFpaGg4dOgQAaNKkCQYMGIAGDRq4c+/WrRtuu+0292MmT56MKVOmAHC9cT558uSg86n6b/0WLVp4XNy6qnXr1qF///7u59pisaBHjx5o164dysvLsWHDBvz5558AgDfffBMPPvig+37B/mX/2e9HlJaWBryDhM1mQ1xcnPvn6t7PmDZtGh5//HH3z7GxsejXrx+aNWuGvLw8rFq1yuMC3zfccAO++OILn9eayMrKQq9evTwW9Dp06IAuXbrAYrF4bG81ceJEfPHFF+4L01eX5wcffID77rvPvThnsVjQrl07dOrUCUlJSSgpKcGRI0ewdetW5Obmuh+3fft2j/dKASAjI8O98NK3b19kZGSojlkdreZrke/l8v8sJJUmTZp4/PKaicPhQG5uLho2bBjwx+r0IjI3I8bWbAynE/jww//FjYxEbsOGaJibiz8cDtTqcwnl5a43/vfu/V+czZsR2bs3cOedrq2bUlL8CuVwOHDq1ClERkZ6/fWKbjp2BPr3B77/3vvYl18CWVmAjwUWcpF5TtCC7PWJyi+k5jyd4gYbR/Zzi9SZvW+y18fXeuJiahFH9vOL1Jm5b7LXpigK7HY7oqKiDL9IrhFj6zHG5Zdfjg0bNngsVuzfvx/79+/3+Zi4uDj861//wr/+9S/3G6Fn55acnIxXX33VvdXOX3/9hb/++ssjTkJCgseCxsKFC3HNNddgy5YtAFxvFJ+9iNKuXTt8/vnnul7cOiIiAm+//TZuuukmlJeX4+jRo17XTRg1apTHgoZIl1xyCZYtW4Zhw4YhNzcXiqJg/fr1Hhe4joiIwDPPPIN77rnHvaCRlJQkKuWgPfbYY6hbty4mTpyIwsJClJWVYfny5V73i4yMxIMPPojp06dX+zvTsmVL/Pjjj7jhhhvcb/jv2LEDO3bs8Ljf3XffjZdeeglffPGFX3nefffdaN26Ne69917s3bsXiqJg586d2Llzp8/HtG/fHvXq1fMrvsg5TxRuOUVSGTduHBITE0WnoYuioiK89957KCqq9aZEuhOZmxFjazbGDz8AZ1bfAaAoMRHvjRuHosREfFDbWAsWAGf+B1k1DgDgxx99X6NCRVFREb7++mvjf3cmTlS/3ekEXn/d2FxCkMxzghZkr09UfiE15+kUN9g4sp9bpM7sfZO9Pr7WExdTiziyn1+kzsx9k722ygUXw/7Yy+Cx9RjjzjvvxM8//4wtW7bgzTffxB133IGuXbuiYcOGiImJQXR0NOrVq4d27dph6NCheO+99/D333/j6aef9virbrXcxo0bh7Vr12LEiBE4//zzUadOnWrfdG3QoAG++OILzJw5E5deeilSUlIQExOD1NRUXHHFFXj//fexceNGtGvXTrP6fbnuuuvw+++/495770X79u2RmJgo9RvGV155Jfbs2YMpU6bg4osvRnJyMuLj49GmTRvcddddWL9+PZ599lmcOnXK/ZgUP/+QUlZ33XUX9u/fj6lTp6JPnz5o3Lix+3y96KKL8Oijj2Lbtm2YMWOGXwuw7du3x7Zt2zBz5kz07t0b9erVg9VqRcuWLXH99dfju+++w/vvv1/jdlNn69evH3bv3o3FixdjzJgxuPDCC1G3bl1ERkYiMTERrVu3xnXXXYepU6diy5Yt2LFjB8455xy/Youc80ThllMkhcqPKVmtVpSVlWH79u2m23Kqck+72NhY6f4HKDI3I8bWbIxbb/XYSkmxWFAWGwtLWRnOVRRUfpCxxi2eFAW4+GJg61aPOLFlZbAoCrB0KTBokN9pKYqCvXv3om3btqp7Juqy5ZRrYKBDB2DXLu9jCQmu640kJ2s/rknIPCdoQfb6ROUXUnOeTnGDjSP7uUXqzN432evjaz1xMbWII/v5RerM3De12mTackpRFCiKAovFImTO03tsPcbQKqYWcUT2L1x8//337k/FDBw4EN+duU5oMMzeN5nrq21uZthyip/QIKnYbDbTXsTGYrHAarVKN/EBYnMzYmxNxsjNBZYs8YyrKLDabFhSZTHDLyUlwEUXAWdW9CvjWCrP/SoXQvOHxWJBTEyM8b87Fgswfrz6seJij+25yJvMc4IWZK9PVH4hM+fpGDfYOLKfW6TO7H2TvT6+1hMXU4s4sp9fpM7MfZO9NovFgoiICGFznt5j6zGGVjG1iCOyf+Gi6vVSunXrpklMs/dN5vpkzk0vXNAgqYwfPz6k9++rTmFhIWbMmIHCwkLRqXgRmZsRY2syxvz5QEWFZ9ykJMwYPx7zanvO1qkDzJsHZGcDffq44xQmJQHffedaKKiFwsJCLF68WMzvzh13AA0aqB+bOROw243NJ4TIPCdoQfb6ROUXMnOejnGDjSP7uUXqzN432evjaz1xMbWII/v5RerM3DfZa3M4HDh27JiwLaf0HluPMbSKqUUckf0LB7/99pvHtUCGDRumSVyz903m+mTOTS9c0CCpZGRkwGaziU5DF1arFenp6bBaraJT8SIyNyPGDnoMRQFmzfKOa7OhfUYGfgz0nD3nHGDNGlg//BDpGRmw2mzAwIG1DmO1WtG5c2cxvztxccD996sfO3jQdYFwUiXznKAF2esTlV9IzHk6xw02juznFqkze99kr4+v9cTF1CKO7OcXqTNz32SvzWKxCLvWgRFj6zGGVjG1iCOyf6Hs4MGDuOWWW/Dzzz+r7t7gcDjw8ccf46qrrkLFmT/WHDRoENq2bavJ+Gbvm8z1yZybXngNDZKCyH3XiGq0bh1w6aWqh54C8MJZtwV0zYqyMtd/Y2P9u39ODjB9OvDss0BKCrKzs9GyZUvVu+p2DY1Kx44BzZsD5eXex3r0ANav129sIiIiIiISTqZraBCFo6rvCTRq1Aj/+Mc/0LRpU0RGRuLYsWP49ddfkZub675/06ZNsWnTJjRt2lRUyiQIr6FBpLGBAwciLi5OdBq6KC0txfLly1FaWio6FS8iczNi7KDH+OAD1ZuL4+KwR4NztrS0FMtXrUKp0+n/gyZMAGbMAC64AKVz5mDDhg3ifncaN3ZtPaXmt9+AX381Np8QIfOcoAXZ6xOVX0jMeTrHDTaO7OcWqTN732Svj6/1xMXUIo7s5xepM3PfZK/N6XSioKAAztr8+yqExtZjDK1iahFHZP/M4vjx4/juu+8we/ZsfPDBB1i2bJnHYkbXrl3x66+/arqYYfa+yVyfzLnphQsaJJWUlBRERJjztHQ6ncjPz5dyghGZmxFjBzVGQQGwaJHqoZUREYjW4JytdX4rVwKLF7u+P34czocegn3VKrQT+bvj6+LgAPDqq4alEUpknhO0IHt9ovKTfs4zIG6wcWQ/t0id2fsme318rScuphZxZD+/SJ2Z+yZ7bYqiwOFwqG67Y4ax9RhDq5haxBHZv1CWlpaG3377DU899RSuvPJKtG3bFg0aNEBUVBRSUlJwwQUXYPTo0Vi2bBk2btyIFi1aaDq+2fsmc30y56YXbjlFUuCWUyStd98F7rtP9dBgAMtUbtd1i6eyMqBjR+CsjwcCgB1APwA/G5lPVQMGAN9/7317RASwbx/gY0ssIiIiIiIKbdxyiogoNHDLKSKNpaWlmfYFj91uR3Z2Nux2u+hUvIjMzYixgxrDx3ZT9oYNsSIqSpNztlb5TZ/utZhhj4pCdloatkZFQejmThMnqt/udAKvv25sLiFA5jlBC7LXJyo/6ec8A+IGG0f2c4vUmb1vstfH13riYmoRR/bzi9SZuW+y16YoCsrKyoR9QkPvsfUYQ6uYWsQR2T8KnNn7JnN9MuemFy5okFRGjx6NhIQE0Wnoori4GPPmzUNxcbHoVLyIzM2IsQMeY/Nm15dazFtuQVxCgibnrN/52e3ARx95Pz4hAfNGj8bjCQlwBJVJkK66CmjXTv3Yhx+6tu8iN5nnBC3IXp+o/KSe8wyKG2wc2c8tUmf2vsleH1/riYupRRzZzy9SZ+a+yV6bw+HAyZMn4XAY/68jI8bWYwytYmoRR2T/KHBm75vM9cmcm1645RRJgVtOkZQeeAB4+23VQzmrVqFZv36qx7y2eDpxAqhbF4iMDD6n06eBF14Apk0DKircNxfdcguSPv9c9SFr165Fampq8GPXoEmTJrB+/DFw993qd5g+3fenOIiIiIiIKGRxyykiotBghi2n+H8WIiI1JSXAJ5+oH+vXD/baXJNi5EjXNlETJgCjRgF16gSeV506wNSprpgPPgj8+CNQty7y/vlPwMeCRp8+fQIfrxasVituvvZazG/QAJYTJ7zvMHMm8PDDAP9RQ0REREREREREAeCWUySVSZMmITk5WXQauigoKMBLL72EAgm33RGZmxFjBzTG4sW+t0g68wmE5OTkms/ZXbuA775zXRT7gQeAZs2AJ58EDh8OLr+2bV0X4F64EAWvvoqPV6zw+3cnxf9RasVms+HjL77AF40bq9/h4EHgyy91Gj30yDwnaEH2+kTlJ+2cZ2DcYOPIfm6ROrP3Tfb6+FpPXEwt4sh+fpE6M/dN9trsdjuOHDki7LpBeo+txxhaxdQijsj+UeDM3jeZ65M5N71wQYOksmTJEpSUlIhOQxfx8fEYMmQI4uPjRafiRWRuRowd0BizZqnfXrcucMMNAICSkpKaz9kZMzx/zssDXnwRSEsD/vwz8PwAwGIBbr0V8cOH49JLL/Xrd6c9gEMAngMQV7vR/Pbovn1QYmLUD77zjk6jhh6Z5wQtyF6fqPyknfMMjBtsHNnPLVJn9r7JXh9f64mLqUUc2c8vUmfmvqnVZrFYvO4naofziIgIpKSkICLC+Le8jBhbjzG0iqlFHJH9o8CZvW8y11fb3NTmZrU5XGa8hgZJgdfQIKn88YfrExBqHn4YmDkT2dnZaNmypepd3NfQyM11fSKjrMz7Tl27Ahs2uBYlNGCz2VC3bl3YbLZq75cBoG9lngAeAfC1Jhl4Krz1ViQuWuR9ICICOH4cqF9fh1GJiIiIiEgERVGwZ88ej9uaN2+OOsFst0tERJorKSnBgQMHPG5r27ZtrRc1RL6XK9+yEoU1s/4FC+DnX/MLIjI3I8au9Ri+Pp0BAGPHur+t8a+u3nlHfTEDcF0c+8z/LIJ9DkpKSrB8+XLceOON1d5vOP63mAEALQEsO/PVLKCRfSsaNUr9gNMJfPutxqOFJpnnBC3IXp+o/KSc8wyOq8WcJ/O5RerM3jfZ6+NrPXExtYgj+/lF6szcN7XaLBYLrFarx/0KCwuNTg0A4HA4kJeXB4fDYcqx9RhDq5haxBHZPwqc2fsmc321ze306dMeP8fGxobcJzS4oEFEVFV5OTBvnvqxHj2Ajh39j3XqlPoFsFNTgZtvDiy/asycORO33Xab1z8kACAJwDQfj7sewEZou6hRfuGFgI9PsGDpUg1HIiIiIiIiGSQmJnr8XFhYaMoFHSKiUGW3272ufxSKn6TjllMkBW45RdL44gvfiw0ffOD+hIZfW04BwKFDwJtvAu+997+LjL/yCvD44xon/j82mw1Hjx71uK3elClImju32scV3H038p580u9xcnJy0KdPH9VjWVlZSJs50/saIgBQpw5w4gSgsvBCREREREShqby8HPv37/e4LSIiAklJSUhKSkJ0dLSU+88TEZmd0+lESUkJTp06hbKzdhIJdHtAke/lqvzpMJE4bdu29XoBZBYVFRXYv38/WrVqhejoaNHpeBCZmxFj12qMDz5Qvz0hARg61OOm6OhotGrVCvv370dFRYX645o1A15+GXj6aWDOHODDD4G77w48PxVnP95qtf5vQaVSv37AN9+4rutRVVIScOutwMiRSL7kEiRr+Q+MQYPUFzROnwZWrQKuvlq7sUKQzHOCFmSvT1R+0s15AuJqPedRaDB732Svj6/1xMXUIo7s5xepM3PffNUWExODxMREFBUVuW9zOp3Iz89Hfn6+YfkpigJFUWCxWAzfRsWIsfUYQ6uYWsQR2T8KnNn7JnN9weRmtVpDcut/Lo2TVHgNDTG4r/IZBw4AK1eqHxs61LWoUUWN19CoKiEBeOghIDMTSEkJLD8f/Hr8yJGui53fd5/r56uvBhYuBI4edS3i9OnjumC3li69FKhbV/0Yt52Sek7Qguz18Roa4uLyGhrhyex9k70+vtYTF5PX0AhfZu5bdbWdc845SDjr300iiNzn3oix9RhDq5haxJHxOgVUM7P3Teb6AsktKioKqamp0i3Q+INbTpEUuOUUSWHyZGDKFPVj69e7rqFxht9bTslo0ybg779dn6AIgl/PwR13AJ984n2Hpk2BnBztF1GIiIiIiEgop9OJw4cPe3xSg4iI5BEVFYVmzZqpXoPVXyLfy+U7SUREAOBwALNnqx/r2BHo3t3YfPT0j38A110HGLGePXiw+u1HjrgWVoiIiIiIyFQiIiKQmpqKVq1aoWHDhkG9YUZERNqwWCxISEhAamoqWrduHdJzM6+hQVKZPHkyZqjtuW8C+fn5mDlzJh555BGknLXlkGgiczNibL/GWLnSdQFvNWPHAiofwUtJScH48eMxY8aMoPaEDfY5COjxRn0yYuBAICYGKC/3PrZ0KdCtmzF5SEjmOUELstcnKj9p5jyBcYXMeSSc2fsme318rScuphZxZD+/SJ2Z++ZvbTExMWjQoAEaNGgARVHgdDphxCYhBQUFeO+993DvvfciOTlZ9/GMHluPMbSKqUUckf2jwJm9bzLX509uERERUl7/I1DccoqkUPkxpbS0NOTk5CAzM9N0W07Z7Xbk5OQgNTUVUVFyrSWKzM2Isf0a46abgC+/9L49NhY4fBioV8/j5uzsbLRp0wapqanIycmB3W53H6vtllPBPgei+uf3tlsDBwIrVnjfqWNHYNs2/RKUnMxzghZkr09UftLMeQLjhuqcR8Exe99kr4+v9cTF1CKO7OcXqTNz32SvjXOeuJic88KX2fsmc32ichO55RQXNEgKvIYGCXXsGJCaClRZlHAbNkz1GhAhfQ0Njfj9HLzzDnD//epB/voL8BGDiIiIiIiIiIjkw2toEJ0xdOhQ1KlTR3Qaujh9+jQWLFiA06dPi07Fi8jcjBi7xjHmzVNfzABc2035UKdOHfc5Gwkg0A/uBfscyHxuAQCuv973saVLjctDMtL3LUiy1ycqPynmPMFxTT/nkSqz9032+sL+tZ7AmFrEkf38InVm7pvstXHOExeTc174MnvfZK5P5tz0wgUNkkp+fj6cTqfoNHQRERGBlJQURBh17YJaEJmbEWNXO4aiALNmqT+wVSugb1+fcZ1Op/ucHQNgF4B7AFhKS7XLz4DH6y411XUhcjXLlhmbi0Sk71uQZK9PVH7C5zwJ4pp+ziNVZu+b7PWF9Ws9wTG1iCP7+UXqzNw32WvjnCcuJue88GX2vslcn8y56YVbTpEUuOUUCbN6NZCern5s6lTgX/9SPVR1uyULgB0A2p055qhbF5EPPAA88ADQpInWGevP6QR+/hmoW9d1nQsfarXt1vPPA888433HyEjg+HGva5QQEREREREREZGcuOUU0RmdO3dGTEyM6DR0UV5ejszMTJSXl4tOxYvI3IwYu9oxfH06IzISGD262rgxMTHo3LkzromJcS9mAEBkXh7wf/8HtGgBfPZZcPn5QbPn8M8/gaefBs47z/XJlJdfDi5eVYMGqd/ucADffqvdOCFE5jlBC7LXJyo/4XOeBHGlmfPIUGbvm+z1hfVrPcExtYgj+/lF6szcN9lr45wnLibnvPBl9r7JXJ/MuemFCxoklfT0dFitVtFp6MJmsyEjIwM2m010Kl5E5mbE2D7HyMsDFi9Wf9B11wFNm1Yb12q1Ij09Hff5OmftdqBnz8Dz81PQz+H337vyvOAC10LMgQOu27/8EigqCizm2Tp1ci3wqAnTbadknhO0IHt9ovITOudJElf4nEdCmL1vstcXtq/1JIipRRzZzy9SZ+a+yV4b5zxxMTnnhS+z903m+mTOTS/ccoqkwC2nSIi33gIefFD92NdfuxY1fKjcbqkTgK2+7nTLLcCiRcFmqb/vvgOuuUb92Ny5wKhRqodqteUUADzyCPD66953TkgATpwAYmP9z5mIiIiIiIiIiITgllNEZ1itVlgsFtFp6EJRFNhsNsi4higyNyPGVh1DUYAPPlB/wLnnAgMH1hjXYrHgEqsVFb7O2YkTA8+vFoJ+Dvv3Bxo3Vj82f35gMdX42naquBjIyNBunBAh85ygBdnrE5WfsDlPorjC5zwSwux9k72+sHytJ0lMLeLIfn6ROjP3TfbaOOeJi8k5L3yZvW8y1ydzbnrhggZJZdKkSUhOThadhi4KCgrw8ssvo6CgQHQqXkTmZsTYqmNs2gRs9fHZijFjgKioGuMmJyej8aRJ6JycjGkAPCro1cuv7aZ85lcLQT+HUVHAsGHqx1atAg4dCizu2S67DEhJUT+2dKk2Y4QQmecELchen6j8hM15EsUVPueREGbvm+z1heVrPUliahFH9vOL1Jm5b7LXxjlPXEzOeeHL7H2TuT6Zc9MLt5wiKVR+TKlJkybIzc3F1q1bTbfllMPhQG5uLho2bIjIyEjR6XgQmZsRY6uOMW4c8N576g/46y/Ax1ZKlbKzs9G6dWs0bNgQubm5cDgcSARwJ4Bp556LqBkzgJtvDjy/WtDkOczMBC6+2PO26Gjg2muBF18E2rb1ekitt5wCgOHDgU8/9b793HNdCycm/YSWGpnnBC3IXp+o/ITNeRLFlWLOI8OZvW+y1xeWr/UkialFHNnPL1Jn5r7JXhvnPHExOeeFL7P3Teb6ROUmcsspLmiQFHgNDTJUcTFwzjnqF7zu3x9YubLGENW+mb93L9JatgQk+59ctRTFdeHuHTuAHj2AkSOB224D6tf3+ZCAFjQWLgSGDlUP+PvvwD/+EUDyRERERERERERkFF5Dg+iM0aNHIyEhQXQauiguLsbcuXNRXFwsOhUvInMzYmyvMT7/XH0xAwDGjvU7bkJCgvo5GxVVq8WMYJ8DTZ5DiwV45x3gjz+A9euB+++vdjEjYAMHuj75oSbMtp2SeU7Qguz1icpPyJwnWVwp5jwynNn7Jnt9YfdaT6KYWsSR/fwidWbum+y1cc4TF5NzXvgye99krk/m3PTCBQ2SSnZ2Nux2u+g0dBEVFYW0tDRE+XFtBqOJzM2Isb3GmDVL/Y716wODB/sd1263a3LOBvscaPYcXnopcP75wcWoSXIykJ6ufizMFjRknhO0IHt9ovITMudJFleaOY8MZfa+yV5f2L3WkyimFnFkP79InZn7JnttnPPExeScF77M3jeZ65M5N71wyymSArecIsPs3AlUOdc8TJwITJ/uV5iAtlsymYCfg7feAh58UP1YVhYQBs8dEREREREREVGo4pZTRGf07NkTsbGxotPQRVlZGdavX4+ysjLRqXgRmZsRY3uM8eGHvu941121ihsbG6vJORvscyDzuaVq0CDfx5YtMy4PwUKub7Uke32i8jN8zpMwbtjNeQTA/H2Tvb6weq0nWUwt4sh+fpE6M/dN9to454mLyTkvfJm9bzLXJ3NueuGCBkmlc+fOiImJEZ2GLsrLy5GZmYny8nLRqXgRmVvl2IWFhcjOztbla//+/diwYQP2794Nx9y5qnnY/vEPZMfH+x0zJycHMTExmpyzwT7/Mp9bqpo1Ay6+WP1YGC1ohFzfakn2+kTlZ8S4eo2hVdywm/MIgPn7Jnt9MrzWC7V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wi2nSArccip8lZSU4M4778TSpUths9l0HetWAAt9HBsNYJ5G43DLKT+egylTgMmTvW+PigJyc4GUFC1SJCIiIiIiIiIijXHLKaIzUlJSEBFhztPS6XQiPz8fTqdTdCpeROZ25513YsWKFbquJEdERCAlJQV3+Ti3CgF87kecpgA2A7gLQGyVuMGes8E+/zKfWz752nbKbge+/dbYXAQJyb7Vguz1icrPiHH1GkOruGE555Hp+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0Ys53jilkjR8/HklJSaLT0EVhYSFmzpyJwsJC0al4EZWbzWZDRkaG7n1PSkrC+PHj0d3HGJ8CKPEjzoMALgYwC8BBAE+fiRts7sE+/zKfWz517gw0b65+LEy2nQrJvtWC7PWJys+IcfUaQ6u4YTnnken7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCLadICpUfU0pJSUFhYSG2bdtmui2nnE4nCgsLkZSUJN2nUETllp2djVatWiEpKQmFhYW6rSZHRERgclIS/l1YiAiVMf4B1ycvqhMP4BCAelVuc0ZEIDcpCe8WFmLymbhWqxV5eXmwWq1+5xfs829I/44dAz77DPj4Y+Dzz4GWLYPbcgoAHnoIePNN79uTklzbTpn0ejqVZJ4TtCB7faLyM2JcvcbQKm5IzHmkObP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ+o3LjlFNEZZv6IlFbbE+lBZG5GfDTO4nTizvx81cWMLah5MQMARsFzMQMAIpxONM7Px8kqcQcPHlyrxQwg+Odft/6VlgILFgDXXgucey4wYQKwaZNrUUMLvradKiwEMjK0GUNiMs8JWpC9PlH5GTGuXmNoFVfaOY90Zfa+yV6fyPxCdd6TZc7TMhcylpn7JnttnPPExeScF77M3jeZ65M5N72ET6UUEsaNG4fExETRaeiiqKgI7777LoqKikSn4kVkbomJibr3/frERHw9bhyKVMaY5cfjLQAmqNxelJiIt8aNw6LERFitVtx2222YPXt2rfML9vnXrX8DBwK33+66poXD8b/bP/oI0OLDfX37uj6NoSYMtp2SeU7Qguz1icrPiHH1GkOruNLOeaQrs/dN9vpE5heq854sc56WuZCxzNw32WvjnCcuJue88GX2vslcn8y56SVKdAJEVWVmZup6cWiRYmJi0LlzZ8RIuI2OyNzKy8tV+7527VqkpqZqMkbyfffhj8xMxJw1hjM2Fv/87Tc8npxc7eNjtm5F0xtvBM76hEdMeTnaxcVhze+/o3nz5rX+ZIY7TpDPv279u+EGYM0a79v37gV++w1o0iS4+DExwDXXuD4FcrZly4A33gAsluDGkJjMc4IWZK9PVH5GjKvXGFrFlXbOI12ZvW+y1ycyv1Cd92SZ87TMhYxl5r7JXhvnPHExOeeFL7P3Teb6ZM5NL7yGBklB5L5rJE7Q12Dwx5EjQLNmnp8wqDRiBDB/vn9xsrKA118HZs0Ciotdt0VGum5v1iz4PGV07Jhrqym15+7++5H9+OPB9++zz4Bhw9SPbd4MXHyx//kSEREREREREZHueA0NojPS09MD/it32dlsNmRkZMBms4lOxYvI3KxWq759nzsXtuhoZKSnw3b2GGPH+h+nZUvgtdeAnBxg2jSgWTPYhg5Fxv79QT9vwT7/uvWvcWPgqqvUjy1cCNjtwY9x9dVAlI8PCy5dGnx8ick8J2hB9vpE5WfEuHqNoVVcaec80pXZ+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wgUNkkpaWhqifL25GeLsdjuys7Nh1+JNYI2JzC0qKkq/vjudwIcfwh4Vhey0NNirjnH++UCfPrWPmZwMPPoosH8/7FOnavK8Bfv869q/ESM8f27dGnjuOWDjRt8LEbWRkuK6loYaky9oyDwnaEH2+kTlZ8S4eo2hVVyp5zzSjdn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCLadICtxyKjzpvuXUTz8BV1yhfuyVV4DHHw8ufjgoLQXat3d9kmLECKBHD/d1LTTr3xtvAA8/rH7swAGgefMAEiciIiIiIiIiIj1wyymiM5o0aYLIyEjRaejC4XDg6NGjcKhdj0AwkblFRkbq1/c5cwAAjshIHG3SBI7KMaKigJEjgw6v1fMWbBxd+xcXB+zbB7z1FtCzpz4X6R40yPexZcu0H08SMs8JWpC9PlH5GTGuXmOExZxHujF732SvT2R+oTrvyTLnaZkLGcvMfZO9Ns554mJyzgtfZu+bzPXJnJteuKBBUhk3bhwSExNFp6GLoqIivPfeeygqKhKdiheRuSUmJurTd0UBVqwAABQlJuK9ceNQVDnGoEGu60MESavnLdg4uvcvQuf/VbRoAVx0kfoxE287JfOcoAXZ6xOVnxHj6jVG2Mx5pAuz9032+kTmF6rznixznpa5kLHM3DfZa+OcJy4m57zwZfa+yVyfzLnphVtOkRQqP6ZktVpRVlaG7du3m27LKUVRUFZWhtjYWFj0+Cv3IIjKLTs7G+eddx5iY2NRVlaGqtNR0FtO/fkncMEFAADFYkFZbCxiy8pgURTXX/1ff32Q2Wv3vAUbR2T/NNsy7NlnXdfmOFtUFHDihOvaJSYj85ygBdnrE5WfEePqNUa4z3kUHLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ+o3LjlFNEZNpvN401tM7FYLLBardJNfIDY3BRF0afv69a5v7UoCqw2m2sxIyLC90Woa0mr5y3YODKfW34bPFj9drsd+O47Y3MxiCn6Vg3Z6xOVnxHj6jUG5zwKhtn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCBQ2Syvjx45GUlCQ6DV0UFhZixowZKCwsFJ2KF5G5JSUl6dP3n392f1uYlIQZ48ejMCnJtbWRRmNp9bwFG0fmc8tvF18MpKaqHzPpdTRM0bdqyF6fqPyMGFevMTjnUTDM3jfZ6xOZX6jOe7LMeVrmQsYyc99kr41znriYnPPCl9n7JnN9MuemFy5okFQyMjJgs9lEp6ELq9WK9PR0WK1W0al4EZmbzWbTp+9VFjSsNhvSMzJgtdmASy+t+bF33+26oHhZWbV30+p5CzaOzOeW3ywW3xcH//ZboKLC2HwMYIq+VUP2+kTlZ8S4eo3BOY+CYfa+yV6fyPxCdd6TZc7TMhcylpn7JnttnPPExeScF77M3jeZ65M5N73wGhokBZH7rpE4ml6DoarcXKBRI/VjCxYAt93m+7EbNwLdu7u+b9wYePBBYNw4oEGDwHIxMc37t2IFMHCg+rHvvweuvLJ28YiIiIiIiIiISHO8hgbRGQMHDkRcXJzoNHRRWlqK5cuXo7S0VHQqXkTmFhcXp33fq1w/AwBK4+KwfOBAlMbFAZdcUv1jX3vtf98fOwY8/TTQrJlrUeOsTwlo9bwFG0f0uRUPoLsWgdLTgcRE9WMm3HZKdN/0Jnt9ovIzYly9xuCcR8Ewe99kr09kfqE678ky52mZCxnLzH2TvTbOeeJics4LX2bvm8z1yZybXrigQVJJSUlBRIQ5T0un04n8/Hw4nU7RqXgRmVtERIT2fa+y3RQAOCMikJ+SAmeLFr6v0wAAhw4BixZ5326zAX/8AURHe8bV6HkLNo6Q/jkcsP78M+YCOAZgBYDYYGPGxgJXX61+bOlSwGQfKJR5TtCC7PWJys+IcfUaI6znPAqa2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MItp0gK3HIqPOm25VTPnsBvv3nfPnw48PHHvh/3xBPAf/6jfmzZMuD66wPLx0zy84GXXnI9j3//7XHoFgCLz3wfcP8++QS44w71Y1u2AJ071z4mERERERERERFphltOhbmJEyfCYrG4v2r7JuCPP/6IkSNH4vzzz0edOnVQr149dOrUCY8//jj27NkTUE67d+/G448/jk6dOqFevXqoU6cOzj//fIwaNQo//vhjQDH9kZaWhqioKN3ii2S325GdnQ273S46FS8ic4uKitK27yUlwObNHjfZo6KQnZYGe3XbTZWVAbNmqR9r0wa49lqvm7V63oKNY2j/4uKA997zWswAgJFaxL/mGiAyUv2YybadknlO0ILs9YnKz4hx9RojLOc80ozZ+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wgUNwTZs2ICZM2cG9NjCwkIMHToUV155JT766CPs3bsXJSUlyMvLw/bt2zFt2jR06tQJL774Yq3ivvDCC7joooswbdo0bN++HXl5eSgpKcHevXsxf/58XHnllRg2bBiKiooCyrs6o0ePRkJCguZxZVBcXIx58+ahuLhYdCpeROaWkJCgbd83bvS61kVxQgLmjR6N4i5dfD8uNhbYsAF46CGgTh3PYxMmACpbYmn1vAUbx9D+xcb6vKj6QAANg41fty7Qt6/6saVLg40uFZnnBC3IXp+o/IwYV68xwnLOI82YvW+y1ycyv1Cd92SZ87TMhYxl5r7JXhvnPHExOeeFL7P3Teb6ZM5NL9xySqCKigr84x//wPbt2z1ub9GiBbKzs2t87MCBA/HTTz+5b+vQoQO6dOkCm82GtWvX4siRI+5jU6ZMwTPPPFNjTs888wyef/55989NmzZFnz59YLVasWnTJuzcudN9bMCAAfjmm280+ct6bjkVnnTZcuqFF4CnnvK+PSUFOHlSdWHCS14e8P77wOuvu66fcfCg9yJHOPvlF58XV38YwBsIcsuwmTOB8ePVjx06VP11UIiIiIiIiIiISFfccipMvfzyy+7FjGHDhtXqsc8//7x7McNqteKzzz7D9u3bMW/ePCxcuBDZ2dl4/PHH3fefPHkyVq9eXW3MH3/80WMx4/HHH0d2djYWLlyIefPmYceOHfj0009htVoBACtXrsTUqVNrlTeR7tatU7+9d2//FjMA16cE/vlPICsL+OknLmacrVcvoFUrr5uPA7BoEX/QIN/HTLbtFBERERERERER+Y8LGoLs2bMH//d//wcAGD58OPr37+/3Y48fP45XX33V/fOMGTMwdOhQj/vExMTglVdewW1ntoZRFAX/+te/qo1b9fjQoUPxyiuvICYmxuM+t99+O1577TX3z9OmTcOJEyf8zr0mkyZNQnJysmbxZFJQUICXXnoJBQUFolPxIjK35ORk7frucLg+PXCWguRkvNS9e+3ri4kBLrrI52Gtnrdg4xjeP4sFGDECAGADsBDAdQDOBfC6FvFbtgQ6dlQ/ZqJtp2SeE7Qge32i8jNiXL3GCNs5jzRh9r7JXp/I/EJ13pNlztMyFzKWmfsme22c88TF5JwXvszeN5nrkzk3vXBBQwBFUTB27FiUlZWhbt26HosT/pg3bx5Onz4NADj//PNxzz33+LzvK6+8gogzf5X+66+/YsuWLar327hxIzZu3AgAiIiIwCuvvOIz5r333os2bdoAAIqKivDRRx/VKv/qLFmyBCUlJZrFk0l8fDyGDBmC+Ph40al4EZlbSUmJdn3fuRNQmcDjS0owpGNHzevT6nkLNo6Q/o0ejRNTp6IJgKEAvgGg6eWnBg9Wv33VKqCwUMuRhJF5TtCC7PWJys+IcfUaI6znPAqa2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MIFDQHeeecdrDuzLc5//vMfNGrUqFaPX7Jkifv70aNHw2LxvclL8+bNcfnll7t//uqrr2qMeeWVV6JZs2Y+Y1osFowaNarGmIHYs2cPKs66oLNZREdHo23btoiOjhadiheRuVVUVGjX959/Vr05GkDbq6/WvD6tnrdg4wjpX4sWKL79dui2/u9rQaOiAli+XK9RDSXznKAF2esTlZ8R4+o1RljPeRQ0s/dN9vpE5heq854sc56WuZCxzNw32WvjnCcuJue88GX2vslcn8y56YULGgY7dOgQJk2aBADo06cP7rzzzlo93mazYf369e6f09PTa3xMv3793N9XvYh4VatWrQo45i+//IKysrIaH+MPM68oavpJBI2JzE3TlWQf188o6dULS1as0Lw+rZ63YOPIfG4FrEsX4Jxz1I+ZZNspU/atCtnrE5WfEePqNQbnPAqG2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MIFDYPdf//9KCoqQkxMDN57771qP12h5o8//oDT6QTg+qTExRdfXONjunTp4v5+9+7dqvepenvV+/tSdVyHw4E///yzxscQ6c7HJzTQo4exeVDwIiJ8Xxz8229dn9QgIiIiIiIiIqKwYlEURRGdRLhYsGABbr/9dgDA008/jeeee859bO7cuRgzZgwAoEWLFsjOzlaNsWjRIveFvhs3boyjR4/WOO6uXbvQvn1798/Hjx9Hw4YNPX5u3Lix++fdu3ejbdu2NcZt1KgRcnNz3XndcsstNT7Gl507d6JDhw7un3fs2OGRM5lTdnY2WrZsqXosKysLaWlp/gc7dAho3lz92JIlvrcwooBp2j81330HXHON+rEffwSqbKdHRERERERERETGEPleLj+hYZCTJ0/i4YcfBuC6kPe///3vgONUqroIUZ0mTZp4/Hzq1CmfMQONe3bMQJl5zzdNrxWhMZG5abbXn4/tpgCgols37/oWLAA++ggoLw94SK2et2DjyHxuBeXyy4GEBPVjy5YZm4sOTNu3M2SvT1R+Royr1xic8ygYZu+b7PWJzC9U5z1Z5jwtcyFjmblvstfGOU9cTM554cvsfZO5Pplz0wsXNAwyYcIE96cZ3n33XcTGxgYUp7i42P19XFycX485+35VY6j9HEjcs2MEasiQIWjQoAEA11ZW+fn5qPwQUWFhIcrPvPlcWlqK06dPAwDsdjvy8/PdMQoKCty/xCUlJe495CoqKlBQ8L9LGOfn58NutwMATp8+jdLSUgBAeXk5CgsLAQCKoiA/Px8Oh8Ndp81mAwCUlZWhqKgIAOB0OpGfn+/eDqyoqMh9XRGbzYbi4mKUlJTgq6++wpEjR6Sr6dSpU1iyZAny8vJqVVOwfbLb7e5raNSrVw+Aa4EjOTm59jX98gsckZGumhISYLNaXX3q0AHHFQVLlixBcXGxq6bycmDSJBQ98ADK2rQBXnwRtiNHal1TYWEhvvrqK3c/Au1T5fOfn58f0Ll35MgRdx569MlXTVV/71NSUhAVFQUAqFOnjjuHoH6foqOBgQNRlJiIsjNzps1qRXFCArB0KRxncpXt98nfOSIvLw9LlizBqVOndO2TqHkvNzcXS5YsQVFRkZQ1iZr3CgoKsGTJEpw8eVK3PuXl5bnnBC1rqvr/sWD6dOLECXd+gZx7xcXF+Oqrr9y5GznviXwdEeo1HT9+3N13s9RUtU+nTp1y1ydjTbm5ue78jD73QnXeO3HiBJYsWYLCwsKg+lQ5d1b+ARjnPc57oVxTZZ8qz+vK9zhkq+ns3zsjz72jR4+6+65XnyrrO378uGY1Vf3/WDB9KiwsxJIlS3DixImAz72qrznNPEeYrabKvuXl5Zmmpqp9knneKyoqwpIlS5Cbmyvk3BOBCxoGWLlyJT766CMAwKhRozwuqF1blScmAMTExPj1mLMXTyp/CdRiBhr37JiBWr9+Pa666ioArn94zZw50/1LNnv2bOzatQsAsHr1anz99dcAgJycHMycOdMd45133sH+/fsBuJ77lStXAgD279+Pd955x32/mTNnIicnBwDw9ddfY/Xq1QBcW3TNnj0bgGsCmDlzpnvCWrx4sfui7Fu2bMEnn3wCwPVLPnPmTPek8sknn2DLli3umhYvXozk5GSMGTMGc+bMka6m3bt3Y9KkSfjrr79qVVOwfTp8+DAKCgqwZ88e9OrVCwDQqlUr3HfffbWvqX595J7ZSm3xzTdjfc+erj5deSW+/vprTJo0CRaLxVXT558DBw7gk+HDseWcc4Ann8T6UaOw+MUXgSNH/K6pqKgI5eXl7gWYQPu0ZcsWTJo0CX///XdA596cOXNw3333ITk5WZc++appWZVPSYwfPx6pqakAgOuvvx5bt25V71Ntf58GDXL16cx1e9b37InFN98MZGcj95dfQnqO+OuvvzBp0iTs3r1b1z6JmvdWrlyJSZMmoby8XMqaRM17J06cwKRJk9zPkR59+uuvv1C3bl0kJydrWlNycjJuv/12zJkzJ6g+rV69GhdffDGSk5MDOvcsFgvKy8vd1yEzct4T+Toi1Gv6+uuv0a9fPyQnJ5umpqp92r17N5o2bYrk5GQpa1q5ciV69eqF5ORkw8+9UJ33Vq9ejUmTJqGoqCioPiUnJ6Nly5buHDjvcd4L5Zoq+5ScnIxevXq5c5CtpuTkZDRt2tR9rVAjz71PPvkEN9xwA5KTk3XrU3JyMvr16+fOQYuatmzZgpYtWyI5OTmoPhUVFWHSpEnuedTfmqr2KTk5Gffddx/mzJlj6jnCbDUlJyejbt26+Ouvv0xTU9U+yTzvlZeXY9KkSVi5cqWQc08IhXRVXFyspKWlKQCU+vXrK7m5uar3mzNnjgJAAaC0aNHCZ7xXXnnFfb8ePXr4lUNJSYn7MQCU33//3eP4hg0bPI6Xlpb6Fbd79+7ux0ybNs2vx/iyY8cOBYBitVqVhIQEZceOHYrdblfy8vIUp9OpKIqiFBQUKGVlZe6aiouLFUVRlIqKCiUvL88dKz8/XykvL1cURVFOnz6tnD59WlEURSkvL1fy8/Pd98vLy1MqKioURXH1qaSkRFEURSkrK1MKCgoURVEUp9Op5OXlKXa7XVEURSkqKnI/PzabTSksLFQURVEcDoeSl5enOBwORVEUpbCwULHZbIqiKEppaalSVFSkKIrCms6qae/evQoAJT4+XomPj1cAKNHR0UpycrKSlZXlf015eUpeSopij4xUFEApSkhQSq1WRQEU24cfetfUq5eiAEphYqJii41VFEAptVqVorp1FeXIEfbJz5q2b9/ungNSUlKUqKgoBYBSp04dZf+SJYoyYYJS9v77wdV08qRSmJzs2aeEBEUBFPtzz7FPrIk1sSbWxJpYE2tiTayJNbEm1sSaWBNrYk0G11T5Xm7l144dOxSjcEFDZ4888oi7sXPnzvV5P38XNN5++233/Tp16uRXDidPnvQ4wfbs2eNxfNeuXR7HT5065Vfcjh07uh/z7rvv+vUYXyp/CSZPnqykpKQY+ktglLy8PGXy5MkeE5ksROWWlZWlpKSkuPte9TysXNDwy/LligKof+3d61nfunW+7zt6dK3y1+p5CzaOyP5V7dk5gPI4oGyr+pxedFHwA6Wnq/era9fgYwsk85ygBdnrE5WfEePqNUa4z3kUHLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ+o3EQuaFgU5czGWKS5zZs3o1u3bnA6nejXrx9++uknn/edO3cuxowZAwBo0aIFsrOzVe+3aNEi3HbbbQBcF+8+evRojXns2rXL4yrzx48fR8MzW/NU/lz1QuC7d+9G27Zta4zbqFEj90e1Fi1ahFtuuaXGx/iyc+dOdOjQAWlpacjJyUFmZqZHzmZgt9uRk5OD1NRU97UGZCEqt+zsbLRp0wapqanIyclx7w8IAFlZWUhLS/Mv0NNPA//3f963N24MHDkCu8Pxv/qGDgW++EI9ztatQKdOfuev1fMWbByR/WvZsiUAYBiAj+BjH8NaPq9eXnsNmDhR/VhODnDuuYHHFkjmOUELstcnKj8jxtVrjHCf8yg4Zu+b7PWJzC9U5z1Z5jwtcyFjmblvstfGOU9cTM554cvsfZO5PlG5Vb6XW2nHjh2GvZfLBQ0dVV2kaNWqlfti12pyc3Pd+8zFxMTg4jP7xQPA008/jWuvvRYAsHXrVnTu3BmAay/VkpISWM9c/NiX5cuX4+qrrwYA1KtXDydPnvS6T926dd0XdFm+fLn7Oha+2Gw2j4uCb9u2DR07dqz2MdUR+UtA4lR9Q/xstVrQ6NcPyMjwvv3GG70XL/74A5g5E5g7F6h67Zf+/YEzexeSf6r2rzmAA77u+NhjwH/+E/hA+/cDrVurH3vnHWDcuMBjExERERERERFRrYh8L5cXBTfI/v378dtvv/n8qlzMAFxXrK96rPJTEABwwQUXICLC1TZFUZCZmVnj2Js3b3Z/f+GFF6rep+rtlReG8TdmZGQkzj///Bof44+hQ4eiTp06msSSzenTp7FgwQKcPn1adCpeROZWp06d4PpeUQH89pv6sUsvBXBWfRdcALz9NnDoEPDCC0CTJq77+voEQDW0et6CjSPDuXUQwCpfBz/5BHA4Ag/eqhXg63+KS5cGHlcwGfqmJ9nrE5WfEePqNQbnPAqG2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT+bc9MIFjRBjtVrRs2dP988Zan+VfpbVq1e7v7/88stV79OvX7+AY/bu3RuxsbE1PsYf+fn5cDqdmsSSTUREBFJSUtwLUjIRmZvT6Qyu71u2eH7SoqozCxqq9dWvDzz5JJCdDSxaBNTwqSQ1Wj1vwcaR5dya7+vAkSPAjz8GF3zwYPXbf/oJKCoKLrYgsvRNL7LXJyo/I8bVawzOeRQMs/dN9vpE5heq854sc56WuZCxzNw32WvjnCcuJue88GX2vslcn8y56YVbTknC32toAMB//vMfPPHEEwBcn9jYs2ePz/seOnQILVu2hOPMX0dv2rQJXbp08brfxo0b0b17dwCuT1xkZ2cjNTXVZ9wLLrgAf/75JwBg+vTpmBjAX7dXxS2nwpMmW069+irw6KPet8fHA/n5QHR0UDmSb2f3LxHAMQDuzegsFtd2YCNHurb/SkwMfLANG4AePdSPff45cPPNgccmIiIiIiIiIiK/ccspqpVRo0a5t+f5448/MGvWLJ/3/ec//+lezOjVq5fqYgYAdOvWDd26dQMAOBwOTJo0yWfM999/372YkZiYiJEjRwZUh5rOnTsjJiZGs3gyKS8vR2ZmJsrLy0Wn4kVkbjExMcH1/eef1W/v0cO9mKFXfVrFDTaOLOdWEYCvAOwEkPfEE8CBA65PZowaFdxiBgB07Qo0bap+LES3nZKlb3qRvT5R+RkxLuc8kpHZ+yZ7fSLzC9V5T5Y5T8tcyFhm7pvstXHOExeTc174MnvfZK5P5tz0wgWNENSoUSOPT0Q8/PDDWLRokcd9KioqMGnSJHz22Wfu21588cVq41Y9/sknn2DSpEmoqKjwuM+iRYswfvx498+PPfZYtRc7r6309PQaL3Ieqmw2GzIyMmCz2USn4kVkblarNfC+Kwqwbp36sTPbTQH61adV3GDjyHRu3Q2gA4CC++4DmjXTLnBEBHD99erHvvkGsNu1G8sgMvVND7LXJyo/I8blnEcyMnvfZK9PZH6hOu/JMudpmQsZy8x9k702znniYnLOC19m75vM9cmcm1645ZQkarPlFOBasBg4cCB++ukn920dO3ZEly5dYLPZsGbNGhw5csR9bMqUKXjmmWdqzOPpp5/G//3f/7l/Puecc9CnTx9YrVZs2rQJO3bscB/r378/vv32W0RFRflbpk/ccio8Bb3l1N69gK8L0q9YAQwYEFyCVC1NtgyrjW+/Ba69Vv3YunVA797ajkdERERERERERF645RTVWnR0NL788kvceuut7tu2b9+OefPmYeHChe7FjOjoaLzwwgt+LWYAwHPPPYfnn38e0We26jl8+DAWLlyIefPmeSxmDB06FIsXL9ZkMaMqq9UKi8WiaUxZKIoCm80GGdcQReZmsVgC77uv7aYiIoCePd0/6lWfVnGDjSPzuaWpyy93XRtFzfLlxuaiAbP3Tfb6ROVnxLic80hGZu+b7PWJzC9U5z1Z5jwtcyFjmblvstfGOU9cTM554cvsfZO5Pplz0wsXNEJYcnIyFi5ciO+//x533HEHWrVqhfj4eCQnJ6NDhw549NFHsXXrVjz55JN+x7RYLHjqqaewdetWTJw4ER06dEBycjLi4+PRqlUr3HHHHfj+++/x2WefISkpSfOaJk2ahOTkZM3jyqCgoAAvv/wyCgoKRKfiRWRuycnJgffd13ZTnToBVc5PverTKm6wcWQ+tzRltbouMq7mu++MzUUDZu+b7PWJys+IcTnnkYzM3jfZ6xOZX6jOe7LMeVrmQsYyc99kr41znriYnPPCl9n7JnN9MuemF245RVKo/JhSkyZNkJubi61bt5puyymHw4Hc3Fw0bNgQkZGRotPxICq37OxstG7dGg0bNkRubq77AvaAn1sWtW0L/PGH9+0PPgi88QaQlQX8+iscN96I3Px8zevT6nkLNo7I/hm65RQAvPkm8NBD6seOHQMaNdJ+TJ3IPCdoQfb6ROVnxLh6jRHucx4Fx+x9k70+kfmF6rwny5ynZS5kLDP3TfbaOOeJi8k5L3yZvW8y1ycqN5FbTnFBg6TAa2iEp6DeEM/N9f3m9YIFwG23AePHAzNnAqmprjfB774bqFs36LzJRciCxr59QJs26sc+/hgYPlz7MYmIiIiIiIiIyI3X0CA6Y/To0UhISBCdhi6Ki4sxd+5cFBcXi07Fi8jcEhISAuv7L7/4PnbJJa7/fvUVAKA4Px9zd+9Gcdu2wMMPuz65oQGtnrdg48h4buXk5CA7O1vTL5vNBrRu7fpSE2LX0ZCxb1qSvT5R+Rkxrl5jcM6jYJi9b7LXJzK/UJ33ZJnztMyFjGXmvsleG+c8cTE554Uvs/dN5vpkzk0v2l7RmShI2dnZsNvtotPQRVRUFNLS0jS/kLoWROZmt9sD67uvC4K3aOH6RMaBA8DBgwCAKLsdadnZiCosdG1FddFFwF13BZm5ds9bsHFkPLf69OmjeUyr1YrBgwfjoyuvRPS+fd53WLECcDpdF4UPATL2TUuy1ycqPyPG1WsMznkUDLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ/MuemFW06RFLjlVHgKasuiXr2A9eu9bx8+3LX10Pz5wKhR6o/NzQUaNKh9wuShuv6drS6AdABXAGgJ4Nogxn2pTx/8c+1a9YMbNwJduwYRnYiIiIiIiIiIqsMtp4jO6NmzJ2JjY0WnoYuysjKsX78eZWVlolPxIjK32NjY2ve9tBTYtEn9WOV2U6tXu28qi43F+p49URYbC3TooNlihlbPW7BxZD23mgB4GcBGACcAfAngAQDXAEgNIu4rGzZAiYlRPxhC207J2jetyF6fqPyMGFevMTjnUTDM3jfZ6xOZX6jOe7LMeVrmQsYyc99kr41znriYnPPCl9n7JnN9MuemFy5okFQ6d+6MGF9vVIa48vJyZGZmory8XHQqXkTmFhMTU/u+b9wIVFSoH7v0Utd/161z31QeE4PMzp1RHhMD9O0bRLaetHrego0jqn9NmjSB1Wr1eVwB8ASArvD+n83lQYx7qqwMtm7d1A+G0IKGzHOCFmSvT1R+Royr1xjhPudRcMzeN9nrE5lfqM57ssx5WuZCxjJz32SvjXOeuJic88KX2fsmc30y56YXbjlFUuCWU+Ep4C2npk4F/v1v79uTk4FTp1zXUCgqcl04fM0a16c1NmxwLYIsWgTccot2RYS5oUOHYuHChT6PbwfQQeX2+QB8bAjml5P//jfqvfCC94GICODECaBu3SCiExERERERERGRL9xyiuiMlJQURITIBX1ry+l0Ij8/H06nU3QqXkTmFhERUfu++7og+CWX/O+C0ImJwFVXAS+8AOeaNcg/cADOH34Arrwy+KTP0Op5CzaOyP7Nnj0bt912m89Pavzo43FXBDluqa9P2jidwA8/BBndGDLPCVqQvT5R+Rkxrl5jcM6jYJi9b7LXJzK/UJ33ZJnztMyFjGXmvsleG+c8cTE554Uvs/dN5vpkzk0v5nznmELW+PHjkZSUJDoNXRQWFmLmzJkoLCwUnYoXkbklJSXVru9Op+uTF2oqr59xlsLCQsx8/30U/uMfmv7lvlbPW7BxRPYvPj4eCxYsQF5eHrKysry+hr7/vurjzgWQ88MPqo+p/Frr68LfACpatwaaNVM/GCLbTsk8J2hB9vpE5WfEuHqNwTmPgmH2vslen8j8QnXek2XO0zIXMpaZ+yZ7bZzzxMXknBe+zN43meuTOTe9cMspkkLlx5RSUlJQWFiIbdu2mW7LKafTicLCQiQlJUn3KRRRuWVnZ6NVq1ZISkpCYWGhx2qyzy2ntm8HOnVSD7h6NXDZZV4361WfVnGDjSPzuYX8fKB+fddCFOBahLjiCtfX9de7tgnzocYtyaZOBT74wPvgOecAOTmAxaJBAfqRum8akL0+UfkZMS7nPJKR2fsme30i8wvVeU+WOU/LXMhYZu6b7LVxzhMXk3Ne+DJ732SuT1RuIrec4oIGSYHX0AhPAV1D4513gPvv9749OhooKADi4rRNkoL35JNAixauRYxWrfxeaKjx/Ni8GbjpJvUHb9sGdOwYaMZEREREREREROQDr6FBdMa4ceOQmJgoOg1dFBUV4d1330VRUZHoVLyIzC0xMbF2ffd1/Yx//MPnYoZe9WkVN9g4Mp9bAFwXcb/3XqB1a20/NXHFFUBUlPqxENh2Svq+BUn2+kTlZ8S4nPNIRmbvm+z1icwvVOc9WeY8LXMhY5m5b7LXxjlPXEzOeeHL7H2TuT6Zc9MLFzRIKpmZmSgvLxedhi5iYmLQuXNnxMTEiE7Fi8jcysvLa9f3devUb7/0Up8P0as+reIGG0fmc0tXyclA797qx777zthcAmD2vslen6j8jBiXcx7JyOx9k70+kfmF6rwny5ynZS5kLDP3TfbaOOeJi8k5L3yZvW8y1ydzbnrhllMkBW45FZ5qveXUoUNA8+bqwZYsAQYP1jQ/Esuv8+PFF11bWp0tOho4eRIw6Se+iIiIiIiIiIhE4ZZTRGekp6fDarWKTkMXNpsNGRkZsNlsolPxIjI3q9Xqf999fToD8P2X+tCvPq3iBhtH5nNLdwMHqt9eUQGsWmVsLrVk9r7JXp+o/IwYl3MeycjsfZO9PpH5heq8J8ucp2UuZCwz90322jjniYvJOS98mb1vMtcnc2564YIGSSUtLQ1RvvbED3F2ux3Z2dmw2+2iU/EiMreoqCj/++5rQeOCC4CGDQGHQ/WwXvVpFTfYODKfW7q76CKgcWP1Y5JfR8PsfZO9PlH5GTEu5zySkdn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCLadICtxyKjzVesupiy8GMjO973zXXcCsWcCECcC33wJ9+/7vKzVV87zJGH6fH6NHA/Pmed8pLQ346y9tL0RORERERERERBTmuOUU0RlNmjRBZGSk6DR04XA4cPToUTh8fIpAJJG5RUZG+tf3ggJg2zb1Y5UXBM/IAP78E/jgA+COO4BmzYBWreCYNUuX+rR63oKNI/O5ZQhf205lZ7vOB0mZvW+y1ycqPyPG1WsMznkUDLP3Tfb6ROYXqvOeLHOelrmQsczcN9lr45wnLibnvPBl9r7JXJ/MuemFCxoklXHjxiHRpBfxLSoqwnvvvYeioiLRqXgRmVtiYqJ/fV+/HnA61Y9dcgmQlwds3ep97K+/UOR06lKfVs9bsHFkPrcM0b+/709hSLztlNn7Jnt9ovIzYly9xuCcR8Ewe99kr09kfqE678ky52mZCxnLzH2TvTbOeeJics4LX2bvm8z1yZybXrjlFEmh8mNKVqsVZWVl2L59u+m2nFIUBWVlZYiNjYVFsi1wROWWnZ2N8847D7GxsSgrK0PV6chry6lnngGef947SKNGwNGjwH//CwwapDqOsncvylJTNa9Pq+ct2Dgyn1s+lZW5Fql+/NH1yZpvvwUSEjzuUqstyXr2BH77zfuOAwcC332nXd4aCsm+1YLs9YnKz4hx9RqDcx4Fw+x9k70+kfmF6rwny5ynZS5kLDP3TfbaOOeJi8k5L3yZvW8y1ycqN5FbTpnz6ssUsmw2m+gUdGOxWGC1WkWnoUpkboqi+Nf3n39Wv/3SS11/nb96tfrxc86BpVUrWHWY1LV63oKNI/O55aGsDJg507WIsXYtUFr6v2Nr1wJXXx147IED1Rc0MjJc48TFBR5bJyHTtwDJXp+o/IwYV68xOOdRMMzeN9nrE5lfqM57ssx5WuZCxjJz32SvjXOeuJic88KX2fsmc30y56YXbjlFUhk/fjySkpJEp6GLwsJCzJgxA4WFhaJT8SIyt6SkpJr7XlHh+mt+NZXXz1izRv14374oLCrSpT6tnrdg48h8bnmIjgamTQNWrvRczABcixzB8LUYYrP5XuwSLGT6FiDZ6xOVnxHj6jUG5zwKhtn7Jnt9IvML1XlPljlPy1zIWGbum+y1cc4TF5NzXvgye99krk/m3PTCBQ2SSkZGhmk/pWG1WpGeni7lqqnI3Gw2W819z8z0fgO80iWXuP67ZAnw6afAvfcCbdv+73jfvrrVp1XcYOPIfG55iIgALr9c/dhPPwUXu2tXoF499WOSXkcjZPoWINnrE5WfEeNyziMZmb1vstcnMr9QnfdkmfO0zIWMZea+yV4b5zxxMTnnhS+z903m+mTOTS+8hgZJQeS+aySO39dIeO01YOJE7zvFxQEFBa6//D/bsWOubYx69QLOPVe7pCk4H3wA3HOP9+0WC5CbC9Sv776pVtfQAIDbbwcWLPC+8wUXAHv2BJE0ERERERERERFVEvleLj+hQVIZOHAg4iTc614LpaWlWL58OUp9fdJAIJG5xcXF1dx3X9fP6NlTfTEDABo3Bm6+GTj3XN3q0ypusHFkPre8XHGF+u2KAqxaFVzsgQPVb//jDyArK7jYOgipvgVA9vpE5WfEuJzzSEZm75vs9YnML1TnPVnmPC1zIWOZuW+y18Y5T1xMznnhy+x9k7k+mXPTCxc0SCopKSmIiDDnael0OpGfnw+n0yk6FS8ic4uIiKi+74rie0GjcrupGuhVn1Zxg40j87nl5bzzgKqfrEhKAq6/HpgxA+jePbjYV13l+9iKFcHF1kFI9S0AstcnKj8jxuWcRzIye99kr09kfqE678ky52mZCxnLzH2TvTbOeeJics4LX2bvm8z1yZybXrjlFEmBW06FJ7+2FNq3D2jTRj3A8uXVv4lNcnr1VdfFuq+4AvjHP4CoKNW71XrLKQDo0gXYssX79kGDgKVLg0iaiIiIiIiIiIgAbjlF5JaWloao/2fvzMOjqLI2/nbSSRqys2jQqGFwAQGNqOwIruCOK3FHZlTUGWVUFHfQUcAdR0dQB8UVHBcYh09E0bCDG2EHAdNqhMiaPZ1Op+v7o0lM0tWd7q57656qPr/n6UdSt+rc99S5faqs23VuiIebVsfn88HtdsPn86mWEoRKbU6nM3zcQ72dkZAQWB8jAmT5J8quUTuUx5Yud90FPPAA0K9fyMmMmAlVdmrRIsDrFduXQSwXtyih7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMKUaPHo20tDTVMqRQVVWFWbNmoaqqSrWUIFRqS0tLCx/3UBMavXsHyhVFgCz/RNk1aofy2DKdUBMa1dXA8uXmamkDu8eNun+q9JnRL+c8hiJ2jxt1/1Tqs2reo5LzRGphzMXOcaPuG+c8dTY558Uvdo8bZf8oa5MFl5xiSMAlp+KTiEoK9egBbNkSvMPttwMvvSRXIKOUmEpO1dcDnToBFRXBbffeC0ydKlYkwzAMwzAMwzAMwzBMnMElpxiGYfTYs0d/MgMABg82VwtjDZKSgLPO0m9bsMBcLQzDMAzDMAzDMAzDMIxQeEKDIcWECROQmZmpWoYUysvLMWXKFJSXl6uWEoRKbZmZmaHjvmJF6AOjmNCQ5Z8ou0btUB5bSghVdmrdOuC338zVEga7x426f6r0mdEv5zyGInaPG3X/VOqzat6jkvNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrkwVPaDCkmDt3LmpqalTLkEL79u0xcuRItG/fXrWUIFRqq6mpCR33UGseHHkkkJsLTJkCDBwI3H9/4Nf3lZW6u8vyT5Rdo3Yojy0lDB8euu3zz83T0QZ2jxt1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgteQ4MhAa+hEZ+0uUbC1VcDK1cGN159NfDuu8CZZwJfffXH9sREoE8f4LbbgNGj5YhmTCOmNTQa6dkT2LQpePsVVwAffCBGIMMwDMMwDMMwDMMwTBzCa2gwzEHsPKMY9k0ExajUFmom2eHxAN99p3/Q4MGA1xs82dHQAHz7bWDtjWbI8k+UXaN2KI8tZYQqO/XFF4DPZ66WENg9btT9U6XPjH455zEUsXvcqPunUp9V8x6VnCdSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLHhCg2EYkiSvXQvU1+s3DhoUmLiordVvHzpUnjBGDpoGrF8PTJsGXHQRUFRkzN655+pvLysDVq82ZpthGIZhGIZhGIZhGIZRApecYkjAJafik3AlhfaPH4/sp58ObsjMBPbtA6ZOBR58MLg9LQ04cABwOgWrZaTw9tvA//1foHTY7t1/bJ86Fe4rr4y95JTHA3TsCOj9QuGhh4DHHzemm2EYhmEYhmEYhmEYJk7hklMMc5Du3bsjKSlJtQwp1NfXY8uWLagP9daBQlRqS0pK0o17SqhyUwMHBtbKWLxYv33QoKDJDFn+ibJr1A7lsdUmb74JzJ7dcjIDABYtMmbX5QJOP12/bcECY7YFYem4RQB1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgue0GBIwWtoqIHaGhoOACnff69/wODBgf8+9xzwz38Cl18OdO78R7tOuSmuJ0+YM8/U3750KVBXZ8x2qHU0vvsueAJFAZaOWwRQ94/X0FBnN65zXhxj97hR94/ryauzyfXk4xc7x426b5zz1NnknBe/2D1ulP2jrE0WXHKKIQGXnIpPQpWc6glgQ6iDCguDJy00DdiyBViyJNDWvbtgpYw0Vq0CBgzQbdo1ezYOKyjQbWuz5BQAbN8OHHOMfts77wDXXBOFUIZhGIZhGIZhGIZhGAbgklMMwzAtGByqISkJOPXU4O0OB9CjB3DLLTyZYTVOOQXIyNBtardihTHbRx8d+Ojx2WfGbDMMwzAMwzAMwzAMwzCmwxMaDCkmTpyIrKws1TKkUFZWhkmTJqGsrEy1lCBUasvKygqKe8gJjZNPBmIoSSbLP1F2jdqhPLbaxOls+caN0xlYB+Xhh1Fz9tnG7YcqO/X554Dfb9y+ASwdtwig7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBJacYEjS+ppSXl4eSkhIUFRXZruSUz+dDSUkJcnNz4Wy1aLVqVGlzu9045phjkJubi5KSEvh8PgBAMYA8vQPuvht45pmo+5Hlnyi7Ru1QHlsRMWcO8M03gfU0hgwB0tMBhC5JBkRYcgoA5s8HLrhAv+3bbwNviCjC8nFrA+r+qdJnRr+c8xiK2D1u1P1Tqc+qeY9KzhOphTEXO8eNum+c89TZ5JwXv9g9bpT9U6VNZckpntBgSMBraMQneg+sDwdQEuqATz4BRo6UrIqhgpAJjepqoEMHwOsNbnv8ceChh4yJZBiGYRiGYRiGYRiGiTN4DQ2GOUhBQQFSU1NVy5BCdXU1Zs+ejerqatVSglCpLTU1tUXcB4XbeVDY1pDI8k+UXaN2KI8t5aSmAqedpt+2YIG5Wlph97hR90+VPjP65ZzHUMTucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgCQ2GFGVlZfArrmsvi4SEBGRlZSEhgd7XTqU2v9/fIu4h18847jigc+eY+pDlnyi7Ru1QHlskOPdc/e0rVwIHDpirpRl2jxt1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgsuOcWQgEtOxSd6JYW+B9BHb+cxY4B//9sMWQwRhJScAoBNm4BQ+eSDD4ArrohNIMMwDMMwDMMwDMMwTBzCJacY5iD5+flITk5WLUMKXq8XRUVF8OrV8leMSm3JyclNcU8HcGKoHQeHfHejTWT5J8quUTuUxxYJevQAjjhCv01h2Sm7x426f6r0mdEv5zyGInaPG3X/VOqzat6jkvNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrkwVPaDCkGDZsGFwul2oZUvB4PCgsLITH41EtJQiV2lwuV1Pc+wNIDLXj4MHAG28AF14IPPMM8M03gM8XUR+y/BNl16gdymOLBA4HMGKEftuCBYCiFxXtHjfq/qnSZ0a/nPMYitg9btT9U6nPqnmPSs4TqYUxFzvHjbpvnPPU2eScF7/YPW6U/aOsTRZccoohAZecik9alxSaBOARvR07dwZ+/z1QGuijj/7YnpYWWCj8uuuAa66RLZcxGWElpwDg44+Byy7Tb1u3DujdO3qBDMMwDMMwDMMwDMMwcQiXnGKYg7hcLjgcDtUypKBpGjweDyjOIarU5nA4muI+KNROjeWmlixpub2qCvj8c2DjxrB9yPJPlF2jdiiPLTKceSbgdOq3ffaZuVoOYve4UfdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4AkNhhQTJkxAZmamahlSKC8vx9SpU1FeXq5aShAqtWVmZmLChAnokJmJ/qF2GjwY2LIF2LNHv33o0LB9yPJPlF2jdiiPLSMk/v47rgEwE8BIo8YyM4GBA/XbFK2jYde4NULdP1X6zOiXcx5DEbvHjbp/KvVZNe9RyXkitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJLTjEkaHxNKScnB3v27MHatWttV3KqoaEBe/bsQefOnZGYGHKlCCWo0uZ2u3H00Uejc+fOOGLPHnzT0KC/4+rVwA8/ALfeGtyWmAgcOACkp4fsR5Z/ouwatUN5bEXNV18FykMtWhSYxDrIWwBuaLZb1CWnAGDyZOCBB4K3JyUB+/aFHUMysFXcdKDunyp9ZvTLOY+hiN3jRt0/lfqsmveo5DyRWhhzsXPcqPvGOU+dTc558Yvd40bZP1XaVJac4gkNhgS8hkZ80nyNhDsBvKC3U7t2QHk5cP31wOzZwe19+wYmPBh7cOedwIsvBm3+DUBus79jmtBYswbo00e/bd484KKLorPHMAzDMAzDMAzDMAwTh/AaGgxzkNGjRyMtLU21DClUVVXhzTffRFVVlWopQajUlpaWhtGjR6NfqLj36xf4Bf24ccCkScAZZwQmORo57bQ2+5Dlnyi7Ru1QHltRc+aZupsPB3CcUdv5+UBOjn6bgnU0bBU3Haj7p0qfGf1yzmMoYve4UfdPpT6r5j0qOU+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2j7I2WYRYIZVh1OB2u+Hz+VTLkILT6UReXh6coRYmVohKbT6fD263GwNDxb1xQfB+/QIfAPB6ge++AxYvDkxwtIEs/0TZNWqH8tiKmqFDgYQEwO8PajoTwFYjth0OYPhwYNas4LYFCwBNC+xjEraKmw7U/VOlz4x+OecxFLF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyy45BRDAi45FZ80lpzqBmB7qJ0++wwYMcJEVYxy+vUDvvkmaPPHAC47+O+YSk4BgbJlV12l37ZlC3Cc4fdAGIZhGIZhGIZhGIZhbA2XnGKYg/Tv3x8pKSmqZUihrq4Oq1atQl1dnWopQajUlpKSgnP790edXtwdDmDAAMN9yPJPlF2jdiiPrZhoVXZqM4CXALwmwvbZZ4d+C2PBAhE9RIzt4tYK6v6p0mdGv5zzGIrYPW7U/VOpz6p5j0rOE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WPKHBkCI/Px/JycmqZUjB6/WiqKgIXq9XtZQgVGpLTk5GTn4+vHpxP+EEIDPTcB+y/BNl16gdymMrJi64ABg9GnuefRaHAzgewN8ACJlu6NgxsJC8HiZPaNgubq2g7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBJacYEnDJqfikseTUJgA99Ha4/XbgpZdMVsVQoXF86BFzySkgsLj8xInB210uYP/+lovOMwzDMAzDMAzDMAzDMC3gklMMc5CsrCwkJNhzWPr9fpSVlcGvs9ixalRq65SQgC5ZWfDrxX3QICF9yPJPlF2jdiiPLZKEWpPF4wEKC02TYfe4UfdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2ysOeTY8ayjBs3DhkZGaplSKGiogLTpk1DRUWFailBqNQ2NCMD08aNQ4Ve3AcPFtKHLP9E2TVqh/LYIskppwAdOui3mVh2yu5xo+6fKn1m9Ms5j6GI3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwSWnGBI0vqaUlZWFiooKrFu3znYlp/x+PyoqKpCRkUHuLRRV2txuN+Z064ZbMjKQUVGBhGazyb7DDoPzt9+E9CPLP1F2jdqhPLaMIK3kFABcdRUwe3bw9qOPBrZti91uFNg1bo1Q90+VPjP65ZzHUMTucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7J8qbSpLTvGEBkMCXkMjPnG73fita1foFZaquugipM2bZ7omhg5SJzTefhu4/nr9tq1bgWOPjd02wzAMwzAMwzAMwzCMjeE1NBjmIGPHjkV6erpqGVKorKzE9OnTUVlZqVpKEKq0OTwedE9Px/SxY1HZKu51p5wCfPopcMMNwMyZwI4dQIzzr7L8E2XXqB3KY4ssI0YADod+2//9nykS7B436v6p0mdGv5zzGIrYPW7U/VOpz6p5j0rOE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WPKHBkKKoqAher1e1DCkkJycjPz8fycnJqqUEoUpb8rp1SPN6kV9UhORWcfc0Tmi89Rbw5z8HSgEdcQRw9dXAhx9G148k/0TZNWqH8tgiS+fOQN+++m0mTWjYPW7U/VOW90zol3MeQxG7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+UtcmCS04xJOCSU/HJgXvvRfbTTwdtLwNQtn078s47D/jxx+ADb7kFmD5duj5GLVJLTgHAY48Bjz4avD05Gdi3D0hLM2afYRiGYRiGYRiGYRjGhnDJKYY5yLBhw+ByuVTLkILH40FhYSE8Ho9qKUGo0pby/ffwuFwoHDYMnmZxXwkgcd8+/ckMABg6NKp+ZPknyq5RO5THlkhSAYwA8DSA9DfeMG7wvPP0t3u9wFdfGbffBnaPG3X/VOkzo1/OeQxF7B436v6p1GfVvEcl54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC57QYEiRl5cHp9OpWoYUfD4f3G43fD6failBKNHm9yPlu+/gczrhzsuDr1nclwFI+eab0MdGOaEhyz9Rdo3aoTy2jNIDwEQASwEcAPAZgHsApP/nP8aN9+kDHHKIftv8+cbtt4Gd4wbQ90+VPjP65ZzHUMTucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgklMMCbjkVByyYQPQu7du01AAn157LTLeeSe48eijgW3b5GpjSOB2u/GPrl3xeqgd9uwBOnUy1sno0cCsWcHbc3OBX34JvXA4wzAMwzAMwzAMwzBMnMIlpxjmIDk5OUhMTFQtQwoNDQ0oLS1FQ0ODailBKNG2fHmg78RElObkoOFg3OsBfAugZsQI4I47gBNPbPlQOcq3MwB5/omya9QO5bFllEXhGr/+2ngH55+vv72kJDDpJhE7xw2g758qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMKcaOHYv09HTVMqRQWVmJGTNmoLKyUrWUIJRoW7Ys0Hd6OmaMHYvKg3H/HkAtAM+gQcC0aUBRUWCB5v/+F7j7buCyy6LuSpZ/ouwatUN5bBnFDeCnUI2Lwk53RMbZZwOhJlH/7/+M2w+DneMG0PdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4JJTDAkaX1NyuVyoq6vD+vXrbVdyStM01NXVISUlBQ5iZWyUaOvaFXC7oTkcqEtJQUpdHRyahmcAjAdQXFyMvLw8IV3J8k+UXaN2KI8tI7jdbnTt2hWvArhJbwdR5ceGDgWWLAneftppwOLFxu2HwK5xa4S6f6r0mdEv5zyGInaPG3X/VOqzat6jkvNEamHMxc5xo+4b5zx1NjnnxS92jxtl/1Rp45JTDHMQj8cDu86xORwOuFwucokPUKDtt98AtzvQt6bB5fHAcTDuyyR0J8s/UXaN2qE8tkTwVau/fwdQdeGFwL33An6/8Q7OO09/+/LlQFmZcfshsHvcqPunSp8Z/XLOYyhi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8IQGQ4px48YhIyNDtQwpVFRU4IUXXkBFRYVqKUGYru3g+hkAUJGRgRfGjUPFwbivkNCdLP9E2TVqh/LYEsFXAD4FMA5AbwA5APa++CJw001AgoDLWKgJjYYGYOFC4/ZDYPe4UfdPlT4z+uWcx1DE7nGj7p9KfVbNe1RynkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4AkNhhSFhYXweDyqZUjB5XJh2LBhcLlcqqUEYbq2ZX+8h+HyeDCssBAujwdbAeyR0J0s/0TZNWqH8tgSwW4AFwGYBkDKMt29egG5ufptEtfRsHvcqPunSp8Z/XLOYyhi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8BoaDAlU1l1jFNCnD7BmTdDmfwP4y8F/i1xDg7EmjWto6CF8fIwdC8yYEbz9kEOAXbvEvAnCMAzDMAzDMAzDMAxjA3gNDYY5yIgRI9CuXTvVMqRQW1uLBQsWoLa2VrWUIEzVVlkJrF37R9/t2mHBiBGobdcOy8McZgRZ/omya9QO5bFlGUKVndq9G/jhByld2j1u1P1Tpc+MfjnnMRSxe9yo+6dSn1XzHpWcJ1ILYy52jht13zjnqbPJOS9+sXvcKPtHWZsseEKDIUVWVhYSbPpLaL/fj7KyMvhFLGIsGFO1rVrVYiFnf0ICyrKy4E9IkLIgOCDPP1F2jdqhPLYswxlnAMnJ+m2Syk7ZPW7U/VOlz4x+OecxFLF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyy45BRDAi45FUc8+ijw2GNBm3cDOLTZ31xyijG15BQAnHMO8MUXwdv79gVWrxbbF8MwDMMwDMMwDMMwjEXhklMMc5C8vDw4nU7VMqTg8/ngdrvh8/lUSwnCVG3LWr6H4XM64c7Lw1KnEwMAPIvAAtAJZWXCupTlnyi7Ru1QHluWIlTZqW+/DZSeEozd40bdP1X6zOiXcx5DEbvHjbp/KvVZNe9RyXkitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNBhSjB49GmlpaaplSKGqqgqzZs1CVVWVailBmKatvj7ol+5VaWmYNXo0Vqal4SIAdwGYB+DIk04CTjgB+NvfgM8+M9StLP9E2TVqh/LYshTnn6+/XdOAzz8X3p3d40bdP1X6zOiXcx5DEbvHjbp/KvVZNe9RyXkitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJLTjEk4JJTccJ33wGnnqrb1A/ACwAG6DVeeSUwZ448XQxJTC85BQDHHANs3x68vaAAeP998f0xDMMwDMMwDMMwDMNYDC45xTBMfNCq3FQjNQC2Ajgl1HFDh0oSxFiahgZgzRrgxReB558XYzNU2anPPwfi6PVNhmEYhmEYhmEYhmEYivCEBkOKCRMmIDMzU7UMKZSXl2PKlCkoLy9XLSUI07QtXx7cd2YmnpswAYMzM5EU6jiDExqy/BNl16gdymNLNH8C8ACAQ0aPBjp0APr0Ae68E3j66UBpKKOEmtA4cED4wuB2jxt1/1TpM6NfznkMReweN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgsuOcWQoPE1pe7du2PHjh1Ys2aN7UpOVVZWYs2aNTjssMPILXzu8/mwc+dOudo0Dbn9+sG5Z0+LzfVJSZjSrRu0HTvwSH198HGdOgUWZHY4Yu66vr4eO3bsQLdu3ZCUFHLaRJldo3Zk+acavZJT5wGYH+qA7duBbt2MderxBCZKamuD2+6/H3jySWP2m2HXuDVC3T9V+szol3MeQxG7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+qtKksOcUTGgwJ7LyGRk1NDcaMGYN58+bB4/GolqOMPwHYEaJtBIBEAAUAhgI4snnjJZcAH38sVxxDEr0JjUwA+xHi9cI33gBGjzbe8YUXAv/7X/D2E08EioqM22cYhmEYhmEYhmEYhrEwvIYGwxxk5MiRaN++vWoZQhkzZgzmzJmDhIQEsv61b99eurbBIbZXtW+PjJEjUdi+Pa4HcBSAPAB7nnkGuPHGwISGQWpqajB37lzU1NQYtiXDrlE7svyjSDmA9aEaly4V08n55+tvX7sW+O03MX3A/nGj7p8qfWb0yzmPoYjd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMIxGPx4N58+aplkGCQSG2bwLQutDUzwCqL7sMmDkTuO46ucIYyxFy2kLUhMa554Zu++wzMX0wDMMwDMMwDMMwDMMwUcMlpxgS2LXklF7JnHhlI4Djdba/DOCvrba5XC4cOHAALpdLvjCGLKG+P1cCmNN8Q0oK0LcvcNppwKRJQGJiRPY9Hg9KS0t12w4bPhzJP/4YtL16+HDsmT5d95icnBweswzDMAzDMAzDMAzD2B4uOcUwB+nevTu5xXVEkZSURNY/2do6QH8yAwCW6/R98cUXC30wXF9fjy1btqBeb9FxAnaN2pHlH1WWAqg5/XRg8uTAWxnl5cCSJcA//hHRZEZNTQ0KCgqQnZ2Nrl276n5e0JnMAAD/55/juBDHZGdno6CgIOLXPO0eN+r+qdJnRr+c8xiK2D1u1P1Tqc+qeY9KzhOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFjyhwZCC6hoTIjBjnYpYka1tYJi2Nc36drlcGDVqFGbOnCm0f64nby92Adg9cyYwYQIweHDgDY0oaFzXxuPxhNzn/0JsT0fo9WA8Hg/mzJmDMWPGRKTD7nGj7h+voaHOLue8+MTucaPuH9eTV2eT68nHL3aOG3XfOOeps8k5L36xe9wo+0dZmyy45BRDgngsObV06VLk5uaarEgN2VOmIHPGjKDtvsMOQ8ny5U1/c8kepjnhvj/FxcXIy8uL2qbH40F2dnbYyQwAcALYCyBTp+1ZAPeEOZZLpjEMwzAMwzAMwzAMY2dUPst1mtILwzBB5ObmxvRA1pKsX6+72Tl0aPycA4YEpaWlbU5mAIAPwEIAV+i0nYfwExqNa3Pw2GYYhmEYhmEYhmEYhhELl5xiSDFx4kRkZWWpliGFrKwssv6VlZVh0qRJKCsrE2/c4wG++06/bdAguX0fRFYfouwatWPGOYxHQpWd6gFA/72R6LB73Kj7p0of5zzOefGK3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwSWnGBI0vqaUl5eHkpISFBUV2a7klNPpRG5uLkpKSuDz+WIumSMDn8+HkpIS5ObmwukU/OLWsmXAkCH6bUVF8PXsKa/vg8jyT5Rdo3akxk8hMkpOhbPZmhwE1uvQ468AXg5zbCT67Bq3Rqj7p0qfGf1yzmMoYve4UfdPpT6r5j0qOU+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2T5U2lSWneEKDIUE8rqFBaUJDKlOmAPffH7w9IyMw2TFvHjB0KNC3b9SLOzP2xuwJDb11bbpceCFSNmwI2rdm2DD88PjjGBJisi5uvt8MwzAMwzAMwzAMw8QdKp/lcskphhQFBQVITU1VLUMKqampZP2rrq7G7NmzUV1dLd74smX62wcOBD77DNVTpmD2v/6F6sMOA04/HZg4EVi6VKgEWf6JsmvUjtT4xRGN69o0/6Rcconuvu1XrcIRHTsa6s/ucaPunyp9ZvTLOY+hiN3jRt0/lfqsmveo5DyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZMETGgwpysrK4Pf7VcuQgt/vJ+tfQkICsrKykJAgOCX4/cCKFfptgwYBixcjwe9HVlkZEmprgcJCYNIk4LHHhMqQ5Z8ou0btSIsfA5x3nv52jweuVasMmbZ73Kj7p0qfGf1yzmMoYve4UfdPpT6r5j0qOU+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2j7I2WXDJKYYEXHLKpmzcCDSLawu+/BK49FKgoiK47fHHgYcekquNIU9M35+ffw68FdSpEzB8uHGbDQ3AoYcC+/YF7V9x3XXIfPvt6PQxDMMwDMMwDMMwDMNYHC45xTAHyc/PR3JysmoZUkhOTibrn9frRVFREbxer1jDocpNOZ2AywVUVMCbnIyi/Hx4m5+XoUOFypDlnyi7Ru1Ii58V+OknYPp04JprgCOPBPLygGuvBf75TzH2ExOBESN0m9p9/bUh03aPG3X/VOkzo1/OeQxF7B436v6p1GfVvEcl54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC57QYEgxbNgwuFwu1TKk4HK5yPrn8XhQWFgIj8cj1vDy5frb+/QBVq8O9O1yoXDYMHgaz0tKSmCBcIHI8k+UXaN2pMXPCrz3HnDrrYH//vrrH9uXLw+UPBNBiLJTSSUl6G7ArN3jRt0/VfrM6JdzHkMRu8eNun8q9Vk171HJeSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgktOMSTgklM25U9/AoqLg7ffdRcweDDw+uuBtzial50aOjSwlgYT90T0/SksDCwmr8e6dUDv3tHbbM2+fcAhh+hOkNwN4LlobDEMwzAMwzAMwzAMw1gcLjnFMAdxuVxwOByqZUjB4XCQ9U/TNHg8Hgid3/ztN/3JDCAwmXHJJcD8+dD27oVn5UpozzwDXHQRcOGF4jQcRIp/Au0atSPLP0vQrx+QlKTftnSpmD46dgT699dtCrFkeETYPW7U/VOlz4x+OecxFLF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyx4QoMhxYQJE5CZmalahhQyMzPJ+ldeXo6pU6eivLxcnNFQ5aYAYNCgP/qursbUzz9H+Z//DMybB9x9tzgNjX3I8E+gXaN2ZPlnCdq1A045Rb9N1IQGELLs1BAA6TGatHvcqPunSp8Z/XLOYyhi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZcMkphgSNrynl5ORgz549WLt2re1KTiUmJqJz587Ys2cPGhoaSJWkaWhowJ49e9C5c2ckJiaKMXrnncCLLwZvP+YY4Mcf5fbdCll9iLJr1I4Z51AFEZeHuu8+4KmnWu7Qs2fgLaDHH4/NZmvWrAms/aLDJQDmRmPrIHaNWyPU/VOlj3Me57x4xe5xo+6fSn1WzXtUcp5ILYy52Dlu1H3jnKfOJue8+MXucaPsnyptKktOOU3phWEipLS0VLUEaTQ0NJD1LzExETk5OWKNLlumv33wYPl9t0JWH6LsGrVjxjkkzemnA4sXA0OGBD6DBgXKRIkkPx/o0gXYtSuo6XwET2hEgt3jRt0/Vfo453HOi1fsHjfq/qnUZ9W8RyXnidTCmIud40bdN8556mxyzotf7B43yv5R1iYLLjnFkGL06NFIS0tTLUMKaWlpZP2rqqrCm2++iaqqKjEGKyuBoiL9tlYTGsL71kFWH6LsGrVjxjkkzYgRwKpVwNNPB9ZhET2ZAQAOB3DuubpNsa6jYfe4UfdPlT7OeZzz4hW7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+UtcmCJzQYUrjdbvh8PtUypODz+cj653Q6kZeXB6dT0Etbq1cDfr9+W7P1M6T0rYOsPkTZNWrHjHPIADj/fN3NhwE4MQZzdo8bdf9U6eOcxzkvXrF73Kj7p1KfVfMelZwnUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyx4DQ2GBCrrrskk5nr9VmfiRGDSpODtnToBu3cHfu3OMG0g4/tjyGZFReDtD51JyQcATBagj2EYhmEYhmEYhmEYhjoqn+XyGxoMKfr374+UlBTVMqSQkpJC1r+6ujqsWrUKdXV1YgyGWz+j1WSG8L51kNWHKLtG7ZhxDhkAGRmBNTp0iKXslN3jRt0/Vfo453HOi1fsHjfq/qnUZ9W8RyXnidTCmIud40bdN8556mxyzotf7B43yv5R1iYLntBgSJGfn4/k5GTVMqSQnJxM1j+v14uioiJ4vV7jxny+wHoGerRaP0N43yGQ1Ycou0btmHEOmYOcpz91MQBAdpSm7B436v6p0sc5j3NevGL3uFH3T6U+q+Y9KjlPpBbGXOwcN+q+cc5TZ5NzXvxi97hR9o+yNllwySmGBFxyykZ8/z1wyin6bXPnAjt3AkOHAj16cOkpJizkSk4BwKZNQIjcdBWA2Qb1MQzDMAzDMAzDMAzDUIdLTjHMQbKyspCQYM9hmZCQQNY/v9+PsrIy+EMt5B0NocpNuVyByYzbbgs8ED70UODyy+GfNg1lK1eK6TsEQv2TYNeoHVn+MTr06AEcdZRuU7Rlp+weN+r+qdJnRr+c8xiK2D1u1P1Tqc+qeY9KzhOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFvSerDJxzbhx45CRkaFahhQyMjLI+ldRUYFp06ahoqLCuLFQExr9+gHLl//x9549wEcfoWLiRExbuFBM3yEQ6p8Eu0btyPKP0cHhAM4/X7dpBKK7qNo9btT9U6XPjH455zEUsXvcqPunUp9V8x6VnCdSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLLjkFEOCxteUsrKyUFFRgXXr1tmu5FRCQgIyMjJQUVEBv99PqiSN3+9HRUUFMjIyjL1BomnA4YcDu3YFt91/P/D220BJScu+ExJQMW4cMp5+WtrbK8L8k2TXqB1Z/qlGSMmp8nJgxQqgWzfg2GPF2Jw/H7jgAt2mfgC+idCWXePWCHX/VOkzo1/OeQxF7B436v6p1GfVvEcl54nUwpiLneNG3TfOeepscs6LX+weN8r+qdKmsuSU05ReGCZCysrKVEuQRuMrYBRpLIdlmOJi/ckMADj66KDJDABI8PuRddppgMSkK8w/SXaN2pHlnyUpLQWWLv3js24d4PcDDz8MPPaYmD5OPx1ISQHq6oKazkdgQiMS7B436v6p0mdGv5zzGIrYPW7U/VOpz6p5j0rOE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WtKaUmLhn7NixSE9PVy1DCunp6WT9q6ysxPTp01FZWWnMUKhyUw4HUFur33d6OqaXlBjvOwzC/JNk16gdWf5ZkltvBa68EvjnP4GiosBkBhCY3BBF+/aBSQ0dLorCjN3jRt0/VfrM6JdzHkMRu8eNun8q9Vk171HJeSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgic0GFIUFRXB6/WqliEFr9dL1r/k5GTk5+cjOTnZmKFQExq9ewOHHBJYRyMxsWXfxxyD/JNPNt53GIT5J8muUTuy/LMkQ4bob1+9GhD53QuxjkY+gLwITdg9btT9U6XPjH455zEUsXvcqPunUp9V8x6VnCdSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLHgNDYYEKuuuyURIvX4r0bMnsGlT8PZbbwX+9a/Av6uqAmsaLF4MLFkC9O8PPP20uToZSxDT9+ebbwITZ3qsXAl3To6Y7+QvvwBHHaXb9HcAd9rx+80wDMMwDMMwDMMwDAO1z3L5DQ2GFMOGDYPL5VItQwoul4usfx6PB4WFhfB4PLEb2bdPfzIDAAYP/uPfaWnAOecATzwBLF0Kz+OPG++7DYT4J9GuUTuy/LMkJ50UKAmlh8iyU0ceibrevXWbLonQhN3jRt0/VfrM6JdzHkMRu8eNun8q9Vk171HJeSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgic0GFLk5eXB6bTnWvVOp5Osfz6fD263Gz6fL3YjK1aEbms+oSGj7zaQ1Ycou0btmHEOLUNSEjBgQPD2nBxA8AuJNWefrbt9EICEvXvbPN7ucaPunyp9nPM458Urdo8bdf9U6rNq3qOS80RqYczFznGj7hvnPHU2OefFL3aPG2X/KGuTBZecYkjAJadswIQJwNSpwdtzc4FffzVfD2N5Yv7+TJoEvPNOYD2Nxk+3boDDIfQ7+dvChTh8+HDdtr1TpqDTffdFbIthGIZhGIZhGIZhGMYqcMkphjlITk4OElstGm0XEhMTyfrX0NCA0tJSNDQ0xG4k1ILgYd7OENZ3G8jqQ5Rdo3bMOIeW4uGHgW3bgJkzgRtvBI4+GnA4hHdTf8wx2Bairf3ChW0eb/e4UfdPlT7OeZzz4hW7x426fyr1WTXvUcl5IrUw5mLnuFH3jXOeOpuc8+IXu8eNsn+UtcmCJzQYUowdOxbp6emqZUghPT2drH+VlZWYMWMGKisrYzPg8QDffqvf1saEhuG+I0BWH6LsGrVjxjm0FAkmXdocDnwSoqndsmVAG/Gwe9yo+6dKH+c8znnxit3jRt0/lfqsmveo5DyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZMElpxgSNL6m5HK5UFdXh/Xr19uu5JTD4UBKSgrq6uqgaRqpklOapqGurg4pKSlwxPJL9uXLQ09crFkD5OfL6zsCZPUhyq5RO2acQxXIKNkm0qbb7cbVXbsi5Oox//kPcPnlIY+3a9waoe6fKn2c8zjnxSt2jxt1/1Tqs2reo5LzRGphzMXOcaPuG+c8dTY558Uvdo8bZf9UaeOSUwxzEI/HA7vOsWmaRtY/h8MBl8sVe+ILVW4qPR3o3Vtu3xEgqw9Rdo3aMeMcMvqsAlAaqvGTUO9vBLB73Kj7p0of5zzOefGK3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwRMaDCnGjRuHjIwM1TKkkJGRQda/iooKvPDCC6ioqIjNQKgJjYEDgTbWDDHcdwTI6kOUXaN2zDiHjD4agHmhGufPB7zekMfaPW7U/VOlj3Me57x4xe5xo+6fSn1WzXtUcp5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsuAJDYYUhYWF8Hg8qmVIwePxkPXP5XJh2LBhcLlc0R/s9wdKTunRpw8wZw5QGvI37Mb6jhBZfYiya9SOGeeQCU3I9zDKy4HCwpDH2T1u1P1TpY9zHue8eMXucaPun0p9Vs17VHKeSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgNTQYEqisuyYTGWsAkGPTJiBUrCZODHwA4NhjgaFDA5/TTgOOOMIshYxFscIaGl27dkUygD0AdN+9uvVW4F//ilonwzAMwzAMwzAMwzAMVXgNDYY5yIgRI9CuXTvVMqTQrl07sv7V1tZiwYIFqK2tjf7gUOWmnM6Wb2b8+CPw2mvAtdcGJjVE9B0hsvoQZdeoHTPOIRMaL4D5oRrnzg28xaSD3eNG3T9V+jjncc6LV+weN+r+qdRn1bxHJeeJ1MKYi53jRt03znnqbHLOi1/sHjfK/lHWJgue0GBIkZWVhYQEew7LhIQEsv75/X6UlZXBH+LBa1hCTWj06QOsWKHf1mxCw1DfESKrD1F2jdox4xzahvp6nAogTbDZuaEadu0Cvv1Wt8nucaPunyp9nPM458Urdo8bdf9U6rNq3qOS80RqYczFznGj7hvnPHU2OefFL3aPG2X/KGuTBZecYkjAJacsTLduwE8/BW+/9VZg+nRAL8W88QYwerR0aYy1EfL9qa4GVq0Cli4Fli2Df8UKJNTW4mIA/43Vpo6+dATKTqXo7XjffcCUKRHbZRiGYRiGYRiGYRiGoQyXnGKYg+Tl5cHpdKqWIQWn00nWP5/PB7fbDZ/PF92BO3fqT2YAQGam/mQG0OINjZj7jgJZfYiya9SOGefQspx4InDWWcCkScCiRUg4+ArmEMHdVAJYFKpx7lzdzXaPG3X/VOnjnMc5L16xe9yo+6dSn1XzHpWcJ1ILYy52jht13zjnqbPJOS9+sXvcKPtHWZsseEKDIcXo0aORlia6GAwN0tLSyPpXVVWFWbNmoaqqKroDly8P3da1K3DMMcHbc3OBZr+Cj7nvKJDVhyi7Ru2YcQ4tS//+upsHS+jqk1ANW7cCmzcHbbZ73Kj7p0of5zzOefGK3eNG3T+V+qya96jkPJFaGHOxc9yo+8Y5T51Nznnxi93jRtk/ytpkwSWnGBJwySmLcuedwIsvBm8/5pjAIuBA4C2OxYuBJUsC/z35ZODtt83VyVgSId+f6dMD5c9aUQ8gC0BNLDZD6DsEwC6E+KXAk08C998fsW2GYRiGYRiGYRiGYRiqqHyWS6/2DcMw1iHUGxqDBv3x78MOA666KvABgDh6BY6RR0lJSUT7Jf3pTzhcbzuAfgC+FqhpN4AVCPH2xyef8IQGwzAMwzAMwzAMwzCMQbjkFEOKCRMmIDMzU7UMKWRmZpL1r7y8HFOmTEF5eXnkB1VWAmvW6LcNDlPQp9UaIjH1HSWy+hBl16gdM84hNYYMGYKuXbu2+Tli+HDs0zm+BsCREnTNDdXw7bdAq0kYu8eNun+q9HHO45wXr9g9btT9U6nPqnmPSs4TqYUxFzvHjbpvnPPU2eScF7/YPW6U/aOsTRY8ocGQYu7cuaipqWl7RwtSU1ND1r/27dtj5MiRaN++feQHrV4N+P36beEmNET0HSWy+hBl16gdM86hVdEALAOwD8A8AOMB9Eeg3NQsCf3NDdc4b16LP+0eN+r+qdLHOY9zXrxi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8BoaDAl4DQ0LMmkSMHFi8PZOnYDduwGHw3RJjL0I9/2JhkwAFQhMboTD6BoajawD0FvvgLPOAr74ImL7DMMwDMMwDMMwDMMwFFH5LJff0GBIYecZRcozpjG9PbJsmf72QYOimsww480VWX2IsmvUDuW3f4yQk5MDl8tl2E452p7McLlcyMnJMdwXAHwSqqGwEDhwoOlPu8atEer+qdLHOY9zXrxi97hR90+lPqvmPSo5T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8IQGwzDR4/MBK1fqt0VRbophwuFyuXDxxReb0tfFF18sZPIECFN2yucD5s8X0gfDMAzDMAzDMAzDMEw8wiWnGBJwySmL8f33wCmn6LetXAn072+uHsa21NTUYMyYMZg3bx48Ho9w+42TJjNnzoz67alw3+/6ww6Dc+fO4IZLLwU++igWqQzDMAzDMAzDMAzDMCTgklMMc5Du3bsjKSlJtQwpJCUlkfWvvr4eW7ZsQX19fWQHLF+uv93lAvr0kdt3DMjqQ5Rdo3bMOIeqaN++PWbPno0DBw6guLhY+OfAgQOYPXu28FJwNeeco9+wYAFQWwvA3nED6PunSh/nPM558Yrd40bdP5X6rJr3qOQ8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mTBExoMKaiuMSECW62hEWr9jJNPBpYsAaqr5fUdA1xP3vq4XC7k5eUJ/4gqM9WamuHDQzTUNC0Mbve4UfeP19BQZ5dzXnxi97hR94/ryauzyfXk4xc7x426b5zz1NnknBe/2D1ulP2jrE0WXHKKIQGXnLIQmgYcfjiwa1dw29VXA++9BzidwKmnAqedBgwdGlgoPCPDfK0MI5Gw3+9t25DXvz+wb19w4403AjNnSlbHMAzDMAzDMAzDMAwjB5XPcp2m9MIwjH1wu/UnM5rTuGj4ypXA1KlAp07A7t2Aw2GKRIZRjtMJXHgh8OabwW3//W/gO+LkSzBjXTweD0pLS3XbcnJypL39xDAMwzAMwzAMw8Q3XHKKIcXEiRORlZWlWoYUsrKyyPpXVlaGSZMmoaysrO2dQ5WbcjiAX37RbxswIORkRlR9x4isPkTZNWrHjHNoWzQNKC6WY/uSS/S379sHLF9u+7hR90+VPjvkvOuuuw7Z2dno2rWr7ic7OxsFBQUhX3nmnBef2D1u1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsuCSUwwJGl9TysvLQ0lJCYqKimxXcsrpdCI3NxclJSXw+XykSk75fD6UlJQgNzcXzrZ+NX7LLcCrrwZv79kT2LED8HiC2555Brj7buN9x4isPkTZNWrHjHNoGxoagPXrgaVLA59lywJvHP3yC3DEEVGZarOk3KGHBt5O0nuoe+ed8D3zjK3jRn1cqtJn9Zx388034+2334bP52tz/1GjRmH27NnC9VEfW4w+do8bdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7p0qbypJTPKHBkIDX0LAQPXsCmzYFb7/4YmDePP1jvv0WOOUUuboYpi2qqoDcXKC8PLjt3XcDa8BEQUTf78suAz7+OHiHo44KvBnCZdgYC+HxeJCdnQ2P3sS1Di6XCwcOHODyUwzDMAzDMAzDMDZD5bNcLjnFkKKgoACpqamqZUghNTWVrH/V1dWYPXs2qqurw++4f7/+ZAYAHHkk0LFj8Pb0dCA/33jfBpDVhyi7Ru2YcQ5tQVoa0KWLftvSpXL6HDlSf/vPP6N69Wpbx436uFSlz8o5r7i4GCNHjoz4OhZqnQ3OefGJ3eNG3T+V+qya96jc54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC57QYEhRVlYGv9+vWoYU/H4/Wf8SEhKQlZWFhIQ2UsKKFaHb7r47sPD3+vXASy8BV1wBHHooMHhw2MWPI+7bALL6EGXXqB0zzqFtGDJEf3uotWGMcsEFQGKiblPCZ5/ZOm7Ux6UqfVbPeSKuY5zz4hO7x426fyr1WTXvUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WXHKKIQGXnLIIEyYAU6cGb8/NDaxB0Lp8jqYBFRVAZqY5+himLd56C7jhBv22ffuADh0iNhXx9/uss4BFi4J36t0bWLcu4v4YRjXhxnwoLHmtYxiGYRiGYRiGYcLCJacY5iD5+flITk5WLUMKycnJZP3zer0oKiqC1+sNv+Py5frbBw3SXwvA4WhzMiPivg0gqw9Rdo3aMeMc2oZQb2g4HEBRkZw+L7lEd7N361YULVxo27hRH5eq9Fk559XX1wu5jnHOi0/sHjfq/qnUZ9W8R+U+T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZ8IQGQ4phw4bZdvFQl8tF1j+Px4PCwsLwC716PMA33+i3DR4st2+DyOpDlF2jdsw4h7YhLw84/HAgOTkwETdhAjB/fmB9mDPOkNPnxRfrbva4XChctcq2caM+LlXps3LO83q9Qq5jnPPiE7vHjbp/KvVZNe9Ruc8TqYUxFzvHjbpvnPPU2eScF7/YPW6U/aOsTRZccoohAZecsgDLl4eeuFizJuzC3wxDii1bAhMbBh/KRvX97tsX+Pbb4B0HD5a3IDnDCIZLTjEMwzAMwzAMwzAAl5ximCZcLhcceqWLbIDD4SDrn6Zp8Hg8CDu/GarcVHp6YC0AmX0bRFYfouwatWPGObQV3bsbnsyImpEjgzZpDgc8330HrbTUXC0mQX1cqtJn9Zwn4jrGOS8+sXvcqPunUp9V8x6V+zyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZMETGgwpJkyYgEybLiCdmZlJ1r/y8nJMnToV5eXloXdatkx/+4ABQGKi3L4NIqsPUXaN2jHjHDIG0VlHozwzE1MnTED53Lnm6zEB6uNSlT4r57zq6moh1zHOefGJ3eNG3T+V+qya96jc54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmCy45xZCg8TWlnJwc7NmzB2vXrrVdyanExER07twZe/bsQUNDA6kyHA0NDdizZw86d+6MRL3JCb8f6Nw5sM5Aax57DHj4YXl9C0BWH6LsGrVjxjlkgomq5JSmBd4M+fHHpk0NiYnY07kzOp98MhL/9z/Jas2H+rhUpc/KOW/Hjh0YPHhw03UsEvSudZzz4hO7x426fyr1WTXvUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP1TpU1lySme0GBIwGtoEGfTJiBUPL76Cjj9dHP1MAwBov5+T5gATJ0avHNyMrB3b6B8G8MQhtfQYBiGYRiGYRiGYQBeQ4Nhmhg9ejTS0tJUy5BCWloaWf+qqqrw5ptvoqqqSn+HUOtnJCQEHsZG+EvdmPoWgKw+RNk1aseMc8gIoNU6GlVpaXhz9GhUJScDn32mRpNEqI9LVfqsnPNqa2uFXMc458Undo8bdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLHhCgyGF2+2Gz+dTLUMKPp+PrH9OpxN5eXlwOp36O4RaP6NHD2DwYKBjR+CCC4CnngJWrwbq68X1LQBZfYiya9SOGeeQEUDfvkCXLk1/On0+5LndcPp8gA3X0aA+LlXps3LOS0xMFHId45wXn9g9btT9U6nPqnmPyn2eSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgklMMCbjkFHG6dQN++il4+9ChwOLFwds7dgR27QKSkuRrYxhFxPT9vvVWYPr04O0ZGcDu3UBKiliRDCMQLjnFMAzDMAzDMAzDAFxyimGa6N+/P1Js+kAvJSWFrH91dXVYtWoV6urqght37dKfzAAAj0d/e48eEU9mhO1bELL6EGXXqB0zzmFcUVsrz/YllzT9sy4lBav690ddSgpQUQEsXCivXwVQH5eq9Fk553m9XiHXMc558Ynd40bdP5X6rJr3qNznidTCmIud40bdN8556mxyzotf7B43yv5R1iYLntBgSJGfn4/k5GTVMqSQnJxM1j+v14uioiJ4vd7gxlDrZwDAtm3624cOFdO3IGT1IcquUTtmnENb8+uvwHvvBd6e6NUL6NoVkPXy4rBhQGYmAMCbnIyi/Hx4G3PCe+/J6VMR1MelKn1Wznk+n0/IdYxzXnxi97hR90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgktOMSTgklOEGTcOmDYtePsRRwQeBOuxcCFw9tlSZTGMYTZsAM4/H/jll+C2LVuA444Le3jM3+8bbwTefDN4e7t2gbJTBhdcZhhZcMkphmEYhmEYhmEYBuCSUwzTRFZWFhIS7DksExISyPrn9/tRVlYGv98f3BhqQfCjj9av9+90AgMHiulbELL6EGXXqB0zzqEtOeoooKREv23pUnn9Xn01AMCfkICyrCz4G3NCbS0wb568fk2G+rhUpc/qOU/EdYxzXnxi97hR90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgt6TVSauGTduHDIyMlTLkEJGRgZZ/yoqKjBt2jRUVFS0bKiqAoqK9A+6+mqgrCywKPhjjwFnnhn4hfkppwCpqcb7FoisPkTZNWrHjHNoS9LTgZNO0m8LNZEngtNPBw49FBUZGZg2bhwqmucEG5Wdoj4uVemzcs6rqakRch3jnBef2D1u1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsuCSUwwJGl9TysrKQkVFBdatW2e7klMJCQnIyMhARUUF/H4/qTIcfr8fFRUVyMjIaPnL20WLgLPO0j9o82age/eW27xe4PffA+WojPYtEFl9iLJr1I4Z59C2/P3vwAsvBG//05+AHTvCHmqopNydd8L/0kuoyMhARkUFEhp/SZGYCOzaBXTuHJl+wlAfl6r0WTnn/fTTTzj55JObrmORoPdd4JwXn9g9btT9U6nPqnmPyn2eSC2Mudg5btR945ynzibnvPjF7nGj7J8qbVxyimEOYudXpCi/AhayHFaoX6l37Ki/vkByclSTGWH7FoisPkTZNWqHcjkz8gwerL/9p5+AnTvl9Xv11Ujw+5FVVvbHZAYANDQA//mPvH5NhPq4VKXP6jlPxHWMc158Yve4UfdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1ySJ+PGUswdixY5Genq5ahhTS09PJ+ldZWYnp06ejsrKyZcPy5foHDB4MOBxy+xaIrD5E2TVqx4xzaFuaT2h07w7cdBPw1ltAcTHQpYu8fvv2RWWvXpg+diwqW+cEm5Sdoj4uVemzcs6rqakRch3jnBef2D1u1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsnCqFsAwzSkqKoLX61UtQwper5esf8nJycjPz0dycvIfG30+YOVK/QMGDZLbt2Bk9SHKrlE7ZpxD23LoocBnnwEnn2xumSeHA8mXXIL8L75AcuucsHw54HYDRErSxQr1calKn5VzntPpFHId45wXn9g9btT9U6nPqnmPyn2eSC2Mudg5btR945ynzibnvPjF7nGj7B9lbbLgNTQYEqisuyYTQzX2VfPDD4GHvHqsWAEMGGCuHoYhhuHv9+bNwPHH67dNngxMmGBMIMMIJtyYDwX5ax3DMAzDMAzDMAwTNbyGBsMcZNiwYXC5XKplSMHlcpH1z+PxoLCwEB6P54+NodbPcLmAPn3k9i0YWX2IsmvUjhnnkBGPp2tXFBYUwKOXE2xQdor6uFSlz8o5z+v1CrmOcc6LT+weN+r+qdRn1bxH5T5PpBbGXOwcN+q+cc5TZ5NzXvxi97hR9o+yNlnwhAZDiry8PDid9qyE5nQ6yfrn8/ngdrvh8/n+2Bhq/YxTTwVSUuT2LRhZfYiya9SOGeeQEY/P54P7+OPh08sJ69cHPhaG+rhUpc/KOa+hoUHIdYxzXnxi97hR90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/lLXJgktOMSTgklPE0DQgNxfYuTO47f77gSefNF8TwxBDyPe7pAQ48sjAd641/F1jiEG55JTH40FpaaluW05ODsm3IxmGYRiGYRiGYawKl5ximIPk5OQgMTFRtQwpJCYmkvWvoaEBpaWlaGhoCGxwu/UnMwDguOPk9i0BWX2IsmvUjhnnkBFPQ0MDSp1ONAwdqr/De+/pT3RYBOrjUpU+q+c8EdcxkTmvpqYGBQUFyM7ORteuXXU/2dnZKCgoQE1NjSHdjDGo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNExg7969mDdvHh588EFcdNFF6NmzJ7Kzs5GUlIT27dvj8MMPx/DhwzF58mT89ttvUdtftGgRrr/+ehx77LFITU1Fhw4dcMIJJ2D8+PHYsmVLTJo3b96M8ePH44QTTkCHDh2QmpqKY489FjfccAMWLVoUk81IGDt2LNLT06XZV0l6ejpZ/yorKzFjxgxUVlYGNoQqNwUAo0cDRx0FXH898O9/A9u3G3roGtS3BGT1IcquUTtmnENGPE1xu+IK/R1+/hlYudJcUQKhPi5V6bNyzqutrRVyHROZ88aMGYM5c+aErRfr8XgwZ84cjBkzJlbJjACo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJLTpnABRdcgPnz50e0b0pKCu6//348/PDDSEgIP99UUVGBm2++GXPmzAm5T1JSEiZNmoT7778/Yr1PPPEEJk2ahPr6+pD7XHXVVZgxY4awh/ONrym5XC7U1dVh/fr1tis55XA4kJKSgrq6OmiaRqrklKZpqKurQ0pKChwOBzB2LDBjRvCOhx8O6E265eYCW7cC7dsb71sCsvoQZdeoHTPOIROM0ZJTTXGrqoLjsMMAvZx7++3ASy8JUGs+1MelKn1WznnFxcU4/vjjm65jkR7T+rsgKudpmoYOHTpEvPidy+XCgQMHuPyUIqjnBKNQ90+lPqvmPSr3eSK1MOZi57hR941znjqbnPPiF7vHjbJ/qrSpLDlFb3Vim9OpUyf06NEDRx11FNLS0lBTU4Pt27fjm2++gc/nQ11dHSZOnIiffvoJs2bNCmmnvr4el1xyCb766qumbb169UKfPn3g8XiwdOlS7Nq1C/X19XjggQdQX1+PRx55pE19jzzyCB5//PGmv7t06YIhQ4bA5XLh+++/x8aNGwEA77//Pvbt24f58+cLXeQ60ocSVkTTNLL+ORyOlg94li3T3zHUBFZmZkyTGbp9S0BWH6LsGrVjxjmMazQNkHBT0BQ3lwsYMQL49NPgnT74AHj+eSApSXj/sqE+LlXps3rOE3EdE5Xz3G53VHoa19mg8mOCeIN6TjAKdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLLjklAkMGzYM06dPx7Zt27Bnzx4sWbIEb7/9Nl555RXMmjULy5cvR0lJCa666qqmY9566y18+OGHIW0+/vjjTZMZLpcL77//PtavX49Zs2Zhzpw5cLvdGD9+fNP+EydOxOLFi8PqXLRoUYvJjPHjx8PtdmPOnDmYNWsWNmzYgPfee6/pS7Jw4UI8KXjB2nHjxiEjI0OoTSpkZGSQ9a+iogIvvPACKioqgP37gYMTV0GUlelvP+00MX1LQlYfouwatWPGOYwrKiqABQuAhx4Chg4FLr1UUjfN4nb11fo77dkDSCzzJxPq41KVPivnvOrqaiHXMVE5r7q62pAOxlyo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNEzgnnvuwS233IKjjz465D6HHnoo3n33XZxxxhlN22bolfwBsHv3bjz33HNNf7/wwgsoKChosU9ycjKeeuopjBo1CkDg7YC2yk41by8oKMBTTz2F5OTkFvtcddVVeP7555v+fuaZZ7B3796wdqOhsLCQ7FsMRvF4PGT9c7lcGDZsWGCyKlzN/tJS/e2hFjWOtm9JyOpDlF2jdsw4h3HBl18CffoA2dnAuecCTzwBLFkSmFCQsLhWi7hdeCGQmqq/43vvCe/bDKiPS1X6rJzzkpOThVzHROW81vcoDG2o5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYLX0CDGO++8g+uuuw4A0LFjR93Jgqeffhr33nsvAODYY4/Fli1bQtZI++WXX9C1a1f4/X4AwA8//ICTTjopaL9vv/0Wffv2BQAkJCTA7XbjiCOO0LWpaRqOO+44bNu2DQDw3HPP4e9//3uUnrZEZd01mRitsa+E++8HpkwJ3t6hQ+DtDT127QJycuTqYhjZLFsGDBmi3/b994HJjmYI/35fey3w7rvB29PSgN9/j7msG8OIItyYD4XMax01PQzDMAzDMAzDMPGCyme5/IYGMTp37tz071Cr08+dO7fp36NHjw674MuRRx7Z4q2PTz75pE2bZ511VsjJDCBQm+2GG25o02YsjBgxAu3atRNmjxLt2rUj619tbS0WLFiA2tra0OtnnH12oPzNxx8Dd94J5OcH1hU49lhDkxkt+paErD5E2TVqx4xzGBeceiqQkqLftnSp8O6C4haq7FRVlf76GsShPi5V6bNyzqurqxNyHROV8+rq6gzpYMyFek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyx4QoMYmzZtavq33i8IPR4PVq1a1fT3sGHD2rR5+umnN/27+SLizfn6669jtrlixQphDxWysrKQkGDPYZmQkEDWP7/fj7KyMvhra4Fvv9XfadAgoFMn4JJLgBdeANasAfbtA/7zHzF9H3yLSAay+hBl16gdM85hXJCSAhx8Uy2IUBN9BgiK29lnAx076u9swbJT1MelKn1Wz3kirmOc8+ITu8eNun8q9Vk171G5zxOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFlxyihA7d+7Eqaeeip07dwIAHnjgATzxxBMt9lm7di3y8/MBBN6UqKmpabNG2oIFC3DuuecCADp06IB9+/YF7ZOdnY2ygws+L1iwAMOHDw9rs7a2Fu2blT9Zt24devfuHfaYcHDJKSKsWBGYuNDjhx8AnXJlDGMrHngAmDw5ePuhhwZKqzV7I07K9/u224BXXgnenpQUWMOmQ4fobTKMIKiVeKKmh2EYhmEYhmEYJl7gklNxTE1NDTZt2oRnn30WJ510UtNkRo8ePTBhwoSg/bdu3dr070MOOSSiBV+OPPLIpn/v378fe/bsadG+e/fupskMADjqqKPatNmuXbsW5bG2bNnS5jGRkJeXB6fTKcQWNZxOJ1n/fD4f3G43fKHK6qSnAwYmrCLq2+eTYl9mH6LsGrVjxjmMG5qvoXHIIcCllwLPPw/Mny+8K924hSo7VV8PfPSRcA0yoT4uVemzcs5raGgQch0TlfMaGhoM6WDMhXpOMAp1/1Tqs2reo3KfJ1ILYy52jht13zjnqbPJOS9+sXvcKPtHWZsseELDZJYtWwaHw9H0SU1NRc+ePXHPPfdg9+7dAIDzzjsPK1asQHp6etDxzd+uOPTQQyPqM6fV+gb7Wy3s3PqNjVjstrYZK6NHj0ZaWpoQW9RIS0sj619VVRVmzZqFqu++099hwABA0kRMU99VVVLsy+xDlF2jdsw4h3HDoEHA668DW7cG3oj46CNg3Djg5JNbvJ0hAt24DRwIhJpUtljZKerjUpU+K+e82tpaIdcxUTkvnmrE2gHqOcEo1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2Vt0tAYU1m6dKkGQPeTnZ2tvf/++2GPf+qpp5r279evX0R91tTUtOjnu+++a9H+zTfftGivra2NyG7fvn2bjnnmmWciOiYUGzZs0ABoLpdLS0tL0zZs2KD5fD7twIEDmt/v1zRN08rLy7W6uromn6qqqjRN07T6+nrtwIEDTbbKyso0r9eraZqmVVdXa9XV1ZqmaZrX69XKysqa9jtw4IBWX1+vaZqmVVVVaTU1NZqmaVpdXZ1WXl6uaZqm+f1+7cCBA5rP59M0TdMqKyubzo/H49EqKio0TdO0hoYG7cCBA1pDQ4OmaZpWUVGheTwerbi4uMknAFpiYqKWlZWlORwOrbi4mJZPDQ2aJydHq0hP1zRAa0hI0A5kZWkNCQmaNmlSk0+apmm1tbVaZWWlpmmaLeLEPrFPsfhUXFysORwOLSsrS0tMTNQAaGlpaZrL5dKKi4tj9+n++zW/w6FpgFaekaHVJSdrGqDVtGunVf34I8eJfVLmU3FxseZ0OrWsrKym639mZqaWlJSkAdDat2+vtW/fXgOgJSUlaZmZmVpxcbE0n3bs2KEB0NLT07WUlJQW9xGtr7kAtIyMDO3Hg98hO8eJfWKf2Cf2iX1in9gn9ol9Yp/YJ/ZJtk+Nz3IbPxs2bNDMgt/QMJnDDjsMt99+O26//XbcdtttuO6669C3b184nU4cOHAAV111Fc444wz8+OOPusd7PJ6mfycnJ0fUZ0pKSou/W/+isbnNWO2K+pVk//79cfnllwMA9uzZg2nTpjUtOD5z5symRdMXL16MTz/9FABQUlKCadOmNdl45ZVXsGPHDgDAwoULsXDhQgDAjh078Eqz2vTTpk1DSUkJAODTTz/F4sWLAQQWZp85cyYAoK6uDtOmTWsq0/Xhhx82Lcq+Zs0avPvuuwCAiooKTJs2DRUVFQCAd999F2vWrAnyqXPnzhg3blzTuSPl09atWJOXh3evuSbgU0YGpo0bh4qMDGDw4BY+rVq1Ch9++KGt4sQ+sU+x+JSSkoJx48Y1leC7/PLL0b9/f2M+paSgrjFHjBmDTccfH/Bp6FB8OmeOUJ8WLVoEt9uNJUuW4NVXX4Xb7ca2bdswbdo0rF27Fm63G++88w4WLFgAt9uNRYsW4Y033oDH47FUnOw49lT5lJubi3HjxjVpvfXWW9GtWzcAwDnnnINzzjkHANCtWzfceuutUn2qqakBAFxzzTU46eAaT+GuuWPGjMHPP/8cF3Fin9gn9ol9Yp/YJ/aJfWKf2Cf2iX0ywyclmDZ1woTlt99+00aPHt3ibY21a9cG7Wf3NzQmTJigdenSxZZvaGRmZmoTJkzQjjjiCHJvaJSWlmqTJ03Sfu/cOfgNDadT06qqpM1Kl5WVaU8++aS2a9cuaXEqKSnRJk+erO3fv1/orPTevXu1J598sklvrHEqLS3VJk+erO3evTumsffzzz836eBfD1jnDY3ff/9dmzx5slZaWhrsU69e+m9o9O8vxKfq6mrt6quvbvqlfXJyspaRkaEBCOkTAC0lJUVLT0/XXC6XNmrUKG3nzp0h4/Tbb79pkydP1vbt20dy7DV+737//XdTx96ePXu0yZMna7t27ZL2ffr999+bcoJIn9avX990HWu8/sfyhsbOnTub9MWSI/bv3689+eST2tq1a4W+oVFbW6sVFxdr69ev17Zt26YVFxdrmzdv1vbt2yclTlbMe0Z8KikpaYq7XXxqHqfS0tIm/yj69NtvvzXpM3vsWTXv7dy5U5s8ebK2d+9eQ3FqvNctLS2Nyie9vLd//35pcaL0fbKLT3bOe43j+rfffiPpU+vvnZlj75dffmmKu6w4NfpXUlIizKfm1zEjcdq7d682efJkbefOnTGPvUb/fv75Z1vnCLv51Bi333//3TY+NY8T5by3b98+bfLkydpvv/0WN29o8IQGMe64446mgdCjR4+mL1oj//rXv5raTzjhhIhs7tu3r8UA27JlS4v2TZs2tWhvvFFui969ezcdM3369MgcDEHjl6B79+5aUlKSqV8CmRQXFzedo6SkpCb/ADQ95KGA1+vVNt96q+ZNStI0oOXnlFPk9715c1NCt1IfouwatWPGOWSCaf79bv2J5PsdNm5PPhn8XWz8bN5sWPuoUaNCao/mM2rUqNj8I4AqfVbOedu2bWtxHYvko/ddEJXztm3bFvWY1dNTXV2tjRo1qmnirvWncQKv8X82mNignhOMQt0/lfqsmveo3OeJ1MKYi53jRt03znnqbHLOi1/sHjfK/qnSpnJCw6FpmtbWWxyMedTU1KBLly5NrwF9+umnuOCCC5raP/jgA4waNQpAYPHu0tLSNm1u2rQJPXv2bPp79+7dTeVRGv9uvhD45s2b0b179zbtHnLIIU2vNX3wwQe44oor2jwmFBs3bkSvXr2a/t6wYUMLzVbF7Xaja9euum3FxcXIy8szV1A4jj4aOPjaWwtuvx146SXz9TAMcaR+v4uLgT/9Sb/tkUeASZNiNu3xeJCdnR1UbjAWXC4XDhw4AJfLZdgWQ59wYz4UMq91ovQUFBRgzsFybuEYNWoUZs+eHVV/DMMwDMMwDMMwdkTls1xeQ4MY7du3x8CBA5v+Xr58eYv24447runfu3fvjuiB1C+//NL07w4dOrSYzAACExNZWVlNfzfWlw6Hx+NpmswAENEESCSMHDkS7du3F2KLGu3btyfrX01xMeb29Ta8hAABAABJREFU7o0aPW0zZgB9+gB//zswdy6wb5/YvmtqMHfu3KZa6DKQ1Ycou0btmHEOGfGEjVvXrkCza0EL3nsv8K5GjJSWlgqZzAAC14JQE+vUx6UqfVbOeR6PR8h1TFTOEzGOPR4P5s2bF9G+8+bNE/bdiUeo5wSjUPdPpT6r5j0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYInNAiSnZ3d9O99rR4eH3fccUhICIRN0zQUFRW1ae+HH35o+nePHj1092m+vXFhmEhtJiYm4thjj23zGIYw33wTus3nA9asAV54AbjkEqBTJ6B3b+ETGwzDtOLqq/W3b98OfPeduVoYxqZEM8EXbgKPYRiGYRiGYRiGMQcuOUWQ008/HYWFhQCA++67D1OmTGnRPmjQIKxYsQIAMHnyZEyYMCGsveHDh2PhwoUAgIcffhiPPfZY0D4PPvggnnzyyab9FyxYENbm5MmT8cADDwAAhgwZgiVLlrTtWBi45JRi/v73wIRFa7KygLKy4O1dugC//QY4HJKFMQxdpH+/d+8GDjsMaGgIbhs3Dnj++ZjMxlKmJxykchkjFTuWnIrWBo93hmEYhmEYhmEYLjnFNGPfvn1YuXJl0996b1SMHDmy6d9vvvlmWHu//vorFi1apHtsKJtffvklSkpKwtpt3m8om7HQvXt3JCUlCbNHiaSkJLL+1a9YgS3du6O+tTanU/+A004TNplRX1+PLVu2oL6+Xog9M/sQZdeoHTPOYVzj8wHffgs891zgLaWnnxZits24HXIIcPbZ+m2zZ+tPdBhk6dKlKC4uDvosXbo0alvUx6UqfVbOeT6fL+rrWElJCdxud9PH4/EIy3k+ny+m4xk1UM8JRqHun0p9Vs17VO7zRGphzMXOcaPuG+c8dTY558Uvdo8bZf8oa5MFT2hIZv/+/RHv6/f78de//hV1dXUAgJSUlBYLgjdyww03IDU1FQCwdetWvP766yFt3nfffWg4+NBrwIAB6NOnj+5+p556Kk499VQAQENDQ9i3Pl599VX8+OOPAID09HRcf/31EXgXGVTXmBAB2TU0qqpQs20b5o4cGbyGRqjxO3SosO6tWmNUpF1eQ4MoH30UmFDIygL69gXuvjuwjsynnwoxH1HcQpWdKi0Fvv5aiI7m5ObmIi8vL+iTm5sbtS3q45LX0IieWNbQGDJkCLp27dr0yc7Oxo033khmDQ3GPKjnBKNQ94/ryauzyfXk4xc7x426b5zz1NnknBe/2D1ulP2jrE0aGiOV559/XjvllFO0WbNmaeXl5SH3W7t2rTZ8+HANQNPnoYceCrn/ww8/3LRfu3bttDlz5rRo93q92n333dfCXmFhYVitX375ZYv977vvPs3r9bbYZ86cOVq7du2a9pk0aVIEZ6FtNmzY0KLvDRs2CLGrmuLi4hZ+Nf8UFxerlhdg0SJNCywxHPln40bVqhlGPtOm6Y//lBRN83jM+X5XVGiay6Wv48YbYzIZi25L5DJGOuHGQbSfUaNGKdHTerxGa4PHO8MwDMMwDMMwjNpnuSHqyZjL+vXrsWXLFrRv3x4DBgxAhw4dwu7/5ptv4pdffsEjjzxikkJjfPfdd7jhhhvgdDrRvXt3HHfcccjOzobD4cC+ffuwbt06bN++vcUxl112GR599NGQNh9++GEsX74cX331FWprazFq1Cj84x//QJ8+feDxeLBkyRLs2rWraf9JkyZhaBu/qj/zzDPx0EMP4R//+AcAYOrUqXj77bcxZMgQuFwufP/999iwYUPT/meffXbTOhqMhVm2TH97hw7AqlXAkiXA4sWBzy+/AJ07AyEWl2cYWzFkiP72urpACaoY3lqImvR04KKLgA8+CG776CPgX/8CXC75OhhGMPPmzYPH44GLxy/DMAzDMAzDMAwTBUpLTpWUlGDQoEHIz89HQUEBLrroInTp0gV/+9vfUFVVFfK4f//735g0aZKJSmMnJSWl6d8+nw8bNmzARx99hNdffx2vvfYaPv744xaTGenp6Xj22WcxZ84cOEOtX4DAegwff/wxrrzyyqZt69evx6xZszBnzpymyYykpCQ88cQTEU/+PPbYY3j88ceb6mPv3LkTc+bMwaxZs1pMZhQUFODDDz8MqzEWJk6ciKysLKE2qZCVlUXTv2XLUJaVhUkTJ6KsubbBg4FjjgH+/GfgrbeAn38GiouBOXOELgZeVlaGSZMmoUxv8XHifYiya9SOGecwLjnhBCAjQ78t1ERgFEQct1BlpyoqAiWwiEJ9XKrSZ+WcV1VVJeQ6lpWVhQkTJgT9mCNSGv0Ld6/I0IN6TjAKdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLByapmkqOq6trcVJJ52Ebdu2QdM0ZGZmor6+HjU1NXA4HOjWrRvmz5+PY445JujYIUOGYMWKFU1rQ1Dnxx9/xJdffonVq1dj48aN+OWXX5oGWUZGBrp06YL8/HycddZZuOyyy5CWlhaV/S+//BKzZs3CypUrsWvXLiQlJeGII47A8OHD8ec//1l3YfG22Lx5M15//XUsXLgQv/76K+rr69GlSxcMGDAAN9xwA84666yobYZj48aN6NWrF/Ly8lBSUoKioiL07NlTaB8qcLvd6Nq1KwDA6XQiNzcXJSUl8Pl8KC4uRl5enlqBPh+QnQ2fx4OS3FzklpTA2bjI6lNPAePHmyDBh5KSEuTm5gqfIJPdhyi7Ru2YcQ7jlnPPBRYsCN5+3nlwv/xy0/e7NZF8vyOOW10dkJMD6N2cnH468NVXYftpTfO81JpQumM5hvq4VKXPyjlvx44dOOuss5quY83p168fVq9eHZGdxuvhl19+iW7dukWto9G/hoYGHH300VEd23q8hhvbkRzPRA71nGAU6v6p1GfVvEflPk+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2T5W2xme5jWzYsMG0Z7nKJjSeffZZjB8/Hnl5eXjnnXcwcOBANDQ04JNPPsE999yDX375BYceeii++OKLFicHsN6EBtM2Kr8EMonlIaCprFkDhFgoHsuXAwMHmquHYajxxBPAQw8F/u1yAf37B0pRnXkm3EcdZd73+9ZbgenT9du2bgWOPTZiU2ZNaDD2I9w42LhxIx577LGmUlKRYHTsRDsZodcnT2gwDMMwDMMwDMNEj8pnucpKTn300UdwOBx49913MfDgQ9PExERcfvnlKCoqwplnnonff/8dZ5xxBtasWaNKJmMyBQUFSE1NVS1DCqmpqfT8O1g2pzo1FbMLClDdqC0lBTj5ZFMkVFdXY/bs2aiurrZcH6LsGrVjxjmMWy66CJg6FVixAigvB77+GnjsMaCNNYkiIaq43Xxz6LZXXzWsRQbUx6UqfVbOebW1tSGvY+3bt8fs2bNx4MABFBcXN32WLl0atG/j9bC2tjYmHY3+xXo8owbqOcEo1P1Tqc+qeY/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtslA2obF582YcfvjhGDBgQFBbVlYWPvvsM4waNQp79+7FmWeeGXEZA8balJWVwe/3q5YhBb/fT8+/wkIAQILfj6yyMiQ0auvbNzCpYQIJCQnIyspCQoK8dCSrD1F2jdox4xzGLb17A/feCwwYACQnCzUdVdxOOgk45RT9tjffDJSlIgb1calKn9VzXlvXMZfLhby8vKZPbm5u0D6N10POefGF3eNG3T+V+qya96jc54nUwpiLneNG3TfOeepscs6LX+weN8r+UdYmC2Ulp5KTk3HSSSeFnajQNA1jxozBrFmzkJ6ejvnz52Pw4MFccsqGcMkpBdTVAZ06AXqLqk6YAEyebL4mhrEQpn+/X38duOkm/bb33gOuuioiM1xyiokVamOHS04xDMMwDMMwDMOoIS5LTnXs2BE7d+4Mu4/D4cAbb7yBP//5z6isrMR5552Hr7/+2iSFjAry8/ORLPhX0FRITk6m5V9hYdNkhjc5GUX5+fA2ahs+3DQZXq8XRUVF8Hq9lutDlF2jdsw4h4x4oo5bQQGQnq7fNmOGOGGCoD4uVemzcs6rr68Xch1rvB7W19fHdHyjf7Eez6iBek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyyUTWj06tULO3fuhNvtbnPf1157DWPHjkVVVRUuuOACbNu2Tb5ARgnDhg2Dy+VSLUMKLpeLln///W/TPz0uFwqHDYPH5QKysoBBg0yT4fF4UFhYGPEispT6EGXXqB0zziEjnqjjlpYGXHutftvixcCWLeLECYD6uFSlz8o5z+v1CrmONV4PY73hbvQvnm7Y7QD1nGAU6v6p1GfVvEflPk+kFsZc7Bw36r5xzlNnk3Ne/GL3uFH2j7I2WSgrOfX4449j4sSJmDRpEh566KGIjrnjjjvw0ksvweFwAACXnLIRXHLKZDQNOOoo4Ndfg9uuuipQvoZhmLAo+X4XFQXW09DjrruAZ59t0wS1skGMdaA2drjkFMMwDMMwDMMwjBrisuTUyJEjoWkaXnrpJdTW1kZ0zIsvvoh77rkHiuZgGBNwuVxNE1Z2w+Fw0PFv7doWkxmawwGPywXN4QD+9z/grLOAxx8HliyRvtiwpmnweDxSv9ey+hBl16gdM84hI56Y4pafD/Ttq9/25psAoV9kUB+XqvRZPeeJuI41Xg8558UXdo8bdf9U6rNq3qNynydSC2Mudo4bdd8456mzyTkvfrF73Cj7R1mbLJRNaPTu3Rvbt2/H8uXLkZiYGPFxTz31FFasWIGvvvpKojpGFRMmTEBmZqZqGVLIzMyk41+zclMAUJ6ZiakTJqA8OxuorAQWLQIeeQQYOhTIzASGDQN27ZIipby8HFOnTkV5ebkU+zL7EGXXqB0zziEjnpjjdsst+tv37wc++si4MEFQH5eq9Fk551VXVwu5jjVeD6urq2M6vtG/WI9n1EA9JxiFun8q9Vk171G5zxOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFspKTjFMcxpfU8rJycGePXuwdu1a25WcSkxMROfOnbFnzx40NDSoLVtxyinA9983/dmQmIg9nTujc3o6EvXWqElNBQ4cAJKShEtpaGjAnj170Llz56gmNyn0IcquUTtmnEMmGKOldGKOW3U1cNhhQEVFcNuQIYE3q8JgVtkg6uNSlT4r57wdO3Zg8ODBTdex5kQzdhqvh8uWLUO3bt2i1tHoX3V1NY4++uiojuWSU+qgnhOMQt0/lfqsmveo3OeJ1MKYi53jRt03znnqbHLOi1/sHjfK/qnSFpclpxhGj9LSUtuujdLQ0EDDv99+azGZAQCJDQ3IKS0NnfgGDZIymQEEHmzl5ORITbqy+hBl16gdM84h0wxNA376CakffYTXAJwVo5mY45aaGnpx8KVLgc2bY1QkFurjUpU+q+c8Edexxush57z4wu5xo+6fSn1WzXtU7vNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrkwVPaDCkGD16NNLS0lTLkEJaWhoN//73v6BNVWlpeHP0aFTt369/zNCh0uRUVVXhzTffRFVVleX6EGXXqB0zziED4L33gFGjgNxcoFs3dL7nHvwFwPkxmjMUt1BlpwDg1VdjVCQW6uNSlT4r57za2loh17HG62Gka6i1ptG/WI+3BJoG+P2qVQiFek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmyycqgXEiqZp2Lt3b1P95NTUVHTq1InGgstMzLjdbvh8PtUypODz+Wj412r9DABw+nzIKy+HU6+EDSB1QsPpdCIvLw9Op7x0JKsPUXaN2jHjHDIAPv8c+OCDoM1DYjRnKG4nnAD07w+sWhXcNmsW8OSTQLt2MSoTA/VxqUqflXNeYmKikOtY4/Uw1l8QNfoX6/EejwelpaUAgJKSkphsGMLjAdauBdavBzZuBIqLgV9+CZR2rK4GamoCH00DsrKA7GygQwegc2ege3egd+/Ap2dPoH178/XHCPWcYBTq/qnUZ9W8R+U+T6QWxlzsHDfqvnHOU2eTc178Yve4UfaPsjZZWGYNje+//x5ffPEFvvnmG6xduxYlJSVB/0PtdDqRm5uLE088EX379sXZZ5+Nk08+WZFiJhpU1l2TidEa+8KprgY6dgTq6oLb7r0XuPRSYPHiwGfZskCN/nbtgLIyIDnZXK0MQ43XXwduuilocwOAbACVzbaZ8v1+803gxhv12956C7juOt0ms9bQYOwHtbET7foXANCvXz+sXbsWHo8npj5j0lxfD6xcCSxYABQWBso+er0x9d+ChASgXz9gxAjg3HOBk08ObGMYhmEYhmEYhpEMr6ERgk2bNmH8+PE4/PDD0bdvXzz44IOYN28e3G436uvroWlai099fT3cbjfmzZuHBx98EH379sXhhx+O8ePHY+PGjardYSKgf//+SElJUS1DCikpKer9++IL3cmMupQUrDrpJNTl5wcmNubPB/bvB777LvDQVOJkRl1dHVatWoU6vUkW4n2IsmvUjhnnkEFgwW0dEgEMiMGc4bhdeSWQmanfRqDsFPVxqUpfuH49Hg/cbnfYTyQP4mX55vV6hVzHGq+H3hgf6jf6F8vxq1evjnkyIyr8/sAPA265BTjkkMCbjpMnByY2RExmNPaxciXw6KNA375ATg5wxx3AunVi7AuGek4wCnX/VOqz6r0elfs8kVoYc7Fz3Kj7xjlPnU3OefGL3eNG2T/K2mRBckLjq6++wvDhw9G7d28899xzKC0tDZq8CEXr/UpLS/Hcc8/hhBNOwPDhw/HVV1+Z6AkTLfn5+Ui26ZsAycnJ6v3TKTcFAN4uXVBUVtby4VBiYuDXnldeKVWS1+tFUVFRzA+2VPYhyq5RO2acQwbAsccGHkzqMDgGc4bj1r59yLcwsGxZoJSNQqiPS1X69PqtqalBQUEBsrOz0bVr17Cf7OxsFBQUoKamJqo+RODz+YRcxxqvh7GWrmr0T3kJRz1++gl4+GGgW7fAJOirrwbecjSDPXuAf/4TOPFE4NRTgRkzgBjWGdGbWBMxCUQ9JxiFun8q9Vn1Xo/KfZ5ILYy52Dlu1H3jnKfOJue8+MXucaPsH2VtsiBVcuqHH37A+PHjUVhYCABNExcOhwM9e/bEkCFDkJ+fjx49euDwww9Hp06d0L59e2iahtraWuzZswe//fYbNm/ejLVr12Lp0qXYuHFjCzsAMGzYMDz99NPo06ePEj+ZYLjklAk0NABdugQeeLRmzBjg3/82TwvDWJXLLgM+/hgAoDkcWK9pWArgIwBfN9vNtO/3hg2BWvp63HEHMG1a0GZqZYMYoKCgAHPmzInqmFGjRmH27NmSFOlDbezEUnLKKCE1//ADMHUq8OGHtBbzPvRQYPx4YOxYIDU17K41NTUYM2YM5s2bFzSB4XK5cPHFF2PmzJlob6F1OxiGYRiGYRiGkQOXnAJwyy23oF+/figsLGyagDjzzDMxY8YMlJaWYt26dXj55Zdx0003YfDgwejatSvS09ORmJgIp9OJ9PR0/OlPf8KQIUNw88034+WXX8a6detQWlqKGTNm4KyzzgIQmCQpLCxEv379MHbsWJUuMzpkZWUhwab1nxMSEtT69803+pMZAPwXXoiysjL4FTyE8fv90vuW1Ycou0btmHEOmYMUFAD33Qd8+il+XbMGJwL4K1pOZkSKkLj16gUMHKjf9tZbMf06WxTUx6Uqfa379Xg8mDdvXtR29B46h+pDFH6/X8h1rPF6aPmcp2nAl18CZ58deKPxgw9oTWYAwO+/A/fcA+TlAU89pb+G1kHGjBmDOXPm6I4rj8eDOXPmYMyYMTFLIRM3SVD3T6U+q97rUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WZJ4cv/baa2hoaEB6ejruvfdebN++HV988QVuuukmdO7cOWa7nTt3xk033YSFCxdix44dGD9+PNLT09HQ0IDXXntNoAeMCMaNG4eMjAzVMqSQkZGh1r8Q5abgcqGib19MmzYNFRUV5moCUFFRIb1vWX2IsmvUjhnnkDnIFVcAU6YAF1wAf6j1KyJEWNxuvll/e1kZ8J//GLNtAOrjUpW+1v2WlpbGVM7H4/GgtLQ0oj5EUVNTI+Q61ng9DFc2KxyN/sV6fDhcLhf69evX9o7ffgucdlpgMuPLL2PrLDU1sKj3jTcCkyYBr70GvP9+4Hr95ZeBda8++ACYPh148snAfqecArRrF31fe/cGJmN79gysk9WKSCfWwk2ktQX1nGAU6v6p1GfVez0q93kitTDmYue4UfeNc546m5zz4he7x42yf5S1yYJMyanMzEzcc889uPPOO6U/8K2oqMALL7yAZ599FuXl5VL7YiKj8TWlrKwsVFRUYN26dbYrOZWQkICMjAxUVFTA7/ebX6alVy/9mvrnnw//f/+LiooKZGRkmP4Gid/vl963rD5E2TVqx4xzyARjtJSOsLjV1gKHHaZfp3/gQGD58habzCobRH1cqtLXul8jZZPMPvc//fQTTj755KbrWCRa9PxrvB5+//33+NOf/hS1jkb/9u/fj27dukV9fGuWLl2K3NxcAEBOTg5KS0tDxuSXFStwxL/+BbzzTvQdpaYCZ54JnHMOMHhw4LqcmBi9nYYGYMsWYOFC4LPPgMWLo19o/PzzgRdfBA6e/2jGYaz3L9RzglGo+6dSn1Xv9ajc54nUwpiLneNG3TfOeepscs6LX+weN8r+qdKmsuSU05ReImDHjh3o1KmTKX1lZGTgkUcewW233WZKf0zklJm1cKYCGl8BU8JPP4VeIPiii5rKf6jAjL5l9SHKrlE7KuPHxI6wuLVrB1x/feDhZGtWrAiss9HsJsMsqI9LVfqsnvNEXMcar4dt3WyHewslJydH2M16bm5umw/o2wO4D8DhZ5wBRPOGgtMJnHcecN11wAUXAC6XEakBEhMDb1r07An8/e9AdTXwySfA668HJjciYf58oLAQeO454KabjGuKAOo5wSjU/eN7PXU2RdihPr4YfewcN+q+cc5TZ5NzXvxi97hR9o+yNlmQmVIyazJDdZ9MeMaOHYv09HTVMqSQnp6uzr9PPw3ddsEFqKysxPTp01FZWWmepoOY0besPkTZNWpHZfyY2BEat1BlpwBgxgzj9mOA+rhUpS+afpcuXYqlS5dK7SMaampqhFzHGq+HoUpG1dTUoKCgANnZ2ejatWvQ54QTTsBdd92FG264wZCOSDkdwHoAjwBIiHQyo3t34KWXgF27gHnzgMsvFzOZoUdqKnDttYEJim3bApMckZSlqq4GbrkFOP98JO7eLUdbM6jnBKNQ94/v9dTZFGGH+vhi9LFz3Kj7xjlPnU3OefGL3eNG2T/K2mRBZkKDYQCgqKgI3mjLJlgEr9erzr9Q62eccgpw2GFITk5Gfn4+kpOTzdUFmNK3rD5E2TVqR2X8mNgRGreePYFBg/Tb3n4bkLDWQFtQH5eq9EXTb25ublMpJFl9RIPT6RRyHWu8Hjqd+i8Kh1ucuvH4NWvWYPXq1YZ0tEU6gFcAfAUg4sJYAwYAc+cG3oq8/XbA7B/PHH104K0LtzuwZkZqatvHfPYZDhs+HMMlS6OeE4xC3T++11NnU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf8oa5MFmTU0mPhGZd01mRitsS+EsjKgc2fA5wtumzQpUKbi2GOBoUMDnx49AGL1ABmGIiS+3815++1A6Sk93ngDGD0agHlraDCR0da5BUDm3JsxdjweD7Kzs2NeeDoWWutwu924pWtXvAbgyEiNnHUW8MgjgbUxHA4JKmNkzx7ggQeAf/8baOOW3w/gUQBPAAi3J3/nGYZhGIZhGIZR+SyXn1oypBg2bBhcskoyKMblcqnxb8EC/ckMADjhBKCoCJ7//heF//kPPKecAhx6KHDppcAvv5giz+PxoLCwUOrDK1l9iLJr1I4Z55ARj/C4XX45kJ2t36ag7BT1calKn5VzntfrFXIda7we6r3pUVpa2qZuqdfT2lp0fPBBfI4IJzO6dw+sR7FwITBkCK3JDCDwg4bXXgNWrwb69Qu7awKAxwH8F0CWBCnUc4JRqPunUp9V8x6V+zyRWhhzsXPcqPvGOU+dTc558Yvd40bZP8raZGHZCY2qqips3LgRK1euxJIlSyL+MLTJy8sLWYLC6jidTjX+hSo3dcQRwMHFVn1OJ9x5efA5ncDevYF63yYtKOTz+eB2u+ELNelCuA9Rdo3aMeMcMuIRHrd27YBQawqsWgWsWyemnwihPi5V6bNyzmtoaBByHWu8HjY0NBg6Xvj1dMsWoF8/pL/3Xtv7duwIvPxy4Ht13nn0JjJac+qpwIoVwAsvtLmWxwUAVgDIEyyBek4wCnX/VOqzat6jcp8nUgtjLnaOG3XfOOeps8k5L36xe9wo+0dZmywsVXKqsrIS06ZNw/vvv4+tW7ciWukOhyOugmsluOSUJOrrA7/OLC8Pbrv9dmD3buA//wluO+UU4Ntv5WpjGIvT/PudDeA0AMMAvAjgK1UlWTZvBo4/Xr/t9tuBl17iklPE4JJTeRHvL4vi4mLkLVsGjB0bWCi7LW6+GZg61bSJf+Fs3gxcdx3w/fdhd/sdwPkAWu/F33mGYRiGYRiGYbjkVAT88MMP6NGjBx599FFs2bIFfr8fmqZF/WFok5OTg8TERNUypJCYmGi+f8uW6U9mAMDw4cBnnwEAGhITUZqTg4ZGbUOHmiQw8Ivf0tLSmH+pq7IPUXaN2jHjHDLBtPviC7wAoAjAXgBzAYwDcFaEx0uJW48egbI3erz9dmQPawVBfVyq0mf1nCfiOtZ4PYxVn8jraTsAHe+7L/CAv43vRzGA0nfeCZRws+pkBhDIEytXAvfeG3a3QwEsRuCNDRFQzwlGoe6fSn1WzXtU7vNEamHMxc5xo+4b5zx1NjnnxS92jxtl/yhrk4UlJjT27duH4cOHY+fOnU0TE06nE8cddxwGDhyIoUOHRvQ57bTTVLvCtMHYsWORnp6uWoYU0tPTzfcvVLmptDQgORmoqgIAVKanY8bYsahs1DZ8uEkCA29ezZgxA5WVlZbrQ5Rdo3bMOIdMMFkvvYQ7AZyIlhfTSKcDpcXtllv0t1dUADNniu0rDNTHpSp9Vs55tbW1Qq5jjdfD2tpaQ8cb1dEVwCoA6R980Oa+LwHoDcAzaJChPsmQlBR4y+TDDwP3BCFIBfAJgKsEdEk9JxiFun8q9Vk171G5zxOphTEXO8eNum+c89TZ5JwXv9g9bpT9o6xNFpYoOfXAAw9gypQpcDgcSE9Px5NPPonrr78eaWH+B4yxFo2vKblcLtTV1WH9+vW2KznlcDiQkpKCuro6aJomv2SDpgFHHw389FNw2+WXB0pN7dgBfPIJtE8+Qd0PPyClrg6OzMxAKaqkJHnaWsjUUFdXh5SUFDgk1SCX1Ycou0btmHEOmWDKb7oJma+/HrT9NwD1P/2EvDbK5kiLm8cDHH44sH9/cNtRR8H9xRfoeuyxuoeKLDlFfVyq0te6Xxklp0T55vF4UHpwrSUA+PXXX3HOOec0Xcci0aLnX+P1cNOmTUFtkZScan09jYXTAHwEoFMb+/0K4DoE3lQAbFpuacsWeC+4AMk7doTcxQ/gJgAzEfs5oJ4TjELdP5X6rHqvR+U+T6QWxlzsHDfqvnHOU2eTc178Yve4UfZPlTaVJacssfry//3f/wEI/A/s//73PwwePFixIkYWHo9HtQRpaJpmrn+bN+tPZgDAhRcG/tutG3DPPXDccw9cpaWBNzoqK02bzAAC32tXGwuUUu1DlF2jdsw4h0wwnv79dSc0DgdQ4nYDETyUlRI3lwv4y1+Ap54Kbvv5Z6TOny++Tx2oj0tV+qyQ82pqajBmzBjMmzdPynWr8Xpo5H9yjej6C4B/AWjrSjcfwA0A9sXck0Xo3h2lH32En/LzMSzELgkA/g2gvYFuqOcEo1D3T6U+K+Q9mTZF2KE+vhh97Bw36r5xzlNnk3Ne/GL3uFH2j7I2WVii5FRxcTEcDgcGDRrEkxk2Z9y4ccjIyFAtQwoZGRnm+heq3FRCAnDeeS02VVRU4IXZs1FRUADcfbcJ4lr1/cILqKiosFwfouwatWPGOWSCqTv1VISqUOlatarN46XG7c47A2XldMicMUN8fzpQH5eq9Fkh540ZMwZz5swJmjQQdR1rtFMd45ousepIBPACgNcQfjJDS0zEeAAXIg4mMw7iz8zEcADvtrHfPwGkv/VWTH1QzwlGoe6fSn1WyHsybYqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMSEht/vBwB0795dsRJGNoWFhbZ9S8Pj8ZjrX6gJjUGDgE4ti2y4XC4MGzZMyYyuGX3L6kOUXaN2VMYvnvFnZKCo1bZfALwFwNfG2xmA5LgddlhgkWMdkrdswQjxPQZBfVyq0kc953k8HsybNy9km4jrWKOd5BCTbpEeH42OTATeuLizrR2POAKlc+bgGQDka7IKxgvgWgBT2tiv46OPAm+8EbV96jnBKNT943s9dTZF2KE+vhh97Bw36r5xzlNnk3Ne/GL3uFH2j7I2WVhiDY3jjz8eW7duxTXXXIO3YvxVGEMblXXXZBJL3Xkh7N4N5OQE1tFozVNPAePHy+mXYeIIt9uNV7p2xfEACg9+3AfbSNTZ37oV6NFDNw8UAjhd5xCRa2gwkSFjDQ1ZekLhcrlw4MAB3RvoaMdOLP23xeEAFgDo1daOZ5wBfPAB3JWVcTfeW5/3BwA8Ee4AhwN47z2goEC2NIZhGIZhGIZhCKLyWa4l3tA455xzoGkavvvuO9VSGMmMGDEC7dq1Uy1DCu3atTPPv/nz9SczAOCii4I21dbWYsGCBaitrZUsLBgz+pbVhyi7Ru2ojF+88xSA0QDexB+TGZEiPW7HHQeMHKnbNAxAXzm9NkF9XKrSZ+WcF+o6dvHFF0f1a6BGO3V1dUJ16NEDwApEMJlx223AggVAx44xabIbTwK4K9wOmgZce23gfiNCqOcEo1D3j+/11NkUYYf6+GL0sXPcqPvGOU+dTc558Yvd40bZP8raZGGJCY3bbrsNKSkp2Lp1K7744gvVchiJZGVlISHBEsMyahISEszzL1S5qWOPDTzkbIXf70dZWVlTeTczMaNvWX2IsmvUjsr4MbFjStzuuy90k6AuSkpK4Ha7dT87d+6E2+0mWUpQ1ffGyjmv9XXM5XJh1KhRmDlzZkx2YtUX6fV0IIBlAI4Ms48PwL7HHwdefhlIamuZ8PjieQC3h9uhoQG48krgm28ismf3axV1//heT51NEXaojy9GHzvHjbpvnPPU2eScF7/YPW6U/aOsTRaWKDkFANOnT8dtt92GQw45BIsWLbJFOSLmD7jklEA8nsAvTGtqgtvuvht45hnxfTJMHGKZMkzDhgGLFwdt9iPw6/Ufm22LpeRUJLhcLlx88cWYOXMm2rdvH7MdO2KlklNLly5Fbm5u0985OTltvpmhquTURQBmAwj3Dsd+AJcDmNlKh8zvtsfjQWlpadD2ts5lrMdFSjif7wYQ9s6hUydg5Urg6KMN62AYhmEYhmEYxhpwyakIGDt2LN544w2Ul5fj1FNPxd///ncsX748rlZwjwfy8vLgdDpVy5CC0+k0x7+vvtKfzAB0y00BgM/ng9vths/nkyhMHzP6ltWHKLtG7aiMHxM7psUtxFsaCQBkrqbTPOd5PB7MmTMHY8aMkdhjdKj63lg553Xp0gUAkJubi7y8vJgfpDeOjYaGBkPHh7qe/gXAxwg/mbEVgbJrX8ekIHpqampQUFCA7OxsdO3aNeiTnZ2NgoIC1LS6fsd6nEieBfBouB327gWGDw+s3xUGu1+rqPvH93rqbIqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMSERmJiIhITEzFmzBh4vV54PB68+OKLOO2005Cdnd3U3tbHrg/K7cTo0aORlpamWoYU0tLSzPEvVLmpDh2AQw/VneyoqqrCrFmzUFVVJVebDmb0LasPUXaN2lEZPyZ2TIvbiBHACSfoNl0HoIukbvVy3rx588iUn2p+/j0eT8iyWc0/IrRbOefV1tYKsds4NmKt8RruejoewGsAEsMcvwrAIAA7Yuo9NsaMGYM5c+aEHEOhJv1iPU40jwF4OtwOP/0EXHop4PWG3MXu1yrq/vG9njqbIuxQH1+MPnaOG3XfOOeps8k5L36xe9wo+0dZmywsUXIqISEBDocDmqbB4XC0aItGvsPhiPnXgIxcuOSUIDQNyM0Fdu4Mbrv2WuDnn4Hvvgv8kvKSS4ALLghMdDAMEzWWKTkFAO++G8gBOjyFP9bTCKXb4/EgOztbyAN9SuempqYGY8aMiXiiRUbpLCuVnIqlPzNLTj0KYGIb+/wPwCgAzaf2W+sQfQ6i+f64XC4cOHAALpcr5uNiIZLz7gDwFgD9THKQP/8ZeO01oNX9OsMwDMMwDMMw9oJLTkVA48SFpmktPgzDNOOHH/QnMwBg6FBg2TKgthaYOxe44QbgkEOAM88Evv3WVJkMw5jMqFHAUUfpNo0FkNnG4Y0P8u1GW79+bw3F0llMgKloezJjJoBL0HIywwxKS0ujGmONa2XEepwsNABjANQOGhR6p3//G3jpJak6GIZhGIZhGIaJbywxoeH3+4V8+O0M+kyYMAGZmW09WrMmmZmZ8v379FP97UlJgYmM1pOADQ3AV1+hHMCUKVNQXl4uT1sIysvLpfctqw9Rdo3aMeMcMuIxNW5OJ3D33bpNGQhMarTFzJkzMWrUqIh/AW5KzjPA7t270bVr15j0GSmdZeWcV1VVJcRu49hofCW6ecmvkpKSiI/PzMyEA8A/AdzbxjFPAPgzgPipKiuHegC7X3kFOPHE0Dv9/e/Al18Gbbb7tYq6fyr1WTXvUbnPE6mFMRc7x426b5zz1NnknBe/2D1ulP2jrE0WvKgEQ4q5c+dKXdhSJTU1NfL9C7V+xrBhwOef67cdcwzan3giRqanCyuhEg3t27fHyJEjpfYtqw9Rdo3aMeMcMlFSVwcsXQoUFgKjRwNHHBG0i+lxGzMGmDQJ2LcvqGkcgBfaOLx9+/aYPXt2RL8ELykpwRlnnEE6p1dUVMSsr/EcxFLuyco5z+VyCbHbeD286qqrUFBQEPUEUePxtTU1eA2BiYpw3IHApAcjBi09PfADilNPBX7/PXiHhgbgyiuBb74Bjj66abPdr1XU/VOpz6p5j8p9nkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2y4AkNhhRbtmxRLUEa9fX1cv379VdgzRr9tnPOAR58UL/tkkuQlJyM7t27y9MWhqSkJOl9y+pDlF2jdsw4h0zbDAZwOoBhAI488cTApAYQWNfmxhuD9jc9bqmpwN/+BkycGNSUA+D6CM24XK6IHuRLz3kGcTqdSvRZOec5nU4c3ewBdaw0jo2bb74Zq1evjun4bVu24C0AV4fZrwHAXwC8GZtMJhxHHAF8/DFw+un6C4EfOABcfHFgUiM1FYD9r1XU/VOpz6p5j8p9nkgtjLnYOW7UfeOcp84m57z4xe5xo+wfZW2ysETJKSZ+sPOMovQZ0//9L3TbcccBocqqXHKJOW+PhMCMvmX1IcquUTsq48f8wUsAHgNwBoCExskMAFi8WHd/JXH761/hb9dOt2k8EPhltSCo/0rE4/Eo0WflnOfxeITYbRwb69evj+n4tPbt8fTIkRgZJnY+ANeAJzOkMnAg8Morods3bQJuu62p3KXdr1XU/eN7PXU2RdihPr4YfewcN+q+cc5TZ5NzXvxi97hR9o+yNlnwhAbD2IVQ5aZOOAG48EJg167Ag9W//x1o/HV1ly5A376mSWQYO1MYsiFki/l07IiqUaN0m44B0D5Uabo4Y+nSpSguLsbSpUtVS2FakQDgZQBdw+xTB+AyAHNMURTnjBkDjBsXuv2tt4A33jBNDsMwDMMwDMMw9sehaa1XCWYY89m4cSN69erV9PeGDRvQs2dPhYrE4Ha70bWr/mOX4uLimOqv61JZCXTqpF/24aGHgMcfb7lN04C1a4GSEuCCC8RoYJg4o/X3eySAT0LtXFz8x0SiYn5dtgxdhgzRrTlZd8IJSCkqAhwOQ32YlvsMEIlGM/xoqw8App5L0T6HsxcN/fr1w7erV+NNANeF2a8Wge/iwihst/ZL9TmIZPyJ0tZINH0F9ePzAeedB3zxhf4BLleg9FTv3jFpYxiGYRiGYRiGHiqf5Vr2DY2qqiosX74c8+bNwzvvvIO33norog9Dm+7duyMpKUm1DCk01rST4t8XX+hPZgCBtzNa43AA+flNkxmN9czr6+vFa2sDM/qW1Ycou0btqIwf8wdLwjXqlJ1SFbeG3Fy8H6ItZd06YW+USM15AvD5fEr0WTnn+Xw+IXajGRsulwujRo3CzNdewxsITGbUJyVhS/fuqG91fBWAcxHdZAYjAKcTmD0bOOoo/XaPB7jiCtTv32/raxX1azHf66mzKcIO9fHF6GPnuFH3jXOeOpuc8+IXu8eNsn+UtcnCchMa7733HgYMGICsrCycdtppuPTSS3HDDTfgxhtvbPMzZswY1fKZNqBcb90oUuvJhyo3lZMDnHJKm4dzjVG1dnkNDXuwH8C61hszMoDzzwcOOSRof5Vxeypc49SpQvrgNTT0sXLOE72GRqhz31jyq7i4GAcOHMDsd9/FkZMmNS1cX9O+PeaOHImaZsdXAjgHgP6KNYx0OnQAPvgACDVJtXUrav7+d1tfq6hfi/leT51Nricfv9g5btR945ynzibnvPjF7nGj7B9lbbKwTMmp2tpaXHnllfi///s/AEA42Q6HQ7fd4XCgQeCCp4w4uOSUARoaAhMXe/cGt910E/Dqq8b7YBgmCL3v9z8AnABg0P33o8OllwbehHLqFXdSR6Pu/wE4P9ROa9YEtBvsQw8uORWdDiD+Sk616MfvB/7yl7DrMFQBGA5gRVS9hOgP6s+B5UpONWfatPBrasycCdx4Y9T6GIZhGIZhGIahhcpnubSesoThz3/+M+bPnw8gUH7g9NNPR3FxMbZs2QKHw4Hrr78elZWV+Pnnn7Fu3TrU19fD4XAgNTUVl156KRwG64EzDFlWrdKfzAD0y00xDCONhw7+t/jmm9GBwEP7cExFmAmNp54C3nvPRDUMo4OmAbff3uZkxrmIfTKDEcwddwBLlgAffxy6fehQ4E9/MlcXwzAMwzAMwzC2wRIlp1avXo3Zs2fD4XDgmGOOwebNmzF//nyceeaZTfu88cYb+PDDD/Htt99iz549ePrpp5GWlobq6mrs3r0bL774It4I8z/EDA0mTpyIrKws1TKkkJWVJce/UOWm2rUDmn1HwlFWVoZJkyahrKxMnK4IMaNvWX2IsmvUjsr4MbGjOm5LAawM1ThnDrBtmyH70nKeIKqqqpTos3LOq6qqEmI3orGhacD48cD06UFNZVlZmDRxInZmZeF8AMsMqWGE4nAA//43oPO2R1lWFibdcw/KbropsJC4zVCd09uC7/XU2RRhh/r4YvSxc9yo+8Y5T51Nznnxi93jRtk/ytqkoVmAW2+9VXM4HFpCQoK2bNmypu1//etfm7br8eOPP2qHH364lpCQoF122WVmyWViYMOGDRoALS8vT3M6ndqGDRtUSxJCcXGxBkADoDmdzib/AGjFxcViOuneXdMCj35afi66KGIT9fX1WnFxsVZfXy9GUxSY0besPkTZNWpHZfzimebf79afSL7fquLWXPfFermj8XP55Yb6aJ3zojk3ZrB9+3Zdfc01Go2xHq3j3lYfsWgwMrbC9bd9+/ao7erZCzU2Wvj16KMhx2a906ltzsvTTg9xfLSf1udRdNzD2QvXR6zHxUI0fUXUz3ffaVpSUlDcivPytHqnU9P+8Y+YtVKF+rWY7/XU2RRhh/r4YvSxc9yo+8Y5T51Nznnxi93jRtk/Vdoan+U2fsx8lmuJNzSWLQv89q5bt24YNGhQxMcdc8wxmDVrFjRNwyeffNJUsoqhi9vths+Gv9oDAJ/PJ96/bduALVv026IoN+V0OpGXlwenglr/ZvQtqw9Rdo3aURk/JnYoxO2/ADaHavzww0BJuxiRkvMEkpiYqESflXNeYmKiELttjY2MGTOASZNCHu/1+XCb242viY4tBsDJJwNPPtlik9PnQ57bDafPB0ycCHz7rRptkqCQ08PB93rqbIqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMSExs6dO+FwOHDSSSe12N58XQyv16t77Jlnntm0IMk777wjTyQjhIKCAqSmpqqWIYXU1FTx/n36aei2rCzgm28Cv4tsg+rqasyePRvV1dXitEWIGX3L6kOUXaN2VMaPiR0KcdMQWMg8JPfeG1EO0UNKzhNIbW2tEn1Wznm1tbVC7IYbG7cC6DBlSshjPQAuS03FoYTHFnOQu+4Chg1r+rM6NRWzCwpQnZoaKDl17bWAja5bFHJ6OPheT51NEXaojy9GHzvHjbpvnPPU2eScF7/YPW6U/aOsTRaWmNCoqKgAAHTs2LHF9nbt2gXto0efPn2gaRq+//57OQIZYZSVlcHv96uWIQW/3y/ev1DrZ/TrF/hlZL9+wBFHAH/9K7BoEVBfr7t7QkICsrKykJBgfkowo29ZfYiya9SOyvgxsUMlbu8DWBOqcenS8BOnYZCS8wSSkJCgRB/nvNBj43oA/wpzXD2AKwAsJj62mIMkJACzZgGZmYE//X5klZUhoTFuP/4I3H+/QoFioZLTQ8H3eupsirBDfXwx+tg5btR945ynzibnvPjF7nGj7B9lbbJwaFqMP700kaysLFRWVmLMmDF47bXXmrZPnjwZDz74IBwOB7755hucfPLJusdff/31eOedd5CamorKykqzZDNRsHHjRvTq1avp7w0bNjS9WWNl3G43uuosjAkAxcXFyMvLi934/v3AIYcADQ3BbXffDTz7bPD27GzgvfeAESNi75dhGACSv98S0dN9JoAvQx3QvTuwfj0QxeurVjg3kWg0w4+2+gBg6rkU7XM4e825AoHJtcQQ7VpCAkb5/fhPVL1HRmu/VJ2D5n3k5ORg1apVOP3006M6LtbxEI3GqPt5/33g6qtDty9ZAgwZErk9hmEYhmEYhmGUo/JZriWmbo444ggAwL59+1psP/bYY5v+vXLlypDHb9q0SY4wRjj5+flITk5WLUMKycnJYv377DP9yQwg8KtIPQ4cCDycbIXX60VRUVHI0m0yMaNvWX2IsmvUjsr4MbFDKW6LAHweqnHLFuCNN6K2KTznCaa+vl6JPivnvPr6eiF2W4+N8wG8i9CTGQCwb+rUpskM6mPLKAUFBcjOzo5qMoM0V10FXH01vMnJKMrPh7d13MaMAWpq1GgTCKWcrgff66mzKcIO9fHF6GPnuFH3jXOeOpuc8+IXu8eNsn+UtcnCEhMavXv3hqZp2Lp1a4vtffv2bVpH49VXX9VdXHLhwoX44Ycf4HA48Kc//ckUvUzsDBs2DC6XS7UMKbhcLrH+hSo3lZcHrF6t33bSSYH2Vng8HhQWFsLj8YjRFgVm9C2rD1F2jdpRGT8mQjQN2LgRePlloLQUAL243QdAa7Y2VQseeSTqWvfCc55gvF6vEn1Wznler1eI3eZj4wwAHwJICnfASy+h6vLLdY+3I6tXryaTF4Tx8svw5OWhcNgweFrHbft24KGH1OgSCLWc3hq+11NnU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf8oa5OGZgFeeeUVzeFwaImJidq+fftatJ122mmaw+HQEhIStPPOO0/74YcfNK/Xq5WVlWlvvfWW1qlTp6b2Bx98UJEHTFts2LBBQ2B9Wg2AtmHDBtWShFBcXNzCr+af4uLi2A3X1WlaRoamBR6Ttvz85S+alpCg3/bYY8J8Y5h4p83v9/r1mvbPf2raZZdpWqdOf3wP336brO7KSy7Rzx2Apj3+uJA+DOU+gUSi0Qw/2urD7HMpur9w9gYCWlWo8db4mTq1TTtGP639MvMcyPRDlsaY+/nss9Bxdjg0bfnymPUzDMMwDMMwDGMuKp/lWuINjfPOOw8OhwOapuF///tfi7YpU6Y0vaWxYMECnHLKKXC5XOjQoQNGjx6N/fv3AwA6deqEcePGmS2diRKXy9UUT7vhcDjE+bdkCVBRod82cCBw9tlAks7vXS+5RPcQTdPg8XigKVhSx4y+ZfUhyq5ROyrjx4Rh1Cjgb38DPvoI2Lv3j+2FhQBoxu3AXXcBKSn6jVOnArt3R2xLaM6TgKZpSvRxzguMjVNdLsx3OJAabsdHHgHuvVf3eMpji9FHGz4cnjFj9N8E07RA6anaWvOFCYJiTm8O3+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwhITGkceeSTuuusuXHnlldizZ0+LtgEDBuC1115DYmIiNE3T/XTu3Bnz5s1Dp06dFHnARMqECROQmZmpWoYUMjMzxfn36af62zMygGuuARYsAPbsCSwAfsUVQFoa0K0bEGJxnvLyckydOhXl5eXGtUWJGX3L6kOUXaN2VMaPCcPQofrbD05oUIxbQ24ucMcd+o1VVcDjj0dsS2jOk0B1dbUSfVbOedXV1ULs9snMxPkTJgDhzv1ddwETJ+o2UR9bjD7l5eWYeuSRKD/6aP0dtm6NKsdQg2JObw7f66mzKcIO9fHF6GPnuFH3jXOeOpuc8+IXu8eNsn+UtUnD+EseNNi0aZN20003ad26ddPatWunpaamar1799YeeOABbffu3arlMW3Q+JpSTk6OlpiYaMuSU4mJiU3+wUjJBr9f0/Ly9Es2XHml/jG1tZq2eXNIkz6fT9u1a5fm8/li02QAM/qW1Ycou0btqIxfPNNmWZo5c0KXV/n1V2Vxa1P3/v2alp2tr9vp1LQff4yoj9Y5r0UfBNi+fbuuvuYaZZR7ah13GSWnjIytcP1t3749arut7XUFtF8SE7VdOTmaLzFRd5yVX3NN4FoXwk6osRXrxyolp1wul9avXz/hYzJajYbH/ty5oXOj06lpFr0HpH4t5ns9dTZF2KE+vhh97Bw36r5xzlNnk3Ne/GL3uFH2T5U2lSWnnDpzHJakR48eePXVV1XLYAxSenCxXDvS0NAgxr8NGwC3W7/toov0t7tcQPfuIU0mJiYiJyfHuLYYMKNvWX2IsmvUjsr4MWE47bTQbYsXI/Gaa2jGLTsbePBB4J57gtt8PuCBB4D//KdNM8JyniQSExOV6IvnnHcYgEUAjmhoAEKc+7cAnPbYY8gIU06K+tiSwddff43+/fujtLQUXbt2VS0nJprGz8UXB94mfffd4J18PmDsWGDxYiDBEi+SN0H9Wsz3eupsirBDfXwx+tg5btR945ynzibnvPjF7nGj7B9lbbKw1v8pMLZn9OjRSEtLUy1DCmlpaWL8C1VuKjEROPfcmExWVVXhzTffRFVVlQFhsWFG37L6EGXXqB2V8WPCkJMTPJGYmAj07w+0a0c7brffDhx5pH7bhx8Cq1e3aUJYzpNEbW2tEn1Wznm1tbUx2+0E4EsAXQFUpaXhzdGjUdXq3H8EYAzQ5oNs6mNLBnl5eXC5XKplGKLFuJw2DTjkEP0dly0D3njDXHECIJ3Twfd6Km2KsEN9fDH62Dlu1H3jnKfOJue8+MXucaPsH2VtsuAJDYYUbrcbPp9PtQwp+Hw+Mf7997/62wcPBjp0iMmk0+lEXl4enE7zX9oyo29ZfYiya9SOyvgxbXD22cCAAcD99wOffw6UlQErVwKXXko7bi4X8MQTodvHjw8UiAmDsJwnicTERCX6rJzzEhMTY7KbCWAhgB6N+nw+5LndcDY7958BuBpAQwT2qI8tRp8W47JjR+C550LvfO+9gbXALATpnA6+11NpU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf8oa5OFQ9OstwS6x+PBggULsGzZMvz66684cOAAGhoasGjRohb7aZqG2tpaAEBSUhKSkpJUyGUiYOPGjejVq1fT3xs2bEDPEAtYWwm32x2yNERxcTHy8vKiM1haCnTpot/27LOBRVQZhjGFiL7fmgaEKZ2jgojzkt8PnHwyUFSkb+i//wUuvNBYHwqJRKMZfrTVBwBTz6Von3/euBG/9eqFgWH2WQJgBIDaMP2E02WU1v2JPgcitMsek9FoFDbuNA045xzgyy/126+/Hpg1y3g/DMMwDMMwDMMIR+WzXMu9ofHMM8/gyCOPxGWXXYbnn38eH374Ib788ksUFhYG7bt//3507twZ6enpGDp0qPlimajp378/UlJSVMuQQkpKinH/5s8P3RbiwWIk1NXVYdWqVairq4vZBuW+ZfUhyq5ROyrjx7RBmMkM8nFLSACeeip0+333Berdh0BIzpOI1+tVos/KOc/r9UZn1+PBIbfcEjSZUZeSglX9+6MuJQXfArgAf0xmRAL1saUKj8cDt9sd9PF4PKqlAdAZlw4H8K9/AaHi+NZbwNdfmyfQINRzOt/rqbMpwg718cXoY+e4UfeNc546m5zz4he7x42yf5S1ycIyExr19fU4//zzcd9992Hfvn3QNK3pE4qOHTvihhtugKZpWL16NbZv326iYiYW8vPzkZycrFqGFJKTk437F6rcVPfuwDHHxGzW6/WiqKgIXq83ZhuU+5bVhyi7Ru2ojB8TO5aI29lnB35BrcfmzWHr3AvJeRLx+XxK9Fk55/l8vsjt1tcDo0ah3fLlwfqSk1GUn491yckYAaAySh3Ux5YqevToga5duwZ9srOzUVBQgJqaGqX6dMflMccADzwQ+qBbbwUs8j9m1HM63+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwjIlp/7yl79g5syZAACXy4UbbrgBZ5xxBt577z3MmzcPDocDDQ3BlZdXrFiBwYMHw+Fw4Pnnn8cdd9xhtnQmArjkVATU1gZqTtfq/I713nuBqVNjE8kwTExYoaySHlHrLioC+vTRXzOjSxdg2zYgNdVYHwrgklOx6Ymov4aGQLmg994Luct2AEMAlEbYD5ecantMtsWoUaMwe/Zs3TYlJacaqasDTjwR2LpVv/2xx4CHHxbXH8MwDMMwDMMwhuGSU23w/fff44033oDD4UBubi5++OEHvPLKK7jiiiuQm5sb9tiBAwciMzMTALB06VIz5DIGyMrKQkKCJYZl1CQkJBjzb9Ei/ckMIFC24aWXgJKSmEz7/X6UlZXB7/fHps0AZvQtqw9Rdo3aURk/JnYsE7f8fODaa/Xbdu0CHn1Ut8lwzpOM3+9Xos/2OU/TgNtuCzuZ8XNCAkZmZWF3jOee+tgyGweAjAj2mzdvntLyUyHHT0oK8MoroQ988kng55/lihMA9ZzO93rqbIqwQ318MfrYOW7UfeOcp84m57z4xe5xo+wfZW2ysMT/Cb7xxhtNpaXefvttdO/eParj8/PzoWkaNm/eLEMeI5Bx48YhIyOS/y23HhkZGcb8C1VuqkMH4KOPgL/9DTjiCKBvX2DyZGDLlohNV1RUYNq0aaioqIhNmwHM6FtWH6LsGrWjMn5M7Fgqbo8/DoQq7/P888A33wRtNpzzJFNTU6NEn8i4l5SU6K6VIGts1dTUhLeracD48cCrr4a08TuASzIycIWBc099bMnEUVODIQDuAfAhgJ8A1AFYH8GxHo8HpaUH34lZvz7wJo2JhB2Xp58eeKtHD48nMK6IQz2n872eOpsi7FAfX4w+do4bdd8456mzyTkvfrF73Cj7R1mbNDQLcPzxx2sOh0M74YQTgtr++te/ag6HQ0tISAh5/LXXXqs5HA4tKytLpkzGABs2bNAAaFlZWVpCQoK2YcMG1ZKEUFxcrAHQAGgJCQlN/gHQiouLIzfU0KBpOTmaFnhc1PJz0UX62wFNe++9CM03aAcOHNAaGhpic9QAZvQtqw9Rdo3aURm/eKb597v1J5Lvt6q4xaz7nntC55pevTStrq5FH61zXjTnxgx27Nihq6+5RqMx1qN13NvqI1x764/L5dJGjRqlVVZWxjy2wvW3Y8eO8HYnTQo9RgBtP6CdoHM9jOTchrueGv207k903KOJYVv9enr31j23ddHYKSkJHJeRoWmXX65pH36ouTdvjvl8RUqbOW/3bk3r0CH0GPrqq5j6NQvq12K+11NnU4Qd6uOL0cfOcaPuG+c8dTY558Uvdo8bZf9UaWt8ltv4MfNZriXe0Ni5cyccDgdOOumkmI5PS0sDAFRXV4uUxUjAzq9IGXoF7PvvgVK9SuMA2rfX356QAJx5ZkTmVZbvMKNvWX2IsmvUDpdfsSaWi9uDDwbWzNBjwwZgypQWm6i/9pqQkKBEn8y4ezwezJkzB3/5y1/Mz3nPPx+y/BgAVAE4F8A6cJm9aHG5XMjJyQEA1A4bprtPMoCOkRpsLMFaUQF8+CFw+eU44tRT8QaA4w1qDUebY79zZ+CJJ0IbuOMOwOeTI04A1HM63+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwhKeNpZQcLlcMR1fVVUF4I+JDYYuY8eORXp6umoZUkhPT4/dv1DlppKTQ5eWGjQIOOSQiMxXVlZi+vTpqKysjF6bQczoW1YfouwataMyfkzsVG7fjulTpqDSArXhAQBZWeHr3P/jH4GJjYMYynkmUFNTo0SfGd/XRYsW4ZVXXhHeR01Njb72118H7ror5HEeABcBWH3wb6Njg/rYEs3FF1/cdA9cc/bZIfcLMd0YzJIlQZsSqqowGsBhUauLnIjG/k03BRYI12PDBmDGDDniBED9Wsz3eupsirBDfXwx+tg5btR945ynzibnvPjF7nGj7B9lbbKwxIRG586dAeCPur9RsuXgA99GOwxdioqK4PV6VcuQgtfrjd2/UBMaAwYARUX6bZdcErH55ORk5OfnIzlUjXyJmNG3rD5E2TVqR2X8mCjYuRN4/33glluA445Dcq9eyJ83D8nLl6tWFjkXXwyMGqXfVl8P/PnPTXX5DeU8E3A6nUr0Rft9zcnJifoHHZWVlTjqqKOE5wSn0xms/Z13gJtvDnmM5nTicgBfN9tmdGxQH1vR0K9fv5DxdblcGDVqFGbOnNm0zdurF0pC2DIyoQEAawF8GamNGIho7CcmAv/8Z+j2hx8G9u4VL04A1K/FfK+nzqYIO9THF6OPneNG3TfOeepscs6LX+weN8r+UdYmC6dqAZHQvXt3lJSUYOXKlWhoaEBiYmLEx/76668oKiqCw+HAqaeeKlElI4JVq1apliCNurq62Pz7+Wdg3Tr9tuHDgaFDgU8+CSzw2ZyRIyPuIiUlBf37949emwDM6FtWH6LsGrWjMn6MPiUlwY8cDz/9dCS53U1/pwDov2oVKrp1w66BAwHE9vDadF58EfjiC2D//uC2b74JtF9ySew5zySSk5OV6Iv2++pyuXDxxRdjzpw5ER9TV1eH448/HikpKbFIDElycnJL7XPmADfcEFjhQA+HA3uefx7z//a3IH1Gzj31sRUNs2fPxmFbt6I0Jwf+zMwWbbr5wOHAfwHcpmMrkgmNhP37gY0bdduei0hx7EQ89ocMAa66KjAB3JoDBwKTGuHeFlME9Wsx3+upsynCDvXxxehj57hR941znjqbnPPiF7vHjbJ/lLXJwhJvaIwYMQIAsHfvXrz11ltRHfvwww+j4eCvRYcPHy5cGyOWYcOG0X+YFyMulys2/z79NHTbtdcCkyYFJjy2bQOefhoYOBA46SSga9eIu/B4PCgsLGwq72YmZvQtqw9Rdo3aURk/Rp8hQ4aga9euLT5vNJvMAACPy4XCYcPw00cfNe2TnZ2NgoIC1NTUqBEeCYccAkybFrr9wQfh/OWX2HOeSXi9XiX6Yvm+zpw5E6NGjYpYq8vlQlFRkfCc4PV6/9D+0UfANdcA4daxeO011Fxwga4+I+ee+tiKlKMAdL71ViSPGIEjZ85EXl5ei08o//4LoAzAQgCPARgJ4GQAcyPoM2nbtkC5ylb4Dj0UOtMHQolq7D/1VOg1wmbMANasEStOANSvxXyvp86mCDvUxxejj53jRt03znnqbHLOi1/sHjfK/lHWJgtLTGiMHj0amQd/tXbXXXfhu+++i+i4xx57DG+99RYcDgcOO+wwFBQUyJTJCCAvLw9OpyVeHIoap9MZm3+hyk2ddBJwxBF//H300cA99wDLlwMrV0bVhc/ng9vthk/BYptm9C2rD1F2jdpRGT8mcha3+tvndMKdl4ejnU40rnbTuKjzmDFjzJYXHddcA5x7rn5bbS063n9/7DnPJBoaGpToi+X72r59e8yePRsHDhxAcXFx02dp4+LOrXA6nSgtLRWeExoaGgLa//c/oKCgqbyYLs8/HyhBFkKfkXNPfWxFwi0ANgFIXbAgsOHll1usQROOhQA6ABgO4FEA8wD8AKAigmPr+vUDysuBL78MrFeRnQ0A+OWii1AfpQ/N8Xg8cLvdLT6t/4cqqrGfmws88IB+m6YB48aFfjNIEdSvxXyvp86mCDvUxxejj53jRt03znnqbHLOi1/sHjfK/lHWJguHphH7v4EQvPzyy/jb3/4Gh8OB5ORk3H777bjqqqswY8YMvP7663A4HDhw4AB27dqF5cuX45VXXsEPP/wATdPgcDgwZ84cXH755ardYEKwceNG9OrVq+nvDRs2oGfPngoVicHtdqNriDcliouLkZeXF95ARQXQqVOgNn1rHnkk8HYGwzBKCPf91uNwIGTt+ysB/KfZ3y6XCwcOHJDyC3TDeamRX34BevYEqqp0m/8C4N9G+5BIJOch2nPl8XjaXO+rdRkhI/EId+zSpUuRm5sbtu9obRYXFyPv/9k78/AoqqwPv52EpAkhi4BGQQnighviuIA6KuKGKItr4ugoxgX0c0EdFR11ZBwddwR1BJe4okEHBVRk3EBxQdwQUXDBRI0aQMhK0tm6vj+KtFmqk16q+t6uPu/z9APpqvqdc/pUna7u2/fcr74y12iyel9q5ZZb4IYbutULhlXckehEas+2a8RCry/mdTHOasdRo8yBBo8nJK1IaOt/XV0dF5xzDk0LFvBGUxOVIWqUvfEG/RcsgDvuoA4oLCxkwYIFnQYwWtulFRUVkR5stkVX+Hyw555QUmK9/aWXwmqvKQiCIAiCIAiCfaj8LjcuZmgA/N///R+XXXYZhmHQ2NjI9OnTOeigg3jsMfPrEsMwyMnJYc899+SCCy4IDGaA2XZKBjPig9zc3LDWSIknkpOTw4/vf/8L/qXROMuvQyKipaWF8vLyQHu2WBIL207ZsEs3Wh2V+Utkwl3v4hfg+zZ/tyQnU56by9fJyZ0WtArli3Hl7LST2RYmCHcmJ7OPxjW9paXFtvecuro6CgoKyMnJ6dRqrOOjT58+nHPOOdTU1NgQhTXJycmcdtpp7LLLLu1sR9vSrMfSpZRPnkxLV22mbrwxMJjRlX/RvPbRHq+S/sDoYBvffhtefDFmvhQWFvLsf//LC2EMZniBfpdcAg88AAcdxE2nnMLcuXMtp7d3nHEW9nuV12vO9AnGNdeARgvD6/5eLPd66jTt0NH9/BKscXPedI9Nap46Tal5iYvb86ZzfDr75hRxM6ABcN999/Hoo4+SlZWFYRiBAQuPx4PH4wk81/rIzs7m8ccf5+abb1bruBAykydPpnfv3qrdcITevXuHH1+w9TN22AH+9Cd7HANqamqYPXu2o1+wqbTtlA27dKPVUZm/RKb118fhsBRYC8wCzu3dm9mTJ3No796O9653jEmTzAV8LUjq3ZtTNK7p9fX1tr3nFBYWBv1StyOpqansvPPOXHyx1bLO9hDs/SaalmajgJ7XXsvs88+nJthrNnVqSDMHI3o/tPF4lXwBBGmkZHLVVV3PfrEJn8/HggULwj7uHiD1m2/MP776ilsWL+acbo5pnb0R0XvVuHFw9NHW2777zlxPQxN0fy+Wez11mnbo6H5+Cda4OW+6xyY1T52m1LzExe150zk+nX1zirhpOdWW2tpaioqKWLRoER9++GG7hKWlpXHQQQdx4oknMmnSJDIzMxV6KoRK6zQlr9dLQ0MDX375petaTnk8HtLS0mhoaMAwjO7bVjQ3w3bbwebNnbdNmgSzZtnmp2EYNDQ0kJaWhqeLVhdOEAvbTtmwSzdaHZX5S3Tq6uqCtluxIgVo7WrZsSZ0xKnWTHa30+Hbb2HoUGhoaPe04fHQkJbGOQ0NPN8mPl1aTpWUlLDnnntavv7htJzy+Xzk5OSEvABba94BKioqKC8vt73lVHfnVlctzaw0jwAWAT235jStoQFPR92rroK77urULslKL5Jzv6v302iJZcspAA/wBnBUxx2HDYP774c//zlkrXAJ5dwOxsnAvCDb7gWuAYL9JqykpISBAwdG9l71xRfmumFWue7TB77/HrKzQ9dzCN3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk+VbypbTsXlaooZGRlcdtllXHbZZQBs2bKFqqoqevXqFVg8XIhPQv1CKB4xDCO8+D74wHowA2xtNwXml0NO9OrXxbZTNuzSjVZHZf4SndbFmiNtEVVWVsZhQWY4xA277Wb+Kn/q1HZPewwDr8/H/cBbwCYlzgXH4/HY8p5TXl4elk7b94Jo24q1tj3raL+795vW8zWUL+aPAhYC6aYwXivdyy+3HMwIRtjvhzYfrxoDOBv4EnNxb9LS4I474JJLQNM2WgOxXhOnlaMx21Ft6WKfiN+r9t0Xzj0Xioo6b9u0CW691Tz/FKP7e7Hc66nTtENH9/NLsMbNedM9Nql56jSl5iUubs+bzvHp7JtTxFXLqWD06tWLHXbYQQYzXMCUKVNcO6smMzMzvPiCtZtKTzcXDrWR6upq7rvvPqqrq23V1cW2Uzbs0o1WR2X+BBOv10teXl5Yj2222Ybly5e7o+ZddVWnNnjVmZncN2UK3sxMHlLkVlds2bJFyXtO2O8FXRCs7ZldNk4AXmHrYAZ/5LS6re7FF5vrHITxS6Bo/bPzNVTFr8AFQOOQIfDpp+agkKaDGQB9gGDvMBsxFznvajADonyvuuUW8/7Hipkzgy8cHkN0fy+Wez11mnbo6H5+Cda4OW+6xyY1T52m1LzExe150zk+nX1zClcMaAjuYenSpXH9q8uu8Pl84cW3cKH188ceay6UaSNer5eRI0cqGdGNhW2nbNilG62OyvwJkeP1ehk2bJg7al5Kivnr6ZQ/Jn56fT5GLl2K1+fjNOBKdd5ZkpqaquQ9p+17QVlZGWVlZVHpFRUVkZ+f3+76D/v9xoKTgRcxf3XfStucAnDBBWaLpDCnNUfrnx3x6cCLwK8vvwyatdhcsmQJa9asaffcZ8AwYH6HfZuAU4EfQ9CN6r1qhx3g6quttzU2wnXXha9pM7q/F8u9njpNO3R0P78Ea9ycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXK6hIbgPlX3XnCTiPtzffANDhlhvO+EE2GYbOOkkOO644L9YFARBe2xfz0K1zRtuMNu/WNAMHAM8blNc4bT5am3N1JZQXodo91m2bBlAxG3FwsmH1evRVUuzYNqlpaVcP2gQT9FNX9Jzz4VHH4Wkrn8bE8laDd2toWE3tq6h4fd3ek3svOZisYZGydbZDsG2b7rxRra59Vbw+5kEPByG3ajYsgV23RV++816+4cfwogR0dkQBEEQBEEQBCEkVH6XKzM0BK0YPXo0PXv2VO2GI/Ts2TP0+IK1mwKzNcXTT8PJJ0PfvubAxpNPQkVFxL7V19ezePFi6uvrI9bQ2bZTNuzSjVZHZf6EyKmvr2fFihXuqnk33BAYjK3v2ZPFo0dTvzW+FGAukPzrr1GZqKuro6CggJycHAYNGhTSIycnh4KCAurq6gI6DQ0NUb3nlJWVUVpa2uUMiwEDBjBgwIB2z4X1XhAGbduebbfddqxdu5Z+/fqFrZPx/PM8g/VgRiCnhYXwyCPdDmYEI9rXwKnXMGqefhqOOsr84t3FVBcWwuLFVF50UUiDGa1E/V7Vq5fZeioYV19tvXB4jND9vVju9dRp2qGj+/klWOPmvOkem9Q8dZpS8xIXt+dN5/h09s0p4m5R8Pr6el599VVWrFhBSUkJ1dXVNDU1hXSsx+PhrbfecthDIRqys7NJivALEt1JSkoKPb5g7ab23htWr/7j7/p6mD/ffDz3HBQUROSb3++nsrISv98f0fHREAvbTtmwSzdaHZX5EyLH7/dTW1vrrprn9UJxMf4RI/AnJVGZnY2/TXzbAg0XXwwffWQuhBwBhYWFzJ07N6xjfD5f4Jji4mLAfP2jec+JdNZFWO8FERJxTXjwQfpee21w3aQkKocNw3/99VGt9xDtaxCL1zBsHn4YJk82v1CfMMH8YYKbp3wfcwyVu+4KD4W+Qo4t71UTJ8KMGfDll523vfceLFpkzmRVgO7vxXKvp07TDh3dzy/BGjfnTffYpOap05Sal7i4PW86x6ezb04RNy2nDMPgrrvu4tZbb6W2tjai4z0eDy0tLQ54J0SLtJxqw6ZNsO22ZtuKjhxxBLzzTufnU1Nh40aI4wVSBSERcV3Lqa1snD6dfld2sWrGpEkwa1bYuj6fj5ycnIjXTvB6vVRUVOD1eqNuJxUKJSUl5ObmRuRzW18jJaxc33MP/O1vXepVnXceWY88EtaaGQnRcmrmTHNR77aceCLMmwepqa5rORXJ9WFrPXv9dbPlphX77AMrV0Y8e0gQBEEQBEEQhNCQllMhcNZZZ3HddddRU1ODYRhhP4T4IC8vj5SUuJs4FBIpKSmhxbdokfVgBsBPP1k/f9RRUQ1mNDc3U1paSnNzc8QaOtt2yoZdutHqqMyfEDnNzc2Ul5cHakIWMB7IU+mUTWw56SRmpqRQmpdHs1XNmz3bXEQ8TMrLy6NaCLrtOhMtLS0xec/xer2MHz8+8Heo7wXjx4+PeDCjtSaE9CMOwzDb+HQzmHEr8PvUqZT++GPUtSbk90OHjreVoqLOgxkAr7wCZ50FUpcB6PHNNzR/8IE971XHHgvHHGO97csvzRmrCtD9vVju9dRp2qGj+/klWOPmvOkem9Q8dZpS8xIXt+dN5/h09s0p4mJA49lnn+W5Nh9Odt99d2688Ubmzp3LG2+8wZIlS0J6vP322wqjEEJh4sSJZGRkqHbDETIyMkKLL1i7qQEDYOuvJjsxYUJUvtXW1vLkk09GNPspWmJh2ykbdulGq6Myf0Lk1G7axP/+9z9uysjgQ2ATMB84Xa1btnFLRgZPTpxIbbCad/HF8MknsXWqDfX19d3WZKvFxEPF6/WSm5sLQFFREfn5+Xi93m7fC7xeL/n5+RRFMODTSmtN6KqHallZGaU//ED1xIlw001d6t2w9VHv89lSa0J+P3To+Gjx+XyUlpby0yef4L/kkuA7vvBC8Pf0BOIgIDc/n9ozzrDvverf/w6+7cYbobExehthovt7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1PERcupUaNGsXTpUjweD1OmTOGuu+7Sq2+yEDXScmorDQ3mQt9WReiSS2D0aHjpJfMLko0bzec9HvjtN9huO3udFwTBWcaMgdde6/T0G8CxxHfLqVYbucBnwPbBdtxpJ/j0U7PuhaEbDaG23Gl9HQoKCsJeswMgPz8/sF5HK21niAQjmkGUjnQVYyrwJNDdyktXAfdu/X8k54fbWk4NHz6cL774IjBTaCSwEOhttfNtt8F11yV0y6mjMAdqA0NPubnmWheDB0fkfzvy8+H556233X+/ed8kCIIgCIIgCIIjqPwuV4O5+t2zatUqPB4PgwYN4u6778YTRu9mQYgr3nnHejAD4KSTYNQoc7HLlhZ4/31zMfDychnMEIR45PDDLQc0DgPcspRwOXAasAToYbXDTz/BGWfA4sVRLTINsGzZMgYMGACYsw8iXbS7I60zJRYsWBBSu6vWFlNWMyy8Xq8jg1ThkgG8CARp2hPg/4D/OO9OXPHRRx+1+3spcCTwGtCv7Yb77rNuRZVAnAQ8B6S1fbK83GwX9d57sMMO0Rm45RZznRKr1mq33GIuIO7SWb+CIAiCIAiCkMjExTSH1i8QDjvsMBnMcDlTp04lKytLtRuOkJWV1X18wVpTZGVB2y/nkpPNL0PvvReefTZq36qqqrj99tupqqqKWktH207ZsEs3Wh2V+RMip+rQQ7l96lSqOtQEL3CIGpdspbXmrc7KoovlweHNN+GGG6K2N2DAAPLy8sjLywsMbHRFbW1tSO856enpFBcXU1FRQUlJSbePiooKiouLSU9Pt9SLZc2zmnK8HeYAU1eDGX7gPDoPZtTW1trie0jvhw4ebzefYg5Etq5ydU1KCr5JkxR6pJ4jgBdoP5hRlZVl1rzNm81FvaurozOy225w/vnW2zZsgOnTo9MPE93fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35wiLgY0dtppJwBpM5UAzJ8/n7q6OtVuOEJdXV3X8RlG8AGNMWOgh+Xvm20hPT2dCRMmBP0CzkliYdspG3bpRqujMn9C5KQfeCDjXn+ddIuacLQCf+ymbc17AHimq51vvx3mzImRZyZerzes95zW2RXdPbprFxXLmjdw4MB2/uwFfAQc0MWxjcBfAKsVPLxery2+d/t+6PDxTvAN8GfgMuCu5uZuW4u5nfeBVzs8l15Xx4T5882al5oKduTvppsg2DV3113w++/R2wgR3d+L5V5PnaYdOrqfX4I1bs6b7rFJzVOnKTUvcXF73nSOT2ffnCIuRgiGDx+OYRisWbNGtSuCw6xdu5ampibVbjhCU1NT1/GtWgU//2y9bexY5xwDevTowZAhQ+jh4KCJSttO2bBLN1odlfkTIqeH18vAbbelR4eaUAZsUeOSrXSseRcCX3R1wDnnwH//GwvXAEhJSVHynhPLmte7d2/Gjx8PmDMy3gcGdnFcDTAGCLZiSEpKSti+W60J0tX7YdvF1IPpdPt+qoifgftVO6EJzUA+ZkuuVno0NTFk7Vp6nHACvPuuuZ5GtOywQ/DWXjU15jomMUL392K511OnaYeO7ueXYI2b86Z7bFLz1GlKzUtc3J43nePT2TeniIsBjUu2Lur38ccfs3r1asXeCE7i5hHFbkdMg83OSEkxFwN3EJW/do2Fbads2KXrxl8rC91TV1fHKwcfTHl6OvOBS4AhwI7ArUo9s4eONa8eOBloycy0PqClxVxPY8GCmPjn8/mUvOfEuuYVFRUx+4ADWAR01aBpA+ZaEG91sY/P5wvb99Y1RdrS1fvh+PHjLWe5tNXp7v10+PDhIfsnRIbP56O0tLTrfYBxmC25AOrS05l/ww3UPf009OplnzPXXgvZ2dbbHnwQfvzRPltdoPt7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1PExYDG/vvvz+TJk2lpaeGMM85g06ZNql0SBPsJNqBx+OGQkxNbXwRBiAlNAweyK+biuQ9itq1xMz8Av993HwRbD6u5GU47DRYtiqVb7qW5mfQbbuDCTz4hpYvdSoBD+eOLZ7spKioiPz+/y3ZcXq+X/Px8y8XUO+qkpaVZbm/VeO2117pt/dX2GKsZIUJwCgoKyMnJ4cgjj+x23xpgNNC4yy7mul/77w92t5DNyYGpU623NTbCv/5lrz1BEARBEARBEJTiMQzDUO1EKPj9fi666CIeeeQRtttuO/7+979zyimnsP3226t2TbCBr776ir333jvw9+rVq9lrr70UemQPpaWlDBo0yHJbSUkJeXl55h+//gr9+1uLTJ8OU6Y44p8gCGoJuUbEmc1ubRQXw3XXBRdIS4OXX4Zj2i9dHarvoeyn4rWPKZs2wemnw9tvd7nbx8BYYH0IktG+Lj6fL+jaElatqcLVaatRUFDA3LnBmmf9QX5+PsXFxe2ea3tujMRc7PuHkDz7g3DPx1DpSiscv7rzCYjKTifNb74hb7fdbNPrRF0d7LqreT/VkeRk+OYbGDzYOfuCIAiCIAiCkGCo/C43LmZogLkg+OzZs7n33ntZv349l19+OQMGDGCbbbZh0KBB7Lzzzt0+BssHGe1xc8+3LnvavfJK8AMdXj8D1PYjj4Vtp2zYpRutjq795IWuaWpq4qeffkrMmnfttXD99cEPbmiA8eNh6VLH/GtublbynhOTmvfZZ6w9+WSali3rcr/5mF/YhzKYAeZrFo3vrQur9+/fH5/PR//+/UNeTL0tycnJnY7vqNHdrJBQZoTsgfkarQCOCNk7wZLUVGfP/fR0+Mc/rLe1tMAtt9hvswO6vxfLvZ46TTt0dD+/BGvcnDfdY5Oap05Tal7i4va86Ryfzr45RdwMaDQ1NXHRRRdx7bXX4vF4MAwDwzCorKzkp59+4scff+zyUVpa2m2vX0E9CbuGxssvWx+0xx4x+UWh9BhVqytraCQmdXV1vPfee4lZ8zwesw3M3/4WXKC+Hk48Ed5/3xH/XLuGxty51I0Zw/xDDqGui9iqzjuPU4BwvIhkDQ0rYlHz0tPTKS4upqKigpKSkk6PiooKiouLg+Y/A3gJc92RPsAbwPkReasXrWtflJWVxdy24+f+uefCzjtbb3v6aXOWhoPo/l4s93rqNKWffOLi5rzpHpvUPHWaUvMSF7fnTef4dPbNKeKi5VRLSwtjx47lf//7HwCRuuzxeGhpabHTNcEmErrl1JYt0Lcv+Hydd9p7b7On/EknwYQJcOCBwXvPC4IQdyRsy6lWG4ZhttSbOTO4WO/e8MYbMHy4tJzqCp8PrrwSHnqo6/2SkmDmTEpPOCHslkJx+bpEQGlJCR/uvDNnWGy7D/gb0N3dpK4tp0LBkZZTsTp3nnwSJk603vaXv8CcOc77IAiCIAiCIAgJgMrvcrtaI1IbHn74YRYvXhyYmXH00UdzxhlnsM8++5CTk0NKSlyEIQjWvPmm9WAGwI8/Qk0N/Pvf5qN/f3Ng46KLwAUDPoIgJDgeD9x3n7lw76xZ1vvU1MBxx8Hrr8O228bUvbjh22/N9TK++KLr/XJy4Pnn4eijQWatBqX3nDmWgxkAU4AvgeCNqv6gda0PFbMh4hbDgLvvNhcPHzUq/OPPPBNuu828Jjry3HPw97/DnntG76cgCIIgCIIgCMqIi5ZTTz75ZOD/d999N6+//jrnnnsuBxxwAIMHD2bgwIEhPwS9ufnmm8nOzlbthiNkZ2dbxxes3VRWlvlFXlt++QUefND2L6IqKyuZNm0alZWVturqYtspG3bpRqujMn9C5FRWVvLkk08mXs3riMdj1rXCwuD7VFXB4YfTa9482/yrra1V8p5j+/U6Zw786U/tBjMqs7OZdvPNVLaNbZ994JNPzMGMCKmtrXV/zWtpIaPDIuFtWQg8EYJMQUEBOTk5DBo0iMMOO8wu77RlyZIlrFmzpst9us1bTY05MHfNNZCfb73Ad3ekpARfS8Mw4Oabw9cMEd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n3xzDiAMyMjKMpKQkY++991btiuAQq1evNgAjLy/PSElJMVavXq3aJVsoKSkxAAMwUlJSAvEBRklJiWG0tBjGttsahvkxu/1jjz2sn8/IMIz6elv9bGpqMkpKSoympiZbdXWx7ZQNu3Sj1VGZPyFympqajA8//DBQEzo+SkpKHLHbti45ZbOkpKRTzevWRnOzYZx1lnXda/OYDkZKN76HEuP3339v6Z+Tr71h2Hi9btpkGGeeafkaNaWkGCV5eUZTSor53KmnGkZNTbvDu3qNgj2+//77hKh5patXG09bvK7fgZEZ5mvW3SPccy2SvIXz8Hq9Rn19vVFfX294vd6wjunuuusyb2vWdL7vOfJIsy6ES3OzYey5Z/A68sUX4WuGgO7vxXKvp07TDh3dzy/BGjfnTffYpOap05Sal7i4PW86x6fKt9bvclsfsfwuNy5maLQyfPhw1S4IDlNaWkpzc7NqNxyhubm5c3wrVsCGDdYHBHv++OPB67XVt5SUFPLy8pS0b4uFbads2KUbrY7K/AmRk5KSQm5ubvCa19gIy5bBBx/E1jGbsKx5XZGcDI8/bv5CuwumAK8DfaP0Lzk5Wcl7ji3X66uvmmssBVkPIKW5mbzSUlL8frP9zvPPQ0ZG5Pa2kpycnBA1z+jVi78CFwCtDSF9wGlAtSMW9WH8+PF4vV68Xi/jx48P65juCJq3l16Cgw6CjjM8liwx222GS3Jy1zMxgs3giBLd34vlXk+dph06up9fgjVuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi4GNPr37w8gC3onAAUFBfTq1Uu1G47Qq1evzvEFazfVowds3my97aSTbPdty5YtFBcXs2XLFtu1dbDtlA27dKPVUZk/IXK2bNnC22+/3a4m7I35hf0rwE777QeHHw633KLIw+iwrHndkZICzzzTbZ07EvgE2C8K/+rr65W850R1vVZVma25TjwRfvstuI1evSieOJEtixfDddeZbb1soL6+PqFq3qPACOA74DJgpc36Xq+X3Nxcm1Ujw+v1kp+fT1HRH6uDFBUVkZ+fH3SwwuqYrgiat6VLO7fYbOUf/zAHdsPllFNg6FDrbfPnw6efhq/ZDbq/F8u9njpNO3R0P78Ea9ycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXAxojBo1CsMwWLlypWpXBIeprKzE7/erdsMR/H5/5/gWLrTe+ZhjzPUyZs0yF8Pt0cN8vkcPGDPGdt+SkpLIzs4mKSn2JSEWtp2yYZdutDoq8ydETlJSEhkZGYGacDXmYsPTgROApLo6c8d33zVna8QZljUvFHr0gOJiOOusLncbCLwP/CVC/5KSkpS850R0vRoGvPAC7LWXOYulOxsjR5I9bhxJf/5zFJ5a6CZgzfsC2Bd4xAHtUGc2OMmyZcsoKSmhoqKC4uJi0tPTA9vS09MpLi6moqKCkpKSTg+rY7oiaN7uvhuCzcJOSuo8cyM0YzBtWvDtDqyloft7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1N4DMMwVDvRHV988QUHHHAAfr+fpUuXJsTiionGV199xd577x34e/Xq1ey1114KPbKH0tJSBg0aZLnt53ffZcDhh1sfOGsWTJr0x99VVbBoEZSUwPXXO+CpIAgqaFsjRgAfBtvxnXfM2Ro22+xISUkJeXl5etgwDJg+Ha6+GroZdLgXOHntWvJ2371b+8uWLWPAgAGUlZUFvZ+w63WwhTVr4NJL4a23ut83OdlsMfW3v5lf6HZBV69RMLR6XRwkktcmHFrbORUVFYU8GNCK3b7ZmdOorvuSEhg2DKrbNPXKy4PnnoMRIyJzyDDggAPgs8+sty9fHnwgRRAEQRAEQRCELlH5XW5cDN3su+++3HrrrRiGQUFBAWvXrlXtkuAQw4YNIzU1VbUbjpCamtouvp5vvhl85xNPbP93VhaccYZjgxmNjY2sXLmSRgW/Ao+Fbads2KUbrY7K/AmR09jYyPfffx+oCR/TRX/+ruqFpnSseWHj8cCVV8Lrr0OfPl3ueiXQf/RoWLy4W9nDDjuMQYMGcdRRRyl5zwn5eq2pMQdzhg4NbTBj993h/ffhmmtobG52pCY0NTVJzYuCrmZDJAJd5m3QIHj00T/+PvVU+PzzyAczwKwh//xn8O02r6Wh+3kp93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFHExoAFwzTXXMGvWLDZv3sz+++/PVVddxQcffEB1ddCvf4Q4ZOTIkcrbLziF1+ttF196sC+o9t8ftq4bEyt8Ph9Lly7F5/N1v3Mc2nbKhl260eqozJ8QOT6fj5UrVwZqQguwJNi+r75KaWlplw/d8t+x5kXMUUfBJ5/Avvt2uVuP0lI4/ng4+WSSy8pi51+YdHu9+nwwYwbsuqvZiqe7RctbB34+/zzwa3OnakJjY6PUvCgYMGAAeXl5rr3P6Qqfz8d3333Hm2++yXfffWdds047DS67zJyl+vzzkJ0dveExY8wFx6343//gw6Dz4sJG9/NS7vXUadqho/v5JVjj5rzpHpvUPHWaUvMSF7fnTef4dPbNKeKi5VRycnK7vw3DwBPBApcej4fm7r4YEJSQaC2nMoHKlBQ8VufjtGlw003OOycIgnI61ohLgPs77FMDvAmcAnT1hh1qG5u4aTnVkbo6agsKyHj55W539Xu93OTzcTfQEL4lNa2VGhrMX6jfdhv8+mtoxwwebK6pEUErzoRvOdXU9Mf6VB1wquWUHa9fvLacsiKa1lth8b//wejR1tuOP95s6SkIgiAIgiAIQlhIy6lu6Djm0nYwwzCMsB6C3ni93ogGq+IBj8cTiG80WA9mAIwdG1O/wLyOfD6fkmskFradsmGXbrQ6KvMnRI5hGDQ2NrareW8CTcAy4B/AocA2wMl0PZgB5q8y5s6dS2FhoUMeh0fbmmcL6en8PmMGf8OczdIVST4f/wJWA8eH6Z/X6yU3Nzd6f4PQ6XrdsgUeesickXHJJaENZiQlweWXwxdfWA5mSM3rVsBcdP6cc8w1qoSY0PGai1nNOvZYOPRQ622vvQYff2yLGd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35wiLgY0IPjAheAupk6dSlZWlmo3HCErKysQ37hgOw0YYC6KGWOqqqq44447qFLwxU4sbDtlwy7daHVU5k+InKqqKp577rl2NW8t5gDG4cA/gQ+AcOcVLliwQIuppm1rnm14PNwDjAZ+D2H3XYBFmOuTnAv0DMG/8ePHO9oSKHC9fvKJudj3DjvAxRfDzz+HJnDYYWZ7qfvug169urZhc03YsmWLO2renDlmS6OnnjJbmS1bFpmOEBbBrjnHa5bH0/V6Gf/6ly1mdH8vlns9dZp26Oh+fgnWuDlvuscmNU+dptS8xMXtedM5Pp19c4q4aDkluJ/WaUq5ubls3LiRL774wnUtp5KTk+nXrx+bN26kvKWFHKsDLr4YHnwwpj4CtLS0sHHjRvr169epxZsbbDtlwy7daHVU5k+InJaWFsrKythzzz2pq6uzVburNjKxajm1yy670K9fPzZu3EhLyx9zKqKx0db3vsDtwHlhHF8BPAnMAr7fWpNb/YtJ+5vaWlpefpmNc+bQb/Fiklu6m2vShu23N9fUOOMM8wvaLgilJkTSuuj777+nV69e8V3zfv4Z9t4b2q7B5vHANdeYC0inpkrLqQjpzrfkDtecU35YYhhwyCGwfLn19s8/j/oHJbq/F8u9njpNO3R0P78Ea9ycN91jk5qnTlNqXuLi9rzpHJ8q31S2nEqJiRVBCJHy8nLVLjhGS0sL5eXlHAHWgxmgpN0UmF8yONliRbVtp2zYpRutjsr8CZGTnJzMwIEDGTt2LHPnzlXtju201jyn+B04H3gEeBDYP4RjcoApWx/1w4dTW1BA/SGH4O/Th9zcXGdmZvzyC7zyCixcCG+9RXJDA2FdrV6vuVDy3/8OmZkhHSI1LwiGAZMmtR/MaH3+jjvgxx/hueci9kvoGttrwpYtQWcpdcLjgRtvhBNOsN7+r3/Bf/8blTu6vxfLvZ46TTt0dD+/BGvcnDfdY5Oap05Tal7i4va86Ryfzr45hVYtp9z8ZbYQGhMnTiQjI0O1G46QkZHBxIkTOTFYfOnpZusLBdTW1vLEE09QW1vrSttO2bBLN1odlfkTIqc1bzNnziQ/P9/RNkcqaK15Ttf0j4CDgE3/+hfkBB0u7kTLqlW8+tlnbDNyJHljxuCdMsVsRRRq6ycrmprgyy/hmWfgb3+DAw80WwlOnmwuPNzQQG1GBk9MnEhtd69LWpq5TsYPP5hftoc4mAHO1YT6+vr4rnnPPGOumWBFSgpcfXVE/sQSxwbeYoBtNcEwzFwOHAiffRb6cccfD/sHGfqcNw9Wr47KLd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35xCqxkaAwYM4IADDmDs2LGMHTuWoUOHqnZJiDGlpaU0B1ssO85pbm6mtLSUq4PFl50NO+4II0fCSSfB+PHmF2ExICUlhby8PFJSYl8SYmHbKRt26UarozJ/QuS05i0zM5Pi4mJ8Pl9YA/tlZWUcZrEgtC601rxY1HQ/UHPmmfSZNAmuvx4efdT80rMLUpqbySstJaW5GdasMR+zZ5sbBw6EwYNh223/ePTrZz5aWsyFpKurzX+rqmDTJvjqK/ML0cbG0O1akZoKF1wA110H/ftH8Go4VxOSk5Pju+bl5EBuLlhdZ//8J/zpTxH5E0taW6PF46wuW2rC77+bA4Tz5pl/n3cerFgBPXp0f2zrLI0JE6y333prVDN0dH8vlns9dZp26Oh+fgnWuDlvuscmNU+dptS8xMXtedM5Pp19cwqt1tBISkrC06Yv9E477cSJJ57IuHHjGDlyJD1C+bAixCUq+645Scd+0kOANcF2Tk3t/EXYgQfCbbfB0Uc75aIgCHFKpGthxGoNDSdshKy7YgXccAO88UZEdpSwzTZQWGguFL7TTo6bi2QtBsfXOYgFFRVw1VXw+ON/PHfggfDBB+YsDexfp6IVu16/uro6CgsLLRfT9nq97Lvvvnz00Ucx9Qmie91C8uPVV80BjPXr2z9/223mAGAoGIa5VsaqVZ23eTzw9dcwZEhoWoIgCIIgCIKQwKj8LlerllPjx48nPT0dwzAwDIMff/yR//znP4wePZq+ffty+umn88wzz7B582bVrgoOMWLECNLS0lS74QhpaWmcPGIEDVbxeTzWv+r9+OPAFyxO0tDQwPLly2loaHDclgrbTtmwSzdaHZX5EyLH7XlLS0tTV9MPOghefx2++QauvNKyFVVDWhrLg9VkB+lkd8QIeOopc62Nu+6yZTDDqXOrsbEx/mteTg4UFcH//mfOxOnRw/w7jn7NlJ6eTnFxMRUVFZSUlLR7VFRUUFxcrNpFS8KpCT6fj9LS0sDj14UL4cQTOw9mAEybBmvXhuZE6ywNKwzDHByJEN1rutzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1NoNaDx0ksvsWnTJl599VUmT55M//79A4MbNTU1zJs3j3POOYfc3FyOOOII7r77br799lvVbgs2MmzYMFJTU1W74QipqalsM2wYjVbx9etnfVCfPvDnPzvrGOaXVCtXrqSxm1Yp8WrbKRt26UarozJ/QuS4PW+pqanqa/puu8E995iDBY8/bg50bKUxNZWVwWqygzSmprLygANoLCyEzz+HDz+Ev/7VXPzbLhshnFvhrsXg9XrJyclxT8079lizRdjChdDmV0XxhNfrJS8vr91D5/U1QqkJdXV1FBQUkJOTw6BBgwKP/uPHsyApyMeWhgazTZvfH5ojJ58Me+5pvW3OHPj++9B0OqB7TZd7PXWadujofn4J1rg5b7rHJjVPnabUvMTF7XnTOT6dfXMKrVpOWfH555/z8ssvs3DhQj5rs/Bf29ZUu+yyC+PGjWPcuHEceuihJAX7wCNoSyK0nOoLrCfIKGJ6OtTVdX5+4sT2bTEEQUhcDMNc5+H772HcOGk5Fanup5/CI4+Yv9AvLY3Ij4jYay8YN858HHQQaHCvUlBQEPJaDPn5+dr+8t9udG851R3h+K9by6muzsntga+B7I4bkpLg8svh3/+GUGdcPfcc/OUv1tsKC+Gxx0LTEQRBEARBEIQERVpOdcF+++3HTTfdxCeffEJZWRkPPfQQY8aMIS0tLTB74/vvv+fee+9l5MiRbLvttpx99tm88MIL1NTUqHZfCJPs7GzXDkidkJREdXY2fqv4srOtDzrpJEd9asXv91NZWYk/1F83xpltp2zYpRutjsr8CZETUt5++cVsR3T22eYC0XvtBWedBU1NsXM0QpKSkvSs6fvvD7Nm4V+3jsrVq/E//TRMmgR77GGfjZQU2HdfOOccmDnTHIRavRpuuw3/QQdRWV2tRc0rKioiPz+/y1/1e71e8vPzKSoqkponREV3NcHn87FgwYKgx/8GXNXxyb32Mtc/uffe0AczAE4/3ZzBZcVTT0U02Kn7eSn3euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUmn3L0DU77LADkyZN4pVXXuH333/npZdeorCwkG233TYwuLF582bmzJlDQUEB/fr149hjj+WBBx7gp59+Uu2+EAJTpkwhMzNTtRuOcFxmJjOmTKG6Y3y77AI//wyffWb2dd5nH/P5Xr3gmGNi4lt1dTUzZsyguro6JvZibdspG3bpRqujMn9C5HSbt48+ggEDzC/Fn34afvvNfL6mxlxfR3MyMzO1runV1dXM+O9/qT7xRJg1y1wMeMMGeOklcy2La64xZ8mNGQMHHGCut9CrlzkAvdNOZq0+9FBze0EBXHGFOaPu88+hthZWroQnnjAX+R48uL1dTWpeV2sxdFyTIT09XWqeEBXd1YTy8vJOi5x3pAh4CzB69ICbbzbvnYYPD9+Z5GT4+9+ttzU3w+23hy2p+3kp93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFNq3nAoFwzBYsWIFCxcu5OWXX2b16tWBbW1bU+29996MGzeOsWPHclCbPtqCelqnKWVnZ1NdXc2qVatc1XIqDdiQlIQ/M5PM6mqS2o6aXnml2eO9La2/5p0wISZ++v1+qquryczMjPmvqWNh2ykbdulGq6Myf0LkdJu3xkZzAWOrdnTTplF69tlat5waPHgwmZmZVHeYjaC85dRWVF03UvP0r3nScsoZu0lJSZY1odUPICS/84D3Fi+m/3HHReOuOXCx++7www+dt/XoAevWwY47hiyn+3ux3Oup07RDR/fzS7DGzXnTPTapeeo0peYlLm7Pm87xqfJNWk5FicfjYfjw4dx6662sWrWKH374gRkzZnD00UeTkpISmL2xevVqbrvtNg4++GD69++v2m3BArdOkToSyPT7ya6sbD+YAWY/9Y7sskvMBjNAbWuYWNh2yoZdutHqaNvaR+iSbvOWmgpHHGG97c03nXPMJnSf9qrqupGaF4Oa19IShXeCU3RVE0pLS7udnRHYF2jafffoHUpJgeuus97W1AR33hmWnO7vxXKvp07TDh3dzy/BGjfnTffYpOap05Sal7i4PW86x6ezb07hykjz8vK49NJLef311/n999+ZO3cuZ555Jjk5OYHBjfLyctVuChZMnjyZ3r17q3bDdsYCNb17M2vyZGraxpeTY7YsUUxNTQ2zZs1Ssu5MLGw7ZcMu3Wh1VOZPiJyQ8nb00dbPL1+OZ8sWZxyzid69e2td01VdN1LzHK55hmG2Abv0UqiqispPwV66qglHHnkke9i5jk2onH222ULOikcfNdvQhYju78Vyr6dO0w4d3c8vwRo350332KTmqdOUmpe4uD1vOsens29O4coBjbb07t2b0047jaeffpoNGzawdOlSrrzySnbddVfVrgkWrFy5ksbGRtVu2M44ILWxkWErV5LaNr4xY8xfCComNTWVYcOGkZqa6krbTtmwSzdaHZX5EyInpLxZDWgkJ8MBB5C8caNzztlAY2Oj1jVd1XUjNc/hmvfcc/D66/DAAzBkiPl3/HdXdQVa1oTUVJg61XqbzwczZoQhpfd7sdzrqdO0Q0f380uwxs150z02qXnqNKXmJS5uz5vO8ensm1O4Yg0NIf5R2XfNSUpLSzl50CA+C7bD3Llw+umxdEkQhHjC74ftt4c+fczBjaOPNttQZWVFvJ5ErNbQcMJGLHwX4pjKSnMQY/369s8ffTQ8+CDstltIMrKGhvN2o8XW19Lng513ht9+67wtMxN++gmysuyxJQiCIAiCIAguQdbQsJEXX3yRiRMncvzxx3POOedQXFys2iUhDEaOHInX61Xthq2M3fqvz+tl6ciR+LbGZ6SkQLQLWtqEz+dj6dKlIfevjjfbTtmwSzdaHZX5EyInpLwlJcF338HXX8PMmeaaO3HyxZrX69W6pqu6bqTmOVjzbrih82AGmGvOXHJJRLYE+1BSE0JZw8frhSuvtN5WXQ0PPRSSKd3fi+VeT52mHTq6n1+CNW7Om+6xSc1Tpyk1L3Fxe950jk9n35wiLgY01q9fz+GHH87hhx/O9ddfb7mP3+/n5JNPDrSXev3113nmmWc488wzOfLII9miea9xwSQvL48UDVow2Unrkt/NKSmU5uXRvDU+3/Dh2nwx2dzcTGlpKc3Nza607ZQNu3Sj1VGZPyFyQs5bZmZsHLKZlJQUrWu6qutGap5DNe/TT+E//7E+ICUF7rsvIluCfcS0JhgGzJkD++wDobTnmzTJXNfMiunTob6+Wwnd34vlXk+dph06up9fgjVuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi5aTs2aNYuLL74Yj8fD888/zymnnNJpnzvuuIPrrrvO8niPx8Npp50mszU0xq0tp37+8EN2POQQy22b/vEP+tx8c2wdEgTBNUjLKft0BRewZAmccw78/HPnbVOnwr//HbKUtJxy3m60dOn3N9/AxRfD22+bf19wATz8cPeiN98M06ZZb3vgAfi//4vEVUEQBEEQBEFwJdJyqhuWLVsGmIucHH/88Z22NzY2cuedd+LxePB4PBxzzDHMnDmTq6++Gq/Xi2EYvPDCC3zyySexdl0Ik9zcXJKTk1W7YRvprR+mgZbkZMpzc2nZGp8/OxuamhR51p6WlhbKy8tpaWlxpW2nbNilG62OyvwJkeP2vCUnJ2td01W9/lLzHKp5Rx5ptma7+mpzRkYrAwearagE5bStCWvWrKGkpISvvvqK4cOH22Ogvh5uugmGDv1jMAPg0UfNGTzdceml0KuX9bY77+z2nk33mi73euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUcTGg8dVXXwGw9957k56e3mn7a6+9RkVFBQDjxo3jf//7H5dccgl33HEHjz/+eGC/Z555JjYOCxEzefJkevfurdoN2+j55puB/9f07s3syZOp6d2bGqDfFVfAdtuZvyh96SWoq1PmZ01NDbNnz6ampsaVtp2yYZdutDoq8ydEjtvz1rt3b61ruqrXX2qegzUvI8P84vnzz+Gww8znZs4M/iW1EFPa1gSv10teXh577rkny5cvp76+npKSknaPNWvWhGdg1iy45RZobGz/vGGYgxXdrafRp4/ZesqKn36CZ5/t8nDda7rc66nTtENH9/NLsMbNedM9Nql56jSl5iUubs+bzvHp7JtTxEXLqb59+1JRUUFBQQFz5szptP2SSy7hP//5Dx6Ph2XLlnFImxY/fr+fnXbaid9++40DDzyQ5cuXx9J1IURapyl5vV4aGhr48ssv47/lVG0tRp8+eLZ+sDY8HhrS0khraMBvGHT6zXLPnmZLhLPOirmrhmHQ0NBAWloaHo/HdbadsmGXbrQ6KvMnRE60edO95dTOO+9MWloaDQ0NtL3V0KXllKrrRmpejGqeYZiLgR9zTNj60nLKGbsejydQE3744Ydu7YZ9vTc0wF57wbp11oJPPQV//WuXNvnlF9h5586DIgBDhsBXX0GS9e/BdH8vlns9dZp26Oh+fgnWuDlvuscmNU+dptS8xMXtedM5PlW+ScupbmgdYcoKsoBya0uqvn37thvMAEhKSmL//ffHMAzWBfuAI2iDz+dr98VXXPPGG4HBDACPYeD1+fBYDWaA2SphyJCYudcWj8eD1+tVUpRjYdspG3bpRqujMn9C5Lg9b4ZhaF3TVb3+UvNiVPM8nogGMwTncLIm+Hw+Sn/7jfVB1tPD44Fvv+1eqH9/c+asFWvXwvz5QQ/VvabLvZ46TTt0dD+/BGvcnDfdY5Oap05Tal7i4va86Ryfzr45RVwMaLQmxGq19qqqKr766is8Hg9//vOfLY/fbrvtAKiurnbOScEWpkyZQmZmpmo37GHhwnZ/Vmdmct+UKWwIFt+OO8L++8fAsc5UV1dz3333KblGYmHbKRt26UarozJ/QuS4PW+ZmZla13RVr7/UPKl5iYoTNaGuro6CggJycnIYNGgQueefz6IO+7Qccoi5hsYtt4Qmes01QWdh8O9/m7N/LND9vJR7PXWadujofn4J1rg5b7rHJjVPnabUvMTF7XnTOT6dfXOKuBjQyM7OBqCsrKzTtnfffRf/1p64hx56qOXxrQMhui5MKvzB0qVL8fl8qt2InpYWeOWVdk95fT5GLl1Kr2DxTZhg/oJQAV6vl5EjR+L1el1p2ykbdulGq6Myf0Lk2JG3nYBJQB/bvLIPn8+ndU1Xdd1IzZOal6g4URMKCwuZO3duO80rgEbgF+AM4MwBA2C//UIX3WUXOP10622ffGK2MrNA9/NS7vXUadqho/v5JVjj5rzpHpvUPHWaUvMSF7fnTef4dPbNKeJiDY0jjjiCZcuWkZWVxW+//dYuQeeccw5PP/00Ho+H5cuXc+CBB3Y6fsyYMSxevJj+/fvz888/x9J1IURU9l1zhA8+gCADbO8Bw4CMjhveegtGjXLWL0EQ4puGBli2DF57jcaFC0n9/nsAzgLarjClwxoaTtiIhe+CIGto6GG3u+s9NzeXnJwcywGS0cAyYAvmB7yKiorwPuCtWgX77mu97cgj4e23Q9cSBEEQBEEQBBcia2h0w1FHHQWYU2imTp0aeP6DDz5g7ty5eDwetttuOw444ADL41euXInH42Hw4MEx8VeInNGjR9OzZ0/VbkRPh3ZTAPU9e/LK6NGM69mTvsD6Rx+FwkLo2xe22QYOPzz2frb6Vl/P4sWLqa+vd6Vtp2zYpRutjsr8CZETUd6GDzfXBbj33sBgBsDxDvgXLT179tS6pqu6bqTmSc1zmtzc3JC+vPd6veTm5sbAIxO7a0J5eXnQ2R6LMQczwJwZUl5eHp740KFw4onW25YsgeXLOz2t+3kp93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFHExoFFYWBj48HP//feTl5fH/vvvz5FHHknj1kWXL7jgAsvFT9asWRP4ELNfONPNBSVkZ2eTFKxvcTzx8sudnvInJfF9djaNSUk0APVHHQWPPQbl5fDhh5CSEns/W33z+6msrAy0b3Obbads2KUbrY7K/AmRE1HeDjvM8unj0O8NPSkpSeuaruq6kZoXpU5ZGf5rr6VywwapeUHwer2MHz++2/3Gjx9v67T07gZSWmtCz549YzqQEjHBFhgHcy2NDuj+Xiz3euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUcdFyCuDhhx9m8uTJ7QYtWl3fbbfd+OSTT8jI6NTEh2nTpjFt2jQ8Hg/PP/88p5xySsx8FkLHVS2nvv8edt3VctMFwKNb/y/tUQRBCJtFi+CEEyw3DQdWbP2/tJwSXMuZZ8Kzz0J2NkybBhddBD162Goi3ltOgblYdmFhIQsWLOg0i6F1wKOoqIj09HRb7RYUFDB37twu98nPz6e4uLhbre6ud8D51lojR8I771hvW7UK9tknfE1BEARBEARBcAHScioELrzwQl588UX23XdfDMPAMAy8Xi8FBQW88847loMZTU1NPPzwwwCkpKRw9NFHx9ptIUzy8vJIUThTwRYsZmcANKek8Jmm8TU3N1NaWkpzc7MrbTtlwy7daHVU5k+InIjyNnIkpKVZbtKt7VRKSorWNV3VdSM1LwqdDz6AZ5+lOSWF0uxsmq+6CoYNC7pIcyKTnp5OcXExFRUVlJSUtHtUVFRQXFxs+2AGQFFREfn5+ZYzNXr16sW5554buDePC66/Pvi2O+5o96fu78Vyr6dO0w4d3c8vwRo350332KTmqdOUmpe4uD1vOsens29OETcDGgATJkzgs88+o6amhl9++YWqqiqeffZZtttuO8v9GxoaePbZZ1myZElgUXFBbyZOnGg5OBVXBBnQeC8jg3GaxldbW8uTTz5JbW2tK207ZcMu3Wh1VOZPiJyI8paebg5qdGAlEGaHeMfJyMiwrOllZWWUlpYGfQTriW83qq4bqXkR6hgGXHGFeXxGBk9OnEhtRgZ8/bW5rozF2lWCORsjLy+v3cPONlMd6WogZd26dQwcODC+psIfcwz86U/W24qL4ccfA3/q/l4s93rqNO3Q0f38Eqxxc950j01qnjpNqXmJi9vzpnN8OvvmFHHTckpwN65pOVVRAf36QUtLp003ALe2+VvaowiCEBEzZ8JNN7HlkEO49LXXWAz81mEXnVtOdUdX7XCk5VQCM3cuFBRYb9tzT1i50rbWU25oOeUGHG85ZRjw3//CfvvBLrsEP3jePDj1VOttl10GM2aE5IMgCIIgCIIguAlpOSUIbuG11ywHMwDkt6OCINjCBRfAxo1s/M9/eJzOgxnxjs/nY+7cuRQWFqp2RdCJrr40vu8+29fREPQm6tlcy5fDn/8Mp58O117b9b4TJgRdG41HH4VNmyL3QxAEQRAEQRCEsJEBDUErpk6dGt+twYK0m/oR+CkrS9v4qqqquP3226mqqnKlbads2KUbrY7K/AmRE3HeevaMiy9vs6KseVaLGduJqutGal6EOv/7H9x4I/TsSVVWFrdPnUpVVhaccILZFkjQHjvPyyOPPJI99tgj/ANLS82ZPgcfbK7JAvDii/Duu8GPSU6Gq6+23lZXBw8+COj/Xiz3euo07dDR/fwSrHFz3nSPTWqeOk2peYmL2/Omc3w6++YUMqAhaMX8+fOpq6tT7UZkNDaaMzQsWAjU1dVpG196ejoTJkxwZIFQHWw7ZcMu3Wh1VOZPiBw35y03N5eWlpaoap7P56O83LmVQVS9/lLzItTp3Rv++U/47jvSTzmFCfPnk+7zwV13ReWLEDuU17zPPoMhQ8z2ZR256iroam2Pv/4VgqzZx/33Q12d+vi6Qe711GnaoaP7+SVY4+a86R6b1Dx1mlLzEhe3503n+HT2zSnibg2N+vp6Xn31VVasWEFJSQnV1dU0NTWFdKzH4+Gtt95y2EMhElyxhsZbb8HRR1tuehS4C/i2zXPSS1sQhGiIdD2JWK1DUVBQwFyrLw7DoKM/soaGEOCLL+C99+D//s92aVlDQw/szENJSQl5O+0EBx5oDmxY8cwzcOaZwUVuvx2uu8562wMPOHIuCoIgCIIgCIKuyBoaIWAYBnfeeSe5ubnk5+dzzz338OKLL/Lmm2/yzjvvdPtYunQpS5cuVR2G0A1xPaIYpN1UM3A+8Hl6Ok9MmMC/0tM5AMzFKDVB5eyRWNh2yoZdutHq6Dz7RwiO2/P2wAMPMGXKFHJyclS7Yomq119qnk01r6SEunPPjcoPIbaEm/fc3Fy8Xq99DiQlwT33BN9+ww1B10EDYPJkc6aQFffcQ111tdY1Xe711GnaoeP2ewa34ua86R6b1Dx1mlLzEhe3503n+HT2zSniZkDjrLPO4rrrrqOmpgbDMMJ+CIKjGAYstF72O7nN/7OAK4CPgcyiohg4JgiCoIb09HSOOOIIvv/+e0pKSoI+li1bptpVQRA0xOv1Mn78eHtFR44EK83jj4dXXjHXywhGdjZMmmS9raQk6H2gIAiCIAiCIAj2Ehctp5599lnOOussPB4PhmGw++67c/rpp7P33nuzzTbbkJKSErLWEUcc4aCnQqTEfcup1athn33COuSXN9+k/1FHOeSQIAhuR/eWU6ESjj+6+S64E2k5pQ91dXUUFhayYMECfD5fxDrtXvtvv4W99oLmZvPe7e674dhjQxP65RcYNAis2t0OG2a2s/J4IvZTEARBEARBEOIFaTnVDY8++mjg/1dccQVfffUV06ZN47TTTuOoo47iiCOOCPkh6M2QIUPo0aOHajfCJ0i7qbajhU09erB2yBCaevRgDdA0eHBMXAuFpqYm1q5dG/J6NPFm2ykbdulGq6Myf0LkuD1vusenyj+peVLzEpVI8paenk5xcTEVFRUsWbLEHkd22w1uugkeeQQ+/zz0wQyA/v3hrLMsNzV99RVr587V9ryUez11mnboSN2LT9ycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXAxorFq1Co/Hw6BBg7j77rtJSooLt4UIiNs1NIK1GWjzK7269HTmT5hAXXo6L8XIrVCRHqNqdWUNjcTEibxlAicDGc89Z5tmpOh+XsoaGup0peYlJtHkzev12ju75cYb4fzzu24xtRWfz0dpaWng0XDZZZb71aWnM/+rr7Q9L+VeT52m9JNPXNycN91jk5qnTlNqXuLi9rzpHJ/OvjlFXLScysjIoL6+nrPPPpvHH39ctTuCA8R1y6n162H77S0X+a4bNYrP336bg2k/engQ8Ly0nhAEIQpa2+LsA4wBjgcOAXoALTk5JG/caPllnW5tm6TllNCOxkaor4esLGUuSMspPYkmL2vWrGm3wHgoC44Ha3fl9XpZts02HPDrr9YHfvIJ7L9/RH4KgiAIgiAIQrwgLae6YaeddgKQmRmCnrz6quVgBsDmv/+dPwM7AJOAxcAPwCex804QBBdzLLAKuB04AnMwAyC5osL8Uk0Q4o1HHoGdd4Z77oEo1kwQhLbsscceDBo0KPDIycmhoKCgy1+xFRYWMnfu3E5rd/h8Pi4LNpgBcOeddrktCIIgCIIgCIIFcTFCMHz4cAzDYM2aNapdERzm5ptvJjs7W7Ub4RGs3dTuu9O8884ArAeez87mo5tv5qDsbHSbFlVZWcm0adOorKx0pW2nbNilG62OyvwJkWNH3pYBQb/yfe21iHXtQPfzUpV/UvO60KmthX/+EzZvhr/9zVzr4PHHoaXFET+E2KJT3nw+H3PnzqWwsDDo9gULFgQ9/kPggw6Lf1dmZzPt5pupfOMNWLfOTndtQe711GnaoaPT9SOEjpvzpntsUvPUaUrNS1zcnjed49PZN6eIi5ZTn376KQceeCDJycl8/vnn7aazCO6gdZpSXl4eZWVlrFy5Mj5aTtXXQ58+5r8dufpqSi++ONAeISUlhQEDBlBWVkZzc7NWrSeam5spKytjwIABpKSkuM62Uzbs0o1WR2X+hMiJNm+t7VdeA0Zb7XDQQfDRR0GPs8LOuhRqfKpaTqm6bqTmdaFzyy3mYs0d2XNPePpp+NOfbPUjGD6fj5ycnE6/zI8Wnd73VWBXzbMTr9dLRUVFp/ZTodg6EXi5zd/NKSmUDRjAgLIyUi64AP7zH1t9jRa511OnaYeO3OvFJ27Om+6xSc1Tpyk1L3Fxe950jk+VbypbTsXFgAbAxRdfzKxZs9hrr71YunQpffr0Ue2SYCNxu4bGq6/CiSdab3v3XUp33FH6vQuC4AitX7hdBsyw2sHjMdf46dfP8jgrZA0NQRkbN5qtpmprO2/r2RO+/x522CFm7hQUFDB37lxbNeUcjQ6n1jZZsmQJI0aMaDeoEYotD+DbdVdSv/uu80avF378Ebbd1mZvBUEQBEEQBEEPZA2NEHjggQe44IILAi/WAw88wG+//abaLcFmCgoK6NWrl2o3QidYu6k+feDgg9s91atXL23j27JlC8XFxWzZssWVtp2yYZdutDoq8ydEjl15W2TxXPN220FhofXssRih+3mpyj+peUF0br3VejAD4PLL2w1mxOI1LCoqIj8/P+jC0V6vl+HDhztm343oWhOOPPJIyzU1DsdsLVUQ5DgDqL7wwsDfW3r1origgC29epnrv9x/v5Nuh43c66nTtENH1+tH6Bo350332KTmqdOUmpe4uD1vOsens29OodccmS5ISkpi9uzZ7LHHHlx55ZVcfvnlXH755WRlZZGVlYWnQx9bKzweD+s07Gkr/EFlZSV+v1+1G6Hh98Mrr1hvGzMGOkzz8vv92saXlJREdnY2SUmxH+OMhW2nbNilG62OyvwJkWNX3r4H1mCu1fPa1sfCDz8kz4FfMoeD7uelKv+k5gXR2XZb6NULOt6EZ2fDNdc44kdXpKenU1xcjM/no7y8vNP23NxcysvLHZkx4FZ0rgmta2oAFF9/PdtOmcI7W7dtC8wDmiyOqx03jr733Qe//EKS3092ZSVJrfd5Dz4I114LGRnOBxACcq+nTtMOHZ2vHyE4bs6b7rFJzVOnKTUvcXF73nSOT2ffnCJuWk41NTVx2WWXUVRURHNzM23dDmUwwzAMPB4PLR0WlhT0IC5bTn3yCRx4oPW2F16AU0+V9iiCIDhG2/qSDLR9d+uqvuhWl6TllBBg/XpzpsasWdC09evjO+7oNKChC+G2QJJzNDqcajnVyg7AHUlJnGkYeDp8PLoUeMDimJKSEvLmzTMXsbdi+nSYMsVmTwVBEARBEARBPdJyqhtaWloYP348Dz/8cKfBDDAHK7p7CPHBsGHDSE1NVe1GaARrN5WaCscdZ/F0qrbxNTY2snLlShobG11p2ykbdulGq6Myf0Lk2Jk3HYfqdT8vVfknNa8Lne22g5kzYe1aOPNM2HFHuPRSx/wQYovuecsACvz+ToMZADdu3W7JhRdCVhaNqamsHDaMxrb3effe+8fgnGLkXk+dph06ul8/gjVuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi4GNB5++GEWL14MmIMXRx99NI899hgrVqzgu+++o6SkJKTHDz/8oDgSoTtGjhwZtF+1drz8svXzI0dC796dnvZ6vdrG5/P5WLp0KT6fz5W2nbJhl260OirzJ0SO2/Ome3yq/JOaF4LOzjvDM8/AV1+ZC4I75IcQW3TP27fAY0G2bQtcFezA3r3h4ovxeb0sHTkSX9v7vJ9/huees9XPSJF7PXWadujofv0I1rg5b7rHJjVPnabUvMTF7XnTOT6dfXOKuGg5NWLECFasWIHH4+Guu+7iyiuvVO2SYDNx13Lqp59g4EDrbUOHwlVXwYknUlpdLe1RBEFwhEjbL+nWtklaTgnxirScii1Ot5wC2B4o83pJsvgwWAyc0eG5QE7LyyEvDxoaOovutRd8+SWE0CJXEARBEARBEOIFaTnVDV999RUej4c999xTBjNcjtfrDWlNFOUEm50BsGoVnHMObLst2511FhcDuZhrvegan2EY+Hw+Je3ZYmHbKRt26UarozJ/QuS4PW+6x6fKP6l5UvMSFV3y5vF4eO211yy3/QZUFxa2e+5D4HA6D2a0IzcX45xz8Hm9GB3v8776ChYtisJje5B7PXWadujocv0I4eHmvOkem9Q8dZpS8xIXt+dN5/h09s0p4mJAo5Xhw4erdkFwmKlTp5KVlaXaje7pakCjlZYWer7/Pg8CpwJZWVnaxldVVcUdd9xBVVWVK207ZcMu3Wh1VOZPiBy35033+FT5JzVPal6iokveTj/9dIYMGRJ0e/WkSbRkZbEGOAk4BFgWgm7V5MncMXUqVVb3eXfcEaG39iH3euo07dDR5foRwsPNedM9Nql56jSl5iUubs+bzvHp7JtTxEXLqSFDhvDdd99x9tln8/jjj6t2R3CA1mlKubm5bNy4kS+++ELfllPV1dC3b1iLPO4I/JacTL9+/di4cSMtLS1atZ5oaWlh48aN9OvXj+TkZNfZdsqGXbrR6qjMnxA50eZN95ZTocanquWUqutGap57ap60nAoPJ2teKHi9XsaPH09RUREbNmzospb0WLuWgccfT0s3mm1z2tLSwsaJE+n33HMkt1gc+eGHMGJExP5Hi9zrqdO0Q0eXuieEh5vzpntsUvPUaUrNS1zcnjed41Plm8qWUykxsRIlo0aN4ttvv2XlypWqXREcpry8XLUL3fP662ENZnwClAG0tGgbX3JyMrm5ua617ZQNu3Sj1VGZPyFy3J433eNT5Z/UPKl5iUos87ZmzRq8bRfnBnJzczs9F4ymIUO6HcwAcwHG0tLSwN+pp55K8jPPWO98110wb15I9p1A7vXUadqhI3UvPnFz3nSPTWqeOk2peYmL2/Omc3w6++YUcdFyatKkSSQnJ7Nq1SqWLQtl0rcQr0ycOJGMjAzVbnRNKO2m2vDS1n8zMjK0ja+2tpYnnniC2tpaV9p2yoZdutHqqMyfEDkxyVtTE7z7Llx3nbm+TwzR/bxU5V/C17zmZmoffpgnioqk5iUYscyb1+slLy+v3SPUwYxw2GOPPRg0aBCDBg1in3324e/z5/N6797WO7/0Enz3ne0+hIrc66nTtENH6l584ua86R6b1Dx1mlLzEhe3503n+HT2zSniYkBj33335dZbb8UwDAoKCli7dq1qlwSHKC0tpbm5WbUbwWluhldftd42dixMmQIDB7Z7unVAo7m5Wdv4UlJSyMvLIyUl9pO2YmHbKRt26UarozJ/QuQ4lbftgYznn4fTToN+/eCII+D22+HFF2210x26n5eq/Ev4mjdnDimXX07e/PmkPP00NDaq8UOIOW7PW+t93sxgs3gNA+65J7ZOtUHu9dRp2qHj9uvHrbg5b7rHJjVPnabUvMTF7XnTOT6dfXOKuFhDo5WHH36Yyy+/nKSkJCZPnswpp5zC3nvvTWZmpmrXhChR2XctLJYtg8MPt972yitwwgnmB9YvvoCXXqLuww/p9cYblrsnei9tQRCiI1g/+deA0VYHHHQQfPRRzNbQCBVVa2gICmhshCFDoKTkj+cGDYKbb4YzzwTNetF2h6yhEVt8Ph85OTn4fL4u9/N6vVRUVHQ5I6O7WgJEtV7HKmAfqw1pafDjj7DddhFrC4IgCIIgCIIOqPwuNy5maCQnJ5OcnMxFF11EY2Mj9fX13HfffRx22GHk5OQEtnf3SKSRqnhlxIgRpKWlqXYjOMHaTfXsCaNGmf/3eGDYMJg2jQ0PPxzYJS0tTdv4GhoaWL58OQ0NDa607ZQNu3Sj1VGZPyFynMrbomAbPv4YNm601VZX6H5eqvIvoWve449DSQkNaWksHzGChrQ0c3DjnHNg6tTY+SEoIdq8tS7q3R3jx493pL1Ud7S9z7sz2E4NDXD//bF0q41puddTpWmHjtS9+MTNedM9Nql56jSl5iUubs+bzvHp7JtTxMWARsdJJB6Pp922cB6C3gwbNozU1FTVbgRn4ULr54891hzU6ILU1FRt42tsbGTlypU0RtD6Ix5sO2XDLt1odVTmT4gcp/L2WrANhgGvBd1qO3bEV1ZWRmlpaeBRVlamlX+62tWy5vl8cMstpk5qKiuHDaOx9f0wORkmT46NH4Iy7MhbUVER+fn5lgMWXq+X/Px8ioqKonEzLNrOwmh7n1cM/BTsoAcfBAX9jeVeT52mHTpS9+ITN+dN99ik5qnTlJqXuLg9bzrHp7NvThEXLaeSkuwZd/F4PLS0tNiiJdhLXLSc+vZb2H13622PPQaFhZ2elvYogiA4RVf1pTEvjx6lpZ03nHwypffco1VdCrdtTzCkpmrOjBnmOlNWXHABtJnRGC9Iyyl1+Hw+ysvL2z2Xm5sb8syMaFtO/Qn4F3A8cCSw1GKfKcD0YALTpwe/HgRBEARBEAQhDpCWU93g9/ttechghv5kZ2fbNoBlO8HaTXk85toZ3ZCUlKRtfH6/n8rKSvx+vyttO2XDLt1odVTmT4gcJ/NW19oCr5XMTCgogLPOst1WMHQ/L1X5l7A17/TT4dJLITUVf1ISldnZ+JOSIDUVbrghdn4IyrAzb16vl7y8vHaPWLSZ2hP4L/Ap5mAGwK1b/+14n/co0BJsnb9774Vgi4c7hNzrqdO0Q0fqXnzi5rzpHpvUPHWaUvMSF7fnTef4dPbNKfT7ZtWllJaW8sgjj3DWWWex7777kpOTQ48ePdhmm20YOnQokyZN4p133olI++OPP+biiy9mzz33JDMzk8zMTPbcc08uvvhiPv7444g0f/rpJ26++Wb2339/+vXrR8+ePRk8eDCnnnoqL730kmPtu6ZMmaLvIu/B2k0NHx7S4o6ZmZnaxlddXc2MGTOorq52pW2nbNilG62OyvwJkeNk3uqPOQYGDICLL4bXXzfXznjuOTjpJNttBUP381KVfwlb87bfHmbOhO++o/rCC5kxZQrVmZkwaRLstFPs/BCUEe95uwb4Ejilw/OHAGPofJ9XC9QEG0T++WeYO9cxX62Qez11mnboxPv1k6i4OW+6xyY1T52m1LzExe150zk+nX1zirhoOXXyyScD0KNHD5555hl69Oih2KPQ+fzzz5k8eTIrVqwIaf+RI0fy5JNPslMIH+4bGxu5+uqruf/++4MOMHg8Hi6//HLuvPPOkF+3xx57jMsvv5wtW7YE3efoo4/m6aefJjc3NyTN7midppSdnU11dTWrVq3Sq+XUpk2w7bZgNdp5221w3XWWh7VtaZCUlERmZibV1dX4/X6tWk/4/X6qq6vJzMyM+QySWNh2yoZdutHqqMyfEDnR5q3Llinr1pE3aJA5gyyc42ysS6HG5/P5yMnJwefzRWzL6/VSUVER1i+0VV03UvO26qxaRebMmSTddhuEeS+hS82TllPhoUveILKWU38GlgXR+xw4oMN9HsBPK1aw45//DFb9jIcOhZUrLeu0E8i9njpNO3R0un6E0HFz3nSPTWqeOk2peYmL2/Omc3yqfFPZciolJlaiZP78+Xg8Ho466qi4GswA+OabbzoNZuy2227svffe9O3bl8rKSj744IPAQqdLly7l4IMPZtmyZey8885dal9wwQU89dRTgb933nlnRowYAcDy5cv54YcfMAyD++67j+rqah577LFu/S0qKuL8888P/J2dnc2oUaPIyspi9erVgRkfb775Jscddxzvv/8+GRkZob0YIVBZWWmblq289pr1YAbA2LEhSbROAdOR1jYJbrXtlA27dKPVUZk/IXIczVtSUsy+JAvuQmjxeb1exo8fz9wofq08fvz4sNvNqLpupOZt1Rk2DCJcvFlqXnwS73l7D1gMjLbYth9wst/Pfzvc57X06wfnnAOPPNL5oFWrzBl0xx1nv7MWyL2eOk07dOL9+klU3Jw33WOTmqdOU2pe4uL2vOkcn86+OYVeQ0pByMnJAYjrX7Xtsssu3H777ZSVlfHNN98wb948Zs+ezdy5c/nxxx957LHHSE9PB+DXX3/lzDPP7LKtU1FRUWAwIykpienTp/Pdd98xZ84c5syZw3fffcf06dMDI3Nt9w/GN998w+TJkwN/n3nmmZSVlTFv3jyKiopYsWIFb731ViAfq1at4rLLLovqdenI5MmT6d27t62athCs3VReHoQ4+ti7d29t46upqWHWrFnU1NS40rZTNuzSjVZHZf6EyHF73sKJr6ioiPz8/LAHJbxeL/n5+RRF8MW4qtdfap7UvETFDXkLttrL+8DGYPd5V10VdIC5/p//pLS0lNLS0qhmqYWC3Oup07RDxw3XTyLi5rzpHpvUPHWaUvMSF7fnTef4dPbNKeJiQGOHHXYAoK6uTrEn4bP99tvz+OOPs3btWq699lr69+/faZ+kpCQKCwt55plnAs8tX76c119/3VKzoaGBm2++OfD3Nddcw5QpU9pNK0pKSmLKlClcffXVgeduuukmGq2mvG/lxhtvpGnrAoWHHnooTz31FL169Wq3z6hRo5gzZ07g76eeeoo1a9YE1QyXlStXdumjEhobYfFi622//w6XXQZvvdXt4o6NjY16xgekpqYybNgwUlNTXWnbKRt26UarozJ/QuS4PW/hxJeenk5xcTEVFRWUlJSE/KioqKC4uDjwgwCn/LMTqXlS8xIVN+TtU+DFNn9/jrl+xp+B5cHu83bfHSZMsNTr+cEHnDpoEIMGDSInJ4eCggLHPu/IvZ46TTt03HD9JCJuzpvusUnNU6cpNS9xcXvedI5PZ9+cIi7W0JgyZQozZ85kl1124dtvv1XtjqMMHz480KLq0ksvZebMmZ32eeGFFzj99NMByMrK4tdffw36ZU5dXR3bb799YGGYF198kZMsFoVdv349O+ywQ6Dn7/vvv88hhxwS1M9jjjmGN998E4DLLruMGTNmhBFlZ1T2XeuWN96AY4/tfr+cHLP91OTJcPDBQOx61QuCkHhEWl+kLgmCPcgaGvFLJGtotLIn8DxwMzAP6OqDVCDny5cH7g07MhcoaPN3fn4+xcXFXfovCIIgCIIgCKpR+V1uXMzQKCwsJDk5mXXr1vHyyy+rdsdRDj300MD/S0tLLfeZP39+4P/5+fld/jI1PT09MPgB8NJLL1nut3DhwsBgxm677dblYAbAxIkTLf2JlpEjR4bdcsRxgrWb6khFBTz1FHzzjeVmr9erZ3yYi/IuXbrU8XYHqmw7ZcMu3Wh1VOZPiBy35033+FT5JzVPal6i4pa8fQ3sDfyX9oMZXd7njRiBv809fltOBdqumrdgwQJHXiO511OnaYeOW66fRMPNedM9Nql56jSl5iUubs+bzvHp7JtTxMWAxtChQ/n73/+OYRicc845vP/++6pdcgxPmx67LS0tlvssWbIk8P+RI0d2q3nkkUcG/v/222/brvnTTz/x/fffd3tMKOTl5ZGSotFa9YYB4QyiJSXBiSdabkpJSdEvvq00NzdTWlpKc3OzK207ZcMu3Wh1VOZPiBy35033+FT5JzVPal6i4va8dXeft/Hccy2fTwaubPO3z+ejvLzcdv/kXk+dph06br9+3Iqb86Z7bFLz1GlKzUtc3J43nePT2TeniIuWU63cfffdXH/99RiGwWmnnUZ+fj77778//fr1Iy0tTbV7tnDsscfyxhtvADBp0iRmzZrVbntVVVW7levXrl3L7rvv3qXm2rVr2WOPPdppZGZmtttnv/32Y+XKlQDMmjWLSZMmdetrbm4u69evB8wZHmPHju32mGBo23Jq1SrYd9/Q9x85EtoMDklrF0EQnEJaTgnacuONsMMOcN554OI+rtJyKn6JpuVUOLTNeekPP1A3eDB7WuxXD+wE/G5xnCAIgiAIgiDoiLSc6obk5GSSk5O59tpraWlpoaWlhblz53LyySczcOBA0tPTA/t09dDxl/Ft+emnn9rNoDj66KM77fNNh3ZGO+20U7e6HffpqNHxuYEDB3ar2VF37dq1IR3THbm5uSQnJ9uiZQuhtptqxWJ9klaSk5P1i28rLS0tlJeXB50VFO+2nbJhl260OirzJ0SOkrwZBj3WruV64EOgr4OmdD8vVfnn+pq3bh3cfjtcfLG5GPITT0CHXwpJzUtM3J63bu/zkpK4K8ixPYH/c8qxrci9njpNO3Tcfv24FTfnTffYpOap05Sal7i4PW86x6ezb04RFwMaHSeRtG3LZBhGWA+dufLKKwMn30477WQ542HTpk2B/2dmZtKzZ89uddPT0+ndu3fg782bN7fbXl9fT319feDv7bbbLiR/c3Nzg2pGyuTJk9v5qpxg7aYOPRTmzIHTToNevf54fvz4oFK9e/fWL76t1NTUMHv2bGpqalxp2ykbdulGq6Myf0LkxCxvhgFLl8IVV8DgwfQ//nhuBUYA1g3y7EH381KVf66vedOm/TGAUVoK554Le+0FxcWwda0uqXmJSbzkrbS0NKL+w93d5/l8Pp4Ffgly/CVA8FXxokfu9dRp2qETL9eP0B4350332KTmqdOUmpe4uD1vOsens2+OYcQBHo/HlkdSUpLqUILyxBNPGJhrCxqAMWfOHMv9nn/++cA+2223Xcj62267beC4//73v+22bdiwoZ3tNWvWhKR5+umnB4655JJLQvbFitWrVxuAkZWVZWRkZBirV682mpubjYqKCsPv9xuGYRhVVVVGQ0ODYRiGUVdXZ9TW1hqGYRhNTU1GRUVFQKuystJobGw0DMMwtmzZYmzZssUwDMNobGw0KisrA/tVVFQYTU1NhmEYRm1trVFXV2cYhmE0NDQYVVVVhvHrr4bf4zEqsrON5uRkwwCjJiPDqPd6DePeew2fz2dUV1cbRn290bJwoVHxj38YLS0thmEYRnV1teHz+YySkhLD6/UaGRkZhsfjMdLT043s7GzD4/EYJSUlsY/JMAy/329UVFQYzc3NhmEYRk1NjVFXV2fU19cb9fX1ZkyGYbS0tBgVFRWdYjIMw6ivrzdqamoMwzCizpPf7zc2bdoU2M+umOrr6w3DMAyfz2dUVVUZ9fX1AV/tiqmxsdEoLy8P7BdpnrZs2WLU19cHfA0lprZ52rx5s7FlyxbD7/c7lqdwY4okT7E+91TH1HrN1dXVRRTTl19+GajBWVlZRo8ePQzASE9PD9TxxsZGo7KiwjB22cUwwKjIzjaaUlIMA4zaXr2MF3r2NAAjNTXVyMzMNEpKSmzLU2uMra+/bnlSVfcaGhqM+vr6wLVvZ0yteaqvrzc2bNhg+P1+W2Py+/1GTU2NsXnzZus8ffGFsaVXL8MAo7FHD6MyK8swzCE1o2LvvY2mrfG2avj9/oiup+bmZqO8vDywn6oa8eWXXxopKSkGYPTq1cvo2eF6AgyPx2NkZ2cbycnJRklJSULXvaqqKqOystLw+/3KYyopKQmaJ8DIyMgwvF6vARhpaWlG7969DcBISkoysrOzjaSkJAMwevfubaSlpRmA4fV6jT59+hgej8dITk42srOzjR9++MHYsmWLceaZZxqpqakGYPytZ0+jdut10pSSYlRkZweuk0u31vKSkhLb81RdXR14nWN97sVr3WvVb2xsjOrc8/v9xu+//x7YL57rntzvxW/dsztPrce3PUd1isnv9xsbN24M7BfLc6/1dfH7/Y7lye/3G5WVlYH97Ihpy5Ytxu+//274/f6o8tTY2BiwGem51/rabd682dU1wm0x+f1+Y8OGDe3em+M9prZ50rnuNTU1tfsMHmpM0eap9bvc1sfq1auNWBEXMzT8fr8tD12n3nzyySdMnjw58PcZZ5zBX/7yF8t92/5iLDWMvtRt1xhpOxujo2Y4ul1pRsp+++3HqaeeCsDGjRuZMWMGDQ0NABQVFfH1118D8M477/Dy1tkTZWVlzJgxI6Dx0EMPsW7dOgBef/11Xn/9dQDWrVvHQw89FNhvxowZlJWVAfDyyy/zzjvvAPD1119TVFQEr7xCQ1oaM6ZMYWO/fgD899RTWT5iBIwbx+eff86cOXPA66X6sMOY4fFQXV0NwJw5c/j8888BGDFiBKeeeiqGYZCZmcmUKVMCr13MYwIaGhqYMWMGGzduNGP673/56KOP8Hq9rFy50owJqK6uZsaMGZYxLV++nP/+97+25Mnj8fDuu+8G1o6xK6bly5cD8Pnnn/Pss8/i9XqpqamxNaZffvmFWbNmBWaNRZqnd999F6/Xy5o1a0KOqW2eZs6cSWNjIx6Px7E8hRtTJHmK9bmnOqaVK1fi9Xr56KOPIopp3rx5AV8vuugiBg8eDJhrMX3yySd/xDRrVmD22IwpUygbMMCMaexYvEccQU9gzz33pLCw0NY8zZs3D6/Xy++//65lnlTVvR9++AGv18sbb7zh2Lm3cuVK5s2bh2fr+5JdMXk8Hn7//Xdmzpxpnacnn+T1Y44xYxo8mIcuuuiPmE49lbINGwB45ZVX+Oijj/B4PBFdTzU1NcyaNSvwCyRVNWLevHkM2Ho9jR07liOOOAJofz2lpaUxZcoU+rXeRyRw3Xv22WdZs2YNHo9Hi5i6ytOpp57KiBEjAPPe9MwzzwQI3Me1rkV35plnst9++wHm/d7YsWMxDIN+/foxZcoUkpcsobCwkH79+rHnnubqGd8ecQQvbp2FXTZgADOmTAn4mnvRRey6tZbbnad58+axcuVKPB5PzM+9eK17r7zyCl6vl19++SWqc8/j8fDGG2/w7rvvhhWTjnVP7vfiu+7ZmSePxxO47nSMyePxBO43Qo0J7Dn3Zs2axS+//ILH43EsTx6PhzVr1vDss8/aFlPrZ3KPxxNVnn755Re8Xi+vvPJKxOeex+OhsbGRmTNnurpGuC0mj8cTuN9wS0xt86Rz3fv999/xer3MmzdPybmnhJgNnQiW/PDDD0Zubm5gNGvo0KGBkTYr3D5D44orrjByc3P1mKExdqz1DI2hQw3DCG20s+0MjczMTGPKlCnGgAEDtJuhsX79emP69OnGhg0bYv7rgaqqKuOee+4xysvLbY2p7aj0L7/8YkyfPt2oqKiwNaZNmzYZ99xzT8CPSPPU+vpv3Lgxol8P/PTTT8a9995rVFVVue5XHnbkSdeYNmzYYEyfPt1Yv369szM0KisN4913LWdo1PXsaYx1aIbGr7/+akyfPt3YvHmzlnlSVfd+//13Y/r06UZ5eblj596GDRsCtcnOmKqqqox7773X+OmnnzrnacMGY0t2trElPb3zDI3ddzcqNm4MxPTbb78F/IvkeqqoqDDuueeewGsrMzTUX0+hxPTLL78E3qtUx+TEDI1+/foZV1xxhXFgZqbxfHKyUZGdbTRsu62RlZZmZGZmBmZo9OzZ0/h3kBkalVlZRoFDMzR+/fXXwOsf63MvXuveb7/9ZkyfPt3YtGlTVOde673u+vXrw4pJx7on93vxW/fszlPrPcGvv/6qZUwdr7tYnns///xzIO9O5an19f/ll19si2n9+vWBOhpNnjZt2mRMnz7d+O233yI+99rec7q5RrgtptbrbsOGDa6JqW2edK57mzdvNqZPn278+uuvCTNDQwY0FPLrr78agwcPDiR+5513DlwYwVi0aFFg/8zMzJBttX4QA4zFixe321ZXV9fuBPzss89C0hw7dmzgmKlTp4bsixWtF8GwYcOM1NTUmF4ElmzZYhheb+ADZrvHtdeGLFNSUhJ4jVJTUwPxAUZJSYlz/odJQ0OD8fnnnwcKldtsO2XDLt1odVTmT4icaPPWtr50fHSqL83NhtGnj2VNe6Sr46JA9/NSlX+urnnr1hnGeecZxtYfAQQeHdpouqXmdXUNhnRdJhi65M0wzA9urQMWdj32SU01Zg0bZjSkprY7/y+12Hd7MBqs7jHB+BSMkh9+sD1muddTp2mHjk7XjxA6bs6b7rFJzVOnKTUvcXF73nSOT5VvKgc0PIah+UrZLmXTpk0cccQRfPXVVwBsv/32vP/++wwaNKjL41asWMHw4cMDf9fX1+P1ers8pq6ujl5tFq5esWIFBx54YLt90tPTA22jXnvtNUaPHt1tDAcddBAff/wxAHfeeSdXX311t8cE46uvvmLvvfcO/L169Wr22muviPWiZuHC4At8v/8+HHJISDKlpaVBc1pSUkJeXl6EDgqCkOiEXV8mToQnnwSgBXgPWADMB0q6Ok4QwuWHH+DWW83zbdddYfVqSE5W7ZXtdHUNWiHXl14UFBQwd+5cW7QygV+BXhbbfgN2BjouM/4ocF4QvfKnnyb3rLNs8U0QBEEQBEEQnEDld7lxsYaG26iurua4444LDGb07duXN998M6QPxbvvvnu7v3/88cduj/npp5+61Oj4XCiaHXWHDBkS0jHdMXr0aHr27GmLVlRs7QvXib59oc2AUjj07NlTn/g6UF9fz+LFi21bC0U3207ZsEs3Wh2V+RMiJ+Z5O/10OPlkNt59N9sBI4Hp/DGYYTe6n5eq/EuImrfzzvDYY/Dtt1BU1GkwQ2peYqJb3oqKisjPz+/2h0GhUA3M7tmTxaNHU9/hPm97YLLFMXd3oZc1e3bUPnVE7vXUadqho9v1I4SGm/Ome2xS89RpSs1LXNyeN53j09k3p9BmQOPXX3+Nuc3ffvst5ja3bNnCmDFj+PTTTwHIyspi8eLFgYUCuyMrK4vtt98+8HfrIi5d8dlnnwX+379//8BChm3ZY489wtL89ddfWb9+veXx0ZCdnU1SkuLT0u8PPqBx4okR/8o0KSlJj/gs8Pv9VFZW4vf7XWnbKRt26UarozJ/QuTEPG9jxsC8eWw55RQ2xcCc7uelKv8SqubtvDMcfLDt/ul+bgnW6Ja39PR0iouLqaioYM2aNVHr3Z+UxKbsbPwW93lTgY4/Z5n+2mssDKLV8733YOuCmnYh93rqNO3Q0e36EULDzXnTPTapeeo0peYlLm7Pm87x6eybU2jTciojI4MpU6Zw1VVXkZOT46itiooK7rrrLu6//35qamoctdUWn8/HCSecwNtvvw2YH6Ref/11Dj300LB0zjzzTJ599lkAJk2axKxZs7rcf9KkSTz88MMA/PWvf+Wpp57qtM8jjzzChRdeCJizNdauXdul5nPPPcdf/vIXAHbaaaeQZ3UEQ6uWUx99BCNGWG978UU46aSQpaTllCAIThFpfZG6JAj2IC2n3IUdLajuBq7q8NznwD+Ajj+VWbJkCTcceSTvBRP7y19gzpyo/BEEQRAEQRAEp5CWU5jrPPz73/9m4MCB/O1vf2PdunW221i3bh1XXnklAwcO5I477qCurs52G8FoamrilFNOCQxmpKWlsWDBgrAHMwAmTJgQ+P/cuXO7nFJUX1/P888/b3lsW8aNGxeYOfDNN9+wfPnyLn144oknAv8fH2ytiQjIy8sjJSXFNr2ICDY7o0cPOOaYiGVTUlL0iM+C5uZmSktLaW5udqVtp2zYpRutjsr8CZHj9rzpHp8q/6TmSc1LVHTPW7QtqFJSUngmL4+qrfd5q4DV//wn+9N5MKOV94EPggnOnQulpRH5YoXc66nTtENH9+tHsMbNedM9Nql56jSl5iUubs+bzvHp7JtTaDOgcdlll5GcnExtbS3Tp09n9913Z9SoUcyePbtda6NwWb9+PbNnz2bUqFHstttuzJgxg9raWpKTk7n88sttjCA4LS0t/OUvf2HRokWA+YHn+eef5+ijj45Ib9y4cQwYMACAyspKbr311qD73nLLLVRWVgIwcOBATjzxRMv9tttuO04++eTA39dccw3BJu+8/vrrvP766wAkJyczebJVZ+DImDhxIhkZGbbpRcTCIA0AmprgqKPg9tvhm2/Cls3IyNAjPgtqa2t58sknqa2tdaVtp2zYpRutjsr8CZHjZN7KysooLS21fJSVldluzwrdz0tV/knNk5qXqOiet7YtqEpKSgKPJUuWhHR8RkYGEyZO5KaMDE4DhgG/H3YY3U2FvzPYhpYWmD49ZP+7Q+711GnaoaP79SNY4+a86R6b1Dx1mlLzEhe3503n+HT2zSm0aTkF5tSUa665hsWLFwPg8XgC24YMGcJhhx3G0KFDGTJkCAMGDKBPnz6kp6djGAb19fX8/vvvlJWV8c033/DFF1/w3nvvtWud1Brq8ccfz5133hmTaTCGYXDuuefy5JNPAuY6CnPmzKGgoCAq3aKiIs4777yA5vTp07nkkksCsyz8fj8PPPAAV1xxRaCH2pNPPsnZZ58dVHPt2rUMHTqUpqYmwGxP9dBDD9GrV6/APkuWLOG0005j0yazA/u5555LUVFRVLGARi2nSksh1PYRQ4bAtGnmQrtB5aS1iyAIzhBuu5tQkLokCKEjLacSg2hq7ZIlSzjyyCO73OYB1gC7W+2Ung4//QR9+kRkXxAEQRAEQRCcQuV3uVr1vtl7771ZtGgR77//PrfffjuLFi0KDEKsXbu223UdrGg93uPxcOKJJ3LddddxsMUClU7x0EMPBQYzAAYPHsx7773He+8F7ZjbjgceeMDy+cLCQpYuXcrTTz+N3+/n8ssvZ+bMmYzYuvbD8uXL27XtOvfcc7sczABz0Oihhx7i/PPPB+Dpp5/mlVdeYdSoUWRmZvL111/z0UcfBfYfOnQoM2bMCCmOuCFYuykr1q6FNoNugiAIgpAwGIa8BwpCN5SG0DLKAO4CHrXaWFcH//kP3HijvY4JgiAIgiAIQjxjaMx3331nXHfddcbAgQMNj8cT0WPgwIHG9ddfb3z33XdKYvjHP/5hYH5WiejRFQ0NDcYll1xieDyeoMd7PB7jsssuMxobG0P2+ZFHHjF69erVpV9HHXWU8euvv0b78gRYvXq1ARhTp041srKyjNWrV9umHRZHH20Y5tc03T/S0gyjurpLuZKSksBrlpWVFYgPMEpKSmITUwhUVlYa//73v43KykpX2nbKhl260eqozJ8QOdHmrW19sethZ13S/bxU5Z8rat5HHxnG7rsbxlNPGUZTU8z90+XcCvca1Ol9XwW65C1cQs1zx/u87h5LliwJ/D8NjF+D3W/27WsYdXVRxyH3euo07dCJ1+sn0XFz3nSPTWqeOk2peYmL2/Omc3yqfGv9Lrf1EcvvcrUe0GjLqlWrjHvuucc4/fTTjSFDhhg9e/bsNHjRs2dPY4899jDy8/ONe+65x1i1apVqtx0d0Gjlo48+MiZNmmTsvvvuRkZGhpGRkWHsvvvuxqRJk4wVK1ZE5PePP/5o3HTTTcZ+++1n9OnTx0hLSzPy8vKMk08+2XjxxRcNv98fkW4wWi+CIUOGGD169FAzoFFZaRg9eoQ+oHHCCd1Ktv0Q3KNHj0B8un2x0djYaKxZsyasga94su2UDbt0o9VRmT8hcqLNW319veH1em0bzPB6vUZ9N4O0sYzPaVT554qal5//x3vhbrsZxtNPG0Zzc8z80+XckgGN8NAlb+ESap473ueFM6ABGFO7uuf8z3+ijkPu9dRp2qETr9dPouPmvOkem9Q8dZpS8xIXt+dN5/hU+aZyQEOrNTTCpaqqii1btgDQq1cvsrKyFHskRIoWa2g8/zzk54e+/6OPwtZ1TIIha2gIguAkBQUFzJ07NyqNfsBY4KIdduAAn8/s195m7SRBaMfq1TB0qPk1a1t2281cwHjMGDV+KUDW0EgMnFivCDqvr5EN/AT0ttp58GD45htITrbdD0EQBEEQBEGIBJXf5SbFxIpDZGVlscMOO7DDDjvIYIZLmDBhAunp6WqML1xo/Xz//vDtt3DXXXDIIWbP8KQkGDcuLPn09HS18XVBXV0d8+fPp66uzpW2nbJhl260OirzJ0SOHXkrKioiPz8fr9cb1nFe4GrgPaAceAw44NdfYfNmeOONiP1pi+7npSr/4r7mPfoodT17dt747bdmv/8Y+Kf7uSVY4/a8hXOf5/V6yc3NbfdcJfBwsAPWrYOXXorKP7nXU6dph47brx+34ua86R6b1Dx1mlLzEhe3503n+HT2zSm0WhRcEJTR3AyLFllvGzsWdt0V/vY381FeDh9+CP36xdZHQRCEDqSnp1NcXIzP56O8vDz0A1ta2HH4cJI3beq8bcECmDDBNh8FF/H11/Djj9bb9tkHTj45tv4IQpzyfyNHMuDvfycbcyCjlfuAy4AeVgfdeSeccor5wxpBEARBEARBSGDiuuWU4B6Ut5x65x0YOdJ626JFcPzxEclKyylBELTlvPOgqKjz8337mgO30tpE6Mh//gOXXgp+f+dt//2v+WVrAiEtpxIDO1tODUtN5cHttuPgsjI8hsE/gX902OcJ4JxgAkuWBL9fFQRBEARBEIQYIi2nBGErQ4YMoUcPy9+lOUuwdlO9ekGb/sbR0KNHD3XxdUNTUxNr166lqanJlbadsmGXbrQ6KvMnRI7yvI0fb/3877/DBx9ELa88vm5Q5V9c17wLLmDtG2/QdM45ZuvFVoYOhZNOipl/up9bgjVuz1tX93m7A+WjRvFZUxOH/Pwznq2/J5sC5HTY9+6ujNx5Z8T+yb2eOk07dNx+/bgVN+dN99ik5qnTlJqXuLg9bzrHp7NvTiEDGoJWKFljwjCCD2gceyyE2Zs+GLKGhjrbsoaGoCPK83b00WC1FgLA4sVRyyuPrxtkDY0IdVesoG7GDFizBv76V3Ng4x//aD/A4bB/up9bgjVuz1tX93mnAtu9/XZgIKOVTODKDvuuBuqC/Zjmtddg1aqI/JN7PXWa0k8+cXFz3nSPTWqeOk2peYmL2/Omc3w6++YU0nJK0AKlLafWroU99rDe9vjjMHFixNLSckoQBK2ZMMFcMwPMtYLGjzcfBx8sLaeE0Fi3DgYNCmtAwy1Iy6nEwI6WU72BiuxskisrO22rBgYBm9s899tzz5F7xhnWYn/9Kzz1VFT+CIIgCIIgCEK0SMspQVBJsNkZHg+ccEJsfREEQYglF14I//63udjzN9/AXXfBn/8sgxlC6AwenJCDGYIQDjVA9fnnW27LpPOaGb7hw+HAA63FnnsOfv7ZTvcEQRAEQRAEIa6QT6CCVtx8881kZ2fH1ujLL1s/f/DB0K+fbWays7PVxBcClZWVTJs2jUqLXw66wbZTNuzSjVZHZf6EyNEib2PGwNSp5iw1j8dWaS3i6wJV/knNk5qXqLg9b93d51WffTZss02751ZjtqO6r+POHg9cc421oeZmuK/TEd0i93rqNO3Qcfv141bcnDfdY5Oap05Tal7i4va86Ryfzr45hbScErSgdZpSXl4eZWVlrFy5MjbTlDZuhNxc8Ps7b7v9drj22qjk27YpSElJYcCAAZSVldHc3KxV64nm5mbKysoYMGAAKSkprrPtlA27dKPVUZk/IXLcnjfd41Pln9Q899Q8aTkVHrrkLVx8Ph85OTn4fL4u9+t4n9eRkpIS8p57Dq6/Hvbckw0XXUTupZdi9UGspKSEvB13hN13N9u6dSQjA376CXI6LikeHLnXU6dph068Xj+JjpvzpntsUvPUaUrNS1zcnjed41Plm8qWUzKgIWiBsovgySeDr5Hx6afwpz9FJS9raAiCIAiCO5EBjcShoKCAuXPnRqVRUlJCXp8+sGgRnHoqpT//3P094qxZcNFF1oK33QbXXReVT4IgCIIgCIIQKbKGhiBspaCggF69esXOYLB2U2D2kT/pJHPhxc2bg+8XIr169Yp9fCGyZcsWiouL2bJliyttO2XDLt1odVTmT4gct+dN9/hU+Sc1T2peohLPeSsqKiI/Px+v1xt0n5Du83r3hvz80NcpOuec4O1PZ8yAbmaNtEXu9dRp2qETz9dPIuPmvOkem9Q8dZpS8xIXt+dN5/h09s0pZEBD0IrKykr8Vu2fnMDng8WLg2+vr4f5880Pk9tuC/fcE5U5v98f2/jCICkpiezsbJIULOwaC9tO2bBLN1odlfkTIsftedM9PlX+xU3N27wZWlrs17VBR/dzS7AmnvOWnp5OcXExFRUVlJSUtHusWbMGcOg+r2dPuOwy623r18PTT4csJfd66jTt0Inn6yeRcXPedI9Nap46Tal5iYvb86ZzfDr75hTSckrQAiXTlBYvhuOPD33/RYvC2x9pOSUIgiDEKRMmwLffwk03wWmnhf6L8gRCWk4JEPp50DH/Id8jbt4MO+4IdXWd9msaNIiWL7/Eq+HsX0EQBEEQBMHdSMspQdjKsGHDSE1NjY2xrtpNdaR3bxg1KipzqampsY0vDBobG1m5ciWNjY2utO2UDbt0o9VRmT8hctyeN93jU+VfXNS8zz+HBQtgzRo44wwYOhTmzqXR55OaJ0SM2/Pm2H3eNtvQdM45lpt6lJRwRkYGI0aM4Ouvv+5y4XK511OnaYeO268ft+LmvOkem9Q8dZpS8xIXt+dN5/h09s0pZEBD0IqRI0d22Z/YNgwDFi4Mff8xYyAtLSqTXq83dvGFic/nY+nSpV1+EI5n207ZsEs3Wh2V+RMiJy7y1tQE774b0aG6x6fKv7ioedOmtf/766+hoADfn//M0rfekponRITb8+bkfd6VP/9Mc5Bt1wAfffQRe+21Fzk5ORQUFFBnMZtD7vXUadqh4/brx624OW+6xyY1T52m1LzExe150zk+nX1zCmk5JWhBzKcpff45/OlP1tt694aamvbPFRebiziGibScEgQh7mhqgrffhhdegJdeMtudrFkDQ4ao9kyIBZ99Bvvvb73tT3+CTz4Bjye2PmmKtJwSwMGWUwMHgseDz+cjJyeHR30+zgyi/Wfg/TZ/5+fnU1xcHHIMgiAIgiAIghAu0nJKELbi9XrxxOKLkmDtplJS4Icf4J13YMoUGDgQUlPDXjvDCo/HE7v4wsQwDHw+HyrGN2Nh2ykbdulGq6Myf0LkaJe3lha44ALIzYXRo+Gxx8zBDDAHN8JEu/g6oMo/7Wtex9kZbXX/8Q98DQ1S84SIcHve7LrP2w3oO2UKXHstAOXl5fh8Pu7q4phrOvy9YMGCTr/Qk3s9dZp26Lj9+nErbs6b7rFJzVOnKTUvcXF73nSOT2ffnEIGNAStmDp1KllZWc4bCtZu6ogjoG9fOPxwmD4dSkrMXyZnZkZtMisrK3bxhUlVVRV33HEHVVVVrrTtlA27dKPVUZk/IXK0y1tystlaqHUQoy0RDGhoF18HVPmndc1rboaMDOsZGPvvT9Vhh0nNEyLG7XmL9j5vV+Ap4GsgY8ECeOABKC8PbP8C+F+QY8cBe7T52+fzUd7mWJB7PZWadui4/fpxK27Om+6xSc1Tpyk1L3Fxe950jk9n35xCWk4JWtA6TSk3N5eNGzfyxRdfODdN6ZdfYMAA62333QeXX26bqbbtBJKTk+nXrx8bN26kpaVFq9YTLS0tbNy4kX79+pGcnOw6207ZsEs3Wh2V+RMiR8u83XcfXHGF9ba1a2H33UOW0jK+NqjyLy5q3po18K9/wXPPmWtOASxcSMuYMVLz2iAtp8JDl7zZTet50PE+ryPBWk71Ae4BzgI6vSpTplB6+eWB82wU8FYQP4qA87qwJ/d66jTt0HHr9eN23Jw33WOTmqdOU2pe4uL2vOkcnyrfVLackgENQQtiehHMng2TJ1tvW7cOdt7ZNlOyhoYgCHFFWRnsuKP1tltugRtuiK0/glpaBza+/x6WL5e1MzogAxoCRL+GRk/gByDX6iCvl5/feYedhg8PPPUJYLXKTSMwCPg1iD1BEARBEARBsBNZQ0MQtjJx4kQyMjKcNRKs3dTee9s6mNGRjIyM2MQXAbW1tTzxxBPU1ta60rZTNuzSjVZHZf6EyNEybwMGwCGHdH4+IwM69GPvDi3ja4Mq/+Kq5u2xB8yZA8uWgccjNU+ICrfnLdL7vHrg9mAbfT6yHnqo3VN3Btk1FehqjrHc66nTtEPH7dePW3Fz3nSPTWqeOk2peYmL2/Omc3w6++YUMqAhaEVpaSnNzc3OGdiyBd4KMll/7Fjn7ALNzc3OxxchKSkp5OXlkZKS4krbTtmwSzdaHZX5EyJH27yddpr5b0YGnHEGvPQSbNhg/lI/DLSNbyuq/IvLmpeaaquu1LzExO15i+Y+bzZ/zKzoSOpHH7X7wDYPKAmy72Qg2Kpvcq+nTtMOHbdfP27FzXnTPTapeeo0peYlLm7Pm87x6eybU0jLKUELYjZNaf58OOkk620ffggjRthqTlpOCYIQd5SXm+2FjjsOevZU7Y0gaIu0nBIg+pZTrVwKzGyzv3+33Xhwm22Ysnw5/g5a/wc8EMTONcBdFvYEQRAEQRAEwU6k5ZQgbGXEiBGkpaU5ZyBYu6ltt4WDDnLOLpCWluZ8fBHS0NDA8uXLaWhocKVtp2zYpRutjsr8CZGjbd5yc2HChKgHM7SNbyuq/JOaJzUvUXFr3nJzc/F6vV3e53m9XnJzLVfJCPAI5iyNb4CN06dz5r77cpnFYAbA48DvQXQux2w/1RG511OnaYeOW68ft+PmvOkem9Q8dZpS8xIXt+dN5/h09s0pZEBD0Iphw4aRmmr1McwGWlrglVest514IiQ5ezmkpqY6G18UNDY2snLlShobG11p2ykbdulGq6Myf0LkuD1vusenyj+peVLzEhW35s3r9TJ+/Pgu7/PGjx+P1+vtUscHjAT2AjaNHs38l18Oum8dwWdo9Af+YvG83Oup07RDx63Xj9txc950j01qnjpNqXmJi9vzpnN8OvvmFNJyStCCmExT+vBD68VuAe66C666CjweW01KyylBEARBcCfSckpopa6ujsLCQhYsWIDP5ws83zrYUVRURHp6ertjujp/lixZwpFHHtmlzQFpafzo8ZDUxl4rXwPp69aRt/POAPh8PsrLy9vt0zqzRBAEQRAEQRAiQVpOCcJWsrOzSXJqpkSwdlMAV18NO+0El14Kb78NTU22m09KSnI2vijw+/1UVlbi91s1Noh/207ZsEs3Wh2V+RMix+150z0+Vf5pVfPeew/C8ENqXnvC+UI4lJZDbkeXvDlBeno6zz77LKWlpaxbt46SkhJKSkqoqKiguLi402CGHRw6YQK1p51muW1PoOfbb1NXV0dBQQE5OTkMHjyY/fbbj8GDBzNo0CBycnIoKCigrq7Odt86olXdU6Bph46brx834+a86R6bfL5Vpyk1L3Fxe950jk9n35xCv29WhYRmypQpZGZmOiPexdR9AMrK4IEH4Kij4MYbbTefmZnpbHxRUF1dzYwZM6iurnalbads2KUbrY7K/AmR4/a86R6fKv+0qXmffQaHHQbDhsG8eSENbEjNa0/rr+9DIZSWQ25Hl7w5RXV1NbNmzWKbbbYhLy+PvLw8x3Ken59PUVER1eefT0uQfbJmz6awsJC5c+fi8/k63Yf6fD7mzp1LYWGhIz62RZu6p0jTDh23Xz9uxc150z02+XyrTlNqXuLi9rzpHJ/OvjmFtJwStKB1mlJ2djbV1dWsWrXK3mlK69bBLruEvv+775pf9ERJ23YCSUlJZGZmUl1djd/v16r1hN/vp7q6mszMzJjPIImFbads2KUbrY7K/AmR4/a86R6fKv+0qXnjx7efubjPPvCPf8BJJwVdU0pqXmeCtRpqpauWQ4mGTnlzgnDji7Tl1Jo1axgyZEhAY/mgQRQEsXFkaipLt/ZS7ngf2orX66WiosLRATdt6p4iTTt03H79uBU350332OTzrTpNqXmJi9vzpnN8qnxT2XIqJSZWBCFEKisrnRHubnZGW/r1C77WRhS0TgHTkdZ2WG617ZQNu3Sj1VGZPyFy3J433eNT5Z8WNe+zzzq3YfzySzj1VDjrLHj66ch07fLP4ePtJD09neLiYss1CkDWKWiLTnlzgljF1/F8uguCDmhc1tjI0q3/D3Yf2nruOvkjGy3qnkJNO3Tcfv24FTfnTffY5POtOk2peYmL2/Omc3w6++YUeg0pCQnP5MmT6d27t/3C4QxojBsHycm2u9C7d2/n4ouSmpoaZs2aRU1NjSttO2XDLt1odVTmT4icuM3bN9/Av/4F33/f5W66x6fKPy1q3rRpwQ8uCPbVqNS8rvB6vYE2Q20fMpjxBzrmzU5iGt/mzYH/fga8FWS38cBuW/+v8j5Ui7qnUNMOHbdfP27FzXnTPTb5fKtOU2pe4uL2vOkcn86+OYUMaAhasXLlShq3To23jYoKeOcd62277AI9erR/7qST7LW/lcbGRmfis4HU1FSGDRtGamqqK207ZcMu3Wh1VOZPiJy4ylvrIMbQoTBkiLnOUHFxl4foHp8q/5TXPKvZGa0ccACMGROZrl3+xeB4QQ1uz1ss4tsZ6HP11TBgAPz4Y+D5O4PsnwRctfX/Ku9Dldc9xZp26Lj9+nErbs6b7rHJ51t1mlLzEhe3503n+HT2zSlkDQ1BCxztu/bcc/CXv1hvW7kSBg6ERYtg/nx47z344Qew6ReVXfVH1mkNDUEQhKCccw489VTn54cOhS++iL0/QnR89x38/e/wwgudt73yCpxwQux9EoQEJJw1NAYBNwBn06Zf8IUXUnrddQGNlcC+FloNwEBgfRe+yD2pIAiCIAiCEC4q19CQGRqCVowcOdL+9gzB2k3tuKP5hVx2tjng8fzz8PPPtg1mdMTr9ToTnw34fD6WLl1quaCpG2w7ZcMu3Wh1VOZPiJy4yduwYdbPr1plztwIgu7xqfJPec3bdVfz/W7VKjjttD+e72Z2Rre6dvkXg+MFNbg9b07FNw34Biikw+KHRUWklJUF/gw2SyMNuAy196HK655iTTt03H79uBU350332OTzrTpNqXmJi9vzpnN8OvvmFDKgIWhFXl4eKSk2rlXf1GTOvrBi3DjweNo/58DaGa2kpKTYH59NNDc3U1paSnNzsyttO2XDLt1odVTmT4icuMnbqacG32b1K/+t6B6fKv+0qXn77NN+YOPmmzu/J0aia5d/MfBDiC1uz5tT8f0M9LDa0NxM1gMPBP58HvjRaj/gYiBL4X2oNnVPkaYdOm6/ftyKm/Ome2zy+VadptS8xMXtedM5Pp19cwppOSVogWPTlN5+G446ynrb4sVw3HHR2+gCaTklCIIrOOQQ+PDDzs9L2ylBEISI6Ooe8bXXXuP4448HzFkZ32K2neqIkZLCzs3NlG79+zJgRhB7VwN3B9km96SCIAiCIAhCuEjLKUHYSm5uLsl2zpII1m4qIwNGjrTPTggkJyfbH59NtLS0UF5eTktLiyttO2XDLt1odVTmT4icuMpb29ZErRx8MJx7Lvj9lofoHp8q/6TmSc1LVNyeNzvjax3MAGgG/hVkv+YBA9ihzd+PAZuD7DslOZkdFd2Hxmvd06Xm2emLEFvcnDfdY5PPt+o0peYlLm7Pm87x6eybU8iAhqAVkydPpnfv3vaIGQYsXGi9bfRoSEuzx06I9O7d2974bKSmpobZs2dTU1PjSttO2bBLN1odlfkTIieu8nbqqWY7ooMPhunT4aef4IMPYMoUSLK+ldA9PlX+Sc2TmpeouD1vTsb3FLCu7RODB8MTT/DLG2/wQZuntwD/CaLRq3dvzlN0HxqvdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hLacELWidpuT1emloaODLL7+MfprS119DMI0nn4Szz45OPwTathPweDykpaXR0NCAYRhaTe83DIOGhgbS0tLwdNNDPR5tO2XDLt1odVTmT4icuMvbhg2w7bYh7657fKr8k5onNS9RcXvewo2vq5ZTVkwEbgCy7rqLvlOmQEqKpUZfzLU00jv65/HwbVoaezU00NLh45/T96TxWvd0qXl2+iLEFjfnTffY5POtOk2peYmL2/Omc3yqfJOWU4KwFZ/Ph21jbMFmZyQlwZgx9tgIA8Mw7I3PRjweD16vV0lRjoVtp2zYpRutjsr8CZETd3kLYzAD9I9PlX9S86TmJSpuz1u48eXm5uL1ekPWfxoYAtSeeip0sbD378DDVv4ZBrv7fBQouA+N17qnS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSumTJlCZmamPWLBBjQOPRT69rXHRhhkZmbaG5+NVFdXc99991FdXe1K207ZsEs3Wh2V+RMix+150z0+Vf5JzZOal6i4PW/hxuf1ehk/fnzI+i2Y62mEwj2Av8OgR3VmJvdNmcLlmZnE+qNuvNY9XWqenb4IscXNedM9Nvl8q05Tal7i4va86Ryfzr45hQxoCFqxdOlSfD5f9EIbNsDy5dbb+vSBX36J3kaY+Hw+++KzGa/Xy8iRI8P6pWA82XbKhl260eqozJ8QOW7Pm+7xqfIvpjVv3TpYsMBcU8pOXal5QgS4PW+RxFdUVER+fr7tvpQB6489tt1zXp+PkUuXsq/Px7gQdXw+H6WlpYFHpPew8Xqvp0vNs9MXIba4OW+6xyafb9VpSs1LXNyeN53j09k3p5A1NAQtsL3v2uOPQ2Fh1/scdBBMmACnnQa77BK5rS7oqj+yTmtoCIIgCC5k/HhztuJ++8E//gHjxpmLuwuCoBVr165ljz32CGnftvePXd1nLn/6aQ74619Jtti2AhgeRBOgrq6OwsJCFixY0G4Qo3VWSVFREenpHVfpEARBEARBEBIJWUNDELYyevRoevbsGb1QsHZTbVmxAq6/Hp56Knp7IdCzZ0/74rOZ+vp6Fi9eTH19vSttO2XDLt1odVTmT4gct+dN9/hU+RezmvfUU9S/8Yb5xOefmwP4++8f1YwNqXlCNLg9b9HE58Sv6eoHDOCFtn/37Mni0aOp79mTg4Cjuji2sLCQuXPndpqR4fP5mDt3LoXd/Wiooy9xeq+nS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSuys7NJSorytPT54PXXQ99/woTo7IVIUlKSPfE5gN/vp7KyEr/f70rbTtmwSzdaHZX5EyLH7XnTPT5V/sWs5n3+Of6O7zetAxtvvx25rtQ8IULcnjcd4/t3m//7k5KozM4O1IXrgxzj8/lYsGBBl7odZ250R7ze6+lS8+z0RYgtbs6b7rHJ51t1mlLzEhe3503n+HT2zSmk5ZSgBbZOU1q0CE44IbR9Bw6EkhLHWnBIyylBEBKKpibo0UO1F8Jnn5mzMaw44ABzhqK0nhIEbejqfrEj3bWcysNcQPypJUs48sgjeRk4MYjWwcDyEDS780MQBEEQBEFIPKTllCBsJS8vj5SUlOhEQmk31cqECTH7UiclJcWe+BygubmZ0tJSmpubXWnbKRt26UarozJ/QuS4Jm+VlfDYY3Dkke1mvOkenyr/YlLz/vlPSvPyaLZ6v7n55ojf96TmCdHg9rypjm8g8DDwLe1nZty29d/mlJROdeG6GPkWr/d6utQ8O30RYoub86Z7bPL5Vp2m1LzExe150zk+nX1zChnQELRi4sSJZGRkRC5gGPDyy9bb9tkH2owcAnDSSZHbCpOMjIzo43OI2tpannzySWpra11p2ykbdulGq6Myf0LkxHXeGhpg/nw49VTIzYXzz4elS2HxYli/HtA/PlX+xaTmXXMNT06cSG3H95sDDoAxYyLXlZonRIHb86Yqvp2AWcB3wAVAD+AMIP3HHwH4EFgK1GZkdKoL44B9YuBjvN7r6VLz7PRFiC1uzpvuscnnW3WaUvMSF7fnTef4dPbNKaTllKAFtk1T+vRT8wsbK55/Hk47Db7/Hl56yewh/vLL4OCMCWk5JQiCK/n4YzjoIOtt990Hl18eU3eEIKxcCf/8p/meB/DKK6G3ZBQEIWZE2nLq1wUL6DthAqkW+60fNYrcrevlHAMEW13uWeAQaTklCIIgCIIghIm0nBIEuwjWbqpHDzjuOPP/u+wCV18Nr73m6GCGIAiCazngANhtN+ttzzwTW1+E4AwbBi++aC4GfvXVUc3OEARBPxr33pvvg2zbdskS9tj6/zeAT4Lslw+klJba7ZogCIIgCIIgOIYMaAhaMXXqVLKysiIXCNZuauRIyMyMXNcGsrKyoo/PIaqqqrj99tupqqpypW2nbNilG62OyvwJkRPXefN44KyzrLd98gmsXat9fKr8U1Lzhg2DO++Mes0oqXlCNLg9b9HEl5ubi9fr7XY/r9dLbm7uH08kJ/PPIPt6DIOb2vx9V1YWt0+dSlWH+9BkIGv27LB9Dod4vdfTpebZ6YsQW9ycN91jk8+36jSl5iUubs+bzvHp7JtTyICGoBXz58+nrq4usoN//tn8FaoV48ZF7pRN1NXVRRefg6SnpzNhwgTS09NdadspG3bpRqujMn9C5MR93s48M/i2xYu1j0+Vf1LzpOYlKm7PWzTxeb1exo8f3+1+48eP7zTw8QLwtcW+9bm5/K/N3y/V1XHA/PmkW9yHZsybB7/8Ep7TYRCvdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04ha2gIWmBL37X//Af+7/+st5WWwsCBkTsYIbKGhiAIrubQQ+GDD8z/9+9vDnKceSYMHarWL0EQhDijrq6OwsJCFixYgM/na7etdcCjqKio3QfV1vvM04G5rc8B/wL++sYbjDzmmHY6fwWeCmL/udxc9n3rLZKSkthjjz2C7PUHch8rCIIgCIKQ2MgaGoKwlahGFIO1mxo6VMlgRkd0HjFVOXskFradsmGXbrQ6Os/+EYLjirxdeCEUFsLbb8OPP8IddwQGM3SPT5V/UvOk5iUqbs9btPGlp6dTXFxMRUUFJSUl7R4VFRUUFxcHvYd8AXgVuBDYDXgMKCkr66RfO2ECa4NojCsv5/C99gppMCNc4rXu6VLz7PRFiC1uzpvuscnnW3WaUvMSF7fnTef4dPbNKWRFZMEd1NSYX6hZoUG7KUEQBFdyzjnmQxAEQbAFr9cb9swHAzixw3Pnnnuu5X73Aw9aaPQCLod2624IgiAIgiAIgo5IyylBC6KepjRvHpx6qvW2jz6Cgw6K0sPIkJZTgiAIgiAIghN0dZ8ZDC9QAuRabKsEBgLVIejIfawgCIIgCEJiIy2nBGErQ4YMoUePHuEfGKzdVG4uHHBAdE7ZRI8ePSKPz2GamppYu3YtTU1NrrTtlA27dKPVUZk/IXLcnjfd41Pln612DQMmTYIFC8z/O2GjDVLzhGhwe950j6/1PrSlRw+mB9knG7jUAdvxeq+nS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSsiWmOipQVefdV6W+/esHAhaNBHTtbQUGdb+skLOuL2vOkenyvW0HjzTXj4YZgwAQ48EBYtAsOQmidoidvzpiK+3NxcvF5vSPu2vQ99CKgIst8VQIZdDm4lXu/1dKl5dvoixBY350332OTzrTpNqXmJi9vzpnN8OvvmFNJyStCCqKYpvf8+/PnPXe/Tsyccd5z5S9bRo6PwNDyk5ZQgCILgCIYBBx9stlVsy4gR8M9/wjHHqPFLEISYUlBQwNy5c8M6Zs2aNfS5/376/ec/ltuvBe7sRkPuYwVBEARBEBIbaTklCNGwcGH3+9TXw/z5sGqV4+4IgiAIguO89lrnwQyA5cvhrrti748gCEooKioiPz8/5JkaYC483u9f/zJnMltwFaDffGJBEARBEARBMJEBDUErbr75ZrKzs8M7KJQBjVYmTAhP20ays7Mjiy8GVFZWMm3aNCorK11p2ykbdulGq6Myf0LkuD1vusenyj9b7BoG3HRTcBtTp0rNE7TD7XlTFV96ejrFxcVUVFSwZMmSoPu13of+X+t9aE4OXGq9Ysa2wCQbfYzXez1dap6dvgixxc150z02+XyrTlNqXuLi9rzpHJ/OvjmFtJwStKB1mlJeXh5lZWWsXLkytGlK330Hu+0WmpE994SvvorO0TBp23IqJSWFAQMGUFZWRnNzs1ZT9ZubmykrK2PAgAGkpKS4zrZTNuzSjVZHZf6EyHF73pqbmykrKWHA11+TMnw45Oaqdqkdql5/W+yuWAHDh1tvO/54mhculJonaIfb86ZDfD6fj5ycHHw+X7vn+wPXpaRw7IABDCoro2XZMtJGjIDff8c/cCBJFv2WfwN2BnydtpiEcx8br/d6utQ8O30RYoub86Z7bPL5Vp2m1LzExe150zk+Vb6pbDklAxqCFkR8Edx7L1x1VWhG/v53+Ne/IvQwMmQNDUEQEg7DgA8/hGeegeefh02b4M474eqrVXvmLlauhJtvhgUL2j//8cdwwAEqPBIEQQParqmxA3AdcAGQ1nanceMCtaNq0iSyHn7YUutS4IEgduQ+VhAEQRAEIbGRNTQEYSsFBQX06tUr9AOCtZvabTcoLIS+ff947qSTonMuSnr16hV+fDFiy5YtFBcXs2XLFlfadsqGXbrR6qjMnxA5rszb7Nmwyy5w6KFseeopio85hi29esHTT5sDHRqh6vW3ze6wYebaUB9/DGPGmM+NGwcHHCA1T9ASt+dNl/jarqnxPHAJ5mDGll69KC4oMGvywoXw6acAVJ1/Pp3nZ5hcC6Ta4FO83uvpUvPs9EWILW7Om+6xyedbdZpS8xIXt+dN5/h09s0pZEBD0IrKykr8fn9oO2/eDO+9Z73t7LPhscfgt9/gnXfghhvgT3+yz9EI8Pv94cUXQ5KSksjOziYpKfYlIRa2nbJhl260OirzJ0SOK/NWWQk//ABAkt9PdmUlSX4/fPklfPaZWt86oOr1t93uAQfAq6+as2LuuMMZG1uRmidEg9vzpkt8bdfU2OWRRwLPt6vJYM7wAvz9+jE7iNYAYKINPsXrvZ4uNc9OX4TY4ua86R6bfL5Vpyk1L3Fxe950jk9n35xCWk4JWhDRNKU5c+Css6y3rVoF++xjo4eRIS2nBEFIKH7+GQYOtJ6NcfHF8OCDsfdJEAQhUTEMOOgg+OQT6+0ff0xp374cMmgQPwBei11KgV2B5g7Py32sIAiCIAhCYiMtpwRhK8OGDSM1NcTJ7cHaTeXlQZsLShdSU1PDiy+GNDY2snLlShobG11p2ykbdulGq6Myf0LkuDJvO+4Io0YB0Jiaysphw2hsrXlz5kB9vULn2qPq9ZeaJzUvUXF73rSMz+MJzMRoV5N32slsETh0KGAuAP5oEIk84K9RuhGvdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hAxqCVowcORKv1+r3YR1obITFi623jR1rfoDTDK/XG3p8Mcbn87F06VJ8Pp8rbTtlwy7daHVU5k+IHNfm7bzzAPB5vSwdORKf1wvbbAMTJ0JdsE7tsUfV6y81T2peouL2vGkb35gxcOCBZk0+6ih8994L334LF14IbX5kcwcQ7CPw34HkKFyI17qnS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkJZTghaEPU3pzTfhmGOst73xBhx9tM0eRoa0nBIEIeHw+WD77aGqyqzT550H48dDWppqzwRBEBKTt9+GtWvNetyhFre9V50FTAoi8VfgmTZ/y32sIAiCIAhCYiMtpwRhK16vF08osyuCtZvKzITDD7fXKZvweDyhxxdjDMPA5/OhYnwzFradsmGXbrQ6KvMnRI5r8+b1wrPPYpSU4FuwAOO007QczFD1+kvNk5qXqLg9b1rHN2oUxkUX4TOMLv27nc5rZbTydyL/4BivdU+XmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hAxqCVkydOpWsrKyudzIMePll622jR7ebPq8TWVlZocWngKqqKu644w6qqqpcadspG3bpRqujMn9C5Lg6b8cfT1VWltbxqXr9w7bb1AR+v7M2YqwrNS8xcXvedI8vFP9KgaeCbBsCnOag7WhxwoYuNc9OX4TY4ua86R6bfL5Vpyk1L3Fxe950jk9n35xCWk4JWtA6TSk3N5eNGzfyxRdfBJ+m9OWXgUUMO/HMM3Dmmc45GiZtp/EnJyfTr18/Nm7cSEtLi1ZT9VtaWti4cSP9+vUjOTmaLsl62nbKhl260eqozJ8QOW7Pm+7xqfIvbLvTp8MTT8Ctt8IJJ4S0RpTUPEFH3J433eML5l/H9qiDgW+wXjNjNTAUMAiv5VS83uvpUvPs9EWILW7Om+6xyedbdZpS8xIXt+dN5/hU+aay5ZQMaAhaENZFcOutcMMNnZ9PToYNG8zFZzVB1tAQBEEQIqamBnbeGX7/3fx7xAi47TY48ki1fgmC4Bqs7lWfwlwzw4pTgBeR+1hBEARBEIRER9bQEIStTJw4kYyMjK53CtZuKi0N7rkHPv7YbEulGRkZGaHFp4Da2lqeeOIJamtrXWnbKRt26UarozJ/QuS4PW+6x6fKv7Dszpjxx2AGwPLlMGqUudj699/bYyMMpOYJ0eD2vOkeXzj+3QoEa3R3ExDuanDxeq+nS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQStKS0tpbg62HCFQXg4ffWS9ra7O/OXqQQfBTjvBQw8542SENDc3dx+fIlJSUsjLyyMlJcWVtp2yYZdutDoq8ydEjtvzpnt8qvwL2e7mzXDXXdbbPvgAeveO3kaYSM0TosHtedM9vnD8+wZ4Psi2fYGTHLQdKU7Y0KXm2emLEFvcnDfdY5PPt+o0peYlLm7Pm87x6eybU0jLKUELQp6m9OijcMEFoYk++CBcfLFNHkaGtJwSBEEQImLqVLjjDutt111nDuALgiBESeu96k7AP4AFwEJgL8w1M6z4Eui9bh15O+8cIy8FQRAEQRAE3ZCWU4KwlREjRpCWlhZ8h2DtpqwYPz56h2wkLS2t+/gU0dDQwPLly2loaHClbads2KUbrY7K/AmR4/a8dRtfU5PS9oCqXv+Q7ZaXWz+flQVXX22PjTCRmidEg9vzpnt8wfxL3riRGcB3QCFmu6kk4CvghSBa+wDpixZFbdtOnLChS82z0xchtrg5b7rHJp9v1WlKzUtc3J43nePT2TenkAENQSuGDRtGamqq9cb6enjjjdCEDjoI+ve3zzEbSE1N7To+hTQ2NrJy5UoaGxtdadspG3bpRqujMn9C5Lg9b0HjW7vW/EJ+wABzzSNFqHr9Q7b7xBPw2WcwZkz756++GnJy7LERJlLzhGhwe950j6+Tf5WVcP319D/iCC4DWu9O9wbO2Pr/aQRfSyN7xgxoaYnMtgM4YUOXmmenL0JscXPedI9NPt+q05Sal7i4PW86x6ezb04hLacELQhpmtIrr8DYsaEJ/vvfZrsOxUjLKUEQBKC2FubOhaIic/2HVi68EGbPVudXvPD++3D99bBmDfzwA2RkqPZIEIR4Z9Uq2Hdfy03rgD2AJuA5oCCYxrPPwhlnBNsqCIIgCIIguBhpOSUIW8nOziYpKchpuXCh9fM5OeZ6GccdBz16mM+dFO5yhc6TlJTUdXwK8fv9VFZW4vcH+x1efNt2yoZdutHqqMyfEDluz1u7+M46C84/v/1gBsBzz8GWLer9093uoYfC0qXmjI0QBjOk5gk64va86R5fJ/+GDg06GDEYOG/r/7uapcG0af/P3nmHR1Vmf/ybPgTSWNGoqImoC7oqroViAytWcC2JYkH0p9hxLYsdrKCuihVcN4KIJFawsjbABpaVCAiIGzMqahA1yaRNksnM74+bhISZm0zmlvfkne/nefJI5t57zvfkvJ7cm/e+541qlUZvvdeTUvPs1ELcRee8SY+Nz7fqbLLmxS+6501yfJK1OYW8v6ySuGby5MnIzMwMPxAMmu+fcfLJxubfixcDv/4KvPIK8Oc/Oys0BjIzM83jU4zP58PMmTPh8/m09O2UD7vsWrWjMn8kdnTPW6f4xo+PfFJNDfDSS+4Ka0XVzz9mvwkJRpsuJ324ZJc1Lz7RPW/S44uob9o0hJKSIp5f0Prf9TBWaUTkm2+MielYfNuMEz6k1Dw7tRB30Tlv0mPj8606m6x58YvueZMcn2RtTsGWU0QEbcuUsrOz4fP5sGrVqs7LlD7/3NgXIxIvvgiceqo7QntIx5ZTiYmJyMzMhM/nQzAYFNVyKhgMwufzITMz0/UVJG74dsqHXXat2lGZPxI7uuetU3zNzca+Rr//Hn7iYYcBy5ap1efiz581jzUvXtE9b9LjM9NXc+aZyCgubv/+RxirMuYCCLR+tgeAtQAiTn3svjuwdi2QnNxj33bihA8pNc9OLcRddM6b9Nj4fKvOJmte/KJ73iTHp0obW04R0orpEimzdlOpqcAxxzgryiYkLwFT2Q7LDd9O+bDLrlU7ktuZEXN0z1un+NLSgHPOiXzil18Cv/3mrjio+/mz5rHmxSu65016fGb6qq68En4AmwFMBrA7gH9jy2QGAGwAMN/M8LffAvNNj3bp206c8CGl5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtziviJlPQKJk2ahIyMjPADZhMaRxwBRDpfIBkZGebxKaampgazZs1CTU2Nlr6d8mGXXat2VOaPxI7ueQuL74ILOp8wYgTw1FPAzz8D22yjXp9GflnziER0z5v0+Mz0DdhvP5yakoJdAcwE0Ghy/R3oPMnR+eAdQHNzj33biRM+pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ9kbU7BCQ0iitLSUjQ1NXX+8PvvgVWrIl9w0knOi7KJpqamyPEJIDU1FUOHDkVqaqqWvp3yYZddq3ZU5o/Eju55C4vvL38BTjwRuOYa4OuvjQ3CL7hA2aS0qp8/ax5rXryie96kx2emz+PxIONvf0NtN9f/D8A8s4NlZcA806O9tu5JqXl2aiHuonPepMfG51t1Nlnz4hfd8yY5PsnanIJ7aBARdNl37dFHgSuuiHzhDz8AO+3kgsLY6LiHxtZI2kODEEKIIkIhYOlSYNQoY+NvQghxmfr6ekycOBGLFi2C3+83PW9XAN8AiLhbRn6+sUl4SopDKgkhhBBCiCS4hwYhrYwaNQoej6fzh2btpvbbT/RkxtZ4PJ7I8QnA7/dj6dKlXT7E9mbfTvmwy65VOyrzR2JH97xJj0+VvjC/b79ttE886CDj3za8Z8KaRySie96kx9eVvvT0dBQXF6OyshLl5eWdvsaNG9d+3ncA5pg5KC8H5s7tsW+7cMKHlJpnpxbiLjrnTXpsfL5VZ5M1L37RPW+S45OszSk4oUFEkZeXh+TkDu99+XzGm6uR6EXtpgAgOTk5PD4hBAIBeL1eBAKm3ZF7tW+nfNhl16odlfkjsaN73qTHp0pfJ7+hEHDzzcaBL74Ajj0WGD0a+Phj+3zYCGsesYLueZMeXzT6PB4P8vLyOn3Nnz8fBQUF7efcCcBst4zAbbfBu2FD2MN0b73Xk1Lz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFW04REZguU3rhBeCMMyJf9MUXwP77u6QwNthyihBCiCkvvgicfnrkY7fcAtx+u7t6CCHEhPXr12PIkCEAgFkALjY572IAz3g8GDt2LIqKipCenu6WREIIIYQQ4iJsOUVIK7m5uUhKStrygVm7KQCYMgV47DHgp5+cF2YDSUlJ4fEJoaWlBRUVFWhpadHSt1M+7LJr1Y7K/JHY0T1v0uNTpa/dr98P3Hij+YknnGDdB2seEYTueZMen1V9Ho8H27T++y4ATSbn3Qwg6PejpKQEEydOtMV3NDjhQ0rNs1MLcRed8yY9Nj7fqrPJmhe/6J43yfFJ1uYUnNAgopg0aRIyMjKMbwIB4M03zU9+913g8suBgQOB6693R6AFMjIyOscniJqaGsyePRs1NTVa+nbKh112rdpRmT8SO7rnTXp8qvS1+33qKeDbbyOfdPLJwLBh1n2w5hFB6J436fFZ0vfTT+h/883YCGA/AD8C+LfJqTthy+qNtk3Ge+u9npSaZ6cW4i465016bHy+VWeTNS9+0T1vkuOTrM0p2HKKiKBtmZLH40FjYyNWr16NvX7/HTj88OgMzJkDnHeeoxpjoWPLqYSEBKSlpaGxsRGhUEhUy6lQKITGxkakpaUhISFBO99O+bDLrlU7KvNHYkf3vEmPT5W+dr8//ICEW24Bnn++8wmJicCqVYCFpbqseUQiuudNenwx6fv9d2D6dODRR4HWfTHeBnAsgIEA/gcgLcJlmwAMAlAHo8XqLrvs0ivv9aTUPDu1EHfROW/SY+PzrTqbrHnxi+55kxyfKm1sOUVIK36/H+1zbF21m+pIUlKv2CA8FAp1jk8QCQkJ8Hg8SoqyG76d8mGXXat2VOaPxI7ueYspvg0bgKuvBtaudU5YK6p+/u1+99gDKCkBPvsMGDVqywkTJliazOjkgzWPCEL3vEmPr8f6/v1vID8fuP/+9skMADgGwFEANgJ40uTS7QBcacV3DDjhQ0rNs1MLcRed8yY9Nj7fqrPJmhe/6J43yfFJ1uYUnNAgopg8eTIyMzONb157LbqLDj8c6N/fOVE2kZmZ2Tk+Qfh8Pjz00EPw+Xxa+nbKh112rdpRmT8SO7rnLer4AgHglVeAo48G/vxn4KGHgCeekKPPab8HHgi8/77RYvGgg4CpU+33YROsecQKuudNenw91rfttoBJ24LpABJg7KVRb3L59QCyY/UdA074kFLz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFJzSIKJYuXQq/3w+Ulxtv6kbDuHGOarILv9+/JT5heDwejBo1Ch6PR0vfTvmwy65VOyrzR2JH97xFFd8zzwB5ecDf/mbsi9TG3LlAba16fW75TUgAjjsO+PRTYKednPFhA6x5xAq65016fD3Wd+KJwKGHRjy0P4AzYLSWetjk8mwA18bqOwac8CGl5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCu6hQUQQ1nft73/HXg88EPnkd98Fli0z3uhdswb44Qdb/gDkBB330NgaSXtoEEKIEubNA849N/KxWbOAiy+OfIwQQojzLF8OjBwZ9vG3MFpKLQaQA6AcQFaEy+sA/P7ZZ9j5wAMBGC/3VFRUtB/Pzc2NqwdvQgghhBCd4B4ahLQyZswY9OnTB1i6NPIJI0YARx4J3H47sHo18P33YicztqZPnz5b4hNGQ0MDFi9ejIaGBi19O+XDLrtW7ajMH4kd3fMWVXynnw786U+Rjz3+OODgOxeqfv6seax58YrueZMeX0z6RowATjml/dsKAJcA2BPGZAYAVAK4z+TyvgCyH38cv//+O6666ipsv/32yM/Pb//KyclBYWEh6uvNGldFjxM/fyk1z04txF10zpv02Ph8q84ma178onveJMcnWZtTcEKDiCI7OxuJiYnAypWRTzj55M7f77yz86JsIjExcUt8wggGg6iqqkIwGNTSt1M+7LJr1Y7K/JHY0T1vUcXn8QAXXBD52KpVwMcfOyMO6n7+rHmsefGK7nmTHl/M+u6+G8jORuXVV2M3ALMABLY6ZSaAX00uz3juOUy98EL8+uuvaG5u7nTM7/ejpKQEEydO7JmmCDjx85dS8+zUQtxF57xJj43Pt+pssubFL7rnTXJ8krU5BVtOERGELVMCEHGR0po1gEvLl+yALacIIaQbvvsO2G23zqsx9t8fuPRSoLAQSE9Xp40QQghQXw/vr7+a3tMCwFUAHjI5NicpCee3tJhe6/F4UFlZyfZThBBCCCG9CLacIqSVvLw8JCcnRz64667Annu6K8hGkpOTu45PIYFAAF6vF4HA1u/c6eHbKR922bVqR2X+SOzonreo49t1V2NDbI8HmDAB+Owz4IsvgIkTHZ3MUPXzZ81jzYtXdM+b9Pgs6YuiFs8C8KPJsTMTEnBIF/fAW++tEQtO/Pyl1Dw7tRB30Tlv0mPj8606m6x58YvueZMcn2RtTsEJDSKKCRMmoF+/fpEPnnwykJDgriAb6devX9fxKaS2thZz585FbW2tlr6d8mGXXat2VOaPxI7ueetRfDNnAhs3Ak8/DbRuHus0rv38g0GgoAB45RUgFGLNs8GO7v/v6IrueZMen9P6GgFMMznW0K8fjnL4HtiJ+KTUPDu1EHfROW/SY+PzrTqbrHnxi+55kxyfZG1OwZZTRARRtZx67z3giCPclGUZtpwihJA4Z/584OyzjX+PGAHcey9wyCFqNRFCSA/p6p62jWQAXwPYw+T4fgBKTY7xvpgQQgghpHfBllOEdEdWFnDooapVEEIIIdHT2AjcfPOW75cvN36XnXwysHatOl2EEOIAAQC3dXH8TreEEEIIIYQQreGEBhHFlClTkJWVFX7g+OOBlBT3BdlIVlaWeXyKqa6uxvTp01FdXa2lb1p9ruUAAPP+SURBVKd82GXXqh2V+SOxo3vepMfnir4nngC83s5+s7Iwfa+9UH3XXY65Zc0jEtE9b9Ljc0tfCYBVW/vOysL0KVNwSFYWRjrk14n4pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ9kbU7BllNEBG3LlAYPHoyysjKsbG7u3HJq3rwtLTt6ER2X56ekpGDQoEEoKytDc3OzqKX1zc3NKCsrw6BBg5Di8sSRG76d8mGXXat2VOaPxI7ueZMen+P6qquBQYOA33/v7DclBWW7745BL76IlCFD7PcL1jwiE93zJj0+q/q6azmVD2A8jFUYJwJ4raPvlBSUDRqEQWVl+KS5GaMiXG/1vtiJn7+UmmenFuIuOudNemx8vlVnkzUvftE9b5LjU6VNZcspTmgQEXS7h0ZODnDSScAppwDHHAOkp7stMSa4hwYhhMQpL74InHEGEOk265JLgMcfd18TIYTEiNk97QAANwOYBCAVwAkA3gTwCYARJrbazukI74sJIYQQQnoX3EODkFbGjRuH9EiTFZWVwDPPGBMal17qvjAbSE9PN49PMfX19Vi4cCHq6+u19O2UD7vsWrWjMn8kdnTPm/T4HNd32mlAaanRMrGj3z/9CQsPPZQ1jzUv7tA9b9Ljs1tfXxgTGWUAroQxmQEA9wJIAnBjR9/p6Vg4bhzqW++Bp8P+h1Anfv5Sap6dWoi76Jw36bHx+VadTda8+EX3vEmOT7I2p+CEBul9nHyyagWEEELcZvVq4MMPVavoGfvsA7zxBrBkCXDQQcZnl14K9OmjVhchhFjk3wDuAJCx1ed7AbgAwFIA75hcuzeAcxxTRgghhBBCdIctp4gIum051YbHA/z2G9C3r1vSLMGWU4QQYoFgEFi8GHjwQeDdd4G99jImNhISVCvrOaEQ8PLLwNFHA5mZqtUQQkiP2Pqe9q8A/mty7iYAu7d+mZ3zI4A9APhbv+d9MSGEEEJI74ItpwhpZfDgwV1vYHPMMb1mMmNrUlJSuo9PEc3NzVi/fj2am5u19O2UD7vsWrWjMn8kdnTPm6X46uuB2bONCYwTTjAmMwDg66+3/FulvlhISABOPRXNffqw5rHmxSW65016fHbr+xLAsybHtgNwbus5C2BsCr5+8GA0d7gH3gnA5bYoMXDi5y+l5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCk5oEFGE7TGx9R//TznFXUE2wj001PlmP3kiEd3zZim+X34xNs5evz782IMPWhcHdT9/1jzWvHhF97xJj88JfTcCaNjqMy+AMwE83vr9TQCqttpDo+P1OTZpYT95IhGd8yY9Nj7fqrPJmhe/6J43yfFJ1uYUbDlFRGDacmrJEqC2FnjlFeDNN4E1a4A//UmVzB7DllOEEBIjf/ubUfsjsXYtMGSIu3oIISSO8fv9yMnJgd/v7/T5XTAmJqpb//0wgMatrn0IwFUmdu8DcD14X0wIIYQQ0ttgyylCIjFgAHDoocCJJwL//jfw00+9ajKDEEKIBa6+2vzYQw+5JoMQQgjg8XgwduzYsM+nw5iU2K31v0OHDQs7504APhO7V8BoP+X1etu/tp40IYQQQgghpCOc0CCimDp1KrKzs41vTjwRSEracjCxdw/X7OzszvEJoqqqCtOmTUNVVZWWvp3yYZddq3ZU5o/Eju55sxzfIYcA++8f/vnw4cCYMZa0Aep+/qx5rHnxiu55kx6fHfqKiopQUFAAj8fT/lkNjBUWtR4PCgoKUFRUFHZdIDsbD06diqoI98AeALcDGD16NPLz85Gfn4+cnBwUFhb2qG2CEz9/KTXPTi3EXXTOm/TY+HyrziZrXvyie94kxydZm1Ow5RQRQdsypby8PGzcuBGlgQD2euUVYNw41dIs0bHlVHJyMgYOHIiNGzciEAiIWlofCASwceNGDBw4EMnJydr5dsqHXXat2lGZPxI7uufNlvjmzwfOPtuY0D71VGPVxogRcvS18d//AvvuC0RhhzWPNS9e0T1v0uOzU5/f70dFRUWnz3Jzc+HxeCK2W01OTsaggQPxzsaN2CkQCLMXBDAUwOqtPi8oKEBxcXFUmpz4+UupeXZqIe6ic96kx8bnW3U2WfPiF93zJjk+VdpUtpzihAYRQdj/BCkp2KuyEujbV6Eq63APDUIIsUBTE3DnncAFFwC77KJaTWR+/hnYfXcgLw+47z7guOOAhATVqgghRAld3fteBGC2yXVvADhxq888Hg8qKys7rQghhBBCCCEy4B4ahLRSWFiIvn37Gi1Fevlkxtb07dt3S3zCqKurQ3FxMerq6rT07ZQPu+xataMyfyR2dM+bLfGlpgK33+7IZIZtP/9bbgHq642Nyk84ATjmGGDVKuf9dgFrHpGI7nmTHp9KfW33wAv69sU3JuecAODwrT6LtBLEDCfik1Lz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFJzSIKKqqqhAMBoHRo1VLsZ1gMLglPmEkJiYiOzsbiQr2KXHDt1M+7LJr1Y7K/JHY0T1v0uOzRd9XXwFPP935s3ffBYYOBa67zjm/3cCaRySie96kx6dSX9s9cCAYxA1dnHevBR9OxCel5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCracIiLYepnSO/PnY7eRIxUqsoeNGzfi0EMPjXiMLacIIaQXEwoBRx8NvPde5OMzZwJXXumuJkIIUUxXLae2A7AJwMcAzO7yCwA83+F73i8TQgghhMhEZcspWbuYkLhn6NChWLt2LY4eP161FNtJTU3FnnvuibVr16KpqUm1nE40NTVh7dq12HPPPZGamqqdb6d82GXXqh2V+SOxo3vepMdnWd/rr5tPZuy+OzBpkjN+o4A1j0hE97xJj0+lvrzUVFy3554Yv3Yt9m1qwj8AfGhy7j0AFgFo7KEPJ+KTUvPs1ELcRee8SY+Nz7fqbLLmxS+6501yfJK1OUX8rEUhvYJRo0Zpu/Gfx+MRG5/f78fSpUvh9/u19O2UD7vsWrWjMn8kdnTPm/T4LOs74ADg/PMjbwB+773G/h9O+I0C1jwiEd3zJj0+FfoyANwJ4FOPB02jRiHB48EMAB8BeNXkml0BXBGDLyfik1Lz7NRC3EXnvEmPjc+36myy5sUvuudNcnyStTkFW04REWy9TGkRgDUwlpx/pUqUw3AJPSGEaMB//wtMngx89JHx/WGHAUuXRp7oIIQQzWlrOXUWgAdgtJnamsMA/AZgNYCkCMerAezWeg7vlwkhhBBCZKKy5RRXaBBReDweJCQkYBCAGwFcrFqQjSQkJLTH5/F4kJubq1pSO6FQCH6/HyrmN93w7ZQPu+xataMyfyR2dM+bq/GtXQtUVfXoEtv07b8/8MEHQEkJkJ8PPPhgl5MZrHmsefGK7nmTHp/b+tKxZTIjlJAAv8eDUGttnAngGwBPmlybBeC2HvpzIj4pNc9OLcRddM6b9Nj4fKvOJmte/KJ73iTHJ1mbU3BCg4hiypQpyMrKav9+oToptpOVldUe39ixY0W1nqqursaMGTNQXV2tpW+nfNhl16odlfkjsaN73hyPLxQC/vMfYMwYYK+9gCfN/jTmgr6EBOCMM4ANG4C//tU9vy77YM0jVtA9b9Ljc1tfEbassq7OysKMKVNQ3XqPvx+A8wHs8/LLCPbrF/H6SQAG98CfE/FJqXl2aiHuonPepMfG51t1Nlnz4hfd8yY5PsnanIItp4gI2pYp5ebmYvPmzfiqpQU7AtgWQLNqcTaRlJSEHXfcESNGjEBRURHS09NVS2qnpaUFmzdvxoABA5CUFGnxf+/27ZQPu+xataMyfyR2dM+bY/E1NADz5xsrIdau3fL5wIFAWZnp3hWu6RPglzWPSET3vEmPzy19bS2nAOBwAEsBtCQlYfOAARiweTOSWlpQCuByAM+WlyOvuBi44YaItl4DsHeULaeciE9KzbNTC3EXnfMmPTY+36qzyZoXv+ieN8nxqdKmsuUUJzSICML+JwCwy9ix+O2hh5RpcoLc3FxRKzMIIaTXMX266R+/8PTTwIQJrsohhBCyhY4TGgDwAoDTWv/9K4CbYKzeCKJ1f4zcXAR22w3JP/0U0V7Fs88id/x4Z0UTQgghhJAewz00CGllwoQJ6Ne69Lzf+PHIy8vT5mubbbZBcXExamtrFf+Uw6mtrcWcOXOUaHPDt1M+7LJr1Y7K/JHY0T1vjsV3wQVAWlrkYzNmAMFgVGZU/fxZ81jz4hXd8yY9PlX6rgPwS79+uGPCBOzbrx+egjGZ0Y7Hg8rrrze9vv9ddwEtLd36cSI+KTXPTi3EXXTOm/TY+HyrziZrXvyie94kxydZm1NwQoOIwuv1IhAIAIcdZvRF14jk5GTk5eUhOTlZtZQwVGpzw7dTPuyya9WO5LFFzNE9b47FN2CA+SqM9euBRYuiMqPq58+ax5oXr+ieN+nxqdLnBTA0EMD7Xi+qAoGI59SddBJWmFyfum4dMHdut36ciE9KzbNTC3EXnfMmPTY+36qzyZoXv+ieN8nxSdbmFGw5RUSgcpkSIYSQXkZZGbDHHuGrMUaPBu66Cxgxwl5/wSCQyHdACCGkO7ZuOdUV5a37Y3i9XpyVn49PzE7MzQW+/RYw2UCcEEIIIYS4D1tOEdLK8OHDkWbWSqSX09jYiBUrVqCxsVG1lDBUanPDt1M+7LJr1Y7ksUXM0T1vjsY3aBBwxhlbvh87Fli+HHj//agnM6LWV1EB7LUX8MwzUbezssWvQB+secQKuudNenwq9aWlpXV7j78cwPNmBysqgPvu69KHE/FJqXl2aiHuonPepMfG51t1Nlnz4hfd8yY5PsnanIITGkQUQ4cORWpqqmoZjtDU1ITS0lI0NTWplhKGSm1u+HbKh112rdqRPLaIObrnzfH4pkwBzj0X+PprYOFCYPhwZ/RNmWK0sjrvPGOyZPny2DX3xK9AH6x5xAq65016fCr1paamRnWPPwWA6WP4ffcBGzeaXutEfFJqnp1aiLvonDfpsfH5Vp1N1rz4Rfe8SY5PsjanYMspIgK2nCKEECKO5cuBkSPDPz/zTGMD8p12cl8TIYQIJtaWU23XzABgukX42WcD8+bZopMQQgghhFiDLacIaSU7OxuJmvYpDwaDqKqqQtCGliV2o1KbG76d8mGXXat2JI8tYo7ueZMeX7f6WlqAK66IfGzBAqCkxBm/NsCaRySie96kx6dSX2JiYtT3+HcD+M3s4LPPmq6ScyI+KTXPTi3EXXTOm/TY+HyrziZrXvyie94kxydZm1Po+Zdj0muZPHkyMjMzVctwBJ/Ph5kzZ8Ln86mWEoZKbW74dsqHXXat2pE8tog5uudNenzd6isqAv7738jH/vxn4MornfFrA6x5RCK65016fCr1ZWZmdnuP/1cAHwLIA3BbV8auvDLifkZOxCel5tmphbiLznmTHhufb9XZZM2LX3TPm+T4JGtzCracIiJoW6aUnZ0Nn8+HVatWaddyKhgMwufzITMzU9wqFJXa3PDtlA+77Fq1I3lsEXN0z5v0+LrV989/AjfdBETaWG3xYuDYY53xawOseUQiuudNenxu6YvUcioxMRGZmZnw+Xyd3hwsLy9HXmYmfFdeiX7z5yMRwEcARgMoBWD6JPDvfwMTJ3b6yIn4pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ8qbSpbTnFCg4iAe2gQQggRx3ffAX//O7Bo0ZbPxo41NiEnhBASRrR7aCQA+PXuu7HNP/8J/P57p2PnAvgFwDtmF2+7LbBhA5CVZVEtIYQQQgiJFe6hQUgrkyZNQkZGhmoZjlBTU4NZs2ahpqZGtZQwVGpzw7dTPuyya9WO5LFFzNE9b9Lji0rfrrsakxdvvQXssQeQlgY88IDzfi3CmkckonvepMenUl9GRkbYPf5RALa58cawyQwAuBfAZwAWmhn89Vfgjjs6feREfFJqnp1aiLvonDfpsfH5Vp1N1rz4Rfe8SY5Psjan4IQGEUVpaSmamppUy3CE1NRUDB06FKmpqaqlhKFSmxu+nfJhl12rdiSPLWKO7nkTE9+nn0b8g1mP9I0ZA6xeDbz7rjHJYQHWPNa8eEX3vEmPT6W+pqamsHv8dwA0HHpoxPNzAUwDcA2AYEpKZKMzZwLffNP+rRPxSal5dmoh7qJz3qTHxudbdTZZ8+IX3fMmOT7J2pyCLaeICNhyihBCiG2EQsA77wDTpwNLlgC33gpMm6ZaFSGEaE+0LacA4Mf33sPAMWOA5uawY4sAnALgTgA3mhk47jjgzTdjVEoIIYQQQqzAllOEtDJq1Ch4PB7VMhzB7/dj6dKl8Pv9qqWEoVKbG76d8mGXXat2JI8tYo7ueVMSX0sL8MILwAEHGJt2L1lifP7II8BWy29V/fxZ81jz4hXd8yY9PpX6PB5PxHv8wK67Atdc0+mz7wCcBGAcgBCAuwH8ZGb4rbeAN94A4Ex8UmqenVqIu+icN+mx8flWnU3WvPhF97xJjk+yNqfghAYRRV5eHpKTk1XLcIRAIACv14tAIKBaShgqtbnh2ykfdtm1akfy2CLm6J43JfHNmgWccQbw5ZedP6+sNI6p1ueSX9Y8IhHd8yY9PpX6kpOTze/xb74Zge23RwOA2wDsBeD1DofrAPyjK+NXXw00NTkSn5SaZ6cW4i465016bHy+VWeTNS9+0T1vkuOTrM0p2HKKiIAtpwghhFimuhrYeWfA5ws/NmAAUF4O9O3rvi5CCIkT/H4/cnJyun1D0OPxoLKyEh6PB43vvot9TzgB33Sxj97HAEaaHbz3XuC662LWTAghhBBCeg5bThHSSm5uLpKSklTLcISWlhZUVFSgpaVFtZQwVGpzw7dTPuyya9WO5LFFzNE9b0riy8oCLrss8rHNm4Ennmj/VtXPnzWPNS9e0T1v0uNzS5/H48HYsWM7fZaUlBR2jz927Nj2FlRpRx2Foaec0qXdKwGEEhIiH7zjDrT89JPt8UmpeXZqIe6ic96kx8bnW3U2WfPiF93zJjk+ydqcghMaRBSTJk1CRkaGahmOUFNTg9mzZ6Nmqz7uElCpzQ3fTvmwy65VO5LHFjFH97wpi+/qq4H09PDPTzgBGD26/dt2fc89Z2wa3tDgijzWPNa8eEX3vEmPz019RUVFKCgoaJ+wyMjIaL/H93g8KCgoQFFRUcRrzPgvgNrTT498sKYGNbfeant8UmqenVqIu+icN+mx8flWnU3WvPhF97xJjk+yNqdgyykigrZlSh6PB42NjVi9erV2LadCoRAaGxuRlpaGBLM3zBShUpsbvp3yYZddq3Ykjy1iju55UxrfP/5htCABgOOPB6ZOBQ48MFzfr78ibd99kbBpE5CfDzz6qHG+g7DmsebFK7rnTXp8KvT5/X5UVFQgFAqhubkZKSkp2H777cM2B+/I+vXrMWTIkIjHvv/sM+x81FER2wqGEhLQ+N57SBs1yrb4pNQ8O7UQd9E5b9Jj4/OtOpusefGL7nmTHJ8qbSpbTnFCg4iAe2gQQgixjc2bgYsvBqZMAQ46yPy8K68EHnmk82fjxgEzZxp7cRBCCHEVr9eL/Pz8iMfKy8uR99JLwLXXRr54772BL78EIm0+TgghhBBCbIV7aBDSyuTJk5GZmalahiP4fD489NBD8EXarFYxKrW54dspH3bZtWpH8tgi5uieN6XxDRgAvPxyl5MZvo8/xkNJSfBt/Ttn4UJgn32MDcYdgDWPNS9e0T1v0uPT5l7viiuAP/853EdmJh468kj4Hn7Yuo82m0Jqnp1aiLvonDfpsWlT81z0wZpHrKJ73iTHJ1mbU/D1FSKKpUuXwu/3q5bhCB6PB6NGjepymb0qVGpzw7dTPuyya9WO5LFFzNE9b6LjCwbhue46jGpogCfS75xJk4wNxh2ANY81L17RPW/S49PhXi/97beBTZuM9oBHH93Zh9+PUUuXwvPDD0BhIbDDDpZ8AXJqnp1aiLvonDfpselQ89z2wZpHrKJ73iTHJ1mbU7DlFBEBW04RQghxjQ0bgEMOMVpTbc1OOwHr1gF9+7qvixBC4pxILad2BvAwgLEAkJAAfPopcP/9wPPPRzZy5pnAc885rJQQQgghJL5hyylCWhkzZgz69OmjWoYjNDQ0YPHixWhoaFAtJQyV2tzw7ZQPu+xatSN5bBFzdM+b6Pj22AMNpaVYfN11aNj6d87DDzs6mcGax5oXr+ieN+nx9cZ7vWQA1wBYi9bJDAAIhYw9ku69F+jXb4uPPn2weMwYo6YvWAC8/74y3U7YkT6+SGR0zpv02HpjzVPtgzWPWEX3vEmOT7I2p+CEBhFFdnY2EhP1HJbBYBBVVVUIBoOqpYShUpsbvp3yYZddq3Ykjy1iju55kx5fMCsLVX/9K4Jvvw3sv7/x4QknAGPHdn2hVb+seax5cYrueZMeX2+813sJwP0AwqaYV6409juaOnWLj8REVGVnI9j2HHHZZUBTU+yiIafm2amFuIvOeZMeW2+seap9sOYRq+ieN8nxSdbmFGw5RUTAllOEEEKU0dICzJ4NjBkD7LqrajWEEBK3dGw5dSKA18xO7NcPWLUKOOkk4OuvI58zfTrwj384IZMQQgghJO5hyylCWsnLy0Nysp571QcCAXi9XgQCAdVSwlCpzQ3fTvmwy65VO5LHFjFH97xJjy/Q3AzvSy8h8NxzQFIScOmlrkxmsOax5sUruudNeny98V7vdQAvmx2srwc++AB47DHDR3IyvHl5CHR8jrj9duDHH2PSDMipeXZqIe6ic96kx9Yba55qH6x5xCq6501yfJK1OQUnNIgoJkyYgH4d+uHqRG1tLebOnYva2lrVUsJQqc0N3075sMuuVTuSxxYxR/e8iY0vFALefRe1xx2HuWvWoPbmmwEXNbLmsebFK7rnTXp8vfVe7yoANVt9VpaTg4YPPgDOOw84/HDg7LNR268f5k6YgNqOzxH19cDVVyvRbbcd6eOLREbnvEmPrbfWPJU+WPOIVXTPm+T4JGtzCracIiJgyylCCCGOEgoZm8ROnQp89FHnY3ffDdxwgxJZhBBCttCx5VQbkwE8CMAH4EYATwA4vaAAxcXFxgkVFcCf/wz4fJGNvvWW0VKQEEIIIYTYBltOEUIIIYQ4SXU1MG5c+GQGANx7L1BZ6bokQggh3fMIgBkABgN4DEAQwKJFi+D3+40TcnOBO+80N3DppcZqDUIIIYQQogWc0CCimDJlCrKyslTLcITq6mpMnz4d1dXVqqWEoVKbG76d8mGXXat2JI8tYo7ueRMXX3Y2cMUV7d9WZ2Vh+pQpqM7KAqqqgBkzXJHBmseaF6/onjfp8fWWe73c3Fx4PJ5On7UAmALglw6f+f1+rFixAl6vF16vF7+eeiqm33STUdO3przc2E/DQd1O25E+vkhkdM6b9Nh6S82T5IM1j1hF97xJjk+yNqdgyykigrZlSoMHD0ZZWRlWrlypXcup5uZmlJWVYdCgQUhJSVEtpxMqtbnh2ykfdtm1akfy2CLm6J43EfFt2gTcdBNw113AdtsBv/9ubPzt86E5JQVlgwZhUFkZUpqbgb59gZ9+AhyeVGfNY82LV3TPm/T4etO9XmFhIUpKSnrko1+/fph8/PG49ZVXjJq+NUlJwJdfAvvsE7VNKTXPTi3EXXTOm/TYelPNk+KDNY9YRfe8SY5PlTaVLac4oUFEwD00CCGE2M5ZZwELFhirM+67D5g40dgv45ZbOp83dqzRrqTD7yFCCCFqqK+vx8SJEzu3lYqSd3bdFUd9913kg8OGAR9/bExuEEIIIYQQS3APDUJaGTduHNLT01XLcIT6+nosXLgQ9QJ7+KrU5oZvp3zYZdeqHclji5ije96Ux7d4sTGZARgtpf7v/4DRo4HjjgO23Rb16elYeNFFqF+yBFi40LXJDNY81rx4Rfe8SY+vN93rpaeno7i4GJWVlViyZEnU14wbNw7/98cfCG23XeSTPv0UmDUrWtliap6dWoi76Jw36bH1pponxQdrHrGK7nmTHJ9kbU7BCQ1CCCGE6EVdHXDJJeGff/ABMHIkcNllxmTHcccBBx3kvj5CCCHd4vF4kJeX16Nrfm1qwuabbzY/4YYbjPaChBBCCCGk18KWU0QEbDlFCCHENq67Drj//sjH9trL6KOemuquJkIIIT3G6/UiPz8/qnOTAFwF4B8PP4xt33oLeOutyCf+7W/ASy/ZppEQQgghJB5hyylCWhk8eLC4zXXsorm5GevXr0dzpI0KFaNSmxu+nfJhl12rdiSPLWKO7nlTFl8gAHzyifnxJ58EUlOV6WPNY82LV3TPm/T4dL/X2y8lBa8MHozpKSn40223AXfcAZi1sX35ZeDVV7u1KaXm2amFuIvOeZMem+41zwkfrHnEKrrnTXJ8krU5BSc0iCi4h4Ya2GNUrV32k49PdM+bsviSk4Fly4xNwD2ezscmTTJaTinUx5rHmhev6J436fHpeq+XBuAuAO+kp+PrceNQn56OpMpK4IEHgGnTzC+87DKgpqZL21Jqnp1aiLvonDfpsela85z0wZpHrKJ73iTHJ1mbU7DlFBEBW04RQgixnQ0bgAsuAD76CNh+e2DtWiA7W7UqQgghUdJVy6lkAF8C2Nvs4ldfBW69FSgtjXz8qquAhx6yrJEQQgghJB5hyylCCCGEELvZYw9jtcYjjwCPP87JDEII0YgAgJe7OuGyy4AHHwQSTR55H3kE+PxzB5QRQgghhBAn4YQGEcXUqVORrekfnKqqqjBt2jRUVVWplhKGSm1u+HbKh112rdqRPLaIObrnTUx8iYnA5ZcD48Z1+jgqfcEg0NJiqxzWPNa8eEX3vEmPT9d7vbsBrAVQlZ2NaVOnoqrjc0RVFZCUZPwOiEQwaKzia2qKeFhKzbNTC3EXnfMmPTZda56TPljziFV0z5vk+CRrcwq2nCIiaFumlJeXh40bN6K0tFS7llOBQAAbN27EwIEDkZycrFpOJ1Rqc8O3Uz7ssmvVjuSxRczRPW/S4+tSXygEvPUWcOONxh/CLrzQHb/CfbDmESvonjfp8fXWe72uWk61MQLA0uRk/DxwIAZu3IjkQAA46SRjZd7AgajftAkN+fn4U0NDxOubbroJqXfeaatuu+1IH18kMjrnTXpsvbXmqfTBmkesonveJMenSpvKllOc0CAi4B4ahBBCRPDxx8ANNwAffmh8v912wLffAhkZanURQkgcEs2EBgA8DOAKAL8CwCOPYNvLLgMSEgAAhYWFaCgpwSKTawOJiUguLQX2Nt2NgxBCCCGEbAX30CCklcLCQvTt21e1DEeoq6tDcXEx6urqVEsJQ6U2N3w75cMuu1btSB5bxBzd8yY9vjB9ZWXAyScDhxyyZTIDADZtAmbMcM6vA7DmEYnonjfp8el+r3dn3764q7AQf+3bF/Unntg+meH3+7Fo0SK8CuAFk2uTg0EEzjsPCAQc0W2HHenji0RG57xJj033mueED9Y8YhXd8yY5PsnanIITGkQUVVVVCAaDqmU4QmJiIrKzs5FotjGhQlRqc8O3Uz7ssmvVjuSxRczRPW/S4wvTl5QEvP125JP/+U/gxx+d8esArHlEIrrnTXp8ut/r1QSD+KiqCn9s9RxRUVEBv98PALgcwO8m1yevXIlnDzgA9fX17Z9JqXl2aiHuonPepMeme81zwgdrHrGK7nmTHJ9kbU7BllNEBGw5RQghpEeUlwPnnw888oh9bUKmTDFfjXH22cC8efb4IYQQEhXRtpzqyLp16zB48OCI148H8KzJdQ0Abjz+eDz4xhuxiSWEEEIIiSPYcoqQVoYOHYrU1FTVMhyhqakJpaWlaGpqUi0lDJXa3PDtlA+77Fq1I3lsEXN0z5uj8YVCxkbdy5YB++8PTJsG9NBPRH033ABss034yYmJQN++gA0rCFnzWPPiFd3zJj0+3e/1UlNT258jhgwZgsLCwk6rLdqYD8BsuqIPgNPeegv+1uuk1Dw7tRB30Tlv0mPTveY54YM1j1hF97xJjk+yNqfghAYRxahRo+DxeFTLcAS/34+lS5e2L3uXhEptbvh2yodddq3akTy2iDm6583R+J56Cnj/fePfzc3A1KnAgQcC//2vNX1ZWcDtt3c+8ZhjgK++AmbNMiY2LMKax5oXr+ieN+nx9dZ7vdzc3KieDTweT6fniJKSEkycODHiuRcDqDaxc3AohLr777esuyN22JE+vkhkdM6b9Nh6a81T6YM1j1hF97xJjk+yNqdgyykiAracIoQQEhXl5cA++wC1teHHkpKADz4ARo6M3X4gYNhPSDD2zhgzJnZbhBBCLFNYWIiSkpIeX+fxeLBy5UoMGTIk7Nj/AXjS5LpgejoSv/4ayMvrsU9CCCGEkHiBLacIacXj8SAhIUG1DEcIhULw+/2QOIeoUpsbvp3yYZddq3Ykjy1iju55cyS+YBCYMCHyZAYADB9ufFnRl5wMvPWWsSrDgckM1jzWvHhF97xJj6833+sVFRWhoKCgy5UaCQkJYc8Rfr8fFRUVnc7rB2AWgMEA3jOxlVhfD1x0EULBoIiaZ5cN4j465016bL255qnyIeU+z04txF10z5vk+CRrcwpOaBBRTJkyBVlZWaplOEJ1dTVmzJiB6mqzRe7qUKnNDd9O+bDLrlU7kscWMUf3vDkSX0MDsOOOkY95PEBRUdRtobrUt8suxsSGA7DmsebFK7rnTXp8vfleLz09HcXFxaisrER5eXn717hx49rPycrK6vY54kgAa2C0nJoMY4VGndnJ77yD6ieeEFHz7LJB3EfnvEmPrTfXPFU+pNzn2amFuIvueZMcn2RtTsGWUy7R0tKCr7/+Gp9//jm++OILfP7551i1ahWam5sBAIcffjiWLl0ak+333nsPc+fOxYoVK/DTTz8hLS0NAwcOxLHHHosLLrgAgwcP7rHNdevWoaioCP/5z3+wceNGNDY2Yscdd8SIESNw7rnn4sgjj4xJqxlty5Ryc3OxefNmfPXVV9q1nGppacHmzZsxYMAAJCUlqZbTCZXa3PDtlA+77Fq1I3lsEXN0z5uj8T3/PHDJJcAff2z57P77gWuukaFPsV/WPCIR3fMmPT4d7/Xq6+sxceJElJSUICkpCQMGDMDmzZvR0tLSfs6SJUtw0ujRuBfAJVtd/y2A2QDuN9OdkYHN77+PAfvtp7Tm2WWDuI/OeZMem441z2kfUu7z7NRC3EX3vEmOT5U2lS2nOKHhAgsXLsT48eNRX19vek4sExo+nw8XXXRRlz1lU1JSMG3aNNxwww1R273rrrswbdq09smWSJx55pmYPXs2MjIyeqTZDO6hQQghpEf88gvwf/8HvPEGcNhhxibhwm4sCSGEOM/69esj7pMBAE8XFWG3iRNxiMm1jwHYD4DpzkuHHgosXRr16j9CCCGEkHiBe2hoTlVVVZeTGbHQ3NyMU045pdNkxl/+8hece+65OOOMM7D99tu3n3fjjTfi9ttvj8rurbfeiptvvrl9MmP77bfHGWecgXPPPbfToFywYAFOO+00BAIBG6MCJkyYgH79+tlqUwq1tbWYM2cOas16vytEpTY3fDvlwy67Vu1IHlvEHN3z5nh8228PvPYa8O9/A3Pm9HgyQ9XPnzWPNS9e0T1v0uPT+V7P4/GgX79+EZ8jzp84EXd3ce1lAIoANEQ4VtuvH+YMGoTaBx6wpM+O+KWPLxIZnfMmPTada55TPqTc59mphbiL7nmTHJ9kbU7BCQ0X2W677XDiiSdi2rRpePPNN3HVVVfFbOuOO+7A+++/D8C4iV+wYAFWr16NuXPnoqSkBF6vF9ddd137+VOnTsWyZcu6tPnee+/hjjvuaP/+uuuug9frRUlJCebOnYs1a9bgueeea9+Q7+2338bdd3f1iNBzvF6v7ZMkUkhOTkZeXh6SHerLbgWV2tzw7ZQPu+xatSN5bBFzdM+bK/ElJAATJwL5+T2+VNXPnzWPNS9e0T1v0uPT/V4vEAiYPke8BeBpk+vWA1gJINJa9uRAAHleL5LvuANYty5mbXbEL318kcjonDfpsele85zwIeU+z04txF10z5vk+CRrcwq2nHKBiooKNDU1Yeedd+70+dSpUzFt2jQAPWs59euvv2LXXXdFXZ2xjd2sWbNw8cUXRzy3sLCwfRXHiBEj8Mknn5jaPeigg/D555+3X7dgwYKI582aNQuXXGJ0oc3IyMB3332HbbbZJirtZrDlFCGEkF5FUxPw8MPGBuKnn65aDSGExC1erxf53UxsZwFYDWCnDp89AuAfMFZnJAB4H8AoMwMHHAAsXw7E0R8KCCGEEEK6gi2nNCc3NzdsMsMKc+fObZ/M2GOPPXDRRReZnnvvvfcisbXn6/Lly7Fy5cqI533++eftkxmJiYm49957TW1efPHF2H333QEANTU1mDdvXkxxRGL48OFIS0uzzZ4kGhsbsWLFCjQ2NqqWEoZKbW74dsqHXXat2pE8tog5uudNenyW9L3zDrDvvsB11wFXXQXU1LjjV7EP1jxiBd3zJj0+3e/10tLSunyOqAZwfuu/fwZwLIArsaXVVKj1eMdq3piWhhXDh6MxLQ344gvgnnti0mZH/NLHF4mMznmTHpvuNc8JH1Lu8+zUQtxF97xJjk+yNqfghEYvZOHChe3/njBhAhISEkzP3XnnnXHEEUe0f//KK690a/Ooo47CTjvtFPE8AEhISMB5553Xrc1YGDp0KFJTU22zJ4mmpiaUlpaiqalJtZQwVGpzw7dTPuyya9WO5LFFzNE9b9Lji0nf998Dp50GHHMMsH698dkvvwAd2jU64reHsOYRieieN+nx6X6vl5qa2u1zxHsAzgWwN4DqYcPCjnsB/L3D902pqSgdOhRNbTZvvx0weTmsK+yIX/r4IpHROW/SY9O95jnhQ8p9np1aiLvonjfJ8UnW5hRsOaWQWFpO+f1+9O3bF8FgEADwySefYMSIEV1ec/fdd+Omm24CABx88MH46KOPws4ZOXIkli9f3n7+DTdE6iS7hU8++QQHH3wwACApKQl1dXWWVlaw5RQhhJB2amqA5magf3/VSrZQXQ3svDPg84UfS0kBVq0CBg92XxchhMQ50bScasPj8WDs2LF44oknsMMOO8Dv94ed8yaA48wM/OUvxmoNTVeUE0IIIYREC1tOkaj55ptv2iczEhISsN9++3V7zV//+tf2f68z2dCu4+cdzzejo9+WlhZs2LCh22uiITs7u71Flm4Eg0FUVVW1508SKrW54dspH3bZtWpH8tgi5uieN0vxXXGF8UejxYvtF9ZKj/VlZQFmLR6bm43WU1G8I8Kax5oXr+ieN+nx6X6vl5iY2O1zxJIlS1BZWYni4mLk5ORg7NixEc+7EEAlgGBiIqqysxHsaHPNGuDWW3ukzY74pY8vEhmd8yY9Nt1rnhM+pNzn2amFuIvueZMcn2RtTqHnX4415ptvvmn/97bbbguPx9PtNR337/jjjz+wefPmTsd//fVXVFVVtX+/yy67dGuzT58+GDBgQPv369tab1hk8uTJyMzMtMWWNHw+H2bOnAlfpLd7FaNSmxu+nfJhl12rdiSPLWKO7nmLOb4FC4C5c41WTscdB0yaBNTWytB3yy1Abm7kY8uXA+XlzvjtIax5RCK65016fLrf62VmZnb7HJGXl9fp2amoqAgFBQVh5/0M4DIAvsxMzJw8Gb6tbd53HxDFyvo27Ihf+vgikdE5b9Jj073mOeFDyn2enVqIu+ieN8nxSdbmFGw5pZBYWk498cQTuPTSSwEA++yzD7766qtur/njjz/wpz/9qf379evX489//nP79+vWrcOee+7Z6fycnJxu7e6zzz5YvXo1AGDWrFm4+OKLu73GjLZlStnZ2fD5fFi1apV2LaeCwSB8Ph8yMzPFrUJRqc0N3075sMuuVTuSxxYxR/e8xRSf12tstr31jdiuuxqTHIccolYfADz7LHDOOZ0/O+ccYMYMYPvtnfPbA1jziER0z5v0+HS+1/P7/ejfvz/S0tLg8/kivp3o8XhQWVkZ8WWw9evXY8iQIWGfP5+YiKMzM5Hp8yFxa5s77QR89RUQxTOTHfFLH18kMjrnTXpsOtc8p3xIuc+zUwtxF93zJjk+VdrYcopETW2Ht1T79OkT1TVbn1e71ZuuW38fi92tbcSK3+9Heno6AKOVVVVVFdrm3Hw+X/sGNw0NDairqwMABAKBTitMqqur0dzcDACor69HfX09AKC5uRnV1dXt51VVVSEQCAAA6urq0NDQAMDYTKdtVjMUCqGqqgotLS3tcbb12m1sbERNTQ2A8OVdNTU1aGxsbI+ptrYWiYmJyMjIgM/nExdTU1MTsrOz0dzc3KOY7MhTYmIiUlNT23+uTuSprq4O2dnZ7fbsiqnNTtsvjFjz1NjYiOzsbAQCgZjGXsdfXE7lqacxOf3/kw4xNTc3Izs7G01NTdrE1DFP9fX1yM7ObrfXbUx+P6ouuKB9MqM6KwvNKSlGTBUVqL/kEiAQUF/3xo9Hy6GHoio7G6GhQ4GPPoLv0UfR1PriQHd5amlpQXZ2dvvPyIk8NTc3IykpCYmJibb+/5SYmIh+/fp1evMnlrHX0NCAtLQ0JCYmxjT2tkbXGqFbTHV1dejTpw8SExO1ialjnpqampCcnIzExESRMdXX18Pj8SAxMdH1sed03fN4PBg3bhxaWloQDAbD2k9lZGTglFNOgcfjiRhT2z6AmZmZ7ZuK9+3TBy/16YOMpKT21lPtMWVlobmiApg0CfV1dd3GlJiYiJSUlE5jhXWPda+3xtSWp8TERHg8nnYN0mJKTExEcnJyuwY3x15NTQ369u2LxMREx/KUmJiIPn36dHoutRpTY2MjUlJSkJiYaClPwWAQ2dnZaGhoiHnsJSYmIjMzs9MktY41QreYEhMTkZSU1K5Bh5g65kly3QuFQsjOzkZ9fb2SsacCTmj0MjpuXNd2w90dW2/W3fY/QSSbsdrd2masXH755e1Lvzdv3oyZM2e2/09WVFSEtWvXAgCWLVuG1157DQCwceNGzJw5s93GE088gbKyMgDA22+/jbfffhsAUFZWhieeeKL9vJkzZ2Ljxo0AgNdeew3Lli0DAKxduxZFRUUAjAIwc+bM9jZdL774IlasWAEAWLlyJebPnw8gfHnX/PnzsXLlSgDAihUr8OKLL6KmpgaPP/64yJiWLVuGWbNmYcWKFT2KyY481dTU4JFHHsEbb7zhWJ7mzZuHWbNm4eeff7Y1pg0bNmDmzJntvyRizdM777yDWbNm4csvv4x57D3xxBOoqalxLE89jcnp/590iGnFihWYNWsWli1bpk1MHfNUUlKCWbNmwev1RhfTk09i5mGHbYnpkktQNmiQEdOxx+LtK68EkpPV172EBGy+4w7MnDwZjR99BBx8cI/ytGbNGsyaNQtvvPGGY3lasWIFHn74YdTU1Nj6/1PH32MdY+rp2HvllVfw6KOPoqamJqax11bLf/75Z8sxmeVJ2v9POsQ0b9689rzrElPHPC1btqz9/zuJMZWUlLT//N0ee27UvfPPPx9XX301ttlmm07tpzweDy677DJMmjTJNKa2PypMnDgRe+65J3YG8PDhh+PEU07BrEsvxYbdd8fMyZO3xNT2++n55/H2rFndxtR2r/vOO+/0KCbWvd4fk851r6amBo8++ihKSkpExlRTU4OHH364/Ty3x95jjz2Gmpoax/LU9vOfN2+ebTG98847eOSRR1BTU2MpTxs2bMCsWbPwyiuvxDz2ampq8MQTT2hfI3SLqe3/u47PJL09po55klz3vF4vZs2ahZKSEiVjTwkhoozbbrstBCAEIHT44YdHdc29997bfs2wYcOiuqa+vr79GgChL774otPxzz77rNPxhoaGqOwedNBB7dfcf//9UV1jxpo1a0IAQoccckiof//+oTVr1oQCgUCosrIyFAwGQ6FQKFRdXR1qbGxsj6m2tjYUCoVCzc3NocrKynZbVVVVoaamplAoFArV1dWF6urqQqFQKNTU1BSqqqpqP6+ysjLU3NwcCoVCodra2lB9fX0oFAqFGhsbQ9XV1aFQKBQKBoOhysrKUCAQCIVCoVBNTU37z8fv94d8Pl8oFAqFWlpaQpWVlaGWlpZQKBQK+Xy+kN/vD4VCoVBDQ0OopqYm5Pf7Qx9//HGooqJCXExVVVWh5cuXh6qrq3sUUygUspwnv98fWrZsWeiPP/5wLE+bN28OLV++PFRfX29rTLW1taH333+/3UaseaqsrAwtX7485PP5Yhp7FRUVoY8//rj9cyfy1NOYnP7/SYeYqqurQ8uXLw9VVVVpE1PHPP3222+h5cuXh+rq6qKLqb4+VHnLLaFQYmIoBISqsrJCTSkpoRAQqrvzTm3qXk1NTWj58uWhP/74w7E8VVdXh5YsWRLy+/22xuT3+0MfffRRqKKiolNMPR17v//+e2jZsmUhv98f09irr68Pvf/+++0/F11rhG4xbd68OfThhx+G/H6/NjF1zFNVVVVo6dKlIb/fLzKm3377LfTBBx+E/H6/62PPzbpXVVUVKisrC61evTpUVlYWamho6Dam7777LgQglJmZGTojNTVUCYTq+/QJ/Z6TE/r4yCNDteefH6rMzg6FgPDfTwMGhOrWrOkyJr/fH1q6dGn7z4V1j3WvN8fUlie/3x/64IMPQr/99pvImNr+v2uz4ebY27RpU+ijjz4K+f1+x/Lk9/tDH374YWjz5s22xVRZWdn+e8xKnmpra0PLly8P/f777zGPvY5/O9G5RugWk9/vDy1ZsqTdhg4xdcyT5LpXV1cXWr58eei3335zdey1/S237WtN6z2RG3APDYVwD40tqOy7RgghRBAffACMHw+0vo2Cww8H3nsPSEpSq4sQQoiWeL1e7JWfj4cA/F+kE445xtjjacOGyAZGjDB+dyUnO6aREEIIIUQa3EODRE3HiYlNmzZFdU1FRUWn7/v3729qM1a7W9uMlVGjRkXcrE8H/H4/li5dGtbiSwIqtbnh2ykfdtm1akfy2CLm6J63mOM77DBg1SrgtNOMzVbnzXNkMkPVz581jzUvXtE9b9Lj471e14xA+GSG3+PB0lGj4P/gA+Ckk4DWfZ3CWL4cuOsux7TZZYO4j855kx4ba546m6x58YvueZMcn2RtTsEJjV5Gx5UVv/76a1SD9Ycffmj/d//+/TFgwIBOx7fddtv2DZMB4Pvvv+/Wpt/vb+87BwCDBw/u9ppoyMvLQ7KmbzcFAgF4vd72TX0koVKbG76d8mGXXat2JI8tYo7uebMUX04O8PzzwMqVwE472S8O6n7+rHmsefGK7nmTHh/v9brmPQAPbm0zORnevDwEkpOBZ58Fbr3V3MDttwOffOKINrtsEPfROW/SY2PNU2eTNS9+0T1vkuOTrM0p2HJKIbG0nPL7/ejbt2/7zvTLly/H8OHDu7zm7rvvxk033QQAOPjgg/HRRx+FnTNy5EgsX74cAHDPPfdgypQpXdr85JNPcPDBBwMAkpKSUFdXF7b5eE9gyylCCCGEEEKI23i9XuTn5yMVwAoA+219wqGHGhMaAwcCRx0FLFkS2VB+PlBaCmRmOqqXEEIIIUQCbDlFosbj8XSawIhmEmTZsmXt/z7iiCMinjN69OiYbY4cOdLSZEZHcnNzkaRpn/SWlhZUVFSgpaVFtZQwVGpzw7dTPuyya9WO5LFFzNE9b9Ljc0XfH38AN98MNDa66pc1j0hE97xJj4/3et3TBOBMAHVt3yclYcM116DlnXeAnXcGEhOBuXOBDivbO1FeDlxyibF1uM3apI8vEhmd8yY9NtY8dTZZ8+IX3fMmOT7J2pyCExq9kHHjxrX/e86cOV2e++OPP+K9996LeK2ZzXfffRcb2zZjNaGjXzObsTBp0iRkZGTYZk8SNTU1mD17NmpqalRLCUOlNjd8O+XDLrtW7UgeW8Qc3fMmPT5H9YVCxtu8gwcbfdXvu88dvw77YM0jVtA9b9Lj471edHwD4EoA3wM4PiMDCzIyUNPQsOWEnXYCnnzS3MBzzwFPP227Nunji0RG57xJj401T51N1rz4Rfe8SY5PsjanYMsphcTScgow9s7YddddUVdnvD/0r3/9CxdeeGHEc8866ywsWLAAADBixAh8YtLbFQAOOuggfP755wCA8ePH49lnn4143pNPPomLL74YAJCRkYHvvvsO22yzTVTazWhbpuTxeNDY2IjVq1dr13IqFAqhsbERaWlpSEhIUC2nEyq1ueHbKR922bVqR/LYIubonjfT+EIhQEC8jv38v/3WeEO3w8sESEsDVq8Gdt+dNc8GO7r/v6MruudNeny81zOnreVUR/oCqE9IwPr167H77ruH25wwwVitEYk+fYDPPwdan2XsiF/6+CKR0Tlv0mNjzVNnkzUvftE9b5LjU6WNLadIj9h2223x97//vf37K6+8Es8//3ync5qbmzFlypT2yQzA2BujKzoenz9/PqZMmYLm5uZO5zz//POYPHly+/fXXnut5cmMjvj9fug6x5aQkACPxyOu8AFqtbnh2ykfdtm1akfy2CLm6J63iPF9/z0wfLix2bdiHPn5L1oE7L1358kMwGg5ddFFQDDImmeDHd3/39EV3fMmPT7e6/WMOhh/HEhNTY1s85FHgF13jXxxQwNQUADU19umTfr4IpHROW/SY2PNU2eTNS9+0T1vkuOTrM0pOKHhEscffzyGDh3a6WvWrFntx7/44ouw40OHDsXPP/8c0d4tt9zSvh9GQ0MDCgoKsM8++2DChAkoLCzELrvsghkzZrSfP23aNBx++OFdajzyyCNx8803t38/Y8YM5OXlobCwEBMmTMDee++NgoICNLQuuz766KNx4403xvwzicTkyZORqelGej6fDw899BB8Pp9qKWGo1OaGb6d82GXXqh3JY4uYo3vewuJrajL+wPPZZ8CIEcDs2WF9xpXqs4MRI4D09MjHli4FnnySNc8GO7r/v6MruudNeny81+s5mZmZKC4uxtdffw2v1wu/37/lYEYGUFICpKREvvjrr4GrrrJNm/TxRSKjc96kx8aap84ma178onveJMcnWZtjhIgr7LLLLiEAPf4qLy83tVlVVRU644wzurw+JSUldNddd0WtMxgMhu64445QSkpKl3YLCwtD1dXVNvxkDNasWRMCEBo6dGgoNTU1tGbNGttsS6GxsTG0cuXKUGNjo2opYajU5oZvp3zYZdeqHclji5ije97C4ps8ORQypjC2fJ11VihUUyNDn13861/hcbZ9HX54qNHvZ81jzYtLdM+b9Ph4r2dOeXl5xOed1NTU9mcTACGPxxMqKCgI1dXVbbn4wQfNaz4QCj33nC3xSx9fJDI65016bKx56myy5sUvuudNcnyqtLX9Lbfty82/5XIPDZfIy8vD999/3+PrysvLkZeX1+U57777LubOnYvly5fjl19+QUpKCnbaaScce+yxuOCCCzBkyJAe+123bh2eeuopvP322/jxxx/R3NyM7bffHiNGjMB5552Ho446qsc2u0Jl3zVCCCEO8/LLwKmnRj42eDDw7rvAjju6q8kpgkFg9Gjggw+2fJaaCkydClx7rfnbvIQQQpQQaQ+NrigoKEBxcbHxTSgEnHgi8OabkU/u1w/48ktg991tUEoIIYQQIgfuoREHeL1ehEKhHn91N5kBAEcddRTmzZuH//3vf6irq0NVVRVWr16N+++/P6bJDAAYMmQI/vnPf2L16tWoqqpCXV0d/ve//2HevHm2T2Z0ZMyYMejTp49j9lXS0NCAxYsXt7fskoRKbW74dsqHXXat2pE8tog5uuetPb5164Dzzzc/ccAAYLvt3BPWimM//8RE4KmnAI/H+H74cKC0FLjhBiAlhTXPBju6/7+jK7rnTXp8vNfrOX369In4bLJo0SKj/VR9PTBxIvDjj+aT8rW1aDjnHCx+4w1L2qSPLxIZnfMmPTbWPHU27bAjfXyRyOieN8nxSdbmFJzQIKLIzs5GYqKewzIYDKKqqgrBYFC1lDBUanPDt1M+7LJr1Y7ksUXM0T1v7fH17w8cf3zkkwYMAIqLgeRkd8XB4Z//7rsD990HPPAA8NFHQIeXC1jzWPPiFd3zJj0+3uv1nMTExIjPJn6/H79/9BFw0EHAnDnA6tXAAQcASUmRta1Zg6pPPrGkTfr4IpHROW/SY2PNU2fTDjvSxxeJjO55kxyfZG1OwZZTRARsOUUIIRoTCgGzZgGTJxubgwNAQgLw9tuAg6v+CCGEkO7oacup8QCe6dMHiVu/BVlQYGwUbsaLL5q3XySEEEII6WWw5RQhreTl5SFZwZu6bhAIBOD1ehEIBFRLCUOlNjd8O+XDLrtW7UgeW8Qc3fPWKb6EBOCSS4BPPgHa/mh0661KJzNU/fxZ81jz4hXd8yY9Pt7r9Zzk5OSwZ5PLADwLhE9mAMDrrwMjR4ZrS06GNy8PgQsvBL75JiYt0scXiYzOeZMeG2ueOpt22JE+vkhkdM+b5Pgka3MKTmgQUUyYMAH9+vVTLcMRamtrMXfuXNTW1qqWEoZKbW74dsqHXXat2pE8tog5uuctYnz7729sjnr77cAtt6gTB3U/f9Y81rx4Rfe8SY+P93o9p1+/fmHPJiUANppdUFeHYF1d2L5Qtf36Ye6ECagFjBUadXU91iJ9fJHI6Jw36bGx5qmzaYcd6eOLREb3vEmOT7I2p2DLKSICtpwihBBCCCGEuE1PW04dDGApgK3XlH8LoDA1FaeMHImbli1Dgtlj9tlnA888Y6xeJIQQQgjppbDlFCGEEEIIIYQQIpyPAdy01WevAjgQwJdNTbhl6VK80NXD/LPPGvtKEUIIIYSQmOCEBhHFlClTkJWVpVqGI1RXV2P69Omorq5WLSUMldrc8O2UD7vsWrUjeWwRc3TPm/T4VOkL87tyJXDIIcCPPzrnQ5hd1rz4RPe8SY+P93o9Jysry/TZ5D4ArwMIArgFwDgAHT1P+PZbtBx7rKEtKwvTp0xBdUc7V10FfPZZ1Fqkjy8SGZ3zJj021jx1Nu2wI318kcjonjfJ8UnW5hRsOUVE0LZMafDgwSgrK8PKlSu1aznV3NyMsrIyDBo0CCkpKarldEKlNjd8O+XDLrtW7UgeW8Qc3fMmPT5V+tr97rILUv75T2DaNCAQMDZI/89/gETr75qw5hGJ6J436fHxXs8cs5ZTKSkpGDRoEMrKytDc3Bx2PAfAAQDeMbH74cKFOPjKKxH45ReUDRqEQWVlSOloZ6edjH2lttmmW43SxxeJjM55kx4ba546m3bYkT6+SGR0z5vk+FRpU9lyihMaRATcQ4MQQnoxP/wAXHqp0UJj4EDVauTzzTfAueeGv5376KPAZZep0UQIIXFKT/fQ6AkjU1OxNBBASjAY+YRjjgHefBNISnLEPyGEEEKIU3APDUJaGTduHNLT01XLcIT6+nosXLgQ9fX1qqWEoVKbG76d8mGXXat2JI8tYo42eWtoAE45BXjjDeCAA4CPPgIgPz5V+uo/+QQLb7oJ9WvWhB+87jpgwwbrPljziEB0z5v0+Hiv13PS09MtP5t80tSEKzweLBw3DvWR7Lz9NjB1ard2pI8vEhmd8yY9NtY8dTbtsCN9fJHI6J43yfFJ1uYUnNAghBBCSGyEQsBFFxktMwBg0yZg9GjgiSeMYyScv/wF6N8/8rGGBmPlRiDgriZCCIljcnNz4fF4HLM/D0BZVyfceSfwyiuO+SeEEEII0Q22nCIiYMspQgjphTz4IPD3v0c+dsEFwGOPAWlp7mrqDXz7LTB0KBDpDZrTTgOKioCMDNdlEUJIvFJYWIiSkhLT48OGDcOnn34as/0+AKp23x2p334b+YR+/YAVKwA+/xBCCCGkl8CWU4S0MnjwYHGb69hFc3Mz1q9fH3FTQdWo1OaGb6d82GXXqh3JY4uY0+vztmSJ0SLJhOayMqz/9lux8an6+Tc3N2N9SwuaZ8zofCA7G5g/H3j+ecuTGax5RCK65016fLzX65qioiIUFBR0WqmRkpKCvffeG4WFhSgqKopZW0pKCm4aPBgttbXGxEUkamuBsWOBysqIh6WPLxIZnfMmPTbWPHU27bAjfXyRyOieN8nxSdbmFJzQIKLgHhpqYI9RtXbZTz4+6fV5GzIEGDYs8rGBA1H/1FNY+PrrYuNTtodGm9/x44GjjzY+POYYYM0a4KyzgIQE+3yw5hFB6J436fHxXq9r0tPTUVxcjMrKSpSXl6O8vBxffvklzjrrLMyaNSvm55MMAM+lpyNp3Dg01dcDO+xgfnJZGVBYCLS0hB2SPr5IZHTOm/TYWPPU2eQeGvGL7nmTHJ9kbU7BllNEBGw5RQghvZCmJuCqq4BZs7Z8lpZmbAx+wAHqdPUWNm40NlO/6CJbJjIIIYQ4g9/vR05ODvx+v+k5CQkJePPNN3HccccBAHYF8CqAsCeaffcFvvrK3Nn11wNbr+IjhBBCCBEGW04RQgghpPeRmmpsAD57NtDWLvDJJzmZES0DBwIXX8zJDEIIEY7H48HYsWO7POeMM87A4MGDAQB7A/gMESYzAGMyo6uH/XvvBRYsiFUqIYQQQoj2cEKDiGLq1KnIzs5WLcMRqqqqMG3aNFRVVamWEoZKbW74dsqHXXat2pE8tog5WuXtoouApUuBadOAc88FID8+VfpY81jz4hXd8yY9Pt7rWbcZaZ8NwJjsKCgo6LTPxrcAytrsZGdj2tSpqOr4jPPNN8Buu5k7v+ACYOVKUy2kd6Bz3qTHxpqnzqYddqSPLxIZ3fMmOT7J2pyCLaeICNqWKeXl5WHjxo0oLS3VruVUIBDAxo0bMXDgQCQnJ6uW0wmV2tzw7ZQPu+xatSN5bBFzdM+b9PhU6WPNY82LV3TPm/T4eK9nn02/34+Kior273Nzc9snObxeL/Lz8wEAOwD4HMC2ycnYOHAgBm7ciORAAMjMNFZg7LEHcOCBgNkfH3beGfj8c2DbbcWPLxIZnfMmPTbWPHU27bAjfXyRyOieN8nxqdKmsuUUJzSICLiHBiGEEEIIIaQ303FCAwAOBPABgPY1HbvtBrz6KjBkiPH94sXACScAwWBkgyNHAu+9B2y1KoQQQgghRDXcQ4OQVgoLC9G3b1/VMhyhrq4OxcXFqKurUy0lDJXa3PDtlA+77Fq1I3lsEXN0z5v0+FTpi9lvebmx2bqTPlyyy5oXn+ieN+nx8V5Pjc3PAVzcty+KCwvx2+jRwGefbZnMAIAxY4B77jE38MknwIUXoq62VvT4IpGRXhesID021jx1Nu2wI318kcjonjfJ8UnW5hSc0CCiqKqqQtDsDaVeTmJiIrKzs5GYKO9/O5Xa3PDtlA+77Fq1I3lsEXN6Rd4aGoCWlpgulR6fKn0x+X3lFWC//YBTTgF++skZH1HAmkesoHvepMfHez11Nl8IBvFBVRV+f+QRICcn/ITrrgMKC80NzJ+PxAcfFD2+SGSk1wUrSI+NNU+dTTvsSB9fJDK6501yfJK1OQVbThERsOUUIYQIo6UF+NvfjH/Pnw/066dWTzzS1ARcfz0wc+aWzw47zGg/IqxvKyGEkPCWUx0pLy9HXl5e5Avr64FDDum0EXgYzz8PnH66dZGEEEIIITbAllOEtDJ06FCkpqaqluEITU1NKC0tRVNTk2opYajU5oZvp3zYZdeqHclji5gjPm/XXWf0+X71VeOP6FGsDOiI9PhU6Yvab3m58cetjpMZAPDBB8DUqfb46CGsecQKuudNeny811NnMzU1FUOHDkVzc7P5Senpxu/b7bePrCU1FaX33Yem5cstaSHuIr0uWEF6bKx56mzaYUf6+CKR0T1vkuOTrM0pOKFBRDFq1Ch4NN30zu/3Y+nSpfD7/aqlhKFSmxu+nfJhl12rdiSPLWKO6Lw98QTw4INbvl+5Ehg2DCgtjdqE6PigTl/Ufp96Cvj888jH7r4b+M9/rPvoIax5xAq65016fLzXU2fT4/Fg1KhR3f+RYeBAY1KjT59wLR4Plh58MPznnAP8+KMlPcQ9pNcFK0iPjTVPnU077EgfXyQyuudNcnyStTkFW04REbDlFCGECGHxYuDEEyPvndG3L/Dyy8Axx7ivK95objZWxqxYEfn4GWcAJSXuaiKEENIlMbec6siddwK33GJ+fOhQ4MMP2QqSEEIIIUphyylCWvF4PEhISFAtwxFCoRD8fj8kziGq1OaGb6d82GXXqh3JY4uYIzJvjY3ARReZbwSelATsuGNUpkTG1wFV+qL2m5ICFBeHbyCbkADcdhvw3HPWffQQ1jxiBd3zJj0+3uups5mQkACPx4Py8nJ4vV54vV7zNygXLADuuAPYbrvOWhIS4Pd4EEpIMFZLnnkmEAhY0kWcR3pdsIL02Fjz1Nm0w4708UUio3veJMcnWZtTcEKDiGLKlCnIyspSLcMRqqurMWPGDFRXV6uWEoZKbW74dsqHXXat2pE8tog5IvOWlmas0Ij0BmlSEvDii0CUb1yIjK8DqvT1yO8uuwBz5mz5frvtgHfeMfbQSEqyx0cPYM0jVtA9b9Lj472eOptZWVmYMmUK/va3vyE/Px/5+fnIyclBYWEh6uvrjZNCIWNlxllnAU1NwKZNnfbTqM7KwowpU1Dd9pz0+uvAFVcY1xGxSK8LVpAeG2ueOpt22JE+vkhkdM+b5Pgka3MKtpwiImhbppSbm4vNmzfjq6++0q7lVEtLCzZv3owBAwYgqYs/RKlApTY3fDvlwy67Vu1IHlvEHNF527QJGDsW+PTTLZ/Nnm2s3ogS0fFBnb6Y/F5zjbGPyXPPAbm5zviIAtY8YgXd8yY9Pt7ruWMzUsuppKQkDBgwAJs3b0bLVisgCwoKUPzMM8bv17lzww1utx2waRNakpKwecAADNi8GUkdbdxzDzBlSo9jI+4gvS5YQXpsrHnqbNphR/r4IpHRPW+S41OlTWXLKU5oEBFwDw1CCBFGQwNw3nnACy8A114L3HefakXxS3MzkJjY5aoMQggh6ulqD41IeDwe1Fx8MZJnzjQ/KTsbqKoyP/7ss8D48VH7JIQQQgixA+6hQUgrEyZMQD9NN7irra3FnDlzUFtbq1pKGCq1ueHbKR922bVqR/LYIuaIz1ufPsYeDvPmATNm9Phy6fGp0heT35SUHk1msOYRieieN+nx8V5Pnc1+/fqZPuP4/X78fO65wKBB5gZOPRW1ubmYM2ECaiM9J51/PvD++5Y0EmeQXhesID021jx1Nu2wI318kcjonjfJ8UnW5hSc0CCi8Hq9CGi6wV1ycjLy8vKQnJysWkoYKrW54dspH3bZtWpH8tgi5vSKvCUmAmefbfy3h0iPT5U+1jzWvHhF97xJj4/3eupsBgKBLp9xgv37A2++CeTkdD6QkADMnAk89RSS581D3o8/IjmSjeZm4JRTgDVrLOkk9iO9LlhBemyseeps2mFH+vgikdE9b5Ljk6zNKdhyioiALacIIYQQQgghvRm/34+cnBz4/f6orykvL0deXh7wwQfA0Ucbm4KnphorJM84Y8uJCxYYm4abMXAgsGIFsOOOsQdACCGEEBIlbDlFSCvDhw9HWlqaahmO0NjYiBUrVqCxsVG1lDBUanPDt1M+7LJr1Y7ksUXM0T1v0uNTpc9xv5s2ofG991jziDh0z5v0+Hiv545Nj8eDsWPHdvosLS0tumecww4DnnnG2DNj8eJOkxmNjY1YkZ+PxunTza/fuBE4/nigujpqvcRZpNcFK0iPjTVPnU077EgfXyQyuudNcnyStTkFJzSIKIYOHYrU1FTVMhyhqakJpaWlaGpqUi0lDJXa3PDtlA+77Fq1I3lsEXOU5e2dd4wWFg4jfVyq0ueo3//+FzjgADSdfTZKV6xgzSOi0D1v0uPjvZ57NouKilBQUACPxwMASE1N7fIZx+v1tn/5x44FysqA0aMja7nkEuDSS82dr1oFjB0L9GCFCHEO6XXBCtJjY81TZ9MOO9LHF4mM7nmTHJ9kbU7BllNEBGw5RQghLvDpp8CRRwJ1dcANNwB33WX06Ca9nwULgIkTt/wRa9Ag4LPPgP791eoihJA4xe/3o6KiAoAxaTF6q0mKSLSt8CgqKkJ6enrkk1pagFNPBRYtMjc0dizw4otAHPXSJoQQQoi7sOUUIa1kZ2cjMYbNZ3sDwWAQVVVVCAaDqqWEoVKbG76d8mGXXat2JI8tYo7reVu3zmhFUVdnfH/PPcDFFxt/GHEA6eNSlT7b/ba0AFOmGH3VWyczgomJqPr9dwQLCwGTTWhjgTWPWEH3vEmPj/d67tv0eDzIy8vDzjvvjG222SaqZxy/34+SkhJMnDjRXEtSEvDcc8CwYeaGFi0C/u//AL67qBTpdcEK0mNjzVNn0w470scXiYzueZMcn2RtTqHnX45Jr2Xy5MnIzMxULcMRfD4fZs6cCZ/Pp1pKGCq1ueHbKR922bVqR/LYIua4mrcffgCOOQb444/On//rX0aPbgdaU0gfl6r02e53/nxgxozOPjIzMXPyZPg+/xy4/np7/IA1j1hD97xJj4/3eups+nw+vPTSSz16xlm0aFGnjcXDtKSnA6+9BuTlmRuZMwe47jpOaihEel2wgvTYWPPU2bTDjvTxRSKje94kxydZm1Ow5RQRQdsypezsbPh8PqxatUq7llPBYBA+nw+ZmZniVqGo1OaGb6d82GXXqh3JY4uY41reGhuB/fYzVmiY8eijwGWX2epW+rhUpc92v8EgcMopwKuvbvkoMRG+zExk+nxIPOQQ4O23ge42o43KFWseiR3d8yY9Pt7rqbMZDAaxdu1a7Lvvvj16c7K8vBx5rRMWEbWUlQGjRgG//db1iwnTpwP/+EfM+knsSK8LVpAeG2ueOpt22JE+vkhkdM+b5PhUaVPZcooTGkQE3EODEEIc5OmngQsvNP74vTVnnQXMmwcIuykjPcDnA0aMANau7fz5hAnA7NmAyUa0hBBC3MHr9SI/P79H13Sc0AhjzRrg6KOB1j06kJoKdLUR6JNPGi2oCCGEEEJsgntoENLKpEmTkJGRoVqGI9TU1GDWrFmoqalRLSUMldrc8O2UD7vsWrUjeWwRc1zN2/nnAy+/HP6W/pgxxmSHA5MZ0selKn2O+M3MNFZo5OQYPjIyMGvaNNTMnGnrZAZrHrGC7nmTHh/v9dTZrKmpwauvvmrpGaeTls8+Aw4/fMtkBmBMZiQlmRuYNAl46aWY/ZPYkF4XrCA9NtY8dTbtsCN9fJHI6J43yfFJ1uYUnNAgoigtLUVTV28X9WJSU1MxdOhQpAp8U1alNjd8O+XDLrtW7UgeW8Qc1/M2dizwn/8Yf/wGgOHDgRdfdOztfenjUpU+x/wOGgQ8/zyQkYHUp57C0GOOQaoNbaY6wppHrKB73qTHx3s9dTZTU1Ox2267WXrGadfy2WfAkUeG74kFAC0tQEJCZAPBoLEic/HimDWQniO9LlhBemyseeps2mFH+vgikdE9b5Ljk6zNKdhyioiALacIIcQlVq4Err0WeOEFoH9/1WqI3fzxB/NKCCHCsK3l1KefGhMadXWRL8rPB8rLzY16PMCbbwKjR/dICyGEEELI1rDlFCGtjBo1Ch6PR7UMR/D7/Vi6dCn8XW3apwiV2tzw7ZQPu+xatSN5bBFzlOVtv/2A995z/I/e0selKn2O++3fnzWPiET3vEmPj/d66mz6/X6UlpbG/Izj9/uxYcMGLFy4EBtyctD04ovhLSQB4LDDgNJSYObMrowBJ54IfPxxTFpIz5BeF6wgPTbWPHU27bAjfXyRyOieN8nxSdbmFJzQIKLIy8tDcnKyahmOEAgE4PV6EQgEVEsJQ6U2N3w75cMuu1btSB5bxBzd8yY9PlX6WPNY8+IV3fMmPT7e66mzGQgEUFFR0eNnnPr6ehQWFiInJwf7778/Fi1ahP333x9Zp5yC+w48EKGOe2Ycf7zRTiozE7jySuCWW7oyDBx3HPD55zFGRKJFel2wgvTYWPPU2bTDjvTxRSKje94kxydZm1Ow5RQRAVtOEUIIIYQQQnQklpZTw4YNw6effmp6/OHhw3HFp58CZ5wBPPNM5z2xQiHgiiuAxx4zd5CTAyxZAuy7b490EUIIIYQAbDlFSDu5ublI6vi2kUa0tLSgoqICLS0tqqWEoVKbG76d8mGXXat2JI8tYo5teQsGgWuuAT75xB5hNiF9XKrSJ6bm1dUBf/ub0UvdTrsu2JE+tkhkdM+b9Ph4r6fOZktLC/74448eP+N0nMxISkoKe066vrQUTYsXA/Pnd57MAIzNwR9+GLjgAnMHlZXAUUcBa9f2SBeJHul1wQrSY2PNU2fTDjvSxxeJjO55kxyfZG1OwQkNIopJkyYhIyNDtQxHqKmpwezZs1FTU6NaShgqtbnh2ykfdtm1akfy2CLm2JK3UAi4/HLggQeAY48V1RNb+rhUpU9Ezdu0ydgQ9pVXjDd7//tfe+zapc8lHcRddM+b9Ph4r6fOZk1NDV577TVLzzgZGRlhz0l+vx8/77EHYDZRkpgIzJ4NjB9vbvi334xNxr/9NmZtxBzpdcEK0mNjzVNn0w470scXiYzueZMcn2RtTsGWU0QEbcuUPB4PGhsbsXr1au1aToVCITQ2NiItLQ0JCQmq5XRCpTY3fDvlwy67Vu1IHlvEHMt5i9ROom9f4K23gEMPtU9ojEgfl6r0Ka95GzYAY8YA5eVbPtt2W+Cjj4Ddd4/drl36XLieqEH3vEmPj/d66myGQiF8++23GDx4MGJ99E5ISEBaWhoaGxs72SgvL0deXl7XFwcCwJlnAi++aH7Ojjsa7ae6+T1Aeob0umAF6bGx5qmzaYcd6eOLREb3vEmOT5U2tpwipBW/3x/zjb50EhIS4PF4xBU+QK02N3w75cMuu1btSB5bxBxLeQuFgKuuCu+NXVdnbPT5wQf2iLSA9HGpSp/SmvfJJ8DIkZ0nMwDg11+Bo48GfvopNrt26XPpeqIG3fMmPT7e66mzmZCQgNTUVEvPOKFQKPbnpORkoy3ViSean/PTT8DhhwPffBOzRhKO9LpgBemxseaps2mHHenji0RG97xJjk+yNqfghAYRxeTJk5GZmalahiP4fD489NBD8Pl8qqWEoVKbG76d8mGXXat2JI8tYo6lvM2bBzzySORjdXXAKacAipebSh+XqvQprXlvvAH8/nvki77/Hpg4MTa7dulz6XqiBt3zJj0+3uups+nz+fDiiy9aesbJzMy09pyUmAj062fsrWHGL78Ao0YB69bF5oOEIb0uWEF6bKx56mzaYUf6+CKR0T1vkuOTrM0pOKFBRLF06VL4/X7VMhzB4/Fg1KhR8Hg8qqWEoVKbG76d8mGXXat2JI8tYo6lvJ11FlBQEPlYaqrxJqbi/Yikj0tV+pTWvDvuAAoLI1+0++7Ak0/GZtcufS5dT9Sge96kx8d7PXU2PR4PDj/8cEsrNPx+f+zPSYEAcPbZQHGxscKzq0mNigpjjyVuFG4L0uuCFaTHxpqnzqYddqSPLxIZ3fMmOT7J2pyCe2gQEajsu0YIIb2SQAA45xzjDxRtpKYaGz0ff7w6XUQ2jY1GW7IlS7Z8NnQosHgxsN12ymQRQojuFBYWoqSkxFab3e6h0dxsvATR1f4ZkRgwAHj/faDD8xkhhBBCSEe4hwYhrYwZMwZ9+vRRLcMRGhoasHjxYjQ0NKiWEoZKbW74dsqHXXat2pE8tog5lvOWnGy0njrrLOP7lBTg5ZfFTGZIH5eq9CmveWlpwKJFwIEHGt8feiiwdGlUkxmsecQKuudNeny811Nns83OY489hoKCgpjenuzTp0/Pn5Oam43VnD2dzACAzZuNlRqrVvX8WtKO9LpgBemxseaps2mHHenji0RG97xJjk+yNqfghAYRRXZ2NhIT9RyWwWAQVVVVCAaDqqWEoVKbG76d8mGXXat2JI8tYo4teUtOBp55xtj74KWXgBNOsE+gRaSPS1X6RNS8jAzgzTeBK64wVmZkZdlj1y59Lukg7qJ73qTHx3s9dTbb7Hg8HhQXF6OyshLl5eUoLy/HunXrotrAMzExsefPScnJwA47mB/Pzgb239/8+G+/AUccAZSWRu+TdEJ6XbCC9NhY89TZtMOO9PFFIqN73iTHJ1mbU7DlFBEBW04RQgghhBBC4g0rrai6bTkVCgF//zvw0EOdP8/IAN57D9hrL+Ckk4z2UmZkZRmT4CNHxqSREEIIIXrCllOEtJKXl4fk5GTVMhwhEAjA6/UiEAiolhKGSm1u+HbKh112rdqRPLaIObrnTXp8qvSx5rHmxSu65016fLzXU2ezOztFRUUoKCjo0kZycnLE56RuNwlPSAAeeACYMmXLZ337GqvzDjwQSE8HXnsNOOoocxvV1cDRRwPvvtu1LxKG9LpgBemxseaps2mHHenji0RG97xJjk+yNqfghAYRxYQJE9CvXz/VMhyhtrYWc+fORW1trWopYajU5oZvp3zYZdeqHclji5jTZd6qqoBNm1zXZCfSx6Uqfax5rHnxiu55kx4f7/XU2ezOTnp6OoqLi7Fu3TpTG/369Yv4nDRkyBAUFhaivr7eXEBCAnD33cDUqUCfPsAbb3RebZGeDrz6KnDMMeY26uuNtpYLF5qfQ8KQXhesID021jx1Nu2wI318kcjonjfJ8UnW5hRsOUVEwJZThBDSyi+/AGPGGH+AWLrU6HFNiEpCIePt3p12Ai6/XLUaQgjREq/Xi/z8/JiuLSgoQHFxcTROALMWVX4/8Le/AW+9ZX59UhIwZw5w9tkxqCSEEEKITrDlFCGEEEKA774DDjkEWLUK+Ooro691V29dEuI0oRBw/fXAvfcam4g/9phqRYQQQrZi0aJF3befAswnMwDA4wFeeQUYO9b8nJYW4JxzgMcf77FGQgghhBC74IQGEcWUKVOQlZWlWoYjVFdXY/r06aiurlYtJQyV2tzw7ZQPu+xatSN5bBFzwvK2erUxmfHdd1tO+ugj4IwzgOZmNSItIH1cqtLXq2peKARcey1w//2G3awsTN+4EdWPPqpUn/SxRSKje96kx8d7PXU27bCTlZXV5XOS3++H1+uN2X47aWnACy8A48d3fd5llwHTp1v3pznS64IVpMfGmqfOph12pI8vEhnd8yY5PsnanIItp4gI2pYpDR48GGVlZVi5cqV2Laeam5tRVlaGQYMGISUlRbWcTqjU5oZvp3zYZdeqHclji5jTKW9ffWVsuFlVFfnk8eOBZ54BEnvPewjSx6Uqfb2m5oVCwN//Djz00Ba7KSkoGzQIg8rKkPLww8CkSUr0SR9bJDK65016fLzXU2czWjtdtZxKSUnBoEGDUFZWhuYuXnIoKChAUVER0tPTY9YLAAgGgSOOAJYt6/q8a64xVvD1ovsTN5FeF6wgPTbWPHU27bAjfXyRyOieN8nxqdKmsuUUJzSICLiHBiEkrtm0yVid8b//RT6+227AJ58AAwa4q4vELx9+CBx2mPnxlBRgw4au25cQQgiJGit7aHQk6v00uuLll4HTTzcmNrrjrLOAp58GUlOt+SSEEEJIr4J7aBDSyrhx46y/USSU+vp6LFy4EPUC++Gr1OaGb6d82GXXqh3JY4uY0ylv220HvPMOsMMO4ScOHWq0nuplkxnSx6Uqfb2m5h16KPDww53tpqdj4bhxqM/IABYsiHkygzUvPtE9b9Lj472eOpvR2snNzYXH44l4LD09PernpKj30zDj3XeBM8+MbjIDAJ57DjjhBKCmJnafmiK9LlhBemyseeps2mFH+vgikdE9b5Ljk6zNKTihQQghhEggLw/4z3+AnJwtnx12GLB0qTHhQYjbXHFFp5ZTAICEBODf/wZOPVWJJEII0RWPx4OxXW3IDeC4444znfRow+/3o6KiIjYRn30GjBsHNDX17Lp33wVGjTJWnBJCCCGEOAxbThERsOUUIYS0smIFcNRRRu/qkhKgTx/Viki88+CDxn4aycnGZrHjxqlWRAghWlJfX4+JEyeGrbJom+woKirCxIkTUVJS0qWd8vJy5OXlhU1udLUKBKEQ8Ne/AqWl5oYTEozzzNh1V2DxYmD33bvURwghhJDeD1tOEdLK4MGDxW2uYxfNzc1Yv359lxv5qUKlNjd8O+XDLrtW7UgeW8Qc07wNHw58/DHw0ku9ejJD+rhUpa9X1ryrrwYeeADNzz+P9YMHs+aRmNA9b9Lj472eOps9sZOeno7i4mJUVlaivLy8/evXX3/F1KlTkZKSgqKiIhQUFHRpp7KyEoWFhcjJyUF+fn77V05ODgoLCyO3pEhIABYtAvbYI7LRe+4BXn8d6Krt1XffASNHAp9/3m2s8YD0umAF6bGx5qmzaYcd6eOLREb3vEmOT7I2p+CEBhEF99BQA3uMqrXLfvLxSZd523dfY9PlXoz0cck9NHrI1Vej/ogjWPNIzOieN+nx8V5Pnc1Y7Hg8HuTl5bV/BYPBdhttkx7r1q0zvf6vf/0rSkpKwvbS8Pv9KCkpwcSJEyNfuPPOxr5d++/f+fNLLgH+8Q/g+OOBJUuAbbYxF//bb0b7qddeizJafZFeF6wgPTbWPHU2uYdG/KJ73iTHJ1mbU7DlFBEBW04RQrTmu++AHXcE0tJUKyGEEEKIBni9XuTn58d0rcfjQWVlZVj7qbYWVQl1dRhw2WVIX7YMOOkk4OWXjbaDbWzYABx7LOD1mjtJTAQeeAC48kpj9QchhBBCtIItpwghhBBdee89403HSZO67jtNiE6sXAkEAqpVEEIIiYDf78eKFSvg9Xrh9XrDWlTl/eUvyFq2DLckJ+O81FTUb71J+B57AMuXA0OHmjsJBoHJk4ErruDvA0IIIYTYCic0iCimTp2K7Oxs1TIcoaqqCtOmTUNVVZVqKWGo1OaGb6d82GXXqh3JYyvumT3beIOxqgqYMwe47772Q7rnTXp8qvTFRc1btszooX766UBjo+36pI8tEhnd8yY9Pt7rqbNph51INrrc4DsKRo8e3b63Rv/+/cNaVAUA3BkI4JmXXorcoio316j3Rx7ZtaPHHgNOPhnw+WLW2luRXhesID021jx1Np2qeUQ+uudNcnyStTkFW04REbQtU8rLy8PGjRtRWlqqXcupQCCAjRs3YuDAgUjuuGRbACq1ueHbKR922bVqR/LYilsCAeDaa4GZMzt/npBgtG0YN077vEmPT5U+7WveF18ARxwB1NQY3x91FLBwIdC3r236pI8tEhnd8yY9Pt7rqbNphx0zG4WFhSgpKYlZW7SYtagCADQ1ARMmAAsWdG1k772BN94AdtrJEY0SkV4XrCA9NtY8dTadrHlENrrnTXJ8qrSpbDnFCQ0iAu6hQQjRigkTgLlzIx9LTwc+/rjrNg2E9EbWrAEOPxz444/Onx94IPD668C226rRRQghmlJfX4+JEydi0aJFYRuA2015eTny8vIiHwwGgf/7P6CoqGsjubnGZuEHHGC7PkIIIYS4C/fQIKSVwsJC9O3wFqdO1NXVobi4GHV1daqlhKFSmxu+nfJhl12rdiSPrbhl0iTzDcDr64FHH9U+b9LjU6VP25r3v/8BRx8dPpkBAJ9/brSgqq62RZ/0sUUio3vepMfHez11Nu2wY2YjPT0dxcXFqKysxNdff41hw4ZZ0hozFRXAf/4T3XmHHQY8/7zzmgQgvS5YQXpsrHnqbDpZ84hsdM+b5Pgka3MKTmgQUVRVVSEYDKqW4QiJiYnIzs5GYqK8/+1UanPDt1M+7LJr1Y7ksRW3DB9u/pbi5MnArFna5016fKr0aVvzfv8daGgwv/i004CsLFv0SR9bJDK65016fLzXU2fTDjvd2fB4PNhzzz2xYsUKNDQ0oLy8HOXl5Vi3bh0SEhJi9hsV9fXA2LHATz9Fd35DA1BQANx8s7GyQ2Ok1wUrSI+NNU+dTTdqHpGJ7nmTHJ9kbU7BllNEBGw5RQjRkltvBe64w/h3cjLw6KPAxRer1USIU5SWAsccA2ze3Pnz8eOBZ54B4ugGmxBCpGDXPhsRW04Fg0BhIfDCC7EZPekk4NlngcxMy/oIIYQQ4i5sOUVIK0OHDkVqaqpqGY7Q1NSE0tJSNDU1qZYShkptbvh2yodddq3akTy24p6pU4HTTweys4HFiztNZuieN+nxqdKndc0bOhT44ANg5523fHbkkcZqpQ6TGax58YnueZMeH+/11Nm0w44VG0VFRSgoKIi8obdV3nuv68mM3Nyur3/tNWNV67ff2qtLCNLrghWkx8aap86m6ppH1KF73iTHJ1mbU3BCg4hi1KhRztxsC8Dv92Pp0qWOb9gXCyq1ueHbKR922bVqR/LYinsSE4E5c4w9BI48stMh3fMmPT5V+rSveYMHA8uXA/vsA+y7L/Dyy8BWLyqw5sUnuudNeny811Nn0w47Vmx03GfD9lZURx8NPP00kJISfmzkSGDDBmOVXlesWwccdFB0e3D0MqTXBStIj401T51N1TWPqEP3vEmOT7I2p2DLKSICtpwihBBCNMLnM/qqd/d2LiGEECX0tBVVxJZTbXz4IXDKKcZ+SgCw/fbAf/9r/DcUAqZPB266yfi3GYmJxnnXXgs4ve8HIYQQQizDllOEtOLxeJzfuE4RoVAIfr8fEucQVWpzw7dTPuyya9WO5LGlJfPnA//4h2UzuudNenyq9MVNzcvMNJ3MYM2LT3TPm/T4eK+nzqYddpyIz9ZWVIceCnz2GbDnnsZqjZdeMiYzAGNy4oYbgFdfBTIyzG0Eg8D11xsbhtfUWNckAOl1wQrSY2PNU2dTas0jzqN73iTHJ1mbU3BCg4hiypQpyMrKUi3DEaqrqzFjxgxUV1erlhKGSm1u+HbKh112rdqRPLa0oqEBuOgi4OyzgXvvjX0DzFZ0z5v0+FTpY80zsbNmjfHlog7iLrrnTXp8vNdTZ9MOO07EF6kV1ZIlS2I3uOuuRsvB118HRowIP37iicCnnwK77961nRdeAA48EPj669i1CEF6XbCC9NhY89TZlFrziPPonjfJ8UnW5hRsOUVE0LZMKTc3F5s3b8ZXX32lXcuplpYWbN68GQMGDEBSUpJqOZ1Qqc0N3075sMuuVTuSx5Y2bNhgbO69atWWzzIygC+/BHbbLSaTuudNenyq9LHmRbCzaZPRP72yEiguBo4/3hUdxF10z5v0+Hivp86mHXbcyp/X60V+fn7EY+vWrcPgwYOtO6mqAs48E1i8uOvz0tOBf/0LOOss6z4VIb0uWEF6bKx56mz2pppH7EX3vEmOT5U2lS2nOKFBRMA9NAghYnnlFeDcc4Ha2vBj++0HfPIJYEe7BkLiEb8fOOII461ewOih/s9/AlddxR7qhBDiMl1NaABAQUEBioqKkJ6ebs1RS4vRhuq++7o/9/LLjd8LqanWfBJCCCHEVriHBiGtTJgwAf369VMtwxFqa2sxZ84c1Eb6o6hiVGpzw7dTPuyya9WO5LGlBVlZxubGkVi5ErjmmpjM6p436fGp0sea18FOTQ1w4YVbJjMAo4f61VcDkyYBTU2O6iDuonvepMfHez11Nu2wI2V8lZSUYOLEidYNJSUB06YBO+/c/bmPPgocdhjw44/W/bqMlLw5gfTYWPPU2dSp5pGeoXveJMcnWZtTcEKDiMLr9SIQCKiW4QjJycnIy8tDcnKyailhqNTmhm+nfNhl16odyWNLC444ArjttsjHkpKAXXYBYljsqHvepMenSh9rXgc7M2cC8+dHPunJJ40/Yjmog7iL7nmTHh/v9dTZtMOOpPG1aNEi+P1+64auugr44Yfozv30U2NV7FtvWffrIpLyZjfSY2PNU2dTt5pHokf3vEmOT7I2p2DLKSICtpwihIimpQUYMwZ4990tn+24o9Hv/5BD1OkipLcSDAKnnWa0dIvEIYcA778PpKS4q4sQQuIYv9+PnJycbicsysvLkZeXF7ujefOMdp6xcM01wN13swUVIYQQohi2nCKkleHDhyMtLU21DEdobGzEihUr0NjYqFpKGCq1ueHbKR922bVqR/LY0oakJONN8u23N74fMwYoLbU0maF73qTHp0ofa16rnc8+Q+P8+cA//hF+wg47AC+8YDqZIX1skcjonjfp8fFeT51NO+y4lT+Px4OxY8d2e56lFRpr1xptBWPln/8EDj4YKCuL3YZLSK8LVpAeG2ueOpu9qeYRe9E9b5Ljk6zNKTihQUQxdOhQpGr6tk1TUxNKS0vRZNITXCUqtbnh2ykfdtm1akfy2NKKbbcFFiww3gp84w1gm20smdM9b9LjU6WPNa+DnUAAmD4dePrpLZMXKSnASy8BubmO6yDuonvepMfHez11Nu2w42b+ioqKUFBQ0OU5Q4YMQWFhIerN9hjriv79gYMOinxsxx2BhQuB7bbr2sYXXxgtqBYs6Ll/F5FeF6wgPTbWPHU2e1vNI/ahe94kxydZm1Ow5RQRAVtOEUIIIXHMRx8Bp54K3HEHcNFFqtUQQkjcs379egwZMqTLcwoKClBcXNxz44EAMHUqcNddWz5LTgaWLQNGjgR+/hkoKDB+N3THxInAww8Dffv2XAchhBBCYoYtpwhpJTs7G4mJeg7LYDCIqqoqBINB1VLCUKnNDd9O+bDLrlU7kseWaBobjQ0pn3lGiXvd8yY9PlX6WPNM7BxyCLB+fVSTGdLHFomM7nmTHh/v9dTZtMOOivx5PJ5uz4l5g/DkZODOO4E33wT+9Cfjs+nTjckMwGg9+P77wPXXd2+rqAg44ADgq696rsNhpNcFK0iPjTVPnc3eWvOIdXTPm+T4JGtzCj3/ckx6LZMnT0ZmZqZqGY7g8/kwc+ZM+Hw+1VLCUKnNDd9O+bDLrlU7kseWWFatAkaMMN7ou+QSo5+zy+ieN+nxqdLHmteFnZycnl2/YYPxli/pFUivCVaRHh/v9dTZtMOOivzl5uZ2O6nh9/uxYsUKeL1eeL3enk9uHHccsHIlcPPNwN//3vlYSgowYwaweDEwYEDXdtavBw48ELj3XqClpWcaHER6XbCC9NhY89TZ7K01j1hH97xJjk+yNqdgyykigrZlStnZ2fD5fFi1apV2LaeCwSB8Ph8yMzPFrUJRqc0N3075sMuuVTuSx5Y4mpuBe+4x3gpsbt7y+Z57Ap995mq7At3zJj0+VfpY82yqeb/8gsyjj0biNtsYPdR33DFmPcQdpNcEq0iPj/d66mzaYUdV/goLC1FSUtKja4YNG4aioiLsuuuuUa3yiIpffgHOOQd4773uzz30UGP1bV6ePb4tIL0uWEF6bKx56mz25ppHrKF73iTHp0qbypZTnNAgIuAeGoQQVzjxRGND70icey4wZw6QkOCqJEJIDwmFjP9fn33W+H7AAOPfxxyjVhchhGhGfX09Jk6c2ONJDcBoWTV27FgUFRUhPT3duphg0FixcfPNxr+7IiPDWIV73nm8ryOEEEIcgntoENLKpEmTkJGRoVqGI9TU1GDWrFmoqalRLSUMldrc8O2UD7vsWrUjeWyJ45JLzI898wzw9NOuSdE9b9LjU6WPNc+Gmvfkk5jVrx9q2u4XNm8GxowBbryx88orIgrpNcEq0uPjvZ46m3bYUZW/9PR0FBcXY926dT2+1u/3o6SkBBMnTrRHTGIiMGUKcNBB3Z9bUwOcfz5w6qnG7whFSK8LVpAeG2ueOpu9ueYRa+ieN8nxSdbmFJzQIKIoLS1FU1OTahmOkJqaiqFDhyI1NVW1lDBUanPDt1M+7LJr1Y7ksSWOE04w3uyOxLbbArvs4poU3fMmPT5V+ljzLNr56iukXncdhpaWIrXj/UIoZLSTu/9+S9qIc0ivCVaRHh/v9dTZtMOO6vFlpXVUSUkJqqur7RHy1FPAihXRn//KK8DeewOvv26P/x6iOm9OIj021jx1NnWoeSQ2dM+b5Pgka3MKtpwiImDLKUKIa1RWAnvtZfRjbuOkk4AnnwRyc9XpIoR0TSgEHHwwsHx55OODBwNffOHqXjiEEBIPeL1e5OfnW7JRUFDQ3n7K7/ejoqKi/Vg0G5CjvBzYZx+gtjY2AeecAzz0ENC/f2zXE0IIIaQTbDlFSCujRo2yb/M4Yfj9fixduhR+v1+1lDBUanPDt1M+7LJr1Y7ksSWSnBxg9uwt/372WWDRItcnM3TPm/T4VOljzbNgJyEBKC6G/9BDsXTUKPg73i+kpgLPPcfJDMFIrwlWkR4f7/XU2bTDjvTxFQ0lJSU488wzUVhYiJycHOTn57d/5eTkoLCwEPX19ZEvDoWAiRPNJzP69etewLx5xgstCxfGHENP0SFvZkiPjTVPnU3WvPhF97xJjk+yNqfghAYRRV5eHpKTk1XLcIRAIACv14tAIKBaShgqtbnh2ykfdtm1akfy2BLLSScZm0V+/TUwfrySDSN1z5v0+FTpY82zaGfnnRFYtAjeQw5BoOP9wvTpwH77WdJFnEV6TbCK9Ph4r6fOph12pI+vaHn11VdRUlIS9geXbvfbSEgAbrkF2Hnn8GNpacAnnwD33gukpHQtoKICOOUU4Mwzgd9+izGK6NElb5GQHhtrnjqbrHnxi+55kxyfZG1OwZZTRARsOUUIscSXXxpv3N1+u2olhBC3eO01Y9PXAw4A3nzT2DCWEEKI7djRcioaPB4PKisrzVfsV1cDV18NPP30ls/uvx+45hrj3199BZx9NrBmTffOBgwAHnsMOP1068IJIYSQOIQtpwhpJTc3F0lJSaplOEJLSwsqKirQ0tKiWkoYKrW54dspH3bZtWpH8thynMZG4429gw4C7rjD1TYCVtE9b9LjU6WPNc/Gmnf88cCqVcDcuZzM6AVIrwlWkR4f7/XU2bTDjvTx1cawYcMsXb/13hphZGUBRUVGq9DttgMOPRSYPHnL8X33BT7/3Jjg6G717ebNwBlnAKed1nlfNRvpLXmLBemxseapsxlPNY90Rve8SY5Psjan4NMfEcWkSZOQkZGhWoYj1NTUYPbs2aipqVEtJQyV2tzw7ZQPu+xatSN5bDnKf/9rvJl9551A2y/uSZOA339XqytKdM+b9PhU6WPNs7nm7bCD8UetaPnmG+Cmm4zJUOIq0muCVaTHx3s9dTbtsCN9fLVRVFSEgoIC5x2dfLKxCmP+fGDrl+E8HmPVxocfAnvs0b2tl14CBg8GnngCCAZtldlb8hYL0mNjzVNnM55qHumM7nmTHJ9kbU7BllNEBG3LlDweDxobG7F69WrtWk6FQiE0NjYiLS0NCQr69XeFSm1u+HbKh112rdqRPLYc4/HHgSuv3DKR0ZHx442NvoWje96kx6dKH2uewpoXCBhv865YAfzlL8Azz3DfDReRXhOsIj0+3uups2mHHdXjy+/3Iycnp8vNRju2i1q/fj2GDBkSk6/y8nLk5eXFqHQrGhqAW28FHnggusmK4cOB2bOBffaxxb3qvDmJ9NhY89TZ1KHmkdjQPW+S41OljS2nCGnF7/dD1zm2hIQEeDwecYUPUKvNDd9O+bDLrlU7kseWY+y/P2BWK+bPN1oRCEf3vEmPT5U+1jyFNe/++43JDMB4s/egg4x9d5qbY9JBeob0mmAV6fHxXk+dTTvsqB5fHo8HY8eO7fKcsWPHtu99kZeXZ74Phpv06QPcdx/wwQfG5uHdsWIF8Ne/AtdfD9TVWXavOm9OIj021jx1NnWoeSQ2dM+b5Pgka3MKTmgQUUyePBmZmZmqZTiCz+fDQw89BJ/Pp1pKGCq1ueHbKR922bVqR/LYcoxhw4BrrzU/vnixe1piRPe8SY9PlT7WPEU1b80a4LbbOn8WCBifHXQQEEfLs1UhvSZYRXp8vNdTZ9MOOxLGV1s7qa0nKjweDwoKClBUVNTps+4mQFxl6dLoWw22tBiTIHvtBbz5piW3EvLmFNJjY81TZ1OXmkd6ju55kxyfZG1OkaxaACEdWbp0aZdLmXszHo8Ho0aNkvG20lao1OaGb6d82GXXqh3JY8tRpk0DXn0VWL9+y2fbbAM89hhw+unqdEWJ7nmTHp8qfax5CmpeczNw7rlAU1Pk44MHA5ru3yUJ6TXBKtLj472eOpt22JEwvtLT01FcXBy2cXdubm5EXW0THCUlJa5pjMi6dcZqvJ7y/ffACScAp55qtKzaeecem5CQN6eQHhtrnjqbutQ80nN0z5vk+CRrcwruoUFEoLLvGiGkF7NiBXDwwUZf5NNOMyYztt1WtSpCiCTWrgVGjQI2bw4/lpNj/LGrJxuLE0IIiZqe7qdh6x4aLS3G3knLl0c+npQUeT+2renTB7jhBuC664xNxwkhhBDCPTQIaWPMmDHo06ePahmO0NDQgMWLF6OhoUG1lDBUanPDt1M+7LJr1Y7ksRUTVVXRnzt8OHDHHcDzzwMvvNCrJjO0y9tWSI9PlT7WPAU1b889ga+/Nt6y3Zr77+dkhktIrwlWkR4f7/XU2bTDjvTx1RVK3xZtaQEOOwxIjtCYIifHeDHmuOO6t9O2ufieexr7tEX5Tmhvzlt3SI+NNU+dzXivefGM7nmTHJ9kbU7BCQ0iiuzsbCQm6jksg8EgqqqqEAwGVUsJQ6U2N3w75cMuu1btSB5bPeLHH4GzzjJ6FtfWRn/djTf2ihZTW6NN3kyQHp8qfax5imregAHGpOdzzxl/xAKMVRvnnx+TBtJzpNcEq0iPj/d66mzaYUf6+BJLaiowfTpQWmpMbHRk+nTggAOAN94wXozJze3eXnk5MG6cMQnyzTfdnq5z3qTHxpqnziZrXvyie94kxydZm1Ow5RQRAVtOERLH1Ncbmy/OmGG8AQcAN90E3HmnWl2EED355Rfg73839uHZYw/VagghRGu8Xi/y8/OjPt/WllMdCYWAefOAa64BdtsN+PhjoOOLdNXVxksyTzwR3QqMlBRg8mTgllu4DxMhhJC4hC2nCGklLy8PyZGWBGtAIBCA1+tFIBBQLSUMldrc8O2UD7vsWrUjeWx1ywsvGBvyTp26ZTIDMNrAlJcrk+UGvTpvUSA9PlX6WPME1LzttwcWLOjZZMa//w1cfjlQWRmbTyK+JlhFeny811Nn0w470sdXV5htGm6G1+tt//L7/fYJSUgAzj3XWFkxf37nyQwAyMoy9mJbvhzYd9/u7TU3Gy/k7LYbMHs2ECE3vTlv3SE9NtY8dTbjvebFM7rnTXJ8krU5BSc0iCgmTJiAfv36qZbhCLW1tZg7dy5qe9JKxyVUanPDt1M+7LJr1Y7ksdUtK1YYraa2prERuP569/W4SK/OWxRIj0+VPta8Xljz/vgD+Mc/jD907bEH8NRTQBwt57YL6TXBKtLj472eOpt22JE+vrrC4/Fg7NixUZ8/evRo5OfnIz8/Hzk5OSgsLERlZaV9Ex39+wO77mp+fNgw4L//NWp+W4vCrvj1V2DSJGMS5K23Oq3u6M156w7psbHmqbMZ7zUvntE9b5Ljk6zNKdhyioiALacIiVOqqow/EG7eHPn40qXA4Ye7qYgQQjpzySXArFmdPzvwQOOPXQceqEYTIYT0Iurr6zFx4kQsWrTIllUXbZMkRUVFSE9Pt0GhCWVlwF/+AvRE81FHGSuNo1nlQQghhPRi2HKKEEJIfJKdbb5Xxl57Gf2JCSFEFV9+abQS2ZrPPzc2Ff/jD9clEUJIbyM9PR3FxcWorKxEeXk5lixZYsme3+9HSUkJJk6caJNCEx59tGeTGQDw7rvAfvsBF1wA/PyzM7oIIYSQOIcTGkQUU6ZMQVZWlmoZjlBdXY3p06ejurpatZQwVGpzw7dTPuyya9WO5LEVFRdc0Pkttv79jTefS0uBkSOVyXKaXp+3bpAenyp9rHm9qOYFg8Bll5lvDnv99Ua9IlEhvSZYRXp8vNdTZ9MOO9LHV7R4PB7k5eXZtul3SUmJcz+TdeuMCY1YCIWAoiJU//WvmD51Kqp/+MFebQKQPiZZ89TZZM2LX3TPm+T4JGtzCracIiJoW6Y0ePBglJWVYeXKldq1nGpubkZZWRkGDRqEFGFvnavU5oZvp3zYZdeqHbFjq7ERSEuL7txly4wl+pdeCtx2W1z8kVBs3mxCenyq9LHm9aKa98MPwGGHAd9/H34sPx/4+mugTx/n/GuG9JpgFenx8V5PnU077EgfXz3F6/UiPz/fNnsFBQWd2k/5/X5UVFS0H+/pxuQAjBduiooiHzv0UOCzz4x73S5oTklB2aBBGPT770i59lrg8ssBJ1tkuYj0Mcmap84ma178onveJMenSpvKllOc0CAi4B4ahGhCKGTse3HHHcBOOwFz50Z/7caNwMCBjkkjhJAeU18PzJhhfHX8w9WiRcDJJ6vTRQghvRi/34+cnBxb9tNoY9iwYXjrrbdwySWXhO3VEdOeG34/8MADwD33AB03Wc3NBf73P+C334CbbgLmz49e5PbbA7fcAlx4IduqEkII6fVwDw1CWhk3bpyzG7sppL6+HgsXLkR9fb1qKWGo1OaGb6d82GXXqh0RYysUAhYvNt5YO+IIYMkS4wHvu++itxFnkxki8uYg0uNTpY81r5fVvPR0YNo0YzXGSScZnx133JZ/k6iRXhOsIj0+3uups2mHHenjq6e0TTDYyaeffor+/fujpKQkbKIkpj03PB7gxhuNyYtLLwWSkozPb78d6NsX2GUX4NlnjZUahx4a0UR9ejoWjhuH+rbn219+MWwNHmzcJ7e0xBKqCKSPSdY8dTZZ8+IX3fMmOT7J2pyCExqEEEKs8dNPwEEHGX/k+/jjLZ+3tBhvtRFCSG9n0CDg1VeB118HHn4YSEiI7rpffgH+7/8it60ihJA4pqioCAUFBT1vBWWBrVduRMV22xl7u339NXDllcD553c+fuCBRuvUl18GdtstOpvffQecfbaxefjLLxt7NhFCCCEkathyioiALacI6cW0tABDhgDffht+LCXFeLNt553d10UIIaq59FLgiSeA1FRg0iSjPcm226pWRQghYui434XX68Xo0aMd9VdeXt7jTcmj3pOjqcmo+XfcAfz+e/QO9t7baEV16qlAIt85JYQQ0jtgyylCWhk8eLC4zXXsorm5GevXr0dzc7NqKWGo1OaGb6d82GXXqh3lYyspyViSH4nmZuDee93V00tQnjeHkR6fKn2seRrUvGgpKwP+9S/j301NxsqOXXcFbr4ZqKpSKk0FvSZvMSI9Pt7rqbNphx3p48sKHo8HeXl57V9S8Pv9WLt2LYYPH44+ffogPz+//SsnJweFhYXhrT1SU4GrrjJWYBx2GJpTUrB+8GA0d/d8u3o1cMYZwD77ACUlvaIVlfQxyZqnziZrXvyie94kxydZm1NwQoOIgntoqIE9RtXa7VX95M0YPx4wewj99lsupY+AiLw5iPT4uIeGOrta1LxomDoVCAQ6f1ZXB9x1l9F3Pc7oNXmLEenx8V5PnU32k48e05UPHUhISMDQoUNj9tFdy6n6+noUFhYiJycHe+21Fz799NOINrrck6OpCVi5MnwPje74+mugsNBYsbFggeiJDeljkjVPnU3WvPhF97xJjk+yNqdgyykiAracIkQDZs82Wqq0cfTRxpvIhx2mThMhhKhg9Wpg332BSLfZu+wCfPMNkJbmvi5CCBFOYWEhSkpKTI8XFBSgqKgIEydO7PK8rmizEelFuu78d8Tj8aCysjJ8EuYf/7BnhfKf/wzccANw1llGG1dCCCFEEGw5RQghRBb19cBDDxkPUdEyYQIwcCBw4onA8uXA229zMoMQEp888UTkyQzAWLnByQxCCImI2WbhHo+n00REcXEx1q1bF5MPs9UVfr8fixYtitrO1ntrADBWZyxYEPmC7Gzgb3+LXug33xj314MGATNnGqv8CCGEEMIJDSKLqVOnIjs7W7UMR6iqqsK0adNQJbBvtkptbvh2yodddq3asTW+mhrjjbL8fODqq4H77we83uiuTUsz3kp+7TVg+HDrWjRHck2wA+nxqdLHmies5jnFww8b+2cMHNj58yFDgHPOUaNJMb0ibxaQHh/v9dTZtMOO9PFlJ22TFZWVlSgvL2//qqysRHFxcadVFd21p+qKRYsWhbWfqqio6LYlVbekpgJr1gDTpqFq4EBMmzoVVW3Pt3//O/DSS8CqVcDppwMJCdHZ/PFHYPJkYOedgdtuA377zZpGG5A+Jlnz1NlkzYtfdM+b5Pgka3MKtpwiImhbppSXl4eNGzeitLRUu5ZTgUAAGzduxMCBA5GcnKxaTidUanPDt1M+7LJr1Y4tOhoajMmLhx4C/vij87FJk4y3jYmtSK4JdiA9PlX6WPOE1Dy38PuBxx8H7r4b+P134w9Z0b6dW1FhTBTn5Dir0SV6Vd5iQHp8vNdTZ9MOO9LHlyq8Xi/y8/Njvr68vLzTRuTr16/HkCFDLNnoSODXX7HxkUcw8LHHkNzSAnz/vbFKo42vvwbuuAN4/nnzVX2R6NMHuPBC4JprjDaGCpA+Jlnz1NlkzYtfdM+b5PhUaVPZcooTGkQE3EODEMUEAsDgwUBZWfix1FTgu++AHXd0XxchhOiAzwfMn29MEEf7Ru6ECcYEyMUXG2/mbr3agxBC4hy7JjTq6+tj3pOjqwmNtpZUiT4fUr/+GtmnnBJ5VcnatcCddwLFxT2b2EhKMjYRv/pqYP/9e6ydEEIIsQL30CCklcLCQvTt21e1DEeoq6tDcXEx6gT2PlWpzQ3fTvmwy65VO7boSE423y+jqcmejQ1JJyTXBDuQHp8qfax5Qmqe22RmApdcEv1kxnffAc8+C9TWAv/8p9EG8LzzjDYmvZRembceID0+3uups2mHHenjSxW5ubmW2k61YWWD8Ugtqurr61FYWIgdd9wRN9xwA/YcORLbn3UWcnJyUFhYiPr6+s4X7Lkn8NxzxsTG2WdH77ylxZgsP+AAY9+6l182PnMB6WOSNU+dTda8+EX3vEmOT7I2p+CEBhFFVVUVgsGgahmOkJiYiOzsbCQmyvvfTqU2N3w75cMuu1bt2BbfOecYvXkjMW+esVE4sQ3JNcEOpMenSh9rnqCaJ5l77un8R6lAAHjmGWDvvYEvvlCnywK65016fLzXU2fTDjvSx5cqPB4Pxo4d2+U5Q4cO7fJ4TzcC35ohQ4aETVK0TZA0NDR0er71+/2mG5IDMFZLP/44kJHRcyEffgiceiqw227AAw8A1dWxhBM10scka546m6x58YvueZMcn2RtTsGWU0QEbDlFiIPU1QHRrnx6/HHgssu2fN+3r/FW8TXXALm5zugjhBCyhe+/N/4gFQiEH9tnH6C0NPqVHoQQojlt7aK23uS7bbLj1ltvNX2u3G677VBUVIQTTjjBso6CggIUFxfD7/cjJyeny83FPR4PKisrI68uefBBY/Nwq/TrB5x/PnDFFcDuu1u3RwghhGwFW04R0srQoUORmpqqWoYjNDU1obS0FE1NTaqlhKFSmxu+nfJhl12rdiJe7/cbS9dHjQKGD4++H+/EicD22xvtUW66CfB6gfvu42SGA0iuCXYgPT5V+ljzHKp5OjF9euTJDAC4/vpeO5mhe96kx8d7PXU27bAjfXypJD09HcXFxaisrER5eXn7V2VlJYqLi5Genm567aZNm6KazBg2bFi35zz//PNYv349VqxY0T6ZkZqaGvH5tm1vjTACAeChhyI76NMH2HbbbnW0U1sLPPII8Oc/AyecALz+uq3tqKSPSdY8dTZZ8+IX3fMmOT7J2pyCExpEFKNGjbKlD6pE/H4/li5d2uXbOqpQqc0N3075sMuuVTudrl+71tgYcMcdgfHjgWXLjJ7rK1ZEZ8zjMfrvfv+9sTnhNtvEpIl0j+SaYAfS41OljzXP5pqnI/n5kWvvzjsDZ5zhvh6b0D1v0uPjvZ46m3bYkT6+JODxeJCXl9f+ZdczZUFBAd56661u7YVCIQwZMgSjR4/upKlHz7fJycYLSWPHhk9eX3aZcX/+5JPGKr5oCYWAN98ETjoJGDQIuPtuYNOm6K83QfqYZM1TZ5M1L37RPW+S45OszSnYcoqIgC2nCLGBTZuAHXYAIu1DM2EC8PTTrksihBASA/X1wJw5wP33A+XlxmcPPQRcdVV013/yifE74eSTgaQkp1QSQoh4omkBZca6deswePBgAEBhYWHMG4dHory8HHl5eeYnfPMN8M9/GvsnNTcDZWVA2/ktLcBrrxm/F5Yt67nzlBTgb38z2soedlivXflHCCFELWw5RUgrHo8HCZreUIVCIfj9fkicQ1SpzQ3fTvmwy65VO+3Xb7stcOyxkU8qKXF8c0DSMyTXBDuQHp8qfax5NtY8oWPLFtLTgUsvBTZsMOr3kUcCF1wQ/fVTpxp/rBo0CLj3XmDzZsekRovueZMeH+/11Nm0w4708SWZaDYO7+raNoqKilBQUNCj6xMSEmJ/vv3zn43VGN9/D8ybt2UyAzAmqseNA5YuBb78EjjvPKAnbZubm43fLaNGAX/5i9GaqqqqR/Kkj0nWPHU2WfPiF93zJjk+ydqcghMaRBRTpkxBVlaWahmOUF1djRkzZqBa4B+VVWpzw7dTPuyya9VOp+svuijySQ0NwPz5FlQSu5FcE+xAenyq9LHm2VzzdCc52Wgz9e67xgav0bB2LfDOO8a/v/8e+Mc/gIEDgTPPNN74VYTueZMeH+/11Nm0w4708SWdWCYjPB4PcjvsIde2V8e6deuitpGVlWX9+Xa77YCzzjI/vt9+xoq+778HbrvN2GujJ6xdC1x5pbGH3tlnA++/H3m191ZIH5OseepssubFL7rnTXJ8krU5BVtOERG0LVPKzc3F5s2b8dVXX2nXcqqlpQWbN2/GgAEDkCSs/YNKbW74dsqHXXajshMMAomR56A7XR8MArvsAvzyS/iJ551nPPAQEUiuCXYgPT5V+ljzrNuRPraUc8klwKxZkY+tWwe0tk9xG93zJj0+3uups2mHHenjq7dQWVmJ4447Dp9++mm35xYUFKC4uDjsc6/Xi/z8/Kj8JSUlYcCAAdi8eTNattqQu9uWU7HQ1ATstBPw66/W7OTnA+efbzw77LxzxFOkj0nWPHU2WfPiF93zJjk+VdpUtpzihAYRAffQICQCNTXAggXAv/4FTJoUfbuRm24yNvwDgMxM4JxzgP/7P2DffZ3TSgghRD2VlcZqjPr68GOHH260JyGEkDjH7/fju+++w8SJE8MmN9paVBUVFSE9PT3itbHuydERRyY0nn8e6OFKlC5JSACOPtp4Bhk7FkhLs882IYSQXg/30CCklQkTJqBftC0Vehm1tbWYM2cOamtrVUsJQ6U2N3w75cMuu53shELA558braO23x64+GLgiy+MHrrR6rjwQmDkSGMT8J9/Bh59lJMZApFcE+xAenyq9LHmWbcjfWwppago8mQGYN6S0CV0z5v0+Hivp86mHXakj6/ehsfjwZ577okVK1agoaEB5eXl7V+VlZUoLi6OOJnRdm20e3L069fP3efbzz6L/HnfvsDttxsrL3pCKAS8/bYxSbLDDsDllwPLlwOhkPgxyZqnziZrXvyie94kxydZm1NwQoOIwuv1IhAIqJbhCMnJycjLy0NycrJqKWGo1OaGb6d82GW3k51//hM46CBjVUZd3ZaTPvsM+Oqr6HTk5wMffwxMmGA8wBCRSK4JdiA9PlX6WPOs25E+tpRy1FHAueeGbw77pz8Bp54anY2qKuCZZzr/DrIB3fMmPT7e66mzaYcd6eOrN+PxeJCXl9f+1XEjcDPa9uTo7txAIODu8+399xt7YkyeDOTkbPl8/HjglluA//0PeOst4OSTTVvZmvLHH8BjjxkvTe2+O5Lvuw95GRlixyRrnjqbrHnxi+55kxyfZG1OwZZTRARsOUVIKxs2AH/+c+Rjl11mrLYghBBCumLTJuCpp4zJ8e+/B665xvhDVzQ8+aSxOrBfP+C004zJ8UMP7fkfvwghRHP8fj8qKirav2/bRLztM6/Xi9GjR0e8tq3lVCQb0UyqRCEOePFFYPZsYOZM4K9/7Xz8hx+M3xFPPw389FPsfg46yNhMvKAA2HZba5oJIYT0KthyipBWhg8fjjRNe3M2NjZixYoVaGxsVC0lDJXa3PDtlA+77Hays8ceRp/zSMybF7GViOSxRczRPW/S41OljzXPuh3pY0sE221n7KdUVma8jXv55dFfO2eO8d/aWuPfo0YBgwZ12fowGnTPm/T4eK+nzqYddqSPr3gl0uqOjp/tsMMOps+39fX1KCwsRE5ODvLz89u/cnJyUFhYiPoI9/x+vx9er7f9q8t9PDweY6Lhww/DJzMAY7PvO+4wJr3ffNOYwO7Bm72NaWlYMXw4Gr/6CrjySqMl1fHHA/PnG/sAKoY1T51N1rz4Rfe8SY5Psjan4IQGEcXQoUORunWbBE1oampCaWkpmpqaVEsJQ6U2N3w75SNquz/9BDz7bPR2zPqc+3zAkiWx6yCi0D1v0uNTpS8uap7DdqSPLVEkJQFjxgDRbjy7YYPRH31rvF7g998tSdE9b9Lj472eOpt22JE+vkhkAoGA6fPtxIkTUVJSEjYp4ff7UVJSgvHjx7dPXFRWVkac/OjTpw+GDx+OtWvXxr5JeVIScNxxwAsvANdfH/VlTampKB06FE1tsbW0GBPoZ58NDBgAnHIKsGCBsskN1jx1Nlnz4hfd8yY5PsnanIItp4gI2HKKaEUoBKxeDSxaBLz6qrGpNwB8842xAqM7/H5gxx2NXrWA8VBw/vnGZt+77+6cbkIIIfHNzTcDd90V+VhZGbDrru7qIYSQXozX60V+TzfijpG2zcqLiopMNzTvklDIeE753//sFmZMmJx+OnDiiUBGhr32CSGEKIMtpwhpJTs7G4ma9mgOBoOoqqpCMBhULSUMldrc8O2Uj4h2GxqA3XYD9t0XuPXWLZMZgDHBEY0dj8foWX700cDzzwMbNwIzZphOZkgeW8Qc3fMmPT5V+rSreQrsSB9bvZZg0NgMPBLDhkU/mWGSF93zJj0+3uups2mHHenji0QmGAy69nzbtrJj4sSJPbqmbRXIxo8+Qui33yKfeOaZwAknGKs5WgkmJqIqOxvB7mLz+4FXXgHOOsvYY+PUU4HiYsdXbrDmqbPJmhe/6J43yfFJ1uYUev7lmPRaJk+ejMzMTNUyHMHn82HmzJnw+XyqpYShUpsbvp3yEdFunz5G7/JImExoRLRz333A228bbzN104ZN8tgi5uieN+nxqdKnXc1TYEf62Oq11Ncbf2jaZpvwY2eeGb2dceOMCflZs4AOG93qnjfp8fFeT51NO+xIH18kMvX19a4/3y5atKjb9lOR9u/Y6bDDkNPQgAdHjkTg5JM7P3/ccw/w+uvAL78AjzwCDBsGX2YmZk6eDF9PYvP7gZdfNn6nDBhgTJL861+dflfYBWueOpusefGL7nmTHJ9kbU7BllNEBG3LlLKzs+Hz+bBq1SrtWk4Fg0H4fD5kZmaKW4WiUpsbvp3yYWp3+nTghhvCL0hIADZtMm7gbdQneWwRc3TPm/T4VOnTsua5bEf62Or1NDcbfdDnzDH+gBUIGCsFd9ih+2urqow3cJubje8TEoCRI4FTT0XwzDPh83i0zZv0ccl7PXU27bAjfXyRyHz33XfYf//94fP5XH1rtry8HHld7J1UWFiIkpIS0+MFBQUonjULePllBFauxMZrrgEA5ObmwuPxAACC33wDX3ExMufPR+K331oTnJAADB9uTIiPGxddi95uYM1TZ5M1L37RPW+S41OlTWXLKU5oEBFwDw0illAI+OorY3XFFVcA/ft3f83a/2/vzsObqNY/gH/TljbdW9rSsghtUQRk31GBAnpFRKgoFnChFERxV/gpwr1s14XN5V7UK6iAC1JQlEVREVlkraLsFivQQllattI9Xef3xyFD0iTNtNmG5Pt5nnmYJDPnvJMJJ+m8c875E7D0+V2yRMyHQUREpHYXLwLbtomeG0osXy4mhDUnLQ3o0cN+sRERqZwz59AwlJ6ejtatW0On0yHnau8HfTJCp9MhPDy81l4cWq0WZ8+excSJE416fJidp0OSgF9/Fe3/hx+KXhi2at36WnKje3dAZRcOiYhI4BwaRFc98cQTCHbTicIKCwvxwQcfoNDB44XWhytjc0bdda6jogLYtEkkMGJjgc6dgZkzgQ0blJXbpo2YR6Omdu0APz/b47Pz/uQa7n7e1H58ropPlW2ek8tlm3cdiYxUnswAgNWrzT/frBkKW7d26/Om9s8lf+u5rkx7lKP2zxeZV1JS4pK/b9u0aQONRgN/f395SKnw8HCMHDkSJ06csDoklU6nw913342VK1cabWs4T4f8mSwqEvMszZ0L+PjY5wCOHhU93nv1Aho3FnMLrloF5OUpLoJtnuvKZJvnudz9vKn5+NQcm6MwoUGqsn//fpSXl7s6DIfw9fVFp06d4GtlPgRXcGVszqi7znX06CHG/373XeDUqWvP15gDw2K5Gg0wdKiYOC8hAXj7beDYMeDQITEhnq3x2Xl/cg13P29qPz5XxafKNs/J5bLNc1PFxcAPP5h/bfhw+Pr5KTtvxcX2j80J1P655G8915Vpj3LU/vki83x8fBz2922nTp3qtH1dJw1PS0uz+NratWtRXV1t/JncuBEoKjK/Q1hYnWI1cv488MknQFKSGLa3b1+R7Dh4UPQOsYBtnuvKZJvnudz9vKn5+NQcm6NwyClSBQ45Rary3HPAf/9r+nxQkBh+w0wvCxM5OWIyPSVDVBEREV3v1q8XyXxztm4F+vWzXoZOJ+bgaNcOGDJELO3bixsFiIiuM0qGd6or/bBP06dPd+nfyybzdJw5A3zxBfDVV2IIKr2gIDGH4G+/iV4WX39tv0nAmzYF7r4bGDwYGDgQcOLk60RExCGniGQJCQnyRGPuRqfTYevWrXb9QWsvrozNGXXXuY5hw8w/X1QEbNmirNyYGMXJDFvfAzV/tsgydz9vaj8+V8WnyjbPyeWyzXNTQ4YAe/cCU6cCN9987fmoKOD225Wdt23bgMJCYPduYNo0oGNHoFkzMfeUpTt/VULtn0v+1nNdmfYoR+2fL7Js3Lhxtf5927NnT5SWlkKSJJSWliIzM1NeSktLTZ7Ly8tDamoq4uPjXfp3c3l5ufFnsmlT4P/+T8yXdPKk6KF+220i4RAQIJLa770nEh+7dwMvvyzmyrDFmTPARx8Bw4cDERFAnz7ArFnArl3QFRayzXNRmWzzPJe7nzc1H5+aY3MUJjRIVWJjY+Fjr7E3VaayshJZWVmorKx0dSgmXBmbw+vOz0flxo3I+uknVO7apWyfPn0sd402GHbKXrHbWo6aP1tkmbufN7Ufn6vic0a9jqqDbR7VSqMBunYFXntNjH9+5Ajw738DL7wAeHsrO2/r15s+d/asGMokMNBxsduB2j+Xbv1bz0F1qKXNs2cs5FyVlZXo0qULhg8fbpJ80Gq1SEpKwubNm+XXtFotYmNj5UWr1Zp9Tr/tMEs3YTlBVVWV5c9k8+bA888DO3YAK1YYv+blJebGmDMHSE8X3xdz5wK9e9sWUGWlqG/mTOC221B5003I+vZbVC5aJOpx4sAkbPPY5nkqdz9vaj4+NcfmKBxyilSBQ06RXW3aJLo879kjfiTrm7lnnjE/lJQ5Dz0kytDz9hZ3Fj36KDBmjP1jJiIi8mSSBMTFiTt7a0pOBpYudXpIRET2otPpkGMw1FJMTIzNPSxKSkqQkpKCtWvXOv2uXJMhp2wvEIiPt195NTVpAtxxh5gnccAA8ZiIiGzCIaeIroqJiYG3t7erw3CIqqoq5OTkoKqqytWhmHBlbA6pe/9+ceHj6t04Vd7eyImJQdX69crvzhk6FAgOBh58EPj8c+DCBeDnn42SGfaK3dZy1PzZIsvc/byp/fhcFZ8z6nVUHWzzyBZWz9uRI+aTGQDwj38oq6SoSNyQsHgxkJHh1Dty1f65dLvfek6oQy1tnj1jIecyPG+WelrYIiAgAKmpqcjLy8ORI0fQs2dPO0StjN0/kz/+aPm1pk3rXJz895/+2sLZs8CnnwKPPCLKu+kmYPx4lC9ZguydO5GVlYWsrCy7JIbY5rHN81Tuft7UfHxqjs1RmNAgVXniiScQHBzs6jAcorCwEIsWLUJhYaGrQzHhytgU111aqnz87F69jOsIDsaiJ55A4ZUrwMGDysq47z6RxFi5UlwcCQ+vf+xW2FqOmj9bZJm7nze1H5+r4nNGvY6qg20e2cLqedu61fLOd9yhrJKdO0XvyscfF/N4NGsmvsM//BCoqKhzzHWh9s/ldfFbT2V1qKXNs2cs5FzOOm9arRZt27bFnj175Dk3thjM++cIpaWl9j22xEQxH8YDDwChodee79IFyM4GDh8G5s0D+vcHFAxRLf/9Z+nawrFjwMcfw3fcONxw++2Q4uKwNS4OT/j7475OnZB3+XK9D4VtHts8T+Xu503Nx6fm2ByFQ06RKui7KWm1WpSVleHQoUNuN+SUJEkoKyuDn58fNBqNq8Mx4srYzNYtSeJH5p49YmK5PXuAAweAN98Enn3WeqElJUBICHA1Oy1pNCjz84NfWRk0M2cC06c7LnYXlKPmzxZZ5u7nTe3H56r4nFGvo+pgm0e2sHreJEn0qvj2W7Fs3y6+x7t0AX7/XVklr7wixmWvKTISOH9ezPPhIGr/XKrut951UIda2jx7xkLO5crzlpWVhbi4OIeVf+LECTRu3BiSJCE3N9fsNvUZVkun0yHn9Gn47d8P/23bEHjzzWjw9NPGGxUUiCGGN2wQy7lzJuUY/f1Xj0tepwCcbNECPSZPhl///kCbNmL+DwXY5rHN81Tuft7UfHyuis2VQ04xoUGqwDk0yMi994qLGTWNGmU8r0VtunYF/vjD/PN799oWHxERETlWfj6gv8M4MVHZPr17i5sganrgAeDLL+0WGhGR2jk6oXHkyBHMnj271vk79BOXL1myBAEBAbXOI2JpPpCaZZiQJDFk4bffAlOnOm6owdBQ8R1z661i6dFDDE9MROTBOIcG0VXPP/88QkJCXB2GQxQUFOCdd95BQUGBq0Mx4crYzNZtqQE0d5HCEoNhpwpCQvDOiy+i4KGHgMmT7fZD117vm63lqPmzRZa5+3lT+/G5Kj5n1OuoOtjmkS3qfN5CQ0UiQ2kyo6gI+O03868lJCgro7RUbPvyy8C6dcDFi8r2g/o/l6r7rXcd1KGWNs+esZBzXU/nLTExsU5zcDz55JNo3LgxfH19LW6j0+mwcuVKjBo1CiNHjkR4eDji4uLkJTw8HCNHjpSTGStXrjRJjujLSElJMV+JRgO0awd06GD0N15BSAjeef55FNjr2kJ+PvDDD6Kn/x13AGFhQOfOwFNPAcuXAydOyPWzzWOb56nc/byp+fjUHJujWB98kMiJtm7dapeJuNRIq9UiISHBLhPA2ZtDYztz5trQUU8/DTRvbr1uSz+mMzPFkBGNGlmv9957gQYNgF69oO3aFQlFRdDecgtQy4/uurLX+2ZrOWr+bJFl7n7e1H58rorPGfU6qg62eWQLh5+3nTvloSZN9O+vrIy9e4Ft28Sid/PN4m7c998Haold7Z9LV8Z3vbZ7amnz7BkLOZcrz5u+94O1v601Gg0efPBBLFmyBADM9pIwZ/fu3cjPz1f0t/u6devMPq9PVpSVleGHH36otQx9TBbfS19f0dbv3AmUl0Or0yFh61b4+vgg93//g/+uXQhKS4NXRobVeBWprgb27xfL+++L56KjgZ49oe3WDQlxcdDqh0F2ALZ5pEbuft7UfHxqjs1ROOQUqQKHnHIjkgS8/Tawa5dIYpw+fe21zz8Xk3Nac/Ys0LSp+dfWrRPJCiIiIiK99HTg44/F5OL79omLTQAQFQXk5iqbP2POHDEPR00xMeK3icrGSyYiqs3IkSOxcuVKi6/37NkTW7duNbkAph8aKisrC/2VJoSdIDMzEzExMbUOW/X4o4/i4rp16FNRgYEAzgG47+q2Wq0WY/7xD/yzb1+smzwZ/QA4/IpDy5ZA9+5i6dFD9OoIDHR0rURETsEhp4iuGjRoEPz9/V0dhkOUlpbihx9+QGlpqatDMWHX2DQaYMkSYPVq42QGIBIcSupu0sSkJ4esHvNfOOq9t1e5tpaj5s8WWebu503tx+eq+JxRL9s8UiOHn7c2bYAFC8TvhEuXxA0QL74IjB+vPBGxc6f553v0sFqGfHybNwMGF9vUwpX/b67Xdk8tbZ49YyHncvV5W7JkCZKSkkwSFlqtFklJSdi8ebPZu3m1Wi1iY2MRGxtrsWx/f3+n/+1+++23w9/fv9Zhqz5fvRo/VFTgVX9/zBw0CKMN4tPpdFi0bh26zZ+PpwC0AxAF4H4A/wVQaac4S/398cOgQSj19weOHwdSU4FJk4A+fUSPjQ4dgHHjgA8+EEMl1mOECrZ5pEbuft7UfHxqjs1ROOQUqUpYWBi8vNwzz1ZdXY0rV66gWn/HoIooii0/X4xnrUTPnmJytprMzIFhse6ePUVCpF07sd6rl1hat1YWg5I6bGSvcm0tR82fLbLM3c+b2o/PVfE5o162eaRGTj1vYWGiN2ddenRWV4vepeb06KFg92pcyctD9dNPA5cvA40biztx9cuddzps6BElXPn/5npt99TS5tkzFnIuV5+3gIAApKam1joZd315eXk5/W/3M2fOmDxnadiq2uLLzc2V1y8C+BpABoBn7RRntZcXroSFodrce1NdDRw6JJarw3zB21v8jdu5M9Cp07V/Gza0XAfbPFIhdz9vaj4+NcfmKBxyilSBQ06pTEUFcPCg6FGhn//i77/FH+hhYdb3//BDYMIE0+cbNAAKCmodg1p2+rRIoAQH1zl8IiIiojpJTwfatjX/2saNIiFhzb59QJcu5l87elTMx0FEdJ3IyspCXFycq8NwinYApgLoBcDwiKsBnF+yBDG5uSLpvWuX6AXoDM2bGyc4OncWz3H4QyJSCQ45RXRVbGwsfHzcs+NQZWUlsrKyUFlpr86s9mMUW06OuIOwWzfgqaeAzz4DMjLE3Bi//aasQEuTeldUiD/2LdVtqFkzuyUzHPXe26tcW8tR82eLLHP386b243NVfM6ol20eqZHqz1tkJLBwITBqlOmwl926Wd29srISWdu3o9Lc79jAQOCmm5TFcfSomPPDzlz5/l+v7Z5a2jx7xkLOdb2ft9p6cvj4+Kj6b/e6xncYwGgA8QAaA0gEMBfAZwB0/fsDU6aIoQwvXAD++gtYtgyYMAHVt9wCqUaCodLHB1mxsea/D+ri1ClR56xZwH33AbGxotdG376ofPJJZL3zDiq3bBE3HdoB2zyylbufNzUfn5pjcxQmNEhVkpOTERQU5OowHKKoqAiffPIJioqKnFtxebkYu3PHDoubGMUWHW15SAQzQ0aZdcstppOdtWwpJgSvMc6qM94XR9Vhr3JtLcdlny2yibufN7Ufn6viY5vHNs9Tqf68RUUBTz8NfPEFcPIkkJ0txj2fPRsID7e6e1FRET7Jy0ORud+xHTsCSodlSUkRk5A3agQMGAA895zo+XriRB0PyEx8Lnr/r9d2Ty1tnj1jIee63s+bVqvFsGHDzL4WFBRk8rd7YmKizUNZ2Yu5+JTKAbAWwBQAyTVf1GiAVq2QN3Qoeh04AO8jRxAuSbgLwNmrmxQFBeGT5GTz3we2unIF2L4dRStW4JP8fBQNHw5ERIg5KO+6S8zVsXSpuBGxuLhORbPNI1u5+3lT8/GpOTZH4ZBTpAoccsqO/voLeO01ICtLLGfOiLE6vb3FhGNK7hQZNkzcDVLT4MHAd98pi+Oll8TQUj17iiUysi5HQURERHR96dBBjIte01NPAe++a31/SRLDbRYWmr62aJH54TyJiBxIP9n22rVrobMwebU+8bFkyRKkpKRg5cqVTo7SsTIzM+UJ0vXvR81j9AVQBKCBuQLathV/k+fnOzhSM+LjxZyUbdqIeTr0i5JhpImIrHDltVx19g8komuqqsQPIB8fceeFNWVlYpgoS+W0aGG9jF69zCc00tLEH9tKxu2cN8/6NkRERETuoKLC8t2wnTsrK+PUKfPJDABo315ZGb/9Bvz6q7hg1aaNmJyc460TUT1ZmljckOHQVEuuTnRdMwGi1WrRsWNHpKWlOT7oGnr27Gm3ei0lbMoBNAPQFUA3AN29vDAkOhqac+eAVatEe3zsmGij9e30gQNASYld4rLoxAmx1PzbPjraOMGhX5o3V96jkIjIhdhSkapMmTIFoaGhrg7DIfLz8zFnzhzkW7szY/lyYPx44I47xDBNWq1IQrz5prKKaktYZGUpi83SHBiXLtk85IHVuh3AUXXYq1xby3HGe0j25+7nTe3H56r42OaxzfNU7n7e8ktKMOexx5B/7Bjwww/AG28ADz4o5s6wNFF4TeZ6d+gpvdtt7VoxdNYddwBNm4q7cHv2RP6MGS57/6/Xdk8tbZ49YyHncqfzptVqERsbKy/h4eFITU1FeHi40TBT+gRIXl4eMjMz5SUvLw+pqamK6kpPT4ckSSgtLTUqIzMzE+np6dAoSNKGhobK1xZSU1ORnp5e72PPyspCVlYWjh49ilWrVlnc7jyA7wH8NzQUu156CUc2bgTOnhWJAi8voFUrMQTzO++IycULCoD0dGDFCjG6QcuWimPKDw3FnClTkF/faye5ucC2baL33wsvAHffjfxOnTBn2jTk9+4NjBwJzJghrk2kpYnrAAoHd2Gb57nc/byp+fjUHJujcMgpUgV9N6XWrVvj+PHj2Ldvn/sMOSVJwPnzqAgLw/HMTLRs2RINGpjtjCqMHSsmGavpvvuAr79WVmfDhkBenunzS5cCyckmT1dUVOD48ePXYissFEMe+PkBXbuKHhu9eolER7Nmdr3Tz6RuB3BUHfYq19ZynPEekv25+3lT+/G5Kj62eWzzPJW7nze7HN8bbwBTp5o+36KFxZtSTNx/v9nfixWjRuH49OnW45Mk0dPEjmO/X6/tnlraPHvGQs7lzuetPseWlZWFuLg4q9sZDvFkzsiRI60Oa9WgQQO0bNkSx48fR0ZGBmJiYhAeHm5x2Cx70tf97rvvouXVJEVtE6zLLLTfCAgw6clR0aABjrdsiZbHj6NBRYVd4rZaZmgocOON5pfoaPkaAds8z+Xu503Nx+eq2Fw55BQTGqQKbjOHRn6+uMshM/PaHBZZWWLuilOngBtusF7GrFnAzJmmz3fuDPzxh7I4unY1v+2MGebLNufwYeDmmwGVNdREREREbunxx4HFi02fHzIEWL9eWRm33AL8+afp8zNnit+B1pw5I25eiYkRvUv0F6tathRzrKlkwl8iuv7odDqrSQWtVou8vLxaL/7r57FYtWoVrF3OMixPSSLEUQznGQkICDC/UUYGsHevGIpKv+TkAP/3f8C0acDBg+JvdP1y6JD5mxhdITDQOMHRsiUQFwfExophrHx9XR0hETmAK6/lcsgpUpXExETLX/CuIkliXgql2778MvDBB2K4gaNHRTIDQElGBtasWYMSa+NkWrprJTNTecyW7mi5cMHs0yUlJaaxtWvnlGSG2bqvkzrsVa6t5TjjPST7c/fzpvbjc1V8bPPY5nkqdz9vdjm+RYuA8+eBzZuB//xHDEGq7yGrRGUl8Pff5uO78UZl8R07Jv7NyQG2bxe9e6dNE8OP1PM+uOu13VNLm2fPWMi53Pm81efY9Bf1azNs2DCrPRn0w1qVlJSgp4X2MSAgAImJiRg+fLjR/B5JSUkm5Wu1Wovl1Ie+bsPrGjqdDitXrkRKSorlHVu1AkaPBubOFdcSzp0T3wmTJoneEX36ABMnAu+9h5Lvv8eaJUtQcvw48OOPYnhqK++tNSUBAViTmIiS+lyPKS4WCZjVq1GycCHWbNiAkmHDRGLcz08kyvv0AR55BPjXv4CPPxbfdSdOiDmoasbixv933Jm7nzc1H5+aY3MUTgpOZOj338Ufb/oeFvp///EP4KuvrO8fFiZ+bJgbty47W7xujaVkxJUrYlFSxrBhIjGivysiLk4MVxAYaH1fIiIiInKNqCigf3+x1JWFC0MAxIWyM2esl2EhIYLoaMDfX1kco0eLXiL636L6SWZPnxZxEJHHqm3ScH0PBqW0Wi02b96MlJQUk/L8/PwQGxuLadOmyc9ZmuA8JiYGOTk5iobDspU+TqvDT+lFRdX+ekwMEB8vrle0aCHmUTKnc2fRA6S4uG4B28uZM2LZscP0NS8vMeeT/tpFbKx4XFEB/PWX6PERHOzsiIlI5TjkFKmCw7spSZKyeR9mzABmzzZ9vmtX0f1TiU6dxN0JNc2aBUyfbn3/U6csT+y9fz/QsaOyOIiIiIjIcxw4ADz7rOghfP78tec1GnERS0lCYsoUcXdwTb16Abt3K4ujXTvgyBHT5996S0w+a011tYjZjnO2EZG6mEsqKL7I74DylM7vYQ9btmxBbGyszcds1oULKN+3DwV796LBiRMIOnsW3qWlwJYt4prImTPiO6LmoiTh7UpBQSI53ry56O1xww1i0a83a2bXuZ+ISBlXDjnFHhqkKvpJweuluhr4/vtr81YYzmOxbh1w663Wy7DUO0LpRIyAuLPATEKj4uRJHD961PokPU2bih4WLVoY36UQG6usd0Y9uHJyo+t1okh7lssJcj2Tu583tR8fJwV3Xbls8zyTu583VRxfx47Atm1i/fLlaxeqzp1DhY+Pst+h+iGnalJ6oU+STIZJlSeabdoUit6Z774TQ1wZXrRq0kTEMH682V04KTipkTufN1uPTavV1jrxt63lVVRU4KiSNs8BDCckrzDTa66/QQ+8nj17YsmSJYiPj69TcsPc+19SUoKUZ54x6q0i93wpKRFDYDVrJpY77jAusLAQFenpOD5pElqmpdk00bg9Jiw3KaOoSPT8MzdHlF5Y2LXkRrNmQOPGYmnS5Np6dDTnCHUgd27zAHUfn5pjcxTOoUGqYtMcGhoNMGoU8PTTwIIFwOrVYgipS5eUJyQs/bF26RJQWKisDAs/zErOnlU2pp23N7BmjRg7+fnngcRE0evDQckMwLXj7V2v4yrbs1yOJ++Z3P28qf34OIeG68plm+eZ3P28qe74GjYUN/OkpADTpimPz9KQU0ovPF68CNSoQx6XvVEjZWVkZ4syMjKAn38Gli0DXn8dmDfP4i4mx7dlC7BnD3DypPK58KyVWU+cQ8NzufN5U/uxuTI+c3NoWJKWloZbbrkF4eHhGDlypOJ4zR1fSkoKVq5caTT0lqK5OwAgOBglN9+MNXfcgZLRo0WvPMM2+5//BJYsEXMqJSWJESxCQszHZstcHLaUceWKmCj9+++BDz8UI29MnChuFu3RQyQ7fH1FUqNTJ2DwYGDcOHFs778PfPMNkJYmRswoL6937J5M7e2CrdR8fGqOzVE45BSpgkk3pfHjcUtxsbjDKyIC+PZbZQV16CC+xGp69VXx5WtNVpblpMbBg0D79tbLWL4c+Pzza3NX6P+NiwMiI63vT0RERETkCllZIqnx99+it4b+3ylTgDFjrO//66+WJzE/c0bcKWvNK68Ac+aYPt+vH7B1q/X9AXHh6vTpa48jIsRFrLffFmPNExEZcOaQU7Xp2bMnUlNT5ccxMTEAYDScliH9sFU6nQ7h4eFGyQxDWq0WeXl5dR/iqrBQzM/UrJloRw1Jkrjx89ixa8umTcDOnXWrQ61CQsQcJvreHTExIsmjX6Kjr60HBXGYRPJIHHKKqKaPPrq2bm0iLENxceYTGkp7aDRrJnpIVFWZvpaZqSyh8dBDYiEiIiIiup7ohzm988767W/pN7ePj7j4o0R2tvnnGzdWtn91NXDunPFzly6JRanVq4H5840vWEVHAy1bAvfco7wcInJbWq0WgwYNwpo1a+xWZlpaWp0SK/ohpaZPn24xmQFcm2Ok5jBfhnOPmJ3TIzjY8hyeGo24YTMyUvToAIAuXcQ8TCdPAmfPiqQHgMpGjVCcmIigixfhnZ0tvisuXFB8nC5RUCAWJUOia7XG3xc1kx769ykiQvwbGMgECJGNOOQUqcrMmTMRVnNopQsXxESGSljqDl9jLF+LfHyA228HBg4U3Q///W/R22LHDiAhQVkZFly5cgWzZs3ClStXbCrHEVwZmzPqdlQd9irX1nLU/Nkiy9z9vKn9+FwVH9s8tnmeyt3Pm9qPz2nx9eoFfPIJMGsWkJwMJCTgSvv2mPXPf+KK0uFbLSU0aundYXR8Fy6YvzkJUJ5UOXYMV/76C7O6dMGVr74SQ14995wYwkSpt94CFi7ElU8+EbFt3y4u4tVjCCy1f77IPHc+b2o/NkfFt2XLFmRmZiIzMxN5eXn45ptvkJSUZLRNWFiY+esadqSvQ6vVKhtSCjBKeJSUlGDkyJEIDw9HXFwc4uLiEBsbi1mzZuFczYRwXQwdiivffYdZjz2Gc1lZePaee3BXgwa4+/x5hC1ejKANGzAyPh4lWVmi98fhw2I0jnffBSZNAu6/H/D1xZWwMMyaORNXHPge2pVOJ5I4v/0m5oFaulQkdl58EXj4YWDQIKBbN3EDbnCwSIA0aSJGGOnfH3jgAeCJJ8SoIm+9BXz6qShnzx7R8yUvTyTrVU7t7YKt1Hx8ao7NUTjkFKmCvptSbGwsTp8+jf2VlbjFeAOgbVvrBb39tvjSqKllS8uTHDpJZWUlTp8+jWbNmsHHR12do1wZmzPqdlQd9irX1nLU/Nkiy9z9vKn9+FwVH9s8tnmeyt3Pm9qPz+W/9bKz0eyGG5TVHR9v/makBQvEBS9LdeiP7/BhoHNn82WfPausp8ekSaj8739xulkzNDt9Gj6VleL5u+8GNmywvj8ghiApLkalj49xOatXA8OHW9//xAkgPR0ID0dlcDBOl5ej2c03wycoSFn95HJqbxdsofZjq2t8SoecyszMNOnlUFJSgpSUFHkybh8fHzRr1gynT59Gpb7tsLP61qGfhHzatGkmPUv0Zfbq1QsrVqwAYNyDw5DZ3hxX6d/7V155xWj4LENJSUkWX8Po0ag8eRKnKyrQ7MAB+Ojns3j0UZEMOH1aJL6zs9Xfy8OeNBrxvRIeLkYWCQsT6+Hh1teDg53SI0Tt7YKt1Hx8rorNlUNOMaFBZpWXl2PlypVYsWIFjhw5gtzcXDl7P3z4cCQnJyPSjvNBmPwnAIwTGt99JyZtsmbdOjEpuL67vH4Oi5Ytgb597RYvERERERE5wK+/ip4M+gtWZ8+K5eWXgXvvtb7/hg2Wh4UqLwcaNLBexiOPiF7a5p7/9FPr++t0gL+/+de2bVP2d4mlG7U6dwb++MP6/gDwyy9iEtyQECA0VPwbGAh4caAGIkPW5qAArM9DUfPi/wsvvGDX4aicRavV4uzZs5g4caKcpDG3zbBhw7BkyRKzk5/bbU6PqiroTp7E5YMHURkXh+rQUONkik4n5mfKzr6W6Pj+e2D79joft9vz9xcJkeBgkRCJjjZNfoSEmC6hoWIfX19XHwGpkCsTGpCIakhPT5c6deokAbC4NGrUSPruu+/sVufhw4clANLIkSOlwMBA6bAYbfHa8u67dqvLVYqKiqQVK1ZIRUVFrg7FhCtjc0bdjqrDXuXaWo6aP1tkmbufN7Ufn6viY5vHNs9Tuft5U/vxedRvvdRUSdJqjf+WACQpIkJ5gXfeKRUFBkorRo6UigIDr5Xx/PPK9j99Wt7HpJzDh5WV8a9/mS/j9tuVH0dYmOn7oNFI0tdfK9v/+HFJWrVKkn78UZJ275akI0ck6dQpScrLUx6DB1N7u2ALtR9bfeJLSkqq9RpIUlJSneo+f/68lJSUJGm1WqNytFqtlJiYKHXo0KHW+mpbAgMD5Wsn9S2jtjKjo6MV7WPuPSkqKpI+/vhjq7FlZmbW+h5+/vnn0ujRo82+f0lJSVJxcbHZfUt27ZI+79BB+o+3t/QFIG0GpAxA2q3RSK/17SvpPvhAkl57TZKeflqS7r9fknr3lqTYWEny9TVtL7lcW7y9JSkwUJIiIyUpPl6SEhIkaehQSXr4YUl66ilJeuUVqej116UVr78uFS1dKklr10rSli2S9PvvkvT335J07pwkFRZKUlWVov9HaqTmds9Vsemv5eqXw0p/49iBuvrIkMudPn0aAwcOxNmzZwEAGo0Gffv2RcuWLXHhwgVs2rQJpaWlOH/+PBITE/HDDz9gwIABdqv/ypUrqK6uFmMJtm17rZdFv352q8NVvLy8EBYWBi8V3hHlyticUbej6rBXubaWo+bPFlnm7udN7cfnqvjY5rHN81Tuft7Ufnwe9VsvKQl48EEgP19MDn7mDJCbK3pnKHX+PLyqqxF25Qq8DMctV9pD3WACcpNylJZhMA62URnh4cr2lyQxoa255wMDlZWxaRPw+OOmz7duLYbDUmLOHDEfYnCwuDtYv3TrBjRvrqyM65Ta2wVbqP3Y6hPfkiVLAMCkV4Jhb4S61B0UFITU1FSTnhv6HgY1h6qqi+rq6mvXTuzEsMzc3FxF++hjN+xp4eXlhaCgIJti8/Lywq+//opvvvnG5L3R6XRYuXIlAJgMW6XT6dD/hReQdvCgaaGSBPzyCw42bmx+uCtJEnNVnDsnrj8ZtOOy+HigslJ8p9RjPqTrWlWVaMuLi4GLF8WwiDV4+fsjrF8/eG3bBpSWWi7Lx0f0/AgLE99Hht8NhktgIODnJ+YcadhQ7GP4muG2vr4OH1ZLze2emmNzFA45RUb69u2L7Ve757Vo0QJr165Fx44d5dcvXryIkSNH4ueffwYANGzYEMePH7d5wiuXdlMiIiIiIiLS++wzcbHm/Hmx5OaKf195BRgzxvr+W7YAlm76snXYq0cfFROvW1NcLC7ymLN7t5jA3ZoFC4D/+z/T57t1E5PfKtG8ufmJ3pctU/Zebtwo3veAgGuLvz/QqBHwzjvKYjh2TEyo6+9/rQyt1iljytP1x1ICwln1jRw5EmlpaWa3bdq0Kc6cOeOwWOrD3LwiSuYk0e9n7v0GYHUIMI1Ggz///BNarRahoaGYOHEiVq1aBWuXOBUNdyVJog29cEG0/RcuiKV/f3HTrSQBRUXXvhsMl9xc0cb+/nutcZCd+fiYfk/o1/PyxPeu/nFgoFiaNgWiooy3rblvzcdOSJxcT1x5LZc9NEi2YcMGOZnh6+uL9evXo3379kbbREZGYu3atejQoQNOnDiBy5cvY968eXj99dftEkOnTp3w559/2qUstSkvL8eff/6Jtm3bwldl4w+6MjZn1O2oOuxVrq3lqPmzRZa5+3lT+/G5Kj62eWzzPJW7nze1Hx9/69XRI4/YVqavL3DbbcDFiygvKMCf0dFo++ef8PX3V5bMAMQFmKvKfX3xZ9u2ogylPTTM9c7QCw1VVkZ+vvnn6zIxeVGR+eeV9hLJyTE/Z0jTpsoTGqNHm0/AzJ8PTJ5sff+jR0VyR6s1Xvz8xP4WLm4ZfYYKC0VSRb+vj891fVHMnds8rVZrcoHekXXXrG/z5s0mPTf0vUSmT5+OW265Bb6+vmjbti3+/PNPlNel91kt6ltmzaRDeXk5jh07Bl9f31rLKSkpwciRI832iOnSpQtat25dayySJKFNmzaK4zSMNycnp/ZzrJ+AOyhIjBhi7vXgYLHceKPp68eOATt2iCTI5cuit0durvh/P3myeHzxovjX0rqZydjVzui7yk6fS8UqK8X3Xm3ffTaSj+/oUfhKkvg+b9zY9LtB//1g+PjiRfG5MUyqBASI5HxEhPkyzJVn4btD7W2yIzChQbL33ntPXh8zZoxJMkMvMDAQs2fPxsMPPwwAWLRoEWbPng0fH9s/TgkJCThhpuuaO9DpdNi6dSvi4+NV18C4MjZn1O2oOuxVrq3lqPmzRZa5+3lT+/G5Kj62eWzzPJW7nze1Hx9/6zm5zNtuExezAOgKCrB1yRLE33cffKuqlJeh0YjESHk5dFottiYkIP7ECfskNEJCbCvDHgkNpWVYGrbEzETEFpWUmH/ez0/Z/tnZwMcfmz7v7W2+B8tVRp+h5GTg22+vvejlJer/v/8DZs2yHsOZM8Dzz4t9fH2vLX5+wL/+peycpqeLi6T6/fRlhIeLCYLrgG2e4+oOCAgwGapK30skKysLgLjor792Yi35EB0drWgIqbqUaahNmzbo2bMnlixZgvj4eJSXl2P//v3QarW1lpOSkmK2J4pOp8Phw4eRkpJS51gcpc69dm680Xyioy5efRX4+2/xf/biRZEYyc8HBg8GbrpJDEuYlyeWmuuW2l0HM/quUsF5szej4ysoEMOO/f238wPx8rq2eHsDTZpAFxqKrQMHIn7PHpFsqfk94et7bag0/XP652NigBtuMP/9YvhYn0zR91rx83Np4o1DThEAoKioCJGRkSi7Og7grl270Lt3b4vb63Q6REVFoehqQ/nzzz/bNJcGh5wiIiIiIiIyIEnigr7hxaqmTc3fMVzT778DPXqIXgE1FRSIO4utGTtWDA1V08iRwIoV1vcvL7ecNNi+Hbj9dutlvP028OKLps937Ajs3299f0CMe5+Zafr8Rx8B48ZZ33/9emDoUNPnAwOVXzi8804xJ0lN//wn8O9/W9//8GHAwg2HuHBB2dwsjz0mjrmmUaOAL76wvn9hofjs+fiIO5MbNLi2/uWXYg5Ma9atE4vhvg0aiIu/jz1mfX8AWLtWfK59fMTFPP2/HTsqex+Ki8X/AcN9fXzEojTJ5SJKhnKqKTMzEzqdrl69GepK35Pk5ZdfRpcuXRxeX32ZGybLHEvznBjOqxIQEGCS8DDk6CHLzKqoAH75BVi4UCRC8vLEZ76oSHyvPPaYaSJE37shPx+o45wu5LmOAGhn8JhDTpHT7dq1S05mBAYGonv37rVur9Vq0bt3b/z0008ARLdIe0wOrtVq5TjcjSRJKCsrg5+fHzQq617syticUbej6rBXubaWo+bPFlnm7udN7cfnqvjY5rHN81Tuft7Ufnz8ree6Mm0q5+qdkJK/P8oaNqxbGV27iiE4SkquXajSL0qHe/L1FZO2FhQYJ0aU9q6o7WK/0jIs9a7w91e2f21lKO3lYeninpWLlEbn3lIZSi+g13a3s9JeAJb+zla6f3m5PFGypNGgzM8PfmVl0EiSuICqxN695nu7JCQoT2iMHm3+nK5fDwwZIuKr7f/dihXm64qPB44fVxbDP/4hhhWqmRSZMgVSUpL1//P79wOzZ4v9DO+09vUFapl8XH9xvKysDMl+fogvK0O1JKEaQDWAKgC7AWypsZ+5C+rBABIN9qvWaAA/P1SUleF7SYLhJ7Znz55me1PEAWh0tQwJQLVOh4xVq5C0di00Go3V+Sw0AG4w3F+/rtGg2M8PJWVlVsvwulqOfn9bGSYnLM1nop+YvLS0FP7+/rVO7F4z+eEUDRoAAweKpT7Ky0UC8+23RTI1P198DxQWioRg9+5Au3Ym3y1SQQHKSkrgd+kSNAUFltve65RJu6ciao7NUTxn+nOqVXp6urzevn17RcNHGWbcDfe3xZQpUxCqdEzX60x+fj7mzp2LfEtj0bqQK2NzRt2OqsNe5dpajpo/W2SZu583tR+fq+Jjm8c2z1O5+3lT+/Hxt57ryrRHOfUuQ6MRyYvGjYGbbxYXoQYOFBdPlVi0SNy5W1kpkhNnzgAZGcDMmcr2lyTgnnuAfv1EguXmm4FmzUSSxNaERl0uDNo6bFU9ExpG581SGXVJJlhiaxlKkyqVlfJqfmgo5k6Zgnz93+5K54axlPhQuj8AWBq6zdv7Wny1/Z+xtH9dhtDOzha9fo4dE3OsHDkCHDgAXL6s7P9rTg7wzTfAV18Bq1YBqanA8uVWe8roL46HhoaixZQpeDo0FNMBzAQwG8BrAP6h8BCaAPgUwOcAVgBYFBqKtlOmYEloKMIMtktPT8fWrVvNJkWmANgD4FcAvwH4HcDm0FA8pPC6jhbASQDZAE4DOAsgB8BfoaH4P4VlvAygEiIpIxksO6zuaaBNG0hRUbii1SLP3x++cXHwiYtDlIXJ2fXWrVuHlStXor9OhwMA9gPYB+APiPdiA64lP1JSUmqPYfx4oE8foG9f0WYmJIhl5Uplx3DkiGhvhwwB7r1X9CobNgxITDT6v1urd94RCcOxY4HnngOyskRvvrFjRa+/jAzxPbBmjRgS67//Fb34vv4a2LQJ+V9+ibkjRiD//vuBMWOAhx8WPQU7dBA9+4YPF73VevcW+y1eDLz1lkjuvfQS8OST4juqVSvRG6xpU1X1mjJp91REzbE5jEQkSdLEiRPltj8pKUnRPu+99568T9u2bW2q//DhwxIAKSYmRvL29pYOHz5sU3lqVFlZKZ07d06qrKx0dSgmXBmbM+p2VB32KtfWctT82SLL3P28qf34XBUf2zy2eZ7K3c+b2o+Pv/VcV6Y9ylH758uhduyQpPnzJWnWLEl6+WVJeuYZSRo3TpLmzVNeho+PJIn0ivGycaOy/RcvNr9/y5a17mZ03tq1M1/G228ri2HrVvP7A5JUVaWsjPvuM7//008r2z87W96n0ttbOhcTI1V6e4vnMjKUlTFpkvkY7r5b2f6SpOh81vp/5t13ze/fpo3yGG66yXwZH3yg7P/rt9+a39/f32rVxcXFUlJSkvSN4ftvsLxmcF1fq9VKpaWlUmZmpuG1fgmA1KbGfobnNKrG/pIkSUlJSSZlfGjmGCq9vaWPr17Xqbl9zSXAwme60ttbGqCwjKkWythRyz6ZmZnGb2pkpNkyHrBSt355yEIM2QbbaDQaKT09XcrMzJTfUyNdupj/TMyfr+wz+csvltuIigplZQwfbn7/p55StHtlZqZxu2C4/P23shhefNF8DL16SdKGDZKUmipJH3wgSd98I0nHjknS/v2StHOnJP3wg3hu+XJJ0mjMllGh0UgVgFR99fEfgLRPo5HOBAdLVc2aSVJEhPg/WMvn0uLxuXhxVWyHa/xfcOa1XA45RQCAS1e7jgJi0iglYmJi5PXLly/bVL9+mCl9175jx47ZVJ6aGb7XauPK2JxRt6PqsFe5tpaj5s8WWebu503tx+eq+Njmsc3zVO5+3tR+fPyt57oy7VGO2j9fDhEWBtx9t/nXjhxRVsa2baKHhE4nemvodGL4pcBAZWV4eYmJeMvLxX7l5WKJilK0/6VLl8SQLeZcvKgshowM8897e4vJvpWw9PkpKFAWw+nT19arqoCcHMglZmbW3otEz9IEsqWlys+npbvNs7NNyjD7f8bwOGqWqzQGSz2HcnNFjw1LdetdndzbLAUx/Otf/0LViRM4aub9PGewnpCQgOPHj6OsrAy+vr5GE2xXQIx/LzM4p+U19geAyZMnIz8/H5s3b5bLOVuzjKvl5ObkwEI/GCOSuf2vlnFOYRmXLJRR2+BhGRkZuHz5Mi5evAgAiNHp4G1muysK6geAfAsxGJ4LSZLkeUx8fX0xYMAA/Pvf/4a/fvi82j5TSj6XJ05Yfu3PP416MJWVlcnHDgCRkZHw8/Oz3E5dvqwshnPnjNsFQ3//bXnYO0MXLph/3s8PaN7c+DmdTvSsCg0Vi54kmS0iRZLw69V1H4iePZAkoLAQg267DQsWLBAvfvYZMHeuaQGBgUDnzrhUWirarPBw0QNF/71QVnZtffVqZUNuhYSIf8vLbZu7pGab7CQ1r9w6dQoBp6VOSNUGDx4sZ9RefvllRfts2LBB3icoKMim+tesWSMBkFJSUqRGjRpJACRvb28pLCxM0mg0EgApJCRE8vX1lQBI/v7+UmBgoARA8vHxkcLCwuRYQkNDpQYNGkgApICAACkgIEACIDVo0EAKDQ2VtwsLC5N8fHwkAFJgYKDk7+8vAZB8fX2lkJAQOYseFhYm3xkQFBQkabVaCYDk5+cnBQcHSwAkLy8vKSwsTPLy8pIASMHBwZKfn58EiLsagoKCpKCgICk5OVlq0qSJ6o4pIiJCSk5Olho2bFinY7LHeQoKCpJSUlKkqKgoh52n6OhoKTk5WQoODrbrMYWGhkrjx4+X96vveYqMjJSSk5Ol8PDwen32mjRpIiUnJ0tBQUEOO09q+//kDsfUsGFDKTk5WYqIiHCbYzI8T40aNZKSk5OlkJAQVR6Tq9q9sLAwKTk5WYqKinLYeWrYsKE0btw4KSgoyK7HFBQUJI0dO1Zq0qSJTeepUaNGUkpKihQUFFSvz15wcLA0fvx4o8fu2Ea42zFFR0dLY8eOlbd3h2MyPE8RERHy/zs1HpPh/ztnf/au13ZP/z2mP4b6nif9b93IyMh6f/bY7l2fx+TO7Z7+c63Wv92DgoKkcePGSREREU7/7DVu3Fg+7446T/rfZNHR0XY7psjISPl7wpbzFBoaKiUnJ0uNGjWq92fP8NqJO7cR7nZM+v93DRs2dJtjul7avZCQEPn/nSs+e/plzZo1Nl0brguNJFlIXZFHGThwIDZv3gxAZPtnz55tdZ/Nmzdj4NVJhry9vVGpdFw+M9auXYvExMR6709EREREREREREREzrdmzRoMGzbMKXVxUnACAKMJnsqVdBWFcVciuZscEREREREREREREZEDcA4NAgAEBQXJ66WlpYr2MdzOcP/66NevH9asWSM/vuGGG8QYfkRERERERERERESkGmVlZcjOzpYf9+vXz2l1M6FBAICIiAh5PTc3V9E+OQYTUDVs2NCm+sPCwpzWLYmIiIiIiIiIiIiI6q9Lly4uqZdDThEA4Oabb5bXT548qWifU6dOyeutW7e2e0xERERERERERERERHpMaBAAoE2bNvL6oUOHFE3w/ccff5jdn4iIiIiIiIiIiIjI3pjQIADArbfeKs9ZUVxcjL1799a6fVlZGfbs2SM/HjBggEPjIyIiIiIiIiIiIiLPxoQGARCTeg8cOFB+vGzZslq3//rrr1FYWAhAzJ/Rt29fR4ZHRERERERERERERB6OCQ2SPfnkk/L6smXLcOTIEbPblZSUYPr06fLjCRMmwMeH88sTERERERERERERkeNoJEmSXB0EqUffvn2xfft2AEBsbCzWrl2LDh06yK9funQJo0aNwk8//QRA9M44fvw4wsLCXBEuEREREREREREREXkIJjTIyOnTp9GjRw+cO3cOAKDRaNCvXz+0bNkSFy5cwKZNm1BSUgIA8PHxwQ8//GA0VBURERERERERERERkSMwoUEmjh49ilGjRmH//v0Wt4mKisLSpUtxzz33OC8wIrqu5eTkYNOmTdi7dy/27t2L/fv3o7i4GC1atEBWVparwyMiqpPdu3djwYIF2LFjB/Lz89G4cWPcfffdmDZtGpo2berq8IiI7IK/34jI0xw8eBBr1qzBL7/8gsOHD+PSpUsIDAxEmzZtcP/99+PJJ59EQECAq8Mk8mhMaJBZ5eXlSE1NxYoVK3DkyBHk5uYiLCwM8fHxGD58OMaOHYvIyEhXh0lE15F33nkHL7zwgsnz/IOYiK43H330ER5//HFUV1cjJiYGTZs2RUZGBgoLCxEeHo4tW7agY8eOrg6TiMhm/P1GRJ7k+PHjuPHGG+XHTZo0QZMmTXDu3DmcOXMGANCqVSv89NNPaN68uavCJPJ4nMmZzPL19cWjjz6KRx991NWhEJGbCAkJwcCBA9GtWzd07doVZ8+exfPPP+/qsIiI6uTQoUN44oknUF1djTfffBPPP/88vLy8UFRUhHHjxmHVqlW47777kJ6eDj8/P1eHS0RkE/5+IyJPIkkSoqKi8NRTT+GRRx5BfHy8/NrOnTvx0EMPISMjA0lJSdi9e7cLIyXybOyhQURELvHVV19hxIgRvMOPiK4rDzzwAFavXo0HH3wQK1euNHqttLQUrVu3xqlTp/C///0PTzzxhIuiJCJyDP5+IyJ3ptPpUFVVhcDAQLOv79y5E7fffjsAYP/+/eyRS+QiXq4OgIiIiIjoelBcXIzvvvsOAPDUU0+ZvO7v74+xY8cCAFJTU50aGxERERHZRqvVWkxmAMBtt92G0NBQAGL+WSJyDSY0iIhcpKqqCgcPHsTHH3+MiRMnolu3bvD19YVGo4FGo0FCQkK9yy4vL8dnn32GwYMHo0WLFtBqtWjcuDFuvfVWLFiwABcvXrTfgRAR2ZGa28Z9+/ZBp9PB19cXvXr1MruNPr60tDRUV1fXO1Yi8gxqbvOIiBzhem73KisrUVFRAQCcGJzIhTiHBhGRC6xZswYPPfQQSkpK7F720aNHMWrUKOzfv9/o+ZycHOTk5GD37t2YP38+li5disGDB9u9fiKi+lJ725iRkQEAaN68OXx9fc1uo59IUqfT4eTJk4iLi7PfQRCRW1F7m0dEZG/Xe7u3Zs0alJSUwMfHB71797ZD1ERUH+yhQUTkAleuXHHIj7jTp09j4MCB8o84jUaDfv36ISUlBffeey/8/f0BAOfPn0diYiI2b95s9xiIiOpL7W3j5cuXAQAREREW62rYsKG8npeXZ6cjICJ3pPY2j4jI3q7ndi8vLw+TJk0CADz22GOIjIy0W/xEVDfsoUFE5ELR0dHo3r27vPz444/4z3/+U+/yRo8ejbNnzwIAWrRogbVr1xpNVHbx4kWMHDkSP//8MyoqKjBixAgcP34cYWFhth4KEZHdqLVtLC0tBQCLvTMAMfayniP+YCci96PWNo+IyFGut3avoqICDz74IE6dOoX4+HjMmTOn3rESke2Y0CAicoFBgwbh5MmTaN68udHzaWlp9S5zw4YN2L59OwBxsW39+vVo37690TaRkZFYu3YtOnTogBMnTuDy5cuYN28eXn/9dZPypkyZgrlz59YrloqKCvj48CuGiOpG7W2j/u6+8vJyi/XpdDp5nWMrE1Ft1N7mERHZ2/XY7lVXV+PRRx/Fpk2bEBUVhe+++w4hISH1jpeIbMchp4iIXCAmJsbkR5yt3nvvPXl9zJgxJj/i9AIDAzF79mz58aJFi1BZWWl2u4iIiHotGo3GrsdGRJ5B7W1jeHg4AODSpUsW69MPS2W4PRGROWpv84iI7O16a/ckScK4ceOQmpqKhg0b4qeffkLr1q3tEzgR1RsTGkREbqCoqAg///yz/Hjs2LG1bn///fcjKCgIgLj49ssvv5hs869//QsXL16s1+Lt7W3fAyQiqgd7t40333wzAODUqVMWe2n8/fffAMTQUy1atKh37EREdeWI34NERGrmyHZPkiRMmDABy5YtQ0hICH788UejYayIyHWY0CAicgO7du1CWVkZAHHnSffu3WvdXqvVonfv3vJjTgZJRO7I3m1j586dodVqUV5ejj179pgtY9u2bQCAHj16wMuLP7WJyHn4e5CIPI0j272nnnoKH330EYKCgvD999+jW7du9gmaiGzGv7KIiNxAenq6vN6+fXtF81d06dLF7P5ERO7C3m1jYGAgBg8eDMB4eAO90tJSLF26FACQlJRUr5iJiOqLvweJyNM4qt179tln8b///Q8BAQH49ttvceutt9oeLBHZDRMaRERu4K+//pLXlQ5xYjh26dGjR+0eExGRqzmibZw+fTq8vb2xatUqvPXWW6iurgYghjxITk7GqVOn0KJFC4wbN87G6ImI6oa/B4nI0zii3XvppZewcOFCaLVarFu3Dv369bM9UCKyK+upSyIiUj3DCWqjo6MV7RMTEyOvG05i6yjZ2dno3Lmz/Fg//nx2djYiIyPl50eNGoWFCxc6PB4icn+OaBs7duyI9957D08++SQmTZqE+fPno2nTpsjIyEBhYSHCwsLwzTffwM/Pz/YDICKqA0e0efz9RkRqZu92b/fu3Zg/fz4AICQkBDNmzMCMGTPMlpOSkoKUlJS6hkxEdsCEBhGRGygqKpLX/f39Fe1juJ3h/o5SVVVl9INTr7q62uj5wsJCh8dCRJ7BUW3j448/jvbt22P+/PnYuXMnDh06hJiYGDz00EOYNm0amjVrZlvgRET14Ig2j7/fiEjN7N3u6efjAIDz58/j/PnzFsu54447lIZJRHbGhAYRkRvQ6XTyuq+vr6J9DO8eLi0ttXtMNcXGxkKSJIfXQ0Sk58i28dZbb8U333xT/+CIiOzMEW0ef78RkZrZu91LSEhgm0d0HeAcGkREbkCr1crr+qEArDG8+0Tp3SxERNcTto1E5EnY5hGRp2G7R+SZmNAgInIDQUFB8rrS3haG2xnuT0TkLtg2EpEnYZtHRJ6G7R6RZ2JCg4jIDURERMjrubm5ivbJycmR1xs2bGj3mIiIXI1tIxF5ErZ5RORp2O4ReSYmNIiI3MDNN98sr588eVLRPqdOnZLXW7dubfeYiIhcjW0jEXkStnlE5GnY7hF5JiY0iIjcQJs2beT1Q4cOobKy0uo+f/zxh9n9iYjcBdtGIvIkbPOIyNOw3SPyTExoEBG5gVtvvRV+fn4AgOLiYuzdu7fW7cvKyrBnzx758YABAxwaHxGRK7BtJCJPwjaPiDwN2z0iz8SEBhGRGwgKCsLAgQPlx8uWLat1+6+//hqFhYUAxLihffv2dWR4REQuwbaRiDwJ2zwi8jRs94g8ExMaRERu4sknn5TXly1bhiNHjpjdrqSkBNOnT5cfT5gwAT4+Pg6Pj4jIFdg2EpEnYZtHRJ6G7R6R52FCg4jITdxzzz3o06cPANGVdsiQITh48KDRNpcuXUJiYiKOHTsGQNyV8vLLLzs9ViIiZ2HbSESehG0eEXkatntEnkcjSZLk6iCIiDzR4MGDcfbsWaPncnJykJubCwAIDAzEjTfeaLLfhg0b0KRJE7Nlnj59Gj169MC5c+cAABqNBv369UPLli1x4cIFbNq0CSUlJQAAHx8f/PDDD0ZddImIXI1tIxF5ErZ5RORp2O4Rka2Y0CAicpHY2FicPHmyzvtlZmYiNjbW4utHjx7FqFGjsH//fovbREVFYenSpbjnnnvqXD8RkSOxbSQiT8I2j4g8Dds9IrIVB4sjInIzrVu3RlpaGlJTU7FixQocOXIEubm5CAsLQ3x8PIYPH46xY8ciMjLS1aESETkN20Yi8iRs84jI07DdI/Ic7KFBRERERERERERERESqx0nBiYiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIyKHeeecdaDQaeHl5Ye/eva4OxyZTpkyBRqOBVqvF8ePHXR0OERERkUdhQoOIiIiIyEUSEhKg0WjqvGzdutXVoRMplpubixkzZgAAkpKS0K1bN7PbJScny5/x5OTkOtWxbNkyed/Y2FgbI67dlClTEB4ejrKyMrzwwgsOrYuIiIiIjDGhQURERERERA4za9YsFBQUQKPRYPr06a4Ox2ZhYWF45plnAADr16/Htm3bXBwRERERkefwcXUAREREREQEdO/eHT169FC0bdOmTR0cDZF9ZGVl4aOPPgIADBs2DG3atHFxRPbx7LPPYsGCBSgpKcG0adOwY8cOV4dERERE5BGY0CAiIiIiUoHBgwdj5syZrg6DyK7efPNNVFRUAACeeuopF0djPxERERgxYgQ++eQT7Ny5Ezt37sRtt93m6rCIiIiI3B6HnCIiIiIiIiK7y8/Px9KlSwEAcXFxGDhwoIsjsq/x48fL6++8847rAiEiIiLyIExoEBERERERkd2tXLkSxcXFAIARI0ZAo9G4OCL7uu2229CkSRMAwNq1a3Hp0iUXR0RERETk/pjQICIiIiK6TmVlZUGj0UCj0SA2NlZ+fseOHRg/fjxat26N0NBQaDQaPP/882bLyM7Oxr///W/06dMHTZo0gZ+fHxo2bIjOnTtj8uTJyMjIqFNMf/zxBx577DHEx8fD398fUVFR6NGjB+bNm4fLly8DAJYtWybHnZycbLacmTNnytsoGYpr69at8vYJCQmKYk1PT8fUqVPRo0cPREdHw9fXF1FRUejZsyemT5+Os2fPWi0jISFBrnfr1q0AgMuXL2Pu3Lno3r07IiMj4e/vj/j4eIwbNw6HDx9WFJuh77//Ho8//jjatWuHiIgINGjQAGFhYejSpQsef/xxrFu3DpWVlfL258+fh6+vLzQaDby9vXHmzBlF9UiShLi4OPl41q1bV+dYDS1fvlxeT0xMtKksWxn+X6nrkpWVZbZMjUYjH1dFRQVWrVrlvAMiIiIi8lCcQ4OIiIiIyE2Ul5fj2WefxaJFi6xuW11djZkzZ2L+/PnQ6XQm5eTl5WH//v34z3/+g5deegmvvvqq1Tvs//nPf2LOnDmoqqqSn9PpdLh48SJ+++03LFy4EF9++WX9Ds6OysrK8Nxzz+Gjjz4yihUALl68iIsXL+LXX3/FggULMG/ePDz99NOKy965cyeSkpJMkgiZmZnIzMzEJ598gv/973947LHHrJZ15MgRJCcnY+/evSav5efnY9++fdi3bx8WL16MpKQkpKamAgAaNWqEoUOHYvXq1aiursayZcswbdo0q/X9/PPP8sX7xo0b45577lFwxObl5eVh586dAIDg4GB079693mWp2YABA/D+++8DAL799ltMnDjRxRERERERuTcmNIiIiIiI3MQLL7wgJzPat2+Pjh07okGDBsjIyICX17XO2VVVVUhKSsLq1avl55o2bYoePXogKioKRUVFSEtLw/Hjx1FZWYnXX38dFy5cwOLFiy3WPXXqVLzxxhvy44CAAAwYMACNGzdGTk4ONm/ejNOnT2Pw4MEWe4s4Q3FxMe666y75YjsAtGzZEl27dkV4eDguX76MnTt34uzZsygtLcUzzzyDgoICTJ061WrZhw8fxiuvvIKioiI0atQIffr0QUREBM6cOYPNmzejtLQUVVVVeOKJJ9C+fXv06tXLYllbt27F0KFDUVhYKD/XvHlz9OjRAw0bNkRxcTH++usvHDhwABUVFSZJqQkTJsjnd8mSJZg6darVhNTHH38srycnJ8Pb29vqMVuyefNmOVnUq1cv+Pi49k/PkJAQxZOSHzx4ENu3b5cf1/a+9enTR17funUrKisrXX6sRERERO6Mv7SIiIiIiNzA6dOn8f777+OGG27A8uXLjS60AqJXgt6sWbPki90xMTF47733cN9995lcuP3yyy/x2GOPIT8/Hx9++CHuuOMOPPjggyZ1//LLL5gzZ478+IEHHsDixYsRHh4uP5efn48nnngCqampeO211+xyzPXx5JNPysmMVq1aYdGiRSZDVFVVVWHx4sV44YUXUFZWhunTp6N///7o3bt3rWVPnjwZlZWVePPNN/Hss88aXdjOzs7G4MGDcfjwYVRXV2Pq1KnYvHmz2XKys7MxYsQIOZkRFxeH999/H4MGDTLZNi8vD6tWrcKxY8eMnr/zzjsRFxeHzMxMnDhxAlu3bkX//v0txn758mV88803AMQF/HHjxtV6rNakpaXJ6x06dLCpLHto2LAh3n33XavbZWdno0ePHvLjUaNGoUWLFha3b9SoERo3boxz586hpKQEhw8fRqdOnewRMhERERGZwYQGEREREZEKbNiwARcvXrS63SuvvIKmTZuaPF9VVYWAgABs2rQJrVq1Mnndz88PgJhL4PXXXwcgLvLu2LEDLVu2NFvXiBEjEBkZiQEDBgAQ81qYm9z5lVdegSRJAICBAwciNTXV5O7+0NBQLF++HJcvX8bGjRutHqcjbN++HZ9++ikA0Stj586diIyMNNnO29sbEydOhL+/P8aOHYuqqirMnj0b33//fa3ll5WVYdGiRZgwYYLJazfccANWrFiBDh06QJIkbN26FefOnUPjxo1Ntn3llVfkz0KLFi2we/duREdHm60zPDwcjz/+uMnzGo0G48ePl4ea+vjjj2tNaCxfvlxOeiUkJFj8TCh18OBBeb1169Z13j8tLa1OQ30dPXq0znXUVFxcjKFDhyInJwcA0LNnTyxZssTqfm3atMG5c+cAAAcOHGBCg4iIiMiBmNAgIiIiIlKB3377Db/99pvV7caPH282oQEATz/9tNlkhqH//Oc/8lBA06dPt3rhun///rjrrrvw448/Ij09Hfv27UOXLl3k19PT07Fr1y758X//+1+LQxV5eXlh4cKFaN26tZwAcaa33npLXn/zzTfNJjMMJScnY+7cuTh69Ch+/PFHXLp0CRERERa3b9++vdlkhl67du3QvXt3/Prrr5AkCXv37sW9995rtM2ZM2ewcuVK+fEHH3xgMZlhzdixYzFjxgxUVlZi9erVePfddxEWFmZ2W8PhpsaPH1+v+gxlZmbK682aNavz/kePHrVLkkIpSZLwyCOPYP/+/QBEAmrNmjXQarVW9zX8/2hpAnEiIiIisg8v65sQEREREdH1YOTIkVa32bBhg7w+evRoReXqe2gAwI4dO4xe27Jli7zetWtXtG3bttayWrVqVevcEY5SWVmJn376CYCYT2HIkCGK9tP3apAkyWjeDXNGjBhhtbzOnTvL6+Yufm/atAmVlZUAgJtuusnsMFNKNW7cWD5OnU6HL774wux2v//+Ow4cOABA9PgYPnx4vevUy83NlddrSwKpxbRp0+QhtwIDA7Fu3TrExMQo2tcwMabv3UFEREREjsEeGkREREREKjBjxgzMnDmz3vs3aNAA7du3r3WbS5cuISMjAwDg6+uLWbNmKSr7zz//lNezs7ONXtu3b5+8bm2OCcPtdu/erWhbezl48CCKi4sBiPfqueeeU7SfYa+Zmsdek7X3HzC+uF9QUGDy+p49e+T1mnN71MeECROwZs0aAKIXxpNPPmmyjWHvjIcfflhRrwRr9O81ICaIr6sxY8Zg2bJlirdftmwZxo4dW+d6AODzzz+XJ7TXaDT4/PPP6zRslOHxGR43EREREdkfExpERERERG4gPDzcaBJqc/Tj/ANAeXk53nvvvTrXk5eXZ/T4woUL8nrz5s0VlaF0O3s6e/asvH7p0iW7HHtNoaGhVsto0KCBvF5RUWHyumHPhvj4+DpEZ95dd92FFi1a4OTJk/jjjz+wf/9+o4v1paWlRj037DHcVE2uGF5MqT179hgd8+uvv47ExMQ6laHm4yMiIiJyNxxyioiIiIjIDfj7+1vdJj8/3+Z69MMh6RUVFcnrSu/EDwwMtDmOunLEsddUc7L0+igsLJTXg4KCbC7Py8sL48aNkx8b9sYAgNWrV8vvTffu3dGhQweb6wSMz3FpaaldyrS3U6dOITExUZ4M/dFHH8WUKVPqXI7h8bnis01ERETkSZjQICIiIiLyEIYXW0NCQiBJUp2XmsMAGV50LykpURSHI4blqa6urvV1w2Pv0KFDvY7dliHBlAoODpbXDZNFtkhJSZEnal++fDl0Op38mr0nA9cznH/i4sWLdivXXoqLizF06FC5R8xtt92GxYsX16ssw15KSufdICIiIqL6YUKDiIiIiMhDREdHy+sFBQWKExC1iYqKktdPnTqlaB9rc1EAxkMzWesZAVjvgWF47GqeuNkwzszMTLuU2bRpUwwePBiAGDZLP/n18ePHsW3bNgAi4TNq1Ci71AcAcXFx8vrp06ftVq49SJKEhx9+WJ4IvUWLFvj666/h5+dXr/LOnDkjr8fGxtojRCIiIiKygAkNIiIiIiIP0bhxY9xwww3y4127dtlcZufOneV1wwmta6NkQvCQkBB5/dKlS1a3P3ToUK2vd+rUSb5gff78eRw7dsxqma7Qq1cveX3Lli12K3fChAnyur5XxpIlS+T5H0aMGGHUO8RWhkNX/fXXX3Yr1x6mTp0qT5QeHByM9evXo1GjRvUuLz09XV7v2LGjreERERERUS2Y0CAiIiIi8iBDhgyR199//32by+vfv7+8vnfvXhw9erTW7Y8dO6YooWF4p/v+/futbr9q1apaX/f398eAAQPkx/Y4dke488475cnd//77b/z44492Kffuu++Wk1mbN2/GsWPHjIYPs/dk4D169JDX9T0h1OCzzz7DnDlzAIj5RVasWIH27dvXu7zz58/LPX4CAgLQrl07u8RJREREROYxoUFERERE5EEmTZokz6fwzTffmMyJURtzQzW1adMGt956q/z4ueeeszifRXV1NZ599lm5V0BtunfvLk+ynZaWZnQXfE3vv/8+jhw5YrXMl19+WV5fuHAhNm3aZHUfPWcNU9WkSRMkJSXJjx9//HF5ngdbeHt7IyUlBcC1IZfOnj0LQJzD2267zeY6DA0YMED+nKWlpSkaNszRdu3ahccee0x+PG/ePNxzzz02lbl9+3Z5PSEhQU5GEREREZFjMKFBRERERORBWrZsiX/+85/y45SUFEyePNnixM2VlZXYuHEjHnnkEaPhpQy99tprcvJh48aNGD16NK5cuWK0TUFBAR555BF8//338PX1tRpnTEyM3KNCkiSMGjXKZC6GyspKvPnmm3j22WcVzX/Qr18/jBkzRt73nnvuwRtvvGFx8m2dToc1a9Zg2LBhGDp0qNXy7eWNN95Aw4YNAQAnT55E7969LfbUuHLlChYvXoyXXnrJarnjxo2Dl5f4EzAtLc3oeXsLDw+XkySFhYX47bff7F5HXZw6dQr33XcfysrKAIjP/aRJk2wud/PmzfK6Ye8nIiIiInIM3j5CRERERORhZsyYgaysLHzyySeQJAlvvvkmFi5ciG7duqFly5YICAhAQUEBsrKycPDgQRQXFwMAIiIizJaXkJCAyZMnY/78+QCAlStX4ttvv8WAAQMQExOD3NxcbN68GUVFRQgPD8dzzz2HmTNnWo3ztddew5YtW1BdXY0DBw6gVatWGDBgAJo2bYrLly/jl19+wfnz5xEUFIQ33ngDzzzzjNUyFy1ahHPnzmHjxo0oLy/H1KlT8eqrr6Jnz55o3rw5/Pz8cOXKFRw/fhyHDx+WL4B37dpV4btruxtuuAGrVq1CYmIiioqKkJmZiUGDBqFFixbo0aMHGjZsiKKiImRkZGD//v2oqKjAsGHDFJU7aNAgbNiwQX7O19cXjz76qEOO46GHHsIvv/wCAFizZg169+7tkHqUWLp0Kc6fPw9A9Fbx8fHB008/rWjf2bNnywkmQ5IkYe3atQDEJPYPPvig/QImIiIiIrOY0CAiIiIi8jAajQbLli1D165dMWPGDOTl5aG8vBy7du2yOFG4RqOpdViiefPmwdvbG/PmzUN1dTWKi4uxfv16o22aNGmCr776SvEk0T179sSHH36ICRMmoKqqCqWlpfjuu++MtmncuDFWrlyJqqoqRWX6+flhw4YNmDVrFt58802UlJSgpKSk1gm4GzRoYDRZtzMMHDgQO3bswJgxY+Q5KE6ePImTJ0+a3T4oKEhRuRMmTDBKaAwdOhRRUVG2B2xGUlISXnzxRRQXF+PLL7/EnDlz5J48zmY4zFlVVRUWL16seN/JkyebTWjs2rULZ86cASDeR0sJPyIiIiKyHw45RURERETkoZ555hmcPHkS7733HhITExEXF4egoCD4+PggPDwc7du3x8iRI/HBBx/g5MmT8t3olrzxxhv49ddfkZKSgtjYWPj5+SEiIgJdu3bFa6+9hgMHDtT5Lv2UlBQcPHgQ48aNQ1xcHLRaLcLCwtC5c2e8+uqrOHjwIPr06VOnMr29vTF79mxkZWVhwYIFGDRoEJo3b46AgAA0aNAAERER6NKlC8aMGYNly5bhzJkzePfdd+tUhz107NgR+/btw9dff41HH30UN910E0JCQuDt7Y3w8HB07doVEydOxIYNG/Dpp58qKnPw4MFGw3PZezJwQ6GhoRg7diwAIDMzs05zllwPPvroI3n9+eefd10gRERERB5EIymZkY+IiIiIiMhOli1bJl/o1icNyDm2bduGhIQEAECLFi1w4sQJeV4NR8jKykKrVq3kYbHWrFnjsLqc6dKlS2jevDlKSkpw6623YufOna4OiYiIiMgjsIcGERERERGRh/j444/l9ZSUFIcmMwAgNjZW7gWybt06pKenO7Q+Z1m4cCFKSkoAiLleiIiIiMg5mNAgIiIiIiLyADk5Ofjyyy8BAD4+Pg4dbsrQjBkzEBISAkmSMHv2bKfU6UhXrlzBwoULAQBDhgyRe7wQERERkeMxoUFEREREROTmqqqq8Nxzz0Gn0wEAHnzwQTRp0sQpdUdHR2PWrFkAgJUrV+L33393Sr2OMnfuXFy+fBl+fn545513XB0OERERkUfhHBpERERERORUnEPDOb744gv8+uuvKCoqwvbt25GRkQEA8PPzw6FDh3DTTTe5OEIiIiIiorrxcXUAREREREREZH8bN27EJ598YvL8W2+9xWQGEREREV2XmNAgIiIiIiJyc8HBwejatSsmTZqEIUOGuDocIiIiIqJ64ZBTRERERERERERERESkepwUnIiIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFSPCQ0iIiIiIiIiIiIiIlI9JjSIiIiIiIiIiIiIiEj1mNAgIiIiIiIiIiIiIiLVY0KDiIiIiIiIiIiIiIhUjwkNIiIiIiIiIiIiIiJSPSY0iIiIiIiIiIiIiIhI9ZjQICIiIiIiIiIiIiIi1WNCg4iIiIiIiIiIiIiIVI8JDSIiIiIiIiIiIiIiUj0mNIiIiIiIiIiIiIiISPWY0CAiIiIiIiIiIiIiItVjQoOIiIiIiIiIiIiIiFTv/wGtkq6MpINZNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_model = models.Lorentz1D(x_0=0.04, fwhm=0.15, amplitude=7000) + \\\n", + " models.Lorentz1D(x_0=0.2, fwhm=3, amplitude=300)\n", + "\n", + "plt.figure()\n", + "plt.plot(pds_reb.freq, (pds_reb.power - 2) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.plot(pds.freq, fit_model(pds.freq) * pds.freq, color=\"r\", label=\"Starting Model\")\n", + "for mod in fit_model:\n", + " plt.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + " \n", + "plt.semilogx()\n", + "plt.xlim([pds.freq[0], pds.freq[-1]])\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "plt.legend();\n", + "plt.ylim([0, None])\n" + ] + }, + { + "cell_type": "markdown", + "id": "2438911a", + "metadata": {}, + "source": [ + "We will now add a constant at the Poisson noise level (2 in Leahy normalization) and fit using the Maximum Likelihood estimation in `stingray`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "2003fbfb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.95227938e+00 6.97518942e+03 4.11961192e-02 1.42093997e-01\n", + " 2.98070633e+02 4.06300000e-01 2.65743398e+00]\n" + ] + } + ], + "source": [ + "from stingray.modeling import PSDParEst\n", + "fit_model = models.Const1D(amplitude=2) + fit_model\n", + "\n", + "parest = PSDParEst(pds_reb, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "loglike = PSDLogLikelihood(\n", + " pds_reb.freq, pds_reb.power, fit_model, m=pds_reb.m)\n", + "\n", + "res = parest.fit(loglike, fit_model.parameters)\n", + "\n", + "fitmod = res.model\n", + "\n", + "# The Poisson noise level was the first parameter.\n", + "poisson = fitmod.parameters[0]\n", + "print(res.p_opt)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "502706d3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAAR9CAYAAAAKglvAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOydeXhTxdfHv0mXhO7sBQuUHWSxoCCLSnFFfwqovICogKiAOyooguyKoOC+gMimKOAGuKDiQhEUBGURZBGxBSoUWmi6p2mSef+IvTbtTZvkLjO5PZ/nyUOSO/ec78mZnF7uZGZMjDEGgiAIgiAIgiAIgiAIgiAIgiAIA2LmLYAgCIIgCIIgCIIgCIIgCIIgCEIraCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYFhoIIQiCIAiCIAiCIAiCIAiCIAjCsNBACEEQBEEQBEEQBEEQBEEQBEEQhoUGQgiCIAiCIAiCIAiCIAiCIAiCMCw0EEIQBEEQBEEQBEEQBEEQBEEQhGGhgRCCIAiCIAiCIAiCIAiCIAiCIAwLDYQQBEEQBEEQBEEQBEEQBEEQBGFYaCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYFhoIIQiCIAiCIAiCIAiCIAiCIAjCsNBACEEQBEEQBEEQBEEQBEEQBEEQhoUGQgiCIAiCIAiCIAiCIAiCIAiCMCw0EEIQBEEQBEEQBEEQBEEQBEEQhGGhgRCCIAiCIAiCIAiCIAiCIAiCIAwLDYQQBEEQBEEQBEEQBEEQBEEQBGFYaCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYFhoIIQiCIAiCIAiCIAiCIAiCIAjCsNBACEEQBEEQBEEQBEEQBEEQBEEQhoUGQgiCIAiCIAiCIAiCIAiCIAiCMCw0EEIQBEEQBEEQBEEQBEEQBEEQhGGhgRCCIAiCIAiCIAiCIAiCIAiCIAwLDYQQBEEQBEEQBEEQBEEQBEEQBGFYaCCEIAiCIAiCIAiCIAiCIAiCIAjDQgMhBEEQBEEQBEEQBEEQBEEQBEEYlnDeAggiWGw2G7Zs2SK9btasGSwWC0dFBEEQBEEQBEEQBEEQBEEQRGVKS0tx8uRJ6XW/fv2QkJCgm38aCCFCli1btmDw4MG8ZRAEQRAEQRAEQRAEQRAEQRABsH79egwaNEg3f7Q0FhHydOjQAREREbxlaEJERITQ8fHSp4dfrXyoZVepHdH7FiGP0fMmenxGrnla+aGaRyjB6HkTPT6e+kL1Wk+UmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4xNZm5bQQAgR8gwePBhRUVG8ZWhCVFSU0PHx0qeHX618qGVXqR3R+xYhj9HzJnp8Rq55Wvmhmkcoweh5Ez0+nvpC9VpPlJqnphZCX4ycN9Fjo5rH1yZd69VOjJ43keMTWZuWmBhjjLcIggiG3bt34+KLL5Zer1+/Hm3atOGoiCAIgiAIgiAIgiAIgiAIgqjMX3/95bXNwW+//Ybu3bvr5p/2CCFClsobo7dp0wadOnXipIYgCIIgCIIgCIIgCIIgCILwh8r3drWGlsYiQp6ZM2ciISGBtwxNsNlsmDVrFmw2G28psvDSp4dfrXyoZVepHdH7FiGP0fMmenxGrnla+aGaRyjB6HkTPT6e+kL1Wk+UmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4xNZm5bQ0lhEyPLHH3+gc+fOSE5ORmZmJvbu3Wu4GSFOpxOZmZlISkpCeLh4E7h46dPDr1Y+1LKr1I7ofYuQx+h5Ez0+I9c8rfxQzSOUYPS8iR4fT32heq0nSs1TUwuhL0bOm+ixUc3ja5Ou9WonRs+byPHx0lZ+L7ecAwcO6HovlwZCiJCF95eHIAiCIAiCIAiCIAiCIAiCqBne93JpaSwi5Bk+fDiio6N5y9CEoqIirFmzBkVFRbylyMJLnx5+tfKhll2ldkTvW4Q8Rs+b6PEZueZp5YdqHqEEo+dN9Ph46gvVaz1Rap6aWgh9MXLeRI+Nah5fm3StVzsxet5Ejk9kbVpCAyFEyGOz2eB2u3nL0ASz2YyEhASYzWJ+VXnp08OvVj7UsqvUjuh9i5DH6HkTPT4j1zyt/FDNI5Rg9LyJHh9PfaF6rSdKzVNTC6EvRs6b6LFRzeNrk671aidGz5vI8YmsTUtoaSwiZOE9nYogCIIgCIIgCIIgCIIgCIKoGd73cmvXsA9hSFJSUhAZGclbhiY4HA7s3bsXDoeDtxRZeOnTw69WPtSyq9SO6H2LkMfoeRM9PiPXPK38UM0jlGD0vIkeH099oXqtJ0rNU1MLoS9GzpvosVHN42uTrvVqJ0bPm8jxiaxNS2gghAh5UlNTYbVaecvQBLvdjrS0NNjtdt5SZOGlTw+/WvlQy65SO6L3LUIeo+dN9PiMXPO08kM1j1CC0fMmenw89YXqtZ4oNU9NLYS+GDlvosdGNY+vTbrWq50YPW8ixyeyNi2hpbGIkIX3dCqCIAiCIAiCIAiCIAiCIAiiZnjfy6UZIUTIY7VaYTKZeMvQBMYY7HY7RB2v5KVPD79a+VDLrlI7ovctQh6j5030+Ixc87TyQzWPUILR8yZ6fDz1heq1nig1T00thL4YOW+ix0Y1j69NutarnRg9byLHJ7I2LaGBECLkmTx5MuLj43nL0IS8vDzMnz8feXl5vKXIwkufHn618qGWXaV2RO9bhDxGz5vo8Rm55mnlh2oeoQSj5030+HjqC9VrPVFqnppaCH0xct60jI0xBpfLBafTGfTj/PnzePHFF3H+/HlFdkT1rYUPNW0qtcUzf/Tgl3fRHyLH5482l8tluIESWhqLCFnKp1MlJiYiOzsb+/btM9zSWC6XC9nZ2WjYsCHCwsJ4y6kCL316+NXKh1p2ldoRvW8R8hg9b6LHZ+Sap5UfqnmEEoyeN9Hj46kvVK/1RKl5amoh9MXIeVMzNsYYiouLUVhYiKKiIpSWlirWxxiD0+lEeHi47itO6OFbCx9q2lRqi2f+iOAxet5Eji8QbVFRUYiLi0NsbCzCw8MV+eW9NBYNhBAhC+8vD0EQBEEQBEEQBEEQ+lFWVobMzMxat8EvQRAEb0wmE5KSkhATExO0Dd73cmlpLCLkGT16tKIvocgUFhZixYoVKCws5C1FFl769PCrlQ+17Cq1I3rfIuQxet5Ej8/INU8rP1TzCCUYPW+ix8dTX6he64lS89TUQuiLkfOmRmx2ux0ZGRmaDIKU/zqa1x4hWvvWwoeaNpXa4pk/IniMnjeR4wtGG2MMmZmZIf03Stl8FoIQgIyMDDidTt4yNCE8PBzJycmKp55pBS99evjVyke5XafTiYyMjKDtOBwOJCQk4NSpU4iMjFTl/MTERFit1qA1Edojek1QiujxGbnmaeVHLZtK7Yjetwh5jJ430ePjqS9Ur/VEqXlqaiH0xch5UxobYwwnTpyAy+VSWdl/8Fy6Rg/fWvhQ06ZSW6ItPUT4h9HzJnJ8wS5Dl5mZiTZt2oTk3ypaGosIWXhPpyKIYCguLsaYMWOwYcMG4aZzW61WDBo0CMuWLUNUVBRvOQRBEARBEARBEACAgoICZGZmer0XERGB+Ph4REdHIyIiQugbjgRBEKEGYwwlJSU4f/48SkpKvI4lJiaibt26AdvkfS839IZuCKISvXr1wp49e3jL0ITS0lLs2bMH3bp1g8Vi4S2nCrz06eFXKx/33HMPjh8/rnhqpMViQbdu3bBnz56gNgeUO99ut2Pt2rUAgDVr1ijSR2iD6DVBKaLHZ+Sap5UftWwqtSN63yLkMXreRI+Pp75QvdYTpeapqYXQFyPnTWlsNpvN67XFYkHz5s1V+0Wy2+1GcXExoqKiYDbru4q8Hr618KGmTaW2eOaPCB6j503k+PzVFhERgdjYWBw/ftxrMCQ/Pz+ogRDeiJUFggiClJSUoJYGCgUcDgf27t0Lh8PBW4osvPTp4VcLH3a7Hd9++60qfTYyMlKRnerOF3G2CuFB9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzpiQ2xhiKioq83qtXr56qy7IwxlBcXMxtjxCtfWvhQ02bSm3xzB8RPEbPm8jxBaLNZDKhXr16Xu+JGldN0NJYRMjCezoVQQRKRkYGWrZsyVuGX6SnpyM5OZm3DIIgCIIgCIIgajkulwt//vmn13utW7c27A8iCYIgRMPhcODYsWNe77Vr1w5hYWEB2eF9L5dmhBAhT0JCgnBTzNTC7XbDZrPB7XbzliILL316+NXKh9lsVqXPKrWjlg5CX0SvCUoRPT4j1zyt/KhlU6kd0fsWIY/R8yZ6fDz1heq1nig1T00thL4YOW9KYpP7/a7a/49hjMHpdHKbEaK1by18qGlTqS2e+SOCx+h5Ezm+QLXJ1VwR46oJugNGhDwTJkxAXFwcbxmakJ+fj1deeQX5+fm8pcjCS58efrXyERcXp0qfVWpHLR2EvoheE5QienxGrnla+VHLplI7ovctQh6j5030+HjqC9VrPVFqnppaCH0xct5Ej83lcuHs2bNwuVyG9K2FDzVtKrXFM39E8Bg9byLHJ7I2LaGlsYiQpXw6VUJCAvLz8/H7778bbmkst9uN/Px8xMXFCfnLfV769PCrhY+MjAy0bt0acXFxyM/P9/o11NatW5GUlBSQPqWbyR07dgwDBgyQ/VUWLY0lJqLXBKWIHp+Ra55WftSyqdSO6H2LkMfoeRM9Pp76QvVaT5Sap6YWQl+MnDclsTmdThw9etTrvbZt26q+R4jL5UJYWBhMJpNqdkXxrYUPNW0qtcUzf0TwGD1vIscXqDa16jDvpbHU+6tBEJyw2Wy8JWhG+fJFosJLnx5+tfJRPiW8MklJSboPPJjNZkNOuzcyotcEpYgen5FrnlZ+1LKp1I7ofYuQx+h5Ez0+nvpC9VpPlJqnphZCX4ycN9FjM5lMqg6siOZbCx9q2lRqi2f+iOAxet5Ejk9kbVpirJ8YELWS8ePHIzY2lrcMTSgoKMCiRYtQUFDAW4osvPTp4VcrH7Gxsar0WaX6CgoK8Nlnnxn2u2NURK8JShE9PiPXPK38qGVTjZonct8i5DF63kSPj6e+UL3WE6XmqamF0Bcj50302GhpLL42aWms2onR8yZyfCJr0xIaCCFCnr1798LhcPCWoQmRkZFISUlBZGQkbymy8NKnh1+tfDgcDlX6rFJ9kZGRaNOmjWG/O0ZF9JqgFNHjM3LN08qPWjbVqHki9y1CHqPnTfT4eOoL1Ws9UWqemloIfTFy3kSPzWQyISoqisvyNXr41sKHmjaV2uKZPyJ4jJ43keMTWZuW0B4hRMjCe105ggiUjIwMtGzZUvYYjz05RNNDEARBEARBEARRGT32CCEIgiB8Y5Q9QmhGCBHypKamwmq18pahCXa7HWlpabDb7bylyMJLnx5+tfJhtVqV9VmnE5gzB/bOnZF2662wjx4NfPopUFQUkBm73Y69e/ca9rtjVESvCUoRPT4j1zyt/KhlU6kd0fsWIY/R8yZ6fDz1heq1nig1T00thL4YOW+ix+Z2u1FQUMBlD0U9fGvhQ02bSm2ppSU1NRUmkwkmkwlpaWmKbJWzYsUKyebo0aNVsWkUgslbWlqa9HmmpqZqJ04FeNaVmhBZm5bQQAgR8iQnJxv2lyBOpxMZGRlwOp28pcjCS58efrXyER4eHnyfdTqBYcOA6dPhPH4cGXFxcH7yCXDrrUCDBsDAgcCyZUB2th+mnMjKyjLsd8eoiF4TlCJ6fEaueVr5UcumUjui9y1CHqPnTfT4eOoL1Ws9UWqemloIfTFy3kSPjTGG0tJS8Fg0RQ/fWvgIxGbFAQa5R3x8PDp27Ijrr78ec+fOxT///KOZFkIcRMhbxYEquYfFYkHjxo3Rt29fTJw4EQcOHKjWXsWBmrCwMMTFxSEsLAwmkwlmsxnx8fFo3rw5unTpgiFDhuC5557Dd999p2ivjsOHD2Pq1Kno378/mjZtijp16iAyMhL16tVD586dMWjQIMyePRvffvutNBgtwmfPA1oaiwhZeE+nIohAUbQUldsN3HMPsHx5zY7MZqBvX2DwYM+jVSv19RAEQRAEQRAEQegALY0V+qSmpmLLli1+t4+IiMDUqVMxffp0XfcwqKhz8+bNqsw4WLFiBe666y4AwKhRo7BixQrFNmszaWlp6N+/PwCgX79+imfuVMyPv9x555144403EBsbW62+QGjatCnuvvtuTJgwAfXq1fPrHJvNhkceeQTvvvuu337q1KmDI0eOoFmzZgHpM8rSWPRXgwh5EhMTke3HL+BDEZfLhezsbDRs2BBhYWG85VSBlz49/GrlIywsDA0bNkR2drb/I/6MARMneg2CuMLCkN2wIRpmZyOssh23G9i61fN4/HGgS5f/BkW6dQNMJrhcLpw/fx5hYWGKfnlA6IvoNUEposdn5JqnlR+1bCq1I3rfIuQxet5Ej4+nvlC91hOl5qmphdAXI+dN9NgYY3A6nQgPD9d982A9fGvhI1ibPXr0QM+ePb3ey8vLw969e6Vf25eVlWHmzJmw2Wx46aWXNNNC8EW0vMXGxmLkyJFe75WUlOCvv/7C9u3bUVZWBgB47733cOLECWzatAmRkZHV2rzvvvukGSKAZ5nA3NxcnD59Gnv37kVJSQkA4NSpU5gzZw6WLl2K5cuX49prr63Wbm5uLq688krs3btXei86OhqXXHIJWrZsCYvFApvNhqNHj+LAgQNwOBxSPOUzQUT67PWClsYiQp7x48fLjsIagYKCAixevBgFBQW8pcjCS58efrXyERsbG3ifffZZoNLFX0FsLBaPH48Cf+zs3w/MmQNcfDGQnAw8/DAKvvkGn3/+uWG/O0ZF9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzJnps5QM1PH4kpodvLXwEa/OGG27A66+/7vVYvnw5vvnmG2zZsgXNmzeX2r788sv49ddfNdOiB6NHjwZjDIwxmg1SCdHyVq9evSp9c+nSpdiyZQuOHj2Kyy+/XGq7ZcsWvPLKKzXafPrpp/HKK69I9t555x188skn+Pnnn5GXl4fNmzdj8ODB0mDEqVOnMGDAAHz00UfV2n388celQZDIyEgsWLAAZ8+eRVpaGpYvX45FixZhzZo1+O2332Cz2bBu3ToMHz4cERERAMT77PWClsYiQpby6VRWqxWlpaXYv3+/4ZbGKl+zz2KxCDlCy0ufHn618JGRkYFWrVrBYrFUWYvR51JUr78OPPRQVX0mE0otFlhKS2EKoowzkwnFDRvi4+xsbGAM3wAornCclsYSE9FrglJEj8/INU8rP2rZVGpH9L5FyGP0vIkeH099oXqtJ0rNU1MLoS9GzpuS2PRYGqv8RnXFX27rhR6+tfARiM2KS07NmDEDM2fO9Glr37596N69u/T/5XvvvRdvv/22alr81anW0liEb4LJm5ZLY7Vo0QIZGRk+2xYUFOCiiy5Ceno6AKBJkyY4deqUT32AZ8DBn/i++uor3HHHHTh//jwAzxJW27ZtQ/fu3au0PXPmDJo2bSptdP7ee+/hjjvuqDlYAFlZWYiNjUVUVFRAn71RlsaiGSFEyGO32w27uY/JZILVahX2IpiXPj38auWDMeZ/n121SnYQBABMjMEKwNSwYVA6TIwh+uxZjGIMnwLIAbABwF0AGgRlkdAD0WuCUkSPz8g1Tys/atlUakf0vkXIY/S8iR4fT32heq0nSs1TUwuhL0bOm+ixlW9kzKvmae1bCx9q2qxoKyUlxWsA4scff9RVC6EfoZa32NhYPPzww9Lr06dP4+DBg9We4298119/PT7//HNpYKGkpAQTJ06Ubfvdd99JgyBNmjTB7bff7m8ISExMRHR0dMh99mpBAyFEyDNhwgTExcXxlqEJ+fn5ePnll5Gfn89biiy89OnhVysfcXFx/vXZzz8HRo/2ra9uXbw8fTryDx8Gtm0DJk0C2rTxW0d+XBxenjAB+f/qqANgIIBlALIAJA4dCrz4IvD3337bJLRH9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzJnpsLpcLZ86c4bY0lta+tfChps3KtlJSUqRjlX9x7+v8rVu3YvLkyejZsycaN26MyMhINGzYEJdeeimmT5/ulx05Tp48iaeffhoXXXQR6tWrh+joaHTo0AGPPvoo/vrrrxrPX7FihfSr+9E+/o+flpYmtak4CPTDDz9g+PDhaNWqFaxWK+rXr48rrrgCr7/+urRfhS8yMjIkmxVXe/j1119xzz33oF27doiKikLdunXRs2dPzJ07F0VFRf58JBLnzp3DwoULcc0116BZs2awWq1ISEjAhRdeiAceeKDGZc0q5/3o0aOYMGECOnTogOjoaNSrVw8pKSmYPn06MjMzA9KmFX369PF6/XcN90wC+Y706dMHTzzxhPR68+bN2L59e5V2//zzj/S8efPmQQ1m8Kx5PKHN0omQJy0tDXa7nbcMTbBarUhNTYXVauUtRRZe+vTwq5UPu91ec59NSwP+7/8AX3+QTCZY33gDqR07whodDfTt63nMnw8cOgSsX+957Nrl04XVbkdqWhqsMjrCAITt2uU538dm6wQfRK8JShE9PiPXPK38qGVTqR3R+xYhj9HzJnp8PPWF6rWeKDVPTS2Evhg5b6LHZjKZEBsby21GiNa+tfChps3KturUqSMdq+l+T2lpKR5++GEsXbq0yk3dnJwc5OTkYOfOnViwYAGef/55PPjgg37r+uyzzzBy5Ejk5eV5vX/kyBEcOXIEixcvxssvv4yxY8f6bdMfHA4HHnzwQSxZssTr/dLSUmzduhVbt26V9lVp0MC/NR0YY5g5cyaeeeYZaTYB4Jl5sGvXLuzatQvvvPMOvvvuO7Rq1apGe2+88QamTp1a5bMpLS1FXl4eDh06hLfeegt33XUX3nrrLdlNxSvm/c0338Tjjz/ule/i4mLk5uZi3759eO211/Duu+9y3+e0bt26Xq9rGtwN9Dvy0EMPYcGCBdLm5mvWrEHv3r292pjN/81rKF+mK1B41jye0EAIEfKUbw5kRCIjI71+CSEavPTp4VcrHw6Ho/o+++uvwE03AaWlvtu89RYib7sNKZXfN5mACy/0PKZMATIzgc8+8wyKbN4MOJ1S00iHAyn+fnf27/9vw/XmzYFBg4BbbgH69aNBEZ0RvSYoRfT4jFzztPKjlk2ldkTvW4Q8Rs+b6PHx1Beq13qi1Dw1tRD6YuS8iR6b2WxGVFSUYX1r4UNNm5VtVZy90bhxY5/nFRUV4brrrsNPP/0kvde6dWtcfPHFqFu3Ls6fP4+ffvoJp06dQklJCR566CHk5+djypQpNWr69ddfMXXqVDgcDtSvXx+pqamoW7cuMjIysGXLFpSVlaGkpATjxo1DWFgY7r777iCjr8rYsWOxcuVKmM1mXHrppejQoQPcbjd27NiBI0eOAAB2796NkSNHYuPGjX7ZnDVrFmbPng3AM+OmS5cuiIiIwN69e7F7924AnpvqgwcPxu7du6vd+2HChAleG4U3aNAAvXv3RmJiIux2O/bs2YMDBw6AMYZly5bh1KlT+PLLL71u4AP/5X3x4sV44IEHpPcjIiKQmpqKFi1a4Pz580hLS8P58+cxZMgQzJ07178PUSNyc3O9XsfHx1fbPtDvSGJiIi677DL88MMPAICtW7dWadO6dWvp+dmzZ7F8+XJpnxN/4VnzeEIDIUTIM2DAAGkzK6NRUlKCLVu2oF+/fl6/iBAFXvr08KuVjzp16qBfv37YsmULSkpKvA8ePAgMGAAUFvo28NxzwLhx/ulLSgLuv9/zsNmAjRs9gyIbN6LE7caWfv3Qb8sW1KmsozpOnABee83zuOIKj71Kv4ggtEP0mqAU0eMzcs3Tyo9aNpXaEb1vEfIYPW+ix8dTX6he64lS89TUQuiLkfOmZ2xOpzPgZXTcbjcKCwsRExNT5Wat1ujhW85HUlKSog3n3W43CgoKEBsbq1h3RVtutxvff/+9dKxXr14+z7v//vulQZA2bdpg8eLFuPLKK73auFwuvP3223j00UdRWlqK6dOno3///lV+ZV+Z8kGQiRMn4plnnoHFYpGOZWZmYsSIEdJN6ocffhipqaleN6iDZceOHdiyZQt69OiBd999Fx06dJCOMcbw6quvYsKECQA8G2z/+OOPuOKKK6q1efr0acyePRutW7fGBx98gJ49e3od/+ijj3D77bejrKwM+/fvxwcffICRI0fK2lq2bJk0CBIXF4eFCxdi1KhRiIiI8Gq3efNm3Hnnnfjnn3/w9ddfY8GCBV7LPgGevO/du1eKB/BsgL5q1SokJSVJ75WWlmLy5Ml4+eWX/RrE0pKKg24A0LJly2rb5+XlBfwdufTSS6WBkH379qGkpMSrbl511VWIjY1FQUEBAM/A2Z49e3DPPfega9eufvlQ8/sbStBACBHyJCQkGPZL63a7YbPZvKYtigQvfXr41cqH2WyW7bPhmZnA8OHAuXO+T37iCWDy5OD0JSQAI0Z4HnY73N98g5ytW3Fm61YkBxcK8OOPHs0bNwJhYcFaIQJA9JqgFNHjM3LN08qPWjaV2hG9bxHyGD1vosfHU1+oXuuJUvPU1ELoi5HzpmdsmZmZNd6cJDy//q+4d0SgMMbgcrnAGFOspaKtefPm4eTJk9IxX8tObd26Fe+++y4Azy/kN27cKLukU1hYGO677z7UqVMHd911F1wuF2bPno2vvvqqWk0OhwPjx4/HCy+8UOVYUlISNm7ciB49euDw4cMoLi7GrFmzJD1KKC0tRdu2bfHDDz8gJibG65jJZMIjjzyCbdu24eOPPwYArF69usaBkPJZLT/++COaNm1a5fj//d//ScuHlduUGwgpKCjA448/DsAzy2vTpk249NJLZX32798f3377Lbp37w673S4tS1ZxFgJjDM8995y0HFanTp2wcePGKjMVLBYLXnrpJRQWFuKdd96pNlYtKSwsxGuvvSa9btKkCS688MJqzwnmO9K+fXvpudvtRk5ODpo1aya9FxcXh5kzZ0q5cDqdeO211/Daa6+hSZMmuPTSS3HJJZegZ8+e6N27d5V+BKj7/Q0pGEGEKAcOHGAApMeBAwd4SyKIaklPT/fqs+WPxgBzJCczBvh+3HsvY2636nrMAOsNsPkA+7M6/9U9nnhCVV0EQRAEQRAEQRDllJWVsYMHD3o9ysrKfLb39f8ueng/0tPTdcthv379JL8zZsyocjwvL4/9+OOP7LbbbvPS+Oijj/q0OXjwYKnd+vXr/dLRoUMHBoCZTCaWk5NTrc7Y2Fhms9mqtffZZ59J7a1Wq2z75cuXS21GjRola2fz5s1ecX/yySfV+t24caPUtnv37rJtKn8PFi5cWK3NgwcPSm3r168v2+bll1+W2kyYMKFae+WMGzfOZ1y5ubnMYrFIx7/88stqbZ0/f55FR0dL7fv16+eXhuqomJ8WLVr4bJeRkcGuuOIKr890/vz5VdpVzmUwrFu3zsvGvn37ZNvNnj2bmc3mar/nYWFhLDU1la1cuZI5nc6g9DAWeB32Be97ucb8GT1Rq0hOTlY0nVNknE4nMjIy4Kywt4NI8NKnh1+tfISHh3v12QQA3wCIyMjwfdLQocBbb3ntx6FUn9PpRFZWFszh4dgO4EkA7QBcCGAKgFI/p1MCAJ5/Hli7NigdRGCIXhOUInp8Rq55WvlRy6YaNU/kvkXIY/S8iR4fT32heq0nSs1TUwuhL0bOm5Fjq60wxlBaWhrwL8pnzZoFk8nk9YiPj8cVV1yB1atXAwDq16+PefPm4cUXX5S14XQ68e233wLw/Dr+f//7n19a+vfvL2mvvMRRZQYOHFjj/g833HADGjZsCMCzqfv27durbe8PVqsVN910U7VtunXrJj3PqO5eQgX+7//+r9rjHTp0kJZfOnfunLTsUkUq7kcyYsQIv/xWXKps27ZtXsd++uknlP67P2qjRo0wYMCAam3VrVsXAwcO9MtvMJw/fx4PPvig1+Oee+5Bamoq2rZtix9//FFqe9lll+GRRx6p0WYw35HKMzjkcgEA06ZNw++//44777wT0dHRsm1cLhfS0tIwatQodOnSBfv37wcQ/Pc31KGBECLkGT16tOw0LyNQWFiIlStXorC6PSM4wkufHn618hETEyP12SgAXwK4qLoTBgwA3nuvytJTSvUVFhbim2++qfLdOQTgOQCnN2wATp4E3ngDuOYaoKbBxjFjgH37gtJC+I/oNUEposdn5JqnlR+1bKpR80TuW4Q8Rs+b6PHx1Beq13qi1Dw1tRD6YuS8GTm22orL5cK5c+fgcrlUtRsWFob58+fjySef9Nnm999/R1FREQDPxtoPP/wwxo8fjwceeKDKjeyKj127dkk2Ki6/JUdNe4iUa+3Ro4f0es+ePTWeUxPt27evst9GZerXry89z8/Pr9FmfHy819JKcphMJtStsP+nnN2KAz1vv/12tZ91+eODDz6Qzqn8mZdv0g4APXv29GvZe3/yEiwFBQV44403vB5Lly7Fli1bUFZWJrUbMWIEvvjiC699Y3wRzHek8sBHXFycz7adOnXCu+++i7Nnz2LTpk2YNm0arr/+ejRu3LhK20OHDqFPnz74/fffNfv+Co+u808IQkV4T6ciiECpODU1EmBfo4Ylp/r2ZayoSBc9lR9Vpknn5jL23nuMJST41puczJjM9GKCIAiCIAiCIIhgoaWxjLU0Vo8ePdgDDzwgPUaNGsX69+/vtUQSADZlyhSf9j7//HPF8c+ZM6danZ999plfsY0fP146R24pr0CXxrriiiv88lsxFjkqfg+aN2/ul80WLVr47B8FBQWKP/OrrrrKy+YjjzwiHbv//vv90rh+/XrpHLWXxpJ7REZGskaNGrHevXuzxx9/3OcyVeWosTRWZU2ZmZlB2Tl48CCbPn06q1u3rpe9rl27MneAS68bZWksY64nRBAEITBmAO8BuK66RhddBHzxBVBpkzBuJCQAd9wBNGgA3HADIDd9MiPDs3n6V1/VPIOEIAiCIAiCIAiCqHXccMMNmDlzZpX3s7Ky8Nhjj0nLY82dOxcXXXQRhg4dWqVtXl6eYh01LdNWecNuX1RcksjXEkaBYKqwJLZaqGFTi8+84gyxYD5vtWnRooXfS41pyeHDh6XnYWFhaNCgQVB2OnbsiFmzZmH8+PG45ppr8McffwDwzKhKS0uTloqrTdDSWETIM3ny5BrXbQxV8vLyMG/ePFX+4GgBL316+NXKR3x8PGZMnozrquuzbdsC33zjGXzQSF9eXh4++OCDwL87AwYAc+f6Pv7dd8BTTwWliagZ0WuCUkSPz8g1Tys/atlUo+aJ3LcIeYyeN9Hj46kvVK/1RKl5amoh9MXIedMztqSkJKSnpwf0OHr0KH755RccPXo04HOVPvTwLecjKSlJ0efsdDpx+vRpVfZ9cTqdYIxhxYoVuO66/34yeN999yE3N7dK+4o3w7t27YqysjKcOnUKZWVlYIz59ZAbjKlIcXGxX9rLl+gCgNjYWL/OCUUqD0CcP3/e78+6/JGWluZlo+LgRzCfdygQzHfkl19+kZ5369bNryW4qqNJkyZYsmSJ13tbtmxR7fsbStBPdomQZ/369X4XzFAjKioKgwcP9ntkXG946dPDryY+GMOU4mIMXL8eUb76bFIS8O23gMx6jmrqi4qKwmWXXVbjxZ8sTz4J7N4NfPSR/PEFC4Du3YHbbgtKG+Eb0WuCUkSPz8g1Tys/atlUo+aJ3LcIeYyeN9Hj46kvVK/1RKl5amoh9MXIedMztvDwcCQnJwd0jtvtxgUXXACLxeLXPgVqoodvLXyYzWYkJCSoYq/cVnh4ON555x106NABRUVFOH/+PObOnYsXXnjBq33F/Q+ysrJU1VLOiRMn/GpXcd+LYH+5HwokJCTAYrFIm5tnZWV57SkSDI0aNZKeB/N5hwKB9svTp0/jp59+kl5fccUVqujo3bs34uPjpcHorKws1b8zoUDtipYwJIcPH/batMhIREREoEOHDjVulMULXvr08KuFj/i33sITZWXocPgwIuT6bIMGnkGQFi001xcREYHmzZsH990xmYBly4AuXXy3uftuYO/eoLQRvhG9JihF9PiMXPO08qOWTTVqnsh9i5DH6HkTPT6e+kL1Wk+UmqemFkJfjJw30WMzm82oU6cOl5uCevjWwoeaNivaSkpKwoQJE6Rjr7/+OrKysrzap6SkSL+SP3v2LP7++2/V49uxY0eNbVwul9cG7N27d1fNv4j07NlTel7xZn2wVPy8du3aBbfbXeM5FTdsDwUC7Zevvfaa132a4cOHq6al4swSq9XKrebxpHZFSxgSo/5iBvBMDRR5xgsvfXr4Vd3HW2+h7gsvoDgqCusHD0ZxpT7rjokBvv4a6NBBF33FxcXYtm1b8N+dmBhg3TrA1y9ASkqAm28Gzp0Lzj4hi+g1QSmix2fkmqeVH7VsqlHzRO5bhDxGz5vo8fHUF5LXeiraVMOO6P2LkMfIeRM9NpfLhdzcXLhcLkP61sKHmjYr23r88celZabsdjuef/55r/Z16tTBlVdeKb1+/fXXVY/vs88+Q35+frVtvv76a5w9exaA58Zy7969VfMvIjfeeKP0/K233gKT2zs0AC699FLp5vyZM2ewadOmatvn5eXhs88+U+RTbwLplz///LPX7Kdrr70WPXr0UEXHqVOnkJ2dLb1OSkriVvN4QgMhBEEQWrN6NfDAAz4PlwA4s2QJcPHF/tmz2YDPPgPS04GcHFUkBkXr1p7YfP2CICMDGDYMqGVrThIEQRAEQRAEQRDBU7duXTz00EPS68WLF3vdxAWAJ598Unr+xhtvVNl/ojoqzzCRIz8/H1OmTPF5vKioCE888YT0esiQIYbdv7accePGIeHfvUx3796NWbNm+X1uTk5OlZvuCQkJuOmmm6TXTzzxBEpKSnzaePLJJ702WDcSX3/9NW666SZpz47o6OgqS8KV8/nnn+Odd94JaIWPadOmeQ1cVdyLp1bBCCJEOXDgAAMgPQ4cOMBbEkFU5YsvGAsPZwyQfTgA9j+Apaen+2fvyBHGGjX6z4bFwthDDzF28mTA0tLT072+QxUfW7duZenp6X49zj35pM/4GMBsd9/t89ySkpKAdRMEQRAEQRAEUXsoKytjBw8e9HqUlZXxlkUEQL9+/aT/a86YMcOvc3JyclhMTIx03pNPPlmlzahRo6TjkZGRbO7cuaygoEDWXklJCVu3bh0bOHAg69GjR406IyMjJb+lpaVe7TIzM73a1qlThx09elTW5vLly6V2o0aNkm2zefNmqU2/fv18fygVqPj/dzkq/n+/RYsWftls0aKFdI6vexQV4wHARo4cyY4fPy7b1u12s23btrH77ruP1alTRzY3hw8fZhaLRbLXv39/lpmZ6dXGbrezxx9/3CsvgXxW1VExHn8/p+qomMuabruXlZWxtLQ0dssttzCz2SydYzab2fr1632e99ZbbzEArHnz5mzatGns0KFDPtseP36cjRgxwkvTwIEDA45LrTrM+14ubZZOhDwdOnTAsWPHeMvQhLKyMhw7dgytW7cWci1VXvr08KuKjx9/BIYM8ZoRURYRgWOtW6P1sWMIKyvDKABfAnjdX5tt2wIDB6Js5UrJTsRrrwGLF3v25Zg8GWjevEYzZWVlOHHiBCIiImR/RXD55Zf7qwgAsAbAMB/H4pcuxX1Ll2K1zDGr1YpBgwZh2bJlhl3iTk1ErwlKET0+I9c8rfyoZVOpHdH7FiGP0fMmenw89YXMtZ5GNtWwI3r/IuQxct5Ej83tdqO0tJTbZula+9bCh5o25WzVr18fDzzwAObPnw/AM+vjiSeeQL169aTzFi9ejNOnT2PTpk1wOByYMmUKnnnmGVx66aVo3rw5LBYLbDYbjh07hgMHDkgbfV/sx2oMzzzzDKZOnYr58+dj6dKlSE1NRd26dXH8+HGkpaXB4XBIbV9++WW0adNG0WcQKowePRp///035syZAwB499138f777yMlJQUdOnRATEwMCgsLkZmZib1790qbc8vhdrvRvHlzLFy4EA8++CAAYPPmzWjVqhVSU1PRokUL5ObmYvPmzTh37hwiIyPx7LPPYtKkSbrEqgbjx49HWFgYTCYTAM9SbzabDVlZWdi9e3eVGTDNmjXDihUrvJZ+88WJEycwZ84czJkzBw0bNkT37t3RqFEjREdHIy8vD4cOHcK+ffu8ZoK0a9cOixYt4lrzeFJ7IiUMC+0Rwg8jr5ev2Mfu3cBNNwF2u7fdCnuEPAjIDg5Ui8kELFqE4v/7P++9RhwO4K23gDZtgHfeqdGM4j1CKjEGwO/VHF8KIEXmfbvdjrVr12LMmDGq6DA6otcEpYgen5FrnlZ+RFkvX/S+Rchj9LyJHh/tEcLPJu0RUnsxct5Ej83tdsNms/m1WXMo+tbCh5o2fdl6/PHHER0dDQAoLCzESy+95HXcYrFg48aNmDp1KurUqQPA09c2b96MlStX4u2338aHH36I3377TRoEiYiIQK9evWrU1KNHD3z00UeIi4tDTk4OPv74YyxZskQadAE8P+x78803MXbsWMWfQSgxe/ZsrF27Fk2bNgXg2ePlt99+w/vvv4/Fixfj/fffx5YtW7wGQXr27FllELQ87+PGjcOrr74q7RficDiwadMmLFmyBB9//DHOnTuH+Ph4fPTRR7jkkkv0C1QFFi9ejDfffBNvvPEG3njjDSxduhSffPIJfvrpJ69BkKSkJMyYMQO///57jYMgXbt2rfI5ZGdn45tvvsF7772HRYsWYfXq1di7d6/XIMjtt9+Obdu2oUmTJlxrHk9MjCnc2YYgOPHHH3+gc+fO0usDBw6gU6dOHBURxL8cPgxcfnm1+3dMBTC3wuv09HQkJyf778PhAAYOBL75puqxffuArl1rNJGRkYGWLVv677MGWgL4FUA9H8czAFwCQG77dKvVitzcXFitVtX0EARBEARBEAQR+jidThw9etTrvbZt2yI8nBY5CRVSU1OxZcsWAMCMGTMwc+ZMv8+dNGkSFixYAACIj49HRkaGtE9FRbKzs/Huu+/iu+++w8GDB5GTk4OysjLExcWhRYsW6NKlC/r3748bbrgBDRs2rFHn5s2bkZqaiuPHj2PRokX48ssvceLECTgcDjRr1gwDBgzAgw8+iLZt21arf8WKFbjrrrsAAKNGjcKKFSuqtElLS0P//v0BAP369fNrv5PyGQYAZDctr/j//RYtWiAjI6NGm8nJyTh+/DgA/+5RlJaWYs2aNfjmm2+wa9cuZGdno7CwENHR0bjgggvQsWNHXH755bjhhhvQrl27Gv3/+eefeP311/H1118jMzMTFosFzZo1w4033ojx48ejefPmQX1W1VExP/5+TtVRUV9lTCYTYmJiEB8fj/j4eLRv3x4XX3wxevXqhX79+iEsLCwgX//88w82b96Mn376CX/88Qf+/vtv5ObmorS0FDExMahfvz4uvPBC9O7dG8OHD0erVq2CjkutOsz7Xi4NhBAhC+8vD0HIcuIE0LcvkJnps8kCAJUncgY8EAIARUXAddcBP/3033s33wx8+qlfp9vtdtStWxf2SrNWlHA1gK8B+Prz/T2A6wC4ZI4F9RkQBEEQBEEQBGFoaCCEIAiCL0YZCKGlsYiQZ+bMmbK/BjACNpsNs2bNgs1m4y1FFl769PAblI+zZ4Frrql2EGRxQgKKlPbZoiLYpkzBrAULYDtyxPvY9Ol+mbDZbJg/fz6GDBkSvA4ZvgMwuZrjVwF4XlWPtQvRa4JSRI/PyDVPKz9q2VRqR/S+Rchj9LyJHh9PfcJe6+lkUw07ovcvQh4j50302JxOJ06dOgVnhf0djeRbCx9q2lRqi2f+iOAxet5Ejk9kbVpCM0KIkKV8FDE5OVnahMloM0KcTicyMzORlJQk5K9deOnTw2/APmw2oH9/YO9en02KBgxA3e++wwVJScjMzPT6gxPobAhnYSEy33kHSS+/jPB/p65i4EBgwwb/zv83vnr16mHs2LHYsGGDqjNDPgBwWzXH7wDwfqX3aEZIzYheE5QienxGrnla+VHLplI7ovctQh6j5030+HjqE/JaT0ebatgRvX8R8hg5b0pi02NGCGMMDocDkZGRXksO6YEevrXwoaZNpbZ45o8IHqPnTeT4AtVmlBkhNBBChCy8vzwEIVFc7Fmiats2322uvRYZr76Klh06yB6WBgHsds/D3xkjpaXAypXAc88BH38MXHyxf+d98YXnvGnTgK5dYbfbkZWV5d+5fmAqLkaTW29F5OHDssdLAPQFsKfCezQQQhAEQRAEQRBEZWhpLIIgCL4YZSCElsYiQp7hw4cjOjqatwxNKCoqwpo1a1BUVMRbiiy89Onh128fDgcwZEj1gyC9e3v27bBYEB0d7bvPFhYCN94IXH+957k/+pxOYOxY4K+//B8EYQxFc+diTXg4ivr0AW65BdbDh5GcnKzao8WFFyJy40agnvzW6XUArAPQwD/FxL+IXhOUInp8Rq55WvlRy6ZSO6L3LUIeo+dN9Ph46hPqWo+DTTXsiN6/CHmMnDfRY3O5XDh//jxcLrndDEPftxY+1LSp1BbP/BHBY/S8iRyfyNq0hAZCiJDHZrPB7XbzlqEJZrMZCQkJMJvF/Kry0qeHX798uFzAyJHAV1/5btOlC/Dll8C/Ax9ut1u2z5ptNuDqq4Hvvwd27AAGD/bM9vBXX5iv7cll+OormPfuRYLNBrPbDaxbB3TrBgwaBBw65L+dmmjZEli7FvDxGbYA8CEA+h2X/4heE5QienxGrnla+VHLplI7ovctQh6j5030+HjqE+Zaj5NNNeyI3r8IeYycN9FjM5lMCAsL47J8jR6+tfChpk2ltnjmjwgeo+dN5PhE1qYltDQWEbLwnk5F1HIYA8aPB95+23eb1q09M0USEwEAGRkZaNmyZZVmiQCOt2+PyMobn998M/Dhh4CaU74Z88xQ+eUX+eO7d3sGRdRk4UJg4kSfh18G8ChoaSyCIAiCIAiCIKpCS2MRBEHwhZbGIghBSElJQWRkJG8ZmuBwOLB37144HA7eUmThpU8PvzX6mDKl+kGQpk2Bb7+VBkHKiYyM9OqzyQC2AVUHQQDPTI177wVkZjwF/Rls2gT88gsckZHYm5ICR8Xvzk03qT8IAgCPPQaMGOHz8AR4Nk8nakb0mqAU0eMzcs3Tyo9aNpXaEb1vEfIYPW+ix8dTnxDXehxtqmFH9P5FyGPkvIkem9vtRnFxMZfVJvTwrYUPNW0qtcUzf0TwGD1vIscnsjYtoYEQIuRJTU2F1WrlLUMT7HY70tLSYLfbeUuRhZc+PfxW6+P554F583yfXK+eZ8BBZvaH1Wr16rMuABHVCdm4Efjnn8D0VceaNZ7zrVakpabCXvG7M316YLb8xWQCliwBUlJ8NnkbQOT+/dr4NxCi1wSliB6fkWueVn7UsqnUjuh9i5DH6HkTPT6e+rhf63G2qYYd0fsXIY+R8yZ6bIwxFBQUgMeiKXr41sKHmjaV2uKZPyJ4jJ43keMTWZuW0NJYRMjCezoVwR+73Y6srCxdfcZ88AEaTJ3q87g7OhpZ778Px0UXVTmWmZmJyy+/vMr77QAcrF8fYefOeR9o3twzq6RdO6WyKwh0A+vXA7NnA/v2/ff+DTd49jLRkowMuLp3R1huruxhZ9OmCN+zB2jUSFsdBEEQBEEQBEGEDLQ0FkEQBF+MsjQW/dUgQh6r1YrSajaVDmUYYygtLYXFYhFyAyNe+oqKinDvvfdi3bp1mv2iyGQywWKxoLS0VBohHwpgdTXn2AFcX1SEtMGDA7L7J4AzK1ei6YgRQH6+p2H79p5BkGbNZO0E/dmbzcAtt4ANHozS9ethmTsXpt9+A6ZN89/Gzz8DxcXAVVd5Znv4S3Iysl97DQ3vuANyW7uHnzoF/N//Ad99B0RUO0+m1iJ6TVCK6PHx0qeXXy38qGVTqR3R+xYhj9HzJnp8PPXp4dvINU9NLYS+GDlvosfGGANjDCaTiUvN09q3Fj7UtKnUFs/8EcFj9LyJHJ/I2rSElsYiQp7JkycjPj6etwxNyMvLw/z585GXl8dbiiy89I0fPx7t27fXdEm0+Ph4r751HYBV8F00nQCGAUgL0G45jk6dgC++AOrUAbp3B7Zu9TkIAij/7PPy8zF//37kffutZ2CjVy//TmTMs+fHNdcAo0YBAa7xa+/bF763TQfw44/A448HZLM2IXpNUIro8fHSp5dfLfyoZVNxzRO8bxHyGD1vosfHU58evo1c89TUQuiLkfMmemwulwtZWVlwuVyG9K2FDzVtKrXFM39E8Bg9byLHJ7I2LaGlsYiQpXw6VWJiIrKzs7Fv3z7DLY3lcrmQnZ2Nhg0bIixM7jf0fOGhz263o379+oiLi0N2drZmRTssLAwNGzZEdnY2erlc2AQgqpr2IwG8F6DditrT09ORnJwMbNsGdOkC1DC4p/SzD/r8b74BBgz47/VddwHLlvl9ekZGBlq2bIn3UMMG6cuXA6NH+6+rliB6TVCK6PHx0qeXXy38qGWTW80juGL0vIkeH099evg2cs1TUwuhL0bOm5LY9FgaizEGp9OJ8PBwLjNCtPathQ81bSq1xTN/RPAYPW8ixxeoNqMsjUUDIUTIwvvLQ/Ch/Ea6XlwEzyyPhGraPATgdQU+rFYrcnNzNZ3hogqMAX37Atu3e7//+efAjTf6ZaI8f3UAbAPQ3VdDi8UzK6ZHDwWCCYIgCIIgCIIIdWiPEIIgCL4YZSCElsYiQp7Ro0cjJiaGtwxNKCwsxIoVK1BYWMhbiiy89MXExGie95iYGNw3ejTWx8RUOwgyHYENgshpHzRoUMCDIEo/+6DO/+GHqoMgAHDvvUDljd5roATAzQCyfTUoLQVuuQU4cyYgu0ZH9JqgFNHj46VPL79a+FHLJpeaR3DH6HkTPT6e+vTwbeSap6YWQl+MnDfRY3O5XMjJyeG2NJbWvrXwoaZNpbZ45o8IHqPnTeT4RNamJTQQEqI89thj0oY2JpPJs6ROAHz//fcYOXIk2rVrh+joaNSrVw9du3bFpEmTcPjw4aA0HTp0CJMmTULXrl1Rr149REdHo127dhg1ahS+//77oGz6Q0ZGBpxOp2b2eRIeHo7k5GRhf+nCS5/T6dQ8742cTlybkYHEany8DGBONTZMAF4E8EiF9ypqt1qtGDZsGJYFsLRUOUo/+6DOf+op+fezsoAHHwxYwwl4NqD3+QlnZgJDhwJlZQHbNiqi1wSliB4fL316+dXCj1o2udQ8gjtGz5vo8fHUp4dvI9c8NbUQ+mLkvIkem8lk4raRux6+tfChpk2ltnjmjwgeo+dN5PhE1qYltDRWCLJz50707t0bbrdbeq9FixbIyMio8dz8/HyMHTsWa9eu9dkmIiICs2bNwlO+bnrK8Oyzz2LWrFkoq+aG5W233YbFixcjNjbWb7vVwXs6FcGH6pbG2rp1K5KSkhT7MJ87hyZDhyLi7799tikYMgTn5s8HzD7Gk51O1H/qKcR+/DEAIOeFF1A4ZIhXk8TERPGXw6rI228D48ZVfb9uXeCNN4DbbqvRhFz+HoFnUMknTz4JzJsXiFKCIAiCIAiCIAwCLY1FEATBF1oai+BCWVkZ7rnnHq9BkEDOvfnmm70GQTp37oyRI0di6NChaNKkidRuypQpmD17tl92p0+fjqeffloaBGnSpAmGDh2KkSNHenXm1atXY8iQIar/ir9Xr16wWCyq2hSF0tJS7NixA6WlpbylyMJLn8Vikc17UlISkpOTlT0aN0bzcePg/ucf7OjVC6VyfevmmxG7ejWSW7WSt9GkCZKfeEIaBAGABk8+ieQ9e9CkSRNkZWWhSZMmigZBlH72QZ0/diwwcaL3e//7H3DggF+DIL54BTVsNL9woccHIXxNUIro8fHSp5dfLfyoZZNLzSO4Y/S8iR4fT316+DZyzVNTC6EvRs6b6LG53W4UFhYGda8lFHxr4UNNm0pt8cwfETxGz5vI8YmsTUtoICTEmD9/Pvbv3w8AGDFiREDnzpkzBz/88AMAz+bMq1evxv79+7Fy5UqsXbsWGRkZmDRpktR+5syZ2LJlS7U2v//+e8yZ89/iQJMmTUJGRgbWrl2LlStX4sCBA/jggw+kG76bNm3C3LlzA9JdEykpKYiMjFTVpig4HA7s3bsXDoeDtxRZeOmLjIzULu/PPQf89hsckZHYm5ICR2UfV10FfPAB4GvUu7DQMziwbp33+243MHw4HN99p8pnpvSzD/r8OXOAjh2B2Fhg6VLPRulNmwaloSJjAZRW+FWAF04n8MADns3aazmi1wSliB4fL316+dXCj1o2udU8gitGz5vo8fHUp4dvI9c8NbUQ+mLkvIkeG2MMxcXF4LFoih6+tfChpk2ltnjmjwgeo+dN5PhE1qYltDRWCHH48GGkpKSgtLQUt99+O66++mrcddddAGpeGuvs2bNo1aoVioqKAACLFi3COLklbgAMHz5cmjXSu3dv/Pzzzz7t9uzZE7t27ZLOW716tWy7RYsW4b777gMAxMbG4u+//0aDBg2qD7gGeE+nIvhQ3dJY6enpAe+X48X580ByMlBQIH+8Z0/gu+88gwC+WLfOs8m3L+rWBdLTgfj44HXy5sABz2fQokXAp1aXvxPbtqHZ4MFATo78ye++C9x5Z8A+CYIgCIIgCIIIXWhpLIIgCL7Q0liErjDGcM8996C0tBR169bFiy++GND5K1eulAZB2rVrh7Fjx/ps+/zzz8P8774H27dvx549e2Tb7dq1SxoEMZvNeP75533aHDduHNq2bQsAKCgowHvvVbsQTkAkJCRIeo2G2+2GzWYTdqoaL31ms1mbvL/8sjQI4jabYUtIgLvcR6dOwFdfVT8IAgA33wy88IL8sTp14F61CjbGFH9mSj97Red37hzUIEhNuC64AHj9dd8NJk4EbDbV/YYSotcEpYgeHy99evnVwo9aNrnWPIIbRs+b6PHx1KeHbyPXPDW1EPpi5LyJHhtjDE6nk9uMEK19a+FDTZtKbfHMHxE8Rs+byPGJrE1LjHn32IC89dZb+OmnnwAAL7zwAho1ahTQ+evXr5eejx49GiaTyWfb5s2b48orr5Rer6u8xI+MzauvvhrNmjXzadNkMmHUqFE12gyGCRMmIC4uTjV7IpGfn49XXnkF+fn5vKXIwktfXFyc+nnPzQVeeUV6mR8Xh1cmTEB+XBxQrx6waZPnX3+YOBGYMqWyaGDTJuT36aPKZ6b0sxe2bw0dClx9tfyxs2eBp5/WV49gCJs3lRA9Pl769PKrhR+1bBq25hHVYvS8iR4fT316+DZyzVNTC6EvRs6b6LG5XC6cPXsWLpfLkL618KGmTaW2eOaPCB6j503k+ETWpiW0NFYIcPLkSXTq1AkFBQW4/PLLsWXLFphMJqxYscKvpbHsdjuio6OlX178/PPP6N27d7U+586di6lTpwIA+vbti23btlVp06dPH2zfvl1q/9RTT1Vr8+eff0bfvn0BAGFhYSgqKlK0yXn5dKqEhATk5+fj999/N9zSWG63G/n5+YiLixNy1gsPfRkZGWjdujXi4uKQn5/v9YsiRUtjzZwJzJolvXSbzciPi0Ncfj7Ms2cD/34f/IYx4MEHgTffBBo2BL75BujWTbXPTKkdXn3Lr6XNjhwBunQBysqqNjKZgF27gIsv1laooIheE5Qieny89OnlVws/tb3mEcowet5Ej4+nPj18G7nmqamF0Bcj501JbHosjcUYg8vlQlhYWLU/HNUCPXxr4UNNm0pt8cwfETxGz5vI8QWqjZbGInTj/vvvR0FBASIjI7F48eKAvzxHjhyRbhabTCZ069atxnO6d+8uPT906JBsm4rvV2zvi4p+XS4X/vzzzxrP8QeRp9cqRbMloFSClz7Vp1Xn5XmWxaqA2e1Ggs0Gc3w88NBDgds0mYDXXgMeewzYuhX4t/+r9ZkptSN032rfHpg0Sf4YY8B99wG17FcL5QidNxUQPT5e+vTyq4UfqnmEEoyeN9Hj46lPD99GrnlqaiH0xch5Ez02k8mE8PBwLjcr9fCthQ81bSq1xTN/RPAYPW8ixyeyNi0R8y8QIbFmzRp88cUXAIAnn3wSHTt2DNjGkSNHpOeNGjWC1Wqt8ZzmzZtLz8+fP4/s7Gyv42fPnoWtwlr9LfzYL6BOnTpo2LCh9Prw4cM1nuMP48ePR2xN+zaEKAUFBVi0aBEKfG3ezRle+mJjY9XN+6uvegZDKlAQG4tF48ejYMIEz7JWwWA2AwsXem7sl9tV6TNTake33G3fHtygxdSpvvch2bULeOcdZbpCFNFrglJEj4+XPr38auGn1tU8QlWMnjfR4+OpTw/fRq55amoh9MXIeRM9Nloai69NWhqrdhJI3jIyMmAymWAymYJfCSQIZs6cKfmdOXNmQOeK3C9F1qYlNBAiMOfOncPDDz8MwLPB+dRAl+apYKecxo0b+3VOYmKi1+vz58/7tBms3co2g2Xv3r1wOByq2BKNyMhIpKSkIDIykrcUWXjpczgc6uU9Px946aUqb0c6HEg5fBiR48Yp91HRrkqfmVI7mueusBB44AGgT58qs238IirKM6PGF0895dkzpJYhek1Qiujx8dKnl18t/NSamkdogtHzJnp8PPXp4dvINU9NLYS+GDlvosdmMpkQFRXFbUaI1r618BGIzdTUVOlmstwjIiICrVu3Rps2bTB48GAsWbIkoEEznvnjwYoVK6p8hjfffHNANv74448qNvQcYACMnzeR4xNZm5bQQIjAPProo9JMjEWLFgW9n0ZhYaH0vE6dOn6dU7ldRRtyr4OxW9lGsOzduxcREREAPCOaNpsN5Vvf5OfnSzfLS0pKUFRUBMCztl3FGS15eXko+3c/guLiYhQXFwMAysrKkFdhpoDNZoPT6QQAFBUVoaSkBIDnxnz5pm+MMdhsNmlUtbCwEHa7HQBQWloq/TGvvLxTQUEBSktLAXj2dSksLITFYkGPHj1QUlIiZEwWiwXdunWT9PgTk9I8OZ1OlJaW4vfff0dYWBgAICIiAvHx8cHF9OqrQG4uCmNiYP93tlSpxQJHZCR69euHiIYNvWNatQqlBw8GHVNYWBg6dOggfZ+DzZPb7UavXr1gMpmC6nslJSXo2bMnLBaL+nn67juUXXwx8OabKI6KQvEzzwAHD6KsrMzre5+QkCCtJxkdHS1pkPJ0001gN90EW0ICXP/mWspTbi5KJ08O6PukKCZBagQA9OrVC4wxw8RUMU9lZWXo1asXwsPDhYyJMYZevXp55UOPvmc2m9GrVy+4XC5N8+RwONCrVy9ERESoFpPFYsEll1wi6Qk2T06nExdddBEsFktQfS8iIgIdOnSQrheMWiOMFpPD4UC3bt1gsVgME1PFPDHG0LlzZ1gsFiFjKisrQ0pKCiwWi+59T4+6BwCdOnWCxWJRLSan04levXohLCxMUZ4sFgu6dOni9V2gukd1L1RjKs+TxWJBSkqKpCeQmCpqZYxJ57hcLkmP2+2WYig/r2K7cj1ut1s6hzEmtTObzV73K3y189eeP+0q+oqKioLZbFY1portzGYzoqKipPfViAnw3OMxm81VYnI6nVI7l8slne+L8v/fZGRkYMOGDRg7dizatm2Lzz77zC+tZrNZ2htXqzxVjqm6PKWnp1cZXFC7T1Vm48aNyMnJ8TumlStX+syHmn2vunaBfu8qokae/NFa8fN2u926fu+0isnpdMJkMiEmJsYrxppiKn9esV2wf594QQMhgrJp0ya89957AIBRo0ahf//+QduqeLHv768vKg+6VLyBUdlmsHYr2wyW4cOHY+jQoQCA7OxsvPLKK9IF8bJly3Dw35vWW7Zsweeffw4AyMzMxCuvvCLZeOutt3Ds2DEAns9+06ZNAIBjx47hrbfektq98soryMzMBAB8/vnn2LJlCwDg4MGDWLZsGQDPReArr7wiDWJ9/PHH2LFjBwBgz549eP/99wF4isMrr7wiXVi+//772LNnDwBgx44d+Pjjj2G32/HVV18JG5PdbsdHH32EVatW+R2T0jydOnUKVqsVI0eOxPXXXw8AaN26Ne67777gYvr3e/bxkCHY8e8Nzj3dumHVqFFIu/RSSWt+fj7w+ut4/6efsGfiRCAzM6iY/v77b7zyyivSdyjYPH3//fdIS0vDvn37gu57mzZtgt1uVy9PdjswcSLe+v57HPt37d9N116LTampwKhROHbkCD777DMppgkTJiApKQkAcNNNN2Hfvn1V8/TCC3hlwgRk/7usnleeDh3C+2+/7RWTln1PhBqxc+dOpKWlYdu2bYaJqWKePvzwQ6SlpUlaRYtp27ZtSEtLw86dOwOq5UrzdOjQIaSlpeGrr77SNE+rVq1CWlqad91TGJPdbscXX3yhOE8bNmzA+++/D7vdHlTfK9da3s6oNcJoMa1atQofffQR7Ha7YWKqmKdt27bhnXfegd1uFzKmDz/8EGvWrIHdbte97+lR93bu3InFixfDbrerFtOGDRuQlpYmXe8Fmye73Y7ly5fj+++/DygmqnuhH5OR657dbseaNWvw4YcfBhzT4sWLJa0Vb8zl5+dLfkpLS72W9D579qx0My4vL08aqLHb7dLNYsYYzp49K91kzMnJkQafiouLpZUwKi8hc+7cOWlQqaioCLm5uZK2s2fPSvpycnKk//cVFBRIAzoOhwNnK8xuz87OlgaP1IwJAHJzc6Uf0uXm5qoaU35+Ps6dOwe32y0bU3lu8/PzvW5ip6Sk4IEHHsADDzyA0aNHY/z48Rg/fjxuvvlmdOjQQWp35swZ3HLLLfj8889lY6qYp/LPTus8VYzJnzwBkG4y+5OnijHVlKfKOBwOrFmzxq+Y3G639J2tSLlWNftedTG53W5kZ2dL7arLU8VVZdxut6p5qi6mcm3lxwLJk9vtxvnz57n0vZry5HA4UFBQ4Hffy83NlfpHxTwF+/eJG4wQjsLCQpacnMwAsPr167Ps7GzZdsuXL2cAGADWokULn/aef/55qd2ll17ql4bi4mLpHADs119/9Tq+c+dOr+MlJSV+2e3Zs6d0zoIFC/w6xxcHDhxgANiYMWNYo0aN2IEDB5jT6WS5ubnM7XYzxhjLy8tjpaWlUkyFhYWMMcbKyspYbm6uZMtmszGHw8EYY6yoqIgVFRUxxhhzOBzMZrNJ7XJzc1lZWRljzJOn4uJixhhjpaWlLC8vjzHGmNvtZrm5uczpdDLGGCsoKJA+H7vdzvLz8xljjLlcLpabm8tcLhdjjLH8/Hxmt9sZY4yVlJSwgoICVlBQwJYtW8YyMzOFjKmgoIAtXbqUnT592u+YGGOK8nT06FEWExPDxowZwxo2bMgAsIiICBYfH8/S09MDi+nZZ5kzLIwxgBXExLASq5UxgNktFnZ62jS2fPlylpeXx3LPn2eu2bMZA1h+bCyzWyyMdezISjIzA44pNzeXLVmyRDov2DydPXuWLV++nJ07dy6ovpeZmcmWLVvGCgoK1MtTRgZjMTHMFh/PHBERjAGsKCqKFUVFMQYwx6xZbP/+/VINSEhIYOHh4QwAi46OZocPH5bP05w5PvOU36MHY2VluvQ9EWpETk4OW758OcvOzjZMTBXzlJWVxZYvX85sNpuQMWVnZ7Ply5eznJycgGq50jydP3+eLV++nJ05c0bTPJ0+ffq/uqdSTBX/jinJ05kzZ9g777zDCgoKgup7eXl5bMmSJdJ5Rq0RRovp9OnTbOnSpV7XHaEeU8U8ZWdnS/1axJiysrKkz1/vvqdH3cvJyZGuydSK6cyZM2z58uUsNzdXUZ4KCgrYO++8w86ePRtQTFT3Qj8mI9e98v87ZmVlBRxTTk4OO3jwIDt48CD7448/2B9//MHKysqY0+mU9LhcLimG8vPKbTudTkmPy+WSznG73VI7p9PJzp49K31evtr5a8+fduWUlpay7OxsKR61YqrYzul0suzsbCk+NWJyOBzs7NmzzOl0Vomp7N//o5Wfc8UVV0j/D5w2bVqVmCp+/tu2bWNJSUlS+wsuuIAVFxdXq7U8vtLSUs3yVDmm6vL0999/V7lfp2afqng/sE2bNiwiIoIBYD179vTL3jfffCOdf+GFF8pqVavvVdeuPO/lvqqz99dff3npVCNP/midNm2aV9/V83unVUxlZWWsrKxM0uZPTHa7nf3xxx/s4MGD7MCBA2z//v1SHQ7k71P5vdzyx4EDB5ie0ECIgDzyyCNSh1ixYoXPdv4OhLz55ptSu65du/ql4dy5c14ds/wGZTkHDx70On7+/Hm/7Hbp0kU6Z9GiRX6d4wveXx6CD+np6V55r/goHwjxi4ICxurXZwyo+oiNZezcOU87t5uxRx+Vb3fxxYz9+x8D4l+WLJH/rADGIiLYie3bA8+f3c5Yu3a+7b74oq4hEgRBEARBEAShH2VlZdJASPmj4s0/Qnz69esn/b9vxowZNbbfXun/jZs2bdJepIpUvG9R3f26YKl4P/DSSy9lgwYN8nn/To4RI0ZI7efNm6epVrXQ+jP1xYwZMwLqu0ZFrTrM+14uLY0lGLt378Zr/24Q3L9/f4waNUqxzfr160vPz5w549c5WVlZXq/r1avn02awdivbDJbExERprwij4XK5kJWVVWUtRFHgpS8sLEx53t98E/h3yl8VHn4Yrvh4T2wvvii7mToA4LffgIEDgX/XufUHtT4zpXY0y93ddwP/LlnmRbNmwFdfwZWYGLhNiwV44w3fx6dPB/75J3C7IYjoNUEposfHS59efrXwY/iaR2iK0fMmenw89enh28g1T00thL4YOW+ix8YYQ1lZWY17WYSqby18qGmzsq1evXqhZcuW0vHypXb00BKKVLx3+O6771bbtqCgAOvXrwcAXHTRRbjooou0lFYtRs+byPGJrE1LaCBEMH7//XdpzbUTJ06gV69ePh9z5syRzjt9+rTXsS+//FI61r59e+n52bNnq+zvIceJEyek5/Xq1UPDf9fnL6dRo0ZISEiQXh8/frxGm+XrH5dTce1HJYwfPx6xsbGq2BKNgoICLF68WFrXTzR46YuNjVWW96IiYMEC+WMxMcCjj/4X27BhwCWX+LY1YADw7yaU/qDWZ6bUjma5M5mAd94B6tb977277gL27weuuip4u1dfDQwbJn+ssBB47LHgbYcQotcEpYgeHy99evnVwo/hax6hKUbPm+jx8dSnh28j1zw1tRD6YuS8iR6by+VCdnY2t8FfrX1r4UNNm3K2mjRpIj2vuE9DdednZGRgzpw5uPzyy9G0aVNYLBbUq1cP3bp1w8SJE/Hnn3/6paesrAyrVq3CLbfcglatWiEmJgbh4eGIjY1FmzZtcN1112H69OnYuXOn13krVqyAyWTyGsQ5fvy4tHF65Yda/O9//5N+sLxq1apqb25//PHH0j4jI0eODMrfH3/8gUmTJqFbt25o0KABLBYLmjZtitTUVMyfP1/aZ6ImyvOWmZmJqVOnomvXroiLi0NcXBw6deqERx99FEeOHAlKIwCcPHlSlf4QLDzrSk2IrE1TdJ1/QtRIxeltSh7Lly+XbJaUlDCz2Swd2759e406nn32Wal93759Zdv07t1bavPcc8/VaPOnn36S2oeFhUnruQZL+XQqq9XKTCaTIZfGcrvdrKSkRFprTzR46EtPT2cmk0nKe8V+7/fSWC+84HuZpcmTGWOVYsvOZuzCC73bmUyMBbG8m1qfmVI7mufu/fcZS0xk7PPPvd6ubmmzrVu3svT0dJ+PEzt2MFdMjM/cnX733Srn+Lt/Uaggek1Qiujx8dKnl18t/NSamkdogtHzJnp8PPXp4dvINU9NLYS+GDlvSmLTY2kst9vNXC4Xt5qntW8tfARis6alseRstWrVSjpn6dKl1dp3Op3s6aefZlartdp7ZeHh4WzKlCnVaj5y5Ajr2LGj3/ffjh49Kp0b6D29YKm8NBZjjN1///3Sez/88IPPc1NTU6X7cllZWeyrr77ye8mpsrIy9tBDD7GwsLBq40pISKh2qf9y3G43+/jjj1lCQoJPWxaLhS1ZsiSgpbFcLhebNm2aKv1BydJYPOtKTQSqzShLY4VXO0pCGAKr1YpevXrh559/BgCkpaWhV69e1Z6zZcsW6fmVV14p26Z///7Yvn27ZHPy5Ml+2+zTpw8sFotf+mvCnxkuoYrJZILVauUtwye89DHGgs97cTHwwgvyx6KjgccfB1AptgYNgE2bgMsuAzIygPBw4L33gOHDA3av1mem1I7mubvtNuDGG4G4OL9Pufzyy2tsMwHASz6O5Y8ciS4AHBXes1qtGDRoEJYtW4aoqCi/tYiK6DVBKaLHx0ufXn618FNrah6hCUbPm+jx8dSnh28j1zw1tRD6YuS8iR6b2r/QF823Fj7UtFnZ1q+//oq///5bel3d/xVdLheGDRuGTz75RHrvggsuQM+ePdGwYUMUFhbil19+wbFjx+B0OjF37lxkZ2fj7bffrmKroKAAV199NU6ePAkAMJvN6NatGzp27IiYmBgUFxfjn3/+wb59+5CTk1Pl/I4dO+KBBx5AQUGBtERVbGxs0DMvAmHkyJF48803AXiWx+rfv3+VNsePH5fuzV177bVo3Lix3/bdbjduvfVWfPbZZ9J79erVQ2pqKurVq4eTJ09i8+bNcDgcsNlsGD16NGw2Gx555BGfNjdu3Ijhw4fD6XQC8Hzeffv2Rbt27VBYWIgff/wRp0+fxr333otXX33VL51q9gel8KwrNSGyNk3RddiFUBV/N0tnjLHnn39eatu+fftq2544ccJrdPe3336Tbbdz506vGR4nT56s1m67du2k9gsXLqy2rT+UjyJOmDCBxcXFGXJGSF5eHnvppZdYnqAbcvPQl56ezuLi4qS8o8JIsl8zQhYu9D0b5IknpGaysf31F2OtWjH25ZdB61frM1Nqh1ffqm5GiD+PMIDt9ZU/gE3xcd6wYcN0jVMrRK8JShE9Pl769PKrhZ/aXvMIZRg9b6LHx1OfHr6NXPPU1ELoi5HzpiS2gH+JXFbGWHp6QA/nX3+xszt3MudffwV8rtKHHr5lfSicVeN0OllWVhZzOp01tq1pRkhFWzt37mTJyclS+5tvvrla29OmTZPaJiYmsk8++UT2V+4ffvghi4+Pl9quXbu2SpuXX35ZOn7hhRf63Hjc7XaznTt3svvuu4+dOHGiynG9N0svp3379gwAi42NZUVFRVXOmzNnjnTe6tWrGWPM7xkh8+fP9/o/9uTJk1lpaalXm9OnT7Nrr73Wa8bFjh07ZO3l5OSwRo0aSW27dOnCDh486NXG5XKx+fPnM5PJxCIjI/3SqWZ/YEzZjJBAviN6E6g2o8wIoYGQECaQgZAzZ86w6Ohoqf2SJUt8tr3tttukdr17967Wbo8ePaS2t99+u892ixcvltrFxsay7Ozsau36Q/mXJyUlhUVGRhpyIKS0tJTt2bOnyh8XUeChLz09nUVGRkp5D2ggpKiIscaN5W+iR0Uxdvas1NRnbApjVeszU2qHV99SOhACgPWpZiCkGGDJMudYrVZDLJMlek1Qiujx8dKnl18t/NT2mkcow+h5Ez0+nvr08G3kmqemFkJfjJw3JbEFfAMuPd33j9/o8d/D36WlfeByuVhRURFzuVw1tq04ENKjRw/2wAMPeD3Gjx/Phg4dyjp37uz1/7ibb75Z9ob+f6lOl37IW69ePfbnn39Wq+OHH36QbHfs2LHKDfJbb71VOv7tt9/690H40MVjIKTiMverVq2qcl75D5Tj4+Ol/x/7MxCSl5fHYmJipHYTJ070qc1ut3vdK+zfv79suylTpkhtGjduzM6cOePT5jPPPOPVL3zprNwf/vrrL582Gau5PzCmbCAkkO+I3gSqjQZCCO4EMhDCmPeoaJ06daqMdjocDvbkk096dci0tLRqbX733Xde7Z988knmcDi82qxdu5bVqVNHajNr1qyAY5WD95eH4EN1N9JrHAh5+WXfF4HV/CEn1KOkpKTGdTr9eSyt5oL+s2D7B0EQBEEQBEEQwkEDIWIOhARCxYEQfx5NmjRh69atq9HuhAkTpHNefvllv7Rcd9110jmVV0C55pprpGN79+4NJlTGGL+BkOPHj0t7qV577bVe52zfvl0655577pHe92cg5K233pLaNG7cmBUXF1er75dffvHKZ+WZNW63myUmJkrH33jjjWrtORwO1qJFixp1qt0fGFM2EGIkjDIQYgZRa5g2bZq030dJSQmGDRuGrl27YvTo0Rg+fDhatGiB+fPnS+1nzZqFfv36VWvzqquuwtNPPy29nj9/PpKTkzF8+HCMHj0aXbp0wbBhw1BSUgIAuOaaazBlyhRV4xowYADq1Kmjqk1RKCkpwddffy19fqLBS1+dOnUCz7vdDlTo35UMAhMner2lVWxq2VVqh1fuyvfsUMqTAM77OHbTvw8jInpNUIro8fHSp5dfLfzU9ppHKMPoeRM9Pp769PBt5JqnphZCX4ycNyPHVltxu93Iy8uD2+1W3fbp06dx66234s4770Rubq7Pdhs3bpSe33jjjX5pqbgP7rZt27yONWvWTHq+aNGiQCQLQfPmzZGamgoA+P7773H69Gnp2MqVK6Xnge5Z8sMPP0jPb7vtthrvxfTs2RNdunSRXm/evNnr+KFDh5CVlQUACA8Px/Aa9l+NiIjAiBEjatRZsT/40x6ovj8oRcvviFJE1qYltFl6LSIiIgKffvopxo4diw8//BAAsH//fuzfv79Ku5kzZ/o9YDF79mxYLBbMnj0bZWVlOHXqFNauXVul3fDhw7F48WKEh6vb7RISEmA2G3NMz+12w2azCVuYeOkzm82B533JEqDCRYAX990HVNokTKvY1LKr1A7PvrVs2TIAwIYNG2C32zECQDaAbwOwkQPgKQCLfRx/FcB3AIz23yzRa4JSRI+Plz69/Grhh2oeoQSj5030+Hjq08O3kWuemloIfTFy3owcW22FMQaXywXGWEDnzZgxAzNnzvR6z+Vy4dSpU8jNzcWmTZvw/PPPIzs7G6tWrcKePXuwdetW1K1b1+ucc+fO4c8//wQAREZG4rnnnoPFYqlxA+iDBw9Kz8s3RS9n6NCh0v9XFy1ahN9++w2jRo3CddddhzZt2gQUJy9GjhyJzZs3w+VyYdWqVZg0aRIcDod0n65ly5a47LLLArK5Z88e6XmfPn38Oqdv377S/cbdu3f7tNe2bVvEx8fXaK93797VHq/cH2bNmuWXzur6g1KC/Y7ogcjaNEXX+SeEqgS6NFZFvv32W3bHHXew1q1bs6ioKBYfH886d+7MHn/88SqbE/nLwYMH2WOPPcY6d+7M4uPjWVRUFGvdujW74447FK2t6Ave06kIPgS1NFZJCWNNm8pPB7ZaGfvjD08bQldKjh9nhQMGMAawskaN2PE9e1h6err/j7/+YvaLLvI51fsZf/sHQRAEQRAEQRDCQktjGWtpLH+WF8rMzGQXXHCBdM7o0aOrtNm/f7/PewP+Pu6+++4qdh966CHZto0bN2a33nore+2119jJkyer1c9raSzGGCsoKGBRUVEM8GxAzhhjH3/8sdR++vTpXu39WRqr4qbiv/zyi18a582bJ51TecP7l156STp2ww03+GVv79691erUqj/Q0lgeaGksgjujR48GYwyMMWRkZAR07tVXX4333nsPf/31F4qKimCz2bB//34sWLAAHTt2DEpPx44dsXDhQuzfvx82mw1FRUX466+/8N577+Hqq68OyqY/JCcnqz7LRBScTicyMjLgdDp5S5GFl77w8PDA8r50KXDqlPyxceOA554D2rb1zBopKwOgXWxq2VVqh3vf+vRTWC+5BNFffw0ACD97Fs0XLEBycrL/j9atYVm6FPDxi59JANrrGJIecM+bxogeHy99evnVwg/VPEIJRs+b6PHx1KeHbyPXPDW1EPpi5LwZObbaCmMMpaWlqvyivLKtCy64ADNmzJCOr1q1SlpKqZy8vDzFfuX646uvvopPP/0UPXv29Hr/zJkz+OSTT/DQQw+hefPmGDJkCE6cOKFYg9rExMTglltuAeBZBWbPnj149913peOBLosFAIWFhdLz6Ohov86p2K6goMCnPavV6lcfqsmvVv1BCWp+R9RGZG1aQgMhRMgzevRoxMTE8JahCYWFhVi5cqXXHwmR4KUvJibG/7yXlgLz5skfs1iAQYOA998HMjOBsWOBCy8EPvgAhfn5msSm1mem1A63vuV2AyNHArfeCmRnex97/33gk08Cs3fxxcD998seigTwRnAqhUX0mqAU0ePjpU8vv1r4qfU1j1CE0fMmenw89enh28g1T00thL4YOW+6xpaUBKSnB/RwHj2KMzt2wHn0aMDnKn3o4VvWR1KSoo/Z5XLh3LlzcLlcilMmZ+u6666TnjudTmzZssXrnIo3xuPi4vDPP/+grKxM+sGwP48VK1bI6rn55pvxyy+/4Pjx41i5ciXGjRuHCy+8UDrOGMMnn3yC7t27S8sxiUTFwY6FCxfiq6++AuBZrqp169YB26t476WoqMivcyq2i42N9WnPZrP51Ydq8lu5PwTSD2rqD8Gi5ndEbUTWpinaTjghCO3gPZ2K4EPAS2O9+abvqcAPPcTYLbfIH+vcmbHjx3WPr1YwYYLvnDRowNiZM4HZy81lrFEjnzaHVdc/CIIgCIIgCIIQGrWWZCH4EejSWIwx5nA4vP6/P3/+fK/jp06d8jpeVFSkgXJvTpw4wWbNmiUtPQWA/e9//6vSjufSWIwx5nK5vJYWK38sXry4Slt/lsZq06aN1Oajjz7yS+P48eOlc+69916vY6tWrZKOde7c2S97n3/+ebU6teoPtDSWB1oaiyAIQnQcDs+yV3JERgIDBgCffip/3OkELrhAO221mblzgfY+Fq2y2YCtWwOzl5AALFjg8/CLAGJ9HiUIgiAIgiAIgiBEo7i42Ou12ex9C7NJkyZo1qyZ9Prnn3/WXFOzZs0wffp0vP3229J7mzZtQmlpqVe7mjZs1xqz2Yzbb7/d6z2r1YqhQ4cGZa9bt27Sc38/54rtunfv7tPe4cOH/VrWavv27dUe59EfiNCDBkKIkGfy5MmIj4/nLUMT8vLyMG/ePFXWOtQCXvri4+P9y/uKFcDJk/LH7r0XePVVn6fmTZuGeS+8oHpsan1mSu1w7Vt16gArVwKVLmTRpQuwa5dn2axAueMO4IorZA81BTArcItCInpNUIro8fHSp5dfLfxQzSOUYPS8iR4fT316+DZyzVNTC6EvRs6b6LE5nU6cPn2a275IWvvWwoeaNuVs7d6926vNBTI/VLzxxhul5y+++KJu+Rs4cKD0vKysDOfPn/c6brVavY7zoPJeIDfddBMSEhKCsnXllVdKz9esWQO73V5t+19//RW///679Lp///5exzt06IDExEQAntyvWrWqWntOpxOrV6+uUWfF/vDmm2/W2F5reNaVmhBZm5bQQAgR8qxfv77KLwWMQlRUFAYPHoyoqCjeUmThpa+4uLjmvDscnpkHckRGAhMnejZIj4ioejwlBVG33qpJbGp9ZkrtcO9bl14KPPmk57nZDDz1lGcQJCUlOHsmE/Dmm2Dh4bKHHwYQefBgcLYFgnveNEb0+Hjp08uvFn6o5hFKMHreRI+Ppz49fBu55qmphdAXI+dN9NjMZjMSEhKqzDowim8tfKhpU87WSy+9JD03mUxeN+PLefzxxxEWFgYA+Oqrr7w2Ba+JypuvA0BOTo5f556s8INLs9mM+vXrex2vGEt2djaXwZBOnTph9+7d2LVrF3bt2oXXXnstaFsjRoyQ9vU4ffo0Zs3y/VNDh8OBhx56SHrdv39/tK+0IoTZbMaYMWOk18888wyyK+8hWoEFCxYgPT29Rp0V+8O6desC2vNDrj8ohWddqQmRtWlJ7YqWMCSHDx/mNsKuNREREejQoQMi5G7WCwAvfWVlZTXn/d13gePH5Y+NGQMkJwOvvQYcPep5XbH4P/ssIiwWTWJT6zNTakeIvjVjhmf2x08/eQatLBZl9jp1Qn6Fi6mKhAGoN22aZ7P2EEaIvGmI6PHx0qeXXy38UM0jlGD0vIkeH099evg2cs1TUwuhL0bOm+ixmc1m1KlTh9tAiNa+tfChps2Ktmw2G8aNG4fPP/9cOj5ixAg0bty4ynmtW7fG008/Lb2+5557MHHiRJ8DGk6nE5s2bcKdd97ptTxTOb1798aIESPw1VdfweFwyNr4888/MWrUKOn1VVddhcjISK82FosFbdu2BeC5f7F+/XrfwWtIt27dcMkll+CSSy6R/fz8JS4uDtOmTZNez5s3D9OmTavyGZ05cwaDBg3Cjh07AADh4eF4zsdy5Y8++igaNGgAwDMIcc011+Dw4cNebdxuNxYuXIipU6dW+YzlqNwfxowZo6g/KIVnXakJkbVpSe2KljAkIv+qRCl+zXzgCC99Nf6aqKwMePZZ+WMREZ7ZB+W0aAEsXQocOgQMHw5cdhlw/fWaxaaWXaV2hOhbFgvw8cdAr16qmbQ9/DB8LIYG6+7dnuXSQhgh8qYhosfHS59efrXwQzWPUILR8yZ6fDz16eHbyDVPTS2Evhg5b6LH5nK5kJubC5fLZUjfWvgI1ubGjRvx4IMPej0eeOAB3H777ejfvz+aNm3qtQdHu3bt8OKLL/q0N2PGDGkZKMYYFi5ciAsuuAB9+/bFyJEjMX78eIwYMQJ9+vRBQkICrrvuOqxatUr2h5VlZWVYvXo1brjhBiQkJKBXr14YMWIExo8fj2HDhqFHjx5o3749fv31VwBAnTp1sMDHfpW3Vljy+fbbb8f//vc/PPLII5g4caL0CCUmTpyIm266SXr9zDPPoGnTpvi///s/jB07Ftdffz1atGiBr7/+Wmrzwgsv4NJLL5W116BBAyxZskSawbFv3z506tQJ/fr1w7333ovbbrsNzZo1w8SJE+F2u/HCCy/4pXPGjBnSQJXS/qAUnnWlJkTWpiXya4gQBEGEMu+9B2RkyB+76y6gefOq77drB6xeDZSWepZZIkISFh2NCQA+8dXgiSeAQYOASlOXCYIgCIIgCIIgCO0pX6rJHwYOHIjFixejUaNGPtuYTCYsW7YMF154IebPn4/c3Fw4HA78/PPPPjfMNplM6Nu3b5X3Y2NjpeclJSX45Zdf8Msvv8jaaNmyJVatWoWuXbvKHn/iiSfw6aefSqtZbNy4sUobX4MoImI2m/Hpp5/i0UcfxVtvvQWXy4Vz587h448/rtI2Pj4eL7/8MkaPHl2tzZtuugnvvPMOJkyYgLy8PLjdbvz444/48ccfpTYWiwWvvvoqrr32WjzyyCM16jSZTFixYgUuvvhizJgxQ1F/IIyHiTHGeIsgiGD4448/0LlzZ+n1gQMH0KlTJ46KCD3IyMhAy5YtZY+lp6cj+YILgA4dgL//rtogPNyzFFZysrYiCW6U94+NAK731WjsWGDxYh1VEQRBEARBEAQRLE6nE0ePHvV6r23btgj3sT8gIR6pqanYsmVLtW0sFgvi4+PRpk0baSbGxRdfHJCfgoICvPfee/j222+xb98+ZGdnw263IzY2FklJSejUqRNSU1Nxww03oFmzZlXOd7lc2LFjBzZv3oydO3fiyJEjOHXqFIqLixEVFYXExESkpKRg4MCBGDp0KCw1LO9cWFiIN998E19++SUOHToEm83mNfMg2FuyK1aswF133QUAuPTSS6WlqILh66+/xvXXe/733KJFC2T4+lFpBf744w8sW7YM33//PU6ePImCggLUq1cP7dq1ww033IB77723yr4p1XHq1Cm89tpr+Pzzz3H8+HGYTCYkJSXh6quvxn333YeOHTt63QvyV6fS/gAAM2fOlPZEmTFjBmbOnOl3XEZCrTrM+14uDYQQIUv5l6dDhw44duwY9uzZY7iBkLKyMhw7dgytW7cWci1VHvoyMjLQrl07tG7dGseOHfO6iEhPT0fyli2Ar18d3HMPsGSJX360ik0tu0rtiN63gqX84qg1gAMArHKNTCbg559VXZJLL4yat3JEj4+XPr38auGHah6hBKPnTfT4eOrTw7eRa56aWgh9MXLelMSmx0CI2+1GaWkpLBaL7mvm6+FbCx9q2lRqi2f+iOAxet5Eji9QbUYZCBErCwQRBLRHCD+E2yPE6QSeeUb+pPBwYMoUv33QHiGhzTEA83wdZAy4/34gBNfCNHreRI+P9gjhZ5NqXu3E6HkTPT7aI4SfTdojpPZi5LyJHpvb7YbNZoPb7Takby18qGlTqS2e+SOCx+h5Ezk+kbVpCc0IIUIW3qOIBB+qWxrr7MKFaPj44/Injhnj2RSdCE0OHADsduCSS6ptVrF/WOGZFdLaV+PFiz3LZBEEQRAEQRAEISy0NBZBEARfaEYIQRCEQJgBJLz+uvzBsLCAZoMQAnHsGHDnnUDXrsC4cZ7ZHH5iB/BgdQ2mTAFyc5UqJAiCIAiCIAiCIAiCIASHBkKIkGfmzJlISEjgLUMTbDYbZs2aBZvNxluKLLz0JSQkVMn7cAAR6enyJwwfDqSlAQ6H3z60ik0tu0rtiN638M8/wH33eTa+X7XKMwCyezfw6acBmfkagM8zzp0DZsxQqlRXhM+bQkSPj5c+vfxq4YdqHqEEo+dN9Ph46tPDt5FrnppaCH0xct5Ej83pdOLUqVNwOp2G9K2FDzVtKrXFM39E8Bg9byLHJ7I2LaGlsYiQpXw6VXJyMjIzM7F3717DLY3ldDqRmZmJpKQkIaf98tCXkZGBtm3bIikpCZmZmXA6nTAD+ANAB7kTzGbgiSeAefOAli2BmTOB22/3zBKpBq1iU8uuUjtC961Tp4A2bYCSkqrHOnTwLJPlI39yS6e1AHAIQB25E8LCgL17gQpTM0VG6LypgOjx8dKnl18t/FDNI5Rg9LyJHh9PfXr4NnLNU1MLoS9GzpuS2PRYGosxBofDgcjISJhMJtXsiuJbCx9q2lRqi2f+iOAxet5Eji9QbUZZGosGQoiQhfeXh+CD3I3uYQDW+Dph+HDgu++AnJz/3rvwQmD2bOCWWwDB/hgR/3LzzcD69fLHVqwARo2SPeRrD5mZAHzO/bjySk8fob5AEARBEARBEMJBe4QQBEHwxSgDIbQ0FhHyDB8+HNHR0bxlaEJRURHWrFmDoqIi3lJk4aUvOjpayrsJwDRfDc1moHFj70EQADh4EBgyBHj+eZ8+tIpNLbtK7YjetzBnju+BiZkzA1rmDADmA3A2bSp/8IcfAl5yixfC500hosfHS59efrXwQzWPUILR8yZ6fDz16eHbyDVPTS2Evhg5b6LH5nK5cP78ebhcLkP61sKHmjaV2uKZPyJ4jJ43keMTWZuW0EAIEfLYbDa43W7eMjTBbDYjISEBZrOYX1Ve+txut5T3IQB8jh3fcotn9oAcUVHA6NE+fWgVm1p2ldoRvW+hc2dgxIiq73foACxYAEREBGSuBMD5KVN8N3jsMaC4ODCNHBA+bwoRPT5e+vTyq4UfqnmEEoyeN9Hj46lPD99GrnlqaiH0xch5Ez02k8mEsLAwLsvX6OFbCx9q2lRqi2f+iOAxet5Ejk9kbVpCS2MRIQvv6VQEHyoufWQC8DsA2d0dTCZg7Fhg8WJ5Q089Bcydq5FKQhX++gvo2BFwOoEWLYBZszz7u1Qz9dLX0lgAkP7330geMwZIS5M/eebMkNs8nSAIgiAIgiCMDi2NRRAEwRdaGosgBCElJQWRkZG8ZWiCw+HA3r174QhwGSC94KUvMjISKSkpGBIZKT8IAgDDhgFTpwL33lt1Y+34eGDSpGp9aBWbWnaV2hG9bwHwbJj+5JPA668DR4549gVR8p8dkwl49VXPkmlyzJsHHD8evH0dCIm8KUD0+Hjp08uvFn6o5hFKMHreRI+Ppz49fBu55qmphdAXI+dN9NjcbjeKi4u5rDahh28tfKhpU6ktnvkjgsfoeRM5PpG1aQkNhBAhT2pqKqxWK28ZmmC325GWlga73c5biiy89FmtVqSmpuJxX3k3mYBp04BmzYC33wYOH/bMJCif8jdpElC3brU+tIpNLbtK7YjetySeeQZ44AHAYlHHXpcuwP33yx+z24GJE9XxoxEhk7cgET0+Xvr08quFH6p5hBKMnjfR4+OpTw/fRq55amoh9MXIeRM9NsYYCgoKwGPRFD18a+FDTZtKbfHMHxE8Rs+byPGJrE1LaGksImThPZ2K4EP50kc3A/C5vfXQocDatVXfP3AAeOEF4I03gJgYDVUSvKh2aaz0dCQnJwPnzwPt2gHnzskb+eEHoH9/7UQSBEEQBEEQBOE3tDQWQRAEX2hpLIIQBKvVatjNfRhjsNvtwo7Q8tJnMpnwlNUK5ivv06bJv9+5M7BypV+DIFrFppZdpXZE71uaUq+eZ6aJLx5+2LMviYAYPW+ix8dLn15+tfBDNY9QgtHzJnp8PPXp4dvINU9NLYS+GDlvSmKT+/++Fv9Pc7vd3Gqe1r618KGmTaW2eOaPCB6j503k+ALVJtcuFO/F0kAIEfJMnjwZ8fHxvGVoQl5eHubPn4+8vDzeUmThpe/W+HhsnDwZeXJ5HzLEM+ChEK1iU8uuUjui9y3Nufde4KKL5I8dOAAsWqSvHj8xet5Ej4+XPr38auGHah6hBKPnTfT4eOrTw7eRa56aWgh9MXLelMRmltnjT+29RlwuF7KysuByuVS1K4pvLXyoaVOpLZ75I4LH6HkTOb5AtZWVlVV5T642iw4tjUWELOXTqRITE5GdnY19+/YZbmksl8uF7OxsNGzYEGGVN/wWAB76MtLTkdO2LZIaNkTD7GyEVS7av//u2QdCIVrFppZdpXZE71vB4tfSWOVs3QpccYW8oYQE4OhRoEED1TUqwah5K0f0+Hjp08uvFn6o5hFKMHreRI+Ppz49fBu55qmphdAXI+dNaWzp6ele+4skJCSgSZMmquljjMHpdCI8PFz3Xznr4VsLH2raVGqLZ/6I4DF63kSOL1Bt2dnZyMnJkV5bLBa0atUqYL+8l8aigRAiZOH95SH4cOadd9D43ntljxUNGIDor77SWREhEgENhADAiBHA6tXyxsaNE3ZmCEEQBEEQBEHUJnJycpCdnS29NpvNaNasGaKiojiqIgiCMD5OpxMZGRles0Lq1auHxo0bB2yL973c0JvDQhCVGD16NGIMuvF1YWEhVqxYgcLCQt5SZNFdH2NIePVVFMbEYMXo0SislPe8hx5SzZVWsallV6kd0ftWQBw9Ctx+u+ffQHn+ecDXf57efhvYs0eZNpUxVN5kED0+Xvr08quFH6p5hBKMnjfR4+OpTw/fRq55amoh9MXIeVMaW1xcnNdrt9uNkydP4vTp0ygqKoLD4YDT6Qz6UVpaijNnzqC0tFSRHVF9a+FDTZtKbfHMHz345V30h8jx+aPN4XDAZrPhxIkTVZbGCtX7sIFt7U4QApKRkQGnU8yNjZUSHh6O5ORkhIeL+VXVXd/GjbDs3w9mtSI5IwPhFfK+HkDKhReq5kqr2NSyq9SO6H3LL06eBGbPBpYvB8qXSHv22cBsJCUBU6d6HpVhzLNx+o8/AoJMYzVE3qpB9Ph46dPLrxZ+qOYRSjB63kSPj6c+PXwbueapqYXQFyPnTWlskZGRiI2NRUFBgfSe2+2GzWaDzWZTrK984+Bz585xWRpLa99a+FDTplJbPPNHBI/R8yZyfEq0Wa3WkJ2NR0tjESEL7+lUhM4wBlx6KbBrl+zh9QAue/55NHj0UcCA/3EgKnD2LPDcc8CbbwIVN0k0mfDPl18i6YYbZE+TXRoLAOx2oFMn4O+/5f198AFw223KdRMEQRAEQRAEETRutxv//POPIWfMEARBhALlg9oRERFBnc/7Xi4tjUWEPL169YLFYuEtQxNKS0uxY8cOlJaW8pYii676vvlGGgQptViwo1cvlP6b958ADAbQ4IkngM6dgbVrAbdbkTutYlPLrlI7ovetavnmG+Dll70HQQCAMdR98cXA7VmtQHXnTZoECPKfrZDOmx+IHh8vfXr51cIP1TxCCUbPm+jx8dSnh28j1zw1tRD6YuS8qRGb2WzGBRdcgNjYWBWVeXC73SgsLIRb4f8jRfWthQ81bSq1xTN/RPAYPW8ixxeMtvDwcDRr1izoQRARoIEQIuRJSUlBZGQkbxma4HA4sHfvXjgq3/AVBN30MQbMmvWf38hI7E1JgePfvHutTHjkCDB8ONC9O/DFF55zg0Cr2NSyq9SO6H2rWkaMAHwsgxb13XfoGYzNgQOBa6+VP/bPP54ZKAIQ0nnzA9Hj46VPL79a+KGaRyjB6HkTPT6e+vTwbeSap6YWQl+MnDe1YjObzUhKSkLr1q3RsGFDWK1WVfQxxlBSUgIei6bo4VsLH2raVGqLZ/6I4DF63kSOz19tJpMJMTExSEpKQps2bVSrubygpbGIkIX3dCo9sNvtyMrK4i2DO9Yff0TiqFGyx3YCvm98X345sGWLMPs7ECqybh1wyy2yh94GME7mfZ9LY5Vz6BDQtSsgt+dQZCRw8CDQunUwagmCIAiCIAiC0Ijyte7p9hZBEIR6mM1mmEwmVfc34X0vlxbSJ0KehIQE5Ofn85ahKsXFxRgzZgw+++wzWCwW5OfnCzmVzmw2Iy4uTnN92wAkVnjtNpuRHxeHuPx8xFfn99lngx4EcbvdyM/PR1xcHMxm9SbPqWVXqR2t4tONwYOBSy4Bfv31v/datUL2gw/ivsceC85mx46ezdHllslyOIDHHgM2bAjOtkqEfN5qQPT4eOnTy68WfqjmEUowet5Ej4+nPj18G7nmqamF0Bcj503L2EwmE8LCwhTZoJrH1yZd69VOjJ43keMTWZuW1J5ICcMyYcIExMXF8ZahKmPGjMHatWthsViEji8uLk5zfVcB6Fvpvfy4OLwyYQJ+iItDK18nDhjgmRESJPn5+XjllVdUH2RTy65SO1rFpxsmk2egCwCaNgUWLQIOH0bRzTdD0ZDc9OlAo0byxz77DI7PP0dGRoZqD7vdHpC8kM9bDYgeHy99evnVwg/VPEIJRs+b6PHx1KeHbyPXPDW1EPpi5LyJHhvVPL426VqvdmL0vIkcn8jatISWxiJClvLpVOUzQn7//XdDLI1lt9tRt25d2O123WZcBIse+n4EUHk4o3xGyPX5+TjjdmMGgDsAeP0G6NdfgYsvDtovzQgJARgDVq8Gbr4ZqFMHAJCRkYGWLVvKNq9xaaxyli8HxoyRPXTEZEIXxlAWrOZKWK1WDBo0CMuWLUNUVFSN7Q2Rt2oQPT6aEcLPJtW82onR8yZ6fPTraH42aUZI7cXIeRM9Nqp5fG3StV7txOh5Ezk+Xtp4L41FAyFEyML7y6MV1d3IrW2kAtjs49g3AAZUeH1RZCR++9//ELZuHXDrrcDHH2uujxAPVQZC3G6gVy9g1y7Zw48BeCl4ibIMGzYMa9asUdkqQRAEQRAEQRAEQRCEGPC+lyvWcBRBBMH48eMRGxvLW4YmxMbGCh2f1vpm+Hi/IDYWmyr57XDzzQj79FPgt9+AefMU+y4oKMCiRYtQUFCg2JYWdpXa0So+Q2A2A6++6vPwTACNVXa5YcMGv5bJMnreRI+Plz69/Grhh2oeoQSj5030+Hjq08O3kWuemloIfTFy3kSPjWoeX5t0rVc7MXreRI5PZG1aQgMhRMizd+9eOBwO3jI0weFwCB2flvqugGdGiBzbHA78/K9fq9WKYcOGYdmyZZ6D3bsDbdoo9h8ZGYmUlBRERkYqtqWFXaV2tIrPMPTqBYwaJXsoDsBcld3Z7XZkZWXV2M7oeRM9Pl769PKrhR+qeYQSjJ430ePjqU8P30aueWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aQktjUWELLynU2lFdUv7bN26FUlJSTor4kPjESNQZ/t22WOnP/wQpT16AAASExNhtVr1lEYIjCpLY5Vz+jTQvj3g4xcSPQHIL54VHAHrIwiCIAiCIAiCIAiCCBF438ulGSFEyJOammrYG+FWq9UrvqSkJCQnJwvzSExMREZGBhITE9W1ffKkz0EQXHkl6t50k+RXq9zb7XakpaX5tVwRD7tK7WgVn6Fo0gSYPt3n4dcAmPRTA8D4eRM9Pl769PKrhR+qeYQSjJ430ePjqU8P30aueWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aQkNhBAhT3JyMsLDw3nL0ITw8HCh43M6ncjIyIDT6VTX8KxZvo9Nn66d3wpo5UMtu0rt6PEZikR0sCc+/DDKfMwwuRTA4SlTkJ6e7vdj69atwSoBYPy8iR4fL316+dXCD9U8QglGz5vo8fHUF6rXeqLUPDW1EPpi5LyJHhvVPL426VqvdmL0vIkcn8jatISWxiJCFt7TqbRC1aV9QpGffgIuu0z+WL9+QFqarnKI0KLy96cFgBkABgBw7N+PFhVqhr+cWbkSjUePlj3matAAYceOAXFxQemrSK34fhMEQRAEQRAEQRAEUSvhfS+XZoQQIU9iYiLCwsJ4y9CEsLAwoeNzuVzIysqCy+VSz+js2b6PTZ2qnd9KaOVDLbtK7ejxGfKkMYBXAfwJ4C4ATQDELV8elK2Sfv3wuY9jYTk5wLRpQdkNBqPnTfT4eOnTy68WfqjmEUowet5Ej4+nvlC91hOl5qmphdAXI+dN9Nio5vG1Sdd6tROj503k+ETWpiU0EEKEPOPHj0dsbCxvGZoQGxsrdHwFBQVYvHgxCnxsJh0wO3YAmzbJH0tKAu6/H/jgAxTk5anrVwbVY1PZrlI7WsUnAk8D+BvAQwAiK7wfv2QJcP58UDYfBVDq6+DrrwO//RaU3UAxct4A8ePjpU8vv1r4oZpHKMHoeRM9Pp769PBt5JqnphZCX4ycN9Fjo5rH1yZd69VOjJ43keMTWZuW0NJYRMhSPp3KarWitLQU+/fvN9zSWCaTCRaLBaWlpWCMCbd0DmMMpaWlsFgsMJlU2Db6+uuBr7+WP2axAKWeW9GsSxeUzpgBy803w2TWZjxX9dhUtqvUjlbx8SYjIwMftGyJKb4aPPkkMG9ewDZbtmyJuQCe8tXo4ouBX34Bapi9pXRpLKPmrRzR4+OlTy+/Wvihmkcoweh5Ez0+nvr08G3kmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4+OljZbGIgiF2O12GHU8jzEmdHwmkwlWq1Wdorlzp+9BkMREaRAEAEz798M6ZAhMvXsDx44p9y2DqrFpYFepHa3iE4EXANh8HXz1VeD06aDsPgvghK+Dv/0GvPFGUHYDwch5A8SPj5c+vfxq4YdqHqEEo+dN9Ph46tPDt5FrnppaCH0xct5Ej41qHl+bdK1XOzF63kSOT2RtWkIDIUTIM2HCBMT5uVFxqBEXFyd0fPn5+Xj55ZeRn5+v3NisWb6P5eR4+42Lw8sTJiA/J8czSKIBqsamgV2ldrSKTwRsAJ73dTApCcjMDMpuETzLbfnk6aeDtu0vRs4bIH58vPTp5VcLP1TzCCUYPW+ix8dTnx6+jVzz1NRC6IuR8yZ6bFTz+Nqka73aidHzJnJ8ImvTEhoIIUKetLQ02O123jI0wW63Cx2f1WpFamoqrFarMkO7dgEbN8ofa9gQcDq9/drtSE1Lg/WRR4DoaGW+faBabBrZVWpHq/hE4VUAZyq8PgEgZ/584OBBoEePoO1+BmC9r4MFBcAjjwRt2x+MnjfR4+OlTy+/Wvihmkcoweh5Ez0+nvr08G3kmqemFkJfjJw30WOjmsfXJl3r1U6MnjeR4xNZm5aE7B4h+/fvx+HDhxEVFYXevXujXr161bZfsWIFTpw4genTp+ukkNAa3uvKaYXSPQRCkptuAr74Qv7YgAGeDdTdbu/3mzcH/vzTs3cIQfxLxe/PwwCmAngGwNsADgf5/an8nUwCcAhAjK8TPv8cuPFGv2xVxLDfb4IgCIIgCIIgCIIgaj287+WG3IyQzMxM9O3bFykpKRg+fDgGDhyIJk2a4KGHHkJhYaHP85YuXYpZ1S29Q4QsAwYMQJ06dXjL0IQ6deoIHV9JSQm+/vprlJSUBG9k927fgyA9e3pmihw8CAwb9p/fOnXw9cMPo6Ty4IiKqBKbhnaV2tEqPpFYBKAVgNcAlNbQNhAyAVQ7pP7AA0BRkYoe/8PoeRM9Pl769PKrhR+qeYQSjJ430ePjqU8P30aueWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aUlIDYSUlJTg6quvxo4dO8AYQ1xcHOrUqYOysjK8+eab6N69O44ePcpbJqEzCQkJMJtDqiv7jdlsFjo+t9sNm80Gt5IBidmzfR+bMQMwmYD27YE1a4A9e4Abb4S7TRvYmjZV5rcGVIlNQ7tK7WgVn0g44NnXQwteBbDH18ETJ6rf80YBRs+b6PHx0qeXXy38UM0jlGD0vIkeH099evg2cs1TUwuhL0bOm+ixUc3ja5Ou9WonRs+byPGJrE1LQmpprIULF2LSpElITk7GqlWr0KdPH7hcLqxbtw4TJ07EiRMn0LhxY3z77bde02wA4PLLL8fPP/8Ml8vFST2hNrynU2lFrVo6Z+9eoFs3+WOXXALs3OkZCKlMXh4QH6+pNCI00eL748tmDwC/mEwwyf0ZDQvzzHbq2lVzfQRBEARBEARBEARBEKLD+16umD8z98Enn3wCk8mE999/H3369AEAhIWFYciQIdi7dy+uuuoqnDlzBldeeSX27PH5W13CYCQnJyM8PJy3DE0IDw8XOj6n04mMjAw4K21m7jf+zAaR8xsdrcyvHyiOTWO7Su1oFV9tYheAgttvlz/ocgHjxlXd20YhRs+b6PHx0qeXXy38UM0jlGD0vIkeH099evg2cs1TUwuhL0bOm+ixUc3ja5Ou9WonRs+byPGJrE1LQmog5NChQ7jgggvQu3fvKscSEhLw1VdfYdiwYcjJycFVV12FX375hYNKQm9Gjx6NmBif2xaHNDExMULHV1hYiJUrV1a7P49Pfv8dWLdO/lj37sD//qeNXz/RyodadpXa0eMzrA3kTpoEJCbKH9yxA1iyRFV/Rs+b6PHx0qeXXy38UM0jlGD0vIkeH099oXqtJ0rNU1MLoS9GzpvosVHN42uTrvVqJ0bPm8jxiaxNS0JqaazIyEh069at2gEOxhjGjBmDlStXIjY2Fl9++SUuu+wyWhrLgPCeTqUVtWbpnCFDgE8+kT+2fj0waJCucghjoOfSWJLNX34Bhg+XPzkhATh8GGjcWDN9BEEQBEEQBEEQBEEQosP7Xq6Y6+34oH79+jh16lS1bUwmE5YvX47w8HAsXboUN9xwAzZs2KCTQoIg/OLAAd+DICkpwMCBusohageZmZmy74dlZwMAXA0bBnSexNChwPLlwDffVD1mswGPPQa8/34gUgmCIAiCIAiCIAiCIAgVCamlsTp37oxTp04hIyOjxrZLlizB+PHjUVhYiBtvvBFHjx7VXiDBhcmTJyPeoBtnx8fHCx1fXl4e5s2bh7y8vMBOnDPH97Hp033uDaLYbwBo5UMtu0rt6PEZisbll1+Oli1bSo8+LVtifcuWaNCzJzb27Ol1rOLj8ssvr96wyQS8+SZgtcof/+AD4NtvVYnB6HkTPT5e+vTyq4UfqnmEEoyeN9Hj46kvVK/1RKl5amoh9MXIeRM9Nqp5fG3StV7txOh5Ezk+kbVpSUgNhFxxxRUAgFWrVvnV/s0338SDDz6IkpISZP/7i1/CeKxfvx7FxcW8ZWhCcXGx0PFFRUVh8ODBiIqK8v+kgweBjz6SP9aiBXDjjdr4DRCtfKhlV6kdPT5DUbkAwKsA/gYwAUAdAHcBaKbEaKtWnkE8X9x/P2C3K/EAwPh5Ez0+Xvr08quFH6p5hBKMnjfR4+OpL1Sv9USpeWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aUlI7RGyf/9+XHTRRWjUqBHS09NRp04dv8574oknsGDBAphMJtojxEDwXldOKwy/h8BttwFr1vg+fuGFnhkjN99c48wQgqhMdd8fAOgNYDMAi8yxNwE8EKA/r++kwwF06+YZ7JNj2jRkjBlj7O83QRAEQRAEQRAEQRCEDLzv5YbUjJAuXbrgr7/+wk8//YSwsDC/z3v++efx888/44cfftBQHcELI49gij5CG/CMlUOHgLVr5Y9FRnr+PXgQuPVWoEcP4OuvAZmxWj1mymjlQy27Su2IPtsoWBITE2H1tUQVgF0ATvs4djc8s0X8xWq1IjEx8b83IiOBxYt9nzBvHiL++isAD1Uxat7KET0+Xvr08quFH6p5hBKMnjfR4+OpL1Sv9USpeWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5PpG1aUlIDYQAQKtWrdC6dWtElt809ZNevXqhX79+GqkiCMIvnnlGdmADgOfX9BX57Tfg+uuBWbO010UYBqvVikGDBvk87gQw18cxC4DJAfgaNGhQ1UGXyy4D7r5b/oSyMtR/+ukAPBCEsbDb7cjIyPD5sKuwfBxBEARBEARBEARByBFSS2MRREV4T6fSCsMujXXkiGfZK7e76rHwcMDprPq+2Qz88QfQoYP2+gjDUFxcjDFjxmDDhg2yN1YjAPwFoHml908BmANgUQ32ywdbli1bJj9b69w5T5/NyZE9fzSAlTLvh/T3myCqoabvZDk1frcIgiAIgiAIgiCIkIX3vdyQmxFCEJXp0KEDIiIieMvQhIiICKHjKysrw+HDh1FWVlZz42eflR8EAeQHQQBg1CjZQZCA/AaJVj7UsqvUjh6fIS+ioqKwZs0a5ObmIj09vcrjz/R0RM+ZI7V3Jibi3MyZKDt8GE/KtK/8yM3NxZo1a3zfqK1fH1i40Ke+BQDqBxmbkfMGiB8fL316+dXCT1lZGR5++GF8+umnNc74sNvtWLt2LcaMGaO6NtH7FiGP0fMmenw89YXqtZ4o13lqaiH0xch5Ez02qnl8bdK1Xu3E6HkTOT6RtWlJrRoIYYwhOztbWoIhOzsbNCEm9BF5Dw2lGGaPkKNHgffflz/WqpVnA/XKG6NHRADTpyvzqwDaIyT0sVqtSE5Oln3UnzQJ6N0beOMNhKeno/6MGWjRvr3P9hUf1e1BInHnnUD//rKHGgB4PsiYjJ430eOjPUICJzc3Fw0bNgzo75jczBGqebUTo+dN9PhovXx+NmmPkNqLkfMmemxU8/japGu92onR8yZyfCJr0xJDL43122+/4dtvv8XOnTuxb98+ZGZmwlnpl+fh4eFISkrCRRddhJ49e+Kaa67BxRdfzEkxEQi8p1NphSGXxho9GlgptxgQPAMkI0YA+/d7Bj7Wr/e8/8ADwOuv66WQINTnyBGga9eq+9/8yxUAtlZ4HbLfb4Kohur+plUHfR8IgiAIgiAIgiCMBe97ueG6edKJgwcPYvny5fjggw+QlZXldUxuzKesrEyaIbJhwwZMnToViYmJGDFiBEaPHm2IG+sEwZVjx4BVq+SPtW8PDBvmed6lC7BuHbBzJzBnDjB1qn4aCUIL2rcHJk8GZs+WPbwIQAqA2jURlSAIgiAIgiAIgiAIQn8MszTWDz/8gOuuuw5dunTBiy++iKysLDDGvB6+qNwuKysLL774Irp27YrrrrsOP/zwg46REIEyc+ZMJCQk8JahCQkJCULHZ7PZMGvWLNhsNt+Nnn0WcLnkjz39NBAW5v1ez57A558DTZoo86sQrXyoZVepHT0+QwLAU08BbdvKHroQwKQAzRk9b6LHx0ufXn618FNYWKjK3zGqebUTo+dN9Ph46gvVaz1RrvPU1ELoi5HzJnpsVPP42qRrvdqJ0fMmcnwia9OSkF8aa/fu3Zg0aRLS0tIA/Dfrw2QyoVOnTrj88suRkpKCjh074oILLkCDBg0QFRUFxhhKSkqQnZ2Nf/75B4cOHcK+ffuwdetW/PHHH152ACA1NRUvvPACunfvziVOoirl06mSk5ORmZmJvXv3GmIGT8VlRMqXbitf1k20pUKcTicyMzORlJSE8HCZCWZ//w20ayc/ENK2LXDwICB3nlK/KqCVD7XsKrWjx2dI/Mt33wHXXCN7qARAFwDH4N9SQEbPm+jx8dKnl18t/Bw7dgxXX3217PKkq1evxm233SZ7XuXvA9W82onR8yZ6fDz1heq1nijXeWpqIfTFyHkTPTaqeXxt0rVe7cToeRM5Pl7aeC+NFdIDIePGjcOyZcvgdrvBGIPJZMKVV16JoUOHYvDgwWjYsGFQdrOzs7F+/Xp89NFH+P777yXbZrMZd999NxYtWqRyJEQw8P7yaIWh9gi5917gnXfkj61YAYwapascguDGHXd49sOR4UcA/QEcC7XvN0H4QXV/0zZv3oz+/fvLHgu5v3cEQRAEQRAEQRBEtfC+lxvSS2MtWbIELpcLsbGxeOKJJ/DXX3/h22+/xb333hv0IAgANGzYEPfeey82bdqEY8eOYdKkSYiNjYXL5cKSJUtUjIBQg+HDhyM6Opq3DE2Ijo4WOr6ioiKsWbMGRUVFVQ9mZHgGO+Ro3Rq4/XZt/KqEVj7UsqvUjh6fIVGBhQsBH0sDXQHgMT/NGD1vosfHS59efrXwU1JSosrfMap5tROj5030+HjqC9VrPVGu89TUQuiLkfMmemxU8/japGu92onR8yZyfCJr05KQHgiJjY3FrFmzcOLECcybN8/nLw6VkJycjPnz5+PEiROYOXMmYmJiVPchR05OjrR5+8CBA9GpUyfUrVsXERERiIqKwgUXXIDrrrsOzz33HP7555+A7X///fcYOXIk2rVrh+joaNSrVw9du3bFpEmTcPjw4aA0Hzp0CJMmTULXrl1Rr149REdHo127dhg1ahS+//77oGz6g81mg9vt1sw+T9xut9Dxmc1mJCQkwGyWKSXPPQdUWgZFYurUoJbE8suvSmjlQy27Su3o8RkagrNnga++Um6ncWNg/nyfh58BEHHoUI1mjJ430ePjpU8vv1r4MZvNqvwdo5pXOzF63kSPj6e+UL3WE+U6T00thL4YOW+ix0Y1j69NutarnRg9byLHJ7I2LQnppbFycnLQoEEDQ/q88cYb8eWXX/rV1mKx4KmnnsK0adNq7MD5+fkYO3Ys1q5d67NNREQEZs2ahaeeespvvc8++yxmzZqFsrIyn21uu+02LF68GLGxsX7brQ7e06m0whBLY504AbRpA8j1h5YtgSNHgIgI/XURhL+cOQO88ALw1luAyeSZ4aS09rvdsPfuDevOnbKHHe3bI3LfPsBiUeaHIASClsYiCIIgCIIgCIIgAP73ckN62EfvQRCePi+//HLccccdGD9+PEaOHIk+ffpIm9mUlpZi5syZuOuuu6q1U1ZWhptvvtlrEKRz584YOXIkhg4diiZNmkjtpkyZgtmzZ/ulb/r06Xj66aelQZAmTZpg6NChGDlypFdnXr16NYYMGVJls1SlpKSkIDIyUlWbohAZGSl0fA6HA3v37oXD4fA+8Nxz8oMgAHDttUBYmDZ+VUQrH2rZVWpHj88wJDl9GnjsMc+A3cKFQHExUFQEvPSScttmM3IWLECBj8ORR44A06dXa8LoeRM9Pl769PKrhZ+ysjJV/o5RzaudGD1vosfHU1+oXuuJcp2nphZCX4ycN9Fjo5rH1yZd69VOjJ43keMTWZuWhPRAiJFJTU3FokWLcPToUWRnZ+PHH3/Ee++9h7feegsrV67ETz/9hMzMTNx2223SOe+++y4+/vhjnzbnzJmDH374AQBgtVqxevVq7N+/HytXrsTatWuRkZGBSZMmSe1nzpyJLVu2VKvz+++/x5w5c6TXkyZNQkZGBtauXYuVK1fiwIED+OCDD2C1WgEAmzZtwty5c4P6THyRmpoq2TcaVqtV6PjsdjvS0tJgt9v/e/PkSWDpUt8nLV4MXHwx8OWXQJAT0mT9qoxWPtSyq9SOHp9hyOFyAZde6hn0KCnxPvbaa8D584pdOJs1w8PVNXjhBWDrVp+HjZ430ePjpU8vv1r4cTgcqvwd06Lm2e12ZGRkyD5E7YO1DdFrglJEj4+nvlC91hPlOk9NLYS+GDlvosdGNY+vTfr/be3E6HkTOT6RtWlJSC+NRQCMMVx99dXSAMfVV1+Nb7/9tkq7s2fPolWrVtImOIsWLcK4ceNkbQ4fPlyaNdK7d2/8/PPPPv337NkTu3btks5bvXq1bLtFixbhvvvuA+DZ2+Xvv/9WPLuG93QqrQj5pbEeeAB4803/2vbuDTz7LOBjaRSC0J3584HJk+WPPf00UGHgNxjKv9/rAAz21ahlS2DfPkClZQQJgiciLo1VXFyMMWPGYMOGDT4v/K1WKwYNGoRly5YhKipKEx0EQRAEQRAEQRC1Cd73cmlGSIhjMpm8lsTas2ePbLuVK1dKgyDt2rXD2LFjfdp8/vnnpb1Gtm/f7tPmrl27pEEQs9mM559/3qfNcePGoW3btgCAgoICvPfee9VEFRhWqxUmk0k1eyJhMpmEjo8xBrvdDmk89Z9/gHfe8d/A9u3A/fd7fomvxK8GaOVDLbtK7ejxGYYk998P1Ksnf+zVV4HcXFXcjAVwxtfB9HTg0UdlDxk9b6LHx0ufXn618MMYU+XvmJo1b8yYMVi7dm21v36y2+1Yu3YtxowZE6xkQgVErwlKET0+nvpC9VpPlOs8NbUQ+mLkvIkeG9U8vjbp/7e1E6PnTeT4RNamJbVqIKSwsBB//PEHtm/fjh9//NHvh+g0bNhQel5QIL/6/Pr166Xno0ePrvaGRPPmzXHllVdKr9etW1ejzauvvhrNmjXzadNkMmHUqFE12gyGyZMnIz4+XjV7IhEfHy90fHl5eZg/fz7y8vI8b8yfDwS6vuDs2QHvGVLFrwZo5UMtu0rt6PEZhiSxscDjj1d9v1Ejz/4dKm1kng3g3uoaLF0KbNhQ5W2j5030+Hjp08uvFn6KiopU+TumVs07e/YsNsh8t3xR3awRQntErwlKET0+nvpC9VpPlOs8NbUQ+mLkvIkeG9U8vjbp/7e1E6PnTeT4RNamJYZfGqugoACvvPIKVq9ejSNHjgQ80mUymVTf3FttXnrpJTz22GMAPLM9jhw54nXcbrcjOjoabrcbAPDzzz+jd+/e1dqcO3cupk6dCgDo27cvtm3bVqVNnz59sH37dqn9U089Va3Nn3/+GX379gUAhIWFoaioCBYFNxXLp1MlJiYiOzsb+/btM9zSWGFhYWjYsCGys7PhcrmEWxrL5XIhOzsbDRs2RNiZM0CrVkBpqf8GUlKA334DzIGNyXr5Vbjxut4+1LKr1I4en2HIkp8PJCd7Zn8kJgJPPAGMGweosDxO5WWC3gFwt6/GDRsCBw54BmH+xeh5Ez0+Xvr08quFn2PHjuGyyy6T/o5VJJClsdSqeUVFRWjTpk1A54r2t7c2IXpNUIro8fHUF6rXeqJc56mphdAXI+dN9Nio5vG1Sf+/rZ0YPW8ix8dLG++lscJ188SB3bt3Y+DAgTh9+jQAGHK6z6lTp7BgwQLp9ZAhQ6q0OXLkiDQIYjKZ0K1btxrtdu/eXXp+6NAh2TYV36/Y3hcV/bpcLvz555/o0qVLjefVRFZWlmIbouJyuYSOLywsDImJiZ4Xzz/vexDk6aeBQ4eATz7xfv+ZZwIeBKniVyO08qGWXaV29PgMQ5a4OE/fdDqBe+8F6tTRzNUEAP0BtJI7mJ0NjB0LrFsH/DuLz+h5Ez0+Xvr08quFn7CwMFX+jqlV8zIyMhRrIfRD9JqgFNHj46kvVK/1RLnOU1MLoS9GzpvosVHN42uT/n9bOzF63kSOT2RtWmLYpbHOnTuH6667DqdOnQJjDIwxhIeHo3379ujTpw/69evn1+OKK67gHUoViouLcfDgQSxcuBDdunXDqVOnAAAdO3bEZJlNfivOEGnUqBGsVmuNPpo3by49P3/+PLKzs72Onz17FjabTXrdokWLGm3WqVPHaxmvw4cP13iOP4wePRoxMTGq2BKNmJgYoeMrLCzEihUrUHjsGLB4sXyjCy7wDIR8/DHw66/AgAGe9/v0AW64QZnfwsIglfPzoZZdpXb0+AxDmvvvBx5+WNNBEAAoBDAKgNtXgw0bgBUr/mtv8LyJHh8vfXr51cJPSUmJKn/H1Kp5JSUlinQQ+iJ6TVCK6PHx1Beq13qiXOepqYXQFyPnTfTYqObxtUn/v62dGD1vIscnsjYtMeyMkIULF+LcuXMwmUyIjY3F3LlzMXLkSGFvKFfHtm3bcPnll1fb5oYbbsD777+P2NjYKsfOnTsnPW/cuLFfPiuPCp4/f95rEKOizUDtlg+qnD9/3q9zaiIjI0P45cuCxel0Ch1feHg4kpOTEf7GG4CvNdQnT/5vX4WLLwa++grYtg2wWqVfuQftN1y7EqaVD7XsKrWjx2dI+Mc2AC8AeNJXg0ceAVJTgZYthcib3W4P6hf+iYmJNQ7EixBfdfDSp5dfLfyEhYWp8ndMrZqn9rRvX98Hf/o7UTOi1wSliB4fT32heq0nynWemloIfTFy3kSPjWoeX5v0/9vaidHzJnJ8ImvTEsPOCNm4cSMAz1JQX3zxBe6///6QHASpibp162L16tX48ssvkZCQINum4uheHT9/3Vy5XeURwsqvg7Gr1qjjjh07pC+uy+WCzWaTlkHLz8+H49/Nu0tKSlBUVATAM8BQcUZLXl4eysrKAHhm3BQXFwMAysrKvDYOstls0s2coqIi6ZelDocD+fn5ADxLsNlsNmkt9MLCQmmj1dLSUmlDe7fbDZvNJi1bVlBQgNJ/l5ayWq2IiYmB3W7H1q1bYbVapQ3uRYrJarWid+vWKFu1yhOT2QxbQgLc/y53VdC6NUrvvBOA52ZRec5dvXvD1qZN0HmyWq3o2bOn9NlpkaeysjKkpqYiMjLSZ568YvKz74WHhyMlJUW6QRZsnhhjSE1NhdlsDqrv2e12XHHFFbBarYpjEv37JFpMJpMJCQkJ0g3ZmJgYPGu1wtGhA0otFhT8O6AtfZ+KioBRo1Bgs8FkMiE1NVX6LPSMqbi4GLfffjuaNGmCli1bon379rjooovQsmVLtGrVCt26dUObNm3QsmVLdOnSBR07dkTLli3RoUMHdO3aFXXr1sXw4cNx+vRpn3lyOp1ITU1FREQE9zzJ9T0ASE1Nhclk0rXvhYWFITU1FW63W9PvkxZ1LzIyEtu2bfMaFIiPj0dERAQAICoqClH/7r8TERHhtal6xZhcLhcuvfRSWK3WoGpEZGQkUlJSpOuF2NhYaZ+y8r+5gGfgJiEhQfqbGxcXJ/WpinnKz8/HnXfeibp166Jly5ZISUlBu3bt0LJlS3Tq1AlNmzbF8OHDkZeXR3VPQUxlZWXo3bs3rFarYWKqmCcAuOSSS2C1WoWMyel0olevXrBarbr3PT3qnslkwsUXXwyr1apaTC6XC6mpqQj/f/bOOzyKqmvgv920TUgVkVDERKyAiq8FUBGwIFZQ1ARRwdhAUbGjfvrK66uC5QVsYAuioAmCiqigooCgUkRaEFBwIx0p6clu2v3+mGRN2d1smdmZndzf88wD2Zk595w5d8/cnTv3nMjIoPxks9k466yzXO0EE/eio6M185ORvk9mscnMcc9ms9G7d+9G93Yj2WSz2TjzzDNd54ey7zmdTs4991xsNpu2v9379HFdOzVsEkJw1llnYbPZgvZTsHHPZrNx/vnn43A4TB0jzGaTzWbjjDPOcI29zWBTQz8ZOe5FRUXRv39/qqurdel7emHaiRC73Y7FYuHcc8/lvPPO01udoOjYsSN33303d999N3fddRc33XQTZ599NpGRkRQUFDBs2DAuuOACfv/9d7fn13dowDUQbommRcybppJoKDNQuWqlp7j22mu57rrrADhw4ABTpkxxfTmzs7P57bffAFi6dCnz588HYNeuXUyZMsUlY+rUqWzfvh2Ab775hm+++QZQirxOnTrVddyUKVPYtWsXAPPnz2fp0qUA/Pbbb2RnZwNK4JgyZYpr5cucOXNYsWIFAGvXrmXWrFmAEhymTJniCkazZs1i7dq1APTu3Ztrr72WmJgYLrjgAsaOHeu6dkayyel08ulbbzGzrjZNcWIiU8aOpTgxUbFpxAjW1tWSWbFiBXPmzFHFT06nk1mzZrFgwQLN/DRz5kxWrFjh0tWdnwKx6c8//2x0XKB++v7771mxYgXr168PuO8tXbrUdS2Dscno3yej2RQTE8PYsWNdq+yuvfZazujdmwP/+x9rzzyTWcOHKzY1/D4tW8asV15h9erVrFixguXLl4fcpqysLGpra+nduzcA3bp1Iysry6NN9cedfvrpDB8+HIfDwddff81bb73l0U+zZ89mxYoV7N69W3c/uet7y5cvZ8WKFaxevTqkfW/Lli2sWLGCBQsWaPp90iLuVVZWMnDgQMaOHevSdfTo0XTt2hWAgQMHMnDgQAC6du3K6NGj3do0b948cnJycDqdAcWIel3rB9/Dhw931S6rv+cCtGvXrtE9Nysri7/++quZn8aOHctxxx3nGg81talfv37k5uby4IMPBucnIZjz8cesWLIE9u1j7Q8/MOuDD6C6OqziXqCxfObMmXz66ac4nU7T2NTQT8uXLyc7Oxun02lIm2bPns2cOXNwOp0hv+eGIu6tXr2at99+G6fTqZpN8+bNY8WKFa7xXqB+cjqdvP/++3z//fd+2eQu7tUfZ8YYYUabzBz3nE4nc+bMYfbs2Ya0yel0kp2dzfLly322CdTre1999RVOp1Pb3+6ffsrMupcY1bDp+++/5/3338fpdAbtp2DjntPpZOnSpaaPEWazyel08vbbb7N69WrT2NTQT0aOe7t37270G9xXm9Tyk24IkxIfHy+sVqu444479FZFM3bv3i1GjhwpAAGIlJQUsX79+mbHvfDCC65jevXq5ZPs8vJy1zmA+OWXXxrtX7VqVaP9FRUVPsk9++yzXee89NJLPp3jiby8PAGI0aNHi/bt24u8vDxRXV0tCgoKRG1trRBCiKKiIuF0Ol02lZaWCiGEqKqqEgUFBS5ZhYWForKyUgghRFlZmSgrKxNCCFFZWSkKCwtdxxUUFIiqqiohhBClpaWivLxcCCGE0+kURUVFQgghamtrRUFBgaiurhZCCFFSUuK6Pg6HQxQXFwshhKipqREFBQWipqZGCCFEcXGxcDgcwm63C5vNJuLj40VCQoIYNWqU6NSpk7BYLMJutxvKpuI//xSv33WX2JOaKgSIGqtVFCQnixqrVYjUVFG8f79wOBxCCCEqKipESUmJEEIE7afi4mLx+uuvi/3792vmpz179oipU6eKwsJCt34K1KbDhw+L1157zdUPAvXT/v37xdSpU8XBgwcD6ns7d+4Ub7zxhiguLg7aJiN/n4xmk91uFxaLRSQnJ4uIiAgBiPj4eGGz2YTdbheOiRNFcUJC8+8TiOIjjhAHli8XU6dOFX///XdIbSopKRE2m020adNGxMbGCkBER0eLxMREAXi0CRAxMTEiISFBAMJqtYr27du72mrqp71794qpU6eKgoICQ/a9v//+W0ydOlUcOHAgpH3v0KFDYurUqWL//v2afp+0iHubNm1y3cfq7/9JSUkiKipKLF68WMTFxYm4uDgBiKioKJGUlCQAsWzZMrFx40axbds2UVFRIfbt2ydef/11UVxcHFCMKCwsFK+99prYuHGjAERCQoKIiYkRgOueC4iIiAiRnJwsLBaLAERiYqL4/fffG9lUUVEh2rRpI5KTk5vZBDSyKT4+3nWvcuunvXuF+OEH4XztNVH06KNCDB8uavv1EwWnnSaqExOFsFpFSXy8qLDZhADhiIn5J0ZER4uCY44RNaecIsSgQaL4jjuE4+mnhZg9W1Rs2CBK6vqH3nHPHz81/T7t2bPH5XcjxfJgbGr4ffr7779dYwIj2rR3717X9Q/1PTcUce/AgQOu66+WTfv27RNTp04Vhw8fDspPTce6wcS9evlGHRv5Y1O4jPeCscnMca++X+/du9eQNhUXF4vXXntN/P333z7bJIQ6fW/Xrl2u32aa/Xavu/579uxRzab9+/e7+muwfgo27hUXF4s33nhD7Ny509Qxwmw21X/vDhw4YBqbGvrJyHGvoKBATJ06Vezduzekfa/+WW79lpeXJ0KJRYi6tSsmo1u3bmzdupXhw4fz/vvv662Optx333288sorgFIwfePGjY1yYE+dOpW77roLgFNPPZX169e3KPPw4cO0bdvW9feWLVs48cQTXX9v3ryZbt26NTo+JSWlRbmnnnoqGzduBGDatGnceeedLZ7jiU2bNtGjRw/X33l5eXTv3j1geUYhPz+f9PR0t/vsdjtpaWmhVcgbjz4KL7zgft///gf33x9afSQSg9Pi9/voo2HAAFi2zL2AU0+FVav+qbsTIrzpHQiGi2USzfDWdxYvXsyAAQNalGGz2Rg8eDDZ2dmuNFpa6OOJpv3VXxmu8x0OWLECli6FNWtgwwaoW22iCTYb9OgBvXtDv37K1qDem0QikUgkEolEIpGEEr2f5Zo2NdbAgQMRQvDLL7/orYrmPP/88yTWpSLavHmzK11QPQ0nNPbv3++TzKaFP4844giPMgOV21RmoCQnJ2O1mrMrW61W49p38CC1b7zRqCaIi/btIYhJrpZomqswnNpQS26wckJxDU3PwYMwfjzU5bxUhYgImDEDPNS0qs3Lo/Dpp03rN6P3S730C1W7WrRTW1sb9H3M4XDw8ccfc+edd4ZVzLMC5wDJkydD//6QnKxMdD79NMyfr+0kCCgTL7/8Aq+9BtddB0cdBd27w4MPwvLlUJfr2MgYPSYEi9Ht01O/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bTEgE9X1eGuu+4iJiaGrVu38u233+qtjqbExcVxzjnnuP7+8ccfG+1vuJLj77//blbfwx07duxw/f+II45w5X2v56ijjmpUnP0vH37MOxwOV149gJNOOqnFc3xh7Nixrokgs5GYmGhc+15+meLIyEY1QVw8/DAE+dauN5rmKgynNtSSG6ycUFxD03LgAIwbB2lpygPNN95QV356OnjInVmcmMgUm43i775Tt02DYPR+qZd+oWpXi3bKy8tVuY8lJiZy3HHHNRpH+EO9bfWFBbUiCrgEmAbsAX4EkqdMUVaBNCiQrRu//aas2OzbFzp2hDvugMWLwaA/gIweE4LF6PbpqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JumhLSRFwhZurUqcJisbjqR5iZYcOGufKr3X777Y32VVRUCKvV6tr/888/tyjv2WefdR1/7rnnuj2mT58+rmOef/75FmX++OOPruMjIiJcueUCpT6vXHJysrBarabxsd1ud10nq9Xqsg8Qdrtdb/UUDh4UIj6+WQ0DAUJERAiRmytEXX5ALWiaqzCc2lBLbrByQnENTcf+/UI89JAQcXH/9HcQ4sgjhajLo9kSDb/fTbdG3+/aWiGuuqpxOw3rhhx7rM9tqoE3vZctWybsdnuzbdmyZb7Z2gCj90u99AtVu1q0s3379kb3sYbb5s2bXbVkWtrq74fbt28Pyrbt27f71J63/tr0+2ABMQDEDBCFTb6zYbOlpwvx9NNC5Oer4HX1MHpMCBaj26enfuE61jPKOE9NXSShxcx+M7ptMubpK1P+vm2dmN1vRrZPL930rhFi2hUhAKNGjWL69OkUFRVx1llncf/99/Pjjz+acrZr7969rv83TTlls9no3bu36+8lS5a0KG/p0qWu/19wwQVuj2mY19tfmeeccw4xKuW4N/NSLsMuVZs0CUpLsdbWklxYiLWhfjU1kJGh5CRftEh5xKIyoUgZplUbaskNVo6h064ZlUmT4KWXoOkb5QcPKqln1MRigbffbpbP3/Wd+/NPGDtW3TYDpHPnzqSlpTXbOnfu7Lcso/dLvfQLVbtatGO1Wj3ex+prf/hC/f3QSDHvaOBJYDvwPXAzkKSa9BBjtysr3NLTYfBgWLJEk/u3vxg9JgSL0e3TU79wHesZZZynpi6S0GJmvxndNhnz9JUpf9+2TszuNyPbZ2TdtMS01kZERBAREUFWVhaVlZU4HA5eeeUVzj//fFJSUlz7W9oiIyP1NqVFDh06xM8//+z6++STT252zJAhQ1z/f++997zK27lzJ981SLvS8FxPMhctWsSuXbu8ym3YrieZgTBq1CgSEhJUk2ckEhISjGff4cPwyisAlCQkMG3UKErc6bdqFVx8MVxwAfz+u6oqlJSUMG3aNEpKSlSVG4o21JIbrJxQXEPT8cAD0KaN+30vvghqT7IfdRS8806jjxp957KzYfp0ddvUGaP3S730C1W7WrRTXl7u9T6WnZ1NRkYGNpvNq5z6+2Ggqa3qbQs6NVZtLbHffcdCIB/4D+Bf6XUPJCfDuefCsGFKesnJk+Hjj+Gbb2DZMqXWx6ZNkJen3F+XLoWvvoKZM2HCBBgzRpnAOOkkCObHjBDw+edKLZN//UuRX12thoUBYfSYECxGt09P/cJ1rGeUcZ6aukhCi5n9ZnTbZMzTV6b8fds6MbvfjGyfkXXTEuM/5Q8QIQQWi8X1r8ViabTPyBw+fNjnQuK1tbWMGTMGZ13e6ZiYGK644opmx40YMYLx48dTVlbG1q1beeedd7jtttvcynz00UepqSug2adPH/71r3+5Pe6ss87irLPOYvXq1dTU1DBu3Dhmzpzp9ti33nqL3+sehickJHDzzTf7ZJ8vrFu3jsrKStXkGYnKykrj2ffYY1AXKKMrK+m5bh3R3vRbtQqS1H1HNjo6mp49exIdHa2q3FC0oZbcYOWE4hqajnbt4N574fnnm+8rKICpU+HRR9Vt86qrICtLmfTAzXdu9Gg45RQ480x129UJo/dLvfQLVbtatBMZGen1PhYXF0dOTg4Oh4N9+/YBsGvXLvr27dvouPr7YaAvqNTbFvALLuXl8P77MGkS7X//nUsCk6KQlAT9+kGvXnDaaXDqqdC5s7ISTA0qKpRaIOvWwY8/KpMmf/7pv5x16+Cmm2D8eHjySbjhBgjxC0JGjwnBYnT79NQvXMd6RhnnqamLJLSY2W9Gt03GPH1lyt+3rROz+83I9hlZN00JaSKuEGKxWFTZrFZryHWfNGmSOPPMM8WMGTNEUVGRx+PWr18vLrnkkka51f7v//7P4/FPPvmk67jY2FiRm5vbaH9lZaV49NFHG8lbsmSJV10XLVrU6PhHH31UVFZWNjomNzdXxMbGuo4ZP368D1ehZfTOK6cVPtcQ0IMlS/zPO/7YY/rqLJGoycGDQiQkNO7jRx0lxP/+J0R5eYunB/T9LioSIi3N83fs6KOV+iUaEojeho5lkpBhtL7jTba7rT2IgrvvFuKIIwKuv1ETEyPE5ZcrceLXX4Worg7KhoD46y8hsrOV2kM2W2C2HH+8EB99pGkNMIlEIpFIJBKJRGJe9H6Wa9rUWLW1taps9SsjQs0vv/zCiBEjaNu2LaeccgrXXnstt99+O3fccQdDhw7l+OOP57TTTuPrr792nTN06FD+/e9/e5T55JNPuup9VFRUkJGRwamnnsrIkSPJzMzkmGOOYeLEia7jx48fT79+/bzqeeGFF/J///d/rr8nTpxIWloamZmZjBw5klNOOYWMjAwqKioAuPjii3n88ccDuiae6N+/f4spNcIVm81mHPscDrjjjsYf2Wws6d8fhyf9kpKUFB+qq+JgyZIlOBwO1WVr3YZacoOVE4praEratv2nNkfbtvDCC8qb1vffD7Gx2rSZmKikp4mMdP+d27lTqcujY/oatTB6v9RLv1C1q0U7lZWVqtzH6u+Hga6QrLfN1/NTgUmAHUh+/XUlLaQfFAGzgKHAzl9/hS++UOLE6adDRIR/yqtBly5wyy0wb55S12jOHLjmGoiK8l3GH38oqbt691ZWmoQAo8eEYDG6fXrqF65jPaOM89TURRJazOw3o9smY56+MuXv29aJ2f1mZPuMrJuWmHYiJJxpWES8urqavLw85s6dyzvvvMPbb7/NJ598wrZt21zHJCQk8PLLL5Obm+s15UNUVBSffPIJ119/veuzjRs3MmPGDHJzc10F16Oionj22Wd56qmnfNL3P//5D8888wxRdT+m9+zZQ25uLjNmzCAvL891XGZmJnPmzFG97kpaWlpY1HIJhMjISOPY99//Nqv1UR0ZSX5aGtXp6fDTT9A0LdvDD0NKiuqqVFdXk5+fT7WGD361akMtucHKCcU1NC0PPKCkx7LblT7uqW6Impx7Lrz88j/fuaYxYckS9dNy6YDR+6Ve+nlr1+FwkJ+f73XzdXCrhX01NTWq3Mfq74eBvqBSb1tL59dPgPwJjAX8md6sBOYAVwDtgBuBTwARFxeAxhrSpg0MHQpz58KePUo9klNO8f38VavgvPPguuuUiVjc90M1flQZPSYEi9Ht01O/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bTEIoTBC2a0Un7//XcWLVrEypUr2bRpEzt27KCwsBCAxMREOnToQM+ePbnooosYOnQo8fHxfslftGgRM2bM4Oeff2bv3r1ERUVx9NFHc8kll3Drrbe6LbjeEps3b+add97hm2++YefOnVRVVdGhQwf69OnDiBEjuOiii/yW6Y1NmzbRo0cP1995eXl0795d1Tb0ID8/n/R096VX7XY7aWlpoVUIYONGpWiqpwD5zTdKYXSAn3+Gxx9Xirr++Sf42TclEjMT1PdbCLj5ZmV1iCc+/FB5Y1tlAtHbkLHMRJSXl5OVlcW8efNafOBss9kYPHgw2dnZxIX4obzR+o4n2UcB44BR+Df5AbAReBdlBchBN/vDor8LAYsXw6RJyuoVX0+Lj+f9447j7s2bKaurV1ePnv1OIpFIJBKJRCKRGA+9n+Ua4DVziTtOOOEETjjhBO666y5N5F900UWqT0ycfPLJvPzyy6rK9IXU1FQOHDgQ8nZDQUREBO3atePAgQO6pWmjpgZuv93tJEhNRAQHbrmFdhdcgCvRR58+8P33ylumGk2C1NTUcODAAdq1a0eERilGtGpDLbnBygnFNZSojMVCzRtvcGDnTtotX06Eu5hw663QvbtSfDkMMXq/1Es/d+1mZWWRm5vr0/kOh8N1bE5Ojl/tBEtNTY3rPh3Mfaz+ftiSjIZF15vqERkZ2ez8OOBB4BHAnztWNcrqj8nASj/OMywWC1xwgbJt3QoTJsAHHyhjAG+nlZYyYt06egB3Amsa7PO133nD6DEhWIxun576hetYzyjjPDV1kYQWM/vN6LbJmKevTPn7tnVidr8Z2T4j66YlMjWWJOwZNWoUCQkJequhCQkJCfrb9/rrsNL9Y56SY47hzc6dKSkpabzDYoFOnTRTqaSkhDfffLN5u2HQhlpyg5UTimsoUZ+SmhreHDCAks6d3R9QUQFXX+13PQOjYPR+qZd+Tdt1OBzMmzfPbzktrR7Rwr6KigpV7mP198P6mmNNKS8vJzMzk5SUFNLT05ttZ555Ju+99x633XYbABHArcAfwH/wfRKkCHgJ6AoMwySTIE058USYPh22bIGRI32qaXIGyrWYjDK51BBfVi15wugxIViMbp+e+oXrWM8o4zw1dZGEFjP7zei2yZinr0z5+7Z1Yna/Gdk+I+umJTI1liRsqV9OZbPZcDqdbNy40XSpsSwWCzExMTidToQQoU+vsWMHdOsGZWVud4uZM3EOHUpMTAwWiyVkagkhcDqdmrarVRtqyQ1WTiiuoaQ5wab8cfnthx+wXHop1Na6P3DQICW9jUpvdoQqvZHR+6Ve+jVt19u1bQlv/UwL++x2O926dXPdx3zRxZ199ffD3377za3tmZmZXlfINLyfXioEE4EeHo9uzh7gRZQUWP7+VAiL1Fje2LxZqUE0f75Ph/+OUh9ldYPPAr0GRo8JwWJ0+/TUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPbppZtMjRVCSktLWb9+PQcPHqSkpIRaTw+QmnDzzTdrrJkkGNQoxmlUhBD62ScEjB7tcRKEQYOw3HADNh2CucViwWazhWUbaskNVk4orqFEfVx+GzgQnnsOxo1zf+DChfDvf8N//xtaBYPE6P1SL/1C1a4W7VgsFlXuY/X3Q3eDdF9WyAgh6OJw8ApwiR/t7gGeB94GnB6OsdlsnHbaaaz0sHoy7Dn5ZPj8cyXt5YMPwrp1Xg8/AfgJeAZ4DiWNWKAYPSYEi9Ht01O/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bSkVaTG+vDDD+nTpw/Jycmcf/75XHPNNYwYMYJbbrmlxS0rK0tv9SUtMHbsWBITE/VWQxMSExP1sy83F776yv2+Nm1g2jSKS0qYPHkyxcXFIVWtuLhY83a1akMtucHKCcU1lKhPI7898ghce63ng599Fj77LGS6qYHR+6Ve+oWqXS3aKSsrU+U+Vn8/LHMzOb9v3z6vky3xwITEREaPHUsfH/XYA9yLkgLrNZpPgixbtgy73Y7dbqegoCDgGhhhxQUXwOrVMHlyizXAIoHxwHLg+CCaNHpMCBaj26enfuE61jPKOE9NXSShxcx+M7ptMubpK1P+vm2dmN1vRrbPyLppiaknQioqKrjyyiu56aabWLVqFbW1tQgh3G6A130S47JkyRLTrgpxOBz62HfoENx7r+f9//0vHHMMNpuN/v37h3wWORTtatWGWnKDlaOX71oNBw8qqzUeeURVsY38ZrFAdraSvs4TN9+s5PkPE4zeL8Mh5i1btoxly5Zp3o43HA4H+fn55Ofnc+DAAVXuY/X3w+joaL/OuwHYCtzvcNB/yRJsLehxGKV4elfgVcDT0Z07dyYtLY20tDTD9ldNiIyE++6DzZspu6TltTW9gLVAmwBq2oDxY0KwGN0+PfUL17GeUcZ5auoiCS1m9pvRbZMxT1+Z8vdt68TsfjOyfUbWTUtMXSPkhhtucL2hZ7PZGDBgAHa7nS1btmCxWLj55pspKSnhr7/+YsOGDVRVVWGxWGjTpg3XXHONK/3C9OnT9TRD4gG988ppRbA1BFThllvgvffc72vfHtauhQ4dtNdDIgk3Dh+G//0PpkyB0lKIioJt26BLF0Cj7/fvv8NZZ4GnNzlOPBFWrYIg3sgPVY0QiW+0dG0BXa59eXk5WVlZPhfHVqvvuDv+FJSVHOf7qLsTeAUllVOhD8c31aM19vf8/HzuS0/nNeBoX04YPRomTYKYGI01k0gkEolEIpFIJEZE72e5pl0RsnLlSnJycrBYLBx//PFs3ryZL7/8kgsvvNB1zPTp05kzZw6rV6/mwIEDvPjii8THx1NWVsbff//NK6+8IidBwoBBgwYRGxurtxqaEBsbG3r7Fi3yPAliscD+/XDKKZCbS0V5OQsXLqSioiJ0+qGs9tK6Xa3aUEtusHJCcQ1bFeXlMH48pKcrKalKS5XPq6qUv1XCrd9OOAFmzfJ80tatMGKE58LqOrBr1y7XioGG29atW5k9ezZbt2415Eo/vb43oWo32HaysrLIzc1t5Du17mP1cpxOT5U6FOKACcCvNJ4EqYiNZeGgQVS40WMWcCLwCL5Ngkj+4XOUSaeZvhw8dSqcey7k5/ss3+z3KqPbp6d+4TrWM8o4T01dJKHFzH4zum0y5ukrU/6+bZ2Y3W9Gts/IummJaSdCZsyY4fp/dnY2xxxzjNfjExMTefDBB/nll1/o0KEDX3/9NbfccovWakpUIDk5GavVnF3ZarWG1r7ycrjzzpaPO3QIMjOpHTmSwv37qQ3xA9ba2loKCws1bVerNtSSG6ycUFzDVkVEBLz7rvtVGdnZUPeWfrB49NsVVyjF0T3x2Wfw/POq6KAGffv2JT09vdl2xhln8Omnn3LGGWeQkpJCZmYm5eXleqvrQq/vTajaDaYdTwXL1bqP1cvxptsgIA94FKVGRUNqrVYKk5OpbaDHcuBM4Ebgr6C005aGqcYabi1NFgZ6nr8UATcBGSipxbyyZg2cfjp8+aVPss1+rzK6fXrqF65jPaOM89TURRJazOw3o9smY56+MuXv29aJ2f1mZPuMrJuWmDY11qmnnkpeXh7HHXccv//+u+vze+65h9dffx2LxUJNTY3bc7/77jsuvvhiLBYLn3/+OZdffnmo1Jb4gd7LqbRC1/Qajz4KL7zgfl9UlPJ2e1OOOAI+/1x5y1Miac289ZbnicSsLHj3XW2/37W1MHgwfPGF+/0Wi/Lw8dJL/Ratdmosf8jIyDBkIWqHw8G+fftaPC41NVX1vKtGTI3lr79tNhsFBQVur42//W3nqlX81KsXGT62vRd4GGUlSKCEIjVWS6nGbDYbgwcPJjs7m7i4uKDP8xd3NncEpgMDWzrZYlEmZx95RPm/RCKRSCQSiUQiMT16P8s152v0wJ49e7BYLJx++umNPrc0+LFVWVnp9twLL7zQ5YSZM31a7C/RkbS0NCIjm777aQ4iIyNDZ9/atfDyy573u5kEqY6MJD8tjeoTTtBQseZUV1eTn59PdXV12LWhltxg5YTiGrY6Ro4ETw87Fy6EsrKgm/DqN6sVPvgAjj/e/clCwLBhsH590HpohbuY52u9iVBQXV3Nli1bGDZsGCkpKW5XtTTd1FjZEqrvqxbteLqPDR482K8Jono59S+xOBwO8v/8k0P//S8dLrigxUmQ6shItqWl8UJkJCcS3CRIqHCXaqwhDoeD3NxcsrKyVDlPDfagrMx5BPDai4SAcePgppvAy3J8s9+rjG6fnvqF61jPKOM8NXWRhBYz+83otsmYp69M+fu2dWJ2vxnZPiPrpiWmnQgprktP0rZt20afN8xRXeypsCzwr3/9CyEEa9as0UZBiWqMHDmS+Ph4vdXQhPj4+NDYV10Nt90GHlZJ0eR7VE9pfDwzrrqK0qgoDZVz025pKTNmzKC0vg5DGLWhltxg5YTiGrY6oqPhyScbf9a2LUycqBQ0b9Mm6CZa9FtyMnz6qee2iorgkkuUAu4aE8hKCHcxz9eVF6GgtLSU3NxcFi5c6PPkjBoPnUP1fdWinaY+tdlsZGRkkJ2dHZCcw4cPk5mZyZlJSezo2pW2Tz5JpA+TjAvi45k1ciTPx8dTEpAlocVTqjF3NJwsDPQ8NRHAi8AFKBMjXpk1C/r1gz3ujzT7vcro9umpX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtrUWMnJyZSUlJCVlcXbb7/t+vz555/niSeewGKxsGrVKs444wy35998883MnDmTNm3aUFISDj+ZWx96L6fSCl1SY738Mjz0kPt97dvDunXwxhtKGouGs8U33OC9SLNE0tqoqoKTT1bq6Dz0ENx7LyQkuHaH7Pv98cdw/fWe96elwfLl0KmTT+IC1TszM5Pc3Fyf2vCG5mkBfcThcJCSkhLQw2NvqaD8JdxSYy1btozOnTsDvk2QeZPV5+yzOWfVKp4BfCm/vhcYC8z24Vh/0Do1lr+pxurbCPS8QPClraOAj1AmRbzSsaOS1q/JSm6JRCKRSCQSiURiHvR+lmvaFSFHH300AIcOHWr0+QkNUvj8/PPPHs//7bfftFFMIjEaf/7Z/C32hrz6KqSmwn/+A6tWwWmnKZ8fdRS88kpodJRIwoWoKJgzB/Lz4YknGk2ChJTrrlNy73siP19ZGXK4xdLGQZGdnU1GRobqNTL0Yt++fQG/QW+klS2hpnPnzqSlpZGWlhZUX+gGTFq1ipdoeRKkFngDOBn1J0EkvvM3cDFQeNdd3g/cswfOPx+++SYUakkkEolEIpFIJJJWiGknQk455RSEEGzdurXR52effbarTshbb73lNhfaN998w6+//orFYuHYY48Nib6SwBk3bhxJSUl6q6EJSUlJ2tonBIwa5Tk/91VXwbXX/vP36acrkyHjx8O0aRRFRjJhwgSKioq00c8DRUVFmrerVRtqyQ1WTiiuYaulZ0/Q6Dvrl9+efRaGDPG8f9MmuOwy0HApbFxcHDk5ORQUFGC3271uy5Yt0z7mBUlpaaku+oXq+6pFO0lJSXz44YdByYwE/i8piZvGjeMkH679BuBc4G6gvlWj9y2t6F+39QLSgcBLowdOLVD48MPw0UfgbSKstBQuvxzef9/1kdnvVUa3T0/9wnWsZ5Rxnpq6SEKLmf1mdNtkzNNXpvx92zoxu9+MbJ+RddMS006EnH/++QBs3bqVww3eeD366KM577zzEEKwadMmBg8ezNq1a6mqqqKoqIgPPviA4cOHu46/8sorQ667xD8+++yzoIrQGpny8nJt7Zs5E7791v2+hAR4/XWomzh0ER0NTz0FV19NXFwcQ4YMIS4utI9WQtGuVm2oJTdYOXr5ThIcfvktMlJ58DhggOdjVq6Ea64Bp1M9Jd1gs9lcKwI8bZ07d9Y+5gWJzWbTRb9QfV+1aKe8vJzzzjsvYJmnA6uBp8rLGfLZZ8R5ufblKEW6zwBWAL169Wqkh5H7li/Eo0xq+LPObB6wGOV6/AmUAcXANLWV84XMTFi2zHtKvupqGDECnnsOhDD9vcro9umpX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtqJkMsuuwyLxYIQgi+++KLRvgkTJrhWhSxcuJAzzzwTm83GEUcc4SrECXDkkUcyduzYUKsu8ZMtW7ZQVVWltxqaUFVVpZ19Bw7A/fd73j9hAtTldPdEVFQUJ510ElEhLpYeina1akMtucHK0ct3kuDw2282G3z2GXiohwUok6E33QQ1NaroGAyaxjwViIyM9KjfsmXLXCtb1CZU31ct2qmqqqJLly5+y4wBngVWAT2BqKoqTtqyhSgPfeN7oAdKke5INwXZjd633HEEcAPwDrARZXXLYuA8P2S4u+oJQGGwygXKmWfC6tVw9tnej3viCbjrLqIsFlPfq4x+L9ZTv3Ad6xllnKemLpLQYma/Gd02GfP0lSl/37ZOzO43I9tnZN20xLQTIV26dOGBBx7g+uuv58CBA4329enTh7fffpuIiAiEEG63du3aMW/ePI488kidLJD4iplnMDWdob3/fqWgszvOOUdJmdUCer1hG4p2tWpDLbnByjHD29GtkYD8lpgICxbAiSd6Pubjj2H0aCVdno4Y/a0Uh8PhUb/6OhidW5hADoRQfV+1aCcuLo7ly5f7JTPm119ZCzyOkhYLoDwujs+GDKG8ybUvBu4Aon/4ge/r0qwVFBSQk5PTyE9G71tNsRYUsB+YBdyKMslTP2j3NIXgcDjIz89v9JmnnzV+VcL76isoKfHnDO906ABLlzZOvemOadMov/56Pps717T3KqPfi/XUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPYZWTctMe1ECMCLL77IRx99xIMPPthsX1ZWFuvXr+e2227j2GOPxWazERcXR48ePXjsscfIy8ujd+/eOmgtkYSABQtg1iz3+6Ki4O23wWrq8CCRtC7atVNWfhx9tOdj3n4bHn88dDpJJE0pL4cHHiD12ms52YfDvwK6A28DnY8+WpWC7EahNiWFDR729XLzWWZmJikpKQxokgov0s2x4MdEyO7dSt2O9u3hhhuUSRE39fX8xmaD3Fy47z7vx339NSxapGktI4lEIpFIJBKJRNI6sAih8+ufEkmAbNq0iR49erj+zsvLo3v37jpqpA75+fmkp6e73We320lLSwuugdJS6NED/vrL/f5//xuefjq4NiQSiVsafr/jgYaP9lT5frfE1q1w3nlw8KDnY158ER56qNFHmselELURLL7oaIRrBYT8WgZt9+LFcNtt8OefLbZ1GLgPmNlCG950Cpam7ant9/z8fD5IT+dJN/sOAb6sV44CKj3sS0CJPy3q9tZbcOedjT9r3x5uv50dV1/NMd7S7jXAazv/+x+4eWmpEb17K5MwKSk+tSeRSCQSiUQikUiMh97PcuUr35Kwx8w57TTJ2ffUU54nQdq0geuv91mUXjnXQ9GuVm2oJTdYOeGYL98sJAP/AXbj/s1ubwTttxNPhIULIcFLueWHH4YGtRVCidHzlFZXV+uiX6i+r1q0ExUVxY4dOzzLLC5W0rJdcIHXSZCqqCi2nHQSc6Ki6EbjSRBf9TBE36qt9fnQLzx83hbo6sP5kYC7q/4XjSdhvSvhRov9+2HCBCxq9ZMHHoCcHIiObrar3u9Va9bAgAHw99/qtGkQjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bREToRIwp5wyvntL6rnNF+9GqZM8by/rEwpZDp5sk+Fk2WNEP3kyhyqYUhREUmvvIIdeBJIBMb7KUIVv51xBnz+OcTEeD7m9tvhk08CbyNAjF7HwVuNEC0xbY2QhQuVFYrTprUoZ0dcHB8OGcJtcXHsD1APXfvWoUPwzDPKZGRhoU+nrAbcPfY/BHTx4fwKIBqwoKwAOQ6l0PrNPrUOVFQoaanccc011LRv76uklsnIUNJgJSU1+rhRbZj166FvX9i5U712dcbo92KZL18/mbJGSOvFzH4zum0y5ukrU/6+bZ2Y3W9Gts/IumlJq0mN5XA4WLhwIcuXL2fnzp0UFBRQU1PDd9991+g4IQQVFRWA8vag7m8OSjyi93IqrdAsrUpVlTLJscFT1vEmnHOO8la4twLLEonEN2bNgnvugYKCZrvOA35Eh/RP8+bB0KGeJz2jo5VUNBdeaIh0TzI1lu96gMFTYx0+rKwCmDHDJ9kzgbEoEwCeMGpqrDbAzvvvJ+Wdd/4pOD5xIjzyiFf59fKmA+cDC4CfgJXAdnVMABQ7UlNT2bdvX6PPU1NTsX33HVxxhfsTly4lv0sXn6+vz/1u40a4+GJl1YknjjkGvvsOuvqyLkYikUgkEolEIpEYBb2f5XqqoWgqXnrpJV544QUOHfrnJ7QQAovF0uzYw4cP06VLFxwOB7169eKnn34KpaoSiXa89JLvkyAAP/0EPXvC2rVw0kmaqSWRtAratXM7CQLwHNAvtNooDB4M774LI0e6319ZqTwEzc2FU08NqWoSEzNnDtx9t08pjnYDo/CcIsrojAb+DaRMmtR4x5QpMHas21RQTbkLZWVHoNhsNk477TRWrlzpdn9mZibr16/H4XA0O2/C6adzb/v2WJpOSpxyirIyw1OazWA45RRYtgwuvNDzyo+//oL+/WHJEjkZIpFIJBKJRCKRSHzG1KmxqqqquPzyy3n00Uc5dOgQQgjX5om2bdsyYsQIhBCsXLmSbdu2hVBjSSA8/fTTJCcn662GJiQnJ6tj3x9/wHh/k/CgvJXpZUVIYWEh48ePp9DHNB9qEYp2tWpDLbnBytHLd62Wiy+Gc891u+t84HIfxajutxEjlELFnnA44Oqric/NVae9FlAt5mlEaWmpLvqp6fddu3aRn5/faKt/CK5FXEhOTmbGjBkU/v47XHMNXHedT5Mg7wDd+WcSJNi+oUffOh9wmzxqzx746COfZAQzCbJ48WIKCgrIycnxeMzKlSubTYKAspJ67M8/M/z885WUVTfeCPVpxcaMATcvE7mjI9DZX8WPPx6WL4fjj6cwOZnxTz9NYVO/7dqlTIZsV3N9TOgx+r1YT/3CdaxnlHGemrpIQouZ/WZ022TM01em/H3bOjG734xsn5F10xRhYm699VZhsViExWIRsbGxYtSoUWL27NliyJAhwmKxCKvV6va8H3/80bV/ypQpIdZa4it5eXkCEGlpaSIyMlLk5eXprZIq2O12AQhAREZGuuwDhN1u919gba0Q/fsLAe63du3cf56cLMTu3V5FV1VVCbvdLqqqqgIzNkBC0a5WbaglN1g5evmuVfPdd26/aztBDPbx+62Z3554wnOMqNvG1cWlpltAcckNdru9WcxTu41g2bZtm1v9GurYMIarda2a+r2lNrztd7fZbDaRkZEhioqKAu5fntqMjIwU655/XlS1bdtiHxMgxDHHiL3vv+9Wjqdr7+naerufBrs1bc+d/V1BVHqys0cP5f7s5/UMRMdgZNlsNlFRUaEoVVgoxCuvCFFa6rPcmSBKQRwaN06Iykr/OtXevaLqtNOEPS1NVEVGur+ORx8txPbt/sk1EEa/F+upX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke3TS7f6Z7n1W6if5Zp2RciaNWuYPn06FouFzp078+uvvzJ16lSuu+46Onf2/m7aOeecQ1JdscZly5aFQl1JEOTn51NdXa23GppQXV0dvH3Z2Ur6CHckJSmpr954A9q0abxv0iTo2NGr6MjISNLS0oiMDG2WvVC0q1UbaskNVo5evmvVXHABFQ1WhRQC44ATgHk+itDMb888A6NGeT3keWASSuFlrVAl5mlIRESELvpp/X11OBzk5uZyxx13qNpOGvBVdTWnPfYYkYe8Vfio4557IC8PR9++zXYF2zf06Fvbgbc97bTb4fffQ6ZLoDgcjn/qhyQlKT5qOl7wwOnAcJQ6KUdMmAD/+pey0sNXUlOJ/P570o46ikhPftu5U1kZ8uefvss1EEa/F+upX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtqJkOnTp7tSYH3wwQec5GeNg549eyKEYPPmzVqoJ1GRzMxM2vj4ozzcaNOmTXD27dsHDz3kef+LL0KnTjB6NOTlwQUXKJ9feqmSMqcFysrKyMnJoaysLDD9AiQU7WrVhlpyg5Wjl+9aOwXjxlEBvAx0BSbyT+obdymLmm6bN28mOzubzZs3N0trFBQWC7z2GmRleT1sLErh6qjgW3RL0DFPYyoqKnTRL1Tf12+//ZYPP/ww6HaswL1AHnBOmzbkZGZS5u2aHX88/PADvPIKxMe7PSTYvqFX3/oPUBsb+88Hycnw7LPKA3wvqSeDxWazkZqaqpl8X5jQ9IO8PKW2SFYW+DIxBpTFxJBzzz2U9e/v+aCdO2HAAGVyKcww+r1YT/3CdaxnlHGemrpIQouZ/WZ022TM01em/H3bOjG734xsn5F10xLTTvssXrwYgB49etCvXz+/z69fNbJ7925V9ZKoT2FhIbW1tXqroQm1tbXB2XfvveAp39/558Ott/7zd1oaLFoE77yjTIT4kP/barWSnJyM1RraOdVQtKtVG2rJDVaOXr5r7VT26EFn4LCbfX3dvAXflNjYWPr168eYMWOoqFCmUGw2G4MHDyY7O5u4+hz+gRARoXz/27eH55/3eNgNwJHAUKA08NbcEnTM0xir1aq6fo3euPdAUlKSX9/X1NRUbDab35NkFRUVlJeXs2vXLmJiYhrJ8pWTUep7nFMvs7aW5MJCrO6uWUQEPPwwPPUUNJwscEOwfUOvvrUfKM7KIvndd+G+++DRRyElRfN2Bw8e7Jff/MXhcJCfn+9x/0XAQE87P/oIHnkER5s2zfp+0/5mtVpJPvJIrLm5cPXV8NNP7mXu2KFMhixZooxnwgSj34v11C9cx3pGGeepqYsktJjZb0a3TcY8fWXK37etE7P7zcj2GVk3TQlpIq4QkpycLKxWqxgxYkSzfWPGjPFaI0QIIUaNGiUsFouIiorSUEtJMOidV04rVMsv//nnnnOwx8QIsWWLZjZIJBL3qJH339OWkZGhnqKTJ7dYy2EViCP9jUte0KK2htr4oqOvdpSVlYmMjAxhs9l8qtOQkZEhysrKfG4jIyNDlX7VtG2P12brVvEECEcL/ca19ewpxJo1fl9nf/qIVt+380H89euvPreVv2GDELt2+dbJfJDXq1cvj/3Gnb+CvQ7+9lsLiDVefO+cONGjDK/9rahIiD59WqwxI/76y69rLZFIJBKJRCKRSEKD3s9yTTvtU/8WZKBvw5WWKu+5xntI0SAxDj179iQ6OlpvNTQhOjo6MPuKi+Guuzzvf/JJVVJyVFZWsm7dOiorK4OWZbR2tWpDLbnBytHLd5Lg8BYT5s2bp06aLFDeXJ81C7zkCz0LWA5E7tqlTpsEEfNCRFVVlWr6ZWVlkZub65PPamtr2bp1K7c2XMXXAtnZ2WRkZPg1DnJ3/evrh2R5S5u2dCkdL7+c/wIxTXZVRkezrmdPKutlxsTAc8/BqlVKzYggdPMHNfpWDEpau6VA2//7P+XRuw+IhAQlDaVK5OTkUFBQgN1ub7YVFBSQk5MT3OowL/jSby3AdKDI3c5+/RixZo1HGU37W6N7VWIiLFwIvXt7VvCvv+DCC5XUoGGA0e/FeuoXrmM9o4zz1NRFElrM7Dej2yZjnr4y5e/b1onZ/WZk+4ysm5aYdiKkXbt2AC2mm/DEli1bGsmRGJf+/ftrmv5BT2w2W2D2Pf44eHo4ecopSioSFXA4HCxZskS9h68GalerNtSSG6wcvXzX2vE3zVBTvMUEX1Is+cUNN8CXX3otjHwikDp0KGzYoEqTAce8EFFZWamKfg6Hg3nz5vl8fP11+eqrr9iyZQu7fJh8iouL8/jAvD59qKd23NnndqLt77+VelL9+xO9bZtbmQ6bjSX9++Ow2eCcc2DdOnjsMYjyr9JMsH0j2PNPA9YAD9T93earryAnJyBZamCz2UhLS2u2aZ0Oy5d+Wwu8BpwEfNRwR5s2OKdN47PPP29RRn1/a3avqp8M6dXL88nbtsHAgXDYXRJCY2H0e7Ge+oXrWM8o4zw1dZGEFjP7zei2yZinr0z5+7Z1Yna/Gdk+I+umJRYhfHydLcwYOHAgixYtol27duzZs4eIiAjXvnvuuYfXX38di8VCTU1Ns3N37tzJscceS21tLcOGDWPmzJmhVF3iI5s2baJHjx6uv/Py8ujevbuOGqlDfn4+6enpbvfZ7XbSWsp9/dNPcN557t9UtVjg55+9P0CQSCSakpmZSW5uriayfYoR/rJqFTWDBhFRUOD5mKQk+Owz8FbQuAWCjn0+4M9kkbtJK1909HbMsmXL6Ny5M/n5+QwYMMA/5X3El2vlcDhISUnxe9Drkl1bC+++q9S78NYv6qiNi8M6caKyUtGHHLTermGLugUpxx23Aa8CzaYYkpOVAuCdOqnef9WUF+x18KVve+Mi4Ku0NKIee4z8gQN9luHVzqIiuOQSWLnSs4CzzoLvvoOEBL91lkgkEolEIpFIJOqj97Nc064IGTRoEAAHDx7k/fff9+vcJ5980jVBcskll6ium0RdbDYbFh8Ke4cjFovFP/ucTrj9ds/pOu65R9VJECEEDoeDUM+nhqJdrdpQS26wcvTynSSwlEX1+B0T1ODss9n78cf85e2YoiK46CKlyHoQxai1sq+8vJzMzExSUlJIT0/3aUtJSSEzM5Py8nKXHCFEUPr17duX9PR0vydB1L4uNpuNwYMHB9bOhg3KZPsdd/g0CbLAYuHPL75A3H23T5Mgngj2GgR6fgrwLG4mQQAKC+HWW31OkdVaWQTsWbhQGZ/4icd7VVISfP01nH2255NXr4Yrr4SKCr/bDRVGvxfrqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JuWmLaiZCRI0eSlJQEwAMPPMAvv/zi03n/+c9/eP/997FYLHTs2JHMzEwt1ZSowLhx41y+NhtJSUn+2TdxIvz2m/t9UVFw9dXqKQcUFRUxceJEiorcZgLXjFC0q1UbaskNVo5evpN4T1lUv+1YsYKDTz3V7PMNGzboEvOqu3blHGCjt4NqapS0fJdfDgcPBtSO3zHPR/ypx1GPu9oYZWVlulx/La6Luwk5b+3EA5GPPYb417+UlYUtcBi4GbghKYlZP/wQdKwJ9hoEen4BcANKuie3fP01/PBDi3IcDgf5+fnNttayFF3ExCirUn1kBJDy3/9SdOiQ53tVUpKSJuvUUz0LWroUhg4Fg+Y+Nvq9WE/9wnWsZ5Rxnpq6SEKLmf1mdNtkzNNXpvx92zoxu9+MbJ+RddMUVUuvG4zXXntNWCwWYbVahc1mEw8++KD45ZdfxO233+76vKioSGzZskW8++674swzzxRWq9W17+OPP9bbBIkX8vLyBCBSU1NFRESEyMvL01slVbDb7QIQgIiIiHDZBwi73e75xN9+EyI6Wgjl3VT3m9UqxKOPClFRoYqu1dXVYu/evaK6uloVeUZqV6s21JIbrBy9fCdpgcJCIR5/XIjYWOU7u2hRo93V1dVizZo1rpjQdPMaI4KgPi4lg/jBW4yp3zp1EmLZMr/baBrz1LCroqJC2Gw2t9fLl81ms4mKupi5bds2t/o11LFhDA9kW7x4sdi8eXOjzzxdF2+6+nN97Ha7sNvtYtu2beKrr75q1I4FxAgQe3zxe902A8RRDXRfs2aNX7HG3TVs6Rq46yPe7qf+bk+5s7VDByG+/LJFv/fq1ctjH7TZbCIjI0OUlZW1eA0C/T4E2yd96dvu+m2g34+TQJTWXePqCy8Ue3/7zXv/2bdPiBNO8N4vr71WiKoqv65bKDD6vVhP/cJ1rGeUcZ6aukhCi5n9ZnTbZMzTV6b8fds6MbvfjGyfXrrVP8ut30L9LNe0K0IA7r77bu69916EEFRWVjJp0iTOPvts3n33XQCEEKSkpNCtWzduv/12fv31V9eSoCeffJJrr71WT/UlPrJv3z63tV7MQE1NjW/21dYqKSdaeuOxtlZZNXL66T690dsSERERpKamNqrBEwpC0a5WbaglN1g5evlO4gGnE6ZMga5d4bnn/knl8uijjVJNRUREcMQRR+gW8wqBgUCL5ZJ371bqhUyc6FeqLJ9jnh/s27cv6GKz9XVFIiIiWtTPXW0RX7HZbPTu3ZuTTjqJjIwM1+e+XpfBgwf73XbDottdu3bl5JNPdrVzLrAKeA/o4IOsLcAAlLf5/26g+xFHHBF0rAm2bwR7/n+Bbxv8XXbppbBxI1x2WYvnrly50mMfdLfyKBxRq1C7DZgNtKn7O+K770i99FIi1q/3fFL79rBoERxzjOdj5syBO+/EaGnMjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bTE1BMhAJMnT+add94hKSkJIYRrosNisWCxWFyf1W/JyclMnz6dp59+Wl/FJT4zcuRI4uPj9VZDE+Lj432z76234McffRe8ZQsMHKjkNw+C0tJS3nvvPUpLS4OSY8R2tWpDLbnBytHLdxIPjBwJY8fCoUONP1+zBmbPdv1ZWlrKwoULdY15DmAo8HpLB9bUwLhxcMUVPqfK8jnm6URFRUWL+nmqv+ELDScyGqauaum62Gw2MjIyyM7ODqjdeur710nx8eQAy4EzfTivAjhw332cBixpsi8+Pp6FCxcGHWuC7RvBnl8L3AjYgbuAA6+/Dm3bBiTLHfPmzTN9mqz69GDemASc0uDv0vh43hswgNKBA2HWLM8nHn20MhmSmur5mOxseOIJf1TWHKPfi/XUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPYZWTctMf1ECCi5wXfs2MHkyZMZOHAg8fHxjSZFYmJi6Nu3LxMnTiQ/P58RI0borLHEH/Lz86murtZbDU2orq5u2b7du5W3xv3l2WchOTlg3QAiIyNJS0sjMjIyKDlGbFerNtSSG6wcvXwn8cA993je98QTrtVekZGRpKam6h7zaoAxwDCgtk0b7wcvWKCsQvNhstanmKcjERERPunnrv6GN9xNZDSsJbNmzRoGDx7MmjVr3NaUKSgoICcnh7i4uKDsi3Q4OGHXLn6uriaj5cMBWAD0ADYNGYK7NYnV1dWkpqb6FWvcrarx1jdsNhup3h6At3C+r/wNnARMBb/qXfhCw5VHZiQzM5OUlBQGDBjg8ZjrgFFNPousriYtP5/IsjJlYtgbxx0H334LRxzh+Zjnn1dW3xkEo9+L9dQvXMd6RhnnqamLJLSY2W9Gt03GPH1lyt+3rROz+83I9hlZNy2xCGGwNeIhoqysjKKiItq0aWPaQttmZ9OmTfTo0cP1d15eHt27d9dRI3XIz88nPT3d7T673U5aWlrjD6++Gj77zL2w9u1h//7mn593nlJA1Noq5kIlkvDA23f5rbeU9HcEECNUwFubO7/7js733w8bNngXEhGhpP166CG3sUcru7zJXbZsGZ07dwZg165d9O3b12v7/uro68PtYNJpqUJtLXzwATz2GOzd69Mpu4GxwJy6vxcvXuzxIXcg/svMzCQ3N9enYzMyMsjJyWn2ucPhICUlxetKi47AHpSVwgC+DIttNhsFBQWNfOatb/iK3W4nNTWVffv2+dQffSVY3TZv3ozNZmtRJyCodi4EcgG362wuuEApTO/LD7VfflGOLynxfMysWXDDDYEpKpFIJBKJRCKRSAJC72e5rfYpaJs2bejYsaOcBDEBvXv3JiYmRm81NCEmJsa7fZ984vnBaWys8gb2J58oEyL12GxKeggVJkGcTicrVqzA6XQGLcto7WrVhlpyg5Wjl+8kXnj++ebfyyOPhFdegbqVik6nk99++81QMa/62GNhxQq44w7vB9bUKKvXLr4Ytm51e0iLMU9lOnfu7KqPUT8h4o3Kykq/9GtYf8Pb1tIkiGbfVyHgiy+gZ08YORLn4cOs6N0bpxf7nMBE4GT+mQTxRkxMDL/99pvfujddVeOub7SUEqxhmjJ3598D/AlcBFx//fVcf/31PukWSC0WX6hfNZGenu5xwkEPTj755JDo9B1KKraG1UCcMTGsuPRSnB984NskCMCZZyr92puPRoxQJlZ0xuj3Yj31C9exnlHGeWrqIgktZvab0W2TMU9fmfL3bevE7H4zsn1G1k1LWu1EiMQ89OzZk+joaL3V0ITo6GjP9hUWwt13ez55/Hil8PLVV8OmTTB8uPL5s8/C8cerol9lZSXr1q2jsqUi7SoTina1akMtucHK0ct3Ei+cdBLceqvy/7g4+L//g+3blbRZdTGgsrKSbdu2GS/mxcbCm28qb1m3VIPh++/hlFOUlF/l5Y12eY15BqC6uloX/TT5vv7wg7I68MorlaLfQGV0NOt69qTSg30Hzz+fbsA4wMu79o2Ijo5m27ZtfuveMDWY3W7n119/ZdiwYfz6669+pQSrn1BJSEhw+c4C/A94BYgBPo2KYvpjj7WY0kytWiye8FZUvbWQD5wDfFT3d2VCAusuvpjKhAT/BJ1/PuTmen7po7oahg6FVasCV1YFjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj22dk3bSk1abGkoQ/ei+n0gqfU6/ceaeSLscdp5+u/Lhv+vbk4sXKw4GICPUUlkgk6rFnjzJZ+X//Bx06uD3EaKmxmrW5dStcf33LqbIAjjlGWfFy1VW6pMZqKNeX4/S49qqzYgU8/bR/b8OfeipMmkT+scd6tF/t1FhqU5+mzOJ0cuT999NmwYLGB5x4IqxcCUlJHlOaeUthpkZqLF8JdWosX1AjNVZTDj3+OEd06/bPixyB8O67cNttnve3bQvLlysT0RKJRCKRSCQSiURT9H6WK1eESMKe5ORkrCatdWG1Wt3b98MPnidBrFZ4+233KSQGDFB1EqS2tpbCwkJqa2tVk2mUdrVqQy25wcrRy3eSFujYEV5/3eMkSG1tLaWlpcaOeSee6FuqLIC//oLBg+HKK4ncudNzzNOZXbt2kZ+fz44dO3TRT5Xv648/wsCB0KePx0mQWquVwuRkauvta9dOWenz669KzYUAsFqtlJaW6h7zoqOjSY6K4ug77mg+CQLKBF5mJtTUeExppmsdlzp8KQwfaup1UrvWzd833cSfffqQl5fHn3/+SX5+vv8rZm69ValN5IlDh+CSS2DXruCUDRCj34v11C9cx3pGGeepqYsktJjZb0a3TcY8fWXK37etE7P7zcj2GVk3LTHWkwaNqKioYM6cOTzyyCNcd911XHLJJVxwwQU+bRdeeKHe6ktaYOzYsSQmJuqthiYkJiY2t8/hcBVNdssDD8AZZ2ivHFBcXMyUKVMoLi4OSXuhbFerNtSSG6wcvXwnCY7i4mLmzp3rMebVP7D3ddMsDU99qqyZM6FNm5aP/+ILOl58MY+7i3kGoG/fvqSnpzN48GBd9Av4+yqEshLwwguVNFjffuu9ncREpowdS/ERRyhF7f/4Q5nQCmICPTExkblz5xoj5r3zDsXeVlIsXAjuJkkMhFb1SYKhXqeGNVlaolevXtjtdjZv3uzxmJNPPpkzzjiDuXPncsYZZ5Cenk5KSgqZmZmUN0mrByjprtwtdB83Du67z7MyO3bApZcqKUdDjNHvxXrqF65jPaOM89TURRJazOw3o9smY56+MuXv29aJ2f1mZPuMrJumCBNTW1srJk6cKBITE4XVavV7s1gswmq16m2GxAN5eXkCEMnJycJqtYq8vDy9VVIFu90uAAEIq9Xqsg8QdrtdiP/7PyGUn/rNt/R0IcrKQqZrTU2NKCgoEDU1NSFrM1TtatWGWnKDlaOX7yTBUVNTIzZu3OiKCcFuNptNZGRkiLIW4kbDuNR0s9vt3pXeskWIvn09x60GW43VKtYkJ4tBTexrsQ0VdPd2nKeYrJaOLeH397WqSoiPPhLijDN8uu4Nr3/B8OGiZutWt2K9XaPFixd7vGYbN240TswrLxdiwIDm9kdGCpGdHbB+vvSfUHxXQ6mbO53KyspERkaGsNlsPp3Tkm6evnMZGRlNHSxERoYQY8Yo/29KTY0QN9zg/TswYIAQTqff1zcYjH4v1lO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKX/ftk7M7jcj26eXbvXPcuu3UD/LdZM7xzzceOON5OTkIGQZFFNTqMMbfKGifqlaPVFbtsCECZ5PePNNpchyiKhPYxNqQtGuVm2oJTdYOXr5ThIcVquV+Ph41ZavOhwOcnNzAcjJyVFFZjNOPBGWLoUPPoCHH4a///Z4qLW2ln8VFrIAWAU8B3yujVYB0TQmhwqfv68lJZCdDZMmKWnH/GHQIKzPPkvyv/4VkI7uamqAcs3i4+ODTiemasz79FPo29dVJJ74eJg7V0kdZjCWLVtG586dVU87FQzedKovch9InRV3ePrOzZs3D4fDocgSAu69VymODnDwIMyYAdHR/5xgtcL06UoqLE/1cRYvhqwsJVZZLD7rGAxGvxfrqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JuWmLa1FgffvghH330kevvE088kSeffJLc3Fy+/fZbFi9e7NP2/fff62iFxBdGjRpFQkKC3mpoQkJCgss+K3DkY48pqR/ccfPNcPHFIdWvpKSEadOmUVJSYrp2tWpDLbnBytHLd5LgKCkp4fPPP1c95tU/VNQMi0WJUVu3wt13e3zIWJKQwLRRoyhJSOBs4DNgI9Dmk0+gqko7/fDtAW3DmNwQres2tPh93bgR7rpLqTEzdqx/kyB9+sCSJbBgASXHHx9wXBg2bJjbzxMSEvj888+NFfOSkuCrr6BTJ0hNhWXLDDkJAtC5c2fD1Cepxxed1Kqz4uk712ii5ZlnlNpK9eTkUHHRRfy1aVPjuBYdDXPmwNlne25w1ix44gm/dAwGo9+L9dQvXMd6RhnnqamLJLSY2W9Gt03GPH1lyt+3rROz+83I9hlZNy0x7YqQd955x/X/+++/nxdffNFwxVcl6rBu3ToqKyv1VkMTKisrXfbdBcSsW+f+QKtVKfYZYqKjo+nZsyfRDd+6NEm7WrWhltxg5ejlO0lwREdHc/rpp2OxWIgAalSSW/9QMc1b/QQ1SE6G116DW25RHtyvWtVod3RlJT3XrSO6QUzvDvDgg/Dqq8qKkltuUWqQqEx9fYP6FTLuaBiTG6J13Qa331enU3moO3WqUgjdX845B/79b2UCvW5iSou4UFlZyXHHHWe8mNe5s7IyoE0b0Lrf60z9JJ+mk50a4ek752LqVKUfNyF22TL29ejBuTExnDdkCNnZ2cTFxSmrf778Uun/f/zhXubzz0OXLjBqlIqWuMfo92I99QvXsZ5Rxnlq6iIJLWb2m9FtkzFPX5ny923rxOx+M7J9RtZNSyzCpHmjjjzySAoKCkhPT+ePP/7AEqIl7pLQsWnTJnr06OH6Oy8vj+7du+uokTrk5+eTnp7e6LOjgd+A+JZOHjFCSYmSkqKRdhKJRHcOHeLLc86h4++/cxbqTYbY7XaPEyHu4pIv53mlthbeeUcpZFxQ4Pt57dvD/ffDnXcqEyst4I/u5eXlZGVl+bxCpn7yxPWQVWuEUCY9Zs6E2bP9u271nH++8uB4wAC/0/94u5beCLiPhBGBXpuWUOvaZWZmep3k8wc1/RnMdduxYgVH9+8PHr6rJUA/YC2QkZHROP3f9u3KaqgDB9wLt1rhs8/gyisD0k0ikUgkEolEIpE0R+9nuaZdIlH/AKNv375yEsTk9O/f31ApI9TEZrPRv39/XrXZWp4EASUndvfu8Hlosuo7HA6WLFkS8rdMQ9GuVm2oJTdYOXr5ThIEFRU4nn+eJcOHc+GOHZwO3BsZxgs7rVa44w4lXVZWFgAOm40l/fvj8BbT9+9XJk9SU2HoUPjkE48PQv2lvr5BQUEBdru92bZ161Y+/fRTtm7dit1up6CggJycHM0nQRwbNrDk3//GcdJJSm2LN9/0fxLkssuUFFhLl8IFF7idBGkpLgRSpyIpKYlt27aFLubVuJ8abO0xLzs7m4yMjLAbL9WPg9zpvb2igtKcHNwt5q8ErkaZBAE36f+6doUvvvC8uqy2FjIzm61aUxuj90s99QvXsZ5Rxnlq6iIJLWb2m9FtkzFPX5ny923rxOx+M7J9RtZNS0w7EdKlSxcAmQ6rFZCWlkZkOD8M9EJkZCRnpaVxoT/27d2rvO3r4WGQmlRXV5Ofn0+1p7olYdyuVm2oJTdYOXr5ThIg06fD8cdT/dxz5HfoQHVdTHg5Pp6/fvnF7UN7d9uyZct0NsQN7drBu++y55NPWBgZSX5amss+rzidyiTI0KHKpMitt8L336sS+zzVN+jYsSOFhYV07NhR27oNNTXKyo9HH4WTTqL63HPJ37GD6j17/JMTHa1MMuXlKemA+vXzenhLcaF+BYw/XH755ezatUv7mCcEPPkkXH+921parT3mtTTJt3nzZr1VdEtkZKTHcd6AAQNIGDKEAUDDdR21wHDguwafuS3efvbZSoF1T78VysvhiiuU1SMaYfR+qad+4TrWM8o4T01dJKHFzH4zum0y5ukrU/6+bZ2Y3W9Gts/IummJaVNj3XLLLcyYMYPevXvz008/6a2ORAP0Xk6lFQ3TRKQAm4H2/giIjITVq6FnT/WVk0gk+nDTTUo6JHfccYeyQsAHAk1xpUlqLA9t9ATGAdcR4NsaHTsqb3IPHQpnnkn+nj2a664K+/crqzW+/hrmz/ecsscXjjwSbr8d7rkHOnRQT0d8Tx8W0rRhQsBDD8H//qf8PXIkvPuu5wfcGmD01Fgt4Y/+RkmN1ZDjgW+BY4DRwDQ3x3jUe9o0GD3ai/Dj4aeflO+VRCKRSCQSiUQiCRi9n+WadrnEmDFjAFi9ejV5eXk6ayPRktTUVCIiIvRWQxNejIhApKZS486+9u3d53d//PGQTYLU1NSwb98+akKw+iTU7WrVhlpyg5Wjl+8kAfL88xAXR01EBPuaxoS334Zff9VPNxWJqLNveEQEJwJvo6S48Ys9e5QH4ueeC8nJtL/xRp4EzgeCXb+h6vdmzx7IyVEKMp98srKqJSMDsrObTYK49bs7zjsPZs2CXbvguef8ngTxxb6WVhbUb/Vpw2JiYrSNeUIoNWPqJ0EA3ntP+azBuz4y5oUnERERPo3z/gDOAUbhfhLEK6NGwWOPeRH+B1x1FVRU+Cu5RYzeL/XUL1zHekYZ56mpiyS0mNlvRrdNxjx9Zcrft60Ts/vNyPYZWTctMe1EyBlnnMGoUaOoqalh2LBhHDp0SG+VJBoxatQoEhIS9FZDdS4AhiYk8OaoUZQ0tS8yUnlreNky5U3Fek45BZ54ImQ6lpSU8Oabb1JS4i5Dd3i3q1UbaskNVo5evpMESOfO8MQTlLiLCSeeqKSJMgEJCQmumL4NuAM4FijKyoJAVhVUVBD744/8B1gKFAI/AP8FMoDojRuhuNhncQF9b6qqlNRUs2bBI4/AJZcoExSdOsGwYcpqni1bvLfr6V4AkJgId90FGzYo94QbboCYGN/1a9iOH/Z5Sh9Wv9WnDdM05gkB994LU6Y0P+GVV+DppwOyTWIcGsaEltgD+LY2zg3PPgvDh3ve//PPyv7a2kBbcIvR+6We+oXrWM8o4zw1dZGEFjP7zei2yZinr0z5+7Z1Yna/Gdk+I+umJaZNjQVQW1vL6NGjefvtt2nfvj1PPPEEQ4cOpYPKaSIk+lC/nMpms+F0Otm4caNpUmN1S09nA9DVYsEZE0OM04ml4Vf1sceUt31BeUPxqaeUhz4//QRnnBEyXYUQOJ1OYmJisLhbnRLG7WrVhlpyg5Wjl+8kQeBwILp3x7lnjxITEhKUB71jxkBUlE8ijJ4a69hjjyUmJgan00nD4YndbictPh5efVVJebR7d9DtNeKoo+C445SJ5eOPV1ZnJCQ03hITEW3a4HQ4iKmpweJwKEXaKyqUrbhYWYmxaxfs3PnPv7t3K5MhQSCa3gsiI5Xi5zfdpNQwUKlWiRZxQdOYt3kz/Otfih/cYbUqE0Tdu2se82RqLG3atVgsbmNCIDTVu1ndkMpKjr7jDiKWLvUs5MEH4aWXgtKjIUa/F+upX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke3TSze9U2OZs8J0HVarlTfffJOTTz6ZBx54gPvuu4/77ruPpKQkkpKSfHK0xWJhu4ZFEiXB4y1Hebjyb+A4ACGwNbXv+OOVgrD1xMbCiy8qaUA6dgyhlsr3Q7NiwTq3q1UbaskNVo5evpMEgc2GZfJkbFddpRTAfu45JUWeiRBCeI7pRx4J48crE78//AAffghz5kBhYfAN//23srVQU8xC8Om1AsEiBDanE/r0Ud5Kv/56TeoVaBEXNI15J58M8+YpaYuaroqKjISPPoK6QbWMeeGJ15gQIPV1brZ/+ilUVvJLg33tY2JYlZREl6Ii9ye//DJ07eq9pogfGL1f6qlfuI71jDLOU1MXSWgxs9+MbpuMefrKlL9vWydm95uR7TOyblpi2tRYAFVVVYwePZpHH30Ui8WCEAIhBIWFhezYsYO//vrL65afn09+fr7eZkhaYOzYsSQmJuqthmpEb9rEg3X/L05MZPLYsRQ3tO+tt5TJj6aEeBIEoLi4mMmTJ1PsR2qZcGlXqzbUkhusHL18JwmO4vPPZ/ILL1A8aZLpJkEAEhMTW47pEREwYIBSG2XfPvjkE7j22oDTQfmD25isJTYbXHEFxdOmMfnFFylesEBJg6VR0WYt4oLmMW/gQPj0U4iO/uezqChlkuzaa1XXQxJaGsaEzZs3Y7fb2bRpE7169QpYZlZWFptzc1lQWcm3QMN1tPudTs4tKuKQu3FWPWPGwIIFAbffEKP3Sz31C9exnlHGeWrqIgktZvab0W2TMU9fmfL3bevE7H4zsn1G1k1LTLsipKamhsGDB/P1118DNFtOb+KMYK2OJUuWmGdVSHU1bR97zPXFtDkc9F+yxLUqpOT660no31839Zpis9no379/yGeRQ9GuVm2oJTdYOXr5ThIctthY+l98sWn95nA4/IvpMTFw9dXKVlSkPBDPzVVqZZSVqa5f05isCV27Qv/+cPnlykP+Nm2wVVbS/7ffNPe7FnEhJDHv0kth7ly45hqwWJT/X3GFJnpIQkvDmFBflwZgxYoVzVNb1R1/8skne5Vn//RTvgPqpxO/BS4Cfq37excwqKaGVQkJWNzlTK6tVVZlLV8Op50WlH1G75d66heuYz2jjPPU1EUSWszsN6PbJmOevjLl79vWidn9ZmT7jKyblpi2RsjUqVO5++67XStBLrroIoYNG8Ypp5xCSkoKkZG+zwEdc8wxGmoqCRS988ppwssvw0MPud21D6hct44uQf7olkgkrRej1wjx1MayZcvo3Lmzx3NTU1MbD+CqqmDtWli6lPKFC6n8/nuSg9ZQI044Afr1UyY/+vVTiqhLAmPePGU1yGWXhbzpcK8R4nA4SElJaXES0mazUVBQoNoPJrVrk7QUq6I3bSLmiito22TfYZTJkLUNPtv73nuk3nor1NS4b6xzZ1i5UpcVuRKJRCKRSCQSSTii97Nc06bGmjFjhuv/L730Et988w233HILZ555Jl27duWYY47xeZMYm0GDBhHrLYVBuPDnn41rfwAVsbEsHDSIithY7gFqk5L00c0DFRUVLFy4kIqKCtO1q1UbaskNVo5evpMEh9n9Fhsb6zam9+3bl/T0dI9bSkoKmZmZlJeXKydERcHZZ8PDD/P3u+/SFugJ3AfMAX4DmlSU8ImGMdlvIiPhlFPgxhuVuk7ffAP798PWrUrKwxtu8DgJEiq/a9FOSGPe4MEeJ0HM/t0JFpvNxuDBg1s8bvDgwaq+NdZsErMJ9TEhOTmZ1NTUoNrav2wZ7YcPbzYJAnAEsAg4qcFnjn794PXXPQvctUtZeVRaGrBORu+XeuoXrmM9o4zz1NRFElrM7Dej2yZjnr4y5e/b1onZ/WZk+4ysm5aYNjXWpk2bsFgsdOvWjQceeEBvdSQakpycjNUa5nN6QsCoUdAkANVarRQmJ/Ol1coc4EV9tPNIbW0thYWF1NbWmq5drdpQS26wcvTynSQ4zO43q9UaUEx3OBzk5uYCkJOT02x/LbC+bnulvi0gf9kyjnY64Y8/lG3bNsjPV9JslZQoW1XVP3LqYnKtO/1iY6FDB+Ut8aOPbvxvWppS2LthHQs/CJXftWhHxrzwITs7G4B58+Y1WxlSP1FSf4xa1Mut//42pT4mXHbZZUFPwPS9+WZygas97F8J2Jt+eOedsH27MnnpjrVrlUnMTz9V6hf5idH7pZ76hetYzygxT01dJKHFzH4zum0y5ukrU471Widm95uR7TOyblpi2tRYCQkJlJeXc8stt/DOO+/orY5EA/ReTqUqH3wAN9/sdpcAHgZeJnQpMiQSiTkJ19RYvuIubU/Qujud/0yKlJQoKztiY5VC5vX/xsQotSkk6iKEsmomyJUAoSDcU2M1xF3tjZZWbgRDeXk5WVlZLU7AxMXFtSirJT9EAbOBIU0+/wq4hsYrxVzXvr4myNy5nhu+7z6YPLlF2GIKrAABAABJREFU/SQSiUQikUgkktaM3s9yw/w1es90qksvUeMpr6/ENKSlpflV88VwHDgA99/vdld1ZCR/paUxITKShUDE7t2h1a0Fqquryc/Pp7q62nTtatWGWnKDlaOX7yTB4bPffv8drrsO9u4NjWIqkJqaSps2bYKK6e4e4AZNTAwceSSkp1PdrRv5cXFUH320svojOVmZCNF4EiRU31ct2glK5jPPQPfusGaNjHkhpL4oecNNyyKKcXFx5OTkUFBQgN1ub7QdOHCACRMmEB3gaqqmVAHXA583+OwLlFUiHtPlWa3w/vtKuj1PTJkCr77q+tPhcJCfn+/aPNVeMXq/1FO/cB3rGWWcp6YuktBiZr8Z3TYZ8/SVKcd6rROz+83I9hlZNy0x7UTIBRdcgBCCdevW6a2KRGNGjhxJfHy83moEzv33w6FDbneVxsczY+RISuPjuQTodMklSi55g1BaWsqMGTMoDSI/tlHb1aoNteQGK0cv30mCo0W/lZTAo49Cjx4wZ47y/zDBZrNx9dVXGzqmmznmadVOwDInToR//xsOH4YLL6R02TIZ80yOuwmY6upqv/zmy8qVKuA6YH7dNhSodHNco8mMv/9mx2uvIbp08Sx47Fgcc+eSmZlJSkqK9zpGdRi9X+qpX7iO9YwyzlNTF0loMbPfjG6bjHn6ypS/b1snZvebke0zsm5aYtrUWOvXr+fMM8+ktraWJUuW0LdvX71VkqiM3supVGHhQrj0Uv/OkekXJBJJU2prYdYseOQRaLoi4scf4ZxzAGOnxgLvKXJ8pak+odJdoiJTpsDYsY0/i4+Hr74Cg47nzJQaK9zJzMz0WHOkIfVrTNxNgniiZ3Q0y4WgTYPaQQ1xREbSp7qadR7Oz8jIcFvHSCKRSCQSiUQiaQ3o/SzXtCtCTjvtNJ599lmEEGRmZrJlyxa9VZJIGlNaqhRI94OqY46BZ5/VSCGJRBK2fPihUmfIXVqoe++FMEkT6S1FTsNt2bJleqsq0Ypp05pPgoByzxw0CL7/PuQqScKL7OxsMjIyWlwZUol/kyAA6yorGVxVRbWHdHi26mq+ADp5OD+YSV6JRCKRSCQSiUQSHKadCAF45JFHmDZtGocPH+aMM87gwQcf5KeffqK4uFhv1SQqMm7cOJKSkvRWw3+eegr++svtrv2AAyhKSmLCuHEU1dl3cMIEaNMmdDq2QFFRERMmTKCoqMh07WrVhlpyg5Wjl+8kweHRbxkZcPLJ7k9aswamT9deORWot8/pdDZLkdNw69y5s676mTHmadWOXzKFUFZ9uJOTlMSEe++laNcu7fUIAC2LibdmAvFbwwnVxYsXq67Td8CdXhbUd0KpO+IuwV/TOkZGvxfrqV+4jvWMMs5TUxdJaDGz34xum4x5+sqUv29bJ2b3m5HtM7JuWmLaiZCIiAgiIiIYPXo0lZWVVFRUMHnyZPr27UtKSoprf0tbWBfhbiV89tlnzXIuG57Vq5XUHx4YCpwObCwvZ8hnnxFXXs5rgLN371Bp6BNxcXEMGTKEuLg407WrVRtqyQ1Wjl6+kwSHR79FRXmNKXz+ued9BsLo/dLMMU+rdvySabEotW2uvrq5nPJyhhx9NHHDhmmvRwDYbDYGDx6siezWTDB+q685ogYW4BEgse7vbOA5L8f3BHKAiBbkypinb9u6xzyN5Ri9f0ncY2a/Gd02GfP0lSl/37ZOzO43I9tnZN20xLQ1QqxWKxYPy9b9MdlisVATJilFWht655ULmKoqOPNM2LDB7e7iG28kaeZMQJmpHAtkAb2APJkrXCKReOPqq+Gzz/75OzUVXngBhg8Hq9XwNUJ8xR99jKa7xAeqqpRUbw1rKbz5Jtxxh346+UBLNW5sNhunnXYaK1eu9Fmm7KPBoUbtlgiUiY+bgR+BS4AylMmRD4FML+e+Doxp8pn0qUQikUgkEomktaL3s1zTrggBZcLD3SYxF2E3g/nyyx4nQejYkYKHH3b9aYuL488hQ+gdF0dZiNTzh/Lycl1W5ISiXa3aUEtusHL08p0kOFr028svQ0yMskLkkUfg99/hppvAGh63e6P3SzPHPK3aCUhmVBTMnKlMhgC88grlN95o+JjXUo2bgoICWSjbT/SOCVHARyiTIADnAp8DNkAAI1EmRzxxN8oLLQ1xOBzk5+eTn5/Pli1bmDlzJocPH1ZVb7XQ8/qH61jPKOM8NXWRhBYz+83otsmYp69M+fu2dWJ2vxnZPiPrpiWmzftUW1urtwpBk5+fz7fffsvSpUvZuHEjO3bsoLS0lISEBDp37kyfPn244YYb6Nevn9+yV69ezfTp01myZAm76vJtd+7cmf79+3PLLbdw1lln+S1zx44dZGdnM3/+fJeuHTt25PTTT2f48OEMGTLE4yqdVsMff8DTT3ve/8YbiMTEZh+Hf2+WSCQh4dhjITtbWXV2wgl6ayORBE5EhFLb5oYb4JJLIIwG6GqmZJLoRwwwB7iiyecXAHOBIYCz7t89XboQtWOHWzkvA3ZgXt3fJzeo5xQXF8fAgQO59957GThwINnZ2eH1co9EIpFIJBKJRBJGmDY1Vjizdu1aRo0axapVq3w6vn///syYMYMuXbq0eGxlZSUPP/wwr776qsfVMRaLhfvuu48XXniBqKgon3R49913ue+++ygr87xu4aKLLuKDDz4gNTXVJ5ktofdyKr8RAi68EDwV7hw6FObMkWlcJBKJZsjUWN6PlUi0xt9UTbKPBkcwqbHeBm7zsn8mcFPd/3cuWkSHoUOJ8FBsshzoB/zSQpsZGRly1ZBEIpFIJBKJxLTo/Sw3PHJleGHfvn16q6A6W7dubTYJcsIJJ3DNNddwxx13cP3119O5c2fXviVLltCnTx/+/PPPFmXffvvtvPLKK65JkGOPPZYbbriBG264gWOPPRZQUopNnjyZUaNG+aRvdnY2t912m2sSJDk5mWuuuabZypJFixZxySWXUFpa6pNcXznppJN8nrDRlenTPU+CJCXBq682+zgqKsrQ9lVVVbFlyxaqqqpM165WbaglN1g5evlOEhxm95sa9u3atcuVdiY/P9+16tEo+hm5XS3akTFPEgx6+u2/gKfoUYGSMque6q5dOTBtGpUejo8D5gPHNPm86TjPU30ZvdDz+ofrWM8oMU9NXSShxcx+M7ptMubpK1OO9VonZvebke0zsm5aEvYTIZ07d6Z37948++yzbPBUdyFMOe6445gwYQK7du1i69atzJ07lzfffJPc3Fz++usv3n33Xdfy+T179jB8+HCvNVCys7N5//33AaWY/KRJk/jjjz+YNWsWs2bN4o8//mDSpElY63LJNzzeE1u3bm00YTJ8+HB27drF3Llzyc7OZtWqVXz33XekpKQAsGHDBu69996grktTwqJGyL598OCDnve/+CJ06NDs47i4OEPbZ+Z8+bJGiMSImN1vatjXt29f0tPTXVvfvn0NpZ+R2w1J7uhDhyCA9KUy5rVOgvVbamoqNputxeNsNhuFhYWNarossdtpt2EDtG/f6NhilILpXzWR4ejd2+sKklTgSyCpwWdNx3kOh8NQL3nJfPn6yZQ1QlovZvab0W2TMU9fmXKs1zoxu9+MbJ+RddOSsE+NZbVaG9Wd6NKlC1dccQVXXXUV/fv3N+yb9N5YunQpdrudm266iYiICK/Hfvrpp1xzzTWuvxcuXMgll1zS7Din08nxxx/Pzp07ARg3bhzPP/+8W5njxo1j4sSJABxzzDH8/vvvREdHuz32+uuv5+OPPwbg3HPP5YcffnBNpDRkwYIFXHbZZQBERESwcePGRjmSA0Hv5VR+kZEBs2e733f++cpKkbrrJtO4SCQSrWgNqbH8QcbUEHPwoHLP+9e/lFWSYThGCxaZGiv0ZGZmkpub6/UYrymp8vKgf384dIgDwCDg1yaH2O12ANLT03ka+LeXthYBlwLVHvZLn0skEolEIpFIzIrez3LDfkXI4MGDiYuLQwiBEIK//vqLN954g0GDBnHkkUdy/fXXM3PmTA4fPqy3qj7Tr18/Ro4c2eIkCMDVV1/N2Wef7fr7yy+/dHvc559/7poESUpK4sknn/Qo86mnniKxrmD3X3/95VHm/v37mTt3ruvvF154we0kCMCll17KRRddBEBNTQ3Tpk3zYpXJmD/f8yQIKA+EampCp49EIpFIJKGmuBgGDYLNm2HWLKUuVkWF3lpJWgHZ2dlkZGS4XRlis9nIyMggOzvbs4AePWDhQiqPP56+NJ8EacrTwAde9l8EBDoKdjgcjVL/GSmNlkQikUgkEolEYnTCfiLk008/5dChQ3z55ZeMGjWKTp06uSZFSkpKmDt3LiNGjCA1NZV+/frx0ksv8fvvv+uttqqce+65rv/n5+e7Peazzz5z/T8jI8NrqqW4uDiuv/5619+ffvqp2+M+//xzauvSW5xwwgmcc845XvUcOXKkW32C5emnnyY5OVk1eapSXAx33eX9mMmToVcvcJPaLTk52dD2FRYWMn78eAoLC03XrlZtqCU3WDl6+U4SHGr67XLgoaClqIuv9vma7sYbNpuN1NRUv84xc8zTqh2XzOuvhzVr/tkxfz5ceqlynwyBbjLmhSdq+C0uLo6cnBwKCgoapb6y2+0UFBSQk5PTcgrSM89kz4IFbPWxzduApV723wo8hu/jvPLycjIzM0lJSWmU+i8lJYXMzEzNUhro+b0J17GeUcZ5auoiCS1m9pvRbZMxT1+ZcqzXOjG734xsn5F10xRhQn799Vcxfvx4ccYZZwiLxeLarFarazvhhBPEQw89JH744QdRU1Ojt8pB8cADDwhAAOKyyy5ze0yHDh1cx3z44Yctypw1a5br+E6dOrk9ZtiwYa5j7rjjjhZl7t6923U8IP74448Wz/FGXl6eAERaWpqIjIwUeXl5QcnThDFjhADftshIIaZMEXa73XWNIiMjXfYBwm63621RI6qqqoTdbhdVVVWma1erNtSSG6wcvXwnCY5g/Wa320V7EDl1cacKRM+6eOMtvjSMS003NeOSP/ZlZGR41MmXLSMjQ1P91CRU7WrRTlV5ubAPGyaqIiPd3/vOPFOIAwc0180oMc/bd0nr71c4YhS/CdFyHGy6PwXElhbGfsOajPM8+byleBdIPPMFPa9/uI71jDLOU1MXSWgxs9+MbpuMefrKNMtYT+IfZvebke3TS7f6Z7n1W6if5YZ9jZCW2LNnD/Pnz2f+/Pl8//33riXkDeuKpKSkcNlll3HllVcyaNAgEhIS9FI3IAYOHMi3334LwJ133tks7VRRUVGjN822bNnCiSee6FXmli1bGtXwKCoqcqXLquf0009n3bp1AEybNo0777yzRV1TU1PZv38/oKwoufLKK1s8xxN655VrkZ9/hnPPVX7q+soXX5DfvbuhcvFLJBKTIAQHX3iBiHHjSGnw8RqgF7AtjGqEgPKGdFZWFvPmzfMrPYzNZmPw4MFkZ2e3/Ba4JHjWr4dzzgFPb6x36wY//ABt24ZWL52QNULCF2++W7x4Mampqc3q3x0LrADaeZDpBC4EfmzwWUOf16fCaqmuns1mo6CgIOiVchKJRCKRSCQSiZbo/Sw37FNjtUTHjh258847+eKLLzh48CCffvopWVlZHHXUUa4UWocPH2bWrFlkZmbSrl07Bg4cyGuvvcaOHTv0Vr9FduzYwffff+/6u74OR0O2bm28kL9Lly4tym16TFMZTT875phjWpTZVO6WLVt8OqclMjMzadOmjSqyVKOyEm6/3b9JkJtugssvb/RRmzZtjGlfHWVlZeTk5FBWVma6drVqQy25wcrRy3eS4AjKb8OHc2STSRCAM4D71FBOBfyxz1u6G2+bz6lwgtRPTULVrhbtlB13HDkvvkhZhw7Nd6alwTff+DQJImNe6yRc/DZgwIBGkxVnosTWP4HBgKep2uo2bbgjM5PuTcZ5DVNhtTQJAsqEyb59+wJV3yN6Xv9wHesZZZynpi6S0GJmvxndNhnz9JUpx3qtE7P7zcj2GVk3LTH9REhD4uLiGDx4MO+88w579uzh559/5rHHHqNHjx6uSZHKykq+++477rvvPtLT0znttNN48sknWbVqld7qu+WBBx6gpq7QdpcuXdyusDh06JDr/4mJicTGxrYoNy4urtHKmKbF5isqKqhoUOS0ffv2PunbMB+7WgXsS0pKXDbV1NRQWFhI/UKn4uJiKisrXTrXf8Grq6sb5cErKiqiqqoKUH581udarqqqoqioyHVcYWEh1dXVgBI06q9BZWUlxXV5zoUQFE6YQE3dRE9pfDyOujf0nDExlBx9NCQnU2u1Ulj3L6mplPz3vzidTkB5sy8+Pp7a2lqKioqIj493rWLSzabCQldfKy0txeFwYLVaiY+Pd+lQW1tLYWGhq3ZMSUmJyyaHw0FpaakqfrJarbRp08b1FriaNgE4nU7KyspcK6nUtKm2tpbY2FisVmtQfnI6nSQnJ1NdXe2zTSUlJS4dSkpKSEpKwmq1auYnf20KxE8NbQpF39PbpqqqKpKTk6msrPTfpquvprDB6sCipCSqoqIAeCwujupt2zzaVK9rmzZtXPE2OjratVJQLT+Vl5eTnJzskueLnxwOB2lpaaSlpZGSkkKnTp1IS0vjqKOO4qijjiItLY1OnTqRkpJCWloaNpstYD9VVlaSnJxMVVVVSPteTU0NycnJrmvkyU9GjHtWq5XEtDRKcnKgbqxQlJREVefOsGgR5SkpPtlUUVFBfHw8Vqs1oO8T0Gj8o1eMKC0tJTIyEvD8fbJYLCQnJxMREeHVptYQ98rKylx+N4JN3vwUHx+PzWajP7AgJoa5CQmcDKy0Wrm1frwHlCQk4IyJUa5RVBTJZWV8VFvLkRERrviXlZXFggULXNchNjbW9VJMZGRko5XeSUlJRNXFcrX9VF5e7rr+oe57oYh7VVVVxMXFYbVaVbOpoqKC5ORkl7yGNvnT9+rHuvU6hHPck+O98I57avqp/rdjvQ5Gs8lqtRIXF+fSIZR9r7S0lISEBKxWa1j9dnc6nbRp0war1Rq0n4KNe1arlaSkJEpKSkwdI8xmU/33rl4HM9jU0E9GjntCCJKTkykvL9el7+lFq5oIaYjFYqFXr148++yzbNiwgT///JMpU6Zw0UUXERkZ6ZoYycvL47nnnqNPnz506tRJb7UbMWPGDObOnev6+/nnnyem7odVQ+o7J+DTJIi7YxvKcPe3r3K9yQyUsrIyrrjiCgAOHDjAlClTXF/O7OxsfvvtNwCWLl3K/PnzAdi1axdTpkxxyZg6dSrbt28H4JtvvuGbb74BYPv27UydOtV13JQpU9i1axcA8+fPZ+lSpRTmb7/9RnZ2NgDODRuYIgQH2imJEOZcey0revcGYO3ppzNrzBjYtIniq69mytixFCcmwrRpzPrqK9auXQtA7969ufbaa6moqGDt2rWMHj3a5VtdbHI6mTJlCgcOHFBsmjOHFStWEBsby5FHHsknn3wCKAFvypQprgA7a9Ysl00rVqxgzpw5qvgpNjaWmpoali1bprpNAGvXruWTTz5h0KBBVFVVqWrToUOHWLduneu7EKifVq1axaBBg7Db7T7bNGvWLJef3nzzTfr06UNsbKxmfvLXpkD81NCmUPQ9vW3asmULgwYNYv369f7bdOaZTBk79h+bRo9me9euACwbOJA1P/3k0aZ6Xa+88kr69esHQLdu3cjKylLVT19++SWDBg2itLTUkH5av349gwYNYsuWLSHte3v27GHQoEEsW7ZM076nRdyLjY2lW7duvLl4MSxfDsccw9S77mL7O+9A164++2nRokVERkYSGxsb0PepqqqKdevWuX5A6BUj5s6dS+fOnQHP36eYmBjGjh1Lu/pxRCuOe5988glHHnkksbGxhrDJm5+uvfZabu7dmwXAttNPZ8Hw4XwDnJyYyAljx/JE3QTKrOHDWXv66QCs79mTw23bckpFBTPatWPs2LGUlJQwb948srKy6NatGwD9+vVzvezUuXNnxjaI5aNHj6ZrXSxX209ffvkl8fHxxMbGhrzvhSLubdmyhT179hAbG6uaTYsWLWLQoEEcOnQoqL4XGxtLWVmZ62W8cI57crwX3nFPTT/FxsYSHx/Pl19+aUibYmNjOXz4MOvXr/fZJlCn702fPp2uXbsSGxsbVr/dV61aRVlZGbGxsUH7Kdi4FxsbS58+fXjzzTdNHSPMZlNsbCx79uxxZYwxg00N/WTkuFdaWsqgQYP48ssvdel7uqFOqRFzUVxcLGbPni1uvPFG0bZt20bF1o3C6tWrhc1mcxWXGTZsmMdj33//fddxRx99tM9tHH300a7zPvjgg0b7duzY0ai4zfbt232SedNNN7nOufXWW33WxR31BXbOOusskZKSIvLy8kR1dbUoKCgQtbW1QgghioqKhNPpFEIIUV5eLkpLS4UQSlGggoICl6zCwkJRWVkphBCirKxMlJWVCSGEqKysFIWFha7jCgoKXIWESktLRXl5uRBCCKfTKYqKioSoqRG1550nCpKTRXVEhBAgSuLjRYXNJgQIxw03iOLiYiGEEDXV1aJg+nRRc/fdQgil3zkcDmG324XNZhPx8fEiOjpanH766aJdu3bCYrEIu90eepuEELW1taKgoEBUV1cLIYQoKSkRFRUVwul0ilWrVomDBw8qNtXUiIKCAlFTU9PIJiGEqKioECUlJUIIEbSfnE6nWLFihWufmjYJIYTD4RAHDx4Ua9euFRUVFaraVFZWJn788UfXvkD9VFhYKNauXStKSkp8tsnV92pqxP79+8WaNWuE0+nUzE/+2hSInxraFIq+p7dNxcXFYu3ataKoqCggmzZ9/70oqivSW5iUJCqjosR6EOfGxYnNmzd7tGnbtm0CEG3atBGxsbECENHR0SIxMVHY7XbV/HTo0CGxdu1aUV5ebkg/FRUVibVr17p84YtNavS90tJSsXbtWlFQUKBp39Mi7jmdTvHLL7+I/fv3K4ru2iUKly7120+HDx8WK1euFE6nM6DvU0VFhfjxxx9d+/SKERs3bnQVxnb3fQKExWIRycnJIiIiQtjt9lYd9w4ePChWrVolnE6n7jZVVFSIhIQEt34CxM3x8aKkfrwXEyOKExKEALHVahXHJScLq9Uq3gJRnJAgHDExQoAoSkgQP/fqJZzR0aI6IkK8l5wsvl+0SAAiMTFRREdHC0DExsaKNm3aCEBERkaK5ORk13g6KSlJREVFCbvdrrqfDh065Lr+oe57oYh7xcXF4qeffhJOp1M1mw4fPizWrl0rysrKgup79WPd+n3hHPfkeC98457afqr/7Xjo0CFD2uR0OsXPP//s2hfKvvf333+L1atXC6fTGVa/3QsLC8WKFSuE0+kM2k/Bxj2n0ynWrFkj9u/fb+oYYTabnE6n+Omnnxrdu8LdpoZ+MnLcKy8vF2vXrhWHDh0Kad/Tu1i6nAhpgZqaGrF06VLx4IMPihNPPFFvdYQQQvz5558iNTXV1WlOPfVUV4d2x+zZs13Htm/f3ud2jjrqKNd5c+bMabTv77//btRx6x+gtcT111/vOmfMmDE+6+KO+i/P2LFjRWJiYsi/PG6ZOlWIuoeMzbYjjhCi/kGQF+x2u+saJSYmuuwDhN1u194GPygqKhKTJk3y2v/CtV2t2lBLbrBy9PKdJDiC9Zvdbhej62JSBYjHQETWxZtly5YJu93udlu2bFmjmN9wUzMuGb1fmjnmadWOjHmNaXiP92Uz2n0/1BjFb/VkZGS49dMlnsZ+ddt6EEl18XZhg8+LEhPFpLFjRVFiousze4OXhvTuK3pe/3Ad6xkl5qmpiyS0mNlvRrdNxjx9ZZplrCfxD7P7zcj26aWb3hMhFiH8qeYs0Zu9e/fSt29f15KoY489luXLl9PBXRHSOhYsWMBll10GKDVCGuaP80ZiYqIrN9zChQu55JJLXPsqKioaFZr99ddfOb1umb83rrrqKteyqHHjxvH888/7pIs7Nm3aRI8ePVx/5+Xl0b1794DlBc3u3dCtG9QtG2vG9OkwcmSLYvLz80lPT3e7z263k5aWFriOEomkVZOfn8+x6em8DEwF/lBBpoxLEonveLvHu0N+v4xFeXk5WVlZzJs3z5VLGSAKmAdc6uG8j4ARQBWQCCwHTvHSzi3Ae37qJvuKRCKRSCQSicTo6P0st9XWCGnIJ598wsiRI7n00ksZMWIEOTk5eqvklkOHDnHxxRe7JkE6dOjAokWLvE6CALRt29b1/+Li4kY/3DxRXl7eqNDeEUcc0Wh/bGxso3of+/fv98mGffv2eZQZKDabzVVIXFfuucfzJMiFF8KIEX6LtFgsxrHPDUIIHA4HoZ5PDUW7WrWhltxg5ejlO0lwqOE3ATyAOpMgamP0fmnmmBdUO17GFTLmSYLBaH6Li4sjJyeHgoIC7HY7mzZtolevXlQBQ4Flbs6ZBtyIMgkCUAxcDuwFhMWCw2ZDNBnnvQVc4EbW9OnT1TLFJ/S8/uE61jNKzFNTF0loMbPfjG6bjHn6ypRjvdaJ2f1mZPuMrJuWmHYiZP/+/Zx//vmcf/75PP74426Pqa2t5ZprruG6667jgw8+4JtvvmHmzJkMHz6cAQMGuCrbG4Hi4mIuueQSNm3aBMCRRx7JokWLfHqr8MQTT2z0919//dXiOTt27PAqo+lnvshsKvekk07y6ZyWGDduHElJSarICphPPoFPP3W/LzYW3nwTApjMSEpKMoZ9HigqKmLixIk+rzIKp3a1akMtucHK0ct3kuAwu9+Mbp+ZY17A7axbB127wsKF6snUQI7R+5bEPUb1m81mIy0tjW7durFixQoqKir4zW7nmPXrcdYVOAd4HhgN1DY5fydwBbA3KYmJ48ZR1GScFwXMBU5ucl6oV3zoef3DdaxnlJinpi6S0GJmvxndNhnz9JUpx3qtE7P7zcj2GVk3TQk2t5ZRmTp1qqvAedP6FvVMmDDBVQi96Wa1WkVGRkaItXZPaWmpOPfccxsVRfzll1/8ktGhQwfX+R999FGLx8+aNct1fKdOndweM2zYMNcxd955Z4syd+/e3SgP3B9//OGXDU2pzyuXmpoqIiIi9KsRUlAgRIcOnnNDT5zol7iG+cMjIiJc9mHAXOHV1dVi7969rsJRZmpXqzbUkhusHL18JwmOYP1WUVEhbDZbQPnn3W02m81VWM0I9mmNmWNeQO1s3SrEUUcp97qoKCFyc4OXqZZuGukRLLJGiH8YxW9+sX+/qDz2WPGID/69KiJC7E5NFdUREW7HkHYQ7Rscv3jx4pD2FT2vf7iO9YwS89TURRJazOw3o9smY56+Ms0y1pP4h9n9ZmT79NJN7xohpl0RsmyZsjg9OjqaSy9tnrG3srKSF154AYvFgsVi4eKLL+aVV17h4YcfxmazIYTg448/5pdffgm16o1wOBxcddVV/Pjjj4CyJP/LL7/kjDPO8EvOgAEDXP9fsmRJi8cvXbrU9f8LLnC3OD84mV26dOG4445r8Rxf2LdvHzU1NarICohHH4W9e93vO/10eOCBgEXX1NTob58XIiIiSE1NJSIiwnTtatWGWnKDlaOX7yTBEazfbDYbgwcPVk2fwYMHY7PZVJNn9H5p5pjndzs7d8LFF8Pffyt/V1VBZia8/XbgMtXSTYPzJfoQln476ij2fPEFL/hw6Oc1NUzYt48ID+O8NOBzIBYlfqempqqnpw/oef3DdaxnlJinpi6S0GJmvxndNhnz9JUpx3qtE7P7zcj2GVk3LTHtREh9CqkePXo0Kupdz4IFCygoKACUAt5ff/01Y8aMYeLEiY3y786cOTM0CruhqqqKoUOH8v333wMQExPDvHnzOPfcc/2WNWTIENf/c3Nzqaio8HhsRUUFs2fPdntuQ6666iqsVqULbd26lRUrVnjV4b333nP9X80HcSNHjiQ+Pl41eX7xww/w1lue9x9/vNfc6S0RHx+vr30tUFpaynvvvUdpaanp2tWqDbXkBitHL99JgkMNv2VnZ5ORkRHUBIbNZiMjI4Ps7OyAZbjD6P3SzDHPr3YOHFAmQZqk0UQIuOMOePFF/2WqpZtG50v0IVz9JhrU0fNGfHw8JSNHMsnLOO9sYCYw5MorVZ149gU9r3+4jvWMEvPU1EUSWszsN6PbJmOevjLlWK91Yna/Gdk+I+umJaadCNm1axcWi4UTTjjB7f5vv/3W9f+HH3640b7rrruOjh07ArT4cF8rampquOGGG/jqq68AiIyMZPbs2Vx00UUBybvqqqvo3LkzAIWFhTz77LMej33mmWcoLCwE4JhjjuGKK65we1z79u255pprXH8/8sgjHovsfPPNN3zzzTeAMus4atSoQMxwS35+PtXV1arJ8xmHQ3ng443Zs+HUU6FuMstfqqur9bPPByIjI0lLSyMyMtJ07WrVhlpyg5Wjl+8kwaGG35oW+/W4/f47Bffdx+H772+2r6CggJycHLcvGgSD0fulmWOeX+28+SZs3ep5/08/QW2tfzLV0k2j8yX6YHa/1Y/znqiu5nMvx10DvN++fajUcqHn9Q/XsZ5RYp6aukhCi5n9ZnTbZMzTV6Yc67VOzO43I9tnZN20xCI8PbkOc2JiYqiurubOO+/kjTfeaLb/tNNOY+PGjbRr1479+/c32z948GDmz59P27ZtOXDgQChUdiGE4JZbbmHGjBkAWK1WZs2aRWZmZlBys7OzufXWW10yJ02axJgxY1yrOmpra3nttde4//77qa17gDFjxgxuvvlmjzK3bNnCqaeeSlVVFQA33XQTU6dOpU2bNq5jFi9ezHXXXcehQ4cAuOWWW1R5i3jTpk306NHD9XdeXh7du3cPWq7PPPkk/Pe/vh//1ltw++0tHpafn096errbfXa7PeSFMiUSSStk61a48Ub45ReIiIDly6F3b721khiF2lol7eOUKc33XXABfPklhPjN9XDB2z3eHfK+H544HA5SUlJw+LAqOAY4D1gBLAW8Jb899NRTHPmf/7jd562vOBwO9u3b5/o7NTU15KtLJBKJRCKRSCQSvZ/lmnZFiMViAXD7Jn1RURGbNm3CYrFw3nnnuT2/fd1bV8XFxdop6YGpU6e6JkEAunbtyvLlyxkzZoxPmyeysrK46aabAGXS47777uOEE07gxhtv5MYbb+SEE07gvvvuc02C3HLLLV4nQQBOOukkpk6d6vr7gw8+4Oijj+baa68lKyuL3r17c8EFF7gmQU499VSmuHtwEgS9e/cmJiZGVZktsnEjTJjg+/EpKeBhZY03YmJi9LHPR5xOJytWrMDpdJquXa3aUEtusHL08p0kODT3mxDw+utKfaP6Glk1NXDTTVBWpk2bDTB6vzRzzPOrHasVJk2Cp59u/PnZZ8NnnzWaBJExTxIM4eo3X+sxHRETw1u9e/N5TAwXA1cAO7wd/8wzXOuHHuXl5WRmZpKSkkJ6erpri42NpXfv3vz222/k5+d7nLDR8/qH61jPKDFPTV0kocXMfjO6bTLm6StTjvVaJ2b3m5HtM7JuWmLaiZDk5GRASZHVlB9++MH1sN9TvY36CRQ9isb8XV94tI4//viD119/3efNG++88w5jxoxxTRRt376dWbNmMWvWLLZv3w4ok0j33nsvb775pk/63nrrrbz99tuuVSAFBQXMnTuX6dOns3LlStdxF154IQsXLiQhIcHna+ELPXv2JDo6WlWZXqmpUVZ2+JOuavJk6NDB76aio6NDb58fVFZWsm7dOiorK03XrlZtqCU3WDl6+U4SHJr77cYbYcwYaFpHats2eOghbdpsgNH7pZljnt/tWCzw738r9zeA7t1hwQJoco+XMU8SDOHst5bqMR0BfBIdTXnPntRER5MDdAcuBzy9hmURgplAXx91yMrKIjc31+1Ex8qVK+nevTvp6emkpKSQmZlJeXl5o2P0vP7hOtYzSsxTUxdJaDGz34xum4x5+sqUY73Widn9ZmT7jKyblpg2NVa/fv1YtmwZSUlJ7N27t9GPkBEjRvDBBx9gsVhYsWIFZ511VrPzL7vsMhYuXEinTp3YuXNnKFXn6aefZvz48QGf74tLV61aRXZ2NkuWLGH37t0AdOrUif79+3Prrbe6vSYtsWPHDt59913mz5/Pjh07KC0tpUOHDvzrX//ixhtvZMiQIa4JGDXQbTnVq6/Cvfe635eYCPHxsGfPP59dfjnMn688NPIBmRpLIpHoxpw5cN11nvd/9RVcemno9JGEB7m50Lcv1NVXk3hGpsZqfTRNSwVQvWMHjn796NHk2FLgIiAR+ArwlLG5ACWd1m8NPmvaV/xJz1VPRkYGOTk5Ph8vkUgkEolEIpH4g0yNpREXXnghoKS2GjdunOvzn376idzcXCwWC+3bt+fMM890e/66deuwWCx07do1JPo25Omnn0YIEfDmC2effTbTpk1jy5YtlJSUUFJSwpYtW5g2bVpAkyAAXbp0Yfz48fz6668cPHgQh8OB3W5n7ty5XH311apOgjQkOTnZVedEc3bsgMcf97x/6lTYvPmfIupJSUpR2QBtt1qtobXPT2prayksLHStsDJTu1q1oZbcYOXo5TtJcGjut2uvVdJguSMlBTR+W8To/dLMMS+odjIyPE6CyJgnCQYz+M1ms5GWlvbPlpLCMTfdRA+g1mqlMDmZ2rpxXjywANgH3OZFZkrdcd6mHvft2+fXJAjAvHnzGp2j5/UP17GeUWKemrpIQouZ/WZ022TM01emHOu1TszuNyPbZ2TdtMSYT1dVICsri9jYWABeffVV0tLSOOOMMxgwYIBr2c/tt9/u9uH85s2bXW9unX766aFTWhIQY8eOJTExUfuGhIC77oLSUvf7Bw2CYcOUVSFvvgnffgvvvAOdOgXcZGJiYujsC4Di4mKmTJkS8lo6oWhXqzbUkhusHL18JwmOkPjt1VehS5fGn11yCeTlgQ8574PB6P3SzDFPq3ZkzJMEgyn9lpREWV3duOLERKaMHUtxg3FefZbmGUDB/fd7FNMFZdWIuxGiw+EgPz/fb9Warl7R8/qH61jPKDFPTV0kocXMfjO6bTLm6StTjvVaJ2b3m5HtM7JuWmLa1FgAb731FqNGjWo02VFv7gknnMAvv/xCfHx8s/PGjx/P+PHjsVgszJ49m6FDh4ZMZ4nv1C+nSk5Opri4mA0bNmi7nCo3FzIz3e+Li4NNm0CF9BUN02ZYrVYSExMpLi6mtrbWcCkyamtrKS4uJjExMaSrVkLRrlZtqCU3WDl6+U4SHCHz2+LFcMEFEBsLL70Eo0cHvLLNH4zeL80c85q1IwSoUCdNxrzGyNRY/mEUv6lNvt3Ol8cey2irleLERBKLi7HW1pIPXAxsqzvO/uefpD3/PLz9tkdZi4DLgN/tdo466iiysrKarezwh/o+53A42LNnD+Xl5cTFxWG1WklNTfVY80RtwnWsZ5SYp6YuktBiZr8Z3TY99WvtMU8NWUbvXxL3mN1vRrZPL91kaiwNueOOO/jkk0847bTTXGmjbDYbmZmZLF261O0kSFVVFW+99RYAkZGRXHTRRaFWW+InIVnKdfiw57ogAM8+q8okSFOMvlRNr9RdoWhXqzbUkhusHKOnXZO4J2R+GzAAXnsN1q5VVsKFYBIEjN8vzRzzGrUzcyb06weFherJlDFPEgCm9ZvFwj3AR7W1JBcWYq2tZTNK3Y9tTY7jjTegbgWJOy4CsgFqa70WR/eV8vJyMjMzSUlJoWvXrpxyyil07drVa1F1LQjXsZ5RYp6aukhCi5n9ZnTb9NSvtcc8NWQZvX9J3GN2vxnZPiPrpiWmt3bIkCH8+uuvlJSUsHv3boqKivjwww9p37692+OdTicffvghixcvdhVblxibUaNGkZCQoG0jDz0Ef//tft9ZZ8E992jSbEJCQmjsC5CSkhKmTZtGSUmJ6drVqg215AYrRy/fSYIjpH67+2448UTt22mA0fulmWOeq52JEym55x748Ufo39/zvc8fmTLmSQLErH5LTU0lxmZjTEICL4waxY8JCZwP7G5wjM1mIzU1FSIjIScHzj7bo7wbgYTnn2fevHk+tT99+nSP+xpOpjQdhzocDnJzc8nKyvKpnWAI17GeUWKemrpIQouZ/WZ02/TUr7XHPDVkGb1/Sdxjdr8Z2T4j66Ylpp8IqadNmzZ06NCBqKgor8fFx8fTr18/+vXrx9lefnBIjMO6detcdV804bvvwNMPxshIJV2BCulD3FFZWam9fUEQHR1Nz549iY6ONl27WrWhltxg5ejlO0lwmN1vRrfPzDEPIHr5cnrOn0+0s65Kwfr10Lcv7NwZuEwZ8xrhT2oh14PwVoxR/KY2NpuNwYMHU1FZyfx16xhcWcnBJscMHjz4n77Spg3Mn0/VMcd4lNn2nXe41YeVIDabjd69e3vcv3LlStf/PY1Dg0m95SvhOtYzSsxTUxdJaDGz34xum576tfaYp4Yso/cviXvM7jcj22dk3bTE1DVCJOYmJHnlKirglFNg+3b3+x97DJ57TtUmveUPb+25wiUSiUSiET/+CAMHgruUN126wKJFcPzxodfLhGRmZpKbm9vicRkZGeTk5IRAI4kelJeXu63nUT9Jkp2dTVxcXKNzdi1ZQvSAARzlQWYtcC3wqZd2MzIymDBhgl+1atwhx6QSiUQikUgkEn+RNUIkkiDp37+/doUbx4/3PAly3HHw5JPatFuHzWbT1r4gcTgcLFmyRPO3AvVoV6s21JIbrBy9fCcJDrP7zej2mTbm1dbCqFE4amtZ0r8/jqb3nB07YOHCgETLmNec7OxsMjIyPN7bbTYbGRkZZGdnh1gz42Ekv6lNXFwc7733HvPnz2fr1q3Y7XbsdjsFBQXk5OQ0mwQBqE5L4wqgzINMK/AhcK6bfYH0Kz3HoeE61jNKzFNTF0loMbPfjG6bnvq19pinhiyj9y+Je8zuNyPbZ2TdtEROhEjCnrS0NCIjI9UXvHYtvPSS5/0dO0JxsfrtNiAyMlI7+1Sgurqa/Px8qqurTdeuVm2oJTdYOXr5ThIchvXbH3+oIsaw9tVh2phntcIXX1B93HHkp6VR3fSe8/jjAdfCkjGvOXFxceTk5FBQUOB6+N1w8/YgvLVhJL9pQXV1Nbt27aJjx46kpaWRlpbW4qRDNZAB1HjYbwPmAw3fq1u8eHFA/UrPcWi4jvWMEvPU1EUSWszsN6Pbpqd+rT3mqSHL6P1L4h6z+83I9hlZNy1pFamxKioq+PLLL1m1ahV2u53i4mKqqqp8OtdisfDdd99prKEkEDRdTlVdDb17w5o13o9r2xZefRUyM8FiUaVpmRpLIpGEDWVl8NBD8NZbsHQpnHee3hpJgmHfPrj4YsjL++ezMWPglVdUu8dJJJLAOfjCC6Q8+igTgHzgbS/H7kZZGfIXzceP3saaviLHpBKJRCKRSCQSf9E7NZYxXzNXCSEEL774Is8++yylpaUBnW+RP/wNT2pqKgcOHFBX6CuvtDwJAnDoENxwA8THw5VXqqsDEBERQbt27Thw4AA1NZ7e/dOPmpoaDhw4QLt27YjQqGC8Xu1q1YZacoOVo5fvJMFhKL+tXAk33fTPapCbb1ZW0iUlBSzSUPa5wcwxD6CmXTsOzJlDu5EjiVixQvHplClBTYLImCcJBrP7zS/7/vc/jnz0UQCeAB4G/gM85eHwTsC3uE+T5SuBjEMdDgf79u1z/Z2amhpQaq1wHesZJeapqYsktJjZb0a3TU/9WnvMU0OW0fuXxD1m95uR7TOyblpi6tRYN954I4899hglJSUIIfzeJOHBqFGjSEhIUE+g3e5f7Y/zz4fLL1ev/QYkJCSob5+KlJSU8Oabb1JSUmK6drVqQy25wcrRy3eS4DCE36qq4Kmn4NxzG6fEstvhttsgiPunIezzgpljnqudnBxKPv4YnnkG3n1XSZsVrEwZ8yQBYna/+WSfEMq49MEHG338IrAX8Fbx43hgAWAJ8Pr5Mw4tLy8nMzOTlJQU0tPTXVtKSgqZmZmUl5f71Xa4jvWMEvPU1EUSWszsN6Pbpqd+rT3mqSHL6P1L4h6z+83I9hlZNy0xbWqsDz/8kBtvvBGLxYIQghNPPJHrr7+eHj16cMQRR/iV67Zfv34aaioJlPrlVDabDafTycaNG4NfTiUEDBoE33zj2/GxsbBhg1I4XSUapiuwWCzExMTgdDoRQhguDYEQAqfTSUxMTEhXT4WiXa3aUEtusHL08p0kOAzht0WLlPRJnnj1VSWdUgAYwj4vmDnmadWOjHmSYDC733yy76GH4OWXPcq4FRgCeFuXXNGnD7Hffw91KzN8TY3VdBzakKZj0szMTHJzcz3KysjIICcnp8U26wnXsZ5RYp6aukhCi5n9ZnTb9NSvtcc8NWQZvX9J3GN2vxnZPr10k6mxNOKdd95x/f/+++/nxRdfxBrkW40SY+JwONQTNnOm50mQuDjo0gW2bPnns+eeU3USpClCCHXtUxmLxRJQuoNwaFerNtSSG6wcvXwnCQ5D+O2iiyArC7I9vIf8f/8HN94Iycl+izaEfV4wc8zTqh0Z8yTBYHa/+WTfuefCpElQW+t2dxJK8fSvgb4eRMT+/DMMHw6zZ4MfqQ98HYc6HA7mzZvn9Zh58+bhcDh89me4jvWMEvPU1EUSWszsN6Pbpqd+rT3mqSHL6P1L4h6z+83I9hlZNy0x7czAhg0bsFgspKen89JLL8lJEBMzduxYEhMTgxd04ADcf7/n/S+8AOvXKylhIiPhnHPgnnuCb9cLiYmJ6tmnAcXFxUyePJni4mLTtatVG2rJDVaOXr6TBIdh/DZ5MpxwQvPPTzwRli0LaBIEDGSfB8I65vmQ318L+2TMkwSD2f3mk31XX+1x4vn3++5jElCBsiJkg7fGPvkERo/2K32hr+PQffv2tThh0rR2SEuE61jPKDFPTV0kocXMfjO6bXrq19pjnhqyjN6/JO4xu9+MbJ+RddMS084O1A/G+/bta7jlRxJ1WbJkiTqrJh54QCl+7o4+fZQfj9HRMH48rF4N773n11t1geBwONSzTwNsNhv9+/cP+SxyKNrVqg215AYrRy/fSYLDMH5LSICPP3alWQHghhuU2HjKKQGLNYx9HgjbmFdZCUOGwIQJ2rajoUwZ81onZvebz/aNGAGvvPLP3xYLvPsu0WPHuj4qAi4B/vQm5+23lVV7PuJtHLpr1y7y8/PJz8/XZJwarmM9o8Q8NXWRhBYz+83otumpX2uPeWrIMnr/krjH7H4zsn1G1k1LTFsjpFu3bmzdupWRI0fy7rvv6q2ORANUzSv39ddKbRB3REXBunXQrVtgsv3EW95mo9UIkUgkrZx33lHqgbzyCtx+u/JwTmIsqqshI0N5Gxzg3/9WNukriST8eOEFePxx+OADGDYMh8NBSkpKo4mIrsCPQHsvYg4/+SRtn3lGa22bIcexEolEIpFIJK0bvWuEmHZFSK9evRBCsHnzZr1VkWjMoEGDiI2NDVxAaSnceafn/Y89FrJJkKbExsYGb5+GVFRUsHDhQioqKkzXrlZtqCU3WDl6+U4SHIbz2623KnWT7rhDlQfrhrOvCWEX82pq4Oab/5kEAWVV42OPuU2Po4V9MuZJgsHsfvPbvkcegbw8GDYMUN7kGzx4cKNDtgODUFaIeOKIZ57hRh+a03McGq5jPaPEPDV1kYQWM/vN6LbpqV9rj3lqyDJ6/5K4x+x+M7J9RtZNS0w7ETJmzBgAVq9eTV5ens7aSLQkOTk5uBowTz0Ff/3lft9JJylv3umE1WoN3j4Nqa2tpbCwkFoPBTzDuV2t2lBLbrBy9PKdJDgM5zeLBVR8u9dw9jUhrGJebS3cdht89FHzfRMnKjWxmkyGaGGfjHmSYDC73wKy76STGv2ZnZ1NRkZGo7QG64Bro6Op9DJ+nA5c1UJTeo5Dw3WsZ5SYp6YuktBiZr8Z3TY99WvtMU8NWUbvXxL3mN1vRrbPyLppiWlTYwHcddddTJs2je7du7NkyRLatm2rt0oSFVFlOdXq1dC7t/LAyB3LlsF55wWhpf/I1FgSiUQiCZply6BfP8+FkVNSlLSPXbqEVC2JRKINTYuRp6amYlu4EIYO9TjOdQJXAItCo6Icx0okEolEIpG0cmRqLA157bXXuP32210X+bXXXmPv3r16qyVRmbS0NCIjI/0/sapKyWnvaRJk9OiQT4I0JTIyMnD7QkB1dTX5+flUV1ebrl2t2lBLbrBy9PKdJDjM7jej2xdWMa9vX5g+Hdy9yZ2YCN9802wSRAv7ZMyTBIPZ/aamfTabjbS0NNdms9ngzDOVdHgeiAHmAed62K/nODRcx3pGiXlq6iIJLWb2m9Ft01O/1h7z1JBl9P4lcY/Z/WZk+4ysm5aYeiLEarXy5ptv8r///Y/9+/dz33330blzZ4444gjS09M59thjW9y6du2qtxmSFhg5ciTx8fH+n/jyy7B+vft9HTrA888Hp5gKxMfHB25fCCgtLWXGjBmUlpaarl2t2lBLbrBy9PKdJDjC3m8t5B81un1hF/NGjIAPP4SIiH8+a9MGFi5UHpCq1Y4XZMyTBIPZ/aapfXY7nH8+vP46PPSQx8PigC+Bf7nZp+c4NFzHekaJeWrqIgktZvab0W3TU7/WHvPUkGX0/iVxj9n9ZmT7jKyblpg6NVZVVRX33nsv2dnZVFdX09BUiw9FXYUQWCwWampqtFRTEiBBLaf64w849VRwONzv79YNPvsMjj8+eEX9RKbGkkgkpqO2FiZMgLffVlISHnmk3hq1Lj79FDIyIDISFixQUmZJJBLz8vvvcOGFsGuX8nenTnDZZUoM9sAhoB+wyc0+m83Gvn37KCgoAGDXrl307dvXb7XkOFYikUgkEomkdaN3aixj5ttRgZqaGgYPHszXX38NQNP5HhPP/0haQgi4807PkyAAv/0Gp50Gzz4L997b+G1aiUQikfjOwYNw003KKgSAm2+GL75wn7JJog1XX61M7kdGykkQicTs5OXBRRfB/v3/fLZ7tzIJOnw4zJrl9rS2wLfA+cC2JvsGDx5MUlISSUlJGiktkUgkEolEIpFoj2mfQrz11lssrHvoIoTgoosu4t1332XVqlX88ccf2O12n7Y///xTZ0skLTFu3Dj/fphNnw6LF7d8XEUFPPKIsnpEJ5KSkvy3L4QUFRUxYcIEioqKTNeuVm2oJTdYOXr5ThIcYee3H3+E00//ZxIElIdx//mP28ONbl9Yx7zLLoOBA7VvRyOZMua1TszuN9Xt27wZ+vdvPAlSz65d8MMPcM01Hk/vgFI4/ei6v4866iiefPJJJk+erI5+fhCuYz2jxDw1dZGEFjP7zei26alfa495asgyev+SuMfsfjOyfUbWTUtMmxqrd+/erFq1CovFwosvvsgDDzygt0oSlalfTnXSSSexfft21q5d2/Jyqn37lLRXdUv7W+Tpp+Hf/w5aV39omBorKiqKrl27sn37dqqqqgyXUqCqqort27fTtWtXoqKiTNWuVm2oJTdYOXr5ThIcYeW3r7+Gyy8HT+kl58yBoUMbfWR0+8wc87RqR8Y8STCY3W+q21deDpdeqkx4uOO88+Dzz+H222HuXM96paWxb/Zskk86id27dzfTz1saV2/4M44N17GeUWKemrpIQouZ/WZ02/TUr7XHPDVkGb1/Sdxjdr8Z2T69dNM7NZZpJ0ISEhIoLy+nW7dubNy4UW91JBoQ0JcnIwNmz/atgdNOg1WrIDo6CC39R9YIkUgkpqCiAnr1Ak/34KQkyM+H5ORQamUu/v4bjjpKby0kEomRKClRJkN+/LHx5+edB199BQkJUFkJQ4YoK/Q80aMHLFkCbds22xWKiRCJRCKRSCQSifnQeyLEtKmx6unVq5feKkg0ZsiQIcTFxbV84BdfeJ4EiY5WHtjVExmppNAK8SRIU+Li4ny3TwfKy8v57LPPKC8vN127WrWhltxg5ejlO0lwhJXfYmPh448hPr75vrZtlQLeTSZBjG6foWLe+PHKCscNG7RtxyAyZcxrnZjdb5rYl5CgTHCcc84/n/Xtq3yWkKD8HR2trAjp39+znLw8yq+4gs9mz9bl+ofrWM8oMU9NXSShxcx+M7pteurX2mOeGrKM3r8k7jG734xsn5F10xLTToR06tQJUIqmSySUlMDo0Z73P/UU/PQTTJ2qPLR77DElr71EIpFIAufEE2HmzMafnXIK/D975x0eVZU28N+kDpMOUkUMoFJUxAoWFKyg64IFEztmLehagi4u1hXXsnbQXcXyRXEXIYoKoqioCAoKivSqQiIiLUD6ZDKTzPn+uJlhktzJTDL3zr1zc37Pc58kt7xl3jNvzr3nnvf8+COMGGGMTVbgkUeUbf9+OPtsTQdDJBKJBfANhpx6Kpx5pjITpOmgdIcOSpmsll4aW7sWFiyAdlY7WiKRSCQSiURiTSxbGuu2225j2rRpHHfccaxatcpocyQ60KrpVHfcAf/+t/qxY46Bn346OPtj+3bo2hWSkzW2ODxkaSyJRGI5HnsMHnoILrkE3n5bfZaIJDweeUSZDRLIIYfAwoXKIJNEIpH4qKiA+HhISQl+TmmpMjC9Zk3wc045RRkQycgA2l4a6+uvv2bo0KHY7fZWXyuRSCQSiUQiiX1kaSyduOWWW4iPj2ft2rV8++23Rpsj0ZH+/fu3vLDP99/Df/6jfsxmgzfeaFwCq1cvwwZBmpKYmBjaPwPxeDxs3rwZj8djOb166dBKbqRyjIqdJDJiNm4PPACFhcoC6S0MgpjdP8NzntogCMC+fcrMkAjXRNPDP5nzJJFg9bjp7l96esuDIABZWcogR79+ze1LTGRz//54Vq2CkSOVgZUIGDFiBFlZWeTm5oYswxCrfT2z5DwtbZFEFyvHzey+GWlfe895Wsgye/uSqGP1uJnZPzPbpieWHQg57rjjePzxxxFCkJuby+bNm402SaITLa6h4XbDTTdBsIlPd9zRckkAg5FrhBinV64RIjEjMRs3mw2uuALiWu52mN0/w3Pe6tXBT9q/H9av10aPCWtHy5zXPrF63EzjX5cu8OWX0KdPo91Oh4M5Y8bgdDhg2TJlEfbKyohUuVwuCgsLufrqqykuLvZvLperse4Y7euZJedpaYskulg5bmb3Ta4RYqxM2ddrn1g9bmb2z8y26YllS2P5eO2117jrrruIi4tj/PjxXHbZZRxzzDGkp6cbbZokQsKaTvXPfyrrf6hx2GGwYcPBhSNNgiyNJZFIJBJVXC6lvNhnnzXeb7PB9Olw7bXG2CWRSGKfujrl5aEvv4QdO4Kfd8YZuD78kKzDDms2eBEJdrud0aNHU1BQYNoXgCQSiUQikUgkkSFLY+lEfHw88fHx3HrrrbjdbmpqapgyZQrDhg0jKyvLfzzUlpCQYLQrkrayebNSlz4Yr7xiukEQiUQikUiCYrfDhx8qJWp8xMUp667IQRCJRNJW6uvhhhvgrbegtha6dw9+7pIl2C+7jCsuukhTE3wzRfLy8jSVK5FIJBKJRCKR+LDsQEjTiS42m63RsdZsEnPzyCOPkJmZ2Xin16u81eZ2q1+Umwsa38DpQWZmprp/JqGsrIzJkydTVlZmOb166dBKbqRyjIqdJDKsHje/fytXBi9paCCmyHmBgyG+QZBrrtFej0bInCeJBKvHzRT+eb0wfjz873/K3yUlymBIt26UZWYy+ZFHKGvaD/3mGwpKSrj2sss0X/h87ty5uFyumO3rmSXnaWmLJLpYOW5m981I+9p7ztNCltnbl0Qdq8fNzP6Z2TY9sWxprLgQdcjDxWazUV9fr4ksibb4plNlZ2ezY8cOVq9efXA61auvKjd1amRlKbNFunSJnrGtILA0VkJCAj179mTHjh3U1dWZrjRWXV0dO3bsoGfPnlGdPRUNvXrp0EpupHKMip0kMqwet7q6Ona8+SY9J0wgYeJE+Mc/jDapEabKeS4XLFkC556rrx6TyJQ5r31i9bgZ7p8Qynp5//lP82MZGdQ5HOxITqbnjh0k1NU1P2f4cFzvvcfuqqoml2Zw6623+gc1WktRUZG//3vIIYewb98+/7Fu3bppNvhi5ZynpS2S6GLluJndNyPti9X7Wy1lyr5e+8TqcTOzf0bZZnRpLMsOhEisT9Avzx9/wMCBUFGhfmGPHsrbtKecEiVLW4dcI0QikbRL6uvh/vvh6acP7nvzTRg3zjCTJBKJxNL85z9w++3Bj3fvrqxBtHNn8HPOOAM++QRU1l90uVwsW7aMESNGtMqsoqIiunTpQl5eXrPBFLmWiEQikUgkEknsYvRAiGVLY0naD7m5uaSkpBzccccdwQdBQLmZO/VUuPde5Y1aE5OSktLcPxNRXV3NrFmzqK6utpxevXRoJTdSOUbFThIZlo1bWRlcfDHV//kPs3JzqfblvJtuggULDDUtECvnPL30yJwniQSrx81w/66/HoYPVz/mcFD9v/8x69FHqQ7ygg6gzEw77zwoLW12yG63t+kFHpfLxU033YTNZiM+Pr7ZMa3WErFyztPSFkl0sXLczO6bkfbF6v2tljJlX699YvW4mdk/M9umJ5YdCLn00ku59NJLycnJwePxGG2OREfKysrwer3KHx98oMz2CIXXq5znu86keL3exv6ZjLi4ODIzMzUrRWcmvXrp0EpupHKMip0kMiwZN69XKe/06afEeb1klpUR58t5dXVw2WWwerWhJvrQ9fOvrlZmxNTURFevznpkzpNEgtXjZrh/qanKbI7zz2+8326HefOIO/VUMg89lLg5c6Bbt+ByfvgBzjkH9u/XxKwBAwbw4YcfttgHbmvZrUCsnPO0tEUSXawcN7P7ZqR9sXp/q6VM2ddrn1g9bmb2z8y26YllS2PFxcVhs9k455xzWGCit0kl2tFsOtV333H0ZZfBrl2hL7bZYPFiGDZMRwvbhiyNJZFI2h0ffACXXx58gfTnn4cJE6JrUzQpL4c//Ul5s3rUKJgzB5KSjLZKIpG0F1wuGDsWPv5YyT0ffQQXXND4nM2bldkje/YEl3PssfDll43W4WupXxspsl8skUgkEolEElvI0lg6kZWVBSA7x+2AwYMHk5SUBC+8EN4gCCjls0w4CNKUpKSkg/6ZELfbzerVq3G73ZbTq5cOreRGKseo2Ekiw7Jxu/RSeO453ElJrB48GLcv58XHQ0GBaQZBdPn89+9X3qReskT5+9NP4eqrldkweupVQQ89MudJIsHqcTONf3Y7vP8+5ObC7Nn+QZBG9vXvD998A4ceGlzOunVw1lktrykSJtHoA1s552lpiyS6WDluZvfNSPti9f5WS5myr9c+sXrczOyfmW3TE8sOhPTo0QMAp9NpsCUSvRk+fDh2ux3ee0/9BJut8ZT/Pn3giSeiY1yE2O32g/6ZEJfLxaJFiyIuTWBGvXrp0EpupHKMip0kMiwdtwkTcP31rywaPhyX3X6wZMsNNxhtmR/NP/9du5SHhj/91Hj/7Nlw443+8o3RirseemTOk0SC1eNmKv+SkmDmTLj4Yv+uZvYddZQyo7pXr+ByNm9W8trvv0dkTjT6wFbOeVraIokuVo6b2X0z0r5Yvb/VUqbs67VPrB43M/tnZtv0xLKlsfLz83nxxRc54ogj+Pnnn402R6IDzaZTAaqTqe65B559VlkT5LbblJu8YAtDmgBZGksikbRbvF7IyYGlS5VBkOOPN9oi/RBCeVj47bfBz7nvvpgZuJdIJO2I336Ds8+GbduCn5OdDV99RXFcnCyNJZFIJBKJRCIBZGks3cjLyyM+Pp6tW7cyb948o82R6Ijdbsdms6kf7N0bJk9Wfr/kEuWGzcSDIE2x2Wwt+2cwQghcLhfRHk+Nhl69dGglN1I5RsVOEhlWj5uw2XC9/jpi2TJTDoJo+vnbbPDyy9Cxo/rxHj3guuu019sCeuiROU8SCVaPm9n9C2rf4YcrZbJamhlSXAxnnEHili1t0h1OH7i4uNi/teVtRivnPC1tkUQXK8fN7L4ZaV+s3t9qKVP29donVo+bmf0zs216YtmBkEGDBvHAAw8ghOD6669n6dKlRpsk0YlJkyaRkZGhfvDVVyEl5eDfHTpExyiNyMjIaNk/gykvL+epp56ivLzccnr10qGV3EjlGBU7SWRYPW7l5eU8NXUq5enpRpuiiuaf/zHHwOefQ1pa4/29eyszRfr310dvEPTQI3OeJBKsHjez+9eifStWwB9/QEt91F276JaTwylt0B1OH3jEiBH07t2b3r17k5WVRW5ubqvKIls552lpiyS6WDluZvfNSPti9f5WS5myr9c+sXrczOyfmW3TE8uWxvLx7LPPcv/99yOEYOzYseTk5HDiiSfSuXNnkpOTjTZPEgG+6VTdunWjpKSENfX1jUtjXXcdTJ9ulHltJrA0Vnx8PJ07d6akpIT6+nrTlQCor6+npKSEzp07Ex8fbym9eunQSm6kcoyKnSQyrB43s/unm33ffqssTlxTowx+fPllowWJo/W56KFH5jxJJFg9bmb3L6h9X38No0ZBba3yd3o6VFQElVMFjAG+aoXupn3gcMnJyWHWrFlhnWvlnKelLZLoYuW4md03I+2L1ftbLWXKvl77xOpxM7N/RtlmdGksyw6ENA2iEKJN5YVsNht1dXVamSXRkJbWCKnv2JE/vvgCb7CSIyZmx44dDBs2TPWY2QZCJBKJxHBqa8EKLzYsWAAPPwwffQRduhhtjUQikajz44/K+iBVVY33p6VBZWXQy2qBK4EPVY4NGTKE5cuXa2Ke3W6ntLRU10XWJRKJRCKRSCRtw+iBEMuWxmo6vhM4CCKEaNUmMTfjxo0jNTW10b7rDhzg8BNP9E+Xj6UtcBAkNTVV1T+zUFVVxVtvvUVV05thC+jVS4dWciOVY1TsJJFh9bi12r+VK+Goo5Ra9VFA18///PPhu+9UB0GiFXc99MicJ4kEq8fN7P41s2/jRhg5svkgCCiDIIHlaJuQDLwH3BCwz263k5OTQ0FBQbPz29oHdrlc7N69O6xzrZzztLRFEl2sHDez+2akfbF6f6ulTNnXa59YPW5m9s/MtumJZQdCIPiAh8RaFBcXN5q18ynwjnHmaEpdXV0z/8xEQkIC2dnZJCQkWE6vXjq0khupHKNiJ4kMq8etVf4tXQojRsD27fCnPylvKZvJvrYQp94ti1bc9dAjc54kEqweN7P718y+P/5QSvgF49574cILgx6OBwqA/fffT1FREaWlpcyaNQuHw9Hs3Gj0ga2c87S0RRJdrBw3s/tmpH2xen+rpUzZ12ufWD1uZvbPzLbpiWVLY0msj1pprGyU8li/GWST3sjSWBKJRIKyhsbo0RC4KG7HjrB4sbIAuRnweuGrr+C884y2RCKRSLRjyRK46KLma4Lcfju8+CLU1cH118PMmS3Luf9+eOwxsNkarY+nBbK/LJFIJBKJRGJOZGksiSRChg4d6l/43gOY5BGYJiQnJ/v9s9vtdOvWzWiTGlFbW8uyZcuo9S2WaSG9eunQSm6kcoyKnSQyrB63sPz76CPlIVzgIAjAgQNw7rnwyy/G2gfgcsGVVyrlrt54I3p6TahH5jxJJFg9bmb3T9W+M86ARYugc+eD+y67DKZMAZsNEhPhf/+D225rWfgTT8DNNysDJyoE9oH1wso5T0tbJNHFynEzu29G2her97daypR9vfaJ1eNmZv/MbJueyIEQScwzePBgkpKSAMgEPgamo0y/j3WSkpL8/o0ePdp0Cz+63W5Wr16N2+22nF69dGglN1I5RsVOEhlWj1tY/n38MQQ7vmcP/Otf+hhHmPYdOKAMgLz7rvL3LbfAnDn669UAPfTInCeJBKvHzez+BbXv+OOV8oR9+sCwYcrAR3xAzzsuDv79b3jwwZYVvPEGjBmDrenANo37wHph5ZynpS2S6GLluJndNyPti9X7Wy1lyr5e+8TqcTOzf2a2TU9kaSxJzKJWGss3mepNIM8Io3TAbrczevRoCgoKVGsoSyQSSbuivl6ZbfHee82PXXKJUo5FxzeIW6S4GEaNgs2bG+9PToYFC+DMMw0xSyKRSHRhzx5ISoKsrODnvPAC3H13i2JqBw3isLVrKQlD5ddff012djbFxcWMGDFC9RxZGksikUgkEonEnBhdGqt9rYgisSSZmZlUVFQo9diBui5dOGfBAooyMgy2LHK8Xi8pKSl07tyZuCCL6BqJ1+uloqKC9PT0qNoXDb166dBKbqRyjIqdJDKsHrew/IuPV94+djrhk08O7r/2WigoAB0Xe2vRPqdTeTN6x47mF9bWwp//DN98A4MGaatXQ/TQI3OeJBKsHjez+xfSvq5dQwuZMAEyM+HGG/199aYkr13Ld8BIYGvDvri4ONLT06moqMAbcF12drZmgxxWznla2iKJLlaOm9l9M9K+WL2/1VKm7Ou1T6weNzP7Z2bb9CSmPd25c2fUde7atSvqOiUtk5+fT3p6uv/vhDfeoNdxx/lvlGJ569ixI9OmTVMGekxIRUUFU6dOjbp90dCrlw6t5EYqx6jYSSLD6nEL27+kJGVGiO9t4PHj4a23dB0ECWmfwwGTJwe/uK4OSsJ537mVejVEDz0y50kiwepxM7t/mtl3ww0we7ayfkgQjgC+A05u+Ds9Pb1ZH19rrJzztLRFEl2sHDez+2akfbF6f6ulTNnXa59YPW5m9s/MtulJTJfGSk1NJT8/n3vuuYeslqZka0BpaSnPPPMML730EpWVlbrqkoSHbzqVb0bIWq+Xo6+5Bv77X6NN0wyzj9DKGSHGyZVvzLRPrB63VvtXWQnTp8Nf/6os0msG+/7xD3j00cb7unWD+fOVuvp66dUAM78pKHNe+8TqcTO7f5rat327kgPLyoLODAGoBq4APgsyI8RX9qq4uJjevXuryvj6668ZOnRoyLX1rJzztLRFEl2sHDez+yZnhBgrU/b12idWj5uZ/TPKNqNLY8X0QEhcXBw2m42UlBRuvvlmbr31Vvr27aupjq1bt/Kf//yHN954g+rqagDq6+s11SFpG82+PCedxNGffw4dOxpolUQikUjaNUJAXp4yQwVgwAD49FM4/HBDzZJIJBLDqKiAM86AdeuUv+PiWhwMqQNuBd5QORbOQAjINfYkEolEIpFIzIjRAyHmGo5qJXfeeSfx8fFUVVXxwgsv0K9fP84++2xeffVV9uzZ02a5e/bs4dVXX+Xss8/mqKOOYurUqVRVVREfH89dd92loQcSLRg/fjxpaWnKQyeLDYJUVlYybdo0085CMsq+aOjVS4dWciOVY/a2JVHH6nEzu39h2WezwWuvwXnnwVlnwdKlEQ+CROtz0UOPzHmSSLB63Mzunyb21dVBTs7BQRBQBkFamMWXADyflsbk8eNJT0trk1qXy0VhYSF5eXlBz7FyztPSFkl0sXLczO6bkfbF6v2tljJlX699YvW4mdk/M9umJzG9WPqUKVO48cYbuffee/nss88QQrB48WIWL17MbbfdRv/+/Rk2bBiDBg2if//+9OzZk06dOuFwOBBCUFNTw759+9ixYwdbtmxhzZo1LFmyhM2bN/t1+CbMjBo1iqeffjqqo1SS8Fi9ejVut9toM3QhKSmJwYMHk5SUZLQpqhhlXzT06qVDK7mRyjF725KoY/W46e5fZSVUVyulqtpA2PYlJsL77ytrmSQnt0lXm/SaUI/MeZJIsHrczO5fxPYJAXfdBZ99pn6sJd1uN+evXs3RbjfXAc62WcDcuXNxuVyqZbKsnPO0tEUSXawcN7P7ZqR9sXp/q6VM2ddrn1g9bmb2z8y26UlMl8YKZOnSpfzrX/9i/vz5/sELWxvrhQdef9FFF3Hfffdx6qmnamarRBuMnk4lkUgkkhiiuhpGjYI9e2DhQjj0UKMtkkgkEmtTWgonnwxbt6ofP+006NULZs1qUcxK4GLggN1OaWkpdrsdl8tFVlYWLpcrpBm+cloSiUQikUgkEmMx+lluTJfGCuT0009n3rx5bNmyhUmTJtGrVy+EEG3aevXqxX333ceWLVv46KOP5CCIyRk+fHjIxRBjFZfLxaJFi8K6yTMCo+yLhl69dGglN1I5Zm9bEnWsHjfd/HM64eKL4dtv4eeflZJVv//eOhkffohrwQLL5jy99MicJ4kEq8fN7P5FbF9WFixbBqef3vxY374wdy7MmAH33ttct93OouHDcdntnAD8ANw1bJi/z+9bAyQSrJzztLRFEl2sHDez+2akfbF6f6ulTNnXa59YPW5m9s/MtumJZQZCfBxxxBE88cQTFBcXs2bNGp599lnGjh1Lv379VB+W2+12+vfvzxVXXMGzzz7LmjVrKC4u5vHHH+eII44wwANJa8nOziYhIaarvAWlrq6O4uJi6urqjDZFFaPsi4ZevXRoJTdSOWZvWxJ1rB43XfyrqYHRo+Hrrw/u27pVGQz57bfQ1wsBTz4Jl15K3Q03ULxxoyVznl56ZM6TRILV42Z2/zSx75BD4Kuv4KqrDu7LyoJPPlGOxcXBU0/hfv55vAGz+esSEijOzqauoY9/KPDk0qXK4EkDBQUF5OTktPmFKCvnPC1tkUQXK8fN7L4ZaV+s3t9qKVP29donVo+bmf0zs216YpnSWOFSXl5OdXU1ACkpKWRkZBhskaStGD2dSiKRSCQmx+WCSy5Rr08P0LMnfPkl9OunftzphLw8KCw8uK9vX1i+HDp10t5eiUQisSpCwOTJ8MQTsGABDB/e/JxPP0Xk5GBradFOmw2efhruuce/4LrL5WLZsmWMGDFC9ZJNmzbRv39/DZyQSCQSiUQikUSC0c9yLTcjJBQZGRn06NGDHj16yEEQi9CtWzfi4+ONNkMX6uvr2b17N/X19UaboopR9kVDr146tJIbqRyzty2JOlaPm+b+VVfDzp3Bjzsc0LGj+rHt2+GMMxoNgtTHx7O7upr6yy4Dt1sbG8MgWnHXQ4/MeZJIsHrczO6fpvbZbPDII7Bli/ogCMCoUdi++w4OP1zJt926Ud+0jy8ETJwIN9ygDHajzPBvaQ2QAQMGkJubi9PZeMl1K+c8LW2RRBcrx83svhlpX6ze32opU/b12idWj5uZ/TOzbXrS7gZCJNZj/PjxpKWlGW2GLlRWVvLqq69S2dKbcQZilH3R0KuXDq3kRirH7G1Loo7V46a5f506KSVZBg9ufuzQQ5W3kjt3Vr925kxYtaqxfWlpvDp+PJVr1sAttygP5KJAtOKuhx6Z8ySRYPW4md0/Xezr3bvl48ccA8uXUzlsmJJvg/Xxp09XShz+8UdYagsLC7n66qspLi72b/v27bNsztPSFkl0sXLczO6bkfbF6v2tljJlX699YvW4mdk/M9umJ+2uNJbEOvimU9ntdmpra1m3bp3lSmMJIaitrSU5ORlbQN1ks2CUfdHQq5cOreRGKsfsbUuijtXjppt/Bw7A+efDTz8pf3fsqCycPnBg8Gu8Xrj8cvjww4P22WzUJieTXFuL7ZFH4KGH/KVZ9CRacddDj8x5kkiwetzM7p+R9gmnk9px40iePRtbS7er3brB++9T3KMHvUMNsjTBbrdzySWX8Prrr5OSkhKhxQpmyXla2iKJLlaOm9l9MzTnxej9rZYyZV+vfWL1uJnZP6Nsk6WxJJIIcblcWHU8z2azYbfbTZcwfRhlXzT06qVDK7mRyjF725KoY/W46eZfx47KWiCnngopKTB/fsuDIKAs4Dt9uvJ2ss8+IbDbbNhmzoSHH47KIAhEL+566JE5TxIJVo+b2f0z0j5bhw7Yvd6WB0EAdu+G4cM59NNPW71ousvlYubMmfzlL3+JwNLGmCXnaWmLJLpYOW5m983QnBej97daypR9vfaJ1eNmZv/MbJueyIEQScyTn59Penq60WboQkVFBVOmTKGiosJoU1Qxyr5o6NVLh1ZyI5Vj9rYlUcfqcdPVv8xM+OILWLgQhgwJ75q0NJg717+OSEX//kx55BEqRo3S3r4WiFbc9dAjc54kEqweN7P7Z6R9Ff/8J1MOO4yKcPr4Hg+Jt93GnJ49SWiFjvT0dPLz81m4cCGuhvVGIsUsOU9LWyTRxcpxM7tvhua8GL2/1VKm7Ou1T6weNzP7Z2bb9EQOhEhinkWLFml282I27HY7w4cPb/UbbtHCKPuioVcvHVrJjVSO2duWRB2rx013/1JS4JRTWndNnz7w7rtw9tnYv/yS4eefb8mcp5cemfMkkWD1uJndP8PsmzMH++OPM3zRIuyt6ONf8OuvrOncmSArPzXD5XKxaNEiysvL2b17d9tsbYJZcp6Wtkiii5XjZnbfjLQvVu9vtZQp+3rtE6vHzcz+mdk2PZFrhEhiFqPrykkkEonE4tTVgdsNDoeyMHo7mzYskUgkUWf9eqWMYVWV+vEOHaCmpkURnq5dOXPPHpa1Qm1RURHZ2dnN9rtcrkaDJN26dWt3DwwkEolEIpFItMLoZ7lyRoiJqa+vZ+3atfzf//0ft956KyeddBJJSUnYbDZsNhvDhw9vs+yvvvqK6667jqOOOoqUlBQ6duzIoEGDmDhxIps3b26TzE2bNjFx4kQGDRpEx44dSUlJ4aijjuL666/nq6++arOtoRg5ciQdOnTQTb6R1NTU8Nlnn1ET4obPKIyyLxp69dKhldxI5Zi9bUnUsXrcouZfeTls2NDyOULA7bfDiBGwZw/YbJbOeXrpkTlPEglWj5vZ/TPEvs6d4bjjqOnQgc9GjqQmsI+flgbLlkGINT0S9+zhG+COEKo6dOgQ9D7C6XSSm5tLVlYWvXv39m8dOnRg6NChbNy4UXVGullynpa2SKKLleNmdt+MtC9W72+1lCn7eu0Tq8fNzP6Z2TY9aU0ZVUkUmTNnDldffTVOp1NTuRUVFdx8880UFhY22u90OiktLWXdunVMnTqVyZMnc99994Ut9/HHH2fy5Ml4PJ5G+3/55Rd++eUX3n77ba688kpeffVV0tLSNPHFR2ZmJnFx1hzT83q9lJWV4fV6jTZFFaPsi4ZevXRoJTdSOWZvWxJ1rB63qPi3fj1ceqnyRvHKlcpDNzWefRZefVX5fehQmD8fb69els15eumROU8SCVaPm9n9M8S+rl1h4UK8d92l6A7s47/1FgwaBK+/DscfD/n5ysw9FRKBF4HTgRsBtfklcXFx/vuIpoMaeXl5ze6XfCxfvpyjjz4au93O6NGjKSgowOFwAObJeVraIokuVo6b2X0z0r5Yvb/VUqbs67VPrB43M/tnZtv0RJbGMilvvfUWN9xwQ4vnnHXWWSxatChsmR6Ph5EjR7Jw4UL/vmOOOYYTTjgBl8vFt99+y65du/zHJk+ezMMPPxxS7sMPP8w///lP/9/du3dn2LBh2O12fvrpJzYEvHV7/vnn88knn5CQEPkYnNHTqSQSiUQSY8yYATffDL6XDM49Fz77DOLjG583ezaMHdt4X2YmfPCBMkNEIpFIJPrz5ptw661QWwsTJ8LTTzc+vngxXH457NvXophNwGUNP1siJyeHgoIC4uLiyMrKCnsNwpycHGbNmhXWuRKJRCKRSCTtGaOf5VrzNXoL0bVrV/70pz8xefJk5s+fz1133dVmWf/85z/9gyB2u52ZM2eybt06pk+fTmFhIcXFxUycONF//iOPPMLixYtblPnVV181GgSZOHEixcXFFBYWMn36dNavX88777zjr6W7YMECnnjiiTb7oEZ2drYmAytmpK6ujuLiYuqCvO1mNEbZFw29eunQSm6kcszetiTqWD1uuvnndMJNN8E11xwcBAH48kv4xz8an7tsGVx7bXMZZWXUjRpF8RtvWDLn6aVH5jxJJFg9bmb3z0j76urqKB4xgrpvv4Xrrwe1+4ezzoIVK5TZIS0wAPgByG2yPyEhodF9RGFhIXl5eezevTvsQRCAuXPn+s83S87T0hZJdLFy3Mzum+E5Lwbvb7WUKft67ROrx83M/pnZNj2RAyEmZeTIkfz222/s3r2befPm8fDDDzNq1CgyMzPbJG/v3r08//zz/r+nTJlCbm7j24GkpCSefvppcnJyABBChCyPFXg8NzeXp59+mqSkpEbnXHnllbzwwgv+v5999ln2hXhzqzWMGzeO1NRUzeSZiaqqKqZPn05VsAUjDcYo+6KhVy8dWsmNVI7Z25ZEHavHTTf/Xn4Z3nhD/djjj8O8ecrvQsBf/wpBHoBVpacz/Y8/LJnz9NIjc54kEqweN7P7Z6R9ft1HHqmUxAr20tPhh8PSpSHXDUkFZgL/BpJ9+1JTm91HBA5qhEvggupmyXla2iKJLlaOm9l9M0XOi7H7Wy1lyr5e+8TqcTOzf2a2TU9kaawY45FHHmHy5MlA60pjPfPMM9x7770AHHXUUWzevBmbzaZ67vbt2+ndu7e/TtzKlSs5XuVNqx9//JFTTjkFUGrsFhcXc9hhh6nKFELQr18/fvnlFwCef/55JkyYEJbtwTB6OpVEIpFIYgSPB848U5ntocYppyjHbDbYuRP+9CdYtar5ef/7H1x9tb62SiQSiaRtBJbSaoE1QA6wJcjxTz/9lFGjRrVK9aZNm+jfv3+rrpFIJBKJRCJpbxj9LFfOCGknzJkzx//7uHHjgg6CAPTq1Yuzzz7b//eHH34YUua5554bdBAEwGazcf3114eUKZFIJBKJ5iQmwsyZyjofTbnkEvjiC2UQBKBHD/jmG7joosbnPfqoHASRSCQSM3PDDXDFFSFPOw74CRgX5HhrB0EABgwYQG5uLs7A8osSiUQikUgkElMhB0LaAS6Xi2UBb8EOHz485DUjAhaDDVxcPZCvv/66zTK/++47akO8rRUukyZNIiMjQxNZZqO8vJx//etflJeXG22KKkbZFw29eunQSm6kcszetiTqWD1uuvqXnQ3/938H/46PVxbeff99SE9vfG5qKsyZo5TJAhg3Dh580NI5Ty89MudJIsHqcTO7f0ba1ybdH38M//1vWKemAFMyMnh00iR6aHQfUVhYyM0332yKnKeVDEn0sXLczO5bzOU8E+jQUqbs67VPrB43M/tnZtv0RA6EtAO2bNniL3Nls9lUy1w15YQTTvD/vmnTJtVzAvcHnh+MQL319fX8/PPPIa8Jhzlz5lj27SuHw8GYMWNwOBxGm6KKUfZFQ69eOrSSG6kcs7ctiTpWj5vu/l16Kdx2G/Tqpcz6mDjx4EyQpiQkwEsvQWEhvPoq2GyWznl66ZE5TxIJVo+b2f0z0r5W6/79d2VR9dbocDoZO2cOC51OTmqDjWrMnTuXCy+80PCcp5UMSfSxctzM7ltM5TyT6NBSpuzrtU+sHjcz+2dm2/RErhESY7RljZB3333XvwB6165d/Yv5tcTGjRsb1Wjbu3cvnTt3bvR3165d/X+HWxe3S5culJSU+O0aO3ZsyGuCYXRdOYlEIpHEIC4XOJ3QsaPRlkgkEolEC+rqYPhwZdF0NeLjob6+RREe4D7geSDYzbGvtHCo2+eioiKys7NbPEcikUgkEomkPWL0s1w5I6QdsH//fv/vgYMXLdGtW7dGfx84cCCozLbKbSqzrVh5BNPpdJp6xotR9kVDr146tJIbqRyzty2JOlaPW5v8KyyElSvDP99ub/MgSFj2vfgibN/eJvkR6TWpHpnzJJFg9biZ3T8j7WuV7pZKOthsSgnECy9srsPhYM6YMTgdDhKBZ4EvgJ5BRF1xxRVcEWINEofDwZIlSwzPeVrJkEQfK8fN7L7FTM4zkQ4tZcq+XvvE6nEzs39mtk1P5EBIO6Cqqsr/e4cOHcK6pul5gTLU/m6L3KYy2kp8fDwpKSmAUnKrrKzM/6ZWRUUFbrcbgJqaGqqrqwGoq6ujrKzML6O8vByPxwMoycCXCDweT6N6eWVlZdTV1QFQXV1NTU0NAG63m4qKCkB5S6ysrIz6hjfPqqqqcLlcANTW1lJZWQmA1+ulrKzMX7assrLSv26Ky+Xyfz5er5fy8nLT+lRfX9/I1nB80iJOdXV1usZJT598+6MZp6ZtL7BN6Rkns32fpE8W8qmsjLprr6Vs/Hi45hqoqTHep8JCKh98kNohQ+Dzz2MuTnrlPV/OidQn3+9tjZPb7Zbfpxjzqaqqyn+NVXxqGiefPWb1yfe7qdtep05Uf/IJNffdp/iUlERFw9pP4u9/p+yss6ifOxeef56qzExcdrviU1ISnoQExae4OMoyMxkRF8c64Jq0NJKTkwGw2+1cddVVFBQU8Prrr3PNNdf4Z4ekp6eTlJQEKPc5vpeztIiTx+OJuO3JvBd7Plk97wXeO5rRJ4/HY0jbq6io8MuOtXv3wPtzo/OeEILy8nJL5wgr+uTxeCznUyzlPaPanlHIgZB2gK9BA/6Oeih8HX8fvi+Pmsy2ym0qs63s37+fiy66CICSkhKmTp3q/3IWFBSwceNGABYvXsy8efMA2LFjB1OnTvXLeOWVV9i6dSsACxYsYMGCBQBs3bqVV155xX/e1KlT2bFjBwDz5s1j8eLFgFJKrKCgAFASx9SpU/0lwGbPnu1frH7VqlXMmDEDUJLD1KlT/cloxowZrFq1CoBly5Yxe/ZsHA4Hp512Gq+99popfXI4HBx66KF88MEHYfukRZwcDgcJCQksWbJEtzh98MEHjBkzhrq6Ok19OnDgAJs2bfLfKLc1Tj/++CNjxoyhuLi4TW3vtddeY8SIETgcDt3i1Fqf9P4+WcGnLVu2MGbMGNauXWsZnwLjNH/+fMaMGUN1dXXLPr35JgwaxI4lS5ianw+bNsHf/667T2vXrmXMmDFs2bKluU+rVsGNNzLj6qtZlZ0No0ax7F//YvZ770Ucp127djFmzBiWLFmia5z0yHsOh4MTTjiB1157rZFPrY3TV199RWpqKg6Ho01tr66ujk2bNvlvDKyaI6zm0wcffMChhx6Kw+GwjE+BcVq7di3V1dU4HA5T+jR//nw6deqEw+GIettrdd779FMWn3kmfPYZG4cMoSAvD044gdr77lN82rcPJkxg9qOPsqxhdsiW/v3Zf8ghOJxOKtLTmZqfT0V6OpnA6VdfzfPHH895J57IvHnzOO+883A4HFRXV3PEEUewevVqAPLy8hg4cCCglC0+99xzOeOMMzhw4EBEcXI4HNTX1/Pjjz+GjJPMe9byycp5z+Fw0KlTJ+bPn29Kn3zf8bVr14btE2jT9t566y0GDhyIw+GIqXv3H3/8kfr6ehwOR8RxijTvORwORowYwWuvvWbpHGE1nxwOB/v372fLli2W8SkwTmbOe9XV1YwZM4b58+cb0vYMQ0hiin/84x8CpXStOOuss8K65umnn/ZfM2TIkLCucTqd/msAsWLFikbHf/jhh0bHa2pqwpJ7yimn+K959tlnw7omGOvXrxeAOPbYY0VmZqZYv369qKurE6WlpcLr9QohhCgvLxe1tbV+n6qqqoQQQng8HlFaWuqXVVZWJtxutxBCiOrqalFdXS2EEMLtdouysjL/eaWlpcLj8QghhKiqqhJOp1MIIURtba0oLy8XQgjh9XpFaWmpqKurE0IIUVlZ6f98XC6XqKioEEIIUV9fL0pLS0V9fb0QQoiKigrhcrmEEELU1NSIyspK4Xa7xfr168XevXtN6ZPb7RZr164V+/fvD9snIUTEcXK73WL16tV+P/SI0/79+8WmTZuEy+XS1Cen0ylWrFjhj01b41ReXi42bdrk/z0cnwLb3t69e8WGDRuE2+3WLU6t9Unv75MVfKqsrBSbNm3y/24FnwLjdODAAbFp0yZRU1Oj7lNdnXBOnCiqUlKEAOFJSBClmZlCgBAgyj76SFefKioqxKZNm/y/+3364w9Rf8wxQoCoSEsTruRkIUDU2O2i8sILhdi7N6I4VVdXi02bNvl/1ytOeuS9wP9jgT61Nk6lpaVi9erVwu12t6ntuVwusWLFCr8fVs0RVvNp//79Yu3atcLtdlvGp8A4VVRUiJUrVwq3221Knw4cOCDWrFkj3G531NteRHlv+3ZRnpMjxKZN6nHau1eIq68WlSkpYuXgwcKdmCjq4+JEaWamqI+La5TL63v0EDXz5zfzadu2bQIQ6enpIikpSQCiQ4cOIiMjQyxevFg4nc6I4uR2u8WqVav8sZF5T+a9WPbJFye32y3WrFkjDhw4YEqf3G63WLlyZaPvULTaXklJiVi3bp1wu90xde9eXl4uVq1aJdxud8RxijTvud1usWHDBrF3715L5wir+eT73vn8sIJPgXEyc96rqakRmzZtEgcOHIhq2/M9y/Vt69evF9FEDoTEGG0ZCHn55Zf91wwaNCisa/bv39+oYW7evLnR8Y0bNzY67vtSh+LYY4/1XzNt2rSwrgmG78szadIkkZGREfUvTzQoKysTTz75ZKPEZiaMsi8aevXSoZXcSOWYvW1J1LF63EL65/UKMXasf+Cj2da9uxD79kXXPq9XiKuvDm5TXJwQixZpr1cH9NAjc54kEqweN7P7Z6R9uuv2ekXZG2+IJydNEmUZGcFzuG+7804hGh4mCCFEUVFRo3sh35aRkSEef/xxw3OeVjIk0cfKcTO7b5bOeTrp0FKm7Ou1T6weNzP7Z5RtRg+E2IRoKOIliQkeeeQRJk+eDCjTrxctWhTymnfffZecnBxAWdR89+7dIa/ZuHEjRx99tP/vvXv30rlz50Z/By6QvmnTJvr37x9SbpcuXfxTyt59913Gjh0b8ppgbNiwgWOOOcb/9/r16xvZLJFIJBILcuAAHHss7NzZ/Fh8PMyaBZdfHj17qqth1Cj49lv14088AQ116yUSiURiMn79VVlnavny0OcedRS8+SacdhrFxcX07t1b9bSvv/6a7OxsALp164a9YU0SiUQikUgkkvaO0c9y5Roh7YB+/fr5f9+7d2+z9T3U2L59u//3jh07NhoEAWVAIzMz0//3b7/9FlKmy+XyD4IAYQ2cSCQSiUTSiI4dYfr05vuPPBKWLo3uIAhASgosXAgTJzY/dtFF8Pe/R9ceiUQikYTPEUcoAyHh8PPPcMYZMGECtoZFStUYMWIEvXv3pnfv3mRlZZGbm+tf1FQikUgkEolEYhxyIKQd0K9fP+LilFALIfyL+7XEypUr/b8PGDBA9ZzA/b4Fc8KVGR8fz1FHHRXymnB45JFHGg3KWImysjImT55MWVmZ0aaoYpR90dCrlw6t5EYqx+xtS6KO1eMWtn/nngt33XXw71tugVWrYMgQY+xLSICnn4YPP4T0dGVfdja8/TbERd7Vilbc9dAjc54kEqweN7P7Z6R9Ue3rPfFE+BcJAVOm0OPCCzlT5XBmZmajexOXy0VhYSFnn312WC+jNbMtAv/N3r4k6lg5bmb3rd3kPBP287SQZfb2JVHH6nEzs39mtk1XolqISxIxbVkjRAghTjvtNP91Tz75ZMjzzz//fP/5Dz30kOo5999/v/+cCy64IKTMJ554wn/+sGHDwrY9GL66ctnZ2SIhIcGSa4R4PB5RVFTkX+zIbBhlXzT06qVDK7mRyjF725KoY/W4tco/p1OIs88WYt48/Q1rICz7fvlFiFNOEeLHH6Or16R6ZM6TRILV42Z2/4y0Lyp9vdpaUTRmjPAkJIReIyTI9m8QKQF1rhMSEvz3JtB4/RCbzSZycnJEdXW1qKmpEUVFRf7Nt0iplv6bvX1J1LFy3Mzum+Vznon7eVrIMnv7kqhj9biZ2T+jbJNrhEhaRVvWCAF45plnuPfeewFlhsjmzZuDnvv777/Tu3dv6uvrAfjpp5844YQTmp33448/csoppwDKDI/i4mJ69uwZVG6/fv34+eefAXjuuee4++67w7I9GEbXlZNIJBKJhjidsGEDnHyy0ZZEjhBgsxlthUQikUha4tVXYfx49WPJyZCRAXv3hhRTDNwIfNUK1Xa7vdEMEbvdzujRoykoKMDhcLRCkkQikUgkEknsYPSzXFkaq51w/fXXk5KSAsCWLVt44403gp7797//3T8Icuqpp6oOggCcfPLJnNzwwKq+vp5JkyYFlfnaa6/5B0HS0tK47rrr2uSHGrm5uX7frEZ1dTWzZs2iurraaFNUMcq+aOjVS4dWciOVY/a2JVHHsnFbsAAGDaJ6zBhmvfWWaf0L+/Nv7SDIww/DCy+A1xuZ3gjRQ4/MeZJIsHrczO6fkfZFpa934YXMuuceqtXuI556CjZtgmuvDSknG/gSeBPomZIS1r1J0zJZTUtoaeG/2duXRB0rx83svlk+55m4n6eFLLO3L4k6Vo+bmf0zs216IgdC2gldunRpNAPjzjvv5N133210jsfjYdKkScycOdO/78knn2xRbuDxGTNmMGnSJDweT6Nz3n33XfLz8/1//+1vf+OQQw5pixuqlJWV4Q3y8CjWiYuLIzMz07/Gi9kwyr5o6NVLh1ZyI5Vj9rYlUcdycdu1C3Jz4YILYOtW4kpLyVyxgjiTzqbQ5fP/9lt47DG4+25l7ZPt26OjVwU99MicJ4kEq8fN7P4ZaV9U+nqHHELmuecSV1AAnTsfPDBsGNxxB3TsqKz1NG8e9OgRUt444Huvl+4R3JssX74ch8PBTTfdRGpqakT+m719SdSxctzM7pvlc56J+3layDJ7+5KoY/W4mdk/M9umJ7I0lom58MIL2blzZ6N9u3fvZs+ePQCkpKRwxBFHNLtu/vz59FDprHs8HkaOHMnChQv9+4499lhOOOEEXC4X33zzDbt27fIfmzx5Mg8//HBIOx966CEee+wx/989evRg2LBh2O12fvrpJ9avX+8/dt555zF//nwSEhJCyg2F0dOpJBKJRBIBb74J+flQUdH82MyZygCJ1amshOOOg6Kig/vS0+HFF+G662R5LYlEIokWJSVw++3w8cewZg00vccqK4N77oGCgrDELQLGA1siMCknJ4dZs2ZFIEEikUgkEonEXBj9LLd9DfvEGBs3bmTNmjWNNt8gCCjTmJoeX7NmDW63W1VeYmIiH3zwAVdccYV/37p165g+fTqFhYX+QZDExEQef/zxsAZBAB599FH++c9/kpiYCMDOnTspLCxk+vTpjQZBcnNzmT17tiaDIIEMHjyYpKQkTWWaBbfbzerVq4PG1GiMsi8aevXSoZXcSOWYvW1J1LFU3NzuZoMg7qQkVg8ejHvChLDqskcbzT//u+9uPAgCymcybhxMmKCf3iDooUfmPEkkWD1uZvfPSPui3tfr3BkKC2HduuaDIACZmfB//weffw69egWX2fB/7LSkJNYA/wCS22BbUlIS27Zto0LtZYEwMXv7kqhj5biZ3bd2lfNMKFP29donVo+bmf0zs216IgdC2hkZGRkUFhbyxRdfcM0119C3b18cDgcZGRkcc8wx3HPPPaxZs4b7778/bJk2m40HH3yQNWvWcPfdd3PMMceQkZGBw+Ggb9++XHPNNXzxxRfMnDmT9PR0zX0aPnw4drtdc7lmwOVysWjRomZ1hM2CUfZFQ69eOrSSG6kcs7ctiTqWittNN8HQoY12uex2Fg0fjsvpVNbNMBmafv7z5kEL63UxZow+eltADz0y50kiwepxM7t/RtpnWF+vT5+WLzr/fGWwJMgi6/7/Y3Y7ycAjwBrgnFbaZrfbOf300/n9999beWWALSZvXxJ1rBw3s/vWLnOeiWTKvl77xOpxM7N/ZrZNT2RpLEnMYvR0KolEIpFEyJo1cOKJUF/feP9f/gLPPANZWcbYFQ1mzIBbbgG1xeluvRVefjn6NkkkEokkbOouuYSEOXPCPn82cA/QfCWo4BQVFZGdnd06wyQSiUQikUhMitHPcuWMEEnMY7fbsVm0jroQApfLhVnHK42yLxp69dKhldxI5Zi9bUnUsVzcjjtOWSekAXHMMbi+/hrx+uumHATR9PO/+mplIOj00xvv79ULnnpKP70toIcemfMkkWD1uJndPyPtM31fb80aEj76qLlMmw2X3Y5QuTe5HNgEPASEmstus9mw2+0R+W/29iVRx8pxM7tvMucZK1P29donVo+bmf0zs216IgdCJDHPpEmTyMjIMNoMXSgvL+epp56ivLzcaFNUMcq+aOjVS4dWciOVY/a2JVHHknF75BHo3x+efpryhQt5avFi0/qn+effty8sXgz/+hc0rLPFa69BWpq+eoOghx6Z8ySRYPW4md0/I+0zdV9PCPjrX8HrbS4zI4OnJk2iPMi9iQN4FNgAXJ6YSM4VV7By5cpm52VkZDBp0iSq1WYNhonZ25dEHSvHzey+yZxnrEzZ12ufWD1uZvbPzLbpiSyNJYlZfNOpunXrRklJCWvWrLFcaaz6+npKSkro3Lkz8fHxRpvTDKPsi4ZevXRoJTdSOWZvWxJ1TB83j0cp6bRxI7z6avjX1dVBQoLp/dPVvjVr4OOP4YEHoqtXZz0y50kiwepxM7t/Rtpn6r7ef/8L112nLvOQQyjp2JHOW7cS37TsoxoXXMCOiRM57NxzG+2Oj4+nc+fOzJgxgz4N65Z069atVesimr19SdSxctzM7pvMecbKlH299onV42Zm/4yyzejSWHIgRBKzGP3lkUgkEkkAn30GEybA5s3K34sXw5lnGmuTlfF6Ydw4ZTv7bKOtkUgkkvbD3r3w97/DW281P/beezB8OEycqH5cBZGYyAseD48BpS2cZ7fbGT16NAUFBTgcjtbbLZFIJBKJRGIwRj/LlaWxJDHPuHHjSE1NNdoMXaiqquKtt96iqqrKaFNUMcq+aOjVS4dWciOVY/a2JVHHlHHbsgUuughGjTo4CAJw113NF0EPgSn9C8BUOe/115W3ks85R3kzec8effSYRKbMee0Tq8fN7P4ZaZ+p+3pdusCbb8KSJcpaVz7OO4+qCy7grY8/puqll5TjgweHFGfzeLgb+BW4C0gEUlNTm93juFwuCgsLycvLC8tMs7cviTpWjpvZfZM5z1iZsq/XPrF63Mzsn5lt0xM5ECKJeYqLi6mrqzPaDF1ISEggOzubhIQEo01RxSj7oqFXLx1ayY1UjtnblkQd08VNCLj2Wpg/v/mx1auVB0WtwHT+NcE0OW/3buVtZB///S8cdRRMnaqUGdNKjwbInCeJBKvHzez+GWlfTPT1Tj8dVqyAF1+Ezp3hpZdISEw8KNN3/JVXoGPHkOI6AlOAjcDIurqg9zhz587F5XKFlGf29iVRx8pxM7tvMucZK1P29donVo+bmf0zs216IktjSWIWo6dTSSQSiQRYtAhGjFA/1qUL/PILpKdH1STLc+WVMGuW+rF774WnnoquPRKJRNLecbmgpfU79u+HBx9U1s8K8/b7W+Ae4EeVY19//TXZ2dlA69cOkUgkEolEIjEKo5/lyhkhkphn6NChJCcnG22GLtTW1rJs2TJqa2uNNkUVo+yLhl69dGglN1I5Zm9bEnVMGbfhw+Gyy9SPVVfDj2qPcNQxpX8BmCLnffZZ8EGQ1FS4805t9GiEzHmSSLB63Mzun5H2xVxfr2EgIqjMTp2UmSE//QQnnBDatuRkEocO5dvkZN4B+jY5PmLECHr37k3v3r3JysoiNzcXp9PZWIbJ25dEHSvHzey+yZxnrEzZ12ufWD1uZvbPzLbpiRwIkcQ8gwcPJikpyWgzdMHtdrN69WrcbrfRpqhilH3R0KuXDq3kRirH7G1Loo5p4/bMM9B0QPraa5X1Q845J2wxpvWvAVPkvKVLg5/48MNw6KHa6NEImfMkkWD1uJndPyPti9W+XkiZxx+vlDIMJScpidWDB+NOSuJKYBPwCtBD5dxga4eYvX1J1LFy3Mzum8x5xsqUfb32idXjZmb/zGybnsjSWJKYxejpVBKJRCIJ4IEH4IknYMgQZa2KIUOMtsi6LFoE48crA00++veHNWvAoi8GSCQSiSX47jtl7ZA2UgP8G/gXcKDJMbvdTmlpqSyTJZFIJBKJxLQY/SxXzgiRxDyZmZnExVmzKXu9XsrKyvB6vUaboopR9kVDr146tJIbqRyzty2JOlGL24oVcN558OWX4V9z333wzjvKQ542DoKYvV2aJucNHw5r1yprgaSkKPteeiniQRA9/JM5TxIJVo+b2f0z0r5Y7eu1KNPrhfz84BfbbAdPjYujLDMTb5N7nA7ARGAb8CCQGnDM5XKxe/du/+/btm1j/fr1bNu2LazF1SXmwOx5IRLM7pvMecbKlH299onV42Zm/8xsm55Y8+mxpF2Rn59PukUX4q2oqGDq1KlUVFQYbYoqRtkXDb166dBKbqRyzN62JOroHreNG2HsWDj5ZGUQ5L77wl7UldRUZRHvCAamzd4uTZXzkpKUhdE3b4YpU+Dcc8MX+NFHsG5deHoiROY8SSRYPW5m989I+2K1r9eizAMHgi+ofuyxsHIlXHCBIic9nan5+VQEucfJAP4JbAXyAZ9Up9NJbm4uWVlZnHjiibz//vuceOKJQdcRkZgPs+eFSDC7bzLnGStT9vXaJ1aPm5n9M7NteiJLY0liFt90qszMTCoqKli7dq3lSmN5vV4qKipIT0835awXo+yLhl69dGglN1I5Zm9bEnV0i9vWrTBpErz/fvOBj9mzgy+GrjFmb5eWyHmlpXDEEVBWBnl58Oij0L279noakDlPEglWj5vZ/TPSvljt64WUKQTMn6/8z12//uD+jz+Giy5Sfv/8c7wTJ1Lx+++kV1QQF8abmruBp4GVJ53E4hUrAIiLiyM9PZ2Kigr/2545OTnMmjUrQi8lemL2vBAJZvdN5jxjZcq+XvvE6nEzs39G2WZ0aSw5ECKJWYz+8kgkEoll+OUXZY0JtYct/fopD2sSEqJvl0R7/vY3eO65g387HHD77crskk6djLNLIpFI2hP19TBjBjz0EBx+OCxe3Kg0FvX1lEydStU999C7FWL3AM8CLwNqcz/kOiISiUQikUiMxOhnueYajpJI2sD48eNJS0sz2gxdqKysZNq0aVRWVhptiipG2RcNvXrp0EpupHLM3rYk6ugWtyOPVMpaqbFlC7z1lrb6gmD2dhnzOW/bNmUtkUCcTnj6aTj1VCrLyzX3T+Y8SSRYPW5m989I+2K1rxe2zPh4uO46+PlnZX2twEEQoNLpZGZCAiempfFXlBkf4dAVeAYoBv6elsZtTe6TAtcRkZgTs+eFSDC7bzLnGStT9vXaJ1aPm5n9M7NteiIHQiQxz+rVq3G73UaboQtJSUkMHjyYpAgXwNULo+yLhl69dGglN1I5Zm9bEnV0jdsDDzR7EONn4ULt9alg9nYZ8zlv0iQI9v/y9ttJsts190/mPEkkWD1uZvfPSPtita/XapnJydCzp6qcI444AqfbzctAX+A+oDZMOzoDk91uLl29mtvdbjLCvE5iPGbPC5Fgdt9kzjNWpuzrtU+sHjcz+2dm2/RElsaSxCxGT6eSSCQSy3HFFfDeewf/HjwYnnxSWbw12CCJJDZYvRqOP179WM+eSnk0WSpFIpFITIPL5SIrKwuXywVAf2ADbXuTsQJ4FXgBWLhpE/3799fMTolEIpFIJJJwMfpZrpwRIol5hg8fbtk6ty6Xi0WLFvlvgMyGUfZFQ69eOrSSG6kcs7ctiTqtilt9PXzwASxYEL6CBx9Ufh57LBQWwk8/wciRURsEMXu7jOmcd9xxysL3ffs2P/bQQ2C36+KfzHmSSLB63Mzun5H2xWpfT8uct2zZMi655BL/vodp3c27y25n0fDhuOx20oGJKCWzlgwYwIQLL8TpVFtFRGI0Zs8LkWB232TOM1am7Ou1T6weNzP7Z2bb9EQOhEhinuzsbBIsuohvXV0dxcXF1NXVGW2KKkbZFw29eunQSm6kcszetiTqhBW3ykp48UVl3Y/LLoMJE9QXQVdj0CD47jtl9sAVV0BcdLsJZm+XMZ3zbDalPWzcCC+8AF26KPv79IEbbghfTytLUcqcJ4kEq8fN7P4ZaV+s9vW0znlTpkwhJyeH45OSyAlybglQrSYjIYHi7GzqAu6TkoAbgec+/ZQfevak9ptvIrJToj1mzwuRYHbfZM4zVqbs67VPrB43M/tnZtv0RJbGksQsRk+nkkgkElOxbx889RS8/jqUlzc+9t57cPnlxtglMSdVVfDvfyszRMaODe+abdtgyBC47Ta4807o1ElfGyUSiUQCgKu4GPcjj5A2cya2JgPSVwFfAPcAtwOprZS9sXNn+r78MsmXXhr1FyAkEolEIpG0L4x+lit7OpKYp1u3bsTHxxtthi7U19eze/du6uvrjTZFFaPsi4ZevXRoJTdSOWZvWxJ1Qsbt3/9uPggC8NhjEAPvPZi9XVoq56WmKounBwyChNTz1FPKgNujj8Lhh8M998DOnVGxXea89onV42Z2/4y0L1b7enrlPHt2NulvvYVt2za4+25ISQHAfdhhvAvsQ1lMPRt4AqgE6uPj2d2tG/Uh7pMGlpSQPHYsHHUUvPgirpISiouL/Vt7K5lhNGbPC5Fgdt9kzjNWpuzrtU+sHjcz+2dm2/REDoRIYp7x48eTlpZmtBm6UFlZyauvvkplZaXRpqhilH3R0KuXDq3kRirH7G1Lok6LcTvkELjuOvUL16yBefP0NU4DzN4urZzzQur54w94662Df1dXw/PPQ+/e8PjjbZOplW1RuF5iDFaPm9n9M9K+WO3r6Z7zDj0UnnsOfvsNHnkEJk8mMWCtxP3AA8DhwOS0NF4dP57KcO+Ttm6Fu+6itksXPujdmxG9e9O7d2+ysrLIzc2Va4pECbPnhUgwu28y5xkrU/b12idWj5uZ/TOzbXoiS2NJYhbfdCq73U5tbS3r1q2zXGksIQS1tbUkJydji9Jixa3BKPuioVcvHVrJjVSO2duWRJ2Qcdu0CQYOVL/45JNh+fKoLXzeFszeLq2c80LqueceZeBDjTffhHHjWi9TK9uicL3EGKweN7P7Z6R9sdrXMyLn5ebmUlhY2Gy/zWYjMzmZq2truUcIsltpQz3wETAF+AYYM2YML7zwgv94t27dsNvtuFwudu/e3Wy/pG2YPS9Egtl9kznPWJmyr9c+sXrczOyfUbYZXRpLDoRIYhajvzwSiUQSNerqIGCx0xa56CKYP//g34mJkJurLJp+/PH62CexNvv3Q69eoPY2cK9e8OuvSjuTSCQSSdRxOp3k5eUxd+7cRmWs7HY7o0eP5pVXXuGWs85i1rp1bS4HsQZ4BZgBVIU416e3oKAAh8PRRo0SiUQikUisiNHPcmVpLEnMk5+fT3p6utFm6EJFRQVTpkyhoqLCaFNUMcq+aOjVS4dWciOVY/a2JQFqauC//4UzzoB77wXCjNvddys/O3aE+++H4mJ4++2YGAQxe7u0cs5rUc/q1cEHOu69t8VBEJnzJJFg9biZ3T8j7YvVvp4ROc/hcDBr1ixKS0spKiryb7/99htDhw4lPj6eGaefHtGN/3HANGAn8DJwbAvnulwuCgsLycvLi0Bj+8XseSESzO6bzHnGypR9vfaJ1eNmZv/MbJueyIEQScyzaNEiyy7iZ7fbGT58uGmnlxtlXzT06qVDK7mRyjF722rXbNgAd90FPXooa34sXQrTp4PLFV7czj4b/vc/2L5dWbuhR4/o2R4hZm+XVs55Leo55xylHv2TT0Lnzgf3d+kCIR50+WUmJ8PGjdrbFqXrJcZg9biZ3T8j7YvVvp6R/Ty73U52drZ/y8zMVGTU1JD49tuq1xwAPK2wKw24FVgLLAWuBYJZ2HSGiiQ8zJ4XIsHsvsmcZ6xM2ddrn1g9bmb2z8y26YksjSWJWYyeTiWRSCSaM28e/PnP6sf+9z+4+uro2iORNMXphIICePpp+Otf4e9/D++6b7+FM8+E00+H226Dyy6D5GR9bZVIJBIJ7NsHTzwBb7wBTRZEvQmYD9wG3AIc0gbx+4G3gNeAn5scKyoqIjs7uw1SJRKJRCKRWBGjn+XKGSGSmGfkyJF06NDBaDN0oaamhs8++4yamhqjTVHFKPuioVcvHVrJjVSO2dtWu+WccyAjQ/3Yq69aPm5m98/KOS9sPQ4H3H67si7InXeGL3PaNGXH0qXKgF6vXvDAA8rMJa1s0/F6iTFYPW5m989I+2K1r2eWfl4jGSkp8Pzz8Pvv8NxzeHv1AqAMeAel3NWDwGHAjcD6VurpBNwDbAGWAHlAaputlpg9L0SC2X2TOc9YmbKv1z6xetzM7J+ZbdMTORAiiXkyMzOJi7NmU/Z6vZSVleH1eo02RRWj7IuGXr10aCU3Ujlmb1vtFocDrr1W/di33+LdtMnScTN7u7Ryzmu1nqQkCOMlBK/XS9mePXg/+aTxgb17lTeUb79de9t0uF5iDFaPm9n9M9K+WO3rmaWfpyojIwPuvpu4bdtg7lxS/vMfNgSsKbKpqIgHi4pI3baNf5x2Gh8DrdV+OvB/wG7gTcD27bcgC1C0CrPnhUgwu28y5xkrU/b12idWj5uZ/TOzbXoiS2NJYhajp1NJJBJJ2NTXQ1wc2Gyhz123DgYNUj/2/PMwYYK2tkkkevPYY/DQQ+rHPv0URo6Mrj0SiUQiaRGn00leXh5rPvyQ69xu7gbaWsxwV2oqne65h6Qbb4SePbU0UyKRSCQSSYxh9LNca75GL2lXZGdnk5CQYLQZulBXV0dxcTF1dXVGm6KKUfZFQ69eOrSSG6kcs7ctSyAErFoFf/ubUgbo++/Du+7YY2Ho0IN/Z2YqJYjWraPujjssHTezt0sr5zy99NS5XBR/9BF1av+n+/SB88+Pim1mb1sSdaweN7P7Z6R9sdrXM0s/L1IZDoeDWbNmsaq8nGuWLycpPr7NdnSvqiJp8mTE4YcrOX/6dKioaLM8q2P2vBAJZvdN5jxjZcq+XvvE6nEzs39mtk1P5ECIJOYZN24cqanWrERbVVXF9OnTqaqqMtoUVYyyLxp69dKhldxI5Zi9bcU0RUXw+ONw9NFwwgnw3HOwcyfMmBG+jFtugdNOUx4W/PEHTJ0Kxxxj+biZ3T8r5zy99FT99hvTL7qIKrX/07feqsyUCkfOzz/LnNcOsXrczO6fkfbFal/PLP08rWTY7XYOW7gQW319m2X4sHm98MUXMG4cdO0KV1wBc+eC2x2xbCth9rwQCWb3TeY8Y2XK+9v2idXjZmb/zGybnsjSWJKYxejpVBKJRKLKxRfDxx8333/IIcqASGJiaBlChFdGSyKJFdatg5dfhv/+F6qrwW6HHTugU6fQ19bVKeVUUlPhmmuU7Ygj9LdZIpFIJDB2LMye3Xz/kUfCvffiff114n74oc3i6zMycF54IVWjR5N18cXYHY4IjJVIJBKJRGJmjH6WK2eESCQSiUSiJVdfrb5/3z5YsCA8GXIQRGI1jj0WXnlFGQz8979h0qTwBkEAvvwS9uyBrVth8mTl4dtppykDK9XV+totkUgk7Z333oOffoLbblMWXPdx001w443ELV/O3aNG8TTKIumtJb68nLSZM+mem8velBQ+GjAA15IlcpF1iUQikUgkmiMHQiQxz6RJk8gI7JRbiPLycv71r39RXl5utCmqGGVfNPTqpUMruZHKMXvbimn+/GflzXU1WlMeSwWrx83s/lk55+mlp5nM9HT461/hH/8IX8h//0t5Rgb/mjSJct//+++/V9bf8XrbZockJrB63Mzun5H2xWpfzyz9PC1tAZRSn//5jzKY/fbbMGIEXHed//Bjs2ezMieHXsDFwIeApw1qegF/3rwZ+7BheHv3hokT4Ycf/IMiLpeL4uJiiouLcblckftlQsyeFyLB7L7JnGesTHl/2z6xetzM7J+ZbdMTWRpLErP4plP179+frVu3smrVKsuVxvJ4PGzdupW+ffuSGE45nShjlH3R0KuXDq3kRirH7G3LVJSXw6efKuV5rrkmvGuuu04pAdSUjh1h1y5ISmqTKVaPm9n9s3LO00tPxDIrK6FrVzx1dWzt25e+W7eS6Gl4vHbllfDOO9GxQ2IIVo+b2f0z0r5Y7euZpZ+npS2tweVyMXz4cJYvX05n4BrgDqB3hHK9hx3G/A4deKa4mG/dbgTK+iWjR4+moKAAh4XKaZk9L0SC2X2TOc9YmfL+tn1i9biZ2T+jbDO6NJYcCJHELEZ/eSQSiYX54w/46COYMwe+/ho8HujTB379NbyyVZ9/DiNHKr/bbHD22UrJrEsvbVxWQiKRtMzbb8P116sfmz8fRo2Krj0SiUQiaRGn00leXh6FhYUATANu0VD+78BslFkn3wGX5+Qwa9YsDTVIJBKJRCLRC6Of5crSWJKYZ8yYMZZ6CygQp9PJnDlzcDqdRpuiilH2RUOvXjq0khupHLO3LUP56CNlYebbblPW9PC9fb5tG6xfH56Mc86B88+H555TFoT+8ku44YaIB0GsHjez+2flnKeXnohl/vorxMfjdDiYM2YMTt//+65d4bzzwpOxdi3Oa69lzosv4jxwoG12SAzB7DkhUszun5H2xWpfzyz9PC1taS0Oh4NZs2axadMmEoDLgpznbqP8w4AJwDcoa5L86b33cM+aBVVVbZRoLsyeFyLB7L7JnGesTHl/2z6xetzM7J+ZbdMTORAikUgkEkkgp58OcUH+Pc6dG56MhARlVsjdd0OPHtrZJpG0Nx59VKlJ//jjjRdXv/JK5XsWDrNmwQcfKLO7+veHyy9XStfJQRGJRCLRDbvdThdgPaC2mtM44HKUmR21bdRxCHCN10vSlVfCIYfARRfBq68q/zckEolEIpFImiBLY0liFqOnU0kkEgszfDgsXtx8/4knwooVUTdHIpE0sHkzzJgBY8fCoEGhzxcCjjwStm5tfuzyy+G997S3USKRSCS4XC6ysrJwuVx0Qxn0yAHOAKqALkANMHjwYIpXr+YyYCxwDhDmMHfLnHwy/PnPyuDI4MHhlTaVSCQSiUSiK0Y/y5UzQiQxT//+/U236JBWeDweNm/ejMdXmsdkGGVfNPTqpUMruZHKMXvb0pRt2+C11+CBB8K/ZswY9f0//QS//66JWW3B6nEzu39Wznl66dE85/XtC//8Z3iDIACrV8PWrXgSE9ncvz+ewP7Cn/8ckU0S/TF7TogUs/tnpH2x2tczSz9PS1vaim8xc1BKWP0bGAb0BK5AGQTJyclh6dKlXJCTQ4HNxkigK5AHzAcisvzHH+Ghh+CEE5TZuePGQWGh6WcDGh03PTG7bzLnGStT3t+2T6weNzP7Z2bb9EQOhEhiHrlGiHFYuV6+XCMkhqmpgdmz4ZZboG9fZbvlFnjySdi7NzwZDTfujTj0UPjrX8GrVuAhOlg6bpjfPyvnPL30GJ7zGmZ8NFtjJD5eeUs4HOTkacMwe06IFLP7J+vlGyczltcICaSgoICcnBzsdrt/3x/A13Y7OTk5FBQU+NcUcTqdDBkyhAPAm8BFKLNGVObztZ7du2H6dMjNhc6d4bTTlEH1FSsM7depYYa46YXZfZM5z1iZ8v62fWL1uJnZPzPbpieyNJYkZjF6OpVEIjEppaVKnWi1G9s33oC//CU8Occdp8gYM0bZTjhBllWQSGKJlspijRgBCxeGJ+fBB+HLL2HUKGU78URlIEUikUgkYeFyudi9e7f/727dujUaHPHhdDrJy8ujsLAQgB4oAye60rkzXHABnH8+nHOOXNtNIpFIJBIdMfpZrhwIkcQsRn95JBKJiRkyBH74ofn+iy+Gjz4KT0ZlJaSlaWuXRCKJHl4vLFgA774Lc+Yog6Q+pkyBu+4KT87gwbBmzcG/DzlEeWB2881w1lkaGiyRSCQSgPLycjIzM7kAmA2kqpwzHjgRuBjopqFud9++uE47DftFF5F0/vmQlaWhdIlEIpFI2jdGP8uVpbEkMc8jjzxCZmam0WboQllZGZMnT6asrMxoU1Qxyr5o6NVLh1ZyI5Vj9rbVjO3b4f33wz//3HPV9y9YAFVV4ckw4SBIzMWtlZjdPyvnPL30GJrz4uJg5EgoKKBsyxYmP/IIZfn5cPjh6uXv1Ni5s/EgCMC+ffDOO8rC7RJdMXtOiBSz+2ekfbHa1zNLP09LW4wgIyODnJwcPgc6owx2FKCsNQJQBLwK3Iwya2Qo8ASwQQPdSVu3kv7f/5KUm4u3UyfqTzwRJk2CL76AKJQPieW4hcLsvsmcZ6zMdnd/KwGsHzcz+2dm2/REzgiRxCy+UcTs7Gx27NjB6tWrLTcjpK6ujh07dtCzZ08SEhKMNqcZRtkXDb166dBKbqRyzN62KCuDr79WytF88QX88ouyf88e6NIl9PWLFimlb9R4/3249FKtLI0qpo9bhJjdPyvnPL30mDLnxceHX+auoCB4Ob3iYmVQRaIbZs8JkWJ2/4y0L1b7embJeVraYhS+Mllz587F5XIBYANOQFk75NMg1/VFGTi5GDgDSNLSqKQkOPVUZTbgmWfC0KGQkuI/3LQEWCDByoE1Jdbj1hJm903mPGNlWv7+VqKK1eNmZv+Mss3oGSFyIEQSsxj95ZFIJDrhdkNGBjTc9DZi5kxloctQ1NZCx46N39wbPFiZKTJuHMhcIZFIwmHsWJg9u/n+AQNg48bwZEyfDjt2wLBhcMopEMaDMIlEIpEo+AYXXC4XAwYMaNW1GcAO1EtraUJCApx4Ip5TT+WFFSt44ccf2V1bq3qq3W5n9OjR/gXiJRKJRCJpjxj9LFeWxpLEPLm5uaQEvIljJaqrq5k1axbV1dVGm6KKUfZFQ69eOrSSG6kcU7etpCQ49lj1Y198EZ6M5GS48krlTe6ZM2HvXli1Cp55JqYHQUwdNw0wu39Wznl66YnpnFdXFzznjBoVvpxp05QF1886SxnkPeMMuO++5iW3JM0we06IFLP7Z6R9sdrXM0vO09IWo7Hb7WRnZ9O/f39ycnJadW1/gg+CuCO2DOX/xPLlJE6Zwr1LlvBHbS2rgZeAsTReu8TlclFYWEheXl6LIq0SNzXM7pvMecbKtPT9rSQoVo+bmf0zs216Yq55ORJJGygrK8Pr9Rpthi7ExcWRmZlJXJw5xyyNsi8aevXSoZXcSOVELXZCwG+/wfffK29P//Of4V132mnw44/N93/xhSIznLI2b7zROltjALPnhEgxu39Wznl66YnpnBcfD8uXw6efwmefKSX3fG/6hjsQUlHROJe53bB0qbL16wfHHRe+Pe0Qs+eESDG7f0baF6t9PbPkPC1tMRMFBQUAjcpltUQ18CZwPnBowH5nw9+nASOBc4CBGtgXBxzXsN3esK8I+B5Y1vBz/pw5uFyuoGWy3G43cXFx7Nixg+Tk5LBLasUCZm+TMucZKzNm7m8lmmL1uJnZPzPbpieyNJYkZjF6OpVEIgnC/v3w5pvK4Mf338OuXQeP7dwJ3buHllFYGLwE1s8/w5FHamOrRCKRhIvTqQyGLFgATz2lzDwLxccfw8UXqx/79Vfo21dTEyUSiaQ90HQtjgkTJjBnzpwWr+kPnNewuYArmhzvAZzdsJ0D9NLO3EbUAOKEE3Ccfbayxsipp0KPHqprooAsqSWRSCQSa2H0s9z2NewjsSSDBw8mKUnTZfBMg9vtZvXq1bjdmkze1hyj7IuGXr10aCU3Ujm6foYeD0ycCB980HgQBJSBkXA49VT1/YMGKWWu2ilmzwmRYnb/rJzz9NJjqZzncMCFF8KUKeENggB89ZX6/u7doU+f8GQ88IBSVuvee5W8unNneNdZALPnhEgxu39G2herfT2z5DwtbTEjvnJZvm3GjBnk5OQ0mzlht9vJycnhwIEDvL9hAz8MGcKfaT4IArAT+B+QBxwOHAmMByo1tr0D4Fi5Ep59Fi6/HA49lLpDD+W7ww6jR2EhQ71ehgTc34ZbUisWMHublDnPWJmm6OtJoo7V42Zm/8xsm57IgRBJzDN8+HDLTBduisvlYtGiRWFN/TYCo+yLhl69dGglN1I5bbq+pia887p1g9691Y+FOxBy2GFw6KHKNm4czJihDKqsWQOnnx6eDAti9pwQKWb3z8o5Ty89MZ3ztCDYQMiwYeGV+ANYuBC++UZZ4+iyy5S8eNhh8J//aGenSTF7TogUs/tnpH2x2tczS87T0pZYwOFwMGvWLEpLSykqKvJvpaWlzJo1i6ysLAYOHMiyZcsoKysLS+avwDwgTU/DG0jYuZNzDxzgeWCu3U7u8OF8Z7fzNnAncDrwRUNJrVjG7G1S5jxjZcZsX08SEVaPm5n9M7NteiJLY0liFqOnU0kklqW+Hn75BdauVbY1a5SfbnfzGR7BuOYaZfCiKaefDkuWhCdjzx7o0iX8h4USiURiJoRQBi8WLVLWBKmoOHjspZfg9tuDXuqnthbS05X825RXXoHx4zUzVyKRSNoLubm5FBYWhjzvaGAqyloiHZocOxdl1sgw4Eygp8Y2NqUeqD/qKJKGDoWTTlK2445TZitKJBKJRBIjGP0sVy6WLol57HY7tb7FSy2GEILa2lqSk5OxmfBhsFH2RUOvXjq0khupnBav/+oruOAC9Qv37lUGJ0Jx6qnqAyErVigP9MIpZ9e1a+hz2hlmzwmRYnb/rJzz9NITEzlPL2w2pZzVvfcqA8zr1sG33yrbiBHhyVizRn0QBJTa8uGwfLkyGHPiicqWlRXedSbA7DkhUszun5H2xWpfzyw5T0tbrEiwRdd963G88MIL9OjRgw0oAx5JwEkoAyKno5TO+qphm9ZwbW8ODooMA45qo23CZqM2OZnk2lpsAe+sxgPxP/+srJX39tvKzrg4Zd28445rvB16qClfJDJ7m5Q5z1iZMdnXk0SM1eNmZv/MbJueyNJYkphn0qRJZGRkGG2GLpSXl/PUU09RXl5utCmqGGVfNPTqpUMrua2WU1cHAaUAWrz+uOOCy1m3Ljx9amt8DBgAV18NlVpXW24/mD0nRIrZ/bNyztNLj2E5Tyc72kx8PAweDHfcAe++C+G+9bRsmfp+hwMC3qRqkY8+gkmT4LzzoGNHOPxwZQH3adNCX2swhsdNZ8zun5H2xWpfzyw5T0tbrEioUlrdu3cnJyfHf74b+A54FrgEOEFFZhHwNnCTzcbDOTk4t27l2dNPp7iVtpVnZPDUpEmUh3N/6/XCli3K/5UHHoA//UkpnXjIIXD22TBhAp7XX2fnJ59QvGULxcXFhpZAMXublDnPWJkx39eTtAmrx83M/pnZNj2RpbEkMYtvOlW3bt0oKSlhzZo1liuNVV9fT0lJCZ07dyY+Pt5oc5phlH3R0KuXDq3ktijnwAFYvfpgSau1a2HDBqVc1RtvhGdH167qi5I//zxMmBDawLo6GD1aefv41FNhyBDlAZwkIsyeEyLF7P5ZOefppScqOS+KdkSdq66CmTOb7z/zTFi8ODwZI0fC558333/DDdDwVrRZidm4hYnZ/TPSvljt65kl52lpS3vF6XSSl5fXbNZISwwZMoRFixb51690VlUhOnYkxeNpdu4+4BAVGfXx8ZR07kznkhLi6+sj8KAxHmAzsAEo79mTC//2N7oMH07y0UdDQnQKhZi9TcqcZ6zMdtvXa+dYPW5m9s8o24wujSUHQiQxi9FfHonEtEyYAFOmNN9/0knw44/hyTjvPPjyy+b7x42DN9+MxDqJRCKRhMvatcpC6cuWKdvWrcr+e++Fp54Kfb0QSjnDffuaH3vhBcjPDy1jxw547jllVt/AgcrPTp1a5YZEIpHEKi6Xi23btpGXl8fy5ctVz/GV1CooKMARuGaHxwMzZ1L33Xds+d//OKK6muSGQ2cAPwNDgFOBk1HKb0W7eKEnLo74AQOIO+YYZbbi0Ucruf6II1QHSFwuF7t37/b/3a1bN//Aj0QikUgkoTD6Wa4sjSWJecaNG0dqaqrRZuhCVVUVb731FlVVVUaboopR9kVDr146Wi23vh5++w0WLoTt28OTM2iQuqz16xV54dgRrDzWmjXh2S3RBbPnhEgxu39Wznl66dFKZqRyzN62gjJokLKo+v/+B7/+qszU+/hjuO668K7fsUN9EMQnOxxWrVIG12+5BYYNU0qudO2qlF3R8G1lNWI2bmFidv+MtC9W+3pmyXla2tLesdvtDBw4kGXLllFTU9OolFbTklqOpguXJybCddeRMG0avffuJe/yyzk9KYlbgVVACfAx8ABwPtARODo1lXvHjeOp1FQWAk6d/Uv0eonbsAEKC+Hhh+Gyy2DAAERKCu7+/akfOxYeeYTat97ivvPP57DMTHr37u3fsrKyyM3Nxek8aKnL5aK4uNi/+WbUmL1NypxnrMx229dr51g9bmb2z8y26YlcLF0S8xQXF1NXV2e0GbqQkJBAdnY2CVGartxajLIvGnr10hGW3EcfhR9+UB56FRUdXCj3pZeUB2Kh5AR7uOVyKTL79Qttx6BBygKMRx2lDIoMGqRsLa0fItEds+eESDG7f1bOeXrp0UpmpHLM3rbCpnNnuOii8M//6afgx449NjwZmzY137d3r7JOSbjT6D0e5YFgK7FM3IJgdv+MtC9W+3pmyXla2iI5iN1uJzs7u03XOhwOZrz3nn9Gxd8b9vtmVPj2//rrrzz++OMsq6vDBfwfkKeR/a3B5naTtGWLsgbJ7NkkA082bDuBLSgzWra4XPxcWMj9lZU88c475N1yS9BF6F9++WVTt0mZ84yVKft67ROrx83M/pnZNj2RpbEkMYvR06kkklZRUwMdOoR37llnKaVQmpKfr5QyCYXLBSkpygKKTSkshCuuCC2jpkb5Ga7NEolEIjEfX36plLX66ScoKTm4v3t32LkzPBnjxsH06c33X3ghfPJJeDIOP1wp03XkkcoA+5FHKttpp8kyWxKJRBJAcXExvXv39v/9N2AMcBwQWANhJvB+w37fdnjUrFSnzmbjVyGUARJga8O2DdgOXJaTw6xZs4w0USKRSCQGY/SzXFkaSxLzDB06lOTk5NAnxiC1tbUsW7aM2tpao01RxSj7oqG3zTr271cWtv3nP5WHR2ecoTxwysoCrzc8uUccob7/11/Ds89uh3791GU0lLYKaUeHDnIQxISYPSdEitn9s3LO00uPVjIjlWP2tqUb554Ln34Ke/Yo5RU//hieeALuuCN8GWozQkBZKyQcnE5F9++/K2Uep02De+6BP/9Zmf3YAlaPm9n9M9I+U/f1oiBTCzlmb18Sddxud6P722dR1hNJB44CcoB/ATNQBkIeBkYD2Sjri5wF3Ikyk2QFEN4y79qQIAT9gT8DE4FpwBcogyE1wOQ5c/juuuuoHT8enn4a3n9fKb9YURFFK4MT7nemaemvpiXA9NQdCWbOeVrIkjkvNrF63Mzsn5lt0xM5ECKJeQYPHkxSUpLRZuiC2+1m9erVuH2lkUyGUfZFQ2+bdRQXw1VXKTV2p0+HpUth926orYU//ghPbt++6vt9i+SGY9+gQUoJlXPPhbvvhrfegpUrFbsi8U9iKFaPm9n9s3LO00uPVjIjlWP2tqU7NhscdphSVuu++5QtHIQIPhAycGB4MgIG8Ztx5JEtXuqP29tvQ04OTJoEr70GX3yhyI3xeJq9XRppn6n7elGQqYUcs7cviTpZWVkcf/zxze5vBfAL8C5wH6A2H68M+AZ4CbgRZQH2sXoa2woSgB5JSaxNScH9zjvw97/D5ZfDCSdARgb1HTtSO3gw9VdcAQ88oOT6zz+nds0aftu0qcXBhmBrkrSWUN8Zp9NJbm4uWVlZjdZJaWm9FK10a4GZc54WsmTOi02sHjcz+2dm2/RElsaSxCxGT6eSWJQDB5TBjF27lDdYt25VHraMGAF33RX6+rIyZfaHGgsXKnJC8e67ygOfpiQnK2/WxoUxhu1yKTNDJBKJRCJpK04n3HknbNyoDIiUlR089t13cOqpoWW8/77ysKspCQlKGcZw6hLn5cGbbzbfP3o0zJkT+nqJRCKJIXJzcyksLNRE1onAbfHxDMvI4Ai3G1vDorglwLnA0cDAgJ9HAGGu/hRVSoDfgB1xcSQdcQTn/uUviF69+EdBAf/75hv+CHij2bcmSUFBQfMF7IPgW6OlKb41XCD8uOTIEmASiUQSFKOf5bavFVEkliQzM5MKk0yn1Rqv10tFRQXp6enEhfPwO8oYZV+r9bpcyoOWcB62PP00PPUU3rg4KtLTSa+oIM7rVa4NZyAkM1Opd75/f/NjW7fiPeus0LYHmxGSng779kGXLqE/gxCDIGZvWxJ1rB43s/sXMznPRHq0khmpHLO3LdPicMAbbyi/C6HMcNy0SRkYCbiBaZGff1bf36dPyP/L/rgVF6tPYw+oo98i+/YpgymHHQa9eimb7/eePcN7wUAHzN4ujbQvGrqtnPO0tEUSXbxeLy80rAnYdNFxgCFDhlBQUECfPn0aLbLuo+ni64H7EIKabdt49sYb2bh0KWs9HtY20Z8M9OPg4Eh/4EIgvOGEEL41vb9qBZ0btpO8XuX/yt+V5eb/1bBVoaxD8hvwu8vFH4WFTPnhB/7yj39Q17Ur9d264c3IAJut0eCG0+kkLy+PuXPn4na7SU9Pp6KiAm+AfUOGDOGVV17h3XffDctWX9zsrXgprb3nPC1kyZwXm1g9bnr7F+x/gBlsMyvtx1OJZcnPzyc9Pd1oM3ShoqKCqVOnmnagxyj7gup1u+Fvf4Orr4azz1bKdmRlKWtdrFoVnvBu3RQd6elMzc+nwte2AspShaSFNT7C+syOPBJuvBGefBLee08paVVeDnv3Qpcuin0RfvZmb1sSdaweN7P7Z7qcFwN6tJIpc54JsNmUNa/OPhtuvx3S0sK77pdf1PcfdVTIS/1x27tX/YQ+fcKzobgY5s2Dl19WymtddRUMG6Ys4h5MdhQwe7s00r5o6LZyztPSFkl0qaio4LXXXmPatGmUlpZSVFTk32pqali2bBkDBw70P+iy2+1kZ2f7N7X9/odiNhsd+vbloa+/5s2KCjZs2MCQIUMa6a8F1gKzgIdQSmtVB7F1A1AMhDuk0ez+SkNSUQZvRgE3A5OB+4uK6DpuHIeOGkWv44+nS58+eHr35geHgyWHH47n7rt594wz8BQWcpzLxZHp6arPFpYvX84JJ5xAuMVUgs0uaXpOYCmv9p7ztJAlc15sYvW46eVfsFJ9rSnRZ/XPPhiyNJYkZvFNp/LNCFm7dq3lSmOZfYRWF/u8XigpUUpT+bbMTLj00tB6hVDKR3k8zeXOnasszBqKwkLIzW3+xlJqqrKQn80WWsbVV8M77zTff/nleAsLTfGmoNnblkQdq8fN7P7JGSHGyZQ5L4bZvh3Wr1cGRH7+Wfn5yy9KuaxnnmnxUq/XS8X+/aR3705cfX3zE+bNgz/9KbQNH3wAl13WfH9SklKeK5w2cdVVyuLuPXo03oYNgyYPEsPF7O1SzggxTqacEdJ+MSJugQ/uXS4XAwcObPTQ/zCgL0rZrMDtr8BSwN7w91Eos0n6NfzdB+geoCeSGSHRwBsXR2l6OjUVFezxetkNLW5VLcgqKioiOzu70T6Xy8W2bdvIy8tj+fLl/v2+Ul4vvPACXbt2bZc5TwtZMufFJrEQt2jMumitjlCl+sIp0WfUZy9LY0kkEVIWWK/aYsTFxZGZmWm0GUHR3L4nn4SHHoKmDzuGDWs0EBJUr82mzOj4/ffmx3btCs+G7kp3Pc7rJTOwbVVVKQM0DTMyWuSYY5Stb19ldojvZ//+mn1mkcoxe9uSqGP1uJndP6Psi5ZePfTInCfxl6JqShjvYsXFxZFZUdG8X+Aj3Bkhav0CUMpjhXvjt3XrwS2Qf/wjvIGQkhJlrbCuXZW+RNeuxHXsaOp2aeT3Jhq6rZzztLRFEl2MiJtv9oiPK664otEDtt8btkUB548ePZp5r7zCrl27/A/216vIdqDMLJlE8/srAYTxilnUiPN66dRgX88wzncCe4E/aD5IUvnOO+wcOBBvp06kZGdz69/+xtyPPgq62Lvv89ZzbREz5zwtZMmcF5uYOW6BpfMCv7utWYcolH9t0eFyuZg7d26LesMp0Wfmz15PzDncJpG0gvHjx5MWbnmGGKOyspJp06ZRWVlptCmqNLKvvh5mzYIXXoB774Vrr4XzzlMGBH76KTyBqanqDzuaDGK0+Ll07958Hyh1zcOh4frKtDSmjR9PZWDb+vXX8GTcdx+sW6cs4Prss3DrrcpncdhhmsU0Ujlmb1sSdaweN7P7Z5R90dKrhx6Z8yRBCWOGZWVlJdPmz6fywQeV2ZannuovYQlAk7dtg7J9u/r+ww4L73qAnTvV9/foEd71a9ZAbi6MGAFHHw2HHEJlx45Mu/NOKsN9qSfKE/mN/N5EQ7eVc56WtkiiixniVlBQQE5OTrMHaEOGDGHDhg2UlpYya9YssrKyGDhwIMuWLaOmpsZfwmvTpk3YGnK8E6XM1j3A1LQ0nh4/nh/S0qgCvgJ6AcOBvwCPN5y7DAiScXVF9f6vBRxANnA6cBnKDJl/Aq8Dxz7wAD0uuYSeZ55JVq9evPnuu2xxuVgNfAa8DTwH3AfcCFyWlkbPrCzWzZ3L9jVrKC4qUh00icg/E+c8LWSZ4bsjaT1mjlteXh6FhYXNvou+wcu8vLyQMkL51xYdu3fvDpkfWirR5yvNt3HjRl588UVKSkpC+mEl5IwQScyzevVq3G630WboQlJSEoMHDyYpKUl/ZTt3KqUrysuVElC+n2lpcM89oe2Li4Nx46C2tvmJv/8OJ54Y2oZggxhNBkJa/FzClBGUhgcsSXV1DC4qIun445XFWPv2DS67FWgV00jlRLVtSTTD6nEzu39G2RctvXrokTlPEglJSUkMPvlk5X9xcvLBA06nMrgR4i08P8EGQtRmqqjh9QbvR4Q7ELJnT7NdSTU1DN6wgaQOHcKTcfbZsGEDHHLIwa1TJxg7Fs4/PzwZrcDI7000dFs552lpiyS6mCFuDoeDWbNmqS+4HoSWZpWsadiS3W6OX72ah91uaoEOwKAhQ3ABBQGlonwkoZTlOhz4tOFvPUlyuxm8ejVJOjxb6IAy6NMLOE7leK3bzarVqznqzTdJrq3FA+wD3BkZ9DjuONxpadRnZuI49FASunSBjh0Pbp06KT+zshr/r2zqXwttqzWxDldma5F9vfaJWeOm1ayLUN87LXSES9PZJ8nJyRx//PE89NBDjBo1KqwZLoG2t7VcmNHINUIkMYvRdeVMx4cfQmmpMnjh28rL4Y47YNCg0Ne/+iqMH998f9++4c+E6N1bWZC0KS+/rMyKCMWSJUoZLDV8gzKhuPVWmDat+f4//1lZJyQc9u5VHi6YtEalRCKRSCSSVjB9Onz/vTIg4tsqK+HBB+Gf/wx9/Z49jWeiBLJyJRx/fGgZzz+v/mLJwIHK4EY4DBwImzY13z9lCtx1V+jrV6yA++9XHpYFbp06wV/+Ep4NEolEEgbByr34CCz7ArR4bjyQh1Ku6rCAn4ehLOZeijLAcHjDdmjA1o12VgYlJcU/QFKfmYmrQwe8mZl0CBxA6dRJyf2ZmdQkJXH7gw8ya/58nA0vNIYq+xONB6BtHZjRUm+0dUvMRXFxMb179w55ntp6QHrraOt1WqwrokW5MKOf5coZIRLNcLvdFBYWMnPmTDZs2MCePXvIysqid+/eXHrppYwbN45DDjlEc73Dhw9n2bJlmsuNKitXKoMAgTMxKipw9e7NsvPPZ+jQoaH/AeflgVpphZEjwxsISU9X319REfQSl8vFsmXLDtrXvbv6QEgr1+dQZfdu/0BIM72BnHaa8nCje/fGW2v+OXXp0rKOCNBKbqRy9PJPoi9Wj5vZ/TPKvmjp1UOPzHmSSNAsbtdfr2yBlJcrMz3CIVhZLIhoRojLbmfZKacwNNw3/fbtU98fbv/6t9/giy+a709PVx0IUf38n3hCkZOermwZGcrPU05RBmo0IhrfWSvnPC1tkUQXq8RNbVaJ2+1m48aNDBw4kF69ejXyr+m5PnyLt78e4v3dD3buZMKECbzU5OHcaSefzJtPPsnGK69kjEr5FxfKWiUdaMjJQ4cydNky7BqXpQqFZrqrq5Xt99+JB1JC6OgA/F/DVgmUAWUuF+WFhaz8/HNOveAC4jt1gowM3A4H0+fM4Zu1aynxeCgDnHY7fU8/nYyOHXn5zTdxpKS0WJKnpYEFl8vFt99+y5tvvsmHH37oj2O4D1gDvztA2AMawRaxb41uSduxSs4Lhlb/z7Wwo+kgiN1uZ+jQoSxbtsw/OyXU7BNfKa+W5Ou51pEWyIEQiSZs3ryZK6+8ktWrVzfav3v3bnbv3s3333/PM888w5tvvsmFF16oqe7s7GxWrFihqcxW4fHAM880GsDw//7yy8oaGaH44guYNKnZ7rrTT6f4qKM46aSTQstIT1cfCCkvD30tKDeyarQwEFJXV0dxcfFB+4K9LdnWgZC4OGVB0e7dG5XcaqY3kGuvVbYIaVGHCeRGKkcv/yT6YvW4md0/o+yLll499MicJ4kEXeMWrN+jRnY2vP++MiDi2/74Q3lJo3Pn8GSoDITUJSRQ3LkzJ9XVhb7e64X9+9WPhTsQUlqqvj8rS3W36uc/Zw78+GPzk595JryBkA0blD6vbwAl8Octt0B8fHDdGmPlnKelLZLoYrW4BZbMqqqq4rvvvqNHjx6qD9qaltfy0XTx9qbk5OTQvXv3Fst59fzhBx6+8UZ++eYbOnk89AC6A8XAo0AW0DchgTOzs9lQV8dfR42C3bup++MPfvn2WxL27aOvELrNLqlLSKA4O5uTdHyuEUpHWsPmXz2rrAwCPvck4KaGzUdVQgKzDzuMy2fPJik1ldKEBErr6qgE1a0mPp5eRx/N2Lw8kjp1Ul50bNjqEhJY9PnnLJw3j9qAB79qD1jVZm7U1dWxbds2Xn/9dT744APVt9VfeeUVyhuej2RkZHDrrbcGnYkUTHe4hJpd0tYBI6PQa7ZMW3NerMze0SKnDxgwgJycnDYPyDmdTs4+++xm+xMSEho9T/V9psFmuES7lJduCIkkQn7//XfRo0cPgfIyhbDZbOKss84SeXl54uKLLxYdOnTwH0tMTBRfffWVJnrXr1/vlwuI9evXt03QnDlC3HabEFdfLcTFFwtx5plCDB4sxF//Gt719fVCKMtXNt++/DI8GS+/rH79UUeF78cxx6jLeOGF8K7/9tvgfrhc4cm47Tb16//0p/D9+PRTIVauFGLXLiHq6sK/TiKRSCQSicSs3HijEBkZzftId94Z3vX79wfvp/34Y3gynn5a/frBg8P344gj1GW8+mp413/2mfr18fFCeL3hybj+eiEGDBDi5JOFGDFC6b9feaUQ770X3vW1tUL88YcQpaXK7+HqlUgkhlBdXS1ycnKE3W5vdP9vt9tFTk6OqK6uDltWTU2N2LBhgxgyZEgjWaHk1VRXC+fQoaK2Tx9Rl57eKH+9DeJVEHNB/ABiOwh3sHwtt7C3ShA7QWwBsQLEYptN1F5wgVh62GFiVlyceAfENBD/AvFQfLx4ZdAgcd9hh4kxIM4DcTqIwSCOBNEDRAaIhCYxD3ez2+2ipqamxXZVVFQkioqKQravffv2qbZntXMPHDjgl9uSfj0J9f0LtDEadgazBxBDhgwRGzZsiNiG6upq1RiqbUVFRW3Ws2nTpla1wyFDhoiioiLx9ddft8q2nJycsHW05E9RUZEmn4lmz3LbiJwRIomYq666ip0NJQMOP/xw5s6dy3HHHec/vm/fPnJzc/nqq6/weDyMHTuWrVu3kpmZqYn+bt26UVJSAjfcAPX1B2dkfP+9sr5FKL7/Xpm50ZRw3/CLi1PeYqisbH6shdkUjQhSlqq+spKS3bvp3Lkz8Q1vyAWlDTM6wrHBL0Pl86ivr6ekpOSgfX37Qr9+zctShTMrxsfIkSFPaaZXB/TSoZXcSOVE4zOUaI/V42Z2/4yyL1p69dAjc54kEiwVt9dfVzaXS1mLbM8e6nfvpiQ9nc719aH9CzYbBHSbEaL6+QeTEe4Mm2D90vR0sNla1u1j61b1tVL69YPLLw9tw7p1cNJJ1MfHU9K5M5337yfebgeHA375Jbw16T7+WFlDz+GADh2Unw4H9b16UdKpk+E5TysZkuhj5bi11Te1MlvQtjfA7XY7AwcO9JeCCZTXuXNnKisrSVZZcNzucCjPDXx4PPy+ahV/GjKEbUCViq4MoHPAdhWQo3KeG3DHx1PVuTOdS0qIr69vlU/h4s95GurQUmZTWalAKsrMHUAZHvn8c05Tvbie+g0blOvj41u0xQ04UdaecQO1KCXSahq27UBJwN81QI3LRfW//oW9Z08l5zdsLpuNx557jgXffEOZ293oGhvKU14fvtklLc1uaulcvct0Bft+hSqFpHZsyJAhjexs6bva2rwQzB6A5cuXc/TRR7eqnJraDDK1MmltRc0/3zob4bSFQJYvXx7W2iCBlJWVBdUTHx9P586dKSkpoV6nvAPN21ZtQLUXI2hX60ZJtGf+/Pl8++23ACQlJTFv3rxGgyAAhxxyCHPnzqVPnz4AHDhwgKefflozG8aPH09aWpoyTX/lSuWmpKQk/JJQwQYAwr0egt/8RViWqtLr5dVXX6VSbZClKZH6kZGhlCPIyoLDD1fWFTnjDLjwwqA1tCsrKxvbd/fdsHkzfP01vPMOPPcc/O1vYQ1utIZmenVALx1ayY1UTjQ+Q4n2WD1uZvfPKPuipVcPPTLnSSLBknGz26FXLzj5ZCqHDePVRYvC8697d/jsM/jf/5TF0R98EMaPVx78h/vyTisHQpp9/l5vcBktvVATSLCBkCZ94RZjX6X2yBFITQ3PBqdT0ZGWxqvjx1OZkqK80LRnjxKfcPjvf2HCBKWc13XXKXG48EIqX3klvDa7a5dScq1/fxg8GIYOheHDlT7zzp3htf2fflLK1sydC59/DosXw/LlsG2b4p8Vvz/tACvHLVLffKWzfFukpVeayvN4POHbl5hI50GD+NluVx0EASgHfgW+Bz4CxgNDk5J47KyzeObEE7kNeAi4BzisIR8dl5bGycCFwPXA34CngNeB91Ee3LcVf84LZ7DXAJmRygr3+iQgE6UMWCegB9AHOBo4CbgUuAXIB+5DKZ32DNBp8mS46Sa45hq47DK48ELso0bx2Jdf8oPbzc/A78A+oBrwogywlAG7gG3ABmAF8C3wBbCq4e8lwJfAx8Bs4AXgAZT43wHcDOS4XNgKC3lpxAj2FBSwe8YMdr33HrVLlsDatbBli7Je665dcOCAslZMkNKbLpeL4uJiiouLKS0tJTc317++r2/LyspizJgxrX5YDwcHJAJl5ebm4mz4/xtIa/JCOKWZfOcVFhaSl5enetzpdDbz2WdjaWlpWDrUdPo+08BSa2r+tWUQpC34fAxGWlraweepTQjmTziEalunnnpqq33REpsQQoQ+TSJR56KLLmL+/PkA3HTTTbz22mtBz50xYwbXXHMNAB07dmTPnj0kJLR9UtKGDRs45phjsNvt1NbWsk4Ijg484euvlRuKUPz733DHHc339++v/raZGkcfDRs3Nt8/dSrceWfo67/5Bs46q9luYbNRW15OcmoqtoC35FS58UZYsOBgrWXfdtFFyg1aKHypIJSeRpcIamtrSU5ODm2fhkRDr146tJIbqRyjYieJDKvHzez+WTnn6aVH5jxJJFg9blH3b84cWLJEGcwI3C64AJ56KrR95eUQbEb30qVwmup7uo15/nm4557m+wcNgjVrgusO5MgjlRefmjJtmjIwEYrPP4eRI5V+dnIyybW12ISAhARl7b9w+NOf4JNPmu0Wd99N7eOPh47pr78qfqixfTuiZ8/QbePOO+Gll5rvHzMGPvwwdPuqq4OePSEpSdmSkw/+fO01JSahWLoUFi5sfG1SkjJwF+66kNu2KfcfiYmNtw4dlJi0M6yc98zuW1vsy83NbfGB5pgxY3jhhRf8f/veOve9Ee6rp2+z2UhOTqa2tpaWHtFdB3QBOqI8zO+EMttkOsqD9o4qW6eGn1k2G12Tk+nhy3ka0CyPGihLS1ushIiLw5acDMnJiKQk9lVVUVZTg0sIalHaRjzgAeoafnqAnQ2bB2UALthPUNqib2ZNLcqMGBfKzJrA88++4AKenToVkpJw1dezt6wMkZBARpcuZHTqRK3Xy+6ANdV83xffjILi4mJGjBjRKv83bdqE3W5vNOOjpe/t4MGDm6193BKffPIJjz76aLMZJL5ZMb179/Z/v202Gy6Xi6ysLE0WQI8UtbyzYcMGHn300WZr5wwZMoSHH36Yiy66SHM71q9fz9FHHx36RI1ofz0LiWZUVVXx1Vdf+f++4YYbWjz/sssuY/z48VRVVXHgwAG++eYb1QV7WkvQBBLpIuFazAgJtyxVp07KApNNFo20padjT0wMb3DijTfCt1eNNnRGbTabIYsgRUOvXjq0khupHKNiJ4kMq8fN7P5ZOefppUfmPEkkWD1uUfdvzBhlC5Nm9gmhvHhTXq70cX3laCsqgs4qaUaYM0Ja/Gw0mhFiEwJ74H1ESkp41wfIaIrN4Qgvpi09ALHbw2sbwWQ0XBdSRm2tMgumtfYFsngxPPxw8/1Dh4Y/EHLKKeql3959F8aODX39vHlw//2NB1ESEpTBmJkzw7Nh6lTls4iPV671/Tz3XAhngdt9+5SySU2vj4+H008P7z6rshLq6rAlJGCPj1cG5RISlDLMFsHsOb0t9hUUFAA0e2gYqjRPqHJfavsBtm3b1vayPUJwrMvFaJSH376SXR1RHl4/h/JAO0PlZ+Dv2Rx8kNgsj0ZApLK0tMVK2LxeqKmBmhpsHIx7KE7Qw5jPP1deOAbsQK8mh+3A4SizaQTKYMpOlAGaepQyaesb/g7cRMN19U22OmDtgAE4UQZiOnXpwrARIxhaWMiJTWQcgtLGPatXNxoQKgWKODhQ1HR75qKLSASGNsjwXedZvpwbjz4aEhMZes45PP7ss3RITaVk504yXa5mtjbdooEQotnz1LPPPps9Kn2D5cuX6zIIYgRyIETSZr777jt/bbeUlBROPvnkFs+32+2ceuqpfPHFFwAsXLhQk4GQ/Px8pQPS9MYq0rUxwr0elA58amrj2RgZGXDmmeFdf/TRsGGDigkVFEybRl5eHunhlhyIIhUVFRQUFETdvmjo1UuHVnIjlWNU7CSRYfW4md0/K+c8vfTInCeJBKvHzez+NbMvM1NZ5yQShgxRZjIEDqKUl8OAAS3rDkSjgZCK9HQK8vLIKyggvaJCWecjXIIMhFR06EDBlCmhYxpiICSsthFiICSkDHcLRXaSkoIfC0dGuNdD8Fk4iYnhXb9/P6xf33x/r6aP2Frg//5PWTumKQ5HeAMha9fCn/+sfixIieFmXHMNfPRR83aZnw8BMwqCUlysVEOIi1MGYOLiDv7+5ZfQ8CC9RV5+WVn/pqmM005Tn8nVlPp6mDixsW7fz7/8hYqsrNDtetUqpcSbzXZQjs0GXbooM7HCYcECpW36ZPh+DhrU4ufg/85ceinpJSXNr09M9D/E9RF0QCMxURnQqqxUShT5ZDgcjUrw+cpzBX5f7Xa7f39Tgq1vEoxu3bpRW1tLZmYm6enpnJOXx4sFBVSEeNbRtWtX1YehAFcCh6HMNMlMT2dfXh4nFhTwfUUFm1BKTqUBAw49lEvPP59vPvmEmr17/ft7AP1U5DZr+60k0uslxtA0bjaUGSqAf52YSDg28I+9e6GwkPwIZbaGig4dKOjfH89pp9GhooLDUEqlhUIE/PSizLIJNXhSD3RD+fxEwLUC+AM40OTcmvR0Nufl0aeggPiKCuqBtD176BtwrW/zAD80XOdtsjXd1x9ICdjv+7kdpXxcCTAj/I9Qc+RAiKTNbAooG3XssceGVebqhBNO8A+EbAq37FQIFi1apD4rJNx/focfDpde2ngAw/e7EOG9wTNlSqtsDhe73c7w4cNN++aMUfZFQ69eOrSSG6kcs7ctiTpWj5vZ/bNyztNLj8x5kkiwetzM7p8u9o0apWyR6P73v5WHi1VVjbeG9QhD0jCIYXe5GL5o0cE3iDUYCLF36BDeZxZiIMQuRGg5IQZCQsavpcVKVRaLViXYQEi410PkAyGRXg9B6+gT7oLewRaZjY8Pf9Z9g4xm7TLc8mBuN/z2m/qxcAdj1q+HTz9tvj/cWSn19cEHbUaOxN69e+h2/fnncN99zfcPGRL+QMh116nPdpo5E3Jzg17m/84sWQJXX938hC5dgs6iajZwMXSoMqDTlCeeUPWv2ff1++8Plhu02RpvlZVBB0oaccMN8MEH2G02KhMTqXK5+HXRInq4XNzbwmV2u53i4mLcO3ZQduSR/geqcPDh6nkopbiSXC4GLlrEZJfLXyZpyJAhLFq0SPHlhRcYs3w5v9fWUlZejkCZffIx8D8OPujuCKS5XCxYtIhZLhcODg6oPISyrkc8yiLHcSiDME2zjN3lYuiiRdS6XNQhH3bGCs1ynsVoq3+2gJ9xKN+FSOioss/tctF70SIGulyE8/rCiRHa4GMDciBEEqNs2bLF//vhhx8e1jW9At7M2bx5syZ2+Ov33Xwz9O17cDAjxAwVP4MHw/vva2KL1iQlJTF48GCjzQiKUfZFQ69eOrSSG6kcs7ctiTpWj5vZ/bNyztNLj8x5kkiwetzM7p+R9rWo+/rrIxOekwPDhpHkdDLY6VRKhjidrXtw3q+f8kDS6Wy0JaWkhPeZBXsgEhcHCQkk2Wyh5YQYCAkZPy1mhAQbTGnNjJBggxDRHAgJNpAR7iBEMB9as8ZJg4wkt5vBgfXpIx2MgfAHMoINmGhkQ1g5JZgNrSnj3EYZfvuCvbDZmjJlwdaoCCKj2WcTeL0Qjf8O97Oorva/HOobcOi2ejUqc58aMXr0aGVWisNBsHltvpbtdrv9z2MCy4H5B3R27SJu40YORyld5OMPoNkKDW43qKzNUACqD2kvR3lDPaXBtxS3m92rV+N7SrWzqIgHJ0yg58cfM1nlO1oD/IZSjim5YbPHxfGR14sN6BCwndRwnkR7muU8i2Fm/8xsm55Yp+CkJOrsD6jl2rVr17Cu6RYwFfXAgQOa2DFy5Eg6dOigTLO/914YPx6uvBKOOEIT+UZSU1PDZ599Rk1NjdGmqGKUfdHQq5cOreRGKsfsbUuijtXjZnb/rJzz9NIjc54kEqweN7P7Z6R9uupOT4f+/akZMIDPqqqoOeMMGD06/DUtAN57T1nc/Zdf4I8/lEXna2upueaa8OweMAAKCpRSRM8/r7wl/vDDMGkS2Gzh+Z+WBp07Kz8DH/o3PIAMKcMMpbGEsP6MkFbaUNOhA5+NHElNhw7K/nAHU1qa9RGpH5EOpDTICKtdt3IAQUsZfvuCtanW2NDKwZhmn01Li32HOxDSRIavbY2+8kqGDBnS7HS73U5OTo5/3ZOWbEhKSiInJ4edO3dSWFjI5s2bKS0tZdasWY3XRAki44xhw5rZ0KFDB0aOHMkZZ5zBihUrGDNmDHa7nWDeVqCU2dkMrAB+6NCB3g3PhnJycuienc3/ffghDz7zjOr124ABQG+gj93ObTk5FK9bx5VALjAaOB8Y1qBHjVeBPOAu4EHgX8DbgwfDsmXsmjmTkcAlwNNBrhdAfXq6UtrRbofERERcHLXHHIPz+OP5CWVNjF9QBm6sSLOcZzHM7J+ZbdMTORAiaTNVAfV5O4T5xQk8rypYfd9W0rFjR9LSlIli9fX1lJWVIRr+4VZUVOBu6KDX1NRQXV0NQF1dHWVlZX4Z5eXleBo6PE6nE2fDdHePx0N5wKLpZWVl1DV0Uqurq/0dFbfb7a+zKYSgrKyM+oaOZFVVlb90V21tLZWVlQB4vV7KysrwNnSSKisr/WuuuFwuqqqq8Hq9lJaWUlpaakqfvF4v+/fv958Xjk9axMnr9bJv3z6/PD3iVFFR4ZejpU9ut5uSkhK/vLbGqbq6mrKyMlwuV5vanq9deb1e3eLUWp/0/j5ZwaeamhrKyspwOp2W8SkwTpWVlZSVleHxeEzpk9PppKysjJqamqi2vdraWsrKyvw26BUnPfKe1+vlwIEDlJaWRhSnyspK9u/fj9frbVPbq6uro6SkpJE8K+YIq/lUUVHhj7tVfAqMk9PpZN++fXi9XlP6FPi9i3bbi0beq6mp8X/+WvlUWVVFWVkZbre75ThlZcENN+C58UbK8/KUUjmTJ1M2cSJ1dXX+vm5g/7GZT2+/DXv3UrVzJ66KCqiro/bAASonTPB/ri3mvZQUmDmT+rfeouzllxEvvQTPPUfFE0/gblg4PmTby86G00/HedppOE86Cfr3x3PkkZQfemh4cWr43yBsNsoyM6lveGBflZqKq+EzDtn2Gj5/l91OVcM6MfXx8ZSlp4ff9hraR3lGBp6GARSnw4Gz4YFzyLbX0KbcSUlUNKx9IWw2yjp2DD9HNJxXkZbG/o4d8cbFKT41fCYhv08N35O6hATKMjMPxikjA0+D7JA5ouG86pQU/4Mxd1ISFQ0DWyHznu+eMC6OssxMvA0DB5VpadQ2fM/279/v913Vp4bY1nToQHVDO6xLSKAs4DlCyLzXIKMsM5O6hoGk6pQUahrsDpYjfN87Z0Nsa5OTqWx4zuCNi6MsLa31OSI9HXfD51fToQPVDW2q6feprKyMAwcO4PV6FZ8aZHsSEynPyDh4XmbmwTiFynsN11SlpuKy2/HGxbG/Y0fiDzmEZcuWUV1dzbp169i6dStFRUVs376d6dOn43A4FJ8avif18fGUZWYiGmyvSE/nu+XLmTVrFomJibjdbnr27ElCQkLzHNHwOTgdDpwNAySexES8nTqxbNkyampqWLduHb/++is//fQTV155JR9++CEnnngihYWF/PbbbyTEx6vmiBnvvktOTg7p6emkpaURFxdHx44dGTt2LG+88YY/Tr522DRHdB48mG3btlFUVMRvv/3G22+/TZ8+fcjMzCSloe0lJCSQmZnpH4xpmiNWOhy8CbySmMjrXbqwOieHy5cupaxfP5wnn8znwBcpKSwN/D4F5IhdmZkUr1wJlZVUlZTgqqjAVl8PK1ZQv3gxz+TkcFxcHKdkZrIk8PvUUH7QZbdTmJrKOOCv8fFMzMzkYZuNe4Gz0tMZkZTEecDoDh2YEPh9apIjfk5MpBj41eGgyOGgBFiQmMjbGRm8D3wEzM3MZHvg9ymIT744iYC2Byrfp4Yc4Y2LY98hh1DTcF6zXN6k7TX6PrXgU6NcHtD2mn2fWuGTr+2F8ikwTr7vne88M/nkadBRmZbWKp+0ipNRyIEQSZsJXJcjKcy3fpID6sVq9YbXzp07ubDhDa6SkhKmTp3q75QUFBSwceNGABYvXsy8efMA2LFjB1OnTvXLeOWVV9i6dSsACxYsYMGCBQBs3bqVV155xX/e1KlT2bFjBwDz5s1j8eLFAGzcuNH/5kRtbS1Tp06lpKQEgNmzZ7Ns2TIAVq1axYwZSjW8iooKpk6d6u+wzJgxg1WrVgGwbNkyZs+eTUpKCiNGjOD11183pU8pKSn07duXDz/8MGyftIhTSkoKqampLF26VLc4ffjhh+Tm5lJfX6+pT6WlpWzbts3fuWprnFasWEFubi6//fZbm9re66+/zqhRo0hJSdEtTq31Se/vkxV8+vnnn8nNzWXdunWW8SkwTvPnzyc3Nxen02lKn9atW0dubi4///xzVNve7t27yc3NZenSpbrGSY+8l5KSwmmnncbrAQsstyVOCxcupFOnTqSkpLSp7dXX17Nt2zb/wxur5gir+fThhx/St29fUlJSLONTYJzWrVtHXV0dKSkppvRp/vz5HHrooaSkpES97UUj7/38889UVVWRkpKimU8LFy4kNzeX0tLSiOKUkpJCQkICK1asCN+n+HhWbdnCjA8+AMLIe59/Drm5lFxwAVP37qX2xhvh7rsp6NCBjdu3hxWnrRddBEuWsGDiRBY88ABs2sTWjz7ilYCBkBbj9PbbsGMHtZs3MzU/n5JvvoHVq5n9xBMsa3jQHbLt9e4NU6ey7KGHmD1xIjz6KCX338/U884Lv+0NGwbnnssrd9zB1j/9CU47jQVXXcWChvvVkG1v715ISWHjccdRkJenxCk5mak33hh+jmh4cPXhpZfSd9s2UqqrWTZ0KLMbHkCF/D6tXKn41LMnU/PzD8bp1lvZ+scf4bW9hnv6eRdfzOKzzlLiNHAgBT17ttz2fD41tL2K9HSm5uf7H7rNuPpqVjW060MPPZT58+cH96lhoGHxWWcx7+KLD/o0bNhBn0J9nxoevk/Nz2dHg+3zLr6Yxfv2KT4F+T6lpKRQV1fHuoaBmlXHH8+MhrVCKtLTmXrlleHniIa4FeTlsXHgwIM+NQxeNf0+TZ8+nRNOOIGUlBTFp19+UXzq25dXbr31YJzy89mxc6fiU6i81xDP2ZdfzrKhQ0mprqbvtm182PDQ1O128/7779OxY0eys7N5//33G/v09deKT507MzU/3/8AtCAvj60Na6WsWLGChIQEUlJS1HNEw8PjBeefz4Lzzz/o0zHHAMoslPfff5/4+HgGDBhAUlJSo7z3zjvvYBNC+T7l51PSubPfpw2VlcyaNYuPP/6Yxx57jPXr1/P888/Tp08f/0DljBkzWNXQvpYNHcrsyy/3+/TKmDF0796d7Oxs3nnnHTZu3Ijdbue6667j4oa217NnT/Kbfp/69vX7dPakSRQVFfHll18yYcIE/4yYqVOnUl9fj91u5+KLL6ZH4PcpIEe8np/vX2tXLUcUFBRw1VVXkZ+fT23g9+n44/0+bb78cqYDH3TuTGp+Ps8kJ/MMcEJeHmUDB/Il4D7rLKoDv09NfLqmb196A5NGjeLFm28m4cAB7F9+yY577+XEoiIGFRWxOj8fz403Km2vaY64/XbYuZPaLVuYmp/P+vffZyBwx+WXc+HQoTiAC44/ngcCv08NOSKlupqq1FT+268fzwNThw7lpcsv5y1gckPby0tO5i/ACzffzMpLLgFUckR+PrtSU9kG/OfWW1nety+7gJfPP5+Xzz+fGcD0vn158dZb8RV1bJojFp11FvXA+oY4CcCVlcXU/Hz29utHRXIysy6/nG+HDlXi1DRHNM17xx9PSnU1h+7cyXzfM0uV71OjHNFCnALbXqPvU9McEZj3grS9qfn5OFNSyJ01i/kXXsiyVvjka3uB36e2+GQYQiJpIxdeeKFvrSzx97//Paxr5s+f778mNTU1Iv3r168XgDjqqKNERkaGWL9+vairqxOlpaXC6/UKIYQoLy8XtbW1QgghnE6nqKqqEkII4fF4RGlpqV9WWVmZcLvdQgghqqurRXV1tRBCCLfbLcrKyvznlZaWCo/HI4QQoqqqSjidTiGEELW1taK8vFwIIYTX6xWlpaWirq5OCCFEZWWlqKmpEUII4XK5REVFhRBCiPr6elFaWirq6+uFEEJUVFQIl8slhBCipqZGVFZWCo/HI3799VdRUlJiSp88Ho/YsmWLOHDgQNg+CSEijpPH4xGbNm3y26dHnA4cOCCKiopEbW2tpj7V1NSIdevW+e1ra5wqKipEUVGRqK6ublPbKykpEVu3bhUej0e3OLXWJ72/T1bwqaqqShQVFYnKykrL+BQYp9LSUlFUVCRcLpcpfaqsrBRFRUX+72A4PmkRJ6fTKYqKikR5ebmucdIj7wX+H4skTmVlZWLz5s3C4/G0qe3V1taKdevW+e2zao6wmk8HDhwQW7ZsER6PxzI+BcapsrJSbNy4UXg8HlP6VFpa6v/8o932opH3qqqqxIYNG4TH49HMp7KyMlFUVOT/n9bWOHk8HrFx48ZGOUzmvRjLe3V1onTv3vB9+vlnIVatEgcWLRJbPvpIeBYvFjVffikqN24Mz6ft24V4803hef11Ufryy0K88ooQ//mPKJsyRbgbPpeQPr3zjhATJ4qqe+4RzgkThLjjDlH717+K8oKC8OK0c6cQF18s6i+6SJSOHi3qzz9fiHPOERUXXCBcDbluy5Yt/s9c1aeXXhKiXz/hPPpoUXX00UL06SM8ffuK0quvDj9OPXsKkZIiSrt2FZ6UFCGSkkRVRoZwvvdei23P972rfOMNIUC4kpNFRVqaECDq4+JE6cCB4be9444TAkR5erqoTUoSAoSzQwdR9eyzqm1v37594pdffhEej0fx6YsvhADhTkwUZRkZvlVCRGlmpvA06A35fbr0UiFAVKamihq7XXgSEsSWI48UB+68s3HbC+bTpk1CgKiLjxelmZnCa7Md9GnTJv81vv9jqt+nCROEAFHtcIhqh+OgT5de2rjttZT3bDbhtdlEaWamqIuPP+jTZ581+j55PB6xdetWUVJS0tinKVOEAFFjt4vK1NSDPp18sur3ad++feKqq64SdrtdJCQkiMzMTPFrg+9lGRnCnZh40Kdp04J/nzwekZOTI1JSUsSfO3QQAkRtUpIoT08XAoTXZhO7O3UKK0fs3r1bVJ1xhhAgKtLShCs52e/To6mpAhDx8fEiMzNT2Gw2AYj09HSRlJQkvv76a7F582bxy7x5QoDwJCSI0sxMf5sqy8gQW5cvF0VFRWL//v0t54i//EUIEFUpKcIZ6NP11zdqe7/++qv/mZ/dbheASE5OFl0Cv0+ZmaI+Lk54EhLEhgEDxKkOhwCE3W4XqampwmazifXr14t169aJbdu2iZqaGiVOjz568PuUknLQp3PO8bfddevWiV9++UXU1NSI6upqsWvXLgGIxMREkZGRIUoCv08JCX6ffn3+eX/fI9j/p5KSEvH7c8+p54i+fcX2uXPFKSDOTksT5yYniwsSEsRZRx0lBmRkiN4gjoqPFydkZoq1gd+nwBwxcqQovfVW8VRCgng2M1O8BOIxEJdmZIhLEhPFZSCudDjEH3fdFTRHfJaQIL4C8XlKiviqQwexBMRLSUniH+npovT224V74kTxdMeOYl1SkijKzhalGRmixm73+7QjLU0UgfD07ClKjjxSbI+LE9tA/C8tTcxKThbvg5htt4t5gd+npjkiPV0Ih0M4s7JERVaWqAHxa0KCWJKZKWY3PBP2bevXrxfRxCZES8UHJZLg5OTk8O677wJw5513Nhr9D8YHH3zAZZddBijrhezatavN+jds2MAxxxzDI488wpQpU1iyZAlHH310m+WZkbKyMqZOncpdd91FpgmmkDXFKPuioVcvHVrJjVSO2duWRB2rx83s/lk55+mlR+Y8SSRYPW5m989I+2K1r2eWnKelLZLoYuW4md03v3233Uam3a6U2BJC+en1KmtzdOoUnrDiYnC5Gl8vBHTvrqztE0y377MpK4NVq/AvlB64YPq554a3TsgPP8DOnf5ry2prmfrzz9x17rlknn566OurquD99w/qDbRj7FhITw8d02+/VfejTx8YM6blz8DHY481v14IuP56RU6o65csgTlzmn+O3brB3/8e1H2Xy8Xu3bsB6PnGGySUlTX+LACuvhpa+CydTid5eXls+/BDbnK7/SW2EuLjObxXL8445xwSA2ZNt8hTT8GGDY1sqK+v57r33+edIOva2O12SktLlcXrt2+HiROb+wDwf/+nrJ8Vin//G778srmMs86Ce+7xn1ZcXEzv3r2b2wN80PC777OozcxkdX4+c6ZMYXVAabWcnBxmzZrV3Ib//hfefLO5Dccco9gXhNzcXAoLCwH4BMhocvyQTp3o9957MGJEUBl+PvsMHnmk+f7OnXG99x5ZWVn+CjqZmZnk5+czZcqURqXjpqOsURNns3H88ccT51uD6M47KR42TPXzC+SPjz+mx0MP+f/2CsGaNWsQQnAK+EvjBRLYHnJzcznx889x5udz3pQppATYVghsa/j8XS5XI38C6fr/7J15fFTV3f/fk0ySIeugsiliEBfEWlEfK32sRavVtmqlbqHSp/LQzaXPU7SLdPm14tNFWpeOG7hFXFBiUVEUFVxYXIJa2UJYJCRigISEzJLMmpn5/v64mSGBSUgyy71zOe/X674IM3e+5/uZ77nfOXPPnO8B3gIsFgunnHIKOd3z0tKlMGYM0Ht/iFFTU5PRe7lqIkQxaG666ab4ctpek9QBPPTQQ9x8880ATJgwgU2bNg26/dhESIxMXzwKhUKhUCgUCoVCoVAoFApFb3SfVAHtR8G2rj0ZkqX7Df4D6e99ulRzqBvfMc455xzWr1/f4ya7zWbjiiuuoLKyksKufTBSQWxS6uWXX057e33F5EASxag/7199fT3l5eUDard7WwN5PwZiNxFGmwixZqwlhek4+eST439//vnn/XrNzq56swDjx49PuU8KhUKhUCgUCoVCoVAoFAqFEbDZbAfdtE4Vsb1hut/Q7n4z28gsXLiQkSNHpm2SqDuFhYXxFQ7pbi9RTA4kHTHqrd1EbQ3k/RiI3WxAbZauGDSnnHJK/O/YZo+H4tOuTdwOfH0yzJo1i7KyAxe2mQO3282dd96J2+3W25WE6OVfJtpNVxupspusHaP3LUVizB43o+szc85LVzsq5ymSwexxM7o+Pf3L1rGeUXJeKn1RZBYzx83o2lTO09emGusNjtgNbafTSX19PfX19TidzvjG7XrQn8kFm83GyJEjCQaDLFy4kKFDh1JeXp6WSZAD2y0vL48f6Zx0cTqdbNy4kb/85S9s3LgxHp9DxehQ71/sveur3f605Xa7+ec//xl/73t7PwZq1+io0liKQdPR0cFRRx1FMBgE4MMPP2TSpEm9nh8MBhk2bBjt7e0AvP3223zjG98YdPux0ljjx4+nrq6OtWvXmq40VmdnJ3V1dYwbN468vDy93TkIvfzLRLvpaiNVdpO1Y/S+pUiM2eNmdH1mznnpakflPEUymD1uRtenp3/ZOtYzSs5LpS+KzGLmuBldm8p5+tpUYz1z0d9ySmaP22D1ZaLkWabe+772GQG1R4giy7j00ktZunQpAD/72c+YN29er+c+99xzXHfddQAcccQRNDc3Y7UOvjqb2iNEoVAoFAqFQqFQKBQKhUKhMA6Z3JPDjCR6/7L5vetrYifT93JVaSxFUtx0003xv+fPn9/r5uc+n48//vGP8f//9Kc/TWoSpDtTpkzJuiTQX3w+H4sXL8bn8+ntSkL08i8T7aarjVTZTdaO0fuWIjFmj5vR9Zk556WrHZXzFMlg9rgZXZ+e/mXrWM8oOS+Vvigyi5njZnRtKufpa1ON9cxFf8spmT1ug9WXiZJnmXzvKysrqaioSHvps/6gJkIUSXHppZdy3nnnAVrpq8suu4wNGzb0OGffvn1MmTKF7du3A9pqkNtuuy3jvioUCoVCoVAoFAqFQqFQKBSK9JOJPTnMTPf3L5vfu+4TO2+++aauvqjSWIqkaWxs5Ctf+Qp79uwBwGKxMHnyZMaNG0dLSwtvvfVWfIbRarXyxhtvcOGFFybdriqNpVAoFAqFQqFQKBQKhUKhUCgUxkfve7lqRYgiaUaPHs0777zDxIkTARARVqxYweOPP84rr7wSnwQZNmwYixcvTskkSHfGjx9vyk2VQNu8aMuWLXR2durtSkL08i8T7aarjVTZTdaO0fuWIjFmj5vR9Zk556WrHZXzFMlg9rgZXZ+e/mXrWM8oOS+Vvigyi5njZnRtKufpa1ON9Q5PzB43I+szsm/pRE2EKFLC+PHjWbNmDU8++STf+ta3OPbYY8nPz2f48OFMmjSJv//979TW1nLppZemvG21R4h+mLlevtojRGFEzB43o+szc85LVzsq5ymSwexxM7o+VS9fP5tqj5DDFzPHzejaVM7T16Ya6x2emD1uRtZnZN/SiSqNpcha9F5OpVAoFAqFQqFQKBQKhUKhUCgUikOj971ctSJEoVAoFAqFQqFQKBQKhUKhUCgUCoVpURMhiqzn9ttvx2636+1GWnC5XMyePRuXy6W3KwnRy79MtJuuNlJlN1k7Ru9bisSYPW5G12fmnJeudlTOUySD2eNmdH16+petYz2j5LxU+qLILGaOm9G1qZynr0011js8MXvcjKzPyL6lE1UaS5G1xJZTlZeX09jYyLp160xXGiscDtPY2Mjo0aOxWq16u3MQevmXiXbT1Uaq7CZrx+h9S5EYs8fN6PrMnPPS1Y7KeYpkMHvcjK5PT/+ydaxnlJyXSl8UmcXMcTO6NpXz9LWpxnqHJ2aPm5H16eWb3qWx1ESIImvR++JRKBQKhUKhUCgUCoVCoVAoFArFodH7Xq4qjaXIeqZOnUpRUZHebqQFr9fLwoUL8Xq9eruSEL38y0S76WojVXaTtWP0vqVIjNnjZnR9Zs556WpH5TxFMpg9bkbXp6d/2TrWM0rOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzpREyGKrMflchGNRvV2Iy3k5ORgt9vJyTHmpaqXf5loN11tpMpusnaM3rcUiTF73Iyuz8w5L13tqJynSAazx83o+vT0L1vHekbJean0RZFZzBw3o2tTOU9fm2qsd3hi9rgZWZ+RfUsnqjSWImvRezmVQqFQKBQKhUKhUCgUCoVCoVAoDo3e93IPr2kfhSmZOHEi+fn5eruRFkKhEOvWrSMUCuntSkL08i8T7aarjVTZTdaO0fuWIjFmj5vR9Zk556WrHZXzFMlg9rgZXZ+e/mXrWM8oOS+Vvigyi5njZnRtKufpa1ON9Q5PzB43I+szsm/pRE2EKLKe888/H5vNprcbaSEQCLBixQoCgYDeriREL/8y0W662kiV3WTtGL1vKRJj9rgZXZ+Zc1662lE5T5EMZo+b0fXp6V+2jvWMkvNS6Ysis5g5bkbXpnKevjbVWO/wxOxxM7I+I/uWTlRpLEXWovdyKoVCoVAoFAqFQqFQKBQKhUKhUBwave/lqhUhiqzHZrNhsVj0diMtiAiBQACjzlfq5V8m2k1XG6mym6wdo/ctRWLMHjej6zNzzktXOyrnKZLB7HEzuj49/cvWsZ5Rcl4qfVFkFjPHzejaVM7T16Ya6x2emD1uRtZnZN/SiZoIUWQ9s2bNoqysTG830oLb7WbOnDm43W69XUmIXv5lot10tZEqu8naMXrfUiTG7HEzuj4z57x0taNyniIZzB43o+vT079sHesZJeel0hdFZjFz3IyuTeU8fW2qsd7hidnjZmR9RvYtnajSWIqsJbacauTIkbS0tLB+/XrTlcaKRCK0tLQwbNgwcnNz9XbnIPTyLxPtpquNVNlN1o7R+5YiMWaPm9H1mTnnpasdlfMUyWD2uBldn57+ZetYzyg5L5W+KDKLmeNmdG0q5+lrU431Dk/MHjcj69PLN71LY1kz1pJCkWJaWloAaGpqAuDNN99k+/bterqkUCgUCoVCoVAoFAqFQqFQKBSKA6irq+vx/9i93UyhJkIUWcuyZct6/P+Xv/ylTp4oFAqFQqFQKBQKhUKhUCgUCoWivyxbtozzzz8/Y+2pPUIUWc/48ePJy8vT2420kJeXZ2h9evmXiXbT1Uaq7CZrx+h9S5EYs8fN6PrMnPPS1Y7KeYpkMHvcjK5PT/+ydaxnlJyXSl8UmcXMcTO6NpXz9LWpxnqHJ2aPm5H1Gdm3dKImQhRZz5QpUygsLNTbjbRQWFhoaH16+ZeJdtPVRqrsJmvH6H1LkRizx83o+syc89LVjsp5imQwe9yMrk9P/7J1rGeUnJdKXxSZxcxxM7o2lfP0tanGeocnZo+bkfUZ2bd0ojZLV2QtK1as4IILLoj/f/HixZxwwgk6eqRQKBQKhUKhUCgUCoVCoVAoFIoD2b59O1OmTIn//913381oaSy1R4giaxk2bFiP/59wwgmceuqpOnmjUCgUCoVCoVAoFAqFQqFQKBSK/nDgvd10o0pjKbKe22+/naOPPhqASCSCy+UittDJ4/EQCoUA8Pv9eL1eAMLhMC6XK27D7XbT2dkJgM/nw+fzAdDZ2Ynb7Y6f53K5CIfDAHi9Xvx+PwChUAiPxwOAiOByuYhEIgB0dHQQCAQACAaDtLe3AxCNRnG5XESjUQDa29sJBoMABAIBOjo6cLlczJ49m507dxpSU8y/xsbGfmtKRZxi7e7ZsydtcWpsbGT27Nm0tbWlVFNrayuzZ8+O6xpsnJqampg9ezZ79+4dVN/buXNn3I90xWmgmtJ9PZlBU3NzM7Nnz6a5udk0mrrHadeuXcyePZt9+/YZUlP39z+Tfa+lpSWe89IZp3Tkve6fY8nEaffu3fGcNZi+19bWFteWrjgZ7Xoyg6ZYn3S5XKbR1D1OsZwSs2M0TbGc7HK5Mt73MpH3ur//qdIUy1Wtra1JxSmWO5uamgakSeW97Ndk5rwX69e7du0ypKaYf83Nzf3WBKnpe92/m2XTd/fYd9LuuWuwcUo278Vev3PnTlPnCLNpOvC6M4Om7nEyct7bt29f3Dc9+p5eqIkQRdazbt06LrnkEgBaWlpwOBzxi7OyspLa2loAVq5cyZIlSwBtgOlwOOI25s6dS11dHQDLli1j2bJlANTV1TF37tz4eQ6HIz5wWLJkCStXrgSgtraWyspKQEscDoeDlpYWABYtWkR1dTUAa9euZcGCBYCWHBwORzwZLViwgLVr1wJQXV3NokWLKC4u5vLLL+eJJ54wpKbi4mLOPvvsuA/90ZSKOBUXFzNu3Lj4+5qOOC1ZsoTrr7+eaDSaUk2xD6ni4uKk4vTpp59y/fXX88UXXwyq7z3xxBNcddVVFBcXpy1OA9WU7uvJDJrq6uq4/vrr2bRpk2k0dY/TsmXLuP766/H7/YbUtGnTJq6//nrq6uoy2vf27t3L9ddfH3+P0hWndOS94uJiLrnkEp544omk4rRy5UpOOeUUiouLB9X3YgP42L9mzRFm07RkyRLOPvtsiouLTaOpe5w2bdrEiBEjKC4uNqSmZcuWcfrpp1NcXJzxvpeJvFdXV8fQoUMpLi5OmaaVK1dy/fXX43a7k4pTcXExxx57LJ9++umANKm8l/2azJz3iouLOf300+M+GE1TcXExI0aMYNOmTf3WBKnpe88++ywXXHABxcXFWfXd/dNPP+XYY4+luLg46Tglm/eKi4u56qqreOKJJ0ydI8ymqbi4mKFDh8Z9MIOm7nEyct7z+/1cf/31LFu2TJe+pxuiUGQpNTU1AojNZpPi4mKpqamRcDgsTqdTotGoiIi43W4JBoMiIuLz+aSjo0NERDo7O8XpdMZtuVwuCYVCIiLi9XrF6/WKiEgoFBKXyxU/z+l0Smdnp4iIdHR0iM/nExGRYDAobrdbRESi0ag4nU4Jh8MiItLe3i5+v19ERAKBgHg8HhERiUQi4nQ6JRKJiIiIx+ORQCAgIiJ+v1/a29tFRJQmpUlpUpqUJqVJaVKalCalSWlSmpQmpUlpUpqUJqVJaVKaslpT7F5u7KipqZFMoiZCFFlL7OKZOnWqFBUVZfziyQQdHR3y3HPPxROH0dDLv0y0m642UmU3WTtG71uKxJg9bkbXZ+acl652VM5TJIPZ42Z0fXr6l61jPaPkvFT6osgsZo6b0bWpnKevTTXWOzwxe9yMrE8v3/SeCFGlsRRZT/eadWYjJycHu91OTo4xL1W9/MtEu+lqI1V2k7Vj9L6lSIzZ42Z0fWbOeelqR+U8RTKYPW5G16enf9k61jNKzkulL4rMYua4GV2bynn62lRjvcMTs8fNyPqM7Fs6sYh07WaiUGQZmzZt4ktf+lL8/zU1NZx66qk6eqRQKBQKhUKhUCgUCoVCoVAoFIoD0fte7uE17aMwJRMnTiQ/P19vN9JCKBRi3bp1hEIhvV1JiF7+ZaLddLWRKrvJ2jF631IkxuxxM7o+M+e8dLWjcp4iGcweN6Pr09O/bB3rGSXnpdIXRWYxc9yMrk3lPH1tqrHe4YnZ42ZkfUb2LZ2oiRBF1nP++edjs9n0diMtBAIBVqxYQSAQ0NuVhOjlXybaTVcbqbKbrB2j9y1FYsweN6PrM3POS1c7KucpksHscTO6Pj39y9axnlFyXip9UWQWM8fN6NpUztPXphrrHZ6YPW5G1mdk39KJKo2lyFr0Xk6lUCgUCoVCoVAoFAqFQqFQKBSKQ6P3vVy1IkSR9ZSVlVFcXAxAJBLB5XIRm9/zeDzxZV5+vx+v1wtAOBzG5XLFbbjdbjo7OwHw+Xz4fD4AOjs7cbvd8fNcLhfhcBgAr9eL3+8HtCVlHo8HABHB5XIRiUQA6OjoiM+wBoNB2tvbAYhGoz02em9vbycYDALazGxHRwcigtfrxel0GlKTiOB2u+Pn9UdTKuIkIrS1tcXPS0ecPB4PgUAg7muqNHV2dtLc3Bw/b7Bx8vl8BAKBuK/90dS97zmdTnw+HyKStjgNVFO6ryczaAoEAgQCAfx+v2k0dY9TTGPMV6Np8vv98Rhksu+FQiECgUD82k9XnNKR90SEjo4OnE5nUnGK2RCRQfW9SCRCc3Nz/Dyz5gizafJ4PLjdbkTENJq6x8nv99Pa2oqIGFJTe3t73KdM971M5L1AIEBLSwsikjJNMfudnZ1JxUlE2LdvX/w8lfdU3stmTbE4xV7fvY8aSZOI0NraGj8vk30v9r6ISFZ9d/f5fOzbtw8RSTpOyea92HvndDpNnSPMpklEaGlp6fHZnO2ausfJyHkvHA73+A7eX02pipNeqIkQRdZzyy23MHXqVABaWlpwOBzxi7OyspLa2loAVq5cyZIlSwBobGzE4XDEbcydO5e6ujoAli1bxrJlywCoq6tj7ty58fMcDgeNjY0ALFmyhJUrVwJQW1tLZWUloCUOh8NBS0sLAIsWLaK6uhqAtWvXsmDBAkBLDg6HI56MFixYwNq1awGorq5m0aJFuN1u7rrrLu677z5DanK73fzzn//k6aef7remVMTJ7XZz//3389prr6UtTk8//TRz5sxh165dKdW0detW5s2bF/+wGmycli9fzpw5c/j3v/89qL5333338Y9//AO32522OA1UU7qvJzNo+vDDD5kzZw4rV640jabucaqqqmLOnDnU19cbUtPKlSuZM2cOH374YUb73saNG5kzZw6vvfZaWuOUjrzndru5++67ue+++5KK00svvcR9992H2+0eVN/btWsX8+bNY9euXWmLk9GuJzNoevrpp/nnP/+J2+02jabucVq5ciUPPvggbrfbkJqqqqpwOBy43e6M971M5L0PP/yQhx56KH5jMBWaXnrpJebMmcPWrVuTipPb7eaBBx5g+fLlA9Kk8l72azJz3nO73TgcDqqqqgypye128+CDD8bPy3Tfu+eee3C73Vn13X358uU88MADuN3upOOUbN5zu9384x//4L777jN1jjCbJrfbzUMPPcSHH35oGk3d42TkvFdfX8+cOXOoqqrSpe/phigUWUpNTY0AMmbMGCktLZWamhoJh8PidDolGo2KiIjb7ZZgMCgiIj6fTzo6OkREpLOzU5xOZ9yWy+WSUCgkIiJer1e8Xq+IiIRCIXG5XPHznE6ndHZ2iohIR0eH+Hw+EREJBoPidrtFRCQajYrT6ZRwOCwiIu3t7eL3+0VEJBAIiMfjERGRSCQiTqdTIpGIiIh4PB4JBAIiIuL3+6W9vV3C4bA0NjZKa2urITWFw2H5/PPP4+32R5OIJB2ncDgsO3bsiL+X6YiT0+mUPXv2SCgUSqmmQCAg27Zti7c72Di1t7fLnj17xOfzDarvtba2yq5duyQcDqctTgPVlO7ryQyavF6v7NmzJ94HzKCpe5xcLpfs2bNHgsGgITV1dHTInj17xOv1ZrTv+f1+2bNnT7wPpCtO6ch74XBYvvjiC2ltbU0qTm63W+rr6yUcDg+q74VCIdm2bVu8XbPmCLNpcjqd8vnnn0s4HDaNpu5x6ujokLq6OgmHw4bU5HK5pKGhQcLhcMb7Xibyntfrle3bt0s4HE6ZJrfbLXv27Inn1MHGKTbWjbWr8p7Ke9msKRancDgsDQ0N8XaNpikcDktdXV2P722Z6nv79u2TnTt3Sjgczqrv7u3t7bJjxw4Jh8NJxynZvBcOh2XXrl3S2tpq6hxhNk3hcFi2b98eb9cMmrrHych5LxgMyp49e+Ljrv5qSjZOsXu5saOmpkYyidojRJG16F1XTqFQKBQKhUKhUCgUCoVCoVAoFIdG73u5qjSWIuuZPn16fI8Qs9HR0cH8+fPjtfeMhl7+ZaLddLWRKrvJ2jF631IkxuxxM7o+M+e8dLWjcp4iGcweN6Pr09O/bB3rGSXnpdIXRWYxc9yMrk3lPH1tqrHe4YnZ42ZkfUb2LZ2oiRBF1tPQ0BDfDMhsWK1WysvLsVqteruSEL38y0S76WojVXaTtWP0vqVIjNnjZnR9Zs556WpH5TxFMpg9bkbXp6d/2TrWM0rOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzpRpbEUWYvey6kUCoVCoVAoFAqFQqFQKBQKhUJxaPS+l6tWhCiynkmTJlFQUKC3G2khGAxSXV1NMBjU25WE6OVfJtpNVxupspusHaP3LUVizB43o+szc85LVzsq5ymSwexxM7o+Pf3L1rGeUXJeKn1RZBYzx83o2lTO09emGusdnpg9bkbWZ2Tf0omaCFFkPRMnTiQ/P19vN9JCKBRi3bp1hEIhvV1JiF7+ZaLddLWRKrvJ2jF631IkxuxxM7o+M+e8dLWjcp4iGcweN6Pr09O/bB3rGSXnpdIXRWYxc9yMrk3lPH1tqrHe4YnZ42ZkfUb2LZ2o0liKrEXv5VQKhUKhUCgUCoVCoVAoFAqFQqE4NHrfy1UrQhRZz4gRIygpKQEgEongcrmIze95PJ747Kbf78fr9QIQDodxuVxxG263m87OTgB8Ph8+nw+Azs5O3G53/DyXyxXfmN3r9eL3+wFtJtXj8QAgIrhcLiKRCAAdHR0EAgFAW3rW3t4OQDQaxeVyEY1GAWhvb48vSQsEAnR0dBCNRtm3bx9tbW2G1BSNRmlubo7b64+mVMQpGo2yZ8+euL10xMntdsftpFJTKBRi586dcXuDjZPX68XlchEIBAbV99ra2mhrayMajaYtTgPVlO7ryQya/H4/LpcLn89nGk3d4+TxeHC5XHR2dhpSk8/nw+Vy4ff7M9r3gsEgLpcr7kO64pSOvBeNRmltbaWtrS2pOLW3t9PU1EQ0Gh1U3wuHw+zcubOHPTPmCLNpcrvdNDc3E41GTaOpe5x8Ph+7du0iGo0aUpPH44m//5nue5nIe36/n8bGRqLRaMo0tbe343K5CIVCScUpGo2ye/fuHuNHlfdU3stWTbE4xb47xuwZTVM0GmXXrl1xe5nse06nk5aWFqLRaFZ9d/d6vezevZtoNJp0nJLNewd+x01HnIx0PZlFUzQapbGxMW7PDJq6x8nIeS/2ndvj8ejS9/RCTYQosp4bb7yRiooKAFpaWnA4HPGLs7KyktraWgBWrlzJkiVLAGhsbMThcMRtzJ07l7q6OgCWLVvGsmXLAKirq2Pu3Lnx8xwOB42NjQAsWbKElStXAlBbW0tlZSWgJQ6Hw0FLSwsAixYtorq6GoC1a9eyYMECQEsODocjnowWLFjA2rVrAaiurmbRokV4PB4eeOAB7r//fkNq8ng8zJs3j2eeeabfmlIRJ4/HwyOPPMLSpUvTFqdnnnkGh8PB7t27U6pp27ZtPPHEE7S0tNDQ0MCDDz7Ihx9+SENDAy+++CIvvvgiDQ0NfPjhhzz44IM0NDTQ0NCAw+Hgk08+oaGhgaqqKhYvXozD4eCtt97ikUceoaGhgc8++wyHw8H69etpaGjgmWee4Y033qChoYG3336bJ554goaGBmpra7n//vu5//77qa2t5YknnuDtt98mEAikNE7p7HuxOA3kejKDpurqahwOB6tWrTKNpu5xev7553E4HPE+bzRNq1atwuFwUF1dndG+V1NTg8PhYOnSpWmNUzrynsfj4cEHH+T+++9PKk6LFy/m4YcfxuPxDKrv7d69myeeeILdu3enLU5Gu57MoOmZZ55h3rx5eDwe02jqHqdVq1bx2GOP4fF4DKnp+eefj7//me57mch71dXVPP7443g8npRpio3Ptm3bllScPB4Pjz76KG+99daANKm8l/2azJz3Yt8dn3/+eUNq8ng8PPbYY6xatarfmiA1fW/evHk89NBDeDyerPru/tZbb/Hoo4/i8XiSjlOyec/j8cS/45o5R5hNk8fj4fHHH+/x2ZztmrrHych5L/ad+/nnn9el7+mGKBRZSk1NjQAyYsQIKSkpkZqaGgmHw+J0OiUajYqIiNvtlmAwKCIiPp9POjo6RESks7NTnE5n3JbL5ZJQKCQiIl6vV7xer4iIhEIhcblc8fOcTqd0dnaKiEhHR4f4fD4REQkGg+J2u0VEJBqNitPplHA4LCIi7e3t4vf7RUQkEAiIx+MREZFIJCJOp1MikYiIiHg8HgkEAiIi4vf7pb29XSKRiLS2tsq+ffsMqSkSiUhTU1PcXn80iUjScYpEIrJ79+64vXTEyeVyxe2kUpPT6ZTp06fLkCFDBJCysjLJy8sTQAoLC6WwsFAAycvLk7KyMgEEELvdLlarVQApKiqSwsJCsdvtUlBQIKWlpQKIxWIRu90uubm5AkhxcbHYbDYBpKCgQEpKSgSQnJwcGTp0qAwdOlRycnKkpKRECgoKxGazyfe//31pbm5OSZzS2fdicRrI9WQGTT6fT5xOp3i9XtNo6h4nt9stTqdTQqGQITV5vV5xOp3i8/ky2vcCgYA4nc64D+mKUzryXiQSkZaWFtm3b19ScfJ4PLJnzx6JRCKD6nudnZ3y+eef97BnxhxhNk0ul0uampokEomYRlP3OHm9XmlsbJRIJGJITW63O/7+Z7rvZSLv+Xw++eKLLyQSiaRMk8fjEafTKcFgMKk4RSIR2bVrV/w9UnlP5b1s1hSLU+y7Y8ye0TRFIhFpbGyM28tk32tra5O9e/dKJBLJqu/uHR0dsmvXLolEIknHKdm8F4lEZN++fbJv3z5T5wizaYpEIvLFF1/E7ZlBU/c4GTnvxb5zu93ujPa92L3c2FFTUyOZRO0Rosha9K4rp1AMhqlTp1JVVTWg1xwFnHjAMQ6wAT7A2/VvMn/H/g0DFRUVLFy4MAmVCoVCoVAoFAqFQqFQKBQKxX70vperSmMpsp4bbrghvkeI2Whvb2fevHnxGn1GQy//MtFuOtoIBAK8/fbbCfvsEcA5wA+A2cCzwMeAE2gBPgCeBP4AVAAnl5Tw3g03cEpJCRcAlwLXANOBm4BfAX8C5gD3A5XAQuAV4G1gWUkJN95wA2tLStgNuIFOIATMq6pCRo2CE06A00+Hr34VLrwQvvtdmDoVZsyA3/8enn0W1q+HriWQivRj9JyQLEbXZ+acl652UmUzWTtG71uKxJg9bkbXp6d/2TrWM0rOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzqx6u2AQpEs69ati2/EYzby8/OZOHEi+fn5eruSEL38y0S76Whj77ZtnNDeTs66ddwSCvVY4XHEQP0LhZi4bh35g+z7vb0+D7ADNDX125bk5hI+7jhCJ51E50knxf/tLC+HvLw+Xzty5EhsNttA3T9sMXpOSBaj6zNzzktXO15Y3HIAAQAASURBVKmymawdo/ctRWLMHjej69PTv2wd6xkl56XSF0VmMXPcjK5N5Tx9baqx3uGJ2eNmZH1G9i2dqNJYiqxF7+VUCkVC2tvhs88SH62tenuXUULAVmATUNP17yagDoh2nWOz2bjiiiuorKyksLBQH0cVCoVCoVAoFAqFQqFQKBRpRe97uao0liLrOf/88037i/JAIMCKFSsIBAJ6u5IQvfyLtetyuWhoaEjLsW3bNhYvXsy2bdsOeu7z2lp2LV3K3ocewvmb39B+7bUEzj6byLBhUFoKZ52llZD6f/8PnnoKPvwwPgkSsNlYcf75BJLss8naSZUffZEPnAZMBf4MvARsAzqAT4GngF8EAnirqrjt2mshGu3VlkLD6DkhWYyuT++cl+5209FOqmwma8fofUuRGLPHzej69PQvE22bOeel0hdFZjFz3IyuTeU8fW2qsd7hidnjZmR9RvYtnaiJEEXWU15ejtVqzipv4XCYhoYGwuGw3q4kRC//PB4PS5cu5YQTTmDs2LFpOc456yzeevllfn/WWTw0dizLx46lYexY8saO5bhTT+WYSy9l+M03M/Qf/6DkX//C9skn5PZjxUfYaqWhvJxwkn02WTup8mMwDAHOAP4LuBNYAtz/2mtIaSl85Svw3/8Nd90Fy5aBx5Nx/4yM0XNCshhdn17+ZarddLSTKpvJ2jF631IkxuxxM7o+Pf3LRNtmznmp9EWRWcwcN6NrUzlPX5tqrHd4Yva4GVmfkX1LJ6o0liJr0Xs5lUI/pk6dSlVVVcrt2oBvo21GfhlQlPIW0sBVV8Epp4DPpx1eb+K/W1th7169vR04OTlw5pnw9a9rx3nnwRED3VFFoVAoFAqFQqFQKBQKhUKhJ3rfyzXnz+gVhxUjR46kpaVFbzfSQiQSoaWlhWHDhpGbm6u3Owehh3+BQIAlS5bE4x6JRJKyVwBcgjb5cTlQ0vV4JDeXpmHDGNbSQm6SbXQnkptLS192CwvhhBPgxBN7HnfcAW+9dbCd664j98orD93ws8/CtGkHvd7mcjEpEKAIKOw6evv7emD04KUPjmgUPvlEO+65B4DQyScT+MpXCJxzDsGvfEUrSdYLZtuM3eg5IVmMrk8v/zLVbjraSZXNZO0YvW8pEmP2uBldn57+ZaJtM+e8VPqiyCxmjpvRtamcp69NNdY7PDF73Iysz8i+pRNVGkuR9dxwww2UlJQc+sQspL29nYcffpj29na9XUmIHv41NTWRn5+fVNzzgEuBJ4Fm4GXgOvZPggC0l5Tw8A030J7ivnWg3buAG61WgsuWQWMjdHTA+vWwaBH87W8wY4a2CmL8+MR2+rvBeFtbwtdHTzmFiRUV1NpsvAcsQ9vLYwHwKPBP4K/AH4CeFvbzLHA78C9gM5DuhZX5W7dS+vTTDP/5zzn2K18hOHYsy8aO5Q9jx/L1A0qcDR06lKlTp+Lz+dLsVWYwek5IFqPr08u/TLWbjnZSZTNZO0bvW4rEmD1uRtenp3+ZaNvMOS+Vvigyi5njZnRtKufpa1ON9Q5PzB43I+szsm9pRRSKLKWmpkYAKSsrk+LiYqmpqZFwOCxOp1Oi0aiIiLjdbgkGgyIi4vP5pKOjQ0REOjs7xel0xm25XC4JhUIiIuL1esXr9YqISCgUEpfLFT/P6XRKZ2eniIh0dHSIz+cTEZFgMChut1tERKLRqDidTgmHwyIi0t7eLn6/X0REAoGAeDweERGJRCLidDolEomIiIjH45FAICAiIn6/X9rb2yUajUpHR4e0tbUZUlM0GhWXyxU/rz+aRCSpOH322WdisVhk6NChUlhYKIDk5eVJWVmZAAKI3W4Xq9UqgBQVFcmQIUPECvLt/Hx5pLRU2kCiFos47XYJ5+aKgLQXF4vfZhMBCRQUiLukRPw2m4RzcsRpt0skJ0cExFNSIoGCAhEQv80m7cXFIiDh3Fxx2u0StVhEQPaWlsr6/HxZDPLIkCHSUVQkAhKyWqVpxIj4eWeUlcnUqVMPHafHHpPOb31L5MYbpePvfxfvc8+Jf+lSCTQ19a/vzZ4tnpISEZBITo602e3iHTJEopMmicfjEZfLJfX19bJ161apra2V+vp62b59u2zcuFF27Ngh9fX1sm/cOAnm54uA+Lpp+uKpp2Tjxo1SX18v9fX1svHf/5aGV1+VvQ6H7P75z6Xl29+WUHm5BPPyxFVWJgIiIE67XTqtVhGQjqIi8Q0ZIgISzM8Xd2mpSD/i1F1TLE71II+VlMiPCgrkBBCbzSbXXXdd0n3PCDnC7/eL3+8Xn8+XkuvJCJq654iYxpivRtPk8/niMRhILk82TsFgUPx+v3R0dKQ1Tm63W/x+f9zXVGiKRqPS3t4ubW1tScUpZiMajQ6q74XDYWlqaoqfl444Ge16MoMmt9stLpdLotGoaTR1j5PP55OWlhaJRqOG1OTxeOI+ZbrvZSLv+f1+2bt3r0Sj0ZRpitkPhUJJxSkajUpra2v8PJX3VN7LZk2xOMVe372PGklTNBqVlpaW+HmZ7Hux9yUajWbVd3ev1yutra0SjUaTjlOyeS/23rW1tZk6R5hNUzQalb179/b4bM52Td3jZOS819nZ2eM7eH81JRun2L3c2FFTUyOZRK0IUWQ9Z5xxBldffTUALS0tOBwOgsEgAJWVldTW1gKwcuVKlixZAkBjYyMOhyNuY+7cudTV1QGwbNkyli1bBkBdXR1z586Nn+dwOGhsbARgyZIlrFy5EoDa2loqKysBCAaDOByOeLmuRYsWUV1dDcDatWtZsGABoG347XA48HRtBr1gwQLWrl0LQHV1NYsWLcJisdDe3s59991nSE0Wi4XNmzfz7LPP9ltTsnHavXs3IsLkyZO5+OKLARg3bhw33nhj/LyZM2cyevRocoEZl1/OHZMn0wT8dcIEvDNmMBQIFhTgmDmTlq6ySouuvprqSZO0OJ1xBs9Om4YtEKC9tBTHzJl4Sks1TdOmsfaMMwD4YNIknrr6apYA9w4bhmPmTL5dUEA58NcZM7h+wgSmAIsnT+aVyy8HYNfo0cy78UYsXdszXfHznzNr1qxDx6mxkca5c+Ghh1hy7LGsstuxffvbbN6zp39976KLWPDXv8LWrXjeeov7Zs4kNHcult/9jgULFrB582bKy8vZvXs3a9asoby8nKKiIl544QVGjRpFeXk5T333u9ROmKDFafJkllx+OVgshM88kxdeeIHy8nLKy8t5ddky/OPGMex//5c1F17Iez/9KXn19ez461+Z2y1OjpkzaRytFdtacvnlrJw8Wet7EyZQOWOGpukQcVrQVe7L0y1O5UDntGn8+Iwz+Ax4ftIkJubn0+lw0FJdndU5Yt26ddhsNtasWZOS68kImrrniBdeeAGbzUZra6shNa1Zswabzca6desGlMuTjdOOHTuw2WwsX748rXF69tlnsdlstLe3p0yTxWKhtbWV++67L6k4vfrqq6xZswaLxTKovtfe3s68efPiv3hKR5yMdj2ZQdOzzz7L5s2bsVgsptHUPU5r1qzh1VdfxWKxGFLTCy+8wLp167BYLBnve5nIe+vWreOFF17AYrGkTNOrr76KzWZj165dScXJYrGwfPlyVq1aNSBNKu9lvyYz5z2LxRK/7oyoyWKxxMcb/dUEqel78+bNY9euXVgslqz67r5q1SqWL1+OxWJJOk7J5j2LxUIoFOK+++4zdY4wmyaLxRIfb5hFU/c4GTnvtba2YrPZeOGFF3Tpe7qR0WkXhSKFxGYRb7nlFhk5cqQpV4S43W655557ZOfOnYbUFPNv165d/dYkkvyKkNLSUrnllltk+PDhPVaErF69Wuq3b5dtTz4pbdOmSfiIIwa90mDXqFFy78yZ0jZ0qLQec0zCFSH7vvGNXldP1NTUyLZt26S+vl62bNkibaeeKsGTT5bGSy+Vu/7wB2n44x8l+MIL4tqxY1Bxam5ulnvvvVdaWloG1fd27twp99xzj7jd7v7H6eOPJbhihcjzz4vv17+WjgsvFDn77P73venTE64IqQY5t6hIfjRkiNwF8mp+vmxPYkXIIVfunHiiRH/4Q5EFC8S9Y4dhrqdEcTrwetq7d6/ce++90tzcbKpfysT63u7du+Xee++VtrY2Q2qKXXd79+7N6K+0Wltb5d5775Wmpqa0xmnXrl1y7733itPpTJmm7p9jycRpz549cvfdd8fbGGjfczqdcvfdd8ffW7P9ms6smnbt2hX/rDKLpu5xam5ujvdrI2ravXt3/P3PdN/LRN7bu3dv/P1PlaY9e/bIvffeK/v27UsqTm63W+6++25pbm4ekCaV97Jfk5nzXmxMsHv3bkNqOvC6y2Tf++KLL+Jxz6bv7t0/x5KNU7J5r/uY08w5wmyaYnHfu3evaTR1j5OR815bW5vce++9snv37sNqRYhFpOtnyQpFlrFp0ya+9KUvMXHiRGpra/n000859dRT9XYrpYRCIWpra5kwYQL5+fl6u3MQevjX0NDAySefzIQJE6itrSUUCmEBvga8+l//RemyZdDcnFwjRx5J6KqrqJ08mQlXXEH+gw/CbbcdfN5JJ8HWrQMynar3LFk7KYudCFgs/Tv3lFNgy5aDHr4XuDXB6ScBX+86JgNjBu1kH1gscOaZcMkl2vHVr0JeXjpaSglGzwnJYnR9evmXqXbT0Y7pcp4io5g9bkbXp6d/mWjbzDkvlb4oMouZ42Z0bSrn6WtTjfUOT8weNyPr08u32L3cGDU1NRm9l6smQhRZi94Xj0IfGhoaGDt2LBZgElABXAMcnaxhux2uvBKuvRa+8Y2eN8MXLYJrroGyMhg3DsaOheOPh5NPhh/9KNmWDw9cLhg6NOFTFcDz/TBxErAesKXOq4MpKdHiH5sYOf74dLamUCgUCoVCoVAoFAqFQnFYoPe9XGvGWlIo0sS3vvWteN07s+F0Olm+fDmnn346BQUFertzEMFgkPXr12fOPxFcy5Zx15AhjJk8mctWrmSI3z94e1YrTJumTX5cdBF0mwX3+/2sXLmSyZMnM+Q734G2tl5v5A+EHnaHDNHNTqr86Dd5efDss7BmjXZ8+imEQgDcvXo1c7r2CumLIe+8g62XiafO0aPJ66qFmRTt7fDyy9oBcMIJ+ydFLriAgNVKU1NT8u10MXLkSGy2/k/tZDxuGcbo+vTyL1PtpqOdwzbnKVKC2eNmdH16+peJts2c81LpiyKzmDluRtemcp6+NtVY7/DE7HEzsj4j+5ZO1ESIIuux2+3k5OTo7UZK8fl8zJgxg+XLl3PxxRczY8YMvF6v3m4dRFFREZdffnna/TsLuLbrmAicWFTEErudaLJxz8uDBx6A4uKDnopGo7hcLqLRKBQVQWFhcm0lsqujnVT50W+KiuD739cOgGAQ1q+HTz9l9Lnn9q+81ocfJn586FDy6uvB5WLvCy+w4IYb+DpaX8lN1u/t27XjwQcJ5+SwBng9GuVNtNUpyS6ptNlsXHHFFVRWVlLYjz6W8bhlGKPr08u/TLWbjnYO25ynSAlmj5vR9enpXybaNnPOS6Uvisxi5rgZXZvKefraVGO9wxOzx83I+ozsWzpRpbEUWYvey6nSydSpU6mqqtLbDV05Ha1k0rXAuGSN2WwQCCR+7vnntbJXCmMTicDRR8PevQc/98MfwpNPAvtLpwGUAueyf5+Rr1qtWMLhlLnUBLwJvA4sA5xJ2KqoqGDhwoUp8UuhUCgUCoVCoVAoFAqFwmjofS/XXD+jVxyWlJeXY7WaZ3FTIBDg5a6yPFar1dD6Uu3fl4A7gK3AOuC3JJ4ECVutNJSXE+6r3SFD4Oqr4V//0jZPHz58/3PDhsHPfgZvvw3f+17Cl4fDYRoaGgin8MZ5Ku0maydd+tJGdXXiSRCAKVMSPuxBm6T4LdqEyM5PP9X2dTntNOhHKa5DMRK4HlgItADvA39AW8HUz+3j47z88ssEepus60bWxW2AGF2fXv5lqt10tKNyniIZzB43o+vT079MtG3mnJdKXxSZxcxxM7o2lfP0tanGeocnZo+bkfUZ2bd0oiZCFFnP9OnTKU5Q2ihbaWpqit8QLS4uNrS+VPg3HvgTsAnYCPw/tE2x+6KjuJgnp0+n44B2paBAm9h47jntpvm//qVNhpSWwk9+Aj/9Kbz1FuzeDfPmaZti9zKZ0tHRwZNPPklHR8egtaXTbrJ20qUvbUycqG1a/4MfaBvbx7DZ4OKL+2Wi7eOPYetW2LgRGhsJHX883ksuwXfeeUSLipJyLxf4T+D/gE+APcCTwFTgiH68PhAI9GvvkayL2wAxuj69/MtUu+loR+U8RTKYPW5G16enf5lo28w5L5W+KDKLmeNmdG0q5+lrU431Dk/MHjcj6zOyb+lElcZSZC16L6dKF91L+5iVE9FKXlUApyVpK4hWnujzc87hf5Yt0yY9FOamsxNWrYLFi7W/582LP9XX9XM72qTbgYTR+uFw4JKu46wUuhsBPkJbnfI68G8S7y1SX19PeXl5CltWKIzFoSb8Ro4cic1my6BHCoVCoVAoFAqFQqHIFHrfyzVmvR2FQmE6jmf/hudnpNDulLw8yq68ksrKypRtaK4wOHl5cOGF2jEApvTy+GZgS9exCvg9MAz4JtqkyMVoZbAGSy7w1a7jDmAv+/cWWQ60JmFbocgGfD4fM2bMOGQJOJvNxhVXXEFlZSWFKp8rFAqFQqFQKBQKhSKFqNJYiqxn1qxZlJWV6e1GWigrK+uhb/Xq1dTX1xvm2LhxI3/5y1/YuHFjwue/WL2afbfdRuC006gD/sbgJ0G6/4LeXVbGnbNm4S4rY8nNN7Nw4cKU3zRzu93ceeeduN1uQ9pN1k669BmVscDpvTz3ZILHWoBn0fYAORqYCNwGvAOEkvRlOPBfXfab0VaL/BkoWLNGW+HSB2aPm9H16eVfptpNRzsxm2+88cYh98EJBAJUVVUxY8aMlPuW6PWBQICGhoaER3/27FGkH6PnhGQxuj49/ctE2+nMeXqP81LpiyKzmDluRtemcp6+NtX328MTs8fNyPqM7Fs6UaWxFFlLbDnV+PHjqaurY+3ataYrjZWXl8e4ceOoq6ujs7PTcKVzOjs7qaurY9y4ceTl5WkPfvGFtjdHVRV89FFyDeTkwAUXQEWFZu/tt7V28/Ko+/KXGXf66eT98IcweXKSSg4moTYD2U3WTrr06U0gEGDo0KEH3cScCdyb4PwwcCxw6N05tF8O5KOt8LgAuDw3l58ccwyWnTuT8rkHJSXa3jWXXKIdxx/f42kjxK2/+5kcSH/KHhlBX1/o5V+m2k1HO+3t7Zx77rls2bKFzkNM9MWw2Ww4nc4e/SWVOa+zs/OQK1T6uzqlt+tBlflKDUbPCclidH16+peJttPRhlHGean0RZFZzBw3o2tTOU9fm+r77eGJ2eNmZH16+aZ3aSw1EaLIWvS+eNJFX3scGG0iJM7u3drkx/PPwwcfJGfLYtEmNq69Fq66CoYP1x5/4gm45RZtM/Rrr9XKIuXnJ++7wnRMnTqVqqqqHo8VA1egrfC4kP3LIV8DLuun3W+jreKoAuYDx117LQsXLoQtW+D117Vj1SoIJbtmpBsnnLB/UuSCC6C4OHW2B0h/yxv1hip7dHgy2H2v3n333fjnXaonFRLliN6oqKjQrvMDONT10Gd/F4FAQDuCwf3Hgf8PBg/tYE4OFBRoh822/+/YMWQIFBVp5ykUCoVCoVAoFAqFjuh+L1cUiiylpqZGAJkyZYoUFhZKTU2N3i6lhPr6ekGrBCWFhYVxfYDU19fr7d5+mprEe9998tJPfyrewkIR7dbO4I+vfU3k/vtFdu9O3J7fLxIMioiI1+uVl156Sbxeb9rkpauNVNlN1k4m3kO98Hq9UlFRITabLX4tdT9Gg/wWZCvI1Qme7+1YeECfjZx4osjdd4vs27e/8fZ2kVdeEbnxRpHy8uSvi+5HXp54v/lNeemOO8T7wQci4XBG39eKiop+v1d9HRUVFb22YfR+qZd/mWo3He1s3ry5x+fYYA6bzSbXXXed/Otf/0o65+3bt6/X3NBb236//yB7FddeK3aQE0HOBZkC8pOu3HInyEMgC0D+PWqU9vn25S+LHHecyNChIrm5qc0NhzosFpHSUpHRo0UmTBCZNEnkkktErrlG5Cc/Efnd70TuvVfkmWdE3nxT5NNPRb74QiQQSC74KcDoOSFZjK5PT/+ydaxnlHFeKn1RZBYzx83o2lTO09em+n57eGL2uBlZn16+xe7lxo5M38tVPw9TZD25ubkUFRUBEIlEcLlcSNdCJ4/HQ6jr19l+vx+v1wtAOBzG5XLFbbjd7njJDp/Ph8/nA7SlYt3r5blcLsLhMABerxe/3w9AKBTC4/EAICK4XC4ikQgAHR0d8V+LBoNB2tvbAYhGo7hcLqLRKKCVDwl2/frTZrNR3PXLb4vFQmlpKRaLxRiaPv2Ujh/+kMC4cTBrFpHWVjq6fI3m5OCy24l2/fK0vaSEYEEBAAGbLX5eJDcXl92OWCxw1VV4tm4l9Pbb8POf47fbE2uy2XD7/XFN4XA4rXHq6Og4ZJwCgUD8vIH0vVC3FQN69T232x33NRWajHQ9FRYW8uijj9LU1ER9fT1bt26ltraW+vp6tm/fzusbN/KTHTvI37GD29evZ9u2bdTX17Nly5Ye53Xf+2bTBx/wva5fdfsKC/EVFpLz2Wd0zpqFu9t+Bq5wmPC3vw0PPYR340b869bB3XcTuvhiPEceqWmyWHDZ7URyczVNxcUEun7tHiwooL2kRNN04PVksxH8+GP49FMCl15Kx5gx8L3vEbn/flwff4x09dF0xKmjo4OXX36ZoqIihgwZAkB+fj6lpaWAlqfsdju5XZqKi4vjv+AvKCigpEtTTk4OK1asiLdltr6nh6bYPhc1NTXU1dXR0NDA5s2b2bp1Kw0NDXz22Wfs3bu3X5rSlfdin2MxysrK4suvCwsL4ysm8vLyeuz5ZbfbsVqtBAIBli1bxgddKw77ilNrayvbtm2joaGBbdu2UVtbG9/3w+/309TURCAQoKSkhIKuz6fun7lDcnM5zW7nPIuFqcD/5OfTcfPNRK69lrbzz8c5cSLhYcN44sUXqbfb2Qa8B8wvK+PBvDz+CvxPYSHXFxZyHXBaayvujRthwwb4/HNcIoS7Ps+9RUX4u66nUH4+nq73aNA5orfP3JwcXDk5yK5dUFuLp7aW0Lvvwr/+hf+ZZ/A6HHDLLYSnT8dVUQFnngnHHot7xAg6R42CM87A973v4bvpJvjLX+h84gncr70GW7eCzxfPEQf2PY/Hk/T11NHREX+NWXNEzB+jaor9baS8l8o4xdoxoqbOzs6k+14oFDKUpmz/zM2EJrPnvUgkYmhNnZ2duvQ9j8cTt53OOHV//1Olqfv3c73znojgdrtNnSPMqKmzs9N0mrIp7+nV9/RCTYQosp59+/Zx6aWXAtDS0oLD4YhfnJWVldTW1gKwcuVKlixZAkBjYyMOhyNuY+7cudTV1QGwbNkyli1bBkBdXR1z586Nn+dwOGhsbARgyZIlrFy5EoDa2loqKysBLXE4HA5aWloAWLRoEdXV1QCsXbuWBQsWAFpycDgc8WS0YMEC1q5dC8CkSZO4+uqr8fl8fPjhh9xwww3xGza6aPL7NU1TpsBZZ7EoN5fqs8+m0OfjmN27efHKKzVNpaU4Zs6M38xZMG0aa8/QtkevnjSJRVdfrcVp2DAcM2dqN2xaW6lcunRAmgoLC7Farbz33ntpi9OLL77IlClTCIfDvcapurqaRYsWaZr62ffa2trYvHlz/MbfYOP08ccfM2XKFBoaGgbV9x555BEuuOACCgsLk9Zk1Otp8+bNlJeXs3v3btasWUN5eTlFRUW88MILjBo1ivKxY1n+zjt4vV7Ky8upr69n/fr1lJeXk5ubywsvvEB5eTnl5eW8snw5O8aM0TRdfDHLLr5Y0zRuHHPPOiuxpldfZeWePXDrrdTOmUPl739P86OP8mBBAY6ZM2kZNkzTdPXVVE+apGk64wwWTJumaUpwPW0dP54pixez4fTTWXTxxbB4MS1//SuOpUsJlpfDdddRed991Ha9l6mKU01NDYFAgMsvv5zJXXvyTJgwIb6pdUFBATNnzmRYl6arr76aSV2azjjjDKZ1aSotLeXGG29kx44d8Th173tLly5lypQpeL1eQ/a9DRs2MGXKFLZu3dqvXJ6q62nPnj1MmTKF9957L66ptraWu+++m6FDhzJ27FheeOEFLrroIsaOHcsdd9zBzJkzGTt2LNdeey133nknU6dOxel0ZiTvBQIBlixZQlVVFa2traxdu5YbbrghrunGG29k3LhxPP3001x88cVc3HU9jRs3jhtvvDF+3syZMxk9ejQAF110Edu2bSMnJydhnHbu3MnUqVO57bbb+NnPfsbYsWO5/vrruf/++xk7diznnnsu27Zt408/+QkXAP8zbRq3nXEG8wDHpEn87eqraQF2DBvGVTNnsqyggOeAo2fMoPHTT8n917/4aMgQ3jzlFKytrTSPHo1j5sz9cbrxRurGjdP63oE5opsmx8yZNHZpWnL55azsup5qJ0ygsut6CiaRIw75mQtUzphB7YQJWt+bPJkll1+u9b1Emux2WLeOZcCyPXvgD3+g7u9/Z+5778H48VBUhMPh4N3TTuPdsWNZeMcdPDRzJlePHct3L7yQOXPm4PP5Bp3LX3zxRY455hgKCwtN9fkUu542bNiA1+ulsLDQkJqWLl3KkUceSWFhYb81pTPvpTpOW7duZd++fRQWFqZM09tvv82UKVNoa2tLKk6FhYVEIhE+/vjjAWnqHqdwOMzmzZvjN0TMOt4zmyYz573CwkKOPPJIli5dakhNhYWFeL1eNmzY0G9NkJq+N3/+fCZMmEBhYWHa4lRYWMgxxxzDiy++mDJNH3/8MZFIhMLCwqTjlGzeKyws5IILLuCRRx4xdY4wm6bCwkL27dvH1q1bTaOpe5yMnPe8Xi9Tpkxh6dKluvQ93UjHMhOFIhPEllOddtppYrfbpaamRsLhsDidTolGoyIi4na7JdhVTsnn80lHR4eIiHR2dorT6YzbcrlcEgqFRERbHhZbGhYKhcTlcsXPczqd0tnZKSIiHR0d4vP5REQkGAyK2+0WEZFoNCpOp1PCXWVr2tvb42U1AoGAeDweERGJRCLidDolEomIiIjH45FAICD19fVis9mkuLhY8vLyZMKECXLUUUeJxWKR+vr6zGpqbhZ5+GGJnnyyOO12CXeV82gvLha/zSahvDzZ8KUvyb6hQ7VSQTk54rTbJZKTIwLiKSmRQEGByJlniv/ii6W9uFgEJJybK067XaIlJSI//KG429oGpCkUCsm6deviOtIRp3379snmzZslEAgkjJOIiN/vl/b2dhGRfvc9n88nn3zySTw2g42T2+2WzZs3x/8eaN/bu3evbNq0SUKhUNKajHw9pUzT5MkSyssTAfEWFsbLwYWOPVZcra391lRfXy8Wi0XsdruclJsrN4EsKi6WFptNBCRQUCCekpJer6f2oiLZPH68eIqLD76eLBYREHdpqQTz80XKy8X34x9Lx/z5Irt2JRWn7du3CyBFRUUyZMgQASQ/P19KS0sFiGvKzc0VQIqLi+PlhwoKCqSkpEQAycnJEbvdLitXrpT6+nrZtGmTbN26Verr62Xr1q2yYcMGWblypWzZskWampoM1/c8Ho9s3rxZ2tvbZe/evVJfXy91dXWyceNGqaurS6ippaUlub7nconX65XNmzfH/xYRmTp1qpSVlcWXFNvtdrFarX3GqaKiIq15r6mpSaZOnSo2m02GDBkiRUVFPT7HYr6WlZVJXl6ebN68WYYOHRovm5WXl9erprKyMvnyl78sn332WcI4xUq3lRUXy3ibTS4GubmgQO4qKZFXQNbm58sHZ50lgfz8np9PIH6b7dDXE4hvyBDpKCoSAem0WsVpt8fLT7nKyhLniLw8cZWVxc9z2u3SabWKgHQUFYlvyBARkGB+vrhLS0VAohZLws/c/uQIo2mqLy2V2mHDJPqzn4nz3nslvGyZyO7d0u7x9CuX79u3TzZs2CChUMiUn08ej0c+/fRTCYVChtTU1tYm69evl1AolNnP3F7yXqrj1N7eHn//U6XJ6XTK5s2b438PNk6hUEjWrl0b1zGYvhcIBOSTTz7p0d/UeM/4msyc90KhkKxfv17a2toMqSkUCsmnn37a4xrKVN9raWmRjRs3SigUSlucQqGQbNiwQfZ1lfVNhSa32y1r166VUCiUdJySzXuhUEg2bdoke/fuNXWOMJum2HUX02EGTd3jZOS85/f7ZfPmzdLW1pbRvqd3aSw1EaLIWmIXz6xZs6SsrMyUe4SUlZXF9UEG9whpbhb54x9Fjjqqz7rjrrIy+dusWT1uiMSP008X+ctfRD77TLO5caP2eHGxyLRpIosXa/t+DAKXyyV/+9vfeiT8VJOuNlJlN1k7mXgPTUNLi1bXP9F18Kc/DchU9+u7+5EHsue550RmzRI544zBXXOHOk46SWTGDJHKSpFt20S6BirJ+J3qo3vOs9lsUlFRYah6qrHrZtq0af3eZyIVOg68Xv1+/4D2uejuS6L9LnprZ6Ak2kfmwM+x7kd9fX2/956J2dm4caOI3y+BtWul6dFHZd8f/iBt3/++vA7yGUhnOq4ddaT+GDpU5NxzRW64QeThh0U++ijhmMDsn1VG16enf9k61jPKOC+Vvigyi5njZnRtKufpa1N9vz08MXvcjKxPL9/0ngixiIgcctmIQmFANm3axJe+9KX4/2tqajj11FN19Cg1NDQ0MHbs2ITP1dfXU15enr7GN2+Ge+6Bp5+GrmVtA+LUU6GiAq65RiuZ0R0RePNNmDwZumqiKxRZQzAIS5bA/PnwxhsQiUBuLnz+ORxzTP9sXHUVrpEjmfjQQ3ye4Oke13dzMyxfrl0zy5ZB1x4PKWX4cPja1/YfEydC174NB9JXXlq9enW8fFF3GhsbOe+885J2s6KigoULFyZtJ1VMnTqVqqqqAb8ulTr6isehSNfnSCAQYOjQofH6sv31Zfjw4cyYMYOXX365x2uLgHHACV1H7O/zRo4kt6nJ/LVdLRZCFgvhrpq8AFbAEnu6698cTFTnNjcXTjlFy0VnnKEdEyfC0KF6e6ZQKBQKhUKhUChSgN73cq0Za0mhUBgTEXj3Xbj7buiqWzggSkrgllvg2mu1iZDesFjgW98avJ8KhZ4UFMDVV2vH7t3w2GPa5ER/J0E2boQXX8QO7ACWAnOB19F+BnEQI0bAD36gHdEorF+/f1Lkgw8GN1F5IHv3wosvagdAYSFMmgTnnqtNjJxzDnTbuLo3Ro8endYJ2tgN8tjm63oSCAR4+eWXB/VaI+lIB7FNyPuLzWZjZEEBtk2bWHjFFXSOH0+wpgbr55+Ts2MH+W1tvTWUIo9Tiw/YC7QATsADuLv+/e9f/AK73Q7t7RAKgd8PHR3gdsOoUfCHP2g5JnbYbATCYYYecUSP9/QT4KyDm+Y3wMovf5ktGzZQANiAgq6jECjtOsqBe3rxv/OYY8jx+8lxOrHo9RupSARqarTjmWf2P37SSVpuih2nnQZW9RVGoVAoFAqFQqFQDAzT/IhMcfhy++23azcYTIjdbk+fvs5O7UbDWWfBhRcOahLEZbcz+5e/xHXTTX1PgqQYl8vF7NmzcblcWddGquwmaycT76FpOfpo+OMf4YEH+v+abhuY5QCXAa8B24DhXY83NjbS0NBw8LFzJw1Dh9IwdSo1993H7N/+ls/mz8d1880EzjwTyc1NjS6fD955B/7v/+CSS8Bu11Z2/eAHlDzxBF9Fu8HaX0aOHDngm/6Jcl4gEKDJIDe/t2/fzqxZswaVk3vTEQgEEse929Hc3Jyy6zVRP4vdbE9HXhjXFdP/ttuZDSwAqoG90Si2o4+Gr3wFrruOvNmzKX7hBWyffJJwEsRltzP79ttxDfLzcDCvdwGbgDeB+cDfgV8D04HvAGejTS4cWVDAN845h7HAV4BLgGuAHwO3Aq6ZMyEQ0FZcPvAAPP44VFVpq8s++QSOP16bVD3qKO3HBXl5NDU3HzSx5OvFTxvw0YYNeNAmYr4Atnf5/jHwNvAS8EofWifs2oW1rQ2rCMOAM/Lz+fP55xN8+GH485/hhhvgssu0iZsM4rLbmX3ddbheeQVuugnOPFOboJ08GW67DV56CfbsyahPqcTon8V6+petYz2jjPNS6Ysis5g5bkbXpnKevjbV99vDE7PHzcj6jOxbOlGlsRRZS2w5VXl5OY2Njaxbt850pbGsViujR4+msbGRcDicmpImLhc88gjcdx/s2pWUqbDVSuPxxzP66aexfuUryfk1kHbDYRobGxk9ejTWNP0qNF1tpMpusnYy8R4qumhv1yZPOjoOeupTEv/CuzcOzAkAwwoK+OVXvsKtEyeSt3o1rFuXErcTEQZq0G6uftL174vbtlF+4okJzx9oGalE+iB15ZwGMqmSaCKnrq6Oiy666CD/+kv3MmI+n48ZM2awZs2aQ77OarXyzW9+kzlz5lBSUtJn2bHVq1cDDLgs2TnnnMOjjz6K1+tl2LBh5HZNsB1yQisahd27aXrvPf7w/e/3KGN1AjDEaqVx9GhGNzZiHcR7FiOcpJ0DX98CfA7sAhp7+dd7gI0C4OSu4x8/+hFHtrbinDWLYRMn0tTU1HdZyzfegBtvPPjJYcMSlr5LVP7sDbRJlgO5E/htr8r3MwFtciQRI9BWtBzIgSXdOm++mbyHHjrovC+AtWixH8fAJk37ot9xLy+Hr39dmyCZPFmbXLJYej/fIBj9s1hP/7J1rGeUcV4qfVFkFjPHzejaVM7T16b6fnt4Yva4GVmfXr7pXRpLTYQosha9L550kbY9Qhoa4J//1H6JmuCGbJ8UF8OPf6yV0Fq/Xnvs6KPhf/8XfvpTVb9boeiLefMS3wAFrgeeSlEz8RuWra2wYoW2uuOdd2Dr1hS1kBjJz8dy2mlauZovf1n797TTYMSI+M3+A/d/GCjJToQMxg+bzcYVV1xBZWUlhYWFQHJ7c2SK+vp6gJT6ee7ZZzN/9myK9+4lb+dOrJ9/Tt7nn2PbtYuc+npttYMB2ZuXx+bOTrZD/KjrOjwDsHMEsBIYT4Kasm+8AZdccsjP7qM3bCD/iisSNxAKHbQ/TyJ7LwFTErz8PuAXhxIBnIE2+ZoIG5Co4J7NZsPpdMYnw94/7jjO3bnzoPOeQstnoO1fcjRwInAK2gTMjyZNwrZjB5Z07HeUiGOO2T8x8vWva6vbsmBiRKFQKBQKhUKhMDN638tVpbEUWc/UqVMpKirS2420UFRUlLy+NWu0/TvGjQOHY2CTIKNHwz/+AY2NcO+98LvfaTc4n3wS6uvx/vznLHzzTbzeA383m168Xi8LFy5Ma7vpaiNVdpO1k4n3UNHF008nfLgZGOjW2X3lhPhN/qOO0vYyeegh2LJFu34XLoSf/1zbeDjFNwMtoRD8+9/aRvK33grf/CaMHAkjRlD43e+ycNQoPA4Hu15+mYZNm6ivr094rF69OjU5LwEzZsygqqpqQJMxgUCAqqoqZsyYEX/M7/f36t/q1avjOlJNut6X7hwFfK2oiF9Oncrviop4DHgHaABWfvwxJ3znO4ycPp0j//hHyh5/nMK33iJn8+ZDToJ4i4pYOHUq3iR9T2QnAtQDy9H23Pkl2kTBWfn5/PCqq2hdt47z0UpU3V9UhHXqVLYVFQ1oEgS0PT/G0MvGev2YaJw6dSpfueaaXp+/6aqr8Pm0wlexUmmNjY0HnddbaazCQ3qgUdDL40EST4J096ehoYEtW7bgTzAJAtqKkBiCtqJmBVpc/gc48YsvyNm7l/H99DXGoPvPrl3w3HNaSa8JE7R9lyoq4NFHtR+GGASjfxbr6V+2jvWMMs5LpS+KzGLmuBldm8p5+tpU328PT8weNyPrM7Jv6cRY63IUikHgcrmIRqN6u5EWotHo4PRFIvDKK9oG6O+/P/CGzzwTfvlLuOaanr9Svfpq7bGuG6k5kQh2u52cnMzOqebk5KS93XS1kSq7ydrJxHuo6OL117X9eObO1TYB7mIeEOqniZMAP9DaR04IBAJUV1cnXjlxzjna8ctfYvF4KFi7Ftsnn1CycSO5H32kbd6cavbuhbffhrffJg/tF+KA9kvtk06CE0/s+e/w4YPPeX2QzAbnAFVVVdx+++3YbDaampp69S+dm8YP9H2JlbOKTfxYgGFoN/PHAMd2/TsWOL7rKAH80SgrXS4mR6MMSZHvOdEodpeLnEHGNIQ22bElGqXe5eJ30Sifoa3uaAA6u85bvXo13+4qOxbT39DthnfsPRwajTIZbX+PEPC3fvggwEbg3ERP9mMiZM2aNX2+nx8tWcL3v/99hgwZ0ueqpU+BMrRc4Os6/MCHfdi22WycfvrprFmzht3AX9i/kXpsU/VD5aFTTjkl/vf6Xs75opfHY+zqKsV5ZB/n3IS258oZXcdRJN9/4rS0wPPPawfACSdok7YXXQTf+Ia2J5IOGP2zWE//snWsZ5RxXip9UWQWM8fN6NpUztPXpvp+e3hi9rgZWZ+RfUsnqjSWImvRezlVukiqNJbXq/0q+5//hO3bB974ZZdpEyCTJ6sSEgpFqhGB99/n/WnTOH3nTk5AWxXSH14GLkUrjeMA3kuRSzabjSsvv5zHf/5zbJ98Au+9px0tLSlqof9ITg47um5yfw7s7Pbvs6tXM/qccw4qH9QfMlXOKpafA4EAQ4cOTaoU2EDIQ9vfYRQwJi+P5+65h7zmZlY+8wyRhob4xEdvqwEMwZAh2qrFE06AcePYN3QoFX/4A9vRbrD35xZ4os/HWOy/DtwITEK70R5jJ3BcP118EO1G/UFceCG89Va/+lkTkAvs7vp7T9fxCNpkT38555xzWL9+fa997JxzzomXdBs5cmSf+5cMlOvQ3sPhaP1uNNqk2k/RNpU/FD8EnkzwuBOtBFl3jgXOQYvbJLT9lFK190gPcnLg7LO1SZGLL4avfnVQuUahUCgUCoVCoVD0jd73ctWKEEXWM3HiRGpra/V2Iy3k5+czYcIEamtrCYX6+M3mnj3wwAPaXgRtbQNv6NhjYdkyrYb2AAiFQtTW1jJhwgTy8/MH3u4gyUS76WojVXaTtaNX7A5rLBb42tc4Y/Nmbv6v/8K9dGm/9lY4HrgMrZbld/PzOWHCBIK1tThCIf6FtoH5YAkEAjz7r38RycnR9he59VZtwqahAT7+GD75BD7+mOgnn5Az0L2FBoglGuXY/HzaJ0zgG7W15HfPeeedp92sPPpoGDNGK9s3YsT+Y/jwnv8fkqr1DD3pT06O7S0ykE3iu5MLDEW7KRw7jszPZ9SECRxRW8uoUIhRwEi0yY+jur+4sxP+538AmDyItkP5+dROmMCEA9//JIjb3LmT/PLy/RMesWPcOBg1SotvF0WBAO//+c89bvT39d7bbDZGjhx5UNuxlSGjAwGu7PIj1E3bGLT3sQmwdE3+9/b7oA29CRzAHjxj6P8qsL5YuHBhfILjQA65uX2SPJvk60/s5fGaBI99ATTn57N9wgR+V1uLhEKcjlZScFySfvQgGtXKiK5ZA3/5C5SVaRMil14K3/62ll/ShNE/i/X0L1vHekYZ56XSF0VmMXPcjK5N5Tx9barvt4cnZo+bkfUZ2bd0oiZCFFnP+eefz44dO/R2Iy3YbLa4voQ33TZuhHvugWef1TZbHSxffKHdCBgggUCAFStWcPzxx2c0cWai3XS1kSq7ydrRK3YKKCws5IkXXmBuIJDwRuaBHHHHHeQ88QQAAZuNFeefz4wdO3g2FMIJvJECn2LleGw2mzZhM3asdlx7LQA7d+zg2+PGcTZaSaH/QCtdk+rbrTF9x+/YcfCN+GhU2+8kwd4JB1FcDEOHgt3OSJuNlwFXt8PD/rJCif7tRNt/InaEu/612WxceP75eHfswB8KkYM2cZEDWOvqwOUCn4/5P/gBZ+7axcY1a7B2djIEbR+HQujxdxn7JztG5eczPD+f3AQTTh6bjcquuJemaIIiEX2+//2gFXpsTL4daLTZuPz73+f4n/2M/LKyftlJNJnU1+fhFVdckfDmf8zO6qqqXrWdDSwBru3q671NYHUvCRXOycF60klw8snaDwj6ubg6FZGLTfrYbLa0lWIbDJs3b2bUqFGMHDmyz9VQLwH72L+R+mlok3kbezm/e9w9oRCfoq1ESUQjWgm+pBf3u93wr39ph8UC//Ef2qTId74DZ53VY9IuWYz+Waynf9k61jPKOC+Vvigyi5njZnRtKufpa1N9vz08MXvcjKzPyL6lE1UaS5G16L2cKl0csjTWccfB8uXa/h/LlqWm0UmT4L77tNIQCoXCOHg82uqH9vaDntoMnIq2f0Eq6Kv0XqK8ZAW+BCz/+985as8ebWJ240Zo7m/BL0U2spv9kxx1B/zt7uU1hyzrmACfz8eMGTN67JlhAU4HLuo63rBa2XPVVfEyUH3Z+XtVFWMSPP+33FzWX301lZWVAAe1GaMQuCovj2EXXsj/LVxI4QGTOpkqwVZRUaGt3hoA6S7X1t2nqVOnDng11HC0fLK7H+eeAvS2BvgrwGfA14Cvo62KOpMU/+prxAhtlcill8Ill0BJSSqtKxQKhUKhUCgUpkbve7lqRYgi67HZbASDQb3dSAsWi4WCggKCwSB5IhQvWgRPPaXdbBwoF1yglb3505/g00+1XzlOmQK/+hX8538Oyj8RIRgMUlBQEC8rkgky0W662kiV3WTt6BU7xQCZP7/HJIhYLAQLCigIBrlHJGWTIIMhDKwDOq65hqO63+Teu3f/pMjGjbBhA2za1K8N2bvrsxjwdxp6+ZepdsViIWi3U3DMMViOP57wmDG4jzyS8JgxhMeMoeOooxh/xhkDsmmz2bDb7YjIgHJNYWEhCxcuJBAI4H72WYpefBHLJ59QuHdv/D246IILyD3EpEDMTthiIbB48UHv4W8OsBFrU4+yU30RW90Sm7AZzGsHW65tID7F/u5r0/fue5gEAoEem7EfSPdxkIhwVi/n+YC1aHnp1a4DoBhtk/vY5NnEAehLSHOzlpfnz4eCAm1fkSlT4Lvf7VFC68A+1FvfMfpnsZ7+ZetYzyjjvFT6osgsZo6b0bWpnKevTfX99vDE7HEzsj4j+5ZODq+t4RWmZNasWZT1s9xGtlFWVsasWbOYVVZGA3DUr389sEkQqxV+8ANt4uOdd7TN0H/3O7jpJq2u+YsvDnoSBMDtdjNnzhzc7t5+B5weMtFuutpIld1k7egVO8UAGTmyx9497rIy5syahWvsWAJXX63bTdk+GT5c20B65kx4/HFtr5H2dti+HV5/XVt99vOfazX4y8u1SdkuYvrcBs3pevmX0nYLCrS9Ob7xDZg+He64A555Bj74APfWrcz5xS9wr14NL7+M9f77OfL22xkxYwbHXHQRJ0+cSEVFxYCau/rqq3E4HIPONTabjRF79hB+/33uuvHGHu9B7nvvQT9/CNHxta/1fA9Hj4YrryT3iisStlleXn7Qocf1tnr1aurr63E6nSxcuLDXlS+HorKykoqKipRoePfdd3v1KTbx5HQ6qa+vP+jw+/1UV1czYcKEfr2nsXFQbJy3HJgK3AWsRJsAAfiYxPsldaBt4v5rtHJ+I4DqpNR3IxiE116Dn/xEy9XnnUfob3/jF5ddxtChQxk7dmz8GDp0KFOnTsXn8/UwYfTPYj39y9axnlHGean0RZFZzBw3o2tTOU9fm+r77eGJ2eNmZH1G9i2dqNJYiqwltpxq5MiRtLS0sH79elOVxhoHzMzN5dJhwxjT0kJuJNJ/I2Vl8LOfaZvmjh6dNl8jkQgtLS0MGzaM3NzctLWjR7vpaiNVdpO1o1fsFIMgGoW33gKHg8ibb9IybBjDbriB3D/9qddfrncnb/NmCtavx/u97/FFSwvnnXdewvMGWhqrP6/rF4EA7NjB3vfe466bbuKYYcMob2mhPBJhDNrG4UYhkpurvf8DzcmZajc/X7shO2qUtqn8scdq/3b/e9iwHpNPPdrpR15IVLIqEbHVAo8++iherze5XLNmDZFzz038Hrz7Lpx//iFNRLZto6WykmHnnEPupEnae5RC0lUaK+nr6wB6yxlDhw495P4eoMXV6XSmbFLoUGW7cnNzGTZsGC0tLUQS9H0rWrm0fODDfrRnAZqBYQmeC3XZSQUb0fZDWYy2UiVGRUUF8+fPj8cgEongdrs5+eSTKSoqSlHrqUPPsUK2jvWMMs5LpS+KzGLmuBldm8p5+tpU328PT8weNyPr08s3vUtjqYkQRdai98WTFkTYs2gR1ddeyxUMYslWebn2K+wZM1TdaoXCjGzeDA4H/PnPcNRR/XvNddfBc8/B8OE4p03jxHvvZV+C03SbCOmitxuiJcCxwJiu4zhgJNovu2PHcKAgaQ8MSn4+HHGEdowYod3Aj012HPjv0KG9TnKkmkNNwvVZRioUgvff1yZlun2O90o4rPX3RL9W+v3vtetBZ7JlIqQv+rO/x2D2KElFu6BNwiS7z8mX6H1j9kuBYNe/lwInJdXSfj4HFgHPAx+hlfs68OtX9zJjg131o1AoFAqFQqFQGB297+Wq0liKrGf69OkUFxfr7UZyhMPw/PMwaRKjrr2W76FdnB3FxcyfPp2O/ug76yz47DP4xS8yNgnS0dHB/Pnz6ejoyEh7mWw3XW2kym6ydvSKnSI5Oo49lvmTJtHR319j79yp5RaAvXsZeu+97AQeAtK/rfPAsNlsXHnllQfl9Ha0zZHfAB4Bfg/8CLgMOBttcsQG2IGT0TZJvgqYAdwK3AHcBzwFvAKsQvuF9hYgfPTR2g32wsJ+TSD0Oyfn5EBRkXaj/7jjtPJmZ54J554L3/ymtp/A1Knw4x/DbbfBnDnw6KPwwgvaCof167XYdXRAIEDHZ58x/9e/puOVV2DBArj7bm1/px/8QCtDduqp2kRJkpMgA8kLvZWPOrCMVNzmzp3w5JNw9dXae/6Nb8D99/fPMauVjm9+M/F7/9ZbKdc2GPTcPyRV9FU+y2azUVFRMag9SpJp98gjj+TXv/41zc3NvZbbOrD0Vl/l287s5XEf8HbXcStaLjkR+AWwDG2CZLAcB/wSWAM0AH8X4eyu54qLi5k+fTpWq5WqqipmzJjRp61AIEBDQ0P8SHZi6FDoOVbI1rGeUcZ5qfRFkVnMHDeja1M5T1+b6vvt4YnZ42ZkfUb2LZ2ozdIVWU9DQwPhcKLK0FlAe7tWQ9/hgIaGg562hsOUNzRg7Y++f/9bq8HfbT+BdGO1WikvL8dqzWwqyUS76WojVXaTtaNX7BTJMeC4ORxwQDmZQuBGtImF+lQ7mCT3338/f/zjHwe1NNfddWwbwGvq339//6/tRbSa/36/Njkdiew/uv5v9fsp37YN669+BUOGaBMe3Y/CQu3x/PyUrszI1PWajnasVivl9fVYTzkFDtgfgaVLtfe9H++V9etfp/zFF7XPw/x8bX+riy7SJpb660ca38N0bUieSbpvUH/gap90TvT01a7dbmfdunWUlpbGJ98ORV8btj+FlvvOBy4AvoG28mMFB092bEebRL0PKAIuRFspMq3r/4PhOOBXXUcDUBUOs6HbODbmc+y9jr0nsZJ0a9as6WEv3StJ9BwrZOtYzyjjvFT6osgsZo6b0bWpnKevTfX99vDE7HEzsj4j+5ZOVGksRdai93KqpGhs1DYMfuSRxKU++qKg4ODNYUtL4ac/hV/+UiuRolAoFG63ti9Ee/tBT20DxgPdBwCrV69mdC97CjU2Ng5qb5HBcqiySw0NDVxwwQVJt5PJskOHNU88oZVsTMT69fDlLx/aRl0dzJunTX587WvaihuDcaj9U2w2G6effvpBN7P7QvXRwRNbPXHKKaf0ed4xQCmwuZ9264Djk/TtQOrRSmc9D9z9zjsMHzEi4cRHb6SjZJlCoVAoFAqFQpFq9L6Xq0pjKbKer33taxxxxBGAttmPy+WK1172eDyEQiEA/H4/Xq8XgHA4jMvlittwu910dnYC2o0MX9evVjs7O3F3m6hwuVzxX+15vV78fj8AoVAIj8cDgIjgcrnim3p2dHTEb4gEP/qI9uuvh7Fjid59Ny6LhWiOdhm2l5QQLNCq3AdsNjqKiwkWFPDBV79K8/Dh7LZYcP7qV3i2biV0plbcwX/CCXj/8Q/44gvCf/sbrm6/1syEpmAwyHvvvUdraysA0WgUl8tFNBrVNLW3E+yatAkEAvEld8nGKRgMsmrVKpxOZ3riFAzS2tpKdXU1fr8/pZq8Xi/vvvtu3MZg4+Ryuaiurqa9vb3fmtq7bohHo1Gam5v54IMP4o+nI04D1TSYOHXXlIm+p7cmj8dDdXU1brf70JoefRR/OIy364Zx2GrFZbcDcA9QWlZGXl4eoP0i+5JLLmHs2LGcdNJJTJw4kbFjxzJ27FjOOOOM+KRDUVERQ4YMASA/P5/S0tKUxmnfvn1UV1cTjUax2+0cd9xxlJeXc8QRR3D00UdTXl7OiBEjOO2007DZbFitVuxdmgDKDtAU+4V0Xl4eZWVl8fPsdjtFRUWMHDlyQHFyu91UV1fj8Xgy2vc6Ojqorq7G6XSmte+lI+8Fg0HeHz2a5hEj9msqK6OzK06+V1/tl6a2oUNZdfnlBM8/n1Be3oCvJ7/fz7vvvht/X9IRp7y8PBYuXMiuXbvYvHkz9fX1fPbZZ2zcuJH6+nqcTiePPfZY/FdXvV1PFosFu90eXxl1OOe91tZW3nvvPYLB4IA12Ww2TjjhBH7wgx/EfU2UI3YB2/PyGD58ePw8u90ej9PZZ5/NWWedBcCX8/M5Kpb3LBZcdjuRrjhtKi4m0DUOCxYU0N5VpjSak4PLbk843nOXlrLy61/n6IICfpWby9t2O6MvvJCXTj2V8ObN5Odr27cPGTIkvpl6orz32muvEQgEUh6nffv2sXr1aoLBYMb7XibynsfjYcWKFQSDwZRpamtro7q6Oj5W665pINdTMBhk5cqVcRuDuZ4ykff0zhFm1JRM3jOqplicgsEgq1evZt++fYbUFLvuYjYy2ff27t3L+++/TzAYzKrv7i6Xi5UrVxIMBpOOU7J5LxgM8sEHH9Dc3GzqHGE2TcFgkBUrVsRtmEFT9zgZOe/5fD6qq6vZt2+fLn1PL9REiCLrmTRpEt/73vcAaGlpweFwxC/OyspKamtrAVi5ciVLliwBtF83OxyOuI25c+dSV1cHwLJly1i2bBkAdXV1zJ07N36ew+GgsbERgCVLlrBy5UoAamtr46UYgsEgDoeDlpYWABYtWkT1U0/BN77B2l/8ggWFhRAO4yktxTFzJp6uL9QLpk1j7RlnAFA9aRKLrr6aUH4+H551FvNuuonxBQW4b76ZypdeonbmTHj2WVY6HCwZPRpKSzOvqbqaUCjEmjVreL5rDwKPx4PD4Ygn2AULFrB27VpNU3U1ixYtSkmcQqEQH374IW911YZPpSaAtWvX8vzzz7Nu3Tr27duXUk2ff/45q1atin8wDDZOq1atYt26dWzatKnfmhYsWBCP07x581i7di2hUChtcRqopsHEqbumTPQ9I2hat25d/zRdfTUrf/ELlkyZomkaPRrHzJm0opWHufHGGxk3bhwAF198MRdffDEA48aN48Ybb4xrmjlzZnylyOWXX87kyZMBmDBhQryefaritHjxYtatW8eePXv6jNPy5cu54oorGD16NDNnzoz7OhBN1157LTabbcBxWrduXcb73meffca6det466230tr3BpT33n+flnfeOaSmUCjEvzdvZl6393/ujTdS1xWnZZ9/3i9NS5cuZc2aNYRCoUFdT/v27WPVqlXxLyHpzBGrVq1iy5YtlJeXEw6HefXVV+P7przwwguHvJ4KCgqYOXMmw4YN61PT4ZD3nn/++XjcB6vphBNOiO9BcmCO+Pa3v01FRQUff/wxt9xyS3yvkZkzZ7J69Wr8fj+33norf/7zn9m8eTOXT5hAZSzvFRTgmDmTlmHDiAD/vPpqKiZN4mag6owzeGbaNE3TIcZ773/ta4Ty82kZNgzHzJmMLijg98APZszgXxMm8Cvg0smTufzyywES5r3Ro0fT1NSU8jgtXrw4/v6bNe+9//778ZsDqdC0dOlS1q1bx+eff57U9RQb665atWrAmvTIe3qPjcykKRV5z2iaYnGKfXdcvHixITWFQiHef/99XfpeZWUlH3/8MaFQKKu+u69atYoPP/yQUCiUdJySzXuxz6p58+aZOkeYTVPsujOTpu5xMnLe27NnD+vWrWPx4sW69D3dEIUiS6mpqRFAbDabFBcXS01NjYTDYXE6nRKNRkVExO12SzAYFBERn88nHR0dIiLS2dkpTqczbsvlckkoFBIREa/XK16vV0REQqGQuFyu+HlOp1M6OztFRKSjo0N8Pp+IiASDQXG73SIiEo1Gxel0SrijQ+SRR6R94kTx22wiIIGCAvGUlIiARHJyxGm3SyQnRwTEU1IigYICERC/zSavFBfLN0Fyc3PFbreLxWKR+vp6fTWFwyIi0t7eLn6/X0REAoGAeDweERGJRCLidDolEomIiIjH45FAICAiIn6/X9rb20VEjBUnpUlpMrumxkaRO++UzmOPFafdLrdrFbGkrKxM8vLyBJDCwkIpLCwUQPLy8qSsrEwAOQXkIbtdxlutAkhRUZEMGTJEAMnPz5fS0lKpr6/XJU5er1emTp0qI0aMEAagyWazyQ9+8IN4PAwTJ6P3Pb9fZM0a8d96q7SfeKIISPg73+m/pnvuEdF2BBFXWZmE8vJESkrE+/3vi7frPcqK6ynJOG3cuFGsfVxPgFgsFrHb7ZKbmyv19fWG15QtcfL7/bJx40b57LPPpL6+XjZv3iz79u3rtya/3y//UVQkt5eWyqcgUYtFnHa7hHNzZQVIcXGx2Gw2AaSgoEBGl5TI9SCv5uTI3j7Ge+3Fxdr1lJsrTrtdohaLCIi7tFSC+fkiIB1DhsibRUXyY5CjrFax2+0H5b36+vpe4xTTvn37dqmvr5fa2lrZsmWL1NfXy7Zt26S5udkwcTJj31OalCalSWlSmpQmpUlpUpo0TbF7ubGjpqZGMonaI0SRtcTqytntdjweDxs2bDDGHiEtLfDQQ/Dgg9rfAyE3l/bvfY//XLSIGiAnJ4fS0lI8Hg/RaNRwtcKj0Sgej4fS0lJycjK3wCwT7aarjVTZTdaOXrFTJEdScQuFCD39NCfefDM7D9xnqBcqgf8GosBi4O9A94r1NpsNp9OZsk2UB6PvUPuJHEgymz6bOef12c5rr8H//A/U1/d8gdUKTU1w5JGHtulykTN2LJSXw5QpcPnl2l4fXaV/Bu1bstoyTENDA2PHju33+Ub73M80RolbjKlTp1JVVQXAscDlwHeB14D7+3jdUOAK4FrgEvYvyY/m5OApLaXU4yGnq+zAoQgBS4FngSVAbDea7n3lUJusH0hvm67r+f5n61jPKOO8VPqiyCxmjpvRtamcp69Ns4z1FAPD7HEzsj69fFN7hCgUSTJz5sx4XW1d2bIFfvYzGDMGbr994JMgAN/8Jvv+8Q9quv5bWlpqHH0JOHCpnJnaTVcbqbKbrB29YqdIjqTilp9P/o9+xFe7SmUdimOAaV1/5wBXAtXASuBrXY9fccUVKZsEgcHps9lslJeX9/tIxl8z57w+2xk27OBJEIBwGF56qX827XbYvBl27IB774VvfKPfkyB9+pah1yv0wWhxq6ysjJfZ+gJ4CPgWfU+CADiB+WgTy905sGxWf8gHpqBtrN7cZfebAJEIPp+PqVOnMnToUMaOHcupp57arw3XA4EAVVVV8fJsscdqa2txOBzU1tbS0NAQrx+dCbJ1rGeUcV4qfVFkFjPHzeja9PTvcM95qbBl9P6lSIzZ42ZkfUb2LZ2oFSGKrMUQK0JEYOVKuPtuePXV5O1ZLDS++y7Hnn8+oFaE6NmuWhGiMCKpiFvsF8Ivv/xynze1/g78upfnrs/LI3jllQf9ejhZjN4vzZzz+mxHBMaNSzwZctFFsHz5wG2myrcMvT5VqBUhA8MocTuQ/qxEu+WWW+L1oGPcAMzt9v/uK0Ki0SjWJHwKHnUUrw0dyh8++4zNg7Rhs9nYvXs3N954Iy+//DKhUKjHOLS3lSPpIFvHekbJean0RZFZzBw3o2tTK0L0tWmWsZ5iYJg9bkbWd7iuCFETIYqsRdeLp7MT/vUvbQLk008H/voJE6Br86A4550Hv/oVDV/6EmO7NvI8kMP9hohCoUgdfd3Iy/F4GH3uueR0dBz0XOfo0UQ2b8ZWXJxuFxXpJhiEgoL+nTtrFsyZc/DjOTmwZw8MH55a30yKmgg5fEg06fwWcGGCc2uA84GrgOuAyUm2/THwJPAc0DbA155zzjmHXEVSUVHBwoULEz534GdLMuUIFQqFQqFQKBTmQu+JEGNNRykUg+CGG26gpKQkM4253XDXXXD88TBt2sAmQXJy4JproLoaamrgtNO0xyoq4KOPYNUq+O53tce6KCkpyay+AdLe3s68efNob283XbvpaiNVdpO1o1fsFMmRyrj1VVJqzLvvJpwEAci77ba0TYIYvV+aIud5vbBgAXz72/ClL2mrPfrTTkXFwY/l5cGll4LLlXbfzZLzBnJT2GazMXLkyDR7ZGyMErfBUFhYyMKFC3E6ndTX11NfX88pixfj/tnPiHRNbrWXlDDvhhtYWFLCPuARtAmRMcAfrFaip502qLbPBh4A9gAvoO1jktfP13afBOltHJpoReGBZblix9ChQ5k6dSo+n29AGrJ1rGeUnJdKXxSZxcxxM7o2Pf073HNeKmwZvX8pEmP2uBlZn5F9SyfJrMBWKAzBunXrCIVC6W2koQEcDnjsMejl5mCvFBfDj34Ev/gFdP8V6GOPab+g7eOXnqFQKDP6Bkl+fj4TJ04kfwB13rOl3XS1kSq7ydrRK3aK5MhY3G66CY46Cv7+d9iwYf/jRx4J3WrIpxqj98uszXnhMLzzDjz9tLanh9e7/7kPPoBzzz10OxMnwgknaJ+H3/wmXHuttum53Z5e31Nkxyh9K1ZaKLbhdl+keg+ebMQocUuG2KQzoI35rrgCRLjtW9+iaOVKTl+3DscB47wvgO1XXUXOwoXaj2cWLIBnn4WdOwfUdj7a/k5XAi1oG6w/Cazt5+t7G4cGAgGqq6vjukaOHMmMGTMS9uvY/iNAr6tIEvqepWM9o+S8VPqiyCxmjpvRtenp3+Ge81Jhy+j9S5EYs8fNyPqM7Fs6UaWxFFlLRpZTffSRVv5q0SKIRgf22mOOgf/9X/jpTw95o6g7fZXNUCUyFApFRhGBN9/UJkTefRduvx3+9Kf+vXbrVvjDH+A3v4Gzz06rm4pD0NoKo0ZpEyIHcsMNMHfuwY8n4t//1m7kHnlkSt073DjUPj2Z3IdBoR/xfrB4MYFgMP54r/GPRun861/J+3//L+m2vccfz5927GAB0PdOJ/3DYrFwqK+UNpsNp9N52E/uKRQKhUKhUBzOqNJYCkWSnH/++an9UhWJwOLF2p4d55wDzz8/sEmQE0/UfnW7Y4d2A3AAkyAHYrPZUq8vhQQCAVasWNHnhsvZ2m662kiV3WTt6BU7RXJkPG4WC3zrW9pqgo8+gp//vP+vvesubRL5K1+BCy6AN97oUYYpEUbvl1mb8446SiuFlYiqKuj6tfch2znrrAFPgqicdzCJSiZ1P5xOJwsXLlSTIBgrbqmmsLCQ+fPns+TVV9m6deuh45+TQ97mwW6D3pOiHTu4C2gEXkPbmyRR6az+jkP787u6/mwwf+D52TjWM0rOS6Uvisxi5rgZXZue/h3uOS8VtozevxSJMXvcjKzPyL6lEzURosh6ysvLsVpTUOXN54OHHoLx4+F734P33hucndNPhx/8AFKwvMxqtaZOXxoIh8M0NDQQTvQr4yxvN11tpMpusnb0ip0iOXSN29ln9/8m+J498NRT+/+/YoV2I37iRHj99V5fZvR+mdU577/+K/HjTmc8JunQp3Je7/S2T49Rf/ygB0aMWyoJh8M0NjZy9NFHHzr+Ph+8/HLCp94HVg+i/VzgO8AiYBdwNzCh2/N6jkOzdaxnlJyXSl8UmcXMcTO6Nj39O9xzXipsGb1/KRJj9rgZWZ+RfUsnqjSWImtJ2XKqpiZ44AGtNEhbW/KO2WzQ2Djo0iGqNJZCoch6Zs2COXMSP/fMMzBtWmb9MSMi2oT96adDaemhz/f7YeRI8HgOfu7mm7XPQYVCYVx274Zf/1qbDOm+zw9wIfAOcDzww64j8Uiyf6wBHgcWAqncPlONYxUKhUKhUCgOb1RpLIUiSUaOHElubu7AX1hTo236e9xx8Je/DGwS5Kij4Lrrej42dCj87ndaSawU1U/Pzc0dvL4MEIlEaGpqIhKJmK7ddLWRKrvJ2tErdorkyIq4ud297zlx3HHaJtu9YHR9hsh5O3fCn/+slWH8+te10lb9YcgQuPrq/f8fNkzbx+qjj+D++w9uJx2+62jH6H1LkRizx21A+o4+Wts0vblZm1C+5BLIySF69NEMv+YabDYbO4DbgXHAN/PzeXfsWKS4eMB+nQM8AjTm5vLwyJGcl6JxaENDQ7/LL2TrWM8oOS+Vvigyi5njZnRtevp3uOe8VNgyev9SJMbscTOyPiP7lk7URIgi67nhhhsoKSnp38kisHy5VvP+tNPgiSfitdH7xcknw8MPazeinnkGJkyA44/XbiJ98YU2oTJq1OCEJKCkpGRg+jJMe3s7Dz/8MO3tqfy9oDHaTVcbqbKbrB29YqdIjqyI28KFiVcdANx6K+QlqkSvYXR9uue8K67QNiv/f/8P6uq0J+fP77+h6dPh+9+HpUth1y5wOLSSZxZLz3ZSqE/lPEUymD1ug9JXVKStqnvjDWhsJOe553ju+ed77Dmzo76eJW43F+zYgaWpSdu77qKLBuxftKSEPTfcwCslJWy1WPgNMHLAVvZzwQUXMHToUKZOnYrT6aShoSF+HDhBkq1jPaPkvFT6osgsZo6b0bXp6d/hnvNSYcvo/UuRGLPHzcj6jOxbOlGlsRRZS2w5lc1mIxgMsnHjxt6XU4VC8NxzcM89sGHDwBs7/3z45S/hO9+BnG7zhzt3wjHHQApXbHQvjWWxWCgoKCAYDCIihispICIEg0EKCgqwdN1IM0u76WojVXaTtaNX7BTJkRVxi0a1G+1//zus7la1/ogjtJxZVNTrS42uT9ecN2sWBf/4B5ZEw7YtW7SJ+lS0k2J9KucpksHsccuovmgUxo7V8nA/EYuFYEEBBcFgPPdIbi77zjmHH33wAUuBVFWVttlsXHHFFVRWVlJYWBh/b0SE5ubm+HkjR45M2T46Zs55qfRFkVnMHDeja9PTv2z9fptKm2qsd3hi9rgZWZ9evqnSWApFkgQCAXqdz2trg7/9TfsF7fTpA5sEyc3Vyl998gm8+y5cdlnPSRCAMWNSOglyICLStz6dsVgs2Gy2jCf0TLSbrjZSZTdZO3rFTpEcWRG3nBwtX65aBR98AFOmaCsOfv7zPidBoJu+7du1si9vvaWt5DMIuua86dMTT4LAwFaFHKqdFOtTOU+RDGaPW0b1rV49oEkQAIsItkCgR+6xRCIc9cEHvAx8AdwJnJgC9wKBAFVVVXzjG98gEAjg9/uZPn06RxxxBGPHjo0fsRUlPp8v6TbNnPNS6Ysis5g5bkbXpqd/2fr9NpU21Vjv8MTscTOyPiP7lk7URIgi65k5cyalB24UW1cH//M/cOyx2r4de/YMzOi0aVBfr9ViPuus1Dk7QEpLSxPrMwgej4d//vOfeHorg5PF7aarjVTZTdaOXrFTJEfWxe2rX4WXXoLaWm0/ikMQ13fPPbBsGXzzm/Af/6HtgxFO1e+OB4+uOe/NN/FMnpz4hKeeghTUdk2HPpXzFMlg9rhlVN8TTyR+3GrVyuR97WsHPeUpLeWfM2fi6WUcOhK4DdiGtln7VCA/STfXrFlDYWEho0aNYtSoUeTn97QYmzCZMWNGki2ZO+el0hdFZjFz3IyuTU//svX7bSptqrHe4YnZ42ZkfUb2LZ2oiRBF1rNixYr9dYU/+ACuukrbRPaBB2Cwvxbr7NQmUXQmEAj01GcwbDYb559/fspKFBip3XS1kSq7ydrRK3aK5MjauI0fD0ceecjTbDYb559xBrZnntn/4KefwtSpWumnRYvS6OShSfn7X1en1fnvb7sVFQc/mZurTRbt25e0O+noXyrnKZLB7HHLqL4//1nby+6EE3o+ftll2kT16tWwdSvcdhuM1HYCsQUCnL9iBbZ+jEMvAJ4DdgF3AckU64utiO5rDPzyyy8nPT42c85LpS+KzGLmuBldm57+Zev321TaVGO9wxOzx83I+ozsWzpRe4QospaD6sp9+cucOpj9PxLx5S/Dxx9DfrK/axs43fcIORCj7RGiUCgUKed3v9NKGibiySfhhz/MrD+pJhDQVsk8+qhWdnH4cGhs7HMT+Thut3aDMhCAL30J/vu/tRWMI0ak32+FQmEOROD996GyEp5/Hp59Fr773Z7ndHbC669r57z66qBXnK22WJgnwgtAMHnPD+Ldd9+Nj4tTuXeIQqFQKBQKhSI9qD1CFIok+da3vsWQIUMGtP+HWCz4vvlN2n7zmx6P+889l+b582lYvJiG3btpaGjI+NHY2Bj3Z8iQIfv1GRC/388bb7yB3+83XbvpaiNVdpO1o1fsFMlh9rj59+7ljU2b8CfKecceC9//fuad6kZS739rK8ycCccco+0/9e672uN798KSJf1rNz8f5s7VJuo3bIBbb03pJEg6+pfKeYpkMHvcdNFnsWhlsCoroakJvvOdg8/Jy4Pvfhf/c8/xRlUV/jvvhHHjBtzUeSIsQFslcjcwfgCv7c8Y+IILLkhq7xAz57xU+qLILGaOm9G16elftn6/TaVNNdY7PDF73Iysz8i+pROr3g4oFMlit9vJOXAT817wAfOBe0XYvnw5luXLWQesR/uCtv7997VfyRmEnJycAenLNNFoFJfLRTQaNV276WojVXaTtaNX7BTJYfa4RZcuxVVYSDRRzrvllv6tmkgjSb3/BQXw2GPg9R783GOPwZVX9q/d6dMH3nY/SUf/UjlPkQxmj5vu+oqL+3w6Go3i6uwk+vOfa6ukb711UM0cCdzadawCHgFeAPoqbDXQMXBs7xCAhQsX9us1Zs55qfRFkVnMHDeja9PTv2z9fptKm2qsd3hi9rgZWZ+RfUsnqjSWIms5aDkV0NtiqibgfmAe0HbAc1ZA/y14+4cqjaVQKExNrGTLnDlaOZYYQ4fCzp2HvGlneH78Y3j88YMft1igoQHGjMm4SwqFQnFIROC002DTppSZbAOeAh4FalNmVat37XQ6VZkshUKhUCgUCgOiSmMpTMmGDRu44447uOiiixg5ciR5eXnY7Xa++tWvctdddw1o2fqhKC8vx2pNvLipBvhv4Djgrxw8CQLGngSxWq196tObcDhMQ0MD4XBm38VMtJuuNlJlN1k7esVOkRxmj1s4EqFh9GjCL70ENTVw/fVgtcJNN/V/EmT7djjnHK32vdGu3x//OPHjIvDEE+lrt5+kox2V8xTJYPa4GV1f3L9//7v3SZAbbtBydGnpgGwfAcwENgGfFhXxX0D3qYvBjoEDgQBNTU39OtfMOS+Vvigyi5njZnRtevqXrd9vU2lTjfUOT8weNyPrM7Jv6URNhChSTl1dHaeffjp/+tOfePvtt8nNzWXixIkUFxdTXV3Nr3/9a8444wx27tyZkvamT59OcYIbZDcDp6GVwgqlpKXMU1xcHNdns9kYOXKk3i71oKOjgyeffJKOjg7TtZuuNlJlN1k7esVOkRxmj1sPfaeeCvPnw44dAyvHcs898NFHUFEBJ58MDz0EKZp8P+j9j61gaW3tn4FzztE2OT+QM8+Ek07qf7tpIh3tqJynSAazx83o+uL+nXAC/PvfcOONPSc8LBb47W/hwQdh925t35FJkwbczhleL08BuwEHMIGeY+CB0tDQQCDQV+EtDTPnvFT6osgsZo6b0bXp6V+2fr9NpU011js8MXvcjKzPyL6lE1UaS5Fytm/fzn/+539y880381//9V8cf/zx8efef/99pk2bxueff86kSZP48MMPB93OoUpjPQtMG7R141FRUdHvmscKhUJxWLJ3Lxx3HBx4A+yoo+Bvf+t9RcZAcbvh6afh4Ye1lSt33gm33da/1zoc2qbppaUwbZrm05lnpsYvhUKhSDdeL/zrX/Doo1BWBkuXHnzOhg3a808/reXLQbAKraTtCwzuB002m40rrriCyspKCgsLB+WDQqFQKBQKhSK16F0aS02EKFJOIBAgEolQVFSU8Pn333+fr33tawCsW7eO008/fVDt9DUR4gceB/5nUJaNhfoip1AoFP3kj3+E//u/xM898UTyG42vWwf33w8LF/ZcZXL88fDZZ9CfTX3b2uCVV+Caa6CXz0mFQqHICgIB6GsvDp9PmzR55BH44INBNbEXqETbYL0eePfddykvL6exsZHzzjvvkK9XPyRSKBQKhUKhMA56T4So0liKlGOz2XqdBAE499xzKSsrA2DLli1Jtzdr1qy4vcgRR+CcOZOWTz7hsvp66rP82LhxI3/60594+OGHDTkJ4na7ufPOO3EP8td+Rm43XW2kym6ydvSKnSI5zB63pPR1dMADDyR+7phj4LrrknMOcL/+OncOH447L6/nEzt2wFtv9c/IEUdoEzIDmATJVNzT0Y7KeYpkMHvcjK7vkP4dakPywkJtr6c33oAhQwbWdlkZd86aRUFZGbOA7cBS4JTPPqN89GhGjx7dLztVVVW9+m/mnJdKXxSZxcxxM7o2Pf3L1u+3qbSpxnqHJ2aPm5H1Gdm3dKJWhGQpkUiETZs28fHHH/PJJ5/w8ccfs2HDBjo7OwGYPHkyK1asGJTtUChEVVUVzz33HJs2baK5uZmhQ4cyduxYrrzySqZPn85RRx01aN/D4TBlZWX4fD5eeeUVLr/88kHZic0ijh8/nrq6Otb+7necetttA/6iZWQ6Ozupq6tj3Lhx5B14480A6OVfJtpNVxupspusHaP3LUVizB63pPQtXgzf+17i5+66C375y+T9a2yk7lvfYty2beR1fd7G+d734MUXk24jYbsZins62lE5T5EMZo+b0fWlzL/HHoOf/GRgbeflUTduHOPq6g7Ot6NH0zljBifNmUNDMNgvexUVFcydO7fHl/0jjzySXbt2mTLnpdIXRWYxc9yMrk1P/7L1+20qbaqx3uGJ2eNmZH16+ab3ihA1EZKFLF68mGnTpuHrY/PXwU6EbNmyhe9///usW7eu13OGDx/OE088wXe+850B2wdYtGgR11xzDVarlT179gx6UkXvi0ehUCgUBqOmRpv0WLAAwmHtsbIy2Lmz5wa/fSGibQDcGxUV8PzzBz+em6u1c/TRA/dboVAozMx//ick2hfwiCO01XoLFoDTOWCzYYuFxSLMBd4ZhFuq/KxCoVAoFApFZtH7Xq4qjZWFuFyuPidBBktjYyMXXnhhfBLEYrEwefJkZsyYweWXX86QrpUWe/fuZcqUKbzzzsC/cjidTn7Z9avcn/zkJ0mtLIkxZcoU03558fl8LF68OC3xTgV6+ZeJdtPVRqrsJmvH6H1LkRizxy1pfV/6Esyfr5WquvVWKC6GG2889CRIc7P2744dcPLJ8NBDPfcA6e7fBRfgO/Azx2KBb30LPJ7B+X0IMhX3dLSjcp4iGcweN6PrS5l/zz8Ps2fDscf2fPynP9X2Xdq1i+Cjj7Kl2/cCX2Ehi6dMOTjfdsMqwtXA28AW4BZg6ADcysnJIRgM8pMBrlbpC6PkvFT6osgsZo6b0bXp6V+2fr9NpU011js8MXvcjKzPyL6lEzURksWMGDGCyy67jNmzZ7N06VJ+8YtfJGXvuuuuY/fu3QAcd9xxrF27lhUrVvD444/zyiuvsHPnTi688EJAW0J1zTXX4HK5+m2/s7OTa6+9lp07d3L88cdz5513JuWvQqFQKBQJOfZYuPtubYXGb36T+JxAQPsV8te/DmPHar9GvucebdPzm2+G446DO+6Afft6vm7kSBg3bv/ff/gD1NfDq6/C+PHp1aVQKBTZyOjR8Mc/arlyyRK49FKwWveXyxoyhIIf/5jxLS0EP/oIzw9+QHSAP3I6GbgH2AU8AZwzgNe+/vrrBAKBhM8FAgEaGhoSHr29RqFQKBQKhUJhTFRprCykqamJUCjEmDFjejx+++23M3v2bGDgpbGWLl3KpZdeCkB+fj6ffPIJp5122kHneb1evvzlL7Njxw4Afvvb3/LXv/71kPaj0SjTpk1j4cKFDBs2jFWrVjE+yRtGei+nUigUCkUWsm0bPPKItnKk+yTHn/8Mf/kL+P09zy8shNtvh1//ev9jL72kldC6/HIwWK1XhUKhyApaWmDYsN6fb2+HZ5+FuXNh/fpBNbEWmAs8C3gPce7mzZt7fDfx+XzMmDGDl19+udcJD1VaS6FQKBQKhWJg6H0vV60IyUJGjhx50CRIsjz44IPxv6+//vqEkyAARUVF3HHHHfH/P/zww4Rjddh7QUT40Y9+xMKFCzniiCNYvnx50pMg3Rk/frzhNh1KFZ2dnWzZsoXOAzeJNAh6+ZeJdtPVRqrsJmvH6H1LkRizxy3t+sJhOO88bbXIgSs9/vnPgydBQCuRdeSRPf277DK48sqMTYJkKu7paEflPEUymD1uRteXVv/6mgQBOm02tkyeTOdHH8G11w6qiTOAR4DdwAPAgV+x8/Ly4t8jTjnlFKZOnRovDzFjxgyqqqr6XPURCASoqqpixowZ+/02SM5LpS+KzGLmuBldm57+Zev321TaVGO9wxOzx83I+ozsWzpREyEKOjo6ePvtt+P//+///u8+z7/qqqsoLi4GoK2tjVWrVvV6rojw05/+lPnz51NaWsqbb77J6aefnhrHu1B7hOiH2iNEP7uqhurhidnjlnZ9Viv86EeJn2ttTfz4qFEwbVpm/OsFtUeIynmHK2aPm9H1GaJeflsbLFuWlK1S4GagBlgNXAfkA4WFhT2+R8QmNVwuF1VVVf22X1VVhdvt7um32iNEMUjMHDejazNEzsuy77dqjxBFspg9bkbWZ2Tf0okqjWUiBlsaa9myZVxyySWAtuLD5XJhtVr7fM3FF1/M8uXLAfj973/Pn//854Tn3XTTTcydO5fi4mLefPNN/vM//7Ofag6N3supFAqFQpGF7Nyp7QkSjfbv/Dlzet9nRKFQKBTpZf586O1HWv/xH7B2LUQiAzbbAjwGPAx8noR73amoqFBlshQKhUKhUCj6QO97uWpFiILNmzfH/z7ttNMOOQkCcOaZZyZ8fXf+93//l7lz51JYWMirr76a0kkQhUKhUCgGxZgx2t4eiTj2WCgq2v//0lL42c/6b/sQpSIVCoVCMUDOPRdmzgS7vefjdjusWqVNbs+eDcccMyCzw4DfAjuAl4FLAEuSrh5YJkuhUCgUCoVCYSzURIiCrVu3xv8+7rjj+vWa7nuUbNmy5aDnf/Ob33D//fdjs9l45ZVXmDx5cvKO9sLtt9+O/cAvRybB5XIxe/ZsXC6X3q4kRC//MtFuutpIld1k7Ri9bykSY/a4DUrf9u1w663ahub95eab9/9dUgI33aRtxrtzJzQ2wt/+BiNGwA03QFlZ//xraNAmUmbP7r3M1iDJVNzT0Y7KeYpkMHvcjK5PT//ibQ8bBvfeC7t3a6tDvvpV7YTp02HIEDj6aPjjH7UcvHgxdK1y71cbdjv/d/vtfN1u5w1gK3ALMDQJv1esWGGInJcqG4rMY+a4GV2bIXJeln2/TaVNNdY7PDF73Iysz8i+pRNVGstEDLY0VkVFBc8//zygreJwOByHfM2LL77IVVddBWibt+/Zsyf+3Icffhhf/TF8+HBOPPHEXu3MmDFj0L+cii2nKi8vp7GxkXXr1pmuNFY4HKaxsZHRo0f3a6VOptHLv0y0m642UmU3WTtG71uKxJg9bv3WF4nA0qXw4IPw5pvaY2VlsGtXzxUdvRGNwtSpcPHF2r9d+171IBCAUEhbFdIf/37xC7jvPu3vwkJtL5Jbb4Xy8kP7cwgyFfd0tKNyniIZzB43o+vT078+296wQVsR0u2HWT2oq4NHHoHKyj4npsNWK42jRzO6sRFrtxV9fuBZ4CHg0wH6bbVaWb16Nf/xH/+ha85LlQ1F5jFz3IyuzbA5z8BtpNKmGusdnpg9bkbWp5dvqjSWQnc6Ojrifw8ZMqRfr+l+XvfXAwSDwfjfe/fu5f333+/12LlzZ5LeQ1NTEzabDYBIJILL5SI2v+fxeAiFQgD4/X68Xi+gXfDdZz3dbjednZ2AtmFQbLOgzs7O+OaHoM2Yhru+KHm9Xvx+PwChUAiPxwNoG8S7XC4iXfWKOzo6CAQC8femvb0dgGg0isvlItpVp769vT3+3gUCATo6OrBarRx77LF0dHQYUpPVamXUqFHx1/RHUyriZLVaGT58ePw16YiT3++nvLycnJyclGoCsNvt8Q+awcaps7OT8vJyotHooPpeR0cHY8aMwWq1pi1OA9WU7uvJDJoikQjl5eWEw2HTaOoep0AgQHl5ORaLpXdN//433i99Cb77XcJvv40rtiLQ7cb91FP90+TxEH72Wfjxj/FaLIk1FRTgikZ7aAqHw5SXlxOJRHpqqq8n+vjjmqaSEoKRCNx/P4FTT6Xjt79NOk4iQnl5OaFQKK1xSkfes1qtjB49usdYYTB9LxgMMmLECKxW66D6Xk5ODna7nZycnKQ19RYno11PZtDk9/sZNWoUVqvVNJq6xykcDnPUUUdhtVoNqSkQCDBy5EisVmvG+16fee/LX4YxY3rXdOyxeH7/e2hsRO66C5fdTiQ3V4tTcTGB2PeG3FyO3LcPazhMNCcHl91ONCeHIcC1JSV8UFDAh8D1NhtHFBdTUVFBRUUFdrsdi0UrpFVaWkp+fj6gfT8qKChg5MiR8fd8sHGyWq0MGzYs/hqV91Tey2ZNsThZrVZGjhwZf43RNFmtVo466qgeY49M9T2v18sxxxyD1WrNqu/unZ2dDBs2DKvVmnScks17VquVMWPG0NHRYeocYTZNVquVI488ssfYI9s1dY+TkfOexWKhvLw8/j28v5pSFSe9UBMhiniHB+ID+UNRUFAQ/zt2YcU4//zzEZF+HbcPpJRJL/z4xz/m2muvBaClpQWHwxG/OCsrK6mtrQVg5cqVLFmyBIDGxsYeK1/mzp1LXV0doG0ev2zZMgDq6uqYO3du/DyHw0FjYyMAS5YsYeXKlQDU1tZSWVkJaInD4XDQ0tICwKJFi6iurgZg7dq1LFiwANCSg8PhiCejBQsWsHbtWgCqq6tZtGgRXq+Xp59+2rCavF4vjz/+OE8//XS/NaUiTl6vl4cffpilS5emLU5PP/00CxcupKmpKaWaPvvsMxwOR/zDYLBxeuutt1i4cCFr164ddN9bsGABXq83bXEaqKZ0X09m0LRmzRoWLlzIqlWrTKOpe5yqqqpYuHAhO3fu7F3Tnj0sOftsTdPo0Thmztyvadcu6rZvT5umVatWsXDhQtasWdNT01NP4cnL0zRNm8baM87QNH3lKyzqWlGSTJw2bdrEwoULWbp0aVrjlI685/V6eeqpp5Lue4sXL+bRRx/F6/UOqu/FNDU1NSWtqbc4Ge16MoOmp59+mscffxyv12saTd3jtGrVKh566CG8Xq8hNVVVVfHYY4/h9Xoz3vdSkvcKCgg2N+OYOZOWYcO0OF19NdWTJgGw5pxzePDmm/EWFeEpLcUxcyaerpwdy+WTgOmTJvH3a67h6WOO4c7//V9mzpwZ/y40Y8YMJkyYAGgr8qdMmcKrr77K+++/j8PhiH/PGmicvF4v8+bN46233jpknFTeM5cmM+c9r9fLY489RlVVlSE1eb1eHnroIVatWtVvTZC6vjd//ny8Xm9WfXd/6623mDdvHl6vN+k4JZv3Yt9rzZ4jzKbJ6/Xy4IMPsmbNGtNo6h4nI+e9nTt3snDhQqqqqnTpe7ohCtPwpz/9SQABZPLkyf1+3Xe+853462677bZ+vWbp0qXx1xQXFw/S4+SoqakRQC699FI56qijpKamRsLhsDidTolGoyIi4na7JRgMioiIz+eTjo4OERHp7OwUp9MZt+VyuSQUComIiNfrFa/XKyIioVBIXC5X/Dyn0ymdnZ0iItLR0SE+n09ERILBoLjdbhERiUaj4nQ6JRwOi4hIe3u7+P1+EREJBALi8XhERCQSiYjT6ZRIJCIiIh6PRwKBgIiI+P1+aW9vF5/PJ6+99prs2bPHkJp8Pp8sWbJEmpub+61JRJKOk8/nk1deeUVaW1vTFqfm5mZ5/fXXpaOjI6WaPB6PLF68OO7TYOO0b98+ef3118Xlcg2q7+3Zs0eWLl0qPp8vbXEaqKZ0X09m0OR0OuX111+XtrY202jqHqe9e/fK66+/Lu3t7X1r+tWvREA6rVZx2u0iIALiKiuT0KpVadPU1tYmr7/+ujidzv2aOjrEOXasRHJyREA8JSUSKCgQAfEfe6y0t7QkHSe32y2vv/66tLa2pjVO6ch73T/HumsaaN9raWmRJUuWiM/nG1Tf6+jokMWLF/fIxWbMEWbT1NzcHI+7WTR1j1NbW5u8/PLL4vP5DKlp79698fc/030vJXnP55PoEUeI026XcG6uCEh7cbH4bTYRm02cZWXy8uWXi2/IEInk5IjTbk+cy222/8/emcdHVZ3//z2Tbcg6QVEElCCtWtSKXRRbFdQWl9ZiLZq4K3UBrW3an4r92iq0ta6tRoWAS3ABBcUFwQ3KEkQSRDYNAZWQAAECCcxkJstMZibP74/JjAkMMMks987Neb9e84Lc5TnPZ55znzn3nnvOEWdmpgiINylJbFdeKdumTRMTSHZ2tqSmpgogffr0kaOOOkouueQSyczMFKvVKoCcffbZsnr16uD3F06cAm3dffv29bjuqbyXmJqMnPcC94579+7VpaaWlhaZN2+e7N+/P2xNItGpe3V1dbJgwQJpaWlJqHv3ffv2yfvvvy8tLS0RxynSvNfS0iIffvih7N6929A5wmiaAtddwCcjaOocJz3nPafTKR999JHs3bs3rnUv8Cw38KmoqJB4otYIMRB6WSMkXmg9r5xCoVAoNKKqCr7/fX/3x4Hccot/Xvh4UVbmX5y3YwhxF/79b+iYGkuhUCgUcaa2Fu64Az766ODfi2nT4Ac/gClTkHfewdRpjZBwqQKKgRLAFsbxFouFMWPGUFJSgtlsDo7UAP/9VGCqX4VCoVAoFAqjovWzXDU1loKjjjoq+P89e/aEdU7nhnvfvn2j7lN3GD58eNhTeiUabW1trF+/Pji/nt7Qyr94lBurMqJlN1I7eq9bitAYNm7t7fDRR7Rt3RqevqFD4ZJLum4bPhxeeAGefTZmbob8/s85B7Zvh0cfhY554QH/Auzjx4dvfP/+7pUbA2JRjsp5ikgwetz0rk9L/6JS9qBB8MEHsGUL3HcfBO55srPhuutoGzGC9X/9K56qKpg8GQYM6Jb5ocCTwE78nSE/xj/N8KHuTVwuF3PmzCEjI4Pc3FyGDBkS/PTp04cRI0ZQWVmJy+WKin691y9FaIwcN71rS/icp0EZ0bSp2nq9E6PHTc/69OxbLFEdIQpOPvnk4P+3bdsW1jmdFzk/5ZRTou5Tdxg1apRh36ByuVwsW7asyzouekIr/+JRbqzKiJbdSO3ovW4pQmO4uO3fD//5D5x0Elx2Ga7nnw9f3113QUoKXHstfPYZrF0Lt94KGRkxc/eQ37/VChMnQk0NvPginHwy3H475OaGZ7i62v8A7rrr/DrCLTfKxKIclfMUkWD0uOldn5b+RbXsE0+Exx7zjxB59VX45z8hM/O7MqxWePBBfw6fOxcuuKBb5vsAtwBfAAstFn41ahQ5R7g3CaVr1apVnHrqqeTm5jJu3DiWLl0akX691y9FaIwcN71rM0zOi2MZ0bSp2nq9E6PHTc/69OxbTInrRFyKmNLTNUI++eST4HkZGRnB+eQOxy9/+cvgOQ888EAEXvecwLxyFotFMjMzDblGiIi+5hBUmpQmpUlpioqmDRtExo0TR79+XedgP/54kdbW8DR5veKprdWPps5xamkRaWoKP05/+pM0ZWR8t+7JpZeKfPihSHu7fjQZpe4pTUqT0qQ0haNpzRpx3X23SHLywWuEWK3SbjKJgDRmZ4s7NVUEpKVPn2Aur0tOlkesVhnScb+Uk5MjKSkpAkh6erqkp6cLICkpKZKTkxO8r7JarZKcnCyAXHvttSpOSpPSpDQpTUqT0qQ0GUqT1muEqBEhCn72s5+RlpYGQHNzM1988cVhj3e73ZSXlwf/vvDCC2Pq35E499xzGTt2LAD19fUUFRXhdrsBKCkpobKyEoDS0lLmz58PQG1tbZe1UIqLi6mqqgJg4cKFLFy4EICqqiqKi4uDxxUVFVFbWwvA/PnzKS0tBaCyspKSjjnp3W43RUVF1NfXAzB37tzg97Vu3TpmzZoFgMPhoKioCIfDAcCsWbNYt24dAOXl5cydOxcRCfqqR00iwueff94tTdGIk4jw0UcfxTxOLpeLxsbGqGrasWMHRUVFSMdc1ZHEyeVysXHjxh7Xvfr6ekQkZnHqiaaexKmzpljXPa01rV27FpfLRVlZWWJrWr4cSkqY9bvfse7MM/1xGjGCuRddhOuNN9i7d++RNSUlUevxxFVTWVkZLpeLtWvXHr7ubdgAGRnh1b39+ymtqmL+5Zf74zRoEEVnnw2XXQZXXklxcTFbtmzB5XLFJU7RznsiwtatW6MSp8WLFyMiPap7AU2NjY0RawKdXU8Gz3uff/45ImIoTYE4lZWV8eabbyIiutW0YsUKRCTudS8eeW/t2rXMnDkTETlY0+efs+6yy6C93f/7FLjX6NePosJC3B33TiXjxlE5bJhf08iRzL/8clwWCy2DBuEuLGQLsAC4e8IEvjd0KACjR49m9OjRAAwdOpQJEyYENRUWFjJo0CBMJhNms5nFixd3S5PKe8bQZNS8JyKsWLFCt5pEhDfffJOysrKwNUH06t6mTZsQkYS7d583b16X5xY9jZOIMG/evB7Xvc6/pUbPEUbSJCLMnDmTtR2j4o2gqXOc9Jz39u7di8vl0qzuaUZcu10UMaWnI0JERC677LLguXfcccdhj3399deDx/bt2zesESSxINCLOGnSJBkwYIAhR4TYbDaZNGmSbNu2TZeaAv7t2LEjbE0ikfeCB8rdtWtXzOK0Y8cOmTRpkuzbty+qmurr62XSpElBXT2N0+7du2XSpEmyZ8+eHtW9bdu2Bf1Qbyskjqa6ujqZNGmS1NXVJbYmu10kK0scWVldRoTUDhggkyZNkoaGBl1q6vz9R63u/fvfXd4i9iQni81qFQGR558Xu90ue/fuDea8WMYpFnmv8+9YJHHauXNnMGf1pO7t27cvqC1STSI6u54MnPcCddJmsxlGU+c4BXJKwI7eNNXW1gb9i3fdi0fe6/z9h9T0t799N2IxzBEhO487TiZNmiT1Rx31XS4HsefkyNcpKXIPyIAwRoRYrVaZNGmSrFmzpsd1T+W9xNRk5LwXaBPU1tbqUlPAv7q6urA1iUSn7nW+N0uke/fAPWnAr0jiFPBv9+7dYWvqHKfA+du2bTN0jjCapgOvOyNo6hwnPee9hoaGoG+9aUSISaTjtWRFwjNp0iQmT54MwMiRI1m2bFnY537wwQf8+te/BiAtLY01a9Zw6qmnHnRcS0sLZ5xxBlu2bAHg/vvv55FHHonc+R6wceNGTjvtNPr37099fT0bNmwI6XMi4/P5qK+vp1+/fiQlJWntzkFo5V88yo1VGdGyG6kdvdctRWgMFbe774bnnuuyyZeURH2/fvSbN4+ks87SyLFDE/Xv3+2GvDyoqzt43zHHwLZtYLHELe6xKEflPEUkGD1uetenpX+at/VE4Cc/CbluE9/7HtxwA+3Tp2PetaurzcDvWH09ST5fyHJdwGxgKrD6EL4lJSXRr18/VqxYwdCOkSTdRe/1SxEaI8dN79p6dc7TgU3V1uudGD1uetanlW+BZ7kBKioq4vosV02NpQDgV7/6Feeddx7gHyb161//mi+//LLLMfv27eOKK64IdoL07duXiRMnxt3XA6mrq8N3iBuNRCcpKYn+/fvrLmEG0Mq/eJQbqzKiZTdSO3qvW4rQ6D5u3Vlo7c47D9qUZDLRf+RIkjIzo+hU9Ij6979tG2Rnh953993QsdhuvOIei3JUzlNEgtHjpnd9WvqneVvPZILycnjrLThwGuA//hEefBDztm3w9tv4Oi2unuTz0b+u7pCdIAAW4Gbg847PzR3bOuPz+airq2P37t3U1NRQU1PT7cVM9V6/FKExctz0rq1X5zwd2FRtvd6J0eOmZ3169i2WqI6QBOWyyy5j+PDhXT7Tpk0L7v/iiy8O2j98+HB2HfDWUmdef/11jjvuOABqamoYPnw4F1xwAbfeeitjxozhhBNOYNGiRQAkJyfz5ptvYrVaY6ozHG6++WYydfrQLFKampp4+eWXaWpq0tqVkGjlXzzKjVUZ0bIbqR291y1FaHQbty+/hDvugP79oWNO0iPygx9893BpwACYPJmmzZt5+ZJLaDrhhNj5GgFR//5POgk2bYL33oNzz/1ue58+0GnO+COWu3YttLdH7E4s6pfKeYpIMHrc9K5PS/900dZLSYGxY2HxYqis9HeADBgAN97o35+cDFdeSdKSJf5c/sc/0tS/Py/ffDNNYd6b/BSYAdQCTwAndmzPzMzk5ptv5tJLL2XIkCEMGTKE3NxcCgoKaGlpiY4+hS4xctz0rq3X5zyNbaq2Xu/E6HHTsz49+xZLVEdIglJZWcmGDRu6fPbs2RPc39zcfND+DRs20NbWdkibgwYNYsmSJQwfPhwAEWHZsmW89NJLvP/++8FGd79+/Xjvvfe46KKLYqoxXGpra4OLvft8Pux2e3AhaofDEdTc2tpKc3MzAF6vF7vdHrTR2NiIx+MB/NN/BbR6PJ7gAoMAdrsdr9cL+L/j1tZWANra2oILCIkIdrs9OEqlqakp+AaX2+3G6XQC0N7ejt1up73j4ZXT6QwuLuRyuWhqaiI5OZkTTjiB5uZmXWpKTk5m0KBBwXPC0RSNOCUnJzNw4MDgObGIU2trK3l5eZjN5qhqAujfvz/JyckRxcnj8ZCXl0d7e3uP6l5zczODBw8mOTk5ZnHqrqZYX09G0OTz+cjLy8Pr9WqvqakJx2uvwXnnIcOHY3/zTXxNTfD88+Fruv9+3LNnQ00Nrvvuw5WTQ15eHiaTSZdx8nq95OXl4fP5olf3zGZaR4+m+eOPoawM71VXYb/jDjjqqKAmESEvL4+2traDNW3bBmedhf2ss/C+8AK4XLrKe51/xyKJk9vtZuDAgSQnJ/foejKbzfTv3x+z2RyxJtBvjjCaptbWVgYNGkRycrJhNHWOk9frZcCAASQnJ+tSk8vlCn7/8a57h817UYqTz+fjuOOOIzk5+ciajj8eiorwbd2KXeRgTaecQuujj+JetYq8U0+FU07B3umFscacHDwpKf44pafTkp7u15SSQmNODkcB9wCrrVbmJydzgdfLrp07g+3F1NRUUlNTmTNnDtdddx0VFRVUVVVRU1NDQ0ODynsG0mTkvBe4d+x8DepJU3JyMgMGDOjS9ohX3WtpaeH4448nOTk5oe7dPR5P8Hcs0jgFvv/AOd2te8nJyQwePJjm5mZD5wijaUpOTua4447r0vZIdE2d46TnvGcymcjLy8PlcmlS97RCdYQounDKKaewatUqXnnlFS655BKOP/54UlNTOeaYYxgxYgSPP/44lZWV/OpXv9La1SBer5fLL78cgPr6eoqKioIXZ0lJCZWVlQCUlpYyf/58wN95UlRUFLRRXFxMVVUVAAsXLmThwoUAVFVVUVxcHDyuqKiI2o63nefPn09paSng75gqKSkB/ImjqKiI+vp6AObOnUt5eTkA69atY9asWYA/ORQVFQWT0axZs1i3bh0A5eXlzJ07F4vFwrBhw5g2bZouNVksFjIzM3n77bfD1hSNOFksFpqbm1m+fHnM4vT2228zatQo2traoqqpoaGBVatWYemY8qancVq1ahWjRo1i69atPap706ZN48wzz8RiscQsTt3VFOvryQiaNm3axKhRo1i/fr32mn7/e0rWroUVK3CnpVFUWEh9v37w/PPMfeut8DRVVbFu8GBISaG8vJwFCxYwatQonE6nLuO0fv16Ro0axaZNm2JT90aMoPbxxynq9PCsuLiYnTt3MmrUKJYvX36wpqIi8Pkouvxyav/9bxg8mPlPPknpJ5+EpSnWec9isXDiiSd2GbXakzgtWrQIn8+HxWLp0fXU1tbGqlWrgo1yo+YIo2l6++23yczMxGKxGEZT5zitX7+eXbt2YbFYdKlpwYIFJCcnY7FY4l73Dpv3ohSnTZs2UV1djcViCV+TzXZYTYtWrmTUPffQ8OabFBUWfqdpwgSqOtb6WDh6NAtHj/ZrGjqU4k4jAJ8tLOS0QYN43+Xi6qOO4s4RI+gLDBs2jHHjxgHw8ccf8/bbb3PuuecyZMgQJk6cyD333ENLS4vKewbQZOS8Z7FYSE5OZsGCBbrUZLFY2LVrF+vXrw9bE0Sn7pWUlDBw4EAsFktC3buvWrWK/fv3Y7FYIo6TxWJh//79rFq1KmxNneNksVg488wzmTZtmqFzhNE0WSwWqqur2bRpk2E0dY6TnvOe0+lk1KhRLFiwQJO6pxnRW3ddoYgvFRUVAsi5554rffv2lYqKCvF6vWKz2aS9vV1ERBobG8XtdouISEtLizQ1NYmIiMfjEZvNFrRlt9ulra1NRESam5ulublZRETa2trEbrcHj7PZbOLxeEREpKmpSVpaWkRExO12S2Njo4iItLe3i81mE6/XKyIiTqdTWltbRUTE5XKJw+EQERGfzyc2m018Pp+IiDgcDnG5XCIi0traKk6nU1wul3z22WdSV1enS00ul0s+/fRTqa+vD1uTiEQcJ5fLJaWlpbJ///6Yxam+vl7KysqkpaUlqpqamppkyZIlQRs9jZPNZpOysjJxOBw9qnt1dXXy2WefBbfHIk7d1RTr68kImhobG6WsrEzsdrv2mv77X2nMzhYBaTeZxGa1ijcpSQTE+dprPYpTQ0ODlJWVSXNzsy7jZLfbpaysTBobG+Na95xOp5SVlcn+/fu7atq2TSQzUwTEZrWKJzlZBKQpI0NafvrTsDTFOu+5XC5ZsWKF1NXVRRSnffv2SWlpqbhcrh5dTy0tLbJkyZJgrI2aI4ymqb6+Xj799FNxuVyG0dQ5Tna7XZYtWyYul0uXmhoaGmT58uXicrniXvcOmfeiGKfGxkZZunSpuFyuqGnat2+flJWVSdOWLWI76igR/7LrYs/JkbaUFBGQ5vR0aU5PFwFpS0kRe05O8LhALnelpcmy888XW06OtIK8lJoq52ZnCyAmk0msVqskJSUJIJmZmWKxWCQ/P1/lPQNoMnLec7lcsnz5cmloaNClJpfLJcuWLQvaiGfd27Nnj6xYsUJcLldC3bvbbLbg71ikcQp8/wEb3a17nZ+dGDlHGE2Ty+WSpUuXBm0YQVPnOOk57zU3N0tZWZk0NDTEte4FnuUGPhUVFRJPVEeIImEJXDzjx4+XrKysuF888cDhcEhxcXEwEekNrfyLR7mxKiNadiO1o/e6pQiNruJms4l0PMg56HPuuT0yqSt9IdBdznvssdDfP4hMmxa9ciJA5TxFJBg9bnrXp6V/idrWC9p86KFD5+fhww+9r+PjyMqS4vHjxZGV1WX7KpAbQdI6PUAIfCwWS/BBRqz0KWKPkeOmd20q52lrU7X1eidGj5ue9Wnlm9YdISaRjkm8FIoEY+PGjZx22mnBvysqKjj11FM19EihUCh6GbffDi+8cPD2/v3hq6/g6KPj71Nvoa0NhgyBXbsO3nf00bB9u3/RdYVCoVDEn8pKeO45ePVV6LRGEkOHwjffwLffQnExvPwydJrbO1wagJeAaUBNp+3V1dXB+b7r6uqC2/v37x+cllWhUCgUCoVCK7R+lqvWCFEkPFarNbgIoNE4cHEivaGVf/EoN1ZlRMtupHb0XrcUoYlp3DweeOstePTR8M+5666uf597Lrzxhn8B7x50gui9Xuoq5zU2wnnnQajfvz/8oUedILHQp3KeIhKMHje969PSv0Rt6wVtnnIKTJ0KO3fCM8/AySf7D7jzTn/ePvlkePpp//7p0+GHP+xqx2zGbrXSfoh7nKOBiUAVMB+4BDDhX0C1oKCA3Nxchg4dyplnnsnQoUPJzc2loKAguLiqQr/oPS9Egt61qZynrU3V1uudGD1uetanZ99iiTGfHit6FYWFhWRnZ2vtRkw4cHEivaGVf/EoN1ZlRMtupHb0XrcUoYlJ3HbvhsmTIS8Prr4aHnwQ9uwJ79wzzoCLL/aPDNmwAT79FAoKIDW1R67ovV7qKuf16wezZ8OWLfCnP0FGhn+7xeJ/0BYuM2fCjh2HLicWvmtgR+91SxEao8dN7/q09C9R23oH2czJgbvvhk2bYNEiuOWWridkZPh/Q9evhxUr4JprICUFR3Y2RYWFOI5wj2MGfg18BHwD/O/SS1k4Zw4ul4vs7OzgfZLL5WLOnDnBBdcV+kXveSES9K5N5Txtbaq2Xu/E6HHTsz49+xZL1NRYioQlMJzKarXicDj48ssvDTc1Vnt7Ow6Hg+zsbF2OetHKv3iUG6syomU3Ujt6r1uK0EQ1bvv3w4QJ8M474PV23fevf8EDD4RnRwRMpsh86UDv9VLXOc9m879V3NIC//hHeIa3bfNP0wJw9dW0FxbiOOmkqOpTOU8RCUaPm971aelforb1omKzro72hx7C8eabZDscmLv5pmYr8Dow1Wxma3Y2Docj+LanxWLBZrOpabJ0jN7zQiToXZvKedraVG293onR46ZnfVr5pqbGUigixOVykZ6eDoDP58NutxPo33M4HLS1tQHQ2tpKc8ccvV6vF7vdHrTR2NiIx+MB/EPKA8PGPR4PjZ3m7bXb7Xg7Hhg2NzfT2toKQFtbW7AXVUSw2+34fD4AmpqacLlcALjdbpxOJ3DwMDSn04nb7Q5qampqwmw2k5WVhcPh0KUms9lMnz59gj6EoykacTKbzaSmpga/11jEqbm5GavVGrQXLU0BO4Efmp7Gye12Y7Va8Xq9Pap7nX/wYhWn7mqK9fVkBE0ejwer1UpbW1vkmgDPmjXg9dKSnk5LRx71pKTQ+Nprwc6RI2oymaIWp5aWFqxWa9Ce3uLU1taG1WrF4/HEte75fD6sVmvwOwqpyWTCe8898I9/hK/puedwpaSAz4f7nXdo/sUvsP7mN/D++9j374+KJrPZTGZmZpc3jXoSp9bWVtLS0jCbzT26ng7EqDnCaJqam5vp06cPZrPZMJo6x6mtrY3k5GTMZrMuNbW0tGCxWDCbzXGve2HlvQjj5PF4SEpKwmw2R01Ta2srVqs1aK9HcTr6aMytraR4PLjT0vyaUlODo0PEZMJuteJLSvJryszE1dGx4U5Lw5uVxe+B1cA7wLVAGpCVlYWIUFdXZ8jrySiajJz3zGYzFosl6IPeNJnNZpKTk4M+xLPuOZ1OMjIyMJvNCXXv7na7SUlJwWw2Rxwns9lMSkpKl9/I7tQ9s9lM9gGdv0bMEUbTZDabSUpKCvpgBE2d46TnvCciWK1WWlpaNKl7WqE6QhQJzx/+8Afy8/MBqK+vp6ioKHhxlpSUUFlZCUBpaSnz588HoLa2lqKioqCN4uJiqqqqAFi4cCELFy4EoKqqiuLi4uBxRUVF1NbWAjB//nxKS0sBqKyspKSkBPAnjqKiIurr6wGYO3cu5eXlAKxbt45Zs2YBBw9DmzVrFuvWrQOgvLycuXPn4nQ6mTp1qm41OZ1OnnvuOV577bWwNUUjTk6nk2effZYPPvggZnF67bXXmDZtGrt27Yqqpm+++YaioqLgj0tP47Ro0SKmTZvG2rVre1z3iouLcTqdMYtTdzXF+noygqby8nKmTZtGaWlp5Jqef56q3//er2n0aBaOHu3XNHQoxb/9LXScF884zZkzh2nTplFTU6PLOJWWljJt2jTKy8vjWvcqKiqYNm0aH3zwQfQ0ORzMtdkoHzHCH6czz+S1G25g2qmnsuvxxyl69tmoaOr8OxZJnN59912ee+45nE5nj+peIJfv6lhc3qg5wmiaXnvttWDcjaKpc5xKS0t55plncDqdutQ0Z86c4Pcf77oXk7x3QJzKy8uD33+0NL377rtMmzYt2N7rUZwqKnB+8AHP3n03i37xC7+mYcMoGTcOD/7OjqLCQur79fNrGju2Sy6fdd11AOw67jiWFxbyyHHHsQO457rruODMM3G5XIa8noyiych5L3DvOGfOHF1qcjqdPPPMM8Hj4l33pkyZgtPpTKh790WLFvHss8/idDojjlPgHn/RokVha+ocJ6fTSXFxseFzhNE0Ba67zr/Nia6pc5z0nPdqamqYNm0ac+bM0aTuaYYoFAlKRUWFAHLuuedK3759paKiQrxer9hsNmlvbxcRkcbGRnG73SIi0tLSIk1NTSIi4vF4xGazBW3Z7XZpa2sTEZHm5mZpbm4WEZG2tjax2+3B42w2m3g8HhERaWpqkpaWFhERcbvd0tjYKCIi7e3tYrPZxOv1ioiI0+mU1tZWERFxuVzicDhERMTn84nNZhOfzyciIg6HQ1wul4iItLa2itPpFJfLJZ999pnU1dXpUpPL5ZJPP/1U6uvrw9YkIhHHyeVySWlpqezfvz9mcaqvr5eysjJpaWmJqqampiZZsmRJ0EZP42Sz2aSsrEwcDkeP6l5dXZ189tlnwe2xiFN3NcX6ejKCpsbGRikrKxO73R4dTbt2iaSlSXN6ujSnp4uAtKWkiD0nR+Sii+Iep4aGBikrK5Pm5mZdxslut0tZWZk0NjbGte45nU4pKyuT/fv3R0/Tf/8rzsxMabVYREBcaWlSf9RRUjZihLQ891zUNLlcLlmxYoXU1dVFFKd9+/ZJaWmpuFyuHtW9lpYWWbJkSfB7MWqOMJqm+vp6+fTTT8XlchlGU+c42e12WbZsmbhcLl1qamhokOXLl4vL5Yp73YtJ3jsgTo2NjbJ06VJxuVxR07Rv3z4pKysLttV6FKfPPhPX978vy84/X2w5OSIg7tRUaczOlqtB7jCZpMxqFW9SkggclMsdWVkiIC0Wiyy54AJp6djnyMqS5rQ0eQ/kXxddJHs68rIe657Ke8bMey6XS5YvXy4NDQ261ORyuWTZsmVBG/Gse3v27JEVK1aIy+VKqHt3m80W/B2LNE6B7z9go7t1r/OzEyPnCKNpcrlcsnTp0qANI2jqHCc9573m5mYpKyuThoaGuNa9wLPcwKeiokLiiVojRJGwaD2vnEKhUOiSPXugrQ2OPz6842++GV555bu/LRa49lq46y740Y9i4qJCY7xe+N73/GuEHMhRR8H27dAxVZpCoVAoNMDng48+wvfMMyR1vB29DTgRCKwYch5wF3AlkNKDIrZbLBw3eTIpt90GubnR8FqhUCgUCoXisGj9LFdNjaVIeEaNGmXYBf9cLhfLli0LztenN7TyLx7lxqqMaNmN1I7e65YiNIeMmwh89hlcd52/A+TBB8M3etdd/n+HDoX//Ad27oSXXtKkE0Tv9dIwOa+9He67z98Z0rkci4Vld92FK4qL5amcp4gEo8dN7/q09C9R23pRy3keD8syM/G8/z588w3eu+8mc/Jkqqqrqa6u5oorruBToAA4AXgQ2HmgDYuFZaNGBdcPOZATXC5SJk7E3a8f3ltugfXrI/JZER30nhciQe/aVM7T1qZq6/VOjB43PevTs2+xRHWEKBKevLw8kpOTtXYjJni9XmpqaoKLHekNrfyLR7mxKiNadiO1o/e6pQjNQXFrboYXXvB3Wpx7Lrz+Ong8MHs27NsXntGf/hSWL4dvvoG//AX69o2dgCOg93ppmJyXmgp33glffw3z5sHIkf5y+vShZuDA8Mt54AGYNg06FusLhcp5ikgwetz0rk9L/xK1rReTnPf975P8zDMc9eCD5OXlkZeXx6xZs4JrJNYB/wTygLHA0oCN5GRq8vLwHuE+Kc3nI/nll+HMM+HnP6dtxgxqvv6ampoaampqet0DEq3Re16IBL1rUzlPW5uqrdc7MXrc9KxPz77FEjU1liJh0Xo4lUKhUGjOu+/ClVeG3vf443DvvfH1R5G4rFnj/9x+e3jH79gBJ57on2arb1+YMME/uui442Lrp0KhUCiCNDY2YrVau2wbDqyL0O4e4EVgOlBvsTBmzBhKSkpIDzFtosvloq6uLvh3//79DTtaX6FQKBQKRWRo/SxXjQhRJDz9+/cnKSlJazdigs/no66uDp/Pp7UrIdHKv3iUG6syomU3Ujt6r1uK0BwUt8svh0GDQh9cXOyfYzyB0Hu9NHLO48c/xvf734dfznPP+TtBAPbvh4cfhsGD/WvONDYGD1M5TxEJRo+b3vVp6V+itvXinfNycnKCI0MC3BWwkZREXf/++Hpwn3Qs8ABQDbzuctEwZw4XXnBBcJRITU0NNpuNgoICcnNzGTJkSPCTm5tLQUEBLYcZLag4NHrPC5Ggd20q52lrU7X1eidGj5ue9enZt1iiOkIUCc/48eM59thjAf+FbLfbCQx0cjgctLW1AdDa2kpzczPgHwJmt9uDNhobG/F4PAC0tLQEG+4ej4fGTg907HZ7cNhYc3Mzra2tALS1teFwOAAQEex2ezCZNDU1BYeUu91unE4nAO3t7djtdtrb/UseOp1O3G434H+zqqmpCafTyfTp09m5c6cuNQX82717d9iaohGnQLl79+6NWZx2797N9OnTaWxsjKomm83G9OnTg/Wgp3Gqr69n+vTp7Nu3r0d1b+fOnUE/YhWn7mqK9fVkBE0NDQ1Mnz6dhoYGv6bkZHy3347dakVMJr+m7GzaUlOhuprWBQt0r6lznOrq6pg+fTp2u12Xcer8/cez7u3fvz+Y82IZp7Dz3p49MH06vqSkrnWvTx/aVq2CzMygps6/Y5HEac+ePcGc1ZO619jYGNQWqzjp7XoygqZAnXQ6nYbR1DlOgZzidDp1qSmQkwM+Gy3vdf7+o6UpkKtsNltEcQrkzvr6+iNqeuaZZ7jmmmuwWCz0TUvjN1lZ/jKzs5k+fjyN2dkAlGVlMTstDS/+9UOaMjP9mg7M5YF2BNDWpw+jMzL4H/DS2rUUnXkmwzt1erzzzju4XC7S09ODo0V8Ph8ff/wx48aNi0qcVN5LfE2dc8j06dODI4j0pingX0NDQ9iaIDp1r/O9WSLduwfuSZ1OZ8Rx6k7eC1X3Orc5jZwjjKbpwOvOCJo6x0nPec9utwd906LuaYXqCFEkPCtWrGD06NGA/4e4qKgoeHGWlJRQWVkJQGlpKfPnzwegtraWoqKioI3i4mKqqqoAWLhwIQsXLgSgqqqK4uLi4HFFRUXU1tYCMH/+fEpLSwGorKykpKQE8CeOoqKi4A/43LlzKS8vB2DdunXMmjUL8CeHoqKiYDKaNWsW69b5B7KXl5czd+5ccnJyuPnmm5kxY4YuNeXk5HDhhReyYMGCsDVFI045OTmcdtpprFq1KmZxWrBgARMnTsRkMkVVU+BHJScnJ6I4rV+/nokTJ7Jz584e1b0ZM2Ywfvx4cnJyYhan7mqK9fVkBE1bt25l4sSJVFZWfqfpyispKizEnZbm1zRuHJXDhsGQIZTu2KF7TZ3jtGjRIiZOnEhbW5su41RZWcnEiRPZunVrXOteQ0MDEydOZNWqVTGNU9h578UXobGR+n79Dq57t94KSUlBTTk5OVxzzTXMmDEjojgtX76cH//4x+Tk5PSo7pk6HvAF/jVqjjCapgULFnDhhReSk5NjGE2d41RZWcnxxx9PTk6OLjUtWrSIn//85+Tk5MS97sUj723dupVjjjmGnJycqGlavnw5EydOxOl0RhSnnJwcvv/977O+YwHzw2n68MMPuf3227HZbLz2zjvM+fvfcVx/PfTpA4Cp48HE/267jaIzz2Qw8OiIEbw+dqxfU6hcPmyYX9PIkcy//HIAMgYNwlpYyE5gGnDXhAkMHToUgNGjRwfvx4YOHcqECROYN28eLpdL5T2V94JxysnJ4ec//zmLFi3SpaacnByOP/74oA/xrHuvv/46v/3tb8nJyUmoe/f169fz/e9/n5ycnIjj1J28F6ru5eTkMH78eGbMmGHoHGE0TTk5ORxzzDFs3brVMJo6x0nPea+trY2JEyeyaNEiTeqeZohCkaBUVFQIIBaLRTIzM6WiokK8Xq/YbDZpb28XEZHGxkZxu90iItLS0iJNTU0iIuLxeMRmswVt2e12aWtrExGR5uZmaW5uFhGRtrY2sdvtweNsNpt4PB4REWlqapKWlhYREXG73dLY2CgiIu3t7WKz2cTr9YqIiNPplNbWVhERcblc4nA4RETE5/OJzWYTn88nIiIOh0NcLpeIiLS2torT6RQRUZqUJqWpN2my2cTx/PMiP/mJ+NatC1/TDTdIu8kkAtI4Zoy4580T8Xr1ocmIcerNmlpaxPnDH4qAeJOSxGa1flf3jj9e3Pv3J54mI8ZJaVKalCalyWYT29NPi+8HPxAZMEAc+/aJ3W6Xs88+WywWi+RkZspVIEsOzOXZ2eJOTRUBaenTR5oyMkRAPMnJYrNaRUAExJ6TI0tTUiQfJDs9XdLT0wWQlJQUycnJEUCqq6tVnJQmpUlpUpqUJqVJaQpqCjzLDXwqKioknqiOEEXCErh4CgsLJTs7O+4XTzxobGyUp556Kpiw9IZW/sWj3FiVES27kdrRe93qdVRVidxzj0jfvsEHDHLHHQcddsi4lZeL/OUvIt9+GyeHY4Pe66WRc163ytm2zV9fs7O/q68g8te/hm+zoxEddd9idL5CG4weN73r09K/RG3r6aWd18WG3e7P2x00NzdLfn6+WCyW4EOI00Cmgjg75/RufHaD/ANkYKcHG4GOEEX30HteiAS9a1M5T1ubqq3XOzF63PSsTyvftO4IUVNjKRKeZcuWBeezMxoWi4VRo0ZhsVi0diUkWvkXj3JjVUa07EZqR+91q1fxf/8H3/sePPmkf9HpADNndll0Gg4Tt7PPhv/8x28ngdF7vTRyzutWOSecAE88AbW18NRTkJcHKSnwhz+Eb3PcODj3XHj77e8WXY+GbzE6X6ENRo+b3vVp6V+itvX00s7rYqNPH3/e7iA9PZ3Zs2djs9nYuHEjZ599NhXAncBA4JselNUf+DtQA8wFLuix1wq954VI0Ls2lfO0tanaer0To8dNz/r07FssMYl0TBqqIV999RWbN28mPT2dc845h759+x72+Jdffpnt27fz4IMPxslDhR7ZuHEjp512WvDviooKTj31VA09UigUih7wxhtw7bWh9xUVwR//GF9/FIru4vXC2rVw1lnhHb9zp7/zJNABMngw3H03/P73YLXGykuFQqFQHAKXy0VdXR0pX3/NwEsuiYrNSqDv3/5G/3vvhY4F2xUKhUKhUPRutH6Wq+mIkNraWn7+858zfPhwCgoK+M1vfsNxxx3H3XffHVx9PhQvvfQSkydPjqOnCj1zySWX0KdjMUCj0drayscff0xra6vWroREK//iUW6syoiW3Ujt6L1u9Sp+9zs49tjQ+6ZO9U860YHR46Z3fUbOeRGVk5x8yE6QkDanTOk6CmTbNrjnHhg0CCoqoutblM5XaIPR46Z3fVr6l6htPb2087prw2KxkJeXx8B58w55jK+bHdXDgP7/+heuo47Cc9tth8zviq7oPS9Egt61qZynrU3V1uudGD1uetanZ99iiWYdIa2trfziF7+gvLwcESE7O5s+ffrg8XiYOnUqP/rRj/j222+1ck+RQFitVsxmY87y1t7ejt1up729XWtXQqKVf/EoN1ZlRMtupHb0Xrd6FampcNttofd9/TWsWRP80+hx07s+I+e8WJVzkM2WFpg+PfTBxx0Hw4bFxDe91y1FaIweN73r09K/RG3r6aWd12Mbp50GJ5548PYRI0jaswf3yy+z+eiju+WHxesl5cUX4fTTYeRIePNN8Hi6ZaM3ofe8EAl616ZynrY2VVuvd2L0uOlZn559iyWaTY31n//8h3vvvZe8vDxmzpzJz372M3w+H++++y733HMP27dv59hjj2XRokVdhswAnHfeeaxcuRKfz6eF6wqdoPVwKoVCoTgk27bBwoWH7uA4kNpa/1RBgd+1nBy4+WaYMAFOPjlWXioU8ef55+GOO0Lve/bZkOuMKBQKhSKOtLfDxx/7R+999JF/ZOprr8H11wcPcX/+OW1PP03Ge+9h7smbpMcdB7ff7m8nDRwYRecVCoVCoVDoGa2f5Wr2Gv3bb7+NyWRi1qxZ/OxnPwMgKSmJsWPHsn79ei666CL27NnDhRdeyLp167RyU5EA5OXlkZycrLUbMcHr9VJTU4M3jIVktUAr/+JRbqzKiJbdSO3ovW4lJO3t/s6PMWP8b1Pefjts3hzeuYMG+c/74Q/9b8vv3AlPP31QJ4jR46Z3fUbOebEq5yCbq1eHPjDQ+Rcj3/RetxShMXrc9K5PS/8Sta2nl3ZeRDbMZrjsMvjgA/j2W/i//4OrrupySNpZZ5H1+uuYd+3C88QTfGMyda+M3bth8mT/GlFXXQXLlnWZCrQ3o/e8EAl616ZynrY2VVuvd2L0uOlZn559iyWadYRs2rSJgQMHcs455xy0z2q18tFHH5Gfn09DQwMXXXQRq1at0sBLRSJw8803c8wxxwDg8/mw2+0EBjo5HA7a2toA/3Rszc3NgP+Ct9vtQRuNjY14OoZot7S00NLSAoDH46GxsTF4nN1uDyaJ5ubm4Fx6bW1tOBwOAEQEu90eHLHU1NSEy+UCwO1243Q6gYOHoTmdTtxuN+BfsLCpqYmmpiZeeeUVdu3apUtNAf/q6urC1hSNOAXKra+vj1mc6urqeOWVV3A4HFHVZLfbeeWVV4Ln9TRODQ0NvPLKK+zfv79HdW/Xrl1BP2IVp+5qivX1FDNN+/f7Oy1OOQV7fj7eDz+E9naaMzJoLS4OX9PLL+NetQrnNddARkZITfv27eOVV15h3759hozTnj17eOWVV2hsbNSlps7ffzzrns1mC+a8WMYpFnmv8+8YAC+8QOOKFXhuvhlSU2lJT6clPR1uvRVPWtohNe3duzeYs9oqK3GsXBmWpkCcHA5HUFus4qS368kImgJ1snO7I9E1dY5TIKc0NTXpUlMgJzc1NcW97sUj73X+/qOlKZCr7HZ7RHEK5M6GhoZuaYp63hswgOb/+z9ISwtd9zIySLnnHv5RUMAl6emUAZ6UFBpzcr7TZLXi7XhprTkjg9aOtR3bUlNxZGTA3LnIhRey98c/xvX00+B0qrxn0LwXqNd79uzRpaaAf/v27QtbE0Sn7nW+N0uke/fAPWlTU1PEcYo073Vucxo5RxhN04HXnRE0dY6TnvNeY2Nj0Dct6p5WaNYR0tzczHHHHXfI/cnJybz++uvcdNNN2O12Ro8ezYoVK+LooSJRWLZsGaNHjwagvr6eoqKi4MVZUlJCZWUlAKWlpcyfPx+A2tpaioqKgjaKi4upqqoCYOHChSxcuBCAqqoqijseZAIUFRVRW1sLwPz58yktLQWgsrKSkpISwJ84ioqKgg/p586dS3l5OQDr1q1j1qxZgD85FBUVBZPRrFmzgqOfysvLmTt3LlarlTvuuIMZM2boUpPVauXiiy9mwYIFYWuKRpysVitnnHFGsIM0FnFasGABDz30EGazOaqaAj8W1o4FJ3sap/Xr1/PQQw+xa9euHtW9GTNm8Kc//Qmr1RqzOHVXU6yvp5hpev55eP11+PZbigoLqR00yK/p8sspramBpqbwNGVlsW79+sNqqq6u5qGHHmLTpk2GjNOiRYt46KGH8Hg8utS0adMmHnroIaqrq+Na9/bt28dDDz3EqlWrYhqnWOQ9q9XKTTfdxIwZM77T9OmnVE2cCNu2sfDee1k4Zgz84Q+H1bR8+XLOPvtsrFYrlVOmUPLWWzBqFO533gmr7gXWEgv8q/JeYmhasGABF198MVar1TCaOsdp06ZNDB48GKvVqktNixYtYuTIkVit1rjXvXjkverqao499lisVmvUNC1fvpyHHnqIpqamiOJktVo5+eSTWb9+fbc0aZX3rrjySn5w++04gKqhQymeMOE7TQe2jUaO9GsaNoySceP8mtLSKB4zBvtjj9HSty9v/fvflHeUq/Je4msKxMlqtTJy5EgWLVqkS01Wq5XBgwezadOmsDVBdOre66+/Tn5+PlarNaHu3devX8/JJ5+M1WqNOE6R5j2r1cqf/vQnZsyYYegcYTRNVquVY489lurqasNo6hwnPec9j8fDQw89xKJFizSpe5ohGtG/f38ZNGhQWMfeeuutYjKZJCsrS5YsWSLnnnuumM3mGHuo0DsVFRUCiMVikczMTKmoqBCv1ys2m03a29tFRKSxsVHcbreIiLS0tEhTU5OIiHg8HrHZbEFbdrtd2traRESkublZmpubRUSkra1N7HZ78DibzSYej0dERJqamqSlpUVERNxutzQ2NoqISHt7u9hsNvF6vSIi4nQ6pbW1VUREXC6XOBwOERHx+Xxis9nE5/OJiIjD4RCXyyUiIq2treJ0OkVElCalSWlKBE0vvywCYrNaxZOcLALSlJEhLX36iBQXJ6YmI8ZJadKnpg7/wtK0a5e409OlMTtbBKTdZBLbaaeJ97//FWls1I8mI8ZJaVKalCal6XCavvxSBKQtJUXsOTki/smuQreNQNypqV1zudUq3qQkERBnZqa0Wiwio0aJa/ZscezbFyznq6++kqqqKmltbVVxUpqUJqVJaVKalKYE0xR4lhv4VFRUSDzRrCPkF7/4hZjNZqmurg7r+AkTJojJZJL09HQ59thjVUeIInjx3H///ZKTkxP3iyce2O12eeSRR7okNj2hlX/xKDdWZUTLbqR29F63Eo7WVpGjjgre9Hf5nHaaSEejIFKMHje96zNyzotVOVHPeX//e+jrDETefjvmfijii9Hjpnd9WvqXqG09vbTzoulL2EyZcsj8fCPI8yDNh8rfR/j4jjtO5px2muSlpQUfnFgsFsnPzw8+DDIKes8LkaB3bSrnaWtT3d/2ToweNz3r08o3rTtCNJsa6/zzzwdg5syZYR0/depU/vCHP9Da2hockqRQALz33nvB+fGMRnp6OldccQXp6elauxISrfyLR7mxKiNadiO1o/e6pQtEwGYL71iLBX7/+4O3DxsGEyZAx5yikWL0uOldn5FzXqzKiWrOu+wy0l94IfQBeXkwZkzM/VDEF6PHTe/6tPQvUdt6emnnRdOXsLnzTti8Gf70J+i0Rsha4FXgdmAg8Gfg226aNu/ezdUVFXzjdvMGcB7++cnnzJnDuI7ptYyC3vNCJOhdm8p52tpU97e9E6PHTc/69OxbLDGJdKxmEme++uorzjjjDI455hiqq6vp07Fo2pG47777ePLJJzGZTMHFahS9k40bN3LaaacF/66oqODUU0/V0COFQmEIHA545RWYOhWGDIEPPwzvvOpqGDoUzGb47W/hrrtg5EgwmWLrr0LRW3jpJbj11tD7/vtf+POf4+uPQqFQKELT3ExDURG7HniAIqDkgN0m4BfAXcCvgaQeFPElMBWYm5ZGrd2OxWKJyGWFQqFQKBSxR+tnuZqNCDn99NPZsmULn332GUlJ4Td9Hn/8cVauXMmSJUti6J0ikTByD2ZLS4uuR7xo5V88yo1VGdGyG6kdvdctTaio8I/eGDAA/vhH/1uNH38MHYuSHZEhQ+DVV2HbNuhYyDnanSBGj5ve9Rk558WqnKjmvLY2Wi688OCdmZlwhDeC9V63FKExetz0rk9L/xK1raeXdl40fekRGRk0XXstZwAvh9gtwCLgCuBE4BGgu3M+/BCYBlS53bSNH+9vtxkAveeFSNC7NpXztLWp7m97J0aPm5716dm3WKJZRwjAiSeeyNChQ0lNTe3WeSNGjGDkyJEx8kqhUCgUvY4NG+D002HaNGhu/m67CBQXh2/n+uth4MDo+6dQKOC442D+fPjiC7jhBkhJ8W8fN67LNCyHZcMGuPlmWLs2Zm4qFAqF4jvaj7Dffeyx/B/Q0wmucoDsV16BH/wAfvELeOcd8Hp7aE2hUCgUCoWR0WxqLIUiUrQeTqVQKAyECAwfDl9+efC+3FyorQWDjjxTKBKW3bv9HZU33eSfli4cbrrJP3IL4Nxz/aO/fvtbSE6OnZ8KhULRC3G5XOTm5uJyuQ55jMViYdeuXUyYMIHr5szh8mgVPmgQ3HEH3HYbHHtstKwqFAqFQqGIEK2f5Wo6IkShiAannHIKKYG3Qg2Gx+Nh8+bNeDwerV0JiVb+xaPcWJURLbuR2tF73Yo7JpN/TY9Q2Gwwe3Z8/TkERo+b3vUZOefFqpyY5rzjjoN//COsThCPx8Pm8nI8c+d+t3HFCrj6av+0djq5xhVd0XtOiBS969PSv0Rt6+mlnRdNX3qKxWJhzJgxhz1mzJgx5ObmMvuRR/j1IaYTXQ9s6W7htbXw97/D8cfDtdfCZ5/5X3pJALSOWyzRuzaV87S1qe5veydGj5ue9enZt1iSsB0hIkJ9fT01NTXU1NRQX1+PGtzSO1FrhGiHkefLV2uE9EKuuy709DpmM3zzTfz9CYHR46Z3fUbOebEqR1c575NPaAn14kRtLaSlReSfIjboPSdEit71qfnytbOZ8GuEdFBSUkJ+fv5BC5lbLBby8/MpKelYRr1fP0zPPkv7KaccZONPwEnApcACjjzVVhc8HnjjDf8IwDPPhOef7zoFqg7RQ9xihd61qZynrU11f9s7MXrc9KxPz77FkoSZGmvNmjUsWrSIzz//nA0bNlBbW4v3gLk/k5OTGTRoEGeccQZnnXUWv/zlL/nxj3+skceKWKP1cCqFQqFzNm70T5vzu9/BBReEd05hIRQV+f9/zDH+KRVuvx1OOCFmbioUijjQ1gaDB0Nd3cH7Bg+GLVvU9FgKhUIRI1wuF3Wd8m///v0P6hwB/KM2li3D8eijpC9cyGbg9AMOyQPGA78Hju6JMzk5/rWi7rwTTjqpJxYUCoVCoVD0EK2f5ep6REhlZSX33nsvAwcO5KyzzuKBBx5g3rx51NTU4PF4EJEuH4/HQ01NDfPmzeOBBx7grLPOYuDAgdx7771s3LhRazmKGGGxWMjMzATA5/Nht9uDo4McDgdtbW0AtLa20tzxBpDX68VutwdtNDY2BoeDtbS0BHtEPR4PjY2NwePsdnuwA665uZnW1lYA2tracDgcgH+0kt1ux+fzAdDU1BScG9ftduN0OgFob2/HbrfT3u5/r8npdOJ2uwH/zUJTU5PSpDQpTd3V5HbDW2/hHD0a949/DFOm4HruufA1jRsHP/853tdew/7ll/Cvf8EJJ6g4KU1KU6Jrevdd7C4X7WZ/09eZlYW7YxSI6847aeo4J6E0GTFOSpPSpDQZUlNycjJ5eXn069ePY489FovFElpTeztccAE7n36akywWxgFpaWlkZWUBYDabsVut/J/ZzCBgXFYWnwVyucVCU+CeMCkJu9WKdEy35cjOpi011a+prY3mF1+Ek0/Ge/HF2N98M7i4em+Pk9KkNClNSpPSpDTFS5NW6LIjZMmSJVx88cWcfvrp/Pe//6Wuru6gTo9DceBxdXV1/Pe//+WHP/whF198MUuWLImjEkU8uP/++ykoKACgvr6eoqKi4MVZUlJCZWUlAKWlpcyfPx+A2tpaigJvfQPFxcVUVVUBsHDhQhYuXAhAVVUVxcXFweOKioqora0FYP78+ZSWlgL+TrvA0G63201RURH19fUAzJ07l/LycgDWrVvHrFmzAH9yKCoqCiajWbNmsW7dOgDKy8uZO3cudrudf/3rX7rVZLfbefTRR3m1Y+HZcDRFI052u50nnniCBQsWxCxOr776KpMnTw76EC1NmzdvpqioKPgD0NM4LVy4kMmTJ/PFF1/0uO7985//xG63xyxO3dUUlevp9NPh6quZNXQo684806/JZmNux3FH1FRZCStWUHvuuRRNm6YPTZ3q3sqVK5k8eTLLli1L7Dgd4nqaPXs2kydPZuvWrbrUtGzZMiZPnszKlSu7lcsjjdOXX37J5MmTWbBgQUzjFIu8Z7fbefjhhyOO0zvvvMPjjz+O3W7vUd2r/elPKSospPbXv/Zruu46f47o04fy008PX9OcOYeMk96uJyPkiFdffZVHH30Uu91uGE2d47Rs2TL+85//YLfbdalp9uzZPPbYY9jt9rjXvXjkvZUrV/Lf//4Xu90eNU3vvPMOkydPDrb3ehonu93Ok08+GTyuR3mv43sNfEeJlCPKysoYeu65rAbOPPNMrrvuOgCys7MpLCwkOzsbN5B23XXcc+aZ/BRYNmIEc8eO9Wvq14+iwsJgh3fJuHFUDhvm1zRyJPMv9y/LXvvNNxRt2uRfa+rf/6Z46lTNc4SR857dbuexxx5jdse6XHrTZLfb+c9//sOyZcvC1gTRuZ6mTp3Kv//9b+x2e0Lduy9cuJAnn3wSu90ecZwizXt2u51//vOfhm8bGU2T3W7nv//9LytXrjSMps5x0nPe27p1K5MnT2b27Nma1D3NEB2xZs0aufDCC8VsNovZbBaTySQmk0nMZrOcfvrpcuedd8rzzz8vn376qWzdulUcDod4vV7xeDzicDikqqpKli9fLtOnT5c777xTTj/99IPsmM1mufDCC2XNmjVay1VESEVFhQBy0kknSU5OjlRUVIjX6xWbzSbt7e0iItLY2Chut1tERFpaWqSpqUlERDwej9hstqAtu90ubW1tIiLS3Nwszc3NIiLS1tYmdrs9eJzNZhOPxyMiIk1NTdLS0iIiIm63WxobG0VEpL29XWw2m3i9XhERcTqd0traKiIiLpdLHA6HiIj4fD6x2Wzi8/lERMThcIjL5RIRkdbWVnE6neLxeGTLli1SX1+vS00ej0e+/vpr2b9/f9iaRCTiOHk8Htm0aVPQv1jEaf/+/VJdXS1utzuqmlpbW+Wrr74K+tfTODkcDqmurpbm5uYe1b36+nqpqqoK5s9YxKm7miK+nj78UHxmswiIIytLXGlpIiCtFos4H3ggMTUdUPeampqkurpanE5n4sbpMNeTzWaT6upqcblcutTkdDqluro6eA2GoykacWppaZHq6mppbGyMaZxikfc6/45FEie73S6bN28Wj8fTo7rndrvlq6++8vu3bp04brtNXFlZInfcEb6mzz+XpowMkV/+Ujzz5olt376INMWjHRFunET0mSP2798vX3/9tXg8HsNo6hwnp9MplZWV4vF4dKnJZrMFv/9417145L2mpibZuHGjeDyeqGmy2+1SXV0d/E3raZw8Ho9UVlZ2yWER5b0YxSmW19M111wjgKSlpUlWVpYAYjabxWq1itlsFkCysrIkLS1NRgXae5mZIiDepCSxWa3SbjKJgDRmZ4s7NVUEpKVPH38uB/EkJ4vNahXxT8ol9qOPlrbrrxdZuVKam5pU3ouSpkDdC9w7BvzTm6bAdRf4zuOZ9xoaGuTbb78Vj8eTUPfuDocj+DsWaZwizXsej0eqqqqkvr7e0G0jo2nyeDyycePGLs9LEl1T5zjpOe+5XC6prq4Wm80W17oXeJYb+FRUVEg80c0aIXfccQclJSW0t7cjIphMJi688EKuvvpqrrjiCvr169cju/X19bz33nu89dZbLF68OGjbbDbz+9//nmmd3vhVJBZazyunUCh0hgiceips2nTwvmOOgR07oGNaBIVCoaC+3r+Q7oAB4R1/663w0kvf/T10KNx9N9xyC2Rnx8ZHhUKh6KW0tLQwbtw45s2bF5yy41C8BYwNsT3wlKUn02C0Dx+O+a674NprIT29BxYUCoVCoVAciNbPcnUzNdYLL7yAz+cjKyuL++67jy1btrBo0SJuu+22HneCAPTr14/bbruNhQsXUlVVxb333ktWVhY+n48XXnghigoUWlFQUEBGRobWbsSE5uZmZs+eHZxTT29o5V88yo1VGdGyG6kdvdetHmEy+Re+DMXevfDuu/H1JwYYMm6d0Ls+I+e8WJWj65zXr1/4nSANDdAxTDxIVRUUFsLYUI/fFNFA7zkhUvSuT0v/ErWtp5ecF01ftCI9PZ3Zs2djs9morq5m6dKlIY8zdXzaQ+ybB3wfeALY383yzevXw223IQMHwl/+At9+200LPSPR43Y49K5N5Txtbar7296J0eOmZ3169i2W6KYjJCsri8mTJ7N9+3YeffRRhgwZEvUy8vLyeOyxx9i+fTuTJk0KLrCtSGw6L95jNMxmM1arFbNZN5dqF7TyLx7lxqqMaNmN1I7e61aQtjaYN88/2iMcbrgBDuwYPecceO01GDMm+v7FmYSJWw/Ruz4j57xYlWOYnPfCC3CoN5JvvbVnNhVHRO85IVL0rk9L/xK1raeXnBdNX7TGYrGQl5fHiBEjsFgsB+0X/KNBTgQeBRo67ZsCbAXuAwYCtwBfdLN8k90OTz0FJ50El1wC8+dDxwKzscAocQuF3rWpnKetTc3begpNMHrc9KxPz77FEt1MjdXQ0MDRRx9t+DIV0UPr4VQKhSKGbN8Ozz/vf/i4dy+UlsL554d37oQJ8MorcN11/v//6Eex9VWhUBgbjwdOPBE6Fh7swsCBUF0NKSnx90uhUCh6GQUFBcyZM+ewx6QBVwOXAdfi7yg5kLOAu4D8juO7zeDBMH48/P73/tGFIXC5XNTV1QX/7t+/f8iOHIVCoVAoehNaP8vVTbePFh0SqhPEGAwfPpxUg87739bWxvr162lra9PalZBo5V88yo1VGdGyG6kd3dat//0PrrgChgyBhx/2d4IATJkSvo2HHoKdO/2dKAbrBNFt3KKE3vUZOefFqhxD5Ly6OjjuuND77rpLdYLEEL3nhEjRuz4t/UvUtp5ecl40fdETJSUl5OfnH7ZDwQ28BlxD6E4QgM+Bm4BBwES6jiIJi23b4K9/heOPhxtvhFWrQASXy0VlZSUjRoygT58+DBkyJPjJzc2loKCAlpaWw5o2YtwC6F2bynna2jTs/a3isBg9bnrWp2ffYoluOkIUip4yatQow75d43K5WLZs2REXCNQKrfyLR7mxKiNadiO1o9u69cwz/qmwDpzu7p13YPfu8Gz07w+5udH3TQfoNm5RQu/6jJzzYlWOIXLe8cf7H3KVlcE110Bysn+7xQK33Ra+nUmTYPHi8Kf6U+g+J0SK3vVp6V+itvX0kvOi6YueOHDdkMOtHRIODcDjwI6eGnC7/dOvjhhB1VFH8cesLH586qmsWrXqoENdLhdz5sxh3LhxhzVpxLgF0Ls2lfO0tWnY+1vFYTF63PSsT8++xRLdTI2lUHQXrYdTKRSKGPDxx3DppaH3TZ4MDz4YX38UCoXiQHbuhGnT/GsYPfZYeOdUVkKgjXLqqfDHP8L110N6euz8VCgUil6Ay+UiNze3xw9yzgFWRtGf/UAJUIx/fZIDsVgs2Gw2w77Ip1AoFArF4dD6Wa4aEaJIeCwWCyaTSWs3YoJ0DLHWa3+lVv7Fo9xYlREtu5Ha0W3dGj0ahg4NvW/6dP9c/b0Y3cYtSuhdn5FzXqzKMWTOGzgQ/vnP8DtBAJ599rv/b9wId9wBgwbBPfeA1xu5TwZF7zkhUvSuT0v/ErWtp5ecF01f9I7FYmHMmDGHPeaKK65g48aNnH322Qft+/1hzvsrsLab/vQF7gG+BT7Av1ZJ54cuB64dciBGjpvetamcp61NXbX1FHHD6HHTsz49+xZLErYjpKmpiY0bN1JWVsby5cvD/iiMx/33309OTo7WbsSExsZGHnvsMRobG7V2JSRa+RePcmNVRrTsRmon7rFzu8M7zmz2L3B+IBkZ8JvfQHNzdP1KMPSeEyJF7/qMnPNiVU6vzXmdsdng1VdDb1+58rupthQHofecECl616elf4na1tNLzoumL4nAodYOsVgs5OfnM2vWLIYNG0Z5eTmbNm3qcszd+DtDDuzw+BB4FPgx/lEjM/GvPxIuZvydIB/g7xS5B38nyZHYu3cvjz32GBs3bqSmpsZQU5bovU6qnKetzYRu6yl6jNHjpmd9evYtliTU1FhOp5OioiLeeOMNvv766273WplMJrzqrTvDEBhO1b9/f+rr69mwYYPhpsby+XzU19fTr18/kpKStHbnILTyLx7lxqqMaNmN1E5cYtfe7p/qaupU2LMHPv8cwhm9tX+//41rlwt+8AP/YsQ33ADZ2bHxM4HQe06IFL3rM3LOi1U5vSrnHYonn4R77w297/XX/euOKEKi95wQKXrXp6V/idrW00vOi6YvicSBoy369+9/UOdITU0NQ4YMCXn+COAu4CrgSvydIZ3pB3x9773kzpkD27d33z9gNjD6vfcYcMAolpaWFsaNG8f8+fPJzs6mvr4en88XHPFSUlJCeoJPp6j3OqlynrY2E7qtp+gxRo+bnvVp5ZvWU2MlTEfI2rVr+c1vfsPujsVye+K2yWTC5/NF2zWFRmh98SgUikOwbx+UlEBxMVRXf7e9vBxCTEkQkmnT4JRTYOTI8DpPFAqFQo/4fP7p/rZtO3hf//7+7amp8fdLoVAoeimH6wgJ0A/YB7SH2FddXU3eoEE8ccEFnLFiBaN76shPf+p/2Sc/HywWCgoKmDNnziEPz8/PZ/bs2T0tTaFQKBQKXaD1s9yEmBpr3759XHzxxezatQsRQURITk7m5JNP5mc/+xkjR44M63P++edrLUURA26++WYyMzO1diMmNDU18fLLL9PU1KS1KyHRyr94lBurMqJlN1I7MfsOGxrg+OPhvvu6doIATJkSvp3x42HUKNUJcgB6zwmRond9Rs55sSrH8DnvSJjNMGMGXHHFwfnsjjvC7wSpr/d3qvQy9J4TIkXv+rT0L1HbenrJedH0xWiEGiVyIPWE7gQB/6gTl9fLg198wcXAIcb7HZnVq+Hmm2HQILx/+Qvr330XgMzMzJD3t/PmzUv4abL0XidVztPWZsK29RQRYfS46Vmfnn2LJQkxKfF//vMf9u3bh8lkIisri3//+9/ceOONhn34regeNTU1hp3yLDk5mby8PJJ1On+4Vv7Fo9xYlREtu5Haidl3ePTRcP758MknB++bMwf++1//MYoeofecECl612fknBercgyf846EyQQXXOD/VFf7O4RffNG/3tEdd4Rv57rroKoK7rwTxo2D3NzY+awj9J4TIkXv+rT0L1HbenrJedH0xWgEppo63OiL4cOHs379+pD7fvCDH3DssccGOyWujNShfftIfuopKvFPxfW818u2EPe3gWm/8vLyIi1RM/ReJ1XO09Zmwrb1FBFh9LjpWZ+efYspkgCcccYZYjKZJCkpST799FOt3VHohIqKCgHEYrFIZmamVFRUiNfrFZvNJu3t7SIi0tjYKG63W0REWlpapKmpSUREPB6P2Gy2oC273S5tbW0iItLc3CzNzc0iItLW1iZ2uz14nM1mE4/HIyIiTU1N0tLSIiIibrdbGhsbRUSkvb1dbDabeL1eERFxOp3S2toqIiIul0scDoeIiPh8PrHZbOLz+URExOFwiMvlEhGR1tZWcTqdIiJKk9KUeJreekvaUlJEQJrT06U5PV0EpC0lReyPPJKYmowYJ6VJaVKatNFkt4ssWhS+prVrpdViEQFxpaWJ45hjRG6/XXzr1+tHkxHjpDQpTUqTYTXt3btX8vPzJSMjQ6xWqwACyDHHHCMFBQWyceNGSU9Pl/T0dAEkJSVFcnJygsdZrVZJTk6WM0GaMjKkpU8fERB3aqo0ZmeLgFRbLLLHahVvUpIIiDMzs2suz8oSAfGZzWKzWsVnNouAOLKyZHNamtwHMqDjPheQpKQk+eqrr3pVnJQmpUlpUpqUJuNpCjzLDXwqKiokniTE1FjV1dWYTCZ+/vOfc+6552rtjkJnjB07lquuugqA+vp6ioqKcLvdAJSUlFBZWQlAaWkp8+fPB6C2tpaioqKgjeLiYqqqqgBYuHAhCxcuBKCqqori4uLgcUVFRdTW1gIwf/58SktLAaisrKSkpAQAt9tNUVER9fX1AMydO5fy8nIA1q1bx6xZswBwOBwUFRXhcDgAmDVrFuvWrQOgvLycuXPn4na7Wbx4sW41ud1u3n33XWbOnBm2pmjEye12M2vWLD766KOYxWnmzJmUl5cHfY2Wpq1bt3Y5rqdxWrJkCeXl5WzYsKHHda+0tDT4XUY1Tlu2UNWxFsjC0aNZONo/e3LV0KEUNzdHNU7duZ4i0qSTHLF69WrKy8tZsWKFYTR1jtObb75JeXk5O3fu1KWmFStWUF5ezurVq+Na9zZv3kx5eTkfffRRTOMUi7zndrtZuHBhxHGaN28es2fPxu1296juBXwNHKdpjrDZ4Be/CD9Ob79N+YgRfk1nnsmsK6+E55/HMWqU4fPezJkzeffdd3G73YbR1DlOK1asoKSkBLfbrUtNb775ZrA9Gu/f3HjkvdWrV/PCCy/gdrujpmnevHmUl5cH23s9jZPb7ebVV19lyZIl3dKk27yns/be4sWLmT17NmvXrqWwsJDq6mqqq6v585//zEMPPUR6ejqjR49mdEcbdujQoUyYMCGoqbCwkEGDBtECFF9+OUtGjvRrGjaMknHjAOjzyScUFxbyUL9+7ADmjh3bNZdfd51fU3Y2RYWFOLKzAZh5/fWsu+IK/pGWxisjRvC3sWP5GdCvXz/efvvthI6T2+1m7ty5vPnmm2HFKd6a3G43JSUlrFixImxNEL3r6cMPPwy2mxLl3n3JkiW8+uqruN3uiOMUad5zu92UlpYavm1kNE1ut5sXXniB1atXG0ZT5zjpOe/t3Lmzyz14uJqiFSfNiGu3Sw/JzMwUs9kst99+u9auKHREoBdxwoQJcuyxxxpyRIjD4ZCpU6fKjh07dKnJ4XDIlClTZNeuXWFrEom8FzxQ7p49e2IWp127dklxcbHY7faoatq/f78899xzwXrQ0zjt2bNHiouLpaGhoUd1b8eOHTJ16lRxOBxH1lRXJ/LII9L41lvhx+nhh78bEZKdLVJQIG3Llom903GJ8LZCF006yBH19fVSXFwse/fuNYymznHavXu3FBcXi81m06WmvXv3SnFxsdTX18e17u3bt0+Ki4tlz549MY1TLPJe59+xSOJUV1cnU6ZMEYfD0aO6Z7fb5bnnngvaT5gc0dgozmOOCf0W8U9+Irb9+w2d93bt2hWMu1E0dY7T3r17g20CPWravXt38PuP929uPPJefX198PuPlqa6ujopLi6W/fv3RxSnA9u6vSrvHUZTvNp7ra2tkpube8QRIYBkZGTIoD595H6QbwMjQkaNkvb2drn++uslKSlJkkDGZmbKR2GMCNnVv79MmTBBHFlZ0mqxiDMzUwRkbVKSbP3nP6W94ztLxDgF6vXu3bt1WfccDoc899xzsnfv3rjXvdra2uC9WSLdu+/Zsyf4OxFpnCLNe53bnEZuGxlNU+C6q6+vN4ymznHSc96z2WxSXFwsu3fv7lUjQkwiItp1w4THsGHD+Prrr7nuuut49dVXtXZHoRM2btzIaaedFvy7oqKCU089VUOPFAoDIQJlZTB1Krz1FrS1wTnnwMqV4Z2/d6//+FtugVtvhf79Y+uvQqFQGJHnnoO77w697+WX4aab4uqOQqFQ9BYKCgoOu45IKMzArhde4NiTToLzz6elpYVx48Z1sXMycCdwE5DTE8eysuCGG2DCBOh0L6xQKBQKRSKg9bPchJgaa/To0YgIX3zxhdauKHSI1WrFbE6Iqtxt2tvbsdvttLe3a+1KSLTyLx7lxqqMaNmN1M5hz//sM/jRj+DnP4dZs/ydIODvGOkYCnlEjjkGtmyBv/1NdYJEEb3nhEjRuz4j57xYlZMQOU/P7NoFoRYwPPpoyM+Pvz9xJmHjFiZ616elf4na1tNLzoumL72VkpIS8vPzsVgsYZ+TarGQc/31cP75AKSnpzN79mw2bdoUPOZr4E/AQOAuwHOAjXazGbvVSvuh7m+dTv+LSqef7i9n9uzv2uo6R+91UuU8bW322rZeL8focdOzPj37FksS4unxnXfeSVpaGl9//TWLFi3S2h2FzigsLCS7Y05Vo3HgnHx6Qyv/4lFurMqIlt1I7Rz2fKsV1q8PfeLUqeEXYjL1xDXFYdB7TogUveszcs6LVTkJkfP0zL//Ddu3w0MPde1Uvv12CPfhXGkpTJoEu3fHxMVYkrBxCxO969PSv0Rt6+kl50XTl95KoBPDZrOxceNGzu5Y/+5wjBkzJmTHSV5e3kHbm4F6IOWAYw9cM+SwfPopXHMNHH88PPAAbNt25HM0RO91UuU8bW322rZeL8focdOzPj37FksSYmosgGnTpnHnnXdyzDHHsHjxYjUFkiI4nMpqteJwOPjyyy8NVy/a29txOBxkZ2frctSLVv7Fo9xYlREtu5HaOeL5o0b5H54dSJ8+/jeUrdZul6mIHL3nhEjRuz4j57xYlZMwOS8RaGuDt9/2d0i//rr/wVc4/PrX8MEH/pElY8f6p9o655yE6Kw2RNwOg971aelforb19JLzoumL4jtsNhuXXnopq1at6rLdYrEwZswYSkpKSE9PD3luqKm2lgKjDjiu3WzGnp2N1eHA3N23dM1m+NWv/NNmXXyx/28dofc6qXKetjZVW693YvS46VmfVr5pPTVWwnSEALzyyiuMHz8ek8nEHXfcwdixYzn99NMNOxpAcXi0vngUCkPz1ltw9dWh9z31FBQWxtUdhUKhUPSAqir4/vf96z515kc/giefhAsu0MYvhUKhSGBcLhd1dXXBv/v373/EKbQC64XMmzcPl8tFFrAa/5ohB/I88D4wAbiUHk7jceKJcMcdMG6cfzpFhUKhUCh0gNbPcvXVHXUIkpKSSEpKYty4cbS1teFyuXjmmWc4//zzyc3NDe4/0ic51BzLioRn/PjxZGVlae1GTHA6nUybNg2n06m1KyHRyr94lBurMqJlt9t2RPzD5z2e8M6/4go47riu2wYPhkcfheuu67njiojQe06IFL3rM3LOi1U5muW8GPmRcEydenAnCMDataHXHtEZRo+b3vVp6V+itvX0kvOi6YviYCwWC3l5ecFPOOuIdJ5qq7q6mi+rq0mrqqLtgw/giiuQjrdxnVlZbBo/nuVZWfwaGAo8in8arW6xdStMnAiDBvkXVy8rC/17EEf0XidVztPWpmrr9U6MHjc969Ozb7EkITpCAoNWAv+aOg3lF5FufRTGY/369bQlyAJx3SU1NZXhw4eTmpqqtSsh0cq/eJQbqzKiZTdsO04nFBfDD3/oX1DxvffCOz8lxT8HvckEl14K8+f73yyeOBH69YvId0XP0XtOiBS96zNyzotVOXHPeTH2I6FoboaSktD7zjgDzj03vv70AKPHTe/6tPQvUdt6esl50fRFEV26dKKceCKpl10G776LqaYG/vY3POedR3mn+9sa4K/AIKD2scf4+qijuleg2w0zZ8LPfkbbqafimTIFmpqiKypM9F4nVc7T1qZq6/VOjB43PevTs2+xJCGmxorWXGUmkwmfzxcVWwrt0Xo4lUKhazZu9L8J/OqrXW92Ro2CpUvDs1FfDw4HDB0aExcVCoVCEUOmT4fx40Pve+EFuPXW+PqjUCgUiiNSU1PDkCFDQu47++yzWbVqFT/EP23WLUBaD8poNptxFxSQcc89pJ15ZgTeKhQKhULRPbR+lpsQI0La29uj8lGdIMZk1KhRYQ1HTkRcLhfLli3D5XJp7UpItPIvHuXGqoxo2T2inaee8neEHPjG17JlsHFjeH7066c6QXSG3nNCpOhdn5FzXqzKiVvOi5MfCcXVV8N//uOfJ74zublw7bXh2Whvhy1bou9bmBg9bnrXp6V/idrW00vOi6YvivjS1tZ2yPvbwCLtXwJ/APb2sIyM9nb6vv46aT/6EZXHHIP71VchDjMs6L1OqpynrU3V1uudGD1uetanZ99iSUJ0hCgUhyMvL8+w6794vV5qamrwer1auxISrfyLR7mxKiNado9o5847D31ycbHu65YiNEaPm971GTnnxaqcuOW8OPmRUOTmwl/+At9+CwsWwMUX+7f//veQnh6ejcWL/Yutjx4N8+ZBnF8qMnrc9K5PS/8Sta2nl5wXTV8U8cXn84V1f/sr4PgolDesvp60m26CE06Av/0Ntm+PgtXQ6L1OqpynrU3V1uudGD1uetanZ99iSUJMjaVQhELr4VQKhe455xwoLz94e1YW7Nzp/1ehUCgUvYdvvvHn/uOOC+/4K67wd4AEOOEE/3Rbt96q1otSKBSKGHC4qbE68wFwWYjtLuBJ4AZgcE8cMJvh17/2v1T1y1/6/+5s3+Wirq4u+Hf//v0NOzuDQqFQKKKP1s9y1YgQRcLTv39/kpKStHYjJvh8Purq6nQ7rZtW/sWj3FiVEbHdjvPCshNqVIjJBCNH4quv13XdUoRG7zkhUvSuz8g5L1blRMtmpHb0Xrfixkknhd8Jsn07zJ9/8Lb/+z/4wx+i71sIjB43vevT0r9EbevpJedF0xdFfPH5fGHd394C/B9w4PiNOcDfgROBy4GPgPbuONDeDu+/D5dc4v/NePJJ2LePlpYWCgoKyM3NZciQIcFPbm4uBQUFtLS0hKVNz3VS5Txtbaq2Xu/E6HHTsz49+xZLVEeIIuEZP348WQZ9s93pdDJ9+nScTqfWroREK//iUW6syuix3TVr/G/gnnoqeL3h2bnqKjj6aP//jz4a7r8ftm6F+fNx9u2r67qlCI3ec0Kk6F2fkXNerMqJls1I7ei9bumSadP8D8RCcahF2KOM0eOmd31a+peobT295Lxo+qKIL62trWHd3+4FHsHf4fEb4JOO7VM7/m0HFuAfNfJ94HGgobvOVFXBvffCwIF8MWwYNXPmHDSXvMvlYs6cOYwbN67LtpqamuAncI7e66TKedraVG293onR46ZnfXr2LZaoqbEUCUtgOJXFYsHtdvPVV18ZbmosEcHtdpOWlobJZNLanYPQyr94lBurMrplt6UF5syB4mJYvfq77e++i4wZE56d55/3zwU/dix0Grau97qlCI3R46Z3fUbOebEqJ1o2I7Wj97qlO1wuOP54aAjx2GzYMKio8I8wjDFGj5ve9WnpX6K29fSS86LpiyK+VFdXM2zYMNxuN919VDMY2HaY/WnAVcAE4Gc99G8tUAy8DnQeA2KxWNi1axcTJkxg3rx5XTpMLBYLY8aM4aWXXiIpKUm3dVLlPG1tqrZe78TocdOzPq1803pqrITtCGlqamLDhg00NDTgdDppP9Qbawdw4403xtgzRbzQ+uJRKGJKWxsMGQK7dh28b/Ro+OSTg7crFAqFQhENtm6Fq6/2j0Y8kClTQk+9qFAoFIqICXeNkEj5D/CXCM5vBF7B3ymyuWPb2WefzapVqw55Tn5+PrNnz46gVIVCoVAkOlo/y024qbFef/11zjnnHKxWK+effz5XXnklN910E7fccssRP52HayqMQ2FhIdnZ2Vq7ERMcDgdPP/00DodDa1dCopV/8Sg3VmWEbTc11b9AYSgWLsTx5ZcR+af3uqUIjdHjpnd9Rs55sSonWjYjtaP3uqU7TjzRPxKxvBxuuMH/mwT+hdZvuCE8GyL+xdafegpsth65YfS46V2flv4laltPLzkvmr4o4ktzc3PM7m/PPvtsAEzAmAht5QB/BDYBS4CxwJrDdIIALFmyhKeeekq3dVLlPG1tqrZe78TocdOzPj37FksSpiOktbWVyy+/nBtuuIHPP/+c9vZ2RCTkBzjsPoWxWLZs2UFzlRoFi8XCqFGjsHSa0khPaOVfPMqNVRndsjthwqHtvPZaRP7pvW4pQmP0uOldn5FzXqzKiZbNSO3ovW7pEpMJzj4bXn0VduyAf/8b7rvP3xkSDsuXw7x58Je/wKBBcPvtsGFDt1wwetz0rk9L/xK1raeXnBdNXxTx5fjjj+ezzz6L6v2txWIhPz+fkpISAEYDQw9x7JeAp5v2LwDewr9w+2Rg0CGOa2xs5PTTT9dtnVQ5T1ubqq3XOzF63PSsT8++xZKEmRrr2muvDQ6jtFgsXHDBBVRXV7N582ZMJhM33ngjTqeTbdu28eWXX+LxeDCZTGRkZHDllVcG5zubMWOGljIUUUTr4VQKRcwRgR//GNatO3jfaafBl1/GZY52hUKhUCi6zdVXw1tvHbz9/PPhf/+DlJT4+6RQKBQJQEFBAXPmzDnk/rPPPptly5ZhsVhwuVzU1dUF9/Xv3/+g7Z235ebmMszl4u/A5UBSJ7ttwAkd/78VuL3T393BB8zHv3D7/4DOD5yqq6vJy8vrgVWFQqFQGAGtn+UmxIiQVatWMXv2bEwmE9///vfZtGkTH3zwARdddFHwmBkzZjB37lxWr15NfX09TzzxBJmZmTQ3N7N3716eeeYZ1QliUC655BL69OmjtRsxobW1lY8//pjW1latXQmJVv7Fo9yYlNHQQOvjj/Pxf/8bnl2T6eBRIRdeCG+9Retnn/HxJ5/02D+91y1FaIweN73rM3LOi1U50bIZqR291y3DsWsXvPtu6H05OWF3ghg9bnrXp6V/idrW00vOi6YvivjS2trK9ddfzzXXXHPQW7qBkR1LliwJ7rNYLOTl5QU/obZ33jZmzBjWAr8FhgD/AvZ02H+74/97gIeBE/FPofVxNzUkAVcAC4Gv8a9F0hfo06cPn3/+uW7rpMp52tpUbb3eidHjpmd9evYtliRER8grr7wS/H9JSQmDBw8+7PHZ2dn8v//3//jiiy847rjj+OSTT7jlllti7aZCI6xWK2ZzQlTlbtPe3o7dbqe9vV1rV0KilX/xKDdqZYjAypX+OdUHDaL9H//AvnEj7V5veOdfey3k5UFhIWzeDIsXw9ixtCclReSf3uuWIjRGj5ve9Rk558WqnGjZjNSO3uuW4Xj+eTjU79xdd4Vtxuhx07s+Lf1LqLZeDGxGw47e65ciNO3t7TQ1NfHCCy9gs9morq4Ofmw2G7NnzyY9Pb3H9ktKSsjPz8dkMrED+DtwPFAAPHHAsT7gfeBS4Hsd+/d1s7zv41+YvRZ41mymZedO2n2+HvsfS1TO09amauv1ToweNz3r07NvMUUSgNNPP11MJpN8//vf77L9D3/4g5hMJjGbzYc893//+1/wmAULFsTaVUUcqaioEEAsFotkZmZKRUWFeL1esdls0t7eLiIijY2N4na7RUSkpaVFmpqaRETE4/GIzWYL2rLb7dLW1iYiIs3NzdLc3CwiIm1tbWK324PH2Ww28Xg8IiLS1NQkLS0tIiLidrulsbFRRETa29vFZrOJ1+sVERGn0ymtra0iIuJyucThcIiIiM/nE5vNJj6fT0REHA6HuFwuERFpbW0Vp9MpIqI0JbKmVatEfvhDaenTR5oyMkRAPMnJYrNaRT76KHxNHT7oQpMR46Q0KU1Kk9KkNEVPU1OTyPHHizs1VRqzs0VA2k0msVmt4j3pJBGfL/E0GTFOSpPSpDT1ak0Oh0NGjhwp+GeuEqvVKsnJyQJIRkaG9OnTRwBJTU2V7OxsAcRkMsmxVqvcnpQkXhBnZqa0WiwiIK60NHFkZYmA+MxmsVmt4jObRUAcWVniSksTAWm1WMR5zjkiL74oXodDxUlpUpqUJqWpl2kKPMsNfCoqKiSeJMRr9Lt27cJkMnHmmWd22W7qNDd+W1tbyHMvuuii4FxjM2fOjJ2TCs245JJLuOqqqwCor6+nqKgIt9sN+N94qaysBKC0tJT58+cDUFtbS1FRUdBGcXExVVVVACxcuJCFCxcCUFVVRXFxcfC4oqIiamtrAZg/fz6lpaUAVFZWBhefc7vdFBUVUV9fD8DcuXMpLy8HYN26dcyaNQsAh8NBUVERDocDgFmzZrGuYy2I8vJy5s6di9frZcOGDbrV5PV6Wbx4cfDaCkdTNOLk9Xp55513+OSTT2IWp5kzZ1JTU8P+/ft7rqm1FTZtonTkSOZffjkA2wYPpqiwEO+0aeHHyWw+SNPSpUupqanhq6++6nHdq6ysxOv1xixOh9UUpTh153oygqY1a9ZQU1PDypUrDaOpc5zeeustampq2L17ty41rVy5kpqaGtasWRPXuvfNN99QU1PDJ598EtM4RSXvHaDJ6/XyxRdfRByn999/P2ivJ3UvoGn//v0xi5PerifNNH36KZSXU/nXv1Jy221+TWlpFBUWUn/bbWA2h6eprIyZL73E4sWL8Xq9hozTypUrmTlzJl6vV5ea3nrrLT7++GO8Xm/c61488t6aNWuYMWMGXq83apref/99ampq2LZtW0Rx8nq9zJkzh6VLl3ZLk8p7ia9p5syZccl7O3fu5JJLLiE/Px+LxUJhYSGDBvmXOb/88ssZOXIkAMOGDWPcuHEApKWlMaGwkD79+pEEzB07lvIRI/yazjyTWddd59eUnU1RYSGO7Gx/nK67jnVnnok3OZmPL7mEt045BW69lfof/civ6auvdBEnr9fLzJkzWbly5WHj5HK5mDFjBosXL6ampoYVK1ZEJU5lZWV4vd6EundfunQpc+bMwev1RhynSPNeoI1o9BxhNE1er5cZM2awZs0aw2jqHCev18vHH3/MWx3r5ulJ0+7du6mpqeGtt97SpO5pRly7XXpISkqKmM1mmTBhQpft9913X3C0R319/SHPv/HGG0OOKFEkNoFexEmTJsmAAQMMOSLEZrPJpEmTZNu2bbrUFPBvx44dYWsSibwXPFDurl27YhanHTt2yKRJk2Tfvn2RacrP7zIipP6oo2TSpEliy80V2batx3HavXu3TJo0Sfbs2dOjurdt2za/HzabelshgTTV1dXJpEmTpK6uzjCaOseptrZWJk2aJA0NDbrU1Pn7j2fd27t3bzDnxTJOUct7nTR1/h2LJE47d+4M5qye1L19+/YFtcUqTnq7nnShqb5eZPZsaT/vPLH17y/ejvb6ETV5vSI/+pHsGDjQH/fZs6XV6dSHpijGKZBTAnb0pimQk202W9zrXjzyXufvP1qaArmqvr4+ojgFcufu3bu7pUnlvcTXFPgtttlscdPU2toqX331lWzZskWWLl162BEhVqtVvkpKEgkxImT/EUaE2KxWmTRpktQOGCAC4k1KEpvVKu0mk8gFF0jjrFni7tCrRZwC111dXV3IOO3atUvy8/PFYrFIVlaWpKWlBWeoOO+882T//v09jlPne7NEuncP3JN2zl09jVOkeS9w/rZt2wydI4ym6cDrzgiaOscpoK+2tlZ3mhoaGoK+9aYRISYREQ37YcLCarXidDoZN24cL7zwQnD7I488wgMPPIDJZOLzzz/nxz/+ccjzb7zxRmbOnElGRgZOpzNebitizMaNGznttNOCf1dUVARH/ygUuqG0FEaNCr3vb3+Df/4zru4oFAqFQqEJu3fDcceFd2x5OZxzTtdtxx8Pd9wB48fDUUdF3z+FQqFQUFNTw5AhQw65fwDwGZAXYt+/gMXABPyLsaf0xIFjj4Vbb4XbboMjrA0bbwoKCpgzZ85hj8nPz6ekpCSidVwUCoXCyGj9LDchpsY6/vjjAdi3r+vSXCeddFLw/2VlZYc8PzAkR6FQKCLG54P33we7Pbzjzz8fhg3ruu2EE+Bf/+rWgrEKhUKhUCQ04XaCAEyZcvC2HTv8LxDs6+5SvQqFQqGIFruAocCvgAVAYIldH/A8sAzIB07AvxB7bXcL2LMHHn4YTjwRLr8cPvzQf/91GFwuFzU1NcGPy+XqbqlHxOVyMW/evCMeN2fOnOBUYgqFQqHQHwnREXL66acjInz99dddtp911lnBdUKef/55vF7vQecuXLiQtWvXYjKZOPHEE+PiryK+3H///eTk5GjtRkxobGzk0UcfpbGxUWtXQqKVf/Eo96Ay6ur8nRdDhsCYMfDqq+EZMpn8b6+aTHDppTTOncujEybQ+Ic/QP/+0fMvzucrtMHocdO7PiPnvFiVEy2bKuf1IvbuhTffBKAxJ4dH77+fxkA7b/Ro6PQiVKKj93qppX+atPV0ZDMadvRevxShSYS4tQMfApcDJwL/Bl4GdnQ6pg7/CJE84ApgISFy+mELaYcFC+BXv4LvfQ8eecTfSdKJlpYWCgoKyM3NZciQIcFPbm4uBQUFtLS0dEvX4b77urq6sDtY5s2b1+3OmN6e86JhKxGuHcXBGD1uetanZ99iSlwn4uohxcXFYjKZJCkpKTjHaYDzzz8/uE7IZZddJmvXrg3Okfbqq6/K0UcfHdz/wAMPaKRAEQsC88qdcsopkpKSEvd55eJBW1ubbNq0KTgXoN7Qyr94lBssY/lykauuEklOFoHvPqecItIxB+IRcThEtm6Nqu+R2tF73VKExuhx07s+I+e8WJWjcp6i2zz8cPC3ti0lRTadcoq0paT4t82bp7V3UUXv9VJL/+La1jNgzoumL4r4onXcqquru8zdfrhPfn6+5Ofnh338ySkpMn3ECHEEcno3P+0pKeIdO1Zk2TKR9vYjlp2fn98t7Yf77rvzvQBSXV0dtbKjhZ5zXjRsaX3tKHqG0eOmZ31a+abWCAmD7du3B+epnDFjBjfeeGNwX1lZGeeee+5hzxcR+vXrx8aNGzn66KNj6qsifmg9r5yil/Dgg4dex2PJErjggvj6o1AoFAqFkXnvPf+bv59/3nX74MFQVQVJSUe24fGA2RzesQqFQqEIcqQ1QgIE1sIAGDduXNijIDKAnUCk8zn4TjqJ+7Zu5SWvl0O9y2yxWLDZbFgslghLC/97CVBdXU1eXl7E5SoUCoXR0PpZbkJMjXXCCSfwl7/8hauvvpr6+vou+8455xxeeOEFkpKSEJGQn379+jFv3jzVCWJQrrjiCsMuRtbS0sJ7773X7WG98UIr/+JRbrCMG27wP0wJRXFxz+1G6HukdvRetxShMXrc9K7PyDkvVuWonKfoNldcAatWweef03LLLbx35ZW0pKfDhAnhd2y88YZ/fvlHHvFPtaVT9F4vtfQvrm09A+a8aPqiiC9ax61///5H7Diw2+3Mnj2b9PR00tPTmT17Njabjerqaqqrq1m6dGnI89LT07nziitIicK9e9I33/Afr5ddwIvAj0Mc43K5qKurC9umynna2lRtvd6J0eOmZ3169i2WJERHCMATTzzBG2+8wf/7f//voH3jxo1jw4YN3HrrrZx44olYLBbS09M57bTT+Otf/0pFRQUjRozQwGuFQpHwDBzoX6gvFO++C7t3x9cfhUKhUCh6Az/9KTz3HFx9Nfz97/D734d/7tSpsH07/N//waBBcO21sGKFf3IVhUKhUBwSi8XCmDFjDrk/Pz8/5PqcFouFvLy84OdQfO8Q2/cDhUBFd5wF0oHfA18Aq4FxHdu6i8vlYvv27TQ1NbF9+/aYLryuUCgUCu1IiKmxFIpQaD2cSpHg7NsHRx0V3rGffAKXXNJ1W1qa/+HMP//pn65DoVAoFAqF9qxZAz/5Seh9//oXPPBAfP1RKBSKBKOlpeWg6a4CHSQlJSVHnI3hcNNI9QVuBsYD3++0/Qngvo7/n9uxfyyQ1gP/7cCrwDTgwyNMURVKa2cCuh988MFuPWtQU2MpFIp4cODIt3BG9WmN1s9yE2ZEiEJxKE455RRSUlK0diMmeDweNm/ejMfj0dqVkGjlX4/L9Xjgrbfgwgv9U2Y0NYVXxi9/CUOH+ncMHQpPPAG1tfDqq93uBInWdxapHb3XLUVojB43vetLuJyng3JUzlNEQo/idrhpK3/3u8idiiJ6r5da+hePso2c86LpiyK+6CFuoaa7stlswemwekpKSgrHnHIKz6akcDLwS+AdwANM73TcCuB64HhgIrC1m+VYgT8ClUD//HzaXn2Vmq+/DjnKY9y4ccyZMweXy0VKSspBzxZcLhdz5sxh3Lhx3RfcDXp7zouGLT1cO4ruY/S4xUpfS0sLBQUF5ObmMmTIkOAnNzeXgoKCsKa7Mvp3fyhUR4gi4VFrhGhHwsyXv2OHf1qNE07wj+JYuhQcDpg1K7wyzGb4z3/8I0O++QbuuQd6uOaQXuaO1nvdUoTG6HHTu76EyXk6KkflPEUkdDtuNhu8/nrofRdeCKecEj3nooDe66WaL187m2qNkN6LnuLWebqraLxhnJ6eHrx3F+B/wO+A/kBViOPrgcfxT6d1CTAP8HWzTMvnn5N6002kn3IKbwwZwgWdHhTabDbmzZsX0r8DWbVqVTdL7h69PedFw5aerh1F+Bg9brHS17kTtzPd6bw1+nd/KBJyaiyXy8XHH3/MihUr2LFjBzabDZ/Px+LFi7scJyK0trYC/rcPjDpqoLei9XAqRYLg8/nX+diz5+B9Z5wB69aByRR/vxQKhUKhUESXjz+GMWOgre3gfXPn6m5EiEKhUBiRw02NFSnF+KfN6intwMcddvaddRZln38eFb8ORE2NpVAoYoXL5SI3N/ewaxhZLBZsNpsup8nS+lluwo0IefLJJznhhBP43e9+x1NPPcXcuXP53//+x7Jlyw46dv/+/fTr14+srCxGjhwZf2cVCoX2JCXBjTeG3rdhA5SXx9cfhUKhUCgUseGSS/xTVz72GHR+ADVgAPzmN+HZaGuDm2+G//1PLa6uUCgUOiIN/7ohkWAGLgPmA7M//5wH8I9IUSgUikShrq7usJ0gcPDaIYrvSJiOEI/Hw69+9SsmTpzIvn37EJHg51AcddRR3HTTTYgIq1atYsuWLXH0WBEvJk2ahNVq1dqNmGC325k8eTJ2u11rV0KilX/dLveOOw697xBzicdKW7TsRmpH73VLERqjx03v+hIm5+moHJXzFJHQo7j16wf33QdbtsAHH8CvfgXjx0O4I8PffRdeecW/Ptgpp0BREcSo3ui9XmrpXzzKNnLOi6Yvivhi5LhZrdaI7t2vAg41OfFCYH837Z0A/AvYDrwJXBKhf5HQ23NeNGwZ+doxMkaPm5716dm3WJIwU2PdeuutlJSUAP4hPjfddBMXXnghr7/+OvPmzcNkMuHzHTxj5MqVKzn33HMxmUw89dRT/PGPf4y364oYERhOlZeXR21tLevXrzfc1Fher5fa2loGDRpEcnKy1u4chFb+9ajcSy7xr/FxIOef718zxNy1XzhW2qJlN1I7eq9bitAYPW5615dQOU8n5aicp4iEqMVNJPxpMEeOhOXLu27r0wduvx2efrrnPoRA7/VSS//iUbaRc140fVHEFyPE7VDTtiQnJzNo0CBqa2vxer3dtvsDoBC4DsjotL0RGIB/2qur8E+d9bMe+O1NTmbloEG8W1vLK14vth7YCHCkqbE6v63dv39/kpOTe3XOi4YtI1w7vRGjxy0W+sKdfvBIeUir717rqbESoiNkzZo1nHXWWQAMHDiQhQsXckrHYod33303U6ZMOWRHCEBubi4Oh4Mrr7ySt956K25+K2KL1hePQkO+/NI/kuOYY2Dy5PDOmTcPrrjC///0dLj2WpgwAX70o5i5qVAoFAqFIoGoqIDTTw+97/bbYfr0+PqjUCgUCUpBQQFz5sw54nFXXHEFH3/88RGneelMNnADMAE4FXgWOPB11x927L8eyAzb8ne0AnPwryXSk1VEDvUAsqWlhXHjxjFv3rygZovFwpgxYygpKQm5ULtCoVB0JlodIVqh9bPchJgaa8aMGcEpsF577bVgJ0i4DB8+HBFh06ZNsXBPoTEFBQVkZGQc+cAEpLm5mdmzZ9Pc3Ky1KyGJq38uF8ycCT//Oc0/+xmz7XaaX3wRWlvDO/9Xv/JPc/HMM7BzJ7zwwmE7QWKlLVp2I7Wj97qlCI3R46Z3fVr5F69yY1GOynmKSIh73A4xXSbgf3kiyui9XmrpXzzKNnLOi6YvivhilLiVlJSQn5/fZaHejIyM4L27xWIhPz+fWbNmMWbMmG7ZdgBTgNOA84GnQhzzJf6OkAEd/34Zht3mjAxmFxTQnJFBH+BmYBWwBriNrqNQeoLL5eLCCy9kzpw5XTp+XC4XCxYs4MEHH+y1OS8atoxy7fQ2jB63cPW5XC5qamqCn+50DsfaN6OREB0hS5cuBeC0007r0aLngwYNAmDnzp1R9UuhD+x2O+3t7Vq7ERPMZjNWqxWzWZ+Xatz8W70aBg2CG26AlSsxt7djtdsx22zw5pvh2UhOhoUL4e67IYx5X2OlLVp2I7Wj97qlCI3R46Z3fVr5F69yY1GOynmKSIhr3JxOePXV0Pt+9jMYPjzqReq9XmrpXzzKNnLOi6YvivhilLilp6cze/ZsbDYb1dXVVFdXs2bNGn7729+yZs0abDYbs2fPJj09PWSnCfhHSpx99tmHLedToBpYu3ZtSBvDzj6byz/4gDOA3+KfPutQBO8xD3i28CPgeWAX8Bz+Dpju0NLSQkFBAenp6axatSrkMe3t7WzevJm2trZuWg8fPee8aNgyyrXT2zB63I6kL5AfcnNzGTJkSPCTm5tLQUEBLS0tmvlmVBJiaqzA1FY33HADL7/8cpd94UyNNWHCBKZPn05ycnJMf1gU8UXr4VSKONLcDAMHQmPjwfvOPhvKy+Pvk0KhUCgUCuMg4l8zbOpUeO896HxfMXMmXHddeHbKyuB73/Mv2q5QKBSKsOm8bgb4186oq6vr1hQwB669YbFYgtPI/AP4e5R8XYF/2qy3Afdh/IHwpwk78DyFQmF8jpQf8vPzmT17dpdtamqsyEiIbp/Ocyf2hKamJgAyM3syO6RC7wwfPpzU1FSt3YgJbW1trF+/XrcdeHHzLyMDbrzxu3JTU1k/fDhtqamwahWsWxf1ImOlLVp2I7Wj97qlCI3R46Z3fVr5F69yY1GOynmKSIhr3EwmuPBCmDsXtm2DBx+E/v39HRpjx4Znw+uF/PzvRrGWlfk7WA6B3uullv7Fo2wj57xo+qKIL0aO25G0WSwW8vLygp+ePP/pbKPz+Sn4p7cKhQPwcsA95hE4F5gF7AAeA048xHEul4t58+Yd0V5qairDhw/H4/Ec8dieouecFw1bRr52jEwixC2SaasOpy+c/NB5PaFokwjffSxIiI6Qfh1vVHV+O6A7bN68uYsdReypq6tj5syZFBYWcu6555KZmYnJZIpJb+SoUaN63Emmd1wuF8uWLYvL/IA9Ia7+jR//XbkWC8tGjcIViPsBI8WiQay0RctupHb0XrcUoTF63PSuTyv/4lVuLMpROU8RCZrFbeBAmDwZtm+HJUsgLS288z74AHbsgLY2/yiSn/3Mvx7ZCy+EXNNM7/VSS//iUbaRc140fVHEFyPHTStt/fv3Z3BaGl8fYv8DwGDgYYuFxZ3vMcOgH3AfUAV8DIwBkjrtr6urC0uvxWJh1KhRMX0gqeecFw1bRr52jIye4xaNaasOpy+c/HDgSLlooufvPpYkxNRYo0eP5n//+x/9+vVj165dJCV999NypKmxduzYwYknnkh7ezvXXHMNM2fOjKfrvZann36aP//5zwdtHzx4MDU1NVEpQ+vhVIoIsdn8HRhXXgmDB4d3zqhRUFr63d/nnedfvPTKK8N/SKFQKBQKhUIRCy6+2L8e2YGkpcHOnXDUUfH3SaFQKBKYaE0BE5h+ZhgwHrgRyAGa8S+o7ug4Lgn4NfDG+efTZ/nyHvlcC2QUFpJ7zz3UeDxh+R+uDoVCET96Mm1Vd+hpflNTY0VGQowIueSSSwBoaGjg1UMtYngI/v73vwc7SC6++OKo+6YITXZ2NhdddBETJ07kzTff5Omnn45ZWRaLBZPJFDP7WiIiuFwu9Npf2SP/Vq+GW26BAQPgL3+B6dPDP3fCBMjKQu66C9eaNUhpKVxzTUw6QWL13UfLbqR29F63FKExetz0rk8r/+JVbizKUTlPEQkJFbdvvw3dCQJQUBCyE0Tv+rT0Lx5lGznnRdMXRXwxcty01BZYkL0S+CMwEP9UWf/ku04Qk8lEisXC+yYTe155BbZswVNYiKOb03APAnKffhoGD6bf+PH8AjjS0wqTyYTFYum1OS8atox87RgZvcYtWtNW6VUf6Nu3WJIQHSE333wzOTk5APzlL3/hiy++COu8f/zjH7z66quYTCYGDBhAQUFBLN1UdGLcuHH873//49FHH+Wqq65i4MCBMSvr/vvvD9YPo9HY2Mhjjz1GY6hFwnVAt/ybNw9+8hM46yz/SJDAD8ZLL/mnkAiHK6+EXbto/Ne/eGz+/Jh+L7H67qNlN1I7eq9bitAYPW5616eVf/EqNxblqJyniISEitu0aYfed+edITfrXZ+W/sWjbCPnvGj6oogvRo6bltrS09OZPXs2mzZtAvwjQV7Ev75HgJycnK7PFoYOJeWpp8hubKStpARfbm73CvX5yPjkExYBXwP/D+h7iEMDZTc3N3evjG6g55wXDVtGvnaMjF7jFq1pq/SqD/TtWyxJiKmxAKZMmcLdd9+NyWQiNTWVu+66i2uuuYbp06fz4osvYjKZsNls7N69m88++4zi4mLWrl2LiGAymZgzZw5jw13oUBF15s6dy1VXXRWTqbH69+9PfX09GzZsMNzUWD6fj/r6evr169dlSji90C3/pkyBP/wh9L433vC/LRmLcntIrMqIlt1I7ei9bilCY/S46V2fVv7Fq9xYlKNyniISEipuzz0HTzzhX1ekMz/+sX80bIjRywfpa2uDlJSQx2qBlt9/orb19JLzoumLIr4YOW490RbtKWBcLhe5ubkhH3AmJSXRr18/HA4H+/bt67oO6e7dcMIJ4PWG5fchywfeAoqBshBlr1ixgqFDh0ZUxqHQc86Lhi0jXztGRq9xi1buOZw+rafG0uq713pqrITpCAEoLCzkmWeeOWgapICEQ21/8MEHmTRpUlx8jBc+n4+NGzeyevVqvvjiC1avXs2XX36Jx+MBYOTIkSxbtqxHttva2pgzZw5vvPEGGzduZM+ePcHFga688kpuvvlmjj766G7ZjGVHSAC1RojOcTj802GFestl5EjoYX1VKBQKhUKh0AU+H3z4IUydCh9/7N/20kswblx45z/xBMyY4Z8K9MYbwaAjnhUKhSJcDtdxEcBisWCz2bp2XByGHs37//DD8Le/hWU/XL7E3yEyE2jq2LZ06dLgg8v+/fuHrUmhUESXeKzDoXVHiFZo/Sw3IabGCvD000/z4osvkpOTg4h06QAxmUzBbYGP1WplxowZhusEee+998jOzuaMM87g1ltvZdq0aaxZsybYCRIJmzdv5uyzz+bGG2/ko48+Yvv27bjdburq6igrK+Pee+/l1FNP5cMPP4yCkuhw8803k5mZqbUbMaGpqYmXX36ZpqamIx+sAd3yLzsbrrsu9L7SUqisjE25PSRWZUTLbqR29F63FKExetz0rk8r/+JVbizKUTlPEQkJF7ekJLj8cvjoI9iyBe6//7AjXrvoa2+H4mLYtAn++Ef/yyO33QZr18ZRwGH8M2DZRs550fRFEV+MHLeeaLNYLIwZM+awx4wZM6ZbHQaB9UIOPOeoo47i3nvv5Zlnnjn4pA8+CGmrChgBvAy0hu2Bnx/i7wjZBTyXmcldN9/M5ZdfzpAhQxgyZAi5ubkUFBTQ0tLSTcuh0XPOi4YtI187RsbocdOzPj37FksSqiME/GtPbN++naeffprRo0eTmZnZpVMkLS2N8847j8cee4yamhpuuukmjT2OPna7PWo/hp2pra3loosuYv369YC/g2nkyJGMGzeOyy+/nD59+gCwd+9errjiCpYsWRJ1H3pCTU0N3giHqOqV5ORk8vLySE5O1tqVkCSbTOSlpYXv34QJB28bMAAeegi6McooHt9LrMqIlt1I7ei9bilCY/S46V2fVv7Fq9xYlKNyniISEjpuQ4fCI49AevohD+mi75NPoLr6u50tLfDii/6ptV56KQ4OH8E/A5Zt5JwXTV8U8cXIceuptkN1XFgsFvLz8ykpKemWvcB6ITabjerq6uBny5YtXHbZZWRnZx980vLl8M47MHp0l83TgVXALfgXYP8z/vVAukMW8Huvl7E1NXzg9XIDYME/GmbOnDmMC3dU4RHQc86Lhi0jXztGxuhx07M+PfsWSxJqaqxD0dzcTGNjIxkZGYZdNLszL7/8MrfccgvHHnssP/3pT4OfTz75hKKiIqBnU2Odf/75fPrppwAMHjyYefPmccYZZwT3NzQ0UFBQwOLFiwHo27cvVVVVWK3WI9pWU2MZjL17/VM3TJ/unwt7+3Z/h0Y4nHMOlJfDL37h7xi5/HL/fNgKhUKhUCgUvZXLL4cFCw7enpICtbVwzDHx90mhUCh0xIELE2s2dVRVFTz/PN5XX+W4ujoaQhxyATAe+C3QkzvdffhHmUwDars59ZdCoYgcNTVW7ND6WW7CjQgJRUZGBgMGDOgVnSAAl1xyCdu2baOuro758+fz4IMPcumll4bVIXEoPvzww2AnSGpqKvPnz+/SCQJw9NFHM2/ePE488UQA9u/fz+OPP97jMqPFiBEjSEtL09qNmOB2uykvL8ftdmvtCoj434S55hoYNAjuvx/3rl2U//SnuF94IXw7zzwDX38NixbBlVf2qBMkHt9LrMqIlt1I7eiqbinCxuhx07s+rfyLV7mxKEflPEUkGD1uQX3ffHPIaVcYO1azThAtv/9EbevpJedF0xdFfDFy3CLVZrFYyMvLC36i3TEQtn9Dh8Jjj1G7YkXIThCApUA+cALwN6DuEMcFy05Lo3zECNwdzzWOAv4f8C0w3+XCUVICEU6FruecFw1bRr52jIzR46ZHfS6Xi5qaGr755hs+/PBDGhsbtXYprhiiI6S30b9/f0444YSo2pwyZUrw/zfddBOnn356yOMyMjL4xz/+Efx7+vTpmk9LNXz4cFJTUzX1IVa0tbWxfv162tratHbFz223wezZwUZYW2oq64cPp23WLAi3Hvz0p3DSSRG5EY/vJVZlRMtupHZ0V7cUYWH0uOldn1b+xavcWJSjcp4iEowet6C+FSvAZAp90Pjx8XWqE1p+/4na1tNLzoumL4r4YuS46V1bt/1LSjriIXXAw8DCI5UduK8O8VzjF8Axd90FJ5zgX7B927bw/DuwDB3nvGjY0nv9UoTG6HHTk76WlhYKCgrIzc1lyJAh/OQnP2H+/Pl873vfi+p6RHrHEFNjKfxMmjSJyZMnA92bGqupqYmjjz462EO5cuVKzjnnnEMe73K56NevX3BBncWLF3PhhRcetgw1NZZBeOop+MtfQu9791244oq4uqNQKBQKhUJhCLZvhxde8K8LEpj65dRT4auvDt1J0hmbDW6/HW69FX75SzCr990UCoUiloQ7PU0u/gXRozZ+xWSCyy7zd5RfemlYHTIKhaJ7GHFqrIKCAubMmXPI4/Pz85k9e/YR7UaK1s9yVQtZwcqVK4OdIBkZGfz0pz897PEWi6VLR4nWi6ZbrVbMBr3Za29vx263097errUrfm66CTpNQ9ZuNmO3Wmk3m2HatLi5EY/vJVZlRMtupHZ0V7cUYWH0uOldn1b+xavcWJSjcp4iEowety76TjgB/vlPf4fIm2/CBRf411ILpxME4JVXYO5cuOQS/8jbJ56AhkNN2tID/+JMorb19JLzoumLIr4YOW561xYr/27i0J0gTwDLOOC++kiI+KdTvPxyGDLE/9uxa9cRTzucvsBUOTU1NbhcriP7EIbN7qLaer0To8dNL/pcLhfz5s3rss1sNnd5njpv3rxuXf+JSsI9PW5tbWXu3Lncd999XHXVVVx88cVceOGFYX0uuugird3XJZs2bQr+//TTTyc5OfmI5/zoRz8Keb4WFBYWkp2drakPscLhcFBUVITD4YhtQeHOV9i3L+TnB/90ZGdTVFiIo29fOOqo8KfHipB4fC+xKiNadiO1E7e6pYgqRo+b3vVp5V+8yo1FOSrnKSLB6HELqS8lBa66CpYsgTvvDM+QSNcXUqqq4L77/Gu63XtvdP2LE4na1tNLzoumL4r4YuS46V1brPwrAf4AVBywfQfwV/wLq5/VcV9d293nGjt2wIMP+jvTf/c7/zqch3jgGkrfgVPlDBkyhNzc3LCnyYnmd6baer0To8dNL/rq6uoO6uTIzs7u8jzV5XJRV3ekFY0MgCQI7e3t8thjj0l2draYzeZuf0wmk5jNZq1lxJSHHnpIAAFk5MiRYZ83YcKE4Hn5+flhnTNlypTgOcOGDTvi8W+99ZYAMnjw4LD9OhIVFRUCiNVqFbPZLBUVFVGzrRd8Pp/YbDbx+XzRN97SIvLyyyIjRohcc034561cKeK/5RbfkCFie/hh8e3aFX3/DkNMv5cYlxEtu5Haicd3qIg+Ro+b3vVp5V+8yo1FOSrnKSLB6HGLmr7Fi4Nts4M+Dz2kvX86LdvIOS+avijii5Hjpndt3fWvuro6+Ewk3M/PQWaCuED+3mm72WwWq9UqGWazjANZfaicHs5n6FCRxx8X2bv3iPry8/MP6Ws4z4aiGVPV1uud6DVu4V7f1dXVh7VzOH09LaMn54U6J5B3zGZz2HoCtLa2SnV1dfDT2toa1nki3z3LDXzi/Sz3yK/+64Trr7+e2bNnI2pJk6izb9++4P+PPfbYsM7p379/8P/79+8/aP+OHTs488wzg38HFgbasWMHRx99dHD7Nddcw7PPPtttnztjt9sjOl/PBIaqRZXNm2H6dHj5ZQh8d2vWwNNPwzHHHPn8ESPgj3+ESy/FPHo0Vg2mJYvJ9xKnMqJlN1I78fgOFdHH6HHTuz6t/ItXubEoR+U8RSQYPW5R01dcHHp7UhLcdluPzWr5/SdqW08vOS+avijii5Hjpndt8fDvs45PIeDrtD0wfQ74R5CUAD8G7gCuBTK6U0hgVODf/uYfJTJ+PJx33kH6Qk2V05nANDkWy6FXN4nmd6baer0To8dNz/o6551waWlpYdy4cQdNo2WxWBgzZgwlJSWkp6dH2dPokhBTY73++uu88cYbwb9PPvlk/v73vzNnzhwWLVrE0qVLw/povZaFXgkseg7Qp0+fsM7pfFzn8wP4fD727dsX/DidTsB/oYXaHgkTJkwIduD4fD7sdnuww8zhcAQ7YVpbW2lubgbA6/V2ueAkIXuXAAEAAElEQVQbGxvxeDyA/8IODAP1eDw0NjYGj7Pb7Xg7pn9qbm6mtbUV8Hf0BIa6iQh2ux2fzxf8fgIJwu12d/kuOs8V6HQ6g2u1uFwumpqacDqdFBcXU1tbGx1NZWV4fvhDGmfMCHaC2K1WvCLw8svhaTKZaHr4YVyjRuFsbmbq1Kns3r07bE3RiJPT6WTq1Kns3bs3ZnHavXs306ZNo7GxMaqabDYbU6ZMCdaDnta9vXv3Mm3aNPbt29ejuldbW0txcTFOpzNmcequplhfT0bQ1NDQwLRp06ivrzeMps5xqqurY9q0adjtdl1qqq+vZ9q0aTQ0NMS17u3fv59p06axd+/emMYpFnmv8+9YJHHas2cPU6dOxel09qjuNTY2MmXKlKB9o+YIo2navXt3MO5G0dQ5TvX19cE2QY81ffstngUL/JrS02npuPn0pKTQ+LvfwcCBPdZUV1cX/P7jXffikfcaGhqC33+0NO3Zs4dp06Zhs9kiqnsHtnVV3lN5L5E1dc4hU6dODU69ojdNTqeTKVOmUF9fH5amgK8Wi4XMzEwAkpKSsFqtmDrWd8rOziY1NRXwP0PJyPB3adiTk5FOD0cHDBjA+PHjycrKIj09nfT0dNYAd6WkMCYn5ztNVivejqnMmzMyaO14LtOWmoqjY3obMZmwW63+OL3xBk2/+hWu4cNxPv00U599NnjvvmvXLiwWS3B9gKysLNI61gO1WCwkJydTV1d32Djt3bs3WF8jjVPnvOdyufj222/ZuHEjLpcrrLrXuc1p5BxhNE2B666hY10zvWgK2DaZTFitVpKSkgDIzMwMdg6mpaUFbfc07x0qRyQnJ3fpQOmsyeVyBTsbUlJSyOmUI6xWa3C5g9bW1qAmj8cTnAIroCknJ4fx48dz7LHHBjW1tbUdtu7deuutwQXXO+c9i8XCm2++ybhx48KOk1YkREfIiy++GPz/n//8ZzZu3MjkyZO56qqruOiiixg5cmTYH8XBdO7FC1yARyKt04LZgQurM3l5eYjIET8vv/xyxP47nU4uu+wywH9DWVRUFPxhKCkpobKyEoDS0lLmz58PQG1tLUVFRUEbxcXFVFVVAbBw4UIWLlwIQFVVFcWd3rIrKioKPsyZP38+paWlAFRWVlJSUgL4E3xRUVGwATV37lzKy8sBWLduHbNmzQIOnitw1qxZrFu3DoDy8nLmzp1LamoqQ4cO5aWXXoqOprPOouqccyieMOE7TYWF1A4aBNOnM//997ulKTU1lb59+/Lee++FrSkacUpNTSUlJYVPP/00ZnF67733GD58OC6XK6qa6uvraWhoCF5rPa17q1evZvjw4WzdurVHde+ll17ilFNOITU1NWZx6q6mWF9PRtC0efNmhg8fzoYNGwyjqXOcPvzwQ4YPHx48Tm+aNmzYwPDhw9m8eXNc697OnTsZPnw4n376aUzjFIu8l5qayuDBg3nppZciitPixYvp06cPqampPap7LpeLhoaGYJvHqDnCaJree+89+vbtS2pqqmE0dY7Thg0b8Pl8pKam9lzT229T9dprcNVVLLz4YhaOHu3XNHQoxaefHr6m997D/fXXXTR9+OGHwRv0eNe9eOS9zZs343a7SU1NjZqmxYsXM3z48OBxnTV1p+6lpqZiMplYvXp1tzSpvJf4moyc91JTU8nOzubDDz/UpabU1FR8Ph8bNmwIS9OWLVsAGDFiBGPHjgWgX79+FBYWBp+XjBs3jmHDhgEwcuRIxowZw9lnn82gQYMoLCwM+nrjjTeya9cu2traGD16NKM7cvnQoUM5P9S9OzD/8ssp7XjGVTlsGCXjxvk1paVRVFhIfb9+/jiNHUt5376k3n8/fcvLee+552DVKlqam7usD3DdddcFZ/XorOlwcVq9ejUmk4nU1NSI45SamoqI8PDDD5Obm8vVV/9/9s49PurqzP/vmdwm9wk1ihptKNUqtVWqXdO6LWpd1toirFITi1U3bRVat6a3re2vu8t266pbd2vUFvAS2yoKFS+ICiIKaBVQFDAh3BImQAiBAHPL3C/P74/JfA0wSSZz/WY479drXsrMd57zfOZ5zjPfnDPnnBt47LHHqKqqYtasWSPmXmFhIeeddx6PP/54TteIXNNUWFiIz+dj+/btutK0fPlyIDL22dTURPVAf5o5cyZ1dXUATJ48mVWrVg0bp5Hq3vE1Ytq0aQAn1IjBmjZu3HhMjZgzqEY0NTVRM1Aj1q1bp2nas2cPjQM1IqqpoqKCzZs3c80112iaOjo6hsy9p556in379gFD172lS5fy+OOPxxWnrJGiLbbSyic+8QkxGo0yceJECYfD2XZHtyR6Rsg111yjve8Xv/hFXO959dVXtfeUlZUl6HFyRPeVM5lMUlZWJm1tbRIMBsVqtWp5YrfbxefziYiI2+2W/v5+EREJBAJitVo1WzabTfx+v4iIuFwucblcIiLi9/vFZrNp11mtVgkEAiIi0t/fL263W0REfD6f2O12EYmcZ2O1WiUYDIqIiNPp1PbL83q94nA4ROTEvQIdDod4vV4Riey353Q6RURSr+nuu8VWWantIWo1myWQny8C0v/yy2NTUy7GSWlSmpQmpUlpUpqUJqVpNJp27xbXb34jctZZ4j/3XLEdPRqfpv37RcrKJGwwiHX6dAm+8IJIMKgPTbkYJ6VJaVKackLTjh07jhmPACQvL0/MZrMYDAYBpKKiQlatWiUWi0W2b98uhw8fFovFIvn5+WI2m7UxlcrKSikoKBBASkpKpKSkRACpKiiQ/UP87d5aWiq7TzlFBMRXWCj2igoRiNRys1mCeXkiIM6yMvGYTCIg3qIicZSXi4C4P/tZmWM2S/nA+QDl5eVSVFR0jCaLxZLROH3729+W4uJiAaSwsFAqKioEEIPBIDfddJPKPaUpY5qi440Gg0HMZrPk5eVp458mk0kAKSoqkq1btyasyWKxSEVFhRQWFgogxcXFUlpaKsAxNcJisRyjadu2bVqNKCgokMrKSq2WmM1myc/PF0Da29s1TTt37jymPw2laceOHUPGaevWrSfUiFh1r62tbdg4ZfuMkDExEVJaWipGo1FuvfXWbLuiaxKdCLnhhhu09/3oRz+K6z3PPfec9p7x48cn6HFyRDvP5ZdfLiaTKScPS/d4PLJ69epRHTw0Ir29IgM3Tyc8fv3r7Punk3bT1Uaq7CZrJ1uxUyRHrsdN7/pyuealqx1V8xTJkOtxS5u+QECkszP+6+fNO/Ge8KyzxPOb38jq117Lyuc/Vu/19FLzUumLIrPkctz0rm20/iV60LHH49EGHaMPk8mkjWsMfr4K5L9BDsb42/1bA9f85vLLRb71raH/xh94eEwmWX355dqkSPThAPkjyOfj8D3Zz2w4rFarXHXVVSd8BoM/o+HaSVXdTPQAaEVi6LUupOqw9OH0Zfuw9Fh1Zzg9qfpMsj0RMia2xjr77LMBtL0LFanlE5/4hPb/Bw8ejOs90f3tAMaNG5dyn0ZDbW2ttgderhEMBunq6tL2LTyBcBheew3+6Z9gYOn8iJx2Glx33cf/NpvhzjuhvR3+679S61+ayES76WojVXaTtZOt2CmSI9fjpnd9uVzz0tWOqnmKZMj1uKVNX34+fOpT8V0rEvuw9X37CD7+OF3d3Vn5/MfqvZ5eal4qfVFkllyOm961Zcq/6KHCg8nPz485rmEFfgWcBdQDqweePwi8OPD//71+Pd6//AX27YO774ZPfjJmu8H8fLpqa7UzRqKUA3OALcC7wM3A0MejR7bd6+rqoqurC4vFwu7du1PymR04cICampohx3ai5wkORTLxc7vdNDQ0UFVVxYQJE7RHVVUVDQ0N2jkQitSj97qQLHrWN1TdyXkyOu2SILfeeqsYDAb50pe+lG1XdE2iK0IeeOAB7X11dXVxvecXv/iF9p7rrrsuQY+TI9uziFnl4EGRe+8VmTDh419zNDbG//433xS59FKRJ54QGVgmqFAoFAqFQqE4yXjnnaF/QRznlrkKhUJxMpLMr6NdLpfU19cPufphuMd5IN8Ypg2XwyH3fPWr8pLRKMFhVogM9zgK8n8g3atWjeizyWSS+vp6bfuhdH6eI/3SPFHq6+uHbbe+vj4t7Sr0S6pWP6SjjVStCBmtHrUiJIPccccdQOQgpra2tix7k3ucf/752v+3trbGNVP54Ycfxnx/Njj77LO1A75CoRA2mw0RASKH+/j9fiByqLvL5QIis7I2m02zYbfbCQQCQOTXANEZ/0AggN1u166z2Wza5+NyubSD4v1+v3aAkIhgs9kIhUIA9Pf3a4cU+nw+nE4nAOFwGJvNRjgcBiKHvkcPTPJ6vfT39xMKhdi/fz9Hjhz5WNO99+KfMAHuugtPby+u0tKIpr/+FdvevfFpmjwZ1q+HW2/F5vcnrCkUCrF3717ts4xHUyriFAqFsFgs2meZjjjZbDZ6e3sJBAIp1eTz+di1a5fWbqK519/fT29vLx6PJ6HcO3LkCD09PYRCobTFabSa0t2fckGT2+2mt7dXy4Fc0DQ4Tna7nd7eXvx+vy41uVwuent7cbvdGc296C/gojmQrjilo+6FQiG6u7s5cuRIUnFyOBx0dXURCoUSyr1AIMCuXbu0dnO1RuSaJpvNxt69ewmFQjmjaXCcXC4Xu3fvJhQKZU/T/Pk4Bu6jxWDAZjYTyssDgwH7rFns2bOHUCiU8dzLRN1zu910dnYSCoVSpsnhcNDb26vV1ETjFL3Xjbar6p6qe2NZUzROoVCIPXv2aO3qTVMoFGL37t3H/N02nKaoryaTibKyMgDy8vIwm80YDAYAKioqNF8HayosLGT+/PlYrVYsFgtbtmzh7bffJi8vj5KSEkpKSgAoKCigsrJS02Q2m+nIz+cVoLS0lOLiYgC6urrYunUrXV1dzLr5Zu776CP+yWCgFthWVobXZCKUl8fes87CNmAvbDRiM5sJD+y84iwvxzdwyHuxycT3y8o486qrCF1xBbYnn+S2W25h8eLFFBYWUlhYCAM+jB8/niVLlvDd73436bpXW1tL6cD4RvSQaQCDwYDZbB4290KhED09PRw5cmRUNcLr9fLmm29qmoqLizUf8vPzMZvNLF26VPtbRS/9aThNkP3+FK+mUChEZ2en1q5eNEVtR3MvLy8PgLKyMkymyJqpoqIizXaida+iomLY3Iulyev1Dlsjois8PB6PpikQCJzQnwoKChg/fjwVFRWaJr/fP2Tuud1uigZqxHB1z+VyxRWnbDEmJkIuvvhiZs+eTSgU4sYbbzzmj2lF8nz5y1/WktnlcrFx48Zhr/f5fKxfv17795VXXplW/0aisbGRG264AYC+vj6am5u1L4aWlhba29sBWLt2LcuWLQOgu7ub5uZmzca8efPo7OwEYOXKlaxcuRKAzs5O5g3aLqC5uZnu7m4Ali1bxtq1awFob2+npaUFiHw+zc3N9PX1AbBkyRLt89q0aRMLFy4EIkW8ublZ+9JYuHAhmzZtAmD9+vUsWbIEp9PJY489xsMPP/yxpnCY9nPPjWiaMoVl06ZFNJ1yCs1PPBGfpvnzU6LJ6XTyxBNPjEpTKuLkdDr5y1/+wvLly9MapwULFnDgwIGUatq1axdPP/209uWSaO698cYbLFiwgE2bNiWUew8//DCPPvooTqczbXEaraZ096dc0LRhwwYWLFjA22+/nTOaBsfp2WefZcGCBezZs0eXmt5++20WLFjAhg0bMpp7W7duZcGCBSxfvjztcUp13XM6nTz++OM8/PDDScVp6dKl/PnPf8bpdCaUewcOHODpp5/mwIEDaYuT3vpTrmh64okncDqdOaUpGqe3336bJ598EqfTmT1NX/wiLbffHtFUVERzUxN91dVw9dU8u2EDf/rTn3A6ncNr+stf2LRhAzC26t6GDRt46qmncDqdKetPS5cuZcGCBezatSupOEXvdd94441RaVJ1Lzc05Wrdczqd/OlPf+LZZ5/VpSan08mTTz7J22+/HZemjo4OAOrq6pg5cyYA1dXVNDU1aeMrjY2N7NmzZ0hNJpOJ2tpaXnnlFd544w1uvPFGpk6dytSpUwGYOHEic+bM0TQ1NTVRU1MDwLRp05gyZQoAP/7xj3nssceYMGECK1asoKmpierqasqADTNnsr6uDmd5OU9897ssvOmmiKaKCpqbmrTJ8IWzZrFp8mQA1tfVsWRAU9/27TTv3s09L7/MPcBtjY1MmjQJgKuuuopbb72V8vJyPvzww6Ti5PF4uPXWW7nqqqsAmDRpEo2NjUBkwLmpqUkbTI6Ve06nk0cffZSHH36Yvr4+urq6eOKJJ3jjjTfwer1D9qfe3l5mzZqlaZoyZQrTBsZYampqaGpq0ibn9dSfIDfqntPp5KmnnmJDiu8jktUUHWuK5l51dTUAM2fOpK6uDoDJkyezatWqYeM0Ut1rHNSfYuVeLE0bN26Mq0asW7dO07Rnz54T+lNtbS2zZ8/mhhtu0DR1dHQMmXurVq1i8kCNGK7uLV++PK44ZY20rDNJA6FQSG677TYxGAwyfvx4eeihh6SnpyfbbumKRLfGEhG55pprtPfefvvtw1779NNPa9eOGzdOAoFAEl4nTnQ5VWVlpZSVlUlbW5sEg0GxWq0SDodFRMRut4vP5xMREbfbLf39/SIiEggExGq1arZsNpv4/X4RiSz5jC7r9Pv9YrPZtOusVqumt7+/X9xut4iI+Hw+sdvtIiISDofFarVKMBgUERGn06kdjOT1esXhcIhIJKetVquEQiEREXE4HOL1ekUkcqCS0+mUcDgs/f39cvTo0Y81HT4svrPOEgFxFxdLf2mpCEggP1+sl1wiMnBdJjSFw2Gx2WzadfFoEpGk4xQOh+XIkSPademIk91uF4/Ho/maKk1+v196e3u16xKNk8vlEo/Ho/kaj6bBuXf06FFxuVwSDofTFqfRakp3f8oFTR6PRzwej7jd7pzRNDhOUY1RX/Wmye12azHIZO75fD7xeDxa309XnNJR98LhsDidTjl69GhScYraCIfDCeVeMBiU3t5e7bpcrRG5pslut4vNZpNwOJwzmgbHye12S19fn4TD4exqstlE3n1Xwt/5jlhPPVWCeXkiL70kDodD82lYTT/5iXhPPVXkzjvFs2XLmKl7Ho9HDh06JOFwOGX9KWrf7/cnFadwOCyHDx/WrlN1T9W9sawpGqfo+wfnqJ40hcNh6evr064bSdOOHTu0raHKysoEkLy8PDGbzWIwGASQiooK2blz54iaop9Lf3+/fPvb35aqqioBpKCgQCorK8VkMslFF10kZrNZ8vPzBZDS0lIpLi4WQAoLC6WiokIAMRgMYjabJS8vTx4AcZaVicdkkrDBILaKCrGXl4uA9BmNYjWbJWQ0Rg5NLy8Xb1GRdrC6s6xMBCSYlydWs1nCBoMIiL2iQl4uLJTpIKXFxTJu3DgxGAySn58vra2tCcdp9+7dMm7cuGE1dXR0DJl70fjddNNNmo3y8nIpKioSk8kkN954oxw8ePCE3LNYLFJRUSGFhYUCSHFxsZSWlgog+fn5Yjabte1+9NSfRHKj7oXDYTl06NAx38160BQdbxzcnwApKyvTtocrKiqSrVu3Dhun4epeorm3bds2KSkpOaZGRMdoB9eI9vZ2TdPOnTtj1oho/Ypq2rFjx5C5t3XrVikqKhqx7rW1tQ0bp2xvjWUQGViPM0Z44IEH+MlPfqItuamsrKSyslL793AYDAZtBi0XmTt3Lv/5n/8JRGYS16xZE/d7X3nlFb75zW8CkdnBDz74gM9+9rMnXOd2u7nwwgu1Xz/cdddd3HPPPck7nwBbt27lggsu0P7d1tYW0+ec5N//feiDzd99F770pcz6o1AoFAqFQqEY+xw+DIsWwZw5MLANxLB4PHDmmWC1fvzcFVdE3j9jBhQUpM1VhUKhyCZdXV1MmDBhxOssFgu1tbWjsn38weDjx4+nt7c3rvYG0wzcxomHn68HpgD/BMwGLh+V1Y/ZDzw28OgmojXqayzGjx+vbcFzPPF8niN9lg0NDSxevHjI1+vr61m0aNGo242nbUVukYm8SLSNRN6XCj2p+kyyPZY7JrbGgsh+ZnPmzOEXv/gFBoMBEdH2n9u7dy979uwZ9tHV1UVXV1e2ZeiWb3zjG3zlK18BIsvZvvnNb/LRRx8dc82RI0eYMWOGNgkybtw4fvGLX2Tc1+NpamrS9robs2zeDPfdd8LTDoeDBx54QFuKpvG974FxUPctKID6eli9GgaWtGWCIf3LgXbT1Uaq7CZrJ1uxUyRHrsdN7/pyuealqx1V8xTJkOtx06W+U06BO+6AvLz4/Fu8+NhJEIjcj95wAzz9dMJujNV7Pb3UvFT6osgsuRw3vWvLpn/Htx3dMiv6MJlMw04iDMWdwJnAT4DNFRU8MLAV1jzADywGrgDOBx4ArEMZGoLyigoqm5r4qKKCF4Hmq6/mE2YzEyZMiPmoqqqioaFBO1dhMC6XK6mxnUOHDnHGGWcM+/7oWR8K/aD3upAsqdCXrpytqKjIjfHUUZKfbQfiIRQKMX36dF577TUAjl/EMsYWtaSEa665hp6enmOeGzzrvnHjRi666KIT3vfqq69yxhlnxLT59NNP83d/93ccOHCArq4uLrroIqZMmcLEiRPp6+tj1apV2hdWfn4+f/3rX485vCdbrFmzZmx+mbnd8Ne/wvz5MLAfItdcA5/7nHaJyWTi8ssvP/GG5+yz4RvfgLY2uP12+Od/hlNPzaDzI/iXA+2mq41U2U3WTrZip0iOXI+b3vXlcs1LVzuq5imSIdfjpnd9cfk3aK/tYzCb4VvfSm/bSZLLNS+VvigySy7HTe/asulfPG2bTCamT58+7IqHWBwFfg/8wevl+jVrMHu9/PW4a7YDPwZ+BXyLyCqRePaYMHm9XL5mDaVeL9OB6Tt28CPgEaAFOHTc9V6vV/P/+JUZhYWFSY3t2O12Vq9ePez7oyttBv9afUyOJeUQeq8LyZIKfeeffz719fW0tLRoh6SnAq/XO3bHU5NgTGyNNW/ePH74wx9qK0GuuuoqbrzxRj73uc9RVVVFfn788zmf/OQn0+hp5qitrdUO3RoNIy1R2r59OzfeeCObN28e8prq6mqeeOIJvvGNb4y6/VSS7eVUCRMMws9+Bn/+M9hsx772wx/CoANlh+XIEaiqOnZliEKhUCgUCoVCkQk+/BAuvjj2a3feCQ88kFF3FAqFIpN4vV6qqqqGHUQ0mUxYrdaUDfK63W4aGxszsrLhQuAe4OsJvj8AvADMB1Yf91qszyXZrbFGu21P9LOMd2JJbY11cqGnrbGiRLd2U1tjJceYGEH985//rP3//fffz8qVK/nnf/5nLrnkEiZOnMgnP/nJuB+K4TnvvPPYsGEDf/7zn7n66qs566yzKCws5NRTT6Wuro7/+Z//ob29PeuTIIP5xje+wSmnnAJEVg/ZbDZtlZDD4cDv9wPg8XhwuVwABINBbIMmIex2O4FAAIjcXERXvgQCAex2u3adzWYjGAwCkaWbHo8HAL/fry11i27ZFgqFAOjv79duUnw+H06PBz78kLDDgc1sJjwwkeEsL8e3aBEMXN/f34/H4+HVV1+lt7f3RE2f+AQeny+rmjweDy+//DKHDkV+6xEOh7HZbITD4YgmpxOfzwegaUpFnDweD8uWLePIkSNpi9OhQ4dYsWIFLpcrpZqcTidLly7VfEo0TkePHmXFihXY7fb4c8/p1OLU29vL8uXL8Xg8aYvTaDUl1J8GacpE7mVbk81mY8WKFVit1pzRNDhOfX19rFixgv7+fl1qslqtrFixApvNltHcczgcrFixgiNHjqQ1Tumoe4O/x5KJ0+HDh3n55ZfxeDwJ5Z7L5WLp0qXH1OJcrBG5punQoUNa3HNF0+A4Wa1WXnrpJTwejy419fX1aZ9/TE0dHVBVFbmHLSoCwGsy0V9WBrNn677u2Ww27fNPVX86fPgwK1as0L6zE41T9F736NGjo9Kk6t7Y15TLdS/6t2NfX58uNXk8Hl566SWsA9v9jaTJYDAwffp0TCYTZWVlAOTl5WE2m7UzbK+//nqMA3/vD6fp4MGDvPLKK3g8nmE1+f1+nnrqKaxWK+3t7Wzfvp23336bwsJCbXsbg8GA2Wwmb+Ccp7KyMkwmE8XFxXzjG9+guroaAKPRiNls1vwrLy+naKCWm0wmOsvKMAChvDxsZjMyoMlRUYG/sBCAo1VVLPvmN/EUFxPMz8c2aMcQd2Ul/1RQwJvAlpISflJSwjigoKCAoqIi7d4wGqfoFu1VVVUAMTUNl3s+n4+rr76a0047bUhN0TiFQiFuv/12/vrXyNqYiooKCgc0FRcXU1paCkR2Qhm8C4qe+hPkRt2L9ruoT3rRFLU9VH+CyPnKUduJ1r14c6+yspJXXnkFr9eL1+vVVoYUFBRQWVmpXWc2m7XFAh6PR6sps2bNOqE/lZaWcvXVV3PKKadomvx+/5C553a7Y/an4+uey+WKK07ZYkxMhGzduhWDwcCkSZP4yU9+km13dEFXV5d2TspoHvHMVBYWFnLzzTezfPly9u7di8/n4+DBg6xbt46f//zn2qSDXpgwYQLXXnstEPmDrbm5WftiaGlpob29HYC1a9eybNkyALq7u2lubtZszJs3j87OTgBWrlzJypUrAejs7GTeoCX/zc3NdHd3A7Bs2TLWrl0LQHt7Oy0tLUCkwDc3N2uFbsmSJaxfvx6ATZs2sXDhQpg9G0dFBc0De3QCLJw1i03nnAOLFrF+/XqWLFlCOBzm0KFDLFiwQJeawuEwe/fuZcmSJUDki6m5uVn7Ily4cCGbNm0C0DSlIk7hcJiOjg5Wr16dtjgtWbIEm82G3W5PuabNmzdrXyaJxumdd97BZrOxffv20eXeQJwWLFjA4cOHCYfDaYvTaDUl3J/IXO5lW9NHH32EzWbj/fffzxlNg+MUvQnWq6b3338fm83GRx99lNHc2717NzabjdWrV6c1Tumoe9GJ1wULFiQVp9dee43du3cTDocTyj273c7mzZu1P35ytUbkmqYlS5awd+9ewuFwzmgaHKf333+f7du3Ew6HdanppZdeoquri3A4HFvT1Kmwfz8L77qLTdOnA7C+ro4l3/senHdefJq6uui++uqIpoE/vDNV9z766CPa29sJh8Mp60+vvfYaNpst6TiFw2F27tzJO++8MypNqu6NfU25XPfC4TBdXV289NJLutQUDofZvn0777//ftyaWlpa+O53v8sNN9wARHbPiO65X19fz8UXXxyXpieeeIKenh7C4XBcmkwmE1u2bMFisVBTU8OkSZNobGwEIoOzTU1N2oTHzJkzqaurw2g0cvbZZ/OtgW0Ljz8fYNasWUyePBmAuro6bpo5k6uBvupqmpuatAnvlsZGWidNAuCdyy5j52c+Q9hopLumhuampo/jNGcOnRMnArB76lS+MnUq+4HmiRO5Y84cGBgIHlz3PvOZz3DZZZcBxNQUrWexci8cDlNdXc2cOXOG1DRz5kzt8//0pz+tDeo2NjYyaUDTlClTmDZtGgA1NTU0Ddako/4EuVH3ovf20TOK49X0xhtvsHjxYrq6uti4cWPKNS1fvhwYuj8BTJ48mVWrVg0bp5HqXry5N2fOHGpqaujt7WXjxo1MnToVgIkTJzJnzhztuqamJmpqagBYt24da9eupbGxUVsBNVjTqaeeitls5tprr9U0dXR0DJl7q1atitmfonUv2p+WL18eV+5lDRkDlJWVidFolO9+97vZdkWhI9ra2gQQk8kkZWVl0tbWJsFgUKxWq4TDYRERsdvt4vP5RETE7XZLf3+/iIgEAgGxWq2aLZvNJn6/X0REXC6XuFwuERHx+/1is9m066xWqwQCARER6e/vF7fbLSIiPp9P7Ha7iIiEw2GxWq0SDAZFRMTpdIrH4xEREa/XKw6HQ8TrlVB1tVjNZgkZjSIgjvJy8RYViVx8sXg8HnE6nSIiY0eTiIRCIbFarRIKhURExOFwiNfrFRFRmpQmpUlpUpqUJqVJaVKaclnTxo3i+f73xfnss/Fr+uUvJZCfL1azWaSsTOT228X2zjv60ZSLcVKalCalKeWa+vr6xGKxSEdHh7S2tmptZUKTxWKRwsJCqaioEEAMBoOYzWbJy8sTQMrKysRkMgkgRUVFUl5eLoAYjUYxm81iNBoFkPLycikqKtLGWGaXlYmABPPyxGo2S9hgEAGxV1TI1MJC+ReQTcXF0l9aKgIf1/LIFIfYKivFX1AgAuIqKRFXSYkIiL+gQGyVleL7zGdEHn5YrHv2SCAQEIvFIqWlpVJcXCxATE0dHR1DxslisYyoqaysTFavXi1vvPGGmM1mMRgMAkhFRYUUFhYKIMXFxVJaWiqA5Ofni9lsFkAsFosucy8X+9NwmqxWq9TX14vZbD4mTqeddprU19eLy+VKiaboeONI/Wnr1q0Ja7JYLHHlHiCVlZVSUFAgFotFtm3bJiUlJQJIQUGBVFZWateZzWbJz88XQNrb2+Xo0aNiMpnirhE7duwYMk5bt249oT8BkpeXd0x/amtrGzb3op9t9NHW1iaZZEycEXLeeeexa9cubr75Zp544olsu6PQCdF95Wpra7Vf2Wf1jJDu7siZH4P2uhuWn/8c7r//2OemTIHZs6G+HgwGgsEg3d3d1NTUjOosnEyRLf8y0W662kiV3WTt6D23FLHJ9bjpXV8u17x0taNqniIZcj1ueteXdv/8fjjrLDh0/HG6EPznf6b73/99zN3r6aXmpdIXRWbJ5bjpXVs2/Uum7XjOKoHIVjs1NTV0d3dr2wGNxLnA7cCtwLiB5zYBXxhk8+s1NdzQ3c0NwSCFo/J8gJIS+Pa32fvNbzKlqWlY/4Y7e6Czs5OrrrpqVPpGw8l+Rkj0oPko48ePT8nZN6PN/YaGhmHPdYmeo5EsqToPYzh9oz0jJNoeELdvw10bqyaoM0J0wpVXXomIDHuAt+Lk5dZbb9X2pss44TCsWAEzZsAnPwmDlq6NyG23Rf5rNkcOlGxvhzVroKEBBvbW6+/v589//rO2R6LeyJZ/mWg3XW2kym6ydvSeW4rY5Hrc9K4vl2teutpRNU+RDLkeN73rS7t/zz8fcxIEoP/ii8fkvZ5eal4qfVFkllyOm961ZdO/ZNo2mUxMH9iecDjKyspGPXayE/gpcCZwM/AukcPPB9u8+NZb+ZeyMmqAfwU6RuM8gNsNjz1Gxa23cuutt/LPZWWUjNYGkbMIsjo2NEq8Xi9dXV0xHyNNamUSt9tNQ0MDVVVVTJgwQXtUVVXR0NCgnZGRKKPJfa/Xy9KlS4e9ZunSpbr6/PRc9xKpCbnAmFgRsmXLFi655BLC4TBr1qzhK1/5SrZdUuiArM4iHj4Mjz0GjzwCA7OsGjt2wLnnxmdn+fLIKpCSRL7qFQqFQqFQKBSKMcqUKfDWWyc+X1YGPT1QXp55nxQKhWIMEt3///hBYJPJxIUXXsiGDRsy5osB+BowG7hu4N+jxQ78BVgAbB30fCp+rZ4oo10RMtQKiqFiNZjo5FZLS4t2KHa2yNQKjHhI1YqEkXC73Vx55ZVx9Ztk2sr2ipCh3qNWhOiACy+8kLvvvhsRoaGhge3bt2fbJcXJzp498MtfnjgJApHJkXj5+tfVJIhCoVAoFAqF4uRi3z74299ivzZrlpoEUSgUilFQUlLCokWLsFqtWCwW7WG1WjM2SB1FgFVEJjESmQQBqAT+BWgD3gZmAUUp8S79jLSC4sYbb2Tx4sXDrlrwer0sXrxYO9w6W4zFFRipoLGxMaOTh4rMMiYmQgD+9V//lfnz53P06FEuvvhifvrTn/Luu+9qp9crTl7uuusuTj/9dABCoRA2m43oQieHw4Hf7wciSyVdLhcQ2afPZrNpNux2O4FAAIh8cUWX9wUCAex2u3adzWaL7J138cW4vvxlPMXFAPgLC3FUVAAgTzyB7eBBQqEQEFkKF/1i8Pl8OJ1OAMLhMDabjXA4DIDT6cTn8wGRL5z+/n7sdjv33HMPe/fuTb8mwOVy4fF4Ipr8fq1/iQg2m+0ETVH/9u/fH7emVMQp2m70Fxap1BSN0/79+7n33nuxWq0p1XTkyBHuuecezd9E43Tw4EHuvfde+vr64tY0OPf27t2r+ZGuOI1WUyJxGk1/ygVNhw4d4t577+XgwYM5o2lwnHp6erj33ns5evSoLjVF+92hQ4cymnuHDx/m3nvvpbe3N61xSkfdG/w9lkycDhw4oNWsRHLParVyzz33YLVa0xYnvfWnXNC0f/9+Le65omlwnA4ePKjp06Omnp4ezb+U594pp+BqbYW77iI4fjw2s/ljTTffHH/d++1vYelSXHb7qON06NAhTV+q+tOBAwe49957OXLkSFJxitbOgwcPjkqTqntjX1Mu171oXvf09OhS0/H9LpO5t2/fPi3uyWgymUx88pOfxGw2c9ZZZ2EymfB4PJhMJiorK7nrrrs444wzADAajZjNZozGyLBgeXk5RUWR6YbLLrtM2y4nLy8Ps9mMYWD77oqKCgoLI6eBnHrqqdx1111UVlaSn5+PeVAtb6ysJFBQEIlTSQnugR+A+gsKsFdWfqzJbCaYn4+9spJ77rqLg6eeGrluYIzl74EnDQa2mc1U3H037NzJ4cOH2blzJ11dXezcuZO+vj76+/u56667OOuss2JqMplMcWkqLi6mtLQU4ARN8eReY2Mjr732mhan0tJSiouL8Xq9vPDCC6xZswYAg8GA2WwmLy8PiGxTFD1zo6ioiPLycpYuXYrb7c5a3evo6ND6uNls1s64iGqCSN/o7OwEEqsR0X53aGCrzOE0uVyuuOLU39+fcI3wer28+uqrVAyM740Up6jtROtevLlXWVlJwUB/8nq92kqhgoICKgf1p8Fx8ng8Wq4UFhaeoKmqqkobT41q8vv9Q9Y9t9sdV39yuVxx5V62GBMTIXl5eeTl5TFnzhz8fj8ej4cHHniAr3zlK1RVVWmvj/TQ44FciuTp6Ojg6quvBqCvr4/m5mats7e0tNDe3g7A2rVrWbZsGQDd3d00NzdrNubNm6cV75UrV7Jy5UogcuDWvHnztOuam5vp7u4GYNm117J2yhQA2idNomVgtt7ndtM8fz59fX0ALFmyhPXr1wOwadMmFi5cCES+mJqbm7WbsIULF7Jp0yYA1q9fz5IlSygpKeHyyy/niSeeyIymZctYu3ZtRFN7Oy0tLRFNPh/Nzc0naCopKWHSpEm89NJLcWtKRZxKSko444wzePfdd1OuKRqnl156iRkzZhAMBlOqyWq14vf7tS+uROP0wQcfMGPGDPbu3Ru3psG598QTTzB16lRKSkrSFqfRakokTqPpT7mgadeuXcyYMYO2trac0TQ4Tq+99hozZszA7XbrUlNbWxszZsxg165dGc293t5eZsyYwbvvvpvWOKWj7pWUlHDZZZfxxBNPJBWnNWvW8MlPfpKSkpKEci8YDOL3+7U/dnK1RuSappdeeolJkyZRUlKSM5oGx6mtrY3KykpKSkp0qem1117jnHPOoaSkJD2599FHcM89dL/1Fs1NTXD55VBXx7y33oq/7j3xBMyYwbKmJtb+z//A/v1xx2nXrl2UlJRQUlKSMk1r1qxhxowZWK3WpOJUUlJCdXU1H3zwwYhxUnUvtzTlct0rKSnhnHPO4bXXXtOlppKSEiorK2lra4tbE6Qm9xYuXMgXv/hFSkpKUh6ntWvXUldXh9vtpr29XTtPpKKigqamJm1wdNasWUyePBmAn/3sZ9x3330AVFdX09TUpA2ANjY2MmnSJAAuueQSDh8+jNvtpqamhqaBM1NPB7rmzKFz4sRInKZOZeXUqQD8deJEHpgzh9App0Q0NTXRXVNDidtN9eHDfHDJJRFNg8dYior4S1MT/pdfhs98hqd+/nOab7+dcydM4JZbbuE//uM/uO2223j99df57ne/G1NTXV0dM2fOHFHTlClTmDZtGsAxmmDk3IuuoGhqaqKmpgaAadOmMWVg3GjSpEnaKo+ioiKampqorq4GYObMmdTV1QEwefJkZs2ahdfrZffu3Vmre9FxHmBYTcuXL4/EKYEaEf0e3rVr14iali9fHlecXnrppYRrRG9vLxMnTow7TqtWrTpB0+A4jVT34s29OXPmMHGgP23cuJGpA/1p4sSJzJkzJ2ac1q1bx5YtW7Q4Ha+ptLSUF198kauvvlrT1NHRMWTdW7VqVVz9afny5XHlXtaQMYDBYBCj0RjzYTAY4n4YjcZsS1GkkLa2NgHEZDJJWVmZtLW1STAYFKvVKuFwWERE7Ha7+Hw+ERFxu93S398vIiKBQECsVqtmy2azid/vF3E4xOVwiMvlEhERv98vNptNu85qtUogEBARkf6DB8V96qkiIL7CQrFXVIiAhM87T6xPPy3BYFBERJxOp3g8HhER8Xq94nA4REQkFAqJ1WqVUCgkIiIOh0O8Xq+IiHg8HnE6nSIiyWsSEZfLFZ+m/n5xu90iIuLz+cRut4uISDgcFqvVqjQpTUqT0qQ0KU1Kk9KkNClN6dPkcsWvae5cCeTni4D0l5aKu7hYJC9PfNdfL/a9e/WjKRfjpDQpTUrTmNHU3t4uJpNJACkqKpLy8nIBxGg0itlsFqPRKICUl5dLUVGRALJjxw5pb28XQPLy8sRsNovBYBBAKioqpLCwUAApLi6W0tJSASQ/P1/MZrMQ2R1LplZWytMFBeIDcZWUiKukRATkyoICqaysFMvOnSLPPivWa645sZYfP8ZiMIjVbJZgXp4IiLOsTDwmkxwA+a+iIjkvDk3RcaNENVkslhHjZLFYBBCz2Sz5+fkCSGlpqRQXFwsghYWFUlFRIYAYDAYxm82Sl5cngJSVlcWMU2dnZ9Zyr7W1VYvncJra2toy0p/a2triyr3W1taE+5PFYhlVnLZu3ZqwJovFEnd/qqyslIKCArFYLLJt2zYpKSkRQAoG+lOsOLW3t8v27dtHlXs7duwYMk5bt26Nqz+1tbUNm3vRsdzoI5o/mWLMTISk4qEmQnKLaOeZMWOGlJSUJNd5Nm0Suf12kbIykWXL4n/fHXeIgEhBgUhDg8iaNSIDRToVuFwueeGFF7TCrTey5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d+IbQcCImeeGbkPP/5x7rlx3Y/ncs1LpS+KzJLLcdO7Nl3XvCSIDs6XlJRoYyeDByFjPSwWi/a+4R4j2bz00kvlVJBfgOwG2X5cGxo7dsiB226TRTNmaBMmo3mEQF4oKZE7ZsyQ0jj0JfI4xt8RPutMt5su4tWzevVqLWeiEx/xMprcj9efZD6z0cZwpLaG05dIvsTbN+O5Nlb/HU5Pqj7/bE+EjImtscLhcEoe0X3qFAoA3G7405+grg4mT4YFC6C/H+bPj9/GD34A994L3d3wzDMwZQoYEj0STKFQKBQKhUKhUIzIK6/AwBl1JzB7trofVygUiixTX19PS0sLh4D7gInAPwx18bnnYvvxj/krcDuRA9JHgxGYCnwN+BD4N+CMhLxWJMIVV1xxwqHw0bMzFAq9YRAZOKFFoRhjbN26lQsuuED7d1tbG5/97GfjN/C978Hjj5/4vMEAFgt88pMp8FKhUCgUCoVCoVCklK9/HVasOPF5kykyQTJuXOZ9UigUCh3S1dXFhAkTRvUei8UCMOr3Rdm2bRvnnXfesG1bLBZqa2uH9LODyORJogSBl4D5wCoiPz1PhuP9jUUin3Uq2k0Xyeipr69n0aJFWfEnmc9stJoz2Va0PYivbybSj4fTk6rPP+mx3CTR1YqQ3t7ebLugGIOcd955FBQUjP6Nt94a+3kRePTRpHxKFYFAgO3btxMIBLLtSkyy5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d+Ibf/Hf8Att0QmPgZTXx/3JEjgo4/YvmxZTta8VPqiyCy5HDe9a9N1zUsBBQUFiY+djNKm6fjaHAfBYFCz9RVGPwkSKChg+3nnERjwJR+4DlgJ7AJ+Dpwyaq9Gh9frTXMLY4elS5fG9XnovS4ki571paMmjAV0NRFSU1NDXV0dd999Nx999FG23VGMEWbMmEFJScno33jZZTDUrONjj4EOCpXb7ebFF1/U7bLCbPmXiXbT1Uaq7CZrR++5pYhNrsdN7/pyuealqx1V8xTJkOtx07u+bPo3Ytt1dZEtbvfvh9//Hj7zmcjzs2fH38b99/Piu+/ivvLKyL2/y5V+vzNoR+/5pYhNLsdN79p0XfNSQElJSeJjJxmw6fV6NVu3D3FNCFgIxKrW7pISXpwxA3cMXyYC/wPsB54Gvpq0t8ditVqpq6vj/PPPT7HlsYvX643rx+7pyH09TUjpue6loyaMCTJ6IskIRA80jz5qa2vljjvukJUrV4rf78+2ewqdET1gx2QySVlZmbS1tUkwGBSr1SrhgQMS7Xa7+Hw+ERFxu93S398vIiKBQECsVqvIQw+JgNgqK8VfUCAC4iopEddZZ4m0torf7xebzaa1abVaJRAIiIhIf3+/uN1uERHx+Xxit9tFRCQcDovVapVgMCgiIk6nUzswyuv1isPhEBGRUCgkVqtVQqGQiIg4HA7xer0iIuLxeMTpdIqIjF7TADabTes3LpdLO5xJaVKalCalSWlSmpQmpUlpUppySpPTKe41a0TC4fg0HTwo3tJScZSXRw7aNRrFWlMjoR/+UGTXLn1oysU4KU1Kk9KUcU3t7e1iMpkEkKKiIikvLxdAjEajmM1mMRqNAkh5ebkUFRUJIDt27JD29nYBJC8vT8xmsxgMBgGkoqJCCgsLBZDi4mIpLS0VQPLz88VsNmuHJdtsNtm1a5d2KHP0QOaCggKprKzUDlSOarJYLFJaWirFxcVyLcjywkKxV1SIgIQNBrGazfJ8Xp4AMr6sTH5gMslHIN6iomNrudksIaNRBMRRXi7eoiIREI/JJM6yMhGQYF6evG82y48MBjGPUtPgOPX19Ul9fb2miYHDn81ms+Tn5wugaQKksLBQKioqBBCDwSBms1nyBjSVlZXFjNObb74pra2tWk5kMvdaW1uT0tTe3p7S/tTW1jZinACprKyUhoYGTc9o+pPFYhlVnLZu3ZqwJovFElfuRTUVFBTI6tWrZeXKlSf0p1hxam9vl+3bt48q93bs2DFknLZu3arViOg4bKwa0dbWNmzuqcPSBzF9+nRKSkoQEUSEPXv28Mc//pGrr76aU045hRtuuIGnnnqKo0ePZttVhY6oq6tj5syZcOAAfb/5Dc3Nzfg8HgBaWlpob28HYO3atSxbtgyA7u5umpub4TvfgZIS5s2ZQ+fEiXD55az87W9Z+cADcMEFdHZ2Mm/ePK2t5uZmuru7AVi2bBlr164FoL29nZaWFgB8Ph/Nzc309fUBsGTJEtavXw/Apk2bWLhwIQAOh4Pm5mYcDgcACxcuZNOmTQCsX7+eJUuWANDX1xfR5PPFp2mAefPm0dnZCcDKlStZuXIlgNKkNClNSpPSpDQpTUqT0qQ05Zaml19mrccDBkN8mv70JzZ97nMsnDUroqmigubvfQ/HwoWwa5c+NOVinJQmpUlpyrimtWvXUldXB8DkyZOZNVD3KioqaGpqoqKiAoBZs2YxefJkzV7UdnV1NU1NTRQVFQHQ2NjIpEmTAJgyZQrTpk0DIju8NDU1HaOpp6cHgKlTpzJ16lQAJk6cyJw5c7QDtQdrmjZtGlOmTOEl4JeTJvFfjY2RlRxFRTQ3NbGwuhqAq2fOpL2ujs8Dt06ezMOzZuFloJY3NeEY0LRw1iw2DWhaX1fHkpkzI3GqruaVpibuKyqiB/h5YyPT4tQ0OE533303ixcv1jRFaWpqoqam5hhNAJMmTaKxsRGAoqIimpqaqB7QNHPmzJhxuu6663juuef41Kc+RUNDA08++WTGcu+ll15KStPatWtT2p+WL18eV+7NmTOHzZs309jYmFB/Gk2cVq1albAmr9cbd3+aM2cOEydO5IorruCPf/zjCf0pVpzWrVvHli1bRqWpo6NjyDitWrVKqxHaOCwn1ojly5fHlXtZI6PTLnHg8/nk1VdflTlz5khNTY0YDAbtEV0pUlBQIF/96lfld7/7nezYsSPbLiuyRHQWce7cuXLGGWdIm8Egwbw8sZrNEn79dRGJcxb8pz8V249/LP7WVhHR169KrFarzJ07V/bs2aOrX5VENUX927dvX9yaRJL/tUK03Z6enrTFad++fTJ37lw5cuRISjX19fXJ3LlzNV2JxunAgQMyd+5cOXjwYEK5t2fPHs2PsfSLplz8ldZoNPX29srcuXOlt7c3ZzQNjlN3d7fMnTtXDh8+rEtNgz//TObeoUOHtJqXzjilo+4N/h5LJk779+/XalYiuXfkyBFNW7ripLf+lAuaojlptVpzRtPgOEVrStSO3jRFa7LVas147qW17rlcIp/6lPSeempE38Cvh61ms4QmTBAJBhPWFK1VfX19ScUpWjsPHDgQnyZV93JGUy7XvWhed3d361JT1L/e3t64NYmkJvcG/22WrhUhZrNZ5s6dK2eeeWbKVoScdtppMnfuXO1X6KNZEQJIfX29pqm1tVXmzp0rp5122gm/YC80GKTBbJb8YVZPfHJA31tnnx3XihCr2Sxhg0EExF5RIb7CQtkM8oPiYjk1jhUhR44ckaqqqhF/lZ/sipDj4zRr1qycWhFyfL9L1YqQgoICMZlMcuTIkayuCIlV93p6eqS+vj7uFVaDNQ3Xn46P00grQsaNG6eNp55MK0IMIiKpmVJJD5s2bWLZsmW89NJLfPjhh9rzBoNB+/9Pf/rTXHvttVx77bVcdtllGI26WuiiSBNbt27lggsuoLa2lu7ubjYHg2gnfsycCc8+m033UkIwGKS7u5uamhry8/Oz7c4JZMu/TLSbrjZSZTdZO3rPLUVscj1ueteXyzUvXe2omqdIhlyPm971ZdO/tLb92mtw9dUE8/Pprqmhprub/GAw8tp//zf88pcJm9ZLzUulL4rMkstx07u2XK15XV1dTJgwgfz8fGpqauju7iYYrXlDYLFYAJgwYcKw1w1l02KxUFtbq7U9FCaTCavVislkorOzk6uuuiou/0by5Z5gkJ+N2sLH9APPAAuADwaei2qKMpK2dDH4M0s3yWo8/jOLxWhyPxF/hvNh8Dkm48ePx2QyjbqNkTTG0tfQ0MDixYvjbiNRRurHsfrvcHri/WxG+kyiY7lR2tra+OxQ5zenAd1PhAymp6eHZcuWsWzZMt58803tAJzBkyJVVVVcc801TJs2jauvvpry8vJsuatIMyd0Hvh4IiQ/H/buhdNPz4ZrCoVCoVAoFAqFQo+8+y78x3/AwHYWGgUFsG8fnHbayDZE4MABOOOM9PioUCgUKSLRwWMYeSJkuPfX1tbi9Xqpqqoa9vDqeCdNRsNG4OKUWIrYWgD8uq2NTw4arM3WRAjEN8GQCpLVuHr1ampra7VJhmz4E+uzcrvdNDY2snTpUi03TSYT06dP59///d9HNSg/2ljE0ydSRSL9+GSYCBlTSyfOOOMMbr/9dl5++WUOHz7MCy+8QGNjI6eeeqp2rsjRo0dZuHAhDQ0NVFdXM3XqVB5++GH27t2bbfcVaaKhoYHS0tJjnwwGYWCPzLGMy+Vi0aJFuFyubLsSk2z5l4l209VGquwma0fvuaWITa7HTe/6crnmpasdVfMUyZDrcdO7vmz6l9a2v/xleP11XB99xKJf/xrXwF7aXHddfJMgABs3wllnwbXXwquvQiiUUr9TYUfv+aWITS7HTe/acrbmDVBaWhp77CSNNqODy/Hg8XiS8i/qy5dKS4ecBNkFhEZp9xLgUeCsujr4wQ9g4MyF4TjttNN45ZVXRtlS7nHFFVcwYcIEqqqqtDNhjicb/a6xsZHFixcfMxnh9XpZvHixdo5GqjheX29vb0YmQeIhHTUhFl6vl66uLu0RPfMlW4ypiZDBlJSUMH36dB577DF6enpYt24dv/zlL7ngggu0SRG/388bb7zBnXfeyYQJE7jwwgv5t3/7N957771su69IITabjXA4fOILTz4Z+bXWGMZoNGI2m3W73Vu2/MtEu+lqI1V2k7Wj99xSxCbX46Z3fblc89LVjqp5imTI9bjpXV82/cvIvd6nP435ssswfvQRPPUU/GwUG6nMnw/hMCxbBt/4BkycCP/93xj7+nRR81JlQ5F5cjlueteW6zUvHA4PPXaSRpstLS1ceumlI9oyGo1J+Rf1xRQOa9tZHc/XgVpgLrB/lPaN/f0wbx5cdBHU1VH27LMUD3Ht+vXrtQOwFcNPMmS633m9XpYuXTrk6xs2bEhpe4noi6e/pIJ01ITBuN1uGhoaqKqqYsKECdrjS1/6Ulrai5cxtTVWvHR1dWlbaK1du5ZAIAAcu4XW+PHj2b9/tKVPoSeG3BrrvPNg9my4+WaoqsqWewqFQqFQKBQKhSLXsNkiW2J5PCe+9o//CCtWZNwlhUKhGIpsbo0Vjw/p2BoLIltj3Q58GygFXgemDno9D/gGMBv4RxL7lbgN+AuRrbPaBz2f7Oc3EmNla6zjSfZ8k1RsjZVqTaONxUjt19fXj3p7ruF8g+xtjRXvWShqa6wUUFtby7/8y7+wcuVKDh8+zOLFi5k1axZVVVXaapHogTiKsc9FF11EYWEhfP3rsGYNtLfDnXfmxCSI3+9n8+bN+P3+bLsSk2z5l4l209VGquwma0fvuaWITa7HTe/6crnmpasdVfMUyZDrcdO7vmz6p+t7vSefjD0JAvi/+11d1LxU2VBknlyOm9615WrNi57PUFhY+PHYSYpIhc3oNkGBQCApW8f78gFwG3AG8APgvuOuDwEvAdcAE4G7gdGOEpqBHwFbgbeAWUBRQt6fHAw+nDyK3utCsoxG37Zt21i0aBElJSUpa3+4bbjSURMGtzvcyptskpMTIYMpLy/nW9/6Fk8++SSHDh1izZo1/OQnP+Gcc87JtmuKFHH55ZdHZpR/9zuYMgUGrfwZ63i9XtasWaObPQSPJ1v+ZaLddLWRKrvJ2tF7bilik+tx07u+XK556WpH1TxFMuR63PSuL5v+6fZeTySyNUosTj8d75VX6qLmpcqGIvPkctz0ri1Xa170nA6TyfTx2EkKbSdr8/zzz6ehoQG73Z6UraF8cQDzgDeGeW8X8GvgbCIrSBIZkv8K8BSRLbeqfvtb8js7E7By8qH3upAso9GXyr4JkfOUzz///GHbS3VNiKKns1COJye3xlKcHJywNVaGl1MpFAqFQqFQKBSKk4iDB+HKKyMr0I/n3/4NfvOb+OyI5NSPtxQKhb5xu93aAdHxkMmtsaJcdNFFbN68OaH2YnHppZcmdN7DTcCTKfJhNTAfeAEIpMgmjN2tsSA533N9a6x0bRM3GlK1NRbEXz/U1lhJ8vzzz3Prrbfy9a9/nVtuuYVFixZl2yVFmqmsrKSsrAyAUCiEzWYjOr/ncDi0JWgejweXywVAMBjEZrNpNux2u3aWjNvtxu12A5HlmXa7XbvOZrMRDAYBcLlceAaWxfv9fhwOBwAigs1mIxQKAdDf36/NhPp8PpxOJ3DiwUROpxOfzwdEZo37+/sREVwuF1arVZeaRAS73a5dF4+mVMRJRDh69Kh2XTri5HA48Hq9mq+p0hQIBDh48KB2XaJxcrvdeL1ezdd4NA3OPavVitvtRkTSFqfRakp3f8oFTV6vF6/Xi8fjyRlNg+MU1Rj1VW+aPB6PFoNM5p7f78fr9Wp9P11xSkfdExH6+/uxWq1JxSlqQ0QSyr1QKMTBgwe163K1RuSaJofDgd1uR0RyRtPgOHk8Hg4fPoyI6FKT0+nUfMp07mWi7nm9Xvr6+hCR+DWdcgq2v/0NWbsWvv1tHJ/4BP7CQjAa8dx8s2Y/EAgMH6dp02D2bAIbN8bUJCIcOXJE067qnqp7Y1lTNE7R9w/OUT1pEhEOHz6sXZfJ3It+LiKSljgZjUaeeeYZNm7cSHl5OXDiIc7l5eUUFRVp9qK28/LyMJvN2pm7FRUV2lY6xcXFjBs3DoPBQH5+PmazOWacvF6vtt1PQUEBlZWV2nVms5n8/Hy2bNnCuHHjKC6OHEFeWFhIRUUFEDnv12w2k5eXB0BZWZn2K/aioiLKy8sxGAwUFxdrmlpaWpg1a5Zmw2QyaeNGw2n6bnExrtLSSJzy87ENaJK8POyVlQQKCgBwl5TgHtAUKCjAPkiTzWwmmJ/PFUBLaSkdxcXcA5w7Sk1DxSmaU+muEVHbg+MEUFpamnCc4Nj+JCL09fUd8908lCaXy3VM7pUOxOn43KusrKRgIE5erzetmqK2R1P3hso9n8+nxWk4TSUlJSP2p3g1RftFVJPf7x+y7rndbq1GDNefXC6XllPDxSlbjImJkIMHD/LVr36Vr371q/zqV7+KeU04HOa6667TtsFauXIlTz31FLNmzeKKK67QkkmRe/z4xz+moaEBgL6+Ppqbm7WbkpaWFtoHfrG1du1ali1bBkB3dzfNzc2ajXnz5tE5sHRx5cqVrFy5EoDOzk7mDVr+3tzcTHd3NwDLli1j7dq1ALS3t9PS0gJEildzczN9fX0ALFmyhPXr1wOwadMmFi5cCES+mJqbm7UbloULF7Jp0yYA1q9fz5IlS7Db7dx///08+OCDutRkt9t54IEHePLJJ+PWlIo42e12HnroIV555ZW0xenJJ5/kvvvuY//+/SnVtGPHDubPn6/d0CYap9dff5377ruPDz74IKHce/DBB/nd736H3W5PW5xGqynd/SkXNK1bt4777ruPtWvX5oymwXFavHgx9913HxaLRZea1q5dy3333ce6desymnutra3cd999vPLKK2mNUzrqnt1u53//93958MEHk4rTCy+8wIMPPojdbk8o9/bv38/8+fPZv39/2uKkt/6UC5qefPJJHnjgAex2e85oGhyntWvX8oc//AG73a5LTYsXL6a5uRm73Z7x3MtE3Vu3bh1//OMftR/1xK3pwQfx/d3fwcKFtPzqV7TPnQs/+AFrOzp44YUXuO+++9ixY8fQcVq8mJUFBbBgAZ3f+Q7zfvc7+NOfwO3WNNntdh5++GFef/31UWlSdW/sa8rlume322lubtZWJehNk91u5w9/+IN2XaZz7//+7/+w2+1p/dv95Zdf5uabbwYiA7BNTU3a4OisWbOYPHmyZi9qu7q6mqamJm0AtLGxkUmTJgEwdepUfvSjH1FZWUlNTQ1NTU2YTCbGjx9/TJy2bt3K17/+dQAmTpzInDlzNE1NTU3U1NRQWVnJj370I6ZOjRxpPmnSJBobG4HIgHNTUxPV1dUAzJw5k7q6OgAmT57MrFmzqKys5Be/+IWmqaSkhL//+7/n5ZdfxmKxMG/ePGbOnDmspkrg4JQpLJs2LRKnmhqam5oAcN50E/P+9V/pbGqCqipWTp3KygFfOydOZN4gTc1NTXTX1ETiNG0a7VOmcBeweNIkftnYyHVASRyahopTR0cHkP6699JLL50QJ4Bp06YxZcqUIeP04osvDqtpcH+y2+388Y9/ZN26dSNqWr58uZZ7U6ZMYdpAnKK5F2XOnDlMnDgRgI0bN6ZE01BxWrVq1QmaYOi6Z7fbh+xPW7Zs0eI0nKapU6dq/WSo/hSPpk996lPcddddNDQ0aJo6OjqGrHurVq3SakRdXd2Q/Wn58uXs2bNnxDhlDRkDzJs3TwwGgxiNRlmyZEnMa+69914xGAwxH0ajUerr6zPstSLdtLW1CSBnn322VFRUSFtbmwSDQbFarRIOh0VExG63i8/nExERt9st/f39IiISCATEarVqtmw2m/j9fhERcblc4nK5RETE7/eLzWbTrrNarRIIBEREpL+/X9xut4iI+Hw+sdvtIiISDofFarVKMBgUERGn0ykej0dERLxerzgcDhERCYVCYrVaJRQKiYiIw+EQr9crIiIej0ecTqcEg0Hp7u6Ww4cP61JTMBiUPXv2aO3Go0lEko5TMBiU3bt3a59lOuJktVrlwIED4vf7U6rJ6/XKzp07tXYTjZPT6ZQDBw6I2+1OKPcOHz4s+/fvl2AwmLY4jVZTuvtTLmhyuVxy4MABLQdyQdPgONlsNjlw4ID4fD5daurv75cDBw6Iy+XKaO55PB45cOCAlgPpilM66l4wGJR9+/bJ4cOHk4qT3W4Xi8UiwWAwodzz+/2yc+dOrd1crRG5pslqtcqePXskGAzmjKbBcerv75fOzk4JBoO61GSz2aSrq0uCwWDGcy8Tdc/lcklHR4cEg8GUabLb7XLgwAGtpsaM0w9/KK6SEhEQf0GB2CorRUCkqkqsHR0SCAS0e91ou6ruqbo3ljVF4xQMBqWrq0trV2+agsGgdHZ2HvN3W6Zy78iRI7J3714JBoNp/dt9/fr1UllZKYAYjUYxm81iNBoFkPLycikqKhJAduzYIe3t7QJIXl6emM1mMRgMAkhFRYUUFhYKIKWlpVJbWyt5eXmSn58vZrNZG3s7Pk7f/va3BZCCggLNB0DMZrPk5+dLXl6e1NbWSmlpqQBSWFgoFRUVAojBYBCz2Sx5eXkCSFlZmZhMJgGkqKhIysvLJS8vT04//XQZN26cGI1GsVgsx8Rpx44dUlZWNqKm4uJi+XppqSwB8eTni9VsFgHpfu21jzW53bLnd7+TN2PVchCr2SyB/HwRkP7SUnEXF4uA+AoLxV5RIQKy32CQ35jNUjug6Stf+coJmoaK044dO1KWe1FNHo9Htm3bJtu2bdM+u9bW1hPiFI17cXFxzDi1trZKR0fHkHGyWCzH9KdgMCgdHR1azg+nqa2t7Zg4RXMlmntRXysrK6WgoEAA2bZt2zH9KRFNw+Xe1q1bh60Rx9e9jo6OIXNv+/bt0t/fLxaLZVhNJSUlUlJSMmx/ikdTQUGBjB8/XioqKjRNO3bsGLLubd26VasRJpNpyP7U1tYmO3fuHDFO0UdbW5tkkjFxRsisWbN45plnKCoq4siRI9oSoCh+v5/TTz9dW9511VVXMW3aNPbt28dDDz2E1+vFYDCwYcMGLrnkkiwoUKQDdUaIQqFQKBQKhUKhGDP098MZZ8DAthPH8JWvwFtvZd4nhUJx0pCuPf7h40PZW1paThizg9GfU5IsqTgb4nSgEZgEfHkIexcAtwE3A5WxjIxAGFgOfO6hh7jrrbd4YdmyEQ+ZTuUZIdG4LF269Jh2TSYTF1544ajPWRkpd9QZIdk/I2S483PUGSE6YevWrQBccMEFMQvq8uXLtb2nr732Wl577TXuuOMO7rvvPp544gntuqeeeiozDisyyq233qrtTZdr9Pf386c//emYfQz1RLb8y0S76WojVXaTtaP33FLEJtfjpnd9uVzz0tWOqnmKZMj1uOldXzb9G6v3eiPafOaZ2JMgALNnp9Q3veeXIja5HDe9azsZat6KFStSOnZSVlbG73//e9rb27FarSxatCjmmB1EzjVYtGgR27ZtG9JWMmM7yb4/FgeAu4FZA//2er10dXVpD4A24EfAGUQmTfaPsg0j8A3g7H/5F55etw7Hz37G3nffZfXq1amQMCLRyanjJ1+8Xm9Ch82PFr3XhWTRm75t27ZpZ2mno8+MBcbEREh3dzcGg4Fzzz035uvRvVMBfv7znx/z2re+9S3OOOMMAG3/SkVu0dXVpR0Ylmvk5+dTW1urHXakN7LlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i91xvR5rPPxn7+lFPg+utT6pve80sRm1yOm961nQw1b/z48SkdOwkGg9TW1jJhwgTtsOWRGOq6YDCY1NhOsu8fiYaGBqqqqpgwYQITJkzgiiuuOOZ1N/AkkJdMI93dFPz2t5z193/P3919N1eT3kFbr9fL0qVL09jCyOi9LiSL3vQN7n/p7jN6ZUxsjVVUVEQwGOT222/nj3/84wmvX3jhhbS2tlJdXc3BgwdPeH369OksW7aMT3ziE9qBUYqxj9oaS6FQKBQKhUKhUIwZfD548UWYPx/WrPn4+X/9V7jvvvhsrFgB770H3/teZJsthUKhiJN0bG2Tyq2BUkm6t0SKxfXAkhTb7AIeBVqA3oHnUrU1Vjo+k5N1ayyv10tvbyRC48ePH3LCL9tbYyUTn3j9iq5mOn6ycCjU1lgxMBgMADFnqex2O1u3bsVgMPD3f//3Md9/2mmnAWgn3Styi7q6OoqKirLtRlrw+XysX78en8+XbVdiki3/MtFuutpIld1k7eg9txSxyfW46V1fLte8dLWjap4iGXI9bnrXl03/xuq93og2i4qgvh5Wr4b2dmhqgnHj4Lbb4rdz//3wH/8BZ58N110HK1dCODx6XxS6JJfjpndtJ0PNa29vT+nYSVFREe3t7Snxu6ioKKmxnWTfnwoahnjeBVwBPD7w/6Ohlsj2XHuBZ4GrIGbNH6vovS6MhNvtPmG1UFVVFQ0NDbjdbl3rS1efueKKK+KeBMkGY2IixGw2A5Etso7nrbfeIjxQBC677LKY749OoOTlJbVITaFTLrroIgoLC7PtRlrw+/1s3rwZv9+fbVdiki3/MtFuutpIld1k7eg9txSxyfW46V1fLte8dLWjap4iGXI9bnrXl03/xuq93qhsnn8+/P73cOAATJwYn52dO+GNNyL/HwrBCy/AP/4jnHNOZKVIor4odEMux03v2k6GmtfR0ZHSsZPCwkI6OjpS4ndhYWFSYzvJvj8VfBuoBzxf+tIxzz8NrAG+R+QskR8CraO0XQDMBF4HzrzySvif/4Ec2PFG73VhJGKdseL1elm8eDGNjY261qeHPpMNxsTWWFOmTOHtt9+msrKSAwcOHLPE6JZbbuHJJ5/EYDCwfv16vvjFL57w/muuuYYVK1Zw5plnsm/fvky6rkgjamsshUKhUCgUCoVCcdLws5/B//5v7Nc2boSLL86sPwqFYkzh9Xqpqqo64WDswZhMJqxWK729vVndGuvSSy9N6rDubGyNNbjt/M5OFl91FbcC/wh8EOO6LwErr7uOsldeiWydOEqkoIDwjBnk/eAHMGUKDOymEy9qa6z0Eu1Lg8ewT4atsUaL2horBl/72teAyNZWd911l/b8u+++y+LFizEYDJx22mlccsklMd+/efNmDAYDE4/7pY0iNzCbzRiNYyKVR004HMZms2mrnvRGtvzLRLvpaiNVdpO1o/fcUsQm1+Omd325XPPS1Y6qeYpkyPW46V1fNv0bq/d6aa15Hg888UTsN3zxiydMgug9vxSxyeW46V3byVDzvF4v06dPH/a66dOnYzKZhj3nIEpxcTHFxcUp8dtoNB4ztrNo0SK2bduW8PuPJx49qSQ4cSI/I7ICJNYkCMA64PD//i/09ERWCI5yzNIQCJD37LNwxRWEzzsvYuPo0SQ9zyx6rwvJ4PV66enpSYu+1atXY7FYtPM4EmGkPpOrjAm1jY2NFBcXA/DQQw9RW1vLxRdfzBVXXKEtL/r+97+vnSUymG3btmkH1kyePDlzTisyRlNTExUVFdl2Iy04HA6am5t1e75NtvzLRLvpaiNVdpO1o/fcUsQm1+Omd325XPPS1Y6qeYpkyPW46V1fNv0bq/d6aa15S5YMPcB1++1p80WRWXI5bnrXdrLUvN///vfU19efMClgMpmor6+npaVF+/dIkybXX3898+fPT4nfFRUVJ4ztjGbiItb7BxOPnksvvTTu9uIlrg2Rxo2LnBl1yy0Jt2PcuRN+8hM44wz4znfgnXdA/xsA6b4uJIvb7U6LvtraWu2RKCP1mZxFxggLFiwQg8EgRqNRexgMBjEYDPKZz3xGnE5nzPfNnTtXe9+SJUsy7LUinbS1tQkgp512mpSXl0tbW5sEg0GxWq0SDodFRMRut4vP5xMREbfbLf39/SIiEggExGq1arZsNpv4/X4REXG5XOJyuURExO/3i81m066zWq0SCARERKS/v1/cbreIiPh8PrHb7SIiEg6HxWq1SjAYFBERp9MpHo9HRES8Xq84HA4REQmFQmK1WiUUComIiMPhEK/XKyIiHo9HnE6nhEIhOXz4sBw5ckSXmkKhkPT29mr24tEkIknHKRQKSU9Pj2YvHXGy2WyanVRq8vl8smfPHs1eonHq7+8Xq9UqHo8nodw7cuSIHDlyREKhUNriNFpN6e5PuaDJ7XaL1WoVl8uVM5oGx8lut4vVahW/369LTS6XS6xWq7jd7ozmntfrFavVqvmQrjilo+6FQiHp6+uTI0eOJBUnh8MhBw4ckFAolFDuBQIB2bNnzzH2crFG5Jomm80mvb29EgqFckbT4Di5XC7p7u6WUCikS012u137/DOde5moe263W/bt2yehUChlmhwOh1itVvH5fEnFKRQKyf79+4+5f7Tv2SPyf/8n4XPPFavZLMG8PBEQ5/jx4jl8WETiqHv9/SILFointzfn+lOu1IhcrnvRvx2j9vSmKRQKSXd3t2Yvk7l39OhROXTokIRCoYz97e5yuaS1tVU6OzvFYrHIoUOHTtDkcrmkvr5eTjvtNDEYDAJIRUWFlJeXS319vRw6dEj2798voVAo7jjt2rVLKisrBRBAzGaz5Ofni9FolNNPP11KSkoEkJ07d2pjPgaDQcxms+Tl5QkgZWVlYjKZBJCioiIpLy8Xo9EoVVVVUlVVJUajUSwWywlxOnjwoNTX10tJSYmYzWZNU3V1tTQ0NMjWrVuluLhYSktLBZD8/Hwxm82ar5WVlVJQUCCAlJSUaL4WFBQco6m1tVU6OjoEkNLSUikuLhZACgsLpaKi4hhNHR0dkTjZbOKZOFEExFtUJI7ychGQkNEoVrNZQkajCIijvFy8RUUiIB6TSZxlZSIgwbw8sZrNEjYYREDsFRXi+/znRR58UNwHDsTMPYvFEremaJxG0jRYe6w4WSyWY/pTKBSSffv2abk8XH9qa2uTwsJCAeKO07Zt247pT62traPWNFLuAWI0GsVsNovRaBRAysvLpaioSDo7O4+pex0dHcfkXkVFhaZp+/bt0t/fLxaLZcTc27Zt27D9aShNFotFdu/erV1nNpulvLxc07Rjxw5xOBzi8Xiks7NTWltbtc9v69atUlRUJICYTCYpKysTQPLy8obUNFycoo+2tjbJJGNiRQjAbbfdxvPPP8+FF16IiCAimEwmGhoaWLt2LWVlZSe8JxAI8MgjjwCQn5/PVVddlWm3FRng/PPP5/rrrwegr6+P5uZmfAP7K7a0tNDe3g7A2rVrWbZsGQDd3d00NzdrNubNm0dnZycAK1euZOXKlQB0dnYyb9487brm5ma6u7sBWLZsGWvXrgWgvb1d++WEz+ejubmZvoGDq5YsWcL69esB2LRpEwsXLgROnPleuHAhmzZtAmD9+vUsWbIEo9FIIBDgoYce0qUmo9GIxWLhmWeeiVtTKuJkNBrZsGEDq1atSlucnnnmGcxmM/39/SnV1NPTwxNPPKEtP0w0Tm+//TZms5nt27cnlHsPPfQQRqMRo9GYtjiNVlO6+1MuaNqyZQtms5n33nsvZzQNjtPzzz+P2WzmyJEjutT03nvvYTab2bJlS0Zzz2KxYDabWbVqVVrjlI66ZzQa6e/v56GHHkoqTq+88gqbN2/GaDQmlHv9/f088cQT9Pf3py1OeutPuaDpmWeewWKxYDQac0bT4Di99957vP766xiNRl1qev7559m2bRtGozHjuZeJurdlyxZefvlljEZjyjS98sormM1menp6koqT0Wjkrbfe4u233/5Y0/PPw49/jG/zZpqbmuj79rehoIAljY2sb40cuzti3Vu0CG6/nfU33cSSu++G996j79Ah3eWeqnu5WfeMRiPbtm3j+eef16Umo9HI66+/znvvvRe3JkhN7i1YsIAjR45gNBoz9re73+/nueeeY9y4cdTW1vLcc8+doKmkpIQHHniAOXPmsH37diwWC//2b//GG2+8waJFi/jggw946623MBqNccepp6eHOXPmaNc1NTVRU1NDOBxmypQpfPWrXwVgz549LF++HICioiKampqorq4GYObMmdTV1QGRnV9mzZpFOBxGRLjzzju1X7gfH6dXX32VRYsW0d7eTlNTk6bpl7/8Jb/4xS8oKSlhypQpTJs2DYCamhqampo0X+fMmaNtuT916lSmTp0KwMSJE4/R9Nxzz2mf/7Rp05gyZQoAkyZNorGx8RhNdrs9EqfHHmP9WWcBsGnyZBbOmgWAo6KC5qYmnqmoIAAsnDWLTQO73ayvq2PJzJkA9FVX09zUhK+oCICWxkbajUb40Y9Y+/3vs+w3v4ENG+jet++YOMWrKRqnkTQ999xzmqZYcYJj+5PRaOTll19my5YtWpyG6k/Lly9n0qRJAHHHaePGjcf0p5deemnUmkbKPThxdcWsWbOYPHnyCXXPbrfT1NRE0UCcGhsbNU1btmzRasRIubdx40Zg6P40nKZAIEBTUxOnnHIKNpuN66+/XtPU3t7Of//3f1NVVcXFF1/Mc889x6c+9SkaGhpYuXKlttNSXV0dMwdyr7q6ekhNw8Upa2R02iVF9Pf3S09Pjza7PBROp1PWrFkja9askQ0bNmTIO0WmiP46YM6cOXLaaafl5IoQh8Mhf/zjH2Xfvn261ORwOOQPf/iD9PT0xK1JJPlf/0TbPXjwYNri1NPTI/PmzdN+IZ0qTUePHpWHH35Yy4NE43Tw4EGZN2+eHD58OKHc27dvn/zxj38Uh8ORk7+my1VNfX19Mm/ePDl06FDOaBocpwMHDsi8efPEarXqUtOhQ4dk3rx50tfXl9HcO3LkiMybN08OHjyY1jilo+4N/h5LJk69vb3yhz/8QRwOR0K5Z7PZ5OGHH9bs52qNyDVNPT09WtxzRdPgOB06dEi7J9CjpgMHDmiff6ZzLxN1r6+vT/v8U6Wpt7dX5s2bJ0ePHk0qTsff6w6pqbdXnLt2xV/3vvnNE39FPHmyWB95RFe5p+pebta9aF4fOHBAl5ocDoc8/PDDcujQobg1iaQm97q7u7W/zcbS3+4HDx7U8jXZFSHl5eXygx/8QKqrqxNaEVJeXi6zZ8+WM888c8gVISNpslgs2VsR0tMjnj/8QeTCC49ZEeIyGqV2YKXBaSB3lZfL9nhXhBQWioC4i4ulv7RUBCQwebJYH35YxOHQxYqQaL/r6+sbMU5jcUXI1q1bj6l7eloRUllZKbNnz5bTTjtN03TZZZcNqemrX/1qTqwIGZMTIQqFyMcTIXV1dVJUVJTxzpMJvF6vrFu3Tvvy1hvZ8i8T7aarjVTZTdaO3nNLEZtcj5ve9eVyzUtXO6rmKZIh1+Omd33Z9G+s3uvppebFtNHVJTIwQHbC4zvfScpfRerQe11IBr1rUzUvMzY9Ho826Dr4UVRUpI3tmEwm8Xg8YrFYTrhuqMfg9wNisVhGrWc07Q33sFgscds6wc9wWGTdOnHMnClukCdjvMcA8o8gz4MEYtX0eB6lpeK48UaZnAK9o9F+vN7R5FAi8Tm+vVTFON7Hjh07jtEXz2cTj4+juXao+BzfZ7L1yPRYrkFkDJyeo1DEYOvWrVxwwQXav9va2vjsZz+bRY8UCoVCoVAoFAqFQof8+tdw992xX/vb3+CyyzLrj0KhOGlpaGhg8eLFQ75eX1/PokWL8Hq9VFVV4fV6R92GxWIZ9UHSXV1dTJgwYdRtxWobiMvWUH52dXUxecIEyoDuYd5/BvBd4PvAWQn4CvA+sAB4BnAnaAMiB9JbrVZ6e3uH1J5IXKIkEp/j20tVjNPRfvTaeHwczbXHvw/iy81Mkemx3DFzRohCMRSXX345JpMp226kBa/Xy5o1axL64s8E2fIvE+2mq41U2U3Wjt5zSxGbXI+b3vXlcs1LVzuq5imSIdfjpnd92fRvrN7r6aXmnWAjEIDHH4994QUXwJe/nHA7itSi97qQDHrXpmpe5my2tLRQX19/zDiOyWTiqquu4sYbb9TOOzGZTEyfPj0umyaTKefGhmwMPwkC0AP8F3AJIPn5CbXzReCxAVsPA59LyApMnz591J+/3utCsvj9ft3qy8U+Ew9qIkQx5qmtrSU/wYKvd4LBIF1dXQSDwWy7EpNs+ZeJdtPVRqrsJmtH77mliE2ux03v+nK55qWrHVXzFMmQ63HTu75s+jdW7/X0UvNOsOHzwfe/D6effuKFt98OBkN8RrdtAx0O5uQSeq8LyaB3barmZc5mSUkJixYtwmq1YrFYsFgsfPjhh9x444088sgjlJSUaNfGmjSJRX5+fk6PDY3ETYAhydhWAj8EPgLeAW4G4hkiN5lM1NfXaxNYoyGeHPJ6vXR1ddHV1TVq+9kmFArptu6drH1mzG2N5fF4eOWVV3jvvfewWCw4HA4CgUBc7zUYDLzxxhtp9lCRKdTWWAqFQqFQKBQKhUIRJ4EAvPwyzJ8PK1dCSQn09EBl5cjvDYfh3HPBZoNbbolMoJx7btpdVigUCogMhvf29gKR7YWuuOKKYa/Pha2xRuPLDiBmRT7lFPjCFyI1PwGswJ+JbJ21fdDzq1ev1vweP378MRNV8Wz/FA9ut5vGxkaWLl2a8IoKtTXWie+Dk3trrDEz7SMi/O53v+Puu++mv78/ofcb4v2li2JMMX78ePr6+rLtRloIhUL09fVRXV1NXl5ett05gWz5l4l209VGquwma0fvuaWITa7HTe/6crnmpasdVfMUyZDrcdO7vmz6N1bv9fRS84a0UVAA//RPkUdnJ2zaFN8kCMCbb0beA/B//xd5XHFFZELkn/4JCgsT8lNxLHqvC8mgd22q5mXX5ki2TCbTsAPoeXl5VFdX09fXRygUSsqXsUYh8CfgN2eeSf7+/ce+eOed8Otf49u2jQc/9zluDoU4bRS2q4CmgcdbwHzgOSI7syR61sdghot7Y2PjsGfJjAVCoRC9vb26rHsna58ZM1tj3XTTTfzyl7/E6XQiIqN+KHKX2bNnU15enm030oLT6WTBggU4nc5suxKTbPmXiXbT1Uaq7CZrR++5pYhNrsdN7/pyuealqx1V8xTJkOtx07u+bPo3Vu/19FLz4rIxcSLMnBm/wfnzT3xu9Wq46SY4ejQxJxUnoPe6kAx616ZqXnZtJmurvLw8p8eGhsMP3AN0r10Lr74K114LRiPk5UFjIwAHiov511CIs4AbgET2yvkq8DSwH6i6+27YuTNp34eKu9frZenSpUnbzzYej0e3de9k7TNjYmusp59+mptuugmDwYCI8JnPfIYbbriBCy64gHHjxo1qP7MpU6ak0VNFJolujWUymfD5fLS2tubc1lgigs/no6ioSJcrmrLlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i919NLzUulLwAcOABnnw2x9jifOROefTY5+woNvdeFZNC7NlXzsmtzNLZibQdkMBgoKirC5/MhIifd1lgn2Nq3D/72N7jxxiHtnQPcBtwKnDKqlgZx5ZWRlYEzZmgrA0ezNdZQcU9lLLK5Ndbu3bs5/fTTNX162hrr+D6TLdTWWDF47LHHtP//8Y9/zO9+9zuMxjGzmEWRZhLdK3AsYDAYRjwULJtky79MtJuuNlJlN1k7es8tRWxyPW5615fLNS9d7aiap0iGXI+b3vVl07+xeq+nl5qXSl8AaGmJPQkCMHt2atpQAPqvC8mgd22q5mXXZrK2RCSnx4ZGzVlnaZMgQ7EL+Dnwa+BV4MpE2nnzzcjj1FMjq0++//3IapQRGHzmy/jx43U5OZoK9Fz3TtY+MyZmEz766CMMBgMTJkzg/vvvV5MgimNoamqioqIi226kBYfDwQMPPIDD4ci2KzHJln+ZaDddbaTKbrJ29J5bitjketz0ri+Xa1662lE1T5EMuR43vevLpn9j9V5PLzUvlb4AIAKx/t769Kcj54TEg88HJ9Ee5Imi97qQDHrXpmpedm0ma6uioiKnx4bixev10tXVpT3iGeguBP4u2YYPHYJ774VPf5rTbrmFGcT+5b3b7aahoYGqqiomTJjAhRdeyK9+9StuuukmrFbrMb7nAi6XS7d172TtM2NiRiHacb/yla/k7CyhInHWrFmTs7OYJpOJyy+/XLczyNnyLxPtpquNVNlN1o7ec0sRm1yPm9715XLNS1c7quYpkiHX46Z3fdn0b6ze6+ml5qXSFwB+/Wvo6YHHHoMvfvHj52+7La5f/gLw6KPwqU/Bb38b2WpLERO914Vk0Ls2VfOyazNZW16vN6fHhuJh8ARD9FFVVUVDQwNut3vI980CyoZ4bcdonRCh+K23eAHYA/wncNagl6MHoEfj5PV6Wb16Nc8++yzjxo3T/L4i3kn2ERjNhFA6KCws1G3dO1n7zJg4I2TSpEns2LGDW2+9lccffzzb7ih0QvSMkCiZ3ldOoVAoFAqFQqFQKE46PvwQHnkE/uu/oLp65OtF4HOfg61bI//Oy4Pp0yPban3ta/FPpigUCgXxnfNwMp4RMhyXXnopGzZsiPnaD4H/AI6v5r1EJjHOB24HvgMksnYgBCwH5g/8N5yAjWQxmUxMnz6df//3f8/ouOG2bds477zztH/r6YwQvZDpsdwxccdx6aWXIiJs27Yt264odMjVV19NcXFxtt1ICx6PhxUrVuDxeLLtSkyy5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d9YvdfTS81LpS8x+cIXYP78+CZBAN599+NJEIhskfX88zB1Ktx/f+r9G8PovS4kg961qZqXXZvJ2iouLs7psaFkGWoSBOAPQA1wI7Bm0PMtQBBoBe4AzgD+e8IEQl/4wqjazgO+CbwMWIB/G7AFmYub1+tl8eLFNDY2prWd4/nCF77AnXfeyZEjRzLabjycrH1mTEyE3HHHHQC8//77tLW1Zdkbhd4YN24c5eXlAIRCIWw2G9GFTg6HA7/fD0S+WF0uFwDBYBCbzabZsNvtBAIBILJnYXTZYCAQwG63a9fZbDaCAwcFulwu7Uva7/dre/6JCDabjdDAHrj9/f3aUjOfz4fT6QQgHA5js9kIhyPz4U6nE5/PB0SKdH9/P+FwGKvVitVq1aWmcDjMkSNHtOvi0ZSKOIXDYQ4fPqzZS0ecHA6HZieVmvx+P319fZq9ROPkcrmw2Wx4vd6Eci+aV+FwOG1xGq2mdPenXNDk8Xiw2Wy43e6c0TQ4Tk6nE5vNRiAQ0KUmt9uNzWbD4/FkNPd8Ph82m03zIV1xSkfdC4fDHD16FKvVmlScnE4nR44cIRwOJ5R7wWCQvr6+Y+zlYo3INU0Oh0OLe65oGhwnt9vN4cOHCYfDutQ0uN9lOvcyUfc8Ho/2+adKU/R7zO/3JxWn6L3u4PvHMV33FiyIxKm0FM/AgIu/sBBHZSU0NKi6d5LUvejfjtHr9KYp2u+i9jKZezabjaNHjxIOh8fU3+4ul0uro8nGaTR1z+PxaFsNFRUVUV5ejtFoxGw2YzabtXOFE9FUXFxMaWkpAPn5+ZjNZs3XyspKCgoKACgpKaGkpASAgoICKisrtev6+/s1X0tLS7WB5sLCQu08BoPBgNlsHrI/RT+vqK6opvLycoqKioDIKoeyssimVnl5eZjNZu04gYqKCgoLC+PW5AdeKinhGyUlnAf8b0EBTw/SZDab8eXn8+0338T71lt43n0Xvv99/GYzjgFNYjBgM5sJ5eVFNJWV4R2Ik6+oCGd5OWcDc41GtpjNPGc0cqXRyCmnnKLFM5WaYsVp+/btx2jKz8+PK055A5rKyspOyL3h4mQ0Gjl8+DA//vGPgUjuDaXJ5/Np+T+SpmiuBIPBY3IvHk0iol1nNpspLy8flaZUxSlbjImJkIsvvpjZs2cTCoW48cYbdTmTpsgePT09XHPNNQD09fXR3Nysfdm1tLTQ3t4OwNq1a1m2bBkA3d3dNDc3azbmzZtHZ2cnACtXrmTlypUAdHZ2Mm/ePO265uZmuru7AVi2bBlr164FoL29nZaWFiBSvJqbm+nr6wNgyZIlrF+/HoBNmzaxcOFCIPJl29zcrH25L1y4kE2bNgGwfv16lixZQmlpKVdccQWPPvqoLjWVlpYyceJEXnjhhbg1pSJOpaWllJWV8c4776QtTi+88AINDQ2EQqGUarJarezevVv7Mkg0Ths3bqShoYE9e/YklHuPPvooX//61yktLU1bnEarKd39KRc07dy5k4aGBlpbW3NG0+A4vfrqq9oetnrU1NraSkNDAzt37sxo7vX29tLQ0MA777yT1jilo+6Vlpby5S9/mUcffTSpOL355pt84hOfoLS0NKHcC4VC7N69W/tjM1drRK5peuGFF5g4cSKlpaU5o2lwnFpbWwkGg5SWlupS06uvvsqZZ55JaWlpxnMvE3Vv586d9Pf3U1pamjJNb775Jg0NDVit1qTiVFpaSn5+Phs3bhyVJt3WvQH/lk2bxtopUyKaJk2i5Qc/gLPPVnXvJKl7paWlnHnmmbz66qu61FRaWkowGKS1tTVuTZCa3Pvzn//MF77wBUpLS8fU3+4bN24kPz+f0tLSpOM0mrq3du1a6urqAJg8eTKzZs3C5XKxYsUKbr/9dm3ANxFNU6ZMYdq0aQDU1NTQ1NSk+TpnzhwmTpwIwNSpU5k6dSoAEydOZM6cOdp1zz33nObrtGnTmDJQ9yZNmqStSCgqKqKpqUmbFDq+P61atQo48UDrWbNmMXnyZADq6uqYOXMmANXV1TQ1NWkD1Y2NjUyaNCkhTTuAxyZOZNogTU1NTdTU1AADuWe3wyOP0P7qq7QMDPL7iopobmqib2C14JKZM1k/EKdNkyezcNYsABwVFfyhqYkrKyp42eXii2Vl/OAzn+HUBDX9wz/8Q0JxGqxppDhVD2iaOXPmCbk3XJxcLhc9PT0UFBTg9Xqx2+1DatqyZYtWI0aKU7Sf9PT0jFpTIBCgqamJ0tJSFi1axDXXXDMqTSQYp+M1ZQ0ZI4RCIbntttvEYDDI+PHj5aGHHpKenp5su6XIIm1tbQLIueeeK5WVldLW1ibBYFCsVquEw2EREbHb7eLz+URExO12S39/v4iIBAIBsVqtmi2bzSZ+v19ERFwul7hcLhER8fv9YrPZtOusVqsEAgEREenv7xe32y0iIj6fT+x2u4iIhMNhsVqtEgwGRUTE6XSKx+MRERGv1ysOh0NEIjlttVolFAqJiIjD4RCv1ysiIh6PR5xOpwQCAeno6JC+vj5dagoEArJjxw45evRo3JpEJOk4BQIB2bZtm+ZfOuJ09OhRsVgs4vP5UqrJ4/FIa2ur5l+icXI4HGKxWMTlciWUe319fdLZ2SmBQCBtcRqtpnT3p1zQ1N/fLxaLRZxOZ85oGhwnq9UqFotFvF6vLjU5nU6xWCxaH4xHUyri5Ha7xWKxiN1uT2uc0lH3Bn+PJRMnm80m27dvl0AgkFDu+Xw+aW1t1fzL1RqRa5qOHj0qO3bskEAgkDOaBsfJ6XRKe3u7BAIBXWqyWq3a55/p3MtE3evv75etW7dKIBBImSabzSYWi0X7Tks0ToFAQNrb24+pYWO27j3/vASKi0VA+ktLxT3w/77CQrEvWTIqTarujU1N0ThF/3aM+qc3TdF+F/3MM5l7hw8fll27dkkgEBhTf7s7HA7teyzZOI2m7rW3t4vJZBJAioqKpLy8XPLz82XChAnyiU98QoxGo1gsllFrslgsUlxcLKWlpQJIfn6+mM1mAQSQyspKKSgoEEBKSkqkpKREACkoKJDKykrtutbWVuno6BBASktLpbi4WAApLCyUiooKAcRgMIjZbJaOjo5j4hTNva1btwogRqNRzGazGI1GAaS8vFyKiooEEJPJJGVlZQJIXl6emM1mMRgMAkhFRYUUFhYKkBJNZrNZSktLxePxnJh7d94pAhI2GMRqNkswL08ExFlWJh6TSQTEW1QkjvJyEZCQ0ShWs1lCRqME8vNl6/nnS39JifhBnjaZ5B/LysQQh6Zx48ZJfX29fPTRRwlrys/PjytOeXl5AkhZWdkJuTdcnPLz87UxS4vFIh0dHUNq2r59u/b3/khx2rZtm4iI7Nq1a1SaLBaL7N69W8xmsxQWFkptba1UVlaOSlOqci/6aGtrk0wyZiZCovz+978Xg8EgRqNRjEajVFVVSW1trUyYMGHEx6c+9alsu69IIdGJkLlz54rZbM5458kEVqtV5s6de8wNhZ7Iln+ZaDddbaTKbrJ29J5bitjketz0ri+Xa1662lE1T5EMuR43vevLpn9j9V5PLzUvlb6khL4+kfvvFznnHJHI0ekiZ50lMjCoOSL9/SJf/rLIQw+JDBpAzUV0FbcUo3dtquZl1+ZobFkslhMGU81mszY2BIjFYhm1D7HsJvKwWCxx2xrKz1T5kspHfX39iY66XCKVlR/X9kGP/hjPHf+wDsTNajYf8/xOkJ+BnBLDj9WrV2s/OtDrZxUrL0fKi2guxKNnNNcOlZvH95lUP6JxWr169bDXZXos1yAysCmezgkEAvzoRz+ipaWFYDDIYLej+5ANh4hgMBi0pcGKsc/WrVu54IILtH+3tbXx2c9+NoseKRQKhUKhUCgUCoUiJiKwejUsWACTJ8Ndd8X3vscfh+99L/L/JSXQ0ACzZ8Mll0AcYwEKhSK36OrqYsKECcNeY7FYqK2tTbndeLBYLABx2RrKz1T5kgpMJhPTp0+npaVFO29DY/16mDoVBs7TGczNwG7gduBbgCmBtn3Ac8AC4K2B547/zPTyWV166aXDHko/Ul5EdY0mv0erfTS5mSzx+pjpsdz8jLWUBKFQiOnTp/Paa68BcPzczRiZy1EoFAqFQqFQKBQKheLkxGCAK6+MPEbD/Pkf/7/bDS0tkcfUqTAwRqBQKBR6wGQyMX78eHp7e7PtSlKsXr1am2wYP368dpj2CdTVQU8PLFoUmeQeOLviKPAs4AXeAZqAW4hMinxmFH4UAd8eeGwjMiFitNlGKycjLFq0CK/Xy/nnn59tVxTDMCYOS3/kkUdYsWIFEJn0uOqqq3j88cd577332LVrFxaLJa7H7t27s6xEkQ7uuusuKisrs+1GWrDb7dx7773aAVp6I1v+ZaLddLWRKrvJ2tF7bilik+tx07u+XK556WpH1TxFMuR63PSuL5v+jdV7Pb3UvFT6knU++EAbWDuBz30us75kgJyJWwz0rk3VvOzaTNZWZWVlRsaGLr300mFfnz59+tCTBmOI2tpa7TGinrKyyKq999+HDz7AeeON/IHIJEiUo8DvgfOAy4FFgB+wV1Zy7113YY8jbucDDwA1dXVwyy3w7ruRlYY64vjPKlN5mQh69i2djIkVIX/+85+1/7///vv5yU9+kkVvFHrjxRdfxO12Z9uNtFBSUsKMGTNOXH6oE7LlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i919NLzUulL1lnwYKhX7vttsz5kSFyJm4x0Ls2VfOyazNZW263OyNjQy0tLfzmN79h6dKleL0fD/UP3j7qpOYLX+DIf/83//7MM0NesnbgUQ3c6nYz68UXKRlF3Iw+H/zlL5HH5z5H+cyZVACOZH0fgpG2vBqOTOVlIujZt3QyJs4IKS8vx+12M2nSJFpbW7PtjkInqDNCFAqFQqFQKBQKhSJH8XrhtNPAEWN468or4Y03Mu+TQqHIOtk8IyRq1+v1HrP91fHbR8V7doNezwhJ5POLMhrfJwIdCbVyLC4iq0zmA0OsIUyIbdu2YTKZ4o4lDH8GyEivqzNC0s+Y2BorykhL0BQnJ3r+VUmy6H2GNlv+ZaLddLWRKrvJ2tF7bilik+tx07u+XK556WpH1TxFMuR63PSuL5v+jdV7Pb3UvFT6klVMJtiyBf7f/4tMiAxm9uz47TzyCCxcGJlY0Tk5Ebch0Ls2VfOyazNZW5le0WMymUa3fZQiJt8rKeHFGTNwJxm3UuC7wPvAB8BtQFny7iUdVz2vhNOzb+lkTEyEnHnmmUDk0HSFQqFQKBQKhUKhUCgUJwG1tfDb38K+fbBkCVx1FYwfD9Onx/d+rxd+9Su46SaoqYGf/xx27UqrywqFQqEYGQPwT0O89iFwDbAUGO1I8BeIHKreA8wDLkrQP0VuMia2xvrBD37A/PnzufDCC9m0aVO23VHoBLU1lkKhUCgUCoVCoVCcZNjtEO/hrk8/DbNmnfj8174WWSnyqU+l1jeFQpF2vF4vVVVVx5zRMRiTyYTVah31r/lTueWW2horPt/NwM3A7cCkQc/fDjwy8P9nElnt8X2gJiGPYAORyZHFwGjWHI1mKym1NdaJbamtsRLk9ttvJy8vj48++oi333472+4odMZ5551HQUFBtt1IC4FAgO3btxMIBLLtSkyy5V8m2k1XG6mym6wdveeWIja5Hje968vlmpeudlTNUyRDrsdN7/qy6d9YvdfTS81LpS+6JN5JEID582M///77cOqpqfEnheRy3PSuTdW87Nocja3oweSDKSgo0MaGpk+frraqGiO4CgpYed55XFRQwFeAp4A+4OlB1+wHfgPUAtcC7ssvB4NhVO1cCrQQWSXyEHDB8JenjMF5qTf07Fs6GRMTIRdeeCF33303IkJDQwPbt2/PtksKHZHLe9qpfVSz1646I0ShR3I9bnrXl8s1L13tqJqnSIZcj5ve9an98rNnU50RkiLa22GoH1LedBOUpWIH+dSSy3HTuzZV87Jrc7S2WlpaqK+v1yY8oucd3HDDDbS0tCTtjyIzDD6n4m/Ad4CzgP4Y14aAZcChJ56A3bsj50eZzaNqrxK4A2gF3iGyGiWdU2Z6PodDz76lkzGxNVaURx55hDvvvBOj0cjs2bO5/vrrueCCC6ioqMi2a4osoLbGUigUCoVCoVAoFApFTO68Ex58MPZrW7bA5z+fWX8UCkXK8Xq99Pb2AjB+/PikVoKorbE+JlNbYyXCMb5985vwyitJ2bMCfyGydda2GG2B2horEfS6NVZ+xlpKgry8vGP+LSI88MADPPDAA6OyYzAYCAaDKfRMoVAoFAqFQqFQKBQKhe74/vchFIK//AWczo+f/9KX4p8E2b8/Mmnyj/8Ix41LKBSK7GMymRIesFeMcfbtg+XLkzZTBdw58HibyITIEsCXtGWFHhkTW2Mdv2jFMGgvOBEZ1UORe8ydOxfzKJfDjRVsNhv/+Z//ic1my7YrMcmWf5loN11tpMpusnb0nluK2OR63PSuL5drXrraUTVPkQy5Hje968umf2P1Xk8vNS+VvoxpLrgAHn4Yenrg0Ufhkksiz8+eHb+N+fPhG9+AiRPh7rvhwIH0+DpALsdN79pUzcuuTXWvd3JiNpsTH9N7/HEIh2O+NBdYnYA/0XNK9gP/CxR0diZg5WOS0pdm9OxbOhkTW2MZjamZrzEYDIRCoZTYUmSf6NZYtbW1dHd3s3nz5pzbGisYDNLd3U1NTQ35+fpbwJUt/zLRbrraSJXdZO3oPbcUscn1uOldXy7XvHS1o2qeIhlyPW5615dN/8bqvZ5eal4qfck5PvgAJk2C4uKRrw0E4JOfPHbyIz8fpk+Hn/40srIkxeRy3PSuTdW87NrUw72e2hrrYzK1NVZ+fj41NTV0d3fHvYOP5ltvL7S0RCa6u7q019uB6MjgucBtwK3AJ+JWcCzeSy/lnzds4HnAP4JfcOy2U4P17dq164TXj39/JrfGSuSzHw163RprTEyEKBSxUGeEKBQKhUKhUCgUCoUiLTz/PFx/fezXHnwQ/uVfMuuPQqFIK2oi5GPGzBkhAOEw3pde4qM77uAL+/fzU+D406GKgOuB24GvJthuH/An4BGgYwi/YOiJjq1bt9LY2MiGDRtivq7OCMkMY2JrLIViOBoaGigtLc22G2nB5XKxaNEiXC5Xtl2JSbb8y0S76WojVXaTtaP33FLEJtfjpnd9uVzz0tWOqnmKZMj1uOldXzb9G6v3enqpean05aRmwYLYzxcXw3e+k5Ymczluetemal52bap7vZOT0tLS5Mf0jEZMM2bwd93dBDs6+MlHH7F69bEbY/mAp4EpwCTgASKHpI+GauDnwC5gFfAtoGCE9wzWN9wkSDZIyWc/BCaTifHjx6fcbirQ33rEGFx33XUAFBQU8NRTT1FQMFKqKU4mbDYb4SH2BRzrGI1GzGZzyraHSzXZ8i8T7aarjVTZTdaO3nNLEZtcj5ve9eVyzUtXO6rmKZIh1+Omd33Z9G+s3uvppeal0peTlt27YeXK2K81NECa9lTP5bjpXZuqedm1qe71Tk7C4XBKx/RMEyfySUAGbZV1PNuAHwPLgdcSbOdrA4+DQAvw6BDXDdanp0kQSP1nP5jp06djMplSbjcVjImtsYxGIwaDga997WusHOpmRHHSobbGUigUCoVCoVAoFApFyunogP/4D1iyBPzH7Qq/YQP83d/FZ2fnTjjnHDAYUu+jQqFIKWprrI8ZU1tjJejDM0BD6tzC85Wv4Pz2tzlzzhxGe+KGyWTCarViMplGlYder5eqqiq8Xm9c7aR7ayyTycT06dNpaWmhpKQEGDkWamusGFRVVQEk3AkVuc0Xv/hFLUdCoRA2m43o/J7D4cA/cOPq8Xi0ZZLBYBCbzabZsNvtBAIBANxuN263G4BAIIDdbteus9ls2iFCLpcLj8cDgN/vx+FwACAi2Gw2QqEQAP39/VpR8vl8OJ1O4MTZV6fTic/nA8Dr9dLf34/f7+fDDz/k0KFDutTk9/t5//33OXLkSNyaUhEnv9/Phg0btNfSEacjR46wefNmvF5vSjW53W7effdd7bVE42S329m8eTP9/f0J5d6hQ4f48MMP8fv9aYvTaDWluz/lgian08nmzZtxOBw5o2lwnI4ePcrmzZvxeDy61ORwONi8ebMWi3g0pSJOLpeLzZs3Y7PZ0hqndNQ9v9/PBx98wKFDh5KKk9Vq5b333sPv9yeUe16vl3fffVd7LVdrRK5pOnLkCO+//z5+vz9nNA2Ok8PhYP369fj9fl1qOnr0qPb5Zzr3MlH3nE4n69atw+/3p0yT1Wpl8+bNuN3upOIUvdeNvqbqXhbq3hln4H70UejuJnDffdg///nIRRddhO2cc+LTtGsXoc99Di68kP4HH8R78OCImnK57kX/djx69KguNfn9ftavX6+9lsnc6+vrY+PGjfj9/jH1t7vdbmfDhg34/f6k45Rs3Rs8dpKMpuLiYm2roPz8fMyDVn9VVlZqn/9ImqK+lpaWUlxcDEBhYSEVFRUAGAwGzGbzkJqito9f6VJeXk5RUREQGXQuKysDIC8vD7PZjGFg0rWiooLCwsK4NEV33SkpKdEGr4PBYNK5V1ZWpq0KKCoqory8/ARNhYWF1NXVaTri1TRSjYj6OlhTQUEBlZWVQGSbqyvNZoL5kY2SXKWleAbitKGwkLUDcRKDAZvZTCgvLxKnsjK8A5p8RUU4BzSFjUZ8ra2c8sMfshf4TXk5E4uKKCwsPGbMcihN06dPR0Q0TSPFKZoreXl5XD/oLCuz2Uz+gKahck9EMJvNmEwmLrroIqqqqkaMEwyfe8uXL2f37t1YrVYeeeQRzQePx6PlyvGassWYmAg544wzALRCoFAM5mtf+5q2fVpfXx/Nzc3al11LSwvt7e0ArF27lmXLlgHQ3d1Nc3OzZmPevHl0dnYCsHLlSm3lUWdnJ/PmzdOua25upru7G4Bly5axdu1aANrb22lpaQEiX1rNzc309fUBsGTJEtavXw/Apk2bWLhwIRD5sm1ubta+NBYuXMimTZsAWL9+PUuWLMHr9bJ69WrmzZunS01er5c333yTxYsXx60pFXHyer288cYbvP7662mL0+LFi1mzZo3ma6o0WSwWXn/9de2LK5k4rVmzhtbW1oRyb968eaxZswav15u2OCWiabRxGk1/ygVNH3zwAWvWrGHdunU5o2lwnF544QXWrFnD/v37dalp3bp1rFmzhg8++CCjubdjxw7WrFnD66+/ntY4paPuDf4eSyZOr7zyCm+88QZerzeh3Ovr6+P111/XrsvVGpFrmhYvXsybb76J1+vNGU2D47Ru3TpWrVqF1+vVpaYXXnhB63eZzr1M1L0PPvhA+/xTpemVV15hzZo1WCyWpOLk9XpZtWpVUrmn6l6KNFVX03nttcy78UZYtQr+539ofvDB+DQ9/TR948ZBaytLNm1i/U03QWMjm1588aSse9G/4V544QVdaor2u3Xr1sWtCVKTe48//jirV6/G6/WOub/do3U02TglW/e8Xi9r1qxh3rx5SWmaMmUK06ZNA6CmpoampibN1zlz5tDT0xOXpqiv06ZNY8qUKQBMmjSJxsZGIDLg3NTUpE02HK9p1apVQGSgvKmpSRvEnjVrFpMnTwagrq6OmTNnAlBdXU1TU5M2UN3Y2MikSZPi0jRx4kQApk6dytSpUwHo6elJOPeimmbOnEldXR0AkydPZtasWSdoMplM/MM//AMXX3zxqDSNVCPcbjcmk+kYTRMnTmTOnDkAhIF5TU18VFMT0TRtGmsH4vTQpEm82NjIRUDfTTfR3NREX3V1JE4zZ7J+QNOmyZNZOKDJUVFBc1MTjooKTgeqZ83iycmTWWwy8Y9f+xrXD4xZxtL0zW9+k5aWlmM0jRSnjRs3ApHcu+CCC7j00ksBaGpqomZA01C5FwgEaGpq4swzz+Tyyy/nuuuuGzFOMHzubdiwgdNPPx2TyXRCjYjW1OM1ZQ0ZA9x5551iMBjknHPOybYrCh3R1tYmgJhMJikrK5O2tjYJBoNitVolHA6LiIjdbhefzyciIm63W/r7+0VEJBAIiNVq1WzZbDbx+/0iIuJyucTlcomIiN/vF5vNpl1ntVolEAiIiEh/f7+43W4REfH5fGK320VEJBwOi9VqlWAwKCIiTqdTPB6PiIh4vV5xOBwiIhIKhcRqtUooFBIREYfDIV6vV0REPB6POJ1OERGlSWlSmpQmpUlpUpqUJqVJaVKalCalaSxpCgbFesEFEszLEwFxlpWJx2QSAfGed544BuyNKU25GCelSWkapMlisUhxcbGUlpYKIPn5+WI2mwUQQCorK2XXrl1xaero6BBASktLpbi4WAApLCyUiooKAcRgMIjZbJaOjo6YmrZu3SqAGI1GMZvNYjQaBZDy8nIpKio6ZiwMkLy8PDGbzWIwGASQiooKKSwsFGBETQUFBQJISUmJlJSUCCC7du1KOE5R7WVlZWIymQSQoqIiKS8vT4kmi8USV+7V19cfo6mgoEAqKys17WazWYry8+U6kJdLS8VdXCydx8Vp9+7d0rphg3wvL0/eP76WFxWJo7xcBCRkNIrVbJaQ0SgC4igvF29RkQiIx2SSHWVlMhfk7Biadu7ceUx/slgsI8Zp27Ztx+SexWLRNOXn5w+ZexaLRXbv3i1ms1ny8vJSFqfW1tYha0R7e3vM3Is+2traJJOMiTNCPvroIy6++GLC4TAvvviiNpOpOLmJnhFiMpnw+Xy0trbm3BkhIoLP56OoqEhbOqcnsuVfJtpNVxupspusHb3nliI2uR43vevL5ZqXrnZUzVMkQ67HTe/6sunfWL3X00vNS6UvigRZsQK+/vXYr913H/zrv8Z8KZfjpndtquZl16Ye7vXUGSEfk6kzQgwGA0VFRfh8PuIZnh58lsZIuN1uGhsbtVVQIzEROAtYM+i548/U+AJwO/BtoCwOm2Iw4CsqosjnwyBCCHgFWACsILIy5fjPOpE8HE2+RfWM9rMfjT+DUWeEJMDnP/95/t//+3+ICLfccgvvvPNOtl1S6Ii77rpL2+cv17Db7dx3333H7M2oJ7LlXybaTVcbqbKbrB2955YiNrkeN73ry+Wal652VM1TJEOux03v+rLp31i919NLzUulL4oEWbAg9vMFBXDrrUO+LZfjpndtquZl16a61zs5qaysHNWY3vTp0+OaBIHIWRqLFi1i27ZtcV3fybGTILH4kMhEyBlAdxw27ZWV3HfXXdgH9OUB1xKZDNkN/BrIGzg/KtOM9rPPFcbEipAo999/P7/61a8QEb71rW9RX1/PxRdfTHV1tba/muLkIboiZPz48fT19bFly5acWxESCoXo6+ujurqavIHDmfREtvzLRLvpaiNVdpO1o/fcUsQm1+Omd325XPPS1Y6qeYpkyPW46V1fNv0bq/d6eql5qfRFkQChEFx3HSxbBscPtzQ0wDPPDPPWQXELBiGHxjn0npOq5mXXph7u9fS0IsTr9VJVVaWdLZppMrUiJC8vj+rqavr6+rRD1mNhMpmYPn06LS0t2uHn6fDneI5fERLlUmB9HO8P5eXRV11NdV8feUPok7w8DNOmwe23w9SpdO3dm5EVIfF89pdeeikbNmyIy+5YWREyJiZCji9iIpLQUjeDwUAwGEyVW4osE50IiZLpzqNQKBQKhUKhUCgUCkVMurrgscfg8cehtzfy3OrVcPnl8b3/O9+BXbsig2M33AClpenyVKFQoK+JEICGhoa4t3VKNZmaCBmO1atXaz6MHz8+7pUgqfRnqImQFuCfY1wvBgPbRTg/odaA2lqsM2dy/v33M9w6kVRMhIzEtm3bMJlMSeex3iZCxsTWWMfP1QyeBBGRUT0Uucett95KWVk8u/ONPfr7+/nTn/5Ef39/tl2JSbb8y0S76WojVXaTtaP33FLEJtfjpnd9uVzz0tWOqnmKZMj1uOldXzb9G6v3enqpean0RZEEtbXw29/C3r3w3HPQ2AhTpgz7Fi1ue/fCs8/Chg2R9515JtxxB7S2Zsb3NKD3nFQ1L7s21b3eibS0tFBfX5/wBMBYoKysbMgxvdraWu2ht8/gAGCN8bz3K19hEvBl4M9AX1kZf7r1VvrjHbPs6qLq/vvZBzwLXAWk68Si4T57QHefeaoYExMhMPSEh0LR1dWVsyt98vPzqa2tJT8/P9uuxCRb/mWi3XS1kSq7ydrRe24pYpPrcdO7vlyueelqR9U8RTLketz0ri+b/o3Vez291LxU+qJIAQUFka2yHn8cRtjZQovbkiXg8338gt0Of/gDfP7zsHZtmh1OD3rPSVXzsmtT3eudSPSMC6vVisViwWKxsHr16my7lVKCwaBux/RMJhPjx4+P+dr/I3JOyM3A4FOsnbNmAbAOuBX4XDDI9q4uOkaprwCYCbwO7AT+FagelYWR0fNnn07GxNZYCkUs1NZYCoVCoVAoFAqFQqHIKUTg/PNhx44TX6upAYsFcmiwV6HQC3rbGisWmTo7RA9bYyXjQyr8qa+vZ9GiRXG9/wLgb7NnY/3pT5lwzjkxr/l7IgetzwQSWWvhB14AFgAtu3dTO8indGyNNdpr1dZYCkWGqKuroyiHDpEbjM/nY/369fgG/xpIR2TLv0y0m642UmU3WTt6zy1FbHI9bnrXl8s1L13tqJqnSIZcj5ve9WXTv7F6r6eXmpdKXxSZxefzsX7hQnxdXbEv+N73xuwkiN5zUtW87NpU93rxET00PFcoKirS3ZieyWSivr6elpaWuN/TBlh/8YsT6vNgfX8DvgOcCTyTgF+FQD3wJnDmlVfC/ffD4cMJWDrRt5MJNRGiGPNcdNFFFBYWZtuNtOD3+9m8eTN+vz/brsQkW/5lot10tZEqu8na0XtuKWKT63HTu75crnnpakfVPEUy5Hrc9K4vm/6N1Xs9vdS8VPqiyCx+v5/NnZ34Y/19azTCd7+beadShN5zUtW87NpU93rxEz07JBcoLCzUzZje6tWrsVgsWK1WFi1aRElJSdI2Y+k7CiS7Xqagqwt+/vPI+VHf/jZF69enxLeTAbU1lmLMorbGUigUCoVCoVAoFApFzrF9OzzyCPzpT2AdOJL32mth6dL43v/BB5FBsttvh3/6JzjJBroUikQYC1tjDWb79u2cf/75Cb13JE7GrbGGai/V2059Htgy1IuVlZEzoRJgG5Fts/5C7IPcR+NjIteqrbEUigxhNpsxGnMzlcPhMDabjXA4nG1XYpIt/zLRbrraSJXdZO3oPbcUscn1uOldXy7XvHS1o2qeIhlyPW5615dN/8bqvZ5eal4qfVFkFi1u554L//d/sH8//OUvcNllkUmNeFmwAFavhoaGyLkiv/gFdHamz/E40HtOqpqXXZvqXm/0mEyJnDShL4xGY06P6cXS91mgf6g3vPMOvU89xV+BwCjbOh94AOgB/gx8OQHfTgZ0o7anpyfjbR44cCDjbSpST1NTExUVFdl2Iy04HA6am5txOBzZdiUm2fIvE+2mq41U2U3Wjt5zSxGbXI+b3vXlcs1LVzuq5imSIdfjpnd92fRvrN7r6aXmpdIXRWY5IW7FxfCd78Df/gbXXBOvEXj66Y//3dcH//M/8OlPw113pd7pONF7Tqqal12b6l7v5KSioiKnx/Ri6XsGOAOYDWwefPFXvwqf/Szeyy6jHqgB7gJ2j7JNE3Az8A7QCtwBVMbp28mAbrbGKisro6mpiZ/+9KdUVVWltS2r1crvfvc7HnroIZxOZ1rbUqSP6NZYZrMZh8PBRx99lHNbY4XDYRwOBxUVFbqcpc2Wf5loN11tpMpusnb0nluK2OR63PSuL5drXrraUTVPkQy5Hje968umf2P1Xk8vNS+VvigyS0riNn8+zJkT+7XFi+GGGxJ3MAn0npOq5mXXph7u9cba1lip2oIqFpnyy2g0UlFRgcPhOGE1Ty5sjTWcvij7n3+eM5Yti0x2z5x5QnsG4CrgdmA6kB/TyvC4gcXA1c8/j++ii5jwqU+N6Fuubo2VyOeXFtxuN/fccw8PPvggt/1/9v49PMrq3P/H33PMTDKHRw4aERWkVUSt0Oou2lao7k2pykdaUVR2FdCK2O+3jru7W/rb391i997d1HrKp7WIVUArFhEkFqUWDwWtghWbACEBTRjAAIEkzEzmfLx/f4R5dgITmMw8hzUP9+u6cpFknrnX/Z73mntW1uJZ6957MX/+fIwZM0bRNtra2vDUU0/h2WefRTQaVTQ2ox/BYFDvFFQjf6uaqOiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRlrJ9I+rdFqsQZ54JTJ9eeuwyEb1Pcs3TNyaP9U5P8luaGZVi9KUmTOg9y2kACMBbx77OBvB9AAvNZpgGsQ1cNYA5APDd7yI1dizmA1hh8Nd+IIRZhv/hD38Ii8WCSCSCJ554AhdddBGuvfZaLFmyBIcPHy457uHDh7FkyRJce+21uPDCC1FXV4dIJAKLxYIHHnhAQQWMXtx3331wu916p6EK4XAYTz/9tLB3LumVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRlrJ9a2oCGhsLPzZnjq6HpoveJ7nm6RuTx3qnJ263W/g5vdra2lOex+JwOFBbW3vC75XWdwjALmBQiyDHY9+1C78F8Knbjf++7z58TeDXXg2EuSPkySefxD333IN/+7d/w5tvvgkiwqZNm7Bp0ybcf//9GDt2LL7xjW/gS1/6EsaOHYuRI0di6NChqK6uBhEhHo+jq6sL7e3t2L17N7Zt24a//vWv2LVrl9xGfhewb3/723jkkUcMt43S6UpjYyNSqZTeaaiC3W7H+PHjYddxwHoy9MpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmhL2b5ddhnwySe9d4W89BIQ6XMk7/e/X3ycn/wEuPrq3q1aLJbScjkO0fsk1zx9Y/JY7/QklUoJP6fncDhw00034eWXXx7wmptuuqngYoka+uYN8PscBne3g5RK4drGRvwolcJOAEsAvISTHORuEIQ5I6QvH3zwARYtWoT169fLixcmk6mkWH2ff8MNN+AnP/kJrrrqKsVyZfQjf0ZIHq33lWMYhmEYhmEYhmEYIQmHgT/8oXdRZNgw4M9/Lu55zc1A/u/qkSOBe+4B7r6793uGMTB8Rsj/IkJeopwRAvQe5zB37ly89tprSCQS8u/ziyRLly5FdXV1SdqPb/dkMYYD2I/eA9GP5xkA69C7UHI9StsCKozexZAlAF416BkhwmyN1Zevfe1rWLduHXbv3o0FCxbgvPPOAxGV9HXeeefhJz/5CXbv3o0//vGPvAhiQCZPnnzK29QqlUQigY0bN/YrtCKhV35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRlsU9c3tBu69t/cOkdWri3/eM8/87/ft7cDChcD55wM33QTE4yWnI3qf5Jqnb0we652eOByOipjTq66uxsqVKxEIBOD3++WvQCCAlStXorq6uuDzlNbXCWAkgKM/+QnwxS/2e+xpAK8DmAZgFICfAzhwklgJhwMbJ09Gok9ubvQupPwdwNk33QTXypUorKxyEXIhJM8XvvAF/OIXv8DevXuxbds2PProo7jllltw0UUXFexEDocDY8eOxa233opHH30U27Ztw969e/Hf//3f+MIXvqCDAkYLRo0aBatVmF3eFCWTyWDv3r3IZDJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNqimm/F7gEfjwPPP3/i73M5oLMTcDpLTkH0Psk1T9+YPNY7PbFarRU1p+dwODBq1Cj561QLHGro6wbQc++9wO7dwDvvALfeisQVV6ChzzWfA/gZgPMBTAfwJ/RundWXjNWKvaNGITNAblXbt2PYT36CQwCeAvAlxRToi5BbYxVLKBRCNBoFANTU1MDr9eqcEaMlvDUWwzAMwzAMwzAMwyjECy8Ad91V+LHlywd+jGEMAG+N1YvD4UAgECj5LgYjbo2ldFsna7eUfri3rQ2jT3EDwCgADfffD8+yZTCXeHffZvRum7UKQN8IvDWWRni9XowYMQIjRozgRRAB2bx5M26++WacddZZcDgcGD16NO6//34cOHCym7MGT21tLSwKHeAmGtlsFh0dHchms3qnUhC98tOiXbXaUCpuuXFE71tMYYzum+j6jFzz1GqHax5TDkb3TXR9euZXqWM9UWqekrkw2qK7b0uWFP69JAG33lpWaN21nQKuefrG5LGeOAx08LcaWCwWQ8/paaaviPh7AQQffBA5jwcAkLVY0FFbi+wgcrsKwHL0brlVB2Dc4DPVnYpeCGHE5dlnn8XXv/51vPrqqzCbzbj00kvR3d2NxYsX47LLLsO2bdsUa+u+++6Du9hbfSuMcDiMJUuWIBwO651KQfTKT4t21WpDqbjlxhG9bzGFMbpvouszcs1Tqx2ueUw5GN030fXpmV+ljvVEqXlK5sJoi+6+/fKXwD//M1BV1f/3d95Z/LZYW7b0bteS678Ri+7aTgHXPH1j8lhPfRwOB2bOnImuri7MnDnzhMWO/ONLly7VLCe3223oOT3R9Dn/8hdYDx8GAITdbiy57z6ES8jtDAA/BLATwPsAal59tawzpLSkorfGYsRkx44dmDBhArLZLB577DH4fD6YzWZEIhHcfffdWLVqFUaPHo2WlhZUHT/AGgT5rbEcDgeSySR27NhhuK2xiAjJZBJVVVUwmUx6p3MCeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbRFGN+6u3u3yVqypHcf+p07gXFF/t/fb30L2LAB+MIXgHnzgNmzgWHDxNE2AFzz9I0pwljPiFtj/eUvf5Hj19bW9lv8SCQS6OjokH8+/vFSGcz2UCaTCVVVVUgmkzh+etoIW2OdTN9A7Za0NVaRGqPXXovqd98FAJDJhGRVFaqSSSSJcD+AfwZw7SmjDMAZZ/RunzhvHjB2bNG58dZYTMXz8MMPI5vN4tZbb8W//Mu/wGzu7WYulwvLly/HeeedB7/fj2XLlinSXiKRGLCgVDomkwkOh0PIgSKgX35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRluE8W3oUODBB4GWFmDr1uIXQfbs6V0EAYDWVuDHPwbOOQe44w6YWlrE0DYAXPP0jcljPXU42cHegz34Ww2IyNBzeqLp6/7v/0bgwQfxOQATERyJBExEWAVgGYDrAFwI4FEA2TPOGFzwQAB48kng4ouBSZOAl14CkkmFFZQPL4QwihKNRvHGG28AAH7wgx+c8LjT6cScOXMAACtXrlSkTZ/PB8+xPe6MRk9PD5588kn09PTonUpB9MpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmiLcL6ZTMBXvlL89b/73Ym/S6WAP/wBPZ2dYmk7Dq55+sbksd7picfjMfScnmj6srW1CP3whxgN4LseD/7H50PQ40Hf06E+A/BjAO2bN6PzySexqZSG3nsPmDULGDkSZ/ziFzj5Me7awgshFUg2m8X27dvx3HPPYf78+bjiiitgt9thMplgMpkwefLkkmOnUin8/ve/x/XXX4/zzz8fDocDZ599Nq6++mo8+uij6OrqOunzGxoakEgkYLfbMXHixILX5PP76KOPkDtu39BS2LhxIxKJRNlxRMThcGDy5Mm6rMwXg175adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtqWjfUilgoLMFLr8cjokThdbGNU/fmDzWOz1JJBKGntMTVV8WwBuJBFZt3IjxiQQ+LHANVVUhetNNmAzgYgBPAAgMtqGuLnh/9zt8BuBtALcAsJaRtxLwGSEVRn19PWbNmoVYLDbgNZMmTcLGjRsHHXvXrl24/fbb0djYOOA1Z555JpYtW4brr7++4ONLly7F3XffjS984Qv47LPPCl7T3t6Oc889FwCwZ8+eovcOPJ78GSF5tN5XjmEYhmEYhmEYhmEYAK+8Atx6a+HHFi8G7rtP23wYZpAY8YwQpc7ZGAyDOSPkZBjhjJBi0PKMEL/fDwAlX/vvAP7rlM88OZsATO7zM58RwpyUYDB40kWQUmlvb8d1110nL4KYTCZMmjQJc+fOxbRp0+B0OgEAR44cwfTp0/HuscN1jufo0aMAgKFDhw7Y1pAhQ+TvA4FBryeewNSpU+X8jEY8Hsebb76JeDyudyoF0Ss/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MtFe3bqFHAd78LWCz9f19TA9xxR3Hacjngb38DdPj/ulzz9I3JY73TE6fTaeg5PZH1DTY3E4A5CrQ7TIEY5cALIRXKWWedhRtvvBEPP/ww1q9fjwceeKCseHfccQcOHjwIADj//PPR0NCAjRs34rnnnsMf//hH7N+/H9dddx0AIJ1O45ZbbkEwGDwhTv5Dx263D9hW31sVlVjUkSRJPpDdaORyOQSDQUW2EFMDvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpS0b5deSWwZg3w+efAf/0XcP75vb+/4w7A4ylO24YNwFe/CowfD/z2t4CG5z1wzdM3Jo/1Tk/MZrOh5/RE1jfY3K4DMGaAx6Lf/jYwwPEIosFbY1UYHR0dSKVSOO+88/r9fuHChXj44YcBDH5rrPXr1+OGG24A0LuAsXXrVlx22WUnXBeNRvGlL30Je/bsAQD85Cc/wS9+8Yt+1zz66KP48Y9/jK9+9avYsmVLwfZisRhqamoAAJ988gm+/OUvF51rX3hrLIZhGIZhGIZhGIYRkGy2d2Fj9Ghg7NjinjN9OvDaa//7c3U1cPvtvdtqXXGFKmkyTB7eGksZeGssY26NdR6AH6D3rpDhfa5LA+j4299w7pVXAtu2Ac88A/z+90A4XDDuTgCX9vmZt8ZiTkptbe0JiyDl8tRTT8nf33XXXQUXQQCgpqYGP//5z+WflyxZgkwm0++aM844AwDQ3d09YHv57bP6Xl8Oo0aNgtWq93E76pDJZLB3794TXmdR0Cs/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MthvLNYgG+/W15EeSU2g4cAF5/vf/vYjHgueeAxx5TOVmueXrH5LHe6YnVajX0nJ7I+gab234ADwEYCeA2AH859vt6ANnhx5ZGLr8ceOop4NAh4Nlne+8UFAxeCDnNiUQieOedd+Sf58w5+Y5vN998M1wuF4DeBY333nuv3+MXXXQRAGD//v1IpVIFY+QPUXc4HDg/f7tsGcyePVvOyWhEIhE8//zziEQieqdSEL3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfTqntued67yIpxLx56iV2DK55+sbksd7picvlMvScnsj6Ss0tBeBlANcCuAjAfxS6qKYGuPtu4G9/w8F167AEQOH7Q7SHt8YyCKVujbVhwwZ861vfAtB7x0cwGDzlauCUKVPw1ltvAQD+/d//Hf/1X/8lPxaNRjFs2DAkEgls2rQJ11xzzYC5XnPNNdi0aVNReRaCt8ZiGIZhGIZhGIZhmAonm+3dQuvzz0987KKLgJYWwGTSPi/mtIK3xlIG3hrLmFtjDSafvuRzOwfAHgCfgbfGYnSkpaVF/v6yyy4r6paovmd69H0+0LuYcv311wPov+VWnng8jmXLlgEAZs6cWVLODMMwDMMwDMMwDMMYhO5u4JJLCi923Htv8YsgoZCyeTEMwzCK8B0Adr2TAC+EnPbs3r1b/r7Ybar6nlGya9euEx7/6U9/CovFglWrVuHxxx9HLpcD0Hur4uzZs7F//36cf/75uPvuu8vMvpcFCxbA6/UqEks0QqEQFi1ahJCgAzq98tOiXbXaUCpuuXFE71tMYYzum+j6jFzz1GqHax5TDkb3TXR9euZXqWM9UWqekrkw2mJk306q7cwzgT/9CWhrA37yE+Css3p/X1UF3HVXcQ0QARMnAldfDTz/PBCPK5efypzuNU+JWEZ+7xgZr9dr6Dk9kfVpnZv6GxwWBy+EnOb0PdT8rPxg4xTU1tbK3/c9+DzP5Zdfjqeeegpmsxk/+tGPcM455+CKK67AiBEjsGrVKkiShLVr16Kqqqp8AQDq6+sRi8UUiSUa1dXVmD59Oqqrq/VOpSB65adFu2q1oVTccuOI3reYwhjdN9H1GbnmqdUO1zymHIzum+j69MyvUsd6otQ8JXNhtMXIvhWlbfRo4Be/6N0i65VXgP/8T2Do0OIaeO89YNcuYPNmYPZsYMQI4IEHgOZm5fJTidO95ikRy8jvHSMTi8UMPacnsj4tc3MA2AhAhGVKXgg5zel7kJTT6SzqOX2vG+ggqnnz5uH999/H9OnTkc1msWPHDpxxxhm47777sGPHDkyYMKG8xPuwd+9eeVElm80iGAwif/RNT0+PfGh7PB5HNBoFAGQyGQSDQTlGKBRCOp0G0FsM8oUgnU73+x8FwWAQmUwGQO95KPFj/8sklUqhp6cHAEBECAaDyB476C0SiSCRSAAAkskkwuHeI4JyuRyCwaB8x0w4HEYymQQAJBIJRCIR2Gw2fPGLX0Q0GhVSk81mw+jRo2V9xWhSwiebzYbzzjtP1qeGT4lEAmPHjoXFYlFUk8lkQm1tLWw2W1k+ZTIZjB07FkRUUt+LRqO48MILYbPZVPNpsJrUfj8ZQVMul8PYsWORzWYNo6mvT8lkEmPHjoXZbBZSUzabxdixY5HL5TTtewAwduxYpNNpVX1So+7ZbDZ84QtfkPWV6lMqlcL5558Pm81WUt+zWCyora2FxWJRzSfR3k9G0JRIJDB69GjYbDbDaOrrUzabxciRI2Gz2YTUlEwmMWrUKNhsNs37HqB+3cvlcjjnnHNgs9kU05RKpTB27FiYTKayfLLZbDj33HP71UCue1z3KlVT3iebzYZRo0b1q4EDaspkEP32t4Ef/7h4Tc88g1Cf/9kcBJD57W+BL30J0X37TqnJZrNh5MiR/WqgVn0vFothzJgxsNlsFfW3eyaTwbnnngubzVZ23yu37tlsNlx44YWIRqNlaXI6naipqQEAWK1WSJIk5+r1euX8TqUpn2tNTY08h2a32+HxeAD0zgtIklRW3UulUvJB1xaLBZIkwXRsGzmPxwO7vXcjIr1qhMvlgsPhAABUVVXB7XYDAMxmMyRJgtlsRjqdxoEDB2A2905POxwOWZNSdS//utpstn53P0iSJB8PUFNT0+91Lbfuud1uVFVVIZ1O95uzLORTPte+mgr1vfwcUnV1tZzD8T4dr6lQ3yMiSJKEXC6HXbt2oaqqqqBPuVwOkUhE9iav6XifLBYLIpHIgD7F43EkADxotWKsJGEB9IUXQk5z8m8eAHKRPBV97+TIF79CXH311Vi7di2OHDmCZDKJffv2YfHixRg5cmTpCRdg9uzZuPXWWwEAnZ2dqKurkwvY0qVL0Xzsf4Bs2rQJ69atAwC0t7ejrq5OjrF48WK0tbUB6D1AfsOGDQCAtrY2LF68WL6urq4O7e3tAIB169bJh703Nzdj6dKlAHqLYV1dHTo7OwEAq1evxpYtWwAADQ0NWLFiBYDe4lBXVycX2BUrVqChoQEAsGXLFqxevRqxWAyrVq0SVlMsFsMLL7yA3//+90VrUsKnWCyGZ599FuvXr1fNp9///veor6/H4cOHFdXU2tqKuro6eYBRqk/vvPMO6uvr0djYWHLfy/cxtXwarCa1309G0PTRRx+hvr4e77//vmE09fVp1apVqK+vx/79+4XU9P7776O+vh4fffSRpn2vubkZ9fX1WL9+vao+qVH3YrEYVq5cWbZP9fX1WLp0KWKxWEl9L6/p8OHDqvkk2vvJCJp+//vf44UXXkAsFjOMpr4+vf/++3j66acRi8WE1LRq1SosX74csVhM876nRd376KOP8Nvf/haxWEwxTfX19aivr5fHe6X6FIvF8Mwzz+Cdd94ZlCaue5Wvych1LxaLYfny5Vi1apXymjo70bZtGxbPn/+/mnw+tI8cCdx4I9Zt3nxKTbFYDE8//TTef//9ojUByvW9l156CbFYrKL+dn/nnXfwzDPPIBaLld33yq17sVgMq1evLlvTpEmTMG3aNADAyJEj4fP55Fznz5+PgwcPFqUpn+u0adMwadIkAMC4ceMwd+5cAL3zaj6fT57ELqXuNTc3Y8aMGQCA4cOHw+fzyfN1c+fOxbhx4wBoXyPymmbMmIGJEycCACZMmIBZs2YB6J389/l88Hg8qK6uxv33349/+Id/AABMnDhR1hQKhRSpEVu3bgUAjBkzBvP71AifzyfPT06bNg3btm0bUFOxdS8/zzNr1ixMmDAB1dXV/eYsC/m0b9++EzQV6ntjxowBAEyZMkXWdLxPx2sq1PfS6TR8Ph/OPfdcTJ8+HbfeemtBn2KxGNasWSMvoOQ1He/T8OHDsWbNmgF92rx5s6zpPp8Pr0NniDEEP/vZzwgAAaBJkyYV/bzrr79eft5DDz1U1HPWr18vP8flcpWYcfk0NTURALr55ptp+PDh1NTURJlMhgKBAOVyOSIiCoVClEwmiYgoFotRJBIhIqJ0Ok2BQECOFQwGKZVKERFRNBqlaDRKRESpVIqCwaB8XSAQoHQ6TUREkUiEYrEYERElk0kKhUJERJTL5SgQCFAmkyEionA4TPF4nIiIEokE9fT0EBFRNpulQCBA2WyWiIh6enookUgQEVE8HqdwOEzRaJTWrFlDBw8eFFJTNBql1atX0+HDh4vWRERl+xSNRumVV16hzs5O1Xw6fPgwrV27lsLhsKKaQqEQvfzyy7IfpfrU1dVFa9eupUAgUFLfO3jwIL366qsUjUZV82mwmtR+PxlB09GjR2nt2rXU3d1tGE19fcq/73p6eoTU1N3dTWvXrqWjR49q2veCwSCtXbuWOjs7VfVJjbrX93OsHJ+OHDlCr7zyCkWj0ZL6XjgcppdfflnO3ag1wmiaDh8+TKtXr6ZoNGoYTX196u7uplWrVlE0GhVSU9/XX+u+p0XdO3r0qPz6K6XpyJEjtHbtWgqFQmX5FI1GadWqVdTV1TUoTVz3Kl+Tkeve8X87KqrpkUcoZbNR0Osl6j0thAKSRGmrlWj9+qI05d933d3dRWsiUqbvHTp0iNasWSPrqZS/3bu6uuQ6Wm7fK7fuRaNRevXVV+ngwYMla/L7/eR0OqmmpoYAkNVqJUmS5Pkvr9dLn332WVGaWltbCQDV1NSQ0+kkAGS328nj8RAAMplMJEkStba2DqjpVD7t3r2bXC4XASCLxUKSJJHJZCIA5PF4yG63k9/v17xG5LW7XC5yOBwEgKqqqsjtdhMAMpvNJEkSmc1mqq6uphkzZsivs8PhkDW1trYqUiNaWloIANlsNvJ6vbKfkiSR1WqVfdq1a1dJfa+vT21tbQSA3G43VVVVUXV1tTxnOZBPn376aT9Nfr+/YN+z2WwEgKqrq6mlpaWfT36/v6Cm4/ue3++nPXv2kCRJ5HK5aPr06TR8+PCCPrW1tdGOHTvIbDb303S8TxaLhXbs2DGgT83NzQXfT/mvpqYm0hIT0bF7V5iKZuHChXj44YcB9K5gb9y4sajnzZw5U/4fGT/84Q/7raIOxKuvvoqbb74ZQO95IYcOHSot6TLZuXMnLr30UvnnpqYmXHLJJbrkwjAMwzAMwzAMwzCMDsye3XtA+vGcf37vAezHtog7KUTAse1qmNOTvXv3YvTo0Se9xu/3Y9SoUYrEGky8UtsoJ36pFKv9VCiVuxZeDLatk7Vbiq+D0QhAlWsHeu1OlZvWc7m8NdZpztA+B4/lb5s+FR0dHfL3Q4YMUTynwTJ27Fh5rzyjkU6nsWvXLnnPQNHQKz8t2lWrDaXilhtH9L7FFMbovomuz8g1T612uOYx5WB030TXp2d+lTrWE6XmKZkLoy1G9k1VbcuXAzt39h6O3mdffXz/+8UtggBIL1mCXTNnIv3yy8Cx/e214nSveUrEMvJ7x8jYbDZDz+mJrE/k3NSEF0JOcy666CL5+/y+dKdi//798vdjx45VPKfBMn36dAwbNgyAMQ6RA/73IK9YLIa1a9fi0KFDQmrK53fkyJGiNSnhU77d7u5u1Xw6cuQI6uvrEYlEFNXU09ODtWvXyn6U6tPRo0dRX1+PYDBYUt87dOiQnIcRD5o0qqZAIID6+nocPXrUMJr6+tTZ2Yn6+nqEw2EhNeXfd4FAQNO+FwqFUF9fj+7ublV9UqPu9f0cK8enrq4uuWaV0vcikQjWrl0r527UGmE0TUeOHJF9N4qmvj4dPXpU1ieips7OTjk/rfueFnUvEAjI+pTS1NXVhfr6evT09JTlU752Hj16dFCauO5VviYj1718v87vta+4pi9+EaGHHwYOHgSWL0fwn/4JmTvvLE5TJoPYCy9g7QUX4OgPfwicey6SP/kJwk1NJ9UEKNP3Ojo6ZN8r6W/3vp9j5fa9cute3zEnH5ZeOYelV1dXY/r06fLrbLTD0vP68nOWIh2W7nK55NzUPiy9kCa94IWQ05yLL75Y/n7Hjh1yYTsZf//73ws+Xy+2bNmCb33rWwCMcYhcXtPq1avh9XoxZ84cLFu2TEhNXq8X3/zmN+UctDrA0Ov14uKLL5ZfVzV8WrduHRYsWACTyaSopnA4jFQqJX8Al+pTQ0MDFixYgAMHDpTU95YtW4b58+fD6/Ua8qBJo2ras2cPFixYgJaWFsNo6uvThg0bsGDBAqRSKSE1tbS0YMGCBdizZ4+mfa+rqwsLFiyQXyO1fFKj7nm9Xtx+++1YtmxZWT5t2rQJEyZMgNfrLanvmUwmpFIp+Y8Oo9YIo2lat24dvvnNb8Lr9RpGU1+fWlpacPbZZ8Pr9QqpacOGDbjqqqvg9Xo173ta1L09e/bgjDPOgNfrVUzTpk2bsGDBAoTD4bJ88nq9GD16dL8Dcbnucd2rVE15n7xeL6666io5B9U0OZ3AXXeh7mtfQ/uxyctTatq4Ed7Nm3F2Rwdaxo0DjhxBw8aNWPHUU8Czz6re91asWIHvfOc78Hq9FfW3e0NDA0aPHg2v11t23yu37nm9XsyfPx/Lli3jw9JROYelh0IhBINB+SBwox2WHgqF+s1ZinRYelVVFRYtWoRvfetbmh2W3leTbih75AijF6Uelh4Oh+XDbgDQ5s2bT3p9IpGQD84BQO+8806ZmZdO/rD0/CE9RjwsncgYB+OxJtbEmlgTa2JNrIk1sSbWxJpYE2tiTUJqmjuXCKCwy0Vxh4MIoERVFfW43URtbZWpyYg+qayJD0vX/rB0nOQQbiMcln68JpEOS7dYLCf1yaiHpfNCiEEodSGEiOj666+Xnztv3ryTXvvSSy/J1w4ZMkQuhHqQXwhZuHAhSZKk+ZtHCwKBAC1cuLBfURcJvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN+E1RYIEFVXU0CSevOTJKLeo9OJpkzRKIXTu+YpEUuJXPKTySf78vv9isUaTDy181WSYrXnJ+7zc3pq5a6FFwO1dTJ9A7Vbiq+D0dh30eRkufW9tpzX7lQxtJ7L5a2xGNx///3y98uXL8fOnTsLXheLxfDTn/5U/vnee++V957Tk+XLl8t7PRoNl8uFu+66S957TzT0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNW2/r1QCwGVySCu5Yvh6vv3MK8eZqkcLrXPCViCdu/mJMSiUQMPacnsj6Rc1MTXghhcMMNN+Ab3/gGgN7972688UZs37693zXd3d2YPn06WltbAQBDhgzBQw89pHmuhdi7d29RZ5tUIlarFaNGjRJiwakQeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL4Jq+2OO4CPP4Z19myM6uyENT+3UFsLHDsr4pTE48DttwNvvAEcO5dkMJzuNU+JWML2L+akZDIZQ8/piaxP5NzUhBdCKpDrr78e48eP7/f19NNPy49v3br1hMfHjx8vH+pUiJdeeglnn302gN6FhfHjx+Ob3/wm7rnnHtx0000477zz8NZbbwHo/YBZtWoVJElSVWex3HbbbaipqdE7DVWIRqNYuXIlotGo3qkURK/8tGhXrTaUiltuHNH7FlMYo/smuj4j1zy12uGax5SD0X0TXZ+e+VXqWE+UmqdkLoy2GNk3obVdcQWiTz6JlU8/jehvfgNcfjlw992AzVbc81etAlauBG68EbjgAuA//xM4yfzL8ZzuNU+JWEL3L2ZAampqDD2nJ7I+kXNTE14IqUCam5uxbdu2fl+HDx+WH49Goyc8vm3bNqRSqQFjjhw5Eu+++y7Gjx8PACAibNy4Ec899xz++Mc/IhaLAQCGDx+O+vp6XHfddapqHAzhcBhOpxMAkM1mEQwGQUQAgJ6eHll3PB6XPxQzmQyCwaAcIxQKIZ1OA+jdAiyvN51OIxQKydcFg0F5tTQajSIejwMAUqkUenp6APS+dsFgENlj/xMkEokgkUgA6L3jJhwOAwByuRyCwSByuZysI5lMAgASiQQikQjMZjM8Hg/C4bCQmsxmM1wul5xDMZqU8MlsNqOmpkZ+XdXwKRqNyot9SmrK5XJwOp0wm81l+ZRMJiFJEjKZTEl9LxwOw+v1wmw2q+bTYDWp/X4ygqZ0Og1JkpBKpQyjqa9PsVgMkiTJ8UTTlEqlIEkS0um0pn0vm81CkiT5NVLLJzXqXt/PsXJ8isfjcLlcMJvNJfU9APJYQS2fRHs/GUFTNBqVfTeKpr4+pVIpVFdXw2w2C6kpFovJr7/WfU+LupdOp+XXXylN8XgckiTJ8Ur1KT/W7dtXuO5x3atUTXmf8n875nMQTZPZbEa1x4PUHXcADQ1IPvRQ8X1v2bJeTRYLgj09oJ/9DDjvPPR8//tFaYpEInC73TCbzRX1t3symURNTQ3MZnPZPpVb98xmM7xeL8LhcFmanE6nPDFstVr7/Qdgr9crv/6n0pTPtaamRq7FdrsdHo8HAGAymSBJUtnjiPxWYBaLBZIkwWQyAQA8Hg/sdjsA/WqEy+WCw+EAAFRVVcHtdgMAzGYzJEmSP3+j0ah8J4/D4ZA1KVUj8q+rzWaD1+uVr5MkSW633M/c431yu92oqqqS517yfaCQT/lc+2oq1PdsxxZmq6urB5wLO15Tob5HRP3+5nM6nQV9yuVy8rxkX03H+2SxWBCJRE46NiqkSS94IYSRGTt2LD766CM8//zzmDp1Ks4991zY7XaceeaZmDhxIh555BE0Nzfjhhtu0DvVfkSjUdx4440AgM7OTtTV1ckFbOnSpWhubgYAbNq0CevWrQMAtLe3o66uTo6xePFitLW1AQA2bNiADRs2AADa2tqwePFi+bq6ujq0t7cDANatW4dNmzYB6F2cWrp0KYDeYlhXV4fOzk4AwOrVq7FlyxYAQENDA1asWAGgtzjU1dXJBXbFihVoaGgAAGzZsgWrV6+G0+nEl7/8ZSxZskRITU6nE8OGDcOrr75atCYlfHI6nchms3j//fdV8+nVV1/F1KlTkU6nFdXU3d2NxsZG+QOpVJ/+9re/YerUqfD7/SX1vSVLluCqq66C0+lUzafBalL7/WQETbt27cLUqVOxbds2w2jq69Mbb7yBqVOnIhKJCKlp27ZtmDp1Knbt2qVp3zt48CCmTp2K999/X1Wf1Kh7TqcT48aNw5IlS8ry6e2334bVaoXT6Syp76XTaTQ2Nsp/aBi1RhhN06uvvophw4bB6XQaRlNfn7Zt24ajR4/C6XQKqemNN96Ay+WC0+nUvO9pUfd27dqFgwcPwul0Kqbp7bffxtSpU9Hd3V2WT06nE9FoFH/7298GpYnrXuVrMnLdczqdcLlceOONN4TU5HQ6cfToUWzbtg0wmdCwc2dxfe+117B69OheTcOHo87nQ7KqCshmsfTss4vStGzZMowZMwZOp7Oi/nb/29/+hmg0CqfTWbZP5dY9p9OJq666CkuWLClL06RJkzDt2JZoI0eOhM/nk3OdP3++vNPKqTTlc502bRomTZoEABg3bhzmzp0LoHfC2efzyZPYpdS95uZmzJgxA0Dvf1r2+XzyRPXcuXMxbtw4ANq/n/KaZsyYgYkTJwIAJkyYgFmzZgHonfz3+XzweDyIx+M455xzcPHFFwMAJk6cKGsKhUKK1IitW7cCAMaMGYP58+fL1/l8PowcOVL2adu2bQNqKrbu5ReSZs2ahQkTJsiLG/k5y0I+7du37wRNhfremDFjAABTpkyRNR3v0/GaCvW9dDoNn88Ht9uNN998EzfeeGNBn2KxGNasWSMvoOQ1He/T8OHDsWbNmgF92rx5c0FNuqHw4esMoxlNTU0EgK688ko644wzqKmpiTKZDAUCAcrlckREFAqFKJlMEhFRLBajSCRCRETpdJoCgYAcKxgMUiqVIiKiaDRK0WiUiIhSqRQFg0H5ukAgQOl0moiIIpEIxWIxIiJKJpMUCoWIiCiXy1EgEKBMJkNEROFwmOLxOBERJRIJ6unpISKibDZLgUCAstksERH19PRQIpEgIqJ4PE7hcJiSySR98skndPjwYSE1JZNJ+tvf/kZdXV1FayKisn1KJpO0ZcsW+TE1fOrq6qKGhgaKx+OKaopGo/TBBx/Ij5XqUzAYpIaGBgqHwyX1vcOHD9Mnn3xCyWRSNZ8Gq0nt95MRNPX09FBDQwOFQiHDaOrrU3d3NzU0NFAsFhNSUygUooaGBtmLYjQp4VMkEqGGhgYKBAKq+qRG3Usmk7R161Y6fPhwWT4dPXqUPvroI0omkyX1vXg8Th988IH8mFFrhNE0dXV10d/+9jdKJpOG0dTXp1AoRJs3b6ZkMimkpu7ubvn117rvaVH3enp66MMPP6RkMqmYpqNHj1JDQwNFo9GyfMqPdfOPcd3julfJmvI+5f927O7uFlJTMpmkzZs3y48V3ff+n/+Hwi4XEUAZi4UCkkQ5k4kIoNDHHxel6ciRI/TxsWsr6W/3YDBIW7ZsoWQyWbZP5da9vnMnpWry+/3kdDqppqaGAJDVaiVJkggAASCv10ufffZZUZpaW1sJANXU1JDT6SQAZLfbyePxEAAymUwkSRK1trYOqOlUPu3evZtcLhcBIIvFQpIkkclkIgDk8XjIbreT3+/X/P2U1+5yucjhcBAAqqqqIrfbTQDIbDaTJElkNpvJbrfTxIkTZR0Oh0P+vrW1VZEa0dLSQgDIZrOR1+uV/ZQkiaxWq+zTrl27Sup7fX1qa2sjAOR2u6mqqorsdrs8ZzmQT59++mk/TX6/v2Dfs9lsBICqq6uppaWln09+v7+gpuP7nt/vpz179pAkSeRwOGj8+PF0xhlnFPSpra2NduzYQWazuZ+m432yWCy0Y8eOAX1qbm4u+H7KfzU1NZGW8EIIU7HkF0J8Ph95PB7N3zxaEAqF6IknnpCLsGjolZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlMyF0RYj+ya6tpLyi0SIPB4i4MSvb3xD3bYHicg1T4lYSuSSn0w+2Zff71cs1mDiqZ2vkhSrPb8QkJ/TUyt3LbwYqK2T6Ruo3VJ8HYzG/LWnyq3vteW8dqeKofVcrono2CZeDFNh7Ny5E5deeqn8c1NTEy655BIdM2IYhmEYhmEYhmEY5rSACHj/fWDJEmD1aqDvuawvvggc22LmlKxcCZx1FjB5MnDs7ABGe/bu3YvRx7Y5Gwi/349Ro0YpEmsw8Upto5z4pVKs9lOhVO5aeDHYtk7Wbim+DkYjAFWuHei1O1VuWs/l8hkhTMXjcDjkg4aMBhEhkUhA1PVKvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E11ZSfiYTcM01wIoVwIEDwKOPAhdeCAwdCtx8c3ExUinQAw8gcf31oLFjgccfB7q7SxNxEkSueUrEEr1/MYUxmUyGntMTWZ/IuakJL4QwFc+CBQvg9Xr1TkMVQqEQfvnLX8qHTYmGXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+iays7v2HDgB/9CNi1C/jb3wCHo7jn1dcjlErhlwsWIHTkSG+Mc84B/vmfexdXFELkmqdELNH7F1MYr9dr6Dk9kfWJnJua8EIIU/EsXboUuVwOAJDNZhEMBuX/BdDT04PUsdtT4/E4otEoACCTySAYDMoxQqEQ0uk0ACAWiyEWiwEA0ul0vw/SYDCITCYDAIhGo4jH4wCAVCqFnp4eAL3/EyEYDCKbzQIAIpEIEokEACCZTCIcDgMAcrkcgsGgnHs4HEYymQQAJBIJRCIRuN1u3HPPPchms0JqcrvdmDNnjhyrGE1K+OR2u3HnnXfCYrGo5hMAzJs3DzU1NYpqcjqduOOOO+B2u8vyyWq1Yt68eaiqqiqp72WzWXz/+9+H2+1WzafBalL7/WQETXa7HfPmzYPNZjOMpr4+mUwmzJs3D9XV1UJqstlsmDdvHux2u6Z9z+FwYN68ebBYLKr6BChf99xuN+6++265zVJ9MpvNuOuuu+B2u0vqezU1NbjjjjtQU1Ojmk+ivZ+MoAkA5syZA7fbbRhNfX2y2Wz43ve+B7fbLaQmk8mE2bNnw+12a973tKh7drsd//zP/wy3262YJrPZjHnz5sHpdJblU36sa7VaB6WJ617lawKMW/fcbjdmz54t/+9j0TS53W5873vfg81mK1oTUKDvhUKgY9vAFKVpyRLkTCbMffZZuMNhxKqrEbNYgPp6pB0Oof92t1qtuPPOO+F2u8v2qdy653a78f3vfx/ZbLYsTU6nU66bVqsVkiTJuXq9Xvn1P5WmfK41NTVwOp0Aej93PB4PgN7PWEmSyqp7qVQKLpcLAGCxWCBJkvz+8ng8sNvtAPSrES6XC45jC4JVVVXyHIjZbIYkSTCbzQiHw3jhhRdkTQ6HQ9akVI3Iv642m63fpL8kSXJ/q6mp6fe6llv33G43qqqqEA6H+81ZFvIpn2tfTYX6Xr42VVdXyzkc79Pxmgr1PSKCJEmIRqN4+umnkcvlCvqUy+UQiURgNpv7aTreJ4vFgkgkMqBP+b5yvCa94IUQpuK54IIL8N3vfhcA0NnZibq6OrmALV26FM3NzQCATZs2Yd26dQCA9vZ21NXVyTEWL16MtrY2AMCGDRuwYcMGAEBbWxsWL14sX1dXV4f29nYAwLp167Bp0yYAQHNzM5YuXQqgtxjW1dWhs7MTALB69Wps2bIFANDQ0IAVK1YA6C0OdXV1coFdsWIFGhoaAABbtmzB6tWrYbFYYLFY8Jvf/EZITRaLBQcPHsTKlSuL1qSETxaLBdu2bcM777yjmk8rV65EbW0totGoopoOHTqEl156SV7EKdWnv/71r6itrcXu3btL6nu/+c1vUF1dDYvFoppPg9Wk9vvJCJq2b9+O2tpafPzxx4bR1NentWvXora2FkePHhVS08cff4za2lps375d0763d+9e1NbW4p133lHVJzXqnsViQSaTwW9+85uyfFq/fj127doFi8VSUt+LRqN46aWX5D8ujFojjKZp5cqVOHjwICwWi2E09fXp448/xnvvvQeLxSKkprVr18Lv98NisWje97Soe9u3b8dbb70Fi8WimKb169ejtrYWhw4dKssni8WCjz76CH/9618HpYnrXuVrMnLds1gs8Pv9WLt2rZCaLBYL3nvvPXz88cdFawLK7HuffQa8+y6emTcPUZcLlmwWG6ZMwYYpU4A77kBbZ6fQf7v/9a9/xUcffQSLxVK2T+XWPYvFgurqavzmN78pS9OkSZMwbdo0AMDIkSPh8/nkXOfPn4+DBw8WpSmf67Rp0zBp0iQAwLhx4zB37lwAvRPOPp9PnsQupe41NzdjxowZAIDhw4fD5/PJE9Vz587FuHHjAGj/fsprmjFjBiZOnAgAmDBhAmYdOzPH4/HA5/PB4/Egm81iypQpuPzyywEAEydOlDWFQiFFasTWrVsBAGPGjMH8+fPl63w+H0aOHCn7tG3btgE1FVv38gtJs2bNwoQJE5DNZvvNWRbyad++fSdoKtT3xowZAwCYMmWKrOl4n47XVKjvpdNp+Hw+DB06FB0dHfjud79b0KdYLIY1a9bICyh5Tcf7NHz4cKxZs2ZAnzZv3lxQk24UOECdYSqCpqYmAkBz586lM888k5qamiiTyVAgEKBcLkdERKFQiJLJJBERxWIxikQiRESUTqcpEAjIsYLBIKVSKSIiikajFI1GiYgolUpRMBiUrwsEApROp4mIKBKJUCwWIyKiZDJJoVCIiIhyuRwFAgHKZDJERBQOhykejxMRUSKRoJ6eHiIiymazFAgEKJvNEhFRT08PJRIJIiKKx+MUDocpHA7T0qVLqb29XUhN4XCYnnvuOTp06FDRmoiobJ/C4TA9++yzdPjwYdV8OnToEC1btoxCoZCimgKBAP3ud7+Tn1eqT0eOHKFly5ZRd3d3SX2vvb2dli5dSuFwWDWfBqtJ7feTETR1dXXRsmXLqLOz0zCa+vrU0dFBy5Yto2AwKKSmzs5OWrZsGXV1dWna944ePUrLli2jw4cPq+qTGnWv7+dYOT4dPnyYnn32WQqHwyX1vVAoRL/73e/k5xm1RhhN06FDh+i5557rN+6odE19fers7JT7tYiaOjo65Ndf676nRd3r6uqSx2RKaTp8+DAtW7aMAoFAWT7lx7pHjhwZlCaue5Wvych1L/+3Y0dHh5Ca8u+7zs7OojURldn3/vVfiQA6cPbZ9NycORR2uShaXU3R6mqirVuF/9v9yJEj8udYuT6VW/f6jjlL1eT3+8npdFJNTQ0BIKvVSpIkEQACQF6vlz777LOiNLW2thIAqqmpIafTSQDIbreTx+MhAGQymUiSJGptbR1Q06l82r17N7lcLgJAFouFJEkik8lEAMjj8ZDdbie/36/5+ymv3eVykcPhIABUVVVFbrebAJDZbCZJkshsNpPL5aK7776bhgwZQgDI4XDImlpbWxWpES0tLQSAbDYbeb1e2U9Jkshqtco+7dq1q6S+19entrY2AkBut5uqqqrI5XLJc5YD+fTpp5/20+T3+wv2PZvNRgCourqaWlpa+vnk9/sLajq+7/n9ftqzZw9JkkQej4dmz55NZ555ZkGf2traaMeOHWQ2m/tpOt4ni8VCO3bsGNCn5ubmgu+n/FdTUxNpCS+EMBVLfiFk8uTJ5HA4NH/zaEE8Hqe//OUvcqEVDb3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfRNemS37vvks0fTrFq6vpL5MnU9zhIAKIrrii+BgdHUQffUR0bBJyIESueUrEUiKX/GTyyb78fr9isQYTT+18laRY7fkJ9fycnlq5a+HFQG2dTN9A7Zbi62A05q89VW59ry3ntTtVDK3nck1ExzbxYpgKY+fOnbj00kvln5uamnDJJZfomBHDMAzDMAzDMAzDMMwgOHAAeO454Nlngc8/B373O+Cee4p77s9/DvzsZ8D48cC8ecCsWcCxPf6ZwbF3716MPna+y0D4/X6MGjVKkViDiVdqG+XEL5VitZ8KpXLXwovBtnWydkvxdTAaAahy7UCv3aly03oul88IYSqeiRMnyvvrGY1kMoktW7bIe+2Jhl75adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtMbJvomvTteYNG4YtU6YguWsXsG4dcNttxT0xm+1dPAGAxkZg/nzg7LOBe+8Fduzo34bANU+JWKL3L6YwVVVVhp7TE1mfyLmpCS+EMBXP+PHjYbfb9U5DFVKpFBobG5FKpfROpSB65adFu2q1oVTccuOI3reYwhjdN9H1GbnmqdUO1zymHIzum+j69MyvUsd6otQ8JXNhtMXIvomuTYial80CN94IuFzFPfFPf+q9g6Qv0WjvHSVvv124DQFrnhKxRO9fTGHsdruh5/RE1idybmrCW2MxFQtvjcUwDMMwDMMwDMMwzGnJtGnA66+f+PuqKuDgQWDIEO1zqmB4ayxl4K2xeGusvvDWWAyjMJIkwWw2ZlfO5XIIBoPI5XJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E11ZxNW//fmD9+sKP3XLLCYsgItc8JWKJ3r+YwpjNZkPP6YmsT+Tc1OT0UssYEp/Ph9raWgBANptFMBhE/kannp4e+dbIeDyOaDQKAMhkMggGg3KMUCiEdDoNAIjFYojFYgCAdDqNUCgkXxcMBpHJZAAA0WgU8XgcQO9tmD09PQAAIkIwGEQ2mwUARCIRJBIJAL37VobDYQAnflCHw2F5P8tEIoFIJIKenh7U1dWhvb1dSE35/A4ePFi0JiV8yrd7+PBh1Xw6ePAg6urqEAwGFdV09OhR1NXVyXmU6tORI0dQV1eHrq6ukvpee3u7nIdaPg1Wk9rvJyNo6uzsRF1dHTo7Ow2jqa9Phw4dQl1dHQKBgJCa+r7+Wva97u5uueap6ZMada/v51g5PnV0dMg1q5S+FwwGZW1q+STa+8kImvJ9sqenxzCa+vqUryk9PT1CasrX5J6eHs37nhZ1r+/rr5SmfK06evRoWT7la+eRI0cGpYnrXuVrMnLdy/frQ4cOCakpn19nZ2fRmgBl+l7fv82K1nTkCOLf+lavJrsdPR5PryaTCcE77yz+b/f9+0vWlP+btKenp2yfyq17fcec5fjkdDpRU1MDALBarZAkSc7V6/XKr/+pNOVzrampgdPpBNC7FZHnmE8mkwmSJJVV91KpFFzHtlGzWCyQJAkmkwkA4PF45C2P9KoRLpcLDocDQO95FG63G0D/CXiPxwOfz4dhw4YBABwOh6xJqRqRf11tNhu8Xq98nSRJsFqtsk99X9dy657b7UZVVZWsLz9nWcinfK59NRXqezabDQBQXV0t53C8T8drKtT3iAiSJEGSJDm3Qj7lcjlEIhF5oSSv6XifLBYLIpHIgD7l+8rxmvSCF0KYimfLli2YMmUKgP/9gyZfwJYuXYrm5mYAwKZNm7Bu3ToA/zvQyLN48WK0tbUBADZs2IANGzYAANra2rB48WL5ur6TOevWrcOmTZsAAM3NzVi6dCmA3mLYdwC1evVqbNmyBQDQ0NCAFStWAID8QZ0vsCtWrEBDQ4OsafXq1fB4PLjjjjuwbNkyITV5PB5cc801eP3Y7bjFaFLCJ4/Hg4svvlh+XdXw6fXXX8cDDzwgx1NKUz5O/kOoVJ8aGhrwwAMP4MCBAyX1vWXLlmHOnDnweDyq+TRYTWq/n4ygac+ePXjggQfQ3NxsGE19fXrrrbfwwAMPyPFE09Tc3IwHHngAe/bs0bTvdXZ24oEHHsCWLVtU9UmNuufxeHDzzTdj2bJlZfm0adMmjB8/Hh6Pp6S+dzxGrRFG0/T666/jmmuugcfjMYymvj41NzfjnHPOgcfjEVLTW2+9ha9+9avweDya9z0t6t6ePXswbNgweDwexTRt2rQJDzzwgByvVJ88Hg8uuOCCfn2F6x7XvUrVlPfJ4/Hgq1/9Kt566y0hNXk8HpxzzjlyDlr2vZdeegk33ngjPB5P8ZpaW7Hphz8EWlvR/K//iqX33NOr6UtfQt2HHxb/t/tXvgJcdRVW/PrXaPjoo0FpamhowAUXXACPx1O2T+XWPY/Hgzlz5mDZsmVl+TRp0iRMmzYNADBy5Ej4fD451/nz58sLSafSlM912rRpmDRpEgBg3LhxmDt3LoDeCWefzydPYpc6jpgxYwYAYPjw4fD5fPJE9dy5czFu3DgA2r+f8ppmzJiBiRMnAgAmTJiAWbNmAYC8OJD//O3s7MSYMWMAABMnTpQ1hUIhRWrE1q1bAQBjxozB/Pnz5et8Ph9Gjhwp+7Rt27YBNRVb9/ILSbNmzcKECRPQ09PTb86ykE/79u07QVOhvpd/jaZMmSJrOt6n4zUV6nvpdFrO4cknn8SUKVMK+hSLxbBmzRp57iqv6Xifhg8fjjVr1gzo0+bNmwtq0g1imAqlqamJAJDD4SCXy0VNTU2UyWQoEAhQLpcjIqJQKETJZJKIiGKxGEUiESIiSqfTFAgE5FjBYJBSqRQREUWjUYpGo0RElEqlKBgMytcFAgFKp9NERBSJRCgWixERUTKZpFAoREREuVyOAoEAZTIZIiIKh8MUj8eJiCiRSFBPTw8REWWzWQoEApTNZomIqKenhxKJBBERxeNxCofDRESsiTWxJtbEmlgTa2JNrIk1sSbWxJpYE2tiTQNr6uwkevllyr36avGaFi2irNlMBFCP202JM88k+n//X4r//e9iaNLYJ7/fT06nk2pqaggAWa1WkiSJABAA8nq99NlnnxWlqbW1lQBQTU0NOZ1OAkB2u508Hg8BIJPJRJIkUWtra8madu/eTS6XiwCQxWIhSZLIZDIRAPJ4PGS328nv92vuU167y+Uih8NBAKiqqorcbjcBILPZTJIkkdlsJgDkdrupqqqq3/weAGptbVWk77W0tBAAstls5PV6ZT8lSSKr1Sr7tGvXrrL7Xltb20k1FfLp008/7afJ7/cX7Hs2m40AUHV1NbW0tPTzye/3F9R0fN/z+/20Z88ekiSJLBbLSX1qa2ujHTt2nNIni8VCO3bsGNCn5ubmgu+n/FdTUxNpCS+EMBVLfiHkvvvuI7fbrfmbRwt6enpo8eLFcnEVDb3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfRNd22tW8bJboC18gAk78GjWq93EN8xZhrJefTD7Zl9/vVyzWYOKpna+SFKs9P7men9NTK3ctvBiorZPpG6jdUnwdjMb8tafKre+15bx2p4qh9Vwub43FVDyNjY3y/nNGw263Y/z48fLejqKhV35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRluM7Jvo2k67mveXvwCtrYUvvuceoIgDlJXMm8d6pyepVMrQc3oi6xM5NzUxER07zYRhKoydO3fi0ksvlX9uamrCJZdcomNGDMMwDMMwDMMwDMMwgjNzJrBq1Ym/t1qB/fuBs8/WPied2bt3L0aPHn3Sa/x+P0aNGqVIrMHEK7WNcuKXSrHaT4VSuWvhxWDbOlm7pfg6GI0AVLl2oNfuVLlpPZfLd4QwFc/kyZPhcDj0TkMVEokENm7ciEQioXcqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtp1XNy+WA7u7CF/6f/1P0IkgiElEsbx7rnZ44HA5Dz+mJrE/k3NSEF0KYimfUqFGwWq16p6EKmUwGe/fuRSaT0TuVguiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRFiP7Jrq206rmmc3A228DO3cCPh9wxhn/e+G8ecXH9Pmwt74emVdeAZJJ5fLT4fmMPlitVkPP6YmsT+Tc1IS3xmIqFt4ai2EYhmEYhmEYhmEYpgzicWD1auCNN4CXXirqfBAEg8CIEb3PBYBhw4DZs4F77wW++EU1s1UN3hpLGXhrLN4aqy+8NRbDKExtbS0sFoveaahCNptFR0cHstms3qkURK/8tGhXrTaUiltuHNH7FlMYo/smuj4j1zy12uGax5SD0X0TXZ+e+VXqWE+UmqdkLoy2GNk30bWd1jXP6QS+9z1g5criFkEA4MUXkU2l0FFbi6zFAnR1AY8+Clx4IbBpk7L5afB8Rh8sFouh5/RE1idybmrCCyFMxXPffffhrLPOAtD74RcMBpG/0amnpwepVAoAEI/HEY1GAfTeNhkMBuUYoVAI6XQaABCLxRCLxQAA6XQaoVBIvi4YDMq3WkajUcSP/e+HVCqFnp4eAAARIRgMyh/AkUhE3qcymUwiHA4DAHK5HILBIHK5HAAgHA4jeex20kQigUgkgnA4jCVLluDAgQNCasrnd+jQoaI1KeFTvt0jR46o5tOhQ4ewZMkShEIhRTUFAgEsWbJE7gel+tTZ2YklS5agu7u7pL534MABOQ+1fBqsJrXfT0bQ1NXVhSVLlqCrq8swmvr61NHRgSVLliAYDAqpqe/rr2XfO3r0qFzz1PRJjbrX93OsHJ8OHz4s16xS+l4oFJK1qeWTaO8nI2jK98lwOGwYTX19yteUcDgspKZ8Tc7nbLS61/f1V0pTvlYFAoGyfMrXzs7OzkFp4rpX+ZqMXPfy/bqjo0NITfn8urq6itYEKNP3+v5tVhF/uyeTwJIl6Bw2DEvuuw9htxsZqxVBSQJqa4Grr9a87vUdc5bjk9PpRE1NDYDerYMkSZJz9Xq98ut/Kk35XGtqauB0OgEAdrsdHo8HAGAymSBJUll1L5VKweVyAeid1JYkCSaTCQDg8Xhgt9sB6FcjXC6XfP5EVVUV3G43AMBsNkOSJJjNZrjdbtx3330YOnQogN5zK/KalKoR+dfVZrPB6/XK10mSJG8LVVNT0+91Lbfuud1uWXPfOctCPuVz7aupUN+z2WwAgOrqajmH4306XlOhvkdEkCQJXq9Xzq2QT7lcDpFIBOZji6N5Tcf7ZLFYEIlEBvQp31eO16QXvBDCVDx//etfMWXKFABAZ2cn6urq5AK2dOlSNDc3AwA2bdqEdevWAQDa29tRV1cnx1i8eDHa2toAABs2bMCGDRsAAG1tbVi8eLF8XV1dHdrb2wEA69atw6Zj/9OhubkZS5cuBdBbDOvq6uQP8NWrV2PLli0AgIaGBqxYsQJAb3Goq6uTC+yKFSvQ0NAAANiyZQtWr14Nr9eL2bNnY9myZUJq8nq9uPbaa/H6668XrUkJn7xeLy699FJ89NFHqvn0+uuv46GHHoLJZFJUU/6DMv8BXKpPjY2NeOihh3DgwIGS+t6yZctw3333wev1qubTYDWp/X4ygqY9e/bgoYceQnNzs2E09fXprbfewkMPPYRUKiWkpubmZjz00EPYs2ePpn2vq6sLDz30ED766CNVfVKj7nm9Xtx+++1YtmxZWT699957+MpXvgKv11tS38v/sZH/16g1wmiaXn/9dVx77bXwer2G0dTXp+bmZpx77rnwer1Canrrrbfwta99DV6vV/O+p0Xd27NnD84880x4vV7FNL333nt46KGHEA6Hy/LJ6/Xii1/8IhobGweliete5Wsyct3zer342te+hrfeektITV6vF+eee66cg5Z976WXXsJ3vvMdeL3eyvjbfd06oKkJjRMm4IuffgpvKIT2kSNR5/MBd98N2Gya1738pO6yZcvK8mnSpEmYNm0aAGDkyJHw+XxyrvPnz8fBgweL0pTPddq0aZg0aRIAYNy4cZg7dy6A3glnn88nT2KXOo6YMWMGAGD48OHw+XzyRPXcuXMxbtw4ANq/n/KaZsyYgYkTJwIAJkyYgFmzZgHonfz3+XzweDwIhUI4fPgwLrjgAgDAxIkTZU2hUEiRGrF161YAwJgxYzB//nz5Op/Ph5EjR8o+bdu2bUBNxda9/ELSrFmzMGHCBIRCoX5zloV82rdv3wmaCvW9MWPGAACmTJkiazrep+M1Fep76XQaPp8PdrsdixYtwpQpUwr6FIvFsGbNGnkBJa/peJ+GDx+ONWvWDOjT5s2bC2rSDWKYCqWpqYkAkMPhIJfLRU1NTZTJZCgQCFAulyMiolAoRMlkkoiIYrEYRSIRIiJKp9MUCATkWMFgkFKpFBERRaNRikajRESUSqUoGAzK1wUCAUqn00REFIlEKBaLERFRMpmkUChERES5XI4CgQBlMhkiIgqHwxSPx4mIKJFIUE9PDxERZbNZCgQClM1miYiop6eHEokEERHF43EKh8NERKyJNbEm1sSaWBNrYk2siTWxJtbEmlgTa2JNYmhauJAIoJjTSZGaGiKA0lYrBSSJaO/eytSUTJLf7yen00k1NTUEgKxWK0mSRAAIAHm9Xvrss8+K0tTa2koAqKamhpxOJwEgu91OHo+HAJDJZCJJkqi1tbVkTbt37yaXy0UAyGKxkCRJZDKZCAB5PB6y2+3k9/s173t57S6XixwOBwGgqqoqcrvdBIDMZjNJkkRms5kAkNvtpqqqqn7zewCotbVVkfdTS0sLASCbzUZer1f2U5Ikslqtsk+7du0qu++1tbWdVFMhnz799NN+mvx+f8G+Z7PZCABVV1dTS0tLP5/8fn9BTcf3Pb/fT3v27CFJkshisZzUp7a2NtqxY8cpfbJYLLRjx44BfWpubi74fsp/NTU1kZbwQghTseQXQnw+H3k8Hs3fPFoQCoXoiSeekIuwaOiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRFiP7Jro2rnmDpKGBQj/4AT3x4IMU8niIAKJvf7v452/fTjRlCtGaNUSplBBjvfxk8sm+/H6/YrEGE0/tfJWkWO35hYD8nJ5auWvhxUBtnUzfQO2W4utgNOavPVVufa8t57U7VQyt53J7Nw5jmApm48aN8v54RsPhcGDy5Mnyfn2ioVd+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45g2S8ePhePxxTP773+EYOxZ49lng3nuLf/6SJcCGDb1fZ58Nx9y5PNY7DUkkEoae0xNZn8i5qYmJ6NhpJgxTYezcuROXXnqp/HNTUxMuueQSHTNiGIZhGIZhGIZhGIY5DSECjp1LdFKiUWDECODYuRcyJhPw0EPA//yPOvmdgr1792L06NEnvcbv92PUqFGKxBpMvFLbKCd+qRSr/VQolbsWXgy2rZO1W4qvg9EIQJVrB3rtTpWb1nO5fFg6U/FMnToVTqdT7zRUIR6P480330Q8Htc7lYLolZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlMyF0RYj+ya6Nq55CsQsZhEEAF5++YRFkLjTiTe/9S3EL75YmVyYisDpdBp6Tk9kfSLnpia8EMJUPJIkwWw2ZlfO5XIIBoPI5XJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E18Y1T8OYS5acGMtsRvDMM5G74QZtc2F0xWw2G3pOT2R9IuemJrw1FlOx8NZYDMMwDMMwDMMwDMMwFUJzMzDQvM2//Avw2GPa5tMH3hpLGXhrLN4aqy+8NRbDKMyoUaNgtVr1TkMVMpkM9u7di0wmo3cqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPM0innxxcCWLcCcOUCfLXkyViv23nRT8bF++lPgjTeAbLb0XBjdsVqthp7TE1mfyLmpCS+EMBXP7Nmz4XK59E5DFSKRCJ5//nlEIhG9UymIXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap1FMkwn46leBpUuBQ4eA3/wGuOwyRK67Ds//5S/FxfrsM+A//xO48UbggguA//xPRNrahO5fTGFcLpeh5/RE1idybmrCW2MxFQtvjcUwDMMwDMMwDMMwDFPBEAGhECBJxV3/4x8Djz7a/3cWCzBtGrBiBVBdXVIavDWWMvDWWLw1Vl94ayyGURiHwyGvYGazWQSDQeTX93p6epBKpQAA8Xgc0WgUQO9tk8FgUI4RCoWQTqcBALFYDLFYDACQTqcRCoXk64LBoHyrZTQaRTweBwCkUin09PQAAIgIwWAQ2WO3aEYiESQSCQBAMplEOBwGcOJhXuFwGMlkEgCQSCTk/8nAmlgTa2JNrIk1sSbWxJpYE2tiTayJNbEm1mRITdksIEnFaUomEVm1CgmHo1dTVRXCbjeQzSLX3o5gKlWWJqfTiZqaGgC9WwdJfRZnvF6v/PqfSlP+9a+pqYHz2BZgdrsdHo8HAGAymSBJUlk+pVIpeS7MYrFAkiSYTCYAgMfjgd1uV9anQfY9l8sFxzGfqqqq4Ha7AZx4SLfb7UZVVRUAdeb38q+rzWaD1+uVr5MkSd4Wqqampt/rWu77aSBNhXzK59pXU6G+Z7PZAADV1dVyDsf7dLymQn2PiCBJEiwWy0l9yuVyiEQip/TJYrEgEokM6FO+rxyvSS94IYSpeP71X/8VM2fOBAB0dnairq5OLmBLly5Fc3MzAGDTpk1Yt24dAKC9vR11dXVyjMWLF6OtrQ0AsGHDBmzYsAEA0NbWhsWLF8vX1dXVob29HQCwbt06bNq0CQDQ3NyMpUuXAugthnV1dejs7AQArF69Glu2bAEANDQ0YMWKFQB6i0NdXZ1cYFesWIGGhgYAwJYtW7B69WqEQiH88pe/FFZTKBTCr371K7zwwgtFa1LCp1AohMceewyvv/66aj698MILWLRokZyDUpp27dqFuro6+cOqVJ82bNiARYsWYevWrSX3vV/+8pcIhUKq+TRYTWq/n4yg6cMPP8SiRYuwceNGw2jq69PKlSuxaNEi7NmzR0hNGzduxKJFi/Dhhx9q2ve2b9+ORYsW4fXXX1fVJzXqXigUwiOPPFK2T6+++ioee+wxhEKhkvpeXlM+nlFrhNE0vfDCC/jVr36FUChkGE19fdq4cSMef/xxhEIhITWtXLkSjz76KEKhkOZ9T4u69+GHH+KJJ55AKBRSTNOrr76KRYsWyeO9Un0KhUJ4/PHH5eu47nHdq2RNeZ9CoRAeffRRrFy5UkhN+ffdxo0bi9YEKNP3fvvb3+KRRx5BKBSqqL/dN2zYIH+OletT0XXv1Vex+tprsWXixF6fJkzAilmzEPJ68csbbyxb06RJkzBt2jQAwMiRI+Hz+eRc58+fj4MHDxalKf/6T5s2DZMmTQIAjBs3DnPnzgXQO+Hs8/nkeYFS6l5zczNmzJgBABg+fDh8Pp88UT137lyMGzcOgPbvp7ymGTNmYOIxnyZMmIBZs2YB6J389/l88Hg88Hq9ePDBB3HVVVcBACZOnChrCoVCitSIrVu3AgDGjBmD+fPny9f5fD6MHDlS9mnbtm0Daiq27uUXkmbNmoUJEybA6/X2m7Ms5NO+fftO0FSo740ZMwYAMGXKFFnT8T4dr6lQ30un0/D5fBg9ejQWLFiAmTNnFvQpFothzZo18gJKXtPxPg0fPhxr1qwZ0KfNmzcX1KQbxDAVSlNTEwGgyy67jCRJoqamJspkMhQIBCiXyxERUSgUomQySUREsViMIpEIERGl02kKBAJyrGAwSKlUioiIotEoRaNRIiJKpVIUDAbl6wKBAKXTaSIiikQiFIvFiIgomUxSKBQiIqJcLkeBQIAymQwREYXDYYrH40RElEgkqKenh4iIstksBQIBymazRETU09NDiUSCiIji8TiFw2FKpVLU1NRER44cEVJTKpWi7du3U3d3d9GaiKhsn1KpFDU2Nso61PCpu7ubWlpaKJFIKKopFovR1q1bZW9K9SkUClFLS4v8fTGa+va9I0eO0M6dOymVSqnm02A1qf1+MoKmcDhMLS0t8vdG0NTXp6NHj1JLSwvF43EhNfX09FBLS4v8fTGalPApGo1SS0uL/L1aPqlR9/p+jpXjUyAQoMbGRkqlUiX1vUQiQVu3bpV1GLVGGE1Td3c3bd++nVKplGE09fWpp6eH/v73v1MqlRJS09GjR2nbtm2USqU073ta1L1wOCy//kppCgQC1NLSIn9fqk+pVIoaGhpkHVz3uO5Vsqa8T6lUirZt20ZHjx4VUlMqlaK///3v/d5DWvW9zs5O2rFjB6VSqYr62z0UClFDQwOlUqmyfSq67k2aRGGXi+IOBxFAiaoq6nG7KXXGGbRz61Y6cuRIyZri8ThJkkQ1NTUEgKxWK0mSRAAIAJ155plynziVptbWVgJANTU15HQ6CQDZ7XbyeDwEgEwmE0mSRK2trf18Gkzf2717N7lcLgJAFouFJEkik8lEAMjj8ZDdbie/36/5+ymv3eVykcPhIABUVVVFbrebAJDZbCZJkshsNpPNZqPx48fLr7nD4ZA1tba2KlIjWlpaCADZbDbyer2yn5IkkdVqlX3atWvXyfteET61tbURAHK73VRVVUU2m02esxzIp08//bSfJr/ff0Lf83q9ZLPZCABVV1dTS0tLP5/8fn9BTcf3Pb/fT3v27CFJkqiqqorGjh1LkiQV9KmtrY127NhBZrO5n6bjfbJYLLRjx44BfWpubi74fsp/NTU1kZbwGSFMxcJnhDAMwzAMwzAMwzAMw5wmvPcesGQJsHo1cGz7HQDAffcBff5n/En5+OPeM0muvRYw998o57bbbsPLL79c8GkzZ86U72g6FXxGCJ8RUix8RgifEcIwg2L69OmoLvEwLNGJxWKor6+Xb68TDb3y06JdtdpQKm65cUTvW0xhjO6b6PqMXPPUaodrHlMORvdNdH165lepYz1Rap6SuTDaYmTfRNfGNU/fmEXHuuaa3gPRDxzoPTD9wgt7nz97dvG5PPww8E//BFx0EfDII8CxbY+A3m19Zs6cKZ+ZAPSehzBz5kx5uyRGOaqrqw09pyeyPpFzUxNeCGEYhmEYhmEYhmEYhmEYpjIYNgz40Y+AXbuAjz4CLrusuOft3w/86U+937e2Ag89BJxzDnDbbcCOHaiursbKlSsRCATg9/vh9/sRCASwcuXK027CmGGMCG+NxVQsvDUWwzAMwzAMwzAMwzAMUxQ/+xnw858Xfuz994Gvf12RZnhrLN4aq1h4ayzeGothBsXYsWNhs9n0TkMV0uk0du3ahXQ6rXcqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0janJWC+TAZ59tvBj48YBX/taSW0zpWOz2Qw9pyeyPpFzUxNeCGEqHiPvacf7qOrXLp8RwoiI0X0TXZ+Ra55a7XDNY8rB6L6Jro/3y9cvJp8RcvpiZN9E18Y1T9+Ymoz13ngDOHiw8GPz5gEmU0ltM6Vj9HMqRNYncm5qwltjMRULb43FMAzDMAzDMAzDMAzDnJJPPgH+53+A117rvTskj8PRu0ByxhmnjpHL9Z5JMnHiSRdOeGss3hqrWHhrLN4ai2EYhmEYhmEYhmEYhmEYRhm+8hVg9Wrg88+B//5vID9xO3NmcYsgAPDuu8DVVwOXXgrU1QGBgGrpMgyjPLwQwlQ8CxcuhCRJeqehCsFgEA8//DCCwaDeqRREr/y0aFetNpSKW24c0fsWUxij+ya6PiPXPLXa4ZrHlIPRfRNdn575VepYT5Sap2QujLYY2TfRtXHN0zempmO92lrg//f/A9ragDffBH784+IbWrKk99/mZsDnA0aMAO66C9iypZS0T3skSTL0nJ7I+kTOTU14ayymYslvjTVq1Ci0t7ejsbHRcFtjZTIZtLe3Y+TIkbBarXqncwJ65adFu2q1oVTccuOI3reYwhjdN9H1GbnmqdUO1zymHIzum+j69MyvUsd6otQ8JXNhtMXIvomujWuevjErYqx3+DAwcmT/bbXy3Hxz790mx+CtsYrbHspqtWLkyJFob29H5rjX1QhbY51M30DtarU11qlyM+rWWOJ9+jDMINm7d6/eKaiG1WrV/ENrMOiVnxbtqtWGUnHLjSN632IKY3TfRNdn5JqnVjtc85hyMLpvouvTM79KHeuJUvOUzIXRFiP7Jro2rnn6xqyIsd6yZYUXQYDew9aZQZPJZAw9pyeyPpFzUxPeGoupeG677TbU1NTonYYqRKNRrFy5EtFoVO9UCqJXflq0q1YbSsUtN47ofYspjNF9E12fkWueWu1wzWPKwei+ia5Pz/wqdawnSs1TMhdGW4zsm+jauObpG1P4sV4uB/zud4Ufu+AC4Lrr1GnX4NTU1Bh6Tk9kfSLnpia8EMJUPMFgELlcTu80VMFsNkOSJJjNYr5V9cpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmiLkX0TXRvXPH1jCj/WCwSAceOAQvHvvbfw7wtQ5JHspw25XM7Qc3oi6xM5NzUR8xOIYQbBxo0bYbFYAADZbBbBYBD5o296enqQSqUAAPF4XP7fAZlMpt8hWqFQCOl0GgAQi8UQi8UAAOl0GqFQSL4uGAzKe+dFo1HE43EAQCqVQk9PDwCAiBAMBpHNZgEAkUgEiUQCAJBMJhEOhwGcWHTC4TCSySQAIJFIIBKJwOl04p/+6Z+QTCaF1OR0OvHNb35Tfn4xmpTwyel04pprrpGfr4ZPmUwGU6dORVVVlaKabDYbJk6cCKfTWZZPADB16lRYLJaS+l4ymcSUKVPgdDpV82mwmtR+PxlBk9lsxtSpU2EymQyjqa9P2WwWU6dOhd1uF1KTyWTC1KlTYTabNe17VqsVU6dOBRGp6pMadc/pdOIf//Ef5eeX6lMul8OkSZPgdDpL6ntVVVWYOHEiqqqqVPNJtPeTETRlMhl885vfhNPpNIymvj6ZTCZ8/etfh9PpFFJTNpvF5MmT4XQ6Ne97WtQ9s9mMr33ta3A6nYppyuVymDp1Kmw2W1k+OZ1OfOMb35B/z3WP614la8r75HQ6MXny5H41RiRNTqcTX//612EymYrWBCjT91KpFK677jo4nc6K+tsdAL7xjW/A6XSW7VO5dc/pdGLKlClIJpPq+DR0KEIvvoj0Z58BP/0pYqNHI1ZdDdhsSP/zP5+gKZ9rTU2N/Le/3W7Hnzwe/B3APJMJIySprLqXSqXgcrkAABaLBZIkyf3X4/HAbrefXFMJPgHF9z2XywWHwwGg9zPJ7XYD6L9oFY/H8cEHH8j6HA6HrEmpGpF/XW02G7xer3ydJEnyeTI1NTX9Xtdy657b7UZVVRXi8Xi/OctCPuVz7avJarX2O8Tc6/XCZrMBAKqrq+UcjvfpeE19+57H45E1SZKEVCqFN998ExaLpaBPuVwOkUhEXlzMazreJ4vFgkgkMqBP+b5yvCa94IUQpuKZPn06brnlFgBAZ2cn6urq5AK2dOlSNDc3AwA2bdqEdevWAQDa29tRV1cnx1i8eDHa2toAABs2bMCGDRsAAG1tbVi8eLF8XV1dHdrb2wEA69atw6ZNmwAAzc3NWLp0KYDeYlhXV4fOzk4AwOrVq7FlyxYAQENDA1asWAGgtzjU1dXJBXbFihVoaGgAAGzZsgWrV69GKpXCX//6V2E1pVIpvP7663jxxReL1qSET6lUCitXrsSbb76pmk8vvvgiGhsb0dXVpagmv9+Puro6+YOhVJ/effddNDY2Yvv27SX3vbyHavk0WE1qv5+MoOnjjz9GY2MjPvjgA8No6uvTK6+8gsbGRhw8eFBITR988AEaGxvx8ccfa9r3du/ejcbGRrz55puq+qRG3UulUti4cWPZPr322mvy52IpfS+vqaurSzWfRHs/GUHTiy++iNdffx2pVMowmvr69MEHH2D58uVIpVJCanrllVdQX1+PVCqled/Tou59/PHHePbZZ+UJDyU0vfbaa2hsbJTHe6X6lEql8OKLL+Ldd98dlCaue5Wvych1L5VKob6+Hq+88oqQmlKpFJYvX44PPvigaE2Acn3v7bffRiqVqqi/3d999128+OKLSKVSZftUbt3Lv2dUrxGpFPDww9jw2GPYsGgR8F//hbZw+ARN+VynTZuGSZMm9X4/bhw2z52LCQCerKrCvT4f8J//CXzySUl1r7m5GTNmzAAADB8+HD6fT56onjt3LsaNG1ecJoXfT/mJ+RkzZmDixIkAgAkTJmDWrFkAeif/fT6fvFhzzz334IorrgAATJw4UdYUCoUUqRFbt24FAIwZMwbz58+Xr/P5fBg5cqTs07Zt2wbUVGzdyy8kzZo1CxMmTIDdbu83Z1nIp3379p2gaeTIkfD5fHKu8+fPx5gxYwAAU6ZMkTUd79PxmvJ9b9y4cZg7dy6A3sUTn8+Hs88+G+PHj8ctt9xS0KdYLIY1a9bICyh5Tcf7NHz4cKxZs2ZAnzZv3lxQk24Qw1QoTU1NBIAefPBBqq2tpaamJspkMhQIBCiXyxERUSgUomQySUREsViMIpEIERGl02kKBAJyrGAwSKlUioiIotEoRaNRIiJKpVIUDAbl6wKBAKXTaSIiikQiFIvFiIgomUxSKBQiIqJcLkeBQIAymQwREYXDYYrH40RElEgkqKenh4iIstksBQIBymazRETU09NDiUSCiIji8TiFw2EKhUL0+OOP0/79+4XUlM/vwIEDRWsiorJ9CoVC9Nhjj1FHR4dqPh04cICeeOIJCgQCimrq7u6mxx57TM6jVJ8OHz5MTzzxBHV2dpbU9/bv30+PP/44hUIh1XwarCa1309G0HTkyBF64okn6PDhw4bR1NengwcP0hNPPEFHjx4VUlP+fXfkyBFN+15XVxc98cQT1NHRoapPatS9vp9j5fh06NAhuXaW0vcCgQA99thj8mtr1BphNE0HDhyQP6uMoqmvT4cPH5b7tYiaDh48KL/+Wvc9LerekSNH5NdfKU2HDh2iJ554grq7u8vyKT/WPXz48KA0cd2rfE1Grnv5McHBgweF1HT8+07Lvvf555/LvlfS3+59P8fK9ancutd3zClCjWhtbSUAVFNTQ06nkwDQUrudQh4PEUA5k4kCkkQZi4XIZKLwZ58Nuu7t3r2bXC4XASCLxUKSJJHJZCIA5PF4yG63k9/v1/z9lNfucrnI4XAQAKqqqiK3200AyGw2kyRJZDabyePx0IMPPkjDhg0jAORwOGRNra2tivjU0tJCAMhms5HX6yUABIAkSSKr1Sr7tGvXrpL6Xl+f2traCAC53W6qqqqS9dXW1g7o06efftpPk9/vJ6vVSpIkybl6vV6y2WwEgKqrq6mlpaWfT36/v6CmfN+z2+3k8XjI7/fTnj17SJIkkiSJfD4f1dbWFvSpra2NduzYQWazuZ+m432yWCy0Y8eOAX1qbm4mACdoyn81NTWRlpiIjt27wjAVxs6dO3HppZfKPzc1NeGSSy7RMSOGYRiGYRiGYRiGYRjmdGbv3r0YPXq0/LME4CAAZ6GLr78eeOONstsohN/vx6hRowYduxyKyasYlMq92HyUaK8U7ce3W4qvg9EIQJVrB3rtTpWb1nO5vDUWU/E4HA55fz2jQURIJBIQdb1Sr/y0aFetNpSKW24c0fsWUxij+ya6PiPXPLXa4ZrHlIPRfRNdn575VepYT5Sap2QujLYY2TfRtXHN0zem0cd6d2KARRCg97D10xSTyWToOT2R9Ymcm5rwQghT8SxYsKDfgUdGIhQK4Ze//GW/w49EQq/8tGhXrTaUiltuHNH7FlMYo/smuj4j1zy12uGax5SD0X0TXZ+e+VXqWE+UmqdkLoy2GNk30bVxzdM3ptHHehcN8PtMbS1www3FBRF0kaccvF6voef0RNYncm5qwltjMRVLfmus2tpadHZ2Ytu2bYbbGiubzaKzsxPDhw+HxWLRO50T0Cs/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MtRvZNdG1c8/SNabSxXqHtgC4A8H0AcwCcdex3wR/+EFKfg75PynPPAc8+C8ybB9x6K/YeOVLxW2NZLBYMHz4cnZ2dyGaz/R4zwtZYJ9M3ULtabY11qtyMujWWVbOWGEYlOjo69E5BNSwWC2pra/VOY0D0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWOeDmO9PQB+AuCnAG4CcC+AsTNnQio2wJIlwMcfA1u2AD4fhkyfjksA7FQlW23IZrOGntMTWZ/IuakJb43Fzp5LjAAAR35JREFUVDyzZ8+Gy+XSOw1ViEQiWL58OSKRiN6pFESv/LRoV602lIpbbhzR+xZTGKP7Jro+I9c8tdrhmseUg9F9E12fnvlV6lhPlJqnZC6MthjZN9G1cc3TN+bpNNZLA1gNYAqA7IgRxT2poaF3ESRPKATP88+jCcD/q3yKmuFyuQw9pyeyPpFzUxNeCGEqnr179yKTyeidhipYrVaMGjUKVquYN2/plZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlMyF0RYj+ya6Nq55+sbksd4pWLJkwIfe1DANpclkMoae0xNZn8i5qQmfEcJULPkzQvJova8cwzAMwzAMwzAMwzAMw/RF0XMpwmFgxAigwN0ufwFwbbnxFWYwZ4ScDCOcEVIMep0RovS1lXJGCN8RwlQ8EydORFVVld5pqEIymcSWLVuQTCb1TqUgeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xeax3Et55p+AiCAAMfJ9IZVBVVWXoOT2R9Ymcm5rwQghT8YwfPx52u13vNFQhlUqhsbERqVRK71QKold+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45ukbk8d6J2H6dKC5GfD5gDPOkH+dHTIEa4uNkUwCN90E/OEPvd8Lgt1uN/Scnsj6RM5NTXhrLKZi4a2xGIZhGIZhGIZhGIZhGJFQbTumeBxYvRp45hmExo2D9MwzxcV/6SVg1qzeXw4bBsyeDdx7L/DFLxbfdpHw1li8NVZfeGsshlEYSZJgNhuzK+dyOQSDQeRyOb1TKYhe+WnRrlptKBW33Dii9y2mMEb3TXR9Rq55arXDNY8pB6P7Jro+PfOr1LGeKDVPyVwYbTGyb6Jr45qnb0we6xWJ0wl873vA++8j8G//Vvzz+h623tUFPPoocOGFwHe+A+j4/+PNZrOh5/RE1idybmpyeqllDInP54PH49E7DVXo6elBXV0denp69E6lIHrlp0W7arWhVNxy44jet5jCGN030fUZueap1Q7XPKYcjO6b6Pr0zK9Sx3qi1Dwlc2G0xci+ia6Na56+MXmsVwIWS3HX7doFvPde4cfOPhswmZTLaZB4PB5Dz+mJrE/k3NSEt8ZiKpb81liSJKGnpwfbt2833NZYuVwOPT098Hg8Qq7S6pWfFu2q1YZSccuNI3rfYgpjdN9E12fkmqdWO1zzmHIwum+i69Mzv0od64lS85TMhdEWI/smujauefrGNNpYT4vtmIreQun//l/giScKX9DYCFx+eUntl5NXHrPZDI/Hg56enhPu5jHC1lgn0zdQu1ptjXWq3Iy6NZZVs5YYRiWCwaDeKahG/lY1UdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0jcljPZVIJoHnny/82Fe/qvgiyGDJb2lmVETWJ3JuaqL/MinDlMl9990Ht9utdxqqEA6H8fTTTyMcDuudSkH0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWE8lqqqAd94B5s8Hjp83mzev+Dgvvgi8+iqQTiuantvtNvScnsj6RM5NTXghhKl4GhsbkUql9E5DFex2O8aPHw+73a53KgXRKz8t2lWrDaXilhtH9L7FFMbovomuz8g1T612uOYx5WB030TXp2d+lTrWE6XmKZkLoy1G9k10bVzz9I3JYz0VGT8e+O1vgYMHgd/9DrjySsDrBWbOLO75mQzwb/8G3HwzcN55wP/3/wF79yqSWiqVMvScnsj6RM5NTfiMEKZiyZ8RkkfrfeUYhmEYhmEYhmEYhmEYpi9CnRFSKP7Bg8CIEcU1VF8PfOc7/X9nMgHf+hbwm98AY8YMOq9iMMIZIcWg1xkhSl9bKWeE8B0hTMUzefJkOBwOvdNQhUQigY0bNyKRSOidSkH0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWE9jil0EAYAlS078HRGwcSMwdGhZaTgcDkPP6YmsT+Tc1IQXQpiKZ9SoUbBarXqnoQqZTAZ79+5FJpPRO5WC6JWfFu2q1YZSccuNI3rfYgpjdN9E12fkmqdWO1zzmHIwum+i69Mzv0od64lS85TMhdEWI/smujauefrG5LGeoOzdC/z5z4UfmzkTKPOAeqvVaug5PZH1iZybqhDDVChNTU0EgBwOB7lcLmpqaqJMJkOBQIByuRwREYVCIUomk0REFIvFKBKJEBFROp2mQCAgxwoGg5RKpYiIKBqNUjQaJSKiVCpFwWBQvi4QCFA6nSYiokgkQrFYjIiIkskkhUIhIiLK5XIUCAQok8kQEVE4HKZ4PE5ERIlEgnp6eoiIKJvNUiAQoGw2S0REPT09lEgkiIgoHo9TOBwmImJNrIk1sSbWxJpYE2tiTayJNbEm1sSaWBNrYk0Voqm1tZUAUE1NDTmdTgJAdrudPB4PASCTyUSSJFFra2vJmnbv3k0ul4sAkMViIUmSyGQyEQDyeDxkt9vJ7/eXp+nf/50IoIAkUdpqJQIoUlNDMaeT6MMPC/qU1+5yucjhcBAAqqqqIrfbTQDIbDaTJElkNpsJALndbqqqquo3vweAWltbFfGppaWFAJDNZiOv10sACABJkkRWq1X2adeuXWX3vba2tpNqKuTTp59+2k+T3+8nq9VKkiTJuXq9XrLZbASAqqurqaWlpZ9Pfr+/oKbj+57f76c9e/aQJElksVhO6lNbWxvt2LHjlD5ZLBbasWPHgD41NzcTgBM05b+amppIS/iOEKbi+cd//EfMmDEDANDZ2Ym6ujokk0kAwNKlS9Hc3AwA2LRpE9atWwcAaG9vR11dnRxj8eLFaGtrAwBs2LABGzZsAAC0tbVh8eLF8nV1dXVob28HAKxbtw6bNm0CADQ3N2Pp0qUAgGQyibq6OnR2dgIAVq9ejS1btgAAGhoasGLFCgBAT08P6urq0NPTAwBYsWIFGhoaAABbtmzB6tWrkc1m0dLSIqymbDaLTZs2DUqTEj5ls1m89tpr+POx/5mglk8dHR0IBAKKatq3bx/q6uqQzWbL8mnjxo3o6OhAU1NTyX0v/1qq5dNgNan9fjKCpk8++QQdHR348MMPDaOpr0+vvPIKOjo60NHRIaSmDz/8EB0dHfjkk0807XufffYZOjo68Oc//1l1n5Sue9lsFtu3by/bpz/+8Y9Yv349stlsSX0vrykQCKjmk2jvJ6No2rRpE7LZrKE05X368MMP8dJLLyGbzQqp6ZVXXsHbb7+NbDared/Tou598skneP7555HNZhXT9Mc//hEdHR3yeK9Un7LZLFavXo2NGzcOShPXPWNoMmrdy2azePvtt/HKK68IqSmbzeKll17Chx9+WLQmQLm+t3XrVmSz2Yr6233jxo3yvEW5PpVb97LZLNra2oSpEflcp02bhkmTJgEAxo0bh7lz5wIAqqqq4PP5EAqFBtR0Kp+am5vlubDhw4fD5/OhqqoKADB37lyMGzeufE3f+Q4wdy7qfD60jxwJAFg3bRo2ffe7wMSJBX3Ka5oxYwYmTpyI4QDumDABs2bNAgB4PB74fD54PB5YLBbcdddd+PKXvwwAmDhxoqwpFAop4tPWrVsBAGPGjMH8+fPl63w+H0Ye0zRt2jRs27ZNfl1LrXuxWAwAMGvWLEyYMAEWi6XfnGUhn/bt23eCppEjR8Ln88m5zp8/H2OOncUyZcoUWdPxfe94TYX6Xjqdhs/nw1lnnYXa2lrZJwCY0MenWCyGNWvWwOPx9NN0vE/Dhw/HmjVrBvRp8+bNBTXphqbLLgyjIPk7QhYuXEgjRoww5B0hgUCAFi5cSPv27RNSUz6/zz//vGhNROX/D4x8uwcPHlTNp88//5wWLlxI3d3dimrq7OykhQsXyrpK9enQoUO0cOFCOnz4cEl9b9++fXIe/L9/KkdTR0cHLVy4kDo6Ogyjqa9P7e3ttHDhQurq6hJSU9/XX8u+d+TIEbnmqemTGnWv7+dYOT4dOHBArlml9L3u7m5Zm1o+ifZ+MoKmfJ8MBAKG0dTXp3xNyccRTVO+JgcCAc37nhZ1r+/rr5SmfK3q7Owsy6d87Tx06NCgNHHdq3xNRq57+X7d3t4upKZ8fh0dHUVrIlKm7/X926yS/nbP/03at3aV6lO5dS///H379glRIwxzR0he0759lP71r4kuu6z3jpD/+38H9On4O0IeAihRVUXNbjf9fwCN6HNHiCRJtHDhQjrzzDMNeUdIXt+IESOEuyNkyJAhcm6n0x0hJiIi9ZdbGEZ5du7ciUsvvRQOhwPJZBI7duzAJZdcondaikJESCaTqKqqgslk0judE9ArPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0jWm0sd7evXsxevToU17n9/sxatQo1dooJ35BiICPPgIuvhjwek+ZlwnAZwDG9Hk8A2AdgCcA/NVkQlVVFZLJJI6fnlYqdy28GKgt00n0DdRuKb4ORiMAjB49+pS59b22mLgDvXanyq2pqUnTudzT7EQUxogkEgm9U1ANk8kEh8OhdxoDold+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45ukbk8d6FYLJBBzbRqkY/hH9F0GA3ono7wDYAuB9IkPP6ZHA+kTOTU34jBCm4snvLWhEenp68OSTT8r7QYqGXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap29MHusZk3kD/D4FYBn6nxdiRETWJ3JuasJ3hDAVz8aNGw27iulwODB58mRh/2eDXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap29MHusZj1oANw3w2FoAnQDsiYSh5/QSAusTOTc14TNCmIolf0ZIHq33lWMYhmEYhmEYhmEYhmGYvhj2jJAiyOc1CsB/AZgBoOq4a64F8JdTxJFzb24Gxo4FzKVtaqTnGSHFoNcZIUpfWylnhPDWWEzFM3XqVDidTr3TUIV4PI4333wT8Xhc71QKold+WrSrVhtKxS03juh9iymM0X0TXZ+Ra55a7XDNY8rB6L6Jrk/P/Cp1rCdKzVMyF0ZbjOyb6Nq45ukbk8d6xmMvgH8GcA6AfwGw+9jvP8P/LoI4nc6Tz+kFAsBXvgJceCHwyCPAkSPqJq0wp9SnIyLnpia8EMJUPJIkwVziyrDo5HI5BINB5HI5vVMpiF75adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtMbJvomvjmqdvTB7rGZduAE8AGAtgEgBfn8fMZvPJ5/ReeAFIJIC2NuChh4CRI4HbbgP+8hegAjY4OqU+HRE5NzXhrbGYioW3xmIYhmEYhmEYhmEYhmFEgrfGGtz2UIXw79mDUTfcALS0nPjgOecAe/cC1lMffc1bY/V/HsBbYzFMRTNq1ChYiyh+lUgmk8HevXuRyWT0TqUgeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xeax3emK1Wgec06v6+OPCiyAAcM89RS2C6M3J9OmNyLmpCS+EMBXP7Nmz4XK59E5DFSKRCJ5//nlEIhG9UymIXvlp0a5abSgVt9w4ovctpjBG9010fUaueWq1wzWPKQej+ya6Pj3zq9Sxnig1T8lcGG0xsm+ia+Oap29MHuudnrhcrgHn9NwvvVT4SWZz70JIBXAyfXojcm5qwltjMRULb43FMAzDMAzDMAzDMAzDiARvjVX+1ljhm26C6403gOPv8pk2DfjjH4sLEoth7+HDGH3BBae8lLfGKu9a3hqLYRiGYRiGYRiGYRiGYRiGYQZB15NPAp9/DvziF0DfSfZ584oP8i//ghHf+hZ+CEBSNj2mQuGFEKbiWbBgAbxer95pqEIoFMKiRYsQCoX0TqUgeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xeax3euL1ek8+p1dbC/zkJ0BbG/Dmm71bYk2dWlzwcBhYsQL2zz5DHYCDAJ4HcLVCuRfDKfXpiMi5qQkvhDAVT319PWKxmN5pqEJ1dTWmT5+O6upqvVMpiF75adGuWm0oFbfcOKL3LaYwRvdNdH1GrnlqtcM1jykHo/smuj4986vUsZ4oNU/JXBhtMbJvomvjmqdvTB7rnZ7EYrHi5vTMZuBb3wJ+9zvAYiku+B/+APQ5M8YJ4E4AHwCYVmrCg6RofTogcm5qwmeEMBULnxHCMAzDMAzDMAzDMAzDiASfEVL+GSFl5/6VrwB///sJvz4CYCSAtNLtgc8IKQSfEcIwCmPkVX/RV2j1yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWO/0RLU7ebZuLbgIAgDLceIiiFqIfKeSyLmpCS+EMAzDMAzDMAzDMAzDMAzDMJXP5s2922kV4BmNU2HEgrfGYioW3hqLYRiGYRiGYRiGYRiGEQneGkuArbH27weeew6ZZ56BtaMDAPA2gH8qtr2WFmDWLODee4E77gA8nlM2yVtjnQhvjcUwCjN27FjYbDa901CFdDqNXbt2IZ3W6sa9waFXflq0q1YbSsUtN47ofYspjNF9E12fkWueWu1wzWPKwei+ia5Pz/wqdawnSs1TMhdGW4zsm+jauObpG5PHeqcnNptNvTm9884DHn4Y7e+/j/8D4A0Aiwfz/GeeARoagPnzgREjgO9/v3fLrUGgqr4yETk3NeGFEEYVOjo68OKLL8Ln8+HrX/86XC4XTCaTKivRRt7TTvR9Lo28Xz6fEcKIiNF9E12fkWueWu1wzWPKwei+ia6P98vXLyafEXL6YmTfRNfGNU/fmDzWOz3R5JwKqxXrANwI4NVinxOPA88//78/R6PAs88CV14J3H130U2LfA6HyLmpCW+NxajCk08+iQcffPCE359//vnYu3evIm3w1lgMwzAMwzAMwzAMwzCMSPDWWAJsjTXIfPq19/vfA3feWfjCpUuBOXPKamvAdouMwVtjlY5Vs5aY0wqPx4PrrrsOV1xxBb7yla/g4MGD8Pl8eqfFMAzDMAzDMAzDMAzDMAxTmGcGOFLd6wVmztQ2F0ZReGssRhXmzp2Lt99+G4sWLcItt9yCc845R7W2Fi5cCEmSVIuvJ8FgEA8//DCCwaDeqRREr/y0aFetNpSKW24c0fsWUxij+ya6PiPXPLXa4ZrHlIPRfRNdn575VepYT5Sap2QujLYY2TfRtXHN0zcmj/VOTyRJEm9Ob98+4IMPCj/2ve8Bg9hKSkh9xxA5NzXhrbEYTVi9ejVuueUWVbbGGjVqFNrb29HY2Gi4rbEymQza29sxcuRIWK3i3cClV35atKtWG0rFLTeO6H2LKYzRfRNdn5FrnlrtcM1jysHovomuT8/8KnWsJ0rNUzIXRluM7Jvo2rjm6RvTaGM93hqruO2hrFYrRo4cifb2dmQymX6P6bo11p49wO9+17sN1pEj/3vRjh1Any36T9bWrwA0W634YORI7Cmgr2C7RearxNZYJ3vtj7+2mLi8NRbTj2w2i507d+Ljjz/G1q1b8fHHH2P79u1Ip9MAgEmTJmHjxo0lxU6lUnj55Zfxhz/8ATt37sThw4dxxhlnYPTo0fjud7+L2bNnY9iwYQqqEQulFlZExGq1av6hNRj0yk+LdtVqQ6m45cYRvW8xhTG6b6LrM3LNU6sdrnlMORjdN9H16ZlfpY71RKl5SubCaIuRfRNdG9c8fWPyWO/0JJPJiDmnd8EFwP/8D/Dww8BrrwFLlgCJxEkXQfoyCsC/ADBnMgju3YvfA3gGQJN6GQ8aYV97leGtsTSgvr4eHo8Hl19+Oe655x48/fTT+OSTT+RFkHLYtWsXvvrVr+LOO+/En/70J+zfvx/JZBIdHR3YvHkzfvzjH+OSSy7B+vXrFVAiJrfddhtqamr0TkMVotEoVq5ciWg0qncqBdErPy3aVasNpeKWG0f0vsUUxui+ia7PyDVPrXa45jHlYHTfRNenZ36VOtYTpeYpmQujLUb2TXRtXPP0jcljvdOTmpoasef07HbglluAt9/u/SqS76N3wj1aU4M3b7sNc2tqsAPABwAkdTIdNMK/9irBd4RoQDAYRCwWUzxue3s7rrvuOhw8eBAAYDKZcM0112DMmDHo7OzE22+/jXg8jiNHjmD69Ol48803ce211yqeh94Eg0Hkcjm901AFs9kMSZJgNou5ZqlXflq0q1YbSsUtN47ofYspjNF9E12fkWueWu1wzWPKwei+ia5Pz/wqdawnSs1TMhdGW4zsm+jauObpG5PHeqcnuVyucub0HI6iLrMCmHvse3MuBykYhPmYvhoAQTVyK4GKeu0VhM8I0YDly5djzpw5OOuss3DllVfKX3/+859RV1cHoLStsa655hq8//77AIDzzz8fr732Gi6//HL58a6uLtx222145513AABDhgxBW1ubLgfhqHlGSB6t95VjGIZhGIZhGIZhGIZhmL7wGSHFnRFyMnQ9I6SMtn40ejTWDPD4/QAWn6Jdrc4IUfraSjkjhJdKNWDq1KnYt28fOjo6sG7dOvz0pz/Ft7/97bIWJNavXy8vgtjtdqxbt67fIggADBs2DK+99houuOACAMDRo0fxyCOPFIy3YMECmEymkr4GOvBHK8aPHw+73a5rDmqRSqXQ2NiIVCqldyoF0Ss/LdpVqw2l4pYbR/S+xRTG6L6Jrs/INU+tdrjmMeVgdN9E16dnfpU61hOl5imZC6MtRvZNdG1c8/SNyWO90xO73W64Ob15fb5P2e1oHD8eKbsdUQAr9EqqAEZ87YuBF0I0oLa2Fuedd56iMZ966in5+7vuuguXXXZZwetqamrw85//XP55yZIlBRcuampqMHTo0JK+TCaTotoGy+TJk+Eo8ha1SiORSGDjxo1IJBJ6p1IQvfLTol212lAqbrlxRO9bTGGM7pvo+oxc89Rqh2seUw5G9010fXrmV6ljPVFqnpK5MNpiZN9E18Y1T9+YPNY7PXE4HIab0/shgMcBdANIOBzYOHkyEg4H/gCgp8gY/wDgdgBqLlEY8bUvBt4aS0cWLlyIhx9+GMDgtsaKRCIYNmwYkskkAODDDz/EVVddNeD1iUQCw4cPRyQSAQC88847mp8VwltjMQzDMAzDMAzDMAzDMEaHt8Y6fbfGyrdVBWAGeu8Q+QaAKwFsLaLdvXv34u+jR+O7ALoALAfwDIDPTvEc3hqrOPiOkArkww8/lBdBampqcOWVV570eofD0W+h5N1331U1P61xOBy635WiFkSERCIBUdcr9cpPi3bVakOpuOXGEb1vMYUxum+i6zNyzVOrHa55TDkY3TfR9emZX6WO9USpeUrmwmiLkX0TXRvXPH1j8ljv9MRkMhl2Ti8J4CWTCVMcDnzRZCq4CFIIy+HD+D/Hvh8G4F8BfArgXQBXK5ifkV/7k8ELIRVIS0uL/P1ll10Gq9V6yud8+ctfLvh8I7BgwQJ4vV6901CFUCiEX/7ylwiFQnqnUhC98tOiXbXaUCpuuXFE71tMYYzum+j6jFzz1GqHax5TDkb3TXR9euZXqWM9UWqekrkw2mJk30TXxjVP35g81js98Xq9hp7Ty+vrGoQ+16pVKDTL+00ou1WW0V/7geCtsXSk1K2x7r//fixevBgAMHPmTKxcufKUz/ntb3+LH/zgBwCAcePGYefOnaUlXSJqbo1VW1uLzs5ObNu2zXBbY2WzWXR2dmL48OGwWCx6p3MCeuWnRbtqtaFU3HLjiN63mMIY3TfR9Rm55qnVDtc8phyM7pvo+vTMr1LHeqLUPCVzYbTFyL6Jro1rnr4xjTbW462xitsay2KxYPjw4ejs7EQ2m+33WKVvjQWcXF/BdrNZZM47D9aDB0+4bjeAsQPkWsrWWKfKzahbY536VgJGOLq7u+XvzzrrrKKeU1tbK39/9OhRxXM6ns8//xwTJkyQf06lUvLvhw0bJv/+9ttvx69//euS2shvD9bR0QEAaG1tLTVd4enruYjolZ8W7arVhlJxy40jet9iCmN030TXZ+Sap1Y7XPOYcjC6b6Lr0zO/Sh3riVLzlIrBaI+RfRNdG9c8fWMaZax34MCBoq779NNPEY1GVWujnPilUqx2oHcBKz+ndzxK5a6FFwO1dTJ9Bdt97z2gwCIIADwy0HMKtHuytorNre+1xcQd6LU7VW75uV3NIEY3fvaznxEAAkCTJk0q+nnXX3+9/LyHHnqoqOesX79efo7L5Sox4+Lx+/1yeyf7uuuuu0puo76+ngDQ3Llz6cwzzyQAZLFYSJIkMplMBIA8Hg/Z7XYCQE6nk2pqaggAWa1WkiRJzsPr9ZLNZiMAVF1dTdXV1QSAbDYbeb1e+TpJkshqtRIAqqmpIafTSQDIbreTx+MhAGQymUiSJLJYLPLr7XA4CABVVVWR2+0mAGQ2m0mSJDKbzQSA3G43VVVVEQByOBzkcrnI5XLR7NmzacSIEUJqcrlcNGfOHDrrrLOK1qSETy6Xi+bOnUvDhw9XzaezzjqLZs+eTW63W1FNXq+X7rnnHvl5pfo0bNgwmj17Np1xxhkl9b0RI0bQ7NmzyeVyqeaTaO8nI2gaMmQIzZ49m4YOHWoYTX19OvPMM2n27Nnk8XiE1DR06FCaPXs2DRkyRNO+J0kSzZ49m4YPH66qT2rUvfznxIgRI8ry6cwzz6S5c+eSy+Uqqe+53W665557+v1sxBphNE1nnXUWzZkzp9+4o9I19fVp6NChdPfdd5PL5RJSU9/3ndZ9T4u6N2TIEPn1V0pT/nMsr6FUn/Jj3WHDhpXc97juVaYmI9e9fL8W9W93l8tFd999Nw0dOlTzvnf22WfLvlfS3+7Dhg2TPyfK9ancutd37sTINcJomvLvuyFDhhhGU6XUPY/HQ7Nnz6YzzzxTl76X/6qvr1duMroIeGssHSl1a6zrrrtOPvD8P/7jP/Dzn//8lM959913cd111wHovTUrk8mUlrRAvPbaa5g+fbreaTAMwzAMwzAMwzAMwzAMwzCDoL6+HjfddJNm7fFh6RWIw+GQv89vOXUq+t5q5HQ6Fc+JYRiGYRiGYRiGYRiGYRiGYUSEzwipQFwul/x9PB4v6jl9r+v7/Epm0qRJqK+vl38+99xzUVVVpV9CDMMwDMMwDMMwDMMwDMMwzAkkk0l8/vnn8s+TJk3StH1eCKlAhg4dKn9/+PDhop7T9wCcIUOGKJ6THkiSpOntUwzDMAzDMAzDMAzDMAzDMExpfPnLX9atbd4aqwK56KKL5O/37dtX1HP2798vfz927FjFc2IYhmEYhmEYhmEYhmEYhmEYEeGFkArk4osvlr/fsWNHUQef//3vfy/4fIZhGIZhGIZhGIZhGIZhGIYxMrwQUoFcffXV8lkY0WgUW7duPen1yWQSW7ZskX++9tprVc2PYRiGYRiGYRiGYRiGYRiGYUSBF0IqEJfLheuuu07+efny5Se9/tVXX0U4HAbQez7INddco2Z6DMMwDMMwDMMwDMMwDMMwDCMMvBBSodx///3y98uXL8fOnTsLXheLxfDTn/5U/vnee++F1WpVPT+GYRiGYRiGYRiGYRiGYRiGEQFeCKlQbrjhBnzjG98A0Lv11Y033ojt27f3u6a7uxvTp09Ha2srgN67QR566CHNc2UYhmEYhmEYhmEYhmEYhmEYvTAREemdxOnA9ddfj4MHD/b7XUdHBw4fPgwAqKmpwRe+8IUTnrd+/XqMGDGiYMz29nb8wz/8Aw4dOgQAMJlMmDRpEsaMGYPOzk68/fbbiMViAACr1Yo333yz35ZaDMMwDMMwDMMwDMMwDMMwDGN0eCFEI0aNGoV9+/YN+nl+vx+jRo0a8PFdu3bh9ttvR2Nj44DXDB8+HMuWLcMNN9ww6PYZhmH0pKOjA2+//Ta2bt2KrVu3orGxEdFoFOeffz727t2rd3oMwzCDYvPmzXj00Ufx17/+FaFQCGeffTa+/e1v49///d9xzjnn6J0ewzCMIvD4jWGY043t27ejvr4e7733HpqamtDd3Y2amhpcfPHFuPnmm3H//fejurpa7zQZ5rSHF0I0Qq2FEABIpVJYuXIl/vCHP2Dnzp04fPgwJEnCBRdcgO9+97uYM2cOhg0bVmLmDMMw+vHkk0/iwQcfPOH3/Ic0wzCVxrPPPot58+Yhl8uhtrYW55xzDj799FOEw2GcccYZ+Mtf/oLLL79c7zQZhmHKhsdvDMOcTrS1tfXb4WXEiBEYMWIEDh06hAMHDgAALrzwQrz11ls477zz9EqTYRgAfGq2Rqg54LPb7bjzzjtx5513qtYGwzCMHng8Hlx33XW44oor8JWvfAUHDx6Ez+fTOy2GYZhBsWPHDtx3333I5XJ47LHH4PP5YDabEYlEcPfdd2PVqlX4zne+g5aWFlRVVemdLsMwTFnw+I1hmNMJIsLw4cPxgx/8AN/73vdwwQUXyI998MEHmDVrFj799FPMnDkTmzdv1jFThmH4jhCGYRimYli9ejVuueUW/h+FDMNUFDNmzMCaNWtw66234uWXX+73WDwex9ixY7F//34sXrwY9913n05ZMgzDqAOP3xiGMTKJRALZbBY1NTUFH//ggw/w9a9/HQDQ2NjIdwAzjI6Y9U6AYRiGYRiGYYxKNBrFG2+8AQD4wQ9+cMLjTqcTc+bMAQCsXLlS09wYhmEYhmGY8nA4HAMuggDA1772NXi9XgC95/wyDKMfvBDCMAxTQWSzWWzfvh3PPfcc5s+fjyuuuAJ2ux0mkwkmkwmTJ08uOXYqlcLvf/97XH/99Tj//PPhcDhw9tln4+qrr8ajjz6Krq4u5YQwDMMoiMi1saGhAYlEAna7HRMnTix4TT6/jz76CLlcruRcGYY5PRC55jEMw6hBJde9TCaDdDoNAHxgOsPoDJ8RwjAMUyHU19dj1qxZiMViisfetWsXbr/9djQ2Nvb7fUdHBzo6OrB582b86le/wrJly3D99dcr3j7DMEypiF4bP/30UwDAeeedB7vdXvCa/AGbiUQC+/btw+jRo5UTwTCMoRC95jEMwyhNpde9+vp6xGIxWK1WXHXVVQpkzTBMqfAdIQzDMBVCMBhUZfDX3t6O6667Th78mUwmTJo0CXPnzsW0adPgdDoBAEeOHMH06dPx7rvvKp4DwzBMqYheG48ePQoAGDp06IBtDRkyRP4+EAgopIBhGCMies1jGIZRmkque4FAAD/60Y8AAN///vcxbNgwxfJnGGbw8B0hDMMwFcZZZ52FK6+8Uv7685//jLq6upLj3XHHHTh48CAA4Pzzz8drr73W7wC3rq4u3HbbbXjnnXeQTqdxyy23oK2tDZIklSuFYRhGMUStjfF4HAAGvBsE6N1bOo8af+gzDGM8RK15DMMwalFpdS+dTuPWW2/F/v37ccEFF2DRokUl58owjDLwQgjDMEyFMHXqVOzbtw/nnXdev99/9NFHJcdcv3493n//fQC9k3Tr1q3DZZdd1u+aYcOG4bXXXsOXvvQl7NmzB0ePHsUjjzyCX/ziFyfEW7BgAX75y1+WlEs6nYbVyh9LDMMMDtFrY/5/E6ZSqQHbSyQS8ve8dzTDMCdD9JrHMAyjNJVY93K5HO688068/fbbGD58ON544w14PJ6S82UYRhl4ayyGYZgKoba29oTBX7k89dRT8vd33XXXCYO/PDU1Nfj5z38u/7xkyRJkMpmC1w0dOrSkL5PJpKg2hmFOD0SvjWeccQYAoLu7e8D28ttn9b2eYRimEKLXPIZhGKWptLpHRLj77ruxcuVKDBkyBG+99RbGjh2rTOIMw5QFL4QwDMOcpkQiEbzzzjvyz3PmzDnp9TfffDNcLheA3km7995774Rr/uM//gNdXV0lfVksFmUFMgzDlIDStfGiiy4CAOzfv3/Au0I+++wzAL1bZJ1//vkl584wDDNY1BgPMgzDiIyadY+IcO+992L58uXweDz485//3G+7LYZh9IUXQhiGYU5TPvzwQySTSQC9/9PlyiuvPOn1DocDV111lfwzH5LJMIwRUbo2TpgwAQ6HA6lUClu2bCkYY9OmTQCAf/iHf4DZzMNzhmG0g8eDDMOcbqhZ937wgx/g2Wefhcvlwp/+9CdcccUVyiTNMIwi8F9aDMMwpyktLS3y95dddllR53N8+ctfLvh8hmEYo6B0baypqcH1118PoP82DHni8TiWLVsGAJg5c2ZJOTMMw5QKjwcZhjndUKvu/fCHP8TixYtRXV2N119/HVdffXX5yTIMoyi8EMIwDHOasnv3bvn7Yrdi6bs3665duxTPiWEYRm/UqI0//elPYbFYsGrVKjz++OPI5XIAerdmmD17Nvbv34/zzz8fd999d5nZMwzDDA4eDzIMc7qhRt37t3/7N/z617+Gw+HAH//4R0yaNKn8RBmGUZxTL3syDMMwhqTvwb1nnXVWUc+pra2Vv+97uK9afP7555gwYYL8c35//c8//xzDhg2Tf3/77bfj17/+ter5MAxjfNSojZdffjmeeuop3H///fjRj36EX/3qVzjnnHPw6aefIhwOQ5IkrF27FlVVVeULYBiGGQRq1DwevzEMIzJK173NmzfjV7/6FQDA4/HgZz/7GX72s58VjDN37lzMnTt3sCkzDKMQvBDCMAxzmhKJROTvnU5nUc/pe13f56tFNpvtN1DNk8vl+v0+HA6rngvDMKcHatXGefPm4bLLLsOvfvUrfPDBB9ixYwdqa///7d15dI1nAsfx35VE7ERsoUgYhjmWkortmEa0h8FE2jOotnaijKWG0xI9trGXHh3LVGqJTtU2ltJhGBOxRAW1BEMNTWIXElsSQZI7f+TknRtZ7o3cCPd+P+fknOe993mf93mveA7v7z7PU0MffPCBJk2apNdee61wHQeA51AUYx7/fgPwMrP3uJe134gkxcfHKz4+Ps923nrrLVu7CaAIEIQAgJNKTU01yiVLlrTpHMtvKz969MjufXqWt7e3zGZzkV8HALIU5djYrl07bdmy5fk7BwB2VhRjHv9+A/Ays/e45+/vz5gHvCLYIwQAnFSpUqWMctaSBdZYftvF1m/PAMCrhLERgDNhzAPgbBj3AOdFEAIATqpcuXJG2dbZHZb1LM8HAEfB2AjAmTDmAXA2jHuA8yIIAQAn5enpaZRv3bpl0zk3b940ypUrV7Z7nwCguDE2AnAmjHkAnA3jHuC8CEIAwEn9+te/NspxcXE2nXP58mWj3KhRI7v3CQCKG2MjAGfCmAfA2TDuAc6LIAQAnFTjxo2N8unTp5WWlmb1nOPHj+d6PgA4CsZGAM6EMQ+As2HcA5wXQQgAOKl27drJ3d1dkpScnKxjx47lW//x48c6fPiwcRwQEFCk/QOA4sDYCMCZMOYBcDaMe4DzIggBACdVrlw5derUyTgOCwvLt/7mzZv18OFDSZnrov72t78tyu4BQLFgbATgTBjzADgbxj3AeRGEAIATGzFihFEOCwvT2bNnc62XkpKiyZMnG8fBwcFydXUt8v4BQHFgbATgTBjzADgbxj3AORGEAIAT69atmzp06CApc8pv9+7dFR0dna1OQkKCgoKCdPHiRUmZ34L59NNPX3hfAeBFYWwE4EwY8wA4G8Y9wDmZzGazubg7AQCwTdeuXXX9+vVsr928eVO3bt2SJJUtW1a/+tWvcpy3Y8cO1axZM9c2r169Kj8/P924cUOSZDKZ9Oabb6p+/fq6ffu29uzZo5SUFEmSq6ur/vnPf2abSgwAxY2xEYAzYcwD4GwY9wDYA0EIALxCvL29FRcXV+DzYmJi5O3tnef758+fV58+fXTy5Mk861StWlWrVq1St27dCnx9AChKjI0AnAljHgBnw7gHwB5Y2A4AoEaNGikqKkrr1q3T2rVrdfbsWd26dUuVKlVSvXr19O6772rgwIGqUqVKcXcVAF4YxkYAzoQxD4CzYdwDnAszQgAAAAAAAAAAgMNis3QAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAwEtn4cKFMplMKlGihI4dO1bc3SmUCRMmyGQyqVSpUrp06VJxdwcAAMDpEIQAAAAArxB/f3+ZTKYC/0RERBR31wGb3bp1S1OmTJEk9e7dW2+88Uau9QYMGGD8jg8YMKBA1wgLCzPO9fb2LmSP8zdhwgR5eHjo8ePHGjt2bJFeCwAAADkRhAAAAAAAXirTpk3TgwcPZDKZNHny5OLuTqFVqlRJo0aNkiRt375d+/btK+YeAQAAOBfX4u4AAAAAgOfTqlUr+fn52VS3Vq1aRdwbwD5iY2O1fPlySVKPHj3UuHHjYu6RfYwePVrz589XSkqKJk2apIMHDxZ3lwAAAJwGQQgAAADwiurataumTp1a3N0A7GrBggV6+vSpJOmPf/xjMffGfjw9PdWzZ0+tXr1akZGRioyMVPv27Yu7WwAAAE6BpbEAAAAAAC+F+/fva9WqVZIkHx8fderUqZh7ZF9DhgwxygsXLiy+jgAAADgZghAAAAAAwEth/fr1Sk5OliT17NlTJpOpmHtkX+3bt1fNmjUlSd9//70SEhKKuUcAAADOgSAEAAAAcCKxsbEymUwymUzy9vY2Xj948KCGDBmiRo0aqWLFijKZTPr4449zbePKlSv685//rA4dOqhmzZpyd3dX5cqV1aJFC40fP14XLlwoUJ+OHz+uoUOHql69eipdurSqVq0qPz8/zZs3T4mJiZKksLAwo98DBgzItZ2pU6cadWxZMiwiIsKo7+/vb1Nfz507p5CQEPn5+al69eoqWbKkqlatqtatW2vy5Mm6fv261Tb8/f2N60ZEREiSEhMTNXfuXLVq1UpVqlRR6dKlVa9ePQ0ePFhnzpyxqW+Wdu7cqWHDhqlJkyby9PSUm5ubKlWqpJYtW2rYsGHatm2b0tLSjPrx8fEqWbKkTCaTXFxcdO3aNZuuYzab5ePjY9zPtm3bCtxXS2vWrDHKQUFBhWqrsCz/rhT0JzY2Ntc2TSaTcV9Pnz7Vhg0bXtwNAQAAODH2CAEAAACc2JMnTzR69GgtW7bMat2MjAxNnTpVn3/+uVJTU3O0c/fuXZ08eVJffvmlPvnkE82YMcPqN/o/++wzzZkzR+np6cZrqampunPnjo4ePapFixZp48aNz3dzdvT48WONGTNGy5cvz9ZXSbpz547u3LmjI0eOaP78+Zo3b55Gjhxpc9uRkZHq3bt3jvAhJiZGMTExWr16tf76179q6NChVts6e/asBgwYoGPHjuV47/79+zpx4oROnDih0NBQ9e7dW+vWrZMkVatWTYGBgdq0aZMyMjIUFhamSZMmWb3ev//9b+Ohv5eXl7p162bDHefu7t27ioyMlCSVL19erVq1eu62XmYBAQFaunSpJOmHH37Q8OHDi7lHAAAAjo8gBAAAAHBiY8eONUKQpk2bqnnz5nJzc9OFCxdUosT/J5Cnp6erd+/e2rRpk/FarVq15Ofnp6pVqyopKUlRUVG6dOmS0tLSNGvWLN2+fVuhoaF5XjskJESzZ882jsuUKaOAgAB5eXnp5s2bCg8P19WrV9W1a9c8Z6e8CMnJyercubPxkF6S6tevL19fX3l4eCgxMVGRkZG6fv26Hj16pFGjRunBgwcKCQmx2vaZM2c0ceJEJSUlqVq1aurQoYM8PT117do1hYeH69GjR0pPT9dHH32kpk2bqk2bNnm2FRERocDAQD18+NB4rU6dOvLz81PlypWVnJysn3/+WadOndLTp09zhFnBwcHGn+/KlSsVEhJiNchasWKFUR4wYIBcXFys3nNewsPDjZCpTZs2cnUt3v+uVqhQwebN2qOjo3XgwAHjOL/PrUOHDkY5IiJCaWlpxX6vAAAAjo5/bQEAAABO6urVq1q6dKlq166tNWvWZHtAK2XOgsgybdo04yF5jRo1tGTJEr3zzjs5Hvhu3LhRQ4cO1f379/X111/rrbfeUq9evXJce//+/ZozZ45x/Ic//EGhoaHy8PAwXrt//74++ugjrVu3TjNnzrTLPT+PESNGGCFIw4YNtWzZshxLaaWnpys0NFRjx47V48ePNXnyZHXs2FFt27bNt+3x48crLS1NCxYs0OjRo7M9EL9y5Yq6du2qM2fOKCMjQyEhIQoPD8+1nStXrqhnz55GCOLj46OlS5eqS5cuOerevXtXGzZs0MWLF7O9/vbbb8vHx0cxMTH65ZdfFBERoY4dO+bZ98TERG3ZskVS5oP/wYMH53uv1kRFRRnlZs2aFaote6hcubIWL15std6VK1fk5+dnHPfp00d169bNs361atXk5eWlGzduKCUlRWfOnNHrr79ujy4DAAAgDwQhAAAAwCtqx44dunPnjtV6EydOVK1atXK8np6erjJlymjPnj1q2LBhjvfd3d0lZe6VMGvWLEmZD4cPHjyo+vXr53qtnj17qkqVKgoICJCUuW9HbpteT5w4UWazWZLUqVMnrVu3LsdsgooVK2rNmjVKTEzU7t27rd5nUThw4IC++eYbSZmzQCIjI1WlSpUc9VxcXDR8+HCVLl1aAwcOVHp6uqZPn66dO3fm2/7jx4+1bNkyBQcH53ivdu3aWrt2rZo1ayaz2ayIiAjduHFDXl5eOepOnDjR+F2oW7eufvzxR1WvXj3Xa3p4eGjYsGE5XjeZTBoyZIixJNaKFSvyDULWrFljhGX+/v55/k7YKjo62ig3atSowOdHRUUVaEmy8+fPF/gaz0pOTlZgYKBu3rwpSWrdurVWrlxp9bzGjRvrxo0bkqRTp04RhAAAABQxghAAAADgFXX06FEdPXrUar0hQ4bkGoRI0siRI3MNQSx9+eWXxpJFkydPtvrAu2PHjurcubN27dqlc+fO6cSJE2rZsqXx/rlz53To0CHj+C9/+UueSyqVKFFCixYtUqNGjYzg5EX64osvjPKCBQtyDUEsDRgwQHPnztX58+e1a9cuJSQkyNPTM8/6TZs2zTUEydKkSRO1atVKR44ckdls1rFjx/T73/8+W51r165p/fr1xvFXX32VZwhizcCBAzVlyhSlpaVp06ZNWrx4sSpVqpRrXctlsYYMGfJc17MUExNjlF977bUCn3/+/Hm7hBu2MpvN6tu3r06ePCkpM7jaunWrSpUqZfVcy7+PeW2sDgAAAPspYb0KAAAAAEf13nvvWa2zY8cOo/z+++/b1G7WjBBJOnjwYLb39u7da5R9fX31m9/8Jt+2GjZsmO/eGEUlLS1N//rXvyRl7hfRvXt3m87LmkVhNpuz7SuSm549e1ptr0WLFkY5t4fme/bsUVpamiSpQYMGuS6HZSsvLy/jPlNTU/Xdd9/lWu+nn37SqVOnJGXOMHn33Xef+5pZbt26ZZTzC49eFpMmTTKWBitbtqy2bdumGjVq2HSuZaCWNZsEAAAARYcZIQAAAMArasqUKZo6depzn+/m5qamTZvmWychIUEXLlyQJJUsWVLTpk2zqe3//Oc/RvnKlSvZ3jtx4oRRtraHhmW9H3/80aa69hIdHa3k5GRJmZ/VmDFjbDrPcpbOs/f+LGufv5Q9FHjw4EGO9w8fPmyUn9275HkEBwdr69atkjJnfYwYMSJHHcvZIB9++KFNsyCsyfqsJalMmTIFPr9///4KCwuzuX5YWJgGDhxY4OtI0rfffqvZs2dLylxS7Ntvvy3Q8laW92d53wAAACgaBCEAAACAk/Lw8Mi2OXdusvYxkKQnT55oyZIlBb7O3bt3sx3fvn3bKNepU8emNmytZ0/Xr183ygkJCXa592dVrFjRahtubm5G+enTpznet5xJUa9evQL0LnedO3dW3bp1FRcXp+PHj+vkyZPZHvI/evQo20wReyyL9aziWAbNVocPH852z7NmzVJQUFCB2niZ7w8AAMARsTQWAAAA4KRKly5ttc79+/cLfZ2sZZuyJCUlGWVbv/lftmzZQvejoIri3p/17Cbyz+Phw4dGuVy5coVur0SJEho8eLBxbDn7Q5I2bdpkfDatWrVSs2bNCn1NKfuf8aNHj+zSpr1dvnxZQUFBxibx/fr104QJEwrcjuX9FcfvNgAAgLMhCAEAAACQJ8uHtBUqVJDZbC7wz7PLFVk+rE9JSbGpH0WxfFBGRka+71vee7NmzZ7r3guzdJmtypcvb5QtQ6bCGDRokLGB/Zo1a5Sammq8Z+9N0rNY7q9x584du7VrL8nJyQoMDDRm4LRv316hoaHP1ZblrChb9xUBAADA8yMIAQAAAJCn6tWrG+UHDx7YHFzkp2rVqkb58uXLNp1jba8NKfsSUtZmYkjWZ3xY3vvLvKG1ZT9jYmLs0matWrXUtWtXSZnLe2VtCn7p0iXt27dPUmZQ1KdPH7tcT5J8fHyM8tWrV+3Wrj2YzWZ9+OGHxgbxdevW1ebNm+Xu7v5c7V27ds0oe3t726OLAAAAyAdBCAAAAIA8eXl5qXbt2sbxoUOHCt1mixYtjLLlRt/5sWWj9AoVKhjlhIQEq/VPnz6d7/uvv/668aA7Pj5eFy9etNpmcWjTpo1R3rt3r93aDQ4ONspZs0BWrlxp7G/Rs2fPbLNRCstyia2ff/7Zbu3aQ0hIiLGBfPny5bV9+3ZVq1btuds7d+6cUW7evHlhuwcAAAArCEIAAAAA5Kt79+5GeenSpYVur2PHjkb52LFjOn/+fL71L168aFMQYvnN+pMnT1qtv2HDhnzfL126tAICAoxje9x7UXj77beNTe//+9//ateuXXZp93e/+50RgoWHh+vixYvZljmz9ybpfn5+Rjlr5sXL4G9/+5vmzJkjKXP/lLVr16pp06bP3V58fLwxw6hMmTJq0qSJXfoJAACAvBGEAAAAAMjXuHHjjP0itmzZkmPPj/zktqRU48aN1a5dO+N4zJgxee7XkZGRodGjRxuzEPLTqlUrY/PxqKiobN+6f9bSpUt19uxZq21++umnRnnRokXas2eP1XOyvKjltGrWrKnevXsbx8OGDTP2sSgMFxcXDRo0SNL/l4a6fv26pMw/w/bt2xf6GpYCAgKM37OoqCibljcraocOHdLQoUON43nz5qlbt26FavPAgQNG2d/f3wixAAAAUHQIQgAAAADkq379+vrss8+M40GDBmn8+PF5bmidlpam3bt3q2/fvtmWwbI0c+ZMI7TYvXu33n//fd27dy9bnQcPHqhv377auXOnSpYsabWfNWrUMGZwmM1m9enTJ8deE2lpaVqwYIFGjx5t0/4Ob775pvr372+c261bN82ePTvPTclTU1O1detW9ejRQ4GBgVbbt5fZs2ercuXKkqS4uDi1bds2z5kh9+7dU2hoqD755BOr7Q4ePFglSmT+tzEqKirb6/bm4eFhhCsPHz7U0aNH7X6Ngrh8+bLeeecdPX78WFLm7/24ceMK3W54eLhRtpxtBQAAgKLDV08AAAAAWDVlyhTFxsZq9erVMpvNWrBggRYtWqQ33nhD9evXV5kyZfTgwQPFxsYqOjpaycnJkiRPT89c2/P399f48eP1+eefS5LWr1+vH374QQEBAapRo4Zu3bql8PBwJSUlycPDQ2PGjNHUqVOt9nPmzJnau3evMjIydOrUKTVs2FABAQGqVauWEhMTtX//fsXHx6tcuXKaPXu2Ro0aZbXNZcuW6caNG9q9e7eePHmikJAQzZgxQ61bt1adOnXk7u6ue/fu6dKlSzpz5ozx4NzX19fGT7fwateurQ0bNigoKEhJSUmKiYlRly5dVLduXfn5+aly5cpKSkrShQsXdPLkST19+lQ9evSwqd0uXbpox44dxmslS5ZUv379iuQ+PvjgA+3fv1+StHXrVrVt27ZIrmOLVatWKT4+XlLm7BhXV1eNHDnSpnOnT59uBFOWzGazvv/+e0mSm5ubevXqZb8OAwAAIE8EIQAAAACsMplMCgsLk6+vr6ZMmaK7d+/qyZMnOnToUJ4bqJtMpnyXT5o3b55cXFw0b948ZWRkKDk5Wdu3b89Wp2bNmvr73/9u8+bZrVu31tdff63g4GClp6fr0aNH+sc//pGtjpeXl9avX6/09HSb2nR3d9eOHTs0bdo0LViwQCkpKUpJScl3Y3I3N7dsm5i/CJ06ddLBgwfVv39/Y4+NuLg4xcXF5Vq/XLlyNrUbHBycLQgJDAxU1apVC9/hXPTu3Vt/+tOflJycrI0bN2rOnDnGzKEXzXI5tvT0dIWGhtp87vjx43MNQg4dOqRr165Jyvwc8woKAQAAYF8sjQUAAADAZqNGjVJcXJyWLFmioKAg+fj4qFy5cnJ1dZWHh4eaNm2q9957T1999ZXi4uKMb7/nZfbs2Tpy5IgGDRokb29vubu7y9PTU76+vpo5c6ZOnTpV4FkBgwYNUnR0tAYPHiwfHx+VKlVKlSpVUosWLTRjxgxFR0erQ4cOBWrTxcVF06dPV2xsrObPn68uXbqoTp06KlOmjNzc3OTp6amWLVuqf//+CgsL07Vr17R48eICXcMemjdvrhMnTmjz5s3q16+fGjRooAoVKsjFxUUeHh7y9fXV8OHDtWPHDn3zzTc2tdm1a9dsy4jZe5N0SxUrVtTAgQMlSTExMQXak+VVsHz5cqP88ccfF19HAAAAnIzJbMuugwAAAABQjMLCwowH5FlhA16Mffv2yd/fX5JUt25d/fLLL8a+IUUhNjZWDRs2NJbv2rp1a5Fd60VKSEhQnTp1lJKSonbt2ikyMrK4uwQAAOA0mBECAAAAAMjTihUrjPKgQYOKNASRJG9vb2PWybZt23Tu3Lkivd6LsmjRIqWkpEjK3MsGAAAALw5BCAAAAAAgVzdv3tTGjRslSa6urkW6LJalKVOmqEKFCjKbzZo+ffoLuWZRunfvnhYtWiRJ6t69uzHDBgAAAC8GQQgAAAAAIIf09HSNGTNGqampkqRevXqpZs2aL+Ta1atX17Rp0yRJ69ev108//fRCrltU5s6dq8TERLm7u2vhwoXF3R0AAACnwx4hAAAAAF567BHyYnz33Xc6cuSIkpKSdODAAV24cEGS5O7urtOnT6tBgwbF3EMAAACg4FyLuwMAAAAAgJfD7t27tXr16hyvf/HFF4QgAAAAeGURhAAAAAAAcihfvrx8fX01btw4de/evbi7AwAAADw3lsYCAAAAAAAAAAAOi83SAQAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMMiCAEAAAAAAAAAAA6LIAQAAAAAAAAAADgsghAAAAAAAAAAAOCwCEIAAAAAAAAAAIDDIggBAAAAAAAAAAAOiyAEAAAAAAAAAAA4LIIQAAAAAAAAAADgsAhCAAAAAAAAAACAwyIIAQAAAAAAAAAADosgBAAAAAAAAAAAOCyCEAAAAAAAAAAA4LAIQgAAAAAAAAAAgMP6H9yIkt7R/ROaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "gs = plt.GridSpec(2, 1, hspace=0)\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "ax0.plot(pds_reb.freq, (pds_reb.power - poisson) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "ax0.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax0.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + " \n", + "ax0.set_xlabel(\"Frequency (Hz)\")\n", + "ax0.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "ax0.legend();\n", + "\n", + "ax1.plot(pds_reb.freq, (pds_reb.power - poisson) * pds_reb.freq, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "ax1.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax1.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + " \n", + "ax1.set_xlabel(\"Frequency (Hz)\")\n", + "ax1.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\");\n", + "ax1.loglog()\n", + "ax1.set_ylim([1e-1, None]);\n", + "ax1.set_xlim([pds.freq[0], pds.freq[-1]]);" + ] + }, + { + "cell_type": "markdown", + "id": "44fa3b88", + "metadata": {}, + "source": [ + "## Lags and coherence\n", + "\n", + "With the cross spectrum we can explore the time lags versus frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c4eda41b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2627it [00:00, 2906.20it/s]\n" + ] + } + ], + "source": [ + "# Use shorter segments, rebin a little more heavily\n", + "cs = AveragedCrossspectrum.from_events(events_sub, events_ref, segment_size=2, dt=0.01, norm=norm)\n", + "cs_reb = cs.rebin_log(0.4)\n", + "\n", + "lag, lag_e = cs_reb.time_lag()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "45ba99f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmsAAAR9CAYAAAC5ynPaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3xV1Z3///dJQi6QkISAClWL2larBlFbvLQGqtEi6MjX1ipxRq21VjujtfOdVodfa7UzVqHz7YjWUWvrpRZQp7VajaUiSsR6QUVM8DbVmlFEEEKSk/t1//44cppAQm77nP1Ze7+ejwePRy7n7P3+rJW1c9gra52Y53meAAAAAAAAAAAAEIiMoAMAAAAAAAAAAABEGZM1AAAAAAAAAAAAAWKyBgAAAAAAAAAAIEBM1gAAAAAAAAAAAASIyRoAAAAAAAAAAIAAMVkDAAAAAAAAAAAQICZrAAAAAAAAAAAAAsRkDQAAAAAAAAAAQICYrAEAAAAAAAAAAAgQkzUAAAAAAAAAAAABYrIGAAAAAAAAAAAgQEzWAAAAAAAAAAAABIjJGgAAAAAAAAAAgAAxWQMAAAAAAAAAABAgJmsAAAAAAAAAAAACxGQNAAAAAAAAAABAgJisAQAAAAAAAAAACBCTNQAAAAAAAAAAAAFisgYAAAAAAAAAACBATNYAAAAAAAAAAAAEiMkaAAAAAAAAAACAADFZAwAAAAAAAAAAECAmawAAAAAAAAAAAALEZA0AAAAAAAAAAECAmKwBAAAAAAAAAAAIEJM1AAAAAAAAAAAAAWKyBgAAAAAAAAAAIEBZQQcAwqyhoUFVVVXJz/fbbz/l5OQEmAgAAAAAAAAAsKuOjg69//77yc9nz56toqKitJ2fyRoghaqqqrRgwYKgYwAAAAAAAAAARuChhx7SGWeckbbzsQ0aAAAAAAAAAABAgJisAQAAAAAAAAAACBDboAEptN9++/X7/KGHHtKnPvWpgNIEo7W1VWvWrNGcOXM0fvz4oOOMmWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb8ex1P/222/3e0uLXe/tphqTNUAK5eTk9Pv8U5/6lA477LCA0gSjs7NT48aN06GHHqrs7Oyg44yZa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvRz/r3/XebqrFPM/z0npGIEJee+01HX744cnPN27cGLnJGgAAAAAAAACwLuh7ubxnDYCUamtr08qVK9XW1hZ0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+JmsApFRvb68aGhrU29sbdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5frZBA1Io6KVzAAAAAAAAAIChBX0vl5U1AFKqu7tbtbW16u7uDjqKL1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XD+TNQBSqrm5Wffcc4+am5uDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XzzZoQAoFvXQOAAAAAAAAADC0oO/lsrIGAAAAAAAAAAAgQEzWAEipxsZG3XDDDWpsbAw6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulw/kzUAUmr8+PFasGCBxo8fH3QUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX7eswZIoaD3OQQAAAAAAAAADC3oe7msrAGQUq2trXrooYfU2toadBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fiZrAAAAAAAAAAAAAsQ2aEAKBb10DgAAAAAAAAAwtKDv5bKyBkBKdXV16c0331RXV1fQUXzhWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6mawBkFIu7xM5ENfqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u1882aEAKBb10DgAAAAAAAAAwtKDv5bKyBgAAAAAAAAAAIEBM1gBIqYaGBl177bVqaGgIOoovXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcP9ugASkU9NI5C7q7u7Vp0ybtu+++ysrKCjrOmLlWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XYcS/1B38tlsgZIoaAHOAAAAAAAAABgaEHfy2UbNAAp1dLSovvuu08tLS1BR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvR5frZ7IGQEplZGSoqKhIGRnhuNy4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+tkEDUijopXMAAAAAAAAAgKEFfS/XveklAE7p7OzUhg0b1NnZGXQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX4mawCkVHt7u9asWaP29vago/jCtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1sw0akEJBL50DAAAAAAAAAAwt6Hu5rKwBkFKe56m9vV1hmRd2rR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9TNYASKnGxkYtXrxYjY2NQUfxhWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX62cbNCCFgl46Z0FPT4+2bdumKVOmKDMzM+g4Y+ZaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NtxLPUHfS+XyRoghYIe4AAAAAAAAACAoQV9L5dt0ACkVHNzs+6++241NzcHHcUXrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rZ6deZuamhSPx7V9+3bF4/HA93630o5WcgBgPIYN/emPqLejy/VnBR0AQLhlZWVp+vTpysoKx+XGtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/0u1VNTU6MVK1Zoy5Ytuuqqq7R169bk94qLi3XUUUdp1qxZqqio6PeXp+lgpR2t5ADAeAwb+tMfUW9Hl+tnGzQghYJeOgcAAAAAw1FZWanFixdr7dq1w37OCSecoKuuukrz5s1LYTIAAID0CPpeLtugAUipjo4OPf/88+ro6Ag6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1W+5nrq6OlVUVOi0005LTtTk5OTo2GOPVU5Ozh6fu3btWs2fP1/nnnuu6urqUp7VSjtayQGA8Rg29Kc/ot6OLtfPZA2AlOrs7NSGDRvU2dkZdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavfaj3V1dWaMWOGVqxY0e/r2dnZmjlzprKzs4d1nOXLl2vGjBmqqalJRcwkK+1oJQcAxmPY0J/+iHo7ulw/26ABKRT00jkAAAAAGEh1dbXmzJmj+vp6345ZXFysqqoqlZaW+nZMAACAdAn6Xi4rawCkVG9vrxoaGtTb2xt0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq99aPXV1dTr11FMHnajJyMhQUVGRMjJGdsugvr5ec+fOTdmWaFba0UoOAIzHsKE//RH1dnS5fiZrAKRUPB7X0qVLFY/Hg47iC9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1W6vnsssu0+bNmwf9/sSJE3XFFVdo4sSJIz725s2bdfnll48l3qCstKOVHAAYj2FDf/oj6u3ocv1sgwakUNBL5yzo7e1VPB7XxIkTR/yXeRa5Vo/VvBZyWcgAIIHxGC70pz+i3o5hq99SPZWVlTrttNP2+JiMjAxNnDhR8Xh81H+V+uijj2r+/Pmjeu5grLSjlRwAGI9hQ3/6I+rtOJb6g76XG73eApBWo91CwSrX6rGa10IuCxkAJDAew4X+9EfU2zFs9VuqZ/HixUM+xo/tQ5YsWTLq5w7GSjtayQGA8Rg29Kc/ot6OLtfvXmIATmlqatJtt92mpqamoKP4wrV6rOa1kMtCBgAJjMdwoT/9EYZ29DxP8Xhc27dvVzwe10g2dQhD/X1ZqaempkZr164d8nEFBQW65JJLVFBQMOpzPf3009q4ceOonz8QK+1oJQcAxmPY0J/+iHo7ulw/kzUAUio7O1szZ85UdnZ20FF84Vo9VvNayGUhA4AExmO40J/+cLUda2pqtGjRIpWXl6ukpESFhYWaMmWKCgsLVVJSovLyci1atGjIm/iu1j8YK/WsWLFiWI/r7OzUhg0b1NnZmZbzDZeVdrSSAwDjMWzoT39EvR1drp/3rAFSKOh9DgEAAIB0qKys1OLFi4e1amOnE044QVdddZXmzZuXwmToq7y8XKtXr07r+VatWpW28wEAAIxF0PdyWVkDIKXa29u1Zs0atbe3Bx3FF67VYzWvhVwWMgBIYDyGC/3pD1fasa6uThUVFTrttNNGNFEjSWvXrtX8+fN17rnnqq6urt/3XKl/uCzU43me1q9fP6zH5ubmas6cOcrNzR3TOV9++eURbX83FAvtaCkHAMZj2NCf/oh6O7pcP5M1AFKqu7tbtbW16u7uDjqKL1yrx2peC7ksZACQwHgMF/rTHy60Y3V1tWbMmDHmra6WL1+uGTNmqKamJvk1F+ofCQv1NDU1qb6+fliPzcrK0vTp05WVlTWmc9bX16u5uXlMx+jLQjtaygGA8Rg29Kc/ot6OLtfPNmhACgW9dA4AAABIherqas2ZM2fYN/+Ho7i4WFVVVSotLfXtmPib7du3a8qUKWk/77Zt2zR58uS0nxcAAGCkgr6Xy8oaACnV09OjLVu2qKenJ+govnCtHqt5LeSykAFAAuMxXOhPf1hux7q6Op166qm+TtRIiVUYc+fOVV1dnen6R8NCPSN5k93MzEzts88+yszMHPN5c3JyxnyMnSy0o6UcABiPYUN/+iPq7ehy/UzWAEippqYm3X777Wpqago6ii9cq8dqXgu5LGQAkMB4DBf60x+W2/Gyyy7T5s2bU3LszZs36/LLLzdd/2hYqKegoEDFxcXDfuwll1yigoKCMZ2zuLhY+fn5YzpGXxba0VIOAIzHsKE//RH1dnS5frZBA1Io6KVzFniep46ODuXk5CgWiwUdZ8xcq8dqXgu5LGQAkMB4DBf60x9W27GyslKnnXZays/zyCOPqLy83Fz9o2WlP8vLy7V69eohHxeLxZSTk6OOjg6N5ZZBeXm5Vq1aNern78pKO1rJAYDxGDb0pz+i3o5jqT/oe7msrAGQUrFYTLm5uaH55eBaPVbzWshlIQOABMZjuNCf/rDajosXL07LeX7605+arH+0rPTnrFmzhvU4z/PU3t4+pomakZxvuKy0o5UcABiPYUN/+iPq7ehy/UzWAEipeDyuG2+8UfF4POgovnCtHqt5LeSykAFAAuMxXOhPf1hsx5qaGq1duzYt59qwYYN++tOfmqp/LKz058KFC4f1uIkTJ+qKK67QxIkT03K+4bLSjlZyAGA8hg396Y+ot6PL9TNZAyClcnNzNWfOHOXm5gYdxReu1WM1r4VcFjIASGA8hgv96Q+L7bhixYq0nau9vV3xeNxU/WNhpT9LS0t1wgknDPm49vZ2rVmzRu3t7aM+V1lZWb9tRPxgpR2t5ADAeAwb+tMfUW9Hl+vnPWuAFAp6n0MAAADAL8N9vxM/z+fn+50gIV3vO1RZWal58+al/DwAAAB+CfpeLitrAKRUW1ubVq5cqba2tqCj+MK1eqzmtZDLQgYACYzHcKE//WGtHT3P0/r169N2vry8PE2YMEGtra1pO2cqWerP+fPnD7k9WV5enubOnau8vLxRnaOioiIlEzVW2tFKDgCMx7ChP/0R9XZ0uX4mawCkVG9vrxoaGtTb2xt0FF+4Vo/VvBZyWcgAIIHxGC70pz+stWNTU5Pq6+vTdr6MjAzl5eWpqakpbedMJWv9efPNN2vatGmDfj8jI0NFRUXKyBj5LYNp06bppptuGku8QVlpRys5ADAew4b+9EfU29Hl+tkGDUihoJfOAQAAAH7Yvn27pkyZkvbzbtu2TZMnT077eaOgpqZGs2fP9nUSrri4WFVVVSotLfXtmAAAAOkS9L1cVtYASKnu7m7V1taqu7s76Ci+cK0eq3kt5LKQAUAC4zFc6E9/WGvH7OzstJ4vKytL06dPV2ZmZlrPmyrW+lOSSktLVVVVNeAKm53tn5WVNezjTZs2LeUTNVba0UoOAIzHsKE//RH1dnS5fiZrAKRUc3Oz7rnnHjU3NwcdxReu1WM1r4VcFjIASGA8hgv96Q9r7VhQUKDi4uK0nS8/P18XXHBB2s6Xatb6c6fS0lJVV1eroqKi39d3tn9+fv6wjlNRUaHq6uqUr6ix0o5WcgBgPIYN/emPqLejy/WzDRqQQkEvnQMAAAD8Ul5ertWrV6f1fKtWrUrb+aKusrJSS5Ys0dNPPz3s55SVlenKK6/UvHnzUpgMAAAgPYK+lzv8Nc0AAAAAgMiaNWtWWidrZs2albZzQZo/f77mz5+vjRs3asWKFVq3bp1efvnlfu9pU1xcrKOPPlqzZs3SwoUL+93MAAAAwNiwDRqAlGpsbNQNN9ygxsbGoKP4wrV6rOa1kMtCBgAJjMdwoT/9YbEdFy5cmLZzFRYWasKECabqHwuL/TmYww8/XN///vd10kkn6a9//avi8bi2bdumeDyuuro6rVq1Stddd10gEzVW2tFKDgCMx7ChP/0R9XZ0uX4mawCk1Pjx47VgwQKNHz8+6Ci+cK0eq3kt5LKQAUAC4zFchtufnucpHo9r+/btisfjYnfm/iyOi9LSUp1wwglpOdeRRx6pM88801T9Y2GxP/dkZ94JEyaooKBAkydPVkFBgWKxmIlcQbejlRx9cU1FVFkcjxg9+tMfUW9Hl+vnPWuAFAp6n0MAAABLampqktsrrV+/frftlY466ijNmjVLFRUVbK9kVGVlpU477bS0nIf3QQH2jGsqAAD+CvpeLitrAKRUa2urHnroIbW2tgYdxReu1WM1r4VcFjIASGA8hstA/VlZWamysjLNmDFD119/vVavXt3vpqIk1dfXa/Xq1br++utVWlqqsrIyPfbYY+mOb4bVcTF//vyUb4dWUVGhOXPmmKx/tKz252Cs5rWSK+gcXFOBvwl6PMJf9Kc/ot6OLtfPZA0AAACAlKirq1NFRYVOO+00rV27dkTPXbt2rebPn69zzz1XdXV1KUqI0bj55ps1bdq0lBx72rRpuummm1JybMB1XFMBAAg3tkEDUijopXMAAABBqa6u1qmnnqrNmzeP+VjTpk3TypUrVVpa6kMy+KGmpkazZ8/e7a/5x6K4uFhVVVX0MzAArqkAAKRe0PdyWVkDIKW6urr05ptvqqurK+govnCtHqt5LeSykAFAAuMxXLq6urRy5UqVl5f7clNRkjZv3qzZs2erpqbGl+O5wPq4KC0tVVVVlW8rbKZNm9ZvosZ6/SPlWj1W81rJle4c1dXVmjNnDtdUYABWrgvwB/3pj6i3o8v1M1kDIKVc3idyIK7VYzWvhVwWMgBIYDyGywcffKCnn35anZ2dvh63vr5ec+fOjcz2PS6Mi9LSUlVXV6uiomJMx6moqFB1dXW/v/J3of6RcK0eq3mt5Epnjrq6Op166qm+rmKTondNRXhZuS7AH/SnP6Leji7XzzZoQAoFvXQOAAAg3SoqKrRixYqUHn/ZsmUpOz5Gp7KyUkuWLNHTTz897OeUlZXpyiuv1Lx581KYDHAb11QAANIn6Hu5rKwBAAAA4IvKysqU3lSUpOXLl6uysjKl58DIzZ8/X1VVVaqpqdGiRYtUXl6u4uLifo8pLi5WeXm5Fi1apJqaGlVVVTFRA+wB11QAAKKFyRoAKdXQ0KBrr71WDQ0NQUfxhWv1WM1rIZeFDAASGI/hsXjxYhUVFemaa65RUVFRys6zZMmSlB3bClfHxeGHH67rrrtOq1atUl1dneLxuLZt26Z4PK66ujqtWrVK1113Xb+/WByIq/UPxrV6rOa1kitdORYvXpzS4+8UhWsqwsvKdQH+oD/9EfV2dLl+tkEDUijopXMWdHd3a9OmTdp3332VlZUVdJwxc60eq3kt5LKQAUAC4zEcampqNGPGDGVlZWnffffVpk2b1N3dndLzDXXD32VRHxdhq9+1eqzmtZIrHTl2XlPTJezXVISXlesC/EF/+iPq7TiW+oO+l8vKGgAplZWVpenTp4fml4Nr9VjNayGXhQwAEhiP4bBzq57u7m7V1tamdKKm7/nCKurjImz1u1aP1bxWcqUjR7qvcWG/piK8rFwX4A/60x9Rb0eX62eyBkBKtbS06L777lNLS0vQUXzhWj1W81rIZSEDgATGYzisW7dOkjRhwgSdc845mjBhQlrOF1ZRHxdhq9+1eqzmtZIrHTnSfY0L+zUV4WXlugB/0J/+iHo7ulw/kzUAUiojI0NFRUXKyAjH5ca1eqzmtZDLQgYACYxH93mep/Xr10uSent71dDQoN7e3pSe8+WXX1aYd3SO+rgIW/2u1WM1r5Vcqc7R95qaLmG/piK8rFwX4A/60x9Rb0eX6+c9a4AUCnqfQwAAgHSIx+MqLCwM5LwFBQVpPy8ApBLXVAAAghH0vVz3ppcAOKWzs1MbNmxQZ2dn0FF84Vo9VvNayGUhA4AExqP7+vZddna2Zs6cqezs7JSft6OjI+XnCErUx0XY6netHqt5reRKdY6g6gvzNTVonucpHo9r+/btisfjrGLykZXrAvxBf/oj6u3ocv1M1gBIqfb2dq1Zs0bt7e1BR/GFa/VYzWshl4UMABIYj+7rOzGTm5urOXPmKDc3N+XnzcnJSfk5ghL1cRG2+l2rx2peK7lSnSMdk90DCfM1NQg1NTVatGiRysvLVVJSosLCQk2ZMkWFhYUqKSlReXm5Fi1apI0bNwYd1WlWrgvwB/3pj6i3o8v1sw0akEJBL50DAABIB8/zVFJSovr6+rSds7i4WHV1dYrFYmk7JwCkA9dUt1VWVmrx4sVau3btsJ9zwgkn6KqrrtK8efNSmAwAMJSg7+WysgZASnmep/b29tAs83atHqt5LeSykAFAAuPRfbFYTEcddVTy49zc3JTf8Dv66KNDfVMx6uMibPW7Vo/VvFZypTpH32tquoT9mpoOdXV1qqio0GmnnTaiiRpJWrt2rebPn69zzz1XdXV1KUoYTlauC/AH/emPqLejy/UzWQMgpRobG7V48WI1NjYGHcUXrtVjNa+FXBYyAFEwnD3aGY/hMGvWLElSYWGhrrrqqpS/OfbO84VV1MdF2Op3rR6rea3kSkeOdF/jwn5NTbXq6mrNmDFDK1asGNNxli9frhkzZqimpsanZOFn5boAf9Cf/oh6O7pcP9ugASkU9NI5C3p6erRt2zZNmTJFmZmZQccZM9fqsZrXQi4LGYCwqqmp0YoVK7Ru3TqtX7++3zYuxcXFOuqoozRr1ixVVFTo8MMPZzyGRE1NjWbMmKHMzExNmTJF27ZtU09PT0rP1/d1VthEfVyErX7X6rGa10qudOTYeU1Nl7BfU1Opurpac+bM8XXbuuLiYlVVVam0tNS3Y4aVlesC/EF/+iPq7TiW+oO+l8tkDZBCQQ9wAADSiT3aUVZWNuKtX0Z7nqqqqpSfBwCCxDXVvrq6Os2YMUObN2/2/djTpk1TdXW1SkpKfD82AGBgQd/LZRs0ACnV3Nysu+++W83NzUFH8YVr9VjNayGXhQxAWIx1j/azzz5bV155pd57770UJUS6XHnllcrPz9cFF1yg/Pz8lJ4n7KL+eyps9btWj9W8VnKlK0e6rnVRuKamymWXXZaSiRpJ2rx5sy6//PKUHDtMrFwX4A/60x9Rb0eX62eyBkBKZWVlafr06crKygo6ii9cq8dqXgu5LGQAwsCPPdq7u7u1bt06zZ49mz3aHTd//nydccYZqq2tVXd3d0rOUVFREYmVWFH/PRW2+l2rx2peK7nSlWP+/PlauHBhSs8RlWtqKlRWVo75PWqGsnz5clVWVqb0HK6zcl2AP+hPf0S9HV2un23QgBQKeukcAACpxB7tGAhbwgCAf7im2sU2dQAQPkHfy2VlDYCU6ujo0PPPP6+Ojo6go/jCtXqs5rWQy0IGwGV1dXU69dRTfZmoycnJ0bHHHqucnBzV19dr7ty5qqur8yElgpCfn6+f//zn2nvvvX09bnFxsVauXBmZm4pR/z0Vtvpdq8dqXiu50pmjpKREK1euVHFxsa/Hjdo11W81NTVpmaiRpKefflobN25My7lcZOW6AH/Qn/6Ieju6XD+TNQBSqrOzUxs2bFBnZ2fQUXzhWj1W81rIZSED4DI/92jPzs7WzJkzlZ2dLYk92l3X2dmprVu36g9/+IOmTZvmyzGnTZsWuRVXUf89Fbb6XavHal4rudKdo7S0VFVVVVxTDUn19mdBn88lVq4L8Af96Y+ot6PL9bMNGpBCQS+dAwAgFSorK3Xaaael/DyPPvqo5s+fn/LzIHXq6up0+eWXa/ny5aM+RkVFhW666Sb++htA5HFNtaO8vFyrV69O6/lWrVqVtvMBQFQFfS+XlTUAUqq3t1cNDQ3q7e0NOoovXKvHal4LuSxkAFy1ePFiX4+XkZGhoqIiZWT0f2m6ZMkSX8+D9Oh7fS0pKdGyZcv06KOPqqysbETHKSsrU2VlpZYtWxbJm4pR/z0Vtvpdq8dqXiu5gsrBNdUGz/O0fv36tJ7z5ZdfFn9rPTAr1wX4g/70R9Tb0eX6mawBkFLxeFxLly5VPB4POoovXKvHal4LuSxkAFyUij3aJ06cqCuuuEITJ07s93X2aHfTQNfX+fPnq6qqSjU1NVq0aJHKy8t3e/+F4uJilZeXa9GiRaqpqVFVVZXmzZuX7vhmRP33VNjqd60eq3mt5Ao6B9fUYDU1Nfnynn0jUV9fr+bm5rSe0xVBj0f4i/70R9Tb0eX62QYNSKGgl85Z0Nvbq3g8rokTJ+72F9Mucq0eq3kt5LKQAXDRokWLdP311/t6zIyMDE2cOFHxeHy3v35atGiRrrvuOl/Ph9Qa7vXV8zw1Nzero6NDOTk5ys/PVywWS2NS26L+eyps9btWj9W8VnJZydEX19T02b59u6ZMmZL2827btk2TJ09O+3mtszgeMXr0pz+i3o5jqT/oe7lZaTsTgEjaubVNWLhWj9W8FnJZyAC4aN26db4fc+cy9XSdD6k13OtrLBZTQUGBCgoKUh/KQVH/PRW2+l2rx2peK7ms5OiLa2r6ZGdnB3LenJycQM5rncXxiNGjP/0R9XZ0uf7oTa0BSKumpibddtttampqCjqKL1yrx2peC7ksZABck6o92gsKCnTJJZcMeIOJPdrdw/XVH1Fvx7DV71o9VvNayWUlB4JRUFCw27ZzqVZcXKz8/Py0ntMVjMdwoT/9EfV2dLl+JmsApFR2drZmzpwZ2F8f+c21eqzmtZDLQgbANanao72zs1MbNmxQZ2fnbt9jj3b3cH31R9TbMWz1u1aP1bxWclnJgWDEYjEdddRRaT3n0UcfzbZ2g2A8hgv96Y+ot6PL9fOeNUAKBb3PIQAAfmKPdgAAgNS8h99Q5+M9/AAg9YK+l8vKGgAp1d7erjVr1qi9vT3oKL5wrR6reS3kspABcE2q/jIpNzdXc+bMUW5u7oDfZ492t3B99UfU2zFs9btWj9W8VnJZyYHgLFy4MNTncwnjMVzoT39EvR1drp/JGgAp1d3drdraWnV3dwcdxReu1WM1r4VcFjIArknVHu1ZWVmaPn26srKydvsee7S7h+urP6LejmGr37V6rOa1kstKDgSntLRUJ5xwQlrOVVZW1u+vvNEf4zFc6E9/RL0dXa6fbdCAFAp66RwAAH4rLy/X6tWr03q+VatWpe18AAAAw1FZWanTTjstLeeZN29eys8DAAj+Xi4rawCkVE9Pj7Zs2aKenp6go/jCtXqs5rWQy0IGwEWzZs3y/ZiZmZnaZ599lJmZmZbzIbW4vvoj6u0Ytvpdq8dqXiu5rORAsObPn5/y7ckqKiqYqBkC4zFc6E9/RL0dXa6fyRoAKdXU1KTbb79dTU1NQUfxhWv1WM1rIZeFDICLUnFToqCgQJdccokKCgrScj6kFtdXf0S9HcNWv2v1WM1rJZeVHAjezTffrGnTpqXk2NOmTdNNN92UkmOHCeMxXOhPf0S9HV2un23QgBQKeumcBZ7nqaOjQzk5OYrFYkHHGTPX6rGa10IuCxkAV5WVlWnt2rW+HS8WiyknJ0cdHR3q+9K0rKxMVVVVvp0H6cH11R9Rb8ew1e9aPVbzWsllJQdsqKmp0ezZs1VfX+/bMYuLi1VVVaXS0lLfjhlWYxmPnuepqalJnZ2dys7OVkFBAWM6YFxf/RH1dhxL/UHfy2VlDYCUisViys3NDc0vB9fqsZrXQi4LGQBXXXnllb4ez/M8tbe3a9e/IfL7PEgPrq/+iHo7hq1+1+qxmtdKLis5YENpaamqqqp8W2Ezbdo0JmpGYKTjsaamRosWLVJ5eblKSkpUWFioKVOmqLCwUCUlJSovL9eiRYu0cePGFCfHQLi++iPq7ehy/UzWAEipeDyuG2+8UfF4POgovnCtHqt5LeSykAFwld97tE+cOFFXXHGFJk6cmPwae7S7i+urP6LejmGr37V6rOa1kstKDthRWlqq6upqVVRUjOk4FRUVqq6uZqJmBIY7HisrK1VWVqYZM2bo+uuv1+rVq3dbDVVfX6/Vq1fr+uuvV2lpqcrKyvTYY4+lMj52wfXVH1FvR5frZ7IGQErl5uZqzpw5ys3NDTqKL1yrx2peC7ksZABc5uce7e3t7VqzZo3a29slsUe767i++iPq7Ri2+l2rx2peK7ms5IAtJSUlWrZsmR599FGVlZWN6LllZWWqrKzUsmXLVFJSkqKE4TTUeKyrq1NFRYVOO+20EW/ju3btWs2fP1/nnnuu6urq/IiLIXB99UfU29Hl+nnPGiCFgt7nEACAVGKPdgAAgIFt3LhRK1as0Lp16/Tyyy/3e71UXFyso48+WrNmzdLChQv73TeAf6qrq3Xqqadq8+bNYz7WtGnTtHLlSl6jAiEX9L1cVtYASKm2tjatXLlSbW1tQUfxhWv1WM1rIZeFDIDr/NqjPS8vT3PnztUBBxzARE0IcH31R9TbMWz1u1aP1bxWclnJAdsOP/xwXXfddVq1apXq6uoUj8e1bds2xeNx1dXVadWqVbruuuuYqBmjwcZjdXW15syZ48tEjSRt3rxZs2fPVk1NjS/Hw8C4vvoj6u3ocv1M1gBIqd7eXjU0NKi3tzfoKL5wrR6reS3kspABCAM/9mjPyMjQ4YcfzkRNSHB99UfU2zFs9btWj9W8VnJZyQF3xGIxFRQUaPLkySooKHDyTa+tGmg81tXV6dRTT/V19beUeE+buXPnsiVaCnF99UfU29Hl+tkGDUihoJfOAQCQTpWVlVqyZImefvrpYT+nrKxMV155pebNm5fCZAAAAIiKiooKrVixIqXHX7ZsWcqODyA4Qd/LZWUNgJTq7u5WbW2turu7g47iC9fqsZrXQi4LGYCwmT9/vqqqqlRTU6NFixapvLxcxcXF/R5TXFys8vJyLVq0SDU1NaqqqtIpp5zCeAwRrq/+iHo7hq1+1+qxmtdKLis5AOw+HisrK1M6USNJy5cvV2VlZUrPEVVcX/0R9XZ0uX4mawCkVHNzs+655x41NzcHHcUXrtVjNa+FXBYyAGE10j3aGY/hQn/6I+rtGLb6XavHal4ruazkALD7eFy8eHFazrtkyZK0nCdquL76I+rt6HL9bIMGpFDQS+cAAAAAAACioKamRjNmzEjr+fre8wHgvqDv5bKyBgAAAAAAAIDTUr39WdDnA9LF8zzF43Ft375d8XhcrPVIHyZrAKRUY2OjbrjhBjU2NgYdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgNA//G4bt26tJ473eeLAq6v/hhNO/Z939GSkhIVFhZqypQpKiwsVElJSfJ9Rzdu3JjC5P5w+eeIbdCAFAp66ZwFXV1deuedd3TQQQdp3LhxQccZM9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAeBv4/HAAw/UPvvso/r6+rSdu7i4WHV1dYrFYmk7Z5h5nqcdO3Ykr6+TJk2ibUdpJL+nKisrtXjxYq1du3bYxz/hhBN01VVXad68eWONmhJj+T0d9L1cJmuAFAp6gAMAAAAAAIRdPB5XYWFhIOctKChI+3nDoqamRitWrNC6deu0fv36fpNtxcXFOuqoozRr1ixVVFTw/kA+q6ur02WXXTam7fwqKip00003qaSkxMdkwQr6Xq4T26B5nqdt27aptrZWtbW12rZtG3vlAY5obW3VQw89pNbW1qCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgD423gMarujjo6OQM7rusrKSpWVlWnGjBm6/vrrtXr1atXX12v8+PFasGCBxo8fr/r6eq1evVrXX3+9SktLVVZWpsceeyzo6E4Y6vdUdXW1ZsyYMeb3XVq+fLlmzJihmpqaMR3Hby7/ns4KOsBAXn75Za1atUrr1q3Tq6++qk2bNqm7u7vfY7KysrTvvvvqiCOO0KxZs3TyySfr6KOPDigxAAAAAAAAgCBkZ2cHct6cnJxAzuuqsazmWLt2rdauXRvK1RzpVF1drTlz5vi2ZeDmzZs1e/ZsVVVVqbS01JdjRpmZbdBef/113XXXXVq+fLm2bNnS73uDRdx138J99tlHFRUVuuCCCyK31VRnZ6fuv/9+rVixQq+99pq2bt2q4uJiHXDAATrzzDN1wQUXaPLkyU6de/Xq1brnnnv0/PPP64MPPlBOTo723XdfffnLX9Y3vvENHXLIISM+5htvvKE777xTf/rTn7Rp0yZ1dHToE5/4hI477jidd955Oumkk0Z8zD0JeukcAAAAAABA2Hmep5KSEt6zxrDq6mqdeuqp2rx585iPNW3aNK1cuZLJgRGqq6vTjBkzfOmDXU2bNk3V1dXOT6IFfi/XC9jq1au9U045xcvIyEj+i8Vio/rX9xinnHKKt3r16qDLS4s33njDmzlzpidp0H977bWXV1lZ6cS5GxsbvbPPPnuPxxw3bpz3k5/8ZERZ//3f/90bN27cHo+7cOFCLx6Pj7QZBrVx48Z+x9+4caNvx3ZFZ2en98Ybb3idnZ1BR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQA0H88nnTSSXu85+P3v/Ly8qDLd8arr77qFRcXD9mm48aN8w455JAh799J8oqLi73q6uqgSzNpsN9TCxcuTOmYqKioCKji/sbyezroe7mBvWfN+vXrddJJJ+nkk0/WE088Ic/zkitoDj/8cF166aW6/fbb9fTTT+udd95RY2Ojurq61NnZqcbGRr399tuqqqrSbbfdpksvvTQ547XzOE888YROPvlknXTSSVq/fn1QZabcpk2bdNJJJ2nDhg2SEquNZs+erQsvvFCnn3668vLyJEkfffSRFixYoCeffNL0ubu6uvR//s//0f3335/82uGHH67zzjtPX/va1zR16tTk4xYtWqQf//jHw8p69dVX6wc/+IG6urokSVOnTtXXvvY1nXfeef1mR1esWKGvfvWru227h9FzeZ/IgbhWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgD9x+OsWbPSeu50n89VdXV1OvXUU4e16qnve9YMpb6+XnPnzlVdXZ0fMUNloN9TlZWVY36PmqEsX75clZWVKT3HcDj9ezqtU0Mfu/jii72srKzkKpqMjAyvvLzc+8UvfuF99NFHoz7uRx995P3iF7/wTj755H7HzsrK8r71rW/5WIEdJ5xwQnKm75Of/KS3YcOGft/ftm1bv78smDRpkldfX2/23D/84Q+Tj8/NzfVWrFjR7/sdHR3e9773veRjYrGYt2bNmj0e84knnug3I/q9733P6+jo6PeY5cuXe7m5ucnHXHvttcNviD0IejYWAAAAAAAgCqqrq9O6sqampibokp0QldUc1vW9j5vKf2VlZUGXOiZB38sN5D1rMjISC3omTpyoSy65RN/61rd0wAEH+HqO2tpa3Xrrrbr99tsVj8cVi8XU09Pj6zmC9thjj2n+/PmSEm+k9tJLLw24V2NLS4tmzJihv/71r5Kkf/3Xf9VPfvITc+f+6KOPdOCBB6qlpUWSdNttt+lb3/rWgI8955xzkqtvjjvuOD377LODZp01a5ZefPHF5PMGm0XeuUpLkgoKCvTXv/51zO/zE/g+hwAAAAAAABFRVlamtWvXpuU8VVVVKT+P6yorK3Xaaael/DyPPvpo8j4ldldTU6MZM2ak9Xx974e6JOh7uYFsg1ZQUKBrr71W7733nm644QbfJ2okafr06Vq8eLHee+89XXPNNcrPz/f9HEG75ZZbkh+ff/75g76p1oQJE/ptF3b77bePeZuvVJz7nnvuSU7UfOYzn9HFF1886PmXLFmSnPR77rnn9Morrwz4uBdffDE5UZORkaElS5YMesxvfetb+vSnPy1Jampq0r333jvoYzF8DQ0Nuvbaa9XQ0BB0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4Au4/HK6+8Mi3nTdd5XLd48eIRPb6oqEjXXHONioqKRvS8Pd3vi6Jdx0Wqtz/bVbrPtyuXf08HMlnzzjvv6Ic//KEmTpyY8nNNnDhRV199td55552UnyudmpubtXr16uTnX//61/f4+K985SvJCasdO3bo6aefNnfuhx56KPnxBRdcoFgsNugx999/f5144onJz3//+98Peczy8nLtt99+gx4zFovp/PPPH/KYGJn8/Hydf/75oZkwda0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcAHYfj/Pnz9fChQtTes6KigrNmzcvpecIg5qamhGvcmpubtbdd9+t5ubmET3v6aef1saNG0f0nDDbdVysW7curedP9/l25fLv6UAma8a6tZQr50ylZ599Vh0dHZISq1c+//nP7/Hxubm5Ou6445KfP/nkk6bO3d7erueffz75+Zw5c4bM8aUvfWmPx5Skp556atTH7FsnRi8rK0vTp09XVlZW0FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5AAw8Hm+++WZNmzYtJeebNm2abrrpppQcO2xGs7qiu7tbtbW1o9oRKOjVHJb0HRee52n9+vVpPf/LL7+sAN55Jcnl39PuJYYk6Y033kh+XFpaOqwfvqOOOkqrVq3a7fkWzv3WW2+pt7dXUmKFy5FHHjmsYw6UabCsfR8/mL7n7enp0f/8z/8MusXbaHzY2KaJO1p9O54kTS3MVVbm0POuHza2qbsnNRfKKQU5yh2XOeD3Wlpa9Mgjj+j0009XS2+mOrp6U5Jh0oRsTcgZ+mdxR0unWjpGvw1gW2uL/vzk4/rCiacob/yEft+bmDdOhXnjhjxGY1uX4m1do86wJxNysjRpQnby877tP2HC3/K2dHRrR0tnSjLkjMvQXgW5e3xMS0uLHv7DH/S5E8p3a0c/ZGXGNLUwb8gMf/jDH3R0ijJI0n6Txg/rce/7fF3oy/o1oq+Pmtqdv0bsicVrxGDSfY0Y6FrV3tWjbU2p+aOJ4VwjJKm7p1cfNranJIMU3mvEnn5XDoRrRMKu14jBfodH5RoxWP07uXaNGOm4kIK9RuzMe+aCv1PhxIIhH5+u1xF7+rlI5zVisBy8jkgI+v8aknvXiNEI6+uIkRqf0a1VKx/rNx5LSkq0cuVKzZ49W/X19b6dq7CoWHff/3u1xvLU2qddLb6OGEw6rxGjWV0xYcIEnX766XrkkUeSb5UwXE//+Tl91NTONUKJ3+Prn1mt008/XT09Pb6Og+Gor6/Xm+99pE/vOyWQa0Tf11377z1pRP/X+LCxzbcco8FkjaPeeuut5Mef/OQnh/Wc/fffP/nxm2++aercfY+51157KTd36Atr32Pu2LFD27Zt05QpU5Jf++ijj/rtTTicrHl5eZoyZYq2bduWzOrnZM15v1qn7ClbfTueJK39/peG9SLtq7c+pw8aUnPBWfHNY3XcQSUDfi8jI0NFRUXKyMjQZb95RS+8uyMlGX761Rk663ODb3O303WVb+h36zeN+jzZ6tbMcXFd//qz6tzlEvqdkz6t7578mSGPcecz72rp6r+MOsOefOWoffX/vnZE8vO+7d/XYzUf6nu/rU5JhmMOmKT7v3XcHh+TkZGhjow8nfbz3dvRD58oytOfrzpxj4/JyMhQVl5ByjJIUu0Nw3uDwxOWPDX0g0bJ+jWir8uWu3+N2BOL14jBpPsaMdC16pX3GrTwjud3fbovhnONkKQPG9tTOj7Deo3Y0+/KgXCNSNj1GjHY7/CoXCMGq38n164RIx0XUrDXiJ15T2juVOEwdi9P1+uIPf1cpPMaMVgOXkckBP1/Dcm9a8RohPV1xEj9+ryZA47H0tJSVVVVae7cudq8efOYz5OZP0njz/yxvvnoNunR/m1q8XXEYNJ1jRjtao7e3l41NDQk/6B7JJ594UX907L1euCS44d8bNivEdnq1k1zEuOirS2YyYdT/t9qPXvNgkCuEX1fd93zzS+O6P8andv+17ccoxHINmh+6ejo0Jo1a3T//ffrqaeeitSWVXV1dcmP995772E9Z5999kl+vGPH6F/EpuLcYz3mQMfte8zRHncs7YSEvLw8zZ07V3l5Q/9VgQs6laV1Xfun7Oa+36y2f15eng753AmBtmNeXp6OLTvRmb4EwszqtQqj49rvSquiPi7CVr9r42Jn3pxcW+1v5efCSg4A0ric3EHHY2lpqaqrq1VRUTGmc4w/dLamXvhzZU+ZPqbjRElTU9OoVnO0tbVp5cqVo5pg6G1vVndH6laSuaRTWclxkZ099IrIVIhlDr3SK1Vce93Vl7nJmq6uLt1555268847VVlZOejjfve732n//ffXSSedpIqKCpWXl2ufffbRnXfemca0wen7RlvDfYHY93EjfaOuVJ97rMcc6Li7fp7uduorNzc3+aZWGepVfqxDUmJ533h1Kks9khIzv7lKLEfNTD4uYUKsQ5kfPy5HXcr5+HHdXV1qbGxMPq6hoSG5t2dLS0vyF1ym16Px2rkU3VN+rEMZSvylQp66lK3Ec8apR3kfPy728eNiH2fNU6fG9cma93GG3p4eNTQ0JPejjMfj6uxMHKOxsVEvvPCCOjs7FfN6hlVTpno0oc/j8mMdyvw4a26frFn6W02e56mhoUE9PYnjNTc3q709sZy0o6NDTU1NH5feO6yaBuunLPXokMytylf7gP3U2Niorq7EMVpbW9Xamnih0LVLPw2nptH2U1NTU3LyOh6P6/nnn1dnZ6d6dumnsf7s7amf+v7sdXZ2Kh6P9+untrY2ffDOG8pX+5h+9vY0ntra2pLLpru7u/uttGtsbFRLS4v+8sZGTVDHmH729tRPfX/2dv0Lob79NNyawniN6NtPYbhGDNVP1q4R7e3tyd91QV4jtm/frg0bNqijo6NfP431Z28s14id/TTWn70oXiMK1K5PZW7XOHVzjRjDNaKhoSH5GiqK14jGxkZt2LBBzc3Nu72OcPEaka92HZK5Nfl60vo1YoI69KnM7Wr7uC92Cvp1RGdnp5577rnkz2VQ14gdO3boxRdfVGdnJ68jDLyOCMM1gtcRo++nzva2fu85vOvriNzcXC1btkxl/7hEe312VjJrYWGhxo1L3EweP368xo9P/PX/uHHjVFhYmKh1v8N10MIfaZ/T/68y8yY69Toi6GtEZ2dnv3thmZmZKioqUiwWkyRNnDgxOYmQl5eX3MIuLy9Pxx9/fPJ7w+knSSoqKlJWVpZ6u7u4RqhbWerRiy++qLq6OhUUFGjSpEn9VqAVFBQoJycncexR9FNWVpaKioqSWXftpwnFUxTLzgvsGpGnDn02c4uy1DPq/2sExdxkzeOPP66LLrpI3/zmN1VdPfCy2WeeeUbnnHOOtm/fLs/zkv8aGxv1zW9+MxITNjsv+pKGPUO6cxBKGtMSuFSce6zHHOi4fY852uP6tVTw2GOP1Ve/+lVJUlGsXWfl1ij74wvIvJw3NT0z8dcGM8dt1vHZieV2UzKadVZuTfIYZ+S8rk9kJH7BfH7cJn1+XGLp7Afv1erWW29NPm7p0qXatCnxvUceeURVVVWSpL17t2teTmILumz16KzcGhXFEm00O/sdHZqV2J7t05nbdXJOYknshFinzsqt0YRY4iJ2cs5f9OnM7ZKkQ7O2anb2O5Kk5sYdWrp0afLF0Z133qnXX39dklRVVaUnnnhC7e3tyutsHFZNn8iI64yc15OPOyu3RlMyEv8JOD77fzVzXGIJ8/TM+mRNvd2dWrp0aXILu9/+9rd6/vnEktZXXnlFy5YtkyTFutqGVdNg/ZStHh097gMdl/3egP1066236p13Esd4/PHH9fjjj0uS3nnnnX79NJyaRttPy5Yt0yuvvCJJeu6555Ltv23btn79NNafvT31U9+fvddffz15Xe7o6NDSpUv1wQcf6J3qdZqd/e6Yfvb2NJ6qqqr0yCOPSJI2bdqkpUuX9uunt956S6+88Ocx/+ztqZ/6/uzF43EtXbo0+UKxbz8Nt6awXiN29lMYrhFD9ZO1a8Tzzz+v3/72t5IU6DXi3nvv1Zo1a9TY2Nivn8b6szeWa8TOfuIaMfJrxEk5b2tm1mYVfpyVa8TorhGrVq3S6tWr1d7eHtlrxJo1a1RTU7Pb6wgXrxHHZb+no8d9oGz1OHONmJm1We/VvmPqdUR7e7tWrVqlmpqa3fopndeI3//+98nxyeuI4F9HhOEaweuI0fdTvO4jrVq1KnlDeLDXEQd+5lB9++x5mnrhzzXxuK/p0m//kz51yGGSpFNOOUWnnHKKMnLzdcix5br0ny7X1At/rn0qbtA/HBxz8nVE0NeI7OzsfvfCpkyZoiuuuCJ5z+3CCy/UoYcemjj27Nk6/fTTJUkHHHCATjnllOTbI1x66aU66KCD+vWTJB100EG69NJLkzVdccUV2nfffZWRNY5rRNZWZatHTz75pO6//37FYjEde+yxuuKKKzRxYmJv03PPPTf5vt2j6ad9991XV1xxRTLrrv00d97pisVigV0jDs/aqs99/LprtP/XCErM2zmtZMR3v/tdLV26VLFYTO+8846mT5++22M+//nP6+WXX1YsFlN2drYOO+wwffjhh/rwww8lJWb93n77bU2ePDnN6dNn/vz5euyxxyRJV155pW644YYhn/PHP/5R8+bNkyTl5+f/bWbfwLl/+tOf6vvf/74k6Zhjjkn+UtuTtra25Iy6JL300ks6+uijk5+/+OKLmjVrVr/HD+e9cI455pjkm6D9x3/8h/7v//2/Qz5nMK+99poOP/xw5ebmKisrSwVfW6zcKftpfKxLzV62pJjGq1OdylS3MpWtbmXIU7vGKVO9yot1qdlLXCAnxDrU7mWpR5nJWfcOjdNT3/2iJuUq+RcFDQ0Nys/PV1ZWllpaWpSRkaG8vDyVXb9K2xub1apsJWapO9XqjVOvMpSnLvUopk5ladzHf+3XpmzF5GlCrFMtXrY8xZSnTnUrU10fZ82UpzaN07ILP6/D9spWYWGhYrGY4vG4cnNzlZ2drba2NvX29mrChAk657ZntPF/Pxqypkz1KDfWrZaPH5cf61CbN049ylCuutT7cdYs9ShbPWpVtpZ8pVSnfHqiCgoKlJmZqebmZmVlZSk3Nzf5Vx0FBQX6v/e/oj9teHfImjLUO+J++s5Jn9aFs/bW+PHjNW7cuORfsYwfP15dXV1qbW1VYWGh/nPV/+hXT24csqbR9NOZR+2na049UNnZ2crJyVF7e7u6u7uVn5+vnp4eNTU1qbCwUL99eZN+9NuXxvSzN1g/fe6Aybrz72ckf/Y6OzvV3t6uiRMnJifWCwoKtK62QRfesXZMP3uD9dPeRfl64jvHJX/2uru71dzcnPzLj8bGRo0fP15bmrpUvuTxMf3s7amf3rq2PPmz19vbq3g8rokTJyojI0NNTU3JfvrMVQ+P6WePawTXCK4RXCO4RnCN4BrBNYJrBNcIrhFcI7hGjOwa0dabpe7ODmX3tiuWmaXOcQXKivVyjfDhGpGdna2pU6eqpaVFzc3NyszMVEFBgRobG+V5niZOnKj29nZ1dnYqLy9PGRkZamlpUVZWlvLz85MrUQoLC9Xa2qqurq7kPcDW1laNGzdO48ePT07SFRUVqaXL04L/eEx3/cMRXCN2uUYsWrRIt956q+LxuHp7e1VQUJBcHbrznqWf/ZT/uTOUd9y5Tl4jdny0RR/e+Y/aaePGjTrssMOULuY2bnv55ZclSdOnTx9woubVV19NTtTsv//+Wr16tQ488ED19vbqoosu0t13362mpibde++9+u53v5vm9Omzc3maNPzVH30f1/f5Fs491mMOdNxdPx/uZI1f7dTXzlU+BZJ6lZF8cSDp4wtRQt+9FHt2eVxLn4879Ld9H7PGjVNh4d8mrfouQ9y5PFGSemKZfc4V63fstj7H6/r4wiZJ3m6PGzhrxsfLJHfaOVMvKfnixPM8ebHMYdXUo0y1eJnJz/s+p73P47o/frEiSbFYrF+Gvn2Xk5PztxVTsYxh1TR4P3kf58j6OGv/x/Vdhtt3MnHXJbrDqWm0/VRQUNCvdimx3Ddzl34a68/envqp78/ezhdq0t/6yfM8dXV2qE1ZkmJD1jTyfuq/peFAS3Q9z1NHR5M6+mQYzc/envqp78/ezjei3alvPw23pjBeI/r2UziuEXvuJ2vXiL6/F4O8RowbN07t7e3Kycnpl2GsP3tjuUbsPOtYf/aieY3IULa61alMrhEfG801Ii8vL/kaKorXCM/zkteFXV9HjLQmG9eIrI//8tZz5BrhJW50ZGWpsPBv14KgX0d4npf8vSEFd42YMGFCcnzyOiLB0v81RlqTjWsEryOk0fVTLCOj38/iiF5HxKSMnPHq1viPk4XndYSFa8Thhx+u1atXJ7J+vBXVTjtXgUn978P19PSovb1dsVgsObmSbIfWv70fza5buzU0NCj3kzMVi8W4Rnxched5yZ/FhQsX6vrrr08+ru8f0ffdmWi4/TTQ1m47tba2qvBTX0jUHtg1IjP5umu0/9cIirmVNfvtt582b96s008/XQ899NBu3//3f/93XX311YrFYrrrrrt03nnnJb+3Y8cOTZs2TV1dXTrllFP0xz/+MY3J0+vb3/52chnZ2Wefrfvuu2/I5/zXf/2X/vEfEzODhx56qF577TUz537ggQd09tlnS5L23ntvbdmyZchjvv766/1mNj/66CNNmTKl3+d777138vM33nhDhxxyyJDH3WuvvZJLIh944AGdddZZQz5nMDtX1uy06s8v6uBDDh318QYytTBXWZlD72j4YWObuntSM9ynFOQod1zmgN9raGjQ0qVL9Z3vfEedmbnq6OpNSYZJE7I1IWfo+ecdLZ1q6ege9Xma4o3673t+obPOv1gFEwv7fW9i3jgV5g39BmqNbV2Kt3WNOsOeTMjJ0qQJf/sF1bf9+/5yauno1o6WzgGOMHY54zK0V8GeJ0Z35hqoHf2QlRnT1MI9v09VqjNI0n6Txg/9IEnv72gd+kGjZP0a0ddHTe3OXyP2xOI1YjDpvkYMdK1q7+rRtqbU7Bk8nGuEJHX39OrDxvYhHzdaYb1G7Ol35UC4RiTseo0Y7Hd4VK4Rg9W/k2vXiJGOCynYa8TOvP/4T5dpcsmkIR+frtcRe/q5SOc1YrAcvI5ICPr/GpJ714jRCOvriJHK7mnTbf/180F/X+wUtdcRg0nnNWLRokX9JgiGo6ioSFdccYVuvPHGfpMBw/FP3/2efnjtj7lG6G+/x/uOi7KyMq1duzYl5+vrmOO/qP9+5E+SgrtG9H3ddeAn9hrR/zXeevN1nfyFzye/nu6VNeYmayZMmKD29nZdeOGFuuOOO3b7/sknn6zVq1crOztb27dv323lw0knnaSnnnpK++67r9577710xU67pUuXJvcGPPbYY/Xcc88N+ZyrrrpKixcvliSdeeaZ+t3vfmfm3K+++qpmzpwpKTHT3draOuQqmJUrV+rUU0+VJE2aNEl1dXW7Paa4uDh5cV+5cqW+/OUv7/GY7e3t/WZVq6urVVpausfn7MmukzXpHuAW9PT0aNu2bZoyZYoyM4e+OFrnWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB4tq6mp0YwZM0b0nMzMTE2ZMkXbtm1TT0/PiM/X9x5clA00LiorK3Xaaael/NyVlZXJt8IIyliuC0Hfyx16aivNOjsTf32xc1lzX729vXrhhRcUi8X0uc99bsAtqj7xiU9I0oA37sPks5/9bPLjmpoadXcPPTO/fv36AZ9v4dwHH3ywMjISP46e52nDhg1jPuauX9/55nrDPWZmZqY+85nPDPkc7FlmZqb22Wef0Lxocq0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPlpWWluqEE04Y0XN6enq0ZcuWEU/UlJWVMVHTx0DjYv78+Vq4cGFKz1tRURH4RI3k9nXB3GTNzgmYHTt27Pa9V155Rc3NzZKkL37xiwM+f+eqiOFMILjs+OOPT+552dLSopdeemmPj+/o6NDzzz+f/PzEE080de7c3Fwde+yxyc/XrFkzZI6qqqo9HlOSvvSlL436mH3rxOg1Nzfr7rvvTo5d17lWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMR+uuvPLKET0+Pz9fF1xwwYjfQ3qk5wm7wcbFzTffrGnTpqXknNOmTdNNN92UkmOPlMvXBXOTNfvtt588zxtwFURlZWXy48Ema+rr6yX1f0OrMMrPz9dJJ52U/Pzuu+/e4+MffPDB5JtHTZo0SWVlZebOvWDBgmEf8/3330++Sdmuzx3smE888YQ2bdq0x+P2Pe9gx8TIZGVlafr06crKGnr/Vhe4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjEfrRrqao7u7W7W1tSP6I3wrqzksGWxclJSUaOXKlSouLvb1fMXFxVq5cqVKSkp8Pe5ouXxdMPeeNRdddJHuvPNOxWIx/fGPf9Qpp5wiSWpra9Mhhxyi999/X9nZ2froo480ceLE3Z5fWlqq1157TTNnzuy3pVUY9d1rMCcnRy+//PKAe+i1trbqiCOO0Ntvvy0p8f4xI32Dr3Sc+6OPPtKBBx6olpYWSdIdd9yhiy66aMDHVlRUaMWKFZKk4447Ts8+++ygWWfNmqUXX3xRknTuuefqN7/5zYCP+8UvfqFvfetbkhKTfX/96181efLkQY87HEHvcwgAAAAAAAAEpa6uTjNmzNDmzZt9P/a0adNUXV1tZpLAFTU1NZo7d64vfTJt2jStXLlyTO/5bUnQ93LNraw599xzkx+fddZZuvrqq3XzzTerrKxM77//vmKxmE477bQBJ2oaGxv15ptvKhaLReKG+Pz585N7P3Z0dOi0005TdXV1v8fU1dVpwYIFycmSSZMmDbo0sLa2VrFYLPlvT6tb/D63JO21117653/+5+Tnl19+uR544IF+j+nq6tJVV12VnKiRNOTEU9/vL1u2TFdddZW6urr6PeaBBx7QFVdckfz8X/7lX8Y8UYOEndvgdXR0BB3FF67VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDj0QUjWc2Rk5OjY489dlhvS2BtNYclQ42L0tJSVVdXq6KiYkznqaioUHV1tbmJGpevC+Yma770pS/p9NNPl+d5am5u1nXXXacrrrgiuUpm3Lhxuvrqqwd87h/+8IfkG1D1ff+TMFu+fLmmTp0qKTHZMnPmTH3pS1/SRRddpDPOOEP777+/Vq1aJSmxBOyBBx5QUVGR2XP/8Ic/TL7/TFtbm84++2zNmDFDF1xwgc455xx98pOf1OLFi5OPv/baazV79uw9HvOkk07SD37wg+Tnixcv1vTp03XOOefoggsuUGlpqc4++2y1tbVJkk4++WQtWrRoxO2BgXV2dmrDhg3q7OwMOoovXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMajK0pLS1VVVTXk+6VkZ2dr5syZys7O3uPjpk2bpqqqKnOTBFYMZ1yUlJRo2bJlevTRR0f8dhllZWWqrKzUsmXLTE6WuXxdMLcNmpTYOuvcc8/Vww8/3O/rEyZM0C9/+UudffbZAz5v9uzZWrt2rWKxmF5//XUdfPDB6YgbuDfffFMLFy7Uhg0bBn3MlClTdNddd2n+/PmDPqa2tlYHHHBA8vO77rpLF1xwQVrO3VdjY6Muvvji3VbV9DVu3Dhdc801w55U8TxP1113nX784x/vtqqmr3POOUe33377gCu3RiPopXMAAAAAAACABXV1dbr88su1fPnyUR+joqJCN910k8lJApdt3LhRK1as0Lp16/Tyyy8n3xdeSqxiOvroozVr1iwtXLiw373OsAn6Xq7JyZqdqqurtXbtWsXjce23336aN2+eJk2aNOBj6+rq9L3vfU+e56mgoEA33XRTmtMGq7OzU/fdd59WrFih1157TVu3blVRUZEOPPBAnXnmmfr6178+5LZeo5ms8evcA3niiSd0zz336LnnntOHH36ocePGab/99tOXv/xlfeMb39BnP/vZER/zjTfe0C9/+Us9/vjjev/999XV1aWpU6fquOOO0/nnn6/y8vIRH3NPgh7gFvT29ioej2vixInKyDC3mG/EXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMajqyorK7VkyRI9/fTT/b6ekZGhiRMnKh6Pq7e3t9/3ysrKdOWVV2revHnpjOqksY6LnTtedXR0KCcnR/n5+YrFYilImhpjqT/oe7mmJ2sA1wU9wC1oaGjQ0qVL9Z3vfMe3LfiC5Fo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAeXbfrag7P83TFFVfoxhtvVCwWi8xqDr9FfVyMpf6g7+UyWQOkUNAD3IKw/ZWLa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgME8/zFI/HVVdXp5KSEk2cONGp1RyWRH1cuLyyJittZwIQSRkZGaGaxXetHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2ESi8VUWFiowsLCoKM4L+rjwuX6oze1BiCtmpqadNttt6mpqSnoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9gaysufDCC1N+jlgspl/96lcpPw+APcvOztbMmTOVnZ0ddBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5/kDesyYjIyMtew729PSk/BzAngS9zyEAAAAAAAAAYGhB38sNbBs0z/OG/W+oxw/0fQA2tLe3a82aNWpvbw86ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulx/INug3XXXXUM+5r333tN1112nzs5OSdJxxx2n4447Tvvvv78mTJiglpYWvf/++3ruuef03HPPSZJycnK0aNEi7b///inND2D4uru7VVtbq8997nNBR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvR5frD2QbtKG88MILmjdvnhoaGnTyySfr5ptv1qc//elBH//222/r8ssv18qVKzVp0iRVVlbqmGOOSWNiYGBBL50DAAAAAAAAAAwt6Hu5gW2DNpj6+nqdddZZamho0DnnnKM//vGPe5yokaRPfepTqqys1MKFC7Vjxw6dddZZ2rFjR5oSA9iTnp4ebdmyJTTvIeVaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNTdb88pe/1KZNmzRhwgTddtttisViw3peLBbTbbfdpvz8fH3wwQe64447UpwUwHA0NTXp9ttvV1NTU9BRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNbYN2zDHH6KWXXtLpp5+uhx56aMTPX7Bggf7whz/oc5/7nNatW+d/QGAEgl46Z4Hneero6FBOTs6wJ18tc60eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7TiW+oO+l5uVtjMN07vvvitJ2meffUb1/L333luSVFtb61ckAGMQi8WUm5sbdAzfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPboDU3N0uSPvzww1E9f8uWLf2OAyBY8XhcN954o+LxeNBRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNTdZMnTpVnufpySefVGNj44ie29jYqCeffFKxWExTp05NUUIAI5Gbm6s5c+Y4O6O9K9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u12/uPWsuvvhi/fKXv1QsFtNZZ52lFStWDHtvuYULF+r+++9XLBbThRdeqDvuuCPFaYE9C3qfQwAAAAAAAADA0IK+l2tuZc2ll16qzMxMSdJ///d/a+7cuXrrrbf2+Jz/+Z//0amnnqoHHnhAkpSRkaFvf/vbKc8KYGhtbW1auXKl2trago7iC9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u158VdIBdHXnkkbryyiv1k5/8RLFYTE888YQOPfRQHX300TruuOO0//77a/z48WptbdV7772n559/Xi+99JIkaecioe9///s68sgjgywDwMd6e3vV0NCg3t7eoKP4wrV6rOa1kMtCBgAJjMdwoT/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot6PL9ZvbBm2nRYsWafHixckJmD1thdb3Mf/yL/+ixYsXpyUjMJSgl84BAAAAAAAAAIYW9L1cc9ug7fSTn/xETz31lI477jhJiQmZwf5J0vHHH68nn3ySiRrAmO7ubtXW1qq7uzvoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9ZidrJKmsrEx//vOf9frrr+uWW27RRRddpDPOOEMnnXSSzjjjDF100UW65ZZb9Prrr+uZZ57R7Nmzg44MYBfNzc2655571NzcHHQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX6z26ABYRD00jkAAAAAAAAAwNCCvpdremUNAAAAAAAAAABA2DFZAyClGhsbdcMNN6ixsTHoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9TNYASKnx48drwYIFGj9+fNBRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNv2fN1q1b9dJLL6m2tlbxeFxdXV3Dfu7VV1+dwmTA0ILe5xAAAAAAAAAAMLSg7+Vmpe1MI7Ru3TotWrRIa9as0Wjnk5isAYLX2tqqxx9/XKeccoqTM9q7cq0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/SYna375y1/q0ksvVW9v76gnamKxmM+pAAAAAAAAAAAA/GduG7TXXntNM2fOVE9Pj6TEpMvnP/95HXnkkSopKdG4ceOGfawf/ehHqYoJDEvQS+cAAAAAAAAAAEML+l6uuZU1//mf/6menh7FYjEddthhWrFiBTe3AYd1dXXpnXfe0UEHHTSiyVarXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcf0bQAXb11FNPSZLy8vL0xz/+kYkawHGtra166KGH1NraGnQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX5z26CNHz9eHR0dmj9/vv7whz8EHQcYk6CXzgEAAAAAAAAAhhb0vVxzK2smTJggSfrEJz4RcBIAAAAAAAAAAIDUMzdZc8ABB0iS6urqAk4CwA8NDQ269tpr1dDQEHQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX5z26AtXrxY//qv/6q9995bH3zwgTIyzM0nAcMW9NI5C7q7u7Vp0ybtu+++ysrKCjrOmLlWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XYcS/1B38s1N1lTX1+v0tJSffjhh/rZz36m73znO0FHAkYt6AEOAAAAAAAAABha0PdyzS1bKS4u1v33368JEyboe9/7nn71q18FHQnAGLS0tOi+++5TS0tL0FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+s2tg3r66aclSddff73+5V/+RRdffLFuvvlmnXXWWSotLVVhYaFisdiwjlVWVpbKqACGISMjQ0VFRaHZ0tC1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/Wb2wYtIyOj32SM53nDnpzpKxaLqbu7289owIgFvXQOAAAAAAAAADC0oO/lmpxe8jwv+W/Xz0fyD0DwOjs7tWHDBnV2dgYdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa7f3DZoZWVlo1pJA8Cm9vZ2rVmzRgceeKCys7ODjjNmrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rR6rea3kspIDAOMxbOhPf0S9HV2u39w2aECYBL10DgAAAAAAAAAwtKDv5ZrcBg1AeHiep/b29tBsTehaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5fqZrAGQUo2NjVq8eLEaGxuDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XzzZoQAoFvXTOgp6eHm3btk1TpkxRZmZm0HHGzLV6rOa1kMtCBgAJjMdwoT/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot+NY6g/6Xq4zkzVtbW169dVXtX37djU1NamgoECTJ0/WEUccoby8vKDjAQMKeoADAAAAAAAAAIYW9L1c09ug9fT06De/+Y2+8IUvqLCwUF/4whd0xhln6O///u91xhlnJL/+xS9+UcuWLVNPT0/QkQHsorm5WXfffbeam5uDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb3ay5u2339axxx6r888/X88//7y6u7vled5u/7q7u/Xcc8/pvPPO03HHHad33nkn6OgA+sjKytL06dOVlZUVdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fpPboL377rv6whe+oK1bt0qSdkacMGGC9ttvP02YMEEtLS16//331dLSIkmKxWLyPE/77LOPnn32WU2fPj2o+EBS0EvnAAAAAAAAAABDC/persmVNV/72te0ZcsWSVJmZqYuvfRSvfzyy4rH43r99df14osv6vXXX1c8Htf69ev17W9/W5mZmYrFYtqyZYu+9rWvBVwBgJ06Ojr0/PPPq6OjI+govnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv3mJmt+97vf6eWXX1YsFtPkyZP17LPP6pZbbtGRRx6pWCzW77GxWEwzZ87Uz3/+cz333HOaPHmyJOnll1/Wgw8+GER8ALvo7OzUhg0b1NnZGXQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX5z26Cde+65WrFihWKxmP70pz+pvLx82M994okndMoppygWi+nss8/W8uXLU5gUGFrQS+cAAAAAAAAAAEML+l6uuZU1L7zwgmKxmEpLS0c0USNJ5eXlOuKII+R5nl544YUUJQQwEr29vWpoaFBvb2/QUXzhWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6zU3WbN26VZJ05JFHjur5M2fOlCR99NFHfkUCMAbxeFxLly5VPB4POoovXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcv7lt0AoKCtTa2qp/+Id/0N133z3i53/961/XPffcowkTJqipqcn/gMAIBL10zoLe3l7F43FNnDhRGRnm5odHzLV6rOa1kMtCBgAJjMdwoT/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot+NY6g/6Xm5W2s40THvvvbf++te/asOGDaN6/s7n7bXXXv6FAjBqGRkZKioqCjqGb1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XL+5qbVZs2ZJkmpqavTUU0+N6Llr1qzRq6++qlgsljwOgGA1NTXptttuC81KN9fqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u129usubMM89MflxRUaHq6uphPW/jxo2qqKhIfv6Vr3zF92wARi47O1szZ85UdnZ20FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+s29Z40kHXXUUXr11VfleZ6ys7P17W9/W1//+tdVWlq622M3btyou+++W7fccos6OzslSUceeaReeumldMcGdhP0PocAAAAAAAAAgKEFfS/X3MoaSbr//vs1efJkxWIxdXZ2aunSpZo5c6YKCwt1+OGH65hjjtHhhx+uoqIiHXHEEfrP//xPdXR0yPM8TZkyRffdd1/QJQD4WHt7u9asWaP29vago/jCtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1m5ys+fSnP601a9YkV9J4nifP89TU1KQ33nhDL730kt544w3F4/Hk9yTpiCOO0Jo1a/SpT30qyPgA+uju7lZtba26u7uDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb3IbtJ26urr0m9/8Rr/4xS/00ksvqaenZ7fHZGZm6nOf+5y+9a1v6dxzz9W4ceMCSAoMLOilcwAAAAAAAACAoQV9LzcrbWcahXHjxunrX/+6vv71r6u5uVnV1dXatm2bmpublZ+frylTpmjGjBnKz88POiqAQfT09Gjbtm2aMmWKMjMzg44zZq7VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR1drt/kNmgDyc/P1/HHH68zzjhD5557rs444wwdf/zxTNQAxjU1Nen2229XU1NT0FF84Vo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+k1vgwa4LuilcxZ4nqeOjg7l5OQoFosFHWfMXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O46l/qDv5ZreBg2A+2KxmHJzc4OO4RvX6rGa10IuCxkAJDAew4X+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OLtdvbhu0np4eVVRU6Mwzz9SVV145oudeeeWVOvPMM3X++eenKB2AkYrH47rxxhsVj8eDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb26y5rHHHtN9992nhx9+WJ/61KdG9NxPfepTeuihh/Sb3/xGf/rTn1KUEMBI5Obmas6cOc7OaO/KtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1m3vPmksuuUS/+MUvlJ2dra1bt6qwsHDYz21sbNRee+2l7u5uXXrppfr5z3+ewqTA0ILe5xBANNXW1uqAAw4Y8Hvvvvuupk+fnt5AAAAAAAAAxgV9L9fcypoXX3xRknTEEUeMaKJGkgoLCzVz5kx5nqd169alIh6AEWpra9PKlSvV1tYWdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnOTNX/9618Vi8V08MEHj+r5n/nMZ5LHARC83t5eNTQ0qLe3N+govnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv3mtkHLzs5WT0+PLr74Yt16660jfv6ll16q22+/XVlZWers7ExBQmD4gl46ByCa2AYNAAAAAABgZIK+l2tuZc3EiRMlSTt27BjV83c+b8KECb5lAjB63d3dqq2tVXd3d9BRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5frNTdZMnTp1TO85s/N5e++9t5+xAIxSc3Oz7rnnHjU3NwcdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa7f3DZol1xyiX7xi18oFotp5cqVOvnkk4f93Mcff1xz585VLBbTeeedp7vuuiuFSYGhBb10DkA0sQ0aAAAAAADAyAR9L9fcypoFCxYkP7700ku1ffv2YT3vo48+0qWXXjrgcQAAAAAAAAAAAKwyN1kzd+5cHX300ZISf/07a9YsrVq1ao/PWbVqlY499li9++67isViOuKII3TGGWekIy6AITQ2NuqGG25QY2Nj0FF84Vo9VvNayGUhQyrU1NTopz/96aDf//u//3stWrRIGzduTGMqYM/COh6jiv70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u129uGzQpsdzo+OOPV3NzszzPUywW06c//WnNmTNHBx54oPLz89Xc3Kx3331XTz31lP7yl79IkjzPU0FBgZ555hmVlpYGXAUQ/NI5C7q6uvTOO+/ooIMO0rhx44KOM2au1WM1r4VcFjL4qbKyUosXL9batWuH/ZwTTjhBV111lebNm5fCZMDQwjYeo47+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OY6k/6Hu5JidrJGnNmjX62te+ltwGLRaLDfrYnSVMmjRJDzzwgE488cS0ZASGEvQABxB+dXV1uuyyy7RixYpRH6OiokI33XSTSkpKfEwGAAAAAADgjqDv5ZrbBm2nOXPmaP369aqoqFBWVpY8zxv0X1ZWls4991xt2LCBiRrAmNbWVj300ENqbW0NOoovXKvHal4LuSxkGKvq6mrNmDFjTBM1krR8+XLNmDFDNTU1PiUDRiYM4xF/Q3/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX688KOsCe7LvvvvrNb36jJUuW6IknntDzzz+vrVu3qqmpSQUFBdp777117LHH6uSTT9bUqVODjgsAQNpUV1drzpw5qq+v9+V4mzdv1uzZs1VVVcVWogAAAAAAAGlmdhs0IAyCXjoHIJzq6uo0Y8YMbd682fdjT5s2TdXV1WyJBgAAAAAAIiXoe7lmt0EDEA5dXV1688031dXVFXQUX7hWj9W8FnJZyDBal112WUomaqTECpvLL788JccGBuPyeMTu6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/UzWAEgpl/eJHIhr9VjNayGXhQyjUVlZOeb3qBnK8uXLVVlZmdJzAH25Oh4xMPrTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XL8T26Bt2LBBzzzzjN5//33V19erp6dHv/rVr4KOBQwp6KVzAMKnrKxMa9euTct5qqqqUn4eAAAAAAAAC4K+l5uVtjONwm9/+1tdc801euONN5Jf8zxPsVhst8marVu36sgjj1R3d7e++MUv6sEHH0x3XAAAUqqmpiYtEzWS9PTTT2vjxo39XqQAAAAAAAAgNcxug3bJJZfo7LPP1htvvCHP85L/BrP33nvrpJNO0vbt2/WHP/xBH3zwQRrTAhhMQ0ODrr32WjU0NAQdxReu1WM1r4VcFjKMVKq3Pwv6fIguF8cjBkd/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3uQ3aD37wA/3kJz9Jfv7lL39ZJ554olauXKmnnnpKsVhMPT09uz1v1apV+vKXv6xYLKbbbrtN3/zmN9MZG9hN0EvnLOju7tamTZu07777KivL9GK+YXGtHqt5LeSykGGkysvLtXr16rSeb9WqVWk7H6LLxfGIwdGf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NtxLPUHfS/X3GTNX/7yFx122GHq7u5WUVGRHnzwQc2ZM0eSdNlll+mWW24ZdLKmp6dHRUVFam1t1TnnnKNly5alOT3QX9ADHEB4eJ6nkpIS1dfXp+2cxcXFqqurUywWS9s5AQAAAAAAghD0vVxz26D94he/UHd3t2KxmO64447kRM1wZGZmasaMGfI8T6+99lrqQgIYtpaWFt13331qaWkJOoovXKvHal4LuSxkGImmpqa0TtRIUn19vZqbm9N6TkSTa+MRe0Z/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3N1mzc3uXgw46SF/5yldG/Pzp06dLkjZt2uRnLACjlJGRoaKiImVkmLvcjIpr9VjNayGXhQwj0dnZGch5Ozo6AjkvosW18Yg9oz/9EfV2DFv9rtVjNa+VXFZyAGA8hg396Y+ot6PL9ZvbBq2kpEQNDQ2qqKjQvffe2+97Q22DJkmXXnqpbr/9do0bN44bTAhc0EvnAIRHPB5XYWFhIOctKChI+3kBAAAAAADSKeh7ueaml3YuT8rPzx/V81tbWyVJubm5vmUCMHqdnZ3asGFDYKsC/OZaPVbzWshlIcNIFBQUqLi4OK3nLC4uHvXvY2AkXBuP2DP60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7uly/ucmakpISSdK2bdtG9fx33nlHkjRlyhTfMgEYvfb2dq1Zs0bt7e1BR/GFa/VYzWshl4UMIxGLxXTUUUel9ZxHH320YrFYWs+JaHJtPGLP6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/ea2QSsrK9MzzzyjfffdV++9916/7w21DVpdXZ0+8YlPqKurSwsWLNDvfve7dMUGBhT00jkA4bJo0SJdf/31aT3fddddl7bzAQAAAAAABCXoe7nmVtaccsopkqQPPvhADz/88Iiee8MNNySXN5188sm+ZwMwcp7nqb29XcbmhUfNtXqs5rWQy0KGkVq4cGGoz4focnE8YnD0pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+c5M1F1xwQfL9Zr797W+rtrZ2WM+755579LOf/UyxWEzFxcX6h3/4hxSmBDBcjY2NWrx4sRobG4OO4gvX6rGa10IuCxlGqrS0VCeccEJazlVWVtbvr0mAVHJxPGJw9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPboEnS1VdfrX//939XLBbTpEmT9KMf/UgLFy7UNddc028btPb2dj377LP6r//6L/3+97+X53mKxWK66aab9I//+I9BlwEEvnTOgp6eHm3btk1TpkxRZmZm0HHGzLV6rOa1kMtChtGorKzUaaedlpbzzJs3L+XnASR3xyMGRn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb8ex1B/0vVyTkzWe5+mss87Sgw8+2O+NjbOzs9XR0aFYLKaJEycqHo/3e46UWJlz5513pj0zMJCgBziAcKqoqNCKFStSevxly5al7PgAAAAAAADWBH0v19w2aJIUi8X0wAMP6Ac/+IEyMjLkeZ48z1NnZ2dy8qaxsTH5dc/zlJmZqR/96EdM1ADGNDc36+6771Zzc3PQUXzhWj1W81rIZSHDaN18882aNm1aSo49bdo03XTTTSk5NjAYl8cjdkd/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3OVkjSRkZGfrxj3+st99+W9/5znf0mc98pt/kzE777befLr30Ur311lv60Y9+FGBiAAPJysrS9OnTlZWVFXQUX7hWj9W8FnJZyDBaJSUlWrlypYqLi309bnFxsVauXKmSkhJfjwsMxeXxiN3Rn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6TW6DNpgdO3boww8/VGNjoyZMmKC9995b++yzT9CxgEEFvXQOQLjV1NRo7ty52rx585iPNW3aNK1cuVKlpaU+JAMAAAAAAHBL0Pdyza6sGcikSZN02GGH6fjjj9cRRxzBRA3ggI6ODj3//PPq6OgIOoovXKvHal4LuSxkGKvS0lJVV1eroqJiTMepqKhQdXU1EzUITBjGI/6G/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7X79RkDQD3dHZ2asOGDers7Aw6ii9cq8dqXgu5LGTwQ0lJiZYtW6ZHH31UZWVlI3puWVmZKisrtWzZMrY+Q6DCMh6RQH/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX63dqG7SB1NbWauvWrdprr710wAEHBB0H6CfopXMAomfjxo269dZb9V//9V8Dfv8LX/iCZs+erYULF/a7PgEAAAAAAERZ0Pdyza2s8TxPTz75pJ588km99NJLgz7uueee04wZM3TQQQfp+OOP16c+9SkdeuihWrVqVRrTAhhKb2+vGhoa1NvbG3QUX7hWj9W8FnJZyJAKhx9+uL73ve8N+v3f/OY3uu6665iogSlhHY9RRX/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6zc3WVNVVaXy8nKdfPLJevDBBwd8zMaNG1VeXq7XXntNnucl/7355puaP3++Hn300TSnBjCYeDyupUuXKh6PBx3FF67VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR1drt/cNmhXXXWVlixZolgspo0bN+qzn/3sbo85+eSTtXr1asViMXmep0mTJqm5uTm5D93ee++tv/zlL8rPz093fKCfoJfOWdDb26t4PK6JEycqI8Pc/PCIuVaP1bwWclnIkCq1tbWDbg367rvvavr06ekNBAwhzOMxiuhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u04lvqDvpdrrrdefPFFSdLUqVMHnKj5y1/+kpyoKSkp0TPPPKPt27dry5Ytmjt3riTpo48+0vLly9OaG8DAMjIyVFRUFJpfDq7VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR1drt9c4r/+9a+KxWI64ogjBvz+ww8/nPz4hz/8oY4//nhJUlFRke64445kJzz22GOpDwtgSE1NTbrtttvU1NQUdBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnOTNdu2bZMk7bPPPgN+v6qqSlJihqyioqLf9z7xiU/ouOOOk+d5qq6uTm1QAMOSnZ2tmTNnKjs7O+govnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv3m3rMmKytLnufpkksu0S233LLb90tKStTQ0KCjjjoquWVaX+eee65WrFihCRMmODl7hnAJep9DANHEe9YAAAAAAACMTND3cs2trJkwYYIkqaGhYbfvvfbaa6qvr5ckffGLXxzw+QUFBZKkjo6O1AQEMCLt7e1as2aN2tvbg47iC9fqsZrXQi4LGVJl+vTp8jxvwH9M1MCiMI/HKKI//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/Wbm6yZOnWqPM/Txo0bd/veH//4x+THX/jCFwZ8fmNjo6S/TfoACFZ3d7dqa2vV3d0ddBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPboO3cxiwWi+mFF17Q5z73OUlSb2+vDj/8cL355pvKyMjQhx9+qClTpuz2/KOPPlqvvPKKDjvsMNXU1KQ7PtBP0EvnAAAAAAAAAABDC/perrmVNV/72teSHy9YsEB33XWXHnnkES1YsEBvvvmmYrGYTjzxxAEnatra2vTaa68pFovps5/9bDpjAxhET0+PtmzZop6enqCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/Wbm6w544wzdOyxx8rzPH344Ye66KKLtGDBAlVWVkqSYrGYfvjDHw743Mcee0ydnZ2SpGOOOSZtmQEMrqmpSbfffruampqCjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xb24bNEn66KOPNG/ePK1fv77f1zMyMrRkyRL98z//84DPO/3001VZWalYLKaXX35ZM2fOTENaYHBBL52zwPM8dXR0KCcnR7FYLOg4Y+ZaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NtxLPUHfS83K21nGoG99tpL69at06OPPqq1a9cqHo9rv/3201e/+lUdcsghAz6nrq5Ora2tmj17tgoKCpioAYyIxWLKzc0NOoZvXKvHal4LuSxkAJDAeAwX+tMfUW/HsNXvWj1W81rJZSUHAMZj2NCf/oh6O7pcv7lt0HbKyMjQ3/3d3+mnP/2pbr/9dv3gBz8YdKJGkkpKSrR69Wo99dRT+sMf/pDGpAD2JB6P68Ybb1Q8Hg86ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7uly/2ckaAOGQm5urOXPmODujvSvX6rGa10IuCxkAJDAew4X+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OLtdv8j1rgLAIep9DAAAAAAAAAMDQgr6Xy8oaACnV1tamlStXqq2tLegovnCtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u3ocv1M1gBIqd7eXjU0NKi3tzfoKL5wrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9bIMGpFDQS+cAAAAAAAAAAEML+l4uK2sApFR3d7dqa2vV3d0ddBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fiZrAKRUc3Oz7rnnHjU3NwcdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa6fbdCAFAp66RwAAAAAAAAAYGhB38tlZQ0AAAAAAAAAAECAmKwBkFKNjY264YYb1NjYGHQUX7hWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uX4mawCk1Pjx47VgwQKNHz8+6Ci+cK0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/bxnDZBCQe9zCAAAAAAAAAAYWtD3cllZEwKdnZ269957NW/ePH3yk59Ubm6upk6dquOPP17/8R//oe3btzt5/tWrV+u8887TZz7zGU2YMEGTJk3SjBkz9L3vfU9vvvnmsI8zffp0xWKxEf3btGnTqDJjd62trXrooYfU2toadBRfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5/qygA2Bs3nzzTS1cuFAbNmzo9/UtW7Zoy5Yteu655/TTn/5Ud911l+bNm+fE+ePxuC6++GLdf//9/b7e2tqq+vp61dTUaOnSpbr22mv1r//6r36VAgAAAAAAAABAIExvg/bMM89oxYoVWrdunWpraxWPx9Xd3T2s58ZisWE/1lWbNm3SMccco82bN0tK1FxWVqaDDjpI27Zt0xNPPKG2tjZJ0rhx47Ry5UqdeOKJps/f1dWluXPn6sknn0x+7fDDD9dRRx2l9vZ2rV27Vh9++GHye9dee62uvvrqPR5z+vTp+t///V9J0nnnnaeCgoIha/v3f/93FRUVDfm4oQS9dA4AAAAAAAAAMLSg7+WaXFmzY8cOnXfeefrjH/+Y/JrhOaXAVFRUJCdKPvnJT+rhhx/WEUcckfz+9u3bdc4552j16tXq6urSWWedpXfeeceXSYhUnf/f/u3fkhM1ubm5uuuuu3TOOeckv9/Z2akf/OAH+ulPfypJuuaaazR79mzNnj17WJmvvfZaTZ8+fYSVYiy6urr0zjvv6KCDDtK4ceOCjjNmrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rR6rea3kspIDAOMxbOhPf0S9HV2u39x71nR3d+uUU07RH//4R3mel/yH/h577DGtXbtWkpSdna1HHnmk30SJJE2ePFkPP/ywDjzwQEmJSbAlS5aYPf9HH32kn/3sZ8nPb7zxxn4TNTvPtWTJEp199tmSEpN4bIVmm8v7RA7EtXqs5rWQy0IGAAmMx3ChP/0R9XYMW/2u1WM1r5VcVnIAYDyGDf3pj6i3o8v1m9sG7ZZbbtFll12mWCwmz/P01a9+VRdeeKGOPPJIlZSUKCvL5GKgtJs/f74ee+wxSdI3v/lN/eIXvxj0scuWLdPf//3fS5ImTZqkrVu3jrkdU3H+n/70p/r+978vSfrMZz6jN998U7FYbMBjvvfeezrggAPU29srSVq/fr2OPPLIAR/bdxu0d999N60ra4JeOgcAAAAAAAAAGFrQ93LNrax54IEHkh/feOONeuCBBzR37lztvffeTNR8rLm5WatXr05+/vWvf32Pj//KV76i/Px8SYnVLU8//bTJ8z/00EPJjy+44IJBJ2okaf/99+/3/je///3vhxMdAAAAAAAAAABzzE3WvPbaa4rFYjr44IN1+eWXBx3HpGeffVYdHR2SpAkTJujzn//8Hh+fm5ur4447Lvn5zveEsXT+9vZ2Pf/888nP58yZM2SOL33pS3s8JmxoaGjQtddeq4aGhqCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/WbW6rS0tIiSTr22GMDTmLXG2+8kfy4tLR0WCuOjjrqKK1atWq351s5/1tvvZXc0iwWiw26pdmuxxwo0568/PLLevjhh/XBBx9IkkpKSnTooYfqi1/8ooqLi4d1DIxMfn6+zj///OTqKte5Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+c5M106ZNU21trTIyzC36MeOtt95KfvzJT35yWM/Zf//9kx+/+eab5s7f95h77bWXcnNzR3TMHTt2aNu2bZoyZcoen/PVr351wK+PGzdO55xzjq655hodeOCBQ54bw5eVlZXW9wlKNdfqsZrXQi4LGQAkMB7Dhf70R9TbMWz1u1aP1bxWclnJAYDxGDb0pz+i3o4u129uRmTWrFnyPG/MEwphVldXl/x47733HtZz9tlnn+THO3bsMHf+sR5zsOMOV1dXl+69914deeSReuSRR0Z9HOyupaVF9913X3LVnOtcq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7uly/ucmaiy++WJL0wgsv6C9/+UvAaWxqbm5OfpyXlzes5/R9XN/nWzn/WI852HGlxGzq/Pnzddttt2n9+vVqaGhQV1eXtm/frlWrVukb3/iGxo0bJ0mKx+M666yz9Oc//3lYGYYrNzc3ufSup6dHDQ0N8jwvec7Ozk5JUltbW/JC0t3d3W9vxcbGRnV1dUmSWltb1draKikx0dTY2Jh8XENDg7q7uyUlLk5tbW2SpM7OTsXjcUmS53lqaGhQT0+PpETbtbe3S5I6OjrU1NQkSert7VVDQ0Nyi7qmpqbk+xW1t7cn23xPNXV0dGjChAnKyMgIRU0ZGRnKz89PZrBeU2dnp8aPH6+MjAxTP3ue56moqEitra0p+9kbqqaenh4VFRWpvb098H7yqyZLP3vURE0jqamlpUVFRUWKxWKhqSmM/TTcmnb2587jhaGmIPqpvb09+RoqLDWNpJ86OjpUVFSk7u7uUNTU1tam/Px8ZWRkONFP7e3tKioqUk9Pj6mfvYyMDOXl5fVr1yCuEa2trcn+tP6zF9ZrBDVR086aPM9TXl6eYrFYaGoKYz8Nt6be3l7l5eUld1wKQ01B9NPOe1d929X1mkbST37cCwuKucmaL33pS7rooovU09Oj8847L9m5+JudP6CSlJ2dPazn5OTkJD/eORAsnX+sxxzsuFJi4u/RRx/Vt771LR155JEqLCxUVlaWSkpKVF5erl/+8pdau3atSkpKJCUG/je+8Y3kRcEPxx57bHILtm3btmnp0qXJC8idd96p119/XZJUVVWVXNmzadMmLV26NHmMW2+9Ve+8844k6fHHH9fjjz8uSXrnnXd06623Jh+3dOlSbdq0SZL0yCOPqKqqSpL0+uuv684770zWuHTpUm3btk2S9Nvf/lbPP/+8JOmVV17RsmXLJCUuYEuXLk1eMJctW6ZXXnlFkvT888/rt7/97ZA1rVu3Ti0tLcrLywtFTXl5ecrKytITTzzhRD+9+uqr2rFjh/Ly8kz97DU3N2vu3LmqrKxM2c/eUDVt3rxZc+fO1dq1awPvJ79qsvSzR03UNJKali9frrlz5yojIyM0NYWxn4Zb04MPPqi5c+eqq6srNDUF0U9r165VT0+P8vLyQlPTSPpp3bp1mjt3rt59991Q1PTEE08oKytLeXl5TvTT2rVrNXfuXG3evNnUz15eXp7effddvfvuuynpp+HWVFlZqfz8fOXl5Zn/2QvrNYKaqGlnTc3NzdqwYUPy5n4YagpjPw23prq6Om3YsCH5B9phqCmIfsrLy9PkyZP14IMPhqamkfSTH/fCAuMZ1NnZ6V1wwQVeLBbzDjnkEO+hhx7yuru7g441pJtvvtk7+OCDff333//937udZ968eZ4kT5J35ZVXDivbY489lnxOfn7+mOpMxfmXLFmS/P4xxxwzrGO2trYmnyPJe+mll0ZUx64ef/zxfsf77W9/O6bjeZ7nbdy40ZPk5ebmevn5+d7GjRu97u5ur76+3uvt7fU8z/MaGxu9jo6OZE3Nzc2e53leV1eXV19fnzxWQ0OD19nZ6Xme57W0tHgtLS2e5yXGS0NDQ/Jx9fX1XldXl+d5ntfc3Oy1trZ6nud5HR0dXmNjo+d5ntfb2+vV19cnx1VTU5PX1tbmeZ7ntbe3e/F43PM8z+vp6fHq6+u9np4ez/M8Lx6Pe+3t7Z7neV5bW5vX1NTkeZ63x5oaGhq8559/3uvo6AhFTR0dHd4LL7zg7dixw4l+amxs9J577jmvo6PD1M9ea2ur98orr3h1dXUp+9kbqqbm5mbvlVde8err6wPvJ79qsvSzR03UNJKatm3b5r3yyitee3t7aGoKYz8Nt6bt27d7r7zyitfW1haamoLop/r6+uRrqLDUNJJ+amho8F555RWvqakpFDXt2LHDe+GFF5KvJ63XVF9f773yyivJvhisn9L9s9fR0eE9++yzye8FdY2oq6vz1q1b53V0dJj/2QvrNYKaqKnvdeDPf/5zv/8Du15TGPtpuDW1tLR4f/7zn/vdU3K9piD6qaOjw1u3bp23ffv20NQ0kn4ay72wnfdyd/7buHGjl04xz/t4DZARJ554YvLj5557Th0dHYrFYsrNzdXBBx+swsLC5NLGPYnFYlq9enUqo+7mmmuu0bXXXuvrMe+44w5ddNFF/b529tln64EHHpAkXX755cOa9XvwwQf1la98RVLivV4+/PDDUWdKxflvvfVWffvb35YkzZgxQ6+++uqQx9yxY0dyNYwkvfnmmzr44IOHXcdATjjhBD3zzDOSpG984xv65S9/Oabjvfbaazr88MOTn2/cuFGHHXbYmI7pmng8rjvvvFMXXnihJk6cGHScMXOtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u04lvqDvpeblbYzDdOaNWv6TcbEYjF5nqe2trZh3cCXEnvbDWdCx1V9Jyi2bt06rOds2bIl+fGkSZPMnX+sxxzsuCNVXl6enKx54403xnw8SBMnTtQVV1wRdAzfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5fnPvWSMlJlv6/hvs64P9C8o111wz7IzD/bfrqhpJ/VaP/O///u+wsr333nvJjw855JAx1ZmK8/c95kcffdTvPWyGc8xJkyZpypQpw8qyJ1OnTk1+vH379jEfD4lx297eHujY9JNr9VjNayGXhQwAEhiP4UJ/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3N1nz1FNP+fLvySefDLqUlPnsZz+b/Limpkbd3d1DPmf9+vUDPt/K+Q8++ODkm8F5nqcNGzaM+Zij0dLSkvx4woQJvhwz6hobG7V48WI1NjYGHcUXrtVjNa+FXBYyAEhgPIYL/emPqLdj2Op3rR6rea3kspIDAOMxbOhPf0S9HV2u39x71mBozc3Nmjx5sjo6OiQl3tvn2GOPHfTxHR0dmjJlipqamiRJq1ev7vfeQFbO/4UvfEHPPvusJOn666/XVVddtcccX/7yl/X4449Lkn74wx/qxz/+8ajq6eu8887TvffeK0maP3++Hn300TEdL+h9Di3o6enRtm3bNGXKFGVmZgYdZ8xcq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7jqX+oO/lmltZg6Hl5+frpJNOSn5+99137/HxDz74YHKiZNKkSSorKzN5/gULFgz7mO+//75Wr1494HNHq66uTg8//HDy8zlz5oz5mJAyMzO1zz77hOaXg2v1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX62eyxlHf/va3kx/ffffdeu211wZ8XGtrq66++urk5xdffLGysrJMnv/8889Pbj321ltv6Ze//OWg57/yyivV09MjSTruuON01FFHDfi45ubmPRfysZ6eHl100UWKx+OSpOzsbJ111lnDei72rLm5WXffffew+8I61+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7Xz2SNo+bPn68TTjhBUmKbsdNOO03V1dX9HlNXV6cFCxbo7bfflpRY1XLllVcOesza2lrFYrHkvz2tbknF+ffaay/98z//c/Lzyy+/XA888EC/x3R1demqq67SihUrkl+7/vrrBz3mscceqyuuuEIvv/zyoI+pqalReXm5HnrooeTXvvvd7+qTn/zkoM/B8GVlZWn69Om+TBJa4Fo9VvNayGUhA4AExmO40J/+iHo7hq1+1+qxmtdKLis5ADAew4b+9EfU29Hl+nnPGodt2rRJs2bN0ocffihJisVimj17tg466CBt27ZNTzzxhFpbWyUlfkhXrlzZb/uyXdXW1uqAAw5Ifn7XXXfpggsuSNv5pcRkzNy5c/Xkk08mv1ZaWqqjjjpK7e3tevrpp5Pnk6Rrr72238qdXU2fPl3/+7//K0maPHmyZs6cqalTp2r8+PGKx+N69dVX9frrr/d7zt/93d/pwQcf9GWpXND7HAIAAAAAAAAAhhb0vdxAppcuvPDC5MexWEy/+tWvBvzeWOx63DDad9999eSTT2rhwoXasGGDPM/TmjVrtGbNmn6PmzJliu66664hJ0osnH/cuHF68MEHdfHFFydX1dTU1Kimpma3x11zzTVatGjRsPNu375dTzzxxKDfHz9+vP6//+//01VXXaWMDBad+aWjo0OvvPKKjjzySOXk5AQdZ8xcq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulx/IJM1d999t2KxWPLzvpMqu35vLMI+WSNJhxxyiF544QXdd999WrFihV577TVt3bpVRUVFOvDAA3XmmWfq61//uiZPnuzM+QsLC3X//ffrm9/8pu655x4999xz+vDDDzVu3Djtt99++vKXv6xvfOMb+uxnPzvksdauXatnn31Wzz33nNavX6+tW7eqrq5OjY2NGj9+fHK1zZw5c/QP//APKioqGkNrYCCdnZ3asGGDDjvsMOcukANxrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL9gWyD1nfVQiwWS75R/K7fG4tdjwsEIeilcwAAAAAAAACAoQV9LzeQlTV33XXXqL4HwD29vb2Kx+OaOHFiKLaXc60eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/YFM1px//vmj+h4A98TjcS1dulTf+c53QrHNnGv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w9kGzQgKoJeOmeBy7PZA3GtHqt5LeSykAFAAuMxXOhPf0S9HcNWv2v1WM1rJZeVHAAYj2FDf/oj6u04lvqDvpcbyMoaANGRkZHh3Cz2nrhWj9W8FnJZyAAggfEYLvSnP6LejmGr37V6rOa1kstKDgCMx7ChP/0R9XZ0uf7oTa0BSKumpibddtttampqCjqKL1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XD+TNQBSKjs7WzNnzlR2dnbQUXzhWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6ec8aIIWC3ucQAAAAAAAAADC0oO/lsrIGQEq1t7drzZo1am9vDzqKL1yrx2peC7ksZACQwHgMF/rTH1Fvx7DV71o9VvNayWUlBwDGY9jQn/6Ieju6XD+TNQBSqru7W7W1teru7g46ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulw/26ABKRT00jkAAAAAAAAAwNCCvpfLyhoAKdXT06MtW7aop6cn6Ci+cK0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/UzWAEippqYm3X777Wpqago6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY0J/+iHo7ulw/26ABKRT00jkLPM9TR0eHcnJyFIvFgo4zZq7VYzWvhVwWMgBIYDyGC/3pj6i3Y9jqd60eq3mt5LKSAwDjMWzoT39EvR3HUn/Q93Kz0nYmAJEUi8WUm5sbdAzfuFaP1bwWclnIACCB8Rgu9Kc/ot6OYavftXqs5rWSy0oOAIzHsKE//RH1dnS5frZBA5BS8XhcN954o+LxeNBRfOFaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5fqZrAGQUrm5uZozZ46zM9q7cq0eq3kt5LKQAUAC4zFc6E9/RL0dw1a/a/VYzWsll5UcABiPYUN/+iPq7ehy/bxnDZBCQe9zCAAAAAAAAAAYWtD3ckO1subCCy/UhRdeqG9+85uqqqoKOg4ASW1tbVq5cqXa2tqCjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XnxV0AD/dfffdisVikqQ777xT5eXl+slPfqKjjz464GRAdPX29qqhoUG9vb1BR/GFa/VYzWshl4UMABIYj+FCf/oj6u0Ytvpdq8dqXiu5rOQAwHgMG/rTH1FvR5frD9U2aBkZGYrFYvI8LzlpI0kLFizQv/3bv+nQQw8NMB2iKOilcwAAAAAAAACAoQV9LzdU26Dtv//+yX87J208z9Pvf/97zZw5M+h4QCR1d3ertrZW3d3dQUfxhWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w/VZE1tba3effdd1dbWavv27XrwwQf1T//0T/rsZz/rZOcAYdDc3Kx77rlHzc3NQUfxhWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w/VNmh78tFHH2mvvfYKOgYiJuilcwAAAAAAAACAoQV9LzdUK2v2hIkaAAAAAAAAAABgUWQmawAEo7GxUTfccIMaGxuDjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7XH9hkzYknnqh7771Xra2tQUUAkAbjx4/XggULNH78+KCj+MK1eqzmtZDLQgYACYzHcKE//RH1dgxb/a7VYzWvlVxWcgBgPIYN/emPqLejy/UH9p41GRkZisVimjBhgr7yla/ovPPO05e+9KUgogApE/Q+hwAAAAAAAACAoQV9LzfwbdCam5v161//WuXl5Zo+fbquvvpqvf3220HHAuCT1tZWPfTQQ6FZRedaPVbzWshlIQOABMZjuNCf/oh6O4atftfqsZrXSi4rOQAwHsOG/vRH1NvR5foDm6z5yle+ouzsbEmS53nyPE/vvfeerrvuOh188MH6whe+oDvuuMPJveUAAAAAAAAAAACGK7Bt0CSpoaFB9913n+69914999xz/b4Xi8UkSTk5OTrjjDN03nnn6ctf/rIyMgJfDAQMW9BL5wAAAAAAAAAAQwv6Xm6gMx9FRUW65JJL9Oc//1l/+ctf9IMf/EAHHHCApL+ttmlvb9cDDzyg0047Tfvuu6++//3va+PGjUHGBjACXV1devPNN9XV1RV0FF+4Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2dLl+M8tUDjroIP34xz/WO++8o6qqKl144YUqLCyU9LeJmy1btuj//b//pyOOOEJHH320br75Zm3fvj3g5AD2xOV9IgfiWj1W81rIZSEDgATGY7jQn/6IejuGrX7X6rGa10ouKzkAMB7Dhv70R9Tb0eX6A90GbSgdHR36/e9/r3vvvVePP/64enp6kt/buU1aVlaWTj31VJ1//vk6/fTTlZWVFVRcYDdBL50DAAAAAAAAAAwt6Hu5ZlbWDCQnJ0fnnHOOKisr9cEHH+g//uM/NGPGDEl/W23T1dWlRx55RF/96lc1depUXX755XrppZcCTg4AAAAAAAAAADA8pidr+tprr730z//8z9qwYYM2bNig7373u9pnn30k/W3ipq6uTrfccouOOeaYfjNgAILT0NCga6+9Vg0NDUFH8YVr9VjNayGXhQwAEhiP4UJ/+iPq7Ri2+l2rx2peK7ms5ADAeAwb+tMfUW9Hl+s3vQ3aUHp7e/WnP/1J9957rx5++GG1t7drZzmxWKzftmlAEIJeOmdBd3e3Nm3apH333TcU2xS6Vo/VvBZyWcgAIIHxGC70pz+i3o5hq9+1eqzmtZLLSg4AjMewoT/9EfV2HEv9Qd/LdXqyZqcXX3xRP//5z3XvvfcqFovJ8zwma2BC0AMcAAAAAAAAADC0oO/lOrMN2q7ef/99XX/99Tr00EN17LHH6je/+Y1isVjQsQDsoqWlRffdd59aWlqCjuIL1+qxmtdCLgsZACQwHsOF/vRH1NsxbPW7Vo/VvFZyWckBgPEYNvSnP6Leji7X79Q6qJaWFv33f/+3fv3rX+vpp59ObnnWd3HQ+PHjdeaZZ+r8888PKiaAPjIyMlRUVKSMDGfnhvtxrR6reS3kspABQALjMVzoT39EvR3DVr9r9VjNayWXlRwAGI9hQ3/6I+rt6HL95rdB8zxPjz/+uH7961/r4YcfVltbW/LrO8ViMZWVlen888/XV7/6VeXn5wcVF+gn6KVzAAAAAAAAAIChBX0v1+z0UnV1tb73ve9p33331bx583TfffeptbVVnuclJ2oOOuggXXvttfrrX/+qp556ShdccAETNYAxnZ2d2rBhgzo7O4OO4gvX6rGa10IuCxkAJDAew4X+9EfU2zFs9btWj9W8VnJZyQGA8Rg29Kc/ot6OLtdvarJm69at+tnPfqYjjzxSRx55pH72s5/pww8/7DdBM3HiRF100UVau3at/vKXv+iHP/yhPvnJTwacHMBg2tvbtWbNGrW3twcdxReu1WM1r4VcFjIASGA8hgv96Y+ot2PY6netHqt5reSykgMA4zFs6E9/RL0dXa4/8G3Q2tvb9fvf/16//vWvtXr1avX09Ejqv81ZRkaGTj75ZJ1//vlasGCBcnNzg4oLjEjQS+cAAAAAAAAAAEML+l5uVtrOtIs1a9bo17/+tX73u9+publZUv8JGkk69NBDdf755+vv//7vNXXq1CBiAhgjz/PU0dGhnJwcxWKxoOOMmWv1WM1rIZeFDAASGI/hQn/6I+rtGLb6XavHal4ruazkAMB4DBv60x9Rb0eX6w9sG7QTTzxR99xzj5qamiT9baKmpKRE//RP/6QXX3xRGzdu1Pe+9z0magCHNTY2avHixWpsbAw6ii9cq8dqXgu5LGQAkMB4DBf60x9Rb8ew1e9aPVbzWsllJQcAxmPY/P/s3XmUVNW9/v/nNG13Ax1GEVQEFGeDoolzVHBMnMLXaCIOoMZcNblqosnVGKNijJHEGDAxQpw1KCoqTuDFiKiJYjSCijIoo6ggU/VcPZ7fH/WjLijQDb2b89n7vF9rsdJAVdfz7E9vzKq9zinm6Uba19Hn/ondBq2goEBRFCmOY22zzTY68cQTNXz4cJ100knaZpttkogEOJf0pXMWNDY2asWKFerRo4fatWuXdJxW862P1bwWclnIACCH/RgW5ulG2tcxtP6+9bGa10ouKzkAsB9DwzzdSPs6tqZ/0u/lJnpYc8ABB2j48OE666yz1L179yRiAG0q6Q0OAAAAAAAAAGhe0u/lJnYbtPfff19vv/22Lr30Ug5qgIBVVlbq/vvvz382le9862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/ssIarC4B0KCwsVL9+/VRYWJh0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/sNmibY+bMmfrnP/+pTz75RGvWrFFjY6PuueeepGMBzUr60jkAAAAAAAAAQPOSfi83sStrWmLChAn6+te/rm984xu6/PLLdeutt+ruu+/W/fff/5XHLl++XDvssIO22247nXbaaVs/LIANqq2t1fTp01VbW5t0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9zd7WHPxxRfrBz/4gWbPnq04jvO/NqZnz5465phjtHLlSj3zzDP69NNPt2JaABtTV1enmTNnqq6uLukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub/I2aNdee61uvvnm/O9POOEEHX300XrhhRf08ssvK4oiNTY2fuV5L774ok444QRFUaQxY8boRz/60daMDXxF0pfOAQAAAAAAAACal/R7ueaurPnoo4/0+9//XpLUpUsXTZ06VZMnT9YvfvEL7b333pt87tFHH62OHTtKkqZNm9bWUQG0QFNTkzKZjJqampKO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/uYOa/72t7+poaFBURTprrvu0qBBg1r83Hbt2mnfffdVHMf64IMP2i4kgBYrLy/X6NGjVV5ennQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtAMOOEAzZ87Urrvuqnnz5q33d5deeqnuuOOOjd4GTZLOPvtsPfLII+rWrZtWrly5NSIDG5X0pXMWNDU1qby8XJ06dVJBgbnz4c3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nVsTf+k38st3Gqv1EKLFy9WFEU6+OCDt+j5nTp1kiRVVFS4jAVgCxUUFKhLly5Jx3DGtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zR2tVVVWSpNLS0i16fnV1tSSppKTEWSYAW66iokJjxowJ5gDVtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zhzXdu3eXJK1YsWKLnj9//nxJUo8ePZxlArDlioqKNHDgQBUVFSUdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c19Zs2RRx6pf/7zn+rdu7eWLFmy3t8195k1q1at0o477qj6+noNGTJETzzxxNaKDWxQ0vc5BAAAAAAAAAA0L+n3cs1dWXP88cdLkj799FM9/fTTm/XcW265RXV1dZKk4447znk2AJsvm81q2rRpymazSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/c4c15513Xv7zZn784x9r0aJFLXreAw88oNtuu01RFKlr164699xz2zAlgJZqaGjQokWL1NDQkHQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbNEm67rrrdNNNNymKInXr1k3XX3+9hg4dqhtuuGG926Bls1m9/vrr+utf/6qnnnpKcRwriiLdfvvt+slPfpJ0DSDxS+cAAAAAAAAAAM1L+r1cc1fWSNKIESN02mmnKY5jrV69Wpdffrm222473X333fnHdO3aVR07dtRxxx2XP6iRpOHDh3NQAxjS2NioZcuWbfBzpnzkWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub/Jw5ooivTYY4/p2muvVUFBgeI4VhzHqqurUxRFkqSysrL8n8dxrHbt2un666/Xvffem3B6AOuqqKjQ2LFjVVFRkXQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3kbtHUtXrxYo0aN0uTJkzVv3ryv/P1OO+2kk08+WVdeeaV22WWXBBICG5f0pXMWxHGs2tpaFRcX5w9bfeZbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dWxN/6TfyzV/WLOu1atX6/PPP1dZWZk6duyonj17qlevXknHAjYq6Q0OAAAAAAAAAGhe0u/lmrsN2syZMzf6d926ddM+++yjww47TPvtt98mD2quvPLKNkgHYHOVl5dr1KhRKi8vTzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7mzus+fa3v60FCxa06ntcccUVGjVqlJtAAFqlpKREgwYNUklJSdJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Ovrc39xt0AoKCrTzzjvr9ddfV8+ePTf7+VdeeaX+9Kc/KYoiNTY2tkFCoOWSvnQOAAAAAAAAANC8pN/LNXdljSQtWrRIJ5xwgsrKyjbreeteUVNQYLIakDo1NTV64YUXVFNTk3QUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3ei8d3vfldxHOv999/XKaecomw226LnXXHFFRo9erTiOFa7du107733tnFSAC3R1NSkTCajpqampKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/udug1dbW6oQTTtCrr76qKIp04oknauLEiWrXrt1Gn7Ohg5pzzz13K6YGNizpS+cAAAAAAAAAAM1L+r1cc1fWFBcX65lnntF+++2nOI41adIkXXDBBRt9/M9+9jMOagDDGhoatGjRIjU0NCQdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0d1khSp06dNHnyZO28886K41h///vfdcUVV3zlcT/72c90++235w9q7rvvPg5qAGMqKyv1wAMPqLKyMukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub+42aOuaP3++jjjiCC1btkxRFOmmm27SL3/5S0nST3/6U/35z39e76DmnHPOSTgxsL6kL50DAAAAAAAAADQv6fdyC7faK22B/v37a/LkyRo0aJDKysp07bXXqnv37vrwww91++23S5LatWun+++/X2effXbCaQEAAAAAAAAAADafydugrWu//fbT008/rZKSEknSJZdcoj//+c+SOKgBfFBWVqZbbrlFZWVlSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/84c1knTkkUfqkUceUUFBLm4cxyooKNADDzzAQQ1gXIcOHTRkyBB16NAh6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe5v+jNrvuzee+/VhRdeqHbt2unBBx/U0KFDk44EbFLS9zkEAAAAAAAAADQv6fdyE7myZpdddtmiXzfddJMKCwtVWFioX/3qV5t8bP/+/ZOoBuBLqqurNXHiRFVXVycdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/QuTeNFFixYpiqItfn5jY6MWL1680b+P47hV3x8AAAAAAAAAAGBrSeQ2aGs/e6YtRVGkxsbGNn8dYFOSvnQOAAAAAAAAANC8pN/LTeTKmoULFybxsgASUF9fr/nz56t///7aZpttko7Tar71sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7J/KZNX379t0qvwAkz+f7RG6Ib32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/6J3AYNSIukL50DAAAAAAAAADQv6fdyE7myBgAAAAAAAAAAADkc1gBoU5lMRiNGjFAmk0k6ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+3MbNKANJX3pnAUNDQ1aunSpevfurcLCwqTjtJpvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba17E1/ZN+L5fDGqANJb3BAQAAAAAAAADNS/q9XG6DBqBNVVVVafz48aqqqko6ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+3NYA6BNFRQUqEuXLiooCOOfG9/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9uQ0a0IaSvnQOAAAAAAAAANC8pN/L9e94CYBX6urqNHPmTNXV1SUdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/TmsAdCmstmspk2bpmw2m3QUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj735zZoQBtK+tI5AAAAAAAAAEDzkn4vlytrALSpOI6VzWYVyrmwb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/4c1gBoU2VlZRo5cqTKysqSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7cBg1oQ0lfOmdBY2OjVqxYoR49eqhdu3ZJx2k13/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK9ja/on/V6ud4c1cRxr8uTJ+te//qVVq1apW7du2muvvXTyySera9euSccD1pP0BgcAAAAAAAAANC/p93JN3AbtySef1AknnKDttttO7du311577aXrrrtOVVVV6z1u1qxZGjBggE455RTdcsstuuuuuzRy5Eidd9552nHHHXXDDTeoqakpoRYANqSyslL333+/Kisrk47ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+iR7WxHGs888/X2eccYb+8Y9/aOXKlaqtrdW8efP029/+VocccojKy8slSR999JGOOuoozZ49W3Ecr/dLkrLZrH7zm99o6NChXn54EBCqwsJC9evXT4WFhUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/0Rvg3bjjTfqhhtuUBRFGzxgiaJIJ510kp555hkdc8wxevnllyVJnTp10mGHHaauXbvq888/1xtvvKHa2tr8c2677TZdfvnlW7ULsCFJXzoHAAAAAAAAAGhe0u/lJnZlzWeffabf/e53+YOao48+Wg899JBeeOEF/fGPf9QOO+ygOI71/PPP67HHHtPLL7+sKIp02WWX6fPPP9ekSZM0btw4TZ06VZ9++ql+8IMfSMpdrXP99deruro6qWoA1lFbW6vp06fnD1R951sfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/Yoc1Dz74YH7BzjrrLP3jH//Q2WefreOPP14/+9nP9O9//1vbbbedJOnHP/6xoijSeeedp1GjRql9+/brfa9u3brp4Ycf1vHHHy9Jqqio0BNPPLF1CwHYoLq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc//EboP27W9/W1OmTNE222yjpUuXqkePHl95zB//+Ef94he/kCRts802Wrx4sXr16rXR7/nee+9p4MCBiqJI55xzjh544IE2yw+0RNKXzgEAAAAAAAAAmpf0e7mJXVkza9YsRVGkgw46aIMHNZJ04oknSsp9Ds0BBxywyYMaSdp333216667Ko5jzZw503VkAFugqalJmUxGTU1NSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xA5r1qxZI0naddddN/qYfv365b/eY489WvR99913X0nS559/vuXhADhTXl6u0aNHq7y8POkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3un9ht0IqKitTY2KiLL75Yd9xxx0YfV1BQoCiK9OMf/1h//vOfm/2+F110ke666y4VFRUpm826jAxstqQvnbOgqalJ5eXl6tSpkwoKEjsfdsa3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt69ia/km/l1u41V7pS0pLS1VWVqbKysoWPT6KohY9LqGzJwAbUVBQoC5duiQdwxnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/RM7Wtthhx0kSYsXL272sZtzALP29mq+DgQITUVFhcaMGaOKioqkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9iV9b0799fH374oWbPnr3Jx7322muS/u9wpzlz586VJPXp06d1AQE4UVRUpIEDB6qoqCjpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197p/YZ9Zce+21uvnmmxVFkT766CPtsssurf6eFRUV6t69uxobGzVs2DDdd999DpICWy7p+xwCAAAAAAAAAJqX9Hu5id0G7aCDDsp//dJLLzn5nhMnTlRDQ4Mk6eCDD3byPQG0Tjab1bRp05TNZpOO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/okd1hx++OE68cQTdeKJJzq7f9yf//zn/NfHHnusk+8JoHUaGhq0aNGi/EGq73zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73T+w2aK6tWbNGDz74oCSpuLhYF198ccKJgOQvnQMAAAAAAAAANC/p93ITu7LGta5du+ryyy/X5ZdfzkENYEhjY6OWLVumxsbGpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/MIc1AGyqqKjQ2LFjnd3uMGm+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+wdzGzTAoqQvnbMgjmPV1taquLhYURQlHafVfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu5hVvtlRx56623NHv2bEnSsGHDEk4DoDlRFKmkpCTpGM741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/dbdAefPBBnXfeebrggguSjgKgBcrLyzVq1CiVl5cnHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/29O6xZi7u3AX4oKSnRoEGDvD3R/jLf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/b37zJpLL71Ud9xxh6IoUmNjY9JxgE1K+j6HAAAAAAAAAIDmJf1errdX1gDwQ01NjV544QXV1NQkHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/05rAHQppqampTJZNTU1JR0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9+c2aEAbSvrSOQAAAAAAAABA85J+L5crawC0qYaGBi1atEgNDQ1JR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc38OawC0qcrKSj3wwAOqrKxMOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/t7dxu0f//735o9e7Ykafjw4QmnATYt6UvnAAAAAAAAAADNS/q93MKt9kqOHHTQQTrooIOSjgEAAAAAAAAAAOAEt0ED0KbKysp0yy23qKysLOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz2FNAOrq6vTQQw/pxBNPVN++fVVSUqLtt99ehx12mG699VatXLnSq9dfuHChHnvsMf3P//yPBg8erE6dOimKovyv1pg9e7Z+8YtfaN9991W3bt3UsWNH7b777ho+fLheeumlVn1vbFiHDh00ZMgQdejQIekoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3u791n1khSQ0ODVq1apY4dO6q0tDTpOImaM2eOhg4dqpkzZ270Mdttt53uu+8+nXjiiaZf//PPP9eAAQO0atWqTT5uS39kf/vb32rEiBGqr6/f6GOGDh2qsWPH6mtf+9oWvcaXJX2fQwAAAAAAAABA85J+L9ebK2sWL16syy+/XLvvvruKi4u1ww47qHPnzurUqZNOPfVUPf7440lH3OqWLl2qY445Jn9QEkWRjjrqKF1wwQU65ZRT1L59e0nSF198oSFDhmjq1KmmX7+2trbZg5otdd111+naa6/NH9Rsv/32+v73v69hw4att+EeeeQRnX766WpoaGiTHGlUXV2tiRMnqrq6OukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uX5jUCz/88MOSpD322EPf+MY3NvnY2267Tddcc03+jfZ1r6yorKzU888/r+eff16jR4/WU089pR49erRdcEPOOussffbZZ5Kkvn376umnn9Z+++2X//uVK1fqzDPP1EsvvaT6+nqdccYZmj9/vrp06WL69UtLS3XAAQfooIMO0oEHHqhsNqvhw4dvcc6XXnpJv/nNb/K//8UvfqGbbrpJRUVF+T975JFHdMEFFyibzWrKlCm6+eabdd11123xawIAAAAAAAAA0FKJ3QatoKBAURTpJz/5iW6//faNPm7EiBG68cYbFcexoihq9hZYu+22m9566y116tTJdWRTJk2apJNOOkmSVFRUpLffflsDBgz4yuOqqqq07777asGCBZKkX/7yl7r55ptNvn5NTY0WLFigvfbaSwUF/3fR17Rp0zR48OD87zf3R/aggw7SW2+9JUk688wz9cgjj2zwcWPGjNEll1wiSfra176mBQsWaNttt92s1/qypC+dAwAAAAAAAAA0L+n3ck3fBu3VV19d74qILl266Nprr9W0adM0d+5cvfPOO7rnnnt0+OGHS8rdhuvjjz/WpZdemlTkreaOO+7Ifz18+PANHpRIUseOHXXjjTfmfz927Fgnt/hqi9dv37699tlnn/UOalrrrbfeyh/UFBQU6Pe///1GH3vRRRdpt912kyRVVFTooYcecpYjzerr6zVnzpxNflaQT3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N31Yc8MNN6ipqUmSdOCBB2rOnDm68cYbdeSRR2q33XbTwIEDdf755+u1117TrbfeqjiOFcexHn74YS1cuDDh9G2nsrJSL730Uv73559//iYf/73vfU+lpaWSpNWrV+vVV1/1+vU3x8SJE/NfH3vssdppp502+tgoita73dpTTz3VltFSw+f7RG6Ib32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/5mb4P2ySefqG/fvoqiSN27d9f777+vnj17bvJ7/vjHP9aYMWMURZGuv/76YD9zZMqUKTrhhBMk5a5cyWQyKizc9McPHX/88XrxxRclSb/61a900003efP6rbkN2mGHHaY33nhDknTzzTfrl7/85SYf//rrr+ev1GrXrp2qqqpUXFzc4tf7sqQvnQMAAAAAAAAANC/p93LNXlnz2muv5b/+7//+72YPaqTclTjbbLONJOlf//pXm2VL2uzZs/NfDxgwoNmDEkk64IADNvh8H19/c6z7Wutm2Jj9998//3VjY6PmzZvXJrkAAAAAAAAAAFjL7GHNurcxO/nkk1v0nO22204HHnig4jjeqgcCW9vcuXPzX/ft27dFz+nTp0/+6zlz5nj9+i31xRdfKJPJ5H/fkqzt27dXjx498r/fWllDlslkNGLEiPVm4TPf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0e1qxevTr/9doPfW+JXXfdVZK0Zs0a55msWLVqVf7rllxxJEm9evXKf73u2vr4+i21bk7JdtaQlZaWavjw4fnPLfKdb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/5mD2vat2+f/7pjx46b/byGhgbnmayorKzMf73uOm3Kuo9b9/k+vn5Lffl1ksxaUlKS/weisbFRmUwm/9k75eXlqqurkyTV1NSoqqpKUu5neN0T4LKyMtXX10vKfVDW2g/Jqq+vV1lZWf5xmUwm//NfVVWlmpoaSVJdXZ3Ky8sl5T73J5PJqLGxMd8zm81Kkmpra1VRUSFJampqUiaTUVNTkySpoqJCtbW1kqRsNptfn011qq+vV48ePVRYWBhEp8LCQvXs2TP/HOudGhoatO2226qwsNDUz14URerXr5+y2Wyb/ew11ymOY/Xr1091dXWJz8lVJ0s/e3Si0+Z0qq6uVr9+/dSuXbtgOoU4p5Z2qqmpUb9+/VRQUBBMpyTmVFdXp+22206FhYXBdNqcOdXX16tfv35qamoKolNtba169uypwsJCL+ZUV1enfv36KY5jUz97hYWF6tatW/45Sf0bkc1m1atXLxUWFpr/2Qv13wg60WltpyiK1KVLF7Vr1y6YTiHOqaWdJKlLly75j1wIoVMScyosLNT222+ff04InTZnTi7eC0uK2cOaXXbZJf/15izU2sF269bNdSQz1v6ASlJRUVGLnlNcXJz/eu1G8PX1W2rdnFKyWQ855BCdfvrpkqQVK1Zo9OjR+X9A7r33Xn344YeSpFdeeUXPPvusJGnp0qUaPXp0/nvceeedmj9/viRpypQpmjJliiRp/vz5uvPOO/OPGz16tJYuXSpJevbZZ/XKK69Ikj788EPde++9knL/uI0ePVorVqyQJE2YMEHTp0+XJM2YMUPjxo2TlNtPo0ePzu+rcePGacaMGZKk6dOna8KECc12+sc//qExY8aoqqoqiE5VVVW66667NHHiRC/m9Oqrr+qvf/2rqqqqTP3sLVmyROPHj9ejjz7aZj97zXX64IMPNH78eE2aNCnxObnqZOlnj0502pxO99xzj8aPH6/Vq1cH0ynEObW000MPPaTx48dr2bJlwXRKYk6TJk3S2LFjVVVVFUynzZnTP/7xD40fP14zZswIotPEiRN11113qaqqyos5TZo0SePHj9cHH3xg6mevqqpKf/7zn/OPS+rfiEcffVR33323qqqqzP/shfpvBJ3otLbTkiVLNHr06PydUULoFOKcWtrpo48+0ujRo/NvoIfQKYk5VVVV6Z577tFDDz0UTKfNmZOL98ISEyckiqK4oKAgPu644+IHHnjgK79uvPHG/GP+9a9/tfj7HnrooXEURfGAAQPaMP2G/fnPf4732GMPp78ef/zxr7zOiSeeGEuKJcVXXXVVi7JNmjQp/5zS0tJW9dzar//yyy/nn7s5P7L//ve/13teTU1Ni5530EEH5Z9z6623blbWL5s1a1YsKS4pKYlLS0vjWbNmxQ0NDfGaNWvipqamOI7juKysLK6trY3jOI6rq6vjysrKOI7juL6+Pl6zZk3+e2Uymbiuri6O4ziuqqqKq6qq4jiO47q6ujiTyeQft2bNmri+vj6O4ziurKyMq6ur4ziO49ra2risrCyO4zhuamqK16xZEzc0NMRxHMcVFRX59clms3F5eXkcx3Hc2NgYr1mzJm5sbIzjOI7Ly8vjbDYbx3Ec19TUxBUVFXEcx5vstGrVqviZZ56Jq6urg+hUXV0dP/vss/GKFSu8mNPq1avjp59+Oq6urjb1s1dRURFPnjw5/uKLL9rsZ6+5TmVlZfHkyZPjlStXJj4nV50s/ezRiU6b02n58uXx5MmT46qqqmA6hTinlnZaO8/KyspgOiUxp5UrV+b/P1QonTZnTqtWrYonT56c/2+2751WrFgRP/vss3F1dbUXc1q5cmU8efLkuKyszNTPXnV1dTxx4sR8pqT+jfjiiy/y87T+sxfqvxF0otPaThUVFfHEiRPzmULoFOKcWtqpvLw8njhxYj5TCJ2SmNPa966WL18eTKfNmVNr3gtb+17u2l+zZs2Kt6Yojv//a4C2soKCAkVRtMnHxHGsKIr029/+VldffXWz37OhoUFdu3ZVdXW1jj/+eE2ePNlV3Ba54YYbNGLECKff86677tKFF1643p/94Ac/0GOPPSZJuuyyy1p06vfkk0/qe9/7nqTcZ7J8/vnnW5xpa7/+tGnTNHjw4PzvW/ojO3v2bO299975369evVpdu3Zt9nn77ruv3n//fUnSmDFjdNFFF7U465d98MEH+vrXv57//axZs7TPPvts8fcDAAAAAAAAALiX9Hu5id4GLY7jTf5a+5innnqqRd/vpZdeyl8md/DBB7dZ7qR17949//Xy5ctb9Jxly5blv27tLeKSfv2WWjenZDtryOrq6jRz5sz8/SB951sfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/YVIvPHz48BY/NooirVmzptmrIu6+++7814ceeugWZ9tSN9xwg2644YY2f5099tgj//XixYtb9JwlS5bkv95zzz29fv2W2m677dSlS5f8Zx4tXry42dfOZrP5eyJKWy9ryLLZrKZNm6ZddtmlxZ8bZJlvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/ondBs21qqoqXXbZZWpqapKU+8CiTp06JZyqbUyZMkUnnHCCJKljx47KZDIqLNz0udvxxx+vF198UZL0q1/9SjfddJM3r7+lt0GTpMMOO0xvvPGGJOl3v/tds7fTe/3113X44YdLktq1a6eqqioVFxe3+PW+LOlL5wAAAAAAAAAAzUv6vdxEb4PmUseOHXXPPffovvvu03333RfsQY2UO4BYe4BQVVWlt99+e5OPr62t1fTp0/O/P/roo71+/c2x7iHPtGnTmn38K6+8kv963Z7YcnEcK5vNbtYhm2W+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+wdzWJMmpaWlOuaYY/K/v//++zf5+CeffFIVFRWScp/BcuSRR3r9+ptjyJAh+a//8Y9/aOnSpZt8/Lpd1n0utlxZWZlGjhypsrKypKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/MLdBS5vnn39eJ598siSpuLhY//nPfzZ4SVZ1dbX2228/ffzxx5Kkq6++Wr/73e+8ev3W3AZNkg466CC99dZbkqSzzz5bf//73zf4uL/97W+66KKLJElf+9rXtGDBAm277bab9VpflvSlcxY0NjZqxYoV6tGjh9q1a5d0nFbzrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zq2pn/S7+VyZY2nTjrpJB1xxBGScrcZO/nkk/Xee++t95hVq1ZpyJAh+YOSbt266aqrrtro91y0aJGiKMr/2tQVM23x+m1l3cOhcePG6eqrr1Z9ff16j3nsscf005/+NP/7n//8560+qEFOu3bt1KtXr2D+4+BbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1Hnv44Ye1/fbbS8odtAwcOFCDBw/WhRdeqO9+97vq06ePXnzxRUlSYWGhHnvsMXXp0sX061933XUaOHDger8uvPDC9R7z5b8fOHCgnnnmmY1+z2OOOUbXXntt/vcjR45Uv379dOaZZ+q8887TgAED9IMf/EA1NTWSpOOOO07XXHPNliwJNqCyslL333+/Kisrk47ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+hUkHcGnJkiXr/b5Pnz4JJdk6evfuralTp2ro0KGaOXOm4jjWtGnTNG3atPUe16NHD913333rfc6M1ddfsmSJ3n333U0+ZkN/v3r16k0+58Ybb1RxcbFuvPFG1dfX67PPPtOjjz76lcedeeaZGjt2rAoLg9oaiSosLFS/fv2CWVPf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/YP6zJqCggJFUSRJiqJIDQ0NCSfaOurq6jR+/Hg98sgj+uCDD7R8+XJ16dJFu+yyi0477TSdf/75Lbql16JFi7Tzzjvnf3/ffffpvPPO22qvL0nnnXeeHnjggRY9dl0tzTp79mzdfffdmjJlij755BPV19dr++2316GHHqrhw4fr2GOP3ezX3pSk73MIAAAAAAAAAGhe0u/lBnlYE8exoihSY2Nj0pGQcklvcAtqa2s1Y8YM7b///iouLk46Tqv51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR1b0z/p93KD+8yagM6egCDU1dVp5syZqqurSzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7B3VlzZdvnzV8+PCEkgA5SZ/GAgAAAAAAAACal/R7uf59ys4mcDgD2NPU1KTy8nJ16tRJBQX+X8znWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub9faQF4p7y8XKNHj1Z5eXnSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63D+o26AB1iR96ZwFPp9mb4hvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba17E1/ZN+Lzeo26ABsKegoEBdunRJOoYzvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/un72gNwFZVUVGhMWPGqKKiIukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz2ENgDZVVFSkgQMHqqioKOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uH9xn1px88sn68MMPFUWR5s+fn3QcpFzS9zkEAAAAAAAAADQv6fdyg7uy5tNPP9WiRYu0aNGipKMAkJTNZjVt2jRls9mkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9whzUAbGloaNCiRYvU0NCQdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvcP7jZo+++/v959911FUaTGxsak4yDlkr50DgAAAAAAAADQvKTfy+XKGgBtqrGxUcuWLQvm8NS3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/8KkXvjGG29sk++7bNmyNvm+ALZMRUWFxo4dq8svv1xdunRJOk6r+dbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe6f2G3QCgoKFEVRm3zvOI65DRpMSPrSOQviOFZtba2Ki4vbbM9vTb71sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfx9b0T/q93MSurFnL9VlRGn8AAcuiKFJJSUnSMZzxrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63D+xz6xZe6gSRZEOPfRQHXXUUU5+dejQIalKADagvLxco0aNUnl5edJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7OvrcP7Era3bbbTfNmzdPURTpD3/4gw477DAn33f//ffXu+++6+R7AWi9kpISDRo0yNsT7S/zrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63D+xz6w555xz9PDDDyuKIt122226/PLLnXzftYc1fGYNLEj6PocAAAAAAAAAgOYl/V5uYrdBO/DAA/Nfv/XWW0nFANDGampq9MILL6impibpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197s9hDYA21dTUpEwmo6ampqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2K3QaupqVGnTp3U2NioKIq0evVqde7cudXfd+DAgXrvvfe4DRpMSPrSOQAAAAAAAABA85J+LzexK2vat2+vK6+8UsOHD9ewYcO0cuVKJ9938uTJWrhwoRYsWODk+wFonYaGBi1atEgNDQ1JR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc//EDmsk6ZZbbtF9992n++67T/3793fyPbfffnv17dtXffv2dfL9ALROZWWlHnjgAVVWViYdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/RO7DRqQBklfOgcAAAAAAAAAaF7S7+UmemUNAAAAAAAAAABA2nFYA6BNlZWV6ZZbblFZWVnSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63J/DGgBtqkOHDhoyZIg6dOiQdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnM2uANpT0fQ4BAAAAAAAAAM1L+r1crqwB0Kaqq6s1ceJEVVdXJx3FCd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9OawBAAAAAAAAAABIELdBA9pQ0pfOAQAAAAAAAACal/R7uVxZA6BN1dfXa86cOaqvr086ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+3NYA6BN+XyfyA3xrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63J/boAFtKOlL5wAAAAAAAAAAzUv6vVyurAEAAAAAAAAAAEgQhzUA2lQmk9GIESOUyWSSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7cBg1oQ0lfOmdBQ0ODli5dqt69e6uwsDDpOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nVsTf+k38v1+rDm888/1//+7/9q+fLl2m677XT88cdrxx13TDoWkJf0BgcAAAAAAAAANC/p93LN3Qaturpa1113na677jrdd999G33cqFGjtMsuu+iHP/yhrrnmGl144YXaeeeddf3112/FtACaU1VVpfHjx6uqqirpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/uOqjnn39eN910k6Io0u23377Bxzz99NO64oorvvLnDQ0Nuummm1RUVKRf/epXbR0VQAsUFBSoS5cuKigwdza8RXzrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtB//+McaM2aMoijSZ599pp49e37lMXvuuafmzZunKIq03Xbb6fDDD9cnn3yit956S5JUXFysefPmaaeddtra8YH1JH3pHAAAAAAAAACgeUm/l2vueGnGjBmSpD322GODBzWvv/56/qBmwIAB+vDDDzVhwgS9+eab+uUvfylJqqur04MPPrhVcwPYsLq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zhzWLFy9WFEXae++9N/j3kyZNyn993XXXqWvXrvnfX3PNNSotLZUkTZ06tW2DAmiRbDaradOmKZvNJh3FCd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9zd0GrUOHDqqtrdWFF16osWPHfuXvjzzySP3zn/9Uhw4dtGrVKhUXF6/399/+9rc1ZcoU9erVS5999tnWig1sUNKXzgEAAAAAAAAAmpf0e7nmrqypr6+XpA1+AFB9fb3efvttRVGkQw455CsHNZK0/fbbS5IymUyb5gTQMnEcK5vNyti58BbzrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63N/cYc3XvvY1SdKKFSu+8ndvvvlm/vKlww8/fIPP32abbSRJTU1NbZQQwOYoKyvTyJEjVVZWlnQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtG984xuaMWOGevfurSVLlqz3d1dddZX+8Ic/KIoivfDCCzruuOO+8vzTTjtNEydO1Lbbbqsvvvhia8UGNijpS+csaGxs1IoVK9SjRw+1a9cu6Tit5lsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ1bE3/pN/LNXdlzWGHHSZJ+vTTT/X3v/89/+crVqzQfffdJ0lq3769vvWtb23w+bNmzVIURerXr1+bZwXQvHbt2qlXr17B/MfBtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zhzXDhw/Pf33BBRdo2LBhuvLKK3XQQQdp5cqViqJIZ5xxhtq3b/+V5y5fvlzz58+XJA0YMGCrZQawcZWVlbr//vtVWVmZdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvcvTDrAl33zm9/Uj370I911111qbGzUuHHj1vv70tJSXX/99Rt87lNPPaU4jhVFUf4KHQDJKiwsVL9+/VRYaO6fmy3iWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub+5z6yRcveV+/nPf6477rhDDQ0N+T/faaed9NBDD+nII4/c4PP2339/vfvuu4qiSAsXLlSfPn22VmRgg5K+zyEAAAAAAAAAoHlJv5dr7jZoUu6+cn/605+0bNkyPfvssxo3bpxeffVVzZ8/f6MHNatXr9aQIUN0/fXX6w9/+AMHNYARtbW1mj59umpra5OO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/iYPa9bq1q2bTjrpJA0dOlTf+ta3NnnpUrdu3XT99dfr+uuv1xVXXLEVUwLYlLq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc3+Tt0EDQpH0pXMAAAAAAAAAgOYl/V6uuStrLr30Uv373/9OOgYAR5qampTJZNTU1JR0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9zd3WHPHHXfo0EMP1R577KHf/OY3WrBgQdKRALRCeXm5Ro8erfLy8qSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v7nboBUUFCiKovX+7JBDDtG5556r73//++rWrVtCyYDNl/SlcxY0NTWpvLxcnTp1UkGBufPhzeZbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dWxN/6TfyzV3WPNf//VfeuKJJ7RmzZr8n609vNlmm2307W9/W+eee65OOeUUFRUVJRUTaJGkNzgAAAAAAAAAoHlJv5dr7mjtb3/7mz7//HM9+eSTOu2001RcXKw4jhXHserq6vTss8/q+9//vnr16qWLLrpIr776atKRAWxCRUWFxowZo4qKiqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v7nDGkkqKirSkCFDNGHCBC1fvlx33XWXBg0apCiK8gc3mUxGd999twYPHqx+/frp2muv1ezZs5OODuBLioqKNHDgwGCuhPOtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Ovrc39xt0Dbl008/1bhx4zRu3Di9//77+T9f9zNu9t9/f5177rk688wz1bNnzyRiAnlJXzoHAAAAAAAAAGhe0u/lmryyZmN23HFH/c///I/effddvffee/rFL36hnXbaKX+1TRzHmjFjhq644gr16dMn6bgAJGWzWU2bNk3ZbDbpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/VYc26vv71r2vkyJFavHixpk6dqgsvvFBdunSRJMVxrIaGhmQDApAkNTQ0aNGiRcHsSd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9vboN2sZks1k99dRTuueeezR16lRJuVujNTY2JpwMaZf0pXMAAAAAAAAAgOYl/V6ut1fWxHGsKVOmaPjw4erZs6fOOeccvfzyy+t9fg2A5DU2NmrZsmXBHJ761sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/dYc1//vMf/exnP9OOO+6o73znO/r73/+uioqK/GfWFBYW6uSTT9b48eOTjgpAUkVFhcaOHauKioqkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub8Xt0FbuHChxo0bp3HjxmnevHn5P183+iGHHKJzzjlHP/jBD9S9e/ckYgJfkfSlcxbEcaza2loVFxcHceWbb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2texNf2Tfi+3cKu90mZatWqVHn30UY0bN07Tp0/P//m6BzS77rqrzj77bJ1zzjnq379/EjEBNCOKIpWUlCQdwxnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c3dBu3RRx/VKaecoh122EGXXnqppk+fnr/FWRzH2nbbbfWTn/xEb7zxhubNm6frr7+egxrAsPLyco0aNUrl5eVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39zV9YMHTpUURStdwVN+/btdcopp+icc87Rt7/9bRUWmosNYCNKSko0aNAgb0+0v8y3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzf3OfWVNQUJD/36OOOkrnnnuuvve97+lrX/tawsmAzZf0fQ4BAAAAAAAAAM1L+r1cc7dBGzBggEaOHKnFixfrpZde0nnnncdBDeCxmpoavfDCC6qpqUk6ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+5u7n9i7776bdAQADjU1NSmTyaipqSnpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/uNmhASJK+dA4AAAAAAAAA0Lyk38s1dxs0AGFpaGjQokWL1NDQkHQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj7357AGQJuqrKzUAw88oMrKyqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P7dBA9pQ0pfOAQAAAAAAAACal/R7uVxZAwAAAAAAAAAAkCAOawC0qbKyMt1yyy0qKytLOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/tzWAOgTXXo0EFDhgxRhw4dko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+fGYN0IaSvs8hAAAAAAAAAKB5Sb+Xy5U1ANpUdXW1Jk6cqOrq6qSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1AAAAAAAAAAAACeI2aEAbSvrSOQAAAAAAAABA85J+LzexK2t23XVX/eY3v9GiRYuSigBgK6ivr9ecOXNUX1+fdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvdP7LBmwYIFuuGGG7Trrrtq0KBBuv/++1VZWZlUHABtxOf7RG6Ib32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/6J3QatoKBAURQpjmNFUSRJat++vU477TQNGzZMxx57bBKxAKeSvnQOAAAAAAAAANC8pN/LTezKmiuvvFK9evWSJMVxrDiOVV1drXHjxumEE05Qnz599Ktf/Upz585NKiIAAAAAAAAAAECbS+yw5g9/+IM++eQTTZ48WUOHDlX79u0l/d/BzdKlS3XLLbdo77331iGHHKIxY8Yok8kkFRfAFspkMhoxYkQw+9e3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/8Rug/ZllZWVeuyxx/TQQw/p1Vdf1bqx1t4mraioSCeffLKGDx+u73znO2rXrl1ScYEWSfrSOQsaGhq0dOlS9e7dW4WFhUnHaTXf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r2Nr+if9Xq6Zw5p1LVmyRA8++KD+/ve/a968eev93dqDmx49eujss8/WsGHDtN9++yURE2hW0hscAAAAAAAAANC8pN/LTew2aJvSp08fXXvttZozZ47eeOMNXXzxxerWrZuk/7tN2hdffKFRo0bpgAMO0MCBAzVq1Ch98cUXCScH8GVVVVUaP368qqqqko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+Jg9r1nXwwQfrr3/9qz7//HM98cQTOvXUU7XNNttI+r+Dm/fff19XXnmlevfurVNOOUUTJkxQXV1dwskBSFJBQYG6dOmiggLz/9y0iG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+Jm+D1pxVq1bp4Ycf1kMPPaS33357vb9be5u0rl27auXKlUnEA/KSvnQOAAAAAAAAANC8pN/L9e94SVL37t116aWX6t///rc++OADXX311dppp53yBzVxHGvNmjUJpwQgSXV1dZo5c2YwV7v51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197u/lYc26+vfvr/33319f//rX5eFFQkDwstmspk2bpmw2m3QUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj739/I2aJL0r3/9Sw8++KAef/xxlZWVrfd3cRwriiI1NjYmlA7ISfrSOQAAAAAAAABA85J+L9erK2sWLFigG264QbvuuquOPPJI3X333cpkMorjOP+rT58+uvbaazVv3ryk4wJQ7vA0m80Gc+Wbb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7mD2vKyso0duxYHX744dptt930m9/8RgsWLMgfzkhSaWmphg8frqlTp2rhwoW68cYb1b9//4STA5Bye3jkyJFfuQLOV771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7m7wNWmNjo55//nk99NBDeu655/IfBrRu1CiKNHjwYA0fPlzf+9731KFDh6TiAhuV9KVzFjQ2NmrFihXq0aOH2rVrl3ScVvOtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Oramf9Lv5Zo6rHnrrbf00EMPafz48Vq1apUkfeVypd13313Dhg3Tueeeq5122imJmECLJb3BAQAAAAAAAADNS/q93MRvg/bJJ5/od7/7nfbee28dcsghuuOOO7Ry5cr1bnPWpUsXXXTRRXr99dc1Z84cXXPNNRzUAJ6orKzU/fffr8rKyqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2FSL3z//ffrwQcf1Kuvvpo/lFn3Kpp27drphBNO0PDhw3XqqaequLg4qagAWqGwsFD9+vVTYWFi/9w45Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/YrdBKygoUBRFX7nN2YABAzR8+HCdffbZ6tmzZxLRAGeSvnQOAAAAAAAAANC8pN/LTfQ2aGsPanr06KHLL79c77zzjt59911dccUVHNQAgaitrdX06dNVW1ubdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvdP7LCmqKhIp512mp5++ml9+umn+tOf/qSBAwcmFQdAG6mrq9PMmTNVV1eXdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvdP7DZoa9asUdeuXZN4aWCrSfrSOQAAAAAAAABA85J+LzexK2s4qAHSoampSZlMRk1NTUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hz/0Q/s6YlstmsJk6cqJ///Of6wQ9+oOOPP17HHHPMVx4Xx7Gqq6tVXV2t+vr6BJIC2JDy8nKNHj1a5eXlSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xG6D1hK33nqrfv/732vVqlX5P4vjWFEUqbGxcb3Hrlq1Sn369FE2m9XBBx+s119/fWvHBb4i6UvnLGhqalJ5ebk6deqkggLz58PN8q2P1bwWclnIACCH/RgW5ulG2tcxtP6+9bGa10ouKzkAsB9DwzzdSPs6tqZ/0u/lmpxWfX29TjrpJF111VVatWqV4jjO/9qY7t27a/jw4YrjWG+++aY+/vjjrZgYwMYUFBSoS5cuwfzHwbc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/k4kvueQSTZ48WXEcq7i4WBdddJEeffRRffe7393k884555z815MmTWrrmABaoKKiQmPGjFFFRUXSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63N/cYc1//vMf3XfffYqiSL1799Y777yjO++8U2eccYZ69+69yecedthh6ty5syTptdde2xpxATSjqKhIAwcOVFFRUdJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7Ovrc39xn1vz3f/+3/vrXvyqKIk2dOlVHHXVU/u8uvfRS3XHHHRv8zJq1Bg8erFdeeUV77723Zs2atbViAxuU9H0OAQAAAAAAAADNS/q9XHNX1rz88suSpK9//evrHdS01Nqrbz799FOnuQBsmWw2q2nTpimbzSYdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0d1nz22WeKokj777//Fj2/tLRUklRVVeUyFoAt1NDQoEWLFqmhoSHpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/uNmjt27dXXV2dfvSjH2nMmDHr/V1LboN27rnnaty4cerSpYtWr169NSIDG5X0pXMAAAAAAAAAgOYl/V6uuStrevToIUlatmzZFj1/zpw5630fAMlqbGzUsmXLNnrA6hvf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/c0d1uy5556K41hvvPHGZi/oJ598opkzZyqKIh144IFtlBDA5qioqNDYsWNVUVGRdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvc3dxu02267TT//+c8VRZHuvvtunX/++fm/a+42aOedd54efPBBRVGk+++/X+eee+7WjA58RdKXzlkQx7Fqa2tVXFysKIqSjtNqvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV/H1vRP+r1cc1fWnHfeeercubMk6YorrtDbb7/doufdeOON+YOaHXbYQWeeeWZbxgTQQlEUqaSkJJj/OPjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub+6wplu3brrpppsUx7HKy8t1xBFH6Oc//7n+85//qLa2Nv+48vJyzZ07V/fee68OPPBAjRgxIv93f/rTn7TNNtskER/Al5SXl2vUqFEqLy9POooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sXJh1gQ37yk5/oo48+0u233666ujr96U9/0p/+9Kf838dxrK5du673nLV3c/v1r3+t008/favmBbBxJSUlGjRokEpKSpKO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/uY+s2Zd9957r37+858rk8lI0nqXLn05dpcuXfSnP/1Jw4cP35oRgU1K+j6HAAAAAAAAAIDmJf1errnboK3rggsu0JIlSzRq1Cgdf/zxKi0tVRzH+YOa4uJiHXHEERo5cqQWLVrEQQ1gUE1NjV544QXV1NQkHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/1N3gZtXaWlpbrssst02WWXSZKqqqpUVlamjh07qnPnzht9XlNTkwoKTJ9FAanQ1NSkTCajpqampKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/udugvfjiizruuONa9T0aGxt11lln6dFHH3WUCtgySV86BwAAAAAAAABoXtLv5Zq79OR73/ue3nrrrS1+flNTk4YOHaoJEyY4TAVgSzU0NGjRokVqaGhIOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/ubO6yprKzUSSedpLlz5272cxsbGzmoAYyprKzUAw88oMrKyqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v7nboBUUFCiKIvXu3Vuvv/66dtxxxxY9b+1BzRNPPKE4jtWhQwcvB7Il6urq9Oijj+qRRx7RBx98oOXLl6tr167aeeedddppp+m8887Ttttu683rL1y4UG+99ZbefvttvfXWW/rPf/6jioqK/N9v7o9sv379tHjx4s16zieffKLevXtv1nM2JOlL5wAAAAAAAAAAzUv6vdzCrfZKLXTJJZfozjvv1NKlS3X88cfr1VdfVffu3Tf5nC9fUdOhQwdNnDhxK6RN3pw5czR06FDNnDlzvT9ftmyZli1bpjfeeEN/+MMfdN999+nEE080/fqff/65BgwYoFWrVjnPCQAAAAAAAACAVeZug/aXv/xFZ5xxhuI41pw5c3TSSSepurp6o4/f2EHNscceu7UiJ2bp0qU65phj8gclURTpqKOO0gUXXKBTTjlF7du3lyR98cUXGjJkiKZOnWr69Wtra9v8oGbYsGH6yU9+0uyv0tLSNs2RJmVlZbrllltUVlaWdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvc3dxs0Saqvr9eJJ56ol156SVEU6dhjj9Xzzz+vwsL1LwRqbGzUmWeeqSeffDJ/67Onn35axxxzTELJt64jjzxSr732miSpb9++evrpp7Xffvvl/37lypU688wz9dJLL0mSunXrpvnz56tLly4mX3/RokXaeeedVVpaqgMOOEAHHXSQDjzwQGWzWQ0fPjz/uNbcBm3hwoXq16/fZj2/NZK+dM6C+vp6zZ8/X/3799c222yTdJxW862P1bwWclnIACCH/RgW5ulG2tcxtP6+9bGa10ouKzkAsB9DwzzdSPs6tqZ/0u/lmjyskaSqqioNHjxYb7/9tqIo0hlnnKHx48fn/76hoSH/GTWSUndQM2nSJJ100kmSpKKiIr399tsaMGDAVx5XVVWlfffdVwsWLJAk/fKXv9TNN99s8vVramq0YMEC7bXXXioo+L+LvqZNm6bBgwfnf89hDQAAAAAAAADApaTfyzV3G7S1OnbsqMmTJ2v33XdXHMd6/PHH9ZOf/ETShg9qnnnmmdQc1EjSHXfckf96+PDhGzwokXLreOONN+Z/P3bsWDU0NJh8/fbt22ufffZZ76AG/quurtbEiRM3eTtDn/jWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub/pd8e7du2vKlCnacccdFcexxowZo1/96lcbPKg5+uijE0679VRWVuZvLSZJ559//iYf/73vfS//GSyrV6/Wq6++6vXrAwAAAAAAAAAQErO3QVvXBx98oCOPPFKZTCb/Z2s/oyZtBzWSNGXKFJ1wwgmScleuZDKZr3yez5cdf/zxevHFFyVJv/rVr3TTTTd58/rcBg0AAAAAAAAA0JaSfi/X9JU1a+2zzz567rnn1L59e0m5N+vbt2+vZ599NnUHNZI0e/bs/NcDBgxo9qBEkg444IANPt/H12+N//znPxo9erT+53/+R//zP/+jkSNH6tlnn9WaNWsSyxS6+vp6zZkzR/X19UlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzfy8OayTp0EMP1eOPP6527dqpQ4cOev7559e72iJN5s6dm/+6b9++LXpOnz598l/PmTPH69dvjdNPP10//elP9Yc//EF/+MMfdPXVV+vUU09Vz549NWzYMC1YsCCxbKHy+T6RG+JbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5fyK3QWvXrl2bv0YURRv9IHvf/eAHP9Bjjz0mSbrssss0evToZp/z5JNP6nvf+54kqVevXvr888+9eX2Xt0FrTqdOnfT3v/9dp5xyyma9xsYkfekcAAAAAAAAAKB5Sb+Xm8iVNWvfbI/jeLN/rfs9WvrY0FRWVua/XntruOas+7h1n+/j62+uwsJCnXTSSRozZozeeecdZTIZ1dfXa+XKlXrxxRf1wx/+UNtss40kqby8XGeccYb+9a9/Oc1QUlKi0tJSSVJjY6MymUz+Z7S8vFx1dXWSpJqaGlVVVUmSGhoa1vucprKysvzle9XV1fnT4fr6epWVleUfl8lk8geVVVVVqqmpkSTV1dWpvLxcUm7/ZDIZNTY2SsrNJJvNSpJqa2tVUVEhSWpqalImk1FTU5MkqaKiQrW1tZKkbDabnyWd6EQnOtGJTnSiE53oRCc60YlOdKITnehEJzqF0Ckpid0GbUsPU0I/iGmJtT+gklRUVNSi5xQXF+e/XrsRfH39zfXmm2/queee00UXXaT9999fnTt3VmFhobp3765jjz1Wd999t1577TV1795dUm7j//CHP8z/o+DCIYccotNPP12StGLFCo0ePTr/D8i9996rDz/8UJL0yiuv6Nlnn5UkLV26dL2rlu68807Nnz9fkjRlyhRNmTJFkjR//nzdeeed+ceNHj1aS5culSQ9++yzeuWVVyRJH374oe699958x9GjR2vFihWSpAkTJmj69OmSpBkzZmjcuHGScv+AjR49Ov8P5rhx4zRjxgxJ0vTp0zVhwoRmO02ZMkW33nqrMplMEJ0ymYx+//vf68knn/RiTtOmTdMf//hHZTIZUz97CxYs0IgRIzR+/Pg2+9lrrtN7772nESNG6Lnnnkt8Tq46WfrZoxOdNqfT3XffrREjRuiLL74IplOIc2pppwcffFAjRozIZwihUxJzeu655/SHP/xBmUwmmE6bM6cpU6ZoxIgRevvtt4Po9OSTT+r3v/+9MpmMF3N67rnnNGLECL333numfvYymYz+9Kc/6e23326TObW00/jx4zVy5EhlMhnzP3uh/htBJzqt7bRgwQKNHj1aX3zxRTCdQpxTSzvNmTNHo0ePzr9pHkKnJOaUyWR0yy236MEHHwym0+bMycV7YYmJ4cyf//zneI899nD66/HHH//K65x44omxpFhSfNVVV7Uo26RJk/LPKS0tbVXPrf36L7/8cv65bfkjO2XKlPVeZ8KECa3+nrNmzYolxSUlJXFpaWk8a9asuKGhIV6zZk3c1NQUx3Ecl5WVxbW1tXEcx3F1dXVcWVkZx3Ec19fXx2vWrMl/r0wmE9fV1cVxHMdVVVVxVVVVHMdxXFdXF2cymfzj1qxZE9fX18dxHMeVlZVxdXV1HMdxXFtbG5eVlcVxHMdNTU3xmjVr4oaGhjiO47iioiKuqamJ4ziOs9lsXF5eHsdxHDc2NsZr1qyJGxsb4ziO4/Ly8jibzcZxHMc1NTVxRUVFHMfxJjuVl5fHH374YVxfXx9Ep/r6+njOnDn5fNY7VVRU5Nff0s9eNpuNFy5cGK9Zs6bNfvaa61RdXR0vXLgwLisrS3xOrjpZ+tmjE502p9OqVavihQsXxnV1dcF0CnFOLe20evXqeOHChXFtbW0wnZKYU1lZWTx79uy4vr4+mE6bM6fy8vJ44cKFcVVVVRCdMplMPGfOnLi+vt6LOZWVlcULFy6Mq6urTf3s1dfXx7NmzcqveVL/RqxZsyaeO3duXF9fb/5nL9R/I+hEp7Wdstls/P7776/330/fO4U4p5Z2qqmpid9///31/vvpe6ck5lRfXx/PnTs3Xr16dTCdNmdOrXkvbO17uWt/zZo1K96aEvnMmlDdcMMNGjFihNPvedddd+nCCy9c78/4zJq2+5E94ogj9M9//lOS9MMf/lB33313q75f0vc5BAAAAAAAAAA0L+n3chO7DRq23NrbdUnS8uXLW/ScZcuW5b/u1q2b16/flo499tj817Nnz04wSTiqqqo0fvz4/D0gfedbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1Dt1www35z9Rx9evLV9VI0h577JH/evHixS3KtmTJkvzXe+65Z6t6Jv36bWn77bfPf71y5coEk4SjoKBAXbp0UUFBGP/c+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe5fmHQAbL699tor//X777+vhoYGFRZuepTvvPPOBp/v4+u3pXVPXDt27JhgknC0b99e3/72t5OO4YxvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/v4dL0GHHXaYiouLJeUOF95+++1NPr62tlbTp0/P//7oo4/2+vXb0owZM/Jf77DDDgkmCUddXZ1mzpypurq6pKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lk/hzUeKi0t1THHHJP//f3337/Jxz/55JOqqKiQlPu8mCOPPNLr128rq1at0tNPP53//aBBg5ILE5BsNqtp06Ypm80mHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/2jOI7jpENg8z3//PM6+eSTJUnFxcX6z3/+o3322ecrj6uurtZ+++2njz/+WJJ09dVX63e/+51Xrz9t2jQNHjw4//vN+ZGtrKxUaWlps49rbGzU6aefrokTJ0qSioqKNG/ePPXt23ezsn7ZBx98oK9//ev538+aNWuD6wQAAAAAAAAASE7S7+VyZY2nTjrpJB1xxBGScrcZO/nkk/Xee++t95hVq1ZpyJAh+YOSbt266aqrrtro91y0aJGiKMr/2tQVM23x+m3hkEMO0U9/+lP95z//2ehj3n//fR177LH5gxpJ+tnPftbqgxrkxHGsbDa7WYdslvnWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz2GNxx5++GFtv/32knIHLQMHDtTgwYN14YUX6rvf/a769OmjF198UZJUWFioxx57TF26dDH9+tddd50GDhy43q8LL7xwvcd8+e8HDhyoZ555ZoPfr7KyUqNHj9Y3v/lN9ejRQ8cdd5yGDRumiy++WGeddZb22Wcf7bvvvpo2bVr+Oaeeeqp++9vfbvnCYD1lZWUaOXKkysrKihHdQAAAo1VJREFUko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+3AbNc3PmzNHQoUM1c+bMjT6mR48euu+++3TSSSdt8nstWrRIO++8c/739913n84777yt9vqSdN555+mBBx5o9nFftrGs/fr10+LFi1v0PTp06KBf/epXuvrqq1VQ4OYcM+lL5yxobGzUihUr1KNHD7Vr1y7pOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nVsTf+k38st3GqvhDax55576s0339T48eP1yCOP6IMPPtDy5cvVpUsX7bLLLjrttNN0/vnna9tttw3y9Zvz2muv6fXXX9cbb7yhd955R8uXL9eqVatUVlamDh06aNttt9XAgQM1aNAgnXvuuU6vPEJOu3bt1KtXr6RjOONbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P1fWAG0o6dNYCyorKzVhwgSdfvrpKi0tTTpOq/nWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HVvTP+n3cvnMGgBtqrCwUP369VNhYRgX8vnWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uz5U1QBtK+jQWAAAAAAAAANC8pN/L5coaAG2qtrZW06dPV21tbdJRnPCtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7OvrcP7jDmnfeeUevvvqqXn311aSjAJBUV1enmTNnqq6uLukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3uH9xt0Pbff3+99957iqJIDQ0NScdByiV96RwAAAAAAAAAoHlJv5cb3JU1khTHsQI7gwK81dTUpEwmo6ampqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f5CHNQDsKC8v1+jRo1VeXp50FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9w/yNmjvvvuuoihSY2Nj0nGQcklfOmdBU1OTysvL1alTJxUU+H8+7Fsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ1bE3/pN/LLdxqrwQglQoKCtSlS5ekYzjjWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9iR2u77LJLm/yaPXt2UpUAbEBFRYXGjBmjioqKpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/YlfWLFq0SFEUae1d2KIoSioKgDZUVFSkgQMHqqioKOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3un9hn1hQUFOQPaNoiAp9ZAwuSvs8hAAAAAAAAAKB5Sb+Xm9iVNe3bt1c2m5Uk3XLLLerZs6eT73vdddfpk08+cfK9ALReNpvV9OnTdcghh6ikpCTpOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9ihzUDBw7UG2+8oSiKtOeee+rUU0918n1HjRrFYQ1gSENDgxYtWqRvfvObSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xG6D9tOf/lS33367oijSNddco9/85jdOvu/++++vd999l9ugwYSkL50DAAAAAAAAADQv6fdyC7baK33JgQcemP/6rbfeSioGgDbW2NioZcuWBXN46lsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/icOat99+O6kYANpYRUWFxo4dq4qKiqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2K3QZOkzp07q6KiQlEU6aOPPtIuu+zS6u/5ox/9SB9//LEk6eWXX2719wNaI+lL5yyI41i1tbUqLi5WFEVJx2k13/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK9ja/on/V5u4VZ7pQ2YOnWqKisrJUndu3d38j3vuusuJ98HgBtRFKmkpCTpGM741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197p/YbdAk6Rvf+IaOOuooHXXUUercuXOSUQC0kfLyco0aNUrl5eVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc/9ED2sAhK+kpESDBg3y9kT7y3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73T/Qza4DQJX2fQwAAAAAAAABA85J+L5crawC0qZqaGr3wwguqqalJOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sXJh1gc73wwgv697//LUm67rrrEk4DoDlNTU3KZDJqampKOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/t7dxu0Sy+9VHfccYeiKFJjY2PScYBNSvrSOQAAAAAAAABA85J+L5fboAFoUw0NDVq0aJEaGhqSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/4c1gBoU5WVlXrggQdUWVmZdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnNmhAG0r60jkAAAAAAAAAQPOSfi+XK2sAAAAAAAAAAAASxGENgDZVVlamW265RWVlZUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzfw5rALSpDh06aMiQIerQoUPSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63J/PrAHaUNL3OQQAAAAAAAAANC/p93K9u7Lm8ssv18svv6ypU6cmHQVAC1RXV2vixImqrq5OOooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sXJh1gc+26667addddk44BAAAAAAAAAADghHe3QQN8kvSlcwAAAAAAAACA5iX9Xq53t0ED4Jf6+nrNmTNH9fX1SUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/7w5rGhoaNH/+fL355puaNWuWVq9enXQkAJvg830iN8S3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzf29ug/b6669r5MiRmjp16lcWep999tG5556ryy67TMXFxQklBL4q6UvnAAAAAAAAAADNS/q93MSurLn55pt1880368UXX9zk4+I41mWXXaYjjjhCzz33nKqqqhTH8Xq/PvjgA1199dX6+te/ro8++mgrNQAAAAAAAAAAAGi9xA5rrr32Wv3617/Ws88+u8nHXXTRRbrjjjvyBzMbsvbP58+fryOOOEKff/6587wAtkwmk9GIESOUyWSSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/6J3QatoKBAURTpJz/5iW6//fYNPubpp5/W//t//09RFCmOY+2222666qqrdOyxx2r77bdXVVWVZsyYoXvuuUePPPKIpNzBzYknnqjnnntua9YBNijpS+csaGho0NKlS9W7d28VFhYmHafVfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu5pg9rvvnNb+qdd95RFEX6zne+o8cff1zt27ff4GMnTJigoUOHqrGxUVEUaebMmRowYEBbVgCalfQGBwAAAAAAAAA0L+n3chO7DVpzPvroo/xBTe/evTV+/PiNHtRI0umnn65rrrkm//u1V9oASFZVVZXGjx+vqqqqpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/2cOaf/7zn/mvL7/8cpWWljb7nCuvvDJ/oPP666+3WTYALVdQUKAuXbqooMDsPzebxbc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/s7dB+81vfqPrr79eURTp/fff1957792i73v00Udr2rRp2n777fXpp5+6jg1slqQvnQMAAAAAAAAANC/p93LNHi9lMpn81/369Wvx89Y+dt3nA0hOXV2dZs6cqbq6uqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5v9nDmnVve1ZcXNzi5xUVFUmSErpgCMCXZLNZTZs2TdlsNukoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub/Y2aOPGjdO5556rKIr0+eefa7vttmvR9z3zzDP12GOPaccdd9Qnn3ziOjawWZK+dA4AAAAAAAAA0Lyk38st3GqvtBH//ve/deONN37lz5cvX57/+sMPP2zxYc3HH38sSerevbubgABaJY5j1dbWqri4WFEUJR2n1XzrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73T/w2aG+99ZZGjBjxlV9jxozJP2batGkt+l7ZbFYffPCBoihS37592ygxgM1RVlamkSNHqqysLOkoTvjWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3un+ht0Fpqr7320gcffNDs45588kmdfvrpiqJIN910k375y1+2JiLQaklfOmdBY2OjVqxYoR49eqhdu3ZJx2k13/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK9ja/on/V5uYrdBu/766zfr8WvWrFHXrl03+Zh1r8Y57LDDtigXALfatWunXr16JR3DGd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9vTmsaU5VVZW+9a1v6fDDD5ckHXTQQU6/P4AtU1lZqQkTJuj0009XaWlp0nFazbc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HP/xA5rXOvYsaOuu+66pGMA+JLCwkL169dPhYVh/HPjWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9in1kDpEHS9zkEAAAAAAAAADQv6fdyC7baKwFIpdraWk2fPl21tbVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc38OawC0qbq6Os2cOVN1dXVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc39ugwa0oaQvnQMAAAAAAAAANC/p93KDurLm1VdfXe8XgOQ1NTUpk8moqakp6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe4f1GHNoEGDNHjwYA0ePFhHH3100nEASCovL9fo0aNVXl6edBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvcP6jZoBQUFiqJIcRwriiI1NjYmHQkpl/SlcxY0NTWpvLxcnTp1UkGB/+fDvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV/H1vRP+r3cwq32SltJQGdPQBAKCgrUpUuXpGM441sfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/UEdrL7/8cv7X1KlTk44DQFJFRYXGjBmjioqKpKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Ll/UFfWHHXUUUlHAPAlRUVFGjhwoIqKipKO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/kF9Zg1gTdL3OQQAAAAAAAAANC/p93KDug0aAHuy2aymTZumbDabdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnsAZAm2poaNCiRYvU0NCQdBQnfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvfnNmhAG0r60jkAAAAAAAAAQPOSfi+3cKu9UgstWrRIU6dO1ezZszVnzhytXr1alZWVqqmpUfv27VVaWqpu3bppzz331F577aWjjz5a/fr1Szo2gI1obGzUihUr1KNHD7Vr1y7pOK3mWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub+J26A1NTXp7rvv1v7776/+/fvrRz/6kW677TZNmjRJ06dP16xZszR//nzNmjVL06dP16RJk3TbbbfpRz/6kfr376+BAwfq7rvvVlNTU9JVAHxJRUWFxo4dq4qKiqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f+K3Qfvwww/1ve99T/PmzZMkbUmcKIokSXvssYeeeOIJ7bXXXk4zAlsq6UvnLIjjWLW1tSouLs7vVZ/51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR1b0z/p93ITvQ3av//9b51wwgkqLy9f75Bmt9120wEHHKA+ffqoV69eat++vYqLi1VbW6uamhotW7ZMS5Ys0TvvvKOPPvoo/9w5c+bosMMO05QpU3TggQcmVQvAOqIoUklJSdIxnPGtj9W8FnJZyAAgh/0YFubpRtrXMbT+vvWxmtdKLis5ALAfQ8M83Uj7OvrcP7HboFVVVemss85SWVmZ4jhW165dddNNN2np0qWaO3euHnnkEY0cOVI/+9nPdPHFF+v888/XxRdfrJ/97GcaOXKkHnnkEc2dO1effvqpfvvb36pbt26SpLKyMp199tmqrq5OqhqAdZSXl2vUqFEqLy9POooTvvWxmtdCLgsZAOSwH8PCPN1I+zqG1t+3PlbzWsllJQcA9mNomKcbaV9Hn/sndljz97//XQsWLFAURRo4cKA++OADXXPNNdphhx026/tsv/32+uUvf6lZs2Zp4MCBkqT58+froYceaoPUADZXSUmJBg0a5O2J9pf51sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197p/YZ9Ycc8wxevnll7XNNtvoo48+Up8+fVr9PRcvXqzdd99dDQ0NOuqoozR16lQHSYEtl/R9DgEAAAAAAAAAzUv6vdzErqyZN2+eoijS0Ucf7eSgRpL69u2ro48+WnEca968eU6+J4DWqamp0QsvvKCampqkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX9ihzUrVqyQJO20005Ov2/v3r0lSatWrXL6fQFsmaamJmUyGTU1NSUdxQnf+ljNayGXhQwActiPYWGebqR9HUPr71sfq3mt5LKSAwD7MTTM0420r6PP/RO7DdpOO+2kzz77TCeccIImTZrk7PueeOKJeuGFF7TDDjto6dKlzr4vsCWSvnQOAAAAAAAAANC8pN/LTezKmt12201xHGvq1Kn65JNPnHzPJUuW6KWXXlIURdp9992dfE8ArdPQ0KBFixapoaEh6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe6f2GHNGWecIUmqr6/XkCFD8rdF21IrVqzQaaedpvr6eknS97///VZnBNB6lZWVeuCBB1RZWZl0FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/sNmhVVVUaMGCAFi9eLEnq2rWrfvGLX2j48OHq1atXi7/P8uXL9cADD+jWW2/Nf07NzjvvrPfee08dOnRok+xASyV96RwAAAAAAAAAoHlJv5dbuNVe6Us6duyocePG6YQTTlBVVZVWr16ta665Rtdcc4123313HXDAAerbt6969uyp9u3bq6ioSHV1daqpqdHy5cu1ePFizZgxQ3PnzpUkrT1zKi0t1bhx4zioAQAAAAAAAAAAXkjsNmiSdOihh+q1117TzjvvLCl34BLHsebNm6fx48dr5MiRuuKKK3TJJZfohz/8oS655BJdccUVGjlypMaPH6+5c+fmnyNJ/fv31z//+U8dfPDBSdYCsI6ysjLdcsstKisrSzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7J3pYI0n77bef5syZo7/85S/ae++9Jf3foU1LfknS3nvvrb/85S+aPXu29t133yTrAPiSDh06aMiQIcFc7eZbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5f2KfWbMx8+fP19SpUzV79mzNnTtXq1atUmVlpbLZrEpKSlRaWqru3btrjz320F577aXBgwdr1113TTo2sEFJ3+cQAAAAAAAAANC8pN/LTfzKmi/r37+/fvSjH+m2227T888/r+nTp2vWrFn6+OOPNWvWLE2fPl3PP/+8brvtNv3oRz/ioAYwrrq6WhMnTlR1dXXSUZzwrY/VvBZyWcgAIIf9GBbm6Uba1zG0/r71sZrXSi4rOQCwH0PDPN1I+zr63N/cYQ0AAAAAAAAAAECamLsNGhCSpC+dAwAAAAAAAAA0L+n3crmyBkCbqq+v15w5c1RfX590FCd862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+90/ksKampiYVrwnA7/tEbohvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/oncBm3HHXfUiBEjdP7556tdu3Zt+lqNjY265557NGLECH366adt+lrAlyV96RwAAAAAAAAAoHlJv5ebyJU1n3/+uS666CL1799ff/nLX1RZWen8NSoqKnT77berf//+uuSSS7Rs2TLnrwEAAAAAAAAAANBaiRzWnHrqqYrjWEuWLNHll1+u7bffXhdccIH+93//Vw0NDVv8fRsaGvS///u/uuCCC7TDDjvoZz/7mZYsWaI4jvXd737XYQMALZXJZDRixAhlMpmkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uX8it0GTpBdeeEE///nP9eGHH+aCRJEk6Wtf+5oOP/xwHXHEEdp333215557qnfv3ioqKlrv+bW1tVq6dKnmzp2rd999V//85z/1r3/9SxUVFZKktbX22Wcf3XrrrTrhhBO2YjsgJ+lL5yxoaGjQ0qVL1bt3bxUWFiYdp9V862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo6t6Z/0e7mJHdZIuQOVhx9+WL///e/1/vvv/1+o///gZl0dOnRQhw4dFMexampqNvgBQetWGTBggK6++mqdeeaZG/x+wNaQ9AYHAAAAAAAAADQv6fdyE7kN2lpRFOnss8/Wu+++q3/84x8aOnSo2rdvrziOv/KrqqpKK1as0MqVK1VVVbXBx7Rv315Dhw7VP/7xD7377rsaOnQoBzVAwqqqqjR+/HhVVVUlHcUJ3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/3NXAd19NFH6+ijj1Z1dbVeeuklvfjii3rzzTf1/vvvK5vNbvA57du314ABA3TQQQfpuOOO0zHHHKMOHTps5eQANqWgoEBdunRRQUGiZ8PO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe6f6G3QWmrZsmVavnx5/jSsY8eO6tWrl3r27JlwMmDTkr50DgAAAAAAAADQvKTfy/XieKlXr17ab7/9dNhhh+mwww7Tfvvtx0EN4Im6ujrNnDlTdXV1SUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/Lw5rAPgrm81q2rRpG72doW9862M1r4VcFjIAyGE/hoV5upH2dQytv299rOa1kstKDgDsx9AwTzfSvo4+9/fiNmiAr5K+dA4AAAAAAAAA0Lyk38vlyhoAbSqOY2WzWYVyLuxbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P4c1ANpUWVmZRo4cqbKysqSjOOFbH6t5LeSykAFADvsxLMzTjbSvY2j9fetjNa+VXFZyAGA/hoZ5upH2dfS5P7dBA9pQ0pfOWdDY2KgVK1aoR48eateuXdJxWs23PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt69ia/km/l8thDdCGkt7gAAAAAAAAAIDmJf1eLrdBA9CmKisrdf/996uysjLpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197s9hDYA2VVhYqH79+qmwsDDpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197s9t0IA2lPSlcwAAAAAAAACA5iX9Xi5X1gBoU7W1tZo+fbpqa2uTjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/4c1gBoU3V1dZo5c6bq6uqSjuKEb32s5rWQy0IGADnsx7AwTzfSvo6h9fetj9W8VnJZyQGA/Rga5ulG2tfR5/7cBg1oQ0lfOgcAAAAAAAAAaF7S7+VyZQ2ANtXU1KRMJqOmpqakozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0uT+HNQDaVHl5uUaPHq3y8vKkozjhWx+reS3kspABQA77MSzM0420r2No/X3rYzWvlVxWcgBgP4aGebqR9nX0ub+526C9+uqrrXp+QUGBOnXqpC5duqhPnz6OUgFbJulL5yxoampSeXm5OnXqpIIC/8+HfetjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu55g5rCgoKFEWRk+/VsWNHHXDAATr77LN11llnqWPHjk6+L9BSSW9wAAAAAAAAAEDzkn4v1+TRWhzHTn5VVlbqtdde08UXX6y9995bU6dOTboakDoVFRUaM2aMKioqko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+hUkH+LIjjzwyf2XN9OnTVVdXp7UX/2y77bbq3bu3SktLVVVVpaVLl2rFihWSpCiKVFxcrIMPPlj19fVavXq1Pv74YzU0NEiSPvnkE5144omaPHmyBg8enEw5IIWKioo0cOBAFRUVJR3FCd/6WM1rIZeFDABy2I9hYZ5upH0dQ+vvWx+rea3kspIDAPsxNMzTjbSvo8/9zd0GTZIqKyt1wQUXaMKECerUqZOuvPJKnXPOOdp5552/8tjFixfroYce0h//+EeVl5fr9NNP17333quOHTuqpqZGTzzxhH79619r8eLFkqQdd9xRH3/8sYqLi7d2LaRQ0pfOAQAAAAAAAACal/R7uSZvgzZs2DA98cQT2m233fTee+/p17/+9QYPaiSpb9++uvbaa/Xee+9p11131YQJEzRs2DBJUvv27XXOOefonXfe0V577SVJ+uyzz/Tggw9utS5A2mWzWU2bNk3ZbDbpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/usGbixImaOHGioijSY489pj59+rToeTvttJMee+yx9b7HWl27dtXf/va3/O9feOEFp5kBbFxDQ4MWLVqUvyWh73zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj73N3cbtCFDhuiZZ57RoYceqn/961+b/fxvfetbev3113Xqqaeud2AjSbvvvrs+/vhj9evXTwsWLHCUGNi4pC+dAwAAAAAAAAA0L+n3cs1dWfPuu+8qiqL8bcs215577pn/Pl92wAEHSJJWrly55QEBbJbGxkYtW7ZMjY2NSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/c4c1y5YtkyTV1tZu0fPr6urW+z7r6tq1qySpvr5+C9MB2FwVFRUaO3asKioqko7ihG99rOa1kMtCBgA57MewME830r6OofX3rY/VvFZyWckBgP0YGubpRtrX0ef+5m6D1qtXL61YsUL9+/fXvHnzNvv5a291tt12233lwOa8887Tgw8+qB122EFLly51FRnYqKQvnbMgjmPV1taquLhYURQlHafVfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6Oremf9Hu55q6sGTBggOI41vz58zV+/PjNeu748eP18ccfK4qi9RZ1rYULF0qStt12WydZATQviiKVlJQE8x8H3/pYzWshl4UMAHLYj2Fhnm6kfR1D6+9bH6t5reSykgMA+zE0zNONtK+jz/3NHdaceeaZ+a9/+MMf6vHHH2/R85544gldeOGF+d8PHTp0vb+vra3VjBkzFEWR+vfv7yYsgGaVl5dr1KhRKi8vTzqKE771sZrXQi4LGQDksB/DwjzdSPs6htbftz5W81rJZSUHAPZjaJinG2lfR5/7mzusOf/887X//vtLkmpqanTmmWfqiCOO0NixYzVz5kytWrVKNTU1WrVqld5991397W9/01FHHaXvf//7qq6uVhRFGjhwoM4///z1vu9zzz2nyspKSdIRRxyx1XsBaVVSUqJBgwappKQk6ShO+NbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dfe5v7jNrJOnTTz/V4MGD87c0a6k4jrXLLrto2rRp6t2793p/d+aZZ+rNN9+UJE2bNk19+/Z1mhnYkKTvcwgAAAAAAAAAaF7S7+Wau7JGknbccUdNnz5dZ599tuI4bvGvs846S2+++eZXDmqk3OfZLFy4UAsXLuSgBtiKampq9MILL6impibpKE741sdqXgu5LGQAkMN+DAvzdCPt6xhaf9/6WM1rJZeVHADYj6Fhnm6kfR197m/ysEaSunXrpoceekgffvihfv7zn+ub3/ymioqK1nvMNttso2984xu68sor9cEHH+jvf/+7unfvnlBiABvS1NSkTCajpqampKM44Vsfq3kt5LKQAUAO+zEszNONtK9jaP1962M1r5VcVnIAYD+Ghnm6kfZ19Lm/ydugbUpZWZkqKytVWlqqzp07Jx0H2KSkL50DAAAAAAAAADQv6fdyzV5ZszGdO3fWjjvuyEHNOurq6vTQQw/pxBNPVN++fVVSUqLtt99ehx12mG699VatXLnSm9dfs2aNHn/8cf34xz/WYYcdpu22205FRUXq1KmT+vfvrzPPPFPjxo1TfX39FmVdsmSJbrjhBn3jG99Qjx491L59e/Xv31+nn366nnrqKXl2dumFhoYGLVq0SA0NDUlHccK3PlbzWshlIQOAHPZjWJinG2lfx9D6+9bHal4ruazkAMB+DA3zdCPt6+hzf+8Oa7C+OXPm6OCDD9awYcM0efJkLVmyRLW1tVq2bJneeOMN/eIXv9A+++yjSZMmmX79yspKnXLKKerVq5e+//3v684779Qbb7yhFStWqL6+XhUVFVqwYIEeffRRnXPOOdp999316quvblbWe+65R3vvvbdGjBihd955RytXrlQ2m9WCBQv0xBNP6LTTTtPxxx+vZcuWtWZJ8CWVlZV64IEHVFlZmXQUJ3zrYzWvhVwWMgDIYT+GhXm6kfZ1DK2/b32s5rWSy0oOAOzH0DBPN9K+jj739+42aPg/S5cu1cEHH6zPPvtMkhRFkY488kj1799fK1as0D/+8Y/8Bylts802euGFF3T00UebfP1ly5Zp++23X+/PevbsqW9+85vq1auX6uvrNXPmTL333nv5vy8sLNRTTz2lk08+udms9957r374wx/mf9+lSxcdffTR6ty5s2bNmqW33nor/3f77ruv/vWvf6m0tLTli7ERSV86BwAAAAAAAABoXtLv5RZutVeCc2eddVb+oKRv3756+umntd9+++X/fuXKlTrzzDP10ksvqb6+XmeccYbmz5+vLl26mH39rl27atiwYTr//PPX+15r/fOf/9SwYcO0cOFCNTQ06Oyzz9a8efPUs2fPjX7PuXPn6uKLL87//uyzz9bYsWPVsWPH/J9NnTpVp59+utasWaP33ntPl112me69997NWQ4AAAAAAAAAALaI6dugVVdXa+zYsTrjjDO02267qWvXriosLFS7du2a/VVYGPY51KRJk/Taa69JkoqKivTss89+5XBj22231dNPP61ddtlFkrR69Wr9/ve/N/n6RUVFuu6667Ro0SKNGjVqgwc1kvStb31LU6dOVadOnSRJ5eXlGjVq1Caz/vrXv85/xs3hhx+uBx98cL2DGkk6+uijNW7cuPzvH3zwQc2ePXuT3xctU1ZWpltuuUVlZWVJR3HCtz5W81rIZSEDgBz2Y1iYpxtpX8fQ+vvWx2peK7ms5ADAfgwN83Qj7evoc3+zhzWPP/64dtppJ/34xz/Wk08+qfnz56usrExNTU2K47hFv0J2xx135L8ePny4BgwYsMHHdezYUTfeeGP+92PHjnXy4UquX79bt24aMWJE/hBmU/r167felTLPP//8Rh+7fPlyPfHEE/nf//73v1dBwYZ/7L/zne/o2GOPlSQ1NjZqzJgxzWZB8zp06KAhQ4aoQ4cOSUdxwrc+VvNayGUhA4Ac9mNYmKcbaV/H0Pr71sdqXiu5rOQAwH4MDfN0I+3r6HN/k59ZM27cOA0bNkyS1jt0iaLoK3+2sT+PokiNjY1tHTURlZWV2nbbbVVbWytJev3113XooYdu9PHZbFY9evTIf6jSSy+91KrPrkn69SXpmWee0Xe/+11J0te+9jWVl5dv8HF33XWX/uu//kuStPvuu2vu3Lmb/L7jxo3TOeecI0nq06ePFi9e3KqcSd/nEAAAAAAAAADQvKTfyzV3Zc2qVat08cUXK45jFRYWauTIkVq+fLl+8pOf5A9jmpqaVF5ervfff1933HGH9t13X8VxrNLSUj388MNqamoK9qBGyh2OrD0o6dixow488MBNPr6kpGS9w5SpU6d6/frS/x3QSdrkrF9++eX814MGDWr2+w4ePDj/9ZIlS/Txxx9vWUDkVVdXa+LEiaqurk46ihO+9bGa10IuCxkA5LAfw8I83Uj7OobW37c+VvNayWUlBwD2Y2iYpxtpX0ef+5s7rBk7dqyqqqoURZFuvvlm/eIXv1CPHj2+8rjS0lLts88+uuSSS/TOO+/od7/7nSorK3X22Wfr7rvvTiD51rPuZ6kMGDCgRZ/Pc8ABB2zw+T6+viS9//77+a932mmnjT5u3ddaN8PG7LDDDurZs+cGnw8AAAAAAAAAQFswd1jz0ksvSZI6deqkyy67rEXPiaJIV111la699lrFcazLL79c8+fPb8uYiVr3Vl59+/Zt0XP69OmT/3rOnDlev35TU5Meeuih/O/Xfs7MhiSdFX7fJ3JDfOtjNa+FXBYyAMhhP4aFebqR9nUMrb9vfazmtZLLSg4A7MfQME830r6OPvc3d1gze/ZsRVGkQw45RNtss80GH7Ox215de+216tq1q7LZrO699962jJmoVatW5b9e9yqQTenVq1f+69WrV3v9+n/961/zhygFBQW65JJLNvi4mpoa1dTU5H+fRFZI9fX1mjNnjurr65OO4oRvfazmtZDLQgYAOezHsDBPN9K+jqH1962P1bxWclnJAYD9GBrm6Uba19Hn/uYOa9a+Od67d+/1/nzdg5t134BfV1FRkQYNGqQ4jjV58uS2C5mwysrK/Nft27dv0XPWfdy6z/ft9T/44AP98pe/zP/+hz/84UY/5OnLr5PEWq1VUlKi0tJSSbnDxkwmk/8MpvLyctXV1UnK/WxXVVVJkhoaGpTJZPLfo6ysLP+PTHV1df6+i/X19SorK8s/LpPJqKGhQZJUVVWV3y91dXUqLy+XJMVxrEwmkz/4rKysVDablSTV1taqoqJCUu4qpkwmo6amJklSRUVF/vOKstlsfn021Wn16tV66qmnVF1dHUSn6upqPfXUU1q5cqUXc1p3/S397FVUVGjixIlasWJFm/3sNdeprKxMEydO1KpVqxKfk6tOln726ESnzem0fPlyTZw4UVVVVcF0CnFOLe30xRdfaOLEiaqsrAymUxJzWrVqVf6/4aF02pw5rV69WhMnTlQmkwmi08qVK/Pz9GFOq1at0sSJE/P/n2ljc9raP3tr/7/42uxJ/RuxYsWK/Dyt/+yF+m8Enei0tlNFRYWeeuqpfPYQOoU4p5Z2Ki8vz//7GkqnJOa09r+XX3zxRTCdNmdOLt4LS4q5w5p27dpJ0leuqunUqVP+688++2yjz+/evbskaenSpW2Qzoa1P6BS7oCqJYqLi/Nfb+ywy/rrZzIZDRkyJP8PyG677abbbrutRTmlZNZqrUMOOUSnn366pNz/sR89enT+H5B7771XH374oSTplVde0bPPPisp9zM8evTo/Pe4884787f3mzJliqZMmSJJmj9/vu68887840aPHp3/+X/22Wf1yiuvSJI+/PDD/BVntbW1Gj16tFasWCFJmjBhgqZPny5JmjFjhsaNGycp9w/Y6NGj8/9gjhs3TjNmzJAkTZ8+XRMmTGi204wZM7Tzzjurc+fOQXTq3Lmz9t9//3wG651mz56t7bffXp07dzb1s1dXV6err75aU6ZMabOfveY6rVy5UldffbWmT5+e+JxcdbL0s0cnOm1OpwkTJujqq69WSUlJMJ1CnFNLOz377LO6+uqrFUVRMJ2SmNP06dO11157qXPnzsF02pw5zZgxQ1dffbU+/fTTIDq98sor2n///dW5c2cv5jR9+nRdffXVWrlypamfvc6dO6t9+/b69NNP22ROLe00ZcoUHXrooercubP5n71Q/42gE53Wdqqrq1NdXZ1KSkqC6RTinFraqaKiQnV1dercuXMwnZKYU+fOnTV48OB8hhA6bc6cXLwXlpjYmD59+sQFBQXx2Wefvd6f33XXXXEURXFBQUE8YcKEjT7/+OOPj6MoiktKSto66lf8+c9/jvfYYw+nvx5//PGvvM6JJ54YS4olxVdddVWLsk2aNCn/nNLS0lb1TOL1a2pq4iOPPDL/PTp16hS/++67m3zOF198kX+8pHj27Nkteq3vf//7+ef893//92ZnXdesWbNiSXFJSUlcWloaz5o1K25oaIjXrFkTNzU1xXEcx2VlZXFtbW0cx3FcXV0dV1ZWxnEcx/X19fGaNWvy3yuTycR1dXVxHMdxVVVVXFVVFcdxHNfV1cWZTCb/uDVr1sT19fVxHMdxZWVlXF1dHcdxHNfW1sZlZWVxHMdxU1NTvGbNmrihoSGO4ziuqKiIa2pq4jiO42w2G5eXl8dxHMeNjY3xmjVr4sbGxjiO47i8vDzOZrNxHOdmUlFREcdxTCc60YlOdKITnehEJzrRiU50ohOd6EQnOtGJTl53Wvte7tpfs2bNircmc4c1aw9bDj300PX+/K233sof1px11lkbfO5nn30Wl5aWxlEUxTvttNPWiLue66+/fr1huvh11113feV11j1MuOyyy1qU7Yknnsg/p1evXq3qubVfv76+Pj711FPzzy8pKYmnTZvW7POqq6vXW8t33nmnRa93yimn5J9z9dVXb1bWL0t6g1uwZs2a+IYbbljvH3Gf+dbHal4LuSxkAJDDfgwL83Qj7esYWn/f+ljNayWXlRwA2I+hYZ5upH0dW9M/6fdyzd0G7ZBDDpGU+2yStfemk6RvfOMb6t27t+I41qOPPpq/5GmtiooKnXfeeaqqqlIURfrWt761VXNvTWtv9SZJy5cvb9Fzli1blv+6W7du3rx+U1OTzjvvPD3zzDOSpMLCQj3++OM66qijmn1u+/bt1/v8mSTWClJpaamGDx+e/8we3/nWx2peC7ksZACQw34MC/N0I+3rGFp/3/pYzWsll5UcANiPoWGebqR9HX3ub+6w5rjjjpOU+/Cg119/Pf/nURTppz/9qaTcBw0NGzZM++67r84++2z9v/+vvTsPj6q8/z7+mSQkIcSQgMjiAmi1aAV3tCgawVYFalN3tBXcd9GnPnXrT8VWUatWarXiBrhUxA03SqnVIC6gVpBF0aoERFYD2dfJnOePeZgfSCCT5EzO95zzfl1XrmsmmTnn872/3Gk8d+8zv/qV+vbtqzfffDPx+iuuuKJDc0vSrbfeKie+W8m1rwsuuGCb8/z4xz9OPF6xYkVS2VauXJl4PGDAgHbV2ZHnv+SSSxILc2lpaXryySc1atSopN/v9VghvsDWr18/ZWRkeB3FFX6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XL+5xZojjzxSffr0keM4mjp16lY/GzdunH72s5/JcRxJ8d0306ZN06uvvqry8vLE92+88UYNGTKkw7N3lH333TfxePHixYpGoy2+55NPPmn2/ZbPf8011+jRRx9NPJ80aZJGjx7diqRbn2vzh0ztyOrVq7fagdPesYJUXV2tadOmqbq62usorvBbPVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/rNLdZEIhGVlJSotrZWf/vb37b6WXp6ul577TVdf/316tKlyza7UHbddVc98cQT+sMf/uBR+o4xZMgQZWVlSYr/4/v44493+Pr6+nrNmzcv8XzYsGHmz3/TTTfp/vvvTzz/85//3Owuo5Yce+yxicfFxcUtvn7OnDmJx3vssYd+9KMftfqc2FpaWpry8/OVlmbu102b+K0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/RFn83YUn2loaNCHH36o1atXKy0tTXvuuacOOuggRSIRr6N1iJEjR2rmzJmSpIsvvlgPP/zwdl/77LPP6qyzzpIU/wyWdevWtXsbWCrPf/vtt+v3v/994vltt92m//mf/2lTznXr1qlPnz6KxWKSpA8++CDxuUjNOf744zV79mxJ0pVXXqm//OUvbTrvZkuXLtX++++feL5kyRL95Cc/adcxAQAAAAAAAADu8vparv+Wl/6/zMxMHXXUUTr99NN16qmn6uCDDw7NQo0kXXbZZYnHU6ZM0dKlS5t9XU1NjW6++ebE84suusiV+/Wl6vwTJ07caqHmd7/7XZsXaiSpZ8+eOvnkk7c63vbWJ2fPnp1YqElPT9cll1zS5vPifzU0NGjhwoVqaGjwOoor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5ft8u1oTdyJEjNXToUEnx24yNGjVKixYt2uo1paWlKioq0ldffSUpvqvluuuu2+4xS0pKFIlEEl9Tpkzp0PM/8cQTuuaaaxLPL7/8ct11113bfX2y/vCHP6hTp06SpLlz52rMmDHb3LPw7bffTuz+kaRzzjlH++23X7vPDamurk7FxcWqq6vzOoor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5ft/eBg3SqlWrNHjwYK1Zs0ZS/PN+jjnmGO21117asGGD3nzzTdXU1EiSMjIyNGvWLA0fPny7xyspKVH//v0TzydPnqyxY8d2yPkXL16sAw88MHG7si5dumjMmDFJ75YaN26c9t577+3+/PHHH9/qM28KCgo0bNgw5eXl6bPPPtP8+fMTPxs0aJDeffdd7bTTTkmde0e83joHAAAAAAAAAGiZ19dy238/LHhmt91201tvvaXRo0dr4cKFchxHxcXFKi4u3up1PXr00OTJk3e4UOP1+UtLSxMLNZJUXV2thx56KOksp5566g4Xa84//3w5jqOrr75a1dXV2rRpk1588cVtXjd8+HA99dRTrizUIM5xHNXX1ysrKysQtyr0Wz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6PVmsue222zrkPFt+VkpQDRgwQPPnz9e0adP07LPPaunSpVq3bp3y8/O155576uSTT9a5556rnXfeOZDnb40LLrhAP//5z/X444/rtdde08qVK1VVVaXevXvr4IMP1q9//WsVFRX5bhJbV15erokTJ2rcuHHKz8/3Ok67+a0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/Z7cBi0tLa1DLog3NTWl/BzAjni9dc6CpqYmbdiwQT169FB6errXcdrNb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPY3vq9/parmeLNakWiURYrIHnvJ7gAAAAAAAAAICWeX0t15PboN1yyy1enBaAB6qqqvTCCy/o1FNPVW5urtdx2s1v9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZASmVkZKhfv37KyPDk143r/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fk9ugwaEhddb5wAAAAAAAAAALfP6Wm7qPzwGQKjV19dr3rx5qq+v9zqKK/xWj9W8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX4WawCkVENDgxYuXKiGhgavo7jCb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/r5zZoQAp5vXUOAAAAAAAAANAyr6/lsrMGQErFYjGVlZUpFot5HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP4s1AFKqoqJCEydOVEVFhddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/VzGzQghbzeOmdBLBZTRUWF8vLylJbm//Vhv9VjNa+FXBYyAIhjPgYL/XRH2McxaPX7rR6rea3kspIDAPMxaOinO8I+ju2p3+truRkddiYAoZSWlqb8/HyvY7jGb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/rD9/SGoAOVVlZqYcffliVlZVeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz2INgJTKzMzUgQceqMzMTK+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnM2uAFPL6PocAAAAAAAAAgJZ5fS2XnTUAUqqurk7FxcWqq6vzOoor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fhZrAKRUNBpVSUmJotGo11Fc4bd6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNCCFvN46BwAAAAAAAABomdfXcs3vrPnoo4909dVX69BDD1XPnj2VmZmpjIyMbV5XVlammTNnaubMmVq0aJEHSQE0p6mpSWvXrlVTU5PXUVzht3qs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1m12s2bBhg0aNGqUjjjhCDzzwgBYsWKANGzYoGo2quc1AXbp00YUXXqhf/OIXOvnkkz1IDKA5lZWVmjRpkiorK72O4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq7f5G3QVq9erSFDhujbb79tdmEmEok0uzL2hz/8QbfccosikYjee+89HXHEER0RF9gur7fOWeA4jurr65WVlaVIJOJ1nHbzWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj2J76vb6Wa3JnzamnnqqVK1fKcRztt99+evbZZ7Vu3TpddtllO3zfmWeemXj8z3/+M9UxASQhEokoOzs7MP/j4Ld6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9ZtbrJkxY4bmzZunSCSioUOH6sMPP9QZZ5yhHj16tDjAe++9t3bddVdJ0vz58zsiLoAWVFRU6P7771dFRYXXUVzht3qs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1m1usmT59uiQpIyNDU6dOVU5OTqveP2jQIDmOoy+++CIV8QC0UnZ2tgoLC5Wdne11FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP95j6zZs8999SKFSs0dOhQFRcXb/WzK6+8Ug8++OB2P7NGks4991xNnTpVubm5vlw9Q7B4fZ9DAAAAAAAAAEDLvL6Wa25nzfr16yVJ++yzT5vev3nFrL6+3rVMANqutrZWs2bNUm1trddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/WbW6xJS4tHisVibXr/xo0bJUn5+fluRQLQDrFYTGVlZW2e09b4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP95m6Dttdee6mkpETHHnus3nzzza1+lsxt0Pbee299/fXXOuCAA7RgwYKOiAxsl9db5wAAAAAAAAAALfP6Wq65nTWHHnqoHMfRvHnzWv2ZMx9++KG+/vprRSIRHXnkkSlKCKA1otGoSkpKFI1GvY7iCr/VYzWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo5+rt/cYs0vfvELSfF7y91xxx1Jv6+xsVHjxo1LPC8qKnI7GoA2qKqq0tSpU1VVVeV1FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP95m6DFo1GNWDAAC1fvlyRSET33XefrrrqKknbvw3ahg0b9Jvf/EazZ89WJBLRIYccog8//NCrEoAEr7fOAQAAAAAAAABa5vW13IwOO1OSMjIy9Nhjj+n4449XNBrVNddco6eeekpnnnmmvvnmm8TrXn31Va1Zs0bvvfeeXnrpJdXW1kqScnJy9Pjjj3sVHwAAAAAAAAAAoFXM3QZNkgoLC/X0008rOztbjuPok08+0e9+9zvNmjVLkUhEkvSrX/1Kl112mZ555hnV1NTIcRzl5uZq2rRpGjhwoMcVANisvLxcd955p8rLy72O4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq7f5GKNJJ122mn68MMPdeyxx8pxnK2+JG3zvLCwUB988IFGjhzpZWwAP5CTk6OioiLl5OR4HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cv7nPrGnOokWLNHPmTH3wwQdavXq1ysvL1aVLF/Xs2VOHH364Ro0apcMOO8zrmMA2vL7PIQAAAAAAAACgZV5fyzW7s2ZLgwYN0vXXX69XXnlFH330kb788kstWLBAs2bN0vjx41moAQyrqanRjBkzVFNT43UUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/2+WKwBAAAAAAAAAAAIKl/cBg3wK6+3zgEAAAAAAAAAWub1tVx21gBIqcbGRi1btkyNjY1eR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xb36xJhaL6bPPPtMbb7yhZ599Vk8++WTSXwC85+f7RDbHb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/rN3sbtBUrVugPf/iDXnjhBVVWVrb6/ZFIRNFoNAXJgOR5vXUOAAAAAAAAANAyr6/lZnTYmVrhlVde0dlnn63a2loZXUsCAAAAAAAAAABwhbnboC1btkxnnHGGampqEgs1u+++u0488USdffbZGjNmTFJf55xzjseVAJCksrIyjR8/XmVlZV5HcYXf6rGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9dv7jZoY8eO1ZNPPqlIJKIBAwbo0Ucf1ZAhQ7yOBbSJ11vnLIhGo1q1apV22203ZWSY3MzXKn6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13LNLdb07dtX3377rbp06aIvvvhCffr08ToS0GZeT3AAAAAAAAAAQMu8vpZr7jZo69evVyQS0XHHHcdCDRAA1dXVmjZtmqqrq72O4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq7f3GJNjx49JEk9e/b0OAkAN6SlpSk/P19paeZ+3bSJ3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xb+42aMcdd5zefvttjRo1Sq+88orXcYB28XrrHAAAAAAAAACgZV5fyzW3vDRmzBg5jqN33nnHl1uVAGytoaFBCxcuVENDg9dRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/WbW6w588wzNWDAAFVUVOi6667zOg6Adqqrq1NxcbHq6uq8juIKv9VjNa+FXBYyAIhjPgYL/XRH2McxaPX7rR6rea3kspIDAPMxaOinO8I+jn6u39xt0CTpq6++0rBhw/Tdd99p7Nixuuuuu7Tzzjt7HQtoNa+3zgEAAAAAAAAAWub1tdyMDjtTK/zoRz/Sf/7zH1188cWaPHmynn32WQ0dOlQ/+clP1LVrV0UikaSOc/PNN6c4KYCWOI6j+vp6ZWVlJT13LfNbPVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/rN3QZts//+978qLy+XFN+69Oabb2rixIm67bbbNH78+KS+AHivvLxcd911V2I++53f6rGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9dv8jZoU6ZM0YUXXqhYLCYpvhrWWpFIRE1NTW5HA1rF661zFjQ1NWnDhg3q0aOH0tPTvY7Tbn6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13LNLdbMmzdPRx55ZGKBJj09XUOGDNHAgQNVUFCgjIzk79x2yy23pComkBSvJzgAAAAAAAAAoGVeX8s195k199xzjxzHUSQS0VFHHaWnnnpKe+yxh9exALRRVVWVXnjhBZ166qnKzc31Ok67+a0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/eYWa959911JUn5+vl599VV17drV40QA2iMjI0P9+vVr1a44y/xWj9W8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX5zt0HLzs5WY2OjTjnlFE2fPt3rOEC7eL11DgAAAAAAAADQMq+v5aZ12JmStMsuu0iSunXr5nESAG6or6/XvHnzVF9f73UUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/3mFms2r1ytXLnS4yQA3NDQ0KCFCxeqoaHB6yiu8Fs9VvNayGUhA4A45mOw0E93hH0cg1a/3+qxmtdKLis5ADAfg4Z+uiPs4+jn+s3dBu3vf/+7fv3rX6tz585asWKFdt55Z68jAW3m9dY5AAAAAAAAAEDLvL6Wa25nzejRo3XssceqtrZWF198sYytJQFopVgsprKyMsViMa+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+s3t1gTiUQ0ffp0DR06VDNmzNDPfvYzLV682OtYANqooqJCEydOVEVFhddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/Wbuw3aeeedJ0lqbGzUCy+8kLi33F577aX9999fXbt2VSQSafE4kUhEjz/+eEqzAi3xeuucBbFYTBUVFcrLy1Namrn14VbzWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj2J76vb6Wa26xJi0tbZvFGMdxklqg+aGmpia3YgFt4vUEBwAAAAAAAAC0zOtruSaX1hzH2eqrue+19AXAhsrKSj388MOqrKz0Ooor/FaP1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5/gyvA/zQ5MmTvY4AwEWZmZk68MADlZmZ6XUUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/3mboMGBInXW+cAAAAAAAAAAC3z+lquydugAQiOuro6FRcXq66uzusorvBbPVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/pZrAGQUtFoVCUlJYpGo15HcYXf6rGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9fPbdCAFPJ66xwAAAAAAAAAoGVeX8tlZw2AlGpqatLatWvV1NTkdRRX+K0eq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/RlenPS2227b6vnNN9+83Z+1x5bHBeCNyspKTZo0SePGjVN+fr7XcdrNb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/r9+Q2aGlpaYpEIonnW65y/fBn7eHH1TMEi9db5yxwHEf19fXKyspybW57yW/1WM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj2N76vf6Wq4nO2uk+KBJanbA3Fg/CuM/RMCiSCSi7Oxsr2O4xm/1WM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of6/dkseaWW25p088A+E9FRYWeeOIJnXfeecrLy/M6Trv5rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9ni3WbP5smsGDB2/zMwDBkZ2drcLCQt+uaP+Q3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/X78ln1kj/+9k0l19+uf7yl794EQFIOa/vcwgAAAAAAAAAaJnX13LTOuxMAEKptrZWs2bNUm1trddRXOG3eqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/WzWAMgpWKxmMrKyhSLxbyO4gq/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq6f26ABKeT11jkAAAAAAAAAQMu8vpbLzhoAKRWNRlVSUqJoNOp1FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYASKmqqipNnTpVVVVVXkdxhd/qsZrXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/189t0IAU8nrrHAAAAAAAAACgZV5fy2VnDQDXlZSUKBKJNPtVUlLidTwAAAAAAAAAMMXzxZqXX35Zw4YNc/1r+PDhXpcGQFLXrl11/fXXq2vXrl5HcUV5ebnuvPNOlZeXex0lKVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/ozvA6wevVqrV692tVjOo6jSCTi6jEBtE1NTY1mzJihmpoar6O4IicnR0VFRcrJyfE6SlKs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1e/6ZNak6fSQSUVNTU0qODSTL6/sceqWkpET9+/dv9mfLly9Xv379OjYQAAAAAAAAAOyA19dyPd9ZM3jwYJ144olexwCQIjk5Ofr5z3+u2bNnB2J3TU1NjWbPnq2f//znvliht5rXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/129iseaWW27xOgYAAAAAAAAAAIAnPL8N2uWXX66//OUvXkQAUs7rrXNe4TZoAAAAAAAAAPzE62u5aR12JgCh1KlTJw0YMECdOnXyOoorGhsbtWzZMjU2NnodJSlW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6WawBkFI5OTkqKiry3T0it6empkYzZszwzefvWM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of6+c2aEAKeb11zivcBg0AAAAAAACAn3h9LZedNQAAAAAAAAAAAB5isQZASuXn5+vWW29Vfn6+11FcUVZWpvHjx6usrMzrKEmxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/X7+lt0CTpiiuu4DZoCCyvt855ZcvboGVkZGi33XbTqlWrFI1GfX8btGg0qlWrVmm33XZTRkaG13FaZDWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo7tqd/ra7meLdasWLFCkpSXl6eCggIvIgAp5/UE9wqfWQMAAAAAAADAT7y+luvZbdD69u2rvn37slADBFyXLl105plnqkuXLl5HcUV1dbWmTZum6upqr6MkxWpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+fWQMgpWKxmMrKyhSLxbyO4oq0tDTl5+cnbuVondW8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX7PboMGhIHXW+e8wm3QAAAAAAAAAPiJ19dy/be8BMBXMjMzdeCBByozM9PrKK5oaGjQwoUL1dDQ4HWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZASmVnZ6uwsFDZ2dleR3FFXV2diouLVVdX53WUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dc4r3AYNAAAAAAAAgJ94fS2XnTUAUioSiSg7O1uRSMTrKK5wHEd1dXXyyzq31bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fhZrAKRU165ddf3116tr165eR3FFeXm57rrrLpWXl3sdJSlW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6uQ0akEJeb53zypa3QUtPT1ePHj20YcMGNTU1+f42aE1NTdqwYYN69Oih9PR0r+O0yGpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13IzOuxMAEKpqalJa9eu9TqGa9LT09WrVy+vYyTNal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP7dBA5BSubm5Gjt2rHJzc72O4oqqqipNmTJFVVVVXkdJitW8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX4WawCkVDQaVUlJiaLRqNdRXJGRkaF+/fopI8MfGxOt5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/185k1QAp5fZ9Dr2z5mTU/5PfPrAEAAAAAAAAQPF5fy2VnDYCUysrK0hFHHKGsrCyvo7iivr5e8+bNU319vddRkmI1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq6fxRoAKZWZmakDDzxQmZmZXkdxRUNDgxYuXKiGhgavoyTFal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP7dBA1LI661zXli8eLEefvhhPfTQQ83+/Mgjj9TRRx+ts846a6uxAQAAAAAAAACveH0tl501AFzxxhtv6Oijj9agQYO2WqhJS0tTfn6+0tLiv27ee+89TZgwQQMHDtTRRx+tmTNnehW5TWKxmMrKyhSLxbyOkhSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYAaJfS0lKdddZZGjVqlObOnbvNz/Py8nT11VcrLy9vm5/NnTtXI0eO1Nlnn63S0tKOiNtuFRUVmjhxoioqKryOkhSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP93AYNSCGvt86l2qJFi3TiiSdq9erV231NWlqa8vLyVFFRscMV7T59+mjWrFkaOHBgKqK6JhaLqaKiQnl5eYndQpZZzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPY3vq9/paLos1QAp5PcFTadGiRSosLNSmTZtcO2ZBQYHmzJljfsEGAAAAAAAAQLB4fS03fEtrANqttLRUJ554YlILNTvttJMuueQS7bTTTi2+dtOmTTrhhBNM3xKtsrJSDz/8sCorK72OkhSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYAaLUrr7xyh7c+21JDQ4MWLlyohoaGpF6/evVqXXXVVe2Jl1KZmZk68MADlZmZ6XWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dS4V3njjDY0aNSrl53n99dc1cuTIlJ8HAAAAAAAAALy+lsvOGgCtctddd7Xq9dnZ2SosLFR2dnar3nf33Xe36vUdpa6uTsXFxaqrq/M6SlKs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jH0c/1s1gDIGmLFy/W3LlzW/WejIwM9evXTxkZGa163zvvvKMlS5a06j0dIRqNqqSkRNFo1OsoSbGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9fPbdCAFPJ665zbbrzxRk2YMKFDz3f77bd32PkAAAAAAAAAhJPX13LZWQMgaR9++GGr35Oenq5evXopPT29Q86Xak1NTVq7dq2ampq8jpIUq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/SzWAEiK4zj65JNPWv2+nXbaSZdccol22mmnVr/3P//5j6xt/qusrNSkSZNUWVnpdZSkWM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of6+c2aEAKeb11zk0VFRXq2rVrq98XiUSUlZWl+vr6Ni28VFRUtGmhJ1Ucx1F9fb2ysrIUiUS8jtMiq3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cWxP/V5fy23dJ34DCK2GhoY2vc9xHNXV1bX5vPX19aYWayKRiLKzs72OkTSreS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP93AYNQFIyMzPb9L68vDxdffXVysvLa9P7s7Ky2vS+VKmoqND999+viooKr6MkxWpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+LNQCSstNOO6mgoKDV76urq1NxcXGbdtcUFBQoNze31e9LpezsbBUWFvpmhd5qXgu5LGQAEMd8DBb66Y6wj2PQ6vdbPVbzWsllJQcA5mPQ0E93hH0c/Vw/n1kDpJDX9zl023HHHad///vfHXq+f/3rXx12PgAAAAAAAADh5PW1XHbWAEja4MGDW/2ezp0764QTTlDnzp075HypVltbq1mzZqm2ttbrKEmxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz2JNADQ0NOipp57SiBEj1LdvX2VnZ6t3794aMmSI7rnnHn3//fe+Of+mTZv0/PPP67LLLtOQIUO0yy67KDMzU3l5edprr7105pln6plnnlFjY2PSxywsLFQkEmnV17vvvtuWoQi80aNHt/o9aWlpys/PV1pa63/dtOV8qRaLxVRWVqZYLOZ1lKRYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPo5/r5zZoPrds2TKNHj1aCxcu3O5rdtllF02ePFkjRowwe/6qqiqNHj1as2fPVkNDQ4vn7devn6ZOnaqjjz66xdcWFhZqzpw5Lb5uS3PnztVRRx3Vqvc0x+utc6lw9NFHa+7cuR1yntb2DQAAAAAAAADawutruRkddia4btWqVRo+fLhWr14tSYpEIjr66KO11157acOGDXrzzTdVW1ur9evXq6ioSLNmzdKwYcNMnr+qqkqvv/76Vt/r2bOnDj30UPXq1UuNjY1auHChFi1aJEkqKSnR8OHD9fLLL2vUqFFJZy4qKtKuu+7a4uv69OmT9DHD5rrrrmvVYk1GRoZ22203rVq1StFotFXnsSgajWrVqlXabbfdlJFh/1eo1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fm6D5mNnnXVWYqGkb9++WrBggYqLi/X444/r1Vdf1cqVKzV8+HBJUmNjo0477TSVlZWZPn9BQYHGjRunhQsXau3atXr99df12GOPaerUqfr00081d+5c9e/fX1J84p199tlat25d0pnHjRunv/71ry1+7bnnnm0blBAYOXJkq25Plpubq7Fjxyo3Nzfp95x11lkp2QnmhqqqKk2dOlVVVVVeR0mK1bwWclnIACCO+Rgs9NMdYR/HoNXvt3qs5rWSy0oOAMzHoKGf7gj7OPq5fm6D5lMzZ87UyJEjJUmZmZn6+OOPNXDgwG1eV11drUGDBumbb76RJN1www264447zJ1/48aNmjhxon77298qLy9vh+cuKSnRAQccoIqKCknS9ddfrwkTJmz39VveBu3tt99WYWFhUjW6weutc6lSWlqqQYMGJRbr3NSnTx8tWrRI3bt3d/3YAAAAAAAAANAcr6/lsrPGpx588MHE4zFjxjS7UCJJXbp00W233ZZ4PmnSpFbdiqqjzt+tWzeNHz++xYUaKf55NZdcckni+RtvvNGa6HBB9+7dNWvWLBUUFLh63IKCAs2aNYuFGgAAAAAAAAChwmKND1VVVenf//534vm55567w9efcsopiVtQbdy4Ue+8846vzy9JRx55ZOJxSUlJu4+H1hs4cKDmzJnT4uf7dO3aVddff726du26w9f16dNHc+bM2e7CnxXl5eW68847VV5e7nWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnscaH3n//fdXX10uK71w57LDDdvj67Oxs/fSnP008f+utt3x9fkmKRCKJx01NTe0+Htpm4MCBWrRokc4666ztvqampkYzZsxQTU3Ndl9z1llnadGiReYXaiQpJydHRUVFysnJ8TpKUqzmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MfRz/VneB0Arff5558nHg8cOFAZGS238eCDD9a//vWvbd7vx/NL0uLFixOPd99996Tft2zZMn322Wf69ttv1djYqG7dummfffbR0KFD1bNnz3bnCqPu3bvrmWee0VlnnaW77757m51TjY2NWrZsWbPvPfroo3XddddpxIgRHRHVFZ06ddKAAQO8jpE0q3kt5LKQAUAc8zFY6Kc7wj6OQavfb/VYzWsll5UcAJiPQUM/3RH2cfRz/eys8aEvvvgi8bhv375JvWePPfZIPN7ehXO/nD8Wi+mpp55KPD/uuOOSfu+ll16qyy+/XHfeeafuvfde3XTTTTrttNPUu3dv/fKXv9Snn37armxhNnLkSM2ZM0eLFy/WZZddlvj+D1ezjzzySN14441avHix5syZ46uFGim5nUKWWM1rIZeFDADimI/BQj/dEfZxDFr9fqvHal4ruazkAMB8DBr66Y6wj6Of62exxodKS0sTj5PdDdKrV6/E440bN/r6/A899FBiwSctLU2XXnppu44nSY7j6NVXX9Xhhx+uRx99tN3HC7P9999f//f//t/t/vzpp5/W7bffrv33378DUwEAAAAAAACAXSzW+FBVVVXicefOnZN6z5av2/L9fjv/0qVLdcMNNySen3/++frJT36yw/dEIhEdc8wx+vOf/6x58+Zp48aNamxs1MaNGzV37lxdc8016tKliySpvr5eF198sZ5//vk2Z2xOdna2cnNzJcU/Y6esrEyO40iSKioq1NDQIEmqra1VdXW1JCkajaqsrCxxjPLycjU2NkqKrxBvXh1ubGzc6gOzysrKFI1GJUnV1dWqra2VJDU0NKiiokJSfHGqrKws8Xk/VVVVqqurS4xBZWWlpPguprKyMsViMUlSZWVl4vOK6urqEr38YU3V1dXKzMxMnOtf//qXampqlJGRsVX//VTT5j7l5OTo+OOPT3zfep/S0tJ03HHHKScnx9S/vaysLBUVFSkWi6WkT8nU1KlTJxUVFSXq8rJPbtVk6d8eNVFTa2qKRqMqKipS586dA1NTEPuUbE1NTU0qKipSdnZ2YGryok+S9POf/1w5OTmBqak1fYpEIioqKlJGRkYganIcR8cff7xycnJ80SdJKioqUqdOnUz928vJydGwYcMSt+L26ndELBbTCSecoJycHPP/9oL6O4KaqGlzTVlZWSosLExcdwpCTUHsU7I1ZWZmqrCwMHF3liDU5EWfcnJydOKJJ271v1t+r6k1fXLjWphXWKzxoc3/QCUlLoi3JCsrK/F480Tw2/nLyspUVFSU+AWy995767777mvxfS+88IKKi4t19dVX6/DDD1dBQYEyMjJUUFCgo446Svfdd5/+85//aM8995QU/6Vw6aWXbvXLpL2OOOIInXrqqZKkDRs2aOLEiYlfIE888YQ+++wzSdKcOXP02muvSZJWrVqliRMnJo7xt7/9TV9//bUkafbs2Zo9e7Yk6euvv9bf/va3xOsmTpyoVatWSZJee+01zZkzR5L02Wef6YknnpAU/+U2ceJEbdiwITFG8+bNkyQtWLBAzzzzjKT4L7CJEycmfmE+88wzWrBggSRp3rx5euGFF5qt6R//+If2228/SdKxxx6r0aNHq1OnTtptt9304osv+rKmzX1qbGzUyy+/rFdffdUXfXrvvff05JNPqrGx0dS/vTVr1mjZsmV6/vnnU9KnZGr64osvtGzZMs2aNcvzPrlVk6V/e9RETa2tadmyZaqqqgpUTUHsUzI1Pf3001q2bJlKS0sDU5MXfZo1a5aef/55NTY2Bqam1vTp7bff1rJly7R48eJA1PTqq6/q5ZdfVmNjoy/6NGvWLC1btkxffPGFqX97jY2NmjRpUuIzTL36HfH888/r9ddfV2Njo/l/e0H9HUFN1LS5pjVr1mjixImJa0VBqCmIfUq2ppKSEk2cODFx4T8INXnRp8bGRs2aNUtPP/10YGpqTZ/cuBbmGQeueeCBB5wf//jHrn49//zz25xnxIgRjiRHknPdddcllW3mzJmJ9+Tm5rarTi/OX1tb6xx99NGJY+Tl5Tmffvppq4+zI0uXLnUyMjIS57jnnnvafcwlS5Y4kpzs7GwnNzfXWbJkiRONRp1NmzY5sVjMcRzHKS8vd+rr6x3HcZyamhqnqqrKcRzHaWxsdDZt2pQ4VllZmdPQ0OA4juNUV1c71dXVjuM4TkNDg1NWVpZ43aZNm5zGxkbHcRynqqrKqampcRzHcerr653y8nLHcRwnFos5mzZtcqLRqOM4jlNZWenU1tY6juM4dXV1TkVFheM4jtPU1ORs2rTJaWpqchzHcSoqKpy6ujrHceI9qaysdBzH2aamJUuWOJmZmY4kZ5dddnGuv/56p2vXrk5GRoazePFiX9a0uU9lZWXOHXfc4axevdoXfVq7dq1zxx13OGVlZab+7ZWWljoTJkxwvvvuu5T0KZmaNmzY4EyYMMFZs2aN531yqyZL//aoiZpaU9O3337rTJgwwdm0aVNgagpin5KtadWqVc6ECROcjRs3BqYmL/q0Zs2axP+GB6Wm1vRp7dq1zoQJE5z169cHoqbVq1cn+umHPq1Zs8aZMGGCs2HDBlP/9jb/Lb5+/fqU9CnZmr777rtEP63/2wvq7whqoqbNNZWWljp33HFHIm8Qagpin5Kt6fvvv0/8fg1KTV70afP/Xq5atSowNbWmT+25Frb5Wu7mryVLljgdKeI4/38PENrt1ltv1fjx41095qOPPqoLLrhgq++dccYZmj59uiTpqquuSmrV76WXXtIpp5wiKf75MWvWrGlzpo4+fzQa1SmnnJLYyZCdna1Zs2bpmGOOaUP6HfvNb36TWHUePny43nzzzXYdb+nSpVt9NsuSJUtavG1bEJSUlKh///7N/mz58uXq169fxwYCAAAAAAAAgB3w+lout0Hzoe7duycer1u3Lqn3rF27NvG4W7duvjl/LBbT2LFjEws1GRkZev7551OyUCNJxx13XOLx559/npJzAAAAAAAAAACwJRZrXHTrrbfKcRxXv364q0aSfvzjHycer1ixIqlsK1euTDweMGBAu+rsyPNfcskliXsRpqWl6cknn9SoUaOSfn9r9e7dO/H4+++/T9l5wiQ/P1+33nqr8vPzvY7iirKyMo0fP97Eh44lw2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+LNT607777Jh4vXrxY0Wi0xfd88sknzb7f8vmvueYaPfroo4nnkyZN0ujRo1uRtPWqq6sTj7t06ZLSc4VFVVWVpkyZkviwP7/Lzc3VmDFjlJub63WUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnscaHhgwZoqysLEnxxYWPP/54h6+vr6/XvHnzEs+HDRtm/vw33XST7r///sTzP//5z83uMnLbggULEo/79OmT8vOFQTQaVUlJSVKLen6QkZGhfv36KSMjw+soSbGa10IuCxkAxDEfg4V+uiPs4xi0+v1Wj9W8VnJZyQGA+Rg09NMdYR9HP9fPYo0P5ebmavjw4YnnU6ZM2eHrX3rpJVVWVkqKf17M0Ucfbfr8t99+u+64447E89tuu01XX311m/Mmq6GhQU8//XTieWFhYcrPGQZdunTRmWeeGZidStXV1Zo2bdpWu7Ass5rXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/189ijU9ddtllicdTpkzR0qVLm31dTU2Nbr755sTziy66yJVVxVSdf+LEifr973+feP673/1O//M//9PmnK259da1116r5cuXJ57/+te/bvN58b9isZjKysoUi8W8juKKtLQ05efnKy3NH78+rea1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9Uccx3G8DoG2OfroozV37lxJUr9+/fTKK69o0KBBiZ+XlpZq9OjR+te//iUpvqvl66+/3u4HvZeUlKh///6J55MnT9bYsWM77PxPPPGELrjgAm3+J3n55Zfrr3/9644HoQU///nPtfvuu2vMmDE66qijmp2k33zzja677jq98MILie+dccYZmjZtWrvOLUlLly7V/vvvn3i+ZMkS/eQnP2n3ca374b+lLS1fvlz9+vXr2EAAAAAAAAAAsANeX8v1343bkPD3v/9dgwcP1po1a1RSUqIDDzxQxxxzjPbaay9t2LBBb775pmpqaiTF79U3ffr07S6UeH3+xYsX68ILL0ws1HTp0kWO4+iKK65IKsu4ceO09957b/P9hoYGPfHEE3riiSfUtWtXHXDAAdp999210047qaqqSp999pkWLly41a6PwYMH6/HHH2/laGB7MjMztd9+++mzzz5TQ0OD13HaraGhQZ999pn2228/ZWZmeh2nRVbzWshlIQOAOOZjsNBPd4R9HINWv9/qsZrXSi4rOQAwH4OGfroj7OPo5/pZrPGx3XbbTW+99ZZGjx6thQsXynEcFRcXq7i4eKvX9ejRQ5MnT97qc2asnb+0tHSrBZPq6mo99NBDSWc59dRTm12s2VJ5ebneeeed7f68U6dOuuyyy3TnnXcqOzs76XNjx7Kzs1VYWKhvvvkmEIs1dXV1Ki4u1p577umLX/hW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6uQ1aADQ0NGjatGl69tlntXTpUq1bt075+fnac889dfLJJ+vcc8/Vzjvv3OJxWnsbNDfPX1xcrGOPPbbFc23P22+/rcLCwm2+v379er3//vv64IMP9NFHH2nNmjUqLS3Vpk2blJ2drW7dumngwIEaOnSozjnnHPXu3bvNGZrj9dY5r3AbNAAAAAAAAAB+4vW1XBZrgBTyeoJ7ZcvFmkgkoqysLNXX18txHN8v1jiOo/r6emVlZSkSiXgdp0VW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj2J76vb6Wu+2nrQOAi7p27arrr79eXbt29TqKK8rLy3XXXXepvLzc6yhJsZrXQi4LGQDEMR+DhX66I+zjGLT6/VaP1bxWclnJAYD5GDT00x1hH0c/18/OGiCFvF6N9cqWO2vS09PVo0cPbdiwQU1NTb7fWdPU1KQNGzaoR48eSk9P9zpOi6zmtZDLQgYAcczHYKGf7gj7OAatfr/VYzWvlVxWcgBgPgYN/XRH2MexPfV7fS03o8POBCCUmpqatHbtWq9juCY9PV29evXyOkbSrOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNAAplZubq7Fjxyo3N9frKK6oqqrSlClTVFVV5XWUpFjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZASkWjUZWUlCgajXodxRUZGRnq16+fMjL8sTHRal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP59ZA6SQ1/c59MqWn1nzQ37/zBoAAAAAAAAAweP1tVx21gBIqaysLB1xxBHKysryOoor6uvrNW/ePNXX13sdJSlW81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6WawBkFKZmZk68MADlZmZ6XUUVzQ0NGjhwoVqaGjwOkpSrOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNCCFvN465xVugwYAAAAAAADAT7y+lsvOGgAplZaWpvz8fKWlBePXTSwWU1lZmWKxmNdRkmI1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq4/GFdPAZiVl5enq6++Wnl5eV5HcUVFRYUmTpyoiooKr6MkxWpeC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRz9XD+3QQNSyOutc17Z8jZoaWlpysvLU0VFhWKxmO9vgxaLxVRRUaG8vDxf7BaymtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfx/bU7/W13IwOOxOA0OjXr5+Cug68+bZufmE1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6Ofq4/fEtrADpUZWWlHn74YVVWVnodxRV+q8dqXgu5LGQAEMd8DBb66Y6wj2PQ6vdbPVbzWsllJQcA5mPQ0E93hH0c/Vw/izUAUiozM1MHHnigMjMzvY7iCr/VYzWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo5+rp/PrAFSyOv7HAIAAAAAAAAAWub1tVx21gBIqbq6OhUXF6uurs7rKK7wWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6WawBkFLRaFQlJSWKRqNeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz23QgBTyeuscAAAAAAAAAKBlXl/LZWcNgJRqamrS2rVr1dTU5HUUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/0s1gBIqcrKSk2aNEmVlZVeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz23QgBTyeuucBY7jqL6+XllZWYpEIl7HaTe/1WM1r4VcFjIAiGM+Bgv9dEfYxzFo9futHqt5reSykgMA8zFo6Kc7wj6O7anf62u5GR12JgChFIlElJ2d7XUM1/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/3cBg1ASlVUVOj+++9XRUWF11Fc4bd6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9bNYAyClsrOzVVhY6NsV7R/yWz1W81rIZSEDgDjmY7DQT3eEfRyDVr/f6rGa10ouKzkAMB+Dhn66I+zj6Of6+cwaIIW8vs8hAAAAAAAAAKBlXl/LZWcNgJSqra3VrFmzVFtb63UUV/itHqt5LeSykAFAHPMxWOinO8I+jkGr32/1WM1rJZeVHACYj0FDP90R9nH0c/0s1gBIqVgsprKyMsViMa+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dQ4AAAAAAAAA0DKvr+WyswZASkWjUZWUlCgajXodxRV+q8dqXgu5LGQAEMd8DBb66Y6wj2PQ6vdbPVbzWsllJQcA5mPQ0E93hH0c/Vw/izUAUqqqqkpTp05VVVWV11Fc4bd6rOa1kMtCBgBxzMdgoZ/uCPs4Bq1+v9VjNa+VXFZyAGA+Bg39dEfYx9HP9XMbNCCFvN46BwAAAAAAAABomdfXctlZAwAAAAAAAAAA4CEWawCkVHl5ue68806Vl5d7HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP4s1AFIqJydHRUVFysnJ8TqKK/xWj9W8FnJZyAAgjvkYLPTTHWEfx6DV77d6rOa1kstKDgDMx6Chn+4I+zj6uX4+swZIIa/vcwgAAAAAAAAAaJnX13LZWQMgpWpqajRjxgzV1NR4HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP4s1AAAAAAAAAAAAHuI2aEAKeb11DgAAAAAAAADQMq+v5bKzBkBKNTY2atmyZWpsbPQ6iiv8Vo/VvBZyWcgAII75GCz00x1hH8eg1e+3eqzmtZLLSg4AzMegoZ/uCPs4+rl+FmsApJSf7xPZHL/VYzWvhVwWMgCIYz4GC/10R9jHMWj1+60eq3mt5LKSAwDzMWjopzvCPo5+rp/boAEp5PXWOQAAAAAAAABAy7y+lsvOGgAAAAAAAAAAAA+xWAMgpcrKyjR+/HiVlZV5HcUVfqvHal4LuSxkABDHfAwW+umOsI9j0Or3Wz1W81rJZSUHAOZj0NBPd4R9HP1cP7dBA1LI661zFkSjUa1atUq77babMjIyvI7Tbn6rx2peC7ksZAAQx3wMFvrpjrCPY9Dq91s9VvNayWUlBwDmY9DQT3eEfRzbU7/X13JZrAFSyOsJDgAAAAAAAABomdfXcrkNGoCUqq6u1rRp01RdXe11FFf4rR6reS3kspABQBzzMVjopzvCPo5Bq99v9VjNayWXlRwAmI9BQz/dEfZx9HP9LNYASKm0tDTl5+crLS0Yv278Vo/VvBZyWcgAII75GCz00x1hH8eg1e+3eqzmtZLLSg4AzMegoZ/uCPs4+rl+boMGpJDXW+cAAAAAAAAAAC3z+lqu/5aXAPhKQ0ODFi5cqIaGBq+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+tnsQZAStXV1am4uFh1dXVeR3GF3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz23QgBTyeuscAAAAAAAAAKBlXl/LZWcNgJRyHEd1dXUKyrqw3+qxmtdCLgsZAMQxH4OFfroj7OMYtPr9Vo/VvFZyWckBgPkYNPTTHWEfRz/Xz2INgJQqLy/XXXfdpfLycq+juMJv9VjNayGXhQwA4piPwUI/3RH2cQxa/X6rx2peK7ms5ADAfAwa+umOsI+jn+vnNmhACnm9dc6CpqYmbdiwQT169FB6errXcdrNb/VYzWshl4UMAOKYj8FCP90R9nEMWv1+q8dqXiu5rOQAwHwMGvrpjrCPY3vq9/pabkaHnQkIofr6+q2ef/XVVx4l8V5paanXEVzlt3qs5rWQy0IGAHHMx2Chn+4I+zgGrX6/1WM1r5VcVnIAYD4GDf10R9jHsS31//Da7Q+v7aacAyBlZsyY4UgK9Vdubq4zduxYJzc31/MsYazHal4LuSxk4IsvvuJfzMdgfdFPxpH6/V+P1bxWclnJwRdffDEfg/ZFPxlHa/XPmDGjQ68lcxs0IIVeeeUVFRUVeR0DAAAAAAAAANAKM2bM0C9/+csOO19ah50JAAAAAAAAAAAA22BnDZBCZWVlmjNnTuL57rvvrqysLA8TAQAAAAAAAAB+qL6+Xt9++23i+THHHKP8/PwOOz+LNQAAAAAAAAAAAB7iNmgAAAAAAAAAAAAeYrEGAAAAAAAAAADAQyzWAAAAAAAAAAAAeIjFGgAAAAAAAAAAAA+xWAMAAAAAAAAAAOAhFmsAAAAAAAAAAAA8xGINAAAAAAAAAACAh1isAQDApz744AOdcsop6tmzp7Kzs9W/f39ddtll+u6777yOBgAAAIPWrl2rp59+WldffbWOOuoo5ebmKhKJqF+/fl5HAwAg9CKO4zhehwAAAK3z2GOP6eKLL1YsFlOvXr2066676ssvv1RlZaUKCgr09ttv64ADDvA6JgAAAAy5//77dc0112zz/b59+6qkpKTjAwEAgAR21gAA4DOLFy/WJZdcolgspnvvvVffffedPv74Y61evVqnn366Nm3apF/96leqr6/3OioAAAAMycvL0/Dhw3Xddddp+vTpuv/++72OBAAA/j921gAA4DOnnnqqXnzxRZ1++ul67rnntvpZbW2tBgwYoJUrV+pvf/ubLrnkEo9SAgAAwLoXXnhBp512GjtrAAAwgJ01AAD4SHV1td544w1J0uWXX77Nzzt37qxzzz1XkjRt2rQOzQYAAAAAAIC2YbEGAIAfaGpq0qJFi/T444/r0ksv1aGHHqrMzExFIhFFIhEVFha2+dgNDQ166qmnNGLECPXt21fZ2dnq3bu3hgwZonvuuUfff//9Dt+/YMEC1dXVKTMzU0cccUSzr9mcb/78+YrFYm3OCgAAgNax/HckAACwLcPrAAAAWDJjxgydffbZqqmpcf3Yy5Yt0+jRo7Vw4cKtvr927VqtXbtWH3zwgf70pz9p8uTJGjFiRLPH+PLLLyVJe+yxhzIzM5t9zY9+9CNJUl1dnVasWKH+/fu7VwQAAACaZf3vSAAAYBs7awAA2EJZWVlK/gN71apVGj58eOI/sCORiI455hidd955+sUvfqHOnTtLktavX6+ioiK99dZbzR5n48aNkqTu3btv91zdunVLPN60aZNLFQAAAGBHrP8dCQAAbGNnDQAAzejZs6cOO+ywxNc///lPTZw4sc3HO+uss7R69WpJUt++ffXKK6/ogAMOSPz8+++/15lnnql///vfamxs1Gmnnaavv/5a+fn5Wx2ntrZWkra7q0aSsrOzE49TccEAAAAA22f170gAAGAbizUAAGzhhBNO0IoVK7THHnts9f358+e3+ZgzZ87U3LlzJcUXWV577TUNHDhwq9fsvPPOeuWVVzRo0CB988032rhxo+6++27dcccdW71u8/9zsqGhYbvnq6urSzzOyclpc24AAAAkz/rfkQAAwDZugwYAwBZ69eq1zX9gt9eDDz6YeDxmzJht/gN7sy5duui2225LPJ80aZKi0ehWrykoKJAklZaWbvd8m2+VtuXrAQAAkFrW/44EAAC2sVgDAEAKVVVV6d///nfi+bnnnrvD159yyinKzc2VFF90eeedd7b6+Y9//GNJ0sqVK7e7u+a///2vpPjt0Pr27dvm7AAAAPCO239HAgAA21isAQAghd5//33V19dLiv8/Hg877LAdvj47O1s//elPE89/+AGxBx10kLKzs9XQ0KB58+Y1e4w5c+ZIkgYPHqy0NP6nHgAAwI/c/jsSAADYxhUcAABS6PPPP088HjhwoDIyWv64uIMPPrjZ90vx/1AfMWKEpK1vi7FZbW2tJk+eLEk644wz2pQZAAAA3nP770gAAGAbizUAAKTQF198kXic7C3JtrzX+bJly7b5+c0336z09HRNnz5d9913n2KxmKT4rTLGjh2rlStXqm/fvjr//PPbmR4AAABeScXfkQAAwC4WawAASKHS0tLE4549eyb1nl69eiUeb9y4cZufH3DAAXrwwQeVlpam3/72t9p111116KGHqk+fPpo+fbry8/P18ssvKysrq/0FAAAAwBOp+Dvy22+/1c4775z4Ou+885r9/pVXXtnO9AAAoLVYrAEAIIWqqqoSjzt37pzUe7Z83Zbv39LFF1+suXPnqqioSE1NTVq8eLEKCgp0ySWXaPHixTrooIPaFxwAAACeSsXfkU1NTSotLU18VVZWSpJisViz3wcAAB2n5RueAgCANqurq0s8zszMTOo9W+6Iqa2t3e7rhgwZopdffrnt4QAAAGBWKv6O7NevnxzHaX84AADgOnbWAACQQtnZ2YnHDQ0NSb2nvr4+8TjZ/xclAAAAgoW/IwEACBcWawAASKHc3NzE4x3tktnSlq/b8v0AAAAID/6OBAAgXFisAQAghbp37554vG7duqTes3bt2sTjbt26uZ4JAAAA9vF3JAAA4cJiDQAAKfTjH/848XjFihVJvWflypWJxwMGDHA9EwAAAOzj70gAAMKFxRoAAFJo3333TTxevHixotFoi+/55JNPmn0/AAAAwoO/IwEACBcWawAASKEhQ4YoKytLklRdXa2PP/54h6+vr6/XvHnzEs+HDRuW0nwAAACwib8jAQAIFxZrAABIodzcXA0fPjzxfMqUKTt8/UsvvaTKykpJ8fuMH3300amMBwAAAKP4OxIAgHBhsQYAgBS77LLLEo+nTJmipUuXNvu6mpoa3XzzzYnnF110kTIyMlKeDwAAADbxdyQAAOHBYg0AACk2cuRIDR06VFL89hSjRo3SokWLtnpNaWmpioqK9NVXX0mK/78hr7vuug7PCgAAADv4OxIAgPCIOI7jeB0CAABLRowYodWrV2/1vbVr12rdunWSpC5duuhHP/rRNu+bOXOm+vTp0+wxV61apcGDB2vNmjWSpEgkomOOOUZ77bWXNmzYoDfffFM1NTWSpIyMDM2aNWur214AAADAPv6OBAAAbcViDQAAP9CvXz+tWLGi1e9bvny5+vXrt92fL1u2TKNHj9bChQu3+5oePXpo8uTJGjlyZKvPDwAAAG/xdyQAAGgrbmAKAEAHGTBggObPn69p06bp2Wef1dKlS7Vu3Trl5+drzz331Mknn6xzzz1XO++8s9dRAQAAYAh/RwIAEHzsrAEAAAAAAAAAAPBQmtcBAAAAAAAAAAAAwozFGgAAAAAAAAAAAA+xWAMAAAAAAAAAAOAhFmsAAAAAAAAAAAA8xGINAAAAAAAAAACAh1isAQAAAAAAAAAA8BCLNQAAAAAAAAAAAB5isQYAAAAAAAAAAMBDLNYAAAAAAAAAAAB4iMUaAAAAAAAAAAAAD7FYAwAAAAAAAAAA4CEWawAAAAAAAAAAADzEYg0AAAAAAAAAAICHWKwBAAAAAAAAAADwEIs1AAAAAAAAAAAAHmKxBgAAAAAAAAAAwEMs1gAAAAAAAAAAAHiIxRoAAAAAAAAAAAAPsVgDAAAAAAAAAADgIRZrAAAAAAAAAAAAPMRiDQAAAAAAAAAAgIdYrAEAAAAAAAAAAPAQizUAAAAAAAAAAAAeYrEGAAAAAAAAAADAQyzWAAAAAADQBvfff78ikYjS0tL08ccfex2nXa6//npFIhFlZ2fr66+/9joOAABA6LBYAwAAAMBVhYWFikQirf4qLi72OjqQtHXr1umWW26RJJ1xxhk69NBDm33d2LFjE//Gx44d26pzTJkyJfHefv36tTPxjl1//fUqKChQfX29rrnmmpSeCwAAANtisQYAAAAAgFYaP368KioqFIlEdPPNN3sdp93y8/N15ZVXSpJee+01zZkzx+NEAAAA4ZLhdQAAAAAAwXXYYYdp8ODBSb121113TXEawB0lJSV67LHHJEm//OUvte+++3qcyB1XXXWV7rnnHtXU1Oimm27Su+++63UkAACA0GCxBgAAAEDKjBgxQrfeeqvXMQBX3XvvvWpsbJQkXX755R6ncU/37t112mmnaerUqXrvvff03nvv6cgjj/Q6FgAAQChwGzQAAAAAAJJUXl6uyZMnS5L69++v4cOHe5zIXRdccEHi8f333+9dEAAAgJBhsQYAAAAAgCQ999xzqq6uliSddtppikQiHidy15FHHqk+ffpIkl555RWVlpZ6nAgAACAcWKwBAAAAYEpJSYkikYgikYj69euX+P67776rCy64QAMGDFDXrl0ViUR09dVXN3uMb7/9Vn/4wx80dOhQ9enTR1lZWerWrZsOOuggXXvttfryyy9blemTTz7RhRdeqD333FOdO3dWjx49NHjwYN19993auHGjJGnKlCmJ3GPHjm32OLfeemviNcncHq64uDjx+sLCwqSyfv7557rxxhs1ePBg9ezZU5mZmerRo4cOP/xw3XzzzVq9enWLxygsLEyct7i4WJK0ceNG3XXXXTrssMO08847q3Pnztpzzz11/vnna8mSJUll29I//vEPXXzxxdp///3VvXt3derUSfn5+Tr44IN18cUX69VXX1U0Gk28fv369crMzFQkElF6erq+++67pM7jOI769++fqOfVV19tddYtPfPMM4nHRUVF7TpWe205V1r7VVJS0uwxI5FIoq7GxkZNnz694woCAAAIMT6zBgAAAIBpDQ0NuuqqqzRp0qQWXxuLxXTrrbfqT3/6k+rq6rY5zqZNm7Rw4UJNnDhRv/vd7/THP/6xxZ0Rv//973XnnXeqqakp8b26ujp9//33+uijj/TAAw/o+eefb1txLqqvr9e4ceP02GOPbZVVkr7//nt9//33+vDDD3XPPffo7rvv1hVXXJH0sd977z2dccYZ2yyQLF++XMuXL9fUqVP1t7/9TRdeeGGLx1q6dKnGjh2rjz/+eJuflZeXa8GCBVqwYIEeeeQRnXHGGZo2bZokaZdddtFJJ52kF198UbFYTFOmTNFNN93U4vn+/e9/JxYmevfurZEjRyZRcfM2bdqk9957T5K000476bDDDmvzsSwbNmyYHnroIUnS66+/rksvvdTjRAAAAMHHYg0AAAAA06655prEQs3AgQN1wAEHqFOnTvryyy+Vlva/NwtoamrSGWecoRdffDHxvV133VWDBw9Wjx49VFVVpfnz5+vrr79WNBrVHXfcoQ0bNuiRRx7Z7rlvvPFGTZgwIfE8JydHw4YNU+/evbV27Vq99dZbWrVqlUaMGLHdXT4dobq6Wscff3xiIUGS9tprLx1yyCEqKCjQxo0b9d5772n16tWqra3VlVdeqYqKCt14440tHnvJkiW64YYbVFVVpV122UVDhw5V9+7d9d133+mtt95SbW2tmpqadMkll2jgwIE64ogjtnus4uJinXTSSaqsrEx8b4899tDgwYPVrVs3VVdX64svvtCnn36qxsbGbRbcLrrookR/n3jiCd14440tLrY9/vjjicdjx45Venp6izVvz1tvvZVYCDviiCOUkeHtf1Ln5eXp8ssvT+q1ixYt0ty5cxPPdzRuQ4cOTTwuLi5WNBr1vFYAAICg468tAAAAAGatWrVKDz30kHbffXc988wzW11EluK7STYbP3584kJ+r1699OCDD+pXv/rVNheln3/+eV144YUqLy/Xo48+quOOO06nn376Nud+5513dOeddyaen3rqqXrkkUdUUFCQ+F55ebkuueQSTZs2TbfffrsrNbfFZZddllio2WeffTRp0qRtbpvW1NSkRx55RNdcc43q6+t1880369hjj9VPf/rTHR772muvVTQa1b333qurrrpqq4v23377rUaMGKElS5YoFovpxhtv1FtvvdXscb799luddtppiYWa/v3766GHHtIJJ5ywzWs3bdqk6dOn66uvvtrq+z/72c/Uv39/LV++XN98842Ki4t17LHHbjf7xo0b9fLLL0uKL06cf/75O6y1JfPnz088HjRoULuO5YZu3brpr3/9a4uv+/bbbzV48ODE89GjR6tv377bff0uu+yi3r17a82aNaqpqdGSJUt04IEHuhEZAAAA28FiDQAAAICUmTlzpr7//vsWX3fDDTdo11133eb7TU1NysnJ0Ztvvql99tlnm59nZWVJin92xx133CEpfgH73Xff1V577dXsuU477TTtvPPOGjZsmKT458g090HxN9xwgxzHkSQNHz5c06ZN22ZXRteuXfXMM89o48aNmj17dot1psLcuXP15JNPSorvpnnvvfe08847b/O69PR0XXrppercubPOPfdcNTU16bbbbtM//vGPHR6/vr5ekyZN0kUXXbTNz3bffXc9++yzGjRokBzHUXFxsdasWaPevXtv89obbrgh8W+hb9+++uCDD9SzZ89mz1lQUKCLL754m+9HIhFdcMEFidufPf744ztcrHnmmWcSC3qFhYXb/TeRrEWLFiUeDxgwoNXvnz9/fqtuP7ds2bJWn+OHqqurddJJJ2nt2rWSpMMPP1xPPPFEi+/bd999tWbNGknSp59+ymINAABAirFYAwAAACBlPvroI3300Uctvu6CCy5odrFGkq644opmF2q2NHHixMTtqW6++eYWL8ofe+yxOv744/XPf/5Tn3/+uRYsWKCDDz448fPPP/9c77//fuL5X/7yl+3ePistLU0PPPCABgwYkFjc6Uj33Xdf4vG9997b7ELNlsaOHau77rpLy5Yt0z//+U+Vlpaqe/fu2339wIEDm12o2Wz//ffXYYcdpg8//FCO4+jjjz/WL37xi61e89133+m5555LPH/44Ye3u1DTknPPPVe33HKLotGoXnzxRf31r39Vfn5+s6/d8hZoF1xwQZvOt6Xly5cnHu+2226tfv+yZctcWYBJluM4+s1vfqOFCxdKii+uzZgxQ9nZ2S2+d8v5uPkzfwAAAJA6aS2/BAAAAAC8c+aZZ7b4mpkzZyYen3XWWUkdd/POGkl69913t/rZ22+/nXh8yCGHaL/99tvhsfbZZ58dflZLqkSjUf3rX/+SFP/8klGjRiX1vs27URzH2epzbppz2mmntXi8gw46KPG4uQv7b775pqLRqCRp7733bvbWZ8nq3bt3os66ujr9/e9/b/Z1//nPf/Tpp59Kiu/UOfnkk9t8zs3WrVuXeLyjBS4rbrrppsRt4Lp06aJXX31VvXr1Suq9Wy76bd6VAwAAgNRhZw0AAACAlLnlllt06623tvn9nTp10sCBA3f4mtLSUn355ZeSpMzMTI0fPz6pY3/22WeJx99+++1WP1uwYEHicUuf6bLl6z744IOkXuuWRYsWqbq6WlJ8rMaNG5fU+7bc7fTD2n+opfGXtl64qKio2Obn8+bNSzz+4WfptMVFF12kGTNmSIrvnrnsssu2ec2Wu2p+/etfJ7WbpCWbx1qScnJyWv3+MWPGaMqUKUm/fsqUKTr33HNbfR5JevrppzVhwgRJ8dvHPf300626ldmW9W1ZNwAAAFKDxRoAAAAAZhUUFGz1gfbN2fy5GpLU0NCgBx98sNXn2bRp01bPN2zYkHi8xx57JHWMZF/nptWrVycel5aWulL7D3Xt2rXFY3Tq1CnxuLGxcZufb7kjZc8992xFuuYdf/zx6tu3r1asWKFPPvlECxcu3Gohora2dqsdN27cAu2HvLjlXbLmzZu3Vc133HGHioqKWnUMy/UBAAAEEbdBAwAAAGBW586dW3xNeXl5u8+z+RZdm1VVVSUeJ7uDokuXLu3O0VqpqP2HIpFIu89RWVmZeJybm9vu46Wlpen8889PPN9yF40kvfjii4mxOeywwzRo0KB2n1Pause1tbWuHNNtK1euVFFRkerr6yVJ55xzjq6//vpWH2fL+rz4tw0AABA2LNYAAAAA8LUtLyTn5eXJcZxWf/3w1lRbLijU1NQklSMVt4qKxWI7/PmWtQ8aNKhNtbfnNnXJ2mmnnRKPt1wIa4/zzjtP6enpkqRnnnlGdXV1iZ9tuXjj5q6aLT/v5fvvv3ftuG6prq7WSSedlNjJdOSRR+qRRx5p07G23F2W7OfcAAAAoO1YrAEAAADgaz179kw8rqioSHpxZUd69OiReLxy5cqk3tPSZ79IW98urKUdLVLLO2e2rN3yh8BvmXP58uWuHHPXXXfViBEjJMVv5fbyyy9Lkr7++mvNmTNHUnwxa/To0a6cT5L69++feLxq1SrXjusGx3H061//Wp9++qkkqW/fvnrppZeUlZXVpuN99913icf9+vVzIyIAAAB2gMUaAAAAAL7Wu3dv7b777onn77//fruPedBBByUez5s3L6n3fPDBBy2+Ji8vL/G4tLS0xdcvXrx4hz8/8MADExfj169fr6+++qrFY3rhiCOOSDx+++23XTvuRRddlHi8eTfNE088kfi8ldNOO22rXT3tteXt1L744gvXjuuGG2+8UTNmzJAU38n02muvaZdddmnz8T7//PPE4wMOOKC98QAAANACFmsAAAAA+N6oUaMSjx966KF2H+/YY49NPP7444+1bNmyHb7+q6++SmqxZssdCgsXLmzx9dOnT9/hzzt37qxhw4YlnrtReyr87Gc/U0ZGhiTpv//9r/75z3+6ctwTTzwxsVD31ltv6auvvtrqlnZu3gJNkgYPHpx4vHkHiwVPPfWU7rzzTknxz/N59tlnNXDgwDYfb/369YmdWjk5Odp///1dyQkAAIDtY7EGAAAAgO/99re/TXx+ycsvv7zNZ9DsSHO3D9t33301ZMiQxPNx48Zt9/NjYrGYrrrqqsRujh057LDDFIlEJEnz58/favfCDz300ENaunRpi8e87rrrEo8feOABvfnmmy2+Z7OOunVanz59dMYZZySeX3zxxYnPVWmP9PR0nXfeeZL+9zZgq1evlhTv4ZFHHtnuc2xp2LBhiX9n8+fPT+pWdqn2/vvv68ILL0w8v/vuuzVy5Mh2HXPu3LmJx4WFhYmFNgAAAKQOizUAAAAAfG+vvfbS73//+8Tz8847T9dee+12PwQ+Go1q9uzZ+s1vfrPVLc+2dPvttycWVmbPnq2zzjpLZWVlW72moqJCv/nNb/SPf/xDmZmZLebs1atXYieM4zgaPXr0Np99Eo1Gde+99+qqq65K6vNGjjnmGI0ZMybx3pEjR2rChAmqqqpq9vV1dXWaMWOGfvnLX+qkk05q8fhumTBhgrp16yZJWrFihX76059ud4dNWVmZHnnkEf3ud79r8bjnn3++0tLi/2k7f/78rb7vtoKCgsQCUGVlpT766CPXz9EaK1eu1K9+9SvV19dLiv+7/+1vf9vu47711luJx1vuWgMAAEDq8H+PAQAAABAIt9xyi0pKSjR16lQ5jqN7771XDzzwgA499FDttddeysnJUUVFhUpKSrRo0SJVV1dLkrp3797s8QoLC3XttdfqT3/6kyTpueee0+uvv65hw4apV69eWrdund566y1VVVWpoKBA48aN06233tpizttvv11vv/22YrGYPv30U+2zzz4aNmyYdt11V23cuFHvvPOO1q9fr9zcXE2YMEFXXnlli8ecNGmS1qxZo9mzZ6uhoUE33nij/vjHP+rwww/XHnvsoaysLJWVlenrr7/WkiVLEhf3DznkkCRHt/123313TZ8+XUVFRaqqqtLy5ct1wgknqG/fvho8eLC6deumqqoqffnll1q4cKEaGxv1y1/+MqnjnnDCCZo5c2bie5mZmTrnnHNSUsfZZ5+td955R5I0Y8YM/fSnP03JeZIxefJkrV+/XlJ8l1FGRoauuOKKpN572223JRbPtuQ4jl555RVJUqdOnXT66ae7FxgAAADbxWINAAAAgECIRCKaMmWKDjnkEN1yyy3atGmTGhoa9P777+v999/f7nt2dKusu+++W+np6br77rsVi8VUXV2t1157bavX9OnTRy+88ELSHzh/+OGH69FHH9VFF12kpqYm1dbW6o033tjqNb1799Zzzz2npqampI6ZlZWlmTNnavz48br33ntVU1Ojmpoavf3229t9T6dOnXTEEUckdXy3DB8+XO+++67GjBmT+MyXFStWaMWKFc2+Pjc3N6njXnTRRVst1px00knq0aNH+wM344wzztD/+T//R9XV1Xr++ed15513JnZgdbQtb73X1NSkRx55JOn3Xnvttc0u1rz//vv67rvvJMXHcXuLmQAAAHAXt0EDAAAAEChXXnmlVqxYoQcffFBFRUXq37+/cnNzlZGRoYKCAg0cOFBnnnmmHn74Ya1YsSKxi2B7JkyYoA8//FDnnXee+vXrp6ysLHXv3l2HHHKIbr/9dn366aet3l1x3nnnadGiRTr//PPVv39/ZWdnKz8/XwcddJD++Mc/atGiRRo6dGirjpmenq7bbrtNJSUluueee3TCCSdojz32UE5Ojjp16qTu3bvr4IMP1pgxYzRlyhR99913+utf/9qqc7jhgAMO0IIFC/TSSy/pnHPO0d577628vDylp6eroKBAhxxyiC699FLNnDlTTz75ZFLHHDFixFa3jLvgggtSFV9du3bVueeeK0lavnx5qz4jyA8ee+yxxOOrr77auyAAAAAhE3GS+RRMAAAAAMAOTZkyJXERf/OCCDrGnDlzVFhYKEnq27evvvnmm8Tn2KRCSUmJ9tlnn8St2mbMmJGyc3Wk0tJS7bHHHqqpqdGQIUP03nvveR0JAAAgNNhZAwAAAADwtccffzzx+LzzzkvpQo0k9evXL7F759VXX9Xnn3+e0vN1lAceeEA1NTWS4p+tBAAAgI7DYg0AAAAAwLfWrl2r559/XpKUkZGR0lugbemWW25RXl6eHMfRbbfd1iHnTKWysjI98MADkqRRo0YldioBAACgY7BYAwAAAADwpaamJo0bN051dXWSpNNPP119+vTpkHP37NlT48ePlyQ999xz+s9//tMh502Vu+66Sxs3blRWVpbuv/9+r+MAAACEDp9ZAwAAAAAu4DNrOsbf//53ffjhh6qqqtLcuXP15ZdfSpKysrK0ePFi7b333h4nBAAAAFovw+sAAAAAAAAka/bs2Zo6deo237/vvvtYqAEAAIBvsVgDAAAAAPClnXbaSYcccoh++9vfatSoUV7HAQAAANqM26ABAAAAAAAAAAB4KM3rAAAAAAAAAAAAAGHGYg0AAAAAAAAAAICHWKwBAAAAAAAAAADwEIs1AAAAAAAAAAAAHmKxBgAAAAAAAAAAwEMs1gAAAAAAAAAAAHiIxRoAAAAAAAAAAAAPsVgDAAAAAAAAAADgIRZrAAAAAAAAAAAAPMRiDQAAAAAAAAAAgIdYrAEAAAAAAAAAAPAQizUAAAAAAAAAAAAeYrEGAAAAAAAAAADAQyzWAAAAAAAAAAAAeIjFGgAAAAAAAAAAAA+xWAMAAAAAAAAAAOAhFmsAAAAAAAAAAAA8xGINAAAAAAAAAACAh1isAQAAAAAAAAAA8BCLNQAAAAAAAAAAAB5isQYAAAAAAAAAAMBDLNYAAAAAAAAAAAB4iMUaAAAAAAAAAAAAD7FYAwAAAAAAAAAA4CEWawAAAAAAAAAAADzEYg0AAAAAAAAAAICHWKwBAAAAAAAAAADwEIs1AAAAAAAAAAAAHmKxBgAAAAAAAAAAwEP/D2WYFtcNAlv0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, lag, yerr=lag_e, fmt=\"o\", color=\"k\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(f\"Time lag ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV, in seconds)\")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.semilogx()\n", + "# plt.ylim([1e-4, None]);\n", + "# plt.xlim([None, 80])\n", + "# plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "9bcd9b20", + "metadata": {}, + "source": [ + "Another interesting thing to measure is the coherence at different frequencies" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a64e196a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjwAAAR9CAYAAADiAu7rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde5hU1Z0u/rf6Tl+rRUYkGE0wE0Ua8RKCSQTGECMXJ2Q0RtpEjfHEaI6GmTkZjfP8EpkziniSOZZR0UlEjQHMBEe0RRFEusXRDomA3Q2ikQxqAw1NU/f7Zf3+qNMV8QLV9Ora37X2+3kentGhuup917dWQfZ27/IopRSIiIiIiIiIiIiIiIgMVuZ0ACIiIiIiIiIiIiIiouHiCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxeMKDiIiIiIiIiIiIiIiMxxMeRERERERERERERERkPJ7wICIiIiIiIiIiIiIi4/GEBxERERERERERERERGY8nPIiIiIiIiIiIiIiIyHg84UFERERERERERERERMbjCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxeMKDiIiIiIiIiIiIiIiMxxMeRERERERERERERERkPJ7wICIiIiIiIiIiIiIi4/GEBxERERERERERERERGY8nPIiIiIiIiIiIiIiIyHg84UFERERERERERERERMbjCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxeMKDiIiIiIiIiIiIiIiMxxMeRERERERERERERERkPJ7wICIiIiIiIiIiIiIi4/GEBxERERERERERERERGY8nPIiIiIiIiIiIiIiIyHg84UFERERERERERERERMbjCQ8iIiIiIiIiIiIiIjIeT3gQEREREREREREREZHxKpwOQHQ0gUAAHR0dhX8/6aSTUF1d7WAiIiIiIiIiIiIiIvqgZDKJ9957r/DvM2bMgNfrLdnr84QHidfR0YH58+c7HYOIiIiIiIiIiIiIhmD16tX42te+VrLX4y2tiIiIiIiIiIiIiIjIeDzhQURERERERERERERExuMtrUi8k0466bB/X716NU499VSH0jgjFouhvb0dM2fORG1trdNxhs20PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6/jcPq//fbbh309wQeP7Y40nvAg8T74BeWnnnoqzjjjDIfSOCOVSqGyshITJ05EVVWV03GGzbQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PO/h88tjvSPEopVdJXJBqi7du3Y9KkSYV/7+npcd0JDyIiIiIiIiIiIiLpnD6Wy+/wIDJAPB7H2rVrEY/HnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OEB5EBcrkcAoEAcrmc01G0MK2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf97SisRz+jIoIiIiIiIiIiIiIjo6p4/l8goPIgNkMhns3r0bmUzG6ShamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5P094EBkgEong0UcfRSQScTqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s9bWpF4Tl8GRURERERERERERERH5/SxXF7hQURERERERERERERExuMJDyIDBINB3HnnnQgGg05H0cK0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15woO0ePXVV3HJJZfghBNOQE1NDT71qU/hhhtuwJ49e5yOZoXa2lrMnz8ftbW1TkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/fkdHjRsv/rVr3Ddddchl8th7Nix+MQnPoG33noL4XAYzc3N2LhxI84888xjfn6n7/tGREREREREREREREfn9LFcXuFBw9Ld3Y3vf//7yOVy+PnPf449e/bgj3/8I/bu3YvLLrsMfr8fX//615FMJp2OarRYLIbVq1cjFos5HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35wkPGpZFixYhm83isssuwz/8wz+grCz/lqqvr8cjjzyCT37yk/jv//5vPPzwww4nJSIiIiIiIiIiIiKb8ZZWdMyi0SiOP/54JBIJdHR0YPr06R96zG233YZFixZhxowZaG9vP6bXcfoyKCIiIiIiIiIiIiI6OqeP5fIKD+Gy2Sy6urrw0EMP4frrr8e5556LqqoqeDweeDwezJw585ifO5VK4bHHHsOcOXNw8skno6amBieeeCK+8IUv4Gc/+xkOHjx4xJ/funUrEokEqqqqMG3atI98zGC+3//+98jlcsec1e3S6TR27tyJdDrtdBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7Oprcnyc8BFu9ejUaGxtx5pln4tprr8UDDzyA1157TcsbbefOnfj85z+PK6+8Es899xzeffddJJNJ9PX14dVXX8WPfvQjnHHGGXj22Wc/9jneeustAMAnP/lJVFVVfeRjTj31VABAIpHAO++8M+zcbmXyffM+iml9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OWVoI98sgj+M53vnPExxzLraJ6e3vx+c9/Hnv37gUAeDweTJ8+HRMmTEB/fz9eeOEFxONxAEBlZSXWrl2LCy644EPP87Of/Qw/+tGP8PnPfx6dnZ0f+VqxWAx1dXUAgNdeew1nn332kLICzl8GRURERERERERERERH5/Sx3IqSvRIdsxNOOAGf+9znCr+ef/55+Hy+Y36+1tbWwsmOk08+GU899RTOPPPMwu8fPHgQl19+OTZs2IB0Oo1vfOMb2LVrF7xe72HPM3hS5OOu7gCAmpqawj+beEaQiIiIiIiIiIiIiMzAW1oJdtFFF+Gdd95BX18f2tra8JOf/ASzZ8/+0ImHoXj22WexadMmAPkTFW1tbYed7ACA448/Hk899RQ+/elPAwAOHTqEu+6660PPNWrUKAD57wL5OIlEovDPtbW1x5zb7QKBABYtWoRAIOB0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtyfJzwEGzt2LD75yU9qfc777ruv8M9XXXUVWlpaPvJxdXV1+Jd/+ZfCvz/44IPIZDKHPaa5uRkAMDAw8LGvd+jQoQ89noauvr4eV111Ferr652OooVpfaTmlZJLSg4i4n60CWepj5vX0rbupvWRnFdCNgkZiCiP+9EunKcebl9Hk/vzhIeLRCIRbNiwofDvR/t+kEsuuaTwpj506BBeeumlw37/s5/9LADg3Xff/dirPP70pz8ByN/a6uSTTz7m7G5XUVGBU045BRUVdtyFzrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XnCw0VeeeUVJJNJAPkrOD73uc8d8fE1NTU477zzCv/+4osvHvb7Z511FmpqapBKpT72S8s7OjoAAFOnTkVZGd9uxyoajeLxxx9HNBp1OooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uzyPQLvLGG28U/rmlpaWoM3Rnn332R/48kD9pMmfOHACH3yprUDwex8MPPwwA+OY3v3lMmSmvrKwMXq/XmpNGpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3u71FKKadD0NDcdtttWLRoEQBgxowZaG9vL+rnbrjhBixduhRA/gTE448/ftSfuf/++/GDH/wAADBx4kRs3779sN9//fXXcc455yCbzeLnP/85Fi5ciLKyMkQiEXz3u9/Ff/zHf+Dkk0/Gm2++ierq6iG0/Ivt27dj0qRJhX/v6enBGWeccUzPRUREREREREREREQjw+ljueadoqFj9v4vFz/hhBOK+pmxY8cW/vn9X0A+6Mwzz8R9992HsrIy/OM//iM+8YlP4Nxzz8W4cePwH//xH/B6vXjyySeP+WQH5aVSKWzbtu1jvyvFNKb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s8THi4SiUQK/zxq1Kiifub9j3v/z7/fddddh02bNmH+/PnIZrPo7u5Gc3Mzvv/976O7uxtnnXXW8IL/PzU1NYUvUc9mswgEAhi8QCkUChU2YDweL9xfLpPJIBAIFJ4jGAwinU4DAGKxGGKxGAAgnU4jGAwWHhcIBJDJZADk71kXj8cB5Dd7KBQCACilEAgEkM1mAeTXJ5FIAACSySTC4TAAIJfLIRAIIJfLAQDC4XDhu1QSiURhXY/UKRAI4MUXX0QikbCiUyKRwIsvvlg4iSa90/vXX9J7LxqNor29HQMDAyP23ium0+A8/X6/o3PS2UnnnNiJnUrZKZFIYOPGjdi/f781nWycUzGdDh48iPb2dsRiMWs6OTUnv9+P9vZ2hMNhazoVO6dAIID29naEQiErOh06dKjwdzIT5iT5vdff34+NGzcikUg49hkxMDBQyCD9vWfrZwQ7sdNgp2g0ihdffLHwWjZ0snFOxXaKRCKFPy9t6eTEnAb/t9XBgwet6TSUOQU0HAtzCk94uMjgGxsAqqqqivqZ91+ZMbiBPsoXvvAFPPnkkzhw4ACSySTeeecdLF26FOPHjz/2wB8wbdo0XHrppQDyf0H3+XyFTbhs2TLs2LEDQP6L0tva2gAAvb298Pl8hedYunQpdu3aBQBYt24d1q1bBwDYtWtX4XZfAODz+dDb2wsAaGtrK3z5+o4dO7Bs2TIA+Q8In8+H/v5+AMCqVasKX96+detWLF++HED+Q8Dn8xU+dJYvX46tW7cCADo7O7Fq1aojdlJKobOzE8cffzwA4L333jO+U2NjIyZOnFi4HZv0Oe3YsQPHHXccGhsbRb33kskkFi5ciOeff35E5lRsp8bGRnz605/Gq6++6uicdHbSOSd2YqdSdmpsbMT111+PZcuWWdPJxjkV0+npp5/GwoULC89nQyen5vTqq69i4cKF6O/vt6ZTsXPasmULFi5ciN7eXis6tbe3Y+LEiWhsbDRiTpLfe7/73e/wN3/zN2hsbHTsM+L555/HWWedhcbGRvHvPVs/I9iJnQY7DR4AHTwGZEMnG+dUbKdQKIRwOIzGxkZrOjkxp8bGRpx33nl4+umnrek0lDnpOBbmGEXG+elPf6oAKABqxowZRf/cnDlzCj938803F/Uzzz77bOFn6uvrjzHx8PT09CgAqqamRtXX16uenh6VyWSU3+9XuVxOKaVUMBhUyWRSKaVULBZTkUhEKaVUOp1Wfr+/8FyBQEClUimllFLRaFRFo1GllFKpVEoFAoHC4/x+v0qn00oppSKRiIrFYkoppZLJpAoGg0oppXK5nPL7/SqTySillAqHwyoejyullEokEioUCimllMpms8rv96tsNquUUioUCqlEIqGUUioej6twOKyUUod16urqUj/+8Y/VV77yFdXc3KxGjRqljjvuOOXxeNTxxx+v5syZo3784x+r7u5uYzq9f065XE4dOnSo8Djpc4rFYqq/v1/lcjlR7710Oq3i8bgKhUIjMqdiO+VyOTUwMFB4nOT3nhNzYid2KmWnXC6nYrGYOnTokDWdbJxTMZ2CwaCKx+OFrDZ0cmpOkUhExeNxlUwmrelU7Jyi0aiKx+OF95TpncLhsDp06JDK5XJGzEnyey8QCBz254YTnxGhUKiQSfp7z9bPCHZip/f/b/K+vr7C42zoZOOciu2USqVUX1/fYZ/5pndyYk65XK7w56UtnYYyp+EcCxs8ljv4q6enR5UST3gY6FhPeFx22WWFn7vpppuK+pknnnii8DNjx449xsTD4/QmKaVnnnlGnX/++Yf1BaC8Xq+67bbblNfr/dDvnX/++WrNmjVORx8Sv9+vbrvttsM+2CWTmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljuR6l/t/Nt8gYt912GxYtWgQAmDFjRuG2QEdzww03FC6B+uY3v4nHH3/8qD9z//334wc/+AEAYOLEidi+ffuxhR6G7du3Y9KkSYV/7+npwRlnnFHyHCNpYGAAN954I1auXPmRv19eXo4xY8agv7+/cP+9D2ptbcU999yD0aNHj2RULbLZLPr7+zFmzBiUl5c7HeeopOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX8fh9Hf6WG5FyV6JHPfZz3628M/vvPNOUT/z7rvvFv75tNNO056JgK6uLsyePRt79+792Mdks1n09fUd8XlWrFiB9vZ2rF27Fi0tLbpjalVeXo6xY8c6HaNoUvNKySUlx0hRSiEcDiOVSqGqqgoNDQ3weDxOxyL6SLbvRzfhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf35puYucfvrphX/u7u5GJpM56s9s2bLlI3+e9Ojq6sLMmTOPeLIDAOrr63H11Vejvr7+iI/bu3cvZsyYge7ubp0xtYtEInjkkUcQiUScjlIUqXml5JKSQ6fu7m7ceuutmDVrFkaPHo2mpiaMGTMGTU1NGD16NGbNmoVbb70VPT09TkclOoyN+9GtOEt93LyWtnU3rY/kvBKySchARHncj3bhPPVw+zqa3J8nPFzkC1/4AqqrqwEA0WgUf/zjH4/4+GQyic7OzsK/X3DBBSOaz20GBgYwe/Zs+P3+oz42k8lg9+7dRZ2k8vv9uOiiizAwMKAj5oioqKjAKaecgooKMy4yk5pXSi4pOXRYs2YNpk+fjsmTJ2Px4sXYsGHDh/ao3+/Hhg0bsHjxYrS0tGD69Ol49tlnHUpMdDib9qPbcZb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0uT+/w8NAx/odHgAwd+7cwoG56667Dg888MDHPnblypVobW0FABx33HHYv3+/I29yp+/7NlJaW1s/9js7dD3/8uXLR+z5iWxytO/RKYZJ36NDRERERERERDQSnD6Wyys8XOaGG24o/PMjjzzysV9CHovF8JOf/KTw79/73veMPKMn1Zo1a4Z0YLW6uhrTpk0rXKFTjBUrVmDNmjXHEm/EDV49lEwmnY5SFKl5peSSkuNYdXV1YfLkycM+AblixQpMnjxZ/C3lyG6m70f6C85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6OJvfnCQ+XmTt3Ls4//3wA+TfuvHnz0NXVddhjBgYGMH/+fLz99tsA8ld33HzzzSXParMlS5YM6fFVVVWYMmUKqqqqhvRzd91115AeXyqpVArbtm1DKpVyOkpRpOaVkktKjmNR7PfoFMuU79Ehe5m8H+lwnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s9bWgk3Z86cDx2I6+vrw/79+wEAdXV1OPXUUz/0c88++yzGjRv3kc/Z29uLqVOnYt++fQAAj8eDGTNmYMKECejv78cLL7yAWCwGIH+/trVr1+LLX/6yzlpD4vRlULp1d3dj8uTJJX29968fEeUNDAxg8uTJ2k52vN+4cePQ1dXF21sRERERERERkas4fSyXV3gIt2PHDrz++uuH/Ro82QHkv3z8g7//+uuvH/Hs2/jx4/Hiiy9iypQpAAClFNrb2/HQQw/h6aefLpzsGDNmDFavXu3oyQ4bHcttc8rKyuD1elFWNvQtO5LfE3KscrkcAoEAcrmc01GKIjWvlFxScgzVjTfeOCInO4D8lR433XTTiDw3uZNSCqFQCAcPHkQoFMLH/fcqpu5H+jDOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35wkPlzrttNPw+9//Ho8++iguuuginHTSSaiqqsJf/dVfYdq0abjrrruwY8cOzJ071+mo1tm8efOQf6axsRELFy5EY2NjSV5vpIVCIfh8PoRCIaejFEVqXim5pOQYiqF+j86xkPw9OmSG7u5u3HrrrZg1axZGjx6NpqYmjBkzBk1NTRg9ejRmzZqFW2+9FT09PYWfMXE/0kfjLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf97SisRz+jIonZRSGD16NPx+/5B+rqysDI2NjQiFQkM+s9rc3IyBgQF4PJ4h/dxIyuVyCIVCaGxsPKarVkpNal4puaTkGIrp06dj06ZNJXmdjo6OEX8dssuaNWuwZMmSIb1Hzz//fNxyyy246KKLjNuP9NFM/GyVys1raVt30/pIzishm4QMRJTH/WgXzlMPt6/jcPo7fSyXJzxIPKc3iU6hUAhNTU2OvG5DQ0PJX5dIIn6PDkk1MDCAG2+8cVhXH7W2tuKee+7h98cQERERERGRI5w+luu+01NEDjrSd6scSUNDA77//e8f80mLZDJ5TD83UsLhMB544AGEw2GnoxRFal4puaTkKFapv9dG4vfokDxdXV2YPHnysN8vbW1tuO2220TezpCGxrTPVsncvJa2dTetj+S8ErJJyEBEedyPduE89XD7Oprcnyc8yBg1NTWor68HAGSzWQQCgcKXtoZCocLJhHg8jmg0CgDIZDIIBAKF5wgGg0in0wCAWCxW+IL2dDqNYDBYeFwgEEAmkwGQ/2L4eDwOIH/CYvDedUopBAIBZLNZAEAkEkEikQCQP8Ew+IHw/i/5qaqqQkNDA6qrqz/Uqby8HF6vt3DrqcbGRlRVVQHI39Jqx44dSKVSqKiogNfrLWRtampCZWUlAKC2tha1tbUAgMrKysLVJNXV1SPWCch/CA6eVEkkEohEIkecU1VVFSZOnFiYhbQ5fbBTLpfD6aefjqqqKlHvvfLyckyZMgWpVGpE5lRsp8F5DuZ2ak7FdtqyZQvq6uoA4Jj2EwB4vV5UVFQAAOrq6jBq1CgAQFVVVeG7djweD7xeL/7whz+MeCfJn3vsdPROXV1duPjii9Hf3w9geO+9VCqFP/7xj7jiiivw+uuvc04Gd0omk5gyZQoqKiqs6eTUnDKZDKZMmQKPx2NNp2LnlM1mMWXKlMJrmd4pnU5j4sSJqKqqMmJOkt97iUQCkyZNQlVVlWOfEalUCmeccQaqqqrEv/ds/YxgJ3Ya7FReXo7Pfvazhf8tZEMnG+dUbKeysjJ89rOfLRxTsqGTE3OqqqrCpEmTDjs2ZHqnocxJx7Ewp/CEBxlj2rRpuPTSSwEA/f398Pl8hU24bNky7NixAwDQ0dGBtrY2AEBvby98Pl/hOZYuXYpdu3YBANatW4d169YBAHbt2oWlS5cWHufz+dDb2wsg/1/LDt6Df8eOHVi2bBmA/AeEz+crHKBatWoVOjs7AQBbt27F8uXLARz+JT8NDQ248sorcdZZZ32o05gxY7Bw4cLCyZBrrrkGEydOBACcd955GDduHJLJJMaPH4+FCxcWsl5//fWYMGECAODCCy/EhRdeCACYMGECrr/+ejQ3N6O+vn7EOgHA8uXLsXXrVgBAZ2cnVq1adcQ5VVdXIxaLFdZf2pw+2Gnr1q347//+b1RXV4t674VCIUybNg1tbW0jMqdiO1VXV+PQoUOFrE7NqZhOSinU1NTg4osvBoAh76dBCxcuxPjx4wEAF198MWbMmAEAmDhxIq655hoA+RONCxcuxO7du6GUGrFOxc4JkLGf2OnwTgMDA5g9ezZaW1u1vPeSySS2bduGb33rW/j2t7+NgYEBzsnQTqtWrcK0adMO+8w3vZNTc+ro6MC0adPQ29trTadi59TZ2Ylp06Zh165dVnRat24dYrEYqqurjZiT5Pfe8uXLUV9fj+rqasc+I9ra2pDNZlFdXS3+vWfrZwQ7sdNgp1AohJdeeqmQwYZONs6p2E79/f146aWXCseXbOjkxJyqq6tRUVFx2D4xvdNQ5qTjWJhjFJFwPT09CoCqqalR9fX1qqenR2UyGeX3+1Uul1NKKRUMBlUymVRKKRWLxVQkElFKKZVOp5Xf7y88VyAQUKlUSimlVDQaVdFoVCmlVCqVUoFAoPA4v9+v0um0UkqpSCSiYrGYUkqpZDKpgsGgUkqpXC6n/H6/ymQySimlwuGwisfjSimlEomECoVCSimlstms8vv9KpvNKqWUmj17tqqurj6sEwBVXl6uvF6v8ng8CoBqbGxUVVVVCoDyer3qK1/5iqqpqVEVFRXK6/UqAAqAampqUpWVlQqAqq2tVbW1tQqAqqysVE1NTWrWrFkj3ikUCqlEIqGUUioej6twOKyUUh87p3g8rtatW6cOHjwodk7v7+T3+9Xzzz+v4vG4qPdeJBJRGzduVP39/SMyp2I7Dc5zYGDA0TkV0ykYDKpRo0apuro6BWDI+2nwcV6vV1VUVCgAqq6uTo0aNUoBUFVVVaqxsVEBUB6PR3m9XlVeXq5CodCIdXLivTfSc3JTpwULFmh979XU1KiZM2eqE044QZWXl6vW1lbOydBOBw4cUBs3blTRaNSaTk7NaWBgQG3cuFGFQiFrOhU7p0OHDqmNGzeqYDBoRaeDBw+qdevWqXg8bsScJL/39u/fr1544QUVj8cd+4zo7+9X69evV/F4XPx7z9bPCHZip8FOkUhEPffcc4XXsqGTjXMqtlM4HFbPPfdc4bVs6OTEnOLxuFq/fr06cOCANZ2GMif/MI6FDR7LHfzV09OjSolfWk7iOf1FN7rdeuutWLx48ZB+pr6+HpdeeilWrVpVuERuKK93++23D+lnRlokEsGqVatw6aWXFm7pJZnUvFJySclRjIMHD2LMmDElf93+/n4cf/zxJX9dkm3NmjWYN2+e1uf8qD8vnnnmGcydO1fr69DIM+mzVTo3r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jsPp7/SxXJ7wIPGc3iS6dXd3Y/LkySV9vfevH5GbhUKhw74PoZSv29DQUPLXJdmmT5+OTZs2leR1Bi9zJiIiIiIiIhpJTh/L5Xd4EJVYS0sLzj///CH9THl5OcaOHYvy8vIh/dz06dNFnuzIZrPo6+srfHmSdFLzSsklJUcxGhoa0NzcXNLXHPweHaL36+7uHpGTHR/158VLL72Enp4e7a9FI8ukz1bp3LyWtnU3rY/kvBKySchARHncj3bhPPVw+zqa3J8nPIgccPPNNw/p8Q0NDfj+978/5P9CfKivUyrhcBgPPvggwuGw01GKIjWvlFxSchTD4/Hg7LPPLulrnnPOOfB4PCV9TZJv5cqVI/K8H/fnxUi9Ho0ckz5bpXPzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/3tKKxHP6MqiR0traWvQBKI/Hg+rqaiSTSRS7ZVtbW7F8+fLhRBwxSikkk0lUV1cbcSBYal4puaTkKNaxfI/OcF9P2vfokPNmzZqFDRs2aH/ej/vzYtasWVi/fr3216ORY9pnq2RuXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljubzCg8ghv/jFLzBu3LiiHquUQiKRKPpkx7hx43DPPfcMJ96I8ng8qKmpMeYPDKl5peSSkqNYCxYssPr1SD6lFLZs2TJiz/1Rf1689tprRf8ZQjKY9tkqmZvX0rbupvWRnFdCNgkZiCiP+9EunKcebl9Hk/vzhAeRQ0aPHo21a9cW9X0CjY2NWLhwIRobG4/62ObmZqxduxajR4/WEXNEhEIh3H333QiFQk5HKYrUvFJySclRrGP5Hp1jJfV7dMhZ4XAYfr9/RJ774/688Pv9iEQiI/KaNDJM+2yVzM1raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15woPIQS0tLejo6DjqlR6JRALt7e1IJBJHfNy4cePQ0dGBlpYWnTG1q6mpwcyZM1FTU+N0lKJIzSsll5QcQ1Gq77eR+j065KxUKjViz32kPy+SyeSIvS7pZ+Jnq1RuXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uz+/wIPGcvu9bKQwMDOCmm27CihUrjvk5Wltbcc8994i+soNIkqF8j86xPr/U79EhZ4VCITQ1NTnyuh/8MnMiIiIiIiIinZw+lssrPIgEGD16NJYvX45nnnkG06dP/9Dvjxo1ChdddBFGjRr1od+bPn061qxZg+XLlxtzsiMej2Pt2rWIx+NORymK1LxScknJMVRD+R6doZL+PTrkrIaGhqJuZ3gsPu7Pi+bmZtTX14/Ia9LIKPazVSmFUCiEgwcPIhQK8btaPoKpf07pYFt30/pIzishm4QMRJTH/WgXzlMPt6+jyf0rnA5ARH8xd+5czJ07Fz09PVi5ciU2b96M1157DalUCl6vF2VlZWhubsY555yDqVOnYsGCBUZ+P0Aul0MgEEAul3M6SlGk5pWSS0qOoRr8Hp0ZM2Zo/T4FE75Hh5zl8Xhw9tlnY8OGDdqfu6ysrPDnxfudc845Rn7ZnJsd6bO1u7u78PeELVu2HPYZ1tzcjLPPPhtTp05Fa2urkX9P0M3UP6d0sK27aX0k55WQTUIGIsrjfrQL56mH29fR5P68pRWJ5/RlUE5TSiESiSCZTKK6uhr19fU8aEWkUXd3Ny666CLs3bt32M81btw4rF27Vvz36JDzbr31VixevLikr3f77beX7PVoZKxZswZLlizBpk2biv6Z888/H7fccgvmzJkzgsmIiIiIiIjynD6Wy1taEQnn8XgwatQoRCIRjBo1yoqTHZlMBrt370Ymk3E6SlGk5pWSS0qOY9XS0oKuri60trYO63laW1vR1dXFkx1UlAULFozI81ZUVOCUU05BRcXhF/GO1OvRyHn/Z+vAwABaW1sxb968IZ3sAIBNmzZh7ty5uOKKKzAwMDBCaWUz/c+p4bCtu2l9JOeVkE1CBiLK4360C+eph9vX0eT+POFBZIBIJIJHH30UkUjE6ShamNZHal4puaTkGI6jfY/OkZj4PTrkvJaWFpx//vnan7e+vh5XX331Yd/XMX36dN7WyECDn61/+MMfMHnyZKxcuXJYz7dixQpMnjwZ3d3dmhKaw4Y/p46Vbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9+ctrUg8py+DIiL3+eD36Hzw/vimf48OybBmzRrMmzevJK/D2xmZqaurCzNnztT+PUMdHR28Go2IiIiIiEaE08dy+aXlREREHzBp0qTC9x3we3RopMydOxcLFiwY9n+5fyStra082WGogYEBzJ49W+vJDgDw+/246KKL0NXVxavSiIiIiIjIOrylFRmjpqamcIuObDaLQCCAwQuUQqEQUqkUACAejyMajQLI328uEAgUniMYDCKdTgMAYrEYYrEYACCdTiMYDBYeFwgECveoi0ajiMfjAIBUKoVQKAQgfxA0EAggm80CyF/qlUgkAADJZBLhcBgAkMvlEAgEkMvlAADhcBjJZBIAkEgkCpeGHanT/v37sXjxYgSDQSs6BYNBLF68GPv27TNiTu9ff0nvvUOHDuHOO+/E3r17R+y9V0ynwXn29fU5Oiednd4/J4/Hg5qaGlRWVqKhoQEej8f4TjbOydROv/jFLzBu3Dg0NTWhsrISAFBbW4va2loAQGVlJZqamgqdvF5v4fs56urqMGrUKABAVVUVGhsb0dTUhFtuuQUnnXQSxo8fj3vuuYdzMrTT//pf/wtXXnklvF4vvF4vysryf21vaGhAdXU1gMP/blReXg6v11s4IdvY2IiqqioAwKhRo1BXVwcg/z0vsVgMN910k2vm1NfXhzvvvBMHDx60plOxc9q/fz/uvPNO9Pf3W9Fp3759hb+TmTAnye+93t7ewlo69bm3d+/eQgbp7z1bPyPYiZ0GOx06dAiLFy8u5LWhk41zKrbTwMBA4fPVlk5OzGnwWMeePXus6TSUOek4FuYUnvAgY0ybNg2XXnopAKC/vx8+n6+wCZctW4YdO3YAADo6OtDW1gYg/xd5n89XeI6lS5di165dAIB169Zh3bp1AIBdu3Zh6dKlhcf5fD709vYCANra2tDR0QEA2LFjB5YtWwYg/wHh8/nQ398PAFi1ahU6OzsBAFu3bsXy5csB5D8EfD5f4UNn+fLl2Lp1KwCgs7MTq1atOmqn1157DWPGjEFtba0VnWpra3HyySejvb3diDn19PSgqakJtbW1ot57sVgM8+fPx/PPPz9i771iOtXW1mLcuHF45ZVXHJ2Tzk4658RO7HSkTqNHj8batWtxww03YMKECQCACy+8EBdeeCEAYMKECbj++usLnRYuXIjx48cDAC6++GLMmDEDADBx4kRcc801iMViWLNmDb773e9ixYoVGD16NOdkYKfly5dj1KhRWL16NSoqKrBw4UI0NjYCAK644gqcddZZAA7/u9GYMWOwcOHCwsmQa665BhMnTgQAzJgxAxdffDEAYPz48Vi4cCFWrFiBNWvWuGJOr7zyCubPn4++vj5rOhU7p9deew3z58/Hu+++a0Wn9vZ2nHzyyaitrTViTpLfe6tWrcKUKVNQW1vr2Ofe888/j8985jOora0V/96z9TOCndhpsFMsFkMqlUJ5ebk1nWycU7Gd/H4/UqlU4T+isqGTE3Oqra3FxIkT8fTTT1vTaShz0nEszDGKSLienh4FQNXU1Kj6+nrV09OjMpmM8vv9KpfLKaWUCgaDKplMKqWUisViKhKJKKWUSqfTyu/3F54rEAioVCqllFIqGo2qaDSqlFIqlUqpQCBQeJzf71fpdFoppVQkElGxWEwppVQymVTBYFAppVQul1N+v19lMhmllFLhcFjF43GllFKJREKFQiGllFLZbFb5/X6VzWaVUkqFQiGVSCSUUkrF43EVDoeVUoqd2Imd2ImdXNyps7NTnXTSSQqAqq2tVbW1tQqAqqysVE1NTQqAAqC8Xq+qqKhQAFRdXZ0aNWqUAqCqqqpUY2OjAqDGjRunXn31Vcc72TinUnWaOXOmamhoUABUWVmZ8nq9qqysTAFQDQ0Nqrq6+rC/GwFQ5eXlyuv1Ko/HowCoxsZGVVVVpQCoUaNGqbq6OgVAVVRUKK/XqwCo6dOnc07sxE7sxE7sxE7sxE7sxE7spLXT4LHcwV89PT2qlPil5SSe0190I0EsFsO6detw4YUXFs7Qm8y0PlLzSsklJQeR6QYGBnDTTTdhxYoVx/wc3/rWtzBv3jxcfPHF3I+G6u7uxuTJk1FbW4sLL7wQ69atK1zOPlKv9/6/Z9nIzX9O2dbdtD6S80rIJiEDEeVxP9qF89TD7es4nP5OH8vlLa2IiIiIBBg9ejSWL1+OZ555BtOnTx/Sz06fPh1r1qzBgw8+WLilEZlpJL/EXsLrERERERERjSRe4UHiOX1WkIiIyAk9PT1YuXIlNm/ejNdeew1+v7/we83NzTjnnHMwdepULFiwwPr/Qt9NZs2ahQ0bNpT09davX1+y1yMiIiIiIrs5fSyXV3gQGSCdTmPnzp1Ip9NOR9HCtD5S80rJJSUHkW0mTZqE22+/HevXr8fAwABCoRD6+/sRCoUwMDCA9evX4/bbbz/sL5Lcj2ZTSmHLli0AgMrKSpx22mmorKwc0dd87bXXYPt//+TmfWFbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9ecKDyACxWAyrV68e0Xt4l5JpfaTmlZJLSg4im3k8HjQ0NOD4449HQ0MDPB7PRz6O+9Fs4XC4cCVPbW0t5s+fP+L3C/b7/YhEIiP6Gk5z876wrbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/rylFYnn9GVQRERERKVw8OBBjBkzpuSv29/fj+OPP77kr0tERERERPZx+lgur/AgIiIiIhKgqqrKkdflF90TEREREZEteMKDyACBQACLFi1CIBBwOooWpvWRmldKLik5iIj70XQNDQ1obm4GAHi9Xtx2223wer0j+prNzc2or68f0ddwmpv3hW3dTesjOa+EbBIyEFEe96NdOE893L6OJvfnLa1IPKcvg5Igk8mgt7cX48ePR0VFhdNxhs20PlLzSsklJQcRcT/aYNasWdiwYQMqKiowfvx49Pb2IpPJjOjrrV+/fsSeXwI37wvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljue6bFpGBKioqcMoppzgdQxvT+kjNKyWXlBxExP1og6lTp2LDhg3IZDLYvXt3SV7Pdm7eF7Z1N62P5LwSsknIQER53I924Tz1cPs6mtyft7QiMkA0GsXjjz+OaDTqdBQtTOsjNa+UXFJyEBH3ow0WLFgAAKirq8Pll1+Ourq6kryezdy8L2zrblofyXklZJOQgYjyuB/twnnq4fZ1NLk/T3gQGaCsrAxerxdlZXZsWdP6SM0rJZeUHETE/WiDlpYWnH/++cjlcggEAsjlciP2WtOnTz/sUnNbuXlf2NbdtD6S80rIJiEDEeVxP9qF89TD7etocn9+hweJ5/R934iIiIhKac2aNZg3b15JXmfOnDkj/jpEREREROQeTh/LNe8UDZELpVIpbNu2DalUyukoWpjWR2peKbmk5CAi7kdbzJ07F62trZgyZQqqqqpG5DVaW1tdc7LDzfvCtu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OEB5EBEokE2tvbkUgknI6ihWl9pOaVkktKDiLifrTJHXfcgS9/+cuoqanR/tzjxo3DPffco/15pXLzvrCtu2l9JOeVkE1CBiLK4360C+eph9vX0eT+vKUVief0ZVBERERETuju7saMGTPg9/u1PWdzczM6OjrQ0tKi7TmJiIiIiIgGOX0sl1d4EBlAKYVEIgFbzk+a1kdqXim5pOQgIu5Hmyil8JnPfAbt7e0YN26cluccN26cK092uHlf2NbdtD6S80rIJiEDEeVxP9qF89TD7etocn+e8CAyQDAYxJIlSxAMBp2OooVpfaTmlZJLSg4i4n60yeAsP/nJT6Krqwutra3Der7W1lZ0dXW57mQH4O59YVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15woOMUVNTg/r6egBANptFIBAonGUMhUKFL9GJx+OIRqMAgEwmg0AgUHiOYDCIdDoNAIjFYojFYgCAdDp92AYOBALIZDIAgGg0ing8DiD/hT2hUAhA/kxnIBBANpsFAEQikcJ97ZLJJMLhMAAgl8shEAggl8sBAMLhMJLJJID8/fAikchRO1VUVODKK69EQ0ODFZ0aGhpw1VVXoayszIg5VVZW4tvf/jYaGhpEvfdqa2tx3XXXwePxjNh7r5hODQ0NuPLKK1FeXu7onHR20jkndmKnUnZqaGjA9773PWSzWWs62TinYjoBwHXXXYe6ujqUl5fjsccewzPPPINZs2ahuroawOF/NyovL4fX64XH4wEANDY2oqqqCtOnT8dTTz2Ff//3f8fo0aNdOafy8nJcd911qKmpsaZTsXOqqKjAddddh+rqais6lZWV4aqrrkJDQ4MRc5L83lNK4ZprrkFDQ4Njn3sejwdXX301GhoaxL/3bP2MYCd2GuxUW1uL1tbWwt8rbOhk45yK7TRq1Ci0traioaHBmk5OzKmhoQHf+c53Cs9lQ6ehzEnHsTCn8IQHGWPatGm49NJLAQD9/f3w+XyFTbhs2TLs2LEDANDR0YG2tjYAQG9vL3w+X+E5li5dil27dgEA1q1bh3Xr1gEAdu3ahaVLlxYe5/P50NvbCwBoa2tDR0cHAGDHjh1YtmwZgPwHhM/nQ39/PwBg1apV6OzsBABs3boVy5cvB5D/EPD5fIUPneXLl2Pr1q0AgM7OTqxateqonV5++WX8/ve/R3l5uRWdysvLsXPnTjz77LNGzOkPf/gDXnrpJZSXl4t67x06dAhjx47Fk08+OWLvvWI6lZeX4/XXX8eGDRscnZPOTjrnxE7sVMpO5eXlaG5uxr333mtNJxvnVEynxx9/HGPHjkU0Gi10mjt3Li655BKsXLkSt956K1pbW3H55ZcDAMaMGYOFCxfir/7qrzBr1iz8/d//PZ544gl0dHSgqqpKRCen5rRhwwaMHTsWu3fvtqZTsXN6+eWXMXbsWLz55ptWdHr22Wexc+dOlJeXGzEnye+9Rx99FAMDAygvL3fsc+/JJ5/Ef//3f6O8vFz8e8/Wzwh2YqfBTocOHcKKFSsKB1Ft6GTjnIrttG/fPqxYsaLwHyXa0MmJOZWXl2Pv3r14/PHHrek0lDnpOBbmGEUkXE9PjwKgampqVH19verp6VGZTEb5/X6Vy+WUUkoFg0GVTCaVUkrFYjEViUSUUkql02nl9/sLzxUIBFQqlVJKKRWNRlU0GlVKKZVKpVQgECg8zu/3q3Q6rZRSKhKJqFgsppRSKplMqmAwqJRSKpfLKb/frzKZjFJKqXA4rOLxuFJKqUQioUKhkFJKqWw2q/x+v8pms0oppUKhkEokEkoppeLxuAqHw0opdcROBw4cUL/61a9UOBy2olM4HFa/+tWv1P79+42YU39/f2H9Jb33AoGAevjhh1VfX9+IvfeK6fTBeUp+7zkxJ3Zip1J2CofDatmyZaq3t9eaTjbOqZhO+/btUw8//LAKBoNH7BQKhVQoFFJ9fX3qvffeKzxOYien5rR//3718MMPq0OHDlnTqdg5HThwQD388MNqYGDAik779+8v/J3MhDlJfu/t3btXPfTQQyocDjv2GdHX11fIIP29Z+tnBDux02CnQCCgfvnLXxZ+zoZONs6p2E5+v1/98pe/PGy+pndyYk7hcFg99NBDat++fdZ0GsqchnMsbPBY7uCvnp4eVUoepQz85hFyle3bt2PSpEmFf+/p6cEZZ5zhYKLSSyQS6OzsxLRp01BTU+N0nGEzrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3rOJz+Th/L5QkPEs/pTUJERERERERERERER+f0sVx+hweRAZLJJDo7Owv3yjOdaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQFSqRS2bduGVCrldBQtTOsjNa+UXFJyEBH3o004S31MX0ulFEKhEA4ePIhQKIShXKBvevcPMq2P5LwSsknIQER53I924Tz1cPs6mtyft7Qi8Zy+DIqIiIiIqJS6u7uxcuVKbN68GVu2bIHf7y/8XnNzM84++2xMnToVra2th/09mYiIiIjIaU4fy+UVHkQGyOVyCAQCyOVyTkfRwrQ+UvNKySUlBxFxP9qEs9THpLVcs2YNpk+fjsmTJ2Px4sXYsGHDYSc7AMDv92PDhg1YvHgxWlpaMH36dDz77LMf+XwmdS+GaX0k55WQTUIGIsrjfrQL56mH29fR5P484UFkgFAoBJ/Ph1Ao5HQULUzrIzWvlFxSchAR96NNOEt9TFjLgYEBtLa2Yt68edi0adOQfnbTpk2YO3currjiCgwMDBz2eyZ0HwrT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XlLKxLP6cugJMjlcgiFQmhsbERZmfnnKU3rIzWvlFxSchAR96NNOEt9pK9lV1cXZs+ejb179w77ucaNG4e1a9eipaUFgPzuQ2VaH8l5JWSTkIGI8rgf7cJ56uH2dRxOf6eP5fKEB4nn9CYhIiIiIhoJXV1dmDlz5oduWzUczc3N6OjoKJz0ICIiIiIqJaeP5brv9BSRgcLhMB544AGEw2Gno2hhWh+peaXkkpKDiLgfbcJZ6iN1LQcGBjB79mytJzuA/Hd8XHTRRRgYGBDb/ViZ1kdyXgnZJGQgojzuR7twnnq4fR1N7s8THkQGqKqqwpQpU1BVVeV0FC1M6yM1r5RcUnIQEfejTThLfaSu5Y033qjlNlYfZe/evbjpppvEdj9WpvWRnFdCNgkZiCiP+9EunKcebl9Hk/vzllYkntOXQRERERER6bRmzRrMmzdvxF/nmWeewdy5c0f8dYiIiIiIBjl9LJdXeBAZIJFIoL29HYlEwukoWpjWR2peKbmk5CAi7kebcJb6SFzLJUuWlOR1/u3f/k1c9+GQOMsjkZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQEymQx2796NTCbjdBQtTOsjNa+UXFJyEBH3o004S32krWV3dzc2bdpUktfavHkztm/fLqb7cEmb5dFIzishm4QMRJTH/WgXzlMPt6+jyf15SysSz+nLoIiIiIiIdLn11luxePHikr7e7bffXrLXIyIiIiJ3c/pYLq/wIDJANptFX18fstms01G0MK2P1LxScknJQUTcjzbhLPWRtpabN28u2WuVl5dj+/btYroPl7RZHo3kvBKySchARHncj3bhPPVw+zqa3J8nPIgMEA6H8eCDDyIcDjsdRQvT+kjNKyWXlBxExP1oE85SH0lrqZTCli1bSvZ6DQ0NOOussxAKhUr2miNJ0iyLITmvhGwSMhBRHvejXThPPdy+jib35y2tSDynL4OSQCmFZDKJ6upqeDwep+MMm2l9pOaVkktKDiLifrQJZ6mPpLUMhUJoamoq2et5PB5UV1dj//79aGxsLNnrjhRJsyyG5LwSsknIQER53I924Tz1cPs6Dqe/08dyK0r2SkR0zDweD2pqapyOoY1pfaTmlZJLSg4i4n60CWepj6S1TKVSJX09pRQSiUTJX3ekSJplMSTnlZBNQgYiyuN+tAvnqYfb19Hk/rylFZEBQqEQ7r77bmtuR2BaH6l5peSSkoOIuB9twlnqI2ktq6qqSvp6jY2NWLhwoTUnPCTNshiS80rIJiEDEeVxP9qF89TD7etocn+e8CAyQE1NDWbOnGnsmdUPMq2P1LxScknJQUTcjzbhLPWRtJYNDQ1obm4u2eslEgls3rwZo0ePLtlrjiRJsyyG5LwSsknIQER53I924Tz1cPs6mtyf3+FB4jl93zciIiIiIl1mzZqFDRs2lPT11q9fX7LXIyIiIiJ3c/pYLq/wIGPU1NSgvr4eAJDNZhEIBDB4vi4UChUu1Y/H44hGowCATCaDQCBQeI5gMIh0Og0AiMViiMViAIB0Oo1gMFh4XCAQQCaTAQBEo1HE43EA+fsuD17KpZRCIBBANpsFAEQiESQSCQBAMplEOBwGAORyOQQCAeRyOQBAOBxGMpkEkP+v7iKRyFE7HTp0CG1tbYjH41Z0isfjeOaZZ3Dw4EEj5uT3+/H0008jHo+Leu9FIhGsXbsW/f39I/beK6ZTPB5HW1sbBgYGHJ2Tzk4658RO7FTKTvF4HM899xz6+vqs6WTjnIrpdODAAaxduxbRaNSaTk7NaWBgAGvXrkUoFBLRaerUqYUvfmxsbCzc5mrUqFGoq6sDAFRUVMDr9RayNjU1obKyEgBQW1uL2tpaAEBlZeVhX4Lu9XpRUZH/msa6ujo0NzfjvPPOQzAYFD+nYt57Bw8exDPPPIN4PM733jA7HThwAGvWrEE8HnfsM6K/v78wT+nvPdM+99iJnYbaKRKJ4KmnnipksqGTjXMqtlM4HMZTTz1VyGRDJyfmNHjs6sCBA9Z0GsqcdBwLcwpPeJAxpk2bhksvvRRA/i/HPp+vsAmXLVuGHTt2AAA6OjrQ1tYGAOjt7YXP5ys8x9KlS7Fr1y4AwLp167Bu3ToAwK5du7B06dLC43w+H3p7ewEAbW1t6OjoAADs2LEDy5YtA5D/gPD5fOjv7wcArFq1Cp2dnQCArVu3Yvny5QDyHwI+n6/wobN8+XJs3boVANDZ2YlVq1YdtdN//dd/4a233kIul7OiUy6Xw5///Gc8//zzRszpD3/4A3bu3IlcLifuvRcIBPD000+P2HuvmE65XA5vv/02Nm7c6OicdHbSPSd2YqdSdcrlcjh06BAefPBBazrZOKdiOq1atQqBQADBYNCaTk7NaePGjQgEAvjzn/8solN1dTWqq6sBANdccw0mTpwIAJgxYwYuvvhiAMD48eOxcOHCQtbrr78eEyZMAABceOGFuPDCCwEAEyZMwPXXX1943MKFCzF+/HgAwMUXX4wvfvGLGD9+PHbu3Cl+TsW8955//nn8+c9/Ri6X43tvmJ2WL1+O3t5e5HI5xz4jnn76aezevRu5XE78e8+0zz12Yqdj6bRt27bCgVNbOtk4p2I7bdu2rXAQ25ZOpZ5TLpfDu+++W8hqQ6ehzEnHsTDHKCLhenp6FABVU1Oj6uvrVU9Pj8pkMsrv96tcLqeUUioYDKpkMqmUUioWi6lIJKKUUiqdTiu/3194rkAgoFKplFJKqWg0qqLRqFJKqVQqpQKBQOFxfr9fpdNppZRSkUhExWIxpZRSyWRSBYNBpZRSuVxO+f1+lclklFJKhcNhFY/HlVJKJRIJFQqFlFJKZbNZ5ff7VTabVUopFQqFVCKRUEopFY/HVTgcVkopdmIndmIndmIndmIndnJJp/PPP18BUI2NjaqqqkoBUKNGjVJ1dXUKgKqoqFBer1cBUABUU1OTqqysVABUbW2tqq2tVQBUZWWlampqKjzO6/WqiooKBUDV1dWpCy64gHNiJ3ZiJ3ZiJ3ZiJ3Zip5J2GjyWO/irp6dHlRK/w4PEc/q+bxJkMhn09vZi/PjxhdsUmMy0PlLzSsklJQcRcT/ahLPUR+JarlmzBvPmzRvx12lra8OkSZNEdR8OibM8Esl5JWSTkIGI8rgf7cJ56uH2dRxOf6eP5fKWVkQGiEQiePTRRwv3AzSdaX2k5pWSS0oOIuJ+tAlnqY/EtZw7dy4WLFgwoq/R2tqKL33pS+K6D4fEWR6J5LwSsknIQER53I924Tz1cPs6mtyfV3iQeE6fFSQiIiIi0m1gYACTJ0/G3r17tT/3uHHj0NXVhdGjR2t/biIiIiKiI3H6WC6v8CAiIiIiIiqx0aNHY+3atWhubtb6vM3NzVi7di1PdhARERGRK/GEB5EBgsEg7rzzTgSDQaejaGFaH6l5peSSkoOIuB9twlnqI3ktW1pa0NHRgXHjxml5vnHjxqGjowMtLS0AZHc/Fqb1kZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQFqa2sxf/581NbWOh1FC9P6SM0rJZeUHETE/WgTzlIf6WvZ0tKCrq4utLa2Dut5Wltb0dXVVTjZAcjvPlSm9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/M7PEg8p+/7RkRERERUCmvWrMFdd92Fl156qeifmT59Om6++WbMmTNnBJMRERERERXH6WO5vMKDyACxWAyrV69GLBZzOooWpvWRmldKLik5iIj70SacpT4mreXcuXPR0dGB7u5u3HrrrZg1a9aHvuOjubkZs2bNwq233oru7m50dHR87MkOk7oXw7Q+kvNKyCYhAxHlcT/ahfPUw+3raHL/CqcDEBERERER0V9MmjQJt99+OwBAKYVIJIJkMonq6mrU19fD4/E4nJCIiIiISCbe0orEc/oyKCIiIiIiIiIiIiI6OqeP5fKWVkQGSKfT2LlzJ9LptNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn+e8CAygMn3zfsopvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uz1takXhOXwZFREREREREREREREfn9LFcXuFBRERERERERERERETG4wkPIgMEAgEsWrQIgUDA6ShamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5P29pReI5fRmUBJlMBr29vRg/fjwqKiqcjjNspvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljuTzhQeI5vUmIiIiIiIiIiIiI6OicPpbLW1oRGSAajeLxxx9HNBp1OooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uzxMeRAYoKyuD1+tFWZkdW9a0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf15SysSz+nLoIiIiIiIiIiIiIjo6Jw+lmveKRoiF0qlUti2bRtSqZTTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/nvAgMkAikUB7ezsSiYTTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/3tKKxHP6MigiIiIiIiIiIiIiOjqnj+XyCg8iAyilkEgkYMv5SdP6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9+cJDyIDBINBLFmyBMFg0OkoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0uT9vaUXiOX0ZlATZbBb9/f0YM2YMysvLnY4zbKb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR2H09/pY7m8woOMUVNTg/r6egD5TRcIBAqXVYVCIaRSKQBAPB5HNBoFAGQyGQQCgcJzBINBpNNpAEAsFkMsFgMApNPpw85YBgIBZDIZAEA0GkU8HgcApFIphEIhAPlLuwKBALLZLAAgEokUvsgnmUwiHA4DAHK5HAKBAHK5HAAgHA4jmUwCyH8BUCQSOWqnVCqFhoYGlJeXW9GpvLwcTU1NheeW3imdTqO+vh7l5eWi3nsAMHbsWMTj8RF77xXTqby8HI2NjYetl9T3nhNzYid2KmWn8vJynHDCCQiHw9Z0snFOxXSKxWIYO3YsPB6PNZ2cmlMymcTYsWORy+Ws6VTsnFKpFMaOHYtsNmtFp0QigaamJpSXlxsxJ8nvvWg0iuOOOw7l5eWOfUbE43F4vV6Ul5eLf+/Z+hnBTuw02AnIH3MpKyuzppONcyq2k1IKNTU1hYPUNnRyYk7l5eVobm4uPLcNnYYyJx3HwpzCEx5kjGnTpuHSSy8FAPT398Pn8xU24bJly7Bjxw4AQEdHB9ra2gAAvb298Pl8hedYunQpdu3aBQBYt24d1q1bBwDYtWsXli5dWnicz+dDb28vAKCtrQ0dHR0AgB07dmDZsmUA8h8QPp8P/f39AIBVq1ahs7MTALB161YsX74cQP5DwOfzFT50li9fjq1btwIAOjs7sWrVqqN2euGFF3DfffchEolY0SkSiWDp0qV48sknjZjTSy+9hHvvvReRSETUe++dd97BI488gt/+9rcj9t4rplMkEsH999+PZ5991tE56eykc07sxE6l7BSJRPDwww9b1cnGORXT6bHHHsMjjzyCffv2WdPJqTk9++yzeOSRR9DT02NNp2Ln9MILL+CRRx7Bli1brOj05JNPYunSpYhEIkbMSfJ776GHHsK///u/IxKJOPYZ8dvf/hYPPPAAIpGI+PeerZ8R7MROg53eeecd+Hw+DAwMWNPJxjkV2+lPf/oTfD5f4QC8DZ2cmFMkEsGDDz6Ixx57zJpOQ5mTjmNhjlFEwvX09CgAqqamRtXX16uenh6VyWSU3+9XuVxOKaVUMBhUyWRSKaVULBZTkUhEKaVUOp1Wfr+/8FyBQEClUimllFLRaFRFo1GllFKpVEoFAoHC4/x+v0qn00oppSKRiIrFYkoppZLJpAoGg0oppXK5nPL7/SqTySillAqHwyoejyullEokEioUCimllMpms8rv96tsNquUUioUCqlEIqGUUioej6twOKyUUkfsdOjQIfX888+reDxuRad4PK7WrVunDh48aMSc/H5/Yf0lvfcikYjauHGj6u/vH7H3XjGdBuc5MDDg6Jx0dtI5J3Zip1J2isfj6sUXX1R9fX3WdLJxTsV0OnDggNq4caOKRqPWdHJqTgMDA2rjxo0qFApZ06nYOR06dEht3LhRBYNBKzodPHhQrVu3TsXjcSPmJPm9t3//fvXCCy+oeDzu2GdEf3+/Wr9+vYrH4+Lfe7Z+RrATOw12ikQi6rnnniu8lg2dbJxTsZ3C4bB67rnnCq9lQycn5hSPx9X69evVgQMHrOk0lDn5h3EsbPBY7uCvnp4eVUr8Dg8Sz+n7vhERERERERERERHR0Tl9LJe3tCIyQDKZRGdnZ+HSMdOZ1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLk/T3gQGSCVSmHbtm2FLwQynWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OWViSe05dBEREREREREREREdHROX0sl1d4EBkgl8shEAggl8s5HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35wkPIgOEQiH4fD6EQiGno2hhWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+vKUVief0ZVAS5HI5hEIhNDY2oqzM/POUpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HYfT3+ljuRUleyUiOmZlZWXwer1Ox9DGtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n93Xd6ishA4XAYDzzwAMLhsNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn+e8CAyQFVVFaZMmYKqqiqno2hhWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+/A4PEs/p+74RERERERERERER0dE5fSyXV3gQGSCRSKC9vR2JRMLpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLk/T3gQGSCTyWD37t3IZDJOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9eUsrEs/py6CIiIiIiIiIiIiI6OicPpbLKzyIDJDNZtHX14dsNut0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtyfJzyIDBAOh/Hggw8iHA47HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35y2tSDynL4OSQCmFZDKJ6upqeDwep+MMm2l9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX8fh9Hf6WG5FyV6JiI6Zx+NBTU2N0zG0Ma2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf97SisgAoVAId999N0KhkNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6DeYPBIEKhEA4ePIhQKAQJN1mQsJYSMhBRHvejXThPPdy+jib35wkPIgPU1NRg5syZxp5Z/SDT+kjNKyWXlBxExP1oE85SHzevpW3dTerT3d2NO++8E5s3b8Zf//Vfo6mpCWPGjEFTUxNGjx6NWbNm4dZbb0VPT48j+SSspYQMRJTH/WgXzlMPt6+jyf35HR4kntP3fSMiIiIiIirGmjVrsGTJEmzatKnonzn//PNxyy23YM6cOSOYjIiIiKg0nD6Wyys8iAwQj8exdu1axONxp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbvkPgMDA2htbcW8efMKJztGjRqFiy66CKNGjTriz27atAlz587FFVdcgYGBgVLEFbGWEjIQUR73o104Tz3cvo4m9+cJDyID5HI5BAIB5HI5p6NoYVofqXml5JKSg4i4H23CWerj5rW0rbvUPl1dXZg8eTJWrlx52P+/rKwMXq8XZWXF/c/uFStWYPLkyeju7h6JmIeRsJYSMhBRHvejXThPPdy+jib35y2tSDynL4MiIiIiIiL6KF1dXZg5cyb8fr+252xubkZHRwdaWlq0PScRERFRqTh9LJdXeBAZIJPJYPfu3chkMk5H0cK0PlLzSsklJQcRcT/ahLPUx81raVt3aX0GBgYwe/bsjz3ZUVFRgVNOOQUVFRVDel6/34+LLrpoRG9vJWEtJWQgojzuR7twnnq4fR1N7s8THkQGiEQiePTRRxGJRJyOooVpfaTmlZJLSg4i4n60CWepj5vX0rbu0vrceOON2Lt378f+fn19Pa6++mrU19cP+bn37t2Lm266aTjxjkjCWkrIQER53I924Tz1cPs6mtyft7Qi8Zy+DIqIiIiIiOj91qxZg3nz5o346zzzzDOYO3fuiL8OERERkS5OH8vlFR5EREREREREQ7BkyZKSvM5dd91VktchIiIisgVPeBAZIBgM4s4770QwGHQ6iham9ZGaV0ouKTmIiPvRJpylPm5eS9u6S+nT3d2NTZs2HfVxTU1NuOWWW9DU1HTMr/XSSy+hp6fnmH/+40hYSwkZiCiP+9EunKcebl9Hk/vzhAeRAWprazF//nzU1tY6HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3aX0WblyZVGPi8ViWL16NWKxWElebygkrKWEDESUx/1oF85TD7evo8n9+R0eJJ7T930jIiIiIiIaNGvWLGzYsKGkr7d+/fqSvR4RERHRcDh9LJdXeBAZQNd/HSaFaX2k5pWSS0oOIuJ+tAlnqY+b19K27hL6KKWwZcuWoh6r67+MfO2116D7v1OUsJYSMhBRHvejXThPPdy+jib35wkPIiIiIiIioiKEw2H4/f6Svqbf70ckEinpaxIRERGZiic8yBg1NTWor68HAGSzWQQCgcJ/6RQKhZBKpQAA8Xgc0WgUAJDJZBAIBArPEQwGkU6nAeTPVA6epUyn04d9CU8gEEAmkwEARKNRxONxAEAqlUIoFAKQ/6+7AoEAstksACASiSCRSAAAkskkwuEwACCXyyEQCCCXywHI/4+kZDIJAEgkEoX/8XKkTh6PB1/5yldQW1trRafa2lp89atfLfz/pXcqKyvDrFmzUFtbK+q9V11djfnz5yOXy43Ye6+YTrW1tbjwwgsL/3/J7z0n5sRO7FTKTrW1tfja176GVCplTScb51RMp2w2i/nz56OmpsaaTk7NCQDmz5+PyspKazoVOyePx4P58+ejoqLCik5KKXz1q19FbW2tY3MKhUKoq6sDAFRUVMDr9RayNjU1obKyEgAKV3WsXr0a6XT6sC8u93q9qKioAADU1dVh1KhRAICqqio0NjYCyP/93+v1ory8HABw6NAhrZ0ymQzmzJmD2tpaxz4jcrkcLrroItTW1op/79n6GcFO7DTYqbq6GjNnzix8HtnQycY5FdupqqoKM2fOLPxZZEMnJ+ZUW1uL2bNnH/bnlumdhjInHcfCnMITHmSMadOm4dJLLwUA9Pf3w+fzFTbhsmXLsGPHDgBAR0cH2traAAC9vb3w+XyF51i6dCl27doFAFi3bh3WrVsHANi1axeWLl1aeJzP50Nvby8AoK2tDR0dHQCAHTt2YNmyZQDyHxA+nw/9/f0AgFWrVqGzsxMAsHXrVixfvhxA/kPA5/MVPnSWL1+OrVu3AgA6OzuxatWqo3bauHEjVq5ciXQ6bUWndDqNJ598Ek8//bQRc/qv//ov/PrXv0Y6nRb13tu3bx927tyJ3/3udyP23iumUzqdxu9+9zusXbvW0Tnp7KRzTuzETqXslE6n0d3dbVUnG+dUTKff/OY32LlzJwYGBqzp5NSc1q5di507d+LNN9+0plOxc9q4cSN27tyJ7u5uKzo9/fTTePLJJ5FOpx2b05YtW3DxxRcDAMaPH4+FCxcWsl5//fWYMGECAODCCy/EV7/6VZx22mn467/+a1x//fWFxy1cuBDjx48HAFx88cWYMWMGAGDixIm45pprAOQPPi5cuBBjxowBALzwwgvaO23YsAHpdNqxz4jf/e53eOaZZ5BOp8W/92z9jGAndhrstG/fPvh8vsIBWxs62TinYjvt3r0bPp+vcPDchk5OzCmdTmPt2rX4zW9+Y02nocxJx7Ewxygi4Xp6ehQAVVNTo+rr61VPT4/KZDLK7/erXC6nlFIqGAyqZDKplFIqFoupSCSilFIqnU4rv99feK5AIKBSqZRSSqloNKqi0ahSSqlUKqUCgUDhcX6/X6XTaaWUUpFIRMViMaWUUslkUgWDQaWUUrlcTvn9fpXJZJRSSoXDYRWPx5VSSiUSCRUKhZRSSmWzWeX3+1U2m1VKKRUKhVQikVBKKRWPx1U4HFZKqSN26uvrU3fccYcKBAJWdAoEAuqOO+5Qe/fuNWJO719/Se+9gYEBtXjxYrVnz54Re+8V02lwnvv27XN0Tjo76ZwTO7FTKTsN7sd33nnHmk42zqmYTr29vWrx4sXq0KFD1nRyak779u1TixcvVv39/dZ0KnZOfX19avHixerAgQNWdNq7d2/h72ROzSkajapx48YpAKqiokJ5vV4FQAFQTU1NqrKyUgFQtbW16oQTTlC33HKLGj16tGpqaio8zuv1qoqKCgVA1dXVqVGjRikAqqqqSjU2NioAyuPxKK/Xq8rLy1Vzc7MKhUJaO7333nuFtXTqM2LPnj2FDNLfe7Z+RrATOw12GhgYUHfccUchrw2dbJxTsZ0OHjxY+Hy1pZMTcxr831a9vb3WdBrKnIZzLGzwWO7gr56eHlVKHqU0f/sZkWbbt2/HpEmTCv/e09ODM844w8FERERERETkVrNmzcKGDRtK+nrr168v2esRERERDYfTx3J5SysiIiIiIiKiIk2dOtXq1yMiIiIyGU94EBkgEAhg0aJFIr74RwfT+kjNKyWXlBxExP1oE85SHzevpW3dpfRZsGBBUY/zer247bbbDvti85F8vaGQsJYSMhBRHvejXThPPdy+jib35y2tSDynL4OSIJPJoLe3F+PHj0dFRYXTcYbNtD5S80rJJSUHEXE/2oSz1MfNa2lbd0l9pk+fjk2bNh3xMRUVFRg/fjx6e3uRyWSO+XUGv4xUJwlrKSEDEeVxP9qF89TD7es4nP5OH8vlCQ8Sz+lNQkRERERE9H5r1qzBvHnzSvI6c+bMGfHXISIiItLF6WO5vKUVkQGi0Sgef/xxRKNRp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbukPnPnzj3qrabq6upw+eWXo66u7pheo7W1dcROdkhYSwkZiCiP+9EunKcebl9Hk/vzhAeRAcrKyuD1elFWZseWNa2P1LxScknJQUTcjzbhLPVx81ra1l1an1/84hcYN27cx/5+LpdDIBBALpcb8nOPGzcO99xzz3DiHZGEtZSQgYjyuB/twnnq4fZ1NLk/b2lF4jl9GRQREREREdFH6e7uxowZM+D3+7U9Z3NzMzo6OtDS0qLtOYmIiIhKxeljueadoiFyoVQqhW3btiGVSjkdRQvT+kjNKyWXlBxExP1oE85SHzevpW3dJfZpaWlBR0fHR17pUVVVhSlTpqCqqqro5xs3blxJTnZIWEsJGYgoj/vRLpynHm5fR5P784QHkQESiQTa29uRSCScjqKFaX2k5pWSS0oOIuJ+tAlnqY+b19K27lL7tLS0oKurC62trYf9/2tqajBz5kzU1NQU9Tytra3o6uoqyZUdEtZSQgYiyuN+tAvnqYfb19Hk/rylFYnn9GVQRERERERExVizZg3uuusuvPTSS0X/zPTp03HzzTeP2BeUExEREZWS08dyK0r2SkR0zJRSSCaTqK6uhsfjcTrOsJnWR2peKbmk5CAi7kebcJb6uHktbetuQp+5c+di7ty56OnpwcqVK/Haa69h8+bNh33HR3NzM8455xxMnToVCxYsOOyAQKlIWEsJGYgoj/vRLpynHm5fR5P785ZWRAYIBoNYsmQJgsGg01G0MK2P1LxScknJQUTcjzbhLPVx81ra1t2kPpMmTcKPfvQjnHfeedi1axdCoRD6+/sRCoUwMDCA9evX4/bbb3fkZAcgYy0lZCCiPO5Hu3Ceerh9HU3uz1takXhOXwYlQTabRX9/P8aMGYPy8nKn4wybaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fx+H0d/pYLk94kHhObxIiIiIiIiIiIiIiOjqnj+XyllZEBohEInjkkUcQiUScjqKFaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P784QHkQEqKipwyimnoKKiwukoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0uT9vaUXiOX0ZFBEREREREREREREdndPHcnmFB5EBkskkOjs7kUwmnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+/OEB5EBUqkUtm3bhlQq5XQULUzrIzWvlFxSchAR96NNOEt93LyWtnU3rY/kvBKySchARHncj3bhPPVw+zqa3J+3tCLxnL4MioiIiIiIiIiIiIiOzuljubzCg8gAuVwOgUAAuVzO6ShamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5P094EBkgFArB5/MhFAo5HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib35y2tSDynL4OSIJfLIRQKobGxEWVl5p+nNK2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt6zic/k4fy60o2SsNwcGDB/HCCy9g8+bNeP3117F792709fUhkUgAAGpqajB27FiccsopOPPMMzF16lTMmjULxx9/vMPJiUZGWVkZvF6v0zG0Ma2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyfzGnpw4dOoT77rsP5513HsaOHYsrrrgCPp8P7e3t2L17N+LxOJRSUEohHo9j9+7daG9vh8/nwxVXXIGxY8fivPPOw3333YdDhw45XYdIq3A4jAceeADhcNjpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/4yc8/vSnP+G6667DSSedhJtuugmbN29GLpcrnNwY/PVBH/z9XC6HzZs346abbsJJJ52E6667Dm+99ZYDjYj0q6qqwpQpU1BVVeV0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfse/w2LNnD37yk5/gscceQzabPeykRlNTE77whS9gypQpOP300/GJT3wCxx9/PGprawtXePT392PPnj1444038Prrr+OVV15BMBj8SzGPB+Xl5fj2t7+NRYsWYfz48U7UJA2cvu8bERERERERERERER2d08dyHbnCY/HixTjttNPwyCOPIJPJQCmFU089FT/+8Y+xefNmHDp0CGvWrMHtt9+Ob33rW/ibv/kbtLS0YMKECTj11FPR0tKCCy64AN/+9rdxxx13YM2aNTh06BA2b96MH//4x/jMZz4DpRQymQweeeQRnH766bjzzjudqEqkRSKRQHt7e+F7bExnWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+jpzw+Od//mdEo1GUlZXhsssuw8aNG/HWW2/h9ttvx7nnnguPxzPk5/R4PDj33HNx++23480330R7ezu+8Y1voKysDNFoFP/8z/88Ak2ISiOTyWD37t3IZDJOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9HbmlVXl5Oa6++mrceuutmDBhwoi+1p///Gf867/+Kx577DGk0+kRfS0aGU5fBkVERERERERERERER+f0sVxHrvDo7u7GQw89NOInOwDg05/+NJYtW4aurq4Rfy2ikZLNZtHX14dsNut0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfkRMeEydOLPlrnn766SV/TSJdwuEwHnzwQYTDYaejaGFaH6l5peSSkoOIuB9twlnq4+a1tK27aX0k55WQTUIGIsrjfrQL56mH29fR5P6O3NKKaCicvgxKAqUUkskkqqurj+k7bqQxrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3rOJz+Th/LdeQKDwD49a9/jVgs5tTLExnF4/GgpqbGmg9Y0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGwSMhBRHvejXThPPdy+jib3d+yEx9VXX42xY8fimmuuQXt7u1MxiIwQCoVw9913IxQKOR1FC9P6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m93fshAcARKNRPProo/jyl7+MT33qU/jpT3+Kt99+28lIRCLV1NRg5syZqKmpcTqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7u/Yd3hUV1cjnU4fHub/XSJz3nnn4eqrr8Zll12GxsZGJ+KRIE7f942IiIiIiIiIiIiIjs7pY7mOXeHR19eHe++9F5///OcL/z+lFJRSePXVV3Hddddh7NixaG1txdq1a8HvVic3i8fjWLt2LeLxuNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn/HTng0NzfjhhtuwKuvvoo333wTt956K04++WQAfznxkUgk8Nvf/hZz587F+PHjcfPNN2P79u1ORSZyTC6XQyAQQC6XczqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7u/YLa0+TkdHBx599FE88cQTCIfDh/3e4C2vzjrrLFx99dVYsGABRo8e7URMKiGnL4MiIiIiIiIiIiIioqNz+liuo19a/lFmzJiBZcuWYf/+/fjNb36Dr371qygvLwfwlys/tm7dih/+8If4xCc+ga9//etYvXo1MpmMw8mJRk4mk8Hu3buteZ+b1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/uBMeg2pqatDa2ornnnsO7733Hu666y60tLQA+MuJj1QqhaeffhqXXHIJTjzxRPzwhz/Ea6+95nByIv0ikQgeffRRRCIRp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Ho/sowW7duVQsXLlRjx45VHo/nsF9lZWWqrKxMnXHGGer//J//43RU0qSnp0cBUDU1Naq+vl719PSoTCaj/H6/yuVySimlgsGgSiaTSimlYrGYikQiSiml0um08vv9hecKBAIqlUoppZSKRqMqGo0qpZRKpVIqEAgUHuf3+1U6nVZKKRWJRFQsFlNKKZVMJlUwGFRKKZXL5ZTf71eZTEYppVQ4HFbxeFwppVQikVChUEgppVQ2m1V+v19ls1mllFKhUEglEgmllFLxeFyFw2GllGIndmIndmIndmIndmIndmIndmIndmIndmIndmIndjK60+Cx3MFfPT09qpTEXuHxcaZMmYL/+3//L3p7e/HMM8/gG9/4BmpqagD85cqPHTt24Oabb3Y4Kek2bdo0XHrppQCA/v5++Hw+JJNJAMCyZcuwY8cOAPnvgWlrawMA9Pb2wufzFZ5j6dKl2LVrFwBg3bp1WLduHQBg165dWLp0aeFxPp8Pvb29AIC2tjZ0dHQAAHbs2IFly5YBAJLJJHw+H/r7+wEAq1atQmdnJwBg69atWL58OQAgFArB5/MhFAoBAJYvX46tW7cCADo7O7Fq1Sp2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2YidrOjmmpKdXRkgwGFTXXXdd4SqPwf9LduAVHkr19fWpO+64QwUCASs6BQIBdccdd6i9e/caMaf3r7+k997AwIBavHix2rNnj6P/9cHgPPft2+fonPhfVLATOwUL+/Gdd96xppONcyqmU29vr1q8eLE6dOiQNZ2cmtO+ffvU4sWLVX9/vzWdip1TX1+fWrx4sTpw4IAVnfbu3Vv4O5kJc5L83nvvvfcKa+nUZ8SePXsKGaS/92z9jGAndhrsNDAwoO64445CXhs62TinYjsdPHiw8PlqSycn5jT4v616e3ut6TSUOQ3nWJjTV3h4lFLK2VMux27Pnj34zW9+g8ceewxvvPFG4f+vlILH40E2m3UwHemyfft2TJo0qfDvPT09OOOMMxxMVHrpdBq7du3ChAkTUFlZ6XScYTOtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7es4nP5OH8s17oRHLBbDqlWr8Nhjj6G9vR25XK7we4NVamtr8fWvfx2PPfaYUzFJI6c3CREREREREREREREdndPHco34Dg+lFNavX48rr7wSJ5xwAr7zne/gxRdfRDabLXxvBwBMnz4dDz30EPr6+niyg6wSi8WwevVqxGIxp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/hVOBziS7du349e//jVWrFiBvXv3AvjLVRyDPv3pT+PKK6/ElVdeiVNOOcWBlERERERERERERERE5DRxt7Q6cOAAVqxYgV//+td4/fXXAXz4JEdjYyO+8Y1v4KqrrsKXvvQlJ2JSCTl9GRQRERERERERERERHZ3Tx3JF3NIqmUzit7/9LebOnYvx48fjH//xH/H6668fdruqsrIyXHjhhVi+fDn6+vrwy1/+kic7yDXS6TR27tyJdDrtdBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7Oprc39ETHi+99BKuvfZajB07Fq2trVi7di0ymcxhJzpOP/103HnnnXj33Xexdu1aLFiwADU1NU7GJio5k++b91FM6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfsVtaffrTn8Y777wDIH/LKo/HUzjJcdxxx2HBggW46qqrcO655zoRjwRx+jIoIiIiIiIiIiIiIjo6p4/lOval5bt37z7sJEdFRQVmz56Nq666CvPmzUNlZaVT0YiIiIiIiIiIiIiIyDCO3tJKKYWzzjoLd999N/bs2YPVq1fj61//Ok92EH1AIBDAokWLEAgEnI6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+zt2S6sf/ehHuOqqqw67vIXoozh9GZQEmUwGvb29GD9+PCoqHLswSxvT+kjNKyWXlBxExP1oE85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6Ow+nv9LFcx054EBXL6U1CREREREREREREREfn9LFcR29pNRThcBhvvPEGXnnlFbz00ktOxyEqqWg0iscffxzRaNTpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/6OtxwuEwHnjgASxfvhw9PT2FLzj3eDzIZDKHPfbAgQP42c9+BgBoaWnBt7/97ZLnJRopZWVl8Hq9KCsz5hzlEZnWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub/YW1p1dHTgiiuuwL59+wAA74/p8XiQzWY/9DPnnHMOtm3bBq/Xi3379qGqqqpkeWnkOH0ZFBEREREREREREREdndPHckWeonn55Zdx0UUXYd++fYUTHaeffjpOPPHEI/7cddddB6UUAoEA1q9fX4qoRCWRSqWwbds2pFIpp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/uJOeCQSCVx++eVIJpNQSuGqq65Cb28vtm/fjr/7u7874s9ecsklhctsXnjhhVLEJSqJRCKB9vZ2JBIJp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/uJuaXXffffhxhtvhMfjwfXXX49777238Hs33ngj7rvvvo+9pRWQvxLkrbfewpe+9CV0dHSUKjaNIKcvgyIiIiIiIiIiIiKio3P6WK64Kzza2toAAA0NDbjzzjuH/PMTJ06EUgpvv/227mhEjlFKIZFIQNj5yWNmWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+4k54dHd3w+PxYPr06aivrx/yzx933HEAgEAgoDkZkXOCwSCWLFmCYDDodBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7OprcX9wtrWpqapBOp/G9730PS5cuPez3irml1fe+9z386le/QnV1NeLxeCki0whz+jIoCbLZLPr7+zFmzBiUl5c7HWfYTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7Og6nv9PHcitK9kpFqqurQyAQOOaTFX19fQCA0aNH64xF5Kjy8nKMHTvW6RjamNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5v7hbWp144olQSmHHjh1D/lmlFDo7O+HxePCpT31qBNIROSMSieCRRx5BJBJxOooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uL+6Ex/nnnw8A2LJlC3bv3j2kn33iiSdw8OBBAMDMmTM1JyNyTkVFBU455RRUVIi7KOuYmNZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5v7jv8HjxxRcxa9YseDwezJkzB21tbYXfO9J3eOzduxfnnnsu+vr6UFZWhq6uLkycOLHU8WkEOH3fNyIiIiIiIiIiIiI6OqeP5Yq7wuOCCy7AjBkzoJTCs88+i2984xsYGBg44s8888wzmDZtGvr6+uDxeHDppZfyZAdZJZlMorOzE8lk0ukoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub+4Ex4A8NhjjxW+FOU///M/cdJJJ+Hiiy/Gyy+/XHjM3//932PBggU4+eST8bWvfQ179uwBAHzqU5/CAw884EhuopGSSqWwbds2pFIpp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZBNQgYiyuN+tAvnqYfb19Hk/uJuaTXojTfewCWXXIKdO3cCADwez8c+drDCGWecgaeffppfWG4Zpy+DIiIiIiIiIiIiIqKjc/pYrsgrPADg9NNPxx//+EcsWrQIf/VXfwWl1Mf+8nq9uO2229DZ2cmTHWSlXC6HQCCAXC7ndBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7OprcX+wJDwCora3F//f//X/o7e3FK6+8gp///Of4x3/8R1x77bX44Q9/iDvuuAMbNmxAX18ffvKTn6Curs7pyEQjIhQKwefzIRQKOR1FC9P6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9xd3S6tkMonq6uphP88rr7yCL3zhCxoSkdOcvgxKglwuh1AohMbGRpSViT5PWRTT+kjNKyWXlBxExP1oE85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6Ow+nv9LFccdO67LLLhn2pzH/9139h9uzZmhIROa+srAxer9eaD1jT+kjNKyWXlBxExP1oE85SHzevpW3dTesjOa+EbBIyEFEe96NdOE893L6OJvcXl7itrQ3XXnvtMf/8K6+8gtmzZyMSiWhMReSscDiMBx54AOFw2OkoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub+4Ex4A8Oijj+Kf/umfhvxzL7/8Mk92kJWqqqowZcoUVFVVOR1FC9P6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m9xf3HR4nnngi9u/fD4/HgzvvvBM/+tGPivq5l19+GXPnzi2cdZo3bx6efvrpkYxKJeL0fd+IiIiIiIiIiIiI6OicPpYr7gqPtWvXoqmpCUop3HLLLXj44YeP+jMfdbJj1apVIx2VqGQSiQTa29uRSCScjqKFaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P7izvhceaZZ+Kpp55CTU0NlFK47rrrjnilxsed7DDxchuij5PJZLB7925kMhmno2hhWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1CBiLK4360C+eph9vX0eT+4m5pNeipp57CpZdeimw2i5qaGjz//PM4//zzD3vMyy+/jDlz5hS+s2PevHl44oknUFlZ6URkGiFOXwZFREREREREREREREfn9LFccVd4DPra176GBx54AED+Epq//du/xeuvv174/U2bNvFkB7lGNptFX18fstms01G0MK2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf7EnPADgu9/9Lu644w4AQDAYxOzZs/HnP/8ZmzZtwty5cwsnOy6++GKe7CCrhcNhPPjgg4Vbt5nOtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9xd7S6v3+4R/+AXfffTc8Hg9OOukkHDp06LCTHatWreLJDos5fRmUBEopJJNJVFdXw+PxOB1n2EzrIzWvlFxSchAR96NNOEt93LyWtnU3rY/kvBKySchARHncj3bhPPVw+zoOp7/Tx3IrSvZKw/Bv//ZvOHjwIH7zm9/gvffew+A5Gp7sILfweDyoqalxOoY2pvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uL/qWVu/38MMPY86cOVBKwePx4G//9m95GytyjVAohLvvvhuhUMjpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQ4aMopRAKhXDw4EGEQiEYcFMMomGTuh/p2HCeerh9HU3u78gVHv/yL/9yTD93xhlnYN26daiqqsKkSZMK3+/xcX7yk58c0+sQSVNTU4OZM2cae2b1g0zrIzWvlFxSchAR96NNOEt93LyWtnU3rY/kvBKyScgwqLu7GytXrsTmzZuxZcsW+P3+wu81Nzfj7LPPxtSpU9Ha2nrYLTqIbCFpP9LwcZ56uH0dTe7vyHd4lJWVleTeZyZ+izx9mNP3fSMiIiIiIiL7rFmzBkuWLMGmTZuK/pnzzz8ft9xyC+bMmTOCyYiIiMzl9LFcx25ppZQa0V9ENonH41i7di3i8bjTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyOZkhoGBAbS2tmLevHlDOtkBAJs2bcLcuXNxxRVXYGBgYIQSEpWWhM8E0ofz1MPt62hyf0duafXTn/7UiZclMlYul0MgEEAul3M6iham9ZGaV0ouKTmIiPvRJpylPm5eS9u6m9ZHcl4J2ZzK0NXVhdmzZ2Pv3r3Dep4VK1agvb0da9euRUtLi6Z0RM6Q8JlA+nCeerh9HU3u78gtrYiGwunLoIiIiIiIiMh8XV1dmDlz5mHf0TFczc3N6Ojo4EkPIiKi/8fpY7mO3dKKiIqXyWSwe/duZDIZp6NoYVofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZCt1BkGBgYwe/ZsrSc7AMDv9+Oiiy7i7a3IaBI+E0gfzlMPt6+jyf15woPIAJFIBI8++igikYjTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyFbqDDfeeOOwb2P1cfbu3YubbrppRJ6bqBQkfCaQPpynHm5fR5P785ZWJJ7Tl0ERERERERGRudasWYN58+aN+Os888wzmDt37oi/DhERkWROH8vlFR5EREREREREZK0lS5aU5HXuuuuukrwOERERfTye8CAyQDAYxJ133olgMOh0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSspUqQ3d3NzZt2jSirzHopZdeQk9PT0lei0gnCZ8JpA/nqYfb19Hk/jzhQWSA2tpazJ8/H7W1tU5H0cK0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishW6kyrFy5ckSf3+nXI9JBwmcC6cN56uH2dTS5P7/Dg8Rz+r5vREREREREZKZZs2Zhw4YNJX299evXl+z1iIiIpHH6WC6v8CAyQCwWw+rVqxGLxZyOooVpfaTmlZJLSg4i4n60CWepj5vX0rbupvWRnFdCtlJkUEphy5YtI/b8H+W1114D/7tSMo2EzwTSh/PUw+3raHJ/nvAgIiIiIiIiIuuEw2H4/f6Svqbf70ckEinpaxIREdFf8JZWJJ7Tl0ERERERERGReQ4ePIgxY8aU/HX7+/tx/PHHl/x1iYiIJHD6WC6v8CAyQDqdxs6dO5FOp52OooVpfaTmlZJLSg4i4n60CWepj5vX0rbupvWRnFdCtlJkqKqqGrHnPpLq6mpHXpfoWEn4TCB9OE893L6OJvfnCQ8iA5h837yPYlofqXml5JKSg4i4H23CWerj5rW0rbtpfSTnlZCtFBkaGhrQ3Nw8Ys//UZqbm1FfX1/S1yQaLgmfCaQP56mH29fR5P68pRWJ5/RlUERERERERGSmWbNmYcOGDSV9vfXr15fs9YiIiKRx+lgur/AgIiIiIiIiIitNnTrV6tcjIiKiwxl7wuNPf/oTOjs78dZbbyGZTDodh0qgpqamcGlwNptFIBDA4AVKoVAIqVQKABCPxxGNRgEAmUwGgUCg8BzBYLBw77lYLFa4LCudTiMYDBYeFwgEkMlkAADRaBTxeBwAkEqlEAqFAABKKQQCAWSzWQBAJBJBIpEAACSTSYTDYQBALpdDIBBALpcDAITD4cJ7NpFIIBKJHLVTX18fFi1aVMhleqdAIIBFixZh7969Rsxp//79hfWX9N4bGBjAokWLsGfPnhF77xXTaXCe+/btc3ROOjvpnBM7sVMpOw3ux3fffdeaTjbOqZhOvb29WLRoEQ4dOmRNJ6fmtG/fPixatAj9/f3WdCp2ToN/hzxw4IAVnfbu3Vv4O5kJc5L83nvvvfcKa+nUZ8SePXsKGUZyTpdddhm8Xm8ha1NTEyorKwEAtbW1qK2tBQBUVlaiqamp8Div14uKigoAQF1dHUaNGgUg/70gjY2NAACPxwOv14vy8nIAQH19PS655BJtc+JnOTuVqtPg/7b0+/3WdLJxTsV2OnjwYOHz1ZZOTswp8P/+t1Vvb681nYYyJx3Hwpwi4oRHLBbDypUr8U//9E+4/vrrsWTJEvzpT3/60ONyuRyWLFmCsWPH4rTTTsMXv/hFnH766Rg9ejS++c1v4s0333QgPZXKtGnTcOmllwIA+vv74fP5Cptw2bJl2LFjBwCgo6MDbW1tAIDe3l74fL7CcyxduhS7du0CAKxbtw7r1q0DAOzatQtLly4tPM7n8xU+0Nra2tDR0QEA2LFjB5YtWwYg/wHh8/nQ398PAFi1ahU6OzsBAFu3bsXy5csB5D8EfD5f4UNn+fLl2Lp1KwCgs7MTq1atOmqnLVu24KSTTkJ9fb0Vnerr63H66acXMkjvtH37dpxwwgmor68X9d6Lx+O46qqrsG7duhF77xXTqb6+HhMmTChkkPzec2JO7MROpexUX1+PBQsW4OGHH7amk41zKqZTW1sbrrrqKuRyOWs6OTWnzs5OXHXVVThw4IA1nYqd05YtW3DVVVfhvffes6JTR0cHTj/9dNTX1xsxJ8nvvSeeeAJf/OIXUV9f79hnxLp163DmmWeivr5+ROfk9XqxcOHCQtbrr78eEyZMAABceOGFuPDCCwEAEyZMwPXXX1943MKFCzF+/HgAwMUXX4wZM2YAACZOnIhrrrkGQP7LyRcuXIgxY8YAAL773e8WckvfT7Z+7rHTsXUaPGA6eDLQhk42zqnYToMHxwf/o2EbOjkxp/r6enzuc58rZLCh01DmpONYmGOUw55//nk1btw4VVZWdtiv8vJy9ZOf/KTwuFQqpWbPnl34fY/Hc9ivsrIyVV1drZ544gkH29BI6OnpUQBUTU2Nqq+vVz09PSqTySi/369yuZxSSqlgMKiSyaRSSqlYLKYikYhSSql0Oq38fn/huQKBgEqlUkoppaLRqIpGo0qp/PsrEAgUHuf3+1U6nVZKKRWJRFQsFlNKKZVMJlUwGFRKKZXL5ZTf71eZTEYppVQ4HFbxeFwppVQikVChUEgppVQ2m1V+v19ls1mllFKhUEglEgmllFLxeFyFw2GllGIndmIndmIndmIndmIndmIndmKnEej0xBNPKAAKgGpqalKVlZUKgKqtrVW1tbUKgKqsrFRNTU2Fx3m9XlVRUaEAqLq6OjVq1CgFQFVVVanGxkYFQHk8HuX1elV5ebkCoFavXs05sRM7sRM7sZPrOw0eyx381dPTo0rJ0S8tf+mll3DhhRcinU7jo2J4PB74fD78z//5P3HrrbfizjvvhMfj+djHKqVQWVmJl19+GZ/73OdKUYFKwOkvupEgGo2ira0NF198Merq6pyOM2ym9ZGaV0ouKTmIiPvRJpylPm5eS9u6m9ZHcl4J2UqdobW1FStXrhzR5x/8L2aJTCPhM4H04Tz1cPs6Dqe/08dyHbulVTqdxne/+93C/b6qqqrw5S9/GZdffjkmT54MIH+/sVtuuQXvvPMOfD4fPB4PTjnlFDz22GPo6+tDMpnE7t278Ytf/AJjxoyBx+NBOp0+7DJUIhuUlZXB6/WirEzEXeiGzbQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyFbqTP84he/wLhx40bkuceNG4d77rlnRJ6bqBQkfCaQPpynHm5fR5P7O3aFx+9+9zt885vfhMfjwac+9SmsXbsWp556auH3H3nkEVx77bVQSuGLX/wiXn75ZZx22ml4+eWXcdxxx33o+Xbv3o0vfvGL2LdvHzweDzZt2oQvfOELpaxEI8Tps4JERERERERkvu7ubsyYMaPwxcw6NDc3o6OjAy0tLdqek4iIyGROH8t17BTN6tWrC//88MMPH3ayAwCuvvpqXHnllVBK4eWXX4bH48H999//kSc7AOCUU07Bz372s8K//+d//ueI5CZyQiqVwrZt2wpXRJnOtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZsTGVpaWtDR0aHtSo9x48bxZAdZQcJnAunDeerh9nU0ub9jJzy2bNkCAJgwYQLOP//8j3zMVVddBQCFW1nNnDnziM/5jW98A16vFwDwxz/+UVtWIqclEgm0t7cjkUg4HUUL0/pIzSsll5QcRMT9aBPOUh83r6Vt3U3rIzmvhGxOZWhpaUFXVxdaW1uH9Tytra3o6uriyQ6ygoTPBNKH89TD7etocn/HbmnV3NyMUCiESy+9FL/97W8/8jF+vx+jR4+Gx+PBJZdcgv/4j/846vN+5StfwYYNGzBu3Dj09vbqjk0OcPoyKCIiIiIiIrLPmjVrcNddd+Gll14q+memT5+Om2++GXPmzBnBZEREROZy+lhuRcle6QMikQgAYPTo0R/7mMGrNQDg+OOPL+p5TzrpJABAMBg89nBEwiilkEwmUV1dDY/H43ScYTOtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiHD3LlzMXfuXPT09GDlypXYvHkzXnvttcO+46O5uRnnnHMOpk6digULFhx2AIfIFhL2I+nDeerh9nU0ub9jt7SqqakBgCPeB+z9i1lRUdy5mcHnTSaTw0hHJEswGMSSJUusOZFnWh+peaXkkpKDiLgfbcJZ6uPmtbStu2l9JOeVkE1ChkGTJk3C7bffjvXr12NgYAChUAj9/f0IhUIYGBjA+vXrcfvtt/NkB1lL0n6k4eM89XD7Oprc37FbWn3qU5/Cu+++i7lz5+Lpp5/+2MeVlZXB4/HgBz/4Ae65556jPu+3vvUtrFixAk1NTYf9VxlkLqcvg5Igm82iv78fY8aMQXl5udNxhs20PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6/jcPo7fSzXsVtanXLKKXjnnXfw1ltvHfFx11xzDTweD77whS8U9byD39tx4oknDjsjkRTl5eUYO3as0zG0Ma2P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf8duaTVx4kQAwNtvv41QKPSxj/vVr36FX/7yl7j88suLet7XX38dHo8Hn/nMZ7TkJJIgEongkUceKXz3jelM6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfsRMeZ511FoD8F6C8/PLLWp7z5ZdfLtxX7Nxzz9XynEQSVFRU4JRTTin6u2ykM62P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt62hyf8e+w+ONN94o3LvrhhtuwL333jvs57z22muxbNkyeDwevPjii5gxY8awn5Oc5/R934iIiIiIiIiIiIjo6Jw+luvYFR6nn346+vv70d/fj8WLFw/7+Q4dOoSuri6ceeaZ+NznPocvfelLGlISyZBMJtHZ2YlkMul0FC1M6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6mtzfsRMeADB69GiMHj0aDQ0Nw36u4447Dps3b8bWrVvR2dk55G+PJ5IslUph27ZtSKVSTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/R27pRVRsZy+DIqIiIiIiIiIiIiIjs7pY7mOXuFBRMXJ5XIIBALI5XJOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9ecKDyAChUAg+nw+hUMjpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/cbe0uvHGG3H//ffD4/Egk8k4HYdKwOnLoCTI5XIIhUJobGxEWZn55ylN6yM1r5RcUnIQEfejTThLfdy8lrZ1N62P5LwSsknIQER53I924Tz1cPs6Dqe/08dyK0r2ShoZdo6GaNjKysrg9XqdjqGNaX2k5pWSS0oOIuJ+tAlnqY+b19K27qb1kZxXQjYJGYgoj/vRLpynHm5fR5P7u+/0FJGBwuEwHnjgAYTDYaejaGFaH6l5peSSkoOIuB9twlnq4+a1tK27aX0k55WQTUIGIsrjfrQL56mH29fR5P484UFkgKqqKkyZMgVVVVVOR9HCtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7evo8n9jfwOj/vuuw8ejwfZbNbpOFQCTt/3jYiIiIiIiIiIiIiOzuljubzCg8gAiUQC7e3tSCQSTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XnCg8gAmUwGu3fvRiaTcTqKFqb1kZpXSi4pOYiI+9EmnKU+bl5L27qb1kdyXgnZJGQgojzuR7twnnq4fR1N7s9bWpF4Tl8GRURERERERERERERH5/SxXOOu8PjMZz6DGTNmYPr06U5HISqZbDaLvr4+a07ymdZHal4puaTkICLuR5twlvq4eS1t625aH8l5JWSTkIGI8rgf7cJ56uH2dTS5v3EnPG666SZs3LgRGzdudDoKUcmEw2E8+OCDCIfDTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/Y27pRW5j9OXQUmglEIymUR1dTU8Ho/TcYbNtD5S80rJJSUHEXE/2oSz1MfNa2lbd9P6SM4rIZuEDESUx/1oF85TD7ev43D6O30st6Jkr0REx8zj8aCmpsbpGNqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/cbe0InKjUCiEu+++G6FQyOkoWpjWR2peKbmk5CAi7kebcJb6uHktbetuWh/JeSVkk5CBiPK4H+3Ceerh9nU0ub9RV3hs3boVzz33HN544w0cPHgQdXV1GDduHGbOnImLLroItbW1TkckGhE1NTWYOXOmsWdWP8i0PlLzSsklJQcRcT/ahLPUx81raVt30/pIzishm4QMRJTH/WgXzlMPt6+jyf2N+A6Pt99+GzfccAM2bNjwsY85/vjj8a//+q/4H//jf5QwGZWC0/d9IyIiIiIiIiIiIqKjc/pYrmO3tKqsrERVVRX+/u///oiP+/3vf4/zzjsPGzZsgFLqI38BQH9/P77//e/jhz/8YSniE5VUPB7H2rVrEY/HnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+zt2S6tsNguPx4NsNvuxj+nv78ff/d3fYWBgoPBt8J/85CdxwQUX4MQTT0Q0GsXWrVvxyiuvIJfLQSmFe++9F1OmTMF3vvOdUlUhGnG5XA6BQAC5XM7pKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/Y7e0Kisrg8fjwQ9+8APcc889H/mYm266Cffeey88Hg+qq6txzz334Lvf/W7h5MegnTt34uqrr8bmzZsBAMcddxx6e3uNvMcYfZjTl0ERERERERERERER0dE5fSzXsVtaHU0sFsOyZcsAAB6PB6tWrcK11177oZMdAHDaaadh48aNaGlpAQD4/X48/vjjJc1LNJIymQx2796NTCbjdBQtTOsjNa+UXFJyEBH3o004S33cvJa2dTetj+S8ErJJyEBEedyPduE89XD7OprcX+wJj1deeQWxWAwejweXXHIJ5syZc8THjxo1Cvfff3/h31944YWRjkhUMpFIBI8++igikYjTUbQwrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/sbe0+vnPf44f/ehH8Hg8eOaZZzB79uyinvfUU0/Fn//8Z3z2s5/FG2+8oTs2OcDpy6CIiIiIiIiIiIiI6OicPpYr9gqPgwcPFv753HPPLfrnzjnnHADAgQMHtGciIiIiIiIiIiIiIiKZxJ7wyGazhX8+7rjjiv65wceaeLkN0ccJBoO48847EQwGnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+4s94XHCCScU/jmRSBT9c4OPra+v156JyCm1tbWYP38+amtrnY6ihWl9pOaVkktKDiLifrQJZ6mPm9fStu6m9ZGcV0I2CRmIKI/70S6cpx5uX0eT+1c4HeDjTJ06tfDP7777Lk4//fSifm7//v0AgOOPP35EchE5obKyEqeddprTMbQxrY/UvFJySclBRNyPNuEs9XHzWtrW3bQ+kvNKyCYhAxHlcT/ahfPUw+3raHJ/x6/wuO+++1BeXv6hXzNnziw85o9//GPRz9fV1QWPx4MxY8aMQFoiZ8RiMaxevRqxWMzpKFqY1kdqXim5pOQgIu5Hm3CW+rh5LW3rblofyXklZJOQgYjyuB/twnnq4fZ1NLm/4yc8AEAp9ZG/PB4PAOC5554r6nnefPNN7N27FwBw5plnjlheIiIiIiIiIiIiIiKSxaOUUk68cFlZ8edaampqsGfPHjQ3Nx/xcT/96U/xv//3/4bH48Gjjz6Kb33rW8ONSQJs374dkyZNKvx7T08PzjjjDAcTEREREREREREREdEHOX0s17ErPHK5XNG/YrHYUU92RKNR3H///QDyV4ycd955pahBVBLpdBo7d+5EOp12OooWpvWRmldKLik5iIj70SacpT5uXkvbupvWR3JeCdkkZCCiPO5Hu3Ceerh9HU3uL+KWVjrU1dWhv7+/cJJkwoQJTkci0sbk++Z9FNP6SM0rJZeUHETE/WgTzlIfN6+lbd1N6yM5r4RsEjIQUR73o104Tz3cvo4m93fsllZExXL6MigiIiIiIiIiIiIiOjqnj+Vac4UHERERERERERERERG5F094EBkgEAhg0aJFCAQCTkfRwrQ+UvNKySUlBxFxP9qEs9THzWtpW3fT+kjOKyGbhAxElMf9aBfOUw+3r6PJ/XlLKxLP6cugJMhkMujt7cX48eNRUVHhdJxhM62P1LxScknJQUTcjzbhLPVx81ra1t20PpLzSsgmIQMR5XE/2oXz1MPt6zic/k4fy+UJDxLP6U1CREREREREREREREfn9LFcq25pdcEFFxR+ffnLX3Y6DpE20WgUjz/+OKLRqNNRtDCtj9S8UnJJyUFE3I824Sz1cfNa2tbdtD6S80rIJiEDEeVxP9qF89TD7etocn+rrsdpb2+Hx+OB+v/Zu/P4qqp7beDPPmSCBBJEHFFRb+uIL6hVtBVweNVqrUOpRWpFOym316Htp7W1vU63V8XbWz1WBbUiKqkDUZCI0iCWSK1ctYIScaho1BACIZx5Htb7x7k5rzglyErWb639fD+ffC6Wc06eZ/3OOrV7372PUvA8z3QcIm0CgQAaGhoQCLhxjtK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2duqVVIBDY5oRHoVAwHYk0MH0ZFBERERERERERERH1zfSxXPtO0XyOSZMmYdKkSZg8eTImTZpkOg6RNtlsFmvWrEE2mzUdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvd36oTHihUr8Ne//rX8Q+SKdDqNFStWIJ1Om46ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+zt1Sytyk+nLoIiIiIiIiIiIiIiob6aP5Tp1hQeRq5RSSKfTcOX8pG19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+/OEB5EFIpEIZs2ahUgkYjqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7s9bWpF4pi+DkqBQKKC7uxujR4/GkCFDTMfZYbb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR13pL/pY7k84UHimd4kRERERERERERERNQ308dynbul1d13343rr78e119/vekoRNrE43HMmzcP8XjcdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Otrcv8J0AN1mz56N1157DQBw9dVXG05DpEdFRQXGjh2Ligo3tqxtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/s7d0urCRMm4NVXX4XneSgUCqbjkAamL4MiIiIiIiIiIiIior6ZPpbr3C2tiFyUyWSwatUqZDIZ01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf57wILJANpvFmjVrkM1mTUfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/Y3d0uqDDz4YkNf9+te/jjfeeIO3tHKI6cugiIiIiIiIiIiIiKhvpo/lGvvWkbFjx8LzPFO/nsgqxWIR0WgUI0aMQCBg/4VZtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3ubzStUkr7D5GLotEogsEgotGo6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7FbWgUCgfIVHgMRgbe0cofpy6AksPms6qexrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/ruCP9TR/LNXZLq5122glbt26F53loaWnBl770pR1+TaUUTj/9dLzxxhsaEhLJEQgE0NDQYDqGNrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7m/s9NRXvvKV8p83bdqEffbZZ4d/xo4di6qqKlOViAZMLBbDnDlzEIvFTEfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/Y2d8DjyyCPLf37ppZdMxSCyQlVVFcaPH+/MCT3b+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvc39h0eixcvxllnnQXP8zBx4kQ8//zzWl53woQJePXVV/kdHg4xfd83IiIiIiIiIiIiIuqb6WO5Im5ptWbNGhSLRVNRiMRLp9NYsWIF0um06Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7ETHrvvvjt22203KKWQSqWwdu1aLa97ySWX4JprrsHVV1+t5fWIJMjn82hvb0c+nzcdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvc3dksrov4yfRkUEREREREREREREfXN9LFcY1d4EFH/FQoFdHV1OfO9NLb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7s8THkQWiMViuOuuuxCLxUxH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf15SysSz/RlUBIopZDJZFBdXQ3P80zH2WG29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dd6S/6WO5FYP2m4joC/M8DzU1NaZjaGNbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v68pRWRBaLRKG699VZEo1HTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/nvAgskBNTQ2mTJli7ZnVj7Otj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39+hweJZ/q+b0RERERERERERETUN9PHcnmFB5EFUqkUli5dilQqZTqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7s8THkQWKBaLCIfDKBaLpqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/rylFYln+jIoIiIiIiIiIiIiIuqb6WO5vMKDyAL5fB7t7e3I5/Omo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+POFBZIF4PI77778f8XjcdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Otrcn7e0IvFMXwZFRERERERERERERH0zfSy3YtB+Ezmrq6sLzzzzDF5++WW8/PLLWLNmDRKJBPbZZx+0t7ebjkdEREREREREREREPmD9La1yuRw2bdpk5f3EXPHwww/je9/7HoLBIJ5//nkkEgnTkZwTiURw0003IRKJmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s84fHuu+/i3XffxYYNGz7zMe+88w6++c1vYvjw4dhjjz0wdOhQfP3rX8frr78+iEkJAEaMGIETTzwRV155JR599FHceuutpiM5Z9iwYTjrrLMwbNgw01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf3Hf4fHSSy9h4sSJAICZM2fi9ttv/8RjPvzwQxx++OHYunUrPh5/2LBhWL58OY4++uhByUuf1NTUhG9/+9vabmll+r5vRERERERERERERNQ308dyxV3h8eSTT5ZPYlx00UWf+pif/exn6Onp+dS/SyaTOP/885HL5QYsI9FgSyaTWLRoEZLJpOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0ub+4Ex7/8z//AwDYeeedccQRR3zi7zds2IDHH38cnudh2LBhmD9/PqLRKNra2nDkkUcCKN0S69FHHx3U3B9VKBTw2muv4d5778XMmTNx5JFHoqqqCp7nwfM8TJky5Qu/djabxYMPPojTTjsN++yzD2pqarD77rvj2GOPxe9//3ts2bJFXxEiIiIiIiIiIiIiIkuIu6XVl770Jbz77rs48cQT0dLS8om/v+OOO3DppZfC8zxcd911+O1vf1v+u7fffhsHHnggPM/D1KlT8cgjjwxmdADAokWL8N3vfvdzz35NnjwZK1as2O7XfvPNN3HeeedhzZo1n/mYXXbZBffddx9OO+207X59XXhLKyIiIiIiIiIiIiL/MX0sV9wVHps2bQIA7Lnnnp/69x89UfDxW159+ctfxpFHHgml1OeeFBhI4XB4QC716ejowIknnlju5XkeJk+ejO9///s444wzMHToUADA5s2bcdZZZ+HZZ5/VnoHMyeVyePPNN525VZttfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/uLO+GRSqUA4DO/Af5vf/sbPM/DwQcf/KknRfbbbz8AQFdX18CF7Iddd90V3/jGN3DdddfhqaeewuWXX75Drzd9+nR0dnYCAPbZZx+sXr0aK1aswL333ovFixfjgw8+wIknngig9Ib89re/jXA4vKM1SAib75v3aWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3F/cLa2GDx9e/uLx+++/f5u/W79+Pb70pS/B8zxcfPHFuPPOOz/x/JkzZ+Kuu+7CkCFDjJyB6urqQjabxd57773Nf37ttdfiuuuuA7D9t7R66qmncPrppwMAqqqq8PLLL2PcuHGfeFwikcBhhx2Gd999FwDw61//GjfccMMnHverX/0Ks2bN6vfv/6hcLoeKiorPfQxvaUVERERERERERETkP6aP5X7+kWsDdtllF7S3t+ONN974xN/95S9/Kf/52GOP/dTnR6NRAJ99hchA22233bS/5h133FH+84wZMz71ZAcA1NbW4vrrr8f5558PALjrrrtw/fXXf+IERW1tLUaNGvWFsnie94WeR0REREREREREREQ0kMTd0mr8+PFQSmH16tV45513tvm7j17xMWXKlE99fu/VDXvssceAZRxM8Xgcy5cvL//zx7+35OO+9a1voa6uDgCwdetWPPfcc594zL//+79jy5YtX+hnyJAhegtSv4TDYVx33XXO3KbMtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+vo839xZ3wOPvsswEAxWIRZ599Nv76179i7dq1+MlPfoKXXnoJnufhqKOOwpgxYz7x3Fwuh9deew2e5+GAAw4Y7OgD4u9//zsymQyA0pUZX/nKVz738TU1NTjmmGPK/8wvL3dDXV0dZsyYUT6ZZTvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIykH2UUohGo9iyZQui0SiE3aXdWtyPbuE89fD7OtrcX9wtraZNm4YbbrgBb731FtatW4eTTjrpE4/51a9+9anPXb58OVKpVPmkiAs+emuvcePG9fn9GQBw+OGHY9myZZ94PtmroqICY8eONR1DG9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjKQHdauXYuHHnoIL774Il555RWEQqHy340cORKHH344jjrqKEyfPn2be8ZT/3E/uoXz1MPv62hzf3FXeFRUVGDRokXYc889oZTa5gcALr30Upx55pmf+twHH3yw/Ofjjz9+UPIOtLfeeqv853322adfz/noF6a/+eab2jPR4EskEnj44YeRSCRMR9HCtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDCTbkiVLMGnSJBx22GG48cYbsXz58m1OdgBAKBTC8uXLceONN2LcuHGYNGkSnnrqKUOJ7cX96BbOUw+/r6PN/cVd4QEAX/7yl7Fu3TrMnTsXK1euRDQaxV577YVzzz0XJ5988qc+p6enBy+99BL22WcfDB8+HBMnThzk1AOjp6en/Oddd921X8/56Benb926VXumj/vwww8xYcKE8j9ns9nyf77zzjuX//PzzjsPf/zjHwc8j4sCgQAaGhoQCIg7R/mF2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIFk6unpwaWXXoqHHnpou5+7cuVKrFy5EtOnT8dtt92GUaNGDUBC93A/uoXz1MPv62hzf7GJ6+rqcNlll2HBggX4y1/+gj/96U+febIDAEaNGoW3334b7733Xvl7PFwQj8fLfx46dGi/nvPRx330+QOlUCigp6en/BOLxQCUvofl0/7zL6qmpqZ837hCoYBwOFy+8icajZZPtKRSqfLZx3w+v82X60QiEeRyOQBAMplEMpkEUPr+l0gkUn5cOBxGPp8HUDqjmUqlAJRO5kSjUQCle4eGw2EUCgUApbVOp9MAgEwms806hMNhFItFAEAsFit/L0s6nS7P6PM6AcBxxx2HoUOHOtFp6NChmDx5cvn50jt5noevfe1rGDp0qKj3XlVVFU499VQUCoUBe+/1p9PQoUMxadKk8vMlv/dMzImd2GkwOw0dOhSnnHIKMpmMM51cnFN/OuXzeZx66qmorq52ppOpOSmlcOqpp6KiosKZTv2dEwCceuqpGDJkiBOdisUiJk+ejKFDh1oxJ8nvvVwuhxNOOAFDhw419hlRKBQwZcoUDB06VPx7z9XPCImdXnvtNRx22GF46qmnUFlZCQAYNmwYhg0bBgCorKxEfX19uVNDQ0P51t+1tbXl4yFNTU045phjsHbtWuOdbJhTVVUVJk6ciJqaGmc6uTin/naqrKzExIkTy/vBhU4m5jR06FAcf/zx2/x7iO2dtmdOOo6FmSL2hAeV9L4ZgdJ/AfVHdXV1+c+9b/qBNHbs2E/cfuzTfubNm7dDv2fixImYOnUqAKC7uxvBYLC8CefOnYt169YBAFpbW9Hc3AwA6OjoQDAYLL/G7NmzsX79egBAS0sLWlpaAADr16/H7Nmzy48LBoPo6OgAADQ3N6O1tRUAylceAaUPiGAwiO7ubgClf6FatWoVAGD16tVobGwEUPoQCAaD5Q+dxsZGrF69GgCwatUqNDU19dnp2Wefxfz585HNZp3olM1m0dTUhCeeeMKKOT3//POYN28estmsqPdeZ2cn1qxZgwULFgzYe68/nbLZLB5++GEsXbrU6Jx0dtI5J3Zip8HslM1m8fLLLzvVycU59afT/PnzsWbNGmzZssWZTqbmtHTpUqxZswZvvfWWM536O6dnn30Wa9aswWuvveZEpyeeeAJNTU3IZrNWzEn6e2/p0qXIZrPGPiMWLFiARYsWIZvNin/vufoZIbHTlClT0NnZiZkzZ2L//fcHAJx88snl/wfY/fffHzNnzix3uuKKKzBmzBgAwBlnnIHJkycDAA4++GCcfvrpmDx5Ml555RXOqY9OnZ2dCAaD5YOgLnRycU797fTee+8hGAyWD0i70MnEnLLZLJ588knMnz/fmU7bMycdx8KMUcK8/PLLpiMMiGuuuUYBUADU5MmT+/280047rfy8K6+8sl/Peeqpp8rPqaur+4KJ5Whra1MAVE1Njaqrq1NtbW0qn8+rUCikisWiUkqpSCSiMpmMUkqpZDKp4vG4UkqpXC6nQqFQ+bXC4bDKZrNKKaUSiYRKJBJKKaWy2awKh8Plx4VCIZXL5ZRSSsXjcZVMJpVSSmUyGRWJRJRSShWLRRUKhVQ+n1dKKRWLxVQqlVJKKZVOp1U0GlVKKVUoFFQoFFKFQkEppVQ0GlXpdFoppVQqlVKxWEwppT6306ZNm9R///d/q0gk4kSnSCSi/vu//1tt3LjRijl9dP0lvfe2bt2qbrnlFtXZ2Tlg773+dOqdZ1dXl9E56eykc07sxE6D2SkSiag//OEP6oMPPnCmk4tz6k+nDRs2qFtuuUWFQiFnOpmaU1dXl7rlllvUli1bnOnU3zlt2rRJ3XLLLaq7u9uJThs3biz/O5kNc5L83uvo6FB/+MMfVCQSMfYZ0dnZWc4g/b3n6meEpE5dXV3qy1/+cvlYRn19vaqsrFQA1LBhw9SwYcMUAFVZWanq6+vLj2toaFAVFRUKgKqtrVVDhw5VAFRVVZUaMWKEAqD22GMP9e6773JOn9Np69at6r//+7/LOVzo5OKc+tupp6en/N+XrnQyMafe/221YcMGZzptz5x25FhY77Hc3p+2tjY1mDyl/vdaFCECgQAOOuggnH/++Zg+fXq/v6hbumuvvRbXXXcdAGDy5MlYsWJFv573ne98B48++igA4LLLLuvXWbLHH38c3/rWtwCUvs9j48aNXyy0EK+//joOPfTQ8j+3tbXhkEMOMZiIiIiIiIiIiHSZPn36F/rOju15/d7/j2YiIhpYpo/liryl1Ztvvonf/va32H///TF58mT86U9/2uZeZX7y0S/Y2rRpU7+e09XVVf7zTjvtpD0TDT6lFNLpNISdn/zCbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEAyLFmyZEBPdgDAn//8ZyxZsmRAf4fNuB/dwnnq4fd1tLm/uBMew4cPL3/nQ7FYxN/+9jdcfPHF2G233TB16lQsWrSo/AUufnDAAQeU//z+++/36zkffPBB+c8HHnig9kw0+CKRCGbNmuXMiT/b+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIykAyzZs0alN9z8803D8rvsRH3o1s4Tz38vo429xd3S6tMJoPFixejsbERTz/99DYnNzzPAwCMHDkS5557Ls4//3wce+yxpqJuly96S6uWlhaccsopAIDa2lqEw2FUVFR87nNOPvlkLFu2DADwm9/8Br/73e++eHABTF8GJUGhUEB3dzdGjx6NIUOGmI6zw2zrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchA5q1duxaHHXbYoP6+jx5foBLuR7dwnnr4fR13pL/pY7nirvCorq7Gt7/9bSxatAhdXV2488478dWvfhWe55Wv/Ni6dSvuuusuHHfccfiXf/kXXHPNNfjnP/9pOvqAOPbYY1FdXQ0ASCQSePnllz/38ZlMBqtWrSr/8wknnDCg+WhwDBkyBLvttpszH7C29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIPMG+lZWpn+fLbgf3cJ56uH3dbS5v7gTHh81cuRIXHLJJVi5ciXeffdd/Md//AcOOuggACif/Hjvvffwu9/9DgceeCCOPvpo3HHHHdiyZYvh5PrU1dXhxBNPLP/zvHnzPvfxjz/+OGKxGIDS93dMmjRpIOPRIInH45g3bx7i8bjpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgcx78cUXnf59tuB+dAvnqYff19Hm/qJPeHzUPvvsg9/85jd4/fXX8Y9//AM//elPsfvuu5dPfCil8PLLL+Oyyy7DnnvuiTPOOMN0ZG3+9V//tfznefPm4fXXX//UxyWTSVx99dXlf/7xj3/c5+2vyA4VFRUYO3asM/O0rY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhA5mllMIrr7wyqL/zH//4h5VfwDvQuB/dwnnq4fd1tLm/uO/w2B5KKTz77LN48MEHsXDhwvKVDUDp+z4KhYLBdNv6ot/h0WvSpElYuXIlAGDs2LF44okntrnPZU9PD84777zyd3fstNNOWL9+PRoaGrTkN8n0fd+IiIiIiIiISK9oNIr6+nojv3f48OGD/nuJiPzC9LFca67w+DSe5+HEE0/EvHnz8P777+Nb3/qW6UgAgNNOOw3jx4/f5mfOnDnlv3/55Zc/8ffjx49HZ2fnZ77mn//8Z+y+++4AgPb2dowfPx7HH388fvjDH+LMM8/E3nvvXT7ZUVFRgUcffdSJkx1U0vvdLJlMxnQULWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchAZmWzWSO/l++5T+J+dAvnqYff19Hm/laf8ACAv/71r/jBD36AfffdF48//jg8zzMdCevWrcOrr766zc+mTZvKf59IJD7x96+++urn/pf9mDFj8Oyzz2L8+PEASle3rFixAvfeey8WL16MZDIJABg9ejQWLVq0zfd+kP2y2SzWrFlj7F8IdbOtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDmVVVVWXk91ZXVxv5vZJxP7qF89TD7+toc38rb2n16quvorGxEQ899FD5qoiP1hgyZAhOOeUUPPnkk0byjR07Fu+///52P++9997D2LFjP/cx2WwWDz/8MB566CG8/vrr2LRpExoaGrDffvvhnHPOwUUXXYSdd975CyaXyfRlUERERERERESkl1IKo0aNQigUGrTfOXLkSPT09Ij4f5YlInKV6WO51nzryIcffojGxkY0NjZi3bp15f/8oyc6jjzySJx//vk477zzMHr0aBMxAZRuOTVQqqqqcMEFF+CCCy4YsN9B8hSLRUSjUYwYMQKBgPUXZlnXR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBzPI8D4cffjiWL18+aL/ziCOO4MmOT8H96BbOUw+/r6PN/UWnDYfDuOeeezB58mTsu++++M1vfoN169ZBKVX+6f3P33zzTbz44ou47LLLjJ7sIBoI0WgUwWAQ0WjUdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEDmHXXUUU7/PltwP7qF89TD7+toc39xt7TKZrNobm5GY2Mjnn766fJ9wj4ac6eddsK3v/1tnH/++fjqV79qKioNEtOXQUlg81nVT2NbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGMm/t2rU47LDDBvX3ffT4ApVwP7qF89TD7+u4I/1NH8sVN61dd90V5557Lp544glkMpnylRzV1dU455xz8Pjjj2Pjxo2YPXs2T3b4TE1NDerq6gAAhUIB4XC4fCIsGo2WT46lUikkEgkAQD6fRzgcLr9GJBJBLpcDACSTyfKXvedyOUQikfLjwuEw8vk8gNKXzKdSKQClE3K9ZzaVUgiHwygUCgCAeDyOdDoNAMhkMojFYgBKHxDhcBjFYhEAEIvFkMlkAADpdBrxeLzPTplMBpWVlQgEAk50CgQCqK6uLmeQ3imbzaKiogKBQEDUe08phYaGBiSTyQF77/WnUyAQQFVVVTmD5PeeiTmxEzsNZqdAIID6+npEo1FnOrk4p/50SiQSaGhoKL+eC51MzSmdTqOhoQGFQsGZTv2dUyaTQUNDA/L5vBOdUqkUqqurEQgErJiT5PdePB7HsGHDEAgEjH1GJJNJ1NTUIBAIiH/vufoZIaHTfvvth+OOOw4VFRXl/94DgPr6elRWVgIAhg0bhmHDhgEAKisrUV9fX35cQ0MDKipKd2uvra3F0KFDAZRuBz5ixAgApVtnNTQ0YPLkyTj00EM5p0/p1Nul93ZfLnRycU797dT7Or0HqV3oZGJOgUAAQ4cO3WZdbe+0PXPScSzMFHEnPHoHqJSC53mYNGkS7r77bnR1daGpqQlnnXVW+b/0yF8mTpyIqVOnAgC6u7sRDAbLm3Du3Lnl73ZpbW1Fc3MzAKCjowPBYLD8GrNnz8b69esBAC0tLWhpaQEArF+/HrNnzy4/LhgMoqOjAwDQ3NyM1tZWAMC6deswd+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXo1GhsbAXzyErDGxkasXr0aALBq1So0NTX12WnZsmX44x//iFgs5kSnWCyG22+/HQsXLrRiTq2trbjtttsQi8VEvffa29sxZ84cPPLIIwP23utPp1gshj/+8Y9YsmSJ0Tnp7KRzTuzEToPZKRaLYfbs2U51cnFO/en04IMPYs6cOejs7HSmk6k5LVmyBHPmzEFbW5sznfo7p2XLlmHOnDl45ZVXnOi0cOFC3H777YjFYlbMSfJ7795778Udd9yBWCxm7DPikUceKc9T+nvP1c8IKZ2uvPJKjBkzBldccUU568yZM7H//vsDAE4++WScfPLJAID9998fM2fOLD/uiiuuwJgxYwAAZ5xxBiZPngwAOPjgg/H9738fAFBdXY0rrrgC//Zv/8Y5fUan9vZ2BINBbNmyxZlOLs6pv53efvttBIPB8kFtFzqZmFPvsasHH3zQmU7bMycdx8KMUcJ4nqcOPvhgdcMNN6j333/fdBwSoK2tTQFQNTU1qq6uTrW1tal8Pq9CoZAqFotKKaUikYjKZDJKKaWSyaSKx+NKKaVyuZwKhULl1wqHwyqbzSqllEokEiqRSCillMpmsyocDpcfFwqFVC6XU0opFY/HVTKZVEoplclkVCQSUUopVSwWVSgUUvl8XimlVCwWU6lUSimlVDqdVtFoVCmlVKFQUKFQSBUKBaWUUtFoVKXTaaWUUqlUSsViMaWU+txOoVBIrVixQqXTaSc6pdNp1draqnp6eqyYUzgcLq+/pPdeIpFQL7zwgtqyZcuAvff606l3nlu3bjU6J52ddM6JndhpMDul02n197//XXV1dTnTycU59adTd3e3euGFF1QymXSmk6k5bd26Vb3wwgsqFos506m/cwqFQuqFF15Q0WjUiU49PT2qtbVVpdNpK+Yk+b23efNmtXLlSpVOp419RmzZskU999xzKp1Oi3/vufoZIanT9OnTVUNDgwKgAKj6+npVWVmpAKhhw4apYcOGKQCqsrJS1dfXlx/X0NCgKioqFABVW1urhg4dqgCoqqoqNWLECAVAeZ6nLrjgAs7pczolEgn17LPPll/DhU4uzqm/neLxuHr22We3OaZheycTc0qn02rlypWqu7vbmU7bM6cdORbWeyy396etrU0NJnHf4bF69WpMmDDBdAwSxPR934iIiIiIiIho4PT09OCwww5DZ2en9tfeY4898Nprr2HUqFHaX5uIiD7J9LFccbe04skOok9Kp9NYsWJF+X57trOtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDyTFq1CgsXboUI0eO1Pq6I0eOxNKlS3myow/cj27hPPXw+zra3F/cCQ8i+qR8Po/29vbylxLZzrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAwky7hx49Da2oo99thDy+vtscceaG1txbhx47S8nsu4H93Ceerh93W0ub+4W1oRfZzpy6CIiIiIiIiIaHD09PTgsssuw5///Ocv/BrTp0/Hbbfdxis7iIgMMH0sl1d4EFmgUCigq6sLhULBdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEAyjRo1Co2NjXjyyScxadKk7XrupEmTsGTJEjQ2NvJkx3bgfnQL56mH39fR5v484UFkgVgshrvuuguxWMx0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQLKdfvrpaG1txdq1a3HVVVfhpJNO+sR3fIwcORInnXQSrrrqKqxduxatra047bTTDCW2F/ejWzhPPfy+jjb35y2tSDzTl0FJoJRCJpNBdXU1PM8zHWeH2dZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIHso5RCPB4vv3fq6ur4/tGA+9EtnKcefl/HHelv+lhuxaD9JiL6wjzPQ01NjekY2tjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CB7ON5HoYPH47hw4ebjuIU7ke3cJ56+H0dbe7PW1oRWSAajeLWW29FNBo1HUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb35wkPIgvU1NRgypQp1p5Z/Tjb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvfnd3iQeKbv+0ZEREREREREREREfTN9LJdXeBBZIJVKYenSpUilUqajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v7GTnhcf/31eP/99039eiKrFItFhMNhFItF01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf2O3tAoEAggEAjjuuONw4YUXYurUqaitrTURhYQzfRkUEREREREREREREfXN9LFco7e0Ukrhueeew/e//33stttumDFjBpYvX24yEpFI+Xwe7e3tyOfzpqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/sZOeOy6665QSqH3ApNEIoH58+fj5JNPxt57743f/va3ePvtt03FIxIlHo/j/vvvRzweNx1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo5W91eGFAoF9dRTT6lp06apoUOHKs/ztvkJBAIqEAioiRMnqjlz5qhQKGQqKhnW1tamAKiamhpVV1en2traVD6fV6FQSBWLRaWUUpFIRGUyGaWUUslkUsXjcaWUUrlcbpv3TjgcVtlsVimlVCKRUIlEQimlVDabVeFwuPy4UCikcrmcUkqpeDyuksmkUkqpTCajIpGIUkqpYrGoQqGQyufzSimlYrGYSqVSSiml0um0ikajSqnSez0UCqlCoaCUUioajap0Oq2UUiqVSqlYLKaUUuzETuzETuzETuzETuzETuzETuzETuzETuzETuzETlZ36j2W2/vT1tamBpOxKzwCgQC+/vWv46GHHsKmTZtw991347jjjoPneb0nYqCUwosvvoh//dd/xe67745zzz0XS5YssfLLUmjHTZw4EVOnTgUAdHd3IxgMIpPJAADmzp2LdevWAQBaW1vR3NwMAOjo6EAwGCy/xuzZs7F+/XoAQEtLC1paWgAA69evx+zZs8uPCwaD6OjoAAA0NzejtbUVALBu3TrMnTsXAJDJZBAMBtHd3Q0AaGpqwqpVqwAAq1evRmNjIwAgGo0iGAwiGo0CABobG7F69WoAwKpVq9DU1MRO7MRO7MRO7MRO7MRO7MRO7MRO7MRO7MRO7MRO7ORMJ2MG9fRKP7z33nvquuuuU1/60pc+86qP3XbbTf385z9Xr776qum4NAh4hYdSXV1d6oYbblDhcNiJTuFwWN1www2qs7PTijl9dP0lvfd6enrUjTfeqDZs2GD0//ugd54bN240Oif+f1SwEztFyvvx/fffd6aTi3PqT6eOjg514403qq1btzrTydScNm7cqG688UbV3d3tTKf+zqmrq0vdeOONavPmzU506uzsLP87mQ1zkvze+/DDD8traeozYsOGDeUM0t97rn5GsBM79Xbq6elRN9xwQzmvC51cnFN/O23ZsqX8+epKJxNz6v3fVh0dHc502p457cixMNNXeHhK/e+XaAj0wgsv4P7778eCBQsQCoW2+bveK0EOO+wwXHjhhZg+fTpGjx5tIiYNsNdffx2HHnpo+Z/b2tpwyCGHGEw0+HK5HNavX4/9998flZWVpuPsMNv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo470t/0sVzRJzx6ZbNZNDc344EHHsDTTz+9zbfD9574qKiowCmnnIIZM2bgm9/8pi/fiK4yvUmIiIiIiIiIiIiIqG+mj+Ua+w6P7VFVVYVvfetbeOKJJ9DZ2YlbbrkFhx9+OID//10fuVwOS5Yswbnnnovdd98d//Zv/2Y4NZE+yWQSixYtQjKZNB1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo4297fihMdH7bzzzrj88svx8ssvo62tDb/4xS+w5557Avj/Jz+2bt26zZe5EBERERERERERERGR26y4pVVf0uk0rrjiCtx9993wPA9KKXieh0KhYDoaaWD6MigiIiIiIiIiIiIi6pvpY7nWXeHxUS+88AJmzpyJPffcE/fcc0/5+zyIXJPL5fDmm28il8uZjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7W3fCo729Hddffz2+/OUv42tf+xruvvtuhEIhAP//llZ77703rrrqKsNJifSx+b55n8a2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2tuKVVNBrFI488ggcffBDPP/98+T//aPTa2lp861vfwowZM3D88cebiEkDxPRlUERERERERERERETUN9PHcisG7Tdtp0KhgKVLl+KBBx5Ac3MzMpkMgG1PcniehylTpmDGjBn41re+hdraWlNxiYiIiIiIiIiIiIjIIHG3tHrllVdwxRVXYM8998Q3v/lNNDU1IZ1Ol29XBQBf+tKX8B//8R947733sHz5clxwwQU82UFOC4fDuO666xAOh01H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf1F3NJqw4YNmD9/Ph588EG88cYbALa9kgMA6uvr8Z3vfAczZszAMcccYyImGWL6MigJ8vk8Ojo6MGbMGFRUiL0wq99s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps67kh/08dyjZ3wSCaTaGpqwgMPPIAVK1aUT3B8NM6QIUNw8sknY8aMGTjzzDNRXV1tIioZZnqTEBEREREREREREVHfTB/LNXZLq1122QUXXXQR/vrXv6JYLG5zy6pDDz0U//Vf/4UPP/wQS5YswbnnnsuTHeRriUQCDz/8MBKJhOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0ub+x63GSySQ8zyuf5Nh5550xffp0zJgxAxMmTDAVi0ikQCCAhoYGBALivnbnC7Gtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39jt7QKBAKoqqrC6aefjhkzZuC0007z5f3QqG+mL4MiIiIiIiIiIiIior6ZPpZr7BTNH//4R3R2duKxxx7DN7/5TZ7sIPoc2WwWa9asQTabNR1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429zd2wuMnP/kJdtppJ1O/nsgq6XQaK1asQDqdNh1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429zd2S6vt1dbWhg8//BChUAj5fB4XXHCB6Ug0SExfBkVEREREREREREREfTN9LFf0t468//775StB/s//+T/4xje+ge9973u46KKLPvHYTZs24Tvf+Q7OPfdc3HzzzQbS0kCrqalBXV0dAKBQKCAcDpe/9D4ajZYvsUqlUkgkEgCAfD6PcDhcfo1IJIJcLgcASCaTSCaTAIBcLodIJFJ+XDgcRj6fBwAkEgmkUikApcu5otEoAEAphXA4jEKhAACIx+Pls56ZTAaxWAwAUCwWEQ6HUSwWAQCxWAyZTAZA6WxpPB7vs1MymURPTw+UUk50UkohFAqVHye9UyqVwpYtW6CUEvXey+fzSKfTiMViA/be608npRS2bt1afpzk956JObETOw1mJ6UUUqkUQqGQM51cnFN/OkWjUaTT6XJWFzqZmlMikUA6nUY2m3WmU3/nlEwmkU6ny+8p2zvF43GEQiEopayYk+T3XiQS2ea/N0x8RsRisXIm6e89Vz8j2ImdPvq/yTdt2lR+nAudXJxTfzvlcjls2rRpm8982zuZmJNSqvzfl6502p456TgWZorYEx4PPfQQxo0bhzlz5pQXtPfn0+y6667YvHkzmpqacP3115ffZOSOiRMnYurUqQCA7u5uBIPB8iacO3cu1q1bBwBobW1Fc3MzAKCjowPBYLD8GrNnz8b69esBAC0tLWhpaQEArF+/HrNnzy4/LhgMoqOjAwDQ3NyM1tZWAMC6deswd+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXo1GhsbAZQ+BILBYPlDp7GxEatXrwYArFq1Ck1NTX12WrZsGW6//XZEIhEnOkUiEdx2221YuHChFXNqbW3FHXfcgUgkIuq9995772HWrFl45JFHBuy9159OkUgEf/zjH7FkyRKjc9LZSeec2ImdBrNTJBLBzTffjNtuu82ZTi7OqT+dHnzwQcyaNQsbNmxwppOpOS1ZsgSzZs3C2rVrnenU3zktW7YMs2bNwj/+8Q8nOi1cuBC33XYbIpGIFXOS/N679957ccsttyASiRj7jHjkkUcQDAYRiUTEv/dc/YxgJ3bq7fTee+9hzpw55ddzoZOLc+pvp7feegtz5swpHyR3oZOJOUUiEdx666148MEHnem0PXPScSzMGCVQU1OTCgQCKhAIKM/z1MiRI9Vpp52mDjjgAOV5ngoEAp/6vPnz55f/fsGCBYOcmgZKW1ubAqBqampUXV2damtrU/l8XoVCIVUsFpVSSkUiEZXJZJRSSiWTSRWPx5VSSuVyORUKhcqvFQ6HVTabVUoplUgkVCKRUEoplc1mVTgcLj8uFAqpXC6nlFIqHo+rZDKplFIqk8moSCSilFKqWCyqUCik8vm8UkqpWCymUqmUUkqpdDqtotGoUkqpQqGgQqGQKhQKSimlotGoSqfTSimlUqmUisViSin1uZ1isZh69913VT6fd6JTPp9X7733Xvn3Su8Uj8fV+vXrVT6fF/Xey2QyauPGjSocDg/Ye68/nfL5vHr33XfLv1fye8/EnNiJnQazUz6fV52dnWrLli3OdHJxTv3pFAqF1MaNG1U2m3Wmk6k5RaNRtXHjRpVKpZzp1N85xWIxtXHjRpVMJp3oFIlE1Hvvvafy+bwVc5L83tu6dav64IMPVD6fN/YZEQ6HVXt7u8rn8+Lfe65+RrATO/V2ymQy6u23397m89b2Ti7Oqb+d0um0evvtt7f5vLW9k4k55fN59f7775d/rwudtmdOO3IsrPdYbu9PW1ubGkzivsMjHA5jv/32QzgcRiAQwL//+7/jV7/6Faqrq3HppZfijjvugOd55UtyPioWi2HUqFEoFAr48Y9/vM3ZL7KX6fu+EREREREREREREVHfTB/LFXdLq7vvvhvhcBie5+Gaa67BNddcg+rq6n49d/jw4TjooIOglMKrr746wEmJBk88Hse8efOcuVWbbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7izvh8dRTTwEARo0ahSuvvHK7n3/AAQcAAN59912tuYhMqqiowNixY1FRUWE6iha29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe4v7pZWu+++OzZv3oyzzjoLjz322DZ/19ctrQDg4osvxj333IPq6uryt9ST3UxfBkVEREREREREREREfTN9LFfcFR5bt24FAOyyyy5f6Pm9J0ICAXHViL6wTCaDVatWIZPJmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s7K1BfXw8AX/j+YBs2bABQuiUWkSuy2SzWrFmDbDZrOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3uL+6WVhMmTMCrr76KQw89FK+99to2f9fXLa1yuRxGjx6NWCyG448/Hs8888xgxaYBZPoyKCIiIiIiIiIiIiLqm+ljueKu8Dj++OMBlBbm4yc8+nLfffchGo0CAE444QTt2YhMKRaLCIfDKBaLpqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/uJOeEyfPr3850suuaTf9wlra2vDL3/5SwClb5E///zzByQfkQnRaBTBYLB8Qs92tvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3uL+6WVgAwdepUPP744/A8D8cccwzmzJmDQw899FNvaZVKpXDvvffit7/9LaLRKDzPwyWXXII77rjDcAvSxfRlUBIUi0VEo1GMGDECgYC485TbzbY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r+OO9Dd9LFfkCY9wOIxjjz0Wb775JjzPAwAcfPDBSKVSePfdd+F5Hr75zW+iq6ur/OUpvTUOP/xwPP/886iurjZZgTQyvUmIiIiIiIiIiIiIqG+mj+WKPD3V0NCAv/71r5gyZQqUUlBKYd26dXjvvffKJ0AWL16MF198EZlMpnyy44QTTkBLSwtPdpBzYrEY5syZg1gsZjqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/yhAcA7Lrrrli+fDnuv/9+jB8/vnzi4+M/AHDQQQdh3rx5aGlpwU477WQ4OZF+VVVVGD9+PKqqqkxH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf1F3tLq03R1deGFF15AZ2cnIpEIamtrseuuu+Loo4/GvvvuazoeDSDTl0ERERERERERERERUd9MH8sVd4VHKBT61P98t912w9lnn42f/OQnuOqqq3D55Zdj2rRpn3my4/HHHx/ImESDKp1OY8WKFUin06ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v7iTnicdtppSKVSO/Qajz32GM477zxNiYjMy+fzaG9vRz6fNx1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429xd3S6tAIIBTTjkFzc3NqKio2O7nP/7445g2bRoKhQIKhcIAJKTBZvoyKCIiIiIiIiIiIiLqm+ljueKu8ACAlpYWzJgxY7uf19TUhPPOO8/KM09En6dQKKCrq8uZk3i29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe4v7oTHl7/8ZSil8PDDD+Oyyy7r9/Oamprw3e9+F7lcDp7n4Uc/+tEApiQaXLFYDHfddRdisZjpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uFtaffDBB/jqV7+KDRs2wPM8XHPNNbj66qs/9zmfdrJjzpw5g5SYBprpy6AkUEohk8mguroanueZjrPDbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Ou5If9PHcsVd4bH33ntj6dKlGDlyJJRSuO666z735MWCBQt4soOc53keampqnPmAta2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf3EnPADgkEMOwZNPPolhw4ZBKYVLL70UCxYs+MTjFixYgPPPP798suPHP/4xT3aQk6LRKG699VZEo1HTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/kSc8AOCYY47Bo48+ioqKChQKBXzve9/DM888U/77TzvZMXv2bIOJaaDV1NSgrq4OQOmLc8LhMHrvyBaNRpHNZgEAqVQKiUQCAJDP5xEOh8uvEYlEkMvlAADJZBLJZBIAkMvlEIlEyo8Lh8PI5/MAgEQigVQqBQDIZrPlja6UQjgcLn95TzweRzqdBgBkMpnyPe6KxSLC4TCKxSKA0j3wMpkMACCdTiMej/fZSSmFY445BjU1NU50qqmpwbHHHlv+PdI7AcDEiRNRU1Mj6r1XWVmJKVOmIJ/PD9h7rz+dampqcMwxx5R/j+T3nok5sRM7DWanmpoaTJ48Gel02plOLs6pP51yuRymTJmCqqoqZzqZmlOxWMSUKVMwZMgQZzr1d05KKUyZMgWBQMCJToVCAcceeyxqamqsmJPk9142m8XXvvY11NTUGPuMyOfz+OpXv4qamhrx7z1XPyPYiZ16O1VWVuKoo45CdXW1M51cnFN/O1VUVOCoo45CTU2NM51MzKmmpgZf/epXy7/HhU7bMydgx4+FmSL2hAcAnHbaaZg7dy48z0M2m8U555yDl19+GU1NTZg+fXr5ZMfFF1/Mkx0+MHHiREydOhUA0N3djWAwWN6Ec+fOxbp16wAAra2taG5uBgB0dHQgGAyWX2P27NlYv349AKClpQUtLS0AgPXr12/zHgoGg+jo6AAANDc3o7W1FQCwbt06zJ07F0DpAyIYDKK7uxtA6btkVq1aBQBYvXo1GhsbAZQ+BILBYPlDp7GxEatXrwYArFq1Ck1NTX12euGFF/Dee++hqqrKiU5VVVXYunUr/vKXv1gxp1deeQVvvvkmqqqqRL33IpEIxo8fj8WLFw/Ye68/naqqqrBx40asWLHC6Jx0dtI5J3Zip8HsVFVVhYMOOgizZ892ppOLc+pPpwULFmD8+PFIp9POdDI1pxUrVmD8+PH48MMPnenU3zm98MILGD9+PN555x0nOv3lL3/B1q1bUVVVZcWcJL/35s+fj4qKClRVVRn7jFi8eDESiQSqqqrEv/dc/YxgJ3bq7RSJRLBs2bLywUwXOrk4p/522rx5M5YtW4aqqipnOpmYU1VVFQqFQvmuQy502p456TgWZoyywB/+8AfleZ4KBAJq5MiRqrKysvzPM2fONB2PBlhbW5sCoGpqalRdXZ1qa2tT+XxehUIhVSwWlVJKRSIRlclklFJKJZNJFY/HlVJK5XI5FQqFyq8VDodVNptVSimVSCRUIpFQSimVzWZVOBwuPy4UCqlcLqeUUioej6tkMqmUUiqTyahIJKKUUqpYLKpQKKTy+bxSSqlYLKZSqZRSSql0Oq2i0ahSSqlCoaBCoZAqFApKKaWi0ahKp9NKKaVSqZSKxWJKKfW5nXp6etTixYtVMpl0olMymVTNzc2qu7vbijlt3bpVPfHEEyqZTIp678ViMfX000+rzZs3D9h7rz+dksmkWrx4sdqyZYvROenspHNO7MROg9kpmUyqp556Sm3cuNGZTi7OqT+dNm3apJ5++mkVj8ed6WRqTlu2bFFPP/20ikQiznTq75x6enrU008/rcLhsBOduru7VXNzs0omk1bMSfJ7b9OmTerJJ59UyWTS2GfE5s2by/OU/t5z9TOCndipt1MsFlOLFi0qZ3Khk4tz6m+naDSqFi1aVM7kQicTc+o9drVp0yZnOm3PnHbkWFjvsdzen7a2NjWYPKX+9/StcL/+9a8xa9asbf6zSy65BHfeeaehRDRYXn/9dRx66KHlf25ra8MhhxxiMNHgSyQSaG5uxhlnnIHa2lrTcXaYbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fxx3pb/pYrjUnPADgRz/6Ee699154nodLLrkEd9xxh+lINAhMbxIiIiIiIiIiIiIi6pvpY7kVg/abPuL73//+F3peoVAo32c0mUx+7ut4nod77733i0YkEiWfz6OjowNjxoxBRYWRbauVbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7G0k7b948eJ73hZ+fSqXwwAMP9Pk4nvAgV8Tjcdx///24/PLL0dDQYDrODrOtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc38jt7QKBAID/js8z0OhUBjw30MDz/RlUERERERERERERETUN9PHco1c4XHfffeZ+LVEREREREREREREROQoIyc8ZsyYYeLXElkrEolg9uzZmDlzJurr603H2WG29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe4/8PeWIqIdNmzYMJx11lkYNmyY6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v5Hv8CDaHqbv+0ZEREREREREREREfTN9LJdXeBBZIJlMYtGiRUgmk6ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v484UFERERERERERERERNbjLa1IPNOXQRERERERERERERFR30wfy+UVHkQWyOVyePPNN5HL5UxH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf15woPIAjbfN+/T2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5P29pReKZvgyKiIiIiIiIiIiIiPpm+lgur/AgIiIiIiIiIiIiIiLr8YQHkQXC4TCuu+46hMNh01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf97SisQzfRmUBPl8Hh0dHRgzZgwqKipMx9lhtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HXekv+ljuTzhQeKZ3iRERERERERERERE1DfTx3J5SysiCyQSCTz88MNIJBKmo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+POFBZIFAIICGhgYEAm5sWdv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429+ctrUg805dBEREREREREREREVHfTB/Lte8UTR++8Y1vYL/99sP+++9vOgqRNtlsFmvWrEE2mzUdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvd37oTHhg0b0N7ejvb2dtNRiLRJp9NYsWIF0um06Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v3O3tJowYQJeffVVeJ6HQqFgOg5pYPoyKCIiIiIiIiIiIiLqm+ljuc5d4UHkIqUU0uk0XDk/aVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/jzhQdaoqalBXV0dAKBQKCAcDpc3XTQaLd9TLpVKIZFIAADy+TzC4XD5NSKRCHK5HAAgmUwimUwCAHK5HCKRSPlx4XAY+XweAJBIJJBKpQCU7l8XjUYBlDZ+OBwuX0kUj8fLl3llMhnEYjEAQLFYRDgcRrFYBADEYjFkMhkApcvD4vF4n502bdqEWbNmIRKJONEpEolg1qxZ2LhxoxVz2rx5c3n9Jb33tm7dilmzZqGzs3PA3nv96dQ7z66uLqNz0tlJ55zYiZ0Gs1Pvfvzwww+d6eTinPrTacOGDZg1axZCoZAznUzNqaurC7NmzcKWLVuc6dTfOfX+O2R3d7cTnTZu3Fj+dzIb5iT5vdfR0VFeS1OfEZ2dneUM0t97rn5GsBM79Xbq/d+WvXld6OTinPrbqaenp/z56konE3Pq/d9WGzZscKbT9sxJx7EwU4yd8Lj++usH5Kf3gBu5Z+LEiZg6dSoAoLu7G8FgsLwJ586di3Xr1gEAWltb0dzcDKD0L/LBYLD8GrNnz8b69esBAC0tLWhpaQEArF+/HrNnzy4/LhgMoqOjAwDQ3NyM1tZWAMC6deswd+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXo1GhsbAZQ+BILBYPlDp7GxEatXrwYArFq1Ck1NTX12Wr16NcaOHYvhw4c70Wn48OE49NBDyxmkd3r99dex++67Y/jw4aLee+l0GhdffDFaWloG7L3Xn07Dhw/Hl7/85XIGye89E3NiJ3YazE7Dhw/HhRdeiPvuu8+ZTi7OqT+dnnzySVx88cVQSjnTydScVq1ahYsvvhjd3d3OdOrvnFavXo2LL74YHR0dTnRqbW3FoYceiuHDh1sxJ8nvvcceewxTpkzB8OHDjX1GtLS04IgjjsDw4cPFv/dc/YxgJ3bq7dR7ILSqqsqZTi7Oqb+deg+ODx8+3JlOJuY0fPhwHHPMMXjyySed6bQ9c9JxLMwYZYjneSoQCAzIT+9rkxva2toUAFVTU6Pq6upUW1ubyufzKhQKqWKxqJRSKhKJqEwmo5RSKplMqng8rpRSKpfLqVAoVH6tcDisstmsUkqpRCKhEomEUkqpbDarwuFw+XGhUEjlcjmllFLxeFwlk0mllFKZTEZFIhGllFLFYlGFQiGVz+eVUkrFYjGVSqWUUkql02kVjUaVUkoVCgUVCoVUoVBQSikVjUZVOp1WSimVSqVULBZTSil2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2Yid2YierO/Uey+39aWtrU4PJ2JeWBwIBeJ6n/T5gva/JLy13h+kvupEgHo+jqakJU6dOLd/Wy2a29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dd6S/6WO5FYP2mz7G87zy/504cWL5srkd9fLLL5fvG0bkioqKCowdOxYVFca2rFa29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe5v7AqPAw88EG+//TY8z8PKlStx7LHHanndCRMm4NVXX+UVHg4xfVaQiIiIiIiIiIiIiPpm+liusS8tP/LII8t/fumll0zFILJCJpPBqlWryl8OZDvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvc3dsLjK1/5SvnPPOFB9Pmy2SzWrFmDbDZrOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3ub+yWVn//+9/xta99DZ7n4V/+5V/w1ltvaXld3tLKPaYvgyIiIiIiIiIiIiKivpk+lmvsCo8JEyZgyJAhUErhnXfeQSQS0fK6hs7fEA2oYrGIcDiMYrFoOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HW3ub+yEx9ChQ/Hzn/8cM2bMwAUXXIAtW7Zoed2nn34a7733Ht59910tr0ckQTQaRTAYRDQaNR1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429zd2Syui/jJ9GZQExWIR0WgUI0aMQCBg7DylNrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR13pL/pY7kVg/abiOgLCwQCaGhoMB1DG9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429/ff6SkiC8ViMcyZMwexWMx0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62tyfJzyILFBVVYXx48ejqqrKdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJdyPbuE89fD7Otrc37rv8AiHw+UvS9l7770Np6HBYPq+b0RERERERERERETUN9PHcq27wuPf//3fse+++2K//fYzHYVo0KTTaaxYsQLpdNp0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62tzfuhMeAKCUgmUXphDtkHw+j/b2duTzedNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3/rbml16aWX4o477oDneSgUCqbj0CAwfRkUEREREREREREREfXN9LFcK6/wIPKbQqGArq4uZ07y2dZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5P094EFkgFovhrrvuQiwWMx1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429+ctrUg805dBSaCUQiaTQXV1NTzPMx1nh9nWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93Xckf6mj+VWDNpvIqIvzPM81NTUmI6hjW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+/OWVkQWiEajuPXWWxGNRk1H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2tu8Jj4sSJiMfjpmMQDaqamhpMmTLF2jOrH2dbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirZkf2olEIsFkM2m0VVVRWGDx/uy9v/SMLPVz38vo4297fuOzzIf0zf942IiIiIiIiIiErWrl2Lhx56CC+++CJeeeUVhEKh8t+NHDkShx9+OI466ihMnz59m+M5ROQPpo/l8pZWRBZIpVJYunQpUqmU6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISvq7H5csWYJJkybhsMMOw4033ojly5dvc7IDAEKhEJYvX44bb7wR48aNw6RJk/DUU08NZHz6GH6+6uH3dbS5P094EFmgWCwiHA6jWCyajqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiopK/92NPTg+nTp+Mb3/gGVq5cuV2vvXLlSpx++un47ne/i56eHh1xqQ/8fNXD7+toc3/e0orEM30ZFBERERERERGRH7322mv4+te/js7Ozh1+rT322ANLly7FuHHjNCQjIqlMH8u15goPpRQWLlyIH//4xzjuuONw0EEH4cgjj8Q3v/lN/OEPf8CHH35oOiLRgMnn82hvb0c+nzcdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFHJZ+3H1157DVOmTNFysgMAOjs7MXnyZKxdu1bL69Gn4+erHn5fR5v7Gzvh0dnZic7OTkSj0T4f+8ILL+CQQw7B1KlTce+99+Lvf/873n77baxevRpLlizBL37xC3z5y1/Gb37zG/CCFXJRPB7H/fffj3g8bjqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgopJP2489PT34+te//onv6NhRoVAIp556Km9vNYD4+aqH39fR5v7GbmkVCATgeR5+8pOf4LbbbvvMxz355JM499xzkclkPvNkhud5UErB8zyceeaZePzxxwcqNhlg+jIoIiIiIiIiIiI/mT59Oh566KEBff3GxsYBe30iMsf0sVzRt7R67733cP755yOdTpf/s6997Wu49tprcdddd+EPf/gDvve972H48OEASre9euKJJzBr1ixTkYmIiIiIiIiIiKy1ZMmSAT3ZAQB//vOfsWTJkgH9HUTkT6JPeFx77bWIRqPwPA877bQTWlpa8Nxzz+Hqq6/Gj370I1xxxRW4//778e677+LMM88EUDrp8bvf/a5ft8oiskUkEsFNN92ESCRiOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiko/vx8H6fyS++eabB+X3+A0/X/Xw+zra3F/sCY9wOIyHH34YnuehsrISTz31FE466aRPfexOO+2Exx57DJMnTwYAJJNJPPjgg4MZl2hADRs2DGeddRaGDRtmOooWtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiko/ux7Vr12LlypWD8nufe+45tLW1Dcrv8hN+vurh93W0ub/YEx5/+9vfkMvlAAAXXHABvvKVr3zu4wOBwDbfBbJixYqBjEcG1NTUoK6uDgBQKBQQDofL3+sSjUaRzWYBAKlUColEAgCQz+cRDofLrxGJRMrvq2QyiWQyCQDI5XLbnLEMh8PI5/MAgEQigVQqBQDIZrPlq4eUUgiHwygUCgBKX+bTe/u1TCaDWCwGACgWiwiHwygWiwCAWCyGTCYDAEin0+Uv//m8Tvl8HnvttRcqKyud6FRZWYl99tlnm36SOxUKBYwZMwaVlZWi3nuBQAAHHnggMpnMgL33+tOpsrISe++9d7mf5PeeiTmxEzsNZqfKykoccMABSCQSznRycU796ZROp3HggQdiyJAhznQyNadcLocDDzyw/HcudOrvnPL5PA488EAopZzolM1msc8++6CystKKOUl+76VSKey3336orKw09hmRyWQwduxYVFZWin/vufoZwU7s1NspEAhgt912Q0VFBR566CGMGDECVVVVAIChQ4eitrYWAFBRUYGGhoZy1vr6elRWVgIoHRztPTBaWVmJ+vr68uMaGhpQUVEBAKitrcXQoUMBAFVVVeVbZ3FO+jp5nofddtutPBsXOpmYU2VlJfbdd99yPxc6bc+cdBwLM0XsCY9169aV/zxt2rR+PWfcuHE4+OCDoZTCmjVrBigZmTJx4kRMnToVANDd3Y1gMFjehHPnzi2/Z1pbW9Hc3AwA6OjoQDAYLL/G7NmzsX79egBAS0sLWlpaAADr16/H7Nmzy48LBoPo6OgAADQ3N6O1tRVA6X05d+5cAKUPiGAwiO7ubgBAU1MTVq1aBQBYvXp1+cu3otEogsFg+UOnsbERq1evBgCsWrUKTU1NfXZavnw57r77biSTSSc6JZNJzJ07F4sWLbJiTitXrsScOXOQTCZFvfc++OADLFq0CI8++uiAvff60ymZTOJPf/oTnnrqKaNz0tlJ55zYiZ0Gs1MymcTjjz/uVCcX59SfTg8++CAWLVqETZs2OdPJ1JyeeuopLFq0COvWrXOmU3/ntHz5cixatAhr1qxxotOiRYvKn3U2zEnye+/ee+/F/PnzkUwmjX1GPProo5g3bx6SyaT4956rnxHsxE69nT744AMEg0GEQiG8+OKL+P73v4+DDz4YADB58mScccYZAIAxY8bgiiuuKGedOXMm9t9/fwDAySefjJNPPhkAsP/++2PmzJnlx11xxRUYM2YMAOCMM84o36Hl4IMPLh9o5Zz0dXrnnXcQDAbLB8xd6GRiTslkEg888ED5LkIudNqeOek4FmaMMsTzPBUIBNSll176qX//y1/+svyYrVu39vt1p0+frjzPUw0NDbqikmFtbW0KgKqpqVF1dXWqra1N5fN5FQqFVLFYVEopFYlEVCaTUUoplUwmVTweV0oplcvlVCgUKr9WOBxW2WxWKaVUIpFQiURCKaVUNptV4XC4/LhQKKRyuZxSSql4PK6SyaRSSqlMJqMikYhSSqlisahCoZDK5/NKKaVisZhKpVJKKaXS6bSKRqNKKaUKhYIKhUKqUCgopZSKRqMqnU4rpZRKpVIqFosppdTndtqyZYt69NFHVSKRcKJTIpFQCxYsUJs3b7ZiTj09PeX1l/Tei0ajauHChWrTpk0D9t7rT6feeXZ3dxudk85OOufETuw0mJ0SiYR6/PHHVWdnpzOdXJxTfzpt2rRJLVy4UMViMWc6mZpTd3e3WrhwoQqHw8506u+ctmzZohYuXKhCoZATnTZv3qwWLFigEomEFXOS/N7r6upSTU1NKpFIGPuM2LRpUzmD9Peeq58R7MROvZ2i0ah65JFHVCwWUyNHjlQjRoxQVVVVCoAaOnSoqq2tVQBURUWFamhoUAAUAFVfX68qKysVADVs2DA1bNgwBUBVVlaq+vr68uMaGhpURUWFAqBqa2vV0KFDFQBVVVWl9tprL1UsFjknjZ0ikYh65JFHytld6GRiTolEQjU1NalNmzY502l75rQjx8J6j+X2/rS1tanB5Cn1v9eiDLJAIADP8/CTn/xkm1tR9bryyivxX//1X/A8D7lcDoFA/y5GmTlzJu66667yZbFkv9dffx2HHnpo+Z/b2tpwyCGHGExEREREREREROSWaDS6za2oBvP3Dh8+fNB/LxENDNPHcsXe0mrPPfcs/7n3PmD90Xu5lokPaKKBksvl8Oabb5bv5Wc72/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRSe9+3J7jbzrx/2FZL36+6uH3dbS5v/ETHrFYDB988MEnfnrv7QcA7777br9fb+PGjQCAUaNGac9KZEoymcSiRYvKJ/RsZ1sfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKundj71fcDzYqqurjfxeV/HzVQ+/r6PN/Y3f0urzKKXgeR7mzJmDH/3oR/163V122QU9PT047rjjsGLFCg1JyTTTl0EREREREREREblOKYVRo0YhFAoN2u8cOXIkenp6+jxGSET2MH0s1/gVHkqpz/zp/bDr/ab3vrzyyivYsmULAODwww8fsMxEREREREREREQu8Txv0I+nHXHEETzZQURaGTvhsffee2PvvffGPvvs85k/vY958803+3V2+cEHHyz/+ZhjjhnI+ESDKhwO47rrrkM4HDYdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFHJR/fjUUcdNai/e7B/nx/w81UPv6+jzf2N3dJKt0QigYkTJyIejwMA/va3v23zxedkL9OXQUmQz+fR0dGBMWPGoKKiwnScHWZbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIir56H584403cNhhhw3a7167du02x3xox/HzVQ+/r+OO9Dd9LNeZEx7kLtObhIiIiIiIiIjILyZNmoSVK1cOyu9pbW0d8N9DRIPL9LFc49/hQUR9SyQSePjhh5FIJExH0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTy8f145ZVXDsrvHazf4zf8fNXD7+toc3+e8CCyQCAQQENDAwIBN7asbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYio5OP78fTTT8d55503oL9z+vTpOO200wb0d/gVP1/18Ps62tyft7Qi8UxfBkVERERERERE5Cc9PT047LDD0NnZqf2199hjD7z22msYNWqU9tcmIvNMH8u17xQNkQ9ls1msWbMG2WzWdBQtbOsjNa+UXFJyEBH3o0s4S338vJaudbetj+S8ErJJyEBEJZ+2H0eNGoWlS5di5MiRWn/XyJEjsXTpUp7sGED8fNXD7+toc3+e8CCyQDqdxooVK5BOp01H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTyWftx3LhxaG1txR577KHl9+yxxx5obW3FuHHjtLwefTp+vurh93W0ub9Tt7Tab7/9yn/2PA/r1683mIZ0MX0ZFBERERERERGRX/X09OCyyy7Dn//85y/8GtOnT8dtt93GKzuIfMD0sVynrvBob2/H+++/j/b2drS3t5uOQ6SNUgrpdBqunJ+0rY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGV9LUfR40ahcbGRjz55JOYNGnSdr32pEmTsGTJEjQ2NvJkxyDh56sefl9Hm/s7dcKDyFWRSASzZs1CJBIxHUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRSX/34+mnn47W1lasXbsWV111FU466aRPfMfHyJEjcdJJJ+Gqq67C2rVr0draitNOO20g49PH8PNVD7+vo839nbql1UUXXbTNP993332GkpBOpi+DkqBQKKC7uxujR4/GkCFDTMfZYbb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgopId2Y9KKcTjcWQyGVRXV6Ourg6e5w1QUuoPfr7q4fd13JH+po/lOnXCg9xkepMQERERERERERERUd9MH8vlLa2ILBCPxzFv3jzE43HTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/nvAgskBFRQXGjh2LiooK01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf97SisQzfRkUEREREREREREREfXN9LFcXuFBZIFMJoNVq1Yhk8mYjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7izzhkcvl8Prrr+Oxxx7DPffcg1tuuQU33HADbrnlFtxzzz147LHH8PrrryOXy5mOSjQostks1qxZg2w2azqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/mllZbt27Fgw8+iIULF+Lvf/87CoVCn88ZMmQIjj32WJx99tn43ve+h5122mkQktJgM30ZFBERERERERERERH1zfSxXONXeBSLRfzud7/Dfvvth5/97GdYuXIl8vk8lFJ9/uTzeaxcuRI/+9nPsN9+++E///M/USwWTVci0q5YLCIcDjvz/ratj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3+jJzzi8ThOP/10XHPNNYhGo+UTGb1Gjx6NcePG4aijjsJxxx2Ho446CuPGjcPo0aPLj+l9TjQaxdVXX43TTz8d8XjcRB2iARONRhEMBhGNRk1H0cK2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf2N3tLqu9/9Lh566CF4ngelFL70pS9hxowZOP744zFhwgTU1NR85nMzmQxeeeUVtLa2Yt68eXj77bcBAJ7n4bzzzsP8+fMHqwYNMNOXQUlQLBYRjUYxYsQIBALGL8zaYbb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR13pL/pY7nGTng8++yzOOmkk+B5Hqqrq3HLLbfg4osv/sKvd/fdd+OnP/0pUqkUPM/DsmXLcMIJJ2hMTKaY3iRERERERERERERE1DfTx3KNnZ564IEHyn++7777duhkBwD8+Mc/xn333Vf+5/vvv3+HXo9Iklgshjlz5iAWi5mOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/sbO+HxwgsvAAAOOeQQfOc739Hymueeey4OPfRQKKXKr0/kgqqqKowfPx5VVVWmo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+xm5pVVdXh1QqhQsuuGCbKzN21EUXXYT7778ftbW1Vp6Bok8yfRkUEREREREREREREfXN9LFcY1d4VFdXAwDS6bTW1+19vcrKSq2vS2RSOp3GihUrtO8XU2zrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3N/YCY8xY8ZAKYWVK1cin89rec18Po+VK1fC8zzstddeWl6TSIJ8Po/29nZte8U02/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3N3ZLq1/+8pf4/e9/D8/z8Mtf/hI33njjDr/mVVddhZtuugme5+FnP/sZ/uu//ktDUjLN9GVQRERERERERERERNQ308dyjV3h8f3vf79826mbb74Z559/PjZs2PCFXquzsxMXXHABZs2aBaB0O6sf/vCH2rISmVYoFNDV1YVCoWA6iha29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe5v7ITHgQceiKuvvhq9F5g89NBDGDt2LL7+9a9j1qxZWLZsGd5++21EIhFks1kAQDabRSQSwdtvv41ly5bh5ptvxmmnnYaxY8eisbERSil4noerr74aBxxwgKlqRNrFYjHcddddiMVipqNoYVsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/sZuadXr6quvxu9+97vyP3uet92v8dEKv/3tb3H99ddryUYymL4MSgKlFDKZDKqrq7/QHpHGtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+v4470N30s19gVHr2uv/56LFu2DEceeSSA0mJu7w8AfOUrX8EzzzzDkx3kJM/zUFNT20FGFwAAu0lJREFU48wHrG19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+xs/4QEAJ554Il588UW8+OKLuOqqq3DMMcegoaHhc5/T0NCAY445BldddRVefPFF/M///A9OOOGEwQlMNMii0ShuvfVWRKNR01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hz/wrTAT7qyCOPLF/pAQDd3d3o6elBPB5HOp1GTU0N6urqMGrUKIwePdpgUqLBVVNTgylTpqCmpsZ0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62tzf+Hd4EPXF9H3fiIiIiIiIiIiIiKhvpo/lirilFRF9vlQqhaVLlyKVSpmOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/vzhAeRBYrFIsLhMIrFoukoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0uT9PeJA1er/DBQAKhQLC4TB678gWjUaRzWYBlM5AJhIJAEA+n0c4HC6/RiQSQS6XAwAkk0kkk0kAQC6XQyQSKT8uHA4jn88DABKJRPlsZjabLX9Zj1IK4XAYhUIBAMrfNQMAmUwGsVgMwCc/IGKxGDKZDAAgnU4jHo/32SkQCOCMM85AbW2tE51qa2tx5plnlrNJ7zRkyBB84xvfQG1traj3Xk1NDaZNmwal1IC99/rTqba2Ft/85jfheZ7ROenspHNO7MROg9mptrYW3/nOd5DL5Zzp5OKc+tOpWCxi2rRpGDp0qDOdTM3J8zxMmzYNVVVVznTq75wCgQCmTZuGyspKJzoBwJlnnona2lor5iT5vVcoFHDOOeegtrbW2GeEUgpnnXUWamtrxb/3XP2MYCd26u1UU1ODU089FcOGDXOmk4tz6m+n6upqnHrqqaitrXWmk4k51dbW4uyzzy53cKHT9sxJx7EwU4yc8LjiiivQ09MzaL+vp6cHV1xxxaD9PhoYEydOxNSpUwGUvtA+GAyWN+HcuXOxbt06AEBrayuam5sBAB0dHQgGg+XXmD17NtavXw8AaGlpQUtLCwBg/fr1mD17dvlxwWAQHR0dAIDm5ma0trYCANatW4e5c+cCKH1ABINBdHd3AwCampqwatUqAMDq1avR2NgIoPQhEAwGyx86jY2NWL16NQBg1apVaGpq6rPTX//6VzzyyCPI5/NOdMrn82hubsbixYutmNPf//53zJ8/H/l8XtR7b+PGjWhvb8eCBQsG7L3Xn075fB6PP/44/vKXvxidk85OOufETuw0mJ3y+Tz++c9/OtXJxTn1p9P8+fPR3t6OrVu3OtPJ1Jz+8pe/oL29HW+//bYznfo7p7/+9a9ob2/H2rVrnei0ePFiNDc3I5/PWzEn6e+95557Dvl83thnxIIFC7B06VLk83nx7z1XPyPYiZ16O23cuBHBYLB80NKFTi7Oqb+d3n//fQSDwfJBcRc6mZhTPp/H8uXLMX/+fGc6bc+cdBwLM0YZ4Hmeqq+vV7/5zW/U5s2bB+z3bNq0Sf36179W9fX1KhAIDNjvoYHV1tamAKiamhpVV1en2traVD6fV6FQSBWLRaWUUpFIRGUyGaWUUslkUsXjcaWUUrlcToVCofJrhcNhlc1mlVJKJRIJlUgklFJKZbNZFQ6Hy48LhUIql8sppZSKx+MqmUwqpZTKZDIqEokopZQqFosqFAqpfD6vlFIqFoupVCqllFIqnU6raDSqlFKqUCioUCikCoWCUkqpaDSq0um0UkqpVCqlYrGYUkp9bqeNGzeqa6+9tpzL9k6hUEhde+21asOGDVbMqaurq7z+kt57W7ZsUddee63q6OgYsPdefzr1zrOzs9PonHR20jkndmKnwezUux/ff/99Zzq5OKf+dPrwww/Vtddeq3p6epzpZGpOnZ2d6tprr1WbN292plN/59T775CbNm1yotOGDRvK/05mw5wkv/c++OCD8lqa+ozo6OgoZ5D+3nP1M4Kd2Km3U+//tty6dasznVycU387dXd3lz9fXelkYk6h//3fVh9++KEznbZnTjtyLKz3WG7vT1tbmxpMnlL/ey3KIKqrqytf4ltdXY1vf/vb+MEPfoBJkyZpef3nnnsO99xzDx577DFkMhkopVBXV1c+W0V2ef3113HooYeW/7mtrQ2HHHKIwURERERERERERERE9HGmj+UauaXVW2+9hXPPPbd83/n58+fj+OOPx5577omZM2diwYIF6Orq6vfrbdy4EQsWLMDMmTOx55574vjjj8ef//xnpNNpKKXwne98B2+88cYANiIiIiIiIiIiIiIiIpOMnPDYc8898fDDD2PVqlU48cQToZSCUgpdXV24++67MW3aNOy5557YddddMWnSJEyfPh2XXnoprrzySvzyl7/EpZdeivPOOw/HHXccdtllF4wZMwbTpk3D3Xffja6urvLr/d//+3+xatUqPPTQQ9hzzz1NVCXSIhKJ4KabbtrmS4psZlsfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/kZuafVxr7zyCm655RY89thj5W+M7+V53uc+9+Pxa2pqMHXqVFxxxRU4/PDDtWelwWf6MigJcrkc1q9fj/333x+VlZWm4+ww2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjvS3/SxXBEnPHpFo1E8/vjjaG5uxvLly/v9nRv19fU44YQTcMYZZ+Ccc87BiBEjBjgpDSbTm4SIiIiIiIiIiIiI+mb6WK6RW1p9lhEjRuDCCy/EY489hlAohNdffx0PPfQQbrjhBlx++eX44Q9/iB/+8Ie4/PLLceONN+Lhhx/GunXrsHXrVjz22GO48MILebKDnJRMJrFo0SIkk0nTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHP/CtMBPovneTjooINw0EEHmY5CRERERERERERERETCibqlFdGnMX0ZFBERERERERERERH1zfSxXFG3tCKiT5fL5fDmm28il8uZjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v784QHkQVsvm/ep7Gtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3/e0orEM30ZFBERERERERERERH1zfSxXF7hQURERERERERERERE1uMJDyILhMNhXHfddQiHw6ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v68pRWJZ/oyKAny+Tw6OjowZswYVFRUmI6zw2zrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zruSH/Tx3J5woPEM71JiIiIiIiIiIiIiKhvpo/l8pZWRBZIJBJ4+OGHkUgkTEfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/XnCg8gCgUAADQ0NCATc2LK29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe7PW1qReKYvgyIiIiIiIiIiIiKivpk+lmvfKRoiH8pms1izZg2y2azpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLk/T3gQWSCdTmPFihVIp9Omo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+Vt3SKpVKIRQKIZ/PY++99zYdhwaJ6cugiIiIiIiIiIiIiKhvpo/lir7CQymFBQsW4KyzzsLOO++Muro67LXXXthvv/0+8dgtW7bgzjvvxJ133olly5YZSEs0cJRSSKfTsOj85OeyrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/sSc83nrrLUyYMAHTpk1Dc3Mztm7dCqVU+efjRo0ahVtvvRWXXnopLrzwQhSLRQOpiQZGJBLBrFmzEIlETEfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/UXe0uqNN97AV7/6VUQikfLJjdraWgBAIpGA53koFAqfeN4tt9yCn//85/A8D8uWLcMJJ5wwqLlpYJi+DEqCQqGA7u5ujB49GkOGDDEdZ4fZ1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd13JH+po/lirvCo1Ao4JxzzkE4HIZSCieccAJeeOEFxGIxXHjhhZ/73HPPPbf855aWlgFOSjR4hgwZgt12282ZD1jb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvcXd8KjsbERb731FjzPwznnnIOWlhYcffTR/XrunnvuiX333RcA8PLLLw9kTKJBFY/HMW/ePMTjcdNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39xJzwWLlwIAKipqcHs2bMRCGxfxEMPPRRKKfzzn/8ciHhERlRUVGDs2LGoqKgwHUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3F/cdHnvvvTc2bNiAk046CX/5y1+2+btLL70Ud9xxx2d+hwcA/OAHP8B9992HYcOGWXkGij7J9H3fiIiIiIiIiIiIiKhvpo/lirvCo7u7GwAwduzYL/T8yspKAEA+n9cVici4TCaDVatWIZPJmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s74VFdXQ0AyOVyX+j5vSdMRo4cqS0TkWnZbBZr1qxBNps1HUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3F3dLqwMOOADvvPMOjj32WKxcuXKbv+vPLa322msvdHZ24ogjjsCLL744GJFpgJm+DIqIiIiIiIiIiIiI+mb6WK64KzyOOeYYKKXw0ksvYdOmTdv13GXLlmHDhg0AgEmTJg1EPCIjisUiwuEwisWi6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7gTHmeddRaA0i2tfv3rX/f7ebFYDJdddln5n7/97W/rjkZkTDQaRTAYRDQaNR1FC9v6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo429xd3SysAmDBhAl599VV4nofLL78cN910E6qqqj7zllZr167FBRdcUH7OiSeeiJaWFoMNSCfTl0FJUCwWEY1GMWLECAQC4s5Tbjfb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6OO9Lf9LFckSc8XnvtNUyaNAmxWAwAsNtuu+Gcc87Bq6++ir/97W/wPA9/+MMf0NXVheeffx5///vfoZSCUgqjR4/Gyy+/jL322stwC9LF9CYhIiIiIiIiIiIior6ZPpYr8vTUYYcdhsWLF2P06NFQSqGrqwt33nknnn/+eXieBwD42c9+hptvvhnPP/88isUilFLYfffdsWTJEp7sIOfEYjHMmTOnfBLQdrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/yhAdQ+tLxV199FRdddBEqKyvLV3B82k9FRQUuvPBCvPzyyzjyyCNNRyfSrqqqCuPHj0dVVZXpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/yFtafdyWLVvwzDPP4IUXXkBnZycikQhqa2ux66674uijj8Ypp5yCPfbYw3RMGiCmL4MiIiIiIiIiIiIior6ZPpYr9gqPj9p5550xbdo0BINBLFiwAC0tLVi4cCHmzJmDiy66iCc7yHnpdBorVqxAOp02HUUL2/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjb3t+KEB5Hf5fN5tLe3I5/Pm46ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+1txSyvyN9OXQRERERERERERERFR30wfyxV5hUdLSwsWL16MZ555Zrue98wzz3yh5xFJVygU0NXVhUKhYDqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/uhMe6detw6qmn4uyzz8aSJUu267lPPvkkzj77bJx66qlYv379ACUkGnyxWAx33XUXYrGY6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7hbWl1//fW49tpr4Xke1q5di4MPPrjfz3399dcxbtw4eJ6H//iP/8BVV101gElpsJi+DEoCpRQymQyqq6vheZ7pODvMtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+v4470N30sV9wVHs899xwAYOzYsdt1sgMADjnkEIwdOxYA0NraqjsakTGe56GmpsaZD1jb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvcXd8LjjTfegOd5GD9+/Bd6/oQJE6CUwhtvvKE3GJFB0WgUt956K6LRqOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0ub+4Ex49PT0AgNGjR3+h5/c+b8uWLdoyEZlWU1ODKVOmoKamxnQULWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3F/cd3gMHz4cyWQS3/ve9zBv3rztfv6FF16IBx54ADU1NUgmk/oD0qAzfd83IiIiIiIiIiIiIuqb6WO54q7w2HnnnQEA//znP7/Q899+++1tXofIBalUCkuXLkUqlTIdRQvb+kjNKyWXlBxExP3oEs5SHz+vpWvdbesjOa+EbBIyEFEJ96NbOE89/L6ONvcXd8Jj3LhxUErhpZdewoYNG7bruRs2bMBLL70Ez/O2+wvPiSQrFosIh8MoFoumo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+4m5pdfvtt+Oyyy6D53n4zne+gz//+c/9fu60adPw6KOPwvM8/P73v8dPf/rTAUxKg8X0ZVBERERERERERERE1DfTx3LFXeExY8YMjBw5EgDwyCOP4N/+7d+Qy+U+9zm5XA4/+clP8OijjwIARowYgQsvvHCgoxINmnw+j/b2duTzedNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39xJzyGDx+O//zP/0TvhSezZ8/GAQccgBtvvBGrVq3C5s2bkUwmsXnzZvzP//wPbrzxRhxwwAGYM2cOAMDzPFx//fXlkyZELojH47j//vsRj8dNR9HCtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+vo839xd3Sqtdll12G22+/HZ7nQSkFz/M+9/G9Nf71X/8Vt99++2BEpEFi+jIoIiIiIiIiIiIiIuqb6WO54q7w6HXbbbfhzjvvRF1dHYDSCY3P+6mrq8Mdd9zBkx1ERERERERERERERD4k9oQHAFxyySV4//33cdNNN2HKlCkYOnToNn8/dOhQTJkyBbNmzcIHH3yAmTNnGkpKNLAikQhuuukmRCIR01G0sK2P1LxScknJQUTcjy7hLPXx81q61t22PpLzSsgmIQMRlXA/uoXz1MPv62hzf7G3tPossVgMsVgMw4cPx/Dhw03HoUFg+jIoCXK5HNavX4/9998flZWVpuPsMNv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo470t/0sVzrTniQ/5jeJERERERERERERETUN9PHckXf0oqISpLJJBYtWoRkMmk6iha29ZGaV0ouKTmIiPvRJZylPn5eS9e629ZHcl4J2SRkIKIS7ke3cJ56+H0dbe7PEx5ERERERERERERERGQ9a25plUgkEI1Gkcvl+v2cvffeewAT0WAxfRkUEREREREREREREfXN9LFcsVd4FItFzJ8/H6effjp22WUXjBgxAmPGjMG+++7br5/99tvPdAUibXK5HN58883tOuEnmW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4s84dHe3o7DDz8cM2bMwNKlS7FlyxYopbb7h9xSU1ODuro6AEChUEA4HC7PORqNIpvNAgBSqRQSiQQAIJ/PIxwOl18jEomUN2oymSzfhy6XyyESiZQfFw6Hkc/nAZSuLkqlUgCAbDaLaDQKAFBKIRwOo1AoAADi8TjS6TQAIJPJIBaLASidvAuHwygWiwCAWCyGTCYDAEin04jH43122rp1KxYuXIhkMulEp2QyiYULF2LLli1WzOmj6y/pvReLxbBo0SJ0d3cP2HuvP51659nT02N0Tjo76ZwTO7HTYHbq3Y8bN250ppOLc+pPp82bN2PRokWIx+POdDI1p56eHixatAiRSMSZTv2d09atW7Fo0SKEw2EnOm3ZsqX872Q2zEnye2/Tpk3ltTT1GdHd3V3OIP295+pnBDuxU2+nWCyGhQsXlrO70MnFOfW3UzQaLX++utLJxJx6/7fV5s2bnem0PXPScSzMFHEnPJLJJE488US89tpr25y4GDp0KPbYYw/ss88+/frh7azcM3HiREydOhVA6V+Og8FgeRPOnTsX69atAwC0traiubkZANDR0YFgMFh+jdmzZ2P9+vUAgJaWFrS0tAAA1q9fj9mzZ5cfFwwG0dHRAQBobm5Ga2srAGDdunWYO3cugNIHRDAYRHd3NwCgqakJq1atAgCsXr0ajY2NAEofAsFgsPyh09jYiNWrVwMAVq1ahaampj47rV69Gvvuuy/q6+ud6FRfX48JEyaUM0jv9MYbb2D33XdHfX29qPdeNpvFr371K7S0tAzYe68/nerr63HQQQeVM0h+75mYEzux02B2qq+vx09/+lPcd999znRycU796dTc3Ixf/epX8DzPmU6m5rRq1Sr86le/wpYtW5zp1N85rV69Gr/61a+wYcMGJzq1trZiwoQJqK+vt2JOkt97TU1N+PrXv476+npjnxEtLS045phjUF9fL/695+pnBDuxU2+nbDaLbDaLmpoaZzq5OKf+dorFYshms6ivr3emk4k51dfX4/jjjy9ncKHT9sxJx7EwY5QwN9xwg/I8TwUCAVVVVaV+8YtfqDfeeMN0LDKora1NAVA1NTWqrq5OtbW1qXw+r0KhkCoWi0oppSKRiMpkMkoppZLJpIrH40oppXK5nAqFQuXXCofDKpvNKqWUSiQSKpFIKKWUymazKhwOlx8XCoVULpdTSikVj8dVMplUSimVyWRUJBJRSilVLBZVKBRS+XxeKaVULBZTqVRKKaVUOp1W0WhUKaVUoVBQoVBIFQoFpZRS0WhUpdNppZRSqVRKxWIxpZRiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ZiJ3ayulPvsdzen7a2NjWYxH1p+dFHH42XXnoJnufh0Ucfxbe+9S3Tkcgw0190I0E4HEYwGMTll1+OhoYG03F2mG19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X8cd6W/6WK64Ex477bQTIpEIDj/8cLz00kum45AApjeJBPl8Hh0dHRgzZgwqKipMx9lhtvWRmldKLik5iIj70SWcpT5+XkvXutvWR3JeCdkkZCCiEu5Ht3Ceevh9HXekv+ljueJOeNTW1iKdTuP73/8+7rnnHtNxSADTm4SIiIiIiIiIiIiI+mb6WK64Ly0fM2YMAJS/lZ6IgEQigYcffhiJRMJ0FC1s6yM1r5RcUnIQEfejSzhLffy8lq51t62P5LwSsknIQEQl3I9u4Tz18Ps62txf3AmPSZMmQSmFtWvXmo5CJEYgEEBDQwMCAXFb9guxrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/cbe0+sc//oGjjz4aSim8+OKLOOKII0xHIsNMXwZFRERERERERERERH0zfSxX3CmaI444Ar/5zW+glML06dOxadMm05GIjMtms1izZg2y2azpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uBMeAHDdddfhmmuuwTvvvINx48YhGAxiw4YNpmMRGZNOp7FixQqk02nTUbSwrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/cbe02m+//cp/7uzsRDabhed5AID6+nrU19eX//nzeJ6H9evXD1hOGjymL4MiIiIiIiIiIiIior6ZPpZbMWi/qZ/a29u3OaHR+2elFMLhMCKRSJ+voZTq10kRIlsopZDJZFBdXe3Ee9u2PlLzSsklJQcRcT+6hLPUx89r6Vp32/pIzishm4QMRFTC/egWzlMPv6+jzf1F3tJKKfWJn8/7u896LJErIpEIZs2a1a8TfjawrY/UvFJySclBRNyPLuEs9fHzWrrW3bY+kvNKyCYhAxGVcD+6hfPUw+/raHN/cbe0ev/997W91j777KPttcgc05dBSVAoFNDd3Y3Ro0djyJAhpuPsMNv6SM0rJZeUHETE/egSzlIfP6+la91t6yM5r4RsEjIQUQn3o1s4Tz38vo470t/0sVxxJzyIPs70JiEiIiIiIiIiIiKivpk+livyllZEtK14PI558+YhHo+bjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v784QHkQUqKiowduxYVFRUmI6ihW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+1t1S6tUKoVQKIR8Po+9997bdBwaJKYvgyIiIiIiIiIiIiKivpk+liv6Cg+lFBYsWICzzjoLO++8M+rq6rDXXnthv/32+8Rjt2zZgjvvvBN33nknli1bZiAt0cDJZDJYtWoVMpmM6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v9gTHm+99RYmTJiAadOmobm5GVu3boVSqvzzcaNGjcKtt96KSy+9FBdeeCGKxaKB1EQDI5vNYs2aNchms6ajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v4ib2n1xhtv4Ktf/SoikUj55EZtbS0AIJFIwPM8FAqFTzzvlltuwc9//nN4nodly5bhhBNOGNTcNDBMXwZFRERERERERERERH0zfSxX3BUehUIB55xzDsLhMJRSOOGEE/DCCy8gFovhwgsv/NznnnvuueU/t7S0DHBSosFTLBYRDoeduXLJtj5S80rJJSUHEXE/uoSz1MfPa+lad9v6SM4rIZuEDERUwv3oFs5TD7+vo839xZ3waGxsxFtvvQXP83DOOeegpaUFRx99dL+eu+eee2LfffcFALz88ssDGZNoUEWjUQSDQUSjUdNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc39xt7Q6++yz8cQTT2Do0KFob2/H6NGjy3936aWX4o477vjMW1oBwJlnnonm5mbstddeeP/99wcrNg0g05dBSVAsFhGNRjFixAgEAuLOU2432/pIzSsll5QcRMT96BLOUh8/r6Vr3W3rIzmvhGwSMhBRCfejWzhPPfy+jjvS3/Sx3IpB+0399I9//AOe5+FrX/vaNic7+mvnnXcGAPT09OiORmRMIBBAQ0OD6Rja2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v7jTU93d3QCAsWPHfqHnV1ZWAgDy+byuSETGxWIxzJkzB7FYzHQULWzrIzWvlFxSchAR96NLOEt9/LyWrnW3rY/kvBKySchARCXcj27hPPXw+zra3F/cCY/q6moAQC6X+0LP7z1hMnLkSG2ZiEyrqqrC+PHjUVVVZTqKFrb1kZpXSi4pOYiI+9ElnKU+fl5L17rb1kdyXgnZJGQgohLuR7dwnnr4fR1t7i/uOzwOOOAAvPPOOzj22GOxcuXKbf6uP9/hsddee6GzsxNHHHEEXnzxxcGITAPM9H3fiIiIiIiIiIiIiKhvpo/lirvC45hjjoFSCi+99BI2bdq0Xc9dtmwZNmzYAACYNGnSQMQjMiKdTmPFihVIp9Omo2hhWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+4k54nHXWWQBKt7T69a9/3e/nxWIxXHbZZeV//va3v607GpEx+Xwe7e3tznw3jW19pOaVkktKDiLifnQJZ6mPn9fSte629ZGcV0I2CRmIqIT70S2cpx5+X0eb+4u7pRUATJgwAa+++io8z8Pll1+Om266CVVVVZ95S6u1a9figgsuKD/nxBNPREtLi8EGpJPpy6CIiIiIiIiIiIiIqG+mj+WKu8IDAO6//36MGDECABAMBrHvvvvi0ksvxauvvlp+TDAYxK9//WtMmjQJEyZMwGuvvQYA2HnnnXHvvfcayU00UAqFArq6uj7zu2tsY1sfqXml5JKSg4i4H13CWerj57V0rbttfSTnlZBNQgYiKuF+dAvnqYff19Hm/iJPeBx22GFYvHgxRo8eDaUUurq6cOedd+L555+H53kAgJ/97Ge4+eab8fzzz6NYLEIphd133x1LlizBXnvtZbgBkV6xWAx33XUXYrGY6Sha2NZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3dbS5v8hbWvXatGkTrrrqKjQ2NiKbzX7m4yoqKnD++efjP//zP7H77rsPYkIaDKYvg5JAKYVMJoPq6uryST+b2dZHal4puaTkICLuR5dwlvr4eS1d625bH8l5JWSTkIGISrgf3cJ56uH3ddyR/qaP5Yo+4dFry5YteOaZZ/DCCy+gs7MTkUgEtbW12HXXXXH00UfjlFNOwR577GE6Jg0Q05uEiIiIiIiIiIiIiPpm+liuuFtaRaPR8k+vnXfeGdOmTUMwGMSCBQvQ0tKChQsXYs6cObjooot4soOcF41Gceutt26zL2xmWx+peaXkkpKDiLgfXcJZ6uPntXStu219JOeVkE1CBiIq4X50C+eph9/X0eb+FaYDfFxDQwM8z8Ouu+6KDz/8EEOGDDEdici4mpoaTJkyBTU1NaajaGFbH6l5peSSkoOIuB9dwlnq4+e1dK27bX0k55WQTUIGIirhfnQL56mH39fR5v7ibmlVWVmJYrGIqVOn4pFHHjEdhwQwfRkUEREREREREREREfXN9LFccbe02nXXXQEAI0eONJyESI5UKoWlS5cilUqZjqKFbX2k5pWSS0oOIuJ+dAlnqY+f19K17rb1kZxXQjYJGYiohPvRLZynHn5fR5v7izvhsf/++wMAOjs7DSchkqNYLCIcDqNYLJqOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/uLu6VVMBjET3/6U4wYMQKdnZ0YNmyY6UhkmOnLoIiIiIiIiIiIiIiob6aP5Yq7wuPCCy/EmDFjEIvF8Otf/9p0HCIR8vk82tvbkc/nTUfRwrY+UvNKySUlBxFxP7qEs9THz2vpWnfb+kjOKyGbhAxEVML96BbOUw+/r6PN/cWd8Kivr8fDDz+MESNG4Pbbb8cll1yCSCRiOhaRUfF4HPfffz/i8bjpKFrY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uFtaPfDAAwCAf/7zn5g1axYKhQJqampw8skn44gjjsDo0aMxdOjQfr3WBRdcMJBRaZCYvgyKiIiIiIiIiIiIiPpm+lhuxaD9pn668MIL4Xle+Z+VUkilUli8eDEWL17c79fxPI8nPIiIiIiIiIiIiIiIfELcLa2A0kmO3p9P+8/6+0PkikgkgptuusmZ27vZ1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/uCs8ZsyYYToCkTjDhg3DWWedhWHDhpmOooVtfaTmlZJLSg4i4n50CWepj5/X0rXutvWRnFdCNgkZiKiE+9EtnKcefl9Hm/uL+w4Poo8zfd83IiIiIiIiIiIiIuqb6WO5Im9pRUTbSiaTWLRoEZLJpOkoWtjWR2peKbmk5CAi7keXcJb6+HktXetuWx/JeSVkk5CBiEq4H93Ceerh93W0uT9PeBARERERERERERERkfV4SysSz/RlUERERERERERERETUN9PHcq24wmPNmjW4/fbbceWVV+LHP/4xfvCDH5iORDSocrkc3nzzTeRyOdNRtLCtj9S8UnJJyUFE3I8u4Sz18fNautbdtj6S80rIJiEDEZVwP7qF89TD7+toc3/RJzyamppw6KGH4ogjjsDll1+O3//+9/jTn/6EefPmfeKxmzZtwh577IFddtkF55xzzuCHJRpANt8379PY1kdqXim5pOQgIu5Hl3CW+vh5LV3rblsfyXklZJOQgYhKuB/dwnnq4fd1tLm/2FtaXXLJJbjnnnsAAB+P6HkeCoXCJ57zve99D42NjQgEAnj//fex5557DkpWGlimL4MiIiIiIiIiIiIior6ZPpYr8gqP3/72t7j77ruhlIJSCqeccgpmzZqF448//nOfd8EFFwAonSB56qmnBiMqEREREREREREREREJIO6Exz//+U/cfPPNAICGhgY8++yzePrpp/GLX/wCBx988Oc+94QTTkBtbS0AYMWKFQMdlWjQhMNhXHfddQiHw/+vvXsPj6o69P//mRBChHATUUQrqKfW9ojXaq2tStWqB7VS672nVbG1V29HT7W234qeWi+trdFa1CriqSgqVgRvgGLQiuANhIjUigYMEAjJ3Cczk5lZvz/mZH6gQALZyV5rz/v1PHmegUxmPp+1Zo1hL/cev6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0ub91l7T67//+b91+++0KhUJ6/PHH9Z3vfKf0vUsvvVR33333Vi9pJUlf+9rX9Prrr+vAAw/UkiVLeik1epLfp0HZIJfLqbGxUXvuuacqKyv9jtNtrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j2N3+vt9LNe62XrppZckSfvuu+9mmx1dNXr0aL3++utqbGz0Ohrgm8rKSo0ePdrvGJ5xrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3ub90lrVatWqVQKKSvfOUrO/TzgwYNkiTF43EvYwG+SiaTmjZtmpLJpN9RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4utzfug2PjkGsqanZoZ9PpVKSpOrqas8yAX6rqKjQkCFDVFFh3ZLdIa71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/2t+wyPPfbYQ01NTfr2t7+t6dOnb/a9rnyGx9e//nUtWLBA++yzjz788MPeiIwe5vd13wAAAAAAAAAAnfP7WK51WzT77ruvjDF64403tvtnW1pa9NZbbykUCumggw7qgXSAP7LZrJYsWaJsNut3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73t27D48QTT5QkrVmzRk8//fR2/ewtt9xSmoRvfvObnmcD/JJOp1VXV6d0Ou13FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73t+6SVo2Njdpvv/2UyWQ0YsQIvfbaa6VPhN/WJa0eeughTZgwQZI0dOhQrVq1SgMGDOjt+OgBfp8GBQAAAAAAAADonN/Hcq07w2PPPffU1VdfLWOMmpqadPjhh+vPf/6zWlpaPnPfdDqtefPm6cwzz9SECRPUsXdzww03sNmBQDHGKJ1Oy7L9yR3mWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEesxWJhPb5T7OLrc37oND6m4YXHGGWfIGKPW1lZdfvnl2nXXXXX//feX7jN06FANGDBA3/zmN/XUU0+VBv+CCy7Qz372M7+iAz0iGo3q1ltvVTQa9TuKJ1zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/tbd0mrDoVCQRMnTtTNN99cunxVKBQqff/Tsfv06aNf//rXuv7663s1J3qe36dB2SCfz6u5uVnDhw9Xnz59/I7Tba71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY9jd/r7fSzX2g2PDqtWrdIdd9yh559/Xh988MFnvv+5z31Op556qq666irts88+PiRET/N7kQAAAAAAAAAAOuf3sVwrL2m1qVGjRulPf/qTVqxYoY0bN2rZsmX6xz/+ocWLF2vt2rVatWqV7r77bjY7EGiJREJTpkxRIpHwO4onXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH0eX+1f6HWB77Lzzztp55539jgH0usrKSo0ePVqVlU4t2a1yrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3ub/0lrQC/T4MCAAAAAAAAAHTO72O51l/SCoCUyWS0cOFCZTIZv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADstmslixZomw263cUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLve3+pJW//jHP/Too4/qjTfeUENDg2KxmHK5XJd+NhQKdfm+sJvfp0EBAAAAAAAAADrn97FcK8/waG1t1amnnqpjjz1W99xzj9555x21tLSovb1dxpgufwFBUSgUFIlEVCgU/I7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MfR5f7WbXjkcjmdeOKJev7559m8AP5PLBZTbW2tYrGY31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63N+6S1rdfffduvTSSxUKhWSM0ZlnnqkJEybokEMO0bBhw1RZWel3RPQyv0+DskGhUFAsFtOgQYNUUWHdPuV2c62PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRy709/vY7nW7R48/vjjpdt33HGHLrvsMh/TAHaoqKjQkCFD/I7hGdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MfR5f7WbU+99957CoVC+sIXvsBmB/B/4vG47rnnHsXjcb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLm/dRseyWRSknTkkUf6nASwR1VVlQ4++GBVVVX5HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/a37DI99991XDQ0Nuuiii3T//ff7HQcW8Pu6bwAAAAAAAACAzvl9LNe6MzyOOOIIGWO0YsUKv6MA1kin06qrq1M6nfY7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7W7fhcckll0iSFi1apH/9618+pwHskMvl1NDQoFwu53cUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLve37pJWUnHT4/7779dXvvIVvfTSS+rfv7/fkeAjv0+DAgAAAAAAAAB0zu9judad4SFJd999ty644AItWrRIhx12mJ5++mnl83m/YwG+yefzampqCsw6cK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7u/Lhsdxxx23za+TTjpJq1atUr9+/fTPf/5TZ5xxhgYNGqRDDz1U3/jGNzr9+eOOO07HH3+8H9WAHhGPx3XvvfcqHo/7HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/X25pFVFRYVCoVCX798Rsas/Y4xRKBRycgcKn+X3aVA2MMYok8moX79+27V2bOVaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4dqe/38dyK3vtmT5lR/ZZLPy4EaBXhEIhVVdX+x3DM671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/192fB4+eWX/XhawFmxWEyTJ0/WhAkTNGjQIL/jdJtrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/XzY8jj32WD+eFnBWdXW1xo4d6+zO6qe51sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji739+UzPIDt4fd13wAAAAAAAAAAnfP7WG5Frz0TgB3W1tamF154QW1tbX5H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/NjwABxQKBUUiERUKBb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLm/E5e0mjt3rl5++WW988472rhxo+LxuAYOHKhddtlFhx56qI477jidcMIJfsdED/H7NCgAAAAAAAAAQOf8PpZr9RkeM2bM0H777aeTTz5Zt956q+bOnavFixfrww8/1OLFizV37lzdeuutOumkk/SFL3xBTz/9tN+Ry9LSpUt144036oQTTtCIESPUt29fDRkyRF/96lf1hz/8QalUyu+IzsvlcmpoaFAul/M7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7W7vhcdVVV+k73/mOVq5cKWNMp1//+te/dMYZZ+jqq6/2O3pZWblypQ466CBdf/31eumll9SnTx8dfPDBqqmp0cKFC/Xf//3fOuSQQ7R69Wq/ozotkUjooYceUiKR8DuKJ1zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/tbeUmr2267Tddee61CoZCMMerbt69OPvlkfe1rX9Po0aM1YMAAJZNJNTQ0aMGCBXr++efV3t4uSQqFQrr55pv1i1/8wucW5eHDDz/UUUcdpZ/97Gf63ve+p3322af0vddee03f/e53tWrVKh155JF6/fXXd+g5/D4NCgAAAAAAAADQOb+P5Vq34dHY2Kj99ttPmUxGxhidfvrpuvvuuzVy5Mit/sy6dev085//XE899ZQkaaeddtI///lP7bnnnr0Vu2yl02nl83kNGDBgi99/7bXX9PWvf12StGTJEh100EHb/Rx+LxIAAAAAAADAdsYYxeNxZbNZVVVVaeDAgQqFQn7HQpnx+1iudZe0uv/++5VOpyVJ3/ve9/TUU09tc7NDknbffXc9+eST+v73vy+peBD+gQce6PGskKqrq7e62SFJX/va1zR48GBJ0ooVK3orVuBEo1HdcsstikajfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsR7ctW7ZM1113nU444QQNGzZMe+21l26//XbttddeGjZsmE444QRdd911qq+v9zuqU8p9Xbjc37ozPL761a9q0aJFGjhwoNasWaOampou/2wikdDIkSOVTCZ1xBFH7PAllLorn8/rvffe05tvvqm33npLb775ppYuXVq67Naxxx6rurq6HXrsbDarxx57TI8++qjee+89rV+/XkOHDtXee++tM844QxdeeKF22WUXD9t0Ty6X0+DBg5VKpTRz5kyddtpp2/0Yfu8K2qC9vV0rV67Uvvvuq759+/odp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj266dlnn9Wtt96qV199dbO/79u3r/bdd1+tXLmydCyyw9FHH61rr71W48aN682oTir3ddGd/n4fy7Vuw2PEiBFqbm7WaaedphkzZmz3z3/729/W008/reHDh2v9+vXeB+zEjBkz9N3vflepVGqr99nRDY8VK1bovPPO05IlS7Z6n1133VUPPvigNW9c06dP11lnnaXKykqtW7duhzZj/F4kAAAAAAAAgA1aWlp06aWX6tFHH93hxzj//PN15513atiwYR4mA4r8PpZr3SWtwuGwpOLGx47YddddJUmRSMSrSNslEolsc7NjRzU2Nur4448vbXaEQiEde+yxmjBhgk477TTttNNOkqQNGzZo/PjxmjdvnucZtlc4HNZVV10lSfrhD39o1ZknrkmlUpoxY0aPvLb84FofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHr0R1Lly7VgQceuM3Njv79+2v8+PHq37//Vu/zyCOP6MADD9SyZct6ImYglPu6cLl/pd8BPm3o0KFqbm5WU1PTDv18x1kdQ4YM8TDV9tttt910+OGHl75mz56t2traHX68888/X2vXrpUkjRo1Sk8//fRmHwC+ceNGnXvuuXrppZfU3t6us846SytXrvRtHNrb23X22Wdr9erV2meffXTLLbf4kgMAAAAAAABw3dKlSzV27NjS/yzeXWvXrtWxxx6r+fPna8yYMZ48JmAD6y5p1Z3P8Egmkxo5cqQSiYQOP/xwLVy4sAeTbllTU5Oy2az22muvzf5+4sSJuuGGGyRt/yWtnnvuOZ1yyimSpKqqKr311ltbfCNKJpM68MAD9dFHH0mSfvnLX+p3v/vdZ+537bXX6tZbb+3y82+qvb1dlZXb3icrFAr67ne/q2nTpmn48OF65ZVXtP/+++/Q80n+nwYFAAAAAAAA+KWlpUUHHnhg6X+G9tLIkSO1dOlSLm8Fz/h9LNe6S1qdeOKJkoofQH7FFVds189eeeWVisfjkqSTTjrJ62hdMmLEiM9sdnTX3XffXbp9wQUXbHXXdcCAAbrxxhtLf7733nuVy+W2eL9hw4bt0FcoFNpmVmOMLr74Yk2bNk0777yz5s6d263NDhS1t7drxYoVn/mwKVe51sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHq036WXXtrlzY6+fftq//337/IHTa9du1aXXXZZd+IFUrmvC5f7W7fhcfHFF6u6ulqS9OCDD+q8887Thg0btvkzGzdu1H/+53/qgQcekCT169dPP/jBD3o8a29IJBJ66aWXSn++6KKLtnn/73znO6WzYlpbW/XKK6985j7/7//9P23cuHGHvvr06bPV5zbG6JJLLtGUKVM0aNAgzZ49e7PLbmHHuXzdvC1xrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPVot2effXa7PqC8K5/h8WmPPPKInn322R2JF1jlvi5c7m/dJa0k6aabbtL/+3//r3Q2QVVVlcaNG6ejjjpKo0aN0oABA5RMJrV69WotWLBAzz33nDKZjIwxCoVC+p//+R9dd911PrfY3I5e0mrOnDmls1UGDBigSCTS6SWlTjzxRM2dO1eS9Ktf/Uq//e1vdzz4dvjpT3+qSZMmqaamRrNnz9ZRRx3lyeP6fRoUAAAAAAAA4IdjjjlGr776aq88z/z583v8eRB8fh/Lte5Dy6XiQfp169bpL3/5i0KhkDKZjGbMmKEZM2Zs8f6b7tn87Gc/s26zozvef//90u0xY8Z0utkhSYceemhpw2PTn+9Jl112mSZNmqT+/fvrmWee8WyzAwAAAAAAAChHy5Yt65XNDkl65ZVXVF9fv9mBasBF1l3SqsOf//xnTZs2TaNHj5ZU3NTY2pck7b333nrsscd05513+pjae//85z9Lt0eNGtWln9n0M0RWrFjheaZP+8UvfqG77rpL1dXVmjlzpo499tgef85yE4lEdMMNNygSifgdxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR7ttT2XsuowZMgQTZw4UUOGDOmV5wuqcl8XLve38gyPDmeffbbOOusszZkzR/PmzdPixYvV3NysRCKhmpoaDR8+XIcccoiOO+44nXjiiZ1+oLaLWlpaSrd32223Lv3MiBEjSrdbW1s9z7Sp119/Xb///e8lSYMGDdL111+v66+/fov3nTBhgiZMmNCjeYKqpqZGF1xwQenzWVznWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEevRXm+88cZ2/0wikdCUKVOUSCR65fmCqtzXhcv9rT3Do0MoFNJJJ52kW2+9VXPmzNHixYv1r3/9S4sXL9acOXN066236qSTTgrkZoekzd6cdtpppy79zKb325E3t+2RyWRKtzds2KDXXnttq1+rV6/u1nNVV1eXFlk+n1ckEimd4ROLxZTNZiVJbW1tSiaTkqRcLrfZTmQ0GlV7e7uk4ofvdHzwTnt7u6LRaOl+kUhEuVxOkpRMJtXW1iZJymazisVikopnHUUiEeXzeUnFsU6n06VxicfjkqRCoaBIJKJCoSBJisfjpXFLp9OlOdpWp/b2dg0fPlyVlZWB6FRZWanddtut9DO2d8rlctpll11UWVlp1WsvFApp9OjRSqfTPfba60qnyspK7brrrpu9Xm197fkxT3SiU292qqys1KhRo5RIJALTKYjz1JVObW1tGj16tCoqKgLTya95ymazGj16tIwxgenU1Xlqb2/X6NGjVSgUAtEpk8lot912U2VlpRPzZPNrL5VKaeTIkaqsrPTtPSKdTmvEiBGqrKy0/rUX1PcIOtGpo1MoFNKQIUPUp0+fwHQKwjwZY1RfX186FtanTx8NGTKkdAx00KBBqqqqklQ8FjhgwIAt5hs8eLD69u0rqfiB5h0fZt63b18NHjy49DNDhgzRkiVLZIxhntJpVVZWavfddy/9TBA6bc88eXEszC/Wb3iUu44Xo6TSm1hn+vXrV7rd8aLvKWPHjt3m5cY2/Zo4cWK3nuvII4/UmWeeKUlqbm5WbW1taRFOnjxZy5cvlyTNnz9fs2bNkiQ1Njaqtra29BiTJk3SypUrJRU/EH7OnDmSpJUrV2rSpEml+9XW1qqxsVGSNGvWrNKHNi1fvlyTJ0+WVHyDqK2tVXNzsyRp+vTpWrhwoSRp8eLFmjp1qqTim0BtbW3pTWfq1KlavHixJGnhwoWaPn16p51efPFF3XPPPUomk4HolEwm9de//rX0uTy2d3rllVf0l7/8Rclk0qrX3urVqzVt2jQ99thjPfba60qnZDKpe++9V88995yv8+RlJy/niU506s1OyWRSjzzySKA6BXGeutLpb3/7m6ZNm6ampqbAdPJrnp577jlNmzZN7733XmA6dXWeXnzxRU2bNk2LFy8ORKcZM2bor3/9q5LJpBPzZPNr74EHHtCDDz6oZDLp23vEY489pvvvv1/JZNL6115Q3yPoRKeOTqtXr1ZtbW3pKiFB6BSEeYrH4/riF79YOhY2fPhwXXHFFaXjfhMmTNCXvvQlSdKxxx6r0047TZL0b//2b7riiitKGyA/+clPtO+++0qSTjzxRJ144omSpH333Vc/+clPSp2uuOIK1dTUKJFIME8LFyqZTOqBBx7Q3/72t8B02p558uJYmG8MesX1119vJBlJ5thjj+3yz40bN670c9dcc02Xfua5554r/UxNTc0OJrZHfX29kWSqq6tNTU2Nqa+vN7lczoTDYVMoFIwxxkSjUZPJZIwxxqRSKZNIJIwxxrS3t5twOFx6rEgkYrLZrDHGmGQyaZLJpDHGmGw2ayKRSOl+4XDYtLe3G2OMSSQSJpVKGWOMyWQyJhqNGmOMKRQKJhwOm1wuZ4wxJh6Pm7a2NmOMMel02sRiMWOMMfl83oTDYZPP540xxsRiMZNOp40xxrS1tZl4PG6MMdvs1NLSYmbOnGlSqVQgOqVSKTNr1izT3NzsxDy1traap59+2qRSKatee/F43Dz//PNmw4YNPfba60qnVCplZs6caTZu3OjrPHnZyct5ohOderNTKpUyzz33nFm3bl1gOgVxnrrSaf369eb55583iUQiMJ38mqeNGzea559/3kSj0cB06uo8tbS0mOeff95EIpFAdGpubjazZs0yqVTKiXmy+bW3fv1688wzz5hUKuXbe8SGDRtK82n7ay+o7xF0olNHp3g8bmbMmFHKFIROQZin5ubm0rEwSaZPnz5myJAhJhQKGUlm0KBBpqqqykgyO+20kxkwYEDpWODpp59udtppJyPJDB482PTt29dIMv379zf9+/c3kkzfvn3N4MGDS8cQhwwZYiorK01zczPz1NZWOna1fv36wHTannnqzrGwjmO5HV/19fWmN4WM+b9zUXzyhz/8oXSKzje/+U199atf3e7HeP311zV37lxJ0sCBA3XllVd6mtELEydO1A033CCpuOtaV1fXpZ8755xz9Pjjj0uSLrvssi7tkv3973/Xd77zHUnFz/NYt27djoW2xHvvvacDDjig9Of6+nr9+7//u4+JAAAAAAAAgJ4Ti8U2u+RUbz7vwIEDe/15ERx+H8v19ZJW06ZN0y9+8QvdcMMNevLJJ3XwwQfv0OMcdNBBmj59um644QZdffXVpdNogmDYsGGl2+vXr+/SzzQ1NZVu77zzzp5nQu/LZrNasmRJ6fp4rnOtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9WingQMHaujQodv9c1VVVTr44IO7fGn8TQ0dOtTJD6nuCeW+Llzu7+uGR8dnOlRUVOjRRx/t8odyf1r//v31yCOPKBQKefJZETb5whe+ULq9atWqLv3Mph8Ovv/++3ueCb0vnU6rrq5us890cZlrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrEc7hUIhHXroodv9c9XV1Ro7dqyqq6u3+2cPO+yw0oeil7tyXxcu9/ftklYLFy7UUUcdpVAopO9973uaMmVKtx/zggsu0N/+9jeFQiG9/fbbO3zGSE/Y0UtazZkzRyeddJIkacCAAYpEIqqsrNzmz5x44omlS3z96le/0m9/+9sdD24Bv0+DAgAAAAAAAHrbddddp5tvvrlXn++mm27qtedDMPl9LNe3MzxmzpxZun3ppZd68pibPs6MGTM8eUy/HXXUUerXr58kKZlM6q233trm/TOZjBYuXFj683HHHdej+dA7jDFKp9Py+SN3PONaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR69Fe55133nb/TCgUUnV19Q6dqbEjzxdU5b4uXO7v24bHm2++KUnabbfddNhhh3nymF/+8pe12267SZIWLVrkyWP6raamRscff3zpz52dCfP3v/9d8XhcUvHzO4455piejIdeEo1GdeuttyoajfodxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR7tNWbMGB199NHb9TODBw/Wtddeu90feH7MMcds9n/ll7tyXxcu9/ftklajRo1SY2OjTjzxRD3//POePe5//Md/aPbs2Ro1apQ+/vhjzx63u3b0klaS9Oyzz+rUU0+VJPXr109vv/32Fk8DSqVSOuigg/Thhx9Kkq699tpePe2tp/h9GpQN8vm8mpubNXz4cPXp08fvON3mWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEevRbpseF+yKPn36aPjw4WpublY+n9+u5xk3btyORAykcl8X3env97Fc387wCIfDkqQRI0Z4+rgdj9fa2urp4/rplFNOKe3mZjIZnXrqqVq6dOlm92lpadH48eNLmx0777yzrrnmml7Pip7Rp08fjRgxIjBvsK71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHu12yimnbNelpvL5vJqamrZrs+P8889ns+NTyn1duNzftw2PbDYrSZ4PWsfjdTy+H8aNG6eDDz54s6977rmn9P233nrrM98/+OCDtXbt2q0+5iOPPKLdd99dktTQ0KCDDz5Y3/jGN/SDH/xAp59+uvbaa6/SB5VXVlbq8ccf15AhQ3q0J3pPIpHQlClTlEgk/I7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj/a76667NHLkyC7dt6amRhdeeKFqamq6dP+RI0fqzjvv7E68QCr3deFy/0q/nniXXXbRunXr1Nzc7Onjbty4UVLxDAe/LF++XKtWrdrq95PJpN59993P/P22Nmn23HNPzZs3T+edd56WLFkiY4zq6uo+c2ms4cOH68EHH9zscz/gvsrKSo0ePVqVlb4tWU+51sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHq037Bhw/TCCy/o2GOPLV01Z2tyuZwaGhqUy+U6fdyhQ4fqhRde0LBhw7yKGhjlvi5c7u/bZ3gccsghevfddz3/rI199tlHq1at0oEHHqjFixd79rjbY/To0dvc8Niajz/+WKNHj97mfbLZrKZNm6ZHH31U7733ntavX68hQ4Zon3320RlnnKGLLrpIu+yyyw4mt5Pf130DAAAAAAAA/LZs2TKdfPLJ27xKTFeNHDlSL7zwgsaMGeNBMuD/5/exXN8uafXlL39ZkrR69Wq9//77njzmihUr1NDQIEk67LDDPHnMHdHQ0CBjzHZ/dbbZIUlVVVX6/ve/r+eff16rV69WJpPR+vXr9frrr+u///u/A7fZgaJMJqOFCxcqk8n4HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEe3TFmzBgtXbpU559//lbv069fPx155JHq16/fVu9z/vnna+nSpWx2bEO5rwuX+/u24fHNb36zdPvmm2/25DE3fZxNHx9wXTab1ZIlS3z9bBovudbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6dMuwYcM0depUPfPMMzrmmGM+8/2qqiodfPDBqqqq+sz3jjnmGD377LOaOnUql7HqRLmvC5f7+3ZJq3g8rtGjRyscDquiokJPPfWUTjvttB1+vGeeeUbjx49XoVDQ0KFD1dDQoIEDB3qYGH7x+zQoAAAAAAAAwEb19fV69NFH9cYbb+jtt9/e7DM+hg4dqsMOO0xHHHGEzjvvvM2OrwE9xe9jub6d4TFw4EBdddVVkqRCoaBzzz1XTz755A491lNPPaVzzz1XhUJBoVBI//Vf/8VmRwBVV1erpqZGkpTP5xWJRNSxXxeLxUo7jm1tbUomk5KKH9QUiURKjxGNRtXe3i5JSqVSSqVSkqT29nZFo9HS/SKRSOnDnZLJpNra2iQVdzdjsZgkyRijSCSifD4vSUokEkqn05KKp33F43FJxdd3JBJRoVCQVNzs6zgdLJ1OK5FIdNopmUxq7dq1KhQKgehUKBTU1NRUejzbO6VSKa1Zs0aFQsGq1157e7sikYhisViPvfa60qlQKGjdunWlx7P5tefHPNGJTr3ZqVAoKBwOq7W1NTCdgjhPXekUjUZLjxOUTn7NUyKRUCQSKY1rEDp1dZ6SyaQikYjS6XQgOsXjcTU1NalQKDgxTza/9iKRiDZs2KBCoeDbe0QsFtP69etVKBSsf+0F9T2CTnTa9N9wq1ev3mx9ut4piPO0tU4HHHCAfv3rX2vGjBlqaWnRxo0b9e677yoSiailpUXTp0/XxIkTdcABBzjTyYZ5KhQKWr9+fenxgtBpe+bJi2NhfvFtw0OSrrzySo0ZM0ahUEhtbW06++yzdfbZZ+v111/v0s8vXLhQZ599ts4880ylUimFQiEdcMABuvLKK3s4Ofxw5JFH6swzz5QkNTc3q7a2trQIJ0+erOXLl0uS5s+fr1mzZkmSGhsbVVtbW3qMSZMmaeXKlZKkOXPmaM6cOZKklStXatKkSaX71dbWqrGxUZI0a9YszZ8/X5K0fPlyTZ48WVLxDaK2tlbNzc2SpOnTp2vhwoWSpMWLF2vq1KmSim8CtbW1pTedqVOnavHixZKKr+Hp06d32unFF1/UX//6V8VisUB0isViuvfeezVjxgwn5umVV17R/fffr1gsZtVrr6GhQbW1tXr88cd77LXXlU6xWEz33XefnnvuOV/nyctOXs4TnejUm51isZjuvPNO3XXXXYHpFMR56kqnhx9+WLW1tVq7dm1gOvk1T88995xqa2tVX18fmE5dnacXX3xRtbW1eueddwLRacaMGbr33nsVi8WcmCfbX3uTJk1SLBbz7T3i8ccf1z333KNYLGb9ay+o7xF0olNHp4aGBj344IPauHFjYDoFcZ660ikUCmndunV66qmnZIxRKBRyvpNf8xSLxXTPPffo4YcfDkyn7ZknL46F+cb4bNWqVWbEiBGmoqLChEIhU1FRYSoqKszo0aPNOeecY2688UZz5513msmTJ5s777zT3Hjjjebcc881e++9d+m+oVDIhEIhM2LECLNq1Sq/K8Fj9fX1RpKprq42NTU1pr6+3uRyORMOh02hUDDGGBONRk0mkzHGGJNKpUwikTDGGNPe3m7C4XDpsSKRiMlms8YYY5LJpEkmk8YYY7LZrIlEIqX7hcNh097ebowxJpFImFQqZYwxJpPJmGg0aowxplAomHA4bHK5nDHGmHg8btra2owxxqTTaROLxYwxxuTzeRMOh00+nzfGGBOLxUw6nTbGGNPW1mbi8bgxxmyzUyKRMGvWrDH5fD4QnfL5vFm3bl3p8WzvlEwmTWNjo8nn81a99rLZrAmHwyYajfbYa68rnfL5vFm7dm3p8Wx+7fkxT3SiU292yufzprW11bS0tASmUxDnqSudIpFI6XGC0smveYrH4yYcDpfGNQidujpPiUTChMNh09bWFohOsVjMrFu3zuTzeSfmyebXXjgcNuvXrzf5fN6394hoNGqamppMPp+3/rUX1PcIOtFp03/DrVq1arP16XqnIM5TVztlMhmzatWq0uMFoZMf85TP501TU1Pp8YLQaXvmqTvHwjqO5XZ81dfXm97k22d4bKqhoUFnnXWW3n77bYVCodLpMaFQaKs/s+l9jDE69NBD9cQTT2jvvffulczoPX5f9w0AAAAAAAAA0Dm/j+X6ekmrDqNHj9aCBQt04403apdddin9/db2Yjb9+2HDhunGG2/UggUL2OxAYMXjcd1zzz2la+y5zrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uX+l3wE69O3bV7/+9a919dVXa/r06Zo3b55effVVrVq1qvRBLJJUWVmpUaNG6etf/7qOO+44nXXWWaqurvYxOdDzqqqqdPDBB6uqqsrvKJ5wrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3ub8UlrToTj8cVj8c1cOBADRw40O846GV+nwYFAAAAAAAAAOic38dyrbikVWcGDhyokSNHstmBspVOp1VXV6d0Ou13FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73d2LDAyh3uVxODQ0Nm13ezWWu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v9nbikFcqb36dBAQAAAAAAAAA65/exXM7wAByQz+fV1NSkfD7vdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u92fDA3BAPB7Xvffeq3g87ncUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvfnklawnt+nQdnAGKNMJqN+/fopFAr5HafbXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH8fu9Pf7WG5lrz0TgB0WCoVUXV3tdwzPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVoADYrGY7rjjDsViMb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/Gx6AA6qrqzV27Fhnd1Y/zbU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+f4QHr+X3dNwAAAAAAAABA5/w+lssZHoAD2tra9MILL6itrc3vKJ5wrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3uz4YH4IBCoaBIJKJCoeB3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDzqiurlZNTY0kKZ/PKxKJqOOKbLFYTNlsVlJxBzKZTEqScrmcIpFI6TGi0aja29slSalUSqlUSpLU3t6uaDRaul8kElEul5MkJZPJ0m5mNpstfViPMUaRSET5fF6SlEgklE6nJUmZTEbxeFzSZ98g4vG4MpmMJCmdTiuRSHTaqaKiQqeddpoGDBgQiE4DBgzQ6aefXspme6c+ffro1FNP1YABA6x67VVXV+vcc8+VMabHXntd6TRgwAB961vfUigU8nWevOzk5TzRiU692WnAgAE655xz1N7eHphOQZynrnQqFAo699xztdNOOwWmk1/zFAqFdO6556qqqiownbo6TxUVFTr33HPVt2/fQHSSpNNPP10DBgxwYp5sfu3l83mdccYZGjBggG/vEcYYjR8/XgMGDLD+tRfU9wg60amjU3V1tU4++WT1798/MJ2COE9d7dSvXz+dfPLJGjBgQGA6+TFPAwYM0Le//e1ShyB02p558uJYmF/Y8IAzjjzySJ155pmSpObmZtXW1pYW4eTJk7V8+XJJ0vz58zVr1ixJUmNjo2pra0uPMWnSJK1cuVKSNGfOHM2ZM0eStHLlSk2aNKl0v9raWjU2NkqSZs2apfnz50uSli9frsmTJ0sqvkHU1taqublZkjR9+nQtXLhQkrR48WJNnTpVUvFNoLa2tvSmM3XqVC1evFiStHDhQk2fPr3TTi+//LIee+wx5XK5QHTK5XKaNWuWZs6c6cQ8LViwQA8//LByuZxVr71169apoaFBTzzxRI+99rrSKZfL6e9//7tmz57t6zx52cnLeaITnXqzUy6X07/+9a9AdQriPHWl08MPP6yGhga1trYGppNf8zR79mw1NDTogw8+CEynrs7Tyy+/rIaGBi1btiwQnWbOnKlZs2Ypl8s5MU+2v/ZeeeUV5XI5394jnnjiCb3wwgvK5XLWv/aC+h5BJzp1dFq3bp1qa2tLBy2D0CmI89TVTqtWrVJtbW3poHgQOvkxT7lcTi+99JIefvjhwHTannny4liYbwxgufr6eiPJVFdXm5qaGlNfX29yuZwJh8OmUCgYY4yJRqMmk8kYY4xJpVImkUgYY4xpb2834XC49FiRSMRks1ljjDHJZNIkk0ljjDHZbNZEIpHS/cLhsGlvbzfGGJNIJEwqlTLGGJPJZEw0GjXGGFMoFEw4HDa5XM4YY0w8HjdtbW3GGGPS6bSJxWLGGGPy+bwJh8Mmn88bY4yJxWImnU4bY4xpa2sz8XjcGGO22WndunVm4sSJpVyudwqHw2bixIlmzZo1TsxTU1NTafxteu1t3LjRTJw40TQ2NvbYa68rnTrmc+3atb7Ok5edvJwnOtGpNzt1rMdVq1YFplMQ56krnT755BMzceJE09LSEphOfs3T2rVrzcSJE82GDRsC06mr89TxO+T69esD0WnNmjWl38lcmCebX3urV68ujaVf7xGNjY2lDLa/9oL6HkEnOnV06vi3ZWtra2A6BXGeutqpubm59P4alE5+zFP4//5t9cknnwSm0/bMU3eOhXUcy+34qq+vN70pZMz/nYsCWOq9997TAQccUPpzfX29/v3f/93HRAAAAAAAAACAT/P7WC6XtAIAAAAAAAAAAM5jwwNwQDQa1S233LLZhxS5zLU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoAD+vfvr/Hjx6t///5+R/GEa31szWtLLltyAGA9Bglz6Z1yHsugdXetj815bchmQwYARazHYGE+vVHu4+hyfz7DA9bz+7pvAAAAAAAAAIDO+X0slzM8AAekUinNmDFDqVTK7yiecK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7s+GBwAAAAAAAAAAcB6XtIL1/D4NCgAAAAAAAADQOb+P5XKGB+CA9vZ2rVixQu3t7X5H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/NjwAB7h83bwtca2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7s8lrWA9v0+DAgAAAAAAAAB0zu9juZzhAQAAAAAAAAAAnMeGB+CASCSiG264QZFIxO8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PJa1gPb9Pg7JBLpdTY2Oj9txzT1VWVvodp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfx+709/tYLhsesJ7fiwQAAAAAAAAA0Dm/j+VySSvAAclkUtOmTVMymfQ7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOKCiokJDhgxRRUUwlqxrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/LmkF6/l9GhQAAAAAAAAAoHN+H8t1b4sGZau6ulo1NTWSpHw+r0gkoo79ulgspmw2K0lqa2srnW6Vy+UUiURKjxGNRtXe3i5JSqVSSqVSkqT29nZFo9HS/SKRiHK5nKTiKVxtbW2SpGw2q1gsJkkyxigSiSifz0uSEomE0um0JCmTySgej0uSCoWCIpGICoWCJCkejyuTyUiS0um0EolEp52i0agWLVqkbDYbiE7ZbFZvvPGGwuGwE/MUi8W0cOFCZbNZq157bW1tWrJkiVpbW3vstdeVTtlsVosWLSp9z+bXnh/zRCc69WanbDarxYsXa8OGDYHpFMR56kqnlpYWLVmyROl0OjCd/JqnSCSiJUuWKJlMBqZTV+cpGo1qyZIlSiQSgegUDof1xhtvlH6ftL2Tza+9jRs36q233lI2m/XtPaK1tVVvvvmmstms9a+9oL5H0IlOHZ3a2tq0YMGCzf4N7HqnIM5TVzulUiktWLBgs2NKrnfyY56y2azefPNNtbS0BKbT9syTF8fC/MKGB5xx5JFH6swzz5QkNTc3q7a2trQIJ0+erOXLl0uS5s+fr1mzZkmSGhsbVVtbW3qMSZMmaeXKlZKkOXPmaM6cOZKklStXatKkSaX71dbWqrGxUZI0a9YszZ8/X5K0fPlyTZ48WVLxDaK2tlbNzc2SpOnTp2vhwoWSpMWLF2vq1KmSim8CtbW1pTedqVOnavHixZKkhQsXavr06V3q9OKLLyqdTgeiUzqd1ksvvaRnn33WiXl6/fXXS+Nv02tvzZo1qqur01NPPdWjr73OOnXM59y5c32dJy87eTlPdKJTb3ZKp9Oqq6vTpEmTAtMpiPPUlU6PPfaY6urqSlmD0MmveZo7d67q6ur0z3/+MzCdtmee6urqtGzZskB0evbZZ/XSSy8pnU47MU82v/b+9re/ad68eUqn0769Rzz11FOl+bT9tRfk9wg60UmS1qxZo7lz55YOqgahUxDnqaudPv74Y82dO7d0gDsInfyYp3Q6rXnz5umxxx4LTKftmScvjoX5xgCWq6+vN5JMdXW1qampMfX19SaXy5lwOGwKhYIxxphoNGoymYwxxphUKmUSiYQxxpj29nYTDodLjxWJREw2mzXGGJNMJk0ymTTGGJPNZk0kEindLxwOm/b2dmOMMYlEwqRSKWOMMZlMxkSjUWOMMYVCwYTDYZPL5YwxxsTjcdPW1maMMSadTptYLGaMMSafz5twOGzy+bwxxphYLGbS6bQxxpi2tjYTj8eNMYZOdKITnehEJzrRiU50ohOd6EQnOtGJTnSiE52c7tRxLLfjq76+3vQmPsMD1vP7um82MMYok8moX79+CoVCfsfpNtf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MexO/39PpbLJa0AB0SjUd16662bXbPPZa71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/05wwPW83tX0Ab5fF7Nzc0aPny4+vTp43ecbnOtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cu9Pf72O5bHjAen4vEgAAAAAAAABA5/w+lsslrQAHJBIJTZkyRYlEwu8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PhgfggMrKSo0ePVqVlZV+R/GEa31szWtLLltyAGA9Bglz6Z1yHsugdXetj815bchmQwYARazHYGE+vVHu4+hyfy5pBev5fRoUAAAAAAAAAKBzfh/L5QwPwAGZTEYLFy5UJpPxO4onXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH0eX+7PhATggm81qyZIlymazfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn8uaQXr+X0aFAAAAAAAAACgc34fy+UMD8ABhUJBkUhEhULB7yiecK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzfKfRxd7s+GB+CAWCym2tpaxWIxv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+XtIL1/D4NygaFQkGxWEyDBg1SRYX7+5Su9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPY3f6+30st7LXngnADquoqNCQIUP8juEZ1/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8eqPcx9Hl/uW3PQU4KB6P65577lE8Hvc7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOKCqqkoHH3ywqqqq/I7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MfR5f58hges5/d13wAAAAAAAAAAnfP7WC5neAAOSKfTqqurUzqd9juKJ1zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/uz4QE4IJfLqaGhQblczu8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PJa1gPb9PgwIAAAAAAAAAdM7vY7mc4QE4IJ/Pq6mpSfl83u8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PhgfggHg8rnvvvVfxeNzvKJ5wrY+teW3JZUsOAKzHIGEuvVPOYxm07q71sTmvDdlsyACgiPUYLMynN8p9HF3uz4YHnFFdXa2amhpJxV3GSCSijiuyxWIxZbNZSVJbW5uSyaSk4vXmIpFI6TGi0aja29slSalUSqlUSpLU3t6uaDRaul8kEildoy6ZTKqtrU2SlM1mFYvFJEnGGEUikdJOZyKRKH2QTyaTKb0hFAoFRSIRFQoFScU3jEwmI6n4AUCJRKLTTlVVVfr5z3+uwYMHB6LT4MGDddlll6mystKJeerXr59+9rOfafDgwVa99mpqanTNNdeoT58+Pfba60qnwYMH69JLL1Xfvn19nScvO3k5T3SiU292Gjx4sH7xi1/IGBOYTkGcp650qqio0DXXXKOBAwcGppNf89S3b19dc8016t+/f2A6dXWeqqqqdM0112innXYKRKfKykpddtllGjx4sBPzZPNrLxQK6corr9TgwYN9e4/o06ePLr/8cg0ePNj6115Q3yPoRKeOTjU1Nfrxj3+sQYMGBaZTEOepq50GDBigH//4xxo8eHBgOvkxT4MHD9YVV1yhioqKwHTannny4liYX9jwgDOOPPJInXnmmZKk5uZm1dbWlhbh5MmTtXz5cknS/PnzNWvWLElSY2OjamtrS48xadIkrVy5UpI0Z84czZkzR5K0cuVKTZo0qXS/2tpaNTY2SpJmzZql+fPnS5KWL1+uyZMnSyq+QdTW1qq5uVmSNH36dC1cuFCStHjxYk2dOlVS8U2gtra29KYzdepULV68WJK0cOFCTZ8+vdNOr7zyiubOnatQKBSITqFQSIsWLdIzzzzjxDx1ZA2FQla99jZu3Kjq6mo9+eSTPfba60qnUChUeo36OU9edvJynuhEp97sFAqFFAqFdOeddwamUxDnqSudHnnkEVVXVysejwemk1/zNHfuXFVXV+ujjz4KTKeuztMrr7yi6upqvf/++4Ho9Mwzz2jRokUKhUJOzJPNr70HH3xQH330kUKhkG/vEU8++aSWLFmiUChk/WsvqO8RdKJTR6eNGzfqnnvuKR3ADEKnIM5TVzutWbNG99xzj0KhUGA6+TFPoVBI77//vh555JHAdNqeefLiWJhvDGC5+vp6I8lUV1ebmpoaU19fb3K5nAmHw6ZQKBhjjIlGoyaTyRhjjEmlUiaRSBhjjGlvbzfhcLj0WJFIxGSzWWOMMclk0iSTSWOMMdls1kQikdL9wuGwaW9vN8YYk0gkTCqVMsYYk8lkTDQaNcYYUygUTDgcNrlczhhjTDweN21tbcYYY9LptInFYsYYY/L5vAmHwyafzxtjjInFYiadThtjjGlrazPxeNwYY7bZaf369eb222830Wg0EJ2i0ai5/fbbzbp165yYp03H36bXXmtrq/nTn/5k1q5d22Ovva506pjPpqYmX+fJy05ezhOd6NSbnaLRqPnjH/9oVq9eHZhOQZynrnRas2aN+dOf/mTC4XBgOvk1T01NTeZPf/qT2bhxY2A6dXWe1q9fb/70pz+Z5ubmQHRat25d6XcyF+bJ5tdeY2Oj+eMf/2ii0ahv7xFr164tZbD9tRfU9wg60amjU2trq7n99ttLOYLQKYjz1NVOLS0tpf9eBqWTH/PU8W+rNWvWBKbT9sxTd46FdRzL7fiqr683vSlkzP+diwJY6r333tMBBxxQ+nN9fb3+/d//3cdEvS+bzWr58uX60pe+pKqqKr/jdJtrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j2J3+fh/LZcMD1vN7kQAAAAAAAAAAOuf3sVw+wwNwQFtbm1544YXSBxG5zrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADCoWCIpGICoWC31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J9LWsF6fp8GBQAAAAAAAADonN/HcjnDA3BALpdTQ0ODcrmc31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J8ND8ABiURCDz30kBKJhN9RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4utyfS1rBen6fBgUAAAAAAAAA6Jzfx3I5wwMAAAAAAAAAADiPDQ/AAdFoVLfccoui0ajfUTzhWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEesxWJhPb5T7OLrcnw0PwAH9+/fX+PHj1b9/f7+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/n+EB6/l93TcAAAAAAAAAQOf8PpbLGR6AA1KplGbMmKFUKuV3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDAAAAAAAAAAA4j0tawXp+nwYFAAAAAAAAAOic38dyOcMDcEB7e7tWrFih9vZ2v6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADXL5u3pa41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWsJ7fp0EBAAAAAAAAADrn97FczvAAAAAAAAAAAADOY8MDcEAkEtENN9ygSCTidxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dB2SCXy6mxsVF77rmnKisr/Y7Tba71sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY9jd/r7fSyXDQ9Yz+9FAgAAAAAAAADonN/HcrmkFeCAZDKpadOmKZlM+h3FE671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/3Z8AAcUFFRoSFDhqiiIhhL1rU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+XtIL1/D4NCgAAAAAAAADQOb+P5bq3RQOUoWw2qyVLliibzfodxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v92fCAM6qrq1VTUyNJyufzikQi6jhBKRaLlRZgW1tb6fpyuVxOkUik9BjRaFTt7e2SpFQqpVQqJUlqb29XNBot3S8SiSiXy0kqXrOura1NUnGxx2IxSZIxRpFIRPl8XpKUSCSUTqclSZlMRvF4XJJUKBQUiURUKBQkSfF4XJlMRpKUTqeVSCQ67RSJRDRv3jyl0+lAdEqn05o3b55aW1udmKdNx9+m114ymVRdXZ1aWlp67LXXlU4d8xkOh32dJy87eTlPdKJTb3ZKp9N6+eWXtX79+sB0CuI8daXTxo0bVVdXp1QqFZhOfs1TOBxWXV2d4vF4YDp1dZ4ikYjq6uoUi8UC0am1tbX0O5kL82Tza6+5uVkvv/yy0um0b+8RLS0tpQy2v/aC+h5BJzp1dEomk5o3b17puYLQKYjz1NVOiUSi9N/LoHTyY546/m21cePGwHTannmKeHAszC9seMAZRx55pM4880xJxV/Qa2trS4tw8uTJWr58uSRp/vz5mjVrliSpsbFRtbW1pceYNGmSVq5cKUmaM2eO5syZI0lauXKlJk2aVLpfbW2tGhsbJUmzZs3S/PnzJUnLly/X5MmTJRXfIGpra9Xc3CxJmj59uhYuXChJWrx4saZOnSqp+CZQW1tbetOZOnWqFi9eLElauHChpk+f3mmnd955RyNHjtSgQYMC0WnQoEH60pe+pLq6Oifmafny5dp55501aNAgq157mUxGV1xxhWbPnt1jr72udBo0aJD22Wcfvf76677Ok5edvJwnOtGpNzsNGjRIP/nJTzR58uTAdAriPHWl08yZM3XFFVeUHi8Infyap9dff11XXHGFmpubA9Opq/P0zjvv6IorrlBjY2MgOtXV1elLX/qSBg0a5MQ82fzae+KJJ/SNb3xDgwYN8u09Yvbs2TrkkEM0aNAg6197QX2PoBOdOjp1HADt169fYDoFcZ662ikWiykej2vQoEGB6eTHPA0aNEhf/epXNXPmzMB02p558uJYmG8MYLn6+nojyVRXV5uamhpTX19vcrmcCYfDplAoGGOMiUajJpPJGGOMSaVSJpFIGGOMaW9vN+FwuPRYkUjEZLNZY4wxyWTSJJNJY4wx2WzWRCKR0v3C4bBpb283xhiTSCRMKpUyxhiTyWRMNBo1xhhTKBRMOBw2uVzOGGNMPB43bW1txhhj0um0icVixhhj8vm8CYfDJp/PG2OMicViJp1OG2OMaWtrM/F43BhjttkpmUyajRs3mkKhEIhOhULBtLa2lu5ne6dUKmWam5tNoVCw6rXX3t5u2traTCwW67HXXlc6FQoF09LSUrqfza89P+aJTnTqzU6FQsGkUinT2toamE5BnKeudIpGo6atra2UNQid/JqnRCJh2traTCaTCUynrs5TMpk0bW1tpdeU653i8bhpbW01hULBiXmy+bUXiUQ2+++GH+8RsVislMn2115Q3yPoRKdN/03e1NRUul8QOgVxnrraKZvNmqamps3e813v5Mc8FQqF0n8vg9Jpe+apO8fCOo7ldnzV19eb3sSHlsN6fn/QjQ0ikYhqa2t1+eWXa8iQIX7H6TbX+tia15ZctuQAwHoMEubSO+U8lkHr7lofm/PakM2GDACKWI/Bwnx6o9zHsTv9/T6Wy4YHrOf3IrFBPp9Xc3Ozhg8frj59+vgdp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfx+709/tYLhsesJ7fiwQAAAAAAAAA0Dm/j+XyoeWAAxKJhKZMmaJEIuF3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDcEBlZaVGjx6tyspKv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT+XtIL1/D4NCgAAAAAAAADQOb+P5XKGB+CATCajhQsXKpPJ+B3FE671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fRGuY+jy/3Z8AAckM1mtWTJEmWzWb+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/l7SC9fw+DQoAAAAAAAAA0Dm/j+VyhgfggEKhoEgkokKh4HcUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvdnwwNwQCwWU21trWKxmN9RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vlPs4utyfS1rBen6fBmWDQqGgWCymQYMGqaLC/X1K1/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8eqPcx7E7/f0+llvZa88EYIdVVFRoyJAhfsfwjGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocv/y254CHBSPx3XPPfcoHo/7HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/dnwABxQVVWlgw8+WFVVVX5H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/PsMD1vP7um8AAAAAAAAAgM75fSyXMzwAB6TTadXV1SmdTvsdxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v92fAAHJDL5dTQ0KBcLud3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWsJ7fp0EBAAAAAAAAADrn97FczvAAHJDP59XU1KR8Pu93FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji73Z8MDcEA8Hte9996reDzudxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dB2cAYo0wmo379+ikUCvkdp9tc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfx+709/tYbmWvPROAHRYKhVRdXe13DM+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWgANisZjuuOMOxWIxv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93F0uT8bHoADqqurNXbsWGd3Vj/NtT625rUlly05ALAeg4S59E45j2XQurvWx+a8NmSzIQOAItZjsDCf3ij3cXS5P5/hAev5fd03AAAAAAAAAEDn/D6WyxkegAPa2tr0wgsvqK2tze8onnCtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cXe7PhgfggEKhoEgkokKh4HcUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvfnklawnt+nQQEAAAAAAAAAOuf3sVzO8AAckMvl1NDQoFwu53cUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvdnwwNwQCKR0EMPPaREIuF3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG+U+ji7355JWsJ7fp0EBAAAAAAAAADrn97FczvAAAAAAAAAAAADOY8MDzqiurlZNTY0kKZ/PKxKJqOMEpVgspmw2K0lqa2tTMpmUVLzeXCQSKT1GNBpVe3u7JCmVSimVSkmS2tvbFY1GS/eLRCKla9Qlk0m1tbVJkrLZrGKxmCTJGKNIJKJ8Pi+peKpXOp2WJGUyGcXjcUlSoVBQJBJRoVCQJMXjcWUyGUlSOp0unRq2rU7r16/XzTffrGg0GohO0WhUN998s9atW+fEPG06/ja99lpbW3XLLbdo7dq1Pfba60qnjvlsamrydZ687OTlPNGJTr3ZqWM9rl69OjCdgjhPXem0Zs0a3XLLLQqHw4Hp5Nc8NTU16ZZbbtHGjRsD06mr87R+/Xrdcsstam5uDkSndevWlX4nc2GebH7tNTY2lsbSr/eItWvXljLY/toL6nsEnejU0am1tVU333xzKW8QOgVxnrraqaWlpfT+GpROfsxTx7+t1qxZE5hO2zNPXhwL8wsbHnDGkUceqTPPPFOS1NzcrNra2tIinDx5spYvXy5Jmj9/vmbNmiWp+It8bW1t6TEmTZqklStXSpLmzJmjOXPmSJJWrlypSZMmle5XW1urxsZGSdKsWbM0f/58SdLy5cs1efJkScU3iNraWjU3N0uSpk+froULF0qSFi9erKlTp0oqvgnU1taW3nSmTp2qxYsXS5IWLlyo6dOnd9rp7bff1vDhw9W/f/9AdOrfv79GjRqluro6J+apvr5egwcPVv/+/a167aVSKY0fP16zZ8/usddeVzr1799fI0eO1IIFC3ydJy87eTlPdKJTb3bq37+/TjnlFD344IOB6RTEeepKp5kzZ2r8+PHK5XKB6eTXPC1YsEDjx49XU1NTYDp1dZ7efvttjR8/XqtXrw5Ep7q6Oo0aNUr9+/d3Yp5sfu1Nnz5dBx98sPr37+/be8Ts2bP1+c9/Xv3797f+tRfU9wg60amjUyqVUjabVZ8+fQLTKYjz1NVO4XBY2WxW/fv3D0wnP+apf//++tKXvqSZM2cGptP2zJMXx8J8YwDL1dfXG0mmurra1NTUmPr6epPL5Uw4HDaFQsEYY0w0GjWZTMYYY0wqlTKJRMIYY0x7e7sJh8Olx4pEIiabzRpjjEkmkyaZTBpjjMlmsyYSiZTuFw6HTXt7uzHGmEQiYVKplDHGmEwmY6LRqDHGmEKhYMLhsMnlcsYYY+LxuGlrazPGGJNOp00sFjPGGJPP5004HDb5fN4YY0wsFjPpdNoYY0xbW5uJx+PGGEMnOtGJTnSiE53oRCc60YlOdKITnehEJzrRiU5Od+o4ltvxVV9fb3oTH1oO6/n9QTc2SKVSmjNnjk488cTSDr3LXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y3ujqMxRvF4XNlsVlVVVRo4cKBCoVAPJO0Z3env97Hcyl57JgAAAAAAAAAAAmjZsmV69NFH9cYbb+idd95ROBwufW/o0KE69NBDdcQRR+j888/fbEMA3uIMD1jP711BAAAAAAAAANiSZ599VrfeeqteffXVLv/M0UcfrWuvvVbjxo3rwWT+8PtYLh9aDjigvb1dK1asUHt7u99RPOFaH1vz2pLLlhwAWI9Bwlx6p5zHMmjdXetjc14bstmQAUAR6zFYmE9vdGUcW1padP755+vUU0/drs0OSXr11Vd1yimn6Lvf/a5aWlq6G9dzLr+O2PAAHJBKpTRjxgylUim/o3jCtT625rUlly05ALAeg4S59E45j2XQurvWx+a8NmSzIQOAItZjsDCf3uhsHJcuXaoDDzxQjz76aLee55FHHtGBBx6oZcuWdetxvOby64hLWsF6fp8GBQAAAAAAAABScbNj7Nixm31GR3cNHTpU8+fP15gxYzx7TL/4fSyXMzwAAAAAAAAAAOhES0uL/uM//sPTzQ5JCofDOvnkk628vJVr2PAAHBCJRHTDDTcoEon4HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59MbWxvHSSy/V2rVre+Q5165dq8suu6xHHnt7ufw64pJWsJ7fp0HZIJfLqbGxUXvuuacqKyv9jtNtrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59MaWxvHZZ5/Vqaee2uPP/cwzz+iUU07p8efZlu68jvw+lsuGB6zn9yIBAAAAAAAAUN6OOeYYvfrqq73yPPPnz+/x5+kpfh/L5ZJWgAOSyaSmTZumZDLpdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xufHsdly5b1ymaHJL3yyiuqr6/vlefaGpdfR2x4AA6oqKjQkCFDVFERjCXrWh9b89qSy5YcAFiPQcJceqecxzJo3V3rY3NeG7LZkAFAEesxWJhPb3x6HB999NFeff7efr5Pc/l1xCWtYD2/T4MCAAAAAAAAUL5OOOEEvfTSS736fHPnzu215/OS38dy3duiAcpQNpvVkiVLlM1m/Y7iCdf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHpj03E0xuidd97p1ed/++235ed5Ci6/jtjwAByQTqdVV1endDrtdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xubjmM8Hlc4HO7V5w+Hw0okEr36nJty+XXEJa1gPb9PgwIAAAAAAABQnjZu3Kjhw4f3+vM2Nzdrl1126fXn7S6/j+VyhgfgAGOM0um0r6eyecm1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/e2HQcq6qqfMnQr18/X55Xcvt1xIYH4IBoNKpbb71V0WjU7yiecK2PrXltyWVLDgCsxyBhLr1TzmMZtO6u9bE5rw3ZbMgAoIj1GCzMpzc2HceBAwdq6NChvfr8Q4cOVU1NTa8+56Zcfh1xSStYz+/ToGyQz+fV3Nys4cOHq0+fPn7H6TbX+tia15ZctuQAwHoMEubSO+U8lkHr7lofm/PakM2GDACKWI/Bwnx649PjeMIJJ+ill17qtec/4YQTNHfu3F57vk/rzuvI72O5nOEBOKBPnz4aMWJEYP5D5VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT298ehyPOOKIXn3+3n6+T3P5dcSGB+CARCKhKVOmKJFI+B3FE671sTWvLblsyQGA9RgkzKV3ynksg9bdtT4257Uhmw0ZABSxHoOF+fTGp8fxvPPO69Xn7+3n+zSXX0dseAAOqKys1OjRo1VZWel3FE+41sfWvLbksiUHANZjkDCX3innsQxad9f62JzXhmw2ZABQxHoMFubTG58exzFjxujoo4/ulec+5phjNrsklB9cfh3xGR6wnt/XfQMAAAAAAABQ3p599lmdeuqpvfI848aN6/Hn6Sl+H8vlDA/AAZlMRgsXLlQmk/E7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjS2N4ymnnNLjl5o6//zzrdjscPl1xIYH4IBsNqslS5Yom836HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59MbWxvGuu+7SyJEje+Q5R44cqTvvvLNHHnt7ufw64pJWsJ7fp0EBAAAAAAAAgCQtW7ZMxx57rMLhsGePOXToUM2fP19jxozx7DH94vexXM7wABxQKBQUiURUKBT8juIJ1/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8emNb4zhmzBjNnz/fszM9Ro4cad1mh8uvIzY8AAfEYjHV1tYqFov5HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59EZn4zhmzBgtXbpU559/free5/zzz9fSpUut2uyQ3H4dcUkrWM/v06BsUCgUFIvFNGjQIFVUuL9P6VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT29szzg+++yzuu222/TKK690+fGPOeYYXXPNNVZ8QPmWdOd15PexXDY8YD2/FwkAAAAAAAAAbEt9fb0effRRvfHGG3r77bc3+4yPoUOH6rDDDtMRRxyh8847b7NjnUHj97FctvkAB8Tjcd1zzz2Kx+N+R/GEa31szWtLLltyAGA9Bglz6Z1yHsugdXetj815bchmQwYARazHYGE+vbEj43jAAQfopptu0ty5c9XS0qJYLKbm5mbFYjG1tLRo7ty5uummm5zY7HD5dVTpdwAAnauqqtLBBx+sqqoqv6N4wrU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn97o7jiGQiENHDhQAwcO9DhZ73D5dcQlrWA9v0+DAgAAAAAAAAB0zu9juVzSCnBAOp1WXV2d0um031E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J8ND8ABuVxODQ0NyuVyfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn8uaQXr+X0aFAAAAAAAAACgc34fy+UMD8AB+XxeTU1NyufzfkfxhGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn82PAAHxONx3XvvvYrH435H8YRrfWzNa0suW3IAYD0GCXPpnXIey6B1d62PzXltyGZDBgBFrMdgYT69Ue7j6HJ/LmkF6/l9GpQNjDHKZDLq16+fQqGQ33G6zbU+tua1JZctOQCwHoOEufROOY9l0Lq71sfmvDZksyEDgCLWY7Awn94o93HsTn+/j+VW9tozAdhhoVBI1dXVfsfwjGt9bM1rSy5bcgBgPQYJc+mdch7LoHV3rY/NeW3IZkMGAEWsx2BhPr1R7uPocn8uaQU4IBaL6Y477lAsFvM7iidc62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOKC6ulpjx451dmf101zrY2teW3LZkgMA6zFImEvvlPNYBq27a31szmtDNhsyAChiPQYL8+mNch9Hl/vzGR6wnt/XfQMAAAAAAAAAdM7vY7mc4QFnVFdXq6amRpKUz+cViUTUsV8Xi8WUzWYlSW1tbUomk5KkXC6nSCRSeoxoNKr29nZJUiqVUiqVkiS1t7crGo2W7heJRJTL5SRJyWRSbW1tkqRsNls6lcsYo0gkonw+L0lKJBJKp9OSpEwmo3g8LkkqFAqKRCIqFAqSpHg8rkwmI0lKp9NKJBKddmptbdWsWbPU1tYWiE5tbW165plntHHjRifmKRwOa+bMmWpra7PqtZdIJPTCCy+oubm5x157XenU1tamWbNmqaWlxdd58rKTl/NEJzr1Zqe2tjY9//zzampqCkynIM5TVzpt2LBBL7zwgpLJZGA6+TVPLS0teuGFFxSLxQLTqavz1NraqhdeeEHRaDQQnTZu3KhnnnlGbW1tTsyTza+9DRs26Nlnn1VbW5tv7xHNzc2l+bT9tRfU9wg60amjUyKR0NNPP13KFIROQZynrnaKx+N6+umnS5mC0MmPeeo4drVhw4bAdNqeefLiWJhf2PCAM4488kideeaZkoq/HNfW1pYW4eTJk7V8+XJJ0vz58zVr1ixJUmNjo2pra0uPMWnSJK1cuVKSNGfOHM2ZM0eStHLlSk2aNKl0v9raWjU2NkqSZs2apfnz50uSli9frsmTJ0sqvkHU1taqublZkjR9+nQtXLhQkrR48WJNnTpVUvFNoLa2tvSmM3XqVC1evFiStHDhQk2fPr3TTq+99po++OADFQqFQHQqFAr66KOPNHv2bCfm6c0339SKFStUKBSse+1FIhHNnDmzx157XelUKBT04Ycf6uWXX/Z1nrzs5PU80YlOvdWpUCiotbVV9957b2A6BXGeutJp+vTpikQiikajgenk1zy9/PLLikQi+uijjwLTqavz9NprrykSiWjFihWB6DR79mx99NFHKhQKTsyTza+9qVOnqrGxUYVCwbf3iJkzZ6qhoUGFQsH6115Q3yPoRKdNOy1ZsqR04DQonYI4T13ttGTJktJB7KB06u15KhQKWr16dSlrEDptzzx5cSzMNwawXH19vZFkqqurTU1Njamvrze5XM6Ew2FTKBSMMcZEo1GTyWSMMcakUimTSCSMMca0t7ebcDhceqxIJGKy2awxxphkMmmSyaQxxphsNmsikUjpfuFw2LS3txtjjEkkEiaVShljjMlkMiYajRpjjCkUCiYcDptcLmeMMSYej5u2tjZjjDHpdNrEYjFjjDH5fN6Ew2GTz+eNMcbEYjGTTqeNMca0tbWZeDxujDF0ohOd6EQnOtGJTnSiE53oRCc60YlOdKITnejkdKeOY7kdX/X19aY38RkesJ7f132zQS6XU2Njo/bcc09VVlb6HafbXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH8fu9Pf7WC6XtAIckEgk9NBDD5WuB+g61/rYmteWXLbkAMB6DBLm0jvlPJZB6+5aH5vz2pDNhgwAiliPwcJ8eqPcx9Hl/pzhAev5vSsIAAAAAAAAAOic38dyOcMDAAAAAAAAAAA4jw0PwAHRaFS33HKLotGo31E84VofW/PaksuWHABYj0HCXHqnnMcyaN1d62NzXhuy2ZABQBHrMViYT2+U+zi63J8ND8AB/fv31/jx49W/f3+/o3jCtT625rUlly05ALAeg4S59E45j2XQurvWx+a8NmSzIQOAItZjsDCf3ij3cXS5P5/hAev5fd03AAAAAAAAAEDn/D6WyxkegANSqZRmzJihVCrldxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u92fDAwAAAAAAAAAAOI9LWsF6fp8GBQAAAAAAAADonN/HcjnDA3BAe3u7VqxYofb2dr+jeMK1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/Gx6AA1y+bt6WuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dBAQAAAAAAAAA65/exXM7wAAAAAAAAAAAAzmPDA3BAJBLRDTfcoEgk4ncUT7jWx9a8tuSyJQcA1mOQMJfeKeexDFp31/rYnNeGbDZkAFDEegwW5tMb5T6OLvfnklawnt+nQdkgl8upsbFRe+65pyorK/2O022u9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPY3f6+30slw0PWM/vRQIAAAAAAAAA6Jzfx3K5pBXggGQyqWnTpimZTPodxROu9bE1ry25bMkBgPUYJMyld8p5LIPW3bU+Nue1IZsNGQAUsR6Dhfn0RrmPo8v92fAAHFBRUaEhQ4aooiIYS9a1PrbmtSWXLTkAsB6DhLn0TjmPZdC6u9bH5rw2ZLMhA4Ai1mOwMJ/eKPdxdLk/l7SC9fw+DQoAAAAAAAAA0Dm/j+W6t0UDlKFsNqslS5Yom836HcUTrvWxNa8tuWzJAYD1GCTMpXfKeSyD1t21PjbntSGbDRkAFLEeg4X59Ea5j6PL/dnwAByQTqdVV1endDrtdxRPuNbH1ry25LIlBwDWY5Awl94p57EMWnfX+tic14ZsNmQAUMR6DBbm0xvlPo4u9+eSVrCe36dBAQAAAAAAAAA65/exXM7wABxgjFE6nVZQ9idd62NrXlty2ZIDAOsxSJhL75TzWAatu2t9bM5rQzYbMgAoYj0GC/PpjXIfR5f7s+EBOCAajerWW29VNBr1O4onXOtja15bctmSAwDrMUiYS++U81gGrbtrfWzOa0M2GzIAKGI9Bgvz6Y1yH0eX+3NJK1jP79OgbJDP59Xc3Kzhw4erT58+fsfpNtf62JrXlly25ADAegwS5tI75TyWQevuWh+b89qQzYYMAIpYj8HCfHqj3MexO/39PpZb2WvPBOygTCaz2Z8//PBDn5L4r6Wlxe8InnKtj615bcllSw4ArMcgYS69U85jGbTurvWxOa8N2WzIAKCI9RgszKc3yn0cd6T/p4/dfvrYbo8zgOVmzJhhJJX1V01NjbnwwgtNTU2N71nKsY+teW3JZUsOvvjii/UYpC/mkrGku/t9bM5rQzYbMvDFF1/FL9ZjsL6YT8bRtv4zZszo1WPJXNIK1nv66ac1fvx4v2MAAAAAAAAAALbDjBkzdPrpp/fa8/Gh5QAAAAAAAAAAwHmc4QHrRSIRzZ8/v/Tnz33uc+rXr5+PiQAAAAAAAAAAn5bJZPTJJ5+U/nzsscdqyJAhvfb8bHgAAAAAAAAAAADncUkrAAAAAAAAAADgPDY8AAAAAAAAAACA89jwAAAAAAAAAAAAzmPDAwAAAAAAAAAAOI8NDwAAAAAAAAAA4Dw2PAAAAAAAAAAAgPPY8AAAAAAAAAAAAM5jwwMAUPZef/11fec739Fuu+2m6upq7b333vrpT3+qNWvW+B0NAAAAFmpqatLDDz+sK664Ql//+tdVU1OjUCik0aNH+x0NAICyFjLGGL9DAADgl/vvv18/+tGPVCgUNGLECO2xxx764IMPFI/HNXToUL388ss66KCD/I4JAAAAi9xxxx268sorP/P3o0aNUkNDQ+8HAgAAkjjDAwBQxpYtW6Yf//jHKhQKuv3227VmzRq99dZbWrt2rc4++2yFw2F9+9vfViaT8TsqAAAALDJo0CAdf/zxuuaaa/T444/rjjvu8DsSAAAQZ3gAAMrYmWeeqSeffFJnn322Hnvssc2+19bWpv3331+rV6/WpEmT9OMf/9inlAAAALDd9OnTddZZZ3GGBwAAPuMMDwBAWUomk3r22WclST/72c8+8/2ddtpJF110kSRp2rRpvZoNAAAAAAAA248NDwBAj8nn81q6dKkeeOAB/eQnP9GXv/xlVVVVKRQKKRQKaezYsTv82NlsVn/72980btw4jRo1StXV1dp999111FFH6Q9/+IM2bty4zZ9fvHix0um0qqqqdOSRR27xPh35Fi1apEKhsMNZAQAAsH1s/j0SAADYq9LvAACAYJoxY4a++93vKpVKef7YK1as0HnnnaclS5Zs9vdNTU1qamrS66+/rt///vd68MEHNW7cuC0+xgcffCBJ2muvvVRVVbXF+/zbv/2bJCmdTmvVqlXae++9vSsBAACALbL990gAAGAvzvAAAPSISCTSI/9IbWxs1PHHH1/6R2ooFNKxxx6rCRMm6LTTTtNOO+0kSdqwYYPGjx+vefPmbfFxWltbJUnDhg3b6nPtvPPOpdvhcNijBgAAANgW23+PBAAA9uIMDwBAj9ptt910+OGHl75mz56t2traHX68888/X2vXrpUkjRo1Sk8//bQOOuig0vc3btyoc889Vy+99JLa29t11llnaeXKlRoyZMhmj9PW1iZJWz27Q5Kqq6tLt3viH90AAADYOlt/jwQAAPZiwwMA0CNOPvlkrVq1Snvttddmf79o0aIdfsznnntOr776qqTiRsWsWbM0ZsyYze6zyy676Omnn9aBBx6ojz76SK2trbrtttv0u9/9brP7dfwffNlsdqvPl06nS7f79++/w7kBAADQdbb/HgkAAOzFJa0AAD1ixIgRn/lHanfdfffdpdsXXHDBZ/6R2mHAgAG68cYbS3++9957lcvlNrvP0KFDJUktLS1bfb6Oy15ten8AAAD0LNt/jwQAAPZiwwMA4IREIqGXXnqp9OeLLrpom/f/zne+o5qaGknFjYtXXnlls+9/4QtfkCStXr16q2d5/Otf/5JUvLTVqFGjdjg7AAAA/OP175EAAMBebHgAAJywYMECZTIZScX/8+7www/f5v2rq6v11a9+tfTnT3/o5CGHHKLq6mpls1ktXLhwi48xf/58SdIRRxyhigr+kwkAAOAir3+PBAAA9uLoDQDACe+//37p9pgxY1RZ2fnHUB166KFb/Hmp+I/dcePGSdr8Egcd2tra9OCDD0qSzjnnnB3KDAAAAP95/XskAACwFxseAAAn/POf/yzd7urlpTa99vOKFSs+8/3f/OY36tOnjx5//HH98Y9/VKFQkFS87MGFF16o1atXa9SoUbr44ou7mR4AAAB+6YnfIwEAgJ3Y8AAAOGHTDxffbbfduvQzI0aMKN3e9APIOxx00EG6++67VVFRoauuukp77LGHvvzlL2vkyJF6/PHHNWTIED311FPq169f9wsAAADAFz3xe+Qnn3yiXXbZpfQ1YcKELf79pZde2s30AABge7DhAQBwQiKRKN3eaaeduvQzm95v05/f1I9+9CO9+uqrGj9+vPL5vJYtW6ahQ4fqxz/+sZYtW6ZDDjmke8EBAADgq574PTKfz6ulpaX0FY/HJUmFQmGLfw8AAHpH5xeuBADAAul0unS7qqqqSz+z6ZkZbW1tW73fUUcdpaeeemrHwwEAAMBaPfF75OjRo2WM6X44AADgKc7wAAA4obq6unQ7m8126WcymUzpdlf/bz4AAAAEC79HAgBQPtjwAAA4oaampnR7W2drbGrT+2368wAAACgf/B4JAED5YMMDAOCEYcOGlW6vX7++Sz/T1NRUur3zzjt7ngkAAAD24/dIAADKBxseAAAnfOELXyjdXrVqVZd+ZvXq1aXb+++/v+eZAAAAYD9+jwQAoHyw4QEAcMIXv/jF0u1ly5Ypl8t1+jPvvPPOFn8eAAAA5YPfIwEAKB9seAAAnHDUUUepX79+kqRkMqm33nprm/fPZDJauHBh6c/HHXdcj+YDAACAnfg9EgCA8sGGBwDACTU1NTr++ONLf54yZco27//3v/9d8XhcUvG6y8ccc0xPxgMAAICl+D0SAIDywYYHAMAZP/3pT0u3p0yZovfee2+L90ulUvrNb35T+vMll1yiysrKHs8HAAAAO/F7JAAA5YENDwCAM0455RQdffTRkoqXGjj11FO1dOnSze7T0tKi8ePH68MPP5RU/L/yrrnmml7PCgAAAHvweyQAAOUhZIwxfocAAATTuHHjtHbt2s3+rqmpSevXr5ckDRgwQP/2b//2mZ977rnnNHLkyC0+ZmNjo4444gitW7dOkhQKhXTsscdq3333VXNzs1588UWlUilJUmVlpV544YXNLmEAAAAA+/F7JAAA2BFseAAAeszo0aO1atWq7f65jz/+WKNHj97q91esWKHzzjtPS5Ys2ep9hg8frgcffFCnnHLKdj8/AAAA/MXvkQAAYEdwIUoAgHP2339/LVq0SNOmTdOjjz6q9957T+vXr9eQIUO0zz776IwzztBFF12kXXbZxe+oAAAAsAi/RwIAEGyc4QEAAAAAAAAAAJzHh5YDAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAHxzxx13KBQKqaKiQm+99Zbfcbrl2muvVSgUUnV1tVauXOl3HAAAgLLDhgcAAABgobFjxyoUCm33V11dnd/RgS5bv369rr/+eknSOeecoy9/+ctbvN+FF15Yeo1feOGF2/UcU6ZMKf3s6NGju5l426699loNHTpUmUxGV155ZY8+FwAAAD6LDQ8AAAAAgC9uuOEGxWIxhUIh/eY3v/E7TrcNGTJEl156qSRp1qxZmj9/vs+JAAAAykul3wEAAAAAbNvhhx+uI444okv33WOPPXo4DeCNhoYG3X///ZKk008/XV/84hd9TuSNyy67TH/4wx+USqX0q1/9Sv/4xz/8jgQAAFA22PAAAAAALDdu3DhNnDjR7xiAp26//Xa1t7dLkn72s5/5nMY7w4YN01lnnaWHHnpIr732ml577TV97Wtf8zsWAABAWeCSVgAAAACAXhWNRvXggw9Kkvbee28df/zxPify1g9+8IPS7TvuuMO/IAAAAGWGDQ8AAAAAQK967LHHlEwmJUlnnXWWQqGQz4m89bWvfU0jR46UJD399NNqaWnxOREAAEB5YMMDAAAACKCGhgaFQiGFQiGNHj269Pf/+Mc/9IMf/ED777+/Bg8erFAopCuuuGKLj/HJJ5/of/7nf3T00Udr5MiR6tevn3beeWcdcsghuvrqq/XBBx9sV6Z33nlHP/zhD7XPPvtop5120vDhw3XEEUfotttuU2trqyRpypQppdwXXnjhFh9n4sSJpft05VJfdXV1pfuPHTu2S1nff/99XXfddTriiCO02267qaqqSsOHD9dXvvIV/eY3v9HatWs7fYyxY8eWnreurk6S1NraqltvvVWHH364dtllF+20007aZ599dPHFF6u+vr5L2Tb1/PPP60c/+pEOOOAADRs2TH379tWQIUN06KGH6kc/+pFmzpypXC5Xuv+GDRtUVVWlUCikPn36aM2aNV16HmOM9t5771KfmTNnbnfWTU2dOrV0e/z48d16rO7adK1s71dDQ8MWHzMUCpV6tbe36/HHH++9QgAAAGWMz/AAAAAAykA2m9Vll12me++9t9P7FgoFTZw4Ub///e+VTqc/8zjhcFhLlixRbW2tfvGLX+i3v/1tp/+H/q9//Wvdcsstyufzpb9Lp9PauHGj3nzzTd1111164okndqychzKZjC6//HLdf//9m2WVpI0bN2rjxo1644039Ic//EG33Xabfv7zn3f5sV977TWdc845n9lk+Pjjj/Xxxx/roYce0qRJk/TDH/6w08d67733dOGFF+qtt976zPei0agWL16sxYsX67777tM555yjadOmSZJ23XVXfetb39KTTz6pQqGgKVOm6Fe/+lWnz/fSSy+VDu7vvvvuOuWUU7rQeMvC4bBee+01SdLAgQN1+OGH7/Bj2ey4447TX/7yF0nSM888o5/85Cc+JwIAAAg+NjwAAACAMnDllVeWNjvGjBmjgw46SH379tUHH3ygior//8TvfD6vc845R08++WTp7/bYYw8dccQRGj58uBKJhBYtWqSVK1cql8vpd7/7nZqbm3Xfffdt9bmvu+463XzzzaU/9+/fX8cdd5x23313NTU1ad68eWpsbNS4ceO2erZJb0gmkzrppJNKB+Mlad9999Vhhx2moUOHqrW1Va+99prWrl2rtrY2XXrppYrFYrruuus6fez6+nr98pe/VCKR0K677qqjjz5aw4YN05o1azRv3jy1tbUpn8/rxz/+scaMGaMjjzxyq49VV1enb33rW4rH46W/22uvvXTEEUdo5513VjKZ1D//+U+9++67am9v/8ym1SWXXFKa38mTJ+u6667rdMPqgQceKN2+8MIL1adPn047b828efNKm0lHHnmkKiv9/WfpoEGDuvyh6UuXLtWrr75a+vO2xu3oo48u3a6rq1Mul/O9KwAAQNDx2xYAAAAQcI2NjfrLX/6iz33uc5o6depmB2Kl4lkNHW644YbSwfARI0bo7rvv1re//e3PHNh94okn9MMf/lDRaFR//etfdcIJJ+jss8/+zHO/8soruuWWW0p/PvPMM3Xfffdp6NChpb+LRqP68Y9/rGnTpummm27ypPOO+OlPf1ra7Nhvv/107733fuYSWPl8Xvfdd5+uvPJKZTIZ/eY3v9E3vvENffWrX93mY1999dXK5XK6/fbbddlll2124PuTTz7RuHHjVF9fr0KhoOuuu07z5s3b4uN88sknOuuss0qbHXvvvbf+8pe/6OSTT/7MfcPhsB5//HF9+OGHm/39N7/5Te299976+OOP9dFHH6murk7f+MY3tpq9tbVVTz31lKTiAf6LL754m107s2jRotLtAw88sFuP5YWdd95Zf/7znzu93yeffKIjjjii9OfzzjtPo0aN2ur9d911V+2+++5at26dUqmU6uvrdfDBB3sRGQAAAFvBhgcAAABgueeee04bN27s9H6//OUvtccee3zm7/P5vPr3768XX3xR++2332e+369fP0nFzzL43e9+J6l4EPgf//iH9t133y0+11lnnaVddtlFxx13nKTi52ps6cOnf/nLX8oYI0k6/vjjNW3atM+cHTB48GBNnTpVra2tmjNnTqc9e8Krr76q//3f/5VUPKvjtdde0y677PKZ+/Xp00c/+clPtNNOO+miiy5SPp/XjTfeqOeff36bj5/JZHTvvffqkksu+cz3Pve5z+nRRx/VgQceKGOM6urqtG7dOu2+++6fue8vf/nL0mth1KhRev3117Xbbrtt8TmHDh2qH/3oR5/5+1AopB/84AelS1k98MAD29zwmDp1amlTbOzYsVt9TXTV0qVLS7f333//7f75RYsWbdelxFasWLHdz/FpyWRS3/rWt9TU1CRJ+spXvqLJkyd3+nNf/OIXtW7dOknSu+++y4YHAABAD2PDAwAAALDcm2++qTfffLPT+/3gBz/Y4oaHJP385z/f4mbHpmpra0uXGvrNb37T6YHtb3zjGzrppJM0e/Zsvf/++1q8eLEOPfTQ0vfff/99LViwoPTnO++8c6uXQqqoqNBdd92l/fffv7RB0pv++Mc/lm7ffvvtW9zs2NSFF16oW2+9VStWrNDs2bPV0tKiYcOGbfX+Y8aM2eJmR4cDDjhAhx9+uN544w0ZY/TWW2/ptNNO2+w+a9as0WOPPVb68z333LPVzY7OXHTRRbr++uuVy+X05JNP6s9//rOGDBmyxftuejmrH/zgBzv0fJv6+OOPS7f33HPP7f75FStWeLKJ0VXGGH3ve9/TkiVLJBU3qGbMmKHq6upOf3bT9bi1DzgHAACAdyo6vwsAAAAA15177rmd3ue5554r3T7//PO79LgdZ3hI0j/+8Y/Nvvfyyy+Xbh922GH60pe+tM3H2m+//bb52RU9JZfLae7cuZKKn+dw6qmndunnOs6KMMZs9rkfW3LWWWd1+niHHHJI6faWDo6/+OKLyuVykqTPf/7zW7yMVVftvvvupZ7pdFqPPPLIFu/39ttv691335VUPGPkjDPO2OHn7LB+/frS7W1tEtniV7/6VemSXgMGDNDMmTM1YsSILv3sphtnHWeHAAAAoOdwhgcAAABgueuvv14TJ07c4Z/v27evxowZs837tLS06IMPPpAkVVVV6YYbbujSYy9fvrx0+5NPPtnse4sXLy7d7uwzLja93+uvv96l+3pl6dKlSiaTkopjdfnll3fp5zY96+bT3T+ts/GXNj/4H4vFPvP9hQsXlm5/+rNFdsQll1yiGTNmSCqexfHTn/70M/fZ9OyO//zP/+zSWQ2d6RhrqfgB9tvrggsu0JQpU7p8/ylTpuiiiy7a7ueRpIcfflg333yzpOKlwB5++OHtuizVpv027Q0AAICewYYHAAAAEHBDhw7d7EOyt6TjcwYkKZvN6u67797u5wmHw5v9ubm5uXR7r7326tJjdPV+Xlq7dm3pdktLiyfdP23w4MGdPkbfvn1Lt9vb2z/z/U3PjNhnn322I92WnXTSSRo1apRWrVqld955R0uWLNnsYH5bW9tmZ354cTmrT/Pj8mVdtXDhws06/+53v9P48eO36zFs7gcAABBEXNIKAAAACLiddtqp0/tEo9FuP0/H5ZY6JBKJ0u2u/p/8AwYM6HaO7dUT3T/t0x/mviPi8Xjpdk1NTbcfr6KiQhdffHHpz5uezSFJTz75ZGlsDj/8cB144IHdfk5p8zlua2vz5DG9tnr1ao0fP770Ye3f//73de21127342zaz4/XNgAAQLlhwwMAAADAZgdjBw0aJGPMdn99+jJDmx6UT6VSXcrRE5f9KRQK2/z+pt0PPPDAHerenUuOddXAgQNLtzfdTOqOCRMmlD5IfurUqUqn06Xvef1h5R02/fyLjRs3eva4Xkkmk/rWt75VOqPma1/7mu67774deqxNz3Lq6ud+AAAAYMex4QEAAABAu+22W+l2LBbr8gbFtgwfPrx0e/Xq1V36mc4+C0Pa/NJPnZ1ZIXV+Bsem3W3+YOlNc3788ceePOYee+yhcePGSSpelqvjw7lXrlyp+fPnSypuCJ133nmePJ8k7b333qXbjY2Nnj2uF4wx+s///M/SB7WPGjVKf//739WvX78derw1a9aUbo8ePdqLiAAAANgGNjwAAAAAaPfdd9fnPve50p8XLFjQ7cc85JBDSrc3/cDtbenKB5YPGjSodLulpaXT+y9btmyb3z/44INLB7Q3bNigDz/8sNPH9MORRx5Zuv3yyy979riXXHJJ6XbHWR2TJ08uff7EWWedtdnZJd216aWx/vnPf3r2uF647rrrSh/kPnDgQM2aNUu77rrrDj/e+++/X7p90EEHdTceAAAAOsGGBwAAAABJ0qmnnlq6/Ze//KXbj/eNb3yjdPutt97SihUrtnn/Dz/8sEsbHpv+n/JLlizp9P6PP/74Nr+/00476bjjjiv92YvuPeGb3/xm6cPn//Wvf2n27NmePO5//Md/lDa75s2bpw8//HCzy5N5/WHlRxxxROl2x5kUNvjb3/6mW265RVLx800effRRjRkzZocfb8OGDaUzhvr3768DDjjAk5wAAADYOjY8AAAAAEiSrrrqqtLnOTz11FOf+UyObdnSpaC++MUv6qijjir9+fLLL9/q52kUCgVddtllpbMKtuXwww8vfQj4okWLNvu/6D/tL3/5i957771OH/Oaa64p3b7rrrv04osvdvozHXrrMlgjR47UOeecU/rzj370o9LnTHRHnz59NGHCBEn//yWd1q5dK6k4h1/72te6/RybOu6440qvs0WLFnXpsmQ9bcGCBfrhD39Y+vNtt92mU045pVuP+eqrr5Zujx07trRZBQAAgJ7DhgcAAAAASdK+++6rX//616U/T5gwQVdfffVWP1g6l8tpzpw5+t73vrfZ5as2ddNNN5U2J+bMmaPzzz9fkUhks/vEYjF973vf0/PPP6+qqqpOc44YMaJ0RoYxRuedd95nPgsil8vp9ttv12WXXdalz1849thjdcEFF5R+9pRTTtHNN9+81Q8HT6fTmjFjhk4//XR961vf6vTxvXLzzTdr5513liStWrVKX/3qV7d6pkckEtF9992nX/ziF50+7sUXX6yKiuI/DxctWrTZ33tt6NChpU2UeDyuN9980/Pn2B6rV6/Wt7/9bWUyGUnF1/1VV13V7cedN29e6famZ08BAACg5/C/mAAAAAAouf7669XQ0KCHHnpIxhjdfvvtuuuuu/TlL39Z++67r/r3769YLKaGhgYtXbpUyWRSkjRs2LAtPt7YsWN19dVX6/e//70k6bHHHtMzzzyj4447TiNGjND69es1b948JRIJDR06VJdffrkmTpzYac6bbrpJL7/8sgqFgt59913tt99+Ou6447THHnuotbVVr7zyijZs2KCamhrdfPPNuvTSSzt9zHvvvVfr1q3TnDlzlM1mdd111+m3v/2tvvKVr2ivvfZSv379FIlEtHLlStXX15cOkB922GFdHN3u+9znPqfHH39c48ePVyKR0Mcff6yTTz5Zo0aN0hFHHKGdd95ZiURCH3zwgZYsWaL29nadfvrpXXrck08+Wc8991zp76qqqvT973+/R3p897vf1SuvvCJJmjFjhr761a/2yPN0xYMPPqgNGzZIKp7tUllZqZ///Odd+tkbb7yxtAG1KWOMnn76aUlS3759dfbZZ3sXGAAAAFvFhgcAAACAklAopClTpuiwww7T9ddfr3A4rGw2qwULFmz1g8xDodA2L3t02223qU+fPrrttttUKBSUTCY1a9asze4zcuRITZ8+vcsfYv2Vr3xFf/3rX3XJJZcon8+rra1Nzz777Gb32X333fXYY48pn8936TH79eun5557TjfccINuv/12pVIppVKpbX5AeN++fTf7MPHecPzxx+sf//iHLrjggtJnYKxatUqrVq3a4v1ramq69LiXXHLJZhse3/rWtzR8+PDuB96Cc845R//1X/+lZDKpJ554QrfcckvpTKDetull1PL5vO67774u/+zVV1+9xQ2PBQsWaM2aNZKK47i1DUEAAAB4i0taAQAAAPiMSy+9VKtWrdLdd9+t8ePHa++991ZNTY0qKys1dOhQjRkzRueee67uuecerVq1qvR/s2/NzTffrDfeeEMTJkzQ6NGj1a9fPw0bNkyHHXaYbrrpJr377rvb/X/5T5gwQUuXLtXFF1+svffeW9XV1RoyZIgOOeQQ/fa3v9XSpUt19NFHb9dj9unTRzfeeKMaGhr0hz/8QSeffLL22msv9e/fX3379tWwYcN06KGH6oILLtCUKVO0Zs0a/fnPf96u5/DCQQcdpMWLF+vvf/+7vv/97+vzn/+8Bg0apD59+mjo0KE67LDD9JOf/ETPPfec/vd//7dLjzlu3LjNLv/l9YeVb2rw4MG66KKLJEkff/zxdn1migvuv//+0u0rrrjCvyAAAABlJmS68qmAAAAAANALpkyZUjoQ3rGpgN4xf/58jR07VpI0atQoffTRR6XP9egJDQ0N2m+//UqX3ZoxY0aPPVdvamlp0V577aVUKqWjjjpKr732mt+RAAAAygZneAAAAAAA9MADD5RuT5gwoUc3OyRp9OjRpbNIZs6cqffff79Hn6+33HXXXUqlUpKKnzUDAACA3sOGBwAAAACUuaamJj3xxBOSpMrKyh69nNWmrr/+eg0aNEjGGN1444298pw9KRKJ6K677pIknXrqqaUzZgAAANA72PAAAAAAgDKWz+d1+eWXK51OS5LOPvtsjRw5sleee7fddtMNN9wgSXrsscf09ttv98rz9pRbb71Vra2t6tevn+644w6/4wAAAJQdPsMDAAAAgDX4DI/e8cgjj+iNN95QIpHQq6++qg8++ECS1K9fPy1btkyf//znfU4IAAAAbL9KvwMAAAAAAHrXnDlz9NBDD33m7//4xz+y2QEAAABnseEBAAAAAGVs4MCBOuyww3TVVVfp1FNP9TsOAAAAsMO4pBUAAAAAAAAAAHAeH1oOAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnMeGBwAAAAAAAAAAcB4bHgAAAAAAAAAAwHlseAAAAAAAAAAAAOex4QEAAAAAAAAAAJzHhgcAAAAAAAAAAHAeGx4AAAAAAAAAAMB5bHgAAAAAAAAAAADnseEBAAAAAAAAAACcx4YHAAAAAAAAAABwHhseAAAAAAAAAADAeWx4AAAAAAAAAAAA57HhAQAAAAAAAAAAnPf/AVAbi7M1kMi8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "coh, coh_e = cs_reb.coherence()\n", + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, coh, yerr=coh_e, fmt=\"o\", color=\"k\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(f\"Coherence ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV)\")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.loglog()\n", + "# plt.ylim([1e-4, None]);\n", + "# plt.xlim([None, 80])\n", + "# plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "904811f2", + "metadata": { + "id": "904811f2" + }, + "source": [ + "# Spectral timing" + ] + }, + { + "cell_type": "markdown", + "id": "965a7273", + "metadata": { + "id": "965a7273" + }, + "source": [ + "Now let us explore the spectral timing properties of this observation, with no physical interpretation, just for the sake of data exploration." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "302ef79e", + "metadata": { + "id": "302ef79e" + }, + "outputs": [], + "source": [ + "from stingray.varenergyspectrum import CountSpectrum, CovarianceSpectrum, RmsSpectrum, LagSpectrum" + ] + }, + { + "cell_type": "markdown", + "id": "b53713b3", + "metadata": { + "id": "b53713b3" + }, + "source": [ + "Let us start with the lag spectrum with respect to energy, in different frequency bands.\n", + "This might be confusing for people coming from other wavelengths, so let us specify that\n", + "\n", + "+ \"frequency\" refers to the frequency of the variability.\n", + "\n", + "+ \"energy\" refers to the photon energy.\n", + "\n", + "The photons at 0.3-12 keV are modulated by oscillations and other stochastic noise up to ~100 Hz (see section above). As an example, we will now analyze the spectral timing properties using the variability up to 1 Hz and between 4 and 10 Hz." + ] + }, + { + "cell_type": "markdown", + "id": "0c530beb", + "metadata": {}, + "source": [ + "From Kara+2019, figure 3" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "5eca6d3c", + "metadata": { + "id": "5eca6d3c", + "outputId": "07a6c11a-34fb-4893-bf7c-a51b2299da14" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:57<00:00, 1.44s/it]\n" + ] + } + ], + "source": [ + "energy_spec = np.geomspace(0.5, 10, 41)\n", + "segment_size = 10\n", + "bin_time = 0.001\n", + "freq_interval = [3, 30]\n", + "ref_band=[0.5, 10]\n", + "\n", + "# If not specified, the reference energy band is the whole band.\n", + "\n", + "lagspec_3_30 = LagSpectrum(events, freq_interval=freq_interval, \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, ref_band=ref_band)\n", + "energies = lagspec_3_30.energy\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "23efaaa4", + "metadata": { + "id": "23efaaa4", + "outputId": "ceb9952c-6ea2-4093-eb07-9bdde6492601" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABlsAAAR9CAYAAADROfHiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdf3Rcd33n/9dII2ls/SYxKG5KZULBNJYrfjQNDZG1YIpje0vKltZROMVtdsHJboJ3v83G67MFud0ssdntxmGbOJw2cXYhSZcAhsSpSwiV7AIuxYksKT/oYjwkrnFQhEajX6PRaO73j6xUTO44snU199735/k4x+fY1ujez+v9eeuTZD65n0l4nucJAAAAAAAAAAAAF6Qi7AEAAAAAAAAAAADEGZstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCKw2QIAAAAAAAAAALAIbLYAAAAAAAAAAAAsApstAAAAAAAAAAAAi8BmCwAAAAAAAAAAwCIkwx4AcD4ymYx6e3vn//yLv/iLqqmpCXFEAAAAAAAAAICfNz09rRdffHH+z+vWrVNTU1N4A1pibLYgVnp7e3XttdeGPQwAAAAAAAAAwHk4cOCAPvjBD4Y9jCXDMWIAAAAAAAAAAACLwGYLAAAAAAAAAADAInCMGGLlF3/xFyVJ27dv13333af/9b/+l9785jeHPKp4m5ycVE9Pjzo7O7V8+fKwhxM5rtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3k+sEPfnDWR0LMvbdrFZstiJWamhpJUk9Pj3K5nN785jfr8ssvD3lU8ZbP51VVVaVf+ZVfUXV1ddjDiRxX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsFnPNvbdrVcLzPC/sQQAL9cwzz2jNmjXzfx4cHGSzBQAAAAAAAAAixrX3cvnMFsTShg0btGzZsrCHYcLU1JQOHTqkqampsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUlNTkyoqaN8gFItFZTIZFYvFsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMY8QQK649egYAAAAAAAAAceTae7k8GoBYam1tVTKZDHsYJhQKBaXTaRUKhbCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxNLWrVtVV1cX9jBMGB8f1wMPPKDx8fGwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBArrj16BgAAAAAAAABx5Np7uTzZAgAAAAAAAAAAsAhstiCWduzYocbGxrCHYcLo6KjuuOMOjY6Ohj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLYglg4cOKDJycmwh2HC8uXLde2112r58uVhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmf2YJYce2cPwAAAAAAAACII9fey+XJFsQSu7rBmZyc5Emhc3C1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLYAAAAAAAAAAAAsAseIIVZce/QMAAAAAAAAAOLItfdyebIFsbR69WpVVVWFPQwTZmZm9Pzzz2tmZibsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbHEZ7YEh/Mfz83V+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsW1R88AAAAAAAAAII5cey+XJ1sAAAAAAAAAAAAWgc0WxFJ3d7eamprCHoYJmUxGu3btUiaTCXsokeRqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LOEYMsTL36Flra6tOnTqlvr4+04+elUOhUNCpU6d06aWXKplMhj2cyHG1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uIZdrx4ix2YJYce0HFAAAAAAAAADiyLX3cjlGDLG0ZcsW1dbWhj0MEyYmJvTwww9rYmIi7KFEkqv1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxjswWxlMlkVCwWwx6GCRUVFWpqalJFBcuBH1frYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGMWKIFdcePQMAAAAAAACAOHLtvVy2xRBL7e3tqq6uDnsYJuTzefX19Smfz4c9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJY6OzuVSqXCHoYJuVxOPT09yuVyYQ8lklytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZx4ghVlx79AwAAAAAAAAA4si193J5sgWxlEqllEgkwh6GCZ7nKZfLiX1Xf67Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbE0o4dO9TY2Bj2MEwYHR3V7t27NTo6GvZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYmXu0bOWlhYNDQ3p+PHjph89K4fZ2VkNDQ1pxYoVqqysDHs4keNqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdQi7XjhFLhj0A4EKcOXMm7CGYUVlZqZaWlrCHEVmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEEEtbt25VXV1d2MMwYXx8XPv379f4+HjYQ4kkV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmC2IpnU6rUCiEPQwTksmkWltblUzyoJsfV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZntiBWXDvnDwAAAAAAAADiyLX3cnmyBbF05ZVXqqamJuxhmDA9Pa2jR49qeno67KFEkqv1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxjswWx1N7erurq6rCHYUI+n1dfX5/y+XzYQ4kkV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogV1x49AwAAAAAAAIA4cu29XJ5sQSw1NTWpooL2DUKxWFQmk1GxWAx7KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy3i3GrG0fft2NTQ0hD0ME7LZrPbu3atsNhv2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGJl7tGzpqYmZbNZ9ff3m370rByKxaKy2awaGhp4WsiHq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdgu5XDtGLBn2AIALkclkwh6CGRUVFWpqagp7GJHlan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy+K5JQbnbdu2TfX19ef1Pel0WolEwvdXOp1emoHGwNjYmPbt26exsbGwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFsRSX1+f8vl82MMwobq6Wu3t7aqurg57KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy/jMFsTKYs75S6fTWrVqle/XTp48qdbW1iCGCAAAAAAAAADOc+0zW3iyBbHU2dmpVCoV9jBMyOVy6unpUS6XC3sokeRqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L2GxBLLW2tiqZTIY9DBMKhYLS6bQKhULYQ4kkV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogVjhEDAAAAAAAAgOjjGDEgBlpaWlRZWRn2MEyYnZ3VmTNnNDs7G/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCWNq2bZvq6+vDHoYJY2NjuvfeezU2Nhb2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGJl7tGzVCql6elpDQwMcIzYInmep+npadXU1CiRSIQ9nMhxtT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbiGXa8eI8QnjiKVcLhf2EMxIJBJKpVJhDyOyXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtm/froaGhrCHYUI2m9Wdd96pbDYb9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YJY6unp4emWgKRSKXV2drJTXoKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4zNbECuLOeePz2wBAAAAAAAAgPJw7TNbeLIFsbRhwwYtW7Ys7GGYMDU1pUOHDmlqairsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbHU1NSkigraNwjFYlGZTEbFYjHsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOMYMcQKx4gBAAAAAAAAQPRxjBgQA62trUomk2EPw4RCoaB0Oq1CoRD2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljaunWr6urqwh6GCePj43rggQc0Pj4e9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJZxjBhihWPEAAAAAAAAACD6OEYMAAAAAAAAAAAAC8ZmC2Jpx44damxsDHsYJoyOjuqOO+7Q6Oho2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGZgti6cCBA5qcnAx7GCYsX75c1157rZYvXx72UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYgVPrMFAAAAAAAAAKKPz2wBYoBd3eBMTk7ypNA5uFofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzI2WwAAAAAAAAAAABaBY8QQKxwjBgAAAAAAAADRxzFiQAysXr1aVVVVYQ/DhJmZGT3//POamZkJeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEs8ZktweH8x3NztT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhli50EfPBgYGtG/fPt19992+X7/qqqvU0dGhrq6us64PAAAAAAAAADh/HCMGGHLw4EF1dHRo7dq1JTdaJOlb3/qWPv3pT6utrU0dHR16/PHHyzhKAAAAAAAAAECcsdmCWOru7lZTU1PJrw8PD6urq0ubN2/WkSNHzuvaR44c0aZNm3T99ddreHh4kSONvkwmo127dimTyYQ9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SstbVVp06dUl9f36sePevv79c111yj06dPL/p+K1eu1KFDh9TW1rboa0VVoVDQqVOndOmllyqZTIY9nMhxtT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbiGXa8eIsdmCWHmtH9D+/n51dnZqZGQksHs2Nzert7fX9IYLAAAAAAAAAATJtc0WjhFDLG3ZskW1tbVn/d3w8LCuueaaQDdaJGlkZEQbNmwwe6TYxMSEHn74YU1MTIQ9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJYymYyKxeJZf3fzzTcHcnSYn9OnT+uWW25ZkmuHraKiQk1NTaqoYDnw42p9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4RgyxUurRs4MHD2rz5s1Lfv/HHntMmzZtWvL7AAAAAAAAAECccYwYEAPt7e2qrq6e//Pu3bvLct89e/aU5T7llM/n1dfXp3w+H/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCWOrs7FQqlZIkDQwM6MiRI2W57+HDhzU4OFiWe5VLLpdTT0+Pcrlc2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGMWKIFb9Hz77whS/o05/+dNnGsHPnTt1+++1lux8AAAAAAAAAxA3HiAExkEqllEgkJEnf/e53y3rvct9vqXmep1wuJ/Zd/blaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQSzt27FBjY6M8z9NTTz1V1nsfO3bM1CI3Ojqq3bt3a3R0NOyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgxxMrco2ctLS0aGhrSt771LV155ZVlH0c2m1V9fX3Z77sUZmdnNTQ0pBUrVqiysjLs4USOq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdgu5XDtGLBn2AIALcebMGUnSzMxMKPefnp42s9lSWVmplpaWsIcRWa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMY8QQS1u3blVdXZ2qqqpCuX9NTU0o910K4+Pj2r9/v8bHx8MeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMjZbEEvpdFqFQkG1tbVqbm4u672bm5tVV1dX1nsupWQyqdbWViWTPOjmx9X6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJbxmS2IFb9z/j7xiU/oySefLNsY1q9fryeeeKJs9wMAAAAAAACAuHHtM1t4sgWxdOWVV84f5XXFFVeU9d7lvt9Sm56e1tGjRzU9PR32UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZglhqb29XdXW1JOm6664r673Lfb+lls/n1dfXp3w+H/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYqXUo2cdHR06cuTIkt+/o6NDvb29S34fAAAAAAAAAIgzjhEDYqCpqUkVFf/cvrfddltZ7luu+5RTsVhUJpNRsVgMeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEsbd++XQ0NDfN/3rRp05If79XV1aWNGzcu6T3CkM1mtXfvXmWz2bCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEECtzj541NTUpm82qv79//tGz4eFhrV27VqdPnw78vitXrlR/f78uuuiiwK8dtmKxqGw2q4aGhrOeFsIrXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vIxTFiQAz4PUJ30UUX6dChQ2pubg70Xs3NzTp06JDJjRZJqqioeNWxbPhnrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoyZQixt27ZN9fX1r/r7trY29fb2auXKlYHcZ+XKlert7VVbW1sg14uisbEx7du3T2NjY2EPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZstiKW+vj7l83nfr7W1tam/v19dXV2LukdXV5f6+/tNb7RIUnV1tdrb21VdXR32UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYiV8z3n7+DBg9qzZ48OHz684Ht0dHTotttu08aNGxc1VgAAAAAAAABwFZ/ZAsRAZ2enUqnUa75u06ZN6u3t1cDAgG666aaSr7vqqqu0c+dODQwMqLe316mNllwup56eHuVyubCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WB8zOzqq/v19/+Zd/qRtvvFHvete7VF1drUQioUQioc7OzgVfK51Oz3/fQn+9+c1vDjxTa2urksnkgl+/Zs0a3XrrrSW//vnPf1633377WTutrigUCkqn0yoUCmEPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGceIGXfgwAFdf/31mpycLPmadevWqaenZ0HXS6fTWrVq1XmN4bLLLtMPfvCD8/qeUhbz6Nm5xn7y5Em1trYGMUQAAAAAAAAAcJ5rx4gt/NEAxFImkznnRsti1NfX6/d///df83UrVqwI/N4tLS0aGhoK/Loump2d1dDQkFasWKHKysqwhxM5rtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBzxhje8QZs3b9auXbv0+OOP6xOf+MSir/m6171O//N//s/X/PWpT30qgARn27Ztm+rr6wO/rovGxsZ07733amxsLOyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgx486cOaN8Pq83vvGNZ/19d3e3du3aJenCjxH7pV/6JaXT6SCH+5rmHj1LpVKanp7WwMAAx4gtkud5mp6eVk1NjRKJRNjDiRxX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsFnJxjBhMaWlpCXsISyKXy4U9BDMSiYRSqVTYw4gsV+tjObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYoil7du3q6GhIexhmJDNZnXnnXcqm82GPZRIcrU+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWenp6eLolIKlUSp2dneyUl+BqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LOEYMF6xQKOiJJ57Q9773Pb388stKpVK6+OKL9a53vUtXXHGFampqluzefX19S3Zt11RXV6u9vT3sYUSWq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOPJFlywf/qnf9Jv/uZvaufOnfqzP/sz/df/+l/1H/7Df1BHR4cuueQS/ef//J81Pj6+JPfesGGDli1btiTXds3U1JQOHTqkqampsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRYsiZGREd1+++1617vepX/8x38M/PpNTU2qqKB9g1AsFpXJZFQsFsMeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMt6txnmrr6/X1q1b9fDDD+v73/++xsfHNT09rRdffFFf/OIXtX79+vnXfv/739eGDRs0NDQU6BgOHDigRCIhSZqdnVUmk5HneZJe+fCofD4v6ZUd4ImJifnXNTU1zV+jsbFRVVVVkqRcLqfJyUlJ0szMjEZHR+dfl8lkVCgUJEkTExPzu8n5fH7+A6o8z1Mmk9Hs7KwkaXx8fP4zZaanpzU2Nibp1Yvk2NiYpqen58cw9yTQQjMVCgVlMpn5sY6OjmpmZkaSNDk5uaBMkvTBD35QtbW1ZjIFOU+1tbXatGmTksmkmUwLmafly5dry5Ytmp2dNZNpbp5mZ2f1oQ99SLW1tWYyWeo9MpGJTGRaaKaqqipt2bJFFRUVZjJZnCcyBZcplUppy5Yt8jzPTCaL81TuTDU1NdqwYYNqa2vNZLI0T5K0ZcsW1dTUmMkU9jwlk0lt2rRJtbW1ZjLx70aLn6fq6mpt2bJFiUTCTKaZmRnV1tbqt37rt+bfA41zJlew2YLzcskll+j06dO6//779Xu/93t6y1veotraWlVXV+vSSy/V7/zO7+iJJ57QvffeO78QnDx5Uv/pP/2nQMexYcMGffjDH5YkDQ0Nae/evfMLwH333adnn31WktTb26tHH310/nXbt2+fv8aNN96oyy67TJL0ve99T1//+tclSSdOnNA999wz/7q9e/fq1KlTkqRHH31Uvb29kqRnn31W9913n6RXFqe9e/fObyo98sgjOnr0qCTp6aef1he+8AVJryxAe/funV/wvvCFL+jpp5+WJB09elSPPPLIeWU6deqU9u7dOz/We+65RydOnJAkff3rX19Qpq997Wt69NFHVSgUzGQKcp4KhYLuv/9+HTt2zEymhczTxMSE0um0qUw/O0+HDx9WoVAwlcniPJGJTGQi07kyDQwMKJ1O62//9m/NZLI4T2QKLtOPf/xjpdNpffGLXzSTyeI8lTvTj370I+3du3f+zTYLmSzN09e+9jWl0+n5ebKQKex5OnbsmO6//34VCgUzmfh3o8XP0z/+4z8qnU7rb/7mb8xkOnHihAqFgr785S/rb/7mb2KfyRkenPSpT33Kk+RJ8tatW7ck99i5c+f8PSorK70zZ84s+pqDg4OeJK+7u9tbuXKlNzg46BUKBW9kZMQrFoue53ne6OioNz097Xme501OTnrj4+Oe53neD37wA6+pqWl+TI2NjV5VVZUnyXvuuee8iYkJz/M8L5/Pe5lMZv6eIyMj3szMjOd5njc+Pu5NTk56nud509PT3ujoqOd5nlcsFr2RkRGvUCh4nud5Y2Nj3tTUlOd5npfL5bxsNut5nufNzs56IyMj3uzsrOd5npfNZr1cLud5nudNTU15Y2Njnud5C840MzPjjYyMzI81k8l4+Xze8zzPm5iYWFCmf/qnf/K6u7u9kZERM5mCnKeRkRGvu7t7vn8tZFrIPP30pz/1uru7vRdeeMFMprl5euGFF+Z73komS71HJjKRiUwLzfTSSy953d3d3o9//GMzmSzOE5mCy/Tyyy973d3d3qlTp8xksjhP5c40NDQ0/++2VjJZmqe5/94eGhoykynseTpz5sx8z1vJxL8bLX6efvKTn3jd3d3e6dOnzWTK5/PeyP97T+r06dOxzTT3Xu7cr8HBQc+yhOf9v2d+4JTu7m7t2rVLkrRu3Tr19PQEfo/x8XG9/vWvn3+E7X//7/+tj3zkI4u65jPPPKM1a9bM/3lwcFCXX375gr43nU5r1apVvl87efKkWltbFzU2AAAAAAAAAMArFvNebhxxjBiWTF1dnX791399/s/PPfdciKMBAAAAAAAAAGBpsNmCJXXJJZfM//7ll18O7Lo7duxQY2NjYNdz2ejoqO64446zPmAL/8zV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCJTUxMTH/+9ra2sCue+DAAU1OTgZ2PZctX75c1157rZYvXx72UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VcliXDHgBse/rpp+d/v3LlysCu+/zzzwd2LddVVVVp9erVYQ8jslytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZT7ZgyXzjG9/Qiy++OP/nzs7OwK7Nrm5wJicneVLoHFytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZmy1YsHw+r3w+v6DXDg0Nadu2bfN/ftvb3qZ3vOMdSzU0AAAAAAAAAABCk/A8zwt7ECi/7u5u7dq1S5K0bt069fT0vOb3pNNpXX311br55pv1e7/3e/qlX/qlV73G8zw9/vjj+rf/9t/qRz/6kSQpkUjoscce08aNGxc97meeeUZr1qyZ//Pg4KAuv/zyBX1vOp3WqlWrfL928uRJtba2Lnp8AAAAAAAAAIDFvZcbR3xmiwM2btyo06dPn/V3Z86cmf/99773PbW3t7/q+x5//PFXfc7KqVOndNttt+m2225Ta2ur2tradPHFF6uqqkpDQ0P6+7//+1fda8+ePYFstPys1atX68SJE4Fe01UzMzM6ceKELrvsMlVVVYU9nMhxtT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwj5oBnn31Wx48fP+vXSy+9NP/1iYmJV339+PHjr3lkWDqd1qOPPqr7779fn/vc5/SVr3zlrI2WX/iFX9BXv/pV/dEf/VHgmfjMluBw/uO5uVofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEXNAa2vr/JFe5+Pnj9byPE/PPPOMvvOd7+jb3/62nnnmGb388ssaHh7W5OSkGhoadMkll+jXfu3XdM011+i3f/u3A9915RgxAAAAAAAAAIg+jhGDOel0OpDrJBIJrVmzRmvWrNG/+Tf/JpBrAgAAAAAAAAAQdxwjhljq7u5WU1NT2MMwIZPJaNeuXcpkMmEPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGceIIVbmHj1rbW3VqVOn1NfXZ/rRs3IoFAo6deqULr30UiWTPOz281ytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbyOXaMWJstiBWXPsBBQAAAAAAAIA4cu29XI4RQyxt2bJFtbW1YQ/DhImJCT388MOamJgIeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEsZTIZFYvFsIdhQkVFhZqamlRRwXLgx9X6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJZxjBhixbVHzwAAAAAAAAAgjlx7L5dtMcRSe3u7qqurwx6GCfl8Xn19fcrn82EPJZJcrY/l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZstiKXOzk6lUqmwh2FCLpdTT0+Pcrlc2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGMWKIFdcePQMAAAAAAACAOHLtvVyebEEspVIpJRKJsIdhgud5yuVyYt/Vn6v1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxjswWxtGPHDjU2NoY9DBNGR0e1e/dujY6Ohj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWJl79KylpUVDQ0M6fvy46UfPymF2dlZDQ0NasWKFKisrwx5O5LhaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3kMu1Y8SSYQ8AuBBnzpwJewhmVFZWqqWlJexhRJar9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgxxNLWrVtVV1cX9jBMGB8f1/79+zU+Ph72UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZglhKp9MqFAphD8OEZDKp1tZWJZM86ObH1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYgV1875AwAAAAAAAIA4cu29XJ5sQSxdeeWVqqmpCXsYJkxPT+vo0aOanp4OeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEstbe3q7q6OuxhmJDP59XX16d8Ph/2UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGLFtUfPAAAAAAAAACCOXHsvlydbEEtNTU2qqKB9g1AsFpXJZFQsFsMeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMt6tRixt375dDQ0NYQ/DhGw2q7179yqbzYY9lEhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SsqalJ2WxW/f39ph89K4disahsNquGhgaeFvLhan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3UIu144RS4Y9AOBCZDKZsIdgRkVFhZqamsIeRmS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLsnhuicF527ZtU319fdjDMGFsbEz79u3T2NhY2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1nGZgtiqa+vT/l8PuxhmFBdXa329nZVV1eHPZRIcrU+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2V8ZgtixbVz/gAAAAAAAAAgjlx7L5cnWxBLnZ2dSqVSYQ/DhFwup56eHuVyubCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxFJra6uSyWTYw7hg6XRaiUTC91c6nS7rWAqFgtLptAqFQlnvGxeu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEECtWHj1Lp9NatWqV79dOnjyp1tbW8g4IAAAAAAAAAAJk5b3cheLJFsRSS0uLKisrwx6GCbOzszpz5oxmZ2fDHkokuVofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzI2WxBL27ZtU319fdjDMGFsbEz33nuvxsbGwh5KJLlaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFDrMw9epZKpTQ9Pa2BgYFYPnoWpWPEPM/T9PS0ampqlEgkynbfuHC1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uIZdrx4jF9xPG4bRcLhf2EMxIJBJKpVJhDyOyXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtm/froaGhrCHYUI2m9Wdd96pbDYb9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YJY6unp4emWgKRSKXV2drJTXoKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4zNbECtWzvmL0me2AAAAAAAAAEDQrLyXu1A82YJY2rBhg5YtWxb2MEyYmprSoUOHNDU1FfZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWsdmCWGpqalJFBe0bhGKxqEwmo2KxGPZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsXKo2ccIwYAAAAAAADAMivv5S4UjwYgllpbW5VMJsMehgmFQkHpdFqFQiHsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbG0detW1dXVhT0ME55//nk98MADWrFihRKJxFm/0ul02MML3fj4uB544AGNj4+HPZSyspzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSzjGDHEipVHz6J0jFiUxgIAAAAAAADABivv5S4UT7YAAAAAAAAAAAAsApstiKUdO3aosbEx7GGYMD4+Tj3PYXR0VHfccYdGR0fDHkpZWc5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YJYOnDggCYnJ8MehgmpVIp6nsPy5ct17bXXavny5WEPpaws57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy5JhDwC4EM8//3zYQzAjmUxSz3OoqqrS6tWrwx5G2VnObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyW8WQLYold3eDkcjnqeQ6Tk5NOPvljObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmCwAAAAAAAAAAwCIkPM/zwh4EsFDPPPOM1qxZM//nwcFBXX755SGO6MKk02mtWrXK92snT55Ua2urk2MBAAAAAAAAYIOV93IXiidbEEurV69WVVVV2MMwoVAoUM9zmJmZ0fPPP6+ZmZmwh1JWlnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCW+IyR4PCZLefm6vmYlnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2UcI4ZYsfDo2cDAgPbt26e7777b9+tXXXWVOjo61NXVdVbWpcIxYgAAAAAAAACCZuG93PPBky1AmRw8eFAdHR1au3ZtyY0WSfrWt76lT3/602pra1NHR4cef/zxMo4SAAAAAAAAAHC+2GxBLHV3d6upqSnsYSzI8PCwurq6tHnzZh05cuS8vvfIkSPatGmTrr/+eg0PDy/J+MbHx2NVz3LLZDLatWuXMplM2EMpK8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFDrMw9etba2qpTp06pr68v0o+e9ff365prrtHp06cXfa2VK1fq0KFDamtrC2Bk/+zEiRNav369Tp06pUKhcNbXOEZMKhQKOnXqlC699FIlk8mwh1M2lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW4hl2vHiLHZgliJ0w9of3+/Ojs7NTIyEtg1m5ub1dvbG+iGC5/ZAgAAAAAAACBocXovNwgcI4ZY2rJli2pra8MeRknDw8O65pprAt1okaSRkRFt2LAh0CPFpqamIl/PME1MTOjhhx/WxMRE2EMpK8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQS5lMRsViMexhlHTzzTcHcnSYn9OnT+uWW24J7HoVFRWRr2eYKioq1NTUpIoKt5ZLy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEUOsxOHRs4MHD2rz5s1Lfp/HHntMmzZtWvR1OEYMAAAAAAAAQNDi8F5ukNgWQyy1t7eruro67GH42r17d1nus2fPnkCuMzMzE+l6hi2fz6uvr0/5fD7soZSV5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYilzs5OpVKpsIfxKgMDAzpy5EhZ7nX48GENDg4u+jr5fD6y9YyCXC6nnp4e5XK5sIdSVpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWIn6o2c7d+7Upz/96bLe7/bbb1/UNThGDAAAAAAAAEDQov5ebtB4sgWxlEqllEgkwh7Gq3z3u9+N3f08z4tsPaPA8zzlcjm5ti9tObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmC2Jpx44damxsDHsYZ/E8T0899VRZ73ns2LFFL7gTExORrGdUjI6Oavfu3RodHQ17KGVlObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYoiVuUfPWlpaNDQ0pOPHj0fm0bNsNhvKhkU2m1V9ff0Ff/+JEyf0nve8R0NDQ5qdnT3raxwjJs3OzmpoaEgrVqxQZWVl2MMpG8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3kMu1Y8SSYQ8AuBBnzpwJewivks/nQ7nv9PT0ojZbKisrI1nPqKisrFRLS0vYwyg7y7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEUMsbd26VXV1dWEP4yzV1dWh3LempmZR3z81NRXJekbF+Pi49u/fr/Hx8bCHUlaWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJbS6bQKhULYwzhLfX29mpuby3rP5ubmRW2SDAwM6M///M9L1vMjH/mIdu7cqcHBwcUMM9aSyaRaW1uVTLr1IKDl3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZ/ZgliJ+jl/69ev15NPPlnW+z3xxBPn/X0HDx7U7t27deTIkQV/z9VXX60dO3Zo48aN530/AAAAAAAAAG6J+nu5QePJFsTSlVdeuejjs5bCFVdcEen7DQ8Pq6urS5s3b57faKmpqVlQPY8cOaJNmzbp+uuv1/Dw8AWPOW6mp6d19OhRTU9Phz2UsrKc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsdTe3h7aZ6Scy3XXXRfZ+/X392vt2rV66KGHzvr76urq86rngw8+qLVr12pgYOC8xhpX+XxefX19yufzYQ+lrCzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LOEYMsRKHR886OjrO63iuxdynt7d3Qa/t7+9XZ2enRkZGArt/c3Ozent71dbWFtg1AQAAAAAAANgQh/dyg8STLYilpqYmVVREs31vu+22SN1neHhY11xzTcmNloqKiguq58jIiDZs2GD+SLFisahMJqNisRj2UMrKcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msiya71YDr2H79u1qaGgIexi+Nm3atOTHiXV1dS34g+pvvvlmnT59uuTXGxoaLriep0+f1i233HLe3xcn2WxWe/fuVTabDXsoZWU5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxjFiiJW5R8+ampqUzWbV398fyUfPhoeHtXbt2nNuclyolStXqr+/XxdddNFrvvbgwYPavHnzOV9TUVGhhoYGZbPZC94pf+yxx7Rp06YL+t6oKxaLymazamhoiOzTVEvBcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3k4hgxIAai/gjdRRddpEOHDqm5uTnQ6zY3N+vQoUML2miRpN27d7/ma4J4JHHPnj0X/L1Rd6HHrMWd5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRkzhVjatm2b6uvrwx7GObW1tam3t1crV64M5HorV648rw+kHxgY0JEjR17zdfX19Yuu5+HDhzU4OHjB3x9lY2Nj2rdvn8bGxsIeSllZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljq6+tTPp8Pexivqa2tTf39/erq6lrUdbq6utTf37/gjRZJeuihhxb0unw+H0g9F3q/uKmurlZ7e7uqq6vDHkpZWc5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJbxmS2IlTif83fw4EHt2bNHhw8fXvD3dHR06LbbbtPGjRvP+37r16/Xk08+ed7fd6HWr1+vJ554omz3AwAAAAAAABBdcX4v90LwZAtiqbOzU6lUKuxhnJdNmzapt7dXAwMDuummm0q+7qqrrtLOnTs1MDCg3t7eC9po8TxPTz311IJem0qlAqnnsWPHZHHvNpfLqaenR7lcLuyhlJXl3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lGZstiKXW1lYlk8mwh3FB1qxZo1tvvbXk1z//+c/r9ttvP2vX93yNjY1pZGRkQa9NJpOB1HNkZETj4+OLukYUFQoFpdNpFQqFsIdSVpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWLHy6Fk6ndaqVat8v3by5Em1trYu6vovv/yyVqxYsahrXIihoSFdfPHFZb8vAAAAAAAAgGix8l7uQvFkC2KppaVFlZWVYQ8jss7ng7MqKysDq2dNTc2irxE1s7OzOnPmjGZnZ8MeSllZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljatm2b6uvrwx5GZNXX16u5uXnBrw2ins3Nzaqrq1vUNaJobGxM9957r8bGxsIeSllZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGJl7tGzVCql6elpDQwMxPLRs6U+RkyS1q9fryeffPI1X5dIJFRTU6Pp6elFfcD9+vXr9cQTT1zw90eV53manp5WTU2NEolE2MMpG8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3kItjxIAYyOVyi9oYcMEVV1yxoNd5nhdIPRd6v7hJJBJKpVKx/YfahbKc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsbR9+3Y1NDSEPYxIu+666xb0uoaGhkDqudD7xU02m9Wdd96pbDYb9lDKynJuy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUk9Pj3K5XNjDiLS2tjZdffXVr/m6XC636Hp2dHSc9UigJalUSp2dnUqlUmEPpaws57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy/jMFsSKlXP+yvGZLZJ08OBBbd68OZBrvdZ9Nm7cuOT3AQAAAAAAABAPVt7LXSiebEEsbdiwQcuWLQt7GJG3adOm1zzea9myZYuqZ1dXl+mNlqmpKR06dEhTU1NhD6WsLOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsvYbEEsNTU1qaKC9l2Iz372s1q5cmXJr1dUVFxwPVeuXKm77rprMcOLvGKxqEwmo2KxGPZQyspybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjGPEECtWHj0r1zFicwYGBrRu3TqNjIwEds3m5mb19vaqra0tsGsCAAAAAAAAsMHKe7kLxaMBiKXW1lYlk8mwhxEbbW1t6u3t9X3CJZlMnnc9V65c6cxGS6FQUDqdVqFQCHsoZWU5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLYmnr1q2qq6sLexix0tbWpv7+fnV1dZ3193V1dedVz66uLvX39zux0SJJ4+PjeuCBBzQ+Ph72UMrKcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBArVh49K/cxYj/v4MGD2rNnjw4fPrzg7+no6NBtt92mjRs3LuHIAAAAAAAAAFhg5b3cheLJFsBBmzZtUm9vrwYGBnTTTTeVfN1VV12lnTt3amBgQL29vWy0AAAAAAAAAIAPNlsQSzt27FBjY2PYw4i9NWvW6MYbbyxZz89//vO6/fbbz9qBds3o6KjuuOMOjY6Ohj2UsrKc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsXTgwAFNTk6GPQwTUqkU9TyH5cuX69prr9Xy5cvDHkpZWc5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJYlwx4AcCGef/75sIdgRjKZpJ7nUFVVpdWrV4c9jLKznNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOPJFsQSu7rByeVy1PMcJicnnXzyx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRYAAAAAAAAAAIBFSHie54U9CGChnnnmmbM+rH1wcFCXX355iCO6MOl0WqtWrfL92smTJ9Xa2urkWAAAAAAAAADYYOW93IXiyRbE0urVq1VVVRX2MC5Ya2urPM/z/VXuzY1CoRD7ei6lmZkZPf/885qZmQl7KGVlObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcZmC2KJzxgJDp/Zcm6uno9pObflbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogV1x49KweOEQMAAAAAAAAQNNfey+XJFgAAAAAAAAAAgEVgswWx1N3draamprCHYcL4+Dj1PIdMJqNdu3Ypk8mEPZSyspzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSzjGDHEytyjZ62trTp16pT6+vpMP3pWDidOnND69et16tQpFQqFs77GMWJSoVDQqVOndOmllyqZTIY9nLKxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdgu5XDtGLJ6zBOel0+mwh2BGZWUl9TyHZDLp5IaT5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtmzZotra2rCHYcLU1BT1PIeJiQk9/PDDmpiYCHsoZWU5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLYimTyahYLIY9DBMqKiqo5zlUVFSoqalJFRVuLZeWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZXxmC2LFtXP+yiGdTmvVqlW+X+MzWwAAAAAAAABcCNfey2VbDLHU3t6u6urqsIdhwszMDPU8h3w+r76+PuXz+bCHUlaWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJY6OzuVSqXCHoYJ+Xyeep5DLpdTT0+Pcrlc2EMpK8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFDrLj26Fk5cIwYAAAAAAAAgKC59l4uT7YgllKplBKJRNjDMMHzPOp5Dp7nKZfLybV9acu5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQSzt27FBjY2PYwzBhYmKCep7D6Oiodu/erdHR0bCHUlaWc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SspaVFQ0NDOn78uOlHz8rhxIkTes973qOhoSHNzs6e9TWOEZNmZ2c1NDSkFStWqLKyMuzhlI3l3JazAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW8jl2jFiybAHAFyIM2fOhD0EMyorK6nnOVRWVqqlpSXsYZSd5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiCGWtm7dqrq6urCHYcLU1BT1PIfx8XHt379f4+PjYQ+lrCzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L2GxBLKXTaRUKhbCHYUJlZSX1PIdkMqnW1lYlk249CGg5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxme2IFZcO+cPAAAAAAAAAOLItfdyebIFsXTllVeqpqYm7GGYMD09raNHj2p6ejrsoUSSq/WxnNtyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LGOzBbHU3t6u6urqsIdhQj6fV19fn/L5fNhDiSRX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxjFiiBXXHj0DAAAAAAAAgDhy7b1cnmxBLDU1NamigvYNQrFYVCaTUbFYDHsokeRqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LeLcasbR9+3Y1NDSEPQwTstms9u7dq2w2G/ZQIsnV+ljObTkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYmXu0bOmpiZls1n19/ebfvSsHIrForLZrBoaGnhayIer9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2C7lcO0YsGfYAgAuRyWTCHoIZFRUVampqCnsYkeVqfSzntpwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L4rklBudt27ZN9fX1YQ/DhLGxMe3bt09jY2NhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYilvr4+5fP5sIdhQnV1tdrb21VdXR32UCLJ1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvGZLYgV1875AwAAAAAAAIA4cu29XJ5sQSx1dnYqlUqFPQwTcrmcenp6lMvlwh5KJLlaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlscMDs7q/7+fv3lX/6lbrzxRr3rXe9SdXW1EomEEomEOjs7L/jaTz75pH7/939fb3nLW1RbW6vXve51Wrt2rW699VY9//zzwYX4Oa2trUomk0t2fZcUCgWl02kVCoWwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxIw7cOCArr/+ek1OTpZ8zbp169TT03Ne181ms/rYxz6mv/qrvyr5mqqqKu3atUv/6T/9p/O69rm49ugZAAAAAAAAAMSRa+/l8mSLcZlM5pwbLRdiZmZGv/3bv33WRsuaNWv0+7//+/rd3/1dXXLJJfOv27lzp/7kT/4k0PtLUktLiyorKwO/rotmZ2d15swZzc7Ohj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLY44g1veIM2b96sXbt26fHHH9cnPvGJC77Wn/7pn+qb3/ymJCmVSumhhx7SwMCAHnjgAf3VX/2V0um0br311vnXd3d3q7e3d9EZfta2bdtUX18f6DVdNTY2pnvvvVdjY2NhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRnHiBl35swZ5fN5vfGNbzzr77u7u7Vr1y5J53eM2E9+8hO96U1v0sTEhCRp3759+vjHP+772i1btsw//fLud79b3/72ty8wxT+be/QslUppenpaAwMDph89KwfP8zQ9Pa2amholEomwhxM5rtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3k4hgxmNLS0vKqjZbFeOCBB+Y3Wt7ylrfoYx/7WMnX7tmzRxUVr7TYd77zHT399NOBjSOXy4l9wmAkEgmlUqnYLtpLzdX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJax2YLzcuDAgfnfb9269Zw/7G984xv13ve+d/7PX/nKVwIbx/bt29XQ0BDY9VyWzWZ15513KpvNhj2USHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLZgwXK5nI4ePTr/587Oztf8nn/xL/7F/O/nPuclCD09PcrlcoFdz2WpVEqdnZ1KpVJhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVky7AEgPr7//e+rWCxKeuUxtre//e2v+T3veMc75n//3HPPBTaWvr6+wK7luurqarW3t4c9jMhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZTzZggX7/ve/P//717/+9QvaVf3Zz4v56U9/qqGhoUDGsmHDBi1btiyQa7luampKhw4d0tTUVNhDiSRX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLFmx4eHj+9294wxsW9D0tLS1n/fmnP/1pIGNpampSRQXtG4RisahMJjP/1BLO5mp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLst4txoLNj4+Pv/7hT5V8vOv+9lrLMaBAweUSCQkSbOzs8pkMvI8T9IrHx6Vz+clvbIDPDExIUkqFArKZDLz1xgdHdXMzIwkaXJyUpOTk5KkmZkZjY6Ozr8uk8moUChIkiYmJuZ3k/P5/PwHVHmep0wmo9nZ2fmcc58pMz09rbGxMUmvXiTHxsY0PT0t6ZXPxJmrTzkzSdIHP/hB1dbWmskU5DzV1tZq06ZNSiaTZjItZJ6WL1+uLVu2aHZ21kymuXmanZ3Vhz70IdXW1prJZKn3yEQmMpFpoZmqqqq0ZcsWVVRUmMlkcZ7IFFymVCqlLVu2yPM8M5kszlO5M9XU1GjDhg2qra01k8nSPEnSli1bVFNTYyZT2POUTCa1adMm1dbWmsnEvxstfp6qq6u1ZcsWJRIJM5lmZmZUW1ur3/qt35p/DzTOmVzBZgsW7Gc/kL66unpB31NTU3PWn4N67G3Dhg368Ic/LEkaGhrS3r175xeA++67T88++6wkqbe3V48++qgk6dSpU9q7d+/8Ne655x6dOHFCkvT1r39dX//61yVJJ06c0D333DP/ur179+rUqVOSpEcffVS9vb2SpGeffVb33XefpFcWp717984fk/bII4/o6NGjkqSnn35aX/jCFyS9sgDt3bt3fsH7whe+oKefflqSdPToUT3yyCNlz/S1r31Njz76qAqFgplMQc5ToVDQ/fffr2PHjpnJtJB5mpiYUDqdNpXpZ+fp8OHDKhQKpjJZnCcykYlMZDpXpoGBAaXTaf3t3/6tmUwW54lMwWX68Y9/rHQ6rS9+8YtmMlmcp3Jn+tGPfqS9e/fOv9lmIZOlefra176mdDo9P08WMoU9T8eOHdP999+vQqFgJhP/brT4efrHf/xHpdNp/c3f/I2ZTCdOnFChUNCXv/xl/c3f/E3sMznDg5M+9alPeZI8Sd66desW9D179uyZ/55f//VfX9D3TE5Ozn+PJO973/veIkbteYODg54kr7u721u5cqU3ODjoFQoFb2RkxCsWi57ned7o6Kg3PT09f//x8XHP8zxvZmbGGxkZmb9WJpPx8vm853meNzEx4U1MTHie53n5fN7LZDLzrxsZGfFmZmY8z/O88fFxb3Jy0vM8z5uenvZGR0c9z/O8YrHojYyMeIVCwfM8zxsbG/OmpqY8z/O8XC7nZbNZz/M8b3Z21hsZGfFmZ2c9z/O8bDbr5XI5z/M8b2pqyhsbG/M8zytrpn/6p3/yuru7vZGRETOZgpynkZERr7u72ztz5oyZTAuZp5/+9Kded3e398ILL5jJNDdPL7zwwnzPW8lkqffIRCYykWmhmV566SWvu7vb+/GPf2wmk8V5IlNwmV5++WWvu7vbO3XqlJlMFuep3JmGhobm/93WSiZL8zT339tDQ0NmMoU9T2fOnJnveSuZ+Hejxc/TT37yE6+7u9s7ffq0mUz5fN4b+X/vSZ0+fTq2mebey537NTg46FmW8Lz/98wPnNLd3a1du3ZJktatW6eenp7X/J577rlHN910kyRp7dq1On78+Gt+z09/+lNddNFF839+/vnn9da3vvXCBi3pmWee0Zo1a+b/PDg4qMsvv/yCrwcAAAAAAAAACJ5r7+VyjBgW7Gc3TV566aUFfc+ZM2fO+vPrXve6QMcEAAAAAAAAAEDY2GzBgv3sEyk/+clPzvoMl1JeeOGF+d+/7nWv04oVKwIZy44dO9TY2BjItVw3OjqqO+6446wP2MI/c7U+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstmDB3vrWt6qi4pWW8TxPfX19r/k9Tz311Pzv3/a2twU2lgMHDmhycjKw67ls+fLluvbaa7V8+fKwhxJJrtbHcm7L2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFixYKpXSlVdeOf/nhXzOS29v7/zv3/ve9wY2lueff14zMzOBXc9lVVVVWr16taqqqsIeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMjZbcF6uvfba+d/v37//nK998cUX9eSTT/p+bxDjYFc3GJOTkzwpdA6u1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WnJePfvSjqq2tlSR9//vf11/8xV+UfO1tt92m2dlZSdK73/1uveMd7yjLGAEAAAAAAAAAKKeE53le2INA+XV3d2vXrl2SpHXr1i3oSLA5n/zkJ/Wnf/qnkqRly5Zp//79+t3f/d35r8/MzOiP//iPtXv37vm/6+np0bp16xY97meeeUZr1qyZ//Pg4KAuv/zyRV8XAAAAAAAAABAc197LTYY9ACy9jRs36vTp02f93ZkzZ+Z//73vfU/t7e2v+r7HH39cK1eufNXf//Ef/7G+9a1v6Zvf/Kampqb0e7/3e/ov/+W/6B3veIdyuZwOHz6sH//4x/Ov37VrVyAbLT9r9erVOnHiRKDXdNXMzIxOnDihyy67jDMgfbhaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyjhFzwLPPPqvjx4+f9eull16a//rExMSrvn78+HHl83nf61VVVenLX/7yWU+zDAwM6IEHHtBf/dVfzW+0VFVV6fbbb9cnP/nJwDPxmS3B4fzHc3O1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCPmgNbWVv3oRz867+87efKkWltbz/mab3zjG3rggQf0ne98Rz/+8Y9VVVWlX/zFX9QHPvAB3XDDDXrb2952gaP259qjZwAAAAAAAAAQR669l8sxYg5Ip9NLdu3169dr/fr1S3Z9AAAAAAAAAACijmPEEEvd3d1qamoKexgmZDIZ7dq1S5lMJuyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ks4xgxxMrco2etra06deqU+vr6TD96Vg6FQkGnTp3SpZdeqmSSh91+nqv1sZzbcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanYLuVw7RozNFsSKaz+gAAAAAAAAABBHrr2XyzFiiKUtW7aotrY27GGYMDExoYcfflgTExNhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYilTCajYrEY9jBMqKioUFNTkyoqWA78uFofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEUOsuPboGQAAAAAAAADEkWvv5bIthlhqb29XdXV12MMwIZ/Pq6+vT/l8PuyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksY7MFsdTZ2alUKhX2MEzI5XLq6elRLpcLeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4Rgyx4tqjZwAAAAAAAAAQR669l8uTLYilVCqlRCIR9jBM8DxPuVxO7Lv6c7U+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWduzYocbGxrCHYcLo6Kh2796t0dHRsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMY8QQK3OPnrW0tGhoaEjHjx83/ehZOczOzmpoaEgrVqxQZWVl2MOJHFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1ewWcrl2jFgy7AEAF+LMmTNhD8GMyspKtbS0hD2MyHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlHCOGWNq6davq6urCHoYJ4+Pj2r9/v8bHx8MeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMjZbEEvpdFqFQiHsYZiQTCbV2tqqZJIH3fy4Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMj6zBbHi2jl/AAAAAAAAABBHrr2Xy5MtiKUrr7xSNTU1YQ/DhOnpaR09elTT09NhDyWSXK2P5dyWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZRmbLYil9vZ2VVdXhz0ME/L5vPr6+pTP58MeSiS5Wh/LuS1nAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLMo4RQ6y49uiZa9LptFatWuX7tZMnT6q1tbW8AwIAAAAAAABwQVx7L5cnWxBLTU1NqqigfYNQLBaVyWRULBbDHkokuVofy7ktZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzLerUYsbd++XQ0NDWEPw4RsNqu9e/cqm82GPZRIcrU+lnNbzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2UcI4ZYmXv0rKmpSdlsVv39/aYfPSuHYrGobDarhoaG0J8WiuIxYlGqTzlZzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u4Vcrh0jlgx7AMCFyGQyYQ/BjIqKCjU1NYU9jMhytT6Wc1vOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZfHcEoPztm3bpvr6+rCHYcLY2Jj27dunsbGxsIcSSa7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUl9fn/L5fNjDMKG6ulrt7e2qrq4OeyiR5Gp9LOe2nA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLsv4zBbEimvn/Lkmip/ZAgAAAAAAAOD8ufZeLk+2IJY6OzuVSqXCHoYJuVxOPT09yuVyYQ8lklytj+XclrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWUZmy2IpdbWViWTybCHYUKhUFA6nVahUAh7KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3WouyzhGDLHi2qNnruEYMQAAAAAAAMAG197L5ckWxFJLS4sqKyvDHoYJs7OzOnPmjGZnZ8MeSqSk02klEgklk0ldcsklSiaTSiQSSiQSSqfTYQ9vyVnuC8vZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxNK2bdtUX18f9jBMGBsb07333quxsbGwhxJJ9fX1Tvab5b6wnA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4RgyxMvfoWSqV0vT0tAYGBkw/elYOnudpenpaNTU1SiQSoY4lSseIzY0lkUiopqZG09PTmlsuXTjSLEp9ETTL2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2S3kcu0YMT5hHLGUy+XCHoIZiURCqVQq7GFElud5Tvab5b6wnA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmt1qLss4RgyxtH37djU0NIQ9DBOy2azuvPNOZbPZsIcSSQ0NDU72m+W+sJwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7L2GxBLPX09Dj5tMFSSKVS6uzsZKe8hFwu52S/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMz2xBrLh2zp9roviZLVEYCwAAAAAAABA3rr2Xy5MtiKUNGzZo2bJlYQ/DhKmpKR06dEhTU1NhDyWSli1b5mS/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMzRbEUlNTkyoqaN8gFItFZTIZFYvFUMcxMDCgz3zmMyW//pGPfEQ7d+7U4OBgGUclVVRUONlvUemLpWA5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclnGMGGLFtUfPXHDw4EHt3r1bR44cWfD3XH311dqxY4c2bty4ZOPiGDEAAAAAAAC4JOj3w1x7L9et/1UbZrS2tiqZTIY9DBMKhYLS6bQKhUJZ7zs8PKyuri5t3rz5vDZaJOnIkSPatGmTrr/+eg0PDy/RCF+RTCad7Lew+qIcLGcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQS1u3blVdXV3YwzBhfHxcDzzwgMbHx8t2z/7+fq1du1YPPfTQoq7z4IMPau3atRoYGAhoZK9WV1fnZL+F0RflYjkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsW1R88s6u/vV2dnp0ZGRgK7ZnNzs3p7e9XW1hbYNTlGDAAAAAAAAC7hGLHF4ckWAGUzPDysa665JtCNFkkaGRnRhg0blvxIMQAAAAAAAADww2YLYmnHjh1qbGwMexgmjI6O6o477tDo6OiS3+vmm2/W6dOnl+Tap0+f1i233BL4dRsbG53st3L2RblZzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWDhw4oMnJybCHYcLy5ct17bXXavny5Ut6n4MHDy76M1pey4MPPqiDBw8Ges3JyUkn+61cfREGy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rKMz2xBrLh2zp8lHR0dOnLkSFnu09vbu+jr8JktAAAAAAAAcAmf2bI4PNmCWGJXNzjleHJjYGCgLBstknT48GENDg4Gdj1X/y8Cy0/0WM4GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdlbLYAWHJLfXxY0PcbGBjQZz7zmZJf/8hHPqKdO3cGuqkDAAAAAAAAIL44Rgyx4tqjZ1asX79eTz75ZFnv98QTT5z39x08eFC7d+8+r6dwrr76au3YsUMbN2487/sBAAAAAAAAUcExYovDky2IpdWrV6uqqirsYZgwMzOj559/XjMzM0tyfc/z9NRTTy3JtUs5duyYzmcfeXh4WF1dXdq8efOrNlqqqqrO2W9HjhzRpk2bdP3112t4eHhR446Spe6LMFnOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZWy2IJZc/AyNpbLU5z+OjY1pZGRkSa5dysjIiMbHxxf02v7+fq1du7bk0WML/cyWBx98UGvXrtXAwMB5jzeKLJ8LajkbALiE9Ryuoefhh76INuYneNS0NJdrYzW71VyWcYwYYsW1R88sePnll7VixYqy33doaEgXX3zxOV/T39+vzs7OQDeDmpub1dvbq7a2tsCuCQAAAAAAACw1jhFbHJ5sAbCkqqurQ7lvTU3NOb8+PDysa665JvCnbkZGRrRhwwZTR4oBAAAAAAAAODc2WxBL3d3dampqCnsYJmQyGe3atUuZTGZJrl9fX6/m5uYluXYpzc3NqqurO+drbr75Zp0+ffo1r9XU1HTe/Xb69GndcsstC359FC11X4TJcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSzjGDHEytyjZ62trTp16pT6+vpMP3pWDoVCQadOndKll16qZDK5JPdYv369nnzyySW5dqn7PfHEEyW/fvDgQW3evHlB10omk7r00kt16tQpFQqF8xrHY489pk2bNp3X90RFOfoiLJazAYBLWM/hGnoefuiLaGN+gkdNS3O5Nlazh5GLY8QWhydbEEvpdPq83/iGv2QyqdbW1iVdtK+44oolu/aF3G/37t0LvlahULjgftuzZ895f09UlKMvwmI5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZgljasmWLamtrwx6GCRMTE3r44Yc1MTGxZPe47rrrluza53u/gYEBHTlyZMHXqq2tveB+O3z4sAYHB8/7+6KgHH0RFsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayjM0WxFImk1GxWAx7GCZUVFSoqalJFRVLtxy0tbXp6quvXrLr/6yOjo6zHk/8eQ899NB5Xa9YLC6q3873flFRjr4Ii+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxme2IFZcO+fPkvP5nJTF3mfjxo0lvx61z48BAAAAAAAAooDPbFkctsUQS+3t7aqurg57GCbk83n19fUpn88v6X02bdq05MeJdXV1nXOjxfM8PfXUU+d1zerq6kX127FjxxTHPe1y9UUYLGcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3mssyNlsQS52dnUqlUmEPw4RcLqeenh7lcrklv9dnP/tZrVy5ckmuvXLlSt11113nfM3Y2JhGRkbO67qpVGpR/TYyMqLx8fEL+t4wlbMvys1yNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LOMYMcSKa4+eWTQwMKB169ad96bHuTQ3N6u3t1dtbW3nfN3LL7+sFStWBHbfhRoaGtLFF19c9vsCAAAAAAAAC8UxYosT6ydbPM/T0NCQ0um00um0hoaGYnlcD85fKpVSIpEIexgmeJ6nXC5Xtp+dtrY29fb2BvaEy8qVKxe00SLpgo4CSyQSi+63mpqaC/7esJS7L8rJcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSyL1WbLsWPHdMcdd+hDH/qQLrvsMqVSKbW0tOiyyy7TZZddppaWFqVSKV122WX60Ic+pDvuuEPHjh0Le9hYAjt27FBjY2PYwzBhdHRUu3fv1ujoaNnu2dbWpv7+fnV1dS3qOl1dXerv71/QRosk1dfXq7m5+bzu0djYuKh+a25uVl1d3QV9b5jC6ItysZwNAFzCeg7X0PPwQ19EG/MTPGpamsu1sZrdai7LIn+M2LPPPqv7779fDz74oM6cOXPW10oN/ef/D/SWlhZ1dXVp69atph9TcsHco2ctLS0aGhrS8ePHmdNFmp2d1dDQkFasWKHKysqy3//gwYPas2ePDh8+vODv6ejo0G233aaNGzee9/3Wr1+vJ598csGvr6ys1IoVKzQ0NKTZ2dkLut8TTzxx3t8XtrD7YilZzgYALmE9h2voefihL6KN+QkeNS3N5dpYzR5GLo4RW5zIPtnyzW9+Ux/4wAfU1tamP/uzP9OZM2fked5Zv0r5+dedOXNGf/Znf6a1a9fqAx/4gL75zW+WMQmWwpkzZy7ojW+8WmVlpVpaWkL7h9GmTZvU29urgYEB3XTTTSVfd9VVV2nnzp0aGBhQb2/vBW20SNIVV1xxXq+fnZ1dVL+d7/2iIuy+WEqWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVnkNlueeuopve9979P73/9+feMb3zhrY2XNmjW68cYbde+99+rw4cM6ceKERkdHNTMzo3w+r9HRUf3gBz9Qb2+v9u3bpxtvvHF+52zuOt/4xjf0/ve/X+973/v01FNPhRkVi7B169ZYHs0URePj49q/f7/Gx8dDHceaNWt06623lvz65z//ed1+++1n7YZfiOuuu+68Xl9XV7eofjvf+0VFVPpiKVjOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZcmwB/CzPv7xj+u+++5TsViU53lKJBJ63/vep9/93d/VtddeqxUrVpzz++vr61VfX683velNuvrqq+f/fmhoSAcOHNAXv/hFPfnkk/I8Tz09Pfr1X/913XDDDdq3b99SR0PA0um0CoVC2MMwIZlMqrW1VclkpJaDJdPW1qarr75aR44cWdDrC4XCBfdbR0fHojeHwmK5LyxnAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmt5rLskh9ZktFxSsP2jQ0NGjbtm36+Mc/XvKMuAuVTqd1zz336N5771U2m1UikeA4qhhx7Zw/1wR9LmQpBw8e1ObNmwO51mvd50KPOwMAAAAAAADKic9sWZxIHSNWX1+vXbt26YUXXtAdd9wR+EaLJLW2tmr37t164YUX1N3dzVFUMXXllVeqpqYm7GGYMD09raNHj2p6ejrsoZTNpk2bFny8V01NzQX1W1dXV6w3Wiz3heVsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZFqnNlhMnTuiP//iP1dDQsOT3amho0Cc/+UmdOHFiye+F4LW3t6u6ujrsYZiQz+fV19enfD4f9lDK6rOf/axWrlz5mq+rrq4+735buXKl7rrrrsUML3SW+8JyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LIvUMWLAa3Ht0TPXlOsYsTkDAwNat26dRkZGArtmc3Ozent71dbWFtg1AQAAAAAAgKXGMWKLE6knW4CFampqmv+MHyxOsVhUJpNRsVgMeyhl19bWpt7e3nM+4VJRUbHgflu5cqWZjRbLfWE5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvFuNWJp+/btZTluzgXZbFZ79+5VNpsNeyihaGtrU39/v7q6uny/3tDQsKB+6+rqUn9/v4mNFsl2X1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZSaPEfvyl7+sr33ta3rppZf0+te/Xtdcc422bNkS9rAQgLlHz5qampTNZtXf32/60bNyKBaLymazamhoCP1poXIfI/bzDh48qD179ujw4cPzf1dRUaGGhgZls1nf/5Ogo6NDt912mzZu3LikYyu3KPVF0CxnAwCXsJ7DNfQ8/NAX0cb8BI+aluZybaxmDyMXx4gtTjLsASzUSy+9pA9/+MOSpPe85z36r//1v77qNcViUb/zO7+jr371q2f9/ec//3nde++9euyxx1RbW1uW8WJpZTKZsIdgxtwxWZA2bdqkTZs2aXBwUPfcc4/uvvvu+Uc2f9ZVV12ldevW6brrrjvrHxiWWO4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIsNlt9X/nKV/R3f/d3+ta3vqV3vvOdvq/5zGc+owMHDsjzvFf9Onz4sG644YYyjxpLZdu2baqvrw97GCaMjY1p3759GhsbC3sokbFmzRrdeuutkqT6+vpX9dvnP/953X777WY3WiTbfWE5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclsVms+XIkSOSpOrqal1zzTWv+no+n9eePXuUSCSUSCT0/ve/X3fddZduvfVWpVIpeZ6nL37xi/re975X7qFjCfT19Smfz4c9DBOqq6vV3t6u6urqsIcSSfl83sl+s9wXlrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWVZbI4Re+aZZyS98n+cL1++/FVf/+u//muNjIwokUjot37rt/SVr3xl/mvveMc7dN1110l65f9If9e73lWeQWPJHD16NOwhmFFTU6Mrr7wy7GFE1vT0tJP9ZrkvLGcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3msuy2DzZcurUKSUSCb3lLW/x/foTTzwx//u543/mfPjDH9bKlSsl8Sa9FZ2dnUqlUmEPw4RcLqeenh7lcrmwhxJJqVTKyX6z3BeWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVlsNlvmzqZrbGz0/frcMWMXX3yxfuM3fuOsr1VUVOid73ynPM/TiRMnlnagKIvW1lYlk7F5MCvSCoWC0um0CoVC2EOJpGQy6WS/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIs4XmeF/YgFiKVSmlmZkY33HCDPve5z531tdHRUV100UXyPE/XXnutvvSlL73q+z/2sY/pL/7iL1RVVaXp6elyDRsBe+aZZ876UPLBwUFdfvnlIY4IQUqn01q1apXv106ePKnW1lYnxwIAAAAAAAAstaDfD3PtvdzYPNnS1NQk6ZXjxH7e4cOHVSwWJUlXXXWV7/fP7QBWVlYuzQBRVi0tLcxlQGZnZ3XmzBnNzs6GPZRIqqysdLLfLPeF5WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kWm82Wt771rfI8T9/5zndedU7dI488Mv/7q6++2vf7z5w5I0m66KKLlm6QKJtt27apvr4+7GGYMDY2pnvvvXf+qD6crb6+3sl+s9wXlrMBgEtYz+Eaeh5+6ItoY36CR01Lc7k2VrNbzWVZbI4R+5M/+RN1d3crkUjo5ptv1p133ilJ+va3v633vve9mpmZ0Rve8Ab90z/9kxKJxKu+f+XKlXrppZd09dVXq6enp7yDR2DmHj1LpVKanp7WwMCA6UfPysHzPE1PT6umpsb3Z6econR019xYEomEampqND09rbnl0oVjxKLUF0GznA0AXMJ6DtfQ8/BDX0Qb8xM8alqay7Wxmj2MXBwjtjixebLlD//wD7Vs2TJJ0mc/+1m1trbqne98p/7Fv/gXyufzkqR/82/+jW/jPffcc/NPtrz97W8v36CxZHK5nGKyTxh5iURCqVQqEv8wam1tled5vr/C2tzwPM/JfotSXwTNcjYAcAnrOVxDz8MPfRFtzE/wqGlpLtfGanaruSyLzWbLpZdeqv/xP/7H/BueL774ovr6+jQzMyNJ+uVf/mXdeuutvt/7f/7P/5n//Xve856lHyyW3Pbt29XQ0BD2MEzIZrO68847lc1mwx5KJDU0NDjZb5b7wnI2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksi81miyR97GMf05e//GX96q/+6vz/7Z5KpbRlyxb19vaqrq7uVd8zMzOjz33uc5KkZDKp9evXl3vYWAI9PT2v+uweXJhUKqXOzk6lUqmwhxJJuVzOyX6z3BeWswGAS1jP4Rp6Hn7oi2hjfoJHTUtzuTZWs1vNZVlsPrPl501MTCibzeriiy9WVVVVydeNj4/r2LFjkqRly5bpiiuuKNcQsQRcO+cP4YnS58cAAAAAAAAAS43PbFmcWD3Z8rNqa2t1ySWXnHOjRZLq6uq0bt06rVu3jo0WQzZs2DD/GT5YnKmpKR06dEhTU1NhDyWSli1b5mS/We4Ly9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIstpstcFtTU5MqKmjfIBSLRWUyGRWLxbCHEkkVFRVO9pvlvrCcDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3Wouy2J7jBjc5NqjZwgPx4gBAAAAAADAJRwjtjhu/a/aMKO1tVXJZDLsYZhQKBSUTqdVKBTCHkokJZNJJ/vNcl9YzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCWtm7dqrq6urCHYcL4+LgeeOABjY+Phz2USGltbZXneRoaGtLWrVs1NDQkz/PkeZ4TT7VY7gvL2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msoxjxBArrj16BgAAAAAAAADlwDFii8OTLQAAAAAAAAAAAIvAZgtiaceOHWpsbAx7GCaMjo7qjjvu0OjoaNhDiSRX62M5t+VsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZxmYLYunAgQOanJwMexgmLF++XNdee62WL18e9lAiydX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJbxmS2IFdfO+QMAAAAAAACAcuAzWxaHJ1sQS+zqBmdycpInhc7B1fpYzm05GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclrHZAgAAAAAAAAAAsAgcI4ZYce3RMwAAAAAAAAAoB44RWxyebEEsrV69WlVVVWEPw4SZmRk9//zzmpmZCXsokRSF+qTTaSUSCd9f6XR6Se4ZhdxLxXI2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksi81my1/+5V/qrrvuCnsYiAg+syU4nP94bq7Wx3Juy9kAwCWs53ANPQ8/9EW0MT/Bo6aluVwbq9mt5rIsNseIXXLJJfrJT36i2dnZsIeCELn26BkgBf8IJwAAAAAAAPDzOEZscWLzZAsAAAAAAAAAAEAUhbrZUllZueBfP/nJT171PclkMszhI0Td3d1qamoKexgmZDIZ7dq1S5lMJuyhRJKr9bGc23I2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksC/UYsYqKxe31JBIJjhVzzNyjZ62trTp16pT6+vpMP3pWDoVCQadOndKll17KBqaPKNQnjGPEopB7qVjOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNHkYujhFbnFC7r7KyUsViUb/927+tf/fv/p0SiUTJ137oQx9SJpPRN7/5zTKOEFGVTqfDHoIZyWSSz/w4B1frYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kW6jFi//AP/6Bf/dVf1Ze//GXt3LlTF198sdatW+f7q7q6WpJe9fdw05YtW1RbWxv2MEyYmJjQww8/rImJibCHEkmu1sdybsvZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayLNTNlvb2dv3DP/yDbr/9dj399NN6xzveof/8n/+zpqenwxwWYiCTyahYLIY9DBMqKirU1NS06GP9rHK1PpZzW84GAC5hPYdr6Hn4oS+ijfkJHjUtzeXaWM1uNZdloX5my896/vnndcMNN+g73/mOfvmXf1n33nuvOjs7579+ySWX6Cc/+Qmf0eI41875A6RwPrMFAAAAAAAAbuEzWxYnMttiq1ev1t/93d/pzjvv1OnTp/W+971PN9xwgzKZTNhDQwS1t7fPHy2Hxcnn8+rr61M+nw97KJHkan0s57acDQBcwnoO19Dz8ENfRBvzEzxqWprLtbGa3WouyyKz2SJJiURCt9xyiwYGBvTe975X999/v972trfpwQcfDHtoiJjOzk6lUqmwh2FCLpdTT0+Pcrlc2EOJJFfrYzm35WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kWmWPE/PzlX/6l/uiP/kjZbFae5ymRSHCMmONce/QMkDhGDAAAAAAAAEuPY8QWJ1JPtvy8G264Qc8++6yuvfZa/dIv/ZLe+MY3hj0kREQqlVIikQh7GCZ4nqdcLqcI77uGytX6WM5tORsAuIT1HK6h5+GHvog25id41LQ0l2tjNbvVXJZFerNFki655BJ96Utf0smTJ3Xy5Mmwh4OI2LFjhxobG8Mehgmjo6PavXu3RkdHwx5KJLlaH8u5LWcDAJewnsM19Dz80BfRxvwEj5qW5nJtrGa3msuySB8jBvy8uUfPWlpaNDQ0pOPHj5t+9KwcZmdnNTQ0pBUrVqiysjLs4URO2PUZGBjQvn37dPfdd/t+/aqrrlJHR4e6urrOeixzscLOvZQsZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZg8jF8eILU7kN1uKxaISiQRHRkGSez+gcNfBgwe1e/duHTlyZMHfc/XVV2vHjh3auHHjEo4MAAAAAAAAFrHZsjiRP0YsmUyqpaUl7GEgYrZu3aq6urqwh2HC+Pi49u/fr/Hx8bCHEknlrs/w8LC6urq0efPm89pokaQjR45o06ZNuv766zU8PLyocVjuC8vZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZreayLPKbLZL4ECC8SjqdVqFQCHsYJiSTSbW2tiqZTIY9lEgqZ336+/u1du1aPfTQQ4u6zoMPPqi1a9dqYGDggq9huS8sZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreay7LIHyNWUVGhiy++WD/5yU/CHgoiwLVHz+CO/v5+dXZ2amRkJLBrNjc3q7e3V21tbYFdEwAAAAAAADZxjNjixOLJFuDnXXnllaqpqQl7GCZMT0/r6NGjmp6eDnsokVSO+gwPD+uaa64JdKNFkkZGRrRhw4YLOlLMcl9YzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2VstiCW2tvbVV1dHfYwTMjn8+rr61M+nw97KJFUjvrcfPPNOn369JJc+/Tp07rlllvO+/ss94XlbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWcYxYogV1x49g30HDx7U5s2bl/w+jz32mDZt2rTk9wEAAAAAAEA8cYzY4vBkC2KpqalJFRW0bxCKxaIymYyKxWLYQ4mkpa7P7t27l+S6P2/Pnj3n9XrLfWE5GwC4hPUcrqHn4Ye+iDbmJ3jUtDSXa2M1u9VclvFuNWJp+/btamhoCHsYJmSzWe3du1fZbDbsoUTSUtZnYGBAR44cCfy6fg4fPqzBwcEFv95yX1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZRwjhliZe/SsqalJ2WxW/f39ph89K4disahsNquGhgaeFvKxlPXZuXOnPv3pTwd6zde63+23376g11ruC8vZAMAlrOdwDT0PP/RFtDE/waOmpblcG6vZw8jFMWKLY6f74BQeoQtORUUFx7Kdw1LW57vf/W7g1wzqfpb7wnI2AHAJ6zlcQ8/DD30Rba7MTzqdViKR8P2VTqcDvZcrNb0QLtfGanaruSxjphBL27ZtU319fdjDMGFsbEz79u3T2NhY2EOJpKWqj+d5euqppwK95ms5duyYFvowY6nc5fyX6KVCzwOADazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFsRSX1+f8vl82MMwobq6Wu3t7aqurg57KJG0VPUZGxvTyMhIoNd8LSMjIxofH1/Qay33heVsAOAS1nO4hp6HH/oi2pif4FHT0lyujdXsVnNZlgx7AMCFOHr0aNhDMKOmpkZXXnll2MOIrKWqT1ibhdPT0wt6KsxyX1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZTzZgljq7OxUKpUKexgm5HI59fT0KJfLhT2USFqq+oT1fyXU1NQs6HWW+8JyNgBwCes5XEPPww99EW3MT/CoaWku18Zqdqu5LIv8Zst//I//UbfcckvYw0DEtLa2KpnkwawgFAoFpdNpFQqFsIcSSUtVn/r6ejU3Nwd6zdfS3Nysurq6Bb3Wcl9YzgYALmE9h2voefihL6KN+QkeNS3N5dpYzW41l2UJb6Gflgz8P/v379cf/MEfnNf33HDDDfqLv/iLRd/7mWee0Zo1a+b/PDg4qMsvv3zR1wXCsH79ej355JNlvd8TTzyxqGuk02mtWrXK92snT55Ua2vroq4PAAAAAIgX/jsRsCPon2fX3suN/JMtgJ+WlhZVVlaGPQwTZmdndebMGc3OzoY9lEhayvpcccUVgV8zqPtZ7gvL2QDAJazncA09Dz/0RbQxP8GjpqW5XBur2a3msozNFizK6tWr9W//7b99zV/vfe97A73vtm3bFvQh33htY2NjuvfeezU2Nhb2UCJpKetz3XXXBX7NoO5nuS8sZwMAl7CewzX0PPzQF9HG/ASPmpbmcm2sZreayzKOEcN5+9ljxD760Y9q//79Zbv33KNnqVRK09PTGhgYMP3oWTl4nqfp6WnV1NQokUiEPZzIWer6dHR06MiRI4Ff1+8+vb29C359qdwWHg+n5wHABtZzuIaehx/6ItpcmZ9y/neiKzW9EC7Xxmr2MHJxjNji8GQLYimXy4l9wmAkEgmlUilT/zAK0lLX57bbbluS6y72Ppb7wnI2AHAJ6zlcQ8/DD30RbcxP8KhpaS7Xxmp2q7ksi8VmS7FYVE9Pjz75yU/qwx/+sNra2vQLv/ALamxsVHV1tRobG/ULv/ALamtr04c//GF98pOfVE9Pj4rFYthDxxLZvn27Ghoawh6GCdlsVnfeeaey2WzYQ4mkpa7Ppk2blvw4sa6uLm3cuPG8vsdyX1jOBgAuYT2Ha+h5+KEvoo35CR41Lc3l2ljNbjWXZcmwB3Au2WxWe/bs0b333quf/vSnZ33tZ59qGBsb09jYmM6cOaNnn31WknT77bfrda97nT7+8Y/rP/7H/8gb88b09PQol8uFPQwTUqmUOjs7lUqlwh5KJJWjPp/97GfV29ur06dPB37tlStX6q677jrv77PcF5azAYBLWM/hGnoefuiLaGN+gkdNS3O5NlazW81lWWSfbOnp6dFll12mT3/60xoeHpbneWf98vPzrxkeHtanP/1pvfnNb1ZPT095A2BJ9fX1KZ/Phz0ME6qrq9Xe3q7q6uqwhxJJ5ajPRRddpEOHDqm5uTnQ6zY3N+vQoUO66KKLzvt7LfeF5WwA4BLWc7iGnocf+iLamJ/gUdPSXK6N1exWc1kWySdb/vqv/1q//du/rZmZmfmNlbq6Or373e/WO97xDr3xjW9US0uLli1bppqaGk1PT2tqakpnzpzRCy+8oKeeekpHjx7V2NiYPM/Tyy+/rA984AP66le/qg0bNoSczpZMJqMvfvGLeuaZZzQ6OqqGhgatXLlS7373u9XW1rZkZwpu2LDhvD7sG6VNTU2pt7dX69at07Jly8IeTuSUqz5tbW3q7e3Vhg0bAnnCZeXKlTp06JDa2tou6Pst94XlbADgEtZzuIaehx/6ItqYn+BR09Jcro3V7FZzWRa5zZbh4WH9wR/8wfxTC29605v0J3/yJ/pX/+pfqaamZsHXyefz+tKXvqRPfepT+sEPfqCZmRlt3bpVzz77rF73utct1fCd89WvflVf/epXfb/2y7/8y7rtttv0h3/4h4FvujQ1NamiIrIPZsVKsVhUJpPhM45KKGd92tra1N/fr1tuuUUPPvjgBV+nq6tLd9111wU90TLHL/fAwID27dtX8ns+8pGPqKOjQ11dXVqzZs0F33up0fMAYAPrOVxDz8MPfRFtzE/wqGlpLtfGanaruSxLeKXO5ArJf//v/1233nqrEomE3ve+9+nAgQNavnz5BV9vampKH/zgB/WNb3xDiURCn/nMZ/Qf/sN/CHDE7tm/f7/+4A/+YMGv37x5sx5++GHV1tYu+t7PPPPMWW/iDg4O6vLLL1/0dYGoOXjwoPbs2aPDhw8v+Hs6Ojp02223aePGjYGPZffu3Tpy5MiCv+fqq6/Wjh07Ah8LAAAAACBa0um0Vq1a5fu1kydPqrW1tbwDAnDBgv55du293Mg9GvDlL39ZkrRs2TI9/PDDi9pombvOQw89NH+dL33pS4seI6Q3vvGN+v/+v/9Pjz/+uF588UXlcjlNTEzo+9//vu6++26tXr16/rWPPfaYurq6At2Ffctb3qLGxkZJ0uzsrDKZzPyRc9lsdv7JqKmpKU1MTEiSCoWCMpnM/DVGR0c1MzMjSZqcnNTk5KQkaWZmRqOjo/Ovy2QyKhQKkqSJiQlNTU1JeuXpqWw2K+mVzwvKZDKanZ2VJI2PjyuXy0mSpqenNTY2JunVO9JjY2Oanp6WJOVyOY2Pj5c90+joqL7//e+rUCiYyRTkPBUKBT377LPz4ytXpk2bNumrX/2q+vr6dNNNN6m2tnb+kdHq6mo1NDRIkq666irt3LlTx48fV29vrzo6OgKZp5mZGR0/flwf/ehH9aEPfUhHjhzRsmXL5jdNk8mkmpqa5jM1NjaqqqpKkrR8+XIdO3ZMmzZt0kc+8hGl0+kln6eFZJqbp5/+9Kf6v//3/6pQKES6984nU1x+nshEJjKRKchMk5OTSqfTGhsbM5PJ4jyRKbhM09PTSqfTymQyZjJZnKdyZ8rlchocHDzrv+/insnSPI2OjiqdTiuXy5nJVGqefv6/CefehysUCoFmmpiY0LPPPqtCoUDv8e9G85mmpqaUTqfn62Ah08zMjAqFgp5//vn58ZUzU319/fwpU6lUSnV1dYvK5IrIbbacPHlSiURC69evD+y4r4suukjr16+X53n64Q9/GMg1XXbttdfq5MmT+m//7b/pmmuu0aWXXqqamhotX75cb3nLW3TjjTfq+PHjZz398rWvfW1RxyL9vK6uLn34wx+WJA0NDWnv3r3zi9p9992nZ599VpLU29urRx99VJJ06tQp7d27d/4a99xzj06cOCFJ+vrXv66vf/3rkqQTJ07onnvumX/d3r17derUKUnSo48+Ov9ZMc8++6zuu+8+Sa8sTnv37tXQ0JAk6ZFHHtHRo0clSU8//bS+8IUvSHplAdq7d+/8gveFL3xBTz/9tCTp6NGjeuSRR8qe6Wtf+5oefvhhjY+Pm8kU5DyNj4/ri1/8or773e+GkqmxsVG33nqr/uW//Jdat26dJOlXfuVX9Id/+Ifz96yurtbrX//6QOfpO9/5jg4cOKCLL75Yv/IrvyJJWrdunf7lv/yXkqRLL71U27dvnx/rjTfeqMsuu0yS9Ju/+Zv6zd/8TUnSsWPH9LnPfU4DAwNLOk8LyTQ3T/v379eDDz6o8fHxSPfe+WSKy88TmchEJjIFmamvr08PPPCAvvnNb5rJZHGeyBRcphdeeEEPPPCAqUwW56ncmX7wgx/oS1/60vwbexYyWZqnr33ta3rggQf0gx/8wEymUvNU6r8JT58+HWim7373u/riF7+o8fFxeo9/N5rP9Oyzz+qBBx7QoUOHzGQ6ceKExsfH9Vd/9Vc6dOhQ2TLNbVZdf/31evvb3y5JuvLKK/U7v/M7i8rkDC9iUqmUV1FR4f3rf/2vA73uv/7X/9pLJBJeKpUK9LoobXZ21rv66qs9SZ4kb82aNYu+5uDgoCfJS6VSXl1dnTc4OOgVCgVvZGTEKxaLnud53ujoqDc9Pe15nudNTk564+Pjnud53szMjDcyMjJ/rUwm4+Xzec/zPG9iYsKbmJjwPM/z8vm8l8lk5l83MjLizczMeJ7neePj497k5KTneZ43PT3tjY6Oep7necVi0RsZGfEKhYLneZ43NjbmTU1NeZ7neblczstms/M1GRkZ8WZnZz3P87xsNuvlcjnP8zxvamrKGxsb8zzPIxOZzsp08uRJr7a21lu2bJknyauurvYaGho8Sd4Pf/jDwDN9+9vf9pqbmz1JXkNDg1ddXe1J8pYtW+bV1tZ6krxkMuk1NTXN/3w3NjZ6VVVVniRv+fLl3vLlyz1JXlVVldfY2Og1Nzd7/f39pueJTGQiE5nIRCYykYlMZCITmVzMdPLkyZL/Tfh//+//jWUmi/NEpmhnGhgYKPkey3PPPVe2TCdOnPAkefX19V5NTc1Z78OePHnyvOdp7r3cuV+Dg4OeZZH7zJbW1la9+OKLWrdunb75zW8Gdt33vve96unp0Rvf+MazjrTB0nryySe1fv36+T+/+OKLuvTSSy/4eq6d8wdI5T3/dnh4WGvXrtXp06cDu+aclStXqr+/XxdddFHg1wYAAAAAhIPPbAEWLyo/R3xmy+JE7hixyy+/XJ7n6fDhwxocHAzkmgMDA+rt7VUikTA9mVHU0dExf2anJD333HOBXHfHjh3zn9mCxRkdHdUdd9xx1pmP+Geu1efmm2/W6dOn1djYGPjP2enTp3XLLbcEdr0L5dqcAoBVrOdwDT0PP/RFtDE/waOmpblcG6vZ596bmTsqEtEXuc2WLVu2SHrlw3t+67d+a/7Mtwv13HPP6dprr53/0J7rrrtu0WPEwlVVVeniiy+e//PLL78cyHUPHDgwf4YgFmf58uW69tpr5z+8DmdzqT4HDx7UQw89JOmVD8pbip+zBx98UAcPHgz0mufLpTkFAMtYz+Eaeh5+6ItoY36CR01Lc7k2VrPPvTeTSqXCHgoWKJKbLb/6q78q6ZXHlt75znfqxhtv1N///d+rWCwu6BrFYlHf/e53ddNNN+md73yn0um0EomE2tvb5zdzUD4TExPzv6+trQ3kms8//7xmZmYCuZbrqqqqtHr16rOeQMI/c6k+u3fvnv/9zMzMkv2c7dmzZ9HXmFvX/X691lGRLs0pAFjGeg7X0PPwQ19EG/MTPGpamsu1sZp97r2ZZDIZ9lCwQJHbbKmqqtJDDz2klpYWSdL09LQ+97nP6Td+4zfU1NSkq666Sl1dXfr3//7fa+fOneru7tbOnTv17//9v1dXV5euuuoqNTU16d3vfrfuvfde5XI5eZ6nlpYWPfTQQzRnmf3whz9UNpud//PKlSsDua7F3eqwLNUTDFa4Up+BgQEdOXJk/s9L+X+FBHlM5IVwZU4BwDrWc7iGnocf+iLamJ/gUdPSXK6N1exz783kcrmwh4IFiuTOw+rVq/Xd735X1113nf7u7/5u/giw8fFxHT16VEePHj3n98+9fs7VV1+tBx98UL/wC7+wZGOGv/vuu2/+942NjWpvbw9vMABKmjs+rJz3u/3228t6TwAAAAAAAGCpJLyf35mImMcff1x33323nnzySU1PTy/4+2pqavS+971PN910kzZu3LiEI3TL+Pi46urqFvTab3/723rf+943v/v68Y9/XPv27VvU/Z955hmtWbNm/s+Dg4O6/PLLF3VNIOrS6bRWrVrl+7WTJ0+qtbV10fdYv369nnzyyUVf53zu98QTT1zw95ejJgAAAACA18Z/nwGLF5Wfo6DH4dp7uZF8suVnbdy4URs3btTExIS+/e1v67nnntP3v/99DQ8Pa3x8XLlcTqlUSnV1dbrooov01re+VW9729v0G7/xG4F9Pgj+2SOPPKK7775b/+7f/Tt98IMfVGNj46tek8vl9LnPfU47duyY32hpamrSpz71qcDGsXr1ap04cSKw67lsZmZGJ06c0GWXXWbubMsguFAfz/P01FNPnfV3VVVVuuyyy3TixIkl+dyWY8eOyfM8JRKJwK/9WlyYUwBwAes5XEPPww99EW3MT/CoaWku18Zq9rn3ZgqFQthDwQJF7jNbSqmtrdX73/9+3XLLLfrzP/9zPfzww3rsscf0jW98Q4899pgefvhh/fmf/7luueUWvf/972ejZQn9wz/8gz760Y/q4osvVltbmz784Q/rYx/7mG644QZt2LBBb3jDG/SJT3xCU1NTkqRly5bpq1/9qi655JLAxsBntgTH6rmWQXGhPmNjYxoZGTnr75byM1skaWRkROPj40ty7dfiwpwCgAtYz+Eaeh5+6ItoY36CR01Lc7k2VrPzmS3xE/ljxBAt+/fv1x/8wR8s+PVXXHGF9u/fr7e97W2B3N+1R88AaekfJX355Ze1YsWKRV3jQgwNDeniiy++oO+NyuO1AAAAAOA6/vsMWLyo/BxxjNjiRP4YMUTLddddp7e85S369re/raNHj+rEiRN6+eWXNTw8rGKxqMbGRq1atUpXXnmlfud3fkfvec97wh4ygNdQXV0dyn1rampCuS8AAAAAAAAQtNgcI4ZoqKmp0W/8xm/oj/7oj/TII4/o6aef1osvvqjJyUnlcjm99NJLOnr0qO68884l3Wjp7u5WU1PTkl3fJZlMRrt27VImkwl7KJEUhfq0trbK8zzfX0H8nw319fVqbm4+6++ampqW9OesublZdXV1S3Lt1xKFOQUALB7rOVxDz8MPfRFtzE/wqGlpLtfGava592bCOoYd58+ZzZYzZ87ohRde0AsvvBD2UBCA/fv3s9AEpK6uTh/96EdDe+M76lyoTyKR0Dve8Y6z/m58fHxJf87e+c53KpFILMm1X4sLcwoALmA9h2voefihL6KN+QkeNS3N5dpYzT733syyZcvCHgoWyJnNlmuuuUarVq3Sm970prCHggCk02kVCoWwh2FCMplUa2urkklOFfTjSn2uuOKKs/5cKBSW9Ofs5+9XTq7MKQBYx3oO19Dz8ENfRBvzEzxqWprLtbGafe69mcrKyrCHggVyZrNF0vyxO4i/LVu2qLa2NuxhmDAxMaGHH35YExMTYQ8lklypz3XXXXfWn2tra5f05+zn73c+BgYG9JnPfKbk1z/ykY9o586dGhwc9P26K3MKANaxnsM19Dz80BfRxvwEj5qW5nJtrGafe29mamoq7KFggZzabIEdmUxGxWIx7GGYUFFRoaamJlVUsBz4caU+bW1tuvrqq+f/XCwWl+znrKOjQ2vWrDnv7zt48KA6Ojq0du1a3X333SVf961vfUuf/vSn1dbWpo6ODj3++ONnfd2VOQUA61jP4Rp6Hn7oi2hjfoJHTUtzuTZWs8+9N2Mtl2UJz5FHPd7+9rfr+PHjSiQSmp2dDXs4uEDPPPPMWW/SDg4O6vLLLw9xRIAdBw8e1ObNm8tyn40bNy749cPDw7r55pv10EMPXfA9u7q6dNddd+miiy664GsAAAAAAF4tnU5r1apVvl87efKkWltbyzsgIIai8nMU9Dhcey+XbTHEUnt7u6qrq8Mehgn5fF59fX3K5/NhDyWSXKrPpk2b5o/3qq6uXpKfs66urvPaaOnv79fatWsXtdEiSQ8++KDWrl2rgYEBp+YUACxjPYdr6Hn4oS+ijfkJHjUtzeXaWM0+997MzMxM2EPBAkXuU4Pe+973Lsl1f/CDHyzJdRGOzs5O/fCHPwx7GCbkcjn19PToTW96ExtYPlyrz2c/+1n19vZqfHx8/ucsqH9ZWblype66664Fv76/v1+dnZ0aGRkJ5P6nT5/WunXr9Nd//df6zne+48ycAoBVrv0zGqDn4Ye+iDbmJ3jUtDSXa2M1eyqVUmdnp7lNJMsid4xYRUWFEonEklzb8zyOEYs51x49A8IwMDCgdevWBbbJIUnNzc3q7e1VW1vbgl4/PDystWvX6vTp04GNYc7KlSvV39/PkWIAAAAAEICoHH8ExFlUfo44RmxxInuMmOd5gf+CHalUask25VzjeZ5yuRw/IyW4WJ+2tjb19PSotbU1kJ+zlStXntdGiyTdfPPNS7LRIkk//vGPtX37dqfmFAAscvGf0XAbPQ8/9EW0MT/Bo6aluVwbq9kTiYRSqZS5XJZF7hixqqoqFQoFJRIJ3XLLLWpqagrkuvv27dNLL70UyLUQvh07dujOO+8MexgmjI6Oau/evfrEJz4R2M+bJa7W541vfKO2bt2qH/7wh/pf/+t/XfB1LuSD6Q8ePLjoz2g5l8bGRr35zW/WV77yFX3oQx9asvsAAJaWq/+MhrvoefihL6LNhfkZGBjQvn37Sn79Ix/5iDo6OtTV1XXW/91+oVyo6YVyuTZWszc2Nmr79u2amJgIeyhYoMgdI/Zrv/ZrOnbsmBKJhB5//HF94AMfCOS6b3/723X8+HGOEYu5uUfPWlpaNDQ0pOPHj5t+9KwcZmdnNTQ0pBUrVqiysjLs4USOq/X52dyHDh3Snj17dPjw4QV/f0dHh2677TZt3LjxvO/d0dGhI0eOnPf3LVRlZaVWrFiht771rerp6Vmy+wAAlpar/4yGu+h5+KEvos3y/Bw8eFC7d+8+r/92u/rqq7Vjx44L+u/EOZZrulgu18ZCdr/ju+bev/i7v/s7XXbZZaGNYw7HiL22yB0j9mu/9mvzv/+Hf/iHEEeCKDtz5gybZgGprKxUS0tLbP9htNRcrc/P5t60aZN6e3s1MDCgm266qeT3XHXVVdq5c6cGBgbU29t7Qf8CPTAwsKQbLdIr/xJ25swZ9fb2anBwcEnvBQBYOq7+Mxruoufhh76INovzMzw8rK6uLm3evPm8/9vtyJEj2rRpk66//noNDw9f0P0t1jQoLtfGava59y+s5bIscpst73rXu+Z/z2YLStm6davq6urCHoYJ4+Pj2r9/v8bHx8MeSiS5Wh+/3GvWrNGtt95a8ns+//nP6/bbb1/Uo+FLeXzYnLq6uvk1pBz3AwAsDVf/GQ130fPwQ19Em7X56e/v19q1axf931EPPvig1q5dq4GBgfP+Xms1DZLLtbGafe79i6mpqbCHggWK3GYLT7ZgIdLptAqFQtjDMCGZTKq1tVXJZOQ+wikSXK1PWLm/+93vLvk9CoXC/BpSjvsBAJaGq/+MhrvoefihL6LN0vz09/ers7NTp0+fDuR6p0+f1rp16857w8VSTYPmcm2sZp97/4InW+Ijcp/ZUiwW1dDQoMnJSSUSCf3oRz/SpZdeuujrbty4Uc8995ykV86XQzy5ds4fEDVBn935szzP00UXXaSRkZELvsb5am5u1vDwsBKJRNnuCQAAAABxMjw8rLVr1wa20fKzVq5cqf7+fl100UWBXxuIk6V8vyXMcbj2Xm7knmypqKjQF77wBd1///267777VF1dHch1H3/8cZ08eZKNFiOuvPJK1dTUhD0ME6anp3X06FFNT0+HPZRIcrU+YeQeGxsry0ZLTU3N/BoyMjJi7jFjAHCFq/+MhrvoefihL6LNyvzcfPPNS7LRIr3yhMstt9yy4NdbqelScLk2VrPPvX+Rz+fDHgoWKHKbLZL0wQ9+UB/96Ef10Y9+VK9//evDHg4iqL29PbCNONfl83n19fWxcJfgan3CyF2ue1VXV5+1hlj7lzEAcIWr/4yGu+h5+KEvos3C/Bw8eHDJP+vywQcf1MGDBxf0Wgs1XSou18Zq9rn3L/gohfiI3DFiwLm49ugZEDVL+VhrNptVY2PjBX//Yu5bX19f9vsCAAAAQNR1dHToyJEjZblPb2/vkt8HiKooHCM2MDCgffv26e677/b9+lVXXaWOjg51dXWd9f7subj2Xm4kn2wBXktTU5MqKmjfIBSLRWUyGRWLxbCHEkmu1ieM3PX19Wpubl7y+1RUVMyvIc3Nzf8/e3cf3dR15ov/K9vYAvymOmQYTZuIvpLaUh1oKVPGsqfNZAyiq7mddhoLpiFt55bQC2HacqFe965JuoahQOcOLzOEtF0pdLBJm2ZKUkQ9yaRj4aGltBBHkilpk7GaZFzSRJFt+UW2ZZ/fH/zs4iCBZB2ds8/e389aXgss6eznefb2ln22zj4oLy8veJtERKQ/Vd+jSV0c85QOx4XYrN4/4XDYkIUWADh9+jQikcgNn2f1mhaSyrWRNffp8xeFzisQCMDr9cLj8WRcaAGAM2fOYNeuXXC73fB6vTh16lRB47Iinq0mS9q6dSsqKyvNDkMKg4OD2L9/PwYHB80ORUiq1seMvG02G5YtW1bwdiorK2fmkOXLl8NmsxW8TSIi0p+q79GkLo55SofjQmxW759Cbx82l/asXtNCUrk2suY+ff5iZGSkIMePxWLw+/1Yu3ZtzgurXV1d8Pl8WLduHWKxWEHisyJuI0aWMn3pWXV1NQYHBxEKhaS+9MwIU1NTGBwcRGVlJa8WSkPV+mTKu9CXtba2tmLXrl15HeNGioqKUFlZicHBQezYsQM7d+4saHtERFQYqr5Hk7o45ikdjguxWb1/7rjjDjzzzDOGtvf0009f9zlWr2khqVwbGXJPd75l+vzF+fPn8fa3v13X9kKhEFavXo2+vr68j+V0OtHR0QG3233NY9xGzER6dG6ufvvb3xreJuVPxksDzXL1lkp0LVXrY1beLS0tBW/j6suLjWiPiIgKQ9X3aFIXxzylw3EhNiv3j6ZpuHDhgqFtnj9/Hjf6TLiVahqNRmGz2dJ+RaNR3duzUm30Jmvu0+cv9M4rFAqhqalJt3PxfX19aGxsRDgc1uV4VibUCHz3u9+N//N//g/i8XjB24rH42htbcW73/3ugrdF+tu4cSNvaK2TRCKBw4cPI5FImB2KkFStj1l5u91uNDQ0FLSNiooKbNy4EXfccUfWN3QjIiLxqPoeTerimKd0OC7EZuX+SSQShpyfu1o8HsfQ0NB1n2PlmhaayrWRNffp8xd6biMWi8WwevVq3X++4/E4mpubld9STKjFlpGREezatQu33norvvzlL+PFF1/UvY0XX3wRX/ziF3Hrrbdi9+7dBdvzjgqru7sb4+PjZochhdLSUtTX16O0tNTsUISkan3MzHv79u0FPf74+Di6u7uxZcuWgrZDRESFpep7NKmLY57S4bgQm5X7x6xzLmNjY9d93Mo1LTSVayNr7tPnL0pKSnQ75ubNmwu2u1RfX5/y51qEumfL1q1bcejQIaRSqZnL6rxeLz71qU/hrrvuwh/8wR/M6bivvvoqTpw4ge9+97sIBoMArlwOWVJSgv/1v/4X/t//+396pkEFpNo+f0Sq8vv9Bb0Zo9/vR1tbW8GOT0REREREZGWDg4OoqqoypV1ZdjIp9D1PSS5GjJdAIIC1a9fmfZwbOXnyJHw+HwD1zuUKdWXLvn37cOHCBTQ3N0PTNExNTSEYDGLTpk1wOp2ora3Fxo0bcejQIfz4xz/Gr371K8RiMYyOjmJkZASxWAzPP/88nnnmGRw6dAif//znUVtbC6fTiU2bNiEYDELTNGiahtWrV+PZZ5/lQotFNTU1wW63mx2GFJLJJDo7O5FMJs0ORUiq1sfsvA8ePAin01mQY7tcLqxbt065PiUiko3Z71VERuOYp3Q4LsRm5f6pqKiAw+EwtE2Hw4Hy8vLrPsfKNS00lWsja+52ux1NTU26XWm2e/duXY5zI3v27DGkHREJtdgCAHV1dTh16hS6urpmVsCmF0guXbqEb37zm9i8eTP+7M/+DLfddhtuvvlmlJeXo6KiAjfffDPe+9734s4778TmzZvxrW99C5cuXZp5PQCsXbsWZ86cQSAQkHoVTXYul0vXS+hUlkqlEI1GkUqlzA5FSKrWx+y8a2pq0NHRofsv9w6HA9/73vfwu9/9Trk+JSKSjdnvVURG45indDguxGbl/rHZbFi2bJmhbS5fvhw2m+26z7FyTQtN5drImntJSQlcLhcmJyfzPlY4HEZXV5cOUd3Y6dOnEYlEDGlLNEJtI5bOCy+8gEceeQTt7e146aWX5nSMW265BevWrcO9996Ld77znTpHSEZS7dIzItWFw2E0Nzfrsp+o0+lER0cH3G63DpERERERERHJrbW1Fbt27TK0vZ07dxrWXqFxGzHKRaHHi1k/z6qdyxXuypY3e+c734m///u/RzQaxXPPPYevf/3r+OQnP4n3vOc9abeRstvtWLp0Kf7yL/8SX//61/Hcc88hGo1i586dXGiRyOLFi1FcXGx2GFKYnJzE5cuXdVkll5Gq9RElb7fbjVAoBL/fn9dx/H4/QqEQ3G63MLkREVF+OJ+TajjmKR2OC7FZvX9aWlqEa8/qNS0klWsja+7FxcVYvHixLnmdO3dOh4jEbU8Uwi+2XM3tduOLX/wivvvd7+KXv/wlRkZGEI/H8corr+CVV15BPB7HyMgILl68iEcffRRf/OIX+QlmSW3cuFGaG6aZLZFI4OGHH0YikTA7FCGpWh+R8q6pqUFbWxtOnjwJr9eb02u9Xi8CgQDa2tpQU1MDQKzciIho7jifk2o45ikdjguxWb1/3G43GhoaDGnL6/XO+vR7JlavaSGpXBtZc6+oqMDGjRsxOjqa13E0TcOFCxd0iio758+fh+AbahWE8NuIEV1t+tIzu92OsbExhMNhqS89M4KmaRgbG0NZWdkN90ZVkar1ETnvSCSChx56CIcOHUr7+KpVq9DY2IiWlpa0v6yLnBsREWWP8zmphmOe0uG4EJsM/RMIBLB27VpD2lmzZs0Nn2elmhq9jZiVaqM3GXJPN15sNhvKyspw8eLFjGMpG4ODg6iqqso3xDm1+9JLL3EbMSLRJZNJJVdHC8Fms8Fut1v2zajQVK2PyHnX1dVh27ZtGR8/duwYdu7cmfFTUSLnRkRE2eN8TqrhmKd0OC7EJkP/+Hy+gm8n5vf7s1poAeSoaaGoXBtZc9c0DclkMu+8xsfHdYooN2NjY6a0ayYutpAlbd26FZWVlWaHIYXBwUHs27cPg4ODZociJFXrI3PeMudGRKQSzuekGo55SofjQmyy9M/BgwfhdDoLcmyn04kDBw5k/XxZaloIKtdG1twrKyuxdetWDA8P53Wc0tJSnSLKTVlZmSntmomLLWRJnZ2dSCaTZochBbvdjqamJtjtdrNDEZKq9ZE5b5lzIyJSCedzUg3HPKXDcSE2WfqnpqYGHR0dcDgcuh7X4XCgo6Nj5v6a2ZClpoWgcm1kzT2ZTKKzszPvxZKKigrdf35vxOFwoLy83NA2RcDFFrKk7u5u0y6Bk01paSnq6+tNW+UWnar1kTlvmXMjIlIJ53NSDcc8pcNxITaZ+sftdiMYDOp2hYvT6UQwGITb7c7pdTLVVG8q10bW3MfHx9Hd3Y158+bldRybzYZly5bpFFV2li9fLt22btngYgtZUnNzM+bPn292GFIYHR1FR0cHRkdHzQ5FSKrWR+a89c4tGo3CZrOl/YpGo7q0QURE15L5vYooHY55SofjQmyy9Y/b7UYoFILf78/rOH6/H6FQKOeFFkC+mupJ5drImvv8+fPR3Nysy71PVqxYoUNE4rYnCi62kCVVV1ejqIjDVw9TU1Po7+/H1NSU2aEISdX6yJy3zLkREamE8zmphmOe0uG4EJuM/VNTU4O2tjacPHkSXq83p9d6vV4EAgG0tbXltHXY1WSsqV5Uro2suRcVFaG6ulqXvFpaWnSISNz2RGHTNE0zOwiibPX09KCurm7m/5FIBLW1tSZGRERmiEajWLJkSdrHent74XK5GIvJsRARERERkfwikQgeeughHDp0KO3jq1atQmNjI1paWmadz1EB/z6jXBgxXrxeL7q6uvI+TjbtBINBAOqdy+WlAWRJLpcLJSUlZochhVQqhWg0ilQqZXYoQlK1PjLnLXNuREQq4XxOquGYp3Q4LsSmQv/U1dVh27ZtGR8/duwYdu7cqdtCiwo1nSuVayNr7iUlJXC5XJicnNTleNu3b9flOKK0IyIutpAlbdiwAeXl5WaHIYWhoSEcPXoUQ0NDZociJFXrI3PeMudGRKQSzuekGo55SofjQmzsH/2xppmpXBtZcy8vL8eGDRt0uxeNz+cr+PZefr8fa9asKWgbIuM2YmQpql16RkTpiXQ5NmMhIiIiIiKV8e+Q9FgXyoVR4yUWi8Hj8aCvr0+X413N6XQiFArNuieTaudyeWULERFZjsvlgqZpab/4CysRERERERER0bVqamrQ0dEBh8Oh63EdDgc6OjpmLbSoiIstZEk7duxAVVWV2WFIYWBgAF/72tcwMDBgdihCUrU+Muctc25ERCrhfE6q4ZindDguxMb+0R9rmpnKtZE196qqKuzYsUP37dHcbjeCwSCcTqcux3M6nQgGg3C73bocz8q42EKWdOLECYyMjJgdhhQWLFiAu+66CwsWLDA7FCGpWh+Z85Y5NyIilXA+J9VwzFM6HBdiY//ojzXNTOXayJr7yMgITpw4Abvdrvux3W43QqEQ/H5/Xsfx+/0IhUJcaPn/cbGFLOnSpUuYmJgwOwwpzJs3D0uXLsW8efPMDkVIqtZH5rxlzo2ISCWcz0k1HPOUDseF2Ng/+mNNM1O5NrLmPjExgUuXLqGkpKQgx6+pqUFbWxtOnjwJr9eb02u9Xi8CgQDa2tqU3zrsaoXpqQI4ffp0Xq8vKipCZWUlqqurccstt+gUFZnlrrvuwlNPPWV2GFIYGRnBU089hTvvvFO6TwDoQdX6yJy3zLkREamE8zmphmOe0uG4EBv7R3+saWYq10bW3BcsWIA777wTyWSyoO34fD74fD5EIhE89NBDOHToUNrnrVq1Co2NjWhpaZl103v6PcsstjQ1NcFms+lyrIULF2LZsmVYt24d/H4/Fi5cqMtxiYhILeFwGIcPH874+Pr16+H1euH3+/mLCBEREREREREJq66uDtu2bcu42HLs2DG4XC5jg7IYm6ZpmtlBZKOoSN8dz6YXbt761rfi29/+Nj784Q/renwqjJ6enlknLCORCGpra02MiIhUFAgEsHv3bnR1dWX9moaGBuzYsQNr1qwpSEzTCz/X+wQKF36IiIiIiEhv0WgUS5YsSftYb2+vsidnWRfKhSjjRe84VDuXa5l7tni9XjQ2NqKxsRFlZWWzrnK56aabUF9fjz/5kz/B7bffjkWLFs08ZrPZYLfb0djYiA996ENYunQpSkpKoGkaNE3Dyy+/jDVr1uA//uM/zEiL5kjGfRjNMr3/I++Bk56q9ZE573xyi8Vi8Pv9WLt2bU4LLQDQ1dUFn8+HdevWIRaL5dx2JoFAAF6vFx6PJ+NCCwCcOXMGu3btgtvthtfrxalTp3SLgYjIDDK/VxGlwzFP6XBciI39oz/WNDOVayNr7tP3okmlUmaHQlmyzGJLZ2cnfvjDH2LRokUYGxtDRUUFHnzwQbz44ov43e9+hwsXLuD06dM4f/48Xn31VfT29uKrX/0qKisrMTY2hptvvhn/9m//hosXL2JgYADf+c53cOuttwIAxsfH8elPfxpjY2MmZ0nZuuuuu6Tag9FMIyMjOHHiBEZGRswORUiq1kfmvOeaWygUgsfjwfHjx/Nqv729HR6PB+FwOK/jiLjwQ0RkJJnfq4jS4ZindDguxMb+0R9rmpnKtZE19wULFuCuu+4q+D1bSD+W2UYMAD7+8Y/jiSeewDvf+U48/fTTWd3o/uWXX8Ydd9yBF154AXfddRcef/zxmcfi8Tj+5E/+BL/85S9hs9lw+PBh/PVf/3UhU6A8qXbpGRGJIRQKoampCfF4XLdjOhwOBINBuN3uOcWzevVq9PX15R2H0+lER0fHnOIgIiIiIiISZfsj0bAulAtRxgu3EcuPZa5sOXHiBE6cOAGbzYbvfe97WS20AMDb3vY2fO9735t1jGkOhwPf+MY3Zv7f0dGha8xERGR9sVgMq1ev1nWhBbiy4N/c3JzzlSXTCz96LLQAQF9fHxobG/O+0oaIiIiIiIiISGWWWWw5cuQIAOCDH/wg3ve+9+X02ve973344z/+Y2iaNnOcaatWrcI73/lOaJqGZ599VqdoqdAeeOABVFdXmx2GFPr7+/Hggw+iv7/f7FCEpGp9ZM4719w2b96s28LGm/X19WHLli1ZP1+0hR8iIjPJ/F5FlA7HPKXDcSE29o/+WNPMVK6NrLlXV1fjgQcewNDQkNmhUJYss9jy3HPPwWaz4bbbbpvT65cuXTpznDdbtmwZAOD111+fe4BkqCNHjnCi0Ul5eTnuuecelJeXmx2KkFStj8x555JbIBDI+x4tN9Le3o5AIJDVc0Va+CEiMpvM71VE6XDMUzocF2Jj/+iPNc1M5drImvvQ0BCOHDmC+fPnmx0KZckyiy2XL18GgDnfxH58fHzWca7mcDgAABMTE3OMjowWjUaRSqXMDkMKJSUlcLlcKCkpMTsUIalaH5nzziW33bt3GxARsGfPnhs+R7SFHyIis8n8XkWUDsc8pcNxITb2j/5Y08xUro2suadSKUSjURQXF5sdCmXJMostVVVVAICf/exnc3r92bNnZx3naqOjowCAmpqaOUZHRrv77ruxcOFCs8OQwvDwMB599FEMDw+bHYqQVK2PzHlnm1s4HEZXV5chMZ0+fRqRSOS6zxFp4YeISAQyv1cRpcMxT+lwXIiN/aM/1jQzlWsja+4LFy7E3XffPXPumsRnmcUWt9sNTdPw4osv4tFHH83ptY8++iheeOEF2Gw21NXVXfN4b28vAOCmm27SJVYqvP7+fkxNTZkdhhSKiopQXV2NoiLLTAeGUrU+MuedbW6Fvookl/ZEW/ghIhKBzO9VROlwzFM6HBdiY//ojzXNTOXayJr71NQU+vv7pctLZpbpqbvvvnvm35/97Gfx2GOPZfW6xx9/HJ/73Odm/t/S0jLr8bGxMTz77LOw2Wx4xzveoU+wVHAdHR1c1dXJ/Pnz0dzczP0fM1C1PjLnnW1u586dMyiiG7cn0sIPEZEoZH6vIkqHY57S4bgQG/tHf6xpZirXRtbcR0dH0dHRgbKyMrNDoSxZZrHl3nvvxe233w7gykC7++670dDQgIcffhjd3d2IxWIYHR1FLBbDc889h2984xtobGzEX/7lX2JkZAQ2mw319fW49957Zx335MmTMzdab2hoMDwvmpv6+nqUlpaaHYYUxsfH0d3dPXNfI5pN1frInHc2uWmahgsXLhgYFXD+/Hlompb2MZEWfoiIRCHzexVROhzzlA7HhdjYP/pjTTNTuTay5l5aWor6+nreZ9xCLLPYUlRUhCeffHLW1Sc/+clPsGnTJixfvhw333wzysvLcfPNN2PZsmW477778J//+Z8zz12yZAmeeOKJay67euyxx3Drrbfilltuwf/4H//DsHwoP01NTbDb7WaHIYVkMonOzk4kk0mzQxGSqvWROe9sckskEojH4wZGBcTj8ZnF/6uJtvBDRCQKmd+riNLhmKd0OC7Exv7RH2uamcq1kTV3u92OpqYm6RaRZGbTLHY25Y033sD999+Ptra2rF/j9/uxf/9+1NTUFDAyMkJPT8+s++5EIhHU1taaGBERyej111/HokWLDG/3tddeu+b+YYODg6iqqjI8lsHBQVRUVBjeLhERERERWUs0GsWSJUvSPtbb2wuXy2VsQIJgXSgXoowXveNQ7VyuZa5smfaWt7wF//Iv/4KLFy/iy1/+Mt7//vdfs53UvHnzsHz5cnzpS19CT08Pjh07xoUWydjtdthsNrPDkIKmaUgmk/wUewaq1kfmvLPJzaxtCtPtw2rWJ1jGxsZMaZeIKFsyv1cRpcMxT+lwXIiN/aM/1jQzlWsja+42mw12u126vGRmucWWaUuXLsWePXtw7tw5JJNJxONxvPzyy4jH4xgbG8PPf/5z7N27F7fddpvZoVIB7Nixw5RPestoYGAAu3fvxsDAgNmhCEnV+sicdza5VVRUwOFwGBgV4HA4UF5efs33RVr4ISISiczvVUTpcMxTOhwXYmP/6I81zUzl2siae1VVFXbs2IHh4WGzQ6EsWXax5c2qqqrwR3/0RzwBr4jDhw8jkUiYHYYUKioq8PnPf57bBWWgan1kzjub3Gw2G5YtW2ZgVMDy5cvTXrEn0sIPEZFIZH6vIkqHY57S4bgQG/tHfzeqaTQahc1mS/sVjUaNDdZgKo83WXNPJBI4fPgw5s+fb3YolCVpFltILZcvX8bk5KTZYUihuLgYixcvRnFxsdmhCEnV+sicd7a5rVixwqCIrt+eSAs/REQikfm9iigdjnlKh+NCbOwf/bGmmalcG1lzn5ycxOXLl6XLS2ZcbCFL2rBhAz91rZOhoSEcOXIEQ0NDZociJFXrI3Pe2ebW0tJiUEQ3bk+UhR8iIpHI/F5FlA7HPKXDcSE29o/+WNPMVK6NrLmXl5djw4YNGB0dNTsUylKJ2QHkY2hoCM899xxef/11JBIJTE1NZfW6T3/60wWOjAotGo0ilUqZHYYUSkpK4HK5UFJi6emgYFStj8x5Z5ub2+1GQ0MDurq6Ch6T1+tFXV1dxsdbWlqwa9eugsdxdXtERKKT+b2KKB2OeUqH40Js7B/9saaZqVwbWXNPpVKIRqO8ssVCbJqmaWYHkav29nYcPHgQP//5z5Fr+DabjSfpLaynp2fWCclIJILa2loTIyIimQUCAaxdu9aQdtasWXPd53i9XsMWfoLBYMHbISIiIiIiOUSjUSxZsiTtY729vXC5XIzF5FhIfKKMF73jUO1crqW2ERsdHcVHP/pR/NVf/RXOnTuHqakpaJqW9gvAdR8ja1u5ciXKysrMDkMKY2NjOHv2LMbGxswORUiq1kfmvHPJzefzFfwqD7/ff8OFFgDYvn17QeMwuh0ionzJ/F5FlA7HPKXDcSE29o/+WNPMVK6NrLmXlZVh5cqVGB8fNzsUypKlFls++9nPIhAIQNM0lJWVYfXq1Vi6dCmAK1es3HPPPfj4xz+O5cuXz1w2ZrPZUF5ejk9/+tO45557uIWYJOrr61FaWmp2GFIYHx9Hd3c3J+4MVK2PzHnnmtvBgwfhdDoLEovT6cSBAweyeq5ICz9ERCKQ+b2KKB2OeUqH40Js7B/9saaZqVwbWXMvLS1FfX09d2myEMtsI/azn/0Mf/zHfwybzYZ3vvOdeOqpp3Drrbdi8+bN+Od//mfYbDZMTk7OPH9wcBDf/OY38dWvfhVDQ0P48z//c3z3u99FRUWFiVlQvlS79IyIxBAOh9HY2Ih4PK7bMR0OB4LBINxud9avicVi8Hg86Ovr0y2OaU6nE6FQCDU1Nbofm4iIiIiI5CXK9keMhaxMlPHCbcTyY5krW44ePTrz70ceeQS33nrrdZ9fWVmJL33pS/jFL36BP/zDP8S//du/4d577y10mGSQ6upqFBVZZvgKbWpqCv39/ZiamjI7FCGpWh+Z855Lbm63G8FgULcrXJxOZ84LLQBQU1ODjo4OOBwOXeKY5nA40NHRwYUWIrIUmd+riNLhmKd0OC7Exv7RH2uamcq1kTX3oqIiVFdXS5eXzCxztvo///M/AQDveMc7sGrVqqxf9653vQtHjx6Fpmn4wQ9+gEAgUKgQyUBbt25FZWWl2WFIYXBwEPv378fg4KDZoQhJ1frInPdcc3O73QiFQvD7/Xm17/f7EQqFcl5ouToOERZ+iIjMJvN7FVE6HPOUDseF2Ng/+mNNM1O5NrLmXllZia1bt2JkZMTsUChLllls6evrg81mw+233z7r+zabbebfmfbl+8hHPjJzedKxY8cKFyQZZt++fdJNoGaprKzE/fffz8WrDFStj8x555NbTU0N2tracPLkSXi93pxe6/V6EQgE0NbWlvcVJKIs/BARmUnm9yqidDjmKR2OC7Gxf/THmmamcm1kzX1wcBD79u3DggULzA6FsmSZxZbpE+tvPkE1f/78a56TzrJly6BpGs6fP1+YAMlQMl4aaJbpSxK5LVt6qtZH5rz1yM3n8yEYDCIcDmPTpk0Zn7dq1Sq0trYiHA4jGAzqevN5URZ+iIjMIvN7FVE6HPOUDseF2Ng/+rNKTcPhMPbu3Zvx8fXr16O1tRWRSES3Nq1Sm0KQNffp7dFky0tmlump6RW8iYmJWd+vrq6e+fdvfvObjK/XNA0A8Nvf/lb/4MhwGzduREVFhdlhSCGRSODw4cNIJBJmhyIkVesjc9565lZXV4dt27ZlfPzYsWPYuXPnrJvB6U2EhR8iIjPI/F5FlA7HPKXDcSE29o/+RK9pIBCA1+uFx+PBoUOHMj7vzJkz2LVrF9xuN7xeL06dOpV326LXZlo0GoXNZkv7FY1G53RMq+Seq4qKCmzcuJHbiFmIZRZb3va2twEAYrHYrO+/+93vnvn3T3/604yvv3jxYmECI1N0d3dn3DaOclNaWor6+nqUlpaaHYqQVK2PzHnLmpsICz9EREaSdT4nyoRjntLhuBAb+0d/otY0FovB7/dj7dq16Orqyum1XV1d8Pl8WLdu3TXnPXMham2MIGvu4+Pj6O7uRklJidmhUJYss9jidruhaRqef/75Wd9fsWLFzH1bvvGNbyCVSl3z2qeeegoXLlyAzWbD29/+dkPipcI6e/YsxsbGzA5DCmVlZVi5ciXKysrMDkVIqtZH5rxlzo2ISCWcz0k1HPOUDseF2Ng/+hOxpqFQCB6PB8ePH8/rOO3t7fB4PAiHw3N6vYi1MYqsuY+NjeHs2bPSLSLJzDKLLdP70T///PN44403Zr7/tre9DX/yJ38CTdPQ09ODj33sY3j22WcxMTGBgYEB/Mu//AvWrVs38/yPfvSjhsdO+mtqaoLdbjc7DCkkk0l0dnYimUyaHYqQVK2PzHnLnBsRkUo4n5NqOOYpHY4LsanSPy6XC5qmpf1yuVy6tiVaTUOhEJqamtDX16fL8fr6+tDY2DinBRfRamMkWXO32+1oamri7j4WYpnFljVr1sBms0HTNJw8eXLWY1/72tdmrm7p6OjA+9//ftjtdrzlLW/Bhg0bZhZnbrrpJmzdutXo0KkAXC4XL6HTSSqVQjQaTXtVGKlbH5nzljk3IiKVcD4n1XDMUzocF2Jj/+hPpJrGYjGsXr0a8Xhc1+PG43E0NzfnvKWYSLUxmqy5l5SUwOVyYXJy0uxQKEs2bfrO8Rawbds2vPLKK3j/+9+PL33pS7Mee+SRR7Bx48aMP1SLFi3CE088gZUrVxoRKhVIT0/PrPsNRCIR1NbWmhgREakuGo1iyZIlaR/r7e3V/ZNcVomFiIiIiIjIaEb+TeT3+/PeOuxGx29rayvY8c3Cv1vTE6Uueseh2rlcy1zZAgB79+7F8ePHr1loAYDPfOYzeO655/C5z30Ob3/722G327FgwQLU1dXhK1/5CiKRCBdaJLJ48WIUFxebHYYUJicncfnyZa6SZ6BqfWTOW+bciIhUwvmcVMMxT+lwXIiN/aM/UWoaCAQKutACXLmHSyAQyPr5otTGDLLmXlxcjMWLF0uXl8wstdhyI7fddhu+8Y1v4IUXXsDIyAiGhoYQCoWwc+dOLFq0yOzwSEcbN25ERUWF2WFIIZFI4OGHH0YikTA7FCGpWh+Z85Y5NyIilXA+J9VwzFM6HBdiY//oT5Sa7t6925B29uzZk/VzRamNGWTNvaKiAhs3bsTo6KjZoVCWLLWNGNH0pWd2ux1jY2MIh8NSX3pmBE3TMDY2hrKyspl7H9HvqVofmfPWOzdRLvUVLRYiokKT+b2KKB2OeUqH40Js7B/93aimRvxNFA6H4fF48j5OLu1dvQ1TJlYZb4XoI6vkfj3p6mKz2VBWVoaLFy9mrJkRcUzjNmI3JtWVLddz8uRJfOc738F3vvMds0MhHSSTSXCdUB82mw12u92yb0aFpmp9ZM5b5tyIiFTC+ZxUwzFP6XBciI39oz8Ralro7cPm2p4ItTGLrLlrmoZkMildXjJTZrHl//7f/4t7770X9957r9mhkA62bt2KyspKs8OQwuDgIPbt24fBwUGzQxGSqvWROW+9c3O5XNA0Le0XryQhIiocmd+riNLhmKd0OC7Exv7Rnwg1PXfunJDtiVAbs8iae2VlJbZu3Yrh4WGzQ6EsKbPYAoBXQkiks7MTyWTS7DCkYLfb0dTUBLvdbnYoQlK1PjLnLXNuXPghIpXIPJ8TpcMxT+lwXIiN/aM/s2uqaRouXLhgaJvnz5/P6pym2bUxk6y5J5NJdHZ2orS01OxQKEslZgdANBfd3d1mhyCN0tJS1NfXmx2GsFStj8x5y5wbEZFKOJ+TajjmKR2OC7Gxf/Rndk0TiQTi8bihbcbjcQwNDaGiouK6zzO7NmaSNffx8XF0d3dj3rx5ZodCWVLqyhaSR3NzM+bPn292GFIYHR1FR0cHRkdHzQ5FSKrWR+a8Zc6NiEglnM9JNRzzlA7HhdjYP/ozu6bj4+OmtDs2NnbD55hdGzPJmvv8+fPR3NycVf+TGLjYQpZUXV2NoiIOXz1MTU2hv78fU1NTZociJFXrI3PeMudGRKQSzuekGo55SofjQmzsH/2ZXVOztnMqKyu74XPMro2ZZM29qKgI1dXV0uUlM5umyI1Mbr/9djz33HOw2WyYnJw0Oxyao56eHtTV1c38PxKJoLa21sSIiIgonWg0iiVLlqR9rLe3l/eQISIiIiIi3RX67xBN01BTU2PoVmIOhwOxWAw2m82wNguJfyumJ0pd9I5DtXO5vDSALMnlcqGkhLcc0kMqlUI0GkUqlTI7FCGpWh+Z85Y5NyIilXA+J9VwzFM6HBdiY//oz+ya2mw2LFu2zNA2ly9fntVCi9m1MZOsuZeUlMDlcvHCAQvhYgtZ0oYNG1BeXm52GFIYGhrC0aNHMTQ0ZHYoQlK1PjLnLXNuREQq4XxOquGYp3Q4LsTG/tGfCDVdsWKFkO2JUBuzyJp7eXk5NmzYIN29aGTGbcTIUlS79IyIyKpEuQSaiIiIiIjUYcTfIeFwGB6PJ+/j5NLe1efCrI5/K6YnSl24jVh+eGULERERERERERERURbcbjcaGhoMacvr9Uq10EIkOy62kCXt2LEDVVVVZochhYGBAXzta1/DwMCA2aEISdX6yJy3zLkREamE8zmphmOe0uG4EBv7R3+i1HT79u3CtSNKbcxg9dzD4TD27t17zferqqqwY8cOfO5zn0NraysikYgJ0VEuhLvD+Fe/+tWCHPfy5csFOS6Z48SJExgZGTE7DCksWLAAd911FxYsWGB2KEJStT4y5y1zbkREKuF8TqrhmKd0OC7Exv7Rnyg19fl8aGlpwfHjxwvWht/vx5o1a7J+vii1MYNVcw8EAti9eze6urrSPj4yMoITJ07gxRdfxDPPPINdu3ahoaEBO3bsyGlskHGEu2dLUVERbDZbQY6taRrv2WJxqu3zR0RkVaLsN0tEREREROow8u+QWCwGj8eDvr4+3Y45zel0IhQKoaamRvdjm41/K14ZO5s3b85rsc7v9+PAgQO6jxHesyU/Qm4jpmlaQb5IHlZcrRbV9Co5rxRKT9X6yJy3zLkREamE8zmphmOe0uG4EBv7R38i1bSmpgYdHR1wOBy6HtfhcKCjoyPnk+gi1cZoVso9FArB4/FktdByvSt22tvb4fF4EA6HCxEmzZFw24h5vd6CXdlCREREhRcOh3H48OGMj69fvx5erxd+v583eyQiIiKiG+In4UlUbrcbwWAQzc3Nulzh4nQ60dHRAbfbrUN0JJpQKISmpibE43FdjtfX14fGxkYEg0GOGUEIt40Y0fWodukZEZGV3Gi/2XS43ywRERER3QgXWyhbZo2VWCyGLVu2oL29fc7HKNS2UKJR9efZKtvOcRux/Ai5jRjRjSxduhTz5s0zOwwpTExM4NKlS5iYmDA7FCGpWh+Z85Y5N7PEYjH4/X6sXbs2p4UWAOjq6oLP58O6desQi8UKFCERyYjzOamGY57S4bgQG/tHf6LWtKamBm1tbTh58iS8Xm9Or/V6vQgEAmhra8vrZLmotTGCFXLfvHlzzgst8+bNy+ocaF9fH7Zs2ZJPeKQTLraQJfGeLfqx0r6WZlC1PjLnLXNuZshlv9nr4X6zRJQrzuekGo55SofjQmzsH/2JXlOfz4dgMIhwOIxNmzZlfN6qVavQ2tqKcDiMYDCoy5X+otemkETPPRAIzOlv5uvds+XN2tvbEQgE5hIe6YjbiJGlqHbpGRGRyPTebxa4cjNI7jdLRERERFdTddshyp1IY0WkWESiYl28Xm/Ou0DMtZ1gMJjXMbiNWH54ZQsRERHlLBaLYfXq1boutABAPB5Hc3MztxQjIiIiIiIiywuHw4YstADA6dOnEYlEDGmL0uNiC1nSAw88gOrqarPDkEJ/fz8efPBB9Pf3mx2KkFStj8x5y5ybkeay32y2uN8sEWWD8zmphmOe0uG4EBv7R3+saWYq10bk3PPZcru6ujrnc6D5bvFN+eFiC1nSkSNHMDQ0ZHYYUigvL8c999yD8vJys0MRkqr1kTlvmXMzylz3m80F95slohvhfE6q4ZindDguxMb+0R9rmpnKtRE593Pnzs35tUNDQzmfA82nPcofF1vIkqLRKFKplNlhSKGkpAQulwslJSVmhyIkVesjc94y52aU3bt3G9LOnj17DGmHiKyJ8zmphmOe0uG4EBv7R3+saWYq10bU3DVNw4ULF+b8+lQqlfM50PPnz4O3aDcPF1vIku6++24sXLjQ7DCkMDw8jEcffRTDw8NmhyIkVesjc94y52YE7jdLRKLgfE6q4ZindDguxMb+0d/1ahoOh7F3796Mr12/fj1aW1ul/RtD5fEmau6JRCKv+5wuXLgw53Og8XicuwGZiIstZEn9/f2YmpoyOwwpFBUVobq6GkVFnA7SUbU+Muctc25GMHr/V+43S0SZcD4n1XDMUzocF2Jj/+gvXU0DgQC8Xi88Hg8OHTqU8bVnzpzBrl274Ha74fV6cerUKSNCNozK403U3MfHx/N6/dTU1JzOgY6NjeXVLs2dTeN1RWQhPT09qKurm/l/JBJBbW2tiREREanljjvuwDPPPGNoe08//bRh7RERERGReKLRKJYsWZL2sd7eXrhcLmMDIiHEYjFs3rw5rw9o+f1+HDhwADU1NTpGdgXHbXoq1WVwcBBVVVWmtFtRUTGn1+rdP6qdyxVruY8oS/X19SgtLTU7DCmMj4+ju7s779V2WalaH5nzljm3Qst3v9m54H6zRJQJ53NSDcc8pcNxITb2j/6ma3rhwgV4PJ68r4Rvb2+Hx+NBOBzWKULzqDzeRM29oqICDodjzq8vLS3N+Ryow+FAeXn5nNuk/HCxhSypqakJdrvd7DCkkEwm0dnZiWQyaXYoQlK1PjLnLXNuhZbvfrNzwf1miSgTzuekGo55SofjQmzsH/0lk0k8/fTTuOuuu9DX16fLMfv6+tDY2Gj5BReVx5uoudtsNixbtmzOr7fb7TmfA12+fDlsNtuc26T8cBsxshTVLj0jIhLJ66+/jkWLFhne7muvvYabbrrJ8HaJiIiISAwqbTtE1xeLxeDxeHRbaLma0+lEKBTSbUsxjtv0VKtLa2srdu3aZWh7O3funPPruY1YfnhlC1mS3W7nKq1ONE1DMpnkNj0ZqFofmfOWObdCM2v7xrKyMlPaJSKxcT4n1XDMUzocF2Jj/+hv8+bNeOONNwpyTqivrw9btmzR/bhGUXm8iZx7S0vLnF9rs9lyPgeaT3uUP8sutiSTSZw4cQJf/vKX8alPfQp33nknPvKRj1zzPE3TMDIygpGREUxMTJgQKRXCjh07TLnBlIwGBgawe/duDAwMmB2KkFStj8x5y5xboeW73+xccL9ZIsqE8zmphmOe0uG4EBv7R1+BQAA/+tGPCnpOqL29HYFAoCDHLjSVx5vIubvdbjQ0NMzptVVVVTmNd6/XO+sqEjKeJbcR+/rXv449e/YgFovNfE/TNNhsNkxOTs56biwWwy233IJkMokPfvCD+MlPfmJ0uKSj6UvPFi9ejNdeew3PPfec1JeeGWFychKvvfYaFi1ahOLiYrPDEY6q9ZE5b5lzM8Idd9yBZ555xtD2nn76acPaIyLr4HxOquGYp3RUGRdW3XZIlf4xitfrxU9+8hMsWrQIr7322jXnAPVsJxgM5n0co8etVcZbIeoieu6BQABr167N+XXFxcU5jfdAIIA1a9bMJcQZ3EYsP5a6smViYgI+nw/bt29HLBaDpmkzX5nU1NTgnnvugaZp+NnPfoYXXnjBwIipUC5fvlywN1XVFBcXY/HixUK+GYlA1frInLfMuRlhxYoVUrdHRNbB+ZxUwzFP6XBciI39o59wOIyuri5MTk4W/JzQ6dOnEYlECnb8QlF5vImeu8/nm9P2XrmMd7/fn/dCC+XPUost9913H370ox9B0zSUlZXh85//PL773e/iYx/72HVft379+pl/nzp1qtBhkgE2bNjAbWV0MjQ0hCNHjmBoaMjsUISkan1kzlvm3Ixg9P6v3G+WiDLhfE6q4ZindDguxMb+0c/x48cBAOXl5YacE5puz0pUHm9WyP3gwYNwOp05vSbb8e50OnHgwIF8wiOdWGax5fz58/j2t78Nm82Gt771rbhw4QIeeughfPKTn8Rb3/rW6772Qx/60Mzedl1dXUaESwUWjUaRSqXMDkMKJSUlcLlcKCkpMTsUIalaH5nzljk3I+Sz32yuuN8sEV0P53NSDcc8pcNxITb2j37OnTsHAEilUoacE5puz0pUHm9WyL2mpgYdHR053Qc1m/HucDjQ0dGBmpoaPcKkPFlmseXb3/72zHZh//Iv/4KlS5fm9Pr6+npomoZf/vKXhQiPDNbZ2YlkMml2GFKw2+1oamqC3W43OxQhqVofmfOWOTejbN++Xap2iMiaOJ+TajjmKR2OC7Gxf/ShaRouXLgAAEgmk4acEzp//vx1b1sgIpXHm1Vyd7vdCAaDWV/hcqPx7nQ6EQwG4Xa79QyT8mCZxZb/+I//AADU1dWhsbEx59dPX/3y3//937rGReZYuXIlysrKzA5DCmNjYzh79izGxsbMDkVIqtZH5rxlzs0oc91vNhfcb5aIboTzOamGY57S4bgQG/tHH4lEAvF4HABQVlZmyDmheDwu9JZU6ag83qyUu9vtRigUgt/vv+Fzrzfe/X4/QqEQF1oEY5nFlr6+PthsNtx+++1zev303nbDw8N6hkUmqa+vR2lpqdlhSGF8fBzd3d0YHx83OxQhqVofmfOWOTcjzWW/2Wxxv1kiygbnc1INxzylw3EhNvaPPq6uX2lpqWHnhKxw4v5qKo83q+VeU1ODtrY2nDx5El6vN+Pz0o13r9eLQCCAtrY2bh0mIJtmkWvi5s+fj/Hxcfz1X/81Dh8+POuxzZs345//+Z9hs9kwOTmZ9vV/9Vd/hba2NlRXV+ONN94wImQqgJ6enln790ciEdTW1poYERGRusLhMBobG2c+ZaYHh8PBy6CJiIiIaJZoNIolS5akfay3txcul8vYgMhQg4ODM/diNrrdioqKOb+e4zY91uVakUgEDz30EA4dOpT28VWrVqGxsREtLS0Fv6+p3v2j2rlcy1zZsmjRIgDA5cuX5/T6S5cuzToOWVt1dTWKiiwzfIU2NTWF/v5+TE1NmR2KkFStj8x5y5yb0XLdb/ZGuN8sEeWC8zmphmOe0uG4EBv7Rx8VFRUzNxUvKioy5JyQw+GY2SXHKlQeb1bPva6uDtu2bbvm+9Pj/Tvf+Q527txZ8IUWyp9lzlYvXboUmqbhpz/9acarVzJ5+eWX0d3dDZvNhg984AMFipCMtHXrVlRWVpodhhQGBwexf/9+DA4Omh2KkFStj8x5y5ybGXLZb/Z6uN8sEeWK8zmphmOe0uG4EBv7Rx82mw3Lli0DAFRWVhpyTmj58uWw2WwFbUNvKo83WXOfHu8jIyNmh0JZssxiS3NzMwDg9ddfx3e+852cXvt//+//nVmg+fM//3PdYyPj7du3T7oJ1CyVlZW4//77uXiVgar1kTlvmXMzS7b7zabD/WaJaK44n5NqOOYpHY4LsbF/9LNixQoAV06qG3FOaLo9K1F5vMma+/R4X7BggdmhUJYss9iyYcOGmf0Zv/jFL+IXv/hFVq/76le/iu985zuw2WxwOp24++67CxkmGcTKlwaKxqhLcK1K1frInLfMuZnN5/MhGAwiHA5j06ZNGZ+3atUqtLa2IhwOIxgMYs2aNQZGSUSy4HxOquGYp3Q4LsTG/tFPS0sLAOO2i5puz0pUHm+y5j493mXLS2aW6am3vOUt+Lu/+ztomobBwUE0NDTgy1/+Ms6fP4+xsbGZ5w0ODuL555/HI488gg984AN48MEHZx77x3/8R8ybN8+M8ElnGzduzOsmZfR7iUQChw8fRiKRMDsUIalaH5nzljk3UWTab3basWPHuN8sEeWN8zmphmOe0lFhXITDYezduzfj4+vXr0draysikYiBUWVHhf4xitvtRkNDAyoqKgp+Tsjr9VrybxWVx5usuU+Pd24jZh0lZgeQiy984Qv49a9/jQMHDmB8fBz/+I//iH/8x3+ceVzTtJkbZl39PeDKVmKf+MQnDI2XCqe7uxvj4+NmhyGF0tJS1NfXo7S01OxQhKRqfWTOW+bciIhUwvmcVMMxT+nIPC4CgQB2796Nrq6u6z7vzJkzOHPmDHbt2oWGhgbs2LFDmCunZe4fM2zfvh1/8Rd/UfBzQtu3by/YsQtJ5fEma+7j4+Po7u5GSYmlTuErzTJXtkzbt28fvvWtb6Gqqgqaps0spthsNthstpnvTX9VV1fj29/+Nh544AFzAyddnT17dtYVTTR3ZWVlWLlyJcrKyswORUiq1kfmvGXOjYhIJZzPSTUc85SOjOMiFovB7/dj7dq1N1xoebOuri74fD6sW7cOsVisQBFmT8b+MZPP58PHP/7xgp4T8vv9wizW5Url8SZr7mNjYzh79qx0i0gys9xiCwB85jOfwUsvvYR9+/bhzjvvRHl5+ayFl7KyMjQ0NGD37t2IRqO45557TI6Y9NbU1AS73W52GFJIJpPo7OxEMpk0OxQhqVofmfOWOTciIpVwPifVcMxTOrKNi1AoBI/Hg+PHj+d1nPb2dng8HoTDYZ0imxvZ+kcEX//61/HRj360IOeEnE4nDhw4oPtxjaLyeJM1d7vdjqamJu7uYyGWXGwBgPLycmzZsgUdHR0YGBhAIpHAK6+8gng8jtHRUQSDQWzbtg2VlZVmh0oF4HK5eAmdTlKpFKLRKFKplNmhCEnV+sict8y5ERGphPM5qYZjntKRaVyEQiE0NTWhr69Pl+P19fWhsbHR1AUXmfpHFJWVlfjzP/9z1NTU6Hpch8OBjo4O3Y9rJJXHm6y5l5SUwOVyYXJy0uxQKEs2bfpyEKI5GB8fx3e/+10cP34cPT09ePXVV+FwOLBkyRJ8/OMfx4YNG3DTTTfp1l5PT8+sm5RFIhHU1tbqdnwiItJHNBrFkiVL0j7W29sLl8tlbEBEREREJKxYLAaPx6PbQsvVnE4nQqGQpU+i07XC4TCam5t1GTNOpxMdHR1wu906RPZ7/JsoPdYlPVHqonccqp3LteyVLWS+S5cu4YMf/CA+/elP40c/+hFeeukljI2N4fLly/jpT3+Kbdu2oba2FqdOndK97cWLF6O4uFj346pocnISly9f5ip5BqrWR+a8Zc6NiEglnM9JNRzzlI4s42Lz5s0FWWgBrlzhsmXLloIc+0Zk6R+RTNf0ve99L0KhEPx+f17H8/v9CIVCui+0mEHl8SZr7sXFxVi8eLF0ecmMiy00J6+88go+8pGPoLu7GwBgs9nQ2NiIz3zmM/joRz+K+fPnAwB+97vf4a677sKPf/xjXdvfuHEjKioqdD2mqhKJBB5++GEkEgmzQxGSqvWROW+ZcyMiUgnnc1INxzylI8O4CAQCed+j5Uba29sRCAQK2kY6MvSPaK6uaU1NDdra2nDy5El4vd6cjuP1ehEIBNDW1ibNVU8qjzdZc6+oqMDGjRsxOjpqdiiUJW4jRnPi9XrR1dUFALj11lvxxBNP4H3ve9/M46+//jruvvtuPPPMMwCAt7zlLXjxxRdRXV2dV7vTl57Z7XaMjY0hHA5LfemZETRNw9jYGMrKymCz2cwORziq1kfmvGXOTSSiXAJNRPLifE6q4ZindGQYF1efXyh0O8FgsODtXE2G/hHN9WoaiUTw0EMP4dChQ2lfu2rVKjQ2NqKlpWXWtkaFYvTfRFYZb4Woi1Vyv550dbHZbCgrK8PFixcz1syIOKZxG7Ebs+QdxkdHRxEIBHDu3Dn09vZicHAQExMTWb3WZrPNLADQ3Jw6dWrmF6HS0lL88Ic/vOZyy5tuuglPPPEEPB4P/uu//gtvvPEG9uzZg7//+7/XJYZkMqnLcejKz4Tdbjc7DGGpWh+Z85Y5N5G4XC7w8xxEVEicz0k1HPOUjtXHRTgcNmShBQBOnz6NSCRiyEn2aVbvHxFdr6Z1dXXYtm1bxsWWY8eOSf2hL5XHm6y5a5qGZDJp2QUkFVlqGzFN07Bnzx4sXrwYn/rUp/AP//AP+Nd//Vf8+7//O4LB4A2/Ojs70dnZaXYalvfP//zPM/++5557Mu5ruXDhQnz1q1+d+f/DDz+MVCqlSwxbt25FZWWlLsdS3eDgIPbt24fBwUGzQxGSqvWROW+ZcyMiUgnnc1INxzylY/VxUejtw8xuz+r9IyLWNDOVayNr7pWVldi6dSuGh4fNDoWyZKnFlvXr1+MrX/kKEokENE3L+YvyNzQ0NOvKoHvvvfe6z/+Lv/gLlJeXAwDeeOMNnD59Wpc4Ojs7eXWLTux2O5qamqT8BIAeVK2PzHnLnBsRkUo4n5NqOOYpHauPi3PnzkndntX7R0SsaWYq10bW3JPJJDo7O1FaWmp2KJQly2wj1t7ejuPHj89cNvWe97wHf/mXf4m6ujq85S1vQUmJZVKxtJ/85CcYGxsDcOXKlQ984APXfb7dbscf//Ef4+mnnwYA/PjHP8aHP/zhvOPo7u7O+xh0RWlpKerr680OQ1iq1kfmvGXOjYhIJZzPSTUc85SOlceFpmm4cOGCoW2eP38emqYZtiWPlftHVKxpZirXRtbcx8fH0d3djXnz5pkdCmXJMisU3/rWt2b+/Td/8zfYu3cvioosdWGOFH75y1/O/Nvtdme1yLVs2bKZxZarX5+P5uZmw29sJ6vR0VEEg0E0NjZi/vz5ZocjHFXrI3PeMudGRKQSzuekGo55SsfK4yKRSCAejxvaZjwex9DQECoqKgxpz8r9IyrWNDOVayNr7vPnz0djY+PMB99JfJZZrQiFQrDZbFiyZAm+/vWvc6HFJM8///zMv2+99dasXnPLLbfM/PvSpUu6xFFdXc0xoJOpqSn09/djamrK7FCEpGp9ZM5b5tyIiFTC+ZxUwzFP6Vh5XIyPj5vSrpEnLa3cP6JiTTNTuTay5l5UVITq6mrp8pKZZa5smb4/R0NDg2GXe9K1YrHYzL//4A/+IKvXLF68eObfb7zxhi5xPProo7och65sB3f33XebHYawVK2PzHnLnBsRkUo4n5NqOOYpHSuPC7PuQVBWVmZYW1buH1GxppmpXBtZcx8eHsajjz6KXbt2mR0KZckylwZMXx3BqxnMNTQ0NPPvbC/Lu/p5V78+H+9+97tRVVUFAJicnER/fz80TQMADA4OznxCZnR0FMPDwwCAVCqF/v7+mWMMDAxgYmICADAyMoKRkREAwMTEBAYGBmae19/fj1QqBeDKJDc6OgrgyqdwBgcHAVzZa7a/vx+Tk5MzeU4vEI6NjSGRSAC4dqU9kUjMfKommUzO1MfInAYGBvD8888jlUpJk5Oe/ZRKpXDx4sWZ+GTIKZt+mpiYQDQaxRtvvCFNTtP99MYbb+DXv/41UqmUNDnJNPaYE3NiTswp25xGRkYQjUaRSCSkyUnGfmJO+uU0NjaGaDSK/v5+aXKSsZ+MzimZTCISicz6+84qOWmahptvvhnAlfMGCxcuBACUlJSgurp6JtaqqqqZ+xUsWLAACxYsAADMmzdv5rwAcGUHjOmtzhcuXDhzLqK0tBSVlZUAAIfDgVQqZVg/DQwMIBqNIplM6j72enp6YLPZUFRUBIfDgZKSEthsNlRUVOBXv/pVwXIy++dpeHgYFy9eRCqVSpvTdKx2ux3l5eUAgOLiYlRXVxue08TExMzYs9lsqK6uRnFx8Uy7qv5uNDIyMrPo+eZ+GhoamlM/jY6OIhqNztTB6Jz0+Hm6+pzp9LxXUlKC97znPTPPMzKnioqKtP001zlCFZZZufjgBz8ITdN0u+cHzc30DyOQ/adQrv7UyPQPfb78fj8++clPAgBee+017N+/f2ZSe+SRR3Dx4kUAQDAYxA9/+EMAwCuvvIL9+/fPHOOhhx7Ciy++CAB46qmn8NRTTwEAXnzxRTz00EMzz9u/fz9eeeUVAMAPf/jDmXvFXLx4EY888giAK5PT/v378dprrwEAvv/97+Ps2bMAgGeffRZtbW0ArkxA+/fvn5nw2tra8OyzzwIAzp49i+9///uG5/Tkk0/i0UcfxdDQkDQ56dlPQ0NDeOyxx3Du3Dlpcsqmn9544w0cPXoUR44ckSan6X46cuQI2tvbMTQ0JE1OMo095sScmBNzyjan7u5uHD16FD/+8Y+lyUnGfmJO+uX00ksv4ejRo1LlJGM/GZ3TCy+8gMcff3zmJJ2Vcvr2t7+Nj3zkIwCAxsZGfPSjHwUAvPWtb8XWrVtnYr3vvvvwjne8AwBw55134s477wQAvOMd78B9990387ytW7firW99KwDgox/9KBobGwEA733ve/GZz3wGALBixQocOHDAsH568skncfToUbzwwgu6j70f/ehHAK6cc9m6dSsWLVoEAPjEJz4xE4OMP0/nzp3DY489hqGhobQ5vfDCCwCAlStX4hOf+AQAYNGiRdi6devMIoNROf3mN7+ZGXtv7qdgMKjs70b//u//jttvvz1tPz3++ONzGnsXL17E0aNH0dHRIfS8d72cHn/88ZlYp+e98vJytLS04Oc//7lhOU0vVq1bty5tP811jlCGZhG/+MUvNJvNppWUlGjhcNjscJS1Zs0aDYAGQNu+fXtWrzl16tTMa8rLy/NqPxKJaAA0u92ulZeXa5FIREulUlo8HtempqY0TdO0gYEBbWxsTNM0TRsZGdGGhoY0TdO0iYkJLR6Pzxyrv79fGx8f1zRN04aHh7Xh4WFN0zRtfHxc6+/vn3lePB7XJiYmNE3TtKGhIW1kZETTNE0bGxvTBgYGNE3TtKmpKS0ej2upVErTNE1LJBLa6OiopmmalkwmtcHBQU3TNG1yclKLx+Pa5OSkpmmaNjg4qCWTSU3TNG10dFRLJBKapmnMiTkxJ+bEnJgTc2JOzIk5MSfmxJyYk/Q5feUrX9EAaPPnz9cWLlyoAdBKSkq06urqmfMIVVVV2rx58zQA2oIFC7QFCxZoALR58+ZpVVVVM8+rrq7WSkpKNADawoULtfnz52sAtNLSUq2yslIDoLW2tkrTT9PnR2w2m1ZdXa0VFxfPnHd5/vnnLZmTHmPv+eefn3XeCIBWXFysVVdXa//1X/9laE6/+tWvZsbem/vp4sWLlh17+fZTT0+PVlZWlrafwuGwJXPSo5/C4XDGee+Xv/ylYTm9+OKLGgCtoqLimn7q7e3NeexNz1XTX5FIRJOZTdP+/2t+LGDTpk04fPgwamtr0dnZiZqaGrNDUs6nPvUpfO973wMAbNmyJasVyn/913/FX/zFXwC4cv+W3/72t3Nuv6enB3V1dTP/j0QiqK2tnfPxiIiIiIiIiMgc4XAYHo/H0PauPqdgZdFoFEuWLEn7WG9vL1wul7EBCUKkuogUi0hYl/REqYvecah2Ltcy24gBwD/90z/hr//6r2c66Z/+6Z/yOnFPubt6gevVV1/N6jWXL1+e+fdb3vIWXeLYsWPHrL1Zae4GBgbwta99bdaej/R7qtZH5rxlzo2ISCWcz0k1HPOUjtXHhdvtRkNDgyFteb1ewxdarN4/ImJNM1O5NrLmXlVVhR07duh2D2wqvBKzA8hFUVERHn74Ydx222344he/iPvvvx/3338/qqqqUFVVBZvNdsNj2Gy2mb0JKXfvec97Zv79m9/8JqvXvPTSSzP/Xrp0qS5xnDhxYmYPQcrPggULcNddd83cZJBmU7U+Muctc25ERCrhfE6q4ZindGQYF9u3b0dXV5ch7RhNhv4RDWuamcq1kTX3kZERnDhxAp/97GfNDoWyZKnFlomJCWzZsgWPPPIIbDYbpndA6+/vz2rlUtO0rBZkKLPbbrtt5t/hcBipVAolJdcfRhcuXEj7+nxcunRJl+MQMG/ePN0WwWSkan1kzlvm3IiIVML5nFTDMU/pyDAufD4fWlpacPz48YK14ff7sWbNmoIdPxMZ+kc0rGlmKtdG1twnJiZw6dKlG557JXFYZhuxyclJfOxjH8M3vvENpFIpvPlWM5qm3fCL8vehD30IZWVlAIDh4WH84he/uO7zx8bGcPbs2Zn/f/jDH9YlDhlXq80yvUrOK4XSU7U+Muctc25ERCrhfE6q4ZindGQZFwcPHoTT6SzIsZ1OJw4cOFCQY9+ILP0jEtY0MyvUJhwOY+/evRkfX79+PVpbWxGJRHI6rhVyn4vpK3aSyaTZoVCWLLMs9o1vfAMdHR0zV7TccccdaGlpgdvthsPh4AqfQcrLy/GRj3wEp06dAgAcOXIEK1euzPj8f/3Xf0UikQBw5X4tXq/XkDiJiIiIiIiIyBpqamrQ0dGBxsZGxONx3Y7rcDjQ0dEx6/6zRGS8QCCA3bt333DLwDNnzuDMmTPYtWsXGhoasGPHDlOuSiOaK5tmkUs+Vq5ciXPnzsFms2Hv3r344he/aHZIygoEAli7di0AoKysDOfPn0dtbe01zxsZGcH73vc+vPDCCwCu3NR+165debXd09Mz64Z2kUgkbdtEREREREREZC3hcBjNzc3o6+vL+1hOpxMdHR1wu906RCaeaDSKJUuWpH2st7cXLpfL2IAEIVJdRIrFLLFYDJs3b85rm0C/348DBw5Iv2gqynjROw7VzuVaZhuxnp4e2Gw2vPe97+VCi8l8Ph8aGhoAXNkmbO3atQiFQrOeE4vFcNddd80stLzlLW/R9WZ0S5cuxbx583Q7nsqm93+cmJgwOxQhqVofmfOWOTciIpVwPifVcMxTOrKNC7fbjVAoBL/fn9dx/H4/QqGQ6QstsvWPCKxUU5fLlfFWB4U4cS5abUKhEDweT973Y2pvb4fH40E4HM74HNFy18v0vWhSqZTZoVCWLLPYMu2DH/yg2SEQrkx0f/iHfwjgyopnfX09/vRP/xSf+9zn8LGPfQy33HILnn76aQBASUkJvve976G6ulq39nnPFv3Iuq+lXlStj8x5y5wbEZFKOJ+TajjmKR0Zx0VNTQ3a2tpw8uTJnLci93q9CAQCaGtrE+JT8DL2j9lY08xEqk0oFEJTU5MuV6kBQF9fHxobGzMuuIiUu554zxbrscw2YkuXLsWvf/1rfPrTn8a3v/1ts8MhAJcuXUJLSwu6u7szPmfRokX49re/DZ/Pp0ubql16RkRE+RPlcmwiIiIiyl0kEsFDDz2EQ4cOpX181apVaGxsREtLy6zzBbLj77jpsS7mi8Vi8Hg8ui20XM3pdCIUCgmxmKo3UcYutxHLj2WubPnwhz8MTdOue2KfjLV06VL87Gc/w9GjR9Hc3Iy3ve1tKC0txc0334yVK1diz549uHjxom4LLURERERERESklrq6Omzbti3j48eOHcPOnTuVWmghEtnmzZsLstACXLnCZcuWLQU5NpEeLLPY8vnPfx7FxcUIhULo6uoyOxz6/5WWluLTn/40fvSjH+Gll17C2NgYXn31Vfz0pz/Ftm3bcNNNNxWk3QceeEDXbclU1t/fjwcffBD9/f1mhyIkVesjc94y50ZEpBLO56QajnlKh+NCbOwf/bGmmYlQm0AgkPc9Wm6kvb0dgUBg1vdEyL0Qqqur8cADD2BoaMjsUChLlllsed/73oedO3dC0zTcfffduHTpktkhkYmOHDnCiUYn5eXluOeee1BeXm52KEJStT4y5y1zbkREKuF8TqrhmKd0OC7Exv7RH2uamQi12b17tyHt7NmzZ9b/Rci9EIaGhnDkyBHMnz/f7FAoS5ZZbAGA//2//zcOHz6MN954A8uXL8eXvvQl/OQnP8Hg4KDZoZHBotEoUqmU2WFIoaSkBC6XCyUlJWaHIiRV6yNz3jLnRkSkEs7npBqOeUqH40Js7B/9saaZmV2bcDhs2G5Ep0+fRiQSmfm/2bkXSiqVQjQaRXFxsdmhUJYss9hSXFyM4uJi3HfffRgfH8fo6Cj27duHhoYGOByOmcdv9CXbD52q7r77bixcuNDsMKQwPDyMRx99FMPDw2aHIiRV6yNz3jLnRkSkEs7npBqOeUqH40Js7B/9saaZmV2bQm8fdr32zM69UBYuXIi7774bo6OjZodCWbLMyoOmabDZbDP/v/rfmqaZERKZqL+/H1NTU2aHIYWioiJUV1ejqMgya6+GUrU+Muctc25ERCrhfE6q4ZindDguxMb+0R9rmpnZtTl37pxp7Zmde6FMTU2hv79furxkZpnFFoCLKvR7HR0dZocgjfnz56O5udnsMISlan1kzlvm3IiIVML5nFTDMU/pcFwYLxqNYsmSJWkf6+3thcvlmvk/+0d/rGlmZtZG0zRcuHDB0DbPnz8/8+F8WcfF6OgoOjo6UFZWZnYolCXLLItNTU3p8jU5OWl2KqSD+vp6lJaWmh2GFMbHx9Hd3Y3x8XGzQxGSqvWROW+ZcyMiUgnnc1INxzylw3EhNvaP/ljTzMysTSKRQDweN7TNeDyOoaEhAPKOi9LSUtTX12NiYsLsUChLlllsIbpaU1MT7Ha72WFIIZlMorOzE8lk0uxQhKRqfWTOW+bc6FrhcBh79+7N+Pj69evR2to66+aKRGQNnM9JNRzzlA7HhdjYP/pjTTMzszZmLXKMjY0BkHdc2O12NDU1SbeIJDObxr25yEJ6enpQV1c38/9IJILa2loTIyIiIhEFAgHs3r0bXV1dWb+moaEBO3bswJo1awoYGRERERHlKpetu1SJRZQ4RMO6mGNwcBBVVVWmtFtRUWF4u4UgytjVOw7VzuXyyhayJLvdDpvNZnYYUtA0DclkkvdEykDV+sict8y5ERCLxeD3+7F27dqcFloAoKurCz6fD+vWrUMsFitQhESkF87npBqOeUqH40Js7B/9saaZmVmbiooKOBwOQ9t0OBwoLy8HIO+4sNlssNvt0uUlMy62kCXt2LHDlBVzGQ0MDGD37t0YGBgwOxQhqVofmfOWOTfVhUIheDweHD9+PK/jtLe3w+PxIBwO6xQZERUC53NSDcc8pcNxITb2j/5Y08zMrI3NZsOyZcsMbXP58uUzH8SWdVxUVVVhx44dGB4eNjsUylKJ2QFc7aWXXpr1/1tuuSXjY/m4+rhkTYcPH0YikTA7DClUVFTg85//vDSXXepN1frInLfMuaksFAqhqalJt5sy9vX1obGxEcFgEG63W5djEpG+OJ+TajjmKR2OC7Gxf/THmmZmdm1WrFiBZ555xtD2ppmde6EkEgkcPnwY69evNzsUypJQiy0ul2tmRdJmsyGVSqV9LB9vPi5Z0+XLl80OQRrFxcVYvHix2WEIS9X6yJy3zLmpKhaLYfXq1bottEyLx+Nobm5GKBRCTU2NrscmovxxPifVcMxTOhwXYmP/6I81zczs2rS0tGDXrl2GtjfN7NwLZXJyEpcvX0ZxcbHZoVCWhNxGTNO0jHvRTT+WzxdZ34YNG2b2ZaT8DA0N4ciRIxgaGjI7FCGpWh+Z85Y5N1Vt3rwZfX19BTl2X18ftmzZUpBjE1F+OJ+TajjmKR2OC7Gxf/THmmZmdm3cbjcaGhoMacvr9c666brZuRdKeXk5NmzYgNHRUbNDoSwJdWXLLbfckvHqles9RuqJRqO8QkknJSUlcLlcKCkRajoQhqr1kTlvmXNTUSAQyPseLTfS3t4Ov98Pn89X0HaIKDecz0k1HPNqiEajWLJkSdrHent74XK5Zn2P40Js7B/9saaZiVCb7du3o6ury5B2riZC7oWQSqUQjUZ5ZYuFCDUCo9HonB4j9XR2dpodgjTsdjuamprMDkNYqtZH5rxlzk1Fu3fvNqSdPXv2cLGFSDCcz0k1HPOUDseF2Ng/+mNNMxOhNj6fDy0tLQX9QJzf78eaNWtmfU+E3AshmUyis7MTpaWlZodCWRJyGzGiG1m5ciXKysrMDkMKY2NjOHv2LMbGxswORUiq1kfmvGXOTTXhcNiQT00BwOnTpxGJRAxpi4iyw/mcVMMxT+lwXIiN/aM/1jSz69UmGo3CZrOl/dL7A+4HDx6E0+nU9ZjTnE4nDhw4cM33ZR0XZWVlWLlyJcbHx80OhbIk3GLLV7/6VXz1q19FR0eH2aGQwOrr67mqq5Px8XF0d3dz4s5A1frInLfMuamm0NuHmd0eEV0f53NSDcc8pcNxITb2j/5Y08xEqU1NTQ06OjrgcDh0Pa7D4UBHRwdqamqueUyU3PVWWlqK+vp63krBQmyaYHeMLyoqgs1mwxe+8IW0K5Wktp6enlk3wIpEIqitrTUxIiIiMssdd9yBZ555xtD2nn76acPaIyIiIvXkes8WVYhUF1FiESUO0bAu6ZlRl3A4jObmZvT19eV9LKfTiY6ODrjdbh0iE5MoY1fvOFQ7lyvclS1E2aiurkZREYevHqamptDf34+pqSmzQxGSqvWROW+Zc1OJpmm4cOGCoW2eP38egn1GhUhpnM9JNRzzlA7HhdjYP/pjTTMTrTZutxuhUAh+vz+v4/j9foRCoesutIiWu16KiopQXV0tXV4y49lqsqStW7eisrLS7DCkMDg4iP3792NwcNDsUISkan1kzlvm3FSSSCQQj8cNbTMej2NoaMjQNokoM87npBqOeUqH40Js7B/9saaZiVibmpoatLW14eTJk/B6vTm91uv1IhAIoK2tLe3WYVcTMXc9VFZWYuvWrRgZGTE7FMoSF1vIkvbt2yfdBGqWyspK3H///Vy8ykDV+sict8y5qcSsvXhlu+EikZVxPifVcMxTOhwXYmP/6I81zUzk2vh8PgSDQYTDYWzatCnj81atWoXW1laEw2EEg0GsWbMmq+OLnHs+BgcHsW/fPixYsMDsUChLJWYHQDQX/f39ZocgjelLEik9Vesjc94y56aS0tJSU9otKyszpV0iuhbnc1INxzylw3EhtkL1TzgcxuHDhzM+vn79eni9Xvj9/ln3SpABx3xmVqhNXV0dtm3bhkOHDqV9/NixY3O6N4kVcp+L6e3ReCsF62BPkSVt3LgRFRUVZochhUQigcOHDyORSJgdipBUrY/Mecucm0oqKirgcDgMbdPhcKC8vNzQNokoM87npBqOeUqH40JsevdPIBCA1+uFx+PJeLIaAM6cOYNdu3bB7XbD6/Xi1KlTurQvghvV1OVyQdO0tF9G3WDcLCrPB7LmXlFRgY0bN3IbMQvhYgtZUnd3t2lbyMimtLQU9fX1pn1KXHSq1kfmvGXOTSU2mw3Lli0ztM3ly5fDZrMZ2iYRZcb5nFTDMU/pcFyITa/+icVi8Pv9WLt2Lbq6unJ6bVdXF3w+H9atW4dYLJZXHCLgmM9M5drImvv4+Di6u7tRUsLNqayCiy1kSWfPnuW++TopKyvDypUruTVOBqrWR+a8Zc5NNStWrJC6PSK6Ps7npBqOeUqH40JsevRPKBSCx+PB8ePH84qlvb0dHo8H4XA4r+OYjWM+M5VrI2vuY2NjOHv2rKGLSCpfHaYHYZfFfvCDHyASieh+XJvNhmeeeUb345KxmpqacPbsWbPDkEIymcTZs2excuVK2O12s8MRjqr1kTlvmXNTTUtLC3bt2mVoe0QkDs7npBqOeUqH40Js+fZPKBRCU1MT4vG4LvH09fWhsbERwWAQbrdbl2MajWM+M5VrI2vudrsdK1eu5O4+FiLsYktfXx/6+vp0Paamadz+QxIulwu/+MUvzA5DCqlUCtFoFO9///vNDkVIqtZH5rxlzk01brcbDQ0NOW+lMBder1e6m4sSWR3nc1INxzylo8q4mP6ktdXk0z+xWAyrV6/WbaFlWjweR3NzM0KhEGpqanQ9thFUGfNzoXJtZM29pKQELpcLk5OTZodCWbJpgr1bFRUVwWazFexN1GazcYBaWE9Pz6yTXZFIBLW1tSZGREREZgoEAli7dq0h7axZs6bg7RAREZHaotEolixZkvax3t5ebuEiAKP6yO/357112I2O39bWVrDjk1hEmltEikUkstZFtXO5wl7ZsmLFCqxevdrsMEhQixcvxmuvvWZ2GFKYnJzEa6+9hkWLFqG4uNjscISjan1kzlvm3FTk8/nQ0tJS8D9EudBCJB7O56QajnlKh+NCbHPtn0AgUNDfb4Er93Dx+/3w+XwFbUdvHPOZqVwbWXMvLi7GokWLeOGAhQi92PK3f/u3ZodBgtq4cSP27dtndhhSSCQSePjhh3H//fejurra7HCEo2p9ZM5b5txUdfDgQQSDQd23HwUAp9OJAwcO6H5cIsof53NSDcc8pcNxIba59s/u3bsLF9RV9uzZY7nFFo75zFSujay5V1RUYOPGjRgdHTU7FMqSsNuIfeELX+DJDbrG9KVndrsdY2NjCIfDUl96ZgRN0zA2NoaysjLe0ygNVesjc94y56aycDiMxsZGXfe0djgclr55KJHsOJ+Tajjm1ZDrNjIcF8bLpY/m0j/hcBgej0ePULNuz0r3JuSYz+x6tRFpi6pCxCLDuEhXF5vNhrKyMly8eDFjzUSn2jZiRWYHQDQXyWTSkjfHE5HNZoPdbrfsm1GhqVofmfOWOTeVud1uBINBOJ1OXY7ndDq50EIkOM7npBqOeUqH40Jsc+mfQm8fZnZ7+eKYz0zl2siau6ZpSCaT0uUlMy62kCVt3boVlZWVZochhcHBQezbtw+Dg4NmhyIkVesjc94y56Y6t9uNUCgEv9+f13H8fj9CoRAXWogEx/mcVMMxT+lwXIhtLv1z7ty5AkZkfnv54pjPTOXayJp7ZWUltm7diuHhYbNDoSxxsYUsqbOzE8lk0uwwpGC329HU1AS73W52KEJStT4y5y1zbgTU1NSgra0NJ0+ehNfrzem1Xq8XgUAAbW1tqKmpKVCERKQXzuekGo55SofjQmy59o+mabhw4UKBo5rt/Pnzlto5hGM+M5VrI2vuyWQSnZ2dKC0tNTsUylKJ2QEQzUV3d7fZIUijtLQU9fX1ZochLFXrI3PeMudGv+fz+eDz+RCJRPDQQw/h0KFDaZ+3atUqNDY2oqWlxVJ7VRMR53NSD8c8pcNxIbZc+yeRSOh6D8JsxONxDA0NoaKiwtB254pjPjOVayNr7uPj4+ju7sa8efPMDoWyxCtbyJKam5sxf/58s8OQwujoKDo6OjA6Omp2KEJStT4y5y1zbnSturo6bNu2LePjx44dw86dO7nQQmRBnM9JNRzzlA7Hhdhy7Z/x8fECR5Te2NiYKe3OBcd8ZirXRtbc58+fj+bmZkv9jKpOyMUWK12+SOaorq5GUZGQw9dypqam0N/fj6mpKbNDEZKq9ZE5b5lzIyJSCedzUg3HPKXDcSG2XPvHrK2CysrKTGl3LjjmM1O5NrLmXlRUhOrqaunykplNE2xl4ze/+Q2AKzcAcjgcJkdDounp6Zn16eNIJILa2loTIyIiItFFo1EsWbIk7WO9vb1wuVzGBkRERESUAX9vEVs4HMbhw4evu0Wt1+uF3++f05XTmqahpqbG0K3EHA4HYrEYbDabYW2S8USaW0SKRSSy1kW1c7nCXRpw66234tZbb+VCC12Xy+VCSQlvOaSHVCqFaDSKVCpldihCUrU+Muctc25ERCrhfE6q4ZiXXzgcxt69ezM+vn79erS2tiISicx8j+PCGIFAAF6vFx6PJ+NCCwCcOXMGu3btgtvthtfrxcmTJ3PqH5vNhmXLlukVdlaWL19uqYUWjvnMVK6NrLmXlJTA5XJhcnLS7FAoS8ItthBlY8OGDSgvLzc7DCkMDQ3h6NGjGBoaMjsUIalaH5nzljk3IiKVcD4n1XDMy2uuJ/JPnTrFcVFgsVgMfr8fa9euRVdXV06v7erqwl/91V/h6NGjePnll7N+3YoVK3INMy9Gt5cvjvnMVK6NrLmXl5djw4YN0t2LRmbCbSNGdD2qXXpGRET5k/VybCIiIrK2WCyGzZs34/jx43M+ht/vx4EDB1BTU6NjZAQAoVAIq1evRl9fX97Hcjqd6OjogNvtvuFzw+EwPB5P3m1mKxwOz2nLM7IWkf4mEikWkchaF9XO5fLKFiIiIiIiIiIiA4VCIXg8nrwWWgCgvb0dHo8H4XBYp8gIuNI/TU1Nuiy0AEBfXx8aGxuz6ie3242GhgZd2r0Rr9fLhRYiIh1xsYUsaceOHaiqqjI7DCkMDAzga1/7GgYGBswORUiq1kfmvGXOjYhIJZzPSTUc8/LQ80R+VVUVPv3pT2Pt2rVccNFJLBbD6tWrdblJfVVV1cz5i3g8jubmZsRisRu+bvv27Xm3nQ2j2tET58LMVK6NrLlPzyGybY8mMy62kCWdOHECIyMjZochhQULFuCuu+7CggULzA5FSKrWR+a8Zc6N0nO5XNA0Le2XVS/FJiLO56Qejnk56HkiHwBGRkZw4sQJ/Pa3v836RD5d3+bNm3W7omW6f6bPX/T19WHLli03fJ3P50NLS4suMWTi9/uxZs2agrZRCJwLM1O5NrLmPj2H2O12s0OhLHGxhSzp0qVLmJiYMDsMKcybNw9Lly7FvHnzzA5FSKrWR+a8Zc6NiEglnM9JNXqM+Wg0CpvNlvYrGo3qFyxlpOeJfACYmJiY+fs42xP52VJxvAQCgby3drva1f0zrb29HYFA4IavPXjwIJxOp26xXM3pdOLAgQMFOXah8f0/M5VrI2vu03NISUmJ2aFQlrjYQpYk42q1Wd78SRuaTdX6yJy3zLkREamE8zmphmPe+vQ+kQ9c+2nubE/kU3q7d+/W9XiZPm2/Z8+eG762pqYGHR0dcDgcusbkcDjQ0dGBmpoaXY9rFM6FmalcG1lzn55Dksmk2aFQlrjYQkRERERERERUYHqfyM8kmxP5dK1wOIyuri5D2jp9+jQikcgNn+d2uxEMBnW7wsXpdCIYDMLtdutyPCIimo2LLWRJMq5Wm0XWfS31omp9ZM5b5tyIiFTC+ZxUwzFvbYU6kZ/u09zZnsin2fS+6gi4/qfts23P7XYjFArB7/fnFYvf70coFLL8QgvnwsxUro2sufOeLdbDxRayJBn3YTRLuj1k6fdUrY/MecucGxGRSjifk2o45q2tECfygcz3KShUezI7d+6c7se83n0kcmmvpqYGbW1tOHnyJLxeb04xeL1eBAIBtLW1WXbrsKtxLsxM5drImvv0HJJKpcwOhbLExRayJBlXq80i676WelG1PjLnLXNuREQq4XxOquGYt7ZCnMgHMn+au1DtyUrTNFy4cEH3417v0/bnz5+Hpmk5Hc/n8yEYDCIcDmPTpk0Zn7dq1Sq0trYiHA4jGAxizZo1OccuKs6FmalcG1lz5z1brMem5TqzE5mop6cHdXV1M/+PRCKora01MSIiIiIiIiJriEajWLJkSdrHent74XK5jA1IEZqmoaamBvF43LA2HQ4HYrEYbDbbnI+h0ngZHBxEVVWVKe1WVFTM6bUq9Q/lT6TxIlIsIpG1Lqqdy+WVLUREREREREREBZJIJAxdaAGAeDyOoaEhQ9u0svHxcVPaHRsbM6VdIiIqDC62kCU98MADqK6uNjsMKfT39+PBBx9Ef3+/2aEISdX6yJy3zLkREamE8zmphmPeugp5Ir+6ujrj38c8kZ+90tLSghz3ev0DAGVlZQVpV2acCzNTuTay5j49h3Dx3Dq42EKWdOTIEU40OikvL8c999yD8vJys0MRkqr1kTlvmXMjIlIJ53NSDcd84USjUdhstrRf0Wg07+MX6kQ+AAwNDWX8+5gn8rNXUVEBh8Oh+3Gv1z8Oh4M/z3PAuTAzlWsja+7Tc8j8+fPNDoWyxMUWsqRoNIpUKmV2GFIoKSmBy+VCSUmJ2aEISdX6yJy3zLkREamE8zmphmPeugp1Ih8AUqlU2r+PeSI/NzabDcuWLdP9uJn6BwCWL1+e1z11VMW5MDOVayNr7tNzSHFxsdmhUJa42EKWdPfdd2PhwoVmhyGF4eFhPProoxgeHjY7FCGpWh+Z85Y5NyIilXA+J9VwzFtXoU7kA8DChQvT/n3ME/m5W7Fihe7HzNQ/hWpPBZwLM1O5NrLmPj2HjI6Omh0KZYmLLWRJ/f39mJqaMjsMKRQVFaG6uhpFRZwO0lG1PjLnLXNuREQq4XxOquGYt7ZCnVifmppK+/cxT+TnrqWlRfdjZuqfQrWnAs6FmalcG1lzn55DZMtLZuwpsqSOjg6u6upk/vz5aG5u5v6PGahaH5nzljk3IiKVcD4n1XDMW1uhTqyPjo6m/fuYJ/Jz53a70dDQoOsxM/WP1+tFXV2drm2pgnNhZirXRtbcp+cQ3oPLOrjYQpZUX19f0JsMqmR8fBzd3d0YHx83OxQhqVofmfOWOTciIpVwPifVcMxbWyFO5ANAaWnpNX8f80T+3G3fvl3X46Xrn0K0oxLOhZmpXBtZc5+eQyYmJswOhbLExRaypKamJtjtdrPDkEIymURnZyeSyaTZoQhJ1frInLfMuRERqYTzOamGY976CnGC3W63X/P3MU/kz53P59P1qqB0/eP3+7FmzRrd2lAN58LMVK6NrLlPzyGyLSLJzKZpmmZ2EETZ6unpmfUJnUgkgtraWhMjIiIiIiIisoZoNIolS5akfay3txcul8vYgARhZF38fj+OHz+u2/HSHb+trU2XY6k6XmKxGDweD/r6+nQ/ttPpRCgUQk1NTd7HUrV/aG5EGi8ixSISWeui2rlcXtlClmS322Gz2cwOQwqapiGZTILrrumpWh+Z85Y5NyIilXA+J9VwzMvh4MGDcDqduh3PZrPN/H3sdDpx4MAB3Y6tqpqaGnR0dMDhcOR9rKv7x+FwoKOjQ5eFFpVxLsxM5drImvv0HCJbXjLjYgtZ0o4dO1BVVWV2GFIYGBjA7t27MTAwYHYoQlK1PjLnLXNuJL5oNAqbzZb2KxqNmh0ekaVwPifVcMzLQc8T+QBQVVWFHTt24G1vextP5OvI7XYjGAzmvTA23T/vete7EAwG4Xa7dYpQXZwLM1O5NrLmPj2HDA8Pmx0KZYmLLWRJhw8fRiKRMDsMKVRUVODzn/88KioqzA5FSKrWR+a8Zc6NiEglnM9JNRzz8tDrRD4AJBIJPP7443jyySd5Il9nbrcboVAIfr9/zsdIJBL4zW9+g66uLvaPTjgXZqZybWTNPZFI4PDhw5g/f77ZoVCWuNhClnT58mVMTk6aHYYUiouLsXjxYhQXF5sdipBUrY/MecucGxGRSjifk2ryHfPhcBh79+7N+Pj69evR2tqKSCQy1xApB3qcyAeAT33qU/iP//gPvO9979MpMrpaTU0N2tracPLkSXi93pxe6/V68eSTT+KRRx7B+5eegQAAmhBJREFUzTffXKAI1cP3/8xUro2suU9OTuLy5cvS5SUzLraQJW3YsAHl5eVmhyGFoaEhHDlyBENDQ2aHIiRV6yNz3jLnRkSkEs7npJq5jvlAIACv1wuPx4NDhw5lfN6ZM2ewa9cuuN1ueL1enDp1Kt+Q6QbyPZEfCATw8MMP44c//CHnwgLz+XwIBoMIh8PYtGlTxuetWrUKra2tCIfDCAaD8Hq9fK/SGd//M1O5NrLmXl5ejg0bNmB0dNTsUChLXGwhS4pGo0ilUmaHIYWSkhK4XC6UlJSYHYqQVK2PzHnLnBsRkUo4n5Nqch3zsVgMfr8fa9euRVdXV05tdXV1wefzYd26dYjFYnMJl3Iw1xP5a9as4VxosLq6Omzbti3j48eOHcPOnTtRV1cHgO9VhcCaZqZybWTNPZVKIRqN8soWC5FrBJIyOjs7zQ5BGna7HU1NTWaHISxV6yNz3jLnRkSkEs7npJpcxnwoFMLq1avR19eXV5vt7e3o7OxER0cH7zdhgOkT+ZmuQDp27BhcLtes73EuFBv7R3+saWYq10bW3JPJJDo7O1FaWmp2KJQlXtlClrRy5UqUlZWZHYYUxsbGcPbsWYyNjZkdipBUrY/MecucGxGRSjifk2qyHfOhUAhNTU15L7RM6+vrQ2NjI8LhsC7HmxaNRmGz2dJ+RaNRXduSGedCsbF/9MeaZqZybWTNvaysDCtXrsT4+LjZoVCWuNhCllRfX89VXZ2Mj4+ju7ubE3cGqtZH5rxlzo2ISCWcz0k12Yz5WCyG1atXIx6P69p2PB5Hc3MztxQTEOdCsbF/9MeaZqZybWTNvbS0FPX19byVgoVwsYUs6fDhw0gkEmaHIYWKigps3LgRFRUVZociJFXrI3PeMudGYguHw9i7d2/Gx9evX4/W1lZEIhEDoyKyLs7npJpsxvzmzZt1u6Llzfr6+rBly5aCHJvmjnOh2Ng/+mNNM1O5NrLmnkgkcPjwYSxYsMDsUChLXGwhS6qurkZREYevHqamptDf34+pqSmzQxGSqvWROW+ZcyMxBQIBeL1eeDyejHuwA8CZM2ewa9cuuN1ueL1enDp1ysAoiayH8zmp5kZjPhAI4Pjx4wWNob29HYFAoKBtUG4KNRfyQyL64HuV/ljTzFSujay5FxUVobq6Wrq8ZMaz1WRJW7duRWVlpdlhSGFwcBD79+/H4OCg2aEISdX6yJy3zLmRWGKxGPx+P9auXYuurq6cXtvV1QWfz4d169ZxyxaiDDifk2puNOZ3795tSBx79uwxpB3Kjt5zIT8koi++V+mPNc1M5drImntlZSW2bt2KkZERs0OhLNk0TdPMDoIoWz09Pairq0N1dTUGBwcRCoVQW1trdliWNjU1hcHBQVRWVvJqoTRUrY/MecucG4kjFAph9erVumzl4nQ60dHRAbfbrUNkRPLgfE6qud6YD4fD8Hg8hsUSDodRV1eX1zGi0SiWLFmS9rHe3l64XK68jq9KLHrNhbFYDJs3b87r6ii/348DBw6gpqZmzsewglz6qJDvVSKNWyPx/T+z69VGpPFSiFhkHRcy5DV9LndaJBKR+lyuNXuJlCfjpYFmmb4k0aqTdqGpWh+Z85Y5NxJDKBRCU1OTbnvm9/X1obGxEeFwWJfjEcmC8zmp5npjvtDbh5ndHmWmx1wYCoXg8Xjy7tf29nZ4PB7+znIVvlfpjzXNTOXayJq7rHnJjD1FliTjTa/MMn2zrUQiYXYoQlK1PjLnLXNuZL5YLIbVq1cjHo/retx4PI7m5mZuKUZ0Fc7npJrrjflz584ZGovR7VFm+c6F/JBIYfG9Sn+saWYq10bW3GXNS2ZcbCFL6u7uxvj4uNlhSKG0tBT19fUoLS01OxQhqVofmfOWOTcy3+bNm3U7WfFmfX192LJlS0GOTWRFnM9JNZnGvKZpuHDhgqGxnD9/HrLsSG71G8HnMxfyQyKFx/cq/bGmmalcG1lzlzUvmXGxhSzp7NmzGBsbMzsMKZSVlWHlypUoKyszOxQhqVofmfOWOTcyVyAQKPi2Ku3t7QgEAgVtg8gqOJ+TajKN+UQiofvJ8huJx+MYGhoytE29yXIj+HzmQn5IpPD4XqU/1jSzTLWx+qJyNmQdF7LmJTMutpAlNTU1wW63mx2GFJLJJDo7O5FMJs0ORUiq1kfmvGXOjcy1e/duQ9rZs2ePIe0QiY7zOakm05g364p/q374LRaLwe/3Y+3atejq6srptV1dXfD5fFi3bp0wV23MdS7kh0SMwfcq/bGmmb25NrIsKmdD1nEha14y42ILWZLL5UJJSYnZYUghlUohGo0ilUqZHYqQVK2PzHnLnBuZJxwO53zCZq5Onz5t6U+dEemF8zmpJtOYN2trESt+ylbGG8HPdS7kh0SMwfcq/bGmmU3X5ne/+51Ui8rZkHVcyJqXzGyaLButkhJ6enpQV1c38/9IJILa2loTIyIiIgJaW1uxa9cuQ9vbuXOnYe0REZG4NE1DTU2NoVuJORwOxGIx2Gy2OR8jGo1iyZIlaR/r7e2Fy+Wa87HTmb4RvJ51cjgcCAaDcLvduh3TiLqEw2F4PJ68j5NLe1f/HW91Ro9d0eMgsYRCIaxevVqXLQKdTic6Ojp0neMAjl3VqHYul1e2kCUtXrwYxcXFZochhcnJSVy+fBmTk5NmhyIkVesjc94y50bmOXfunNTtEYmI8zmpJtOYt9lsWLZsmaGxLF++PK+FFqPJfCP4ucyFhd4+zOz2RML3Kv2xppl1d3fjE5/4BF599VVdjtfX14fGxkYhruK7EVnHhax5yYyLLWRJGzduREVFhdlhSCGRSODhhx9GIpEwOxQhqVofmfOWOTcyh6ZpuHDhgqFtnj9/Hrw4mVTH+ZxUc70xv2LFCkNjMbq9fMl8I/i5zIX8kIhx+F6lP9Y0vVgshk996lNYt26drufLRFhUzoas40LWvGTGbcTIUqYvPbPb7RgbG0M4HJb60jMjaJqGsbExlJWVWerTaUZRtT4y5y1zbmSOwcFBVFVVmdIuP3hAKuN8Tqq53pi34rZQRm0jEwgEsHbtWl2OdT0nT56Ez+fL+zi51iXXudCq286JJJc+KuR7lapbMfH9Pz2/349HH30UZWVlGBsb0/2DWX6/H21tbbocqxBjV9ZxIUNe3EaMyAKSySQ/0asTm80Gu91u2Um70FStj8x5y5wbmWN8fNyUdsfGxkxpl0gUnM9JNdcb8263Gw0NDYbE4fV6LXX/DdlvBJ/rXJhIJAxdaAGufDJ+aGjI0DZFUcj3KpfLBU3T0n7JutAC8P0/nUAggOPHj0PTtIKdL2tvb0cgEND9uHqRdVzImpfMuNhClrR161ZUVlaaHYYUBgcHsW/fPgwODpodipBUrY/MecucG5mjtLTUlHbLyspMaZdIFJzPSTU3GvPbt283JA6j2tFDOBxGV1eXIW2dPn0akUjEkLaulutcyA+JGIvvVfpjTa81vahcWVlZ0PNlZi0qZ0PWcSFrXjLjYgtZUmdnJ5LJpNlhSMFut6OpqQl2u93sUISkan1kzlvm3MgcFRUVcDgchrbpcDhQXl5uaJtEouF8Tqq50Zj3+XxoaWkpaAx+vx9r1qwpaBt6UuFG8LnOhfyQiLH4XqU/1nS2qxeVk8lkQc+XmbWonA1Zx4WsecmMiy1kSd3d3aZ9Ikc2paWlqK+vN+2XbtGpWh+Z85Y5NzKHzWbDsmXLDG1z+fLlvJSclMf5nFSTzZg/ePAgnE5nQdp3Op04cOBAQY5dKCrcCD7XuZAfEjEW36v0x5rOdvUi7/j4eMHPl5mxqJwNWceFrHnJjIstZEnNzc2YP3++2WFIYXR0FB0dHRgdHTU7FCGpWh+Z85Y5NzLPihUrpG6PSEScz0k12Yz5mpoadHR06H4y3eFwoKOjAzU1Nboet5A0TcOFCxcMbfP8+fOG31s017mQHxIxFt+r9Meaznb1Iu/8+fMLfr7MjEXlbMg6LmTNS2ZcbCFLqq6uRlERh68epqam0N/fj6mpKbNDEZKq9ZE5b5lzI/MUetsWs9sjEhHnc1JNtmPe7XYjGAzqdoWL0+lEMBiE2+3W5XjAlW1v9u7dm/Hx9evXo7W1Na/talS5Efxc5kJ+SMQ4fK/SH2v6e29eVC4qKir4+TIzFpWzIeu4kDUvmdk0EX9CiDLo6elBXV3dzP8jkQhqa2tNjIiIiOgKr9dryE14vV4vgsFgwdsxUjQaxZIlS9I+1tvbC5fLZWxAREQSiMVi2LJlC9rb2+d8DL/fjwMHDuh2RUsgEMDu3btzer9saGjAjh07cr5XzOuvv45FixblGmLeXnvtNdx0002Gt5uLcDgMj8djaHtX/x1vdfy9hUQxODiIqqoqU9qtqKiY8+v5M6QW1c7l8tIAsiSXy4WSkhKzw5BCKpVCNBpFKpUyOxQhqVofmfOWOTcy1/bt26Vqh0h0nM9JNbmO+ZqaGrS1teHkyZPwer05teX1ehEIBNDW1qbLQkssFoPf78fatWtz/mBCV1cXfD4f1q1bh1gslvXrVLkR/FzmQrfbjYaGhgJG9Xter1eqhZZc8b1Kf6zp77353iwlJSWGnC8bGxsr6PHnQtZxIWteMuNiC1nShg0blL3Bnt6GhoZw9OhRwy93twpV6yNz3jLnRuby+XwF397L7/fn/MleIllxPifVzHXM+3w+BINBhMNhbNq0KePzVq1ahdbWVoTDYQSDQd3eb0KhEDweT943VW5vb4fH40E4HM7q+arcCH6u44IfEjEG36v0x5r+3psXlcvLyw05X2b0onI2ZB0XsuYlM24jRpai2qVnRERkLbFYDB6PB319fbof2+l0IhQKWermxNniVgJERMYwer4NhUJoamrS9d4pDocj63vI3HHHHXjmmWd0azub9p5++mnD2suX3+/PexHsRsdva2sr2PHNwt9bSBSapqGmpsbQ+1M5HA7EYjHYbLY5H4M/Q2pR7Vwur2whIiIi0klNTQ06Ojp0/yStw+FAR0eHlAstREQkp1gshtWrV+t+EjAej6O5uTmrLcV4I/jrO3jwIJxOZ0GO7XQ6ceDAgYIcm4iusNlsWLZsmaFtLl++PK+FFiLZcbGFLGnHjh2m3ARMRgMDA/ja176GgYEBs0MRkqr1kTlvmXMjMbjdbgSDQd1OXjidzqw/wUukEs7npBqrjfnNmzcX5EpPAOjr68OWLVtu+LxCb+9pdntAfuOCHxIpPKv93FoBazrb1Yu8VVVVBT9fJuqisqzjQta8ZMbFFrKkEydOYGRkxOwwpLBgwQLcddddWLBggdmhCEnV+sict8y5kTjcbjdCoRD8fn9ex/H7/QiFQlxoIUqD8/nvRaNR2Gy2tF/RaNTs8EgnVhrzgUCgoNtTAVfu4RIIBK77HBVuBJ/vuOCHRArLSj+3VsGaznb1Iu/IyEjBz5fpsajscrmgaVrar7luISbruJA1L5lxsYUs6dKlS5iYmDA7DCnMmzcPS5cuxbx588wORUiq1kfmvGXOjcRSU1ODtrY2nDx5El6vN6fXer1eBAIBtLW18VOhBuIJa2vhfC4m/hwVjpXG/O7duw1pZ8+ePTd8juw3gtdjXPBDIrnJ5USxlX5urYI1ne3qReWJiYmCni8za1E5G7KOC1nzkhkXW8iSuKqrHyM++WBlqtZH5rxlzo3E5PP5EAwGEQ6HsWnTpozPW7VqFVpbWxEOhxEMBrFmzRoDoySyHs7nZBV6LUBZZcyHw2F0dXUZ0tbp06cRiUSu+xyfz1fw7b38fr9p79t6jQt+SKQwrPJzayWs6bWmF3sLfRWEWYvK2ZB1XMial8y42EJERERkgLq6Omzbti3j48eOHcPOnTuF/bRYoYTDYezduzfj4+vXr0dra+sNT6YREZEYCr192Fza443gs8cPiRBZj+yLykRWYtM0TTM7CKJs9fT0zDoJFYlEUFtba2JERERE2YtGo1iyZEnax3p7e+e8R7EVBQIB7N69O6dPPzc0NGDHjh0F+0OP/UNWJdLYFSkWUYhUEyNiueOOO/DMM8/kfZxc2nv66adv+LxwOIzGxkbE43Hd2nY4HFLfn0SksUtE1xeLxeDxeNDX16f7sZ1OJ0KhEK9cozlR7Vwur2whS+J+hfop9J6eVqdqfWTOW+bciKwgFovB7/dj7dq1OW8z09XVBZ/Ph3Xr1iEWixUoQrIKzuekGiuMeU3TcOHCBUPbPH/+PLL5DKmsN4K3wrhQGftHf6xpejU1NTh58iSWL1+u6/kyh8OBjo4O4RdaZB0XsuYlMy62kCXxni364f6P16dqfWTOW+bciEQXCoXg8Xjy3mKmvb0dHo8H4XBYp8jIijifk2qsMOYTiYSuV45kIx6PY2hoKKvnyngjeCuMC5Wxf/THmmb29re/HR//+Md1u+pMlEXlbMg6LmTNS2bcRowsRbVLz4iISC4qb8cRCoXQ1NQk9PYtKvcPWZtIY1ekWEQhUk0KHcvrr7+ORYsW5XWMuXjttddw00035fSaQCCAPXv24PTp01m/xuv1Yvv27crct0CksUtE2YvFYtiyZQva29vnfAy/348DBw4If0ULiU+1c7m8soWIiIiICioWi2H16tW6f9o5Ho+jubmZW4oREQmitLTUlHbLyspyfg1vBE9EsqqpqUFbWxtOnjwJr9eb02u9Xi8CgQDa2tq40EI0B1xsIUt64IEHUF1dbXYYUujv78eDDz6I/v5+s0MRkqr1kTlvmXMjEtXmzZsLcrNOAOjr68OWLVsKcmwSG+dzUo0VxnxFRQUcDoehbTocDpSXl8/59XV1ddi2bVvGx48dO4adO3fO+lSuSKwwLlTG/tEfa5rZm2uj0qKyrONC1rxkxsUWsqQjR45kvS8vXV95eTnuueeevP5AkZmq9ZE5b5lzIxJRIBDI+x4tN9Le3o5AIJDXMcLhMPbu3Zvx8fXr16O1tRWRSCSvdkg/nM9JNVYY8zabDcuWLTO0zeXLl8NmsxnapkisMC5Uxv7RH2uaWabaWH1RORuyjgtZ85IZF1vIkqLRKFKplNlhSKGkpAQulwslJSVmhyIkVesjc94y50bic7lc0DQt7Zes+57v3r3bkHb27Nkzp9cFAgF4vV54PB4cOnQo4/POnDmDXbt2we12w+v14tSpU3MNlXTC+ZxUY5Uxv2LFCqnbE41VxoWq2D/6Y00zU7k2suYua14y42ILWdLdd9+NhQsXmh2GFIaHh/Hoo49ieHjY7FCEpGp9ZM5b5tyIRBMOh9HV1WVIW6dPn87pqpNYLAa/34+1a9fmHGNXVxd8Ph/WrVvH+8WYyOz5PBqNwmazpf2KRqOmxERyM3vMZ6ulpUXq9kRjlXGhKvaP/ljTzFSujay5y5qXzLjYQpbU39+Pqakps8OQQlFREaqrq1FUxOkgHVXrI3PeMudGJJpCbx821/ZCoRA8Hk/e8bW3t8Pj8SAcDud1HJobzuekGquMebfbjYaGBkPa8nq9lt72Rg9WGReqYv/ojzXNTOXayJq7rHnJjNcgkSV1dHSYHYI05s+fj+bmZrPDEJaq9ZE5b5lzIxLNuXPnhGsvFAqhqakJ8Xhclzb7+vrQ2NiIYDAIt9utyzEpO5zPSTVWGvPbt2835MrG7du3F7wN0VlpXKiI/aM/1jQzlWsja+6y5iUzLouRJdXX16O0tNTsMKQwPj6O7u5ujI+Pmx2KkFStj8x5y5wbkUg0TcOFCxcMbfP8+fPQNC3j47FYDKtXr9ZtoWVaPB5Hc3MztxQzGOdzUo2VxrzP5yv49l5+vx9r1qwpaBtWYKVxoSL2j/5Y08xUro2sucual8y42EKW1NTUBLvdbnYYUkgmk+js7EQymTQ7FCGpWh+Z85Y5NyKRJBIJ3Rc1biQej2NoaCjj45s3b0ZfX19B2u7r68OWLVsKcmxKj/M5qUaPMe9yuaBpWtovl8ulX7AADh48CKfTqesxpzmdThw4cKAgx7YazoViY//ojzXNTOXayJq7rHnJzKZd7+N/RILp6emZtSdvJBJBbW2tiRERERFROq+//joWLVpkeLuvvfYabrrppmu+HwgEsHbt2oK3f/LkSfh8voK3Q+aLRqNYsmRJ2sd6e3t1P3HNWKxL5ZqEw2E0NjbquvjucDh037pR5T66HtaFSB78eSazqHYul1e2kCXZ7XbYbDazw5CCpmlIJpPX3XZFZarWR+a8Zc6NSCRmbfdZVlaW9vu7d+82pP09e/YY0g5xPp8WDoexd+/ejI+vX78era2tiEQiBkZFhWDFMe92uxEMBnW7wsXpdPIeWW9ixXGhEvaP/ljTzFSujay5y5qXzLjYQpa0Y8cOVFVVmR2GFAYGBrB7924MDAyYHYqQVK2PzHnLnBuRSCoqKuBwOAxt0+FwoLy8/Jrvh8NhQ27UDACnT5/mSW2DqD6fBwIBeL1eeDweHDp0KOPzzpw5g127dsHtdsPr9eLUqVMFi4kLP4Vl1THvdrsRCoXg9/vzOo7f70coFOJCy5tYdVyogv2jP9Y0M5VrI2vusuYlMy62kCUdPnwYiUTC7DCkUFFRgc9//vOoqKgwOxQhqVofmfOWOTcikdhsNixbtszQNpcvX572ytfjx48bGofR7alK1fk8FovB7/dj7dq1OS8idnV1wefzYd26dYjFYrrFJOLCj4ysPOZramrQ1taGkydPwuv15vRar9eLQCCAtrY21NTUFChC67LyuFAB+0d/rGlmKtdG1txlzUtmXGwhS7p8+TImJyfNDkMKxcXFWLx4MYqLi80ORUiq1kfmvGXOjUg0K1asEKK9c+fOGRqH0e2pSsX5PBQKwePx5L2g197eDo/Hg3A4nNdxRFz4EY2eV/vIMOZ9Ph+CwSDC4TA2bdqU8XmrVq1Ca2srwuEwgsEg1qxZY2CU1iLDuJAZ+0d/rGlmKtdG1txlzUtmXGwhS9qwYUPabUIod0NDQzhy5AiGhobMDkVIqtZH5rxlzo1INC0tLaa3p2kaLly4YGgc58+f577KBlBtPg+FQmhqakJfX58ux+vr60NjY+OcF1xEW/gRTSGu9pFpzNfV1WHbtm0ZHz927Bh27tw564a6lJ5M40JG7B/9saaZqVwbWXOXNS+ZcbGFLCkajSKVSpkdhhRKSkrgcrlQUlJidihCUrU+Muctc25EonG73WhoaDCkLa/Xm/akXCKRQDweNySGafF4nH8QGUCl+TwWi2H16tW6j+V4PI7m5uacrywRbeFHJIW82kelMU/Z47gQG/tHf6xpZirXRtbcZc1LZlxsIUvq7OxEMpk0Owwp2O12NDU1wW63mx2KkFStj8x5y5wbkYi2b99uajvj4+OGtP9mY2NjprSrEjPnc6NvBL9582bdFjberK+vD1u2bMn6+aIt/Iik0Ff78HcYSofjQmzsH/2xppmpXBtZc5c1L5lxsYUsaeXKlSgrKzM7DCmMjY3h7NmzPCmUgar1kTlvmXMjEpHP5yv4dmJ+vz/jfv6lpaUFbTsT/p5SeGbM52bcCD4QCOR98v5G2tvbEQgEsnquSAs/IjHiah/+DkPpcFyIjf2jP9Y0M5VrI2vusuYlMy62kCXV19ebdvJENuPj4+ju7jbtk7+iU7U+Muctc25Eojp48CCcTmdBju10OnHgwIGMj1dUVMDhcBSk7UwcDgfvLWcAI+dzM28Ev3v37pxfMxd79uy54XNEW/gRhVFX+/B3GEqH40Js7B/9saaZqVwbWXOXNS+Z2TTevZMspKenZ9Z+7JFIBLW1tSZGRERERNkIh8NobGzU9WSkw+FAMBiE2+2+7vPuuOMOPPPMM7q1eyN33HEHnn76acPao8IKhUJYvXq1LlcsOJ1OdHR03HDMTguHw/B4PHm3m61wOHzdG5J7vd6cF5vmwuv1IhgMFrwdvfj9/oIuQvn9frS1tRXs+GaJRqNYsmRJ2sd6e3vhcrmUjEUkrAuRPPjzTGZR7Vwur2whS6qurkZREYevHqamptDf34+pqSmzQxGSqvWROW+ZcyMSmdvtRjAY1O0KF6fTmdVCCwCsWLFClzazZXR7qjJiPjf7RvCFvookl/bC4bAhCy0AcPr0ad3ud1NoRl7tw99hKB2OC7Gxf/THmmamcm1kzV3WvGTGs9VkSVu3bkVlZaXZYUhhcHAQ+/fvx+DgoNmhCEnV+sict8y5EYnO7XYjFArB7/fndRy/349QKJT11QGFvmeM2e2pqtDzuQg3gj937pyubefTnkgLPyIxcps3/g5D6XBciI39oz/WNDOVayNr7rLmJTNuI0aWMn3pWXV1NQYHBxEKhaS+9MwIU1NTGBwcRGVlJa8WSkPV+sict8y5EVlJIBDAnj17cPr06axf4/V6sX37dqxZsybn9rj9kXwKPZ+bvTWUpmmoqanRfbHnehwOB2KxGGw22zWPcTu+axm9zdtzzz2HW265RZrfYbiljT74u63Y2D/6Y00zu15tZJ9zZR0XMuTFbcSILICX0OmnqKiI27Jdh6r1kTlvmXMjshKfz4dgMIhwOIxNmzZlfN6qVavQ2tqKcDiMYDA4p4UWANi+fftcQxWyHSrsfC7CjeATiYShCy3AlatuhoaGrvm+pmm4cOGCobGcP38eon8u0Oirb7773e/ydxi6Bn+3FRv7R3+saWYq10bW3GXNS2bsKbKkjRs3oqKiwuwwpJBIJHD48GEkEgmzQxGSqvWROW+ZcyOyorq6Omzbti3j48eOHcPOnTuve9PubPh8voJv7+X3++e8GES5K+R8buTWUJmMj48bEsObjY2NXfM9kRZ+RGL0Nm/d3d38HYauwd9txcb+0R9rmpnKtZE1d1nzkhkXW8iSuru7TfsDVDalpaWor69HaWmp2aEISdX6yJy3zLkR0fUdPHgQTqezIMd2Op04cOBAQY5ttmg0CpvNlvYrGo2aFleh5nNRbgRv1vtUWVnZNd8TaeFHFGZd7fO+972Pv8PQLPzdVmzsH/2xppmpXBtZc5c1L5lxsYUs6ezZs0L/8WUlZWVlWLlyZdo/rEnd+sict8y5EdH11dTUoKOjAw6HQ9fjOhwOdHR0oKamRtfj0vUVaj4X5UbwFRUVuo/VG3E4HCgvL7/m+yIt/IjCjKt9Xn31VdTV1QldFzIef7cVG/tHf6xpZirXRtbcZc1LZlxsIUtqamqC3W43OwwpJJNJdHZ2IplMmh2KkFStj8x5y5wbEd2Y2+1GMBjU7QoXp9OJYDAIt9uty/Eoe4Waz43eGipTezabDcuWLTM0luXLl8Nms13zfZEWfkRhxtU+drsdXV1d/B2GZuHvtmJj/+iPNc1M5drImrusecmMiy1kSS6XCyUlJWaHIYVUKoVoNIpUKmV2KEJStT4y5y1zbkSUHbfbjVAoBL/fn9dx/H4/QqEQF1pMUoj5XLQbwa9YscLQWDK1J9LCjyjMuNqnpKQEv/3tb/k7DM3C323Fxv7RH2uamcq1kTV3WfOSmU3L9Js9URpHjhzBvffem9NrPvvZz+Jb3/qWLu339PTMukFuJBJBbW2tLscmIiIic0SjUSxZsiTtY729vXC5XAVrOxAIYM+ePTh9+nTWr/F6vdi+fTvWrFlTsLhEYmb/GG1wcBBVVVWmtFtRUXHN98PhMDwej2FxhMPhWb9rX621tRW7du0yLJbW1lbs3LnTsPZypWkaampqDN1KzOFwIBaLCb0IlQuV5hYiIrNxziWzqHYul1e2kCUtXrwYxcXFZochhcnJSVy+fBmTk5NmhyIkVesjc94y50ZEufP5fAgGgwiHw9i0aVPG561atQqtra0Ih8MIBoPKLLSIrBDzuWg3gne73WhoaDAkBq/Xm3GhBQBaWloMicOs9nJlxtU+73//+/Hqq6/ydxiahb/bio39oz/WNDOVayNr7rLmJTMuttCcLV26FF/4whdu+PXhD39Y97Y3btyY9tN/lLtEIoGHH34YiUTC7FCEpGp9ZM5b5tyIaO7q6uqwbdu2jI8fO3YMO3fuvO7JaDJWIeZzEW8Ev337dkNiuFE7Ii38iMLobd4+8IEP8HcYugZ/txUb+0d/rGlmKtdG1txlzUtm3EaMcnL1NmL33HMPjhw5Ymj705ee2e12jI2NIRwOS33pmRE0TcPY2BjKysqk2ZJAT6rWR+a8Zc6NKBfcSuBarEl6otalEPO5qFtD+f1+HD9+vGAx+P1+tLW13fB5gUAAa9euLVgcV7djhavHjN7mLRQK4V3vepc0v8OIOrdYDX+3FRv7R3+saWbXq43sc66s40KGvLiNGJEFJJPJjDcSpdzYbDbY7XbLTtqFpmp9ZM5b5tyIiFRSiPlc1BvBHzx4EE6nsyDtO51OHDhwIKvn+ny+gm/v5ff7LbHQAhh/tY/b7ebvMHQN/m4rNvaP/ljTzFSujay5y5qXzLjYQpa0detWVFZWmh2GFAYHB7Fv3z4MDg6aHYqQVK2PzHnLnBsRkUoKNZ8bvTVUNu3V1NSgo6MDDodD17YdDgc6OjpQU1OT9WtEWfgRhZHbvPF3GEqH40Js7B/9saaZqVwbWXOXNS+ZcbGFLKmzsxPJZNLsMKRgt9vR1NQEu91udihCUrU+Muctc25ERHoLh8PYu3dvxsfXr1+P1tZWRCIRA6O6olDzuag3gne73QgGg7otdDidTgSDQbjd7pxeJ9LCjwiMvNpHtt9hXC4XNE1L+2X17WyMJNu4kA37R3+saWYq12auuUejUdhstrRf0Wi0MMHmQOU+tSoutpAldXd3Y3x83OwwpFBaWor6+nrTbggrOlXrI3PeMudGRKSXQCAAr9cLj8eDQ4cOZXzemTNnsGvXLrjdbni9Xpw6dcqwGAs1n4t8I3i3241QKAS/359Xu36/H6FQKOeFlqvjEGHhRxRGXe3D32EoHY4LsbF/9MeaZqZybWTNXda8ZMbFFpqz/v5+PPbYY3jggQfwN3/zN/jbv/1bPPzwwwiFQgW/n0pzczPmz59f0DZUMTo6io6ODoyOjpodipBUrY/MecucGxFRvmKxGPx+P9auXYuurq6cXtvV1QWfz4d169YhFosVKMLfK+R8buTWULmqqalBW1sbTp48Ca/Xm9NrvV4vAoEA2tra8r6CRJSFHxEYdbUPf4ehdDguxMb+0R9rmpnKtZE1d1nzklmJ2QGQdT3xxBN44okn0j72rne9C9u3b8dnPvOZgtzEqbq6GkVFXCvUw9TUFPr7+zE1NWV2KEJStT4y5y1zbkRE+QiFQli9ejX6+vryOk57ezs6OzvR0dFR0BPohZzPp7eGOn78uO7HnpbvjeB9Ph98Ph8ikQgeeuihjFcgrVq1Co2NjWhpacnpKppsTC/8+P1+7NmzB6dPn876tV6vF9u3b8+rBiKZvtqnubk5758h4MoVLW/+GeLvMJQOx4XY2D/6Y00zU7k2suYua14ys2mFvgSBpHLkyBHce++9WT9/7dq1ePTRR7Fw4UJd2u/p6Zn1R2IkEkFtba0uxyYiIlJJNBrFkiVL0j7W29vL/fIVEwqF0NTUhHg8rtsxHQ6HpbeGisVi8Hg8upw4fzOn04lQKKTb/UlE+Xk2c+FHFLFYDFu2bEF7e/ucj+H3+3HgwAHL3b+GiIjEJcrvCqJhXQpPtXO5vDSAcnbLLbfgS1/6Ek6dOoWXX34ZyWQSw8PDeP7553Ho0CEsXbp05rknT56E3+/XfQX23e9+N6qqqgAAk5OT6O/vn9m6bHBwcOZ+LqOjoxgeHgYApFIp9Pf3zxxjYGAAExMTAICRkRGMjIwAACYmJjAwMDDzvP7+fqRSKQDA8PDwzKV74+PjGBwcBABomob+/n5MTk4CAIaGhpBMJgEAY2NjSCQSAK5dkU4kEhgbGwMAJJNJDA0NGZ7TwMAAnn/+eaRSKWly0rOfUqkULl68OBOfDDll008TExOIRqN44403pMlpup/eeOMN/PrXv0YqlZImJ5nGHnMyLqfx8XFUVFQAAIqKimZdNToyMmLJnGTsJyNyisViWL16NaampjBv3jwAwIIFC7BgwQIAwLx582Z+7wKuXGFcUnLlAvmFCxfObO1aWlqKyspKAIDNZoOmaVizZg1isVhBchoZGUE0GkUikShIP9XU1ODkyZN429veNpNTdXU1iouLAQDl5eUzNystKyvL+PNUUVGBsrIyAFducvpHf/RH6OjoQHV1ta5j73r9ZNTYu+2223DffffNXNleWVk5s8f4/Pnz8c1vfhM7d+7E0qVLpf15mr7a5/HHH0dTUxOA7H+ePvKRj+CJJ55AW1sbKioqrslpbGwM0WgU/f39nPeY06y/TyKRyKy/76yek0z9NDAwgGg0imQyKU1OZvfT8PAwLl68iFQqJU1ORv5uVFVVlfb3PVFzyrafRkdHEY1GZ+qQS05v/h326t/3zP55SqVSuHTp0kzNrdxPquBiC+XkrrvuQm9vL77+9a9j9erVeOtb34qysjIsWLAA7373u3Hffffhueeem3X1y5NPPpnXJ7vS8fv9+OQnPwkAeO2117B///6ZCeCRRx7BxYsXAQDBYBA//OEPAQCvvPIK9u/fP3OMhx56CC+++CIA4KmnnsJTTz0FAHjxxRfx0EMPzTxv//79eOWVVwAAP/zhDxEMBgEAFy9exCOPPALgyuS0f/9+vPbaawCA73//+zh79iwA4Nlnn0VbWxuAKxPQ/v37Zya8trY2PPvsswCAs2fP4vvf/77hOT355JN49NFHMTQ0JE1OevbT0NAQHnvsMZw7d06anLLppzfeeANHjx7FkSNHpMlpup+OHDmC9vZ2DA0NSZOTTGOPORmTUzgcxje+8Q2sW7cOwJUTolu3bp35I+ORRx7B3/3d3yESiVgmJxn7yaicNm/ejL6+Ptx33314xzveAQC48847ceeddwIA3vGOd+C+++6byWnr1q1461vfCgD46Ec/isbGRgDAe9/7XnzmM58BcGXxYevWrUilUtiyZUtBcuru7sbRo0fx4x//uGD9ZLPZsHnzZjidzpmcFi1aBAD4xCc+gZUrVwIAbr/99ow/T+vWrcPtt98OAPizP/szfOUrX4Hb7dZ97F2vn4wce48//vjM4tJnPvMZvPe97wUANDY24qc//WlB+kmkn6dpv/rVr/DQQw8hHA5j8+bN1/152r59O8LhMD73uc/NLE6ly+mll17C0aNHOe8xp1k5vfDCC3j88cdnToLJkJNM/fTkk0/i6NGjeOGFF6TJyex+OnfuHB577DEMDQ1Jk5ORvxtl+n1P1Jyy7aeLFy/i6NGj6OjoyLmf0v0OO/37ntk/T0NDQ/jud7+Ljo4Oy/eTMjSyvIMHD2rvec97dP167LHH8oppcnJSa2ho0ABoALS6ujpdco1EIhoAzW63a+Xl5VokEtFSqZQWj8e1qakpTdM0bWBgQBsbG9M0TdNGRka0oaEhTdM0bWJiQovH4zPH6u/v18bHxzVN07Th4WFteHhY0zRNGx8f1/r7+2eeF4/HtYmJCU3TNG1oaEgbGRnRNE3TxsbGtIGBAU3TNG1qakqLx+NaKpXSNE3TEomENjo6qmmapiWTSW1wcHCmLvF4XJucnNQ0TdMGBwe1ZDKpaZqmjY6OaolEQtM0jTkxJ+bEnJgTcypITj/4wQ+0P/3TP9UAaGVlZVpFRYUGQCsqKtKqq6u1oqIiDYBWUVGhlZWVaQC0P/3TP9VOnDghbE4y9pOROT3++OMzv69VVVVp8+bN0wBoCxYs0BYsWKAB0ObNm6dVVVXNPK+6ulorKSnRAGgLFy7U5s+frwHQSktLtcrKSg2AZrPZtOrqaq24uFgDoP3gBz+wdD+9/vrrmt/vn5VTeXm5Zrfbs/558vv92n//938XJKfe3t6M/dTb22vo2AuHw5rNZtMAaJWVlVppaakGQJs/f7528eLFgvZToXLKt59++ctfZvx5CofDlsxJxn5iTsyJOTEnmXPq7e3N+Pteb2+vJXPSo596e3sz/g7b29tryZxE66fpc7nTX5FIRJMZ79kigQceeAAPPvigrsf85je/ic997nN5HeOZZ57BHXfcMfP/l19+eebTdXOl2j5/REREeojFYti8eXNeN/vmPQTk5PV60dXVZUg705+0s7JAICDkjeBF2m9cpFhEwZoQEZHZ+F6UHutSeKqdy+U2YlQwXq93Zh9IAPjlL3+p27F37Ngxa69jmruBgQF87Wtfm7XnI/2eqvWROW+ZcyNKJxQKwePx5LXQAgDt7e3weDwIh8M6RUZmC4fDhiy0AMDp06cRiUR0PaYZ87nP50MwGEQ4HMamTZsyPm/VqlVobW1FOBxGMBgs6EILqYO/w1A6HBdiY//ojzXNTOXayJq7rHnJjIstEnjggQegaZquX/le1QJcufnjTTfdNPP/119/Pe9jTjtx4sTMDa8oPwsWLMBdd901c1M0mk3V+sict8y5Eb1ZKBRCU1MT+vr6dDleX18fGhsbueAiiXwX4Mxuz8z5vK6uDtu2bcv4+LFjx7Bz585Zn+Ijyhd/h6F0OC7Exv7RH2uamcq1kTV3WfOSGRdbqKCGh4dn/r1w4ULdjnvp0iVMTEzodjyVzZs3D0uXLp11FRL9nqr1kTlvmXMjulosFsPq1asRj8d1PW48HkdzczNisZiux6XZotEobDZb2q9oNKpLG+fOndPlOGa1x/mcVMMxT+lwXIiN/aM/1jQzlWsja+6y5iUzLrZQwfzXf/0XBgcHZ/7vdDp1OzZXdfUzMjLCK4WuQ9X6yJy3zLkRXW3z5s26XdHyZn19fdiyZUtBjk3G0DQNFy5cMLTN8+fPQ8/bRXI+J9VwzFM6HBdiY//ojzXNTOXayJq7rHnJjIstVDCPPPLIzL+rqqpQX19vXjBEREQKCQQCBd8iqr29HYFAoKBtUOEkEgndr3q6kXg8jqGhIUPbJCIiIiIiMkqJ2QGQdQwNDaG8vDyr5/7kJz/BP/zDP8z8/+6770ZJiX7D7cSJE7odS3XT+z9SeqrWR+a8Zc6NaNru3bsNaWfPnj3w+XyGtEX6Gh8fN6XdsbExVFRU6HIszuekGo55SofjQmzsH/2xppmpXBtZc5c1L5nxyhbK2ve//32sWLEC3/nOdzAwMJD2OclkEgcOHMAdd9yBZDIJAKiursbf/u3f6hoL9yvUz8TEBO+Bcx2q1kfmvGXOjQgAwuEwurq6DGnr9OnTiEQihrRF+iotLTWl3bKyMt2OxfmcVMMxT+lwXIiN/aM/1jQzlWsja+6y5iUzLrZQTn7+85/jnnvuwU033QS3241PfvKT+J//83/is5/9LJqbm/EHf/AHuP/++zE6OgoAmD9/Pp544gn84R/+oa5x8J4t+uH+j9enan1kzlvm3IgAFHz7MLPbI31UVFTA4XAY2qbD4cj6KulscD4n1XDMUzocF2Jj/+iPNc1M5drImrusecnMpul5l0qS2pEjR3Dvvfdm/fwVK1bgyJEjuO2223SLoaenB3V1dTP/j0QiqK2t1e34REREVnfHHXfgmWeeMbS9p59+2rD2VBGNRrFkyZK0j/X29sLlcuXdBsdKfozoI8YiB9aEiIjMxvei9FiXwlPtXC7v2UJZa2lpwbvf/W785Cc/wdmzZ/Hiiy/i9ddfRywWw9TUFKqqqrBkyRKsXLkSn/jEJ/Anf/InZodMRESkFE3TcOHCBUPbPH/+PDRNg81mM7Rdyt+KFSsMXWxZsWKFYW0REREREREZjduIUdbKysrwoQ99CF/+8pfx/e9/H88++yxefvlljIyMIJlM4tVXX8XZs2exb9++gi+0PPDAA6iuri5oG6ro7+/Hgw8+iP7+frNDEZKq9ZE5b5lzI0okEojH44a2GY/HMTQ0ZGibsguHw9i7d2/Gx9evX4/W1ta875fT0tKS1+vNbo/zOamGY57S4bgQG/tHf6xpZirXRtbcZc1LZlxsIUs6cuQIT+zopLy8HPfcc4+ue6jLRNX6yJy3zLkRjY+Pm9Lu2NiYKe3KJhAIwOv1wuPx4NChQxmfd+bMGezatQtutxterxenTp2aU3tutxsNDQ1zDTcnXq931vYBeuB8TqrhmKd0OC7Exv7RH2uamcq1kTV3WfOSGRdbyJKi0ShSqZTZYUihpKQELpcLJSXcVTAdVesjc94y50ZUWlpqSrtlZWWmtCuLWCwGv9+PtWvXoqurK6fXdnV1wefzYd26dYjFYjm3vX379pxfMxeFaMfs+dzlckHTtLRfRu/vLVIsVDhmj3kSE8eF2Ng/+mNNM1O5NrLmLmteMuNiC1nS3XffjYULF5odhhSGh4fx6KOPYnh42OxQhKRqfWTOW+bciCoqKuBwOAxt0+Fw8JNWeQiFQvB4PDh+/Hhex2lvb4fH40E4HM7pdT6fr+Dbifn9fqxZs0b343I+FxMXfgqHY57S4bgQG/tHf6xpZirXRtbcZc1LZlxsIUvq7+/H1NSU2WFIoaioCNXV1Sgq4nSQjqr1kTlvmXMjstlsWLZsmaFtLl++HDabzdA2ZREKhdDU1IS+vj5djtfX14fGxsacF1wOHjwIp9OpSwxv5nQ6ceDAgYIcm/M5qYZjntLhuBAb+0d/rGlmKtdG1txlzUtmNk3TNLODIMpWT0/PrP2+I5EIamtrTYyIiIhILK2trdi1a5eh7e3cudOw9v6/9u48vqrq7vf49yQhOUASAoimqdVgB7ESRFstlhpSpZWpLdaqEK3i8Cj1efTF09YrpbcW20sd24q2Du2tgjKptKI1SqvYBFrFOSRRcSpBEVGGzMlJcpJ9/+BynkTOCUnOTvbea33er1derxPOHn6/31rd3e6VtbYp9u7dqwkTJrg20NJVXl6eKioqNHr06F7vU1lZqSlTpqimpsa1OEaOHKmysjIVFBS4dkwgiKqrqzV27Ni4323bto0ZPwCAAcf/F8VHXQaebc9yGRZDIE2cONGzdelN09bWpvLycs9equx3ttbH5LxNzg2QNOBLQnl9PlNcddVVAzLQIu2f4XL11Vf3aZ+CggKVlZW5NsMlLy9vwAdauJ7DNvR5xEO/8Dfax33UNDGba2Nq7qbmZTIGWxBIRUVFCofDXodhhEgkotLSUkUiEa9D8SVb62Ny3ibnBkj7H5qfdtppg3KuwsLCbn+lhN4pKSlJ+h0th7Jq1SqVlJT0aZ+CggJVVFSouLg4qXMXFxeroqJiwGe0cD1HULj1Hhv6POKhX/gb7eM+apqYzbUxNXdT8zIZy4ghUGybegYAQH+UlJRo1qxZg3KegXjxuekKCwu1adOmQTlPWVlZv/YtKSnRzTffrI0bN/bpfNdeey19AgAAwGdYLis+6jLwbHuWy8wWBFI4HOZlvC5xHEeRSESMu8Zna31Mztvk3IADZs6cOeDLexUXF/NQvR8qKysHZaBFkjZu3Kiqqqp+7Ttz5kyVlZWpsrJSV155ZcLtJk+erEWLFqmyslJlZWUD3ieqq6sVCoUUCoWUkpKioUOHKiUlRaFQSNXV1QN6bsBr3MMgHvqFv9E+7qOmidlcG1NzNzUvkzHYgkBauHChRowY4XUYRqirq9NNN92kuro6r0PxJVvrY3LeJucGdHXHHXe49v6NT8rLy9Ptt98+IMc23UAvH+b2+caPH69rrrkm4fcrVqzQkiVLPFlObsSIEdwTwircwyAe+oW/0T7uo6aJ9VQbt5a09CtT+4WpeZmMZcQQKAemnuXm5mr37t3asmWL0VPPBkNHR4d2796tMWPGKDU11etwfMfW+pict8m5AZ9UWVmpKVOmqKamxrVjjhw5csBffG6yqVOnasOGDYN6vqeeeiqpY/hpeYWusaSmpmrMmDHavXu3Ojo6WOoBxuMeBvHQL/yN9nEfNU3M5tr0N3c/3efGY0KbsowYEAC7du1SR0eH12EYITU1Vbm5uYG9aA80W+tjct4m5wZ8UkFBgcrKylyb4ZKXl8dASxIcx9Err7wyqOd8+eWXjV12oKOjg3tCWIV7GMRDv/A32sd91DQxm2tjau6m5mUyBlsQSPPmzVNmZqbXYRihsbFRy5YtU2Njo9eh+JKt9TE5b5NzA+IpKChQRUWFiouLkzpOcXGxKioqGGhJQkNDg6uzjHqjpqbG2OtdZmYm94SwCvcwiId+4W+0j/uoaWI218bU3E3Ny2QMtiCQqqurFY1GvQ7DCGlpacrPz1daWprXofiSrfUxOW+TcwMSGT16tFauXKnHH39chYWFfdq3sLBQJSUlWrlypUaPHj1AEdqhra3Nk/O2trZ6ct6BFo1GuSeEVbiHQTz0C3+jfdxHTROzuTam5m5qXibjnS0IFNvW+QMAYCBUVVXprrvu0p133hn3+8mTJ2vKlCmaO3euJy8+N1V9fb0nL3Ovr69XVlZWv/f301rWfooFAAAAwca95cCz7VkuM1sQSJMmTVJGRobXYRihtbVVmzdvNvavXpNla31Mztvk3IDeGj9+vK655pqE369YsUJLlixhoMVlWVlZGjly5KCec+TIkcYus5WRkcE9IazCPQzioV/4G+3jPmqamM21MTV3U/MyGYMtCKSJEycqPT3d6zCM0NbWpvLycs+WNvE7W+tjct4m5wbA30KhkE466aRBPeeXvvQlhUKhQT3nYElPT+eeEFbhHgbx0C/8jfZxHzVNzObamJq7qXmZjGXEECi2TT0DAGCgMGXeG4sWLdINN9wwqOdbsmRJUsfwU1/xUywAAAAINu4tB55tz3KZ2YJAysnJUUoK3dcNnZ2dqq2tVWdnp9eh+JKt9TE5b5NzA+B/c+fODdz58vPz5ThO3B8v/wM0JSWFe0JYhXsYxEO/8Dfax33UNDGba2Nq7qbmZTL+ywSBtGDBAmVnZ3sdhhHq6+u1dOlS1dfXex2KL9laH5PzNjk3AP5XUFCg0047bVDOVVhYaNR7dyorK3XLLbfEfs/Ozu52T3jBBRdo0aJFqqqq8ipEYEBxD4N46Bf+Rvu4j5omZnNtTM3d1LxMxjJiCJQDU89ycnJUX1+viooKo6eeDYbOzk7V19crOzubvwyNw9b6mJy3ybkBfcGUee+UlJRo1qxZg3KeGTNmDPh5BlpJSYluuukmbdq0qdu/p6SkKDs7W/X19Qf9td9pp52mhQsXGpE/cAD3MIiHfuFvtI/7qGliNtemv7n7/b+JTGhTlhEDAoApdO5hCY6e2Vofk/M2OTcAwTBz5swBX06suLg48AMNe/fuVXFxsWbNmnXQQIvU87IKmzZt0syZM3X++edr7969gxEuMOC4h0E89At/o33cR00Ts7k2puZual4mo6UQSPPnz1dWVpbXYRihoaFBd999txoaGrwOxZdsrY/JeZucG4DguOOOO5SXlzcgx87Ly9Ptt98+IMceLBUVFZowYYJWr16dcJusrKxD3hOuWrVKEyZMUGVl5UCECQwq7mEQD/3C32gf91HTxGyujam5m5qXyRhsQSCVl5erra3N6zCMkJ6erokTJyo9Pd3rUHzJ1vqYnLfJuQF94deXntti9OjRWr9+vUaOHOnqcUeOHKn169dr9OjRrh53MFVUVKioqEg7d+7scbu2trZe3RPu3LlTU6ZMYcAFgcc9DOKhX/gb7eM+apqYzbUxNXdT8zIZ72xBoNi2zh8AADBbZWWlpk2bdsiBhd7Iy8vT+vXrVVBQ4EJk3ti7d68mTJjgSj0+KS8vTxUVFYEeiAIAAIB7/P7OFhPY9iyXmS0IpKKiIoXDYa/DMEIkElFpaakikYjXofiSrfUxOW+TcwMQPAUFBaqoqFBxcXFSxykuLlZFRUWgB1ok6aqrrur1QEs4HO7TPeHOnTt19dVXJxMe4CnuYRAP/cLfaB/3UdPEbK6NqbmbmpfJGGxBIOXn5ystLc3rMIwQjUZVXV2taDTqdSi+ZGt9TM7b5NwABNPo0aO1cuVKPf744yosLOzTvoWFhSopKdHKlSsDP2OjpKSkx3e0fFJaWlqf7wlXrVqlkpKS/oQHeI57GMRDv/A32sd91DQxm2tjau6m5mUylhFDoNg29QwAANinqqpKd911l+68886430+ePFlTpkzR3Llzu90XBV1hYaE2bdo0KOcpKysb8PMAAADA31hGbODZ9iyXmS0IpNzcXKWmpnodhhE6Ojq0a9cudXR0eB2KL9laH5PzNjk3AGYYP368rrnmmoTfr1ixQkuWLDFqoKWysrLPAy2pqan9uifcuHGjqqqq+rQP4AfcwyAe+oW/0T7uo6aJ2VwbU3M3NS+TMdiCQJo/f76ysrK8DsMIDQ0Nuueee9TQ0OB1KL5ka31Mztvk3AAgqPqyfNgBWVlZ/b4n7M/5AK9xD4N46Bf+Rvu4j5omZnNtTM3d1LxMxjJiCJQDU8/C4bBaW1tVWVlp9NSzweA4jlpbW5WRkaFQKOR1OL5ja31Mztvk3ACYw7YlDaZOnaoNGzb0aZ9QKKSMjAy1traqr/9JM3XqVD311FN92gfwGvcwiId+4W+0j/uoaWI216a/ufv9ntuENrVtGTHeMI5AikQiXodgjFAopHA47HUYvmVrfUzO2+TcACCIHMfRK6+80q/9+ntP+PLLL8txnMD+RyvsxD0M4qFf+Bvt4z5qmpjNtTE1d1PzMhnLiCGQFixYoOzsbK/DMEJ9fb1uu+021dfXex2KL9laH5PzNjk3AAiihoYG1dTU9Hm/7Ozsft8T1tTUqLGxsc/7AV7iHgbx0C/8jfZxHzVNzObamJq7qXmZjMEWBFJpaSmzW1wSDodVVFTESHkCttbH5LxNzg0Agqitra1f+0UikaTuCVtbW/u1H+AV7mEQD/3C32gf91HTxGyujam5m5qXyXhnCwLFtnX+AACAnfy+frSb6uvrNWLECE/Om5WVNejnBQAAgD/YdM/tFdue5TKzBYE0bdo0DR061OswjNDS0qL169erpaXF61B8ydb6mJy3ybkBQBBlZWVp5MiRfd5v6NCh/b4nHDlypDIzM/u8H+Al7mEQD/3C32gf91HTxGyujam5m5qXyRhsQSDl5OQoJYXu64bOzk7V1taqs7PT61B8ydb6mJy3ybkBMEd+fr4cx4n7Y9pf2IVCIZ100kl93i8lJaXf94Rf+tKXFAqF+rwf4CXuYRAP/cLfaB/3UdPEbK6NqbmbmpfJWEYMgWLb1DMAAAAbLFq0SDfccMOgnm/JkiWDdj4AAAD4D8uIDTzbnuUyNQCBlJ+fr7S0NK/DMEI0GlV1dbWi0ajXofiSrfUxOW+TcwOAoJo7d26f90lLS+v3PWF/zgd4jXsYxEO/8Dfax33UNDGba2Nq7qbmZTIGWxBI8+bNY51tlzQ2Nmr58uVqbGz0OhRfsrU+Judtcm4AEFQFBQU67bTT+rRPZmZmv+4JCwsLu/11HcxVXV2tUCgU96e6utrr8PqMexjEQ7/wN9rHfdQ0MZtrY2rupuZlMpYRQ6DYNvUMAADAFiUlJZo1a9agnGfGjBkDfh54j6VBAABAT7hXGHi2PctlZgsAAAAAz82cOXPAl/cqLi5moAUAAADAgGCwBYG0cOFCjRgxwuswjFBXV6cbb7xRdXV1XofiS7bWx+S8Tc4NAILujjvuUF5eXq+2HTFiRJ/uCfPy8nT77bcnEx7gKe5hEA/9wt9oH/dR08Rsro2puZual8kYbEEgrVu3Ts3NzV6HYYRhw4Zp9uzZGjZsmNeh+JKt9TE5b5NzA4CgGz16tNavX6+RI0cectvm5uZe3xOOHDlS69ev1+jRo90IE/AE9zCIh37hb7SP+6hpYjbXxtTcTc3LZLyzBYFi2zp/AAAANqqsrNS0adO0c+fOpI+Vl5en9evXq6CgwIXIECSsww4AAHrCvcLAs+1ZLjNbEEiM6rqnL38VaiNb62Ny3ibnBgCmKCgoUEVFhYqLixNu05u/9CsuLlZFRQUDLTAC9zCIh37hb7SP+6hpYjbXxtTcTc3LZAy2AAAAAPCd0aNHa+XKlXr88cdVWFjYp30LCwtVUlKilStXsnQYAAAAgEHBMmIIFNumngEAAGC/qqoq3XXXXbrzzjvjfj958mRNmTJFc+fO7Xa/CHuxNAgAAOgJ9woDz7ZnucxsQSCNGzdOQ4YM8ToMI7S3t2vr1q1qb2/3OhRfsrU+Judtcm4AYLLx48frmmuuif0+ZMiQbveEK1as0JIlSxhogbG4h0E89At/o33cR00Ts7k2puZual4mY7AFgcQ7W9zD+o89s7U+Judtcm4AYJPevLMFMAn3MIiHfuFvtI/7qGliNtfG1NxNzctkLCOGQLFt6hkAAAD+B0s9oC/oLwAAoCfcKww8257lMrMFAAAAAAAAAAAgCQy2IJAWL16snJwcr8MwQm1tra6//nrV1tZ6HYov2Vofk/M2OTcAsElOTg73hLAK9zCIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJCWLVumxsZGr8MwQmZmpi666CJlZmZ6HYov2Vofk/M2OTcAsEljYyP3hLAK9zCIh37hb7SP+6hpYjbXxtTcTc3LZGleBwD0R3V1tdchGCMtLY01KHtga31Mztvk3ADAJtFolHtCWIV7GMRDv/A32sd91DQxm2tjau6m5mUyZrYgkObMmaPhw4d7HYYRmpqatGbNGjU1NXkdii/ZWh+T8zY5NwCwyfDhw7knhFW4h0E89At/o33cR00Ts7k2puZual4mY7AFgVRbW6vOzk6vwzBCSkqKcnJylJLC5SAeW+tjct4m5wYANuns7OSeEFbhHgbx0C/8jfZxHzVNzObamJq7qXmZLOQ4juN1EEBvvfbaaxo/fnzs96qqKh1//PEeRgQAAIDBUl1drbFjx8b9btu2bSyzgJjKykrdfffduvPOO+N+P3nyZBUWFqq4uLjbf18AAAB7cG858Gx7lsuwGAJp4sSJSk9P9zoMI7S1tam8vFxtbW1eh+JLttbH5LxNzg0ATJefny/HceQ4jlpbW/Xqq6+qtbVVjuPwH8OQJJWUlKiwsFATJkxIONAiSf/61790ww03qKCgQIWFhXriiScGMcr+4R4G8dAv/I32cR81Tczm2piau6l5mYzBFgRSUVGRwuGw12EYIRKJqLS0VJFIxOtQfMnW+pict8m5AYBNuJ6jq71796q4uFizZs3Spk2b+rTvpk2bNHPmTJ1//vnau3fvAEWYPPo84qFf+Bvt4z5qmpjNtTE1d1PzMhnLiCFQbJt6BgAAAKBnFRUVmj59unbu3Jn0sfLy8rR+/XoVFBS4EBkAAPAzlhEbeLY9y2VmCwIpHA4rFAp5HYYRHMdRJBIR467x2Vofk/M2OTcAsAnXc0j7B1qKiopcGWiRpJ07d2rKlCmqrKx05Xhuos8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgkBauHChRowY4XUYRqirq9NNN92kuro6r0PxJVvrY3LeJucGADbheo69e/dq+vTpqqmpcfW4NTU1mjZtmu+WFKPPIx76hb/RPu6jponZXBtTczc1L5OxjBgC5cDUs9zcXO3evVtbtmwxeurZYOjo6NDu3bs1ZswYpaameh2O79haH5PzNjk3ALAJ13MUFxdr9erVA3r8lStXDtjx+4o+j3joF/5G+7iPmiZmc236m7vflxEzoU1ZRgwIgF27dqmjo8PrMIyQmpqq3NzcwF60B5qt9TE5b5NzAwCbcD23W0lJyYAOtEjSqlWrVFJSMqDn6Av6POKhX/gb7eM+apqYzbUxNXdT8zIZgy0IpHnz5ikzM9PrMIzQ2NioZcuWqbGx0etQfMnW+pict8m5AYBNuJ7b7aabbhqU89x8882Dcp7eoM8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgkCqrq5WNBr1OgwjpKWlKT8/X2lpaV6H4ku21sfkvE3ODQBswvXcXpWVldq0adOgnGvjxo2qqqoalHMdCn0e8dAv/I32cR81Tczm2vQn98rKSt1yyy0Jv7/gggu0aNEiT+8DbG7ToOKdLQgU29b5AwAAANDdokWLdMMNNwzq+ZYsWTJo5wMAAAOnpKREN910U5/+cOO0007TwoULNWPGjAGMzEy2PctlZgsCadKkScrIyPA6DCO0trZq8+bNam1t9ToUX7K1PibnbXJuAGATruf2euGFF4w+XyL0ecRDv/A32sd91DQxm2vTm9z37t2r4uJizZo1q88zZDdt2qSZM2fq/PPP1969e5MNt9dsbtOgYrAFgTRx4kSlp6d7HYYR2traVF5erra2Nq9D8SVb62Ny3ibnBgA24XpuJ8dx9MorrwzqOV9++WX5YUEI+jzioV/4G+3jPmqamM21OVTuFRUVmjBhglavXp3UeVatWqUJEyaosrIyqeP0ls1tGlQsI4ZAsW3qGQAAAID/UV9frxEjRnhy3qysrEE/LwAASE5FRYWKiopUU1Pj2jFHjhypsrIyFRQUuHZMU9n2LJeZLQiknJwcpaTQfd3Q2dmp2tpadXZ2eh2KL9laH5PzNjk3ALAJ13M7efWXnX5YvoM+j3joF/5G+7iPmiZmc20S5b53715Nnz7d1YEWSaqpqdG0adMGfEkxm9s0qHhajUBasGCBsrOzvQ7DCPX19Vq6dKnq6+u9DsWXbK2PyXmbnBsA2ITruZ28WkrYD++LpM8jHvqFv9E+7qOmidlcm0S5X3XVVdq5c+eAnHPnzp26+uqrB+TYB9jcpkHFMmIIlANTz3JyclRfX6+Kigqjp54Nhs7OTtXX1ys7O5vZQnHYWh+T8zY5NwCwCddzOzmOo9GjR7v+F6o9GTlypPbu3atQKDRo54yHPo946Bf+Rvu4j5omZnNt4uVeUlKiWbNmDfi5H3/8cc2cOXNAjm1Cm7KMGBAATKFzT0pKCsuy9cDW+pict8m5AYBNuJ7bKRQK6aSTThrUc37pS1/yfKBFos8jPvqFv9E+7qOmidlcm3i533TTTYNy7ptvvnnAjm1zmwYVLYVAmj9/Pi+odElDQ4PuvvtuNTQ0eB2KL9laH5PzNjk3ALAJ13N7nXLKKUafLxH6POKhX/gb7eM+apqYzbX5ZO6VlZXatGnToJx748aNqqqqGpBj29ymQcVgCwKpvLzcs5djmiY9PV0TJ070bP1rv7O1PibnbXJuAGATruf2mjt3rtHnS4Q+j3joF/5G+7iPmiZmc20+mfvq1asH9fwDdT6b2zSoeGcLAsW2df4AAAAAHKywsHBQ/mK1sLBQZWVlA34eAADgnqlTp2rDhg2Der6nnnpq0M4XJLY9y2VmCwKpqKhI4XDY6zCMEIlEVFpaqkgk4nUovmRrfUzO2+TcAMAmXM/tdu211xp1nt6gzyMe+oW/0T7uo6aJ2Vybrrk7jqNXXnllUM//8ssvayDmM9jcpkHFYAsCKT8/X2lpaV6HYYRoNKrq6mpFo1GvQ/ElW+tjct4m5wYANuF6breZM2cO+PJexcXFmjFjxoCeoy/o84iHfuFvtI/7qGliNtema+4NDQ2qqakZ1PPX1NSosbHR9ePa3KZBxTJiCBTbpp4BAAAAiG/v3r2aMGGCdu7c6fqx8/LyVFFRodGjR7t+bAAAMHD27NmjMWPGDPp5d+/ercMOO2zQz+t3tj3LZWYLAik3N1epqaleh2GEjo4O7dq1Sx0dHV6H4ku21sfkvE3ODQBswvUco0eP1vr16zVy5EhXjzty5EitX7/edwMt9HnEQ7/wN9rHfdQ0MZtr0zV3r14mn5GR4foxbW7ToGKwBYE0f/58ZWVleR2GERoaGnTPPfeooaHB61B8ydb6mJy3ybkBgE24nkOSCgoKVFZWpry8PFeOl5eXp7KyMhUUFLhyPDfR5xEP/cLfaB/3UdPEbK5N19yzsrJc/0OMQxk5cqQyMzNdP67NbRpULCOGQDkw9SwcDqu1tVWVlZVGTz0bDI7jqLW1VRkZGQqFQl6H4zu21sfkvE3ODQBswvUcXe3du1dXX321Vq1a1e9jFBcX6/bbb/fdjJYD6POIh37hb7SP+6hpYjbX5pO5T506VRs2bBi080+dOlVPPfWU68c1oU1ZRgwIgEgkIsYJ3REKhRQOhwN70R5ottbH5LxNzg0AbML1HF2NHj1aK1eu1OOPP67CwsI+7VtYWKiSkhKtXLnStwMtEn0e8dEv/I32cR81Tczm2nwy91NOOWVQzz9Q57O5TYOKwRYE0oIFC5Sdne11GEaor6/Xbbfdpvr6eq9D8SVb62Ny3ibnBgA24XqOeGbOnKmysjJVVlbqyiuvTLjd5MmTtWjRIlVWVqqsrEwzZswYxCj7hz6PeOgX/kb7uI+aJmZzbT6Z+9y5cwf1/AN1PpvbNKgYbEEglZaWKhKJeB2GEcLhsIqKihQOh70OxZdsrY/JeZucGwDYhOs5ejJ+/Hhdc801Cb9fsWKFlixZ0m1ZC7+jzyMe+oW/0T7uo6aJ2VybT+ZeUFCg0047bVDOXVhYOGD3Eza3aVDxzhYEim3r/AEAAADon+rqao0dOzbud9u2bVN+fv7gBgQAAAZNSUmJZs2aNSjnCcIMWa/Y9iyXmS0IpGnTpmno0KFeh2GElpYWrV+/Xi0tLV6H4ku21sfkvE3ODQBswvUctqHPIx76hb/RPu6jponZXJt4uc+cOXPAlxMrLi4e0IEWm9s0qBhsQSDl5OQoJYXu64bOzk7V1taqs7PT61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrkyj3O+64Q3l5eQNyzry8PN1+++0DcuwDbG7ToGIZMQSKbVPPAAAAAPQPy4gBAIDKykpNmTJFNTU1rh1z5MiRKisrU0FBgWvHNJVtz3KZGoBAys/PV1pamtdhGCEajaq6ulrRaNTrUHzJ1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2vTU+4FBQUqKytzbYZLXl7eoA202NymQcVgCwJp3rx5yszM9DoMIzQ2Nmr58uVqbGz0OhRfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObaHCr3goICVVRUqLi4OKnzFBcXq6KiYtBmtNjcpkHFMmIIFNumngEAAADoH5YRAwAAn1RSUqKbb75ZGzdu7PU+hYWFuvbaazVjxowBjMxMtj3LZWYLAAAAAAAAAMB4M2fOVFlZmSorK3XllVcm3G7y5MlatGiRKisrVVZWxkALeoXBFgTSwoULNWLECK/DMEJdXZ1uvPFG1dXVeR2KL9laH5PzNjk3ALAJ13PYhj6PeOgX/kb7uI+aJmZzbfqT+/jx43XNNdck/H7FihVasmRJt1kZg83mNg0qBlsQSOvWrVNzc7PXYRhh2LBhmj17toYNG+Z1KL5ka31Mztvk3ADAJlzPYRv6POKhX/gb7eM+apqYzbUxNXdT8zJZmtcBAP2xdetWr0MwxpAhQzRu3Divw/AtW+tjct4m5wYANuF6DtvQ5xEP/cLfaB/3UdPEbK6NqbmbmpfJmNmCQGJU1z3Nzc3MFOqBrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkDLYAAAAAAAAAAAAkIeQ4juN1EEBvvfbaa91eTFVVVaXjjz/ew4gAAAAA+FF1dbXGjh0b97tt27YpPz9/cAMCAAC+wr3CwLPtWS4zWxBI48aN05AhQ7wOwwjt7e3aunWr2tvbvQ7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmOwBYHEO1vcw/qPPbO1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYxlxBAotk09AwAAANA/LA0CAAB6wr3CwLPtWW6a1wEAAAAAAOC2/Px88beFAAAAGCwsI4ZAWrx4sXJycrwOwwi1tbW6/vrrVVtb63UovmRrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1d1PzMhnLiCFQDkw9y8/P144dO1ReXm701LPBEI1GtWPHDh155JFKS2Oy2yfZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc236m7vflxEzoU1ZRgwIgOrqaq9DMEZaWprn/+fhZ7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvk7GMGAJpzpw5Gj58uNdhGKGpqUlr1qxRU1OT16H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJBqa2vV2dnpdRhGSElJUU5OjlJSuBzEY2t9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGe9sQaDYts4fAAAAAAAAAPf5/Z0tJrDtWS7DYgikiRMnKj093eswjNDW1qby8nK1tbV5HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxmALAqmoqEjhcNjrMIwQiURUWlqqSCTidSi+ZGt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGcuIIVBsm3oGAAAAAAAAwH0sIzbwbHuWy8wWBFI4HFYoFPI6DCM4jqNIJCLGXeOztT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMwRYE0sKFCzVixAivwzBCXV2dbrrpJtXV1Xkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGMmIIlANTz3Jzc7V7925t2bLF6Klng6Gjo0O7d+/WmDFjlJqa6nU4vmNrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtelv7n5fRsyENrVtGbE0rwMA+mPXrl1eh2CM1NRU5ebmeh2Gb9laH5PzNjk3ALAJ13PYhj6PeOgX/kb7uI+aJmZzbUzN3dS8TMYyYgikefPmKTMz0+swjNDY2Khly5apsbHR61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMgZbEEjV1dWKRqNeh2GEtLQ05efnKy2NiW7x2Fofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxjtbECi2rfMHAAAAAAAAwH1+f2eLCWx7lsvMFgTSpEmTlJGR4XUYRmhtbdXmzZvV2trqdSi+ZGt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGYMtCKSJEycqPT3d6zCM0NbWpvLycrW1tXkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGMmIIFNumngEAAAAAAABwH8uIDTzbnuUyswWBlJOTo5QUuq8bOjs7VVtbq87OTq9D8SVb62Ny3ibnBgA24XoO29DnEQ/9wt9oH/dR08Rsro2puZual8l4Wo1AWrBggbKzs70Owwj19fVaunSp6uvrvQ7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMQTKgalnOTk5qq+vV0VFhdFTzwZDZ2en6uvrlZ2dzWyhOGytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5Nv3N3e/LiJnQprYtI5bmdQBAf9TW1nodgjFSUlKUk5PjdRi+ZWt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyWTCHxGC9+fPnKysry+swjNDQ0KC7775bDQ0NXofiS7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgkAqLy9XW1ub12EYIT09XRMnTlR6errXofiSrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkvLMFgWLbOn8AAAAAAAAA3Of3d7aYwLZnucxsQSAVFRUpHA57HYYRIpGISktLFYlEvA7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmOwBYGUn5+vtLQ0r8MwQjQaVXV1taLRqNeh+JKt9TE5b5NzAwCbcD2HbejziId+4W+0j/uoaWI218bU3E3Ny2QsI2a4jo4Ovfbaa3rxxRf10ksv6cUXX1RFRYXa29slSVOmTFFpaWm/j79hwwYtX75cmzdv1gcffKCMjAwdeeSROvPMM3XppZdq3LhxLmWyn21TzwAAAAAAAAC4j2XEBp5tz3KZGmCwdevW6fzzz1dzc7Prx66vr9fll1+uBx98sNu/Nzc3q6amRpWVlVq6dKmuv/56/eQnP3H9/Lm5udq9e7frx7VRR0eHdu/erTFjxig1NdXrcHzH1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUylhEzWG1t7YAMtLS3t+uss87qNtAyfvx4XXjhhTr33HP1qU99KrbdokWL9Itf/ML1GObPn6+srCzXj2ujhoYG3XPPPWpoaPA6FF+ytT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMZcQMtmzZMl188cU64ogjdPLJJ8d+/va3v2np0qWS+reM2HXXXadf/vKXkqRwOKz77rtPc+bMiX3f1tam//2//7duueUWSVIoFNI//vEPTZkyJemcDkw9C4fDam1tVWVlpdFTzwaD4zhqbW1VRkaGQqGQ1+H4jq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXpr+5+30ZMRPalGXEYIxp06Zp+/btOuqoo7r9+/PPP9/vY3788cf6zW9+E/v9tttu6zbQIknp6em6+eab9d577+nBBx+U4zj6yU9+omeffbbf5/2kSCTi2rFsFwqFFA6HvQ7Dt2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMYPl5uYeNNCSrOXLl6upqUmS9IUvfEGXX355wm1vvvlmpaTs72LPPfecXn31VdfiWLBggbKzs107ns3q6+t12223qb6+3utQfMnW+pict8m5AYBNuJ7DNvR5xEO/8Dfax33UNDGba2Nq7qbmZTIGW9An69ati32eN29ej1PYjjrqKJ1++umx3x955BHX4igtLWV2i0vC4bCKiooYKU/A1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUyBlvQa5FIRJs3b479XlRUdMh9vv71r8c+P/PMM67FUl5erra2NteOZ7P09HRNnDhR6enpXofiS7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvkzHYgl5788031dnZKWn/moEnnnjiIfc56aSTYp/feOMN12KZNm2ahg4d6trxbNbS0qL169erpaXF61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMgZb0Gtvvvlm7PPhhx/eqylsXd8Zs2/fPu3evduVWHJycmLvg0FyOjs7VVtbGxtIQ3e21sfkvE3ODQBswvUctqHPIx76hb/RPu6jponZXBtTczc1L5OFHMdxvA4Cg2vx4sW6/vrrJUlTpkxRaWlpr/a76667dOWVV0qSJkyYoC1bthxyn3379mn06NGx37du3apjjz2270H/f6+99prGjx8f+72qqkrHH398v48HAAAAAAAAwD7V1dUaO3Zs3O+2bdum/Pz8wQ3IQLY9y2VqAHqtsbEx9rm3S3h9cruux0jGF77wBY0YMUKS1NHRodraWh0YN6yvr4+9z6WlpUVNTU2SpGg0qtra2tgx6urq1N7eLklqbm5Wc3OzJKm9vV11dXWx7WpraxWNRiVJTU1Nsal7bW1tqq+vlyQ5jqPa2lp1dHTE8oxEIpKk1tZWNTQ0SDp4RLqhoUGtra2S9r8T50B9BjOnuro6vfnmm4pGo8bk5GY7RaNRvf7667H4TMipN+3U3t6u6upq7du3z5icDrTTvn379PbbbysajRqTk0l9j5zIiZzIqbc5NTc3q7q6Wg0NDcbkZGI7kZN7ObW2tqq6ulq1tbXG5GRiOw12TpFIRFVVVd3++y7oOZnUTnV1daqurlYkEjEmJ6/bqampSa+//rqi0agxOXFvlHw7tbS0qLq6OlaHvuSUnp6u7OxsSftfm5CTk6PU1FTPc2pvb1c0GtXWrVtjNQ9yO9mCwRb02oH/IUrq9YuZMjIyuv3u1hqDxcXFOueccyRJu3fv1tKlS2MXgHvvvVevv/66JKmsrEx//etfJUk7duzQ0qVLY8e466679O6770qS/v73v+vvf/+7JOndd9/VXXfdFdtu6dKl2rFjhyTpr3/9q8rKyiRJr7/+uu69915J+y9OS5cujS2TtnbtWm3evFmS9Oqrr2rlypWS9l+Ali5dGrvgrVy5Uq+++qokafPmzVq7du2g5/TYY49pzZo1amxsNCYnN9upsbFRDz/8sF544QVjcupNO+3bt0/Lly/XsmXLjMnpQDstW7ZMq1atUmNjozE5mdT3yImcyImceptTeXm5li9frmeeecaYnExsJ3JyL6f33ntPy5cvNyonE9tpsHN655139Oc//zn2EMyEnExqp8cee0zLly/XO++8Y0xOXrfTCy+8oIcffliNjY3G5MS9UfLt9Prrr2v58uVav359n3P64he/qEsuuUTS/ueYCxYs0JgxYzzP6d1331VjY6MefPBBrV+/PvDtZA0Hg+qOO+5wjj32WFd/Hn744T7F8POf/9yR5EhypkyZ0uv9br755th+X/nKV3q1T3Nzc2wfSc5LL73Up1g/qaqqypHkhMNhJzMz06mqqnKi0ahTU1PjdHZ2Oo7jOHV1dU5ra2vs/I2NjY7jOE57e7tTU1MTO1Ztba3T1tbmOI7jNDU1OU1NTY7jOE5bW5tTW1sb266mpsZpb293HMdxGhsbnebmZsdxHKe1tdWpq6tzHMdxOjs7nZqaGicajTqO4zgNDQ1OS0uL4ziOE4lEnPr6esdxHKejo8OpqalxOjo6HMdxnPr6eicSiTiO4zgtLS1OQ0OD4zgOOZETOZETOZETOZETOZETOZETOZETOZETOZETOQ1gTtu2bXPS09Od7OxsR5ITCoWcnJwcJzU11dm2bVsgc/JbOx14lnvgp6qqyjEZ72wZZF3fl+KWP/7xj7rsssv6FQPvbAEAAAAAAABgG97ZMvBse5bLMmLota6DJh999FGv9tm1a1e330eNGuVKLAsXLoy9swXJqaur04033thtzUf8D1vrY3LeJucGADbheg7b0OcRD/3C32gf91HTxGyujam5m5qXyRhsGWSLFy+W4ziu/vRlVksyus5I+fjjj7u9wyWR9957L/Z51KhRsTUPk7Vu3brYC6+QnGHDhmn27NkaNmyY16H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZGleB4DgOPbYY5WSkqLOzk45jqPy8nJNmjSpx31eeeWV2OfjjjvOtVi2bt3q2rFsN2TIEI0bN87rMHzL1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUyZrag18LhcLfBld6866WsrCz2+fTTT3ctFkZ13dPc3MxMoR7YWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGYAv6ZPbs2bHPy5Yt63Hb999/Xxs2bIi7LwAAAAAAAAAApgg5juN4HQQG1+LFi3X99ddLkqZMmdKrGSoHfPzxxzrmmGPU1NQkSfrjH/+Y8J0xxcXFWr16tSTp1FNP1bPPPptc4JJee+01jR8/PvZ7VVWVjj/++KSPCwAAAAAAAMAe1dXVGjt2bNzvtm3bpvz8/MENyEC2PctlZgv65PDDD9cPf/jD2O9XX321HnrooW7btLe3a+HChbGBFkm64YYbXI1j3LhxGjJkiKvHtFV7e7u2bt2q9vZ2r0PxJVvrY3LeJucGADbheg7b0OcRD/3C32gf91HTxGyujam5m5qXyRhsMdyMGTM0ceLEbj9333137PuXXnrpoO8nTpyonTt3Jjzmz372s9j7V1paWnTeeedpwoQJmjdvnubMmaOjjz5aN910U2z766+/XlOmTHE1L97Z4h7Wf+yZrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkLCNmuPz8fG3fvr3P+x1qqlxdXZ0uv/zyg2a1dDVkyBAtXrxYixYt6vP5E7Ft6hkAAAAAAAAA97GM2MCz7VlumtcBIJhGjBihBx98UP/xH/+h5cuX67nnntOHH36oIUOG6DOf+YzOPPNMXXrppTruuOO8DhUAAAAAAAAAgAHFMmKGq66uluM4ff7p7cjt1KlT9cADD+idd95RU1OTamtrVVlZqVtvvXVAB1oWL16snJycATu+TWpra3X99dertrbW61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMpYRQ6AcmHqWn5+vHTt2qLy83OipZ4MhGo1qx44dOvLII5WWxmS3T7K1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2vQ3d78vI2ZCm7KMGBAA1dXVXodgjLS0NM//z8PPbK2PyXmbnBsA2ITrOWxDn0c89At/o33cR00Ts7k2puZual4mYxkxBNKcOXM0fPhwr8MwQlNTk9asWaOmpiavQ/ElW+tjct4m5wYANuF6DtvQ5xEP/cLfaB/3UdPEbK6NqbmbmpfJGGxBINXW1qqzs9PrMIyQkpKinJwcpaRwOYjH1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUy3tmCQLFtnT8AAAAAAAAA7vP7O1tMYNuzXIbFEEgTJ05Uenq612EYoa2tTeXl5Wpra/M6FF+ytT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMwRYEUlFRkcLhsNdhGCESiai0tFSRSMTrUHzJ1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUylhFDoNg29QwAAAAAAACA+1hGbODZ9iyXmS0IpHA4rFAo5HUYRnAcR5FIRIy7xmdrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1d1PzMhmDLQikhQsXasSIEV6HYYS6ujrddNNNqqur8zoUX7K1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYxlxBAoB6ae5ebmavfu3dqyZYvRU88GQ0dHh3bv3q0xY8YoNTXV63B8x9b6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtr09/c/b6MmAltatsyYmleBwD0x65du7wOwRipqanKzc31OgzfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7qXmZjGXEEEjz5s1TZmam12EYobGxUcuWLVNjY6PXofiSrfUxOW+TcwMAm3A9h23o84iHfuFvtI/7qGliNtfG1NxNzctkDLYgkKqrqxWNRr0OwwhpaWnKz89XWhoT3eKxtT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMd7YgUGxb5w8AAAAAAACA+/z+zhYT2PYsl5ktCKRJkyYpIyPD6zCM0Nraqs2bN6u1tdXrUHzJ1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2tjau6m5mUyBlsQSBMnTlR6errXYRihra1N5eXlamtr8zoUX7K1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYxlxBAotk09AwAAAAAAAOA+lhEbeLY9y2VmCwIpJydHKSl0Xzd0dnaqtrZWnZ2dXofiS7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvk/G0GoG0YMECZWdnex2GEerr67V06VLV19d7HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxjJiCJQDU89ycnJUX1+viooKo6eeDYbOzk7V19crOzub2UJx2Fofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNt+pu735cRM6FNbVtGLM3rAID+qK2t9ToEY6SkpCgnJ8frMHzL1vqYnLfJuQGATbiewzb0ecRDv/A32sd91DQxm2vT39zz8/Pl53kINrdpUAVzSAzWmz9/vrKysrwOwwgNDQ26++671dDQ4HUovmRrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1d1PzMhmDLQik8vJytbW1eR2GEdLT0zVx4kSlp6d7HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxjtbECi2rfMHAAAAAAAAAEFk27NcZrYgkIqKihQOh70OwwiRSESlpaWKRCJeh+JLttbH5LxNzg0AbML1HLahzyMe+oW/0T7uo6aJ2VwbU3M3NS+TMdiCQMrPz1daWprXYRghGo2qurpa0WjU61B8ydb6mJy3ybkBgE24nsM29HnEQ7/wN9rHfdQ0MZtrY2rupuZlMpYRQ6DYNvUMAAAAAAAAAILItme5zGxBIOXm5io1NdXrMIzQ0dGhXbt2qaOjw+tQfMnW+pict8m5AYBNuJ7DNvR5xEO/8Dfax33UNDGba2Nq7qbmZTIGWxBI8+fPV1ZWltdhGKGhoUH33HOPGhoavA7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMQTKgaln4XBYra2tqqysNHrq2WBwHEetra3KyMhQKBTyOhzfsbU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7CXnZtowYbxhHIEUiEa9DMEYoFFI4HPY6DN+ytT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMZcQQSAsWLFB2drbXYRihvr5et912m+rr670OxZdsrY/JeZucGwDYhOs5bEOfRzz0C3+jfdxHTROzuTam5m5qXiZjsAWBVFpayuwWl4TDYRUVFTFSnoCt9TE5b5NzAwCbcD2HbejziId+4W+0j/uoaWI218bU3E3Ny2S8swWBYts6fwAAAAAAAAAQRLY9y2VmCwJp2rRpGjp0qNdhGKGlpUXr169XS0uL16H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJBycnKUkkL3dUNnZ6dqa2vV2dnpdSi+ZGt9TM7b5NwAwCZcz2Eb+jzioV/4G+3jPmqamM21MTV3U/MyGcuIIVBsm3oGAAAAAAAAAEFk27NcpgYgkPLz85WWluZ1GEaIRqOqrq5WNBr1OhRfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7qXmZjMEWBNK8efOUmZnpdRhGaGxs1PLly9XY2Oh1KL5ka31Mztvk3ADAJlzPYRv6POKhX/gb7eM+apqYzbUxNXdT8zIZy4ghUGybegYAAAAAAAAAQWTbs1xmtgAAAAAAAAAAACSBwRYE0sKFCzVixAivwzBCXV2dbrzxRtXV1Xkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGYAsCad26dWpubvY6DCMMGzZMs2fP1rBhw7wOxZdsrY/JeZucGwDYhOs5bEOfRzz0C3+jfdxHTROzuTam5m5qXibjnS0IFNvW+QMAAAAAAACAILLtWS4zWxBIjOq6p7m5mZlCPbC1PibnbXJuAGATruewDX0e8dAv/I32cR81Tczm2piau6l5mYzBFgAAAAAAAAAAgCSwjBgCxbapZwAAAAAAAAAQRLY9y2VmCwJp3LhxGjJkiNdhGKG9vV1bt25Ve3u716H4kq31MTlvk3MDAJtwPYdt6POIh37hb7SP+6hpYjbXxtTcTc3LZAy2IJB4Z4t7WP+xZ7bWx+S8Tc4NAGzC9Ry2oc8jHvqFv9E+7qOmidlcG1NzNzUvk7GMGALFtqlnAAAAAAAAABBEtj3LZWYLAAAAAAAAAABAEhhsQSAtXrxYOTk5XodhhNraWl1//fWqra31OhRfsrU+Judtcm4AYBOu57ANfR7x0C/8jfZxHzVNzObamJq7qXmZjGXEECgHpp7l5+drx44dKi8vN3rq2WCIRqPasWOHjjzySKWlpXkdju/YWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd2EvGxbRozBFgSKbf8DBQAAAAAAAIAgsu1ZLsuIIZDmzJmj4cOHex2GEZqamrRmzRo1NTV5HYov2Vofk/M2OTcAsAnXc9iGPo946Bf+Rvu4j5omZnNtTM3d1LxMxmALAqm2tladnZ1eh2GElJQU5eTkKCWFy0E8ttbH5LxNzg0AbML1HLahzyMe+oW/0T7uo6aJ2VwbU3M3NS+TsYwYAsW2qWcAAAAAAAAAEES2PctlWAyBNHHiRKWnp3sdhhHa2tpUXl6utrY2r0PxJVvrY3LeJucGADbheg7b0OcRD/3C32gf91HTxGyujam5m5qXyRhsQSAVFRUpHA57HYYRIpGISktLFYlEvA7Fl2ytj8l5m5wbANiE6zlsQ59HPPQLf6N93EdNE7O5NqbmbmpeJmMZMQSKbVPPAAAAAAAAACCIbHuWy8wWBFI4HFYoFPI6DCM4jqNIJCLGXeOztT4m521ybgBgE67nsA19HvHQL/yN9nEfNU3M5tqYmrupeZmMwRYE0sKFCzVixAivwzBCXV2dbrrpJtXV1Xkdii/ZWh+T8zY5NwCwCddz2IY+j3joF/5G+7iPmiZmc21Mzd3UvEzGMmIIlANTz3Jzc7V7925t2bLF6Klng6Gjo0O7d+/WmDFjlJqa6nU4vmNrfUzO2+TcAMAmXM9hG/o84qFf+Bvt4z5qmpjNtTE1dxPysm0ZsTSvAwD6orW1VZK0a9cuSdI777zjZThG2bt3r9ch+Jqt9TE5b5NzAwCbcD2HbejziId+4W+0j/uoaWI218bU3IOc1yef3R54tmssBwiQdevWOZKcefPmOZmZmY4kfpL8yczMpJ7Ux6q8Tc6NH3744cemH67n/Nj2Q5/nJ94P/cLfP7QPNaU25E5e3X/WrVvn9ePlAcUyYgiURx99VLNnz/Y6DAAAAAAAAABAH6xbt07f+c53vA5jwKR4HQAAAAAAAAAAAECQMbMFgVJbW6uysrLY75/5zGeUkZHhYUQAAAAAAAAAgE9qbW3V+++/H/t9ypQpysnJ8S6gAcZgCwAAAAAAAAAAQBJYRgwAAAAAAAAAACAJDLYAAAAAAAAAAAAkgcEWAAAAAAAAAACAJDDYAgAAAAAAAAAAkAQGWwAAAAAAAAAAAJLAYAsAAAAAAAAAAEASGGwBAAAAAAAAAABIAoMtAABY7LnnntPZZ5+tI444QuFwWGPHjtWVV16pDz74wOvQAAAAAAAAtGvXLq1YsUILFizQ1772NWVmZioUCik/P9/r0LoJOY7jeB0EAAAYfP/3//5fXXHFFers7FRubq4+/elP66233lJDQ4NGjhypf/zjHzrhhBO8DhMAAAAAAFjstttu03//938f9O9HH320qqurBz+gBJjZAgCAhSorKzV//nx1dnbq17/+tT744AO99NJL2rlzp84991zV1NTorLPOUmtrq9ehAgAAAAAAi2VnZ+uMM87Qtddeq4ceeki33Xab1yHFxcwWAAAs9L3vfU9//vOfde655+rBBx/s9l1LS4vGjRun9957T3fddZfmz5/vUZQAAAAAAADdrV27Vueccw4zWwAAgLeamppUUlIiSfrP//zPg74fOnSoLr74YknSmjVrBjU2AAAAAACAIGKwBQCAAdDR0aGKigr96U9/0g9+8AN9+ctfVnp6ukKhkEKhkIqKivp97La2Nj3wwAOaMWOGjj76aIXDYX3qU5/SV7/6Vd16663as2dPj/u/+uqrikQiSk9P16RJk+JucyC+559/Xp2dnf2OFQAAAAAA+Jufn2EESZrXAQAAYJp169bp/PPPV3Nzs+vH3rp1q+bOnavy8vJu/75r1y7t2rVLzz33nG655Rbdd999mjFjRtxjvPXWW5Kko446Sunp6XG3+dznPidJikQi2r59u8aOHeteEgAAAAAAwBf8/gwjSJjZAgCAy2prawfkJmXHjh0644wzYjcpoVBIU6ZM0SWXXKJvfetbGjp0qCTp448/1uzZs/XMM8/EPc6+ffskSaNHj054rlGjRsU+19TUuJQBAAAAAADwE78/wwgSZrYAADBAjjjiCJ188smxn7/97W9aunRpv49XXFysnTt3SpKOPvpoPfroozrhhBNi3+/Zs0dz5szRhg0b1N7ernPOOUfvvvuucnJyuh2npaVFkhLOapGkcDgc+zwQN10AAAAAAMA//PoMI0gYbAEAwGXTpk3T9u3bddRRR3X79+eff77fx3ziiSe0adMmSfsHSf7617+qoKCg2zaHHXaYHn30UU2YMEH//ve/tW/fPt1888361a9+1W27A3890tbWlvB8kUgk9nnYsGH9jhsAAAAAAPiX359hBAnLiAEA4LLc3NyDblKS9fvf/z72+aKLLjroJuWA4cOH6xe/+EXs93vuuUfRaLTbNiNHjpQk7d27N+H5Diw11nV7AAAAAABgFr8/wwgSBlsAAPC5xsZGbdiwIfb7xRdf3OP2Z599tjIzMyXtHzTZuHFjt++PPfZYSdJ7772XcHbL22+/LWn/cmJHH310v2MHAAAAAAD2cPsZRpAw2AIAgM89++yzam1tlbT/rz5OPvnkHrcPh8M69dRTY79/8iVzJ554osLhsNra2rR58+a4xygrK5MknXLKKUpJ4XYBAAAAAAAcmtvPMIKEpycAAPjcG2+8EftcUFCgtLRDv3LtpJNOiru/tP9mZ8aMGZK6T+09oKWlRffdd58k6bzzzutXzAAAAAAAwD5uP8MIEgZbAADwuTfffDP2ubdLenVdb3Xr1q0HfX/dddcpNTVVDz30kH7zm9+os7NT0v7pvvPmzdN7772no48+WpdeemmS0QMAAAAAAFsMxDOMoGCwBQAAn+v6IvsjjjiiV/vk5ubGPnd92f0BJ5xwgn7/+98rJSVFP/rRj/TpT39aX/7yl5WXl6eHHnpIOTk5euSRR5SRkZF8AgAAAAAAwAoD8Qzj/fff12GHHRb7ueSSS+L++1VXXZVk9MlhsAUAAJ9rbGyMfR46dGiv9um6Xdf9u7riiiu0adMmzZ49Wx0dHaqsrNTIkSM1f/58VVZW6sQTT0wucAAAAAAAYJWBeIbR0dGhvXv3xn4aGhokSZ2dnXH/3SuHXjANAAB4KhKJxD6np6f3ap+uM1JaWloSbvfVr35VjzzySP+DAwAAAAAA+P8G4hlGfn6+HMdJPrgBxswWAAB8LhwOxz63tbX1ap/W1tbY597+JQkAAAAAAEAybH6GwWALAAA+l5mZGfvc0yyVrrpu13V/AAAAAACAgWLzMwwGWwAA8LnRo0fHPn/00Ue92mfXrl2xz6NGjXI9JgAAAAAAgE+y+RkGgy0AAPjcscceG/u8ffv2Xu3z3nvvxT6PGzfO9ZgAAAAAAAA+yeZnGAy2AADgc8cdd1zsc2VlpaLR6CH3eeWVV+LuDwAAAAAAMFBsfobBYAsAAD731a9+VRkZGZKkpqYmvfTSSz1u39raqs2bN8d+P/300wc0PgAAAAAAAMnuZxgMtgAA4HOZmZk644wzYr8vW7asx+3/8pe/qKGhQdL+tU4LCwsHMjwAAAAAAABJdj/DYLAFAIAAuPLKK2Ofly1bptdeey3uds3Nzbruuutiv19++eVKS0sb8PgAAAAAAAAke59hMNgCAEAAzJw5U6eddpqk/VNsZ82apYqKim7b7N27V7Nnz9Y777wjaf9fhFx77bWDHisAAAAAALCXrc8wQo7jOF4HAQCAaWbMmKGdO3d2+7ddu3bpo48+kiQNHz5cn/vc5w7a74knnlBeXl7cY+7YsUOnnHKKPvzwQ0lSKBTSlClT9NnPfla7d+/W008/rebmZklSWlqa1q9f323qLgAAAAAAwCfxDMMdDLYAADAA8vPztX379j7vt23bNuXn5yf8fuvWrZo7d67Ky8sTbjNmzBjdd999mjlzZp/PDwAAAAAA7MIzDHcEdwE0AAAsNG7cOD3//PNas2aNVq9erddee00fffSRcnJydMwxx+i73/2uLr74Yh122GFehwoAAAAAACxm2zMMZrYAAAAAAAAAAAAkIcXrAAAAAAAAAAAAAIKMwRYAAAAAAAAAAIAkMNgCAAAAAAAAAACQBAZbAAAAAAAAAAAAksBgCwAAAAAAAAAAQBIYbAEAAAAAAAAAAEgCgy0AAAAAAAAAAABJYLAFAAAAAAAAAAAgCQy2AAAAAAAAAAAAJIHBFgAAAAAAAAAAgCQw2AIAAAAAAAAAAJAEBlsAAAAAAAAAAACSwGALAAAAAAAAAABAEhhsAQAAAAAAAAAASAKDLQAAAAAAAAAAAElgsAUAAAAAAAAAACAJDLYAAAAAAAAAAAAkgcEWAAAAAAAAAACAJDDYAgAAAAAAAAAAkAQGWwAAAAAAAAAAAJLAYAsAAAAAAAAAAEASGGwBAAAAAAAAAABIAoMtAAAAAAAAAAAASWCwBQAAAAAAAAAAIAkMtgAAAACAZXbs2KHMzEyFQiFdffXVcbdZvHixQqGQQqGQFi9ePLgBeuS1115TamqqQqGQlixZ4nU4AAAACBAGWwAAAABLFBUVxR6e9/Vn3rx5XocPF/34xz9WU1OTsrKy9LOf/czrcHrlxz/+caw/5ufny3Gcfh1n3759ysjIiB1r2bJlse+OP/54XXjhhZKkX/3qV3r//ffdCB0AAAAWYLAFAAAAACzywgsv6MEHH5Qk/ed//qfGjBnjcUS9c9FFF8U+b9++XWVlZf06zpo1a9TW1iZJGj58uL73ve91+/6nP/2pUlNT1dzcrOuuu67/AQMAAMAqaV4HAAAAAGDwnXzyyTrllFN6vf2kSZMGMBoMpp/+9KeSpIyMDC1YsMDbYPqgoKBAJ554ol599VVJ0v3336+ioqI+H+f++++PfT777LOVmZnZ7fvPfe5zOvvss/XQQw/pgQce0MKFC3XssccmFTsAAADMx2ALAAAAYKEZM2ZY8x4O/I+XX35ZTz/9tCTpe9/7no444giPI+qbiy66KDbY8uc//1m///3vNXTo0F7v/9Zbb+n555/vdrx4fvCDH+ihhx5SR0eHbr31Vv3xj39MLnAAAAAYj2XEAAAAAMASt912W+zzZZdd5l0g/VRcXKwhQ4ZIkurr67Vu3bo+7d91VstRRx2lr3/963G3Kyoq0uc+9zlJ0ooVK7Rnz57+BQwAAABrMNgCAAAAABaoq6vT2rVrJUm5ubkqLCz0OKK+GzNmjKZPnx77vevgyaE4jqMVK1bEfv/+97+vUCiUcPtzzjlHkhSJRLR69ep+RAsAAACbMNgCAAAAoN/y8/MVCoUUCoVUXV0tSdqxY4d+9rOf6YQTTlBOTo6GDx+ucePG6aqrrtL27dv7dPz29nY98MADOvfcc3XMMccoKytLw4cP19ixYzV37lw98sgjchynx2OUlpbGYuz6jo8nnnhCc+fO1ec//3llZmYqFAp1m/lxQEtLi377299q8uTJOuywwzR06FB99rOf1dy5c7Vhw4Yea3HAd77zndh3N9xwQ6/z//nPfx7b77vf/W6v94vnL3/5iyKRiCTp29/+tlJS3PvPwS1btuhTn/pULNZvfetbamlpibvthg0bNH/+fB1//PEaNWqUMjIylJeXpzPPPFO/+93vEu53QNelv5566int2rWrVzGWlZV1638XXnhhj9ufddZZsc9dB2kAAACAeHhnCwAAAADXrFu3TvPmzVNdXV23f3/zzTf15ptv6k9/+pMefvhhzZw585DHKi0t1WWXXaZ33333oO+qq6tVXV2tNWvWaNKkSVq7dq0+/elP9yrGuro6XXzxxXrkkUcOuW1lZaXOOuusg2L497//rX//+99as2aNrrjiCt1xxx09Huc//uM/9Nhjj0mS7rvvPv3kJz855Lk7Ozu1bNmy2O/JLvv117/+Nfb59NNPT+pYXW3cuFHf/va3Y21+4YUX6k9/+pPS0rr/5+b777+vCy+8UKWlpQcd48MPP9SHH36ov//977rhhhu0Zs0anXbaaXHPN2vWLI0aNUr79u1TR0eHVq1apR/+8IeHjLPrLJhTTz1VX/jCF3rc/ktf+pJGjBihuro6vfjii/r44491+OGHH/I8AAAAsBODLQAAAABc8fTTT2v+/Pnq6OjQUUcdpVNPPVXZ2dnatm2bSktLFY1G1dLSonPPPVdVVVUaO3ZswmM9/PDDOv/889Xe3i5JGjp0qCZNmqT8/HylpKTorbfe0nPPPadoNKrNmzfr1FNP1YsvvnjIF747jqMLLrhAjz/+uEKhkL785S/ri1/8ohzHUVVVVbdlpd555x2dccYZ2r17d+zfCgoKNHHiRKWkpKi8vFxbtmzRPffco6ysrB7PO336dH3mM5/R+++/r7ffflsbN2485DJeTz31lN577z1J0pFHHqlp06b1uH1POjs7u83CSTSQ0VePPvqo5syZE5sx88Mf/lC33nrrQctzvfHGGzrjjDP04YcfSpJCoZBOOukkffGLX9TQoUP1wQcfaOPGjWpoaNDOnTv1jW98Q08++WTcd6qkp6dr7ty5+v3vfy9p/yDKoQZbWlpaYkuoSd1nxySSkpKir371q3ryySflOI6efvppFRcXH3I/AAAA2InBFgAAAACu+K//+i+Fw2HdfffdOv/887s9cH/ttdd05pln6oMPPlBzc7N++ctf6t577417nNdee00XXXSR2tvbFQqF9KMf/Ug//elPlZOT0227f//737rooov0z3/+U++//74uvvhiPfHEEz3G+OyzzyoajaqgoEArV65UQUFBt+9bW1sl7R+UufTSS2MDLaNHj9bKlSt15plndtv+mWee0dy5c/XrX/869uL2eFJTU3XJJZfo+uuvlyT96U9/OuRgy5/+9KfY54svvjipZb+2bt2q+vp6SdJhhx2mvLy8fh+ra3xXXHGFOjo6JEk33HCDFi5ceNB2TU1NOvvss2MDLdOnT9cdd9yhz372s922q6+v18KFC3XXXXeptbVV559/vt544w2NGDHioGNedNFFscGWLVu2qLKy8qC27OqRRx5RQ0ODJCkjI0PnnXder3KcOHGinnzySUnSCy+8wGALAAAAEmKwBQAAALDQE088oT179vR6+1/84hcaNWpUj9u0tbVp3bp1cWdgHH/88brnnns0a9YsSftnrvzhD384aKkpSbr66qtj7+349a9/rf/+7/+Oe75jjjlG69ev1ymnnKLXX39dTz75pJ5//nl95StfSRhjNBpVbm6unnnmGR122GEHfZ+RkSFJ+tvf/qaNGzdK2j/D4dFHH9XkyZMP2v70009XSUmJJk2apLa2toTnlaRLL71Uv/zlL9XZ2am1a9fqjjvuUHZ2dtxt9+7dq0cffVTS/lkgl1xySY/HPpSKiorY52OPPTapY0nSjTfeGFsKLTU1VXfffXfCZc5+85vf6I033pC0/z0oa9eujTtwlJ2drTvvvFPNzc1avny5PvzwQ91999269tprD9r25JNP1nHHHRc77v33369bbrklYbxdlxD7zne+c9DAXSLHHXdc7POWLVt6tQ8AAADsxGALAAAAYKEXX3xRL774Yq+3//GPf3zIwZZZs2b1uNTVjBkzlJubq127dqmxsVFvvPHGQbMRtmzZomeeeUaSdOKJJ2rBggU9nnP48OH62c9+prlz50qSVq5c2eNgiyRdd911cQdauuo6q2TOnDlxB1oO+PKXv6wLL7xQ9913X4/H/MxnPqNp06bpiSeeUHNzs1avXq0rrrgi7rYPPPBAbPBm6tSpys/P7/HYh7Jt27bY5yOPPLLfx3EcRz/60Y/029/+VtL+wanVq1d3e5l8V+3t7frd734X2/buu+8+5AydX/3qV7r//vvlOI5WrlwZd7BF2j+75cBMmlWrVunGG29UamrqQdt9+OGHevrpp7vt11td3wNUXV3d6/0AAABgn/7PQwcAAACALs4555wevw+FQjrhhBNiv8d7eN11GbC5c+ce9O6PeLq+7P2f//znIbfvzRJSZWVlsc8XXHDBIbfvzTaSdPnll8c+dx3Q+aSu3yWaMdIXH330Uezz6NGj+3WMaDSqiy66KDbQkp2drfXr1yccaJGkl156SR9//LEk6YwzzujVC+bz8vI0btw4SVJVVZXq6uribnfBBRfEBm527tzZbUClq5UrV8aWOsvNzT1oKbiedB2U27VrV6/3AwAAgH2Y2QIAAABY6Oc//7kWL17s6jF7emfGAV0f9B94h0hXzz33XOzzP/7xD23fvv2Qx3QcJ/b5/fff73HbsWPHHnKGzgcffBB7V4ukQ86UkfYvaxUKhbrFEs+sWbOUl5ennTt36sUXX4z7rpEXXnhBVVVVkvY/7J89e/Yhz38oTU1Nsc/Dhg3r8/7Nzc36zne+ExsMO/zww/Xkk0/qpJNO6nG/ru25Y8cO/dd//VevzldbWytpf9vu2LEj7ntbPv3pT2vq1Kn6+9//Lmn/bKB4AyldlxA7//zz485+SaRrrSKRiDo7O5N6dw4AAADMxWALAAAAAFfEeyD+SV1fIt/e3n7Q9zt37ox9PvBi8r6oqanp8fsxY8Yc8hhdB1qGDRt2yMEZScrKytKIESNigwSJpKam6pJLLtH/+T//R9L+GSy33XZbt226zmr5/ve/r/T09EOevy8ONSAUz29/+1tFo1FJ+5dD27Bhgz7/+c8fcr+u7VlRUdHt3TG91VObXnTRRbHBlkceeUSNjY3KzMyMff/qq6+qsrKy2/Z90Z9aAQAAwE78SQ4AAAAAV/Rmya9DSbRkVG8dWC4qkaFDhx7yGI2NjbHPfZkF0vUhf08uu+yy2OyIFStWxN7NIu2fQbJmzZpu27ph+PDhsc8tLS193r/rINm+ffv04Ycf9mq/ZNtTUmyQJ56zzjpL2dnZkvbXbu3atd2+7zqr5cQTT+zV7KuuutYqHA4zqwUAAAAJcacIAAAAwDe6Dgr85S9/keM4ff5JVtdBk+bm5l7v13Wprp4cffTR+sY3viFJ2rt3r9atWxf77uGHH44tr3bqqafqi1/8Yq/P35Pc3NzY5z179vR5/wULFuhb3/qWpP15zpgxQxs3bjzkfl3b8+qrr+5XexYVFSU8/tChQ7u9K+iBBx6IfY5Go1q9enXs977OapG6z3LqWkMAAADgkxhsAQAAAOAbRxxxROyzVy8k7/pS9Obm5kMuTSbtnw1zqCXEurr88stjn7suG9b1s1uzWqT976o5YMeOHX3ePz09XWvXrj1owGXTpk097jcY7dl1EKW0tDT23p6//e1v+uijjyTtn5lTXFzc52N/8MEHsc/5+fnJBQoAAACjMdgCAAAAwDe6voz+X//6lycxHHnkkd0GXJ5//vlD7vPSSy/1aVbNt7/97dhMiaefflrvvfee3nrrrdjgRWZmps4999w+Rp7YhAkTYp/ffPPNfh3jwIDLrFmzJO0fcJk+fXqPAy5d2/PZZ58dkHegfO1rX9MxxxwjSers7NSKFSskdV9CbPr06b16X88nvfHGG7HPJ5xwQpKRAgAAwGQMtgAAAADwjQMP8qX9y4gdmJkw2KZMmRL7vHLlykNuf+ABf2+lpaXp4osvlrR/gOC+++7TvffeG/t+zpw5vX4HTG8ce+yxGjFihKT9S5d1nbHRF+np6frzn//cbcClpxkukydPVk5OjqT9M2r++te/9uu8PQmFQrrwwgtjvz/wwAOqq6vTY489Fvu3/iwhJklbtmyJfT7llFP6HyQAAACMx2ALAAAAAN845ZRTYu/oaGlp0fe///1uL5DvSVtbW6+W/OqNSy65JPZ51apV2rx5c8JtX3nlFS1fvrzP57jssssUCoUkSffdd1+3Y7i5hJgkpaSk6PTTT4/9/s9//rPfxzow4DJz5kxJ+5dQSzTgkpGRoQULFsR+v/LKK/s00NPbwbYLL7wwVss33nhD/+t//S9FIhFJ0qhRo7oN4vVWZ2ennn32WUn7B3SmTp3a52MAAADAHgy2AAAAAPCVO+64Izar46mnnlJhYWGPS3m99dZb+uUvf6n8/HzXlh6bPn26vva1r0na/9D9W9/6lp5++umDtistLdWMGTPU0dGh9PT0Pp3jmGOO0RlnnCFJ2r59e+ydJgUFBd2W33LLgfetSNIzzzyT1LHS09P1l7/8pVcDLj/60Y90/PHHS9r/DpQvf/nLevjhh9XZ2Rn32Hv27NEf/vAHnXTSSbrlllt6Fc/YsWN12mmnxX7/wx/+EPs8d+7cPreNJL388suqq6uTJJ188sk6/PDD+3wMAAAA2CPN6wAAAAAADL4nnnhCe/bs6fX2w4YN08033zyAEf2P8ePHa/Xq1TrvvPPU3Nys559/XpMmTdJnP/tZnXTSSRo1apQikYg+/vhjVVRU9HtJrJ6EQiHde++9OvXUU7V3717t2bNH3/jGN3TCCSdo4sSJkvYvMVVeXi5J+vGPf6yHH35Y27dvl7R/JklvXH755QcN4lx66aWu5dHVd7/7XV155ZWKRCJ67LHHdNddd/U6zngODLh897vfVUlJSWzA5cknn4wNVEn73z/z2GOPaerUqdq2bZt27dqlc889V4cddpgmTZqk3NxcOY6jffv26fXXX9fbb78dG4jpOhvnUC666CJt3Lgx7r/3xyOPPBL7fP755/frGAAAALAHgy0AAACAhV588UW9+OKLvd5+xIgRgzbYIu1/d8uzzz6rSy+9VC+//LIk6d1339W7776bcJ/8/HwdeeSRrsXw+c9/Xhs2bNBZZ52lbdu2Sdo/wNL1PR7S/gGTX/3qV1q1alXs37Kzs3t1jtmzZ+vwww/Xxx9/LGn/slvf//73XcqguxEjRuh73/ueVqxYoV27dmnjxo2xJdv668CSYmeffXZswGX69OkHDbgcc8wxeumllzR//nytXbtWjuNoz549evzxxxMeOycnRwUFBb2O5ZxzztFVV12l5ubm2L8dd9xxOvnkk/uV29q1ayVJ4XBYxcXF/ToGAAAA7MEyYgAAAAB86YQTTtBLL72kv/3tb/rBD36gCRMm6LDDDlNaWpqGDx+u/Px8nXnmmbruuuv0r3/9S//+979js07cjKGqqkq//vWvNWnSJI0aNUrhcFhjx47Veeedp6efflr33HOPhgwZEntfTEpKSq8HW4YMGdLtfSJnnXWWRo0a5WoOXXV9f8of//hHV46ZkZFx0Dtcpk+fftB7YUaNGqWHHnpIFRUVWrRokb761a/qU5/6lNLT0xUOh5Wbm6uvfe1ruvrqq/XYY4/pww8/7NOslKysLJ111lnd/q2/s1rKysr09ttvS9o/q+Wwww7r13EAAABgj5DjOI7XQQAAAABAkL399tv6whe+IEkaN26c3njjjV7t5ziOPvvZz8Zmzjz99NOx97gMlG9+85t66qmnlJGRoerqauXm5g7o+YLovPPO00MPPaTU1FRVVVVp3LhxXocEAAAAn2NmCwAAAAAk6cEHH4x97suyVf/4xz9iAy3HHHNMn95R0l+//OUvJUmtra267bbbBvx8QfPuu+/qz3/+syTpggsuYKAFAAAAvcJgCwAAAAAkYdu2bbr11ltjv/fl/R6333577PMVV1yhUCjkamzxfOUrX9F5550nSbrzzju1e/fuAT9nkCxZskQdHR0aNmyYfvGLX3gdDgAAAAKCwRYAAAAASOCb3/ym1q9fr2g0Gvf7kpISfe1rX1NdXZ0kaeLEifrmN7/Zq2M/9thjevTRRyXtf9/IZZdd5k7QvXDrrbdq+PDhamhoiM10gfT666/r/vvvlyQtWrRIRx11lMcRAQAAICh4ZwsAAAAAJHBgpsnIkSN10kkn6TOf+YzS09O1Z88evfDCC9qxY0ds26ysLP3rX/9SQUFB3GO98847+t3vfqeOjg699dZbeuqpp3TgP8d+8Ytf6Gc/+9nAJwQAAABgQDDYAgAAAAAJ9HZZr89//vN6+OGHdcIJJyTcprS0VF//+tcP+vfJkyfrmWeeUXp6er/jBAAAAOCtNK8DAAAAAAC/qqqq0rp16/Tss89q+/bt2rNnj/bt26dwOKwxY8bolFNO0axZszRnzhylpqb2+rjp6ekaO3aszjvvPC1cuJCBFgAAACDgmNkCAAAAAAAAAACQhBSvAwAAAAAAAAAAAAgyBlsAAAAAAAAAAACSwGALAAAAAAAAAABAEhhsAQAAAAAAAAAASAKDLQAAAAAAAAAAAElgsAUAAAAAAAAAACAJDLYAAAAAAAAAAAAkgcEWAAAAAAAAAACAJDDYAgAAAAAAAAAAkAQGWwAAAAAAAAAAAJLAYAsAAAAAAAAAAEASGGwBAAAAAAAAAABIAoMtAAAAAAAAAAAASWCwBQAAAAAAAAAAIAkMtgAAAAAAAAAAACSBwRYAAAAAAAAAAIAkMNgCAAAAAAAAAACQBAZbAAAAAAAAAAAAksBgCwAAAAAAAAAAQBIYbAEAAAAAAAAAAEgCgy0AAAAAAAAAAABJYLAFAAAAAAAAAAAgCQy2AAAAAAAAAAAAJIHBFgAAAAAAAAAAgCQw2AIAAAAAAAAAAJAEBlsAAAAAAAAAAACSwGALAAAAAAAAAABAEhhsAQAAAAAAAAAASAKDLQAAAAAAAAAAAEn4f54dxBE6o6xDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, lagspec_3_30.spectrum * 1e4, yerr=lagspec_3_30.spectrum_error * 1e4, fmt='o', label=\"3-30 Hz\", color=\"k\")\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time Lag ($10^{-4}$ s)\")\n", + "plt.xlim([0.5, 10])\n", + "plt.semilogx()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "30e4fea7", + "metadata": { + "id": "30e4fea7", + "outputId": "c7722841-f708-42a7-fef9-06e94b3eb031" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:54<00:00, 1.37s/it]\n" + ] + } + ], + "source": [ + "lagspec_01_1 = LagSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, ref_band=ref_band)\n", + "energies = lagspec_01_1.energy\n", + "energies_err = np.diff(lagspec_01_1.energy_intervals, axis=1).flatten() / 2\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e36acc05", + "metadata": { + "id": "e36acc05", + "outputId": "143c4c06-c8f2-4f82-8871-3da7415c6017" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Time lag (s)')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmsAAAR9CAYAAAC5ynPaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3xU1b3///fkTm6EiBBRJICXtKBGq4ieA4La1qMWaa0FbSvU9iv12G+xp/XSfvtVaL9tlXpa8zu9gKdVUCzisS1Ia6lWBGk1xVtUgrGIhEsh4ZLL5D6Zmf37I82UQBIyZHbW7LVfz8cjj0cmM7P3+rzXmlU7i712wHEcRwAAAAAAAAAAADAixXQDAAAAAAAAAAAA/IzFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADCIxRoAAAAAAAAAAACDWKwBAAAAAAAAAAAwiMUaAAAAAAAAAAAAg1isAQAAAAAAAAAAMIjFGgAAAAAAAAAAAINYrAEAAAAAAAAAADAozXQDAJs1NDRo06ZNscdjx45VZmamwRYBAAAAAAAAAI7W0dGhPXv2xB5fdtllKigoGLLzs1gDuGjTpk2aPXu26WYAAAAAAAAAAOKwZs0aXXfddUN2PrZBAwAAAAAAAAAAMIjFGgAAAAAAAAAAAIPYBg1w0dixY3s8XrNmjc444wxDrTGjtbVVGzdu1IwZM5SdnW26OZ5AZv7IwIYabagBAExiHoWXMF79gX42g9zjR2ZdbM/BlvpsqcMP3n///R63tDj6u123sVgDuCgzM7PH4zPOOEOTJk0y1BozQqGQ0tPT9eEPf1gZGRmmm+MJZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljr86Ojvdt0WcBzHGdIzAj5SWVmpyZMnxx5v3brVd4s1AAAAAAAAAJDsTH+Xyz1rALiqra1N69evV1tbm+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPxRoAropGo2poaFA0GjXdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3sQ0a4CLTl84BAAAAAAAAAI7P9He5XFkDwFXhcFjV1dUKh8Omm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPhZrALiqublZK1asUHNzs+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPbdAAF5m+dA4AAAAAAAAAcHymv8vlyhoAAAAAAAAAAACDWKwB4KrGxkbdf//9amxsNN0UzyAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6252BLfbbUAfexWAPAVdnZ2Zo9e7ays7NNN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfdyzBnCR6X0OAQAAAAAA/MpxHEWjUfH1J2CfQCCglJQUBQKBhB3T9He5aUN2JgC+1Nraqueee04f+9jH+BcEA0Rm/sjAhhptqAEATGIehZcwXv2BfjaD3OPXV2aO46i1tVXNzc1qaWlRR0eHwVa6LxqNKhgMKj8/Xykp9m2gZEt9ttSRrLKzs5Wfn6+8vDylpXl7ucPbrQcAAAAAAADge52dndq7d6/a29tNNwXAEGptbVVra6tqa2t12mmnKTc313STThjboAEuMn3pHAAAAAAAgO3a29u1Z88ehcNh000BYFAgEBjUgo3p73K57gqAqzo7O1VVVaXOzk7TTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQevyMzcxxHu3fv9uVCje335LGlPlvq8ALHcbR3717PzgdsgwbAVa2trVqzZo1uu+02DR8+3HRzPIHM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucfvyMxSUlIUiUR6PJ+enq7hw4crJydH6enpCb0BeTIJh8M6fPiwTjrpJM/fq6M3ttRnSx3JxnEctbW1qa6uTm1tbT3+3tTUpBEjRhhs3YlhGzTARaYvnQMAAAAAALDZnj171NzcHHucmZmp008/nS/FAZ9wHEe7du3qsWCTnZ2tcePGxX0s09/lsg0aAAAAAAAAAM9xHEctLS09/lZYWMhCDeAjgUBAhYWFPf7W2trqyW3nWKwB4KqGhgYtXrxYDQ0NppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX7dmdXX1x/zhWx2drahVg29cDisffv2efb+HMdjS3221JHMsrKyjvlbNBo10JLBYRs0wEWmL51LBuFwWHv37tVpp53Gv2wZIDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr/uzIqKirRz584ez5155pm+ydFxHIVCIWVkZFh5Xx5b6rOljmQWDoe1ffv2Hn87kbnA9He5/pi5ABiTlpam4uJi083wFDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr/uzPx+pUIgEFBmZqbpZrjGlvpsqQPuYxs0AK5qaWnRk08+ecwesugbmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPX3dmra2tpptiVCQSUV1dnSKRiOmmuMKW+mypA+5jsQaAq1JSUlRQUKCUFKabgSIzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6BQECpqanWbq1lS3221AH3cc8awEWm9zkEAAAAAACwVaLuUwHA22y5Z42/l58BuC4UCqmiokKhUMh0UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuzzs5O0005IXvqWlV8z+97/dlTN/Ct3aLRqFpbWxWNRl1srTm21GdLHXAfizUAXNXe3q6NGzeqvb3ddFM8g8z8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/MujiOo6amJtm6cZIt9dlSB9zHNmiAi0xfOgcAAAAAAGArL26DVlUT1MryXVpZvrvX5z8yboQuHl+o60pP1dlFeUPcOsCb2AYNAAbAcRy1t7fzrwfiQGb+yMCGGm2oAQBMYh6FlzBe/YF+NoPc4+fFzDZU1eozS1/RVQ9t7nOhRpJe31Wvn23coY8/9JI+s/QVvVh1oM/XOo6jaDTqqRz6EwqF9Pjjj+vqq6/WuHHjlJWVpVNOOUWXXnqpHnzwQR06dMiV80YiEb399tv65S9/qdtuu00XXnihMjIyFAgEFAgENGPGjEEdf6D9tHPnTj311FO66667NHPmTOXn58faEAgEBtWG/syfPz92jvnz58f13uXLl8feW1xc7Er7/ITFGgCuamxs1AMPPKDGxkbTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQev+7MgsGg6aYcV31LSF9d9aZuWf6atlTXxfXeLdV1+sLyV7XwyTdV33LsPY0ikYhqamoUiUQS1VxjqqqqdPHFF+vmm2/WH/7wB+3evVsdHR2qqanRK6+8ojvvvFOTJk3Ss88+m9DzrlmzRvn5+TrvvPP0pS99SUuXLtXrr7+e0PshHa+f9u/fr5EjR2rChAmaM2eOfvjDH2rjxo1qampKWBvgDSzWAHBVXl6eFixYoLw8Lt0dKDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr/uzHJzc003pV/v7g/qqrKX9Mxb+wZ1nLUV+3RV2Uuqqum5OJWamqqTTz5Zqampgzq+aXv37tUVV1yhiooKSVIgENBll12mL3zhC7rmmms0bNgwSdKBAwc0e/ZsbdiwIWHnbmhoUGtra8KO15vj9VNHR4cOHz7sahvgDcm7gSMAK6SmpqqoqMh0MzyFzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuzcDhsuil9end/UHMfLldjW2Ku0KgNdmjOsnKtXjBVJUX5kroWNdLT0xNyfJNuuukm7dvXtaA1btw4rV27Vuedd17s+UOHDmnu3Ll64YUX1NnZqRtuuEE7duxQQUFBwtowevRoXXTRRbGfP/7xjyorK0vIsQfaT7m5ubrgggs0ZcoUXXTRRWpvb9e8efMS0gZ4A1fWAHBVc3Ozli9frubmZtNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7sxaWlpMN6VX9S0hzX90S8IWaro1tnVq3iNbYluiRSIRHTp0yNPboD377LPavHmzJCkjI0Pr1q2LLdR01zdixAitXbtWEyZMkCTV1dVpyZIlCTn/VVddpV27dqmmpkbr1q3Tvffeq3/7t39L6ELQ8fpp9OjR2rp1qxobG7Vp0yb98Ic/1Gc+8xmdfvrpCWsDvIHFGgCuSktLU3FxsdLSuJBvoMjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/ySPbP7nqlUbbDDlWPXBju0aF2lpK4rNjIzM129+bzbfvrTn8Z+nzdvns4555zY4yPry8nJ0Xe+853Yc8uWLUvIlVVFRUWuL4ocr5+GDRumSZMmKSWFr+r9jhEAwFVZWVmaMWOGsrKyTDfFM8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/y6M8vMzDTdlGNsqKod9D1qjmdtxT5tqKpVSkqK8vLyPPslf3Nzs1544YXY4y984Qs9nj+6vuuvvz52n6K6ujq99NJLQ9fYQfB6Pw1GdXW1AoHACf1UV1ebbv6Q898IATCkOjo6VF5ero4Od/5FiY3IzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujMLhUKmm3KMpRs/GJrzbPpA0WhUzc3NikajQ3LORHv55Zdj4z4nJ0cXXXRRj+ePri8rK0uXXHJJ7PkNGzYMXWMHwev9hKGTnNcKArBGKBRSRUWFJk2alJT/4iUZkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVnVlJSYropPVTVBLWlum5IzrVlZ52qaoIamRbSsGHDhuScifbuu+/Gfj/nnHOO2dbOcRy1trb2qO+CCy7Q888/f8z7k1lvdfhFfn6+br/99gG99u23347dv0iSp7f3O1Es1gBwVV5enr785S+bboankJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVnloh7lgzWnrrW2O8ry3cN6blXbdmrW6dPUGpq6pCeN1Hee++92O/jxo075vnU1FSNGjWqx9+OvL9MVVWVe41LoN7q8IvCwkL95Cc/Oe7r9uzZoylTpsQe33jjjb2OCduxWAPAVdFoVMFgUPn5+b7cm/NEkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVnlp2dbbopmrbkRWPnfrx8lx4v36WdP7jak1chHD58OPb76NGjj3necRxFIhGlpqbG6isqKoo9X1c3NFcxDVZvdSSrv/71r/rKV74y4NcnYsGspaVFs2bNUk1NjSTp4osv1iOPPDLo43oRizUAXBUMBlVWVqaFCxeqoKDAdHM8gcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x687s3i+VLZZJBI5ZgsxL2hubo793tsWYZFIRAcOHNCoUaNi9R35uiPfn8x6qyNZVVVVDekVS47j6POf/7wqKiokSWPHjtWaNWuUlZU1ZG1IJizXA3BVfn6+Fi5cqPz8fNNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7szy8vJMNyUpeHUbtPb29tjvGRkZxzzfvX3YkfUdeV+ntrY2dxuYIL3VgS7/5//8H/32t7+VJOXk5OiZZ57pcfWU37BYA8BVKSkpKigo4FLuOJCZPzKwoUYbagAAk5hH4SWMV3+gn80g9/iRWU/JvrVWX468eiIUCh3zfCAQUFpaWo/6Ojo6Yr/3djVOMuqtjmQ1b948OY4z4J9HH330hM+1cuVK/eAHP5DUldHKlStVWlqaoEq8iRkNgKuampq0dOlSNTU1mW6KZ5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/h1Z+aVbbDcFolETDfhhOTm5sZ+7+0qme7tw46s78jXHfn+ZFBXV6evfOUrx/zcfvvt+uIXv6jbb79dK1eudO38oXBEb+9t6PUnFE6uMVJeXq4vfelLscff//73NXv2bHMNShLJvUkeAM/LyMhQaWlpr5ezondk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNaTF67Y6M1JJ50U+722tvaY5wOBgLKzs3vU130TekkqLCx0t4FxCgaD+ulPf9rva1paWvS5z31uiFqUnHbv3q3Zs2fHrpK6+eabdc899xhuVXJgsQaAqzIzMzV16lTTzfAUMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQev+7MwuGw6aZo810zY7/fsbpCr++qH7JzXzhuhH48p9Sz28GdffbZsd937dp1zPMpKSnHXD2ze/fu2O8lJSXuNQ6uaGlp0axZs2KLc//yL/+ihx9+2HCrkoc3P8kAPKO9vV0bN27scdM49I/M/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7Mj719iytjC7NjPxeOH9kqPKeMLVZAeUTQaHdLzJsqHPvSh2O/vvPPOMYtv0WhUTU1NPep74403en1/MiguLu71vi6RSETBYFCRSETLly833UxjHMfR5z73Ob311luSpHHjxuk3v/mNMjMzDbcsebBYA8BV4XBY1dXVSfGvXbyCzPyRgQ012lADAJjEPAovYbz6A/1sBrnHL1kzm1U6ZkjPd+25Rero6JDjOEN63kS59NJLY1/Ut7S06LXXXuvxvOM4Perr6OhQeXl57PnLL7986Bo7CEfX4Vff+ta3tGbNGklSXl6e1q1bp1GjRpltVJJhsQaAq3JzczV//vyku+lbMiMzf2RgQ4021AAAJjGPwksYr/5AP5tB7vHrziwnJ8d0U3ooKcrXlOKhubpmyvhCfXhMgUaOHKnU1NQhOWei5ebm6oorrog9Pvqqk9TU1B71/eY3v1FTU5OkrvvVTJ8+fcjaOhhH1+FHjz/+uO6//35JXdvbrVq1Suecc47hViUfFmsAuCoSiaimpkaRSMR0UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHL5kz+/KMCUNyntsumyjHcdTZ2enpKzb+/d//Pfb78uXLVVlZGXt8ZH2tra269957Y8/deuutSkvzxu3YbeinwXj55Zf1v/7X/4o9XrJkia655hqDLUpeLNYAcFVTU5OWLVsW+5cPOD4y80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7syam5tNN+UYl5eM1qzz3N0O7brSMZpZMkqRSEQHDx5MykWrgbrmmms0bdo0SV3bnF177bV6++23JSlW34EDBzR79my9//77krquqrn77rv7PGZ1dbUCgUDsx/R9YmzopxO1e/duffKTn4zdX+qWW27R17/+dcOtSl7eWH4E4FnDhw/X3Xffzc3C4kBm/sjAhhptqAEATGIehZcwXv2BfjaD3OPXnVlqaqoOHDhgujnHWDxrkv6687Bqgx0JP/bo/Ewt+sQkSV3baxUVFSkQCCT8PEPpV7/6laZMmaL9+/erurpapaWluuyyyzRhwgQdPHhQL7zwglpbWyVJaWlpeuqpp1RQUJCw81999dXat29fj7/V1NTEfn/ttddUWlp6zPueffZZjRlz/IW5gfTTvffeq2eeeabH345ejOytDd/5znc0a9as47bBlEcffTT2GU1NTVVaWpq+8pWvDOi93/nOd1RYODTbCiYLFmsAuCoQCCgrK8t0MzyFzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuzcDhsuim9GpGToRW3TNGcZeVqbOtM2HGHD0vXilumaEROhiTFrhzxutNOO00bNmzQjTfeqIqKCjmOo40bN2rjxo09XnfyySfr0Ucf7XGfm0TYtm2bdu3a1efzLS0teuutt475eygUGtDxB9JPu3fv7vUcR+rt+bq6ugG1wZQjt36LRCJ6+OGHB/zeb3zjG75brGEbNACuCgaDeuihhxQMBk03xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujNL5q3jSorytXrBVI3OT8wVU6PzM7V6wVSVFOXH/haJRFRbW2vF9lolJSX661//qhUrVuiqq67S2LFjlZGRoZEjR+riiy/WkiVLtG3bNk/e68SmfoK7Ao5f72wEDIHKykpNnjw59njr1q2aNGmSwRYNvVAopG3btunDH/6wMjIyTDfHE8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/y6Mzv77LNVXV3d47kzzzwzqW48X98S0qJ1lVpbse/4L+7DdaVjtOgTk2JX1HSLRqNqb29XVlaWUlLs+zf5ttQ3VHWEwhFV1fS+gFlSlKeMtFTXzm1aOBzW9u3be/ztROYC09/lslgDuMj0BxwAAAAAAMBWifqCdihsqKrV0k0faMvOgW9bNWV8oW67bKJmloxysWWwBYs13l+s8e6SJABPaGtr0/r169XW1ma6KZ5BZv7IwIYabagBAExiHoWXMF79gX42g9zj151Ze3u76aYM2OUlo/XUgkv0xzum6/NTx/X5ugvHjdDtMyfqj3dM11MLLul3oSYajaqxsVHRaNSNJhtnS3221AH3Jd8yMwCrRKNRNTQ08D9IcSAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vHzcmZnF+Xp1ukT9Hh57ze0//GcUo0tzB7QsRzHUSQSka0bJ9lSny11wH1sgwa4yPSlcwAAAAAAALby0jZoR9pT16ppS17s9bnNd80c8GINcCS2QfP+NmjJPXMB8LxwOKy9e/fqtNNOS/r/WEoWZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9ft2ZFRUVmW7KCRlbmK3q+68Z9HEcx1EoFFJGRoYCgUACWpZcbKnPljrgPu5ZA8BVzc3NWrFihZqbm003xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujNraWkx3RSjIpGIDh8+rEgkYroprrClPlvqgPvYBs0SoVBIq1ev1qpVq1RZWana2lqNGDFC48eP16c+9SnNnz9fI0eOTOg5I5GIKisr9eqrr+q1117Tq6++qrfffludnZ2SpMsuu0wbN2484eO/8MILWrFihcrLy/X3v/9dmZmZOu200/Txj39cX/ziF1VSUhL3Md9991098sgj+uMf/6i9e/eqo6NDp556qi655BLdfPPNuuKKK064vb0xfekcAAAAAACArby6DRrgBrZBYxs0JIGqqirdeOONqqio6PH3mpoa1dTU6JVXXtEPf/hDPfroo7r66qsTcs41a9bos5/9rFpbWxNyvCMFg0HdeuutWr16dY+/t7a2qr6+Xu+8847Kysq0ePFiffOb3xzwcb/3ve9p8eLFscWkbtu3b9f27dv12GOP6cYbb9SyZcuUl5eXkFoAAAAAAAAAADgetkHzuL179+qKK66ILdQEAgFddtlluuWWW/SJT3xCw4YNkyQdOHBAs2fP1oYNGxJy3oaGBlcWajo7O/XJT36yx0LN5MmTdfPNN+szn/mMTjnllNjrvvWtb+k73/nOgI5777336tvf/nZsoeaUU07RZz7zGd188809VkdXrVqlT3/60wqHwwmsyt8aGxt1//33q7Gx0XRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7NgMGi6KUaFw2Ht37/f2u+xbKnPljrgPhZrPO6mm27Svn37JEnjxo3Tm2++qY0bN+qXv/ylnnnmGe3evTu2tVdnZ6duuOEGNTQ0JOz8o0eP1rXXXqvFixfr2Wef1cKFCwd1vO9+97uxBaWsrCytWrVK77zzjlasWKHVq1erurpad955Z+z1ixYt0qZNm/o95gsvvKDvfve7scd33nmnqqurtXr1aq1YsUJbt27Vr371K2VlZUmSnnvuOX3/+98fVB34p+zsbM2ePVvZ2dmmm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9ft2Zdf8jZb9KSUlRQUGBUlLs/IrXlvpsqQPu4541Hvbss8/qmmuukSRlZGTotdde0znnnHPM61paWnTuuefqgw8+kCR985vfHPRiRE1NjUKhkE4//fQef1+0aJEWL14sKf571hw4cEATJkyI3Rxu6dKlWrBgQa+vnTt3buzqm0suuUQvv/xyn8edMmWKXn311dj7Vq1a1evrli5dqttuu02SlJeXpw8++GDQ9/kxvc8hAAAAAACArbhnDfBP3LPG+/esYTnPw37605/Gfp83b16vCzWSlJOT02O7sGXLlg36sruioqJjFmoGa8WKFbGFmrPOOku33nprn69dsmRJbDX6lVde0Ztvvtnr61599dXYQk1KSoqWLFnS5zEXLFigM888U5LU1NSkxx9//ITqQE+tra1as2aNK9vm2YrM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7O2tjbTTTEqEomovr5ekUjEdFNcYUt9ttQB97FY41HNzc164YUXYo+/8IUv9Pv666+/Xrm5uZKkuro6vfTSS66270SsWbMm9vv8+fMVCAT6fO3pp5+uyy+/PPb4t7/97XGPeeWVV2rs2LF9HjMQCGjevHnHPSYAAAAAAAAAAInEYo1Hvfzyy+ro6JDUdeXMRRdd1O/rs7KydMkll8Qed98XJlm0t7ervLw89njGjBnHfc/MmTNjv/dVz4svvnjCxzwyY5w49t6NH5n5IwMbarShBgAwiXkUXsJ49Qf62Qxyjx/3rOmSmpqqESNGKDXVzu2tbKnPljrgPhZrPOrdd9+N/X7OOecMaP+9Cy64oNf3J4P33ntP0WhUUtcVLueff/5x3zOQeo78+5Gv78uR541EIvrb3/523Pegf52dnaqqqlJnZ6fppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPH5l1iUajamtri32nZhtb6rOlDriPxRqPeu+992K/jxs3bkDvOfIeM1VVVQlv02AcWc+oUaOUlZV13PccWU9dXZ0OHjzY4/kDBw6ooaEh9nggOQ0bNkwnn3xy7HGy5eRF7L0bPzLzRwY21GhDDQBgEvMovITx6g/0sxnkHj/uWdMlGo2qoaHB2kUAW+qzpQ647/iXYyApHT58OPb76NGjB/SeoqKi2O91dXUJb9NgDLYeqaumIxdajjxmvMftXvhJtpy8aPjw4brnnntMN8NTyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/LozC4fDqq2tNd0cY9LS0nTKKaeYboZrbKnPljrgPq6s8ajm5ubY7wPdn/PI1x35/mQw2HqOPkZvj03mlJWVpdzcXEld26s1NDTIcRxJUjAYVCgUkiS1tbWppaVFkhQOh3tcGdTY2Bi7vLe1tTX2L246OzvV2NgYe11DQ4PC4bAkqaWlJfavTEKhkILBoCTJcRw1NDQoEonE6mxvb5ckdXR0qKmpSdKxK/9NTU2x+/i0t7fH8qEmaqImaqImaqImaqImaqImaqImaqImajJRU/exuo/f/Z5oNBp7znGcWNu6a+x+3ZHHiEajx7yuO69IJNLvsU29jpqoqft10WhUgX+8PyApRU7seJFIxJM1xfO6I3Poft2JznumsFjjUd3/QyZJGRkZA3pPZmZm7Pdku0x0sPVIx9Z05DFP9LiJymnq1Kn69Kc/LUk6ePCgysrKYv+R8cgjj2jbtm2SpE2bNmndunWSpL1796qsrCx2jJ///OfasWOHJOm5557Tc889J0nasWOHfv7zn8deV1ZWpr1790qS1q1bp02bNkmStm3bpkceeURS138AlZWVxa4gevrpp1VeXi5JevPNN/XEE09I6prAysrKYv9R9cQTT+jNN9+UJJWXl+vpp58+bk3PPfecHnzwQTU0NFhTk9v99Itf/EKLFy/WgQMHrKkp3n7qbkP38Wyo6eh+euyxx3T//feroaHBszX5oZ+oiZqoiZrcrKmqqkplZWWx/2NoQ0029hM1ddXU0NCgsrKy2FbRNtRkYz8NtqaGhgbdf//9euyxx6ypyQv99Jvf/EZLlixRQ0ODNTW53U9PPvmkFi9erF27dqm2tjb2ZW44HI7V19TUFFtMCoVCOnDgQKytBw8ejL0uGAzGztPR0dFjm/0DBw7EvthtbGyMLSa1t7fr0KFDkrq+ND5w4EDsS+n6+vrYF8Ctra2xnV8ikYgOHDgQ+xL58OHDsYWvlpYW1dfXx2o4cOBA7MvlQ4cOxb7j6q2mffv2KRwOW1XTkf1UU1OjcDjs+ZqGop+aGhs1LNC1sJoVCCs/0HWeVDmqP3zI1X4yPfbq6+tj88CRNZ3ovGeMA0+6+uqrHUmOJOfuu+8e0HueffbZ2Htyc3Ndadd9990XO8dll1024PctWbIk9r6LL754QO9pbW2NvUeS89prr/V4fsuWLT2eb2trG9Bxp0yZEnvPgw8+OOAaerN161ZHkpOVleXk5uY6W7dudcLhsFNfX+9Eo1HHcRynsbHR6ejoiNXU3NzsOI7jdHZ2OvX19bFjNTQ0OKFQyHEcx2lpaXFaWlocx3GcUCjkNDQ0xF5XX1/vdHZ2Oo7jOM3NzU5ra6vjOI7T0dHhNDY2Oo7jONFo1Kmvr3fC4bDjOI7T1NQUy6e9vd0JBoOO4zhOJBJx6uvrnUgk4jiO4wSDQae9vd1xHMdpa2tzmpqaHMdx+q0pGAw627Ztczo7O62pye1+Onz4sLNz504nFApZU1O8/dTR0eG88847PcaR12s6up/q6uqc9957z+ns7PRsTX7oJ2qiJmqiJjdramtrc955551Y+2yoycZ+oqaG2HveeeedWPtsqMnGfhpsTZ2dnc57773n1NXVWVOTF/qpoaHBqaqqcjo7O62pye1+qq+vd3bu3Om0tLQ477zzjrNt2zZn27ZtTmVlZaymSCQSO080Go21rbvG7mOHw+HY6yKRyDGv684rHA7H3tPbsU28LhQKOe3t7bH32FDT0W1ta2tzotGop2saqn5q6wg5b++pd97aU++8vafeeWdPnfPWPx63tne42k+mx157e7tTWVnpbNu2zdm6dWvsv7Hjnfe6v8vt/tm6daszlAKO4ziC58yZM0dPPfWUJOmrX/3qgFb+fvOb3+j666+X1HVflv379ye8XYsWLdLixYslSZdddpk2btw4oPf9/Oc/17//+79Lks4991y99dZbx31PXV2dTjrppNjjqqoqnX322bHH7777rj784Q/3eP2IESOOe9xzzz1X77zzjiRp6dKlWrBgwYBq6E1lZaUmT54ce7x161ZNmjTphI8HAAAAAACALuFwWNu3b+/xtzPPPFNpaUl+m+76XVLZub0/t/BtacS4oW0PrBAKR1RV09TrcyVFecpISx3iFg2dRM0Fpr/LZRs0jzpykWKgN1KrqamJ/V5YWJjwNg3GYOuRjq3pyGOe6HGTLScvamlp0ZNPPhm7ZBHHR2b+yMCGGm2oAQBMYh6FlzBe/YF+NoPc49edWfdWTn4ViURUV1fX4749NrGlPlvqgPtYrPGoI68g2bVr14Des3v37tjvJSUlCW/TYBxZz4EDB46530xvjqynsLBQJ598co/nR40apYKCgtjjgeTU3t7eYy/FZMvJi1JSUlRQUKCUFKabgSIzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6BQECpqakKBALHf7EH2VKfLXXAff6e0TzsQx/6UOz3d955J3bTpf688cYbvb4/GZx99tmx/4F1HEcVFRXHfc9A6jny7903ohvoMVNTU3XWWWcd9z3o37Bhw3TVVVdp2LBhppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX7dmWVlZZluSvxqK6W/9HM7g9/8L+lPi6Xabcc9VEpKioYPH27topUt9dlSB9zHCPGoSy+9VJmZmZK6Lv187bXX+n19R0eHysvLY48vv/xyV9sXr6ysLE2dOjX2eCD3utm0aVPs977qmTlz5gkf88iMceJCoZAqKioUCoVMN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Loz6+zsNN2UgfvbH6VH/k36+aXSa7/s+3V7/ir9+UfSzy/pev3fnuvzpdFoVK2trYpGoy40eGgcOnRIa9eu1f/5P/9Hs2bN0qRJkzRixAilp6crOztbY8aM0cc+9jH94Ac/0N///ndX2tDW1qaNGzfqBz/4gW666SZ95CMf0ahRo5SVlaXMzEyNGjVKl156qb7+9a8P6B+DHy0ajeqNN97QN77xDZ177rkqLCxUTk6OzjrrLM2bN08vvPBCwmta+9SvdN7YETpv7Aj92yV93B+pD9XV1QoEArGf6urqhLcPvWOxxqNyc3N1xRVXxB4vX76839f/5je/UVNT1w2mCgsLNX36dDebd0Jmz54d+/149ezZs6fHRHbke/s65p/+9Cft3bu33+Meed6+jon4tLe3a+PGjQPa2g5dyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/DyVWWud9PQXpV99Rtr9cnzv3f2y9KsbpF9/qes4R3EcR01NTXIcJ0GNHXrz58/X7Nmz9f3vf1/r1q3Ttm3b1NDQoHA4rLa2Nu3fv1/PP/+8vvWtb2nixIlavHhxwhenfvrTn2rmzJn61re+pVWrVumNN97QwYMH1dHRoVAopIMHD+qVV17Rj370I11wwQWaO3eu6uqO7Y++fO9739PUqVP1n//5n3rnnXdUX1+v1tZWbd++XY899piuvPJK3XTTTbHvbuFfAcfLn2af+/3vf69rr71WkpSZmanXX39dkyZNOuZ1ra2tOu+88/T+++9Lku655x794Ac/cKVNixYt0uLFiyVJl1122YCuZul24MABTZgwIXZDvf/+7//Wl770pV5fe9NNN2nVqlWSpEsuuUQvv9z3/9hNmTJFr776qiTps5/9rFauXNnr6x5++GEtWLBAkpSXl6cPPvhAI0eOHHD7e1NZWanJkyfHHm/durXXPgIAAAAAAEB8wuGwtm/f3uNvZ555ptLS0gy16Cg1W6UnPi017R/8sfJOkT73a2m0Xd8rXXvttfr9738vSRo5cqQ+9KEPady4ccrNzVVra6vef/99bdmypcctIG6++WatWLEiYW148MEHdeedd0qSsrOz9aEPfUgTJ05UQUGBwuGw9u7dq/LycgWDwdh7zjnnHP35z39Wfn5+v8e+99579d3vfjf2+JRTTtG0adOUlZWl119/XZWVlbHnPvaxj+n3v//9CY/fUDiiqpquBZ+1T/1K9379dknSmNPGaufOncpISx3QcaqrqzV+/PjY4507d6q4uPiE2jRUEjUXmP4ulytrPOyaa67RtGnTJHVtc3bttdfq7bff7vGaw4cPa/bs2bGFmsLCQt199929Hu/oS9yOd3VLoo0aNUr/8R//EXv81a9+VU899VSP13R2duqee+6JLdRIOu7C05HPP/HEE7rnnnuOuUz2qaee0h133BF7/I1vfGPQCzXo4jiO2tvbPf2vPIYamfkjAxtqtKEGADCJeRRewnj1B/rZDHKPnycyq9kqLb8mMQs1UtdxHr266543/+A4jqLRaHLncBwzZszQ0qVLtX37dh08eFAvvfSSHn/8cf385z/X8uXLtXnzZu3Zs0c33nhj7D2PPfaYnn766YS14cwzz9T3vvc9vfbaa2psbNRrr72m1atXa9myZfrlL3+pP/7xj6qtrdUPfvCD2H1n3nnnHX3rW9/q97gvvPBCj4Wab3zjG6qurtbq1au1YsUKbd26Vb/61a9i91567rnn9P3vfz9hdcF7WKzxuF/96lc65ZRTJHUttpSWlmrmzJn60pe+pOuuu06nn366nn/+eUlSWlqannrqKRUUFCTk3FdffbVKS0t7/CxdujT2/GuvvXbM86Wlpdq3b1+fx/y///f/xu4/09bWpjlz5ujcc8/V/PnzNXfuXI0bN04PPPBA7PWLFy/WZZdd1m87r7jiCn3729+OPX7ggQdUXFysuXPnav78+TrnnHM0Z84ctbW1SZI++tGPHneyxcA1NjbqgQceUGNjo+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco9fd2ZHXumQVFrruq6oaW9I7HHbG6SV18e2RItEIqqpqVEkEknseYbQN77xDS1YsEBnnHHGMc911zdy5Eg98cQTPe5ZvWzZsoS14brrrtO3vvUtfeQjH+nzSoysrCzdc889uu+++2J/e+yxx/rdiu+b3/xmj3P84Ac/UEZGRo/X3Hjjjfrxj38ce/zggw/q0KFDJ1oKPI5t0CxQVVWlG2+8URUVFX2+5uSTT9ajjz6qa665ps/XHH2J26OPPqr58+f3+fri4mLt2rUr7vYe79K5xsZG3XrrrcdcVXOk9PR0LVq0aMCLKo7j6Hvf+56+853v9Hvzublz52rZsmXHvYRxoExfOpcMIpGIDh48qJNPPlmpqQO73NLvyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/LozGzFihD744IMezyXFNmhPf1HamrgrP45xzg3S9b+Q4zgKh8NKS0tTIBBw73yGHF3fypUr9fnPf16SdNJJJxlZ1Ni7d6/Gjh0be/zOO+/0+O6v26uvvqopU6ZIklJSUrR9+3aNHz++135yHEdnn312bBuvH/3oR/ra174Wd9vYBo1t0JAESkpK9Ne//lUrVqzQVVddpbFjxyojI0OjRo3S1KlTtWTJEm3btq3fhZpkMnz4cK1evVrPP/+8Pve5z2nixInKzs7W8OHDNXnyZH3961/XW2+9FdfVL4FAQN/+9rf11ltv6T/+4z80efJkDR8+XNnZ2Zo4caI+97nP6fnnn9eqVasStlCDLqmpqSoqKuI/OONAZv7IwIYabagBAExiHoWXMF79gX42g9zjl9SZ/e2P7i7USNI7/yP97Y8KBAJKT0+3cqFG0jH1nXzyybHnmpqajLTpyDb01441a9bEfr/yyis1YcKEPvspEAho3rx5sce//e1vB99QlxUXF/e4ncZAf4b6thtekyR328JgZWRk6Oabb9bNN998wscoLi6Oa4/L6urqEz7XQFx55ZW68sorE3rMD33oQ/rP//zPhB4T/WtubtbTTz+tT3/608rNzTXdHE8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7x687sk5/8pOmmHOvPDw3Nef5SpsjEK1VfX68RI0Yk58LVIEUikR71bdu2LfacqSs9jmxDf+148cUXY79Pnz5dhw4d6refZs6cGfv95ZdfVkdHhzIzMwffYHgKizUAXJWWlqbi4mLzlyB7CJn5IwMbarShBgAwiXkUXsJ49Qf62Qxyj1/SZlZbKe1+eWjOtesvChx8V5k546y+siYzM1OBQED79u3Tgw8+GHvu05/+9JC3JxQK6Z577ok9vvTSS2P3Ej/au+++G/v9ggsuiNXRl/PPPz/2eyQS0d/+9jedc845CWi1O+bNm6fDhw8f93WHDx/Wk08+GXts61hNlCSb0QDYJisrSzNmzDDdDE8hM39kYEONNtQAACYxj8JLGK/+QD+bQe7x684sHA6bbopUf8T9nF/95ZCeOuX1R5V36VellLwhPe9QaW9v1549e/SHP/xBS5Ys0YEDByR17Zxz5KKJm0KhkPbv36/NmzfrP//zP2P3DM/Ly9N//dd/9fqeAwcOqKGhIfZ4/Pjxysvrv4+GDRumk08+WQcPHpTUdY/yZF6sWbx48XFf09nZqY997GOxxyUlJZo9e7aLrfI+FmsAuKqjo0Nvvvmmzj//fC7fHCAy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7szOPfdc002Rygy24dVfSK/+QtF765WS4v1bk//5z3/WtGnT+n3N1VdfrSeeeOK4ix+DkZaWpkgk0ufzZ511ln7961/3uBH9kY6+4uTkk09Wc3OzsrOz++2noqKi2GJNXV3dCbS8d40NDVr41a8qNWVgV7Uk6n5At99+uzZu3ChJKiws1Lp16zR8+PCEHNtWLNYAcFUoFFJFRYUmTZrEf3QOEJn5IwMbarShBgAwiXkUXsJ49Qf62Qxyj193ZiUlJaabkhTiuQe1V40YMUI/+9nPNHfuXGNtSE1N1d13363Fixf3uwVfc3Nzj8dZWVlqaWnRsGHD+j3+kc8ffYzBaGlu0tKf/yxhxxuIhx56SP/93/8tSUpPT9evf/1rnXHGGUPaBi8KOH74NAOGVFZW9lhl37p1qyZNmmSwRQAAAAAAAHYIh8Pavn17j7+deeaZQ3svm0VJcKXAokbTLUiIDz74QD/60Y8kdS1ANTU16b333tMbb7wR2/Ju5syZWrp0qc466yzX2rFw4cLYlTUtLS3as2ePtmzZErvi5IwzztB//dd/6aqrrur1/Zs3b9b06dNjjyORyICufJo+fbo2b94sSfrud7+rb3/723G1OxSOqKqmq41rn/qV7v367XG9vy87d+5UcXHxgF+/fv16XXvttbEM//u//1tf+tKXEtKWviRqLjD9XS5X1gBwVTQaVTAYVH5+vhWX5A4FMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQev+7MsrOzTTclKTiOY8WN2ydMmKCf/OQnsceO4ygSiai2tlbf/va3tXz5cr344ouaOnWqNm7c6No2eGVlZcf8raWlRT/96U9177336v3339c111yjRx55RPPmzTvmtVlZWT0ed3R0KD09Xampqf32U0dHR+z3412FE48xp43Vzp07lZGWOqDXV1dXa/z48Sd0rm3btmnOnDmxhZqvfe1rri/U2IT/BQDgqmAwqLKyMgWDQdNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6/7swSdW8Nr+vv/ipeFolEdODAAY0ePVqPPvqovvrVr0qS6uvrNXfu3GPqrqur01e+8pV+f1auXHlCbcnJydFdd92lVatWSepaMPzyl7+sDz744JjX5ubm9njc3NysAwcOHLef2tra+jyGFxw+fFif+MQnYnPZ1VdfrQcffNBwq7yFbdAAF5m+dC4Z8C+E4kdm/sjAhhptqAEATGIehZcwXv2BfjaD3ON35JU1O3bs6PGcH7dBc+5rsOLKmqN1X1nTfUVKa2urTjnllNhiwLp163TttdfGXj+QK0LmzZun5cuXD6pdV155pV544QVJ0te//vVjFiS6F5i6bdu2TWeeeeZxr6wZNWqUDh48KEl66qmndMMNN8TVrr62QRvslTUD2Qats7NTH/3oR7Vp0yZJ0qRJk/TKK68oLy8vrhpOlC3boPG/AABclZKSooKCAv6DMw5k5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+SZXZwrf/+TP24qE999ip0sK3rVyokaRAIKC0tLRYfdnZ2br00ktjz//lL38x0q6PfvSj/bZh1KhRKigoiD3evXt3jzp6097eHluokaSSkpLENHaI3HbbbbGFmpEjR2rdunVDtlBjkySY0QDYrKmpSUuXLuXS5DiQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4dWfW3NxsuinSiHH//Bn3L0N66ujpl+pA5zDrt0E7sr4RI0bEfj98+HCP1xcXF8txnH5/BntVzfHa0O1DH/pQ7PfXX3/9uNugvfHGG7HfU1NTddZZZw26nUPlRz/6kX75y19KkjIyMvTb3/72hO9543cs1gBwVUZGhkpLS5WRkWG6KZ5BZv7IwIYabagBAExiHoWXMF79gX42g9zjl7SZnfPpIT7f9crOzrb6ypqj69u/f3/s98LCQhPNGlAbZs6cGft906ZNx+2n7qtSJOnSSy9VZmZmAlrqvmeffVZ33nln7PHDDz+sf/3XfzXYIm9jsQaAqzIzMzV16lTP/I9MMiAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vHrzizpFmtGT5JOv/T4r0uEcf+ilKLJys3NTY7t4FyQkpLSo77Dhw/rlVdeiT1/5NUrQ+l3v/vdcdswe/bs2O8vvPCCGhoa+u2nI6/4OfK9yayyslI33nijotGoJOmuu+7SvHnzDLfK2+z8JANIGu3t7dq4caPa29tNN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Loz6+joMN2UY/3rHUNznn+5Q9FoVE1NTbEvy72mrq6u3+ePrC8ajeorX/lKrM8zMzN17bXXDroNLS0tcX32fv7zn+u1116LPb7++ut7fd1FF12kiy66SFLXdm5f//rX++ynhx9+WH/7298kSXl5ebr55psH3B5TDh06pE984hMKBoOSpOuuu04/+MEPDLfK+1isAeCqcDis6upqhcNh003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHr+kzuysj0uTXd4O7ZwbpLM+Jsdx1NHRIcdx3D2fSx577DFddNFFeuyxx2Jf+h+pu7633npLV199tZ588snYc3feeadOOumkQbdh+/btOuOMM/TDH/5Qe/bs6fN1NTU1+trXvqbbb7899rdp06b1u2B05OLFU089pXvuuUednZ09XvPUU0/pjjvuiD3+xje+oZEjR55AJUMnFArpU5/6lHbu3ClJOvfcc7Vy5Uprr/AaSgHHq59mwAMqKys1efLk2OOtW7dq0qRJBlsEAAAAAABgh3A4rO3bt/f425lnnqm0tDRDLfqH1jrp55dKTfuP/9p45Z0i3faylG3mfi2J9NBDD+lrX/uaJCktLU0lJSU6++yzNWLECAUCAR0+fFhvv/223n///R7vu/766/Xkk08mpJ8rKip0/vnnxx4XFxdr8uTJGjlypDIzMxUMBlVVVaW3335bkUgk9rqzzz5bL774ok455ZR+j/9//+//1f/7f/8v9njMmDGaNm2asrKy9Prrr2vr1q2x5z760Y/q2WefPeG6QuGIqmqaJElrn/qV7v1618LSmNPGaufOncpISx3QcaqrqzV+/PjY4507d6q4uDj2eNOmTZoxY0bs8axZszR27NgBHfvzn/+8Lr744gG9Nh6JmgtMf5dreOYCYLtIJKKDBw/q5JNPVmrqwP5Hwe/IzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8ujMbMWKE6ab0LrtQ+tyvpUevltobEnfcrIKu4/5jocZxHIXDYaWlpfV78/pkdeR9msLhsLZu3dpj8eJoeXl5WrRokRYuXJiwz0p6erpSUlJiW5RVV1erurq6z9enpKToi1/8oh544IEBjb/vfOc7ysjI0He/+111dnZq3759Wr169TGvmzt3rpYtW2Z+oXEAjr7245lnnhnwey+88EJXFmtswbVJAFzV1NSkZcuWqampyXRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7Pm5mbTTenb6EnSF57tuhImEfJO6Tre6H/+K//uRasjr/jwkttuu03vvfeefvrTn+rmm2/WRz7yEZ188slKT09Xenq6TjrpJJWUlOimm27S8uXLtW/fPv3Hf/xHQhc1J02apJqaGj3xxBO6/fbbNW3aNJ166qnKyspSamqqCgoKNHHiRM2ePVs//OEPtXv3bj388MMDXigMBAL65je/qeeff1533HGHJk+erOHDhys7O1sTJ07U5z73OT3//PNatWqV8vPzE1YXvIlt0AAXmb50Lhl07y+amZnpyX/lYQKZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco9fd2apqanHbJGVFNugHam1TvrDXdI7/3PixzjnBunflhyz9ZnjOHIcR4FAwMqxY0t9Q1XHkdugHa2kKG/A26B5EdugAcAABAIBZWVlmW6Gp5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/h1ZxYOh0035fiyC6Xrf9G14PKXMmnXXwb+3nH/Iv3LHdJZH+v1aa8vYhyPLfXZUgfcxzZoAFwVDAb10EMPKRgMmm6KZ5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/h1Z+aprePO+njXNma3vSJd9KW+Xzd2qjTt612v+8KzfS7USF3boNXW1np2G7TjsaU+W+qA+7iyBoCrsrKyNGPGDP6VUBzIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8PJ3Z6A9Ll35VevUXvT//qYelEeMGdKhAIKC8vDxrr9qwpT5b6oD7WKwB4KqMjAyVlpaaboankJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVn5olt0FyUkpKi7Oxs081wjS312VIH3Mc2aABc1dbWpvXr16utrc10UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHrzuz9vZ20005MSPGSYsae/8Z4FU1khSNRtXY2KhoNOpiY82xpT5b6oD7WKwB4KpoNKqGhgb+BykOZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxXEcRSIROY5juimusKU+W+qA+wIOowRwTWVlpSZPnhx7vHXrVk2aNMlgiwAAAAAAAOwQDoe1ffv2Hn8788wzlZbGnR/gP6FwRFU1Tb0+V1KUp4y01CFu0dBJ1Fxg+rtcrqwB4KpwOKzq6mrf7yMbDzLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y6+I4jjo6Oqy9YsOW+mypA+5jsQaAq5qbm7VixQo1NzebbopnkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+HVn1tLSYropRkUiER0+fFiRSMR0U1xhS3221AH3sQ0a4CLTl84BAAAAAADYim3QgH9iGzS2QQMAAAAAAAAAAMAgsFgDwFWNjY26//771djYaLopnkFm/sjAhhptqAEATGIehZcwXv2BfjaD3OPXnVkwGDTdFKPC4bD2799v7b17bKnPljrgPhZrALgqOztbs2fPVnZ2tummeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco9ff5n56Y4PKSkpKigoUEqKnV/x2lKfLXUks94+94FAwEBLBocNHAG4Kj09XSUlJaab4Slk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+3Zn19gVtKBRSenq6gVYNvZSUFA0bNsx0M1xjS3221JHMOjs7j/mbFxfHvNdiAJ7S2tqqNWvWqLW11XRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucevO7O2tjZlZWX1eM5PW6NFIhHV19crEomYboorbKnPljqSWUtLS4/HmZmZnryyhsUaAAAAAAAAAJ6Ul5fX43EwGGThC/CRcDh8zD2/cnJyDLVmcAKOnzZyBIZYZWWlJk+eHHu8detWTZo0yWCLAAAAAAAA7BEKhbRjx44ef0tJSVF+fr7y8/OVnp7uye2QgHh1hiP624HmXp87a1Su0tNSh7hF7opGo2ptbVVdXZ06Ojp6PHf66aef0IKN6e9yuWcNAFd1dnZqx44dmjhxom/2jB0sMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQevyMzy8jIUF5enpqammLPR6NRNTQ0qKGhwVwjh4DjOHIcR4FAwJNbPh2PLfUNVR2O4yjSGe31uZ3NKZ7OMB5ZWVnKzs423YwTwrIyAFex9278yMwfGdhQow01AIBJzKPwEsarP9DPZpB7/I7ObMyYMcrNzTXcKjNsvw+KLfXZUkeyS0tL02mnnebZhSm2QQNcZPrSOQAAAAAAAD+IRqPat29fjytsAD8JhaOqqul9/JcU5Skjze7rNtLS0jR27FhlZWWd8DFMf5fLNmgAAAAAAAAAPC0lJUWnnXaaQqGQgsGgmpqa1N7ebrpZAFwUCASUk5OjgoIC5ebmevaKmm4s1gBwVUNDg8rKyrRw4UIVFBSYbo4nkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+PWXWUZGhkaOHKmRI0fKcRxFo1HZurFQY2Ojli1bpgULFmj48OGmm5NwttQ3VHX8vb5N33lqc6/PPfvVSTp1xDDXzm1CSkqK5+9ndDS2QQNcZPrSuWQQDoe1d+9enXbaaUpLY314IMjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrEtvOeypa9W0JS/2+vrNd83U2ELv3Hjdln4eqjps6ntTTH+X691RDsAT0tLSVFxcbLoZnkJm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+6z+65CAIxraWnRk08+qZaWFtNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/Mutiew621GdLHXAfizUAXJWSkqKCggKlpDDdDBSZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPe9YALjK9zyEAAAAAAAD8g/uW+Bd9P3imv8tlOQ+Aq0KhkCoqKhQKhUw3xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9LNYAcFV7e7s2btyo9vZ2003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB/boAEuMn3pHAAAAAAAAPyDrbD8i74fPNPf5XJlDQBXOY6j9vZ2sS48cGTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5k1sX2HGypz5Y64D4WawC4qrGxUQ888IAaGxtNN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfWyDBrjI9KVzySASiejgwYM6+eSTlZqaaro5nkBm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl16y8GmrbBs6eehqsOmvjfF9He5aUN2JgC+lJqaqqKiItPN8BQy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/Mutiew621GdLHXAf26ABcFVzc7OWL1+u5uZm003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB+LNQBclZaWpuLiYqWlcSHfQJGZPzKwoUYbagAAk5hH4SWMV3+gn80g9/iRWRfbc7ClPlvqgPu4Zw3gItP7HAIAAAAAAMA/TN+3xPT5/YzsB8/0d7lcWQPAVR0dHSovL1dHR4fppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPH5l1sT0HW+qzpQ64j8UaAK4KhUKqqKhQKBQy3RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8SOzLrbnYEt9ttQB97ENGuAi05fOAQAAAAAAwD9Mb4Vl+vx+RvaDZ/q7XK6sAeCqaDSqhoYGRaNR003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB+LNQBcFQwGVVZWpmAwaLopnkFm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+5jGzTARaYvnUsG0WhUwWBQ+fn5SklhfXggyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/MisS285mN4KK5Hnt6Wfh6oO031vA9Pf5aYN2ZkA+FJKSooKCgpMN8NTyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfd5dkgTgCU1NTVq6dKmamppMN8UzyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfSzWAHBVRkaGSktLlZGRYbopnkFm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+7jnjWAi0zvcwgAAAAAAAD/MH3fEtPn96uqmqBWlu/SyvLdvT7/kXEjdPH4Ql1XeqrOLsob4tZ5h+nvcrmyBoCr2tvbtXHjRrW3t5tuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT4369hQVavPLH1FVz20uc+FGkl6fVe9frZxhz7+0Ev6zNJX9GLVgYS3BYPHYg0AV4XDYVVXVyscDptuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT436qhvCemrq97ULctf05bqurjeu6W6Tl9Y/qoWPvmm6ltCCWsTBo9t0AAXmb50DgAAAAAAAP5hehsy0+f3g3f3BzX/0S2qDXYM+lij8zO14pYpKinKT0DLvM/0d7lcWQPAVZFIRDU1NYpEIqab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqS+Rdby7P6i5D5cnZKFGkmqDHZqzrFxVNcGEHA+Dw2INAFc1NTVp2bJlampqMt0UzyAzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6252BLfYmqo74lpPmPblFjW2eCWtalsa1T8x7ZwpZoSYBt0AAXmb50Lhk4jqOOjg5lZmYqEAiYbo4nkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZl95yML0NWSLPb0s/J6qOr656U8+8tS+BLevputIxKpt7vmvH9wLT3+VyZQ0AVwUCAWVlZXn6f1SHGpn5IwMbarShBgAwiXkUXsJ49Qf62Qxyjx+ZdbE9B1vqS0QdG6pqXV2okaS1Ffu0oarW1XOgfyzWAHBVMBjUQw89pGCQvS8Hisz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy31JaKOpRs/SGCL+jnPpqE5D3rHYg0AV2VlZWnGjBnKysoy3RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8SOzLrbnYEt9g62jqiaoLdV1CW5V77bsrNN7Nd6+R5CXpZluAAC7ZWRkqLS01HQzPIXM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucePzLrYnoMt9Z1oHXvqWiVJK8t3JbhF/VtZvku3Tp/g+v2NcCyurAHgqra2Nq1fv15tbW2mm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fsfLbE9dq4rv+X2vP91fgNvA9rFjS30nWse0JS9q2pIXtbJ8t0st693j5bs0bcmLQ3pOdGGxBoCrotGoGhoaFI1GTTfFM8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrIvtOdhSny11wH0Bx3Ec040AbFVZWanJkyfHHm/dulWTJk0y2CIAAAAAAAC77alr7fPKgM13zbR6eyfTtZs+v02K7/m90fNX33+N0fObYPq7XK6sAeCqcDis6upqhcNh003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcB+LNQBc1dzcrBUrVqi5udl0UzyDzPyRgQ012lADAJjEPAovYbz6A/1sBrnHj8y62J6DLfXZUgfcxzZogItMXzoHAAAAAADgN37eist07abPbxO2QRt6pr/L5coaAAAAAAAAAACSyOa7ZmrzXTP1kXEjhvS8F44boc13zRzSc6ILizUAXNXY2Kj7779fjY2NppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5k1sX2HGyp70TrGFuYrbGF2bp4fKFLLevdxRMKuQLKEBZrALgqOztbs2fPVnY2k/xAkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZF9tzsKW+wdYxq3RMglt0nPOdd+qQng//lGa6AQDslp6erpKSEtPN8BQy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/Mutiew621DfYOkqK8jWluFBbqusS2KreTRlfqLOL8lw/D3rHlTUAXNXa2qo1a9aotbXVdFM8g8z8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy31JaKOL8+YkMAW9e22yyYOyXnQO66sAQAAAAAAAJAwe+paNW3Ji70+t/mumdwPA4jT5SWjNeu8MXrmrX2uneO60jGaWTLKtePj+AKO4zimGwHYqrKyUpMnT4493rp1qyZNmmSwRQAAAAAAAO4yvVhj+vwmma7d9PltVt8S0lVlL6k22JHwY4/Oz9T6hdM1Iicj4cf2EtPf5bINGgBXdXZ2qqqqSp2dnaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqS9RdYzIydCKW6Zo+LD0BLWsy/Bh6VpxyxTfL9QkAxZrALjKlv1FhxKZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6ktkHSVF+Vq9YKpG52cmoGVdV9SsXjBVJUX5CTkeBodt0AAXmb50DgAAAAAAYKiZ3grL9PlNMl276fP7RX1LSIvWVWptxYnfw+a60jFa9IlJXFFzBNPf5aYN2ZkAAAAAAAAAAMCgjMjJUNnc83Vd6Rgt3fSBtuysG/B7p4wv1G2XTdTMklEuthAngm3QALiqoaFBixcvVkNDg+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6nOzjstLRuupBZfoj3dM1+enjuvzdReOG6HbZ07UH++YrqcWXMJCTZLiyhoArsrNzdW8efOUm5truimeQWb+yMCGGm2oAQBMYh6FlzBe/YF+NoPc40dmXWzPwZb6hqKOs4vydOv0CXq8fFevz/94Tilb0HkAizUAXJWWlqbi4mLTzfAUMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrYnsOttRnSx1wH9ugAXBVS0uLnnzySbW0tJhuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT5b6oD7WKwB4KqUlBQVFBQoJYXpZqDIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9bIMGwFXDhg3TVVddZboZnkJm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl1sz8GW+mypA+5jOQ+Aq0KhkCoqKhQKhUw3xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9LNYAcFV7e7s2btyo9vZ2003xDDLzRwY21GhDDQBgEvMovITx6g/0sxnkHj8y62J7DrbUZ0sdcF/AcRzHdCMAW1VWVmry5Mmxx1u3btWkSZMMtggAAAAAAMBde+paNW3Ji70+t/mumRpbmG31+U0yXbvp8/sZ2Q+e6e9yubIGgKscx1F7e7tYFx44MvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrYnsOttRnSx1wH4s1AFzV2NioBx54QI2Njaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+FmsAuCovL08LFixQXl6e6aZ4Bpn5IwMbarShBgAwiXkUXsJ49Qf62Qxyjx+ZdbE9B1vqs6UOuC/NdAMA2C01NVVFRUWmm+EpZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPq6sAeCq5uZmLV++XM3Nzaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+FmsAuCotLU3FxcVKS+NCvoEiM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3MUIAuCorK0szZsww3QxPITN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8SOzLrbnYEt9ttQB93FlDQBXdXR0qLy8XB0dHaab4hlk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+FmssEQqF9Pjjj+vqq6/WuHHjlJWVpVNOOUWXXnqpHnzwQR06dCjpzx0IBE74Z/78+X0et7i4OO7j7d27N0HpIBQKqaKiQqFQyHRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucePzLrYnoMt9dlSB9wXcBzHMd0IDE5VVZVuvPFGVVRU9PmaUaNG6dFHH9XVV1+dtOcOBAIn3I67775b999/f6/PFRcXa9euXXEdb8+ePTrttNNOuD3dKisrNXny5NjjrVu3atKkSYM+LgAAAAAAQLLaU9eqaUte7PW5zXfN1NjCbKvPb5Lp2k2f38/IfvBMf5fLPWs8bu/evbriiiu0b98+SV0LHtOnT9fEiRN18OBB/elPf1JbW5sOHDig2bNna/369br88suT8ty33377gM9dWVmpjRs3xh5/7nOfG9D7br75ZuXl5R33dbm5uQNuC/oXjUYVDAaVn5+vlBQu5hsIMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrYnsOttRnSx1wH4s1HnfTTTfFFkvGjRuntWvX6rzzzos9f+jQIc2dO1cvvPCCOjs7dcMNN2jHjh0qKChIunP/5Cc/GfC5b7jhhtjvF1xwQY8Vz/4sXrxYxcXFAz4PBi8YDKqsrEwLFy5MyLjzAzLzRwY21GhDDQBgEvMovITx6l3x/Etr+tkMco8fmXWxPQdb6rOlDriPpTwPe/bZZ7V582ZJUkZGhtatW9djsUSSRo4cqbVr12rChAmSpLq6Oi1ZssTT566vr9e6detij+fNmzfoY8I9+fn5WrhwofLz8003xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9mkHv8yKyL7TnYUp8tdcB9LNZ42E9/+tPY7/PmzdM555zT6+tycnL0ne98J/Z42bJlCofDnj33k08+qY6ODklSenq6brrppkEdD+5KSUlRQUEBl3nGgcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy312VIH3McI8ajm5ma98MILscdf+MIX+n399ddfH7sPS11dnV566SVPnluSVqxYEfv9mmuu0ciRIwd1PLirqalJS5cuVVNTk+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXWxPQdb6rOlDriPe9Z41Msvvxy7uiQnJ0cXXXRRv6/PysrSJZdcoueff16StGHDBl1++eWeO/ff/vY3/fWvf409Zgu05JeRkaHS0lJlZGSYbopnkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZF9tzOJH64rlP11CxvZ+QOCzWeNS7774b+/2cc85RWtrxu/KCCy6ILZgc+X4vnfvIq2pGjhypa665Jq73v/7661q7dq3+/ve/S5JOOukkffjDH9a//uu/asSIESfcLvQtMzNTU6dONd0MTyEzf2RgQ4021AAAJjGPwksYr/5AP5tB7vEjsy6252BLfbbUAfexDZpHvffee7Hfx40bN6D3nH766bHfq6qqPHfuaDSqxx9/PPb4pptuUnp6elzH+PSnP6077rhDP/zhD/XDH/5Q99xzj2bNmqXRo0fr5ptv1gcffHBCbUPf2tvbtXHjRrW3t5tuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23OwpT5b6oD7WKzxqMOHD8d+Hz169IDeU1RUFPu9rq7Oc+d+8cUXtWfPntjjRG6B1tnZqccff1znn3++1q1bl7DjQgqHw6qurlY4HDbdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3sVjjUc3NzbHfhw0bNqD3HPm6I9/vlXM/9thjsd/POeccXXDBBQN6X1pamq655hotXbpUb7zxhhoaGtTZ2alDhw7p+eef1xe/+MXYFTrBYFA33HCD/vKXv5xQG/uSlZWl3NxcSVIkElFDQ4Mcx4mdMxQKSZLa2trU0tIiqWsib2hoiB2jsbFRnZ2dkqTW1la1trZK6lpoamxsjL2uoaEhNvm3tLSora1NkhQKhRQMBiVJjuOooaFBkUhEUlefdK/ud3R0xG54Fo1G1dDQoGg0Kqnrhmjd9ytqb2+P9WV/NaWmpuqGG25Qbm6uNTW53U/RaFTz589XTk6ONTXF20/Z2dmaPXu2srOzranp6H5yHEc33nijcnNzPVuTH/qJmqiJmqjJzZqysrI0e/bs2H8n2lCTjf1ETV015ebmavbs2crKyrKmJhv7qbeaOtq7akpTRNkK/eNVjnIDHcfUlJubqxtvvDHWtmStybZ+CgQCmjNnjnJzc62pqa21RRnq+v3osdcUbBx0TZI0f/58DRs2rM+aMhRWlrranaqocgMdg6opGcdeOBzW/PnzlZub26OmTHUqM1Z7RDlH1O52TaFQRyz/Yf9oQ8o/8o937EUiEX32s59Vbm5u0oy9RPZTosdea0tzrPZ0RTTsH7UH/lF7Ms0Ryfh5OrImU1is8agjL5sb6M2pMjMzY793fxi8cu7m5mb9+te/jj2O56qav/71r/rd736nBQsW6Pzzz9fw4cOVlpamk046SVdeeaV+8YtfaPPmzTrppJMkdX3wv/jFL8YmhUSYOnWqPv3pT0uSDh48qLKystgE8sgjj2jbtm2SpE2bNsWu7Nm7d6/Kyspix/j5z3+uHTt2SJKee+45Pffcc5KkHTt26Oc//3nsdWVlZdq7d68kad26ddq0aZMkadu2bXrkkUdiNZaVlengwYOSpKefflrl5eWSpDfffFNPPPGEpK4JrKysLDZhPvHEE3rzzTclSeXl5Xr66aePW9PGjRv19NNPKxKJWFPTUPRTTU2NWltbraopnn6qr69XWVmZ6uvrrampt37atGmTIpGIZ2vySz9REzVREzW5VdOuXbtUVlYW++9OG2qysZ+oqaumSCSisrIy7dq1y5qabOyn3mp6c8srkqTi1Hpdndm1LXmGIroh6x011B3qUVMkEtGmTZuSvibb+umZZ57Rs88+q0gkYk1Nf9nwnErT90k6duz9z4qHB13T//zP/6impkY1NTV91lSavk+XZnTNWSenNOuGrHcGVVOyjr2amhpFIpEeNV2UvlcXpXe1+9SUoK7L3DZkNW3f1pXzh9NqdVlGV3sKAu26Ieud2EJOPGPvtddeUyQSSZqxl8h+SvTY2/jH3+nDabWSpDNTD+mjmdslSTmBkP5nxcNJNUck6+fJOAeedPXVVzuSHEnO3XffPaD3PPvss7H35Obmeurcy5cvj70/LS3N2b9/f9zHOJ7nnnsudg5JztNPPz3oY27dutWR5GRlZTm5ubnO1q1bnXA47NTX1zvRaNRxHMdpbGx0Ojo6HMdxnNbWVqe5udlxHMfp7Ox06uvrY8dqaGhwQqGQ4ziO09LS4rS0tDiO4zihUMhpaGiIva6+vt7p7Ox0HMdxmpubndbWVsdxHKejo8NpbGx0HMdxotGoU19f74TDYcdxHKepqclpa2tzHMdx2tvbnWAw6DiO40QiEae+vt6JRCKO4zhOMBh02tvbHcdxnLa2NqepqclxHKffmvbv3+8sWrQo1i4banK7n3bv3u0sWrTIqaurs6amePvp8OHDzqJFi5zDhw9bU9PR/bRnz57YZ8OrNfmhn6iJmqiJmtys6eDBg7H/LbClJhv7iZoaYvUsWrTIOXjwoDU12dhPvdW0/e+HnHF3/86ZePda50N3/8YZd/fvnHF3r3Mm3fNrZ+eBYI+auvt5z549SV2Tbf3097//Pfa/B7bU9N6eA86Zd6/pdexV7tw36Jr27t3rLFq0yDl06FCvNe0+3OKcefca5+y7f+uMu/t3zoS7n3Em3fNrZ9zdv3N2H25xfext33fYGXf375wz7l7rlPyj9uJ/fO6qDzYlrJ927doVGzvdNe0+3OKcdfdvnbNita91PnxE7W5/nt7fX+eMu/t3zpl3r3FK/tGG8f/If9eh5rjG3pH1JcvYS1Q/uTH2qnbXxmo/euxV7tyXVHNEss7l3d/ldv9s3brVGUoBx/nHNUDwlDlz5uipp56SJH31q18d0Mrfb37zG11//fWSuu4hs3//fs+c+4orrtCGDRskSddcc41+97vfxdnqgZk2bZr+/Oc/S5K++MUv6he/+MWgjldZWanJkyfHHm/dulWTJk0a1DG9xnEcdXR0KDMzU4FAwHRzPIHM/JGBDTXaUAMAmMQ8Ci9hvHrXnrpWTVvyYq/Pbb5rpsYWZsce089m2Jh7POPuRBwvM7fPfzxDdf7ecrCp9hP5bJiuvzdD9RlPxtq9xvR3uWlDdiYkVPeWXZJUW1s7oPfU1NTEfi8sLPTMuXfv3q0XX/znRBPPFmjxuvLKK2OLNe+++65r5/GTQCAQ29caA0Nm/sjAhhptqAEATGIehZcwXv2BfjbDrdxt/uKWsdrF9hxsqc+WOuA+7lnjUWeffXbs9+49g49n9+7dsd9LSko8c+7HH388dhOoESNGaNasWXG9Px6nnHJK7PdDhw65dh4/CQaDeuihh2J7SOL4yMwfGdhQow01AIBJzKPwEsarP9DPZpB7/Misi+052FKfLXXAfSzWeNSHPvSh2O/vvPOOwuHwcd/zxhtv9Pr+ZD/3Y489Fvt97ty5yszMjOv98WhpaYn9npOT49p5/CQrK0szZszgXxDEgcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/Mutiegy312VIH3Mc2aB516aWXKjMzUx0dHWppadFrr72mqVOn9vn6jo4OlZeXxx5ffvnlnjh3eXm5/va3v8Ueu7kFmiS9+eabsd/HjBnj6rn8IiMjQ6Wlpaab4Slk5o8MbKjRhhoAwCTmUXgJ49UfEt3PNm/DlUh8vuJHZl1sz8GW+mypA+7jyhqPys3N1RVXXBF7vHz58n5f/5vf/EZNTU2Suu4ZM336dE+ce8WKFbHfS0pKdPHFF8fX2DgcPnxYa9eujT2eMWOGa+fyk7a2Nq1fv15tbW2mm+IZZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPhZrPOzf//3fY78vX75clZWVvb6utbVV9957b+zxrbfeqrS0wV1UNRTn7ujo0OrVq2OPT+Sqmubm5gG9LhKJ6Etf+lJs78iMjAzdcMMNcZ8Px4pGo2poaFA0GjXdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7xI7MutudgS3221AH3sVjjYddcc42mTZsmqWth49prr9Xbb7/d4zWHDx/W7Nmz9f7770vqurLl7rvv7vV41dXVCgQCsZ/+rphJ9Ll788wzz6i+vl6SlJKSos997nMDfm+3qVOn6o477tDrr7/e52veeecdXXnllVqzZk3sb1/72tc0bty4uM+HY+Xk5Gju3LncAygOZOaPDGyo0YYaAMAk5lF4CePVH+hnM8g9fmTWxfYcbKnPljrgPu5Z43G/+tWvNGXKFO3fv1/V1dUqLS3VZZddpokTJ+rgwYP605/+pNbWVklSWlqannrqKRUUFHji3I899ljs9yuuuEKnnXZa3G1sbm5WWVmZysrKNHLkSJWWluqUU05Rdna2gsGg3nrrLW3btq3He2bNmqXvfe97cZ8LvQuHw9q7d69OO+20QV/R5Rdk5o8MbKjRhhoAwCTmUXgJ49Uf6GczyD1+ZNbF9hxsqc+WOuA+rqzxuNNOO00bNmyI3aTKcRxt3LhRv/zlL/XMM8/EFktOPvlkrVmzpse9ZpL53AcOHND69etjj+fPnz/o9h46dEh/+tOf9Pjjj2vZsmVatWpVj4Wa7Oxsfe9739Nvf/tbpaamDvp86NLc3KwVK1YMeEs6kJnkjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5k1uXoHKpqglr20o4+X3/H6gotWV+l92qahqqJg2JLP9tSB9zHUp4FSkpK9Ne//lVPPvmkVq1apcrKStXW1qqgoEATJkzQpz71KX3hC1/QyJEjPXPuJ554QuFwWJKUn5+vT37ykyfUvs2bN+vll1/WK6+8ojfeeEO1tbU6fPiwGhsblZ2dHbvaZsaMGfr85z+fsKuO8E8FBQW67777TDfDU8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrEt3DhuqarX0yVe0pbqu39e/vqter++q18827tCU4kLdNmOiZpaMGqLWxs+WfralDriPxRpLZGRk6Oabb9bNN998wscoLi6W4zhGzn20r33ta/ra17426OOMHTtWc+bM0Zw5cxLQKgAAAAAAACA51LeEdN8zlXrmrX1xv3dLdZ22LK/TdaVjtOgTkzQiJ8OFFgKIB9ugAXBVY2Oj7r//fjU2NppuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kZn07v6gZj/0vHLf+71yAh0nfJy1Fft0VdlLqqoJJrB1iWFLP9tSB9zHYg0AV2VnZ2v27NnKzs423RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8fN7Zu/uD2ruw+Xa2xTRn0PFancGt3lSbbBDc5aVJ92CjS39bEsdcB+LNQBclZ6erpKSEqWnp5tuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4+Tmz+paQ5j+6RY1tnYooVbujIxRR6qCP29jWqXmPbFF9SygBrUwMW/rZljrgPhZrALiqtbVVa9asUWtrq+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+jmx9tS1qvie3/f6s6funxmTe/z8nNl9z1SqNti17VmmOvWv6TuVqc6EHLs22KFF6yoTcqxEsKWfbakD7mOxBgAAAAAAAACS3IaqWj3z1j5Xz7G2Yp82VNW6eg4AvRvchoYAcBzd+3Ji4MjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/z8mtnSjR/0eNyhdP25c3ziz7PpA11eMjrhx42XLf1sSx1wH1fWAHBVZ2enqqqq1NmZmEty/YDM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucfPj5lV1QS1pbqux99SFdHpKfVKVSSh59qys07v1TQl9JgnwpZ+tqUOuI/FGgCuYl/O+JGZPzKwoUYbagAAk5hH4SWMV3+gn80g9/j5KbM9da3aU9eqleW7jnkuKxDWv2ZUKysQTvh5V5bv6nFvJRNs6Wdb6oD72AYNgKuGDx+ue+65x3QzPIXM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGucfPT5lNW/Jin8+1OJn6Vfv5rpz38fJderx8l6rvv8aV4w+ELf1sSx1wH4s1AAAAAAAAsM6eutY+v+jefNdMjS3MHuIWAQDQN7ZBA+CqhoYGLV68WA0NDaab4hlk5o8MbKjRhhoAwCTmUXgJ4/XE7alrVfE9v+/1x/QWQ0ejn80g9/iRWZfcQIe+MOw15QY6TDfFFbb0sy11wH0s1gBwVW5urubNm6fc3FzTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLr0uak6w8dZ6nNSTfdFFfY0s+21AH3sQ0aAFelpaWpuLjYdDM8hcz8kYENNdpQAwCYxDwKL2G8+gP9bAa5x4/MukSUoppovulmuMaWfralDriPK2sAuKqlpUVPPvmkWlpaTDfFM8jMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/zIrEuWOnV5xvvKUqfpprjCln62pQ64j8UaAK5KSUlRQUGBUlKYbgaKzPyRgQ012lADAJjEPAovYbz6A/1sBrnHz0+Zbb5rpjbfNVMfGTfimOeiCqjZyVBUgYSf98JxI7T5rplxvaeqJqhlL+3o8/k7VldoyfoqvVfTNKDj2dLPttQB97ENGgBXDRs2TFdddZXpZngKmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPn58yG1uYLUm6eHyhXt9V3+O5kNK0pfN0V8578YTC2LmPZ0NVrZZu/EBbquv6fd3ru+r1+q56/WzjDk0pLtRtMyZqZsmoPl9vSz/bUgfcx3IeAFeFQiFVVFQoFAqZbopnkJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+Pkxs1mlY475W5oiOiP1kNIUSfz5zjv1uK+pbwnpq6ve1C3LXzvuQs3RtlTX6QvLX9XCJ99UfUvv/WhLP9tSB9zHYg0AV7W3t2vjxo1qb2833RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8fNjZiVF+ZpSXNjjbxmKqDRtnzISvFgzZXyhzi7K6/c17+4P6qqyl/TMW/sGda61Fft0VdlLqqoJHvOcLf1sSx1wH9ugAXBVfn6+7rjjDtPN8BQy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B4/v2b25RkTtGX5P69gaVWGnu44N+Hnue2yif0+/+7+oOY+XK7Gts6EnK822KE5y8q1esFUlRTlx/5uSz/bUgfcx5U1AFzlOI7a29vlOI7ppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDHKPn18zu7xktGadd+R2aI4yFJaUuByuKx3T731k6ltCmv/oloQt1HRrbOvUvEe29NgSzZZ+tqUOuI/FGgCuamxs1AMPPKDGxkbTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePz9ntnjWJI3Oz5Qk5QZC+uywCuUGEnMvlNH5mVr0iUn9vua+ZypVG+xIyPmOVhvs0KJ1lbHHtvSzLXXAfSzWAHBVXl6eFixYoLy8/vc6xT+RmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4+TmzETkZWnHLFA0flq5WJ11r2z+sVid90McdPixdK26ZohE5GX2+ZkNV7aDvUXM8ayv2aUNVrSR7+tmWOuA+FmsAuCo1NVVFRUVKTU013RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8fN7ZiVF+Vq9YKpOzh+mOidb0UF+xTs6P/OY+8X0ZunGDwZ1noFauqnrPLb0sy11wH0s1gBwVXNzs5YvX67m5mbTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD/SzGeQePzLrWrD59Zcu0OcKd2qYTvz+MdeVjtH6hdOPu1BTVRPUluq6Ez5PPLbsrNN7NU3W9LMtdcB9aaYbAMBuaWlpKi4uVloa081AkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+JFZl5H52bpyymRNL5ygX7zyd23ZOfDFlCnjC3XbZRM1s2RUv6/bU9cqSVpZvmtQbY3XyvJdmnfxGCv6mfGKgWKEAHBVVlaWZsyYYboZnkJm/sjAhhptqAEATGIehZcwXv2BfjaD3ONHZl2OzOFj556u92qatLJ8lx7vY2HlwnEjdPGEQs0671SdXTSw+6dMW/Jiopobl8f/UUf1/dcYOX8iMV4xUGyDBsBVHR0dKi8vV0dHh+mmeAaZ+SMDG2q0oQYAMIl5FF7CePUH+tkMco8fmXU5Ooezi/J06/QJfb7+x3NKdefHSwa8UGNauiJW9DPjFQPFYg0AV4VCIVVUVCgUCpluimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4kVkX23NIU8SK+mzvJyQO26ABcFVeXp6+/OUvm26Gp5CZPzKwoUYbagAAk5hH4SWMV3+gn80g9/iRWRfbc2hThhX12d5PSByurAHgqmg0qoaGBkWjUdNN8Qwy80cGNtRoQw0AYBLzKLyE8eoP9LMZ5B6//jKrqglq2Us7+nzvHasrtGR9ld6raXKziUPC9rETkGNFfbb3ExKHxRoArgoGgyorK1MwGDTdFM8gM39kYEONNtQAACYxj8JLGK/+QD+bQe7x6y2zDVW1+szSV3TVQ5u1snx3n+99fVe9frZxhz7+0Ev6zNJX9GLVgaFositsHzs5gZAV9dneT0gctkED4Kr8/HwtXLhQ+fn5ppviGWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX5HZlbfEtJ9z1Tqmbf2xX2cLdV12rK8TteVjtGiT0zSiJwMF1rrnqEYO5vvmimp64qk13fVu3aeo104boT+84ZzNTztcs9/NviMY6BYrAHgqpSUFBUUFJhuhqeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NIPf4dWf27v6g5j+6RbXBjkEdb23FPpV/cFgrbpmikiLvfKE+FGNnbGG2JOni8YVDulhz8YRCjRuZO2TncxOfcQwU26ABcFVTU5OWLl2qpibv7wU7VMjMHxnYUKMNNQCAScyj8BLGqz/Qz2aQe/yamppU9pOfaf7DLw16oaZbbbBDc5aVq6rGO1tVDeXYmVU6xvVz9Djfeada89mwpQ64j8UaAK7KyMhQaWmpMjK8dSmxSWTmjwxsqNGGGgDAJOZReAnj1R/oZzPIPX4tndLL9bmqa0vsDdsb2zo175Etqm8JJfS4bhnKsVNSlK8pxYWun0eSpowv1NlFedZ8NmypA+5jGzQArsrMzNTUqVNNN8NTyMwfGdhQow01AIBJzKPwEsarP9DPZpB7/L7/x/f115aTXDl2bbBDi9ZVqmzu+a4cP5GGeux8ecYEbVle5/p5brtsoiTvfTb21LVq2pIXe31u810zlZmZOcQtgtdwZQ0AV7W3t2vjxo1qb2833RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hu8dlQVav1b+1WadrflaGwK+dYW7FPG6pqXTl2Ig312Lm8ZLRmnefudmjXlY7RzJJRkuz5bGQorDf++hfP1wH3sVgDwFXhcFjV1dUKh935DygbkZk/MrChRhtqAACTmEfhJYxXf6CfzSD3+Czd+IFS5agopUmpctw7z6YPXDt2opgYO4tnTdLofHeuEBmdn6lFn5gUe2zLZyNVjmr+vsfzdcB9bIMGwFW5ubmaP3++6WZ4Cpn5IwMbarShBgAwiXkUXsJ49Qf62QxyH7iqmqC2VNdJStf6UImr59qys07v1TTp7KI8V88zGCbGzoicDK24ZYrmLCtXY1tnwo47fFi6VtwyRSNy/nlfF1s+G21K19Wfmqvc3GzTTUGS48oaAK6KRCKqqalRJBIx3RTPIDN/ZGBDjTbUAAAmMY/CSxiv/kA/m0Hux7enrlV76lq1snyXJClFURUGWpWiqKvn7T5fsjI1dkqK8rV6wdSEXWEzOj9TqxdMVUlRfo+/2/LZSFFUhw/Wer4OuI/FGgCuampq0rJly9TU1GS6KZ5BZv7IwIYabagBAExiHoWXMF79gX42g9yPb9qSFzVtyYtaWb5bkpQd6NR1WduUHUjclR29eTzJF2tMjp2SonytXzhd15UO7h4215WO0fqF049ZqJHs+WxkBzq19snHPF8H3Mc2aABcNXz4cN19993KzHRnP1MbkZk/MrChRhtqAACTmEfhJYxXf6CfzbAt96qaYL9XpNyxukIXjy/UdaWnnvAWY81Ohp5oK1VIqSfazAFzHEeBQMD185wI02NnRE6Gyuaer+tKx2jppg+0ZWfdgN87ZXyhbrtsomaWjOrzNabrS5RmJ0OfvfV/a/jw4aabgiTHYg0AVwUCAWVlZZluhqeQmT8ysKFGG2oAAJOYR+EljFd/oJ/NsCX3DVW1Wrrxg3/cU6Zvr++q1+u76vWzjTs0pbhQt83o/wv73gUUGqKvNVtCEeVmJudXqMkydi4vGa3LS0brvZomrSzf1ecVSReOG6GLJxRq1nkDW6hLlvoGL6DMzKykXfRD8mAbNACuCgaDeuihhxQMBk03xTPIzB8Z2FCjDTUAgEnMo/ASxqs/0M9meD33+paQvrrqTd2y/LXjLtQcbUt1nb6w/FUtfPJN1beEBvy+bIX06cy3la2Bv+dEhcLu3hdnMJJt7JxdlKdbp0/o8/kfzynVnR8vGfAVVclW34nKVkhPLV/m+TrgPhZrALgqKytLM2bMsORfQgwNMvNHBjbUaEMNAGAS8yi8hPHqD/SzGV7O/d39QV1V9pKeeWvfoI6ztmKfrip7SVU1A/syO6RUVYTHDMk2aBlpyfv1qZfHzkDYUl9IqTr/4n/xfB1wX/LONgCskJGRodLSUmVkZJhuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/N8Gru7+4Pau7D5aoNdiTkeLXBDs1ZVj6gBZuwUvV+ZKTCQ7BYk5Ph/jlOlFfHzkDZUl9YqTrzQ5M9Xwfcx2INAFe1tbVp/fr1amtrM90UzyAzf2RgQ4021AAAJjGPwksYr/5AP5vhxdzrW0Ka/+gWNbZ1JvS4jW2dmvfIlmO2RNt810xtvmumPjJuhCQpQ2FNSd+tDIUTev6jXThuRFLfZ8SLYycettSXobDKX9rg+TrgPhZrALgqGo2qoaFB0Wjy7vGabMjMHxnYUKMNNQCAScyj8BLGqz/Qz2Z4Mff7nqlM2BU1R6sNdmjRusoefxtbmK2xhdm6eHyhJClFjnIDIaXIcaUN3S6eUOjq8QfLi2MnHrbUlyJHzcFGz9cB96WZbgAAu+Xk5Gju3Lmmm+EpZOaPDGyo0YYaAMAk5lF4CePVH+hnM7yW+4aq2kHfo+Z41lbs03WlY3R5yegef59VOkY/27hD7UrXhtAZrrZBkmadd6rr5xgMr42deNlSX7vSdeW1n1ROTrbppiDJcWUNAFeFw2FVV1crHHb30mSbkJk/MrChRhtqAACTmEfhJV4er3vqWlV8z+97/dlT12q6eUnFy/3sZV7LfenGD4bmPJuOPU9JUb6mFBcqVVEVpQSVKveuVJgyvlBnF+W5dvxE8NrYiZct9aUqqv17d3u+DriPxRoArmpubtaKFSvU3NxsuimeQWb+yMCGGm2oAQBMYh6FlzBe/YF+NsNLuVfVBLWlum5IzrVlZ53eq2k65u9fnjFBwwKd+rfMv2lYILH3zDnSbZdNdO3YieKlsXMibKlvWKBTf/jtas/XAfexDRoAVxUUFOi+++4z3QxPITN/ZGBDjTbUAAAmMY/CSxiv/kA/m+GF3LuvQltZvmtIz7uyfJdunT5BYwv/uX3U5SWjdfm54/XoW5munfe60jGaWTLKteMnihfGzmDYUl+zk6lb/vedKihgGzT0j8UaAAAAAAAAAH2atuRFI+d9vHyXHi/fper7r+nx98WzJumvOw+rNtiR8HOOzs/Uok9MSvhxAeB42AYNgKsaGxt1//33q7Gx0XRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/WwGuccvJdym6wKvqWhYYu9ZM3xYulbcMkUjcjISely32D52bKkvJ9Chlcv+P8/XAfdxZQ0AV2VnZ2v27NnKzuZSz4EiM39kYEONNtQAACYxj8JLBjte99S19vkv8zffNbPHFkcwh3nJDHKPX3Z2tj71ydmalXOyvvj4mwm5wmZ0fqZW3DJFJUX5CWjh0LB97NhSX7uTpmlX/pvn64D7WKwB4Kr09HSVlJSYboankJk/MrChRhtqAACTmEfhJYxXf6CfzSD3+B2Z2fqF07VoXaXWVuw74eNdVzpGiz4xyTNX1HSzfezYUl9EqRo38Uylp6ebbgqSHNugAXBVa2ur1qxZo9bWVtNN8Qwy80cGNtRoQw0AYBLzKIbSnrpWFd/z+15/um8c3h/Gqz/Qz2aQe/yOzGxETobK5p6vR+ZfqCnjC+M6zpTxhXp0/kUqm3u+5xZqJPvHji31ZapTLz3/rOfrgPu4sgYAAAAAAACAp11eMlqXl4zWezVNWlm+S4+X7+r1dReOG6GLJxRq1nmn6uyivCFuJQD0jcUaAK7q3l8UA0dm/sjAhhptqAEATGIehZcwXv2BfjbDC7lvvmumJOmO1RV6fVf9kJ33wnEj9OM5pcf8vb/Mzi7K063TJ/S5WPPjOaXW3CfLC2NnMGypr0Ppmv7Rj3HPGhwX26ABcFVnZ6eqqqrU2dlpuimeQWb+yMCGGm2oAQBMYh6FlzBe/YF+NsMLuY8tzNbYwmxdHOc2Y4N18YTCXhdWvJDZULA9B1vqS1VEu3Zs93wdcB+LNQBcZcv+okOJzPyRgQ012lADAJjEPAovYbz6A/1shpdyn1U6ZmjPd96pvf7dS5m5yfYcbKkvKxDW5j/9wfN1wH1sgwbAVcOHD9c999xjuhmeQmb+yMCGGm2oAQBMYh6FlzBe/YF+NsNLuZcU5WtKcaG2VNe5fq4p4wv7vKeMlzJzk+052FJfi5Opzy34qoYPZxs09I8rawAAAAAAAAAMyJdnTBiS89x22cQhOQ8AJAsWawC4qqGhQYsXL1ZDQ4PppngGmfkjAxtqtKEGADCJeRRewnj1B/rZDK/lfnnJaM06z93t0K4rHaOZJaP6fN5rmbnF9hxsqS830KFH/uuHnq8D7mOxBoCrcnNzNW/ePOXm5ppuimeQmT8ysKFGG2oAAJOYR+EljFd/oJ/N8GLui2dN0uj8TFeOPTo/U4s+Manf13gxMzfYnoMt9bU56fq3T87xfB1wH4s1AFyVlpam4uJipaVxi6yBIjN/ZGBDjTbUAAAmMY/CSxiv3lRVE9Syl3b0+fwdqyu0ZH2V3qtpkkQ/m+LF3EfkZGjFLVM0fFh6Qo87fFi6VtwyRSNyMvp9nRczc4PtOdhSX0QpOuW00z1fB9zHYg0AV7W0tOjJJ59US0uL6aZ4Bpn5IwMbarShBgAwiXkUXsJ49ZYNVbX6zNJXdNVDm7WyfHefr3t9V71+tnGHPv7QS/rM0lf0x4pq+tkAr36+SorytXrB1IRdYTM6P1OrF0xVSVH+cV/r1cwSzfYcbKkvS5360+9+63odYwuzVX3/Nb3+jC3MdvXcSAyW8wC4KiUlRQUFBUpJYW14oMjMHxnYUKMNNQCAScyj8BLGqzfUt4R03zOVeuatfXG/d0t1nSqqD+j6MZ26rC2snBwXGoheefnzVVKUr/ULp2vRukqtrYh/3HW7rnSMFn1i0nGvqOnm5cwSyfYcbKkvqoBy84d7vg64j8UaAK4aNmyYrrrqKtPN8BQy80cGNtRoQw0AYBLzKLyE8Zr83t0f1PxHt6g22HHCxwgpTav2FWrDw69qxS1TBnSFAwbP65+vETkZKpt7vq4rHaOlmz7Qlp11A37vlPGFuu2yiZpZMiquc3o9s0SxPQdb6gspTVOnz9SwYcNMNwVJjuU8AK4KhUKqqKhQKBQy3RTPIDN/ZGBDjTbUAAAmMY/CSxivye3d/UHNfbh8UAs1kpSmiM5IPaTDwVbNWVauqppgglqI/tjy+bq8ZLSeWnCJ/njHdH1+6rg+X3fhuBG6feZE/fGO6XpqwSVxL9RI9mQ2WLbnYEt9aYpo+7tbPV8H3MdiDQBXtbe3a+PGjWpvbzfdFM8gM39kYEONNtQAACYxj8JLGK/Jq74lpPmPblFjW+egj5WhiErT9ilDETW2dWreI1tU38KXi26z7fN1dlGebp0+oc/nfzynVHd+vERnF+Wd8Dlsy+xE2Z6DLfVlKKI3//oXz9cB97ENGgBX5efn64477jDdDE8hM39kYEONNtQAACYxj8JLGK/J675nKgd9RU23VmXo6Y5zY49rgx1atK5SZXPPT8jx0Ts+X/Ejsy6252BLfa3K0GfmL1B+frbppiDJcWUNAFc5jqP29nY5jmO6KZ5BZv7IwIYabagBAExiHoWXMF6T04aqWj3z1onf1P1YjjIUlvTPfl5bsU8bqmoTeA4cjc9X/Misi+052FOfo44OG+qA21isAeCqxsZGPfDAA2psbDTdFM8gM39kYEONNtQAACYxj8JLGK/JaenGDxJ6vNxASJ8dVqHcQM+tz5ZuSux50BOfr/iRWRfbc7ClvtxASE88/F+erwPuY7EGgKvy8vK0YMEC5eWd+F60fkNm/sjAhhptqAEATGIehZcwXpNPVU1QW6rrEnrMVidda9s/rFYnvcfft+ys03s1TQk9F/6Jz1f8yKyL7TnYUl+rk67r5t7s+TrgPhZrALgqNTVVRUVFSk1NNd0UzyAzf2RgQ4021AAAJjGPwksYr8ljT12r9tS1amX5roQfO6oU1TnZivbydZEb50MXPl/xI7MutudgS31Rpeikk0d7vg64j8UaAK5qbm7W8uXL1dzcbLopnkFm/sjAhhptqAEATGIehZcwXpPHtCUvatqSF7WyfHfCjz1Mnboqo0rD1HnMc4+zWOMaPl/xI7MutucQb31VNUEte2lHn8/fsbpCS9ZXDfmVgsPUqWd/86S1/YTESTPdAAB2S0tLU3FxsdLSmG4Gisz8kYENNdpQAwCYxDwKL2G8+kNEAdVE8xRRoNfnHcdRIND7czhxfL7iR2ZdbM9hoPVtqKrV0o0fHHdryNd31ev1XfX62cYdmlJcqNtmTNTMklGJbHKvIgqo6NSx1vYTEocRAsBVWVlZmjFjhulmeAqZ+SMDG2q0oQYAMIl5FF7CePWHkNJUET61z+dbQhHlZvJVUqLx+YpfMmdWVRPsd9vAO1ZX6OLxhbqu9FSdXTS4e5gkcw6JcLz66ltCuu+ZSj3z1r64j72luk5bltfputIxWvSJSRqRkzGIlvYvpDRdcPG/KCsry7VzwA5sgwbAVR0dHSovL1dHR4fppngGmfkjAxtqtKEGADCJedRf9tS1qvie3/f6s6eu1XTzjovx6g/piujDqbVKV6TX50Ph6BC3yB/c+Hwl63ZQiZKMc9KGqlp9Zukruuqhzf1uU9h9ZcfHH3pJn1n6il6sOnDC50zGHBKpv/re3R/UVWUvndBCzZHWVuzTVWUvqaomOKjj9CddEVVWvGZtPyFxWKwB4KpQKKSKigqFQiHTTfEMMvNHBjbUaEMNAGAS8yi8hPHqD2mK6Iy0Q0rrY7EmI42vkdyQyM+XiQUDE5JpTqpvCemrq97ULctfO+42XEfbUl2nLyx/VQuffFP1LfHXkkw5uKGv+t7dH9Tch8tVG0zM4kdtsENzlpW7tmCTpoi2v7vV2n5C4nDtKgBX5eXl6ctf/rLpZngKmfkjAxtqtKEGADCJeRRewnj1hzZl6JmOSX0+n5OROoSt8Y9EfL68sh1UoiTLnPTu/qDmP7pl0IsGayv2qfyDw1pxyxSVFOUP+H3JkoNbequvviWk+Y9uUWNbZ0LP1djWqXmPbNH6hdMT/hloU4Zm3zhfeXnZCT0u7MM/iQDgqmg0qoaGBkWjXC4/UGTmjwxsqNGGGgDAJOZReAnjNXlsvmumNt81Ux8ZNyLhxw7IUW6gQwE5xzx34bgRCgQCAz6W7dtwJdJgP19e2g4qUZJhTkqGqzuSIQc39Vbffc9UJizzo9UGO7RoXWXCjxuQo6Zgo7X9hMRhsQaAq4LBoMrKyhQMJv9/7CULMvNHBjbUaEMNAGAS8yi8hPGaPMYWZmtsYbYuHl+Y8GPnBEK6Iesd5QSO3arn4gkDO59ftuFKpMF8vpJhwcAE03OS21d3DHRLNNM5uO3o+jZU1Q56UfJ41lbs04aq2oQeMycQ0v+seNjafkLisFgDwFX5+flauHCh8vMHfhmv35GZPzKwoUYbagAAk5hH4SWM1+Qzq3RMwo/Z4mTof9rPUYtz7BZAs847td/3mrxvh9ed6OcrWRYMTDA9JyXL1R2mc3Db0fUt3fjBkJx36abEnqfFydAN8261tp+QOCzWAHBVSkqKCgoKlJLCdDNQZOaPDGyo0YYaAMAk5lF4CeM1+ZQU5WtKcWKvrnEUULOTKUc9tzubMr5QZxfl9fk+P27DlUgn+vlKlgUDE0zOScl0dYftc/OR9VXVBONeCD5RW3bWJXSLRkcB5eUPt7afkDiMEACuampq0tKlS9XUxD7EA0Vm/sjAhhptqAEATGIehZcwXpPTl2dMSOjxhimkWZmVGqaeV1TcdtnEPt/j1224EulEPl/JtGBggsk5KZmu7rB9bm5qatJ//fRnem/3Aa0s3zWk507k+YYppDWrllvbT0gcFmsAuCojI0OlpaXKyDj2Mnr0jsz8kYENNdpQAwCYxDwKL2G8JqfLS0Zr1nmJ2w4trFS9Hx6psFJjf7uudIxmlozq9fV+3oYrkU7k85VMCwYmmJqTku3qDtvn5oyMDP1hX5au/Vl5v/fAcsPjCVysCStVZ35osrX9hMRhsQaAqzIzMzV16lRlZmaabopnkJk/MrChRhtqAACTmEfhJYzX5LV41iSNzk9Mv3QqVdsio9X5j8Wa0fmZWvSJSX2+3s/bcCVSvJ+vZFswMGEo56Q9da2xn2S7usP2uTkzM7PHnDTUHMdJyHE6lapJpRda209IHBZrALiqvb1dGzduVHt7u+mmeAaZ+SMDG2q0oQYAMIl5FF7CeE1eI3IytOKWKRo+LH3Qx8pQWKVpf1eGwho+LF0rbpmiETm9/0twv2/DlUgD+Xwl84KBCUM5J01b8mLsJ9mu7rB9bm5vb4/NSSa0hCIJOU6Gwnrjr3+xtp+QOCzWAHBVOBxWdXW1wmEz/8PqRWTmjwxsqNGGGgDAJOZReAnjNbmVFOVr9YKpg77CJlWOilKaNDovXasXTFVJUX6fr/X7NlyJNJDPVzIvGJjgpzmpv6s7bM8hHA6rKKVJqUrMFS7xCoWjCTlOqhzV/H2Ptf2ExEkz3QAAdsvNzdX8+fNNN8NTyMwfGdhQow01AIBJzKPwEsZr8ispytf6hdO1aF2l1lac2BUvbUpX5ocv1zOfmNTnFTWSmW24zi7KG5LzmeCFz5fjOAoEAqabEeOFzBKlJRRRbmbvX+HankNubq7Wh0qMnT8jLTHXObQpXVd/aq5yc7MTcjzYiytrALgqEomopqZGkUhiLh31AzLzRwY21GhDDQBgEvMovITx6g0jcjJUNvd8PTL/Qk0ZXxjXe6eML9QvP3+BvjnjFOVn9X5/CJPbcO2pax3Scw5WVU1Qy17a0efzd6yu0JL1VXqvpskTn69EbQeVKF7ILFH6u7rD9hwikYgKA61KUWKucIlXTkZi7pWToqgOH6y1tp+QOCzWAHBVU1OTli1bpqam5LshYbIiM39kYEONNtQAACYxj8JLGK/ecnnJaD214BL98Y7p+vzUcX2+7sJxI3T7zIn64x3T9dSCS/SRU4f1288mt+GatuTFIT3nidpQVavPLH1FVz20ud+cXt9Vr59t3KGPP/SSbl66Kek/X4naDipR/DQn9Xd1h+05NDU16bqsbfrdly/UR8aNGNJzXzhuRMKuJssOdGrtk49Z209IHLZBA+Cq4cOH6+6771Zm5uD2TvYTMvNHBjbUaEMNAGAS8yi8hPHqTWcX5enW6RP6vOfIj+eUamzhP7floZ9PXH1LSPc9U6ln3op/C7q/7GnVqypV3R8+0KJZk/vdgs6URG0HlSh+Gqv9Xd1hew5H1nfx+Ea9vqt+yM598YT4rk7sT7OToc/e+r81fPjwhB0TdmKxBoCrAoGAsrKyTDfDU8jMHxnYUKMNNQCAScyj8BLGqz/Qzyfm3f1BzX90i2qDHSd4hIBCStPat/arfGedVtwyRSVF+Qlt42AlajuoRBnKsbr5rpmx3+9YXTGkCwbHu7rD9s/skfXNKh2jn23se2vBRJt13qkJPFpAmZlZSXXfJySn5FoWB2CdYDCohx56SMFg0HRTPIPM/JGBDTXaUAMAmMQ8Ci9hvPoD/Ry/d/cHNffh8kEs1EjZCunTmW8rWyHVBjs0Z1m5qmp69sHmu2bGfry8HVSiDOVYHVuYHfu5OM57QQ3W8a7usP0ze2R9JUX5mlI8NPlPGV+os4vyEna8bIX01PJl1vYTEofFGgCuysrK0owZM6z+lx6JRmb+yMCGGm2oAQBMYh6FlzBe/YF+jk99S0jzH92ixrbOQR0npFRVhMcopK6rVxrbOjXvkS2qbwnFXpPMCwYmmBqrs0rHDO35jnN1h+2f2aPr+/KMCUNy3tsum5jQ44WUqvMv/hdr+wmJwzZoAFyVkZGh0tJS083wFDLzRwY21GhDDQBgEvPo0NpT19rnDco33zWzx307cCzGqz/Y1M9VNUGt7ONePVLXdlYXjy/UdaWnnvC/oL/vmcpBXVHTLaxUvR8Z2eNvtcEOLVpXqbK55x/zem9vB5UYpsZq99UdW6rrXD/XQK7usOkz25uj67u8ZLRmnTfmhO4NNVDXlY7RzJJRCT1mWKk680OTlZGRfPejQnLhyhoArmpra9P69evV1tZmuimeQWb+yMCGGm2oAQBMYh6FlzBeT0xVTVDLXur7S/U7VldoyfoqvVfTNISt6tvx+tnkNlxH3jekPxuqavWZpa/oqoc2a2X57j5f9/quev1s4w59/KGX9Jmlr+jFqgNxtWlDVW3CvjDOUFhT0ncrQ+Eef19bsU8bqmqPeb2Xt4NKFJNzUjJd3WH73NxbfYtnTdLo/ExXzjc6P1OLPjEp4cfNUFjlL22wtp+QOCzWAHBVNBpVQ0ODotGo6aZ4Bpn5IwMbarShBgAwiXkUXsJ4jc9QLRgk2vH62eQ2XMe7+q2+JaSvrnpTtyx/Le6rHrZU1+kLy1/Vwiff7LH1WH+WbvwgrnP0J0WOcgMhpcg59jybej9PMi0YmGByTuq+usNNA726w/a5ubf6RuRkaMUtUzR8WHpCzzV8WLpW3DJFI3ISf/VLihw1Bxut7SckDos1AFyVk5OjuXPnKicnx3RTPIPM/JGBDTXaUAMAmMQ8Ci9hvA7MUC8YJNpA+znZ7tvx7v6grip7adBXuqyt2Keryl5SVU3/NwGvqgkmdBusdqVrQ+gMtevYL5+37Kzr9cqrZFowMMH0nJQsV3eYzsFtfdVXUpSv1QumJqwPRudnavWCqSopyk/I8Y7WrnRdee0nre0nJA6LNQBcFQ6HVV1drXA4fPwXQxKZSf7IwIYabagBAExiHoWXMF6Pb6gXDNww0H5Opm243t0f1NyHyxNy7xip614xc5aV95r/nrpW7alr7fdeOCciVVEVpQSVqt7/1X1f50uWBQMTTM9JyXJ1h+kc3NZffSVF+Vq/cLquG+Ti8XWlY7R+4XTXFmqkrs/4/r27re0nJA6LNQBc1dzcrBUrVqi5udl0UzyDzPyRgQ012lADAJjEPAovYbz2bygXDNwUTz8nwzZc9S0hzX90ixrbOhN6zsa2Ts17ZMsxVzhNW/Kipi15sd+t7U7EsECn/i3zbxoW6L2Ox/tYrEmWBQMTkmFOSoarO5IhBzcdr74RORkqm3u+Hpl/oabEuT3jlPGFenT+RSqbe77rY31YoFN/+O1qa/sJiZNmugEA7FZQUKD77rvPdDM8hcz8kYENNdpQAwCYxDwKL2G89s3tBYP1C6cP2Zfm8fRz9zZcg72SqD/H24brvmcqE7ZAdrTaYIcWratU2dzzXTn+kZqdTD3admG/r3EcR4FA4Ji/dy8YzHtkS0KyGJ2fqRW3THH1KoNESJY5qfvqjkXrKrW24sQ/C9eVjtGiT0yK+7OeLDm4ZaD1XV4yWpeXjNZ7NU1aWb6rzwXOC8eN0MUTCjXrvFP7vWIv0ZqdTN3yv+9UQUH/994CuLIGAAAAAADgBA3FgkGyMrkN14aqWlcXiqSuLek2VNW6eo6BaglF+nzOS9tB2cgrV3f4wdlFebp1et9X/f14Tqnu/HjJkC7UAPFgsQaAqxobG3X//fersbHRdFM8g8z8kYENNdpQAwCYxDwKL2G89s62BYN4+9nkNlxLN36Q0HP2eZ5N7p8nJ9Chm7LeVE6g70W/ULj3+9l089uCQTLOSZeXjNZTCy7RH++Yrs9PHdfn6y4cN0K3z5yoP94xXU8tuKTfq8eOJxlzSCRb6ssJdGjlsv/P83XAfWyDBsBV2dnZmj17trKzudRzoMjMHxnYUKMNNQCAScyj8BLGa++GcsHg8pLRrp/nRPrZxDZcVTVBbamuG/S5BmLLzjq9V9Pk6r/Eb3fS9OdQsdqdvr+my0gb2L+3TvbtoBIlmeek7qs7+sr+x3NKNbYwMe1O5hwSwZb62p00Tbvy3zxfB9zHlTUAXJWenq6SkhKlpyf2X1rZjMz8kYENNdpQAwCYxDwKL2G8HsvEgoHbTrSfh2obrj11rdpT16qVfXwJ7paV5bu0p67VteNHlKrd0RGKKLXP1+Rk9P1cb2zfDoo5qYvtOdhSX0SpGjfxTM/XAfexWGOJUCikxx9/XFdffbXGjRunrKwsnXLKKbr00kv14IMP6tChQ0l/7urqagUCgbh+zjjjjLja+u677+rOO+/Uueeeq8LCQuXk5Oiss87SvHnz9MILL5xI+TiO1tZWrVmzRq2t7v2HrW3IzB8Z2FCjDTUAgEnMo/ASxus/2bpgIA2un4diG65pS17UtCUvamX57rjbNxiPl+/StCUvavNdM7X5rpn6yLgRCT1+pjr1r+k7lanOXp+/cNwIBQKBhJ7T65iTutiegy31ZapTLz3/rOfrgPvYBs0CVVVVuvHGG1VRUdHj7zU1NaqpqdErr7yiH/7wh3r00Ud19dVXW3PueH3ve9/T4sWL1dnZ8z9+tm/fru3bt+uxxx7TjTfeqGXLlikvz5v/sgQAAAAA4K5pS140ct7H/7GlVfX91xg5/0DZvA1X99ZVF48v1Ou76ofsvBdPiG/xCwDgTSzWeNzevXt1xRVXaN++rhsaBgIBTZ8+XRMnTtTBgwf1pz/9SW1tbTpw4IBmz56t9evX6/LLL0/6c+fl5enmm28+7utOPvnkAR3v3nvv1Xe/+93Y41NOOUXTpk1TVlaWXn/9dVVWVkqSVq1apcOHD+v3v/+90tL4eCRC9/6iGDgy80cGNtRoQw0AYBLzKLyE8eoPieznobxvx1CbVTpGP9u4I2HH61C6/tw5vu/znXdqws5lC+akLrbnYEt9HUrX9I9+jHvW4Lj4Ntrjbrrppthiybhx47R27Vqdd955secPHTqkuXPn6oUXXlBnZ6duuOEG7dixQwUFBUl97sLCQv3kJz8ZdBsl6YUXXuixUHPnnXfq//2//6eMjH9eWr1q1Srdcsstam9v13PPPafvf//7uvfeexNyfr/r7OzUjh07NHHiRPbmHCAy80cGNtRoQw0AYBLzKLyE8eoP9PPAlBTla0pxYcLuWZSqiE5NCerv0fxj7lszZXyhZ648GkqM1S6252BLfamKaNeO7SrK+7Cn64D7uGeNhz377LPavHmzJCkjI0Pr1q3rsVgiSSNHjtTatWs1YULXTeXq6uq0ZMkST587Xt/85jdjv8/9/9m78/goygR94E/1lc7VORQSA8il0gpKcDAgCnLoiAfHHAqOs4A4I+DsDszODDLrrKCzM4usu5qZ3yi4I8eICuoqx4ziqBDBI0aRKAJBBRJQSARC0jn7Sv3+KNNy5OhKuvrteuv5fj58DKa7632et+hK8qaqpk/HsmXLzlioAYA77rgDjz76aOTvRt/nx0pkub5oPLEza3QgQ0YZMhARicT3UTIT7q/WwHmO3tyxA2L2Wm4lhGtd5XAroXM+N++6gTHbjky4r2pk70GWfG4lhB1vvGr6HGQ8LtaY2J///OfIxzNnzsTll1/e5uNSU1Px0EMPRf6+YsUKhELnfgFglm3r8cEHH+CDDz4AANhstg4Xi+bMmYOLL74YAFBXV4enn346LmOUXUZGBhYtWoSMjAzRQzENdmaNDmTIKEMGIiKR+D5KZsL91Ro4z9Eb783B5KF5MXmtBjUJzzYPQ4OadMb/n5Kfh3HenjHZhmy4r2pk70GWfA1qEn485+emz0HG42KNSdXX1+PNN9+M/P2uu+7q8PE/+MEPkJaWBkA7w2X79u2m3LZeGzZsiHx8/fXXo0+fPu0+VlEUzJw5M/L3l19+2cihEREREREREZEOOxaOw46F4/Cdvllx3e7wvlnYsXDcOf//wcmDkeNJauMZ3ZfjScKSSYMNeW0iIkpMXKwxqXfffRd+vx+AdvbKVVdd1eHj3W43rr766sjft27daspt67Vt27bIx2PHju308ePGffvF1+k5qetqamrw4IMPoqamRvRQTIOdWaMDGTLKkIGISCS+j5KZcH/9VqItGMRSos9zn+wU9MlOwYj+2XHd7ogB2eiTfe6NwbNSXVgzuwAZyd27B0Wa4sddyR8iTdF+BpGR7MSa2QXISnV18kzrSvR9NV5k70GWfGmKHyv/9F+mz0HG42KNSe3bty/y8eWXXw6Hw9Hpc6688so2n5+I2w6FQnj99dfxn//5n/jlL3+J+++/H48++ih27NihawHl9G2dPob2DBs2LPJxOBzGZ599FvW2qG1paWmYOXNm5Owq6hw7s0YHMmSUIQMRkUh8HyUz4f76rURbMIgls8zz5PzYXH4s6u0N7dXu57y5HqyfM7JbZ9g0qU686r8ETaoTOZ4krJ8zEt5cT5dfzwrMsq8aTfYeZMnXpDpx0/emmT4HGa/zn7JTQtq/f3/k4759+0b1nAsvvDDycVlZWUJv+6uvvsJ3v/vdNj+XlZWFe++9F4sWLerwTe7rr78+Y8U6mrEmJyejR48eOH78eGSs7d2Ph6LjcDjQr18/0cMwFXZmjQ5kyChDBiIikfg+SmbC/fVck/Pz8HjRgfhtr4MFg1gxyzx7cz0o6JeNkvJqw7dV0D8bg3LTOx3PlvljsGTzHmwsPap7G2HYUNniwZT8PCyZNJhn1ETBLPuq0drqoU92CsqX3iJmQDEmyzyHYcMFvS+M6hfeydp4Zo1JnTx5MvJxTk5OVM/Jzc2NfFxd3fUvaERuGwBOnTqF3//+9xg+fHiHZ76cPk5AzFgJaGhowLp169DQ0CB6KKbBzqzRgQwZZchARCQS30fJTLi/nqt1wSAeolkwiAUzzfPcsQPisp151w2M6nFZqS4UTh+GlbOGo0DnWVdXX5iKX110An+YdAkXaqJkpn3VSLL3IEs+N4J4428vmz4HGY+LNSZVX18f+Tg5OTmq55z+uNOfn0jbTk9Px6xZs7Bu3Trs378f9fX18Pv9OHLkCF544QVcf/31kcfu378fEydOjJwF09E4jRirHm63O3IWUDgcRk1NDVRVBQD4fD4EAgEAQFNTU+SNOxQKnXFmUG1tLYLBIACgsbERjY2NAIBgMIja2trI42pqahAKhQBoB7WmpiYAQCAQgM/nAwCoqoqamhqEw+FIzubmZgCA3+9HXV0dAKClpQU1NTVoaWkBANTV1UUuQ9fc3Bzpp6NMfr8fqampsNls0mQyep4aGhqQmZkJRVGkyaR3noAz/y3KkOnseWpoaEBaWhpsNptpM1lhnpiJmZiJmYzM1NLSguTkZNhsNmkyJfo8uRBCMrTx2NDyzf0h4pPJ36xlciCMFAS+eZSKNMUfn6/Lm5vg/ia7PZJdU1/n6zSTzWZDcnLyGV/L6J0nJ8JI/ia78k125Zv+jdz3mpsakRTJHkbqadnrfLXd2vd+ck3vdjMlIwAntOd0tO+lIADHaY9ra57mXTcwLvuezWZDWlraGe9T3d332st09jzpfY8Y783B5Mt7npPJhpZv+g/CBe05He17Hc3T9wZnYuygHudk6mjf+84FbjwzezheWzAG/zQ8t9197+rebtx7XT+8tmAM/nT7EPTLPQ82m02a972mxoZI/2fve3W+2m6/7zU2NiIzMzPSUTz3PaDz9wi/v/33vVgec+vq6pCZmQmbzZYwx9xAoP19T+97eX19PdLT02Gz2RJm3+tonoLt7HvJSgBpnoyEmieZv96LRSZRuFhjUq07KQC4XNH91kVS0rfXT239x5BI277gggtw9OhRrFq1CtOmTcMll1yC1NRUuFwu9O7dGz/84Q/x+uuvY8WKFVAUBQBw6NAh/OY3v+l0nLEeq14jR47ED3/4QwDA8ePHUVhYGHkDWblyJfbu3QsAeOutt7B582YAwJdffonCwsLIazzxxBM4cEA7xf4f//gH/vGPfwAADhw4gCeeeCLyuMLCQnz55ZcAgM2bN+Ott94CAOzduxcrV64EoL25FRYWRha6XnzxRRQXFwMAdu3ahWeeeQaA9gZWWFgYecN85plnsGvXLgBAcXExXnzxxU4zlZSUoKGhAcnJydJkMnqenn32WUycOBE2m02aTHrnKRgMorS0NHKwlyHT2fP00ksv4fzzz0dycrJpM1lhnpiJmZiJmYzMdPLkSZSWlkYWvmXIlOjzdJmjCte5tPFkKs24zb0brm9+SGt0pl0l7wEA+tlP4eYk7dLQLoRxm3s3aqpPGD5Pu0rewyhXBQCgh60et7l3R8a64dnVnWZKTk5GaWlp5AoGXZmni+0ncEPS5wCAVCWA29y7kaoEupwp2nkqebsIVzm1uehl82FK0t7I415Y82S39j1Pw1f4YWZ5m5luSPocF9u1ue1o37s5qQz97KcAAPnOo+fM05T8PIzz9ozLvpecnIzzzz8fL730EoDY7HttZWprnrryHjHtIgWTkvefkSlT0X4WcJ3rAC5zVAHoeN9rb54GpIeRefCNLu97g3LT4Q0fanff8558G7dfmopBuel444034HA4kJycLM373jtb/4F8p3ZJuLP3vRfWPNnt49Pf//53TJw4EfX19UL2vc7maU/pTgBt73sN9XVtZurK+96KFSswceJEJCcnJ8wx9/O9Ws9t7XutCznR7nurVq3CwIEDkZycnDD7XkfzVH5AuwLQ2fveVPc+jBwzPqHmSeav92KRSRRFbV1WIlO55ZZb8MorrwAA7rvvPixdurTT57z66qu4+eabAWg36Dr9N6PNsu1W999/P/7whz8AAOx2O7766qtzLnP2wQcfoKCgIPL3pqYmuN3uTl97xIgRKCkpAQA88sgj+OUvf9nlce7ZswdDhgyB2+2Gw+FAcXExvF4v6urqkJGRAUVR4PP54Ha74XK50NTUhJaWFqSmpiIUCqG+vh6ZmZkAtFXqlJQUOJ3OyAp1SkoKgsEgGhsbkZGRAUBbpU5LS4PD4UBDQ0PkN+ACgQCam5vh8Xigqipqa2uRnp4Ou92O+vp6OBwOuN1u+P1+BAIBpKeno6WlBT6fDx6PBzabDXV1dXC5XEhKSkJzczNCoRDS0tIQDofbzVRbW4uysjIMGzYMNptNikxGz5PP58OXX36JSy+9FE1NTVJk0jtPzc3N+Oijj3DllVfC7XZLkenseTp58iQOHjyIoUOHoqWlxZSZrDBPzMRMzMRMRmZqbGxEaWkphg8fHvm6yeyZEnmevm4IY8Ky12GHiiY4YUMLUpQg6lUXdiwcjwxHyNBMx2qbcf0fi+FAGC6E0QgXtDMBAvjbv96Afj3SDZ2nL46exK1/3IFmOL/5Ld8g6lXtF9VenfcdXJR3XoeZAoEAPvzwQ+Tn5yMlJUX3PB1vbMH4ZW/AgTCa4IICFalKAA2qC9sXjkemM2zYvvf5Vydw65/ehh9O2BGGWwmh4Zvsr8y9Epf07tGtfe/rmnr88Kld+NrXHMmkQkEyAgjBjiDscCHU5r4HKEhBAAHYEfrmcTaokXnqk67g5QXfRVZq198j9Ox7NpsNH3/8MQYMGIDzzjuv2/teVX0IE5a9fkam1n1vx8Jx8NiD3X6P+PTwcdz1zB7UNgWQpgTQqDrRAhuSEUQYCgJwwIlwm/tee/PkSk7Bsz+5Cr1Slbjse6dOncLnn3+O/Px8AJDife+zL4/j1v/3LgJwnLPvvTL3OxjUp2e3jk+NjY04fPgwBg0aBL/fL2Tf62ieKusCuL7wvTb3vb//8rvoe35aTI651dXVOHr0KC677DI0NTUlxDH364YQJjz2bpvve6/86kZceF5q1P+ejh8/joqKClxxxRWRMzJE73sdzdOJxhaMf+ydc97L05RmPHprX1x7VX7CzJOsX+91N9NXX32FIUOGoNWnn36KwYMHI154VyOTar2kFhD92R+nP+7055tp261+85vf4NFHH0VTUxPC4TBef/11/PjHP253nK1jiGaxJtZjBc48y8dut0fezADA4/FEPj79ckIOh+OMx7W+sQHaG14rp9N5xudOf05qamrkY5fLFTm7SFGUMx53es6kpKTI2UU2m+2Mx6Wnf3uN5NO77CiToih47733cOmll8Lj8UiRKR7zVFRUhAEDBkiVCYh+ngKBAEpKSiKLnTJkOnuenE4n3nnnHQwaNOiMcZspkxXmiZmYiZmYychMoVAo8j7qcrmkyJTQ89TQiMBp3wK3wBZZrIhHpiS/dnWA0Dc/lNcoqFeTYLfbu5YJ0c9TkjsZzXAC0G50fHr2tHQPnE5nh5mam5sj+2trplZRzVNjI4Lf/EAcANRvsncnU7Tz5E5OgT+S3Y4G1R75XLonI3LD567ue31ykrBmdgGmrShGbZMS+VwTvr26Q0f7XmM7j0tLTsLyu0dG7mESj33P5/NFvkYFYrHvhc7IdPa+F4v3iCsv6oX1c9Ixc2UJqnyn9++MfNzRvnf2POV4tPn05n67r52ZKfb7nt1ux7vvvguv1wuPxyPF+15ySmpk22fve+mejG6/7wUCgTa/b47nvtfRPCUFvrkMVBv7XuvlT2Pxvud2uyM9JMoxtyaoZW9r32u9Uk60+15SUhLefvttXHLJJWc8R+S+16qteaoNnZs9DBuCqgO73n8Hwy/3Jsw8RZuplWm+3utmpq+++goicbHGpM4777zIx1VVVVE9p7KyMvJxdnbXb4Ioctut0tLSMGLECBQVFQEA9u3bd85jTh8noI01Kyur09eO9VitzuPxYMGCBaKHYSrszBodyJBRhgxERCJZ8X30SHUjRi/b1ubndiwchz7ZKW1+jsSz4v6qhzfXg/VzRn6zYODv/AmdaG/BwGhmnWdvrgdb5o/Bks17sLH0aJdfZ0p+HpZMGhxZIIsXs/YuEjvTyN6DLPka4cLts+bA4+HXOdQx3rPGpFp/ywUAKioqonrO4cOHIx97vV5Tbvt0F1xwQeTjEydOnPP5nj17nrFyGs1Ym5ubI9dEBGI3VitTVRXNzc3gFRejx86s0YEMGWXIQEQkEt9HyUy4v3audcFgSn5et15nSn4etswfE/eFGsDc85yV6kLh9GFYOWs4Cvrr+8XLgv7ZWDXrKhROHxb3hRrA3L2Lws40svcgTz4Vfr8MOchoXKwxqUsvvTTy8e7duyPXbezIRx991ObzzbTt0zU0NEQ+Pv3UudOdvq3Wm0x15PRx2u12XHLJJd0YIQHadSsffvhh1NbWih6KabAza3QgQ0YZMhARicT3UTIT7q/RMfOCASDHPI/35uD5OVfjtQVj8E8j+7b7uOF9s/CzcQPx2oIxeH7O1Rjn7RnHUZ5Jht7jjZ1pZO9BlnxpSgDPPPkn0+cg43GxxqRGjRoVuUZfQ0MDPvzwww4f7/f7UVxcHPn7+PHjTbnt052++JKX1/ZvLo0bNy7ycesl0zry1ltvRT4+PSd1XXp6OubMmXPGtSOpY+zMGh3IkFGGDEREIvF9lMyE+6s+ZlwwAOSa50G56bhnzIB2P//otHz8+kYvBuWKzypT7/HCzjSy9yBLvkbViSnTZ5g+BxmPizUmlZaWhgkTJkT+vnr16g4f/9JLL6Gurg6Adh+WMWPGmHLbrd544w0cOXIk8vexY8e2+bipU6ee8Zwvv/yyw9c9Pcvpz6Wus9vtyM3NjdzAjTrHzqzRgQwZZchARCQS30fJTLi/do2ZFgwAzrMo7F0/dqaRvQdZ8rXAhvN65Jg+BxmPizUmdu+990Y+Xr16Nfbs2dPm4xobG/HAAw9E/n7PPffA4XAk1LYDgQACgUBU2z5+/Djmzp0b+full16KK6+8ss3HXnXVVbjqqqsAAOFwGIsWLWr3dZ988kl89tlnALSV+xkzZkQ1HupYfX09Vq9ejfr6etFDMQ12Zo0OZMgoQwYiIpH4Pkpmwv3VGjjPYrB3/diZRvYeZMmXjCBeeWmd6XOQ8bhYY2K33HILRo8eDUC71Nitt96KTz755IzHnDx5ElOnTsUXX3wBQDuz5b777mvz9crLy6EoSuRPR2fMxHrbR48excCBA7Fs2TJUVFS0+RhVVfH3v/8dV111FQ4cOAAAUBQFjzzyCGy29nfl//zP/4x8/Mwzz2DRokUIBoNnPOb555/HggULIn//1a9+hfPPP7/d16ToORwO9OvXr9sLhFbCzqzRgQwZZchARCQS30fJTLi/WgPnWQz2rh8708jegyz5wlCQ26uP6XOQ8biHmNyzzz6LgoICHDt2DOXl5cjPz8d1112HgQMH4vjx43jjjTfQ2NgIQHuDe/7555GZmZmQ2/7yyy9x33334b777kO/fv1w+eWX4/zzz4fT6cTx48fx/vvv4+jRo2c8Z9myZbj55ps7HOeECRPw29/+Fv/xH/8BAHj44Yfx9NNPY/To0XC73di5cyc+/fTTyONvuOEG/Nu//VsXW6Gzud3udi9TR21jZ9boQIaMMmQgIhKJ76NkJtxfrYHzLAZ714+daWTvQZZ8AThw5Yhr4Ha7RQ+FEhzPrDG53r17Y+vWrcjPzwegnX1SVFSEp556Cps2bYoslvTo0QMbNmw4414zibzt8vJybN68GatWrcKTTz6Jl19++YyFml69emHjxo341a9+FdXrPfTQQ/jd734Hp9MJQDuTZ/369VizZs0ZCzXTp0/Hiy++yJXuGPL7/SguLobf7xc9FNNgZ9boQIaMMmQgIhKJ76NkJtxfrYHzLAZ714+daWTvQZZ8ToSxp/RD0+cg43GxRgJerxfvv/8+1qxZg4kTJ6JPnz5wuVzo2bMnRo4ciWXLlmHv3r245ZZbEnbbffv2xe7du/Hkk09i1qxZuOqqq9C/f394PB44HA5kZ2dj8ODBmDVrFtavX49Dhw5h8uTJUY9TURT89re/xccff4x//dd/xZAhQ5CRkYGUlBQMHDgQP/7xj/H666/jueeeg8fj6W4tdJpAIIDS0tKo70lE7AywRgcyZJQhAxGRSCLeR49UN6Lfor+3+edIdWPcxkHmw+O+NXCexWDv+rEzjew9yJLPgTA+3/ep6XOQ8Xj6gCRcLhdmzJiBGTNmdPk1+vXrB1VVhWxbURQMGTIEQ4YMwU9/+tMuv05nLr30Uvz3f/+3Ya9P50pPT8fcuXNFD8NU2Jk1OpAhowwZiIhE4vsomQn3V2vgPIvB3vVjZxrZezBTvrJKH9YWt30f7ia4UGTLR9M7X2FKfi8Myk2P8+jILLhYQ0SGamlpgc/ng8fjgc3Gk/miwc6s0YEMGWXIQEQkEt9HyUy4v1oD51kM9q4fO9PI3oMZ8m0tq8LyooMoKa9u9zEKVOw/XImPKqrxeNEBFPTLxryxAzHO2zOOIyUzSMy9nIik4fP5UFhYCJ/PJ3oopsHOrNGBDBllyEBEJBLfR8lMuL9aA+dZDPauHzvTJGIPfbJTUL70ljb/9MlO0fVaiZiv1amGAH7+3C7MXv1hhws1AJCqBHCbezdSFe0yaCXl1bhr9QeYv24XTjXw0mj0LS7WEJGhPB4P5s+fz3sB6cDOrNGBDBllyEBEJBLfR8lMuL9aA+dZDPauHzvTyN5Doubbd8yHiYXbsenjo1E9vkF14YXmy9Ggus74/xtLj2Ji4XaUVSbeYhSJwcUaIjKUzWZDZmZmwp6umojYmTU6kCGjDBmIiETi+yiZiVn317JKH1ZsP9Du5xesL8WyLWXYX1kXx1ElLrPOs9mxd/3YmUb2HhIx375jPkx/shhVPn/Uz1GhoF5NggrlnM9V+fyYtqKYCzYEgIs1RGSwuro6LF++HHV1/OYnWuzMGh3IkFGGDEREIvF9lMzEbPvr1rIq3L78PUx8bAfWFh9u93E7K07h8aIDuPGx7bh9+XvYVvZ1HEeZeMw2z7Jg7/qxM43sPSRavlMNAcxaVYLapqCu5yUjgMlJe5CMti95VtsUxMyVJbwkGnGxhoiM5XK5kJ+fD5fL1fmDCQA7A6zRgQwZZchARCQS30fJTMyyv+q5h8DZeA8B88yzbNi7fuxMI3sPiZZv8aY9us6oaRWCHV+EzkcI9nYfU+XzY8nmPd0ZHknAIXoARCS3pKQkjBw5UvQwTIWdWaMDGTLKkIGISCS+j5KZmGF/3XfMh1mrSrr0g7TTbSw9iuKDJ7FmdgG8uYl1nwSjmWGeZcTe9WNnGtl7SKR8W8uqor5HzdmCsGNvOKfTx20sPYop+XkY7+38sSQnnllDRIZqbm5GUVERmpubRQ/FNNiZNTqQIaMMGYiIROL7KJlJd/bXeNw3piv3EOiIVe8hwPclMdi7fuxMI3sPiZRvedHBLj/XhRDyHV/BhVDn23mr69sh8+NiDREZKhQKoby8HKFQ5wck0rAza3QgQ0YZMhARicT3UTKTruyv8bpvTFfvIdAZK95DgO9LYrB3/diZRvYeEiVfWaVP96U1T2eHilxbHexQO31syaHqbv3yApkbL4NGRIZKS0vDrFmzRA/DVNiZNTqQIaMMGYiIROL7KJmJnv31VEMAizft6dLlYkrKq1GyuhpT8vOwZNJgZKV2fp+Crt5DIBqt9xAonD7MkNdPNHxfEoO968fONLL3IDrfkepGAMDa4opuvU4TnNgS8Eb9+LXFFbhnzAD0yU7p1nbJfHhmDREZKhwOo7KyEuFwWPRQTIOdWaMDGTLKkIGISCS+j1K8xOIyZNHur/uO+TCxcHuXr+vfamPpUUws3N7pZci6cw8BPWPZWlZl6DYSBd+XxGDv+rEzjew9iM43etk2jF62rcOzQ6NhQwuylUbY0BLV458ursDoZdu6tU0yJy7WEJGh6urqsGLFCtTV8RTOaLEza3QgQ0YZMhARicT3UTJaLC9DFs3+KuK+Md25h4AeVrmHAN+XxGDv+rEzjew9yJIvRQliinsvUpTYXq6T5MPLoBGRoTIyMnDfffchKSlJ9FBMg51ZowMZMsqQgYhIJL6PklGMuAxZZ/ur0feN2TJ/zDmXROvuPQT0aL2HwKDc9LhsTxS+L4nB3vXrrLM+2SkoX3pLnEcVf7LvO7Lkq1ddeKYpHwHYRQ+FEhzPrCEiQymKArfbDUVRRA/FNNiZNTqQIaMMGYiIROL7KBnBqMuQdba/xuO+Ma2OVDfiSHVjt+8hoNfa4orI/QtkxfclMdi7fuxMI3sP8uRTEIADgNlzkNG4WENEhvL5fHjsscfg83V8rWn6FjuzRgcyZJQhAxGRSHwfpVgz8jJkHe2v8b5vTKzuIaCXFe4hwPclMdi7fuxMI3sPsuRLQQA/TPoEKQiIHgolOC7WEJGh3G43xo4dC7fbLXoopsHOrNGBDBllyEBEJBLfRymWjL4MWVPY1u7+yvvGyIPvS2Kwd/3YmUb2HmTJF4AdpaE8XgaNOsV71hCRoVwuF/Lz80UPw1TYmTU6kCGjDBmIiETi+yjFktGXIfvDa5+jcPqwcz4n4r4xZBy+L4nB3vVjZxrZexCdb8fCcQCABetLsbPiVJdfJwQ7vgifH/Xjh/fNwqPT8ru8PTIvnllDRIZqamrCli1b0NTUJHoopsHOrNGBDBllyEBEJBLfRylW4nEZsldLD+N/n30JTU1NkXvGiLpvDBmH70tisHf92JlG9h5E5+uTnYI+2SkY0T+7W6/jQggFzsNwIRTV40cMyEaf7JRubZPMiWfWEJGhWlpaUFNTg5aWFtFDMQ12Zo0OZMgoQwYisqYj1Y3t3ndix8JxcfvmmO+jFCvxuAyZDSrKDleipaUFo5cVGb699jzNxRpD8X1JDPauHzvTyN5DouSbnJ+Hx4sOdPn5NqhIUwKwQY1ue0N7dXlbZG5crCEiQ6WmpmL69Omih2Eq7MwaHciQUYYMREQi8X2UYiFelyFrhhP/V9MX99TJ+QNB0vB9SQz2rh8708jeQ6Lk8+Z6UNAvu8vH22Y4sTVwUVSPLeifjUG56V3aDpkfL4NGRIYKhUIoLy9HKBTdqZ7EzgBrdCBDRhkyEBGJxPdR6o54X4bMjhbk2nxY+67xZ/F05rX5o7Fj4Th8p29WXLc7vG9W5P4FsuL7khjsXT92ppG9h0TKN3fsgC4/t/UYakfnv/Aw77qBXd4OmR8Xa4jIUPX19VizZg3q6+tFD8U02Jk1OpAhowwZiIhE4vsodcfoZdswetk2rC0+HJftJStB3JT0GV7+oOuXgYmVHh53TO4hoJcV7iHA9yUx2Lt+7Ewjew+JlG+8NweTh+Z16bmtx9BkJdjh46bk52Gct2eXtkFy4GXQiMhQmZmZWLx4sehhmAo7s0YHMmSUIQMRkUh8HyUzqVeTsKppuOhhAABcDu33Trt7DwG9rHAPAb4vicHe9WNnGtl7SLR8D04ejPcPnUSVz6/redEcQ3M8SVgyaXB3hkcS4Jk1RERERERERGQaqS47gG/vIRAPvIcAERFlpbqwZnYBMpKdMX3djGQn1swuQFaqK6avS+bDxRoiMlRtbS2WLl2K2tpa0UMxDXZmjQ5kyChDBiIikfg+SmaSqvjxI/cupCp+bP7na7Bj4Thh941RFCXy9+7cQ0APq9xDgO9LYsjYe5/sFJQvvaXNP7G4nKCMnXWF7D0kYj5vrgfr54xEjicp6uecfgw9W44nCevnjIQ31xPLYZJJ8TJoRGSolJQUTJ06FSkpcl/bOZbYmTU6kCGjDBmIiOLtSHUjRi/bBgCwI4xett743/98C2HYsWPhOOnvh0Hm1aw68HagH5pVB/r3SENakvbjhBH9s7Gz4lTcxjFiwJln0rTeQ2DTx0cN26aV7iHAr+/EYO/6sTON7D0kaj5vrgdb5o/Bks17sLG08+PP6cfQ003Jz8OSSYN5Rg1F8MwaIjKU0+mE1+uF0xnbU0Rlxs6s0YEMGWXIQEQkUhh2HG7JQhh20UMh6tTp+2vrZcgA7b4x8dTWfWMenDxY128462G1ewjw6zsx2Lt+7Ewjew+JnC8r1YXC6cOwctZwFPTv+JKcZ3/NV9A/G6tmXYXC6cO4UENn4GINERmqsbERGzZsQGNjo+ihmAY7s0YHMmSUIQMRkUhJCOJa5yEkISh6KGRC8b4MWev+OqJP6hmXIUuE+8bwHgKxw6/vxGDv+rEzjew9mCHfeG8Onp9zNV5bMAb/NLJvm49JQhBTs77Cvdf2xmsLxuD5OVdb5oxN0oeLNUREREREREQm0yc7BX2yUzCik9/mjbW2FocS4b4xXbmHQEd4DwEiItJjUG467hnT/vHwqn7Z+OfxF7f5SwdErbhYQ0SGStTriyYydmaNDmTIKEMGIiKR/HDi7WB/+JF4l/Yg84jXZcha99cpw8/9QVTrfWOMFM19Y1rvITClm51Myc/DlvljLLlQw6/vxGDv+rEzjew9yJLPDyfG3HCz6XOQ8bhYQ0SGCgaDKCsrQzDIy3tEi51ZowMZMsqQgYhIJDvCuNB2CnaERQ+FTCxelyGzI4wJF4Qw4Dx3m59PlPvG6LmHwNl4DwF+fScKe9ePnWlk70GWfHaEUXHgc9PnIONxsYaIDGWG64smGnZmjQ5kyChDBiIikdxKCNe6yuFWQqKHQiYXj8uQuZUQ+jfsbfe4n2j3jYnmHgIAMLxvFn42biDvIfANfn0nBnvXj51pZO9BlnxuJYQdb7xq+hxkPIfoARCR3DIyMrBo0SLRwzAVdmaNDmTIKEMGIiKRGtQkPNs8TPQwKA7KKn1YW1zR7ucXrC/FiP7ZmJLfq0vXsm+9DNmmj492Z5gdun5of/x2+vc7fEzrfWNmrixBlc/f7W3meJKwZnZBty5H1noPgafb6f/Rafnok83L0rTi13disHf92JlG9h5kydegJuHHc36OjAweb6hjXKwhIiIiIiIiMsDWsiosLzqIkvLqDh+3s+IUdlacwuNFB1DQLxvzxg7UfYbHg5MH4/1DJ2OySHI2PZcha71vzJLNe7CxtOuLR1Py87Bk0mDLXo6MiIiIrIeXQSMiQ9XU1ODBBx9ETU2N6KGYBjuzRgcyZJQhAxGRSGmKH3clf4g0JfY/XCexTjUE8PPndmH26g87Xag5W0l5Ne5a/QHmr9uFUw2BqJ9n9GXIlGBj1Md93jfGvPj1nRjsXT92ppG9B1nypSl+rPzTf5k+BxmPZ9YQkaHS0tIwc+ZMpKWliR6KabAza3QgQ0YZMhARidSkOvGq/xI0qbH94TqJte+YD7NWdf8yYBtLj6L44EldlwEz8jJkoVBI93F/vDcH47052F9Zh7XFFe1eimx43yyMGJCNyUO7dhk4ih1+fScGe9ePnWlk70GWfE2qEzd9b5rpc5DxeGYNERnK4XCgX79+cDi4NhwtdmaNDmTIKEMGIiKRwrChssWDML8tk8a+Yz5Mf7I4Zpciq/L5MW1FMcoqfVE/p/UyZFPy87q17Sn5edgyf0xkoag7x/3W+8a059Fp+fj1jV4u1CQAfn0nBnvXj51pZO9Blnxh2HBB7wtNn4OMx+8KiMhQDQ0NWLduHRoaGkQPxTTYmTU6kCGjDBmIiERyI4jxri/gRlD0UCgGTjUEMGtVCWqbYjuftU1BzFxZovuSaLG+DBmP+9bAeRaDvevHzjSy9yBLPjeCeONvL5s+BxmPy3lEZCibzYbMzEzYbFwbjhY7s0YHMmSUIQMRkUgtUFCvutACRfRQKAYWb9oTszNqzlbl82PJ5j0onD5M1/NieRkyHvetgfMsBnvXj51pZO9BlnwtUJDmyTB9DjIeF2uIyFDJycmYOHGi6GGYCjuzRgcyZJQhAxGRSAE4UBK8UPQwKAa2llVh08dHDd3GxtKjmJKfh/HeHN3Pbb0MWXuLNY9Oy0ef7JQOX4PHfWvgPIvB3vVjZxrZe5AlXwAOjBwzDsnJyaKHQgmOy3lEZKhAIIDS0lIEAtFftsHq2Jk1OpAhowwZiIhEciCMi+wn4EBY9FCom5YXHYzPdt6Kz3bawuO+NXCexWDv+rEzjew9yJLPgTA+3/ep6XOQ8RJ+sebIkSPYsWMHXnjhBaxevRqrV6/GCy+8gB07duDIkSOih0dEnWhubkZRURGam5tFD8U02Jk1OpAhowwZiIhEciGMfMdRuLhYY2pllT6UlFfHZVslh6qxv7IuLts6G4/71sB5FoO968fONLL3IEs+F8LY9f47ps9Bxku4y6Dt378ff/vb3/D666/jgw8+QE1NTYePz8zMxFVXXYUbbrgBt956KwYNGhSfgRJRVDweDxYsWCB6GKbCzqzRgQwZZchARCRSI1x40X+F6GFQFx2pbgQArG3n0mJGWVtcgXvGDOj0smWxxuO+NXCexWDv+rEzjew9yJKvES7cPmsOPJ74HrvJfBJisaapqQmrV6/GypUr8dFHH0X+v6qqnT731KlTeP311/H6669j4cKFGDZsGO6++27MnDkTKSn8B0Akmqqq8Pv9SEpKgqLw5rnRYGfW6ECGjDJkICISS4ULYQRgB8D3UbMZvWybkO0+XVyBp4srUL70lrhul8d9a+A8i8He9WNnGtl7kCefCr+/GaqabPIcZDShl0Hz+Xx44IEH0Lt3b/zzP/8zPvroI6iqGvkDAA6HA3369MGwYcNwzTXXYNSoURg2bBh69+4Nh0Nbazr9Obt27cI///M/o3fv3njggQfg8/lERiSyvNraWjz88MOora0VPRTTYGfW6ECGjDJkICISKU0J4M7kUqQpvH45JT4e962B8ywGe9ePnWlk70GWfGlKAM88+SfT5yDjCTmzJhwO409/+hN+97vfoaam5owzaC677DKMHz8eo0ePRn5+Pi666KJ2VxxVVcXnn3+Ojz/+GDt27MDWrVuxd+9eAEBNTQ1+//vf489//jP+/d//Hf/yL/8Cu90el3xE9K309HTMmTMH6enpoodiGuzMGh3IkFGGDEREIjWqTmxsvgyNqlP0UIg6xeO+NXCexWDv+rEzjew9yJKvUXViyvQZps9BxhOyWDN06FDs27cvskjTv39/zJ49G7fffjsuvvjiqF9HURRccskluOSSS3DbbbcBAL744gusX78eq1atwsGDB3Hq1Cn88pe/xFNPPYXdu3cbkoeI2me325Gbmyt6GKbCzqzRgQwZZchARCRSC2yoVnnpZjIHHvfNq092StSXzeM8i8He9WNnGtl7kCVfC2w4r0cOTySgTgm5DNrevXuhqirGjBmDV155BQcOHMD999+va6GmPRdddBHuv/9+fPHFF/j73/+O6667DqqqRs64IaL4qq+vx+rVq1FfXy96KKbBzqzRgQwZZchARCRSMoKY6CpDMoKih0LUKR73rYHzLAZ714+daWTvQZZ8yQjilZfWmT4HGU/IYs3IkSNRVFSEoqIiTJw40bDt3HTTTdi2bRuKioowcuRIw7ZDRO1zOBzo169f5B5T1Dl2Zo0OZMgoQwYiIpHCUFDZko4weKNZSnw87lsD51kM9q4fO9PI3oMs+cJQkNurj+lzkPGE7CHvvvtuXLc3ZswYvPPOO3HdJhFp3G43xo4dK3oYpsLOrNGBDBllyEBEJFIADpSGeokeBnXRjoXjAAAL1pdiZ8WpuG13eN8sPDotP27ba8XjvjVwnsVg7/qxM43sPciSLwAHrhxxDdxut+ihUIITcmYNEVmH3+9HcXEx/H6/6KGYBjuzRgcyZJQhAxGRSE6EcZm9Ck6ERQ+FuqBPdgr6ZKdgRP/suG53xIBs9MmO/72OeNy3Bs6zGOxdP3amkb0HWfI5Ecae0g9Nn4OMx8UaIjJUIBBAaWkpAoGA6KGYBjuzRgcyZJQhAxGRSA6EcZHjBBxcrDFcWaUPK7YfaPfzC9aXYtmWMuyvrNP92pPz87ozNP3bGyrmbCwe962B8ywGe9ePnWlk70GWfA6E8fm+T02fg4zHC+URkaHS09Mxd+5c0cMwFXZmjQ5kyChDBiIikZrgwib/YNHDkNrWsiosLzqIkvLqDh+3s+IUdlacwuNFB1DQLxvzxg7EOG/PqLbhzfWgoF92p9uIhYL+2RiUm274dtrC4741cJ7FYO/6sTON7D3Ikq8JLky9YxbS0+N/ZiyZi6kXa3bu3InNmzejqqoKPXv2xE033YSRI0eKHhYRnaalpQU+nw8ejwc2G0/miwY7s0YHMmSUIQMRkUgKVKQqATSoLqhQRA9HKqcaAli8aQ82fXxU93NLyqtRsroaU/LzsGTSYGSlujp9ztyxA1Cy2vjFmnnXDTR8G+3hcd8aOM9isHf92JlG9h5kyadARZ2vFi2ZblPnIOMl3N5RU1ODGTNmYMaMGXjkkUfafdyCBQtQUFCA3/3ud3jyySfxH//xH7jmmmswc+ZMhMO8jABRovD5fCgsLITP5xM9FNNgZ9boQIaMMmQgIhIpVQngNvdupCq8JEYs7Tvmw8TC7V1aqDndxtKjmFi4HWWVnR/nxntzMHmosZdDm5KfF/XZPkbgcd8aOM9isHf92JlG9h5kyZeqBPDCmidNn4OMl3CLNZs2bcLatWvxzDPPoEePHm0+5qmnnsIf//hHqKp6zp+1a9fiF7/4RZxHTUTt8Xg8mD9/Pjwej+ihmAY7s0YHMmSUIQMRkUgNqgsvNF+OBrXzMzcoOvuO+TD9yWJU+WJzA98qnx/TVhRHtWDz4OTByPEkxWS7Z8vxJGHJJLGXzONx3xo4z2Kwd/3YmUb2HmTJ16C6cNvMe0yfg4yXcIs1RUVFAAC73Y4pU6ac8/mWlhYsWbIEAKAoCoYMGYJ//dd/xW233QZFUaCqKp544gmUlZXFcdRE1B6bzYbMzEye5qkDO7NGBzJklCEDEZFIKhTUq0m8BFqMnGoIYNaqEtQ2BWP6urVNQcxcWYJTDR2fAZWV6sKa2QXISHbGdPsZyU6smV0Q1eXYjMTjvjVwnsVg7/qxM43sPciST4WCdE+G6XOQ8RJuD/nkk08AAJdeeikyMzPP+fybb76Jr776Coqi4Nprr8WHH36IRx55BOvXr0dhYSEAbUHnr3/9azyHTUTtqKurw/Lly1FXVyd6KKbBzqzRgQwZZchARCRSMgKYnLQHyeBl0GJh8aY9MTuj5mxVPj+WbN7T6eO8uR6snzMyZmfY5HiSsH7OSHhzxf8mLo/71sB5FoO968fONLL3IEu+ZASw4bnVps9Bxku4xZojR45AURR4vd42P//aa69FPr7//vvhcn3720X33HMPsrOzAQBvv/22sQMloqi4XC7k5+ef8W+VOsbOrNGBDBllyEBEJFIIdnwROh8h2EUPxfS2llV1+x41ndlYehRby6o6fZw314Mt88dgSn737mEzJT8PW+aPSYiFGoDHfavgPIvB3vVjZxrZe5AlXwh2XHzpENPnIOM5RA/gbK03WmpddDnb9u3bAWjXLJwwYcIZn3O5XBg5ciReeeUVfPbZZ8YOlIiikpSUhJEjR4oehqmwM2t0IENGGTIQkRhHqhsxetm2Nj+3Y+E49MlOifOIxAjCjr3hHNHDkMLyooPx2c5bBzHe2/mcZaW6UDh9GKbk52H5WwdRcqg66m0U9M/GvOsGYpy3Z3eGGnM87lsD51kM9q4fO9PI3oMs+YKwY3D+cCQlGXNvO5JHwp1Z09LSAgBQVfWczzU1NaG0tBSKouCaa66B3X7ub6Dl5uYCAGpra40dKBFFpbm5GUVFRWhubhY9FNNgZ9boQIaMMmQgIhLJhRDyHV/BhZDooZhaWaUPJeXRL4Z0R8mhauyvjP4SJuO9OXh+ztV4bcEY/NPIvu0+bnjfLPxs3EC8tmAMnp9zdcIt1AA87lsF51kM9q4fO9PI3oMs+VwI4aP33zF9DjJewi3WeDzaKd7Hjh0753PvvPMOQiHtG5lRo0bFdVxE1DWhUAjl5eWRf7vUOXZmjQ5kyChDBiIikexQkWurgx3n/qIade5IdSOOVDdibXFFXLe7trgCR6obdT1nUG467hkzoN3PPzotH7++0YtBuendHZ5heNy3Bs6zGEb13ic7BeVLb2nzj9nPYuW+qpG9B1ny2aGi8qsjps9Bxku4y6BddNFFeP/991FcXIxwOHzG2TMvv/xy5OPRo0e3+fyvv/4aAJCZmWnoOIkoOmlpaZg1a5boYZgKO7NGBzJklCEDEZFITXBiS6Dte3VS59q7lJ7Rni6uwNPFFShfeouQ7YvC4741cJ7FYO/6sTON7D3Ikq8JTtz8/elISzP3IikZL+HOrBkzZgwA4MSJE/if//mfyP///PPP8fTTTwMAMjIy2r1e4SeffAJFUTBgQPu/tURE8RMOh1FZWYlwOCx6KKbBzqzRgQwZZchARCSSDS3IVhphQ4vooRB1isd9a+A8i8He9Uv0zuJ1VlOi99BdsuSzoQUnj1eZPgcZL+EWa2bPnh05m2bRokUYM2YMfvCDH2DEiBGor6+HoiiYMWMGnE7nOc+tqKjA4cOHAQBDhw6N67iJqG11dXVYsWIF6uqiv7a31bEza3QgQ0YZMhARiZSiBDHFvRcpSlD0UIg6xeO+NcR6nmW+DFcs8d+XfuxMI3sPXcmXiO87KUoQG9f9Vdp5othJuMugDRo0CPfffz8eeughKIqCd95554zP5+Tk4P7772/zuS+++GLk42uuucbQcRJRdDIyMnDfffchKSlJ9FBMg51ZowMZMsqQgYhIpHrVhWea8hGAvfMHEwnG4741cJ7FYO/6sTON7D3Ikq9edeHOe/4FGRkZoodCCS7hzqwBgCVLluDRRx/FeeedB1VVI39GjhyJN998Ez169DjnOaqqYvny5QAARVHw3e9+N97DJqI2KIoCt9sNRVFED8U02Jk1OpAhowwZiIjEUhCAAwDfRynx8bhvDZxnMdi7fuxMI3sP8uRTkJQkQw4yWkIu1gDA/PnzcezYMezevRvvvPMODh8+jHfffReXXnppm4+vra3Fb3/7W6xatQrr169vc0GHiOLP5/Phscceg8/nEz0U02Bn1uhAhowyZCAiEikFAfww6ROkICB6KESd4nHfGjjPYrB3/diZRvYeZMmXggCeX73C9DnIeAl3GbTT2e12DB48OKrHZmZmYubMmQaPiIj0crvdGDt2LNxut+ihmAY7s0YHMmSUIQMRkUgB2FEayuNl0Lpox8JxAIAF60uxs+JU3LY7vG8WHp2WH7ftJQoe962B8ywGe9ePnWlk70GWfAHYMWzENabPQcZL6MUaIjI/l8uF/Px80cMwFXZmjQ5kyChDBiIikUKw44vw+aKHYVqtNwke0T87ros1IwZkW/LG6DzuWwPnWQz2rh8708jegyz5QrDj4kuHwOVyiR4KJbiEvQwaEcmhqakJW7ZsQVNTk+ihmAY7s0YHMmSUIQMRkUguhFDgPAwXQqKHYmqT8/Piu72hveK6vUTB4741cJ7FYO/6sTON7D3Iks+FEIq3bzV9DjKekMUaETsm/zEQidHS0oKamhq0tLSIHoppsDNrdCBDRhkyEBGJZIOKNCUAG1TRQzE1b64HBf2y47Ktgv7ZGJSbHpdtJRoe962B8ywGe9ePnWlk70GWfDaoqPfVmj4HGU/IYs1FF12Ev/zlLwiHw4ZvKxwO48knn8RFF11k+LaI6FypqamYPn06UlNTRQ/FNNiZNTqQIaMMGYiIRGqGE1sDF6EZTtFDMb25YwfEZTvzrhsYl+0kIh73rYHzLAZ714+daWTvQZZ8zXDi+lu/Z/ocZDwhizXHjh3DnDlzMHDgQPy///f/UF9fH/Nt1NXV4Y9//CMGDhyIefPmobKyMubbIKLOhUIhlJeXIxTi5T2ixc6s0YEMGWXIQEQkkh0tyLX5YAd/y7K7xntzMHmosZdDm5Kfh3HenoZuI5HxuG8NnOfY6pOdgvKlt7T55/R7X7F3/diZRvYeZMlnRwuOfXnY9DnIeEIWayZPngxVVXH48GHMnz8fF1xwAWbPno3XXnutWzttKBTCa6+9htmzZyMvLw+/+MUvcPjwYaiqiilTpsQwARFFq76+HmvWrDFkUVZW7MwaHciQUYYMREQiJStB3JT0GZKVoOihSOHByYOR40ky5LVzPElYMmmwIa9tFjzuWwPnWQz2rh8708jegyz5kpUgXn15velzkPEcIja6YcMGbNmyBb/61a+wd+9eNDQ0YM2aNVizZg3S09NxzTXXYPTo0bjiiivg9XrRu3dvuFyuM17D7/fjyy+/xP79+/Hxxx/j7bffxjvvvIO6ujoAgKpq130ePHgwHnnkEdx4441xz0lEQGZmJhYvXix6GKbCzqzRgQwZZchARCRSvZqEVU3DRQ9DGlmpLqyZXYBpK4pR2xS7BbCMZCfWzC5AVqqr8wdLjMd9a+A8i8He9WNnGtl7kCVfvZqE2f/ya2RmpnT+YLI0IYs1ADBx4kTceOONePbZZ7Fs2TLs3r0bAODz+bBlyxZs2bLljMenpKQgJSUFqqqiqakJjY2N57xm6wINAFx++eVYtGgRpk+fDkVRjA1DREREREREwnlzPVg/ZyRmrixBlc/f7dfL8SRhzewCeHM9MRgdEREREVH7hFwGrZWiKLjzzjvx8ccf44033sAdd9yB5ORkqKp6zp+GhgYcP34cJ06cQENDQ5uPSU5Oxh133IE33ngDH3/8Me644w4u1BAJVltbi6VLl6K2tlb0UEyDnVmjAxkyypCBiEikVMWPH7l3IVXp/qKCGZRV+rBi+4F2P79gfSmWbSnD/sq6bm3Hm+vBlvljMCW/e/ewmZKfhy3zx3Ch5hs87lsD51kM9q4fO9PI3oMs+VIVP9au+KPpc5DxhJ1Zc7bx48dj/PjxaGxsxJtvvonXX38d77//Pnbv3o3m5uY2n5OcnIzLL78cBQUFuOGGGzBhwgSkpPB0MqJEkpKSgqlTp/Lfpg7szBodyJBRhgxERCI1qw68HeiHZjVhvi0zxNayKiwvOoiS8uoOH7ez4hR2VpzC40UHUNAvG/PGDsQ4b88ubTMr1YXC6cMwJT8Py986iJJDHW/7dAX9szHvuq5vW1Y87lsD51kM9q4fO9PI3oMs+ZpVB0Zff5Ppc5DxEu67gpSUFEyaNAmTJk2K/L/KykpUVVWhoaEBAJCamorc3Fzk5OSIGiYRRcnpdMLr9YoehqmwM2t0IENGGTIQEYkUhh2HW7JED8MwpxoCWLxpDzZ9fFT3c0vKq1GyuhpT8vOwZNLgLt8vZrw3B+O9OdhfWYe1xRV4uriizccN75uFEQOyMXloLwzKTe/StmTH4741cJ7FYO/6sTON7D3Iki8MO/oOvBhOp1P0UCjBCb0MWrRyc3MxdOhQjBo1CqNGjcLQoUO5UENkEo2NjdiwYUOb95mitrEza3QgQ0YZMhARiZSEIK51HkISgqKHEnP7jvkwsXB7lxZqTrex9CgmFm5HWaWvW68zKDcd94wZ0O7nH52Wj1/f6OVCTQd43LcGzrMY7F0/dqaRvQdZ8iUhiO2vv2L6HGS8hDuzhoiIiIiIiMxr3zEfpj9ZjNqm2CxCVfn8mLaiGOvnjOT9Y8iU+mSnoHzpLaKHYUnsnoiIzISLNURkqNbri1L02Jk1OpAhowwZiIhE8sOJt4P9RQ8jpk41BDBrVUnMFmpa1TYFMXNlCbbMH9PlS6JR9/C4bw2cZzHYu37sTCN7D7Lk88OJMTd8l/esoU6Z4jJoRGRewWAQZWVlCAblu7yHUdiZNTqQIaMMGYiIRLIjjAttp2BHWPRQYmbxpj2o8vkNee0qnx9LNu8x5LWpczzuWwPnWQz2rh8708jegyz57Aij4sDnps9BxuNiDREZSpbri8YTO7NGBzJklCEDEZFIbiWEa13lcCsh0UOJia1lVd2+R01nNpYexdayKkO3QW3jcd8aOM9isHf92JlG9h5kyedWQtjxxqumz0HG42XQiMhQGRkZWLRokehhmAo7s0YHMmSUIQORVR2pbsToZdva/NyOhePQJ5uXaIiHBjUJzzYPEz2MmFledDA+23nrIMZ7c+KyLfoWj/vWwHkWg73rx840svcgS74GNQk/nvNzZGTwa2zqGM+sISIiIiIisoCySh9WbD/Q7ucXrC/Fsi1l2F9Z16XXLimv7s7wolZyqLpLYyQiIiIiSmRcrCEiQ9XU1ODBBx9ETU2N6KGYBjuzRgcyZJQhAxGRSGmKH3clf4g0xZh7vLTaWlaF25e/h4mP7cDa4sPtPm5nxSk8XnQANz62Hbcvfw/byr7u9LWPVDfiSHUj1hZXxHLInYr39ojHfavgPIvB3vVjZxrZe5AlX5rix8o//Zfpc5DxeBk0IjJUWloaZs6cibS0NNFDMQ12Zo0OZMgoQwYiIpGaVCde9V+CJtVpyOufaghg8aY9XbqPTEl5NUpWV2NKfh6WTBqMrFRXm49r73J6Rnu6uAK/mzpEyLatisd9a+A8i8He9WNnGtl7kCVfk+rETd+bZvocZDwu1hCRoRwOB/r16yd6GKbCzqzRgQwZZchARCRSGDZUtngMee19x3yYtaoEVb7unbWzsfQoig+exJrZBfDmGjPWrlJVFYqiiB6GZfC4bw2cZzHYu37sTCN7D7LkC8OGC3pfCIeDP4qnjvEyaERkqIaGBqxbtw4NDQ2ih2Ia7MwaHciQUYYMREQiuRHEeNcXcCMY09fdd8yH6U8Wd3uhplWVz49pK4pRVumLyevFSkMgLHoIlsLjvjVwnsVg7/qxM43sPciSz40g3vjby6bPQcbjYg0RGcpmsyEzMxM2G99uosXOrNGBDBllyEBEJFILFNSrLrQgdmeHnGoIYNaqEtQ2xXYBqLYpiJkrS3CqIRDT1+2OQKhF9BAshcd9a+A8i8He9WNnGtl7kCVfCxSkeTJMn4OMx3OviMhQycnJmDhxouhhmAo7s0YHMmSUIQMRkUgBOFASvDCmr7l4056YnVFztiqfH0s270Hh9GGGvL5eLgd/4BFPPO5bA+dZDPauHzvTyN6DLPkCcGDkmHFITk4WPRRKcPzqlogMFQgEUFpaikAgcX4LM9GxM2t0IENGGTIQEYnkQBgX2U/AgdhczmtrWRU2fXw0Jq/Vno2lR7G1rMrQbUQr1WUXPQRL4XHfGjjPYrB3/diZRvYeZMnnQBif7/vU9DnIeFysISJDNTc3o6ioCM3NzaKHYhrszBodyJBRhgxERCK5EEa+4yhcMVqsWV50MCav0+l23vp2OzsWjsOOhePwnb5Zcdl2q+F9s6Aosbt8HHWOx31r4DyLwd71Y2ca2XuQJZ8LYex6/x3T5yDjJdxl0LZv396t59tsNng8HmRmZuLCC2N7SQEi0s/j8WDBggWih2Eq7MwaHciQUYYMREQiNcKFF/1XxOS1yip9KCmvjslrdabkUDX2V9ZhUG46+mSnAABG9M/GzopTcdk+AIwYkB23bZGGx31r4DyLwd71Y2ca2XuQJV8jXLh91hx4PCmih0IJLuEWa8aOHRuz35BKTU3FlVdeiTvvvBM/+tGPkJqaGpPXJaLoqaoKv9+PpKQk/vZjlNiZNTqQIaMMGYhEOlLdiNHLtrX5uR0Lx0V+CE4yU+FCGAHYAXTtffRIdSMAYG1xRQzH1bm1xRW4Z8yAyH46OT8PjxcdiNv2Jw/tFbdtkYbHfWvgPIvB3vVjZxrZe5Annwq/vxmqmmzyHGS0hLwMmqqqMflTX1+PHTt2YO7cubjsssuwdetW0dGILKe2thYPP/wwamtrRQ/FNNiZNTqQIaMMGYiIREpTArgzuRRpStevXz562TaMXrYNa4sPx3BknXu6uOKMxUZvrgcF/eJztktB/2wMyk2Py7boWzzuWwPnWQz2rh8708jegyz50pQAnnnyT6bPQcZLuDNrxowZE1lhLC4uRiAQgKqqAIDzzz8fvXv3RlpaGhoaGvDll1/i+PHjAABFUZCUlIQRI0YgGAyiuroaX3zxBUKhEADgyJEjuPnmm/Hqq69i3LhxYsIRWVB6ejrmzJmD9HR+Qx0tdmaNDmTIKEMGIiKRGlUnNjZfhkbVKXooMTF37ACUrDb+Umzzrhto+DboXDzuWwPnWQz2rh8708jegyz5GlUnpkyfYfocZLyEO7OmqKgImzdvRo8ePeD3+5Geno4HH3wQBw4cwNdff42PPvoI27dvx86dO1FVVYVDhw7hoYcegsfjgd/vR8+ePfHaa69h7969qK2txV//+lf07dsXABAIBDBjxgz4/X7BKYmsw263Izc3F3a7XfRQTIOdWaMDGTLKkIGISKQW2FCtpqAl8b4t65Lx3hxMHppn6Dam5OdhnLenodugtvG4bw2cZzHYu37sTCN7D7Lka4EN5/XIMX0OMl5CflcwY8YM/N///R8uvvhifPLJJ/j3f/939O/fv83H9u3bF7/97W/xySef4KKLLsKLL76IGTNmAACSk5Px4x//GB999BEuvfRSAMDRo0fx17/+NW5ZiKyuvr4eq1evRn19veihmAY7s0YHMmSUIQMRkUjJCGKiqwzJCIoeSsw8OHkwcjxJhrx2jicJSyYNNuS1qXM87lsD51kM9q4fO9PI3oMs+ZIRxCsvrTN9DjJewi3WbNiwARs2bICiKHj++edx4YUXRvW8Pn364Pnnnz/jNVplZWXhySefjPx9y5YtMR0zEbXP4XCgX79+cDgS7qqLCYudWaMDGTLKkIGISKQwFFS2pCMMeW40m5XqwprZBchIju2l3TKSnVgzuwBZqa6Yvi5Fj8d9a+A8i8He9WNnGtl7kCVfGApye/UxfQ4yXsIt1qxevRoAMGLECAwdOlTXc4cOHYqrr74aqqpGXqfVNddcg4suugiqqmLXrl0xGi0RdcbtdmPs2LFwu92ih2Ia7MwaHciQUYYMREQiBeBAaagXAol3K9Fu8eZ6sH7OyJidYZPjScL6OSPhzfXE5PWoa3jctwbOsxjsXT92ppG9B1nyBeDAlSOuMX0OMl7CLdZ8/PHHUBQlctkyvbxeb+R1znbllVcCAE6cONH1ARKRLn6/H8XFxbxXlA7szBodyJBRhgxERCI5EcZl9io4Ee7ya+xYOA47Fo7Dd/pmxXBknRveNws7Fo5r9/PeXA+2zB+DKfndu4fNlPw8bJk/hgs1CYDHfWvgPIvB3vVjZxrZe5AlnxNh7Cn90PQ5yHgJt1hTWVkJAF3eeQOBwBmvc7qsLO0bmGBQnmtCEyW6QCCA0tLSyL9N6hw7s0YHMmSUIQMRkUgOhHGR4wQc3Vis6ZOdgj7ZKRjRPzuGI+vciAHZ6JOd0uFjslJdKJw+DCtnDUeBzvEV9M/GqllXoXD6MF76LEHwuG8NnGcx2Lt+7Ewjew+y5HMgjM/3fWr6HGS8hDvfPiMjA8ePH8f777/fpecXFxdHXudsTU1NAIDzzjuv6wMkIl3S09Mxd+5c0cMwFXZmjQ5kyChDBiIikZrgwib/4Ji81uT8PDxedCAmrxXV9ob2ivqx4705GO/Nwf7KOqwtrsDTxRVtPm543yyMGJCNyUN7YVBueqyGSjHC4741cJ7FYO/6sTON7D3Ikq8JLky9YxbS0zv+RReihDuz5vLLL4eqqjhw4ADWrVun67nr1q3DF198AUVRMGTIkHM+f+jQIQDA+eefH5OxElHnWlpaUFNTg5aWFtFDMQ12Zo0OZMgoQwYisp6ySh9WbG9/UWPB+lIs21KG/ZV1ho9FgYo0xQ8Fardfy5vrQUG/+JxdU9A/u0uLKYNy03HPmAHtfv7Rafn49Y1eLtQkKB73rYHzLAZ714+daWTvQZZ8ClTU+WpNn4OMl3CLNdOnT498fPfdd+OFF16I6nn/93//h5/85CeRv99xxx1nfN7v92PXrl1QFAUDBw6MzWCJqFM+nw+FhYXw+Xyih2Ia7MwaHciQUYYMRGQdW8uqcPvy9zDxsR1YW3y43cftrDiFx4sO4MbHtuP25e9hW9nXho0pVQngNvdupCqxuSTG3LHtL4TE0rzr+P2UFfG4bw2cZzHYu37sTCN7D7LkS1UCeGHNk6bPQcZLuMWau+66C8OGDQOgXbZs+vTpGD16NFasWIHS0lKcPHkSTU1NOHnyJD7++GM8+eSTuO6663D77bejsbERiqIgPz8fd9111xmv+7e//Q319fUAgNGjR8c9F5FVeTwezJ8/Hx4PbwobLXZmjQ5kyChDBiKS36mGAH7+3C7MXv0hSsqrdT23pLwad63+APPX7cKphthfY7xBdeGF5svRoMbmnizjvTmYPDQvJq/Vnin5eRjn7WnoNigx8bhvDZxnMdi7fuxMI3sPsuRrUF24beY9ps9Bxku4e9bYbDZs2rQJ48aNwxdffAEAePfdd/Huu+9G9fz+/ftj48aNsNnOXId64YUX0LdvXwDA9773vdgOmojaZbPZkJmZKXoYpsLOrNGBDBllyEBEctt3zIdZq0pQ5fN363U2lh5F8cGTWDO7AN7c2H2TrUJBvZoUs9cDgAcnD8b7h052O3NbcjxJWDIpNvfYIfPhcd8aOM9isHf92JlG9h5kyadCQbon45yfVxOdLSH3kF69eqG4uBh33nknVFWN+s+PfvQjvP/+++jdu/c5r7lu3TocOnQIhw4diizayCQQCODpp5/GzTffjL59+8LtduOCCy7AqFGj8Mgjj+DEiROm2PapU6fwwgsv4N5778WoUaPQs2dPuFwueDweDBw4ENOnT8czzzyDYDAY9WuOHTsWiqLo+vP22293pQpqQ11dHZYvX466OuOv+y4LdmaNDmTIKEMGIpLXvmM+TH+yOGaLFlU+P6atKEZZZewuX5GMACYn7UEyYnfWTlaqC2tmFyAj2Rmz1wSAjGQn1swuQFZqbM4CIvPhcd8aOM9isHf92JlG9h5kyZeMADY8t9r0Och4CblYAwDZ2dl4+umnsXfvXvzqV7/C8OHD4XKd+Y2B0+nEd77zHfzyl7/Enj17sHbtWpx33nmCRixOWVkZRowYgRkzZuDVV1/F4cOH4ff7UVlZiffeew+//vWvMXjwYLzyyisJu+36+npMmjQJubm5uP322/HEE0/gvffew/HjxxEMBlFXV4eDBw9i/fr1+PGPf4xLLrkE27dvj3keij2Xy4X8/Pxz/v1S+9iZNTqQIaMMGYhITqcaApi1qgS1TdH/gk80apuCmLmyJGaXRAvBji9C5yMEe0xer5U314P1c0YixxObs3ZyPElYP2dkTM8qIvPhcd8aOM9isHf92JlG9h5kyReCHRdfOsT0Och4CXcZtLN5vV4sW7Ys8vfa2lrU19cjLS0NGRkZAkeWGL788ktMmDABR48eBQAoioIxY8Zg4MCBOH78ON544w00NTXh66+/xtSpU7FlyxaMHz8+4bZdX1+Pv/3tb2f8v5ycHAwfPhy5ubkIBoMoLS3FJ598AgAoLy/HhAkT8PLLL+PWW2+NesxTp05Fr169On1cXp6x1/q2kqSkJIwcOVL0MEyFnVmjAxkyypCBiOS0eNMeQy4DBmhn2CzZvAeF04d1+7WCsGNvOCcGozqXN9eDLfPHYMnmPdhYerTLrzMlPw9LJg3mGTXE475FcJ7FYO/6sTON7D3Iki8IOwbnD0dSUmwvf0vySfjFmrNlZGRwkeY0P/rRjyKLJX379sXGjRsxdOjQyOdPnDiB6dOn480330QwGMRtt92GAwcOxOR6j0ZsOysrCzNmzMBdd911xmu1evvttzFjxgwcOnQIoVAId955Jz777DPk5ET3Te78+fMxduxYXTmpe5qbm1FcXIyRI0fC7XaLHo4psDNrdCBDRhkyEJF8tpZVYdPHXV+ciMbG0qOYkp+H8V59Cy1llT6sLa6I/N2FEC5zVGFvKAcBOLBgfSlG9M/GlPxeGJSb3u1xZqW6UDh9GKbk52H5WwdRcqg66ucW9M/GvOsGYpy3Z7fHQXLgcd8aOM9isHf92JlG9h5kyedCCB+9/w56jBtt6hxkvIS9DBp17pVXXsGOHTsAaKcFbt68+ZwFjvPPPx8bN27EgAEDAADV1dVnnKmUKNt2uVx44IEHUF5ejscee6zNhRoAuPbaa7F161Z4PNolGHw+Hx577LFu5yHjhEIhlJeXIxQKiR6KabAza3QgQ0YZMhCRfJYXHYzPdt6Kfjtby6pw+/L3MPGxHVhbfDjy/+1QkWurgx0qAGBnxSk8XnQANz62Hbcvfw/byr6OyVjHe3Pw/Jyr8dqCMfinke3fv3N43yz8bNxAvLZgDJ6fczUXaugMPO5bA+dZDPauHzvTyN6DLPnsUFH51RHT5yDjcbHGxP785z9HPp45cyYuv/zyNh+XmpqKhx56KPL3FStWdPvNIdbbzs7OxoMPPhhZhOlIv379MHfu3Mjf//73v+sZOsVZWloaZs2ahbS0NNFDMQ12Zo0OZMgoQwYikktZpQ8l5dGfPdIdJYeqsb+y45vEnmoI4OfP7cLs1R+2Oa4mOLEl4EUTnOe+fnk17lr9Aeav2xWze+QMyk3HPWMGtPv5R6fl49c3emNyVg/Jh8d9a+A8i8He9WNnGtl7kCVfE5y4+fvTTZ+DjMfFGpOqr6/Hm2++Gfn7XXfd1eHjf/CDH0TeEKqrq7F9+3ZTbrvVNddcE/m4vLy8269HxgmHw6isrEQ4HBY9FNNgZ9boQIaMMmQgIjkcqW7EkerGMy4xFg8dbW/fMR8mFm7v8JJsNrQgW2mEDS3tPmZj6VFMLNyOskpft8ZK1F087lsD51kM9q4fO9PI3oMs+WxowcnjVabPQcZL6MWaxsZGrFixArfddhsuvvhiZGVlweFwwG63d/rH4TDd7Xh0effdd+H3azdNTU1NxVVXXdXh491uN66++urI37du3WrKbbdSFCXyMd/oEltdXR1WrFiBurqOf/OUvsXOrNGBDBllyEBEchi9bBtGL9t2xiXG4uHpdhZr9h3zYfqTxajy+Tt8fooSxBT3XqQowQ4fV+XzY9qKYi7YkFA87lsD51kM9q4fO9PI3oMs+VKUIDau+6vpc5DxEnZF44UXXsDcuXNRU1MDAFBVVeyAEsy+ffsiH19++eVRLU5deeWVeP311895vpm23Wr37t2Rj/v06RP188rKyrB3714cOXIEwWAQ2dnZuOSSSzB69Gjk5Oi7QSxFJyMjA/fddx+SkpJED8U02Jk1OpAhowwZiIi6S1XVM36R6FRDALNWlaC2qeMFGACoV114pikfAdg7fWxtUxAzV5Zgy/wxyEp1dWvMRF3B4741cJ7FYO/6sTON7D3Ikq9edeHOe/4FGRkZoodCCS4hF2ueeeYZzJgxA8CZizSt3wSdvXDT3v+X2f79+yMf9+3b/k1CT3fhhRdGPi4rKzPltgGgpaUFTz/9dOTv119/fdTPnTdvXpv/X1EUTJo0CQ899BCGDh3arfHRmRRFgdvtFj0MU2Fn1uhAhowyZCAi6q6GQBhpSd9+W7V4055Oz6j5loKAjm/Jqnx+LNm8B4XTh+kcJVH38bhvDZxnMdi7fuxMI3sP8uRTkJTkPuMXfIjaknCXQTt58iTmzp0LVVXhcDjw8MMPo6qqCj/72c8iizEtLS3w+XzYvXs3/vznP+OKK66AqqpIS0vDs88+i5aWFukvjXXy5MnIx9GeEZKbmxv5uLq66zdeFbltAHj88ccjCz42m63dBRg9VFXFpk2bMGLECPzv//5vt1+PvuXz+fDYY4/B5+NlO6LFzqzRgQwZZchARNRdgdC395vZWlbV4T1qzpaCAH6Y9AlSEIj6ORtLj2JrWZWuMRLFgpmP+32yU1C+9JY2//TJThE9vIRi5nk2M/auHzvTyN6DLPlSEMDzq1eYPgcZL+EWa1asWIGGhgYoioI//OEP+PWvf40ePXqc87i0tDQMHjwY8+bNw0cffYT//M//RH19Pe6880785S9/ETDy+Kqvr498nJycHNVzTn/c6c8307b37NmD3/zmN5G/33333Rg8eHCHz1EUBddddx0effRRFBcXo7q6GsFgENXV1dixYwd+8YtfIDU1FQDg9/sxZ84cvPDCC10eY1vcbjfS0tIAaPfYqampiSw++nw+BALaN+hNTU1oaGgAAIRCochlAAGgtrYWwaB2OY3GxkY0NjYCAILBIGprayOPq6mpQSgUAgA0NDSgqakJABAIBCIHBVVVUVNTE1nUrK+vR3Nzc6SD1mtotrS0oKamBi0t2g8h6urqIvcram5ujsxlR5lUVcXVV18Nt9stTSaj5ykQCGDs2LFISkqSJpPeeXK5XCgoKIDL5ZIm09nzFAwGcc0118Dtdps2kxXmiZnkzvTZl8fRb9HfMXDRZgz5zUvot+jv6Lfo7xj8m5dwqKrW8EyBgB/J3/yQXoGKNMUPBdpYG+vrDZ2n5iYtkx1hpCrfngWSpvjjMk9+fzOSoY3HhhakKX7gm+wN9XW6MyUhiKRvXq+tTHZoY3AjCBe0fA6ET1sk0fq3ffO45NMe50S43XlKRgBqOBiZp7+8ua/NTCkIwAGtLxdCcH8z1hAU7Av1iFwGLVXxw/7N4zrK9NSbe7o1Tx1lMvo9QvS+50Ko3X3P6Pc9f7OWqa19Lx7ve/7mpsi+Z49k19TX+TrN5Ha7UVBQELkMttn2PTMdn0RmcrvduOaaayLbkSGTGeYpHA5j1KhRcLvd0mQyep5CoRDGjh0Lp9MpTaauzFNzczPGjh0Lt9stTabT58nv9+Paa6+F2+02RabgN5lO/3rPjhY4lRCGjbhG2nmSMZMoCbdY8+abbwIAPB4Pfv7zn0f1HEVRcN999+G3v/0tVFXF/PnzceDAASOHKVzrTgog8kOyzpx+fcfWfwxm2nZNTQ2mTp0a+cd28cUX43/+5386fd6LL76IoqIiLFiwACNGjEBWVhYcDgeysrJw7bXX4n/+53+wc+dODBgwAID2pjBv3rwz3ky6a+TIkfjhD38IADh+/DgKCwsjbyArV67E3r17AQBvvfUWNm/eDAD48ssvUVhYGHmNJ554IrJf/+Mf/8A//vEPAMCBAwfwxBNPRB5XWFiIL7/8EgCwefNmvPXWWwCAvXv3YuXKlQC0N7fCwkIcP3480lFxcTEAYNeuXXjmmWcAaG9ghYWFkTfMZ555Brt27QIAFBcX48UXX+w003vvvYdDhw7B5XJJk8noeVq7di3y8/Ohqqo0mfTOU3NzM15//fXI+40Mmc6epxdeeAHhcBgul8u0mawwT8wkd6Z3tmpj7WGrx23ub++HNyVpL746XG54ps/37sYNSZ8DAFKVAG5z70aqon3j8I/NLxo6TyVvFwEAetl8mJK0N/K429y7cbzyqOHztKd0J65zaePJVJpxm3s3XN8sUvz9xWd1Z7rK+SWucn7ZbqYeNu3rx1GuCuQ7tXz97Kdwc5J2trYLYdzm3o1MRXs/u851AJc5tLNXLrafaHeebkj6HJ/t+QQA8Lc33oKnamebmW5OKkM/+ykAQL7zKEa5KgAA2bYmFLi+QuibxZopSXvRy+brNNMlJ3bg3U8+6/I8dZTJ6PcI0fveZY6qdvc9o9/3dpW8B6Dtfa+m+kSXM0U7T7tK3ovse2e/7214dnWnmVwuF15//XV8/fXXXZ4nkfuemY5PIjO5XC6Ew+HILzDKkMkM8/Taa6+huroaLpdLmkxGz9OmTZuQn5+P2tpaaTJ1ZZ6eeOIJ5Ofnw+VySZPp9Hl66qmnkJaWBpfLZYpM5Qe0r89O/3qvh60e33fvxcWXDpF2nmTMJIqiJtiNXvLy8lBVVYXvfve7ePXVVyP//1/+5V/w5z//GYqiIBAIwG4/9yacgUAAF1xwAWpqarBo0SL8/ve/j+fQ4+qWW27BK6+8AgC47777sHTp0k6f8+qrr+Lmm28GoJ2Z1LoSaYZtNzc348Ybb8T27dsBaIt5O3bswBVXXKFz9O3bu3cvhg4dGlnhfeSRR/DLX/6yW6+5Z88eDBkyBG63Gw6HA8XFxfB6vairq0NGRgYURYHP54Pb7YbL5UJTUxNaWlqQmpqKUCiE+vp6ZGZmAtBWqVNSUuB0OiMr1CkpKQgGg2hsbIzcpKympgZpaWlwOBxoaGiAzWZDcnIyAoEAmpub4fF4oKoqamtrkZ6eDrvdjvr6ejgcDrjdbvj9fgQCAaSnp0cuOejxeGCz2VBXVweXy4WkpKTIb7KkpaUhHA63m6m6uhrvvPMOrr/+ejidTikyGT1PNTU1+OijjzBmzJjIuM2eSe88NTQ04I033sD111+P1NRUKTKdPU9ff/01SkpKMGHCBCiKYspMVpgnZpI705GT9fju/yuBHS1IVoKoV7VfLklV/Pjbggnon5NhaKYDladw62NFaIILClSkKgE0qC6oUPDavVehX06GYfP01alG3PCn92FHGG4lhIZvsqcpfmz+xfXo39Nj6Dx9cawakwq3owlO2NCCFCWIetUFQMGWe4djQG6Wrkyff6X9oHvRps9QWnHinExNqhNh2OBGEC3f3CfGgTBcCKMRLmhnNwTQqDrRAhuSEUT4m8c5EYYD4TbnaWTvZPz+h8PgciVhxbZ9+L8PjrSZKQUBBGBHCHa4EIINKprhhBsBfMf5FT4I9kEADqQqfjSrDoRhj5xV44ezzXn63lUDcc/Yi5GdpOqap+ONLRi/7I02M21fOB6ZzrCh7xEi972vG8KYsOx12KGeM087Fo5HhiNk6PvesdpmXP/H4jb3vb/96w3o1yPd0Pe9L46exK1/3IFmOM9533t13ndwUd55HWZqamrCP/7xD4wfPz7ydUAivJfLeHwSmUlVVbz55psoKChAz549pchkhnk6ceIEiouLMWHCBNjtdikyGT1PdXV12LlzJ6699lqEQiEpMnVlnk6cOIHS0lJcd911CAQCUmQ6fZ6qqqrw4YcfYvz48ZEzIxI504nGFox/7J0zvt6zowUepQn/NiIFt944Qcp5kuXfU319Pb766isMGTIErT799NNOr+oUSwm3WON2uxEMBjF79uwz7h3yr//6r3jsscegKApqa2sjl5Q62w9+8AO8/PLLyM/Px0cffRSvYcfdtGnT8PzzzwMAfv7zn0e18vfSSy/hBz/4AQDtHjLHjh0zxbZDoRB+8IMfYNOmTQC0fWTLli247rrrujD6jv3TP/0T1q5dCwCYMGEC3njjjW69XutiTat4/wNPBA0NDdi8eTMmTZoUudwcdYydWaMDGTLKkIGs7Uh1I0Yv29bm53YsHGf4fQxEbl/W7Mu2lOHxovidYf+zcQPx521d354bQYxyVeDdQF80w9ml1yhfeouux8s694m+bRm2z+O+NXCexWDv+rEzjew9mC1fe8daN4K477IG3P6DqabIYWWif5briNuWomS32xEMBuF0nvnNisfjiXx89OhRXHLJJW0+/7zzzgOAyClVsmrNCWirzNGorKyMfJydnW2Kbbe0tGDWrFmRhRqHw4EXXnjBkIUaALj++usjizX79u0zZBtWk5qaiunTp4sehqmwM2t0IENGGTIQkVwm5+fFdbFm8tBe3VqsaYYTWwMXxXBERMbhcd8aOM9isHf92JlG9h7Mlq9PdoruX6QhOl3C3bPm/PPPB4DI9eZa9e7dO/Lx7t270Z6KCu16gF29xJdZDBo0KPJxa+bOHD58OPKx1+s1xbbnzp0buRahzWbDX//6V9x6661RP1+vCy64IPLxiRMnDNuOlYRCIZSXl0cuL0edY2fW6ECGjDJkICK5eHM9KOjX9V9K0qOgfzYG5aZ36zXsaEGuzQc7WmI0KqL2tf4Aqa0/0ZzVw+O+NXCexWDv+rEzjew9yJJPlhxkvIRbrPF6vVBVFQcPHjzj/+fn50c+fumll9p87rFjx/Duu+8CAHr06GHYGBPBpZdeGvl49+7dUf1jP/2ycKc/P1G3/Ytf/OKMS+GtWLECd9xxh46R6tfQ0BD5mKclxkZ9fT3WrFmD+vp60UMxDXZmjQ5kyChDBiKSz9yxA+KynXnXDez2ayQrQdyU9BmSlWAMRkRkLB73rYHzLAZ714+daWTvQZZ8suQg4yXcYs3IkSMBaNeHC4fDkf//ne98B71794aqqli/fn3kbItWdXV1mDVrFhoaGqAoCq699tq4jjveRo0ahaQk7WaQDQ0N+PDDDzt8vN/vR3FxceTv48ePT+ht33///Xjssccif3/00Ufxk5/8pGsD1mHXrl2Rj/Py8gzfnhVkZmZi8eLFkZuOUefYmTU6kCGjDBmISD7jvTmYPNTYr+Om5OdhnLdnt1+nXk3CqqbhkZu8EyUyHvetgfMsBnvXj51pZO9Blnyy5CDjJdxizQ033ABAW3FsPUsGABRFwYIFCwAAqqpixowZuOKKK3DnnXfie9/7Hvr27XvGzeD/+Z//Oa7jjre0tDRMmDAh8vfVq1d3+PiXXnopcmm47OxsjBkzJmG3/fvf/x5/+MMfIn9/6KGHInNvpEAgELlfDQCMHTvW8G0SERERUew9OHkwcjzGLIDkeJKwZFL8bjJKRERERETWkHCLNddccw3y8vKgqirWrFlzxufmz5+PG264AaqqAtDOvlm3bh02bdqE2trayP//t3/7N4waNSruY4+3e++9N/Lx6tWrsWfPnjYf19jYiAceeCDy93vuuQcOhyMht11YWIjf/va3kb8vXLgQ//7v/97lceo5vfBXv/oVDh06FPn7j3/84y5vl75VW1uLpUuXora2VvRQTIOdWaMDGTLKkIGI5JSV6sKa2QXISHbG9HUzkp1YM7sAWamuyP/bsXAcdiwch+/0zdL9eqmKHz9y70Kq4tf93OF9s7Bj4TjdzyPqKh73rYHzLAZ714+daWTvQZZ8suQg4yXcYo2iKCgvL0dTUxOeeOKJMz5nt9uxefNmLFq0CKmpqVBV9Yw/vXr1wsqVK/G73/1O0Ojj65ZbbsHo0aMBaJcau/XWW/HJJ5+c8ZiTJ09i6tSp+OKLLwBoZ7bcd999bb5eeXk5FEWJ/OnojJlYbxsAVq5ciV/84heRv//sZz/Dww8/3O7jo/H9738fd999N7Zv346WlrZv3Hrw4EHcdttt+NOf/hT5f9OmTYtcko+6JyUlBVOnTkVKSuc3LSUNO7NGBzJklCEDEcnLm+vB+jkjY3aGTY4nCevnjIQ313PG/++TnYI+2SkY0T9b92s2qw68HeiHZlX/L1KNGJAd1U3hiWKFx31r4DyLwd71Y2ca2XuQJZ8sOch43Tu9wiAOh6Pdsy9cLhf+8Ic/YMmSJSgpKcHRo0dhs9kwYMAADBs2DIqixHm0Yj377LMoKCjAsWPHUF5ejvz8fFx33XUYOHAgjh8/jjfeeAONjY0AtF6ff/75mF0fMZbb3r17N376059Gzo5qXYyL9nJ28+fPx8UXX3zO/w8EAli5ciVWrlyJjIwMsAkD2gABAABJREFUDB06FH369EF6ejrq6+uxd+9elJaWnrGQU1BQgKeeekpnG9Qep9MJr9crehimws6s0YEMGWXIQERy8+Z6sGX+GCzZvAcbS492+XWm5OdhyaTBZ5xRc7bJ+Xl4vOiArtcNw47DLfrPyAGAyUN7del5RF3F4741cJ7FYO/6sTON7D3Ikk+WHGS8hFysiYbL5cK1114rehjC9e7dG1u3bsUdd9yB0tJSqKqKoqIiFBUVnfG4Hj16YNWqVWfcayaRtn3y5MkzFkwaGhrw+OOPRz2WH/7wh20u1pyutrYW27dvb/fzTqcT9957L5YuXQq32x31tqljjY2N+Mc//oHvfve7/A2CKLEza3QgQ0YZMhCR/LJSXSicPgxT8vOw/K2DKDlUHfVzC/pnY951AzHO27PTx3pzPSjol42S8uhfPwlBXOX8Eh8Ee8OP6C/ZVtA/G4Ny06N+PFEs8LhvDZxnMdi7fuxMI3sPsuSTJQcZz7SLNfQtr9eL999/H+vWrcNzzz2HPXv2oKqqCpmZmRgwYAC+//3v46677sL5558v1baj8fzzz+Pdd9/Fe++9hw8++ADHjh3DyZMncerUKbjdbmRnZ+Pyyy/H6NGjMWPGDFxwwQVCxklERERExhrvzcF4bw72V9ZhbXEFni6uaPNxw/tmYcSAbEwe2kv3gsjcsQNQsjr6xZqumnfdQMO3QURERERE8cXFGkm4XC7MmDEDM2bM6PJr9OvXL3IZsnhve+zYsV3admd69uyJqVOnYurUqTF/bYpO63U5KXrszBodyJBRhgxEZD2DctNxz5gB7S7WPDotv8v3ghnvzcHkoXnY9HF0l1zzw4m3g/11bWNKfl5UZ/oQxRqP+9bAeRaDvevHzjSy9yBLPllykPFsogdARHILBoMoKytDMBgUPRTTYGfW6ECGjDJkICKKtQcnD0aOJymqx9oRxoW2U7AjHNXjczxJWDJpcHeGR9RlPO5bA+dZDPauHzvTyN6DLPlkyUHGE3JmzUMPPRSX7TzwwANx2Q4Rta+xsREbNmzAvHnzkJGRIXo4psDOrNGBDBllyEBEFGtZqS6smV2AaSuKUdvU8TfkbiWEa13l2Oi/DA2qvcPHZiQ7sWZ2AbJSXbEcLlHUeNy3Bs6zGOxdP3amkb0HWfLJkoOMJ2SxZsmSJVAUxfDtcLGGSLyMjAwsWrRI9DBMhZ1ZowMZMsqQgYjICN5cD9bPGYmZK0tQ5fO3+7gGNQnPNg/r9PVyPElYM7sA3lxPLIdJpAuP+9bAeRaDvevHzjSy9yBLPllykPGEXQZNVVVD/xAREREREYnizfVgy/wxmJKf163XmZKfhy3zx3ChhoiIiIhIckLOrFm8eLGIzRKRADU1NSgsLMT8+fORmZkpejimwM6s0YEMGWXIQERkpKxUFwqnD8OU/Dwsf+sgSg5Vn/H5NMWP29y78ULz5ahXz7zPTUH/bMy7biDGeXvGc8hE7eJx3xo4z2Kwd/3YmUb2HmTJJ0sOMh4Xa4jIUGlpaZg5cybS0tJED8U02Jk1OpAhowwZiIjiYbw3B+O9OdhfWYe1xRV4urgCANCkOvGq/xI0qU4AwPC+WRgxIBuTh/bCoNx0kUMmOgeP+9bAeRaDvevHzjSy9yBLPllykPGELNYQkXU4HA7069dP9DBMhZ1ZowMZMsqQgYgongblpuOeMQMiizVh2FDZ8u3lzR6dlo8+2SmihkfUIR73rYHzLAZ714+daWTvQZZ8suQg4wm7Zw0RWUNDQwPWrVuHhoYG0UMxDXZmjQ5kyChDBiIikdwIYrzrC7gRFD0Uok7xuG8NnGcx2Lt+7Ewjew+y5JMlBxmPizVEZCibzYbMzEzYbHy7iRY7s0YHMmSUIQMRkUgtUFCvutACRfRQiDrF4741cJ7FYO/6sTON7D3Ikk+WHGQ8XgaNiAyVnJyMiRMnih6GqbAza3QgQ0YZMhARiRSAAyXBC0UPgygqPO5bA+dZDPauHzvTyN6DLPlkyUHG43IeERkqEAigtLQUgUBA9FBMg51ZowMZMsqQgYjir6zShxXbD7T7+QXrS7FsSxn2V9bFcVRiOBDGRfYTcCAseihEneJx3xo4z2Kwd/3YmUb2HmTJJ0sOMh4Xa4jIUM3NzSgqKkJzc7PooZgGO7NGBzJklCEDEcXP1rIq3L78PUx8bAfWFh9u93E7K07h8aIDuPGx7bh9+XvYVvZ1HEcZXy6Eke84ChcXa8gEeNy3Bs6zGOxdP3amkb0HWfLJkoOMx8ugEZGhPB4PFixYIHoYpsLOrNGBDBllyEBExjvVEMDiTXuw6eOjup9bUl6NktXVmJKfhyWTBiMr1WXACMVphAsv+q8QPQyKkz7ZKShfeovoYXQZj/vWwHkWg73rx840svcgSz5ZcpDxeGYNERlKVVU0NzdDVVXRQzENdmaNDmTIKEMGIjLWvmM+TCzc3qWFmtNtLD2KiYXbUVbpi9HIEoUKF0IA+D5KiY/HfWvgPIvB3vVjZxrZe5Alnyw5yHhcrCEiQ9XW1uLhhx9GbW2t6KGYBjuzRgcyZJQhAxEZZ98xH6Y/WYwqnz8mr1fl82PaimKpFmzSlADuTC5FmsLrl1Pi43HfGjjPYrB3/diZRvYeZMknSw4yHhdriMhQ6enpmDNnDtLT00UPxTTYmTU6kCGjDBmIyBinGgKYtaoEtU3BmL5ubVMQM1eW4FSDHIsbjaoTG5svQ6PqFD0Uok7xuG8NnGcx2Lt+7Ewjew+y5JMlBxmPizVEZCi73Y7c3FzY7XbRQzENdmaNDmTIKEMGIjLG4k17YnZGzdmqfH4s2bzHkNeOtxbYUK2moIXflpEJ8LhvDZxnMdi7fuxMI3sPsuSTJQcZj98VEJGh6uvrsXr1atTX14seimmwM2t0IENGGTIQUextLavq9j1qOrOx9Ci2llUZuo14SEYQE11lSEZsz0AiMgKP+9bAeRaDvevHzjSy9yBLPllykPG4WENEhnI4HOjXrx8cDofooZgGO7NGBzJklCEDEcXe8qKD8dnOW/HZjpHCUFDZko4wFNFDIeoUj/vWwHkWg73rx840svcgSz5ZcpDxuIcQkaHcbjfGjh0rehimws6s0YEMGWXIQESxVVbpQ0l5dVy2VXKoGvsr6zAo17zX/g7AgdJQL9HDIIoKj/vWwHkWg73rx840svcgSz5ZcpDxEv7Mmg8++AALFizA8OHDkZOTA5fL1eYqZE1NDV555RW88sor+OSTTwSMlIja4vf7UVxcDL/fmOvWy4idWaMDGTLKkIGIYuNIdSOOVDdibXFFXLe7trgCR6ob47rNWHIijMvsVXAiLHooRJ3icd8aOM9isHf92JlG9h5kySdLDjJewi7WHD9+HLfeeitGjhyJP/3pT9i1axeOHz+OUCgEVVXPeXxqaip++tOfYtKkSfj+978vYMRE1JZAIIDS0lIEAgHRQzENdmaNDmTIKEMGIoqN0cu2YfSybVhbfDiu2326uAKjl22L6zZjyYEwLnKcgIOLNWQCPO5bA+dZDPauHzvTyN6DLPlkyUHGS8jLoB09ehSjRo3CkSNH2lyYaYvT6cTcuXOxePFiHDp0CMXFxRg5cqTBIyWizqSnp2Pu3Lmih2Eq7MwaHciQUYYMREQiNcGFTf7BoodBFBUe962B8ywGe9ePnWlk70GWfLLkIOMl5Jk1P/zhD3H48GGoqorLLrsMzz33HKqqqnDvvfd2+Lzp06dHPn7ttdeMHiYRRaGlpQU1NTVoaWkRPRTTYGfW6ECGjDJkICISSYGKNMUPBdH9ghqRSDzuWwPnWQz2rh8708jegyz5ZMlBxku4xZoNGzaguLgYiqJg9OjRKCkpwbRp09CjRw8oitLhcy+++GL06qXdoPP999+Px3CJqBM+nw+FhYXw+Xyih2Ia7MwaHciQUYYMREQipSoB3ObejVSFl8SgxMfjvjVwnsVg7/qxM43sPciST5YcZLyEW6x5/vnnAQAOhwNr1qxBSkqKrudfccUVUFUV+/fvN2J4RKSTx+PB/Pnz4fF4RA/FNNiZNTqQIaMMGYiIRGpQXXih+XI0qC7RQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RLunjWtZ9VcffXV6Nevn+7n9+zZEwBw/PjxGI+MiLrCZrMhMzNT9DBMhZ1ZowMZMsqQgYhIJBUK6tUk0cMgigqP+9bAeRaDvevHzjSy9yBLPllykPES7syar7/+GgBwySWXdOn5brcbAOD3+2M2JiLqurq6Oixfvhx1dXWih2Ia7MwaHciQUYYMRBQbOxaOw46F4/Cdvllx3e7wvlnYsXBcXLcZS8kIYHLSHiSDl0GjxMfjvjVwnsVg7/qxM43sPciST5YcZLyEW6yx2bQhdfWGS9XV1QDA1UqiBOFyuZCfnw+Xi5f3iBY7s0YHMmSUIQMRxUaf7BT0yU7BiP7Zcd3uiAHZ6JOt77LJiSQEO74InY8Q7KKHQtQpHvetgfMsBnvXj51pZO9Blnyy5CDjJdxl0Hr06IGGhgaUl5d36fkfffQRACAvLy+GoyKirkpKSsLIkSNFD8NU2Jk1OpAhowwZiCi2Jufn4fGiA/Hb3tBecduWEYKwY284R/QwiKLC4741cJ7FYO/6sTON7D3Ikk+WHGS8hDuzZvjw4VBVFcXFxfD5fLqeW1JSggMHDkBRFFxzzTUGjZCI9GhubkZRURGam5tFD8U02Jk1OpAhowwZiCi2vLkeFPSLz9k1Bf2zMSg3PS7bMooLIeQ7voILIdFDIeoUj/vWwHkWg73rx840svcgSz5ZcpDxEm6xZtKkSQCApqYm/OEPf4j6ecFgEPPnz4/8ferUqbEeGhF1QSgUQnl5OUIh/hAiWuzMGh3IkFGGDEQUe3PHDojLduZdNzAu2zGSHSpybXWwQxU9FEvok52C8qW3tPnHzJfTixce962B8ywGe9ePnWlk70GWfLLkIOMl3GLN9OnTMWCA9g3eI488gj/+8Y+dPuf48eOYNGkS3n//fSiKgu985zu4/vrrjR4qEUUhLS0Ns2bNQlpamuihmAY7s0YHMmSUIQMRxd54bw4mDzX2ksRT8vMwztvT0G3EQxOc2BLwoglO0UMh6hSP+9bAeRaDvevHzjSy9yBLPllykPESbrHG4XDgL3/5CxwOB1RVxS9+8QtcddVV+O///m8cPHgw8rhNmzZhxYoVmDFjBvr374/XX38dAJCSkoKnnnpK1PCJ6CzhcBiVlZUIh8Oih2Ia7MwaHciQUYYMRGSMBycPRo4nyZDXzvEkYcmkwYa8drzZ0IJspRE2tIgeClGneNy3Bs6zGOxdP3amkb0HWfLJkoOMl3CLNQAwduxYrF27Fm63G6qq4qOPPsLChQuxZcsWKIoCAPje976He++9F8888wwaGxuhqirS0tKwbt06XH755YITEFGruro6rFixAnV1daKHYhrszBodyJBRhgxEZIysVBfWzC5ARnJszxjJSHZizewCZKW6Yvq6oqQoQUxx70WKEhQ9FKJO8bhvDZxnMdi7fuxMI3sPsuSTJQcZLyEXawDgtttuQ0lJCcaNGwdVVc/4A+Ccv48dOxbvvfcebrnlFpHDJqKzZGRk4L777kNGRobooZgGO7NGBzJklCEDERnHm+vB+jkjY3aGTY4nCevnjIQ31xOT10sE9aoLzzTlo16VY/GJ5MbjvjVwnsVg7/qxM43sPciST5YcZDyH6AF0ZPDgwXjzzTfxySef4JVXXsF7772Ho0ePora2FqmpqcjJycGIESNw66234qqrrhI9XCJqg6IocLvdoodhKuzMGh3IkFGGDERWVFbpw9riinY/v2B9KUb0z8aU/F4YlJverW15cz3YMn8Mlmzeg42lR7v8OlPy87Bk0mBpzqj5loJAYn9LRhTB4741cJ7FYO/6sTON7D3Ikk+WHGS8hD2z5nRXXHEFFi1ahI0bN+KDDz7AZ599hl27dmHLli148MEHuVBDlMB8Ph8ee+wx+Hw+0UMxDXZmjQ5kyChDBiIr2VpWhduXv4eJj+3A2uLD7T5uZ8UpPF50ADc+th23L38P28q+7tZ2s1JdKJw+DCtnDUdB/2xdzy3on41Vs65C4fRhEi7UACkI4IdJnyAFAdFDIeoUj/vWwHkWg73rx840svcgSz5ZcpDx+GtcRGQot9uNsWPH8jcIdGBn1uhAhowyZCCyglMNASzetAebPtZ/ZktJeTVKVlfH5MyW8d4cjPfmYH9lHdYWV+Dpds7uGd43CyMGZGPy0O6f2ZPoArCjNJSHAOyih0LUKR73rYHzLAZ714+daWTvQZZ8suQg43GxhogM5XK5kJ+fL3oYpsLOrNGBDBllyEAku33HfJi1qgRVPn+3Xmdj6VEUHzyJNbMLun3PmEG56bhnzIB2F2senZaPPtkp3dqGWYRgxxfh80UPgygqPO5bA+dZDPauHzvTyN6DLPlkyUHGM8Vl0IjIvJqamrBlyxY0NTWJHoppsDNrdCBDRhkyEMls3zEfpj9Z3O2FmlZVPj+mrShGWSUv3xArLoRQ4DwMF0Kih0LUKR73rYHzLAZ714+daWTvQZZ8suQg4yX8mTUtLS0oKyvDoUOH4PP5EAwGo37ujBkzDBwZEUWjpaUFNTU1aGlpET0U02Bn1uhAhowyZCCS1amGAGatKkFtU/RfO0ejtimImStLsGX+GCnvIRNvNqhIUwKwQRU9FKJO8bhvDZxnMdi7fuxMI3sPsuSTJQcZL2EXayoqKvC73/0OL774Iurq6nQ/X1EULtYQJYDU1FRMnz5d9DBMhZ1ZowMZMsqQgcQ6Ut2I0cu2tfm5HQvHWeZSWEZYvGlPzM6oOVuVz48lm/egcPowQ17fSprhxNbARaKHQRQVHvetgfMsBnvXj51pZO9Blnyy5CDjJeRl0DZu3IjBgwdj1apV8Pl8UFW1S3+ISLxQKITy8nKEQry8R7TYmTU6kCGjDBmIZLS1rAqbPj5q6DY2lh7F1rIqQ7dhBXa0INfmgx38LUtKfDzuWwPnWQz2rh8708jegyz5ZMlBxku4xZqysjJMmzYNjY2NkQWXPn364KabbsKdd96JmTNnRvWHZ9UQJYb6+nqsWbMG9fX1oodiGuzMGh3IkFGGDEQyWl50MD7beSs+25FZshLETUmfIVmJ7eXqiIzA4741cJ7FYO/6sTON7D3Ikk+WHGS8hLsM2tKlSxEIBKAoCrxeL/73f/8Xo0aNEj0sIuqizMxMLF68WPQwTIWdWaMDGTLKkIFINmWVPpSUV8dlWyWHqrG/sg6DctPjsj0Z1atJWNU0XPQwiKLC4741cJ7FYO/6sTON7D3Ikk+WHGS8hDuzZts27brlKSkpeP3117lQQ0RERETUiSPVjThS3Yi1xRVx3e7a4gocqW6M6zaJiIiIiIhklHCLNV9//TUURcH111+PvLw80cMhom6qra3F0qVLUVtbK3oopsHOrNGBDBllyEAki9HLtmH0sm1YW3w4rtt9urgCo5dti+s2ZZKq+PEj9y6kKn7RQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RJusaZHjx4AgJycHMEjIaJYSElJwdSpU5GSkiJ6KKbBzqzRgQwZZchAJEpZpQ8rth9o9/ML1pdi2ZYy7K+si+OoKN6aVQfeDvRDs5pwV6cmOgeP+9bAeRaDvevHzjSy9yBLPllykPES7ruCSy65BF999RWOHTsmeihEFANOpxNer1f0MEyFnVmjAxkyypCBKN62llVhedHBTu8rs7PiFHZWnMLjRQdQ0C8b88YOxDhvzziNkuIlDDsOt2SJHgZRVHjctwbOsxjsXT92ppG9B1nyyZKDjJdwZ9bMnDkTqqpi+/btaGhoED0cIuqmxsZGbNiwAY2NvJ59tNiZNTqQIaMMGYji5VRDAD9/bhdmr/6w04Was5WUV+Ou1R9g/rpdONUQMGiEJEISgrjWeQhJCIoeClGneNy3Bs6zGOxdP3amkb0HWfLJkoOMl3CLNdOnT4fX64XP58N9990nejhERERERN2y75gPEwu3Y9PHR7v1OhtLj2Ji4XaUVfpiNDIiIiIiIiJKFAm3WON0OrFp0yb06tULTzzxBO6++26cOHFC9LCIqIt4XU792Jk1OpAhowwZiIy275gP058sRpUvNjeQr/L5MW1FMRdsJOGHE28H+8MPp+ihEHWKx31r4DyLwd71Y2ca2XuQJZ8sOch4CXfPGgC46KKLsHPnTsyZMwerVq3Cc889h9GjR2Pw4MHIyMiAoihRvc4DDzxg8EiJqDPBYBAHDhzAwIED4XTyBxHRYGfW6ECGjDJkIDLSqYYAZq0qQW1TbC9xVdsUxMyVJdgyfwyyUl0AgB0LxwEAFqwvxc6KUzHdXkeG983Co9Py47Y92dgRRi+bD1+1eBCGXfRwiDrE4741cJ7FYO/6sTON7D3Ikk+WHGS8hDuzptXnn3+O2tpaAEBzczPeeOMNFBYW4qGHHsKDDz4Y1R8iEo/X5dSPnVmjAxkyypCByEiLN+2J2Rk1Z6vy+bFk857I3/tkp6BPdgpG9M82ZHvtGTEgG32y+RuCXeVWQrjWVQ63EhI9FKJO8bhvDZxnMdi7fuxMI3sPsuSTJQcZLyHPrFm9ejV++tOfoqWlBYqiQFVVqKqq6zWiPfuGiIyVkZGBRYsWiR6GqbAza3QgQ0YZMhAZZWtZVbfvUdOZjaVHMSU/D+O9OZH/Nzk/D48XHTB0u6ebPLRX3LYlowY1Cc82DxM9DKKo8LhvDZxnMdi7fuxMI3sPsuSTJQcZL+EWa4qLi3H33XdHFmfsdjtGjRqFyy+/HFlZWXA4Em7IRERERERnWF50MD7beevgGYs13lwPCvplo6S82vBtF/TPxqDcdMO3Q0REREREZAUJt/LxyCOPQFVVKIqCa6+9Fk8//TQuvPBC0cMioi6qqalBYWEh5s+fj8zMTNHDMQV2Zo0OZMgoQwYiI5RV+uKyWAIAJYeqsb+y7oxFk7ljB6BktfHbn3fdQMO3Ibs0xY/b3LvxQvPlqFeTRA8nLvpkp6B86S2ih0FdwOO+NXCexWDv+rEzjew9yJJPlhxkvIS7Z83bb78NAMjMzMSmTZu4UENkcmlpaZg5cybS0tJED8U02Jk1OpAhowwZiGLlSHVj5M/a4oq4bvvs7Y335mDy0DxDtzklPw/jvD0N3YYVNKlOvOq/BE0qbzRLiY/HfWvgPIvB3vVjZxrZe5Alnyw5yHgJd2ZNTU0NFEXBhAkTkJGRIXo4RNRNDocD/fr1Ez0MU2Fn1uhAhowyZCCKldHLtgnb9tPFFfjd1CFn/L8HJw/G+4dOosrnj/n2cjxJWDJpcMxf14rCsKGyxSN6GERR4XHfGjjPYrB3/diZRvYeZMknSw4yXsKdWdOzp/YbetnZ2YJHQkSx0NDQgHXr1qGhoUH0UEyDnVmjAxkyypCBSBat93tslZXqwprZBchIju0ZGxnJTqyZXYCsVFdMX9eq3AhivOsLuBEUPRSiTvG4bw2cZzHYu37sTCN7D7LkkyUHGS/hFmuGDNF+K/Dw4cOCR0JEsWCz2ZCZmQmbLeHebhIWO7NGBzJklCEDkSwaAuFz/p8314P1c0YixxObe6HkeJKwfs5IeHN5JkistEBBvepCCxTRQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RJuD/nxj38MVVXx1ltv4cSJE6KHQ0TdlJycjIkTJyI5OVn0UEyDnVmjAxkyypCBSBaBUEub/9+b68GW+WMwJb9797CZkp+HLfPHcKEmxgJwoCR4IQKJd3VqonPwuG8NnGcx2Lt+7Ewjew+y5JMlBxkv4RZr7rjjDowbNw5NTU2YM2fOOZd0ICJzCQQCKC0tRSAQED0U02Bn1uhAhowyZLC6I9WN6Lfo723+OVLdKHp4pIPL0f6X9VmpLhROH4aVs4ajoL++Sw0X9M/GqllXoXD6MF76zAAOhHGR/QQcOPfMKKJEw+O+NXCexWDv+rEzjew9yJJPlhxkvIRbrFEUBc8//zxGjx6NDRs24IYbbsDu3btFD4uIuqi5uRlFRUVobm4WPRTTYGfW6ECGjDJkIJJFqsve6WPGe3Pw/Jyr8dqCMfinkX3bfdzwvln42biBeG3BGDw/52qM8/aM5VDpNC6Eke84ChcXa8gEeNy3Bs6zGOxdP3amkb0HWfLJkoOMp6gJdurK7NmzAQDBYBAvvvhiZMVx4MCBGDJkCDIyMqAonV/TWVEUPPXUU4aOlagze/bsidyHCQA+/fRTDB48WOCIiIiIvnWkuhGjl21r83M7Fo5Dn+wUbl/Ha7VasL4UOytOdXt80RreNwsvzhul6zkydW+27YvOTkREREREbRP9s9yEuzjy6tWrz1mMUVUVBw4cwIEDB3S9FhdriMRTVRV+vx9JSUlRLbQSOwOs0YEMGWXIQBQrp/+AfUT/7Lgu1owYoO/SZpRIVLgQRgB2AHwfpcTG4741cJ7FYO/6sTON7D3Ikk+WHGS8hLsMGqDtwKf/aev/dfaHiBJDbW0tHn74YdTW1ooeimmwM2t0IENGGTIkAt43Rj6T8/Piu72hveK6PYqdNCWAO5NLkabw+uWU+HjctwbOsxjsXT92ppG9B1nyyZKDjJdwZ9asWrVK9BCIKIbS09MxZ84cpKenix6KabAza3QgQ0YZMhAZwZvrQUG/bJSUVxu+rYL+2RiUy3+DZtWoOrGx+TI0qk7RQyHqFI/71sB5FoO968fONLL3IEs+WXKQ8RJusWbmzJmih0BEMWS325Gbmyt6GKbCzqzRgQwZZchAZJS5YwegZLXxizXzrhto+DbIOC2woVrlPWrIHHjctwbOsxjsXT92ppG9B1nyyZKDjJeQl0EjInnU19dj9erVqK+vFz0U02Bn1uhAhowyZCAyynhvDiYPNfZyaFPy8zDO29PQbZCxkhHERFcZkhEUPRSiTvG4bw2cZzHYu37sTCN7D7LkkyUHGY+LNURkKIfDgX79+sHhSLgT+RIWO7NGBzJklCEDkZEenDwYOZ4kQ147x5OEJZMGG/LaFD9hKKhsSUcYvNEsJT4e962B8ywGe9ePnWlk70GWfLLkIONxDyEiQ7ndbowdO1b0MEyFnVmjAxkyypCByEhZqS6smV2AaSuKUdsUuzMnMpKdWDO7AFmprpi9JokRgAOloV6ih0EUFR73rYHzLAZ714+daWTvQZZ8suQg4/HMGiIylN/vR3FxMfx+v+ihmAY7s0YHMmSUIQNZV1mlDyu2H2j38wvWl2LZljLsr6zr1na8uR6snzMyZmfY5HiSsH7OSHhzPTF5PRLLiTAus1fBibDooRB1isd9a+A8i8He9WNnGtl7kCWfLDnIeELOrHnooYfO+PsDDzzQ7ue64/TXJSIxAoEASktLMXjwYCQlGXMpGNmwM2t0IENGGTKQ9Wwtq8LyooMoKa/u8HE7K05hZ8UpPF50AAX9sjFv7MAu3x/Gm+vBlvljsGTzHmwsPdql1wC0e9QsmTSYZ9RIxIEwLnKcwKFwFoKwix4OUYd43LcGzrMY7F0/dqaRvQdZ8smSg4ynqKqqxnujNpsNivLtdZnD4XC7n+uO01+XSIQ9e/ZgyJAhkb9/+umnGDyY15cnIqJvHaluxOhl29r83I6F49AnO0XKbcd7+6caAli8aQ82fSx2sWRrWRWWv3UQJYc6Xiw6XUH/bMy7ruuLRW2x0twn2vZFZyciIiIioraJ/lmusHvWtK4RtbUwE4v1o1gt+BBR97S0tMDn88Hj8cBm45UXo8HOrNGBDBllyEDWsO+YD7NWlaDK173LDmwsPYrigyexZnZBly9DNt6bg/HeHOyvrMPa4go8XVzR5uOG983CiAHZmDy0Fwblpndn2JTAFKhIVQJoUF1Qwe9fKLHxuG8NnGcx2Lt+7Ewjew+y5JMlBxlPyGLN4sWLu/Q5IjIfn8+HwsJCzJ8/H5mZmaKHYwrszBodyJBRhgwkv33HfJj+ZDFqm4Ixeb0qnx/TVhR3+74xg3LTcc+YAe0u1jw6LZ9nWFhAqhLAbe7deKH5ctSrvCQGJTYe962B8ywGe9ePnWlk70GWfLLkIOMJW6xpvTdNQUHBOZ8jInl4PB7Mnz8fHg9vhBwtdmaNDmTIKEMGktuphgBmrSqJ2UJNq9qmIGauLMGW+WN4/xjqlgbVhReaL0eDyv2IEh+P+9bAeRaDvevHzjSy9yBLPllykPGEnXe1ZMkSPPjgg3jllVdEDYGI4sBmsyEzM5OneerAzqzRgQwZZchAclu8aU+3L33WniqfH0s27zHktck6VCioV5N4CTQyBR73rYHzLAZ714+daWTvQZZ8suQg43EPISJD1dXVYfny5airqxM9FNNgZ9boQIaMMmQgeW0tq8Kmj48auo2NpUextazK0G2Q3JIRwOSkPUhGQPRQiDrF4741cJ7FYO/6sTON7D3Ikk+WHGQ8IZdBIyLrcLlcyM/Ph8vFy3tEi51ZowMZMsqQAQCOVDdi9LJtbX5ux8JxvG+ISS0vOhif7bx1EOO9OXHZFsknBDu+CJ2PEOyih0LUKVmO+9QxzrMY7F0/dqaRvQdZ8smSg4zHxRoiMlRSUhJGjhwpehimws6s0YEMGWXIQHIqq/ShpLw6LtsqOVSN/ZV1GJSbHpftkVyCsGNvmIt9ZA487lsD51kM9q4fO9PI3oMs+WTJQcbjZdCIyFDNzc0oKipCc3Oz6KGYBjuzRgcyZJQhA8nlSHUjjlQ3Ym1xRVy3G+/tkTxcCCHf8RVcCIkeClGneNy3Bs6zGOxdP3amkb0HWfLJkoOMx8UaIjJUKBRCeXk5QiH+ECJa7MwaHciQUYYMJJfRy7Zh9LJtWFt8OK7bfZqLNdRFdqjItdXBDlX0UIg6xeO+NXCexWDv+rEzjew9yJJPlhxkPF4GjYgMlZaWhlmzZokehqmwM2t0IENGGTIQxYqqqlAURfQwKEp9slNQvvQW0cNAE5zYEvCKHgZRVHjctwbOsxjsXT92ppG9B1nyyZKDjMcza4jIUOFwGJWVlQiHw6KHYhrszBodyJBRhgxEsdIQ4L8D0s+GFmQrjbChRfRQiDrF4741cJ7FYO/6sTON7D3Ikk+WHGQ84Ys1L7/8MsaPHx/zPxMmTBAdjYgA1NXVYcWKFairqxM9FNNgZ9boQIaMMmQgipVAiD9sJ/1SlCCmuPciRQmKHgpRp3jctwbOsxjsXT92ppG9B1nyyZKDjCf8MmhHjx7F0aNHY/qavAwFUeLIyMjAfffdh6SkJNFDMQ12Zo0OZMgoQwaiWHE5hP8OFJlQverCM035CMAueihEneJx3xo4z2Kwd/3YmUb2HmTJJ0sOMp7wxRpV5c00iWSmKArcbrfoYZgKO7NGBzJklCEDUaykuvjDduoKBQHx35IRRYXHfWvgPIvB3vVjZxrZe5Alnyw5yHjCvzMoKCjATTfdJHoYRGQQn8+HlStXYvbs2fB4PKKHYwrszBodyJBRhgwklx0LxwEAFqwvxc6KU3Hb7vC+WTyrm7okBQHcnFSGV/xeNMIlejhEHeJx3xo4z2Kwd/3YmUb2HmTJJ0sOMl5CLNYsXrxY9DCIyCButxtjx47lbxDowM6s0YEMGWXIQHLpk50CABjRPzuuizUjBmTHbVsklwDsKA3l8TJoZAo87lsD51kM9q4fO9PI3oMs+WTJQcYTvlhDRHJzuVzIz88XPQxTYWfW6ECGjDJkIDlNzs/D40UH4re9ob3iti2SSwh2fBE+X/QwiKLC4741cJ7FYO/6sTON7D3Ikk+WHGQ83gmViAzV1NSELVu2oKmpSfRQTIOdWaMDGTLKkIHk5M31oKBffM52KeifjUG56XHZFsmhT3YKypfegvKlt2Df4vFYPtaOfYvHo3zpLZGzw4gSEY/71sB5FoO968fONLL3IEs+WXKQ8XhmDREZqqWlBTU1NWhpaRE9FNNgZ9boQIaMscpwpLoRo5dta/NzOxaO4w8vqUvmjh2AktXVhm9n3nUDDd8GyUuGYwFZB/dXa+A8i8He9WNnGtl7kCWfLDnIeFysISJDpaamYvr06aKHYSrszBodyJBRhgwkr/HeHEwemodNHx81bBtT8vMwztvTsNcn+fF9lMyE+6s1cJ7FYO/6sTON7D3Ikk+WHGQ8XgaNiAwVCoVQXl6OUCgkeiimwc6s0YEMGWXIQHJ7cPJg5HiSDHntHE8SlkwabMhrk3XwfZTMhPurNXCexWDv+rEzjew9yJJPlhxkPC7WEJGh6uvrsWbNGtTX14seimmwM2t0IENGGTKQ3LJSXVgzuwAZyc6Yvm5GshNrZhcgK9UV09cl6+H7KJkJ91dr4DyLwd71Y2ca2XuQJZ8sOch4Qi+DpqqqyM0TURxkZmZi8eLFXXuyqgL+OiAcBOxOICkdUJTYDjABdaszSVihAxkyypCB5OfN9WD9nJGYubIEVT5/t18vx5OENbML4M31xGB0ZHV8HyUz4f5qDZxnMdi7fuxMI3sPsuSTJQcZT9hizaFDhwAAHg+/0SWi01TtAXa/CHy1Ezj2MdBc8+3n3JnABUOBXt8BLr8NyLlM1CiJiMhEvLkebJk/Bks278HG0q7fw2ZKfh6WTBrMM2qIiIiIiIgo5oRdBq1v377o27cvsrKyRA2BiOKgtrYWS5cuRW1tbccP/Ow1YOVNwBOjgLf/Bzj01pkLNYD290NvaZ9/4mrt8Z/9w5iBqyrQ7AMaTmr/jeOZgJHOvv5SyPYTQdT7jYnJkFGGDGQdWakuFE4fhpWzhqOgf7au5xb0z8aqWVehcPowLtRQTPF9lMyE+6s1cJ7FYO/6sTON7D3Ikk+WHGQ8oZdBIyL5paSkYOrUqUhJSWn7AY3VwCu/Bj59Uf+LH34XePZd7Sybm5YBKfp++HYO0Wf1fLP9lCMfYWq4GimP/xeAUPy2n0A63W8kIENGGTKQ9Yz35mC8Nwf7K+uwtrgCTxdXtPm44X2zMGJANiYP7YVBuelxHiVZBd9HyUy4v1oD51kM9q4fO9PI3oMs+WTJQcbjYg0RGcrpdMLr9bb9ycpPgWd+CNQd695Gdr8AlL8N/Pj/gJzB+p//2WvA249piz/taT2rp/XMngtHAdf+Arjku10ddbvbdwI4pzEjt98WwfcLcjoc8PbLAwI+ICzn/Yo6/LdhEjJkIOsalJuOe8YMaHex5tFp+eiTzW+myFh8HyUz4f5qDZxnMdi7fuxMI3sPsuSTJQcZT9hl0IjIGhobG7FhwwY0Njae+YnKT4HVt3R/oaZV3TFg1c3a2SlRD64aePFu4NnbO16oacvhd4FnbwP+7yfa63RFO9tvhBsbcCMa4TZ2+2er2gO88SCwZjLwcD9gaR/gvwZo/324n/b/33gQqNobm+11sP3GpYOwYelP0Phfl8Vv+63idAm8dv9tmIgMGYiIROL7KJkJ91dr4DyLwd71Y2ca2XuQJZ8sOch4PLOGiOKvsVo7o+bse9J0V3MNsPYHwLx3O78kmuizekRv/3QJdmaR5qyFKqPPLBJ9CbzTCT6rSfj2iYiIiIhIHvz+gij++O/OtLhYQ0SGar0u5xle+XXszqg5W90x4NWFwA/+0v5jWs/qidViUetZPXe9Et2CSSfbT0EzpuI147bfSvT9gjrYfqcdxOp+RQIXqs74tyF6saiL22/z33e3qEhDE5wIIQgH6pEcw9c2w/aJyGpi/z5KZBzur9bAeRZDut7j8P2NaToz+Ifmpumhi2TJF5ccon+uQDHBxRoiMlQwGMSBAwcwcOBAOJ1O7YfjXVkc0GP3C9rB55Ibz/2c6LN6oth+EA4cQF8MRAWcCMV2+61En9nTyfaj7qCr2xe9UIVv/m3seBEDD66F88u3239g3M9qin775/z77oqqPcj44DmsdW7FEFs5MpWGyKdq1FS4X74S6HuVoQtVQrd/Bi4WEVlNTN5HieKE+6s1SDvPCf5b5tL0Hsdfhou6MxFzH8cfmkuz77TDtPnO2u+CNjcOHDxoTA7RV0uhmOJiDREZqvW6nPPmzUNGRoZ2AImHdwrbXqwRfVZPFNtvRDI24EbMw9PIQF1stw8k/JlFgM4OurJ90Zega6xG44ZF2PDZeZiHj5Gh57kGn9WkZ/uN1/z7mf++9TjtC0oPgGvt5z4kU2kAjuzQ/hi4UCVk+60SZrGIC0VEIpzzdRJRAuP+KoEofmgt1Twn0m+Zd9K94b0bvWAh4JfhOuxM1NwL+KF5Qv+bjcF+l9D5ztbBfteY1Asbgj/AvO84kDE8RvtdAvwSKsWeoqoG3TmZiLBnzx4MGTIk8vdPP/0Ugwd38b4iMqjaAzwxKn7bm/femQfAz14Dnr3d+O3+6Pm2F4pEbx/QDuZPjDJmwSr9gujOLBK5/VgvVAHaF/t6LkEXq8UiQMss6n5JXd1+d76gbCVqoSoW228VzTdyZzPgXk2+D57DJ++3s1B04ZVwG7xQdKS6EaOXbUNbi0U7Fo5Hn+wUQ7Z77vbPtWPhOKm3b+XsRCSYyDMcRJ9dIflv+HcontkT4essQHz38dq+6O8vTidq7hPle4yzWfk9J55E7HeJ9O9OMqJ/lsvFGkkEAgGsX78ezz33HPbs2YOqqipkZWWhf//++P73v49Zs2bh/PPPN9W233zzTaxZswbFxcX46quvkJSUhN69e+PGG2/E3XffDa/Xq/s19+3bh5UrV+K1117Dl19+Cb/fj169euHqq6/GjBkzMGHCBN2v2RHR/8ATxqkK7b/vFAIfPhW/7V71E+CW//727ytv0nfw7Kq+12g/vD+b6O0DwIt3G3sZustv6/jMHpHbF71QBIhfLEqE7Vt5oQpIjG/kEugHGFwsErf9xMl+rrgu1oj+wa1IorNb+Qf2olnth3eif3CYyL/hfzYDfjEkrtkT4essQHz38dy+6O8vWomc+0T4HuN0Vn7PiTdR+12i/LuTlOif5XKxRgJlZWW44447UFpa2u5jevbsiVWrVuHmm29O+G37fD7cc889WL9+fbuPcTqdePDBB/Gb3/wm6rH+/ve/x4MPPohgMNjuY+644w6sWLEC6enpUb9uR0T/A08ENTU1KCwsxHz1L8iEL/4DWFKr/Vf0WT06tl8DDwqVn3Svs7O3D4g/s0fH9rvVQXvbF71QddZiUUzmuZWgs5oiGVI2IfNnryf2WU2it986Biuf1dQqUb6RE71YJHL7orND8GKR6B/ctlJV1Hz9JQqXr8T8ubOR2bO33D8wF7190dlFi0H+yNf18+cjMzMzuu2KfM8Xfbwx6W/4R76+u2cmMi/o17UxWPW3zLvRfaT3S44ic8p/muMMcsG/DBd5T/rRRGRumilm7hPge4xID5PykVm63HTvOQA63O+6dOyJB53vOR1+/69nv0uEX0KVnOif5XKxxuS+/P/s3X98VNWdP/7XJJOZya8hSZUEFAnQSjQo0UJAWxDQVioKbP0B/SVIuyL28xX20xXsblfBbT+rrJ9KPrtVsC0/FqyirhXwB1KFAFZjgBKFQHAFE0BIBPJjJpPMr8z9/nHJkMAkmZuZO2fuua/n48GDJDNzz3m/z7nnztwz596TJzFu3DicOnUKAGCxWDBx4kSMGDECZ86cwXvvvYf29nYA6gTH1q1bMWXKlKQtOxAIYOrUqdi+fXv4b6NGjcKNN94Ir9eL3bt34/TpCwPSsmXL8Pjjj/dZ18cffxz/+q//Gv590KBBmDBhAhwOB/bt24fq6urwY9/97nfx1ltvwWqN/ZZOonfwZBAMBnHy16NxJU7Dio7EV+CRT9QTHyJW9dz8yIXfNZQfRCpOYlBsOessP3fohb+JXtmjofyYchCpfNETVcAlk0VxaeeuBKxq6hbDdd9P3lVNossHxH+QM/gJjDAZJovMfOKyk6jJomSI/6IT5kGv+8I46siW99uu7PfdGfRyUMFgECdPnsSVV17Z92clkWO+6OONwb/hH35/l6XA+pNXjfHFENHvszrrEEPuu72vzh5ojBXkgr8MFwwGcfLT3bjy3Z/C6jsXv3Kjbftk+IwBIOj6Cif/vBRXfvFy/z9XJvGqIk3Hnovpdbztx5jT5+f/aPud6C+hmoDoc7mcrDG4iRMnYvfu3QCAoUOHYtOmTRg9enT48bNnz2L27Nl4//33AQB5eXk4evRoXGaj9Si766SKw+HAmjVrMHv27PDjfr8fv/rVr/Dv//7vANQJoh07duCWW27pcZvvv/8+brvttvDvjz76KH7961/DZrOF//bSSy9h3rx58Hq9AKKfBOqL6B08aSxN8pvAycyAK4t0KV/0RJXoySLR5Yt+Qym6fNEf5CQ4gdGNUSeLzHzispNBv2UOwLiXHxQdO/v9BWa6HJTIMV/08UZ07Gb8Yojo91lAcuQ+0eWL/nwBiG970Z8xAHOPOT3R+3grst8lw35nAqLP5aYkrCSKu7fffjs8WWKz2bBly5ZukyUAcNlll2HTpk0YPnw4AKCxsRHLly9PyrK/+uor/Pa3vw3/vmLFim4TNZ1lLV++HLNmzQIAKIrS56XQuj4+e/ZsLF++vNtEDaBe/uzZZ58N//7MM8/g7NmzvW6XouPxePAypsODdNFVMQwP0uOXs6Y69d+eBK4qAtRVRJ1l96P8mHPQdRVTQ3ViJmoAoO6vQMOhS//+wYpL/hTXdu7017LIf49QfjxcEkOk8j97V98PMQBw4FW1nEhElw+oJ8v0eDMPqNt9Z3HPj7c1qh/g4vkhClC3t+Fudft96fwgF68cuE8Da+5Q9+1o1R9UP1TF2hcOvKpuR0vZossXHTug9pPXfqp+uNQ6Hh//EPjTvcB//yy6/nYx0fH3EXuvxwKjx272ft/ps3fVL408fzPwwW+BL3ZeOiZ7m9W/f/Bb4Pmb1Od/tq3/ZeoUv8fjwcsvvwyPx9Pza0SO+aKPNyLLj+Pxvtu4FO3xXmTsIt9nAXHL/SXHg2hzL+q9nk6fLy7R0+cbAJ7NS/Cye6w+5xr6avtk+Ixxfr/zuJvj87lS0JjTTYR+F9WxB0jc8bafY05Un//76ndJsN+R/jhZY2C/+93vwj/PmTMH1113XcTnZWZm4sknnwz/vmrVKgSDwaQre926deHB9+qrr8aDDz7YY/nLly9HSorafT/66CPs378/4vP27NmDPXv2AABSUlJ6nSyaP38+vvGNbwAA3G431q9f3+NzKXopKSnIgQsp4CK+aKVAiV/Oyq5X/yXyEnAAsOcPF8ruR/kx52DPH8RPVHXqYbIoru3cKdJkkY6TVZfEEKl80W8oRZcv+oOcJCcwLmGkySIzn7jsrIPIE/ai276P2KM6Fhg1djP3e0DcJKWO8aekpCAnJyf8OewSIsd80ccb0eXH8Xh/ybiUzF8MEf0+C4hb7iMeD6J5ryXivV4yfBnus3eRUrNZ33MNvbW96M8YXfa7uH6uFDDmXOKifhfVsSdRx9sYxpyo26mnfpcM+x0lBCdrDKq1tTV8eTEAeOCBB3p9/t13342srCwA6gqXXbt2JV3Zb7zxRvjnuXPnwtLLdSSvuuqqbve/+fOf/9znNm+77TYMGTKkx21aLBbMmTOnz22SNunp6ZiKcqTDK7oqhpEOr+lzFpcciJ6o6mOySLd2jnFVkxYRY0imVU2iywfEfpCT6ARGREaYLDLziUtAmm+ZdxPnb5lHfSwwUuxm7/eAuElKneNPV9oxdepUpKf38K1gkWO+6OONyPLjfLyPOC4l6xdDRJ8wj2PuezweJNMK8mT5MhwAfLAiMZ+bI7V9MnzG6LLfxT0PSbaqKD09vedjT6KPtzGMOZraqWu/S6b9jhKCkzUG9eGHH8Ln8wFQV6+MHTu21+c7HA7cdNNN4d+3b9+eVGV7vV5UVFSEf580aVKf9Zg8eXKv2wSAHTt29HubXeOk/vP7/aj6zn/Dv2AfMGRcYgsfMj6x5cWJH2mowrXwI010VYSRIgd9TBbpFmOMq5q0iBhDMqxqEl1+J9Ef5CQ6gdGjZJ8sMvOJS9EnzQ1y+UFNxwIjxC66fNGxA1JfDsr/5hJUVVXB7/df+rjIMV/08UZ0+XE+3vc4LiXbF0NEv88C4pr7Xo8HybKCXPSX4Tqdb/uEfGbsbHvRnzG6umi/0yUPSbSqyO/3Rz72JPp4G+OYo6mduo45ybLfUcJwssagDh8+HP75uuuug9Vq7fM1N954Y8TXJ0PZR44cQSgUAqCucLnhhhti3ubFf+/6/J50LbejowOfffZZn6+h3nm9XpTvOQhv+kD15uuJVJjg8uLECzvKcRO8sIuuijBmyIEMMfYYg+g3lKLLT4YPcpKdwOhVsk4WmfnEJSDVt8wjitO3zDUfC5I9drP3e8kvB+U99DbK33sHXm+EbwWLHPNFH29Elq/D8b7HcSlZvhgi6Zdyej0eJOsK8kS7qO0T9nlq7x/Ff8bo6qL9Trc8JMmqIq/Xi/Ly8u7HnkQeb+M05mhuJ65sMS1O1hjUkSNHwj8PHTo0qtdcddVV4Z9ramqSquyu2xw4cCAcDoembTY2NuLMmTPdHv/qq6/Q3Nysqa7p6em4/PLLe60raeN0OrFo0SI4nU7gunsSW/ioe4CFn6r/RKzq6SxbY/lOtGIR/ggnWmMv36DikoMkJ0OMMsSgC5Ef5CQ9gdGrZJ0sMvOJS9EnzQ10+cF+jaPJGrvo8kXHDkh/OSgnWrHoa7vV9/VdiRzzRR9vRJWv4/G+13EpGb4YIumXcvo8HiTDCnLRLmr7hH0WuXiyRATl/H1OIux3uuUhQWNOr/b+Ec6OpgvnlDol8ngbpzFHcztxZYtpcbLGoM6dOxf+OT8/P6rXFBQUhH9ubNR4o0qdy451m5G223Wb/d1uLHkilaIo8Hq9UBQFyC8Grro5MQUP/RaQfy2QO1T9J2JVT2fZGstXoH7rIqbbA3aWb1BxyUGSkyFGGWKQjqQnMPqUbJNFZj5xCUj3LfMexeFb5v0eR5MxdrP3exNcDkoB4K3bC6W+WvxJ42QoW2T5Oh7vex2XkumLIaLolPs+jwfJsII8yZjqs8hXh3vc73TNQwLGnF7t+QOUsusvnFMCxH8pqJ9M1V8pJpysMajW1gszsT3e4PEiXZ/X9fXJUHas24y03Yt/T3SeunI4HMjKygKgXl6tubk5fKBxuVzha2+2t7fD4/EAAILBYLeVQS0tLQgEAgCAtrY2tLW1AQACgQBaWlrCz2tubkYwGAQAeDwetLe3A1Cv8+lyuQCoEyjNzc3o6OgIx9m5pNTn88HtdgMAQqEQmpubw5eoc7vd4fv4eL3ecH56i6mhoQFPP/00Wlpa1JhKHroQE7IRgHoZvTY40AZ1RVUAVrQg+0JMcCKIVDUmpKP9/PP8SIMLal6V88/rOD+std74cPeYhk9TY4IFzXAiBIsaEzLhg02NCXa0IkONCSlohjN8IHUhK3xt0XY44IHaT4JIRTMufMMjHNOoe7q3U9HMqGM6iQI8bfk5muHsHhMywktmfbDBjcyeY7p6hhrTQ3vQ+rMKYMi42GPS0k6DJ6B9/h5g4afwL9gH16AJkduph5iaMABPW36OJgzoXzsNGR//mKLte1G205fn27kFzvj2vQTGFHM7JWFMCRsjZI2prBRtZaXA3j8mNqY9L8FXNgZoqoO3/jO0frg6se2094/wfFmD9tOfAU118Ff8MbHt9LH6Qbr99GfwnI89YX1v7x/RevLwhWPuiSq4j38Se0zRtFPdpwicVFeRtp06grZTR4A9Ce57H66+8N7o+H60Hq/SFNM55IaPBZraqe4Agl8eUGPq7Ht7/pjYMeLD1fA3fC6+79WrsSd03PvragS+OqrG1Pl+74MViel7H6gTdW63G776/1HHvY/+mJDjUwuceNryc5z7YA1Qdj08ZePQfn7MT2jf2/My/GXfBMquR/veFxN7zN2zGii7Hq1l4+EtGwvsTXDf27MRgbIb4xvTRe3U2c5foiByTGU3qcfcvX9M7HujPa8gWHZDv2ICkv/93mkMDB8PZIlJ73Y6hXw8bfk5GpEjTUw9ttPz31HHvb1/vCSmExgc7jtxj2nPK+goK9Enpijb6QQGhc8ptbW1oW3nfyamnXY+f+FcWBxi0rWd9Ox7kp+z7C0mUThZY1Bdr9Vos9mieo3dfuG6iJ07Q7KUHes2I2334mspJzpPXY0fPx733KNeAuzMmTMoKysLDyCrV6/GoUPqt/N27tyJLVu2AABOnjyJsrIL35p8/vnncfSo+qFw27Zt2LZtGwDg6NGjeP7558PPKysrw8mTJwEAW7Zswc6dOwEAhw4dwurV6odon8+HsrKy8KXjXnvtNVRUVAAA9u/fjxdffBGAOoCVlZWFB8wXX3wR+/fvBwBUVFTgtdde6zOm/fv3o7CwENnZ2WpMW6rUy5MBeB4/wVGoqz+24RZswy1qTBiK5/GTCzFZfoaTGKTGhO9gJ8arMeEbWI1Zakywo8zyM5zB14Dr7sVr+892j2nbXuCqm+FCNsosP4Pr/AHwRfwd9qNYjQk34jWokzpn8DWUWX4G3/mD3GrMwiF8Q20njMcWfEdtJwxCmeVnF9oJP8HRy6cC+dd2b6dWO55PeSCqmP4bd2K+sh42BC7EBOA1TEMF1A9n+1GMF/F3ajtdHJPtx9j/pdp3K2pO4bX3PgaGfiu2mLS2k28sdn5yDMgdikOnW7G6aeyl7dRLTMr5NxCd/2tup8JvYecN/4EtI/4PMGRcfGKKpu8BeM3+A1SMe6HPdnoT38FNyh5kozV+fU+vmPRqpySMKSFjBGPSL6ay61Gx8hG89klLYmPa8wds+f1vsHPVo0DZ9Ti0/6PEttPfPgTKrsfOVY9iyydfJbad9vwBr/3h/6Jix1agqQ77t72c2L5X/iLQVIdtL/wLtr3wL8DePya2733Sjv1/fR9oqkPF1lc0x9T5gTz7/CUxNLXTrvVAU92Fvrf3j4kdIz4J4dDzPxHf91Y+Auz9Y2LHvU/TcPS5e9WYtm3Dtk2vAMc/TEzfO34AaDikvi9f+ffquFd1KCFjeWc/bTn4bnxjMsPxyUAxZaMVNyl78Ob5OsgQkxHaaSduwijlMLLRKk1MerfTNtyC+cp6eM9vT4aY+tNOayyzMV9Zj2y0ShNT13b6E76P7373u8jOzsa2Ta9g25fpiYnp1A1wHd3HdpL8nGVvMYliUcLryMhIpk2bhrfffhsAsGTJEjz11FN9vuadd97BHXfcAQDIysoKz0QmQ9n//u//jsWL1WtCjhs3LrwT9qa9vR0ZGRnh3/fu3YtvfvOb4d/37NmD0tLSbs+P5l4448aNQ2VlJQDgmWeewS9+8Ys+X9OT6upqjBo1Cg6HA1arFRUVFSgqKoLb7caAAQNgsVjgcrngcDhgs9nQ3t6OUCiEzMxMBINBtLa2IicnB4A6S52RkYG0tLTwDHVGRgYCgQDa2towYID6zfbm5mZkZWXBarXC4/EgJSUF6enp8Pv98Hq9cDqdUBQFLS0tyM7ORmpqKlpbW2G1WuFwOODz+eD3+5GdnY1QKASXywWn04mUlBS43W7YbDbY7XZ4vV4Eg0FkZWWho6NDW0y2EPD8zWhxtyID7UhDMPxNggx4EYAVbUjHAKj9pBlOZMEDKzrgQTpSoCAdXviRBi/scKIVCtRv+2VnZSP14Q/QGrJdGtPpDxH60yy4kA0n3EiBAjcyYUMAdvjhhR1BpCILbehACtzIwgC4YIH6DQkHfLAhgHY4EIIFmWhHEKloRSZyoB4cWpCNjPt+j7Rrv3dpOx18BwM2/UR7TGhFKkJoRQas6IADPvhggx9pyIYHIVi6xzTzRdiu+U73dvLUoeP5b/c/Jq3tNHcHUvKvudD3TnwC5/rb+h+T1nZasAvtzmFq3/voGQQ/KIs9pmjbadz/hnXyEjjaG+Dz+eHf/A/IPrU79piibachY9D2vf+nxpTuQOC1+Wj78mBsMWlppytKYP/yr/GNSY920qvvMSbGxJgYE2MyT0wL/4a2di9Q+QIyqv6QuJjG/hTu638G2x8nsp0YE2NiTImLad4bSMu+HG2vLgBO7UtcTFdei5S7X4C77Ca2k1ljengn0tKsaNv5/4CqDYmLacx9SNn7B7Ht9PNy9fzeqw8j5dTexLXTldfCcvcLcKXmmu6c5ZdffolRo0ah08GDB1FcXIxE4WSNQc2aNQuvvPIKAOCRRx6Jaubv9ddfx9133w1AvS/L6dP9uxmXHmU///zzePjhhwEA119/PT755JM+t9nY2Iivfe1r4d9ramowcuTI8O+HDx/Gtdde2+35ubm5fW73+uuvx4ED6mUlVq5cifnz5/f5mp50TtZ0SvQOngxaW1vx2muv4Z577glfCg6Aem3tNXcA3ub4FebIAR54W703Tk9e+6m+1ze97l7g7l6u5xtF+a3IwGuYhnvwFrLQFr/yV38vMddzH/ottR1iKD+mHFxcfkM18HyC7pUEAAs+Uu+X1Om9ZcAHv73kaTHF2JsJvwBufbzP8uMhYgwTfgHcOEf9+fW/B058rEvZEQ0ZD3z/hQu/iyqfN4Ikoijpdiwg0gH7qzmwncUwRN5/eRKwZ+v6+SKizs83Swd0+3NCc/bIJ4BFvZqAkM8YJ3r+QrMh+k4MZImv33EsPX8JMVH7nQmJPpfLy6AZVNdJioaGhqheU19fH/45Ly8vqcqOdZuRttt1m/3dbix5IpXVakVhYSGsVmv3B/KL1RPq2YPiU1D2oL4nagDgjn+PX5mR6vC95TGXb0UHCnESVnTEt/xvL9K2vf76Vg/laCi/3zmIVH5+MXBVgiZrhn6r+0QNAFx3T8SnxhRjb0ZdVF4P5cdDxBhG3QPkDlX/Df2WbmVHVPitC2WLLH/hp+q/IeMSW/6Q8Yktj4hiptuxgEgH7K/mkPTtLPJ91sJPddt80ucdAGznv3yp4+eLiDo/31zU9gnL2ZDxQF6h2M8YvTBE34mB8Pge+SQuY47mOC4ec0Ttd5RwnKwxqK4rSOrq6qJ6zfHjx8M/FxUVJVXZXbf51VdfXXK/mb62mZeXh8svv7zb4wMHDgwvx4u2rl6vN3xNxJ7qSto4HA5MmjQp8iXo8ouBBR+qq0Ficd296nb6mqgBgIw84Mf/ra7CiSdHjrrdjD4m+KIo3wEfJuEjOOCLb/lX367/Afe6e4Grvxtz+f3KQW/li5yo6mGyqN8x9ibSZJGOk1WXxHBx+aLfUIoqX+QHOUlPYBDJSpdjAZFO2F+TiI7H+17bORm+GCLpl3L63L8632uJfK/XubJE1JfhLmr7hI1JF0+WiP6Mc5GE5EFgv3Ms3CP22JP5tbiMOZrbqXPM6ST6S6iUMJysMahrrrkm/POBAwcQDAb7fM3f/va3iK9PhrJHjhyJlBS1OyqKgqqqqpi3efHfO28yFe02U1NTcfXVV/f5Guqdz+dDRUVF+EZel8jIUy/b9cNXtB/8hn4L+OGr6uv7miTpStSqnijL98GGCtwAH2zxL98AK4uAfuSgr/JFT1RFmCzqV4x9icOqJi0uiSHZVjWJLl/EBzlJT2D0iZNFZFC6HAuIdNKtv3Z+01jkmC+6bJHl63i873VcSqYvhkj2pZw+jwfJsIK8K5Ffhjvf9gk7hl78OVLEZ4xe9jtd85CAMadXhd+CL6NA7HuloF/9P8YxR3M7RTp/IfpqKZQQnKwxqJtvvhl2ux0A4PF4sHfv3l6f33nCvNOUKVOSqmyHw4Hx4y98S6e8vLzPeuzcubPXbQLA5MmT+73NrnFS//n9flRVVcHv9/f+xKtvVyccFnykXhtz+KRLV584ctS/T/iF+rwH3u755HhfRKzqibJ8P9JQhWL4kRb/8g2wsgjQmINoyxc5URVhskhzjH2J06omLbrFkIyrmkSXL3KySLITGH1KlsmiZChf9MkzUQx6+cG4HAtEt30ylM9+n5Diwv118DjxlwRKhrJFlt9Jh+N9r+NSMnwxpJNkX8rp83iQLCvIO4n8Mtz5to/756lIelphkOjPGL3sd7rmIQFjTq9G3aOeU9K7nXtjPT+5EuOYo6mdeup3or+ESgnByRqDysrKwq233hr+fe3atb0+//XXX4fb7QagXjJs4sSJSVf2zJkzo97miRMn8P7770d8bU/bfO+993Dy5Mlet9u13J62SdpkZ2fjoYceQnZ2dnQvyL9WvYnZ/ZuAJbXqTQwfPab+v6RW/futj8dnSaaIVT1RlJ8NDx7CBmTDo0/5Sb6yCIgyB1rLFz1RddFkkaYY+xLHVU2aiu2MIduZvKuaRJcvarJIshMYfUqWyaJkKN+sE2UGvfxgTMeCZIjd7P1etATHH+6vI0q7PyDypLHoE9aiy9fheN/juJQsXwzpSqIv5fR6PEjGFeSA2C/DfXtRfD9P9aSnL4SJ+owRYb/TNQ9JsKooOztb/3buTee9moCYxhxN7dTbyhbRV0sh3XGyxsAefvjh8M9r165FdXV1xOe1tbXh8ccfD//+4IMPXnqz9yQoe86cOcjMzAQAHDlyBH/4wx96LH/JkiXo6FBvynXTTTfhxhtvjPi8sWPHYuzYsQCAjo4OPPbYYz1u84UXXsBnn30GQJ1guP/++3t8LkUvFAqhubkZoVBI+4stFsCerV4j1J594Rq58ZboVT19lB8aNgnN9isRQpd4411+Eq8sAoAQLGiGs3sO4lG+yImqiyaLoo6xL3Fe1aRFCBa1r/7w1eRd1SS6fJGTRRKdwOhVMk0WJUP5Zp0o62Swyw/GdCxIhti7MmO/Fz1J2SlB8Yf767Xf7/6AyDFf9PFGdPlA3I/3PY5LyfbFEECqL+X0ejxIxhXkgNgvw119O0LF98Tn81RP+lphIOIzRoT9Lm6fKy+WJKuKQqEQmh/4K0L/X5XYezUBMY05ms5x9NbvRH8JlXTHyRoDmzZtGiZMmABAvdTYnXfeiU8/7b4c/9y5c5g5cyY+//xzAOrKliVLlkTcXm1tLSwWS/hfb6tb4l02AAwcOBD/+3//7/DvjzzyCF555ZVuzwkEAnjsscfw0ksvhf/2b//2bz1u8+LHX3zxRTz22GMIBALdnvPKK69g0aJF4d//8R//EZdddlmv26XouFwulJWVweVyia5K3xK5qqeX8l0z1qHMfx9cCw7qW36SriwCABeyUWb5GVzoYUVWrCuLRE1UdZks6jPGaOiwqkkLV+YIta+mD+n9iaLfUIouX9RkkUQnMHqVjJNFZj5xKXrCwGCXH4zpWJBMsYsuP0ludp0wgi4HFe6v6Vde+qDIMV/0CWvR5cf5eB9xXErGL4Z0kuRLOT0eD5J5BTkg9Mtwrm//S+yfp3qrR19fCBP1GeOi/S4unysjSZJVRS6XC2Vr/xuu1Fzx92oC+j3mRNVO0a5sEX21FNKVRVEURXQlqP9OnjyJ0tJSnD59GgBgsVhwyy23YMSIEThz5gzee+89tLW1AQCsViu2bt3a7RJmXdXW1mLYsGHh39esWYO5c+cmpOxOgUAAU6dOxfbt28N/u+6663DjjTfC6/Vi165d4fIAYNmyZd1W7vTkX/7lX/DrX/86/PvgwYMxYcIEOBwO7Nu3DwcPHgw/9p3vfAdvv/12zKuPAKC6uhqjRo0K/37w4EEUF5tr8AuFQnC5XHA6nUhJ4fxwNITlrOEQcPA14Mt9wKkqwNt84TFHDjC4BLjim+obMz0mrLqUH/ryE7h8HXDCjRQo+pX/2bvAX8uAur9G/5qh31LfuMaysqmtEaG3F8N18N0LMWp13b3qG7n+TJa1NQLvLAYOvKr9tV3KD93+FFxBa/R9taEa2HA34D7d93P7kj1I/RCj5Q2lyPIbqoE1d3Tfr2LlyOn7TXVbI/D8zfGJ+WLZg9QJy9764Gs/VfdrvVx3rzppG8ln7wJ/uk+/sjv98NXI44HI8kXHvvp7wPEP9S9/6LfUfeBiIuPXGHsIFriQrf1YkIyxiy5fZNkN1epYmygLPrr0vVAC4g/BAtf0/4Kz5M7Ix32RY77IspOh/Dge7y8Zl/o63ouOHRD3PguIW+4jHg+iea8l+r1e13rE4fOFls83oVAIrqN74XztPqT4mvpf7sWibftOIj5jdNnv+v1eojcJHHMucVG/63Z+5Mxh8cdboF9jTp/tpLXfAUL2OzMQfS6XkzUSqKmpwQ9+8ANUVVX1+JzLL78ca9aswbRp03p8jtbJmniW3VVLSwsefPDBS1bVdJWWloalS5fin/7pn6LapqIo+M1vfoMnn3zyklU1Xc2ePRurVq2C0+mMart9Eb2DE/WbogD+ViDoV2+oZ8vS7zJ0yVC+qIkqUZNFIssX/YZSZPmiJoskOIERUbJPFoku38wTZYC4+M0cezKUL7Js0ZOUgPi2Fznmiz7eiC4fMO8XQzqZ8Us5yVJ+VyI+X4j+QhiQ+M8YybDfiep3yXC8BZKj33USfV5BMqLP5XKyRhJ+vx8vv/wyXnrpJVRXV6OhoQE5OTkYPnw4vv/97+OBBx7o87Je/ZmsiVfZkbz33ntYt24dPvroI5w+fRppaWkYMmQIbr/9dvz0pz/FNddco3mbhw8fxh/+8Ads27YNJ06cQCAQwKBBg3DTTTdhzpw5uO222zRvszeid/Bk4Ha78eKLL+JHP/oRsrN1WJ4sIeZMcA4SNFHULca2E8JXNbn2vIRPPt6O61K+QI7lwk0Pm5VMOK76JhyFYy8pP6Z2Ev2GUuCqKiGTRQI/TBw7+DG+9trfYUAcbwragkw03vtnDCvu47rVoj/ImvnEpZlPGmuI3Y1MvIi/w4/w5+hvnJvMsYsuX2TZyTBRp3P87p9sw4uvv937cV/kSWPRJ6xFl99ZhxiP9+FxKfNDZN+/wTixA4b+Uk6340G201gryCPWR/8vw3X7LJIaSI4VBon8jHF+v3N7A9rfS/QkCVcVXfKZMxmOt500jDk9vueL58oW0VdLkYToc7mcrCHSkegdPBn4fD7s378fN9xwA+x2u+jqGAJzZo4c9BijoFVNJxrbMGH5DgAKMuGFDQH4kQYPHNi9eAqG5GVEH4MW/ZwoihtR5ZtkVVOTx4+pZbuQ4/4frLM9jQJL7JeoqFdyMce/BM3Z38DWhRORm2nr/QWiTyCZ9cSl6AkDwBDfMvfBhv0oxg2ohh3+vstP9tiToXyRZYuepAR0jd+X8/XojvuiVziY9ZKrnWI83vtgw/5BP8IN9z0Ge25B9C9Mhtg7GfBLOeHjwbXfgP3Op423grw3On2+ifhZRPQXwjol6qR5QzV862dhf+tl0b+X6EmSriqK2M7JcLztKop+d8l7Pr1Xtoi+WoqBiT6Xy8kaIh2J3sGJiKJ1YbLmUrsXT444WRP/sqOfKJKmfBGTRQn8EPvIS/ux+ZNTAIAcuLE0bR1mpvb/sgVvdNyMpYE5aD5/Y84ZJYNRNvuGvl8o+gSSWU9cip4w6KyD2S4/2LUO7PeJLTsZJikB8W0PiD1pLPqEtejyO5nkiyG94qWOxZSfDJJphYHeJ82TZb9LZL9LluPtxZKp31G/iT6Xy8kaIh2J3sGTgdfrRUVFBcaPHw+HwyG6OobAnJkjB8kWY38ma+IVg8iJouQqP8GTRTpPFG2vacC8tXsv+fvklP14yLoF41Jqot7Wx6EiPB+8C+WhSydmVs8dgylF+X1vRPQHWbOeuDTzSeMoYvfCjgrciPH4Gxzw9bwto8WeDOWLbHfRE3WALvH367gv8qSx6BPWosvvpPHkYVze3yVL7F2J+Ja5htx7BwyP/2cDyU8cR91XJV9hEM7DZR449vxO/H4X537XYzsny/G2Jxf1O2/IioqPP06az//UM9Hncq0JK4mITCkYDKK2thZjxowRXRXDYM7MkQMZYpQhhuRigQfp8CA9McXlX4uWm3+Jn3wwHhEniv4utomileXHIv59R+gG7PDfgKstJzA99UOMthyNOFl0IDQMnygjsLnjZnymDOm5nJ3HopusychTL2dw3b1iTiCJLF9k2fnF6rcTRU4YiIo/itiDSEUtrsQYfNLzdowYezKUL7LdH3hb/CSlDvH367h/9e3qPxEnjUWWnQzld8q/Fsh/XP05ipPWcXl/lyyxd2WxAPZsIJFXWNaQ+2Bra/zfV2tse6OJuq+KaPsEupCHe4BR08Tvd3Hudz22c7Icb3tyUb/TZR8nKXFlDZGORM/GEhFFKzkug5b4ss1evl5l19S7MHXFbg2vuHSyCIj+g9y7iyZiZEEPN7vuiVnvlySy7GT5prWIkxhmjj1Zyk902aJXNV1MdNt3JfKksegT1qLLF8nMsROJYob9LtmOt2R4os/lcmUNEemqo6MDZ86cweWXX47U1FTR1TEE5swcOZAhRhlioPg60dgGANhQUafxlbGtKtpQUYcHJw7XNrmk88qipC5fVNnJ8k1rEd807iH2Dq8LZ/A1XI5zSHU45Yw9WcpPdNmiVzVdLA7xx+24L/Jb7qK/YS+6/Cjo9v7OALGLxPfV2jFnql7zIMF+12c7J9vxtgfsrxStFNEVICK5ud1urFq1Cm63W3RVDIM5M0cOZIhRhhgoviYs34EJy3dgQ8XxhJa7vqKuxxVC0VEni5rgPD9hlOhvHIosX0DZ+dcCtz4O3L8JWFIL/PIk8Ogx9f8lterfb308MdfP7zyJkfk19f9ETFZ0id294ABWWX4C94ID8seeTOUnsuyrb1cv07LgI2DCL4Dhk9RJya4cOerfJ/xCfd4Db+t74qif8fO4bw5sZzGYd+2YM5XseYg6vmQ83nYheztR/HBlDRHpasCAAViyZAnsdgN/lSPBmDNz5ECGGGWIgYgEk+Abn/1msWDAwCsujKOyXZaEuhO9qikOeNw3B7azGMy7dsyZSvY8aI4vSY+3srcTxQ8na4hIVxaLBQ6HQ3Q1DIU5M0cOZIhRhhiIiETiOGpSBp2kZH81B7azGMy7dsyZSvY8xBRfEh1vZW8nih9eBo2IdOVyubBixQq4XC7RVTEM5swcOZAhRhliICISieMoGQn7qzmwncVg3rVjzlSy50GW+GSJg/THyRoi0pXD4cCkSZP4DQINmDNz5ECGGGWIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfL4NGRLqy2WwoKSkRXQ1DYc7MkQMZYpQhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/XFlDRLpqb2/H1q1b0d7eLroqhsGcmSMHF8d4orENhY+9FfHficY2wbWNzAztRNrsXjwZuxdPxjeH5ia03DFDc7F78eSElkkUDxxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka5CoRCam5sRCoVEV8UwmDNz5ECGGGWIgeJrSF4GhuRlYNywvISWO254HobkZSS0TKJ44DhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP3xMmhEpKvMzEzMnj1bdDUMhTkzRw5kiFGGGEgf00sG47nyo4krb/QVCSuLKJ44jpKRsL+aA9tZDOZdO+ZMJXseZIlPljhIf1xZQ0S6CgaDqK2tRTAYFF0Vw2DOzJEDGWKUIQbSR1GBE6WFiVldUzosDyMLshNSFlG8cRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WUNEumptbcW6devQ2toquiqGwZyZIwcyxChDDGZWU+/Cql09r35ZtLEKy7fW4Ei9u1/bf2jS8P5WTZMFt4xISDlEeuA4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9WRRFUURXgkhW1dXVGDVqVPj3gwcPori4WGCNiChZnWhsw4TlOyI+tnvxZN3vxyGyfDPHLqL87TUNWFl+DJW1jVG/prQwDwsmjcDkooGaynrkpf3Y/MkprVWM2oySwSibfUO/X2+2ticiIiIiIqKeiT6Xy3vWEBEREZlAk8ePJzZX92vypLK2EZVrGzGjZDCW3lWM3ExbVK9bNr0YH39xDg0un+Yy+5LvtGPpXfwCBBEREREREcmBl0EjIl21tLTgqaeeQktLi+iqGAZzZo4cyBCjDDGYxeHTLkwt2xXzKpdNVacwtWwXaupdUT0/N9OGdfNKMSA9LaZyLzYgPQ3r5pVGPWlElKw4jpKRsL+aA9tZDOZdO+ZMJXseZIlPljhIf5ysISJdZWRkYObMmcjI4KVcosWcmSMHMsQoQwyi6X3fGECdqJn9QkXcVrc0uHyYtaoi6gmbogInNs4fj3ynPS7l5zvt2Dh/PIoKnHHZHpFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9eBo2IdJWWloaioiLR1TAU5swcOZAhRhliECXa+8bsq2vCvromPFd+tF/3jWny+DF3TSVa2gOxVrmblvYA5qyuxNaFE6Na3VJU4MTWhROxdEs1NlX1f3WP1suwESU7jqNkJOyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrtra2vDGG2+gra1NdFUMgzkzRw5kiFGGGBKtyePHIy/tx7y1e/ucqLlYZW0jHli7Bwtf3o8mjz+q1zyxuVqX+8UA6gqbpVuqo35+bqYNZbNvwOq5Y1A6LE9TWaXD8rBm7liUzb6BEzUkFY6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfV9YQERERJcDh0y7MXVMZ8+TJpqpTqDh2DuvmlfZ6KbDtNQ0x36MmmrrMKBmMKUX5Ub9mSlE+phTl40i9Gxsq6rC+oi7i88YMzcW44XmYPvoKjCzIjleViYiIiIiIiJISJ2uISFed1+Wk6DFn5siBDDHKEEOidN43Jl6XI+u8b0xv925ZWX4sLmX1ZeXOY5omazqNLMjGgxOH9zhZ8+ysEgzJ4zWdSW4cR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0FQgEUFNTg0AgvvdLkBlzZo4cyBCjDDEkgt73jYl0SbSaepfmy6z1V+UXjThS705IWUSy4ThKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaIdMXrcmrHnJkjBzLEKEMMiZDI+8acaGzDicY2bOhhtYpeNlTU4UQj+wGRVhxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/i6IoiuhKEMmquroao0aNCv9+8OBBFBcXC6wRESWrE41tmLB8R8THdi+erPvloESWL3Ps22saMG/t3n6/Plqr547BlKJ8FD72lu5l9ab2qWmani9z2xuhfCIiIiIiIrpA9LlcrqwhIiIi0kki7xtDRERERERERMbFyRoi0lVzczOWLVuG5uZm0VUxDObMHDmQIUYZYtAT7xtDfRmSl4Hap6ZF/MdVNebAcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+rOKrgARyS0rKwtz5sxBVlaW6KoYBnNmjhzIEKMMMeih894tIu4bQ0TGwnGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6cpqtaKwsFB0NQyFOROTg0TfO0KGdpYhBj301I/0tp6TNUSGw3GUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFcejwcvv/wyPB6P6KoYBnNmjhzIEKMMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5SEnhcBMt5swcOZAhRhlikM27Cydg9+LJ+ObQ3ISWO2ZoLnYvnpzQMolkwHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFfp6emYOnWq6GoYCnNmjhzIEKMMMdTUu3q918uijVUYNywPM0quwMiC7ATWrH8udzqQl2nDuGF52FfXlLByxw3Pi/ulAonMQIZxlMyD/dUc2M5iMO/aMWcq2fMgS3yyxEH643QeEenK7/ejqqoKfr9fdFUMgzkzRw5kiNHIMWyvacB9Kz/C1BW7saHieI/P21fXhOfKj+L2Fbtw38qPsKPmqwTWUjubVX1rN71kcELLnT76ioSWRyQLI4+jZD7sr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2uISFderxfl5eXwer2iq2IYzJk5ciBDjEaMocnjxyMv7ce8tXtRWduo6bWVtY14YO0eLHx5P5o8yfkmO9OWCgAoKnCitDAvIWWWDsszxKojomRkxHGUzIv91RzYzmIw79oxZyrZ8yBLfLLEQfqzKIqiiK4Ekayqq6sxatSo8O8HDx5EcXGxwBoRUU9ONLZhwvIdER/bvXiy7pd4MnP5iSr78GkX5q6pRIPLF/O28p12rJtXiqIC5yWPnWhsA6BeQi2RlyIbMzQXry24Ofz79poGzFu7V/dy18wdi8lFA/v1WjP3eyIiIiIiIkouos/lcmUNEelKURR4vV5wXjh6zJk5ciBDjEaK4fBpF2a/UBGXiRoAaHD5MGtVBWrqXZc8NiQvA0PyMjBuWGJWtnQaN7x7eVOK8jF9tL6XQ5tRMrjfEzVEZKxxlIj91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6aqlpQVPP/00WlpaRFfFMJgzc+RAhhiNEkOTx4+5ayrR0h6I63Zb2gOYs7qyx0uiJcN9Y5ZNL0a+065LeflOO5bexdWiRLEwyjhKBLC/mgXbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXWVnZ2P+/PnIzub9DKLFnJkjBzLEaJQYnthcHbcVNRdrcPmwdEt1xMeS4b4xuZk2rJtXigHpaXEtb0B6GtbNK0Vupi2u2yUyG6OMo0QA+6tZsJ3FYN61Y85UsudBlvhkiYP0x8kaItJVamoqCgoKkJqaKroqhsGcmSMHMsRohBi21zRg8yendC1jU9UpbK9piPjYQ5OG61p2pwW3jOjxsaICJzbOHx+3FTb5Tjs2zh8f8X49RKSNEcZRok7sr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2uISFetra1Yu3YtWltbRVfFMJgzc+RAhhiNEMPK8mOJKWdn5HKS5b4xRQVObF04ETNivDTbjJLB2LpwIidqiOLECOMoUSf2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVEpCur1YrCwkJYrVbRVTEM5swcOZAhxmSPoabehcraxoSUVflFI47UuyM+liz3jcnNtKFs9g1YPXcMSodpuzxb6bA8rJk7FmWzb+Clz4jiKNnHUaKu2F/Nge0sBvOuHXOmkj0PssQnSxykP/YQItKVw+HApEmTRFfDUJgzc+RAhhiTNYYTjW0AgA0VdQktd0NFHR6cOBxD8jK6/b3zvjGzVlWgpT0Qt/L6e9+YKUX5mFKUjyP1bmyoqMP6HvI0Zmguxg3Pw/TRV0S8Hw4RxS5Zx1GiSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXfl8PlRUVMDn0+fm3jJizsyRAxliTNYYJizfgQnLd2BDxfGElru+og4Tlu+I+Fgy3jdmZEE2HpzY8z11np1VgkdvL+JEDZGOknUcJYqE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEenK7/ejqqoKfr9fdFUMw8w5O9HYhsLH3kLJE2/jT+/sQskTb6PwsbdQ+Nhb4dUSspChnWWIIZF43xgiuhjHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5dBIyJdZWdn46GHHhJdDUNhzoB22LDZF919OIxKhnaWIYZE67xvzIySwVi58xgqv4j+njqlw/Kw4JYRmFw0UMcaElEicRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WUNEugqFQnC5XHA6nUhJ4WK+aDBngAUKMi1+eBQbFFhEV0cXMrRzPGKoqXf1em+ZRRurMG5YHmaUyHXfFN43hogAOY4FZB7sr+bAdhaDedeOOVPJngdZ4pMlDtIfewcR6crlcqGsrAwul0t0VQyDOQMyLX7c6ziATIu8S4RlaOdYYthe04D7Vn6EqSt293pvmX11TXiu/ChuX7EL9638CDtqvoqlykmH940hMjcZjgVkHuyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrpxOJxYuXAink/dWiBZzBngUG171XgePYhNdFd3I0M79iaHJ48cTm6ux+ZNTmsurrG1E5dpGzCgZjKV3FSM3U97+QUTmIMOxgMyD/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5oqthKMwZoMCCVsUuuhq6kqGdtcZw+LQLc9dUosHli6ncTVWnUHHsHNbNK0VRwaVvdncvngxAvYTavrqmmMrSYszQXDw7qyRh5RGR8clwLCDzYH81B7azGMy7dsyZSvY8yBKfLHGQ/ngZNCLSldvtxsqVK+F2u0VXxTCYMyAdfky3VyMd8l4GTYZ21hLD4dMuzH6hIuaJmk4NLh9mrapATf2ly8iH5GVgSF4Gxg3Li0tZ0Ro3PA9D8jISWiYRGZsMxwIyD/ZXc2A7i8G8a8ecqWTPgyzxyRIH6Y+TNUSkK5vNhpKSEthsvFxRtJgzIIhUfB68DEGkiq6KbmRo52hjaPL4MXdNJVraA3Etv6U9gDmrK9HkiTypN71kcFzL68v00VcktDwiMj4ZjgVkHuyv5sB2FoN51445U8meB1nikyUO0h8vg0ZEurLb7Rg/frzoahgKcwYEkIpDHfmiq6ErGdo52hie2FwdtxU1F2tw+bB0SzXKZt9wyWNFBU6UFuahsrZRl7K7Kh2Wh5EF2bqXQ/E1JC8DtU9NE10NMjEZjgVkHuyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrrxeL8rLy+H1ekVXxTCYM8CGIEqsX8KGoOiq6EaGdo4mhu01Ddj8ySld67Gp6hS21zREfOyhScN1LbvTgltGJKQcIpKLDMcCMg/2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVEpKtgMIja2loEg/KedI835gxIhYKCFDdSoYiuim5kaOdoYlhZfiwhdVm5M3I5U4ryMX20vpdDm1EyGJOLBupaBhHJSYZjAZkH+6s5sJ3FYN61Y85UsudBlvhkiYP0x8ugEZGusrKyMHfuXNHVMBTmDGhHGrb6i0RXQ1cytHNfMdTUuxJyCTIAqPyiEUfq3REvRbZsejE+/uKcLpdiy3fasfSu4rhvl4jMQYZjAZkH+6s5sJ3FYN61Y85UsudBlvhkiYP0x5U1RKSrjo4O1NfXo6OjQ3RVDIM5A1IQQp6lDSkIia6KbmRo555iONHYhhONbdhQUZfQ+myoqMOJxrZL/p6bacO6eaUYkJ4W1/IGpKdh3bxS5GbyJpFE1D8yHAvIPNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrtxuN1atWgW32y26KobBnAEZlgBmOA4hwxIQXRXdyNDOPcUwYfkOTFi+Axsqjie0Pusr6jBh+Y6IjxUVOLFx/njkO+1xKSvfacfG+eNRVOCMy/aIyJxkOBaQebC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+8DBoR6WrAgAFYsmQJ7Pb4nCA1A+YMaFVseLG9BH6kiq6KbmRoZ6PFUFTgxNaFE7F0SzU2VZ3q93ZmlAzG0ruKuaKGiGJmtHGUzI391RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6cpiscDhcIiuhqEwZwBggV/yQ5QM7WzEGHIzbSibfQNmlAzGyp3HUPlF9PfUKR2WhwW3jMDkooE61pCIzMSI4yiZF/urObCdxWDetWPOVLLnQZb4ZImD9MfLoBGRrlwuF1asWAGXyyW6KobBnAEZ8OMe+6fIgF90VXQjQzsbOYYpRfl4Zf5NeHfRRPxk/NAenzdmaC5+PnkE3l00Ea/Mv4kTNUQUV0YeR8l82F/Nge0sBvOuHXOmkj0PssQnSxykP7m/tkxEwjkcDkyaNInfINCAOQP8SEVVcLDUl0FLpnauqXdhQ0Vdj48v2liFccPyMKPkCowsyA7/PZli6K+RBdl4cOJwrO8h/mdnlWBIXkaCa0VEZiHDOErmwf5qDmxnMZh37Zgzlex5kCU+WeIg/XGyhoh0ZbPZUFJSIroahsKcAUGk4vOOy0RXQ1fJ0M7baxqwsvwYKmt7vxTYvrom7KtrwnPlR1FamIcFk9RLgSVDDERERsZxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642XQiEhX7e3t2Lp1K9rb20VXxTBE5uxEYxsKH3sr4r8TjW0Jq4cNQZSmHYcNwYSVmWgi27nJ48cjL+3HvLV7+5youVhlbSMeWLsHC1/ej9NnWyLGsHvxZOxePBnfHJobz2r3aczQXOxePDmhZRIRxYLvk8hI2F/Nge0sBvOuHXOmkj0PssQnSxykP66sISJdhUIhNDc3IxQKia6KYTBnQAoUZFn8SIEiuiq6EdXOh0+7MHdNJRpcvpi2s6nqFP529DTmXNl4SQydlw0bNywP++qaYipHi3HD83jJMiIyFB7zyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka4yMzMxe/Zs0dUwFOYM8CIN2/1fF10NXYlo58OnXZj9QgVa2gNx2d4Jt4L/qB2Ib7s7UJR56ePTSwbjufKjcSkrGtNHX5GwsoiI4oHHfDIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5dBIyJdBYNB1NbWIhiU93JW8cacAakIoSDFhVTI+62TRLdzk8ePuWsq4zZRA6jtlO47hwf+WIEmj/+Sx4sKnCgtzItbeb0pHZaHkQXZCSmLiCheeMwnI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WUNEumptbcW6devQ2toquiqGwZwB6ZYAvmf/DOmW+E0sJJtEt/MTm6tjvvTZxTrbyd3aiqVbqiM+56FJw+NaZk8W3DIiIeUQEcUTj/lkJOyv5sB2FoN51445U8meB1nikyUO0h8vg0ZEusrJycETTzwhuhqGwpwBrYoda9rHiK6GrhLZzttrGrD5k1Nx327XdtpUdQozSgZjSlF+t+dMKcrH9NGDdSm/04ySwZhcNFC37RMR6YXHfDIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpjytriIiIJLey/FhiytkZuZxl04uR77TrUma+046ldxXrsm0iIiIiIiIiokThZA0R6aqlpQVPPfUUWlpaRFfFMJgzINPiww8d+5Fpie9lu5JJotq5pt6FytpGXbZ9cTtVftGII/XuS56Xm2nDunmlGJCeFtfyB6SnYd28UuRm2uK6XSKiROExn4yE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqIyMDM2fOREZGhuiqGAZzBngVKz7wF8KryHu1Tj3b+URjW/jfhoq6uG+/U6R26qm8ogInNs4fH7cVNvlOOzbOH4+iAmdctkdEJAKP+WQk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7Sn7xnwYgoKaSlpaGoqEh0NQyFOQM6kIrjoVzR1dCVnu08YfkOXbZ7sUjttL6iDv86c1TE5xcVOLF14UQs3VKNTVX9v4fNjJLBWHpXMVfUEJHh8ZhPRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xZQ0R6aqtrQ1vvPEG2traRFfFMJgzwI4Avp32BewIiK6KbmRo557aSVGUHl+Tm2lD2ewbsHruGJQOy9NUXumwPKyZOxZls2/gRA0RSUGGYwGZB/urObCdxWDetWPOVLLnQZb4ZImD9MeVNURERBRXHn8Hsuy9v8WYUpSPKUX5OFLvxoaKOqzv4fJpY4bmYtzwPEwffQVGFmTrUV0iIiIiIiIiIuE4WUNEuuq8LidFjzkDfEjDB4FhoquhKxnauad28gdDQJS3phlZkI0HJw7vcbLm2VklGJLH6/oSkZxkOBaQebC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+8DBoR6SoQCKCmpgaBgLyXs4qnE41tGPHYZkz8pw0Y8dhmFD72VvjfiUbzLJdNRQeuSmlCKjpEV0U3MuwbPbWTzcq3F0RE0ZDhWEDmwf5qDmxnMZh37Zgzlex5kCU+WeIg/fFsChHpitfl1M5hCeLbtlo4LEHRVRHGDDmQYd/oqZ0ybamCakREZCwyHAvIPNhfzYHtLAbzrh1zppI9D7LEJ0scpD9eBo2IdDVgwAA89thjoqthKB7Fjj95bxBdDaHMkAM9943diyeHf160sQr76pp0KSdSO40ZmguLxaJLeUREsuH7JDIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1REREkul6j5dxw/J0m6yJZNzwvISVRUREREREREQkC14GjYh01dzcjGXLlqG5uVl0VQwjy+LDA+l7kWXxia6KMGbIQaL2jeklg3XbdqR2mj76Ct3KIyKSDd8nkZGwv5oD21kM5l075kwlex5kiU+WOEh/XFlDRLrKysrCnDlzkJWVJboqUTnR2IYJy3dEfGz34sndVizopV1Jwzu+q9GupOleVrIyQw4StW8UFThRWpiHytrGuG/74nYqHZaHkQXZcS+HiEhWRnufRObG/moObGcxmHftmDOV7HmQJT5Z4iD9cWUNEenKarWisLAQVivnhqPVgRTUh5zoMPEQbYYcJHLfeGjScF22e3E7LbhlhC7lEBHJiu+TyEjYX82B7SwG864dc6aSPQ+yxCdLHKQ/ec+CEVFS8Hg8ePnll+HxeERXxTAcCGCK7XM4EBBdFWHMkINE7htTivIxfXT8L4fWtZ1mlAzG5KKBcS+DiEhmfJ9ERsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaIdJWSkoKcnBykpHC4iVYIFrQqNoRgEV0VYcyQg0TvG8umFyPfaY/rNjvb6bJsO5beVRzXbRMRmQHfJ5GRsL+aA9tZDOZdO+ZMJXseZIlPljhIf1x7RUS6Sk9Px9SpU0VXw1D8sKIycJXoaghlhhwket/IzbRh3bxSzFpVgZb2+KxY8sOKI9YR2PjT8cjNtMVlm0REZsL3SWQk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH6fziEhXfr8fVVVV8Pv9oqtiGFZ04OupZ2FFh+iqCGOGHIjYN4oKnNg4f3zcVtgMzrbiqUnZGJ7niMv2iIjMhu+TyEjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka68Xi/Ky8vh9XpFV8UwbOhAifUUbBJPVPTFDDkQtW8UFTixdeFEzCiJ7R42M0oG4+WffhNH9n/M/ZuIqJ/4PomMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNl0IhIV06nE4sWLRJdDUNpgw2v+a4XXQ2hzJADkftGbqYNZbNvwIySwVi58xgqv2iM+rWlw/Kw4JYRmFw0EAC4fxMRxYDvk8hI2F/Nge0sBvOuHXOmkj0PssQnSxykP07WEJGuFEWBz+eD3W6HxSLvzeLjS4ENHfAjFYBZcyZ/DpJh35hSlI8pRfk4Uu/Ghoo6rK+oi/i8MUNzMW54HqaPvgIjC7LDf0+GGIiIjIzjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8ugEZGuWlpa8PTTT6OlpUV0VQwjy+LHj9KrkGUx77VMzZCDZNo3RhZk48GJw3t8/NlZJXj09qJuEzVAcsVARGREHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrrKzszF//nxkZ2f3/WQCALQpadjkvRZtSproqghjhhzIsG/IEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0lZqaioKCAtHVMJQQUtCoZIiuhlBmyIEM+4YMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH648oaItJVa2sr1q5di9bWVtFVMYx0BDDVVoN0BERXRRgz5ECGfUOGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbKGiHRltVpRWFgIq5UL+aLVAQvqQ9nogHlvOmeGHMiwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/9hAi0pXD4cCkSZNEV8NQ/LCiKniF6GoIZYYcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXfl8PlRUVMDn84muimGkoQPXpjYgDR2iqyKMGXIgw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/jhZQ0S68vv9qKqqgt/vF10Vw7CiA1+3noVV4omKvpghBzLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPl0EjIl1lZ2fjoYceEl0NQ2mHDZt9xaKrIZQZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+uLKGiHQVCoXQ3NyMUCgkuiqGYYGCLIsPFiiiqyKMGXLQdd+oqXdh1a6jPT530cYqLN9agyP17gTWsG/cv4mIYsNxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEenK5XKhrKwMLpdLdFUMI9Pix72OA8i0mHd5rBly0Llv/OT5ckxdsRsbKo73+Nx9dU14rvwobl+xC/et/Ag7ar5KYE17xv2biCg2HEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrpxOJxYuXAin0ym6KobhUWx41XsdPIpNdFWEkT0HTR4/Hn/7KF71XocPT7Rpem1lbSMeWLsHC1/ejyaP2Mks7t9ERLHhOEpGwv5qDmxnMZh37Zgzlex5kCU+WeIg/fGeNUSkq5SUFOTk5IiuhqEosKBVsYuuhlAy5+DwaRfmrqlEg8sHoP8xbqo6hYpj57BuXimKCsS84eP+TUQUG46jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfV9YQka7cbjdWrlwJtzv6e22caGxD4WNvRfx3olHbKgQjSocf0+3VSIe8lwDri6w5OHzahdkvVKDB5YtLjA0uH2atqkBNvZil1P3Zv4mI6AKOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXNpsNJSUlsNnkvJyVHoJIxefByxBEquiqCCNjDpo8fsxdU4mW9gCA+MXY0h7AnNWVQi6Jxv2biCg2HEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrux2O8aPHw+7Xc5LWukhgFQc6shHQKKJCq1kzMETm6vPX/pMFc8YG1w+LN1SHfN2tOL+TUQUG46jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2uISFderxfl5eXwer2iq2IYNgRRYv0SNgRFV0UY2XKwvaYBmz851e1v8Y5xU9UpbK9piMu2osX9m4goNhxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka6CwSBqa2sRDMpx0j0RUqGgIMWNVCiiqyKMbDlYWX7skr/pEePKnZeWoyfu30REseE4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9WUVXgIjklpWVhblz54quhqG0Iw1b/UWiqyGUTDmoqXehsrbxkr/rEWPlF404Uu/GyILsuG63J9y/iYhiw3GUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjyhoJ+P1+rF+/HnfccQeGDh0Kh8OBQYMG4eabb8YzzzyDs2fPGqb8pqYmvPrqq3j44Ydx8803Y+DAgbDZbHA6nRgxYgRmz56NF198EYFAIOptTpo0CRaLRdO/Dz74oD+poAg6OjpQX1+Pjo4O0VUxjBSEkGdpQwpCoqsijAw5ONHYhhONbdhQURfxcb1i7Kk8PXD/plgNyctA7VPTIv4bkpchunpEuuM4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbLG4GpqajBu3Djcf//9eOedd3D8+HH4fD7U19fjo48+wqOPPori4mK8/fbbSV1+a2sr7rrrLhQUFOC+++7D888/j48++ghnzpxBIBCA2+3GsWPHsHHjRvz4xz/G1VdfjV27dukSE8WX2+3GqlWr4Ha7RVfFMDIsAcxwHEKGJfpJSdnIkIMJy3dgwvId2FBxPOLjesW4PoGTNdy/iYhiw3GUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdAM7OTJk7j11ltx6pR602qLxYKJEydixIgROHPmDN577z20t7fjq6++wsyZM7F161ZMmTIlKctvbW3Fm2++2e1v+fn5GDNmDAoKChAIBFBVVYVPP/0UAFBbW4tbb70Vf/7zn3HnnXdGXeeZM2fiiiuu6PN5gwcPjnqb1LsBAwZgyZIlsNvtoqtiGK2KDS+2l8CPVNFVEcYMOdAzRkVRYLFY4r7di3H/JiKKDcdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzUG9sMf/jA8UTJ06FBs2rQJo0ePDj9+9uxZzJ49G++//z4CgQDuvfdeHD16FDk5OUlbfm5uLu6//3488MAD3bbV6YMPPsD999+PL774AsFgED/60Y/w2WefIT8/P6o6L1y4EJMmTdIUJ8XGYrHA4XCIrobBWOA3/fBshhzoF6PH34Esu/754/5NRBQbjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8vg2ZQb7/9Nnbv3g0AsNls2LJlyyWTG5dddhk2bdqE4cOHAwAaGxuxfPnypCzfZrPh8ccfR21tLVasWBFxogYAvv3tb2P79u1wOp0AAJfLhRUrVsQlJtJHZxu5XC7RVTGMDPhxj/1TZMAvuirCmCEHesboDybmXj/cv4mIYsNxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642SNQf3ud78L/zxnzhxcd911EZ+XmZmJJ598Mvz7qlWrEAwGk678vLw8LFu2LDwJ05vCwkI89NBD4d/feustLVWnBHM4HJg0aRK/QaCBH6moCg6W+hJgfTFDDvSM0WZNzOGd+zcRUWw4jpKRsL+aA9tZDOZdO+ZMJXseZIlPljhIf5ysMaDW1la8//774d8feOCBXp9/9913IysrC4C6umXXrl2GLh8AvvWtb4V/rq2tjXl7pB+bzYaSkhLYbDbRVTGMIFLxecdlCEo8UdEXM+RAzxgzbYnJG/dvIqLYcBwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WWNAH374IXw+HwB15crYsWN7fb7D4cBNN90U/n379u2GLh9Atxtnd3R0xLw90k97ezu2bt2K9vZ20VUxDBuCKE07DhtiXwVnVDLkYPfiydi9eDK+OTQ34uN6xThmaG63MVJP3L+JiGLDcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+pP97s1SOnz4cPjn6667DlZr381444034i9/+cslrzdi+QBw4MCB8M9DhgyJ+nU1NTU4dOgQTpw4gUAggLy8PFx99dWYMGEC8vPzY64XXSoUCqG5uRmhUGLuoSGDFCjIsviRAkV0VYRJdA5q6l3YUFHX4+OLNlZh3LA8zCi5AiMLsqPa5pC8DADAuGF52FfXdMnjesU4bnheXLfXG+7fRESx4ThKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xssaAjhw5Ev556NChUb3mqquuCv9cU1Nj6PJDoRDWr18f/v22226L+rULFiyI+HeLxYK77roLTz75JEaPHh1T/ai7zMxMzJ49W3Q1DMWLNGz3f110NYRKVA621zRgZfkxVNY29vq8fXVN2FfXhOfKj6K0MA8LJo3A5KKBUZUxvWQwnis/esnf9Ypx+ugr4r7NnnD/JiKKDcdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPl0EzoHPnzoV/jnY1SEFBQfjnxsbeT0ome/nPPfdceMInJSWlxwkYLRRFwebNmzFu3Dj8/ve/j3l7dEEwGERtbS2CQeNezirRUhFCQYoLqTDvNy70zkGTx49HXtqPeWv39jlRc7HK2kY8sHYPFr68H00ef5/PLypworTw0tUuesRYOiwv6pU/8cD9m4goNhxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYYUGtra/jn9PT0qF7T9XldX2+08qurq/HLX/4y/PtPf/pTFBcX9/oai8WCW265Bc8++ywqKirQ2NiIQCCAxsZG7N69G//wD/+AzMxMAIDP58P8+fPx6quv9ruOkTgcDmRlZQFQ77HT3NwMRVEvfeRyueD3qyd829vb4fF4AKgDeXNzc3gbLS0tCAQCAIC2tja0tbUBAAKBAFpaWsLPa25uDg/+Ho8nfD1Mv98Pl8sFQJ2cam5uDt/vp7W1FV6vN5wDt9sN4NJlmm63O3y/Iq/XG27L3mI6e/Ys1q1bh9bW1qhjCgYCyLT4ws/LsvjCJ7Tb2/SNqc2jxpSCELIsPuD8Jaoy4EcgAe0U8PuRZ2nD9+yfId3iR5bFh5Tzsbd59GunrjGlhmNXZVp8SEVHv2PS0k5t5+uaYfHje/bPkGFR65cOP/z+/sfUtZ0On3Zh5oq/4K1PTgAA7AjAjsD52Dt67HsOBML3l7GiA3+pqsXUsl04fLqlz7730KThsEBBlsUHy/k+lRtuZ3W76efrEKnvWc/n34YgHOG6XtpOD37rqn63U8DvRwY6J5+UqPqey+XCunXrwu3b377X3tZz3wsmYNzz+31IPx/7xe3U1toa0/4U7RjRW9/Tcyz3+bw99j1Pq1vq4xNjYkzJEFNzc3P4fZIsMcnYToypJVy3devWhV8nQ0wytlOsMXW2c319vTQxGaGdvvrqq/DxQJaY9G6nhoYGrFu3Di0tLdLE1J92OnXqVLjvyBJT13bqGp+RY5K9nWSMSRRO1hhQZwcFAJvNFtVr7HZ7+OdYb2Ylqvzm5mbMnDkzvLN94xvfwG9/+9s+X/faa6+hvLwcixYtwrhx45Cbmwur1Yrc3Fx8+9vfxm9/+1vs27cPw4cPB6AOCgsWLOg2mMRq/PjxuOeeewAAZ86cQVlZWXgAWb16NQ4dOgQA2LlzJ7Zs2QIAOHnyJMrKysLbeP7553H0qHoppW3btmHbtm0AgKNHj+L5558PP6+srAwnT54EAGzZsgU7d+4EABw6dAirV68GoA5uZWVlOHPmTDhHFRUVAID9+/fjxRdfBKAOYGVlZeEB88UXX8T+/fsBABUVFXjttdf6jKmqqgojR45ETk5O1DF9ebwWM+yHws+713EAl6eo7f7X7dt0jan83TcBADkWL+51HIDt/EnyO+w1qD36me7tVHv0M9xiO4Y17WPgV6y413EAORZ1nyt/903d2qlrTJentOJex4X7Qs2wH8IVKa5+x6SlnbZtUeuqwNLt/+/Y/wf/c+hAv2PqbKfDp12Y/UIFvhXYH45pbNpJjE1T631FiqvHvnezrQ4laacAAIWpTbjDXoMGlw8/eeGvffa9KUX5mHFtLu51HEDm+Qmom211+Ng/BK2KHddaG3CLTe03kfpeYap6z5uStFO42VYXsZ3uyTiMK63ufrdT7dHPcIddXbVoQ0dUfS8lJaXb//3te3/dvi1iTDPsh/Dl8dp+xxRt3/ufQwfwHfv/AAAyLf5u7bRty2sx7U/RjhG99T09x/Lqqn099r23XvuT1McnxsSYkiGmzve1OTk50sQkYzsxJjWmzn7a2W9liEnGdoo1ppycHNx+++148803pYnJCO20a9cujBs3Djk5OdLEpHc7/eUvf8ETTzyBQCAgTUz9aac1a9bgiSeeQE5OjjQxdW2nP/3pT5g1axZycnIMHZPs7SRjTKJYlM5pJYrZf/7nf+I///M/47rNX//61+GT/J2mTZuGt99+GwCwZMkSPPXUU31u55133sEdd9wBAMjKygrPQvaHiPK9Xi9uv/127Nq1CwDgdDqxe/duXH/99Rpr37NDhw5h9OjR4RneZ555Br/4xS9i2mZ1dTVGjRoFh8MBq9WKiooKFBUVwe12Y8CAAbBYLHC5XHA4HLDZbGhvb0coFEJmZiaCwSBaW1vDH4paWlqQkZGBtLS08Ax1RkYGAoEA2traMGDAAADqpFZWVhasVis8Hg9SUlKQnp4Ov98Pr9cLp9MJRVHQ0tKC7OxspKamorW1FVarFQ6HAz6fD36/H9nZ2QiFQnC5XHA6nUhJSYHb7YbNZoPdbofX60UwGERWVhY6OjriGtMXDS24c8X78CjqJF+WxYd2JQ0dSMG2/1WKIV/L0i2mujMu3P67PUhBCBmWAFoVGwALMuDHm4smY3hBjq7tdKy+GXeu2IE22IDzN6BvU9IQQgre/flYDL3cqWs7NfosmLT8faRbAmg9n/9Miw9exYryxbfhaw7o2vdqG1pw+3N7YIGCTIsfHsUGBRakw483F03CiILcfve9L79qxH1rP0WDyxeOqQOp4VU1PqQhFR1wWIIR+54DAYRggR9WWNEBGzrC7VSYDbz2/92Ky5zpPfa9c24v7v5/76HOjXBMQaQigFTYEEQqFLQjLWLf8yMVwfPPS4ECL9KQilC4nfKddrz6wGgMuizHkH3vxLlWfPc/K7vF1Nn33lx0K4blD9B13Dta34Q7V5SjHbZL+t67D49FYf4AXce9c15g0vL3Iva98sW3Is+u6DaWf366EXeV7YrY97Y+PAbDC3J5fGJMjIkxMSbGxJgYE2NiTIyJMTEmxmSKmL788kuMGjUKnQ4ePNjnVZ3iiZM1cbR06VIsW7Ysrtv8/e9/j5/97Gfd/jZr1iy88sorAIBHHnkkqlm/119/HXfffTcA9f4xp0+f7nedEl1+MBjE3Xffjc2bNwNQLym2detW3HLLLf2ofe9+8pOfYMOGDQCAW2+9Fe+9915M2+ucrOmU6B08GbS0tOD555/HggULwoNzX040tmHC8h0RH9u9eDKG5GXEs4pJU3Zn+VP/fStm2A9hk+/a8InbRJYvOv4Jy3cg0+K7JAexlv/IS/ux+ZNT8arqJWaUDEbZ7Bt6fU5NvQuzVlWgpT0QMcb+GJCeho3zx6OowNnvbQD9a/v+7N/xKjuezFy+6NiJzC5e4yhRIrC/mgPbWQzmXTvmTCV7HmSJT5Y4zED0uVxeBs2Avva1r4V/bmhoiOo1ndebBYC8vEtvdJ2s5YdCIcydOzc8UWO1WvHqq6/qMlEDALfddlv458OHD+tShtlkZGRg5syZyMjgCb9oeRUrPvAXwqtYRVdFmHjnYHtNg64TNQCwqeoUttf0PiYWFTixcf545DvtcYkx32mPy0RNf3H/JiKKDcdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVxtHTpUiiKEtd/F6+qAYCRI0eGf66rq4uqbsePHw//XFRUFFOciSz/oYce6nZvhP/6r//CnXfeGfXrtRo0aFD457Nnz+pWjpmkpaWhqKgIaWlpoqtiGB1IxfFQLjqQKroqwsQ7ByvLj8VlO32Ws7PvcooKnNi6cCLuLBkSU4wzSgZj68KJwiZqAO7fRESx4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xssaArrnmmvDPBw4cCN9jpTd/+9vfIr4+mcv/h3/4B/z+978P/75q1Sr84Ac/0FBT7TweT/jnzMxMXcsyi7a2Nrzxxhvha1ZS3+wI4NtpX4TvpWJG8cxBTb0LlbWNcahV3yq/aMSR+r7vyZWbacO/TR+JJde4cNPQLE1llA7Lw5q5Y1E2+wbkZtr6W9W44P5NRBQbjqNkJOyv5sB2FoN51445U8meB1nikyUO0p95r7FjYDfffDPsdjt8Ph88Hg/27t2L8ePH9/h8n8+HioqK8O9TpkxJ+vL/+Z//GStWrAj//uyzz0ZcZRRv+/fvD/88ePBg3csjIv2caFTfBG2oiG4FYLxsqKjDgxOHR3Wvj0ED0vHHe8fihKsDGyrqsL6Huo4Zmotxw/MwffQVGFmQHe8qExERERERERGRYFxZY0BZWVm49dZbw7+vXbu21+e//vrrcLvVb3rn5eVh4sSJSV3+b37zG/yf//N/wr8/+eSTWLRoUb/rGy2/348NGzaEf580aZLuZZoBr8upnQ9p+CAwDD6Yd3lsPHIwYfkOTFi+Axsqjvf95DhaX1HX4w3bu+q6b4wsyMaDE4f3+NxnZ5Xg0duLkm6ihvs3EVFsOI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crDGohx9+OPzz2rVrUV1dHfF5bW1tePzxx8O/P/jgg7BaY19QpVf5ZWVl+NWvfhX+ffHixfiXf/mXfteztbU16uf+4z/+I7744ovw7z/+8Y/7XS5dEAgEUFNTg0DAvJf00ioVHbgqpQmp6BBdFWHMkAMZ9g0ZYjC7IXkZqH1qWsR/0awOI6LYcBwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP44WWNQ06ZNw4QJEwColxm788478emnn3Z7zrlz5zBz5kx8/vnnANRVLUuWLOlxm7W1tbBYLOF/va2Y0aP81atX4x/+4R/Cv//85z/H008/3ePzo/H9738fP/3pT7Fr1y6EQqGIzzl27Bjuvfde/Md//Ef4b7Nmzer10m4UPV6XUzuHJYhv22rhsPR9PyhZmSEHMuwbMsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y/3rDGwP/3pTygtLcXp06dRW1uLkpIS3HLLLRgxYgTOnDmD9957LzwIWK1WvPLKK8jJyUnK8g8cOIC///u/h6IoAIDMzEwoioL/9b/+V1R1WbhwIb7xjW9c8ne/34/Vq1dj9erVGDBgAEaPHo0hQ4YgOzsbra2tOHToEKqqqrpN5JSWluKPf/yjxmxQTwYMGIDHHntMdDUMxaPY8SfvDaKrIZQZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFljYFdeeSW2b9+OH/zgB6iqqoKiKCgvL0d5eXm3511++eVYs2ZNt/vMJFv5586d6zZh4vF48Nxzz0Vdl3vuuSfiZE1XLS0t2LVrV4+Pp6Wl4eGHH8ZTTz0Fh8MRddlERERERERERERERLHgZdAMrqioCB9//DHWrVuHqVOnYsiQIbDZbBg4cCDGjx+P5cuX49ChQ5g2bZqU5ffllVdewZ///GcsXrwYkydPRlFRES6//HJYrVZkZWXhqquuwrRp0/DUU0+hrq4OK1as4ERNnDU3N2PZsmVobm4WXRXDyLL48ED6XmRZfKKrIowZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+uLJGAjabDffffz/uv//+mLZTWFgYvgxZosufNGlSv8ruy8CBAzFz5kzMnDkz7tum6GRlZWHOnDnIysoSXRXDaFfS8I7varQraaKrklA19S5sqKgDEDkHizZWYdywPMwouQIjC7L73N7uxZPDr9tX16RPpSMYMzQXz84q6fN5MuwbMsSQDIbkZaD2KTFfaiAisTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwhIl1ZrVYUFhaKroahdCAF9SGn6GokzPaaBqwsP4bK2sbw3yLlYF9dE/bVNeG58qMoLczDgkkjMLloYI/bHZKXAQAYNywvoZM144bnhcvujQz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFcejwcvv/wyPB6P6KoYhgMBTLF9DgcCoquiqyaPH4+8tB/z1u7tNlED9J2DytpGPLB2Dxa+vB9NHn+v5UwvGRy3Okdj+ugronqeDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNkDRHpKiUlBTk5OUhJ4XATrRAsaFVsCMEiuiq6OXzahallu7D5k1MRH482B5uqTmFq2S7U1Lt6fE5RgROlhXkx1TdapcPyorpEGyDHviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+2EOISFfp6emYOnUq0tPTRVfFMPywojJwFfySXqny8GkXZr9QgQaXr8fnaMlBg8uHWasqep2weWjS8H7VVasFt4yI+rky7BsyxEBEJBLHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1RKQrv9+Pqqoq+P29X6qKLrCiA19PPQsrOkRXJe6aPH7MXVOJlvbeL/GmNQct7QHMWV3Z4yXRphTlY/pofS+HNqNkcK/30LmYDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNkDRHpyuv1ory8HF6vV3RVDMOGDpRYT8Em4WTNE5ure11R06k/OWhw+bB0S3WPjy+bXox8pz3q7WmR77Rj6V3Fml4jw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/uS8xg4RJQ2n04lFixaJroahtMGG13zXi65G3G2vaejxHjUX628ONlWdwoySwZhSlH/JY7mZNqybV4pZqyr6XNmjxYD0NKybV4rcTJum18mwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/rqwhIl0pigKv1wtFUURXxUAU2BAEIFfOVpYf0/Ds/udg5c6eyykqcGLj/PFxW2GT77Rj4/zxKCpwan6tDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNkDRHpqqWlBU8//TRaWlpEV8Uwsix+/Ci9ClkWea5lWlPvQmVtY9TPjyUHlV804ki9u8fHiwqc2LpwImaUxHYPmxklg7F14cR+TdQAcuwbMsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y+TNUSkq+zsbMyfPx/Z2dmiq2IYbUoaNnmvRZuSJroqMTnR2Bb+t6GiTtNrY81BX+XlZtpQNvsGrJ47BqXD8jRtu3RYHtbMHYuy2TdovvRZVzLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mP96whIl2lpqaioKBAdDUMJYQUNCoZoqsRswnLd/T7tbHmYH1FHf515qg+nzelKB9TivJxpN6NDRV1WN/DJM+YobkYNzwP00dfgZEF8XlzJcO+IUMMREQicRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP64soaIdNXa2oq1a9eitbVVdFUMIx0BTLXVIB0B0VURJh450HIt2JEF2Xhw4vAeH392Vgkevb0obhM1gBz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6cpqtaKwsBBWKxfyRasDFtSHstEBi+iqCBOPHHj8HXGsUfzJsG/IEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP/YQItKVw+HApEmTRFfDUPywoip4hehqCBWPHPiDIcAepwrpQIZ9Q4YYAGBIXgZqn5omuhpEZEKyjKNkDuyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrnw+HyoqKuDz+URXxTDS0IFrUxuQhuReGaKneOTAZk3uQ5wM+4YMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH6S+4zWURkeH6/H1VVVfD7/aKrYhhWdODr1rOwmniyJh45yLSlxrFG8SfDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+eBk0ItJVdnY2HnroIdHVMJR22LDZVyy6GjHbvXhy+OdFG6uwr64p6tfGmoMxQ3NhsST3PX9k2DdkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH1fWEJGuQqEQmpubEQqFRFfFMCxQkGXxwQJFdFViMiQvI/xv3LA8Ta+NNQfjhmsrTwQZ9g0ZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8kaItKVy+VCWVkZXC6X6KoYRqbFj3sdB5BpSezy2Jp6F1btOtrj44s2VmH51hocqXdr3vb0ksGanh9rDqaPvqJfr0skGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9MfLoBGRrpxOJxYuXAin0ym6KobhUWx41XsdPIotIeVtr2nAyvJjqKxt7PV5++qasK+uCc+VH0VpYR4WTBqByUUDoyqjqMCJ0sK8PsvoFEsOSoflYWRBtubXJZoM+4YMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5oqthKAosaFXsupfT5PHjic3V2PzJKc2vraxtROXaRswoGYyldxUjN7PvSZWHJg1H5droJmtiycGCW0b063WJJsO+IUMMREQicRwlI2F/NQe2sxjMu3bMmUr2PMgSnyxxkP54GTQi0pXb7cbKlSvhdmu/dJZZpcOP6fZqpEO/y6AdPu3C1LJd/Zqo6WpT1SlMLduFmvq+l/JOKcrH9NHRXQ6tvzmYUTI46tU+osmwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYQka5sNhtKSkpgsyXmkl4yCCIVnwcvQxCpumz/8GkXZr9QgQaXLy7ba3D5MGtVRVQTNsumFyPf2feKmf7kIN9px9K7iqN+vmgy7BsyxEBEJBLHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1RKQru92O8ePHw27X/7JesgggFYc68hHQYbKmyePH3DWVaGkPxHW7Le0BzFldiSZP7ythcjNtWDevFAPS03p9ntYcDEhPw7p5pVFdji1ZyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrrxeL8rLy+H1ekVXxTBsCKLE+iVsCMZ9209sro7bipqLNbh8WLqlus/nFRU4sXH++F5X2GjJQb7Tjo3zx6OowFg36pNh35AhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwhIl0Fg0HU1tYiGIz/xIOsUqGgIMWNVChx3e72moaY71HTl01Vp7C9pqHP5xUVOLF14UTMKIl8D5toczCjZDC2LpxouIkaQI59Q4YYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1ZRVeAiOSWlZWFuXPniq6GobQjDVv9RXHf7sryY3HfZsRydh7DlKL8Pp+Xm2lD2ewbMKNkMFbuPIbKLxrDj/WVg9JheVhwywhMLhoYlzqLIMO+Ea8YhuRloPapabFXiIjIYGQ4FpB5sL+aA9tZDOZdO+ZMJXseZIlPljhIf1xZQ0S66ujoQH19PTo6OkRXxTBSEEKepQ0pCMVtmzX1LlTWNvb9xDio/KIRR+rdUT9/SlE+Xpl/E95dNBE/GT8UQOQcjBmai59PHoF3F03EK/NvMvREDSDHviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFlDRLpyu91YtWoV3O7oT96bXYYlgBmOQ8iwBGLe1onGNpxobMOGiro41Cx6/SlvZEE2Hpw4HEDkHDw7qwSP3l6EkQXZcaunSDLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPl0EjIl0NGDAAS5Ysgd3e883kqbtWxYYX20vgR2rM25qwfEccaqTd+oo6/OvMUf1+fTxzkKxk2DdkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXFosFDodDdDUMxgK/BMOzoiiwWCz9fLUcOeiNDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+uNl0IhIVy6XCytWrIDL5RJdFcPIgB/32D9FBvyiqxITj7//12KVJQe9kWHfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXTkcDkyaNInfIIhCTb0Lq3YdhR+pqAoOvuQSYIs2VmH51hocqTfGNU79wVD/X9tDDmQiw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/uS+xgwRCWez2VBSUiK6Gklte00DVpYfQ2Vt4/m/pOLzjssued6+uibsq2vCc+VHUVqYhwWTRmBy0cDEVlYDm7X/3wcI9pADmciwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/rqwhIl21t7dj69ataG9vF12VpNPk8eORl/Zj3tq9XSZqABuCKE07DhuCPb62srYRD6zdg4Uv70eTJzkvFZZp6/+qmGhyYHQy7BsyxEBEJBLHUTIS9ldzYDuLwbxrx5ypZM+DLPHJEgfpj5M1RKSrUCiE5uZmhEL9vySWjA6fdmFq2S5s/uTUJY+lQEGWxY8UKH1uZ1PVKUwt24Wa+sjXPd29eDJ2L56Mbw7NjbnOWowZmguLxdLv12vJgVHJsG/IEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0lZmZidmzZ4uuRlI5fNqF2S9UoKU9EPFxL9Kw3f/1qLfX4PJh1qoKbJw/HkUFzm6PDcnLAACMG5aHfXVN/a+0RuOG58X0eq05MCIZ9g0ZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x5U1RKSrYDCI2tpaBIPJfzmrmnoXVu062uPjizZWYfnWGhypd/e7jCaPH3PXVPY4UQMAqQihIMWFVET/jYuW9gDmrK7s8ZJo00sGa65rLKaPviKm1/cnB0ZjpH2jJzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPkzVEpKvW1lasW7cOra2toqvSo+01Dbhv5UeYumI3NlQc7/F5++qa8Fz5Udy+YhfuW/kRdtR8pbmsJzZXo8Hl6/U56ZYAvmf/DOmWnid0Imlw+bB0S3XEx4oKnCgtjG21S7RKh+VhZEF2TNvobw6MxAj7Rl9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7Sn0VRFHlvCEAkWHV1NUaNGhX+/eDBgyguLhZYI2M40diGCct3RHxs9+LJ4Ut7xarJ48cTm6sj3jcmWjNKBmPpXcXIzbT1+dztNQ2Yt3Zvv8uK1uq5YzClKF9Y+WvmjsXkooH9em2i2j7Zymb5RERERERERERiiT6Xy5U1RGRKh0+7MLVsV0wTNQCwqeoUppbtQk29q8/nriw/FlNZ0Vq5M3I5U4ryMX20vpdDm1EyuN8TNURERERERERERGbFyRoi0lVLSwueeuoptLS0iK5K2OHTLsx+oaLPy5FFq8Hlw6xVFb1O2NTUu1BZ2xjV9jItPvzQsR+Zlv7Vr/KLxh7vq7NsejHynfZ+bbcv+U47lt4Vn28bxJoDI0jGfUMrGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9GcVXQEikltGRgZmzpyJjIzkuIRSk8ePuWsq0dIe33uhtLQHMGd1JbYunNjtkmgnGtsAABsq6qLellex4gN/IbxK/4foDRV1eHDi8EsuXZWbacO6eaWYtaoirjkYkJ6GdfNKo7ocXDTikYNkl2z7xpC8DNQ+NU3Ta5ItBiIio+E4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cWUNEekqLS0NRUVFSEtLE10VAMATm6vjtqLmYg0uH5Zuqe72twnLd2DC8h3YUHE86u10IBXHQ7noQGq/67K+oq7H+48UFTixcf74uK2wyXfasXH+eBQVOOOyPSA+OUh2ybZv9IcMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEemqra0Nb7zxBtra2kRXBdtrGmK+R01fNlWdwvaahpi2YUcA3077AnbEd/VPV0UFTmxdOBEzSmK7h82MksHYunBiXCdqgMTkQLRk2jf6S4YYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaITGNl+bHElLMzMeXEKjfThrLZN2D13DEoHZan6bWlw/KwZu5YlM2+IW6XPiMiIiIiIiIiIjIreW8GQERJofO6nKLV1LtQWduYkLIqv2jEkXo3RhZk9+v1PqThg8CwONeqZ1OK8jGlKB9H6t3YUFGH9T3cX2fM0FyMG56H6aOv6Hds0Up0DkRIln0jFjLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPK2uISFeBQAA1NTUIBMRczupEYxtONLZhQw8TEHrZUFGHE439W96aig5cldKEVHTEuVa9G1mQjQcnDu/x8WdnleDR24t0n6gBxOUgkUTvG/EgQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/jhZQ0S6En1dzgnLd2DC8h3YUHE8oeWur6jDhOU7+vVahyWIb9tq4bAE41wr4zBDDkTvG/EgQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/iyKoiiiK0Ekq+rqaowaNSr8+8GDB1FcXCywRsZworGtx4mO3YsnY0heRtTbKnzsrXhVq192L54MAFi0sQr76poSVu6Yobl4dlaJplwB8c19f4gs38yxExERERERERGZnehzuVxZQ0SkoyF5GRiSl4Fxw/ISWu644Xk8uU9ERERERERERGQQnKwhIl01Nzdj2bJlaG5uFl0VoaaXDI76uVkWHx5I34ssi6//5Y2+ot+vTQbxyEGyk2HfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXWVlZWHOnDnIysoSXRWhigqcKC2MbnVNu5KGd3xXo11J61dZpcPyMLIgu1+vTRax5sAIZNg3ZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8na4hIV1arFYWFhbBaraKrItxDk4ZH9bwOpKA+5ERHP4foBbeM6NfrkkmsOTACGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9CfvWTAiSgoejwcvv/wyPB6PkPJ3L56M3Ysn45tDcxNa7pihudi9eHK3v00pysf00X1fDs2BAKbYPocDAc3lzigZjMlFAzW/LtnEkgOjEL1vxIMMMRARicRxlIyE/dUc2M5iMO/aMWcq2fMgS3yyxEH642QNEekqJSUFOTk5SEkRM9wMycvAkLwMjBsW3SXI4mXc8DwMycu45O/Lphcj32nv9bUhWNCq2BCCRVOZ+U47lt5VrOk1yaq/OTAS0ftGPMgQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/9hAi0lV6ejqmTp2K9PR0ofWYXtL3ipa4ljf6ioh/z820Yd28UgxI7/leLH5YURm4Cn5Evzx2QHoa1s0rRW6mTXNdk1F/cmA0ybJvxEKGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbKGiHTl9/tRVVUFv98vtB5FBU6UFiZmdU3psDyMLMjutS4b54/vcYWNFR34eupZWNERVXn5Tjs2zh+PogJnv+qbjLTmwIiSZd+IhQwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6crr9aK8vBxer1d0VfDQpOEJKWfBLSP6fE5RgRNbF07EjAgrfmzoQIn1FGxRTFTMKBmMrQsnSjVRA2jLgVEl077RXzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+nPoiiKIroSRLKqrq7GqFGjwr8fPHgQxcVy3FNELzX1LmyoqMOGiuMRH//m0FyMG5aHGSVX9Lp6pSePvLQfmz85FWs1ezSjZDDKZt+g6TXbaxqwcucxVH7RGPVrSoflYcEtIzC5aKDWKvbqRGMbJizfEfGx3YsnR7wPjyzlmzl2IiIiIiIiIiKzE30uV96bARBRUlAUBT6fD3a7HRZLzzeL317TgJXlx1BZ2/uExb66Juyra8Jz5UdRWpiHBZO0TVgsm16Mj784hwaXL+rXRCvfacfSu7QP4FOK8jGlKB9H6t3YUFGH9RW1sKEDfqQCuJCzMUNzMW54HqaP7t9ElbEoEXMgk2j3jWQmQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/ngZNCLSVUtLC55++mm0tLREfLzJ48cjL+3HvLV7+5youVhlbSMeWLsHC1/ejyZPdNf9zM20Yd28UgxIT9NUVl8GpKdh3bxS5Gba+r2NkQXZeHDicGRZ/PhRehWyLN1jenZWCR69vcgEEzXoMQcy6WvfMAIZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8kaItJVdnY25s+fj+zsSycYDp92YWrZrpgvS7ap6hSmlu1CTb0rqucXFTixcf545DvtMZXbKd9px8b54+N235g2JQ2bvNeiTYnvhJKRmCEHve0bRiFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFlDRLpKTU1FQUEBUlNTu/398GkXZr9QEbfLkTW4fJi1qkLThM3WhRMxo2RwTOXOKBmMrQsnxm2iBgBCSEGjkoGQiYdoM+Sgp33DSGSIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtKfvGfBiCgptLa2Yu3atWhtbQ3/rcnjx9w1lWhpD8S1rJb2AOasrtR0SbSy2Tdg9dwxKB2Wp6ms0mF5WDN3LMpm3xDTpc8iSUcAU201SEd882MkZshBpH3DaGSIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtKfVXQFiEhuVqsVhYWFsFovDDdPbK6O24qaizW4fFi6pRpls2+I+jVTivIxpSgfR+rd2FBRh/UVdRGfN2ZoLsYNz8P00Vfoet+YDlhQH8pGB8x70zkz5CDSvmE0MsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y89hIh05XA4MGnSpPDv22saYr5HTV82VZ3CjJLBmFKUr+l1Iwuy8eDE4T1O1jw7qwRD8jLiUcVe+WFFVfAK3ctJZmbIwcX7hhHJEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh05fP5UFFRAZ9PXUmzsvxYQspduTMx5eghDR24NrUBaegQXRVhzJCDi/cNI5IhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwhIl35/X5UVVXB7/ejpt6FytrGhJRb+UUjjtS7E1JWvFnRga9bz8Iq8URFX8yQg677hlHJEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP14GjYh0lZ2djWn33Y/mALCh4mhCy95QUYd/nTkqoWXGQzts2OwrFl0NocyQg+zsbDz00EOiqxETGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9MeVNUSkq1AohO/9+1ZMXL4dGyqOJ7Tsnu49k+wsUJBl8cECRXRVhDFDDkKhEJqbmxEKhURXpd9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXLpcL9zoOINMiZqmnohjvZH+mxS80Z8nADDlwuVwoKyuDy+USXZV+kyEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH+crCEiXTmdTrzqvQ4exSakfI/fePc88Sg2oTlLBmbIgdPpxMKFC+F0OkVXpd9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH+9ZQ0S6SklJQatiF1a+PxgCxBXfLwosQnOWDMyQg5SUFOTk5IiuRkxkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH1fWEJGu3G43pturkQ4xl7OyWY03zKXDLzRnycAMOXC73Vi5ciXcbrfoqvSbDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+jPeWUwiMhSbzYbPg5chiFQh5WfaxJQbiyBSheYsGZghBzabDSUlJbDZjHupNxliICISieMoGQn7qzmwncVg3rVjzlSy50GW+GSJg/THy6ARka7sdjtW/WI2AGDRxirsq2tKWNljhubCYrEkrLx4CSAVhzryRVdDKDPkwG63Y/z48aKrERMZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x5U1RKQrr9eLo59W4vKMFIwblpfQsscNT2x58WJDECXWL2FDUHRVhDFDDrxeL8rLy+H1ekVXpd9kiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SHydriEhXwWAQtbW1CAaDmF4yOKFlTx99RULLi5dUKChIcSMViuiqCGOGHHTdN4xKhhiIiETiOEpGwv5qDmxnMZh37Zgzlex5kCU+WeIg/fEyaESkq6ysLMydOxcAUJQFlBbmobK2UfdyS4flYWRBtu7l6KEdadjqLxJdDaHMkIOu+4ZRyRADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXXV0dKC+vh4dHR0AgIcmDU9IuQtuGZGQcvSQghDyLG1IQUh0VYQxQw4u3jeMSIYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xsoaIdOV2u7Fq1Sq43W4AwJSifEwfre/l0GaUDMbkooG6lqGnDEsAMxyHkGEJiK6KMGbIwcX7xpC8DNQ+NS3ivyF5GYJrG9nFMRARkTYcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP4uiKPLeEIBIsOrqaowaNSr8+8GDB1FcXCywRomnKAp8Ph/sdjssFgsAoMnjx9SyXWhw+eJeXr7Tjq0LJyI309av159obMOE5TsiPrZ78WTdT5qr5W+HDR3wIxWARUD5ouPfAUC5JAd6l5/o2CPtG0YjQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGYgehzuVxZQ0S6slgscDgc3Q5GuZk2rJtXigHpaXEta0B6GtbNK+33RE3ysMAPK7pO1JiP/DmItG8YjQwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6crlcmHFihVwuVzd/l5U4MTG+eOR77THpZx8px0b549HUYEzLtsTKQN+3GP/FBnwi66KMGbIQU/7hpHIEAMRkUgcR8lI2F/Nge0sBvOuHXOmkj0PssQnSxykP07WEJGuHA4HJk2aBIfDccljRQVObF04ETNKYruHzYySwdi6cKIUEzUA4EcqqoKDz18CzJzMkIPe9g2jkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH9W0RUgIrnZbDaUlJT0+Hhupg1ls2/AjJLBWLnzGCq/aIx626XD8rDglhGYXDQwDjVNHkGk4vOOy0RXQygz5KCvfcMIZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h9X1hCRrtrb27F161a0t7f3+rwpRfl4Zf5NeHfRRPxk/NAenzdmaC5+PnkE3l00Ea/Mv0m6iRoAsCGI0rTjsCEouirCmCEH0e4byUyGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cWUNEekqFAqhubkZoVAoquePLMjGgxOHY31FXcTHn51VgiF5GfGsYtJJgYIsix8pUERXRRgz5EDrvpGMZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8na4hIV5mZmZg9e7boahiKF2nY7v+66GoIZYYcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9eBo2IdBUMBlFbW4tgUN7LWcVbKkIoSHEhFeb9xoUZciDDviFDDEREInEcJSNhfzUHtrMYzLt2zJlK9jzIEp8scZD+OFlDRLpqbW3FunXr0NraKroqhpFuCeB79s+QbgmIroowZsiBDPuGDDEQEYnEcZSMhP3VHNjOYjDv2jFnKtnzIEt8ssRB+rMoiiLvDQGIBKuursaoUaPCvx88eBDFxcUCa2QMJxrbMGH5joiP7V48Wdd71ogsm+Wbu+2JiIiIiIiIiEgc0edyubKGiIiIiIiIiIiIiIhIIE7WEJGuWlpa8NRTT6GlpUV0VQwj0+LDDx37kWnxia6KMGbIgQz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZA0R6SojIwMzZ85ERgYvIRUtr2LFB/5CeBWr6KoIY4YcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD95z4IRUVJIS0tDUVGR6GoYSgdScTyUK7oaQpkhBzLsGzLEQEQkEsdRMhL2V3NgO4vBvGvHnKlkz4Ms8ckSB+mPK2uISFdtbW1444030NbWJroqhmFHAN9O+wJ2BERXRRgz5ECGfUOGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbKGiIiIiIiIiIiIiIhIIF4GjYh01XldToqeD2n4IDBMdDWEEpGDIXkZqH1qWsLKk2HfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH9cWUNEugoEAqipqUEgIO/lrOItFR24KqUJqegQXRVhzJADGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9MfJGiLSFa/LqZ3DEsS3bbVwWIKiqyKMGXIgw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/iyKoiiiK0Ekq+rqaowaNSr8+8GDB1FcXCywRsZworENE5bviPjY7sWTMSQvQ8qyWb748omIiIiIiIiIyJxEn8vlyhoiIiIiIiIiIiIiIiKBOFlDRLpqbm7GsmXL0NzcLLoqhpFl8eGB9L3IsvhEV0UYM+RAhn1DhhiIiETiOEpGwv5qDmxnMZh37Zgzlex5kCU+WeIg/XGyhoh0lZWVhTlz5iArK0t0VQyjXUnDO76r0a6kia6KMGbIgQz7hgwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfqziq4AEcnNarWisLBQdDUMpQMpqA85RVdDKDPkQIZ9Q4YYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP1xZQ0R6crj8eDll1+Gx+MRXRXDcCCAKbbP4UBAdFWEMUMOZNg3ZIiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8na4hIVykpKcjJyUFKCoebaIVgQatiQwgW0VURxgw5kGHfkCEGIiKROI6SkbC/mgPbWQzmXTvmTCV7HmSJT5Y4SH/sIRLw+/1Yv3497rjjDgwdOhQOhwODBg3CzTffjGeeeQZnz541RPm1tbWwWCya/n3961/XVNfDhw/j0UcfxfXXX4+8vDxkZmbi6quvxpw5c/D+++/3J3zqQ3p6OqZOnYr09HTRVTEMP6yoDFwFv4mvVGmGHMiwb8gQAxGRSBxHyUjYX82B7SwG864dc6aSPQ+yxCdLHKQ/TtYYXE1NDcaNG4f7778f77zzDo4fPw6fz4f6+np89NFHePTRR1FcXIy3335byvK1+M1vfoPRo0fjmWeewYEDB9DU1IS2tjb8z//8D/7rv/4Lt912G374wx/C7XaLrqpU/H4/qqqq4Pf7RVfFMKzowNdTz8KKDtFVEcYMOZBh35AhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/8n5l2QROnjyJW2+9FadOnQIAWCwWTJw4ESNGjMCZM2fw3nvvob29HV999RVmzpyJrVu3YsqUKYYoPzs7G/fff3+fz7v88suj2t7jjz+Of/3Xfw3/PmjQIEyYMAEOhwP79u1DdXU1AOCll17CuXPn8NZbb8Fq5e4RD16vF+Xl5Rg+fDhsNpvo6hiCDR0osZ7CqQ4ngkgVXR0hzJADGfYNGWIgIhKJ4ygZCfurObCdxWDetWPOVLLnQZb4ZImD9GdRFEURXQnqn4kTJ2L37t0AgKFDh2LTpk0YPXp0+PGzZ89i9uzZ4ct75eXl4ejRo8jJyUnK8mtrazFs2LDw9mpra+NSz/fffx+33XZb+PdHH30Uv/71r7sNji+99BLmzZsHr9cLAFi2bBkef/zxmMuurq7GqFGjwr8fPHgQxcXFMW9Xdica2zBh+Y6Ij+1ePBlD8jKkLJvliy+fiIiIiIiIiIjMSfS5XF4GzaDefvvt8ESJzWbDli1buk2UAMBll12GTZs2Yfjw4QCAxsZGLF++XIrytfjlL38Z/nn27NlYvnz5JbPYP/jBD/Dss8+Gf0/EvX7MQlEUeL1ecF5YCwU2BAGYOWfy50CGfUOGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9cbLGoH73u9+Ff54zZw6uu+66iM/LzMzEk08+Gf591apVCAaDhi8/Wnv27MGePXsAACkpKb1OFs2fPx/f+MY3AAButxvr169PSB1l19LSgqeffhotLS2iq2IYWRY/fpRehSyLea9laoYcyLBvyBADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hhQa2tr+NJiAPDAAw/0+vy7774bWVlZANTVLbt27TJ0+Vq88cYb4Z9vu+02DBkypMfnWiwWzJkzJ/z7n//8Zz2rZhrZ2dmYP38+srOzRVfFMNqUNGzyXos2JU10VYQxQw5k2DdkiIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH++gbkAffvghfD4fAHXlytixY3t9vsPhwE033YS//OUvAIDt27djypQphi1fix07Ltz7YtKkSX0+f/LkyeGfO+O02+16VM00UlNTUVBQILoahhJCChoVc96bZUheBmqfmia6Ggkhw74hQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/riyxoAOHz4c/vm6666D1dr3nNuNN94Y8fXJWn4wGMRf/vIX/Nu//Rt+8Ytf4J//+Z/x7LPPYvfu3eGJIq117VqHntxwww3hnzs6OvDZZ59FXRZF1trairVr16K1tVV0VQwjHQFMtdUgHQHRVRHGDP1GhhhliIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH1fWGNCRI0fCPw8dOjSq11x11VXhn2tqapK+/C+//BLf/e53Iz6Wm5uLhx9+GI899lj48mqRfPXVV2hubtZU1/T0dFx++eU4c+ZMuK493Y+HomO1WlFYWBjVpB6pOmBBfSgbHbCIroowZug3MsQoQwxERCJxHCUjYX81B7azGMy7dsyZSvY8yBKfLHGQ/riyxoDOnTsX/jk/Pz+q13RdatfY2Gjo8puamvCb3/wGY8aM6XXlS9d6AmLqSupl8CZNmgSHwyG6KobhhxVVwSvgN/F8uhn6jQwxyhADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hhQ1yVz6enpUb2m6/NiXXKnZ/nZ2dmYO3cuXn75ZRw5cgStra3w+Xw4ceIEXn31Vdx2223h5x45cgRTp04Nr4LprZ561FULh8MRXgXU0dGB5uZmKIoCAHC5XPD7/QCA9vZ2eDweAOql4LquDGppaUEgoF4Wq62tDW1tbQCAQCCAlpaW8POam5sRDAYBAB6PB+3t7QAAv98Pl8sFAFAUBc3Nzejo6AjH6fV6AQA+nw9utxsAEAqF0NzcjFAoBABwu93hy9B5vd5wfnqLqbm5GTt37oTP54s6pmAggEzLhcvdZVl8SIVah/Y2fWNq86gxpSCELIsPgBpTBvwIJKCdAn4/BqAd16Y2IA1BZFl8SDkfe5tHv3bqGlNqOHZVpsWHVHT0O6b+tFN7ezt27NgR3kasMSXj/nT27Fl88MEH8Pl8ho3JDO3EmBgTY2JMesbk8XiwY8eO8DZkiEnGdmJMLeH67Nixo1v/NXpMMrZTrDH5fD588MEHOHv2rDQxGaGdGhsbsWvXLvh8Pmli0rudzp07h4qKCrS1tUkTU3/aqaGhARUVFfD5fNLE1LWdvvrqK/z1r3+Fz+czdEyyt5OMMYnCyRoD6uygAGCz2aJ6jd1uD//cuSMkW/mDBg3CqVOnsGbNGsyaNQtXX301MjMzYbPZcOWVV+Kee+7BX/7yF6xatQoWi3p5qC+++AK//OUv+6xnvOuq1fjx43HPPfcAAM6cOYOysrLwALJ69WocOnQIALBz505s2bIFAHDy5EmUlZWFt/H888/j6NGjAIBt27Zh27ZtAICjR4/i+eefDz+vrKwMJ0+eBABs2bIFO3fuBAAcOnQIq1evBqAObmVlZeGJrtdeew0VFRUAgP379+PFF18EoA5gZWVl4QHzxRdfxP79+wEAFRUVeO211/qMadeuXfjoo4/g9/ujjunL47WYYT8Uft69jgO4PEUdZP+6fZuuMZW/+yYAIMfixb2OA7Cdn6S4w16D2qOf6d5OtUc/w+32z/B161mkI4B7HQeQY1H7cvm7b+rWTl1jujylFfc6DoTrOsN+CFekuPodU3/a6dy5c9i1a1d4hVysMSXj/vTKK6/g448/ht/vN2xMZmgnxsSYGBNj0jOmuro67Nq1K/yBUYaYZGwnxqTG5Pf7sWvXLtTV1UkTk4ztFGtMfr8fH3/8MV555RVpYjJCO7399tvhzwayxKR3O73xxhuoqqrC6dOnpYmpP+20cuVKVFVVwe/3SxNT13ZavXo19uzZA7/fb+iYZG8nGWMSRqG4+Y//+A9l5MiRcf336quvXlLOHXfcoUD9ur+yZMmSqOr29ttvh1+TlZUVU5yiy1cURfmnf/qn8PZSU1OV+vr6S55TWVkZfg4Apb29Paptl5aWhl/zzDPPxFTPgwcPKgAUh8OhZGVlKQcPHlSCwaDS1NSkhEIhRVEUpaWlRfH5fIqiKEpbW5vS2tqqKIqiBAIBpampKbyt5uZmxe/3K4qiKB6PR/F4PIqiKIrf71eam5vDz2tqalICgYCiKIrS2tqqtLW1KYqiKD6fT2lpaVEURVFCoZDS1NSkBINBRVEUxe12h/Pj9XoVl8ulKIqidHR0KE1NTUpHR4eiKIricrkUr9erKIqitLe3K263W1EUJe4xHatvVq597L+VoUveVIYueVMpfuy/leFLNitDl7ypHDnxla4x1RxvUIYueVMZtmSzUvzYfytDl2xRhi55U7lmyevK0dNNurfT0dNNyjVLXj8f+xal+LH/Voadj73meIPu7XT8nEcZHo5dzf+1j/23MnzJJuX4OY/0fY8xMSbGxJgYE2NiTIyJMTEmxsSYGBNjYkyMiTGZM6bOc7md/w4ePKgkkkVRzq8BopgtXboUy5Yti+s2f//73+NnP/tZt7/NmjUr/C2XRx55JKpZv9dffx133303APWeLKdPn+53nUSXD6hL4AYOHBhe+bJ+/Xr8+Mc/7vacw4cP49prrw3/3tjYiNzc3D63ff311+PAAXVVwcqVKzF//vx+17O6uhqjRo0K/37w4EEUFxf3e3tGFAqF4HK54HQ6kZIS3WK+E41tmLB8R8THdi+ejCF5GfGsYtKU3Vn+xOXbkWnxw6PYoMCS8PJFxt+pP/3GaGSIUYYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniMAPR53LZOwzoa1/7WvjnhoaGqF5TX18f/jkvL8/Q5QNAVlYWxo0bF/798OHDlzynaz0BcXU1u4uXJVLfMi1+3Os4gEyLX3RVhDFDv5EhRhliICISieMoGQn7qzmwncVg3rVjzlSy50GW+GSJg/THyZo4Wrp0KRRFieu/i1fVAMDIkSPDP3deL7gvx48fD/9cVFQUU5yiy+80aNCg8M+dNz/sauDAgcjJyQn/Hk1dvV5v+JqIQPzqamZOpxMLFy6E0+kUXRXD8Cg2vOq9Dh4luvssycgM/UaGGGWIgYhIJI6jZCTsr+bAdhaDedeOOVPJngdZ4pMlDtIfJ2sM6Jprrgn/fODAAQSDwT5f87e//S3i641YfiePxxP+OTMzM+JzupbVeZOp3nStZ2pqKq6++uoYakgAkJKSgpycHC7z1ECBBa2Kvdsl0MzGDP1GhhhliIGISCSOo2Qk7K/mwHYWg3nXjjlTyZ4HWeKTJQ7SH3uIAd18882w2+0A1AmLvXv39vp8n8+HioqK8O9TpkwxdPmduk6+DB48OOJzJk+eHP65vLy8z23u3Lkz/HPXOKn/3G43Vq5cCbfbLboqhpEOP6bbq5EO814GzQz9RoYYZYiBiEgkjqNkJOyv5sB2FoN51445U8meB1nikyUO0h8nawwoKysLt956a/j3tWvX9vr8119/PTwY5OXlYeLEiYYuHwDee+89nDhxIvz7pEmTIj5v5syZ3V5z8uTJXrfbNZaur6X+s9lsKCkpgc1m3kt6aRVEKj4PXoYgUkVXRRgz9BsZYpQhBiIikTiOkpGwv5oD21kM5l075kwlex5kiU+WOEh/nKwxqIcffjj889q1a1FdXR3xeW1tbXj88cfDvz/44IOwWq1JV77f74ffH90qgjNnzuChhx4K/37NNdfgxhtvjPjcsWPHYuzYsQCAjo4OPPbYYz1u94UXXsBnn30GAMjOzsb9998fVX2od3a7HePHj+cqJQ0CSMWhjnwETDxZY4Z+I0OMMsRARCQSx1EyEvZXc2A7i8G8a8ecqWTPgyzxyRIH6Y+TNQY1bdo0TJgwAYB6mbE777wTn376abfnnDt3DjNnzsTnn38OQF3VsmTJkh63WVtbC4vFEv7X24qZeJd/6tQpjBgxAsuXL0ddXV3E5yiKgrfeegtjx47F0aNHAQAWiwXPPPNMr9d8/Ld/+7fwzy+++CIee+wxBAKBbs955ZVXsGjRovDv//iP/4jLLrusx21S9LxeL8rLy+H1ekVXxTBsCKLE+iVs6Pt+ULIyQ7+RIUYZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0x8kaA/vTn/6EQYMGAVAnWkpKSjB58mT87Gc/w4wZM3DVVVfhL3/5CwDAarXilVdeQU5OTtKWf/LkSSxZsgSFhYUYNmwYpk+fjnnz5mH+/Pn4/ve/jyuvvBJ33nlnt8mc5cuX44477ui1nrfeeit+9atfhX9/+umnUVhYiNmzZ2Pu3Lm47rrrMGvWLLS3twMAvvOd7+Cf/umf+psWukgwGERtbS2CQfNOPGiVCgUFKW6kQhFdFWHM0G9kiFGGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4iD9WRRFMe/ZQAnU1NTgBz/4Aaqqqnp8zuWXX441a9Zg2rRpvW6rtrYWw4YNC/++Zs0azJ07NyHlX1x2X6644go899xzmD59elTPVxQFv/nNb/Dkk09esqqmq9mzZ2PVqlVwOp1R16U31dXVGDVqVPj3gwcPori4OC7bltmJxjZMWL4j4mO7F0/GkLwMKctm+URERERERERERGKIPpcb+81LSKiioiJ8/PHHePnll/HSSy+huroaDQ0NyMnJwfDhw/H9738fDzzwgG6X9IpX+UOHDsWBAwfw0Ucf4cMPP0R1dTXOnj2Lc+fOoa2tDU6nE4MGDcLYsWPxve99D3/3d3+HtLS0qOtpsVjwq1/9CnfffTf+8Ic/YNu2bThx4gQCgQAGDRqEm266CXPmzMFtt90Wa0roIh0dHThz5gwuv/xypKaa9x4sWqQghByLF82KAyGTLoA0Q7+RIUYZYiAiEonjKBkJ+6s5sJ3FYN61Y85UsudBlvhkiYP0Z86zgJKx2Wy4//778c477+D48ePw+XxoaGjARx99hEcffTTqiZrCwkIoihL+19eqmniWb7FYMGrUKPz93/891qxZg8rKShw7dgwtLS0IBAI4d+4cDh48iDVr1uC+++7TNFHT1TXXXIP/+3//Lw4cOIDm5mZ4PB58/vnnWL9+PSdqdOJ2u7Fq1Sq43W7RVTGMDEsAMxyHkGHpeRWY7MzQb2SIUYYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP3xMmhEOhK9dC4ZKIoCn88Hu90Oi8US1Wt4GbTtsKEDfqQCuJAzM10GrT/9xmhkiFGGGIiIROI4SkbC/moObGcxmHftmDOV7HmQJT5Z4jAD0edyeRk0ItKVxWKBw+EQXQ2DscAvaHgekpeB2qd6v79VIpih38gQowwxEBGJxHGUjIT91RzYzmIw79oxZyrZ8yBLfLLEQfrjZdCISFculwsrVqyAy+USXRXDyIAf99g/RQb8oqsijBn6jQwxyhADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD9O1hCRrhwOByZNmsRvEGjgRyqqgoPPXwbNnMzQb2SIUYYYiIhE4jhKRsL+ag5sZzGYd+2YM5XseZAlPlniIP3xMmhEpCubzYaSkhLR1TCUIFLxecdloqshlBn6jQwxyhADEZFIHEfJSNhfzYHtLAbzrh1zppI9D7LEJ0scpD+urCEiXbW3t2Pr1v+/vTuPjqJM9zj+6yQkAQLEyBKRJYCOKCLIFQRERXEDUUEUCCgIegWd0cOMntE7HhmXO+q4jMxVR3AuogKCgBJwBJRFQEURHFkFcWGHoAETCNmTvn/0oW5itu5A5U299f2c0+dUp6uq3+d5X+vQ9fi+tUS5ubmmm+IZsSpSj3p7FKsi000xxg/jxoYYbYgBAEziOgovYbz6A/1sBnmPHDkLsT0PtsRnSxxwH8UaAK4qKSlRZmamSkpKTDfFM6IUVEKgQFEKmm6KMX4YNzbEaEMMAGAS11F4CePVH+hnM8h75MhZiO15sCU+W+KA+wLBYNC/dwMBl23dulXnn3++837Lli3q1KmTwRZ5w94jObr02Y8r/OyTP16h1kkNrPzuuvD9AAAAAAAAgB+ZvpfLzBoArioqKtKuXbtUVOTfJb0iFa0SJUcdVbT8+39c+GHc2BCjDTEAgElcR+EljFd/oJ/NIO+RI2chtufBlvhsiQPuo1gDwFXZ2dl68803lZ2dbbopnlE/UKj+cTtUP1BouinG+GHc2BCjDTEAgElcR+EljFd/oJ/NIO+RI2chtufBlvhsiQPuYxk0wEWmp855FcugsQwaAAAAAAAAUJtM38tlZg0AAAAAAAAAAIBBFGsAuCorK0vPPPOMsrKyTDfFMxoG8jUi/ms1DOSbbooxfhg3NsRoQwwAYBLXUXgJ49Uf6GczyHvkyFmI7XmwJT5b4oD7KNYAcFWDBg00aNAgNWjA8l3hygvG6NOCFOUFY0w3xRg/jBsbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH3+vRMIoFbUq1dPHTt2NN0MTylWtPaUnGa6GUb5YdzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJA+5jZg0AV+Xk5CgtLU05OTmmm+IZcSpUn3o7FadC000xxg/jxoYYbYgBAEziOgovYbz6A/1sBnmPHDkLsT0PtsRnSxxwHzNrAKAOaZ3UQF9PvEYfffSRXrvmGqbIAgAAAAAAAD4QCAaDQdONAGy1detWnX/++c77LVu2qFOnTgZb5A17j+To0mc/rvCzT/54hVonuVfAMPndAAAAAAAAAMwwfS+XZdAAuKqwsFDbt29XYaF/l/SKFDnzRw5siNGGGADAJK6j8BLGqz/Qz2aQ98iRsxDb82BLfLbEAfdRrAHgKtbljBw580cObIjRhhgAwCSuo/ASxqs/0M9mkPfIkbMQ2/NgS3y2xAH3sQwa4CLTU+e8imXQAAAAAAAAANQm0/dyY2rtmwDAA1onNdCuZ6433QwAAAAAAAAAPsIyaABclZmZqccff1yZmZmmm+IZ5MwfObAhRhtiAACTuI7CSxiv/kA/m0HeI0fOQmzPgy3x2RIH3McyaICLTE+dqwuKioq0b98+tWrVSjEx4U3m8/tSZDXJmW38kAMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1x+IHpe7mMDgCuiomJUUpKiulmeAo580cObIjRhhgAwCSuo/ASxqs/0M9mkPfIkbMQ2/NgS3y2xAH3sQwaAFcdP35cs2fP1vHjx003xTPImT9yYEOMNsQAACZxHYWXMF79gX42g7xHjpyF2J4HW+KzJQ64j2INAFdFRUUpMTFRUVFcbsJFzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfTyzBnCR6XUOvcrvz6wBAAAAAAAAULtM38ulnAfAVQUFBdqwYYMKCgpMN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9iDQBX5eXlaeXKlcrLyzPdFM8gZ/7IgQ0x2hADAJjEdRRewnj1B/rZDPIeOXIWYnsebInPljjgPpZBA1xkeuqcV7EMGgAAAAAAAIDaZPpeLjNrALgqGAwqLy9P1IXDR878kQMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH0UawC4KisrS3/961+VlZVluimeQc78kQMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH0sgwa4yPTUubqguLhYP//8s5o1a6bo6OiwjvH7Mmg1yZlt/JADG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tcfiB6Xu5MbX2TQB8KTo6WsnJyaab4SnkzB85sCFGG2IAAJO4jsJLGK/+QD+bQd4jR85CbM+DLfHZEgfcxzJoAFyVnZ2tN954Q9nZ2aab4hnkzB85sCFGG2IAAJO4jsJLGK/+QD+bQd4jR85CbM+DLfHZEgfcR7EGgKtiYmKUkpKimBgm8oWLnPkjBzbEaEMMAGAS11F4CePVH+hnM8h75MhZiO15sCU+W+KA+3hmDeAi0+scepXfn1kDAAAAAAAAoHaZvpfLzBoArsrPz9cXX3yh/Px8003xDHLmjxzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJA+6jWAPAVQUFBdqwYYMKCgpMN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9l0AAXmZ4651UsgwYAAAAAAACgNpm+l8vMGgCuKikpUWZmpkpKSkw3xTPImT9yYEOMNsQAACZxHYWXMF79gX42g7xHjpyF2J4HW+KzJQ64j2INAFcdPXpUf//733X06FHTTfEMcuaPHNgQow0xAIBJXEfhJYxXf6CfzSDvkSNnIbbnwZb4bIkD7mMZNMBFpqfO1QUlJSU6evSoGjdurKio8OrDfl8GrSY5s40fcmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOPzB9Lzem1r4JgC9FRUUpMTExomNaJzXQrmeud6dBHlCTnNnGDzmwIUYbYgAAk7iOwksYr/5AP5tB3iNHzkJsz4Mt8dkSB9xHKQ+Aq44dO6bJkyfr2LFjppviGeTMHzmwIUYbYgAAk7iOwksYr/5AP5tB3iNHzkJsz4Mt8dkSB9xHsQaAq2JjY9W1a1fFxsaabopnkDN/5MCGGG2IAQBM4joKL2G8+gP9bAZ5jxw5C7E9D7bEZ0sccB/PrAFcZHqdQwAAAAAAAABA9Uzfy2VmDQBX5eXlaeXKlcrLyzPdFM8gZ/7IgQ0x2hADAJjEdRRewnj1B/rZDPIeOXIWYnsebInPljjgPoo1AFxVVFSkXbt2qaioyHRTPIOc+SMHNsRoQwwAYBLXUXgJ49Uf6GczyHvkyFmI7XmwJT5b4oD7WAYNcJHpqXMAAAAAAAAAgOqZvpfLzBoAriouLlZ6erqKi4tNN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9iDQBXHTt2TFOmTNGxY8dMN8UzyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOuI9l0AAXmZ46VxcEg0Hl5+crLi5OgUDAdHM8gZz5Iwc2xGhDDABgEtdReAnj1R/oZzPIe+TIWYjtebAlPlvi8APT93Jjau2bAPhSIBBQfHy86WZ4CjnzRw5siNGGGADAJK6j8BLGqz/Qz2aQ98iRsxDb82BLfLbEAfexDBoAVx09elSTJk3S0aNHTTfFM8iZP3JgQ4w2xAAAJnEdhZcwXv2BfjaDvEeOnIXYngdb4rMlDriPYg0AV8XHx6tv3778HwQRIGf+yIENMdoQAwCYxHUUXsJ49Qf62QzyHjlyFmJ7HmyJz5Y44D6eWQO4yPQ6hwAAAAAAAACA6pm+l8vMGgCuys3N1ZIlS5Sbm2u6KZ5BzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfRRrALiqpKREmZmZKikpMd0UzyBn/siBDTHaEAMAmMR1FF7CePUH+tkM8h45chZiex5sic+WOOA+lkEDXGR66hwAAAAAAAAAoHqm7+UyswaAq4qKirRr1y4VFRWZbopnkDN/5MCGGG2IAQBM4joKL2G8+gP9bAZ5jxw5C7E9D7bEZ0sccB/FGgCuys7O1ptvvqns7GzTTfEMcuaPHNgQow0xAIBJXEfhJYxXf6CfzSDvkSNnIbbnwZb4bIkD7mMZNMBFpqfOAQAAAAAAAACqZ/peLjNrAAAAAAAAAAAADKJYA8BVWVlZeuaZZ5SVlWW6KZ5BzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfRRrALiqQYMGGjRokBo0aGC6KZ5BzvyRAxtitCEGADCJ6yi8hPHqD/SzGeQ9cuQsxPY82BKfLXHAfTyzBnCR6XUOAQAAAAAAAADVM30vl5k1AFyVk5OjtLQ05eTkmG6KZ5Azf+TAhhhtiAEATOI6Ci9hvPoD/WwGeY8cOQuxPQ+2xGdLHHAfxRoAAAAAAAAAAACDWAYNcJHpqXMAAAAAAAAAgOqZvpfLzBoAriosLNT27dtVWFhouimeQc78kQMbYrQhBgAwiesovITx6g/0sxnkPXLkLMT2PNgSny1xwH0UawC4inU5I0fO/JEDG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tccB9LIMGuMj01DkAAAAAAAAAQPVM38tlZg0AAAAAAAAAAIBBFGsAuCozM1OPP/64MjMzTTfFM8iZP3JgQ4w2xAAAJnEdhZcwXv2BfjaDvEeOnIXYngdb4rMlDriPZdAAF5meOlcXFBUVad++fWrVqpViYmJMN8cTyJk/cmBDjDbEAAAmcR2FlzBe/YF+NoO8R46chdieB1visyUOPzB9L5diDeAi0/+BAwAAAAAAAACqZ/peLsugAXDV8ePHNXv2bB0/ftx0UzyDnPkjBzbEaEMMAGAS11F4CePVH+hnM8h75MhZiO15sCU+W+KA+yjWAHBVVFSUEhMTFRXF5SZc5MwfObAhRhtiAACTuI7CSxiv/kA/m0HeI0fOQmzPgy3x2RIH3McyaICLTE+dAwAAAAAAAABUz/S9XMp5AFxVUFCgDRs2qKCgwHRTPIOc+SMHNsRoQwwAYBLXUXgJ49Uf6GczyHvkyFmI7XmwJT5b4oD7KNYAcFVeXp5WrlypvLw8003xDHLmjxzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJA+5jGTTARaanzgEAAAAAAAAAqmf6Xi4zawC4KhgMKi8vT9SFw0fO/JEDG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tccB9FGsAuCorK0t//etflZWVZbopnkHO/JEDG2K0IQYAMInrKLyE8eoP9LMZ5D1y5CzE9jzYEp8tccB9LIMGuMj01Lm6oLi4WD///LOaNWum6Oho083xBHLmjxzYEKMNMQCASVxH4SWMV3+gn80g75EjZyG258GW+GyJww9M38uNqbVvAnwoPz+/zPvvv//eUEvMO3z4sOkmeA4580cObIjRhhgAwCSuo/ASxqs/0M9mkPfIkbMQ2/NgS3y2xGGzX9+7/fW9XdcFAbgmLS0tKMnXr4SEhOAdd9wRTEhIMN4Wr7zImT9yYEOMNsTAixcvXiZfXEd5eenFePXHi34m7155kTN/5MGW+GyJw4+vtLS0Wr2XzDJogIsWLFigQYMGmW4GAAAAAAAAACACaWlpuummm2rt+6Jq7ZsAAAAAAAAAAABQDjNrABdlZmZq1apVzvvWrVsrLi7OYIsAAAAAAAAAAL+Wn5+vvXv3Ou8vv/xyJSYm1tr3U6wBAAAAAAAAAAAwiGXQAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAAAAAAAAAIMo1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAABADXz++ecaMmSIWrRoofj4eLVr10733nuv9u/fb7ppAAAAAAAYlZ6erhkzZmjChAnq06ePEhISFAgElJKSYrppdVYgGAwGTTcCAADAS/73f/9X48aNU0lJiZKTk3XmmWdqx44dOnbsmE477TR9/PHH6tKli+lmAgAAAABgxKRJk/T73/++3N/btm2rXbt21X6DPICZNQAAABHYvHmzxo8fr5KSEr3wwgvav3+/1q9frwMHDmjo0KH65ZdfNHjwYOXn55tuKgAAAAAARjRu3Fj9+vXTQw89pDlz5mjSpEmmm1TnMbMGAAAgArfccoveffddDR06VO+8806Zz3Jzc9WxY0ft2bNHr776qsaPH2+olQAAAAAA1B3z5s3TrbfeysyaKjCzBgAAIEzHjx/XBx98IEn67W9/W+7z+vXra8yYMZKk2bNn12rbAAAAAACAd1GsAQAAdUpxcbE2bdqkqVOn6p577tFFF12k2NhYBQIBBQIB9e3bt8bnLigo0PTp0zVgwAC1bdtW8fHxOuOMM9S7d289//zzysjIqPL4r7/+Wnl5eYqNjVXPnj0r3OdE+9auXauSkpIatxUAAAAAgMrU5d/OqJkY0w0AAAA4IS0tTSNHjlROTs4pP/f27duVmpqqDRs2lPl7enq60tPT9fnnn+u5557TtGnTNGDAgArPsWPHDklSmzZtFBsbW+E+Z511liQpLy9Pu3fvVrt27U5dEAAAAAAA36vrv51RM8ysAQAAdUZmZqYr/9jct2+f+vXr5/xjMxAI6PLLL9fYsWN1ww03qH79+pKkn376SYMGDdKKFSsqPM+RI0ckSaeffnql35WUlORs//LLL6coAgAAAAAAQur6b2fUDDNrAABAndOiRQt1797deX344Yf6+9//XuPzjRgxQgcOHJAktW3bVgsWLFCXLl2czzMyMjR8+HAtX75chYWFuvXWW/XDDz8oMTGxzHlyc3MlqdJZNZIUHx/vbLvxj2cAAAAAAKS6+9sZNUOxBgAA1BnXXXeddu/erTZt2pT5+9q1a2t8zkWLFumTTz6RFCqyvP/+++rcuXOZfZo2baoFCxboggsu0I8//qgjR47o2Wef1VNPPVVmvxP/F1FBQUGl35eXl+dsN2jQoMbtBgAAAACgInX9tzNqhmXQAABAnZGcnFzuH5sn65VXXnG2R48eXe4fmyc0bNhQTzzxhPN+ypQpKioqKrPPaaedJkk6fPhwpd93Yqm00vsDAAAAAHCq1PXfzqgZijUAAMBa2dnZWr58ufN+zJgxVe4/ZMgQJSQkSAoVXVavXl3m83POOUeStGfPnkpn13z33XeSQsuhtW3btsZtBwAAAACgNpzq386oGYo1AADAWmvWrFF+fr6k0P/907179yr3j4+PV69evZz3v35Y4oUXXqj4+HgVFBToiy++qPAcq1atkiT16NFDUVH8UwsAAAAAULed6t/OqBnuIAAAAGtt27bN2e7cubNiYqp/XF+3bt0qPF4K/aN1wIABkspOET8hNzdX06ZNkyQNGzasRm0GAAAAAKA2nerfzqgZijUAAMBa3377rbMd7pJkpdf93b59e7nPJ06cqOjoaM2ZM0d/+9vfVFJSIik0bfyOO+7Qnj171LZtW915550n2XoAAAAAANznxm9nRI5iDQAAsNbhw4ed7RYtWoR1THJysrN95MiRcp936dJFr7zyiqKiovTAAw/ozDPP1EUXXaSWLVtqzpw5SkxM1Pz58xUXF3fyAQAAAAAA4DI3fjvv3btXTZs2dV5jx46t8O/33XffSbbeHhRrAACAtbKzs53t+vXrh3VM6f1KH1/auHHj9Mknn2jQoEEqLi7W5s2bddppp2n8+PHavHmzLrzwwpNrOAAAAAAAtcSN387FxcU6fPiw8zp27JgkqaSkpMK/Q6p+8TkAAACPysvLc7ZjY2PDOqb0jJjc3NxK9+vdu7fmz59f88YBAAAAAFAHuPHbOSUlRcFg8OQb5yPMrAEAANaKj493tgsKCsI6Jj8/39kO9/8oAgAAAADAq/jtXDdQrAEAANZKSEhwtquaJVNa6f1KHw8AAAAAgI347Vw3UKwBAADWOv30053tQ4cOhXVMenq6s52UlHTK2wQAAAAAQF3Cb+e6gWINAACw1jnnnONs7969O6xj9uzZ42x37NjxlLcJAAAAAIC6hN/OdQPFGgAAYK1zzz3X2d68ebOKioqqPebf//53hccDAAAAAGAjfjvXDRRrAACAtXr37q24uDhJ0vHjx7V+/foq98/Pz9cXX3zhvL/yyitdbR8AAAAAAKbx27luoFgDAACslZCQoH79+jnv33jjjSr3f++993Ts2DFJoTV3L7vsMjebBwAAAACAcfx2rhso1gAAAKvde++9zvYbb7yhrVu3VrhfTk6OJk6c6Ly/++67FRMT43r7AAAAAAAwjd/O5lGsAQAAVrv++ut16aWXSgpN1R44cKA2bdpUZp/Dhw9r0KBB+v777yWF/s+ghx56qNbbCgAAAACACfx2Ni8QDAaDphsBAABwwoABA3TgwIEyf0tPT9ehQ4ckSQ0bNtRZZ51V7rhFixapZcuWFZ5z37596tGjhw4ePChJCgQCuvzyy9WhQwf9/PPPWrZsmXJyciRJMTExWrJkSZkp4AAAAAAA1CX8drYPxRoAAFCnpKSkaPfu3REft3PnTqWkpFT6+fbt25WamqoNGzZUuk+zZs00bdo0XX/99RF/PwAAAAAAtYXfzvZhMTkAAOALHTt21Nq1azV79mzNmjVLW7du1aFDh5SYmKj27dvr5ptv1pgxY9S0aVPTTQUAAAAAwAh+O5vDzBoAAAAAAAAAAACDokw3AAAAAAAAAAAAwM8o1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAAAAAAAAAACAQRRrAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAAAAAAAAAIMo1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAAAAAAAAAACAQRRrAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAAAAAAAAAIMo1gAAAAAAAAAAABhEsQYAAAAAAAAAAMAgijUAAAAAAAAAAAAGUawBAAAAAAAAAAAwiGINAAAAAAAAAACAQRRrAAAAAAAAAAAADKJYAwAAAAAAAAAAYBDFGgAAAABAnbZv3z4lJCQoEAjo/vvvr3Cfxx57TIFAQIFAQI899ljtNtCQrVu3Kjo6WoFAQH/5y19MNwcAAAAngWINAAAAgDqpb9++zs33SF933HGH6ebjFHrwwQd1/PhxNWrUSI8++qjp5oTlwQcfdMZjSkqKgsFgjc5z5MgRxcXFOed64403nM86deqkUaNGSZKeeuop7d2791Q0HQAAAAZQrAEAAAAA1Flffvml3nnnHUnSb3/7WzVr1sxwi8IzevRoZ3v37t1atWpVjc4ze/ZsFRQUSJIaNmyoW265pcznjzzyiKKjo5WTk6OJEyfWvMEAAAAwKsZ0AwAAAACgOt27d1ePHj3C3r9nz54utga16ZFHHpEkxcXFacKECWYbE4HOnTvrwgsv1Ndffy1Jeuutt9S3b9+Iz/PWW28520OGDFFCQkKZz8866ywNGTJEc+bM0fTp0/Xwww/rnHPOOam2AwAAoPZRrAEAAABQ5w0YMMA3zyHB//vqq6+0bNkySdItt9yiFi1aGG5RZEaPHu0Ua95991298sorql+/ftjH79ixQ2vXri1zvorcc889mjNnjoqLi/X888/rn//858k1HAAAALWOZdAAAAAAAHXSpEmTnO277rrLXENqaMSIEapXr54k6ejRo0pLS4vo+NKzatq0aaMrrriiwv369u2rs846S5I0Y8YMZWRk1KzBAAAAMIZiDQAAAACgzsnKytK8efMkScnJybrssssMtyhyzZo1U//+/Z33pYsv1QkGg5oxY4bz/vbbb1cgEKh0/1tvvVWSlJeXp1mzZtWgtQAAADCJYg0AAAAA30hJSVEgEFAgENCuXbskSfv27dOjjz6qLl26KDExUQ0bNlTHjh113333affu3RGdv7CwUNOnT9fQoUPVvn17NWrUSA0bNlS7du2Umpqq+fPnKxgMVnmOlStXOm0s/YyTRYsWKTU1VWeffbYSEhIUCATKzDw5ITc3Vy+++KIuueQSNW3aVPXr11eHDh2Umpqq5cuXV5mLE2666Sbns6effjrs+P/85z87x918881hH1eR9957T3l5eZKkG2+8UVFRp+7n68aNG3XGGWc4bb3hhhuUm5tb4b7Lly/X+PHj1alTJyUlJSkuLk4tW7bUtddeq5dffrnS404ovXTZ0qVLlZ6eHlYbV61aVWb8jRo1qsr9Bw8e7GyXLvIAAADAG3hmDQAAAADfSktL0x133KGsrKwyf//222/17bffaurUqZo7d66uv/76as+1cuVK3XXXXfrhhx/KfbZr1y7t2rVLs2fPVs+ePTVv3jydeeaZYbUxKytLY8aM0fz586vdd/PmzRo8eHC5Nvz444/68ccfNXv2bI0bN04vvfRSlef5z//8Ty1cuFCSNG3aNP3Xf/1Xtd9dUlKiN954w3l/ssuWvf/++872lVdeeVLnKm316tW68cYbnT4fNWqUpk6dqpiYsj+P9+7dq1GjRmnlypXlznHw4EEdPHhQH330kZ5++mnNnj1bl156aYXfN3DgQCUlJenIkSMqLi7W22+/rT/84Q/VtrP0LJxevXrpN7/5TZX7/8d//IeaNGmirKwsrVu3Tj/99JOaN29e7fcAAACgbqBYAwAAAMCXli1bpvHjx6u4uFht2rRRr1691LhxY+3cuVMrV65UUVGRcnNzNXToUG3ZskXt2rWr9Fxz587VyJEjVVhYKEmqX7++evbsqZSUFEVFRWnHjh36/PPPVVRUpC+++EK9evXSunXr1KJFiyrbGAwGddttt+lf//qXAoGALrroIp133nkKBoPasmVLmWWxvv/+e/Xr108///yz87fOnTura9euioqK0oYNG7Rx40ZNmTJFjRo1qvJ7+/fvr9atW2vv3r367rvvtHr16mqXIVu6dKn27NkjSWrVqpWuu+66KvevSklJSZlZQJUVQiK1YMECDR8+3Jmx84c//EHPP/98ueXFtm3bpn79+ungwYOSpEAgoG7duum8885T/fr1tX//fq1evVrHjh3TgQMHdPXVV2vx4sUVPlMmNjZWqampeuWVVySFijDVFWtyc3OdJeCksrNzKhMVFaXevXtr8eLFCgaDWrZsmUaMGFHtcQAAAKgbKNYAAAAA8KXf/e53io+P1+TJkzVy5MgyN+y3bt2qa6+9Vvv371dOTo6efPJJvf766xWeZ+vWrRo9erQKCwsVCAT0wAMP6JFHHlFiYmKZ/X788UeNHj1an376qfbu3asxY8Zo0aJFVbZxzZo1KioqUufOnTVz5kx17ty5zOf5+fmSQkWdO++80ynUnH766Zo5c6auvfbaMvuvWLFCqampeuGFF5wH31ckOjpaY8eO1eOPPy5Jmjp1arXFmqlTpzrbY8aMOally7Zv366jR49Kkpo2baqWLVvW+Fyl2zdu3DgVFxdLkp5++mk9/PDD5fY7fvy4hgwZ4hRq+vfvr5deekkdOnQos9/Ro0f18MMP69VXX1V+fr5Gjhypbdu2qUmTJuXOOXr0aKdYs3HjRm3evLlcX5Y2f/58HTt2TJIUFxenYcOGhRVj165dtXjxYknSl19+SbEGAADAQyjWAAAAAKjzFi1apIyMjLD3f+KJJ5SUlFTlPgUFBUpLS6twBkinTp00ZcoUDRw4UFJo5sxrr71WbqksSbr//vud55a88MIL+v3vf1/h97Vv315LlixRjx499M0332jx4sVau3atLr744krbWFRUpOTkZK1YsUJNmzYt93lcXJwk6cMPP9Tq1aslhWZYLFiwQJdcckm5/a+88kp98MEH6tmzpwoKCir9Xkm688479eSTT6qkpETz5s3TSy+9pMaNG1e47+HDh7VgwQJJoVkoY8eOrfLc1dm0aZOzfc4555zUuSTpmWeecZZyi46O1uTJkytdpu1vf/ubtm3bJin0HJh58+ZVWHhq3Lix/vGPfygnJ0dvvvmmDh48qMmTJ+uhhx4qt2/37t117rnnOud966239Nxzz1Xa3tJLoN10003lCn+VOffcc53tjRs3hnUMAAAA6gaKNQAAAADqvHXr1mndunVh7//ggw9WW6wZOHBglUt1DRgwQMnJyUpPT1d2dra2bdtWbjbExo0btWLFCknShRdeqAkTJlT5nQ0bNtSjjz6q1NRUSdLMmTOrLNZI0sSJEyss1JRWelbL8OHDKyzUnHDRRRdp1KhRmjZtWpXnbN26ta677jotWrRIOTk5mjVrlsaNG1fhvtOnT3eKP1dddZVSUlKqPHd1du7c6Wy3atWqxucJBoN64IEH9OKLL0oKFbdmzZqlwYMHV7h/YWGhXn75ZWffyZMnVztD6KmnntJbb72lYDComTNnVliskUKza07M5Hn77bf1zDPPKDo6utx+Bw8e1LJly8ocF67Sz0HatWtX2McBAADAvJrPSwcAAAAAD7v11lur/DwQCKhLly7O+4pufpdexiw1NbXcs08qcuWVVzrbn376abX7h7ME1qpVq5zt2267rdr9w9lHku6++25nu3RB6NdKf1bZjJVIHDp0yNk+/fTTa3SOoqIijR492inUNG7cWEuWLKm0UCNJ69ev108//SRJ6tevn5o3b17t97Rs2VIdO3aUJG3ZskVZWVkV7nfbbbc5hZ8DBw6UKciUNnPmTGeptuTk5HJL2VWldFEvPT097OMAAABgHjNrAAAAANR5f/7zn/XYY4+d0nNW9cyQE0oXCk48Q6W0zz//3Nn++OOPtXv37mrPGQwGne29e/dWuW+7du2qnSG0f/9+51k1kqqdqSOFluUKBAJl2lKRgQMHqmXLljpw4IDWrVtX4bNWvvzyS23ZskVSqFgwaNCgar+/OsePH3e2GzRoEPHxOTk5uummm5xiWvPmzbV48WJ169atyuNK9+e+ffv0u9/9Lqzvy8zMlBTq23379lX43JozzzxTV111lT766CNJodlIFRViSi+BNnLkyApn31SmdK7y8vJUUlJyUs8OAgAAQO2hWAMAAADAlyq6of5r9erVc7YLCwvLfX7gwAFn+8SD3SPxyy+/VPl5s2bNqj1H6UJNgwYNqi3uSFKjRo3UpEkTp8hQmejoaI0dO1b//d//LSk0g2bSpEll9ik9q+b2229XbGxstd8fieoKShV58cUXVVRUJCm0nNvy5ct19tlnV3tc6f7ctGlTmWfnhKuqPh09erRTrJk/f76ys7OVkJDgfP71119r8+bNZfaPRE1yBQAAgLqB/8UGAAAAgC+Fs2RZdSpb8ipcJ5a7qkz9+vWrPUd2drazHckslNJFgqrcddddzuyMGTNmOM+mkUIzWGbPnl1m31OhYcOGznZubm7Ex5cush05ckQHDx4M67iT7U9JTpGoIoMHD1bjxo0lhXI3b968Mp+XnlVz4YUXhjX7q7TSuYqPj2dWDQAAgIfwLzcAAAAAqKHSRYX33ntPwWAw4tfJKl10ycnJCfu40kuNVaVt27a6+uqrJUmHDx9WWlqa89ncuXOd5eF69eql8847L+zvr0pycrKznZGREfHxEyZM0A033CApFOeAAQO0evXqao8r3Z/3339/jfqzb9++lZ6/fv36ZZ6VNH36dGe7qKhIs2bNct5HOqtGKjvLqnQOAQAAUPdRrAEAAACAGmrRooWzbeqB7qUfKp+Tk1Pt0mpSaDZOdUuglXb33Xc726WXPSu9fapm1UihZ/WcsG/fvoiPj42N1bx588oVbD755JMqj6uN/ixdhFm5cqXz3KIPP/xQhw4dkhSaGTRixIiIz71//35nOyUl5eQaCgAAgFpFsQYAAAAAaujiiy92tj/77DMjbWjVqlWZgs3atWurPWb9+vURzeq58cYbnZkay5Yt0549e7Rjxw6n+JGQkKChQ4dG2PLKXXDBBc72t99+W6NznCjYDBw4UFKoYNO/f/8qCzal+3PNmjWuPAOmT58+at++vSSppKREM2bMkFR2CbT+/fuH9byiX9u2bZuz3aVLl5NsKQAAAGoTxRoAAAAAqKEThQAptAzaiZkRte3yyy93tmfOnFnt/icKBOGKiYnRmDFjJIUKDNOmTdPrr7/ufD58+PCwn4ETjnPOOUdNmjSRFFp6rfSMkUjExsbq3XffLVOwqWqGzSWXXKLExERJoRk977//fo2+tyqBQECjRo1y3k+fPl1ZWVlauHCh87eaLIEmSRs3bnS2e/ToUfNGAgAAoNZRrAEAAACAGurRo4fzjJLc3FzdfvvtKigoCOvYgoKCsJYsC8fYsWOd7bfffltffPFFpfv++9//1ptvvhnxd9x1110KBAKSpGnTppU5x6lcAk2SoqKidOWVVzrvP/300xqf60TB5vrrr5cUWgKusoJNXFycJkyY4Ly/9957IyoUhVusGzVqlJPLbdu26Y9//KPy8vIkSUlJSWWKgOEqKSnRmjVrJIUKQldddVXE5wAAAIA5FGsAAAAA4CS89NJLzqySpUuX6rLLLqtyKbIdO3boySefVEpKyilbOq1///7q06ePpNBN+xtuuEHLli0rt9/KlSs1YMAAFRcXKzY2NqLvaN++vfr16ydJ2r17t/NMl86dO5dZPuxUOfG8GUlasWLFSZ0rNjZW7733XlgFmwceeECdOnWSFHoGzEUXXaS5c+eqpKSkwnNnZGTotddeU7du3fTcc8+F1Z527drp0ksvdd6/9tprznZqamrEfSNJX331lbKysiRJ3bt3V/PmzSM+BwAAAMyJMd0AAAAAAKjOokWLlJGREfb+DRo00LPPPutii/7f+eefr1mzZmnYsGHKycnR2rVr1bNnT3Xo0EHdunVTUlKS8vLy9NNPP2nTpk01XtKrKoFAQK+//rp69eqlw4cPKyMjQ1dffbW6dOmirl27SgotkbVhwwZJ0oMPPqi5c+dq9+7dkkIzWcJx9913lysC3XnnnacsjtJuvvlm3XvvvcrLy9PChQv16quvht3Oipwo2Nx888364IMPnILN4sWLnUKXFHr+zsKFC3XVVVdp586dSk9P19ChQ9W0aVP17NlTycnJCgaDOnLkiL755ht99913TiGn9Gyg6owePVqrV6+u8O81MX/+fGd75MiRNToHAAAAzKFYAwAAAKDOW7dundatWxf2/k2aNKm1Yo0UenbNmjVrdOedd+qrr76SJP3www/64YcfKj0mJSVFrVq1OmVtOPvss7V8+XINHjxYO3fulBQq0JR+jokUKrg89dRTevvtt52/NW7cOKzvGDRokJo3b66ffvpJUmjZsNtvv/0URVBWkyZNdMstt2jGjBlKT0/X6tWrnSXnaurEkmhDhgxxCjb9+/cvV7Bp37691q9fr/Hjx2vevHkKBoPKyMjQv/71r2RsUiAAAATjSURBVErPnZiYqM6dO4fdlltvvVX33XefcnJynL+de+656t69e41imzdvniQpPj5eI0aMqNE5AAAAYA7LoAEAAADAKdClSxetX79eH374oe655x5dcMEFatq0qWJiYtSwYUOlpKTo2muv1cSJE/XZZ5/pxx9/dGa9nMo2bNmyRS+88IJ69uyppKQkxcfHq127dho2bJiWLVumKVOmqF69es7zcqKiosIu1tSrV6/M81QGDx6spKSkUxpDaaWfH/PPf/7zlJwzLi6u3DNs+vfvX+65OElJSZozZ442bdqkP/3pT+rdu7fOOOMMxcbGKj4+XsnJyerTp4/uv/9+LVy4UAcPHoxoVkyjRo00ePDgMn+r6ayaVatW6bvvvpMUmlXTtGnTGp0HAAAA5gSCwWDQdCMAAAAAALXnu+++029+8xtJUseOHbVt27awjgsGg+rQoYMzc2fZsmXOc2zccs0112jp0qWKi4vTrl27lJyc7Or3edGwYcM0Z84cRUdHa8uWLerYsaPpJgEAACBCzKwBAAAAAJ955513nO1Ilt36+OOPnUJN+/btI3pGS009+eSTkqT8/HxNmjTJ9e/zmh9++EHvvvuuJOm2226jUAMAAOBRFGsAAAAAwEd27typ559/3nkfyfNN/ud//sfZHjdunAKBwCltW0UuvvhiDRs2TJL0j3/8Qz///LPr3+klf/nLX1RcXKwGDRroiSeeMN0cAAAA1BDFGgAAAACwxDXXXKMlS5aoqKiows8/+OAD9enTR1lZWZKkrl276pprrgnr3AsXLtSCBQskhZ63ctddd52aRofh+eefV8OGDXXs2DFnpg2kb775Rm+99ZYk6U9/+pPatGljuEUAAACoKZ5ZAwAAAACWODHT5bTTTlO3bt3UunVrxcbGKiMjQ19++aX27dvn7NuoUSN99tln6ty5c4Xn+v777/Xyyy+ruLhYO3bs0NKlS3Xi5+MTTzyhRx991P2AAAAAAJ+gWAMAAAAAlgh3WbKzzz5bc+fOVZcuXSrdZ+XKlbriiivK/f2SSy7RihUrFBsbW+N2AgAAACgrxnQDAAAAAACnxpYtW5SWlqY1a9Zo9+7dysjI0JEjRxQfH69mzZqpR48eGjhwoIYPH67o6OiwzxsbG6t27dpp2LBhevjhhynUAAAAAKcYM2sAAAAAAAAAAAAMijLdAAAAAAAAAAAAAD+jWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAIIo1AAAAAAAAAAAABlGsAQAAAAAAAAAAMIhiDQAAAAAAAAAAgEEUawAAAAAAAAAAAAyiWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAIIo1AAAAAAAAAAAABlGsAQAAAAAAAAAAMIhiDQAAAAAAAAAAgEEUawAAAAAAAAAAAAyiWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAIIo1AAAAAAAAAAAABlGsAQAAAAAAAAAAMIhiDQAAAAAAAAAAgEEUawAAAAAAAAAAAAyiWAMAAAAAAAAAAGAQxRoAAAAAAAAAAACDKNYAAAAAAAAAAAAYRLEGAAAAAAAAAADAoP8DnyhUxneI52kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, lagspec_01_1.spectrum, xerr=energies_err, yerr=lagspec_01_1.spectrum_error, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.errorbar(energies, lagspec_3_30.spectrum, xerr=energies_err, yerr=lagspec_3_30.spectrum_error, fmt='o', label=\"3-30 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time lag (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5d13b5e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Phase lag (rad)')" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAAR9CAYAAAAOd4v9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdfXxU1Z0/8M9MJjOT5weBRBQTQCUa1KgYEAsC2kpRHrbWglYF2V3R2hW7reC2u4p22yp1t2RbFexPAUFFt7UgFamrEEAlTUWiEA1FJAkICZCHmWQm83x/f6RMCSQhN5k7Z865n/frxeuVyczce76fc+bUzsk916JpmgYiIiIiIiIiIiIiIiKFWEU3gIiIiIiIiIiIiIiIKNa4AEJERERERERERERERMrhAggRERERERERERERESmHCyBERERERERERERERKQcLoAQEREREREREREREZFyuABCRERERERERERERETK4QIIEREREREREREREREphwsgRERERERERERERESkHC6AEBERERERERERERGRcrgAQkREREREREREREREyuECCBERERERERERERERKYcLIEREREREREREREREpBwugBARERERERERERERkXK4AEJERERERERERERERMrhAggRERERERERERERESmHCyBERERERERERERERKQcLoAQEREREREREREREZFyuABCRERERERERERERETK4QIIEREREREREREREREphwsgRERERERERERERESkHC6AEBERERERERERERGRcrgAQkREREREREREREREyuECCBERERERERERERERKYcLIEREREREREREREREpBwugBARERERERERERERkXK4AEJERERERERERERERMrhAggRERERERERERERESnHJroBRP3R2tqKbdu2RR8PGzYMDodDYIuIiIiIiIiIiIiI6HR+vx+HDh2KPr7++uuRnZ0dl3NzAYSktG3bNsyaNUt0M4iIiIiIiIiIiIhIh/Xr12PmzJlxORe3wCIiIiIiIiIiIiIiIuVwAYSIiIiIiIiIiIiIiJTDLbBISsOGDevyeP369bjwwgsFtSb+vF4vysvLMWnSJKSmpopujhSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUqMqdZjBF1980eV2Bqd/t2skLoCQlE6/4fmFF16I4uJiQa2Jv0AggOTkZFx66aWw2+2imyMFZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmrx8zM0cGqtSoSh1mdPp3u0ayaJqmxe1sRDFSXV2N0aNHRx/v3bvXVAsgRERERERERERERDIQ+V0u7wFCJKGOjg5s3rwZHR0dopsiDWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq8fMzNHBqrUqEodZCwugBBJKBKJoLW1FZFIRHRTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGlWpg4zFLbBIStwCi4iIiIiIiIiIiCjxcQssItIlFAqhtrYWoVBIdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaVamDjMUFECIJtbe3Y/Xq1WhvbxfdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBjcQsskhK3wCIiIiIiIiIiIiJKfNwCi4iIiIiIiIiIiIiIKIa4AEIkIZfLhSeffBIul0t0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9WNm5shAlRpVqYOMxQUQIgmlpqZi1qxZSE1NFd0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGPxHiAkJd4DhIiIiIiIiIgo/jRNQyQSAb9SJFKPxWKB1WqFxWKJ6XFFfpdri8tZiCimvF4v3nnnHXzjG9/gKncfMTNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/26y0zTNHi9XrS3t8Pj8cDv9wtupbEikQjcbjcyMzNhtaq5eY4qNapSRyJyOBxIS0tDeno6UlNTY74gEk9cACEiIiIiIiIiIqIzBINBHD58GD6fT3RTiCiO/H4//H4/mpub4XQ6cf755yM5OVl0s/qFW2CRlLgFFhERERERERGRcXw+Hw4dOoRQKCS6KUQkmM1mw7Bhw+B0Ovv1fpHf5fLaICIJBYNB1NTUIBgMim6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+JzMLBAKor6835eKHGe5xokqNqtQhg1AohEOHDkmZNbfAIpKQ1+vF+vXrcf/99yMrK0t0c6TAzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9TuZ2dy5cxEOh7s8l5ycjKysLKSlpSE5OVnqewL0JhQKoampCeeccw5sNjW/OlWlRlXqSCSapiEYDMLj8cDlcnVZQA6FQmhvb0dGRobAFurHLbBIStwCi4iIiIiIiIjIGIcOHUJ7e3v0scPhwAUXXMAvmYlMJBQKob6+Hn6/P/q79PR0DBs2TPexuAUWERERERERERERCadpGjweT5ff5ebmcvGDyGRsNhtyc3O7/M7j8Ui3DRYXQIgk1Nraiscffxytra2imyINZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmr19rayt+9rOfnXHvj9TUVEEtir9QKIQjR44off8TVWpUpY5EdvpnX9M06RZAuAUWScnsW2CFQiEcPnwY559/Pv8Co4+YmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fie3vPH5fF3u8XHRRReZJkNN0xAIBGC325W9z4kqNapSRyILhULYv39/l9/1Zz4Q+V2uOWYuIsXYbDYUFhaKboZUmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX42mw0XXHDBGV94monFYoHD4RDdDEOpUqMqdZCxuAUWkYQ8Hg/WrVt3xp6c1DNmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn8fjwRtvvIFIJCK6KcKEw2E0NzcjHA6LbophVKlRlTrIWFwAIZKQ1WpFdnY2rFZ+hPuKmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ62e1WpGVlSW6GUJZLBYkJSUpvaWSKjWqUgcZi/cAISmZ/R4gRERERERERERGiNWe/0QkPxXuAcIlcCIJBQIBVFVVIRAIiG6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+gUAAe/bsgYx/L32o2YvCR97q9t+hZm+fjxOJROD1epXeBkyVGlWpg4zFBRAiCfl8PpSXl8Pn84luijSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fj6fDx988IGpv1DWNA1tbW1SLgL1lSo1qlIHGYtbYJGUuAUWEREREREREVHsybgFVk2DG2sr6rC2or7b568uyMHY4bmYWXIeRuVnxLl1RPLiFlhEJISmafD5fFzh1oGZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrp2ka/H6/6Gb02ZaaRnxn+U5MXbajx8UPANhV14Jnyw/gpmXb8Z3lO7G15liPr9U0DZFIRJlxEwgEsGbNGkybNg0FBQVwOp0499xzMX78ePzyl7/EiRMnDDlvOBzGp59+ihdeeAH3338/xowZA7vdDovFAovFgkmTJg34HH3pq4MHD+L111/HokWLMHnyZGRmZkbbYOTN0+fNmxc9x7x583S9d9WqVdH3FhYWGtI+M+ECCJGEXC4XnnrqKbhcLtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz+VyoaysDOFwWHRTetXiCeDBV3dj/qqPUFnbrOu9lbXNuGfVX7Bw3W60eM68P0w4HEZDQ0PCZ9AXNTU1GDt2LO6++268/fbbqK+vh9/vR0NDA3bu3IlFixahuLgYmzZtiul5169fj8zMTFxxxRX4p3/6Jyxfvhy7du1CMBiM6Xl666ujR49i0KBBGDFiBGbPno1f/vKXKC8vR1tbW0zbQImPCyBEEsrIyMCCBQuQkcHLNvuKmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ65eRkYF58+bBak3crww/P+rG1LLtePOTIwM6zoaqI5hath01De4uv09KSsLgwYORlJQ0oOOLdvjwYdxwww2oqqoCAFgsFlx//fWYP38+pk+fjpSUFADAsWPHMGvWLGzZsiVm525tbYXX2/cbz/dXb33l9/vR1NRkeBso8SXu5n1E1KOkpCTk5+eLboZUmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX5JSUkYMmRIwl418/lRN+Y8XwFXR2yuJGh0+zF7RQVeWzAORfmZADoXCpKTk2NyfJHuuOMOHDnSuUhUUFCADRs24Iorrog+f+LECcyZMwfvvfcegsEgbrvtNhw4cADZ2dkxa0NeXh6uueaa6L8//elPKCsri9nx+9JX6enpuOqqq1BaWoprrrkGPp8Pc+fOjVkbKPEl7nIuEfWovb0dq1atQnt7u+imSIOZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nr197ejldeeSUht39q8QQwb2VlzBY/TnJ1BDH3xcrodljhcBgnTpxIyAz6atOmTdixYwcAwG63Y+PGjV0WP07W9sYbb2DEiBEAgObmZixdujQm5586dSrq6urQ0NCAjRs34tFHH8U3v/nNmC6uAL33VV5eHvbu3QuXy4Vt27bhl7/8Jb7zne/gggsuiGkbKPFxAYRIQjabDYWFhbDZeBFXXzEzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9bDYbLrjgAkNvDt1fj71ZjUa3MTdob3T7sWRjNYDOqwocDkdCZtBXzzzzTPTnuXPn4rLLLuvy/Mka09PT8cQTT0R/v2LFCoRCoQGfPz8/Py4LDb31VUpKCoqLixN6OzeKD44AIgk5nU5MmjQJTqdTdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVzOp342te+lnBfGm+paRzwPT/OZkPVEWypaYTVakVGRkbCZdBX7e3teO+996KP77nnnjNec2qNt956K9LT0wF0XgWyffv2uLV1oGTvq/6qra2FxWLp17/a2lrRzY87c40OIkX4/X5UVFTA7zfmLx9UxMzMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PXz+/346KOPEIlERDeli+XlX8bnPNu+RCQSQXt7e8Jl0FcffvhhdMynpaXhmmuuOeM1p9bodDpx7bXXRp+L5c3QjSZ7X1F88BpAIgkFAgFUVVWhuLgYDodDdHOkwMzMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PULBALYs2dPly/ERatpcKOytjku56o82IyaBjcG2QJISUmJyzlj7fPPP4/+fNlll3W7BZymafB6vdEar7rqKvzf//3fGe9PdKfXYRaZmZl44IEH+vTaTz/9NHo/GABSb+3WX1wAIZJQRkYG7rvvPtHNkAozM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXLyMjA/fccw/2798vtB2Hmr3Rn9dW1MX13K9WHsa9E0fgiMuPYbmpcT13LOzbty/6c0FBQbevSUpKwpAhQ6KPT71fR01NjXGNi7HT6zCL3Nxc/OY3vznr6w4dOoTS0tLo49tvv73HMaEyLoAQSSgSicDtdiMzM9N0+xz2FzMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9cvEonA5XJB0zShfyk+YelWYedeU1GHNX9bdKl98mZh7eivpqam6M95eXndvkbTNITDYSQlJcFisSA/Pz/6XHNzfK62iYXT60hUf/7zn/H973+/z6+PxSKUx+PBjBkz0NDQAAAYO3YsXnzxxQEfV0ZcACGSkNvtRllZGRYuXIjs7GzRzZECMzNHBqrUqEodRESicB4lmXC8qo99LA6z18/tdmPFihWYMWMGkpKSRDeH+qG9vT36c09bQ4XDYRw7dgxDhgyBzWbr8rpT35/oTq8jUdXU1MT1yhpN03DXXXehqqoKADBs2DCsX78eTqczbm1IJFz+JpJQZmYmFi5ciMzMTNFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXLzMzEwsWLOAVMxLz+XzRn+12e7evObl11MlFrlPvkdPR0WFsA2Po9Dqo009+8hP84Q9/AACkpaXhzTff7HKVj9lwNiOSkNVqRXZ2Nv+DRAdmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn9VqRVZWVkJvJ0S9O/Wv/AOBQLevsVgssNls0X72+/3R52S6ofjpdSSquXPnQtO0Pv9buXJlv8+1du1a/OIXvwDQmc/atWtRUlISo0rklLjXBhFRj9ra2vDyyy/ju9/9LjIyMkQ3RwrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev7a2Nqxbtw7XXnst/6peUunp6dGfe7qaIxwOo6mpCeeccw6SkpK6vO7U9yeC5uZmPProo90+p2kafD4frr/+etx9992GtSEQCqOmoa3b54ryM2C3JcZnpaKiAv/0T/8Uffzzn/8cs2bNEtegBMEFECIJ2e12lJSU9HgpI52JmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ62e323HZZZcl/F/UU8/OOeec6M+NjY3dvsZisSA1NTXazydvlA0Aubm5xjZQJ7fbjWeeeabX14RCIUMXQGRQX1+PWbNmRa/mufvuu/HII48IblVi4AIIkYQcDgfGjRsnuhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vo5HA6MGTMG+/fvF9qOHYsmR39+6LUq7Kpridu5xxTk4FezS+J2vlgbNWpU9Oe6urpuX2O1Wrtc6VFfXx/9uaioyLjGGcTsC3YejwczZsyILnhdd911eP755wW3KnFwE0QiCfl8PpSXl3e5sRX1jpmZIwNValSlDiIiUTiPkkw4XtXHPhaH2evn8/nw/vvvIxKJCG3HsNzU6L+xw+N7RULp8FxkJ4dxXrbz7C9OQJdcckn05z179iAUCp3xmkgkgra2tmg/f/zxx92+PxEUFhb2eK+McDgMt9uNF198UXQzhdE0DXfeeSc++eQTAEBBQQHeeOONLje2NzsugBBJKBQKoba2ttv/EaPuMTNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/1CoRDq6+uhaZropkTNKBka1/Pdcnk+/H5/QmWgx/jx46Nffns8Hnz00UdnvEbTtGiNfr8fFRUV0eemTJkSt7YO1Kl1mNWPf/xjrF+/HgCQkZGBjRs3YsiQIWIblWC4AEIkofT0dMybNy/hbkyVyJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+6enpuOOOOxLqBuhF+ZkoLYzPVSClw3Nx6dBsDBo0KKEy0CM9PR033HBD9PGqVavOeE1SUlK0xjfeeANtbZ03+M7NzcXEiRPj1dQBO7UOM1qzZg2efPJJAJ3bmr366qu47LLLBLcq8XABhEhC4XAYDQ0NCIfDopsiDWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq9fOBzGsWPHEu4v6u+bNCIu57n/+pHQNA3BYDDhMtDje9/7XvTnVatWobq6usvzJ2v0eDx49NFHo7+/9957YbPJc8toFfqqvz788EP88z//c/Tx0qVLcfPNNwtsUeLiAgiRhNra2rBixYroCj2dHTMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9evra0Nq1atEn4PkNNNKcrDjCuM3QprZslQTC4agnA4jOPHj0u9cHbzzTdjwoQJAAC/349bbrkFn376afT5cDiMffv2YdasWfjiiy8AdF79sXjx4h6PWVtbC4vFEv3X3ZUl8aZCX/VHfX09/uEf/gF+vx8AMH/+fPzwhz8U3KrEJc+SHhFFZWVlYfHixbyhkQ7MzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev6ysLCxcuBD19fWim3KGx2cU488Hm9Do9sf82HmZDiyZXgygc1ul/Px8WCyWmJ8nnl555RWUlpbi6NGjqK2tRUlJCa6//nqMHDkSx48fx7vvvguv1wsAsNlseP3115GdnR2z80+bNg1Hjhzp8ruGhobozx999BFKSkrOeN+mTZswdGjfFrvO1lePPvoo3nzzzS6/a29v7/K4uzY88cQTmDFjRp/aIMLKlStx7NgxAJ0Z2Gw2fP/73+/Te5944gnk5sZnS7lEwQUQIglZLBY4nU7RzZAKMzNHBqrUqEodRESicB4lmXC8qo99LA6z189isSTsglFOmh2r55di9ooKuDqCMTtuVkoyVs8vRU6aHQCiVzjI7vzzz8eWLVtw++23o6qqCpqmoby8HOXl5V1eN3jwYKxcubLLfUNi4bPPPkNdXV2Pz3s8HnzyySdn/D4QCPT5HGfrq/r6+m7Pcarunm9ubu5zG0Q4dcuvcDiM559/vs/v/dGPfmS6BRBugUUkIbfbjWXLlsHtdotuijSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fm63G8uXL0/YLYWK8jPx2oJxyMuMzSJNXqYDry0Yh6L8zOjvwuEwGhsbEzYDPYqKivDnP/8Zq1evxtSpUzFs2DDY7XYMGTIEV199NZ588kl89tln0t47QqW+IuNYNDPeJYakV11djdGjR0cf7927F8XFxQJbFF+BQACfffYZLr30UtjtdtHNkQIzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXLxAIoLq6Gg6Ho8tf1l900UUJdXPsFk8ASzZWY0PVkbO/uAczS4ZiyfTi6JUfJ0UiEfh8PjidTlitav7tuCo1xquOQCiMmobu7yVUlJ8Buy3JsHOLFgqFsH///i6/6898IPK7XC6AkJTMvgBCRERERERERGSEWH3hGQ9bahqxfNuXqDzY9y2LSofn4v7rR2Jy0RADW0Yq4QKI3Asg8i7xEZlYR0cHNm/ejI6ODtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXr6OjA++99x4ikYjopvTJlKI8vL7gWvzpoYm4a1xBj68bU5CDByaPxJ8emojXF1zb6+JHJBKBy+WSJoP+UKVGVeogY3EBhEhCkUgEra2tnOB1YGbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vqd/EJZNqPyM3DvxBE9Pv+r2SV4+KYijMrPOOuxNE1DOByGypvmqFKjKnWQsbgFFkmJW2AREREREREREcWeTFtgnepQsxcTlm7t9rkdiyZjWG5qnFtEquAWWHJvgZXYMxcRdSsUCuHw4cM4//zzE/4/QBIFMzNHBqrUqEodRESicB4lmXC8qo99LA6z1y8UCqG+vh6apnW5CboMhuWmovbJmwd8HE3TEAgEYLfbpcugr1SpUZU6yFjcAotIQu3t7Vi9ejXa29tFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXr/29nasW7fO1NuGhcNhNDU1IRwOi26KYVSpUZU6yFjcAoukxC2wiIiIiIiIiIhiT9YtsIiMwi2w5N4Ci1eAEBERERERERERERGRcrgAQiQhl8uFJ598Ei6XS3RTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1c7lcWLZsmam3FAqFQjh69ChCoZDophhGlRpVqYOMxWvXiCSUmpqKWbNmITU1VXRTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1S01Nxc033wwz75hvtVqRnZ0Nq1XdvxtXpUZV6iBjcQGESELJyckoKioS3QypMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2Sk5Nx0UUXnbHnv5lYrVakpKSIboahVKlRlTrIWFweI5KQ1+vF+vXr4fV6RTdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/r9eLt956C5FIRHRThAmHw2hpaVF6GzBValSlDjIWF0CIiIiIiIiIiIiIiEg5Fs3Mm/qRtKqrqzF69Ojo471796K4uFhgi4iIiIiIiIiI5BcKhc7YAuuiiy6Czcad9MmcAqEwahraun2uKD8DdltSnFsUP7GaD0R+l8srQIgkFAwGUVNTg2AwKLop0mBm5shAlRpVqYOISBTOoyQTjlf1sY/FYfb6BYNB7N+/39Q3QY9EIujo6FB6GzBValSlDjIWF0CIJMR9TPVjZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+vEeIJ1fqre2tiqdgSo1qlIHGYtbYJGUuAUWEREREREREVHscQssoq64BRa3wCIiIiIiIiIiIiIiIkooXAAhklBraysef/xxtLa2im6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+ra2tWLp0KcLhsOimCBMKhXDkyBGEQiHRTTGMKjWqUgcZi1tgkZTMvgVWKBTC4cOHcf755/MS1D5iZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+oVCIdTX18Pn88FisUR/b6YtsDRNQyAQgN1u75KBSlSpMV51cAssubfAMsfMRaQYm82GwsJC0c2QCjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9fPZrPhggsuOOMLTym01AFll3f/3MJPgZyCPh3GYrHA4XDEsGGJR5UaVamDjMUtsIgk5PF4sG7dOng8HtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz+Px4I033kAkEhHdFGHC4TCam5uV3gZMlRpVqYOMxQUQIglZrVZkZ2fDauVHuK+YmTkyUKVGVeogIhKF8yjJhONVfexjcZi9flarFVlZWaKbIZTFYkFSUpLUW0OdjSo1qlIHGYv3ACEpmf0eIERERERERERERojVnv9x1VgN/OUF4KMXun9+2Fig4DrgstuAvEvj2zaSHu8BIvc9QLgETiShQCCAqqoqBAIB0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9cvEAhgz549kObvpf/6J+DFbwLPje958QMADv0ZeP+/geeu7Xz9X9/p8aWRSARer1fqbcBOnDiBDRs24Cc/+QlmzJiB4uJi5OTkIDk5GampqTjvvPNw44034uc//zm++uorQ9rQ0dGB8vJy/OIXv8Add9yBq6++GkOGDIHT6YTD4cCQIUMwfvx4/PCHP8Tu3bv7dY7q6mo89NBDuPzyy5Gbm4u0tDRcfPHFmDt3Lt57770YVwRseP0VXDEsB1cMy8E3r+3hfjM9qK2thcViif6rra2Nefuoewm8dEtEPfH5fCgvL8eIESNgt9tFN0cKzMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj+fz4cPPvgAkyZNQlJSAv9Vu7cZ2PQwsPd3+t9b/yHwyoedV4N8cymQmtvlaU3T0NbWJvXNtefNm4e33nqr2+dCoRA6Ojpw5MgRvPfee3jiiSfwb//2b/iP//iPmG4X98wzz+Dhhx/u8fnjx4/j+PHj2LlzJ/77v/8bs2fPxrPPPovc3Nwe33Oqn/3sZ3j88ccRDAa7/H7//v3Yv38/XnrpJdx+++1YsWIFMjIyBlQLyY1bYJGUuAUWEREREREREVHsJfwWWA17gZe/DbQdHfixMs4F7vw9kKfWd0q33HJLdAFk0KBBuOSSS1BQUID09HR4vV588cUXqKysRCgUir7n7rvvxurVq2PWhqeffjq6AJKamopLLrkEI0eORHZ2NkKhEA4fPoyKigq43e7oey677DK8//77yMzM7PXYjz76KH76059GH5977rmYMGECnE4ndu3aherq6uhz3/jGN/DWW28NaPye3AJrw+uv4NEfPgAAGHr+MLy989M+b4FVW1uL4cOHRx8fPHgQhYWF/W5TvKiwBVaCzFxEpIemafD7/XA4HLzRUx8xM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/U5mlrAa9gKrbgZ8rbE5XttRYOU04J5N0UUQTdOgaVp0qyIZTZo0CdOnT8cNN9yACy+88IznNU1DQ0MDfvjDH+LVV18FALz00kuYPn06vv3tb8ekDRdddBF+9rOf4aabbsIVV1zR7RfmPp8Py5Ytw09+8hNEIhHs2bMHP/7xj/Gb3/ymx+O+9957XRY/fvSjH+E///M/u1yx8+qrr2L+/Pnw+Xx455138POf/xyPPvpoTOoi+fAeIEQScrlceOqpp+ByuUQ3RRrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxeP5fLhbKyMoTDYdFNOZO3ufPKj1gtfpzkawXW3tp5fADhcBgNDQ2JmUEf/ehHP8KCBQu6XfwAOmvUNA2rV6/GlClTor9fsWJFzNowc+ZM/PjHP8bVV1/d49UCTqcTjzzyCB577LHo71566SX4fL4ej/tv//Zv0Z9nz56NH/zgB2ds13b77bfjV7/6VfTx008/jRMnTvS3FJIcF0CIJJSRkYEFCxZwD0MdmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX4ZGRmYN29eTO8FETObHo7NtlfdaTsKvL0IAJCUlITBgwcn9j1QBuhkjTabDffcc0/09/29GflAzZ8/P/pzW1sbvvjii25f95e//AV/+ctfAABWqxVLly7tsa8WLFiAiy66KHrMNWvWGNBykkECzmZEdDZJSUnIz89X+n+MY42ZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrl5SUhCFDhiTe1k9//VP/bniux57/Bf76J1gsFiQnJydeBjF0ao2DBw+O/r6trU1Ie05tQ2/tWL9+ffTnG2+8ERdccEGPfWWxWDB37tzo4z/84Q+xaayBCgsLo1uv6fm3atUq0U1PaFwAIZJQe3s7Vq1ahfb2dtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXr729Ha+88kribf/0/rL4nOeDzu2/Tpw4kXgZxNCpNX722WfR34u6KfepbeitHVu3bo3+PGnSpLP21eTJk6M/f/jhh4l9fxsyDG+CTiQhm82GwsLCHvdQpDMxM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/Ww2Gy644ILEuvqhsRqo/zA+56r7AJbjn8ORVpBYGcSYxWKBw+HA0aNH8fTTT0d/H6sboOsRCATwyCOPRB+PHz8e5557brev/fzzz6M/X3XVVdE6euqrK6+8MvpzOBzGX//6V1x22WUxannszZ07F01NTWd9XVNTE9atWxd9rPJYjQX+LwCRhJxOJyZNmiS6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jmdTnzta1/D/v37xTakpe7vP//lhbie2rprJTLGPwi4moGcgrieOx68Xi9qa2vx9ttvY+nSpTh27BgA4JJLLumyEGGkQCCAo0ePYseOHfiv//ovVFVVAei8B82vf/3rbt9z7NgxtLa2Rh8XFBTAarX2eo+flJQUDB48GMePHwcA1NTUJPQCyOOPP37W1wSDQXzjG9+IPi4qKsKsWbMMbJX8uABCJCG/34/du3fjyiuvhMPhEN0cKTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9TmaWkZEh9kboZZeLO/df/l/nPwBY4hLXjhh5//33MWHChF5fM23aNLz88su9LiYMlM1m63VbsYsvvhi///3vMXr06G6fP/3KiLy8PEQiEXi9XqSmpvY4XvPz86MLIM3Nzf1s/Zlcra34+b8/jJxUO5KsZ78CI1b3V3nggQdQXl4OAMjNzcXGjRuRlZUVk2OrigsgRBIKBAKoqqpCcXEx/yOuj5iZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+gUAAe/bswbXXXiu6KRQHOTk5ePbZZzFnzhxhbUhKSsLixYvx+OOP97pd3en38klJSYGmafB6vUhJSenxfac+F8v7AXna2/Da6v8Xs+P1xbJly/Db3/4WAJCcnIzf//73uPDCC+PaBhlZNE3TRDeCSK/q6uouK8J79+5FcXGxwBYREREREREREckvFAqdsQXWRRddFN97qSxJkL9oV+AKkC+//BL//d//DQDQNA1tbW3Yt28fPv74Y4RCIQCdNwtfvnw5Lr74YsPasXDhwugVIB6PB4cOHUJlZWX0yogLL7wQv/71rzF16tRu379jxw5MnDgx+jgcDvfpKqWJEydix44dAICf/vSn+Pd//3fdbQ+EwqhpaMOG11/Boz98QPf7u3Pw4EFdN53fvHkzbrnllmiGv/3tb/FP//RPMWlLb2I1H4j8LpdXgBBJKBKJwO12IzMzU+wlqRJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+kUiEbhcLmiaxhsrK2LEiBH4zW9+0+V3mqbh0KFDeOyxx7Bq1Sps3boV48aNQ3l5OS6/3Jjtx8rKys74ncfjwTPPPINHH30UX3zxBW6++Wa8+OKLmDt37hmvdTqdXR4HAgE4HA6Ew2EkJSX1OF79fn/0596uFNFr6PnD8PbOT1GUnwG7Lemsr6+trcXw4cP7da7PPvsMs2fPji5+/OAHP4jL4ocqOPsTScjtdqOsrAxut1t0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9XO73VixYgUikYjoppCBwuEwbDYbfvvb3+LBBx8EALS0tGDOnDln3KejubkZ3//+93v9t3bt2n61Iy0tDYsWLcKrr74KoHMB7r777sOXX355xmvT09O7PO7o6EA4HMaxY8d6vbdIR0dHj8eQQVNTE6ZPnx6dx6ZNm4ann35acKvkwi2wSEpm3wKLf8WiHzMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9cvEomgpaUFjY2NXf6inltgqUXTtOiVEx0dHTj33HOjX7Bv3LgRt9xyS/S1fblyYe7cuVi1atWA2nTjjTfivffeAwD88Ic/PONL/mPHjiEvLy/6+PPPP8eoUaPOegXIkCFDojdBf/3113Hbbbfpblt3W2AN9AqQvmyBFQwG8fWvfx3btm0DABQXF2Pnzp2G3qz+dCpsgcXZn0hCVqsV2dnZ/A84HZiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+VqsVWVlZ4re/Wvjp3/8NGxvfcw8b9/dzK8piscBms8FisSA1NRXjx4+PPvfBBx8IadPXv/71XtswZMgQZGdnRx/X1dV1qaM7Pp8vuvgBAEVFRbFrcBzcf//90cWPQYMGYePGjXFd/FAF/xeASEJtbW1Yvnx59EZRdHbMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev7a2NqxcubLXLYXiIqfg7/8KrovrqSMXjMexYArCmefH9bzxdPrWUTk5OdHnmpqaury2sLAQmqb1+m+gV3+crQ0nXXLJJdGfd+/efdYtsD7++OPoz0lJSYbe5D3W/vu//xsvvPACAMBut+MPf/hDv+8hYnZcACGSkN1uR0lJCex2u+imSIOZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrZ7fbcdlll4m/AuRUl307zue7FampqYmVQYydvPLjZI1Hjx6NPpebmyukTX1pw+TJk6M/l5eXn1HH6U5ePQEA48ePh8PhiFFrjbVp0yY8/PDD0cfPP/88vva1rwlskdy4AEIkIYfDgXHjxkkzcScCZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmr5/D4cCYMWMSa9uwvGLggvFnf10sFFwHa/5opKenJ1YGMWa1WqM1NjU1YefOndHnTr3KIp7++Mc/nrUNs2bNiv787rvv4siRI7321alXppz63kRWXV2N22+/HZFIBACwaNEizJ07V3Cr5KbuJ5lIYT6fD+Xl5fD5fKKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn8/nw/vvvx/98jVhfO2h+JznuocQiUTQ1taWeBn0UXNz81lfc7LGUCiE73//+/D7/QA6F8BOvQF6f3k8Hl2fu+eeew4fffRR9PGtt97a7euuueYaXHPNNQA6t/FavHhxj331/PPP469//SsAICMjA3fffbeeEoQ4ceIEpk+fHr0h/cyZM/GLX/xCcKvkxwUQIgmFQiHU1tYiFAqJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX6hUAj19fXQNE10U7q6+CZgtMFbYV12G3DxN6BpGvx+f+Jl0EcvvfQSrrnmGrz00kvRL9JPp2kaPv74Y9x8881Yt25d9PcPP/wwzjnnnAG3Yf/+/bjwwgvxy1/+EocOHerxdQ0NDfjBD36ABx54IPq7CRMm9LoIc+qCwCuvvIKf/OQnCAQCXV7z+uuv46GHHoo+/tGPfoRBgwb1o5L4CQQC+Na3voWDBw8CAC6//HKsXbtW6SuR4sWiyfppJlOrrq7G6NGjo4/37t2L4uJigS0iIiIiIiIiIpJfKBTC/v37u/zuoosugs1mE9Siv/E2A8+NB9qOnv21emWcC9z/IZAq5v4XsbRs2TL84Ac/AADYbDYUFRVh1KhRyMnJgcViQVNTEz799FN88cUXXd536623Yt26dTHp56qqKlx55ZXRx4WFhRg9ejQGDRoEh8MBt9uNmpoafPrpp11uYD5q1Chs3boV5557bq/H/4//+A/853/+Z/Tx0KFDMWHCBDidTuzatQt79+6NPvf1r38dmzZtGlBdgVAYNQ1t2PD6K3j0h52LNUPPH4a3d36KovwM2G1JZz1GbW1tl5uYHzx4EIWFhdHH27Ztw6RJk6KPZ8yYgWHDhvWpfXfddRfGjh3bt2J0itV8IPK7XMEzFxH1RzgcxvHjxzF48GAkJZ19kiVmBpgjA1VqVKUOIiJROI+STDhe1cc+FofZ6xcOh3Hs2DFompZ4NwFPzQXu/D2wchrga43dcZ3Zncf92+KHpmkIhUKw2WyJl0EfnHrPm1AohL1793ZZEDhdRkYGlixZgoULF8bsc5KcnAyr1Rrdmqq2tha1tbU9vt5qteIf//Ef8dRTTyEnJ+esx3/iiSfgcDjwxBNPIBgM4siRI3jttdfOeN2cOXOwYsUK8Yt3fXD6NQpvvvlmn987ZswYwxZAVMBraIgk1NbWhhUrVqCtrU10U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9Wtra8OqVasS9/4XecXAPZs6r9iIhYxzO4+X9/e/RD+5cHbqlQkyuf/++7Fv3z4888wzuPvuu3H11Vdj8ODBSE5ORnJyMs455xwUFxfjW9/6Fl544QUcOXIE//qv/xrTRcLi4mI0NDTg5ZdfxgMPPIAJEybgvPPOg9PpRFJSErKzszFy5EjMmjULv/zlL1FfX4/nn3++T4sfAGCxWPDv//7v2LVrF+69914UFxcjKysLqampGDlyJO6880783//9H1599VVkZmbGrC6SE7fAIimZfQusk/tROhwOKf8aQQRmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn6Zp8Hq9qK+v7/L7hNgC61TeZuDtRcCe/+3/MS67Dfjm0jO2vdI0LXoFjKrjRpUa41XHyS2wutPXLbBkxS2wiEgIi8UCp9MpuhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vpZLJYuWyglrNRc4Nb/17mI8UEZUPdB399bcB1w3UPAxd/o9mnZFwX6QpUaVamDjMUtsIgk5Ha7sWzZMrjdbtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz+12Y/ny5fJs/3TxTZ1bWN2/E7jmn3p+3bBxwIQfdr7unk09Ln4AnVtgNTY2ypNBP6hSoyp1kLF4BQiRhJxOJyZNmsS/ZNGBmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ6+d0OnHdddfBapXsb6bzLgXGPwj85f91//y3ngdyCvp0KIvFgoyMDKWvLFClRlXqIGNxAYRIQna7HSUlJaKbIRVmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavn91ux2WXXXbGnv9mYrVakZqaKroZhlKlRlXqIGNJtpxLRADQ0dGBzZs3o6OjQ3RTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z16+jowHvvvYdIJCK6KfrlFABLXN3/6+PVHwAQiUTgcrnkzKCPVKlRlTrIWFwAIZJQJBJBa2srJ3gdmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX4nv1A2M03TEA6HoWma6KYYRpUaVamDjGXROEJIQtXV1Rg9enT08d69e1FcXCywRURERERERERE8guFQmdsgXXRRRfBZuNO+mROgVAYNQ1t3T5XlJ8Buy0pzi2Kn1jNByK/y+UVIEQSCoVCqK2tRSgUEt0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9QqEQ6uvrTf0X9Zqmwe/3K52BKjWqUgcZiwsgRBJqb2/H6tWr0d7eLrop0mBm5shAlRpVqYOISBTOoyQTjlf1sY/FYfb6tbe3Y926dabeNiwcDqOpqQnhcFh0UwyjSo2q1EHG4hZYJCVugUVEREREREREFHvcAouoK26BxS2wiIiIiIiIiIiIiIiIEgoXQIgk5HK58OSTT8LlcoluijSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fi6XC8uWLTP1lkKhUAhHjx5V+t4xqtSoSh1kLF67RiSh1NRUzJo1C6mpqaKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavX2pqKm6++eYzbiptph30rVYrsrOzYbWq+3fjqtSoSh2JrLv7AVksFgEt6T8ugBBJKDk5GUVFRaKbIRVmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGav38nMampquvw+EAggOTlZUKviy2q1IiUlRXQzDKVKjarUkciCweAZv5NtwUmu1hIRAMDr9WL9+vXwer2imyINZmaODFSpUZU6iIhE4TxKMuF4VR/7WBxmr5/X68WGDRvOuMGx2+0W1KL4C4fDaGlpUXobMFVqVKWORHb6Z9/pdEp3BQgXQIiIiIiIiIiIiCgqLS2ty2O3282FJCKT8Xq9ZyyAZGZmCmpN/1k0M23iR8qorq7G6NGjo4/37t2L4uJigS0iIiIiIiIiIlJDIBDAgQMHuvzOarUiMzMTmZmZSE5Olm4bHKL+CobC+Oux9m6fu3hIOpJtSXFukXEikQiCwSDcbjfcbvcZ9wAZOXIk7Ha77uOK/C6X9wAhklAwGMSBAwcwcuRI0+zBOVDMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev1Mzy8jIQFtbW/S5SCSC1tZWtLa2imtgHGiaBk3TYLFYpNvqp69UqTFedWiahnDwzJuBA8DBdqvUGeqRkZHRr8UP0bhUSyQh7mOqHzMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9fv1MyGDh2K9PR00U0Swgz3lFClRlXqSHTp6ekYOnSo6Gb0C7fAIilxCywiIiIiIiIiImNFIhEcOXKky5UgRGYTCEVQ09D9Z6AoPwN2m9rXGGRkZGDo0KED2vaOW2ARERERERERERFRQrFarTj//PMRCATgdrvR1tYGn88nullEZDCn04nMzExpt706FRdAiCTU2tqKsrIyLFy4ENnZ2aKbIwVmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavX0+Z2e12DBo0CIMGDYKmaYhEIlB1UxmXy4UVK1ZgwYIFyMrKEt0cQ6hSY7zq+KqlA0+8vqPb5zY9WIzzclIMO3e8WSwWWK1q3deEW2CRlMy+BVYoFMLhw4dx/vnnw2bjOmZfMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YWc8ZHGr2YsLSrd2+Z8eiyRiWmxqvJg6YKv0crzpU6ntRuAUWEelis9lQWFgouhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxlL7Di1EivJ4PFi3bh08Ho/opkiDmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ68fMzJGBKjWqUgcZiwsgRBKyWq3Izs6G1cqPcF8xM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBj8R4gJCWz3wOEiIiIiIiIiIjih/eBMC/2/cCJ/C6Xy2OKCAQCWLNmDaZNm4aCggI4nU6ce+65GD9+PJ5++mmcOHEipuc7ceIENmzYgJ/85CeYMWMGiouLkZOTg+TkZKSmpuK8887DTTfdhF/84hf46quvYnpu6uzvqqoqBAIB0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqVKUOMhYXQBRQU1ODsWPH4u6778bbb7+N+vp6+P1+NDQ0YOfOnXj44YdRXFyMTZs2xeyc8+bNw6xZs/Dzn/8cGzduxGeffYbW1laEQiF0dHTgyJEjeOedd/DjH/8YI0eOxOOPP45IJBKz85udz+dDeXk5fD6f6KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzMyRgSo1qlIHGYtbYEnu8OHDGDt2LI4cOQIAsFgsmDhxIkaOHInjx4/j3XffRUdHBwAgOTkZmzdvxpQpUwZ83ltuuQVvvfUWAGDQoEG45JJLUFBQgPT0dHi9XnzxxReorKxEKBSKvufuu+/G6tWrB3xugFtgERERERERERFR/HAbJPNi3w+cyO9ybXE5CxnmjjvuiC5+FBQUYMOGDbjiiiuiz584cQJz5szBe++9h2AwiNtuuw0HDhxAdnb2gM47adIkTJ8+HTfccAMuvPDCbl/T2NiIH/zgB3j11VcBAC+99BKmT5+Ob3/72wM6NwGapsHv98PhcMBisYhujhSYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUqMqdZCxuAWWxDZt2oQdO3YAAOx2OzZu3Nhl8QPovDpjw4YNGDFiBACgubkZS5cuHfC5f/SjH2HBggU9Ln4AQF5eHl5++eUuV5ysWLFiwOcmwOVy4amnnoLL5RLdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBjcQssid18883R+3r88z//M55//vkeX/vyyy/jzjvvBADk5uaisbERNlt8LgBau3Yt7rrrLgDAOeecE5Mbspt9C6xwOIzjx49j8ODBSEpKEt0cKTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mFnPGai0DZIq/RyvOlTqe1FEfpfLK0Ak1d7ejvfeey/6+J577un19bfeeivS09MBdF4Fsn37dkPbd6rBgwdHf25ra4vbeVWWlJSE/Px8qf9HKt6YmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUqMqdZCxuAAiqQ8//BB+vx8AkJaWhmuuuabX1zudTlx77bXRx1u2bDG0faf67LPPoj8XFhbG7bwqa29vx6pVq9De3i66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHG4gKIpD7//PPoz5dddlmftrO66qqrun2/kY4cOYKnn346+pg3QI8Nm82GwsLCuG1jpgJmZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMzRwaq1KhKHWQsjg5J7du3L/pzQUFBn95zwQUXRH+uqamJeZtO8nq9qK2txdtvv42lS5fi2LFjAIBLLrkEjzzyiGHnNROn04lJkyaJboZUmJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MLHEziOV9KBK1Rr1UqYOMxStAJNXU1BT9OS8vr0/vyc/Pj/7c3Nwcs7a8//77sFgs0X9paWkoLi7Gj370o+jix7Rp0/Dhhx8iIyMjZuc1M7/fj4qKiug2aHR2zMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj9mZo4MVKlRlTrIWFwAkdSpe9ulpKT06T2nvi5ee+Pl5OTg1VdfxVtvvYXs7OyYH9/pdEZv7h4Oh9Ha2gpN0wAAbrcbgUAAANDR0QGPxwMACIVCaG1tjR7D5XIhGAwC6Lx6xev1AgCCwSBcLlf0da2trQiFQgAAj8eDjo4OAEAgEIDb7QYAaJqG1tZWhMNhAJ05+3w+AJ2T8smbwEciEbS2tiISiQDovDn8ycna5/NF+6enmgKBAD7++ONoHSrUZHQ/tbe3Y9euXQgEAsrUpLefAoEAdu/ejePHjytT0+n9FAgEsGvXruhzstbk8/mwa9eu6HOq9RNrYk2siTUZXZPX643+774qNanYT6zJFW33rl27os+pUJOK/TSQmtxuN6qqqtDW1qZMTbL0U2trKz7++OPo/49WoSaj+6mlpQVVVVXo6OhQpqZY/neEA0E40PlzEsJIs/z9i3ejawoEOs9lRwgpf2uDFRGkW/y6++nEiRPYvXs3AoGAtP0UCoVw/PhxVFVVIRAIGDr2vJ522NH5nmSEkYLO9ligoc3tMtUcMdCaROACiKRODlAAsNvtfXqPw+GI/nzygxALQ4cOxQMPPIAHHngA3/ve93DXXXehtLQUNpsNLS0tuP322zFlyhT89a9/jdk5Txo3blz0viLHjx9HWVlZ9EP54osvRm/Avm3bNmzcuBEAcPjwYZSVlUWP8dxzz+HAgQMAgHfeeQfvvPMOAODAgQN47rnnoq8rKyvD4cOHAQAbN27Etm3bAHTe5P3FF18E0DlhlJWV4fjx4wCA3/3ud6ioqAAA7N69Gy+//DKAzkmhrKwsOgm9/PLL2L17NwCgoqICv/vd73qtKSMjAyNGjMDWrVuVqcnofjp06BCCwSAyMjKUqUlvP2VkZOD222/HCy+8oExNp/dTRkYGkpKS8MUXX0hdk6ZpOHHiRPQ/JFTrJ9bEmlgTazK6JpfLhRMnTkSvPlahJhX7iTV11pSRkYETJ05Ev8hQoSYV+2kgNVVXV+O+++7DF198oUxNsvTT1q1bMWLECGRkZChTk9H9tHnzZtx3333w+XzK1BTL/464JvkwrknubPd5VjdmOj6LW037P9sDALjU1ojr7Z3tybb4cJtzT3RxpK/9tGbNGkyePBkZGRnS9tPhw4fxwgsv4L777kNGRoahY6/8T3/EpbZGAMBFSSfwdcd+AECaJYD/Xf28qeaIgdYkhEZSmjZtmgZAA6AtXry4T+/ZtGlT9D3p6ekGt1DTvvrqK23evHnRc+bk5GiffPJJTI69d+9eDYDmdDq19PR0be/evVooFNJaWlq0SCSiaZqmuVwuze/3a5qmaV6vV2tvb9c0TdOCwaDW0tISPVZra6sWCAQ0TdM0j8ejeTweTdM0LRAIaK2trdHXtbS0aMFgUNM0TWtvb9e8Xq+maZrm9/s1l8ulaZqmRSIRraWlRQuFQpqmaVpbW5vW0dGhaZqm+Xw+ze12a5qmaeFwWGtpadHC4bCmaZrmdrs1n8+naZqmdXR0aG1tbZqmaT3WFA6HtaNHj0aPp0JNRvdTR0eHVl9fr4XDYWVq0ttP4XBYa2pq0pqampSp6fR+CofD2qFDh7r0u4w1BYNBra6uLno81fqJNbEm1sSajK7J7/drdXV10eOpUJOK/cSaWqNtqKurix5PhZpU7KeB1OTxeLSWlhbN6/UqU5Ms/eR2u7WjR49q4XBYmZqM7ieXy6W1tLRogUBAmZpi9d8R9U0e7eLFf9AuXvwHrWDxH7URizdolz7ye61g8R+1+iaP4TV9cbRZK1j8R+2ixeu1or+1YfjiN7XiR36v1Z1o19VPzc3N2rFjx7RwOCxtPwWDQa2pqSl6TCPHXk19o3bR4vVaweI/ahcu3qAVLX5DK1j8R61w8Uat+uARU80R/a3p5He5J//t3btXixeLpv3tz0tJKrNnz8brr78OAHjwwQf7tJL2xhtv4NZbbwXQeT+Qo0ePGtrGkxYuXIj/+Z//AdB5I/Q9e/YgKSlpQMesrq7G6NGjo4/37t2L4uLiAR1TJq2trSgrK8PChQsN2VpMRczMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZtZzBrG8CXl/xPL8qvRzvOoQ3fcqEPldLrfAktQ555wT/bmxsbFP72loaIj+nJubG/M29eQXv/gFMjMzAQCff/453n777bidW1WZmZlYuHBhNFc6O2ZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq8fMzNHBqrUqEodZCwugEhq1KhR0Z/r6ur69J76+vroz0VFRTFvU09SU1Mxfvz46OMPPvggbudWldVqRXZ2NqxWfoT7ipmZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzMyRgSo1qlIHGYujQ1KXXHJJ9Oc9e/YgFAqd9T0ff/xxt++Ph5ycnOjPTU1NcT23itra2rB8+XK0tbWJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjKnWQsbgAIqnx48fD4XAAADweDz766KNeX+/3+1FRURF9PGXKFEPbd7pT7zcSz+23VGW321FSUgK73S66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHG4gKIpNLT03HDDTdEH69atarX17/xxhvR1dDc3FxMnDjRyOZ10dTUhJ07d0Yfx/vqExU5HA6MGzcuughGZ8fMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGuNRR02DGyu2H+jx+Ydeq8LSzTXY18CrUBIVF0Ak9r3vfS/686pVq1BdXd3t67xeLx599NHo43vvvRc2m63f521ubu7zayORCL7//e/D7/cD6JyYbrnlln6fmzr5fD6Ul5fD5/OJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjkXVsqWnEd5bvxNRlO7C2or7H1+2qa8Gz5Qdw07Lt+M7yndhacyzmbaGB4QKIxG6++WZMmDABQOcWV7fccgs+/fTTLq9pamrCrFmz8MUXXwDovPpj8eLF3R6vtrYWFosl+q+nq0peeuklXHPNNXjppZfgdrt7bN+nn36KadOmYd26ddHfPfzwwzjnnHP0lEndCIVCqK2t7dO9X6gTMzNHBqrUqEodRESicB4lmXC8qo99LA6z14+ZmSMDVWo0oo4WTwAPvrob81d9hMravv8ROABU1jbjnlV/wcJ1u9HiCcSsTTQwFk3TNNGNoP47fPgwSktLo/fYsFgsuP766zFy5EgcP34c7777LrxeLwDAZrNh8+bNXbbOOlVtbS2GDx8efbxy5UrMmzfvjNctW7YMP/jBD6LHLCoqwqhRo5CTkwOLxYKmpiZ8+umn0UWXk2699VasW7duQFefnFRdXY3Ro0dHH+/duxfFxcUDPi4REREREREREdHpDjV7MWHp1m6f27FoMoblpip9fjP4/Kgb81ZWotHtH/Cx8jIdWD2/FEX5mTFomfxEfpc78G+iSajzzz8fW7Zswe23346qqipomoby8nKUl5d3ed3gwYOxcuXKHhc/9Dh1X71QKIS9e/di7969Pb4+IyMDS5YswcKFC5GUlDTg8xMQDodx/PhxDB48mJn2ETMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqjGUdnx91Y87zFXB1BGPStka3H7NXVOC1BeO4CCIYt8BSQFFREf785z9j9erVmDp1KoYNGwa73Y4hQ4Zg3LhxWLp0KT777DPcfPPNMTnf/fffj3379uGZZ57B3XffjauvvhqDBw9GcnIykpOTcc4552D06NG48847sWrVKhw5cgT/+q//KvWEmmja2tqwYsWK6I3t6eyYmTkyUKVGVeogIhKF8yjJhONVfexjcZi9fszMHBmoUmOs6mjxBDBvZWXMFj9OcnUEMffFSm6HJRi3wCIpmX0LLE3T4Pf74XA4YLFYRDdHCszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZtZzBqK3oIrl+VXp51jV8eCru/HmJ0di2LKuZpYMRdmcKw07vgxEfpfLK0CIJGSxWOB0OqX+H6l4Y2bmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNsahjS02joYsfALCh6gi21DQaeg7qGRdAiCTkdruxbNkyuN1u0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqjEUdy8u/jGGLejnPtvich87EBRAiCTmdTkyaNAlOp1N0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9WNm5shAlRoHWkdNgxuVtc0xblX3Kg82Y1+D3PdckZVNdAOISD+73Y6SkhLRzZAKMzNHBqrUqEodRESicB4lmXC8qo99LA6z14+ZmSMDVWrsbx2Hmr0AgLUVdTFuUe/WVtThp7NGn/2FFFO8AoRIQh0dHdi8eTM6OjpEN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXr/eMjvU7EXhI291++/kF8oqMMO4UaXG/tYxYelWTFi6FWsr6g1qWffWxHnBhTpxAYRIQpFIBK2trYhEIqKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMzRwaq1ChjHZqmiW6C6Vg0pk4Sqq6uxujRf79kbO/evSguLhbYIiIiIiIiIiIidR1q9mLC0q3dPrdj0WQMy02Nc4viS3T9os+vksJH3hJ27r2P34R0h/nuSiHyu1xeAUIkoVAohNraWoRCIdFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNVapSxjkBInqtVVMEFECIJtbe3Y/Xq1WhvbxfdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUYZ67Db+HV8vHELLJISt8AiIiIiIiIiIoofs2/BJLp+0edXicgtsA7+YhosFouw84vCLbCIiIiIiIiIiIiIiAy2Y9Fk7Fg0GVcX5MT1vGMKcky5+CEaF0CIJORyufDkk0/C5XKJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFJjf+sYlpuKYbmpGDs816CWdW/siPiejzpxAYRIQqmpqZg1axZSU3l5Y18xM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpcaB1jGjZGiMW3SW811xXlzPR51sohtARPolJyejqKhIdDOkwszMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaB1pHUX4mSgtzUVnbHMNWda90eC5G5WcYfh46E68AIZKQ1+vF+vXr4fV6RTdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZmaODFSpMRZ13DdpRAxb1LP7rx8Zl/PQmXgFCBERERERERERkQQONXsxYenWbp/bsWgyhuXKvaURUbxNKcrDjCuG4s1Pjhh2jpklQzG5aIhhx6feWTRN00Q3gkiv6upqjB49Ovp47969KC4uFtgiIiIiIiIiIiJjiVwAMfvii+j6RZ9fZS2eAKaWbUej2x/zY+dlOrB54UTkpNljfmyZiPwul1tgEUkoGAyipqYGwWBQdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaY1VHTpodq+eXIislOUYt65SVkozV80tNv/ghGhdAiCSkyl6N8cTMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGmNZR1F+Jl5bMA55mY4YtKzzyo/XFoxDUX5mTI5H/cctsEhK3AKLiIiIiIiIiMyGW2CJI7p+0ec3ixZPAEs2VmNDVf/vCTKzZCiWTC/mlR+nEPldLm+CTkRERERERERERESml5NmR9mcKzGzZCiWb/sSlQeb+/ze0uG5uP/6kbzheYLhFlhEEmptbcXjjz+O1tZW0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqNLKOKUV5eH3BtfjTQxNx17iCHl83piAHD0weiT89NBGvL7iWix8JiFeAEEkoPT0dc+fORXp6uuimSIOZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrx8zMkYEqNcajjlH5Gbh34gisqajr9vlfzS7h9mMJjgsgRBKy2WwoLCwU3QypMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3ELLCIJeTwerFu3Dh6PR3RTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyECVGlWpg4zFBRAiCVmtVmRnZ8Nq5Ue4r5iZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+zMwcGahSoyp1kLG4BRaRhFJSUjB16lTRzZAKMzNHBqrUqEodRESicB4lmXC8qo99LA6z14+ZmSMDVWpUpQ4yFpfHiCQUCARQVVWFQCAguinSYGbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxuICCJGEfD4fysvL4fP5RDdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZmaODFSpUZU6yFgWTdM00Y0g0qu6uhqjR4+OPt67dy+Ki4sFtoiIiIiIiIiIyFiHmr2YsHRrt8/tWDQZw3JTlTx3IhBdv+jzmxmzHziR3+XyChAiCWmaBp/PB65f9h0zM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNValSlDjIWF0CIJORyufDUU0/B5XKJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjKnWQsbgAQiShjIwMLFiwABkZGaKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMzRwaq1KhKHWQsm+gGEJF+SUlJyM/PF90MqTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGPxChAiCbW3t2PVqlVob28X3RRpMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3EBhEhCNpsNhYWFsNl4EVdfMTNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3F0EEnI6XRi0qRJopshFWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq8fMzNHBqrUqEodZCxeAUIkIb/fj4qKCvj9ftFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNValSlDjIWF0CIJBQIBFBVVYVAICC6KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHGsmiapoluBJFe1dXVGD16dPTx3r17UVxcLLBFRERERERERETGOtTsxYSlW7t9bseiyRiWm6rkuROB6PpFn9/MmP3Aifwul1eAEEkoEomgtbUVkUhEdFOkwczMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIQJUaVamDjMUFECIJud1ulJWVwe12i26KNJiZOTJQpUZV6iAiEoXzKMmE41VOh5q9KHzkrW7/HWr2dnkt+1gcZq8fMzNHBqrUqEodZCwugBBJKDMzEwsXLkRmZqbopkiDmZkjA1VqVKUOIiJROI+STDhe1cc+FofZ68fMzJGBKjWqUgcZyya6AUSkn9VqRXZ2tuhmSIWZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9nrx8zMkYEqNapSBxmLV4AQSaitrQ3Lly9HW1ub6KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzMyRgSo1qlIHGYtXgBBJyG63o6SkBHa7XXRTpMHMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2bmyEBvjYeavZiwdGu3z+1YNBnDclNj2bw+M0Nf0cBxAYRIQg6HA+PGjRPdDKkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZiZOTJQpUZV6iBjcQssIgn5fD6Ul5fD5/OJboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX7MzBwZqFKjKnWQsbgAQiShUCiE2tpahEIh0U2RBjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmZkjA1VqVKUOMha3wCKSUHp6OubNmye6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+jEzc2SgSo2q1EHG4hUgRBIKh8NoaGhAOBwW3RRpMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/2YmTkyUKVGVeogY3EBhEhCbW1tWLFiBdra2kQ3RRrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxev0TO7FCzF4WPvNXtv0PN3pidJ5EziBVValSlDjIWt8AiklBWVhYWL14Mh8MhuinSYGbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxuICCJGELBYLnE6n6GZIhZmZIwNValSlDiIiUTiPkkw4XtXHPhbHiOwPNXsxYenWbp/bsWgyhuWmxvR88cbxao4MVKlRlTrIWNwCi0hCbrcby5Ytg9vtFt0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGNxAYRIQk6nE5MmTeIqtw7MzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxeP2ZmjgxUqVGVOshY3AKLSEJ2ux0lJSWimyEVZmaODFSpUZU6iIhE4TxKMuF4VZ8Rfaz6Nkyxws+XfszMHBmoUqMqdZCxeAUIkYQ6OjqwefNmdHR0iG6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+zMwcGahSoyp1kLG4AEIkoUgkgtbWVkQiEdFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXj5mZIwNValSlDjIWt8AiklBaWhrmzJkjuhlSYWbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9voxM3NkoEqNqtRBxuIVIEQSCoVCqK2tRSgUEt0UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mJk5MlClRlXqIGNxAYRIQu3t7Vi9ejXa29tFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj9m1n0GNQ1urNh+oMf3PPRaFZZursG+hrZ4NHHAVOlnVeogY3ELLCIJZWdn47HHHhPdDKkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZhZ1wy21DRiefmXqKxt7vU9u+pasKuuBc+WH0BpYS7unzQSk4uGxKO5/aJKP6tSBxmLCyBEREREREREREREf9PiCeCxN6vx5idHdL+3srYZlauaMbNkKJZML0ZOmt2AFhJRX3ELLCIJuVwuPPnkk3C5XKKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavHzMDPtp/GP/19FK89+nBAR1nQ9URTC3bjpoGd4xaFjuq9LMqdZCxuABCJKHU1FTMmjULqampopsiDWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZq+f2TP7/Kgb976yB9v9hfBpA984p9Htx+wVFQm3CKJKP6tSBxmLCyBEEkpOTkZRURGSk5NFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj8zZ9biCWDeyko0d0RQH8lBGEkxOa6rI4i5L1aixROIyfFiQZV+VqUOMhYXQIgk5PV6sX79eni9XtFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30cW4eavSh85K1u/x1q7poxs9fPzJk99mY1Gt1+OBDE15IPwoFgzI7d6PZjycbqmB1voFTpZ1XqIGNxAYSIiIiIiIiIiIhMa0tNY79ueK7Hhqoj2FLTaOg5iOhMA9/Mjoji7uQeh9R3zMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj+zZra8/Mvoz34k4/3gcGPOs+1LTCnKM+TYeqjSz6rUQcbiFSBEEgoGg6ipqUEwGLvLMVXHzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9TNjZjUNblTWNkcfJyGMC6wtSEI45ueqPNiMfQ1tMT+uXqr0syp1kLG4AEIkIe5xqB8zM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXz0yZHWr24lCzF2sr6rr83mkJ4Wv2WjgtIUPOe/r5RFCln1Wpg4zFLbCIJJSVlYVHHnlEdDOkwszMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PUzU2YTlm7t9vcezYFXfFcadt41FXX46azRhh2/L1TpZ1XqIGNxAYSIiIiIiIiIiPrsULO3xy+PdyyajGG5qXFuEZFcNE2DxWIR3QwiU+AWWEQSam1txeOPP47W1lbRTZEGMzNHBqrUqEodRESicB4lmXC89t+hZi8KH3mr23+HmhNnOxT2sTjMXj9mBqRb/Lgn5SOkW/yGncMTiP39RfRQpZ9VqYOMxQUQIgmlp6dj7ty5SE9PF90UaTAzc2SgSo2q1EFEJArnUZIJx6v62MfiMHv9mBnQoSXjbf/F6NCSDTtHIBQx7Nh9oUo/q1IHGYtbYBFJyGazobCwUHQzpMLMzJGBKjWqUgcRkSicR0kmHK/qYx+Lw+z1Y2ZAGFY0RDINPYfdJvZv0lXpZ1XqIGPxChAiCXk8Hqxbtw4ej0d0U6TBzMyRgSo1qlIHEZEonEdJJhyv6mMfi8Ps9WNmgBNBTLF/ASeChp0jzZ5k2LH7QpV+VqUOMhYXQIgkZLVakZ2dDauVH+G+YmbmyECVGlWpg4hIFM6jJBOOV/Wxj8Vh9vqZKbMdiyZjx6LJuLogp8vvI7CgXbMjAmNuUj6mIEf3DdBrGtxYsf1Aj88/9FoVlm6uwb6Gtj4dT5V+VqUOMha3wCKSUEpKCqZOnSq6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxWH2+pkps2G5qQCAscNzsauuJfr7AGyoDF5g2HnHjsjt82u31DRiefmXqKxt7vV1u+pasKuuBc+WH0BpYS7unzQSk4uG9Ph6VfpZlTrIWFweI5JQIBBAVVUVAoGA6KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhaH2etnxsxmlAzt8tiGMC5MOgEbwsac74rzzvqaFk8AD766G/NXfXTWxY/TVdY2455Vf8HCdbvR4um+H1XpZ1XqIGNxAYRIQj6fD+Xl5fD5fKKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGavnxkzK8rPRGnh36/KsCOMEtsR2A1YACkdnotR+Rm9vubzo25MLduONz85MqBzbag6gqll21HT4D7jOVX6WZU6yFjcAotIQpmZmXjooYdEN0MqzMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj+zZnbfpBGoXNV5pYUXdvzOf7kh57n/+pG9Pv/5UTfmPF8BV0dsbsDe6PZj9ooKvLZgHIryM6O/V6WfVamDjMUrQIgkpGkafD4fNE0T3RRpMDNzZKBKjarUQUQkCudRkgnHq/rYx+Iwe/3MmtmUojzMuOLkVlga7AgBiG0GM0uG9npfjhZPAPNWVsZs8eMkV0cQc1+s7LIdlir9rEodZCwugBBJyOVy4amnnoLL5RLdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/cyc2eMzipGX6UC6JYDvplQh3RK7+0rkZTqwZHpxr6957M1qNLr9MTvnqRrdfizZWB19rEo/q1IHGYsLIEQSysjIwIIFC5CR0fu+kfR3zMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj8zZ5aTZsfq+aWwOVOxwXcpvFpyTI6blZKM1fNLkZNm7/E1W2oaB3zPj7PZUHUEW2oaAajTz6rUQcbiAgiRhJKSkpCfn4+kpCTRTZEGMzNHBqrUqEodRESicB4lmXC8qo99LA6z18/smRXlZ2LdgvFIzshBJAZfm+ZlOs64/0Z3lpd/OeBz9cXybZ3nUaWfVamDjMUFECIJtbe3Y9WqVWhvbxfdFGkwM3NkoEqNqtRBRCQK51GSCcer+tjH4jB7/ZgZcH66Ff+cdwizRucO6DgzS4Zi88KJZ138qGlwo7K2eUDn6qvKg83Y19CmTD+rUgcZyya6AUSkn81mQ2FhIWw2foT7ipmZIwNValSlDiIiUTiPkkw4XtXHPhaH2evHzDozuHDkcNw57krMGOPC8m1fovJg3xcoSofn4v7rR/Z6w/NDzd7oz2sr6gbUXr3WVtThJ1MvVKKfOV6pLzg6iCTkdDoxadIk0c2QCjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9ePmXXNYEqRE1OK8rCvoQ1rK+qwpofFijEFORg7IhczrjgPo/LPfj+KCUu3xrLJuqypqMNPZ41Wop85XqkvuAUWkYT8fj8qKirg9/tFN0UazMwcGahSoyp1EBGJwnmUZMLxqj72sTjMXj9m1n0Go/IzcO/EET2+51ezS/DwTUV9WvxIBD6fT4l+5nilvuACCJGEAoEAqqqqEAgERDdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4zF4/ZmaODFrbO5So0Qx9RQPHLbCIJJSRkYH77rtPdDOkwszMkYEqNapSBxGRKJxHSSYcr+pjH4vD7PVjZubIwJ6SpkSNZugrGjheAUIkoUgkgtbWVkQiEdFNkQYzM0cGqtSoSh1ERKJwHiWZcLyqj30sDrPXr6fMahrcWLH9QI/ve+i1KizdXIN9DW1GN9FwZhg3NiuUqNEMfUUDxwUQIgm53W6UlZXB7XaLboo0mJk5MlClRlXqICIShfMoyYTjVX3sY3GYvX6nZ7alphHfWb4TU5ftwNqK+h7ft6uuBc+WH8BNy7bjO8t3YmvNsXg1OebMMG7CPo8SNZqhr2jguAUWkYQyMzOxcOFCZGZmim6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxmL1+JzMLJznx4Ku78eYnR3Qfo7K2GZWrmjGzZCiWTC9GTprdgJYaJx7jZseiydGfH3qtCrvqWgw71+nGFOQgKytLic8GP+PUF1wAIZKQ1WpFdna26GZIhZmZIwNValSlDiIiUTiPkkw4XtXHPhaH2etntVpxtMOKeSvfR6PbP6Bjbag6goovm7B6fimK8uX5gjoe42ZYbmr057HDc+O6ADJ2RK4ynw1V6iBjcQssIgm1tbVh+fLlaGuTf2/NeGFm5shAlRpVqYOISBTOoyQTjlf1sY/FYfb6ffzFETz//Aq43bHJrNHtx+wVFahpkGeLoniPmxklQ+Nynuj5rjhPmc+GKnWQsbgAQiQhu92OkpIS2O1yXUYqEjMzRwaq1KhKHUREonAeJZlwvKqPfSwOs9enxRPAv7z2KfYFzkEISTE7rqsjiLkvVqLFE4jZMY0U73FTlJ+J0sLcuJyrdHguRuVnKPPZUKUOMha3wCKSkMPhwLhx40Q3QyrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMxen8ferMZXbWF8hbyYH7vR7ceSjdUom3NlzI8dayLGzX2TRqByVbPh57n/+pEA5PtsHGr2YsLSrd0+t2PRZDgcjji3iGTCK0CIJOTz+VBeXg6fzye6KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxWH2fbelphFvfnIEdoRQYvsKdoRifo4NVUewpaYx5seNNRHjZkpRHmZcYexWWDNLhmJy0RAA6nw27Ajh4z9/IH0dZCwugBBJKBQKoba2FqFQ7P+DRFXMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMy+75aXfwkASIKGfGsbkqAZc55tXxpy3FgSNW4en1GMvExjrmTIy3RgyfTi6GNVPhtJ0NDw1SHp6yBjcQssIgmlp6dj3rx5opshFWZmjgxUqVGVOoiIROE8SjLheFUf+1gcZt83NQ1uVNZ2br/UgWRsDhQZdq7Kg83Y19CGUfkZhp1joESNm5w0O1bPL8XsFRVwdQRjdtyslGSsnl+KnLS/3ydDlc9GB5Ix7VtzkJ6eKroplMB4BQiRhMLhMBoaGhAOh0U3RRrMzBwZqFKjKnUQEYnCeZRkwvGqPvaxOMy+d4eavTjU7MXairro76yIINfihRURw867tqIOh5q9hh1/oESOm6L8TLy2YFzMrgTJy3TgtQXjUJSf2eX3qnw2rIig6Xij9HWQsbgAQiShtrY2rFixAm1tbaKbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHGbfuwlLt2LC0q1YW1Ef/V2qJYiZzs+QaondFQinW1NR1+MNrROB6HFTlJ+JzQsnYmbJwO4JMrNkKDYvnHjG4gcgvsZYSbUEsWHdS9LXQcbiFlhEEsrKysLixYvhcBizN6SKmJk5MlClRlXqICIShfMoyYTjVX3sY3FUy76mwd3lao3TPfRaFcYOz8XMkvP6vcVUu2bHyx0lCCCpv82UXiKMm5w0O8rmXImZJUOxfNuXqDzY3Of3lg7Pxf3Xj4ze8Lw7iVBjLLRrdnz33n9BVlaW6KZQAuMCCJGELBYLnE6n6GZIhZmZIwNValSlDiIiUTiPkkw4XtXHPhZHley31DRiefmX0ft09GRXXQt21bXg2fIDKC3Mxf2Tev8SvHsWBEz+dWEijZspRXmYUpSHfQ1tWFtRhzU9LICNKcjB2BG5mHFF3xa/EqnGgbHA4XDCYrGIbgglMG6BRSQht9uNZcuWwe12i26KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxZM++xRPAg6/uxvxVH5118eN0lbXNuGfVX7Bw3W60eAJ9fl8qAvi241Okou/vUU0ijptR+Rm4d+KIHp//1ewSPHxTUZ+v/EnEGvsjFQG8vmqF9HWQsbgAQiQhp9OJSZMmKbJaHx/MzBwZqFKjKnUQEYnCeZRkwvGqPvaxODJn//lRN6aWbcebnxwZ0HE2VB3B1LLtqGno2xfEASShKjTU1FtgyTxu+kqVGgNIwpVjr5O+DjIWF0CIJGS321FSUgK73S66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxZE1+8+PujHn+Qo0uv0xOV6j24/ZKyr6tAgSQhK+CA9CyMQLILKOGz1UqTGEJFx0yWjp6yBjcQGESEIdHR3YvHkzOjo6RDdFGszMHBmoUqMqdRARicJ5lGTC8ao+9rE4Mmbf4glg3spKuDqCMT2uqyOIuS9WdtkOa8eiydixaDKuLsiJ/s6OEEqT62FHKKbnP9WYghzsWDTZsOMPlIzjRi9VarQjhIrtW6Svg4zFBRAiCUUiEbS2tiISiYhuijSYmTkyUKVGVeogIhKF8yjJhONVfexjcWTM/rE3q2N25cfpGt1+LNlYHX08LDcVw3JTMXZ4bvR3VmhItwRghWZIGwBg7IhcDMtNNez4AyXjuNFLlRqt0NDudklfBxnLJroBRKRfWloa5syZI7oZUmFm5shAlRpVqYOISBTOoyQTjlf1sY/FkS37LTWNA77nx9lsqDqCmSVDMaUoL/q7GSVD8Wz5AQCAD8nYErjQ0DbMuOI8Q48/ULKNm/5QpUYfknHjLf+AtLTEXVAj8XgFCJGEQqEQamtrEQoZd0mqapiZOTJQpUZV6iAiEoXzKMlE5vF6qNmLwkfe6vbfoWav6OYlDJn7WHayZb+8/Mv4nGdb1/MU5WeitLDzKpAkRJBvdSMJxvxFfenwXIzKzzDk2LEi27jpD1VqTEIERw/XS18HGYsLIEQSam9vx+rVq9He3i66KdJgZubIQJUaVamDiEgUzqMkE45X9bGPxZEp+5oGNyprm+NyrsqDzdjX0Nbld/dNGgEASLEE8U3HX5Fiie09SE66//qRhhw3lmQaN/2lSo0pliDe/sNr0tdBxuIWWEQSys7OxmOPPSa6GVJhZubIQJUaVamDiEgUzqMkE45X9bGPxZEh+5NXS62tqIvreddW1OGns0ZHH08pysOMK4bizU+OYGXHGEPOObNkKCYXDTHk2LEkw7gZKFVqbNccmP8vDyM7m1tgUc+4AEJERERERERERCTAhKVbhZx3zWkLIADw+Ixi/PlgkyE3Yc/LdGDJ9OKYH5eI6Gy4BRaRhFwuF5588km4XC7RTZEGMzNHBqrUqEodRESicB4lmXC8qo99LA6z752maV0e56TZ8extRfhuym6kWWK3CJKVkozV80uRk2aP2TGNZIZxo0qNaRY/1q74H+nrIGPxChAiCaWmpmLWrFlITeUlfn3FzMyRgSo1qlIHEZEonEdJJgMZr4eavT3+9fiORZMxLJefgUTAOUkcZt87TyCMdEfXrwYvL8xDyzemYcuW4/C0DfzG0nmZDqyeX4qi/MwBHytezDBuVKnRp9kw4cZvSl8HGYsLIEQSSk5ORlFRkehmSIWZmSMDVWpUpQ4iIlE4j5JMOF7Vxz4Wh9n3LhCKAI6uv0tOTsaN116Fqy8PYMnGamyoOtLv488sGYol04ulufLjJDOMG1VqDCMJBSMvQnJysuimUALjFlhEEvJ6vVi/fj28Xq/opkiDmZkjA1VqVKUOIiJROI9SvBxq9qLwkbe6/XfyxsZnw/GqPvaxOMy+d3bbmV8LnszMYQmhbM6VeHHeGJQOz9V13NLhuVg57xqUzblSusUPwBzjRpUaHQhi+/9tkr4OMhavACEiIiIiIiIiIjKZNHvSWV8zpSgPU4rysK+hDWsr6rCmoq7b140pyMHYEbmYccV5GJWfEeumEhH1GxdAiCR0cq9G6jtmZo4MVKlRlTqIiEThPEoy4XhVH/tYHBmy37FoMgDgodeqsKuuJW7nHVOQA4vFcsbve8psVH4G7p04oscFkF/NLlHmvkMyjJuBUqVGP5Ix8evf4D1AqFfcAotIQsFgEDU1NQgGg6KbIg1mZo4MVKlRlTqIiEThPEoy4XhVH/tYHBmyH5abimG5qRirc5upgRo7ovvzyZCZ0cyQgSo1JiGMugP7pa+DjMUFECIJqbJXYzwxM3NkoEqNqtRBRCQK51GSCcer+tjH4siU/YySofE93xXndft7mTIzihkyUKVGpyWEHe++LX0dZCxugUUkoaysLDzyyCOimyEVZmaODFSpUZU6iIhE4TxKMuF4VR/7WByZsi/Kz0RpYS4qa5sNP1fp8Nwe79MhU2ZGMUMGqtTo0Ry4c8GDyMriFljUM14BQkREREREREREJNh9k0bE5Tz3Xz8yLuchIkoEXAAhklBraysef/xxtLa2im6KNJiZOTJQpUZV6iAiEoXzKMmE41V97GNxZMt+SlEeZlxh7FZYM0uGYnLRkB6fly0zI5ghA1VqTLf48eKvfyl9HWQsLoAQSSg9PR1z585Fenq66KZIg5mZIwNValSlDiIiUTiPkkw4XtXHPhZHxuwfn1GMvEyHIcfOy3RgyfTiXl8jY2axZoYMVKmxQ0vGN/9htvR1kLG4AEIkIZvNhsLCQthsvI1PXzEzc2SgSo2q1EFEJArnUZIJx6t8ahrcWLH9QI/PP/RaFZZursG+hjYA7GORZMw+J82O1fNLkZWSHNPjZqUkY/X8UuSk2Xt9nYyZxZoZMlClxjCsOPf8C6Svg4zFBRAiCXk8Hqxbtw4ej0d0U6TBzMyRgSo1qlIHEZEonEdJJhyv8thS04jvLN+Jqct2YG1FfY+v21XXgmfLD+CmZdvxneU78aeqWvaxILJ+voryM/HagnExuxIkL9OB1xaMQ1F+5llfK2tmsWSGDFSp0Ykg3v3jHwyvY1huKmqfvLnbf8NyeQP2RMcFEEUEAgGsWbMG06ZNQ0FBAZxOJ84991yMHz8eTz/9NE6cOBHzc9bW1uK3v/0t7rzzTlxxxRXIyclBcnIycnNzcfnll2PBggXYtm1bzM9LgNVqRXZ2NqxWfoT7ipmZIwNValSlDiIiUTiPkkw4XhNfiyeAB1/djfmrPkJlbbOu91bWNuNf1n2CT44F4e4IGdRC6onMn6+i/ExsXjgRM0sGdk+QmSVDsXnhxD4tfgByZxYrZshAlRojsCA9M0v6OshYvD5IATU1Nbj99ttRVVXV5fcNDQ1oaGjAzp078ctf/hIrV67EtGnTBny+3bt347777kNlZWW3z7e0tKClpQV79uzB888/j0mTJmH16tW44IILBnxu6pSSkoKpU6eKboZUmJk5MlClRlXqICIShfMoyYTjNbF9ftSNeSsr0ej29/sYAdjw6pFcbHn+L1g9v7TPX0TTwMn++cpJs6NszpWYWTIUy7d9icqDfV+AKx2ei/uvH9nrDc+7I3tmsWCGDFSpMQAbxk2cjJSUFNFNoQTG5THJHT58GDfccEN08cNiseD666/H/PnzMX369OgEcOzYMcyaNQtbtmwZ8Dn37dt3xuLHxRdfjG9961u499578Z3vfAfnn39+9Lny8nJce+21+PLLLwd8buoUCARQVVWFQCAguinSYGbmyECVGlWpg4hIFM6jJBOO18T1+VE35jxfMaDFDwCwIYwLk06gye3F7BUVqGlwx6iFdDaqfL6mFOXh9QXX4k8PTcRd4wp6fN2Yghw8MHkk/vTQRLy+4Frdix+AOpkNhBkyUKVGG8LY//le6esgY3EBRHJ33HEHjhw5AgAoKCjA7t27UV5ejhdeeAFvvvkm6uvrccMNNwAAgsEgbrvtNrS2tsbk3BdeeCGefPJJHD58GPv27cPvf/97rFixAq+99hrq6urwwgsvIDW1cx+8I0eO4Lvf/S40TYvJuc3O5/OhvLwcPp9PdFOkwczMkYEqNapSBxGRKJxHSSYcr4mpxRPAvJWVcHUEB3wsO8IosR2BHWG4OoKY+2IlWjz8si4eVPt8jcrPwL0TR/T4/K9ml+Dhm4owKj+j3+dQLbP+MEMGqtRoRxi7//yB9HWQsbgAIrFNmzZhx44dAAC73Y6NGzfiiiuu6PKaQYMGYcOGDRgxovN/IJubm7F06dIBnffcc8/FypUrUVNTg8WLF+O888474zVWqxXz58/H2rVro7+rqKjAO++8M6BzU6fMzEw89NBDyMzkpdN9xczMkYEqNapSBxGRKJxHSSYcr4npsTerB3zlx0le2PE7/+Xwwg4AaHT7sWRjdUyOTb3j50s/ZmaODFSp0Qs7vjNvgfR1kLG4ACKxZ555Jvrz3Llzcdlll3X7urS0NDzxxBPRxytWrEAo1P+br11//fWYN28ekpKSzvraf/iHf0BpaWn08VtvvdXv89LfaZoGn8/HK2p0YGbmyECVGlWpg4hIFM6jJBOO18SzpaYRb35yJIZH1GBHCMDf+3hD1RFsqWmM4TmoO/x86cfMzJGBOjVq8PtVqIOMxAUQSbW3t+O9996LPr7nnnt6ff2tt96K9PR0AJ1XgWzfvt3Q9p3quuuui/5cW1sbt/OqzOVy4amnnoLL5RLdFGkwM3NkoEqNqtRBRCQK51GSCcdr4lleHtv7V6ZbAvhuShXSLV23vVq+jffJNBo/X/oxM3NkoEqN6ZYAXn7+19LXQcbiAoikPvzwQ/j9nZfjpqWl4Zprrun19U6nE9dee230cSxuht5XFosl+nM4HI7beVWWkZGBBQsWICOj//t6mg0zM0cGqtSoSh1ERKJwHiWZcLwmlpoGNyprm2N6TK+WjA2+S+HVkrv8vvJgM/Y1tMX0XNQVP1/6MTNzZKBKjV4tGTPn3C19HWQsLoBI6vPPP4/+fNlll8Fms531PVdddVW37zfanj17oj8PGzYsbudVWVJSEvLz8/u0DRl1YmbmyECVGlWpg4hIFM6jJBOO18RwqNmLQ81erK2oi/mxI7CiWUtFpJuvYNZW1OFQszfm56RO/Hzpx8zMkYEqNUZgxTmD86Svg4zFBRBJ7du3L/pzQUFBn95zwQUXRH+uqamJeZu6U19f3+VqkxtvvDEu51Vde3s7Vq1ahfb2dtFNkQYzM0cGqtSoSh1ERKJwHiWZcLwmhglLt2LC0q1YW1Ef82OnIIip9hqkIHjGc2sq6jBh6daYn5M68fOlHzMzRwZ6aqxpcGPF9gM9Pv/Qa1VYurlGyBVtKQhi0xvrlO4rGrizXzZACampqSn6c15eXp/ek5+fH/25uTm2l/T25F//9V+j215dcMEFmD59elzOqzqbzYbCwsI+XflDnZiZOTJQpUZV6iAiEoXzKMmE41V9YVjQEMlAGJazv5hiip8v/ZiZOTLoS41bahqxvPzLs24LuKuuBbvqWvBs+QGUFubi/kkjMbloSKyb3K0wLMg/b5jSfUUDxytAJHXqymZKSkqf3nPq6+KxMrp69Wr8/ve/jz7+xS9+AYfDEdNzOJ3O6M3dw+EwWltboWkaAMDtdiMQ6LzJXEdHBzweDwAgFAqhtbU1egyXy4VgsPMvcbxeL7zezsuPg8Fgl5sotba2IhQKAQA8Hg86OjoAAIFAAG63GwCgaRpaW1ujiz7t7e3w+XwAAL/fj7a2ztXwSCSC1tZWRCIRAEBbW1v0ni4+ny/aPz3V5HQ6MXbs2Oh5VKjJ6H6yWq246qqr4HQ6lalJbz85nU5MnDgRPp9PmZpO7yen04mrr746eu8hWWuy2+0oKSmB3W5Xsp9YE2tiTazJ6JpsNhtKSkrgdDqVqUnFflKlJjtCcP7tL/uTEEG6xa+rJqfTiZKSkuiXN3pq8vs7a0pGGCnobI8FGtIt/rj0k6/DC0e09jDSTqm9ze2KSz/ZEYpeWWGN5q+/piR0tsGBYI81pVv8SEJnG5wIwo7O+mwIIxUnb3Demb/1b6872baq0HnQYDmjnyx/a6uIsQf0//Mkeuz11k+n1hQOhzF27Fg4nc6Yjb1AoOexF495r8Pr6XHstbldA573QqEQJk2ahOTk5DP6KShw7NU0uLHivepo7aePvYdf2Ymn3v4M+xraDP3viL6OPSPmvViOPb/fj+uuuw5Op/OMfqo/ehwPvrob81d9hM/qjuqa9yprm/G9VR/ioZcr0eIJxOx/c3sae3ZLGFeN7axD1v+OUPG/jXqrSQQugEjq5AAFEP2C7GxOXXw4+UEwykcffYT77rsv+vj222/HHXfcEfPzjBs3Dt/+9rcBAMePH0dZWVn0Q/niiy/is88+AwBs27YNGzduBAAcPnwYZWVl0WM899xzOHCg81K+d955B++88w4A4MCBA3juueeirysrK8Phw4cBABs3bsS2bdsAAJ999hlefPFFAJ0TRllZGY4fPw4A+N3vfoeKigoAwO7du/Hyyy8D6JwUysrKopPQyy+/jN27dwMAKioq8Lvf/a7Xmvx+P9atW4cNGzYoU5PR/fTJJ5/gueeeg9/vV6Ymvf3k9/uxbds2pWo6vZ/8fj9++9vf4i9/+YvUNZ1s68nXqdZPrIk1sSbWZHRNX375ZZfXqVCTiv0Uq5r++Kf3UPjIW5j2+Kt44r+eQeEjb2HUv72JsrIy7Pmi3vCaSpKPYLy9874Rg63tuM3593sg9qWmk/l/+eWXuvupumoXAOCipBP4umM/ACDNEsBtzj3wtLcZ3k+V75fjmuTOvjjP6sZMx2fR1/3v6ufjMvYutTXientne7ItPtzm3AP73xYz9NR0nrXz2NckH+6xptucezDY2vnFz3h7HUqSjwAACpNaMM3Ruc20HWHc5tyDbEvn/2e/3n4Al9kacGlSI4qSjp3RT2mWQL/7aaBjD+j/HCF67PXWT6fWtGHDBqxbtw5+vz8mY+/F1WuwemM5gO7H3g/XfYSlm2uw4rcvGDbvfbDlnR7H3v+ufn7Ac/nrr7+OiooKfPXVV2f0U+2BvwKI/9i759l3MXXZDpzYsx2X2hoBnDn2Lml6H2u21+CmZdvxs//5LV7fvD1aUyz/O6KvY8+IeW//Z505dzf2Ti6O6Pk8bdq0CX6/v0s/bftoD55/fgXe/KRzjPV33qv9vApTy7Zj87adMfnf3N7GXnXVR/D7/fxvI0lqEsGinVymIancfPPN2LRpEwBg8eLFePLJJ8/6nrfffhvTpk0DAKSnp0dX9mLt4MGDGD9+PBoaGgAAl19+OXbs2IHMzMyYnaO6uhqjR4+G0+mEzWZDRUUFioqK0NbWhqysLFgsFrjdbjidTtjtdnR0dCASiSAtLQ2hUAjt7e3Izs4G0LmampqaiuTk5OhKampqKoLBILxeL7KysgB0rqamp6fDZrPB4/HAarUiJSUFgUAAPp8PmZmZ0DQNLpcLGRkZSEpKQnt7O2w2G5xOJ/x+PwKBADIyMhCJROB2u5GZmQmr1Yq2tjbY7XY4HI7oX1ykp6cjHA53W5Pf78eaNWtw6623Ii8vT4majO6npqYmrFu3DnfffTfS09OVqElvPwHA2rVrMX36dAwdOlSJmk7vJ4/Hg5deegmzZ8/GoEGDpK3J5XJh7dq1uPPOO5GVlaVcP6k49lgTa2JNiVVTS0sLXnnlFdx9993ReVX2mlTsp1jVdNTlw43/UwEbwrAjDC/s6Pxr1AD++K9fR+HgDMNqamwP4Yal/wcrNPiQjCREkGIJol1zYMeiychMCp61pra2Nrz00ku44447kJOTo6ufGtoCuLFsJ5IRhg1hdMAOCzSkWQJ464ffQMGgdEP7af9XJ3DLr9+HH8lIQhhOSwgerfMP7zbddxUuPn+woWPvmCeMG5b+H5KgoQPJsCKCVEsQ7ZodOxZNQZYt1OearvrFNoSRFP3L7u5qSrf40aElIwwrnAgiAgsCsHU79rxaMiKwIgVBJCOESY4vsdU/AiEkdeknj2aHBgv2/GRi3MfeQOYIkWOvoS2IG5e+020/7Vg0GRnWQLSmxsZG/P73v8ddd90VbUd/xt6uIx1Ysb0We2obEEISgkiCHaFuxx5gQSoCuPyCQVgwZRTGFWTEdN776+HjuOU3H3Y79jbddzVGDRsyoLm8tbUV69evx5w5cwCgSz+d8EYwZdkHsCN0xth7++GpGJabGrP/fQonOfHYhr3Ysqe2y+cp/LfPXXdj7+TnKQUBhJCEaSXD8G9fH4l0hzUm/x2hZ+wZMe8d84Rww7IPux17m350Ey44J63Pn6evvvoKb775Ju68887oDcTrXCF89/kP4Pd1DHjeO9lP56RY8P/uLMGVI4cO6H9zexp7ORYv5p7fhHl334VIJML/Nkrgmr766iuMHj0aJ+3duxfFxcWIBy6ASGr27Nl4/fXXAQAPPvhgn1bS3njjDdx6660AOu8HcvTo0Zi36+jRo5gwYUJ0dXLEiBF4//33ce6558b0PCcXQE6K54eGiIiIiIgSx6Fmb483kd6xaDKG5aYqeW6eP7bnL3zkrVg1q19qn7xZ1+tVyj6Rz93iCeCxN6ujfw3fHzNLhmLJ9GLkpPVt946zMUP2nx91Y97KSjS6/Wd/8VnkZTqwen4pivIH/ke5Kn/uWjwBTC3bHpPMT5eX6cDmhRMH9BkQnT0NnMjvcrkFlqTOOeec6M+NjY19es/JKzIAIDc3N+Ztampqwte//vXo4se5556Ld999N+aLH3Tmfnx0dszMHBmoUqMqdRARicJ5lGTC8ZoYdiyajB2LJuPqgpyYH/v0+32cakxBDnYsmqzreDUNbqzYfqDH5x96rQpLN9dgX4Mxuz7IZCCfr8+PujG1bPuAFj8AYEPVEUwt246aBveAjhMvouekz4+6Mef5iph9Ed/o9mP2igpd+YvOIB5Or/GxN6sNWfwAOvtgycZqQ45t+du9b1TuKxo4LoBIatSoUdGf6+rq+vSe+vr66M9FRUUxbY/b7cZNN92E6urOCW3QoEF49913MXz48Jiehzqdvh8fnR0zM0cGqtSoSh1ERKJwHiWZcLwmhmG5qRiWm4qxw2P/x4Kn3+/jVGNH5Pb5L5e31DTiO8t3YuqyHVhbUd/j63bVteDZ8gO4adl2fGf5TmytOdbvtsuuv5+vRPgSXhSRc1KLJ4B5Kyvh6gjG9LiujiDmvth5U+6+MMO8fGqNW2oaB7zQdzYbqo5gS03f/oBbjzRLAP+7+nml+4oGjgsgkrrkkkuiP+/ZswehUOis7/n444+7ff9AeTweTJs2Dbt2dd4ELSsrC5s3b8all14as3NQV5mZmVi4cGFM76uiOmZmjgxUqVGVOoiIROE8SjLheE0sM0qGxvyYHs2O//VdBo925vYvM64476zvb/EE8OCruzF/1UeorG3Wde7K2mbcs+ovWLhud5+//FVJfz5fifIlvCgi56REuQrBDPPyqTUuL/8yLudcvi325/Fodtw2916l+4oGjgsgkho/fjwcjs4bEnk8Hnz00Ue9vt7v96OioiL6eMqUKTFph8/nw4wZM/DBBx8A6LwRz1tvvYWrr746Jsen7lmtVmRnZ8Nq5Ue4r5iZOTJQpUZV6iAiEoXzKMmE4zWxFOVnorQwtleBaLCgXXNAg6XL70uH52JUfkav7zXrNkyx0p/PV6J8CS+KqDkpka5CMMO8fLLGvx5r172w2l+VB5tjvjWfBgsyMrOU7isaOI4OSaWnp+OGG26IPl61alWvr3/jjTfQ1tY5yeTm5mLixIkDbkMwGMStt96KLVu2AAAcDgc2bNiA6667bsDHpt61tbVh+fLl0T6ls2Nm5shAlRpVqYOISBTOoyQTjtfEc9+kETE9XgoCmOGoRgq6/uX//deP7PV9Zt6GKVb0fr4S6Ut4UUTNSYl0FYIZ5uV99cfw62eexdodNXE979qKOhxq9sbseCkIYP2rq5TuKxo4LoBI7Hvf+17051WrVkXvv3E6r9eLRx99NPr43nvvhc1mG9C5w+Ew7rjjDmzatAkAYLPZ8Prrr+PGG28c0HGpb+x2O0pKSmC3n3kJNXWPmZkjA1VqVKUOIiJROI+STDheE8+UojzMuCJ2W2GFkIQvQoMQQlL0dzNLhmJy0ZAe32P2bZhiRe/nK5G+hBdFxJxU0+BOqKsQzDAv3/JsBd4+4sRruxriet41FXWYsHRrzI4XQhIuumS00n1FA8cFEIndfPPNmDBhAoDOLa5uueUWfPrpp11e09TUhFmzZuGLL74A0Hn1x+LFi7s9Xm1tLSwWS/RfT1eVaJqGf/zHf8Tvfvc7AJ2Xza1ZswYzZsyIUWV0Ng6HA+PGjYtug0Znx8zMkYEqNapSBxGRKJxHSSYcr4np8RnFyMuMTZ8EkYTPwnkI/m0BJC/TgSXTi3t9j9m3YYoVPZ+vRPsSXpR4zkmHmr041OzF2oo6w891qrNdhWCGefn0eUlWQSShuGSM0n1FAzewywBIuFdeeQWlpaU4evQoamtrUVJSguuvvx4jR47E8ePH8e6778Lr7ZzUT16lkZ2dPaBzPvfcc1i9enX08ciRI/H+++/j/fff79P7f/Ob3wzo/NR575WKigqMGzcOTqdTdHOkwMzMkYEqNapSBxGRKJxHSSYcr4kpJ82O1fNLMXtFxYCvwrAjhEttjfgslIeUlBSsnl+KnLSe/1o5XtswzSwZiilFeYaeR7S+fL5OfhEu4kv4eyeOwLDc1Lie92ziOSfF8koAPdZU1GFNRR1qn7y52+fNMC+fOi8FJP562I4QPv7zBxg8eYKyfUUDJ+8IJwDA+eefjy1btuD2229HVVUVNE1DeXk5ysvLu7xu8ODBWLlyZZf7hvTXsWPHujzev38/9u/f3+f3cwFk4EKhEGprazFmzBjRTZEGMzNHBqrUqEodRESicB4lmXC8Jq6i/Ey8tmAc5r5YOaCrMZKgId/ahqaM8/HbfxyHovzMXl8fz22YVF8A6cvnK1G/hBeFc5I5Mjg5L+1Dz1vxySAJGhq+OoRQKCS6KZTAuACigKKiIvz5z3/GunXr8Oqrr6K6uhqNjY3Izs7GiBEj8K1vfQv33HMPBg0aJLqpFCPp6emYN2+e6GZIhZmZIwNValSlDiIiUTiPkkw4XhNbUX4mNi+ciCUbq7Ghqn9XZXQgGY5Lp+DN6cW9XvkBiNmGaVR+RlzOJwI/X/oxM3Nk0IFkbA4UiW7GgHUgGdO+NQfp6Yl1JRUlFt4DRBF2ux1333033n77bdTX18Pv96OxsRE7d+7Eww8/3KfFj8LCQmiaFv3X02S/ZMmSLq/T+48GLhwOo6GhAeFwWHRTpMHMzJGBKjWqUgcRkSicR0kmHK+JLyfNjrI5V+LFeWNQOjxX13tLh+fihbuuwr9NOheZzp732hd5LwSZ1DS4sWL7gR6ff+i1KizdXBO9vwY/X/oxM3NkYEUEuRYvrIiIbsqAWBFB0/FGpfuKBo4LIEQSamtrw4oVK9DWlpg3TUtEzMwcGahSoyp1EBGJwnmUZMLxKo8pRXl4fcG1+NNDE3HXuIIeXzemIAcPTB6JPz00Ea8vuBZXn5dy1j6esHQrJizdirUV9UY0vUdrJFkA2VLTiO8s34mpy3b0mtGuuhY8W34ANy3bju8s34l3qg7y86UT5yRzZPDH+8ZgpvMzlJ4f3ysnxhTkYMeiyTE7XqoliA3rXlK6r2jguAUWkYSysrKwePFiOBwO0U2RBjMzRwaq1KhKHUREonAeJZlwvMpnVH4G7p04osfFg1/NLulyY+tE72NN02CxWEQ3o1stngAee7O6XzeFr6xtRmVtE2Zd9k1EbCkGtE5NiT5e48EMGVxSkI/FixejbOtBVByOz32HAGDsiNwu8+NAtWt2fPfef0FWVlbMjknq4RUgRBKyWCxwOp0J+x+piYiZmSMDVWpUpQ4iIlE4j5JMOF7Vl+h97Akk5tYxnx91Y2rZ9n4tfvydBev3HMc3/2cHahrcMWubyuI5Xncsmowdiybj6oIcw891qrNdhZDon9lYOFnjzCvPi+t5Z1wR6/NZ4HCo3Vc0cFwAIZKQ2+3GsmXL4HbzP+D6ipmZIwNValSlDiIiUTiPkkw4XtWX6H0cCCXePQA+P+rGnOcr0Oj2D+g4qQjg245P0eZuw+wVFd0ugiTql/CixHO8DstNxbDcVIzVeW+dgTrbVQiJ/pmNhZM1Dk0FSgvjk3/p8FyMys+I6TFTEcDrq1Yo3Vc0cFwAIZKQ0+nEpEmT4HQ6RTdFGszMHBmoUqMqdRARicJ5lGTC8aq+RO9juy2xvhpq8QQwb2UlXB3BAR8rgCRUhYYigCS4OoKY+2IlWjyBLq9J1C/hRRExXmeUDI3buYCzX4WQ6J/ZWDi1xvsmjYjLOe+/fmTMjxlAEq4ce53SfUUDx3uAEEnIbrejpKREdDOkwszMkYEqNapSBxGRKJxH4+tQsxcTlm7t9rkdiyYn5Bd8iYTjVX2J3sdp9iRdr69pcGNtLzdPf+i1KowdnouZJef166+9H3uzesBXfpwUQhK+CA+KPm50+7FkYzXK5lx5xmtnlAzFs+UHYnLevoj9VkCxIWK8FuVnorQwF5W1zYafqy9XIST6ZzYWTq1xSlEeZlwxdIDbzfVuZslQTC4aEvPjhpCEiy4ZDbvdHvNjkzoSa5mfiPqko6MDmzdvRkdHh+imSIOZmSMDVWpUpQ4iIlE4j5JMOF77p6bBjRXbe/6y+qHXqrB0cw32NbTFsVXd60sfi9yGqa9752+pacR3lu/E1GU7sLaivsfX7aprwbPlB3DTsu34zvKd2FpzrM/t2VLTGNMvYe0IoTS5HnaEor/bUHUEW2oaz3jtyS/h48GIrYBiRdSclEhXIZhhXj69xsdnFCMv05ibvudlOrBkerEhx7YjhIrtW5TuKxo4LoAQSSgSiaC1tRWRSOLt1ZqomJk5MlClRlXqICIShfMoyYTjVZ94fAkfa33pY5HbMJ1NiyeAB1/djfmrPtL9F/qVtc24Z9VfsHDd7jO2nurO8vIvdR3/bKzQkG4JwAqt63m2dX+eRPoSXhRRc9LJqxCM1NerEMwwL59eY06aHavnlyIrJTmm58lKScbq+aXISTPmCg0rNLS7XUr3FQ0cF0CIJJSWloY5c+YgLS1NdFOkwczMkYEqNapSBxGRKJxHSSYcr30Tzy/hY01PHyfavRA+P+rG1LLtA74qY0PVEUwt297tTchPqmlwx3wLJB+SsSVwIXzo+qVu5cHmbq8OSqQv4UUROSclylUIZpiXu6uxKD8Try0YF7M+yMt04LUF41CUnxmT43XHh2TceMs/KN1XNHBcACGSUCgUQm1tLUKh0NlfTACYGWCODFSpUZU6iIhE4TxKMuF4Pbt4fglvBD19nEjbMH1+1I05z1fE7H4cjW4/Zq+oOCP/Q81eHGr29npfkf5KQgT5VjeScOZfh6+tqMOhZu8Zv0+UL+FFETknJcpVCGaYl3uqsSg/E5sXTsTMAS7GziwZis0LJxq6+AF0fsaPHq5Xuq9o4LgAQiSh9vZ2rF69Gu3t7aKbIg1mZo4MVKlRlTqIiEThPEoy4XjtXby+hDeS3j5OhG2YWjwBzFtZCVdHMKbndHUEMffFyi5X4kxYuhUTlm7tdUuz/kqxBPFNx1+RYjmzjjUVdZiwdOsZv0+UL+FFET0nJcJVCKIziIfeasxJs6NszpV4cd4YlOrclq90eC5WzrsGZXOujMtYT7EE8fYfXlO6r2jgbKIbQET6ZWdn47HHHhPdDKkwM3NkoEqNqtRBRCQK51GSCcdrz4z+En7zwolx+YJObx+f3IYpljcDP93ZtmF67M3qmC06na7R7ceSjdUom3OlIcc/VbvmwMqOMbrfd/JL+LkvVsYkh7xMB1bPLzX8r+FjIRHmpJNXISzZWI0NVf3/HMwsGYol04t1f84TIQOj9aXGKUV5mFKUh30NbVhbUYc1PVylNaYgB2NH5GLGFef1elWZEdo1B+b/y8PIzk6N63lJLrwChIiIiIiIiIgSTjy+hE9UIrdh2lLTaOjiC9C5HdmWmkZDzzFQsm0FpBqZrkJQ3aj8DNw7secr0341uwQP31QU98UPor7iAgiRhFwuF5588km4XC7RTZEGMzNHBqrUqEodRESicB4lmXC8dk+lL+H708cit2FaXv5lTM/Z43m2GX+eNIsfdzh3I83Sv4U0M34Jn2hz0pSiPLy+4Fr86aGJuGtcQY+vG1OQgwcmj8SfHpqI1xdcO6AbzSdaBkZQpcY0ix9rV/yP9HWQsbgFFpGEUlNTMWvWLKSm8hK/vmJm5shAlRpVqYOISBTOoyQTjtfuxfNL+ClFeYaeo799LGIbppoGNyprmwd8rr6oPNiMfQ1thp7Dp9nwfqAQPm1gX3/JsBVQrCTqnHTyKoSesv/V7BIMy41NmxM1g1hSpUafZsOEG78pfR1kLC6AEEkoOTkZRUVFopshFWZmjgxUqVGVOoiIROE8SjLheD2TiC/hjfyyeiB9HI97IRxq9kZ/XtvDl8tGMfp8YSShPpITs+PF80t4UTgnmSMDVWoMIwkFIy9CcnJsr5YjtXALLCIJeb1erF+/Hl6v9+wvJgDMDDBHBqrUqEodRESicB4lmXC8djrU7I3+U+1L+IH2sdHbME1YujX6b21Ffb/a2F9rKuqwY9Fk7Fg0GVcXxG6h4iQHgvha8kE4EDzjuTEFOdixaHLMzyk7zknmyECVGh0IYvv/bZK+DjIWrwAhIiIiIiIiIqEmLN0q7NxrKurw01mjhZ2/r1Tdhun8nBRYLBaMHZ6LXXUtcTvv2BG50l+tQUREZ8cFECIJndyrkfqOmZkjA1VqVKUOIiJROI+STDheE4OmabBYLIYcO9Z9rNo2TJ5AGOkOG2aUDMWz5Qdiemw/kvF+cHi3z8244ryYnksVnJPMkYEqNfqRjIlf/wbvAUK94hZYRBIKBoOoqalBMHjmZbzUPWZmjgxUqVGVOoiIROE8SjLheE0MnkDYsGOzj3sXCEUAdN7vpLRQ3xZfZ5OEMC6wtiAJXfu3dHiuFFfHiMDxao4MVKkxCWHUHdgvfR1kLC6AEEmoX3s1ttQBS7K6/9cS3z12RVBlf8uBMEMGqtSoSh1ERKJwHiWZcLwmhpNfwhuBfdw7u+3vX03dN2lETI/ttITwNXstnJZQl9/ff/3ImJ5HJRyv5shAlRqdlhB2vPu29HWQsbgFFpGEsrKy8Mgjj4huhlSYmTkyUKVGVeogIhKF8yjJhOM1MZz6JXyssY97l2ZPiv48pSgPM64Yijc/ORKTY3s0B17xXdnldzNLhmJy0ZCYHF9FHK/myECVGj2aA3cueBBZWdwCi3rGBRAiIiIiIiIiMrVTv4Q3mx2LJkd/fui1qrjeiHxMQc4Z9155fEYx/nywCY1uf8zPl5fpwJLpxTE/LhERJS5ugUUkodbWVjz++ONobW0V3RRpMDNzZKBKjarUQUQkCudRkgnHa6cdiyZH/11dkBPXc3f3JXwsJXofD8tNjf4bOzy29+A4m7EjzjxfTpodq+eXIislecDHT7f4cU/KR0i3+JGVkozV80uRk2Yf8HFVlujjNR7MkIEqNaZb/Hjx17+Uvg4yFhdAiCSUnp6OuXPnIj09XXRTpMHMzJGBKjWqUgcRkSicR0kmHK+dEu1L+FiSqY9nlAyN7/muOK/b3xflZ+K1BeOQl+kY0PE7tGS87b8YGenpeG3BOBTlZw7oeGYg03g1ihkyUKXGDi0Z3/yH2dLXQcbiFlhEErLZbCgsLBTdDKkwM3NkoEqNqtRBRCQK51GSCcfrmWaUDMWz5Qfid74evoSPFZn6uCg/E6WFuaisbTb8XKXDczEqP6PXtmxeOBFLNlZjQ1X/7gkShhVjLy/CkunFvPKjj2Qar0bpKYNhuamoffLm+DfIAKr0cxhWnHv+BbDZ+BU39YxXgBBJyOPxYN26dfB4PKKbIg1mZo4MVKlRlTqIiEThPEoy4Xg908kv4ePhbF/Cx4JsfXzfpBFxOc/9148862ty0uwom3MlXpw3BqU6rwwqHZ6LFXOKcS32wY5gf5tpOrKNVyOYIQNVanQiiHf/+Afp6yBjcXmMSEL/n70/j4+iyvfH/1clnc7eWUZMAGMCOBJZNCiGCLI6I4sjMAqIywgyKnBnrnDnXnE+nzszwnjv74fMfJTcuaPgwjIiiqBX4IrgKEQWjQE0AoHACCSsiWKWzt5Jur5/tIkGsnSlq/pUnXo9H488xHR1nfN+VaWrk9N1TkhICOLj4xESwjFMfzEze2QgS42y1EFEJApfR8lKeL62b96YvshbY/xdCP78ET5QVjvG49KTMPmmXtjyZffuuvDHlIxeGJt+taY+jUtPwvGSKqzLLcZrucXtbjc0NQHD+iZi8k290T85FnV1dfi4xDrZm4HVzlcj2CEDWWr0QkGMK87ydZCxOABCZEGRkZGYMGGC/08oLQD2v9rx4+88BqSOAAZPB5IGBN5BE9KcmYTskIEsNcpSBxGRKHwdJSvh+do+M/4RvruseIyXTB6Iz05/i1J3g+77TnKFY/HdA7v13P7JsXh8VN8OB0Cevy8DKYlRrf9vxexFY2b2yECWGj1wIGvUWERGRoruCpkYh8eILMjj8SA/Px8ej6fzDU/sAFZNBF4cDhzoZADk7GfA3ueAF2/zbX/iA307bAJ+ZyYxO2QgS42y1EFEJApfR8lKeL52bMnkgQEvgt2RQP4Ir5UVj3FCtBNr52QiLjJM1/3GRYZh7ZzMoK3HYcXsRWNm9shAlhodaMY/jh2xfB1kLA6AEFlQfX09cnJyUF9f3/4GtWXApl8C62cAZz7RtvMznwDrpwNvP+rbjyS6zMwG7JCBLDXKUgcRkSh8HSUr4fnaMVn+CG/VY5ye7MKGuVm6DUIlucKxYW4W0pNduuzPH1bNXiRmZo8MZKnRiWZ88dk+y9dBxuIUWEQW5HK5sHDhwvYfLDkCvD4NqLoYWCOHNwJFe4GH3gaSgvPJKCN1mplN2CEDWWqUpQ4iIlHs9jp6tqwWI5ftavexPYvGtpkOhszHbuerVi1/hJ+1Kk+X6ZiSXOFYOyczqH+Et/IxTk92YfuCUVi8tQCb87s/HdmUjF5YfPfAoA06tbBy9qIwM3tkIEuNtXBixuy5cLn4Xoc6xjtAiCxIVVXU19dDVdW2D5QcAdbcFfjgR4uqi8DqSb41RCyuw8xsxA4ZyFKjLHUQEYnC11GyEp6vXWv5I/yUjF4B7WdKRi9sXzAqqIMfgPWPcUK0E9kzh2DV7KHI7JOo6bmZfRKxevatyJ45JOiDH4D1sxeBmdkjA3lqVNHQIEMdZCQOgBBZUGVlJZ599llUVlZ+/83aMt+dH/UV+jZWXwGsu9fy02G1m5nN2CEDWWqUpQ4iIlH4OkpWwvPVP1b+I7wsx3hcehLemnsbdiwchV9kpXa43dDUBPxqbD/sWDgKb829LSgLzXdEluyDiZnZIwNZaoxRPHj9pb9Yvg4yFqfAIrKg2NhYzJ07F7Gxsd9/c9uT+t35cbmqi8D7i4B7XzFm/0HQbmY2Y4cMZKlRljqIiETh6yhZCc9XbcalJ2FcehKOl1RhXW4xXsstbne7oakJGNY3EZNv6o3+yWKzle0Y90+OxeOj+naY/fP3ZZhm6j3Zsg8GZmaPDGSpsVYNw5SZD1u+DjIWB0CILCg0NBTJycnff+PEDuDIJmMbPbwRGDwduH68se0Y5IrMbMgOGchSoyx1EBGJwtdRshKer91jpT/C8xiLw+y1Y2b2yECWGr0IwY96JCE0NFR0V8jEOAUWkQVVV1djzZo1qK6u9n1j7/LgNLwvOzjtGOCKzGzIDhnIUqMsdRARicLXUbISnq/y4zEWh9lrx8zskYEsNUaiEdveedPydZCxOABCZEEOhwNpaWlwOBy+BcrPfBKchov3AaVHg9OWztpkZlN2yECWGmWpg4hIFL6OkpXwfJUfj7E4zF47ZmaPDGSpsRkKknunWL4OMhbPDiILioiIwJib+gB1pcD+V4Pb+IFXgeFPAAkdL3pnRhERERgzZozobghlhwxkqVGWOoiIROHrKFkJz1f58RiLw+y1Y2b2yECWGj1w4OZhIxARESG6K2RivAOEyIIaGhqQmz0LDdlDfQMSwbT/FSD7xuC2qYOGhgbk5uaioaFBdFeEsUMGstQoSx1ERKLwdZSshOer/HiMxWH22jEze2QgS41haEZB/gHL10HG4gAIkQV5PB7kYyA8CBPdFcvweDzIz8+Hx+MR3RVh7JCBLDXKUgcRkSgiXkfPltUi7bfvtft1tqw2aP0g6+F1X348xuIwe+2YmT0ykKVGB5rxj2NHLF8HGYtTYBFZUGxsLOZhnehuWEpsbCzmzZsnuhtC2SEDWWqUpQ4iIlH4OkpWwvNVfjzG4jB77ZiZPTKwUo2FJW6syy1u97E6OJETkoG6fecxJaM3+ifHBrl3ZAUcACGyIK/XCzdccKEKIVBFd8cSvF4v3G43XC4XQkLsefObHTKQpUZZ6iAiEoWvo2QlPF/lx2MsDrPXjpnZIwMr1LizsBQrck4hr6isw20UqDh+pgSfF5fhhZyTyExLxPwx/TA2/eog9pTMzpxnOBF1yu12I1t5FG5wZNtfbrcb2dnZcLvdorsijB0ykKVGWeogIhKFr6NkJTxf5cdjLA6z146ZmTeDlMQoFC29q92vlMQoTfsya40AUF7jwRNvfIE5aw50OvgBANGKB9MjDiNa8U2BlVdUhkfW7MeCN79AeQ2nxSIfDoAQWZDL5cIC9RW4UCW6K5bhcrmwYMECuFwu0V0Rxg4ZyFKjLHUQEYnC11GyEp6v8uMxFofZa8fM7JGBWWs8dtGNCdm7seXLC35tX6M6sbF+MGpUZ5vvb86/gAnZu1FYYr4BHgo+DoAQWVBISAjiF+xFyIIvgZRhwW08JQtYcCi4beogJCQE8fHxpr21MxjskIEsNcpSBxGRKHwdJSux6vlaWOLGyt0nO3x84YZ8LNteiOMl/NCWVY+xDJi9dszMHhmYscZjF92Y+VIuSt0Nfj9HhYJqNRwqlCseK3U34L6VuRwEIQ6AEFlRVVUVVmx4H1WORCB1RHAbTxsBJKQGt00dVFVVYcWKFaiqsu8vYHbIQJYaZamDiEgUvo6SlVjtfN1ZWIoZKz7FhOV7sC73TIfbHSwuxws5JzF++W7MWPEpdhV+HcRemovVjrFMmL12zMweGZitxvIaD2avzkNlXaOm50XCg8nhBYhE+9NdVdY1YtaqPE6HZXMcACGyIKfTiYyMDDidTmDwtOA2PijI7emkTWY2ZYcMZKlRljqIiETh6yhZiVXOVy1zsl/O7nOyW+UYy4jZa8fM7JGB2Wp8ekuBpjs/WjQhFF81XYUmhHa4Tam7AYu3FgTSPbI4h+gOEJF24eHhyMrK8v1P0kDg2uHAmU+Mbzh1BJA0wPh2DNAmM5uyQway1ChLHUREovB1lKzECufrsYtuzF6d160/Tv3Q5vwLyD31LdbOyUR6srnmnTeSFY6xrJi9dszMHhmYqcadhaV+r/lxuUaE4mhzUpfbbc6/gCkZvTAuvettST68A4TIgurr65GTk4P6+nrfN25fGJyGRwSpHQNckZkN2SEDWWqUpQ4iIlH4OkpW0t3zNVhrcHRnTvbO2HFOdr4micPstWNm9sjATDWuyDnV7ec60YQMx3k40dR1Ox93vx2yNg6AEFlQU1MTioqK0NT03Qv89eONn5pq8HTg+juNbcNAV2RmQ3bIQJYaZamDiEgUvo6SlWg9X4O5Bkd352Tvit3mZOdrkjjMXjtmZo8MzFJjYYlb87SKPxQKFckhVQiF2uW2eafLAv5QAFkTp8AisqCYmBjMnj277Tcn/Qko3gdUXdS/wdiewMRl+u83iNrNzGbskIEsNcpSBxGRKHwdJSvx93wtr/Hg6S0F3ZomJK+oDHlryjAloxcW3z0QCdH+zfne3TnZ/dEyJ3v2zCGG7N9M+JokDrPXjpnZIwPRNZ4tqwUArMstDmg/dQjDdk+639uvyy3G46P6IiUxKqB2yVp4BwiRBTU3N6OkpATNzc3ffzMqEXjobSAiXt/GIuJ9+41K1He/QdZuZjZjhwxkqVGWOoiIROHrKAWDXlNQ+XO+HrvoxoTs3d2eI73F5vwLmJC926/ppwKZk11Lf3YWlhrahhnwNUkcZq8dM7NHBqJrHLlsF0Yu29XpnYz+CIEXiUotQuD1a/vXcosxctmugNok6+EACJEFVVVVYeXKlaiquuyXqaSBwCPbfHds6CG2p29/SQP12Z9AHWZmI3bIQJYaZamDiEgUvo6SkfSegqqr81XUGhyBzMmuhR3mZOdrkjjMXjtmZo8MZKkxSmnElIijiFL0naqR5MIpsIgsKC4uDk899RTCw8OvfDBpIDD/E+D9RcDhjd1vZPB037RXFr/zo0WnmdmEHTKQpUZZ6iAiEoWvo2QEo6ag6ux8NXoNju0LRrU7HVagc7Jr0TIne//k2KC0JwJfk8Rh9tp1lllKYhSKlt4loFfBZYfzRpYaq1UnXq/LgAehortCJmaJO0BUVcU333yDoqIiFBUV4ZtvvoGqdr24DZGsFEVBREQEFEVpf4OoRODeV4AH3gJSR2jbeeoI4IGNvudLMvgB+JGZDdghA1lqlKUOIiJR+DpKejNyCqrOztdgrMHxQ2fLanG2rDbgOdm1CnZ7wcbXJHGYvXbMzB4ZyFOjAg8cAKxeBxnJlAMgBw8exNKlS3HPPfegX79+iIiIQHJyMvr164d+/fohOTkZERER6NevH+655x4sXboUBw8eFN1toqBxu91Yvnw53O4u5u69frxvCqv5nwK3PtrxdilZwMh/9W33yDbg+jv17bAJ+J2ZxOyQgSw1ylIHEZEofB0lPRk9BVVH56uINTj0mpNdq9ckHwDha5I4zF47ZmaPDGSpMQoeTAs/hCh4RHeFTMw0U2AdPXoUq1evxvr161FSUtLmsfbu9mhsbGy9I2Tz5s3493//dyQnJ+OBBx7A7NmzMXCg9dcsIOpIREQExowZg4iICP+ekDQAGP4EsP+V9h+/5yUgIVW/DpqQ5swkZIcMZKlRljqIiETh6yjpJRhTUEV3cL4Gcw2OcelJQWmrM6qqSvBJ5PbxNUkcZq8dM7NHBrLU6EEo8pt6cQos6pTwO0B27tyJ8ePHY/DgwXjuuedQUlICVVXbfHXk8u1KSkrw3HPP4cYbb8T48eOxc+fOIFZCFDxOpxMZGRlwOq+cr5fax8zskYEsNcpSBxGRKHwdJb0EYwqq9s5XEWtwiFbjaRbdBcPwNUkcZq8dM7NHBqJr3LNoLPYsGotbUhMC2k8TQvFV81Vo8nMAZGhqAvYsGhtQm2Q9wgZAPv/8c9xxxx346U9/ig8//LDNYMegQYMwf/58rFy5Ert378bJkydRWVmJxsZGeDweVFZW4quvvsLHH3+MFStWYP78+Rg0aBCA7wdFPvzwQ/z0pz/FHXfcgc8//1xUmUSGqKurw/bt21FXVye6K5bBzOyRgSw1ylIHEZEofB0lPQRrCqodXxa3nq8i1+A4W1Yb1DYv52nyCm3fSHxNEofZa8fM7JGB6BpTEqOQkhiFYX0CW3vWiSZkhp2BE01+bT+sbyJSEqMCapOsR8gUWHPnzsWqVavg9Xpbb3O94447MGPGDEydOhU9evTo9PmxsbGIjY1F3759MXLkyNbvf/PNN3j33XexceNGfPTRR1BVFTk5ORg2bBh++ctfYsWKFUaXRhQUXq8XFRUV8Hrl/SVBb8zMHhnIUqMsdRCRvZwtq8XIZbvafWzPorFB/WWTr6Okh2BNQbVm32lMSfSdryOX5QSlzcu9llssfB0Op0P4BBWG4WuSOMxeO2ZmjwzMUuPkjF54Iedkt58fAhUxigch6HgGoTbt3dS7222RdQl5h/Hyyy+jubkZsbGxWLRoEb766iv8/e9/x2OPPdbl4EdnevTogcceewwffPABTp48iSeffBKxsbFobm7Gyy+/rGMFRGJFR0dj5syZiI6OFt0Vy2Bm9shAlhplqYOISBS+jlKggjkF1adnajBkzF22P1+jnfLO387XJHGYvXbMzB4ZmKXG9GQXMtO6fxdIPcKw03Md6hHW5baZfRLRPzm2222RdQkZAImNjcWSJUtw5swZLF26FH369NG9jbS0NDz77LM4c+YMFi9ejJiYGN3bIBKlqakJRUVFaGry7xY/YmaAPTKQpUZZ6iAiEoWvo9RdIqagCoUXr394AKe/dgetzY7oNSe7VkNTE6RdAB3ga5JIzF47ZmaPDMxU47wxfbv93FB4kRziRii6vpNl/uh+3W6HrE3IAMjJkyfx+9//Hi6Xy/C2XC4X/vCHP+Dkye7fTkVkNtXV1Vi7di2qq6v9f1JCKrC4sv2vhFTjOmsS3cpMMnbIQJYaZamDiEgUvo5Sd41ctgsjl+3CutwzQWszUmlE6MnduPv5D4PWZkf0mpNdq2F9g9tesPE1SRxmrx0zs0cGZqpxXHoSJt/Uq1vPjVQaMTH8BCKVxk63m5LRC2PTr+5WG2R9QtYAueqqq2zRJpFR4uPj8fTTT4vuhqUwM3tkIEuNstRBRCQKX0fJSqrVcKyuGyq6G20EOie75vYkn5Odr0niMHvtmJk9MjBbjUsmD8Rnp79FqbtB0/P8uYYmucKx+O6BgXSPLE7eVcaIiIiIiIiISLNA52TXgnOyExFRQrQTa+dkIi6y67U8tIiLDMPaOZlIiHbqul+yFg6AEFlQZWUlli5disrKStFdsQxmZo8MZKlRljqIiETh6yhZSbTSgAcivkC00iB0DY49i8a2+V4gc7JrYYc52fmaJI6M2ackRqFo6V3tfqUkRgW8fxkz08oOGZixxvRkFzbMzUKSK9zv5/zwGnq5JFc4NszNQnqy8UswkLkJmQKLiAITFRWFqVOnIioq8Dc3dsHM7JGBLDXKUgcRUTCdLavFyGW7AAChaEbvkGvw8v//YzQjFHsWjdXlj0JERqhXHdjrSUO96mg9T4f1ScTB4vKg9WFY38QrfkZa5mTf8uUFw9q1y5zsfG8nDrPXjpnZIwOz1pie7ML2BaOweGsBNud3ff354TX0h6Zk9MLiuwfyzg8CwDtAiCwpLCwM6enpCAvT99ZAmTEze2QgS42y1EFEJEozQnHGm4BmhIruClGX2jtfJ2d0bzHY7upoDY4lkwdq+iSuFnaak53v7cRh9toxM3tkYOYaE6KdyJ45BKtmD0Vmn86nY7z8GprZJxGrZ9+K7JlDOPhBrYQMgISGhhr+5XDw5haSV21tLd59913U1taK7oplMDN7ZCBLjbLUQUQkSjgacXvYaYSjUXRXyGJETEEVjkZMTTiPv//zsNbvmWUNDs7Jrg++txOH2WvHzOyRgRVqHJeehLfm3oYdC0fhF1mp7W7Tcg39p9uvwY6Fo/DW3NtscWchaSNkAERV1db/GvlFRERERERE5K+UxCikJEZhWBefONXbVTHh6J3QdhoSs6zB0Z052TvDOdmJiEiL/smxeHxUx9fEW9MS8etxP+5wMJ9I2BRY/gxQKIoCRVH82p+WbYmszqxzNZoZM7NHBrLUKEsdRESiNCAMexv7oAHmm9aBrCGYU1A1IAzT773niut+yxocRvJ3DY6WOdmnBJjLlIxe2L5glO0GP/jeThxmrx0zs0cGstTYgDCM+ukky9dBxhIyAOL1erv8+q//+i+EhYVBVVUMHz4cK1euxKFDh1BRUYHGxkZUVFTg8OHDeOmll3D77bdDVVU4nU785S9/gdfrRXNzs4jSiIKisbERhYWFaGzktA7+Ymb2yECWGmWpg4hIlFA049qQcoSCvxNQ9wRzCqphaXFQK863e9030xocWuZkv5zd52TneztxmL12zMweGchSYyiaUXzyH5avg4xlykXQ/+M//gMLFixASEgI1q1bh7179+Kxxx7DoEGD4HK5EBoaCpfLhYEDB+LRRx/F7t27sX79eiiKgieeeALPPPOM6BKIDGWFuRrNhpnZIwNZapSlDiIiUSKUJtzuLEKE0iS6K2RhwZqCavatPTu87ptxDQ5/5mQHgKGpCfjV2H6ckx18bycSs9eOmdkjA1lqjFCasOfD9y1fBxnLdCuFf/7551i8eDEA4KWXXsIDDzzg1/NmzpyJ5uZm/OIXv8Af//hHTJw4EUOHDjWwp0TixMXF4be//a3oblgKM7NHBrLUKEsdRESi1KjhWF8/RHQ3KAgKS9xYl1vc4eMLN+RjWJ9ETMnorXlu8JYpqLZ8eSHQbnZoSkYvTLylHybe0vF1v2UNjlmr8lDqbgi4zSRXONbOyQx4GqqWOdlf6yD/5+/LQEoipyQB+N5OJGavHTOzRway1FijhuOhuU8gLo7XG+qY6e4AWbFiBbxeL/r164eHHnpI03MffPBBXHfddfB6vXjppZcM6iERERERERGJtLOwFDNWfIoJy/dgXe6ZDrc7WFyOF3JOYvzy3Zix4lPsKvxaUztmmYKKa3AQERERdY/pBkB2794NRVGQlZXVrednZWVBVVV8/PHHOveMyDwqKiqwZMkSVFRUiO6K/8qLgcVx7X+Vd/ypPb1YMjOd2SEDWWqUpQ4iIlFilAY8EnkAMUrgn5Yncymv8eCJN77AnDUHkFdUpum5eUVleGTNfix48wuU13j8ek4wpqDy97rPNTisi+/txGH22jEze2QgS40xSgNW/eVPlq+DjGW6KbDOnz8PAHA6u/emrOV5Fy4Yd5sykWgxMTGYNWsWYmJiRHfFMpiZPTKQpUZZ6iAiEqVODcP7DdejTtX3j9Yk1rGLbsxeHfg0UJvzLyD31Ld+TwNl9BRUWq/749KTMC49CcdLqrAut7jDKaiGpiZgWN9ETL5J+/RfpC++txOH2WvHzOyRgSw11qlhmPjz+yxfBxnLdHeAhIX5fkk5fPhwt55/5MiRNvshkpHD4UBaWhocDtONYZoWM7NHBrLUKEsdRESiNCMEJV4Xms336w5107GLbsx8KVeXAQgAKHU34L6VuSgscfu1vZFTUHX3ut+yBkdHnr8vA0+OT+fghwnwvZ04zF47ZmaPDGSpsRkh6HnNtZavg4xlut8IrrvuOqiqigMHDiAvL0/Tc/Py8pCXlwdFUdCvXz+DekgkXk1NDd58803U1NSI7oplMDN7ZCBLjbLUQUQkSgQaMc75FSLQKLorpIPyGg9mr85DZZ2+x7OyrhGzVuVpmg7LiCmoeN2XH4+xOMxeO2ZmjwxkqTECjfjwf//H8nWQsUw3APLzn/8cAKCqKmbMmIF//OMffj3vq6++wowZM1r//5577jGkf0RmEBISgvj4eISEmO5H2LSYmT0ykKVGWeogIhLFCwXVqhNeKKK7Qjp4ekuBbnd+XK7U3YDFWws0PWdcehLemnsbdiwchV9kpXa43dDUBPxqbD/sWDgKb829DWPTr253O1735cdjLA6z146Z2SMDWWr0QkGMK87ydZCxTHd2/OpXv0LPnj2hKArOnDmDjIwM/J//839w9OjRdrc/duwY/u///b/IyMjA2bNnAQDJycn41a9+FcxuEwVVZGQkJkyYgMjISNFdsQxmZo8MZKlRljqIiETxwIG8xmvhMd+Sh6TRzsJSbPnS2PUdN+dfwM7CUs3P02sKKl735cdjLA6z146Z2SMDWWr0wIGsUeMsXwcZy3QDIC6XCxs2bEB0dDQURUFdXR2WLVuGwYMHIz4+HoMHD8awYcMwePBgJCQkYNCgQXj22WdRW1sLVVURHR2NDRs2wOXqejE7IqvyeDzIz8+Hx+Pf7frClRYA+7I7fvydx4APlwCl7Q906sFymRnADhnIUqMsdRARieJAM64LvQQHmkV3hQK0IudUcNr5ODjttIfXffnxGIvD7LVjZvbIQJYaHWjGP44dsXwdZCzTDYAAwO23345du3ahf//+AHzTYamqCrfbjaNHj+LAgQM4evQoKisrWx8DgP79+2PXrl24/fbbRXafyHD19fXIyclBfX296K507sQOYNVE4MXhwIFXO97u7GfA3ueAF2/zbX/iA927Ul/yFXLe/Rvq/399gMVxbb/Ki3Vvz4wsc94EQJYaZamDiEgUJ5qR4bgAJwdALK2wxI28orKgtJV3ugzHS6qC0tbleN2XH4+xOMxeO2ZmjwxkqdGJZnzx2T7L10HGMu094bfccgu+/PJLrFmzBq+++ioOHDgAr9fbOtjRIiQkBEOHDsWjjz6Khx9+GE6ns4M9EsnD5XJh4cKForvRsdoyYNuTwJFN2p975hNg/SfA4OnAxGVAlLYFJjviio3GQnQyCGMDpj9vdCBLjbLUQUQkSi2c2NRwo+huUDedLasFAKzLDe6HVNblFuOZqYOC2ibA674d8BiLw+y1Y2b2yECWGmvhxIzZc+FyRYnuCpmYaQdAACAsLAyPPfYYHnvsMVRXV+PQoUP45ptvUF1djZiYGPTo0QM33ngjYmJiRHeVKKhUVUVDQwPCw8OhKCZb3LPkCPD6NKDqYmD7ObwRKNoLPPQ2kDQw4G6pqooGhCMcDbZdDtXU541OZKlRljqIiMRR4UQzPAgFbHvlt66Ry3YJafc1QQMgvO7Lj8dYHGavHTOzRwby1KiioaEeqhpp8TrISKacAqs9MTExGD58OKZMmYIHH3wQU6ZMwfDhwzn4QbZUWVmJZ599FpWVlaK70lbJEWDNXYEPfrSougisnuRbQyRAlVXVeFb5FSph3/WBTHve6EiWGmWpg4hIlBjFgwcj8xGjcD5o0ubyGQeCgdd9+fEYi8PstWNm9shAlhpjFA9ef+kvlq+DjGWZARAi+l5sbCzmzp2L2NhY0V35Xm2Z786P+gp991tfAay717f/AMRGR2Gu+hpiUa1PvyzIlOeNzmSpUZY6iIhEqVXDsLl+AGrVMNFdIYup8QR/3Rhe9+XHYywOs9eOmdkjA1lqrFXDMGXmw5avg4xl6imwiKh9oaGhSE5OFt2NtrY9qd+dH5erugi8vwi495Vu7yI0NBTJ+EbHTlmPKc8bnclSoyx1EBGJ4kUIylTOBU3aeZq8QHhw2+R135pSEqNQtPQuv7blMRaH2WvHzOyRgSw1ehGCH/VIQmhoqOiukInxDhAiC6qursaaNWtQXW2SuxlO7OjegudaHN7oa6ebqmtqsQbTUQ37/jHEdOeNAWSpUZY6iIhEiUQjJjgLEYlG0V0hi3E6gv8rMq/78uMxFofZa8fM7JGBLDVGohHb3nnT8nWQsUx/B8jx48fx4YcfIj8/H5cuXUJVVRW8Xm+Xz1MUBR999FEQekgUfA6HA2lpaXA4TPIjvHd5cNrZlw1cP17780oL4DjwKtJwDg60M63BO48BqSOAwdOBpAGB99OkTHfeGECWGmWpg4hIlGYoKPHGopkLoJNG0c7gf4KU13358RiLw+y1Y2b2yECWGpuhILl3iuXrIGOZ9uw4deoU5s2b161BDFVVoSj8ZYfkFRERgTFjxojuhk9pAXDmk+C0VbwPKD3q/yDFiR2+wZkznyACwJiOtjv7me9r73PAtcOB2/8FuP5OXbpsJqY6bwwiS42y1EFEJIoHDuQ39RbdDeqmPYvGAgAWbsjHweLyoLU7NDVByO+RvO7Lj8dYHGavHTOzRway1OiBAzcPG4GIiAjRXSETM+UUWPn5+bj55pvx0UcfQVXVLr9aXP7/RLJqaGhAbm4uGhoaxHWivNj3tf/V4LZ7wI/2asuATb8E1s9oHZxpgBO5GIIGODt/7plPgPXTgbcfDXjhdbMxxXljMFlqlKUOIiJRwtCMAaGlCGvvzk8yvZTEKKQkRmFYn8Sgtjusb3Dba8Hrvvx4jMVh9toxM3tkIEuNYWhGQf4By9dBxjLdAEhjYyPuueceuN1uqKqKiRMnYsOGDZg6dSoA39RWu3btwpYtW/CXv/wF06dPR1hYGFRVRUxMDFauXIldu3Zh586dYgshMpDH40F+fj48Ho+4TmTf6PvyZ0BCT/u7WAi95Ajw4vAr1iTxIAz5GAgPwvxr5/BG335KC7rZUfMxxXljMFlqlKUOIiJRHGjGdY5L7U99SboqLHFj5e6THT6+cEM+lm0vxPGSKs37npzRK5CuaW/vJjF3DfG6Lz8eY3GYvXbMzB4ZyFKjA834x7Ejlq+DjGW6KbBee+01FBUVQVEU/OIXv8CaNWsAALt3727dZvTo0a3//tWvfoULFy7g8ccfx7Zt2/Dkk09i+/btyMrKCnbXiYImNjYW8+bNE90NcVQVaG96gpIjwJq7gPqKKx6KRQ3mYZ22dqouAqsnAY9sA5IGdq+vJmKH80aWGmWpg4hIlDo4saXB+tduM9tZWIoVOaeQV9T5HbMHi8txsLgcL+ScRGZaIuaP6Yex6Vf71UZ6sguZaYldtqGHzD6J6J8ca3g77eF1X348xuIwe+2YmT0ykKXGOjgx9f7ZiI2NEt0VMjHT3QHyv//7vwB8i/H8+c9/9us5vXr1wpYtWzB58mS43W7MnDkTlZWVRnaTSCiv14uKigp4vV7RXRHDU33l92rLgNentTv4AQBeKKiAC16ti6HWVwDr7pViOiw7nDey1ChLHUREoihQEaM0QAGnx9VbeY0HT7zxBeasOaB5YCKvqAyPrNmPBW9+gfIa/z6pOW9M3+50U7P5o/sFpZ328LovPx5jcZi9dszMHhnIUqMCFVXuSsvXQcYy3QDIF198AUVRkJmZiauuusrv54WEhGDlypVwOp04e/Ys1q5da2AvicRyu93Izs6G2+0W3RUxmtr5hXnbk747NjrgRiyylUfhRjc+2Vd1EXh/kfbnmYwdzhtZapSlDiIiUaIVD6ZHHEa0wukQ9HTsohsTsndjy5cXAtrP5vwLmJC9G4UlXV/nxqUnYfJNxk6FNSWjl993pRiB13358RiLw+y1Y2b2yECWGqMVDzaufcnydZCxTDcAcunSJQDAdddd1+b7oaGhrf+uq6tr97lJSUkYNWoUVFXFpk2b2t2GSAYulwsLFiyAy+US3RUxHJctZH5ixxVrflzOhSosUF+BC9rnnwbgWxPkxI7uPdck7HDeyFKjLHUQEYlSozqxsX4walRn1xuTX45ddGPmS7kodeuzyGipuwH3rcz1axBkyeSBSHKF69Lu5ZJc4Vh8t9jp0njdlx+PsTjMXjtmZo8MZKmxRnVi+qzHLV8HGct0AyAti9ZERbWduy029vtPbX/99dcdPj8tLQ0AcOrUKf07R2QSISEhiI+PR0iI6X6Eg8MZ0/b/9y7v8ikhUBEPN0ICmQpjX3b3n2sCdjhvZKlRljqIiERRoaBaDYeqdepLald5jQezV+ehsq5R1/1W1jVi1qq8LqfDSoh2Yu2cTMRFhunaflxkGNbOyURCtNiBMl735cdjLA6z146Z2SMDWWpUoSDWFWf5OshYpjs7EhISAAA1NTVtvt+jR4/Wf584caLD57cMjrTcSUIko6qqKqxYsQJVVd28m0EPCw75vlKGBbfdlKy2C6CXFgBnPunyaVWIxgo8hCpEd7/t4n1A6dHuP18wU5w3BpOlRlnqICISJRIeTA4vQCQ4BZYent5SoNudH5crdTdg8daCLrdLT3Zhw9ws3e4ESXKFY8PcLKQni//EKK/78uMxFofZa8fM7JGBLDVGwoN331hj+TrIWKYbAPnxj38MVVVx7ty5Nt8fPHhw678/+OCDdp9bX1+P/fv3AwBvfSKpOZ1OZGRkwOkU+Gm1hFTfV+qI4LabNgIoL/7+a/+rfj3NiUZkoABOBPjJxQP+tWdGpjhvDCZLjbLUQUQkShNC8VXTVWhCaNcbU6d2FpYGvOZHVzbnX8DOwtIut0tPdmH7glGYkhHYmiBTMnph+4JRphj8AHjdtwMeY3GYvXbMzB4ZyFJjE0Lx4xsGWb4OMpZDdAcud/PNN2Pfvn0oKGj7KaCsrCzExsaiuroaL7/8Mh599FH079+/zTa///3vcfHiRSiKgiFDhgSz20RBFR4ejqysLNHd8Bk8Ddj7XPDaGzQNyL5R89PC4UEWvgi8/f2vAHf9v8D3I4CpzhuDyFKjLHUQUXCdLavFyGW72n1sz6KxSEmMavcxGTUiFEebk0R3QworcoIztfCKj09hXHrXxywh2onsmUMwJaMXVnx8Cnmny/xuI7NPIuaP7id0wfP28LovPx5jcZi9dszMHhnIUmMjQjEwYyjCw41ZK4zkYLo7QMaNGwfAN5XV0aPfTzUTGRmJX/ziF1BVFVVVVcjMzMQTTzyBl19+GdnZ2bjjjjvw3HPf/xF21qxZQe87UbDU19cjJycH9fX1orsCJA0Erh0enLZSRwBJA7r11HqEIwe3oR46XBTVANYREchU541BZKlRljqIiERxogkZjvNwokl0VyytsMSNvCL/BxgCkXe6DMdL/J++Ylx6Et6aext2LByFX2Sldrjd0NQE/GpsP+xYOApvzb3NdIMfAK/7dsBjLA6z146Z2SMDWWp0ogmff7bP8nWQsUw3ADJ+/HhER0dDVVW88cYbbR575plnkJKSAlVVUV1djb/+9a+YN28efvOb3yAnJ6d1uzvvvBMPPPBAkHtOFDxNTU0oKipCU5NJfqm/fWFw2hnR/XaaEIoiXKPPVBie6sD3IYDpzhsDyFKjLHUQEYkSChXJIVUIhTU/tCDa2bJanC2rxbrc4qC2uy63GGfLajU9p39yLB4f1bfDx5+/LwNPjk9H/+TYQLtnGF735cdjLI4R2ackRqFo6V3tfslwtyXPV3tkIEuNoVBRcv6s5esgY5luCqyIiAh89NFHKC8vb10QvUVCQgL27NmD+++/H59++ukVz1UUBQ8//DBefPHFYHWXSIiYmBjMnj1bdDe+d/1439RURzYZ18bg6cD1d3b76TGoxWxs1KcvTR7ocSNJsJnuvDGALDXKUgcRkSh1CMN2T7roblhWR1OpGe213GK8lluMoqV3CWlfFF735cdjLA6z146Z2SMDWWqsQxgm3TMTMTHWH3wk45huAAQAMjMzO3zs2muvxb59+/Dpp5/io48+woULFxASEoK+ffvirrvuumJdECIZNTc345tvvkGPHj0QGmqSxT0n/Qko3gdUXdR/37E9gYnLAtpFM0LwDX6EHvgWofAG1h+HNRfXMuV5ozNZapSlDiIiUULgRbxSjwo1Al7z3fRO1Aav+/LjMRaH2Wtn5sxa7r4xmpkz0IssNYbAi2+/KUWvuGstXQcZy7K/Ddx222343e9+hxdeeAH//d//jd/85jcc/CDbqKqqwsqVK1FV5f88yYaLSgQeehuIiNd3vxHxvv1GJQa0myrEYKXyC1QhJvA+OXXYhwCmPG90JkuNstRBRCRKlNKIKRFHEaU0iu4KUZd43ZefEcdY9mmY9MKfL+2YmT0y0FqjWV9zopRGbH7zb1IfKwqc6e4A2bJlS+u/J06ciLCwMIG9ITKnuLg4PPXUUwgPN9k8TEkDgUe2Aevu1edOkNievsGPpIFtv7/g0Pf/fucx4OxnXe4qDm48pf4V4WgIrE8pWYCiBLYPQUx73uhIlhplqYOISJRq1YnX6zLg0WPtLyKD8bovPx5jcZi9dszMHhnIUmO16sSDj/8z4uLiRHeFTMx0AyBTp06FoihIT0/H5MmTRXeHyJQURUFERITobrQvaSAw/xPg/UXA4QDW3Bg83TftVXt3fiSkfv/v1BF+DYAoACICHfwAgLQRge9DEFOfNzqRpUZZ6iAiEkeBx3y/6hC1i9d9+fEYi8PstWNm9shAnhoVhIdHQLHoB1UpOEw3BVbLD9/NN98suCdE5uV2u7F8+XK43W7RXWlfVCJw7yvAA2/5Bii0SB0BPLDR93x/pr0aPM2v3boRg+X4JdyBToE1yL/2zMj0540OZKlRljqIiESJggfTwg8hCh7RXSHqEq/78uMxFofZa8fM7JGBLDVGwYO31qy0fB1kLNN9LKpnz54oKiqy/C1YREaKiIjAmDFjzD9af/1431fpUeDAq8D+V9rfLiXLd2fFoGlA0gBtbSQNBK4dDpz5pNPNItCAMfg0sLtAUkdo75+JWOa8CYAsNcpSBxGRKB6EIr+pF6fA6qY9i8YCABZuyMfB4vKgtTs0NQHP35cRtPbMgtd9+fEYi8PstWNm9shAlho9CMWQYSMsXwcZy3R3gAwePBiqquLkyZOiu0JkWk6nExkZGXA6naK74p+kAcDwJzp+/J6XgDv+0P3BhdsXdrmJE43IwFE4EcBiqCO6bsfMLHfedIMsNcpSBxGRKE0IxVfNV6GJAyDdkpIYhZTEKAzr48fduDoa1jfRlos387ovPx5jcZi9dszMHhnIUmMTQvHjGwZZvg4ylukGQO6//34AwCeffIKzZ88K7g2ROdXV1WH79u2oq6sT3RVzuH58l1NT1SEC2zEGdejmpwIGTweuv7N7zzUJO5w3stQoSx1ERKI40YTMsDNwokl0Vyxtckav4LZ3U++gtmcWvO7Lj8dYHGavHTOzRway1OhEE3J377R8HWQs0w2ATJ8+HSNGjEBjYyNmz56NhgYdFi0mkozX60VFRQW8Xq/orpjHpD8BsT07fNgLBRVwwYtuLIwV29O3ILvF2eG8kaVGWeogIhIlBCpiFA9CoIruiqWlJ7uQmRacu0Ay+ySif3JsUNoyG1735cdjLA6z146Z2SMDWWoMgYpqd6Xl6yBjmW4AJCQkBG+99RZuueUW5OTkICsrCx988AFUlb+8ELWIjo7GzJkzER0dLbor5hGVCDz0NhAR3+7D0ajDTGxBNDR+KiAi3rdffxZkNzk7nDey1ChLHUREotQjDDs916EeYaK7YnnzxvQNSjvzR/cLSjtmxOu+/HiMxWH22jEze2QgS431CMNPfvZzy9dBxjLdIuhz5swBAPz4xz/Gl19+iUOHDmHixIlISEhARkYGevTogcjIyC73oygKXn31VaO7SyREU1MTzp07h2uuuQYOh+l+jNuXkAosrjS2jaSBwCPbgHX3AlUX2zzUhFCcQ09cg4twoNm//cX29A1+JA00oLPBZ8nzRiNZapSlDiIiUULhRY+QanzjjUGz+T7zZSnj0pMw+aZe2PLlBcPamJLRC2PTrzZs/2bH6778eIz1lZIYhaKld/m1LbPXjpnZIwNZagyFFxfPnUFP13WWroOMZbrfBtasWYO1a9diw4YNaG72/ZFSVVWUlZVh165deOutt7B27douv9asWSO2ECIDVVdXY+3ataiurhbdFfNJGgjM/8S3ZscPVCMaa5UZqIafnwoYPN23H0kGPwB7nDey1ChLHUREokQqjZgYfgKRSqPorkhhyeSBSHKFG7LvJFc4Ft8tz/ut7uB1X348xuIwe+2YmT0ykKXGSKUR7//PBsvXQcYy5dBYR9NdaZkGS1G6Mc8/kUXEx8fj6aefFt0N84pKBO59xTeIsS8bKN6HeLjxtPpc189NHQGMWGj5Bc/bY4fzRpYaZamDiEiUajUcq+uGiu6GNBKinVg7JxP3rcxFZZ1+g0pxkWFYOycTCdFO3fZpRbzuy4/HWBxmrx0zs0cGstRYrYZjzj8/ifj4KNFdIRMz3QDI6tWrRXeBiGRx/XjfV+lR4MCrwP5X2t8uJQtIGwEMmgYkDQhuH4mIiIgsID3ZhQ1zszBrVR5K3Q0B7y/JFY61czKRnuzSoXdERERERO0z3QDIrFmzRHeByPQqKyvx4osvYv78+YiLixPdHfNLGoDKwXPw4n4n5uM1xKGq7eP3vORbo0RydjhvZKlRljqIiESJVhowJfwoNjcMQI1qzNRNZlFY4sa63OIOH1+4IR/D+iRiSkZv9E+ODait9GQXti8YhcVbC7A5v/trgkzJ6IXFdw+0/Z0fLXjdlx+PsTjMXjtmZo8MZKkxWmnAupX/hX/6J2vXQcYy3QAIEXUtKioKU6dORVQUb/HzV1REBKZiB6JQJ7orwtjhvJGlRlnqICISpV51YK8nDfWqvL/u7CwsxYqcU8grKut0u4PF5ThYXI4Xck4iMy0R88f0C2jB8YRoJ7JnDsGUjF5Y8fEp5J3uvP0fyuyTiPmjA2tfRrzuy4/HWBxmrx0zs0cGstRYrzow8icTLV8HGUve3wiIJBYWFob09HTR3bCUsDAH0nFSdDeEssN5I0uNstRBRCRKM0JxxpsguhuGKK/x4OktBdjypfY7MPKKypC3pkyXOzDGpSdhXHoSjpdUYV1uMV7r4C6UoakJGNY3EZNvCvwOFFnxui8/HmNxmL12zMweGchSYzNCkdrvxwgLCxPdFTKxENEdICLtamtr8e6776K2tlZ0Vyyjtq4e72I8ahEhuivC2OG8kaVGWeogIhIlHI24Pew0wqHfgt1mcOyiGxOyd3dr8OOHNudfwITs3SgscQfcp/7JsXh8VN8OH3/+vgw8OT6dgx+d4HVffjzG4jB77ZiZPTKQpcZwNGL337dZvg4yFu8AISIiIiIiMrljF92Y+VIuKuv0GdQpdTfgvpW52DA3iwuRk2WlJEahaOldorthS8yeiIisQsgAyNSpU7F06dKg3WpVWFiI3/72t3j33XeD0h6R0VrmaiT/RfXqj6mL3xLdDaHscN7IUqMsdRARidKAMOxt7CO6G7opr/Fg9uo83QY/WlTWNWLWqjxsXzCKC5ILxOu+/HiMxWH22jEze2QgS40NCMOon97JNUCoU0KmwNqyZQtuvPFGPPTQQzh06JBh7Xz55Zd44IEHcOONN2Lr1q2GtUMUbI2NjSgsLERjo1zTOhiJmdkjA1lqlKUOIiJRQtGMa0PKEYpm0V3RxdNbClDqbjBk36XuBizeWmDIvsk/vO7Lj8dYHGavHTOzRway1BiKZhSf/Ifl6yBjCRkA6dWrF5qamvDGG29gyJAhGDVqFF577TVUVVUFvO+qqir87W9/w8iRI3HzzTdjw4YNaGpqQu/evXXoOZE5yDJXYzAxM3tkIEuNstRBRCRKhNKE251FiFCaRHclYDsLSwNe86Mrm/MvYGdhqaFtUMd43Zcfj7E4zF47ZmaPDGSpMUJpwp4P37d8HWQsIVNgHT9+HM888wyys7PR0NCAffv2Yd++fXA6nRgzZgzGjRuHkSNHYvDgwYiOju50XzU1NTh06BD27t2LnTt3IicnBx6PBwCgqirCw8OxcOFC/O53vwtGaURBERcXh9/+9reiu2EpzMweGchSoyx1ENnR2bJajFy2q93H9iwai5RE3p4fDDVqONbXDxHdDV2syDkVnHY+PoVx6UlBaYva4nVffjzG4jB77ZiZPTKQpcYaNRwPzX0CcXF8j00dEzIAEh0djaVLl+LXv/41lixZgtdeew0ejwcNDQ344IMP8MEHHwAAFEVBr169cM011+BHP/oRoqKioKoq6urqcOnSJZw7dw4XL16Eqqqt+275t9PpxKxZs/D73/8e11xzjYgyiYiIiIjIBgpL3FiXW9zh4ws35GNYn0RMyeiN/smxmvabV1SmRxe7lHe6DMdLqjT1j4iIiIjI7IRMgdXimmuuwcsvv4yioiL8+7//O3r37g1VVVu/vF4vzp8/j88++wzbtm3Dpk2b8Pbbb2Pbtm3Iy8vDhQsX4PV62zynd+/e+N3vfoeioiKsXLmSgx8kpYqKCixZsgQVFRWiu2IZzMweGchSoyx1EBGJEqM04JHIA4hRjFk3o8XOwlLMWPEpJizfg3W5Zzrc7mBxOV7IOYnxy3djxopPsavw6073e7asFmfLajsdVDHCutxinC3jFBLBxuu+/HiMxWH22jEze2QgS40xSgNW/eVPlq+DjCXkDpDLJScn45lnnsEf//hHfPzxx9i6dSv+/ve/4+jRo/B6vZ0+NyQkBAMGDMBPf/pT3H333Rg9ejQURQlSz4nEiImJwaxZsxATEyO6K5bBzOyRgSw1ylIHEZEodWoY3m+4HnVqmCH7L6/x4OktBd1amyOvqAx5a8owJaMXFt89EAnRziu26WgaNaO9lluM13KLUbT0LiHt2xWv+/LjMRaH2WvHzOyRgSw11qlhmPjz+yxfBxnLFAMgLRRFwZgxYzBmzBgAvvU9jhw5gtOnT6O0tBQ1NTUAfFNoJScno0+fPhg4cGCX64TYgcfjwYYNG/DGG2+goKAApaWlSEhIQJ8+fXDPPfdg9uzZuOqqq3Rts7m5GQUFBdi/fz8OHDiA/fv349ChQ2hsbAQAjB49Gjk5Obq2ST4OhwNpaWmiu2EpzMweGchSoyx1EBGJ0owQlHhdhuz72EU3Zq/OQ6k7sLtLNudfQO6pb7F2TibSk43pK1kDr/vy4zEWh9lrx8zskYEsNTYjBD2vuRYOh6n+xE0mY+qzIzo6GsOGDcOwYcNEd8XUCgsLcf/99yM/P7/N90tKSlBSUoJPP/0Uf/rTn7B69WpMmjRJlzbfffddPPjgg6it5S3yItTU1GDr1q24++67OQDoJ2ZmjwxkqVGWOoiIRIlAI4Y7i/GJJxX10O8ukGMX3Zj5Ui4q6xp12V+puwH3rczFhrlZHASxMV735cdjLA6z146Z2SMDWWqMQCM+/N//wYx7p1q6DjKW0DVAKHDnzp3DHXfc0Tr4oSgKRo8ejTlz5uDuu+9GZGQkAODrr7/G1KlTsXPnTl3araio4OCHQCEhIYiPj0dICH+E/cXM7JGBLDXKUgcRkSheKKhWnfBCv6lxy2s8mL06T7fBjxaVdY2YtSoP5TUeXfdL1sHrvvx4jMVh9toxM3tkIEuNXiiIccVZvg4ylqnvAKGuPfDAA7hwwTf3cGpqKjZv3oybbrqp9fFLly5h5syZ+Oijj9DY2Ijp06fj5MmTiI+P16X9pKQk3Hrrra1fO3bsQHZ2ti77po5FRkZiwoQJorthKczMHhnIUqMsdRARieKBA3mN1+q6z6e3FAQ87VVHSt0NWLy1ANkzhxiyfzI3Xvflx2MsDrPXjpnZIwNZavTAgaxRY1s/AE7UHg6PWdi2bduwZ88eAIDT6cTWrVvbDH4AwFVXXYXNmzejb9++AICysjIsW7Ys4LYnTJiA4uJilJSUYOvWrfjDH/6AiRMn6jawQp3zeDzIz8+Hx8NPCvqLmdkjA1lqlKUOIiJRHGjGdaGX4ECzLvvbWVjarQXPtdicfwE7C0sNbYPMidd9+fEYi8PstWNm9shAlhodaMY/jh2xfB1kLA6AWNhf//rX1n/PmjULgwcPbne76Oho/PGPf2z9/5UrV6KpqSmgtpOTk3Httfp+qo78V19fj5ycHNTX14vuimUwM3tkIEuNstRBRCSKE83IcFyAU6cBkBU5p3TZT5ftfOxrZ8+isdizaCxuSU0ISrsthqYmYM+isUFtk3jdtwMeY3GYvXbMzB4ZyFKjE8344rN9lq+DjMUBEIuqrq7GRx991Pr/jzzySKfb33vvvYiJiQHguwtk9+7dhvaPjOVyubBw4UK4XFws01/MzB4ZyFKjLHUQEYlSCyc2NdyIWjgD3ldhiRt5RWU69KpreafLcLykCimJUUhJjMKwPolBabfFsL6JSEmMCmqbxOu+HfAYi8PstWNm9shAlhpr4cSM2XMtXwcZiwMgFvXJJ5+gocE3B3F0dDRuvfXWTrePiIjAbbfd1vr/ei2GTmKoqor6+nqoqiq6K5bBzOyRgSw1ylIHkQhny2qR9tv32v06W1YrunsUNCqcaALQvdfRs2W1rV/rcov17VoXftje5IxeQW178k29g9oe+fC6Lz8eY3GYvXbMzB4ZyFOjioYGGeogI3EAxKKOHTvW+u/BgwfD4eh6Pfubb7653eeT9VRWVuLZZ59FZWWl6K5YBjOzRway1ChLHUREosQoHjwYmY8YpXvzQY9ctqv1a13uGZ1717nXfjAAkp7sQmZacO4CyeyTiP7JsUFpi9ridV9+PMbiMHvtmJk9MpClxhjFg9df+ovl6yBjcQDEoo4fP97679TUVL+e88M1OwoLC3XvEwVPbGws5s6di9hY/pLqL2ZmjwxkqVGWOoiIRKlVw7C5fgBq1TDRXemWH36Kcd6YvkFpc/7ofkFph67E6778eIzFYfbaMTN7ZCBLjbVqGKbMfNjydZCxOABiUd9++23rv5OSkvx6TnJycuu/y8qCM48xGSM0NBTJyckIDQ0V3RXLYGb2yECWGmWpg4hIFC9CUKZGwWvRX3dqPN8v3j4uPQmTbzJ2KqwpGb0wNv1qQ9ugjvG6Lz8eY3GYvXbMzB4ZyFKjFyH4UY8ky9dBxrLmbwSE6urq1n9HRkb69ZwfbvfD51tZRERE6+Luzc3NqKioaP3EnNvthsfjm/agrq4ONTU1AICmpiZUVFS07qOyshKNjY0AgNraWtTW+uYHb2xsbHMLXUVFBZqamgAANTU1qKurAwB4PB643W4Avk/rVVRUoLnZ90trdXU16uvrAQANDQ2oqqoCAHi9XlRUVMDr9QIAqqqqWtd0qa+vbz0+HdVUXV2NV199FV9//bU0NRl9nMrKyvDKK6+gurpampq0Hqfq6mqsXr0a58+fl6amy49TdXU1XnnlldZBYqvW5Ha78corr7Q+T7bjxJpYk9E1haEZkfD1R4GKGKUByndrQRhdU32dr6ZQNCNaaWjdLkZpCMpxcqIJkfD1JwRexCgNaFkHw+jj1FDvq8mBZkShZeopX/7BOPca6usQ8V3t0WjAXc6jrVlUV7k11xSBxu/WEWm/phD4+hr5g+06O/ci4UEYmrs8TlHwoLq2vs1xWjJ5IHrGhn23nU+00oDQ7/YXjkaEf7e/9s690O/62l5NSa5wPP2zATz3Ajj3nGhqPfdCW2v3v6aW9y8tWWh5jWho6Ph1Lxiv5fV1tR2ee1XuSl6fvqvp0qVLWLNmDb799ltparLKcfr666/x6quvorq6WpqajD5OpaWlWLNmDSorK6WpSetxqqioaP37gSw1XX6cLly4gFWrVqG6utoSNTV2cM29SqnBtnfeRHV1tZTHScaaROAAiEW1nKAA4HQ6/XpOeHh4679bfhCsLisrC9OmTQMAfPPNN8jOzm79oVy1ahWOHj0KAPj444+xdetWAMC5c+eQnZ3duo8XX3wRJ0+eBAB88MEH+OCDDwAAJ0+exIsvvti6XXZ2Ns6dOwcA2Lp1Kz7++GMAwNGjR7Fq1SoAvheM7OxsfPPNNwCATZs2ITc3FwDwxRdf4PXXXwfge1HIzs5ufRF6/fXX8cUXXwAAcnNzsWnTpk5rcjgcUFUVH374oTQ1GX2cTp48iUuXLsHhcEhTk9bj5HA40LNnzzZ/WLd6TZcfJ4fDgYqKita+WrWmuro6nD9/vvW1WrbjxJpYk9E1/Tj0En4a/g8AQLTiwfSIw4j+bi0Io2vK25sDAOgd4saU8KOt202POIxvSi4YfpwGOEox2unrT7xSj+kRh+H87o/kRh+nL/I+BQCkhZZjUrhvulUnmjE94jAqyi51uyZ/j9MXeZ9iuNO3fkZCSC2uDq1FMxQAwLvr12iuabizGBlhFzqsKV7xvR8f7TyJAY5SAJ2fez8N/wd+HHqpy+M0KbwQRV8db3OcEqKdeHZib0yPONza1ynhR9E7xJfXrWHncGuYr9/tnXs9Qqrbrelnkcexdk4mohwqz70Azr2MsAut516PkOo2x8mfmhwOB86fP9/64SYtrxEF+QcBtH/u1VRXdbsmf49T3t6cDs+9jWtf4vXpu5ry8/ORlpaGo0ePSlOTVY7Thx9+CFVV4XA4pKnJ6OP03nvvIS0tDRUVFdLUpPU4ff311zh//nzrersy1HT5cfrb3/4Gl8sFh8NhiZqKTp4AcOU19+6IY0junQKHwyHlcZKxJhEU9YcTzJJl3HXXXdi2bRsA4KmnnsLSpUu7fM7777+PSZMmAQBiYmJaR/b0tHjxYixZsgQAMHr0aOTk5OjeBgAUFBRg0KBBiIiIgMPhQG5uLtLT01FVVYW4uDgoigK3242IiAg4nU7U1dXB6/UiOjoaTU1NqK6uRnx8PADfaGpUVBTCwsJaR1KjoqLQ2NiI2tpaxMXFAfCNpsbExMDhcKCmpgYhISGIjIyEx+NBfX09XC4XVFVFZWUlYmNjERoaiurqajgcDkRERKChoQEejwexsbHwer1wu91wuVwICQlBVVUVnE4nwsPDUV9fj6amJsTExKC5uZk1sSbWxJpYE2tiTRpq+qbWi3HLPoQDzaiDEwpURCse1KhO7F40DvFhzYbWdL68Fj/9y2cIRTMilCbUqL4PoMQoDdj6Lz9Bn6tdhh2nr2uacceyvyMUKuoQhhB4EaU0olp1Ys+icYhzNBl6nC5W1uMn/5ULB5rhRDNq4YTvU/ge/O9vfoq0HrGGnntfXfgWP/uvPahHGELhRaTSiOrv8n9//i24rteP/K7put/tQAQa4YUCDxzt1lSrhsGLEESiEc3fbReG5nbPPRUKIuFBE0LRiFA40dTucQIURMGDL5ZMQnh4+BXH6cvTF/FPG4+j1N2AaKUB9aoDzQht/QR+A8LaPffq1DA0I6RNTb1iHfjv+wbh5ut689wL4NwrrW7CHcv+jhCoV5x7exaNhSu00dDXvZIqD36S/Wm75957/3onUq+KMfS1/B/nL+Fnf9nb7rm3bd7NuP6aHrw+sSbWxJpYE2sKuKZLtV6MW74PTjRdcc19/8kJSEmMslxNMh6nzmo6f/48Bg0ahBZHjhzBwIEDEQwcALGo++67D2+99RYA4IknnvBrJO2dd97BvffeC8C3HsjFixd171ewB0BaBPOHxgwaGhrwxRdfYMiQIW3u7KGOMTN7ZCBLjbLUQSTC2bJajFy2q93H9iwai5TEKGnbt3Ptl7cfhmb8OPQS/tF8FRoRqrn9s2W1rf9euCEfB4vLde9vR4amJmDT/OEdPl5e48HirQXYnH+h221MyeiFxXcPREK0f3eSd8VMxz7Y7evRdiDXfTtnbyV8bycOs9eOmdkjA6vV2NH1JgzN+Mud8Rg7Ypgl6rAzkX/L5RRYFvWjH/2o9d+lpaV+PaekpKT134mJibr3iYLH4/EgPz+/dW496hozs0cGstQoSx1ERKI40IzrHJfgQHPXG7cjJTGq9WtYn+C+bx7Wt/P2EqKdyJ45BKtmD0Wmxr5l9knE6tm3InvmEN0GPyhwvO7Lj8dYHGavHTOzRway1OhAM/5x7Ijl6yBjOUR3gLqnf//+rf8uLi726zlnzpxp/Xd6errufaLgiY2Nxbx580R3w1KYmT0ykKVGWeogIhKlDk5sadDnE2WTM3rhhZyTuuzLr/Zu6u3XduPSkzAuPQnHS6qwLrcYr+W2/zvB0NQEDOubiMk39Ub/5Fg9u0o64XVffjzG4jB77ZiZPTKQpcY6ODH1/tmIjeUdh9Qx090BEhoaGtCXw+FAYmIi+vbti7vuuguLFy/GiRMnRJeluxtuuKH134cPH0ZTU1OXz/n888/bfT5Zj9frRUVFBbxer+iuWAYzs0cGstQoSx1EZB+FJW6s3N3xIMHCDflYtr0Qx0v0X4OuPQpUxCgNUBD4bL/pyS5kpgXnLpDMPomaByn6J8fi8VF9O3z8+fsy8OT4dA5+mBiv+/LjMRaH2WvHzOyRgSw1KlBR5a60fB1kLNMNgLQsSaKqare+Wn6Ai4uLsX37djzzzDO44YYbcM899/g9VZQVDB8+vHVuu5qaGhw4cKDT7RsaGpCbm9v6/+PGjTO0f2Qst9uN7OxsuN1u0V2xDGZmjwxkqVGWOohIfjsLSzFjxaeYsHwP1uWe6XC7g8XleCHnJMYv340ZKz7FrsKvDe1XtOLB9IjDiFb0mQ5h3piOBxj0NH90v6C0Q+bC6778eIzFYfbaMTN7ZCBLjdGKBxvXvmT5OshYphsAAb4fBFEUBYqi+PWcy7e9fGBk8+bNGDp0KM6dO2dIn4MtJiYGd9xxR+v/r1mzptPt33nnHVRV+T5xl5iYiFGjRhnZPTKYy+XCggUL4HK5RHfFMpiZPTKQpUZZ6iAieZXXePDEG19gzpoDyCsq0/TcvKIyPLJmPxa8+QXKa4yZr7lGdWJj/WDUqPqsczEuPQmTb+qly746MiWjF8amX21oG2ROvO7Lj8dYHGavHTOzRway1FijOjF91uOWr4OMZboBEK/XC6/Xi//+7/+G0+mEqqoYO3YsXn31VRw5cgQVFRVoampCZWUlCgoKsHr1atxxxx1QVRXh4eH461//Co/Hg5KSEnzwwQeYM2cOwsLCAADnz5/HtGnTBFeon3/6p39q/feaNWtQUFDQ7na1tbX4wx/+0Pr/jz/+OBwOLv9iZSEhIYiPj0dIiOl+hE2LmdkjA1lqlKUOIpLTsYtuTMjejS1fXghoP5vzL2BC9m4Uluj/iT0VCqrVcKjw78NU/lgyeSCSXOG67e+HklzhWHy3PmuWkPXwui8/HmNxmL12zMweGchSowoFsa44y9dBxjLl2fHMM8/gn//5n+FwOPDOO+/go48+wiOPPIIBAwbA5XIhJCQEsbGxuOGGGzBr1iz8/e9/x7vvvovQ0FD8+te/xtKlS3H11VfjJz/5CV555RXs3r27dSRw//79eO+99wRXqI+77roLI0eOBOCb4upnP/sZDh061Gabb7/9FlOnTsVXX30FwHf3x1NPPdXu/oqKilrvpFEUpcu7SkicqqoqrFixovWuHuoaM7NHBrLUKEsdRCSfYxfdmPlSLkrdDbrsr9TdgPtW5uo+CBIJDyaHFyAS+t1hkhDtxNo5mYiLDNNtnwAQFxmGtXMykRCtz90qZD287suPx1gcZq8dM7NHBrLUGAkP3n1jjeXrIGOZ7jaAAwcOYMmSJQCA1atXY+rUqX49b/LkyVi9ejVmzJiBJUuWYOLEibjlllsAAMOGDcNf/vIXPPzwwwB800HdddddhvQ/2NavX4/MzExcvHgRRUVFyMjIwOjRo9GvXz988803+PDDD1FbWwsAcDgceOuttxAfH69L25MmTcKFC20/+VdSUtL67wMHDiAjI+OK523btg29ehk7hYDsnE4nMjIy4HTyF2V/Cc2svBjIvrH9xxYcAhJSg9INO5w3stQoSx1EJJfyGg9mr85DZV2jrvutrGvErFV52L5glG6DAE0IxVdNV6EJobrsr0V6sgsb5mZh1qo8XQaBklzhWDsnE+nJnLbBznjdlx+PsTjMXjtmZo8MZKmxCaH48Q2DLF8HGct0AyArV66E1+vF9ddfr3m6qmnTpuH666/HP/7xD6xcuRIvvfRS62MPPPAA/vVf/xWXLl3Cp59+qne3hbnmmmuwc+dO3H///cjPz4eqqsjJyUFOTk6b7Xr06NE6XZhejh49iuLi4g4fr6mpwZdffnnF9z0eY+Z6tpPw8HBkZWWJ7oalMDN7ZCBLjbLUQURyeXpLgW53flyu1N2AxVsLkD1ziC77a0QojjYn6bKvy6Unu7B9wSgs3lqAzfndnwZsSkYvLL57IO/8IF73bYDHWBxmrx0zs0cGstTYiFAMzBiK8HBjpiklOZhuCqw9e/ZAURRkZmZ26/mZmZlQVRW7d+9u8/2QkBDcdtttUFUVpaWlenTVNNLT0/HZZ59h7dq1mDBhAlJSUuB0OnH11VcjKysLy5Ytw9GjR6W564WA+vp65OTkoL6+XnRXLIOZ2SMDWWqUpQ4iksfOwtKA1/zoyub8C9hZ2L336YUlbqzcfbL1/51oQobjPJxoAgAs3JCPZdsLcbxEn+kREqKdyJ45BKtmD0Vmn0RNz83sk4jVs29F9swhHPwgALzu2wGPsTjMXjtmZo8MZKnRiSZ8/tk+y9dBxjLdHSDnz58HgG7futTyvJb9/FBSku9TYNXV1d3snXk5nU48/PDDrdN8dUdaWhpUVfV7+6Kiom63RYFpampCUVERhg4dKrorliEss9ICYP+rHT/+zmNA6ghg8HQgaYChXbHDeSNLjbLUQUTyWJFzKjjtfHwK49L9v3NjZ2EpVuScQl5RWZvvh0JFckgVjuNqAMDB4nIcLC7HCzknkZmWiPlj+mFs+tUB93dcehLGpSfheEkV1uUW47Xc9u+OHpqagGF9EzH5pt7onxwbcLskF1735cdjLA6z146Z2SMDWWoMhYqS82fR1NQkuitkYqYbAAkL8y0qWFBQ0K3nHz16tM1+fqi5uRkAdFsDg0iUmJgYzJ49W3Q3LCXomZ3YAexdDpz5pPPtzn7m+9r7HHDtcOD2fwGuv9OQLtnhvJGlRlnqICI5FJa4rxhgMEre6TIcL6nqcpCgvMaDp7cUdHhXSh3CsN2T3n4bRWXIW1Om6xRU/ZNj8fiovh0OgDx/XwZSEqMCbofkxOu+/HiMxWH22jEze2QgS411CMOke2YiJobvs6hjppsCq1+/flBVFfv378fnn3+u6bmff/45PvvsMyiKgr59+17x+MWLFwEAV111lS59JRKlubkZJSUlrYN61LWgZVZbBmz6JbB+RteDH5c78wmwfjrw9qO+/eilvBhYHIfmxQkoWXwdmhcnAIvjfF/lHa/jY0Wy/GzIUgcRWdvZslqcLavFug7+qG+UdbnFOFtW2+Hjxy66MSF7d6dTcoXAi0SlFiHwdrjN5vwLmJC9G4Ul7oD6SxQoXvflx2MsDrPXjpnZIwNZagyBF99+U2r5OshYphsAmTJlCgBAVVXMmDHD72mWiouLMWPGjNYpnKZOnXrFNgcPHoSiKLjmmmv06i6REFVVVVi5ciWqqvSZx9oOgpJZyRHgxeHAkU2B7efwRt9+Srt3J1xHqhCDlcovUIUYXfdrJrL8bMhSBxFZ28hluzBy2S6syz0T1HZfyy3GyGW72n3s2EU3Zr6U2+Vi7FFKI6ZEHEWU0tjpdqXuBty3MpeDICQUr/vy4zEWh9lrx8zskYEsNUYpjdj85t8sXwcZy3QDIL/+9a9b1+o4deoUBg8ejD/84Q84fvx4u9ufOHECTz/9NG688UacPn0aANCjRw/8+te/brPdvn378PXXXwMAsrKyDKyAyHhxcXF46qmnEBcXJ7orlmF4ZiVHgDV3AVUX9dlf1UVg9SRdB0Hi4MZT6l8RB3n/yCPLz4YsdRAR6am8xoPZq/NQWdf5oAYAVKtOvF6XgWq16+mtKusaMWtVHsprPHp0k0gzXvflx2MsDrPXjpnZIwNZaqxWnXjw8X+2fB1kLNMNgMTHx2P9+vWIjIyEoiioqanBf/7nf2LAgAFISEjA4MGDMWzYMAwePBiJiYm44YYb8B//8R+oqqqCqqqIjIzE+vXrr1jnIzs7G4DvzpK7775bQGVE+lEUBREREVAURXRXLMPQzGrLgNenAfUV+u63vgJYd29g02GVFgD7fK9/CoAINKBNAu88Bny4BCg9GkBHzUOWnw1Z6iAi0tPTWwq6vPPjewo8cADw73W01N2AxVv1vfOSyF+87suPx1gcZq8dM7NHBvLUqCA8XIY6yEimGwABgLFjx+LDDz9Ev379APgGLVRVRWVlJY4ePYoDBw7g6NGjqKioaH0MAK677jr8/e9/x7hx467Y5//7f/8Pp0+fxunTpzF06NCg1kOkN7fbjeXLl8PtlveT/HozNLNtT+p358flqi4C7y/S/rwTO4BVE31TaR14FQDgRgyW45dw/3AKrJYF2F+8zbf9iQ906rgYsvxsyFIHEZFedhaWdrrmx+Wi4MG08EOIgv93dWzOv4CdhaXd6R5RQKx83U9JjELR0rva/UpJ5IK0Lax8jK2O2WvHzOyRgSw1RsGDt9astHwdZCyH6A50JCsrC4cPH8bq1auxatUqfP755/B6va2DHS1CQkIwZMgQzJkzB4888ggiIiLa3V9KSkowuk0UFBERERgzZkyH5ztdybDMTuwIfM2PrhzeCAyeDlw/vutta8t8AzLt9CkCDRiDTxGBDj49e+YTYP0nvrYmLgOiEgPsePDJ8rMhSx1kT2fLajtcv2HPorH8gxh1y4qcU5q29yAU+U294EGotnY+PoVx6UmankMUKF735cdjLA6z146Z2SMDWWr0IBRDho0wvo7yYiD7xvYfW3AISEg1tn0KiGkHQAAgPDwc8+bNw7x581BdXY1Dhw7hm2++QXV1NWJiYnDVVVfhxhtvRGxsrOiuEgWV0+lERkaG6G5YimGZ7V2u/z7bsy+76wGQkiO+qbg6uBvFiUZkwI+prg5vBIr2Ag+9DSQN7EZnxZHlZ0OWOoiI9FBY4kZekbbpIJsQiq+ar9LcVt7pMhwvqUL/ZP5+QcHD6778eIzFYfbaMTN7ZCBLjU0IxY9vGASns+t138i+TDkFVntiYmIwfPhwTJkyBQ8++CCmTJmCESNGcPCDbKmurg7bt29HXV2d6K5YhiGZlRb47poIhuJ9na/T4cci7HWIwHaMQR38+GSEAYuwB4MsPxuy1EFE1rZn0VjsWTQWt6QmBLXdoakJ2LNoLM6W1eJsWS3W5RZr3ocTTcgMOwMnmjQ/tzvtEQUikOs+p6CyBr63E4fZa8fM7JGBLDU60YTc3TstXwcZyzIDIET0Pa/Xi4qKCni9XtFdsQxdMysv9n3tfzXwfWlx4FVfu5fzcxF2LxRUwAWvnwvC6rIIe5DJ8rMhSx1EZG0piVFISYzCsD7BnRJxWN9EpCRGYeSyXRi5bBfW5Z7RvI8QqIhRPAiB2vXGl3mNAyAUZLzuy4/HWBxmrx0zs0cGstQYAhXV7krL10HGMvUUWETUvujoaMycOVN0NyxF18w6mvfRaPtf8X0trmz7fT8XYY9GHWZii7Y2WxZhv/cVbc8TRJafDVnqICI5TM7ohRdyTgavvZt6B7yPeoRhp+e6bj9fVVUoip8fGCAKEK/78uMxFofZa8fM7JGB1WpsueORqDs4AEJkQU1NTTh37hyuueYaOBz8MfaHtJlpWIS9CaE4h564BhfhQLP/bWhZhF0wWY6zLHUQkRzSk13ITEvUvA5Hd2T2SdRl/Y1QeNEjpBrfeGPQ3I2b3ms8zYgJ5+svdU2PP8jwui8/HmNxmL12zMweGchSoyx1kLFMPwXW8ePH8de//hWPPfYYfv7zn+MnP/kJxo0b1+XXHXfcIbrrRIaprq7G2rVrUV1dLborliFtZhoWYa9GNNYqM1CNaO3t7MvW/hwBZDnOstRBRPKYN6ZvUNqZP7qfLvuJVBoxMfwEIpXGbj3f08RpFCh4eN2XH4+xOMxeO2ZmjwxkqVGWOshYph0aO3XqFObNm4ePPvpI83N5yzrJLj4+Hk8//bTobliKlJlpXIQ9Hm48rT7XvbZaFmFPGtC95weJLMdZljqISB7j0pMw+aZe2PLlBcPamJLRC2PTr9ZlX9VqOFbXDe32850O039OjCTC6778eIzFYfbaMTN7ZCBLjbLUQcYy5Tv7/Px83Hzzzfjoo4+gqmqXXy0u/38iIimZbRF2IiKyhSWTByLJFW7IvpNc4Vh890BD9t0d0c5Q0V0gIiIiIiIdmG4ApLGxEffccw/cbjdUVcXEiROxYcMGTJ06FQCgKAp27dqFLVu24C9/+QumT5+OsLAwqKqKmJgYrFy5Ert27cLOnTvFFkJkoMrKSixduhSVlZVdb0wAJMss+0bf1wFtAyCViMVS/BMq0c251fe/Im4BeD/JcpxlqYOI5JIQ7cTaOZmIiwzTdb9xkWFYOycTCdHONt/fs2gs9iwai1tSEzTvM1ppwAMRXyBaadD83KGpCbybnIKK13358RiLw+y1Y2b2yECWGmWpg4xlugGQ1157DUVFRVAUBQ8//DDee+89TJ8+Hb17927dZvTo0fjZz36GX/3qV9iwYQNOnTqFSZMmobq6Gk8++STCw8MxevRogVUQGSsqKgpTp05FVFSU6K5Yhq6ZLTjk+0oZFvi+tEjJ8rXbTVGow1TsQBTqdOyUucjysyFLHUQkn/RkFzbMzdLtTpAkVzg2zM1CerLrisdSEqOQkhiFYX0SNe+3XnVgrycN9ar2GX+H9dXeHlEgeN2XH4+xOMxeO2ZmjwxkqVGWOshYphsA+d///V8AgMPhwJ///Ge/ntOrVy9s2bIFkydPhtvtxsyZMznyR1ILCwtDeno6wsL0/QSmzHTNLCHV95U6IvB9aZE2wtduN4WhCek4iTA06dgpc5HlZ0OWOohITunJLmxfMApTMnoFtJ8pGb2wfcGodgc/fmhyN9ppRijOeBPQDO1TWU2+qXfXGxHpiNd9+fEYi8PstWNm9shAlhplqYOMZboBkC+++AKKoiAzMxNXXXWV388LCQnBypUr4XQ6cfbsWaxdu9bAXhKJVVtbi3fffRe1tbWiu2IZhmQ2eJp++/LHoMDaq0UE3sV41CJCpw6Zjyw/G7LUQUTySoh2InvmEKyaPRSZGu/QyOyTiNWzb0X2zCFXTHvVnvRkFzLTtLURjkbcHnYa4WjU3Lf+yd2cKpKom3jdlx+PsTjMXjtmZo8MZKlRljrIWKYbALl06RIA4Lrrrmvz/dDQ7z+9VVfX/vQtSUlJGDVqFFRVxaZNm4zrJBERACQNBK4dHpy2UkcASQOC0xYREZGfxqUn4a25t2HHwlH4RVbHdykOTU3Ar8b2w46Fo/DW3NswNv1qTe3MG9M30K76Zf7ofkFph4iIiIiIgkP7pLgG83g8AHDF3G2xsd9/Euvrr79Gamr7v2ClpaUBAE6dOmVMB4lMoGWOQ/KfYZndvhBY/4n++73ciIUB7yIK9ZiKHYH3xcRk+dmQpQ4iso/+ybF4fFRfvJZb3O7jz9+XgZTE7s/NPC49CZNv6oUtX17wa/sGhGFvYx9NbUzJ6KV5YIZID7zuy4/HWBxmrx0zs0cGstQoSx1kLNPdAZKQkAAAqKmpafP9Hj16tP77xIkTHT7/66+/BvD9nSREMmpsbERhYSEaG7VN62BnhmV2/fiAp6bq0uDpwPV3fv//3VyEvREOFKIfGrs79h3gIuzBIMvPhix1EBHpacnkgX4vvh6KZlwbUo5QNPu1fZIrHIvvHhhI94i6jdd9+fEYi8PstWNm9shAlhplqYOMZboBkB//+MdQVRXnzp1r8/3Bgwe3/vuDDz5o97n19fXYv38/AMDl6nwxRSIr4xyH2hma2aQ/AbE99d8v4NvvxGVtv9fNRdhrEfndGiCR3etLgIuwB4MsPxuy1EFEpKeEaCfWzslEXGTXi1xGKE243VmECKWpy23jIsOwdk6mX+uREBmB13358RiLw+y1Y2b2yECWGmWpg4xlugGQm2++GQBQUFDQ5vtZWVmt02C9/PLLOH78+BXP/f3vf4+LFy9CURQMGTLE+M4SCRIXF4ff/va3iIuLE90VyzA0s6hE4KG3gYh4ffcbEe/bb1QHC79qXIQ9DlX4LV5AHKq61x+j73TRgSw/G7LUQUSkt/RkFzbMzeryTpAaNRzr64egRu18uyRXODbMzUJ6Mj88ReLwui8/HmNxmL12zMweGchSoyx1kLFMNwAybtw4AL6prI4ePdr6/cjISPziF7+AqqqoqqpCZmYmnnjiCbz88svIzs7GHXfcgeeee651+1mzZgW970RkY0kDgUe26XcnSGxP3/6SOpmOg4uwExGRDaUnu7B9wShMyegV0H6mZPTC9gWjOPhBRERERCQx0w2AjB8/HtHR0VBVFW+88Uabx5555hmkpKRAVVVUV1fjr3/9K+bNm4ff/OY3yMnJad3uzjvvxAMPPBDknhMFT0VFBZYsWYKKigrRXbGMoGSWNBCY/4lvzY5ADJ7u209ngx8tbl/o924r4MIS5TeoQDf+0KPDIuzBIMvPhix1EBEZJSHaieyZQ7Bq9lBk9rnyTskYpQGPRB5AjNJwxWOZfRKxevatyJ45hNNekSnwui8/HmNxmL12zMweGchSoyx1kLG6uRKucSIiIvDRRx+hvLy8dUH0FgkJCdizZw/uv/9+fPrpp1c8V1EUPPzww3jxxReD1V0iIWJiYjBr1izExMSI7oplBC2zqETg3ld8gxj7soHiff4/N3WEb6Dhhwued6VlEfYjm7rcNAY1mKW+hRjU+L9/4MpF2E1Mlp8NWeogIjLauPQkjEtPwvGSKqzLLcZrucUAgDo1DO83XI861bdeyNDUBAzrm4jJN/VG/+RYkV0mugKv+/LjMRaH2WvHzOyRgSw1ylIHGct0AyAAkJmZ2eFj1157Lfbt24dPP/0UH330ES5cuICQkBD07dsXd911F/r37x/EnhKJ4XA4kJaWJroblhL0zK4f7/sqPQoceBXY/0r726Vk+RYXHzSt+1NMTfqTb6Cl6mKnmznQjDSc07bv9hZhNzFZfjZkqYOIKFj6J8fi8VF9WwdAmhGCEu/3dzw+f18GUhKjRHWPqFO87suPx1gcZq8dM7NHBrLUKEsdZCzTTYHlr9tuuw2/+93v8MILL+C///u/8Zvf/IaDH2QbNTU1ePPNN1FTo/GT/DYmLLOkAcDwJzp+/J6XgDv+ENj6Gn4uwl6DSLyJyahBpH/77WoRdhOS5WdDljqIiESJQCPGOb9CBBpFd4WoS7zuy4/HWBxmrx0zs0cGstQoSx1kLMsOgBDZWUhICOLj4xESwh9hf0mfmR+LsIdARTzcCIHa9f78WYTdhGQ5zrLUQUQkihcKqlUnvFBEd4WoS7zuy4/HWBxmrx0zs0cGstQoSx1kLFNOgUVEnYuMjMSECRNEd8NShGaWkAosrjS+nZZF2N9fBBzeeMXDkajHBOR0vZ/B033TXlnozo8WsvxsyFIHEZEoHjiQ13it6G4Q+YXXffnxGIvD7LVjZvbIQJYaZamDjMXhMSIL8ng8yM/Ph8fjEd0Vy7BNZi2LsD/wlm9R9R/wIAz5GAAPwtp/buoI4IGNvudbcPADkOc4y1IHEQVPYYkbK3ef7PDxhRvysWx7IY6XVAWxV+I40IzrQi/BgWbRXSHqEq/78uMxFofZa8fM7JGBLDXKUgcZS8gdILt37w5KO6NGjQpKO0TBVl9fj5ycHPTt2xdOp1N0dyzBdpm1swh7PcKRg9vQF2fgbJkTXY9F2E1EluMsSx1EZLydhaVYkXMKeUVlnW53sLgcB4vL8ULOSWSmJWL+mH4Ym351kHoZfE40I8NxAReaXWhCqOjuEHWK13358RiLw+y1Y2b2yECWGmWpg4wlZABkzJgxUBRj5+NVFAVNTU2GtkEkisvlwsKFC0V3w1Jsm1nLIuz7X4EL1ViIV9s+fs9Lvim6JCHLcZalDiIyTnmNB09vKcCWLy9ofm5eURny1pRhSkYvLL57IBKi5ftlsRZObGq4UXQ3KEhSEqNQtPQu0d3oNl735cdjLA6z146Z2SMDWWqUpQ4ylrA1QFTVj0V4iahdqqqioaEB4eHh/rgc0AABAABJREFUhg8mysLWmX23BokdMpClRlnqICJjHLvoxuzVeSh1NwS0n835F5B76lusnZOJ9GSXTr0zCxVONMODUIALoZPJ8bovPx5jcZi9dszMHhnIUqMsdZCxhAyAjBo1iiclUQAqKyuRnZ2NBQsWID4+XnR3LIGZ2SMDWWqUpQ4i0t+xi27MfCkXlXWNuuyv1N2A+1bmYsPcLKkGQWIUD6ZHHMbG+sGoVsNFd4eoU7zuy4/HWBxmrx0zs0cGstQoSx1kLCEDIDk5OSKaJZJGbGws5s6di9jYWNFdsQxmZo8MZKlRljqISF/lNR7MXp2n2+BHi8q6RsxalYftC0ZJMx1WrRqGzfUDUKuGie4KUZd43Zcfj7E4zF47ZmaPDGSpUZY6yFghojtARNqFhoYiOTkZoaFc1NNfzMweGchSoyx1EJG+nt5SEPC0Vx0pdTdg8dYCQ/YtghchKFOj4OWvO2QBvO7Lj8dYHGavHTOzRway1ChLHWQs/kZAZEHV1dVYs2YNqqurRXfFMpiZPTKQpUZZ6iAi/ewsLO3WgudabM6/gJ2FpYa2ESyRaMQEZyEioe/dMkRG4HVffjzG4jB77ZiZPTKQpUZZ6iBjCVsEnYi6z+FwIC0tDQ4Hf4T9xcwEZlBeDGTf2P5jCw75FmnXiSzHWZY6iEg/K3JOBaedj09hXHpSUNoyUjMUlHhj0cwF0MkCeN2XH4+xOMxeO2ZmjwxkqVGWOshYPDuILCgiIgJjxowR3Q1LYWaCMigtAPa/2vHj7zwGpI4ABk8HkgYE3Jwsx1mWOohIH4UlbuQVlQWlrbzTZTheUoX+ydaeR9kDB/KbeovuBpFfeN2XH4+xOMxeO2ZmjwxkqVGWOshYnAKLyIIaGhqQm5uLhgZj5gGXETMLcgYndgCrJgIvDgcOdDIAcvYzYO9zwIu3+bY/8UFAzcpynGWpg4gCc7asFmfLarEutzio7a7LLcbZstqgtqm3MDRjQGgpwtAsuitEXeJ1X348xuIwe+2YmT0ykKVGWeogY3EAhMiCPB4P8vPz4fF4RHfFMphZkDKoLQM2/RJYPwM484m25575BFg/HXj7Ud9+ukGW4yxLHUQUmJHLdmHksl1Yl3smqO2+lluMkct2BbVNvTnQjOscl+DgAAhZAK/78uMxFofZa8fM7JGBLDXKUgcZi1NgEVlQbGws5s2bJ7oblsLMgpBByRHg9WlA1cXA9nN4I1C0F3jobSBpoKanynKcZamDiEiUOjixpUHbNYRIFF735cdjLA6z146Z2SMDWWqUpQ4yFu8AIbIgr9eLiooKeL1e0V2xDGZmcAYlR4A1dwU++NGi6iKwepJvDRENZDnOstRBRCSKAhUxSgMUqKK7QtQlXvflx2MsDrPXjpnZIwNZapSlDjIWB0CILMjtdiM7Oxtut1t0VyyDmRmYQW2Z786P+gp991tfAay7V9N0WLIcZ1nqICISJVrxYHrEYUQrnA6BzI/XffnxGIvD7LVjZvbIQJYaZamDjMUBECILcrlcWLBgAVwul+iuWAYzMzCDbU/qd+fH5aouAu8v8ntzWY6zLHUQEYlSozqxsX4walSn6K4QdYnXffnxGIvD7LVjZvbIQJYaZamDjMUBECILCgkJQXx8PEJC+CPsL2ZmUAYndgBHNum3v/Yc3uhrxw+yHGdZ6iAiEkWFgmo1HCoU0V0h6hKv+/LjMRaH2WvHzOyRgSw1ylIHGYtnB5EFVVVVYcWKFaiqqhLdFctgZgZlsHe5fvvqzL5svzaT5TjLUgcRBWbPorHYs2gsbklNCGq7Q1MTsGfR2KC2qbdIeDA5vACR4BRYZH687suPx1gcZq8dM7NHBrLUKEsdZCwOgBBZkNPpREZGBpxOTuvgL2ZmQAalBcCZT/TZV1eK9wGlR7vcTJbjLEsdRBSYlMQopCRGYVifxKC2O6xvIlISo4Lapt6aEIqvmq5CE0JFd4WoS7zuy4/HWBxmrx0zs0cGstQoSx1kLA6AEFlQeHg4srKyEB4eLrorlsHMdMygvNj3tf9VfTrmrwNdtyfLcZalDiLSx+SMXsFt76beQW3PCI0IxdHmJDRyAIQsgNd9+fEYi8PstWNm9shAlhplqYOMZfoBkPr6erz77rv4t3/7N9x333248847cccdd1yxnaqqqK2tRW1tLRobGwX0lCh46uvrkZOTg/r6etFdsQxmpmMG2Tf6vvwYkNDV/le63ESW4yxLHUSkj/RkFzLTgnMXSGafRPRPjg1KW0ZyogkZjvNwokl0V4i6xOu+/HiMxWH22jEze2QgS42y1EHGcojuQGf+/Oc/Y9myZfj2229bv6eqKhTlysUMy8rKcO2116K+vh7Dhg3DJ58EaVoWIgGamppQVFSEoUOHiu6KZTAzSTJQVaCda0CLDmtUVaChCmhuBELDgPDYTvcjmhTHioh0NW9MX+StKTO8nfmj+xneRjCEQkVySBWO42rRXbGFlMQoFC29S3Q3LIvXffnxGIsjZfblxb4PpLVnwSEgITWg3UuZmUZ2yECWGmWpg4xlygGQxsZGTJ06Fdu3bwfgG/Toyo9+9CPMmjULK1aswGeffYavvvoK1113ndFdJRIiJiYGs2fPFt0NS2FmkmTgqfYNXnSgTY2lBb5pujq6UyVlGJA6Ahg8HUgaoH9fAyDFsSIiXY1LT8Lkm3phy5cXDGtjSkYvjE2XY8CgDmHY7kkX3Q0iv/C6Lz8eY3GYvXbMzB4ZyFKjLHWQsUw5Bdb8+fPx/vvvQ1VVhIeHY+7cudiwYQOmTJnS6fMeeuih1n9v27bN6G4SCdPc3IySkhI0NzeL7oplMDNJMmjydPpwc3MzSj57B82vTgJeHN75NF1nPwP2Pge8eBuwaiJw4gOdO9t9UhwrItLdkskDkeQyZn7jJFc4Ft890JB9ixACLxKVWoTAK7orRF3idV9+PMbiMHvtmJk9MpClRlnqIGOZbgDk4MGDWL16NRRFwTXXXIPPP/8cL774IqZPn45rrrmm0+cOHz4ccXFxAIA9e/YEo7tEQlRVVWHlypWoqqoS3RXLYGaSZOBwdvxYbRmqNszHyu2HUXX2sLb9nvkEWD8dePtRoNb4KWa6IsWxIiLdJUQ7sXZOJuIiw3Tdb1xkGNbOyURCdCevsRYTpTRiSsRRRClcG5DMj9d9+fEYi8PstWNm9shAlhplqYOMZboBkNWrV7dOefXaa68hPV3bresZGRlQVRXHjh0zontEphAXF4ennnqqdcCPusbMJMnAGdP+90uOAC8OR9yJDXhK/Svi4O7e/g9v9N05UlrQ/T7qQIpjRUSGSE92YcPcLN3uBElyhWPD3CykJ7t02Z9ZVKtOvF6XgWpVnkEdkhev+/LjMRaH2WvHzOyRgSw1ylIHGct0AyC7du0CAAwaNAijR4/W/PyWu0TOnz+va7+IzERRFEREREAx8SLOZsPMdMxgwSHfV8owfTrmr5Ss9hcuLzkCrLkLqLoIBUAEGhBQhVUXgdWThA6C8HwlsqbCEjdW7j7Z4eMLN+Rj2fZCHC8J7BNq6ckubF8wClMyegW0nykZvbB9wSjpBj98FHjgAAK7IhAFBa/78uMxFofZa8fM7JGBLDXKUgcZy3QDIBcuXICiKBgyZEi3nh8T4/t0cE1NjZ7dIjIVt9uN5cuXw+3u5qfcbYiZ6ZhBQqrvK3WEPh3zV1o77dWWAa9PA+orAABuxGA5fgk3OrhTxF/1FcC6e4VNh8XzlchadhaWYsaKTzFh+R6syz3T4XYHi8vxQs5JjF++GzNWfIpdhV93u82EaCeyZw7BqtlDkdknUdNzM/skYvXsW5E9c4hU0179UBQ8mBZ+CFHofO0oIjPgdV9+PMbiMHvtmJk9MpClRlnqIGM5RHfgcvX19QCAiIiIbj2/uroawPcDIUQyioiIwJgxY7r9c2JHzMyADAZP8y0iHiyDpl35vW1P+u7Y+E4EGjAGnyICDYG3V3UReH8RcO8rge9LI56vRNZQXuPB01sKsOXLC5qfm1dUhrw1ZZiS0QuL7x7Y7YGIcelJGJeehOMlVViXW4zXcovb3W5oagKG9U3E5Jt6o39ybLfashIPQpHf1AsehIruClGXeN2XH4+xOMxeO2ZmjwxkqVGWOshYprsDpEePHgCAkpKSbj2/sLCwzX6IZOR0OpGRkQGnU85PbRqBmRmQQdJA4Nrh+uyrK6kjgKQBbb93YgdwZFObbznRiAwchRM6LXp7eKOvnSDj+UpkfscuujEhe3e3Bj9+aHP+BUzI3o3CksA+tdY/ORaPj+rb4ePP35eBJ8en22LwAwCaEIqvmq9CEwdAyAJ43Zcfj7E4zF47ZmaPDGSpUZY6yFimGwBJT0+Hqqr49NNP0dzcrOm5Z8+eRX5+PhRFwa233mpQD4nEq6urw/bt21FXVye6K5bBzAzK4PaF+u2rMyPaaWfv8iu+VYcIbMcY1EHHT3/sy9ZvX37i+UpkbscuujHzpVyUunW42wxAqbsB963MDXgQhL7nRBMyw87AiSbRXSHqEq/78uMxFofZa8fM7JGBLDXKUgcZy3QDIBMmTAAAXLp0CX/72980Pff3v/9966DJ+PHjde8bkVl4vV5UVFTA6/WK7oplMDODMrh+fPtTU+lp8HTg+jvbfq+0ADjzyRWbeqGgAi549Vz0tngfUHo0sH2oKlDvBmq+9f1XVTvdnOcrkXmV13gwe3UeKut0utPsO5V1jZi1Kg/lNVyzQg8hUBGjeBCCzl9vicyA13358RiLw+y1Y2b2yMByNZYXA4vjrvjyPtsHFd9csE4dJITp1gCZPXs2nnnmGbjdbvzmN7/B4MGDMXTo0C6f98c//hF/+9vfoCgKevXqhZkzZwaht0RiREdH8xzXiJkZmMGkP/kGCX6wFoduYnsCE5d9///l381tv//VdjePRh1mYov+/TjwKjD8Cd/i7/4qLQAObwLOHwQuftm6UDsAICIe6HkT0PsW3wDPZdN78XylQJ0tq8XIZbvafWzPorFISYwKco/k8fSWAt3u/LhcqbsBi7cWIHvmEEP2byf1CMNOz3Wiu0HkF1735cdjLA6z146Z2SMDWWqMRh1m/uwOIDpadFfIxEx3B0hiYiL+4z/+A6qqwu12Y+TIkfi3f/s3HDx4EA0N3/+y6Xa7cfz4caxatQq33norlixZ0vrY888/j7CwMBHdJwqKpqYmFBUVoamJ0zr4i5kZmEFUIvDQ274/6uspIt6336jE77+XfaPv60D7AyBNCEURrtF/zvf9r/ja9ceJHcCqicCLw32LxJ/+uO3gB+D7/9Mf+x5/8Tbf9ic+aH2Y5yuROe0sLA14zY+ubM6/gJ2FpYa2YQeh8CI5xI1Q8NOAZH687suPx1gcZq8dM7NHBrLU2IRQFJ27aPk6yFimGwABgF/96ld44oknoKoqPB4Pnn/+eWRmZuLVV31/8FJVFQkJCRgwYAAee+wxfP7551C/m07k97//PaZNM3g6FiLBqqursXbtWlRXV4vuimUwM4MzSBoIPLLNd8eGHmJ7+vaXNFDT06oRjbXKDFRDwKc/asuATb8E1s9od3quTp35BFg/HXj7UaC2jOcrkUmtyDkVnHY+Dk47MotUGjEx/AQiFX2nKiMyAq/78uMxFofZa8fM7JGBLDVWIxpr39lh+TrIWKabAqvF8uXLceONN+Lf/u3fUFFRAQBQFAWK4pvXXb1s/vT4+Hg8//zzmDVrVrC7ShR08fHxePrpp0V3w1KYWRAySBoIzP8EeH8RcHhj9/czeLpv2qsf3vnhp3i48bT6XPfb7q6SI8Dr0wKfBuzwRqBoL+Ifetv25yuR2RSWuJFXVBaUtvJOl+F4SRX6J8cGpT0ZVavhWF3X9TS6RGbA96ny4zEWR7rsSws6nA4YAPDOY0DqiHan2fWXdJl1gx0ykKXGeLjx9BOzgfh40V0hEzPlHSAt5syZgzNnzmD58uW48847ERMTA1VVWwc/wsPDMXLkSDz77LMoKiri4AcRkWhRicC9rwAPvOV7461F6gjggY2+53dj8EOYkiPAmrv0WwOl6iKwepLvlxsiEu5sWS3OltViXW5xUNsNdntERERkYj+cZreD6YABAGc/63CaXSIiuzL1AAgAxMTE4IknnsD27dtRWVmJqqoqnDt3DuXl5airq8PHH3+MJ598Ei6XS3RXiYKmsrISS5cuRWVlpeiuWAYzC3IG14/3TWE1/1Ng5L8CfcdcuUZIRLzv+yP/1bfdI9uA6+8MqNlKxGIp/gmVCNKnpmvLfHd+XL7GR4Aq65uxdMV6VJbwD6BEoo1ctgsjl+3CutwzQW33NQ6ABCRaacADEV8gWjFmwXoiPfF9qvx4jMWxfPY6TrPrL8tnpgM7ZCBLjZWIxdIVr1u+DjKWaafA6kh0dDSiowXM7U5kIlFRUZg6dSqioqJEd8UymJmgDJIGAEl/8P1bVQFPNdDkARxOwBkDfDetoV6iUIep2IEo1Om63w5te1K/Oz9+IAp1mKq+j6g9XwPTX9Z9/0SyKixxd3rnxMIN+RjWJxFTMnpbYnopVVVbp38lbepVB/Z60lCvWu7XHbIhvk+VH4+xOJbOXudpdvHQ236tsWjpzHRihwxkqTEKdZj609stXwcZi78REFlQWFgY0tPTRXfDUpiZCTJQFCA8FggPYB8LDvn++85jvtu7LxOGJqTjZAANdCAlC7jnpbbfO7EDOLJJ/7bwgzoKTgI3TfPdUUNEHdpZWIoVOae6XKPjYHE5DhaX44Wck8hMS8T8Mf0wNv3qIPVSuxpPM2LC+Xa9O5oRijPeBNHdIPKL8PdoZDgeY3Esm33LNLt63WneMs3uI9u6HASxbGY6skMGstQYhiak90sFwsKMayQIa++QsUw/BVZnGhoakJOTgw0bNmDXrl1oaOAt7mQPtbW1ePfdd1FbWyu6K5bBzCTJICHV99XB+iK1iMC7GI9aROjbbtoIX7s/tHe5vm38QJs69mUb1g6R1ZXXePDEG19gzpoDmhcozysqwyNr9mPBm1+gvMZjUA8D42nyiu6CZYWjEbeHnUY4GkV3hahLUrxHo07xGItjyewNmmYX9RXAunu7nA7LkpnpzA4ZyFJjLSLw7t/3GFMH196RhukGQBobG7Fq1SqsWrUK7733Xofbvf3227j22mtxxx134IEHHsBPfvITJCcnY9WqVUHsLRERCTF4WnDbG3RZe6UF2ufg7a7ifUDp0eC0RWQhxy66MSF7N7Z8eSGg/WzOv4AJ2btRWOLWqWf6cTpM91adiIiIjGbQNLsAfPt9f5Ex+yaShYC1d8hYpvut6oMPPsCjjz6Kxx57DIcOHWp3m71792LmzJm4dOkSVFVt/aqsrMRjjz3GQRCSnixzNQYTM5Msg6SBwLXDr/h2FOq/WwOkXr+2Ukd8fxtrebHvq7PbX3VwRR0HXvW1S0QAfIMfM1/KRalbn7t/S90NuG9lrukGQaKdoaK7YFkNCMPexj5ogIHTIRDpRKr3aNQuHmNxLJe9gdPstjq80ddOByyXmQHskIEsNUahHlN/OlK/OkqO+O74CPTn8PBG335KC/TpFwXEdAMgH374Yeu/77///na3+Zd/+Rc0NzcDAMLDw3HzzTejZ8+eAHyLRf7mN7/BpUuXjO8skSCNjY0oLCxEYyOndfAXM5Mwg9sXXvGtRjhQiH5o1HOJqxE/aCf7Rt9XZ7e/6uCKOva/4muXiFBe48Hs1XmorNP3tayyrhGzVuVdMR3WnkVjsWfRWNySGtz1JIamJnAB9ACEohnXhpQjFM2iu0LUJeneo9EVeIzFsVz2Bk6z20Yn0+xaLjMD2CEDWWpshAOFJ4v1qaNl7R297sBqWXuHgyDCmW4A5ODBgwCAtLQ0pKWlXfH4l19+iYMHD0JRFFx77bUoKCjAgQMHcPbsWcyePRsAUFVVhddeey2IvSYKLlnmagwmZiZhBtePv2JqqlpEfrd2RqQ+bQyeDlx/pz770kD3Oogk8vSWAt3u/LhcqbsBi7e2/QUlJTEKKYlRGNYn0ZA2OzKsb3Dbk02E0oTbnUWIUJpEd4WoS9K9R6Mr8BiLY6nsTTLNrqUyM4gdMpClxlpE4t2/7w28DsFr75CxTDcAcvr0aSiKgsGDB7f7+NatW1v/vWTJEvTt2xcAEBISgj//+c9wOp0AfFNpEckqLi4Ov/3tbxEXFye6K5bBzCTNYNKfgNierf8bhyr8Fi8gDlWB7zu2JzBxWeD76QZd6yCSyM7C0oDX/OjK5vwL2FlYesX3J2f0MrTdK9q7qXdQ25NNjRqO9fVDUKOGi+4KUZekfI9GbfAYi2OJ7IM0ze4VOrir3RKZGcwOGchSYxyq8Nt5DwZeB9fekZrpBkDKynwjYj169Gj38Y8//hgAEBYWhnvuuafNY4mJiRgxYgRUVUVBAW8vIiKSXlQi8NDbQES8vvuNiPftN4qfwCYykxU5p4LTzsdXtpOe7EJmWnBeEzL7JKJ/cmxQ2iIiIiLBgjTN7hX2vxLc9ojMygRr75CxTDcA4vH45l0OC7tywUKv14vPPvsMiqJg6NChiImJuWKb3r19n5b79ttvje0okUAVFRVYsmQJKioqRHfFMpiZxBkkDQQe2QbE9kQFXFii/AYVcHV/f7E9fftLGqhfHzXSpQ4iyRSWuJFXFJxbx/NOl+F4yZV3YM0b0zco7c8f3S8o7cgsRmnAI5EHEKMYM12a2aQkRqFo6V3tfqUkWntxUzuQ9j0ateIxFofZd0FVr/gWM7NHBrLUWAEXlvzXmsDqMMHaO2QsHVeJ1UdMTAzcbnfrnSA/9MUXX6C6uhqKouD2229v9/mRkb750puaON8vySsmJgazZs1qdxCQ2sfMJM8gaSAw/xPEvLcIswreQgxqurefwdN9014JvvMjBjWYpQZQB5FEzpb55vNdl1sc1HbX5Rbj8VF92/zxeFx6Eibf1MvQabimZPTC2PSrDdu/XdSpYXi/4XrUqVd+qIrIbKR+j0YAeIxFYvZd8FQD4W3vOjV1ZuXFvrtl2rPgEJCQqkszps5AJ7LUGIMazLpnfPfrELH2TtKA4LRHrUx3B0hKSgpUVcUXX3xxxWPvvfde6787GgApLy8HAMTGctoAkpfD4UBaWhocDtONYZoWM7NBBlGJcEx/BWkPPAdHapa256aOAB7YCNz7SueDHwsO+b5ShgXW1y440Iw0nIMDzb5vpGT52iWyoZHLdmHksl1Yl3smqO2+lluMkct2XfH9JZMHIsllzLoSSa5wLL5b3N1nMmlGCEq8LjSb79cdoitI/x6NeIwFYvZdaPJc8S1mZo8MZKnRgWakXdNTex0mW3uHjGW63wgyMzMBAF999VWbhczr6urw6qu+kyQsLAyjRo1q9/nHjh0DAFx77bUG95RInJqaGrz55puoqeGnw/3FzOyRQU1NDd78vBw1MzYC8z8FRv4r0HfMlWuERMT7vj/yX33bPbINuP7OrhtISPV9pY7Qv/M/UINIvInJqIHvrkakjdDt00xEFJiEaCfWzslEXKS+dxbERYZh7ZxMJEQ7dd2vXUWgEeOcXyECjaK7QtQlO7xHszseY3GYfRccV77vYGb2yECWGmsQiTf/9yPtdXDtHVsx3TDfgw8+iFWrVgEApk+fjgULFqBHjx7429/+hrNnz0JRFPzsZz+Dy3XlvOiVlZUoLCyEoigYOJCfniN5hYSEID4+HiEhphvDNC1mZo8M2tSYNABI+oPvAVX13d7d5PG9yXfGAIrS/YYGTwP2PqdPp9sRAhXxcCME383JO2iaYW0RkXbpyS5smJuFWavyUOoOfI2JJFc41s7JRHoy1/3RixcKqlUnvAjgtZ4oSOzwHs3ueIzFYfZdcF45bRAzs0cGstQYAhXxrhhr1aGqgf09gjQz3QDI2LFjcffdd2Pr1q2orq7Gf/7nf7Z5PCwsDH/4wx/afe6WLVvQ3NwMRVGQlaVx+hMiC4mMjMSECRNEd8NSmJk9MuiwRkXxzW2r16w1SQOBa4cbNldoJOoxATm+/0kdwTlCiUwoPdmF7QtGYfHWAmzO7/6aIFMyemHx3QN554fOPHAgr5F3hJM12OE9mt3xGItjiexbprp95zHg7GfBazclq90/wloiM4PZIQNZaoxEPSaMGgZ8tya0JbSz9g4Zy5TDY2+88QamTJkCVVXbfEVHR2Pt2rW48cb2Fzx65ZXvbyP6yU9+EqzuEgWdx+NBfn4+PJ4r5+uk9jEze2QQ1BpvX2jYrj0IQz4GwIMwYIQO7agqUO8Gar71/VdVA98ndepsWS3Sfvteu18ti3qT9SVEO5E9cwhWzR6KzD6drB/Ujsw+iVg9+1ZkzxzCwQ8DONCM60Ivfb+WEpGJ2eE9mt3xGItjieyDNM3uFdLab88SmRnMDhnIUqMHYcg/+g9r1dHO2jtkLNPdAQIAUVFR+J//+R8cOnQIe/bsgdvtRkpKCiZNmoTExPZ/ufz222/Rr18/9O3bF7Gxsejfv3+Qe00UPPX19cjJyUHfvn3hdPKPJv5gZvbIIKg1Xj/eNzXVkU2677oe4cjBbeibfiOc/qxN0p7SAuDwJuD8QeDil0B9xfePRcQDPW8Cet8CDJ5u/B0mqgo0VAHNjUBomO/TLrzllyQyLj0J49KTcLykCutyi/FabnG72w1NTcCwvomYfFNv9E/mp76M5EQzMhwXcKHZhSaEiu4OUafs8B7N7niMxbFU9gZPs3uFDqbZtVRmBrFDBrLUWI9w5HyWj76DM61TRztr75CxFFXlx0DJegoKCjBo0KDW/z9y5AjXfSGi4KstA14cDlRd1H/fsT2B+Z8AUdo+VY4TO4C9y7VNz3XtcOD2f/FvIXh/mWkARoCzZbUYuWxXu4/tWTQWKYlR0ravd9std8ws3JCPg8XlAffPX0NTE/D8fRnd6q8s2bN9IiKiIFs10bBpdttIHQE8ss34dvRWXuxbuLo9Cw757qQhOel97BfHBd6n7nq6wpYfCBT5t1xTToFFRJ1TVRX19fXg+KX/mJk9Mgh6jVGJwENv+/6gryM1PB7109+AGpng/5Nqy4BNvwTWz9D+S9OZT4D104G3H/XtJxAndvh+cXtxuO8TbKc/bjv4Afj+//THvsdfvM23/YkPAmuXpJWSGIWUxCgM0zjFVKCG9U3kH8wtTYUTTQDkveaRPOzwHs3ueIzFsVz2Bk6z20Yn0+xaLjMD2CEDWWpUAdQ3NGivY8Eh31fKMEP61aEO1t4hY3EAhMiCKisr8eyzz6KyslJ0VyyDmdkjAyE1Jg30fXoqtqc++4vticppG/Hs6i3+11FyxDfgEOh0XIc3+vZTWqD9uWYZgPkO1+CQz+SMXsFt76beQW2P9BWjePBgZD5iFM6xTOZnh/dodsdjLI7lsm+ZZtdIg6d3eue35TIzgB0ykKXGSrjw7Mo3tNdhsrV3yFgcACGyoNjYWMydOxexsZw/3F/MzB4ZCKsxaaBvuqrB0wPbz+DpwPxPENv3Fv/rKDkCrLlLv2m4qi4CqydpGwQxwwAMSS892YXMtODcBZLZJ5FrdFhcrRqGzfUDUKuGie4KUZfs8B7N7niMxbFk9pP+pN+Hqy4X2xOYuKzzTayYmc7skIEsNcaiGnPvv7v7dQw2eMDxckYPcFK7TLkI+g9VVlZi7969yM/Px6VLl1BVVQWv19vl8xRFwauvvhqEHhIFX2hoKJKTk0V3w1KYmT0yEFpjVCJw7yu+QYx92UDxPv+fmzrCdxv6d5/ECgX8q6O2DHh92pVTTAWqvgJYd69/a5C0DMDo1YeWAZhHtvkGloh+YN6Yvshbo89dQp2ZP7qf4W2QsbwIQZnKKczIGuzwHs3ueIzFsWT2LdPsrp6k7/v8iHjffrt4f2/JzHRmhwxkqTEUXiT3+BEQGtq9HSQN9K2JGay1dyRc/9IKTDsAUl5ejqeeegqvv/466uvru7UPDoCQrKqrq7Fp0yZMmzYNMTExortjCczMHhmYosbrx/u+So/67og4fxC4kH/lIuC9MnyLgA+adsWbIL/r2PakMQuwA779vr/IN6jTETMMwJCtjEtPwuSbemHLlxcMa2NKRi+MTb/asP1TcESiEaOdJ/Gxpx/qwLtAyNxM8f6FDMVjLI5ls2+ZZnfdvfq834/t6Rv88OMDRpbNTEd2yECWGqsRhU1vv49pMx/qfh23LwTWB2EApJO1d8hYphwAKSoqwujRo3Hu3Dm/FrFRFOWK7RQuKEMSczgcSEtLg8Nhyh9hU2Jm9sjAVDUmDQCS/uD7t6oCnmqgyQM4nIAzptOFz/yq48SOwKec6srhjd/NETy+/cdFD8CQLS2ZPBCfnf4Wpe4G3fed5ArH4rt555EMmqGgxBuLZvB3AjI/U71/IUPwGItj6exbptl9f5HvfXl3DZ7um/bKzw8WWTozndghA1lqdKAZab2TA6ujZe0dI3+/7mLtHTKW6c5yVVXx85//HGfPngUA3HjjjXjwwQfxwQcf4KOPPoKiKFi1ahWqqqpQXFyM3bt3Y//+/QCAmJgYPP3007jqqqtElkBkuIiICIwZM0Z0NyyFmdkjA9PWqChAeCwQ7t/mftWxd3mgvfLPvuz2B0DMMABDtpQQ7cTaOZm4b2UuKusaddtvXGQY1s7JREK0U7d9kjgeOJDfxIXsyRpM+/6FdMNjLI7ls9dxml1/WT4zHdghA1lqjEADxmQNASIiAtvRpD/5fr6M+ICfH2vvkLFMtwj6pk2b8OWXX0JRFEyYMAEHDhzAk08+ifT09NZtZs2ahV//+tf405/+hM8++wz79+/HkCFDUF1djezsbAwbNgyzZs0SWAWRsRoaGpCbm4uGBv0//SorZmaPDGSpscs6SguCM0cp4HsTWHr0yu8HcwCGLKOwxI2Vu092+PjCDflYtr0Qx0uqAmonPdmFDXOzkOTyc1SxC0mucGyYm4X0ZJcu+yPxwtCMAaGlCEOz6K4QdUmW9y/UMR5jcaTJ/vrxvimx5n8K3Ppox9ulZAEj/9W33SPbuvWJc2kyC4AdMpClxgY4kftFQeB1tKy9ExGvS79a+bn2DhnLdAMg//M//wPAN4XViy++6NctTLfccgv27t2L4cOH49y5c5gxY0a31w0hsgKPx4P8/Hx4PB7RXbEMZmaPDGSpscM6yot9X/uDvMbVgcvaM8MADJnKzsJSzFjxKSYs34N1uWc63O5gcTleyDmJ8ct3Y8aKT7Gr8Otut5me7ML2BaMwJaNXt/cB+Nb82L5gFAc/JONAM65zXIKDAyBkAbK8f6GO8RiLI132SQOA4U90/Pg9LwF3/CGghZaly6wb7JCBLDV6EIb8Y1/pU0fL2juxPQPfF+DbzyPb/Fp7h4xluimw8vLyoCgKbr75ZqSmpvr9vMjISKxZswY33HADCgoKsH79esyZM8fAnhKJExsbi3nz5onuhqUwM3tkIEuNHdaRfWPwOwMA+19p+4uWiAGYu/5fcNskv5TXePD0loJuLUqeV1SGvDVlmJLRC4vvHtitqacSop3InjkEUzJ6YcXHp5B3uszv52b2ScT80f244Lmk6uDElgb+sknWIMv7F+oYj7E4zF47ZmaPDGSpMRY1mPfAFCA2Vp8dClp7h4xlujtAvvnmGwDADTfc0Ob7ISHfd7Wjuzuuu+46DB8+HKqq4s033zSuk0SCeb1eVFRUwOv1iu6KZTAze2QgS42mrCP7xu+/Lr8jxGj7uRC6GR276MaE7N3dGvz4oc35FzAhezcKS9zd3se49CS8Nfc27Fg4Cr/I6vgDNENTE/Crsf2wY+EovDX3Ng5+SEyBihilAQpU0V0h6pIpr/ukKx5jcZi9dszMHhnIUqMXCircVfrW0bL2zgNv+dbS0SJ1BPDARt/zOfhhGqYbAGkZ3IiJiWnz/R/+f1lZx5/u+/GPfwwAOH78uAG9IzIHt9uN7OxsuN3d/2OR3TAze2QgS42y1KErlX/ENJNjF92Y+VIuSt36zBlc6m7AfStzAxoEAYD+ybF4fFTfDh9//r4MPDk+Hf2TdfqEGJlWtOLB9IjDiFasPa0D2QOv+/LjMRaH2WvHzOyRgSw1uhGL7DVvG1NHENfeIWOZbgDE5fLNv1xbW9vm+z/60Y9a//3VV191+PzKykoAwNdfd39OaSKzc7lcWLBgQevPC3WNmdkjA1lqlKUOXXmqRfeAvlNe48Hs1XmorGvUdb+VdY2YtSoP5TX8gzUFrkZ1YmP9YNSo2qdWIwo2Xvflx2MsDrPXzrSZlRYA+7I7fvydx4APl+iyfqBpM9CRLDW6UIUFs+81to4grL1DxjLdAEi/fv0AACUlJW2+P3Dg93P47ty5s93ner1efP755wCAqKgog3pIJF5ISAji4+PbTA1HnWNm9shAlhplqUNXTfyjuFk8vaVAtzs/LlfqbsDirQWG7JvsRYWCajUcKhTRXSHqEq/78uMxFofZa2e6zE7sAFZNBF4c3vlUvGc/A/Y+B7x4m2/7Ex90u0nTZWAAWWoMgYp4V6zl6yBjme7syMjIgKqqOHq07YhtVlYWwsPDAQArVqxo9w6P5cuX4/Tp01AUBYMGDQpKf4lEqKqqwooVK1BVVSW6K5bBzOyRgSw1ylKHrhz8FLcZ7CwsDXjNj65szr+AnYWlhrZB8ouEB5PDCxAJDp6S+fG6Lz8eY3GYvXadZlZeDCyOa/+rvFjfjtSWAZt+CayfAZz5RNtzz3wCrJ8OvP2obz8a2eG8kaXGKkRjxfrNlq+DjGW6AZAxY8YAAM6dO4dTp061fj8uLg733nsvVFXFN998g6FDh+K5557D3//+d2zevBm//OUvsWjRotbtZ86cGeyuEwWN0+lERkYGnE7+QdBfzMweGchSY4d1LDjk+0oZFtwOpWQFt732OGO63oYMtyLnVNcb6dHOx8Fph+TVhFB81XQVmhAquitEXZLl/Qt1jMdYHGavnSkyKzniu+PjyKbA9nN4o28/pdruMDZFBgaTpUYnGpFxw3WWr4OM5RDdgctNmjQJTqcTjY2N2LRpU5tBjWeffRbvv/8+KioqcP78eTz55JPt7uPmm2/Go492sjgNkcWFh4cjK8sEf5C0EGZmjwxkqbHDOhJSff9NHeG7xTtY0kb45jVt8c5jwW0/JQtQOI2NaIUlbuQVaf8EXXfknS7D8ZIqLlZO3daIUBxtThLdDSK/yPL+hTrGYywOs9dOeGYlR4A1dwH1Ffrsr+oisHqSb3HqpIFdbw8TZBAEstQYDg+yhgwEvps1iKg9prsDxOVy4Y033sALL7yAAQPaLh7Tu3dvfPjhh0hNTYWqqu1+jRo1Cu+99x7CwsIEVUBkvPr6euTk5KC+vl50VyyDmdkjA1lq7LKOwdOC26FB03yDLy1fqSOC235akNujNs6W1eJsWS3W5eo8rUEX1uUW42xZbVDbJHk40YQMx3k40SS6K0RdkuX9C3WMx1gcZq+d0Mxqy4DXp+k3+NGivgJYd6/f02HZ4byRpcZ6hCMn9wvL10HGMt0ACAD8/Oc/x9y5c/Gzn/3siseGDBmCwsJCvP7665gzZw4mTJiASZMm4de//jV27NiBnJwcXH311QJ6TRQ8TU1NKCoqQlMTf6n3FzOzRway1NhlHUkDgWuHB6czqSOApLYfSBAyAEPCjFy2CyOX7cK63DNBbfe13GKMXLYrqG2SPEKhIjmkCqFQRXeFqEuyvH+hjvEYi8PstROa2bYnfXdsGKHqIvD+oq63gz3OG1lqbEIois6XWL4OMpbppsDyh9PpxP3334/7779fdFeIhIiJicHs2bNFd8NSmJk9MpClRr/quH0hsF7jYoDdMWLhld9rGYDRuhhhd7Q3AENEppSSGIWipXeJ7gYAoA5h2O5JF90NIr/I8v6FOsZjLA6z105YZid2BL7mR1cObwQGTweuH9/pZnY4b2SpMQa1mH3vRCCGa0ZSx0x5BwgRda65uRklJSVobm4W3RXLYGb2yECWGv2q4/rxxt8ZMXg6cP2d7T92+0Jj227R3gAMEVEXQuBFolKLEHhFd4WoS7K8f6GO8RiLw+y1E5bZ3uXBaWdfdpebmPa8KS8GFse1/1Wubbpa09aoUTNCUPLNt5avg4zFARAiC6qqqsLKlStRVVUluiuWwczskYEsNfpdx6Q/AbE9jelEbE9g4rKOHxc9AENE1IkopRFTIo4iSmkU3RWiLsny/oU6xmMsjpTZJ6QCiyvb/0pIDXj3QjIrLQjO3eUAULwPKD3a6SZSnjeXkaXGKsRg5RtbLV8HGYsDIEQWFBcXh6eeegpxcXGiu2IZzMweGchSo991RCUCD70NRMTr24GIeN9+oxI7307kAAwRUSeqVSder8tAteoU3RWiLsny/oU6xmMsDrPXLqiZlRf7vva/anxbP3Tg1U7vmLDDeSNLjXFw46m591u+DjKW6dcA8Xq9OHbsGIqKiuB2u9HY6P+nuB5++GEDe0YkjqIoiIiIEN0NS2Fm9shAlho11ZE0EHhkG7DuXn0WDIzt6Rv8SBrY9bYtAzCrJwH1FYG33cLfARgiog4p8Jj/Vx0iAPK8f6GO8RiLw+y1C2pm2TcGp53L7X/F97W4st2H7XDeWKrG0oIOB8kUABHv/dq3duTg6Vw/ktpl2t8KiouL8cwzz2Djxo2orq7W/HxFUTgAQtJyu91YtWoV5syZA5fLJbo7lsDM7JGBLDVqriNpIDD/E+D9Rb6F/bpr8HTfXRdaBh5EDsD4RUUM6hCGJjTCgWpE6rRf+9izaCwAYOGGfBwsLg9au0NTE/D8fRlBa4/kEgUPJoUXYltDOmrBu0DI3GR5/0Id4zEWh9lrx8zskYElajyxw7c2TCfTo7kRg1VnB2HO2Zfg2vsccO1w4PZ/4VTK1IYpB0C2bduG++67D7W1tVBVVXR3iEwnIiICY8aMsc5ovQkwM3tkIEuN3aojKhG49xXfIMa+bN/ctv5KHeFbbLy7bxJFDsC0p7QAcfvfwLqwnRgUUoR4pab1oQo1GhH/czOQeis/IeSnlMQoAMCwPolBHQAZ1jextW0irTwIRX5TL3gQKrorRF2S5f0LdYzHWBxmrx0zs0cGpq6xtgzY9iRwZFOXm0agAWPwKSLQ4PvGmU+A9Z/o97slScF0AyBnzpzB9OnTUVdX1/q95ORk3HTTTfjRj36EsLAwgb0jMgen04mMjAzR3bAUZmaPDGSpMaA6rh/v+yo96nvDeP4gcCG/7RRVEfFArwyg9y2+hcz1GAQQOQDT4gefEHIBuL2dv3vGKzXA2T2+L35CSJPJGb3wQs7J4LV3U+//j71/D4+qyvPF/3flUlWpJJVL210RJiZAN6YJ0ditEIki4EyD0IKnhZbx9LRgtyLdZwx95hH7fJ/vT6HPPGcUZ2xyZroFR7mMiBfUr8o0gmNjuIgx4BCBYGREE1BIvORSuVVVKlW/PzaJXFJJ7aq9a9Va+/16nnqAVNVe6/NZa+8Ke9VaK2FlkXqCSMXHA5eJrgZRVFT5/YUiYxuLw9zrx5xZIwdJG2PLMeDZhVGvLmBHP8oxzKb2R7cBTfsNXl2AZJV0AyD/+I//iL6+PthsNowZMwbr16/H3LlzRVeLKKn09fVhz549uOmmm5CRweVcosGcWSMHqsRoSByeSYDnIe3v4TAQ6AaCASDNDtizAJvNuAqf77wBGO/B5/DBe7tRlvLppbMwrvghnMXXGTMAo+MbQpfgN4SiVlLgxpTifNQ1tZle1pRx+biyINv0ckgthfkuND0yD4A6nwdkDeyv6mMbi8Pc68ecWSMHSRljyzFg0zxd+0v2wYk9qMBNqEUGfBc+2XVW269y6Q4Oglhc0g2A/Md//AcAIC0tDW+++Sa+//3vC64RUfIJhULo6OhAKBQSXRVpMGfWyIEqMRoVx+m2Xty45u1hn9u3cqa5ywt5JqFz2v/C3+yvABBGJnywox8BpKMHTuz7b7OMKV/nN4Qi4jeEonLfjPGo22T+AMjymyaYXgapTZXPA7IG9lf1sY3FYe71Y86skYOki7G3Tft/nY7BDwAIwYYOuBFChC/4+Tq0/SqXH+CX3SwsRXQFLnb69GnYbDbMmDGDgx9EEWRmZmLx4sXIzMwUXRVpMGfWyIEqMaoSxzds6EEG2uFGDzKASL+c6jX4DSEjNl8HvvmGUGuDMcdT0KwSD+ZfPcbUMhaUj8HMku+YWgapT73rKKmM/VV9bGNxmHv9EpqzqiPao3Cq+WWdr7BCKzcCK/SbpItxxwMx/b8uE31YjNeRib7IL+o6q+1XSZaVdAMgg3t8jBs3TnBNiJJXMBhEU1MTgsGg6KpIgzmzRg5UiVGVOEwV4zeERjX4DaFe82c5yGr1/FJ43A5Tju1xO7DqVs7AofjxOkoyYX9VH9tYHOZev4g5a23Q9vqL5JV7gLdWa3sRRiuvSHsUVcZW2VgVV2rlRmCFfpNUMZ7YFdtyxtD2fWvCXyCIYTaAPN/RbVo5ZElJNwBSVKRdgLxer+CaECWv7u5ubN68Gd3d3aKrIg3mzBo5UCVGVeIwVYzfEIoKvyE0orxMOzbfPQU5GemGHjcnIx2b756CvEy7occla+J1lGTC/qo+trE4zL1+l+TsxC5gwy3AE9OAQ09HfuPp94D9jwNPXK+9/sSb0RdatjC+Sus1eeTyrNBvkirG/Wtjfms3MrHZ9lN0I4qZLCMN4JHSkm4PkFtvvRVHjhzBu+++K7oqREkrNzcXDz/8sOhqSIU5s0YOVIlRlThME8c3hKJ2dJu2MfrE2eaWI6mSAjdeWFaBuzbUodXrj/t4HrcDm++egpICtwG1I+J1lOTC/qo+Jdu4vRmovmr456qOjPjt+kRSMvcmG8pZbxvw0i9i+7371AFg6wHt9+lb1oy+94KnFLhimvY+sxVVAp5JI77ECv0maWJsbYir3XPhxcPhx6N7cfM72gylUdqf1JN0M0Duu+8+uN1unDp1Cs8995zo6hAREVGyieMbQrrwG0IjKilwY2fVdCwoj29PkAXlY7CzajoHP4iIiIiSRcsxbcZHvF86OrpNO040e+zdsCK+sqJVmaByaGTtzdrj4Aizisxw6GmtXLKUpBsAGTt2LDZt2oSUlBQsW7YM//Ef/yG6SkRJp7OzE4888gg6OztFV0UazJk1cqBKjKrEYYo4vyGky+A3hCiivEw7qhdfgw1LrsWUcaN8s+8iU8blY+OS61C9+Boue0WG43WUZML+qj62sTjMvX6d/1WHR9ZvRWeXQUsjdZ0FNs4dfRBk4uxRl6aKW9kiYOKPRn2ZFfqN8Birr9IeIy2rFoVOZOMR/AqdyI7uDQefijx7jZQlZAmsU6dOjfj8D37wA6xbtw7/43/8D9xyyy348Y9/jEWLFqGsrAw5OTmw2WxRlXPFFVcYUV2ipONyuXDbbbfB5XKJroo0mDNr5ECVGFWJw1CD39IR8Q2hafcnzTIOyWpWiQezSjz4qKULW2qb8Uzt8N+qurYoD1PH52P+1WNxZUGU/0khigGvoyQT9lf1sY3FYe516m2D67WluC3sgAt9xh3X1wFsuR1YfmDk5bDmPqZ9CcmMvf6yL9eW44qCFfqNKjG60IfbsMvY/krKETIAUlxcHPUgRjgcxvbt27F9+3ZdZdhsNgSDwViqR5T00tPTUVJSIroaUmHOrJEDVWJUJQ5DifqWzsGntMcqdb/9ZaQrC7Jx7/TxEQdAfn9HOQrz5f5PFsmB11GSCfur+tjG4jD3Ou14AOndn8GUjHWdBd5YCdz+VOTXuPKBn72szRjxdRhXtjNXO+5oe5GcY4V+o0qM6QiiBCdFV4OSnNAlsMLh8IgPAEMDJaO9NtL7iVTU29uLV199Fb29vaKrIg3mzBo5UCVGVeIgIhKF11GSCfur+tjG4jD3OpzYBRx7Cb1w4lXMRi+cxpdxdJtWzkg8pcDSHdqMDSNkX64dz1Ma9Vus0G9UidHU/krKEDID5Iorroh6BggRERERERERERGZaP/axJTzTrW238dIPKXacllvrNQGTWJVtkhb9irKmR9EpCYhAyBNTU0iiiVSxuBajRQ95swaOVAlRlXiICIShddRkgn7q/rYxuIw91FqbQBOHQAAuODDbRhllkY8mt8BWo8Dnkkjv86Vry2XVbZIGzRpfif6MooqgcoVUW14PmzRFug3qsRoen8lJQhdAouIYtPf34/Gxkb09/eLroo0mDNr5ECVGFWJg4hIFF5HSSbsr+pTro1bG7Qb0pG8cg/w1mrtJrdgyuXeaO3N2uPg00M/6kcaGjEB/WZ+Z/rQ01q50Zg4W1vCavm7wHW/jPy6wgrgxr/TXrd0R8yDH4A1+o3wGKuOaI/CqXEdRnd/LazQyiVL4QAIkYRUWasxkZgza+RAlRhViYOISBReR0km7K/qU6aNT+wCNtwCPDFNu4Edyen3gP2PA09cr73+xJuJq+NFlMm9Waqv0h7ntWcvMs7tqZBhXrkHn9LK1cMzCZh2f+Tnf/IkcPNDo88siYIV+o3wGPOKtEdRZVyH0d1fiyu1cslShCyBRUTxycnJwW9/+1vR1ZAKc2aNHKgSoypxGGrwWzqv3KP9pzpRCiu0/0wRkVR4HSWZsL+qT/o27m0DdjwAHHtJ/3tPHQC2HhC2F4P0uRcgB134Lf4ouhpCWaHfJE2MZQu1AdMY6e6vkxfGXBbJKykGQM6cOYM//vGPeOutt/DJJ5/A6/UiJycH48aNw1/+5V9i+fLlGDt2rOhqJrVAIIAXXngBzz33HBoaGtDa2oq8vDyMGzcOP/nJT7BkyRJcdtllypVNRJTMTrf14sY1bw/73L6VM1GY70pwjSQ2+C2dosrEDoDwG0JERERkZS3HgGcXAl1n4zvO0W1A037gZy9rG1wTEQHa9eCKaUN70JiqqNKQGUIkH+FLYD311FP47ne/i3/4h3/AwYMH8dVXXyEQCODLL7/EwYMH8Q//8A/43ve+h/Xr14uuatJqbGzE1KlT8fOf/xxvvPEGTp06Bb/fj5aWFrz77rt44IEHUFpaih07dihVtpV1dHRg9erV6OjoEF0VaTBn1siBKjGqEocpyhL8jR1+Q4hISryOkkzYX9UnbRu3HAM2zYt/8GNQ11lg41xtD5EEkTb3AnXAjdW2/4kOuEVXRRgr9JukivGGFTG/VVd/rYy9HJKb0AGQZ555Bvfeey98Ph8AIBwOX/D84L99Ph9+9atf4d/+7d8SXsdk99lnn+Hmm29GfX09AMBms+Gmm27C3XffjVtvvRUZGdoaeF988QVuu+027N69W4myrS4rKwt33XUXsrKyRFdFGsyZNXKgSoyqxGGKwW8IJQK/IUQkLV5HSSbsr+qTso1727SZH74OY4/r6wC23K4dPwGkzL1gWejBXeEXkYUe0VURxgr9JqlinDg75i+eRd1fyxYBE38UUxkkP2FLYHm9Xvzt3/4tAO3GeTgcxtVXX41p06YhLy8P7e3teOedd3DkyJGh5++//37cdtttcLutOwp9sTvvvBNnzpwBABQVFeG1117D1VdfPfT8V199hcWLF+PPf/4z+vv7sWjRIpw8eRK5ublSl211aWlpKC4uFl0NqTBn1siBKjGqEodpblihrSVtNn5DiEhavI6STNhf1SdlG+94wLiZHxfrOgu8sRK4/Slzjn8eKXMvWBoGUIzPRFdDKCv0m6SLce5jQPM7uq87UfXX7Mu1PYjIsoTNAPm3f/s3eL1e2Gw25OTk4N///d9x+PBh/OEPf8Df//3f4w9/+APq6+uxfft25OTkAAC6uro4C+Q8O3bswL59+wAAdrsd27dvv2AAAgAuu+wyvPbaaxg/fjwAoK2tDWvWxH/SiyybgJ6eHjz//PPo6bHuNzL0Ys6skQNVYlQlDtPE8Q2hqPEbQkRS43WUZML+qj7p2vjErtg2PNfj6DatHJNJl/tEqzqiPQqnDv2oBxl4HvPRgwzzyi2s0MpNUlboN0kXoytf2yPImavrbaP2V2eudlxXftxVJHkJGwB56623hv6+ceNGzJ07d9jXzZs3Dxs2bBj2fVb3hz/8Yejvd911F8rKyoZ9XWZmJn73u98N/Xv9+vUIBoPSlk1ASkoKcnNzkZIifBsfaTBn1siBKjGqEoep5j6mfZPHDPyGEJH0eB0lmbC/qk+6Nt6/NjHlvFNtehHS5T7R8oq0R1Hl0I9SEEYuvEhBeIQ3xqm4Uis3SVmh3yRljJ5SYOkOXf/PG7G/Zl+uHc9TamAlSUbCevkHH3wAAPje976HBQsWjPja2267Dd/73vcQDodx5EjyjhAnUnd3N/785z8P/Xvp0qUjvv72228fWtevra0Ne/fulbJs0mRkZGDOnDlD+6zQ6Jgza+RAlRhVicNUMX5DaFT8hhCREngdJZmwv6pPqjZubQBOJWCpUUBb7qb1uKlFSJV7kcq+mV2dAR/moAYZ8JlXntmzueNkhX6TtDF6SoHlB7QZ+VGI2F/LFmnH4eAHQeAAyNdffw2bzYbrrrsuqtdPmTJl6H0EHDhwAH6/H4A2y2K0PDqdTlx//fVD/45nQ3KRZZMmEAigvr4egUBAdFWkwZxZIweqxKhKHKaL4RtCI+I3hIiUwesoyYT9VX1J38btzd88Dj6d2LIPmVte0uc+WXhKgSumAQACSEc9JiGAdHPKKqoEPJPMObZBrNBvkjpGV762R9CdL14wO2k4l/TXokrgzm3a+/mlNjpH2ABId3c3AES9Ifbg6wbfZ3Uffvjh0N/LysqQljb6fvY/+MEPhn2/TGWTxufzoaamBj6fid/IUAxzZo0cqBKjKnEkhM5vCEXEbwgRKYXXUZIJ+6v6kr6Nq6/65mHygMQlDpq7EXrS5z6Z3LACAOCDAzW4Hj44zCmncoU5xzWQFfqNFDFOnK19QW35u8B1vxz2JT44UJM2A74pf6u9bukO7uVIlxj9zrXJbDab6CpI6aOPPhr6e1FRdOsmXnHFFUN/b2xslLJs0rjdbqxYsUJ0NaTCnFkjB6rEqEocCTP4DaGyRdpa0s3vRP/eokrtP2H8JZlIKbyOkkzYX9XHNh5FOAyYdG+Iuddh4mxg8kK4j72EFTBpIKxskRS/dydlv2ltGHmG1iv3aP+3KVsU1QybpIwxEs8kYNr9ww6YutGNFb++L6n3lCHxhA+AUGzOXwrM4/FE9Z6CgoKhv7e1tUlZNmnC4TD8fj8cDgcHEaPEnFkjB6rEqEocCTdxtvZoPQ7vwefwwXu7UZbyKXJtPUMv6QhnwnnFD+Esvk5bezjJp98TUWx4HSWZsL+qj208ikA34Mg25dDMvU5zH0O46R34u9vggB+GZiz7cuCWNUYe0TRJ1W9O7AL2rx19b57T72mP/Y9ry5nd8JsRB5uSKsY4hAEtjnBY6jjIXMKWwKL4nL8UWLQbFp3/uniWEhNZ9sWcTufQBusDAwPo6OhAOBwGAHi93qG1DPv6+tDTo90ACwaD6OjoGDpGZ2cn+vv7AQC9vb3o7e0FAPT396Ozs3PodR0dHQgGgwCAnp4e9PX1AdDWTfR6vQC0D5COjg4MDAwMxTo4ndDv96OrqwsAEAqF0NHRgVAoBADo6uoa2lfF5/MN5ShSTJ2dnXj00Udx9uxZZWIyu52+/PJLPProo+js7FQmJr3tNNhvTp8+rUxMF7fTYIxffPFF0sSUhgG4MLiuahhZNj9SEBoxpvb2djz66KNob2+Pq536erWYUhFCls0/VNdMmx/BBLRTIOBHxrnYbedit0Gra293t3l9L7sYrddU4W/6/x/80L8O1/mfwDW+dSj1PY0bAv+Ms7c+C9z8EHqyiky77vn9PmRAq0/KUP61mHq6u5K27xlx3fP7+uA8F/vFfa+7y5uQa0Q6BiL2PbOve76+3nOxDyDzvNizbP6EfObaEYzY92S5lhvRTl9//fXQ574qManYTozpm/756KOPDn3RTIWYVGyneGL64osvhn5HTcqYkKrFhAz0wanFhHR4of1fOwygA24MnLuF1A3X0PJIftjRhUwtJtjQATdC526bdyETfti1mOBAN1xaTEhBB9znPp0Ab3ubae109uzZoc8DK/Y93TGluHDmR/+KR22/RhtyL2wnZA3ts9AHJ3qg3ecJIhUdcH8TE7LRf+771r1wohdOwJmL/jteQGd/anwx9fRG7nveLrV+j+j+Ch1b70Vo6x3AqQPRn0/IQuDUQWDrIvS9cC96vvxMa6eL+t7p06eHYkyKvjdqO2n5v7jvncYYPLr+OXR2dprbTgnqe0l/jTAgJhGED4DU1dXhd7/73aiPurq6ofdE8/rf/e53AqMy3/lr9Nnt9qje43B8s37j4IkgW9kXq6iowMKFCwFoN7irq6uHTsoNGzbg+PHjAIA9e/Zg+/btAIDPPvsM1dXVQ8d44okncPLkSQDAm2++iTfffBMAcPLkSTzxxBNDr6uursZnn2kfHNu3b8eePXsAAMePH8eGDRsAaBeM6upqfPnllwCAl156CbW1tQCAw4cP49lnnwWgXRSqq6uHLkLPPvssDh8+DACora3FSy+9NGJM2dnZmDx58lAdVIjJ7Hb67LPPkJWVhezsbGVi0ttO2dnZuPPOO7Fx40ZlYrq4nbKzs/Gtb31rqA7JEFNxajvmOrSl/+wYwCLnUeTafCPGNPgLxOCfsbbTO7u1un47pRuLnEeH6rrAcRyfn2oyvZ3+6/hR/JXjvwAAmbYAFjmPItOm/UL05vaXTO17dftrAABjU7z4K8cnaIcbPcjAIucxfNlyJuaYor1GNNS/j5vsWn1ybT4sch6FHdovmn96aWvS9j0jrnuH697FNHszgEv73qtbNyXkGvG91K8i9j2zr3vn970FjuNDr1vkPJqQvjcprTVi35PlWm5EOw3+hzA7O1uZmFRsJ8akxTTYTwf7rQoxqdhO8cTU0NCAZcuW4eTJk8kZEy7XYsJfYQ8qtJjwPWzAHVpMcKDa9kt8iW9pMWEeaqHt83kYpXgW/02LCdmotv0SXmh9+ln8NxyGtr9aLX6AlzBPiwnfQrXtl/Cfu5m44blXTGunPXv2YPLkycjOzjau773zZ2BVDmofuQ0v/eMKYFUOvvzfV2rt1Ppf5rVTgs6nN9//GMsW/iV8GWMvbCfcgeP4nhYTKrAdf6XFhMtRbftmf4Yn8Dc4CW05ojdxE95MnwMs3YGT3Y74Y9q5J3Lf2/SyOr9HtByD94nZqP6vsfrPp/Pb6cNWbF+/GmhtuKTvbd26FT/60Y+QnZ2dNH1vxHb6uEmL6aK+t9G2GMv++lZkZ2eb204J6nsyXCPijUkEW3jw7kqCpaSkmD41aXBES0Xz5s3Djh07AAAPPvggHnnkkVHf88Ybb2Du3LkAgKysrKGRPZnKHtTQ0IDJkyfD6XQiLS0NtbW1KCkpQVdXF3JycmCz2eD1euF0OmG329HX14dQKITMzEwEg0F0d3cjNzcXgPbB5nK5kJ6ePjSS6nK50N/fj97eXuTk5ADQRlOzsrKQlpaGnp4epKSkICMjA4FAAD6fD263G+FwGJ2dncjOzkZqaiq6u7uRlpYGp9MJv9+PQCCA7OxshEIheL1euN1upKSkoKurC3a7HQ6HAz6fD8FgEFlZWRgYGGBMjIkxSRzTV31hzFzzFuwYQC/s0L6FH0BvOB17Vt6MPHvI1JhOf92NH/1LHVIRQoatH91h7ZfiTJsf/77iZozz5JjaTidb2vHjtTXogx02hJFpC6AnbEcYNuz61XUo9uSY1k6ft/fir/75PaRiAE5bED3nYs+y+bH9N3+Jcd9xm9r3Pj7bhlur96IP6UhBCC5bP7rDdgA27PzVtRhfkKds3/v4zNf48f/dBx/SL+l7byz/Ib475lumXiO+7A1h1pq3kIaBS/re3pWzkJs+YOo1QmTf+6JnADev+Q+kInxJ39u3chZy0oK8ljMmxsSYGBNjujSmteORhgH0IAMpCCMDPgSQDh8ccKMbYQCdcCMb3UhFCN1wIQ0DcMIPP+wIIB3Z6EEINniRDTe6kIIwupAJO/rhQAA+OBBEKrLQiwGkoAtZyIEXNgDe35yCMyNDnnbqaYFj3bXDx3T/Ptjyi9Xoe11fouvf/1/kfPS81k7IghN+2NGPPjgRgg2Z6EMQqehGJnKh3SztRDZc6EM6guj9/h3AzQ/DddlYY2L67EOkPXXT8H1v6X64CyeJP5/ibafPjiB720KEfJ2xnU/DtZPTgeDfbEd35hVy9L3h2qnvC9if+OHwfa9qP5BXZG5MVuh7Jn8+ff7555g8eTIGHTt2DKWlpUgE4QMgZhVvs9mUHgC544478OKLLwIA7r///qhG0l555RXcfvvtALQ9OQaXT5Kp7EGDAyCDEnnSJIPu7m689NJLWLhw4dASYDQy5swaOUi2GE+39eLGNW8P+9y+lTNRmO8a9jmj4oi1fKOILN/KsYsu38qxiy5fdOzJJNk+D4hGwv6qvqRv4/bmb/7+yj3aPgKJUlgB/GKXaYc3JfftzUD1VcM/V3VE+s2YL8nZiV3AO9VA8zvRH6SoEqhcYfyG5wnKvbBztrcNeGIa0BXfPbNhZV8OLD8AuPIBSHBduliEtu+GCy/9xcNYuPhn5sah+HmfCCLv5QrbBH369OncnCYO3/rWt4b+3traGtV7Wlpahv6en58vZdmkSUtLQ3FxMdLShJ3C0mHOrJEDVWJUJQ4CgDCyzn0Drh9p6EZ0e2cRUXx4HSWZsL+qL+nb+Pwbd0WViR0AKa409fBJn/skdEnOJs7WHq3HgUNPAwefGv6NhRVae05eCHgmJa7CJhDWb3Y8YM7gB6Ad942VwO1a+6lybqRhAMVjC6SPg8wlrHfU1NSIKloJV1555dDfm5ubR3jlN06dOjX095KSEinLJo3T6cSMGTNEV0MqzJk1cqBKjKrEYVmtDcg5+By2pO/G5JQm5Np6hp7qCGfC+f/9ACi6DihbJP1/DomSFa+jJBP2V/VJ1cZlC4H9jyeuvMkLTT28VLlPEhFz5pkETLs/8gDIT55U5lvwQvrNiV3AsZfMLePoNu3/IBNnK3NuOOHHjIprAKdTdFUoiXF4TFLf//73h/5+9OhRBIPBUUc7//M//3PY98tUNmn8fj8OHz6Ma6655oIN5iky5swaOVAlRlXisJwTu4D9a4FTB+AGcEPqpS/JtfUAp/dpj/2PA1dMA274jfHLA5AlFea70PTIPNHVSAq8jpJM2F/VJ1Ube0q1309OHTC/rKJK078MIlXuk0RS5yyvCFjVaXoxQnKwf21iynmnGpg4O7nbWQc/7Dh8uAHXVBZIHQeZK0V0BSg206ZNGzqxe3p6cOjQoRFf7/f7UVtbO/TvWbNmSVk2aQKBAOrr6xEIBERXRRrMmTVyoEqMqsRhGb1twEu/ALb+VP/NglMHgK2LgJd/qR2HiAzB6yjJhP1VfdK18Q0rElNOpfnlSJf7JMCcCchBa0NiBh0BbS+X1uPKtHMA6aj/8GPp4yBzcQBEUllZWbj55puH/r1p06YRX//KK6+gq6sLgLYHx/Tp06UsmzTZ2dm47777kJ2dLboq0mDOrJEDVWJUJQ5LaDmmbVQY73T1o9u047Q2GFMvIovjdZRkwv6qPunaeOJs05em0pbhMX8GrHS5TwLMWYJy0N78zePg0+aVM5xDTyvTztnowX13LpA+DjIXB0Ak9qtf/Wro75s2bUJDw/A3TXp7e/HQQw8N/fvee++Ne3MgkWUTEAqF0NHRgVAoJLoq0mDOrJEDVWJUJQ7ltRwDNs0zbqPCrrPAxrlxD4I0tnixfu/JiM+veKEea3Y24qOWrrjKIUpmvI6STNhf1SdlG899DMi+3JxjZ18O3LLGnGNfRMrcC8acJSgH1Vd98ziU4AGQg08p084h2NDh7ZI+DjIXB0AkNm/ePNx4440AtGWmfvzjH+PIkSMXvObrr7/Gbbfdho8//hiANgPjwQcfHPZ4TU1NsNlsQ4+RZnYYXTbp4/V6UV1dDa/XK7oq0mDOrJEDVWJUJQ6l9bYBzy4EfB3GHtfXAWy5PablsHY3tuKn697FnLX7sKX2VMTXvd/cjj/WnMTstXvx03Xv4u3GL+KoMFFy4nWUZML+qj4p29iVD/zsZcCZa+xxnbnacV35xh43AilzLxhzZo0ceDs7lYjRi2xUb3pZ+jjIXPwqvuS2bt2KKVOm4OzZs2hqakJ5eTluuukmTJgwAV9++SXeeust9Pb2AgDS0tLw4osvIjc3V/qyrc7tdqOqqgput1t0VaTBnFkjB6rEqEocStvxgHEzPy7WdRZ4YyVw+1NRvby9J4CHX2/A6x+c0V1UXVMb6ja1YUH5GKy6tRR5mXbdxyBKRryOkkzYX9UnbRt7SoGlO7QvZxjxe0/25drgh6c0vuO0N2vfmh9O1RFto+xzpM29QMyZNXLgdqYoEaMbXahacrv0cZC5OANEcn/xF3+B3bt3o7y8HAAQDodRU1ODp59+Gq+//vrQAMS3v/1tvPrqqxfs3SFz2VaXkpKC3NxcpKTwFI4Wc2aNHKgSoypxKOvErvj3/BjN0W1aOaP48KwXc6r3xjT4cb7X6s9gTvVeNLbwm1OkBl5HSSbsr+qTuo09pcDyA9qeHfEoW6QdJ97BD50Mz31rA/BOdeTnX7kHeGs10HrcmPIEkLq/GsQKOUgJBZWIMQVh5LqzpY+DzMXeoYCSkhK899572Lx5M+bMmYPCwkLY7XZ85zvfQUVFBdasWYPjx49j3rx5SpVtZV1dXVi3bt3Q5vI0OubMGjlQJUZV4lDW/rWJKWek/1xDG/xY/GQtWr1+Q4pr9fpxx/paDoKQEngdJZmwv6pP+jZ25WszU+98ESiq1Pfeokrgzm3a+xO07NX5DMv9iV3AhluAJ6aNvF/D6feA/Y8DT1yvvf7Em/GVK4D0/dUAVshBV19AiRi7kIl1W1+TPg4yF5fAUoTdbsfPf/5z/PznP4/5GMXFxQiHw0LKJn3sdjvKy8tht3OpkmgxZ9bIgSoxqhKHklobgFMHElNW8zvatwc9ky55qr0ngCUb69DZ129okZ19/bhrQx12Vk3nclgkNV5HSSbsr+pTpo0nztYerce1QYCDEZbrLKwAiiuByQuH/T0mkeLOfW+btvRpLLN/Tx0Atp6bPXPLGiEDQLFQpr/GwQo5sGflKRGjHf0o//53pY+DzMUBECIJORwOVFRUiK6GVJgza+RAlRhViUMp7c3anwdH+MafGQ49Dcz7p0t+/PDrDYbN/LhYq9ePVdsbUL34GlOOT5QIvI6STNhfJaVjHwrl2tgzCZh2f+QBkJ88eUH8IsWV+5ZjwLML49//5Og2oGm/MfufJIBy/TUGCclB1ZFv/v7KPdrsoUQprIDD6VSinR0IoOKaUsDhEF0VSmJcAotIQj6fDzU1NfD5fKKrIg3mzBo5UCVGVeJQSvVV2mOkJQ/MMMyNhd2NrXHv+TGa1+rPYHdjq6llEJmJ11GSCfur+tjG4sSc+5ZjwKZ5xmz+DmjH2ThXm02c5NhfR8hBezOwKmf4x+AXpqKVV/TNQ+/ScvEqrlSmnX1woKb2sPRxkLk4AEIkoWAwiKamJgSDQdFVkQZzZo0cqBKjKnGQQS5annJdzScJKXbdnsSUQ2QGXkdJJuyv6mMbixNT7nvbtJkfvg5jK+PrALbcrh0/ibG/CshB2cLElDNo8kJl2jmIVDR93iJ9HGQuLoFFJKGsrCwsWbJEdDWkwpxZIweqxKhKHGSQQDfgyAYANLZ4UdeUmP80133aho9aunBlQXZCyiMyEq+jJBP2V/WxjcWJKfc7HjBu5sfFus4Cb6zUNoVPUuyvAnLgKQWumJaYvQaLKgHPJGQBSrRzFnqx5PZbgKws0VWhJMYZIEQSGhgYQEtLCwYGBkRXRRrMmTVyoEqMqsRBxvj8qw6cbuvF6bZebKnVObU+Tokuj8govI6STNhf1cc2Fkd37k/sim3Dcz2ObtPKSVLsr4JycMOKxJRTqZWjSjsPIAUtX34tfRxkLg6AEEmoq6sL69evR1dXl+iqSIM5s0YOVIlRlTjIGD/65/dw45q3ceOat7Gl9lRCy36GAyAkKV5HSSbsr+pjGxuotQF4pzry86/cA7y1Gmg9DiCG3O9fG38dozFSDIKNmLO8ImBV5/CPJNn43ghCztmJs4HJJi+FVbYImPgjAOpcl7qQhfXPbZc+DjIXl8AiklBOTg4efPBBOBwO0VWRBnNmjRyoEqMqcZAxeuAUWn44HIbNZhNaByK9eB0lmbC/Sqi1ATj4dOTnX7lHW2ambBHgmcQ2NsKJXdrgxGhLBJ1+T3vsfxy4YhpyKldEn/vWhsQsQQQAze9ogzSeSYkpTwf2V4E5mPuY1jfMWIIt+3LgljVD/1SlnXPgxYPL/hqOnBxzCxoc/CMpcQCESEI2mw1Op9gbYrJhzqyRA1ViVCUOpVQd0f585R7tP9WJUlgB/JfYwYeewACyHPyVkeTC6yjJhP1VIjHehLfd8Bs4z33rWhmJuhnY26btyRHLslSnDsB26gCcZYu0G7+u/OFf135uxutIg1pmOPQ0MO3+pJs5wWuSwBy48oGfvQxsnAv4Oow7rjNXO+5554Aq7WwD4HQ4AH5hi0bAJbCIJOT1erF27Vp4vV7RVZEGc2aNHKgSoypxKCWvSHsUVSa23OIElzeMQDAkugpEuvE6SjJhf5VAbxvw0i+ArT/VP0Pg1AF4ty7F2v/z/4O3NbFLWUqv5RjwxLS49uTwIgtrj7rh/cPN2gyP4VRfpT0OJXgA5OBTWrlJhtckwTnwlAJLd2gzNoyQfbl2PE/pBT9WpZ29yMLajdukj4PMxQEQIgk5nU7MmDFDidH6RGHOrJEDVWJUJQ4llZm8Lu/FzF4HOAr2NP66SPLhdZRkwv6a5Ay4Ce+EHzMCb8H5zNzIN+HpQi3HgE3z4l4KyAk/ZuBdOHtOa9+qZ/5HxWtSEuTAUwosP6AtoxePskXacS4a/ACSIEaDOOHHjKnl0sdB5uL/aIkkZLfbUV5eDrvdLroq0mDOrJEDVWJUJQ4leUqBK6YlpqyiyqRYFzrTniq6CkS68TpKMmF/TWIG3YS3ox/lOA57N2/CR6W3DXh2oSFLAA3lHv3a8bbcrh2fIuI1KUly4MoHbn8KuPNF/bPQiyqBO7dp74+w9FtSxGgAO/pRPul70sdB5uIACJGE+vr6sHPnTvT19YmuijSYM2vk4OIYT7f1ovi3fxr2cbqtV3BtI7NCW0nthhWJKadSK2ffyplDjx8W5SWm7HOuLcrjBugkJV5HSSbsr0nKwJvwfXBiJ2agD07ehI/GjgcM2wT6gtwD2nHfWGnIsVXFa1KS5WDibG0Jq+XvAtf9MvLrCiuAG/9Oe93SHcAo+w4lVYxx6IMTO/e+J30cZC4OgBBJKBQKoaOjA6EQ12WPFnNmjRyoEqMqcShr4mzzl6YqWzT0n5bCfNfQY+q4CJt3mmTq+MSWR2QUXkdJJuyvScrAm/Ah2NABN0I496UC3oSP7MSuuJYbu9gluQeAo9u0cmhYvCYlaQ48k4Bp90d+/idPAjc/FPUM8qSMMQYh2NDh7ZY+DjIXB0CIJJSZmYnFixcjMzNTdFWkwZxZIweqxKhKHEqb+5hxGxNeLPty4JY1wz41v3yMOWVGMP/qsQktj8govI6STNhfk5DBN+Ez0YfFeB2ZOO8byrwJP7z9aw093LC5B4B3qg0tRyW8JlkjB6rEmIk+LP7xzdLHQebiAAiRhILBIJqamhAMBkVXRRrMmTVyoEqMqsShNFc+8LOXAWeuscd15mrHjbBWb0mBG1OKEzMrY8q4fFxZkJ2QsoiMxusoyYT9NQkZfBM+iFQ04S8QxEX7avEm/IVaG4BTBww9ZMTcN78DtB7X/l51RHsUTjW07FEVVmjlJhlek6yRA1ViDCIVTZ+dlT4OMhcHQIgk1N3djc2bN6O7u1t0VaTBnFkjB6rEqEocyvOUauvrGjUTJPty7Xie0hFfdt+M8caUN4rlN01ISDlEZuB1lGTC/ppkTLgJ341MbLb9FN246BvK59+Et7L2Zu1x8GnDDx0x9wBw6Gmt3Lwi7aF3o+l4FVdq5SYZXpOskQNVYuxGJja/skv6OMhcaaIrQET65ebm4uGHHxZdDakwZ9bIgSoxqhKHJXhKgeUHtHW8j26L/Thli7RlryLM/DjfrBIP5l89Bq9/cCb28kaxoHwMZpZ8x7Tjq6ww34WmR+aJrobl8TpKMomrv7Y3A9VXDf9c1ZGkvLmatNqbtT9NuAmfCy8eDj8+/JOHntbW9dfbViq1faQ4DDBi7g8+pT1WdWr/LlsI7I/wWjOYvadcjPgZao0cqBJjLrx4+P4lQG6u6KpQEuMMECIiIqI4tIezcH/g11gaeADvhUp0vfe9UAmWBB5AVf+v0R7Oivp9q+eXwuN26K1qVDxuB1bdOvIsFCIiIuVUX6U9Dhk/ADKig0+ZOgBAOnhKgSumJaasosqoN6smIqL4cACESEKdnZ145JFH0NnZKboq0mDOrJEDVWJUJQ4r+PCsF3Oq9+L1D87g7dA1uCPwEH7kfxT/ElyAfQOT0RG+cLmFjnAm9g1Mxr8EF+BH/kdxR+Ah1ISuwWv1ZzCnei8aW7xRlZuXacfmu6cgJyPd0HhyMtKx+e4pyMu0G3pcokTjdZRkwv6qvk5k4xH8Cp3g3lqJpjv3N6wwtT5DKhNUTgx4TbJGDlSJsRPZeGTds9LHQebiElhEEnK5XLjtttvgcrlEV0UazJk1cqBKjKrEIUpjixdbapsjPr/ihXpMHZePBeVj49rk+8OzXix+shadff0X/PxEuBD/GLzj3L/CyIQPdvQjgHT0wAnANuzxWr1+3LG+Fi8sq0BJgXvU8ksK3HhhWQXu2lCHVq8/5jgGedwObL57SlRlEyU7XkdJJjH319aGkZdreuUe7VvmZYv4TXPBXOjDbdgFF/pEV8VydOd+4mxtaapjL5lXqbJFwMQfmXf8OPEz1Bo5UCVGF/pw21/dIH0cZC4OgBBJKD09HSUl+pZZsTrmzBo5UCVGVeJItN2NrVhX8wnqmtpGfN37ze14v7kdf6w5iSnF+Vg+Y4Lu/S7aewJYsrHuksGPS9nQgwz0ICOq43b29eOuDXXYWTU9qlkYJQVu7KyajlXbG/Bafex7giwoH4NVt5Zy5gcpg9dRkonu/npiF7B/7egbdZ9+T3vsf1xb1ueG3yT1TVeVpSOIEpwUXQ1Liin3cx/TNqjvOmt8hbIv1/Z9S2L8DLVGDlSJMR1BlEwoAtKNnRlPauESWEQS6u3txauvvore3l7RVZEGc2aNHKgSoypxJEp7TwD3P3cYd286NOrgx8XqmtqwdNNBVD1/GO09gajf9/DrDYbMuhhOq9ePVdsbon59XqYd1YuvwYYl12LKuNE3UT/flHH52LjkOlQvvoaDH6QUXkdJJlH319424KVfAFt/Ovrgx8VOHQC2LgJe/qV2HFW0NwOrcoZ/tEeeDZpovXDiVcxGL5yiq2I5MeXelQ/87GXAmWtsZZy52nFd+n5fSzR+hlojB6rE2AsnXv2PfdLHQebiDBAiIiKS1odnvViyMf4loF6rP4PaT76Oagmo3Y2teP2D2GdbRFufBeVjMKvEE/V7ZpV4MKvEg49aurClthnP1DYDCCMLfUhHEP1IQzcycG1RPqaOz8f8q+NbAoyIiBKo5Rjw7ML4v5F+dBvQtF+7CespNaZuRPGqOqL9+co92qylRCmsAH7y5PDPeUqBpTuALbcbMxMk+3Ked0REgnAAhEhCg2s1UvSYM2vkQJUYVYnDbJH24IhVtHtwrKv5xJDyRrNuzye6BkAGXWk7hQfSnsfs9N2YnNKEXFvP0HMd4Uw47T+AM/U6wLYIANeEJzXxOkoyGbW/thwDNs0DfB3GFNh1Ftg4V7u5y5ux3zDxJrwLPtyGXcM/OdJN+EhU2/8lr0j7s6gysbkvrvym7OF4SoHlB4A3VmqDh7EqW6Qte5XkMz8G8TPUGjlQJUYXfLjtr24EuAcIjYBLYBFJqL+/H42NjejvN+amnxUwZ9bIgSoxqhKHmaLfg0OfwT04Ii2H1dji1b3MVqzqPm3DRy1d0b/hxC5gwy3AE9PgPvTPuCG14YLBDwDItfXAeXqfth78E9drrz/xpsE1JxKP11GSyYj9tbdNm/lh1ODHIF+H9s12lZbDildekfYoqjT80P1IQyMmoH+476COdhP+fOd91uPQCAMgg3u/yPZZX7bQ8EOOmPvJUZTnygdufwq480X9faOoErhzm/Z+SQY/AH6GAtbIgSox9iMNjSebpY+DzMUBECIJqbJWYyIxZ9bIgSoxqhKHmRK9B8fptl6cbuvFltrEriceVXlcE57oEryOkkxG7K87HjBnI2ZAO+4bK805diK0NgDvVEd+/pV7gLdWA63H9R3XhJvwvcg4tw9FxqVPRnMT3iqf9Z5S4Ipphh4yYu6LKvXNjpk4W5s1tfxd4LpfRn5dYQVw499pr1u6A5j4o9gqLhA/Q62RA1Vi7EUGXv2P/dLHQeayhcPhsOhKEOnV0NCAyZMnD/372LFjKC3l9G0iutDptl7cuObtYZ/bt3ImCvPNnSbL8s0pf3djK+7edCieqkVlw5Jrh5agKv7tn0wvL5KmR+ZFftKoNeEBw9amVrXfEREl3Ild2g1vs935onZzVxYndgH71+obCLhiGnDDb6K/Gb3hFv0DDbEoqtRuko8kCT/rTZWwfr8t9sGJ9mag+qrhn6s6Ev2MHpLL4NJzkWZfFU41f+k5K/c9K8euCJH3cjkDhIiIiKSSyD04kkHE76oMrglv1DeDB9eEb20Y/bVERGS+/WsTU85IsyiSSSJnQdywIqYq6lY5SjlW/KyfODu6WTHxKFsk5cwMEkT1peeILIADIEQS6ujowOrVq9HR0SG6KtJgzqyRA1ViVCUOMyT1Hhwm6QkMXPpDrgkfUWG+C02PzBv2wdkf1sHrKMlk2P7a2pCYGQgA0PyO/mWiBrU3A6tyhn+0G7hsZMsx7ebjsZfiO87RbdpxRhsAMPgmfAfcWG37n+iA+5sfjnYT3sqf9XMf02arGOCS3Gdfrm1IThHxM/S8HGy9V9ml51Rp5w64sfr/bpI+DjIXB0CIJJSVlYW77roLWVlZoqsiDebMGjlQJUZV4jCSyD04TreJXU82EAxd+kOuCU80Il5HSSYX9Nf2Zu1xcIRvGZvh0NPGDlgYSdQsCANvwmehB3eFX0QWerQfRHMT3sqf9a58bakuZ27ch7og985c7bgSbUguAj9DgazuZtzl/DOyTiRo0FUAVdo5Cz246yezpY+DzJUmugJEpF9aWhqKi4tFV0MqzJm4HCRyPX5V2lmVOIwUqQ+Z7ZnaZjyT4EGXi9nTLvq+yold8X8DdjRHt537ZqpEa8ITnYfXUZLJBf010vrmZjv4lPZY1Smm/EjMngWx/EDkm+GDN+E3zo27/DQMoBifaf+I5iY8P+u1fUqW7tDaKY6BoKHcy7D/SZKw/GdoyzGkbZmPYqOuO4ODrkt3JFX/U6Wd0zCA4r+4HEjjLW6KjDNAiCTU09OD559/Hj09PaKrIg3mzBo5UCVGVeIgY2TaUy/8AdeEJxoVr6MkE/bXEYieBTF4Ez7OmSA9yMDzmI+ezOLoboLys17jKdUGqcoWxXyIHmTgefd96Pn5W0l18zmZWfqadG7Qtcfn185ZZBhz3CRcek66ds4r0gbpL3r0PHAGz+96V544SAgOgBBJKCUlBbm5uUhJ4SkcLebMGjlQJUZV4lDJvpUzsW/lTPywKC+h5V5blAebzfbND2RZE55IMF5HSSbS9tfWhpFvoL9yD/DW6tg/SxI1C+LErpFfY8BN+BSEkXuZByl3vzH6TXh+1l/IlQ/c/hRw54tAUaW+9xZVIuX2p5E7aSZSsr5lTv0UJO01yQjnBl1TEEYuvEhB2LhjJ9nSc6q0sypxkLk4P4hIQhkZGZgzZ47oakiFObNGDlSJUYU4Glu8I+7XseKFekwdl48F5WNxZUF2AmsWm8Gl2qaOy8f7ze0JK3fq+PwL12QXsSb8vH9KbJlEBlDhOkrWIV1/PbFLm6Ew2k360+9pj/2PA1dMA274zcibfl8skbMgRlsGavAmfNki7fXN70R//KJKZFSuwJzRYh/8vOdn/fAmztYerce1Oh98avjXFVYAxZXaJvaeScgAMKcsoTWVnnTXJKOcN+iaAR/moMb4MpJo6TlV2lmVOMhcHB4jklAgEEB9fT0CgYDoqkiDObNGDlSJUeY4dje24qfr3sWctfuwpfZUxNe939yOP9acxOy1e/HTde/i7cYvEljL2M0vH5PY8q4eq60HP/g4lOCbIpFuLhAlOZmvo2Q90vTX3jbgpV8AW3+qf4bCqQPA1kXAy7+MbgmYZJ0FMXG2toTV8neB634Z+XWFFcCNf6e9bukOBIpnjN7G/KyPjmcSMO3+yM//5Eng5oe010Gi8yuJWDZn5w26BpCOekxCAOnGl5MkS8+p0s6qxEHm4gAIkYR8Ph9qamrg8/lEV0UazJk1cqBKjDLG0d4TwP3PHcbdmw6hrknf2rZ1TW1Yuukgqp4/jPae5P7FtaTAjSnFI2xaaqAp4/KTY3ZM2MCp/0QJIuN1lKxLiv7acgx4Ylr8S1Id3aYdp7Xh0ufam795iJgFoYfOm/BJ38YKf9Ynfe6TkCVzdtGgqw8O1OB6+OAwvqwkWXpOlXZWJQ4yF5fAIpKQ2+3GihUrRFdDKsyZNXKgSoyyxfHhWS+WbKxDq9cf13Feqz+D2k++xua7p6CkwH3Bc/tWzgSgLZ2VyCWori3Kw+/vKL/gZ/fNGI+6TeZvYLj8pgmmlxGVQDfgSIKBGL3CYcDfBQz0A6npWgzn76dCSpPtOkrWdkF/rTqi/fnKPdryUYlSWKHdtB9OyzFg0zxtE18jdJ0FNs69dDPw6quMOX4sDj5l6jJQSX9NkvWzPgpJn/skZKmcRVh6zo1urICJA7FJsPScKu2sShxkLg6AEEkoHA7D7/fD4XBcuDkuRcScWSMHqsQoUxwfnvVi8ZO16OzrN+R4rV4/7lhfixeWVVwwCCJyD47BsgfNKvFg/tVj8PoHZ0wrd0H5GMws+Y5px9clGIAZX34zRWsDcPQl4PP3gbMfXHizzpkLXH41MPaH2trL576VS2qS6TpKdEF/zSvSflhUmdgBkOJKYLDs8/W2Ac8uNG7wY5CvA9hyu7a5uCsxMytHFQ6bNlCe9NckmT7rdTIl93lFwKpOY46VhJK+vxopwsBrGIAfDjjghykZMHnQNRqqtLMqcZC5uAQWkYQ6Ozvx6KOPorNT3V+6jMacWSMHqsQoSxztPQEs2Vhn2ODHoM6+fty1oW7Y5bCE7MExjNXzS+Fxm3OnwON2YNWtpaO/MFHS7KJrMLoTu4ANt2jLqux/HPh0z6U363wd2s/3Pw48cb32+hNviqgtJYAs11EiIEJ/LVuY2EpMjlDejge0GRtm6DoLvLHSnGPHItBt2qGT/pokw2d9jJI+90mIOQM64cajtl+jE+7RXxwrwUvPqdLOqsRB5uIACJGEsrOzsWzZMmRnqzlN2QzMmTVyoEqMssTx8OsNcS97FUmr149V2y9dHzxZ9uDIy7Rj891TkJNh7MaIORnp2Hz3FORlJtGNCHuW6BpElsgNeUkqslxHiYAI/dVTClwxLTEVKKocflbciV3x7/kxmqPbtHKSQdC8fciS/pqUzJ/1cUr63Cch5gzIRjeWhZ9BNswbGDVz0DUaqrSzKnGQubgEFpGEUlNTUVBQILoaUmHOrJEDVWKUIY7dja2mLgEFaHuCLCgfg1klngt+nix7cJQUuPHCsgrctSH+/U8AbebHcPufDK0HD4hZEz5Zp5K3HNOWZYn3m8lHtwFN+4GfvXzhWvTx4h4kQslwHSUaFLG/3rAC2KpzcDcWlSuG//n+teaXDQDvVAMTZyemrJHonQWhYxmkqK5JIvd/UfjziZ8H+jFnQCpCKMCX5hYieOk5VdpZlTjIXJwBQiSh7u5ubNq0Cd3dYr8xIBPmzBo5UCVGGeJYV/NJYsrZc2k5g3twmCnaPThKCtzYWTUdC+JcmmtB+RjsrJp+6eAHoN1gGXwUVcZVjm7FCS4vWoMb8hq1LMvghrytl8460qW1AXhrNbB5PvBoMfBIIfDYeO3PR4u1n7+1Gmg9bkStaQQyXEeJBkXsrxNnR16ayihli4CJP7r0560N+mfWxar5neS4Lpo4CyKqaxI/603BzwP9mDOgGy5swiJ0wzX6i2MleOk5VdpZlTjIXJwBQiShtLQ0FBcXIy2Np3C0mDNr5ECVGJM9jsYWL+qaErNkUN2nbfiopeuSpahWzy/Fe59+bcoSXHr34MjLtKN68TVYUD4G6/Z8grpPo8/NlHH5WH7ThOg3PC9bqO1hkShm33iLRTJuyHtil/ZN6ZFuFg7uQTK4D8kV04AbfjP8jUeKW7JfR4nON2J/nfuYNkBgxj4c2ZcDt6y58GftzdqfB582vryRHHpa6RmPuq5J/Kw3FD8P9GPOgDQMoBifIQ0D5hUSy6Crjplno1GlnVWJg8zF3kEkIafTiRkzZoiuhlSYM2vkQJUYkzGO0229Q3/fUtuc0LK31Dbjf982+YKfDe7Bccf6WkM3YY9nD45ZJR7MKvHgo5YubKltxjMR8nRtUR6mjs/H/KvHRtxjJKLBNeET8a3cSGvCi5aIDXlvfyq61/e2afWJZY38Uwe0pW3KFmk3IPUOutCIkvE6aqr2ZqD6quGfqzqi3TBRuXzJjdhfXfnaEn0b5xo78OvM1Y578bUnUjua7eBTwLx/+ubfRZWJHQAxeRaErmsSP+tHp+MmsOU+DwxgqZxFWHrOCT9m4F3zyk2CpedUaWdV4iBzcQksIgn5/X7U1tbC7zdn82EVMWfWyIEqMSZjHDeueXvosaX2VELLjjSQMLgHh8dtzOK5HrcDLyyrGH4ZKh2uLMjGvdPHR3z+93eU44HZJfoHPwbdsCK29+kVaU14kZJpQ96WY8AT0+Kvz9Ft2nHiXX6LLpCM11FSVHszsCpn+Ed7dF8YGLW/ekqBpTu0GRtGyL5cO56R+x4ZIRz+5u9lCZ6VYPIsCN3XJCt/1huMnwf6WSpnEZae88OOWlwDP0xapioJlp5TpZ1ViYPMxQEQIgkFAgHU19cjEAiIroo0rJyz0229KP7tn1D+8A5sfWMvyh/egeLf/gnFv/3TBd/qV4Eq7axKHEYKn39T5DwJ2YMj2YhcE160RG7IO5Jk3YOEhljqOtraMHKffeUe7j2T5KLqr55SbYm+skXxFVa2SDtOsg1+AEDgvPXbB2dBJEICZkHoviZZ+bPeYJb6PDCIJXN20aBrAOmoRykCSDenvCRYek6VdlYlDjIXl8AiklB2djbuu+8+0dWQCnMG9MGO1/1J+J9dA6nSzqrEYaSewACyHMP/2pLQPTiSRaLXhE8GIjbkHe6GWDLuQUKXsMR1NJq9ZwBtSY/T75m390xrw8j7Rbxyj3aDuWyRnEvtJEDU/dWVry3RV7ZIG/Rqfif6QooqtW/7J/MN72AAOH9S5w0rtKUCzZaAWRAxXZOs+FlvAkt8HhjMkjm7aOm5bPTgPmwxp6wkWXpOlXZWJQ4yF2eAEEkoFAqho6MDoVBIdFWkwZwBNoSRZfPDhuG/Sa8CVdrZiDgaW7xYv/dkxOdXvFCPNTsb8VFLV8xlJFIgOHouZpV48OKy67FrxXT8TUXk9eavLcrDr2dOwK4V0/HisuvlG/wAvlkT3plr7HEjrQkvUnuz9hCxIe9wy9ckYg8SipvQz4NwGPB5gZ6vtT8jzGCLWW8b8NIvgK0/1T8oeOoAsHUR8PIvtePE48QuYMMt2hJuh0Y4PwcHX564Xnv9iTfjKzeZGDT7Rnd/nThbW8Jq+bvAdb+M/LrCCuDGv9Net3RHcg9+AEDaRUvNKDQLIqZrkpU+602kyv8PEsmyOTtv6bkQbOiAGyGYsE9Hkiw9p0o7qxIHmYsDIEQS8nq9qK6uhtfrFV0VaTBnQKYtgEXOo8i0qTs1VJV2jieO3Y2t+Om6dzFn7b4R9+p4v7kdf6w5idlr9+Kn697F241fxFNl09nTov+VxfQ9OJKFVdaEr75Ke4x0g9UMB5+6dDPgZNqDhEaU8M+D1gbtRvfm+cCjxcAjhcBj47U/Hy3Wfm7EMlTJsPdMsgzAiGTw4E/M/dUzCZh2f+Tnf/IkcPNDSfFN46jYsy792dzHjPucu1gCZ0HE3sYW+aw3kSr/P0gky+bsvEFXL7JRbfslvDD4/wtJtPScKu2sShxkLg6AEEnI7XajqqoKbrcEa9UnCeYM6Anbsc1Xhp6wSRu5JQFV2jmWONp7Arj/ucO4e9Mh1DXpu6lU19SGpZsOour5w2jvSc4Bskx7qugqJCcrrAmfTJJlDxIaVcI+D86/Eb7/ceDTPZcuj+br0H4e7yyIZNh7JhkGYEQyafAnqX5/qTqiPQqnJrbcwgrANsw3rRWZBRFXG/OzPi5JdX5JwtI5Ozfo6kYXqsJPwQ0DZ8sn2dJzqrSzKnGQuTgAQiShlJQU5ObmIiWFp3C0mDMgDBu6ww6EzZjGmyRUaWe9cXx41os51Xvx+gdn4ir3tfozmFO9F40tl357Zt/KmUOPHxblxVWOXtcW5cE23E0R0gyuCX/ni9qawnoUVQJ3btPeb5GlMGImYg8SipnpnweJngVh9t4z0dQjGQZgRDJx8Cepfn/JK9Ieej9P4lU8QnkKzIKIu435WR+zpDq/JGHpnJ0bdE1x5iAXXqQYtXx0Ei49p0o7qxIHmYu9g0hCXV1dWLduHbq65Fi7PxkwZ0AGApjvaEAGkvMb/kZQpZ31xPHhWS8WP1mLVq/fkLJbvX7csb72kkGQwnzX0GPquMT+4j51fPL8RyGpnbcmvPfa+7FvYDI6wpkXvKQjnAlf4XS51oQXTeQeJBQzUz8PRMyCEL33TDIMwIhk8uBPXP01rwhY1Tn8Iy/yflijKjN5742LjbbXh+SzIAy7Jqm6/4uJVPn/QSJZPmeeUnT99GWsS12KLmSO/vrRJOnSc6q0sypxkLk4AEIkIbvdjvLyctjt6i5lZDTmDAgiFR8HL0MQ6i4lpEo7RxtHe08ASzbWobOv39DyO/v6cdeGuojLYc0vH2NoeaOZf/XYhJYnPc8kdE77X/ib/v8H5f4nUep7Gtf41qHU9zTK/U/iy//2glxrwosmcg8SiplpnwciZkEkw94zogdgRErA4E9S/v7iKQWumJaYsooqo/tMkngWhOFtrNr+LyZKyvMryTFngH1sGcpvmg/7pHnxHSiJl55TpZ1ViYPMlSa6AkSkn8PhQEVFhehqSIU5A/qRiuMDHtHVMJUq7RxtHA+/3mDYzI+LtXr9WLW9AdWLr7nkuZICN6YU5+veayQWU8bly79ZuVA29CADPchIWImF+S40PRLnfxZJEw4PvyY+jcqUzwOzb4QvPzD8jdlE7j0zcfalP0/UAEzZouHLFy0Bgz+O259Kzt9fblgBbE3A0n+VK/S9fuJs7dF6XBucjjRgXFihLa01eaHwgQBVfkeVEXOvH3N2LgfTZwGYBZxYqH1GNr8T/QGKKrVrWxLPvlKlnVWJg8zFGSBEEvL5fKipqYHP5xNdFWkwZ4AdQZSnfQ47gqKrYhpV2jmaOHY3tsa958doXqs/g92NrcM+d9+M8aaWPWj5TRMSUg4lMZEb8lYdSWyZFwt0iy1fYqZ8HoiYBZEMe88kcgAm2SRo8Md37E/J+fvLxNmjL00Vr7JFsd8glGgWhCq/o8qIudePObsoB4ouPadKO6sSB5mLAyBEEgoGg2hqakIwqO6NbKMxZ0AqwihI6UKqURu5JSFV2jmaONbVfJKQuqzbM3w5s0o8mH+1uUthLSgfg5kl3zG1DJKAyA1541k/3whBdfdsMpvhnweJXoZK5N4z7c3f/DsZBmBEStDgT7D2yeT9/WXuY8ZtPn6x7MuBW9aYc+wko8rvqDJi7vVjziLkQKJB12io0s6qxEHm4gAIkYSysrKwZMkSZGVlia6KNJgzoA/p2BkoQR/SRVfFNKq082hxNLZ4E7L8FADUfdqGj1qG31Bu9fxSeNwOU8r1uB1YdWvyrZVLAiXbhryJkMa1jGNl+OdBomdBiNx7pvqq5BmAESmBgz9Zn9VgyS1TkvP3F1c+8LOXAWeuscd15mrHFbAfhwiq/I4qI+ZeP+bMGjlQJUZV4iBzcQCESEIDAwNoaWnBwMCA6KpIgzkDUhBCvq0XKQiJroppVGnnSHGcbuvF6bZebKlN7M2hSOXlZdqx+e4pyMkwdlAtJyMdm++egrxM3vyl8yTjhrxms0v6H7lwGPB5gZ6vtT/DiZ95aOjngRVnQYgegBFJwODPAFLQsncjBr5KzOxO3Tyl2nIuRs0Eyb5cO14SbgpsFlV+R5URc68fc2aNHKgSoypxkLk4AEIkoa6uLqxfvx5dXcN/K5suxZwBLls/FjiPw2XrF10V06jSzpHiuHHN27hxzdvYUnsqofV5ZoQBl5ICN15YVmHYTBCP24EXllWgpMBtyPFIMTesSEw552/IK3IPEpk2QG9tAN5aDWyeDzxaDDxSCDw2Xvvz0WLt52+tTtjN/bg/DwZvgouaBUHiCBj86UIW1h/PQte/3JSwMnXzlALLD2h7dsSjbJF2HKMGP/KKgFWdwz9EL2N4HlN+R5UkdtFU+f9BIjFn1siBKjGqEgeZK010BYhIv5ycHDz44INwOMxZekZFzBnQHbbj2b5yBJAquiqmUaWdkzGOcDgMW4SbsSUFbuysmo5V2xvwWn3sG7MvKB+DVbeWcuYHRTa4Ia+ZezFcvCHv4E2kokrg9HvmlXux4gTveRKrE7u05aFGmiHh6wA+3aM99j+uzeS54Tembg4a93VU5CyEg0+JK5uEyIEXD4b/AAf8oqsyMlc+cPtT2nXynWptxlK0iiq1weUk3xTYLMn4u51VMPf6MWfWyIEqMaoSB5mLAyBEErLZbHA6naKrIRXmDABsCCh+2VelnZMxjp7AALIckftPXqYd1YuvwYLyMVi35xPUfRr9HiVTxuVj+U0TuOG5asJhwN8FDPQDqemAI9uYGQ1zH9NuunWdjf9YFxtpQ96yhdrN+0RJhj1IRtLbBux4ILbBqFMHgK3nvkl+yxpT9gBIxusoUSQ2AM5kH/w438TZ2qP1uDZTJtKgXWGFNpg7eWFyLCsoEK9J4jD3+jFn1siBKjGqEgeZi0tgEUnI6/Vi7dq18Hq9oqsiDeYMcCGAhY4jcCEguiqmUaWdkzGOQDC6vWNmlXjw4rLrsWvFdPxNReTlF64tysOvZ07ArhXT8eKy6zn4oYpELIMkakNeK+5BEknLMeCJafHPxDm6TTtOa4Mx9TpPMl5HiSLxIgtr8Qt4Idm+P55JwLT7Iz//kyeBmx9K7utZgvCaJA5zrx9zZo0cqBKjKnGQuTgAQiQhp9OJGTNmcJRbB+YMCCAV9cExSi+BlUzt3Njixfq9JyM+v+KFeqzZ2YiPWi5dqzSZ4hhkT9P3K8OVBdm4d/r4iM///o5yPDC7BFcWZMdbNUoGJ3YBG27Rbmbvf1xb6sjXceFrBpdB2v848MT12utPvBlbeaI25BWxB0myaTkGbJpn3AycrrPAxrmGD4Ik43VUl3v3iNt7pupIYsskOOHHDLwr1ywQ0kX6a5LEmHv9mDNr5ECVGFWJg8yl9looRIqy2+0oLy8XXQ2pMGdAEKn4eOAy0dUwVTK08+7GVqyr+QR1TSMvAfV+czveb27HH2tOYkpxPpbP+GYJqGSI42KZdnUHzigOIpdBGtyQ942V2kyCWOkpX8QeJMmktw14duGlg1vx8nUAW27X2tOg5bCS8Tqqy7cmaMvGidh7Jq/om0GQV+5JbPmFFdqsAYuxox/liGNmHCU96a9JEmPu9WPOrJEDVWJUJQ4yF2eAEEmor68PO3fuRF9fn+iqSENkzk639aL4t38a9nG6rTdh9bAjiCnpp2BHMGFlJprIdm7vCeD+5w7j7k2HRh38uFhdUxuWbjqIqucPo70nEDGOfStnYt/KmfhhUZ6RVR/VtUV5ETdAJwtLhmWQBjfkvfNF7UaxHkWVwJ3btPfruek+9zHjZp5cbKQ9SJLBjgfM2XsF0I77xkrDDif970r2c0shlSV4L5jBvWfyirSH3vMqXoMDMCJVHUn47Js+OLEzezH6lh1MWJmUWNJfkyTG3OvHnFkjB6rEqEocZC7OACGSUCgUQkdHB0Kh6NbkJ+YMAFIQRpYtgBSERVfFNKLa+cOzXizZWIdWb3xLV7xWfwa1n3yN9X89edg4CvNdAICp4/LxfnN7XGXpMXW88RsUk+QGl0EyaibA4DJI0SxDNZzzN+Q99hLw+fvAmfoL6+fMBcaUA2N/GN+GvIN7kGyca+xMiNH2IBHtxC5zZ74A2mBY2SKtLeMU9+fB+ctAiZgFMTjoPLj3zKkD5pc73N4zZQu1ZesSZXKCB3yGMzgAk8DZNyHY0GEfg5B7bELKM1ReEbCqU3Qtkh7/LyIOc68fc2aNHOiOsb0ZqL5q+Oeqjgj7AoMV2orixwEQIgllZmZi8eLFoqshFeYM8CEduwPfFV0NU4lo5w/PerH4yVp09vUbcrxWrx93/dsRvLBsLjIzM4d9zfzyMfhjTeT9RYw2/2oJb8iQeZJ5GSTPJMDzkPb3cBgIdAPBAJBm175Rb9RMpsE9SLbcbsyMiOzLtcGPWAZ/EmX/2sSU8061IQMgcX8enP+feBHLUJ3vhhXacnFmG27vGdEDMCIlcPAnE31Y/NNFQITPfZIf/y8iDnOvH3NmjRyoEqMqcZC5uAQWkYSCwSCampoQDKq7lJHRmDMgFSEUpHiRCnW/GZHodm7vCWDJxjrDBj8Gdff58Zun/gNfdg6/RFpJgRtTihPzLfEp4/K5UTldSJZlkGw2bQ+FzG9pfxq9jNvgHiRli+I7Ttki7ThGDn6Ew4DPC/R8rf0ZjnPmX2tDYm6AA0DzO9pMnjgZ+nkgahmqQYN7z5hppL1nblhhbtmDhhuAEWlw8CcBglfcgKY+l6V/T1Ud/y8iDnOvH3NmjRyoEqMqcZC5OABCJKHu7m5s3rwZ3d3doqsiDeYMyLD14xbHCWTYjL1Zn0wS3c4Pv94Q97JXw8mw9aNi4Bj+z+uHI77mvhnjDS93OMtvmpCQckgSiVoG6cQuc8swiog9SCJpbQDeWg1sng88Wgw8Ugg8Nl7789Fi7edvrdY3uNDerD0OPh1//fQ49LRWbhwM/TxI4I3wiLMgRO49I3oARqQEDf50ly+z/O+pquP/RcRh7vVjzqyRA1ViVCUOMheXwCKSUG5uLh5++GHR1ZAKcwZ0hx3Y2Het6GqYKpHtvLuxFa9/cMaUYw+1VUMHbm1sxawSzyWvmVXiwfyrx5hWBwBYUD4GM0u+Y9rxSUKSLYOUMIncg+RiJ3Zp7TLSDA1fB/DpHu2x/3HtZv4Nvxn9hnOkdZ7NdvAp7RHHvgKGfx6IXIYKEL/3zNzHtNk5Zsz+Gm0ARqTBwR8zB37LFiH3B/Px8A/mm1cGCcf/i4jD3OvHnFkjB6rEqEocZC4OgBAREcVgXc0niSlnzyfDDoAAwOr5pXjv069NmYXicTuw6tYk3o+AEk/EMkjJtB9ANBK1Bwmg7cWy44HYbsyeOqDdzC9bpN14TtaN15NJgm6EjzgoJXLvGdEDMCJZdfCHiIiISBFcAotIQp2dnXjkkUfQ2Rn7NyOthjkDMm1+3Ok8jEyb8TfLk0Wi2rmxxYu6pjbTjn9+W9V92oaPWrqGfV1eph2b756CnIx0Q8vPyUjH5runIC/TbuhxSVISL4MklJl7kLQcA56YFv/N+KPbtOO0NhhTryRiyueByGWoBonce2ZwAMaoHGRfrh3PyP1vzDA4+OPMNfa45w3+8PdU9bGNxWHu9WPOrJEDVWJUJQ4yFwdAiCTkcrlw2223weVyia6KNJgzwBdOw/5AMXxhdSf/md3Op9t6cbqtF1tqzb0pe3Fbbaltxum2yBuiv7CsAh63w5CyPW4HXlhWgZICtyHHIwVUX6U9DiV4AOTgU+KWYEpmLceATfOM+zZ611ntW/2KDYKY8nmQgBvhUddD1N4zIgdgRDJ58Ie/p6qPbSwOc68fc2aNHKgSoypxkLnUvQtGpLD09HSUlJSIroZUmDNgAKk4FcoTXQ1Tmd3ON65527Rjn+/itnqmthnP1Daj6ZF5w76+pMCNnVXTsWp7A16rj31PkAXlY7Dq1lLO/CBKVr1twLMLjV2CCNCOt+V27YZ0Mi9FpINpnwcil6G62Pl7zxx6Whs0HE5hBVBcadzeM4MDMGWLtP16mt+J/r1Fldo+J8m44floBgd/3lipzZ6K1TBLz/H3VPWxjcVh7vVjzqyRA1ViVCUOMhdngBBJqLe3F6+++ip6e4f/RjhdijkDHOjHDemfwoF+0VUxjSrtHEtb5WXaUb34GmxYci2mjNN3A3PKuHxsXHIdqhdfw8EPomS24wFz9iEAtOO+sdKcYwtg6udBss2C8EwCpt0f+fmfPAnc/JDxe+pMnK0NBi1/F7jul5FfV1gB3Ph32uuW7pBz8GOQSbNvVPn9hSJjG4vD3OvHnFkjB6rEqEocZC7OACEiIlLIrBIPZpV48FFLF7acmzkynGuL8jB1fD7mXz0WVxZkJ7iWRKTbiV3mbsANaN9qL1uk3dgGgKoj2p+v3AOcfs/css9XWKHdtE9myTYLIq8IWCVo7evBAZhIM1B+8qRWP5WImn1DRERERLpxAIRIQoNrHFL0mDPAj3Ts7x8nuhqmUqWdjWirKwuyce/08REHQH5/RzkK87lOKpE09q9NTDnvVH8zADJ407qoMrEDIMWVcd8wT9jnwfk3wo+9BHz+PnCm/sJlypy5wJhyYOwP1b0RLnIARiSDBn9U+f2FImMbi8Pc68ecWSMHqsSoShxkLg6AEEmov78fJ0+exIQJE5Ceni66OlL4tLUTd1Vvx+chNwaQesFz+1bOtMSN4FQMYGyKd9gcqEKVc8MKbUVEOrQ2AKcOJKas5ne0m/nn36QvWwjsfzwx5QPaIEE8wmH0d7fh5MlPMGHCeKRn5QM2mzF1i8QzCfA8NFQ+At1AMACk2QF7lvnlk9RU+f2FImMbi8Pc68ecWSMHqsSoShxkLu4BQiQhrnGon8/XhxvsTXDagqKrIozTFlQ+B6qcG1ZoK5JI1RHtUTg1seUWVnyzBJNVtTdrj4NPJ7bcQ09r5Q7ylAJXTEtM2UWVsc2QaG0A3loNbJ4PPFqM3n+6Gq+++gp6/+lq4NFi7edvrdYGd8xmswGObCDzW9qfHPxQ2+Dsl+EeUc5kUuX3F4qMbSwOc68fc2aNHKgSoypxkLk4A4RIQjk5Ofjtb38ruhpSycp2Y6vvGtHVEKon7FA+B2afG/tWzgQArHihHu83t5tWzsVtdW1RHn5/R7lp5RGNSOJlkKRXfZWYcg8+pT3OX9LohhXA1gTMQqlcoe/1J3Zpy4NdNEMmB8Bv8UftHz4An+7RHvsf1wZzbviN3Jtxk1L4u7362MbiMPf6MWcj5EChJR9VaWdV4iBzcQYIERFRlArzXSjMd2HquPyEljt1fL4llmmjJFcW57JEesW7DBIZa+Js89ukbFH0gxK9bcBLvwC2/lT/8mCnDgBbFwEv/1I7DhERERERKYsDIEQS6ujowOrVq9HR0SG6KtLo8nZiacYhZNn8oqsiTJbNr3wOEnVuzC8fY+rxL26r+VePNbU8oqjIsAwSmWvuY0D25eYcO/ty4JY10b225RjwxDRt0/EIOuDGatv/RAfckY9zdJt2nNYGnZUlMhZ/t1cf21gc5l4/5swaOVAlRlXiIHNxCSwiCWVlZeGuu+5CVlaW6KpE7XRbL25c8/awzyViE/IMVybe8E9EX9i6m2L1hdOVz0Gizo2SAjemFOejrsmcbw6f31ZTxuXjyoJsU8oh0i1Zl0GixHDlAz97Gdg4F/B1GHdcZ652XFcUs+tajgGb5o1afhZ6cFf4RWShZ+TjdZ3V4lm6QxvkIxJAxt/tSR+2sTjMvX7MmTVyoEqMqsRB5uIMECIJpaWlobi4GGlpHMOMVlpaGlpCbgxY+LI3gBTlc5DIc+O+GeNNO/b5bbX8pgmmlUOkW7Itg0SJ5ynVBguMmgmSfXn0gw+9bcCzC6MafEnDAIrxGdIwMPpxfR3Altu5HBYJw9/t1cc2Foe51485s0YOVIlRlTjIXOreBSNSWE9PD55//nn09IzyrUYa0tfbg1n2j+FEv+iqCONEv/I5SOS5MavEg/lXm7MU1mBb3Tb5W5hZ8h1TyiCKWbIsg0TieEqB5Qe0wap4lC3SjhPtzIsdD2gzNqLQgww8j/noQUZ0x+46C7yxMrrXEhmMv9urj20sDnOvH3NmjRyoEqMqcZC5OABCJKGUlBTk5uYiJYWncLRSUlLQHbYjBJvoqggTgk35HCT63Fg9vxQet8Pw44ZgQyg9Aw/O+b7hxyaK2+AySM5cY4+rZxkkq6g6oj0Kpya23MIKrdyRuPKB258C7nxR27NFj6JK4M5t2vujbe8Tu0bc8+NiKQgjF16kIBx9vY5u08ohSjD+bq8+trE4zL1+zJk1cqBKjKrEQebi/CAiCWVkZGDOnDmiqyEVhzMDdf1XiK6GUAGkKZ+DRJ8beZl2bL57Cu5YX4vOPuNm1mRkZOC39yzG5ZeNsHkvkUiDyyBtuT3qb+SPKPtybfCDezBcKK9I+7OoEjj9XuLKLa78puzRTJytPVqPawMUn78PnKm/cJkqZy4wphwY+0NtCbVYNrjfv1bXyzPgwxzU6C/nnWotHqIE4u/26mMbi8Pc68ecWSMHqsSoShxkLg6PEUkoEAigvr4egUBAdFWk0R8I4LupX0W3Frii0jCgfA5EnBslBW68sKzCsJkgHrcDW+7+AXwtn/Acp+QmahkkKyozed+Vi8Wyz4tnEnDzQ8DPXwMebAL+12fAA59ofz7YpP385odiG/xobQBOHdD1lgDSUY9JCCBdX1nN72iDOUQJxN/t1cc2Foe51485s0YOVIlRlTjIXBwAIZKQz+dDTU0NfD6f6KpIIxDwozztDOwK3/wfjR0DyudA1LlRUuDGzqrpWFAe354gC8rHYGfVdBTl2HmOkxwSvQySVXlKgSumJaasosrYBinOZ7MBjmwg81van7YYl15sb9YeB5/W/VYfHKjB9fAhhsHpQ/rLI4oHf7dXH9tYHOZeP+bMGjlQJUZV4iBzcQksIgm53W6sWLFCdDWkkpmVjZf8V4muhlC9sCufA5HnRl6mHdWLr8GC8jFYt+cT1H3aFvV7p4zLx/KbJpy34bmd5zjJJVHLIFnZDSuArfpmQcSkcoX5ZUSrOvbPLDe6sQIxDmQcfAqY908xl02kF3+3Vx/bWBzmXj/mzBo5UCVGVeIgc3EAhEhC4XAYfr8fDocDtli/VWkx4XAYdgQRQCqg8CbgIwvDjgGlc5AM58asEg9mlXjwUUsXttQ245na5mFfd21RHqaOz8f8q8fiyoLsC55LhjiIYuKZBHge0v4eDgOBbiAYANLsgD0r9pkApA0wTV6oayNw3coWARN/ZN7xEygMwA8HHPDH9okXDrO/UsLwc199bGNxmHv9mDNr5ECVGFWJg8zFJbCIJNTZ2YlHH30UnZ2doqsije4uL/57Rj2ybNZdFzLLFlA+B8l0blxZkI17p4+P+Pzv7yjHA7NLLhn8AJIrDqKYGbUMEn1j7mPahvFmyL4cuGWNOccWoBNuPGr7NTrhju0AgW5jK0Q0An7uq49tLA5zrx9zZo0cqBKjKnGQuTgAQiSh7OxsLFu2DNnZl944peG5MrPwmm8SesM6N0NVSG84XfkcqHJuqBIHERnMlQ/87GVtOTEjOXO14yq0F0s2urEs/AyyEeNARlDdLwtQ8uHnvvrYxuIw9/oxZ9bIgSoxqhIHmYsDIEQSSk1NRUFBAVJTU0VXRRqpqaloC7sQsvBlL4QU5XOgyrmhShxEZAJPKbB0h3EzQbIv147nKTXmeEkiFSEU4EukIhTbAdLsxlaIaAT83Fcf21gc5l4/5swaOVAlRlXiIHOpexeMSGHd3d3YtGkTuru5PEO0enu6McfeiAz0i66KMBnoVz4HqpwbqsRBRCbxlALLD2h7dsSjbJF2HMUGPwCgGy5swiJ0wxXbAexZxlaIzNXeDKzKGf7RPvxeXMmEn/vqYxuLw9zrx5xZIweqxKhKHGQuDoAQSSgtLQ3FxcVIS0sTXRVppKaloSWUjQFFN/+OxgBsyudAlXNDlTiIyESufOD2p4A7XwSKKvW9t6gSuHOb9v5kXvaq6oj2KJyq+61pGEAxPkMaBvSXW1jBPWsoofi5rz62sTjMvX7MmTVyoEqMqsRB5mLvIJKQ0+nEjBkzRFdDKg6HE/XBsaKrIVQAacrnQJVzQ5U4iCgBJs7WHq3HgWMvAZ+/D5ypB3wd37zGmQuMKQfG/hCYvBDwTBJTV73yirQ/iyqB0+/peqsTfszAu7GVW6xzQIkoTvzcVx/bWBzmXj/mzBo5UCVGVeIgc3EGCJGE/H4/amtr4ff7RVdFGoGAH5NSW5EeyzdBFZGOAeVzoMq5oUocRJRAnknAzQ8BP38NeLAJ+F+fAQ98ov35YJP285sfkmfw43xlC3W/xQ87anEN/IhhL4/J+ssjgVobgHeqIz//yj3AW6u1QcIkxc999bGNxWHu9WPOrJEDVWJUJQ4yFwdAiCQUCARQX1+PQCAguirSCAb68d20r2JbCkMRaRhQPgeqnBuqxEFEgthsgCMbyPyW9qfsyzl5SoErpul6SwDpqEcpAkjXV1ZRpZyDRFZ0Yhew4RbgiWnAoacjv+70e8D+x4Enrtdef+LNxNUxSvzcVx/bWBzmXj/mzBo5UCVGVeIgc3EJLCIJZWdn47777hNdDam4srLwul+9TV716INd+Ryocm6oEgcRkWFuWAFsPRD1y7PRg/uwRX85lSv0v4cSq7cN2PGAtuSbXqcOaP2obBFwy5qk2QOHn/vqYxuLw9zrx5xZIweqxKhKHGQuzgAhklAoFEJHRwdCoZDoqkgjFAohy+aHDWHRVRHGhrDyOTj/3Ghs8WL93pMRX7vihXqs2dmIj1q6EljD6PAcJyK6yMTZupamCsGGDrgRgo7ZL2WLgIk/iqFylDAtx7QZH7EMfpzv6DbtOK0NxtQrTvzcVx/bWBzmXj/mzBo5UCVGVeIgc3EAhEhCXq8X1dXV8Hq9oqsijZ7uLixyHkWmzbrTIjNtAeVzMHhu/M0TNZizdh+21J6K+Nr3m9vxx5qTmL12L3667l283fhFAms6Mp7jRETDmPsYkH15VC/1IhvVtl/Ci+zojp19uTYjgJJXyzFg0zyg66wxx+s6C2ycmxSDIPzcVx/bWBzmXj/mzBo5UCVGVeIgc3EAhEhCbrcbVVVVcLvdoqsijcysbGzzlaEnHMNmqIroCduVzkF7TwAP7TiJbb4yHDjdq+u9dU1tWLrpIKqeP4z2HvEDRDzHiYiG4coHfvYy4Mwd9aVudKEq/BTciGKWnzNXO26SLIdEw+htA55dCPg6jD2urwPYcrt2fIH4ua8+trE4zL1+zJk1cqArxtYG4J3qyM+/cg/w1mqg9bhxFYySFdqK4scBECIJpaSkIDc3FykpPIWjlZKSgu6wA2E9S2EoJgybsjn48KwXc6r34vUjLXHF+Fr9Gcyp3ovGFrHfHuE5TkQUgacUWLpj1JkgKQgjF16kjLbsY/bl2vE8au+RJb0dDxg38+NiXWeBN1aac+wo8XNffWxjcZh7/Zgza+QgqhhP7AI23KItG3no6civO/0esP9x4InrtdefeNP4Ckdghbai+LF3EEmoq6sL69atQ1dX9HsXnG7rRfFv/zTs43Sbvm/Ly6i3uxvzHQ3IgPhv94uSgYCSOfjwrBeLn6xFq9dvSIytXj/uWF8rdBAklnOciMgyPKXA8nMbWUfQhUysw8/QhczIxylbpB2Hgx/J7cSu+Pf8GM3RbVo5gvBzX31sY3GYe/2YM2vkYMQYe9uAl34BbP0pcOqAvgOfOgBsXQS8/MuEzLC0QltR/DgAQiQhu92O8vJy2O1qLmVkhjR7Oj4OXoYgUkVXRZggUpXLQXtPAEs21qGzrx+AcTF29vXjrg11wpbD4jlORDQKVz5w+1PAnS8CRZWXPG1HP8rRADv6L31vUSVw5zbt/Vz2KvntX5uYckZa2sNk/NxXH9tYHOZeP+bMGjmIGGPLMW3GR7xfPji6TTuOyXttWaGtKH5poitARPo5HA5UVFSIroZU7HYHjg94RFdDqH6kKpeDh19vQKvXP/RvI2Ns9fqxansDqhdfY8jx9OA5TkQUpYmztUfrce0/6p+/D5yph8PXgQoc1l7jzAXGlANjfwhMXgh4JomsMenR2qD/m6exan5H60cC+gc/99XHNhaHudePObNGDoaNseUYsGmecXtudZ0FNs41dblRK7QVxY8zQIgk5PP5UFNTA5/PJ7oq0vD7fShP+xx2BEVXRRg7gkrlYHdjK17/4MwFPzM6xtfqz2B3Y6shx9KD5zgRkU6eScDNDwE/fw14sAm+33yMmmnPwfebj4EHm7Sf3/wQBz9k0d6sPQ6OsN64GUZa39xE/NxXH9tYHOZeP+bMGjm4JMbeNuDZhcYNfgwV1AFsud205bCs0FYUPw6AEEkoGAyiqakJwaAaN7ITYSAYREFKF1JH2wxVYakIK5WDdTWfXPIzM2Jct+fScszGc5yIKA42G4KpGWg68wWCqRmAzSa6RqRX9VXaI9EDEgefSmx55/BzX31sY3GYe/2YM2vk4JIYdzygzdgwQ9dZ4I2VphzaCm1F8eMSWEQSysrKwpIlS0RXQyquzCzsDJSIroZQfUhXJgeNLV7UNV36DRIzYqz7tA0ftXThyoJsQ487Ep7jRETx4XWUYhYOJ3zQjP1VfWxjcZh7/Zgza+TgghhP7Ip/z4/RHN0GlC3Sli41kBXaiuLHARAiCQ0MDODLL7/Et7/9baSmqrOhtZkGBgaQb+tFR9iJkEUnv6UghFybT+ocnG7rBQBsqW0e9nmzYtxS24x7p49HYb7LsGOOhOc4xasw34WmR+aJrgaRMLyOUswC3YAjcV96ANhfrYBtLA5zrx9zZo0cXBDj/rWJKfSdasMHQKzQVhQ/Oe+AEVlcV1cX1q9fj66uLtFVkUZvTzcWOI/DZesXXRVhXLZ+6XNw45q3ceOat7Gl9tSwz5sV4zO1zbhxzduGHnMkPMeJiOLD6yjFLBhIeJHsr+pjG4vD3OvHnFkjB0MxfvI+cOpAYgptfgdoPW7oIa3QVhQ/zgAhklBOTg4efPBBOBwO0VWRRla2G8/2lSMA634joDtsVz4HqsTIc5yIKD68jlLM0uwJL5L9VX1sY3GYe/2YM2vkICfUgQeX/TUcB9cltuBDTwPT7gfyigw5nBXaiuLHARAiCdlsNjidTtHVkIrNZkPA8pc8K+RAjRh5jhMRxYfXUYqZPSvhRbK/qo9tLA5zrx9zZo0c2P7v1RAS4cGntMeqTkMOZ4W2ovhxCSwiCXm9XqxduxZer1d0VaTR092FhY4jcCHxyxokCxcCyudAlRh5jhMRxYfXUclVHdEehVMTW25hRcI3QAfYX62AbSwOc68fc2aNHHiRhbX4BbxI/MC/kazQVhQ/DoAQScjpdGLGjBkc5dbBbnegPjhG+qWR4hFAqvI5UCVGnuNERPHhdVRyeUXao6gyseUWJ7i8c9hf1cc2Foe51485s0YOnPBjBt6FE37RVYmLFdqK4if/OiFEFmS321FeXi66GlJJt9vx8cBloqshVBCpyudAlRh5jhMRxYfXUUWULQT2P5648iYvTFxZ52F/VR/bWBzmXj/mzBo5sKMf5TB2Q3IRrNBWFD/OACGSUF9fH3bu3Im+vj7RVZGG39eHKemnYEdQdFWEsSMofQ72rZyJfStn4odFecM+b1aM1xblYd/KmYYecyQ8x4mI4sPrqCI8pcAV0xJTVlEl4JmUmLIuwv6qPraxOMy9fsyZNXLQByd2Ygb6xOwEYhgrtBXFjwMgRBIKhULo6OhAKBQSXRVphEIhZNkCSEFYdFWESUE44TlobPFi/d6TEZ9f8UI91uxsxEctXVEdrzDfhcJ8F6aOyx/2ebNinDo+H4X5LkOPORKe40RE8eF1VCE3rEhMOZUJKmcY7K/qYxuLw9zrx5xZIwch2NABN0JI/N5XRrJCW1H8uAQWkYQyMzOxePFi0dWQSoYrE7sD3xVdDaF8SE9YDnY3tmJdzSeoa2ob8XXvN7fj/eZ2/LHmJKYU52P5jAmYWfKdUY8/v3wM/lhz6cCKWTHOv3qs4cccCc9xIqL48DqqkImztaWpjr1kXhlli4CJPzLv+KNgf1Uf21gc5l4/5swaOciseg+LAeCVVuD0e4kruLAC+MmThh3OCm1F8eMMECIJBYNBNDU1IRiUdymjRAsGgyhI8SIV1v1WQCpCpuegvSeA+587jLs3HRp18ONidU1tWLrpIKqeP4z2nsCIry0pcGNK8aWzQMyIccq4fFxZkG3Y8aLBc5yIKD68jipm7mNA9uXmHDv7cuCWNeYcO0rsr+pjG4vD3OvHnFkjB8HssWjqDCNYWJnYgosrgbwiww5nhbai+HEAhEhC3d3d2Lx5M7q7u0VXRRp9vT24xXECGbZ+0VURJsPWb2oOPjzrxZzqvXj9gzNxHee1+jOYU70XjS3eEV9334zxl/zMjBiX3zTBsGNFi+c4EVF8eB1VjCsf+NnLgDPX2OM6c7XjuoZfWjNR2F/VxzYWh7nXjzmzRg6GYhx3S2ILnrzQ0MNZoa0ofhwAIZJQbm4uHn74YeTm5oquijSy3TnY2HctusMO0VURpjvsMC0HH571YvGTtWj1+g05XqvXjzvW1444CDKrxIP5V4+54GdGx7igfExUS3IZjec4EVF8eB1VkKcUWLrDuJkg2Zdrx/OUGnO8OLC/qo9tLA5zrx9zZo0cDMX4vSnAFdMSU2hRJeCZZOghrdBWFD8OgBARUVzaewJYsrEOnX3Gzizp7OvHXRvqRlwOa/X8Unjc5gxqedwOrLpV/E0RIiIiOsdTCiw/oO3ZEY+yRdpxkmDwg4iISLgbViSmnMoElUN0EQ6AEEmos7MTjzzyCDo7O0VXRRrdXV7c6TyMTJsxMxRklGnzm5KDh19vMGzmx8VavX6s2t4Q8fm8TDs23z0FORnpAIyLMScjHZvvnoK8THtcx4kVz3EiovjwOqowVz5w+1PAnS9q3yTVo6gSuHOb9n7By16dj/1VfWxjcZh7/Zgza+TgghgnzjZ8aapLlC0CJv7I8MNaoa0ofhwAIZKQy+XCbbfdBpfLJboq0nA6M7A/UAxfOE10VYTxhdMMz8Huxta49/wYzWv1Z7C7sTXi8yUFbrywrAIet8OQGD1uB15YVoGSAnfMx4gXz3EiovjwOmoBE2drS1gtfxe47peRX1dYAdz4d9rrlu4w5eZLvNhf1cc2Foe51485s0YOLolx7mPGLTN5sezLgVvWmHJoK7QVxY8DIEQSSk9PR0lJCdLT00VXRRpp6ek4FcrDAFJFV0WYAaQanoN1NZ8YdqwRy9kzcjklBW7srJqOH5cXxhXjgvIx2Fk1XejgB8BznIgoXryOWohnEjDt/sjP/+RJ4OaHDF9z3Ejsr+pjG4vD3OvHnFkjB5fE6MoHfvYy4Mw1tiBnrnZck2ZeWqGtKH4cACGSUG9vL1599VX09vaKroo0fH29uCH9Uzhg7D4VMnGg39AcNLZ4UdfUZsixRlP3aRs+auka8TV5mXb8w/wr8eD3vbi+KEvX8aeMy8fGJdehevE1wpa9Oh/PcSKi+PA6SjJhf1Uf21gc5l4/5swaORg2Rk+pNlvSqJkg2ZdrxzNxzy0rtBXFz7prwRARUUxOt2m/WGypbU5ouVtqm/G/b5s86usuz8nA04uuw2nvALbUNuOZCPW8tigPU8fnY/7VY3FlQbbR1SUiIqJEySsCVnHtbyIiorh5SoHlB4A3VgJHt8V+nLJF2rJXSbTnFlkXB0CIJDS4xiFFz5nhwv7+caKrIZQf6Ybk4MY1bxtQG/2eiWIA5Pxz40oXcO/08REHQH5/RzkK85NznVCe40RE8eF1lGTC/qo+trE4zL1+zJk1cjBijK584PantEGMd6qB5neiP3BRJVC5ImF7blmhrSh+HAAhklB/fz9OnjyJCRMmcJ3DKAX7+3FFSjs+D7ktuw9IKgYwNsUrdQ7C4TBsNlvE51U5N1SJw8oK811oemSe6GoQWRavoyQT9lf1sY3FYe71Y86skYOoYpw4W3u0HgcOPQ0cfGr41xVWAMWVwOSFCd9zywptRfHjHiAKCAQCeOaZZzB37lwUFRXB6XTi8ssvx7Rp0/CP//iP+Oqrr0wpd2BgAEeOHMHTTz+N5cuX49prr4XdbofNZoPNZsOMGTNMKZe4xmEsfL4+3GBvgtMWFF0VYZy2oPQ56AkMjPi8KueGKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAV4yeScC0+yM//5MngZsfSvjgB2CNtqL4cQaI5BobG/HXf/3XqK+vv+DnLS0taGlpwbvvvovHHnsMGzduxNy5cw0r99VXX8V//+//nRcYQXJycvDb3/5WdDWkkpXtxlbfNaKrIVRP2CF9DgLBEOCI/Lwq54YqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFARCJffbZZ7j55ptx5swZAIDNZsP06dMxYcIEfPnll3jrrbfQ19eHL774Arfddht27tyJWbNmGVJ2R0cHBz+IKOHsaZy4SERERERERERE0eGdJIndeeedQ4MfRUVFOHz4MGpqavD000/j9ddfx6lTp3DzzTcD0NbEW7RoETo6Ogytg8fjwY9//GOsXr0aO3bsQFVVlaHHp+F1dHRg9erVhrenyrq8nViacQhZNr/oqgiTZfNLn4NM+8h7l6hybqgSBxGRKLyOkkzYX9XHNhaHudePObNGDlSJUZU4yFycASKpHTt2YN++fQAAu92O7du3o6ys7ILXXHbZZXjttddw1VVX4ZNPPkFbWxvWrFmD//N//k/c5c+ZMwfNzc244oorLvj5e++9F/exaXRZWVm46667kJWVJboq0shwZeIN/0T0ha21KVZjixdbapsBAH3h9EtysOKFekwdl48F5WNxZUF2VMfct3Lm0Hvfb243vtIRXFuUN+IG6IA654YqcYjETciJrI3XUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLM0Ak9Yc//GHo73fdddclgx+DMjMz8bvf/W7o3+vXr0cwGP8GyAUFBZcMflDipKWlobi4GGlpHMOMVlpaGlpCbgxY5LK3u7EVP133Luas3YcttacAAANIuSQH7ze34481JzF77V78dN27eLvxi1GPXZjvQmG+C1PH5ZtW/+FMHT96eaqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMpc17gQqpru7G3/+85+H/r106dIRX3/77bcPjYS2tbVh7969ptaPzNfT04Pnn38ePT09oqsijb7eHsyyfwwn+kVXxVTtPQHc/9xh3L3pEOqa2i54zon+EXNQ19SGpZsOour5w2jvCYxa1vzyMYbUOVrzrx476mtUOTdUiYOISBReR0km7K/qYxuLw9zrx5xZIweqxKhKHGQuDoBI6MCBA/D7tTX8MzMzcd111434eqfTieuvv37o37t37za1fmS+lJQU5ObmIiWFp3C0UlJS0B22I4SRl1CS2YdnvZhTvRevf3Bm2OdDsEWVg9fqz2BO9V40tnhHfF1JgRtTihMzC2TKuPyoluhS5dxQJQ4iIlF4HSWZsL+qj20sDnOvH3NmjRyoEqMqcZC52Dsk9OGHHw79vaysLKppXj/4wQ+GfT/JKSMjA3PmzEFGRoboqkjD4cxAXf8VCCi69dGHZ71Y/GQtWr2RNzgPIC3qHLR6/bhjfe2ogyD3zRivu66xWH7ThKhep8q5oUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EAREIfffTR0N+Lioqies/5+3U0NjYaXidKrEAggPr6egQCoy9TRJr+QADfTf0KaRgQXRXDtfcEsGRjHTr7Rl7eKw0DunLQ2dePuzbUjbgc1qwSD+Zfbe5SWAvKx2BmyXeieq0q54YqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFARAJff3110N/93g8Ub2noKBg6O9tbW0jvJJk4PP5UFNTA5/PJ7oq0ggE/ChPOwO7ggMgD7/eMOLMj0F2DOjOQavXj1XbG0Z8zer5pfC4HVEfUw+P24FVt5ZG/XpVzg1V4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLAyAS6u7uHvp7tFO8zn/d+e+XndPpHNrgfWBgAB0dHQiHwwAAr9c7NALc19c3tCFSMBhER0fH0DE6OzvR3699c763txe9vb0AgP7+fnR2dg69rqOjA8FgEIC2yVJfXx8AbbTZ69WWCQqHw+jo6MDAgHaDubu7e+gi7Pf70dXVBQAIhULo6OhAKBQCAHR1dQ3t6+Lz+YbaKFJMbrcby5YtQ2pqqq6YUjGATNs3N8qzbH6kIpSQmHp7tJhSEEKWzQ9Ai8mFAPoT0E52uwM7/CXohR1AGFk2P1LOxd7bY047DcbU19tzLv+DsWsybX4E4+x7b/znyXN7flwYUwb6YYf2nnQMIAMB9MKOl/1lSLGFYTuX/wwEkH5uQMSOIDLObZB+fju9Vn8Gb/znyYjnk62/F5vvnoKcjHRk2vxIPXc8B/rhOHe8kfqe87y6pmEALmjl5GSk4Y+LroTbqfXzaPqe2+3GL37xCzgcjnOv8w0bEwD0dHcl5BpxfkwXt1OkmLKysrBkyZKh61sy9r1orhGBgB8Z52K3nYt9sO/1dnfHFJNK13LGxJgYk3kxuVwuLFmyBG63W5mYVGwnxqTF5Ha7sWTJErhcLmViUrGd4onJbrdjxYoVcDgcysQkSzulpqZi2bJlcLvdysRkdjulpKRgxYoVyMzMVCYm/h5xaTuFw2H8+te/htvtjj4mZKAPTi0mpMOLLOExhUIhrFixAm63W8l2UjEmETgAIqHzRzXtdntU7xm8GQhg6CRQQUVFBRYuXAgA+PLLL1FdXT10Um7YsAHHjx8HAOzZswfbt28HAHz22Weorq4eOsYTTzyBkydPAgDefPNNvPnmmwCAkydP4oknnhh6XXV1NT777DMAwPbt27Fnzx4AwPHjx7FhwwYA2gWjuroaX375JQDgpZdeQm1tLQDg8OHDePbZZwFoF4Xq6uqhi9Czzz6Lw4cPAwBqa2vx0ksvjRhTOBzGn//8Z90xjU3xYoHj+NDrFjmP4tsp3QmJqWbXvwMAcm0+LHIeHZqFMNfRiKaTJ0xvp08//gjzHB8CCMOOASxyHkWuTTuXanb9uyntNBjTO7u1un47pRuLnEeH6rrAcRyfn2qKOabjx49j/5+0Olwc0032k5iU1goA+F7qV/grx38BCCPX1otFzqPItGkfSn/l+C98L/UrAMCktFbcZD85bDvt/9NLI55PJQVuvLCsAv/NeRxjU7R8XZf+Ga5L1+o9Ut+bZm9Gebq2cXtxajvmOhrhcTvwzJJr8O9bN+jqe+FwGFu2bMF//ud/AgAa6t+PGNOfXtqakGvEYEzDtVOkmDo7O1FdXT30C00y9r1orhH/dfzoub4HZNoCF/S9N7e/FFNMKl3LGRNjYkzmxXT69GlUV1cP/YdMhZhUbCfGpMUUDodRXV2N06dPKxOTiu0UT0zvvvsufD4f/vM//1OZmGRqpz//+c8Ih8NKxWR2O/l8PnzxxRdKxaSnnazye8SHH36IcDgcfUz4K+xBhRYTvocNuEOLKRAQGpPP50M4HFa2nVSLSQRbePBsprj9y7/8C/7lX/7F0GP+/d///dAN/kHz5s3Djh07AAAPPvggHnnkkVGP88Ybb2Du3LkAtG8WD47qGW3VqlVYvXo1AOCmm25CTU2NKeU0NDRg8uTJcDqdSEtLQ21tLUpKStDV1YWcnBzYbDZ4vV44nU7Y7Xb09fUhFAohMzMTwWAQ3d3dyM3NBaDdaHS5XEhPTx8aSXW5XOjv70dvby9ycnIAaKOpWVlZSEtLQ09PD1JSUpCRkYFAIACfzwe3241wOIzOzk5kZ2cjNTUV3d3dSEtLg9PphN/vRyAQQHZ2NkKhELxeL9xuN1JSUtDV1QW73Q6HwwGfz4dgMIisrCwMDAwMG1Nvby+qq6txzz33YMyYMVHF9LUPmLHmLThtQfSEtQGxLJsffeF01Ky8GfmOsKkxNX/pxew/HEQKQnDZ+tEdtgOwwYUA/n3FTIwvyDW1nY781yn8f1s3YpuvDN1hO7JsAfSG0xFCCnb9+joUfdtteDsN9r3TX3fjR/9Sh1SEkGHrR/e5/Gfa/Pj3FTdjnCcnppiOnv4Kd/xh33mzWr6JKQP9GIANAaQhHQNIwwBSbWEsch7Fn/xX4stQFsKwIQMBBJGKfqTCjiBSEUYf0odtpxd/PR2TC781YjudOvsl/untJrx25Iuh2R9+pCMVA8P2vQGkwIl+hM7VNQ0D+HHpZXj4J9ci15Wuu+8NflDfd9998Hg8+PhsG26t3jtsTDt/dS3GF+SZeo34qi+MmWvegh0Dl7TTnpU3I88eGjamtrY2/PM//zP+9m//Fvn5+UnX96K9RpxsaceP19agD3bYEEamLYCesB1h2LDrV9eh2JOjOyaVruWMiTExJvNi+uqrr/CHP/wBVVVVyM3NVSImFduJMWkxdXR0oLq6Gr/+9a9x2WWXKRGTiu0UT0w9PT1Yt24d7rvvPrhcLiVikqWdzpw5g3/9139FVVUVXC6XEjGZ3U5ff/01nnrqKfyP//E/kJqaqkRM/D1imP+7nzqFjRs3oqqqaujL1SPG1PU5eqqnIgVhZMCHANLhgwNudCN8/wfoTMkVEtOZM2eG4rDZbMq1k0p97/PPP8fkyZMx6NixYygtjX7J83hwAMRA59/8N8q//uu/4pe//OUFP7vjjjvw4osvAgDuv//+qEbRXnnlFdx+++0AtP1Azp49a2g9ByV6AGRQIk+aZDAwMIAvv/wS3/72t4eWwRrN6bZe3Ljm7WGf27dyJgrzXUZWMenKb/qyCz95fCc6wk6ELpr8Znb5Rsd+uk370Fu/9yS21J6K+n0pCCHX5hs2B9H4m4oi3Dt9fFT13d3YinV7PkHdp9HvOTRlXD6W3zQh6g3Ph3PxuSG638VafiznuJHlG0V0+URkXUZdR4kSgf1VfWxjcZh7/Zgza+RAd4ztzUD1VcM/V3UEyCsytoJRskJbqULkvdy0hJRChvrWt7419PfW1tao3tPS0jL09/z8fMPrRImVmpp6wcb2NLrU1FS0hdW42RrphvJoQkiJKwfP1DbjmdpmND0yb9TXzirxYFaJBx+1dGHLufcN59qiPEwdn4/5V4/FlQXZMddtkCrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMU9QAy0atUqhMNhQx8Xz/4AgCuvvHLo783Nw99UvNipU998S7ykpCT+YEmo7u5ubNq0SakN7c3W29ONOfbGoQ2xrSgD/QnPwZUF2bh3+viIz//+jnI8MLvEkMEPQJ1zQ5U4iIhE4XWUZML+qj62sTjMvX7MmTVyoEqMqsRB5uIAiIS+//3vD/396NGjCAaDo75ncEPgi99PckpLS0NxcTHS0jiJK1qpaWloCWVjADbRVRFmADblc6DKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHOxd0ho2rRpcDgc8Pv96OnpwaFDh1BRURHx9X6/H7W1tUP/njVrViKqSSZyOp2YMWOG6GpIxeFwoj44VnQ1hAogTfkcqHJuqBJHYb4rqiXTiIiMpsp1lKyB/VV9bGNxmHv9mDNr5ECVGFWJg8zFGSASysrKws033zz0702bNo34+ldeeQVdXV0AtP0/pk+fbmb1KAEGB7X8fr/oqkgjEPBjUmor0jEguirCpGNA+Ryocm6oEgcRkSi8jpJM2F/VxzYWh7nXjzmzRg5UiVGVOMhcHACR1K9+9auhv2/atAkNDQ3Dvq63txcPPfTQ0L/vvfdeTgtTQCAQQH19PQKBgOiqSCMY6Md3075CmsI3/0eThgHlc6DKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHNxAERS8+bNw4033ghAG+388Y9/jCNHjlzwmq+//hq33XYbPv74YwDa7I8HH3ww4jGbmppgs9mGHqPNLCFxsrOzcd999yE725iNo63AlZWF1/2l6INddFXitm/lTOxbORM/LMrT9b4+2OPKwbVFedi3cmZM700UVc4NVeIgIhKF11GSCfur+tjG4jD3+jFn1siBKjGqEgeZi1MBJLZ161ZMmTIFZ8+eRVNTE8rLy3HTTTdhwoQJ+PLLL/HWW2+ht7cXgLYp0Isvvojc3FzDyp87dy7OnDlzwc9aWlqG/n7o0CGUl5df8r4dO3ZgzJgxhtXDikKhELxeL9xuN1JSOI4ZjVAohCybHz1hO8KSbwJemO8CAEwdl4/3m9ujfp8NYWTaAjHnYOr4/KGyk5Uq54YqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFniGxv/iLv8Du3buHBhnC4TBqamrw9NNP4/XXXx8a/Pj2t7+NV1999YJ9Q4xw/PhxfPDBBxc8Wltbh57v6em55PkPPviA09IM4PV6UV1dDa/XK7oq0ujp7sIi51Fk2hLb/xpbvFi/92TE51e8UI81OxvxUUuX7mPPL9c3kJhpC8SVg/lXJ/8G6qqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhdngEiupKQE7733Hp5//nk899xzaGhoQGtrK3JzczF+/Hj85Cc/wdKlS3HZZZeJrioZyO12o6qqCm63W3RVpJGZlY1tvjL0hBOzBNbuxlasq/kEdU1tI77u/eZ2vN/cjj/WnMSU4nwsnzEBM0u+E1UZJQVuTCnOH7WMQT1he8w5mDIuH1cWJP+UUlXODVXiICIShddRkgn7q/rYxuIw9/oxZ9bIgSoxqhIHmYsDIAqw2+34+c9/jp///OdxHae4uBjhcDjq1zc1NcVVHsUuJSXF0OXMrCAlJQXdYYfp5bT3BPDw6w14/YMzo7/4InVNbajb1IYF5WOw6tZS5GWOPlBx34zxqNsU3QBIGLaYc7D8pgkxvS/RVDk3VImDiEgUXkdJJuyv6mMbi8Pc68ecWSMHqsSoShxkLi6BRSShrq4urFu3Dl1d+pdNsqre7m7MdzQgA+YtgfXhWS/mVO+NafDjfK/Vn8Gc6r1obBl9CuesEg/mXx3dUlgZCMSUgwXlY6KelSKaKueGKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgnZ7XaUl5fDbk/Mck4qSLOn4+PgZQgi1ZTjf3jWi8VP1qLV6zfkeK1eP+5YXxvVIMjq+aXwuEef2RFEqu4ceNwOrLq1NOrXi6bKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHNxAIRIQg6HAxUVFXA4zF/SSRV2uwPHBzzoN2EApL0ngCUb69DZ12/ocTv7+nHXhjq094w8YyMv047Nd09BTkb6iK/rR6quHORkpGPz3VOiWoorWahybqgSBxGRKLyOkkzYX9XHNhaHudePObNGDlSJUZU4yFwcACGSkM/nQ01NDXw+n+iqSMPv96E87XPYETT82A+/3mDYzI+LtXr9WLW9YdTXlRS48cKyihFngtgRjDoHHrcDLyyrQEmBXBuJqXJuqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXBwAIZJQMBhEU1MTgkHjb+araiAYREFKF1IRNvS4uxtb497zYzSv1Z/B7sbWUV9XUuDGzqrpWFA+/J4gqQhHlYMF5WOws2q6dIMfgDrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzJUmugJEpF9WVhaWLFkiuhpScWVmYWegxPDjrqv5xPBjDlvOnk8wq8Qz6uvyMu2oXnwNFpSPwbo9n6Du07ah5/qQPmIOpozLx/KbJkiz4flwVDk3jIqjMN+FpkfmxV8hIiLJqPJ5QNbA/qo+trE4zL1+zJk1cqBKjKrEQebiDBAiCQ0MDKClpQUDAwOiqyKNgYEB5Nt6kYKQYcdsbPGirqlt9BcaoO7TNnzU0hX162eVePDisuuxa8V0/E1FEQAgBaFLcnBtUR5+PXMCdq2YjheXXS/14AegzrmhShxERKLwOkoyYX9VH9tYHOZeP+bMGjlQJUZV4iBzcQCESEJdXV1Yv349urqivyFudb093VjgPA6XLf6Nyk+39eJ0Wy+21DYbULPobaltxum2Xl3vubIgG/dOHw8AcNn6L8nB7+8oxwOzS3BlQbahdRVFlXNDlTiIiEThdZRkwv6qPraxOMy9fsyZNXKgSoyqxEHm4hJYRBLKycnBgw8+CIcj8obXdKGsbDee7StHAKlxH+vGNW8bUCP9nqltxjO1zTEvadQdthuWg2SlyrmhShxERKLwOkoyYX9VH9tYHOZeP+bMGjlQJUZV4iBzcQCESEI2mw1Op1N0NaRis9kQsPwlT/0cqHJuqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXFwCi0hCXq8Xa9euhdfrFV0VafR0d2Gh4whcCIiuijAuBJTPgSrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQHeMeUXAqs7hH3lF5lZ2BFZoK4ofB0CIJOR0OjFjxgyOckepscWLLQfPoD44Ztjln1a8UI81Oxt1bTIuowBSI+ZAFaqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMpfaa6EQKcput6O8vFx0NZLe7sZWrKv5BHVNbed+ctmwr3u/uR3vN7fjjzUnMaU4H8tnTMDMku8krqIJEkQqPh4YPgeqUOXcUCUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQuTgDhEhCfX192LlzJ/r6+kRXJSm19wRw/3OHcfemQ0ODH3YEMSX9FOwIjvjeuqY2LN10EFXPH0Z7j1pLRUWbA5mpcm6oEgcRkSi8jpJM2F/VxzYWh7nXjzmzRg5UiVGVOMhcHAAhklAoFEJHRwdCoZDoqiSdD896Mad6L17/4MwFP09BGFm2AFIQjuo4r9WfwZzqvWhsuXQdyX0rZ2Lfypn4YVGeIXWO1rVFedi3cmbM79ebAxmpcm6oEgcRkSi8jpJM2F/VxzYWh7nXjzmzRg5UiVGVOMhcXAKLSEKZmZlYvHix6GoknQ/PerH4yVp09vVf8pwP6dgd+K6u47V6/bhjfS1eWFaBkgL30M8L810AgKnj8vF+c3t8ldZh6vj8obJjEUsOZKPKuaFKHEREovA6SjJhf1Uf21gc5l4/5swaOVAlRlXiIHNxBgiRhILBIJqamhAMyrGUUWOLF+v3noz4vBGbkLf3BLBkY92wgx8AkIoQClK8SIW+bwV09vXjrg11wy6HNb98TEx1jdX8q8fG9f5YcyAT2c6NSFSJg4hIFF5HSSbsr+pjG4vD3OvHnFkjB6rEqEocZC4OgBBJqLu7G5s3b0Z3d7foqoxod2MrfrruXcxZuw9bak9FfN3gBuSz1+7FT9e9i7cbv9Bd1sOvN6DV64/4fIatH7c4TiDDNvwAyUhavX6s2t5wyc9LCtyYUpyv+3ixmDIuH1cWZMd1jHhyIAtZzo3RqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXLZwOKzuYvCkrIaGBkyePHno38eOHUNpaanAGiW/0229uHHN28M+t2/lzLiWVrpYe08AD7/ecMk+HHosKB+DVbeWIi/TPuprdze24u5Nh2IuK1obllyLWSUeIWVvXHIdZpZ8J6b3JrLtk618K8dORERERERERJQMRN7L5QwQIjJUpE3I9RppE/KLrav5JK6yorVuz6XlzCrxYP7V5i6FtaB8TMyDH0RERERERERERFbFARAiCXV2duKRRx5BZ2en6KpcYHAT8pGWotJjcBPykQZBGlu8qGtqG/VYmTY/7nQeRqYt9rrVfdo27D4lq+eXwuN2xHzckXjcDqy61ZgRcSNykOyS9dzQS5U4iIhE4XWUZML+qj62sTjMvX7MmTVyoEqMqsRB5koTXQEi0s/lcuG2226Dy5U8y+eMtgl5rAY3Id9ZNX1oOazTbb1Dz2+pbY7qOL5wGvYHiuELx3fZ21LbjP992+QLfpaXacfmu6fgjvW1hsafk5GOzXdPiWoZsGgYlYNklmznRmG+C02PzNP9vmSLg4hINryOkkzYX9XHNhaHudePObNGDlSJUZU4yFzq3gUjUlh6ejpKSkpEV+MCo21CHo/BTcirF18DABH3VBjJAFJxKpQXd12eGWYABNA2RH9hWQXu2lBnSB48bgc23z0FJQXuuI81yKgcJLNkPDdioUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EJLCIJ9fb24tVXX0Vvb+/oL06A3Y2tce/5MZrX6s9gd2NrzO93oB83pH8KB+KfoREOh4f9eUmBGzurpmNBeXx7giwoH4OdVdMNHfwAjM1Bskq2cyNWqsRBRCQKr6MkE/ZX9bGNxWHu9WPOrJEDVWJUJQ4yFwdAiChuIjchF6EnMBDxubxMO6oXX4MNS67FlHH5uo47ZVw+Ni65DtWLrzFs2SsiIiIiIiIiIiKr4hJYRBIaXOMwGUS7CbkRIm1CHg0/0rG/f5wh9QgEQ8Aoe57PKvFgVokHH7V0YUttM56JsFfJtUV5mDo+H/OvHosrC7INqV8kRuYgWSXTuREPVeIgIhKF11GSCfur+tjG4jD3+jFn1siBKjGqEgeZizNAiCTU39+PxsZG9PeLW8rodFsvTrf1Rr0JuVFiLS8VA7gipR2piDx7I1r2tOgvnVcWZOPe6eMjPv/7O8rxwOwS0wc/AGNzkKyS4dwwgipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMUBECIJJcMahzeueRs3rnkbW2pPJbTcSDMpRuO0BXGDvQlOWzDuOmTaU+M+hghG5iBZJcO5YQRV4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5nLFo60my9REmtoaMDkyZOH/n3s2DGUlpYKrFHyO93WixvXvD3sc/tWzkRhvkvX8Yp/+ycjqhWTvQ/MgM1mAwCseKEe7ze3J6zsa4vy8NLyabreY3Tu9bJy+aJjJyIiIiIiIiKyOpH3cjkDhIikk5/lQGG+C4X5LkzVudF4vKaOT2x5REREREREREREFBsOgBBJqKOjA6tXr0ZHR4foqggRCIaG/j6/fExU78my+bE04xCybP64yp5/9di43i+SUTlIZqqcG6rEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhcHQIgklJWVhbvuugtZWVmiqyLE+ZuQlxS4MaV49FkZfeF0vOGfiL5weszlThmXn5DNys1iRA6SnSrnhipxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMUBECIJpaWlobi4GGlpaaKrIsTFm5DfN2P8qO8ZQApaQm4MxHHZW37ThJjfmwyMyEGyU+XcUCUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQudS9C0aksJ6eHjz//PPo6ekRVod9K2di38qZ+GFRXkLLvbYob2gD9EGzSjyYf/XIS2E50Y9Z9o/hRH9M5S4oH4OZJd+J6b3JIt4cyCAZzg0jqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXBwAIZJQSkoKcnNzkZIi7hROtk3IV88vhcftiPi+EGzoDtsRgi3iayLxuB1YdWup7vclm3hyIItkODeMoEocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc7F3EEkoIyMDc+bMQUZGhuiqRL0JuWHlRdiEPC/Tjs13T0FOxvD7WwSQhrr+KxCAvmmRORnp2Hz3FORl2nXXNdnEmgOZJNO5EQ9V4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLAyBEEgoEAqivr0cgEBBdlag3ITfCaJuQlxS48cKyimFngqRhAN9N/QppGIi6PI/bgReWVaCkwB1TfZNNLDmQTTKdG/FQJQ4iIlF4HSWZsL+qj20sDnOvH3NmjRyoEqMqcZC5OABCJCGfz4eamhr4fD7RVQEQ3SbkRohmE/KSAjd2Vk3HgotmptgxgPK0M7BHefN/QfkY7KyarszgB6A/BzJKtnMjVqrEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMpctHA6HRVeCSK+GhgZMnjx56N/Hjh1Daan8ezSYpbHFiy21zdhSe2rY539YlIep4/KxoHzsiDMsRnL/c4fx+gdn4qnmiBaUj0H14mt0vWd3YyvW7fkEdZ+2Rf2eKePysfymCYZueH66rRc3rnl72Of2rZyJwnyXYWWx/OQpm4iIiIiIiIiIxN7LVXcheCKFhcNh+P1+OBwO2GyRN7Te3diKdTWfoK5p5AGA95vb8X5zO/5YcxJTivOxfIb+AYDV80vx3qdfo9Xr1/W+aMS6CfmsEg9mlXjwUUsXtrzbhBfe+wQBpAIXbQJ+bVEepo7Px/yrYx8AkkMYdgwMmwNVRHtuJDtV4iAiEoXXUZIJ+6v62MbiMPf6MWfWyIEqMaoSB5mLS2ARSaizsxOPPvooOjs7h32+vSeA+587jLs3HRp18ONidU1tWLrpIKqeP4z2nujXUBxtE/JYGbEJ+ZUF2fjray7Df8+oR5bt0ph+f0c5HphdovjgB5BlC0TMgSpGOzdkoUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EAhEhC2dnZWLZsGbKzL71h/+FZL+ZU7417OarX6s9gTvVeNLZ4o37PSJuQx8LITchdmVl4zTcJvWFjB2hk0htOVz4HI50bMlElDiIiUXgdJZmwv6qPbSwOc68fc2aNHKgSoypxkLk4AEIkodTUVBQUFCA1NfWCn3941ovFT9YatgxVq9ePO9bX6h4EGW4Tcr2M3oQ8NTUVbWEXQha+7IWQonwOIp0bslElDiIiUXgdJZmwv6qPbSwOc68fc2aNHKgSoypxkLnUvQtGpLDu7m5s2rQJ3d3dQz9r7wlgycY6dPb1G1pWZ18/7tpQp3s5rOrF12DDkmsxZVy+rvKmjMvHxiXXoXrxNXEte3Wx3p5uzLE3IgPG5kcmGehXPgfDnRsyUiUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQubgJOpGE0tLSUFxcjLS0b07hh19vMGUDckCbCbJqewOqF1+j630XbEJe24xnapuHfV0iNiFPTUtDSygbA4pu/h2NAdiUz8Fw54aMVImDiEgUXkdJJuyv6mMbi8Pc68ecWSMHqsSoShxkLvYOIgk5nU7MmDFj6N+7G1vj3vNjNK/Vn8GC8jGYVeLR/d4rC7Jx7/TxEQdAfn9HOQrzXfFWcUQOhxP1wbGmlpHsAkhTPgcXnxuyUiUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQubgEFpGE/H4/amtr4fdrMz7W1XySkHLX7UlMOWYIBPyYlNqKdAyIroow6RhQPgcXnxuyUiUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQuTgAQiShQCCA+vp6BAIBNLZ4UdfUlpBy6z5tw0ctXQkpy2jBQD++m/YV0hS++T+aNAwon4Pzzw2ZqRIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXFwCi0hC2dnZmPfTn6OjH9hSezKhZW+pbca908ebvmSV0VxZWXjdXyq6GkL1wa58DrKzs3HfffeJrkbcVImDiEgUXkdJJuyv6mMbi8Pc68ecWSMHqsSoShxkLs4AIZJQKBTCLY/txPQ1u7Gl9lRCy36mthk3rnk7oWUaIRQKIcvmhw1h0VURxoaw8jkIhULo6OhAKBQSXZW4qBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXBwAIZKQ1+vFIudRZNo4xS9aPd1dls9Zpi2gfA68Xi+qq6vh9XpFVyUuqsRBRCQKr6MkE/ZX9bGNxWHu9WPOrJEDVWJUJQ4yFwdAiCTkdruxzVeGnrBddFWkkZmVbfmc9YTtyufA7XajqqoKbrdbdFXiokocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EPECIJpaSkoDvsEF0NqTBnQBg25XOQkpKC3Nxc0dWImypxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYmDzMUZIEQS6urqwnxHAzKg7lJGRuvt7rZ8zjIQUD4HXV1dWLduHbq6ukRXJS6qxEFEJAqvoyQT9lf1sY3FYe71Y86skQNVYlQlDjIXB0CIJGS32/Fx8DIEkSq6KtJIs6dbPmdBpCqfA7vdjvLyctjtci/zpUocRESi8DpKMmF/VR/bWBzmXj/mzBo5UCVGVeIgc3EJLCIJORwOrP+7xQCAFS/U4/3m9oSVfW1RHn5/R3nCyjOK3e7A8QGP6GoI1Y9U5XPgcDhQUVEhuhpxUyUOIiJReB0lmbC/qo9tLA5zrx9zZo0cqBKjKnGQuTgDhEhCPp8PJ4/U4duuFEwdl5/QsqeOz0dhviuhZRrB7/ehPO1z2BEUXRVh7AgqnwOfz4eamhr4fD7RVYmLKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgkFg0E0NTUhGAxifvmYhJY9/+qxCS3PKAPBIApSupCKsOiqCJOKsPI5OP/ckJkqcRARicLrKMmE/VV9bGNxmHv9mDNr5ECVGFWJg8zFJbCIJJSVlYUlS5YAAEqygCnF+ahrajO93Cnj8nFlQbbp5ZjBlZmFnYES0dUQqg/pyufg/HNDZqrEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhdngBBJaGBgAC0tLRgYGAAA3DdjfELKXX7ThISUY4aBgQHk23qRgpDoqgiTgpDyObj43JCVKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgl1dXVh/fr16OrqAgDMKvFg/tXmLoW1oHwMZpZ8x9QyzNTb040FzuNw2fpFV0UYl61f+RxcfG4U5rvQ9Mi8YR/JvJfNxXEQEZE+vI6STNhf1cc2Foe51485s0YOVIlRlTjIXLZwOKzuYvCkrIaGBkyePHno38eOHUNpaanAGiVWOByG3++Hw+GAzWYDALT3BDCnei9avX7Dy/O4HdhZNR15mfaYj3G6rRc3rnl72Of2rZxp+s3oU1/34C8fewsBpAKwJbR80bF/U34YdgxckIPEln8po8sf7tyQkSpxEBGJwusoyYT9VX1sY3GYe/2YM2vkQJUYVYnDCkTey+UMECIJ2Ww2OJ3OCy7ueZl2bL57CnIy0g0tKycjHZvvnhLX4EcysNlsCCANFw9+WIv6ORju3JCRKnEQEYnC6yjJhP1VfWxjcZh7/Zgza+RAlRhViYPMxQEQIgl5vV6sXbsWXq/3gp+XFLjxwrIKeNwOQ8rxuB14YVkFSgrchhxPpJ7uLix0HIELAdFVEcaFgPI5iHRuyEaVOIiIROF1lGTC/qo+trE4zL1+zJk1cqBKjKrEQebiAAiRhJxOJ2bMmAGn03nJcyUFbuysmo4F5fHtCbKgfAx2Vk1XYvADAOx2B+qDY84t/2RNAaQqn4ORzg2ZqBIHEZEovI6STNhf1cc2Foe51485s0YOVIlRlTjIXGmiK0BE+tntdpSXl0d8Pi/TjurF12BB+Ris2/MJ6j5ti/rYU8blY/lNE6Te8Hw46XY7Ph64THQ1hAoiVfkcjHZuyEKVOIiIROF1lGTC/qo+trE4zL1+zJk1cqBKjKrEQebiDBAiCfX19WHnzp3o6+sb8XWzSjx4cdn12LViOv6moiji664tysOvZ07ArhXT8eKy65Ub/AAAv68PU9JPwY6g6KoIY0dQ+RxEe24kO1XiICIShddRkgn7q/rYxuIw9/oxZ9bIgSoxqhIHmYszQIgkFAqF0NHRgVAoFNXrryzIxr3Tx+OZ2uZhn//9HeUozHcZWcWkEwqFkGULIAVh0VURJgVh5XOg99xIVqrEQUQkCq+jJBP2V/WxjcVh7vVjzqyRA1ViVCUOMhcHQIgklJmZicWLF4uuhlQyXJnYHfiu6GoI5UO68jlQ5dxQJQ4iIlF4HSWZsL+qj20sDnOvH3NmjRyoEqMqcZC5uAQWkYT+/+3deXQUVd7/8U8nIRsBMYLGBQmoIwoIOorgBoqOsqgsKuICoj7qOKPHGZ3RZ+bouDzjNjojjzqo8yigoogooAOoLAZUFkVFCIILEBYFWbN2Op1O1++P/KhJJIRUSHNTt96vc3JOdbq6636+96ak+1q3YrGYCgoKFIvZu5RRU4vFYspJKlaygvt/BSQrbn0NbPnbsCUHAJjCeRR+wni1H31sDrX3jpoFowa2ZLQlBxKLCRDAh0pLSzVhwgSVlpaabopvlIfL1D/tW2WEKk03xZiMUKX1NbDlb8OWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxIrJDjOPYuBg9rrVy5Ul27dnUf5+fnq0uXLgZb1Pxt3BnW2Y9/WOdzH/3x3ITfAyTIxw9y9uZwfAAAAAAAAJhj8rtcrgABAAAAAAAAAADWYQIE8KGioiI9+uijKioqMt0U3ygtKdZV6V+qZajCdFOMaRmqsL4Gtvxt2JIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFBAjgQ5mZmRo8eLAyM1k6qKHS0zP0cTRXESfFdFOMiTgp1tfAlr8NW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILHs/RYMsFiLFi3UuXNn083wlZQWLbQhfrDpZhhVpWTra2DL34YtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWFwBAvhQOBzWtGnTFA6HTTfFNyLlYZ3VYp3SVGm6KcakqdL6Gtjyt2FLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFhMgAAAAAAAAAADAOiyBBfjQ7jUO0XDpGZn6uLKj6WYYVaEWRmrQPjtTBY8OPCDHsuVvw5YcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEgsrgABfKiyslKrV69WZaW9Sxk1tVhlpY5O2qVkVZluijHJqrK+Brb8bdiSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxQQI4EOscehdJFKus1ILlB6KmW6KMemhmPU1sOVvw5YcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEiskOM4julGAF6tXLlSXbt2dR/n5+erS5cuBlvU/G3cGdbZj39Y53Mf/fFctc/O5PgWHrs5HB8AAAAAAADBZfK7XK4AAQAAAAAAAAAA1mECBPChwsJCPfDAAyosLDTdFN8oKS7S6IylygpVmG6KMVmhCutrYMvfhi05AMAUzqPwE8ar/ehjc6i9d9QsGDWwJaMtOZBYTIAAPpSVlaVRo0YpKyvLdFN8IyOzpWZV/ELlTgvTTTGm3GlhfQ1s+duwJQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEivFdAMAeJeSkqLc3FzTzfCVlJQUbYm3Nt0Mo6qUZH0NbPnbsCUHAJjCeRR+wni1H31sDrX3jpoFowa2ZLQlBxKLK0AAHyorK9OkSZNUVlZmuim+UR4u03mp3ytdlaabYky6Kq2vgS1/G7bkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25EBiMQEC+FBSUpLatGmjpCT+hBsqKSlJpU6q4gqZbooxcYWsr4Etfxu25AAAUziPwk8Yr/ajj82h9t5Rs2DUwJaMtuRAYrEEFuBDGRkZuuiii0w3w1fS0jP0aeXRppthVFQp1tfAlr8NW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILGYHgN8KBqNatmyZYpGo6ab4huV0aiOTd6uFFWZbooxKaqyvga2/G3YkgMATOE8Cj9hvNqPPjaH2ntHzYJRA1sy2pIDicUECOBDkUhEeXl5ikQippviG9FohXqk/KhUi7/835dUVVlfA1v+NmzJAQCmcB6FnzBe7Ucfm0PtvaNmwaiBLRltyYHECjmO45huBODVypUr1bVrV/dxfn6+unTpYrBFzd/GnWGd/fiHdT730R/PVfvsTI5v4bGbw/EBAAAAAAAQXCa/y+UKEMCHHMdRJBIR85cN5ziOUhWTFOSa2V8DW/42bMkBAKZwHoWfMF7tRx+bQ+29o2bBqIEtGW3JgcRiAgTwoaKiIj322GMqKioy3RTfKC0p1tUZy5QVCu66kFmhqPU1sOVvw5YcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEgsJkAAH2rVqpVuvvlmtWrVynRTfCOzZZamR05U2GlhuinGhJ0W1tfAlr8NW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILFSTDcAgHfJycnKyckx3QxfSU5O1k4nmPe6aJ+dqYJHB5puxgFhy9+GLTkAwBTOo/ATxqv96GNzqL131CwYNbAloy05kFhcAQL4UGlpqcaPH6/S0lLTTfGNcFmpLkpdrQxVmm6KMUEYN7ZktCUHAJjCeRR+wni1H31sDrX3jpoFowa2ZLQlBxKLCRDAh1JSUpSbm6uUFC7iaqjklBRtibdSlUKmm2JMEMaNLRltyQEApnAehZ8wXu1HH5tD7b2jZsGogS0ZbcmBxGJ0AD6Unp6uvn37mm6Gr6SlpWtZ7EjTzTAqCOPGloy25AAAUziPwk8Yr/ajj82h9t5Rs2DUwJaMtuRAYnEFCOBDFRUVWrx4sSoqKkw3xTei0QqdmPyTWqjKdFOMCcK4sSWjLTkAwBTOo/ATxqv96GNzqL131CwYNbAloy05kFhMgAA+FI1GtWzZMkWjUdNN8Y1YtFLHpmxXSoAnQIIwbmzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiRWyHEcx3QjAK9Wrlyprl27uo/z8/PVpUsXgy1q/jbuDOvsxz+s87mP/niu2mdncnwLjw0AAAAAAACYZPK7XK4AAXwoHo+rsLBQ8XjcdFN8Ix6PKytUoZCCO+cbhHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXyouLhYY8aMUXFxsemm+EZZaYkuT1+hlqHgXhYZhHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsVgCC74U9CWw4vG4iouL1bp1ayUlNWwe0/QyTKaPv357qQY++YHKnFQ5Ch3Q45vOvltjxo3f2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcQWDyu9yUA3IUAE0qKSlJbdq0Md0MX0lKSlKpk2a6GUYFYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILKbGAB8qKSnRc889p5KSEtNN8Y1waakuSVupDAV3CawgjBtbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxQQI4EOpqanq0aOHUlNTTTfFN1JSW+j7WFvFlGy6KcYEYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILJbAAnwoLS1NvXr1Mt0MX0lNTdPXVYeZboZRQRg3tmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEosrQAAfikQiysvLUyQSMd0U36ioiKhHyg9KVcx0U4wJwrixJaMtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWEyAAD4Ui8VUUFCgWCy4X+Z7VRWLKSepRMlyTDfFmCCMG1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4kVchwnuN8GwrdWrlyprl27uo/z8/PVpUsXgy1q/jbuDOvsxz+s87mP/niu2mdncnwLjw0AAAAAAACYZPK7XK4AAXyoqqpKW7ZsUVVVlemm+EZVVZWyQ2ElKW66KcYEYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILCZAAB8qKSnR888/r5KSEtNN8Y1wWakuTf9amaFK000xJgjjxpaMtuQAAFM4j8JPGK/2o4/NofbeUbNg1MCWjLbkQGKxBBZ8KehLYDmOo4qKCqWlpSkUCjXoNaaXYTJ9/A07ynT+3+YoqmRJtWsWlCWwGjNu/MaWjLbkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25AgCk9/lphyQowBoUqFQSOnp6aab4SuhUEhRQ6e89tmZKnh0oJFj1xSEcWNLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxWAIL8KHi4mI99dRTKi4uNt0U3ygrLdFlacuVqajpphgThHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoPT1dffv2ZZbbg9TUNC2LHfH/l8AKpiCMG1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFEliAD6WmpqpHjx6mm+ErLVJT9X1VW9PNMCoI48aWjLbkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25EBicQUI4EPl5eV67733VF5ebropvlERKVfPFhuUqpjpphgThHFjS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoHo+rsLBQ8XjcdFN8Ix6PKysUVZIc000xJgjjxpaMtuQAAFM4j8JPGK/2o4/NofbeUbNg1MCWjLbkQGKFHMcJ7reB8K2VK1eqa9eu7uP8/Hx16dLFYIuav407wzr78Q/rfO6jP56r9tmZHB8AAAAAAABAkzL5XS5XgAA+FIvFVFBQoFgsuMs5eRWLxZSTVKxkBff/CgjCuLEloy05AMAUzqPwE8ar/ehjc6i9d9QsGDWwJaMtOZBYTIAAPlRaWqoJEyaotLTUdFN8ozxcpv5p3yojVGm6KcYEYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILJbAgi+xBJZ3ppeACvrxAQAAAAAAgCBiCSwAAAAAAAAAAIAmxAQI4ENFRUV69NFHVVRUZLopvlFaUqyr0r9Uy1CF6aYYE4RxY0tGW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILGYAAF8KDMzU4MHD1ZmJss2NVR6eoY+juYq4qSYbooxQRg3tmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEiu43wQCPtaiRQt17tzZdDN8JaVFC22IH2y6GUYFYdzYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILK4AAXwoHA5r2rRpCofDppviG5HysM5qsU5pqjTdFGOCMG5syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFleAAAiEIw/O1GW/PEov/OpXXBoJAAAAAAAABEDIcRzHdCOwf6LRqN544w29/vrrWrlypX766ScdfPDB6tixo4YOHarrrrtObdu2bfLjFhQUaPbs2Zo/f75WrFihDRs2qLS0VK1atdJRRx2l3r1766qrrlKfPn2a/NgrV65U165d3cf5+fnq0qVLkx/HJht3hnX24x/W+dxHfzxX7bMTOylg+vgAAAAAAAAADjyT3+WyBJbPrV69WqeffrpGjhypWbNmacOGDaqoqNCWLVu0aNEi/eEPf1CXLl00c+bMJjvml19+qdNPP10dO3bUTTfdpIkTJ2r58uUqLCxULBbTrl27tGLFCr3wwgvq27evzj33XG3YsKHJjg+psrJSq1evVmVlcJdz8oqaBaMGtmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEosJEB/btGmT+vXrp2XLlkmSQqGQ+vTpo+uvv14XX3yxMjIyJElbt27V4MGDNW/evCY57jfffKNPP/201u9+8YtfaOjQobrpppt0xRVX6KijjnKfy8vLU+/evbV27domOT5Y47AxqFkwamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxWALLx8455xx99NFHkqQOHTpo+vTp6t69u/v89u3bdeWVV2ru3LmSpOzsbK1Zs0Zt2rTZr+NOmjRJI0aM0LHHHqsbb7xR11xzjY488sha+8TjcY0fP1633XabexLq1auXFi5cqFAotF/Hl1gCqzFML0Fl+vgAAAAAAAAADjyT3+VyE3Sfmjlzpjv5kZqaqnfffVfdunWrtU/btm01ffp0nXTSSVq7dq127typxx9/XA8//PB+Hfvwww/XuHHjdO211yo5ObnOfZKSknT99dfr4IMP1tChQyVJixcv1gcffKALL7xwv44Pf2qfnamCRweabgYAAAAAAACAgGAJLJ969tln3e1Ro0btMfmxW8uWLfXggw+6j59//nnFYrH9OnafPn103XXX7XXyo6YhQ4aoZ8+e7uMZM2bs17FRrbCwUA888IAKCwtNN8U3qFkwamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxmADxodLSUndZK0kaPXp0vfsPGzZMWVlZkqSdO3dqwYIFCW3fz5155pnudkFBwQE9tq2ysrI0atQot1+xb9QsGDWwJaMtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWEyA+NDChQtVUVEhqfoKj9NOO63e/dPT09W7d2/3cVPdDL2hat7zo6qq6oAe21YpKSnKzc1VSgqr2DUUNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWEyA+tGrVKne7W7duDfojP+WUU+p8/YGwYsUKd7t9+/YH9Ni2Kisr06RJk1RWVma6Kb5BzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFBIgPffPNN+52hw4dGvSao48+2t1evXp1k7dpbzZs2FDripPzzz//gB3bZklJSWrTpo2SkvgTbihqFowa2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcSCyuD/KhHTt2uNuHHXZYg16Tk5Pjbu/cubPJ27Q3v//9791lr44++mhdfPHFB+zYNsvIyNBFF11kuhm+Qs2CUQNbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxfSYD5WWlrrbGRkZDXpNzf1qvj6RJkyYoLfeest9/MgjjygtLa1Jj5Genu7e6KiqqkqFhYVyHEeSVFxcrGg0KkkqLy93L4eLxWIqLCx036OoqEiVlZWSpHA4rHA4LEmqrKxUUVGRu19hYaFisZik6kvsysvLJUnRaFTFxcWSJMdxVFhY6E76lJaWKhKJSJIqKipUUlIiSYrH4yosLFQ8HpcklZSUuPd1iUQibh/tLVM0GtWnn36qXbt2ecqUrCq1DFW4+2WFKpSseLPIlOh+Ki0t1aJFixSNRq3J5LWfotGovvjiC23dutWaTD/vp2g0qkWLFrnP+TVTJBLRwoUL3eds6ycykYlMZEp0pnA4rIULF7rP2ZDJxn4iU5Hb7oULF7rP2ZDJxn7an0zFxcVatmyZSkpKrMnkl37atWuXPv30U/dztA2ZEt1PO3fu1LJly1ReXm5NJv4dsWc/bdu2TUuXLlU0GvV1pq1bt2rZsmWKRqNW9pONmUxgAsSHdg9OSUpNTW3Qa2pOPOz+I0ikpUuX6pZbbnEfjxgxQldddVWTH6dXr1667LLLJFWfvMeMGeP+Ub700kv6+uuvJUnz58/Xu+++K0natGmTxowZ477H2LFjtWbNGknSBx98oA8++ECStGbNGo0dO9bdb8yYMdq0aZMk6d1339X8+fMlSV9//bVeeuklSdUnjDFjxmjbtm2SpClTpmjx4sWSpC+//FITJ06UVH1SGDNmjHsSmjhxor788ktJ0uLFizVlypR6M0UiEc2dO1czZszwlOnIpGJdmva1u9/l6SvULqm0WWRKdD+tWLFCs2fPViQSsSaT136KRCLKy8vT2LFjrcn0836KRCKaM2eOPv/8c19n2rZtm2bPnu3uZ1s/kYlMZCJTojOtW7fO/e++LZls7CcyVWeKRCKaPXu21q1bZ00mG/tpfzItWrRIeXl5+vzzz63J5Jd+mjFjhubOnatIJGJNpkT309SpU5WXl6cffvjBmkz8O2LPfnrxxRf14YcfKhKJ+DrT2LFjlZeXp0gkYmU/2ZjJCAdN5umnn3aOP/74Jv1588039zjOgAEDHEmOJOfuu+9uUNtmzpzpviYrK6upo9eydu1aJycnxz3eSSed5BQVFTXpMfLz8x1JTnp6upOVleXk5+c7sVjM2bVrlxOPxx3HcZyioiKnoqLCcRzHCYfDTmlpqeM4jlNZWens2rXLfa/CwkInGo06juM4ZWVlTllZmeM4jhONRp3CwkJ3v127djmVlZWO4zhOaWmpEw6HHcdxnIqKCjdfPB53du3a5cRiMcdxHKekpMQpLy93HMdxIpGIU1xc7DiO41RVVTm7du1yqqqqHMdxnOLiYicSiTiO4zjl5eVOSUmJ4zhOk2basKPM6XT3dOfEe95yOtz9b6fD3f92utzzltPp7necDTvKfJnJxn4iE5nIRCYykYlMZCITmchEJjKRiUxkIhOZbMq0+7vc3T/5+fnOgRJynP9/nQr22/33368HHnigSd/zX//6l2688cZavxs+fLgmT54sSbr99tsbNIv29ttva9iwYZKq7weyefPmJm3nbps3b9bZZ5/tzk526tRJH3/8sQ4//PAmPc7KlSvVtWtX93F+fr66dOnSpMdozhzHUUVFhdLS0hQKhRr0mo07wzr78Q/rfO6jP56r9tmZTdnEZqcxNbNNEGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IEgcnvclkCy4cOOeQQd/unn35q0Gu2bNnibmdnZzd5m6Tqm7NfcMEF7uTH4Ycfrjlz5jT55Aeq1wB87LHHaq33h/pRs2DUwJaMtuQAAFM4j8JPGK/2o4/NofbeUbNg1MCWjLbkQGJxBYgPjRkzRnfccYek6ntgLFq0aJ+vueeee/TYY49JkoYOHVrr5uRNobi4WOedd5677n7btm01f/58nXjiiU16nN2CfgVIVVWVtm3bpnbt2ik5OblBrwn6FSCNqZltglADWzLakgMATOE8Cj9hvNqPPjaH2ntHzYJRA1sy2pIjCEx+l5tyQI6CJnXCCSe42ytWrFAsFlNKSv1d+cUXX9T5+qZQVlamAQMGuJMfBx10kN57772ETX5ASk5OVk5Ojulm+Ao1C0YNbMloSw4AMIXzKPyE8Wo/+tgcau8dNQtGDWzJaEsOJBZLYPnQGWecobS0NEnVkw9Lly6td/+KigotXrzYfXzeeec1WVsikYguueQSffLJJ5KkzMxMzZgxQ7/85S+b7BjYU2lpqcaPH6/S0lLTTfENahaMGtiS0ZYcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEgsJkB8KCsrS/369XMfjx8/vt793377bZWUlEiqvv/HOeec0yTtqKys1LBhwzRv3jxJUlpamqZPn64zzzyzSd4fe5eSkqLc3Nx9XvmD/6BmwaiBLRltyQEApnAehZ8wXu1HH5tD7b2jZsGogS0ZbcmBxOIeID41Y8YMDRo0SFL1xMPnn39e57pp4XBY3bt31/fffy+p+l4gjzzyyH4fv6qqSldeeaWmTJkiqfqE89Zbb+mSSy7Z7/duiKDfA6Qxgn4PEAAAAAAAAAAHnsnvcrkCxKcGDhyos88+W1L1EleDBg3S8uXLa+2zY8cODR482J38yM7O1t13373X9ywoKFAoFHJ/9nZlieM4uuGGG9zJj6SkJL3yyisHbPID/1nWrKKiwnRTfIOaBaMGtmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEovrg3zstddeU8+ePbV582YVFBSoR48e6tOnj4455hht27ZNc+bMUTgcllR9hcbkyZPVpk2b/T7u2LFjNWHCBPfxMccco48//lgff/xxg17/zDPP7Hcbgi4ajWrZsmXq0qWLez8Y1I+aBaMGtmS0JQcAmMJ5FH7CeLUffWwOtfeOmgWjBrZktCUHEoslsHxu9erVGjFihJYtW7bXfdq1a6dx48Zp4MCB9b5XQUGBOnbs6D4eN26crrvuuj32u//++/XAAw80tslqiiHHEljesQQWAAAAAAAAgAONJbDQaJ07d9aSJUs0YcIEXXTRRWrfvr1SU1N16KGHqlevXnr88cf19ddf73PyA/4Sj8dVWFioeDxuuim+Qc2CUQNbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxQSIBVJTUzVy5EjNmjVLGzZsUEVFhX766SctWrRIf/jDH9S2bdsGvU9ubq4cx3F/6rr6Q6q+AqTmfl5/sP+Ki4s1ZswYFRcXm26Kb1CzYNTAloy25AAAUziPwk8Yr/ajj82h9t5Rs2DUwJaMtuRAYrEEFnwp6EtgxeNxFRcXq3Xr1kpKatg8ZtCXwGpMzWwThBrYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxBYPK7XG6CDvhQUlKS5xvat8/OVMGjwV0KrTE1s00QamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxmBoDfKikpETPPfecSkpKTDfFN6hZMGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoNTVVPXr0UGpqqumm+AY1C0YNbMloSw4AMIXzKPyE8Wo/+tgcau8dNQtGDWzJaEsOJBb3AIEvBf0eIAAAAAAAAADgBya/y+UKEMCHIpGI8vLyFIlETDfFN6hZMGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsZgAAXwoFoupoKBAsVjMdFN8g5oFowa2ZLQlBwCYwnkUfsJ4tR99bA61946aBaMGtmS0JQcSiyWw4EssgQUAAAAAAAAAzR9LYAHwpKqqSlu2bFFVVZXppvgGNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWEyCAD5WUlOj5559XSUmJ6ab4BjULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFktgwZeCvgSW4ziqqKhQWlqaQqGQ6eb4AjULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloS44gMPldbsoBOQqAJhUKhZSenm66Gb5CzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFEliADxUXF+upp55ScXGx6ab4BjULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFhMggA+lp6erb9++zHJ7QM2CUQNbMtqSAwBM4TwKP2G82o8+Nofae0fNglEDWzLakgOJxT1A4EtBvwcIAAAAAAAAAPiBye9yuQIE8KHy8nK99957Ki8vN90U36BmwaiBLRltyQEApnAehZ8wXu1HH5tD7b2jZsGogS0ZbcmBxGICBPCheDyuwsJCxeNx003xDWoWjBrYktGWHABgCudR+Anj1X70sTnU3jtqFowa2JLRlhxILJbAgi+xBBYAAAAAAAAANH8sgQXAk1gspoKCAsViMdNN8Q1qFowa2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcSCwmQAAfKi0t1YQJE1RaWmq6Kb5BzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFEljwJZbAAgAAAAAAAIDmjyWwAAAAAAAAAAAAmhATIIAPFRUV6dFHH1VRUZHppvgGNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWEyCAD2VmZmrw4MHKzMw03RTfoGbBqIEtGW3JAQCmcB6FnzBe7Ucfm0PtvaNmwaiBLRltyYHE4h4g8CXuAQIAAAAAAAAAzR/3AAHgSTgc1rRp0xQOh003xTeoWTBqYEtGW3IAgCmcR+EnjFf70cfmUHvvqFkwamBLRltyILGYAAEAAAAAAAAAANZhCSz4EktgAQAAAAAAAEDzxxJYADyprKzU6tWrVVlZabopvkHNglEDWzLakgMATOE8Cj9hvNqPPjaH2ntHzYJRA1sy2pIDicUECOBDrHHoHTULRg1syWhLDgAwhfMo/ITxaj/62Bxq7x01C0YNbMloSw4kFktgwZdYAgsAAAAAAAAAmj+WwAIAAAAAAAAAAGhCTIAAPlRYWKgHHnhAhYWFppviG9QsGDWwJaMtOQDAFM6j8BPGq/3oY3OovXfULBg1sCWjLTmQWCyBBV8K+hJYsVhMmzZt0lFHHaWUlBTTzfEFahaMGtiS0ZYcAGAK51H4CePVfvSxOdTeO2oWjBrYktGWHEFg8rtcJkDgS0GfAAEAAAAAAAAAP+AeIAA8KSsr06RJk1RWVma6Kb5BzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSA4nFBAjgQ0lJSWrTpo2SkvgTbihqFowa2JLRlhwAYArnUfgJ49V+9LE51N47ahaMGtiS0ZYcSCyWwIIvsQQWAAAAAAAAADR/LIEFwJNoNKply5YpGo2abopvULNg1MCWjLbkAABTOI/CTxiv9qOPzaH23lGzYNTAloy25EBiMQEC+FAkElFeXp4ikYjppvgGNQtGDWzJaEsOADCF8yj8hPFqP/rYHGrvHTULRg1syWhLDiQWS2DBl1gCCwAAAAAAAACaP5bAAuCJ4ziKRCJi/rLhqFkwamBLRltyAIApnEfhJ4xX+9HH5lB776hZMGpgS0ZbciCxmAABfKioqEiPPfaYioqKTDfFN6hZMGpgS0ZbcgCAKZxH4SeMV/vRx+ZQe++oWTBqYEtGW3IgsVgCC74U9CWwqqqqtG3bNrVr107Jycmmm+ML1CwYNbAloy05AMAUzqPwE8ar/ehjc6i9d9QsGDWwJaMtOYLA5He5KQfkKEATq6ioqPX4+++/N9QSs3bs2GG6Cb5DzYJRA1sy2pIDAEzhPAo/Ybzajz42h9p7R82CUQNbMtqSw2Y//+7259/tJpQD+NC0adMcSYH9ycrKcq677jonKyvLeFv88kPNglEDWzLakoMffvjhx9QP51F+/PTDeLX/hz6m9n76oWbBqIEtGW3JEcSfadOmHbDvkVkCC740ffp0DR482HQzAAAAAAAAAAAeTJs2TZdeeukBORY3QQcAAAAAAAAAANbhChD4UmFhoebPn+8+bt++vdLS0gy2CAAAAAAAAADwcxUVFdq4caP7uE+fPmrTps0BOTYTIAAAAAAAAAAAwDosgQUAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6TIAAAAAAAAAAAADrMAECAAAAAAAAAACswwQIAAAAAAAAAACwDhMgAAAAAAAAAADAOkyAAACAZmPRokUaNmyYDjvsMKWnp6tjx4669dZb9cMPP5huGgAAAAAAxm3ZskWvvvqq7rjjDp111lnKyspSKBRSbm6u6aY1SyHHcRzTjQAAAPi///s/3XzzzYrH48rJydGRRx6pb7/9ViUlJTr44IP14Ycfqnv37qabCQAAAACAMU899ZR+97vf7fH7Dh06qKCg4MA3qJnjChAAAGDcihUrdMsttygej+vJJ5/UDz/8oKVLl+rHH3/UFVdcoV27dmnIkCGqqKgw3VQAAAAAAIxp3bq1+vXrp7vvvluTJ0/WU089ZbpJzRpXgAAAAOMuu+wyvfXWW7riiiv0xhtv1HquvLxcnTt31oYNGzR27FjdcssthloJAAAAAEDzMmXKFF1++eVcAbIXXAECAACMKisr04wZMyRJv/nNb/Z4PiMjQ6NHj5YkTZo06YC2DQAAAAAA+BcTIAAABEBVVZWWL1+uF198Ub/+9a916qmnKjU1VaFQSKFQSH379m30e0ejUb3yyisaMGCAOnTooPT0dB1++OE644wz9MQTT2j79u31vv7LL79UJBJRamqqevXqVec+u9u3ZMkSxePxRrcVAAAAAID6NOfPz/AuxXQDAABAYk2bNk1XX321wuFwk7/36tWrNWLECC1btqzW77ds2aItW7Zo0aJF+tvf/qZx48ZpwIABdb7Ht99+K0k6+uijlZqaWuc+xx57rCQpEolo/fr16tixY9OFAAAAAABAzf/zM7zjChAAACxXWFiYkH+8bdq0Sf369XP/8RYKhdSnTx9df/31uvjii5WRkSFJ2rp1qwYPHqx58+bV+T47d+6UJB1yyCF7PVZ2dra7vWvXriZKAAAAAADAfzT3z8/wjitAAAAIiMMOO0ynnXaa+/P+++9rzJgxjX6/q666Sj/++KMkqUOHDpo+fbq6d+/uPr99+3ZdeeWVmjt3riorK3X55ZdrzZo1atOmTa33KS8vl6S9Xv0hSenp6e52Iv4xCgAAAADAbs318zO8YwIEAADLXXTRRVq/fr2OPvroWr9fsmRJo99z5syZ+uijjyRVT1y8++676tatW6192rZtq+nTp+ukk07S2rVrtXPnTj3++ON6+OGHa+23+/90iUajez1eJBJxtzMzMxvdbgAAAAAA9qa5f36GdyyBBQCA5XJycvb4x9v+evbZZ93tUaNG7fGPt91atmypBx980H38/PPPKxaL1drn4IMPliTt2LFjr8fbvUxWzf0BAAAAAGhKzf3zM7xjAgQAAHhSWlqquXPnuo9Hjx5d7/7Dhg1TVlaWpOqJjAULFtR6/vjjj5ckbdiwYa9XgXz33XeSqpfC6tChQ6PbDgAAAADAgdLUn5/hHRMgAADAk4ULF6qiokJS9f+hctppp9W7f3p6unr37u0+/vnN3E4++WSlp6crGo1q8eLFdb7H/PnzJUk9e/ZUUhL/fAEAAAAANH9N/fkZ3vENAgAA8GTVqlXudrdu3ZSSsu9bip1yyil1vl6q/kfggAEDJNW+NHi38vJyjRs3TpI0fPjwRrUZAAAAAIADrak/P8M7JkAAAIAn33zzjbvd0OWoaq6hunr16j2ev++++5ScnKzJkyfr73//u+LxuKTqy4Wvu+46bdiwQR06dNANN9ywn60HAAAAAODASMTnZ3jDBAgAAPCk5s3KDzvssAa9Jicnx92ueUPz3bp3765nnzULSM4AABv+SURBVH1WSUlJuvPOO3XkkUfq1FNP1RFHHKHJkyerTZs2mjp1qtLS0vY/AAAAAAAAB0AiPj9v3LhRbdu2dX+uv/76On9/22237Wfr7cAECAAA8KS0tNTdzsjIaNBrau5X8/U13Xzzzfroo480ePBgVVVVacWKFTr44IN1yy23aMWKFTr55JP3r+EAAAAAABxAifj8XFVVpR07drg/JSUlkqR4PF7n74Nu34uOAQAA1BCJRNzt1NTUBr2m5pUb5eXle93vjDPO0NSpUxvfOAAAAAAAmolEfH7Ozc2V4zj737iA4AoQAADgSXp6ursdjUYb9JqKigp3u6H/1wsAAAAAAH7G52fzmAABAACeZGVludv1Xc1RU839ar4eAAAAAABb8fnZPCZAAACAJ4cccoi7/dNPPzXoNVu2bHG3s7Ozm7xNAAAAAAA0N3x+No8JEAAA4Mnxxx/vbq9fv75Br9mwYYO73blz5yZvEwAAAAAAzQ2fn81jAgQAAHhywgknuNsrVqxQLBbb52u++OKLOl8PAAAAAICt+PxsHhMgAADAkzPOOENpaWmSpLKyMi1durTe/SsqKrR48WL38XnnnZfQ9gEAAAAA0Bzw+dk8JkAAAIAnWVlZ6tevn/t4/Pjx9e7/9ttvq6SkRFL1+qXnnHNOIpsHAAAAAECzwOdn85gAAQAAnt16663u9vjx47Vy5co69wuHw7rvvvvcxzfddJNSUlIS3j4AAAAAAJoDPj+bxQQIAADwbODAgTr77LMlVV+iO2jQIC1fvrzWPjt27NDgwYP1/fffS6r+v1fuvvvuA95WAAAAAABM4fOzWSHHcRzTjQAAAIk1YMAA/fjjj7V+t2XLFv3000+SpJYtW+rYY4/d43UzZ87UEUccUed7btq0ST179tTmzZslSaFQSH369NExxxyjbdu2ac6cOQqHw5KklJQUvffee7Uu/QUAAAAAoLnh87NdmAABACAAcnNztX79es+vW7dunXJzc/f6/OrVqzVixAgtW7Zsr/u0a9dO48aN08CBAz0fHwAAAACAA4nPz3ZhETEAANBonTt31pIlSzRp0iS9/vrrWrlypX766Se1adNGnTp10tChQzV69Gi1bdvWdFMBAAAAADCGz89mcAUIAAAAAAAAAACwDjdBBwAAAAAAAAAA1mECBAAAAAAAAAAAWIcJEAAAAAAAAAAAYB0mQAAAAAAAAAAAgHWYAAEAAAAAAAAAANZhAgQAAAAAAAAAAFiHCRAAAAAAAAAAAGAdJkAAAAAAAAAAAIB1mAABAAAAAAAAAADWYQIEAAAAAAAAAABYhwkQAAAAAAAAAABgHSZAAAAAAAAAAACAdZgAAQAAAAAAAAAA1mECBAAAAAAAAAAAWIcJEAAAAAAAAAAAYB0mQAAAAAAAAAAAgHWYAAEAAAAAAAAAANZhAgQAAAAAAAAAAFiHCRAAAAAAAAAAAGAdJkAAAAAAAAAAAIB1mAABAAAAAAAAAADWYQIEAAAAAAAAAABYhwkQAAAAAAAAAABgHSZAAAAAAAAAAACAdZgAAQAAAICA2rRpk7KyshQKhXT77bfXuc/999+vUCikUCik+++//8A20JCVK1cqOTlZoVBIf/3rX003BwAAAI3EBAgAAAAQMH379nW/0Pb6c91115luPprQXXfdpbKyMrVq1Ur33nuv6eY0yF133eWOx9zcXDmO06j32blzp9LS0tz3Gj9+vPtcly5dNHLkSEnSww8/rI0bNzZF0wEAAHCAMQECAAAAAAH06aef6o033pAk/eY3v1G7du0Mt6hhRo0a5W6vX79e8+fPb9T7TJo0SdFoVJLUsmVLXXbZZbWe//Of/6zk5GSFw2Hdd999jW8wAAAAjEkx3QAAAAAA5px22mnq2bNng/fv1atXAluDA+nPf/6zJCktLU133HGH2cZ40K1bN5188sn68ssvJUkvv/yy+vbt6/l9Xn75ZXd72LBhysrKqvX8scceq2HDhmny5Ml65ZVXdM899+j444/fr7YDAADgwGICBAAAAAiwAQMGBOa+DviPzz//XHPmzJEkXXbZZTrssMMMt8ibUaNGuRMgb731lp599lllZGQ0+PXffvutlixZUuv96vLrX/9akydPVlVVlZ544gn961//2r+GAwAA4IBiCSwAAAAACJinnnrK3b7xxhvNNaSRrrrqKrVo0UKSVFxcrGnTpnl6fc2rP44++mide+65de7Xt29fHXvssZKkV199Vdu3b29cgwEAAGAEEyAAAAAAECBFRUWaMmWKJCknJ0fnnHOO4RZ5165dO/Xv3999XHNCY18cx9Grr77qPr722msVCoX2uv/ll18uSYpEInr99dcb0VoAAACYwgQIAAAAgP2Wm5urUCikUCikgoICSdKmTZt07733qnv37mrTpo1atmypzp0767bbbtP69es9vX9lZaVeeeUVXXHFFerUqZNatWqlli1bqmPHjhoxYoSmTp0qx3HqfY+8vDy3jTXvGTFz5kyNGDFCxx13nLKyshQKhWpdIbFbeXm5/vGPf+jMM89U27ZtlZGRoWOOOUYjRozQ3Llz663Fbpdeeqn73COPPNLg/H/5y1/c1w0dOrTBr6vL22+/rUgkIkm65JJLlJTUdB8Lv/rqKx1++OFuWy+++GKVl5fXue/cuXN1yy23qEuXLsrOzlZaWpqOOOIIXXjhhXrmmWf2+rrdai5bNXv2bG3ZsqVBbZw/f36t8Tdy5Mh69x8yZIi7XXPiBAAAAM0f9wABAAAA0OSmTZum6667TkVFRbV+/8033+ibb77Riy++qDfffFMDBw7c53vl5eXpxhtv1Jo1a/Z4rqCgQAUFBZo0aZJ69eqlKVOm6Mgjj2xQG4uKijR69GhNnTp1n/uuWLFCQ4YM2aMNa9eu1dq1azVp0iTdfPPNevrpp+t9n//6r//SO++8I0kaN26c/vu//3ufx47H4xo/frz7eH+XrHr33Xfd7fPOO2+/3qumBQsW6JJLLnH7fOTIkXrxxReVklL7Y+fGjRs1cuRI5eXl7fEemzdv1ubNm/XBBx/okUce0aRJk3T22WfXebxBgwYpOztbO3fuVFVVlV577TX9/ve/32c7a14t0rt3b/3iF7+od/9f/vKXOuigg1RUVKTPPvtMW7du1aGHHrrP4wAAAMA8JkAAAAAANKk5c+bolltuUVVVlY4++mj17t1brVu31rp165SXl6dYLKby8nJdccUVys/PV8eOHff6Xm+++aauvvpqVVZWSpIyMjLUq1cv5ebmKikpSd9++60WLVqkWCymxYsXq3fv3vrss8/2eVNvx3F0zTXX6N///rdCoZBOPfVUnXjiiXIcR/n5+bWWRPr+++/Vr18/bdu2zf1dt27d1KNHDyUlJWnZsmX66quv9Pzzz6tVq1b1Hrd///5q3769Nm7cqO+++04LFizY5xJUs2fP1oYNGyRJRx11lC666KJ6969PPB6vdbXK3iYXvJo+fbquvPJK98qS3//+93riiSf2WFpq1apV6tevnzZv3ixJCoVCOuWUU3TiiScqIyNDP/zwgxYsWKCSkhL9+OOPuuCCCzRr1qw679GRmpqqESNG6Nlnn5VUPbGxrwmQ8vJyd/kvae83P68pKSlJZ5xxhmbNmiXHcTRnzhxdddVV+3wdAAAAzGMCBAAAAECT+u1vf6v09HQ999xzuvrqq2t9Cb5y5UpdeOGF+uGHHxQOh/XQQw/ppZdeqvN9Vq5cqVGjRqmyslKhUEh33nmn/vznP6tNmza19lu7dq1GjRqljz/+WBs3btTo0aM1c+bMetu4cOFCxWIxdevWTRMnTlS3bt1qPV9RUSGpeqLkhhtucCc/DjnkEE2cOFEXXnhhrf3nzZunESNG6Mknn3Rvzl2X5ORkXX/99XrggQckSS+++OI+J0BefPFFd3v06NH7tWTV6tWrVVxcLElq27atjjjiiEa/V8323XzzzaqqqpIkPfLII7rnnnv22K+srEzDhg1zJz/69++vp59+Wsccc0yt/YqLi3XPPfdo7Nixqqio0NVXX61Vq1bpoIMO2uM9R40a5U6AfPXVV1qxYsUefVnT1KlTVVJSIklKS0vT8OHDG5SxR48emjVrliTp008/ZQIEAADAJ5gAAQAAAAJs5syZ2r59e4P3f/DBB5WdnV3vPtFoVNOmTavzSoUuXbro+eef16BBgyRVX+Hxwgsv7LFMkiTdfvvt7n0gnnzySf3ud7+r83idOnXSe++9p549e+rrr7/WrFmztGTJEp1++ul7bWMsFlNOTo7mzZuntm3b7vF8WlqaJOn999/XggULJFVfCTB9+nSdeeaZe+x/3nnnacaMGerVq5ei0ehejytJN9xwgx566CHF43FNmTJFTz/9tFq3bl3nvjt27ND06dMlVV8tcf3119f73vuyfPlyd/v444/fr/eSpEcffdRdxis5OVnPPffcXpfo+vvf/65Vq1ZJqr6vxpQpU+qczGndurX++c9/KhwOa8KECdq8ebOee+453X333Xvse9ppp+mEE05w3/fll1/W3/72t722t+byV5deeukek2l7c8IJJ7jbX331VYNeAwAAAPOYAAEAAAAC7LPPPtNnn33W4P3vuuuufU6ADBo0qN5lmgYMGKCcnBxt2bJFpaWlWrVq1R7/1/5XX32lefPmSZJOPvlk3XHHHfUes2XLlrr33ns1YsQISdLEiRPrnQCRpPvuu6/OyY+aal59ceWVV9Y5+bHbqaeeqpEjR2rcuHH1vmf79u110UUXaebMmQqHw3r99dd1880317nvK6+84k6onH/++crNza33vfdl3bp17vZRRx3V6PdxHEd33nmn/vGPf0iqnjB6/fXXa90wvKbKyko988wz7r7PPffcPq9kefjhh/Xyyy/LcRxNnDixzgkQqfoqkN1XnLz22mt69NFHlZycvMd+mzdv1pw5c2q9rqFq3lfm5ze2BwAAQPPV+GunAQAAAKAOl19+eb3Ph0Ihde/e3X1c1xfKNZewGjFixB73kqhLzRt6f/zxx/vcvyHLH82fP9/dvuaaa/a5f0P2kaSbbrrJ3a45yfJzNZ/b35ufS9JPP/3kbh9yyCGNeo9YLKZRo0a5kx+tW7fWe++9t9fJD0launSptm7dKknq169fg24ifsQRR6hz586SpPz8fPfm6j93zTXXuJMpP/74Y61JjpomTpzoLtOVk5OzxzJm9ak5UbZly5YGvw4AAABmcQUIAAAAEGB/+ctfdP/99zfpe9Z3D4bdan75vvueFDUtWrTI3f7www+1fv36fb6n4zju9saNG+vdt2PHjvu8kuWHH36odePzfV1RIlUvyRQKhWq1pS6DBg3SEUccoR9//FGfffZZnfeu+PTTT5Wfny+p+gv4wYMH7/P4+1JWVuZuZ2Zmen59OBzWpZde6k5QHXrooZo1a5ZOOeWUel9Xsz83bdqk3/72tw06XmFhoaTqvt20aVOd9wE58sgjdf755+uDDz6QVH3VTF2TGzWXv7r66qvrvEpkb2rWKhKJKB6P79e9WAAAAHBgMAECAAAAoEnV9SX1z9W8UXhlZeUez//444/u9u6bT3uxa9euep9v167dPt+j5uRHZmbmPidMJKlVq1Y66KCD3C/u92b3zdD/53/+R1L1lR5PPfVUrX1qXv1x7bXXKjU1dZ/H92JfkzR1+cc//qFYLCapeimvuXPn6rjjjtvn62r25/Lly2vdi6Sh6uvTUaNGuRMgU6dOVWlpqbKystznv/zyS61YsaLW/l40plYAAAAwj/9lBQAAAECTashyVfuyt+WOGmr3Ukd7k5GRsc/3KC0tdbe9XC1R84v3+tx4443uVQSvvvpqrZunh8NhTZo0qda+TaFly5bu9u4bzHtRc+Jq586d2rx5c4Net7/9KcmdeKnLkCFD3BvJh8NhTZkypdbzNa/+OPnkkxt0lVJNNWuVnp7O1R8AAAA+wb/aAAAAADQ7Nb+of/vtt+U4juef/VVzIiMcDjf4dTWXmapPhw4ddMEFF0iSduzYoWnTprnPvfnmm+7SYL1799aJJ57Y4OPXJycnx93evn2759ffcccduvjiiyVV5xwwYIAWLFiwz9fV7M/bb7+9Uf3Zt2/fvb5/RkZGrXvPvPLKK+52LBbT66+/7j72evWHVPtqoJo1BAAAQPPGBAgAAACAZuewww5zt03ddLrmja/D4fA+l9WSqq8a2dfyVzXt7WboTX3z8906duzobm/atMnz61NTUzVlypQ9JkE++uijel93IPqz5sRGXl6eex+Y999/3735e4sWLXTVVVd5fu8ffvjB3c7Nzd2/hgIAAOCAYQIEAAAAQLNT84bjn3zyiZE2HHXUUbUmQZYsWbLP1yxdutTT1SeXXHKJe0XBnDlztGHDBn377bfuhEJWVpauuOIKjy3fu5NOOsnd/uabbxr1HrsnQQYNGiSpehKkf//+9U6C1OzPhQsXJuSeGmeddZY6deokSYrH43r11Vcl1V7+qn///g26/8vPrVq1yt3u3r37frYUAAAABwoTIAAAAACand1frkvVS2Dt/j/4D7Q+ffq42xMnTtzn/ru/dG+olJQUjR49WlL1l/bjxo3TSy+95D5/5ZVXNvieIg1x/PHHuzep37FjR60rG7xITU3VW2+9VWsSpL4rQc4880y1adNGUvWVJ++++26jjlufUCikkSNHuo9feeUVFRUV6Z133nF/15jlryTpq6++crd79uzZ+EYCAADggGICBAAAAECz07NnT/eeD+Xl5br22mtr3SS8PtFotEHLVTXE9ddf726/9tprWrx48V73/eKLLzRhwgTPx7jxxhvdG8ePGzeu1ns05fJXkpSUlKTzzjvPffzxxx83+r12T4IMHDhQUvXyX3ubBElLS9Mdd9zhPr711ls9Tb40dAJs5MiRbi1XrVqlP/7xj4pEIpKk7OzsWhNrDRWPx7Vw4UJJ1ZMs559/vuf3AAAAgBlMgAAAAABolp5++mn36ofZs2frnHPOqXcZqm+//VYPPfSQcnNzm2zZrP79++uss86SVP1F+MUXX6w5c+bssV9eXp4GDBigqqoqpaamejpGp06d1K9fP0nS+vXr3XtkdOvWrdbSUU1l9/07JGnevHn79V6pqal6++23GzQJcuedd6pLly6Squ+pceqpp+rNN99UPB6v8723b9+uF154Qaeccor+9re/Nag9HTt21Nlnn+0+fuGFF9ztESNGeO4bSfr8889VVFQkSTrttNN06KGHen4PAAAAmJFiugEAAAAAzJk5c6a2b9/e4P0zMzP1+OOPJ7BF/9G1a1e9/vrrGj58uMLhsJYsWaJevXrpmGOO0SmnnKLs7GxFIhFt3bpVy5cvb/RyTvUJhUJ66aWX1Lt3b+3YsUPbt2/XBRdcoO7du6tHjx6SqpdHWrZsmSTprrvu0ptvvqn169dLqr7ioiFuuummPSZWbrjhhibLUdPQoUN16623KhKJ6J133tHYsWMb3M667J4EGTp0qGbMmOFOgsyaNcudPJKq72fyzjvv6Pzzz9e6deu0ZcsWXXHFFWrbtq169eqlnJwcOY6jnTt36uuvv9Z3333nTo7UvGplX0aNGqUFCxbU+fvGmDp1qrt99dVXN+o9AAAAYAYTIAAAAECAffbZZ/rss88avP9BBx10wCZApOp7gSxcuFA33HCDPv/8c0nSmjVrtGbNmr2+Jjc3V0cddVSTteG4447T3LlzNWTIEK1bt05S9aRHzftCSNWTGA8//LBee+0193etW7du0DEGDx6sQw89VFu3bpVUvWTUtdde20QJajvooIN02WWX6dVXX9WWLVu0YMECd7mxxtq9HNawYcPcSZD+/fvvMQnSqVMnLV26VLfccoumTJkix3G0fft2/fvf/97re7dp00bdunVrcFsuv/xy3XbbbQqHw+7vTjjhBJ122mmNyjZlyhRJUnp6uq666qpGvQcAAADMYAksAAAAAM1a9+7dtXTpUr3//vv69a9/rZNOOklt27ZVSkqKWrZsqdzcXF144YW677779Mknn2jt2rXu1RlN2Yb8/Hw9+eST6tWrl7Kzs5Wenq6OHTtq+PDhmjNnjp5//nm1aNHCvf9IUlJSgydAWrRoUev+FEOGDFF2dnaTZqip5v04/vWvfzXJe6alpe1xT5D+/fvvcZ+R7OxsTZ48WcuXL9ef/vQnnXHGGTr88MOVmpqq9PR05eTk6KyzztLtt9+ud955R5s3b/Z09UarVq00ZMiQWr9r7NUf8+fP13fffSep+uqPtm3bNup9AAAAYEbIcRzHdCMAAAAAwAbfffedfvGLX0iSOnfurFWrVjXodY7j6JhjjnGvMJkzZ457X5BE+dWvfqXZs2crLS1NBQUFysnJSejx/Gj48OGaPHmykpOTlZ+fr86dO5tuEgAAADzgChAAAAAAaCJvvPGGu+1lyaUPP/zQnfzo1KmTp3teNNZDDz0kSaqoqNBTTz2V8OP5zZo1a/TWW29Jkq655homPwAAAHyICRAAAAAAaALr1q3TE0884T72cr+I//3f/3W3b775ZoVCoSZtW11OP/10DR8+XJL0z3/+U9u2bUv4Mf3kr3/9q6qqqpSZmakHH3zQdHMAAADQCEyAAAAAAMA+/OpXv9J7772nWCxW5/MzZszQWWedpaKiIklSjx499Ktf/apB7/3OO+9o+vTpkqrvX3HjjTc2TaMb4IknnlDLli1VUlLiXhEC6euvv9bLL78sSfrTn/6ko48+2nCLAAAA0BjcAwQAAAAA9mH3FRkHH3ywTjnlFLVv316pqanavn27Pv30U23atMndt1WrVvrkk0/UrVu3Ot/r+++/1zPPPKOqqip9++23mj17tnZ/LHvwwQd17733Jj4QAAAAEABMgAAAAADAPjR0SarjjjtOb775prp3777XffLy8nTuuefu8fszzzxT8+bNU2pqaqPbCQAAAOA/Ukw3AAAAAACau/z8fE2bNk0LFy7U+vXrtX37du3cuVPp6elq166devbsqUGDBunKK69UcnJyg983NTVVHTt21PDhw3XPPfcw+QEAAAA0Ia4AAQAAAAAAAAAA1uEm6AAAAAAAAAAAwDpMgAAAAAAAAAAAAOswAQIAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6TIAAAAAAAAAAAADrMAECAAAAAAAAAACswwQIAAAAAAAAAACwDhMgAAAAAAAAAADAOkyAAAAAAAAAAAAA6zABAgAAAAAAAAAArMMECAAAAAAAAAAAsA4TIAAAAAAAAAAAwDpMgAAAAAAAAAAAAOswAQIAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6TIAAAAAAAAAAAADrMAECAAAAAAAAAACswwQIAAAAAAAAAACwDhMgAAAAAAAAAADAOkyAAAAAAAAAAAAA6zABAgAAAAAAAAAArMMECAAAAAAAAAAAsA4TIAAAAAAAAAAAwDpMgAAAAAAAAAAAAOswAQIAAAAAAAAAAKzDBAgAAAAAAAAAALAOEyAAAAAAAAAAAMA6/w8j2xpmeM3LqAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "freq_01_1 = (1 + 0.1) / 2 * 2 * np.pi\n", + "freq_3_30 = (3 + 30) / 2 * 2 * np.pi\n", + "plt.figure()\n", + "plt.errorbar(energies, lagspec_01_1.spectrum * freq_01_1 , xerr=energies_err, yerr=lagspec_01_1.spectrum_error * freq_01_1, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.errorbar(energies, lagspec_3_30.spectrum * freq_3_30, xerr=energies_err, yerr=lagspec_3_30.spectrum_error * freq_3_30, fmt='o', label=\"3-30 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Phase lag (rad)\")" + ] + }, + { + "cell_type": "markdown", + "id": "ab201dc2", + "metadata": { + "id": "ab201dc2" + }, + "source": [ + "Interesting: the low-frequency variability has much longer time lags than the high-frequency variability, but the phase lags are on the same order of magnitude." + ] + }, + { + "cell_type": "markdown", + "id": "9e85f891", + "metadata": { + "id": "9e85f891" + }, + "source": [ + "## Covariance and RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "11a45edb", + "metadata": { + "id": "11a45edb", + "outputId": "d95b650d-03df-4e73-bafe-7813b0729935" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:55<00:00, 1.40s/it]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:55<00:00, 1.40s/it]\n" + ] + } + ], + "source": [ + "covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"abs\", ref_band=ref_band)\n", + "covspec_01_1 = CovarianceSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"abs\", ref_band=ref_band)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "a1d4d363", + "metadata": { + "id": "a1d4d363", + "outputId": "121ac01c-9046-44c6-9351-588a10cc3dc8" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABi8AAAR9CAYAAAAum9QAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXxU1f3/8fckIYmBQAA1oEBQFJFFsW4IteJSrVgtVfGr1IJrLW2/Vduv2hXFLq71C/22P8GqgHsVLUpFsFXhW0AUF5RVrBgWIQGB7OvM3N8f95uRSCCZZO49c899PR+PPMhkZu49n/c5XHROzrkRx3EcAQAAAAAAAAAApIkM0w0AAAAAAAAAAADYG5MXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0gqTFwAAAAAAAAAAIK0weQEAAAAAAAAAANIKkxcAAAAAAAAAACCtMHkBAAAAAAAAAADSCpMXAAAAAAAAAAAgrTB5AQAAAAAAAAAA0kqW6QYgXMrKyrR48eLE4759+yonJ8dgiwAAAAAAAAAAX1ZfX68tW7YkHp9xxhkqKCjw7fxMXsBXixcv1tixY003AwAAAAAAAACQhLlz5+pb3/qWb+dj2ygAAAAAAAAAAJBWmLwAAAAAAAAAAABphW2j4Ku+ffs2ezx37lwdddRRhlpjRk1NjRYtWqTRo0crLy/PdHMCgczCkYENNdpQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDP797383uwXAlz/b9RqTF/DVl2/OfdRRR2nIkCGGWmNGQ0ODOnXqpMGDBys7O9t0cwKBzMKRgQ012lADAJjEdRRBwngNB/rZDHJPHpm5bM/BlvpsqSOMvvzZrtcijuM4vp4RobZmzRoNHTo08Xj16tWhm7wAAAAAAAAAgHRn+rNc7nkB+Ky2tlYLFixQbW2t6aYEBpmFIwMbarShBgAwiesogoTxGg70sxnknjwyc9megy312VIHvMfkBeCzeDyusrIyxeNx000JDDILRwY21GhDDQBgEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeI9to+Ar00uNAAAAAAAAAACtM/1ZLisvAJ9Fo1EVFxcrGo2abkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe0xeAD6rqqrS7NmzVVVVZbopgUFm4cjAhhptqAEATOI6iiBhvIYD/WwGuSePzFy252BLfbbUAe+xbRR8ZXqpEQAAAAAAAACgdaY/y2XlBQAAAAAAAAAASCtMXgA+Ky8v1913363y8nLTTQkMMgtHBjbUaEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j8kLwGd5eXkaO3as8vLyTDclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64D3ueQFfmd4nDQAAAAAAIKwcx1E8HhcfBwL2iUQiysjIUCQSSdkxTX+Wm+XbmQBIkmpqavTqq6/q3HPPZYa5jcgsHBnYUKMNNQCASVxHESSM13Cgn80g9+TtLzPHcVRTU6OqqipVV1ervr7eYCu9F4/HVVFRoa5duyojw74NZ2ypz5Y60lVeXp66du2q/Px8ZWUF++P/YLceAAAAAAAAwD4aGxu1detW1dXVmW4KAB/V1NSopqZGpaWl6tOnj7p06WK6Se3GtlHwlemlRgAAAAAAALarq6vTli1bFI1GTTcFgEGRSKRDEximP8tlXQ7gs8bGRq1fv16NjY2mmxIYZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78vbOzHEcbd68OZQTF7bf08OW+mypIwgcx9HWrVsDez1g2yjAZzU1NZo7d64mTZqkbt26mW5OIJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7snbO7OMjAzFYrFmz3fq1EndunVT586d1alTp5Te0DedRKNR7dq1Sz179gz8Xv8tsaU+W+pIN47jqLa2Vrt371ZtbW2zn1dWVqp79+4GW9c+bBsFX5leagQAAAAAAGCzLVu2qKqqKvE4JydH/fr140NiICQcx9GmTZuaTWDk5eWpqKgo6WOZ/iyXbaMAAAAAAAAACziOo+rq6mY/69GjBxMXQIhEIhH16NGj2c9qamoCuU0XkxeAz8rKyjRlyhSVlZWZbkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuyWvKbM+ePft8QJmXl2eoVf6LRqPatm1bYPf3b40t9dlSRzrLzc3d52fxeNxASzqGbaPgK9NLjdJBNBrV1q1b1adPH37zoY3ILBwZ2FCjDTUAgElcRxEkjNdwoJ/NIPfkNWXWq1cvffrpp82eO/roo0OTo+M4amhoUHZ2tpX39bClPlvqSGfRaFQff/xxs5+151pg+rPccFy5gDSSlZWl/v37m25GoJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7slryizsv8keiUSUk5NjuhmesaU+W+qA99g2CvBZdXW1nnnmmX32oMT+kVk4MrChRhtqAACTuI4iSBiv4UA/m0HuyWvKrKamxnRTjIrFYtq9e7disZjppnjClvpsqQPeY/IC8FlGRoYKCgqUkcFfv7Yis3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2auSCSizMxMa7cisqU+W+qA97jnBXxlep80AAAAAAAAW6Vqn3sAwWbLPS/CPR0LGNDQ0KCVK1eqoaHBdFMCg8zCkYENNdpQAwCYxHUUQcJ4DQf62QxyT15TZo2Njaab0i5bdteo/89ebvFry+62b4UVj8dVU1OjeDzuYWvNsaU+W+qA95i8AHxWV1enRYsWqa6uznRTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8embkcx1FlZaVs3WjGlvpsqQPeY9so+Mr0UiMAAAAAAABbBXHbqPUlFXpi+SY9sXxzi8+fWNRdpx7RQ98afriO6ZXvc+uAYLJl26j0vXIBlnIcR/X19crJyeHGRG1EZuHIwIYabagBAEziOoogYbyGA/1sBrknrymzzMxM001ps9fXl2r6oo16u3j3AV/37qY9enfTHv2/RZ/olP49NGn0AJ056NAWX+s4jhzHUSQSCezY+fzzz7V06VK9/fbbWrVqlT755BNt27ZNVVVV6tSpk7p3766hQ4dq9OjRmjBhgg4//PCUt6G2tlZvvfWW3nzzTa1atUofffSRtmzZooqKCjmOo27duumoo47SaaedpiuvvFInnHBCUsd3HEdr167VzJkz9eqrr2rr1q2qr6/X4YcfrtNOO00TJkzQ2WefndKaZs2apauvvlqSVFRUpOLi4ja/t7i4WEcccUTi8aeffqr+/funtH1oGdtGAT4rLy/XPffco/LyctNNCQwyC0cGaVuj40h1FVL1LvfPAyxYTNsaACAguI4iSBiv4UA/m0HuyWvKrKKiwnRTWrWnukE/fvp9XTPrnVYnLr7s7eLdunrWCt34zPvaU73vPVFisZhKSkoUi8VS1VzfXXXVVRo7dqx+//vfa968eVq7dq3KysoUjUZVW1urbdu26dVXX9UvfvELDRgwQFOmTEn5vSP+/Oc/68wzz9QvfvELPf3003rvvfe0c+dO1dfXq6GhQTt37tSbb76pBx54QF/5yld0+eWXa/futvflb3/7W51wwgn6wx/+oFWrVmnPnj2qqanRxx9/rMcee0znnHOOxo8fr8rKypTWheBh5QXgs/z8fN1www3Kz2epY1uRWTgySKsaS9dIq+ZIn70rbf9Aqiv74rncAqn38dLhJ0rDxkmFgxNPpVUNABBAXEcRJIzXcKCfzSD35DVl1qVLF+3YscN0c/Zr3fYKXTXzbZVW1HfoOC+u3KblG3dp9jWnaFCvromfZ2Zm6pBDDgnUCpQDOfjgg3XssceqqKhIXbp0SXzAv2LFCkWjUdXX1+uOO+7Qxo0bNXv2bE/akJeXp2OPPVYDBgxQQUGBotGotm7dquXLlycmy/76179q7dq1WrJkibp27XrA402ePFm/+c1vEo979+6t008/Xbm5uXr33Xe1Zs0aSdLTTz+tXbt26eWXX07rbc/gLXoe8FlmZqZ69epluhmBQmbhyCAtatywUFoyVdq8bP+vqSuTPl3sfi15QOo3UvrqzdLAc9OjBgAIMK6jCBLGazjQz2aQe/KaMotGo6absl/rtlfo8oeWq7y2MSXHK62o13/MWK6/3jAiMYERiUTUqVOnlBzflNGjR+vCCy/U2WefraOOOqrF15SWlurmm2/W008/LUl67LHHdOGFF+rSSy9NSRuOPvpo/e53v9N5552n448/vsXJg7q6Ok2dOlW//OUvFY/HtWrVKv3iF7/Qn/70p/0e97XXXms2cXHLLbfot7/9rbKzsxM/e/rpp3XNNdeorq5Or776qn7/+99r8uTJKakLwcO2UYDPqqqqNGvWLFVVVZluSmCQWTgyMFpjzW5pzrXSU5cdeOKiJZuXSU+Nk56/TlU7tljfTwDgpTD8ewd7MF7DgX42g9yT15RZdXW16aa0aE91g66a+XbKJi6alNc2auKjbye2kIrFYvr8888DvW3Uf/3Xf+mGG25oceKiqb6DDz5YTz75pM4666zEczNmzEhZG771rW/pF7/4hU488cT9rnrIzc3Vz372M91+++2Jnz322GOqq6vb73F//vOfJ77/9re/rbvuuqvZxIUkXXHFFfrv//7vxOP7779fn3/+eXtLQcAxeQH4LCsrS/3792fJWxLILBwZGKuxZLX04Ehp9ZyOHWfVc8p6bIz6H5xndT8BgJfC8O8d7MF4DQf62QxyT166Z3b7S2s6vFXU/pRW1OuOee5WQ5FIxOobve9dXyQSSdyAWpLef/99I2265pprEt9XVlbq3//+d4uvW7FihVasWCFJysjI0O9+97v99tMNN9ygo48+OnHMxx9/PMWtRlAweQH4LDc3V6NHj1Zubq7ppgQGmYUjAyM1lqyWZl0gVW5PyeFyqzZr9OpblFv+SUqOBwBhE4Z/72APxms40M9mkHvymjLLyckx3ZR9vL6+VC99sM3Tc7y4cpteX1+qjIwM5efnKyPDzo88v1zfIYccknjO1M2t927Dgdoxd+7cxPfnnHOOjj322P32UyQS0cSJExOP//a3v3W8oR7r379/YlIpma9Zs2aZbnpas/NvMpDG6uvrtXz5ctXXe/MbBzYis3Bk4HuNNbulJy9tfjPuDqpXtpbXHaH6x//DPT4AIClh+PcO9mC8hgP9bAa5J68ps4aGBtNN2cf0RRv9Oc/ijYrH46qqqlI8HvflnH77cn1r165NPNe/f38jbdq7DQdqxxtvvJH4/owzzmi1n84888zE98uWLeN6EFLpuZYMsFhDQ4NWrlypIUOGpOVvRKQjMgtHBr7XOP+WlK24aNKgTlqpIRpS9TflvHKrdMnDKT0+ANguDP/ewR6M13Cgn80g9+Q1ZTZo0CDTTWlmfUmF3i725xe73v50t9aXVOjgrAYddNBBvpzTb47jqKamRgcddJC2bdum+++/P/Fcqm7WnYyGhgb97Gc/SzweOXKkevfu3eJr161bl/h++PDhiTr254QTTkh8H4vFtGHDBg0bNiwFrfbGxIkTtWvXrlZft2vXLj3zzDOJx7ZucZYqEcdxHNONQHisWbNGQ4cOTTxevXq1hgwZYrBFAEJpw0L35txeG/+sNPA8788DAAAAAJKi0ag+/vjjZj87+uijfb0XxpbdNYnvZ/zvJ3pi+Wbfzv3dEUX63teOVN8eeb6d0081NTUqLi7WK6+8onvvvVc7duyQJB177LF66623lJ+f73kbGhoatH37dv3rX//SH/7wB61cuVKSlJ+fr0WLFukrX/nKPu/ZsWOHCgsLE4/XrVvXpom2Qw89VDt37pQkPfvssxo3bly72z1r1qzEPUKKiopUXFzc5vcWFxfriCOOSDz+9NNP27XSpbGxUeeee64WLVokSRo0aJCWL1+ubt26JX2s1qTqWmD6s1xWXgA+i8fjqqioUNeuXa3dgzHVyCwcGfha45Kpnhw2rogqlK+uqlSGHGnpNCYvgspxpPpKKdYoZXaScvIlfiMG8FwY/r2DPRiv4UA/m0HuyWvKLC/P/If2p9/7Rusv8sjjyzfp8eWb9OldY6z4jfYlS5bo9NNPP+BrxowZoyeffNLTiYusrCzFYrH9Pj9w4EA9//zzzT7k3tuXVyQceuihikajyszMPGA/9erVKzF5sXt36lbw7N69Wz/60Y/a/PpU3U/khz/8YWLiokePHpo3b54nExc2YfIC8FlFRYWmTZumG2+8UQUFBaabEwhkFo4MfKuxdI20eZknh65QvqZFrtONzsMqUIW0aalUulYqHOzJ+azn9wRC6Rpp1Rzps3el7R80vx9KboHU+3jp8BOlYePoU8AjYfj3DvZgvIYD/WwGuSevKbNkPpC1WSwW83W1iQndu3fX//t//0+XX365sTZkZmbqtttu05QpUw6Yd1VVVbPH2dnZ2rFjhw499NADvm/vbaW+fIyOqKys1J///OeUHa8tpk6dqr/85S+SpE6dOun555/XUUcd5Wsbgohto+Ar00uN0gG/QZI8MgtHBp7WuGfTF98vnSa980hqj/9/9ll5IUknXydd8AdPzmclExMIGxa6q3GSmdTqN1L66s3SwHNT0wYAksLx7x3swXgNB/rZDHJP3t4rLz755JNmz/m9bVT/n73s27n2x5aVFxs3btQDDzwgyb3fRWVlpdavX6/3339f0WhUkntj6+nTp2vgwIGetePGG29MrLyorq7Wli1b9PbbbydWJBx11FH6n//5H33jG99o8f3/+te/9LWvfS3xOBqNynGcVldefO1rX9O//vUvSdJvfvMb/epXv2p3DXtvG9VRyW4btWDBAn3zm99MZPiXv/xF1113XUrasj9sGwWgXTIyMvjNkSSRWTgy8LTGacd5c9wvyZDjrrjY24qHmbxoi7ZMINSVSZ8udr+WPNDxCYSa3e6N21fPSf69m5dJTy1zJ1HOv1fK69G+NgBoJgz/3sEejNdwoJ/NIPfkNWXW9IF22NkwcSFJRx55pP70pz/t8/Nt27bpl7/8pWbNmqU33nhDI0aM0KJFi3Tccd78v++0adP2+Vl1dbX+/Oc/a/Lkyfr3v/+tCy64QI8++qgmTpy4z2tzc3ObPW5sbNznZy2pr69PfJ/Km7B39J4XyVi7dq3+4z/+IzFxcfPNN3s+cWETpq8Bn1VWVmr69Okp2y8vDMgsHBnYUGOlOmu6rlSlOjd/gkWO+1ezW5pzrXsD9WS389q8THpqnPT8de5xklGyWnpwZPsmLva26jn3OKVrOnYcAJLs+LcA4cF4DQf62QxyT15TZqncWifIDnR/hiCLxWKJm1/PnDlTP/7xjyVJe/bs0eWXX75P3U33djjQ1xNPPNGutnTu3Fm33nqrnn76aUnu6p/vf//72rhx4z6v7dKlS7PHVVVV2rFjR6v9VFtbu99jBMGuXbt04YUXqqLC/SXHMWPG6P777zfcqmBh5QXgs+zsbA0fPlzZ2dmmmxIYZBaODGyoMVuNGq41ylZj8ycaqtz7NaC5ktXSk5dKlds7dpxVz0nFS6Qrn5cK27B8tWS1NOuC5ltSdUTldmnmGOnq+W07P4D9suHfAoQH4zUc6GczyD15ZNacLSsvviwSiSgvLy9R31133aVZs2apoqJC69at0yuvvKJvfvObiddXVFS0em+HqqoqXXnlle1u07e//W2dffbZeu2111RXV6f/9//+3z4f0Pfs2bPZ4x07dqhfv36t9lNJSUni+x49grXavbGxUZdcckliMmfIkCF65pln2AovSaQF+CwnJ0cjRoxQTk6O6aYEBpmFIwMbasxRg0bofeWoofkT0YaW3xBmTRMIHZ24aNI0gdDaCoia3e6ESaomLprUlUlPXJL8ChAAzdjwbwHCg/EaDvSzGeSevKbM0mHy4l+3npn4OrGou6/nPqmou/5165nWfkCckZGhLl26JOrLy8vTyJEjE88vXbrUSLu+/vWvH7ANhx56aLOt4LZs2dKsjpbU1dVp586diceDBg1KTWN9MmnSJC1evFiSdPDBB2vevHnKz+eXGpNl599kII3V1dVp0aJFqqurM92UwCCzcGRgQ411ytEinaY6fel/srLM/w9EWjE5gTD/ltRNmHxZ5XbplVu9OTYQEjb8W4DwYLyGA/1sBrknrymzve8RYErfHnmJr1OP8Pe35U85oocKOsUUj8d9Pa9f4vG4Kisrm9XXvfsXE0S7du1q9vr+/fvLcZwDfs2aNavD7TpQG5oce+yxie/fe++9fer4svfeey/xfWZmpqc3JE+1Bx54QI888ogkd1XU3/72t3bfMyPsmLwAfBaNRlVcXMxNtJJAZuHIwIYao8pUsfooqszmT2S3c29Ox5HqKqTqXe6fttw7w9QEwoaFHb/HRWtWPeeeB0C72PBvAcKD8RoO9LMZ5J68dM3souGH+Xq+bx7XS/X19XJs+X+nL3EcZ5/6tm//4v+tTG2t1JY2nHnmmYnvmybaDtRPTasWJGnkyJGBWYk1f/583XLLLYnHDz30kL761a8abFGwcc8LwGddunTRVVddZboZgUJm4cjA0xpv/PCL71+4Xtrylien6aIaXaXnmv+w7wgpmf1WS9dIq+ZIn70rbf+g+eqE3AKp9/HS4SdKw8ZJhYNT0Wx/+TWBMGycNPC85j9fMtXb8zZZOm3fcwNokzD8ewd7MF7DgX42g9yT15RZuk1eDOrVVaf076G3i73fXvWUI3po8GEFnp/HpMzMTB188MGJx7t27dKbb76ZeLz36gY//f3vf2+1DWPHjtXvf/97SUrcHyMzM7PF10pqtiJk7NixKWmn19asWaMrrrgisaLk1ltv1cSJEw23KthYeQH4LBaLqaSkRLFYzHRTAoPMwpGBpzV2L/riq2hU6o//f2LKUIkOUWzvf177t/F8GxZKj54vPThSWvKA9OnifbdVqitzf77kAenB09zXb3g1Vc33h58TCHsrXSNtXubPuTctlUrX+nMuwDJh+PcO9mC8hgP9bAa5Jy+dM/v+6CN9Oc+kMwbIcRw1NjYGduXF7t0HnuTZu754PK4f/ehHia3CcnJymt2su72qq6uT2rLtwQcf1DvvvJN4fMkll7T4upNPPlknn3yyJHe83nrrrfvtp4ceekgbNmyQJOXn52vChAltbo8pn3/+uS688EJVVFRIkr71rW/prrvuMtyq4GPyAvBZZWWlZsyYocrKStNNCQwyC0cGvtU47FLPDl2pLpoR+a4qtdc2UUNbOV/NbmnOtdJTlyX/4frmZdJT46TnrwvGjaJNTCDs2eR+rXjEn/M2eecR97wAkhKGf+9gD8ZrONDPZpB78poyq6qqMt2UfZw1qFAXHe/t9lHfGn6Yzhx0qGKxmHbu3JmWkzht8dhjj+nkk0/WY489lvgQfG9N9b3//vsaM2aMnnnmmcRzt9xyi3r27NnhNnz88cc66qijdN9992nLli37fV1JSYluvvlm/fCHP0z87PTTTz/gBMreH+Y//fTTuu2229TY2NjsNc8++6xuuummxOP/+q//arbaJB01NDTo4osv1qeffipJOu644/TEE09Ye+N4P0WcoE5FIpDWrFmjoUOHJh6vXr1aQ4YMMdgi/zXtT5iTk6NIMlvJhBiZhSMDX2t89HxPPkR3JNUrRzmqV0RyV3lcPX//byhZ7d64OhX3f8jvLV35vFSYhtfUpg/xl05zP9T3y8nXSSse9u98Lbmj3Oz5gYAJw793sAfjNRzoZzPIPXlNmWVmZurf//53s+eOPvpoZWWZ3Tl+T3WDvjHtf1Vakfobihd2zdGCG7+m7p2zEzehjkQigRw7U6dO1c033yxJysrK0qBBg3TMMceoe/fuikQi2rVrlz788MN9+viSSy7RM888k5J+XrlypU444YTE4/79+2vo0KE6+OCDlZOTo4qKCq1fv14ffvhhs0miY445Rm+88YZ69+59wOP/+te/1m9/+9vE48MOO0ynn366cnNz9e6772r16tWJ577+9a9r/vz5Kalr1qxZuvrqqyVJRUVFKi4ubvN7i4uLm91w+9NPP1X//v0TjxcvXqzRo0cnHl900UXq27dvm4793e9+V6eeemqb29JW0WhUH3/8cbOftedaYPqzXO55AfgsEokoNzfXdDMChczCkYGvNX71Jump1E9eRCTlaq//GB910/5fXLJamnXBvltDtVfldmnmGHeyJN0mMKYdZ+a8picuACQtDP/ewR6M13Cgn80g9+Q1ZZZu97xo0r1ztmZfc4r+Y8Zyldc2tv6GNup2UCfNvuYUde+cLUmBnbRosvdNqaPRqFavXt3sw/wvy8/P1x133KEbb7zxgPePSEanTp2UkZGRuG9DcXHxAT/oz8jI0LXXXqt77rlH3bt3b/X4d955p3JycnTnnXeqsbFR27Zt01//+td9Xnf55ZdrxowZxife2uLLawNeeumlNr/3pJNO8mTywhasXQF8VlFRoalTp7a4/A8tI7NwZOBrjQPPa307p3aoUBdN1bWqUJf/u2H0uS2/sGa3u+IiVRMXTerKpCcuCcYWUgDQgjD8ewd7MF7DgX42g9yT15RZOm+1NahXV/31hhEq7JrT+ovboLBrjv56wwgN6tU18bNYLKbS0tLAbhs1adIkffTRR/rzn/+sCRMm6MQTT9QhhxyiTp06qVOnTurZs6cGDRqk73znO5o1a5a2bdumn/zkJymbuJCkIUOGqKSkRE8++aR++MMf6vTTT9fhhx+u3NxcZWZmqqCgQAMGDNDYsWN13333afPmzXrooYfaNHEhuRNMP//5z/Xaa6/ppptu0tChQ9WtWzfl5eVpwIABuvLKK/WPf/xDTz/9tLp27dr6AWE1to2Cr0wvNUoHDQ0NWrt2rQYPHqzs7GzTzQkEMgtHBr7XWLPbvTl2KrZs+j8N6qS1OlqDu1Qq+wf/K+X1aPmFc66VVs9J2Xn3MWycdEkarTq4o5vpFpjDtlFAUsLw7x3swXgNB/rZDHJPXlNmxxxzzD6/JZ8O20btbU91g+6Yt0YvrtzW7mN8a/hhuuPCIYkVF03i8bjq6uqUm5tr5f0GbKnPljrSmS3bRjF5AV+ZHvAA0EzpGnerpVSugMgtOPDWTRsWujfn9tr4Z90VJumAyQsAAADAF6n6wNIPr68v1fTFG/X2p21fOX7KET006YwBOnPQoR62DAg+WyYvmNoCfFZbW6sFCxaotrbWdFMCg8zCkYGRGguHuBMN+Qe+oVhb1XYp0oKBv1dt1yP3/6IlU1NyrlYtnebPeQAghcLw7x3swXgNB/rZDHJPXlNmdXV1ppvSZmcNKtSzN5ymhTd9Td8dUbTf151U1F0/PHOAFt70NT17w2kHnLiIx+MqLy9P3K/BNrbUZ0sd8B6TF4DP4vG4ysrKuEAngczCkYGxGguHSJOWuVstdcSwcYpPnK+yhsz911C6Rtqc+huFt2jTUql0rT/nSmc//kC68UOpr883QOs7wj0vgKSE4d872IPxGg70sxnknrwgZ3ZMr3x972v7/wWw//6P4brlvEE6pld+q8dyHEexWGyfGyjbwpb6bKkD3mPbKPjK9FIjADigDQvdFQublrb9PUWjpFE37f/m3JK0Z5P759Jp0juPdKiJSTn5Omnkj6Xu+/8tJl801f/C9dKWt/w7b98R0rUL3e//OUVa8oB/5z79p9LZk/07HwAAAKBgbRu1ty27a3T6vW+0+Ny/bj1TfXvk+dwiINhs2TYqva9cgIWi0ai2bt2qPn36pP1/PKQLMgtHBmlR48Dz3K/Ste4NtT97V9q2svk9MXILpMOGS4efKA29VCocnHhqvzVMO86nAr5kxcPul+n7LjRNnhSN8nfyov+oL74fdqm/kxdDL/XvXIBF0uLfAqCNGK/hQD+bQe7Ja8qsV69eppvSLn175Kn47gs6fBzHcdTQ0KDs7GxFIpEUtCy92FKfLXXAe2wbBfisqqpKs2fPVlVVlemmBAaZhSODtKqxcLD7W/MTXpRuK5Z+vlW6ZaP7523F7s/Pntxs4kJKsxrS0TCfP9DfewKhcIjUb6Q/5y0atc/YANA2XEcRJIzXcKCfzSD35DVlVl1dbbopRsViMe3atUuxWMx0UzxhS3221AHvsW0UfGV6qREAGHFHN8PnN7zyYm+Pnu/PfT+KRrk3Y9/bhoXSU5d5f+7xzx14GzEAAADAI0HdNgpAatmybRQrLwAAgH++epM/5xnVwnkGnuf9dk7DxjFxAQAAAABACjB5AfisvLxcd999t8rL0+g3odMcmYUjAxtqtKEGz5meQBhzn5Tf25vz5veWzr83NcdyHKmuQqre5f7JQlmEBNdRBAnjNRzoZzPIPXlNmVVUVJhuilHRaFTbt29XNBo13RRP2FKfLXXAe6wZA3yWl5ensWPHKi8vz3RTAoPMwpGBDTXaUIMvxtwnbVoqVW5P/bFbm0DI6yFd+bw0c0zzG7F3VG6Be9y8Hu0/RukaadX/3Sh++wf73ii+9/HujeKHjeOeGrAW11EECeM1HOhnM8g9eU2ZHXTQQaabYlRGRoYKCgqUkWHn72vbUp8tdcB73PMCvjK9TxoAGLFnk/vnC9dLW97y77x9R0gXPyR1L/LvnG1VusabCYSr57s3527L+Z+4JDUTKPm93YmLtpy3JRsWSkumJncvkH4jpa/ezBZVAAAAaIZ7XgCQuOcFgHaqqanR3LlzVVNTY7opgUFm4cjAhhr3W0P3IveraJS/Deo/Kj0nLiT3g/6r56duC6f83m2fuGg6/6Rl7iqGjhg2zj1OeyYuanZLc651byKe7E3MNy+TnhonPX+dexzAEjb8W4DwYLyGA/1sBrknrymz2tpa000xKhaLac+ePYrFYqab4glb6rOlDniPyQsAAPwyzON7PXyZ1/eW6CjTEwh5PaRLHpbGP5v8xFLRKGn8c+7727NVVMlq6cGR0uo5yb93b6uec49TuqZjxwEAAAAAIM2wbRR8ZXqpEQAY9+j5yf+WfXsUjXJXIgTFhoXS0mnuvTDaqmiUNOqm1G2dVLrWnUz47F1p28p97zlx2HD3nhNDL+3YPSdKVkuzLjC3ZRYAAACsxbZRACR7to3iygX4rLGxUZ988okGDBigTp06mW5OIJBZODKwocY21fDVm6SnfJi8GHWT9+dIpYHnuV9+TSC0pHCwVDjZ/d5xpIYqKdogZWVL2V2kSKTj56jZLT15aWonLiT3eE9c4q5A6chNwwHDbPi3AOHBeA0H+tkMck9eU2ZFRWm6baxP4vG46uvrlZOTY+XNoG2pz5Y64D1GB+Az9u5MHpmFIwMbamxTDQPP8347p2Hjgnsj58LB0tmTpQkvSrcVSz/fKt2y0f3ztmL352dPTv3ExZdFIlJOvtS5p/tnKiYuJGn+Lam5SXhLKrdLr9zqzbEBn9jwbwHCg/EaDvSzGeSePO554YrH4yorK1M8HjfdFE/YUp8tdcB7bBsFX5leagQAaaFmt3ufAi8+xM7vzW/fp6sNC92bc3tt/LPuJBkAAABCh22jAEj2bBvFygsAAPyW10O68nl3G6RUyi1wj8vERXpaMtWf8yyd5s95AAAAAADwEJMXgM/Kyso0ZcoUlZWVmW5KYJBZODKwocakaigc4t5gOb93ak6e35sbNqez0jX+3Khdcm96XrrWn3MBKWbDvwUID8ZrONDPZpB78poyKy8vN90Uo6LRqLZt26ZoNGq6KZ6wpT5b6oD3mLwAfNalSxdNnDhRXbp0Md2UwCCzcGRgQ41J11A4xN3iadi4jp142Dj3OExcpJ89m9yvFY/4e953HnHPCwSMDf8WIDwYr+FAP5tB7slryqxz586mm2JUZmamevbsqczMTNNN8YQt9dlSB7zHPS/gK9P7pAFA2tqw0N3uZ9PStr+naJQ06qbg3pw7DO7oZvj84f7NOwAAgLAJ7D0v9mySph3X8nM3fih1L/K3PUDAcc8LAO1SXV2tZ555RtXV1aabEhhkFo4MbKixQzUMPM/d9mnSm9LpP5WOHL3vPTFyC9yfn/5T93VXz2fiAoBVbPi3AOHBeA0H+tkMck9eU2Y1NTWmm2JULBbT7t27FYvFTDfFE7bUZ0sd8F6aT7sC9snIyFBBQYEyMpg7bCsyC0cGNtSYkhoKB0uFk93vHUdqqJKiDVJWtpTdRYpEUtNYAEhDNvxbgPBgvIYD/WwGuSePzFyRSESZmZmKWPr/TbbUZ0sd8B7bRsFXppcaAQDgK7aNAgAAgI8CuW1U6Rr3HnHv7Oc+cX1PdbfMHTbO/WUvAK1i2ygA7dLQ0KCVK1eqoaHBdFMCg8zCkYENNdpQAwCYxHUUQcJ4DQf62QxyT15TZo2Njaab0nYbFkqPni89OHL/ExeStOUtackD0oOnua/f8Op+XxqPx1VTU6N4PO5Bg/3X0NCgxx9/XGPGjFFRUZFyc3PVq1cvjRw5Uvfff78+//xzT84bi8X04Ycf6pFHHtGkSZN00kknKTs7W5FIRJFIRKNHj+7Q8dvaT59++qmeffZZ3XrrrTrzzDPVtWvXRBu8XLVx1VVXJc5x1VVXJfXeWbNmJd7bv39/T9oXJmk87QrYqa6uTosWLdKRRx6p7Oxs080JBDILRwY21GhDDQBgEtdRBAnjNRzoZzPIPXlNmRUVBeDG1jW7pfm3SKvnJP/ezcukp5a5qzDOv1fK69HsacdxVFlZqZycnBQ11pz169friiuu0MqVK5v9vLS0VKWlpXrzzTd13333aebMmRozZkzKzjt37lx95zvf8fT+Ka310/bt2zVs2DDt2rXLszYgGNg2Cr4yvdQIAJAEx5HqK6VYo5TZScrJ554bydqzyf3zhevd3xjzS98R0sUPSd0D8D+vAAAASJm03zaqZLX05KVS5faOHyu/t3Tl81KhfZ8rbd26Vaeeeqq2bdsmyb1HxNe+9jUNGDBAO3fu1D//+U/V1tZKkjp16qQFCxborLPOSsm5Z82apauvvvqArznjjDO0aNGilJyvJcXFxTriiCNafZ1XH2tfddVVmj17tiRp4sSJmjVrVpvfu3d+RUVFKi4u9qCFrbNl26g0uXIB4eE4jurr65WTk8ONidqIzMKRgQ012lCDStdIq+ZIn70rbf9Aqiv74rncAqn38dLhJ7LfbFs1TR4UjfJ38qL/KCYuEEhWXEcRGozXcKCfzSD35DVllpmZabop+1eyWpp1QfP/x+iIyu3SzDHS1fMTExiO48hxHM+3FfLa+PHjExMXRUVFevHFF3X88ccn6tu1a5euuOIKvfbaa2psbNS4ceP0ySefqKCgIGVtKCws1Mknn5z4WrhwoaZNm5aSY7e1n7p06aKvfOUrOuWUU3TyySerrq5OEydOTEkbEAzc8wLwWXl5ue655x6Vl3MT1bYis3BkYEONga5h7/1mlzwgfbp43/+pqCtzf97G/Waxl2GX+nu+oT6fD0iRQF9HETqM13Cgn80g9+Q1ZVZRUWG6KS2r2e2uuEjVxEWTujLpiUvc48u9V0NJSYlisVhqz+Oj+fPn61//+pckKTs7W/PmzdPxxx8v6Yv6unfvrhdffFFHHnmkJGn37t269957U3L+b3zjG9q0aZNKSko0b948TZ48Weeff35KJ0Za66fCwkKtXr1a5eXlWrx4se677z5ddtll6tevX8ragGBg8gLwWX5+vm644Qbl5+ebbkpgkFk4MrChxkDWULNbmnOt9NRl7v6xydi8THpqnPT8dYn/WcB+FA6R+o3051xFo1gVg8AK5HUUocV4DQf62QxyT15TZl26dDHdlJbNvyU1W0W1pHK79MqtkqTMzEwdcsgh6b0CpRV//vOfE99PnDhRw4YNSzzeu77OnTvrzjvvTDw3Y8YMRaPRDp+/V69enk8StNZPBx10kIYMGaKMDD66DjtGAOCzzMxM9erVK9D/kPqNzMKRgQ01Bq6GktXuSov23Chvb6uec49TuiY17bLVV2/y5zyjfDoP4IHAXUcRaozXcKCfzSD35KV1ZhsWdvz/OVqz6jlpw0JFIhF16tQpsFtGVVVV6bXXXks8/vK9J75c3yWXXJKYsNq9e7f+93//17/GdkDQ+6kjiouLE9tlJftl6v4ZJjF5AfisqqpKs2bNUlVVlemmBAaZhSMDG2oMVA1N+82m6refmvabZQJj/wae5/12TsPGSQPP9fYcgIcCdR1F6DFew4F+NoPck9eUWXV1temm7GvJVH/Os3SaYrGYPv/888BuG7Vs2TLV19dLkjp37qyTTz652fNfri83N1ennXZa4vnXX3/dv8Z2QND7Cf7hht2Az7KystS/f39lZfHXr63ILBwZ2FBjYGrwer/ZScukvB6pPbYtxtwnbVrqzZL5/N7S+anZ5xYwJTDXUUCM17Cgn80g9+SlbWala5Lfnra9Ni1VZOc65XQuCuxv9K9bty7x/bBhw/bpz0gkss+N7L/yla/oH//4xz7vT2ct1REWXbt21Q9/+MM2vfbDDz9M3P9EUijzSrMrGmC/3NxcjR492nQzAoXMwpGBDTUGpgY/9pu95GFvjh90eT2kK593V6mkcvIot8A9LpNGCLjAXEcBMV7Dgn42g9yT15RZKu550GF7Nn3x/YpHfD11xrszlT/yx1JGMO+X8tFHHyW+Lyoq2uf5jIyMfe4Fs/f9KdavX+9d41KopTrCokePHvrTn/7U6uu2bNmiU045JfH4iiuuaHFM2I7JC8Bn9fX1ev/993XCCScoJyfHdHMCgczCkYENNQaiBr/2mx02zt0mCfsqHCJdPd9dpZKKSaT83u7EReGQjh8LMCwQ11Hg/zBew4F+NoPck9eU2XHHHWe6KdI0g21Y8bC04mHFJ+8J5M2ed+3alfi+sLBwn+fj8bhqamqUl5eXqK9Xr16J53fv3u19I1OgpTrS1VtvvaUf/ehHbX59KiaQqqurddFFF6mkpESSdOqpp+rRRx/t8HGDiMkLwGcNDQ1auXKlhgwZwn+EtRGZhSMDG2oMRA0+7jfL5MUBFA5xt9d65VZ3sqe9ho1zt4pixQUsEYjrKPB/GK/hQD+bQe7Ja8ps0KBBppuSFhzHMd2Edtn7Pi8HHXTQPs87jqOamppmz+39fVDuE9NSHelq/fr1vq5ocRxH3/3ud7Vy5UpJUt++fTV37lzl5ub61oZ0wuQF4LP8/Hx9//vfN92MQCGzcGRgQ41pX4PP+82qdK1UONif8wVRXg93e61h49zJnk1L2/7eolHSqJu4OTesk/bXUWAvjNdwoJ/NIPfkNWWWFttGpYHMzEzTTWiXurq6xPfZ2dn7PJ+ZmalDDz202c/2nuCrra31rnEp1FIdcP3yl7/U3/72N0nuTdtfeumlZqtrwia91+UAForH4yorK1M8HjfdlMAgs3BkYEONaVvDnk3ul8/7zeqdR5rvd4uWDTzP3UZq0pvS6T+Vjhzt3sNib7kF7s9P/6n7uqvnM3EBK6XtdRRoAeM1HOhnM8g9eWTWXFBXXuz92/UNDQ37PO84jqLRaLP66uvrE98HYSWD1HId6WrixIlyHKfNXzNnzmz3uZ544gndddddktybcz/xxBMaPnx4iioJJlZeAD6rqKjQtGnTdOONN6qgoMB0cwKBzMKRgQ01pm0Npvac/b/9ZnVHuZnzB03hYKlwsvu940gNVVK0QcrKlrK7SJGI2fYBPkjb6yjQAsZrONDPZpB78poyS2ZvfpvFYjFlZQXvY88uXbokvm9pFUUsFtOOHTt06KGHJurb+3V7vz8d7N69W5MnT97n5/F4XLW1tTrooIM0cuRIXXnllQZal16WL1+u6667LvH497//vcaOHWuuQWkieH+LgYDr2rWrbrzxRnXt2tV0UwKDzMKRgQ012lAD0kQkIuXkS2zxjJDhOoogYbyGA/1sBrknrymzvLw87dixw3RzjAvqtlE9e/ZMfF9aWrrP803bLe1dX9NNnSWpR4/0uhdeRUWF/vznPx/wNTU1NaGfvNi8ebPGjh2bWEUzYcIE/exnPzPcqvTA5AXgs4yMDH5zJElkFo4MbKjRhhoAwCSuowgSxms40M9mkHvymjJLi3te3PjhF9+/cL205S3/zt13hHTxQ4oEdNXyMccck/h+06Z9t+CNRCL7rCjZvHlz4ntu2B481dXVuuiiixKTVaNGjdJDDz1kuFXpg3teAD6rrKzU9OnTVVlZabopgUFm4cjAhhptqAEATOI6iiBhvIYD/WwGuSevKbOqqirTTZG6F33xVTTK11PH+43UjsaDFIvFfD1vqhx77LGJ71etWrXPZFTTtlF71/fee++1+P500L9//xbvCxGNRlVaWqpoNKpZs2aZbqYxjuPoyiuv1AcffCBJKioq0gsvvNDsJuxhx+QF4LPs7GwNHz5c2dnZppsSGGQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LSNrNhl/p8vkuUl5cX2JUXI0eOTHxwXV1drXfeeafZ85FIpFl99fX1Wr58eeL5s846y7/GdsCX6wirX/ziF5o7d64kKT8/X/PmzdOhhx5qtlFphskLwGc5OTkaMWIEs6hJILNwZGBDjTbUAAAmcR1FkDBew4F+NoPck9eUWdpNXhQOkfqN9OdcRaOU0WuounTpooyMYH7k2aVLF5199tmJx19elZCRkdGsvhdeeCGxQqlHjx762te+5ltbO+LLdYTR448/rrvvvluSm8fTTz+tYcOGGW5V+gnvCAEMqaur06JFi1RXV2e6KYFBZuHIwIYa07aGGz90v/qe6u95+45ovt8tALQiba+jQAsYr+FAP5tB7slryqzphr9p5as3+XOeUTcpHo+rsrJS8Xjcn3N64Ac/+EHi+1mzZmnNmjWJx3vXV1NTo8mTJyee+973vrfP/TDSlQ391BHLli3T9ddfn3h877336oILLjDYovTF5AXgs2g0quLi4vS4iVZAkFk4MrChxrStwdB+s+o/yj0vALRR2l5HgRYwXsOBfjaD3JOX1pkNPE8a6vH2UcPGSQPPleM4qq+vl+M43p7PQxdccIFOP/10Se62UN/85jf14YfuL4U11ff5559r7Nix+ve//y3JXXVx22237feYxcXFikQiiS/T95mwoZ/aa/Pmzfr2t7+dmGi85ppr9NOf/tRwq9JXMKbjAIt06dJFV111lelmBAqZhSMDG2pM+xqGXSotecC/83n9PygArJP211FgL4zXcKCfzSD35DVllpaTF5I05j5p01Kpcnvqj53fWzr/XklSZmamDj744NSfw2dPPfWUTjnlFG3fvl3FxcUaPny4zjjjDA0YMEA7d+7UP//5T9XU1EiSsrKy9Oyzz6qgoCBl5x8zZoy2bdvW7GclJSWJ79955x0NHz58n/fNnz9fhx12WKvHb0s/TZ48WS+99FKzn335hvQtteHOO+/URRdd1GobTJk5c6Z27Nghyc0hKytLP/rRj9r03jvvvFM9evTwsnlph8kLwGexWEw7d+7UIYccoszMTNPNCQQyC0cGNtSY9jU07Te7eZn35yoaJRUO9v48AKyS9tdRYC+M13Cgn80g9+Q1Zda9e3fTTWlZXg/pyuelmWOkurLUHTe3wD1unvuBruM4ikajysrKCvTNoPv06aPXX39dV1xxhVauXCnHcbRo0SItWrSo2esOOeQQzZw5s9l9MlJh7dq12rRp036fr66u1gcffLDPzxsaGtp0/Lb00+bNm1s8x95aen737t1taoMpe682icVieuihh9r83v/6r/8K3eQF20YBPqusrNSMGTMSN1RC68gsHBnYUGMgavBxv1kASFYgrqPA/2G8hgP9bAa5J68psy//ZnpaKRwiXT3fXSmRCvm93eMVDkn8qGkSJxaLpeYcBg0aNEhvvfWWZs+erW984xvq27evsrOzdfDBB+vUU0/Vvffeq7Vr1wbyXgk29RO8FXHCuLkYjFmzZo2GDh2aeLx69WoNGTLkAO+wT9O+fjk5OYH+LQA/kVk4MrChxsDUMOdaafUc744/bJx0ycPeHR+AtQJzHQXEeA0L+tkMck9eU2aZmZmJ+yA0Ofroo9PrRs41u6VXbpVWPdf+Ywwb524Vldf8t9Adx5HjOIl7O9jGlvpsqSOdRaNRffzxx81+1p5rgenPcll5AfgsEokoNzeXi3MSyCwcGdhQY2BqGHNf6n7b6cv22m8WAJIVmOsoIMZrWNDPZpB78gKVWV4P95edxj/rbjebjKJR0vjn3Pfn7bt9TiQSUUZGRjByaAdb6rOlDniPyQvAZxUVFZo6daoqKipMNyUwyCwcGdhQY2BqaNpvNrcgtcf90n6zAJCswFxHATFew4J+NoPck9eUWaC22hp4nrvt06Q3pZOv2//r+o6QTv+p+7qr50sDz93vS2OxmEpLS63djsiW+mypA95j8gLwWW5urkaPHq3c3FzTTQkMMgtHBjbUGKgafNhvFgCSFajrKEKP8RoO9LMZ5J68QGdWOFga+eP9P3/xQ9LZk93XtSISiSg/P9/a3+i3pT5b6oD30mjDOyAcsrOzNXz4cNPNCBQyC0cGNtQYuBoKh0iTlnm23ywAJCtw11GEGuM1HOhnM8g9eU2ZRaNR000xKiMjQ3l5eaab4Rlb6rOlDniPlReAz2pra7VgwQLV1taabkpgkFk4MrChxkDW4OF+swCQrEBeRxFajNdwoJ/NIPfkNWVWV1dnuint071IuqO85a/uRW0+TDweV3l5ueLxuIeNNceW+mypA95j5QXgs3g8rrKyMi7QSSCzcGRgQ42BrmHgee5X6Vpp9Rzps3elbSulurIvXpNbIB02XDr8RGnopW1atg0AyQj0dRShw3gNB/rZDHJPHpm5HMdRLBaT4zimm+IJW+qzpQ54L+IwSuCjNWvWaOjQoYnHq1ev1pAh7I8OAGnJcaSGKinaIGVlS9ldJPYkBQAAANJWNBrVxx9/3OxnRx99tLKy+P1lIExSdS0w/Vku20YBPotGoyouLg79PpTJILNwZGBDjTbU0EwkIuXkS517un8ycQHAY9ZdR2E1xms40M9mkHvyyMzlOI7q6+ut/Y1+W+qzpQ54j8kLwGdVVVWaPXu2qqqqTDclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+Q1ZVZdXW26KUbFYjHt2rVLsVjMdFM8YUt9ttQB77FtFHxleqkRAAAAAACArdg2CoDEtlEAAAAAAAAAAACeYPIC8Fl5ebnuvvtulZeXm25KYJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7slryqyiosJ0U4yKRqPavn27tff+sKU+W+qA95i8AHyWl5ensWPHKi8vz3RTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck/egTIL047xGRkZKigoUEaGnR952lKfLXWks5b+3kciEQMt6Rg2vAN81qlTJw0aNMh0MwKFzMKRgQ012lADAJjEdRRBwngNB/rZDHJPXlNmLX1g2dDQoE6dOhlolf8yMjJ00EEHmW6GZ2ypz5Y60lljY+M+PwviZFHwWgwEXE1NjebOnauamhrTTQkMMgtHBjbUaEMNAGAS11EECeM1HOhnM8g9eU2Z1dbWKjc3t9lzYdpKKhaLac+ePYrFYqab4glb6rOljnRWXV3d7HFOTk4gV14weQEAAAAAAABYIj8/v9njiooKJoKAEIlGo/vcM6hz586GWtMxESdMG9/BuDVr1mjo0KGJx6tXr9aQIUMMtggAAAAAAMAeDQ0N+uSTT5r9LCMjQ127dlXXrl3VqVOnQG4fA+DA4vG4ampqtHv3btXX1zd7rl+/fu2awDD9WS73vAB81tjYqE8++UQDBgwIzZ6THUVm4cjAhhptqAEATOI6iiBhvIYD/WwGuSdv78yys7OVn5+vysrKxPPxeFxlZWUqKysz10gfOI4jx3EUiUQCuUVOa2ypz5Y6giI3N1d5eXmmm9EuTLMCPmPvzuSRWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7J+3Jmhx12mLp06WK4VWbYfh8FW+qzpY50l5WVpT59+gR2kohto+Ar00uNAAAAAAAAwiAej2vbtm3NVmAACI+srCz17dtXubm57T6G6c9y2TYKAAAAAAAAsExGRob69OmjhoYGVVRUqLKyUnV1daabBcBDkUhEnTt3VkFBgbp06RLYFRdNmLwAfFZWVqZp06bpxhtvVEFBgenmBAKZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J68A2WWnZ2tgw8+WAcffLAcx1E8HpetG7GUl5drxowZuuGGG9StWzfTzUk5W+qzpY50k5GRYd19RNg2Cr4yvdQoHUSjUW3dulV9+vRRVhbzh21BZuHIwIYabagBAEziOoogYbyGA/1sBrknj8xctudgS3221BEGpj/LZfICvjI94AEAAAAAAAAArTP9WW6Gb2cCIEmqrq7WM888o+rqatNNCQwyC0cGNtRoQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDniPyQvAZxkZGSooKFBGBn/92orMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95j2yj4yvRSIwAAAAAAAABA60x/lsv0FuCzhoYGrVy5Ug0NDaabEhhkFo4MbKjRhhoAwCSuowgSxms40M9mkHvyyMxlew621GdLHfAekxeAz+rq6rRo0SLV1dWZbkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2wbBV+ZXmoEAAAAAAAAAGid6c9yWXkB+MxxHNXV1Yl5w7Yjs3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3mLwAfFZeXq577rlH5eXlppsSGGQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B7bRsFXppcapYNYLKadO3fqkEMOUWZmpunmBAKZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J48MnPZnoMt9dlSRxiY/iyXyQv4yvSABwAAAAAAAAC0zvRnuWwbBfisqqpKs2bNUlVVlemmBAaZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7zH5AXgs6ysLPXv319ZWVmmmxIYZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wHttGwVemlxoBAAAAAAAAAFpn+rNcVl4APquvr9fy5ctVX19vuimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7zF5AfisoaFBK1euVENDg+mmBAaZhSMDG2q0oQYAMInrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7zHtlHwlemlRgAAAAAAAACA1pn+LJeVF4DP4vG4ysrKFI/HTTclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64D0mLwCfVVRUaNq0aaqoqDDdlMAgs3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DYKvjK91CgdxONxVVRUqGvXrsrIYP6wLcgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y6wsD0Z7lZvp0JgCQpIyNDBQUFppsRKGQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B5TW4DPKisrNX36dFVWVppuSmCQWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7TF4APsvOztbw4cOVnZ1tuimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB73HPixQrLi7WP/7xDy1evFirVq3S5s2bVVVVpfz8fPXp00ennXaaxo8frzPOOCPpY69YsUIzZ87UokWLtHXrVklSnz59NHr0aF199dU6+eSTkz7m5s2b9eijj2revHmJth522GE64YQT9J3vfEdjx45VJBJJ+rj7Y3qfNAAAAAAAAABA60x/lsvKixR5//33deqpp+qII47Q9773PT355JP68MMPVVZWpmg0qj179mjVqlV66KGHNHr0aJ155pnavHlzm47d0NCgG2+8UaeeeqoefPBBrVu3TpWVlaqsrNS6dev04IMP6tRTT9XNN9+sxsbGNrf5kUce0eDBgzVlyhS99957+vzzz1VXV6eNGzfq+eef18UXX6xzzz1XJSUl7Y0FLairq9OiRYtUV1dnuimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7zF5kSIfffSR3n777WY/GzhwoC6++GJ973vf02WXXaY+ffoknlu0aJFOO+00bdy4sdVjX3/99frjH/+opkUyRx55pMaPH6/x48fryCOPlCQ5jqOpU6fq+9//fpva++ijj+q6665TdXW1JKmgoEAXX3zxPis4/vnPf+q8885TVVVVm46L1kWjURUXFysajZpuSmCQWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7bBuVIs8884yuuOIKHXXUUbruuut05ZVX6vDDD2/2mng8rlmzZuk///M/VVNTI0kaMWKEli1btt+tmR599FFde+21kqSMjAz94Q9/0I9//GNlZGQkjvnHP/5RP/3pTxWPxyVJs2fP1oQJE/bb1o8++kjDhg1LrNL4zne+oxkzZqhz586J17z++uu69NJLtWfPHknS1VdfrUcffbQ90TRjeqkRAAAAAAAAAKB1pj/LZeVFivTu3VszZ87U+vXrddttt+0zcSG5kw/XXHONnnjiicTPli9frldffbXFY9bX1+uOO+5IPL711lt10003JSYumo5500036ZZbbkn8bPLkyWpoaNhvW3/9618nJi5GjRqlxx57rNnEhSSdddZZevLJJxOPH3vsMa1bt26/x0TbxWIxlZSUKBaLmW5KYJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtMXqTIGWecoauuukqZmZmtvvbb3/62TjnllMTjl19+ucXXvfTSS9qyZYskqVu3bvr1r3+932NOnjxZXbt2lSRt2rRpv8csLS3V888/n3h87733NpsM2dv555+vc845R5J7UZk+ffoBqkJbVVZWasaMGaqsrDTdlMAgs3BkYEONNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DbKkJ/85Cf67//+b0nShRdeqJdeemmf13znO9/RU089JUn63ve+pxkzZhzwmNdff70efvhhSdJ3v/tdPfbYY/u85i9/+Yu+973vSXLvyfHRRx8d8JhPPvmkrrzySklSv379tGnTplYqOzDTS43SgeM4qq+vV05Ozn63C0NzZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx1hYPqzXFZeGLL3X8z9LZF64403Et+PHj261WOeeeaZie9ff/31lB9z8+bN+ve//93qe3BgkUhEubm5XJyTQGbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7zF5YciqVasS3/ft23ef58vLy7V9+/bE46985SutHnPv13z22WeqqKjY5zV737eiLcc87LDDVFhY2OL70T4VFRWaOnVqi/2DlpFZODLYb42OI9VVSNW73D/TeMFgGPoJALzEdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeyzLdgDDavHlzs5URTfeV2NuXt3Pq169fq8f98ms++ugjnXzyyfs9blFRUZva269fP5WWlkqS1q9frwsvvLBN70PLcnNzNXr0aOXm5ppuSmCQWTgyaFZj6Rpp1Rzps3el7R9IdWV7vbBA6n28dPiJ0rBxUuFgU03eRxj6CQC8xHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3mPywoCf/OQnia2i+vXr1+JkwK5duxLfd+3aVQcddFCrx83Ly1N+fn7iZje7d+9u9nxtba1qa2sTj/deUXEgvXr1Snz/5WMiednZ2Ro+fLjpZgQKmYUjg+zsbA3PK5We+Lm0edn+X1hXJn262P1a8oDUb6T01Zulgef61tb9CUM/AYCXuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2wb5bPZs2fr+eefTzy+6667lJOTs8/rqqqqEt+3ZeKipdfufYyWHrf1uAc6Znvl5uaqS5cuktx7fpSVlanp3vEVFRVqaGiQ5E64VFdXS5Ki0ajKysoSxygvL1djY6MkqaamRjU1NZKkxsZGlZeXJ15XVlamaDQqSaqurk5M4DQ0NCSWpzmOo7KyssSkUlVVlerq6iRJ9fX1iQmheDyusrIyxeNxSVJlZaXq6+slSXV1dYl8DlTT7t27NW/ePNXW1lpTk9f9tGPHDi1YsEA1NTXW1JRsP1VXV+vFF19MtMmGmpr1U81u7XjiBv39qemq3fye6pSjKuW5NSlDZeqqps2iKtRFDerk1qRcVW9+X3pqnKLPXaey7cX0k5f9RE3URE3U5HFNlZWVevHFFxNtsqEmG/uJmsoT73/xxReb/XdA0GuysZ86WlNtba3+/ve/a8eOHdbUFIR++vzzz/X3v/9dtbW11tTkdT/t3LlTCxYsUFVVlTU1taefSkpKtGDBAtXW1lpT0979VFpaqpdfflm1tbWBrsn2frKxJlOYvPDRO++8o+9///uJx1dccYXGjx/f4mubBqHkzka21d4TIXuvsvjyMZM57oGO2V4jRozQpZdeKknauXOnpk2blvgL9eijj2rt2rWSpMWLF2vevHmSpK1bt2ratGmJYzz44IP65JNPJEmvvvqqXn31VUnSJ598ogcffDDxumnTpmnr1q2SpHnz5mnx4sWSpLVr1+rRRx+V5P5lnzZtmnbu3ClJmjNnjpYvXy5Jev/99/Xkk09Kcv9CT5s2LXEBefLJJ/X+++9LkpYvX645c+a0WtPSpUu1YcMGxeNxa2ryup+efPJJlZWVqba21pqaku2n8vJyrVy5MvGPnA01JfrpkxXSgyM159/Z2qzDFVdEy/UVzdEFbk3qqWmR61Qv91r0qP5Da3W0W5NGaJ6+7ta05k1Ne2i2u+UU/RSqawQ1URM12VXTypUrE//TZUtNNvYTNbkfEqxcudKqmmzsp47WFI/HtXnz5kRbbagpCP20cOFCbdy4UfF43JqavO6nl156SWVlZVbV1J5+mjFjRuIDXFtq2rufZs6cqW3btikejwe6Jtv7ycaajHHgi40bNzq9evVyJDmSnOOOO84pLy/f7+ufffbZxGsLCwvbfJ5DDz008b45c+Y0e27Hjh2J5yQ569ata9MxL7vsssR7fvSjH7W5LS1ZvXq1I8nJzc11unTp4qxevdqJRqPOnj17nHg87jiO45SXlzv19fWO4zhOTU2NU1VV5TiO4zQ2Njp79uxJHKusrMxpaGhwHMdxqqurnerqasdxHKehocEpKytLvG7Pnj1OY2Oj4ziOU1VV5dTU1DiO4zj19fWJPojH486ePXucaDTqOI7jVFZWOrW1tY7jOE5dXZ1TUVHhOI7jxGIxZ8+ePU4sFnMcx3EqKiqcuro6x3Ecp7a21qmsrHQcx6EmaqKmtta0YbkT+32R49ze1am4vbdTd/vBjnN7V6f29kOcytt7Oc7tXZ3o7QXOntv7OPHbuzrO7V2d8tsPc+pv7+k4t3d1am4/1Km6vdBxbu/qNN7e3dlzex/Huauf45Sspp+oiZqoiZqoiZqoiZqoiZqoiZqoiZqoiZo6UFPTZ7lNX6tXr3b8FHEcx2lhTgMptH37dp1++umJGbcjjzxSS5YsUe/evff7nldeeUVjxoyR5N7zYu8lRQfStWvXxHKhBQsW6Lzzzks8V1tbq7y8vMTj9957TyeccEKrx7zooosSs24/+9nPdNddd7WpLS1Zs2aNhg4dmni8evVqDRkypN3HC6JoNKqtW7eqT58+ysritjNtQWaWZlCzW3pwpFS5XZIUVaa2qrf6aLuyFOvYsfN7S5OWSXk9UtDQtrOynwDAR1xHESSM13Cgn80g9+SRmcv2HGypz5Y6wsD0Z7lsG+WxXbt26etf/3pi4qJ379765z//ecCJC0nq2bNn4vuKiop9tnxqSU1NTWLiQpJ69Gj+od1BBx3U7P4VpaWlbaqhpKRkv8dE8qqqqjR79uyU3T8kDMjM0gzm35KYuJCkKnXW7MhlqlLnjh+7crv0yq0dP06SrOwnAPAR11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j5UXHqqoqNBZZ52ld999V5J08MEHa/HixRo8eHCr7y0vL1dBQUHi8fr163XMMccc8D3r16/Xscce2+wYXbt2bfaaE044QStXrpQkTZ8+XTfccEOrbenVq1diouOll17ShRde2Op79sf0bB2ANLFhofTUZd6fZ/yz0sDzWn8dAAAAAAAAmjH9WS4rLzxSXV2tMWPGJCYuunXrpgULFrRp4qLp9Xuvzmi6wcqBvPfee4nvDz/88H0mLiQ1m9xoyzG3bdvWbIXG3u8HgHZbMtWf8yxNg5tLAQAAAAAAIGlMXnigrq5OF110kZYuXSpJysvL08svv6wTTzwxqeOceeaZie8XLVrU6uub7kgvSWeddVbKj9mvXz8dddRRrb4HB1ZeXq677767zfcxAZlJlmVQukbavGyfH5crX3frBypXfurOtWmpVLo2dcdrhVX9BAAGcB1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8SLHGxkZdcsklev311yVJOTk5evHFFzVq1KikjzV27NjE93/9619VW1u739fW1tbq2WefbfG9e7vooouUkeF2+0cffaTly5cfsA2zZs1KfP+tb32r9UajVXl5eRo7dmyzm6fjwMjMkgz2bHK/VjzS4tN5qtVYLVSe9n+ta5d3Wj6fF6zoJ0CSHEeqq5Cqd7l/sssofMJ1FEHCeA0H+tkMck8emblsz8GW+mypA97jnhcpFIvFdPnll2vOnDmSpKysLD3//PO66KKL2nW8+vp6HXXUUdq6dask6Ze//KV++9vftvjaX/ziF7rrrrskSUVFRdqwYYOys7NbfO24ceMSbTz99NO1ePFiRSKRfV736quv6rzz3L3iMzMz9eGHH7Z526v9Mb1PGgCD7uhm8Nz8NgfQqtI10qo50mfvSts/kOrKvngut0Dqfbx0+InSsHFSYcf+ewAAAAAAkP5Mf5bLyosUcRxH1157bWJSICMjQ48//ni7Jy4kd9XGlClTEo/vuusu/fGPf1Q8Hk/8LB6P649//KPuueeexM/uvPPO/U5cSNJvfvMbderUSZL0r3/9SxMnTlR1dXWz17zxxhsaP3584vGECRM6PHEBV01NjebOnauamhrTTQkMMgtHBjXK1Vydpxrlpv7gPs3Th6GfYKENC6VHz5ceHCkteUD6dHHziQvJffzpYvf5B09zX7/hVROtheW4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7WaYbYIsHH3xQs2fPTjweMGCAlixZoiVLlrTp/X/6059a/Pk111yjRYsW6fHHH1c8HteNN96oP/7xjxoxYoQkafny5frkk08Sr7/66qs1YcKEA55r0KBBevDBB3XddddJkh5//HH9/e9/11lnnaWuXbtq7dq1euuttxKvP+644zRtGje9BRBgDVVSTgrvpQHYoGa3NP8WafWc5N+7eZn01DJ3Fcb590p5PVLfPgAAAABAqLFtVIrccccdzVZJJOtA3dDQ0KCf/vSn+vOf/7zf10UiEf3nf/6n7r///sSqitY8/PDDuummm/ZZdbG3s88+W48//rh69+7dpmO2xvRSIwAGmdw26paNUuee5s4PpJuS1dKTl0qV2zt+rPze0pXPS4X8ew4AAAAANjH9WS7bRgVAdna2/ud//kfLly/XDTfcoGOOOUZdunRRly5ddMwxx+iGG27QW2+9pWnTprV54kKSrrvuOq1du1aTJ0/WCSecoJ49eyonJ0f9+/fXxRdfrBdeeEH/+Mc/UjZxAVdjY6PWr1+vxsZG000JDDILRwaNytJ6DVCjF4sCs/a/lV4qhaGfYIGS1dKsC1IzcSG5x5k5xr1nBtBBXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPSYvUuSOO+6Q4zjt/mqLU045RdOnT9f69etVWVmpyspKrV+/XtOnT9fJJ5/crnb369dPU6ZM0XvvvafPP/9cdXV1+vTTT/X888/r29/+dos38kbHsK9f8sgsHBnU6KD/u+fFQak/eHaX1B+zBWHoJwRczW53xcWX72nRUXVl0hOXuMcHOoDrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7zHtlHwlemlRgAM2rPJ/fOF66Utbx34tanUd4R07UL/zgeksznXtu8eF201bJx0ycPeHR8AAAAA4BvTn+Wy8gIA4I/uRe5X0Sh/z9vf5/MB6WrDQm8nLiRp1XPueQAAAAAA6CAmLwCflZWVacqUKSorKzPdlMAgM8MZOI5UVyFV73L/7OiCvWGXtvjjMnXVlMhPVKauHTv+lw1t+XxeYKwirS2Z6s95lk7z5zywEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeI9to+Ar00uN0kE0GtXWrVvVp08fZWV5cGNiC5GZgQxK10ir5kifvStt/6D5/vi5BVLv46XDT3S3iCkcnPzxHz1f2rys2Y+iytRW9VYfbVeWYh1qfkLRKOnq+ak5VhswVpG2StdID47073yT3mzftQGhx3UUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDEx/lsvkBXxlesADaMWGhe5vZ39pYuGA+o2UvnqzNPDc5M7z1GVJNy9p459Lrl2AbZruNbN0mvTOI/6d9+TrpAv+4N/5AAAAAAApZ/qzXLaNAnxWXV2tZ555RtXV1aabEhhk5kMGNbvdG/k+dVlyExeS+/qnxknPX+cepy0GnrfPdk7VOkjP6CJV66Dkzr8/w8b5PnHBWEXamXac++XnxIUkreCm3WgfrqMIEsZrONDPZpB78sjMZXsOttRnSx3wHpMXgM8yMjJUUFCgjAz++rUVmXmcQclqdzuZjt7Id9Vz7nFK17Tt9WPuk/J7Jx5myFGBKpShFCwIzO8tnX9vx4+TJMYqsBcW96IduI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2wbBV+ZXmoE4EtKVkuzLmh+T4uOyi1w7zNR2Ia/26VrpJljzJ0fsN0d3cyd++dbpZx8c+cHAAAAAHSI6c9ymd4CfNbQ0KCVK1eqoaHBdFMCg8w8yqBmt/TkpamdOJDc4z1xSdu2kCoc4k405PdWgzpppQarQZ3af+783kYnLhirwF6i/D1A8riOIkgYr+FAP5tB7skjM5ftOdhSny11wHtMXgA+q6ur06JFi1RXV2e6KYFBZh5lMP8WqXJ76o63t8rt0iu3tu21hUOkSctUN+gSLdJpqlNO+845bJw0aZnRFReMVWAvWdmmW4AA4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB77FtFHxleqkRgP+zYaF7c26vjX/WvTl3W21YKC2dJm1a2vb3FI2SRt3k+825gUAwuW3U7WVSJGLu/AAAAACADjH9WW6Wb2cCIElyHEf19fXKyclRhA912oTMPMhgydSOH6Mtlk5r8+SF4ziq73eGco4+V5Ed69wbiH/2rrRtZfOtrXILpMOGS4efKA29VCoc7EHD24exirRz44funy9cL215y7/z9h3BxAXahesogoTxGg70sxnknjwyc9megy312VIHvMe2UYDPysvLdc8996i8vNx0UwKDzFKcQekaafOyjh+nLTYtlUrXtumlzWosHCydPVma8KJ0W7F7499bNrp/3lbs/vzsyWk1cSExVpGGuhe5X0Wj/D1vf5/PB2twHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DYKvjK91CgdxGIx7dy5U4cccogyMzNNNycQyCxFGezZ5P65dJr0ziOpa1xrTr5OGvlj9wPUA7Chn22oAZYqXSM9ONK/8016M+0mFxEMXEcRJIzXcKCfzSD35JGZy/YcbKnPljrCwPRnuUxewFemBzwQaib3vpekO/iNCsCoR8/3Z9VV0Sjp6vnenwcAAAAA4CnTn+WybRTgs6qqKs2aNUtVVVWmmxIYZBaODGyo0YYaYLGv3uTPeUb5dB5YiesogoTxGg70sxnknjwyc9megy312VIHvMfkBeCzrKws9e/fX1lZWaabEhhkFo4MbKjRhhpgsYHnuTe599KwcdLAc709B6zGdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeY9so+Mr0UiMg1Ng2CkDNbvfeF5XbU3/s/N7SpGVSXo/UHxsAAAAA4DvTn+Wy8gLwWX19vZYvX676+nrTTQkMMgtHBjbUaEMNsFxeD+nK56XcgtQeN7fAPS4TF+ggrqMIEsZrONDPZpB78sjMZXsOttRnSx3wHpMXgM8aGhq0cuVKNTQ0mG5KYJBZODKwoUYbakAIFA5xb6id3zs1x8vv7R6vkJWU6DiuowgSxms40M9mkHvyyMxlew621GdLHfAe20bBV6aXGgGhtmeT++cL10tb3vLvvH1HSBc/JHUv8u+cAFpXs1t65VZp1XPtP8awcdL597LiAgAAAAAsZPqzXFZeAD6Lx+MqKytTPB433ZTAILMUZdC9yP0qGpW6hrVF/1FtmriwoZ9tqAEhktdDuuRhafyzyV8XikZJ459z38/EBVKI6yiChPEaDvSzGeSePDJz2Z6DLfXZUge8x+QF4LOKigpNmzZNFRUVppsSGGSW4gyGXdrxYyRjaNvOZ0M/21ADQmjgee62T5PelE7/qXTk6H3viZFb4P789J+6r7t6vjTwXP/bCutxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD32DYKvjK91CgdxONxVVRUqGvXrsrIYP6wLcjMgwwePV/avKzjx2lN0Sj3Q842sKGfbagBkCQ5jtRQJUUbpKxsKbuLFImYbhVCgOsogoTxGg70sxnknjwyc9megy312VJHGJj+LJfRAfgsIyNDBQUFXJyTQGYeZPDVm1JznNaMavt5bOhnG2oAJLkTFTn5Uuee7p9MXMAnXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPUYI4LPKykpNnz5dlZWVppsSGGTmQQYDz2vzdk7tNmxcUtvK2NDPNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3mLwAfJadna3hw4crOzvbdFMCg8w8ymDMfVJ+79Qdb2/5vaXz703qLTb0sw01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPe55AV+Z3icNwJeUrpFmjpHqylJ3zNwC9z4XhfzdBtBOjiPVV0qxRimzE1tXAQAAAIABpj/LZeUF4LO6ujotWrRIdXV1ppsSGGTmYQaFQ9yJhlStwMjv3e6JCxv62YYaAGNK10j/nCLNvki6p790d1/pviPdP+/p7/78n1Ok0rWmWwoPcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHwWjUZVXFysaDRquimBQWYeZ1A4RJq0zL1HRUcMG+cep50rLmzoZxtqAHy3YaH06PnSgyOlJQ9Iny7edzVYXZn78yUPSA+e5r5+w6smWguPcR1FkDBew4F+NoPck0dmLttzsKU+W+qA99g2Cr4yvdQIQCs2LJSWTpM2LW37e4pGSaNuSurm3ACgmt3S/Fuk1XPaf4xh49z76+T1SF27AAAAAACSzH+Wy8oLwGexWEwlJSWKxWKmmxIYZOZjBgPPc7d9mvSmdPpPpSNHu/ew2Ftugfvz03/qvu7q+SmZuLChn22oAfBFyWp3pUVHJi4kadVz7nFK16SmXTCO6yiChPEaDvSzGeSePDJz2Z6DLfXZUge8x+QF4LPKykrNmDFDlZWVppsSGGRmIIPCwdLZk6UJL0q3FUs/3yrdstH987Zi9+dnT3ZflyI29LMNNQCeK1ktzbpAqtyemuNVbpdmjmECwxJcRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOuA9to2Cr0wvNUoHjuOovr5eOTk5ikQippsTCGQWjgxsqNGGGgBP1ex2V0qkauJib/m93fvusIVUoHEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqCAPTn+Wy8gLwWSQSUW5uLhfnJJBZODKwoUYbagA8Nf8WbyYuJPe4r9zqzbHhG66jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B6TF4DPKioqNHXqVFVUVJhuSmCQWTgysKFGG2oAPLNhYcfvcdGaVc+550FgcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHyWm5ur0aNHKzc313RTAoPMwpGBDTXaUAPgmSVT/TnP0mn+nAee4DqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB73HPC/jK9D5pAADAgNI17r0u/DLpTalwsH/nAwAAAAALmf4sl5UXgM9qa2u1YMEC1dbWmm5KYJBZODKwoUYbagBSZs+mL75WPOLvud/x+XxIGa6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8F6W6QYAYROPx1VWVqZ4PG66KYFBZuHIwIYabagBSJlpx5k794qHpQv+YO78aDeuowgSxms40M9mkHvyyMxlew621GdLHfAe20bBV6aXGgEAAJ/c0c3s+W8vkyIRs20AAAAAgAAz/Vku20YBPotGoyouLlY0GjXdlMAgs3BkYEONNtQAWKOhynQL0A5cRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOuA9Ji8An1VVVWn27NmqquJDlbYis3BkYEONNtQAWCPaYLoFaAeuowgSxms40M9mkHvyyMxlew621GdLHfAe20bBV6aXGgEAAJ+Y3jbq51ulnHyzbQAAAACAADP9WS4rLwAAAGCf7C6mWwAAAAAA6AAmLwCflZeX6+6771Z5ebnppgQGmYUjAxtqtKEGIGVu/PCLr76n+nvuviO4WXdAcR1FkDBew4F+NoPck0dmLttzsKU+W+qA97JMNwAIm7y8PI0dO1Z5eXmmmxIYZBaODGyo0YYagJTpXvTF90WjpC1v+Xfu/qP8OxdSiusogoTxGg70sxnknjwyc9megy312VIHvMc9L+Ar0/ukAQAAA0rXSA+O9O98k96UCgf7dz4AAAAAsJDpz3LZNgrwWU1NjebOnauamhrTTQkMMgtHBjbUaEMNgCcKh0j9fJq8KBrFxEWAcR1FkDBew4F+NoPck0dmLttzsKU+W+qA99Jy26h4PK63335bb7/9tj744AMVFxerpKRE1dXVkqTOnTurV69e6t+/v44//nidcsopOuWUU5SRwVwMAABAWvrqTdJTy7w/z6ibvD8HAAAAAMBzabNtVCwW04IFC/TEE09o4cKFSd+wpVu3bjrvvPP0ne98R+eff74yMzM9aik6wvRSIwAAYNCca6XVc7w7/rBx0iUPe3d8AAAAAAgR05/lGl+qUFZWprvuuktFRUW66KKL9Oyzz6qsrEyO4yT1VVZWpmeffVbf+ta31K9fP911113as2eP6fKAfTQ2Nmr9+vVqbGw03ZTAILNwZGBDjTbUAHhqzH1Sfm9vjp3fWzr/Xm+ODd9wHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3jE1e1NTU6De/+Y2OOOII/epXv9L27dsTExGRSETHHnusrrjiCt1555165JFH9OKLL+of//iHXn31Vb344ot6+OGHNWXKFF1++eU69thjFYlEEu/fvn27fvWrX+mII47Qb37zm8R2U0A6YF+/5JFZODKwoUYbagA8lddDuvJ5KbcgtcfNLXCPm9cjtceF77iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtGto16+umndeutt2rbtm1qOn1+fr6++c1v6tvf/rbOPPNM9ezZM6lj7tq1S2+88Yb+9re/6eWXX1ZFRYUkKRKJqHfv3rr//vt1+eWXp7wWJMf0UiMAAJAGStdIT1wiVW7v+LHye7sTF4X89wQAAAAApJLpz3KNTF7sfWPtU045RZMmTdJll12mgw46KCXHr6ur01//+lc9+OCDevvttxPnjEajKTk+2s/0gAcAAGmiZrf0yq3Squfaf4xh49ytolhxAQAAAAApZ/qzXGPbRo0ePVqvv/66li9frokTJ6Zs4kKScnNzNXHiRC1fvlyvv/66Ro8erTS5LzmgsrIyTZkyRWVlZaabEhhkFo4MbKjRhhoA3+T1cG+uPf5ZqWhUcu8tGiWNf859PxMXVuE6iiBhvIYD/WwGuSePzFy252BLfbbUAe8ZWXmxcOFCnXfeeb6e89VXX9W5557r6zmxL9OzdekgGo1q69at6tOnj7Kyskw3JxDILBwZ2FCjDTUAxpSulVbPkT57V9q2Uqor++K53ALpsOHS4SdKQy+VCgebaSM8x3UUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDEx/lmtk8gLhZXrAAwCAAHAcqaFKijZIWdlSdhcpEjHdKgAAAAAIFdOf5RrbNgoIq+rqaj3zzDOqrq423ZTAILNwZGBDjTbUAKSFSETKyZc693T/ZOIiNLiOIkgYr+FAP5tB7skjM5ftOdhSny11wHtMXgA+y8jIUEFBQbMb1+PAyCwcGdhQow01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgvcBvG9XY2Kjdu3erZ8+e7JEWAKaXGgEAAAAAAAAAWmf6s9y0nN7auHGjNm7cqM8++2y/r/n3v/+tiy66SPn5+TrssMN00EEH6fzzz9eaNWt8bCmQvIaGBq1cuVINDQ2mmxIYZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wXtpNXqxYsUJHH320jj76aN11110tvmbLli067bTT9PLLL6uhoUGO4ygWi2nhwoU69dRT9dZbb/ncaqDt6urqtGjRItXV1ZluSmCQWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7abdt1O23367f/OY3ikQievvtt3XiiSfu85px48bp+eefVyQSUUvNHzBggNauXatOnTr50WQkwfRSIwAAAAAAAABA60x/lpt2Ky+aVk0cfPDBLU5cfPbZZ3rhhRcUiUSUl5enJ554QhUVFVq9erVOOukkSe62U88++6yv7QbaynEc1dXVtTjxhpaRWTgysKFGG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7aTd58cknnygSiej4449v8fm5c+cmBvZtt92m8ePHq0uXLho8eLCeeOKJxOteeuklX9oLJKu8vFz33HOPysvLTTclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64L202zaqa9euqq6u1oQJEzRz5sx9nt97y6jNmzfr8MMPb/b8KaeconfeeUdHH320PvroI7+ajTYyvdQoHcRiMe3cuVOHHHKIMjMzTTcnEMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y6wsD0Z7lpt/KitrZWkpSXl9fi80uWLFEkEtHgwYP3mbiQpCOPPFKSVFJS4l0jgQ7IzMxUr169uDgngczCkYENNdpQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3ku7yYvc3FxJUlVV1T7PffLJJyotLZUknX766S2+v3v37pKkmpoaj1oIdExVVZVmzZrV4hhHy8gsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64L20m7w49NBDJUnr1q3b57mFCxcmvh85cmSL76+oqJC0/5UbgGlZWVnq37+/srKyTDclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64L20u+fFJZdcor/97W/KzMzUunXrdNRRRyWeO/XUU7VixQpFIhFt2rRJffr02ef9p512mt566y0dc8wxLU6AwCzT+6QBAAAAAAAAAFpn+rPctFt58e1vf1uSFI/H9e1vf1tvvPGGVq1apR/+8IeJiYtTTjmlxYmLxsZGffjhh4pEIjrmmGP8bjrQJvX19Vq+fLnq6+tNNyUwyCwcGdhQow01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgvbSbvLj88ss1aNAgSdLatWt1zjnnaPjw4Zo+fXriNT/72c9afO9rr72WuOH3Kaec4n1jgXZoaGjQypUr1dDQYLopgUFm4cjAhhptqAEATOI6iiBhvIYD/WwGuSePzFy252BLfbbUAe+l3bZRkrRhwwadc8452rp16z7P/fjHP9bUqVNbfN93vvMdPf3004pEIlqyZIlOO+00j1uKZJleagQAAAAAAAAAaJ3pz3LT8q4oAwcO1Nq1a/Xoo4/qX//6lyoqKtS3b19ddtllOvfcc1t8z65du7RixQoVFRUpPz9fI0aM8LnVQNvE43FVVFSoa9euyshIu8VPaYnMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95L29HRpUsX/fjHP9Zzzz2nhQsX6uGHH97vxIUk9ezZUxs2bNCnn36auO8FkI4qKio0bdo0VVRUmG5KYJBZODKwoUYbagAAk7iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtpuW0U7GV6qVE6YHY5eWQWjgxsqNGGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sdYWD6s9y03DYKsFlGRoYKCgpMNyNQyCwcGdhQow01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPaa2AJ9VVlZq+vTpqqysNN2UwCCzcGRgQ4021AAAJnEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqgPeYvAB8lp2dreHDhys7O9t0UwKDzMKRgQ012lADAJjEdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPe454X8JXpfdIAAAAAAAAAAK0z/VkuKy8An9XV1WnRokWqq6sz3ZTAILNwZGBDjTbUAAAmcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHwWjUZVXFysaDRquimBQWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB77FtFHxleqkRAAAAAAAAAKB1pj/LZeUF4LNYLKaSkhLFYjHTTQkMMgtHBjbUaEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j8kLwGeVlZWaMWOGKisrTTclMMgsHBnYUKMNNQCASVxHESSM13Cgn80g9+SRmcv2HGypz5Y64D22jYKvTC81SgeO46i+vl45OTmKRCKmmxMIZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx1hYPqzXGMrLyZNmqQFCxaooaHBVBMAIyKRiHJzc7k4J4HMwpGBDTXaUAMQeo4j1VVI1bvcP/k9H19xHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD3jE1ezJgxQxdccIF69uypiy++WLNmzdLOnTtNNQfwTUVFhaZOnaqKigrTTQkMMgtHBjbUaEMNQCiVrpH+OUWafZF0T3/p7r7SfUe6f97T3/35P6dIpWtNt9R6XEcRJIzXcKCfzSD35JGZy/YcbKnPljrgvSyTJ3ccR9XV1XrxxRf14osvKiMjQ6eccoouvPBCXXTRRRo8eLDJ5gGeyM3N1ejRo5Wbm2u6KYFBZuHIwIYabagBCJUNC6UlU6XNy/b/mroy6dPF7teSB6R+I6Wv3iwNPNevVoYK11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54z9g9Lz788EPNmzdPL730kt555x01NWPv5UJHHHFEYiLja1/7mjIzM000FSlkep80AAAA1eyW5t8irZ7T/mMMGyedf6+U1yN17QIAAACANGL6s1xj20Ydd9xx+uUvf6m33npL27Zt00MPPaQLL7xQubm5chxHjuNo48aN+uMf/6hzzjlHhxxyiMaPH6+nn35a5eXlppoNdFhtba0WLFig2tpa000JDDILRwY21GhDDYD1SlZLD47s2MSFJK16zj1O6ZrUtAuSuI4iWBiv4UA/m0HuySMzl+052FKfLXXAe8YmL/ZWWFio6667Ti+++KJ27dqll156Sddff7169+6dmMgoKyvTX//6V1155ZU69NBDdfbZZ2vq1KnauHGj6eYDSYnH4yorK1M8HjfdlMAgs3BkYEONNtQAWK1ktTTrAqlye2qOV7ldmjmGCYwU4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB7xnbNqqt3nnnHb300kuaN2+ePvjgg8TP995eatCgQbrooot04YUXauTIkSaaiTYyvdQIAACEVM1ud6VEqiYu9pbfW5q0jC2kAAAAAFjF9Ge5abHy4kBOOukk3XnnnXr//fe1adMm/elPf9J5552n7OzsxKqM9evX695779Xpp5+uwsJCXXPNNfrb3/6mmpoa080H9hGNRlVcXKxoNGq6KYFBZuHIwIYabagBsNb8W7yZuJDc475yqzfHDhmuowgSxms40M9mkHvyyMxlew621GdLHfBe2k9e7K1v3776wQ9+oFdeeUWff/655syZowkTJqhnz56JiYydO3dq9uzZuvTSS3XwwQdrzJgxmjFjhummAwlVVVWaPXu2qqqqTDclMMgsHBnYUKMNNQBW2rCw4/e4aM2q59zzoEO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7ab9tVFs4jqM333wzsb3UunXrmj2fkZHBTF6aML3UCAAAhNCj50ubl3l/nqJR0tXzvT8PAAAAAPjA9Ge5gVp5sT+RSEQjR47U3XffrTVr1ujjjz/WAw88oNGjRysrK0sWzM8AAACgPUrX+DNxIUmblkqla/05FwAAAABYzorJiy8bMGCAbrrpJr3++uvauXOnnnzySdNNAhLKy8t19913q7y83HRTAoPMwpGBDTXaUANgjT2b3K8Vj/h73ncecc+LduE6iiBhvIYD/WwGuSePzFy252BLfbbUAe9ZsW0UgsP0UqN00NjYqE8++UQDBgxQp06dTDcnEMgsHBnYUKMNNQDWuKOb4fPzP2LtwXUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkjDEx/lsvkBXxlesADAICQYPICAAAAADrE9Ge5Vm4bBaSzmpoazZ07VzU1NaabEhhkFo4MbKjRhhoAwCSuowgSxms40M9mkHvyyMxlew621GdLHfAekxcAAAAAAAAAACCtsG0UfGV6qREAAAgJto0CAAAAgA4x/VkuKy8AnzU2Nmr9+vVqbGw03ZTAILNwZGBDjTbUAAAmcR1FkDBew4F+NoPck0dmLttzsKU+W+qA95i8AHzGvn7JI7NwZGBDjTbUAFjjxg/dr76n+nveviPc87aX40h1FVL1LvfPkC2S5jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB77FtFHxleqkRAAAImX9OkZY84N/5Tv+pdPbk5N5TukZaNUf67F1p+wdSXdkXz+UWSL2Plw4/URo2TiocnMrWAgAAAMB+mf4sN8u3MwEAAAB+G3apv5MXQy9t+2s3LJSWTJU2L9v/a+rKpE8Xu19LHpD6jZS+erM08NyOthQAAAAA0hrbRgE+Kysr05QpU1RWVma6KYFBZuHIwIYabagBsE7hEPcDfz8UjWrbyoia3dKca6WnLjvwxEVLNi+TnhonPX+dexzLcB1FkDBew4F+NoPck0dmLttzsKU+W+qA99g2Cr4yvdQoHUSjUW3dulV9+vRRVhaLn9qCzMKRgQ012lADYKUNC92JAq+Nf671FRElq6UnL5Uqt3f8fPm9pSufdydoLMF1FEHCeA0H+tkMck8emblsz8GW+mypIwxMf5Yb+MmL4uJilZaW6tBDD9URRxxhujlohekBDwAAQmrOtdLqOd4df9g46ZKHD/yaktXSrAua39Oio3ILpKvnWzWBAQAAACA9mP4sN+22jXIcR6+//rpef/11vfPOO/t93ZtvvqnjjjtOAwYM0MiRI3XUUUdp8ODB+sc//uFja4HkVVdX65lnnlF1dbXppgQGmYUjAxtqtKEGwFpj7nNXKnghv7d0/r0Hfk3NbnfFRSonLiT3eE9cYs0WUlxHESSM13Cgn80g9+SRmcv2HGypz5Y64L20m7xYvHixzjnnHH3961/XCy+80OJrVq9erXPOOUdr1qyR4ziJr/Xr1+uCCy7Q3//+d59bDbRdRkaGCgoKlJGRdn/90haZhSMDG2q0oQbAWnk93C2WcgtSe9zcAve4eT0O/Lr5t6Rmq6iWVG6XXrnVm2P7jOsogoTxGg70sxnknjwyc9megy312VIHvJd220b97Gc/07333qtIJKLVq1fr2GOP3ec1X//61/Xaa68pEonIcRz16NFDVVVVamhokCQVFhbq448/VpcuXfxuPlpheqkRAAAIudI17koFP+854ds9N56VBp7n/XkAAAAAhILpz3LTbnprxYoVkqTevXu3OHHx8ccfJyYuevbsqSVLlujzzz9XSUmJvvGNb0iSduzYoaeeesrXdgNt1dDQoJUrVyYm29A6MgtHBjbUaEMNgPUKh0iTlrn3qOiIYePc47TlXhNLpnbsXG21dJo/5/EQ11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54L+0mLzZu3KhIJKLjjz++xedffPHFxPe//vWvNXLkSElSQUGB/vKXvySWG82fP9/7xgLtUFdXp0WLFqmurs50UwKDzMKRgQ012lADEAp5Pdyba49/Vioaldx7i0ZJ459z39/aVlGSu9Jj87L2tTNZm5ZKpWv9OZdHuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2m3bVSXLl1UW1urq666So888sg+z1944YV6+eWXlZmZqZKSEvXs2bPZ86effrqWLl2q/v37a+PGjX41G21keqkRAADAPkrXSqvnSJ+9K21b2fym2rkF0mHDpcNPlIZeKhUObtsx92xy/1w6TXpn3/+m9czJ10kjfyx1L/LvnAAAAACsZPqz3CzfztRGTTNuubm5LT6/bNkyRSIRDR8+fJ+JC0nq16+fli5dqp07d3raTqC9HMdRfX29cnJyFIlETDcnEMgsHBnYUKMNNQChVDhYKpzsfu84UkOVFG2QsrKl7C5Se/4+TzsutW1sqxUPu193lJs5fwdxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD30m7bqM6dO0uSysrK9nluzZo12rNnjyTpq1/9aovvz8/PlyTV19d700Cgg8rLy3XPPfeovDyYHyqYQGbhyMCGGm2oAQi9SETKyZc693T/5H+mfMV1FEHCeA0H+tkMck8emblsz8GW+mypA95Lu22jBg0apA0bNmjYsGH64IMPmj13//3369Zbb1UkEtFf//pXXXrppfu8/4orrtBf//pXdevWLTHRgfRheqlROojFYtq5c6cOOeQQZWZmmm5OIJBZODKwoUYbagCQInd0M3z+YP6PINdRBAnjNRzoZzPIPXlk5rI9B1vqs6WOMDD9WW7arbw48cQTJblBvPPOO4mfx+NxPfroo5KkSCSiM844o8X3b9iwQZLUp08fj1sKtE9mZqZ69erFxTkJZBaODGyo0YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wXtpNXlx22WWJ78eOHauZM2dq3rx5Gjt2rNavX69IJKKzzjpLhxxyyD7vra2t1Zo1axSJRHTsscf62WygzaqqqjRr1ixVVVWZbkpgkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2l3w+5vfetbGjFihJYvX67t27fruuuua/Z8JBLRr3/96xbfO3/+fDU0NCgSiejUU0/1o7lA0rKystS/f39lZaXdX7+0RWbhyMCGGm2oAQBM4jqKIGG8hgP9bAa5J4/MXLbnYEt9ttQB76XdPS8kaceOHRozZozee++9Zj/PyMjQvffeq5/85Cctvu/CCy/Uyy+/rEgkonfffVfDhw/3obVIhul90gAAAHyxZ5P75wvXS1ve8u+8fUdIFz8kdS/y75wAAAAArGT6s9y02zZKkg499FC9/fbbmjt3rn7605/q+uuv15133qnVq1fvd+Ji165dqqmp0RlnnKELLriAiQukrfr6ei1fvlz19fWmmxIYZBaODGyo0YYaAKRI9yL3q2iUv+ftPyrQExdcRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOuC9tJy8kNxVFhdddJHuu+8+zZgxQ7/61a80aNCg/b6+Z8+eeu211/TGG2/opZde8rGlQHIaGhq0cuVKNTQ0mG5KYJBZODKwoUYbagCQYsMu9fd8Q30+X4pxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD30nLbKNjL9FIjAAAA3z16vrR5mffnKRolXT3f+/MAAAAACAXTn+Wm3cqLs846S2eddZb+53/+p13vnz59us466yydffbZKW4ZkBrxeFxlZWWKx+OmmxIYZBaODGyo0YYaAHjgqzf5c55RPp3HQ1xHESSM13Cgn80g9+SRmcv2HGypz5Y64L20m7xYtGiRFi9erI8//rhd7//kk0+0aNEiLVq0KLUNA1KkoqJC06ZNU0VFhemmBAaZhSMDG2q0oQYAHhh4nvfbOQ0bJw0819tz+IDrKIKE8RoO9LMZ5J48MnPZnoMt9dlSB7yXdttGZWRkKBKJ6Ic//KH++Mc/Jv3+W265RX/4wx8UiUQUi8U8aCE6wvRSo3QQj8dVUVGhrl27KiMj7eYP0xKZhSMDG2q0oQYAHqnZLT04Uqrcnvpj5/eWJi2T8nqk/tg+4zqKIGG8hgP9bAa5J4/MXLbnYEt9ttQRBqY/y7VudDQtN8rMzDTcEqBlGRkZKigo4OKcBDILRwY21GhDDQA8ktdDuvJ5KbcgtcfNLXCPa8HEhcR1FMHCeA0H+tkMck8emblsz8GW+mypA96zboRs3+7+NluXLl0MtwRoWWVlpaZPn67KykrTTQkMMgtHBjbUaEMNADxUOMS9oXZ+79QcL7+3e7xCe1axch1FkDBew4F+NoPck0dmLttzsKU+W+qA96yavNi6dasWLFigSCSiI4880nRzgBZlZ2dr+PDhys7ONt2UwCCzcGRgQ4021ADAY4VD3C2eho3r2HGGjXOPY9HEhcR1FMHCeA0H+tkMck8emblsz8GW+mypA94zes+La665Zp+fzZo1S5FIRIMGDdKpp57apuM0Njbqs88+01tvvaXa2lpFIhH95Cc/0X333ZfqJqODTO+TBgAAkDY2LJSWTpM2LW37e4pGSaNusuLm3AAAAADSm+nPcrN8O1MLmiYqvsxxHK1fv17r169v13Hz8/P1n//5nx1tHuCJuro6LV++XCNGjFBubq7p5gQCmYUjAxtqtKEGAD4aeJ77VbpWWj1H+uxdadtKqa7si9fkFkiHDZcOP1EaeqlUONhMW33CdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeM75tlOM4zb729/O2fo0cOVKvvfaa+vXrZ7AqYP+i0aiKi4sVjUZNNyUwyCwcGdhQow01ADCgcLB09mRpwovSbcXSz7dKt2x0/7yt2P352ZOtn7iQuI4iWBiv4UA/m0HuySMzl+052FKfLXXAe0a3jZo9e3azx47j6JprrlEkEtHZZ5+t73znO60eIxKJKDc3Vz179tTQoUNVWFjoVXORAqaXGgEAAAAAAAAAWmf6s1yj20ZNnDhxn5813Qdj0KBBLT4PBF0sFtPOnTt1yCGHKDMz03RzAoHMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA94zvm3Ul02YMEETJkzQiBEjTDcF8ERlZaVmzJihyspK000JDDILRwY21GhDDQBgEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeM/otlEIH9NLjdKB4ziqr69XTk5Oizesx77ILBwZ2FCjDTUAgElcRxEkjNdwoJ/NIPfkkZnL9hxsqc+WOsLA9Ge5RreNAsKo6T4taDsyC0cGNtRoQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDngv7baNAmxXUVGhqVOnqqKiwnRTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95L+5UXK1as0Ntvv63i4mJVVFSosbGxTe+LRCJ65JFHPG4dkLzc3FyNHj2aGeYkkFk4MrChRhtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2l7z4vnnntOv/jFL7Rx48Z2HyMWi6WwRUgF0/ukAQAAAAAAAABaZ/qz3LTcNmrKlCm6/PLLtXHjRjmO064vIF3V1tZqwYIFqq2tNd2UwCCzcGRgQ4021AAAJnEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqgPfSbtuoZcuWacqUKYpEInIcR507d9YFF1ygE044QT179lSnTp1MNxHokHg8rrKyMsXjcdNNCQwyC0cGNtRoQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDngv7baNGj9+vJ555hlFIhGdeeaZeuqpp3TooYeabhZSxPRSIwAAAAAAAABA60x/lpt220YtWbJEktStWzfNmTOHiQtYJxqNqri4WNFo1HRTAoPMwpGBDTXaUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95Lu8mLHTt2KBKJ6KyzzlJBQYHp5gApV1VVpdmzZ6uqqsp0UwKDzMKRgQ012lADAJjEdRRBwngNB/rZDHJPHpm5bM/BlvpsqQPeS7tto3r16qWdO3fq+uuv1/Tp0003BylmeqkREFiOI9VXSrFGKbOTlJMvRSKmWwUAAAAAAABLmf4sN+1u2H300Udr586dKikpMd0UADCrdI20ao702bvS9g+kurIvnsstkHofLx1+ojRsnFQ42FQrAQAAAAAAgJRLu22jrrjiCjmOo3/961+qq6sz3Rwg5crLy3X33XervLzcdFMCI3SZbVgoPXq+9OBIackD0qeLVV4X0936gcqV776mrkz6dLH7/IOnua/f8KrRZneUDf1sQw0AYBLXUQQJ4zUc6GczyD15ZOayPQdb6rOlDngv7SYvrr76ag0aNEhlZWX6zW9+Y7o5QMrl5eVp7NixysvLM92UwAhNZjW7pTnXSk9dJm1e1uypPNVqrBYqT7Utv3fzMumpcdLz17nHCSAb+tmGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8F7a3fNCktatW6dzzjlHJSUl+sUvfqFf//rXys7ONt0spIDpfdKAtFWyWnryUqlye8ePld9buvJ5qZC/WwAAAAAAAGgf05/lpt09Lx577DFJ0o9+9CPdeeed+v3vf6+//OUvuvDCCzVs2DB169ZNkTbepHbChAleNhVol5qaGr366qs699xzmWFuI+szK1ktzbqg+T0tvqRGuXpVZ+hcLVaeWtlSr3K7NHOMdPX8QE1g2NDPNtQAACZxHUWQMF7DgX42g9yTR2Yu23OwpT5b6oD30m7y4qqrrmo2OeE4jnbs2KFHH300qeNEIhEmLwCkv5rd7oqLA0xctEtdmfTEJdKkZVJej9QeGwAAAAAAAPBY2m0blZGRmttwRCIRxWKxlBwLqWN6qRGQduZcK62e493xh42TLnnYu+MDAAAAAADASqY/y027lRcTJ0403QTAU42Njfrkk080YMAAderUyXRzAsHazDYsbPPERaOy9ImKNECb1EnRtp9j1XPuBMbA89rZSP/Y0M821AAAJnEdRZAwXsOBfjaD3JNHZi7bc7ClPlvqgPfSbvJi5syZppsAeKqmpkZz587VpEmT1K1bN9PNCQRrM1sytc0vrdFBmqvzNEmPq5sqkzvP0mmBmLywoZ9tqAEATOI6iiBhvIYD/WwGuSePzFy252BLfbbUAe+l3bZRsJvppUZA2ihdIz040r/zTXpTKhzs3/kAAAAAAAAQaKY/y03NDSYAAK3bs+mLrxWP+Hvud3w+HwAAAAAAANABTF4APisrK9OUKVNUVlZmuimBYU1m04774ivJyYQyddWUyE9Upq7tO/eK9L9ptw39bEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54j22j4CvTS43SQTQa1datW9WnTx9lZaXdbWfSkjWZ3dH+fRyjytRW9VYfbVeWYu07yO1lUiTS7jZ4zYZ+tqEGADCJ6yiChPEaDvSzGeSePDJz2Z6DLfXZUkcYmP4sN+0mLx577LGUHWvChAkpOxZSw/SAB4zqwORFSvx8q5STb7YNAAAAAAAACATTn+Wm3dTWVVddpUgKfjM4EokweYG0VF1drXnz5unCCy9U586dTTcnEMhMqtZBmqev60L9Q51V276DRBuknNS2K5Vs6GcbagAAk7iOIkgYr+FAP5tB7skjM5ftOdhSny11wHtpN3khSckuBolEIkm/BzAlIyNDBQUFysjgljNtRWZShhwVqEIZ6sC1Lis7dQ3ygA39bEMNAGAS11EECeM1HOhnM8g9eWTmsj0HW+qzpQ54L+22jbr66qvb9Lp4PK7y8nKtWrVKn376qSQpNzdX48aNSwz8mTNnetZOtI/ppUaAUaa3jUrze14AAAAAAAAgfZj+LDftVl60Z8LhnXfe0Y033qg333xTJSUleu6559S1a1cPWgd0XENDg9auXavBgwcrOzu9fxM+XViT2Y0ffvH9C9dLW95q81sb1ElrdbQG62NlqzH5c/cdkfYTFzb0sw01AIBJXEcRJIzXcKCfzSD35JGZy/YcbKnPljrgPSvW5px00kn63//9X5177rn65z//yb0ukNbq6uq0aNEi1dXVmW5KYFiTWfeiL76KRiX11jrlaJFOU117b1rRP7nzmWBDP9tQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3ku7baM6YuvWrTrqqKPU2Nio5557ThdffLHpJuFLTC81AtJG6RrpwZH+nW/Sm1LhYP/OBwAAAAAAgEAz/VmuFSsvmvTp00ejRo2S4zjG7ncRi8X04Ycf6pFHHtGkSZN00kknKTs7W5FIRJFIRKNHj27zsYqLixPva+vXUUcdlVR7161bp1tuuUXHHXecevTooc6dO2vgwIGaOHGiXnvttSSrR1s4jqO6ujpuMp8EKzMrHCL1a/vkhSN39UW7EigaFYiJCxv62YYaAMAkrqMIEsZrONDPZpB78sjMZXsOttRnSx3wnlWTF5I0YMAASdIHH3zg+7nnzp2rrl276vjjj9d1112n6dOn691331VjYzv2p/fB7373Ox1//PG6//77tWrVKu3Zs0c1NTX6+OOP9dhjj+mcc87R+PHjVVlZabqpVikvL9c999yj8vJy000JDGsz++pNbX5pubrqnsgPVa523M9nVNvPY5IN/WxDDQBgEtdRBAnjNRzoZzPIPXlk5rI9B1vqs6UOeM+qbaMkacKECXriiSeUnZ3t+75ps2bN0tVXX33A15xxxhlatGhRm45XXFysI444QpKUn5/fpnt5HHLIIbr99ttbfd3kyZP1m9/8JvG4d+/eOv3005Wbm6t3331Xa9asSTx37rnn6uWXX1ZWVsfv7256qVE6iMVi2rlzpw455BBlZmaabk4gWJ3ZnGul1XNafVlMGdqpnjpEu5SpeNuPP2ycdMnDHWigf2zoZxtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXWEgenPcjv+aXQaicfj+t///V9JUrdu3Yy1o7CwUCeffHLia+HChZo2bVqHjtmjRw/96U9/Skn7XnvttWYTF7fccot++9vfKjs7O/Gzp59+Wtdcc43q6ur06quv6ve//70mT56ckvOHXWZmpnr16mW6GYFidWZj7pM2LZUqtx/wZZmKq5d2Jnfs/N7S+fd2oHH+sqGfbagBAEziOoogYbyGA/1sBrknj8xctudgS3221AHvWbVt1K9+9Stt3rxZkUhEX/nKV3w//ze+8Q1t2rRJJSUlmjdvniZPnqzzzz9fBQUFvrflQH7+858nvr/88st17733Npu4kKQrrrhC//3f/514fP/99+vzzz/3rY02q6qq0qxZs1RVVWW6KYFhdWZ5PaQrn5dyCw74sirlaZbGqUp5bTtuboF73LweHW6iX2zoZxtqAACTuI4iSBiv4UA/m0HuySMzl+052FKfLXXAe2m38mLz5s1tfm00GtWuXbu0cuVKzZ49W2+++WbiuYkTJ3rRvAMKwozhihUrtGLFCklSRkaG7r13/7+VfcMNN+iBBx7Qxx9/rMrKSj3++OO6+eab/WqqtbKystS/f/+UbMMVFtZnVjhEunq+9MQl+12BkaWY+murshRr/Xj5vd2Ji8JgbclmQz/bUAMAmMR1FEHCeA0H+tkMck8emblsz8GW+mypA95LuxHSv39/RSKRDh1jzJgxuvzyy1PUIrvMnTs38f0555yjvn377ve1kUhEEydO1K9+9StJ0t/+9jcmL1IgNzdXo0ePNt2MQAlFZoVDpEnLpFdulVY9t8/TuarXaL3Zwhu/ZNg4d6uoAK24aGJDP9tQAwCYxHUUQcJ4DQf62QxyTx6ZuWzPwZb6bKkD3kvbbaMcx0n6KxKJ6Ac/+IHmzGn95rdh9cYbbyS+b8tF4swzz0x8v2zZMtXX13vRrFCpr6/X8uXLyTIJocksr4d7c+3xz0pFo5o9Va9sLdcJqld2y+8tGiWNf859fwAnLiQ7+tmGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8F7arbzo169fm1dedOrUSV27dlX//v116qmn6j/+4z/Ur18/j1toRjQa1T/+8Q+98847+vzzz5Wbm6uDDz5YJ510kk455RTl5OS06Tjr1q1LfN+W+4KccMIJie9jsZg2bNigYcOGJV8AEhoaGrRy5UoNGTKkzf0WdqHLbOB57lfpWmn1HOmzd9Xw2UdaWT9EQ7RBOWpw72lx2HDp8BOloZdKhYNNt7rDbOhnG2oAAJO4jiJIGK/hQD+bQe7JIzOX7TnYUp8tdcB7EcdxHNONsN0dd9yhKVOmSJLOOOMMLVq0qE3vKy4u1hFHHNHq67p3764f/OAH+tnPfqYuXbrs93U7duxQYWFh4vG6des0aNCgVo9/6KGHaufOnZKkZ599VuPGjWtD61u2Zs0aDR06NPF49erVGjIkWPvyA0Y4jtRQJUUbpKxsKbuL1MEt9gAAAAAAAID9Mf1ZbtpuG4W227Nnj373u9/ppJNO0oYNG/b7ul27djV7vPdExoHsfSPy3bt3t6+RSIjH4yorK1M8HjfdlMAgMynuOCqrjSl+UHcpJ9/KiQsb+tmGGgDAJK6jCBLGazjQz2aQe/LIzGV7DrbUZ0sd8B6TF2kuPz9fV111lZ555hl99NFHqqqqUn19vbZs2aLnnntO55xzTuK1H330kb7xjW8kVkl8WVVVVbPHBx10UJvasPfrvnyM9srNzU2sEonFYiorK1PTIqCKigo1NDRIkmpra1VdXS3J3TqrrKwscYzy8nI1NjZKkmpqalRTUyNJamxsVHl5eeJ1ZWVlikajkqTq6mrV1tZKcpeoVVRUSHLvsVJWVqZYLJaos66uTpK7D19lZaWkfS+ulZWVif35/j97dx5fRXX3D/wzyc2+EoGETQIIRFkSBEIERcAF0AqWslVUlloR/SlWi9tTFfTpU0XbkrYKWMuiIItYUSpFVIyIEMKWyBa0QNhCApLl3qw3uXd+f0y5ElmSyb1zz9wzn/frxUtI7syc7+ccZmRO5kxNTY0nnyvVdObMGWRmZsJut0tTk9H9dOrUKWRmZqK8vFyamvT2U1lZGTIzMz3tkKGmn/ZTYWGh5+9GoNZkhX5iTayJNbEmI2sqKSnxXAtkqUnGfmJN5Z59ZWZmen7AS4aaZOwnb2s638+FhYXS1BQI/VRUVOS5HshSk9H9dPr0aWRmZqK0tFSamprTTydPnvSMHVlqurCfLqwvkGuSvZ9krEkUTl6YWJs2bVBYWIjFixdjwoQJ6NatG6KiohAaGor27dtj7Nix+Oyzz7Bw4ULPe0KOHj2KZ5999pL7Oz+wzwsNvcyLf3/iwrXnzv8l8lZGRgbGjh0LADh79iwyMzM9f6EWLVqEAwcOAAC++uorrFu3DsCPJ+jz5s+fj8OHDwMANm7ciI0bNwIADh8+jPnz53s+l5mZiZMnTwIA1q1bh6+++goAcODAASxatAiA9pc9MzPTM/GzZs0aZGdnAwD27NmD5cuXA/jxHyjnTyDLly/Hnj17AADZ2dmel8VfqaY9e/agc+fOiI2NlaYmo/vpgw8+wMyZMxEWFiZNTXr76adkqOmn/fSvf/0LgwcPRmxsbMDWZIV+Yk2siTWxJiNrOr+f2NhYaWqSsZ9Yk1bT+XF6vg0y1CRjP3lbU2xsLAYPHox//etf0tQUCP301VdfIS0tDbGxsdLUZHQ/ffbZZ5g5c6ZnfzLU1Jx+Wrx4MWbOnInY2Fhparqwn9577z387Gc/Q2xsbEDXJHs/yViTMGqAqKqqUrdt26auW7dOfe+999R169ap27ZtU6uqqkQ3rVEvvviiCkAFoN58882GHOO5557zHCM4OFgtKiq66DM5OTmezwBQq6urm7Tv9PR0zzavv/66V+3ct2+fCkANDw9Xo6Oj1X379qn19fVqaWmp6na7VVVV1fLycrW2tlZVVa3fKyoqVFVV1bq6OrW0tNSzr7KyMtXpdKqqqqqVlZVqZWWlqqqq6nQ61bKyMs/nSktL1bq6OlVVVbWiosIzZmpra9Xy8nJVVVXV7XarpaWlan19vaqqqupwODz51NTUqHa7XVVVVXW5XGppaanqcrlUVVVVu92u1tTUqKqqqtXV1arD4VBVVWVNrIk1sSbWxJpYE2tiTayJNbEm1sSaWBNrYk2siTWxpoCu6fy93PO/9u3bp/qTqV/Y7XK5sGLFCsyfPx87duzwPB5zoeDgYKSnp2PGjBmYOHEigoODBbT0ypr7wm49Kioq0Lp1a8+TEe+++y7uvffeBp85ePAgrrvuOs+fS0pK0KJFi0b33bt3b+zduxcAsGDBAkyfPr3Z7RT9khczcDgcWL58OSZNmoSYmBjRzQkIzMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqsALR93JNu2zUf/7zH2RkZGDy5MnIzs5GfX09VFW96Fd9fT22bduG+++/HzfccIPnkRyriY6OxoABAzx/Pnjw4EWfueqqqxr8ubi4uEn7Lioq8vw+ISGhmS2k80JDQ5GWltbkZbvIJJmpKlBjByrPaf/187yvKTIwmAw1ylADEVkcr3dETcbxag3sZzGYu37MTCN7DrLUJ0sdZDyb6AZcytGjRzF48GDPzfXzD4dERUWhQ4cOiIqKQmVlJU6cOIHKykqoqgpFUbBz507cdNNN2Lp1K5KTkwVWIEabNm08v//hhx8u+n7r1q0RHx/vednKsWPHkJKScsV91tTUNHgBeGOfp8aFhYUhIyNDdDMCirDMivcDe9cAp3YBp/OAmrIfvxceD7RJBdr1BXqNAxKvu9xefMIK40aGGmWogYgsiNc7ombheLUG9rMYzF0/ZqaRPQdZ6pOlDjKeKZ+8GD9+vOen/YODgzFjxgzs2rULdrsdBw4cwI4dO3DgwAHY7Xbs3r0bDz/8MIKDg6EoCoqKijB+/HjBFYhx/m3wgDbRcynXXnut5/fnX9pyJbt37/b8Pjg4GN26dfOihQRoE0JZWVkXvUCdLs/vmX33KbBoJDB/ILDlT8DRrxreyAG0Px/9Svv+/Bu0z3+30bAmWWHcyFCjDDUQkYXwekfkFY5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu8uKDDz7Arl27oCgKWrZsia1bt+KNN95Anz59oChKg88qioK0tDT87W9/w7Zt29CyZUsAwK5du/DPf/5TRPOFunAyom3btpf8zNChQz2/b8q7N86/5R4ABg4ciLCwsOY3kAAA9fX1KCgoQH19veimBAy/ZVZVAqz5FfDeeOD4Vn3bHt8KvDcO+OABbT8+ZoVxI0ONMtRARBbA6x2RT3C8WgP7WQzmrh8z08iegyz1yVIHGc90L+yeNGkSVqxYAUVR8Omnn+LWW29t8raff/45br/9diiKggkTJuC9994zsKVN548Xdn/++ee47bbbPH/esWMH+vXrd9HnduzYgfT0dADakxQFBQVo3779ZffbvXt3fPfddwCAP/7xj3jiiSe8aqfol7wQXVbRPmD5WMBx2vt9xbQB7v0ASOTYJiIik+H1joiIiIiImkj0vVzTPXmxfft2KIqCXr166Zq4AIBbb70VqampUFUV27dvN6iF/uF0OuF0Opv02bNnz+Khhx7y/Pnaa6/F9ddff8nP9u/fH/379wcAuFwuPPPMM5fd71tvveWZuIiJicH999/f1ObTFbhcLhQVFcHlcoluSsAwPLOifcCSO31zIwfQ9rP4Dm0NcR+xwriRoUYZaiAiifF6R+RTHK/WwH4Wg7nrx8w0sucgS32y1EHGM93kxfmXdPfp06dZ26elpQEAzpw546smCVFYWIguXbpg7ty5OHbs2CU/o6oqPvnkE/Tv3x+HDx8GoC2l9frrryMo6PJd+4c//MHz++XLl+OZZ55BXV1dg8+sXr0ajz/+uOfPv/3tbz3LcpF3HA4HFi5cCIfDIbopAcPQzKpKtJ9A/eka396qKQOW/cJnS2pYYdzIUKMMNRCRpHi9I/I5jldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7ZqJiYGFRVVeG+++7DkiVLdG8/depULF26FFFRUUL+Atxxxx0oLCxs8LWioiLPpExUVBSuueaai7Zbv359g/dUFBQUoFOnTp4/Jycno1evXmjZsiVCQkJw9uxZbN++/aJjvfbaa/jtb3/baDuff/55/O///q/nz23btsVNN92E8PBw7Nq1C/v27fN877bbbsP69eths9ka3W9jRD9qZAaqqqK2thZhYWEXvceFLs3QzNb8Cti3xrf7vFCvccAv3vZ6N1YYNzLUKEMNRCQpXu+IfI7j1RrYz2Iwd/2YmUb2HGSpT5Y6rED0vVzv70b7WGJiIo4cOYLc3NxmbX9+u9atW/uuUTocOHDgsk9KAEBlZSXy8vIu+npjS0QVFBSgoKDgst9v164d3nzzTYwaNapJ7XzppZcQFhaGl156CXV1dSgsLMSqVasu+tzEiROxcOFCn0xckEZRFISHh4tuRkAxLLPvPjX2Rg4A7H1fu6HTbbhXu7HCuJGhRhlqICIJ8XpHZAiOV2tgP4vB3PVjZhrZc5ClPlnqIOOZbtmo8y+T3rt3L7788ktd22ZlZSEvLw+Konj2E6g6duyIvXv34q233sKUKVPQv39/dOrUCbGxsbDZbEhISECPHj0wZcoUrFq1CkePHm3yxAWgnSR+97vfIS8vD0888QR69uyJuLg4REZGokuXLrj33nvx2WefYcWKFYiNjTWwUuux2+2YN28e7Ha76KYEDMMy2zLPt/u7nG8yvd6FFcaNDDXKUAMRSYjXOyJDcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3Q/Tj9mzBisXLkSAHDPPffg008/Re/evRvdbt++fbjnnns8f/7FL35hWBuv5EpPR+ihKAp69uyJnj174te//rVP9nkp1157Lf74xz8atn+6WHh4OIYMGcIZZh0Myax4P3B8q+/2dyXHvgGKDwCJ1zV7F1YYNzLUKEMNRCQZXu+IDMPxag3sZzGYu37MTCN7DrLUJ0sdZDzTvfMCAK6//nrk5eVBVVWEhobi4YcfxtSpU9GrV6+LPrtv3z4sWbIEb7zxhmfppT59+mDnzp3+bjY1geh10ohQ+t9l3b7JBHb+w3/H7f8AcCcnComIyE94vSMiIiIiIi+JvpdrumWjAGDVqlVo2bIlFEWB0+lEZmYm0tLSEBcXh549e2LAgAHo2bMn4uPjkZqaij//+c+ora2Fqqpo1aqV58kNIjOqrq7Ghg0bUF1dLbopAcOnmWX21n7580YOAOzw7iWmVhg3MtQoQw1EJAle74gMx/FqDexnMZi7fsxMI3sOstQnSx1kPFNOXnTt2hVZWVmeJy1UVYWqqnA4HDh48CB27tyJgwcPwm63e74HAKmpqcjKysI111wjsvlEV+R2u1FWVga32y26KQFDmsy8eNBNmgyuQIYaZaiBiMhrvN6RRXC8WgP7WQzmrh8z08iegyz1yVIHGc+Uy0adV1dXh2XLluGtt97Czp074XK5LvpMcHAw+vXrh+nTp2PSpEkICQkR0FJqKtGPGhFhdpy4Yz97EgiLEXd8IiKyDl7viIiIiIjIS6Lv5Zruhd0XCgkJwdSpUzF16lRUVFTg22+/xdmzZ1FRUYHo6Gi0atUKvXv3RnR0tOimEjVZfX09Tp48ifbt28NmM/VfQdOQJrN6JxDWzE1lyeAKZKhRhhqIiLzG6x1ZBMerNbCfxWDu+jEzjew5yFKfLHWQ8Uy5bNSlREdHY+DAgRg9ejQmTZqE0aNHY+DAgZy4oIBTUVGBpUuXoqKiQnRTAoY0mdlCm72pNBlcgQw1ylADEZHXeL0ji+B4tQb2sxjMXT9mppE9B1nqk6UOMp6pl40i+Yh+1IhI6DIaL5YBiiLu+EREZB283hERERERkZdE38sNmCcviIh8Yua32q8OA/x73A4ZvJFDRET+w+sdEREREREFONNNXrhcLtxzzz0YM2YMnn76aV3bPv300xgzZgwmT55sUOuIvFdeXo5XXnkF5eXlopsSMHyaWYuO2q+Og7zflx7J3h3PCuNGhhplqIGIJMHrHZHhOF6tgf0sBnPXj5lpZM9BlvpkqYOMZ7rJi/Xr12PlypX46KOPcM011+ja9pprrsHatWuxbNkyfPrppwa1kMg7kZGRuPvuuxEZGSm6KQHDkMx6jfXdvpqip3fHs8K4kaFGGWogIsnwekdkGI5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu8uKTTz4BAISEhGD8+PG6th0/fjxCQkIAAOvWrfN524h8ISQkBCkpKZ6xSo0zJLPEHsDVA323vyvpOAhIvM6rXVhh3MhQoww1EJFkeL0jMgzHqzWwn8Vg7voxM43sOchSnyx1kPFMN3mxY8cOAEBqairi4vS9aDAuLg5paWlQVRU5OTlGNI/Ia1VVVVi7di2qqqpENyVgGJbZjY/7dn+XM8j741hh3MhQoww1EJGEeL0jMgTHqzWwn8Vg7voxM43sOchSnyx1kPFMN3lx5MgRKIqC7t27N2v7bt26efZDRHRF3YZ7vbxFo3qNA7rdbuwxiIiIroTXOyIiIiIiCkCKqqqq6EZcKDQ0FC6XCw8++CDmz5+ve/sZM2Zg4cKFsNlscDqdBrSQvLF//3707NnT8+d9+/ahR48eAltElldVAswfCDhO+37fMW2AGVuByATf75uIiEgPXu+IiIiIiEgn0fdyTffkRWxsLACgpKSkWduf3y4qKspnbSLypbq6OuTn56Ourk50UwKGoZlFJgD3fgCEx/t2v+Hx2n59dCPHCuNGhhplqIGIJMXrHZHPcbxaA/tZDOauHzPTyJ6DLPXJUgcZz3STF23atPHqnRXnt0tMTPRls4h8huv66Wd4Zok9gKnrtZ8c9YWYNtr+En03E22FcSNDjTLUQEQS4/WOyKc4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnumWjHnroIbz11ltQFAUbNmzAbbfd1uRtN27ciBEjRkBRFNx///1YvHixgS2l5hD9qBHRFVWVAP9+Ctj7fvP30WscMHIul84gIiLz4vWOiIiIiIiaQPS9XNM9eXH33Xd7fj9jxgz88MMPTdruzJkzmDFjxiX3Q0TUJJEJwC/eBu5ZDXQcpG/bjoOAe97XtueNHCIiMjNe74iIiIiIKACYbvJixIgR6Nu3LwDg6NGjSE9Px2effXbFbT777DNkZGTg6NGjUBQFqampGD16tD+aS6RbWVkZ5syZg7KyMtFNCRh+z6zbcG0ZjBnbgJueBDoPuXiN8PB47es3Pal9bup6oNvthjXJCuNGhhplqIGILITXOyKvcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3TLRgHa4ygDBw5ERUUFVFWFoijo2rUrhgwZgs6dOyM6OhoVFRU4evQovvzyS3z//fcAAFVVERMTgy1btqBXr16Cq6BLEf2okRnU19fj5MmTaN++PWw2m+jmBARTZKaqgLMCqHcCtlAgNBpQFL8d3hQZGEyGGmWogYgsjtc7oibjeLUG9rMYzF0/ZqaRPQdZ6pOlDisQfS/XlJMXAJCVlYXx48d7lo1SrvCPpvMlJCQkYPXq1Rg2bJhf2kj6iR7wRERERERERERERNQ40fdyTbds1HlDhgzB7t27cc8998Bms0FV1cv+stlsmDRpEnJzczlxQaZXWVmJlStXorKyUnRTAgYzs0YGMtQoQw1ERCLxPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZ+Lqd9+/ZYtmwZ5s6di88//xzZ2dkoLi6Gw+FATEwMEhMTkZGRgdtuuw1t2rQR3VyiJgkKCkJ8fDyCgkw7d2g6zMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOOZdtkokpPoR42IiIiIiIiIiIiIqHGi7+VyeovIz5xOJ3Jzc+F0OkU3JWAwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjMfJCyI/q6mpQVZWFmpqakQ3JWAwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjMdlo8ivRD9qRERERERERERERESNE30vV8iTF/PmzUNdXZ3fjldXV4d58+b57XhEV6KqKmpqasB5w6ZjZtbIQIYaZaiBiEgknkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGU/I5MUTTzyBlJQUvP3224ZOYjidTrz11lvo3r07nnzyScOOQ6RHeXk5Xn31VZSXl4tuSsBgZtbIQIYaZaiBiEgknkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGU/IslHBwcGe3ycmJuLXv/41pk2bho4dO/pk/8eOHcPbb7+Nf/zjHyguLoaqqggODvbr0x50aaIfNTIDl8uFs2fPolWrVg3+LtDlMTNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpwwpE38sVMnmxa9cu/L//9/+wfft2rRGKAgBIT0/H3XffjWHDhqFv374ICmragyFutxu7du3Cpk2bsHbtWuzYsQOqqnoePcrIyMDf/vY3XH/99cYURE0mesATERERERERERERUeNE38sVsmxU3759sW3bNqxcuRIpKSmeiYacnBw899xzyMjIQGxsLNLT03H//ffjueeewx//+EfMnz8fb775Jv74xz/i2WefxX333Yf09HTExsYiIyMDzz33HHJycuB2u6GqKlJSUrBq1Sps3bqVExdkGhUVFViyZAkqKipENyVgMDNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnE3nw8ePHY+zYsfjwww+RmZmJLVu2eL5XVVWFXbt2YdeuXY3u56cPj9x44414/PHH8fOf/9zzVAeRWdhsNiQnJ8NmE/rXL6AwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjCdk2ajL+f7777F8+XKsW7cOubm5TX7jvKIoSEtLw1133YVJkyaha9euBreUmkv0o0ZERERERERERERE1DjR93JNNb3VtWtXzJ49G7Nnz8a5c+eQk5ODb7/9FkePHkVxcTEqKysBAFFRUUhKSkKnTp3Qu3dv9O/fH1dddZXg1hM1TW1tLfbs2YM+ffogLCxMdHMCAjOzRgYy1ChDDUREIvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4ppq8uNBVV12FkSNHYuTIkaKbQuRTTqcTubm56NGjB0/QTcTMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4ynqmWjSL5iX7UiIiIiIiIiIiIiIgaJ/pebpDfjkREAAC3242ysjK43W7RTQkYzMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIONx8oLIz+x2OzIzM2G320U3JWAwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjMdlo8ivRD9qZAZutxt2ux2xsbEICuL8YVMwM2tkIEONMtRARCQSz6MUSDherYH9LAZz14+ZaWTPQZb6ZKnDCkTfyzXtC7uJZBUUFIT4+HjRzQgozMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIONxaovIzxwOBxYsWACHwyG6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDxOXhD5WWhoKNLS0hAaGiq6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDy+84L8SvQ6aURERERERERERETUONH3cvnkBZGf1dTUICsrCzU1NaKbEjCYmTUykKFGGWogIhKJ51EKJByv1sB+FoO568fMNLLnIEt9stRBxuPkBZGf1dfXo6CgAPX19aKbEjCYmTUykKFGGWogIhKJ51EKJByv1sB+FoO568fMNLLnIEt9stRBxuOyUeRXoh81IiIiIiIiIiIiIqLGib6XyycviPzM5XKhqKgILpdLdFMCBjOzRgYy1ChDDUREIvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4nLwg8jOHw4GFCxfC4XCIbkrAYGbWyECGGmWogYhIJJ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxmPy0aRX4l+1MgMVFVFbW0twsLCoCiK6OYEBGZmjQxkqFGGGoiIROJ5lAIJx6s1sJ/FYO76MTON7DnIUp8sdViB6Hu5Nr8dqZl27NiB5cuXY8uWLThx4gRKS0vhdrsveqFLWVkZtm7dCgBo3749evfuLaK5RI1SFAXh4eGimxFQmJk1MpChRhlqICISiedRCiQcr9bAfhaDuevHzDSy5yBLfbLUQcYz7bJRZ8+exc9+9jNkZGTgr3/9K/bs2YOzZ8+ivr4el3pYJCoqCr/+9a9x1113YcyYMQJaTNQ0drsd8+bNg91uF92UgMHMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4yniknLwoLC9G/f3/8+9//hqqqnl9XEhISgoceegiqquLo0aPIzs72U2uJ9AkPD8eQIUM4w6wDM7NGBjLUKEMNREQi8TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimfOfFwIEDPZMP1113HZ5//nkMGzYMc+bMwZtvvglFUS75Nvrvv/8e3bt3h6IoeOGFF/Diiy/6u+nUCNHrpBERERERERERERFR40TfyzXdkxdr165FdnY2FEXBTTfdhJycHEyYMAGtWrVq9AUuXbt2Rbt27QAA27dv90dziXSrrq7Ghg0bUF1dLbopAYOZWSMDGWqUoQYiIpF4HqVAwvFqDexnMZi7fsxMI3sOstQnSx1kPNNNXqxevRoAYLPZsHTpUkRGRuravnfv3lBVFYcOHTKieURec7vdKCsrg9vtFt2UgMHMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4ynumWjercuTOOHTuGm266CVlZWQ2+9+ijj+KNN9647LJRADB16lQsXboU0dHRfOmLCYl+1IiIiIiIiIiIiIiIGif6Xq7pnrw4c+YMAKBbt27N2v78i15qa2t91iYiX6qvr0dBQQHq6+tFNyVgMDNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnusmLoCCtSc19bKikpAQAEB8f76smEflURUUFli5dioqKCtFNCRjMzBoZyFCjDDUQEYnE8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu2aguXbqgoKAAQ4cOxeeff97ge01ZNqpr1644fPgwUlNTsWfPHn80mXQQ/agRERERERERERERETVO9L1c0z150a9fP6iqiuzsbN3vrMjJycHhw4ehKAoGDRpkUAuJiIiIiIiIiIiIiMhIppu8uOuuuwAA1dXV+L//+78mb1dXV4eZM2d6/nz33Xf7umlEPlFeXo5XXnkF5eXlopsSMJiZNTKQoUYZaiAiEonnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM93kxcSJE9G5c2cAwOuvv46//OUvjW5z9uxZ3HXXXdi+fTsURUHfvn1x6623Gt1UomaJjIzE3XffjcjISNFNCRjMzBoZyFCjDDUQEYnE8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45nunRcAkJWVheHDh3veOH/99ddj4sSJ2LRpE/79739DURR8+OGHOH36NL755hv885//RHV1NVRVRVRUFLZu3YpevXoJroIuRfQ6aURERERERERERETUONH3ck335AUADBkyBMuWLUN4eDhUVcXu3bvx1FNPYcOGDVAUBQDw85//HA8//DCWL1+OqqoqqKqK6OhorFy5khMXZGpVVVVYu3YtqqqqRDdFH1UFauxA5Tntv36c9wzYzHzIChnIUKMMNRARicTzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDj2UQ34HLGjRuH6667Do899hi+/PLLBt9TFAU/fWBkyJAh+Otf/8qf4ifypeL9wN41wKldwOk8oKbsx++FxwNtUoF2fYFe44DE60S1koiIiIiIiIiIiCRjymWjfurbb7/F+vXrsW3bNhQWFqK8vBxRUVFITEzEgAED8LOf/Qz9+/cX3UxqAtGPGlETffcpsGUecHxr07e5eiBw42+Abrcb1iwiIiIiIiIiIiLyD9H3ck375MWFevfujd69e4tuBpFP1NXV4fDhw+jSpQtCQkJEN6ehqhJg/Sxg3xr92x7fCry3VXsKY+RcIDLBZ80ydWZ+YoUMZKhRhhqIiETieZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8Uz5zgsimZl2Xb+ifcD8gc2buLjQ3ve1/RTv9027YOLM/MgKGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOMFxLJRJA/RjxrRZRTtA5bc2fCdFt4KjwemrgcS2b9ERERERERERESBRvS9XFMuG5Wfnw+n04mQkBBce+21Td7u4MGDqKurQ3h4OLp162ZgC4kkUlUCLB/r24kLQNvfsl8AM7b6dAkpIiIiIiIiIiIikp/plo06duwYevbsiT59+mDu3Lm6tp07dy769OmDXr164fTp0wa1kMg7ZWVlmDNnDsrKykQ3RbN+FuAw6O+L4zTw76e83o3pMhPAChnIUKMMNRARCaOqKCs+oZ1Hi08AfECcTI7XfWtgP4vB3PVjZhrZc5ClPlnqIOOZbtmo1157DU8//TQURcH27dvRr1+/Jm+bk5ODjIwMKIqCP/7xj3j88ceNayg1i+hHjcygvr4eJ0+eRPv27WGzCX746btPgffGG3+ce1YD3YY3e3NTZSaIFTKQoUYZaiAi8qvi/cDeNcCpXcDpPNTXOHASbdAep2ELjwHapALt+gK9xgGJ14luLVEDvO5bA/tZDOauHzPTyJ6DLPXJUocViL6Xa7rJizvuuAMbNmxA27ZtcfLkSd3bt2vXDkVFRbjjjjuwbt06A1pI3hA94OknFo0Ejm81/jgdB2nvvyAiIiICtB+g2DJP3/+HXD0QuPE3QLfbDWsWERERERH9SPS9XNMtG7V//34oioK+ffs2a/u+fftCVVXs37/fxy0j8o3KykqsXLkSlZWVYhtSvN8/ExcAcOwboPhAszc3TWYCWSEDGWqUoQYiIkNVlQBrfqU9+XmJ/w+pRARWYhQqEXHxtse3Au+NAz54QNsPkWC87lsD+1kM5q4fM9PInoMs9clSBxnPdJMXZ8+eBQAkJSU1a/vz2505c8ZnbSLypaCgIMTHxyMoSNBfv9Jj2q8d//DvcXf+QztuMwjPzASskIEMNcpQAxGRYYr2AfMHAvvWXPYjQVARDzuCcIWHw/e+r+2nmD+sRGLxum8N7GcxmLt+zEwjew6y1CdLHWQ80y0bFRkZidraWkyePBmLFi3Svf20adOwZMkShIaGoqamxoAWkjdEP2pEAGbHCT5+udjjExERkf8V7QOW3AnUlPlun+Hx2rKUifx/SSIiIiIiI4i+l2u66a1WrVoBAAoKCpq1/dGjRwEALVu29FWTiHzK6XQiNzcXTqdTdFMCBjOzRgYy1ChDDUREPldVAiwf26SJCydCkIvr4ERI4/utKQOW/YJLSJEwvO5bA/tZDOauHzPTyJ6DLPXJUgcZz3STF927d4eqqti2bRtKS0t1bVtaWopt27ZBURRcc801BrWQyDs1NTXIysrik0E6MDNrZCBDjTLUQETkc+tnAY7TTfpoDcKQhRtQg7Cm7dtxGvj3U140jqj5eN23BvazGMxdP2amkT0HWeqTpQ4ynumWjXrttdfw9NNPQ1EUPProo5g3b16Tt33sscfwt7/9DYqi4KWXXsL//M//GNdQahbRjxoRuGwUERER+c93n2ov5zbaPauBbsONPw4RERERkYWIvpdruicvJk+ejMjISADAX//6V7z22mtN2m7u3Ln429/+BgAICwvDlClTjGoikVdUVUVNTQ1MNm9oaszMGhnIUKMMNRAR+dSWebo+rkJ7+kL3WfSbTL1bEHmN131rYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7yonXr1njqqac8g/eZZ57BoEGDsGLFChQVFTX4bHFxMVasWIEbb7wRzz77LABAURQ8+eSTaNeund/bTtQU5eXlePXVV1FezicQmoqZWSMDGWqUoQYiIp8p3g8c36prk3LE4lXlEZQjVt+xjn0DFB/Qtw2Rl3jdtwb2sxjMXT9mppE9B1nqk6UOMp7plo0CtNm3X/ziF1i7di0URWnwvbCwMERHR6OiogK1tbUNtgGAUaNGYe3atf5sLukg+lEjM3C5XDh79ixatWqF4OBg/zeg9Jj233/+Gjix3X/H7ZABjHkLaNFR96bCMzMBK2QgQ40y1EBE5LXz/6/xTSaw8x+6NnUhCGdxFVrhHILh1nfc/g8AAx9r1v9rEDUHr/vWwH4Wg7nrx8w0sucgS32y1GEFou/lmnLyAgDcbjeee+45vP7663C7G/+HS1BQEJ588kn83//9Hwe9iYke8HSBz+cAW/7kv+Pd9CRwywv+Ox4RERGJwfdrERERERFJQfS9XNMtG3VeUFAQXnnlFRw8eBDTp09HcnLyJT+XnJyMGTNm4ODBg3j11Vc5cUGmV1FRgSVLlqCiokJsQ3qN9e/xejb/eKbJTCArZCBDjTLUQEQkUgUisQTjUIFI0U0hahSv+9bAfhaDuevHzDSy5yBLfbLUQcaziW5AY7p27Yr58+cDAM6cOYPi4mI4HA7ExMQgMTERrVu3FtxCIn1sNhuSk5Nhswn+65fYA7h6oO61qJul4yAg8bpmb26azASyQgYy1ChDDUREItngQjJOwgaX6KYQNYrXfWtgP4vB3PVjZhrZc5ClPlnqIOOZdtkokpPoR43oJ777FHhvvPHHued9oNvtxh+HiIiIxOOyUUREREREUhB9L9e0y0YRyaq2thbZ2dkNXjgvTLfhXi3n1CS9xnk9cWGqzASxQgYy1ChDDUREItUiFNnog1qEim4KUaN43bcG9rMYzF0/ZqaRPQdZ6pOlDjIeJy+I/MzpdCI3NxdOp1N0UzR3vAbEtDFm3zFtgJFzvd6N6TITwAoZyFCjDDUQEYnkRAhy0QNOhIhuClGjeN23BvazGMxdP2amkT0HWeqTpQ4yHpeNIr8S/agRXUbxfmDxHUBNme/2GR4PTF2vvVuDiIiIrKP0mPbff/4aOLHdf8ftkAGMeQto0dF/xyQiIiIikpjoe7mmfvJiy5YteOSRR9C/f3+0atUKYWFhCA4ObtIvvvCFzMrtdqOsrAxut1t0U36U2EObaPDVExgxbXw6cWHKzPzMChnIUKMMNRARea1FR+1Xx0G6N3VDQRli4Yai/7jJgzhxQX7F6741sJ/FYO76MTON7DnIUp8sdZDxTDl5UVJSgp/97Ge4+eabsWDBAuzevRvnzp1DXV0dVFVt8i8iM7Lb7cjMzITdbhfdlIYSewAztmrvqPBGr3Hafnz4xIVpM/MjK2QgQ40y1EBE5DO99L9Xy44YZCoPwI4Y/ccz+j1eRD/B6741sJ/FYO76MTON7DnIUp8sdZDxTLdsVH19PTIyMrBnzx6vJiAURYHL5fJhy8gXRD9qZAZutxt2ux2xsbEICjLl/CHw3afAN5nAsW+avk3HQcCgx71+OfelBERmBrNCBjLUKEMNREQ+tWgkcHxrkz/uhgI7YhALB4Kg498CHQdpT30S+RGv+9bAfhaDuevHzDSy5yBLfbLUYQWi7+Wabm2lhQsXYvfu3VAU7VHxsWPHYtq0aejTpw+uuuoqLgdFAS8oKAjx8fGim3Fl3YZrv4oPAPvWAKd2AYW5Dd+JER4PtE0D2vXVftIx8TrDmhMQmRnMChnIUKMMNRAR+dSNjwPvNX3yIggq4tGMn8Ab9Lj+bYi8xOu+NbCfxWDu+jEzjew5yFKfLHWQ8Uw3tbV69WrP7+fNm4fVq1djxIgRSExM5MQFScHhcGDBggVwOByim9K4xOuAW14A7v8IeLoAePYkMOuI9t+nC7Sv3/KCoRMXQIBlZhArZCBDjTLUQETkU92G61rOyYEoLMC9cCCq6cfoNc6QJz+JGsPrvjWwn8Vg7voxM43sOchSnyx1kPFMN3mxf/9+KIqC7t2747HHHhPdHCKfCw0NRVpaGkJDQ0U3RR9FAcJigKirtP8qzXiRZjMFbGY+ZIUMZKhRhhqIiHzujteAmDZN+mgo6pCG/QhFXdP2HdMGGDnXi8YRNR+v+9bAfhaDuevHzDSy5yBLfbLUQcYz3TsvIiIi4HQ6MXnyZCxatEh0c8jHRK+TRkREREQCFO8HFt/RcAlKb4XHa++5SOT/SxIRERERGUH0vVzTPXnRtm1bAODLWkhaNTU1yMrKQk1NjeimBAxmZo0MZKhRhhqIiAyR2EObaGjkCYwahCELN6AGYVfeX0wbTlyQcLzuWwP7WQzmrh8z08iegyz1yVIHGc90MwTp6elQVRX5+fmim0JkiPr6ehQUFKC+vl50UwIGM7NGBjLUKEMNRESGSewBzNiqvaPiMuoRjAK0Rz2CL7+fXuO0/XDiggTjdd8a2M9iMHf9mJlG9hxkqU+WOsh4pls26ssvv8Qtt9yC4OBgHDhwAF27dhXdJPIh0Y8aEREREZEJfPcp8E0mcOybpm/TcRAw6HG+nJuIiIiIyE9E38s13ZMXQ4cOxQMPPACXy4X7778fVVVVoptE5FMulwtFRUVwuVyimxIwmJk1MpChRhlqICLyi27DtWWfZmwDbnoS6DwECI+HC0EoQiu4EKS906LzEO37M7Zpn+fEBZkIr/vWwH4Wg7nrx8w0sucgS32y1EHGM93kBQC88cYbmDx5MrZv346+ffvio48+4mAmaTgcDixcuBAOh0N0UwIGM7NGBjLUKEMNRER+lXgdcMsLwP0fAU8XwDFjLxYq98ExYy/wdIH29Vte0D5HZDK87lsD+1kM5q4fM9PInoMs9clSBxnPdMtGDRs2zPP7bdu2oba2FoqiIDw8HN27d0dcXBwURWl0P4qi4IsvvjCyqdQMoh81MgNVVVFbW4uwsLAmjWViZoA1MpChRhlqICISiedRCiQcr9bAfhaDuevHzDSy5yBLfbLUYQWi7+Xa/HakJsrKymowaBVFgaqqqK6uRl5eXpP2oaoqBz6Z1vnJOGo6ZmaNDGSoUYYaiIhE4nmUAgnHqzWwn8Vg7voxM43sOchSnyx1kPFMuWyUqqoNfl3u65f7RWRmdrsd8+bNg91uF92UgMHMrJGBDDXKUAMRkUg8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4ynumevPjyyy9FN4HIUOHh4RgyZAhnmHVgZtbIQIYaZaiBiEgknkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGc9077wguYleJ42IiIiIiIiIiIiIGif6Xq4pl40ikll1dTU2bNiA6upq0U0JGMzMGhnIUKMMNRARicTzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjcfKCyM/cbjfKysrgdrtFNyVgMDNrZCBDjTLUQEQkEs+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4zHZaPIr0Q/akREREREREREREREjRN9L5dPXhD5WX19PQoKClBfXy+6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDzTT14cOnQIb7zxBn7961/j5z//OW699VYMGzas0V+33HKL6KYTXVJFRQWWLl2KiooK0U0JGMzMGhnIUKMMNRARicTzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmXbZqCNHjuChhx7CF198oXtbVVWhKApcLpcBLSNviH7UiIiIiIiIiIiIiIgaJ/pers1vR9IhNzcXQ4YMgcPhQFPmVhRFAYAmfZaIiIiIiIiIiIiIiMzNdMtG1dXVYcyYMbDb7VBVFSNHjsSqVatw9913A9AmKr788kt8/PHH+Otf/4px48YhJCQEqqoiOjoaCxcuxJdffolNmzaJLYToMsrLy/HKK6+gvLxcdFMCBjOzRgYy1ChDDUREIvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4pnvy4t1330VBQQEURcF9992HJUuWAAA2b97s+czNN9/s+f0jjzyCwsJCPPjgg1i/fj1mzZqFDRs2ICMjw99NJ2qSyMhI3H333YiMjBTdlIDBzKyRgQw1ylADEZFIPI9SIOF4tQb2sxjMXT9mppE9B1nqk6UOMp7p3nkxZswYrF27FiEhITh16hRatmwJAHj00UfxxhtvXPZdFm63G2PGjMHHH3+Mq6++Gnl5eYiLi/N386kRotdJIyIiIiIiIiIiIqLGib6Xa7plo/bs2QNFUZCenu6ZuGiKoKAgLFy4EKGhoThx4gSWLl1qYCuJmq+qqgpr165FVVWV6KYEDGZmjQxkqFGGGoiIROJ5lAIJx6s1sJ/FYO76MTON7DnIUp8sdZDxTDd58cMPPwAArrnmmgZfDw4O9vy+urr6ktsmJiZi8ODBUFUVa9asMa6RRERERERERERERERkGNMtGxUWFob6+no89NBDeOONNzxff/755/H73/8eiqLgyJEj6Nix4yW3f/DBB/H222+jbdu2OHnypL+aTU0k+lEjIiIiIiIiIiIiImqc6Hu5pnvyokWLFgCAysrKBl9v1aqV5/fffffdZbc/c+YMgB+f4CAym7q6OuTn56Ourk50UwIGM7NGBjLUKEMNREQi8TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimm7zo2rUrVFW96KmJXr16eX6/cePGS25bU1ODHTt2AABiY2ONaySRF7iun37MzBoZyFCjDDUQEYnE8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45lu2aiZM2fir3/9KxITE3H69GnP16urq5GUlISKigrExMRg+/bt6N69e4NtZ82ahT/+8Y9QFAW33norPv30U383nxoh+lEjIiIiIiIiIiIiImqc6Hu5pnvyYtiwYQC05Z8OHDjg+XpERATuu+8+qKoKh8OB9PR0PPbYY/j73/+OzMxM3HLLLfjTn/7k+fzkyZP93nYiIiIiIiIiIiIiIvKe6SYvhg8fjqioKKiqihUrVjT43ssvv4wOHTpAVVVUVFTgjTfewEMPPYQnnngCWVlZns/dfvvtuOeee/zccqKmKSsrw5w5c1BWVia6KQGDmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDzTLRsFADk5OSgtLUWLFi2Qnp7e4HvHjx/HL3/5S2zbtu2i7RRFwX333Yf58+cjIiLCX80lHUQ/amQG9fX1OHnyJNq3bw+bzSa6OQGBmVkjAxlqlKEGIiKReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdViD6Xq4pJy+aYtu2bfjiiy9QWFiIoKAgdO7cGXfeeedF78EgcxE94ImIiIiIiIiIiIiocaLv5Zpu2aimuuGGG/C73/0Ob775Jv72t7/hiSee4MQFBYTKykqsXLkSlZWVopsSMJiZNTKQoUYZaiAiEonnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGC9jJC6JAFRQUhPj4eAQF8a9fUzEza2QgQ40y1EBEJBLPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqYOMF7DLRlFgEv2oERERERERERERERE1TvS9XE5vEfmZ0+lEbm4unE6n/o1VFaixA5XntP9aZO7Rq8wkYYUMZKhRhhqIiETieZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8YS8zn3z5s0N/jx48ODLfs8bF+6XyCxqamqQlZWFzp07IzQ0tPENivcDe9cAp3YBp/OAmrIfvxceD7RJBdr1BXqNAxKvM6rZQunOTEJWyECGGmWogcxBVVVU1NajzqUiJFhBdJgNiqKIbhaR4XgepUDC8WoN7GcxmLt+zEwjew6y1CdLHWQ8IctGBQUFef4BrigK6uvrL/k9b/x0v2QOoh81CijffQpsmQcc39r0ba4eCNz4G6Db7YY1i4iIjJFfZMfHuYXIO1mGfafsKK+u83wvLiIEPdvFIrV9PEantUP3pBiBLSUiIiIiIiIrEH0vV8iTF4D2E4XN+R5RoFNVFbW1tQgLC7v0RF1VCbB+FrBvjf6dH98KvLdVewpj5FwgMsH7BptAo5lZgBUykKFGGWog/9uUX4wFWUeQU1By2c+UV9fhm/+cwzf/OYc3sw4jPTkBM4Z0wdCU1n5sKZHxeB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDwh77wYPHgwbr75Ztx8880XLe104fe8+cUlo8isysvL8eqrr6K8vPzibxbtA+YPbN7ExYX2vq/tp3i/d/sxiStmZhFWyECGGmWogfyntNKJx1bswbQlO684cXEpOQUlmLpkB2au3IPSSq4TS/LgeZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8YQsG0XWJfpRIzNwuVw4e/YsWrVqheDg4B+/UbQPWHJnw3daeCs8Hpi6HkgM7Iwvm5mFWCEDGWqUoQbyj4On7ZiyOAfF9lqv95UYG4al09KRkhTrg5YRicXzKAUSjldrYD+Lwdz1Y2Ya2XOQpT5Z6rAC0fdyOXlBfiV6wJtWVYn2pITjtO/3HdMGmLFVmiWkiIgC3cHTdkx8K7vBOy28FRcRglXTMziBQURERERERD4j+l6ukGWjrsRut3t+EcmooqICS5YsQUVFxY9fXD/LmIkLQNvvv58yZt9+csnMLMYKGchQoww1kLFKK52YsjjHpxMXgPZOjMmLcriEFAU8nkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGc90kxfx8fFo0aIFUlJS4HK5RDeHyOdsNhuSk5Nhs9m0L3z3qffvuGjM3ve14wSoizKzICtkIEONMtRAxnrx4/0+WSrqUorttZi9To53HZF18TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimWzYqJCQEbrcbY8eOxapVq0Q3h3xM9KNGprRoJHB8q/HH6ThIe/8FEREJsSm/GNOW7DT8OIum9MOwlETDj0NERERERERyE30v13RPXiQmav/YbtGiheCWEBmjtrYW2dnZqK2tBYr3+2fiAgCOfQMUH/DPsXysQWYWZYUMZKhRhhpIo6oqHDV1KKl0wlFTB1/8rMeCrCM+aFkTjvOVf45DZASeRymQcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3STF126dAEAFBYWCm4JkTGcTidyd+XAeeYIsOMf/j34Tj8fz0ecTidyc3PhdFp3LXcrZCBDjTLUYGX5RXbM3ZCPSW9nI+2lz9Br9kZc/7L237SXPsOkt7Mxd0M+DhU5mrXvnIISA1p9sZyjJc1qI5EZ8DxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6yHimWzYqMzMTv/nNbxAbG4vCwkJERkaKbhL5kOhHjUxjdpzAY5eLOzYRkQltyi/GgqwjuiYX0pMTMGNIFwxNaX3Fz50oqQIALNx8GMuyj3vVTj3uy+iIBwd3RocE/n8UERERERERNY/oe7mme/JiypQpaN++PRwOB5599lnRzSHyObfbjTLEwg1FTAPMNV/ZJG63G2VlZXC73aKbIowVMpChRhlqsJLSSiceW7EH05bs1P1URE5BCaYu2YGZK/egtPLyPy1009wvcdPcL/06cQEA72Yfw01zv/TrMYl8gedRCiQcr9bAfhaDuevHzDSy5yBLfbLUQcYz3eRFXFwcVq5cidjYWPztb3/DQw89hPJy/qQ4ycNutyNTeQB2xIhpgLNCzHG9YLfbkZmZCbvdLropwlghAxlqlKEGqzh42o4RmZvxcZ53y1R+lFuIEZmbkV/EPifyBZ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxnPdMtGvfPOOwCA77//Hq+++ipcLhfCw8Nx++23o2/fvmjVqhUiIiKatK/777/fyKZSM4h+1MgM3G437C91RCwcCIKAv36zjgBRV/n/uF5wu92w2+2IjY1FUJDp5lz9wgoZyFCjDDVYwcHTdkx8Kxvl1XU+22dcRAhWTc9ASlJsg68nP/OJz47RHAWv3Cn0+ER68TxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6rED0vVzTTV4EBQVBUX5cTud88y78WlMoioL6+nqfto28J3rAm4bId148exIIE/TUBxGRYKWVTozI3Ixie63P950YG4YNMwejRVSo52ucvCAiIiIiIqJAJfperimntlRV9fy61Nea+ovIjBwOBxbgXjgQJaYBodFijusFh8OBBQsWwOFwiG6KMFbIQIYaZahBdi9+vN+QiQsAKLbXYva6/Ybsm8gqeB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDyb6Ab81OTJk0U3gchQoaGhSBt8J0Kvexz45BHgxHb/HbxDBqDzKSYzCA0NRVpaGkJDQxv/sKSskIEMNcpQg8w25Rd7/Y6LxnyUW4jRaW0xLCXR0OMQyYrnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM92yUSQ30Y8amc7nc4Atf/Lf8W56ErjlBf8dj4jIRMYv2IacghLDj5PeKQGrp98AADhRUgUAeHxVLnYdKzX82Of169gCf56Qhg4JkX47JhEREREREclF9L1cUy4bRSSzmpoaZGVloaamBug11r8H7+nn4/lIg8wsygoZyFCjDDXIKr/I7peJCwDIOVqCQ0Xa488dEiLRISESAzol+OXY5w3onMCJCwpIPI9SIOF4tQb2sxjMXT9mppE9B1nqk6UOMh4nL4j8rL6+HgUFBdoL5RN7AFcP9M+BOw4CEq/zz7F8zJNZRSlQeQ6osQMWe2iswbiRlAw1ylCDbE6UVOFESRWWZR/z63GXZR/zPHUBAKPS2vr1+KNS2/n1eES+wvMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIONx2SjyK9GPGpnSd58C7403/jj3vA90u9344/hS8X5g7xrg1C7gdB5QU/bj98LjgTapQLu+QK9xATsxQ0TGSn7mE6HHL3jlTs/vRSxbRURERERERNRcou/l8skLIj9zuVwoKiqCy+XSvtBtuPHLOfUaF1gTF999CiwaCcwfCGz5E1xHv0ZRTQhcF56yasqAo19p7wyZf4P2+e82Cmuy0S4aNxKSoUYZaiDjPDSks1+OM+PmLn45DpEReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZLyAmLyoqKjAN998g48++gjLli3DO++806RfRGbkcDiwcOFCOByOH794x2tATBtjDhjTBhg515h9+1pVCbDmV9qTKMe3er7sQDQWKvfBgejLb3t8K/DeOOCDB7T9SOaS40YyMtQoQw1knGEpiRiVauzyUaPT2mJoSmtDj0FkJKHnUVXVlqa06BKVpB+v+9bAfhaDuevHzDSy5yBLfbLUQcYz9bJR7733Hv76179ix44d0NtMRVG4bpoJiX7UyAxUVUVtbS3CwsKgKMqP3yjeDyy+o+HSSN4KjwemrtferWF2RfuA5WMBx+mLvqUCqEUYwlAL5eItLxbTBrj3g8Cou4kuO24kIkONMtQgGzMtGwUApZVOjMjcjGJ7rc+PlRgbhg0zB6NFVKjP903kL34/j3KJSvICr/vWwH4Wg7nrx8w0sucgS32y1GEFou/l2vx2JB2qq6sxfvx4rF+/HgCuOHGhKIruiQ0ikRRFQXh4+MXfSOyhTTQs+8Ulb+DrFkg38Iv2AUvuvOzEjQIgHDpu9DlOaxNBgTJx0wSXHTcSkaFGGWogY7WICsXSaemYsDAb5dV1PttvXEQIlk5L58QFBTy/nUe/+xTYMq/Bk54XOb9E5fllKq8eCNz4m8BaipMMxeu+NbCfxWDu+jEzjew5yFKfLHWQ8Uy5bNSvfvUrfPLJJ1BVFWFhYRg5ciRSUlIAaIN78uTJGDNmDPr27Qubzeb5enR0NO6//35MnjwZ999/v8gSiC7Lbrdj3rx5sNvtF38zsQcwY6v2033e6DVO208g3LivKtGeuLjCEyd2RGMefgX7lZaN+qmaMm0iSJIlpK44biQhQ40y1EDGS0mKxarpGUiMDfPJ/hJjw7BqegZSkmJ9sj8ikQw/j15micomkXyJStKP131rYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7yYvv27Vi5ciUURUHXrl1x8OBBfPLJJ7jllls8n1m8eDHWrFmDHTt24OzZs3jttdcQHR2NyspKnDlzBn/5y1+wePFigVUQXV54eDiGDBly+RnmyATgF28D96wGOg7St/OOg4B73te2j0zwvrH+sH5Wo0+ahKMWQ7BN39MXgLbffz/lRePMo9FxIwEZapShBtl8/dRQfP3UUPTt2MKvx+3XsQW+fmroZb+fkhSLDTMHY3Sad+/AGJ3WFhtmDubEBUnD0PNo0T5g/kBg3xrv9rP3fW0/xft90y4KWLzuWwP7WQzmrh8z08iegyz1yVIHGc9077x4+OGHsWDBAiiKgs2bN2PQIO3m7aOPPoo33ngDiqJc8k3033//PYYOHYrTp0/j5z//Odas8fIfJWQI0eukBaTiA9o/sk/tAgpzL16LuW2athZzz7GBtxbzd59qP/lotHtWA92GG38cIjKtuRvy8WbWYb8d75GhXTBreEqTPrspvxgLvjqCnKNN/0nu9E4JmHFzF76cm6ipGlmislkC6d1iRERERETNIPperumevNiyZQsAoEuXLp6Ji6bo2rUrli5dClVV8eGHH+KTT8S+oJPocqqrq7FhwwZUV1c3bYPE64BbXgDu/wh4ugB49iQw64j236cLtK/f8kLgTVwA2lrTTVCNcGzAEFSjmTPy32Q2bzsT0T1uApAMNcpQg6xGefmEg+7jpbZr8meHpSRi9fQb8Onjg/HI0C648ZqWiIsIafCZuIgQ3HhNSzwytAs+fXwwVk+/gRMXJCVDzqNNWKKyWSRbopL043XfGtjPYjB3/ZiZRvYcZKlPljrIeKZ7YXdhYSEURUGfPn0afP3CN887nU6Ehl78QspbbrkFPXr0wIEDB7Bs2TLceeedhreXSC+3242ysjK43W79GysKEBYD+GaZdLGK9zd5rWk3FJQhFm4ojX/4Uo59oz3BEogTPP/l1bgJEDLUKEMNskpJikV6cgJyCoy/yZjeKQHdk2J0b9c9KQazkrSnNVRVRaXTBWe9G6G2IESFBjf4fyEiWRlyHm3CEpXNdn6Jyl+8bcz+ydR43bcG9rMYzF0/ZqaRPQdZ6pOlDjKe6ZaNCg0NhcvlwvTp0/Hmm296vv7000/jtddeg6IoKC4uRsuWLS+5/eTJk/Huu+/immuuwXfffeevZlMTiX7UiEyg9Jj2328ygZ3/8N9x+z8ADHwMaNHRf8ckIlPZlF+MaUt2Gn6cxVP686kIIrPgEpVERERERM0m+l6u6ZaNioyMBADU1dU1+Hp8fLzn98eOHbvs9ufnYk6fNuinq4i8VF9fj4KCAtTX14tuihiZvbVfOiYu6hGMArRHPYKbf9wdb2vHDVBWGDcy1ChDDWaiqiocNXUoqXTCUVMHb3/eYlhKIkalGrt81Oi0tpy4IPKCz8+jTVyi0msSLFFJ+vG6bw3sZzGYu37MTCN7DrLUJ0sdZDzTTV506NABAHDu3LkGX+/WrZvn99u2bbvs9gcOHDCmYUQ+UlFRgaVLl6KiokJ0UwJGBaKwVBmPCkSJboowVhg3MtQoQw2i5RfZMXdDPia9nY20lz5Dr9kbcf3L2n/TXvoMk97OxtwN+ThU5GjW/ueM6oHEWGPW3kuMDcPsu/g0IZE3fHoe1bFEpdfOL1FJlsLrvjWwn8Vg7voxM43sOchSnyx1kPFMt2zUPffcg5UrV+Laa6/F/v37PV8/ceIEkpOTAQA9evTA7t27YbM1fGXHxo0bMWLECCiKgp49eyIvL8+fTacmEP2oEZnA7DjBxy8Xe3wiuqRN+cVYkHVE1zsp0pMTMGNIF91POuQX2TFhYTbKq+sa/3ATxUWEYNX0DKQkxfpsn0TUTFyikoiIiIjIJ0TfyzXdkxeDBw8GABw6dAglJT/ewOjQoQNuvPFGqKqK/fv3Y/To0dizZw/q6upQXl6Od999F5MmTfJ8/q677vJ724mIiEif0konHluxB9OW7NT9Mu2cghJMXbIDM1fuQWmls8nbpSTFYtX0DJ89gZEYG8aJCyIzacYSlT4R4EtUEhERERGZjekmL+644w4oigJVVfGvf/2rwfdeeeUVKIoCANiwYQP69euH8PBwJCQkYMqUKZ7JjpYtW+Lxxx/3d9OJmqS8vByvvPIKysv5BEBTlSMGr+BhlCNGdFOEscK4kaFGGWrwp4On7RiRuRkf5xV6tZ+PcgsxInMz8ovsTd4mJSkWG2YOxug0796BMTqtLTbMHMyJCyIf4XmUAgnHqzWwn8Vg7voxM43sOchSnyx1kPFMN3lx9dVX44knnsD48eNx9uzZBt+74YYb8Pe//x3BwcFQVfWSv1q1aoWPPvoILVu2FFQB0ZVFRkbi7rvv9rycnhoXiWrcjU8RiWrRTRHGCuNGhhplqMFfDp62Y+Jb2Si21/pkf8X2WkxYmK1rAqNFVCgyJ/bBoin9kN4pQdfx0jslYPGU/sic2ActokL1NpeILoPnUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM907L5ri4MGD+POf/4xNmzahsLAQQUFB6Ny5M+666y48/vjjaNWqlegm0mWIXieNTOD8OtT//DVwYrv/jtshAxjzFtehJjKB0konRmRu9tnExYUSY8OwYebgZk0oHCpy4OO8U8g7UY69p8obvBMjLiIEvdrFIbVDHEaltkP3JOs+CUZkeny/FhERERGRT4i+l2u6Jy+a4tprr8Vbb72F//znP6iqqkJFRQW+/fZb/P73vxc+ceFyufDtt9/iH//4B2bMmIF+/fohNDQUiqJAURQMGTKk2fv+4osvcP/996Nbt26IiopCQkICevfujVmzZiE/P79Z+zx48CBmzZqF3r17IyEhAVFRUejWrRsmT56ML774otltpcurqqrC2rVrUVVVJbopYrToqP3qOKjJm1QhHGsxHFUIb/5xkwcF9MSFFcaNDDXKUIM/vPjxfkMmLgDtCYzZ6/Y3a9vuSTGYNTwFyx4YgNwXbsO+OcOx+3ntv7kv3IZlDwzArOEplpi4UFUVjpo6lFQ64aipQwD+rAsFKJ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxnPJroBMlm7di0mTZrk8794drsdDz74IFatWtXg61VVVSgtLcXevXuRmZmJOXPm4Nlnn23yfn//+99jzpw5qKura/D177//Ht9//z3eeecd/PKXv8TChQsREyP/jRrys15jgS1/8t/xeo7137GI6LI25Rd7/Y6LxnyUW4jRaW0xLCWx2ftQFAXRYTbAN+/0Dgj5RXZ8nFuIvJNl2HfKftGTJz3bxSK1fTxGp/HJEyIiIiIiIjJeQC4bZVZLlizB1KlTr/iZm2++GVlZWU3eZ11dHUaMGIFNmzZ5vtazZ09cf/31qKmpwddff43Tp097vjdnzhy88MILje73hRdewMsvv+z5c5s2bXDTTTchPDwcu3btwv79P/7U6u23345PPvkENpv3c12iHzUik1k0Eji+1fjjdBwETF1v/HGIqFHjF2xDTkGJ4cdJ75SA1dNvMPw4MtiUX4wFWUd09Ut6cgJmDOmCoSmtDWwZUTNxiUoiIiIiIp8QfS/XdMtG9erVC3PnzsXJkydFN6XZEhMT8bOf/Qxz5szB+vXrMXPmzGbv6+WXX/ZMXISHh2PFihXYu3cvli5dilWrVqGgoACzZs3yfH727Nn46quvrrjPL774osHExaxZs1BQUIBVq1Zh6dKl2LdvH9577z2Eh2tL9GzcuBH/93//1+waqKG6ujrk5+df9MSLJd34eJM+Vgcb8tEFdc19WGxQ045jZlYYNzLUKEMNRsovsvtl4gIAco6W4FCRwy/HClSllU48tmIPpi3ZqbtfcgpKMHXJDsxcuQellU6ft43LVlmXT86jzVii0icCfIlK0o/XfWtgP4vB3PVjZhrZc5ClPlnqIOOZbvJi//79ePbZZ5GcnIxhw4ZhyZIlcDgC4+bDiBEjcOzYMRQVFWHdunV44YUXMHLkSMTHxzdrf2fOnMGf/vTjsjrz5s3DxIkTG3wmNDQUc+fOxYQJEwBo/9hvbOmoC78/ceJEzJ07F6GhDV9s+stf/hJ//vOfPX9+/fXX8cMPPzSrDmqI6/pdoNvwJi3nVIWI/77zIkL/MXqNA7rd3ozGmYsVxo0MNcpQgxFOlFThREkVlmUf8+tx/X28QHLwtB0jMjd7vYTXR7mFGJG5GflFdq/blF9kx9wN+Zj0djbSXvoMvWZvxPUva/9Ne+kzTHo7G3M35HNSSnI+PY/28vOSkVyi0nJ43bcG9rMYzF0/ZqaRPQdZ6pOlDjKe6ZaNCgr6cT5FURQA2hMHP/vZz3Dfffdh5MiRCA4OFtW8Zpk9ezbmzJkDQN+yUa+99hqeeuopAEC3bt2Qn5/vyeSnjh8/jk6dOsHtdgMAdu/ejT59+lz0uR07diA9PR2AlnVBQQE6dOhwyX2qqoru3bvj+++/BwD86U9/wm9+85smtf1yRD9qRCZUVQLMHwg4Tjf+Wb1i2gAztgKRCb7fNxE1WfIznwg7dsErdwo7tlkdPG3HxLeyG7zTwltxESFYNT0DKUmxurflslVkKC5RSURERETUbKLv5ZruyYtly5Zh5MiRsNlsUFUVqqqiuroaa9aswejRo9GmTRs89thj2L7dj+vXCrJ27VrP76dMmXLZiQsAuPrqqzFs2DDPnz/88MNG93nrrbdeduIC0CaPJk+e3Og+ibwSmQDc+wEQHu/b/YbHa/vlxAWRpZnsZzSEK610YsriHJ9OXABAeXUdJi/K0bWElJmXrSKJNHGJSq9JsEQlEREREZHZmG7y4p577sEnn3yCwsJCZGZmYsCAAQDgmcj44Ycf8MYbb2DgwIHo3r07Xn75ZRw5ckRwq32vpqYG2dnZnj8PGTKk0W2GDh3q+f2FL/i+0JdfftnsfW7duhW1tbWNbkNXVlZWhjlz5qCsrEx0U8wjsYf204oxbS757TLEYo7yBMrQxJ/ojWmj7S9Rnqd6rDBuZKhRhhpkU+l0iW6Cqbz48X4U2425lhfbazF73f4mfdaMy1aROfj8PNrEJSq9IskSlaQfr/vWwH4Wg7nrx8w0sucgS32y1EHGM93kxXktW7bEo48+im3btuH777/Hiy++iK5duwL4cSLjP//5D2bPno2uXbti0KBBWLBgAUpK/PMiUKMdOnTIswSUoiiXXALqp66//nrP7w8ePHjJz1z49Qs/fzkXHtflcuG7775rdBu6sujoaEyePBnR0dGim2IuiT20JZ56jbvoW9GoxGR1NaJR2fh+eo3T9iPRxAVgjXEjQ40y1CAbZ71bdBNMY1N+sdeTBY35KLcQm/KLr/iZ88tW+WoSpdheiwkLszmBIQlDzqN3vHbZH5DwWkwbYORcY/ZNpsfrvjWwn8Vg7voxM43sOchSnyx1kPFMO3lxoS5duuDFF1/EoUOHsH37dvy///f/0Lp1a88khqqqyM7OxiOPPIK2bdvi7rvvxgcffCC62V45dOiQ5/etW7dGeHh4o9tcffXVnt+XlJTg7NmzDb5/5syZBjOaHTt2bHSfERERaNWqlefP+fn5jW5DV2az2ZCcnAybzSa6KeYTmQD84m3gntXa2tH/ZYMLyTgJG67wE9QdBwH3vK9tL+FSUVYYNzLUKEMNsgm1BcT/6vjFgiz/PKm64KvLH8dMy1aRORlyHuUSlWQQXvetgf0sBnPXj5lpZM9BlvpkqYOMF3D/ou/fvz/+8pe/oLCwEOvXr8ekSZMQFRXlmcRwOp34+OOPMWHCBNFN9cq5c+c8v09MTGzSNklJSQ3+/NOnUC7cZ3P3K8uTLSJVVlZi5cqVqKxswlMEVtVtuLbs04xtwE1PorLjrVgZ/AtUIuLHz4THA52HADc9qX1u6nqpl2ywwriRoUYZapBNVGiw6CaYQn6RXfd7JZor52gJDhU5Lvk9syxbReZl2Hm0kSUqdZNwiUrSj9d9a2A/i8Hc9WNmGtlzkKU+Weog4wXc5MV5QUFBGDFiBN59910UFxdj2bJlDV5YHegv6KyoqPD8PiIi4gqf/NFPP3fhPi715+bs96f7aK7w8HDPo2EulwtlZWWePrPb7XA6tZ+crK6u9pzI6uvrGzw5Ul5ejro67Sc3q6qqUFVVBQCoq6tDeXm553NlZWWor68HoJ0cq6urAQBOpxN2u7bEhKqqKCsrg8vl8tRZU1MDAKitrYXDod2EcbvdKCsr8yzp5XA4PO8Bqamp8eRzpZpqa2sRFRWFoKAgaWoyrJ8Sr4PzpmdQeed8xPcfD2VmHsoezIXrqWPA0wWoGLMcNYOeAhKvC5yamtlPQMO/izLU9NN+qqysRHR0NIKCggK2Jiv0U3Nq+vyxDGz8f+no27EFguFGtPLjzesopRbB/32qKgx1CINWXzBciLrgc9FKLYKhtSEcdQiFVp8NLkTi/E/bq4hWahH0389ltI/0tFX2c8TlajpRUoX/nC7Bsq+1JzqDPPlrNUXC6XmqLRT1CPfk710/Lcs+dlFN/959+L/LVjXsp4gL+jMELkT8tz+V/35O+W9bI+BEyAVtjfhvGy6s6aPcQvx79+GA6ydAvrHX3JrcbjciIiIQFBTk+5paX4eyezbA1UNborICkahBmFYTQuFAlNYGKChDLNxQtJoQhVqEajUhDBUpE4AZW+FqmWLZfmJNWk1BQUGIiIho8P8ygV6TjP3kbU1BQUGIjo5ucJ4K9JoCoZ+qq6s9/zaQpSaj+6mqqgrx8fGe/clQU3P6yeFwID4+HkFBQdLUdGE/VVRUICYmBkFBQQFdk+z9JGNNogTs5MWFdu3ahc2bNyM3NxeKoohujk+cH4QAEBoa2qRtwsLCGvz5/IC/1D6bu9+f7rO5MjIyMHas9vLEs2fPIjMz0/MXatGiRThw4AAA4KuvvsK6desAACdPnkRmZqZnH/Pnz8fhw4cBABs3bsTGjRsBAIcPH8b8+fM9n8vMzMTJkycBAOvWrcNXX30FADhw4AAWLVoEQPvLnpmZ6Vlqa82aNZ4Xpu/ZswfLly8HoP2FzszM9JxAli9fjj179gAAsrOzsWbNmkZrysnJQWVlJSIiIqSpyeh+eu+99zBixAgERcQh8+/v4Ky9BlCUgK5Jbz/V1dUhNzfXc/GToaaf9tM///lPtGzZEhEREQFbkxX6qTk1/efbHdi95QsM6JSAVkEVGBe+19PW0WEH0C5I23f/kJPoH6K1u12QHaPDDng+Ny58L1oFaf+zNTD0GNJCtHc3JAeX4o4wbUnDULgwLnwv4hXtetfDedAy54jL1XTT3C/x2zfW4Ie9mwEA8UoNxoXvReh/JwHuCMtHcnApACAtpBADQ48BgNf99G72sYtq2vLJmkv2082hh3GdTXtPRtfgH3Bb2PcAgCjFiXHhexGlaP8jfVvY9+ga/AMA4DpbMW4OPXzJmrZ8sibg+gmQb+w1t6Zz584hNzfXMxHs85reWoqzN/0vcM9qrAm/B9nQ3gG3Bz2wHD/XakIMMpUHYEeMVhN+jj3oAXQchOxef8CamoFAZIKl+4k1aTVFREQgNzfX84S7DDXJ2E/e1hQREYGWLVvin//8pzQ1BUI/ff7557DZbIiIiJCmJqP76ZNPPsGIESNQUVEhTU3N6aeFCxdixIgRiIiIkKamC/tp8eLF6NKlCyIiIgK6Jtn7ScaaRFHUAH1E4cCBA1i2bBlWrFiB48ePN/ieqqqw2WyeWSPRZs+ejTlz5gAAbr75ZmRlZTW6zWuvvYannnoKADBgwADPoLyS6upqREZGev68c+dO9O3b1/PnHTt2ID09vcHnm/IujQEDBiAnJwcA8Prrr+PJJ59sdJvL2b9/P3r27Inw8HDYbDZkZ2cjJSUFDocDcXFxUBQFdrsd4eHhCA0NRXV1NdxuN6KiolBfX4+KigrEx8cD0GYxIyMjERIS4pnBjIyMRF1dHaqqqhAXFwdAm8WMjo6GzWZDZWWl5yeknE4nampqEBsbC1VVUV5ejpiYGAQHB6OiogI2mw3h4eGora2F0+lETEwM3G437HY7YmNjERQUBIfDgdDQUISFhaGmpgb19fWIjo6Gy+W6bE3l5eXIz89Hnz59EBQUJEVNRveT3W7HyZMnce2116K6ulqKmvT2U01NDXbv3o3rr78e4eHhUtT00346d+4cjhw5gtTUVLjd7oCsyQr95E1NJxwu3DnvK0QodahQtYnxKKUWNaoNLgR7fpq/FiEIhgvhSj0q//u5aKUW1WoIXAhCOOrghgInbLDBhVC4UIVQaD/R70SVGgI3grD2wb5IaRtviXPE5Wrq/uLnCEU9gqGiGiEIghuRSh0q1FAACiLhhBPBqEcwQlGPIKioQQiC4fa6n/b97mYEBwcjIiICe0/8gAlvfH3JfopAHVz/7c8QuGCDC9UIhQIVUYoTlWooVCiIgBP1CEbdf9t6pZpWPzIYPTtcFTD9JOPYa25NVVVVyM3NRb9+/Tz/32RoTSX/Qfj3H6P2xB44Tx9ETO1puKHAjhjEhgUjqF0qHC2vR2ivuxHWIZX9xJoa1OR0OrFz506kpaUhMjJSippk7CdvawoKCkJeXh46d+6Mq666SoqaAqGfSktL8f333yMtLQ0ApKjJ6H6qqqrC8ePH0b17d9TW1kpRU3P6qaSkBIWFhbjuuus898kCvaYL++ns2bM4duwYevfu7fmJ/UCsSfZ+kuXvU0VFBU6dOoWePXvivH379qFHD/8tnRpQkxeFhYVYsWIFli1bhm+//dbz9QtLSEtLw7333ot77rnnondAiNKcyYv58+fj4YcfBgD07t0beXl5jW5TUlKCq666yvPn/Px8dO/e3fPngwcP4rrrrmvw+RYtWjS63969e2PvXu2nLxcsWIDp06c3us3lnJ+8OM/fA94M7HY7Fi1ahGnTpiE2NlZ0cwICM7NGBjLUKEMNRhu/YJtf3r2Q3ikBq6ffYPhxzC75mU+EHfvTmTchMkx7Ad/CzYexLPt4I1v4zn0ZHfHy3T0b/yCZjtDzqKoCzgqg3gnYQoHQaECSp7rJGLzuWwP7WQzmrh8z08iegyz1yVKHFYi+l2v6yQuHw4E1a9Zg+fLl+Oqrrzzrdl3Y7A4dOmDSpEm49957G9ycN4vmTF6sXr3a89LxxMREFBUVNbrNgQMHGgyeM2fOoFWrVg3+fOFLug8ePIiUlJRG99u6dWvPo0mrV6/GuHHjGt3mckQPeCIiEmtTfjGmLdlp+HEWT+mPoSmtDT+O2YmcvBCt4JU7RTeBiIiIiIgooIm+l2vz25F0qK+vx/r167Fs2TL861//8qzBdeGERVxcHMaOHYt7770XN998s6imGubCJybOnDmDmpqaRpd4unD5rISEhAYTF4A2CREfH+952cqxY8canbyoqanxTFwAaNJkB12Zqqqora1FWFiYNO9oMRozs0YGMtQoQw1GG5aSiFGpbf/74mZjjE5ry4kLgqqq/HsYgHgepUDC8WoN7GcxmLt+zEwjew6y1CdLHWQ8072we8aMGUhKSsLPf/5zfPDBB6ipqYGqqlBVFSEhIRg1ahTef/99FBcX4+9//7uUExeANnkRFKR1j6qqyM3NbXSb3bt3e35/7bXXXvIzF379/EtbmrrP4OBgdOvWrdFt6MrKy8vx6quvory8XHRTAgYzs0YGMtQoQw3+MGdUDyTGhhmy78TYMMy+i0/0EVDpdIluQrOoqgpHTR1KKp1w1NTB5A9J+xzPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqYOMZ7onLxYuXAhFURr8Q23gwIG49957MX78eCQkJAhsnf+Eh4cjIyMDW7duBQBkZWUhIyPjitucfyM9AAwbNuySnxk6dCi2bdvm2eczzzzT5H0OHDgQYWHG3GyykpiYGEyfPh0xMTGimxIwmJk1MpChRhlq8IcWUaFYOi0dExZmo7y6zmf7jYsIwdJp6WgRFeqzfQa6r58aCgB4fFUudh0r9dtx+3VsgZ1+PN6lOOvdQID8b0t+kR0f5xYi72QZ9p2yN/h7ERcRgp7tYpHaPh6j09qhe5Lc5xeeRymQcLxaA/tZDOauHzPTyJ6DLPXJUgcZz3RPXgDaT5x169YNc+bMweHDh7FlyxY89NBDlpm4OO/uu+/2/H7JkiVX/OyJEyfwxRdfXHLby+3z888/x8mTJ6+43wuPe7l9kj7BwcFISkpCcHCw6KYEDGZmjQxkqFGGGvwlJSkWq6Zn+OwJjMTYMKyanoGUJL7s7UIdEiLRISESAzr59/+hBnQW//9soTZT/m9uA5vyizF+wTaMmPc13sw6jG/+c+6iCb3y6jp8859zeDPrMIbP24zxC7bhy/wzglpsPJ5HKZBwvFoD+1kM5q4fM9PInoMs9clSBxnPdP+qe/TRR7F9+3bk5+fj+eefR6dOnUQ3SZjJkycjKioKAHDo0CG8/fbbl/3s008/DZdLWx7hhhtuwPXXX3/Jz/Xv3x/9+/cHALhcris+efHWW2/hu+++A6DNiN5///3NqoMaqqiowJIlS1BRUSG6KQGDmVkjAxlqlKEGf0pJisWGmYMxOq2tV/sZndYWG2YO5sTFFYzyMmPdx0tt59fjXUpUqHn/IVRa6cRjK/Zg2pKdyCko0bVtTkEJpi7ZgZkr96C00mlQC8XheZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8Uw3eZGZmem5uW51rVu3xhNPPOH582OPPYbVq1c3+ExdXR2eeeYZrFixwvO1P/zhD1fc74XfX758OZ555hnU1TX8Kb/Vq1fj8ccf9/z5t7/9LVq2bNmcMugnbDYbkpOTYbOZbtU202Jm1shAhhplqMHfWkSFInNiHyya0g/pOp8OSO+UgMVT+iNzYh8uFdWIlKRYpCf752mI9E4J6J4Ug6+fGur51bdjC78c+7x+HVs0+8V/Rr9z4uBpO0Zkbvb6pfUf5RZiROZm5BfZfdQyc+B5lAIJx6s1sJ/FYO76MTON7DnIUp8sdZDxFNVqbwE02B133IHCwob/GC0qKkJxcTEAICoqCtdcc81F261fvx5t2178U5F1dXUYMWIENm3a5Plar169cP3116OmpgabN2/G6dOnPd+bM2cOXnjhhUbb+fzzz+N///d/PX9u27YtbrrpJoSHh2PXrl3Yt2+f53u33XYb1q9f75MTyv79+9GzZ0/Pn/ft24cePfhiVSIi0hwqcuDjvFPIO1GOvafKL1r7v1e7OKR2iMOoVPnX/ve1TfnFmLZkp+HHWTylP4amtG7wtbkb8vFm1mHDj33eI0O7YNbwlCZ/3l/vnDh42o6Jb/n+XS9cMo2IiIiIiIwg+l5uwExeVFdXIy8vDz/88AMcDgdiYmLQsmVLpKamIiIiQnTzPJKTk3Hs2DHd2x09ehTJycmX/F55eTkefPDBi566uFBISAhmz56N5557rknHU1UVv//97/HSSy9d9NTFhSZOnIiFCxciNtY3/yAWPeDNoLa2Fnv27EGfPn34AvQmYmbWyECGGmWowUxUVUWl0wVnvRuhtiBEhQY3+6fpSfPYij1e/8T/lYxOa4vMiX0u+np+kR0j5n1t2HF/6tPHBzdpkmFTfjEWZB3RtXRTenICZgzpctEETWNKK50YkbkZxfZaXds1RWJsGDbMHCzFE0g8j1Ig4Xi1BvazGMxdP2amkT0HWeqTpQ4rEH0v13TLRl3I5XJh2bJlGDRoEOLi4jBo0CCMHj0a9957L0aPHu35+o033ojly5d73vkgm7i4OKxatQqfffYZ7r33XnTp0gWRkZGIi4tDz5498eSTTyIvL6/JExcAoCgKfve73yEvLw9PPPEEevbsibi4OERGRqJLly6499578dlnn2HFihU+m7ggjdPpRG5uLpxO+dapNgozs0YGMtQoQw1moigKosNsSIgKRXSYjRMXPjBnVA+fvST9pxJjwzD7rkv/T6yIZauuRMQ7J178eL8hExcAUGyvxex1+w3Zt7/xPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZ98uI///kPfvnLX2L37t0AcMX1hs/fzOjbty9WrFiBLl26+KWNpJ/o2ToiIiKryy+yY8JC/y9dJHLZqgsdPG3HlMU5PplISIwNw9Jp6Y0u2eSv2hdN6YdhKYmGH4eIiIiIiKxB9L1cUz55cfToUQwePPiiiYuoqCikpKSgb9++SElJQVRUVIPv79y5EzfddBMKCgqEtJuoKdxuN8rKyuB2u0U3JWAwM2tkIEONMtRA8ktJisWq6Rk+ewIjMTastADKFgABAABJREFUSe9cGJaSiFGpF7/fy5dGp7VtdOJi4lvZPnsCotheiwkLsxt9afaCrCM+OV5jFnzln+MYiedRCiQcr9bAfhaDuevHzDSy5yBLfbLUQcYz5eTF+PHjUVRUBAAIDg7GjBkzsGvXLtjtdhw4cAA7duzAgQMHYLfbsXv3bjz88MMIDtbWwS4qKsL48eMFV0B0eXa7HZmZmbDbr3yjg37EzKyRgQw1ylADWUNKUiw2zByM0WneTSaMTmuLDTMHN/ll0aKWrQK0paKmLM7x6RMnAFBeXYfJi3Iuu4RUfpFd99JUzZVztASHihx+OZZReB6lQMLxag3sZzGYu37MTCN7DrLUJ0sdZDzTLRv1wQcfYNy4cVAUBS1btsQnn3yCfv36Nbrdrl27cMcdd+Ds2bNQFAXvv/8+xowZ44cWkx6iHzUyA7fbDbvdjtjYWAQFmXL+0HSYmTUykKFGGWog69mUX4wFXx1BzlEdL63ulIAZN+t/aTUgbtkqf7+s/ERJFQBg4ebDWJZ93LDj/tR9GR3x4ODO6JAQ6bdj+hLPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqcMKRN/LNd3kxaRJk7BixQooioJPP/0Ut956a5O3/fzzz3H77bdDURRMmDAB7733noEtpeYQPeCJiIjo0g4VOfBx3inknSjH3lPlDSYX4iJC0KtdHFI7xGFUartGX4jdmPwiOyYv8t97J0S8cyL5mU8MP96VFLxyp9DjExERERFR4BN9L9d0U1vbt2+Hoijo1auXrokLALj11luRmpoKVVWxfft2g1pI5B2Hw4EFCxbA4QjsZR38iZlZIwMZapShBrKu7kkxmDU8BcseGIDcF27DvjnDsft57b+5L9yGZQ8MwKzhKV5PXAD+X7aK75wIHDyPUiDheLUG9rMYzF0/ZqaRPQdZ6pOlDjKe6SYviouLAQB9+vRp5JOXlpaWBgA4c+aMr5pE5FOhoaFIS0tDaGio6KYEDGZmjQxkqFGGGogAQFEURIfZkBAViugwGxRF8fkxWkSFInNiHyya0g/pnRJ0bZveKQGLp/RH5sQ+aBF15b9vfOdEYOF5lAIJx6s1sJ/FYO76MTON7DnIUp8sdZDxbKIbcDkmW82KyGfCwsKQkZEhuhkBhZlZIwMZapShBiJ/G5aSiGEpiT5ftur8OyeWZR8zrO2Xsiz7GB4c3Nmvx5QJz6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjGe6yYvExEQcOXIEubm5zdr+/HatW+t/gSSRP9TU1CA7OxsZGRkIDw8X3ZyAwMyskYEMNcpQA5Eo3ZNiMCspBYD2QyyVThec9W6E2oIQFRqs++mPm+Z+aUQzG/Vu9jG86+cJE5nwPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZbNio9PR0AsHfvXnz5pb5/dGZlZSEvLw+Konj2Q2Q29fX1KCgoQH19veimBAxmZo0MZKjR1zWoqgpHTR1KKp1w1NT5/alE0ccn6/LHslVkTjJcC8g6OF6tgf0sBnPXj5lpZM9BlvpkqYOMp6gmuxOxZs0ajB8/HoqioHXr1vj000/Ru3fvRrfbt28fbr/9dhQVFUFRFKxatQpjx471Q4tJD9FvqCciMrv8Ijs+zi1E3sky7Dtlv2jpnJ7tYpHaPh6j05q2dE6gHZ/IV5Kf+UTo8b9+aigA4PFVudh1rNRvx+3XsQX+PCENHRIi/XZMIiIiIiKSk+h7uaZbNmrs2LFIS0tDXl4eiouLkZ6ejocffhhTp05Fr169Lvr8vn37sGTJErzxxhtwOp1QFAV9+vThxAWZlsvlwtmzZ9GqVSsEBweLbk5AYGbWyECGGr2pYVN+MRZkHbnii4XLq+vwzX/O4Zv/nMObWYeRnpyAGUO6YGiK90slij4+kWzOTx4M6JTg18mLAZ0TAnriQoZrAVkHx6s1sJ/FYO76MTON7DnIUp8sdZDxTLdsFACsWrUKLVu2hKIocDqdyMzMRFpaGuLi4tCzZ08MGDAAPXv2RHx8PFJTU/HnP/8ZtbW1UFUVrVq1wsqVK0WXQHRZDocDCxcuhMPhEN2UgMHMrJGBDDU2p4bSSiceW7EH05bsvOLEwaXkFJRg6pIdmLlyD0ornXqba4rjE8luVFpb/x4vtZ1fj+drMlwLyDo4Xq2B/SwGc9ePmWlkz0GW+mSpg4xnumWjzjt48CB++ctf4ttvv23w9QvXPP5p01NTU7FixQqkpKT4pY2kn+hHjcxAVVXU1tYiLCyMa3g3ETOzRgYy1Ki3hoOn7ZiyOAfF9lqvj50YG4al09KRkhTb5G1EH5/ISKKXjSp45U7P78cv2KZ7crA50jslYPX0Gww/jpFkuBaQdXC8WgP7WQzmrh8z08iegyz1yVKHFYi+l2vKJy8A4Nprr8WOHTvwj3/8AwMGDPA8QqSqqucXAAQHB2PAgAFYtGgRcnJyOHFBpqcoCsLDw3ly1oGZWSMDGWrUU8PB03ZMfCvbJxMHAFBsr8WEhdnIL7I36fOij09ktK+fGoqvnxqKvh1b+PW4/Tq28Lzv4ryHhnT2y7Fn3NzFL8cxkgzXArIOjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmXbyAgBCQkIwdepUbNu2DaWlpdiyZQs+/PBDvPvuu/jwww+xZcsWlJaWYtu2bZgyZQpCQkJEN5moUXa7HfPmzYPdzht8TcXMrJGBDDU2tYbSSiemLM5p8DJsXyivrsPkRTmNLuEk+vhE/tAhIRIdEiIxoFOCX497qXdODEtJxKhUY5ePGp3WVor3z8hwLSDr4Hi1BvazGMxdP2amkT0HWeqTpQ4ynule2H050dHRGDhwoOhmEHktPDwcQ4YMQXh4uOimBAxmZo0MZKixqTW8+PF+nz3x8FPF9lrMXrcfmRP7mPb4RP40Kq0t3sw67L/jXeadE3NG9cD2o+cM+buXGBuG2XfJsQynDNcCsg6OV2tgP4vB3PVjZhrZc5ClPlnqIOOZ9p0XJCfR66QREYm2Kb8Y05bsNPw4i6b0w7CURNMdn0gEs7xzIr/IjgkLs3361FNcRAhWTc/g+2aIiIiIiMjnRN/LNfWyUUQyqq6uxoYNG1BdXS26KQGDmVkjA7PWqKoqHDV1KKl0wlFThyvN+TelhgVZR4xo5sXH+erSxxF9fCIRzPLOiZSkWKyanoHE2DCfHC8xNky6iQuzXguILoXj1RrYz2Iwd/2YmUb2HGSpT5Y6yHhCl406deoUunfvjurqagQFBeHf//43br31Vt37+eyzzzBy5EioqoqYmBh8//33aNWqlQEtJvKe2+1GWVkZ3G636KYEDGZmjQzMVGN+kR0f5xYi72QZ9p2yN/gp6biIEPRsF4vU9vEYndYO3ZNiPN9rrIb8IrtffvobAHKOluBQkaNB+0Qfn0iU8++c+Div0LBjNPWdEylJsdgwczBmr9uPj3Kb357RaW0x+64eaBEV2ux9mJGZrgVEjeF4tQb2sxjMXT9mppE9B1nqk6UOMp7QZaN+9atfYfHixVAUBS+99BL+53/+p9n7+v3vf4/nn38eiqLgkUcewV/+8hcftpR8RfSjRkREV7IpvxgLso7ousGfnpyAGUO6XPGm5YmSKgDAws2HsSz7uNftbKr7MjriwcE//sS5qOP/9OXFRCKUVjoxInOzYe+c2DBzsO6JhE35xVjw1RHkHNVxzumUgBk3X/mcQ0RERERE5Aui7+UKm7woKytDmzZt4HQ60alTJxw6dAjBwcHN3l99fT26d++Oo0ePIioqCsXFxYiM5M0SsxE94M2gvr4eJ0+eRPv27WGzCX34KWAwM2tkILLG0konXvx4v1c/lT06rS1+N7I7KkvPXFRD8jOf+KKZAavglTtFN4EIgHnfOXGoyIGP804h70Q59p4qv+hpr17t4pDaIQ6jUttJ/zSTFa53JA+OV2tgP4vB3PVjZhrZc5ClPlnqsALR93KFvfNizZo1qK3VfvLtueee82riAgBsNhueffZZAEBVVRX++c9/et1GIiNUVFRg6dKlqKioEN2UgMHMrJGBqBoPnrZjROZmr5eT+Si3EOP+tkn6fiIKZGZ950T3pBjMGp6CZQ8MQO4Lt2HfnOHY/bz239wXbsOyBwZg1vAU6ScuAGtc70geHK/WwH4Wg7nrx8w0sucgS32y1EHGE/bkxZQpU/DOO+/AZrOhuLgYLVq08HqfpaWlaN26NdxuN6ZOnYq3337bBy0lXxI9W0dEdKGDp+2Y+JbxP4XNJy/45AWZS2mlk++cICIiIiIiaoToe7nCnrzYvXs3AOD666/3ycQFALRo0QLXX389VFXFrl27fLJPIiKSU2mlE1MW5/h04gIAyqvrMHlRDkornT7dLxH5TouoUGRO7INFU/ohvVOCrm3TOyVg8ZT+yJzYhxMXREREREREBhI2eVFUVARFUdChQwef7vfqq68GABQWerf8B5FRysvL8corr6C8vFx0UwIGM7NGBv6u8cWP9/v8xb1RSi3uCd+DCocds9ft9+m+icj3hqUkYvX0G/Dp44PxyNAuuPGaloiLCGnwmbiIENx4TUs8MrQLPn18MFZPv4EvyzaQFa53JA+OV2tgP4vB3PVjZhrZc5ClPlnqIOMJeyPK+cHZsmVLn+73qquuarB/IrOJjIzE3XffzRfK68DMrJGBP2vclF/s9TsuLqVGtWGLMxk1qg0f5RZidFpbDEtJ9PlxiMi3uifFYFZSCgBAVVVUOl1w1rsRagtCVGgwFEUR3ELrsML1juTB8WoN7GcxmLt+zEwjew6y1CdLHWQ8YZMXUVFRKC8v9/kkg91uBwBERET4dL9EvhISEoKUlBTRzQgozMwaGfizxgVZRwzZrwvBOO7+cSnEBV8dwbCURHz91FAAwOOrcrHrWKkhx76Ufh1b4M8T0jx/Fn18okCgKAqiw2yAb97pTTpZ4XpH8uB4tQb2sxjMXT9mppE9B1nqk6UOMp6wZaPOP3Fx6tQpn+73/P58/UQHka9UVVVh7dq1qKqqEt2UgMHMrJGBv2rML7Ijp6DEkH2HoQ43hhxFGLT3aOQcLcGhIgc6JESiQ0IkBuhcW99bAzoneI4t8vhERE1lhesdyYPj1RrYz2Iwd/2YmUb2HGSpT5Y6yHjCJi86duwIVVWRk5OD6upqn+yzuroaOTk5UBQFHTt29Mk+iYgo8J0oqfL8WpZ9zK/HvvB4o9La+vXYo1LbNfyz4OMTERERERERETWVoqqqKuLAf/jDH/A///M/UBQFixcvxv333+/1Pt955x1MmTIFiqLg5ZdfxnPPPeeDlpIv7d+/Hz179vT8ed++fejRo4fAFhGRFSQ/84nQ4xe8cqfn9+MXbDPsyY8LpXdKwOrpN1z0ddHHJyIiIiIiIqLAIPperrAnL0aMGOH5/QsvvOD1Y0JVVVV48cUXPX8eOXKkV/sjMkpdXR3y8/NRV1cnuikBg5lZIwMZagyGC1cHlSIYrgZfv/DnBB4a0tkvbZlxc5dLfl308YnI3FRVhaOmDiWVTjhq6uDvn3OS4VpA1sHxag3sZzGYu37MTCN7DrLUJ0sdZDxhkxd9+vTBsGHDoKoqTpw4gTFjxqC+vr5Z+3K5XBg7diyOHTsGRVEwdOhQ9OnTx8ctJvINruunHzOzRgYy1Biu1OPG0AKEKw2vZ5XOHyczhqUkYlSqscs3jU5ri6EprS/5PdHHJyLzyS+yY+6GfEx6OxtpL32GXrM34vqXtf+mvfQZJr2djbkb8nGoyGF4W2S4FpB1cLxaA/tZDOauHzPTyJ6DLPXJUgcZT9iyUQCwfft2DBo0yPMTXX369MGSJUsaPIrSmP3792PKlCnYvXs3VFVFcHAwtmzZggEDBhjVbPKC6EeNiMiaRC8btfv525AQFer5c2mlEyMyN6PYXuvzYyXGhmHDzMFoccHxfkr08YnIHDblF2NB1hFdS8mlJydgxpAunKAkIiIiIrIA0fdyhT15AQADBgzA3LlzPZMXu3fvRlpaGoYPH46lS5ciPz//ktsdOnQI77zzDkaMGIHU1FTPxIWiKPjDH/7AiQsiIjKVUFvDy22LqFAsnZaOuIgQnx4nLiIES6elNzpxIPr4RCRWaaUTj63Yg2lLdup+B05OQQmmLtmBmSv3oLTSaVALiYiIiIiIBE9eAMATTzyBp556yjP54Ha78fnnn2PatGno0aMHQkJCcNVVV6Fjx4646qqrEBISguuuuw5Tp07FZ599Brfb7dnXk08+id/+9rcCqyFqXFlZGebMmYOysjLRTQkYzMwaGchQY7RSi6kROxGtNHyiISo0+KLPpiTFYtX0DCTGhvnk2ImxYVg1PQMpSbFN+rzo4xORGAdP2zEiczM+ziv0aj8f5RZiROZm5BfZfdQyjQzXArIOjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjCV026kL//Oc/8etf/xqlpaVQFAUArviCwAs/Ex8fj7feegtjx471S1up+UQ/amQG9fX1OHnyJNq3bw+bzSa6OQGBmVkjAyNrPFHy4zqaj6/Kxa5jpT7d/3nBcKNVUAXOuqPh+u/PB/Tr2AJrZgy87DallU7MXrcfH+U2/0bi6LS2mH1Xj2Y98SD6+ETkPwdP2zHxrWyUV/vuxYhxESE+nbi0wvWO5MHxag3sZzGYu37MTCN7DrLUJ0sdViD6Xq5pJi8AoKKiAgsWLMCCBQtw5MiRRj/fqVMnzJgxA9OnT0dMTIwfWkjeEj3giYjmbsjHm1mH/Xa8R4Z2wazhKY1+blN+MRZ8dQQ5R3WsPd8pATNu9s3a86KPT0TG4rtuiIiIiIhIL9H3ck01eXGh48eP4+uvv0ZBQQFKSkrgcDgQExODhIQEJCcn48Ybb0THjh1FN5N0Ej3gzaCyshLr1q3DXXfdhaioKNHNCQjMzBoZ+KvG/CI7Rsz72pB9h6MOA0OPYauzI2qgvU/i08cHo3tS0yfYDxU58HHeKeSdKMfeU+UNfkI6LiIEvdrFIbVDHEalttO130A5PhEZ47EVe7xeKupKRqe1RebEPl7vxwrXO5IHx6s1sJ/FYO76MTON7DnIUp8sdViB6Hu5pn0u5+qrr8akSZNEN4PI54KCghAfH4+gIOGvnAkYzMwaGfirxpSkWKQnJ+h+SW1TuKGgQg2FG9rShumdEnTf4O+eFINZSdqTGqqqotLpgrPejVBbEKJCgz3LJhpF9PGJyPc25RcbOnEBaO/AGJ3WFsNSEr3ajxWudyQPjldrYD+Lwdz1Y2Ya2XOQpT5Z6iDjmfbJC5KT6Nk6IiJAu5E3bclOw4+zeEp/LqlERMKNX7DNkAnbn0rvlIDV028w/DhEREREROQfou/lcnqLyM+cTidyc3PhdDpFNyVgMDNrZODPGoelJGJUaluf79cGF64J/gE2uDA6rS0nLohIuPwiu18mLgAg52gJDhU5vNqHFa53JA+OV2tgP4vB3PVjZhrZc5ClPlnqIONx8oLIz2pqapCVlYWamhrRTQkYzMwaGfi7xjmjeiAxNsyn+wyFC2m2QrSLCcbsu/hUGRGJc6KkCidKqrAs+5hfj+vt8axwvSN5cLxaA/tZDOauHzPTyJ6DLPXJUgcZj8tGkV+JftSIiOhC+UV2TFiY3eCl1N6KiwjBqukZSEmK9dk+iYj0Sn7mE2HHLnjlTmHHJiIiIiIi3xF9L5dPXhD5maqqqKmpAecNm46ZWSMDETWmJMVi1fQMnz2BkRgTinenpKF7or6XdBMRycSb87gVrnckD45Xa2A/i8Hc9WNmGtlzkKU+Weog43HygsjPysvL8eqrr6K8vFx0UwIGM7NGBqJqTEmKxYaZgzE6zbt3YIxOa4vVU1Px4ZL5UvcTEVFjKp2uZm9rhesdyYPj1RrYz2Iwd/2YmUb2HGSpT5Y6yHhcNor8SvSjRmbgcrlw9uxZtGrVCsHBwaKbExCYmTUyMEONm/KLseCrI8g52vSX26Z3SsCMm7tgaEprU9RARASIXTZq9/O3ISEqtFnb8jxKgYTj1RrYz2Iwd/2YmUb2HGSpT5Y6rED0vVyb345ERACA4OBgJCUliW5GQGFm1sjADDUOS0nEsJREHCpy4OO8U8g7UY69p8obvBMjLiIEvdrFIbVDHEaltkP3pB+XiDJDDUREooXamv9wN8+jFEg4Xq2B/SwGc9ePmWlkz0GW+mSpg4zHZaOI/KyiogJLlixBRUWF6KYEDGZmjQzMVGP3pBjMGp6CZQ8MQO4Lt2HfnOHY/bz239wXbsOyBwZg1vCUBhMXgLlqICISJSq0+T89x/MoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOPxyQsiP7PZbEhOTobNxr9+TcXMrJGBWWtUFAXRYTagCe/0NmsNRGQ9Xz81FADw+Kpc7DpW6rfj9uvYAoqiNHt7nkcpkHC8WgP7WQzmrh8z08iegyz1yVIHGY/vvCC/Er1OGhEREZGVzN2QjzezDvvteI8M7YJZw1P8djwiIiIiIjKO6Hu5XDaKyM9qa2uRnZ2N2tpa0U0JGMzMGhnIUKMMNRCRXEaltfXv8VLbebU9z6MUSDherYH9LAZz14+ZaWTPQZb6ZKmDjBdQkxfV1dUoLCzE8ePHRTeFqNmcTidyc3PhdDpFNyVgMDNrZCBDjTLUQERySUmKRXpygl+Old4p4aJ3AenF8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45l62ShVVbFmzRosX74cW7ZsQWmptl6voiior69v8NkffvgBq1evBgB07doVt912m9/bS40T/agRERERkdVsyi/GtCU7DT/O4in9MTSlteHHISIiIiIi/xB9L9e0b0U5dOgQJkyYgL179wLQJjKu5KqrrsK8efNw+PBhJCUl4cSJEwgKCqgHS8gi3G437HY7YmNjOUabiJlZIwMZapShBiKSz7CURIxKbYuP8woNO8botLY+mbjgeZQCCcerNbCfxWDu+jEzjew5yFKfLHWQ8Uw5Og4ePIgbbrgBe/fuhaqqUFUVUVFRiIqKuuw2iqJgxowZUFUVRUVFyMrK8l+DiXSw2+3IzMyE3W4X3ZSAwcyskYEMNcpQAxHJac6oHkiMDTNk34mxYZh9l29++ornUQokHK/WwH4Wg7nrx8w0sucgS32y1EHGM92yUS6XCz179sShQ4cAAMOGDcPvf/97DBgwAI8++ijeeOMNKIoCl8t10banTp1Chw4doCgKZs2ahVdeecXfzadGiH7UyAw4u6wfM7NGBjLUKEMNRCSv/CI7JizMRnl1nc/2GRcRglXTM5CSFOuT/fE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOqxA9L1c042O5cuX49ChQ1AUBWPGjMHGjRsxYMCAJm3brl07dOrUCQCwc6fx6/oSNUdQUBDi4+N5ctaBmVkjAxlqlKEGIpJXSlIsVk3P8NkTGImxYT6duAB4HqXAwvFqDexnMZi7fsxMI3sOstQnSx1kPNONkA8//BAAEB4ejvnz5+sexD179oSqqvj++++NaB6R1xwOBxYsWACHwyG6KQGDmVkjAxlqlKEGIpJbSlIsNswcjNFpbb3az+i0ttgwc7BPJy4AnkcpsHC8WgP7WQzmrh8z08iegyz1yVIHGc90L+zetWsXFEXBjTfeiFatWunevmXLlgCAc+fO+bppRD4RGhqKtLQ0hIaGim5KwGBm1shAhhplqIGI5NciKhSZE/tgdFpbLPjqCHKOljR52/ROCZhxcxefvJz7UngepUDC8WoN7GcxmLt+zEwjew6y1CdLHWQ8001enD17FgCQnJzcrO1DQkIAAPX19b5qEpFPhYWFISMjQ3QzAgozs0YGMtQoQw1EZB3DUhIxLCURh4oc+DjvFPJOlGPvqfIG78SIiwhBr3ZxSO0Qh1Gp7dA9KcbQNvE8SoGE49Ua2M9iMHf9mJlG9hxkqU+WOsh4ppu8CAsLg9PpRF1d814keH7yo0WLFr5sFpHP1NTUIDs7GxkZGQgPDxfdnIDAzKyRgQw1ylADEVlP96QYzEpKAQCoqopKpwvOejdCbUGICg2Goih+awvPoxRIOF6tgf0sBnPXj5lpZM9BlvpkqYOMZ7p3XiQmJgJAs99ZkZOTA0VR0KFDB182i8hn6uvrUVBQwKeDdGBm1shAhhplqIGIrE1RFESH2ZAQFYroMJtfJy4AnkcpsHC8WgP7WQzmrh8z08iegyz1yVIHGU9RVVUV3YgLTZkyBe+88w5CQ0Nx7Ngxz2QGADz66KN44403oCgKXC7XRdt+9tlnGD58OBRFwW9+8xu8/vrr/mw6NcH+/fvRs2dPz5/37duHHj16CGwREREREREREREREf2U6Hu5pnvy4u677wYA1NXV4dlnn23ydg6HA4899pjnz+PGjfN104h8wuVyoaio6JITcHRpzMwaGchQoww1EBGJxPMoBRKOV2tgP4vB3PVjZhrZc5ClPlnqIOOZcvIiNTUVqqpi6dKleOKJJ+B0Oq+4zd69ezF48GAcOnQIiqLglltuwYABA/zUYiJ9HA4HFi5cCIfDIbopAYOZWSMDGWqUoQYiIpF4HqVAwvFqDexnMZi7fsxMI3sOstQnSx1kPNMtGwUA3377LQYPHuwZwElJSRgzZgzy8vKwZcsWKIqCP/3pTygqKsI333yDrVu3QlVVqKqKVq1aYefOnXznhUmJftTIDFRVRW1tLcLCwvy+jnSgYmbWyECGGmWogYhIJJ5HKZBwvFoD+1kM5q4fM9PInoMs9clShxWIvpdryskLANi8eTPGjx+PM2fONDqIz5fQpk0bfPTRR+jXr58/mkjNIHrAExEREREREREREVHjRN/LNd2yUecNHjwYeXl5mDp1KkJCQjxPVlzql81mw5QpU7Bz505OXJDp2e12zJs3D3a7XXRTAgYzs0YGMtQoQw1ERKKoqorCM+fwpz/PQ+GZczDpz1gRefC6bw3sZzGYu37MTCN7DrLUJ0sdZDyb6AZcSWJiIv7xj3/g1Vdfxeeff45t27ahsLAQ5eXliIqKQmJiIgYMGIDhw4ejbdu2optL1CTh4eEYMmQIwsPDRTclYDAza2QgQ40y1EBE5E/5RXZ8nFuIvJNl2HfKjsrqGiQHt8Cbf/oGURHh6NkuFqnt4zE6rR26J8WIbi5RA7zuWwP7WQzmrh8z08iegyz1yVIHGc+0y0aRnEQ/akRERERE4m3KL8aCrCPIKShp8jbpyQmYMaQLhqa0NrBlRERERER0nuh7uaZdNopIVtXV1diwYQOqq6tFNyVgMDNrZCBDjTLUQERkpNJKJx5bsQfTluy85MRFKOqRHnIcoai/6Hs5BSWYumQHZq7cg9JKpz+aS3RFvO5bA/tZDOauHzPTyJ6DLPXJUgcZz3TLRk2bNg0AcOutt+Kee+7Rvf3q1auxYcMGKIqCf/zjH75uHpHX3G43ysrK4Ha7RTclYDAza2QgQ40y1EBEZJSDp+2YsjgHxfbay34mCCqiFSeCcPmHwz/KLUT2kXNYOi0dKUmxRjSVqEl43bcG9rMYzF0/ZqaRPQdZ6pOlDjKe6ZaNCgoKgqIoeOSRR/CXv/xF9/azZs3CH//4RyiKApfLZUALyRuiHzUiIiIiIv87eNqOiW9lo7y6zmf7jIsIwarpGZzAICIiIiIyiOh7uVw2isjP6uvrUVBQgPr6i5dDoEtjZtbIQIYaZaiBiMjXSiudmLI4p0kTF8FwIynIjmA0/lN45dV1mLwoh0tIkTC87lsD+1kM5q4fM9PInoMs9clSBxlPusmL8w+SKIoiuCVEl1ZRUYGlS5eioqJCdFMCBjOzRgYy1ChDDUREvvbix/uvuFTUhSKUOowM+w4RStOe0Ci212L2uv3eNI+o2Xjdtwb2sxjMXT9mppE9B1nqk6UOMp50y0ZNmTIF77zzDmJjY1FWVub7BpJXRD9qRERERET+sym/GNOW7DT8OIum9MOwlETDj0NEREREZCWi7+VK9eSF3W7Hxo0boSgKrr76atHNISIiIiKytAVZR/xznK/8cxwiIiIiIvIfm8iDv/TSS5f9Xk5OzhW/f6G6ujqcOnUKGzduRFFRERRFwY033uirZhL5VHl5OebPn48ZM2YgLi5OdHMCAjOzRgaXq1FVVVTU1qPOpSIkWEF0mM20SwNaoZ+IiJoqv8iOnIISXdtEKbUYHXYAH9Veh0o1rMnb5RwtwaEiB7onxehtJlGz8bpvDexnMZi7fsxMI3sOstQnSx1kPKHLRp1fIupC3r6zQlVVhIWFYefOnVyOyIREP2pkBnV1dTh8+DC6dOmCkJAQ0c0JCMzMGhlcWOPhc9X4OLcQeSfLsO+UvcFLXuMiQtCzXSxS28djdFo7U92oskI/ERE15kRJFQBg4ebDWJZ9XNe2wXChXZAdp9yxcCFY17b3ZXTEg4M7o0NCpK7tiJqL131rYD+Lwdz1Y2Ya2XOQpT5Z6rAC0fdyhU9e+FqHDh3w5ptv4s477/T5vsl7ogc8EZnbpvxiLMg6ousnddOTEzBjSBcMTWltYMuIiKipkp/5ROjxC17hvwOIiIiIiHxB9L1coctGvfjiixd9bc6cOVAUBf3798fIkSMb3YeiKAgPD8dVV12Fnj17Ij093bTLiRABQFVVFTZu3Ijbb78dkZH8ycCmYGbyZ1Ba6cTsD3fj3KGdyKtrD6DpP3mRU1CCnCUlGJ3WFrPv6oEWUaHGNbQRsvcTEZHRwlCH/iEnsaOuPWp1XAuIROB13xrYz2Iwd/2YmUb2HGSpT5Y6yHimnLwAgPT09Et+n4iI5HLwtB1TFuegzF6B/l7cp/ootxDZR85h6bR0pCTF+q6BRERERERERETkd0KXjbqUIUOGQFEUjBkzBo8++qjo5pCPiX7UiIjM5eBpOya+ld3gnRbeiosIwarpGZzAICIShMtGERERERHJQfS9XN+/dMJLWVlZ+PLLLzlxQdKqq6tDfn4+6up8d7NWdsxMzgxKK52YsjjHM3ERDBeuDipFMFxe7be8ug6TF+WgtNLpi2bqImM/ERH5k6+uBUT+wOu+NbCfxWDu+jEzjew5yFKfLHWQ8Uw3eUEku6qqKqxduxZVVVWimxIwmJmcGbz48X4U22s9fw5X6nFjaAHClXqv911sr8Xsdfu93o9eMvYTEZE/+fJaQGQ0Xvetgf0sBnPXj5lpZM9BlvpkqYOMZ7plo0huoh81IiJz2JRfjGlLdhp+nEVT+mFYSqLhxyEioh+dKNH+Efr4qlzsOlbqt+P269gCf56Qhg4JfOkjEREREZEviL6XK/SF3Zfyzjvv+Gxf999/v8/2RUREvrMg64h/jvPVEU5eEBH52fnJgwGdEvw6eTGgcwInLoiIiIiIJGK6yYspU6ZAURSv96MoCicvyJTKysqQmZmJmTNnIj4+XnRzAgIzkyuD/CI7cgpKLvp6tFKLceF78X5NL1SoYT45Vs7REhwqcqB7UoxP9tcYmfqJiMhbo9La4s2sw7q28eZaMCq1na7PE3mL131rYD+Lwdz1Y2Ya2XOQpT5Z6iDjmW7ZqKAg/a/hUBQFPy1DURS4XHzRn9mIftTIDOrr63Hy5Em0b98eNpvp5g9NiZnJkcH5ZUQWbj6MZdnHL/p+MNxoFVSBs+5ouHz4Sqb7Mjri5bt7Nv5BH5Chn4iIfGn8gm2XnLC+nOZeC9I7JWD19Bua00SiZuN13xrYz2Iwd/2YmUb2HGSpT5Y6rED0vVzTjY7Jkyc36XNutxvl5eXYu3cvjh49CgAIDw/HuHHjmjUBQuQvNpsNycnJopsRUJiZHBncNPfLK37fhSAUuWN9ftx3s4/5bfJChn4iIvKlh4Z0Rs6Spk9eNPdaMOPmLrq3IfIWr/vWwH4Wg7nrx8w0sucgS32y1EHGM93kxeLFi3Vvs3PnTsycORPbtm1DUVER3n//fcTG+v4GGJEvVFZWYt26dbjrrrsQFRUlujkBgZlZI4Nw1GFg6DFsdXZEDUJ8um9VVX2yJGFjrNBPRER6DEtJxKjUtvg4r7BJn2/OtWB0WlsMTWntTTOJmoXXfWtgP4vB3PVjZhrZc5ClPlnqIONJ8YhCv379sHnzZtx+++34/PPP+a4LMrWgoCDEx8fzCSEdmJk1MnBDQYUaCjd8P8lQ6fTPMoJW6CciIr3mjOqBxNimvb9C77UgMTYMs++y1hKkZB687lsD+1kM5q4fM9PInoMs9clSBxnPdO+88MbJkydxzTXXoK6uDu+//z7GjBkjukn0E6LXSSMicZKf+UTYsXc/fxsSokKFHZ+IyOryi+yYsDAb5dV1PttnXEQIVk3PQEoSn7gmIiIiIjKC6Hu5Uk1vtW/fHoMGDYKqqs1aforIH5xOJ3Jzc+F0OkU3JWAwM2tkYIML1wT/ABt8/5REqM0/lzsr9BMRUXOkJMVi1fSMRp/AaOq1IDE2jBMXJByv+9bAfhaDuevHzDSy5yBLfbLUQcaTavICALp00V7Wl5eXJ7glRJdWU1ODrKws1NTUiG5KwGBm1sggFC6k2QoRasDkRVRosM/3eSlW6CciouZKSYrFhpmDMTqt7WU/05Rrwei0ttgwczAnLkg4Xvetgf0sBnPXj5lpZM9BlvpkqYOMJ9WyUQBw//33Y9myZQgNDeVfABMS/agREYlzoqQKAPD4qlzsOlbqt+P269gCa2YM9NvxiIiocZvyi7HgqyPIOVrS5G3SOyVgxs1d+HJuIiIiIiI/EX0v1+a3I/mB2+3G5s2bAQBxcXGCW0N0aaqqora2FmFhYVAU37+YWEbMTI4MOiREAgAGdEq4zOSFilC44EQw4MOXdg/onOCzfTVGhn4iIvKHYSmJGJaSiENFDnycdwp5J8qx91Q5yqudnmtBXEQoerWLQ2qHOIxKbYfuSTGim03UAK/71sB+FoO568fMNLLnIEt9stRBxpNq2ajf/e53OH78OBRFwfXXXy+6OUSXVF5ejldffRXl5eWimxIwmJlcGYy6zHIh0YoTkyJyEa34ds3LUantfLq/K5Gpn4iI/KF7UgxmDU/BsgcGIPeF2/DNbzIwKSIX3/wmA7kv3IZlDwzArOEpnLggU+J13xrYz2Iwd/2YmUb2HGSpT5Y6yHimWzbq+PHjTf5sfX09zp07h9zcXCxduhTbtm2DqqpQFAXLly/HxIkTDWwpNYfoR43MwOVy4ezZs2jVqhWCg/2zDn+gY2byZTB+wTbkFDRcKiQIbsQrNShTw+H20dx6eqcErJ5+g0/21RSy9RMRkb/xPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljqsQPS9XNMtG5WcnOz140J33HEHJy7ItIKDg5GUlCS6GQGFmcmXwUNDOiNnScPJCzeCUKJG+vQ4M27u4tP9NUa2fiIi8jeeRymQcLxaA/tZDOauHzPTyJ6DLPXJUgcZz7TLRqmqqvuXoih4+OGHsWbNGtHNJ7qsiooKLFmyBBUVFaKbEjCYmdgMVFWFo6YOJZVOOGrq4IsH9oalJGJUasPloyJQhxGh+YhAndf7B4DRaW39/lJXjlUiIu/wPEqBhOPVGtjPYjB3/ZiZRvYcZKlPljrIeKZ78uLqq69u8pMXISEhiI2NRXJyMgYMGIAJEybg6quvNriFRN6x2WxITk6GzWa6v36mxcz8n0F+kR0f5xYi72QZ9p2yo7z6xwmFuIgQ9GwXi9T28Rid1vwXqM4Z1QPbj55Dsb0WAOCCgiJ3DFw+eFl3YmwYZt/l/yXpOFaJiLzD8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog45nunRckN9HrpBHRlW3KL8aCrCMXvY/iStKTEzBjSJdmPeWQX2THhIXZDSZHvBUXEYJV0zOQkhTrs30SEREREREREVmN6Hu5pl02ikhWtbW1yM7ORm1treimBAxmZnwGpZVOPLZiD6Yt2alr4gIAcgpKMHXJDsxcuQellU5d26YkxWLV9AwkxoYhBC5cF1yMELh07eNCibFhQicuOFaJiLzD8ygFEo5Xa2A/i8Hc9WNmGtlzkKU+Weog43HygsjPnM7/z96dx0dd3fvjf00ymcm+VU0IhATwQipEQsWwCQKtAlLBlkWu2spWKfVeobcXantvFdrvvRexteT+WgGLQBQXFFvBqyXWssgWI5ZQEhkokLDPiGSZySSTyWTm98dHAiHbfGY+y8yZ1/PxyCNkls857/fnMydkzpzzdqO8vBxut7w3eSMZc6ZuDo5ftmNy0cfYcfRSUMfZXn4Jk4s+hsVql/W8vMxk7FwyDlOH3IrbjV/CGODkxfSCLOxcMk7XFRe8VomIgsNxlMIJr9fIwPOsD+ZdPuZMInoeRIlPlDhIfdw2ijSl91IjImrv+GU75rwUOts27bLYsG7vGZRVydi2ql86Ft8b2LZVRERERERERETUOb3fy2VVFCKNeb1e2O12JCcnIyqKi5/8wZypk4NapxtzN5UpOnEBAPVNLXh8Yxl2LhmHtAST38/zer34RqYZb/5gBP7xhRM7jl7E0fP1OHaxvkPB8PzeKRianYJpQwMvGK4GXqtERMHhOErhhNdrZOB51gfzLh9zJhE9D6LEJ0ocpD5dro5z585p8kUUiux2O4qKimC3y9taJ5IxZ+rk4NkdlbDZ1dlf0mZvxor3KmU958YYB2UmYdmkPGxZOALlz9yHipWT8LdfSN/Ln7kPWxaOwLJJeSE1cQHwWiUiChbHUQonvF4jA8+zPph3+Zgzieh5ECU+UeIg9emybVRUVBQMBoOqbRgMBng8HlXbIPn0XmoUCji7LB9zpnwOdllsmL/5sAI9697GucMxMS/Dr8eKcJ5FiIGISE8cRymc8HqNDDzP+mDe5WPOJKLnQZT4RIkjEuj9Xq6u20ax3AZFoqioKKSmpurdjbDCnCmfg3V7zih2rG7b2XvG78kLEc6zCDEQEemJ4yiFE16vkYHnWR/Mu3zMmUT0PIgSnyhxkPp0mdrq27cv+vbti5ycHNW++vbtq0doRD1yOBxYt24dHA6H3l0JG8yZsjmwWO0oq/a/IHYwyqpqcMLqX59FOM8ixEBEpCeOoxROeL1GBp5nfTDv8jFnEtHzIEp8osRB6tNl5UV1dbUezRKFBJPJhIKCAphM/hcyjnTMmTI5OF/TCADYUnpWqW75ZUvpWTwxrj+y0+O7fZwI51mEGIiI9KTnOOrz+dDQ7EFLqw8x0QYkmo2qb3UbMnw+oNkBtLYA0TGAOQmIlNiDwN/7kYHnWR/Mu3zMmUT0PIgSnyhxkPp0qXlBkUvvfdKIIlnu0+/r2n71qqm6tk9ERHQzi9WOHeWXcPRCHSou2lHf1NJ2X0pcDIb0TsbQPqmYXtAbgzKTdOypCmyVwLFtwMXPgMtHAVfd9ftiU4FeQ4HedwH5s4CMO/TqJRERERHpSO/3clkRhUhjLpcLe/bsgcvl0rsrYYM5i4wciBCjCDEQEelJq3F0l8WG2esOYfKafXhxz2kcOHW13cQFANQ3teDAqat4cc9pTFrzMWavO4Tdli9U7ZcmTpYAG6cAa0cD+18Aqva2n7gApJ+r9kr3rx0lPf7kh3r0NqTx935k4HnWB/MuH3MmET0PosQnShykPk5eEGnM4/GguroaHo9H766EDeYsMnIgQowixEBEpCe1x9FapxtPvXEE8zcfll3/qay6BvM2f4olbx5BrdOtSv9U1VgDbFsAvD4bOHdQ3nPPHQRenwW8s1A6DgHg7/1IwfOsD+ZdPuZMInoeRIlPlDhIfWG3bVRDQwMcDgeSkpKQmJiod3dIJr2XGhFFMm4bRUREkez4ZTvmbiqDzd4c9LEyks0onl+IvMxkBXr2FTXrTlgrgNdmAo7LwR8rqRfw2DtABv8PT0RERCQ6vd/LDfmVF2fPnsV//Md/YPTo0YiLi0NKSgr69OmDlJQUxMXFYfTo0fjP//xPnDt3Tu+uEvmltbUVVqsVra2tenclbDBnkZEDEWIUIQYiIj2pNY4ev2zHnJdKFZm4AACbvRkPry+FxWoP8kCVwEcrgeJpwHO5wKps4Pn+0vfncqXbP1oJ2D4PvA1rBbB5qjITF4B0nE0PSH2PcPy9Hxl4nvXBvMvHnElEz4Mo8YkSB6kvZCcv3G43li5dittvvx2rVq3CJ598gubmZvh8vrav5uZmfPLJJ/if//kfDBgwAD/+8Y/hdofhEm6KKA6HA+vXr4fD4dC7K2GDOYuMHIgQowgxEBHpSY1xtNbpxtxNZR1qWgSrvqkFj28sC2wLKa3qTjTWSCsubj52sFx1wJYZEb+FFH/vRwaeZ30w7/IxZxLR8yBKfKLEQeoLyW2jmpqacN999+HQoUOQ0z2DwYBRo0bho48+QmxsrIo9pEDpvdQoFFybeDObzTAotRWA4JgzZXJwvqYRALB0azk+O1urZPe6NTwnDb99uADZ6fHdPk6E8yxCDEREelJjHH3qjSPYcfSSIsfqzPSCLBTNGebfgxtrgA+WARXbAm8wfxYwZTUQn97zY7ctCK4tf/oyY4N6xw9x/L0fGXie9cG8y8ecSUTPgyjxiRJHJND7vdyQXHnxgx/8AAcPXi8iN3jwYPzmN79BaWkprFYrHA4HrFYrSktL8cILLyA/Px+AdOEfOnQIP/jBD/TqOlGPDAYDYmNjOTjLwJwpk4Ps9Hhkp8djRD8/3uxQ0Ij+6T1OXABinGcRYiAi0pPS4+gui03ViQsA2F5+Cbsstp4faK2QVloEO5lw7G3pOD1t23SyRN2Ji2t9OVmibhshjL/3IwPPsz6Yd/mYM4noeRAlPlHiIPWF3ORFWVkZXn/9dRgMBkRFReGFF17A3//+d/z4xz9GYWEhbrvtNiQkJOC2225DYWEhli5divLycqxZswbR0dHw+Xx4/fXX8emnn+odClGn7HY71qxZA7s9yD2SIwhzpmwOphVkKdAjGe0N7e3X40Q4zyLEQESkJ6XH0XV7zihynB7b2dtDO3rUndi/Rpm2enKgSJt2QhB/70cGnmd9MO/yMWcS0fMgSnyixEHqC7nJi1dffbXt388//zyWLl3a4yycwWDAU089hV//+tdtt73yyiuq9ZEoGLGxsRg/fjy3NpOBOVM2B3mZySjM1Wb1RWG/dAzKTPLrsSKcZxFiICLSk5LjqMVqR1m1NjUZyqpqcMLaxZ7NetSdsFUC5w52vF0NZw8EV1A8jPH3fmTgedYH8y4fcyYRPQ+ixCdKHKS+kKt5kZ+fj8rKSvTu3Rvnz5+X9Vyfz4e+ffvi0qVL+PrXv46KigqVekmB0nufNCKS7LLYMH/zYdXb2TT3bkzIu031doiIiK65VuNp/censaX0nGbtfm9kDp4Y17/jVola1p2oPSt9P1AEHH5ZvTZvdvdCYPRTQFqOdm0SERERker0fi835FZeXLx4EQaDAWPHjpX93GvP8/l8uHRJ3b1tiQLV1NSEnTt3oqmpSe+uhA3mTPkcTMzLwLSh6m4fNb0gS9bEhQjnWYQYiIj0pMQ4Onb1boxdvVvTiQsAeLX0LMau3t3+Rq3rThTdKX1pOXEBAJ9ukNqNMPy9Hxl4nvXBvMvHnElEz4Mo8YkSB6kv5CYvrl20iYmJAT3/2vN48VOo8nq9qKurg9fr1bsrYYM5UycHK6cNRkayWbHj3Sgj2YwVD8qbiRfhPIsQAxGRnoQbR1l3QmjCXa/UKZ5nfTDv8jFnEtHzIEp8osRB6gu5baOys7Nx6dIl3Hvvvdi1a5fs53/zm9/E7t27A9p2itSn91IjImrPYrXj4fWlqG9qUeyYKXEx2LpoJPIykxU7JhERkb9yn35f1/arV02V/mGrBNaO1q7hxYeAtaO0a68zK+r1bZ+IiIiIFKX3e7kht/Ji8ODB8Pl82L9/P6qqqmQ9t6qqCvv27YPBYOAb4hSyPB4Pqqur4fF49O5K2GDO1MtBXmYyti4aqdgKjIxkc8ATFyKcZxFiICLSkxDjaO1Z6etTjbdu0nqrKBLjeqUe8Tzrg3mXjzmTiJ4HUeITJQ5SX8hNXjzwwAMAgNbWVjz66KNwOBx+Pc/pdOKxxx5ru+i//e1vq9ZHomA0NDSguLgYDQ0NenclbDBn6uYgLzMZO5eMw/SC4GpgTC/Iws4l4wJecSHCeRYhBiIiPQkxjupZd4I0JcT1Sj3iedYH8y4fcyYRPQ+ixCdKHKS+kNs2yul04p/+6Z9gs9kAALfffjuef/55fPvb30ZUVMe5Fp/Ph/fffx/Lli3DyZMnAQAZGRk4deoU4uPjNe079UzvpUZE1L1dFhvW7T2Dsqoav59T2C8di+8dIKs4NxERkVp03zYq9hFd29cVt40iIiIiEore7+UaNWvJTwkJCXjppZfwne98B16vF//4xz/wne98B7fccgsKCwuRk5ODhIQEOJ1OnDt3DmVlZbhy5QoAaSLDaDRiw4YNnLggIgrAxLwMTMzLwAmrAzuOXsTR8/U4drG+XU2MlLgY5PdOwdDsFEwb2huDMpN07DEREVF7+5ZPAAAs3VqOz87Watbu8Jw0/PbhAuB/NWuyo8WHAFMC8McfAOc/0a7d7JHAd1/Srj0iIiIiigght20UIG35tGXLFiQkJACQJiWuXLmCDz74AGvXrsWvf/1rrF27Fu+//z6++OIL+Hw++Hw+JCYmYsuWLW1bTxGFovr6eqxatQr19fxkmr+YM+1zMCgzCcsm5WHLwhEof+Y+VKychL/9Qvpe/sx92LJwBJZNylN04kKE8yxCDEREelJiHM1Oj0d2ejxG9EtXsGc9G9E/HdnpOn+AKjEDSMsBcsZo227uGKndCMPf+5GB51kfzLt8zJlE9DyIEp8ocZD6QnLyAgAefvhhlJeX43vf+x7MZqmQ7LVJihu/AMBsNuP73/8+ysvLMXv2bD27TdSj+Ph4PPTQQ1wdJANzpm8ODAYDEs1GpCeYkGg2wmAwqNKOCOdZhBiIiPSk5Dg6LchaTrLbG9pb0/Y6ZTRJ3/NnatvukCDb8/kAlx1wXpW+h9bOxl3i7/3IwPOsD+ZdPuZMInoeRIlPlDhIfSFX86Iz9fX1OHjwII4cOYIrV66goaEBiYmJuPXWWzFs2DCMHj0aKSkpeneT/KD3PmlEREREFDlmrzuEsmr/6zgFqrBfOt5aNEr6YYWOf5c8Wwdc+5DBxinAuYPqt5kzBpj3gfzn2SqBY9uAi58Bl48Crrrr98WmAr2GAr3vAvJnARl3KNVbIiIiIpJB7/dyQ3blxY1SUlIwZcoU/PznP8dvf/tb/OEPf8Bvf/tb/PznP8eUKVM4cUFhpbGxEe+++y4aGxv17krYYM4iIwcixChCDEREelJ6HP3h+P6KHKcni+8dcP2HJX+XvrJHaNJ2m+yR1ycuAOCepdq0O0ZmOydLpImVtaOB/S8AVXvbT1wA0s9Ve6X7146SHn/yQ4U6rBz+3o8MPM/6YN7lY84koudBlPhEiYPUFxaTF0RERERERHJNzMvAtKHqbh81vSALE/Juu35DWo5+dSduNHBS8Ns59SR/FjDwfv8e21gDbFsAvD5b/oqQcweB12cB7yyUjkNEREREESEsto0icei91IiIiIiIIkut043JRR/DZm9W/NgZyWbsXDIOaQmmjnfaKqXVBVpZfKjj9kqNNVIfHJeVby+pF7D4IBDvR2F0awXw2kxl+pHUC3jsHSCDf0MQERERqU3v93LDduVFc3MzXnjhBYwfPx5f//rXce+99+K5555DU1OT3l0j6lZLSwssFgtaWlr07krYYM4iIwcixChCDEREelJjHE1LMKF4fiFS4mIUOyYApMTFoHh+YecTF4D05npfjSYvcsZ0XhciPl16oz82Vdn2YlOl4/o7cbF5qnITKI7LwKYHpMkhnfH3fmTgedYH8y4fcyYRPQ+ixCdKHKS+kJu8qK6uRt++fdG3b1/86Ec/6vQxLpcLEyZMwLJly7Bv3z6cPHkS+/fvx89//nPcdddd+OKLLzTuNZH/uK+ffMxZZORAhBhFiIGISE9qjaN5mcnYumgkMpLNihwvI9mMrYtGIi8zufsHhkLdiYzBUkHtpF7KtJXUSzqePysfGmukFRc317QIlqsO2DJD9y2k+Hs/MvA864N5l485k4ieB1HiEyUOUl/IbRv129/+Fj/5yU9gMBjw/vvvY/LkyR0e89Of/hTPP/88DAYDOuv+xIkT8dFHH2nRXZJJ76VGRERERBS5ap1urHivEtvLLwV8jOkFWVjx4OCuV1zcbNsCoGJbwO31KH8WMGNDz49rrAH+vBw49nZwbU1Z7d+KCyB0YiciIiKigOj9Xm7Irbw4eFAq3hYfH4+JEyd2uL+hoQG///3vYTAYAAALFy7Ejh078Lvf/Q633HILAGD37t3YtWuXdp0mIiIiIqKQl5ZgQtGcYdg4dzgK+/n5BvxXCvulY9Pcu1E0Z5j/ExcA8MDzyq16uFlSL2kywR/x6dIb/Y+8Jb+YeM4Y4JG3pef7O3FxskTdiQtAmog5WaJuG0RERESkm5CbvDh+/DgMBgPy8/NhMnX8o+C9995rW1I0b948vPTSS/j2t7+NH/3oR3jttdfaHrd161bN+kwkR11dHVauXIm6ujq9uxI2mLPIyIEIMYoQAxGRnrQaRyfmZeCtRaNQsnQcnpwwAPfcfkuHmhgpcTG45/Zb8OSEAShZOg5vLRqFCXm3yW8sFOpO3GjgJGnbp8WHgLE/AfqP79i32FTp9rE/kR437wNg4P3y2tm/Rt7jA3WgSJt2OsHf+5GB51kfzLt8zJlE9DyIEp8ocZD6Qm7bqLS0NNjtdjzyyCN49dVXO9y/cOFCbNy4EQaDAX/7298wdOjQdvfffvvtqKqqwtChQ/G3v/1Nq26Tn/ReahQKPB4PLly4gD59+sBoNOrdnbDAnEVGDkSIUYQYiIj0pOc46vP54HS3wu3xwmSMQoIpum21tyJslVKdBiUKVyf1kiYu/Kk74Q+fD3A3AB43YDQBpkQgmNhtlcBajYqVA9IES2cFy1XG3/uRgedZH8y7fMyZRPQ8iBKfKHFEAr3fyw25lRdOpxMAkJzcefG7ffv2AQB69+7dYeICAO688074fD6cPXtWvU4SBcFoNCI3N5eDswzMWWTkQIQYRYiBiEhPeo6jBoMBiWYj0hNMSDQblZ24AKSJhsUHpToNwcifJR1HqYkLQJqoMCcBCV+Tvgcae+1Z6evTl5Xrmz8Ovyy1qzH+3o8MPM/6YN7lY84koudBlPhEiYPUF3KTF9HR0QCA5ubmDvdduXIF//jHP2AwGDB27NhOn3/bbdJSbofDoV4niYLgdDrx5ptvtk3UUc+Ys8jIgQgxihADEZGehB9Hta47obWiO6WvwxpPXny6QWpXY8JfrwSA51kvzLt8zJlE9DyIEp8ocZD6Qm56Kz09HVarFdXV1R3u2717d9u/R4/ufBmyy+UCgE7rZRCFgqioKKSmpiIqKuTmDkMWcxYZORAhRhFiICLSU8SMowMnSV+2z6Wi1hc/Ay6VA66664+JTQWyCoDedwFDZuqyLVLE8PmAZgfQ2gJEx/i9+iRirtcIx/OsD+ZdPuZMInoeRIlPlDhIfSFX8+K+++7DX//6V8THx+PixYtISUlpu2/GjBn405/+BIPBgPLycuTn53f5/JycHFRVVWnZdfKD3vukERERERGFJKXrTuhhRUrPj1G1/Xr/H2urBI59NXF0+WjHiaNeQ6WJo/xZnDgiIiKiiKX3e7khN701efJkAEBTUxOeeOIJNDY2AgDeeustvPvuuzAYDMjNze104gIAjhw5AoPBgNtvv12zPhPJ4Xa7UV5eDrfbrXdXwgZzFhk5ECFGEWIgItJTRI+jStWdoO6dLAE2TpEKiu9/Aaja237iApB+rtor3b92lPT4kx92OFREX68RhOdZH8y7fMyZRPQ8iBKfKHGQ+kJu8mLu3LlIS0sDAGzbtg233HILbrnlFvzzP/8zri0SefLJJzt97meffYaamhoAwF133aVNh4lkcrlc2LNnT9sWZ9Qz5iwyciBCjCLEQESkJ46jpJrGGmDbAuD12cC5g/Kee+4g8Pos4J2F0nG+wus1MvA864N5l485k4ieB1HiEyUOUl/IbRsFANu3b8esWbPg8Xg63Ddq1Cjs3bu302r0y5Ytw29+8xsYDAbs2LEDU6dO1aK7JIPeS42IiIiIiEglobptlLUCeG0m4LgcfBtJvYDH3gEy+DcMERERiU/v93JDbuUFAEyfPh0HDx7E9OnT8bWvfQ0xMTHo378/nn76afzlL3/pdOLC6XTi5ZdfBgCYzWZMnDhR624T+cXn88HlciEE5w1DFnMWGTkQIUYRYiAi0hPH0TC35O/SV/YIbdvNHim12xlrBbB5qjITF4B0nE0PALZKXq8RgudZH8y7fMyZRPQ8iBKfKHGQ+kJy8gIAhg8fjj/96U+4cuUKmpubcerUKfz3f/834uPjO318TEwMjhw5gqqqKpw6dQpxcXEa95jIP/X19XjuuedQXy+joGCEY84iIwcixChCDEREeuI4GubScqSvnDHatps7Rmr3Zo010oqLm2taBMtVB2yZgXrrWV6vEYDjkj6Yd/mYM4noeRAlPlHiIPWF5LZRJC69lxqFgtbWVly5cgW33noroqOj9e5OWGDOIiMHIsQoQgxERHriOCoIW6VUEFsriw8BGXd0vH3bAqBim2rNtg6ehStj/x+vV8FxXNIH8y4fcyYRPQ+ixCdKHJFA7/dyQ3blBZGooqOjkZmZycFZBuYsMnIgQowixEBEpCeOo4LIGAz01WjyImdM5xMXJ0tUnbgAgOjKt5FpP8rrVXAcl/TBvMvHnElEz4Mo8YkSB6kvrCYvbDYbKioqcOjQIVRUVMBqterdJSLZGhoasHnzZjQ0NOjdlbDBnEVGDkSIUYQYiIj0xHFUIPcs1aadMV20s3+N6k03IB6b//ghr1fBcVzSB/MuH3MmET0PosQnShykvo6Vr0PMnj178Ic//AG7d++GzWbrcH9GRgYmTJiAhQsXYsKECTr0kEgeo9GI3NzcTgvPU+eYs8jIgQgxihADEZGeOI4KZOAkYMhMdVc/5M8CBt7f8XZbJXDuoHrtfsWIVuS6KmGsOQUkFqjeHumD45I+mHf5mDOJ6HkQJT5R4iD1hWzNi4sXL+IHP/gBSkpKAKDb6vMGgwEAcP/99+Oll15Cdna2Jn0k+fTeJ42IiIiIiDTSWCPVvnBcVv7YSb2AxQeB+PTrt9Welb4fKAIOv6x8m125eyEw9TfatUdERESkEb3fyw3JbaP+8Y9/YNSoUSgpKYHP52s3cREbG4uvfe1riI2Nbbvt2mNKSkowevRo/OMf/9Cj20R+aW5uRmlpKZqbm/XuSthgziIjByLEKEIMRER64jgqmPh04LF3gNhUZY8bmyod98aJCwAoulP60mjiohkmlGIYmj99RZP2SB8cl/TBvMvHnElEz4Mo8YkSB6kv5CYv3G43HnroIVy4cKFt0uK73/0utm/fji+++AKNjY24cuVK2/cdO3ZgxowZMBgMMBgMuHjxIh566CG0tLToHAlR59xuN8rLy+F2u/XuSthgziIjByLEKEIMRER64jgqoIzBwLwPpJUSSkjqJR0vQ//V227EoByD4UYMEJobGpACOC7pg3mXjzmTiJ4HUeITJQ5SX8htG/X73/8e//qv/wqDwYDk5GRs27YN3/zmN3t83u7du/Hd734X9fX1MBgM+P/+v/8PP/rRjzToMcmh91IjIiIiIiLSQWMN8OflwLG3Az9G/ixgyuqOKy6uWZES+LGD9bMLgDkpsOf6fECzA2htAaJjpON8tTUyERERkZ70fi835FZebN26te3fW7Zs8WviAgAmTJiALVu2tP385ptvKt43IiV4vV7U1dXB6/Xq3ZWwwZwBra2tuGC7gi8dLjhcLd3WAQpXIpxnEWIgItITx1GBxacDMzYAj7wF5IyR99ycMcAjb0vP72riQgdeGFCHZHhhADwyPzlqqwQ+WgkUTwOeywVWZQPP95e+P5cr3f7RSsD2uRpdJxk4LumDeZePOZOIngdR4hMlDlJfyE1eWCwWGAwG3HHHHZg6daqs506dOhWDBw+Gz+fD8ePHVeohUXDsdjuKiopgt9v17krYiNScWax2rN5pwaMbSnHP/3sfL697EeP/+wPkr/gQBb/8Cx7dUIrVOy04YXXo3VVFiHCeRYiBiEhPHEcjwMBJ0rZPiw8BY38C9B/fsSZGbKp0+9ifSI+b9wEw8H7t+9oDO5JQZFgIO5IAo8m/J50sATZOkQqZ738BqNoLuOraP8ZVJ92+/wVg7Sjp8Sc/VLr75CeOS/pg3uVjziSi50GU+ESJg9QXcttGxcfHo7m5Gd/73vewefNm2c+fO3cuXnnlFcTGxqKxsVH5DlJQ9F5qFAq8Xi/sdjuSk5MRFRVy84chKdJytstiw7o9Z1BWXdN2mwE+JBjccPpM8KHjNgKFuelYPH4AJuTdpmVXFSXCeRYhBiIiPXEcjVA+H+BukFYvGE2AKTGwbZM03jbKCwPsSEIyHIh6trb7PjfWAB8sAyq2Bd5gT9tmkSo4LumDeZePOZOIngdR4hMljkig93u5Rs1a8lNWVhaqqqpgCHCPz2vP69VLoYJwRAqLiopCamqq3t0IK5GSs1qnG8/uqMSOo5c63OeDAQ0+c5fPLauuQdnmGkwvyMKKBwcjLcHPT/+FEBHOswgxEBHpieNohDIYpDoPXf9Xxz9L/i59/+MPgPOfBN2tnkTBh1TYgeyR3U9cWCuA12YCjsvBNXjsbaB6P/DYOyFRsDxScFzSB/MuH3MmET0PosQnShykvpCb2iosLITP50N5eXlAzy8vL4fBYMDdd9+tbMeIFOJwOLBu3To4HGJs9aOFSMjZ8ct2TC76uNOJCwCIgxvTzJWIQ/f7KW8vv4TJRR/DYg2/pZcinGcRYiAi0hPHUQpKWo70JbemRoAcSMA6PAZHr9FdP8haAWyeGvzERVujl4FND0g1M0gTHJf0wbzLx5xJRM+DKPGJEgepL+QmLxYuXAgA+Pvf/46//vWvsp7717/+FUePHgUALFiwQPG+ESnBZDKhoKAAJlP4fTJeL6Ln7PhlO+a8VAqbvbnLx3gQjVOeW+BBdI/Hs9mb8fD60rCbwBDhPIsQAxGRnjiOkiLyZ2rSjAktKEAlTPkPdf6AxhppxcXNNS2C5aoDtsyQjk+q47ikD+ZdPuZMInoeRIlPlDhIfSFX8wIAFi1ahD/84Q+45ZZb8N5772HEiBE9PufTTz/F1KlT8eWXX2LBggX4wx/+oEFPSS6990kjCjW1TjcmF33c7cRFoDKSzdi5ZFxYbiFFREREFJSNU4BzB9VvJ2eMVFC8M9sWBFfjoif5s4AZG9Q7PhEREUU8vd/LDbmVFwDw+9//Hj/+8Y/x5Zdf4p577sG8efOwa9cuOJ3Odo9rbGzE7t27MX/+fIwZMwZXr17Fj3/8Y6xbt06nnhP1zOVyYc+ePXC5XHp3JWyInLNnd1T6NXFhggcFxoswweP3sW32Zqx4L3y2FBDhPIsQAxGRnjiOkmLuWap6Ey6YsSd5RufX68kSdScuAKkGxskSddsgjks6Yd7lY84koudBlPhEiYPUp8vkRf/+/bv9GjhwIP70pz8hJiYGra2teOWVV3DfffchJSUFt956K3JycnDrrbciOTkZ3/rWt1BcXAyPx4OYmBj86U9/wj/90z9hwIABeoRG1COPx4Pq6mp4PP6/CR3pRM3ZLoutyxoXN4uGD5lRDkRD3mK57eWXsMtiC6R7mhPhPIsQAxGRnjiOkmIGTgKGqLt9lCfvIVQ7oju/XvevUbXtNgeKtGkngnFc0gfzLh9zJhE9D6LEJ0ocpD5dto2KioqCwWCQ9Zwbu2kwGDr8fPNjDQYDWltbg+soKU7vpUZEoWT2ukMoq1Z/r+LCful4a9Eo1dshIiIiCimNNcDa0coVy75RUi9g8UEgPr3jfbZKqV2tLD4EZNyhXXtEREQUMfR+L1e3baN8Pp+sr5uf292xiEJZa2srrFYrJ9dkEDFnFqtd1sRFFLxINzQiCl7ZbZVV1eCE1SH7eVoT4TyLEAMRkZ44jpKi4tOBx94BYlOVPW5sKvDYO2g1p1y/XmvPXv/69GVl2+vJYY3bizAcl/TBvMvHnElEz4Mo8YkSB6lPl8mLqqoq1b/OnDmjR2hEPXI4HFi/fj0cjtB/MzlUiJKz8zWNbV9bSs/Kem68oQXTYz9HvKEloLbltqcHEc6zCDEQEemJ4ygpLmOwVFA7qZcyx0vqJR0vY3D767XozutfWk8mfMqi3WriuKQP5l0+5kwieh5EiU+UOEh9umwbRfJs3rwZ8+bNk/WcBQsWYMMG//4T+9e//hXFxcUoLS3FxYsXYTab0adPH0yaNAkLFixAXl5eIN3ulN5LjUKBz+dDc3MzzGaz7O3TIpUoOct9+v0gnu2DCa1wIxpAYDmoXjU1iPbVJ8J5FiEGIiI9cRwl1TTWAH9eLhW5DlT+LGDK6ratotpdrytTlelnoJ6tA/iaUQXHJX0w7/IxZxLR8yBKfKLEEQn0fi/XqFlLFHLsdjueeOIJbN26td3tjY2NqK2txbFjx1BUVISVK1fiZz/7mU69FI/BYEBsbKze3QgrzBkAGOAOcsi+Vg8oVIlwnkWIgYhITxxHSTXx6cCMDdIExIEi4OwB/5+bMwYYsxQYeH+7m0PqenU3AOYkvXshpJA6zxGEeZePOZOIngdR4hMlDlKfkJMXjY2N2LZtG77//e/r3RXF5eXl4Zvf/GaPjxs9uvsCcS0tLfjOd76DXbt2td02ZMgQfOMb34DL5cK+fftw+fJltLS04Oc//zlaWlrwzDPPBN1/kiaNNm7ciPnz5yM5OVnv7oQF5gyIhxsPmC34oDkPjTAFdAynuxWJ5tAd9kU4zyLEQESkJ46jpLqBk6Qv2+dAxTbg4mfApXLAVXf9MbGpQFYB0PsuYMjMLotht7teNeh6tzxuwKx3J8TEcUkfzLt8zJlE9DyIEp8ocZD6QvddrADs2bMHxcXFeOedd+B0OoWcvBgxYgR+97vfBX2cX/3qV20TF7Gxsdi0aRPmzJnTdr/b7cZ//ud/4vnnnwcArFixAvfeey/uvffeoNuOdLGxsRg/fjxnmGVgzgA3olHuyfpq26gAj+HxhvQftSKcZxFiICLSE8dR0kzGHUDGVx/O8vmklQseN2A0AaZEv7ZgCqnr1RjYh1uoZyF1niMI8y4fcyYRPQ+ixCdKHKS+sJ+8OHXqFF555RW8+uqrOHfuHIDQ3xpFb1988QVeeOGFtp/XrFnTbuICAEwmE1avXo1z585h69at8Pl8+NnPfoaDBw9q3V3hmEwmFBQU6N2NsMKcAR5E41TrLUEdw2SMUqg36hDhPIsQAxGRnjiOki4MBmnLJZkf8gip69WUqHcPhBVS5zmCMO/yMWcS0fMgSnyixEHqC+13srpgt9vxhz/8Affccw8GDRqE//qv/8LZs2fh8/lwrf642RzCHy/WWXFxMZxOJwBg4MCBeOKJJ7p87OrVqxEVJV0mhw4dwpEjRzTpo8iampqwc+dONDU16d2VsMGcASZ4UBhzDiZ4Aj5GginwVRtaEOE8ixADEZGeOI5SOGl3vS75+/Wv7BHadiR7JIt1q4jjkj6Yd/mYM4noeRAlPlHiIPWFzcoLn8+HkpISFBcXY8eOHXC5XG23X2MwGDB27Fg89thjmDlzpl5dDXnvvvtu27/nzp3b7SqVvn37YuLEifjoo48AAH/6058wbNgwtbsoNK/Xi7q6Oni9Xr27EjZEydm+5RPa/r10azk+O1vr93Oj4EOiwY0o+Hp+cCeG56SF/Io0Ec6zCDEQEemJ4yiFk3bXa1rO9TtyxgDnP9GuI7ljtGsrAnFc0gfzLh9zJhE9D6LEJ0ocpD6D78Z3/0NQZWUliouL8dprr8FqtQJoP2EBSIWmH3vsMfzzP/8zsrOz9eimqjZv3ox58+YBAB5//HFs3rw54GO5XC4kJCS0DQ4HDx7EqFGjun3Of//3f+M//uM/AABjxozB/v37A26/srISQ4YMafu5oqICgwcPDvh4ROFq9U4LXtxzWrP2npwwAMsm5WnWHhEREVHEslUCa0dr197iQ10WFSciIiIKht7v5YbkyourV6/i9ddfR3Fxcds2RTdPWFz7BPHdd9+N0tJSzfuol7q6Orz99tuorKxEfX09kpOTkZWVhVGjRiE/P7/HT1afOHGibeLCYDD4tYriG9/4Rtu/jx8/HlwABI/HgwsXLqBPnz4wGkPyJRhyRMzZtIIsWZMX0fDi1qgGXPEmojWAHf+mDe0t+zlaE+E8ixADEZGeOI5SOOnyes0YDPQdDZzToF5gzhhOXKiM45I+mHf5mDOJ6HkQJT5R4iD1hUzNC4/Hg3fffRff+c530Lt3byxduhRHjhxpV8ciNjYWDz/8MP7v//6v7bZr9Rgixfbt2zF79mysXLkSa9aswS9/+Uv88Ic/xNChQzFo0CC8/PLLHSZ6bnTixIm2f992222IjY3tsc2+ffu2/bumpgZXrlwJLogI19DQgOLiYjQ0NOjdlbAhYs7yMpNRmJvu9+PjDC2YYj6JOEOL7LYK+6VjUGaS7OdpTYTzLEIMRER64jhK4aTb6/Wepdp0YoxG7UQwjkv6YN7lY84koudBlPhEiYPUp/u2UZ999hmKi4vxxhtvoKamBkDHOhbjxo3D97//fcycORNJSdIbcFFRUTAYDBgxYgQOHtTgEy06unHbKH98+9vfxptvvomEhIQO961duxY/+tGPAAB33nknjh492uPxampq8LWvfa3tZ4vFgkGDBvndnxvpvdSIKFA+nw8NzR60tPoQE21AotkYdA2JXRYb5m8+rFAPu7Zp7t2YkHeb6u0QERER0Q22LQAqtql3/PxZwIwN6h2fiIiIIp7e7+Xqtmzh+eefx5AhQ1BYWIjf//73uHr1artVFnl5efiv//ovVFVVYffu3Zg3b17bxEUk6tu3L37yk5/ggw8+wPnz5+FyueB0OnHixAm8+OKLyMu7vpf9//3f/+GRRx7ptOjNjTOacXFxfrV98+OUmBWNjY1FYmIiAKC1tRV1dXVt595ut8PtdgMAmpqa4HQ6AUirc+rq6tqOUV9fj5YW6VPojY2NaGxsBAC0tLSgvr6+7XF1dXXweDwAAKfTiaamJgCA2+2G3W4HIL0xXVdXh9bW1rYYrxWFb25uhsPhANCxoJDD4UBzczMAqZ7ItdwwJjFiKq+yYvVOCx77wwGM/uV7yF/xIb7xq79g5Mr3cNcvd+LRDaV47r2j+HvVFwHFNDEvA9Pu7IVEQzOiIPU1Di0wQXpODFoRB6k/BviQaGiG4auC3XFwIwZSHkzwIA5SjqPgRaKhGfjqcQ8NTsOY/qlCnyfGxJgYE2NiTIyJMTGmkIxp7LNAUi/4ANQhuW3rzwbEwwWzFBNMcED60JkXBtQhGV5IH5BxIAHNMEkxwYwGxEsxIQp1CbfDN/k5nifGxJgYE2NiTIyJMWkSk150m7z46U9/iuPHj7ebsLj11lvxr//6rygrK8Pnn3+On/3sZ+22LIpUDz30EKqqqvDrX/8aU6ZMQZ8+fWA2mxEfH4+BAwdi8eLFOHr0aLvVGTt27MDrr7/e4VjXLm4AMJlMfrVvNpvb/XzthRSMkSNHYubMmQCAK1euoKioqO0FtXHjRnz++ecAgL179+K9994DAFy4cAFFRUVtx1i7di1On5ZqBnz44Yf48MMPAQCnT5/G2rVr2x5XVFSECxcuAADee+897N27FwDw+eefY+PGjQCkF3tRUVHblljbtm1rq6Vy5MgRvPbaawCkF3RRUVHbAPLaa6+11WUpLS3Ftm3beozpww8/xAsvvID6+nphYlL7PG3YsAGrVq3CF198oUlMuyw2/PR3b+J/N23Fi3tO41TVOUzGkba+Tjd/jsTmqzhw6iqOle3D6o1vYfa6Q3h3799kn6efT7ods2KPIdUgvTbvNZ3GHUYbAOCfor/EfeZ/AABuiWrArNhjuCVK+mVzn/kf+KfoLwEAdxhtuNck5TjV4MKs2GMwoRUZyWb0/bIsbF5Pr7zyCp5//nnU19eHzLUnN6Zrfbh2vFB8PYk4RjAmxsSYxInJYrGgqKio7Y86EWIS8TwxJimm+vp6FBUVwWKxdB7TG38EHnsHzebbUGRYiCuQVrNvw1SUQqoreASD8Rq+I8WEJBQZFsIO6UN7r+E7OALpk42l+Aa2YaoUkykXRY3T0BydwPOkQUz19fV4/vnn8corrwgTUzicpz/+8Y/4zW9+g/r6emFiUvs8vfnmm1i1ahXOnDkjTEyBnqdVq1ahvr5eqJiuefHFF7F69WrU19eHfUwinycRY9KLbttGXdv2yefzIT4+Hr/+9a/xxBNP+F3DIpK2jfKX1+vF+PHjsW/fPgDAkCFDcOzYsXaPef7557F8+XIAwIgRI/wqdt7U1IT4+Pi2nw8fPoy77roroD5eW2oUGxsLo9GI0tJS5OXlweFwICUlBQaDAXa7HbGxsTCZTGhqaoLX60VCQgI8Hg8aGhqQmpoKQPpjIT4+HjExMW0zmPHx8WhpaUFjYyNSUlIASLOYiYmJMBqNcDqdiIqKQlxcHNxuN1wuF5KTk+Hz+VBfX4+kpCRER0ejoaEBRqMRsbGxaG5uhtvtRlJSErxeL+x2O5KTkxEVFQWHwwGTyQSz2QyXywWPx4PExES0trZ2GZPdbseZM2cwePBgGAwGIWJS+zw5HA5cuXIF/fv3R2Njo2oxnbN+iV//tQo7jn0BEzyIgg8uxCAaXsQZWtDgkybyEgzNcPmMaEU0zF+teGhGDKLRimmDv4Znvns30hJMfp+nv526gAWvV6KuqRVxaEErDHDDiBi0wohWNMEEIzzoH1WDM950eGBEHNzwIBotiIYJHkTDhybEIApexBtaEB2bgK2LRiErHmHzeqqpqcHFixeRl5eH1tbWkLj25MbU3NyMiooKDBkyBGazOSRfTyKOEYyJMTEmcWJqamrC559/jjvvvBMxMTFCxCTieWJMUkwtLS34+9//jjvuuANxcXFdx2StQP2rjyPJeQbR8KIB8TCiFbFoRjNMcCMGSXDCCwPsSEIyHIiCDw4kwIQWmOGGC2Z4EI3EpBS0/vPbcMRnKxNTXBxaGmrQ2OBASlo6YE5CXX29UOcp2GsvOjoaFosFvXv3Rnp6uhAxhcN5qqurw9mzZ3HHHXfA5/MJEZPa56mpqQk2mw25ublwuVxCxBTIeaqtrcXVq1cxYMAANDY2ChHTjefpyy+/hNVqxaBBg9o+2R+OMYl+nkR5PTU0NODixYu6bhul++RFW0cMBowfPx7f+973MGPGjLYthXp6Picv2vvrX/+Kb33rW20/nz9/Hn369Gn7mTUviDp3/LIdczeVwWZvDvpYGclmFM8vRF5mst/PsVjteHyjfu0TERERkYoaa4A/LweOvR34MfJnAVNWA/HpwfXFVgkc2wZc/Ay4fBRw1V2/LzYV6DUU6H2X1F7GHcG1RURERGFN7/dydds26pFHHkFcXFzbtlFerxe7d+/G/PnzkZGRgUceeQR//vOfO63bQF0bN24cYmJi2n4+fvx4u/tvnISw2Wx+HdNqtbb7OT09yP8sR7jGxka8++67bTOv1DO1c3b8sh1zXipVZOIAAGz2Zjy8vhQWq93v5+RlJmPnknGYXpDV6f1mtOCemKq2lR5dmV6QhZ1LxoXlxIUIrw0RYiAi0hPHUQonsq7X+HSpuPYjbwE5Y+Q1lDMGeORt6fnBTFycLAE2TgHWjgb2vwBU7W0/cQFIP1ftle5fO0p6/MkPA29TAByX9MG8y8ecSUTPgyjxiRIHqU+3yYstW7bAarViw4YNGDduXNsWUj6fD01NTdi6dSu+/e1vIysrC//2b/+Gv/3tb3p1NazExMTglltuafv5yy+/bHf/jSsmvvjii3Y1MLpy7ty5tn+np6fj1ltvVaCnRKGh1unG3E1lqG/qflJArvqmFjy+sQy1Trffz0lLMKFozjBsnDschf3k/WFa2C8dm+bejaI5w5CW4F89GyIiIiLS2MBJwLwPgMWHgLE/AfqPl1Y73Cg2Vbp97E+kx837ABh4f+BtNtYA2xYAr88GzsncteDcQeD1WcA7C6XjEBEREWlIt22jblZdXY3i4mK8+uqrOHPmTLv7rm0vlZeXh+9///t45JFHkJOTw22jupCSktJWnGX79u2YNm1a230ulwsJCQltK1oOHTqEkSNHdnu8//7v/8Z//Md/AADGjBmD/fv3B9w3vZcaEd3sqTeOYMfRS6odf3pBFormDAvouSesDuw4ehFHz9fj2MX6dhMsKXExyO+dgqHZKZg2tDcGZSYp1WUiIiIi0pLPB7gbAI8bMJoAUyJwwxbLQbFWAK/NBByXgz9WUi/gsXeADP79RkREFCn0fi9Xt5UXN8vNzcWzzz6LU6dO4eOPP8b8+fORnCxte3JtRYbFYsHPf/5z9OvXT+fehq4zZ860TVwAQFZW+y1oYmNj201W7Nmzp8djXqt0DwATJ04MvpMRrqWlBRaLpa2wEvVMrZztsthUnbgAgO3ll7DL4t8WbTcblJmEZZPysGXhCHz6s/H406O5+OTp8ahYOQnlz9yHLQtHYNmkPGEmLkR4bYgQAxGRnjiOUjhR7Ho1GABzEpDwNem7khMXm6cqM3EBSMfZ9IBUMyOCcFzSB/MuH3MmET0PosQnShykvpCZvLjRPffcgw0bNsBqtWLLli24//77ERUV1a4+xrVtpj777DM89NBD2LZtG5qbldmvPpxt3Lix7d8pKSkoKCjo8JiHHnqo7d+bN2/u9njnz5/HX//6106fS4Hhvn7yqZWzdXvO9PwgJdrZG3w7TU1NKHn/PcQaPEg0G9tWpIlEhNeGCDEQEemJ4yiFk5C+XhtrpBUXN9e0CJarDtgyI6K2kArp8yww5l0+5kwieh5EiU+UOEh9IbNtVE8uXbqEV199Fa+88kpbEeqb37xLSkrCjBkz8OijjwqzQqChoQGJiYl+PfbgwYP45je/2VbHYtGiRVi3bl2Hx33xxRfo378/nE4nAOAPf/gDFi5c2OkxH3nkEbzxxhsAgFGjRgW9RZfeS42IrrFY7Zi8Zp9m7ZUsHSfMCgkiIiIiCnHbFgAV29Q7fv4sqYA4ERERCU3v93JDcuVFZ7KysvDTn/4UlZWVKCsrw49+9COkpaW1rcbw+Xyw2+3YvHkz7rvvPmRnZ+vdZUVs27YNhYWFeOWVV1BfX9/pY1wuF/73f/8X3/rWt9omLlJTU/Hss892+vjbbrsN//Zv/9b281NPPYW33nqr3WNaWlrw9NNPt01cAMD//M//BBsOke7O1zTifE0jtpSe1bRdrdsjIiIiogh1skTdiQsAOPa21A4RERGRisJm8uJGw4cPx+9+9ztcvnwZ77zzDqZNm4aYmBgA1+tjXLqk7j72Wvr000/x+OOP45ZbbkF+fj5mzZqFJ554AgsWLMDkyZORkZGBJUuWoKmpCQAQFxeH7du3o1evXl0e8xe/+EXb6pSmpiY8/PDDuPPOOzF37lzMmTMHOTk5eO6559oev3LlStx7773qBhoh6urqsHLlStTV1endlbChZM7Grt6Nsat3Y0vpueA7JsOrQU5eRMJ1I0KMIsRARKQnjqMUTkL2et2/Rpt2DhRp047OQvY8C455l485k4ieB1HiEyUOUl/YbBvVky+//BKvvfYaXnnlFRw5cgQGgwGtra16dytomzdvxrx58/x+fGFhITZv3oyvf/3rPT62vr4eTzzxRIdVFzeKiYnBihUr8POf/9zvPnRH76VGocDj8eDChQvo06cPjEaj3t0JC0rmLPfp9xXqlXxV//NAwLUqIuG6ESFGEWIgItITx1EKJyF5vdoqgbWjtWtv8SEg4w7t2tNBSJ7nCMC8y8ecSUTPgyjxiRJHJND7vVxhJi9udOzYMbzyyit4/vnn9e5K0Jqbm/HZZ5/h4MGDKC0txenTp/Hll1/i6tWr8Hq9SElJQb9+/TBy5EjMnDkT99xzj+w2PvroIxQXF+PQoUO4fPkyYmJikJ2djUmTJmHBggV+TYT4S+8LnkjPyYuKlZOQaOYvZSIiIiJSWO1Xq3wPFAGHX9au3bsXAqOfAtJytGuTiIiINKP3e7lhuW1UT/Lz84WYuAAAs9mM0aNH49///d+xbds2HDlyBOfPn0djYyNcLhdsNhtKS0uxZs2agCYuAOBb3/oWXn31VZw6dQpOpxN1dXU4duwYfv3rXys6cUESp9OJN998s61gOvVMlJy5Pd6AnytKDrojQowixEBEpCeOoxROQup6LbpT+tJy4gIAPt0gtSuwkDrPEYR5l485k4ieB1HiEyUOUp+QkxdEoSwqKgqpqamIiuLLz1+i5MxkDLz/ouSgOyLEKEIMRER64jhK4YTXa2TgedYH8y4fcyYRPQ+ixCdKHKQ+IbeNotCl91IjonCteUFERERE1KUVKTq3X69v+0RERKQKvd/L5fQWkcbcbjfKy8vhdrv17krYUDJn+5ZPwL7lE3BXTpoCPfPf8Jy0oCYuIuG6ESFGEWIgItITx1EKJ7xeIwPPsz6Yd/mYM4noeRAlPlHiIPVx8oJIYy6XC3v27IHL5dK7K2FDyZxlp8cjOz0eI/qlK9Az/43oH1x7kXDdiBCjCDEQEemJ4yiFE16vCvD5AJcdcF6VvofgxhA8z/pg3uVjziSi50GU+ESJg9THbaNIU3ovNSK6xmK1Y/KafZq1V7J0HAZlJmnWHhERERFFkHDaNspWCRzbBlz8DLh8FHDVXb8vNhXoNRTofReQPwvIuEPpnhIREZEMer+Xy5UXRBrz+XxwuVzgvKH/1MhZXmYyCnO1WX1R2C896ImLSLhuRIhRhBiIiPTEcVQfPp8PDlcLapxuOFwtzL+fQup6XfJ36St7hLbtZo+U2vXHyRJg4xRg7Whg/wtA1d72ExeA9HPVXun+taOkx5/8UOleyxJS5zmCMO/yMWcS0fMgSnyixEHq4+QFkcbq6+vx3HPPob6eRe38pVbOfji+v6LH68riewcEfYxIuG5EiFGEGIiI9MRxVDsWqx2rd1rw6IZSFPzyL8hf8SG+8Svpe8Ev/4JHN5Ri9U4LTlgdenc1ZIXU9ZqWI33ljNG23dwxUrvdaawBti0AXp8NnDso7/jnDgKvzwLeWSgdRwchdZ4jCPMuH3MmET0PosQnShykPm4bRZrSe6lRKGhtbcWVK1dw6623Ijo6Wu/uhAU1c/bUG0ew4+glRY95o+kFWSiaMyzo40TCdSNCjCLEQESkJ46j6ttlsWHdnjMoq/b/jeDC3HQsHj8AE/JuU7Fn4Sckr1dbpbSyQSuLD3W/tZO1AnhtJuC4HHxbSb2Ax94BMrT9+zEkz3MEYN7lY84koudBlPhEiSMS6P1eLicvSFN6X/BEN6t1ujG56GPY7M2KHzsj2YydS8YhLcGk+LGJiIiI5Kh1uvHsjsqgPrQxvSALKx4czP/bhLqNU+SvcAhEzhhg3gdd32+tADZP7bg1VDBiU6U2NZ7AICIiilR6v5fLbaOINNbQ0IDNmzejoaFB766EDTVzlpZgQvH8QqTExSh63JS4GBTPL1Tsj/tIuG5EiFGEGIiI9BTJ46iadSeOX7ZjctHHQa823V5+CZOLPobFaleoZ+EtZK/Xe5Zq086YbtpprJFWXCg5cQFIx9syQ9MtpEL2PAuOeZePOZOIngdR4hMlDlKfUe8OEEUao9GI3NxcGI18+flL7ZzlZSZj66KReHxjmSIrMDKSzSieX4i8zGQFeieJhOtGhBhFiIGISE+RNo5arHbsKL+EoxfqUHHRjvqmlrb7UuJiMKR3Mob2ScX0gt4YlJkUUBvHL9sx56XSdscOhs3ejIfXl2LropGK/l8nHIXs9TpwEjBkJlCxTb028mcBA+/v+v4PlimzVVRnHJeBPy8HZmxQ5/g3CdnzLDjmXT7mTCJ6HkSJT5Q4SH3cNoo0pfdSI6Lu1DrdWPFeJbaXczsFIiIiUo9WdSe4PWYEa6yRal+oMYGQ1AtYfBCIT+/8/pMlUnFutT3yljRRQ0RERKrR+71cbhtFpLHm5maUlpaiuVn5PyJFpVXO0hJMKJozDBvnDkdhvy7+GOtCYb90bJp7N4rmDFPlj/hIuG5EiFGEGIiI9CT6OFrrdOOpN45g/ubDsiYuAKCsugbzNn+KJW8eQa3T7ddznt1RqcrEBSCtwFjxXqUqxw4XIX29xqdLxa1jU5U9bmyqdNyuJi4AYP8aZdvsyoEiTZoJ6fMsMOZdPuZMInoeRIlPlDhIfZy8INKY2+1GeXk53G7//ugk7XM2MS8Dby0ahZKl4/DkhAG45/ZbOtTESImLwT2334InJwxAydJxeGvRKFmfhJQrEq4bEWIUIQYiIj2JPI5qXXdil8UWdFv+9GWXxaZqG6Es5K/XjMFSceukXsocL6lXz8WybZXaFAsHgLMHANvnqjcT8udZUMy7fMyZRPQ8iBKfKHGQ+rhtFGlK76VGRIHy+Xxwulvh9nhhMkYhwRQNg8Ggd7eIiIgoDChddwKQPkjRXd2J2esOyV7dEYjCful4a9Eo1duhIDTWSDUijr0d+DHyZwFTVne94qL2rPT9QBFw+OXA25Hr7oXA6KeAtBzt2iQiIooger+Xy5UXRBrzer2oq6uD1+vVuythIxRyZjAYkGg2Ij3BhESzUfOJi1DIgdpEiFGEGIiI9CTiOFrrdGPupjJFJy4AoL6pBY9vLOt0CymL1a7JxAUAlFXV4ITVoUlboSZsrtf4dKm49SNvATlj5D03ZwzwyNvS87vbKqroTulLy4kLAPh0g9RuoHw+wGUHnFel7518tjNszrNgmHf5mDOJ6HkQJT5R4iD1cfKCSGN2ux1FRUWw27tf6k/XMWeRkQMRYhQhBiIiPYk4jmpZd+J8TSPO1zRiS+lZVdrrypbSszhf06hpm6Eg7K7XgZOkbZ8WHwLG/gToP75jTYzYVOn2sT+RHjfvA2Dg/dr3VU22SuCjlUDxNOC5XGBVNvB8f+n7c7nS7R+tbNuSKuzOsyCYd/mYM4noeRAlPlHiIPVx2yjSlN5LjUKB1+uF3W5HcnIyoqI4f+gP5iwyciBCjCLEQESkJ9HG0V0WG+ZvPqx6OxvnDsfEvAzkPv2+6m11p3rVVF3b15oQ16vPB7gbAI8bMJoAUyIQyArjFSnK901W+/U9P+ZkiVRMXE5Njr6j4R29FPbMEeF9nsOQEK8vjTFnEtHzIEp8osQRCfR+L9eoWUtEBACIiopCamqq3t0IK8xZZORAhBhFiIGISE+ijaPr9pzRpp29ZzAxL0OTttTg8/nQ0OxBS6sPMdEGXbboDIQQ16vBAJiTALPeHVFRYw3wwTKgYpv85547iKhzB5HaU80PUpwQry+NMWcS0fMgSnyixEHq49QWkcYcDgfWrVsHhyMy9wYOBHMWGTkQIUYRYiAi0pNI4yjrTnTPYrVj9U4LHt1QioJf/gX5Kz7EN34lfS/45V/w6IZSrN5pCem4RLpehWWtANaODmzi4isOJGDdMTMcv/+mtOUUaYKvL/mYM4noeRAlPlHiIPVx5QWRxkwmEwoKCmAymfTuSthgziIjByLEKEIMRER6EmEcvVb7QY+6E+Fgl8WGdXvOdDuxU9/UggOnruLAqat4cc9pFOamY/H4AZiQd5uGPe2ZCNer0KwVwOapgKsuqMOY0IICVMLkvABsekCqA5IRWVsf64GvL/mYM4noeRAlPlHiIPWx5gVpSu990oiIiIiI1KR33Qk9dVfzotbpxrM7KrHj6KWAjz+9IAsrHhyMtAS+0RFyar+aPPvjD4Dzn2jXbvZI4LsvAWk57W9vrJFWXDguK99mUi9g8UFuIUVERBFB7/dyuW0UkcZcLhf27NkDl8uld1dk8fl8cLhaUON0w+FqgZbznuGaMyVFQg5EiFGEGIiI9MRxVEzHL9sxuejjoCYuAGB7+SVMLvoYFqtdoZ4Fh9frDdJypK+cMdq2mzum48QFINW4UGjiwgUz9mAUXNcKgzguA39ersixqWt8fcnHnElEz4Mo8YkSB6mPkxdEGvN4PKiurobH49G7Kz0Klb2IwylnaomEHIgQowgxEBHpieNocEqWjMW+5RNwV06apu0Oz0nDvuUTOr3v+GU75rxUCpu9WZG2bPZmPLy+NCQmMHi9diJ/prbtDemkvZMlQdW4uJkH0ahGH3gQff3GY29L7ZBq+PqSjzmTiJ4HUeITJQ5SH7eNIk3pvdSI/OPPXsQ3C9W9iImIiIi0pOe2UX/7xX1ITzBh9U4LXtxzWrN2n5wwAMsm5XW4vdbpxuSijxWbuLhRRrIZO5eM4xZSoWjjFODcQfXbyRkj1Z8ItfaJiIgEovd7uVx5QaSx1tZWWK1WtLa26t2VDmqdbjz1xhHM33xY1sQFAJRV12De5k+x5M0jqHW6Fe1XKOdMK5GQAxFiFCEGIiI9cRwNjsko/Xk3rSBL03anDe3d6e3P7qhUZeICkFZgrHivUpVj+4vXaxfuWapNO2M6acdWqfjERSuiYMWtaL357ZOzBwDb54q2Rdfx9SUfcyYRPQ+ixCdKHKQ+Tl4QaczhcGD9+vVwONTdakmuUN6LOFRzpqVIyIEIMYoQAxGRnjiOBifBJG1rk5eZjMJcbYoJF/ZLx6DMpA6377LYgv5/ZU+2l1/CLost6OMEWtuN12sXBk7qfDsnJeXPAgbef/3n2rPS16cvK96UA4lYb/geHEjseOdh5dsjCV9f8jFnEtHzIEp8osRB6uO2UaQpvZcahQKfz4fm5maYzWYYDAa9uwPg+l7E9U0tih0zJS4GWxeNRF5mctDHCsWcaS0SciBCjCLEQESkJxHG0fM1jQCApVvL8dnZWs3aHZ6Thm2LR7f9vMtiw/zNh1Vvd9PcuzvdNnT2ukOyV/IGorBfOt5aNEr28yxWO3aUX8LRC3WouGhv9//glLgYDOmdjKF9UjG9oHenkzOAGNerahprgLWjFSua3U5SL2DxQSD+hgm6FSnKt/MVH4BmmGFGMzo9yyvqVWs7kvH1JR9zJhE9D6LEJ0ockUDv93K58oJIYwaDAbGxsSEzONc63Zi7qUzRiQsAqG9qweMbyxTZQirUcqaHSMiBCDGKEAMRkZ5EGEez0+ORnR6PEf20WflwzYj+7dubmJeBaUPV3T5qekFWpxMXFqtdk4kLACirqsEJq/+f2txlsWH2ukOYvGYfXtxzGgdOXe3w/+D6phYcOHUVL+45jUlrPsbsdYew2/JFh2OJcL2qJj4deOwdIDZV2ePGpkrHjdfu9WUAENvVxAUA8POgquDrSz7mTCJ6HkSJT5Q4SH2cvCDSmN1ux5o1a2C3K7etUjDCYS/iUMuZHiIhByLEKEIMRER6EmkcDYW6EyunDUZGslmV9jKSzVjxYPtP3Z2vacT5mkZsKT2rSptd2VJ6tm3FS1fUqO0m0vWqiozBUkHrpF7KHC+pl3S8DG1X7tuRiDVYAHtn20YBgLtB0/5ECr6+5GPOJKLnQZT4RImD1MfJCyKNxcbGYvz48YiNjdW7K2GzF3Eo5UwvkZADEWIUIQYiIj2JNI6GQt2JtAQTiucXIiUuRtH2UuJiUDy/EGkJpna3j129G2NX78aW0nOKtteTV0vPYuzq3V3er1ZtN5GuV9VkDJa2eMqfFdxx8mdJx9F44gKQVl2MxyHEoosPfHmCX2lOHfH1JR9zJhE9D6LEJ0ocpD7WvCBN6b1PGrUX6nsRExEREYUzvetOXGOx2vH4xjJFVttmJJtRPL+w07pmuU+/H/Txg1G9amqH20K9thsg7fvd0OxBS6sPMdEGJJqNYm6jcbIEOFAEnD3g/3NyxgBjlrYvzt0ZFWte9OhnFwBz53VRiIiIwp3e7+Vy5QWRxpqamrBz5040NTXp2o9Q3ov4ZqGSMz1FQg5EiFGEGIiI9CTaOKpn3Ykb5WUmY+eScZge5FZW0wuysHPJOMXetFeb2rXdLn9ZH/D1arHasXqnBY9uKEXBL/+C/BUf4hu/kr4X/PIveHRDKVbvtAT1f+iQM3CStO3T4kPA2J8A/cd3rIkRmyrdPvYn0uPmfdDzxIXKmhCLnRiPJnTx6WBTF9tJUVBE+32gBeZMInoeRIlPlDhIfUa9O0AUabxeL+rq6uD1enVp/9p+wHrsRfzEuP7ITo+X/Vy9cxYKIiEHIsQoQgxERHoScRxdOW0wPqm6qkqNsc7qTnQlLcGEojnDML0gC+v2nkFZlf8fYinsl47F9w7ocZIk1Khd2+25nccx0ijvet1lsWHdnjPdfojoWsHwa0XDC3PTsXh8+OW/Sxl3ABnPSP/2+aSaER43YDRJEwGBrDpZ8nfp+x9/AJz/RLm+AvDCgDokw9tZye7skYH1l3ok4u8DtTFnEtHzIEp8osRB6uO2UaQpvZcaUWgu5yciIiISmcVqx8PrQ2vrohNWB3YcvYij5+tx7GJ9u76lxMUgv3cKhmanYNrQ3p3W0+hMKP0/U6stuzbOHY6JeRk9Pq7W6cazOyqDqrsxvSALKx4c3KHWCN3go5XA/he0a2/sT4BvPqNde0RERBrT+71crrwg0pjH48GFCxfQp08fGI18CfqDOYuMHIgQowgxEBHpSdRxNC8zGVsXjdSk7oS/BmUmYVlmHgCp5oLT3Qq3xwuTMQoJpuiwr7mwbs8Z1duIhhevfHgY426f1O31evyyHXM3BX/ut5dfQumZq0Gfe6Hlz1R88sKDaFxAL/TBZRjR2v7OITMVbYuuE/X3gZqYM4noeRAlPlHiIPWx5gWRxhoaGlBcXIyGhga9uxI2mLPIyIEIMYoQAxGRnkQeR0O57oTBIBWJTk8wBVUset/yCdi3fALuyklTrG/+GJ6Thn3LJ7T9rFVttzhDC/rVHsbRKmuXj7lWMFyp7ats9mY8vL4UFqtdkeMJJ2Mw0He0oodsQAKKDbPRgIT2d+SMkbbAIlWI/PtALcyZRPQ8iBKfKHGQ+rhtFGlK76VGFFrL+YmIiIgi0S6LTei6E6t3WvDintOatffkhAFYNimvrbbb+o9PY0vpOc3a/97IHPzqoSEdbq91ujG56GPV6p3sXDKOW0h15mQJ8Pps9dt55G3di4kTERGpTe/3crkuh4iIiIiISEMT8zIwMS9DlboToWBaQZamkxfThvYGAIxdvVuzNm/0aunZTicv1C4YvuK9ShTNGabK8cPawEnSdk4V29RrI38WJy6IiIg0wG2jiDRWX1+PVatWob6+Xu+uhA3mLDJyIEKMIsRARKSnSBtHB2UmYdmkPGxZOALlz9yHipWT8LdfSN/Ln7kPWxaOwLJJeWE1cQFIW2QV5qZr0lZhv3Td8pNgaMYjsUeQYGjGzRsa7LLYgirO7Y/t5Zewy2JTtY2w9cDzQFIvRQ5VjySswo9Qj6+us6RewJTVihybuhZpvw+UwJxJRM+DKPGJEgepj5MXRBqLj4/HQw89hPj4eF3aD5W9iOXQO2ehIBJyIEKMIsRARKSnSB5Hlao7ESp+OL6/Ju0svneAJu10xuUzYr87Fy6fEU53+0LOWhQMB4B1e7VpJ+zEpwOPvQPEpgZ/KDThIZQgHk3S8R57Rzp+sHw+wGUHnFel79zRu51I/n0QKOZMInoeRIlPlDhIfdw2ikhjMTExyMvL06397HTpF8OIfun47GytZu2O6J/e1rZcMTExGDRoEBqaPXC43YiJNgjxR70cel83WhAhRhFiICLSE8dRcUzMy8C0oVmqrj6YXpClaw2QVkTjnFf6QJDb4wXM0u1aFQwHgLKqGpywOsJudY4mMgYD8z4AtswAHJcDPkwMPMjDaWnFxWPvSMcNlK0SOLYNuPgZcPko4Kq7fl9sKtBrKND7LmlbqggvBs7fB/IxZxLR8yBKfKLEQerjygsijTU2NuLdd99FY2Ojrv2YVpClbXtf7UUsh8Vqx+qdFnxv/cdY8Mu1GL7ifXzjV39B/ooPUfDLv+DRDaVYvdOCE1aHCj0OLaFy3ahJhBhFiIGISE8cR8WyctpgZCSbVTl2RrIZKx7UrlhkZ8xowT0xVTCjBVfsLpyvacT5mkZsKT2raT+0bi+sZAwGFh+UJgMC1IhYvJu2CI2P/zXwiYuTJcDGKcDa0cD+F4Cqve0nLgDp56q90v1rR0mPP/lhwP0Od/x9IB9zJhE9D6LEJ0ocpD6uvCCKUNf2ItbiU2Fy9yLeZbFh3Z4zbX0zowV3x3jbPaa+qQUHTl3FgVNX8eKe0yjMTcfi8QN0/fQdEREREV2XlmBC8fxCPLy+tF0x8mClxMWgeH4h0hJMih0zWJOK9unWdlcFw+kr8enAjA3SBMaBIuDsAf+fmzMGGP4kcLoFiA9g293GGuCDZYEVDz93EHj9q4mXKauV2aqKiIgozBh8N1cWI1JRZWUlhgy5/h/riooKDB6s7yemItkuiw3zNx9WvZ1Nc+/2a1Kh1unGszsqg9peYHpBFlY8ODik/pglIiIiimQWqx2PbyyDzd4c9LEyks0onl+IvMzkDvedr5E+vbl0a7mm26MOz0nDYQ3b60zV/zwQUVuqBsX2uTSZcPEz4FJ5x62bsgqkrZuGzAxu6yZrBfDazKC2rGqjxJZVREREAdD7vVxuG0WksZaWFlgsFrS0KPfps0Bd24tYTf7uRXz8sh2Tiz7udOIiGq3oG1WLaLR28sz2tpdfwuSij2Gx2gPqb6gKpetGLSLEKEIMRER64jgqprzMZOxcMg7Tg9y2dHpBFnYuGdfpxAUg1XbLTo/HiH7afEL92v9RC3M674+Wbi4Y7i+fzweHqwU1TjccrhZExGcbM+4AvvkM8P3twE+rgZ9dAJadkb7/tFq6/ZvPtE1cBDQuWSuAzVOVmbgApONsekCqmREh+PtAPuZMInoeRIlPlDhIfZy8INJYqO3rFwp7ER+/bMecl0q7/DRerMGDe0zViDV4/GrXZm/Gw+tLhZrACLXrRg0ixChCDEREeuI4Kq60BBOK5gzDxrnDUShzcqGwXzo2zb0bRXOG+bW6Vqvabtf+j/qtfwpgOyGFuT3enh/0lWt15R7dUIqCX0r15CK1rhwMBsCcBCR8TfreyeoV2eNSY4204uLmmhbBctVJxccbtSkGrzf+PpCPOZOIngdR4hMlDlIft40iTem91Ig6Z7HaVdmLeOuikV1+Mu6aWqcbk4s+VmQbgZtlJJuxc8k4biFFREREFGJOWB3YcfQijp6vx7GL9e3+H5oSF4P83ikYmp2CaUN7y6qdds3sdYc0q+321qJRyH36fdXb6k7FyklINHdf0vLmunL+YF25AGxbEFiNC3/lz5JqeBAREWlA7/dyWbCbiJCXmYyti0ZqshfxzZ7dUanKxAUgrcBY8V4liuYMU+X4RERERBSYQZlJWJaZB0DausjpboXb44XJGIUEU3TQ9Rt+OL4/yjarP3mx+N4BqrfhjwRTdJf3BVNXrqy6BmWba1hXzl8nS9SduACAY29LExgDJ6nbDhERUQjgtlFEGqurq8PKlStRV1end1fa0Wov4hvtstj8+iMq0dCMeXGHkWiQP8mxvfwSdllssp8XakL1ulGSCDGKEAMRkZ44jkYmg8GARLMR6QkmJJqNihSe1qK223cGp+LjrWtRV1eHfcsntH3dlaPtNlLDc9K6zFl3deXkELWunD9kjUv716jdHcmBIm3a0RF/H8jHnElEz4Mo8YkSB6mP20aRpvReahQKPB4PLly4gD59+sBolLf4yefzoaHZg5ZWH2KiDYr9cXezXRYb1u09g7IqGUvK+6Vj8b3ylpT7u5w/Gl7cGtWAK95EtAYw53ptOX84C+a6CRcixChCDEREeuI4SkpSe3vS/3tyNJy1X3S4XlfvtODFPacVb7MrT04YgGWT8jrcfq2unB5bw4rE73HJVgmsHa1dxxYfaisqLiL+PpCPOZOIngdR4hMljkig93u5nLwgTel9wYcji9WOHeWXcPRCHSou2jvsBzykdzKG9knF9ILA9gPujpp7EVusdkxes0/R/nanZOk4xfNDRERERKFNj9puofD/XNaV01DtWen7gSLg8MvatXv3QmD0U0BajnZtEhFRxNH7vVxuG0WkMafTiTfffBNOp7Pbx+2y2DB73SFMXrMPL+45jQOnrnb4o6u+qQUHTl3Fi3tOY9KajzF73SHstnyhWF8HZSZh2aQ8bFk4AuXP3IeKlZPwt19I38ufuQ9bFo7Askl5siYFztc04nxNI7aUnvX7ObFowUTTKcQi8D86t5SexfmaxoCfrzd/r5twJkKMIsRARKQnjqOktGu13TKSzYocLyPZ3DZx0dX1mpeZjMLcdEXa60lhv/RO/y+uRV25SNHjuFR0p/Sl5cQFAHy6QWpXUPx9IB9zJhE9D6LEJ0ocpD5OXhBpLCoqCqmpqYiK6vzlV+t046k3jmD+5sN+bal0o7LqGszb/CmWvHkEtU63Et1to9RexGNX78bY1buxpfSc38/xwoAGnwleBL5F1qulZzF29e6An6+3nq4bEYgQowgxEBHpieMoqUGt2m7dXa8/HN8/qLb81VnBcH/rygVDlLpy/uC4pA/mXT7mTCJ6HkSJT5Q4SH3cNoo0pfdSo1B3/LIdczeVKfIpqYxkM4rnF4bcfrS5T7+va/vVq6bq2j4RERER6Uer2m4A8NQbR1SdRJhekIWiOcM63O5vXblgiVBXThErUnRuv17f9omISGh6v5fL6S0ijbndbpSXl8Ptbr8y4lpBPaWWd9vszXh4fSksVrsix9OTEa24PfpLGNGqd1d009V1IxIRYhQhBiIiPXEcJbVNzMvAW4tGoWTpODw5YQDuuf0WpMTFtHtMSlwM7rn9Fjw5YQBKlo7DW4tGdTpx0dP1unLaYMW2q7pZRrIZKx7s+MaBxWrXZOICAMqqanDC6gjqGD6fDw5XC2qcbjhcLQjFz1ZyXNIH8y4fcyYRPQ+ixCdKHKQ+lnMn0pjL5cKePXvQv39/mExSkbtapxtzN5UpWkgQkGpiPL6xLOwL6pnQigLjJVxqTYYH0Xp3RxedXTeiESFGEWIgItITx1HSyqDMJCzLzAMgvYHudLfC7fHCZIxCginary1Se7pe0xJMKJ5fqErB8OL5he3+f3+ttpucunJK2FJ6Fk+M64/s9Hi/n2Ox2rGj/BKOXqhDxUV7u9ykxMVgSO9kDO2TiukFvWXV1lOLsOOSzwc0O4DWFiA6BjAnAQFuDawGYfOuIuZMInoeRIlPlDhIfdw2ijSl91KjUKXXknI9cNsoIiIiIookFqsdj29Ud2vYcPg/9i6LDev2nJG1MqQwNx2Lx8vfsktT4bRtlK0SOLYNuPgZcPko4Kq7fl9sKtBrKND7LiB/FpBxh9I9JSKiMKT3e7ncNopIYz6fDy6Xq21JNAvq+cMHEzwAIneu9ebrRkQixChCDEREeuI4SuHE3+tVrYLh4aLW6cZTbxzB/M2HZW9pVVZdg3mbP8WSN4+g1qnP1iI9nuclf5e+skdo27HskVK7/jhZAmycAqwdDex/Aaja237iApB+rtor3b92lPT4kx8q3Wu/8feBfMyZRPQ8iBKfKHGQ+jh5QaSx+vp6PPfcc6ivlz4hs27PGU3aXbdXm3Z6sm/5BOxbPgF35aT5/ZxEgxuPxpUj0RD4HyzDc9Kwb/mEgJ+vt5uvGxGJEKMIMRAR6YnjKIUTOddrWoIJRXOGYePc4Sjsly6rncJ+6dg0924UzRkWdlvBHr9sx+Sij4P+sNb28kuYXPSxLvX8ejzPaTnSV84YbTuWO0ZqtzuNNcC2BcDrs4FzB+Ud/9xB4PVZwDsLpeNojL8P5GPOJKLnQZT4RImD1Mdto0hTei81CgWtra24cuUKbr31VvzjihOT1+zTrO2SpeNCYt9YAFi904IX95z267FR8CLV4EKdLxbeAOdcn5wwAMsm5QX03FBw43UTHS1m3Q8RYhQhBiIiPXEcpXASzPV6wurAjqMXcfR8PY5drO9Q9yG/dwqGZqdg2lD/6j6E4rZRxy/bMecl5et9bF00UtPVJ36fZ1ultLJBK4sPdb+1k7UCeG0m4LgcfFtJvYDH3gEytPvbnb8P5GPOJKLnQZT4RIkjEuj9Xi4LdhNpLDo6Gi2mZFyqb9aloN6vHhrS8wM1MK0gy+/JCy+iUOPzvwhgp+0N7R3U8/UWHR2NzMxMvbuhKhFiFCEGIiI9cRylcBLM9apEwfBQVut0Y+6mMkUnLgCgvqkFj28sw84l4zRbheL3ec4YDPQdLX+FQyByxvQ8cbF5asetoQLluAxsegCY94FmExj8fSAfcyYRPQ+ixCdKHKQ+bhtFpLGGhgb815q1uH/1h9hSek7Ttl/VeLKkO3mZySjM9W/JfBxaMNlkQRwC++OnsF96yKw4CVRDQwM2b96MhoYGvbuiGhFiFCEGIiI9cRylcKLU9WowGJBoNiI9wYREszHsJy4A4NkdlYoUKO+Mzd6MFe9VqnLszsg6z/csVb0/AIAx3bTTWCOtuFBq4uIaVx2wZYZmW0jx94F8zJlE9DyIEp8ocZD6OHlBpDGj0QirNwmt0OePklDaKe6H4/v79bhWGILK2eJ7BwT0vFBiNBqRm5sLo1HcBXMixChCDEREeuI4SuEklK7XQOrKKaGzunK7LLaga1z0ZHv5Jeyy2FRt4xpZ53ngJGDITHU7lD8LGHh/1/d/sEyZraI647gM/Hm5Ose+SSi9vsIFcyYRPQ+ixCdKHKQ+1rwgTem9T1qo0HNP2oqVk5BoDp1fDk+9cUTVP26mF2ShaM4w1Y5PRERERBQq5NSVU0JndeVmrzuEsmr1P51f2C8dby0aFdQxfD4fGpo9aGn1ISbaoMzKl8YaqfaFGhMISb2AxQeB+C5WsJ8skYpzq+2Rt6SJGiIiEp7e7+Vy5QWRxpqbm3FHtA0xaNWlfbfHq0u7XVk5bTAyks3dPiYGrQHlLCPZjBUPijE51tzcjNLSUjQ3q7P8PhSIEKMIMRAR6YnjKIWTULxepxVkadveTXXlLFa7JhMXAFBWVYMTVofs51msdqzeacGjG0pR8Mu/IH/Fh/jGr6TvBb/8Cx7dUIrVOy1tx5Z9nuPTpeLWsamy+9at2FTpuF1NXADA/jXKttmVA0WqNxGKr69Qx5xJRM+DKPGJEgepj5MXRBpzu9243fgljDpNXpiMofWyT0swoXh+IVLiYrp8jBGtsnOWEheD4vmFmhXyU5vb7UZ5eTncbrfeXVGNCDGKEAMRkZ44jlI4CcXrVU5duWDdWFfufE0jztc0YovGNfa2lJ7F+ZpGvx67y2LD7HWHMHnNPry45zQOnLraoaB4fVMLDpy6ihf3nMakNR9j9rpD2P35JfnnOWOwVNw6qZeccLqW1KvnYtm2Sm2KhQPA2QOA7XNVmwjF11eoY84koudBlPhEiYPUx22jSFN6LzUKFXpuG1X1Pw+EZBFAi9WOxzeWKVLYLyPZjOL5hcjLTFagZ0RERERE4WOXxYb5mw+r3s6muXdjQt5tAPT9+wYAqldN7fK+Wqcbz+6oDGqr2ukFWVjx4GD5H4xqrJFqRBx7O+C2kT8LmLK66xUXtV9NGB0oAg6/HHg7ct29EBj9FJCWo12bRESkOb3fyw2tj2ATRQCv14sPfvgN7P33e3UpqBeKExeA9CmxnUvGYXonS90N8CHR0AwDep5rnV6QhZ1Lxgk3ceH1elFXVwevN7S2/VKSCDGKEAMRkZ44jlI4CdXrdWJeBqYNVXf7qOkFWW0TF6Hs+GU7Jhd9HNTEhQE+/PVoFaas2QuL1S7vyfHpwIwNUo2InDHynpszBnjkben53W0VVXSn9KXlxAUAfLpBalclofr6CmXMmUT0PIgSnyhxkPo4eUGkMbvdjreLX0KK0YMR/bRZ0n3NiP7atidXWoIJRXOGYePc4Si8ITcJBjdmxR5DgqHr5YSF/dKxae7dKJozTJitom5kt9tRVFQEu13mH0xhRIQYRYiBiEhPHEcpnITy9epPXblAhUtdueOX7ZjzUmnQK7uv/S3S0ODAw+tL5U9gAFJx63kfAIsPAWN/AvQf37EmRmyqdPvYn0iPm/cBMPD+oPoezkL59RWqmDOJ6HkQJT5R4iD1cdso0pTeS41Cgdfrhd1uR3JyMk5+0YDJa/Zp1nbJ0nFt+9KGgxNWB3YcvYij52px+tIVWJui4IO0ciQlLgb5vVMwNDsF04b2Dqu4AnHjdRMVJea8swgxihADEZGeOI5SOAn169VitePh9aUd6joEIyUuBlsXjeywyjnUto2qdboxuehjRbakNcCHBIMbTp8JPhiQkWzGziXjgv/AlM8HuBsAjxswmgBTIhDIKvkVKcH1I1gr6lU5bKi/vkIRcyYRPQ+ixCdKHJFA7/dyjZq1REQAgKioKKSmpgK4XlCvrLpG9XZvLKgXLgZlJmFZZh4AwOfzweluhdvjhckYhQRTdMhugaWGG68bUYkQowgxEBHpieMohZNQv17zMpOxddHIiKwr9+yOSkViBgAfDGjwXV/FYrM3Y8V7lSiaMyy4AxsMgDkJUGeBTNgL9ddXKGLOJKLnQZT4RImD1MepLSKNORwOrFu3Dg6HAwDww/H9NWl38b0DNGlHDQ6HA+vXr4fP3YT0BBMSzcaImrgAOl43IhIhRhFiICLSE8dRCifhcL12V1dOjnCqK7fLYguqxsXN4uDGNHMl4nB9C9vt5Zewy2JTrI2I5PMBLjvgvCp9v2lTkHB4fYUa5kwieh5EiU+UOEh9XHlBpDGTyYSCggKYTNIy42sF9ZT8D/bNwqWgXlduzlkkioQciBCjCDEQEemJ4yiFk3C5Xq/VlZtekIV1e8+grMr/Vd+F/dKx+N4BPf4tsW/5BADA0q3l+OxsbVD9lWN4Thp++3BBu9vW7TmjaBseROOU5xZ4EN2+nb1nMDEvQ9G2hGerBI5tAy5+Blw+Crjqrt8Xmwr0Ggr0vgvInwVT6oCweH2FknAZk9Qmeh5EiU+UOEh9rHlBmtJ7n7RQpeSerDdTbE9WIiIiIiIKe2115c7X49jF+nY1MYKtK7d6pwUv7jmtdJe79OSEAVg2Ka/tZ4vVHnk1BWvPSt//+APg/CfatZs9EvjuS0BaTs+PPVkC7F8DnDvo//H7jgbu+XFEFy0nIgoFer+Xy22jiDTmcrmwZ88euFyuttvSEkwonl+IlLgYRdtKiYtB8fzCsJ+46CxnkSYSciBCjCLEQESkJ46jFE7C9XodlJmEZZPysGXhCJQ/cx8qVk7C334hfS9/5j5sWTgCyyblBfSm/LQgt6eS3d7Q3gCA8zWNOF/TiC2lZxVvwwQPCowXYYKnw31qtCdbWo70lTNG23Zzx/Q8cdFYA2xbALw+W97EBQDXuc+w5/UX4HrrB9JxqEfhOiYpTfQ8iBKfKHGQ+jh5QaQxj8eD6upqeDzt//N7raBeRrIyFdsyks3YumhkWOxL25OuchZJIiEHIsQoQgxERHriOErhRITr1WAwINFsVKyuXF5mMgpz0xXqXfcK+6W3TbCMXb0bY1fvxpbSc4q3Ew0fMqMciEbHTSteDYXJi2vyZ2rb3pAe2rNWAGtHAxXbAjq8B9GoRh94Pv8/6Ti2yoCOE0lEGJOUIHoeRIlPlDhIfdw2ijSl91KjcFDrdGPFe5XYXh54DYzpBVlY8eDgsF9xQURERERE4WWXxYb5mw+r3s6muXe31eLIffp91dvrStX/PBD0pI9iNk6RvcIhIDljgHkfdH2/tQLYPLV9TYtgxaZKbWbw/QMiIi3p/V4uV14Qaay1tRVWqxWtra2d3n+toN7GucNR2E/ep5YK+6Vj09y7UTRnmFATFz3lLBJEQg5EiFGEGIiI9MRxlMIJr9fOTczLwLSh6m4fNb0gq8ci4kqJghfphkZEwdvp/U53CJ3/e5Zq086YbtpprAFemxn0xEUromDFrWi99raVqw7YMoNbSHWDY5JE9DyIEp8ocZD6OHlBpDGHw4H169fD4XB0+7iJeRl4a9EolCwdhycnDMA9t9/SoSZGSlwM7rn9Fjw5YQBKlo7DW4tGafafeC35mzORRUIORIhRhBiIiPTEcZTCCa/Xrq2cNlix7XBvlpFsxooHtfvEZ7yhBdNjP0e8oaXT+92ezic1dDFwUs/bOQUrf1b3RbQ/WAY4LgfdjAOJWG/4HhxIvOHGy8Cflwd9bFFxTJKIngdR4hMlDlIft40iTem91CgU+Hw+NDc3w2w2y15e7PP54HS3wu3xwmSMQoIpOnSWKKsomJyJIhJyIEKMIsRARKQnjqMUTni9ds9itePh9aWob+r8Tf9ApMTFdFrXT91to3wwoRVuRAPoeJ4rVk5Cotko/6g+HxqaPWhp9SEm2qBIzREA0sqEtaMVmUDoIKkXsPggEN/FDgEnS6Ti3ArwAWiGGWY0d8z6I29JEzXUDsckieh5ECU+UeKIBHq/lyv/NywRBcVgMCA2Njbg5yaajYA6H2IKWcHkTBSRkAMRYhQhBiIiPXEcpXDC67V7eZnJ2LpoJB7fWAabvTno42Ukm1E8v7DDxIX6DHB389ZJgina7yNZrHbsKL+EoxfqUHHR3m5iJyUuBkN6J2Non1RML+jdVoxctvh04LF3gE0PKF9z4rF3up64AID9axRrzgAgFl1cNweKOHnRCY5JEtHzIEp8osRB6uO2UUQas9vtWLNmDex2u95dCRvMWWTkQIQYRYiBiEhPHEcpnPB67VleZjJ2LhmH6QXB1cCYXpCFnUvGdTlxsW/5BOxbPgF35aQF1U5n4uHGTPPfEQ93h/uG56T59YnhXRYbZq87hMlr9uHFPadx4NTVDitS6ptacODUVby45zQmrfkYs9cdwm7LF4F1OmOwVNw6qVdgz79ZUq+ei2XbKhUtFm5HItZgAew3bht1zdkDgO1zxdoSBcckieh5ECU+UeIg9XHygkhjsbGxGD9+PGeYZWDOIiMHIsQoQgxERHriOErhhNerf9ISTCiaMwwb5w5HYb9uPrXficJ+6dg0924UzRmGtARTl4/LTo9Hdno8Rsg8vj/ciEa5J+urbaPaG9G/+/ZqnW489cYRzN98GGXV8gpNl1XXYN7mT7HkzSOodXacOOlRxmBpi6f8WfKfe6P8WdJxupq4qD0rfX36cnDt3CQWzRiPQ12vvjisbHsi4JgkET0PosQnShykPta8IE3pvU8aERERERER6eeE1YEdRy/i6Pl6HLtY32HrpPzeKRianYJpQ+VvnWSx2jF5zT6lu9ylkqXjuuzj8ct2zN0UIltmnSyRtlo6e8D/5+SMAcYs7b44NwCsSAmsT0pYUa9f20REEULv93JZ84JIY01NTdi7dy/uvfdexMXF6d2dsMCcRUYORIhRhBiIiPTEcZTCCa/XwAzKTMKyzDwAUsFWp7sVbo8XJmMUEkzRQRVuzctMRmFuuuxVDt0xwYOCmEsob8lqV/uisF96txMXc15Srli5zd6Mh9eXdlqs3C8DJ0lfts+Bim3Axc+AS+Xta2LEpgJZBUDvu4AhM4GMOxTpe6CaEIu9GIl7UYo4uDp/kM8HsNBvG45JEtHzIEp8osRB6uPkBZHGvF4v6urq4PV69e5K2GDOIiMHIsQoQgxERHriOErhhNdr8AwGAxLNRsCs3DF/OL4/yjYrN3kRBR8SDW5Eof2mFYvvHdDp42udbszdVKbYxMU19U0teHxjGXYuGdftFlrdyrgDyHhG+rfPB7gbAI8bMJoAU2JITQR4YUAdkuFFN31yNwDmAAubC4hjkkT0PIgSnyhxkPq4bRRpSu+lRkRERERERCS2p944gh1HL6l2/OkFWSiaMyzk2taFnttGLTsDJHwtsOf6fECzA2htAaJjpEmQEJq8ISIKFXq/l8uC3UQa83g8qK6uhsfj0bsrYYM5i4wciBCjCDEQEemJ4yiFE16voWvltMHISFZmOUc0vMiMsiMa0qeDM5LNWPFg52/a7LLYVJ24AIDt5Zewy2JTtY1Q4EE0qtEHnk4KpbcxylyBYqsEPloJFE8DnssFVmUDz/eXvj+XK93+0Uppe60wxDFJInoeRIlPlDhIfZy8INJYQ0MDiouL0dDQoHdXwgZzFhk5ECFGEWIgItITx1EKJ7xeQ1daggnF8wuREhcT9LHiDC2YYj6JOEMLUuJiUDy/sMttm9btORN0e/5Yt1ebdvTUgAQUG2ajAQldP8iU6N/BTpYAG6cAa0cD+18Aqva2r/cBSD9X7ZXuXztKevzJDwPtvi44JklEz4Mo8YkSB6mP20aRpvReakRERERERESRwWK14/GNZbDZm4M+VkayGcXzC7ssmG2x2jF5zb6g2/FXydJxXRYM94fP50NDswctrT7EREu1RwIqll57Vvr+xx8A5z8JuD+yZY8EFpR0/5jGGuCDZVKR8kDlzwKmrAbi0wM/BhFRGNP7vVwW7CYiIiIiIiIi4eRlJmPnknFY8V4ltpcHvp3T9IIsrHhwcKcrLs7XNAIAtpSeDfj4gdhSehZPjOuP7PR4v59jsdqxo/wSjl6oQ8VFe7ui4ilxMRjSOxlD+6RiekFv/ydG0nKk7zljtJ28yB3T/f3WCuC1mYDjcnDtHHsbqN4PPPYOkMEPXhIRaY3bRhFprL6+HqtWrUJ9fb3eXQkbzFlk5ECEGEWIgYhITxxHKZzweg0PaQkmFM0Zho1zh6Own7xPzxf2S8faWXnoVV2CKE9Tp48Zu3o3xq7ejS2l55Tort9eLT2Lsat3+/XYXRYbZq87hMlr9uHFPadx4NTVdhMXAFDf1IIDp67ixT2nMWnNx5i97hB2W77wv0P5M+V0v0f1SMIq/Aj16GISZUg37VkrgM1Tg5+4uMZxGdj0gFQzI4RxTJKIngdR4hMlDlIfV14QaSw+Ph4PPfQQ4uP9/4RMpGPOIiMHIsQoQgxERHriOErhhNdreJmYl4GJeRk4YXVgx9GLOHq+Hscu1ndYfZDfOwVDs1Mwbai0+qClpQX9EsLzPNc63Xh2R2VARcTLqmtQtrmm21Un7WQMBvqOBs4dDLC37cWjCQ+hBPHoZNIoZwyQcUfnT2yskVZc3FzTIliuOmDLDGDxwZDdQopjkkT0PIgSnyhxkPpY84I0pfc+aURERERERESAVPfB6W6F2+OFyRiFBFO07LoPuU+/r1Lv/FO9amqntx+/bMfcTdrU+2hzsgR4fXbQ7fXokbeBgfd3ft+2BcHVuOhJ/ixgxgb1jk9EFGL0fi+X20YRaayxsRHvvvsuGhsb9e5K2GDOIiMHIsQoQgxERHriOErhhNdr+DMYpELV6QmmLgtWh+N5Pn7ZjjkvlSoycQEANnszHl5fCovV3v0DB07qfjsnGRoRi3cxCY2IbX9H/qyuJy5Olqg7cQFINTBO9lAoXCfheK2qQfQ8iBKfKHGQ+jh5QUREREREREQkgFqnG3M3lXWoaRGs+qYWPL6xDLVOd/cPfOB5IKmXom23SeoFTFnd9f3716jT7s0OFGnTDhERcdso0pbeS42IiIiIiIiIlBJq20Y99caRgGpc+Gt6QRaK5gzr/kG2SqnAtZJ1J2JTgXkfSLU1umpz7Wjl2uvJ4kNd190gIhKI3u/lcuUFkcZaWlpgsVjQ0qLsJ2FExpxFRg5EiFGEGIiI9MRxlMIJr9fI0NN53rd8AvYtn4C7ctI07dfwnDTsWz6h3W27LDZVJy4AYHv5Jeyy2Lp/UMZgaaIhiBUYLTDCggFogVE6TmcTF7Vnr399+nLAbQXksMbt+YFjkkT0PIgSnyhxkPo4eUGkMe7rJx9zFhk5ECFGEWIgItITx1EKJ7xeI0NP5zk7PR7Z6fEY0S9d036N6J+O7PT4dret23NGk7bX7fWjnYzBwOKDUo2KADQiTqp5MWimdJzOVlwU3Xn9S+vJhE9Dr2g3xySJ6HkQJT5R4iD1cdso0pTeS42IiIiIiIiIlGax2jF5zT7N2itZOg6DMpNCpv1unSyR6kScPeB/AzljgDFLuy7ODQArUvw/nhqerQM6KfJORCQSvd/LNWrWEhERERERERGRgPIyk1GYm46y6hrV2yrsl942cXC+RvrU8pbSs6q3e6MtpWfxxLj+HVZ/dGrgJOnL9jlQsQ24+Bl8l8phuKEmhi82FYasAqD3XcCQmeFRT8LdAJj9nMC5kc8HNDuA1hYgOkY6BidBiIg6xW2jiDRWV1eHlStXoq6uTu+uhA3mLDJyIEKMIsRARKQnjqMUTni9RgY55/mH4/ur3yEAi+8d0Pbvsat3Y+zq3dhSek6Ttq95tfQsxq7eLes5Fl8frG6ZjUfdP0OB6yUMdr2MYa51GOx6GQWul/Co+2dY3TIbJ3zZ4fH68rj9f6ytEvhoJVA8DXguF1iVDTzfX/r+XK50+0crpQmeAIVFzjQgeh5EiU+UOEh93DaKNKX3UqNQ4PF4cOHCBfTp0wdGIxc/+YM5i4wciBCjCDEQEemJ4yiFE16vkUHueX7qjSOqFs2eXpCFojnD2n7Offp91dryR/WqqT0+ZpfFhnV7zshalTIiJwVzBifgwdH5Xedd722jfnah55UXJ0uA/WuAcwf9P27f0cA9P+5+y6xOcEySiJ4HUeITJY5IoPd7ubw6iDRmNBqRm5urdzfCCnMWGTkQIUYRYiAi0hPHUQonvF4jg9zzvHLaYHxSdRU2e7PifclINmPFg+Hz4b9apxvP7qgMaDLnk7P1+ORsPfZcAlY8OBhpCSYVehgkU2LX9zXWAB8sk7bJkuvcQeD1r4qdT1kNxPtXDJ5jkkT0PIgSnyhxkPq4bRSRxpxOJ9588004nU69uxI2mLPIyIEIMYoQAxGRnjiOUjjh9RoZ5J7ntAQTiucXIiUuRtF+pMTFoHh+YWi+id+J45ftmFz0ccCrUGLRgommUygpP4vJRR/DYrV3fNCSv1//yh4RZI9lyh7ZdZ0KawWwdnRgExc3Ova2dBxbpV8P55gkET0PosQnShykPk5eEGksKioKqampiIriy89fzFlk5ECEGEWIgYhITxxHKZzweo0MgZznvMxkbF00EhnJZkX6kJFsxtZFI5GXmazI8dR2/LIdc14qDWr1iRcGNPhM8MIAm70ZD68v7TiBkZZz/StnTJC9lim3i/asFcDmqYDjsjLtOC4Dmx7wawKDY5JE9DyIEp8ocZD6WPOCNKX3PmlEREREREREWqh1urHivUpsLw+8Bsb0gqxut00KtZoXtU43Jhd9rNq2WTuXjOs8F7ZKaZWCVhYfAjLuaH9bY43UB6UmLm6U1AtYfNDvLaSIiJSi93u5nN4i0pjb7UZ5eTncbrfeXQkbzFlk5ECEGEWIgYhITxxHKZzweo0MwZzntAQTiuYMw8a5w1HYT96bzoX90rFp7t0omjOs262i9i2fgH3LJ+CunDTZ/QvG8Jw07Fs+ocPtz+6oVGTiwohW3B79JYxobbvNZm/Give6WIGQMVgqdK2FnDEdJy4AqcaFGhMXgHTcPy/v9iEckySi50GU+ESJg9THyQsijblcLuzZswcul0vvroQN5iwyciBCjCLEQESkJ46jFE54vUYGJc7zxLwMvLVoFEqWjsOTEwbgnttv6VATIyUuBvfcfguenDAAJUvH4a1FozAh77Yej52dHo/s9HiMkDk5EqwR/dORnR7f7rZdFlvANS5uZkIrCoyXYLph8gIAtpdfwi6LrfMn3bNUkbZ7NKaTdk6WBF/joifH3pba6QLHJInoeRAlPlHiIPVx2yjSlN5LjYiIiIiIiIj05vP54HS3wu3xwmSMQoIpGoauCkD7wWK1Y/KafQr2sHslS8dhUGZSu9tmrzuEsuoa1dsu7JeOtxaN6vzObQvUnUTInwXM2NDx9o1TgHMH1Wv3mpwxwLwP1G+HiOgrer+Xy5UXRBrz+XxwuVzgvKH/mLPIyIEIMYoQAxGRnjiOUjjh9RoZ1DrPBoMBiWYj0hNMSDQbg5q4AKQi4YW52qy+KOyX3mHiwmK1Kzxx4YMJHgAd815WVYMTVkfnT3vgeak+hBqSegFTVne83VapzcQFAJw9ANg+7/Quv69Vnw9w2QHnVem7YGOY6GOzKPGJEgepj5MXRBqrr6/Hc889h/r6er27EjaYs8jIgQgxihADEZGeOI5SOOH1GhnC6Tz/cHx/TdpZfO+Atn+fr2nE+ZpGbCk9q2gbiQY3Ho0rR6Kh8/3wu2wvPh147B0gNlXR/iA2VTrujQWza89KX5++rGxbPTn8stTuTbq9Vm2VwEcrgeJpwHO5wKps4Pn+0vfncqXbP1rZ5cRIOAmn12wgRIlPlDhIfdw2ijSl91KjUNDa2oorV67g1ltvRXR0tN7dCQvMWWTkQIQYRYiBiEhPHEcpnPB6jQzhdp6feuOIYnUnOjO9IAtFc4a1/Zz79PuqtBMFL1INLtT5YuHt4nO31aumdn0AWyWwZYYyBbSTekkTFxk3vXexIiX4YwdjRfs3fTu9Vk+WAPvXyFsZ0nc0cM+PgYH3K9dXDYXba1YuUeITJY5IoPd7uVx5QaSx6OhoZGZmcnCWgTmLjByIEKMIMRAR6YnjKIUTXq+RIdzO88ppg5GRbFbl2BnJZqx4UJs3rLyIQo0vvsuJCwDdbzeTMRh1j+/B4aRvBdWPw8nfQt3jezpOXISgdtdqY41U/+P12fK3tDp3EHh9FvDOQuk4YSbcXrNyiRKfKHGQ+jh5QaSxhoYGbN68GQ0NDXp3JWwwZ5GRAxFiFCEGIiI9cRylcMLrNTKE23lOSzCheH4hUuJiFD1uSlwMiucXIi3BpOhxuxKHFkw2WRCHli4f43S3dnnf8ct2THqpAjOvzMc89zJ84s2T1f4n3jzMdS/DzC/mY9JLFbBY7bKer4e2a/XMYWDt6OALlx97WzqOrVKZDmok3F6zcokSnyhxkPqMeneAKNIYjUbk5ubCaOTLz1/MWWTkQIQYRYiBiEhPHEcpnPB6jQzheJ7zMpOxddFIPL6xDDZ7c9DHy0g2o3h+IfIykxXonX9aYYDVm4RWdF3I3O3xAp0sMjl+2Y45L5Wivkma+NjtHYbd7mEYaDiPadEHMdRwGvlRVUg1ONueU+dLwDFvPxz1DcCO1tE46ctuu89mb8bD60uxddFITXMgl9FoRO4t8TBu/Weg+QtlDuq4DGx6AJj3QVisPgHC8zUrhyjxiRIHqY81L0hTeu+TRkRERERERBQJap1urHivEtvLA6+BMb0gCyseHNzligu1al74o2LlJCSa27/xWet0Y3LRx35M2viQABdMaIEbMXAiFuhmogSQJnF2Lhl3PRchVvMCjTXSSgkl6nzcLKkXsPhg+4LlRBQR9H4vl9tGEWmsubkZpaWlaG4O/hMwkYI5i4wciBCjCDEQEemJ4yiFE16vkSGcz3NagglFc4Zh49zhKOwn703nwn7p2DT3bhTNGabZVlE3ikEr7oi2IQZdbw2VYOq4V/6zOyr9XG1igBNxqEUynIhDTxMXgLQCY8V7obuFUvN7y1HqyEQzVDhfjsvAn5crf1wVhPNr1h+ixCdKHKQ+Tl4QacztdqO8vBxut1vvroQN5iwyciBCjCLEQESkJ46jFE54vUYGEc7zxLwMvLVoFEqWjsOTEwbgnttv6VATIyUuBvfcfguenDAAJUvH4a1FozAh77Yej71v+QTsWz4Bd+WkKdpnI1pxu/FLGLuYvBiekwaDof2Ewy6LDTuOBr7KxB/byy9hl8Um/bDk79JX9ghV2+wge6TU7o1OlsB9/AOUYzDcULbeSZtjbwMnS9Q5toJEeM12R5T4RImD1Mdto0hTei81IiIiIiIiIop0Pp8PTncr3B4vTMYoJJiiO0wGyLF6pwUv7jmtYA+79+SEAVg2qX0R7tnrDqGsukb1tgv7peOtRaOu3/DRSmD/C6q322bsT4BvPtP+to1TgHMH1W87Z4xU/4KIIobe7+Vy5QWRxrxeL+rq6uD1evXuSthgziIjByLEKEIMRER64jhK4YTXa2QQ9TwbDAYkmo1ITzAh0WwMauICAKYVZCnUM4kBPiQammFA55+3nTa0d7ufLVa7JhMXAFBWVYMTVsf1G/JnatJumyE3tWerBM4dhBcG1CEZXj+2wArY2QOA7XP1jq8AUV+z14gSnyhxkPo4eUGkMbvdjqKiItjtdr27EjaYs8jIgQgxihADEZGeOI5SOOH1Ghl4nv2Tl5mMwlzlijknGNyYFXsMCYaOW8oU9kvHoMwknK9pbPvaUnpWsbb90a69jMFA39HaNJwzBsi4Q/p37Vnp69OXAQB2JKHIsBB2JKnbh8Mvq3v8IIn+mhUlPlHiIPVx2yjSlN5LjUKB1+uF3W5HcnIyoqI4f+gP5iwyciBCjCLEQESkJ46jFE54vUYGnmf/7bLYMH/zYUWOZYAPCQY3nD4TfDetJNg0925MyLsNuU+/r0hbgapeNfX6DydLgNdnq9/oI28DA++X/r0ipd1dXhhgRxKS4UBUFytWFLOiPvDn+nxAswNobQGiYwBzEhDkyp8bif6aFSU+UeKIBHq/l2vUrCUiAgBERUUhNTVV726EFeYsMnIgQowixEBEpCeOoxROeL1GBp5n/03My8C0oVmKFM32wYAGn7nD7dMLsvwqJK4Fn893fbutgZOk7ZwqtqnXYP6s6xMXnYiCD6nQ6FPsPp+8CQdbJXBsG3DxM+DyUcBVd/2+2FSg11Cg911SjNdWlgRI9NesKPGJEgepj1NbRBpzOBxYt24dHA5Hzw8mAMwZEBk5ECFGEWIgItITx1EKJ7xeIwPPszwrpw1GRnLHSQe54uDGNHMl4nB926iMZDNWPBg6Ozc43a3tb3jgeSCplzqNJfUCpqzu9iEOJGAdHoMDCer04UbuBv8ed7JEKia+drRU1Lxqb/uJC0D6uWqvdP/aUdLjT34YcNdEf82KEp8ocZD6OHlBpDGTyYSCggKYTCa9uxI2mLPIyIEIMYoQAxGRnjiOUjjh9RoZeJ7lSUswoXh+IVLiYoI6jgfROOW5BR5EAwBS4mJQPL8QaQmhcx7cnpsKDcen48ykYtQrPHlQjwRUTS4G4ruvKWJCCwpQCRNaFG2/U56OtUjaaawBti2QttI6d1Desc8dBF6fBbyzUDqOTKK/ZkWJT5Q4SH2seUGa0nufNCIiIiIiIiJSl8Vqx+Mby2CzNwd9rIxkM4rnFyIvM7nd7XrXvKhYOQmJ5uu7sdc63Zhc9DFSHf9Asek5ZBpqg27D6kvD4+6foi7pn7Bzybj2kzc31bzQ1M8uSLUqOmOtAF6bCTguB99OUi/gsXekouhEpAu938vlygsijblcLuzZswcul0vvroQN5iwyciBCjCLEQESkJ46jFE54vUYGnufA5GUmY+eScZhekBXQ803woMB4EQ/l34qdS8Z1mLgIBQmm6HY/P7ujEjZ7M074+mJy8yq82zo6qOO/2zoak5tX4YSvL2z2Zqx4r7Lbx7tgxh6MggvBb9vVI1Ni57dbK4DNU5WZuACk42x6QKqZ4SfRX7OixCdKHKQ+Tl4Qaczj8aC6uhoej0fvroQN5iwyciBCjCLEQESkJ46jFE54vUYGnufApSWYUDRnGDbOHY7Cft1veXSz4X1TMD7LgP83/Y4ut4rat3xC29ddOWlKdNn//uWkXS/WDWCXxdauUHkdkrC05V8wz70Mn3jzZB37E28e5rqXYWnLv6AO11c3bC+/hF0W2/UHLvm79JU9AoC01VY1+rRttaWa7JGdF+turJFWXNxc0yJYrjpgywy/t5AS/TUrSnyixEHq47ZRpCm9lxoRERERERERkfZOWB3YcfQijp6vx7GL9ahvul6bISUuBvm9UzA0OwXThvbGoMwutiTqwuqdFry457TSXe7SkxMGYNmk65MSs9cdQll112+uDzScx7TogxhqOI38qCqkGpxt99X5EnDM2w9HfQOwo3U0TvqyuzxOYb90vLVoVPsbP1opFbvWytifAN98puPt2xYAFdvUazd/FjBjg3rHJ6JO6f1errHnhxCRklpbW3HlyhXceuutiI5W+RMRgmDOIiMHIsQoQgxERHriOErhhNdrZOB5Vs6gzCQsy5Te8Pf5fHC6W+H2eGEyRiHBFN1uJYPcvE8ryNJ08mLa0N5t/7ZY7d1OXADASV82fu15+KuffEiACya0wI0YOBELoJOVDJ0oq6rBCauj/eRO/kxg/wtoRRSu4Gu4FVcRDW/XBwnWkJkdbztZou7EBQAce1uawBg4qduHif6aFSU+UeIg9XHbKCKNORwOrF+/Hg6HQ++uhA3mLDJyIEKMIsRARKQnjqMUTni9RgaeZ3UYDAYkmo1ITzAh0WxsN3EByM97XmYyCnPlbU0VqMJ+6RiUmYTzNY04X9OILaVnZR7BACfiUItkOBEHfycurtlSehbnaxqv35AxGOg7Gg4kYr3he3Cgi3oUSsgZA2Tc0fH2/WvUa/NGB4p6fIjor1lR4hMlDlIft40iTem91CgU+Hw+NDc3w2w2d/gPGnWOOYuMHIgQowgxEBHpieMohRNer5GB51kfgeR9l8WG+ZsPq9wzYNPcuzEh7zbkPv2+6m11p3rV1Os/nCyB7/XZaIYZZjTLnA6R4ZG3gYH3t7/NVgmsDa44uSyLD3U+gfKVbq8dnw9odgCtLUB0DGBO6rx+RwgTZUwSJY5IoPd7udw2ikhjBoMBsbGxencjrDBnkZEDEWIUIQYiIj1xHKVwwus1MvA86yOQvE/My8C0oVntCmcrbXpBFibk3aba8QM2cBJavv5dxB7/o2pNNH99BszXJi5qb1ht8unLqrXZqcMvA1N/0+XdHa4dWyVwbBtw8TPg8tH2BcVjU4FeQ4Hed0lbUnUzKRIqRBmTRImD1Mdto4g0ZrfbsWbNGtjtdr27EjaYs8jIgQgxihADEZGeOI5SOOH1Ghl4nvURaN5XThuMjGSzKn3KSDZjxYOhu3PEM01z8Bv8AHYVto2y+tKwwvP96zcU3Xn967DGkxefdl+0u+3aKd8BbJwirQrZ/wJQtbf9xAUg/Vy1V7p/7Sjp8Sc/VK3rShBlTBIlDlIfJy+INBYbG4vx48dzhlkG5iwyciBCjCLEQESkJ46jFE54vUYGnmd9BJr3tAQTiucXIiUuRtH+pMTFoHh+IdISTIoeVym7LDZsszTjiCcLLp+yxY/rfAl43P1TvHHMiV0Wm6LHDlg3O+DHehsxPuEMYt+dD5w7KO+45w4Cr88C3lkINHZfhF0vooxJosRB6mPNC9KU3vukEREREREREZHYLFY7Ht9YBpu9OehjZSSbUTy/EHmZye1uD6WaF7PXHUJZtfRm+yDDORSbnkOmoTboNqy+NDzu/ilO+PoCkIqVv7VoFLAiJehjB+VnF6R6FTezVgCvzQQcl4NvI6kX8Ng7UkF0ogim93u5XHlBpLGmpibs3LkTTU1NenclbDBnkZEDEWIUIQYiIj1xHKVwwus1MvA86yPYvOdlJmPnknGYXpAVVD+mF2Rh55JxHSYuQonFakdZdQ1M8KAw5hyqfFmY3LwK77YGV0T73dbRmNy8qm3iAgDKqmpwwuoItsvB87g73matADZPRZOjFjsxHk0I8hP9jsvApgekmhkhRJQxSZQ4SH2cvCDSmNfrRV1dHbxer95dCRvMWWTkQIQYRYiBiEhPHEcpnPB6jQw8z/pQIu9pCSYUzRmGjXOHo7BfuqznFvZLx6a5d6NozrAut4rat3wC9i2fgLty0gLuYyCG56Rh3/IJOF/TiPM1jdhSKhXPjoIPiQY3ouBDHZKwtOVfMM+9DJ9482Qd/xNvHua6l2Fpy7+gDh1XN1xrT1fGm85JY4204sJVBy8MqEMyvDAE346rDtgyI6S2kBJlTBIlDlIft40iTem91IiIiIiIiIiIIs8JqwM7jl7E0fP1OHaxHvVNLW33pcTFIL93CoZmp2Da0N4YlNnJlkRdWL3Tghf3nFajy516csIALJuUJ2vbqoGG85gWfRBDDaeRH1WFVIOz7b46XwKOefvhqG8AdrSOxklfdo/Hq459JKC+K+bZOsBww+TEtgVAxTb12sufBczovlA4kaj0fi/XqFlLRAQA8Hg8uHDhAvr06QOjkS9BfzBnkZEDEWIUIQYiIj1xHKVwwus1MvA860ONvA/KTMKyTGkVgs/ng9PdCrfHC5MxCgmmaBgMgX1Sf1pBlqaTF9OG9u709mh4cWtUA654E9F600YrJ33Z+LXn4a9+8iEBLpjQAjdi4EQsIHOVgu+po9fz9ccfAOc/kRlFELJHtp+4OFnSbuLCg2hcQC/0wWUY0apMm8feliYwBk5S5nhBEGVMEiUOUh+3jSLSWENDA4qLi9HQ0KB3V8IGcxYZORAhRhFiICLSE8dRCie8XiMDz7M+1M67wWBAotmI9AQTEs3GgCcuAKm+RmGuvG2pAlXYL73LVSFxhhZMMZ9EnKGl0/uvM8CJONQiGU7EQe7EBQA4E/oAaTnSV84Y2c8PSu5N7e1f0+7HBiSg2DAbDUhQtt0DRcoeL0CijEmixEHq47ZRpCm9lxoRERERERERESlpl8WG+ZsPq97Oprl3Y0LebQAga9sopf3tF/ch/VotEFslsDa44uCyLD4EZNyhf9uB8PmAZgfQ2gJExwDmpParSIhCkN7v5XJdDhERERERERERUYAm5mVg2tAs7Dh6SbU2phdktU1c6M1kvGEjl4zBQN/RwLmD6jecM0aaPKj9qmj4py+r3+aNDr8MjH5KWnHiL1slcGwbcPEz4PJRqQj4NbGpQK+hQO+7pG2pgpkYIRIUt40i0lh9fT1WrVqF+vp6vbsSNpizyMiBCDGKEAMRkZ44jlI44fUaGXie9RGOeV85bTAyks2qHDsj2YwVD3b/SecEQzMeiT2CBEOzKn1o15Yput3PR3MfV71NADia81U7RXdKX4c7Tl7UIwmr8CPUw/+i6377dIPUrj9OlgAbp0grQ/a/AFTtbT9xAUg/V+2V7l87Snr8yQ+7PWw4vjY6I0ocpD5OXhBpLD4+Hg899BDi4+P17krYYM4iIwcixChCDEREeuI4SuGE12tk4HnWRzjmPS3BhOL5hUiJi1H0uClxMSieX4i0a9s0fWXf8gnYt3wC7spJAwC4fEbsd+fC5VN3k5XhOWkdaoT818kcbG9Vd/umd1tH47/+0bfHx8WjCQ+hBPFoUrU/XWqsAbYtAF6fLX81yrmDwOuzgHcWSsfpRDi+NjojShykPk5eEGksJiYGeXl5iIlR9j80ImPOIiMHIsQoQgxERHriOErhhNdrZOB51ke45j0vMxlbF41UbAVGRrIZWxeNRF5mcof7stPjkZ0ejxH9pGLhrYjGOW8aWhHd4bFKGtG/fXFyi9WOsuoaPNvyOKy+NFXatPrSsKLlcZRV1eCE1dHtY2PgQR5OIwYeVfrSLWuFtNKiYltwxzn2tnQcW2WHu8L1tXEzUeIg9XHygkhjjY2NePfdd9HY2Kh3V8IGcxYZORAhRhFiICLSE8dRCie8XiMDz7M+wjnveZnJ2LlkHKYXZAV1nOkFWdi5ZFynExc3mvZVO2a04J6YKpjRElS7PZk2tDfO1zS2fW0plepP1CEJj7t/ijpfgqLt1fkSpON+tQ3Utfa60ohYvItJaESsov3okbUC2DwVcFxW5niOy8CmBzpMYITza+NGosRB6mPBbiIiIiIiIiIiIoWkJZhQNGcYphdkYd3eMyir6nwLoM4U9kvH4nsH+F2cOy8zGYW56ThabQu0u34r7JeOQZlJyH36/U7vP+Hri4fdv0Cx6TlkGmqDbs/qS8Pj7p/ihO/6dlGvlp7FrzSel+hRYw3w2syONS2C5aoDtswAFh8E4tN7fDiRiAw+n8+ndycoclRWVmLIkCFtP1dUVGDw4O6LThERERERERERhasTVgd2HL2Io+frcexiPeqbrq+OSImLQX7vFAzNTsG0ob0xKFN+oeldFhvmbz6sZJc7tWnu3ZiQd1uXkxfXpMKBFTHFeChaZs2HG7zbOhorWh5vW3FxoyrzI7ip7Ia2VtxUZHrbguC3iupO/ixgxobgj+PzAc0OoLUFiI4BzEnQN5EUDvR+L5crL4g01tLSgtOnT2PAgAHc289PzFlk5ECEGEWIgYhITxxHKZzweo0MPM/6EC3vgzKTsCwzDwDg8/ngdLfC7fHCZIxCgim6QwFsuSbmZWBa/m0orzyBi95kVepeTC/I8ns1SB2SsLTlX7C9dQx+aHwPI6IsfrfziTcPaz0PYo93WJePcS4+gkRzNPDHHwDnP2l3XwuMOI0cDMBZ5eteZI8EvvtS+9tOlqg7cQFINTDyZwEDJ8l/bdgqgWPbgIufAZePtl8dEpsK9BoK9L5LOn7GHWpF0IFor3FSD2teEGmM+/rJx5xFRg5EiFGEGIiI9MRxlMIJr9fIwPOsD5HzbjAYkGg2Ij3BhESzMeiJi2v+fWIuxpmrEWtQvlB1RrIZKx6U/0nr3d5heNj9DO5vfg6/80zHvtYhHWpi1PkSsK91CH7nmY77m5/Dw+5nup24AAB3Uh8gLQfIGdPhvkbEfVXzIk52f3uUO0Zq90b71yjfTmcOFAGQ8do4WQJsnCIV/t7/AlC1t+O2Vq466fb9LwBrR0mPP/mhKt2/mcivcVIWt40iTem91IiIiIiIiIiISEQWqx0Pry9tty1VsFLiYrB10ch2hcN72jaqez4kwAUTWuBGDJyIBSBvAqdi5SQkmo3SqoK1o4Poi0yLD7VfnaB3+51prAE+WBbcapD8WcCU1ayzQQD0fy+XKy+IiIiIiIiIiIjCXF5mMrYuGomMZLMix8tINneYuAieAU7EoRbJcCIOcicuACDBJG2LZfFl4xNvnoJ969on3jyc8GVLP9Selb4+fVmTttscfllqtyvWCmkyJdhtrI69LR3HVhnccYgUwMkLIo3V1dVh5cqVqKur07srYYM5i4wciBCjCDEQEemJ4yiFE16vkYHnWR/Mu3zXcpYZ68XOJeMwvSArqONNL8jCziXjOp242Ld8QtvXXTlpQbUj1/CcNFyobcL5mkZsKT2LdZ4H291fh2SsNPwb6qDkhAuw1vMgtpSexfmaRqDoTunrsMaTF59uQF3RPZ2/NqwVwOapgOOyMm05LgObHlBtAoOvcfIXt40iTem91CgUeDweXLhwAX369IHRaNS7O2GBOYuMHIgQowgxEBHpieMohRNer5GB51kfzLt8neVsl8WGdXvPoKyqxu/jFPZLx+J7B/hdnHv1Tgte3HM6oD4H4skJA/D73e3bK4r5HaZHHwQAeBCNC+iFPrgMI1oVafPd1tFY2vIvbT9Xxz6iyHED4UE0Lsz9W/vXRmONtFJCqYmLGyX1AhYfDH4LKZ8PaHYArS1AdAw80XG4cPEiX+NhQO/3cjl5QZrS+4InIiIiIiIiIookJ6wO7Dh6EUfP1+PYxfp2NTFS4mKQ3zsFQ7NTMG1obwzKTJJ1bIvVjslr9ind5S6VLB2HSWs+bndbKhzYaX4amYZaxduz+tIwuXkV6nA9L3pOXgAAVtS3/3nbguC3iupO/ixgxgb5z7NVAse2ARc/Ay4fbV8wPDYV6DUU6H2XdPyeanmQbvR+L5fbRhFpzOl04s0334TT6dS7K2GDOYuMHIgQowgxEBHpieMohRNer5GB51kfzLt83eVsUGYSlk3Kw5aFI1D+zH2oWDkJf/uF9L38mfuwZeEILJuUJ3viApDqbBTmalPYubBfeqd9rEMSHnf/FHW+BDgRhzcx7at6GsGp8yVIx4X8vKjFibj25/lkiboTF4BUA+Nkif+PP1kCbJwirQbZ/wJQtbf9xAUAp6sZb1alwLl/LbB2lPT4kx8q228SAicviDQWFRWF1NRUREXx5ecv5iwyciBCjCLEQESkJ46jFE54vUYGnmd9MO/y+Zszg8GARLMR6QkmJJqNMBjkF8y+2Q/H9w/6GP5YfO+ALu874euLh92/wBVfMlJhRxSC22jG6kvDw+5f4ISvb1DHUVoUfO3P8/412jR8oKjnxzTWSKtAXp8NnDvY7UOj4Gt/ns4dBF6fBbyzUDoO0Ve4bRRp6v9v787DoyrP/49/JgmThCyEGCSCQAJaohQDVCKggoBV2UFUwIVNf8Wtlta17aV1+dbdVr5qxfYri4ogoAJWQAUMoCyCFWRHUXbCnj2TyWTm98eY08RsM9nOzJn367pyeWbmLM99n8Mxc+48z2N2VyMAAAAAAAA0rPvmfqMlW4822v5HdGujaWO7S5JSHvm42vUSlKfHm83WyPCaH57XZFFpHz1eMqHaHhdlw0aVesIUbnPX+Tj+KvXYFG7z/HfYqOM7vL0bmspd66sf3ilruzTnhoaZdyPuPOnW96XWDfi88GdzbigyTmqAwl0oMPtZLiVsoIk5nU5t2bJFTqfT7KYEDXIWGjmwQoxWiAEAzMR9FMGE6zU0cJ7NQd79Z3bOnhjeRa3jIxtl363jI/X4MN8eluaruV51j9Vk5wPa6E7z6zgb3Wma6HxQU0vurXGoqKMTv9LRiV9pf8wlfu2/vvbHdtOBW77Uli9XyHn8e2nTm016fG2u5nhZ26VZQ/wqXDjVTFt0sZxqVvnDvGPSzMHe4kx9HN8hrXhCmj1cei5Ferad9EJH73+fS/G+v+IJ6fjO+h0HjYriBdDEHA6HMjMz5XA4zG5K0CBnoZEDK8RohRgAwEzcRxFMuF5DA+fZHOTdf2bnrGWMXbMnZ6hFdBUPo+uhRXQzzZ6coZYxduO9tQ/119qH+utXHVpWWt+uUnWLOKoN7l9qjPMxXVP8nF51jdDa0l8q2xNTYd1sT4zWlv5Sr7pG6Jri5zTG+Zgy3d2rbculHVpq7UP91Wf69+oz/Xstz23aIaWW5bTXoDe/U+ZnS+V4vV/1xYTGsqmKSbsLz3h7XPxsTovaOBSpTPWWQ9UUvBzZ0juj6zaElA9zbsiR7X3/i78x50aAY9goNCmzuxoBAAAAAACgcezOytWEGV/peG5xvffVOj5SsydnKC05vsrPn1++W//I3OfHHj2KkUN2lcipZipQlCTfhw66p38nPXhtmjFsVWfbQX0S+Ygfx6+fa4qf015PO2PYKlP8JbvicEsLb2/cCcO73iiNrqJoUpXCM9LSB+vXnq43SoOel5o3zST0wcDsZ7n0vACamMfjkcPhEHVD35Gz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuv0DJWVpyvJb/rq9GdGtTr/2M6NZGy3/Xt9rChSQNr/IYHtnlkqqcsNumAkXrrOJVoGj5U7iQpOHpbSu83uNp7/fQVHW10Z2mvZ52kjxyKLKe05HXgzP/v8t7P6lzocAj+RbHtgXe49Qma7u3p0V9CynbFnj3U98hq9BgKF4ATSwnJ0fPPfeccnJyzG5K0CBnoZEDK8RohRgAwEzcRxFMuF5DA+fZHOTdf4GUs5Yxdk0b210zJl6qjFT//oI9IzVRMyf21LSx3SsMFVWVtOR4ZaRU3H+szalborco1tawc39kpCaqc3LleTCmu4Y16HGq8/pPx4m1OfWc7R7lqPqiTqNylcvrFy/XeTc5ivc9ji+n1fx5HebcqFFDzbmBBsGwUWhSZnc1CgSlpaU6efKkWrVqpfDwcLObExTIWWjkwAoxWiEGADAT91EEE67X0MB5Ngd5918g52xPVp6WbD2irYdytO1IjnKKSozPWkQ3U9e2LZTeroWGp7etskBQk1W7j2vyrM3G6zC5lWBzKNsTJXcD/s32zIk91T/tXEkyho0qM63ZqxoRvq7BjvVzi0r7aGrJvZK88a2L+r1a6bTC5W60Y1brj4elyDjvg/3X+9R5N6UK00md43scd62XWl9c+f3CM952NFThory486S71oX8EFJmP8uNaLIjAZAkhYeHKzk52exmBBVyFho5sEKMVogBAMzEfRTBhOs1NHCezUHe/RfIOeucHKcHk73DK3k8HhU4S+V0uWWPCFOMPVw2m3/DN5U3IK21hqe30ZKtRyVJboXpjKd5g7S7zIhubYzCRVX+UjJBl4XtUrLtbIMeV5KyPC31eMkE47VbYUrWSXk8Uo6aq4WtsMGPWZ0cT3PF55+SrfCMtKl+k4WHy61knfR9g81vSn3uk1p2qPj+0gcbp3Ahefe77CHf59xAo2DYKKCJ5efna9asWcrPz699ZUgiZ1Jo5MAKMVohBgAwE/dRBBOu19DAeTYHefdfsOTMZrMpNjJCiTF2xUZG1KtwUeaJ4V3UOj5SkhStEl1n361oldSylW9ax0fq8WEV/8p87UP9tfah/vpVh5aSpGzFaYLzYWV7YhrkmGWyPTHe/crbG+XSDi31yT099TvPH9W/+G/a5k5t0OPV5lt3RxX8by9p2iXeYkI95Ku5ZulG5cvHQtOm//Met7x6zLnhM1/n3ECjoXgBNLGIiAilpKQoIoKOT74iZ6GRAyvEaIUYAMBM3EcRTLheQwPn2Rzk3X+hnLOWMXbNnpyhFtHNVCqbstxxKvVzMu6qtIhuptmTMyrNvdEusbnaJTbXZeXm89jjaa8xzkeV5WlZ7+NK3h4XY5yPao+nvfHeZR0T1aFVvA6UJuqokrTV06lBjuWrrZ5OcqqZJKnUU79HyhEqVYoOK0KlPq1f6qnifNZjzg2/1DbnBhoVc15ATqdT7733nubOnasdO3bo+PHjatmypVJTU3X99ddr4sSJSkpKapBjmT1OGgAAAAAAAKxnd1auJsz4Ssdzi+u9r9bxkZo9OUNpydVPKL07K1fXvby2wnsJytPjzWZrZD3mwFhU2kePl0wwelyU+WRqX3VOjjPm3OhsO6hPIh+p83H8dU3xc/rA/hfF2hxNdsxKHv9pQvp6zrnht+rm3AgBZj/LpedFiNu9e7cuu+wyjR8/XsuWLdPBgwdVXFysrKwsrV+/Xg8++KC6dOmipUuXmt1UyyguLtaGDRtUXFz//5mGCnIWGjmwQoxWiAEAzMR9FMGE6zU0cJ7NQd79R86ktOR4Lb7zMt3UvkjNfPyL/qqM6NZGy3/Xt8bCRdnxMlIqTuacrThNLblXk5wPaqM7za/jbnSnaaLzQU0tubdS4SIjNVGdk+NUXFysi8OPq5lKtcfT3u9j1NVGd5r2etopRg1TuCiWXRvUXcWy175yeWcPeH/qOeeG3za/6T0umhzFixB2+PBhDRw4UFu2bJHkHXewX79+mjx5soYNG6bo6GhJ0okTJzRy5EitWrXKxNZah9Pp1JYtW+R0Os1uStAgZ6GRAyvEaIUYAMBM3EcRTLheQwPn2Rzk3X/kzCummdQx7JT+d8wvlZGaWPsG5WSkJmrmxJ6aNrZ7paGiqnPnVR2rfP9zd3eNcT6ma4qf06uuEVpb+stKc2Jke2K0tvSXetU1QtcUP6cxzseU6e5e5f7u6ucdIsrpdGpQG4f+fXcv/apDS013DfMjwrp73TVMl3ZoKZtNaogxfJxqpi3qYgxD5QuPR955L6ZdooJN79S/EX4o+OrtynNuoEkwbFQI69u3r9au9XZv69ChgxYvXqz09HTj81OnTmns2LFauXKlJCkxMVH79u1TQkJCnY9pdlcjAAAAAAAAhIY9WXlasvWIth7K0bYjOcop+u9E3i2im6lr2xZKb9dCw9PbqnNyXA17qt59c7/Rkq1HfVjToxg5ZFeJnGqmAkVJPszNMaJbG00bW7mo8fzy3fpH5j5Na/aqRtRjmKraLCrto6kl9+qe/p304PrLlOeJUqnClWAraLRj/ly2J0YRcinW5u1ZVOSxK9rWdIU643hlw1aFELOf5YbeLD6QJC1dutQoXNjtdn300Ufq2rVrhXWSkpK0ePFiXXLJJfrhhx905swZPf/883r66afNaLJluN1u5ebmKj4+XmFhdH7yBTkLjRxYIUYrxAAAZuI+imDC9RoaOM/mIO/+I2deP89D5+Q4PZjsHVrJ4/GowFkqp8ste0SYYuzhstnqP7H3E8O7aOOPp32Ya8OmAkWrQNE+77t1fKQeH/bfB8Xl4xverY3+kblPfymZoMvCdinZdraOEVQvy9NSj5dMkCQNT2+rKzKnqdRj0wvN3tAV4TvqvF+3bMpVnOKVpzDV/nf129ypeqjkN1ofdZ8kNWnhwozj4b9C924W4l577TVjecKECZUKF2ViYmL05JNPGq/feOMNuVyuRm+fleXm5mratGnKzc01uylBg5yFRg6sEKMVYgAAM3EfRTDheg0NnGdzkHf/kTOvmvJgs9kUGxmhxBi7YiMjGqRwIUktY+yaPTlDLaJ9HwLJFy2im2n25IwKQ1iVj69szo1sxWmC8+FKw1LVV7YnxrtfxRlzbhz2tNIxJWmrp1O99p2rOE2z3aFc+dbbZaunk44pSVLDDFtVF4xdZA6GjQpB+fn5SkpKMiZxWrdunXr37l3t+g6HQ61atVJ+fr4kaeXKlRowYECdjm12V6NAwF9D+I+chUYOrBCjFWIAADNxH0Uw4XoNDZxnc5B3/5EzLzPzsDsrVxNmfOVDD4zatY6P1OzJGZUmDf95fKt2H9fkWZslSZ1tBzXb/lyD9MDI8rTUBOfD2uNpL0maObGn+qedq5RHPjaO9UnkI3Xev789L64pfk57Pe20P+pm5XmiFGdrmInD/ZHviVTsEyea/LhmM/tZbujezULYunXrjMJFTEyMevbsWeP6UVFRFYobTNxdP2FhYUpISAjpXyb8Rc5CIwdWiNEKMQCAmbiPIphwvYYGzrM5yLv/yJmXmXlIS47X8t/11Yhubeq1nxHd2mj57/pWKlxIleMbkNZaw9O9x9vjaa/rip/VotI+9Tr+otI+uq74WaNwMaJbG/VPO1eStPah/lr7UH/Ftk/XRndanY8RJo8SlOtT4WKjO03x7S/R2of6S5JKFNHgvUxqk+2J8WtycTSc0L6jhahdu3YZy127dlVERO1Tn/To0aPK7eG/vLw8TZ8+XXl5eWY3JWiQs9DIgRVitEIMAGAm7qMIJlyvoYHzbA7y7j9y5mV2HlrG2DVtbHfNmHipMlIT/do2IzVRMyf21LSx3SsMFVVeVfE9MbyLWsdHSpKyFaepJfdqkvNBv4sLG91pmuh8UFNL7lX2T8M5/XzOjXaJzdUusbkuS03UdNcwv/ZfIQ7FaLpuVZ5qL0K87hqmyzomql1ic11RPE1Di5/WdndKnY9dF9vcqRpazBzAZmDC7hC0Z88eY7lDhw4+bdO+fXtjeffu3Q3eplBit9vVrVs32e1V/48IlZGz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuP3LmFSh5GJDWWgPSWmtPVp6WbD2irYdytO1IjnKKSox1WkQ3U9e2LZTeroWGp7dV5+Ta53+oKr6yOTfGvLHB2P/n7u763Nldv7Ad0vDwdUq37VPXsB+VYCswtsv2xGibO1VbPZ20pLSP9nraVThWVXNulPFOFt5di0v7aET4Or/zY1eJummH7Cqpcb1FpX2U6e6uP6a3lSQd9rSS5J0D4wrVfcJwf231dNLRn+bcQNNizosQNGbMGM2fP1+SdN9992natGm1bvPBBx9o9OjRkqTk5GQdO3asTsc2e5w0AAAAAAAAoKl5PB4VOEvldLlljwhTjD28wSYNl3yZc8OjGDlkV4mcaqYCRUmq+vjVzblR3k3T12vv/gNaHvlIg8yz8XNZnpa6rvhZ/SK1g+ZP8Q5nf+hMoSTpb+98qL+fubvBj1md35/zuv5wy0i1S2zeZMcMFGY/y2XYqBBUNvG2JEVHR/u0Tfn1ym9fV1FRUYqNjZUklZaWKjs7W2V1tNzcXDmdTklSUVGRCgq8VWGXy6Xs7GxjHzk5OSop8VZoCwsLVVjovYGVlJQoJyfHWC87O1sul0uSVFBQoKKiIkmS0+lUbm6uJO//QLKzs1VaWmrE6HB4J/8pLi42uuO53W5lZ2fL7XZL8nbXK5s/xOFwGLmpKaazZ8/q008/lcPhsExMjX2eTpw4oczMTBUVFVkmJn/PU2FhoZYvX24cywox/fw8nTx5UitWrJDD4QjamELhPBETMRETMTVmTPn5+Vq+fLlxLCvEZMXzREw5xnGWL19uHMsKMVnxPNU3JofDoRUrVujkyZOWiSkYztPp06f12WefyeFwWCamxj5Pp06dUmZmpgoKCiwTU13O0/Hjx5WZmSmHwxFwMRUXF0slDiXG2BUdYVNOTo7f5+nEiRNauXKlHA5HpZjOi/YYc27E2ooVLm8bolQiu1ySbCqWXcWKUoG8z/libcUK+2m96J/WG9GtjRbfeZnaxthqjOnOqzqqUNG6w/mAsj0xKlWYshVvzGKRq1hjnoiicsd0KVzHlaRM9ZZDkcpRnEp+GhyoUFEqVJSyPTGa5HxIJTa77urXyThP58Xb1S6xuZJTu2itu6v3PKmZcuV9xuiRlK14lf70yDtfzeWQd0itYtmNYarcsilb8XL/VLzJU4yK5e1h4lCk8uUtUpQqTJ+7u+u8C7urXWLzkPv3VD4ms1C8CEFlF7gkn7vRRUZGGstl/5Dqo1evXrrhhhskeR9YTps2zfgHNWPGDO3cuVOStHr1an300UeSpMOHD1foJfL6669r3759kqRPP/1Un376qSRp3759ev311431pk2bpsOHD0uSPvroI61evVqStHPnTs2YMUOS9x/7tGnTjF9IFy5cqA0bNkiSvvnmG82ZM0eS9x/0tGnTjBvInDlz9M0330iSNmzYoIULF9Ya0xdffKEtW7bI5XJZJqbGPk9z5szR/v37VVBQYJmY/D1PZ8+e1caNG3X27FnLxPTz87RgwQLt3LlTLpcraGMKhfNETMRETMTUmDEdOnRIGzduNL7EWSEmK54nYvLG5HK5tHHjRh06dMgyMVnxPNU3JpfLpZ07d2rBggWWiSkYztOyZcu0bds2I/9WiKmxz9PixYu1f/9+HT9+3DIx1eU8TZ8+Xfv375fL5bJMTOXP04wZM7Rnzx65XK4qYyqbc+PGqG26so33sW8f+wF1a3ZUkpQSflaDI73DwdtVqhujtinB5n1OOCz+oP54aYSmje2u/Xt31BrTgLTWGtW2UOc3K9YY56Pa5UnVNNsdKv6pWDBDY7RTF3pjUi99pF97Y9J5mm4br/06Xy6F63Xdpn3yDmv/qfppsX6tMc5HVWCL1w3NdxmThZc/T+ec2a5Fnmu850kXaobGeM+TIjXNdodO6hzvedIQbZB3Ht9v1EVzNMobk+I0zXaHcn+a22OORukbeXsTbFAPLdQQ73nSOVoT3l+DLkry6zxZ8dozC8NGhaAhQ4Zo6dKlkqSHH35Yzz77bK3bLFu2TIMHD5YkxcbG1nnio7KuRlFRUYqIiNCGDRuUlpamvLw8tWjRQjabTbm5uYqKipLdbldRUZHcbrdiYmLkcrmUn5+vhIQESd4qZvPmzdWsWTOjgtm8eXOVlJSosLBQLVq0kOStYsbGxioiIkIFBQUKCwtTdHS0nE6nHA6H4uPj5fF4lJOTo7i4OIWHhys/P18RERGKiopScXGxnE6n4uLi5Ha7lZubq/j4eIWFhSkvL092u12RkZFGT4rY2FiVlpYSEzEREzEREzEREzEREzEREzEREzEREzEREzGZFtO+U0VavHmfth/N09ZjRSoocsiuUhXKrhbREere2q6LO5yrEd3bq22sze+Ysk7n6sbpX+hQnkctlas/NntPN4Z/Lpu8PS+iVCy7SlSkKLllU4yK5FK48hWjBHkfsucoTs1VpGZyaWFpXz1fMkYn1FLnxUXovck91P68VlWepztmf62xx57RoPBNcihS8cqXR1KO4hWnfIXLrXw1V4RKFaViFcsup5opTgVyy6ZcxSleeQqTR3mKkV0lipRTDkXKpXDFqlAflF6u95Mf0Dt39w/Za+/IkSOmDhtF8SIEMeeFuUpLS3Xy5Em1atVK4eHhZjcnKJCz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuP3LmZfU81Ce+xppzY3dWboXJwvuHfaM7Iz7SZWG7q92mVGE6qXPUSqcVLrc2utP0umuYMt3dJXknC39vSq8a59xYtfu4/jDr80afc+PvEwcYvT9CkdnPchk2KgSdc845xvLx48d92iYrK8tYTkxMbPA2hZK8vDy98cYbde69EorIWWjkwAoxWiEGADAT91EEE67X0MB5Ngd59x8587J6HuoTn81mU2xkhBJj7IqNjGiwycLTkuP13pReah3vHS7qc3d3jXE+pmuKn9OrrhFaW/pLZXtiKmxzxNNKb9hu06uuUbqm+DmNcT5mFC5ax0fWWriQpAFprdU3vbMmOB+utP/6yvbEaILzYfXr1jmkCxeBgJ4XIWjatGmaOnWqJO/cE+vXr691m0ceeUTPPfecJOn666/X+++/X6djm12tCwQej0fFxcWKjIxssP9RWB05C40cWCFGK8QAAGbiPopgwvUaGjjP5iDv/iNnXlbPQyDHd7bAqcc/2qHFW45W8alHMXLIrhI51UwFipRdbjkVLum/cYzo1kaPD+uiljG+zdF7tsCp66atUULed5ptf65BemBkeVp6CyJxF2r57/r63BarMvtZLj0vQtBFF11kLJdNgFWb//znP1VuD//ZbDZFRUUF3P9kAhk5C40cWCFGK8QAAGbiPopgwvUaGjjP5iDv/iNnXlbPQyDHVzZZ+IyJlyoj9eejtthUoGidVbwKFC0pTE5FqKxwkZGaqJkTe2ra2O5+FQtaxtg1e3KGsqI66briZ7WotE+9YlhU2kfXFT+rrKhOmj05I+QLF4GA4kUI6tOnjyIjvV25CgoKtHnz5hrXLy4uNmaxl6QBAwY0avusLjc3Vy+//LJyc3PNbkrQIGehkQMrxGiFGADATNxHEUy4XkMD59kc5N1/5MzL6nkIhvgGpLXW/Cm99cnUvrqnfyddcUGSWkQ3q7BOcrRbt8Zu1119ztMnU/tq/pTedR6eqWzYqsj4JE0tuVeTnA9qozvNr31sdKdpovNBTS25V5HxST4NW4WmEWF2A9D0YmNjNXDgQC1dulSSNGvWLPXq1ava9T/44ANjLL3ExET17du3SdppVVFRUbrqqqsUFRVldlOCBjkLjRxYIUYrxAAAZuI+imDC9RoaOM/mIO/+I2deVs9DMMXXOTlODyZ7iwg/nyy8mUq1a1c7XXzxxbLb69+7IS05Xst/1/enYaukz53d9QvbIQ0PX6d02z51DftRCbYCY/1sT4y2uVO11dNJS0r7aK+nnST/h61C42POixD18ccfa+jQoZKkyMhIff3111WOV1ZYWKj09HR9//33krxzXzzzzDN1Pq7Z46QBAAAAAAAAsKZVu49r+uof9NWPZ8q9+/M5N6JUfq6NjNRE3dWvE5NzV8HsZ7kMGxWihgwZoiuvvFKSd1iooUOH6ttvv62wzunTpzVy5EijcJGYmKiHH364ydtqNUVFRVq+fLmKiorMbkrQIGehkQMrxGiFGADATNxHEUy4XkMD59kc5N1/5MzL6nmwSnyNGUfVw1bZK8y50SLarisuSNI9/TvVe9gqNC6GjQph7777rjIyMnTs2DHt379f3bp1U79+/dSpUyedPHlSK1asUGFhoSQpIiJC8+fPV0JCgrmNtgC3263s7Gy53W6zmxI0yFlo5MAKMVohBgAwE/dRBBOu19DAeTYHefcfOfOyeh6sEl9TxFHTsFUx9vCAnPQclTFsVIjbvXu3xo0bpy1btlS7TqtWrTRz5kwNGTKk3sczu6sRAAAAAAAAAKB2Zj/LZdioEJeWlqaNGzdq9uzZuu6669SuXTvZ7Xade+656tWrl55//nnt3LmzQQoX8HK5XNq/f79cLpfZTQka5Cw0cmCFGK0QAwCYifsoggnXa2jgPJuDvPuPnHlZPQ9Wic8qcaDxUbyA7Ha7xo8fr2XLlungwYMqLi7W8ePHtX79ej344INKSkoyu4mWkp+fr9mzZys/P9/spgQNchYaObBCjFaIAQDMxH0UwYTrNTRwns1B3v1HzrysngerxGeVOND4GDYKTcrsrkYAAAAAAAAAgNqZ/SyXnhcAAAAAAAAAACCgULwAmlhOTo6effZZ5eTkmN2UoEHOQiMHVojRCjEAgJm4jyKYcL2GBs6zOci7/8iZl9XzYJX4rBIHGh/FC6CJNW/eXCNHjlTz5s3NbkrQIGehkQMrxGiFGADATNxHEUy4XkMD59kc5N1/5MzL6nmwSnxWiQONjzkv0KTMHicNAAAAAAAAAFA7s5/l0vMCaGKFhYVatGiRCgsLzW5K0CBnoZEDK8RohRgAwEzcRxFMuF5DA+fZHOTdf+TMy+p5sEp8VokDjY/iBQAAAAAAAAAACCgMG4UmZXZXIwAAAAAAAABA7cx+lkvPC6CJlZSUaPfu3SopKTG7KUGDnIVGDqwQoxViAAAzcR9FMOF6DQ2cZ3OQd/+RMy+r58Eq8VklDjQ+ihdAE2NcP/+Rs9DIgRVitEIMAGAm7qMIJlyvoYHzbA7y7j9y5mX1PFglPqvEgcbHsFFoUmZ3NQIAAAAAAAAA1M7sZ7n0vAAAAAAAAAAAAAGF4gXQxLKzs/XEE08oOzvb7KYEDXIWGjmwQoxWiAEAzMR9FMGE6zU0cJ7NQd79R868rJ4Hq8RnlTjQ+Bg2Ck3K7K5GgcDlcunw4cM6//zzFRERYXZzggI5C40cWCFGK8QAAGbiPopgwvUaGjjP5iDv/iNnXlbPg1Xis0ococDsZ7kUL9CkzL7gAQAAAAAAAAC1M/tZLsNGAU2soKBA8+bNU0FBgdlNCRrkLDRyYIUYrRADAJiJ+yiCCddraOA8m4O8+4+ceVk9D1aJzypxoPFRvACaWFhYmBISEhQWxj8/X5Gz0MiBFWK0QgwAYCbuowgmXK+hgfNsDvLuP3LmZfU8WCU+q8SBxsewUWhSZnc1AgAAAAAAAADUzuxnuZS3gCbmdDq1ZcsWOZ1Os5sSNMhZaOTACjFaIQYAMBP3UQQTrtfQwHk2B3n3HznzsnoerBKfVeJA46N4ATQxh8OhzMxMORwOs5sSNMhZaOTACjFaIQYAMBP3UQQTrtfQwHk2B3n3HznzsnoerBKfVeJA42PYKDQps7saAQAAAAAAAABqZ/azXHpeAE3M4/HI4XCIuqHvyFlo5MAKMVohBgAwE/dRBBOu19DAeTYHefcfOfOyeh6sEp9V4kDjo3gBNLGcnBw999xzysnJMbspQYOchUYOrBCjFWIAADNxH0Uw4XoNDZxnc5B3/5EzL6vnwSrxWSUOND6GjUKTMrurUSAoLS3VyZMn1apVK4WHh5vdnKBAzkIjB1aI0QoxAICZuI8imHC9hgbOsznIu//ImZfV82CV+KwSRygw+1luRJMdCZBUXFxc4fX3339vUkvMd/r0abObEHTIWWjkwAoxWiEGADAT91EEE67X0MB5Ngd59x8587J6HqwSn1XisLKfP7v9+bPdRucBmtCiRYs8kkL6JzY21jNx4kRPbGys6W0Jlh9yFho5sEKMVoiBH3744cfMH+6j/ATTD9draPxwnsl7sPyQs9DIg1Xis0ocofizaNGiJn2WzLBRaFKLFy/WyJEjzW4GAAAAAAAAAMAPixYt0ogRI5rseEzYDQAAAAAAAAAAAgo9L9CksrOztXr1auN1u3btFBkZaWKLAAAAAAAAAAA/V1xcrEOHDhmv+/Xrp4SEhCY7PsULAAAAAAAAAAAQUBg2CgAAAAAAAAAABBSKFwAAAAAAAAAAIKBQvAAAAAAAAAAAAAGF4gUAAAAAAAAAAAgoFC8AAAAAAAAAAEBAoXgBAAAAAAAAAAACCsULAAAAAAAAAAAQUCheAACABrF+/XqNHj1arVu3VlRUlFJTU3X33XfryJEjZjcNAAAAAABTZWVl6Z133tHUqVN1xRVXKDY2VjabTSkpKWY3LWDZPB6Px+xGAACA4PZ///d/mjJlitxut5KTk9W2bVvt3btXeXl5atmypT7//HOlp6eb3UwAAAAAAEzx8ssv6/e//32l9zt06KD9+/c3fYOCAD0vAABAvWzbtk133nmn3G63XnrpJR05ckSbN2/W0aNHddNNN+ns2bMaNWqUiouLzW4qAAAAAACmiI+P18CBA/Xwww9r/vz5evnll81uUsCj5wUAAKiXG264Qe+//75uuukmvffeexU+KyoqUlpamg4ePKjXX39dd955p0mtBAAAAAAgcCxcuFA33ngjPS9qQM8LAABQZwUFBfr4448lSffcc0+lz6OjozVp0iRJ0rx585q0bQAAAAAAIHhRvAAAIMCVlpbq22+/1Ztvvqm77rpLl156qex2u2w2m2w2m6666qo679vpdOrtt9/W4MGD1aFDB0VFRem8885Tnz599OKLL+rUqVM1bv/NN9/I4XDIbrerV69eVa5T1r6NGzfK7XbXua0AAAAAAFQnkL87o24izG4AAACo3qJFi3TLLbeosLCwwfe9e/dujRs3Tlu2bKnwflZWlrKysrR+/Xq98MILmjlzpgYPHlzlPvbu3StJat++vex2e5XrXHDBBZIkh8OhAwcOKDU1teGCAAAAAACEvED/7oy6oecFAAABLDs7u1F++Tp8+LAGDhxo/PJls9nUr18/TZ48WcOGDVN0dLQk6cSJExo5cqRWrVpV5X7OnDkjSTrnnHOqPVZiYqKxfPbs2QaKAAAAAAAAr0D/7oy6oecFAABBoHXr1urZs6fx88knn2jatGl13t/NN9+so0ePSpI6dOigxYsXKz093fj81KlTGjt2rFauXKmSkhLdeOON2rdvnxISEirsp6ioSJKq7XUhSVFRUcZyY/wyCQAAAACAFLjfnVE3FC8AAAhg1113nQ4cOKD27dtXeH/jxo113ufSpUu1du1aSd6iw0cffaSuXbtWWCcpKUmLFy/WJZdcoh9++EFnzpzR888/r6effrrCemV/ZeJ0Oqs9nsPhMJabN29e53YDAAAAAFCVQP/ujLph2CgAAAJYcnJypV++6uu1114zlidMmFDpl68yMTExevLJJ43Xb7zxhlwuV4V1WrZsKUk6ffp0tccrG1qq/PoAAAAAADSUQP/ujLqheAEAQAjJz8/XypUrjdeTJk2qcf3Ro0crNjZWkrcIsWbNmgqfd+7cWZJ08ODBantffPfdd5K8w0d16NChzm0HAAAAAKApNPR3Z9QNxQsAAELIunXrVFxcLMn71yE9e/ascf2oqCj17t3beP3zyce6d++uqKgoOZ1Obdiwocp9rF69WpKUkZGhsDB+9QAAAAAABLaG/u6MuuEJAgAAIWTXrl3GcteuXRURUfv0Vz169Khye8n7S9zgwYMlVexSW6aoqEgzZ86UJI0ZM6ZObQYAAAAAoCk19Hdn1A3FCwAAQsiePXuMZV+HcCo/buju3bsrff7YY48pPDxc8+fP19/+9je53W5J3m62EydO1MGDB9WhQwfdfvvt9Ww9AAAAAACNrzG+O8N/FC8AAAgh5SfWbt26tU/bJCcnG8vlJ98uk56ertdee01hYWG6//771bZtW1166aVq06aN5s+fr4SEBH344YeKjIysfwAAAAAAADSyxvjufOjQISUlJRk/kydPrvL93/72t/VsvXVQvAAAIITk5+cby9HR0T5tU3698tuXN2XKFK1du1YjR45UaWmptm3bppYtW+rOO+/Utm3b1L179/o1HAAAAACAJtIY351LS0t1+vRp4ycvL0+S5Ha7q3wfUu2DdQEAAMtwOBzGst1u92mb8j0mioqKql2vT58++vDDD+veOAAAAAAAAkBjfHdOSUmRx+Opf+NCCD0vAAAIIVFRUcay0+n0aZvi4mJj2de/OAEAAAAAIFjx3TkwULwAACCExMbGGss19aIor/x65bcHAAAAAMCK+O4cGCheAAAQQs455xxj+fjx4z5tk5WVZSwnJiY2eJsAAAAAAAgkfHcODBQvAAAIIZ07dzaWDxw44NM2Bw8eNJbT0tIavE0AAAAAAAQSvjsHBooXAACEkIsuushY3rZtm1wuV63b/Oc//6lyewAAAAAArIjvzoGB4gUAACGkT58+ioyMlCQVFBRo8+bNNa5fXFysDRs2GK8HDBjQqO0DAAAAAMBsfHcODBQvAAAIIbGxsRo4cKDxetasWTWu/8EHHygvL0+Sd8zOvn37NmbzAAAAAAAwHd+dAwPFCwAAQszdd99tLM+aNUs7duyocr3CwkI99thjxuvf/OY3ioiIaPT2AQAAAABgNr47m4/iBQAAIWbIkCG68sorJXm7tg4dOlTffvtthXVOnz6tkSNH6vvvv5fk/cuRhx9+uMnbCgAAAACAGfjubD6bx+PxmN0IAABQvcGDB+vo0aMV3svKytLx48clSTExMbrgggsqbbd06VK1adOmyn0ePnxYGRkZOnbsmCTJZrOpX79+6tSpk06ePKkVK1aosLBQkhQREaHly5dX6DILAAAAAEAg4buz9VC8AAAgwKWkpOjAgQN+b/fjjz8qJSWl2s93796tcePGacuWLdWu06pVK82cOVNDhgzx+/gAAAAAADQVvjtbD4NvAQAQotLS0rRx40bNmzdPc+fO1Y4dO3T8+HElJCSoY8eOuv766zVp0iQlJSWZ3VQAAAAAAEzBd2fz0PMCAAAAAAAAAAAEFCbsBgAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAIAgc/jwYcXGxspms+m+++6rcp3HH39cNptNNptNjz/+eNM20CQ7duxQeHi4bDab/vrXv5rdHAAAANQDxQsAAAAgSFx11VXGw2h/fyZOnGh289GAHnjgARUUFCguLk6PPvqo2c3xyQMPPGBcjykpKfJ4PHXaz5kzZxQZGWnsa9asWcZnXbp00fjx4yVJTz/9tA4dOtQQTQcAAIAJKF4AAAAAQBD56quv9N5770mS7rnnHrVq1crkFvlmwoQJxvKBAwe0evXqOu1n3rx5cjqdkqSYmBjdcMMNFT7/85//rPDwcBUWFuqxxx6re4MBAABgqgizGwAAAADAfz179lRGRobP6/fq1asRW4Om9Oc//1mSFBkZqalTp5rbGD907dpV3bt31zfffCNJeuutt3TVVVf5vZ+33nrLWB49erRiY2MrfH7BBRdo9OjRmj9/vt5++2098sgj6ty5c73aDgAAgKZH8QIAAAAIQoMHDw6ZeQzwX19//bVWrFghSbrhhhvUunVrk1vknwkTJhjFi/fff1+vvfaaoqOjfd5+79692rhxY4X9VeWuu+7S/PnzVVpaqhdffFH/+te/6tdwAAAANDmGjQIAAACAIPHyyy8by3fccYd5Damjm2++Wc2aNZMk5ebmatGiRX5tX77XRfv27dW/f/8q17vqqqt0wQUXSJLeeecdnTp1qm4NBgAAgGkoXgAAAABAEMjJydHChQslScnJyerbt6/JLfJfq1atNGjQION1+WJEbTwej9555x3j9W233SabzVbt+jfeeKMkyeFwaO7cuXVoLQAAAMxE8QIAAAAIYSkpKbLZbLLZbNq/f78k6fDhw3r00UeVnp6uhIQExcTEKC0tTb/97W914MABv/ZfUlKit99+WzfddJM6duyouLg4xcTEKDU1VePGjdOHH34oj8dT4z4yMzONNpafI2Hp0qUaN26cLrzwQsXGxspms1XomVCmqKhIf//733X55ZcrKSlJ0dHR6tSpk8aNG6eVK1fWmIsyI0aMMD575plnfI7/L3/5i7Hd9ddf7/N2Vfnggw/kcDgkScOHD1dYWMN9ndu6davOO+88o63Dhg1TUVFRleuuXLlSd955p7p06aLExERFRkaqTZs2uvbaa/Xqq69Wu12Z8kM9ffbZZ8rKyvKpjatXr65w/Y0fP77G9UeNGmUsly96AAAAIDgw5wUAAAAAw6JFizRx4kTl5ORUeH/Pnj3as2eP3nzzTS1YsEBDhgypdV+ZmZm64447tG/fvkqf7d+/X/v379e8efPUq1cvLVy4UG3btvWpjTk5OZo0aZI+/PDDWtfdtm2bRo0aVakNP/zwg3744QfNmzdPU6ZM0SuvvFLjfv7f//t/WrJkiSRp5syZ+uMf/1jrsd1ut2bNmmW8ru8wTx999JGxPGDAgHrtq7w1a9Zo+PDhxjkfP3683nzzTUVEVPy6eOjQIY0fP16ZmZmV9nHs2DEdO3ZMn376qZ555hnNmzdPV155ZZXHGzp0qBITE3XmzBmVlpbq3Xff1R/+8Ida21m+l0bv3r31i1/8osb1f/WrX6lFixbKycnRpk2bdOLECZ177rm1HgcAAACBgeIFAAAAAEnSihUrdOedd6q0tFTt27dX7969FR8frx9//FGZmZlyuVwqKirSTTfdpO3btys1NbXafS1YsEC33HKLSkpKJEnR0dHq1auXUlJSFBYWpr1792r9+vVyuVzasGGDevfurU2bNtU6AbXH49Gtt96qf//737LZbLr00kt18cUXy+PxaPv27RWGEfr+++81cOBAnTx50niva9eu6tatm8LCwrRlyxZt3bpVb7zxhuLi4mo87qBBg9SuXTsdOnRI3333ndasWVPrsE2fffaZDh48KEk6//zzdd1119W4fk3cbneFXiLVFQb8tXjxYo0dO9bo0fGHP/xBL774YqXhmHbt2qWBAwfq2LFjkiSbzaYePXro4osvVnR0tI4cOaI1a9YoLy9PR48e1a9//WstW7asyjkp7Ha7xo0bp9dee02StyhRW/GiqKjIGDJLqn6i7vLCwsLUp08fLVu2TB6PRytWrNDNN99c63YAAAAIDBQvAAAAAEiS7r33XkVFRWn69Om65ZZbKjzA3rFjh6699lodOXJEhYWFeuqppzRjxowq97Njxw5NmDBBJSUlstlsuv/++/XnP/9ZCQkJFdb74YcfNGHCBH3xxRc6dOiQJk2apKVLl9bYxnXr1snlcqlr166aM2eOunbtWuHz4uJiSd4ix+23324ULs455xzNmTNH1157bYX1V61apXHjxumll14yJpKuSnh4uCZPnqwnnnhCkvTmm2/WWrx48803jeVJkybVa5in3bt3Kzc3V5KUlJSkNm3a1Hlf5ds3ZcoUlZaWSpKeeeYZPfLII5XWKygo0OjRo43CxaBBg/TKK6+oU6dOFdbLzc3VI488otdff13FxcW65ZZbtGvXLrVo0aLSPidMmGAUL7Zu3apt27ZVOpflffjhh8rLy5MkRUZGasyYMT7F2K1bNy1btkyS9NVXX1G8AAAACCIULwAAAIAgtHTpUp06dcrn9Z988kklJibWuI7T6dSiRYuq7CHQpUsXvfHGGxo6dKgkb8+Kf/7zn5WGFpKk++67z5j34KWXXtLvf//7Ko/XsWNHLV++XBkZGdq5c6eWLVumjRs36rLLLqu2jS6XS8nJyVq1apWSkpIqfR4ZGSlJ+uSTT7RmzRpJ3r/AX7x4sS6//PJK6w8YMEAff/yxevXqJafTWe1xJen222/XU089JbfbrYULF+qVV15RfHx8leuePn1aixcvluTtpTB58uQa912bb7/91lju3LlzvfYlSc8++6wx9FV4eLimT59e7bBWf/vb37Rr1y5J3nkkFi5cWGUhJj4+Xv/4xz9UWFio2bNn69ixY5o+fboefvjhSuv27NlTF110kbHft956Sy+88EK17S0/ZNSIESMqFcKqc9FFFxnLW7du9WkbAAAABAaKFwAAAEAQ2rRpkzZt2uTz+g888ECtxYuhQ4fWOLTR4MGDlZycrKysLOXn52vXrl2V/lp+69atWrVqlSSpe/fumjp1ao3HjImJ0aOPPqpx48ZJkubMmVNj8UKSHnvssSoLF+WV7/UwduzYKgsXZS699FKNHz9eM2fOrHGf7dq103XXXaelS5eqsLBQc+fO1ZQpU6pc9+233zaKIVdffbVSUlJq3HdtfvzxR2P5/PPPr/N+PB6P7r//fv3973+X5C32zJ07t8Lk1uWVlJTo1VdfNdadPn16rT1Inn76ab311lvyeDyaM2dOlcULydv7oqynx7vvvqtnn31W4eHhldY7duyYVqxYUWE7X5WfR+Xnk7ADAAAgsNW93zIAAAAAS7nxxhtr/Nxmsyk9Pd14XdXD4PLDPo0bN67S3AlVKT/59BdffFHr+r4MGbR69Wpj+dZbb611fV/WkaTf/OY3xnL5AsnPlf+svhN1S9Lx48eN5XPOOadO+3C5XJowYYJRuIiPj9fy5curLVxI0ubNm3XixAlJ0sCBA32a8LpNmzZKS0uTJG3fvr3S5O9lbr31VqMQcvTo0QoFivLmzJljDG2VnJxcaeivmpQvcmVlZfm8HQAAAMxHzwsAAAAgCP3lL3/R448/3qD7rGnOgTLlH5yXzcFQ3vr1643lzz//XAcOHKh1nx6Px1g+dOhQjeumpqbW2oPkyJEjFSbprq0nh+Qdxshms1VoS1WGDh2qNm3a6OjRo9q0aVOVczV89dVX2r59uyTvw/ORI0fWevzaFBQUGMvNmzf3e/vCwkKNGDHCKC6de+65WrZsmXr06FHjduXP5+HDh3Xvvff6dLzs7GxJ3nN7+PDhKue9aNu2ra6++mp9+umnkry9VaoqTJQfMuqWW26psndGdcrnyuFwyO1212vuEQAAADQdihcAAAAAJKnKB8w/V35S65KSkkqfHz161FgumyjZH2fPnq3x81atWtW6j/KFi+bNm9da7JCkuLg4tWjRwnjoXp2yibv/53/+R5K3h8XLL79cYZ3yvS5uu+022e32Wo/vj9oKLFX5+9//LpfLJck7/NXKlSt14YUX1rpd+fP57bffVph7w1c1ndMJEyYYxYsPP/xQ+fn5io2NNT7/5ptvtG3btgrr+6MuuQIAAEBg4E9OAAAAAEiST0M81aa6IYJ8VTY8UHWio6Nr3Ud+fr6x7E8vhfIPzWtyxx13GH+9/84771SY6LuwsFDz5s2rsG5DiImJMZbLJkP3R/mi05kzZ3Ts2DGftqvv+ZRkFE2qMmrUKGPS88LCQi1cuLDC5+V7XXTv3t2n3kHllc9VVFQUvS4AAACCCL+5AQAAAGgw5R+yf/DBB/J4PH7/1Ff5IkRhYaHP25UfmqkmHTp00K9//WtJ0unTp7Vo0SLjswULFhjDafXu3VsXX3yxz8evSXJysrF86tQpv7efOnWqhg0bJskb5+DBg7VmzZpatyA8pAoAAAoASURBVCt/Pu+77746nc+rrrqq2v1HR0dXmGvl7bffNpZdLpfmzp1rvPa314VUsRdO+RwCAAAg8FG8AAAAANBgWrdubSybNUFy+UmaCwsLax2KSvL21qhtyKjyqpu4u6En6i6TmppqLB8+fNjv7e12uxYuXFipgLF27doat2uK81m+KJGZmWnMe/LJJ58YE5U3a9ZMN998s9/7PnLkiLGckpJSv4YCAACgSVG8AAAAANBgyk+O/eWXX5rShvPPP79CAWPjxo21brN582a/en0MHz7c+Ev+FStW6ODBg9q7d69RDIiNjdVNN93kZ8urd8kllxjLe/bsqdM+ygoYQ4cOleQtYAwaNKjGAkb587lu3bpGmUPiiiuuUMeOHSVJbrdb77zzjqSKQ0YNGjTIp/lOfm7Xrl3Gcnp6ej1bCgAAgKZE8QIAAABAgyl7MC55h40q+8v5ptavXz9jec6cObWuX/bA3FcRERGaNGmSJO8D95kzZ2rGjBnG52PHjvV5Dg1fdO7c2ZhQ/fTp0xV6FPjDbrfr/fffr1DAqKkHxuWXX66EhARJ3h4fH330UZ2OWxObzabx48cbr99++23l5ORoyZIlxnt1GTJKkrZu3WosZ2Rk1L2RAAAAaHIULwAAAAA0mIyMDGOOg6KiIt12220VJrSuidPp9GmIJ19MnjzZWH733Xe1YcOGatf9z3/+o9mzZ/t9jDvuuMOY5HzmzJkV9tGQQ0ZJUlhYmAYMGGC8/uKLL+q8r7ICxpAhQyR5h8yqroARGRmpqVOnGq/vvvtuvwonvhavxo8fb+Ry165deuihh+RwOCRJiYmJFYpivnK73Vq3bp0kb4Hk6quv9nsfAAAAMA/FCwAAAAAN6pVXXjF6HXz22Wfq27dvjUM37d27V0899ZRSUlIabKipQYMG6YorrpDkfYg9bNgwrVixotJ6mZmZGjx4sEpLS2W32/06RseOHTVw4EBJ0oEDB4w5Ibp27VphuKWGUjZfhSStWrWqXvuy2+364IMPfCpg3H///erSpYsk7xwSl156qRYsWCC3213lvk+dOqV//vOf6tGjh1544QWf2pOamqorr7zSeP3Pf/7TWB43bpzf50aSvv76a+Xk5EiSevbsqXPPPdfvfQAAAMA8EWY3AAAAAID/li5dqlOnTvm8fvPmzfX88883Yov+65e//KXmzp2rMWPGqLCwUBs3blSvXr3UqVMn9ejRQ4mJiXI4HDpx4oS+/fbbOg+BVBObzaYZM2aod+/eOn36tE6dOqVf//rXSk9PV7du3SR5hxTasmWLJOmBBx7QggULdODAAUneng6++M1vflOpKHL77bc3WBzlXX/99br77rvlcDi0ZMkSvf766z63syplBYzrr79eH3/8sVHAWLZsmVH4kbzzdyxZskRXX321fvzxR2VlZemmm25SUlKSevXqpeTkZHk8Hp05c0Y7d+7Ud999ZxQ2yvcWqc2ECRO0Zs2aKt+viw8//NBYvuWWW+q0DwAAAJiH4gUAAAAQhDZt2qRNmzb5vH6LFi2arHgheee+WLdunW6//XZ9/fXXkqR9+/Zp37591W6TkpKi888/v8HacOGFF2rlypUaNWqUfvzxR0negkX5eRAkbwHi6aef1rvvvmu8Fx8f79MxRo4cqXPPPVcnTpyQ5B1m6bbbbmugCCpq0aKFbrjhBr3zzjvKysrSmjVrjCG66qpsCKnRo0cbBYxBgwZVKmB07NhRmzdv1p133qmFCxfK4/Ho1KlT+ve//13tvhMSEtS1a1ef23LjjTfqt7/9rQoLC433LrroIvXs2bNOsS1cuFCSFBUVpZtvvrlO+wAAAIB5GDYKAAAAQKNIT0/X5s2b9cknn+iuu+7SJZdcoqSkJEVERCgmJkYpKSm69tpr9dhjj+nLL7/UDz/8YPSKaMg2bN++XS+99JJ69eqlxMRERUVFKTU1VWPGjNGKFSv0xhtvqFmzZsZ8G2FhYT4XL5o1a1ZhPoZRo0YpMTGxQWMor/z8E//6178aZJ+RkZGV5sAYNGhQpXk1EhMTNX/+fH377bf605/+pD59+ui8886T3W5XVFSUkpOTdcUVV+i+++7TkiVLdOzYMb96TcTFxWnUqFEV3qtrr4vVq1fru+++k+TtdZGUlFSn/QAAAMA8No/H4zG7EQAAAABgpu+++06/+MUvJElpaWnatWuXT9t5PB516tTJ6NmxYsUKYx6MxnLNNdfos88+U2RkpPbv36/k5ORGPV4wGjNmjObPn6/w8HBt375daWlpZjcJAAAAfqLnBQAAAICQ99577xnL/gxT9PnnnxuFi44dO/o1x0NdPfXUU5Kk4uJivfzyy41+vGCzb98+vf/++5KkW2+9lcIFAABAkKJ4AQAAACCk/fjjj3rxxReN1/7Mj/C///u/xvKUKVNks9katG1VueyyyzRmzBhJ0j/+8Q+dPHmy0Y8ZTP7617+qtLRUzZs315NPPml2cwAAAFBHFC8AAAAAWNY111yj5cuXy+VyVfn5xx9/rCuuuEI5OTmSpG7duumaa67xad9LlizR4sWLJXnna7jjjjsaptE+ePHFFxUTE6O8vDyjJwaknTt36q233pIk/elPf1L79u1NbhEAAADqijkvAAAAAFhWWU+Ili1bqkePHmrXrp3sdrtOnTqlr776SocPHzbWjYuL05dffqmuXbtWua/vv/9er776qkpLS7V371599tlnKvs69eSTT+rRRx9t/IAAAACAEEHxAgAAAIBl+TqM04UXXqgFCxYoPT292nUyMzPVv3//Su9ffvnlWrVqlex2e53bCQAAAKCiCLMbAAAAAACNZfv27Vq0aJHWrVunAwcO6NSpUzpz5oyioqLUqlUrZWRkaOjQoRo7dqzCw8N93q/dbldqaqrGjBmjRx55hMIFAAAA0MDoeQEAAAAAAAAAAAIKE3YDAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCgULwAAAAAAAAAAQECheAEAAAAAAAAAAAIKxQsAAAAAAAAAABBQKF4AAAAAAAAAAICAQvECAAAAAAAAAAAEFIoXAAAAAAAAAAAgoFC8AAAAAAAAAAAAAYXiBQAAAAAAAAAACCj/Hz7yPmH/PEQsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label=\"3-30 Hz\")\n", + "plt.errorbar(energies, covspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Absolute Covariance (counts / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "b302af8b", + "metadata": { + "id": "b302af8b" + }, + "source": [ + "This covariance, plotted this way, mostly tracks the number of counts in each energy bin. To get an unfolded covariance, we need to use the response of the instrument. Another way is to plot the fractional covariance, normalizing by the number of counts in each bin." + ] + }, + { + "cell_type": "markdown", + "id": "d138219a", + "metadata": { + "id": "d138219a" + }, + "source": [ + "To do this, we calculate the Count Spectrum and divide by it." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "fe618f01", + "metadata": { + "id": "fe618f01", + "outputId": "10552705-f6a2-4189-c5c1-215971fde843" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:08, 4.47it/s]\n" + ] + } + ], + "source": [ + "countsp = CountSpectrum(events, energy_spec=energy_spec)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "104dc4d9", + "metadata": { + "id": "104dc4d9", + "outputId": "2fed28f3-64ed-40e3-d9b7-ebdcea7bbf7a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABiQAAASjCAYAAAD+T1KoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzde3wU1f0//tcmIVlCEsM1oGCiKAVClNYbgiiKLRWs5VNAhaqA0o9F+xP9UC+tLZfeBLV+zadVxCKEongBLRaLYtHCR66CipAggkK4CAkhyW422exudnd+f4xZErJJdrIzc3bOvJ6PRx7Z3czOnPf7nMwmc+ac41AURQEREREREREREREREZGBkkQXgIiIiIiIiIiIiIiI5McOCSIiIiIiIiIiIiIiMhw7JIiIiIiIiIiIiIiIyHDskCAiIiIiIiIiIiIiIsOxQ4KIiIiIiIiIiIiIiAzHDgkiIiIiIiIiIiIiIjIcOySIiIiIiIiIiIiIiMhw7JAgIiIiIiIiIiIiIiLDsUOCiIiIiIiIiIiIiIgMxw4JIiIiIiIiIiIiIiIyHDskiIiIiIiIiIiIiIjIcOyQICIiIiIiIiIiIiIiw7FDgoiIiIiIiIiIiIiIDMcOCSIiIiIiIiIiIiIiMhw7JIiIiIiIiIiIiIiIyHDskCAiIiIiIiIiIiIiIsOxQ4KIiIiIiIiIiIiIiAzHDgkiIiIiIiIiIiIiIjIcOySIiIiIiIiIiIiIiMhw7JAgIiIiIiIiIiIiIiLDsUOCiIiIiIiIiIiIiIgMxw4JIiIiIiIiIiIiIiIyHDskiIiIiIiIiIiIiIjIcOyQICIiIiIiIiIiIiIiw7FDgoiIiIiIiIiIiIiIDMcOCSIiIiIiIiIiIiIiMhw7JIiIiIiIiIiIiIiIyHDskCAiIiIiIiIiIiIiIsOxQ4KIiIiIiIiIiIiIiAzHDgkiIiIiIiIiIiIiIjIcOyTIUKFQCHv27MFLL72EmTNn4vLLL0dqaiocDgccDgdGjRoluoimmjZtWiT2WL9efvll0cUmIiIiIiIiIiIiiluK6AKQvNasWYOf/vSn8Hq9ootCRERERERERERERIKxQ4IM43K52BnRhtGjR2PgwIHtbved73zHhNIQERERERERERERGYsdEmS4nJwcXHHFFZGv9evXo7CwUHSxhLvjjjswbdo00cUgIiIiIiIiIiIiMgU7JMgwP/zhD3HkyBGcf/75zV7fsWOHoBIRERERERERERERkSjskCDD9O7dW3QRiIiIiIiIiIiIiChBJIkuAFFHNDQ0YMWKFbj11ltx4YUXIjMzE126dMEFF1yAyZMn4x//+AcURRFdTCIiIiIiIiIiIiL6FkdIkOVs3LgRM2bMwNdff93iZ6WlpSgtLcVrr72GYcOGYfXq1TjvvPMElJKIiIiIiIiIiIiImmKHBFnKqlWr8NOf/hQNDQ0AgM6dO2PYsGHIy8tDUlISDhw4gG3btiEYDGL79u24+uqrsXPnTuTk5AgueUtHjhzBSy+9hEOHDqG+vh7dunXDBRdcgJEjR7ZYd4OIiIiIiIiIiIjI6tghQZZRUlKCqVOnoqGhAQ6HA7Nnz8bjjz+O7OzsZtsdOnQIU6dOxebNm3Hs2DFMnz4d69atE1PoNsybN6/Vn40aNQrz5s3DddddZ16BiIiIiIiIiIiIiAzENSTIMh544AHU19cDAP785z/jqaeeatEZAQAXXngh3nvvPQwePBgA8O6772LHjh1mFjVuGzduxA033NBmpwURERERERERERGRlbBDgizh888/x4cffggA+O53v4sHH3ywze27dOmC3/72t5Hnr7zyipHFi5nD4cDll1+OP/7xj/joo49QUVGBhoYGuFwu7Ny5E3PnzkX37t0BAOFwGPPnz8fTTz8tuNRERERERERERERE8eOUTWQJTadcmjx5MhwOR7vvueGGGyKPN2/ebEi5tHr66acjHQ5NnXPOObj88stx+eWX495778Utt9yCXbt2AQB+/etfY8KECbjgggvMLi4RERERERERERGRbtghQZawbdu2yOP//Oc/OHLkSLvvURQl8vjYsWNRt7nrrrvw8ccfx1/AJt5///1WF6WO1hlxtj59+uBf//oXBg4ciOrqajQ0NOCZZ57BX/7yF13LSURERERERERERGQmdkiQJZw4cSLy+N1339X8/urq6qivHz16FF9++WWHyxVNIBCIex+9evXC/fffjz/84Q8AOhYzERERERERERERUSLhGhJkCW63O673h0IhnUpinhtvvDHy+Ouvv9alo4OIiIiIiIiIiIhIFHZIkCV06dIl8vitt96Coiiav6LZuHFjh/bV1tdFF12kS8x9+vRp9ryyslKX/RIRERERERERERGJwA4JsoScnJzI47KyMoElMU9dXV2z5007ZYiIiIiIiIiIiIishh0SZAlXXXVV5PGWLVsElsQ8n332WeRxly5dkJWVJbA0RERERERERERERPFhhwRZws033xx5/NZbb6G8vFxgacyxdOnSyONRo0aJKwgRERERERERERGRDtghQZZw5ZVXRi7K19fX484774x5kedAIIDq6moDSxeb2tramLd95plnmo0EueOOO4woEhEREREREREREZFp2CFBlvGXv/wFGRkZAIB///vfuPbaa7Fjx45Wtz9w4AB+//vfIy8vLyGmeXrggQcwceJEvPfee2hoaIi6TXl5Oe677z7Mnj078tqwYcNw2223mVVMIiIiIiIiIiIiIkM4FEVRRBeC5DV27FicOHGi2WtlZWWRKZe6dOmCiy66qMX71q1bh3PPPbfF6++88w5uu+02eL3eyGv9+/fH9773PXTr1g0+nw+nTp3Cnj178M0330S2Wbt2bbNpn0SYNm0ali9fDkCNu6CgABdccAGysrJQX1+Pr776Cjt37mzWWdG/f39s2bKl2aLeRERERERERERERFaUIroAJLd9+/bhyJEjrf68rq4On3/+eYvXW5uO6eabb8bWrVtxzz334JNPPgEAfP311/j6669bPUZeXh769u2rseTGqqurw/bt27F9+/aoP09KSsLkyZPx17/+FdnZ2eYWjoiIiIiIiIiIiMgAHCFBhsrLy2uzQ6I1hw8fRl5eXpvbvP/++1izZg22bNmCEydOwOVyIS0tDT179sR3vvMdXHXVVRgzZgyuvvpqOByODkagH5fLhW3btmHbtm3YsWMHvvnmG1RWVqKqqgopKSno2rUrBg0ahBEjRuDOO+9E//79RReZiIiIiIiIiIiISDfskCAiIiIiIiIiIiIiIsNxUWsiIiIiIiIiIiIiIjIcOySIiIiIiIiIiIiIiMhw7JAgIiIiIiIiIiIiIiLDsUOCiIiIiIiIiIiIiIgMxw4JIiIiIiIiIiIiIiIyHDskiIiIiIiIiIiIiIjIcOyQICIiIiIiIiIiIiIiw7FDgoiIiIiIiIiIiIiIDMcOCSIiIiIiIiIiIiIiMlyK6AKQHFwuFzZt2hR53q9fP6SlpQksERERERERERERERGdze/349ixY5Hn1113HbKzs005NjskSBebNm3C+PHjRReDiIiIiIiIiIiIiDRYs2YNfvzjH5tyLE7ZREREREREREREREREhmOHBBERERERERERERERGY5TNpEu+vXr1+z5mjVrcNFFFwkqjfm8Xi82btyIUaNGIT09XXRxLIE5s0cOZIlRljiIiETheZSshO1VfqxjcZh77Zgze+RAlhhlicMOvvrqq2bT7599bddI7JAgXZy9gPVFF12E/Px8QaUxXyAQQKdOnTB48GCkpqaKLo4lMGf2yIEsMcoSBxGRKDyPkpWwvcqPdSwOc68dc2aPHMgSoyxx2NHZ13aN5FAURTHtaCStkpISDBkyJPK8uLjYVh0SRERERERERERERFYg8lou15Ag0kF9fT3ee+891NfXiy6KZTBn9siBLDHKEgcRkSg8j5KVsL3Kj3UsDnOvHXNmjxzIEqMscZCx2CFBpINwOAyXy4VwOCy6KJbBnNkjB7LEKEscRESi8DxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxuKUTaQLTtlERERERERERERElPg4ZRORxQWDQZSWliIYDIouimUwZ/bIgSwxyhIHEZEoPI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSD2tpaLF++HLW1taKLYhnMmT1yIEuMssRBRCQKz6NkJWyv8mMdi8Pca8ec2SMHssQoSxxkLE7ZRLrglE1EREREREREREREiY9TNhERERERERERERERkdTYIUGkA7fbjQULFsDtdosuimUwZ/bIgSwxyhIHEZEoPI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSD9PR0jB8/Hunp6aKLYhnMmT1yIEuMssRBRCQKz6NkJWyv8mMdi8Pca8ec2SMHssQoSxxkLK4hYaL/+Z//wf/7f/8v8jw3NxelpaW67LuoqAjTp0/X9J577rkHS5Ys0eX4Rs47pigKwuEw2FSJ5ONwOJCUlASHwyG6KEREREREREREtiByDYkUU45C+Pjjj1FYWCi6GJagKAq8Xi9qa2tRV1cHv98vukjtCofDqKmpQVZWFpKSOPAoFsyZPXIQa4xpaWno0qULMjIykJ6ennAdFF6vF++//z5+8IMf8E4PIqIO4HmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjMUOCRM0NDRgxowZCIfDphxv4MCBGD16dLvbDR8+3ITSaNPQ0IDjx4/D5/OJLgoRmcjv98Pv96OqqgpOpxN9+/ZFp06dRBeLiIiIiIiIiIh0xCmbTPCHP/wBv/3tbwEAU6ZMwcqVKwEYN2XT1KlTUVRUpMt+Y6XHMB+fz4djx44hGAzqXTwispiUlBT069cPTqdTdFGIiIiIiIiIiKQicsomOecISSD79+/HH/7wBwDAT3/6U3z/+98XXKLEpCgKjh49atnOCK5zoR1zZo8cdDTGYDCIY8eOJUxuGhoasH//fjQ0NIguChGRJfE8SlbC9io/1rE4zL12zJk9ciBLjLLEQcbilE0GUhQFM2bMgN/vR9euXfHMM89g3bp1oouVkGpraxEKhZq91qlTJ5xzzjno0qULOnXqlHBzyjcVDAZRWVmJ7t27IyWFv1axYM7skYP2YlQUBQ0NDairq4Pb7W72R0swGERtbS0yMzPNLHJUXq8Xa9aswcyZM3HOOeeILg4RkeXwPEpWwvYqP9axOMy9dsyZPXIgS4yyxEHG4pRNBnr++edx//33AwCWLFmCe+65p9nUSpyy6Yxjx46htrY28jwtLQ3nn3++tBdpiailYDCIo0ePNlvIPiMjA/369RNYKiIiIiIiIiIiuXDKJgkdO3YMjz32GABg5MiRuPvuuwWXKHEpioK6urpmr3Xr1o2dEUQ2k5KSgm7dujV7ra6uLmGmbSIiIiIiIiIioviwQ8Ig9913HzweD1JTU7F48WJTpxtyuVxYtWoV5s2bh4ceeghz587F4sWLsWfPnoS8sBdtfvn09HRBpemYYDCIEydOWHYNDBGYM3vkQGuMZ//uK4qSEOctl8uF+fPnw+VyiS4KEZEl8TxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxuIt6AZ47bXX8M477wAAHn30UQwaNMjU47/99tt4++23o/7s4osvxqOPPoq77747YdZkiHaxMSnJWn1lycnJ6N69O5KTk0UXxTKYM3vkQGuM0X73w+Gw8HNCRkYGpk6dioyMDKHlICKyKp5HyUrYXuXHOhaHudeOObNHDmSJUZY4yFjWuuprAZWVlXjggQcAAAMGDMDjjz8uuETNHTx4EDNmzMAtt9zSYpok6jiHw4G0tLSE6eSxAubMHjmQJcaUlBTk5eVxKjkiog7ieZSshO1VfqxjcZh77Zgze+RAlhhliYOMxQ4JnT300EOoqKgAALzwwgtIS0sz7djnn38+Zs+ejXXr1uHYsWPw+Xyoq6vDl19+ieeffx4DBw6MbPvOO+9gypQpCIfDupbB6XRGekFDoRBcLldkBERNTQ0CgQAAoL6+PtIhEgwGEQqFIvtQFCVSrlAoFPlZOBxuNu1LMBiM7DsUCkXeEw6HI+9RFMWU7UKhECorK9HQ0NBsu6ZltVpMrW2nV0zBYBCVlZUIhULSxKS1DI3tJhAISBPT2ds1xth4rFj31/Q8EAwGmw33dLvdkd81r9cLr9cLAGhoaIDb7Y5s53K5Isetq6tDfX09ACAQCKCmpiZyHJfLFSlTbW0tfD4fAMDv98Pj8QAAPB4PVqxY0ex54+LbPp8PtbW1kRhiPe+JjikcDsPlckXyzJgYE2NiTEbG5Ha7sWLFimbPrR6TjPXEmNyRGFasWNHsudVjkrGe4ompsrISr732GqqqqqSJySr1dOrUKbzyyiuoq6uTJiaj6+nUqVN47bXXUFNTI01M/DuiZT2dPHkSK1euRF1dnaVjOnHiBF577TXU1dVJWU8yxiQCOyR09P7772PFihUAgKlTp+L666837djjx4/H4cOH8fTTT+Omm25C3759kZaWhvT0dAwYMAAzZ87E559/junTp0fe889//hMrV67UtRzDhg3DxIkTAQAVFRUoLCyM/JIsXboU+/btAwBs2rQJa9euBQCcOHEC5eXlkX0Eg8HIL0xNTU3kF9Xv90c6ewD1D5nG7dxud+QX1efz4fTp0wDUX+5Tp05FTgLV1dWRX0Cv14vKykoA6i/tqVOnIieBysrKyEmlrq4O1dXVkbKdOnUq8st9+vRp+Hw+OBwOhMPhSFkDgQBOnToVKWtFRUUkD1aJCVBPco0nVL1j8vv9CAQCcDgc0sSktZ4cDgeSk5Nx+vRpaWI6u54cDgcaGhoiH77txdRY1sYPXEA9RxQWFkbKumjRInz99dcA1PPu+++/DwD4+uuvsWjRosh2hYWFOH78OABg7dq12LRpEwBg3759WLp0aSQPhYWFkVysXr0a27dvBwB89tlneOWVVyLlPnToUCTeV155BZ999hkAYPv27Vi9enUk37Gc944fPy48ppqaGhQWFkbaBGNiTIyJMRkZU1lZGQ4dOhSZgk+GmGSsJ8akxpSUlIRDhw6hrKxMmphkrKd4Yvr000+RnZ2NkpISaWKySj39+9//Rm1tLZKSkqSJyeh6euedd5CdnY2qqippYuLfES3rafny5QDUzyArx/S3v/0N2dnZSEpKkrKeZIxJCIV0UVtbq+Tl5SkAlO7duysVFRVRt1u2bJkCQAGg5ObmmltIRVFCoZAycuTISBmGDBmiy36Li4sVAIrT6VQyMjKU4uJiJRgMKtXV1Uo4HFYURVHcbrfi9/sVRVEUr9er1NbWKoqiKPX19crevXuVffv2Kfv27VNKSkoi2wWDQSUYDEbK3tDQEDlmQ0NDZN/BYFAJhUKR7RrfEw6HhW7XtKyN2zEmxsSYWt/O7/dHzgPFxcXKvn37lPr6eqW6ujpSVpfLpQQCAUVRFKWurk6pq6tTFEVRAoGA4nK5IttVV1dHYqytrVW8Xq+iKIri9/sVt9sdKUN1dXWkTB6PR6mvr1cURVF8Pp9SU1MTKXd1dXUkjpqaGsXn8ymKop7DPB5PJIZYznsNDQ2MiTExJsbEmBgTY2JMjIkxMSbGxJgYE2NiTEJiaryW2/hVXFysmMWhKFFWFCbNHnzwwUjvUlFREaZOnRp1u6KiosgohdzcXJSWlppVxIgPPvgAN954Y+T5sWPH0Ldv37j2WVJSgiFDhkSeFxcXIz8/P6b3BoNBHDx4sNlrF198ccLPN3esyouRT/4n6s8+euR69OuWbnKJrCUcDsPn88HpdApfsFgUO+RAa4yJej4IBALYt28fBg8ejNTUVKFlISKyIp5HyUrYXuXHOhaHudeOObNHDmSJUZY47CCea7nxkvMKmMk+/fRT/OUvfwEAXH/99a12RiSKa6+9Fp06dYo8/+KLLwSWhuxKURR4PB7YuU/UDjmQJUafz4eNGzdGpskiIiJteB4lK2F7lR/rWBzmXjvmzB45kCVGWeIgY3GEhA6ajnro378/evTo0eq2FRUVOHToEAAgNTUV3/3udyM/++1vf4tx48YZW9hvnXvuuTh58iQAYOXKlZg8eXJc+7PbCIn9ZTV4efsRvLz9aNSfX5bbFVdd0A0/HnoevtM70+TSEVmXFc8HRERERERERERWInKEBK/w6Ozrr7+OLG7SnkAggB07dkSeN11g1miNC7MCQJcuXUw7rtV9uL8cL2w8hI9Lq9rc7pMj1fjkSDWe3/g1rszrhpmj+uP6gb1MKqU1KIoCRVHgcDjgcDhEF0cIO+RAlhgVRYHf70daWpql4yAiEoXnUbIStlf5sY7FYe61Y87skQNZYpQlDjIWp2yyoUOHDkVWZgfU0RLUtuq6AB549TPcXbSr3c6Is31cWoXpRTsx67XPUF0XMKiEYp0+fRpvv/02Hn/8cdxyyy3Iz89H165d0alTJ6Snp+O8887DmDFj8MQTT+Cbb74BAIRCIZSVlSEUCulShvr6emzcuBFPPPEEpkyZgssuuwy9evWC0+lEWloaevXqheHDh2P27Nn47LPPOnSML774Ag8//DAuueQSdOvWDV26dMGAAQMwdepUfPDBB5r3114OioqKIhfy8/LyNO27tLQ08l6HwyFkvRpA/3oWxe12Y+HChXC73aKLQkRkSTyPkpWwvcqPdSwOc68dc2aPHMgSoyxxkLE4ZZPJEmFR69/85jf44x//CAA455xzcPr06binQ5F5yqYvTtZg2rKPUV7jj3tfOVlpWH73lRjYO0uHkiWOm2++Gf/6179i2jYtLQ2/+tWv8Jvf/AbhcBgpKSm69Jo//fTTePjhh2Pe/rbbbsPzzz+Pbt26xbT9H//4R8yfPx8NDQ2tbjN58mQsXrwYmZmxTdOlKAqCwWCrOYjnfFFaWooLLrgg8vzw4cOaOzX00F6MZ0vU80EoFEJFRQV69uyJ5ORkoWUhIrIinkfJSthe5cc6Foe51445s0cOZIlRljjsgFM2UVxqa2uRkZER07Zbt27Fn//858jz22+/XfiFvkT2xcka3P7idrjrW78IrUV5jR+3Ld6O1+8dJl2nRKMePXpg0KBByM3NRUZGBrxeL7766it8/PHHCAaD8Pv9mDdvHg4dOoTly5cbUob09HQMGjQI/fv3R3Z2NoLBII4fP47t27dHRge9/vrr2LdvHzZv3oysrLbrYs6cOfj9738fed6nTx+MHDkSTqcTn3zyCUpKSgAAr776KiorK/Gvf/0rpt8rh8PRbIF5GckSY3JyMnr37i26GERElsXzKFkJ26v8WMfiMPfaMWf2yIEsMcoSBxmLUzYlsLOnXCkqKoq63erVq3HllVfi73//e6tDonw+H/73f/8XN954Y2Sl++zsbMydO9eo4ltedV0A05Z9rFtnRCN3fQOmLv1YqumbRo0ahRdeeAEHDx5ERUUF/u///g8rVqzAokWLsHz5cmzZsgXHjx9vtnj63//+dyxdulS3qXwuvvhi/PGPf8SuXbvgdruxa9cuvP7661i8eDFeeuklrF+/HuXl5XjiiSeQlKSe+vbu3Ytf//rXbe73gw8+aNYZ8fDDD6O0tBSvv/46li9fjuLiYqxcuRJOpxMA8P777+NPf/pTTGUOhUI4ffq05aczaossMdbW1qKoqAi1tbWii0JEZEk8j9qUogC+GqCuUv1ukcH5bK/yYx2Lw9xrx5zZIweyxChLHGQs3hoviZ07d2Lq1KlISUnBwIEDMXDgQHTt2hWhUAjffPMNtm3b1mzdiM6dO+Ptt99Gnz59BJY6sc39Z4ku0zRFU17jx7y1JSi8/buG7N9sv/zlL9vdJicnB6+88grKy8vx4YcfAgBefvllTJs2TZcy/PjHP8aPf/zjNrdxOp147LHHEAgEIp1xf//73/H0009HOhTO9qtf/Sry+Pbbb8eTTz7ZYpvJkyfD7XZj5syZANTpo+677z706NGjzfI4HA7pF3qSJcaUlBTk5eVxRBkRUQfxPGoj5SXA3tXAN58AJz8HfK4zP3NmA30uBc67DCiYBOQMFlXKNrG9yo91LA5zrx1zZo8cyBKjLHGQsThCQjLBYBDFxcVYvXo1/va3v2Hp0qVYv359s86IK6+8Ep988gmuvfZagSVNbB/uL8c/Pz9h6DHe3n0CH+4vN/QYicbhcETWRACAPXv2REYrmOnuu++OPPZ4PPjqq6+ibrdz507s3LkTAJCUlBS1M6LRvffei4svvjiyzxUrVrRbjqSkJGRmZgrJgVlkidHpdGLUqFGtdlwREVHbeB61gQPrgaU3AYuGA5ufAQ5vat4ZAajPD29Sf77oanX7A++LKG2b2F7lxzoWh7nXjjmzRw5kiVGWOMhY1r5CRADUu7O3bNmCp556ChMmTMDQoUPRt29fdO7cGWlpaejVqxeuuuoqzJo1Cx999BF27NiBQYMGiS52Qnth4yFzjrPJnOMkkp49e0YeezwehMNhoWVoLEc0a9asiTy+8cYb0a9fv1b36XA4MHXq1Mjzf/zjH+2WIxwOo7a2VkgOACAvL6/ZtHCxfrU2fVw0omPUi9/vx/bt2+H3GzNqiohIdjyPSsxbBay+B1h5K3B0q7b3Ht0KrJwEvDlD3Y+e4pguiu1VfqxjcZh77Zgze+RAlhhliYOMxfEzJps2bVrMU9Tk5eVBieEP57S0NAwfPhzDhw+Ps3QEAPvLavBxqc7/ELXi48NV+LLMg+/0zjTleIlg3759kcf9+vWLqY0bWQZA/V2L5j//+U/k8ahRo9rd7/XXXx95vHXrVvj9fqSlpbW6vaIo8Hq96Ny5c7v7tipZYgwEAti9ezfy8/PbrFMiIoqO51FJlRUDr0wEPCfj28/eVUDpZuCON4Gc/I7vR6fpothe5cc6Foe51445s0cOZIlRljjIWOyQIAJwrMobefzy9iOmHvvl7Ufw39deCADo1y3d1GOb7cSJE3j66acjz2+77TYkJyebWoZAIIDHHnss8nz48OGtrqXyxRdfRB5/73vfa3ff3/3umTVBQqEQDhw4gIKCgla3T05ORq9evWIptiGmTp2KysrKdrerrKzEa6+9FnmuZT0I0THqJTMzEz//+c9FF4OIyLJ4HpVQWTFQNK7ltEwd5TkJLBsLTF+nvVPiwHpg87Ntj9BonC6qccqo84cD1zwEDPhBi03ZXuXHOhaHudeOObNHDmSJUZY4yFjskCACMPLJ/7S/kUFWbD+CFd92gpQuGCesHEbxer0oLS3Fu+++iyeffBKnTp0CAAwaNAi//OUvoSiK4QseBwIBnDx5Eh999BH+/Oc/Y/fu3QDUD8q//OUvUd9z6tQpuFyuyPPc3Nx2j9O5c2f07NkTFRUVAID9+/e32SGhKApCoRCSk5OFLPo8f/78drdpaGjAD35w5h/1gQMHYvz48TEfQ3SMegmHw6ipqUFWVpbl18MgIhKB51FBFAXwe4BQA5DcCUjLBPT4PPZWqSMj9OqMaORzAS9PAGZuBdK7xVaOdQ8Dxau1H+voVmDlVnW0xE1PNjse26v8WMfiMPfaMWf2yIEsMcoSBxmLHRJEpKvNmzdj5MiRbW4zduxYLF++HPX19cjMzERKiv6nopSUFIRCoVZ/PmDAALz55psYMmRI1J+fPXIgJycnpuP27t070iFRVdX21F+hUAinTp1Cr1692s1BVVUVfvGLX8RUBqD1dTG0uv/++7Fx40YAQLdu3bB27Vqcc845Mb9fS4yJrKamBoWFhZg1axays7NFF4eIyHJ4HjWRTtMWtWndw/FP09Qaz0ng3UeACUva3s7A6aLYXuXHOhaHudeOObNHDmSJUZY4yFjWvTpERJbTtWtXPP/887j99tub3TlvpuTkZDz66KOYP39+mxfIa2trmz2PdQ2EptudvY9oZenVq1dMOfB4PHjuuediKoNenn32Wfztb38DAHTq1AlvvvkmLrroIk370BJjIsvKysKsWbOQlZUluihERJbE86gJdJ62qM3jdGREghZ7V6kdJgPGRP+5wdNFsb3Kj3UsDnOvHXNmjxzIEqMscZCx2CFBRLo699xzcf/99wNQp+vxeDz48ssv8emnn6K6uhqTJ0/Giy++iBdeeAEDBgwwrBz3339/ZIREXV0djh07ho8//hgejwd/+tOf8MYbb+Avf/kLfvjDH0Z9v8/na/Y8NTU1puM2XbSpvr6+zW0dDkfCjhp477338Mtf/jLy/Pnnn49pYe+zJXKMWiQlJfHuDiKiOAg9jxo1bVGiMGjaolZtflb7cTpiS2H0DgkTpotKSu/Gz33J8W87cZh77Zgze+RAlhhliYOMxcm8iEhXF154If7617/ir3/9K5577jn8/e9/x44dO3DkyBFMmzYNAPCf//wHw4YNw3/+8582p1WKR2FhYaQcy5Ytw4YNG3Dy5EksXLgQaWlp+OqrrzBu3DgsX7486vudTmez54FAIKbj+v3+yOP2RlU0TmcUSw5yc3OhKErMX4cPH46pvNHs27cPt912W6RcDz30EGbMmNGhfWmJMZF5PB688MILuk2FRURkK4oCT8UJvPD8c/BUnFA7CIxWXgJsmA8svwVYmAcs6Ac8daH6fWGe+vqG+UD5PuPLYqSyYmDR8PhHLOxdpe6nvKTt7cpL2h6BoacjW6LXjwnTRenyua8ogK8GqKtUv5vR7ilm/NtOHKlzb9DvvdQ5i5EdciBLjLLEQcay/m2rRGQJ5557LpYtW4asrCz87//+L6qrqzFz5kzs3bu32XQ+VVVVmDNnTpv7GjZsGO644w7NZejSpQseeeQRXHzxxfjJT36CcDiMn//85xg5ciQuvPDCZttmZGQ0e15fX9+ikyKapqMizt7H2RwOB9LT0xNqsefKykr86Ec/Qk1NDQB1vY+nn366w/tLxBg7IjU1FUOHDo15pAwRke2dtY5Bqs+LochH6nPzAGe6PusYRGPWtEWJwOBpi5qpPqJ+3/mSPseK1a6XgHF/PvPcpOmiUgf+V8c+981Yv4N0wb/txJEu9yb83kuXsw6wQw5kiVGWOMhYDkXhrRoUv5KSkmaLAxcXFyM/P7+Nd5wRDAZx8ODBZq9dfPHFpk7zcqzKG3n84Ou78cmRatOOfXluV/y/24YCAPp1SzftuKJ4vV706dMncsF77dq1uPnmmyM/Ly0txQUXXNDmPqZOnYqioqK4ynHjjTfigw8+AADMnj27xUX3U6dONVvI+osvvsDAgQPb3W+vXr0ii1q/8cYbmDRpUofLWFRUhOnTpwNQR0iUlpbG/N6z83j48GHk5eW1+Z6GhgZ8//vfx6ZNmwAA+fn52LZtGzIzMzWXvaMS4XxARJKSfdqetpgZeywdAmfTo0MgnmmLGmmZtkg0b5U6osGIkQKZfYCZW5vnYd45+h8nVvPcZx4vvcmcERq5I9SOmViJavdEJA5/74nI4uK5lhsvTtlEBLUjoPHrqgvM/Sf0qgu7RY5tB+np6Rg+fHjk+ebNm4WU4/vf/37k8ZYtW1r8vFevXs3mPTxy5Ei7+/T5fJHOCADtdmCEw2F4PB6Ew+EYSmy8mTNnRjojevTogbVr18bdGZFoMXaUz+fDxo0bW6wtQkQJzi7T9kRjduzeKmD1PcDKW6NenPEhDRtxNXxIa/neo1uBlZOAN2eo+9HK7GmLEoEJ0xYljMb750ycLsp3ZBc2vrOq/c/9dtp9m+Jt9xQX/m0njuVzL+D33vI504EdciBLjLLEQcZihwTRWW4Zeq65x7v0PFOPlwi6du0aeVxZWdnsZ3l5ee2ujxDv6Ij2ytBo0KBBkcefffZZu/v89NNPI4+Tk5PbXbRbURT4/X4kwkC1Z555Bi+9pE7DkJqain/84x/tjlSJRSLFGI9gMIjS0lIEg0HRRSGiWBxYr95JvWi4OiXP4U0tp7VpnLZn8zPAoqvV7Q+8b0x5zJxLXkTsMXQIBJGMUvRFEMmtbtOhDoHGaYv0ujjfOG1RIndKmDRtEQ6sN/YYsTr1hTpllInTRQWRjNIv9yB4uo01uezYESYR/m0njqVzL+j33tI504kdciBLjLLEQcZihwTRWQb2zsKVeeaMkrjygm74Tm/zpsNJFCdPnrlo0L17d+Fl6NYten1ff/31kccbN25sd5+NowsAYPjw4UhLi3IXaBPJycno0aNHszU0RFi3bh0efvjhyPMXX3wR11xzjS77TpQY45WRkYFp06a1uy4IEQmWSHcrJ9gIhTbFE3uMHQIZ8GIaViED3ja309Qh4K0CXpmo3xoKjXwu4OUJ+rQDIzqjNj8b/z5isaXQnOO0Z9HVQOEl6noSJsmAF9M8/4uMJcOib2DHjjDJ8G87cSybe4G/95bNmY7skANZYpQlDjIWOySIovj5qAvb30gHM6/rb8pxEkllZSW2bdsWeR7LugxGeOeddyKPm46EaGr8+PGRxxs2bMDx48fb3GfTkRtN39saRVHQ0NAgdPRASUkJJk+eHJlS6ZFHHsHUqVN1238ixKiHUCiEsrIyhEIh0UUhotYkyt3KCTpCISZaY9fQIRBCEsrQE6FY/v2ItUMgUactMrIzysRpi3Bki5zTmcWgzfZqhY4wahf/thPHkrkX/HtvyZzprN0cmDka1SCy1LMscZCx2CFBFMUNA3Nwy6XGTt3046Hn4vqBvQw9hhmqqmL/pykcDuMXv/gF/H4/ACAtLQ033XRT3GWoq6vTND/hokWLsGvXrsjzCRMmRN3uiiuuwBVXXAFA/VB97LHHWt3niy++iAMHDgAAMjMzcdddd7VbjlAohIqKCmEf1KdPn8aPfvSjyALjP/7xj/HEE0/oegzRMerF4/Fg8eLF8Hg8ootCRNEkwt3KCT5CIWZaYtfQIeBBBhY77oQHMd4t116HQCJOW2RkZ1T1EdOnLQKgjkqobn8dLdm02V4TtSPsbBJcnOuwGGLn33biWDL3gn/vLZkznUXNgWRrhclSz7LEQcZyKFa/bZUSQjwrsweDQRw8eLDZaxdffDFSUlJ0LaNW1XUB/LDw/1Be49d93zlZaXhv1rXo2iVV932b7dlnn8Urr7yC/+//+/8wfvx4ZGVlRd1uz549eOSRR7B+/Zl/7B9//HH8/ve/h8PhiKsMu3fvxs0334xZs2bh9ttvR79+/aJuV1ZWhoULF6KwsDByx/7IkSPxf//3f63u+4MPPsCNN94Yef7oo4/i97//PTp16hR57Y033sC0adNQX18PAJg/fz7mzJnTbrkb18RwOBxRc1BUVITp06cDAHJzc1FaWtruPhuVlpY2WwPi8OHDyMvLizwPBAK48cYb8dFHHwEALrnkEmzZskX3YZXtxXi2RD0fNK6FkZaWFnd7JSKdeavUC8BGXCjI7APM3AqktzOVY1mxeuekHmXI7APc8SaQE8PfUSJjP7Be7XyJkQLAjzSkwQ9NZ9EpbwADxrR8felN5owUyB0BTF/X9jbeKvViVTwdJAWTgJuebD3f887p+L71MGuP+v2tnwHHdph33H7DgGPbzTvet5q113nuMz/Q2O47rLV2357yEmDvauCbT4CTnzfvEHNmA30uBc67TG1vOYP1Km10igL4PUCoAUjuBKRlAkb+DaUxdv5tJ47lcp8Av/eWy5kBmuXg4Pvq9IVa/g44fzhwzUPAgB8YVsZ4aa7n6iPqlIbRzNoDdM3Vt4AxYnu1jniu5cZL7BUeogTWtUsqlt99JW5bvB3u+gbd9ntO505YfveVUnRGNNq1axemTp2KlJQUDBw4EN/5znfQtWtXOBwOVFZWYs+ePfjqq6+avWfChAmYN2+ebh9Q33zzDR555BE88sgjyMvLw5AhQ9CjRw+kpaWhpqYG+/fvx549e5rdqf+d73wHr7/+epv7HT16NH7zm9/gD3/4AwBg4cKFWLFiBUaOHAmn04lPPvkExcXFke2///3v49e//nVMZY71Ir0Rtm3bFumMANTFxNsaAdLUnXfeiauuuiqmbUXGqCeHwwGn0ym6GEQUjRl3LU5Y0vo2jSMU9JrGoXGEwvR17XdKiIxd4zoGDgBOdOAmjy2FLS/QiJi2qLWLt3p1Ru1dBZRujr0zymyNFzVyR5jbIZE3QkiHRKvt1cz1O7R0SBxY3/7FucbROY0jdIy4OCeiQ6SDsTuueQjOBL4wKTPL/V2dAL/3lsuZARwOB5xhL/Dm/R27AeDoVmDl1vZvABBIUz2Xl7Q9avKtn6mf2WZ0QJ+F7ZViwQ4JojYM7J2F1+8dhqlLP9ZlpEROVhqW330lBvaOPorAipou3BwMBlFcXNzsAv3ZMjMzMW/ePPziF79AZWWlLgsed+rUCUlJSZF1EEpLS9scTZCUlIR77rkHCxcuRNeuXdvd/+9+9zukpaXhd7/7HRoaGnDixImoHRm33347Fi9eHPPd/KFQCKdPnxay6PPZg+P++c9/xvzeyy+/POYOCZEx6qmmpgZLly7F3Xff3eooICISwKxpewomRb9IYPSc0u2NUBAVewc6BGqQgaW4DXfjdWShNvY3NnYIpHY585qIaYvG/bnl6yI7o0QpmKhe0DXLkInAR1Fyb7Dm7fVbidQR1iie0Tl6XpwT0SESZ+w1K/dgaerduPuenyEr5/yOlaE1Zo8OsRhL/V2dIL/3lsqZQWq++hhLV67C3eH3EFcGEvgGgJjqOZbzLaDePHBsh3Ed0G1ge6VYsEOCqB0De2fhvVnXYt7aEry9+0SH9/Pjoedi3o/ypRoZAQAzZ87E6NGjsWHDBuzYsQMlJSU4evQoXC4XACArKwt9+vTB0KFDceONN2LChAnIyMhAOBxGZmamLnfP5+fno6ysDP/+97+xdetW7NmzB4cOHUJlZSUaGhqQmZmJ7t27o6CgACNGjMDkyZNx3nnnxbx/h8OB3/zmN5gwYQKWLFmC999/H8eOHUNDQwP69OmDq6++GlOnTm02tVOs+9UrB4lKlhidTidGjRrFOz2I4mHEBRrRdy1aaIRChzWNvXEtgQ50CDjhxyhs69goiV0vATvbGKVitJ1LWnZIiOyMEiknX72wYdZ0WTmDhUwX5YQfo7qdgvO2TXG1+7jsegkY/kDrU24kwugcUR0iOsTuhB+jAhvgXPEP4M7X478wmUjTZSU4S/xdLfL3PkoHuCVyZqSyYjhXTcaocK+O/R1xtgS9AaDNek6UDugY2L69Uky4hgTpQsY1JKL5cH85Xth0CB8fjn3BySsv6IaZ1/WXYgFrIqNZ6XxARDEw8gJNeYm6foJZZm5rXkaRc0qLil30OgYizXU170BbfY+xI1QKJjXvjBKdeyHrKKxqfjfnhvnmjs4YORsYPSexct9I79E5gHpO1nJxTtTaOYkQe1Ox3q3clNF3K3OERvxE/t5H+523AqPaXSKsFSaaqPMtSU/kGhJJphyFSBI3DMzBG/dejfUPXos7h7W+QNDluV1x//X9sf7Ba/HGvVezMyKKcDgMt9sdmWbJjuyQA1lirK+vx3vvvRdZuJyI2nFgvbro8KLh6gXEw5taXjxqnL5j8zPAoqvV7Q+83/6+q4+oXyLuWmzKzBEKjUTG3ni3aAfVw4n3MAr1sOjdcoEm00yZNV3WgfXGHqOjBoxRp1IyUsGklhdrCww+ZhP1cOI990WJ+blv9Ogcbww3XjV2Cuh1gbDxbuXykra30zH2ZuckLbE3Lcvqe9TOOa0jho5uBVZOAt6coe2YbSkvUTvtlt8CLMwDFvQDnrpQ/b4wT319w3x1SiDB+Hd1O6LcMxxTzhQF8NUAdZXqdzPuPTaj3X07GtWQvyMaR6MmiKj1LOp8Gwf+jlMseMspUQd8p3cm/vvaC7Fie/R/zv/fbUPRr1u6yaWyFkVREAqFWqxlYCd2yIEsMYbDYbhcLst3rBAZzozh5IWXxFfGjmo6bY+oOaVFxh7nlElhOOBCFsKw6F26wQDQuGyWiOmyBExbBADoNwz4yYstXx/7lNo2jbpj9aYnW75u4nRR4b5XwRVISszPfZFTxQFipyvTMfYW56RYYm+UCNNlNUqUBc014N/V7QjUqqMLmmg1Z6KmCjOr3TW5AcCwvyPaWivMZC3q2aLTQ/J3nGLBERJEJERycjK6detm6YWO42WHHMgSY5cuXXD77bejS5cu7W9MZFdlxeqIiHjvHN+7St2PgXdudVhVqWVHKIjWBfW4Hf9EF1j0brmUb9cAE9EZBajrCHTNVddVMFPeiOhrGKR3Uy+iOrP1PZ4zW91vaxdIrnlQ3+O1osu1v0jMz/1EGJ1jRodINDrHHvWcFMvIpES5WznRRmhowL+r2xEMtHipRc6MHInaFrPbXZMbAAz9O6LpaFSBWtSzqPNtnPg7TrFghwRRB/Xrlo7SBeNQumAcDj8xFl/OvxGHnxiL0gXjODoiBoqiwO/3W/7O+XjYIQeyxBgMBlFaWopgMCi6KESJKVEu0Bjtfy9VRymcPX2T0XYuETc6QidBJKMUfRGERTuo6yoTozPKxGmLALQ9NVNOvjrvfmYffY6V2af9efxNmi4qeOENifm5L2KquKZEdojoHHur56S2LkwmwnRZgOVvADD072oR0xbprbEDvIlIzmpOieuIMrvdnXUDgKF/RzS9AUCgZr8bidAB3UH835liwQ4JIh2EQiFUVlYiFAqJLoplMGf2yIEsMdbW1mL58uWora1tf2Miu0mUCzSU0GrRBcsdt6IWHbxb7oHP1WmLZu0B+l2lb+Ha029Y4nRGNU5bZIbcEe1P8ZGTr075UDApvmMVTFL3E8u0NWOf0q8T5GzfTheVkJ/7okbnNCWqQ8SA2Fs9J7V1YTIR7laW4AYA3X+/LLR+RkxSM1q8FMnZ4pvEdESZ2e5aWS8r7r8j2mP253sUzX43RHdAxyEhP0Mp4TgUq9+2SgkhnpXZg8EgDh482Oy1iy++GCkpXOKEyG54PiAykKIAfg8QagCSO6nzEzt0mId39T3G3sFVMKn5nN7zzjHuWNQ2kesY3NPkDr4N89UpKMwycjbw0Z/NO14089xnHh9Yr94da7Qpq7TP9b2lUL2gG6vcEcCIB7XPZV9eol7M0rMj1JkdfYRG4wgV0et3bCk094LZFTPOrJsDqDlfZFJnGADM3AakfnvhUUTswx9oPl2Zab93b7Q+l723Sq0Do9ZuMWg+ecPEso7B2WJdx0Dk7/09Ue5Yb+wQMOOcdzaz253Iv/OaftaKJOJ8q+caI2QZ8VzLjRev8BARERHJyujFDs0aTp4giw3aXuPFudwR5l6gyTtr3YSCieZ2SAyZKL5DoqnGaYuM7gjU2kkwYIz6Vb5PLds3nwAndrc875w7VD3vDJnY8QsgjdNFvTxBn4tkmX1aX1hYZLvvmivu4tzOJepF+chzAdOV7YxhgWkj7FyifjW9OCliMfuziV7QPFF4q9RcdOQceHQrsPLbUV03Pdl6B0yifN4B4hc2tlO7UxR9btbpqMaOMBHn27M7YYkMximbiHQQDAZx8uRJzpGnAXNmjxzIEqPb7caCBQvgdifIXTNE7TFrsUMRw8lFTtsjmsjYG0dHAB1ax8CNTCzAfXAjU/vxz14zINGmLRLBhGmLOixnMDB6DnDX28CjpcCvjgMPH1K/P1qqvj56Tvx5NXC6qKif+4m0fodZCi858yViujIDaTonJcJ0WRaeT/5scf1dbfY6Bonwe7/uYbg9tR3/DG1Le1OFJVC7i+vviFgFxE4x5C4cgQWFL8C96w1zD6zzWmX835liwQ4JIh0kJSUhOzsbSUn8lYoVc2aPHMgSY3p6OsaPH4/0dC5YTwnOW2XeYoeiLtB0zVW/cqPcRWikaHctmk1k7E3vmutAh0A66jEe65GOem3Hbq1D4JoHte2no0aYdByt0rupd/Q7s/XdrzNb3a9e07Y4HOr0cF266zdNXFPp3dQ7a6e8of33IneEOi3VhCUt4o36uc+OMKnEdE5qZS57w0Xr/LHKfPIxLCrd4b+rRayfIfr3/tsOgQ5/hsairQ6BBGp3huagUTBg3L5jYEqMJuD/zhQLa18hIkoQSUlJ6Ny5s+UvupqJObNHDmSJsVOnThg4cCA6deokuihErTPrrkGRF2gah7IDYu5atPAIhbhEu2NTY4dAJwQxEF+jEzSOmGutQ6Bx2iIjdWTaIjM1Tluk10iJzD6xzSeeiAaMUcs+c5u65seFo1p21jiz1ddHzla3m76u1fpt9XPf7h1hEonpnJQoo0MSYYRGWzQuKt2hv6uNnraorRsxRP7ef9sh0OHP0FhF6xBIsHZneA4AICXVuH3HwJQYTcD/nSkW1r5CRJQgQqEQqqurEQqFRBfFMpgze+RAlhi9Xi/WrFkDr9cruihE0Zl516DICzRNh5OLuGvRwiMUOqy1O7U1dgh44cQajIEXztiP3V6HgJnTFiVKZ9TZDJy2yJJ0mi6q1c99doRJo0PnJDNVlSbWCI1oOjg9pHfvv7T/XW3GOgatEfV736RDwPD22rRDIFFuPDmLKb+zqRnG7TsGCX9eihH/d6ZYsEOCiIiIyMpE3jUomqi7Fi04QqHD2rpTW/Q6BmZOW5QonVHRGDRtkeUZNV2U6HZP9vC/lybOCI2zxTs95Jt3A0e2At7q2N6TCOsYmPl7L7pDQPSNJyJvABC5oDWRzbBDgkgHycnJ6Nq1K5KTk0UXxTKYM3vkQJYYOQ8mJTSRdw2KJuquRQuOUOiQ9u7U1tAhkA7ft/Mi+9o/rpZ1DMyetigROqNao/O0RXbW5ue+2et3iLw4J9oDnxsWe5vnpPZGJtlBlLUfAOgyPWQ6fBhfvRjpy0e3v6g0kBjrGJj5ex+lQ0DTZ2hH6bywcYe1cgOA4TlIgLXCTKlnE/B/Z4oFOySIdBAOh1FfX49wOCy6KJbBnNkjB7LE2NDQgP3796OhoUF0UYiaS4S7BkUTdbcyRyioYuwQaEAK9qM/GpDS/nG1rmNg5rRFidAZ1R6dpi2ys3Y/983sCBM5OqexM0RUh0i3PMNib/OcFMvIJNkFalu+ptP0kJHceyraX1Q6kdYxELhuT8yfoTI56wYAw3Ng9E0eMWi471Psv3ktGs672twD69wJy/+dKRbskCDSQTgchsvlsvxFVzMxZ/bIgSwxch5MSliJcNegaGbfrdzIYiMUNNEyQgGIqUPAi87fzovcufX9xLOOgZnTFiVCZ1SsjJq2SHIxfe6bvX6HiNE5jZ0hojpEGhkQe5vnpAS4MClcMND8uY7TQzbLfWvTQ4qetqg1gtbtiekzVDZn3QBgaA46egOAzrxpPbBmw1Z4zzW5Q0LnTlj+70yxcChKa2PxiGJXUlKCIUOGRJ4XFxcjPz+2D9dgMIiDBw82e+3iiy9GSoqNev+JCADPB0SalJeo0yaYZeY29Z+1eeeYd8xo5rmjv15eol7U0GP6qsw+6gX59i4UeKvUOjBiyqzMPurFilgukIuIvTUH1qsdWEe2xP6e3BHqxXc9pw4q36eOHvrmE+DE7uYX0ZzZwLlDgfMuUy88duQixOp7jB2dVDBJ7SAhazCr3S+9yZy7xXNHqHduNyXqM6eRiNgbL0y/9TPg2A7jj92o3zDg2HbzjhfNr46rnZiNzD7nJerfGk0Z9XsvOnbRmub+wHp1rRKjTVmVWNMXij7fkm3Ecy03XrzCQ0RERGQljRdIRNw1OPyBM0O6RVyg+cmLrf+88a7Fdx9Rp5nqqIJJ6lRFsXQENI5QWDZW30XFOzpCwczYWzNgjPpldIdAe3IGAzlz1MeKok4/EgwAKalAakb8IwXGPqVehDKqM4oLG1uLWe3+mgeBlSZclI82OqfxbmWzOgXOzo+I2BvvGM4dYe7nXd4I8R0SqRlnHps1PWTBJPX3yCoS5fNOZo2jUY3uDEukzghA/PmWyATskCDSQTAYxKlTp9CrVy/eyR0j5sweOZAlRpfLhcLCQsyaNQvZ2dmii0N2J2rBwZ1L1K/GO9dEXKBpbzh547Q9BZPMu0u/cU5p0SMURMTelrM6BFynvkHhCy9h1s/vQXav88ydOqhx2qI0HfeZKJ1RZIgOf+4b3REm+uKcyA4RnWN3IQuFjhmYpSxBNmrUF1uLvWAisPkZXY4bkyETge9NPfNcxA0ATduqztNDRs09oH52WalDopHRv/doI2dGSLQbT769AcDlqdM/Bwl2A0Czzx6R59s48X9nigXXkCDSQXJyMrp3747k5GTRRbEM5sweOZAlxoyMDEydOhUZGRntb0zUFkUBfDVAXaX63cozZ4qYzzxWA8aonQQztwEjZwMXjmq5zoIzW3195Gx1u+nrOn5BXtCc0lGZHXssHA5kdO+tnke795ZnHQOBC5ySsXT53Ddq/Q6Ri9mLXjtHx9gzUIepyhvIQJ36Qluxi1jMPlHW7zBgUekWuW/U3qLSVqDH732UheRbzZmeGhc2Ftnuot148u0NABlpnfTNQQLeANDss0f0+TYO/N+ZYmHd21WJRKs+ErlL1YGzbrpr/CCnVjkcDqSl6XmrovXYIQeyxJiSkoK8vDzRxSCrKi8B9n47lP/k5y2H8ve5VB3KXzDJWkOmrTCc3IS7FiMSfISCobHHQNrzaCJNl0W6Sej2Knp0jsjpynSMPQUh5OG4+iSW2EXerSxihIaB00M2y/3ZGqeHtLMoU4W1mTO9nN0hIKLdtSYnHyl3r0XeyxMATyj+Y8W7XlY0igL4PUCoAUju1KEOqRafPRadHjKhP0MpYXCEBBEJEQqFUFVVhVBIhz8oLMoOOZAlxrq6Orz22muoqzPwriSSz4H16iKci4ar/9Ad3tTyAorPpb6++Rlg0dXq9gfeF1HajrnmQXOOo8dwcqPuVj5bgo5QMCX2Nkh9Hm3sjJryhvY7SnNHqItpTljCzogEkvDtVeTonMZOgbPPa/GKtUNEp9jr0Bmv4RbUdcmLLXaRdyuLGKFReIn6tUv/DolI7tG55Q93LhE3NWWiaTIStc2c6eXs9i2i3bWhLiMPr/X+NeoG3RbfsfQYjdqovATYMB9YfguwMA9Y0A946kL1+8I89fUN82Me+dPis0f0+baDEv4zlBICR0gQkRAOhwPJyclwyDJtQwfYIQeyxJiUlITs7GwkJbEfn2LgrQLWPdyxea6PblXvwLTK3dKi5zNPZAk2QkE0W5xHucCpNCzRXkWOzhG9do4OsSdBQXaPHCRNfhfofm5sbxJ5t7KF55M/WxIUZKMGSWhj2spEW8dAhCYjUWPKWTxa6xBIoHaXlJSE7O69kHRdIfDdCWJHox5Yr66t0tYo4cabjhpvPDp/OHDNQ20eP+pnj+jzbQdY4jOUhHMoipUnL6ZEUVJSgiFDhkSeFxcXIz8/thNcMBjEwYMHm7128cUXJ/YCuOUl6vDV1u4Y6XeV+oFntek3iASz5PmAqKmyYuCVicb+wzDvnPj3HY/GRa0beavUUSBGXaCZuTXxO2aIWsPOKDLDgfViLs55q8RPV2Z27OUlxkyXFcsojdX3GH8DwIQl6uNE+Vtjw3xzpw0aORsYPce847XnwHpg5a3GH2fKqtZ/H8xsd1qZfQNAPDcdNeroOS8RzrcknXiu5caLHRKkC9t0SMTSE362GHrCZRIIBPD666/j1VdfRUlJCcrLy9G1a1dccMEF+MlPfoJp06ahR48eCIfD8Pl8cDqduvSch0IhlJSUYOfOndi1axd27tyJPXv2oKGhAQBw3XXXYePGjXEfpz2HDx9uVoZPPvkEHo8n8vOmp1w9czBt2jQsX74cADB16lQUFRXF/N6ioiJMnz4dAJCbm4vS0tK4ytKU1hgT9XwQCASwb98+DB48GKmpqULLQgmsrBgoGmf8RYrGeZ1F3TUYbY0kkRdoyBJ4HiUrsWx7FTU6R1SHSFMaY4+rjstLxNytbOYNAAZ2SATQCftwMQbjIFLREH2jxg6J8hI1ZrPM3JZ4NxSuvgeB4rfbz1lHtdchkCA3nrT7O2v0DQAm3HQU03kpEc637bDsZ6gNieyQSMArvkQJyE7Tb8Rh//79mDx5Mnbv3t3s9bKyMpSVlWHbtm146qmnsGzZMowZMwYej0eXBY/XrFmDn/70p/B6vXHvq6NOnjyJgoICVFZWxvweRVF0y0GikiVGn8+HjRs34sILL+QfVRSdt0r9J0XPC/KAur+XJzT/Zy3KYoemOHuxw6YsOJyczMXzKFmJZdurqKniEmG6Mo2xx1XHoqbLEr2guU58SMNGXI0LcbT9i+tNpi0yXAzrGAgx9in4Dn+KjXUx5kyLWBY2TpB21+7vbON6WUb826n3TUeek2o+z7rxJqbzUtPz7a6X1HVXouk3TP3bXcD0kJb9DCVTcYQE6ULqERJmTL8hgePHj+Oqq67CiRMnAKhrB1x77bXo378/KioqsGHDBtTX1wMAOnXqhPfeew833HCDLsdueod/a4weIVFaWooLLrig3e2MOuUm6ggJrRL+fEDUGhHD2RPxrkEOJyciIsA+05WJuFvZjBEaiTJlE5AY0xaJlggjUUWNDBItQUaIRFV9pPVF4Gftaf1GIqJvcYQEUaIyqSdcBlOmTIl0RuTm5uLtt9/GpZdeGvn56dOncfvtt+ODDz5AQ0MDJk2ahIMHD6Jr1666LXick5ODK664IvK1fv16FBYW6rLvWGVkZOB73/serrzySlxxxRXw+XyYOnVq1G0VRYGiKHA4HJZf9Lk1ssSoKAr8fj/S0tIsHQcZ5MB6YzsjAPUCf8Ek9Y6oRol412B6N7XjpGBSwg8nJ3PxPEpWwvaqAyPvVtaBbnUsYnSIGSM0DFxUWgHgRxrS4EeLzEdbVHrAGDVvRt/4kcB/fyi9BsM/ZQ3S3pgMR62gDgFRI4O+Jey8vO5hYzojAHW/7z4SuelIc4xdc1uu7ZYA+BlKseCS50StMXr6DW+VvvsVaN26dfjoo48AAKmpqVi7dm2zzggA6NGjB95++21ceOGFAICqqirMnTsXoVAo7uP/8Ic/xJEjR1BWVoa1a9dizpw5uOmmm5CdnR33vmOVk5OD4uJiuN1ubNq0CU899RRuvfVWnH/++a2+JxQKoaysTJccJCpZYnS73Vi4cCHc7sT7g48SwOZnzTnOligdrNc8aM6xR2g8zoAxauf7zG3qApEXjlIvyDTlzFZfHzlb3W76uoS+GEDx4XmUrITtVX6613HOYHUx5LveBh4tBX51HHj4kPr90VL19dFz9Js6pfEGgClvqB36WuSOUEcDTFjS+kXhrrnql9Z9x8CNLCx03A83slr+sLXpIcc+pV5EN0Is0xYJ5na7sXDZP+H+6XvqBf14FExSOxY6coOk0e2uDULOy2bddHRgPQB5PntkiYOMxRESRK0xsSfc6p577rnI46lTp6KgoCDqdl26dMHvfvc73HHHHQCAlStX4plnnon7+L179457H/Hq3Lmz5qFtycnJ6NmzJ5KTkw0qlXiyxJiZmYl7770XmZmZootCiaa8xJwRCoA62qB8X/OLGYl+16Co+cwp4fA8SlbC9io/Q+vYzNEhRo/QKJgIbI7//7WmMlGLe5UVyERtyx8OmRj9TQmyjoEokfbas2dijEQVMDJIyHnZzJuOBoyR5rNHljjIWOyQIIpG1PQbFlRbW4sPPvgg8ry9tRwmTJiAn//856itrUVVVRU++ugj3daSsBqHw4FOnTqJLka7Yl0fI5rDhw8jLy9P3wIJkJycnBAdX5Qgqo+cebzzJXOPveslYNyfm7829in1H1Kj5rbV667BBJ++g4zF8yhZCdur/KSrY6NuADBgeshkhNEbFS1/0N70kDn56mhKG65j0KK9JsJC8oCpN56Y/jsr4Kaj5JzBUpyXpDu/kiE4ZRNRNCKn37CYrVu3wu/3A1BHQFxxxRVtbu90OnH11VdHnm/YsMHQ8iWyUCiE06dPW346o7bIEmNtbS2KiopQWxvlTi6yFkUBfDVAXaX6vSMLzRdecuZrl8kdEjujjKxrvGvw7CmR4mWRuwbJGngeJSthe5Wf1HXceANAl+7q93gvCus8PWQt0lGESahFevMfxDI9ZOM6BiKnLRKg1fZq9lRhbdG73Z3FlN/Z6iNnvgTcdCTLeUmWOMhYHCFBdDbR029YzBdffBF5XFBQgJSU9k8r3/ve9/Dvf/8bALB//37DypboHA6HJRZ6ysrKwv333x/Ttnv27ImsJwIASUlJloixPSkpKcjLy4upfVMCKi8B9n5799jJz1vePdbnUvXusYJJ1jgfK0rLf/JsfNcgWQPPo2QlbK/yYx1roPP0kCkIIQ/HkYImNyxpmR6ycR0D0dMWmSim9ir5SFRTfmcLLzFu3+3ZuQQpo/8oxXmJ51eKBVsHESB++o3hD6iPoy3gleC+/PLLyOPc3NjK33Sh56bvt5ukpCRLzKvYrVs3/PWvf213u2PHjuHKK6+MPJ88eXKHp3pKNE6nE6NGjRJdDNLqwHp1xFtbncw+F3B4k/q1+Rl1WoJrHkrsf1QDteo/nGdrvGvw3UfUaQE7qmCSOk0TR0aQjngeJSthe5Uf61gjHaeHdMKPUdh25oWOTg+ZKNMWmYDt1R45cKalSRGjHeqK4scOCSJAeE94ZAqOeW5x5eigysrKyOOcnJyY3tN0PsGqqirdy2QV4XAYXq8X6enpSErSbwa9HTt24Be/+EXM2+sxSqWurg633HILysrKAABXXXUVli5daliMZvP7/fjss8/w3e9+F2lpkt52JBNvFbDu4Y7dyXd0K7Bya2JflA8GWr/7zYZ3DZI18DxKVsL2Kj/WsUY6LirtRyo+Qz6+ixKkOdPjnx7SxHUMRGF7tUcO/J5KfLbvK8vHaIe6ovixQ4KI4tJ0XsDOnTvH9J6m29l5XkFFUeD1emPOW6z2799v6lRYiqLgzjvvxO7duwEA/fr1w5o1a+B0OhEKhQyJ0WyBQAC7d+9Gfn4+/6hKdGXFwCsT47+Db+8qoHRzYk5blJLa/jY2umuQrIHnUbIStlf5sY47QKfpIQPohN3IR34XN9Luelnfv7MknbaI7dUeOQjU10kRox3qiuLHDgkiiovP54s8Tk2N4SIZ0OxDqb6+XvcyWUVycjJ69eoluhhxe/zxx/GPf/wDgLqw+T//+c/IKBhZYszMzMTPf/5z0cWg9pQVA0Xj4r5zL8JzUr0TcPq6xOqUSM2IfVsb3DVI1sDzKFkJ26v8WMcdpMP0kJmow88L/MBNHyTmSNQExPZqjxxkZneTIkY71BXFz7rzZxBRQnA6nZHHgUAgpvf4/f7IY6vfOR8PRVEQDAahKIqu+506dSoURYn5a9myZR0+1ssvv4wnnngCgLpI98svv4yhQ4dGfm5UjGYLh8NwuVwIh8Oii0Kt8VapIyP06oxo5HOpdwJ6m0wvN2vPma9+V+l7vPb0G9bxToTGuwa7dFe/szOCTMTzKFkJ26v8WMdxaJwecsob6nSPWuSOQPj2N+Aa/TTCzmxDiicjtld75CCcki5FjHaoK4ofOySIKC4ZGWfu1I11tEPT7Zq+PxFUVVXhF7/4RZtfL7/8si7HCoVCOHXqFEKhkC77M9v27dsxY8aMyPM//elPGD9+fLNtrB5jo5qaGhQWFqKmpkZ0Uag16x7WZaHFqDwn1TsBG3XNPfOl9R/xeOWZfDwinfA8SlbC9io/1rEOBoxRR5HO3AaMnA1cOEqdDrIpZ7b6+sjZ6nbT16Gm91XMvUZsryblQPBNRzUejxT1zPZKseCUTUQUl+7du0cel5eXx/SexoWPAaBbt8QapltTU4PnnnuuzW1qa2txxx13xH2sxumMkpOT496X2Y4ePYrx48dHRrvcddddeOyxx1psZ+UYm8rKysKsWbOQlZUluigUzYH1HVvAWou9q9SFogeMaf56wURg8zPGHrupIRPNOxaRjngeJSthe5Uf61hHGqeHZO61Y85MykHX3DOPc0cAx3YYd6yz5Y2Qpp5liYOMxRESRIDwnvDIsS3oO9/5TuTxkSNHYnrP0aNHI48HDhyoe5mswuFwICUlBQ6LTZtSV1eHW265JdIBNWLECLz44otRt7VqjGdLSkpCdnY2kpL4sZmQNj9rznG2FLZ8LScfOH+4OcfPHcGFp8myeB4lK2F7lR/r2CAxTA/J3GvHnAnIQYHJNwENmShNPcsSBxmLrYMIED/9RuOxLWjQoEGRx3v37kUwGGz3PZ9++mnkcdMOjUSQl5fX7poLRUVFuhzLitMZKYqCO+64A59//jkAIDc3F2+99VazhcqbsmKM0Xg8HrzwwgvweDyii0JnKy8Bjm4151hHtgDl+1q+fs2D5hx/hEnHITIAz6NkJWyv8mMdi8Pca8ecCciBgJuOZKlnWeIgY7FDguhsAnrCrWz48OGRi9F1dXXYtWtXm9v7/X5s37498vyGG24wtHyJzOFwID093VKjB379619jzZo1AIDMzEysXbsWvXr1anV7K8YYTWpqKoYOHYrU1FTRRaFG1UfUr50vmXvcXVGON2CM8efygknAgB8YewwiA/E8SlbC9io/1rE4zL12zJmgHJh805Es9SxLHGQsdkgQnY3Tb2iSkZGB0aNHR563N3rgrbfeivSUd+vWDaNGjTKwdIktKSkJGRkZlhnKuGLFCixYsACAWvZXX30VBQUFbb7HajG2Ji0tDcOGDWt1JAgJUHiJ+hWtg8BIO5dEf33sU0BmH2OOmdkHuOlJY/ZNZBKeR8lK2F7lxzoWh7nXjjkTlAOTbzqSpZ5liYOMZe0rRERG4fQbmtx3332Rx0VFRSgpKYm6ndfrxZw5cyLPp02bZvkL1fEIh8PweDwIh8Oii9KurVu34mc/+1nk+ZNPPolx48a1+z4rxdgWn8+HjRs3wufziS4KJQJFaflaejfgjjcBZ7a+x3Jmq/tN76bvfolMxvMoWQnbq/xYx+Iw99oxZwJzYOJNR7LUsyxxkLHseyWQqC2cfkOTcePGYeTIkQDUKZluvvlm7NnTfJHuyspKjB8/Hl999RUAdXTEfffdByXahT0ApaWlcDgckS+91m1IJIqiwO/3t5qDRHH06FH813/9F/x+PwDg7rvvxuzZs2N6r1VibE8wGERpaWlMa6SQDQRqo7+ekw9MX6ffPy2ZfdT95eTrsz8igXgeJSthe5Uf61gc5l475kxgDky86UiWepYlDjJWiugCECWssU+pC5h6Tuq/bwmn31i5ciWuvPJKnDx5EqWlpRg6dCiuu+469O/fHxUVFdiwYQO8Xi8AICUlBW+88Qb69++v2/HHjh2LEydONHutrKws8njXrl0YOnRoi/etW7cO5557ri5lmDNnDv75z382e622tvmFy2hl+N3vfodbbrlFlzIYYdmyZTh16hQAIDk5GSkpKfjFL34R03t/97vfoUePHkYWzxQZGRmYNm2a6GJQoggGgNZGIOfkAzO3Au8+Auxd1fFjFExSPyc4MoIkwfMoWQnbq/xYx+Iw99oxZ4Jz0HjT0csT9Lk+lNlH7Yw466YjWepZljjIWOyQIGpNY0/4srGAz6XffiWdfqNv37748MMPMXnyZOzevRuKomDjxo3YuHFjs+169uyJZcuW4YYbbkBDQwNSUlJ0WfB43759OHLkSKs/r6urw+eff97i9UAgEPexGx09ejTqMZqK9vPKykrdymCEpqMbQqEQXnzxxZjfO3v2bGRmZupWz6KEQiFUVFSgZ8+eSE5OFl0cEi2lnQXa0rsBE5aonQpbCtXO7VjljlCn85NkBB1RI55HyUrYXuXHOhaHudeOOUuAHJhw05HwGHUiSxxkLE7ZRNQWTr+hycCBA7Fjxw4sX74cP/zhD9GvXz+kpqaiV69eGDZsGJ588kns27cP48aNi3xIhUIh0cUWzurrK7RFlnr2eDxYvHhxZEF2srnUjNi2GzBGPefP3AaMnA1cOKrlcG9ntvr6yNnqdtPXsTOCpMTzKFkJ26v8WMfiMPfaMWcJkoPGm46mvKHeRKRF7ghgyir1/a3cnJoQMepAljjIWA7F6hN7U0IoKSnBkCFDIs+Li4uRnx/bRfdgMIiDBw82e+3iiy9GSkoCDeDxVnH6DZ0pigJFUSJrRNiRHXKgNcZEPR80roWRlpYmbV1ZTvW3I6Le+hlwbId5x+03DLhnfcffryjqGhTBgDrSIjUDYJsiG+B5lKyE7VV+rGNxmHvtmLMEzUH5PqB4NfDNJ8CJ3c1n1nBmA+cOBc67TF2fNGdwu7tLyBg7QJY47CCea7nxSqArvkQJjNNv6E7mi/CxskMOZInR4XDA6XSKLoYcFAXwe4BQA5DcCUjL7NgF+a656vfcEeZ2SORpvBvqbA6HGnNra1AQSYrnUbIStlf5sY7FYe61Y84SNAc5g4GcOepjHW46SsgYO0CWOMhYnLKJSIum029cMaP17foN4/Qb7QiFQigvL7f8VD7xsEMOZImxpqYGzz77LGpqakQXxZrKS4AN84HltwAL84AF/YCnLlS/L8xTX98wX73LSKuCiXqXtm1DTD4ekSR4HiUrYXuVH+tYHOZeO+bMAjlovOmoS/cO33CV8DHGSJY4yFgcIUHUETmDgeEPADuXRP/5T148c/cuReVwOJCZmSnF3fMdZYccyBKj0+nEqFGjeKeHVgfWA5ufBY5ubX0bnws4vEn92vwMcP5w4JqHYu/IzclX39PWMfSSOyKm4dZE1BLPo2QlbK/yYx2Lw9xrx5zZIweyxChLHGQsdkgQkRBJSUlIT08XXQyh7JADWWJMTU3F0KFDRRfDOrxVwLqH1TlVtTq6FVi5Vdu6O9c8qL7HaCMeNP4YRJLieZSshO1VfqxjcZh77Zgze+RAlhhliYOMxSmbiDqqay4wzw3McyM8pxruh44iPKdafY2jI9oVDofhdrsRDodFF0UYO+RAlhjr6+vx3nvvob6+XnRREl9ZMbBoeMc6I5rau0rdT3lJ+9sOGGP8VEoFkzj9HlEceB4lK2F7lR/rWBzmXjvmzB45kCVG0+KoPgLMOyf6V/URY49NceMICSIdKIqCUCgERVFEF8UymDN75ECWGMPhMFwul+U7VgxXVgwUjVOnYdKD5ySwbKy6Fk9Oftvbjn0KOLJFfY/eMvuoozWIqMN4HiUrYXuVH+tYHOZeO+bMHjmwXIzVR4DCS1q8HEZnuPr/yTpxkBAOxepXiSghlJSUYMiQIZHnxcXFyM9v5+LRt4LBIA4ePNjstYsvvhgpKewvI7Ibng8szFuljmgwqkNg5tb2p28qL1E7MPTqEAEAZ3ZsHSJERERERER20UqHBABg1h7jZw4RfXwJxHMtN16csolIB4qiwO/3W/4ucDMxZ/bIgSwxBoNBlJaWIhgMii5K4lr3sDGdEYC633cfaX+7nHy18yCzjz7HzezDzgginfA8SlbC9io/1rE4zL12zJk9ciBLjEEko/T4ScvHQcZihwSRDkKhECorKxEKhUQXxTKYM3vkQJYYa2trsXz5ctTW1oouSmI6sD7+NSPas3eVepz25OSroykKJsV3vIJJ6n7YGUGkC55HyUrYXuXHOhaHudeOObNHDmSJsRZdsPyt9ZaPg4zFKZtIF5yyiYj0wPOBRS29CTi61fjj5I5QRyzE6sB6YEuhuraElmOMeJALWBMREREREbVG9JRJoo8vAZFTNvEKDxEREXVceYk5nRGA2rFQvg/IGRzb9gPGqF/l+9QRHN98ApzY3XyNCWc2cO5Q4LzLgCETY983ERERERGRHZWXADtfav3nb/1MvdGrYBL/v6KoOGUTkQ6CwSBOnuQceVowZ/bIgSwxut1uLFiwAG63W3RREkf1EfWrrT9EjbDrJfW4WuQMBkbPAe56G3i0FPjVceDhQ+r3R0vV10fP4R/LRAbieZSshO1VfqxjcZh77Zgze+TAEjEeWK+Ojl80XP2/LAo3MrHg2GVwb/4bsOhqdfsD75tcUEp0HCFBwjkcjhavWW0msaSkJGRnZyMpiX18sWLO7JEDrTGGw+EWr0U7R5gtPT0d48ePR3p6uuiiJI7WhscabecS9WteB/9QdziAtEwgTd9iEVHbeB4lK2F7lR/rWBzmXjvmzB45SOgYvVXAuodjWjcwHfUYj/VIR736wtGtwMpv1/i76UkgvZvBhSUrYIcECRftQmUgEECnTp0ElKZjkpKS0LlzZ9HFsBTmzB450BpjQ0ND1H2I1qlTJwwcOFB0MYiILIvnUbIStlf5sY7FYe61Y87skYOEjbGsGHhlIuA5GdPmnRDEQHzd8gd7VwGlm4E73gRy4lyngFNGWZ74qzxkew6HA06ns9lrNTU1gkrTMaFQCNXV1QiFQqKLYhnMmT1yoDXGs3/3nU5nQoyQ8Hq9WLNmDbxer+iiEBFZEs+jZCVsr/JjHYvD3GvHnNkjBwkZY1kxUDQu5s4IAPDCiTUYAy+cLX/oOQksG6t2KHREDFNGAQCO7QA2P8MpoxIYOyQoIWRmZjZ7XlNTk1gnYSIynNfrbdEhkZWVJag0RERERERERDblrVJHRvhc+u7X5wJenqDuX0tZVt8DrLxVnQJKi6NbgZWTgDdnaDsmGcqhWG2yfkpIJSUlGDJkSOR5cXEx8vNjH4IVCATw9dfNh3QlJSUhKysLWVlZ6NSpU0JM20JE+gqHw2hoaEBNTQ1qamparCHRv39/pKamCiodtWneOYKPn8CLvREREREREVnZ6ntiWjOiwwomAROWtL+dximj2pTZR58poyQR77XceHANCUoIqampyMzMhMfjibwWDofhcrngcrnEFSxGiqJAURQ4HI6EmF7GCpgze+QgnhgzMzMTpjOioaEBX3/9Nfr372+p9W2IiBIFz6NkJWyv8mMdi8Pca8ec2SMHCRXjgfUd7oxoQAq+Ri764wg6Idj6hntXqZ0SA8a0vk3jlFF6jdJonDJq+jp2SgjGW84pYZx77rnIyMgQXYwOk3kdAKMwZ/bIQUdizMjIwLnnnmtAaTomIefzFG3WHvWr31XmHrffMPW4RGQpPI+SlbC9yo91LA5zrx1zZo8cJFSMm5/t8Fu96PztGhKd2994S2EbO0qgKaNId5yyiXSh1zCfcDiMEydONBspQUT2kpmZiXPPPZfTtFnFhvnqgmFmGTkbGD3HvOMRERERERHZRXmJumi0WWZuA3IGt3w9UaaMkpjIKZt4tYcSSlJSEvr27Yv+/fujZ8+ecDqdootERCZwOp3o1asX+vfvj759+7IzwkoKJpp7vCEmH4+IiIiIiEh21UfUr50vmXvcXS+px20qjimjYrZ3lXocEoJrSFBCSk1NRY8ePdCjRw8oioJwOIxEHszjdruxePFi3HvvvTjnHMELvVoEc2aPHLQXo8PhQFJSUsKvoeFyuVBYWIhZs2YhOztbdHESS04+cP5w4OhW44+VOyL63TNElPB4HiUrYXuVH+tYHOZeO+bMHjkQHmPhJbrsxoUsFDpmYJayBNmoaf8NO5eoX/PcZ16LY8ooTbYUtr2GBRmGUzaRLkQO80kEwWAQx48fR9++fZGSwn6+WDBn9siBLDHKEodhDqwHVt5q/HGmrAIG/MD44xCR7ngeJSthe5Uf61gc5l475sweORAe4zx9bpIMIhnH0Qd9cRIp0LCeZGOHRKJMGWUDnLKJyOJSUlKQl5cn7QejEZgze+RAlhhlicMwA8YYP5VSwSR2RhBZGM+jZCVsr/JjHYvD3GvHnNkjB7LEmIIQ8nBcW2cEIHbKKDIdOySIdFBXV4fXXnsNdXV1ootiGcyZPXIgS4yyxGGosU8BmX2M2XdmH+CmJ43ZNxGZgudRshK2V/mxjsVh7rVjzuyRA1lirENnvIZbUIfO2t5YeIn6ZXYHwU57L2wtCjskiHSQlJSE7OxsLsSrAXNmjxzIEqMscRgqvRtwx5uAM1vf/Tqz1f2md9N3v0RkKp5HyUrYXuXHOhaHudeOObNHDmSJMQkKslGDJFhohQCuZmA6riFBurD7GhJERPSt8hLg5QmA52T8+8rso3ZG5PDzhIiIiIiIyDA6rSFhSb86DqRlii6F6biGBJHFBQIB7N69G4FAQHRRLIM5s0cOZIlRljhMkZMPzNyqrvkQj4JJ6n7YGUEkBZ5HyUrYXuXHOhaHudeOObNHDoTHOGuP+tXvqrh2E0An7MZgBNAptjf0G6YeV6SgvO0qUbFDgkgHPp8PGzduhM/nE10Uy2DO7JEDWWKUJY4IRQF8NUBdpfpd78GS6d2ACUuAKW8AuSO0vTd3BDBllfp+TtNEJA3pzqMkNbZX+bGOxWHutWPO7JED4TF2zVW/tP7/dhYf0rARV8OHtNjekDdCPa5IKalij29DnLKJdMEpm4iIElx5CbB3NfDNJ8DJzwGf68zPnNlAn0uB8y5TRybkDNb52PuA4m+PfWJ3y2OfO1Q99pCJ+h+biIiIiIiIYlNeAiwabt7xZm5T/wcUOWXUXBfgcIg7viAir+WmmHIUIskpigK/34+0tDQ4bHgS6wjmzB45kCVGS8dxYD2w+Vng6NbWt/G5gMOb1K/NzwDnDweueQgY8AN9ypAzGMiZoz5WFCBQqw6LTUkFUjNs+ccfkd1Y+jxKtsP2Kj/WsTjMvXbMmT1ykDAx5uSr/w+29f9jGxQAfqQhDX60G0XuiDM3pDVO2/TWz4BjOzp07A7pN4z/jwrAKZuIdOB2u7Fw4UK43W7RRbEM5sweOZAlRkvG4a0CVt8DrLxV+x+TR7cCKycBb85Q96Mnh0NdMKxLd/U7//gjsgVLnkfJtthe5cc6Foe51445s0cOEirGax7s8FvdyMJCx/1wI6v9jUc0OY5OU0Zplmfy8QgAp2windh9yqZQKISKigr07NkTycnJootjCcyZPXIgS4yWi6OsGHhlIuA5Gf++MvsAd7zJxaWJKC6WO4+SrbG9yo91LA5zrx1zZo8cJFyMq+9Rp93VKIQkVKA7eqISyQi3vmHBJHXdwLOJmjLKhkRey+UICRP9z//8DxwOR+QrLy/PkOMEAgGsWLECY8eORW5uLpxOJ/r06YPhw4fj6aefxunTpw05rp0lJyejd+/eifGhYRHMmT1yIEuMloqjrBgoGqdPZwSg7mfZWPUPQyKiDrLUeZRsj+1VfqxjcZh77Zgze+Qg4WIc+5R6c5pGyQijNyra7ozI7APc9GT0nzVOGWWGplNGkanYIWGSjz/+GIWFhYYfZ//+/bjqqqtw11134d1338XRo0fh9/tRVlaGbdu24eGHH0Z+fj7WrVtneFnspLa2FkVFRaitrRVdFMtgzuyRA1litEwc3ip1ZETTRaP14HMBL0/Qf/omIrINy5xHicD2agesY3GYe+2YM3vkIOFiTO+mjpR3Zmt6Wy3SUYRJqEV69A2c2ep+07u1vpM4pozSpOmUUWQqdkiYoKGhATNmzEA43EbvoA6OHz+O0aNHY/fu3QAAh8OB6667DnfffTd+9KMfoXPnzgCAU6dOYfz48fjwww8NLY+dpKSkIC8vDykpXCc+VsyZPXIgS4yWiWPdw/qNjDib5yTw7iPG7JuIpGeZ8ygR2F7tgHUsDnOvHXNmjxwkZIw5+cD0dZpGSqQghDwcRwpCLX+Y2UfdX3vTAQ8YAwyZqLGwGhVMAgb8wNhjUKu4hoQJ/vCHP+C3v/0tAGDKlClYuXIlACA3NxelpaW6Hefaa6/FRx99FNn322+/jUsvvTTy89OnT+P222/HBx98AADo1q0bvv76a2RnZ8d9bLuvIUFEJNyB9eoC1kab8ob6ByIRERERERHJz1ul3py2d1XH91EwSZ2mqa2REWcfc9FwY264y+wDzNwae1kkxTUkJLZ//3784Q9/AAD89Kc/xfe//31DjrNu3bpIZ0RqairWrl3brDMCAHr06IG3334bF154IQCgqqoKTz7ZypxtpInf78f27dvh9/tFF8UymDN75ECWGC0Rx+ZnzTnOFuOnHyQi+VjiPEr0LbZX+bGOxWHutWPO7JGDhI4xvZu6APWUN9R1F9rgRyq247vwI1V9IXcEMGWV+n4tHQAdnDKqXbFMGUWGY4eEgRRFwYwZM+D3+9G1a1c888wzhh3rueeeizyeOnUqCgoKom7XpUsX/O53v4s8X7x4MYLBoGHlsotAIIDdu3cjEAiILoplMGf2yIEsMSZ8HOUlwNGt5hzryBagfJ85xyIiaST8eZSoCbZX+bGOxWHutWPO7JEDS8Q4YIw65dLMbcAVM6JuEkAn7E69EoErf6FuN31dx6dG6sCUUW2KdcooMhynbDLQ888/j/vvvx8AsGTJEtxzzz0oKirC9OnTAeg3ZVNtbS169OgR6UXdunUrrr766la39/l86NmzZ2ShnA8++AA33HBDXGXglE1ERCarPnLm8ZZCYNdL5h37ihnAuD+bdzwiIiIiIiJKHNVHgMJLov9s1h6ga65+xxIxZZQNcMomCR07dgyPPfYYAGDkyJG4++67DTvW1q1bI50RXbp0wRVXXNHm9k6ns1mHBRe3jl84HIbL5TJ84XKZMGf2yIEsMSZkHIWXnPkyszMCAHYuMfd4RGR5CXkeJWoF26v8WMfiMPfaMWf2yIEsMYbhgKvGo28cGqaMaqGjU0aRodghYZD77rsPHo8HqampWLx4MRwOh2HH+uKLLyKPCwoKkJKS0u57vve970V9P3VMTU0NCgsLUVNTI7oolsGc2SMHssQoSxy64gBLItKA51GyErZX+bGOxWHutWPO7JEDWWKsQSYKi940Jo4YpowCAPQbBoycHf+UUWSY9q9ck2avvfYa3nnnHQDAo48+ikGDBhl6vC+//DLyODc3tiFR559/fuTx/v37dS+T3WRlZWHWrFnIysoSXRTLYM7skQNZYpQlDl0FaoG0TNGlICKL4HmUrITtVX6sY3GYe+2YM3vkQJYYs+DBrGkTjI0jZzAw/IHWR+7/5EV9p4wi3bFDQmeVlZV44IEHAAADBgzA448/bsoxG+Xk5MT0nt69e0ceV1VV6V4mu0lKSkJ2drboYlgKc2aPHMgSoyxx6CoYANJEF4KIrILnUbIStlf5sY7FYe61Y87skQPLxdg1F5jnbvFyEoBs0wtDVsMpm3T20EMPoaKiAgDwwgsvIC3N+Ks1jYtTA0Dnzp1jek/T7Zq+P15OpxMZGRkAgFAoBJfLhcZ102tqahAIBAAA9fX1qKurAwAEg0G4XK7IPtxuNxoaGgAAXq8XXq8XANDQ0AC3+8zJzuVyIRgMAgDq6upQX18PAAgEApGhYYqiwOVyIRQKRWL1+XwAAL/fD4/HA6DlXH0ejyeyLofP54vkqLWYPB4Pnn/+eZSXl0sTk9H1VFlZieeeew4ej0eamLTWk8fjwaJFi3D8+HFpYjq7njweD5577jmcPn3a0jG53W4899xzkf0nRD2hM+rhVGNCJ9RAPfcqAFzIQujbj/hapMP3bc+BH6nwoItaT3DAhSyEoU4p6EEX+JGqxoQ01CJdjQlJcCELjRM01SADAXQCUlITrp5kO0cwJsYkU0zV1dWRz31ZYpKxnhjTmc/55557DtXV1dLEJGM9xRNTRUUFXnjhBZw+fVqamKxST+Xl5Xj++efh8XikicnoeiorK8MLL7wAl8slTUz8O6JlPX3zzTdYtGgRPB6PpWM6fvw4XnjhBXg8HmPrqc7b+v+5TdawsMM5It6YRGCHhI7ef/99rFixAgAwdepUXH/99aYct7GxAkBqampM72naUdL4S6GHYcOGYeLEiQCAiooKFBYWRn5Jli5din379gEANm3ahLVr1wIAjh8/jsLCwsg+Fi1ahK+//hqAmtP3338fAPD1119j0aJFke0KCwtx/PhxAMDatWuxadMmAMC+ffuwdOlSAOovcGFhYaSTaPXq1di+fTsA4LPPPsMrr7wCoOVcfa+88go+++wzAMD27duxevXqNmNKTU1F586d8cEHH0gTk9H1dOjQIdTW1iI1NVWamLTWU2pqKgYOHIiXXnpJmpjOrqfG+m2cGs6qMfl8Ppw+fTpyvk2IesL3sQnD1JhwMZbiNjUmpKHQMQMV6K7GhHHYDnXdoM+Qj1fwX2o9IROFjhmogTrt0iv4L3yGfDUmfA+rMU6NCd1R6JgB/7d/7C3FbdiHi4HUjISrJ9nOEYyJMckUU0VFBU6fPh35W1WGmGSsJ8akxpSamorTp09HyipDTDLWUzwxff755xg6dCj2798vTUxWqacPPvgAnTt3RmpqqjQxGV1P69atw9ChQyPbyRAT/45oWU8rVqzAueeei9TUVEvH9NJLL2Ho0KFITU01tp7e29T6/7lN1rCwwzki3piEUEgXtbW1Sl5engJA6d69u1JRURF1u2XLlilQb2BVcnNzdTn22LFjI/t89NFHY3rPunXrIu/JyMiIuwzFxcUKAMXpdCoZGRlKcXGxEgwGlerqaiUcDiuKoihut1vx+/2KoiiK1+tVamtrFUVRlIaGBqW6ujqyL5fLpQQCAUVRFKWurk6pq6tTFEVRAoGA4nK5IttVV1crDQ0NiqKo+fd6vYqiKIrf71fcbreiKIoSDoeV6upqJRgMKoqiKB6PR6mvr1cURVF8Pp9SU1OjKIqihEIhpbq6WgmFQoqiKEpNTY3i8/kURVGU+vp6xePxKIqiMCbGxJgYU+LEdPwLxXviS0WpKlX8L45R3HPPVZS5WUp4bpZSPbevEpybrShzsxTP3N5K/dyeijI3S/HN7aHUzO2jKHOzlNDcc5TquX2V0NxzFGVullIzt4/im9tDUeZmKfVzeyqeub0VZW6WEpybrVTP7auE52YpytwsxT33XMX/4g9ZT4yJMTEmxsSYGBNjYkyMiTExJsbEmMTEdGxf6//nlu61Zkwm11PjtdzGr+LiYsUsDkVRlFb6KkiDBx98MNK7VFRUhKlTp0bdrqioCNOnTwegLkBdWloa97Fvu+02vPHGGwCABx54IKZerrfeegsTJkwAoK4ncfLkybjKUFJSgiFDhkSeFxcXIz8/P659WonP58P27dsxbNgwOJ1O0cWxBObMHjmQJcaEj2PDfGDzM+Ydb+RsYPQc845HRJaX8OdRoibYXuXHOhaHudeOObNHDmSJ0bQ4qo8AhZdE/9msPVzUOgYir+VyyiYdfPrpp/jLX/4CALj++utb7YwwSvfu3SOPG9cwaE9ZWVnkcbdu3XQvk90Eg0GUlpZG5oej9jFn9siBLDEmfBwFE8093hCTj0dElpfw51GiJthe5cc6Foe51445s0cOZIlRljjIWBwhoYOmox769++PHj16tLptRUUFDh06BECdm/S73/1u5Ge//e1vMW7cOM3HLywsxIMPPghAXcNh27Zt7b7nsccew8KFCwEAP/nJT/Dmm29qPm5Tdh8hQUQk3NKbgKNbjT9O7ghg+jrjj0NEREREREQUDUdIxE3ktdwUU45iI19//XVkcZP2BAIB7NixI/K8cRETrQYNGhR5vHfvXgSDQaSktF21n376adT3U8eEQiFUVFSgZ8+eSE5OFl0cS2DO7JEDWWK0RBzXPAisNKFDYsSDxh+DiKRjifMo0bfYXuXHOhaHudeOObNHDmSJUZY4yFicskkCw4cPR1paGgCgrq4Ou3btanN7v98fWbUdAG644QZDy2cHHo8HixcvhsfjEV0Uy2DO7JEDWWK0RBwDxhg/lVLBJGDAD4w9BhFJyRLnUaJvsb3Kj3UsDnOvHXNmjxzIEqNpcXTNBea5o39xdETC45RNJjNiUWsAGDduHNatU6fQuPfee/HCCy+0uu2rr76KKVOmAFDXjygvL293REV77D5lk6Io8Pv9SEtLg8PhEF0cS2DO7JEDWWK0TBzeKmDRcMBzUv99Z/YBZm4F0rnuEBFpZ5nzKBHYXu2AdSwOc68dc2aPHMgSoyxx2AEXtaa43XfffZHHRUVFKCkpibqd1+vFnDlzIs//+7//O+7OCAIcDgecTidPthowZ/bIgSwxWiaO9G7AHW8Czmx99+vMVvfLzggi6iDLnEeJwPZqB6xjcZh77Zgze+RAlhhliYOMxQ6JBFZaWgqHwxH5KioqanXbcePGYeTIkQDUKZluvvlm7Nmzp9k2lZWVGD9+PL766isA6uiIRx991LDy20lNTQ2effZZ1NTUiC6KZTBn9siBLDFaKo6cfHXR6cw++uwvs4+6vxz7jHojIv1Z6jxKtsf2Kj/WsTjMvXbMmT1yIEuMssRBxuKt8RJZuXIlrrzySpw8eRKlpaUYOnQorrvuOvTv3x8VFRXYsGEDvF4vACAlJQVvvPEGsrOzxRZaEk6nE6NGjYLT6RRdFMtgzuyRA1litFwcOfnq9ErvPgLsXdXx/RRMAm56kiMjiChuljuPkq2xvcqPdSwOc68dc2aPHMgSoyxxkLG4hoTJtKwhUVpaigsuuCDyfNmyZZg2bVqb+9+/fz8mT56M3bt3t7pNz549sWzZMowbN05L0dtk9zUkiIgS1oH1wJZC4MiW2N+TOwIY8SAXsCYiIiIiIiKSENeQIN0MHDgQO3bswPLly/HDH/4Q/fr1Q2pqKnr16oVhw4bhySefxL59+3TtjCCgvr4e7733Hurr60UXxTKYM3vkQJYYLR3HgDHqlEsztwEjZwMXjmq5xoQzW3195Gx1u+nr2BlBRLqy9HmUbIftVX6sY3GYe+2YM3vkQJYYZYmDjMUpm0w2bdq0dkc5NMrLy0NHBrCkpqbirrvuwl133aX5vdQx4XAYLpcL4XBYdFEsgzmzRw5kiVGKOHIGAzlz1MeKAgRqgWAASEkFUjMALjpGRAaS4jxKtsH2Kj/WsTjMvXbMmT1yIEuMssRBxuKUTaQLTtlERERERERERERElPg4ZRORxQWDQZSWliIYDIouimUwZ/bIgSwx6h6HogC+GqCuUv3OewOISHKyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSD2tpaLF++HLW1taKLYhnMmT1yIEuMusRRXgJsmA8svwVYmAcs6Ac8daH6fWGe+vqG+UD5Pr2KTUSUMGT5PCB7YHuVH+tYHOZeO+bMHjmQJUZZ4iBjccom0gWnbCIiasWB9cDmZ4GjW2N/z/nDgWse4sLSRERERERERKQ7kddyuag1ERGREbxVwLqHgeLV2t97dCuwcitQMAm46UkgvZv+5SMiIiIiIiIiMhmnbCLSgdvtxoIFC+B2u0UXxTKYM3vkQJYYNcdRVgwsGt6xzoim9q5S91NeEt9+iIgEk+XzgOyB7VV+rGNxmHvtmDN75ECWGGWJg4zFDgkiHaSnp2P8+PFIT08XXRTLYM7skQNZYtQUR1kxUDQO8JzU5+Cek8CyseyUICJLk+XzgOyB7VV+rGNxmHvtmDN75ECWGGWJg4zFNSRIF1xDgogI6jRNi4br1xnRVGYfYOZWTt9ERERERERERHEReS2XIySIdOD1erFmzRp4vV7RRbEM5sweOZAlxpjjWPewMZ0RgLrfdx8xZt9ERAaT5fOA7IHtVX6sY3GYe+2YM3vkQJYYZYmDjMUOCSIiIj0cWB//mhHt2btKPQ4RERERERERkQVxyibSBadsIiLbW3oTcHSr8cfJHQFMX2f8cYiIiIiIiIhISpyyicjiGhoasH//fjQ0NIguimUwZ/bIgSwxthtHeYk5nREAcGQLUL7PnGMREelEls8Dsge2V/mxjsVh7rVjzuyRA1lilCUOMhY7JIh0wDnytGPO7JEDWWJsNY7qI+rXzpfMLdAuk49HRBQnWT4PyB7YXuXHOhaHudeOObNHDmSJUZY4yFicsol0wSmbiMiW5p0j8NhucccmIiIiIiIiIsvilE1ERESkDe8nICIiIiIiIiKLYYcEkQ5cLhfmz58Pl8sluiiWwZzZIweyxJiQcQRqRZeAiChmCXkeJWoF26v8WMfiMPfaMWf2yIEsMcoSBxmLUzaRLuw+ZVMwGMTx48fRt29fpKSkiC6OJTBn9siBLDG2GofIKZsePgR06S7u+EREGsjyeUD2wPYqP9axOMy9dsyZPXIgS4yyxGEHIq/lskOCdGH3DgkisimRHRK/Og6kZYo7PhERERERERFZEteQILK4uro6vPbaa6irqxNdFMtgzuyRA1liTMg4UjNEl4CIKGYJeR4lagXbq/xYx+Iw99oxZ/bIgSwxyhIHGYsdEkQ6SEpKQnZ2NpKS+CsVK+bMHjmQJcZW45i1R/3qd5W5Beo3DHA4zD0mEVEcZPk8IHtge5Uf61gc5l475sweOZAlRlniIGNxyibSBadsIiJb2zAf2PyMeccbORsYPce84xERERERERGRNDhlE5HFBQIB7N69G4FAQHRRLIM5s0cOZImx3TgKJppboCEmH4+IKE6yfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaQDn8+HjRs3wufziS6KZTBn9siBLDG2G0dOPnD+cHMKkzsCyBlszrGIiHQiy+cB2QPbq/xYx+Iw99oxZ/bIgSwxyhIHGYtTNpEuOGUTEdnegfXAyluNP86UVcCAHxh/HCIiIiIiIiKSEqdsIrI4RVHg8/nA/r3YMWf2yIEsMcYUx4Axxk+lVDCJnRFEZEmyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaQDt9uNhQsXwu12iy6KZTBn9siBLDHGHMfYp4DMPsYUIrMPcNOTxuybiMhgsnwekD2wvcqPdSwOc68dc2aPHMgSoyxxkLE4ZRPpwu5TNoVCIVRUVKBnz55ITk4WXRxLYM7skQNZYtQUR3kJsGws4HPpVwBnNjB9nbpWBRGRBcnyeUD2wPYqP9axOMy9dsyZPXIgS4yyxGEHIq/lskOCdGH3DgkiombKS4CXJwCek/HvK7MPcMeb7IwgIiIiIiIiIl1wDQkii6utrUVRURFqa2tFF8UymDN75ECWGDXHkZMPzNyqrvkQj4JJ6n7YGUFEFifL5wHZA9ur/FjH4jD32jFn9siBLDHKEgcZix0SRDpISUlBXl4eUlJSRBfFMpgze+RAlhg7FEd6N2DCEmDKG0DuCG0HzB0BTFmlvj+9m7b3EhElIFk+D8ge2F7lxzoWh7nXjjmzRw5kiVGWOMhYnLKJdMEpm4iI2lG+DyheDXzzCXBid/M1JpzZwLlDgfMuA4ZMBHIGiykjEREREREREUmPUzYRWZzf78f27dvh9/tFF8UymDN75ECWGHWJI2cwMHoOcNfbwKOlwK+OAw8fUr8/Wqq+PnoOOyOISEqyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaSDQCCA3bt3IxAIiC6KZTBn9siBLDHqHofDAaRlAl26q98dDn32S0SUoGT5PCB7YHuVH+tYHOZeO+bMHjmQJUZZ4iBjccom0gWnbCIiS1EUwO8BQg1Acid2ChARERERERGRbYi8lssVRoh0EA6HUVNTg6ysLCQlceBRLJgze+QgoWIsLwH2fruGw8nPW67h0OdSdQ2Hgkktpk1KqDiIiCyI51GyErZX+bGOxWHutWPO7JEDWWKUJQ4yFlsGkQ5qampQWFiImpoa0UWxDObMHjlIiBgPrAeW3gQsGg5sfgY4vKl5ZwSgPj+8Sf35oqvV7Q+8H/lxQsRBRGRhPI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsThlE+nC7lM2sQdYO+bMHjkQGqO3Clj3MFC8uuP7KJgE3PQkws5s6euKiMhIdvjMI3mwvcqPdSwOc68dc2aPHMgSoyxx2AGnbCKyuKSkJGRnZ4suhqUwZ/bIgbAYy4qBVyYCnpPx7WfvKqB0M5LueBPZOfbpZCUi0psdPvNIHmyv8mMdi8Pca8ec2SMHssQoSxxkLHZVEenA4/HghRdegMfjEV0Uy2DO7JEDITGWFQNF4+LvjGjkOQnP0gl44a/PSl1XRERGssNnHsmD7VV+rGNxmHvtmDN75ECWGGWJg4zFDgkiHaSmpmLo0KFITU0VXRTLYM7skQPTY/RWqSMjzl4jIk6p/koM9fwHqcE6XfdLRGQXdvjMI3mwvcqPdSwOc68dc2aPHMgSoyxxkLG4hgTpwu5rSBBRglh9T3xrRrSnYBIwYYlx+yciIiIiIiIiMpjIa7kcIUGkA5/Ph40bN8Ln84kuimUwZ/bIgakxHlhvWGeED2nYiKvh2/tP9ThERKSJHT7zSB5sr/JjHYvD3GvHnNkjB7LEKEscZCx2SBDpIBgMorS0FMFgUHRRLIM5s0cOTI1x87OG7TqIZJSiL4JIBrYUGnYcIiJZ2eEzj+TB9io/1rE4zL12zJk9ciBLjLLEQcbilE2kC07ZRERClZcAi4abd7yZ24CcweYdj4iIiIiIiIhIJ5yyicjiQqEQysrKEAqFRBfFMpgze+TA8Birj6hfO18yZv/fCiEJZeiJUOPH5q6X1OMSEVFM7PCZR/Jge5Uf61gc5l475sweOZAlRlniIGOxQ4JIBx6PB4sXL4bH4xFdFMtgzuyRA8NjLLxE/dplbIeEBxlY7LgTHmSoL+xcoh6XiIhiYofPPJIH26v8WMfiMPfaMWf2yIEsMcoSBxmLUzaRLuw+ZZOiKPD7/UhLS4PD4RBdHEtgzuyRA8NjnHeO/vuMQgHgRxrS4EezKOa5TTk+EZHV2eEzj+TB9io/1rE4zL12zJk9ciBLjLLEYQcir+WmmHIUIsk5HA44nU7RxbAU5sweOZAlRgcAJ/yii0FEZFmyfB6QPbC9yo91LA5zrx1zZo8cyBKjLHGQsThlE5EOampq8Oyzz6KmpkZ0USyDObNHDmSJsQYZeBb3oKZxyiYiItJEls8Dsge2V/mxjsVh7rVjzuyRA1lilCUOMhY7JIh04HQ6MWrUKPYCa8Cc2SMHssTohB+jsI2jJIiIOkiWzwOyB7ZX+bGOxWHutWPO7JEDWWKUJQ4yFteQIF3YfQ0JIhLEpDUkWj8+15AgIiIiIiIiImsReS2XIySIdFBfX4/33nsP9fX1ootiGcyZPXJgeIyz9qhf/a4yZv/fqocT72EU6vHtXR79hqnHJSKimNjhM4/kwfYqP9axOMy9dsyZPXIgS4yyxEHGYocEkQ7C4TBcLhfC4bDoolgGc2aPHBgeY9dc9St3hDH7/1YYDriQhTAc6gt5I9TjEhFRTOzwmUfyYHuVH+tYHOZeO+bMHjmQJUZZ4iBjccom0gWnbCIiocpLgEXDzTvezG1AzmDzjkdEREREREREpBNO2URkccFgEKWlpQgGg6KLYhnMmT1y0GqMigL4aoC6SvV7vH3jOfnA+cZ1SASRjFL0RRDJ6mgMdkYQEWlih888kgfbq/xYx+Iw99oxZ/bIgSwxyhIHGYsdEkQ6qK2txfLly1FbWyu6KJbBnNkjB81iLC8BNswHlt8CLMwDFvQDnrpQ/b4wT319w3ygfF/HDnbNgzqWvLladMFyx62oRRdghHHHISKSlR0+80gebK/yYx2Lw9xrx5zZIweyxChLHGQsTtlEuuCUTUTUqgPrgc3PAke3xv6e84cD1zwEDPiBtmOtvgcoXq3tPVoUTAImLDFu/0REREREREREBuOUTUREJB9vldpBsPJWbZ0RgLr9yknAmzPU/cRq7FNAZh9tx4pVZh/gpieN2TcRERERERERkQ2wQ4JIB263GwsWLIDb7RZdFMtgziTPQVkxsGg43MXrsQD3wY3Mju1n7yp1serykti2T+8G3PEm4Mzu2PFa4U47DwsCd8HdkKzrfomI7ELqzzySDtur/FjH4jD32jFn9siBLDHKEgcZix0SRDpIT0/H+PHjkZ6eLroolsGcSZyDsmKgaBzgOYl01GM81iMd9R3fn+cksGxs7J0SOfnA9HX6jZTI7IP0O1/F+P/6iXx1RURkEmk/80hKbK/yYx2Lw9xrx5zZIweyxChLHGQsriFBuuAaEkQEQJ1eadFwtRNBb5l9gJlb1VEQsZbl3UfUURYdVTBJnaYp1mMSERERERERESU4riFBZHFerxdr1qyB1+sVXRTLYM4kzcG6h5t1RnjhxBqMgRfO+PftOal2MMQqvZu6APWUN4DcEdqOlTsCmLJKfX96NznriojIRDyPkpWwvcqPdSwOc68dc2aPHMgSoyxxkLFSRBeAiIgkcWA9ULza2GPsXaWOWhgwJvb3DBijfpXvU8v3zSfAid2Az3VmG2c2cO5Q4LzLgCETgZzB+pabiIiIiIiIiIg4ZRPpg1M2ERGW3gQc3Wr8cXJHqGtExENRgEAtEAwAKalAagbgcOhTPiIiIiIiIiKiBMYpm4gsrqGhAfv370dDQ4PoolgGcyZZDspLonZGNCAF+9EfDXoOyDuyRR3tEA+HA0jLBLp0V7+30xkhVV0REQnA8yhZCdur/FjH4jD32jFn9siBLDHKEgcZix0SRDrgHHnaMWeS5KD6iPq186WoP/ai87drSHTW97i7XlKPaxIp6oqISCCeR8lK2F7lxzoWh7nXjjmzRw5kiVGWOMhYnLKJdMEpm4hsat45go/vFnt8IiIiIiIiIiKL4ZRNREREREREREREREQkNXZIEOnA5XJh/vz5cLlcootiGcyZPXLgQhbmO/4HLmSJLkpc7FBXRERG4nmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjMUpm0gXdp+yKRgM4vjx4+jbty9SUnRcvFdizFkC5EBRAL8HCDUAyZ1iWty5hXambAoiGcfRB31xEikIxVHY1o5vzpRNwuuKiMjieB4lK2F7lR/rWBzmXjvmzB45kCVGWeKwA5HXctkhQbqwe4cEkWWUlwB7VwPffAKc/Bzwuc78zJkN9LkUOO8yoGASkDO4/f1xDQkiIiIiIiIiIkvhGhJEFldXV4fXXnsNdXV1ootiGcyZyTk4sB5YehOwaDiw+Rng8KbmnRGA+vzwJvXni65Wtz/wflyHrUNnvIZbUIfOce1HNLZXIqL48DxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxmKHBJEOkpKSkJ2djaQk/krFijkzKQfeKmD1PcDKW4GjW7W99+hWYOUk4M0Z6n6imbVH/ep3VdQfJ0FBNmqQBJ0H4/Ubph7XJGyvRETx4XmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjMUpm0gXnLKJKAGVFQOvTAQ8J+PfV2Yf4I43gZxWfq83zFdHVphl5Gxg9BzzjkdEREREREREJAlO2URkcYFAALt370YgEBBdFMtgzgzOQVkxUDROn84IQN3PsrHqGhTRFEyM+nIAnbAbgxFAJ33K0WhI9OMZhe2ViCg+PI+SlbC9yo91LA5zrx1zZo8cyBKjLHGQsdghQaQDn8+HjRs3wufziS6KZTBnBubAW6WOjDh7jYh4+VzAyxOiT9+Ukw+cP7zlW5CGjbgaPqTpV47cEbEtuK0jtlciovjwPEpWwvYqP9axOMy9dsyZPXIgS4yyxEHG4pRNpAtO2USUQFbfAxSvNm7/BZOACUtavn5gvbpWhdGmrAIG/MD44xARERERERERSYhTNhFZnKIo8Pl8YP9e7Jgzg3JwYL2xnREAsHeVepyzDRjTYiolBeooCd0iLJgkpDOC7ZWIKD48j5KVsL3Kj3UsDnOvHXNmjxzIEqMscZCx2CFBpAO3242FCxfC7XaLLoplMGcG5WDzs/rtqy1bCqO/PvYpdQHsb7mRhYWO++FGVvzHzOwD3PRk/PvpALZXIqL48DxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxuKUTaQLu0/ZFAqFUFFRgZ49eyI5OVl0cSyBOTMgB+UlwKKW6zgYZua26Gs5lJeoC2D7XAghCRXojp6oRDLCHT+WMxuYvk5dq0IAtlciovjwPEpWwvYqP9axOMy9dsyZPXIgS4yyxGEHnLKJyOKSk5PRu3dvnmw1YM50zEH1EfVr50v6FCxWu1o5Xk6+2nmQ2QfJCKM3KuLrjMjsI7QzAmB7JSKKF8+jZCVsr/JjHYvD3GvHnNkjB7LEKEscZCx2SBDpoLa2FkVFRaitrRVdFMtgznTMQeEl6ldrHQRG2RllYetGOfnAzK2oHXgbijAJtUjv2DEKJgEztwrtjADYXomI4sXzKFkJ26v8WMfiMPfaMWf2yIEsMcoSBxmLHRJEOkhJSUFeXh5SUlJEF8UymDNJctDWrH/p3ZAy/n+RVzAMKf0u17bf3BHAlFXAhCVAerf4yqgDKeqKiEggnkfJSthe5cc6Foe51445s0cOZIlRljjIWFxDgnRh9zUkiISad464Y//qOJCWGdu25fuA4tXAN58AJ3YDPteZnzmzgXOHAuddBgyZGH1tCiIiIiIiIiIiihvXkCCyOL/fj+3bt8Pv94suimUwZ5LkIBho88fNYswZDIyeA9z1NvBoqdqZ8fAh9fujperro+ckZGeEFHVFRCQQz6NkJWyv8mMdi8Pca8ec2SMHssQoSxxkLHZIEOkgEAhg9+7dCATavjhLZzBnkuQgJbXNH7cao8Ohjqzo0l397nAYWMj4SVFXREQC8TxKVsL2Kj/WsTjMvXbMmT1yIEuMssRBxkrIKZtOnz6NDRs24OOPP8bnn3+O0tJSlJWVwefzAQCcTid69+6NvLw8XHrppbjyyitx4403okePHoJLbl+csolIIJFTNs11JXxnAhERERERERERnSHyWm7CrDBSVVWFV199FS+//DJ27tyJs/tJmj6vr69HaWkpSktLsXHjRgCAw+HAFVdcgTvuuAOTJ09Gt27iF0El+wiHw6ipqUFWVhaSkjjwKBbMmY45mLVH/f7Wz4BjO/QpXCz6DWu3M0KWepYlDiIiUXgeJSthe5Uf61gc5l475sweOZAlRlniIGMJbxkHDx7Evffei379+uGBBx7Axx9/jHA4DEVRmn2d7eyfh8NhfPzxx3jggQfQr18/3HvvvThw4ICAiMiOampqUFhYiJqaGtFFsQzmTMccdM1Vv3JH6FOwWOW1fzxZ6lmWOIiIROF5lKyE7VV+rGNxmHvtmDN75ECWGGWJg4wlbMqmb775BnPmzMGKFSsQCoWadTqcc845GD58OIYOHYpBgwbhvPPOQ48ePZCeng5FUVBfX4+Kigp88803+OKLL/D5559j69atcLvdZwJzOJCcnIw777wT8+fPR9++fUWEaRt2n7KJPcDaMWcG5KC8BFg0PP79xGrmtnYXoJalnmWJg4hIFJ5HyUrYXuXHOhaHudeOObNHDmSJUZY47EDktVwhHRJPPPEE/vSnP8Hr9UY6Ii666CJMmjQJ//Vf/4XLLrsMDo1zkiuKgk8++QT/+Mc/sHr1ahw8eBCA2jGRnp6Oxx9/HI899pjusZDK7h0SRAlj6U3A0a3GHyd3BDB9nfHHISIiIiIiIiIiXYm8liukq+rxxx9HXV0dkpKScOutt+I///kPDhw4gD/+8Y+4/PLLNXdGAGrHw+WXX44//vGP+PLLL7Fx40ZMmjQJSUlJqKurw+OPP25AJEQqj8eDF154AR6PR3RRLIM5MygH1zyo377aMiK248hSz7LEQUQkCs+jZCVsr/JjHYvD3GvHnNkjB7LEKEscZCwhHRIOhwPTp0/H/v378dprr+G6667T/RjXXnstXn/9dXz55ZeYNm0ahwmRoVJTUzF06FCkpqaKLoplMGdAaqdOGJo/EKkNtYCvBtBjwNqAMcCQifHvpy0Fk4ABP4hpU1nqWZY4iIhE4XmUrITtVX6sY3GYe+2YM3vkQJYYZYmDjCVkyqZ9+/Zh8OC25x3X2xdffIFBgwaZekw74ZRNRDEqLwH2rga++QQ4+Tngc535mTMb6HMpcN5l6kX/dtZnaJW3Sl1LwnNSjxI3l9kHmLkVSO+m/76JiIiIiIiIiMhwtpuyyezOCADsjCBD+Xw+bNy4ET6fT3RRLMN2OTuwXl3fYdFwYPMzwOFN8PnqsRFXw4c0dRufCzi8Sf35oqvV7Q+8r/1Y6d2AO95UOzj05MxW96uhM0KWepYlDiIiUXgeJSthe5Uf61gc5l475sweOZAlRlniIGNxHiMiHQSDQZSWliIYDIouimXYJmfeKmD1PcDKW1ssNh1EMkrRF0EkR3/v0a3AyknAmzPU/WiRk68uOp3Zp4MFP0tmH3V/Odp6y2WpZ1niICIShedRshK2V/mxjsVh7rVjzuyRA1lilCUOMpaQKZtIPpyyiSiKsmLglYn6TJ2U2UcdnaCxQwDeKuDdR4C9qzp+7IJJwE1PcpomIiIiIiIiIiIJ2G7KJj2VlpZix44dOHz4sOiikI2FQiGUlZUhFAqJLoplSJ+zsmKgaFybnREhJKEMPRGK5VTsOQksG6uuQaFFejdgwhJgyhtA7ght780dAUxZpb6/g50RstSzLHEQEYnC8yhZCdur/FjH4jD32jFn9siBLDHKEgcZK+E6JBRFwYcffogPP/wQu3btanW7bdu24ZJLLkH//v0xfPhwXHTRRRg8eDD+/e9/m1haIpXH48HixYvh8XhEF8UypM6Zt0odGdF0weooPMjAYsed8CAjtv36XMDLE7RP3wQAA8aoUy7N3AaMnA1cOKrlGhPObPX1kbPV7aavAwb8QPuxmpClnmWJg4hIFJ5HyUrYXuXHOhaHudeOObNHDmSJUZY4yFgJN2XTxo0bccMNN8DhcODRRx/Fn/70pxbbFBcX46qrroLP58PZxU9JScFbb72Fm2++2awiEzhlk6Io8Pv9SEtLg8PhEF0cS5A6Z6vvAYpXt7uZAsCPNKTBD00ZKJikjlqIl6IAgVogGABSUoHUDEDnupClnmWJg4hIFJ5HyUrYXuXHOhaHudeOObNHDmSJUZY47IBTNjXx3nvvRR7feeedUbd56KGHUF9fH3nerVs3pKamAlAXT/nZz36G2tpaYwsaxenTp/H222/j8ccfxy233IL8/Hx07doVnTp1Qnp6Os477zyMGTMGTzzxBL755htdj11UVASHw6Hpa8aMGbqWwc4cDgecTidPthpIm7MD62PqjAAABwCn1s4IQF0P4sB6re+KUgAHkJYJdOmufjegLmSpZ1niICIShedRshK2V/mxjsVh7rVjzuyRA1lilCUOMlbCdUjs3LkTANCnTx8MGjSoxc8PHjyIDz74AA6HA927d8fmzZtx+vRplJWV4Yc//CEA4NSpU1i5cqWp5QaAadOmYfz48fjTn/6EtWvXYt++fXC5XAgGg6ivr8eJEyfw/vvv49e//jX69++P+fPnIxwOm15O0l9NTQ2effZZ1NTUiC6KZUibs83PxrxpDTLwLO5BTaxTNjW1pVD7ewSQpZ5liYOISBSeR8lK2F7lxzoWh7nXjjmzRw5kiVGWOMhYKaILcLZDhw7B4XDg0ksvjfrzt99+O/L4t7/9LYYPHw4AyM7Oxt/+9jfk5uZCURSsW7cO//3f/21KmaPp0aMHBg0ahNzcXGRkZMDr9eKrr77Cxx9/jGAwCL/fj3nz5uHQoUNYvny5rsceOHAgRo8e3e52jbmj+DmdTowaNQpOp1N0USxDypyVlwBHt8a8uRN+jMI2OOHXfqwjW4DyfUDOYO3vNZEs9SxLHEREovA8SlbC9io/1rE4zL12zJk9ciBLjLLEQcZKuA6JiooKAEDv3r2j/nzTpk0AgKSkJEyZMqXZz8477zxcffXV2LJlC/bs2WNsQaMYNWoUfvSjH2H06NG46KKLom5TXl6Ohx56CK+++ioA4O9//zt+9KMfYeLEibqV46qrrsJf//pX3fZH7UtNTcXQoUNFF8NSpMpZ9RH1+86XNL0tFQ0Yin0dP+6ul4DhDwBdczu+D4PJUs+yxEFEJArPo2QlbK/yYx2Lw9xrx5zZIweyxChLHGSshJuyyefzAUCrPWlbt26Fw+HA0KFD0b179xY/P//88wGc6dgw0y9/+Uvce++9rXZGAEBOTg5eeeUV3HDDDZHXFi9ebEbxyED19fV47733mq1tQm2TKmeFl6hfu7R1SNTDifcwCvXo4J0DO5eox01gstSzLHEQEYnC8yhZCdur/FjH4jD32jFn9siBLDHKEgcZK+E6JLp06QIAcLlcLX5WUlKC6upqAMA111wT9f2ZmZkAAL+/A1OgmMThcGD69OmR55999pnA0pAewuEwXC4X1wTRgDkDwnDAhSyEtS9rbRmy1LMscRARicLzKFkJ26v8WMfiMPfaMWf2yIEsMcoSBxkr4aZs6tOnDw4cOIDi4uIWP3v33Xcjj0eMGBH1/W63G8CZjo1E1bNnz8hjj8cjsCSkhy5duuD2228XXQxLYc6ALqjH7fin6GIYSpZ6liUOIiJReB4lK2F7lR/rWBzmXjvmzB45kCVGWeIgYyXcCInLLrsMAFBcXIxdu3ZFXg+Hw1i6dCkAdYTBddddF/X9Bw4cAAD07dvX4JLGZ9++M/PG5+XliSsI6SIYDKK0tBTBYFB0USyDOQOCSEYp+iKIZNFFMYws9SxLHEREovA8SlbC9io/1rE4zL12zJk9ciBLjLLEQcZKuA6JW2+9NfJ4/PjxWLZsGdauXYvx48dj//79cDgcuOGGG5qNMGhUX1+PkpISOBwODBo0yMxia3LixAk8/fTTked6LmgNqNNdrVq1CvPmzcNDDz2EuXPnYvHixdizZw8URdH1WKSqra3F8uXLUVtbK7oolsGcAbXoguWOW1GLxB7RFQ9Z6lmWOIiIROF5lKyE7VV+rGNxmHvtmDN75ECWGGWJg4zlUBLwCvXw4cOxfft2OBzN51VXFAVJSUn4z3/+g5EjR7Z435tvvolJkybB4XDgySefxOzZs80qcru8Xi9KS0vx7rvv4sknn8SpU6cAAIMGDcKOHTsia190VFFRUbN1KVpz8cUX49FHH8Xdd9/dIr/xKCkpwZAhQyLPi4uLkZ+fr9v+iRLavHMEH98t9vhERERERERERGQZIq/lJtwICQBYs2YNvve970FRlGZfSUlJePLJJ6N2RgDqRflGo0ePNqm00W3evBkOhyPy1aVLF+Tn5+OXv/xlpDNi7Nix2Lp1a9ydEVocPHgQM2bMwC233IK6ujrTjkuUkBQF8NUAdZXq9472z87ao371u0rf8rWn3zD1uERERERERERERBaQkB0SvXr1wscff4w1a9Zg9uzZ+NnPfobf/e53KC4uxv/8z/9EfU9lZSW8Xi+uu+46jBs3DkOHDjW30Bp07doVr776Kv71r38hOztbt/2ef/75mD17NtatW4djx47B5/Ohrq4OX375JZ5//nkMHDgwsu0777yDKVOm6L7qvdPpREZGBgAgFArB5XJFpomqqalBIBAAoE6v1dghEgwG4XK5Ivtwu91oaGgAoI4s8Xq9AICGhobIouWAOjVV45x0dXV1qK+vBwAEAgHU1NQAUEfVuFwuhEIhAOrQMZ/PBwDw+/2RBcXD4TBcLlckHx6PB36/HwDg8/kiQ81ai8ntduOJJ57AyZMnpYnJ6HqqqKjAE088AbfbbW5MRz5D3br5wPJbEFzQH64F+cBTFwIL+sG9IB8Ny34MbJgPb+lnscfk7AV0zUWg7wjUQG3/CgAXshD69jRbi3T4kKbGhFR40AVuZOIJ3Iej6IMw1BFLHnSBH6lqTEhDLdLVmJAEF7LQ2GVSgwwE+g0HuuYm9O9T4+9GY0dsIrS9jsRUXV2NJ554AtXV1Wo9Jdjvk4znCMbEmBiTXDFVVlZGPvdliUnGemJMZ9rnE088gcrKSmlikrGe4ompvLwcCxYswKlTp6SJySr1dPLkycjngSwxGV1PJ06cwIIFC1BVVSVNTPw7omU9HTt2LBKjlWM6evQoFixY8P+zd+fhURVp+/jv0+l0Z98EwioBHI0sEhXCoiLgggoEZhRBRUXGGUBexVlwnHecEfX7/kR0lDijBEchKCgoowKKgAoBRGJECbKFPWwhYcnSnbXX3x9t2gSydKf7dHXXuT/XxUWWc07V81R1NZzqU4WKigop20nGmEQIygkJANDpdMjIyMDLL7+MhQsX4plnnml0Q/1il112Gb7++mts2rQJq1evDmBNm9a5c2fMnDkTM2fOxGOPPYYHH3wQ6enp0Ov1KCsrw3333YeRI0e6N+H21fjx43Hs2DG88soruPPOO9G1a1cYjUZERUXhyiuvxIwZM7Br165GyzqtXr0a77//vl/Krzd48GD3nhjnzp1DZmam+0WyaNEi92bemzdvxpo1awAAp06dQmZmpvsaCxYswJEjRwAAGzZswIYNGwAAR44cwYIFC9zHZWZm4tSpUwCANWvWYPPmzQBcG4bXb4BeV1eHzMxMnDt3DgCwcuVK5ObmAgB27tyJZcuWAXC9SDMzM92DwrJly7Bz504AQG5uLlauXNliTFFRUejevTtycnKkiUntdjpx4gT0ej2ioqICE9PGFcCiO7F58RysyTsMHNuMU3WRyFQe/SWmunE4cvwk8M2r2JD9Ija88RRwcIPn7RQxAIsw0dVOMCJTeRTncJkrJoxGLq5zxYQ+WIZfIwo1uB1bsFi5Dya4npRahl9jJ1yPyOXiOqzEaFdMuAyZyqOo+3lSYxEmYp9xoOrt5Gvfi4qKQlRUFA4dOuRZOwXpGGGz2WCxWNz/oAi215OMYwRjYkyMSa6YysrKYLFYEBUVJU1MMrYTY3LFFBUVBYvF4v4gggwxydhOvsS0Z88ejB8/HocOHZImplBpp5ycHHTv3h1RUVHSxKR2O61fvx7jx49HdXW1NDHx3xGXttOyZcswcOBAREVFhXRMixcvxvjx4xEVFSVlO8kYkwhBuYeEzIqKivC3v/3NvbxUYmIicnJycM011wSkfIfDgeHDh2Pr1q0AgL59+2L37t0+X7d+3bGIiAjo9Xrk5uYiNTUVZrMZ8fHxUBQFJpMJERERMBgMqKmpgcPhQHR0NGw2GyorK91Pi1RUVCAqKgrh4eHumcaoqChYrVZUV1cjPt61Xn95eTliYmKg1+tRVVUFnU6HyMhIWCwW1NbWIi4uDk6nExUVFYiNjUVYWBgqKyuh1+sRERGBuro6WCwWxMbGwuFwwGQyIS4uDjqdDmazGQaDAUajEbW1tbDZbIiJiYHdbmdMoRZTTRlMq55GxIGPYYAVNYiAAwqiUQMbwlCJaCTANahXIBZRqEE4bKhGhCsm1MLa515U3/QM4jt2bz2m7AmIK8qBE0AF4hCLSoTBgUpEQQ87IlCHOhhgQThiUQUHFJgQiziYoYMTZkTDACuMsKAWRtgQhhhUww4dzIhBPExQAJi6jEDEwx/K004y9j3GxJgYE2NiTIyJMTEmxsSYGBNjYkyMiTExpiCM6fTp08L2kOCEhCCzZs3C66+/DsC1sfXu3bsRFhYWkLK//vpr3Hrrre7vT548ia5du/p0Ta1val1dXY0NGzbg9ttvd8/YU8sCkrPiPcCyewDzGd+vFdsJmPxfILmVfn1wPfD+vR5dshoR2ICbcTs2Iwq13tXn/o+AK2/37hwBZHltyBIHEZEoHEcplLC/yo9tLA5z7z3mTBs5kCVGWeLQAm5qrUEvvvgi4uLiAAD79+/HF198EbCyhw0bhvDwcPf3+/fvD1jZRAFTvAfIHu2fyQjAdZ3FdwEle1s+7spRQN97/FNmc/pNCInJCCIiIiIiIiIioob4hIRAd955J9atWwcAePrpp/Hiiy8GrOzOnTu7N2B+//33cd999/l0Pa0/IUFBproUWDDUf5MRDcV2AmZ8C0QlBW/5REREREREREREzeATEhqVmJjo/vrChQsBLbt+Z3UAiI6ODmjZMrJarSgoKIDVahVdlZChas7WzlZnMgBwXfeLp1o+JirJtbxTREKLh1mhRwF6wQq9Z2VHJLiuG0KTEbK8NmSJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxkLo4ISFQ/RMKAJCUFLgbjEePHnXvzA64npYg31RXV+PTTz91b2hDrVMtZwfXA3tW+veaF9v9kaucliT3AR5Z63qioRnViMSnGIVqRLZeZmwn1/Va28MiyMjy2pAlDiIiUTiOUihhf5Uf21gc5t57zJk2ciBLjLLEQerikk2CXLhwAV26dEFdXR0AIDs7Gw8//HBAyn7mmWfwf//3fwCA+Ph4nD9/Hnq9h5/QbgaXbKKgsehO4MS36pfT/QbXBEFrqktdT1Ts/qjtZfWbANw5L6SejCAiIiIiIiIiouDEJZskUFpa6vGxDocD//M//+OejDAajRgzZkyby66srPT42G+//Rb//Oc/3d9PmjTJ58kIoqBRsjcwkxEAcHwbULKv9eOikoC73wbu/9A1ieGN7jcA93/kOp+TEUREREREREREFOI4IeEn7777LgYOHIh333230XJIF/vpp59w1113Yfny5e6fzZ49G5dddtklxxYWFkJRFPef7OzsJq+5cuVKpKen491330VFRUWTx9TW1uL111/HrbfeitraWgBAQkICnn32WS+ipOaUl5fjueeeQ3l5ueiqhAy/5qzsuOvP9+/4fi1v7HjHVa4nrhzleqJixnbgpj8BPYej3NgVzyl/RDniXMdEJAA9h7t+P2O76/grb1er9gEhy2tDljiIiEThOEqhhP1VfmxjcZh77zFn2siBLDHKEgepi0s2+cn8+fPxhz/8AQCg1+uRmpqKq666ComJiVAUBRcuXMBPP/2Ew4cPNzrv7rvvxvLly5t8SqGwsBA9evRwf7948WJMmTLlkuOys7PxyCOPNCo7NTUViYmJsNvtOH36NLZv395ooiQyMhLr1q3DsGHD/BG+5pdsstlsOHXqFLp27conTjzk15zNifdPpdpcftMTga2xWa04dewQuiZfBn1EFGCIARTFz5UTS5bXhixxEBGJwnGUQgn7q/zYxuIw995jzrSRA1lilCUOLRB5L5c9w0+MRqP7a5vNhj179mDPnj3NHh8bG4s5c+Zg1qxZCAsL81s9PCk7PT0d2dnZuPrqq/1Wrtbp9XqkpKSIrkZIYc4AfXg4Uq7sLboaqpKlnWWJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxkLqELdl05513IisrC6dOnRJVBb+aMWMGDhw4gDfeeAMPPfQQrr/+erRv3x7h4eEIDw/HZZddhr59+2Ly5MnIzs5GUVER/vjHP/plMuK+++7Dtm3b8PLLL+Puu+9GWloaunbtisjISBiNRnTo0AGDBg3CrFmzsHXrVnz33XecjPCzqqoqLF++HFVVVaKrEjKYM23kQJYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuoQ9IbF+/Xps2LABM2fORP/+/ZGRkYGxY8fi+uuvF1Uln1155ZW48sor8dhjj/nleikpKfBkRS2j0YihQ4di6NChfimXvKfT6ZCQkACdjtuyeIo500YOZIlRljiIiEThOEqhhP1VfmxjcZh77zFn2siBLDHKEgepS9geEnq9Hg6Hw1WJBmumd+rUCWPGjEFGRgZuvfVWGAwGEdUjL2l9DwkSLET3kCAiIiIiIiIiIgo0kfdyhU1XnTt3Du+99x4mTJiA2NhYOJ1OOJ1OFBUV4T//+Q/Gjh2Lyy67DL/+9a+xePFinDt3TlRViVplsViQn58Pi8UiuiohgznTRg5kiVGWOIiIROE4SqGE/VV+bGNxmHvvMWfayIEsMcoSB6lL2IREYmIiHnjgAaxYsQLnz5/Hhg0b8Pjjj7uXKXI6naiqqsLq1avx6KOPolOnThg6dChefPFF7N27V1S1iZpUW1uLnJwc1NbWiq5KyHDnrKYGqDUBVRdcf7floa1ZP7n+dBvk/4q2pNtgV7ltpIV+I0uMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXcKWbGrJnj17sGbNGqxevRp5eXnufRQaLu2UkpKCsWPHIiMjAzfffLNfNoemtuOSTeSVkr3A7pXA6R+AM7uA2vJffheRAHTqD3S5Hug3AUju7fl1v3oO+OZVf9e2eTf9CbjlH4Erj4iIiIiIiIiIyEci7+UG5YREQ2fPnsVnn32GNWvW4Msvv0R1dbX7d/UTFHFxcbjjjjswduxY3HXXXUhISBBUW+3S+oSE0+lEXV0djEZjo4kzusjB9cA384ET38IJoA5GGFGHFjN2+VDgxj8AV97e+vVL9gILAri5+4zt3k2YXEQL/UaWGGWJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxaIEm95DwVIcOHTB16lR88sknuHDhAj777DNMmzYNXbp0cS/tVFFRgQ8//BAPPvggkpOTMXLkSLz22ms4cuSI6OqTRlRUVOCll15CRQU3N25SdSmw8rfA+/cCJ74FAFQgDi8pM1GBuJbPPfEt8P4E4L+Puq7TkuQ+rgmMQOh+g0+TEYA2+o0sMcoSBxGRKBxHKZSwv8qPbSwOc+895kwbOZAlRlniIHUF/RMSLfnxxx+xevVqrFmzBjt37nT/vOEM3FVXXYVx48bhxRdfFFFFzdD6ExJ2ux3nzp1D+/btuXzYxYr3AMvuAcxnGv3YDh3O4TK0xwWEweHZtWI7AZP/65p4aM7B9a6JD7Xd/5FnT220QAv9RpYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHFoAZds8oPTp09jzZo1WLNmDTZu3Ii6ujr37xRFgd1uF1g7+Wl9QoKaUbwHyB7deI8IX0UkAI+sbXlSYuVvgT0r/VfmxfpNAO5+W73rExERERERERERqYRLNvlBly5dMH36dHz++ee4cOECPv74Y0yZMgXt27cXXTXSgMrKSmRnZ6OyslJ0VYJHdanryYhmJiMqEYVsTEAlory7bm05sPTulpdvuutl19MUaojtBNw5zy+X0kK/kSVGWeIgIhKF4yiFEvZX+bGNxWHuvcecaSMHssQoSxykLmkmJBqKiorC+PHjsWjRIhQXF2Pbtm2iq0SS0+v1SElJgV6vF12V4LF29iXLNDWkhx0pOAU92vD0kvkM8MVTzf8+Ksm1tFNEgvfXbklEguu6UUl+uZwW+o0sMcoSBxGRKBxHKZSwv8qPbSwOc+895kwbOZAlRlniIHVJs2QTicUlm6iRgO3j8CFw5ajmf1+y1/U0RQsTIx7zZP8KIiIiIiIiIiKiIMclm4hCXF1dHXJzcxvtXaJp38xv9ZA6GJCLa1EHQ9vL2ZbZ8u+T+wAzvnXt+eCLfhNc1/HzZIQW+o0sMcoSBxGRKBxHKZSwv8qPbSwOc+895kwbOZAlRlniIHVxQoLIDywWC/Lz82GxWERXRbySvcCJb1s9zIJw5KMPLAhve1nHtwEl+1o+JirJtQH1/R8C3W/w7vrdbwDu/8h1vp+WaWpIC/1GlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6uGQT+QWXbNK4suO/fL0tE9jxTuDKHvgoMPqfnh9fsg/YsxI4/QNQlN940+2IBKBzGtDleqDvPUByb//WlYiIiIiIiIiISDCR93K5wwiRHzgcDphMJsTFxUGn0+CDR5nXeH2KAwpMiEUczNDBh3nR79/2bkIiuTeQ/A/X104nYKkEbBZAbwAMMYCitL0uXtJCv5ElRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC72DCI/MJlMyMzMhMlkEl2VkGFCLDKVR2FCrO8Xa+uDXooCGGOB6MtcfwdwMgLQRr+RJUZZ4iAiEoXjKIUS9lf5sY3FYe69x5xpIweyxChLHKQuLtlEfqH1JZs0PwM8J97rU/z2hAQA/PWUa0IhxGih38gSoyxxEBGJwnGUQgn7q/zYxuIw995jzrSRA1lilCUOLeCSTUQhTqfTISEhQXQ1QooOTiTATzPmNgtg9M+lAkkL/UaWGGWJg4hIFI6jFErYX+XHNhaHufcec6aNHMgSoyxxkLo4VUXkB2azGVlZWTCbzaKrEjLMiEYWJsOMaN8vpjf4fg0BtNBvZIlRljiIiEThOEqhhP1VfmxjcZh77zFn2siBLDHKEgepixMSRH5gMBiQlpYGgyE0b4yLYIAVadgLA6x+uFiM79cQQAv9RpYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuriHBPmF1veQ0Lyy4798/fHvgJPfBa7sboOB364PXHlEREREREREREQhTOS9XD4hQeQHtbW1yMnJQW1treiqiJHY/Zc/3W/w6JRaGJGDIaj1dfOHFM/KC0Za6DeyxChLHEREonAcpVDC/io/trE4zL33mDNt5ECWGGWJg9TFCQkiP7DZbCgsLITNZhNdFfH63ePRYTaEoRBdYUOYb+X19ay8YKSFfiNLjLLEQUQkCsdRCiXsr/JjG4vD3HuPOdNGDmSJUZY4SF3SLdk0ZswY7Nu3D4qi4MiRI6KroxlcsokaWXQncOJb9cvpfgPwyFr1yyEiIiIiIiIiIpIEl2zyo9OnT6OwsBCFhYWiq0IaYrfbUVxcDLvdLroqweHGJ1s9xA4ditEedl+GoRtaLyeYaaHfyBKjLHEQEYnCcZRCCfur/NjG4jD33mPOtJEDWWKUJQ5Sl3QTEkQimM1mLFy4EGazWXRVgsOVo1pdSsmMGCxUHoQZMW0ro98E4Mrb23ZukNBCv5ElRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC7plmy69tprsWvXLiiKwtm4ANL6kk1OpxN1dXUwGo1QFEV0dYJDdSmwYChgPtPkr50A6mCEEXXwOmOxnYAZ3wJRSb7WUigt9BtZYpQlDiIiUTiOUihhf5Uf21gc5t57zJk2ciBLjLLEoQVcsokoxCmKgoiICA62DUUlAZP/C0QkNPlrBUBEWyYjIhJc1w3xyQhAG/1GlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC69KIKfv7551W5bnFxsSrXJWqJyWTCokWLMHXqVMTFxYmuTvBI7uPadHrp3Zc8KWFCDBZhIqZiBeJQ6dn1Yju5JiOS5Xj6Rgv9RpYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuoRNSMyZM4ezZSSNiIgIDB8+HBEREaKrEnyS+7iWV/riKWD3R+4fR6AOw7EdEajz7Dr9JgB3zpPiyYh6Wug3ssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUJWwPCZ1OB0VR4O/i66/JPSQCS+t7SJCHDq4HtmUCx7d5fk73G4Abngz5DayJiIiIiIiIiIiCgch7ucKekKh/OkJRFAwePBgGg8Ev192xYweqqqr8ci0iT9XU1GDz5s24+eabERkZKbo63nE6gTozYLcCYeGAMRZQ6+mlK0e5/pTsQ83Oj7B5/1ncXLsBkXVnfzkmIgHonAZ0uR7oew+Q3FudugSBkO43HpIlRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC5hExK/+tWvcPDgQSiKgpdffhlDhw71y3WvvfZa7Nq1yy/XIvKUw+FAeXk5HA6H6Kp4pmQvsHslcPoH4MwuoLb8l99FJACd+rsmBPpNUGdCILk3HDf9GeXla+AY8xIQ7gRsFkBvAAwx6k2IBJmQ6zdtIEuMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXcKWbJo8eTLef/99KIqCV199FbNmzfLLdesnJLhkU2BxyaYQcXA98M184MS3np9z+VDgxj9wySQiIiIiIiIiIiIJiLyXqwtIKU0YOHCg++vvv/9eVDWI/MJms6GwsBA2m010VZpWXQqs/C3w/r3eTUYAruPfnwD891HXdfwk6HMWAFrIgSwxyhIHEZEoHEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdXFCgsgPKisrsWTJElRWVoquyqWK9wALhgJ7Vvp2nd0fua5Tstcv1QrqnAWIFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdwpZsqqmpQVxcHOx2OxRFQWlpKeLj432+blpaGn766Scu2RRgXLIpSBXvAbJHN94jwlcRCcAja4Fkti8REREREREREVGoEXkvV9im1pGRkfjTn/6EkpISAMD58+f9MiHxxRdfwGKx+HwdopBXXQosu8e/kxGA63pL7wZmfAtEJfn32kRERERERERERCQtYUs2AcDcuXOxePFiLF68GL169fLLNTt16oTu3buje/fufrkekScqKiowd+5cVFRUiK7KL9bOBsxn1Lm2+QzwxVM+XSIocxZgWsiBLDHKEgcRkSgcRymUsL/Kj20sDnPvPeZMGzmQJUZZ4iB1CZ2QIJJFVFQUxo8fj6ioKNFVcTm43vc9I1qz+yNXOW0UdDkTQAs5kCVGWeIgIhKF4yiFEvZX+bGNxWHuvcecaSMHssQoSxykLmF7SJBcuIdEkFl0J3DiW/XL6X6Daz8JIiIiIiIiIiIiCgki7+XyCQkiP6iursann36K6upq0VUBSvYGZjICAI5vA0r2tenUoMqZIFrIgSwxyhIHEZEoHEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdXFCgkgWZcddf75/J7Dl7ghweURERERERERERBSSuGQT+QWXbAoCc+IFls3NioiIiIiIiIiIiEKB5pZsuu666/DVV18FrLwNGzbguuuuC1h5pD1WqxUFBQWwWq2iqyJGG+Y1NZ8zaCMHssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUJWRCIj8/H6NGjcKNN96Izz77TLVyVq9ejRtuuAF33nkndu3apVo5RJpfI89S6fUpms8ZtJEDWWKUJQ4iIlE4jlIoYX+VH9tYHObee8yZNnIgS4yyxEHqErJk0/XXX4+dO3dCURQAwOWXX46pU6fi3nvvxVVXXeXTtQ8cOIAVK1Zg0aJFOHnyJADA6XTi+uuvx/fff+9z3alpXLIpCIhcsmn2USD6MnHlExERERERERERkUc0t2TTjh078Oabb6Jdu3ZwOp04ceIE5syZg969e+Pqq6/GzJkzsXz5cuzbtw82m63Z69hsNuzbtw8ffPABZs6ciauvvhq9e/fGc889hxMnTsDpdKJdu3ZYsGAB8vLyAhghkcboDaJrQEREREREREREREFOyISEoiiYPn06jh49ihdeeME9MeF0OnHw4EFkZWXhgQceQL9+/RAREYHOnTujX79+GDRoENLT09GvXz906tQJERER6NevHyZPnoysrCwcPHjQfZ327dvj//7v/3D06FFMmzbN/TQGkRrKy8vx3HPPoby8XHRVxDDEeH2K5nMGbeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6hCzZdLG6ujosXboUixYtwvbt25s85uIJheaqPWTIEPz2t7/FAw88AKPR6Pe6UtO0vmSTzWbDqVOn0LVrV+j1ejGVKDvu+vvj3wEnvwtcud0GA79d7/VpQZEzwbSQA1lilCUOIiJROI5SKGF/lR/bWBzm3nvMmTZyIEuMssShBSLv5QbFhERDx44dw2effYYvv/wSeXl5OHv2bIvHd+jQAenp6bjtttswZswY9OjRI0A1pYa0PiERVL56Dvjm1cCVd9OfgFv+EbjyiIiIiIiIiIiIqM00t4dES3r06IHHH38cq1evRnFxMc6cOYNvv/0Wn3zyCZYuXYqlS5fik08+wfbt21FcXIzi4mKsXr0ajz/+OCcjSJiqqiosX74cVVVVoqsC9LsnsOX1bVt5QZUzQbSQA1lilCUOIiJROI5SKGF/lR/bWBzm3nvMmTZyIEuMssRB6gr6Z2eSk5ORnJwsuhpELdLpdEhISIBOFwRzfMl9gMuHAie+Vb+s7jcAyb3bdGpQ5UwQLeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6gm7JJgpNXLLJB04nUGcG7FYgLBwwxgK+bsJ+cD3w/r3+qV9L7v8IuPJ29cshIiIiIiIiIiIiv+CSTUQhzmKxID8/HxaLxbMTSva69npYkgG8lALM7Qa83NP190sprp9/9RxQsq9tFbpyVJuXUvJYvwk+TUZ4nTMJaSEHssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUxQkJIj+ora1FTk4OamtrWz7w4Hpg0Z3AgqGujaePbQZqyy+6WLnr59+8CiwY4jr+4AbvK3XXy0BsJ+/P80RsJ+DOeT5dwuOcSUwLOZAlRlniICISheMohRL2V/mxjcVh7r3HnGkjB7LEKEscpC4u2UR+wSWbWlFdCqydDexZ2fZr9JvgmgSISvL8nJK9wOK7Lp308EVEAvDIWtdeFURERERERERERBRSuGQTUYhzOp2ora1Fk/N7xXtcT0T4MhkBALs/cl2nZK/n5yT3cU0e+OtJidhOfpuMaDFnGqGFHMgSoyxxEBGJwnGUQgn7q/zYxuIw995jzrSRA1lilCUOUhcnJIj8oKKiAi+99BIqKioa/6J4D5A9GjCf8U9B5jOuJx68nZSY8a3rCQtf9Jvguo6fnoxoNmcaooUcyBKjLHEQEYnCcZRCCfur/NjG4jD33mPOtJEDWWKUJQ5SF5dsIr/Q+pJNdrsd586dQ/v27REWFub6YXWp64kGf01GNBTbyTU54M3yTYBrD4ttmcDxbZ6f0/0G4IYnfdrAuilN5kxjtJADWWKUJQ4iIlE4jlIoYX+VH9tYHObee8yZNnIgS4yyxKEFIu/lckKC/ELrExJNWvlb35dpakm/CcDdb7ft3JJ9rrqd/gEoym+8x0REAtA5DehyPdD3HiC5t+91JSIiIiIiIiIioqDAPSSIQlxlZSWys7NRWVnp+sHB9epORgCuPSUOrm/bucm9gVv+ATy0CvhLIfDXU8Dso66//1Lo+vkt/1B1MuKSnGmQFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdnJAg8gO9Xo+UlBTo9XrXD76ZH5iCt2X6fg1FAYyxQPRlrr8VxfdreuCSnGmQFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdXLKJ/IJLNjVQste1d0SgzNjOZZWIiIiIiIiIiIjII1yyiSjE1dXVIXfjWtQVHwK+fyewhe94Byg7Htgy/aCurg65ubmoq6sTXRVhtJADWWKUJQ4iIlE4jlIoYX+VH9tYHObee8yZNnIgS4yyxEHq4oQEkR9YLBbkb/kclqybXRMEgfT920DmNYEt0w8sFgvy8/NhsVhEV0UYLeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRzIEqMscZC6QmbJpj179uDkyZMoKyuDzWbDQw89JLpK1ACXbAIwJ15w+RViyyciIiIiIiIiIqKgxyWbmnH8+HHMnDkTSUlJ6N+/P8aMGYMHH3wQjzzyyCXHlpSUYOLEibj33nsxb948AbUlLXM4HChHHBwIzIbQMnA4HCgvL4fD4RBdFWG0kANZYpQlDiIiUTiOUihhf5Uf21gc5t57zJk2ciBLjLLEQeoK2gmJDz74AP369UNWVhbKy8vhdDrdf5qSnJyMs2fPYuXKlXj++edRWVkZ4BqTlplMJmQqj8KEWNFVCRkmkwmZmZkwmUyiqyKMFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQblk03//+1/ce++9AACn04mEhAQMGTIER44cwcGDB6EoCux2+yXnLVu2DA8++CAURcGKFStwzz33BLrqmqX1JZscDgdMz3dHHMzQQdBLKsSWbHI4HDCZTIiLi4NOF7Rzo6rSQg5kiVGWOIiIROE4SqGE/VV+bGNxmHvvMWfayIG3MZ4srcZN8zY1+butT41At6Qof1fRI1poK1lwyaYGysvL8bvf/Q5OpxOKouDZZ5/FmTNn8Pnnn+O2225r8dyMjAzo9XoAwNdffx2I6hIBAHQ6HRJgEjcZEYJ0Oh0SEhI0/QalhRzIEqMscRARicJxlEIJ+6v82MbiMPfeY860kQNZYpQlDlJX0PWOt956C+Xl5e7JiGeffRZGo9Gjc2NjY3H11VfD6XRi165dKteU6BdmsxlZ7V+A+be5QLdBgS2822Bg1k+BLdMPzGYzsrKyYDabRVdFGC3kQJYYZYmDiEgUjqMUSthf5cc2Foe59x5zpo0cyBKjLHGQuoJuQmLt2rUAgMsuuwx/+ctfvD7/qquuAgAcPXrUr/UiaonBYEDa9ekwdOgJdL8hsIWn3AAkdg9smX5gMBiQlpYGg8EguirCaCEHssQoSxxERKJwHKVQwv4qP7axOMy995gzbeRAlhhliYPUpRddgYsdOHAAiqLgpptualPnTUxMBABUVITWevoU2oxGIwYPHuz6pt89wDevBq7wvqG5V0qjnGmUFnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg68ibGg2ISluceb/f2TK/IxqEcSxqV1wVUdY/1VRY9ooa3Id0H3hERpaSkAoEOHDm06v36za65VRoFUW1uLnJwc1NbWAsl9gMuHBqbg7jcAyb0DU5afNcqZRmkhB7LEKEscRESicBylUML+Kj+2sTjMvfeYM23kwJMYNxaU4N6s7bhj/lYszT3R7HE/HC/DmzlHMGr+FtybtR2bCs6qUeUmaaGtyHdBd9c+Pj4eAFBZWdmm80+fPg3AteQTUaDYbDYUFhbCZrO5fnDjk4Ep+IYAlaOCS3KmQVrIgSwxyhIHEZEoHEcplLC/yo9tLA5z7z3mTBs5aCnGsioLnvhgJ6Zm70BeYalX180rLMUj2d9j1vKdKKuy+Ku6zdJCW5HvFKfT6RRdiYauvfZa7Nq1C3379sVPPzXeqPfxxx/HG2+8AUVR3E9CNGS1WtG+fXuYzWaMGDECX331VaCqrXl79+5F37593d/v2bMHffr0EVijILDyt8Celepdv98E4O631bs+EREREREREREJs/+MCVMW56HEVOfztZLjjFgyNR2pHeP8UDMKdSLv5QbdExIjRowA4ErKxRMSrVm8eDFMJhMAYOTIkX6vG1Fz7HY7iouLG0+U3fUyENtJnQJjOwF3zlPn2gHSZM40Rgs5kCVGWeIgIhKF4yiFEvZX+bGNxWHuvcecaSMHTcW4/4wJk97K9ctkBACUmOowcWEuCopNfrleU7TQVuS7oJuQuP/++91fT58+HXV1nr3o9uzZg6eeegoAoNfrMXnyZFXqR9QUs9mMhQsXwmw2//LDqCRg8n+BiAT/FhaR4LpuVJJ/rxtgTeZMY7SQA1lilCUOIiJROI5SKGF/lR/bWBzm3nvMmTZycHGMZVUWTFmch4oaq1/Lqaix4uFFeaot36SFtiLfBd2STQBwzz334OOPP4aiKBgyZAiysrLQt2/fJpdsqqmpwTvvvINnnnkGJpMJiqJg+vTpeOONNwRHoS1aX7LJ6XSirq4ORqMRiqI0/mXJXmDp3YD5jO8FxXZyTUYkh35uW8yZRmghB7LEKEscRESicBylUML+Kj+2sTjMvfeYM23k4OIYn/hgJ1bvKlKtvHFpnZE56Vq/X1cLbSULkfdyg3JCory8HEOHDkVBQYG78/bu3Rs1NTU4evQoFEVBRkYGiouLkZ+fD4vFgvowrrvuOmzbtg1Go1FkCJqj9QmJVlWXAl88Bez+qO3X6DfBtUxTiD8ZQURERERERERETdtYUIKp2TtUL2fRlAEYmZqsejkUnLiHxEUSEhKwadMmDB8+HE6nE06nE/v27cOxY8fcExSrV69GXl4e6urq3JMRI0eOxIYNGzgZQQFnMpkwf/589x4ml4hKcm1Aff+HQPcbvLt49xuA+z9ynS/RZESrOdMALeRAlhhliYOISBSOoxRK2F/lxzYWh7n3HnOmjRw0jDEr52hAysza7P9ytNBW5Du96Ao0Jzk5GV9//TWWLl2K1157Dfn5+c0ee/XVV+Mvf/kLJk+eDJ0uKOdYSHIREREYPnw4IiIiWj7wylGuPyX7gD0rgdM/AEX5QG15g4slAJ3TgC7XA33vAZJ7q1dxgTzOmcS0kANZYpQlDiIiUTiOUihhf5Uf21gc5t57zJk2clAf4/EKC/IKSwNSZt6xUhwoNuOqjrF+u6YW2op8F5RLNjWluLgY27dvR1FRESoqKhAdHY3k5GQMGjQIPXr0EF09zeOSTT5wOgFLJWCzAHoDYIgBuM4eEREREREREZEmnCytBgAs3HIES3NPBKzcBwd3x++H9US3pKiAlUnBgUs2eaBjx4749a9/jZkzZ+J///d/MWvWLEyaNImTERQUampqsG7dOtTU1Hh/sqIAxlgg+jLX3xqZjPApZ5LQQg5kiVGWOIiIROE4SqGE/VV+bGNxmHvvMWfayMEt877En15bgg9zA7NcU733co/jpnmb/HY9LbQV+S5ol2wiCiUOhwPl5eVwOByiqxIymDNt5ECWGGWJg4hIFI6jFErYX+XHNhZH5tw7nU5U1tlgtTsRHqYgxqh374PqC5lz5ikt5EAHJ2IUC3QIiYVsmqWFtiLfhcySTRTcuGQTEREREREREWlJQbEJq/OLsOtUOfacNqGixur+XXxkOPp2iUP/rgkYl9bFr+v0k3xSnv5caPmFc0cLLZ8CT+S93KB8QuJ///d/UVtbi86dO+PPf/6zx+e98sorKCoqQkxMDJ5//nkVa0jUmM1mw6lTp9C1a1fo9UH5sgo6zJk2ciBLjLLEQUQkCsdRCiXsr/JjG4sjS+43FpQgK+doi5sPV9RYse3wBWw7fAFv5hxBekoSZgzvhRGpHbwqS5ac+UILOQiDA+11lTjniIE9dFbYv4QW2op8F3Q9fOPGjZg7dy4yMzOh03lXPUVRMH/+fPzf//0ftm3bplINiS5VWVmJJUuWoLKyUnRVQgZzpo0cyBKjLHEQEYnCcZRCCfur/NjG4oR67suqLHjig52Ymr2jxcmIpuQVluKR7O8xa/lOlFVZPD4v1HPmD1rIQaRixZ3Gg4hUrK0fHMS00Fbku6BbsunJJ5/E66+/jrCwMJw+fRodOng+c1xSUoIuXbrA6XTiD3/4A1555RUVa0oNcckmIiIiIiIiIpLV/jMmTFmchxJTnc/XSo4zYsnUdKR2jPNDzUgGXLKJAk3kvdyge0IiNzcXANCnTx+vJiMAIDk52Z3I7du3+71uRERERERERESkLfvPmDDprVy/TEYAQImpDhMX5qKg2OSX61Ho2/rUCGx9agSu754Y0HIHdE/E1qdGBLRMoqCbkDh8+DAURWnzjEzv3r3hdDpx+PBhP9eMqHkVFRWYO3cuKioqRFclZDBn2siBLDHKEgcRkSgcRymUsL/Kj20sTijmvqzKgimL8xptWO0PFTVWPLwor9Xlm0IxZ/6mhRzEhVmx7K3XMbCzMaDlDuqZhG5JUX67nhbainwXdBMSJpNrdjgurm2PrcXHxwMAOz4FVFRUFMaPH4+oKP8N4rJjzrSRA1lilCUOIiJROI5SKGF/lR/bWJxQzP2zq/f67cmIi5WY6jBnzd4WjwnFnPmbFnJQH+OY61ICWm5G/y5+vZ4W2op8F3QTEjExMQDaPqFQf57RGNgZRdK28PBwpKamIjw8XHRVQgZzpo0cyBKjLHEQEYnCcZRCCfur/NjG4oRa7jcWlGD1riJVy1iVX4SNBSXN/j7UcqYGLeSgPsa+3S5DekpSQMpM75GEqzrG+vWaWmgr8l3QTUh06NABTqcTO3fubNP59ed5u/8EkS+qq6vx6aeforq6WnRVQgZzpo0cyBKjLHEQEYnCcZRCCfur/NjG4oRa7rNyjgamnM3NlxNqOVODFnLQMMbpw3sGpMwZN/fy+zW10Fbku6CbkBg0aBAA4ODBg9ixY4dX5+bl5eHAgQNQFAUDBgxQo3pERERERERERBRknE4nzLVWlFZZYK61wul0+nS9gmIT8gpL/VS7luUdK8WBYnNAyqLgNzI1GRn9O6taxri0zhiRyg9zkxiK09cR2s8++ugjTJw4EYqi4LrrrsPmzZs9WnesqqoKw4YNw86dO6EoCt5991088MADAagxAcDevXvRt29f9/d79uxp88bkREREREREREStKSg2YXV+EXadKsee06ZGG0/HR4ajb5c49O+agHFpXTxemuZkqeuT3Qu3HMHS3BOq1LspDw7ujhfG9239QNKEsioL7sjcosr+JclxRqybNQyJ0Qa/X5tCh8h7uUH3hMTdd9+NX/3qVwCAH3/8ESNHjsSBAwdaPOfAgQMYOXKkezKiR48emDRpUiCqSwQAsFqtKCgogNVqbf1gAsCcAdrIgSwxyhIHEZEoHEcplLC/yk/mNvb3UwL+Lttfud9YUIJ7s7bjjvlb8WbOEWw7fKHRZAQAVNRYse3wBbyZcwSj5m/BvVnbsangbKvXvmneJtw0b1NAJyMA4L3c403+XOb+6ikt5ODiGBOjDVgyNR3xkf7diyE+MhxLpqarNhmhhbYi3wXdhIROp8Pbb78NvV4PAPj+++/Rp08fjBo1CnPnzsWHH36ItWvX4sMPP8RLL72EUaNGoU+fPu7lnfR6Pd5++22EhYWJDIM0hmvkeY8500YOZIlRljiIiEThOEqhhP1VfrK1cUGxCfPWFeCBt3OR9vyX6DdnA657wfV32vNf4oG3czFvXYEqSwJ5W7avuS+rsuCJD3ZiavYOr5dTyissxSPZ32PW8p0oq7K0qXy1NTWJI1t/bQst5KCpGFM7xmHFtMFIjjP6pYzkOCNWTBuM1I5xfrleU7TQVuS7oFuyqd7y5csxdepU1NXVwel0QlGUZo+tD8FoNOKdd97B/fffH6hq0s+4ZBMRERERERFR4GwsKEFWzlGvbsynpyRhxvBePq8dL6Ls/WdMmLI4zy9L2CTHGbFkanqTN2ZTnv7c5+u31Z7nRiHGqBdWPgWnsioL5qzZi1X5RW2+xri0zpgztg+XaSI3LtnUhEmTJmHbtm0YMmQIANekQ3N/AOCGG27At99+K3Qy4vz581i1ahX+9re/ISMjA3369EFiYiLCw8MRFRWFLl26YNSoUXjxxRdx+vRp1ephsVjw3nvv4a677kL37t0RERGBTp06YejQoXjllVdw/vx51comIiIiIiIiIvWIfEpAVNn7z5gw6a1cv62nX2Kqw8SFuSgoNvnlev5isTnadJ7IpbpIfYnRBmROuhaLpgxAeo8kr85N75GExVMGInPStZyMoKARtE9INJSXl4d169YhNzcXJSUlMJvNiI2NRXJyMgYPHow777wTAwcOFF1NjBkzBp9/7tlMutFoxF//+lf8/e9/h07nv3mhgoIC3HfffcjPz2/2mA4dOmDx4sW46667/Fau1p+QKC8vR2ZmJmbNmoWEhATR1QkJzJk2ciBLjLLEQUQkCsdRCiXsr/IL5TYO1FMCapUdo9RhQsRubNJfj6zfDvOo7EBv7htsT0g011/V2NA7WIXya9ZT3sR4oNiMpbnHm913ZED3RAzqmYSM/oFvey20lSxE3ssNiQmJUNFwQqJdu3a4+uqr0b17d8TExKC6uhqHDx9GXl4ebDab+5yHHnoIS5Ys8Uv5p06dwqBBg1BU5HqES1EUDBs2DL169cK5c+fw1VdfoaamBgAQHh6OdevWYeTIkX4pW+sTEjabDadOnULXrl3d+59Qy5gzbeRAlhhliYOISBSOoxRK2F/lF6ptXP+UwMWbN/siPjLcozXl/VV2GBxor6vEOUcMYiI9W8/+iQ92YvWuti9V05pxaZ2ROela9/ciJySOvXjXJUuWX9xfRS7VJUqwv2adTicq62yw2p0ID1MQY9S3uPR8U7yN8WRpNW6at6nJ3219agS6JUV5Vb6/BHtb0S84ISGJV155BbGxsbjllltwxRVXNHlMSUkJ/vCHP+CDDz5w/+yjjz7CPffc43P5w4YNw9atWwEA3bt3x6pVq9C/f3/378+fP49Jkybh66+/BgAkJSXhyJEjfpmx1PqEBBEREREREZFaAv2UQLCUvbGgBFOzd/i93IstmjIAI1OTAbhu9ALAkyvy8cPxMtXLrjegeyJWzhja7O/Lqix4dvVenyZnuI+A/xQUm7A09ziW5p5o8vfXd0/EoB5Jqj2hEqwTEoGi9fj9gXtISOLPf/4zpk2b1uxkBAAkJydj2bJljZ5MWLhwoc9lr1271j0ZYTAYsGbNmkaTEYDrqY1Vq1ahZ8+eAIDS0lLMmzfP57IJqKqqwvLly1FVVSW6KiGDOdNGDmSJUZY4iIhE4ThKoYT9VX6h2MbPrt6ryoQA4NpPYc6avQEpOwJWjDQcRgSsHpWdlXPUL+W2JmvzL+V0S4pCt6QoDPJyrX5fDerZdHlVVVX4T/ZSZMz/yucnRVblF+GOzC1Bt3dGa4LpNbuxoAT3Zm3HHfO3NjsZAQA/HC/DmzlHMGr+FtybtR2bCs62eF1vY+yWFIXCuaOb/CPyZnwwtRUFL05ICKAoCh555BH39zt37vT5mm+88Yb764cffhj9+vVr8rjo6Gg8//zz7u8XLlzYaAkpahudToeEhAS/7gciO+ZMGzmQJUZZ4iAiEoXjKIUS9lf5hVobbywoUXXJIsB1o3pjQYnqZTugoNJpgAO/LGfTXNkFxSavN85uq7xjpThQbG70s4y0zgEp211e/y5N/vzQ2SpsOV6FErN/luoK1g29WxIMr1m1N3QPhhj9QZY4SF1Bv2STw+HA/v37UVhYCJPJBKvV8wH4oYceUrFmvlm/fj3uuOMOAK4nGurq2v5pg8rKSrRr1859jW+//RZDhgxp9vja2lq0b98elZWVAICvv/7a570kuGQTERERERERAf5ZT51+cW/W9oDcmE/vkYQPpzW+lyCi7PolkxZuOdLiJ9D97cHB3fH7YT0bfbpcZO4BsctlhRK1xxyRm8lT07hkk+9E3ssN2t1Fjh8/jhdeeAEfffSR+8a5NxRFCeoJiX379rm/TklJ8ela3377rXsyIjo6GgMHDmzx+IiICAwZMgRffvklAGDjxo1+29xaqywWC/bt24fevXvDYAj9N/NAYM60kQNZYpQlDiIiUTiOUihhf22bgmITVucXYdepcuw5bWq0+XF8ZDj6dolD/64Jqq2n7o1QamMRTwnUt48aZethR0pYGQrtibAhrMmym7vJqLb3co/jvdzjKJw72v2z6cN7Ii9b/fzPuLlXkz9/dvVeXDBV44omcuar+uWyGm7oHayaes0Gaszx92by9U+oXLyheyiNSy2RJQ5SV1A+P7N27Vr07dsXixcvhtlshtPpbNOfYFVUVIRXXnnF/b2vG1rv37/f/XW/fv082sX+uuuua/J8apva2lrk5OSgtrZWdFVCBnOmjRzIEqMscRARicJxlEIJ+6t3Gq6n/mbOEWw7fOGSG3cVNVZsO3zBq/XU1RTsbXyytNr9Z2nu8YCWvTT3uKplG2BHmr4IBtibLTuYjExNRkZ/dZduGpfWGSNSO1zy8/rlslrKma+aWy4r2DR8zQZyzCmrsmDK4jy/TUY0rN/Di/IaLd8U7OOSp2SJg9QVdEs2nThxAldffTVqamrcP+vYsSP69++Pyy67DOHh4R5fa/HixWpUsU2qq6tRWFiIL774AvPmzcPZs66B8Oqrr8Z3332H2Ni2z9Y+9thjWLBgAQBg4sSJWL58eavnvPnmm5g5cyYAoHfv3ti7t/lNpDzBJZuIiIiIiIi0o6zKgmdX7/Vpf4FxaZ0xZ2wfKZaM8aeUpz8XXQVNa/iEBCBu2STRy0V5IxDLtIkYc574YKeq+7eMS+scEk+oBCMu2eQ7kfdyg+4JiVdeeQU1NTVQFAVdunTBZ599hqKiInzxxRdYunQpFi9e7PEfkb755hsoiuL+Ex0djT59+uDPf/6zezLirrvuwrfffuvTZAQAXLhwwf11cnKyR+d07NjR/XVpqf/e4CIiIhATEwMAsNvtKC8vdz+tYjKZYLG4Zn9rampQVVUFALDZbCgvL3dfo6Kiwr1XSHV1NaqrXZ+QsFqtqKiocB9XXl7u3pC7qqrKPYllsVhgMrk2Z3I6nSgvL4fd7vokQWVlpXuWtq6uDmaza9Mqh8OB8vJyOBwOAIDZbHYvg1VbW+teNqy5mJxOJ8rKytzHyRCT2u1UV1eHs2fPup9okiEmb9vJ6XSiuroaZWVl0sR0cTs5nU6cO3fOfVyoxmS321FSUuI+TrZ2YkyMiTExJrVjslqtKCkpcR8nQ0wythNjqnDXtaSkxH2cDDH5u532ni7Hr+dvwJpdpwEAkbAg/OdPbxtgQyRc9dHBgRilDoArpihYoG9w3Pr847gjcwv2nir1W0xOpxMXTFU4UXwe5lqrO/8NY6qpqUFtbS1qa2v93k6VlZUw11pxtqIap0rOtWncC4OrDhGwwgBXfHrYEYX6T1M7EaPUQffzcZENjguHHZE/H6f8fJzyc/7b2k4RPx8X5j7OJVqpQ9jPxxlhhdF9nB3RDY6LUeoaxGRBDGoBOIM2povbKTHagHcevBYdIx3NxNS2dkqOdGLJ1HTER+ov6Xu7T5xDXmHpzzFZYIANOthVaaf65bK8HSMKik14afVOPPjWVqQ9/yWum/MFbnjhc/SbswHXPr8BD2dtwktf7MOBYrPP497uExdwz2tfYPXPY07b+p4VX+SfwB2ZW7D75PlWx72NBSX4YtdJVfve17uOuZ9QKS8vb3SfIFTfc8vKylBbWwun06nq+1N1VWWzY4TZVCHVe67a/44QIegmJOr3NdDr9diwYQPuuusuwTXyv8TERHzwwQf4/PPPkZCQ4PP1Gu6xERkZ6dE5DY9ryx4dzRk8eLB7Capz584hMzPT/SJZtGiRe++MzZs3Y82aNQCAU6dOITMz032NBQsW4MiRIwCADRs2YMOGDQCAI0eOuJ8EAYDMzEycOnUKALBmzRps3rwZgGt/jkWLFgFwvYAzMzNx7tw5AMDKlSuRm5sLANi5cyeWLVsGwPUizczMdA8Ky5Ytw86dOwEAubm5WLlyZYsxVVRU4PXXX8cnn3wiTUxqt9MPP/yABQsWoKKiQpqYvG2niooKvPzyy3j99delienidqqoqMCbb76J7du3h3RMp0+fRlZWFk6fPi1lOzEmxsSYGJPaMR04cABZWVnu/6jJEJOM7cSYXDFVVFQgKysLBw4ckCYmf7bT/jMmPPr2Foyw/YBoxXWj4zbjIfwq7DwAoLe+BDcbXPVJUGoxIWK3e6mZu4wFSAkrAwCkhRdhqOE4Skx1eOKdr32KqaDYhFff+QB/fWM50p7/EhNfWonXF/wH/eZsQPoL65CZmYmXP83DgWIzVq5cic2bN+Oll17C9u3b/dJOX2//AfPWFeCvbyzHn/65CP3mbEDGS6vwTtabSHv+Szzwdi7m/+sNbNmxx6OY2utc/0cfajiOtHDXp7NTwspwl7EAgGvZowkRu5GguG5c3Ww4gt56103NX4Wdx23GQwCAaMWCCRG7/dJOANBeV4kJEbvddR1n3IcuOle+BoafwsBwV//qojNhnPGXfTMnROx2xzTMUIgJkXsQo1iCNqam+p6+6hwyDHuRHGe8JKa2tNN10eW4/7ITSO0Y16jvnSytRva77+Gj9d+4YxppPIIHIvPRSWdWrZ2W5h73aox45M2vcMf8rTi2YyPMJ/ajosbaqJ1stVXoWbIF720pwKj5W/B/r/8HH67bAsD7cW//GROeXrwOw+z5iPm53dvS9+rbqcRUh/9dtA4L//NOo5guHveyco4GpO9lbT4KwDXuvfrqq6ioqAjp99zXX38dL730EioqKlR9f8pZ/1mzY8RHS96S5j1XrXZqGJMIQbdkU0xMDGpqanDrrbdi/fr1oqvTZkePHsWrr74KwDXjZTabceDAAfz444/uGbIRI0YgKysLV155pU9l3XLLLdi4cSMA4O9//zuef/75Vs/ZuHEjbrnlFgBAWFiYu05tVf+YT0REBPR6PXJzc5Gamgqz2Yz4+HgoigKTyYSIiAgYDAbU1NTA4XAgOjoaNpsNlZWV7smZiooKREVFITw83D3TGBUVBavViurqasTHxwNwzTbGxMRAr9ejqqoKOp0OkZGRsFgsqK2tRVxcnHtGNjY2FmFhYaisrIRer0dERATq6upgsVgQGxsLh8MBk8mEuLg46HQ6mM1mGAwGGI1G1NbWwmazISYmBna7vcmYwsLCcPLkSSQlJSEuLk6KmNRup5qaGpw+fRo9evSATqeTIiZv2ykqKgolJSUwGo1ITEyUIqaL28npdKKwsBCdOnVCVFRUyMZktVpRWFiIlJQUhIeHS9dOMvY9xsSYGFNwxVRXV4cTJ06gZ8+eCAsLkyImGduJMblistvtOHr0KC6//HIYjUYpYvJXO50tr8Q97+zEWVMtohULqpwGOKEgEhbYEAYrwmCADWFwogbh0MGBKMWKSqcBgIIoWGBBGGw/H6eDE7UIRxgc6Bar4JMnb0ditMHjmNb+cAhL8krw3fEKRMAKBxRYoIcedhhgRzUMcH1K3YJqZzgc0GFot2g8PDQF/TtFIC4uDna7vc3ttOnAWbz99T7knTQ3GVOkYkWl03UDO1qpQ61Tj+tT2uPRIZ1x46/aN9tO18/dCjt0HscUCSvsPx8XDjv0sKMGBihw+r2dmorJjjD3J9TrEI4w2BGh2FD183ExSh1qnOGwQ4co1CFWseCcMxo6OIMypvznxzbb9xz6SMxZsxdf7zrmjsnbdroz7XL89fYrEB2OS/pez//94pKY9LAjQrHD5DQgQrGr2k75L2Q0O0bYwyLw7Ko92Li7sM3tdFdaN/z1tl6IMeo8GvdKzbX4zds/4IKpCsm6SpxxxMEBXZv63sXt1CU2DJ8+eRsSosIvGfeOXqhGxoLvA9b31j85DO0NVlRVVaFz587uG8qh+J5b/wRB+/btUVlZqdr704GTZzH2je1N9r3Pp1+P1MuTQ/49V+1/R5w+fVrYkk1BNyGRmJgIk8mE3/3ud8jKyhJdHb8rKirC3/72N2RnZwNwxZuTk4NrrrmmzdccPXo01q5dCwD4y1/+grlz57Z6zhdffOF++iQmJsb9GFBbcQ8JIiIiIiIiuQXLeuqi969Qu3yt7yGx9akRAIAnV+Tjh+NlASt3QPdEvDYxzaO15zcWlCBr81HkHfN8Cez0HkmYcXOvJjewrie67S/eP6Pe/jMmTFmc55d9NJLjjFgyNR2pHeNaPTaQY07DDdUXbjmCpbknVCv3Yg8O7o4Xxvdt/cAgInoPB9Hly4B7SDTQvXt3AHA/hiKbzp07Y/HixXjiiScAAGVlZZg0aZJ7vbC2qN+zAUCjzcBb0vC4hudT21RWViI7O9uvy1/JjjnTRg5kiVGWOIiIROE4SqFEhv7qdDphrrWitMoCc60V/vgc4saCElVvDALAqvwi93rqzdl/xoQ7Mrf4VJdIWFG3byMy5n+FgmLv7j34o3zAFesdmVu8Lj/URcKKOwwF7vX2m9ItKQrdkqIwqEdSAGsGDOqZ5PFNzJGpyfhw2hCsf3IYZo7ohRuvaIf4yPBGx8RHhuPGK9ph5oheWP/kMHw4bUiLkxHN8SRnatp/xoRJb+X6bVPvElMdJi7MbbXvNxxz1MpBwzHnpnmb3H8CORkBAO/lHpfivQdwtdXaj5eHfBykLr3oClxs7Nix+Omnn9zrjcvqxRdfRHZ2NkwmE/bv348vvvgCY8aMadO1LrvsMvfXJSUt/+OtXnFxsfvrpKTAvsnLSK/XIyUlBXp90L2kghZzpo0cyBKjLHEQEYnCcZRCSaj214JiE1bnF2HXqXLsOW1CRc0vN+7iI8PRt0sc+ndNwLi0LriqY6zX18/KOerP6jZfzuajGJma3OTv6m+MNoytLexQUOyIRYnZiokLc7Fi2mCPPq3tr/Lr1d+Yvbj8+icEAHFPCahVdn3u7VBaLBsAMtI6482cI34tvyUZ/bt4fc5VHWMxu2MqANdEYJXFDovNAYNeh2hDGBTl0ji91VLO1FZWZcGUxXl+6/P1KmqseHhRHtbNGtbsU0oNxxw1c9DSmBNIYWFhIfneczE7FHTs0k3VOAqKTViae7zZ3z+5Ih+DeiS1+f2O1Bd0T0hMnz4dcXFxOHHiBD744APR1VFNVFQUhg4d6v5+27Ztbb7WVVdd5f76+PHmX5ANnTjxy2xvampqm8sml4iICAwfPhwRERGiqxIymDNt5ECWGGWJg4hIFI6jFEpCrb9uLCjBvVnbccf8rXgz5wi2Hb5wyc3Dihorth2+gDdzjmDU/C24N2s7NhWc9biMgmIT8go9X5rGF3nHSnGg+NIlhf15Y9QCPfJtXWCB3n1jtKzK0uI5at+YbVh+/RMCIp8SUKvshrlvrux6qR3jkJ4SmPjTeyT5fONSURTEGPVIijYgxqj3y2QE0HLO1Pbs6r1+ezLiYiWmOsxZs7fJ31085qiZg+bGnECz68JD6r2nORbocd2gG1SJo+H7XUtPsfxwvKzN73cUGEE3IdGlSxdkZ2dDp9Nh2rRp+PLLL0VXSTWJiYnury9cuNDm61x99dXur3fv3u3RBtU//vhjk+dT29TV1SE3N9e98RC1jjnTRg5kiVGWOIiIROE4SqEkVPprWZUFT3ywE1Ozd3g9WZBXWIpHsr/HrOU7m70Rf7K02v2npU+iqqGp8vx5YzQcdvQOK0E4XEsnt3RjVI3yL9ZS+RlpnVUpszkNnxJQo+yLc99c2fWmD+/p9zo0ZcbNvQJSTlu0lDM1iVimrbkxR+0cBHqMa0plVU1IvPe0Jhx27M3f4dc41H6/o8ALugmJEydO4LrrrkNWVhasVivuvPNOjB8/HsuWLcNPP/2E48eP48SJEx79CXZnzpxxf+3LsklDhw6F0WgEAFRVVWHHjh0tHl//D+x6I0eObHPZ5GKxWJCfnw+LhYObp5gzbeRAlhhliYOISBSOoxRKQqG/BmIfA9HrqTfk7xujethxhf489A1ubra0f4XI/TNEPiWgRtlN5b6psuuNTE1GRn91J2XGpXVu094Oatj61AhsfWoEru/+ywdYm8uZPw3onthoqTAgsMu01WtuzFE7BxePOUI4bEH/3uMJPew4tH+P3+Lgvj1yUpz+2N3Kj3Q6XaPH2pxOZ5sec1MUxaMnBUS5cOECunTp4p4xzM7OxsMPP9zm640ePRpr164FAEybNg1ZWVnNHvvBBx/g/vvvB+CaCCkpKfF5bTeRO7MTERERERFphb/3MQBce0xcvI9BytOf++36bXHsxbvc9wLuzdoekCWj0nsk4cNpQy75uejyNxaUYGp2yx889IfFUwZecmNeZNn1yqosuCNziypPqCTHGVvcx0CUeesKArp/xswRvTB71C/LeRcUm3DH/K0BK3/9k8NwVcdY4eOOSA3HvFBwsrQaN83b1OTvtj41wuMN4lsSqPc7rRJ5LzfonpCoVz9PUv9idDqdXv8JpNJSz/9x4nA48D//8z/uyQij0djmDa3rPfbYY+6vs7OzsXdv0497VldX4x//+If7+9///vchv2FOMHA4HCgvL4fD4RBdlZDBnGkjB7LEKEscRESicBylUBLM/TWQ+xiIVmVxfRJajf0rFDgRo9RBQeP7Bk2tJR8M+2eIfErA32U3lfvWnlBIjDZgydR0xEeG+60egOvG5JKp6UE3GQE0Xi6ruf7q1/J+Xi5L5DJtJ0urm/19IHKwftZNTT6hEggDuifC6XQG7XvPxQqKTVi4pekJMwVOzH5/O176Yp9Pe3No6f1Oi4JuQuLyyy/H5Zdfju7du7u/rv/emz+XX355QOv97rvvYuDAgXj33XdhMjX/+M9PP/2Eu+66C8uXL3f/bPbs2bjssssuObawsBCKorj/ZGdnN3vd0aNH46abbgLgWpJpzJgx+Omnnxodc+HCBYwfPx6HDx8G4Ho64i9/+Ys3YVIzTCYTMjMzW2x7aow500YOZIlRljiIiEThOEqhJJj7q6h9DEQ4dq5StRuj0YoFEyJ2I1q59IZU/Y3RYNo/AwCey+iD5DijKmUmxxkxZ2zzn4r1Z9kX5761suuldozDimmD/VaP5DhjUH9KuuFyWS31V39ouFyWyGXamvu0PaB+DgCgfVyE0M3kg/m9p54nm0pHKxZcfeEbvLelwKdNpbX0fqdFQbdkU6iaP38+/vCHPwAA9Ho9UlNTcdVVVyExMRGKouDChQv46aef3JMB9e6++24sX768yacUCgsL0aNHD/f3ixcvxpQpU5qtw6lTp5Cenu7em0JRFNx8883o1asXzp07h6+++grV1dXuOq5btw633HKLr6ED4JJNDocDJpMJcXFx0OmCbp4vKDFn2siBLDHKEgcRkSgcRymUBGt/DdTSOYumDMDI1GSpl05R4ES0YkGV0wAngm+JlMK5o5v8eUGxCRMXilm+xF9lN8x9XKTB60mBsioL5qzZi1X5bV9PflxaZ8wZ2ycon4xoqP41r3Z/bbhcVrC+7gPxmt3z3CjEGF335kQsWfWrDtFB+d4DuF53z67e69E+Ds21lTevu0C/32mVyHu5XKvHT+o3lQYAm82GPXv2YM+ePc0eHxsbizlz5mDWrFkICwvzSx26du2KjRs34r777kN+fj6cTidycnKQk5PT6Lj27dtj8eLFfpuMINfeJwkJCaKrEVKYM23kQJYYZYmDiEgUjqMUSoK1vwZyg1nZb9A4oaDSqc7TBv7Q3F6a9U8JPLwozy+fHE6OM2LJ1HSPJgT8VXZ97r0pu6HEaAMyJ12LcWmdkbX5KPKOeb6cVnqPJMy4uVfQbGDdmvrlslbvKlKtvwbTht4tCcRrNtrwy725+idUArV3TP0TKsH43rP/jAlTFnv+um+urVblFyH36AWPXvd8v5NfcE25hbAZM2bgwIEDeOONN/DQQw/h+uuvR/v27REeHo7w8HBcdtll6Nu3LyZPnozs7GwUFRXhj3/8o98mI+qlpqbiu+++w5IlS3DHHXegW7duMBgM6NChAwYPHox58+Zh3759GD266U9cUNuYzWZkZWXBbG77+nhaw5xpIweyxChLHEREonAcpVDij/7qdDphrrWitMoCc63V5z0ORexjUL+Wuqj11NUUCQsyjHsRieBcQ7x+/4ympHaMw7pZwzAuzbd9Hcaldca6WcO8mhDwR9mRsODBhINY+dtrfVouaWRqMj6cNgTrnxyGmSN64cYr2l2yx0R8ZDhuvKIdZo7ohfVPDsOH04aExM33hp7L6IPLY6FKf/V0uaxAam7MUfs1O6B74iWTgNOH91SlrIvNuLkXgOD8t1L9ptLeTEK21FYlpjpMXJiLguLml6UKhn17SH18QsKPrrzySlx55ZWNNpj2RUpKSpv+4WowGPDQQw/hoYce8ks9qHUGgwFpaWkwGIL7kc9gwpxpIweyxChLHEREonAcpVDS1v5aUGzC6vwi7DpVjj2nTY2WtomPDEffLnHo3zUB49K6uD8N25r6TV5F7GPwwvhflnEY1CMJPxwvC1j5g3omYYeK5dkQhsO2drDBvx8Q9BeLzQG08GFwkU8J+Fr274Z2Q2xVJ3RIiGlT+Re7qmMsZndMBeCaCKyy2GGxOWDQ6xBtCGvySZNQkhhtwBsPpuPZxef92l+DdUPvbklRAC4dc9R+zQ7qeemeEQ2fUFFLwydUgu3fSm3dVLq1tqrfVHrdrGGN+l+wvN9RYHAPCfILre8hQURERERE2rSxoARZOUe9+kRnekoSZgxv/aawyPXcG+5jIGI99VHztwSsvGDTcC17TxwoNmP1rtPYdbICu09XXDIZ1q9LPPp3i0dGf88nw0KhbC0pKDYFZKku0XtI1I87IsacpvpnWZUFd2RuUWVz5eQ44yU35YPJEx/sVH0yJnPSte7vg+X9Tku4h4SHKioqYDab4XA4PDr+8ssvV7lGRC61tbXIzc3F4MGDERERIbo6IYE500YOZIlRljiIiEThOEqhxNP+6s0mnxfLKyxFXnZpUG+u23AfA1HrqavFABt660uwz5YMSxDeFmm4lr0nRD4l4G3ZfD/wXm1tLYoLfsSqael48csjqm7ovfWpEQCAJ1fkB/SpqAHdE/HaxDT39xePOWq+ZlsacxKjDVgyNV2VzeQvfkIlmF4bGwtK2jwZ4Wlbrcovwri0zkGxh0Nz+/aQeoJ6D4njx4/jr3/9KwYOHIiIiAgkJSWhe/fu6NGjR6t/evYMzFpvRIBrI/PCwkLYbDbRVQkZzJk2ciBLjLLEQUQkCsdRCiWe9Nf9Z0y4I3OLz58eXZVfhDsyt7S4nrYoF+9jEOj11NXcvyIMTnTUmRGGSxeMGNA9Ufj+Gb7cGFMUBTFGPZKiDYgx6gN6k82Tsvl+4L36nMUYdcicdC0WTRmA9B6XLjHUkvQeSVg8ZSAyJ13b4gRot6QodEuKwiAvr++rQT2T3Ms11Ws45rT0mvVV/ZjTnPoN3ZPj/LOpdnKcESumDb7kCZVgem34sqm0N22VtTkwm1e3pqV9e0gdQbtk0yuvvIJnnnkGVqtrBtLbaiqKArudHSpQuGQTERERERFpQf0mn/7+tGxTN6hELmHx499vQ9JFNy4DvYQHAMxbV4A3c46oVubFZo7ohdmjUoOmfKLmqLlcVrAsmSRizGlOWZUFc9bsVfUJlWAgqu2D7f1OC7hk00Vefvll/OUvf3F/HxMTA0VRYDaboSgKLr/8cpjNZpSVlbknKhRFQUREBDp0aNvGTES+sNvtOHfuHNq3b4+wsODcGC3YMGfayIEsMcoSBxGRKBxHKZS01F/buslna5rb5FMkg/7SBRWey+iD745dUG099TljL70RkpHW2e8TAjo4kKDUotwZAcdFC0dk9O+ievktubh82fD9wHvN5UzNpbqCZZm2+jHnnKmm2ddsWzU35jRH7c3kRb82/LWpdEvja1OW5h7H74eJXeWmqfc7UlfQZfzkyZN45plnALgmIlasWIHy8nI89NBD7mOOHTuG8+fPo7y8HJ9//jlGjx4Np9MJq9WKadOm4dixYzh27JioEEiDzGYzFi5cCLPZLLoqIYM500YOZIlRljiIiEThOEqhpKX++uzqvarcjAeAElMd5qzZq8q126KpfQzq11OPjwz3a1lNrader/7GqD9FKVaMi9iHKKXxxFJTN0bVKL85gdg/QzS+H3jPk5ypsVRXoJdpa0r9mJMc6WzyNdtWLY05rRmZmowPpw3B+ieH4cHB3Zs9bkD3RMwc0QvrnxyGD6cNaXEyAhD/2rhp3ibcNG8Tluae8Ok6zY2vzXkv9zhumrfJpzJ95e2+PeS7oFuy6ZlnnsH/9//9f1AUBYsXL3ZPRDz++ON44403ml2KacWKFXjooYdgs9nw7LPP4h//+Eegq65pWl+yyel0oq6uDkajkRvheIg500YOZIlRljiIiEThOEqhpLn+urGgBFOzd6he/qIpA9ybfNZ/YlXEBrMrZwxt9vcFxSY8vCjPL5MzyXFGLJmafslyVQ35P/dOGGCHBWEAfmnjxVMGNnnTMFBt31z5MuH7gfdE5ixYlkzaf6YCjy7ajtNmGxq+ZtvCkzHHW/54QkX0a8N/SyY1Pb62RuSG6i2938lM5L3coHtCYtMm16xYu3bt8OCDD3p83sSJE/Hqq6/C6XTihRdewK5du9SqItEl6pcM4z+oPMecaSMHssQoSxxERKJwHKVQ0lx/9WWTT2803ORT5AazLUntGId1s4ZhXFpnn8oZl9YZ62YNa/XG4MjUZGT0962sxhRYoEfDm2Xj0jo3Oxng//Iv1VL5MuH7gfdE5uy5jD5+28z5Yt4smXR1p3h89uRIjEvzbUkzT8ccb/njCRV5XhuXjq+eCNb3O1JH0E1IHDlyBIqiYNCgQc2+CJvbcf6xxx5Dp06d4HA4sGjRIjWrSdSIyWTC/PnzYTKZRFclZDBn2siBLDHKEgcRkSgcRymUNNVfC4pNAVlLHQDyjpXiQHHjJTsyfLzx7y1P9jGoX0990ZQBSPfyBlJ6jyQsnjIQmZOu9XjJFH/eGI2CBfcYf0IULAA8uzEaLDdmQx3fD7wnMmcilmlrislkwpL/vIkX7uoVsDEn0GR5bVw8vnorGN/vyP+CblPrsjLXYzmdOnVq9HOj8Zc3/urqasTFXTqbqSgKbrrpJnz44YfYuHGjuhUlaiAiIgLDhw9HRESE6KqEDOZMGzmQJUZZ4iAiEoXjKIWShv3VX5t8eqt+k89uSVEAgmeD2aaMTE3GyNRkHCg2Y/Wu09h1sgK7T1c02vg7PjIc/brEo3+3eGT079KmfRLqb4xOXJjr86biFoQh39YZFoR5fGPUn+U35Mta9qGI7wfeE52z1I5xWDFtcECXabtYwxyMTI0LyJgTaKLb2V8ajq9tEczvd+Q/QTchYTAYYLPZLnk6ouEExKlTp9C7d+8mz4+JiQEAnD59Wr1KEl3EYDAgLS1NdDVCCnOmjRzIEqMscRARicJxlEJJw/5607wvhdThvdzjeC/3OArnjnb/bPrwnsjLVv8GTUsbzLbkqo6xmN0xFYB/1lNvir9ujNoQhsP2dl7fGA2GG7Ohju8H3guGnNUv0zZnzV6sym/7nhLj0jpjztg+Xk/ANZWDQIw5gRQM7ewP9eOrL4L9/Y58F3RLNnXo4FozsaKiotHPU1JS3F//+OOPzZ5/9Khrvc2amhr/V46oGTU1NVi3bh37nReYM23kQJYYZYmDiEgUjqMUSoK1v4bSPgb+WE+9Of7Yv8IAG+7rXIpPfz/Q68mAQO+fIZtgfX0Fs2DJWaCXaWuotRyoOeYEiuh23vrUCGx9agSu757o03UMsCE9/AQMaHq5/YsN6J7o3tC6Xii931HbBN0TEr1798axY8dw+PDhRj+/9tpr3V9/8MEHmDx58iXnHjx4ENu2bYOiKOjcObBrjpG2ORwOlJeXw+FwiK5KyGDOtJEDWWKUJQ4iIlE4jlIoCeb++lxGH3x37IJfPp1/sVDax6D+xui4tM7I2nwUecc8/yRteo8k/HZQJ5QV5CIusm23RHwtf8bNvTR7IyyYX1/BKthyFqhl2hoKthyoQXSM9UsEDuqRhB+Ol7X5Ojo4EaNYoIPTo+MH9Uxyl90Q3+/kpjidTs96SIDMnTsX//u//4uIiAiUlZU12jsiNTUVBw8ehKIoeP755/H0008jLMy1JllhYSHuuece/Pjjj1AUBY888gjefvttUWFozt69e9G3b1/393v27EGfPnxxExERERFR6Ep5+nOh5TdcsqleQbFJlX0MVkwbHLKf1he9lrzo8olEk2HJJHIpKDbhjvlbA1be+ieHNTsu8v1OXSLv5QbdhMSPP/6IAQMGQFEUrF27FqNGjXL/bsmSJXjkkUfcg1pCQgJSU1NRXV2NPXv2wOFwwOl0Ijw8HD/++CNviAeQ1ickbDYbTp06ha5du0KvD7oHj4ISc6aNHMgSoyxxEBGJwnGUQknD/nrFM+uF1qWpCQnAdZOG+xg0zZMbo2qOSbwx2zK+H3iPOdNGDoIpxnuztrd5U+kwONBeV4lzjhjYW9kpIL1HEj6cNqTFY/h+px6R93KDbg+J6667DgMGDECHDh2wZs2aRr97+OGHMWXKFDidTjidTpSVlSE3Nxc//fQT7HY7nE4ndDod/vWvf2nqZjiJV1lZiSVLlqCyslJ0VUIGc6aNHMgSoyxxEBGJwnFUm5xOJ8y1VpRWWWCutSKQn4XzpexQ6K/cx6B5nqwlr2Yby7CWvZpC4fUVbJgzbeQgmGKcPrxnm8+NVKy403gQkUrrTzV4sqk03+/kFHRPSHjirbfewj//+U8cOnTI/TNFUTB48GC88MILGDlypMDaaZPWn5AgIiIiIiLXJxlX5xdh16ly7DltumTpmr5d4tC/awLGpfl/6Ro1yj5ZWg0AeHJFvk9rantrQPdEvDYxrcl1tS+2saCE+xgQEZFfPfHBTqzeVaTa9celdUbmpGtbP7ABvt/5F5dsaqNTp06hqKgIOp0OPXr0wGWXXSa6SprFCQkiIiIiIu3aWFCCrJyjXi3xkJ6ShBnDfb9JEIiy560rwJs5R9paRa/NHNELs0elenUO9zEgIiJ/Kauy4I7MLaptKr1u1jAkRhvadP6BYjOW5h7He7nHm/z9gO6JGNQzie93reCSTW3UtWtXpKenY8CAAZyMIKEqKiowd+5cVFRUiK5KyGDOtJEDWWKUJQ4iIlE4jsqrrMqCJz7YianZO7xebzqvsBSPZH+PWct3oqzKEjRlN9VfM3xcKsJbGf27eH3OVR1jMXtUKpY+Ogj5/7gNe54bhR//7vo7/x+3YemjgzB7VCpvzoBjkkjMvfeYM23kINhiTIw2YMnUdMRHhnt1XrRSh/sjdiJaaXoiIz4yHEumprd5MgJwvd/9fljzy0q9NjGN73dBLqQnJIiCRVRUFMaPH4+oqNYfqSYX5kwbOZAlRlniICISheOoGGrv4bD/jAl3ZG7xeUmHVflFuCNzCwqKTUFRdlP9NbVjHNJTknwqy1PpPZJ8vonCfQxaxjFJHObee8yZNnIQjDGmdozDimmDkRxn9PicWqce31hSUOu8dGPu5DgjVkwbzH0cKLSXbKLgwSWbiIiIiIjEC9QeDvvPmDDprdxG1/dVfGS4RzcqRJW9saAEU7N3+K3M5iyeMpBrXRMRUdAoq7Jgzpq9WJXf9g8BjEvrjDlj+/j0ZERDJ0urcdO8TU3+butTIzzag0nruGQTUYirrq7Gp59+iurqatFVCRnMmTZyIEuMssRBRCQKx1H1bSwowb1Z23HH/K14M+cIth2+cMkN+4oaK7YdvoA3c45g1PwtuDdrOzYVnPW6rLIqC6YszvPrhEB9/R5elNfi8k2BKLu5/joyNRkZ/dVdumlcWmdORgQAxyRxmHvvMWfayEEwx5gYbUDmpGuxaMoApPdo+WlBI6y4MfwYjHC9T6f3SMLiKQOROelav01GUOi79PmZAJg6dar7a0VR8M477zT5O19cfF0iIiIiIiLZlFVZ8OzqvW1auiivsBR52aVef2rx2dV7VdnkEgBKTHWYs2YvMiddK6zsFzOuavaY5zL64LtjF1Tb5HPOWD5lTkREwWlkajJGpia3uql0uxgDftunB8YN6Ml9HKhJQpZs0ul0jdawtNvtzf7OFw2vS+rikk1ERERERIG1/4wJUxbn+eXmeHKcEUumpre6XFKgli1aNGUARqYmB03ZDRUUmzBxoZjlqoiIiIKB6CWTRJcvA00u2eR0OpvdVK3+d778IQokq9WKgoICWK3+fXRcZsyZNnIgS4yyxEFEJArHUf+r30fBX5/ULzHVYeLC3FY3ls7KOeqX8lqTtfnScgJV9sKcQy3217Zs8tkSbvIZeByTxGHuvcecaSMHssQYBjuOHzkU8nGQuoQs2bR48eI2/Y4oWNWv9TdjxgzEx8eLrk5IYM60kQNZYpQlDiIiUTiO+pfa+yismzWsyeWbCopNyCss9WuZzck7VooDxWb3Ug+BLHvP8bP4+JNvMPOx5vtrasc4rJs1LOg2+STPcEwSh7n3HnOmjRzIEmOEYsPWr75AvytTQjoOUpeQJZtIPlyyiYiIiIgoMJ74YGeb9ozw1Li0zo32cDhZ6tpgc+GWI1iae0K1ci/24ODu+P2wnkLL9mTJh40FJcjafBR5xzyfMEnvkYQZN/fiBtZERBSSRC+ZJLp8GYi8lyvkCQkiIiIiIiLy3saCElUnIwBgVX4RxqV1du+j0Nx/+NX2XgsbZgaq7MK5o1s9tuEmn6t3ncaukxXYfbqi0RMs8ZHh6NclHv27xSOjfxdu8klERESaJWwPiea8/vrreP311/Gvf/2L641RyCgvL8dzzz2H8vJy0VUJGcyZNnIgS4yyxEFEJArHUf8RuYeDfh/FZwAA/HNJREFUVsQodXgkcgdiFO/257iqYyxmj0rF0kcHIf8ft2HPc6Pw499df+f/4zYsfXQQZo9K5WREEOCYJA5z7z3mTBs5kCXGGKUOi/71csjHQeoKuiWbdDodFEXBddddh++//150dchDWl+yyWaz4dSpU+jatSv0ej545AnmTBs5kCVGWeIgIhKF46h/FBSbcMf8rQErb/2Tw3BVx1ikPP15wMoMBmFwoL2uEuccMTgyd6zo6pAKOCaJw9x7jznTRg5kiVGWOLSASzY1EB0djerq6kYJIQp2er0eKSkpoqsRUpgzbeRAlhhliYOISBSOo76p38NhaYCXL1qae9y9h4OW2KFDsSNOdDVIRRyTxGHuvcecaSMHssQoSxykrqBbsqlTp04AAEVRBNeEyHNVVVVYvnw5qqqqRFclZDBn2siBLDHKEgcRkShaHUedTifMtVaUVllgrrWirQ+n3zRvE26atymgmzoDrn0URO0fIVIErBhpOIwIcAlhWWl1TAoGzL33mDNt5ECWGGWJg9QVdE9IDBgwAIcPH8a+fftEV4XIYzqdDgkJCdDpgm6OL2gxZ9rIgSwxyhIHEZEoWhpHC4pNWJ1fhF2nyrHntOmSjY37dolD/64JGJfGjY2DlQMKKp0GOMAPyclKS2NSsGHuvcecaSMHssQoSxykrqDbQ+KLL77A6NGjodPp8NNPP6F3796iq0Qe0PoeEkRERESkbRsLSpCVcxR5haUen5OekoQZw3thRGqHFo8TvYfD1qdGAACeXJGPH46XBazcAd0T8drENKFld0uKCliZRERERIEi8l5u0E1X3XnnnRg/fjwcDgceeOABlJUF7h+dRG1lsViQn58Pi8UiuiohgznTRg5kiVGWOIiIRJF5HC2rsuCJD3ZiavYOryYjACCvsBSPZH+PWct3oqwqeHPTLSkK3ZKiMKhHUkDLHdQzSUjZethxfUwFkmOCbkEB8hOZx6Rgx9x7jznTRg5kiVGWOEhdQTchAQDZ2dkYM2YMdu3ahb59++Ktt95CeXm56GoRNau2thY5OTmora0VXZWQwZxpIweyxChLHEREosg6ju4/Y8IdmVuweleRT9dZlV+EOzK3oKDY5KeaqSMjrXNgy+vfRUjZBtihP1sgXX+lX8g6JoUC5t57zJk2ciBLjLLEQeoKuiWbRo4cCcC1Ady2bdtgs9ncG1z36NED7du3R2RkZKvXURQFX3/9tap1pV9wySYiIiIi0pL9Z0yY9FZuoz0ifBUfGY4V0wYjtWNco5+LXrKpcO5o99f3Zm33+kmQtkjvkYQPpw1p9DORZRMRERHJROS93KB7BjUnJ8c9AQHA/bXT6cSxY8dw7NixVq/hdDobXYNIbU6nE3V1dTAajex7HmLOtJEDWWKUJQ4iIlFkG0fLqiyYsjjPr5MRAFBRY8XDi/KwbtYwJEYb3D8Phj0c6k0f3hN52epPCsy4udclPwtU2dOH9URtba00/ZUuJduYFEqYe+8xZ9rIgSwxyhIHqSsol2xyOp2X/Gnu580dSxRIFRUVeOmll1BRUSG6KiGDOdNGDmSJUZY4iIhEkW0cfXb1XpSY6lS5dompDnPW7G30M9F7ODQ0MjUZGf3VXT5pXFrnJjf6DlTZ13UyStVf6VKyjUmhhLn3HnOmjRzIEqMscZC6gm7Jps2bN/vtWjfffLPfrkUt0/qSTXa7HefOnUP79u0RFhYmujohgTnTRg5kiVGWOIiIRJFpHN1YUIKp2TtUL2fRlAEYmZrc6GcFxSbcMX+r6mXXW//kMFzVMfaSn5dVWXBH5hZVJmWS44yXPCES6LLjIsKk6a/UNJnGpFDD3HuPOdNGDmSJUZY4tEDkvdygm5Cg0KT1CQkiIiIi0gbR+xiILr9eQbEJExcGZg+NYCqbiIiISAYi7+UG5ZJNRKGmsrIS2dnZqKysFF2VkMGcaSMHssQoSxxERKLIMo4WFJsCMhkAAHnHSnGg2HzJz6cP7xmQ8pvaw6Gh1I5xWDFtMJLjjH4pLznO6PGEgNply9JfqXlsY3GYe+8xZ9rIgSwxyhIHqYsTEkR+oNfrkZKSAr0+6PaJD1rMmTZyIEuMssRBRCSKyHHU6XTCXGtFaZUF5lprm/acO1lajZOl1Viae1yFGjZvae5xnCytbvQzkXs4XCy1YxzWzRqGcWm+1WdcWmesmzXMq6cT1Cyb7/vyYxuLw9x7jznTRg5kiVGWOEhdXLKJ/IJLNhERERFRsCgoNmF1fhF2nSrHntOmRkv7xEeGo2+XOPTvmoBxaV2a3CPhYilPf65mdVtVOHd0o+9F7uHQnI0FJcjafBR5xzx/giS9RxJm3NzLo8mPYC2biIiIKBSJvJfL6SoiP6irq8POnTtx7bXXwmj0z6PjsmPOtJEDWWKUJQ4iIlECNY5uLChBVs7RFpdVqqixYtvhC9h2+ALezDmC9JQkzBgeWjemE6MNWDI1XZV9FJZMTfd6MgJwPbkxMjUZB4rNWL3rNHadrMDu0xWXTAb16xKP/t3ikdHfs8kgEWXzfV9+bGNxmHvvMWfayIEsMcoSB6kr6CckDhw4gK+++gr5+fk4f/48zGYzHA5Hq+cpioKvv/46ADUkAiwWC/Lz89GnTx8OuB5izrSRA1lilCUOIiJR1B5Hy6oseHb1XqzeVeT1uXmFpcjLLsW4tM6YM7ZPm27Gi1C/j8LDi/L88qREcpwRS6am+7yp81UdYzG7YyoA13JZVRY7LDYHDHodog1hUBTF57qqXTbf9+XHNhaHufcec6aNHMgSoyxxkLqCdsmmo0ePYvr06W2aVHA6nVAUBXa7XYWaUVO4ZBMRERERibD/jAlTFqt7Uz7YlmxqqKzKgjlr9mJVvveTMfVCbTKGiIiIiHwj8l5uUG5qnZ+fj+uuuw5ff/01nE5nq3/qXfw9UaA4HA6Ul5d79PQOuTBn2siBLDHKEgcRkShqjaP7z5gw6a1cv+2lUGKqw8SFuSgoNvnleoGQGG1A5qRrsWjKAKT3SPLq3PQeSVg8ZSAyJ13LyYgG+L4vP7axOMy995gzbeRAlhhliYPUFXQTElarFb/5zW9gMpngdDpx5513YsWKFRg/fjwA11JMmzZtwurVq/Gvf/0LEyZMQHh4OJxOJ2JiYrBw4UJs2rQJGzduFBsIaYrJZEJmZiZMptD5z6tozJk2ciBLjLLEQUQkihrjaFmVBVMW5/l1DwXAtcfEw4vyUFZl8et11TYyNRkfThuC9U8Ow8wRvXDjFe0QHxne6Jj4yHDceEU7zBzRC+ufHIYPpw0Jqb0zAoXv+/JjG4vD3HuPOdNGDmSJUZY4SF1Bt2TTokWL8Oijj0JRFDz44IPIzs4GADz++ON44403mlyKqaioCL///e+xdu1axMXFYd26dRg8eLCA2muX1pdscjgcMJlMiIuLg04XdPN8QYk500YOZIlRljiIiERRYxx94oOdbdozwlPj0jojc9K1AICTpdUAgCdX5OOH42WqlXmxAd0T8drENHRLimrT+YHew0EWfN+XH9tYHObee8yZNnIgS4yyxKEFXLKpgc8++wwAoNfr8corr3h0TufOnbF69WpkZGTAZDJh0qRJqKioULOaRI3odDokJCRwsPUCc6aNHMgSoyxxEBGJ4u9xdGNBiaqTEQCwKr8IGwtKAADdkqLQLSkKg7xcEslXg3omtXkyAnA9XR5j1CMp2oAYo56TER7i+7782MbiMPfeY860kQNZYpQlDlJX0PWOnTt3QlEUpKeno127dh6fp9PpsHDhQhgMBpw8eRJLlixRsZZEjZnNZmRlZcFsNouuSshgzrSRA1lilCUOIiJR/D2OZuUc9ct1Wi1nc+NyMtI6B6Rcd3n9uwS0PHLh+7782MbiMPfeY860kQNZYpQlDlJX0E1InD9/HgBwxRVXNPp5WFiY++uampomz01OTsawYcPgdDqxcuVK9SpJdBGDwYC0tDQYDNwM0FPMmTZyIEuMssRBRCSKP8fRgmIT8gpL/VCr1uUdK8WB4l/+Q53aMQ7pKYF5SiK9RxKu6hgbkLKoMb7vy49tLA5z7z3mTBs5kCVGWeIgdQXdhITF4to8Liqq8aPJsbG//GP87NmzzZ6fkpICADh6NDCfmiICAKPRiMGDB8NoNIquSshgzrSRA1lilCUOIiJRfB1HT5ZWu/8szT3u59q17OLypg/vGZByZ9zcKyDl0KX4vi8/trE4zL33mDNt5ECWGGWJg9QVdBMSiYmJAICqqqpGP2/fvr3764MHDzZ7fv1kRf2TFkSBUFtbi5ycHNTW1oquSshgzrSRA1lilCUOIiJRfB1Hb5q3yf1nae4JP9euZe9dNCExMjUZGf3VXbppXFpnjEjtoGoZ1Dy+78uPbSwOc+895kwbOZAlRlniIHUF3YTEr371KzidTpw6darRz/v16+f+esOGDU2eW1tbi++//x4AEBcXp14liS5is9lQWFgIm80muiohgznTRg5kiVGWOIiIRAn1cdTpdDb6/rmMPkiOU+eTf8lxRswZ20eVa5NnQr2/UuvYxuIw995jzrSRA1lilCUOUpfivPhf14LNmjUL//rXv5CcnIwzZ864f15TU4OOHTuisrISsbGx+O6773DVVVc1Onf27Nn45z//CUVRcOutt2L9+vWBrr5m7d27F3379nV/v2fPHvTpw/9IEREREZHvUp7+XGj5e54bhRijvtHPCopNmLgwFxU1Vr+VEx8ZjhXTBiO1Iz9cRURERETqEXkvN+iekBg5ciQA19JL+/btc/88MjISDz74IJxOJ8xmM9LT0/HEE0/gP//5DzIzM3HLLbfg1VdfdR//8MMPB7zupF12ux3FxcWw2+2iqxIymDNt5ECWGGWJg4hIlFAfRy02xyU/S+0YhxXTBvvtSYnkOCMnI4JEqPdXah3bWBzm3nvMmTZyIEuMssRB6gq6CYlRo0YhOjoaTqcTH3zwQaPfvfDCC+jWrRucTicqKyvxxhtvYPr06fjjH/+InJwc93G333477r///gDXnLTMbDZj4cKFMJvNoqsSMpgzbeRAlhhliYOISJRQH0cN+qb/25TaMQ7rZg3DuDTf9pQYl9YZ62YN42REkAj1/kqtYxuLw9x7jznTRg5kiVGWOEhdQbdkEwDk5eWhrKwMiYmJSE9Pb/S7EydO4L777sP27dsvOU9RFDz44INYsGABIiMjA1VdApdscjqdqKurg9FohKIooqsTEpgzbeRAlhhliYOISBRfx1HRSzYde/GuVuu9saAEWZuPIu9YqcfXTe+RhBk39+IG1kGG7/vyYxuLw9x7jznTRg5kiVGWOLRA5L1cfeuHBN7FkxANXX755di2bRu2b9+Or7/+GkVFRdDpdOjZsydGjx59yb4SRIGgKAoiIiJEVyOkMGfayIEsMcoSBxGRCE6nE5V1NljtOljrbIgx6r3+D+rWp0a4v35yRT5+OF7m72o2a0D3RI/qOzI1GSNTk3Gg2IzVu05j18kK7D5d0WiPifjIcPTrEo/+3eKR0b8LruoYq2bVqY34vi8/trE4zL33mDNt5ECWGGWJg9QVlBMSnhgyZAiGDBkiuhpEAACTyYRFixZh6tSpiIvjo/aeYM60kQNZYpQlDiKiQCkoNmF1fhF2nSrHntMmWGuqcJexAGvrUhEeGY2+XeLQv2sCxqV5dlO+W1KU++tBPZICOiExqGeSV8df1TEWszumAnBNxlRZ7LDYHDDodYg2hPHTgiGA7/vyYxuLw9x7jznTRg5kiVGWOEhdITshQRRMIiIiMHz4cM4Ce4E500YOZIlRljiIiNS2saAEWTlHkVfYeNkiPcKQb+sMC8JQXWPFtsMXsO3wBbyZcwTpKUmYMdzzZYsy0jrjzZwjalS/6fL6d2nzuYqiIMaoB/yz7zUFCN/35cc2Foe59x5zpo0cyBKjLHGQuoJuD4kffvgB119/vehqkJe0vocEERERkZaVVVnw7Oq9WL2rqM3XGJfWGXPG9kFitKHVY+/N2n7JpIca0nsk4cNpfCqbiIiIiOQi8l6uLiCleGHgwIHo06cPXnzxRRw/flx0dYg8UlNTg3Xr1qGmpkZ0VUIGc6aNHMgSoyxxEBGpYf8ZE+7I3NLiZIQBNqSHn4ABtmaPWZVfhDsyt6Cg2NRqmdOH92xTXb014+ZeASmHggvf9+XHNhaHufcec6aNHMgSoyxxkLqCbkICAAoKCvDMM8+gV69euPnmm/H222+joqJCdLWImuVwOFBeXg6HwyG6KiGDOdNGDmSJUZY4iIj8bf8ZEya9lYsSU12Lx+ngRIxigQ4tP5xdYqrDxIW5rU5KjExNRkb/zl7X1xvj0jp7vIwUyYXv+/JjG4vD3HuPOdNGDmSJUZY4SF1Bt2RTfHw8zGaz+/v6Td8MBgNGjx6NyZMnY/To0QgPDxdVRWoCl2wiIiIi0payKgvuyNzS6mREWyTHGbFu1rAWl28SXT4RERERUajikk0NnD17FitWrEBGRgbCw8PhdDrhdDpRV1eHTz75BHfffTc6deqExx57DN9++63o6hIBAGw2GwoLC2GzNb8MATXGnGkjB7LEKEscRET+9OzqvR5PBoTBgY46E8Lg2aflSkx1mLNmb4vHJEYbsGRqOuIj/ftBpfjIcCyZms7JCA3j+7782MbiMPfeY860kQNZYpQlDlJX0E1IGI1GTJgwAZ9++imKi4vx5ptv4oYbboCiKO7JidLSUixcuBA33XQTrrjiCjz77LM4dOiQ6KqThlVWVmLJkiWorKwUXZWQwZxpIweyxChLHERE/rKxoMSrDawjFSvuNB5EpGL1+JxV+UXYWFDS4jGpHeOwYtpgJMcZPb5uS5LjjFgxbTBSO8b55XoUmvi+Lz+2sTjMvfeYM23kQJYYZYmD1BV0SzY15/jx41i6dCnef/997N+/3/3z+iWdAGDAgAF46KGHMHHiRLRr105ENTWLSzYRERERace9WduRV1iqejnpPZLw4bQhrR5XVmXBnDV7sSrf80mSi41L64w5Y/vwyQgiIiIikh6XbPJA9+7d8be//Q179+7FDz/8gD/84Q/o1KmT+6kJp9OJHTt24IknnkCXLl0wduxY0VUmIiIiIpJOQbEpIJMRAJB3rBQHis2tHpcYbUDmpGuxaMoApPdI8qqM9B5JWDxlIDInXcvJCCIiIiIilYXMhERD1157Lf75z3/i1KlT+PLLL/HQQw8hNjbWPTFhtVqxdu1a0dUkDamoqMDcuXNRUVEhuiohgznTRg5kiVGWOIiIfHGytBonS6uxNPe41+dGK3W4P2InohXvN6D2pryRqcn4cNoQrH9yGGaO6IUbr2h3yR4T8ZHhuPGKdpg5ohfWPzkMH04bghGpHbyuF8mL7/vyYxuLw9x7jznTRg5kiVGWOEhdIbNkU2vKy8vxu9/9Dv/9738BuJZystvtgmulHVpfsslqteLIkSPo1asXwsP9u7GirJgzbeRAlhhliYOIyBcpT3/e5nPDYEcXnQmnHXGwI8zr8wvnjm5z2U6nE1UWOyw2Bwx6HaINYY2WfSW6GN/35cc2Foe59x5zpo0cyBKjLHFogch7uSE/IbFp0yYsXboUH3/8MUwmEwDXfzo4IRFYWp+QICIiIpKdLxMSvjr24l2cRCAiIiIi8hPuIeGlXbt24amnnkK3bt1w6623Ijs7GxUVFe4lm8LCwnDnnXeKriZpSHV1NT799FNUV1eLrkrIYM60kQNZYpQlDiIiUYyw4sbwYzDC2qbzqyz8oBEFDt/35cc2Foe59x5zpo0cyBKjLHGQuvSiK+CpkydPYtmyZVi2bBn27dvn/nnDBzwGDBiAyZMn47777kP79u1FVJOIiIiIiPzMYnMARtG1ICIiIiIiXwX1kk3l5eX46KOPsHTpUmzbts09+dCwyj169MD999+PBx98EFdeeaWoqmoel2wiIiIikpvIJZv2PDcKMcaQ+SwVEREREVFQ45JNDVgsFvz3v//Fb37zG3Tq1AnTp0/HN998A4fD4V6SKSkpCdOmTcPWrVtx5MgRvPDCC5yMIKGsVisKCgpgtbZtGQItYs60kQNZYpQlDiIiUcJgx+W6MoShbUsvRRu83wibqK34vi8/trE4zL33mDNt5ECWGGWJg9QVdBMSycnJuPfee7Fq1SrU1dW5JyGMRiN+85vf4OOPP8aZM2ewYMEC3HDDDaKrSwSAa+S1BXOmjRzIEqMscRAR+WLrUyOw9akRuL57otfnRig23GgoRIRi8/rcAd0TuaE1BRTf9+XHNhaHufcec6aNHMgSoyxxkLqCbskmnU4HRVHgdDqhKApuuukmTJ48GRMmTEB8fLzo6lEzuGQTERERkTbMW1eAN3OOBKy8mSN6Yfao1ICVR0REREQkO5H3coNyIdbU1FRMnjwZDzzwAC6//HLR1SEiIiIiop9lpHUO6IRERv8uASuLiIiIiIjUFXRLNv3www/Yu3cv/vrXv3IygkJGeXk5nnvuOZSXl4uuSshgzrSRA1lilCUOIiJ/SO0Yh/SUJK/OiVHq8EjkDsQodV6dl94jCVd1jPXqHCJf8X1ffmxjcZh77zFn2siBLDHKEgepK+iWbKLQpPUlm2w2G06dOoWuXbtCrw/KB4+CDnOmjRzIEqMscRAR+cvGghJMzd7h8fFhcKC9rhLnHDGwe/GZqMVTBmJEaoe2VJGozfi+Lz+2sTjMvfeYM23kQJYYZYlDC0Tey+WEBPmF1ickiIiIiLTmiQ92YvWuItWuPy6tMzInXava9YmIiIiItErkvdygW7KpKYcOHcJbb72F6dOn45577sGoUaNwzz33YPr06Xjrrbdw6NAh0VUkjauqqsLy5ctRVVUluiohgznTRg5kiVGWOIhIm5xOJ8y1VpRWWWCutcJfn0d6LqMPkuOMHh0bAStGGg4jAlaPjk+OM2LOWH64hcTg+7782MbiMPfeY860kQNZYpQlDlJXUD878/333+Ovf/0rNm3a1OqxI0eOxIsvvogBAwYEoGZEjel0OiQkJECnC4k5vqDAnGkjB7LEKEscRKQdBcUmrM4vwq5T5dhz2oSKml8mAuIjw9G3Sxz6d03AuLQubd6jITHagCVT0zFxYW6j6zfFAQWVTgMcUFq9bnxkOJZMTUditKFN9SLyFd/35cc2Foe59x5zpo0cyBKjLHGQuoJ2yaZ//etf+POf/wybzebxp7jCw8Pxyiuv4PHHH1e5dnQxLtlEREREJN7GghJk5RxFXmGpx+ekpyRhxvBebd6roaDYhIcX5aHE5N2G1U1JjjNiydR0pHaM8/laRERERETUNC7ZdJF3330Xs2bNajQZ0a9fP0yfPh1z587Fv/71L8ydOxfTp0/HNddc4z7ParXiySefxHvvvSeq6qRRFosF+fn5sFgsoqsSMpgzbeRAlhhliYOI5FVWZcETH+zE1OwdXk1GAEBeYSkeyf4es5bvRFmV9+Ncasc4rJs1DOPSOjd7jB52XBF2HnrYmz1mXFpnrJs1jJMRJBzf9+XHNhaHufcec6aNHMgSoyxxkLqCbkKitLQUTz75JADXercDBw7Ed999h127duHNN9/EU089hZkzZ+Kpp57Cm2++ifz8fOTl5WHQoEHuc2bNmoWysjKBUZDW1NbWIicnB7W1taKrEjKYM23kQJYYZYmDiOS0/4wJd2Ru8XmD6VX5RbgjcwsKik1en5sYbUDmpGuxaMoApPdIuuT3BtiRpi+CoYkJifQeSVg8ZSAyJ13LZZooKPB9X35sY3GYe+8xZ9rIgSwxyhIHqSvolmyaN28enn76aSiKgttvvx2rVq2CwdD6f0ysVisyMjKwfv16KIqCuXPnYvbs2QGoMQFcsomIiIhIhP1nTJj0Vut7OHgjPjIcK6YN9ulJhQPFZqzedRq7TlZg9+mKS/aw6NclHv27xSOjf9v3sCAiIiIiorYReS836Da1/uKLLwAABoMBS5Ys8WgyAnDtH5GdnY2UlBRYLBZ8/vnnnJCggHE6nairq4PRaISitL5ZIzFngDZyIEuMssRBRHIpq7JgyuI8v05GAEBFjRUPL8rDulnD2vzEwlUdYzG7YyoA1xhaWWdDZVUNYqIjEWPUcyyloMb3ffmxjcVh7r3HnGkjB7LEKEscpK6gW7Lp4MGDUBQFI0aMQIcO3m2sl5ycjBEjRsDpdOLgwYMq1ZDoUhUVFXjppZdQUVEhuiohgznTRg5kiVGWOIhILs+u3uuXjaSbUmKqw5w1e/1yLUVRYK+twlv/fg322ir+55SCHt/35cc2Foe59x5zpo0cyBKjLHGQuoJuyaaIiAhYrVY8+uijWLhwodfnT5s2Df/5z39gMBi4XlkAaX3JJrvdjnPnzqF9+/YICwsTXZ2QwJxpIweyxChLHEQkj40FJZiavUP1chZNGYCRqck+X4fjKIUS9lf5sY3FYe69x5xpIweyxChLHFog8l5u0D0hERvrWkO2tLS0TefXb2Zdfx2iQAgLC0PHjh052HqBOdNGDmSJUZY4iEgeWTlHA1POZv+Uw3GUQgn7q/zYxuIw995jzrSRA1lilCUOUlfQTUh069YNTqcTOTk5sNlsXp1rtVqxadMmKIqCbt26qVRDoktVVlYiOzsblZWVoqsSMpgzbeRAlhhliYOI5FBQbEJeYds+vOOtvGOlOFBs9vk6HEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdQXdhMStt94KwPWExJw5c7w694UXXsCFCxcAALfccou/q0bULL1ej5SUFOj1QbdPfNBizrSRA1lilCUOIgptJ0urcbK0Gktzjwe03KW5x3GytNqna3AcpVDC/io/trE4zL33mDNt5ECWGGWJg9QVdHtI7Nu3D/3794fD4QAAzJ49G8899xyMRmOz51gsFjz33HOYO3cunE4n9Ho9du3ahauvvjpQ1dY8re8hQURERKS2lKc/F1p+4dzRQssnIiIiIiL/4B4SDfTu3RszZsxA/TzJyy+/jB49euBPf/oT/vvf/2LHjh3Yv38/duzYgY8//hh//vOf0bNnT/dkhKIomDFjBicjKKDq6uqQm5uLuro60VUJGcyZNnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQTchAQCvvfYaxo4d656UKC4uxvz583Hvvfdi0KBB6Nu3LwYNGoQJEybgtddeQ1FRkfvYsWPH4rXXXhNZfdIgi8WC/Px8WCwW0VUJGcyZNnIgS4yyxEFEJArHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQbdkUz2n04mXX34Z/+///T+PNkKJiYnB3//+d/z5z3+GoigBqCE1xCWbiIiIiNTFJZuIiIiIiMgfuGRTExRFwVNPPYXTp09jwYIFmDBhAq644grEx8cjLCwM8fHxuOKKKzBhwgQsWLAAp0+fxuzZs4VPRhQWFuI///kPJk+ejP79+yMxMRHh4eFISkrCNddcg2nTpmHz5s1+LzcnJweKonj1p34DcfKdw+FAeXm5e+8Tah1zpo0cyBKjLHEQkRhOpxPmWitKqyww11oRpJ8HUhXHUQol7K/yYxuLw9x7jznTRg5kiVGWOEhdQTshUS82NhbTpk3DihUrcPDgQZSVlcFqtaKsrAwHDx7EihUrMG3aNMTGxgqt586dOzFo0CD06NEDv//977Fs2TL89NNPKC8vh81mQ1lZGXbv3o233noLw4cPx4gRI3DixAmhdSb/MZlMyMzMhMlkEl2VkMGcaSMHssQoSxxEFDgFxSbMW1eAB97ORdrzX6LfnA247gXX32nPf4kH3s7FvHUFOFBsFl3VgOA4SqGE/VV+bGNxmHvvMWfayIEsMcoSB6kraJdsCjXLly/Hfffd1+hnV155Jfr27Yt27dqhvLwc3377LU6dOuX+fefOnbF161b07NnT5/JzcnIwYsQI93V//etft3pOamoq/ud//sfnsgEu2eRwOGAymRAXFwedLujn+YICc6aNHMgSoyxxEJH6NhaUICvnKPIKSz0+Jz0lCTOG98KI1A4tHneytBoA8OSKfPxwvMynenpjQPdEvDYxDd2Sotp8DY6jFErYX+XHNhaHufcec6aNHMgSoyxxaIHIe7n6gJSiIVdccQUeffRRTJ48GV26dGn0O4fDgezsbDz++OOorq5GUVERHnjgAXz77bd+XWrqV7/6Ff7973/77XrUOp1Oh4SEBNHVCCnMmTZyIEuMssRBROopq7Lg2dV7sXpXkdfn5hWWIi+7FOPSOmPO2D5IjDY0eVz9hMCgHkkBnZAY1DPJp8kIgOMohRb2V/mxjcVh7r3HnGkjB7LEKEscpC7hU1UrV67Eu+++i3fffRc//fRTm66xa9cu9zU++eQTP9fQM506dcLixYtRUFCAv/zlL5dMRgCuF+XUqVOxdOlS989yc3OxYcOGQFaVVGA2m5GVlQWzWRvLLvgDc6aNHMgSoyxxEJE69p8x4Y7MLW2ajGhoVX4R7sjcgoLilh9xz0jr7FM53srof+m/a73FcZRCCfur/NjG4jD33mPOtJEDWWKUJQ5Sl9AnJDZs2IB7770XiqKgW7du+OGHH9p0nS5duiAjI8O9HNKWLVtwww03+LOqrbr55ptx8803e3Tsr3/9a6SnpyMvLw8A8Pnnn2PUqFFqVo9UZjAYkJaWBoOh6U800qWYM23kQJYYZYmDiPxv/xkTJr2Vi4oaq1+uV2Kqw8SFuVgxbTBSO8Y1eUxqxzikpyR5tSxUW6X3SMJVHX3fq43jKIUS9lf5sY3FYe69x5xpIweyxChLHKQuoU9I/O1vf3N/vWzZMlx22WVtuk67du2wbNky1G+H0fC6warhhElhYaG4ipBfGI1GDB48GEajUXRVQgZzpo0cyBKjLHEQkX+VVVkwZXGe3yYj6lXUWPHwojyUVVmaPWb6cN/3IPPEjJt7+eU6HEcplLC/yo9tLA5z7z3mTBs5kCVGWeIgdQmbkNizZw9++OEHKIqCMWPG+PxEw4033ogxY8bA6XRi69atOHz4sJ9qqo6Ge0bY7XaBNSF/qK2tRU5ODmpra0VXJWQwZ9rIgSwxyhIHEfnXs6v3osRUp8q1S0x1mLNmb7O/H5majIz+6i7dNC6tc6sbbXuK4yiFEvZX+bGNxWHuvcecaSMHssQoSxykLmETEh9//LH76z/96U9+ueaf//xn99crV670yzXVsnv3bvfX3bp18+u1a2pqsGbNGvy///f/8Mc//hF///vf8e9//xvff/89bDabX8siF5vNhsLCQubXC8yZNnIgS4yyxEFE/rOxoMTnPSNasyq/CBsLSpr9/XMZfZAcp86nz5LjjJgzto/frsdxlEIJ+6v82MbiMPfeY860kQNZYpQlDlKX4qxf5yjAxowZg7Vr1yIxMRHnzp2DTuf73IjdbkeHDh1QXl6OMWPGYNWqVX6oqf+dOHECPXv2dD8Z8dFHH+Gee+7x6Zo5OTkYMWJEq8d17twZf/jDHzBr1iyEh4f7VGZDe/fuRd++fd3f79mzB336+O8/sURERETB5N6s7QHbw+HDaUOa/X1BsQkTF/pvDwsAiI8Mb3EPCyIiIiIiCm0i7+UKe0Ji3759UBQF119/vV8mIwAgLCwM119/PZxOJ/bubf4Rd9H++Mc/uicjLr/8cowdOzZgZRcVFWH27NkYNmwYSkqa/8RdW0VERCAmJgaAa4KovLzcvbeHyWSCxeJaC7mmpgZVVVUAXLOn5eXl7mtUVFTAanX9p7q6uhrV1dUAAKvVioqKCvdx5eXl7hnXqqoq1NTUAAAsFgtMJhMAwOl0ory83J3vyspK92NjdXV1MJvNAACHw4Hy8nI4HA4AgNlsRl2dawmG2tpaVFZWthiT3W5HYWGhu1wZYlK7nWpqanD48GHY7XZpYvK2nex2O4qKinDhwgVpYrq4nex2O44cOeIuN1RjslqtOHTokLtc2dqJMTEmxuRdTAXFJuwsPIdIuOqjwIkYpQ4KXHWNhAXhcJ1jgA2RcNVHBwdilDrg5+OiYIG+wXERPx8X5j4OyDtWih8PnW42pk6RTqyYNhjJcUbEKHUIgyuvEbDCAFd8etgRhfr9KFx11f18XGSD48Jhx+WxwIppg3Flhxi/tlNdXR0OHTrkziX7HmMK5pjsdjsOHTrkLleGmGRsJ19iqqqqQnFxMaqrq6WJKVTayWQyobCwEHa7XZqY1G6niooKFBcXw2KxSBMT/x1xaTuVlpbi5MmTsNvtIR3ThQsXUFxcDLvdLmU7yRiTCMImJEpLXZ8o69ixo1+vW3+9Cxcu+PW6/rJkyRL897//dX//4osv+m2jl/bt2+Oxxx7DJ598gqNHj6K6uhq1tbU4evQolixZgoEDB7qPzc3NxdixY90vCH8ZPHiw+2mPc+fOITMz0/0iWbRoEfbt2wcA2Lx5M9asWQMAOHXqFDIzM93XWLBgAY4cOQIA2LBhAzZs2AAAOHLkCBYsWOA+LjMzE6dOnQIArFmzBps3bwbgmuxatGgRANcLODMzE+fOnQPgWsorNzcXALBz504sW7YMgOtFmpmZ6R4Uli1bhp07dwJw5ap+CbDmYjKbzViyZIn7qRwZYlK7nerrWj+QyhCTt+1kNpvxn//8B//+97+lienidjKbzVi6dCm+++67kI7pzJkzeP/993HmzBkp24kxMSbG5FlMy5Z/iPWbtmJp7nH8Kuw8bjMeAgBEKxZMiNiNaMX1D/7bjIfwq7DzAIDe+hLcbHDVJ0GpxYSI3TD8PAlxl7EAKWFlAIC08CIMNRwHALTXVWJCxC/Le65evgTf5e9rNqbUjnFYN2sYJkTsRnud6z8kQw3HkRbuWlIqJawMdxkLAAAG2DEhYjcSFNd/dm42HEFvvetDKr++3IKJiSeQ2jHO7+106NAhvP/+++7/WLHvMaZgjslsNuP999/HoUOHpIlJxnbyJaatW7di4cKF+O6776SJKVTaadWqVViyZAnMZrM0MandTh999BEWLlyI48ePSxMT/x1xaTstXLgQixYtgtlsDumY/v3vf2PhwoUwm81StpOMMYkgbMkmo9EIm82GRx99FAsXLvTbdX//+9/j7bffRnh4uLsBgsWOHTtw0003uWe77rvvPrz//vt+uXZlZSUMBgMMBkOzxzidTjz77LN44YUX3D974YUX8Mwzz/hcfv1jPhEREdDr9cjNzUVqairMZjPi4+OhKApMJhMiIiJgMBhQU1MDh8OB6Oho2Gw2VFZWIiEhAYBrtjEqKgrh4eHumcaoqChYrVZUV1cjPj4egGu2MSYmBnq9HlVVVdDpdIiMjITFYkFtbS3i4uLgdDpRUVGB2NhYhIWFobKyEnq9HhEREairq4PFYkFsbCwcDgdMJhPi4uKg0+lgNpthMBhgNBpRW1sLm82GmJgY2O32JmMKDw9HeXk5wsPDERMTI0VMardTXV0dKioq0L59e/f1Qj0mb9spJiYGNTU1qKurQ3x8vBQxXdxOiqLg/PnziI2NRURERMjGZLfbcf78ebRr1w5hYWHStZOMfY8xMSY1Yrr66U9hhwIL9AiHHXrYUQMDFDgRrVhQ5TTACQWRsMCGMFgRBgNsCIMTNQiHDg5EKVZUOg0AFETBAgvCYPv5OB2cqEU4wuBApGJFpdP1oZVopQ61Tj2OzM1oNaYdp6vw1jcn8NOxEjh+rqsedhhgRzUMcD0hYUG1MxwO6BAJK/p3T8K0EakY2iNetXayWq0oLS1Fhw4doCgK+x5jCuqYnE4nzp49i6SkJISHh0sRk4zt5EtMYWFhUBQFgOtTrTLEFCrtVFlZCavVioSEBFitViliUrudrFYrwsPD3fmTISb+O+LSdiovL0dYWJj7PkGoxmQ2mxEZGQmj0QiTySRdO8nU906fPi1sySZhExKdOnXC2bNnMW7cuEYbXPvqN7/5DT799FMkJye7P8kaDI4dO4ahQ4eiuLgYAHDNNddg69atiIsL/Nq8DzzwgHsiJDExEWfPnoVer/fpmtxDgoiIiGSX8vTnQssvnDva42MPFJuxetdp7DpZgd2nKxrtMREfGY5+XeLRv1s8Mvp3wVUdY9WoLhERERERBSlN7iHRvn17OJ1OFBQU+PW69der/9R1MDhz5gxuu+0292REz549sW7dOiGTEQDw/PPPu78uKytzPw5EbWcymTB//nz341PUOuZMGzmQJUZZ4iAi7biqYyxmj0rF0kcHIf8ft2HPc6Pw499df+f/4zYsfXQQZo9KDdhkBMdRCiXsr/JjG4vD3HuPOdNGDmSJUZY4SF3CJiSuueYaAMCBAwdw4sQJv1zzxIkTKCgogKIo6Nevn1+u6asLFy7gtttuc68v1qlTJ3z11Vfo1KmTsDr16tULKSkp7u/3798vrC6yiIiIwPDhwxERESG6KiGDOdNGDmSJUZY4iEibFEVBjFGPpGgDYox69zIlgcRxlEIJ+6v82MbiMPfeY860kQNZYpQlDlKXsAmJ2267zf31P//5T79c89VXX23y+qKYTCaMGjUKe/fuBQC0a9cOX331FXr06CG4Zmg0IXL+/HmBNZGDwWBAWlpai3t4UGPMmTZyIEuMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXcImJO666y5ERkbC6XRi4cKF+O6773y6Xl5eHrKysgAAkZGRGDNmjD+q2WZVVVW466678MMPPwAA4uPjsW7dOvTu3VtovepVVVW5v46OjhZYEznU1NRg3bp17o2HqHXMmTZyIEuMssRBRCQKx1EKJeyv8mMbi8Pce48500YOZIlRljhIXUL3kJg5cyYAwGKxYPTo0cjLy2vTtb7//nuMGTMGFosFiqJgxowZaNeunT+r65Xa2lpkZGRg27ZtAFy7rX/++ee4/vrrhdWpoerqahw4cMD9fefOnQXWRg4OhwPl5eVwOByiqxIymDNt5ECWGGWJg4h8s/WpEdj61Ahc3z0xoOUO6J6IrU+NCGiZ/sZxlEIJ+6v82MbiMPfeY860kQNZYpQlDlKX4nQ6naIKLysrQ1paGk6dOgWn0wm9Xo8nn3wSTzzxBLp27drq+adPn0ZmZibmz58Pu90OAOjatSt27tyJpKQktavfJKvVivHjx2Pt2rUAAKPRiM8++wy33nqrkPo05e2338bvfvc7AK41hYuLi9GhQwefrilyZ3YiIiKiQJq3rgBv5hwJWHkzR/TC7FGpASuPiIiIiIjkJvJerj4gpTQjMTERa9aswY033oiqqirYbDb885//xGuvvYYbb7wRgwYNQp8+fZCQkICYmBhUVlaivLwc+/btw3fffYdvvvkGdrsd9XMqMTExWLNmjbDJCLvdjvvvv989GaHX6/Hhhx+qPhlRXV2NiIgI6HStP/By6NAhPP300+7vb7/9dp8nIwiw2Ww4deoUunbtCr1e6MsqZDBn2siBLDHKEgcR+UdGWueATkhk9O8SsLLUwnGUQgn7q/zYxuIw995jzrSRA1lilCUOUpewJZvqXXPNNfj666/RrVs398/sdju2bNmCl19+GVOmTMH48eNx6623Yvz48ZgyZQrmzZuHzZs3w2azuc/p1q0bvvrqK1xzzTUiwoDT6cRvf/tbrFy5EgCg0+nw3nvvISMjw6frKori/jNnzpwmj8nLy0OfPn2wYMECnD17tslj7HY7li5diiFDhuDChQsAXBvNvPTSSz7Vj1wqKyuxZMkSVFZWiq5KyGDOtJEDWWKUJQ4i8o/UjnFITwnMB2DSeyThqo6xASlLTRxHKZSwv8qPbSwOc+895kwbOZAlRlniIHUJXbKpobKyMsyePRtLly6FxWIB4LoZDwANq3jxzwwGAyZPnox58+YJezICAN588033nhgA8Ktf/Qq33367x+f/+9//bvLn9fECwLPPPtvkpEROTg5GjHCtK6zT6XDFFVegT58+SEpKgk6nQ3FxMbZv347z58+7zwkLC8OyZcswceJEj+vYEi7ZRERERMHM6XSiss4Gq92J8DAFMUZ9o39neWtjQQmmZu/wYw2btnjKQIxI5dOsRERERETkP5pdsqmhxMREvP3223jhhRfwzv/P3r/HR1Xd++P/ayeTyZUEUjAxiATQQyxYosWAHEGg9Yi2gr2oeOkRUYvWU+Wcfqo+fudUQc/nVOnpp8RvS4OtXOoNLW25KAVtIYBKjBeCcokVMNwTkSQzk0nmltm/P1KmIrfsZO9Zs9/r9Xw8eMhlZvZ6vdbODs5i1n7mGaxfvx41NTUIhUInPM40TWRlZWHMmDGYPHky7rzzzpS4KfMXP5nw8ccf4+OPP+7280+3IGFVPB7H3/72N/ztb3877WOGDx+ORYsWYdy4cbYck4iIiCgV1Tf6saruMLYdbMX2Q374OqKJPyvIzsDIgfkYdV5fTCsfaPlTCJPLijB1VAlWbTts97ATppWXcDGCiIiIiIhEUb5l0xede+65+K//+i+sX78efr8fBw4cwLZt2/DGG29g27ZtOHDgAPx+PzZs2ICf/OQnKbEYodr48ePx7rvv4v/7//4/3Hzzzbj00ksxePBg5OXlISMjA/3798cll1yCe+65B2vWrMGuXbu4GGEzn8+HJ554Aj6fT/VQXIOd6dGBlIxSchDpYn19E26s2oIp8zdjQfUevLn72AmLEQDg64jizd3HsKB6D66evwk3Vm3BhvpTb315OnOnjkBRfqadQ08oys/EnOvkfNqU11FyE56v8nGO1WH31rEzPTqQklFKDnJWymzZRO6m+5ZN0WgUe/bswbBhw5CRkaF6OK7AzvToQEpGKTmIpGsJRvDoqh29+tTCtPISzLluBPrlerv1+PpGP25aWHPSgkdvFGRn4KVZY1FWnG/ba6rG6yi5Cc9X+TjH6rB769iZHh1IySglhw5UvpfLBQmyhe4LEkRERKTWriN+zFhciyZ/uNevVZSfiaUzK7q9IFDf6Mfti9Qcm4iIiIiIyCqV7+Wm3JZNRG7U3t6OFStWoL29XfVQXIOd6dGBlIxSchBJteuIH9OfrrFlQQAAmvxh3LSwBvWN/m49vqw4H2sfmIBp5b3bSnRaeQnWPjBB5GIEr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkgQERERkWu1BCOYsbjW1i2TgK57TNy+qBYtwUi3Ht8v14vK6Zdg0YzRqBhSaOlYFUMKsXjGZaicfkm3t4oiIiIiIiJyI27ZRLbglk1ERESkwv0vbu3VPSPOZlp5CSqnX2L5eR81BrBq2yFsO+DDh4d8JyyYFGRn4OKBBRg1qABTRw3E8OI+dg6ZiIiIiIjojFS+l+tJylGIhONNe6xjZ3p0ICWjlBxE0qyvb3J0MQIAVtYdxrTyEkwuK7L0vOHFffDj4jIAgGmaCEY6EYnF4fWkIdebDsMwnBhuyuJ1lNyE56t8nGN12L117EyPDqRklJKDnMUtm4hswD3yrGNnenQgJaOUHETSVFXvTc5xNvbuOIZhIC/Tg8JcL/IyPdotRgC8jpK78HyVj3OsDru3jp3p0YGUjFJykLO4ZRPZgls2ERERUTLVN/oxZf7mpB1v3ewJ3FqJiIiIiIhEUPleLj8hQURERESucaC5HQea2/Fczb6kHjfZxyMiIiIiIpKICxJENmhtbcXcuXPR2tqqeiiuwc706EBKRik5iCQYP28Dxs/bgOdq9if1uM9yQaJXeB0lN+H5Kh/nWB12bx0706MDKRml5CBnccsmsoXuWzbFYjEcPHgQ5513Hjwe3iu+O9iZHh1IySglB5EEpQ+/quzYn/z0Wi3v/2AHXkfJTXi+ysc5VofdW8fO9OhASkYpOXSg8r1cnhlENvB4PCgtLVU9DFdhZ3p0ICWjlBxE1DvBSCfyMvnX557gdZTchOerfJxjddi9dexMjw6kZJSSg5zFLZuIbBAMBrFs2TIEg0HVQ3ENdqZHB1IySslBRL0TicVVD8G1eB0lN+H5Kh/nWB12bx0706MDKRml5CBncUGCyAZpaWno27cv0tL4JdVd7EyPDqRklJKDiHrH6+E1oKd4HSU34fkqH+dYHXZvHTvTowMpGaXkIGcpuYfEpk2bknKcCRMmJOU4xHtIEBERUXLwHhJERERERES9o909JCZOnOj4/8wZhoFYLOboMYiOi0Qi2LlzJ7785S/D6/WqHo4rsDM9OpCSUUoOIgk2PzgJADD7pTq8t68laccdPbgfFyN6gddRchOer/JxjtVh99axMz06kJJRSg5ylrLPz5im6fgPomQJhUKorq5GKBRSPRTXYGd6dCAlo5QcRBIMKszBoMIcjBlSmNTjjhma3ONJw+souQnPV/k4x+qwe+vYmR4dSMkoJQc5S8mWTd39hMSWLVsQjUYTiwuFhYU4//zzkZubi2AwiAMHDuDYsWMAuj4R4fV6MXbs2MTzN2zY4EwAOgm3bCIiIqJkqm/0Y8r8zUk73rrZEzC8uE/SjkdEREREROQU7bZsqq6uPuOft7W14Y477kAkEkFOTg5mz56N22+/HRdeeOFJj929ezeWLl2K+fPno729Hf3798eSJUuQm5vr0OiJTmaaJsLhMDIzM7mdQzexMz06kJJRSg4iScqK81FRWojahmbHj1UxpJCLEb3E6yi5Cc9X+TjH6rB769iZHh1IySglBzkrJW95PmPGDPzxj39EaWkptm7div/+7/8+5WIEAFxwwQV4/PHHsXXrVpx//vn44x//iO9973tJHjHpzufz4cknn4TP51M9FNdgZ3p0ICWjlBxE0twzcWhSjnPvlcOSchzJeB0lN+H5Kh/nWB12bx0706MDKRml5CBnKdmy6UxWrlyJb33rWzAMA2+//TZGjx7d7ee+++67GDNmDABg+fLl+Na3vuXUMOkLdN+yqbOzE0ePHsWAAQOQnp6uejiuwM706EBKRik5iCS6/8WtWLXtsGOvP628BJXTL3Hs9XXB6yi5Cc9X+TjH6rB769iZHh1IySglhw5Uvpebcp+QWLx4MQCgoqLC0mIEAIwePRoVFRUAgCVLltg9NKLTSk9PR3FxMS+2FrAzPTqQklFKDiKJ5k4dgaL8TEdeuyg/E3Ou0+cfWDiJ11FyE56v8nGO1WH31rEzPTqQklFKDnJWyi1IbNu2DYZh9HhFZsSIETBNE9u2bbN5ZESn19bWhiVLlqCtrU31UFyDnenRgZSMUnIQSdQv14ulMytQkJ1h6+sWZGdg6cwK9Mv12vq6uuJ1lNyE56t8nGN12L117EyPDqRklJKDnJVyCxKNjY0AgHA43KPnH39eU1OTbWMiOhuPx4PS0lJ4PEruE+9K7EyPDqRklJKDSCXTNBEIRdEcjCAQisLOXUPLivPx0qyxtn1Soig/Ey/NGouy4nxbXo94HSV34fkqH+dYHXZvHTvTowMpGaXkIGel3D0kzj33XDQ1NWHo0KHYvXu35edfcMEF2Lt3L84555zE4gY5T/d7SBAREdHJ6hv9WFV3GNsOtmL7IT98HdHEnxVkZ2DkwHyMOq8vppUPxPDiPr0+Xkswgjmrd2BlXc/vKTGtvARzrhvBT0YQEREREZFYvIfE51x88cUAgE8++QRLly619Nzf/e532Lt3LwzDwFe+8hUnhkd0SuFwGDU1NT3+ZI+O2JkeHUjJKCUHUbKsr2/CjVVbMGX+Ziyo3oM3dx87YTECAHwdUby5+xgWVO/B1fM34caqLdhQ/2mvjtsv14vK6Zdg0YzRqBhSaOm5FUMKsXjGZaicfgkXIxzA6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYkbr311sTP77nnHjz33HPdet4LL7yAe+6555SvQ+S0SCSCuro6RCIR1UNxDXamRwdSMkrJQeS0lmAE97+4FTOXvIvahmZLz61taMYdS97BA8u2oiXYu6+1yWVFeHnW5Vg3ewLumzQMV1zQ/6R7TBRkZ+CKC/rjvknDsG72BLw863JMKjunV8el0+N1lNyE56t8nGN12L117EyPDqRklJKDnJVyWzaZponLL78ctbW1AADDMFBRUYHvfe97uPzyy3H++ecjJycH7e3t2L9/P2pqavDcc8+hpqYGpmnCMAyMHj0aNTU1MAxDcRp9cMsmIiIive064seMxbVo8vf+X0MV5Wdi6cwKW+/hYJomgpFORGJxeD1pyPWm8++KRERERESkJZXv5abcHUYMw8DKlSsxadIk1NfXAwBqa2sTCxRn80//9E9YuXIl/weTkioej8Pv9yM/Px9paSn3waOUxM706EBKRik5iJyy64gf05+uOWlbpp5q8odx08IaW28sbRgG8jI9gD33vSaLeB0lN+H5Kh/nWB12bx0706MDKRml5CBnpeSZUVRUhC1btuCOO+4A0PUv2rrzY8aMGdiyZQuKi4sVJyDd+P1+VFZWwu/3qx6Ka7AzPTqQklFKDiIntAQjmLG41rbFiON8HVHcvqi219s3UWrgdZTchOerfJxjddi9dexMjw6kZJSSg5yVcls2fdHHH3+MZ555Bhs2bMC2bdtO2IPM6/Vi1KhRmDRpEu68805ceOGFCkeqN923bOIKsHXsTI8OpGSUkoPICfe/uBWrth127PWnlZegcvoljr0+JQevo+QmPF/l4xyrw+6tY2d6dCAlo5QcOlD5Xm7KL0h8kc/nQ1tbG/Ly8lBQUKB6OPR3ui9IEBER6Wh9fRNmLnnX8eMsmjEak8uKHD8OERERERGRDlS+l+u6paqCggIMHDiQixGUUgKBAKqqqhAIBFQPxTXYmR4dSMkoJQeR3aqq9ybnOBuTcxxyDq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLNctSBClIq/Xi/Lycni9XtVDcQ12pkcHUjJKyUFkp/pGP2obmpNyrNpPmvFRI/+nxs14HSU34fkqH+dYHXZvHTvTowMpGaXkIGe5ZsumQCCAgwcPoqWlBbFYDBMmTFA9JPocbtlERESkhwPN7QCAhZv24Lma/Uk77vfGDsb3JwzFoMKcpB2TiIiIiIhIIm7ZdBqBQAA/+9nPUF5ejn79+mHkyJEYP348Jk+efNJjP/30Uzz44IN48MEH8eyzzyoYLeksFAqhuroaoVBI9VBcg53p0YGUjFJyENlh/LwNGD9vQ1IXIwDg2Zp9GD9vQ1KPSfbhdZTchOerfJxjddi9dexMjw6kZJSSg5yVsgsSGzduxEUXXYSHH34YH374IeLxOEzTTPz4onPOOQd//etf8fOf/xyzZ89GJBJRMGrSVSwWQ0NDA2KxmOqhuAY706MDKRml5CAiUoXXUXITnq/ycY7VYffWsTM9OpCSUUoOclZKbtn0xhtv4KqrrkIkEoFpmjAMA2VlZWhtbcWRI0dgGAY6OztPet7TTz+Ne+65B4ZhYNWqVfjGN76hYPR64pZNREREeih9+FWlx294gn+/IyIiIiIi6g1u2fQ5oVAI06dPRzgchmmauP3223Hw4EHs2LED3/72t8/43O985ztIS+uK9Je//CUZwyUCAHR2dqKxsfGUC2V0auxMjw6kZJSSg4hIFV5HyU14vsrHOVaH3VvHzvToQEpGKTnIWSm3IPHMM8/g8OHDMAwDP/jBD7B48WKce+653Xrul770JVx44YUAgPfff9/JYRKdIBAIYOHChQgEAqqH4hrsTI8OpGSUkoOISBVeR8lNeL7KxzlWh91bx8706EBKRik5yFkpt2XTlClT8NprryE/Px8HDx5EXl5e4s9++MMf4le/+tVpt2wCuj4l8ac//QnnnnsuDh06lKxha0/3LZtM00Q4HEZmZiYMw1A9HFdgZ3p0ICWjlBxEduCWTdQTvI6Sm/B8lY9zrA67t46d6dGBlIxScuhA5Xu5nqQcxYIPP/wQhmFgwoQJJyxGdFdhYSEAoLW11eaREZ2eYRjIyspSPQxXYWd6dCAlo5QcRHbY/OAkAMDsl+rw3r6WpB139OB++MVN5Uk7HtmL11FyE56v8nGO1WH31rEzPTqQklFKDnJWym3ZdOzYMQDAwIEDe/T846tv8XjctjERnY3f78f8+fPh9/tVD8U12JkeHUjJKCUHkR0GFeZgUGEOxgwpTOpxxwwtxKDCnKQek+zD6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYkcnNzAQAdHR09en5jYyOArvtJECVLVlYWJk6cyFVgC9iZHh1IySglB5GdppaXJPd4o3r2j1UoNfA6Sm7C81U+zrE67N46dqZHB1IySslBzkq5LZvOPfdctLS0YOfOnZafa5omampqYBgGhgwZ4sDoiE7N6/WivLxc9TBchZ3p0YGUjFJyENmprDgfFaWFqG1odvxYFUMKMby4j+PHIefwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc5KuU9IjB8/HgDw/vvvo6GhwdJz//CHP+Czzz4DAEycONHmkRGdXkdHB9auXdvjT/boiJ3p0YGUjFJyENntnolDk3Kce68clpTjkHN4HSU34fkqH+dYHXZvHTvTowMpGaXkIGel3ILEDTfcAKDr0w4//OEPu/28w4cP4/777wfQdR+Jm2++2ZHxEZ1KPB5Ha2sr711iATvTowMpGaXkILLb5LIiTB3l7NZN08pLMKnsHEePQc7jdZTchOerfJxjddi9dexMjw6kZJSSg5xlmKZpqh7EF02aNAkbN26EYRj49re/jaqqKnzpS1/CD3/4Q/zqV7+CYRjo7OxMPP6VV17BD37wAxw8eBCGYeCGG27AsmXLFCbQz44dOzBy5MjEr7dv344RI0YoHBERERElQ0swgimVm9DkD9v+2kX5mVj7wAT0y/Xa/tpERERERES6Uvlebsp9QgIAnn32WRQXFwMA/vjHP2LQoEG47rrr8MYbbyQe8+///u+4+eabMXjwYEybNg2HDh0CAAwZMgRVVVVKxk36isViaGhoQCwWUz0U12BnenQgJaOUHKQ30zQRCEXRHIwgEIrCrn+T0i/Xi6UzK1CQnWHL6x1XkJ2BpTMruBghBK+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJRckDjvvPPw17/+FcOHD4dpmgiFQlizZg0++OADGIYBAHjqqafw8ssv4+DBgzBNE6ZpYsSIEXj99dfRt29ftQFIO21tbVi6dCna2tpUD8U12JkeHUjJKCUH6ae+0Y95a+tx629rUP7Y67h4zmu49PGu/5Y/9jpu/W0N5q2tx0eNgV4dp6w4Hy/NGoui/Exbxl2Un4mXZo1FWXG+La9H6vE6Sm7C81U+zrE67N46dqZHB1IySslBzkrJLZuOa29vx89//nP86le/wqeffnrax/Xt2xezZ8/Gj370I+Tm5iZxhHQct2wiIiJKHevrm1BVvRe1Dc3dfk5FaSHunTisV/draAlGMGf1DqysO9zj15hWXoI5143gJyOIiIiIiIgcovK93JRekDguFovh3XffxZYtW3D48GH4fD7k5uaiqKgIY8aMwT//8z/D6+X/tKrEBQkiIiL1WoIRPLpqB1ZtU7sgsL6+CVUb96L2EwsLIkMKce+VvVsQISIiIiIiorPjPSTOwuPxYOzYsfj3f/93/OxnP8PTTz+NX/ziF3j44YcxadIkLkaQcj6fD0888QR8Pp/qobgGO9OjAykZpeQg2XYd8WNK5aZeLUYAwMq6w5hSuQn1jf4ev8bksiK8POtyrJs9AfdNGoYrLuh/0j0mCrIzcMUF/XHfpGFYN3sCXp51ORcjBON1lNyE56t8nGN12L117EyPDqRklJKDnOWKT0hQ6tP9ExLRaBR79uzBsGHDkJFh7009pWJnenQgJaOUHCTXriN+TH+6Br6OqG2vWZCdYet9HEzTRDDSiUgsDq8nDbne9MS9wUg+XkfJTXi+ysc5VofdW8fO9OhASkYpOXTALZs+Z//+/QAAwzAwaNAgy89vbW2F39/1L/rOP/98W8dGp6f7ggQREZEqLcEIplRuQpM/bPtrF+VnYu0DE3g/ByIiIiIiIkG4ZdPnlJaWYsiQISgtLcX3vvc9RCIRS8//yU9+giFDhmDo0KEOjZDoZO3t7VixYgXa29tVD8U12JkeHUjJKCUHyfToqh2OLEYAQJM/jDmrdzjy2qQXXkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbcgAXR9pN80TbzwwguYNGkSPv300x49n4iIiEiy9fVNvb5nxNmsrDuM9fVNjh6DiIiIiIiI9JByWzalpaXBMAyYppn47+DBg7Fq1SpcfPHFZ33+D3/4Q/zqV7+CYRjo7OxMwogJ4JZNREREKtxYtQW1Dc2OH6diSCFennW548chIiIiIiIi53HLplMYP348ioqKAAD79u3DP//zP2P16tWKR0V0atFoFPX19YhG7buZqHTsTI8OpGSUkoNkqW/0J2UxAgBqP2nGR42BpByLZOJ1lNyE56t8nGN12L117EyPDqRklJKDnJWyCxKjRo1CbW0tRo0aBQBoa2vDt771LfzsZz9TPDKik3GPPOvYmR4dSMkoJQfJcKC5HQea2/Fczb6kHve5mn040MyvAeoZXkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbtl03333YennnoK7e3tuO2227BixQoAgGEYuP3227Fw4UJkZGSc9Hxu2aQGt2wiIiJKjtKHX1V6/IYnvqH0+ERERERERNQ73LLpDHJycvDHP/4RDz/8cOL3li5diq9//ev47LPPFI6MiIiIiIiIiIiIiIi6K+UXJI77n//5H/zud7+D1+sFALzxxhsYM2YMdu7cqXhkREBrayvmzp2L1tZW1UNxDXamRwdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLNcsSADAbbfdhg0bNuCcc84BAHzyyScYN24c1q5dq3hkpLu8vDzcfvvtyMvLUz0U12BnenQgJaOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBznLVggQAjB07Fm+//TYuvvhiAIDf78d1112H+fPnqx0Yac3j8aC0tBQej0f1UFyDnenRgZSMUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBznLdQsSAHD++efjrbfewrRp0wAAnZ2d+NGPfoS7774b0WhU8ehIR8FgEMuWLUMwGFQ9FNdgZ3p0ICWjlBxERKrwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc5y5YIE0HWz6z/96U946KGHEr+3aNEiLFq0SOGoSFdpaWno27cv0tJc+yWVdOxMjw6kZJSSg2TY/OAkbH5wEr46uF9Sjzt6cD9sfnBSUo9JcvA6Sm7C81U+zrE67N46dqZHB1IySslBzjJM0zRVD+Lz0tLSYBgG7rvvPjz11FPdes6zzz6L73//+4hEIgAA0zRhGAY6OzudHCp9zo4dOzBy5MjEr7dv344RI0YoHBEREZFs89bWY0H1nqQd775Jw/Djq8uSdjwiIiIiIiJyhsr3clNyucrqGsn3vvc9/PWvf8WAAQMsP5fIDpFIBHV1dYlFMTo7dqZHB1IySslBskwtL0nu8UYNTOrxSBZeR8lNeL7KxzlWh91bx8706EBKRik5yFkptyDxySef4JNPPsHcuXMtPW/cuHF45513MGfOHDz66KN45JFHHBoh0clCoRCqq6sRCoVUD8U12JkeHUjJKCUHyVJWnI+K0sKkHKtiSCGGF/dJyrFIJl5HyU14vsrHOVaH3VvHzvToQEpGKTnIWSm3ZRO5E7dsIiIiSr719U2YueRdx4+zeMZlmFR2juPHISIiIiIiIudxyyYilzNNE6FQiFuGWcDO9OhASkYpOUieyWVFmDrK2a2bppWXcDGCeo3XUXITnq/ycY7VYffWsTM9OpCSUUoOchYXJIhs4PP58OSTT8Ln86keimuwMz06kJJRSg6Sae7UESjKz3TktYvyMzHnOn7ikXqP11FyE56v8nGO1WH31rEzPTqQklFKDnIWt2wiW+i+ZVNnZyeOHj2KAQMGID09XfVwXIGd6dGBlIxScpBc9Y1+3LSwBr6OqG2vWZCdgZdmjUVZcb5tr0n64nWU3ITnq3ycY3XYvXXsTI8OpGSUkkMHKt/LVbIg8fkT0jAMxGKxU/5Zb3zxdclZui9IEBERdYdpmmgLxxDtNJGRbiAv0wPDMGx57fpGP25fVIsmf7jXr1WUn4mlMyu4GEFERERERCSQdveQOL4GYprmSXuKffHPevODKFna2tqwZMkStLW1qR6Ka7AzPTqQklFKDlKjvtGPeWvrcetva1D+2Ou4eM5ruPTxrv+WP/Y6bv1tDeatrcdHjYFeHaesOB9rH5iAaeW9u6fEtPISrH1gAhcjyFa8jpKb8HyVj3OsDru3jp3p0YGUjFJykLM8qg58pgUDLiaQ23g8HpSWlsLjUfYl5TrsTI8OpGSUkoOSa319E6qq96K2ofm0j/F1RPHm7mN4c/cxLKjeg4rSQtw7cViPbyLdL9eLyumXYFp5Cao27kXtJ6c/9hdVDCnEvVf2/NhEZ8LrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOYv3kCBbcMsmIiKiLi3BCB5dtQOrth3u8WtMKy/BnOtGoF+ut1dj+agxgFXbDmHbAR8+POQ74R4TBdkZuHhgAUYNKsDUUQMxvLhPr45FRERERERE7qDyvVwuVxHZIBwOY+vWrbjkkkuQmZmpejiuwM706EBKRik5yHm7jvgxY3Hv7+Owsu4wavYe6/V9HIYX98GPi8sAdH0CNRjpRCQWh9eThlxvum33ryA6G15HyU14vsrHOVaH3VvHzvToQEpGKTnIWUruIUEkTSQSQV1dHSKRiOqhuAY706MDKRml5CBn7Trix/Sna2y5qTQANPnDuGlhDeob/ba8nmF03US7MNdr6820ibqD11FyE56v8nGO1WH31rEzPTqQklFKDnIWt2wiW3DLJiIi0llLMIIplZtsW4z4vKL8TKx9YEKvt28iIiIiIiIiAtS+l8tPSBDZIB6Po7W1FfF4XPVQXIOd6dGBlIxScpBzHl21w5HFCKDrkxJzVu9w5LWJkoXXUXITnq/ycY7VYffWsTM9OpCSUUoOchYXJIhs4Pf7UVlZCb/fnm01dMDO9OhASkYpOcgZ6+ubenUD6+5YWXcY6+ubHD0GkZN4HSU34fkqH+dYHXZvHTvTowMpGaXkIGcp2bJp8uTJjh/DMAz89a9/dfw41EX3LZvi8Tj8fj/y8/ORlsZ1vu5gZ3p0ICWjlBzkjBurtqC2odnx41QMKcTLsy53/DhETuB1lNyE56t8nGN12L117EyPDqRklJJDByrfy/Uk5ShfUF1d7eiNFE3T5I0aKanS0tLQt29f1cNwFXamRwdSMkrJQfarb/QnZTECAGo/acZHjQEML+6TlOMR2YnXUXITnq/ycY7VYffWsTM9OpCSUUoOcpaypSrTNB37QZRsgUAAVVVVCAQCqofiGuxMjw6kZJSSg+xxoLk98eO5mn1JPXayj0dkF15HyU14vsrHOVaH3VvHzvToQEpGKTnIWUo+IbFhwwYVhyVyjNfrRXl5Obxer+qhuAY706MDKRml5CB7jJ+n7u8xz9bsw+PXjzz7A4lSDK+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLCX3kCB5dL+HBBER6aP04VeVHv+Tn17LrSmJiIiIiIiox1S+l8u7ixDZIBQKobq6GqFQSPVQXIOd6dGBlIxScpAMwUin6iEQWcbrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOYsLEkQ2iMViaGhoQCwWUz0U12BnenQgJaOUHCRDJBZXPQQiy3gdJTfh+Sof51gddm8dO9OjAykZpeQgZ3HLJrIFt2wiIiJdqN6yafvcq5GXqeQ2YERERERERCQAt2wicrnOzk40Njais5PbaHQXO9OjAykZpeQgGXK96aqHQGQZr6PkJjxf5eMcq8PurWNnenQgJaOUHOSslF+Q8Pl8ePXVV/F//+//xb//+7/jrrvuwsyZM8/6484771Q9dNJIIBDAwoULEQgEVA/FNdiZHh1IySglB9lj84OTEj++OrhfUo89enA/3tCaXInXUXITnq/ycY7VYffWsTM9OpCSUUoOclbKbtnU0tKChx56CM8//3yPb4TC1bjk0X3LJtM0EQ6HkZmZyTeKuomd6dGBlIxScpD95q2tx4LqPUk73n2ThuHHV5cl7XhEduF1lNyE56t8nGN12L117EyPDqRklJJDByrfy03JDYgbGhpw5ZVX4uDBg+jOeolhGCc9jic9JZNhGMjKylI9DFdhZ3p0ICWjlBxkv6nlJUldkJg6amDSjkVkJ15HyU14vsrHOVaH3VvHzvToQEpGKTnIWSm3ZZNpmvjWt76FAwcOwDRNfOUrX8GTTz6Jr33tawC6TuzFixfjqaeewo9+9CNcdtllicWIvLw8/OxnP8PixYuxaNEilTFIM36/H/Pnz4ff71c9FNdgZ3p0ICWjlBxkv7LifFSUFiblWBVDCjG8uE9SjkVkN15HyU14vsrHOVaH3VvHzvToQEpGKTnIWSn3CYnly5dj27ZtMAwDV199NVatWgWPx4P9+/fjr3/9KwDg9ttvP+E57733Hr7//e9j69atqKysxGuvvYayMm5nQMmTlZWFiRMnchXYAnamRwdSMkrJQc64Z+JQ1C5pdvw49145zPFjEDmF11FyE56v8nGO1WH31rEzPTqQklFKDnJWyt1D4pZbbsGyZcuQlpaGPXv2YPDgwQCAH/7wh/jVr34FwzBOeW+Ijo4OXHXVVXjrrbcwcuRI1NbW8uRPIt3vIUFERHq7/8WtWLXtsGOvP628BJXTL3Hs9YmIiIiIiEgfKt/LTbktm2pra2EYBi699NLEYkR3ZGdnY8mSJUhPT8eOHTvwwgsvODhKohN1dHRg7dq16OjoUD0U12BnenQgJaOUHOScuVNHoCg/05HXLsrPxJzruMhP7sbrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOSvlFiSOHj0KALjoootO+P20tH8MNRQKnfK5F1xwAcaNGwfTNLFs2TLnBkn0BfF4HK2trYjH46qH4hrsTI8OpGSUkoOc0y/Xi6UzK1CQnWHr6xZkZ2DpzAr0y/Xa+rpEycbrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOSvltmzKzMxELBbDPffcg1/96leJ3//P//xP/PSnP4VhGDhw4ABKSkpO+fy77roLixYtwqBBg7Bv375kDVt73LKJiIgIqG/04/ZFtWjyh3v9WkX5mVg6swJlxfk2jIyIiIiIiIioC7ds+pz8/K7/6W5vbz/h97/0pS8lfr579+7TPt/n8wEAPv30UwdGd3YNDQ34zW9+g9tuuw2jRo1Cv379kJGRgcLCQnzlK1/BrFmzsHHjRkfHYJom/vSnP+G73/0uhg0bhuzsbAwYMACjR4/G3LlzsX//fkePr6NYLIaGhgbEYjHVQ3ENdqZHB1IySslBzisrzsfaByZgWvmp/+FEd00rL8HaByZwMYLE4HWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXILEsOGDQMANDY2nvD7n1+hWb9+/SmfG4/H8f777wMAcnJyHBrhqW3duhVjxozBkCFD8P3vfx/PP/88PvjgA7S2tiIWi6GlpQUffvghnn76aUycOBGTJk1yZGHg8OHD+PrXv45vf/vb+MMf/oC9e/ciFArhs88+w3vvvYc5c+ZgxIgRWLJkie3H1llbWxuWLl2KtrY21UNxDXamRwdSMkrJQcnRL9eLyumXYNGM0agYUmjpuRVDCrF4xmWonH4Jt2kiUXgdJTfh+Sof51gddm8dO9OjAykZpeQgZ6Xclk333HMPnn766ZO2XPL5fCguLkYkEsGAAQPwwQcf4Jxzzjnhuf/v//0//J//839gGAauuOIKxz+J8HnLli3DzTfffMLv/dM//RNGjhyJ/v37o7W1FW+99RYOHjyY+POSkhJs3rwZQ4cOtWUMfr8f//zP/4zt27cnfq+iogIjRoyAz+fD+vXr0dramvizpUuX4l//9V9tOTa3bCIiIjq1jxoDWLXtELYd8OHDQz74OqKJPyvIzsDFAwswalABpo4aiOHFfRSOlIiIiIiIiHSg8r1cT1KOYsHEiRPx9NNP4+DBg9i7d2/izfqCggJ85zvfwQsvvICjR49i9OjRmD17Ni6++GK0t7dj1apVWLp0aeJ1pk+frmT8F1xwAe666y7cdtttGDhw4Al/Fo/HsWTJEvzwhz9Ee3s7Dh8+jFtvvRVvvfUWDMPo9bH/7d/+LbEYUVhYiN///veYPHly4s+DwSBmzZqF559/HgBw9913Y9y4cbjgggt6fWwiIiI6teHFffDj4jIAXdsqBiOdiMTi8HrSkOtNt+XvAERERERERERukHJbNl177bXweru2KFi+fPkJf/bkk0+iX79+AIBDhw7hxz/+MaZMmYJvf/vbWLJkCY5/2OPSSy/FXXfdldRxn3vuuVi8eDHq6+vx0EMPnbQYAQBpaWmYOXMmnnvuucTv1dTU4LXXXuv18bdv355YaACAF1544YTFCADIzc3F7373O4wbNw4AEIlE8Mgjj/T62NT1CZ4nnngicQ8TOjt2pkcHUjJKyUFdCwKBUBTNwQgCoSiS/UFRwzCQl+lBYa4XeZkeLkaQNngdJTfh+Sof51gddm8dO9OjAykZpeQgZ6Xclk0A8Kc//QmffvopBg4ciG9+85sn/NnWrVvxne98Bw0NDad87oQJE/Dyyy+ftJ1TqhkzZgxqa2sBAD/84Q/x1FNP9er17rvvPixYsAAAcNVVV51xkePNN9/EFVdcAQBIT09HY2Mj+vfv36vj675lUzQaxZ49ezBs2DBkZGSoHo4rsDM9OpCSUUoOXdU3+rGq7jC2HWzF9kP+k7ZMGjkwH6PO64tp5dwyicgpvI6Sm/B8lY9zrA67t46d6dGBlIxScuhA5Xu5KbkgcTaRSAR/+MMf8Ne//hWHDx9GWloahg4diuuuuw5XXXWV6uF1y3/8x3/gF7/4BQDguuuuw6pVq3r8WqZp4vzzz0/cn+KFF1446X4WX3ThhRdi9+7dAIBnnnkGM2fO7PHxAS5IEBFR6llf34Sq6r2obWju9nMqSgtx78RhmFSW2v+wgYiIiIiIiKinVL6Xm3JbNnWH1+vFzTffjN/+9rdYs2YNXnnlFTz11FOuWYwAcMIWDZ2dnb16rY8//viEm2VPnDjxrM+ZNGlS4ufr16/v1fEJaG9vx4oVK9De3q56KK7BzvToQEpGKTl00RKM4P4Xt2LmknctLUYAQG1DM+5Y8g4eWLYVLcGIQyMk0g+vo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CxXLkhI8OGHHyZ+PmjQoF691q5duxI/Ly4uxrnnnnvW51x66aWnfD4REZGb7Trix5TKTVi17XCvXmdl3WFMqdyE+ka/TSMjIiIiIiIiIldu2eR2+/fvx9ChQxOfjPj973+P7373uz1+vXnz5uGhhx4C0HVvipqamrM+Z82aNfjGN74BAMjJyUEwGOzx8QFu2UREROrtOuLH9KdrTrhHRG8VZGfgpVljUVacb9trEhEREREREanELZs08x//8R+JxYjzzz8f1113Xa9e79ixY4mfFxUVdes5xcXFiZ+3t7cjHA73agzHZWVlIS8vD0DXVlStra04vubl9/sRiXRtf9HR0ZFYBInFYmhtbU28hs/nQzQaTYzt+Me8otEofD5f4nGtra2IxWIAgGAwiI6ODgBd9xjx+7v+RatpmmhtbU303dbWhlAoBAAIh8MIBAIAgHg8jtbWVsTjcQBAIBBIdBIKhdDW1nbGTNFoFNu2bUvkkJDJ6XkKBoN4//33EY1GxWSyOk/RaBQ7d+7E0aNHxWT64jxFo1Fs3bo1kcOtmcLhMN57773E3EibJwmZWoIR3LHobXSG2mCga6zZiCADXc/xIoZsdI0nDXHkGWHg74/LQQSezz0u6++PS0ccnaE23L6oFi3BCOeJmZipF5k6Ojrw3nvvJXJIyCRxnpjJl/j5e++9d8LfW92eSeI89SZTIBBAfX194ucSMrllnlpbW7Ft2zZEo1ExmZyep5aWFtTX1yMUConJxL9HnDxPn332GbZv345oNOrqTEePHkV9fX1i3NLmSWImFVJ+QSIej2Pnzp149dVX8eKLL+J3v/tdt3+koqVLl+IPf/hD4tc//elPkZmZ2avXPH7iAUB2dna3nvPFx33+NXpj7NixiU97HD16FJWVlYkvkkWLFmHnzp0AgI0bN2L16tUAgIMHD6KysjLxGr/+9a+xZ88eAMBrr72G1157DQCwZ88e/PrXv048rrKyMnHvjNWrV2Pjxo0AgJ07d2LRokUAur6AKysrcfToUQDA8uXLE58g2bp1K55//nkAXV+klZWViYvC888/j61btwIAampqsHz58jNmam9vx+rVq0Vlcnqetm3bhtWrVycWxCRksjpP7e3tWLlyJRYsWCAm0xfn6fjXxjvvvOPqTE1NTXjllVfQ1NQkcp4kZHp01Q60tQVwQ9aHyDW6/tJ1VebHuDD9MwDAlz1NuNLbNZ6+Rgg3ZH0I798XIa7NrEdpegsAoDzjMMZ59wEABqS14YasD9HkD2PO6h2cJ2Zipl5k2rNnD1555ZXE/7RJyCRxnpipK1N7ezteeeWVxOMkZJI4T73J9Oabb2LFihV45513xGRy0zwd//9ASZmcnKc//OEPWLFiBQ4cOCAmE/8ecfI8/eY3v8HKlSvR3t7u6kwLFixI3ENC4jxJzKRCym7ZtG/fPjz++ONYvnx5YkXICsMwEitRqeLdd9/F+PHjE6tdN998M1544YVev+6dd96ZOJm/973vdWsxZu/evRg2bFji1wcOHMB5553X4zEc/5hPVlYWPB4PampqUFZWhkAggIKCAhiGAb/fj6ysLHi9XnR0dCAejyM3NxexWAxtbW3o27cvgK7VxpycHGRkZCS+2eTk5CRWiQsKCgB0rTbm5eXB4/EgGAwiLS0N2dnZiEQiCIVCyM/Ph2ma8Pl86NOnD9LT09HW1gaPx4OsrCyEw2FEIhH06dMH8Xgcfr8f+fn5SEtLQyAQgNfrRWZmJkKhEGKxGPLy8tDZ2clMzMRMzMRMKZZp/c5DuPelXTBgIteIIGh6YcJANiKIIR1RpMOLGNJhogMZSEMcOUYUbaYXgIEcRBBBOmJ/f1waTISQgXTEkW1E0WZ2/cOBBTcMx1VfGcx5YiZmYiZmYiZmYiZmYiZmYiZmYiZXZzp06JCyLZtSckFi5cqVuPXWW9HR0YGeDs8wjMRHXlLBJ598gnHjxqGxsREA8JWvfAWbN29Gfn7v96S+7777sGDBAgDATTfdhGXLlp31Obt27cKXv/zlxK8/++wzfOlLX+rxGHgPCSIiUuXGqi2obWh2/DgVQwrx8qzLHT8OERERERERkZN4D4nPqa+vx0033YT29vbEYsSgQYNwzTXX4NZbb8Xtt9/erR//+q//qjjJPxw5cgRXXXVVYjFi6NChWLt2rS2LEQAS92wAkNiT7Gy++LjPvwZZ19rairlz5yrfg81N2JkeHUjJKCWHRPWN/qQsRgBA7SfN+KjR+qc2iYjXUXIXnq/ycY7VYffWsTM9OpCSUUoOcpZH9QC+6IknnkAkEoFhGCgrK8NvfvMbjBs3TvWweuzYsWO46qqrEvuLnXvuufjLX/6Cc88917ZjfP6TDcf3Nz+b44sjQNdHi3p7Hwvd5eXl4fbbb+fCjgXsTI8OpGSUkkOSA81dH499rmZfUo/7XM0+PH79yLM/kIhOwOsouQnPV/k4x+qwe+vYmR4dSMkoJQc5K+UWJDZs2ACg603y119/HSUlJYpH1HN+vx9XX301duzYAQDo378//vKXv2DIkCG2Hmf48OGJn+/b1703Zvbv35/4eVlZma3j0ZHH40FpaanqYbgKO9OjAykZpeSQZPy8DUqO+ywXJIh6hNdRchOer/JxjtVh99axMz06kJJRSg5yVspt2fTpp5/CMAx8/etfd/ViRDAYxLXXXov33nsPAFBQUIC1a9eecN8Gu1x00UWJnzc2Np7w6YfTef/990/5fOqZYDCIZcuWIRgMqh6Ka7AzPTqQklFKDrJHCt5+iyjl8TpKbsLzVT7OsTrs3jp2pkcHUjJKyUHOSrkFiQEDBgAAioqKFI+k50KhEKZOnYo333wTQNenPV599VV89atfdeR4F154Ic4777zEr6urq8/6nI0bNyZ+PnnyZCeGpZW0tDT07dsXaWkp9yWVstiZHh1IySglB9kjGOlUPQQi1+F1lNyE56t8nGN12L117EyPDqRklJKDnGWYKfbP/L7+9a9jw4YN+OY3v4mVK1eqHo5l0WgU119/PdasWQMAyMzMxCuvvIKvf/3rjh73vvvuw4IFCwAAV199NdauXXvax27ZsiVxX4709HQcOXIksRDUUyrvzE5ERPopffhVZcd+/ydXoTDXq+z4RERERERERL2h8r3clFuuuv3222GaJjZt2uS6j/d0dnbilltuSSxGeDwevPzyy44vRgDAPffck1h9XLduHV5//fVTPi4ej+PBBx9M/PqGG27o9WIEAZFIBHV1dYhEIqqH4hrsTI8OpGSUkoPs4fWk3F+fiFIer6PkJjxf5eMcq8PurWNnenQgJaOUHOSslPs/6unTp6OsrAx+vx8PPfSQ6uF0m2mauPPOO7F8+XIAXR9RevbZZzF16tReva5hGIkfc+bMOe3jLr74Ytx6662JX998880nbd0UDAYxY8YMvPHGGwAAr9eLxx9/vFfjoy6hUAjV1dUIhUKqh+Ia7EyPDqRklJKD7JHrTVc9BCLX4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXJbNgHA7t27MXnyZBw6dAgzZszAk08+if79+6se1hktWLAA9913X+LXF154If7lX/6l28//5S9/ecrfNwwj8fNHH330jIsSfr8f48aNw44dOxK/N2bMGHz5y1+G3+/H+vXr0dLSkvizJUuW4Pbbb+/2GM+EWzYREVEyHWhuBwDMfqkO7+1rOcuj7TN6cD8sv3dc0o5HREREREREZDeV7+V6knIUiy644AK89957mDVrFhYvXowXX3wR48ePx4gRI1BQUHDCm/Rn8sgjjzg80n/49NNPT/j1xx9/jI8//rjbzz/dgoQV+fn5eO211/C9730P69evBwC8/fbbePvtt094XF5eHp566inbFiOo6xMy4XAYmZmZ3T4/dcfO9OhASkYpOSQZVJgDABgzpDCpCxJjhhYm7VhEkvA6Sm7C81U+zrE67N46dqZHB1IySslBzkq5LZuO+/jjj+Hz+QB0fdznL3/5CyorK/HYY49h7ty53fqho5KSEvzlL3/BH/7wB3z7299GaWkpMjMz8aUvfQmXXHIJHnnkEezYsQN33HGH6qGK4vP58OSTTybOWTo7dqZHB1IySskh0dTykuQeb9TApB6PSApeR8lNeL7KxzlWh91bx8706EBKRik5yFkpuWXTkiVLcPfddyMejwPoWl2zyjAMdHZ22j00Og3dt2zq7OzE0aNHMWDAAKSnc2/x7mBnenQgJaOUHFLdWLUFtQ3Njh+nYkghXp51uePHIZKI11FyE56v8nGO1WH31rEzPTqQklFKDh1wy6bPqampwZ133plYhEhPT8e4ceNw8cUXo1+/fvB4Um7IREhPT0dxcbHqYbgKO9OjAykZpeSQ6p6JQ1G7xPkFiXuvHOb4MYik4nWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXLv7v/v//4vTNOEYRi44oor8Oyzz+L8889XPSyiM2pra8Py5cvx3e9+F3l5eaqH4wrsTI8OpGSUkkOqyWVFmDqqBKu2HXbsGNPKSzCp7BzHXp9IOl5HyU14vsrHOVaH3VvHzvToQEpGKTnIWSl3D4k33ngDANC3b1+sWrWKixHkCh6PB6WlpfwEjwXsTI8OpGSUkkOyuVNHoCg/05HXLsrPxJzr9NmGkMgJvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzUu4eEllZWYhGo/jOd76Dl19+WfVwqJt0v4cEERGpV9/ox00La+DriNr2mgXZGXhp1liUFefb9ppEREREREREKql8LzflPiFxzjld2yEUFhYqHglR94XDYdTU1CAcDqseimuwMz06kJJRSg7pyorz8dKssbZ9UqIoP5OLEUQ24XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclXILEsdXZvbv3694JETdF4lEUFdXh0gkonoorsHO9OhASkYpOXRQVpyPtQ9MwLTykl69zrTyEqx9YAIXI4hswusouQnPV/k4x+qwe+vYmR4dSMkoJQc5K+W2bHrhhRdw2223ITs7G/v27UP//v1VD4m6gVs2ERFRqllf34SqjXtR+0lzt59TMaQQ9145jDewJiIiIiIiIrG4ZdPn3HzzzZg0aRI6Ojowa9YspNh6CdEpxeNxtLa2Ih6Pqx6Ka7AzPTqQklFKDt1MLivCy7Mux7rZE3DfpGG44oL+KMjOOOExBdkZuOKC/rhv0jCsmz0BL8+6nIsRRA7gdZTchOerfJxjddi9dexMjw6kZJSSg5yVcgsShmHg5Zdfxvjx47FixQpcddVV+PDDD1UPi+iM/H4/Kisr4ff7VQ/FNdiZHh1IySglh66GF/fBj68uw3N3jUHdI1dh+9yr8f5Puv5b98hVeO6uMfjx1WUYXtxH9VCJxOJ1lNyE56t8nGN12L117EyPDqRklJKDnJVyWzbNnDkTABCNRrF8+fLEnmPDhg3DyJEjUVBQAMMwzvo6hmHgmWeecXSs9A+6b9kUj8fh9/uRn5+PtLSUW+dLSexMjw6kZJSSg4hIFV5HyU14vsrHOVaH3VvHzvToQEpGKTl0oPK93JRbkEhLSztpwcE0zW4tQnxRZ2enXcOis9B9QYKIiIiIiIiIiIjIDXgPiS8wTfOEH6f6vbP9IEqmQCCAqqoqBAIB1UNxDXamRwdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLI/qAXzR4sWLVQ+ByDKv14vy8nJ4vV7VQ3ENdqZHB1IySslBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOSslNuyidyJWzYREVF3mKaJtnAM0U4TGekG8jI9PdqWkYiIiIiIiIh6hls2fc4HH3yQ+MF7QJBbhEIhVFdXIxQKqR6Ka7AzPTqQklFKDlXqG/2Yt7Yet/62BuWPvY6L57yGSx/v+m/5Y6/j1t/WYN7aenzUyI/1EknF6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYkysvLcckll+D6669Henq66uEQdUssFkNDQwNisZjqobgGO9OjAykZpeRItvX1TbixagumzN+MBdV78ObuY/B1RE94jK8jijd3H8OC6j24ev4m3Fi1BRvqP1U0YiJyCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJTbsikzMxOxWAw33XQTXnjhBdXDoW7ilk1ERHRcSzCCR1ftwKpth3v8GtPKSzDnuhHol8u9R4mIiIiIiIjsxC2bPqe4uBgAkJeXp3gkRN3X2dmJxsZGbjNmATvTowMpGaXkSIZdR/yYUrmpV4sRALCy7jCmVG5CfaPfppERkUq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLNSbkGirKwMpmli3759qodC1G2BQAALFy5EIMD9z7uLnenRgZSMUnI4bdcRP6Y/XYMmf9iW12vyh3HTwhouShAJwOsouQnPV/k4x+qwe+vYmR4dSMkoJQc5K+W2bHrmmWdw9913Izs7G/v378eXvvQl1UOibtB9yybTNBEOh5GZmQnDMFQPxxXYmR4dSMkoJYeTWoIRTKncZNtixOcV5Wdi7QMTuH0TkYvxOkpuwvNVPs6xOuzeOnamRwdSMkrJoQNu2fQ5t956K7785S8jFArhvvvuUz0com4xDANZWVm82FrAzvToQEpGKTmc9OiqHY4sRgBdn5SYs3qHI69NRMnB6yi5Cc9X+TjH6rB769iZHh1IySglBzkr5RYksrKysHz5cgwaNAi///3vce211+Jvf/ub6mERnZHf78f8+fPh93Nbke5iZ3p0ICWjlBxOWV/f1Ot7RpzNyrrDWF/f5OgxiMg5vI6Sm/B8lY9zrA67t46d6dGBlIxScpCzPKoH8EWPPfYYAGDq1KmoqqrCunXrcNFFF+ErX/kKvvrVr2LAgAHIzs7u1ms98sgjTg6VKCErKwsTJ05EVlaW6qG4BjvTowMpGaXkcEpV9d7kHGfjXkwuK0rKsYjIXryOkpvwfJWPc6wOu7eOnenRgZSMUnKQs1LuHhJpaWknfazHNM0efdSHd3RPHt3vIUFEpKv6Rj+mzN+ctOOtmz0Bw4v7JO14RERERERERNLwHhJfYJrmCT9O9Xtn+0GUTB0dHVi7di06OjpUD8U12JkeHUjJKCWHnQ40t+NAczueq9mX1OM+V7MPB5rbk3pMIuo9XkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbdl06OPPqp6CESWxeNxtLa2Ih6Pqx6Ka7AzPTqQklFKDjuNn7dByXGfrdmHZ2v2oeGJbyg5PhH1DK+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJTbsonciVs2ERHppfThV5UenwsSRERERERERD3DLZuIXC4Wi6GhoQGxWEz1UFyDnenRgZSMUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBzmLCxJENmhra8PSpUvR1tameiiuwc706EBKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxS2byBbcsomISC/csomIiIiIiIjInVS+l5tyN7U+lUAggC1btuD999/HZ599hkAggD59+qB///649NJLcfnll6NPnz6qh0lERERERERERERERKeR0ls27d+/H3fddReKiopwzTXX4D//8z/xi1/8Ar/97W/xi1/8Av/5n/+Ja665BsXFxbj77ruxf/9+1UMmTfl8PjzxxBPw+Xyqh+Ia7EyPDqRklJLDTpsfnITND07CVwf3S+pxRw/uh80PTkrqMYmo93gdJTfh+Sof51gddm8dO9OjAykZpeQgZ6XsgsQf//hHjBo1CosXL0YoFIJpmqf90dHRgUWLFmHUqFH405/+pHropKGcnBxcf/31yMnJUT0U12BnenQgJaOUHHYaVJiDQYU5GDOkMKnHHTO0EIMKOQ9EbsPrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOSsl7yGxdu1aTJ06FZ2dnTg+vMLCQlRUVKC0tBS5ubkIBoNoaGjAO++8g2PHjsEwDJimiYyMDKxevRr/8i//ojiFXngPCSIiPdU3+jFl/uakHW/d7AkYXsxtGomIiIiIiIh6SuV7uSn3CYn29nbceeediMViME0TpaWleOmll9DY2Ig1a9ZgwYIF+NnPfoYFCxZgzZo1aGxsxMsvv4zS0lIAQDQaxZ133omOjg61QUgr7e3tWLFiBdrb21UPxTXYmR4dSMkoJYcTyorzUVGanE9JVAwp5GIEkUvxOkpuwvNVPs6xOuzeOnamRwdSMkrJQc5KuQWJxYsX48iRIzAMA6NHj8b777+PG264AR7Pqe+/nZ6eju9+97t4//33MXr0aADA4cOHsXjx4mQOm4iISFv3TByalOPce+WwpByHiIiIiIiIiJyRcls2XXPNNVi3bh08Hg927dqFYcO6/+bD7t27cdFFFyEej+Nf/uVf8Oc//9nBkdLnccsmIiK93f/iVqzadtix159WXoLK6Zc49vpEREREREREuuCWTZ+zfft2GIaBK664wtJiBABccMEFmDBhAkzTxPbt2x0aIdHJotEo6uvrEY1GVQ/FNdiZHh1IySglh5PmTh2BovxMR167KD8Tc67jIjeRm/E6Sm7C81U+zrE67N46dqZHB1IySslBzkq5BYnPPvsMQNfiQk8cX8Q4/jpEycA98qxjZ3p0ICWjlBxO6pfrxdKZFSjIzrD1dQuyM7B0ZgX65XptfV0iSi5eR8lNeL7KxzlWh91bx8706EBKRik5yFkpt2VTYWEhfD4fbrrpJrzwwguWn3/LLbdg2bJl6Nu3L5qbmx0YIZ0Kt2wiIiIAqG/04/ZFtWjyh3v9WkX5mVg6swJlxfk2jIyIiIiIiIiIAG7ZdIKSkhKYponNmzdbfq5pmnjjjTdgGAZKSkocGB0RERGdSVlxPtY+MAHTynv3fXhaeQnWPjCBixFEREREREREgqTcgsSkSZMAAIcPH8Yvf/lLS8/99a9/jYMHDwIAJk6caPfQiE6rtbUVc+fORWtrq+qhuAY706MDKRml5EiWfrleVE6/BItmjEbFkEJLz60YUojFMy5D5fRLuE0TkSC8jpKb8HyVj3OsDru3jp3p0YGUjFJykLNSbsumt99+G5dffjkMw0B6ejqeeuop3HPPPWd93m9+8xv827/9G6LRKAzDwFtvvYUxY8YkYcQEcMumWCyGgwcP4rzzzoPH41E9HFdgZ3p0ICWjlByqfNQYwKpth7DtgA8fHvLB1/GPG5wVZGfg4oEFGDWoAFNHDcTw4j4KR0pETuF1lNyE56t8nGN12L117EyPDqRklJJDByrfy025BQkAmD59Ol5++WUAgGEYKC8vx4wZMzBu3DgMHjwYubm5CAaD2L9/P9566y0sXboU77//PkzThGEYuPHGG/Hiiy8qTqEX3RckiIioe0zTRDDSiUgsDq8nDbnedBiGoXpYRERERERERNrgPSS+YNGiRbjssssSv66rq8Ps2bNRUVGBoqIi5OXloaioCJdddhkeeOCBxGIEAFx22WV45plnVA2dNBUMBrFs2TIEg0HVQ3ENdqZHB1IySsmRCgzDQF6mB4W5XuRlergYQaQJXkfJTXi+ysc5VofdW8fO9OhASkYpOchZKbkgkZOTg+rqatxzzz0wDAOmaZ71R1paGu69915s2LABOTk5qiOQZtLS0tC3b1+kpaXkl1RKYmd6dCAlo5QcRESq8DpKbsLzVT7OsTrs3jp2pkcHUjJKyUHOSsktmz5v7969+M1vfoP169ejrq4O0eg/9p3OyMhAeXk5Jk+ejLvvvhtDhw5VOFK9ccsmIiIiIiIiIiIiotTHLZvOYOjQofjpT3+Kt99+G+FwGC0tLThw4ABaWloQDofx9ttv46c//SkXI0ipSCSCuro6RCIR1UNxDXamRwdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrJRfkPiigoICDBw4EAUFBaqHQpQQCoVQXV2NUCikeiiuwc706EBKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOclfJbNpE7cMsmIiIiIiIiIiIiotTHLZuIXM40TYRCIXB9r/vYmR4dSMkoJQcRkSq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLO4IEFkA5/PhyeffBI+n0/1UFyDnenRgZSMUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBzlL2ZZNt9xyi6OvbxgGnn/+eUePQf+g+5ZNnZ2dOHr0KAYMGID09HTVw3EFdqZHB1IySslxnGmaaAvHEO00kZFuIC/TA8MwVA+LiASTdh0l2Xi+ysc5VofdW8fO9OhASkYpOXSg8r1cZQsSaWlpjr35YZomDMNAZ2enI69PJ9N9QYKIKNXVN/qxqu4wth1sxfZDfvg6ook/K8jOwMiB+Rh1Xl9MKx+I4cV9FI6UiIiIiIiIiJyk7T0kTNN05AdRsrW1tWHJkiVoa2tTPRTXYGd6dCAlo5tzrK9vwo1VWzBl/mYsqN6DN3cfO2ExAgB8HVG8ufsYFlTvwdXzN+HGqi3YUP+pohETkURuvo6Sfni+ysc5VofdW8fO9OhASkYpOchZHlUHfvTRR219vXXr1qGmpgaGYXBRgpLO4/GgtLQUHo+yLynXYWd6dCAloxtztAQjeHTVDqzadtjyc2sbmlG7pBnTyksw57oR6JfrdWCERKQTN15HSV88X+XjHKvD7q1jZ3p0ICWjlBzkLGVbNtll8+bN+K//+i+88cYbid8zTRN9+/ZFc3OzwpHphVs2ERGljl1H/JixuBZN/nCvX6soPxNLZ1agrDjfhpERERERERERkWrabtnUG++99x6uueYaTJw4MbEYYZomsrOz8fDDD2Pv3r2KR0g6CYfDqKmpQTjc+zf/dMHO9OhASkY35dh1xI/pT9fYshgBAE3+MG5aWIP6Rr8tr0dEenLTdZSI56t8nGN12L117EyPDqRklJKDnOW6BYkdO3bg29/+NioqKvDaa68l7hvh9Xpx//33Y+/evfif//kf9O3bV/VQSSORSAR1dXWIRCKqh+Ia7EyPDqRkdEuOlmAEMxbXnnSPiN7ydURx+6JatARTOz8RpS63XEeJAJ6vOuAcq8PurWNnenQgJaOUHOQs12zZtGfPHjz66KN46aWXEI/HE/eJ8Hg8uOOOO/CTn/wE5513nuJR6otbNhERqXf/i1t7dM+I7ppWXoLK6Zc49vpERERERERE5Dxu2XQGBw4cwN13342LLroIL774Ijo7O2GaJtLS0nDbbbehvr4eCxcu5GIEKRWPx9Ha2op4PK56KK7BzvToQEpGN+RYX9/k6GIEAKysO4z19U2OHoOIZHLDdZToOJ6v8nGO1WH31rEzPTqQklFKDnJWyi5INDU14f7778c//dM/YdGiRYjFYjBNE4Zh4Nvf/jY++OAD/O53v8PQoUNVD5UIfr8flZWV8Pu5x3p3sTM9OpCS0Q05qqqTc++kqo28RxMRWeeG6yjRcTxf5eMcq8PurWNnenQgJaOUHOSslNuyqaWlBU8++SR++ctfoqOjA58f3jXXXIP//u//xiWXcLuIVKP7lk3xeBx+vx/5+flIS0vZdb6Uws706EBKxlTPUd/ox5T5m5N2vHWzJ2B4cZ+kHY+I3C/Vr6NEn8fzVT7OsTrs3jp2pkcHUjJKyaEDle/lepJylG5oa2vDz3/+c/ziF79AIBA4YSFi4sSJ+O///m+MGzdO4QiJTi8tLY03UreInenRgZSMqZjjQHN74ufP1exL6rGfq9mHx68fefYHEhH9XSpeR4lOh+erfJxjddi9dexMjw6kZJSSg5ylfKkqFAph3rx5GDJkCB577DH4/f7EYsSYMWPw+uuvY/369VyMoJQWCARQVVWFQCCgeiiuwc706EBKxlTMMX7ehsSP52r2J/XYzyZ5AYSI3C8Vr6NEp8PzVT7OsTrs3jp2pkcHUjJKyUHOUvYJiWg0ioULF+J//ud/0NTUdMInIkaNGoXHH38c3/zmN1UNj8gSr9eL8vJyeL1e1UNxDXamRwdSMkrJYafj93UiIuoOXkfJTXi+ysc5VofdW8fO9OhASkYpOchZyu4hUVpaigMHDpywEDF8+HA89thjuOGGG1QMiXpB93tIEBElW+nDryo9/va5VyMvM2V2fiQiIiIiIiKibtLyHhL79+9P/MtKwzAwduxY3HbbbWhpacHTTz9tyzG+//3v2/I6RGcTCoVQU1ODsWPHIisrS/VwXIGd6dGBlIxSctgpEosDmapHQURuwesouQnPV/k4x+qwe+vYmR4dSMkoJQc5S/k/bTy+KFFTU4OamhpbX5sLEpQssVgMDQ0NGD16tOqhuAY706MDKRml5LCT16P8NlRE5CK8jpKb8HyVj3OsDru3jp3p0YGUjFJykLOUbdmUlpYGwzDg1OENw0BnZ6cjr00n45ZNRETJpXrLpk9+ei3vIUFERERERETkQlpu2TRhwgS+kUFidHZ24ujRoxgwYADS09NVD8cV2JkeHUjJmIo5Nj84KfHz2S/V4b19LUk79ujB/fg9nIgsScXrKNHp8HyVj3OsDru3jp3p0YGUjFJykLOULUhUV1erOjSR7QKBABYuXIgHHngAffv2VT0cV2BnenQgJWMq5hhUmJP4+ZghhUldkBgztDBpxyIiGVLxOkp0Ojxf5eMcq8PurWNnenQgJaOUHOQsZVs2kSy6b9lkmibC4TAyMzP5r4a7iZ3p0YGUjKmeo77RjynzNyfteOtmT8Dw4j5JOx4RuV+qX0eJPo/nq3ycY3XYvXXsTI8OpGSUkkMHKt/L5R0piWxgGAaysrJ4sbWAnenRgZSMqZ6jrDgfFaXJ+dRCxZBCLkYQkWWpfh0l+jyer/JxjtVh99axMz06kJJRSg5yFhckiGzg9/sxf/58+P1+1UNxDXamRwdSMrohxz0ThyblOPdeOSwpxyEiWdxwHSU6juerfJxjddi9dexMjw6kZJSSg5zFBQkiG2RlZWHixInIyspSPRTXYGd6dCAloxtyTC4rwtRRJY4eY1p5CSaVnePoMYhIJjdcR4mO4/kqH+dYHXZvHTvTowMpGaXkIGfxHhJkC93vIUFElApaghFMqdyEJn/Y9tcuys/E2gcmoF+u1/bXJiIiIiIiIqLk4T0kiFyuo6MDa9euRUdHh+qhuAY706MDKRndkqNfrhdLZ1agIDvD1tctyM7A0pkVXIwgoh5zy3WUCOD5qgPOsTrs3jp2pkcHUjJKyUHO4oIEkQ3i8ThaW1sRj8dVD8U12JkeHUjJ6KYcZcX5eGnWWBTlZ9ryekX5mXhp1liUFefb8npEpCc3XUeJeL7KxzlWh91bx8706EBKRik5yFncsolswS2biIhSS0swgjmrd2Bl3eEev8a08hLMuW4EPxlBREREREREJAi3bCJyuVgshoaGBsRiMdVDcQ12pkcHUjK6MUe/XC8qp1+CRTNGo2JIoaXnVgwpxOIZl6Fy+iVcjCAiW7jxOkr64vkqH+dYHXZvHTvTowMpGaXkIGdxQYLIBm1tbVi6dCna2tpUD8U12JkeHUjJ6OYck8uK8PKsy7Fu9gTcN2kYrrig/0n3mCjIzsAVF/THfZOGYd3sCXh51uWYVHaOohETkURuvo6Sfni+ysc5VofdW8fO9OhASkYpOchZ3LKJbMEtm4iIus80TbSFY4h2mshIN5CX6YFhGEk9fjDSiUgsDq8nDbne9KQen4iIiIiIiIjUUflericpRyEiItJcfaMfq+oOY9vBVmw/5IevI5r4s4LsDIwcmI9R5/XFtPKBGF7cx9GxGEbXIgjsue81EREREREREVG3cMsmIhv4fD488cQT8Pl8qofiGuxMjw6kZOxNjvX1TbixagumzN+MBdV78ObuYycsRgCAryOKN3cfw4LqPbh6/ibcWLUFG+o/tWv4RETKSfl+QHrg+Sof51gddm8dO9OjAykZpeQgZ3HLJrKF7ls2RaNR7NmzB8OGDUNGRsbZn0DsDHp0ICVjT3K0BCN4dNUOrNp2uMfHnVZegjnXjeCNpYnI9aR8PyA98HyVj3OsDru3jp3p0YGUjFJy6EDle7lckCBb6L4gQUT0ebuO+DFjcS2a/OFev1ZRfiaWzqxAWXG+DSMjIiIiIiIiIt2pfC+XWzYR2aC9vR0rVqxAe3u76qG4BjvTowMpGa3k2HXEj+lP19iyGAEATf4wblpYg/pGvy2vR0SkgpTvB6QHnq/ycY7VYffWsTM9OpCSUUoOchYXJIiIiGzSEoxgxuLak+4R0Vu+jihuX1SLlmDE1tclIiIiIiIiIkombtlEtuCWTUREwP0vbu3VPSPOZlp5CSqnX+LY6xMRERERERGRfNyyicjlotEo6uvrEY3a+6+iJWNnenQgJWN3cqyvb3J0MQIAVtYdxvr6JkePQUTkBCnfD0gPPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSBDZgHvkWcfO9OhASsbu5Kiq3puUsVRtTM5xiIjsJOX7AemB56t8nGN12L117EyPDqRklJKDnMUtm8gW3LKJiHRW3+jHlPmbk3a8dbMnYHhxn6Qdj4iIiIiIiIjk4JZNRERELnSguR0HmtvxXM2+pB432ccjIiIiIiIiIrIDFySIbNDa2oq5c+eitbVV9VBcg53p0YGUjKfLMX7eBoyftwHP1exP6nie5YIEEbmMlO8HpAeer/JxjtVh99axMz06kJJRSg5yFrdsIlvovmVTLBbDwYMHcd5558Hj8agejiuwMz06kJLxdDlKH35V2Zg++em1MAxD2fGJiKyQ8v2A9MDzVT7OsTrs3jp2pkcHUjJKyaEDle/l8swgsoHH40FpaanqYbgKO9OjAykZUzFHMNKJvEx+Gycid0jF6yjR6fB8lY9zrA67t46d6dGBlIxScpCzuGUTkQ2CwSCWLVuGYDCoeiiuwc706EBKxlTMEYnFVQ+BiKjbUvE6SnQ6PF/l4xyrw+6tY2d6dCAlo5Qc5CwuSBDZIC0tDX379kVaGr+kuoud6dGBlIypmMPrSZ2xEBGdTSpeR4lOh+erfJxjddi9dexMjw6kZJSSg5zFe0iQLXS/hwQR6Yn3kCAiIiIiIiIit1H5Xi6Xq2zW2dmJDz74AM888wzuvfdejB49Gl6vF4ZhwDAMTJw40ZHjLlmyJHGM7v646667HBmLjiKRCOrq6hCJRFQPxTXYmR4dSMl4uhybH5yEzQ9OwlcH90vqeEYP7sfFCCJyFSnfD0gPPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSNhoxYoVyM/Px6hRo3DXXXehqqoK7733HqLRqOqhkcNCoRCqq6sRCoVUD8U12JkeHUjJeLocgwpzMKgwB2OGFCZ1PGOGJvd4RES9JeX7AemB56t8nGN12L117EyPDqRklJKDnMUtm2y0ZMkS3HHHHWd8zJVXXonq6mpHj11WVoavfe1rZ33OuHHjcMstt9hyfG7ZREQ6q2/0Y8r8zUk73rrZEzC8uE/SjkdEREREREREcqh8L9eTlKNopqioCJdddlnix7p161BZWZm0448ZMwa//OUvk3Y8AkzTRDgcRmZmJrdR6SZ2pkcHUjKeLUdZcT4qSgtR29Ds+FgqhhRyMYKIXEfK9wPSA89X+TjH6rB769iZHh1IySglBzmLWzbZaMqUKdi3bx8aGxuxevVqPPLII7jmmmvQt29f1UMjh/l8Pjz55JPw+Xyqh+Ia7EyPDqRk7E6OeyYOTcpY7r1yWFKOQ0RkJynfD0gPPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSNiouLgY559/vuphkAJ9+vTBrFmz0KcP/9Vyd7EzPTqQkrE7OSaXFWHqqBJHxzGtvASTys5x9BhERE6Q8v2A9MDzVT7OsTrs3jp2pkcHUjJKyUHO4pZNRDZIT09HcXGx6mG4CjvTowMpGbubY+7UEXj7k2No8odtH0NRfibmXMd78xCRO0n5fkB64PkqH+dYHXZvHTvTowMpGaXkIGfxExJENmhra8OSJUvQ1tameiiuwc706EBKxu7m6JfrxdKZFSjIzrD1+AXZGVg6swL9cr22vi4RUbJI+X5AeuD5Kh/nWB12bx0706MDKRml5CBn8RMSArW2tuL3v/89duzYAZ/Ph/z8fJSUlODyyy/HxRdfzJvKOMDj8aC0tBQeD7+kuoud6dGBlIxWcpQV5+OlWWNx+6JaWz4pUZSfiaUzK1BWnN/r1yIiUkXK9wPSA89X+TjH6rB769iZHh1IySglBznLME3TVD0I6ebMmYO5c+cCAK688kpUV1fbfowlS5bgjjvuOOvjLrzwQjz00EOYOXOmrQsTO3bswMiRIxO/3r59O0aM4NYiRKSvlmAEc1bvwMq6wz1+jWnlJZhz3Qh+MoKIiIiIiIiIbKPyvVxu2aSZjz/+GHfddRemTp2KYDBo++tnZWUhLy8PANDZ2YnW1lYcX/Py+/2IRCIAgI6OjsTxY7EYWltbE6/h8/kQjUYBAO3t7WhvbwcARKNR+Hy+xONaW1sRi8UAAMFgEB0dHQCASCQCv98PADBNE62trejs7ATQ9dGxUCgEAAiHwwgEAgCAeDyO1tZWxONxAEAgEEA43PUvm0OhUOKjZqfLFA6HsWnTJjQ3N4vJ5PQ8BQIBVFdXIxwOi8lkdZ7C4TDeeustNDU1icn0xXkKh8Oorq5OvIZbM3V0dGDDhg0nnL9nm6d+uV48fu0w/ObWUagYUggvYshC17jTEUee8Y9PT+QaYaSjawyZiOLywXlYPOMy/O93RiIt1uH4PHU3U6rPEzMxEzOlbqZgMIgNGzYkXkNCJonzxEy+xHg2bNhwwvnr9kwS56k3mXw+H2pqauD3+8Vkcss8NTc3Y9OmTQiHw2IyOT1Px44dQ01NDdrb28Vk4t8jTp6nTz/9FG+++SbC4bCrMzU1NaGmpgbhcFjkPEnMpAIXJAQ5//zz8aMf/Qhr1qzBgQMHEAqFEAwG8dFHH2HBggUoKytLPPaVV17BLbfckjiZ7TJ27Fh897vfBQAcPXoUlZWViS+SRYsWYefOnQCAjRs3YvXq1QCAgwcPorKyMvEav/71r7Fnzx4AwGuvvYbXXnsNALBnzx78+te/TjyusrISBw8eBACsXr0aGzduBADs3LkTixYtAtD1BVxZWYmjR48CAJYvX46amhoAwNatW/H8888D6PoiraysTFwUnn/+eWzduhUAUFNTg+XLl58xUyQSwdtvv401a9aIyeT0PO3YsQObN29OLOhIyGR1niKRCLZu3Yqqqioxmb44T5FIBG+++WZKZgqEomhsDqCyshKffvrpGTMdO3YMmzZtwrFjxyzP04DOz/DyrMsx9zIDt5V8hisu6I/S7BBuyPowMdbrs3bi6wOB+yYNw/9vVBQ3nduCSWXnaH2NYCZmYiZZmfbt24dNmzYl/qdIQiaJ88RMXZkikQg2bdqEffv2ickkcZ56m6murk5cJjfM05o1a/D2228jEomIyeT0PK1YsQJ1dXU4cuSImEz8e8TJ87Ro0SK88847iEQirs5UVVWFuro6RCIRkfMkMZMSJjnu0UcfNQGYAMwrr7zSkWO0tLSYnZ2dZ3xMOBw277jjjsRYAJjPPvusLcffvn27CcDMysoy8/LyzO3bt5uxWMxsaWkx4/G4aZqm6fP5zHA4bJqmaba3t5ttbW2maZpmNBo1W1paEq/V2tpqRiIR0zRNMxgMmsFg0DRN04xEImZra+sJmaPRqGmaptnW1ma2t7cncvp8PtM0TTMej5stLS1mLBYzTdM0A4GA2dHRYZqmaYZCIdPv95umaZqdnZ0ndOj3+81QKGSapml2dHSYgUDANE2TmZiJmVycqe6TJvPJP+8yb1242RwzZ5U5+KFXzMEPrTZHPPwHc9ScP5u3/GaL+cTK980PGj51PFMkEjEPNh41j7WFzUCoKx/niZmYiZmYiZmYiZmYiZmYiZmYiZmYiZmSken4e7nHf2zfvt1MFt5DIgmScQ+J7orH45g4cSI2b94MABg5ciQ+/PDDszzr7HS/h0Q8Hoff70d+fj7S0vjBo+5gZ3p0kAoZ19c3oap6L2obmrv9nIrSQtw7cRgmlZ0DIDVyEBG5Ga+j5CY8X+XjHKvD7q1jZ3p0ICWjlBw64D0kKGnS0tLw6KOPJn69ffv2xEeIqOe++PEpOjt2pkcHKjO2BCO4/8WtmLnkXUuLEQBQ29CMO5a8gweWbUVLMKLFXBEROYnXUXITnq/ycY7VYffWsTM9OpCSUUoOchY/IZEEqfQJCaDrRiu5ubmJm7C89tpruOqqq3r1mvyEBFeArWJnenSgKuOuI37MWFyLJn/47A8+i6L8TCyeMRolORA9V0RETtLhex7JwfNVPs6xOuzeOnamRwdSMkrJoQN+QoKSKiMjA/3790/8+rPPPlM4GhnS0tLQt29fXmwtYGd6dKAi464jfkx/usaWxQgAaPKHcfNvatEYShM9V0RETtLhex7JwfNVPs6xOuzeOnamRwdSMkrJQc7i2aGpYDCY+Hlubq7CkcgQCARQVVWFQCCgeiiuwc706CDZGVuCEcxYXAtfR9TW1410BPGbhU/jQNMxW1+XiEgXOnzPIzl4vsrHOVaH3VvHzvToQEpGKTnIWVyQ0NDevXtP2MutpKRE4Whk8Hq9KC8vh9frVT0U12BnenSQ7IyPrtph2ycjPi+GdOyKFOJ//7LH9tcmItKBDt/zSA6er/JxjtVh99axMz06kJJRSg5ylkf1ACj5Fi1alPh5QUEBysvL1Q1GiMzMTIwdO1b1MFyFnenRQTIzrq9vwqpthx157SjSsbOzCDs/PIpp9U2YXFbkyHGIiKTS4XseycHzVT7OsTrs3jp2pkcHUjJKyUHO4ickBGhra+v2Y9966y38/Oc/T/x6+vTp8Hi4LtVboVAI1dXVCIVCqofiGuxMjw6SmbGqeq9jr+1FDOWeQ/AihqqNzh2HiEgqHb7nkRw8X+XjHKvD7q1jZ3p0ICWjlBzkLC5IpLCGhgYYhpH4sWTJklM+bvny5aioqMDvfvc7+Hy+Uz4mFArhqaeewte//vXERaFv37549NFHnRq+VmKxGBoaGhCLxVQPxTXYmR4dJCtjfaMftQ3Njr1+OkwUpwWQDhO1nzTjo0buh0lEZIUO3/NIDp6v8nGO1WH31rEzPTqQklFKDnKWYZqmqXoQklx77bU4fPjELUMaGxvR1NQEoOsG0hdccMFJz1uzZs1J93JoaGjAkCFDEr9evHgxZsyYcdJzlyxZgjvuuAMA4PF4UFZWhrKyMvTr1w+dnZ04dOgQtmzZcsJ9I7Kzs7F27VpMmDChx1k/b8eOHRg5cmTi19u3b8eIESNseW0iotM50NwOAFi4aQ+eq9mftON+b+xgfH/CUAwqzEnaMYmIiIiIiIiI7KDyvVzu1WOznTt3Yt++faf982AwiG3btp30+5FIxJbjx2IxbN++Hdu3bz/tYyoqKrBkyRJcdNFFthyTgM7OThw9ehQDBgxAenq66uG4AjvTowOnM46ft8H21zyVNMTR1wih1cxCHGl4tmYfnq3Zh4YnvpGU4xMRuZ0O3/NIDp6v8nGO1WH31rEzPTqQklFKDnIWt2wS4Oabb8abb76Jn/3sZ/jOd76D8vJynHfeecjOzkZmZibOOeccjBkzBg888AA2b96Mt99+m4sRNgsEAli4cCECAW7j0l3sTI8OpGTMMaKYlrUTOUZU9VCIiFxJyvcD0gPPV/k4x+qwe+vYmR4dSMkoJQc5i1s2kS1037LJNE2Ew2FkZmbCMAzVw3EFdqZHB05nLH34Vdtf89RMeNGJCNIB/CMHPyFBRNQ9OnzPIzl4vsrHOVaH3VvHzvToQEpGKTl0wC2biFzOMAxkZWWpHoarsDM9OpCT0UCE3zKJiHpMzvcD0gHPV/k4x+qwe+vYmR4dSMkoJQc5i1s2EdnA7/dj/vz5J9w4nM6MnenRgZSMOYjgu5kfIAf23O+HiEg3Ur4fkB54vsrHOVaH3VvHzvToQEpGKTnIWVyQILJBVlYWJk6cyFVgC9iZHh1IyRhBOupiJX/fsomIiKyS8v2A9MDzVT7OsTrs3jp2pkcHUjJKyUHO4j0kyBa630OCiNQ40NwOAJj9Uh3e29eStOOOHtwPv7ipHIMKc5J2TCIiIiIiIiIiO6h8L5efkCCyQUdHB9auXYuOjg7VQ3ENdqZHB05nHFSYg0GFORgzpNCR1z/OixgqMvbDixgAYMzQQi5GEBFZoMP3PJKD56t8nGN12L117EyPDqRklJKDnMUFCSIbxONxtLa2Ih6Pqx6Ka7AzPTo4XUbTNBEIRdEcjCAQiqK3H9abWl7Sq+efTRpM5BkRpKFrnFNHDXT0eERE0ujwPY/k4PkqH+dYHXZvHTvTowMpGaXkIGdxyyayBbdsIqKzqW/0Y1XdYWw72Irth/zwdUQTf1aQnYGRA/Mx6ry+mFY+EMOL+1h+/RurtqC2odnOIZ9SxZBCvDzrcsePQ0RERERERETkBG7ZRORysVgMDQ0NiMViqofiGuxMjw5isRj+uOl93PTrNzBl/mYsqN6DN3cfO2ExAgB8HVG8ufsYFlTvwdXzN+HGqi3YUP+ppWPdM3GonUM/QTriKE7zIx1x3HvlMMeOQ0QklQ7f80gOnq/ycY7VYffWsTM9OpCSUUoOchYXJIhs0NbWhqVLl6KtrU31UFyDncnvoCUYwf954W18uGE1duy3trhQ29CMO5a8gweWbUVLMNKt50wuK8LUUc5s3ZRtRHFN5t8wdUQhJpWd48gxiIgkk/49j2Th+Sof51gddm8dO9OjAykZpeQgZ3HLJrIFt2wios/bdcSPGYtr0eQP9/q1ivIzsXRmBcqK88/62JZgBFMqN9ly3FONY+0DE9Av12v7axMRERERERERJQu3bCIiIjF2HfFj+tM1ti0KNPnDuGlhDeob/Wd9bL9cL5bOrEBBdoYtxz6uIDsDS2dWcDGCiIiIiIiIiKgXuCBBZAOfz4cnnngCPp9P9VBcg53J7KAlGMGMxbWJe0TkGmHckrUVuUbvFid8HVHcvqi2W9s3lRXn46VZY1GUn9mrYx5XlJ+JRbd8GSuWLBA1V0REySTxex7JxfNVPs6xOuzeOnamRwdSMkrJQc7iggSRDXJycnD99dcjJydH9VBcg53J7ODRVTtO+GREyPTgjUgpQqan16/d5A9jzuod3XpsWXE+1j4wAdPKe3dPiWnlJVj7wAR8pbRI3FwRESWTxO95JBfPV/k4x+qwe+vYmR4dSMkoJQc5i/eQIFvwHhJEtL6+CTOXvOv4cRbNGI3JZUXdfvz6+iZUbdyL2k+au/2ciiGFuPfKYbyBNRERERERERGJw3tIELlce3s7VqxYgfb2dtVDcQ12Jq+Dquq9J/1eJqK4IuMTZCJq33E2nnycM5lcVoSXZ12OdbMn4L5Jw3DFBf1PusdEQXYGrrigP+6bNAzrZk/Ay7MuP2ExQtpcERElG6+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkrN7voUFERNqrb/SjtqH7n0DojdpPmvFRYwDDi/tYet7w4j74cXEZAMA0TQQjnYjE4vB60pDrTYdhGE4Ml4iIiIiIiIiI/o5bNpEtuGUTkZ4ONHf9q4eFm/bguZr9STvu98YOxvcnDMWgQu5LSURERERERERkBbdsInK5aDSK+vp6RKP2bUsjHTuT0cH4eRswft6G0y5GpKMT56e1IB2dth732Zp9GD9vg62veSYS5oqISCVeR8lNeL7KxzlWh91bx8706EBKRik5yFlckCCyAffIs46d6dFBlhHDFd4GZBkx1UPpFR3miojISbyOkpvwfJWPc6wOu7eOnenRgZSMUnKQs7hlE9mCWzYR6an04VeVHr/hiW8oPT4RERERERERkdtwyyYiIiIiIiIiIiIiIhKNCxJENmhtbcXcuXPR2tqqeiiuwc706CDPCOOO7HeRZ4RVD6VXdJgrIiIn8TpKbsLzVT7OsTrs3jp2pkcHUjJKyUHO4pZNZAvdt2yKxWI4ePAgzjvvPHg8HtXDcQV2JqODs23ZlI44BqS14Wg8D50OrIEna8smCXNFRKQSr6PkJjxf5eMcq8PurWNnenQgJaOUHDpQ+V4uFyTIFrovSBDp6kBz142qZr9Uh/f2tSTtuKMH98MvbirHoMKcpB2TiIiIiIiIiEgC3kOCyOWCwSCWLVuGYDCoeiiuwc5kdDCoMAeDCnMwZkjhKf88C1FM9u5GFqK2HnfM0MKkLkZImCsiIpV4HSU34fkqH+dYHXZvHTvTowMpGaXkIGdxQYLIBmlpaejbty/S0vgl1V3sTFYHU8tLTvn7cRhoM72Iw7D3eKMG2vp6ZyNproiIVOB1lNyE56t8nGN12L117EyPDqRklJKDnMUtm8gW3LKJiG6s2oLahmbHj1MxpBAvz7rc8eMQEREREREREUnELZuIXC4SiaCurg6RSET1UFyDncnr4J6JQ0/6PQ86cUH6Z/Cg07bj3HvlMNteq7ukzRURUbLxOkpuwvNVPs6xOuzeOnamRwdSMkrJQc7iggSRDUKhEKqrqxEKhVQPxTXYmbwOJpcVYeqoE7du8qIT5Z7D8Nq0IDGtvASTys6x5bWskDZXRETJxusouQnPV/k4x+qwe+vYmR4dSMkoJQc5i1s2kS24ZROR+5imibZwDNFOExnpBvIyPTCM3t3roSUYwZTKTWjyh20a5T8U5Wdi7QMT0C/Xa/trExERERERERHpQuV7uZ6kHIVIONM0EQ6HkZmZ2es3dHXBztR0UN/ox6q6w9h2sBXbD/nh64gm/qwgOwMjB+Zj1Hl9Ma18IIYX97H8+v1yvVg6swI3Laz5+2ub8KITEaQDvbixdUF2BpbOrFC2GMHzlYiod3gdJTfh+Sof51gddm8dO9OjAykZpeQgZ3HLJiIb+Hw+PPnkk/D5fKqH4hrsLLkdrK9vwo1VWzBl/mYsqN6DN3cfO2ExAgB8HVG8ufsYFlTvwdXzN+HGqi3YUP+p5WOVFefjpVljUZSfiTwjgluz65Bn9Hz/yKL8TLw0ayzKivN7/Bq9xfOViKh3eB0lN+H5Kh/nWB12bx0706MDKRml5CBnccsmsoXuWzZ1dnbi6NGjGDBgANLT01UPxxXYWXI6aAlG8OiqHVi17XCPX2NaeQnmXDfC8qcTWoIRzFn1ITZ/sBetZhbiPVgD7+mx7cbzlYiod3gdJTfh+Sof51gddm8dO9OjAykZpeTQgcr3crkgQbbQfUGCKBXtOuLHjMW1ttzPoSg/E0tnVvToUwrr65tQtXEvaj9p7vZzKoYU4t4rhym5gTURERERERERkWQq38vllk1ENmhra8OSJUvQ1tameiiuwc6c7WDXET+mP11j282lm/xh3LSwBvWNfkvPa2trw/6aP2PRrRdj3ewJuG/SMFxxQX8UZGec8LiC7AxccUF/3DdpGNbNnoCXZ12eUosRPF+JiHqH11FyE56v8nGO1WH31rEzPTqQklFKDnIWb2pNZAOPx4PS0lJ4PPyS6i525lwHLcEIZiyuPekeEb3l64ji9kW1WPvAhG5vofT5jMOLs/Dj4jIAXTe6CkY6EYnF4fWkIdebntI3vOL5SkTUO7yOkpvwfJWPc6wOu7eOnenRgZSMUnKQs7hlE9mCWzYRpY77X9zaq3tGnM208hJUTr/EsdcnIiIiIiIiIiLncMsmIpcLh8OoqalBOGzP9jg6YGfOdLC+vsnRxQgAWFl3GOvrm7r1WCnzLCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzuCBBZINIJIK6ujpEIhHVQ3ENduZMB1XVe217rTMeZ2P3jiNlnqXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFrdsIltwyyYi9eob/Zgyf3PSjrdu9gQML+6TtOMREREREREREVHvccsmIpeLx+NobW1FPB5XPRTXYGf2dXCguR0HmtvxXM0+m0bWPd05npR5lpKDiEgVXkfJTXi+ysc5VofdW8fO9OhASkYpOchZXJAgsoHf70dlZSX8fr/qobgGO7Ovg/HzNmD8vA14rma/TSPrnme7sSAhZZ6l5CAiUoXXUXITnq/ycY7VYffWsTM9OpCSUUoOcha3bCJb6L5lUzweh9/vR35+PtLSuM7XHezMvg5KH37VxlFZ88lPr4VhGKf9cynzLCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScuhA5Xu5nqQchUi4tLQ09O3bV/UwXIWdyeggGOlEXubpv5VIyAjIyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CwuVRHZIBAIoKqqCoFAQPVQXIOdyeggEjvzvpASMgJychARqcLrKLkJz1f5OMfqsHvr2JkeHUjJKCUHOYsLEkQ28Hq9KC8vh9frVT0U12BnMjrwes78bURCRkBODiIiVXgdJTfh+Sof51gddm8dO9OjAykZpeQgZ/EeEmQL3e8hQaRSKt9DgoiIiIiIiIiIUovK93L5CQkiG4RCIVRXVyMUCqkeimuwM/s62PzgJGx+cBK+OrifTSPrntGD+511MULKPEvJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLC5IENkgFouhoaEBsVhM9VBcg53Z18GgwhwMKszBmCGFNo2se8YMPfvxpMyzlBxERKrwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc7ilk1kC27ZRGSdaZpoC8cQ7TSRkW4gL9PTq+2P6hv9mDJ/s40jPLN1sydgeHGfpB2PiIiIiIiIiIh6T+V7uZ6kHIVIuM7OThw9ehQDBgxAenq66uG4gq6d1Tf6saruMLYdbMWOQ61ICwXQamYhjjQUZGdg5MB8jDqvL6aVD7T8Zn9ZcT4qSgtR29Ds0Oj/oWJIYbfGJ2WepeQgIlKF11FyE56v8nGO1WH31rEzPTqQklFKDnIWt2wiskEgEMDChQsRCARUD8U1dOtsfX0TbqzaginzN2NB9R68ufsYYqF2TMvaiRwjCgDwdUTx5u5jWFC9B1fP34Qbq7ZgQ/2nlo5zz8ShTgz/JPdeOaxbj5Myz1JyEBGpwusouQnPV/k4x+qwe+vYmR4dSMkoJQc5i1s2kS1037LJNE2Ew2FkZmb2assdnejSWUswgkdX7cCqbYdP8acmvOhEBOkATt/BtPISzLluBPrlert1zPtf3Hqa49ljWnkJKqdf0q3HSplnKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSQwcq38vlJySIbGAYBrKysnixtUCHznYd8WNK5aYzLA4YiMCDMy1GAMDKusOYUrkJ9Y3+bh137tQRKMrPtDbYbirKz8Sc67r/DUrKPEvJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLC5IENnA7/dj/vz58Pu794Yxye9s1xE/pj9dgyZ/+LSPyUEE3838ADmInPX1mvxh3LSwpluLEv1yvVg6swIF2RmWxnw2BdkZWDqzotuf1ADkzLOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBzuKCBJENsrKyMHHiRGRlZakeimtI7qwlGMGMxbXwdUTP+LgI0lEXK/n7lk1n5+uI4vZFtWgJnn0Bo6w4Hy/NGmvbJyWK8jPx0qyxKCvOt/Q8KfMsJQcRkSq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLN4Dwmyhe73kCD6vFS6h0NLMII5q3dgZV3Px2P1HhZERERERERERJS6eA8JIpfr6OjA2rVr0dHRoXooriG1s/X1Td1ejPAihoqM/fAiZukYK+sOY319U7ce2y/Xi8rpl2DRjNGoGFJo6TgVQwqxeMZlqJx+SY8XI6TMs5QcRESq8DpKbsLzVT7OsTrs3jp2pkcHUjJKyUHO8qgeAJEE8Xgcra2tiMfjqofiGlI7q6re2+3HpsFEnhFBGqx/UK1q415MLivq9uMnlxVhclkRPmoMYNW2Q9h2wIcPD/lO2FaqIDsDFw8swKhBBZg6aiCGF/exPK4vkjLPUnIQEanC6yi5Cc9X+TjH6rB769iZHh1IySglBzmLWzaRLbhlExFQ3+jHlPmbk3a8dbMn9GrRwDRNBCOdiMTi8HrSkOtNh2EYNo6QiIiIiIiIiIhSDbdsInK5WCyGhoYGxGLWtt7RmaTODjS340BzO56r2WfpeemIozjNj3T07F8OPFezDwea23v0XAAwDAN5mR4U5nqRl+lxZDFCyjxLyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSBDZoK2tDUuXLkVbW5vqobiGpM7Gz9uA8fM24Lma/Zael21EcU3m35BtRM/+4FN4tmYfxs/b0KPnJouUeZaSg4hIFV5HyU14vsrHOVaH3VvHzvToQEpGKTnIWdyyiWzBLZtIZ6UPv6r0+A1PfEPp8YmIiIiIiIiIyD24ZRMREREREREREREREYnGBQkiG/h8PjzxxBPw+Xyqh+Ia7AzINcK4JWsrco2w6qE4Rso8S8lBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkgQ2SAnJwfXX389cnJyVA/FNdgZEDI9eCNSipDpUT0Ux0iZZyk5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxXtIkC14DwnSGe8hQUREREREREREbsF7SBC5XHt7O1asWIH29nbVQ3ENSZ1tfnASNj84CV8d3M/S8zIRxRUZnyAT0R4dd/Tgftj84KQePTdZpMyzlBxERKrwOkpuwvNVPs6xOuzeOnamRwdSMkrJQc7iggQRUS8NKszBoMIcjBlSmNTjjhlaiEGF/BgkERERERERERG5A7dsIltwyyYioL7RjynzNyfteOtmT8Dw4j5JOx4REREREREREbkft2wicrloNIr6+npEoz3bekdHqdCZaZoIhKJoDkYQCEXR2/XZsuJ8VJR2/1MS6ejE+WktSEen5WNVDCl0xWJEKsyzHaTkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFhckiGzAPfKsU9VZfaMf89bW49bf1qD8sddx8ZzXcOnjXf8tf+x13PrbGsxbW4+PGgM9ev17Jg7t9mOzjBiu8DYgy4hZPs69Vw6z/BwVpHxtSMlBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsbtlEtuCWTZTq1tc3oap6L2obmrv9nIrSQtw7cRgmlZ1j6Vj3v7gVq7YdtjrEbptWXoLK6Zc49vpERERERERERCSXyvdyPUk5ChGRIi3BCB5dtaNHCwS1Dc2oXdKMaeUlmHPdCPTL9XbreXOnjsDbnxxDkz9s+ZhnU5SfiTnXcbGPiIiIiIiIiIjch1s2EdmgtbUVc+fORWtrq+qhuEYyOtt1xI8plZt6/WmFlXWHMaVyE+ob/d16fL9cL5bOrEBBdsYZH5dnhHFH9rvIM7q3cFGQnYGlMyu6vTCSCqR8bUjJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLG7ZRLbQfcumWCyGgwcP4rzzzoPHww8edYfTne064sf0p2vg67DvRkoF2Rl4adZYlBXnd+vx9Y1+3L6o9rSflEhHHAPS2nA0nofOs6wPF+VnYunMim4fO1VI+dqQkoOISBVeR8lNeL7KxzlWh91bx8706EBKRik5dKDyvVwuSJAtdF+QoNTSEoxgSuUmx7ZMWvvAhG5/SqElGMGc1Tuwsq7nn9KwumUUERERERERERHR6ah8L5dbNhHZIBgMYtmyZQgGg6qH4hpOdvboqh2OLEYAQJM/jDmrd3T78f1yvaicfgkWzRiNiiGFJ/xZFqKY7N2NLJz6UxwVQwqxeMZlqJx+iWsXI6R8bUjJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBzkLH52hsgGaWlp6Nu3L9LSuMbXXU51tr6+qdf3jDiblXWHMa28BJPLirr9nMllRZhcVoSPGgNYte0Qth3wof7QZ2iLeRGHAaBrS6iLBxZg1KACTB01EMOL+zgVIWmkfG1IyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5Cxu2US24JZNlCpurNqC2oZmx49TMaQQL8+6vFevYZomgpFORGJxeD1pyPWmwzAMm0ZIRERERERERER0Mm7ZRORykUgEdXV1iEQiqofiGk50Vt/oT8piBADUftKMjxoDvXqNaDSK3bu2Iy8DyMv0iFyMkPK1ISUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzuCBBZINQKITq6mqEQiHVQ3ENOzs70NyOA83teK5mnw0j677navbhQHN7j5+vw3kjJaOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBzuKWTWQLbtlEKpU+/KrS4zc88Q2lxyciIiIiIiIiIuoubtlE5HKmaSIUCoHre93HzvToQEpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSg5zFBQkiG/h8Pjz55JPw+Xyqh+Ia7EyPDqRklJKDiEgVXkfJTXi+ysc5VofdW8fO9OhASkYpOchZ3LKJbKH7lk2dnZ04evQoBgwYgPT0dNXDcQU7O3Prlk06nDdSMkrJQUSkCq+j5CY8X+XjHKvD7q1jZ3p0ICWjlBw6UPlericpRyESLj09HcXFxaqH4SrHOzNNE4FQFNFOExnpBvIyPTAMQ/XwkkKH80ZKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxS2biGzQ1taGJUuWoK2tTfVQXKG+0Y8nV23FQz99CmMeexUXz3kNlz7+Oi6e8xrKH3sdt/62BvPW1uOjxoDqoTpKh/NGSkYpOYiIVOF1lNyE56t8nGN12L117EyPDqRklJKDnMVPSBDZwOPxoLS0FB4Pv6TOZH19E6qq96K2oRlexPBlTxZaY534/KXI1xHFm7uP4c3dx7Cgeg8qSgtx78RhmFR2zmlfd/ODkwAAs1+qw3v7WpyOkTB6cD/84qbyHj9fh/NGSkYpOYiIVOF1lNyE56t8nGN12L117EyPDqRklJKDnMV7SJAtdL+HBJ1ZSzCCR1ftwKpth3v8GtPKSzDnuhHol+s97WPmra3Hguo9PT6GVfdNGoYfX12WtOMRERERERERERH1lsr3crllE5ENwuEwampqEA6HVQ8l5ew64seUyk0nLUZkoBNfTm9CBjq79Tor6w5jSuUm1Df6T/uYqeUlvRqrVVNHDezV83U4b6RklJKDiEgVXkfJTXi+ysc5VofdW8fO9OhASkYpOchZXJAgskEkEkFdXR0ikYjqoaSUXUf8mP50DZr8J38j8qATF3g+g6ebCxIA0OQP46aFNaddlCgrzkdFaWGPx2tFxZBCDC/u06vX0OG8kZJRSg4iIlV4HSU34fkqH+dYHXZvHTvTowMpGaXkIGdxyyayBbdsoi9qCUYwpXLTKRcjeqsoPxNrH5hwyu2b1tc3YeaSd20/5hctnnHZGe9rQURERERERERElIq4ZRORy8XjcbS2tiIej6seSsp4dNWOMy5GGDCRZ4RhwPqaaJM/jDmrd5zyzyaXFWHqKGe3bppWXmLLYoQO542UjFJyEBGpwusouQnPV/k4x+qwe+vYmR4dSMkoJQc5iwsSRDbw+/2orKyE33/6+xvoZH1901lvYJ1rRHBD1ofINXr2Mb6VdYexvr7plH82d+oIFOVn9uh1z6YoPxNzrrNnxViH80ZKRik5iIhU4XWU3ITnq3ycY3XYvXXsTI8OpGSUkoOcxS2byBa6b9kUj8fh9/uRn5+PtDSu891YtQW1Dc1nfIwBE7lGBEHTCxNGj45TMaQQL8+6/JR/Vt/ox00La+DriPbotU+lIDsDL80ai7LifFteT4fzRkpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSQwfcsonI5dLS0tC3b19ebNG1EHC2xQgAMGGgzczs8WIEANR+0oyPGgOn/LOy4ny8NGusbZ+UKMrPtHUxAtDjvJGSUUoOIiJVeB0lN+H5Kh/nWB12bx0706MDKRml5CBn8ewgskEgEEBVVRUCgVO/OS7dgeb2xI/navZ16znZiGBq5g5ko2dbNh13puOVFedj7QMTMK28d/eUmFZegrUPTLB1MQLQ47yRklFKDiIiVXgdJTfh+Sof51gddm8dO9OjAykZpeQgZ3lUD4BIAq/Xi/Lycni9XtVDUWL8vA2WnxNDOnbH+iOG9F4d+9mafXj8+pGn/fN+uV5UTr8E08pLULVxL2o/OfunN46rGFKIe68cZssNrE9Fh/NGSkYpOYiIVOF1lNyE56t8nGN12L117EyPDqRklJKDnMV7SJAtdL+HhO5KH35V6fE/+em1MIzubf30UWMAq7YdwrYDPnx4yHfCPSYKsjNw8cACjBpUgKmjBmJ4cR+nhkxERERERERERKQE7yEhSGdnJz744AM888wzuPfeezF69Gh4vV4YhgHDMDBx4kTHxxCJRPDss8/i2muvxeDBg5GVlYVzzz0X48aNw//+7//is88+c3wMugmFQqiurkYoFFI9FNfwIoZyzyF4Eev1awUjnd1+7PDiPvjx1WV47q4xqHvkKmyfezXe/0nXf+seuQrP3TUGP766LCmLETqcN1IySslBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkjYaMWKFcjPz8eoUaNw1113oaqqCu+99x6i0ejZn2yT+vp6jBkzBv/6r/+KP//5z9i/fz/C4TAaGxuxZcsW/PjHP8aIESOwZs2apI1JB7FYDA0NDYjFev/mui7SYaI4LYB09P5DWpFYvEfPMwwDeZkeFOZ6kZfp6fanLOyiw3kjJaOUHEREqvA6Sm7C81U+zrE67N46dqZHB1IySslBzuKWTTZasmQJ7rjjjjM+5sorr0R1dbUjxz948CDGjBmDw4cPA+h6s3XChAkYNmwYjh49ir/85S/o6OgAAGRkZGDt2rWYPHmyLcfmlk16U71l0/a5VyMvk7fEISIiIiIiIiIiOhtu2SRMUVERvvnNb2Lu3LlYs2YNHnjggaQc95ZbbkksRgwePBhbt25FdXU1nnnmGaxatQr79+/H1772NQBANBrFDTfcgNbW1qSMTbrOzk40Njais7P7WwfpLg1xFBrtSEPPPt3webne3t0YWxUdzhspGaXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFhckbDRlyhTs27cPjY2NWL16NR555BFcc8016Nu3r+PHXrNmDTZv3gyg6472q1evxqhRo054TP/+/bFy5UoMHToUANDc3Ix58+Y5PjYdBAIBLFy4EIFAQPVQlNj84KTEj68O7tet5+QYUUzL2okco3dbmo0e3C/pWy3ZRYfzRkpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSg5zFLZuSYM6cOZg7dy4A57Zs+sY3vpG4L8Tdd9+Np59++rSPff7553HbbbcBAAoLC9HU1ASPp3fb3ei+ZZNpmgiHw8jMzHTtm+N2mbe2Hguq93TjkSa86EQE6QB63tl9k4bhx1eX9fj5Kulw3kjJKCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScuiAWzZRr7S1teGvf/1r4tdnu4/Fd77zHeTl5QHo+pTEpk2bHB2fDgzDQFZWFi+2AKaWl3TzkQYi8KA3ixEAMHXUwF49XyUdzhspGaXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yFhckBHjrrbcQDocBALm5ubjsssvO+PisrCxcfvnliV+vX7/e0fHpwO/3Y/78+fD7/aqHolxZcT4qSgvP+rgcRPDdzA+Qg0iPj1UxpBDDi/v0+Pmq6XDeSMkoJQcRkSq8jpKb8HyVj3OsDru3jp3p0YGUjFJykLO4ICHArl27Ej+/+OKLu7X90qWXXnrK51PPZGVlYeLEicjKylI9FMtM00QgFEVzMIJAKAo7dnG7Z+LQsz4mgnTUxUr+vmVTz9x75bAePzcVuPm86S4pGaXkICJShddRchOer/JxjtVh99axMz06kJJRSg5yVu9uHEAp4aOPPkr8fPDgwd16zvnnn5/4eX19ve1j0o3X60V5ebnqYXRbfaMfq+oOY9vBVmw/5Iev4x83li7IzsDIgfkYdV5fTCsf2KNPIEwuK8LUUSVYte3waR8TQzp2d/bv0fgBYFp5CSaVndPj56cCt503PSElo5QcRESq8DpKbsLzVT7OsTrs3jp2pkcHUjJKyUHO4ickBDh27Fji50VFRd16TnFxceLnzc3Nto0lKysrcX+Kzs5OtLa2Jv7Fvd/vRyTStT1PR0cHgsEgACAWi6G1tTXxGj6fD9Fo1xvk7e3taG9vBwBEo1H4fL7E41pbWxGLxQAAwWAQHR0dAIBIJJL4aJhpmmhtbUVnZyeArvtthEIhAEA4HEYgEAAAxONxtLa2Ih6PAwACgUBiG6xQKIS2trYzZuro6MArr7yCzz77LKUzvfbhAdxYtQVT52/A4up6vLn7GAIdYeQZYQBdmaIdQby9+1MsqN6D6+avx80LqrGh/lPLmeZOHYGi/EzkGWGko2sMWYjCi658OQhjXMYnf/+1iTwjjLS/Py77c4/LQCey/76tk/H3xxX38WLOdSMszxOQWudeR0cH/vznP6OxsbHH516qZQJOPPc6OjqwatWqxJjcmikYDGLlypWJMUmbJ2ZiJmZiJqczBQIBrFy5MjEmCZkkzhMz+RLPX7ly5Ql/D3B7Jonz1JtMLS0tWLt2LVpbW8Vkcss8ffbZZ3jllVfQ0dEhJpPT83T06FGsXbsWbW1tYjLx7xEnz1NTUxNeffVVdHR0uDpTY2Mj1q5di46ODpHzJDGTClyQEOD4iQcA2dnZ3XrO5x/3+ef31tixY/Hd734XAHD06FFUVlYmvkgWLVqEnTt3AgA2btyI1atXAwAOHjyIysrKxGv8+te/xp49ewAAr732Gl577TUAwJ49e/DrX/868bjKykocPHgQALB69Wps3LgRALBz504sWrQIQNcXcGVlJY4ePQoAWL58OWpqagAAW7duxfPPPw+g64u0srIycVF4/vnnsXXrVgBATU0Nli9ffsZM8Xgce/fuxbp161IyU0swgnm/+i3mL3sdtQ3N+LKnCVd6u8bT1wjhhqwP4UXXBfDazHqUprcAAMozDiO7cRvuWPIOHvrdBkuZ+uV6sXRmBW7I+hAD0rrOsXHefSjP6PrUxOD0VgxLb0YaTHjRiRuyPkRfo+vCe6V3D77saQIAXJj+Ga7K/BgAkGtEcEPWh/jVjWXol+u1PE9Aap178Xgcn332GRYuXNjjcy/VMgEnnnvxeBw7d+7EBx984OpMPp8PdXV1ib9gSJsnZmImZmKmZGSqq6tL/I+UlEwS54mZuv7Hv66uTlQmifPUm0zvvPMOWltb8cEHH4jJ5JZ5WrduHfbu3Zv4/wQJmZyep+P/wEtSJv494uR5Wrx4MQ4fPox4PO7qTAsXLky8eS5xniRmUsEw7dgwns5ozpw5mDt3LgDgyiuvRHV1ta2v/7WvfS1xY+qf/OQneOyxx876nPXr1+NrX/saACA9PT2xatdTO3bswMiRI5GVlQWPx4OamhqUlZUhEAigoKAAhmHA7/cjKysLXq8XHR0diMfjyM3NRSwWQ1tbG/r27Qug642/nJwcZGRkJFYac3JyEI1G0d7ejoKCAgBdq415eXnweDwIBoNIS0tDdnY2IpEIQqEQ8vPzYZomfD4f+vTpg/T0dLS1tcHj8SArKwvhcBiRSAR9+vRBPB6H3+9Hfn4+0tLSEAgE4PV6kZmZiVAohFgshry8PHR2drou06EgMHPpu/D7A4ghHVGkw4sY0mGiAxlIQxw5RhRtpheAgRxEEEE6Yn9/XBpMhJCBdMQxqI+BqjsnoKw4v9uZ3vv4AP7t5V04EogiC1HEYSACDzzohBedaIcXXZ+QiKDdzEAcachGFJ1/f1wGOuFBJzrgRXEfL351YxkuGTZQ3DxJPPeYiZmYiZmYiZmYiZmYiZmYiZmYiZmYiZmYKfUyHTp0CCNHjsRx27dvx4gRI5AMXJBIAqcXJL7xjW9gzZo1AICHHnoITzzxxFmf8+c//xnXXnstACAvLy/xMaCeOr4gcVwyT+JUEIvFcPDgQZx33nnduql4suw64sf0p2tOuEdEbxVkZ+ClWWNRVpzf7ee0BCOYs3oHVtb9454S6YhjQFobjsbz0NmND2tNKy/BnOtGoF+ut0fjTkWpet7YSUpGKTmIiFThdZTchOerfJxjddi9dexMjw6kZJSSQwcq38vllk0CHL9nA4DEnmRn8/nHff751DNtbW1YunSprdtf9VZLMIIZi2ttXYwAAF9HFLcvqkVLMNLt5/TL9aJy+iVYNGM0KoYUAgCyjSiuyfwbso0zj69iSCEWz7gMldMvEbUYAaTmeWM3KRml5CAiUoXXUXITnq/ycY7VYffWsTM9OpCSUUoOchY/IZEETn9C4gc/+EFin7KbbroJy5YtO+tzFixYgPvuuw8A8OUvfxk7duzo1Rh0/4REKrr/xa1Yte3w2R/YQ9PKS1A5/ZIePfejxgBWbTuEbQd8+PCQ74RFk4LsDFw8sACjBhVg6qiBGF7cx64hExERERERERERaU/le7n87IwAw4cPT/x837593XrO/v37Ez8vKyuzfUyk1vr6JkcXIwBgZd1hTCsvweSyIsvPHV7cBz8u7jrvTNNEMNKJSCwOrycNud50GIZh93CJiIiIiIiIiIhIMW7ZJMBFF12U+PmHH37YrRtUv//++6d8PvWMz+fDE088AZ/Pp3ooAICq6r3JOc7Gnh/neGd+vx95mR4U5nqRl+nRajEi1c4bJ0jJKCUHEZEqvI6Sm/B8lY9zrA67t46d6dGBlIxScpCzuCAhwLhx45CZmQkACAaDePfdd8/4+HA4jJqamsSvJ0+e7Oj4dJCTk4Prr78eOTk5qoeC+kY/ahuak3Ks2k+a8VFjz26InkqdqaJDB1IySslBRKQKr6PkJjxf5eMcq8PurWNnenQgJaOUHOQsLkgIkJeXh6997WuJXy9ZsuSMj//jH/+IQKDrTeTCwkJMmDDByeFpISMjA2VlZcjIyFA2hgPN7TjQ3I7narq3bZddenq8VOhMNR06kJJRSg4iIlV4HSU34fkqH+dYHXZvHTvTowMpGaXkIGdxQUKIH/zgB4mfL1my5LQ3qW5vb8cjjzyS+PX3v/99eDy8lUhvtbe3Y8WKFWhvb1c2hvHzNmD8vA14rmb/2R9so2d7uCCRCp2ppkMHUjJKyUFEpAqvo+QmPF/l4xyrw+6tY2d6dCAlo5Qc5CwuSKSwhoYGGIaR+HGmTz584xvfwPjx4wF0bcn0zW9+Ex988MEJjzl27Biuv/567N69G0DXpyMeeughx8ZP+jBNU/UQiIiIiIiIiIiIKMUZJt9JtNW1116Lw4cPn/B7jY2NaGpqAgDk5ubiggsuOOl5a9asQUlJyQm/19DQgCFDhiR+vXjxYsyYMeO0xz548CAqKipw5MgRAIBhGLjyyisxbNgwHD16FH/5y18SK5Qejwdr1649Yaun3tixYwdGjhyZ+PX27dsxYsQIW16buqf04VeVHXv73KuRl8lP2hAREREREREREaU6le/l8hMSNtu5cye2bdt2wo/jixFA102nv/jn27ZtQyQS6fWxzzvvPKxfvx7l///27jw6ijLf//inQ8hCAoTIEhEkARyiDrJcQFBEBBc2BURZRNn0CuroZUZ/o3c8Oi531HEZ8bqBcxEQEASUgCPLCBhQkc2RVRBl34KGJQnZl/79kUNNYrbu0JVKP/V+ndPnVHfX8ny/VdSh+pvneTp2lFT8V+vJycmaPn26li5dahUjmjRpoqSkpIAVIyDl5+drz549ys/Pd7opjsgrKPJ7G7fnTHJHDkyJ0ZQ4AMAp3EcRTLhezcc5dg659x85c0cOTInRlDhgLwoShklMTNTGjRs1a9Ys9evXTy1btlRYWJiaNm2q7t276+WXX9b333+vgQMHOt1Uo7h9jLywUP9vJW7PmeSOHJgSoylxAIBTuI8imHC9mo9z7Bxy7z9y5o4cmBKjKXHAXgzZhIBgyCbnOTlk04EXB8jj8Th2fAAAAAAAAAC+YcgmABfsyz/eoC//eIP+o1WjGj1ul1aNKEYAAAAAAAAAqBIFCSAAzp49q2effVZnz551rA0tY+upZWw9XZ0QW6PHvbp19Y5XG3LmNDfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2YsgmBITbh2wqKCjQ0aNH1aJFC4WGhjralj0p6eo35csaO97Kyb3ULq6+39vVppw5xQ05MCVGU+IAAKdwH0Uw4Xo1H+fYOeTef+TMHTkwJUZT4nADJ3/LpSCBgHB7QaK2GT71G206eNr243RLiNWCiT1sPw4AAAAAAACAwGAOCSDIZWZmav78+crMzHS6KZKkSb1b18hxHri+TbW3rW05c4IbcmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsQBe1GQAAIgJCREMTExCgnx/5+U1+tVRk6+TmfmKSMnX4HotNQnsZlu69D8gvdTmcEdm+uGxKbV3v5CcmYKN+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/ZiyCYEBEM2+WdPSrqWbj2ubUfPauexdKVl51vfNYysq99e0kAdWsRocMdLqjU/gySdycxTvzfW6WR6bqCabWnWIFwr/quXGkWFBXzfAAAAAAAAAOzDkE1AkMvLy9PWrVuVl5dX6Xpr9pzU8KnfqN+UL/VO8j59/dOpUsUISUrLztfXP53SO8n7dMuUdRo+9Rt9sednv9vUKCpMsyZ0U8PIun5vW5mGkXU1a0K3Cy5G+Jozk7khB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywFwUJIABycnKUnJysnJyccr8/k5mnR+Z9pwkzt/g92fSmg6c1fuZm/df873Qm078bemJcA300sbuaNQj3a7uKNGsQro8mdldiXIML3ldVOXMDN+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/ZiyCYEBEM2VWz3iXSNm7EpIEMnNWsQrlkTuvldEDiTmadnPt2lJVuPV/vYgzs21zO3XskwTQAAAAAAAEAQY8gmIMh5vV7l5OSUmZB694l0jXxvQ8DmcTiZnqsR0zZoT0q6X9s1igrTGyM76f1xXdQtIdavbbslxGrGuK56Y2SngBYjKsqZm7ghB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywFwUJIADS0tL017/+VWlpadZnZzLzNG7GpjJzRFzwsbLzNfb9TX4P3yRJfRKbacHEHlo5uZceuqGNerZtXGaOiYaRddWzbWM9dEMbrZzcSwsm9tANiU0D1XxLeTlzGzfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2YsgmBITbh2wqLCzUL7/8oiZNmqhOnTqSpEfmfael26o/RFJVBndsrjdGdrrg/Xi9XmXmFSqvoEhhoSGKCqsjj8cTgBZWrrycuY0bcmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsThBk7+lktBAgHh9oLEr63Zc1ITZm6x/Tjvj+uiPonNbD8OAAAAAAAAADMwhwQQ5M6dO6eZM2fq3LlzkqSpyftr5LhT19bMcezw65y5kRtyYEqMpsQBAE7hPopgwvVqPs6xc8i9/8iZO3JgSoymxAF7UZAAAiA0NFTx8fEKDQ3VnpR0bTp4ukaOu+nAaf2QklEjxwq0kjlzKzfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2YsgmBARDNklHTmdJkqat26c5Gw7X2HHv6d5K9/dqrZax9WrsmAAAAAAAAACCE0M2AUEuNzdXE1+brz4vr6rRYoQkzd5wSNe9/EWNHjMQcnNztWHDBuXm5jrdFMe4IQemxGhKHADgFO6jCCZcr+bjHDuH3PuPnLkjB6bEaEocsBcFCSAA8vLy1DY0VaEqdLopQSMvL09bt25VXl6e001xjBtyYEqMpsQBAE7hPopgwvVqPs6xc8i9/8iZO3JgSoymxAF7MWQTAoIhm6T4Jz5z9PgHXxro6PEBAAAAAAAA1H4M2QQEuaKiIkV7cuUR9T1fFRUV6ezZsyoqKnK6KY5xQw5MidGUOADAKdxHEUy4Xs3HOXYOufcfOXNHDkyJ0ZQ4YC8KEkAApKen686IHYry0CXNV+np6XrjjTeUnp7udFMc44YcmBKjKXEAgFO4jyKYcL2aj3PsHHLvP3LmjhyYEqMpccBeDNmEgHD7kE1FRUW66skkZXrD5JXHkTYE25BNRUVFSk9PV4MGDRQS4s7aqBtyYEqMpsQBAE7hPopgwvVqPs6xc8i9/8iZO3JgSoymxOEGTv6WG1ojRwEMFxISouX/r58kafJHW/XtoTM1duwurRrp9REda+x4gRISEqKYmBinm+EoN+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/aiVAUEQEZGhj5b8IFi6hbq6oTYGj321a1j1TK2Xo0eMxAyMjI0depUZWRkON0Ux7ghB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywFwUJIADCwsLUsWNHhYWF6baOzWv02Ld1uKRGjxcoJXPmVm7IgSkxmhIHADiF+yiCCder+TjHziH3/iNn7siBKTGaEgfsxRwSCAi3zyHxa8OnfqNNB0/bfpxuCbFaMLGH7ccBAAAAAAAAYAYnf8ulhwQQADk5OUpOTlZOTo4kaVLv1jVy3Aeub1Mjx7HDr3PmRm7IgSkxmhIHADiF+yiCCder+TjHziH3/iNn7siBKTGaEgfsRUECCICCggIdPHhQBQUFkqQ+ic10Wwd7h24a3LG5bkhsausx7PTrnLmRG3JgSoymxAEATuE+imDC9Wo+zrFzyL3/yJk7cmBKjKbEAXsxZBMCgiGbyjqTmad+b6zTyfTcgO+7WYNwrfivXmoUxZh8AAAAAAAAAHzHkE1AkCssLFRKSooKCwutzxpFhWnWhG5qGFk3oMdqGFlXsyZ0C/piRHk5cxs35MCUGE2JAwCcwn0UwYTr1XycY+eQe/+RM3fkwJQYTYkD9qIgAQRARkaGpk2bpoyMjFKfJ8Y10EcTu6tZg/CAHKdZg3B9NLG7EuMaBGR/TqooZ27ihhyYEqMpcQCAU7iPIphwvZqPc+wccu8/cuaOHJgSoylxwF4M2YSAcPuQTV6vV7m5uQoPD5fH4ynz/ZnMPD3z6S4t2Xq82scY3LG5nrn1yqDvGXFeVTlzAzfkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNicMNnPwtN7RGjgIYzuPxKCIiosLvG0WF6Y2RnTS4Y3NNXbtfmw6c9nnf3RJi9cD1bYJ6AuvyVJUzN3BDDkyJ0ZQ4AMAp3EcRTLhezcc5dg659x85c0cOTInRlDhgL4ZsAgIgPT1dU6ZMUXp6eqXr9UlspgUTe2jl5F566IY26tm2cZk5JhpG1lXPto310A1ttHJyLy2Y2MO4YoTke85M5oYcmBKjKXEAgFO4jyKYcL2aj3PsHHLvP3LmjhyYEqMpccBe9JAAAiAiIkK9e/f2uQrcLq6+/l9coqTi7myZeYXKKyhSWGiIosLquKJbm785M5EbcmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsQBezGHBALC7XNIAAAAAAAAAEAwcPK3XIZsAgIgOztbK1asUHZ2ttNNCRrkzB05MCVGU+IAAKdwH0Uw4Xo1H+fYOeTef+TMHTkwJUZT4oC9KEgAAVBUVKSzZ8+qqKjI6aYEDXLmjhyYEqMpcQCAU7iPIphwvZqPc+wccu8/cuaOHJgSoylxwF4M2YSAYMgmAAAAAAAAAKj9GLIJCHIFBQU6ePCgCgoKnG5K0CBn7siBKTGaEgcAOIX7KIIJ16v5OMfOIff+I2fuyIEpMZoSB+xFQQIIgHPnzmnWrFk6d+6c000JGuTMHTkwJUZT4gAAp3AfRTDhejUf59g55N5/5MwdOTAlRlPigL0YsgkBwZBNAAAAAAAAAFD7MWQTAAAAAAAAAAAwGgUJIADS0tL00ksvKS0tzemmBA1y5o4cmBKjKXEAgFO4jyKYcL2aj3PsHHLvP3LmjhyYEqMpccBeFCSAAKhXr56GDBmievXqOd2UoEHO3JEDU2I0JQ4AcAr3UQQTrlfzcY6dQ+79R87ckQNTYjQlDtiLOSQQEMwhAQAAAAAAAAC1H3NIAEEuKytLSUlJysrKcropQYOcuSMHpsRoShwA4BTuowgmXK/m4xw7h9z7j5y5IwemxGhKHLAXBQkAAAAAAAAAAGA7hmxCQDBkEwAAAAAAAADUfgzZBAS5/Px87dmzR/n5+U43JWiQM3fkwJQYTYkDAJzCfRTBhOvVfJxj55B7/5Ezd+TAlBhNiQP2oiABBABj5PmPnLkjB6bEaEocAOAU7qMIJlyv5uMcO4fc+4+cuSMHpsRoShywF0M2ISAYsgkAAAAAAAAAaj+GbAIAAAAAAAAAAEajIAEEwNmzZ/Xss8/q7NmzTjclaJAzd+TAlBhNiQMAnMJ9FMGE69V8nGPnkHv/kTN35MCUGE2JA/ZiyCYEhNuHbCooKNDRo0fVokULhYaGOt2coEDO3JEDU2I0JQ4AcAr3UQQTrlfzcY6dQ+79R87ckQNTYjQlDjdw8rdcChIICLcXJAAAAAAAAAAgGDCHBBDkMjMzNX/+fGVmZjrdlKBBztyRA1NiNCUOAHAK91EEE65X83GOnUPu/UfO3JEDU2I0JQ7Yi4IEEAAhISGKiYlRSAj/pHxFztyRA1NiNCUOAHAK91EEE65X83GOnUPu/UfO3JEDU2I0JQ7YiyGbEBAM2QQAAAAAAAAAtR9DNgFBLi8vT1u3blVeXp7TTQka5MwdOTAlRlPiAACncB9FMOF6NR/n2Dnk3n/kzB05MCVGU+KAvShIAAGQk5Oj5ORk5eTkON2UoEHO3JEDU2I0JQ4AcAr3UQQTrlfzcY6dQ+79R87ckQNTYjQlDtiLIZsQEAzZBAAAAAAAAAC1H0M2AUHO6/UqJydH1Pd8R87ckQNTYjQlDgBwCvdRBBOuV/Nxjp1D7v1HztyRA1NiNCUO2IuCBBAAaWlp+utf/6q0tDSnmxI0yJk7cmBKjKbEAQBO4T6KYML1aj7OsXPIvf/ImTtyYEqMpsQBezFkEwLC7UM2FRYW6pdfflGTJk1Up04dp5sTFMiZO3JgSoymxAEATuE+imDC9Wo+zrFzyL3/yJk7cmBKjKbE4QZO/pYbWiNHgfFyc3NLvf/pp58caomzTp065XQTgg45c0cOTInRlDgAwCncRxFMuF7Nxzl2Drn3HzlzRw5MidGUOEz2699uf/3brq28QAAkJSV5Jbn2FR0d7R03bpw3Ojra8bYEy4ucuSMHpsRoShy8ePHi5dSL+yivYHpxvZr/4hyT+2B6kTN35MCUGE2Jw42vpKSkGvsdmSGbEBBLlizRkCFDnG4GAAAAAAAAAMAPSUlJGjx4cI0ci0mtAQAAAAAAAACA7eghgYA4e/as1q5da71v2bKlwsPDHWwRAAAAAAAAAODXcnNzdeTIEev99ddfr5iYmBo5NgUJAAAAAAAAAABgO4ZsAgAAAAAAAAAAtqMgAQAAAAAAAAAAbEdBAgAAAAAAAAAA2I6CBAAAAAAAAAAAsB0FCQAAAAAAAAAAYDsKEgAAAAAAAAAAwHYUJAAAAAAAAAAAgO0oSAAAAAAAAAAAANtRkAAAABX65ptvNGzYMDVr1kwRERFKSEjQgw8+qGPHjjndNAAAAAAAHJeSkqI5c+Zo8uTJ6tmzp6Kjo+XxeBQfH+9002olj9fr9TrdCAAAUPv83//9nyZOnKiioiLFxcXpkksu0d69e5WRkaFGjRrpiy++UIcOHZxuJgAAAAAAjpkyZYp+//vfl/m8VatWOnjwYM03qJajhwQAAChjx44dmjRpkoqKivTaa6/p2LFj2rJli44fP67hw4frzJkzGjp0qHJzc51uKgAAAAAAjmnQoIH69u2rxx9/XAsWLNCUKVOcblKtRg8JAABQxh133KGPP/5Yw4cP10cffVTqu+zsbCUmJurw4cN69913NWnSJIdaCQAAAABA7bJo0SLdeeed9JCoAD0kAABAKZmZmfrss88kSQ899FCZ7yMjIzV+/HhJ0vz582u0bQAAAAAAIHhRkAAAwAGFhYXavn27pk+frgceeEBdunRRWFiYPB6PPB6PevfuXe195+Xlafbs2RowYIBatWqliIgIXXzxxbrmmmv06quvKjU1tdLtv/vuO+Xk5CgsLEzdu3cvd53z7du4caOKioqq3VYAAAAAACpTm5+f4b9QpxsAAIDbJCUlafTo0crKygr4vvfs2aNRo0Zp69atpT5PSUlRSkqKvvnmG73yyiuaMWOGBgwYUO4+9u7dK0m69NJLFRYWVu46bdu2lSTl5OTo0KFDSkhICFwQAAAAAACo9j8/w3/0kAAAoIadPXvWlv9MHT16VH379rX+M+XxeHT99ddrwoQJuvXWWxUZGSlJ+vnnnzVkyBCtWbOm3P2cPn1aknTRRRdVeKzY2Fhr+cyZMwGKAAAAAACAf6vtz8/wHz0kAABwSLNmzdS1a1frtXLlSr3xxhvV3t9dd92l48ePS5JatWqlJUuWqEOHDtb3qampGjlypFavXq38/Hzdeeed2rdvn2JiYkrtJzs7W5Iq7B0hSREREdayHf85BAAAAADgvNr6/Az/UZAAAKCG9evXT4cOHdKll15a6vONGzdWe5/Lli3Tl19+Kam4kPDpp5+qffv2pdZp3LixlixZoquuukr79+/X6dOn9fLLL+uFF14otd75vwTJy8ur8Hg5OTnWcr169ardbgAAAAAAKlLbn5/hP4ZsAgCghsXFxZX5z9SFevvtt63lsWPHlvnP1HlRUVF67rnnrPfTpk1TQUFBqXUaNWokSTp16lSFxzs/rFPJ9QEAAAAACKTa/vwM/1GQAAAgyJ07d06rV6+23o8fP77S9YcNG6bo6GhJxYWFdevWlfq+Xbt2kqTDhw9X2Evixx9/lFQ8dFOrVq2q3XYAAAAAAGpKoJ+f4T8KEgAABLn169crNzdXUvFfcHTt2rXS9SMiItSjRw/r/a8n5+rUqZMiIiKUl5enDRs2lLuPtWvXSpK6deumkBD+OwEAAAAAqP0C/fwM//ELAgAAQW737t3Wcvv27RUaWvUUUZ07dy53e6n4P2UDBgyQVLor63nZ2dmaMWOGJGnEiBHVajMAAAAAADUt0M/P8B8FCQAAgtwPP/xgLfs6fFLJMTj37NlT5vunn35aderU0YIFC/S3v/1NRUVFkoq7t44bN06HDx9Wq1atdO+9915g6wEAAAAAqBl2PD/DPxQkAAAIciUnn27WrJlP28TFxVnLJSeoPq9Dhw56++23FRISokcffVSXXHKJunTpoubNm2vBggWKiYnR4sWLFR4efuEBAAAAAABQA+x4fj5y5IgaN25svSZMmFDu5w8//PAFtt4MFCQAAAhy586ds5YjIyN92qbkeiW3L2nixIn68ssvNWTIEBUWFmrHjh1q1KiRJk2apB07dqhTp04X1nAAAAAAAGqQHc/PhYWFOnXqlPXKyMiQJBUVFZX7udtVPUgWAACo1XJycqzlsLAwn7Yp2bMhOzu7wvWuueYaLV68uPqNAwAAAACglrDj+Tk+Pl5er/fCG+cS9JAAACDIRUREWMt5eXk+bZObm2st+/pXIQAAAAAABDOen51HQQIAgCAXHR1tLVfW26GkkuuV3B4AAAAAAFPx/Ow8ChIAAAS5iy66yFo+efKkT9ukpKRYy7GxsQFvEwAAAAAAtQ3Pz86jIAEAQJBr166dtXzo0CGftjl8+LC1nJiYGPA2AQAAAABQ2/D87DwKEgAABLnLL7/cWt6xY4cKCgqq3OZf//pXudsDAAAAAGAqnp+dR0ECAIAgd8011yg8PFySlJmZqS1btlS6fm5urjZs2GC979Onj63tAwAAAACgNuD52XkUJAAACHLR0dHq27ev9X7mzJmVrv/JJ58oIyNDUvH4l7169bKzeQAAAAAA1Ao8PzuPggQAAAZ48MEHreWZM2dq165d5a6XlZWlp59+2np///33KzQ01Pb2AQAAAABQG/D87CwKEgAAGGDgwIG67rrrJBV3KR00aJC2b99eap1Tp05pyJAh+umnnyQV/3XH448/XuNtBQAAAADAKTw/O8vj9Xq9TjcCAAC3GTBggI4fP17qs5SUFJ08eVKSFBUVpbZt25bZbtmyZWrevHm5+zx69Ki6deumEydOSJI8Ho+uv/56tWnTRr/88otWrVqlrKwsSVJoaKhWrFhRqqsqAAAAAAC1Dc/PZqEgAQCAA+Lj43Xo0CG/tztw4IDi4+Mr/H7Pnj0aNWqUtm7dWuE6TZo00YwZMzRw4EC/jw8AAAAAQE3i+dksDHoFAIBBEhMTtXHjRs2fP1/z5s3Trl27dPLkScXExKh169a6/fbbNX78eDVu3NjppgIAAAAA4Bien51BDwkAAAAAAAAAAGA7JrUGAAAAAAAAAAC2oyABAAAAAAAAAABsR0ECAAAAAAAAAADYjoIEAAAAAAAAAACwHQUJAAAAAAAAAABgOwoSAAAAAAAAAADAdhQkAAAAAAAAAACA7ShIAAAAAAAAAAAA21GQAAAAAAAAAAAAtqMgAQAAAAAAAAAAbEdBAgAAAAAAAAAA2I6CBAAAAAAAAAAAsB0FCQAAAAAAAAAAYDsKEgAAAAAAAAAAwHYUJAAAAAAAAAAAgO0oSAAAAAAAAAAAANtRkAAAAAAAAAAAALajIAEAAAAAAAAAAGxHQQIAAAAAAAAAANiOggQAAAAAAAAAALAdBQkAAAAAAAAAAGA7ChIAAAAAAAAAAMB2FCQAAAAAAAAAAIDtKEgAAAAAAAAAAADbUZAAAAAAgFri6NGjio6Olsfj0SOPPFLuOs8884w8Ho88Ho+eeeaZmm2gQ3bt2qU6derI4/HoL3/5i9PNAQAAQDVRkAAAAAAc1rt3b+sHZn9f48aNc7r5CKDHHntMmZmZql+/vp566imnm+OTxx57zLoe4+Pj5fV6q7Wf06dPKzw83NrXzJkzre+uvPJKjRkzRpL0wgsv6MiRI4FoOgAAAGoYBQkAAAAAqAU2bdqkjz76SJL00EMPqUmTJg63yDdjx461lg8dOqS1a9dWaz/z589XXl6eJCkqKkp33HFHqe+ffPJJ1alTR1lZWXr66aer32AAAAA4JtTpBgAAAAD4t65du6pbt24+r9+9e3cbW4Oa9OSTT0qSwsPDNXnyZGcb44f27durU6dO+u677yRJH3zwgXr37u33fj744ANrediwYYqOji71fdu2bTVs2DAtWLBAs2fP1hNPPKF27dpdUNsBAABQsyhIAAAAALXIgAEDXDMvAP7t22+/1apVqyRJd9xxh5o1a+Zwi/wzduxYqyDx8ccf6+2331ZkZKTP2+/du1cbN24stb/yPPDAA1qwYIEKCwv16quv6u9///uFNRwAAAA1iiGbAAAAAMBhU6ZMsZbvu+8+5xpSTXfddZfq1q0rSUpPT1dSUpJf25fsHXHppZfqhhtuKHe93r17q23btpKkOXPmKDU1tXoNBgAAgCMoSAAAAACAg9LS0rRo0SJJUlxcnHr16uVwi/zXpEkT9e/f33pfssBQFa/Xqzlz5ljv77nnHnk8ngrXv/POOyVJOTk5mjdvXjVaCwAAAKdQkAAAAAAMFB8fL4/HI4/Ho4MHD0qSjh49qqeeekodOnRQTEyMoqKilJiYqIcffliHDh3ya//5+fmaPXu2hg8frtatW6t+/fqKiopSQkKCRo0apcWLF8vr9Va6j+TkZKuNJeccWLZsmUaNGqXLLrtM0dHR8ng8pXoQnJedna3XX39d1157rRo3bqzIyEi1adNGo0aN0urVqyvNxXmDBw+2vnvxxRd9jv/Pf/6ztd3tt9/u83bl+eSTT5STkyNJuu222xQSErjHtG3btuniiy+22nrrrbcqOzu73HVXr16tSZMm6corr1RsbKzCw8PVvHlz3XLLLXrrrbcq3O68ksMsff7550pJSfGpjWvXri11/Y0ZM6bS9YcOHWotlyxkAAAAoPZjDgkAAADABZKSkjRu3DilpaWV+vyHH37QDz/8oOnTp2vhwoUaOHBglftKTk7Wfffdp3379pX57uDBgzp48KDmz5+v7t27a9GiRbrkkkt8amNaWprGjx+vxYsXV7nujh07NHTo0DJt2L9/v/bv36/58+dr4sSJevPNNyvdz3/+539q6dKlkqQZM2bov//7v6s8dlFRkWbOnGm9v9Ahlj799FNruU+fPhe0r5LWrVun2267zTrnY8aM0fTp0xUaWvox8MiRIxozZoySk5PL7OPEiRM6ceKE/vnPf+rFF1/U/Pnzdd1115V7vEGDBik2NlanT59WYWGhPvzwQ/3hD3+osp0le1P06NFDv/nNbypd/z/+4z/UsGFDpaWlafPmzfr555/VtGnTKo8DAAAA51GQAAAAAAy3atUqTZo0SYWFhbr00kvVo0cPNWjQQAcOHFBycrIKCgqUnZ2t4cOHa+fOnUpISKhwXwsXLtTo0aOVn58vSYqMjFT37t0VHx+vkJAQ7d27V998840KCgq0YcMG9ejRQ5s3b65ykmav16u7775b//jHP+TxeNSlSxddccUV8nq92rlzZ6khfH766Sf17dtXv/zyi/VZ+/bt1bFjR4WEhGjr1q3atm2bpk2bpvr161d63P79+6tly5Y6cuSIfvzxR61bt67KIZM+//xzHT58WJLUokUL9evXr9L1K1NUVFSqN0dFP/b7a8mSJRo5cqTV8+IPf/iDXn311TJDIe3evVt9+/bViRMnJEkej0edO3fWFVdcocjISB07dkzr1q1TRkaGjh8/rptuuknLly8vd46HsLAwjRo1Sm+//bak4kJDVQWJ7Oxsa7gqqeLJrEsKCQnRNddco+XLl8vr9WrVqlW66667qtwOAAAAzqMgAQAAABjud7/7nSIiIjR16lSNHj261I/Su3bt0i233KJjx44pKytLzz//vN5///1y97Nr1y6NHTtW+fn58ng8evTRR/Xkk08qJiam1Hr79+/X2LFj9dVXX+nIkSMaP368li1bVmkb169fr4KCArVv315z585V+/btS32fm5srqbhwce+991rFiIsuukhz587VLbfcUmr9NWvWaNSoUXrttdesyZbLU6dOHU2YMEHPPvusJGn69OlVFiSmT59uLY8fP/6Chljas2eP0tPTJUmNGzdW8+bNq72vku2bOHGiCgsLJUkvvviinnjiiTLrZWZmatiwYVYxon///nrzzTfVpk2bUuulp6friSee0Lvvvqvc3FyNHj1au3fvVsOGDcvsc+zYsVZBYtu2bdqxY0eZc1nS4sWLlZGRIUkKDw/XiBEjfIqxY8eOWr58uSRp06ZNFCQAAACCBAUJAAAAoBZZtmyZUlNTfV7/ueeeU2xsbKXr5OXlKSkpqdy/5L/yyis1bdo0DRo0SFJxD4j33nuvzLA+kvTII49Y8wi89tpr+v3vf1/u8Vq3bq0VK1aoW7du+v7777V8+XJt3LhRV199dYVtLCgoUFxcnNasWaPGjRuX+T48PFyStHLlSq1bt05S8V/KL1myRNdee22Z9fv06aPPPvtM3bt3V15eXoXHlaR7771Xzz//vIqKirRo0SK9+eabatCgQbnrnjp1SkuWLJFU3JtgwoQJle67Ktu3b7eW27Vrd0H7kqSXXnrJGnaqTp06mjp1aoVDSv3tb3/T7t27JRXPy7Bo0aJyiysNGjTQO++8o6ysLM2aNUsnTpzQ1KlT9fjjj5dZt2vXrrr88sut/X7wwQd65ZVXKmxvyeGaBg8eXKa4VZHLL7/cWt62bZtP2wAAAMB5FCQAAACAWmTz5s3avHmzz+s/9thjVRYkBg0aVOmwQgMGDFBcXJxSUlJ07tw57d69u8xftW/btk1r1qyRJHXq1EmTJ0+u9JhRUVF66qmnNGrUKEnS3LlzKy1ISNLTTz9dbjGipJK9E0aOHFluMeK8Ll26aMyYMZoxY0al+2zZsqX69eunZcuWKSsrS/PmzdPEiRPLXXf27NlWgePGG29UfHx8pfuuyoEDB6zlFi1aVHs/Xq9Xjz76qF5//XVJxQWcefPmlZoAuqT8/Hy99dZb1rpTp06tsqfHCy+8oA8++EBer1dz584ttyAhFfeSON8j48MPP9RLL72kOnXqlFnvxIkTWrVqVantfFVyXpJfT1QOAACA2qv6fYsBAAAABIU777yz0u89Ho86dOhgvS/vB96SQy6NGjWqzFwE5Sk5QfNXX31V5fq+DNezdu1aa/nuu++ucn1f1pGk+++/31ouWfT4tZLfXehk1pJ08uRJa/miiy6q1j4KCgo0duxYqxjRoEEDrVixosJihCRt2bJFP//8sySpb9++Pk0K3bx5cyUmJkqSdu7cWWaC9PPuvvtuq7hx/PjxUkWHkubOnWsNKxUXF1dm2K3KlCxcpaSk+LwdAAAAnEUPCQAAAKAW+fOf/6xnnnkmoPusbAz/80r+GH5+ToOSvvnmG2v5iy++0KFDh6rcp9frtZaPHDlS6boJCQlV9vQ4duxYqYmsq+pxIRUPIeTxeEq1pTyDBg1S8+bNdfz4cW3evLncuQ82bdqknTt3Sir+QXzIkCFVHr8qmZmZ1nK9evX83j4rK0uDBw+2CkZNmzbV8uXL1blz50q3K3k+jx49qt/97nc+He/s2bOSis/t0aNHy51H4pJLLtGNN96of/7zn5KKe5WUV2woOVzT6NGjy+1FUZGSucrJyVFRUdEFzeUBAACAmkFBAgAAADBceT8a/1rJiZ/z8/PLfH/8+HFr+fxkwv44c+ZMpd83adKkyn2ULEbUq1evygKGJNWvX18NGza0fkivyPnJrf/nf/5HUnFPiClTppRap2TviHvuuUdhYWFVHt8fVRVNyvP666+roKBAUvHQU6tXr9Zll11W5XYlz+f27dtLzWXhq8rO6dixY62CxOLFi3Xu3DlFR0db33/33XfasWNHqfX9UZ1cAQAAwHn8CQkAAABgOF+GV6pKRcPz+Or80DwViYyMrHIf586ds5b96U1Q8ofwytx3333WX9nPmTOn1GTYWVlZmj9/fql1AyEqKspaPj9huD9KFpJOnz6tEydO+LTdhZ5PSVYhpDxDhw61JgbPysrSokWLSn1fsndEp06dfOrFU1LJXEVERNA7AgAAIEjwvzYAAAAAVSr5w/knn3wir9fr9+tClSwsZGVl+bxdyWGRKtOqVSvddNNNkqRTp04pKSnJ+m7hwoXWUFY9evTQFVdc4fPxKxMXF2ctp6am+r395MmTdeutt0oqjnPAgAFat25dlduVPJ+PPPJItc5n7969K9x/ZGRkqblLZs+ebS0XFBRo3rx51nt/e0dIpXvLlMwhAAAAajcKEgAAAACq1KxZM2vZqUmES05knJWVVeUwUFJxr4qqhmsqqaLJrQM9mfV5CQkJ1vLRo0f93j4sLEyLFi0qU5T48ssvK92uJs5nyUJDcnKyNY/IypUrrcm869atq7vuusvvfR87dsxajo+Pv7CGAgAAoMZQkAAAAABQpZITSH/99deOtKFFixalihIbN26scpstW7b41Tvjtttus/7iftWqVTp8+LD27t1r/cAfHR2t4cOH+9nyil111VXW8g8//FCtfZwvSgwaNEhScVGif//+lRYlSp7P9evX2zInQ8+ePdW6dWtJUlFRkebMmSOp9HBN/fv392n+kF/bvXu3tdyhQ4cLbCkAAABqCgUJAAAAAFU6/2O3VDxk0/m/cK9p119/vbU8d+7cKtc//yO4r0JDQzV+/HhJxT+iz5gxQ++//771/ciRI32ek8IX7dq1syYdP3XqVKm//PdHWFiYPv7441JFicp6Slx77bWKiYmRVNwz49NPP63WcSvj8Xg0ZswY6/3s2bOVlpampUuXWp9VZ7gmSdq2bZu13K1bt+o3EgAAADWKggQAAACAKnXr1s2aMyA7O1v33HNPqUmfK5OXl+fT8Eq+mDBhgrX84YcfasOGDRWu+69//UuzZs3y+xj33XefNRH4jBkzSu0jkMM1SVJISIj69Oljvf/qq6+qva/zRYmBAwdKKh6uqqKiRHh4uCZPnmy9f/DBB/0qhvhakBozZoyVy927d+uPf/yjcnJyJEmxsbGlCl2+Kioq0vr16yUVFz1uvPFGv/cBAAAAZ1CQAAAAAOCTN9980+od8Pnnn6tXr16VDpu0d+9ePf/884qPjw/YME/9+/dXz549JRX/MH3rrbdq1apVZdZLTk7WgAEDVFhYqLCwML+O0bp1a/Xt21eSdOjQIWuOhfbt25ca6ihQzs//IElr1qy5oH2FhYXpk08+8ako8eijj+rKK6+UVDwnQ5cuXbRw4UIVFRWVu+/U1FS999576ty5s1555RWf2pOQkKDrrrvOev/ee+9Zy6NGjfL73EjSt99+q7S0NElS165d1bRpU7/3AQAAAGeEOt0AAAAAAP+2bNkypaam+rx+vXr19PLLL9vYon/77W9/q3nz5mnEiBHKysrSxo0b1b17d7Vp00adO3dWbGyscnJy9PPPP2v79u3VHn6oMh6PR++//7569OihU6dOKTU1VTfddJM6dOigjh07Sioezmfr1q2SpMcee0wLFy7UoUOHJBX3SPDF/fffX6bQce+99wYsjpJuv/12Pfjgg8rJydHSpUv17rvv+tzO8pwvStx+++367LPPrKLE8uXLrWKOVDwfxtKlS3XjjTfqwIEDSklJ0fDhw9W4cWN1795dcXFx8nq9On36tL7//nv9+OOPVrGiZK+OqowdO1br1q0r9/PqWLx4sbU8evToau0DAAAAzqAgAQAAANQimzdv1ubNm31ev2HDhjVWkJCK55JYv3697r33Xn377beSpH379mnfvn0VbhMfH68WLVoErA2XXXaZVq9eraFDh+rAgQOSiosQJecVkIqLCi+88II+/PBD67MGDRr4dIwhQ4aoadOm+vnnnyUVD3F0zz33BCiC0ho2bKg77rhDc+bMUUpKitatW2cNj1Vd54dvGjZsmFWU6N+/f5miROvWrbVlyxZNmjRJixYtktfrVWpqqv7xj39UuO+YmBi1b9/e57bceeedevjhh5WVlWV9dvnll6tr167Vim3RokWSpIiICN11113V2gcAAACcwZBNAAAAAPzSoUMHbdmyRStXrtQDDzygq666So0bN1ZoaKiioqIUHx+vW265RU8//bS+/vpr7d+/3+q9EMg27Ny5U6+99pq6d++u2NhYRUREKCEhQSNGjNCqVas0bdo01a1b15q/IiQkxOeCRN26dUvNbzB06FDFxsYGNIaSSs7n8Pe//z0g+wwPDy8zp0T//v3LzFMRGxurBQsWaPv27frTn/6ka665RhdffLHCwsIUERGhuLg49ezZU4888oiWLl2qEydO+NW7oX79+ho6dGipz6rbO2Lt2rX68ccfJRX3jmjcuHG19gMAAABneLxer9fpRgAAAACAHX788Uf95je/kSQlJiZq9+7dPm3n9XrVpk0bqwfGqlWrrHkl7HLzzTfr888/V3h4uA4ePKi4uDhbjxeMRowYoQULFqhOnTrauXOnEhMTnW4SAAAA/EAPCQAAAADG+uijj6xlf4YI+uKLL6xiROvWrf2aM6G6nn/+eUlSbm6upkyZYvvxgs2+ffv08ccfS5LuvvtuihEAAABBiIIEAAAAACMdOHBAr776qvXen/kG/vd//9danjhxojweT0DbVp6rr75aI0aMkCS98847+uWXX2w/ZjD5y1/+osLCQtWrV0/PPfec080BAABANVCQAAAAABB0br75Zq1YsUIFBQXlfv/ZZ5+pZ8+eSktLkyR17NhRN998s0/7Xrp0qZYsWSKpeP6D++67LzCN9sGrr76qqKgoZWRkWD0mIH3//ff64IMPJEl/+tOfdOmllzrcIgAAAFQHc0gAAAAACDrneyw0atRInTt3VsuWLRUWFqbU1FRt2rRJR48etdatX7++vv76a7Vv377cff3000966623VFhYqL179+rzzz/X+cek5557Tk899ZT9AQEAAAAuQEECAAAAQNDxdQilyy67TAsXLlSHDh0qXCc5OVk33HBDmc+vvfZarVmzRmFhYdVuJwAAAIB/C3W6AQAAAADgr507dyopKUnr16/XoUOHlJqaqtOnTysiIkJNmjRRt27dNGjQII0cOVJ16tTxeb9hYWFKSEjQiBEj9MQTT1CMAAAAAAKIHhIAAAAAAAAAAMB2TGoNAAAAAAAAAABsR0ECAAAAAAAAAADYjoIEAAAAAAAAAACwHQUJAAAAAAAAAABgOwoSAAAAAAAAAADAdhQkAAAAAAAAAACA7ShIAAAAAAAAAAAA21GQAAAAAAAAAAAAtqMgAQAAAAAAAAAAbEdBAgAAAAAAAAAA2I6CBAAAAAAAAAAAsB0FCQAAAAAAAAAAYDsKEgAAAAAAAAAAwHYUJAAAAAAAAAAAgO0oSAAAAAAAAAAAANtRkAAAAAAAAAAAALajIAEAAAAAAAAAAGxHQQIAAAAAAAAAANiOggQAAAAAAAAAALAdBQkAAAAAAAAAAGA7ChIAAAAAAAAAAMB2FCQAAAAAAAAAAIDtKEgAAAAAAAAAAADbUZAAAAAAAAAAAAC2oyABAAAAAAAAAABsR0ECAAAAAAAAAADYjoIEAAAAAAAAAACwHQUJAAAAAAAAAABgu/8P+i/PqZ7lgDYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_3_30.spectrum / countsp.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error / countsp.spectrum, fmt='o', label=\"3-30 Hz\")\n", + "plt.errorbar(energies, covspec_01_1.spectrum / countsp.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error / countsp.spectrum, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Normalized Covariance (1 / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "40de3c8c", + "metadata": { + "id": "40de3c8c" + }, + "source": [ + "Alternatively, we can calculate the Covariance Spectrum in fractional rms normalization" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "ac4fc20b", + "metadata": { + "id": "ac4fc20b", + "outputId": "1d04917c-d24a-4988-9d89-4f47ef86c3c3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [01:00<00:00, 1.50s/it]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:59<00:00, 1.50s/it]\n" + ] + } + ], + "source": [ + "covspec_01_1 = CovarianceSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n", + "covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "5615406c", + "metadata": { + "id": "5615406c", + "outputId": "c74ddc36-c90c-4d32-d6d7-72820d5d2634" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABk8AAAR9CAYAAAD/fNBwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXxTVd4/8E+SNum+CbYUsGVRqoAUxYIoq6MwOCzjCopDQR+Rh3mEmWdEZ1PQmUdl/M3Q17iACxTBcRk3wAVRoYBKp+pQhEoYtrKVFuiWNm2aJrm/P2pjC12y3Jube+7n/Xr5sinJPef7PSc36T33nGOQJEkCERERERERERERERERAQCMaleAiIiIiIiIiIiIiIgonHDwhIiIiIiIiIiIiIiIqA0OnhAREREREREREREREbXBwRMiIiIiIiIiIiIiIqI2OHhCRERERERERERERETUBgdPiIiIiIiIiIiIiIiI2uDgCRERERERERERERERURscPCEiIiIiIiIiIiIiImqDgydERERERERERERERERtcPCEiIiIiIiIiIiIiIioDQ6eEBERERERERERERERtcHBEyIiIiIiIiIiIiIiojY4eEJERERERERERERERNQGB0+IiIiIiIiIiIiIiIja4OAJERERERERERERERFRGxw8ISIiIiIiIiIiIiIiaoODJ0RERERERERERERERG1w8ISIiIiIiIiIiIiIiKgNDp4QERERERERERERERG1wcETIiIiIiIiIiIiIiKiNjh4QkRERERERERERERE1AYHT4iIiIiIiIiIiIiIiNrg4AkREREREREREREREVEbHDwhIiIiIiIiIiIiIiJqg4MnREREREREREREREREbXDwhIiIiIiIiIiIiIiIqA0OnhAREREREREREREREbURoXYFiEKppqYG27dv9z7u27cvLBaLijUiIiIiIiIiIiIiovM1NTXhxIkT3sfjxo1DUlJSyMrn4Anpyvbt2zFjxgy1q0FEREREREREREREfnj//fcxffr0kJXHZbuIiIiIiIiIiIiIiIja4OAJERERERERERERERFRG1y2i3Slb9++7R6///77GDhwoEq1UUdDQwMKCgowfvx4xMTEqF0dTWDO9JEDEWIUIQYiIrXxXEpawb6qD2xndTDvgWHexM+BKPGJEoceHDp0qN0WDOdf21UaB09IV87fHH7gwIEYPHiwSrVRh9PpRGRkJK644gqYzWa1q6MJzJk+ciBCjCLEQESkNp5LSSvYV/WB7awO5j0wzJv4ORAlPlHi0KPzr+0qzSBJkhTSEolUVFJSgiFDhngf79u3T3eDJ0REREREREREREThTu1rudzzhEhnGhsbsXnzZjQ2NqpdFc1gzvSRAxFiFCEGIiK18VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY+DJ0Q64/F4UFNTA4/Ho3ZVNIM500cORIhRhBiIiNTGcylpBfuqPrCd1cG8B4Z5Ez8HosQnShykPC7bRbqi9lQvIiIiIiIiIiIiIuqe2tdyOfOESGdcLhdKS0vhcrnUropmMGf6yIEIMYoQAxGR2nguJa1gX9UHtrM6mPfAMG/i50CU+ESJg5THwRMinamvr8fatWtRX1+vdlU0gznTRw5EiFGEGIiI1MZzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ8LttFuqL2VC8iIiIiIiIiIiIi6p7a13I584SIiIiIiIiIiIiIiKgNDp4Q6UxtbS2eeuop1NbWql0VzWDO9JEDEWIUIQYiIrXxXEpawb6qD2xndTDvgWHexM+BKPGJEgcpj4MnRDoTExODGTNmICYmRu2qaAZzpo8ciBCjCDEQEamN51LSCvZVfWA7q4N5DwzzJn4ORIlPlDhIedzzhHRF6XXyJEmCx+MB31ZE4jEYDDAajTAYDGpXhYiIiIiIiIhIeGrveRIRspKIBCRJEhoaGlBfXw+73Y6mpia1q9Qtj8cDm82GhIQEGI2cfOYL5kwfOfA1xpiYGCQkJCA+Ph4REeH1MdrQ0IAtW7bgpptu4h00REQB4rmUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUl54XfUh0pDm5macPHkSDodD7aoQUQg1NDSgoaEBFRUV6NOnD+Li4tSuEhERERERERERyYzLdpGuyDXVy+Fw4MSJE3C5XHJWj4g0xmAwcACFiIiIiIiIiEgBai/bJebaK0QKkiQJx48f1+zACfdl8R9zpo8cBBKjJEk4efJk2JwPmpubYbVa0dzcrHZViIg0i+dS0gr2VX1gO6uDeQ8M8yZ+DkSJT5Q4SHlctovIT/X19XC73e1+FxkZicTERMTGxiIyMjKsN5R2uVyorKzERRddFHb7NYQr5kwfOeguRkmS0NjYiKqqKjQ2Nrb7fV1dHZKTk0NZ3Q41NDTg/fffx4IFC5CYmKh2dYiINInnUtIK9lV9YDurg3kPDPMmfg5EiU+UOEh5XLaLdEWOqV4nTpxAfX2997HFYsEll1wi7AVlImpPkiQcO3as3QBKTEwMMjIyVKwVEREREREREZFYuGwXkYZIkgS73d7udykpKRw4IdIRg8GAlJSUdr9raGgQekkzIiIiIiIiIiK94eAJkR862g8hJiZGpdoExuVyoaysLGz2aNAC5kwfOfAnxqioqAt+5/F4lKiWX2pqarBs2TLU1NSoXRUiIs3iuZS0gn1VH9jO6mDeA8O8iZ8DUeITJQ5SHpftIl0JdqqXy+XCwYMH2/3u0ksv1dTME0mS4HQ6YTabw3pvlnDCnOkjB/7EGK7nApfLhZMnT6JPnz6q14WISKt4LiWtYF/VB7azOpj3wDBv4udAlPhEiUMP1F62i72DSGcMBgMsFova1dAU5kwfORAhxoiICGRmZqpdDSIiTeO5lLSCfVUf2M7qYN4Dw7yJnwNR4hMlDlIel+0i0hm3242qqiq43W61q6IZzJk+ciBCjHa7HW+88cYFezMREZHveC4lrWBf1Qe2szqY98Awb+LnQJT4RImDlMfBEyKdMRgMMJlMwi69pATmTB85ECFGo9GIpKQkGI38eCciChTPpaQV7Kv6wHZWB/MeGOZN/ByIEp8ocZDyuOcJ6Qr3PCEiOfBcQERERERERESkLLX3POHwGpEOnKhqQOYjH3b434mqBrWrF/Y8Hg8aGhrg8XjUropq9JADEWJ0Op0oLi6G0+lUuypERJrFcylpBfuqPrCd1cG8B4Z5Ez8HosQnShykPA6eEBF1Q5Ik1NXVQc8T9fSQAxFidDgcKCgogMPhULsqRESaxXMpaQX7qj6wndXBvAeGeRM/B6LEJ0ocpDwu20W6osdlu6zlNqwvPIb1hcc7/PerM5Ixsl8Kpmf3xqC0+BDXjkibtHguICIiIiIiIiLSEi7bJSin04l169ZhypQpyMjIQFRUFHr16oXRo0fjmWeewblz52Qvs7S0FC+99BJmz56NYcOGITk5GZGRkUhJScGVV16J+fPnY/v27X4d02Aw+PWfvxcOjx8/jqVLl+Lqq69Gz549ER0djQEDBuC2227De++9p+k7wNW21VqBO1buwuQVOzsdOAGAb49V4/mCw5i0YgfuWLkL26xnQlhLdfn6PpUkCR6PR7b+6Ha78d133+GVV17BggULMGLECJjNZu/7aPz48bKU052jR4/irbfewpIlSzBhwgQkJCS0ez+3JWcOcnNzvWXk5ub69dr8/HzvazMzM4OuS1tyt7MaJEmCw+HQdAxERGrjuZS0gn1VH9jO6mDeA8O8iZ8DUeITJQ5SHgdPFGC1WjFy5Ej84he/wMcff4zjx4+jqakJ5eXl2LVrFx566CEMHjwYH330kSzl7d69GyNHjkS/fv1w//3347XXXsN3332HmpoauFwuVFdXY+/evXjxxRcxfvx4TJgwAcePd34xPVReeeUVXHHFFVi2bBn+/e9/49y5c3A4HDhy5Ajeeecd3HLLLbjppptQXl6udlU1pdruxIOv78a8/G9QVFrl12uLSqswN/9rLHpjN6rtYq/76M/71O12o7y8HG63O+hy33//fSQkJGDYsGG47777sHLlSnz77bdobm6WISrfnD59Gj169ED//v1x55134i9/+QsKCgpQV1fX6WvkzEG4EiHG2tpaPP3006itrVW7KkREmsVzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ8ri8is5MnT+KGG25AWVkZgJaZG2PHjsWAAQNw9uxZfPbZZ2hsbMSZM2cwY8YMbN68GRMnTgyqzAMHDqCoqKjd7y677DIMGTIEPXr0QE1NDb766iucPHkSAFBQUIBrr70WO3fuRP/+/X0uZ+HChd0+x2Qy+XSs1atX47777vM+TkpKwsSJE5GYmIh9+/bh66+/BgB89tlnmDRpEr788kvExcX5XFe92n/ahtw1RaiwNQV1nA3FZSg8Uom183KQlZYgU+3Ch7/v048//hhjx471uX93paamBg0NDUEfJxhNTU2orKz06zUmkwk9e/aUJQfhSoQY4+PjMX/+fMTHcwk+IqJA8VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY+DJzK76667vBdkMzIysGHDBgwbNsz77+fOncPMmTPx+eefo7m5GbfffjsOHz6MpKSkoMseOHAg7rvvPsyePRu9e/du928ejwf5+fn4n//5HzQ0NKCsrAx33303vvrqqwuW5+nMs88+G3QdgZbBngceeMD7+O6778aqVasQGxvr/d3WrVtx2223obq6Gt999x0efPBBrF69WpbyRbX/tA0zXyxEbaM8MxgqbE24c1Uh3pw/SrgBFH/fp3fccYds79NWqampuOaaa7z/ffLJJ8jLy5Pt+L6Ii4vDVVddhZycHFxzzTVwOByYM2dOh881GAyIjIwMaf1CTYQYTSYT0tLS1K4GEZGm8VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/Ldsnoo48+ws6dOwEAZrMZmzZtandBFgB69OiBDRs2eGd8VFVVYfny5UGV26tXL6xZswZWqxUPP/zwBQMnAGA0GjFv3jysX7/e+7vCwkJs2bIlqLID8cc//tG7RNF1112HV199td3ACQBMnDgRr732mvfxq6++iv3794e0nlpSbXcid02RbAMnrWobmzFndZFQS3gF+j5dunSpLMs5TZ48GceOHUN5eTk2bdqERx99FD/96U9lHZjpTmpqKvbt24fa2lps374df/nLX3DHHXfgkksu6fQ1brcb586d0/SSVt0RIcb6+nrk5+ejvr5e7aoQEWkWz6X6I0kS6hzNqLI7Uedo1sz65+yr+sB2VgfzHhjmTfwciBKfKHGQ8jh4IqPnnnvO+/OcOXMwdOjQDp8XGxuLxx9/3Pt41apVcLlcAZc7btw45Obm+rTUzM9//nPk5OR4H3/44YcBlxuIiooKvPPOO97Hy5cvh9HYcTf86U9/ip/85CcAWi5qrly5MiR11KLHNpYEvVRXZypsTVi6qUSRY6sh0Pfpq6++KstF9bS0tC4HKUIhOjoagwcP7vS91xGDwQCLxeLzTDUtEiHGiIgIZGZmIiKCE0uJiALFc6k+WMttWL7ZirtfLkT2459i6NItuOqJlv9nP/4p7n65EMs3W3GgvPM94dTGvqoPbGd1MO+BYd7Ez4Eo8YkSBymPgycyqa+vx+eff+59PHfu3C6ff+utt3r38KiqqsKOHTsUrV9b1113nffn0tLSkJULABs3boTH4wHQsi/L6NGju3x+bm6u9+f3339fwZpp11ZrBTbuKVO0jA3FZdhqrVC0jFAI5n1aXV2NL774QtH6hTOj0Yj4+Hi/BlzUUFpaCoPBENB/x48f10SMXYmKisL48eMRFRWldlWIiDSL51KxbbVW4I6VuzB5xU48X3AYXx6qvGD2dm1jM748VInnCw5j0ooduGPlLmyznlGpxp1jX9UHtrM6mPfAMG/i50CU+ESJg5Sn3StEYearr75CU1PLnf+xsbG45pprunx+VFQUrr32Wu/jrVu3Klq/ttreVR3q5Wm2bdvm/Xn8+PHdPn/ChAnen48fP45Dhw4pUS1NW1lwJDTlbA9NOUoK9n3aduBFbzweD+rr672DnyISIcampiYUFhZ6+zkREfmP51IxVdudePD13ZiX/w2KSqv8em1RaRXm5n+NRW/sVmQ520CXDWNf1Qe2szqY98Awb+LnQJT4RImDlMe5STJpux/H0KFDfZr2ddVVV+HTTz+94PVK27t3r/fnvn37+vy6HTt2oKioCBUVFTCZTOjRoweGDRuG0aNHX7BnSWfaxnnVVVd1+/z09HSkpqaioqLC+/qBAwf6XGfRWcttfv/xF6iio1U4UF6HQWnxISlPCVp6n4YbSZLQ0NCA6OhotavSpYSEBCxcuNCn53733Xfe/W9aaSHGrjidThQXF2Pw4MGwWCxqV4eISJN4LhXP/tM25K4pCnqZ2w3FZSg8Uom183KQlZYQ1LGs5TZsLC7DnpM12HfK1m72S2J0JIb0TsCwPkmYnt270+/f7Kv6wHZWB/MeGOZN/ByIEp8ocZDyOHgikwMHDnh/zsjI8Ok1bfc9sFqtstepI8ePH283y6V1TxFfjBs3rsPfx8TEYN68efjjH/+Iiy++uMtjBJqn1sETq9WKqVOn+lhjMZ2oavD+vL7wWEjLXl94DPeP7Y++KTEhLVcuwb5P275eb0wmU7fv73CQkpKCZ599ttvnnThxot3+T7NmzUL//v2VrFpIxMfH44EHHlC7GkREmsZzqVj2n7Zh5ouFFyzNFagKWxPuXFWIN+ePCmgAZau1AisLjnR5A1TrsmGtS4flZKZgwfgBmJDV/rsY+6o+sJ3VwbwHhnkTPweixCdKHKQ8Dp7IpLKy0vtzamqqT69JS0vz/lxVFZrZA7/+9a+9S3VdcsklsgxENDQ04Nlnn8U777yDd999F6NGjerweY2NjWhsbPQ+Duc8hbMxy7d1/ySFrCs8hnWFx1D61M2q1SEYWnmfhiNJkuB2u2EymWTdUP1f//oXfvnLX/r8fDkGmu12O6ZNm4by8nIAwMiRI7F69WrFYgwlj8cDm82GhIQETe/dQkSkJp5L1SFJEuqbXGh2S4g0GRBniQj687ja7kTumiLZBk5a1TY2Y87qImxeNBbJsWaf6/LYxpKA9iosKq1CUX4VpmenY+nUwd4y2Vf1ge2sDuY9MMyb+DkQJT5R4iDlsXfIpL6+3vuzr0u+tH1e29crZe3atXjnnXe8j5988slup6ZZLBbccccdyM/Px759+2Cz2eB0OlFeXo4PPvgAt912m/ePmtOnT+Pmm2/Gf/7znw6PdX6MauYpKirKuxG42+1GTU2Nd23h1hiBlgEfu90OAHC5XKitrfUeQ5Ik72vcbrd3UMrj8cDlcnmf53K52j2vdT8Fj8fjfY0kST4/LxzIHZMSz2tb19bn1dXVeX8fFRXlUzu1fY/U19crGlNbvsYkd9/rrA5utxtnzpxp9ziY2FtZrVY899xzPv93/r4z/tbB7XZj9uzZKC4uBtCydOF7772HqKgoNDc3e2P09XiSJHl/drlcqKmp8dattrYWzc0tF2saGhrQ0NAya6y5ubnduaSmpsbbbna73TvI7HQ6YbPZvOXU1NR461RfXw+HwwGgZa3W1r5dU1ODvLw8bz3q6uq8a7g6HA7vOdSf857aMXk8HtTU1LR7HzMmxsSYGJOSMZ08eRJ5eXmw2Wwhjclms6HO0YxzdQ6crDjrfZ7I7WQtt+HpD77DL1ZtR/bjn2LY0s0Y+6cPMHTpJ8h+/FPMWVWApz/ciwPldQHF9Nj7e1BfZ/M+L87QBBNa6hCFZpjREl8E3IhB614mEuIMTTD+8LzoNs+LhBvRPzzvjM2Bx9/92qe+981/TmDyiu3YuKcMMXAiAi35MsOFKLTU2wQP4gw/LisWa2iC6YfnWdAMC5qxobgMU1Zsw7cHT3rbPC8vz3uDTzi+n8K172kpptZ2LisrEyYmLbRTeXm597NAlJhC0U6t/fXkyZPCxORvO6n1PSJUfa9tfFqOSfR2EjEmtXDwRCatnQYAzGbf7j5qe1G27YwMJXzzzTftpqPNmjULd911V7evO3XqFN58803MmTMHgwcPRnx8PCIjI5Gamoqbb74Z//znP7Fx40ZERUUBaLkz/7//+787PFbbHAHq5mnUqFG47bbbAABnz55FXl6e9w29evVqfP/99wCA7du3Y9OmTQBaPiBWrVrlPUbbi6k2m817UmlqasLZs2e9zztz5oz3JFBbW+s9qTgcDpw7dw5Ay4nozJkz3hNWdXW192TR0NDgnTFx/oVntcgdU9uL8pWVld6Tut1uR3V1NYCWfJ85c8ab83Pnznn7VF1dnffk73Q6cebMGW9dz549623b1vIBwGg0+tRObe94bGxsVDSmtnyNSe6+11bbmM4XbDvJwePx+N33Hn74Ybz//vsAgNjYWLz88svo2bMngJYvDXFxcTCZTN3G1Jr/1i8HAFBWVoa8vDxv/V544QUcPnwYALBlyxZs2bIFAHD48GG88MIL3ue1/nEBAJs2bcL27dsBAN9//z1Wr14NoKVt8/LyvO379ttvo7CwEACwe/duvPbaax3m6LXXXsPu3bsBAIWFhXj77bcB+HfeUzum1j/AWvs5Y2JMjIkxKR3TmjVrsGjRIiQkJCge0wefbcfyzVb8+oX38NjfVmHo0i0Y/38f4ZWVz+P6P32Iu18uxN9WrsYn2wuFaqdVq9di0bPvYfKKndhVWIiYU9+gtrEZSQYHbo/aCzPcqG1sRs+yXfj0q39j0oodePjZN7Dm9bd9jmmrtQLFJQcw3fK993m3R+1FT2PLH+6jzceQHdlyMTrTVI0plpbZrWa4cXvUXiQZWr6/jDMfxhURLUsIX2o6hxstBwEAsQYnko58hs27W8rtrO/96/uj+PD11aiua/neNMViRaap5TtGdmQZRptbluHtaazH7VE/7k053fI9ehtb8nVN5ElcE9nSFpH2s3j3H/mwlrfcLduaXyXaieeI8IgpISEBY8eOxQcffCBMTFpop+3btyM7OxsJCQnCxBSKdkpISMBdd92FNWvWCBOTv+0Uyu8RavS9f/zjH/jZz36GhIQETcckejuJGJNaDFK43MqucTfffDM++ugjAC0X55566qluX/Pxxx9jypQpAIC4uLh2d8XL6ejRoxg9erR3iZorr7wSO3fu9H7ZlsNLL72E+++/3/v4m2++wdVXX93uOWfPnm23Z8L+/fuRlZXV7bHvvPNOvPXWWwCAX/7yl/j73/8ecD1LSkowZMgQREVFISIiAoWFhcjKykJdXR0SExNhMBhgs9kQFRUFs9mMxsZGeDwexMbGemeetF7Ebn3rXHbZZd4L7CaTCR6PBx6Px7sZucvl8i4D5Ha7YTAYYDQa4fF4IEkSTCbTBcsFdfW8fr/9KOD45XLoT5NkjUmJ57XNv9FohNFoxJQpU/Dxxx8DAJYsWYI///nP3bbThx9+iJ/97GcAWt6n1dXVisS0bNkyLFu2DEDL/kJbt271KabWARo5+t727dsxYcIEbzu73W5F2unee+/F2rVrAQBz5sxBfn6+zzG98soruO+++wC07Ftz5MgRn+vwj3/8A/fccw+AlkGxd955B1OnTg0oJrfbjcOHD3tnoBmNRvTr1w8OhwNJSUkAWgasYmJiEBkZ6R1oiomJQXNzMxoaGpCYmAjgx0GbiIgI2O12GI1GREdHw+l0wuFwICEhAZIkoba2FvHx8TCZTKivr0dERASioqLQ1NQEp9OJ+Pj4C6Ye19XVwWw2w2KxwOFwwOVyIS4uDm632+fzXn19PWNiTIyJMTEmmWPafvAcXv58P745UQsnIhAJNyLgRiPMMEBCrMEJu2SGBAOi4YQLJgzP7In/Gt0H1/ZPDsuYfGkntykKyz7Yj0/3lMIFE5phghkumCChEZEwwoMYQzPqJTMAA2LghBMmuH54nhESJmVn4A8/HYRIydllTLmv7sG3pWcRZXDBLrXcjBVnaEKjFAk3jIhCMzwwwIkIRMANM9xogBktM0+caJAi4YER0WiG+4fnddROV2Sk4q0Hruuw7zUbzPjpigLU19d3GZMDkTDBg2hDM+p/qGusoQkOKQJumGD5YXZKEyJhghtRBhfi4hOwedFYGJobdP9+YkyMiTExJsbEmBiTuDGdOnUKQ4YMQat9+/Zh8ODBCBUOnsik7QX+Bx980KeRsXfffRe33norgJZ9FU6fPi17vU6fPo0xY8Z4Rxv79++PL774Ar169ZK1HI/Hg379+uH48eMAgCeeeAJ/+MMf2j2nsbERMTE/bjT+73//G8OHD+/22NOmTfOOOj7yyCN48sknA65n6+BJK3/fcC6XCwcPHmz3u0svvdR7YTcUMh/5MGRldUare56E6/sUAJYuXdpu8KSgoKDb11RVVeHRRx/t8jmjRo3C7NmzfapDQUFBu8GTth8PbrcblZWVuOiii2AymXw6Xmdyc3MvGDzxVX5+PubOnQugZfCktLTUp9cVFhZi/Pjx3jsbnnzySTzyyCPtnuNPjOFwLuhIXV0dXnvtNdx9992Ij49XtS5EFBhJkn/fBy1RM/7Wsqtrbfjg3bcw++67Zb3ZCAhu34tW5+97oRX7T9uQu6YIFbam7p/cjdQEC9bOy+l0w3ZruQ2TV+wMuhxffbJ4LAalXfi5++Dru4Nq6+7MGJKCrPo9/NwXHL/fqYN5DwzzJn4ORIlPlDj0INhrucHihvEyueiii7w/V1RU+PSa1pkgAJCSkiJ7nSorK3HjjTd6B0569eqFzz77TPaBE6BlCaSJEyd6L4Lu37//gudER0cjOjrau/RWuOSJ9CMc36fBsNlseO6557p8Tn19vc+DJ10xGAyIiYnR5AW848ePY8aMGd6Bk1/84hcXDJwA2o6xldlsRnZ2ts/LIhJReLCW27CxuAx7TtZg3ylbu82tE6MjMaR3Aob1ScL07N4dXqDVOjXj76jsSLhxqcmCV/72BbJ6p8hWtlyDBxuKy1B4pLLLwYNws/+0DTNfLJRt4/YKWxPuXFWIN+ePapeDE1Utd1auLzwmSzm+Wl94DPeP7Y++KT/eKLbVWqHowAkAfLjvLK6+dkDQn/t6H7QNd/x+pw6R867ke17kvPlK9ByIEp8ocZDyOHgik0GDBnl/PnbMty/rrbM0APi0fJU/bDYbJk2ahJKSEgBAjx498Nlnn6Ffv36yltNW20GZ1r0Hzjdo0CDvRs3hkCct2rnkx5kBi98sxrfHqkNW9oiMZPztzuyQlSe3cHufaonRaERcXJza1fCb3W7HtGnTvINl1113HV588cUOn6vVGNuyWCwYNWqU2tUgIh9ttVZgZcERFJVWdfqc2sZmfHmoEl8eqsTzBYeRk5mCBeMHYELWxZ2+RivUjL+rspthwvfuVKBRkq3sUA0ehKNquxO5a4pki71VbWMz5qwuwuZFY72zcMYs3yZrGb5aV3gM6wqPtZudvbLgiOLlNsOETeVxuKfNHpG+0vugrZbw+506RMt7qN7zouUtEKLnQJT4RImDlMfBE5lcfvnl3p/37t0Ll8vV7fIt//73vzt8fbDsdjumTJmCb7/9FgCQmJiIzZs344orrpCtjM7KbRUbG9vhcy6//HLv4EnrpkFdKSsrazdDQM48aVXbO9pG9ksJ6eDJyP4p7crXmmDfp+E2eJKZmdnhZvNK8Hg8sNvtiI2NhdFoDEmZwZIkCbNnz8aePXsAtCzz9e6778LSyQUGLcZ4PofDgcLCQowaNQpRUVFqV4eIOhHM0k1FpVUoyq9SbOmmUNyBrmb8vpRthgtXRFTge1cqnG3+XAq07FAOHoSjxzaWyLJUV0cqbE1YuqkEeTO7Xwo4lKzlti4HBeVihgvOE3ux99hADM3o6dNr9D5oq0X8fqcOUfIe6ve8KHkLhug5ECU+UeIg5Wnz6lAYGj16tPeCnN1uxzfffNPl85uamlBYWOh9PHHiRFnq4XA4MG3aNHz55ZcAWjYD+vDDDy/YvF0JbQdD0tPTO3xO2/0UfNnTYfv27d6fL7nkEgwcODDwCgpoWnbHeVasvGG9Q1qe3IJ9n44fP17J6oU1SZLQ1NQUssEaOfzud7/D+++/DwCIj4/Hpk2bcPHFnf8BoMUYz+dyuVBaWgqXy6V2VYioE/tP2zA5b0fQy/lsKC7D5LwdsJbbgq6TtdyG5ZutuPvlQmQ//imGLt2Cq55o+X/245/i7pcLsXyzFQfK64IuS834fS3bBAlpxjqY0PHngb9lh2LwQA6SJKHO0YwquxN1jmZZPg9DsXTVhuIybLX6thyr0k5UNeBEVUPIlg1r7atvFR3zLlnWmWq7Ew++vhvz8r/xe2CnqLQKc/O/xqI3dqPa7gymyhQAfr9Th9bzrtZ7Xut5k4PoORAlPlHiIOVx5olM4uLicMMNN+Cjjz4C0LKpcVfTv959913U1bX8AZqSkoKxY8cGXYfm5mbceuut2Lp1K4CWKWgbNmzAddddF/Sxu2O1WvHVV195H3d2kXnatGl44IEH4PF4cODAAe8ob2fabiQ9ffp0uaorjKy0BORkpoTkzracfiman7If7Pu07eCf3phMJvTo0UPtavhs3bp1eOqppwC0LMf1+uuvY+jQoV2+RmsxdiQuLg65ublqV4OIOhFuSzeF+m5UNeP3p+xGRGKzs+vZpr6WHarBg+nZ6ZiYler3a5VexiUUS1cBwMrtRwKKX26hXjbM21e/rcC6byvaLRvWlp732xEBv9+pQ8t5V/M9r+W8yUX0HIgSnyhxkPI480RG//3f/+39OT8/37vfyPkaGhrw6KOPeh/ff//93S4d1B2324277rrLe1E4IiICb731Fn7yk58EfMz6+nqfntfQ0IDc3Fy43W4ALfurTJ48ucPnpqam4pZbbvE+XrJkSad3tW3ZsgVbtmwB0HJR84EHHvCn+rrxwPj+ISlnwbgBISlHaYG+T++9916YTCbF6xeuJElCc7M8d6Eq7auvvsJ//dd/eR8vX74cN9/c8cWEtrQUY2fcbjfKy8u952MiCh9KL93kz52hatyNqmb8/pZthAcphgYY4Qm67FAOHvhjq7UCd6zchckrduL5gsP48lDlBflpHTh7vuAwJq3YgTtW7sI26xmfywjV0lUAUHS0SpaZUVrjS19tHTiUa/ZT68ChHLPeyDf8fqcOreZd7fe8VvMmJ9FzIEp8osRByuPgiYxuvvlmjBkzBkDLcj8/+9nP8N1337V7TmVlJWbMmIFDhw4BaLmb/eGHH+7weKWlpTAYDN7/2s7CaEuSJNx77714++23AbTcZb1u3TpMmzYtqHgyMzPx6KOPwmq1dvqcL7/8Etdeey3+9a9/eX/3xBNPdLnp8hNPPIHIyEgAwM6dOzFnzpx2+6UAwLZt23DXXXd5H//iF79QfM8WrZqYlYppw5Rdvmt6drowaxwH+j6dO3dupx+qvr5XtcztduPs2bNh/8Xi+PHj+PnPf46mppY/FubNm4f//d//9em1WomxK3V1dVi1apV3xhQRhY9wWbpJrWWz1Izf37JjDM2YHvU9YgzdD7Z0VXY4Dh4oPXDWumxVKJeuahXq8sJBd301nAZtKXD8fqcOLeY9HN7zWsyb3ETPgSjxiRIHKc8gafkW2zB08uRJ5OTk4PTp0wAAg8GAcePGYcCAATh79iw+++wzNDS0rEcbERGBzZs344YbbujwWKWlpejXr5/38Zo1azqcUvb8889j4cKF3seXXnopbrrpJp/r/Oyzz3b4+7abg6anp+PKK69EamoqoqKiUFVVhW+//RZHjrS/y23hwoWdHq+tV155Bffdd5/3cXJyMiZOnIiEhAR8//337QZjrrzySnzxxReIjw9+yaiSkhIMGTLE+3jfvn0YPHiwz693uVw4ePBgu99deumlQc8cCla13YnJeTsUuSiRmmAJ+41I/eXv+/Tjjz/GxIkTvYMj5/P1vdpqypQpKCtrf9GqvLwcFRUt63XHxsZ2uL/PRx991Ol+Qv569NFHsXHjxna/q6+vx+HDh72Phw0bdsHrli1bFvQSerm5uVi7di0AYM6cOX4NNuXn52Pu3LkAWjaALy0tvaB+S5cuBdAyY+3ee+/1DtZ2Z9myZUhOTu60ndsK13NB674tFotF9g2eiShwW60VmJff9T5bclidO6LLpYvkXjYLaFnayZelq9SKP7CyJZjhhhMmAL6dS9uW3br3xKodh7G+8LifZQfunlEZuH9sf/RNienw3+VaxgVo+X7Y0TIumY98GPSxg7FzScsSq4vfLMa3x6pDVu6IjGT87c7skC/bdX5fPX/Zrgdf363osnHTs9ORN3N4UMeQJAn1TS40uyVEmgyIs0To6juML/Hz+506tJj3cHjPazFvchM9B6LEJ0ocehDstdxgcc8TmfXp0wdbt27FrFmzUFxcDEmSUFBQcMHm6D179sSaNWs6HTjxx5kz7afPHzx48IKLel3xZbCjrKzsgou9bSUnJ2P58uXtBkS6cu+990KSJCxevBh2ux3V1dV45513LnjeDTfcgHXr1skycCKy5Fgz1s7LwZ2r5L8gsnZejlADJ4D/79Nglr/ryPfff49jxzq/O9Jut2PPnj0X/N7plO/uvuPHj3dYRlsd/Xt1deguRASi7f0AbrcbL774os+v/c1vfoOLLrpIiWqFjMFgQFRUlNrVINI8uS/mhcO+D0rfjdrVjRZqxh9Y2QY4/fwzqW3Zob+A3mJd4TGsKzzW4b4X4bbfjlL6JEfDYDBgZL+UkA6ejOyf0umglbI676vhvN+O0nvt+EONwRt/4+f3O3VoLe/h8p7XWt6U0FUORBgwFqWNRYmDlMfBEwVkZWXhX//6F9544w28/vrrKCkpQUVFBZKSktC/f3/ccsstmDt3bthvTPyf//wHu3btwq5du7Bnzx6cPXsW586dQ319PeLi4nDxxRfj6quvxk9+8hPMnDkTMTH+/cFw33334aabbsIrr7yCTZs24fjx46ivr0evXr1w1VVXYfbs2ZgxY4bmPkjUkpWWgDfnj8Kc1creUSgKf96nbrcb586dQ48ePXS97wkAeDxdr/+uZW63GxUVFZpuZ5vNhtWrV2PevHlISBDzvUukFKUu5qmxdFNH9QvFslkd3Y2qZvyBlh0DJ6ZYrPioKQsN8O0Gkq5yrzY1B85Cze50I84SgWnZ6Xi+4HD3L5DJtGG9Q1ZWW1311XAYtD3fVmsFVhYc6fJ92brXTut+OzmZKVgwfoCsSwirNXgTaPzzclJh3bGR3+9CTGvfq8PlPa+1vCnh/ByE04CxHERpY1HiIOVx2S7SFVGX7Wqr2u7E0k0l2FAc+F0n07PTsXTq4LD5Q1htHo8HDocDUVFRMBr1uVWUHnLgT4zhei5wOp34/vvvccUVV8Bs5vuXyBe+XMw6ny8X88Jp6SY1ls1SO/5gyo6AG5mmapS6k+GC74PprWWrNfOklZpLN6m9bNe//3gjUn74/nrHyl0hGbjL6ZeCt+ZfC+DHfh+qZcNa+2pKej/8v1kjvO97a7kNk1fsVLz8Vp8sHtvlBb9quxOPbSwJqh/K8feJUuf77gQbfwTc+Hk/Cb+54wakJne+t2ggRLgLXila+l4dTu95LeVNKa05OGvqgZe+PBHyc47SAmnjE1UNnX4/2rlkgiqzN9lXtYPLdhGRrJJjzcibORzTs9OxcvsRFB3144O6XwoWjAvvD2o1GI1Gv2dWiUYPORAhRrPZjOzsbLWrQaQJwVzMKiqtQlF+VZcX88Jp6SY17kZVO/5guGDCIbf/M8TlKFtu4bKMS6iYI368+eGB8f1RlK/84MmCcQO8P7de/AnVsmGtfXXhwIvRNyXGO3izPsT9cH3hMTwxY0iH/ybXXjsbistQeKQyoJnxSp/vuyJH/C6Y8M+jwI4XCmVZGUC0u+CVooXv1Wq+5zvbY0sLeVOavRlYvV/Cxm6Wye5IsOecUBCljUWJg5Qn5u3DRISJWal4a/61+GTxWNwzKqPT543ISMbCCQPwyeKxeGv+tRw46YDH40Ftba3QS1Z1Rw85ECHGxsZGbN68GY2NjWpXhSis7T9tw+S8HUFfVN5QXIbJeTtgLbfJVDP5qbFsltaZ4UJO5HGY4VK7KkEL5cBZOIg1/zhTaGJWKqYNS1e0vOnZ6R1+d56WrWy5rVr76qRBKQBaBi3HLN8W0tleADodNGzda0euJQNb99rx55yr5vlervhb27naZvc7/ra2Witwx8pdmLxiJ54vOIwvD1VesJxf67JhzxccxqQVO3DHyl3YZj3TyRHFpoXv1Wq+5zu7SUILeVPS/tM2TF3xOcq/Lwzqe0Q4f8f0t42t5Tas2tH5UpqL3yzG8s3WkH+H1HtfJd9x8IRIcIPS4r3LV3Tkb3dm46FJWbq+q6g7kiTB7XZDz6sc6iEHIsTo8XhQU1Oj6QEgIqWFw8W8UDhR1YATVQ2q3I3aeiesVhkhIc7ghBHa/TwA1Bk427lkgve/qzOSQ1J2qxEZyRcsN7Rs2mCkJlgUKS81wYKlUzteMiIrLQE5mSmKlNuWERL6xkoY0DNW8bK6c/73J6X32qm2O7t9rprneznjb3tO8if+tnV58PXdmJf/jd/nhKLSKszN/xqL3tjtV5m+kCQJdY5mVNmdqHM0h913cH6vDowW8qZU32s955yra5Lle0S4fsf0tY3bDth2NcD37bFqVQZstdBXKTxw2S4iom6YTCakpCj/B3A400MORIgxNjYWM2fOVLsaREFTag12PW2creVls9TmQCS2OgcG/PqdSyYACN2+F61GZCTjb3dmh83STaFauspbXv8LP8OTY81YOy8Hd64qlPV9nxgdibXzcrp8v4di2TAHIvGzGbchNlb9wRO70404y4+XFx7bWCLboMX5KmxNWLqpxLvXTkfUPt/LGf/55yRf4m8VDsumtaWlJcP4vTow4Zo3pfte+3NOcN8j2grH75jdtbGaSyX6I1z7KoUfDp4Q6UDflBjv2ueSJMHpdMJsNnMzQB8xZ/rIgQgxulwunDx5En369FF983oif4XigoraF/NIG0zwoKexHmc9cXAHMFE/1PtetBrZPwV9U2JU27R93XmDJ9Oy0/F8QefLdMht2rDeHf4+Ky0Bb84fhTmrg7+ADLTMOPHlAnLrsmFK7jkz/cpU9ItqgMvlUv1z3+nyAD9M8gmHvXbUPN/LHX9H5yRf9hpqvQtergGk1rvg35w/yu8BlK3WCqwsONLlzJfWJcNalw1Te+Nsfq8OjC95U+ommY6Equ+1PecE+z3ifOH2HbOrNg63Aduu8D1OvuKyXUQ643a7UVlZCbfbrXZVNIM500cORIixvr4ea9euRX19vdpVIfJZqNZgD9XFvK3WCkXLIOVFG5rxU8t/EG0I7oJjqPa98JbXyeBBKLVd+iRUS1cBQE6/lC4HVbPSErB50VhMD7JNpmenY/OisT5fyFF62bBfj78kbD73zRE/XlpQe68dtc/3csff2Tmpq72GwmHZtNZ6hOOSYb7g9+rAdJY3a7kNyzdbcffLhch+/FMMXboFVz3R8v/sxz/F3S8XyrrvRSj73vnnHLm+R7QVTt8xO2tjrS2Ny/c4+coghdvCkkQKKikpwZAhP94Rt2/fPgwe3PFaxR1xuVw4ePBgu99deumlHKUm0hmeC4iCF8yU/lb+TOm/Y+WukOz/kNMvBW/Nv9a7dJJaSzeptWxXK7WXrlKz7NaZJ0Do+x0A1WaeAMC+ZZPaLd201VqBefnfKF7umtxrfL5DeKu1Aiu3H0HRUd/bJadfChaMC+wOeGu5TZFlwzq6+1/Ntj/65BQYDAZYy22YvGJnyMr9ZPHYCwbO1HjftQqH+AHgwdd3KzvrKTu927vg5boDHfB9xpeWyDH7Qs33PADv6hZd8WXmx/mCnXUU6r6n5jknXFTbnZict0ORGX+pCZawWraMQi/Ya7nB4lUeIiIiIgqpUE/pV2Pj7NaLWWot3aQ2tZeuUrvsVqHY9wIAFowboHgZvmi7dBMQoqWrstP9usA2MSsVE7NScaC8Dhv3nMKeE7XYe6r2gqUCh/ZOxLC+iZg2LLi9F0K5bJiag5YnqxsBqLPXzv1j+3vfe2qd78NlryEgPJZNC6clw8KJ3EuUhsONCp1Ra9+LUPc9Nb9jhhMujUsi47JdRDrjcrlw+vRpuFwutauiGcyZPnIgQoy1tbV46qmnUFtbq3ZViDoVyin9J6oacKKqQZWLWa30uHRTW2rGH2jZsYYm3BW1G7EG//poR7lvHTxQkr+DB0pqu3RTK6WXrlo6NbA7DwelxeOhSVlYf99IFD96I/Ytm4R//7Hl/8WP3oj1943EQ5OyZLlIpdSyYed/7vdNiUHflBiM7Bea5dJajeyfgjHLt2HM8m1YX3g8pGWvKzyGMcu3qXq+P1HVoGj8XZ2T1nUQr9rLpoXLkmFBlyfj92qllihV8z3f2Y0atbW1+L8nn8KMFZ8GPYi3obgMk/N2+LxsUyj7XlfnnEC/R/ii9ZyjpvPfG2ovlRgo/u1MvuLgCZHOGI1GJCUlwWjk299XzJk+ciBCjDExMZgxYwZiYtS/65yoI6G+oKLmxbxWau37sHPJBOxcMgFXZySHpOxWIzKSvXfCAuruexFo2Q4pAl84M+GQfJ+k39WeG+E6eKCEWLPpgt8lx5qxdl4OEqMjZS0rMToSa+flyLKMh8HQsmROSqxZsY2Lk2PNyJs5HKtzRyDHzwudOf1SsCb3GuTNHN4u3s4+9/U4aKv24I2SujsntV2JXY274M8XijvQQ0GO79Wh2ncjnN7zx20u7HBm4mSdPPtI+rPvRSj7XlfnnEC+R/gqFOec7pz/3lB7wDZQ/NuZfKXdK0REFBCj0Yjo6GhNXyAONeZMHzkQIcbIyEhkZWUhMlLeC1REchHlgoov2l7MemB8/5CU2XbppnC6G1WN+IMp2w0TjnuS4caFAwH+lN0q1IMHag6cdTbo0Lp0lVyDSKkJFs0u3zMxKxVvzb8Wnywei4UTBuD6gT0u6BuJ0ZG4fmAPLJwwAJ8sHou35l/b4eyizj731Ry0JPl1d076T3ldWMy0BLR1B7okSahzNKPK7kSdoxnnbwcc7Pfq/adtmJy3IySzL8LlPV9td+K+dbthbYz36zO0O77MOgqnvhfI9wgtafveCIcB20Dxb2fyFfc8IdIZt9sNm82GhIQEmExifpjLjTnTRw5EiLGhoQFbtmzBTTfdxDtoKOyEwxrsoWR3ur0bZ6u578O07HQ8X3BYsXIvKK+LpavUiD+Qsi1oxjWRJ/F1cx80ofs/qH1ZNiuU+16ouedLV1qXrlq6qQQbigPvC4GsgR+OBqXF46G0LAAtF3HtTjecLg/MEUbEmk0+zX7p6nNfb/vtiKy7c9KkvNBtUH++deftuRLKO9AD+az3Z8+RvgmmgL9Xq7HnSzi85x/bWIIaWz2u9+Mz1Ffd7XsRTn3P3+8RWtPQ0ID3Nn2EnOvHY/3Xp0Nadkf7PAWKfzuTr7R7ey0RERERaYZWp/QHyunytHus1tJN4XI3qppLV4XLsllK7XvRmXBaxqWVEktXiUCJZcP0tt8Oqad1xkY434EeyJ4j9+Z/jfJah991U2vPF7Xf82rO/Ajnvieqj/eV42d//0LVpXGJQoWDJ0Q6YzKZkJycrNk769XAnOkjByLEyHVbKVzp8Y/a8zfOVnPfBzWXzWqlZvz+lt2ESHzR3K/bu0UD2XMjlIMH4TJw1hE5l67Ss+4+98Nl4JCC4+s5SS2ty4apsWRYdxtnB7PnyK7j9Xhqfzx+u/GAX5vUq7lEqZrv+dabZJTur21vkgmX5erOF+7v2WDFxMSoGt/5S+wFin87k6+4bBeRzng8HjQ1NcFisWh6b4dQYs70kQMRYmxubsbhw4cxYMAArt1KYaH1ooYaf9TePzY0Awad6Wjj7FAu3dSWmstmtaVW/P6WbYIbvY02nPIkdLpeuT9ld2RiViomZqXiQHkdNu45hT0narH3VO0FS8gM7Z2IYX0TMW1Y74D2lQiHZVy6IsfSVXrW3ed+68DhnavkWz4I6HjgcOeSCQCAxW8Wh3S5uBEZyfjbndmqb6CsZPxdnZNGZCTjmxDmuyNqLRu2rvAY1hUeQ+lTN3f47/tP25C7JvDPm9a8f1DsRuGRSp/O+WovURrK93xbbW+S8eUzNBitN8kMSotX7X3f3ewHpXOgtubmZlxirFYtvrZL4waDfzuTr7R5dYiIAubxeFBTUwOPx9P9kwkAcwboIwcixNjQ0ID3338fDQ1d34VHFCpjlm/DmOXbVJnSP2b5trDdODuUSze1Cpc70NWK35+yowwuXG8uRZTBJVvZnRmUFo+HJmVh/X0jUfzojdi3bBL+/ceW/xc/eiPW3zcSD03KCnhDbrWXcfGHEktXic6Xz/3WgUO53v+pCZYO913omxKDvikxGOnnjKpgjeyfgr4pMaqe73cumaBo/F2dk7rba0ivWvccCWagvm3eW/cc6WrTdiA8ligN1Xse6HjmR3efoXLwZdaR0nY8NL7Tc46SOWg956ipoaFB8TbuyvlL4waKfzuTrzh4QqQzERER6NWrFyIiOPHMV8yZPnIgQoyJiYl45JFHkJiYqHZViMKCmhfzuqLGvg9qLpvVUV3U2vfCl7LtkgX/cAyHXWp/4UnpPTeUGjwIl4Ezkp+vn/uhHLRUa68dtQdvvPVRIP7OzkmAb3sN6Y1ce46cn/fu9hwJpyVKQ/We7+gmma76q1xab5JRU0qcpdNzjpI5OP+co4bExETF27gr5y+NGyj+7Uy+0u4VIiIiIiJShCRJqG9yodktIdJk0Pxd4NOy0/F8weHQlefjxaxQLd3USs1lszoS6vjDpexQU2sZFwovrQOH07PTsXL7ERQd9f0ib06/FCwYN8CnGUate+2E4iJyR3vtqH2+VyP+tnehq7FsmtrLhp0vFHuO5M0c7v2dmkuUPjFjSKf/Hqr3vF45XR7Aov45R486WhqXSEkcPCHSGZfLhTNnzuDiiy/W9B32ocSc6SMHIsRYU1ODvLw8LFq0CElJSWpXhzTGWm7DxuIy7DlZg32nbBdcRB7SOwHD+iRherb2LiKrfTGvO6Hc96H1btSlm0qwoTjwddmnZ6dj6dTBslw4V3Pfi47KPldZhbUvvYAHH3wQycmhXQJIKeE2cEbyCORzPxQDh2rutRMO53u5448zNOH2qL34p2Mo6tvc6d0af9u70Ef2Swnp4MnI/ilhNXgi554jneX9/D1H1Nx3o6vBk1ahvlmgs7yJpnX2Q0fnHKVyEMh3TCXU1NRgbvQ3uH3O/fjjx0dDPmAr1/dC/u1MvtLm1SEiCpjJZMJFF10Ek4mj9b5izvSRAxFijIuLw5w5cxAXF6d2VUhDtlorsLLgSJcXmmobm/HloUp8eagSzxccRk5mChaM19YdieG+cXar1qWboOD1hnC+GzUU8XdXdtTFKZgzZw7i49W/QCGncBw4o+AE87mv5KBl6147Sm6c3dVeO2qf7+WOv1GKxMdNl6FR+nHZxc7iV+Mu+Oe2ha687si550hHefeWs/1Ihxu2h5okST6/V0N1o0JXeRNJ29kP559zlMpBsN8x5dL62dOnT0+M7Fcb8gFbufBvZ/IVB0+I9KD6GJB3JQDAgPOuRyz6DkjOUKNWmmEwGGCxiHvXjC/0kAMRYoyIiEBmZqba1SCNqLY78djGkoAu7hSVVqEov0pTF1HVvpgXjvS0dJU/RD6XhvPAGflPrr6qxKDlsmmD8a+jlYosn9TdXjvhcL6XM343jCj3/DjLq6v41Vw2TI0lw/52Z7b3sdx7jpyf97Za9xxR+zPR7nS3vHf9pOSNCl3lTW5q9r22g03nn3OUyEE4fcds+9mj5WXLRP6+R/Li4AkRUTfcbjdqa2uRmJio6VkJwdBDDkSI0W63Y9OmTZg6dSpiY2PVrg6Fsf2nbchdE/zyPRuKy1B4pLLT5XvC5YJKKzUv5oUzNZfNCkd6OJdy4EwM4dxX1d5rR+3zvZzxR6EZo83H8JUzA5bomG7jD/XMm9Zlw9RYMqxvSoxie460zbsDF84gWF94DPeP7S9rmf5q3XcjnHSXNzmp2ffO1/acI3cOwu07ZtvPnnBYKjFQ4fwZSuGFgydERN0wGAwwmfR38agtPeRAhBiNRiOSkpJgNBrVrgqFsf2nbZj5onwXsypsTbhzVSHenD/qggEUtS+onE/ti3laoOayWeFCT+dSDpxpW7j3VTX32gmH871c8XtgQL1kRo94C16+98LP2vOpNfNGrTvQldpzpDXvHnR8HlxXeAzrQrxJ/Pla991QS0c3yXSXNzmcf5NMOMx+aHvOaWx0yZaDcPyOef5nj9pLJQYq3D9DKXywhxCJrqIE+DKv839/97+Az5YBFd+Hrk4aYzQakZiYqOsPVT3kQIQYo6OjMXnyZERHR6tdFQpT1XYnctcUyXohCWjZE2XO6iJU250d/vu07HRZy+tOV1P6Wy9mpSbIMzqQmmDpcOCItEuv59LWgbOUWDPiLBEcONEALfTV1r12pgf5OTA9Ox2bF43161wbDud7OeJ3IgK9Bo/CpsU3+Fz2smmDZYv7fJ3dBd96B3oohGLjbCciUNR8CZxhfM9x23031NA3JQZ9U2Iwst+P7R6KvJ1/k0y49L3Wc05yQqwsOQjX75jnf/a0DtgqSYlly7TwGUrhQbtXiIioa//5BFj9U+CF0cA3r3T+vBP/Ar74K/DCtS3P/8+W0NVRBefOncOGDRvw+9//HtOmTcPgwYORnJyMyMhIxMTEoHfv3pg0aRKefPJJnDp1CgDg8XjQ0NAAj8cjSx0aGxtRUFCAJ598EnfddReuvvpqXHzxxYiKioLFYsHFF1+M0aNH43//93+xe/fugMrYv38/HnroIVx55ZVISUlBbGwsLrvsMsyZMweff/6538frLgf5+fkwGAwwGAx+rxtaWlrqfa3BYEBpaanf9ZOD3O2sBqfTieLiYjidHV/AJnpsY4kiS5gALTNQlm4q6fDfwuWP2rb1UetiHoU/nktJK7TSV1v32lmdOwI5/fz7LMjpl4I1udcgb+bwgO68DofzfbDxv3x3NuZmGRDrx+o/rXfBJ0bLu2xSd3fBPzA+NMtYhWLj7Ai4MdB0DhFwd/m8nUsmYOeSCbg6I1nxOrV1/r4bamp7k4yveQuqvA5ukgmXvpeVloCNC0bh9n6uoHKg1HdMSZJQ52hGld2JOkczJEny+xgdffaoMWAbLK18hpL6wncInYgC01AFfPQQsO9t/197/CvgH18BQ28HfrociAnNha5Qys3NxYcfftjhv7lcLjQ2NqKsrAxbtmzBsmXL8Nvf/ha/+93vUFdXJ9tm4s899xweeuihTv/97NmzOHv2LHbt2oW//vWvuPPOO/H8888jJcW39vjzn/+MZcuWobm5/Z3lBw8exMGDB/Hqq69i1qxZWLVqFeLjfbtjS5IkWXMQjkSI0eFwoKCgAP3794fZHD5Tuyk8bLVWKLqEB9CyB8r07HRMzEq94N/CbUo/N86mzvBcSlqhtb6q1l474XK+DzR+m82G1av/6Xc7q7FsmlpLhinBDDeyI8pQ5k6AC53P8AinfTfU0nbfC1/zFqjObpIJp74XbfKgd+NR/P2OqVjz9RnVv2Nay23YWFyGPSdrsO+U7YJzzpDeCRjWJwnTs30753b02RMOSyX6S2ufoaQegxTIMCORRpWUlGDIkCHex/v27cPgwb6PYLtcLhw8eLDd7y699FJERITJOGT5PuC124C608EfK74XMPsdIDV8NiaTw89+9jPv4EmPHj1w+eWXIyMjA3FxcWhoaMChQ4dQVFQEl8vlfc0vfvELrF27VrY6PPPMM97Bk5iYGFx++eUYMGAAkpKS4HK5cPLkSRQWFsJms3lfM3ToUHzxxRdISOj6zpNHH30UTzzxhPdxr169MGbMGERFReHbb79FScmPd4XfdNNN+PDDD2Xpv/n5+Zg7dy4AICMjw6/ZI6WlpejXr5/38dGjR/2evRJqYX8uIOrAHSt3hWwzx7fmX9vhvz34+m7F/6jNmzk8oNdy42wiotBTY6+dcDrfhyL+arsTSzeVYENx4J+/07PTsXTqYJ8uYFbbnZict0ORma6pCRZsXjS2XT0yH+n4xrhQKX3qZgAtF6gnr9gZsnI/WTw2rL6PbLVWYF7+N4qXsyb3mk4HFkLd93yl1jlnq7UCKwuO+PX9PyczBQvGBz54Yy23qbLPFYkt2Gu5weJVHiJRlO8D8m8GHDXyHK/uNLBmCjD3I6EGUMaPH4+pU6fihhtuwMCBAzt8TkVFBX71q1/h9ddfBwC8+uqruPnmm3H77bfL8sfMpZdeij//+c+YNGkShg0b1uEFd4fDgRUrVuD3v/89PB4P9u7di9/97nd49tlnOz3u559/3m7g5KGHHsKf/vSndndRvP7665g3bx4cDge2bNmC//u//8Ojjz7abZ0lSYIkSd6ltUQkQoySJKGpqQkWi0WzMZAyrOW2kAycAEDR0SocKK/r8I+/ZdMG419HKxX7ozaYKf3cOJta8VxKWiFCX23dawchnPgbTud7X+IPtp1DPfNGi3egd0yCGW44YQJ82Pi77ewLpYVizxd//Tjz45RfefNHdzM/wqXvnf+eDfU5p9ruxGMbSwK6YamotApF+VVdDph2dU5qXSoxlAO2gRLhM5RCg3ueEImgoaplxolcAyetHDXA+ltbji+I3/zmN5g/f36nAycAkJqaitdeew0TJ070/u7ZZ5+F2y3Puq3Tp0/H7373O1x99dWdzlSIiorCI488gscee8z7u1dffRUOh6PT4/72t7/1/jxz5kwsX778gumns2bNwt/+9jfv42eeeQbnzp3rts5utxvl5eWy5SAciRBjbW0tnn76adTW1qpdFQoTJ6oacKKqAesLj4W03PWFx3CiquGC36u1Bru/uHG2vvFcSlrBvho8LZzv5WrniVmpeGv+tfhk8VgsnDAA1w/sccHncWJ0JK4f2AMLJwzAJ4vH4q351wZ0B3rrkmFy7YHQ1cbZSu05Emdw4u7oYsQZOt4PYURGMnYumdDud+Gy74Zalk0bjMx4dJm3QPl6k0wo+15nunrPKn3O2X/ahsl5O4Ke6b2huAyT83bAWm674N+6Oyepuc+VP/gZSr7isl2kK8Iu2/X2vYHtceKrobcDt76s3PHD1Pr163HPPfcAAC666CKcPXs25H9QnTx5En379vU+3rt3b7s+3Orrr79GTk4OAMBoNKK0tLTd69qSJAmDBg3y9uW//vWv+NWvftVlPSRJgsvlQkREx1/wRFi2q7sY2wrXc4Hb7cbZs2fRs2dPmEzyrzFMoSVJEuqbXGh2S4g0GQL6AytclrI4H6f0UzjjuZS0gn1VH5RsZ6Xvgg/lkmHLN1vxfMHhgMs5nxEeJBkcqJGi4OngvuOFEwbgoUlZF/w+nJcoDYWSU9VY8HIBTjZGdJi3QCRGR/o9gBHq5eraUuvcvP+0DTNflH/Wzfm59ze+A+V1WF94DOs6uZlrREYyRvZPCfnSuPwM1Q4u20VEwfnPJ8oOnADA3n+2DKBcNknZcsJMz549vT/X1dWpcida2zq01qMj77//vvfnn/zkJ50OnAAtd7vMmTMHf/jDHwAA7733XreDJwaDAZGR8t4p7o/MzEwcO+b/nfNr1qxBbm6uT89VO0Y5mEwmpKWlqV0NCoLcGzqGKy1N6Sf94bmUtIJ9VR+UbGell00L5ZJh07LTZR088cCIKimm8/KG9e7w9+G8RGkoDO6djBfn36D6TTKhXq6uLTXOzdV2J3LXFMk6cAIAtY3NmLO6qN1+L/7GNygtHk/MGIInZgxRfanEtvgZSr7isl1EWvfFitCU82VeaMoJI99//7335759+6qynFPbOgDodEbGtm3bvD+PHz++2+NOmPDjFPOvvvoKTU1df7F1u904d+6cppe06o4IMdbX1yM/Px/19fVqV4X8tNVagTtW7sLkFTvxfMFhfHmo8oI/fmobm/HloUo8X3AYk1bswB0rd2Gb9YxKNQ6eVqb0k/7wXEpawb6qDyK0cyiWDGvdc0Qu0WjGZLMV0bjwYnRXe45oZYlSpdTX16Nw87t4576rMD07PahjTc9Ox+ZFY4OaXRzK5epaqfGefWxjiSIDdgBQYWvC0k0l3sfBxBdOSyWKcG6l0ODMEyItqygBjn8VmrKOfQlUfA+kXhGa8lRWVlaGZ555xvv45z//ecg/2J1OJx555BHv49GjR6NXr14dPnf//v3en6+66qpujz18+I9Tvd1uN/7zn/9g6NChnT7fYDCoupHanDlzUFlZ2e3zKisr8cYbb3gf+1NftWOUQ0REBDIzM1VfPox8p/SGjlowMSsVE7NScaC8Dhv3nMKeE7XYe6r2glk3Q3snYljfxJBP6Sf94bmUtIJ9VR9EamelN85+YHx/FOXLs1+nGwaUe+Lh7mDT8+72HGndd0Pt2RdqaO2vPRJiVJv50ZFQbtoe6vfsVmuFokvFAS17oEzPTsfErFRhzkmixEHKYw8h0prqNksXff1KaMv+5hVg9INAckZoyw2RhoYGlJaW4uOPP8by5ctx5kzLHd2XX345Hn30URiNyk/WczqdOH36NHbu3In/9//+H4qLiwEA8fHx+Pvf/97ha86cOYOamhrv44yM7tsnOjoaPXv2xNmzZwEAVqu1y8ETo9GI+Hj1LlYuW7as2+c0Nzfjpptu8j7OysrCjBkzfC5D7RjlEBUV5dPMIwoP+0/bkLsm+D+qNxSXofBIpWb+qO5MKP+oJeoKz6WkFeyr+iBqOyuxZNjErFRMG5Yuy4VkJyJQ7Lpwaa7p2ek+XdTX6xKl5/fXcLxJRunl6kL9nl1ZcCQ05Ww/golZqcKck0SJg5THwRMircm7Ur2yv3655b+lterVQUZffPEFxowZ0+VzpkyZgnXr1sFgMMDj8SgygBIREdHlUlGXXXYZ3nnnnQ43igdwwYyM1NRUn8pNS0vzDp5UVXV9J5DH40FDQwNiYmK6zUFVVRV++ctf+lQHoPN9XPy1cOFCFBQUAABSUlKwadMmJCYm+vx6f2IMV01NTdi9ezeGDx8Oi0WhvwZIFnJv6Fhha8Kdqwr93kwzXCn9Ry1RV3guJa1gX9UHtrN/5NpzJBJuXGo6h4PuHmhGy2bS/u45oua+G2rprL/q6SaZUL5nreU2FJXKM9uqO0VHq3CgvA6ZyWYhzkk8t5KvOHhCRNSB5ORkPP/885g5cybcbjcqKysRHR0d0jqYTCY8/PDDWLZsWZdTSc9fo9PXerZ9XnfrfEqShIaGBp+OXVdXh+eee86nOshlxYoVeOmllwAAkZGReOeddzBw4EC/juFPjOHK6XSiuLgYgwcP5hfAMBbKDR13LmnZ32jxm8X49li1rOV1ZURGMv52Z3bIyiOSE8+lpBXsq/rAdvZP654jd64K7iaVCLgxMOIcjrqT0QxTUHuOhOPsC6X40l9Fv0kmFO/ZE1UNAID1hce6eaa81hcew+yrLhbinMRzK/nKIEmSpHYliEKlpKSk3d37+/btw+DBvt854nK5cPDgwXa/u/TSS0O7RuJS3++kV64OYsw8OXLkCP76178CaLlwXldXhwMHDuDf//43XC4XgJaN1VeuXInLLrtMsXosWrTIO/PEbrfjxIkTKCoq8s7IGDhwIP7+979j8uTJHb5+586dGDt2rPex2+32aebE2LFjsXPnTgDAE088gT/84Q8Bx5Cfn4+5c+cG/Pq2jh49iszMTJ+fv3nzZvzsZz/z5vCll17CfffdJ0tdOhMW5wLSrAdf363ousTTs9ORN3N4u98t32zF8wWHFSvzfAsnDMBDk7JCVh4RERFRW9ZyW1jvOSL67AtSVuYjH6pafulTN6taPulLsNdyg8WrPESkW/3798ezzz57we/Lysrw+9//Hvn5+di2bRtGjRqFzz77DMOHD1fkC21eXt4Fv7Pb7Xjuuefw6KOP4tChQ7j55puxevVqzJkz54LnRkVFtXvsdDov+F1Hmpp+/EOiu9kWkiTB7XbDZOr+S31GRgZKS0u7Lb9VaWkp+vXr5/Pz2/r+++9x5513egdOfvWrXwU8cOJPjOHK4/HAZrMhISFBs0uPiS7UGzq2mpadHtLBk2nDLlwjnEgreC4lrWBf1Qe2c2CC3XPEAAmxBiduuDIDS6cNlX3PEVFnX7C/ip8DAyTU1NRoPj7R24nkw95BRHSe9PR0rFmzBg8++CAAoLq6GjNnzoTT6Wz3vNa9Pbr6b/369QHVITY2FkuWLMHrr78OoOWD/YEHHsCRIxduBhcXF9fucWNjo09ltH3e+cc4n9vtxpkzZ7rcmyXUKisrMXXqVNhsNgAt+9M888wzAR8vHGP0l81mQ15enjcnFH5CuaFjW1lpCcjJTAlJ2Tn9UjS71AQRwHMpaQf7qj6wnQPXuufI6twRyOnn3/eg0X1jcHvUXiz76QDNbNYeDthfxc9BrMEpRHyitxPJhzNPiIg68eSTTyI/Px82mw0HDx7Eli1bMHXqVO+/22y2bvf2qK+vx+zZswOuw89//nPccMMN+Pzzz+FwOPD8889fMEBw0UUXtXtcUVGB5OTkbo9dXl7u/Tklpes/JkwmEy6++GKYTCY/aq+c5uZm3Hrrrd7BpMGDB+ONN94I6o6RcIsxEAkJCVi0aBESErS/YbiI1NjQse0gxgPj+6MoX/nyF4wboHgZREriuZS0gn1VH9jOwQtkz5FLL46FzXYV8+4n9lfxc2CXzELEJ3o7kXw4eEKkNYu++/Hnd/8LOPGv0JXddxRwy4uhK09lMTExGD16NDZv3gwA+Oqrr9oNnoTKjTfeiM8//xwA8OWXX17w7xdffDGSkpJQU1MDADh27Biysrrea8DhcODs2bPex90932AwhNV+HgsWLMD27dsBAD169MCmTZsQHx/cne7hFmMgjEYjkpKS1K4GtdG6mSOgzoaOT8z4cW3YiVmpmDYsXfH9ViZkXazY8YlCgedS0gr2VX1gO8tnUFo8Hkpr+bvHlz1HmHf/sb+KnwMJBiHiE72dSD5ctotIa5Izfvwv47rQlp15XUu5OtJ2Bse5c+fa/VtmZiYkSeryv/z8fFnrUFlZ2eFzLr/8cu/Pu3fv7vaY//73v70/m0wmXHbZZV0+P5yWtPrrX/+KV155BQBgNpvx3nvvBbxnSlvhFGOg6urqsHLlStTV1aldFfrBmOXbvP+tLzwe0rLXdTBYs2zaYKQmKLO4dmqCBUunhm7jPiKl8FxKWsG+qg9sZ2W07jmSEmtGnCXigoET5j0wzJv4OYiGU4j4RG8nkg8HT4i0bOhtoS1vSIjLCwOnT5/2/tzd0lZq1mHChAnenwsKCro9ZuusDQAYPXo0LJauL6YaDAbExMSovpH6Rx99hIceesj7+MUXX8T1118vy7HDJcZgmM1mZGdnw2zmuszUQpKkdo+TY81YOy8HidGRspaTGB2JtfNyuCY4CYHnUtIK9lV9YDurg3kPDPMWmhzsXDIBO5dMwNUZ3S/XLacRGcn4YPF4IdqYfZV8xcETIi1LHQxcMjo0ZWVcB6ReEZqywkRlZSV27drlfXzFFerE/8EHH3h/bjvDpK0ZM2Z4f/7ss89w8uTJLo/ZdkZM29d2xmg0Ii4uLqg9RYJVUlKCWbNmwePxAACWLFmCOXPmyHb8cIgxWBaLBaNGjep2MIz0w+68cCZVVloC3pw/SrYZKKkJFrw5fxSy0rheMImB51LSCvZVfWA7q4N5DwzzFpoc9E2JQd+UGIzsF9obPEf2T8GAtGQh2ph9lXyl3StERNTi+sWhKee6EJWjoKoq3zdK9ng8+OUvf4mmpiYALR+sU6ZMCboOdrsdDofD5+e/8MIL+Oabb7yPb7311g6fd8011+Caa64B0LL81COPPNLpMV988UX85z//AQDEx8fjF7/4Rbf18Hg8qKur8w5chNq5c+cwdepU2Gw2AMD06dPx5JNPylqG2jHKweFwoKCgwK8+RmJzujruz1lpCdi8aCymZ6cHdfzp2enYvGgsB05IKDyXklawr+oD21kdzHtgmLfQ5mBakN/l/S5vWG9h2liUOEh5HDwh0rrLJim/nNbQ24HLblK2jBB49dVXcc011+DVV1/1XoTvyHfffYcpU6bgjTfe8P5u4cKFsizbdfDgQQwcOBB/+ctfcOLEiU6fV15ejl/96ldYuHCh93djxozBz372s05f03Yw4bXXXsMjjzyC5ubmds956623sHjxYu/j3/zmN+jRo0e39ZYkCU1NTRcsARQKTqcTt9xyC44ePQoAuPLKK7F+/XrZZ4ioGaNcXC4XSktL4XK51K4KhQlzROfvk+RYM/JmDsfq3BHI8fOutZx+KViTew3yZg7nUl0kHJ5LSSvYV/WB7awO5j0wzFtoc5CVloCczNDMPsnpl4JBafHCtLEocZDyDJKWrxIR+amkpARDhgzxPt63bx8GD/Z9c1uXy4WDBw+2+92ll16KiIgI2eoYkIYq4IXRQN3p7p/rr/hewIKvgBh19vuQ04oVK/CrX/0KABAREYGsrCwMGjQIycnJMBgMqKysxHfffYdDhw61e92tt96KN954Q5Z2Li4uxvDhw72PMzMzMWTIEPTo0QMWiwU2mw1WqxXfffddu43LBw0ahG3btqFXr15dHv+Pf/wj/vSnP3kfp6enY8yYMYiKisK3336Lffv2ef/txhtvxEcffSRLXPn5+Zg7dy4AICMjA6WlpT6/trS0tN2G70ePHkVmZqb38fbt2zF+/Hjv42nTpqFv374+Hfuee+7ByJEjfa6Lr8L2XEBhJ/ORD1Ut/+iTU3zex+dAeR027jmFPSdqsfdULWobfxx8TYyOxNDeiRjWNxHThvXGoLR4papMREREREQ+2mqtwLz8b7p/YpDW5F6DCVkXK14O0fmCvZYbLF7lIRJBTAow+x1gzRTAUSPfcaOSWo4rwMAJgHZrWbpcLuzbt6/dYML54uPjsXTpUjz44IOQJAmSJAW9mXhkZCSMRqN3aajS0tIuBxqMRiPuvfdePP3000hO7n4zuMcffxwWiwWPP/44mpubUVZWhjfffPOC582cOROrVq3y+WK/JElwuVyIiIgI+Ybq54/xb9y40efXjhgxwufBEzVjlIvb7cbZs2fRs2dPmEwmtatDaNnMsdXiN4vx7bHqkJU9IiPZr748KC0eD6VlAWh5P9idbjhdHpgjjIg1mzT7viDyF8+lpBXsq/rAdlYH8x4Y5i30OZiYlYppw9KxcU+ZYmVMz073DpyI0saixEHK47JdRKJIHQzM/ahlpogc4nu1HC81dKO5SluwYAEOHDiA5557Dr/4xS9w9dVXo2fPnoiMjERkZCQuuugiDBkyBLNnz0Z+fj7Kysrw61//GgBw9uzZdjNBAjV48GCUl5fjtddew8KFCzFmzBj07t0bUVFRMJlMSEpKwoABAzBjxgz85S9/wfHjx/Hiiy/6NHACAAaDAX/4wx+wZ88e/PrXv8aQIUOQmJiImJgYDBgwALNnz8ann36K119/HQkJvu9R0PrFQo4chCsRYqyrq8OqVatQV1endlWEIEkS6hzNqLI7UedoDmhJt9bNHNXa0DFQBoMBcZYIpMSaEWfR7oAiUSB4LiWtYF/VB7azOpj3wDBv6uRg2bTBSE1QZuPz1AQLlk798bqQKG0sShykPC7bRboi7LJdbTVUAR8vAfb+M/BjDL0d+OlyYWacBKvtrBO9XkDUQw78iTFczwWt+7ZYLBZh20lp1nIbNhaXYc/JGuw7Zbtg6aohvRMwrE8Spmf7v3SVtdyGySt2yl3lTn2yeCyX1yIKAM+lpBXsq/rAdlYH8x4Y5k29HFjLbbhzVWG7v1+ClRgdiTfnj0JW2o83XorSxqLEoQdctouI5BWTAtz6cssAyJd5wLEvfX9txnXAdYuF2BxeTiIPGPhKDzkQIUaDwYCoqCi1q6FJW60VWFlwBEWlVZ0+p7axGV8eqsSXhyrxfMFh5GSmYMH4AT6v/du6oWNXZcildUNHIvIfz6WkFeyr+sB2VgfzHhjmTb0cZKUl4M35ozBndREqbE1BHy81wYK183LaDZwA4rSxKHGQ8rhsF5GoLpvUsuzWgl3ANfd1/ry+o4Ax/9vyvLkfceCkA263GxUVFZpezilYesiBCDHabDasWLECNptN7apoRrXdiQdf3415+d/4PahRVFqFuflfY9Ebu1Ftd/r0mgfG9w+kmn5bMG5ASMohEhHPpaQV7Kv6wHZWB/MeGOZN3RxkpSVg86KxmJ6dHtRxpmenY/OisRcMnADitLEocZDyOHhCJLrUK4DRD3b+77e8CNzwaMvzqEMGgwHx8fGan5UQDD3kQIQYo6KiMH78eN5B46P9p22YnLcj6M0VNxSXYXLeDljLu//i3bqho5LabuhIRP7juZS0gn1VH9jO6mDeA8O8qZ+D5Fgz8mYOx+rcEcjxc8/FnH4pWJN7DfJmDkdyrLnD56gdn1xEiYOUxz1PSFd0sedJR6qPAXlXdvxvi74DkjNCWx8ijdPsuYC89p+2YeaLyq8J3JFquxOT83bIMp3+fKkJFmxeNLbTP3aIiIiIiEg/DpTXYeOeU9hzohZ7T9VesKfj0N6JGNY3EdOG+b+nI1EocM8TIlJecgawtBYA4PF4UFdXh/j4eBiNnHzmC+ZMHzkQIcbGxkZs374d48aNQ3R0tNrVCVvVdidy1xTJOnACtOyJMmd1UbeDF8mxZqydl6PIho5r5+Vw4IQoSDyXklawr+oD21kdzHtgmLfwy8GgtHg8lJYFoGWTdLvTDafLA3OEEbFmk98rL4RbfIESJQ5SHgdPiHRGkiS43W5w0pnvmDN95ECEGD0eD2pqauDxeNSuSlh7bGOJIrM+AKDC1oSlm0qQN3N4l88L1YaOROQ/nktJK9hX9YHtrA7mPTDMW3jnwGAwIM4SAVgCP0Y4x9eZE1UNGLN8W7vfRaEZo83H0H/I1bisDwdPqHNctot0RbfLdhGRrHgu0K6t1grMy/9G8XJW547AxKzUbp9XbXdi6aYSbCgOfN+V6dnpWDp1MGecEBERERERnaejwZNWO5dMQN+UmBDXiPyh9rJd2lyXhIgCJkkSmpqaNH13fagxZ/rIgQgxulwulJaWwuVyqV2VsLWy4EhoytnuWzlKb+hIRP7juZS0gn1VH9jO6mDeA8O8iZ8DUeIzwYM0o03zcZDyOHhCpDNutxuVlZVwu91qV0UzmDN95ECEGOvr67F27VrU19erXZWwZC23oai0KiRlFR2twoHyOp+fPzErFW/NvxafLB6LhRMG4PqBPZAYHdnuOYnRkbh+YA8snDAAnywei7fmX4sJWRfLXXUi3eO5lLSCfVUf2M7qYN4Dw7yJnwNR4os2NOOnlv+gscGudlUozHHZLtIVLttFRHLguUBbTlQ1AABW7TiM9YXHQ1buPaMy8MSMId0/sRNybOhIRERERESkZ1y2S9vUXraLV3mIiIhIaJ19UVbausJjQQ2eyLGhIxERERERkV5Zy21YX3is039f/GYxRvZLwfTs3hiUFi97+Ry40T4u20WkMy6XC6dPn+a6jn5gzvSRAxFirK2txVNPPYXa2lq1q0I/4ARfIu3huZS0gn1VH9jO6mDeA8O8iZ8DrcS31VqBO1buwuQVOztcfSDW0IS7onbDerwczxccxqQVO3DHyl3YZj2jQm0pnHHmCZEfOlouRWsXxoxGI5KSkmA0cuzUV8yZPnLgT4wdve/DYTmlmJgYzJgxAzExvHslXNid7pbZI0SkGTyXklawr+oD21kdzHtgmDfxcxDu8VXbnXhsYwk27inr8nkOKQJfODPhkH78W62otApF+VWYnp2OpVMHIznWrHR1SQP41zyRHzq6qOp0OhEZGdnBs8OT0WhEdHS02tXQFOZMHznwJ8bm5uYOX6+2yMhIZGVlqV0NasPp8nDZLSKN4bmUtIJ9VR/Yzupg3gPDvImfg3COb/9pG3LXFKHC1tTtc90w4bgnucN/21BchsIjlVg7LwdZaQlyV5M0Rv0rPUQaYjAYEBUV1e53NptNpdoExu12o7q6Gm63W+2qaAZzpo8c+BOj3W5v99hisYTFzJOGhga8//77aGhoULsq9ANzBL9qEWkNz6WkFeyr+sB2VgfzHhjmTfwchGt8+0/bMPPFQp8GTgDAgmZcH3kUFlx4YyQAVNiacOeqQljLtXXNj+THv+iJ/BQf334DKZvNFnYfGkSkHJfLdcH6rrGxsSrVhsJdrNmkdhWIiIiIiIiEVW13IndNEWobOx4ICVRtYzPmrC5Ctd0p63FJWwyS1jZsIApCSUkJhgwZ4n28b98+DB482K9jOJ1OHD58uN3vjEYjEhISkJCQgMjIyLBYvoeI5OXxeNDQ0ICqqio0NbW/m+WSSy7hAEoYO1HVMsC9+M1ifHusOmTljshIxtsLRoesPCIiIiIiIr158PXd3e5xEozp2enImzk8oNeeqGrAmOXbOvy3nUsmoG9KeO4dE07kuJYbDO55QuQns9mM+Ph41NXVeX/n8XhQU1ODmpoa9SrmI0mSIEkSDAZDWCwzpAXMmT5yEGiMUVFRYbNZXnNzMw4fPowBAwZoai8mpbV+IR3ZLyWkgycj+6eErCwikg/PpaQV7Kv6wHZWB/MeGOZN/ByEW3xbrRUBDZyY4EZvow2nPAlwo+vVAjYUl2F6djomZqUGWk3SMN4eTxSA9PR0xMXFqV2NgIm8b4VSmDN95MDfGCMiItCnT5+wGVAK1/Vnw8W07PTQljesd0jLIyJ58FxKWsG+qg9sZ3Uw74Fh3sTPQbjFt7LgSECvizK4cL25FFEGl2/lbA+sHNI+LttFuiLnVC+Px4OysrJ2M1CISD8iIiLQt29fREVFqV0V8sMdK3ehqLRK8XJy+qXgrfnXKl4OERERERGRHlnLbZi8YmfIyvtk8VgMSovv/oltcNmu4Km9bBdnnhAFyGg0ok+fPhgwYAB69uzJC6hEOmAwGBAXF4c+ffpg4MCBfN9r0APj+4eknAXjBoSkHCIiIiIiIr04UdXg/W994bGQlu1vedZyG1btONzpvy9+sxjLN1txoJw3ZYcz7nlCFCSz2YwePXqgR48ekCQJHo8H4Tyhq7a2FqtWrcL8+fORmJiodnU0gTnTRw66i9FoNIb9ni81NTXIy8vDokWLkJSUpHZ1wtLErFRMG5au+IaCE7IuVuz4RKQsnktJK9hX9YHtrA7mPTDMm/g5UDu+zmZx+CvO0ITbo/bin46hqJcsPr1mXeExPDFjSLfP22qtwMqCI92uePDtsWp8e6wazxccRk5mChaMH8C/I8MQl+0iXVF7qlc4cLlcOHnyJPr06YOICI6f+oI500cORIhRhBhCodruxOS8HaiwNcl+7NQECzYvGovkWLPsxyai0OC5lLSCfVUf2M7qYN4Dw7yJnwO148t85ENZjmOCBz2N9TjriYPbj4WZjj45pdMbKqvtTjy2sSSoG/WmZ6dj6dTB/HuyDbWv5XLwhHRF7TccERGFB2u5DXeuKkRtY7Nsx0yMjsSb80chKy1BtmMSERERERFRC7kGTwK1b9kkxFkuHDTaf9qG3DVFstygl5pgwdp5Ofy78gdqX8vlnidEOmO32/HGG2/AbrerXRXNYM70kQMRYhQhhlDJSkvAm/NHITXBtyna3UlNsHDghEgQPJeSVrCv6gPbWR3Me2CYN/FzIEp8UWjGRPMhRMG/m+mcLs8Fv9t/2oaZLxbKtrJBha0Jd64qhLXcJsvxKDgcPCHSGaPRiKSkJBiNfPv7ijnTRw5EiFGEGEIpKy0BmxeNxfTs9KCOMz07HZsXjeXACZEgeC4lrWBf1Qe2szqY98Awb+LnQJT4PDCgXjLDA//2NDVHtI+72u5E7poiWVc0AIDaxmbMWV2EartT1uOS/7hsF+mK2lO9iIgoPG21VmDl9iMoOtr1pn5t5fRLwYJx3NSPiIiIiIgoFNRetuv8PU8efH13UHucdGd6djryZg5X7PhaoPa1XG0PExKR35xOJ4qLi+F0cvTaV8yZPnIgQowixNCWJEmoczSjyu5EnaMZSt7vMTErFW/NvxafLB6LhRMG4PqBPZAYHdnuOYnRkbh+YA8snDAAnywei7fmX8uBEyIBiXYuJXGxr+oD21kdzHtgmDfxc6B2fDuXTPD+d3VGcsDHiYAbA03nEAG3z68ZkZHcbuBkq7VC0YETANhQXIat1gpFy6CuXbjDDREJzeFwoKCgAP3794fZbFa7OprAnOkjByLEKEIM1nIbNhaXYc/JGuw7ZWs3/TkxOhJDeidgWJ8kTM/ujUFp8bKXPygtHg+lZQFoGbyxO91wujwwRxgRaza1+7JMRGIS4VxK+sC+qg9sZ3Uw74Fh3sTPgdrx9U2J8f48sl8Kvj1WHdBxzHAjO6IMZe4EuGDy6TUj+6e0e7yy4EhAZftr5fYjmJiVGpKy6EJctot0Re2pXkRE1LGt1gqsLDiColI/ls3KTMGC8Vw2i4iIiIiISG+s5TZMXrEzZOV9snis9wY+NcvWG7Wv5XLZLiKdkSQJDodD0eVvRMOc6SMHIsSoxRiq7U48+PpuzMv/xq+BEwAoKq3C3PyvseiN3dxIj4hko8VzKekT+6o+sJ3VwbwHhnkTPwfhFF9WWgJyMlO6f2KHJJjhAuBbHDn9UjAoLR4nqhpwoqoB6wuPBVhuYNYXHsOJqoaQlkktOHhCpDO1tbV4+umnUVtbq3ZVNIM500cORIhRazHsP23D5LwdQa8Tu6G4DJPzdsBabpOpZkSkZ1o7l5J+sa/qA9tZHcx7YJg38XMQbvE9ML5/QK+LMzhxd3Qx4gy+3YS3YNwAAMCY5dswZvk2rC88HlC5gVpXeAxjlm8LaZnUgst2ka6oPdUrHLjdbpw9exY9e/aEyeTbuo56x5zpIwcixKilGPaftmHmi4Xt9jQJVmJ0JN6cPwpZaQmyHZOI9EdL51LSN/ZVfWA7q4N5DwzzJn4OwjG+B1/f7fcNeUZ4kGRwoEaKgqebuQXTs9ORN3M4ACDzkQ8DrqccSp+6WdXy1aD2tVzOPCHSGZPJhLS0tLD5kNMC5kwfORAhRq3EUG13IndNkawDJwBQ29iMOauLuIQXEQVFK+dSIvZVfWA7q4N5DwzzJn4OwjG+ZdMGIzXB4tdrPDCiSorpduAkNcGCpVP1ddM1tcfBEyKdqa+vR35+Purr69WuimYwZ/rIgQgxaiWGxzaWoMLWpMixK2xNWLqpRJFjE5E+aOVcSsS+qg9sZ3Uw74Fh3sTPQTjGlxxrxtp5OUiMjvT5NdFoxmSzFdHo/Ia+xOhIrJ2Xg+RYsxzVJI3i4IlCnE4n1q1bhylTpiAjIwNRUVHo1asXRo8ejWeeeQbnzp2TvczS0lK89NJLmD17NoYNG4bk5GRERkYiJSUFV155JebPn4/t27f7dUy73Y4PPvgAv/rVrzBu3Dj06tULFosFsbGxyMjIwIwZM7Bq1SrY7Xafj5mbmwuDweDXf+vXr/c3HdSJiIgIZGZmIiIiQu2qaAZzpo8ciBCjFmLYaq0Ieo+T7mwoLsNWa4WiZRCRuLRwLiUC2Ff1gu2sDuY9MMyb+DkI1/iy0hLw5vxRPs9AccOAck883DB0+O+pCRYuCU0AuOeJIqxWK2bNmoXi4uJOn3PxxRdjzZo1mDJlStDl7d69Gw888ACKiop8ev748eOxdu1aXHLJJV0+b/bs2XjvvffQ0NDQ7TF79OiBVatW4ZZbbun2ubm5uVi7dq1PdW21bt06zJ4926/XdETtdfKIiPTujpW7UFRapXg5Of1S8Nb8axUvh4iIiIiIiMJDtd2JpZtKsKE48Bv2pmenY+nUwR3OOOGeJ6Gn9rXc8BomFMDJkydxww03oKys5U1qMBgwduxYDBgwAGfPnsVnn32GxsZGnDlzBjNmzMDmzZsxceLEoMo8cODABQMnl112GYYMGYIePXqgpqYGX331FU6ePAkAKCgowLXXXoudO3eif//+nR737bffRlPTj8uqJCcnIycnB+np6ZAkCfv370dRUREkScK5c+dw66234oUXXsADDzzgc91vuOEGZGVldfu8QYMG+XxM6lpTUxN2796N4cOHw2Lxb01IvWLO9JEDEWIM9xis5baQDJwAQNHRKhwor8OgtPiQlEdE4gj3cylRK/ZVfWA7q4N5DwzzJn4Owj2+5Fgz8mYOx/TsdKzcfgRFRzv++zMSblxqOoeD7h5oRsv+LTn9UrBg3ABMyLq40+PvXDIBALD4zWJ8e6xa/gA6MSIjGX+7Mztk5dGPOHgis7vuuss7cJKRkYENGzZg2LBh3n8/d+4cZs6cic8//xzNzc24/fbbcfjwYSQlJQVd9sCBA3Hfffdh9uzZ6N27d7t/83g8yM/Px//8z/+goaEBZWVluPvuu/HVV1/BYOh4ihoAxMTEYNasWZg3bx5GjRoFo7H9Sm8lJSWYPXu2d5bNL3/5S1x33XUYOnSoT3WePXs2cnNz/YqTguN0OlFcXIzBgweH5QddOGLO9JEDEWIM1xhOVLXMYFxfeCyk5a4vPIb7x/ZH35SYkJZLRNoWrudSovOxr+oD21kdzHtgmDfxc6CV+CZmpWJiVioOlNdhfeExrDvvb9EIuDEw4hwSemXi6kvTMW1Yb59uvGv923Jkv5SQDp6M7J/Cv2tVwmW7ZPTRRx/h5ptbpk+ZzWZ88803HQ4i2O12XHnllThy5AgA4Le//S3+7//+L+Byt2/fjqNHj+Kee+6ByWTq8rnvvfdeu6W1Nm/ejEmTJnX43Iceegi/+c1vkJqa2uUxq6urMXz4cBw71nIimjlzJl5//fVOn9922a41a9aEdPBE7aleRER6xKnNREREREREpIYTVQ0Ys3xbh/+2c8mEgAYlrOU2TF6xM9iq+eyTxWN1u6qC2tdyuWG8jJ577jnvz3PmzOl09kVsbCwef/xx7+NVq1bB5XIFXO64ceOQm5vb7cAJAPz85z9HTk6O9/GHH3Z+Qesvf/lLtwMnQMtyXg8//LD38UcffdTta0g9Ho8HNTU18Hg8aldFM5gzfeRAhBhFiIGISG08l5JWsK/qA9tZHcx7YJg38XMgSnwGSIgzNAUcR1ZaAnIyU2SuVcdy+qXoduAkHHDwRCb19fX4/PPPvY/nzp3b5fNvvfVWxMXFAQCqqqqwY8cORevX1nXXXef9ubS0VPZj2mw2VFWFZk178p/NZkNeXh5sNpvaVdEM5kwfORAhRhFiICJSG8+lpBXsq/rAdlYH8x4Y5k38HIgSX6zBiduj9sJeXxfwMR4Y3/k+0nJaMG5ASMqhjnHwRCZfffWVd3P12NhYXHPNNV0+PyoqCtdee6338datWxWtX1tt9zhxu92yH1PO45L8EhISsGjRIiQkJKhdFc1gzvSRAxFiFCEGIiK18VxKWsG+qg9sZ3Uw74Fh3sTPgSjx2SUz/ukYiti4wGd0TMxKxbRh6TLW6kLTs9O73MCelMcN42Wyf/9+789Dhw5FRET3qb3qqqvw6aefXvB6pe3du9f7c9++fWU/ZnR0NHr06OHT644dO4ZXXnkFR44cQWNjI1JSUtCvXz+MGTMGl1xyiSx1o/aMRiOSkpLUroamMGf6yIEIMYoQAxGR2nguJa1gX9UHtrM6mPfAMG/i50CL8fVNiVFsH8xl0wbjX0crUWFrkv3YqQkWLJ3KfZrVxpknMjlw4ID354yMDJ9e03ZwwGq1yl6njhw/frzdLJef/OQnshw3Pz/f+/PEiRMvmInSmaVLl+K+++7D//3f/+Fvf/sb/vjHP2L27NnIyMjAhAkTsH37dlnqRz+qq6vDypUrUVcX+NREvWHO9JEDEWIUIQYiIrXxXEpawb6qD2xndTDvgWHexM+BKPHJFUdyrBlr5+UgMTpSppq1SIyOxNp5OUiONct6XPIfB09kUllZ6f3Zl03WASAtLc37c6j2CPn1r3/tXVLrkksuwdSpU4M+5gcffOCdQQMACxcuDPqYAFBQUICJEydi6dKlshyPWpjNZmRnZ8Ns5gnYV8yZPnIgQozhGsPOJROwc8kEXJ2RHNJyR2QkY+eSCSEtk4i0L1zPpUTnY1/VB7azOpj3wDBv4udAlPjkjCMrLQFvzh+F1ASLDDVrmXHy5vxRyErT9tJoouDgiUzq6+u9P0dHR/v0mrbPa/t6paxduxbvvPOO9/GTTz4JiyW4N/bp06dx//33ex/feOON+OlPf9rlawwGA0aMGIE///nP2LlzJ86ePYvm5mbU1NTg66+/xmOPPYaLLroIAODxeLBs2TI888wzQdXzfFFRUYiLiwPQsj9LTU0NJEkC0LL5ldPpBAA0NjbCbrcDAFwuF2pqarzHqK2tRXNzMwCgoaEBDQ0NAIDm5mbU1tZ6n1dTUwOXywUAsNvtaGxsBAA4nU7vBluSJKGmpsY7sFVfXw+HwwEAaGpq8o6Eezwe1NTUwOPxAGgZKW/da8fhcHj7UVcxeTweDB06FBaLRZiYlG6npqYmjBo1CmazWZiY/G2nyMhIZGVlITIyUpiYzm8np9OJ4cOHw2KxaDamcG2nHtEG9E2JQc4l8YiB84dnSYgzNMGIlvxHoxlmtLwmEm5E//A8ww/PM0D64XlORKIlD2a4EI2W+hjhQZyhCfjheTFwIicjHn1TYsKunUQ8RzAmxiRSTI2NjRg1ahQsFoswMYnYTowJsFgsyMrKgslkEiYmEdsp2JgsFguGDx/e7u85rcekhXZyuVwYNmwYLBaLMDGFop0sFguuueYaNDY2ChOTv+0k+vcIh8OBq6++GhaLRdMxyd1O6THA5kVjMX1Yr6D+zp2enY4N83PQJ84YVDuJ2PfUwsETmbR2GgA+j1q2Hbho7ZxK+eabb/DAAw94H8+aNQt33XVXUMd0Op247bbbcPr0aQDARRdd1G75rs4888wz+Prrr/G73/0O119/PXr06IGIiAgkJiZixIgRWLp0Kfbu3YsRI0Z4X/O73/0OR48eDaq+bY0aNQq33XYbAODs2bPIy8vzvqFXr16N77//HgCwfft2bNq0CQBw8uRJ5OXleY/xwgsv4PDhwwCALVu2YMuWLQCAw4cP44UXXvA+Ly8vDydPngQAbNq0ybsU2ffff4/Vq1cDaDnZ5OXl4ezZswCAt99+G4WFhQCA3bt347XXXgPQckLJy8vznsBee+017N69GwBQWFiIt99+u9uYPv/8c6xZswYOh0OYmJRup1deeQUFBQWora0VJiZ/26m1rq3PEyGm89tp/fr1+Oc//wmHw6HZmMK9na6Mq8cUS8sylWa4cXvUXiQZWj4/x5kP44qICgDApaZzuNFyEAAQa3Di9qi9iDW0fJm60XIQl5rOAQCuiKjAOHNLfZIMDtwetRfmHwZWplisGBprD8t2EvEcwZgYk2gxFRQUwOFwCBWTiO2k95gcDgfy8vJw5MgRYWISsZ2CjcnhcOCf//wn1q9fL0xMWminDRs24LXXXoPD4RAmplC0k8PhwMcffyxUTIG0k+jfIzZs2ACHw6H5mORup+RYM57++RW4PWovru/Tcm3Y179zp8cfxaPXRiNv5nBY9/5b2HNEMDGpRiJZTJkyRULL7a7Sww8/7NNrPvroI+9r4uLiFKvbkSNHpLS0NG9ZV155pVRbWxvUMT0ejzRz5kzvMSMjI6UtW7bIVOMWFRUVUnJysreMX/7yl0Efc9++fRIAKSoqSoqLi5P27dsnuVwuqbq6WvJ4PJIkSVJtba3U1NQkSZIkNTQ0SPX19ZIkSVJzc7NUXV3tPVZNTY3kdDolSZIku90u2e12SZIkyel0SjU1Nd7nVVdXS83NzZIkSVJ9fb3U0NAgSZIkNTU1edvB4/FI1dXVksvlkiRJkurq6qTGxkZJkiTJ4XBINptNkiRJcrvdUnV1teR2uyVJkiSbzSY5HA5JkiSpsbFRqqurkyRJ6jKmM2fOSC+//LJUV1cnTExKt1NZWZm0Zs0ayWazCROTv+1UW1srvfTSS97XiRDT+e10+vRp6ZVXXvE+X4sxaaGdZj27Vcp4+AMp4+FN0uBH3pH6PbxRynj4Aynr4fekSx9+X8p4+ANp4MMbpKyH35UyHv5AyvzheZkPb/rhee9KAx/eIGU8/IF06cPvS1kPvydlPPyB1O/hjdLgR96RMn543qzntoZtO4l4jmBMjEmkmE6ePCmtWbNGqqurEyYmEduJMbXU7aWXXvK+ToSYRGynYGOqq6uTXnnlFen06dPCxKSFdqqoqPD+3SxKTKFop7q6Omn16tXSyZMnhYnJ33YS/XvEqVOnvH83azmmULST9bRN+sNbX3f6d+7Mv38mPf1xiWQ9bdPNOSKQmFqv5bb+t2/fPimUDJL0wxwZCsqdd96Jt956CwDw4IMP+jQy9u677+LWW28F0LL/SesMDjmdPn0aY8aM8Y429u/fH1988QV69eoV1HEXLlyI559/HgBgNBqxfv16zJo1K+j6nu+Pf/wj/vSnPwEABgwYgEOHDgV1vJKSEgwZMsT7eN++fRg8eHBQxyQiIt9ttVZgXv43ipezJvcaTMi6WPFyiIiIiIiIiDpyoqoBY5Zv6/Dfdi6ZgL4pMSGukfaofS2Xy3bJpHWPDgCoqKjw6TXl5eXen1NSUmSvU2VlJW688UbvwEmvXr3w2WefBT1w8tvf/tY7cAIAzz33nCIDJwDwk5/8xPvz4cOHvWvgUeDcbjfKy8u9axVS95gzfeRAhBi1EMPErFRMG5auaBnTs9M5cEJEAdPCuZQIYF/VC7azOpj3wDBv4udAlPhEiYOUx8ETmQwaNMj787Fjx3x6zfHjx70/Z2VlyVofm82GSZMmoaSkBADQo0cPfPbZZ+jXr19Qx/3zn/+Mp556yvv46aefbreXitzOH+iprKxUrCy9qKurw6pVq7wbOlH3mDN95ECEGLUSw7Jpg5GaYOn+iQFITbBg6VTOKCSiwGnlXErEvqoPbGd1MO+BYd7Ez4Eo8YkSBymPy3bJZMuWLZg0aRIAIDY2FjU1NYiIiOjyNTfddBM+/fRTAMDvf/977/JUwbLb7Zg0aRK+/PJLAEBiYiI+//xzXH311UEdd8WKFfjVr37lffyHP/wBTzzxRFDH7M7u3btx1VVXeR/X1tYiISEh4OOpPdUrHEiShKamJlgsFhgMBrWrownMmT5yIEKMWorBWm7DnasKUdvYLNsxE6Mj8eb8UchKC/xzgohIS+dS0jf2VX1gO6uDeQ8M8yZ+DkSJL1RxcNmu4Kl9LZczT2QyevRoWCwtd9Ha7XZ8803X67k3NTWhsLDQ+3jixImy1MPhcGDatGnegZOYmBh8+OGHQQ+cvPjii+0GThYtWqT4wAnQMnjSKjY2NqiBE2phMBgQFRWl6Q+5UGPO9JEDEWLUUgxZaQl4c/4o2WagpCZYOHBCRLLQ0rmU9I19VR/Yzupg3gPDvImfA1HiEyUOUh4HT2QSFxeHG264wfs4Pz+/y+e/++673qlhKSkpGDt2bNB1aG5uxq233oqtW7cCACwWCzZs2IDrrrsuqOOuX7++3dJc9957L/72t78FdUxfrV692vvz+PHjQ1Km6Gw2G1asWAGbzaZ2VTSDOdNHDkSIUWsxZKUlYPOisZieHdweKNOz07F50VgOnBCRLLR2LiX9Yl/VB7azOpj3wDBv4udAlPhEiYOUx8ETGf33f/+39+f8/HzvfiPna2howKOPPup9fP/993e7xFd33G437rrrLnz00UcAgIiICLz11lvtNlwPxLvvvovc3Fy0ru42a9YsvPjiiwGPzNbX1/v83L/+9a/eGTQAMHv27IDKpPaioqIwfvx4REVFqV0VzWDO9JEDEWLUYgzJsWbkzRyO1bkjkNMvxa/X5vRLwZrca5A3cziSY80K1ZCI9EaL51LSJ/ZVfWA7q4N5DwzzJn4ORIlPlDhIedzzRGZjx47Fzp07AQCZmZnYsGEDrrzySu+/V1ZWYtasWd69TlJSUnD48GEkJSVdcKzS0tJ2G7yvWbMGubm5FzxPkiTMnTsXa9euBQAYjUa89tprmDlzZlCxbN68GdOnT4fT6QQATJ8+HW+//XZQAz3z5s2DzWbDfffdhxtuuAGRkZEXPKeiogLLli3DCy+84P3dqFGj8NVXXwU9nU7tdfKIiKhrB8rrsHHPKew5UYu9p2rb7YmSGB2Job0TMaxvIqYN641BafEq1pSIiIiIiIioc9zzJHhqX8sNbroDXeAf//gHcnJycPr0aZSWliI7Oxvjxo3DgAEDcPbsWXz22WdoaGgA8OPskI4GTvzxwgsveAdOAGDAgAH44osv8MUXX/j0+mefffaC3507dw633HKLd+DEZDKhZ8+eWLx4sU/HvOeeezBy5MgLfu/xePDOO+/gnXfeQWxsLIYOHYp+/fohISEBjY2NOHToEL7++ms0N/94sWzAgAF4//33uQ6hTBobG7F9+3aMGzcO0dHRaldHE5gzfeRAhBhFiGFQWjweSssC0HJzgN3phtPlgTnCiFiziZ8FRKQ4Ec6lpA/sq/rAdlYH8x4Y5k38HIgSnyhxkPI4eCKzPn36YOvWrZg1axaKi4shSRIKCgpQUFDQ7nk9e/bEmjVr2u2TEqgzZ860e3zw4EEcPHjQ59d3NHhSX1+PxsZG72O3242XX37Z52OOGDGiw8GTtux2OwoLC1FYWNjhvxuNRsyaNQvPPvts0ANM9COPx4Oamhp4PB61q6IZzJk+ciBCjCLE0JbBYECcJQKQZ095IiKfiHYuJXGxr+oD21kdzHtgmDfxcyBKfKGKo29KDEqfulnRMkhZXLZLIU6nE2+88QZef/11lJSUoKKiAklJSejfvz9uueUWzJ07Fz169OjyGL4u27V06VIsW7Ys4Lp21AXOL9tfndW1pqYGu3btwq5du/Cvf/0Lp06dQmVlJaqqqhAREYHk5GRcfvnluO6663DPPfdgwIABAdehI2pP9SIiIiIiIiIiIiKi7ql9LZeDJ6Qrar/hwoHL5cLJkyfRp0+foPav0RPmTB85ECFGuWOQJAn1TS40uyVEmlpmgXDZLCISnQifB6QP7Kv6wHZWB/MeGOZN/ByIEp8oceiB2tdyjSEriYjCQn19PdauXYv6+nq1q6IZzJk+ciBCjHLEYC23YflmK+5+uRDZj3+KoUu34KonWv6f/finuPvlQizfbMWB8joZa05EFD5E+DwgfWBf1Qe2szqY98Awb+LnQJT4RImDlMeZJ6Qrao9WEhGFq63WCqwsOIKi0iqfX5OTmYIF4wdgQtbFCtaMiIiIiIiIiPRI7Wu5nJdERESkY9V2Jx7bWIKNe8r8fm1RaRWK8qswPTsdS6cORnKsWYEaEhERERERERGFHpftItKZ2tpaPPXUU6itrVW7KprBnOkjByLE6G8M+0/bMDlvR0ADJ21tKC7D5LwdsJbbgjoOEVE4EOHzgPSBfVUf2M7qYN4Dw7yJnwNR4hMlDlIeB0+IdCYmJgYzZsxATEyM2lXRDOZMHzkQIUZ/Yth/2oaZLxaiwtYkS9kVtibcuaqQAyhEpHkifB6QPrCv6gPbWR3Me2CYN/FzIEp8osRByuOeJ6Qraq+TR0QUDqrtTkzO2yHbwElbqQkWbF40lkt4EREREREREVFQ1L6Wy5knRDrT0NCA999/Hw0NDWpXRTOYM33kQIQYfY3hsY0ligycAC0zUJZuKlHk2EREoSDC5wHpA/uqPrCd1cG8B4Z5Ez8HosQnShykPA6eEBER6chWa0XQe5x0Z0NxGbZaKxQtg4iIiIiIiIhISVy2i3RF7aleRERqu2PlLhSVVileTk6/FLw1/1rFyyEiIiIiIiIiMal9LZczT4h0prm5GVarFc3NzWpXRTOYM33kQIQYu4vBWm4LycAJABQdrcKB8rqQlEVEJCcRPg9IH9hX9YHtrA7mPTDMm/g5ECU+UeIg5XHwhEhnuK6j/5gzfeRAhBg7i+FEVQNOVDVgfeGxkNZnfeExnKjSbj6JSJ9E+DwgfWBf1Qe2szqY98Awb+LnQJT4RImDlMdlu0hX1J7qRUSkhsxHPlS1/NKnbla1fCIiIiIiIiLSHrWv5XLmCRERERERERERERERURscPCHSmZqaGixbtgw1NTVqV0UzmDN95ECEGEWIgYhIbTyXklawr+oD21kdzHtgmDfxcyBKfKLEQcrjsl2kK2pP9QoHLpcLJ0+eRJ8+fRAREaF2dTSBOdNHDkSIsbMYuGwXEZHvRPg8IH1gX9UHtrM6mPfAMG/i50CU+ESJQw/UvpbL3kGkMxEREcjMzFS7GprCnOkjByLEKEIMRERq47mUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUh6X7SLSGbvdjjfeeAN2u13tqmgGc6aPHIgQowgxEBGpjedS0gr2VX1gO6uDeQ8M8yZ+DkSJT5Q4SHkcPCHSGaPRiKSkJBiNfPv7ijnTRw5EiLGzGHYumYCdSybg6ozkkNZnREYydi6ZENIyiYiCJcLnAekD+6o+sJ3VwbwHhnkTPweixCdKHKQ87nlCuqL2OnlERGpavtmK5wsOh6y8hRMG4KFJWSErj4iIiIiIiIjEofa1XA6vEemM0+lEcXExnE6n2lXRDOZMHzkQIcbuYpiWnR7S+kwb1juk5RERyUGEzwPSB/ZVfWA7q4N5DwzzJn4ORIlPlDhIeRw8IdIZh8OBgoICOBwOtauiGcyZPnIgQozdxZCVloCczJSQ1CWnXwoGpcWHpCwiIjmJ8HlA+sC+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/LdpGuqD3Vi4hIbVutFZiX/43i5azJvQYTsi5WvBwiIiIiIiIiEpPa13I584RIZyRJgsPhAMdNfcec6SMHIsToSwwTs1IxbZiyy3dNz07nwAkRaZYInwekD+yr+sB2VgfzHhjmTfwciBKfKHGQ8jh4QqQztbW1ePrpp1FbW6t2VTSDOdNHDkSI0dcYlk0bjNQEiyJ1SE2wYOlUzugjIu0S4fOA9IF9VR/Yzupg3gPDvImfA1HiEyUOUh6X7SJdUXuqVzhwu904e/YsevbsCZPJpHZ1NIE500cORIjRnxis5TbcuaoQtY3NspWfGB2JN+ePQlZagmzHJCIKNRE+D0gf2Ff1ge2sDuY9MMyb+DkQJT5R4tADta/lcvCEdEXtNxwRUTixltswZ3URKmxNQR8rNcGCtfNyOHBCRERERERERLJQ+1oul+0i0pn6+nrk5+ejvr5e7apoBnOmjxyIEKO/MWSlJWDzorGYnh3cHijTs9OxedFYDpwQkRBE+DwgfWBf1Qe2szqY98Awb+LnQJT4RImDlBehdgWIKLQiIiKQmZmJiAi+/X3FnOkjByLEGEgMybFm5M0cjunZ6Vi5/QiKjlb5/NqcfilYMG4AN4cnIqGI8HlA+sC+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/LdpGuqD3Vi4go3B0or8PGPaew50Qt9p6qbbcnSmJ0JIb2TsSwvomYNqw3BqXFq1hTIiIiIiIiIhKZ2tdyObxGpDNNTU3YvXs3hg8fDovFonZ1NIE500cORIhRjhgGpcXjobQsAIAkSbA73XC6PDBHGBFrNsFgMMhZZSKisCPC5wHpA/uqPrCd1cG8B4Z5Ez8HosQnShykPO55QqQzTqcTxcXFcDqdaldFM5gzfeRAhBjljsFgMCDOEoGUWDPiLBEcOCEiXRDh84D0gX1VH9jO6mDeA8O8iZ8DUeITJQ5SHpftIl1Re6oXEZG/JElCfZMLzW4JkSYDBzGIiIiIiIiISBfUvpbLZbuIdMbj8cBmsyEhIQFGIyef+YI500cOwilGa7kNG4vLsOdkDfadsl2w78iQ3gkY1icJ07Pb7zsSTjEQEWkVz6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8tg7iHTGZrMhLy8PNptN7apoBnOmjxyEQ4xbrRW4Y+UuTF6xE88XHMaXhyrbDZwAQG1jM748VInnCw5j0ooduGPlLmyzngEQHjEQEWkdz6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8rhsF+mK2lO9wgFH1/3HnOkjB2rGWG134rGNJdi4pyzgY0zPTsejN18Ok9shdDsRESlND595JAb2VX1gO6uDeQ8M8yZ+DkSJT5Q49EDta7lctotIZ4xGI5KSktSuhqYwZ/rIgVox7j9tQ+6aIlTYmoI6zobiMhQeqcTaeTlISuKXPyKiQOnhM4/EwL6qD2xndTDvgWHexM+BKPGJEgcpj1dXiHSmrq4OK1euRF1dndpV0QzmTB85UCPG/adtmPliYdADJ61stjqsWrUKuw8HPoOFiEjv9PCZR2JgX9UHtrM6mPfAMG/i50CU+ESJg5THwRMinTGbzcjOzobZbFa7KprBnOkjB6GOsdruRO6aogv2NAmGCyYccF6EX77xHartTtmOS0SkJ3r4zCMxsK/qA9tZHcx7YJg38XMgSnyixEHK454npCtqr5NHRNTqwdd3B7XHSXemZ6cjb+ZwxY5PRERERERERKQkta/lcuYJkc44HA4UFBTA4XCoXRXNYM70kYNQxrjVWqHIwIkZLmRHnIIZLmwoLsNWa4XsZRARiU4Pn3kkBvZVfWA7q4N5DwzzJn4ORIlPlDhIeRw8IdIZl8uF0tJSuFwutauiGcyZPnIQyhhXFhxR5LgmSEgz1sGElkmlK7crUw4Rkcj08JlHYmBf1Qe2szqY98Awb+LnQJT4RImDlMdlu0hX1J7qRURkLbdh8oqdISvvk8VjMSgtPmTlERERERERERHJQe1ruZx5QqQzbrcb5eXlcLvdaldFM5gzfeRA6RhPVDXgRFUD1hceU+T4AGCEBymGBhjh8f5OyfKIiESkh888EgP7qj6wndXBvAeGeRM/B6LEJ0ocpDwOnhDpTF1dHVatWoW6ujq1q6IZzJk+cqB0jGOWb8OY5duwvvC4IscHgBhDM6ZHfY8YQ7P3d+s4eEJE5Bc9fOaRGNhX9YHtrA7mPTDMm/g5ECU+UeIg5XHZLtIVtad6hQNJktDU1ASLxQKDwaB2dTSBOdNHDpSOMfORD2U/5oUkmOGGEyYAP8Zw9MkpwrYbEZHc9PCZR2JgX9UHtrM6mPfAMG/i50CU+ESJQw/UvpYbEbKSiCgsGAwGREVFqV0NTWHO9JEDMWI0wNnBR7vd6UachR/5RES+EOPzgPSAfVUf2M7qYN4Dw7yJnwNR4hMlDlIel+0i0hmbzYYVK1bAZrOpXRXNYM70kQMRYoyBE7dZvkMMnO1+73R5OnkFERGdT4TPA9IH9lV9YDurg3kPDPMmfg5EiU+UOEh5HDwh0pmoqCiMHz+eI+x+YM70kQMRYnTChGJX+g/Ldv3IHMGPeyIiX4nweUD6wL6qD2xndTDvgWHexM+BKPGJEgcpj3uekK6ovU4eEelXaPY86Rj3PCEiIiIiIiIirVH7Wi5vRSXSmcbGRmzevBmNjY1qV0UzmDN95EDpGHcumYCdSybg6oxkRY4PAGa4kBN5HGa4vL8bkZHMgRMiIj/o4TOPxMC+qg9sZ3Uw74Fh3sTPgSjxiRIHKY+DJ0Q64/F4UFNTA4+HeyD4ijnTRw6UjrFvSgz6psRgZL8URY4PAEZIiDM4YcSPk0pH9leuPCIiEenhM4/EwL6qD2xndTDvgWHexM+BKPGJEgcpj8t2ka6oPdWLiMhabsPkFTtDVt4ni8diUFp8yMojIiIiIiIiIpKD2tdyOfOESGdcLhdKS0vhcrm6fzIBYM4AfeQgVDFmpSUgJ1OZ2SAmeJBmtMGElrtncvqlcOCEiMhPevjMIzGwr+oD21kdzHtgmDfxcyBKfKLEQcrj4AmRztTX12Pt2rWor69XuyqawZzpIwedxShJEuoczaiyO1HnaIYcEzYfGN8/6GN0JNrQjJ9a/oNoQzMAYMG4AYqUQ0QkMj185pEY2Ff1ge2sDuY9MMyb+DkQJT5R4iDlcdku0hW1p3oRkTZYy23YWFyGPSdrsO+UDbWNzd5/S4yOxJDeCRjWJwnTs3sHPLPjwdd3Y+OeMrmqfIHp2enImzlcseMTERERERERESlJ7Wu5ESEriYiIKMxttVZgZcERFJVWdfqc2sZmfHmoEl8eqsTzBYeRk5mCBeMHYELWxX6VtWzaYPzraCUqbE3BVvsCqQkWLJ3KgWEiIiIiIiIiokBx2S4inamtrcVTTz2F2tpatauiGcyZ+Dmotjux+NUv8dkbL6Hk2Gm/XltUWoW5+V9j0Ru7UW13+vy65Fgz1s7LQWJ0pL/V7VSsoQl3R+/G87dnITnWLNtxiYj0RPTPPBIH+6o+sJ3VwbwHhnkTPweixCdKHKQ8Dp4Q6UxMTAxmzJiBmJgYtauiGcyZ2DnYf9qGyXk7sOn7SnzhzIRDCmxS5obiMkzO2wFruc3n12SlJeDN+aOQmmAJqMzzJcTFYsJNU3BlZqosxyMi0iORP/NILOyr+sB2VgfzHhjmTfwciBKfKHGQ8rjnCemK2uvkEVF42X/ahpkvFrbb0yRYidGReHP+KGSlJfj8mmq7E0s3lWBDceB7oEzPTsfSqYM544SIiIiIiIiIhKD2tVzOPCHSmYaGBrz//vtoaGhQuyqawZyJmYNquxO5a4q8AycWNOP6yKOwILiBlNrGZsxZXeT3El55M4djde4I5PRL8au8nH4pWJN7DfJmDofF4BKunYiIQk3EzzwSE/uqPrCd1cG8B4Z5Ez8HosQnShykPG4YT0REuvTYxhJFNmsHgApbE5ZuKkHezOF+vW5iViomZqXiQHkdNu45hT0narH3VG27mTGJ0ZEY2jsRw/omYtqw3hiUFi939YmIiIiIiIiIdI/LdpGuqD3Vi4jCw1ZrBeblf6N4OatzR2BiVnD7j0iSBLvTDafLA3OEEbFmEwwGg0w1JCIiIiIiIiIKT2pfy+WyXUQ609zcDKvViuZm+fZ4EB1zJl4OVhYcueB3JrhxibEaJrjlK2f7heX4y2AwIM4SgZRYM+IsEV0OnIjWTkREauC5lLSCfVUf2M7qYN4Dw7yJnwNR4hMlDlIeB0+IdIbrOvqPORMrB9ZyG4pKqy74fZTBhevNpYgyuGQrq+hoFQ6U18l2vO6I1E5ERGrhuZS0gn1VH9jO6mDeA8O8iZ8DUeITJQ5SHpftIl1Re6oXEannRFXLl6JVOw5jfeHxkJV7z6gM3D+2P/qmxISsTCIiIiIiIiIirVP7Wi43jCciIl0Ys3ybKuWuKzyGdYXHUPrUzaqUT0RERERERERE/uOyXUQ6U1NTg2XLlqGmpkbtqmgGc6aPHMQZmjA3+hvEGZrUrkrA9NBORERK47mUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUh6X7SJdUXuqVzhwuVw4efIk+vTpg4gITj7zBXMmRg4yH/mwy383wYOexnqc9cTBrcC9BaGYeSJCOxERqY3nUtIK9lV9YDurg3kPDPMmfg5EiU+UOPRA7Wu57B1EOhMREYHMzEy1q6EpzJm6OZAkCfVNLjS7JUSaDIizRMBgMMhejhtGlHsSZD9uKLGvEhEFj+dS0gr2VX1gO6uDeQ8M8yZ+DkSJT5Q4SHlctotIZ+x2O9544w3Y7Xa1q6IZzFnoc2Att2H5ZivufrkQ2Y9/iqFLt+CqJ1r+n/34p7j75UIs32zFgfI62cqMQjMmmg8hCs2yHTPU2FeJiILHcylpBfuqPrCd1cG8B4Z5Ez8HosQnShykPM48IdIZo9GIpKQkGI0cO/UVcxa6HGy1VmBlwREUlVZ1+pzaxmZ8eagSXx6qxPMFh5GTmYIF4wdgQtbFQZXtgQH1khkeyD+rJVTYV4mIgsdzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ87nlCuqL2OnlE1LFquxOPbSzBxj1lAR9jenY6lk4djORYc4f/fqKqAQCw+M1ifHusOuBy/DUiIxl/uzMbfVNiQlYmEREREREREZHWqX0tl8NrRDrjdDpRXFwMp9OpdlU0gzlTNgf7T9swOW9HUAMnALChuAyT83bAWm7r8N/7psSgb0oMRvZL6fDfI+DGQNM5RMAdVD3ON7J/SsgGTthXiYiCx3MpaQX7qj6wndXBvAeGeRM/B6LEJ0ocpDwOnhDpjMPhQEFBARwOh9pV0QzmTLkc7D9tw8wXC1Fha5LleBW2Jty5qrDTARQAmJad3uHvzXAjO6IMZpkHT6YN6y3r8brCvkpEFDyeS0kr2Ff1ge2sDuY9MMyb+DkQJT5R4iDlcdku0hW1p3oR0Y+q7U5Mztsh28BJW6kJFmxeNLbTJbzuWLmry31V5JLTLwVvzb9W8XKIiIiIiIiIiESj9rVczjwh0hlJkuBwOMBxU98xZ8rk4LGNJYoMnAAtM1CWbirp9N8fGN+/g99KMMMFQL4YF4wbINuxfMG+SkQUPJ5LSSvYV/WB7awO5j0wzJv4ORAlPlHiIOVx8IRIZ2pra/H000+jtrZW7apoBnMmfw62WiuC3uOkOxuKy7DVWtHhv03MSsW0Ye2X74ozOHF3dDHiDPKseTo9Ox0Tsi6W5Vi+Yl8lIgoez6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8rhsF+mK2lO9woHb7cbZs2fRs2dPmEwmtaujCcyZ/DkIh2Wzzl82zAgPkgwO1EhR8AR5b0F3y4YphX2ViCh4PJeSVrCv6gPbWR3Me2CYN/FzIEp8osShB2pfy+XMEyKdMZlMSEtL44eDH5gzeXNgLbeFZOAEAIqOVuFAeV2H/5Yca8baeTlIjI4EAHhgRJUUE/TASWJ0JNbOywn5wAnAvkpEJAeeS0kr2Ff1ge2sDuY9MMyb+DkQJT5R4iDlcfCESGfq6+uRn5+P+vp6tauiGcyZPDk4UdWAE1UNWF94TMaadW994TGcqGro8N+y0hLw5vxRSE2wIBrNmGy2IhrNAZeVmmDBm/NHISstIeBjBIN9lYgoeDyXklawr+oD21kdzHtgmDfxcyBKfKLEQcqLULsCRBRaERERyMzMREQE3/6+Ys7kycGY5dtkrJHv1hUew7rCYyh96uYO/z0rLQGbF43FsveLUbr/DNwwBFTO9Ox0LJ06WJUZJ63YV4mIgsdzKWkF+6o+sJ3VwbwHhnkTPweixCdKHKQ87nlCuqL2OnlEepb5yIeqlt/Z4ElbW60VWLn9CIqO+r6sWE6/FCwYNyDkm8MTEREREREREYlM7Wu5XLaLSGeamppQWFiIpqYmtauiGcyZPnLQ1NSEmJqjWJd7FT5ZPBYLJwzA9QN7ePdEaZUYHYnrB/bAwgkD8MnisXhr/rVhM3Cih3YiIlIaz6WkFeyr+sB2VgfzHhjmTfwciBKfKHGQ8jg3iUhnnE4niouLMXjwYFgsFrWrownMmT5y0DbGQWnxeCgtCwAgSRLsTjecLg/MEUbEmk0wGAJb2ktpemgnIiKl8VxKWsG+qg9sZ3Uw74Fh3sTPgSjxiRIHKY/LdpGuqD3Vi0jPtLBsFxERERERERERhQe1r+Vy2S4infF4PKipqYHH41G7KprBnOkjByLEKEIMRERq47mUtIJ9VR/Yzupg3gPDvImfA1HiEyUOUh4HTxTidDqxbt06TJkyBRkZGYiKikKvXr0wevRoPPPMMzh37pzsZZaWluKl/8/enYdHVd3/A39PdrITwRC2BFCgrEEFQQRZVBQqUhZFVASkRaxFWoto+61A+2urWK3pBlhkUVlEsCzKJmiQLewBEggoGCBCwpJlJstkMsn9/XHNkJBtZjJ3zp1z36/nycNMcu895/M5d070npxz/vtfPPPMM+jZsyeaNm2KwMBAxMTEoEePHpg2bRp27drl9vUPHTqEF198EV26dEFkZCQiIyPRpUsXvPjiizh06JBb17x48SLmzp2Lu+++G82bN0eTJk3QoUMHjB07Fv/73//AiVGeZzabkZSUBLPZLLoqPoM580wOdr86GLtfHYy745t6sGYNuye+KXa/OrjB42RoZxliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4SHtctksDGRkZeOqpp5CamlrnMbfffjuWLl2K4cOHN7q8Y8eO4YUXXsDBgwedOn7QoEFYvnw52rZt69TxNpsNs2bNwj//+c86BzNMJhNefvllzJ8/H4GBgbUec6sPPvgAL7/8MoqKiuo85sEHH8RHH32EFi1aOHXNhoie6qUHFRUVMJvNiIyMhJ8fx0+dwZx5Ngfzt2bgP8nnPFSzhv1ycAfMGta5weNkaGcZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOIxA9LNcDp54WFZWFu69915cvnwZgDqoMHDgQHTo0AHXrl3Djh07UFJSAgAIDAzE1q1bMWTIkEaVuXr1ajz11FPVvtexY0d069YNzZo1Q35+Pvbt24esrCzHz1u2bIndu3ejffv2DV7/ueeew4cffuh43759e/Tt2xcAkJKSgvPnzzt+NmXKFHzwwQcNXnPJkiV4/vnnHe+jo6MxZMgQREVFIS0trdpMlh49emDv3r0IDw9v8LoNEf2BIyIgI9uMR97b7bXyts0ciE4tIrxWHhERERERERERNZ7oZ7kcWvOwCRMmOAZO4uPjcezYMSQnJ+ODDz7Axo0bcfHiRQwdOhQAUFZWhnHjxiE/P98jZd9xxx148803kZWVhTNnzmDdunVYtGgRPvnkE1y4cAEffPABQkNDAQCXL1/G008/3eCyWEuWLHEMnPj5+eHvf/87vv32W6xYsQIrVqzAt99+i7///e+OUdqqx9flzJkzeOGFFxzvn376aWRlZWHdunVYsmQJDh48iJ07d6JpU3VpnxMnTmDGjBlu54Wqs1gsWLhwISwWi+iq+AzmzLM56NwiEn0SYjxQq4b1aRfj9MCJDO0sQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj4MnHrR582bs3q3+NXVQUBA2bdqEnj17VjumWbNm2LBhg2PGR25uLubPn9+ocuPi4rB06VJkZGRg9uzZaNWqVY1j/Pz8MGXKFHz88ceO76WkpGD79u11Xre0tBRz5851vH/11Vcxc+bMatPZ/Pz8MHPmTMyaNcvxvTfeeAM2m63O6/7hD39AWVkZAKB///748MMPERYWVu2YIUOGYMWKFY73H374IU6fPl3nNcl5QUFBSExMRFBQkOiq+AzmzPM5eGFQw7PePGH6Ax2cPlaGdpYhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7THZbs8aMSIEdi8eTMA4Oc//znef//9Oo9dsWIFnnnmGQBATEwMcnJyEBAQ4JV63nvvvY79UX71q1/hH//4R63Hffrpp3jiiScAAFFRUbh8+bJj5sqtiouLERcX59ho6bPPPsPPfvazGsfl5OSgZcuWqKioAADs3bsX9913X511feihh7Bjxw4AwIwZM5CUlORklLUTPdWLyFcpioLCUjvKyhUE+psQHhwAk8nUqGvOWHUMG49f9lANa3o8sSWSxvfS7PpERERERERERKQd0c9yOfPEQwoLC7Fz507H+8mTJ9d7/JgxYxx7eOTm5uKbb77RtH5V9e/f3/E6MzOzzuPWr1/veP3kk0/WOXACAKGhoY6BFgD43//+V+txGzdudAycdOzYsd6BEwCYNGlSrfUh91mtViQnJ8NqtYquis8was4yss2YvzUDTy9OQe8/bsGz/28p+v5pC7rP3Y7EP36JpxenYP7WDJzJdm+a67yRXREbGezhWqtiI4Mx9zHXfpnK0M4yxEBEJBr7UvIVvFeNge0sBvPuHuZN/hzIEp8scZD2OHjiIfv27UNpaSkAICwsDL179673+JCQEPTr18/x/quvvtK0flVV/Wvx8vLyOo/7+uuvHa8HDRrU4HUHDx7seF1XPI255sWLF/Hdd981eA7Vz263IzMzE3a7XXRVfIbRcvZVRg6eWLgfj7y3G/9JPoe9391AUYkNLfws8Ic6WbGgpAx7v7uB/ySfw7D3vsETC/fj64yrLpXTNCwIy6f0QVSTQI/WP6pJIJZP6YOmYa5Nv5WhnWWIgYhINPal5Ct4rxoD21kM5t09zJv8OZAlPlniIO1x2S4PSUpKwsyZMwEAffv2xf79+xs857XXXsNbb70FABg9ejTWrVunZRUdHn74YXz55ZcAgGnTpmHhwoU1jikoKEB0dLTjfUZGBjp16lTvdTMyMvCTn/yk2jUiIyOrHdOrVy+kpqYCABYuXIhp06Y1WN8WLVogJycHgDpz5bHHHmvwnLqInupFpGd5RTbM2ZjeqKW0Hk9sibmPdXVp4CIj24znlhxEjrnU7XIrxUYGY/mUPujcIrLhg4mIiIiIiIiISLdEP8vlzBMPOXPmjON1fHy8U+e0bdvW8TojI8PjdarNxYsXq80KefDBB2s9rmo8QPW61uXWY269xq3f03OeZFZeXo7s7Ox6Zx1RdUbI2ekrZjyS9E2dAyd+qECMqRh+qKj3OhtSL+ORpG+QkW12uuzOLSKx9eWBeDyxpUt1vtXjiS2x9eWBbg+cyNDOMsRARCQa+1LyFbxXjYHtLAbz7h7mTf4cyBKfLHGQ9jh44iE3btxwvI6NjXXqnBYtWjhe5+bmerxOtfnNb37j6Bjatm1b5yyOqvFERkaiSZMmDV47NDQUERERjve3xlRSUoKSkhLHez3nSWYWiwWLFi2CxeLePhVGJHvOTl8xY/z7KfXO/Ag1leHxkFMINZU1eL0ccymeXJTi0gBK07AgJI3vhSWT7kGfdjFOnwcAfdrFYOmk3kga38vlpbqqkqGdZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7XHwxEMKCwsdr50ZaLj1uKrna2X58uXVlgb761//iuDg2jdrdieeW4+9NaZb34vMU0hICMLDwwGoo835+fmoXMHObDbDZrMBUAd8ioqKAKjrIebn5zuuUVBQgLIy9UFycXExiouLAQBlZWUoKChwHJefn+9YQ7GoqMgxgGSz2WA2qw+XFUVBfn6+Y2CrsLDQsWlVaWmpozOvqKhAfn4+KirUv/63WCyOvXasVqsjP/XFFBQUhJdeeglRUVHSxKR1O5lMJsyePRuRkZHSxFTZTrmFpZi+5BtYStT6NUEZgqCeE4hyNIFanyIlEOutP0GREvjjcTYEQs1DEOxoArU+fqhAuKkUBSU2PLfkIC5mX3cppiGdY7Hs2Z7YOK03fjm4Awa0b4oWTW7Odgk3laJpE3/cf0czvHh/K2x8oTfWTOuH/u2jG33v+fn5YebMmYiKitJdOzkbU0REBF544QXHQLae7z2Z+gjGxJgYk1wxKYqC2bNnIyoqSpqYZGwnxgRERUXhhRdeQFhYmDQxydhOjY0pKioKM2fOhJ+fnzQx+UI7BQQEYMaMGYiKipImJm+0U1RUFH77299CURRpYnK1nWT/7whA/cPsqKgon45J9naSMSZROHjiIZU3DaA+nHZG1YGLqjMytHD48GG88MILjvdPPfUUJkyYUOfx7sQD1B9T1Wu6cl0t8tS3b1+MHTsWAHDt2jUkJSU5PtBLlizBqVOnAAC7du3Cpk2bAABZWVlISkpyXGPBggU4d+4cAGD79u3Yvn07AODcuXNYsGCB47ikpCRkZWUBADZt2oRdu3YBAE6dOoUlS5YAUDubpKQkXLt2DQCwdu1apKSkAACOHTuGFStWAFA7lKSkJEcHtmLFChw7dgwAkJKSgrVr1zYY0zfffIMvv/wSJpNJmpi0bqelS5ciJCQENptNmpgq22ne+uMYbD+CaJP6+Xwg6By6BKh7DN3pfx0PBX8LAAgzlWFUyGmE/Tjz5KHgb3Gn/3UAQJeAHDwQpNYn2mTFuJCTCEI5csylWPyBezGdP74Ps4Z1xu8HxmBUcDrS5g3D0T88hHEhJ/HZxE74eOq9aFuYgcsZR2vE5O69t3LlSpw+fRomk0l37eRsTBaLBQsXLnT8x4ue7z2Z+gjGxJgYk1wx/eMf/0BISAhMJpM0McnYTowJMJlMWLhwIX744QdpYpKxnRobk8lkwunTp7Fy5UppYvKFdvr8889x4MABmEwmaWLyRjuZTCZYLBb84x//kCYmV9tJ9v+OqPy9YzKZfDom2dtJxpiEUcgjhg8frgBQACizZ8926pzNmzc7zgkPD9esbufPn1datGjhKKtHjx5KQUFBveesWbPGcXxsbKzTZd1+++2O89auXVvtZ1evXnX8DIBy+vRpp675xBNPOM556aWXnK5LbdLS0hQASkhIiBIeHq6kpaUpdrtdycvLUyoqKhRFUZSCggKltLRUURRFKS4uVgoLCxVFUZSysjIlLy/Pca38/HzFZrMpiqIoRUVFSlFRkaIoimKz2ZT8/HzHcXl5eUpZWZmiKIpSWFioFBcXK4qiKKWlpY52qKioUPLy8hS73a4oiqJYLBalpKREURRFsVqtitlsVhRFUcrLy5W8vDylvLxcURRFMZvNitVqVRRFUUpKShSLxaIoilJvTDk5Oco777yjFBQUSBOT1u2UlZWl/P3vf1fy8/OliamgoEDZeTpbiZ+9Sen62jql3eyNSvzsz5XOs/+n3Dl7vRI/+3PljtkblM6zP1PiZ3+udJm9TvntG39Wusxe9+Nxnyl3zN6gxM/+XLlz9nql8+z/KfGzP1fazd6odH1tnRI/e5MSP/tz5SezP1O2n7jktZgUxf1774cfflDeffddpaCgQFft5EpMeXl5yjvvvOOoh17vvca0E2NiTIyJMWkd08WLF5W///3vSkFBgTQxydhOjEm91jvvvKPcuHFDmphkbKfGxlRQUKC8++67yg8//CBNTL7QTleuXHH8f7MsMXmjnSrv14sXL0oTk6vtJPt/R1y6dMnx/82+HJPs7SRTTJXPciu/0tLSFG8yKcqPc2SoUZ588kmsWbMGADBjxgynRsY+++wzjBkzBoC6r8eVK1c8Xq8rV65gwIABjtHG9u3bY8+ePYiLi6v3vC1btmD48OEA1D1Pqk7pqk9kZKTjL563bt2KYcOGOX5WUlKC0NBQx/ujR4+iV69eDV5z5MiRjlHH1157DX/961+dqktt0tPT0a1bN8f7tLQ0dO3a1e3r+SKbzYZTp06hS5cuLs0qMjJZc/bEwv04mOncPkIBKEeCfx4yy5vCDn+XyunTLgZrpvVzp4peJUM7yxADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRhBKKf5QZ4rSTJ3XbbbY7XOTk5Tp2TnZ3teB0T49oGyc64ceMGHnroIcfASVxcHHbs2NHgwAlQPR6z2Qyr1YqQkJB6zykuLq620dKtMTVp0gRNmjRxLL2llzwZTVBQEBITE0VXw6fImLOMbLPTAycAYIc/vitv5lZZB7/PxZlsCzq1iHDrfG+RoZ1liIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDtcc8TD+nUqZPj9YULF5w65+LFi47XnTt39mh9zGYzhg0bhvT0dABAs2bNsGPHDrRr186p86vGAzgXU9V4arvGrd/TQ56MqKSkBFu3btV8nx2ZyJKzS7nFjq+PU5z7/FUKgh19Ai86NpN3lavliSBDO8sQAxGRaOxLyVfwXjUGtrMYzLt7mDf5cyBLfLLEQdrjzBMP+clPfuJ4ffLkSdjtdgQE1J/eo0eP1np+YxUVFWH48OE4cuQIACAqKgpbt25Fly5dnL5GVFQU4uLiHEuJHTt2rNbBkKqqxtOqVStERkbWOOYnP/kJUlNTHddsyOXLl6vNUPFknoyqoqIC+fn5qKioEF0VnyFLzgbM/9rtc/2gINxkgx/cW+nxo5QL+NOobg0fKJAM7SxDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPe554SGFhIZo1a4bS0lIAwP79+9G3b986jy8tLUXz5s0dy1zt3LkTQ4YMaXQ9rFYrRowYga+++goAEBoaiu3bt6N///4uX+vpp5/GypUrAQDTpk3DwoUL6z1+2rRpeP/99wEAzz77LD788MMax/z3v//FL37xCwDqLJSMjIx6r7lq1SpMmDABANC2bVunZ6vURfQ6eUQiJbz2hdDyv//rcJhMJqF1ICIiIiIiIiIi3yD6WS6X7fKQ8PBwDB061PF+2bJl9R7/2WefOQZOYmJiMHDgwEbXoaysDGPGjHEMnAQHB2PDhg1uDZwAwKhRoxyvP/nkk3qnspWUlGDNmjW1nlvVyJEj4een3nZnzpxBSkpKvXWomsfHH3+84UpTg+x2OzIzM2G3u7f8khExZ4A/KtDCzwx/uP9XGUW2cg/WyPNkaGcZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7HDzxoBdffNHxetmyZY79Rm5VXFyMN954w/H+F7/4RYNLfDWkvLwcEyZMwObNmwEAAQEBWLNmDR588EG3rzly5Ei0bt0aAJCfn48///nPdR77pz/9Cfn5+QCA+Ph4/PSnP631uNjYWIwePdrx/tVXX0Vdk5+2b9+O7du3AwD8/f3xwgsvuBMG3aKwsBDLly9HYWGh6Kr4DOYMaGIqw6PBZ9HEVOb2NWx2fU+HlaGdZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7XHZLg8bOHAgdu/eDQBISEjAhg0b0KNHD8fPb9y4gaeeegpffvklAHXWyblz5xAdHV3jWpmZmdU2eF+6dCkmTZpU4zhFUTB58mQsX74cAODn54cVK1Zg/PjxjY5nyZIleP755x3X/fvf/46XXnrJMXukoqIC//rXv/DrX//asU7g8uXLMXHixDqvmZGRgR49eqCsTH0I++yzz2LBggUICwtzHPP1119j3LhxuHHjBgBg8uTJWLJkSaPjET3Vi0gk0ct2pc0bhvBgbrVFREREREREREQNE/0sl0+xPGzlypXo06cPrly5gszMTCQmJuKBBx5Ahw4dcO3aNezYsQPFxcUAbs4OqW3gxBULFixwDJwAQIcOHbBnzx7s2bPHqfP/9a9/1fmzKVOmIDk5GR999BEqKirw8ssv4x//+IdjP5eUlBScO3fOcfzkyZPrHTgBgM6dO2PBggWYOnUqAOCjjz7C559/jiFDhiAyMhKnTp3CgQMHHMf36NEDSUlJTsVCRPoVFuQvugpERERERERERERO4eCJh7Vu3RpfffUVnnrqKaSmpkJRFCQnJyM5Obnacc2bN8fSpUur7ZPirqtXr1Z7/+233+Lbb791+vz6Bk8AYPHixYiKisK///1vKIqCc+fOVRswAQCTyYRf/epX+Nvf/uZUmc8//zwURcHMmTNRVFSEvLw8rFu3rsZxQ4cOxUcffYSIiAin46H6FRQUYMGCBZg+fTqioqJEV8cn6CFniqKgsNSOsnIFgf4mhAcHuLz5+u5XBztez/wkFUcu5Dl9bpipFI8Hn8KG0i4oUoJdKhcA7olvqvvN4vXQzo0lQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj4MnGujcuTMOHDiA1atXY9WqVUhPT0dOTg6io6PRvn17jB49GpMnT0azZs1EV9UpQUFB+Oc//4lnn30WS5YsQXJyMn744QcAQKtWrTBo0CA8//zz6N27t0vXnTp1Kh5++GF88MEH2LRpEy5evIjCwkLExcXhrrvuwjPPPINRo0bp/oGrrwkNDcWoUaMQGhoquio+Q1TOMrLN2Jh6Gcez8pH2gxkFJTf3G4lqEohurSLRs3U0Hk9shU4tGh5gbBNzs/73totxafDEqgRgjy0BVsW9Xxv3to9x6zxvkuGzIUMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRIHaY97npChiF4nj8gZX2XkYGHyeRzMzHX6nD4JMZg+qAMGd77dqeMzss145L3d7lbRZdtmDnRqgIeIiIiIiIiIiAgQ/yzXz2slEZEuFBcXY/369Y69d6hh3spZXpENM1Ydw5Rlh10aOAGAg5m5mLzsEF5efQx5RbYGj+/cIhJ9EpyfDRKMMtwf+D2CUdbwwbfo0y7GJwZOZPhsyBADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2uPgCRGRDpy+YsYjSd9g4/HLjbrOhtTLeCTpG2Rkmxs89oVB7RtVlrOmP9DBK+UQERERERERERF5CpftIkMRPdWLqDanr5gx/v2UanuaNFZUk0B8Mq0vOreIrPe4GauONXrApj6PJ7ZE0vheml2fiIiIiIiIiIjkJPpZLmeeEBlMWVkZMjIyUFbmuQf1stMyZ3lFNkxaetCjAycAUFBShueWHGxwCa95I7siNjK4wev5oxxt/fLgj3Kn6xAbGYy5j/nO4KQMnw0ZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7HDwhMhiu6+g6LXM2Z2M6csylHr8uAOSYSzF3U3q9xzQNC8LyKX0Q1SSw3uNCTHbcH5SJEJPdqbKjmgRi+ZQ+aBoW5HR9RZPhsyFDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPy3aRoYie6kVU1VcZOZiy7LDm5SyZdA+GdI6t95iMbDOeW3LQIwM5sZHBWD6lT4NLhhEREREREREREdVF9LNczjwhIhJkYfJ575Szq+FyOreIxNaXB+LxxJaNKuvxxJbY+vJADpwQEREREREREZFP4+AJkcHk5+dj3rx5yM/PF10Vn6FFzjKyzTiYmeux69Xn4Pe5OJNtafC4pmFBSBrfC0sm3YM+7WKq/SzcVIrJTQ4j3FT7zJQ+7WKwdFJvJI3v5VNLdVUlw2dDhhiIiERjX0q+gveqMbCdxWDe3cO8yZ8DWeKTJQ7SHpftIkMRPdVLD+x2O7KystC6dWsEBASIro5P8GTOLuWq62ku+uYcPk656InqOeXZvvH406huDR9YxZlsCzYe/wHHLxUg/Yc8BJfm4VpFOMrhh6gmgejeKgo920RhZM9W6NQiQqOae48Mnw0ZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOIxA9LNcDp6QoYj+wBElvPaFsLIz3xzh9rmKoqDIVg6bvQJBAX4IC/KHyWTyYO2IiIiIiIiIiIhuEv0sl8t2ERlMUVERVq9ejaKiItFV8Rmy5KwxY+XFxcX4/H9rEYwyhAcHSDlwIkM7yxADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2uPgCZHB+Pn5ITo6Gn5+/Pg7S5acFdnK3T5XlhzUR4YYZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7XHZLjIU0VO9iEQu23X0Dw8hxkc3cyciIiIiIiIiImMR/SyXw2tEBmOz2ZCamgqbzSa6Kj5DlpwFBbjf5cuSg/rIEKMMMRARica+lHwF71VjYDuLwby7h3mTPweyxCdLHKQ9Dp4QGYzVakVycjKsVqvoqvgMWXIWFuTv9rmy5KA+MsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj8t2kaGInupFvktRFBSW2lFWriDQ3+T2pumXcosBADM/ScWRC3mermad7olvirXT7/NaeURERERERERERI0h+llugNdKIiJdUBQFpaWlCA4Oduvhv5FkZJuxMfUyjl/Kw5nLebheUgFAzVlUk0B0axWJnq2j8XhiK3RqEeHUNdvEhAIA7m0X49XBk3vbxzTqfCPcNzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRIHaY/LdhEZTEFBAd566y0UFBSIropufZWRgycW7scj7+3Gf5LP4fj5K3gMhxBuurkWZkFJGfZ+dwP/ST6HYe99gycW7sfXGVedLmNkYkstql53eT1bNep8I9w3MsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpj8t2kaGInuqlB+Xl5bh27RqaN28Of3/398CQUV6RDXM2pmPj8cvVvu+HCkSbrMhXQlDRwJjz44ktMfexrmgaFtRgeU8s3I+DmbmNqrMz+rSLwZpp/Rp1DSPcNzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRKHEYh+lsuZJ0QG4+/vjxYtWvCXwy1OXzHjkaRvagycAEAF/JCrhDY4cAIAG1Iv45Gkb5CRbW7w2BcGtXerrq6a/kCHRl/DCPeNDDHKEAMRkWjsS8lX8F41BrazGMy7e5g3+XMgS3yyxEHa4+AJkcEUFhZi2bJlKCwsFF0V3Th9xYzx76cgx1xa68+boAyPBGWgCcqcul6OuRRPLkppcABlSOdYjOyp7fJdjye2xODOtzf6Oka4b2SIUYYYiIhEY19KvoL3qjGwncVg3t3DvMmfA1nikyUO0h4HT4gMJiAgAAkJCQgICBBdFV3IK7Jh0tKDKCipe2CkHCZkV0SgHM5vIlZQUobnlhxEXpGt3uPmjeyK2Mhgp6/ritjIYMx9zDNTGY1w38gQowwxEBGJxr6UfAXvVWNgO4vBvLuHeZM/B7LEJ0scpD3ueUKGInqdPNKfGauO1bpUl6c8ntgSSeN71XtMRrYZTy5KqXcAx1VRTQLxybS+6Nwi0mPXJCIiIiIiIiIi8hbRz3I584TIYEpLS5GSkoLS0tqXqDKSrzJynBo4CUQ5uvjnIBDlLpexIfUyvsrIqfeYzi0i8cm0vh6bgRIbGezxgRMj3DcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPgydEBmOz2ZCamgqbrf7lpIxgYfJ5p44LQDnuCLiOADcGTwBg4a6Gy+ncIhJbXx6IxxMbtwfK44ktsfXlgR6fcWKE+0aGGGWIgYhINPal5Ct4rxoD21kM5t09zJv8OZAlPlniIO1x2S4yFNFTvUg/MrLNeOS93V4rb9vMgejUIsKpY7/KyMHCXedx8Ptcp6/fp10Mpj/QwSObwxMREREREREREYkm+lkud8UhMpiKigqYzWZERkbCz894k88u5RYDAD5OueD0OSYoCDPZUKQEQXFh0/iqPk65gF8MbI82MaENHjukcyyGdI7FmWwLNh7/AccvFeDkDwXV9kSJahKI7q2i0LNNFEb2bOX0wIy7jHDfyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd4dRAZjNpuRlJQEs9ksuipCDJj/NQbM/xofp1x0+pwwkw3jQk4izOT+dM6PUi5gwPyvXTqnU4sIzBrWGR9PvRepbzyEtHnDcPQP6r+pbzyEj6fei1nDOms+cAIY476RIUYZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7XLaLDEX0VC89MProesJrX7h8jidmnlTKfHNEo84XxQj3jQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRhBKKf5XLZLiKD8fPzQ3R0tOhq+BQFJhQqwaKrIZQR7hsZYpQhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7THoTUig7FYLFi4cCEsFovoqviMJrBhZHA6msD9Zbt8nRHuGxlilCEGIiLR2JeSr+C9agxsZzGYd/cwb/LnQJb4ZImDtMfBEyKDCQoKQmJiIoKCgkRXxWfY4Y/v7M1gh7/oqghjhPtGhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDtcc8TMhTR6+SReO7seeJJvrrnCRERERERERERkTeJfpbLmSdEBmO1WpGcnAyr1Sq6KkLsfnUwdr86GHfHN3X6nCDYkRjwA4Jgd7vce+KbYverg90+XzQj3DcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2mPgydEBmO325GZmQm73f2BAF/WJiYUbWJCcW+7GKfP8YeCFn4W+MP9iXr3to9Bm5hQt88XzQj3jQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2uOyXWQooqd6kX5kZJvxyHu7vVbetpkD0alFhNfKIyIiIiIiIiIi8mWin+Vy5gmRwZSXlyM7Oxvl5eWiqyJU5xaR6JPg3OwTP1QgxlQMP1S4VVafdjE+P3BihPtGhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt6X7w5NChQ5g5cybuuecexMbGIigoCAEBATWOy8/Px+bNm7F582acOHFCQE2JfIPFYsGiRYtgsVhEV0W4Fwa1d+q4UFMZHg85hVBTmVvlTH+gg1vn6YkR7hsZYpQhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7Sn22W7rl27hsmTJ2PLli2O71VW1WQy1RgZLCsrQ0JCArKzs9GuXTt89913Xq0v+QbRU730QFEUlJaWIjg4GCaTSXR1hJux6hg2Hr/cwFEKglAOG/wBuJazxxNbIml8L7frpxdGuG9kiFGGGIiIRGNfSr6C96oxsJ3FYN7dw7zJnwNZ4pMlDiMQ/SxXlzNPLl++jN69e2PLli1QFMXxVZ/AwEC88MILUBQF33//PVJSUrxUWyLfYjKZEBISwl8OP5o3sitiI4MbOMoEGwLg6sBJbGQw5j4mx+CcEe4bGWKUIQYiItHYl5Kv4L1qDGxnMZh39zBv8udAlvhkiYO0p8vBk7Fjx+LixYtQFAVdunTBqlWrkJOTgxdffLHe88aPH+94vW3bNq2rSeSTzGYz3nvvPZjNZtFV0YWmYUFYPqUPopoE1nlMKGwYG3wCobA5fd2oJoFYPqUPmoYFeaKawhnhvpEhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4SHu6GzxZv349UlJSYDKZMGDAABw8eBBPPvkkmjdv3uBo4J133olWrVoBAA4cOOCN6hL5nJCQEAwaNAghISGiq6IbnVtE4pNpfeucgWKDP1LtLX9ctqthsZHB+GRaX3RuEenJagplhPtGhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt6W7PkwkTJmD16tUIDAzEmTNnkJCQ4PjZr371K/z73/+udc+TSiNGjMCWLVvQrl07nDt3zku1Jl8hep080re8IhvmbkrHhtSG9kCp2+OJLTH3sa7SzDghIiIiIiIiIiISQfSzXN3NPKmcddKvX79qAyfOuv322wGoG84TUU0lJSXYunUrSkpKRFdFd5qGBSFpfC8smXQP+rSLcXw/CHb0CbyIINjrPLdPuxgsndQbSeN7STlwYoT7RoYYZYiBiEg09qXkK3ivGgPbWQzm3T3Mm/w5kCU+WeIg7QWIrsCtrl69CgDo2LGjW+dXTrcqLS31WJ2IZFJRUYH8/HxUVFSIrorLFEVBYakdZeUKAv1NCA8O0GRzryGdYzGkcyzOZFuw8fgPSMu8ipDsC/AruzlRL6pJILq3ikLPNlEY2bMVOrWI8Hg99MSX7xtnyRCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd0t2xUZGYmioiJMnjwZixcvrvYzZ5btevLJJ/Hpp5+iefPmyMnJ8UaVyYeInupFrsvINmNj6mUcz8pH2g9mFJSUOX4W1SQQ3VpFomfraDyeqO0AhqIoKLKVw2avQFCAH8KC/DUZuCEiIiIiIiIiIiLxz3J1t2xX8+bNAQCZmZlunX/06FEAQMuWLT1VJSKp2O12ZGZmwm6vewkqPfgqIwdPLNyPR97bjf8kn8Pe725UGzgBgIKSMuz97gb+k3wOw977Bk8s3I+vM656vC52ux0XLlxAiD8QExak2YwXPfOV+6YxZIhRhhiIiERjX0q+gveqMbCdxWDe3cO8yZ8DWeKTJQ7Snu4GT+655x4oioKUlBSYzWaXzj148CDOnTsHk8mE/v37a1RDIt9WWFiI5cuXo7CwUHRVapVXZMOMVccwZdlhHMzMdencg5m5mLzsEF5efQx5RTaP1UnvOfMGI+RAhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt6W7Zro8//hgTJ06EyWTCrFmz8Oabbzp+Vt+yXWVlZRg4cCAOHDgAk8mEbdu24cEHH/R29UnnRE/1ovqdvmLGpKUHkWNu/J5FsZHBWD6lDzq3iPRAzYiIiIiIiIiIiMibRD/L1d3Mk/Hjx6N9+/YAgL/97W/4xz/+0eA5165dw2OPPeYYOLn77rs5cELkY05fMWP8+ykeGTgBgBxzKZ5clIKMbNdmsBERERERERERERHpbvAkICAAixcvRkBAABRFwa9//Wv07t0b77zzDs6fP+84buPGjVi0aBEmTpyIdu3a4csvvwQAhIaG4oMPPhBVfSLdKygowJtvvomCggLRVXHIK7Jh0tKDNfY0aayCkjI8t+Rgo5fw0mPOvM0IOZAhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4SHu6W7ar0qeffopJkyahpKSkwY2ZK0MIDw/HqlWrMGLECG9UkXyQ6KleelBWVoZz586hQ4cOCAwMFF0dAMCMVcew8fhlza7/eGJLJI3v5fb5esyZtxkhBzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRKHEYh+lqvbwRNATc6MGTPw9ddfV/u+yWTCrdUeNGgQ/vnPfxruQTi5RvQHjmr6KiMHU5Yd1rycJZPuwZDOsZqXQ0RERERERERERI0n+lmu7pbtqqpr167YuXMnUlNT8Ze//AWPPfYY7r77bnTo0AE9e/bEww8/jD/84Q84cOAAvvrqKz4EJ3JCcXEx1q9fj+LiYtFVAQAsTD7f8EGeKGeX++XoLWciGCEHMsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpL0B0BZzRo0cP9OjRQ3Q1iMjDMrLNOJiZ65WyDn6fizPZFnRqEeGV8oiIiIiIiIiIiMh36XrZLiJPEz3Vi4BLuTdH9Rd9cw4fp1z0WtnP9o3Hn0Z1a/hAIiIiIiIiIiIiEkr0s1xdL9tFRJ5XVlaGjIwMlJWVCSl/wPyvHV/eHDgBgI9SLrh1nuic6YERciBDjDLEQEQkGvtS8hW8V42B7SwG8+4e5k3+HMgSnyxxkPZ0OXiSkZGBEydO4PTp0y6dd/r0aZw4cQJnz57VqGZEvs/o6zq6M9nO6DkDjJEDGWKUIQYiItHYl5Kv4L1qDGxnMZh39zBv8udAlvhkiYO0p7tluy5cuIAOHTpAURRMnDgRS5cudfrcyZMn48MPP0RAQAAyMzMRFxenYU3JF4me6kVAwmtfCC0/bd4whAf7xHZPREREREREREREhiX6Wa7uZp6sWbMGFRUVAIBf/vKXLp07ffp0KIoCu92OTz75RIvqEZGPs9krRFeBiIiIiIiIiIiIdE53gydff/01ACAuLg733HOPS+f26dPHMdtk586dHq8bkQzy8/Mxb9485Ofni66KEEEBrnd7Rs8ZYIwcyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd0NnqSnp8NkMuHuu+926/y7774biqIgPT3dwzUjkkN4eDiee+45hIeHi66KEGFB/i6fY/ScAcbIgQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2tPdwv/Xrl0DALRo0cKt8yvPu3r1qsfqRCSTgIAAJCQkCCt/96uDHa9nfpKKIxfyvFb2PfFNYTKZXD5PdM70wAg5kCFGGWIgIhKNfSn5Ct6rxsB2FoN5dw/zJn8OZIlPljhIe7qbeVKprKzMrfPsdnu1f4mouqKiIqxevRpFRUVCym8TE+r4urddjFfLvre9e+WJzpkeGCEHMsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpT3eDJ82bNwcAZGZmunX+999/DwBo1qyZp6pEJBU/Pz9ER0fDz0/8x39kYkvvltezlVvn6SlnohghBzLEKEMMRESisS8lX8F71RjYzmIw7+5h3uTPgSzxyRIHac+kKIoiuhJVPfzww9ixYweCg4Nx+fJlNG3a1Olz8/LyEBcXh7KyMgwYMADJycnaVZR8Unp6Orp16+Z4n5aWhq5duwqsET2xcD8OZuZqXk6fdjFYM62f5uUQERERERERERFR44l+lqu74bWHHnoIAGCz2TBv3jyXzp0zZw5sNlu16xBRdTabDampqY7PimgvDGrvlXKmP9DB7XP1ljMRjJADGWKUIQYiItHYl5Kv4L1qDGxnMZh39zBv8udAlvhkiYO0p7vBk+eeew6hoaEAgH/+8594++23nTpv/vz5+Ne//gUACA4OxqRJk7SqIpFPs1qtSE5OhtVqdflcRVFgsZYht8gGi7UMnpi4NqRzLEb21Hb5rscTW2Jw59vdPr8xOZOFEXIgQ4wyxEBEJBr7UvIVvFeNge0sBvPuHuZN/hzIEp8scZD2dLdsFwD88Y9/xNy5c2EymQAAffv2xUsvvYTBgwejRYsWjuNycnLw1Vdf4d///jf2798PRVFgMpnwu9/9Dn/6059EVZ90TPRUL1+UkW3GxtTLOJ6Vj7QfzCgoKXP8LKpJILq1ikTP1tF4PLEVOrWIcKuMvCIbHkn6BjnmUk9V2yE2MhhbXx6IpmFBHr82ERERERERERERaUP0s1xdDp4oioIxY8Zg/fr1jgGUSsHBwQgPD0dhYSFKS0urnQMAI0eOxPr1671ZXfIhoj9weqAoCkpLSxEcHFzj81XVVxk5WJh83qX9SPokxGD6oA5uzfLIyDbjyUUp1QZnGiuqSSA+mdYXnVtENuo6zuZMZkbIgQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRhBKKf5epu2S4AMJlMWLt2LV599VWYTCYoiuL4slqtuH79OqxWa7Xv+/n5YdasWVi3bp3o6hPpWkFBAd566y0UFBTU+vO8IhtmrDqGKcsOu7yR+8HMXExedggvrz6GvCLX1o3s3CISn0zri9jIYJfOq0tsZLBHBk6AhnNmBEbIgQwxyhADEZFo7EvJV/BeNQa2sxjMu3uYN/lzIEt8ssRB2tPlzJOqvv32W7z77rvYtm0bMjMza/w8ISEBjz76KGbOnIk777zT+xUknyJ6tFIPysvLce3aNTRv3hz+/v7Vfnb6ihmTlh70yPJZsZHBWD6lj8uDF3lFNszdlI4NqZfdLvvxxJaY+1hXjy3VVV/OjMIIOZAhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmSJT5Y4jED0s1zdD55UdfXqVeTk5MBisSAiIgKxsbG4/Xb3N4Em4xH9gdOz01fMGP++fpbN+iojBwt3ncfB711YNqxdDKY/4N6yYURERERERERERKQfop/l6nLZrrrcfvvt6N69O+677z50796dAydEbigsLMSyZctQWFjo+F5ekQ2Tlh706MAJABSUlOG5JQddXsILAIZ0jsWaaf2wbeZA/HJwB9x/RzNENQmsdkxUk0Dcf0cz/HJwB2ybORBrpvXTZOCktpwZjRFyIEOMMsRARCQa+1LyFbxXjYHtLAbz7h7mTf4cyBKfLHGQ9gJEV4CIvCsgIAAJCQkICLj58Z+zMd0jS3XVJsdcirmb0pE0vpdb53dqEYFZLToDUDf0KrKVw2avQFCAH8KC/L2ysVdtOTMaI+RAhhhliIGISDT2peQreK8aA9tZDObdPcyb/DmQJT5Z4iDt+dSyXUSNJXqqlx59lZGDKcsOa17Okkn3YEjnWM3LISIiIiIiIiIiIt8n+lmuTy3bRUSNV1paipSUFJSWqjNNFiaf90q5C3d5pxwt3JozIzJCDmSIUYYYiIhEY19KvoL3qjGwncVg3t3DvMmfA1nikyUO0p6uB0/27NmDX/7yl+jduzeaN2+O4OBg+Pv7O/XFaVdEtbPZbEhNTYXNZkNGthkHM53fkL0xDn6fizPZFq+U5WlVc2ZURsiBDDHKEAMRkWjsS8lX8F41BrazGMy7e5g3+XMgS3yyxEHa0+WyXbm5uZg4cSK2bNni+J6r1TSZTCgvL/d01cjHiZ7qpReXcosBAIu+OYePUy56rdxn+8bjT6O6NXwgERERERERERERGZroZ7m6m3lit9vx8MMPY8uWLVAUxfFFRJ5RUVGBR9/eioHzv/LqwAkAfJRywavleUpFRQXy8/NRUVEhuirCGCEHMsQoQwxERKKxLyVfwXvVGNjOYjDv7mHe5M+BLPHJEgdpT3eDJ4sWLcLRo0cd78eOHYvNmzfjypUrsNlsqKiocOqLs06Iamc2mzEu5CTCTGKmJvriYKjZbEZSUhLMZrPoqghjhBzIEKMMMRARica+lHwF71VjYDuLwby7h3mTPweyxCdLHKQ93S3b9cADD2D37t0wmUz4+9//jhkzZoiuEklE9FQvPaioqECP369HkRIEBSavl582bxjCg31rT6KKigqYzWZERkbCz093Y85eYYQcyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxxGIPpZru6eYKanp8NkMqFTp04cOCHSgJ+fHwqVYGHl2+wVgLji3eLn54fo6GjR1RDKCDmQIUYZYiAiEo19KfkK3qvGwHYWg3l3D/Mmfw5kiU+WOEh7uhtaKyoqAgD07dtXcE2I5GSxWDAyOB1NIGbZrqAA3XU7DbJYLFi4cCEsFovoqghjhBzIEKMMMRARica+lHwF71VjYDuLwby7h3mTPweyxCdLHKQ93T3FbNmyJQBwyhSRRoKCgvCdvRns8BdSfliQmHIbIygoCImJiQgKChJdFWGMkAMZYpQhBiIi0diXkq/gvWoMbGcxmHf3MG/y50CW+GSJg7Snuz1PnnrqKXzyySe47777sGfPHtHVcZvNZsMnn3yCVatWIT09HTk5OWjatCnatWuH0aNHY9KkSWjWrJlHyywvL0d6ejoOHTqEw4cP49ChQzhx4gTKysoAqPvJJCcnO309k8n9/TCee+45LFu2rNafJSQk4MKFCy5d79KlS2jdurXb9akkep08vbiUWwwAmPlJKo5cyPNauffEN8Xa6fd5rTwiIiIiIiIiIhIo7wKQ1KP2n718Amga7936kE8R/SxXd9M7fvGLXwAADhw4gG+//VZwbdyTkZGBe++9FxMnTsSWLVtw8eJFlJaWIjs7G/v378esWbPQtWtXbN682WNlrl+/HpGRkejZsyemTp2KhQsX4siRI46BE29r0aKFkHKpYVarFedOHETzUD/c2y7Gq2Xf29675XmK1WpFcnIyrFar6KoIY4QcyBCjDDEQEYnGvpR8Be9VY2A7i8G8u4d5kz8HssQnSxykPd1tGD948GBMnToVixcvxsSJE7Fz506EhoaKrpbTsrKyMHToUFy+fBmAOntj4MCB6NChA65du4YdO3agpKQEV69exahRo7B161YMGTKk0eXm5+ejuLi40dep6pe//KXTx6anp1eb1fLMM884dd7EiRMRERHR4HHh4eFO14XqZ7fbkZmZiXvuuQcjE1viP8nnvFb2yJ6tvFaWJ1XNmVEZIQcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz4Es8ckSB2lPd8t2AUBZWRl+8YtfYPny5ejUqRPefPNN/PSnP4W/v/73Shg4cCB2794NAIiPj8eGDRvQs2dPx8+vX7+O8ePHY+fOnQCAmJgYnDt3DtHR0Y0qd9myZZg8eTJiY2PRu3dvx9e2bduQlJQEwPVlu1wxbtw4rF27FgBw11134ciRI3UeW3XZru+//x4JCQma1Kk2oqd66dETC/fjYGau5uX0aReDNdP6aV4OERERERERERHpQE46cOgD4PAHtf+8zb1AfH+g+zggtot360Y+QfSzXN3NPKk6CyM4OBhnzpzB6NGjERISgk6dOiEqKsqpvThMJpNjgMJbNm/e7Bg4CQoKwqZNm9C9e/dqxzRr1gwbNmxAjx49cP78eeTm5mL+/Pn4y1/+0qiyH3nkEVy4cAFt27at9v0DBw406rrOyMvLw6ZNmxzvn3vuOc3LJPeVl5fj2rVraN68Ofz9/fHCoPY4uEz7wZPpD3TQvAyt3JozIzJCDmSIUYYYiIhEY19KvoL3qjGwncVg3t3DvMmfA6fjO7sN2PMecHFf/Re8dED92vMu0PY+4P5fAx0f9midayN7O5Hn6G7Pk+TkZOzatQu7du2CzWaDyWSCoigoKSnB8ePH8c033zh+XtdXcnKyZjMs6vPvf//b8fq5556rMXBSKSwsDH/84x8d7xctWgS73d6oslu0aFFj4MRbVq9ejdLSUgBAYGAgJkyYIKQe5ByLxYJFixbBYrEAAIZ0jsXIni01LfPxxJYY3Pl2TcvQ0q05MyIj5ECGGGWIgYhINPal5Ct4rxoD21kM5t09zJv8OWgwvuJcYO3zwMonGh44udXFfcDKccC6qep1NCR7O5Hn6G7ZLj8/z4znmEwmlJeXe+RazigsLESzZs0cgwj79u1Dv351L1FktVrRvHlzFBYWAgB27tzpkb1PbjV37lzMmzcPgHbLdvXt29cxw2XUqFH43//+V+/xXLZLLEVRUFpaiuDgYMcsrrwiGx5J+gY55lKPlxcbGYytLw9E07Agj1/bW2rLmdEYIQcyxChDDEREorEvJV/Be9UY2M5iMO/uYd7kz0G98WWnASvGApYrjS8oIg54Zh0Qq80zO9nbSSain+Xqbtmur7/+WnQV3LJv3z7HwElYWBh69+5d7/EhISHo168fvvzySwDAV199pcngidbOnj1bbWkwLtmlfyaTCSEhIdW+1zQsCMun9MGTi1JQUFLmsbKimgRi+ZQ+Pj1wAtSeM6MxQg5kiFGGGIiIRGNfSr6C96oxsJ3FYN7dw7zJn4M648tOA5aNAKz5ninIcgVYOhyYvFmTARTZ24k8R3eDJw888IDoKrjl9OnTjtfdu3dHQEDDqb3rrrscgydVz/cly5cvd7xu1qwZRowY4dL5R44cwYYNG/DDDz8AAG677TZ06dIF999/P5o2berRupLKbDZjyZIlmDJlCiIjIx3f79wiEp9M64vnlhz0yAyU2MhgLJ/SB51bRDZ8sM7VlTMjMUIOZIhRhhiIiERjX0q+gveqMbCdxWDe3cO8yZ+DWuMrzlVnnHhq4KSSNR/4eAwwfR8QGuPRS8veTuQ5uhs88VVnzpxxvI6Pj3fqnKp7lGRkZHi8TlqrqKjARx995Hg/YcIEBAYGunSNsWPH1vr9wMBAjB8/HnPnzkX79u0bVU+qLiQkBIMGDap1hL1zi0hsfXkg5m5Kx4bUy26X8XhiS8x9rKvPzzipVF/OjMIIOZAhRhliICISjX0p+Qreq8bAdhaDeXcP8yZ/DmqNb/MszyzVVRvLFWDLq8CYxR69rOztRJ6juw3jfdWNGzccr2NjY506p0WLFo7XubnaboSkha+//hqXLl1yvPfkkl1lZWX46KOP0KtXL2zatMlj1yUgKCgIiYmJCAqqfWCjaVgQksb3wpJJ96BPO9dG9vu0i8HSSb2RNL6XNAMnQMM5MwIj5ECGGGWIgYhINPal5Ct4rxoD21kM5t09zJv8OagR39ltQNpabQs9+alajgfJ3k7kORw88ZDKjd8BoEmTJk6dU/W4quf7ig8//NDxunv37rjrrrucOi8gIAAjRozAwoULcfToUeTn56OsrAzXr1/Hl19+ieeff94xg8VsNmPcuHHYu3evR+seEhKC8PBwAEB5eTny8/OhKIqjTJvNBgAoKSlBUVERAMButyM/P99xjYKCApSVqfuDFBcXo7i4GIA68FNQUOA4Lj8/H3a7HQBQVFSEkpISAIDNZoPZbAagblSVn5+P8vJyAOr9YLVaAQClpaWwWCwA1Nk++fn5qKioAABYLBbHXjtWq9VxH9UXU25uLjZt2oSSkpJ6Y+rbNgLLnu2JbTMH4sWB8RiUEIaoJmq7hJtK4Y8KRDUJxAPtIvDigNbYNnMgPp58N+5uGeL1mLRup6tXr2Lr1q0oLi6WJiZX772ioiJs2LDBUScZYrq1na5evYrPP/8cJSUlPhuTEdqJMTEmxsSYtI4pOzsbW7duRUlJiTQxydhOjEk9f8OGDdX+O8DXY5KxnRobU0lJCT7//HNcvXpVmph8oZ2uX7/u+H8DWWLyRjuVlJRg8+bNyM7OliYmV9tJ9v+OyMnJwRdffIGSkhI1pl3/UmNCAAoQcTMmRMIOfzUmNEEJ1GdFNgTCDPV5nPLjceU/Pp4uRCisCFZjQhAsCFNjggn5uxawnVxoJxljEoWDJx5SedMAcHrUMjg42PG68ub0FYWFhVi3bp3jvSuzTg4cOIDPP/8c06ZNQ69evRAVFYWAgADcdtttePDBB7F48WLs3r0bt912GwD1g/j88887PqSe0LdvX8eSYdeuXUNSUpLjA71kyRKcOnUKALBr1y7HzJesrCwkJSU5rrFgwQKcO3cOALB9+3Zs374dAHDu3DksWLDAcVxSUhKysrIAAJs2bcKuXbsAAKdOncKSJUscMSYlJeHatWsAgLVr1yIlJQUAcOzYMaxYsQKA2qEkJSU5OrAVK1bg2LFjAICUlBSsXbu2wZj27t2Ls2fPoqKiwqmYOrWIwMj2Aeicn4LUNx5C2rxhGBdyEp9P6YLUNx7Co1GX0cP/Cjq1iBAWk9bttGLFCuTn56OkpESamFxtp4KCAqSmpjp+ycoQ063ttHbtWly8eBEVFRU+G5MR2okxMSbGxJi0jmnRokWO//GTJSYZ24kxqQ8pUlNTpYpJxnZqbEwVFRW4ePGio64yxOQL7bRt2zacP38eFRUV0sTkaCdFwanjR7Dkg8WA1YxSq9VjMVVUVODq1atYtGiRYe892f87YunSpbh8+TIqKiqwfcMabP9B/cPwc4jHAjx7MybTVGQhTo0JD2EX+qox4U4swZNqTAhGkmkqrkF9/rcWI5AC9Q+zj6ErVuBnakyIQNLlXjCfO8J2MtjnqWpMopiUymEenTpz5gx27NiB1NRUXL9+HRaLxTGCVR+TyYSdO3d6oYaqESNGYPPmzQCA2bNn480332zwnC1btmD48OEAgPDwcMdInSfNnTsX8+bNAwA88MADSE5O9sh1ly9fjkmTJgFQZ5JcunSp2jJknvDll1/i4Ycfdrxfu3YtxowZ06hrpqeno1u3bggJCUFAQABSUlLQuXNnWCwWREVFwWQywWw2IyQkBEFBQSgpKUFFRQXCwsJgt9tRWFiI6OhoAOpDytDQUAQGBjpGcENDQ1FWVobi4mJERUUBUEdxw8PDERAQgKKiIvj5+aFJkyaw2WywWq2IjIyEoigoKChAREQE/P39UVhYiICAAISEhKC0tBQ2mw0RERGoqKiA2WxGZGQk/Pz8YLFYEBQUhODgYFitVtjtdoSHh6O8vJwxMSbGxJgYE2NiTIyJMTEmxsSYGBNjYkyMCQE3zqDoyFr4ZaeiydWjsFmLYEUwIlEIJTgaBc17I6Jtd/j3HIfCsLa+EZOM7eQrMZVeR2BgAIp3/QNI/RihsKIMAShGE0RBfbaZj0iEowgBKEcRmsAPCprAChsCb957AAoQiQgUwh8VKEQoAlCOEJSiFEGwIRARKEIFTDAjApH3PAG/n77DdjJYTD/88AO6deuGSmlpaejatSu8RbeDJ+fPn8cLL7zg1gCIoigwmUwenanQkCeffBJr1qwBAMyYMcOpkbHPPvvMMRjQokULXLni+c2VtBo8GTp0KL766isA6sDR559/7pHr3mrAgAHYs2cPAOD555/H4sWN2yCqcvCkkrc/cHpgt9uRlZWF1q1bIyAgQHR1fAJzZowcyBCjDDEQEYnGvpR8Be9VY2A7iyFN3s9uA/a8B1zc5/w5be8D7v810PHhho+9hTR5awTZc2C325H1/3qiNa4gAN577uowt6DhY5wgezvJRPSzXF0u25Wamoq77roLO3fuhKIoDX5VuvW9N1UuMQWo6/85Izs72/E6Jsa1jblFunjxIr7++mvHe09uFH+rBx980PH69OnTmpVjJIWFhVi+fLlP7rMjCnNmjBzIEKMMMRARica+lHwF71VjYDuL4fN5L84F1j4PrHzCtYETQD1+5Thg3VT1Oi7w+bx5gOw5KCwsxHLTEyj8cT8Sr/PQc1/Z24k8R3czT8rKytCpUydkZmYCAB599FFMmjQJq1atwvr162EymfDVV1/BYrHgwoUL+Oabb7BhwwbYbDaEh4fjnXfeQceOHQGoMy28JSkpCTNnzgSg7qexf//+Bs957bXX8NZbbwEARo8eXW0PEU/RYubJn//8Z/zf//0fAKBp06a4cuVKtf1bPOn999/HtGnTAAAdO3bEmTNnGnU90aOVRERERERERESayU4DVowFLB5Y3SQiDnhmHRDL5yZUxdwocWW/ngUERzR8HElD9LNc3c08+eijj5CZmQmTyYSJEyfiiy++wLhx49CqVSvHMQ888AB++tOf4pe//CU++eQTnD9/HsOHD0dhYSFmzZqF4OBgrw6cAMBPfvITx+uTJ0/Cbrc3eM7Ro0drPV/vPvzwQ8fr8ePHazZwAgBFRUWO12Fhgka1iYiIiIiIiIj0LjsNWDbCMwMngHqdpcOBnHTPXI+osew20TUgg9Hd4Enl3hkBAQH429/+5tQ5LVu2xMaNGzFy5EiYzWaMHz8eBQWeWQPPWffdd59jEKGoqAiHDx+u9/jS0lKkpKQ43g8ZMkTT+nlKSkoKzp4963iv5ZJdAHDs2DHH65YtW2pallEUFBTgzTff9PpnxJcxZ8bIgQwxyhADEZFo7EvJV/BeNQa2sxg+mffiXHXGiTXfs9e15gMfj3FqCS+fzJuHyZ6DgoICvIkXUQBBsz8CgjxyGdnbiTxHd4Mnx44dg8lkQp8+fdCsWTOnz/Pz88OiRYsQFBSES5cuYfny5RrWsqbw8HAMHTrU8X7ZsmX1Hv/ZZ5/BYrEAUPc7GThwoJbV85iqee3cuTPuvfdezcq6ceMGNmzY4Hg/aNAgzcoyktDQUIwaNQqhoaGiq+IzmDNj5ECGGGWIgYhINPal5Ct4rxoD21kMn8z75lmem3FyK8sVYMurDR7mk3nzMNlzEBoailHYhlCUiKlAULhHLiN7O5Hn6G7w5Pr16wCAO+64o9r3/f39Ha9LSmr/gMbGxmLgwIFQFAVr167VrpJ1ePHFFx2vly1bhvT02qc1FhcX44033nC8/8UvfoGAgADN69dYpaWl+OSTTxzv3Zl14uxGTOXl5Zg6dSrMZjMAICgoCOPGjXO5PKopMDAQnTt3RmBgoOiq+AzmzBg5kCFGGWIgIhKNfSn5Ct6rxsB2FsPn8n52G5Cm8XOwk5+q5dTD5/KmAdlzEBgYiM4v/w+BLx8F2mj3B9W1atMXMJk8cinZ24k8R3eDJzabunbdrSN/ERE3p4NdvXq1zvMTEhIAAOfPn/d85RowYsQIDBgwAIA60PDTn/4UJ06cqHbMjRs3MGrUKHz33XcA1Fkns2fPrvV6lXu/VH41NJtFaxs3bkReXh4AdabPM8884/I1+vbti5kzZ+LIkSN1HnPy5Ek8+OCDWL9+veN7v/71rxEfH+9yeVRTcXEx1q9fj+LiYtFV8RnMmTFyIEOMMsRARCQa+1LyFbxXjYHtLIbP5X3Pe94pZ29SvT/2ubxpQPYcFBcXY/2uYygObg7E9/du4QmeK0/2diLP0d10h6ZNm+LatWvVNgoHgObNmztenz17ts4H6ZUDK5UzWLxt5cqV6NOnD65cuYLMzEwkJibigQceQIcOHXDt2jXs2LHD8cEMCAjAmjVrEB0d7ZGyhw8fjsuXL1f7XnZ2tuP14cOHkZiYWOO8zZs3O7WfSNWN4ocOHYrWrVu7XMfCwkIkJSUhKSkJzZo1Q2JiIuLi4hAaGgqz2Yzjx4/j1KlT1c4ZOXIk/vznP7tcFhERERERERGR1HLSgYv7vFPWhb1Azikgtot3yiN96z4W2POu98rrNtZ7ZRH9yKQoiiK6ElUNGDAAe/fuxZAhQ7Bjxw7H97/++msMHToUJpMJv/nNb/D222/XONdqtaJDhw64cuUKmjVrVu8MFS1lZGTgqaeeQmpqap3HNG/eHEuXLsWIESPqPCYzMxPt2rVzvF+6dCkmTZpU5/EJCQm4cOGCy/X9/vvvHTN26nL16lW0atUKdrsdALBixQpMmDDB5bJcqWNoaCh+//vf47XXXoOfn2cmSaWnp6Nbt26O92lpaejatatHrk1ERERERERE1CBFAUotQHkZ4B8IBEe4vhxR3o/PVvYmAYc/8Hwd69J7KnDfDKApVwchAEse9c7gXXx/YPJm7csh3RH9LFd3M0/uuusu7N27t8Z+IX379kVERAQKCwvx3//+F1OnTkWnTp2qHfOHP/wBV65cgclkQq9evbxZ7Wo6d+6MAwcOYPXq1Vi1ahXS09ORk5OD6OhotG/fHqNHj8bkyZPRrFkzYXV01YoVKxwDJ5GRkfjZz37m1nV2796Nffv2Yf/+/Th69ChycnJw48YNFBQUIDQ01DEbZdCgQXj22Wc9NiuHbiorK8O5c+fQoUMHru3oJObMGDmQIUYZYiAiEo19KfkK3qvGwHYWQ5O856QDJ9cCPxwBrhwHrPk3fxYSDcT1BFrdDXQf59zMjqQenqmXqw4tVr/mFtT4Ee9X+XNQI777ZwIrvTB40n+mRy8nezuR5+huz5MhQ4YAUGc6VF2+qUmTJnj22WehKAosFgv69OmDGTNm4L///S+SkpIwdOhQvPvuzali7mxm7klBQUGYOHEitmzZgosXL6K0tBQ5OTnYv38/Zs2a5dTASUJCAhRFcXzVN+sEUGeqVD3e2a+GZp0A6p4jlccXFBSgSZMmTmaiujZt2uDJJ5/Ee++9h2+++QZnzpzB9evXUVZWhoKCApw7dw7r1q3Dr371Kw6caITrOrqOOTNGDmSIUYYYiIhEY19KvoL3qjGwncXwaN7PblP/On/BfeoSR9/vqj5wAqjvv9+l/nxBP/X4s9sbX7aX8X6VPwc14us4TPvltLqPAzo+7NFLyt5O5Dm6W7bLarWiefPmKCoqwu9//3v86U9/cvwsLy8PiYmJuHTpEkx1TGdUFAXDhg3Dli1bvFVl8iGip3oRERERERERGZ4nlq3Se/nFucDmWUDaWvev0X0c8Oh8IDSm5s/mRrl/XU+oZeYJGVRxrjo4aLni+WtHxAHT99X+GSBDEP0sV3fLdoWEhGDnzp3Iy8tD06ZNq/2sadOm2L17N5566ins37+/xrkmkwkTJ07EggULvFVdIiIiIiIiIiJqiKeXrdJz+dlpwIqxjX+YfPJTIHMP8Mw6IJZ/+Ek6FRqj3qNLh9ecVdUYIdHqdTlwQgLpbtkuAOjTpw+GDRuGPn361PhZ27ZtsXfvXuzduxd//OMf8cILL+DFF1/E3/72N5w6dQrLli1ze0kpIiPIz8/HvHnzkJ+fL7oqPoM5M0YOZIhRhhiIiERjX0q+gveqMUjRzqKXrXKj/Pz3R7mf9+w0YNkIz/0VvuWK+lA6J73hYwVz6n5VFMBqBopuqP/qa0GcRpPiM1uPOuOL7apu6B4R55mCIuLU62k0aCh7O5Hn6G7ZLiItiZ7qpQd2ux1ZWVlo3bo1AgJ0N/lMl5gzY+RAhhhliIGISDT2peQreK8ag0+3s9bLVmlYvh3+yEIcWnfth4ARLpTvzeWLdLhsV533q+hZR17k059ZJzQYX3EusOVVddaUuxrzuXeS7O0kE9HPcjl4QoYi+gNHREREREREJD1PLVsFqIMGri5bJar8tc83brCoId3HAWMWq6/zLqj/fvZz4NIB7cq8VZu+wOj3gabxDR97dhuw5z3g4j7nr9/2PuD+X3t8g3DysrPbgL1JwIW9zp8T3x/oP5NtT9WIfpary2W7iEg7RUVFWL16NYqKikRXxWcwZ8bIgQwxyhADEZFo7EvJV/BeNQafbGfRy1Z5oPwiNMFqjEQRmjhf/tlt2g6cAOpf85/dpr5uGq9+xffXtsxbJfSvc+DEcb9ey1IHklY+4drACaAev3IcsG6qOovBx/jkZ9YFTsfXcZi67Nb0/UDvqXUf16YvMOAV9bjJm702cCJ7O5HncPCEyGD8/PwQHR0NPz9+/J3FnBkjBzLEKEMMRESisS8lX8F71Rh8rp2Lc9UZH57cNBpQr/fxmIYfpnuofD8oiIYZflCcL3/Pe40q02l7k6q/7z7WO+VW6lZ3eX5+fogOLIff8uGNH0g6+am6BJoP7PVSlc99Zl3kcnyxXYD7ZtT989HvA0Pf8PpybbK3E3mOkGW7vvnmm2rvBw4cWOfPGqPqdYkA8VO9iIiIiIiIiKTlzWWr9FR+Trr6oN9bpu+v/rB5yaOuz/BwR3x/dXZAXSpn/Xhy8CwkWtONww0h7wKQ1KP2n718wrkl2Hy5fPJpop/lCtkRZ9CgQTCZTAAAk8kEu91e688a49brEpHKZrPh1KlT6NKlC4KCgkRXxycwZ8bIgQwxyhADEZFo7EvJV/Be9QBFAUotQHkZ4B8IBEcAHnge4Uk+1c7eWraq+zh1SSANy7chEKdwJ7rgWwShrO7yK/cdOfSBR8p12uEPgBHv3Hx//0xgpRcGT/rPrPtnxbmwfTwep6wt0QVF1fPWGJWzfqbv03QDcU+p9zMros/JSa///vzs5+qgWPdxTs3+cKtPahoPzC1wssLe4bW+lQNHPk/I4AkA1DfhhXvYE2nHarUiOTkZ7du31/9/fOsEc2aMHMgQowwxEBGJxr6UfAXvVTflpAMn1wI/HAGuHK/+F/Ih0UBcT6DV3U4/SNSaT7WzN5etqm3wxIPlWxGMZPRDe1ysOQhQtfy6Hopq7dDi6oMnHYepy2lpPeumvv0oNs+CtTAPyXi49rw1huUKsOXV+mcd6USNz6yoPufsNvUz0dCMpEsH1K897wJt7wPu/3W97exTfVI9ZImDtCdk2a5bZ5d8/fXXdf6sMapelwgQP9WLiIiIiIiIBHD2QWJVTjxIpB+JXrZKVPlzo7xX5q3m5FeftVCcq+bAcsXzZUXE1T/z4+w2dXN4rU1YU/vAmR6J6nOKc4HNsxo3kNZ9HPDofJ+Y6aN7nHnSaKKf5QqZeZKcnOzWz4io8RRFQWlpKYKDgz02UCk75swYOZAhRhliICISjX0p+Qreq05qzIPEi/vUpZC0epDoxBI+um9nkctWVd2E2sPlKwBKEYxglKLWrN9avgi2QvWeqRQaAzyzDlg63PN7jjyzrv77/8dZPw3mrbHqmnWkI0rRDZR+PhvBpz91PQeN7XOy04AVYxs/gHbyUyBzj9rut+w1o/s+qTa1DGA47tUZB2GKSRBSLfINfqIrQETeVVBQgLfeegsFBfpab1LPmDNj5ECGGGWIgYhINPal5Ct4rzohO039S/zGLmV08lP1Ojnpja9TTjqwYx6wfCTwVgLwZhvg7fbqv28lqN/fMQ/IOQVA43ZWFMBqBopuqP+6szBJUg/167CXB08OLb5ZtgblFyASb5l+iQJE1l++SHZbze/FdlU3V4+I80wZEXENb9aek+6YXdFg3hrrwl7HZ0OXstNQ8J+H8VZGm8blwJ0+JzsNWDbCczOPLFfUgbhb6iDL7x7HvWopFF0V0jkhy3bVx2w2O15HRmrU2ZJhiZ7qpQfl5eW4du0amjdvDn9/f9HV8QnMmTFyIEOMMsRARCQa+1LyFbxXG1D5INHTf4Hf0IPkuri5hE95v5dxrWmi59rZ0/sviFy2SkPl8MM13IbmuAF/VIiuTu1ez6o+86Sq4lx1j5CTn7p//YZmP1TOOtqb5Bi88kreek9VZ/24u9yRVpu2/9jnlFvNnsuBs32OF5ds88nfPbXMPHHcqy9th3+z9l4t24HLdjlF9LNc3Q2e+Pn5wWQyITY2FpcuXfKdDyL5BNEfOCIiIiIiItKYyL0faquLHvYf0Gr/BUkHT3zCrXue1ObsNnVw48Je568b3x/oP7PhfTdEt/1cF2Y+aL1pu+g+Z+3zjZ9hV5/u44Axi7W7vtZEDmBw8KTRRD/L1d2yXZWDJQMGDODACZEGCgsLsWzZMhQWcmqis5gzY+RAhhhliIGISDT2peQreK/WY/MsbR5iAup1t7zq3LEeWDasEKFYdhIo/PcQ95YNK85VH6yufMK1gRPgx/0XxgHrpqrXMZBChGIZxqEQofUf+PIJ9avNvd6pWKU2fZ2bLdFxmDpzYfp+YMArQPtB6mBBVSHR6vcHvKIeN3mz2xuWO503bzm7DVjyqPo53PMu8P2umrPRrPnq9/e8Cyzopx5/drtr5VTpczyeg4b6nLPbtB04AdQZTGe3AZDnd4+jnYqKRVeFdE7IhvH1iY2NxZUrV9C0aVPRVSGSUkBAABISEhAQoLuPv24xZ8bIgQwxyhADEZFo7EvJV0hxr2qxfI63HiR2H1f/xtUeWjYsAOVIQBYCii6r+w+4smyYFzaPlpUj7yiv/8DKvxqP7w9cOqB9xSol9Hft+NguQOwb6mtFUTebt9uAgCAgKNwzy1bBhbxprTEzvlzdtP2WPkeTHNTX5+x5z3Pl1GdvEtBxmBy/e1ClnQL4h/tUP93d6R06dMCVK1dw+fJl0VUhklJISAgGDRokuho+hTkzRg5kiFGGGIiIRGNfSr7CZ+9VrZfP8fKDxFoV56qDFh7YbyUEpRiE/eobaynw8Rjnlg3z9J4vlZtHu7vni4+plndndB+rzlzwlm5j3T/XZFIHKoM9V51KLudNC94eNLylz9EsB7X1OTnprs8oc9eFvUDOKYTEdvHN3z23cLRTsAYfBJKK7pbtGj16NBRFwTfffIPiYk6dIvK00tJSpKSkoLS0VHRVfAZzZowcyBCjDDEQEYnGvpR8hc/dq95YPkfAg8RaeXDZsFIEIQW9UIog9RvOLBvmwcGbaqz56uBN1SW8RC5bVVm2BuXXyHtd5VeK7aruEeMN8f3dG1j0ggbzprXKQUNPLdtXOWhY15J5tfQ5muWgap+Td0H9OvSBZ8toyOEPUJr9rW/97slJVweebuFop7UvADvm1d2fk+HpbvBk0qRJaN26NSwWC15//XXR1SGSjs1mQ2pqKmw2m+iq+AzmzBg5kCFGGWIgIhKNfSn5Cp+5V72x54bAB4nIu1D9ex5eNsyGQKSiK2wIvPnNKvsP1Mqbe740jVe/4l1cRqqxEvrfLFuD8mvNe23lV3X/TI/WoU79vVSOGxrMm5a8OWhYT5+jaQ4q+5ykHurXYS/3eYcWw7bwAd/43VN1wL6WPDna6YfjjdvvhqRnUhRFEV2JW+3btw8jRoyA2WzGz3/+c7z11luIiooSXS2SQHp6Orp16+Z4n5aWhq5d5Z9yTERERERE5HWeWj4HACLi6l4+Z67g5wVzC26+XvKod2a/xPdXl9C61dlt6kCV1iasqb6EUE66+pDSW6bvrz77QnT5ldY+r+2eO93HAWMWa3d9V1QOHH72c+/u99KmLzD6/ZqDV97Mveg+R7SqfZ7eNGa/m0rO7nfTkJx0dYCtrkGuNveqfbm7y1QahOhnubrb8+TDDz8EALz00kt466238N///hcfffQRHn74Ydx9991o3rw5mjRp4tS1Jk6cqGVViXxSRUUFzGYzIiMj4eenu8lnusScGSMHMsQoQwxERKKxLyVfoft71Yh7bmiwbFgFTDAjApGwwA9V/va1cgmfWx+4idrzpXLZKm8NHN0at4fLrzPvdZVfafjbattoMfMnIk59oKsXlYMX8f0dgyf15s1Tapv14+EZX7Wqb9P2KrySA4EqYII5P1+fv3tcGLCvt52c3e+mLme3qX1xQ/3RpQPq15531f7r/l8DHR92vTzSlM7ucnXZrsmTJ+Mvf/kLysvLoSgKSkpKsHHjRsyZMwcvvvgiJk+e3ODXlClTRIdCpEtmsxlJSUkwm82iq+IzmDNj5ECGGGWIgYhINPal5Ct0fa96c/kcPdBw2TAzIpBkmgozImr+8Na/Zha954voZas8WH69ea9v2azQGPWBa0i0x+oCQL3eM+sa/5fwWuh+c/P6evPmKd3G1vyeNwcNG+CVHAhkRoQ+f/e4uN9Ng+3U0H43tfHGMpXkdbpbtstTo5Ymkwnl5eUeuRbJQ/RULz3Q/V+o6RBzZowcyBCjDDEQEYnGvpR8ha7vVW8vXSTxEjoN/hV71U3L9yZ5dw+E3lOBEe9U/57oZas8VH6deXd22aycdHWgT+sl6/Tix+XqNJ91UdtydSKWbFvQr84fG2LmycxMff3uKc5V7wEXPm9Ot1NEHDB9X8MDl95aptKARD/L1d2yXc8995zoKhBJzc/PD9HR0aKr4VOYM2PkQIYYZYiBiEg09qXkK3R7r+po+RwZ+EFBNOr5C++kHt6rzK0OLa45eCJ62SoPlV9r3l1ZNiu2q/rAdcur6v3qLk/tvaC1+2cCK/c1fL82VtVZP5V7rmgw46teDQxQap4Dwfyg6O93z+ZZLn/mnW4nyxX1c1zfoKkRl6k0EN0NnixdulR0FYikZrFYsGLFCjz99NOIiJBzGqmnMWfGyIEMMcoQAxGRaOxLyVfo9l4VteeGpCwIwwr8DE/jf4hAkejq1KQogMl0833lslVLh3t22TZnl63yUPk18u7OslmhMeoD1+7j1Pv1wl7nz43vrw4U+Mr+Bx2HAd3GwpK2Rbv7tfu46vkQNXB4qP6ZR175zFbOOPvs5479ZryiTV9YHn4PKxYu1M/vHjcH7F1qp/oG7LVeptKZWS+kKZ3MryIibwkKCkJiYiKCgoJEV8VnMGfGyIEMMcoQAxGRaOxLyVd47F5VFMBqBopuqP82ZmVvUXtuvHxC/Wpzr3fKrtSmb/VlszQQhDIkIh1BKNO0HLfZCmt+L7ar+hfTEXGeKSMizrW/wPZA+dXy7mr5t+o4TD1/+n5gwCtA+0E190QJiVa/P+AV9bjJm31n4KTS8LcRFB6jzf3qyqwfb5hxvM4+R9PPbGWf0zRe/Yrv7/ky6pPQH0G3t9fXfye5OWDvcjvVtd+NG7NenFY564WE0t2eJ0RaEr1OHhERERERkXA56cDJtcAPR4Arx6v/xWxINBDXE2h1t/qXtrFdGr5e5fI5IvbcuG+G+hARAHbMA/a8673yB7wCDH1D6j1XGjTrPBB2W+0/K84Vu2yV6PLroyjqwJPdBgQEAUHh1Wfw+KqcdG1mHdU2eCXyc/d6FhAcIa7PqSRivxdnfid4i+j4z25TN4fX2oQ1hphpWRfRz3I584TIYKxWK5KTk2G1WkVXxWcwZ8bIgQwxyhADEZFo7EvJV7h1r57dpm7svOA+9YHf97tqPuS05qvf3/OuuinykkeBs9vrv25SD/XLmwMngLp8TtWle7qP9W753bQvz4pgJKMfrAjWvCy3BNTz1+eVy1ZNWOP6X8jH9wcmfKqe7+7ARSPKt7YZiOTu78I64l/aLJljMqkP38NuU/+VYeAEgDWqA5K7vQ1reFvPXLCxs360Yrep/9bS52j6mb21z4ntCrT10uBBfH8gtov4/07Ku3DzqxH73bjVTrf+jvPmMpUkDAdPiAzGbrcjMzMTdrtddFV8BnNmjBzIEKMMMRARica+lHyFS/dqcS6w9nn1L2RdXVbr4j5g5Thg3VT1Onom4EEiAE2XDbPDH5loRSnnKwABAABJREFUDTv8a/6wTV+Pl+eyoPCGjxG9bJUb5dufXIVMiz9/F7jIbrcj83ox7BM3q7N2GqP7OHW/B70NnAA3Bw1r6XPq/cw2RtU+p6r7Z3q2nLr0V8sR/t9JlYP1jRywd6udqu53I2qZSvI6n1i2q7CwEMePH8f169dhsVhQUVHh1HkTJ07UuGbka0RP9SIiIiIiIvKq7DR1M1tPrMkeEadumq2n5XMAYG7BzddeW0bl05oP90Us4XPXczffC9g8Gs9vc+9c0ctWiS7fKM5uU/9q/sJe58+J768+qG9o8ExkvzMn/+b9IrLPqbT2ebc2TXda93HqLC49EP37ZsZxte1FL1NpIKKf5QZ4rSQ3rFy5Ev/85z9x6NAhuDrGYzKZOHhCVIvy8nJcu3YNzZs3h7+/h/8SQlLMmTFyIEOMMsRARCQa+1LyFU7dq9lpwLIRntt/wHJF3c9Aj8voVOo4TF3aRusHibU9xOw+1uODJ+XwwzXchua4AX/c8oek3cZWf5AW39+7gycJjdisunLZKlGrkTVQPn8XuKdG3joOU79yTqmfyR+OAJdTa+6z1DJR3Wep21jn99R4+YT6r4hBw6oDbbf0OfV+Zt1VV59Tafjb6gCVFhuXR8Sp+/78SJbPhtvt9I+e2lWqPocWq19V/1iAvEKXy3aVlJTgsccew7PPPouDBw+ioqICiqLU+gWg3p8RUXUWiwWLFi2CxWIRXRWfwZwZIwcyxChDDEREorEvJV/R4L1anKvOOPHkxs2Aer2Px+h7Ca/hb6sP/LRwy4PEajRYNsyCcCwyPQsLblkeq7YlfCTc80UU/i5wT515i+2ibnQ+cQMwO1PdcH3WefXf2Znq94e+4dpm5E3j1S9X99NprNoGDav0OXV+Zt1VX59TKTRGnRV463J0jRUSrV63yr4/snw2PN5OJC1dLts1YcIErF69GgAQEhKCwYMH4/vvv0dGRoZjRonFYsGFCxdw4sQJlJWVwWQyISwsDKNHj4bpxxHgpUuXigyDdEj0VC89UBQFpaWlCA4OdnxWqH7MmTFyIEOMMsRARCQa+1LyFQ3eq95cxkX0Miq1/SVuTro6S8aTg0ch0Q3PuvHwEj4KgFIEIxilqNbKdS3hs+RR76zDH99fzYWk+LvAPULylpMOLPDSXkeAundObYM8P/Y5ijW/9s+sO5zpc26tw8djNF2mUfhnw0O/b+rsW/XOgDNPRD/L1d3MkwMHDmD16tUwmUy48847cfr0aXzxxRcYOnSo45ilS5di7dq1OHToEK5du4a3334b4eHhKCoqwtWrV/GPf/yDAydEdTCZTAgJCeF/ALqAOTNGDmSIUYYYiIhEY19KvqLee/XsNm0HTgDg5KdqOYCmG6bXq03fm0v33Cq2q/rQ0VMzUCLinHuIWbmEj4eYAITc+nCvviV8vLx5tKz4u8A9QvKmwYyvOtW1aXtlPSZvhikiruZn1h3O9jm31mH6PrWPaIzu49Tr1FK2LJ+NWvtWolrobvBk+fLljtdLlixBfHz9G+FERkbilVdeweHDhxEXF4dt27Zh8uTJWleTyGeZzWa89957MJvNoqviM5gzY+RAhhhliIGISDT2peQr6r1X97znnUrsTVL/Fbl8Tn2b53rhQWKtPLhsmBnheA/Pw1y5tExDS/h4ePCmVg3tvyAB/i5wj7C86WXQMLYrzM9sx3tBM25+Zt3hap9TVWiMOitwwhrX++T4/uqstjGLqy3VVZXwz0blYH0jB+xr9K3OaNPX7fLId+lu8GTPnj0AgA4dOqB/f+c/5HfeeSeWL18ORVHwv//9D1988YVWVSTyaSEhIRg0aBBCQkJEV8VnMGfGyIEMMcoQAxGRaOxLyVfUea/mpHtn2SZA3aA459TN93rcc0PjB4l1lumh/QdCUIpB2I8QlNa6/0CtRO35IhH+LnCPsLzpaNAwpGkLDBo+BiHj/uu9Pqc2HYepM1em7wcGvAK0H1SzTwqJVr8/4BX1uMmbG4xR+GejcrC+kQP21fpWZ9W23w1JT3d7njRr1gx5eXkYO3YsPvnkE8f3Z8yYgX/9618wmUwoKSlBUFBQred3794dp06dwhNPPIFVq1Z5q9rkI0Svk0dERERERKSJvAvqv3uTgMMfeK/c3lOBEe/cfK/3PTdyTqlLmv1wBLicWn1PlJBooGUi0Opu9UGsK5tX11qW9vsP1Fu2iD1fiEQpzlX3PvHE5+1WEXHqTBB3BjS82ec0RFEAWyFgtwEBQUBQOODLy2+J2O8mKEx9/dnPgUsHvFd2m77A6Pfrn20pKdHPcnU386Ry2tdtt91W7ftNmjSpcUxt7rrrLiiKgiNHjmhTQSIfV1JSgq1bt6KkpER0VXwGc2aMHMgQowwxEBGJxr6UfEWNezWph/rlzYETADi0uPp7vSyfU5fYLsDQN4CJG4DZmcDrWcCs8+q/szPV7w99wzMPMT2wbFgJQrC12c9RMukr1/c+ELHniyT4u8A9QvPmwRlf1Tg74+tHNXLgzT6nISYTEBwBhN2m/uvGwImuPhuN2O+mBCHYikEogZMzaCr3u9HrMpWkGd0NnoSGhgIAysrKqn0/Ojra8frChQt1nl85kebKFQ1GmokkUFFRgfz8fFRUVIiuis9gzoyRAxlilCEGIiLR2JeSr9DVvVp1QQsdLZ/TIA88SGxQI5cNqxi9BPnN7kFFSJTrZYva80UCuvp8+RDhedPBoGG9OfBGn6Mx4W18KzcH7CtgQj4iUeHslvG3DtjrcZlK0oTulu2qXHbr8ccfx2effeb4/rp16zBu3DiYTCYkJSXhpZdeqvX8e+65B0ePHkVYWBgsFou3qk0+QvRULyIiIiIiIk3MdePhuqe8nqU+CKyk1+Vz9EDUEj5nt6lLul3Y6/w58f3VB4aSbw5PEirOBba8Cpz81P1rdB+n7u/jq32Nkax9Xu1XtdJ9nDoIfiu9L1MpCdHPcgO8VpKTunfvjvT0dJw5c6ba9/v06QPTjyOy77//Pl544QUEBFSv/vbt23H06FGYTCa0b9/ea3Um8iV2ux1ZWVlo3bp1jc8Q1Y45M0YOZIhRhhiIiERjX2pAigKUWoDyMsA/0Gf+GlhX96rdBgRXeV+5fI4We264sHyOLsV2AWLfUF87sf+Ax9q54zD1S0/7L+iYrj5fPkQ3eauc8dV9nNcHDXWTA43oMr7hb6tt7MKAvR3+yEIcWuMKAlBe94ERceogWm3unwms9MLgibvLVJJH6G7ZroEDBwIAzpw5g9zcXMf327Rpg/vvvx+KoiA9PR2PP/44jh07hrKyMhQUFOCjjz7C008/7Tj+scce83rdiXxBYWEhli9fjsLCQtFV8RnMmTFyIEOMMsRARCQa+1KDyEkHdswDlo8E3koA3mwDvN1e/fetBPX7O+apD5q1piiA1QwU3VD/dXJxCF3dqwFBNb+ng+VzdM+JJXw83s562n9Bx3T1+fIhustbx2FqvzF9PzDgFaD9oJp7ooREq98f8Ip63OTNjZptpbsceJgu43Njv5tChGG56QkUIqzugxoasPelZSrJbbpbtuvixYto164dAGDp0qWYOHGi42f79+/H/fffX+/5iqKgefPmSE9PR7NmzTStK/ke0VO9iIiIiIhIoLPbgD3vubbMRtv7gPt/7dmHFznpwMkf//r/yvGaf/0f11P96//u45x/iC1y2a45+XXP1uHyOUSkJ07M+CIflZMOfDzGM0tGRsSpAycNDdhzmUrNiX6Wq7uZJ23btsVvfvMbPPHEE7h27Vq1n/Xr1w///e9/4e/vD0VRav1q3rw5NmzYwIETIiIiIiIiUhXnqmuir3zC9fXJL+4DVo4D1k1Vr9MYZ7epa6QvuA/Y8y7w/a6ay1pZ89Xv73kXWNBPPf7s9oav/fIJ9avNvY2ro6va9K3/wWMjN0zHhE/V8w3+8IiIPESCTdupDrFd1cGG7uMad53u49TrODPT0Y1ZL06RYZlKSehu8AQA3n77baxatQqvvPJKjZ9NmTIFx48fx9SpU9G+fXuEhIQgNDQU3bp1w+uvv460tDT07dtXQK2JfENBQQHefPNNFBQUiK6Kz2DOjJEDGWKUIQYiItHYlwri5tJVTslOUwcrGruZ7MlP1evkpLt+rgaDNzXu1abx6perAxSNleBkeQKWz5EB+yQxmHf3MG/y50D38Tk5YF+ACLyJF1GAiJvfdHfAnstUSk13y3YRaUn0VC89KCsrw7lz59ChQwcEBgaKro5PYM6MkQMZYpQhBiIi0diXepEWS1fdKjsNWDbC85uWu/JQIzsNWDHW48uI1Hmv5qSrgzzeMn2/++3D5XMaxD5JDObdPcyb/DnwufhyTgGHPwAOLa727TIE4Bzi0aFVLALb91P3LmnsXk9cplITop/lcvCEDEX0B46IiIiIyPC8te+IHtYhFzV4s+RR12e4uCO+v1oXIiIivcq7ACT1qP1nL59QZ2160tltwN4k4MJe58+J7w/0n2n42Za1Ef0sV5fLdhGRdoqLi7F+/XoUFxeLrorPYM6MkQMZYpQhBiIi0diXasjb+45snqXNwAmgXnfLq/UfU5yrzjjx5MAJoF7v4zEovv5D3ffq/TM9W2Zd+nupHANjnyQG8+4e5k3+HMgSXzFCsB7DUFxi9fzFqy5T2Xtq3ce16ctlKn2A7gZPunfvjvnz5yMrK0t0VYiIiIiIiMgTvL3vyNltjS/Lmbqc3Vb3z7UevNk5r+6fdxymLkGipe7j+KCHiIioLrFdgPtm1P3z0e8DQ99o/HJhpCndLdvl5+cHk8kEk8mEgQMHYuLEiRgzZgwiIiIaPpmoAaKnehERERERGY6IpatEL1t1dps6w0ZrE9aoAyW10cOyZURERKJ5e9kuvZQtCdHPcnU38wQAFEVBRUUFdu3aheeffx4tWrTAk08+ic8//xzl5eWiq0fk08rKypCRkYGysjLRVfEZzJkxciBDjDLEQEQkGvtSD9N46apal/DKSffOwAmgrmeec6rm9/e8p3nRZQhAxpcf1n2vhsaom8uHRHu24JBo9bocOPEK9kliMO/uYd7kz4Es8ZUhABnogLIyu+iqkM7pbvDk448/xqOPPoqAgAAoigJFUVBSUoK1a9fi8ccfR1xcHGbMmIEDBw6IriqRT5JlfUpvYs6MkQMZYpQhBiIi0diXepg39x3Ju6B+HfpAm/LqcvgDtdxKXhq8KUYTrL/WFsUXjtd9UGxXdWZMRJxnCo2Ia3izevIo9kliMO/uYd7kz4Es8RWjibrniVWDPU9IKrpbtqvS9evXsWrVKqxcubLGQInJZAIA3HHHHXjmmWfw9NNPo3379iKqST5G9FQvIiIiIiLD8PbSVXOjtC+rPi+fUP/dm6QOqHhL76nqmur1Lf1RnKsONJ381P1yuo8DHp3PGSdERETO4rJdjSb6Wa7uZp5UatasGX71q19h//79+PbbbzFnzhzceeedAOCYkfLdd99h7ty5uPPOO9G/f38sXLgQubm1TNsmIiIiIiIi7/LC0lUA1MEKPUjqoX55c+AEAA4trvvBTKXQGGDMYnWgKb6/a9eP7w9M+FQ9nwMnREREZCC6HTypqkOHDpgzZw7OnDmDAwcO4KWXXsLtt9/uGERRFAUpKSn45S9/iZYtW2LUqFFYt26d6GoT6VJ+fj7mzZuH/Px80VXxGcyZMXIgQ4wyxEBEJBr7Ug/Rw74jkstHJOaZfoN8RDp/Usdh6rJb0/cDA14B2g+quSdKSLT6/QGvqMdN3gx0fNhzFSeXsE8Sg3l3D/Mmfw5kiU+WOEh7ul22qyEVFRXYvn07VqxYgfXr16OoqKjaz/38/GC3c9Mfqk70VC89sNvtyMrKQuvWrREQECC6Oj6BOTNGDmSIUYYYiIhEY1/aCFX3/RCxdNWhxd4rTwfs8EcW4tAaVxCAcmBugXsXUhTAVgjYbUBAEBAUDvy4VDaJxz5JDObdPcyb/DmQJT6vxcFluxpN9LNcnx08qapys6IlS5bgq6++AqDui1JeXi64ZqQ3oj9wRERERES6pChAqQUoLwP8A4HgCNcfoIvec8To3B08ISIiIm1w8KTRRD/L9Ylluxpy5MgRfPPNN0hNTXVsJk9EtSsqKsLq1atrzNaiujFnxsiBDDHKEAMRkWiG6ktz0oEd84DlI4G3EoA32wBvt1f/fStB/f6OeYZcEssXFKEJVmMkitBEdFVIQ4bqk3SEeXcP8yZ/DmSJT5Y4SHs+O7/q1KlT+Pjjj7Fq1SpcvHixxs/9/f0F1IpI//z8/BAdHQ0/PynGTr2COTNGDmSIUYYYiIhEM0Rfenabupl7fXuSWPOB73epX3veBdreB9z/a33vfTF9PxAUBnz2c+DSAe+V26YvMPr9hjdt9zA/KIiGGX7w+cUkqB6G6JN0iHl3D/Mmfw5kiU+WOEh7PrVs1+XLl7Fq1Sp8/PHHOHHihOP7VUNITEzEM888gwkTJqBFixYiqkk6JnqqFxERERGRMMW5wOZZQNpa96/RfRzw6HwgNKbmz0Qv2zXrPBB2mzpbZs+73it3wCvA0Ddu7vkiavCGS38QERGRZEQ/y9X98JrFYsHSpUvx4IMPIj4+Hq+++ipOnDgBRVEcX23atMFrr72GtLQ0HD16FL/5zW84cEJUB5vNhtTUVNhsNtFV8RnMmTFyIEOMMsRARCSatH1pdhqw4L7GDZwAwMlP1evkpHumXp4UEKT+232sd8vt9mN5TePVr/j+XinWhkCkogtsbe7jwInEpO2TdI55dw/zJn8OZIlPljhIe7ocPLHb7di4cSOeeOIJxMbGYurUqfj6669RXl7uGDCJiorC888/j6+//hoXLlzAX/7yF3Tp0kV01Yl0z2q1Ijk5GVarVXRVfAZzZowcyBCjDDEQEYkmZV+anQYsGwFYrnjmepYrwNLh+htACQpX/43tqi4z5g3x/YHYW/4/1EuDN1YEIxn9YO0wwivlkRhS9kk+gHl3D/Mmfw5kiU+WOEh7ulu2a/r06fj000+Rl5cHoPqSXIGBgXj00Ufx7LPP4rHHHkNQUJCoapKPEj3Vi4iIiIjIq4pz1Zkinho4qSoiDpi+7+YSXpXLVgFilq56ftvN92e3ASuf0L7cCZ/Wvg/Mkkfr31PGU+L7A5M3a18OERERkQCin+XqbubJokWLkJeX55hhAgD33Xcf/vOf/+DKlStYv349xowZw4ETIjcpigKr1QqdjZvqGnNmjBzIEKMMMRARiSZdX7p5ljYDJ4B63S2v3nxfuWyVF5eucki4pbyOw24up6WV7uNqHzgBgPtnals2AAWAtfdL8tyrVCvp+iQfwby7h3mTPweyxCdLHKQ93Q2eAOoN3LFjR8ybNw/nzp3Dnj178MILLyAmppZNCYnIJQUFBXjrrbdQUFAguio+gzkzRg5kiFGGGIiIRJOqLz27rfF7nDTk5KdqObcSte9IVcPfVmfHaCEiDnh0ft0/98LgTUGn8Xhr3SE57lWqk1R9kg9h3t3DvMmfA1nikyUO0p7ulu16+eWX8cwzz6B3796iq0ISEj3VSw/Ky8tx7do1NG/eHP7+/qKr4xOYM2PkQIYYZYiBiEg0qfpS0UtHiS4fUPdlWTocsOZ7rryQaLW82Ab+P0LjJdPKf7Eb14rK5bhXqU5S9Uk+hHl3D/Mmfw5kiU+WOIxA9LNc3Q2eEGlJ9AeOiIiIiMgrctLVB/feMn1/zY3TRe87UiknHfh4jGcGMSLigGfWNTxwUrVsUYM3RERERD5O9LNcXS7bRUTaKSwsxLJly1BYWCi6Kj6DOTNGDmSIUYYYiIhEE9aXKgpgNQNFN9R/3f0bt7wL6tehDzxbv4YcrqU80fuOVIrtqm5s331c48uavs+1QYvYrupAh6eWD4uIcwyc8Pe+MbCdxWDe3cO8yZ8DWeKTJQ7SXoDoCjirpKQEx48fx/Xr12GxWBAREYFmzZqhZ8+eaNKkiejqEfmMgIAAJCQkICDAZz7+wjFnxsiBDDHKEAMRkWhe7Utz0oGTa4EfjgBXjlefnRASDcT1BFrdrT60v3VWR12SemhR04YdWgyMeKfm94e/DVzYq9nSVfXuO1JVaAwwZrGay71Jap2cFd8f6D+z4UGaulQO3mx5Vd0jxl3dx6nxhqp7gfL3vjGwncVg3t3DvMmfA1nikyUO0p6ul+0qLy/HqlWrsGDBAhw6dAjl5eU1jvH390efPn0wffp0jB8/nuvUUb1ET/UiIiIiIsLZbcCe91zbD6TtfcD9v274Af7cqEZVrVHm5AMmU83v63HpqpxTQNqPA1eXU2sOXLVMVAeuuo11fuDKGWe3eX/whoiIiMhHiX6Wq9tlu7777jv07dsXzz33HFJSUmC326EoSo0vu92O/fv3Y+LEiejXrx/OnTsnuupEulZaWoqUlBSUlpaKrorPYM6MkQMZYpQhBiIi0TTtS4tzgbXPq/uAuLqR+sV9wMpxwLqp6nX0yFbH0hcaLl3lttguwNA3gIkbgNmZwOtZwKzz6r+zM9XvD33DswMngLqU2eTN6h4xA14B2g9SB2uqColWvz/gFfW4yZtrHTjh731jYDuLwby7h3mTPweyxCdLHKQ9XQ6efP/99xg4cCCOHj0KAKicHBMWFobOnTvj7rvvRufOnREWFlbt54cPH8aAAQOQmZkppN5EvsBmsyE1NRU2m010VXwGc2aMHMgQowwxEBGJpllfmp2mbuCetrZx1zn5qXqdnHTP1MuT7PXkTOS+Iw0xmYDgCCDsNvXf2mbPeJoHBm/4e98Y2M5iMO/uYd7kz4Es8ckSB2lPl8t29e7dG0eOHIHJZIK/vz9+/vOfY+rUqUhMTISpyn/IKoqC48ePY/HixXj//fdRXl4ORVFwzz334ODBgwIjIL0SPdWLiIiIiAwoOw1YNsI7y1aJXLbr9Sx18KEhXLqKiIiIiJwg+lmu7maerFu3zjFw0qxZM+zbtw///ve/0atXr2oDJwBgMpmQmJiIf/3rX9i/fz+aNWsGADhy5Ag+++wzEdUn0r2Kigrk5+ejoqJCdFV8BnNmjBzIEKMMMRARiebxvrQ4F1gx1rMDJ4B6vY/H6GsJr6Bw547z4NJVRsbf+8bAdhaDeXcP8yZ/DmSJT5Y4SHu6GzypOuixYsUK3HPPPU6dd/fdd2PFihWO92vXNnI6PJGkzGYzkpKSYDabRVfFZzBnxsiBDDHKEAMRkWge70s3zwIsVzxzrVtZrgBbXq3+vZdPqF9t7tWmzLq06ev6clei9h2RBH/vGwPbWQzm3T3Mm/w5kCU+WeIg7elu2a477rgD33//Pbp3747U1FSXz+/VqxeOHz+Odu3acfN4qkH0VC89qKiogNlsRmRkJPz8dDd+qkvMmTFyIEOMMsRARCSaR/vSs9vUzeG1NmGNOpujqh3zgD3val92pQGvqAMd5DX8vW8MbGcxmHf3MG/y50CW+GSJwwhEP8vV3d2Rk5MDQB0EcUdiYiIA4OrVq56qEpFU/Pz8EB0dzV8OLmDOjJEDGWKUIQYiItE82pfuea/x13DG3qSa3+s+1jtlV+rm5fKIv/cNgu0sBvPuHuZN/hzIEp8scZD2dHuH6GxCDJE0LBYLFi5cCIvFIroqPoM5M0YOZIhRhhiIiETzWF+akw5c3OeZSjXkwl4g51T178V2Bdre553y4/tzaS0B+HvfGNjOYjDv7mHe5M+BLPHJEgdpT3eDJ7GxsVAUxa0luwA4zrv99ts9VykiiQQFBSExMRFBQUGiq+IzmDNj5ECGGGWIgYhItEb3pXkX1K9DH3i2Yg05/IFablX3z/RO2f29VA5Vw9/7xsB2FoN5dw/zJn8OZIlPljhIe7rb82TChAlYvXo1TCYTduzYgcGDBzt9bnJyMoYMGQKTyYQnnngCq1at0rCm5ItEr5NHRERERJKbGyW4/ILq79c+D6St1a687uOAMYu1uz4RERERGZboZ7m6m3kyevRox+sJEybgxIkTTp2XlpaGCRMmON6PGTPG43UjkoHVakVycjKsVqvoqvgM5swYOZAhRhliICISTbq+dPjbQEScNteOiAMena/NtalB0t2rVCu2sxjMu3uYN/lzIEt8ssRB2tPd4MnYsWMdm77n5OSgT58++M1vfoOTJ0/WenxaWhp++9vfonfv3sjJyYHJZEKvXr0wdiw3LCSqjd1uR2ZmJux2u+iq+AzmzBg5kCFGGWIgIhJNur40NAZ4Zh0QEu3Z64ZEq9cNjfHsdclp0t2rVCu2sxjMu3uYN/lzIEt8ssRB2tPdsl0A8O233+L+++/H9evXoSgKTCYTACA8PBxt2rRBWFgYioqKkJWV5djYpzKM22+/HXv27MEdd9whrP6kX6KnehERERGR5PS2bFelnHTg4zGA5Urjy4iIUwdOYvnf0URERESkHdHPcnU38wQA7rzzTiQnJ6N79+4A1IERRVFgsVhw+vRpHD58GKdPn4bZbHb8DAB69uyJ5ORkDpwQ1aO8vBzZ2dkoLy8XXRWfwZwZIwcyxChDDEREoknbl8Z2BabvU/coaYzu49TrcOBEOGnvVaqG7SwG8+4e5k3+HMgSnyxxkPZ0OXgCAD/5yU9w6NAhfPDBB7j33nvh7+8P4OZASuWAib+/P+69914sWbIEBw8eROfOnUVWm0j3LBYLFi1a5Ji1RQ1jzoyRAxlilCEGIiLRpO5LQ2PUzd0nrAHi+7t2bnx/YMKn6vlcqksXpL5XyYHtLAbz7h7mTf4cyBKfLHGQ9nS5bFdtCgsLceLECVy7dg2FhYUIDw9H8+bN0aNHD4SHh4uuXg02mw2ffPIJVq1ahfT0dOTk5KBp06Zo164dRo8ejUmTJqFZs2YeLbO8vBzp6ek4dOgQDh8+jEOHDuHEiRMoKysDADzwwANITk52+nqZmZlo166dS3Xo0KEDvvvuO6ePP336NJYsWYJt27YhKysLpaWlaNWqFfr164eJEydi6NChLpXfENFTvfRAURSUlpYiODjYsSQe1Y85M0YOZIhRhhiIiIRRFKDUAsVuQ6m9AsGRzWDyc+NvzfIuqP9+9nPg0gHP1rE+bfoCo98HmsY7f07OKSBtLfDDEeByKmDNv/mzkGigZSLQ6m6g21ggtotn60uNxt/7xsB2FoN5dw/zJn8OZIlPljiMQPSz3ACvldRI4eHhuO+++0RXwykZGRl46qmnkJqaWu372dnZyM7Oxv79+/H2229j6dKlGD58uEfKXL9+PZ5++mkUFxd75Hre8Oc//xnz5s1zDO5U+vbbb/Htt9/iww8/xFNPPYVFixYhIiJCUC3lYzKZEBISIroaPoU5M0YOZIhRhhiIiLwqJx04+ePgwZXjgDUfJgAhgDp4ENdTHTzoPs75wYPKwYv4/t4dPEno79rACaDGFPuG+lpRAFshYLcBAUFAUDjAhwm6xt/7xsB2FoN5dw/zJn8OZIlPljhIez4zeOIrsrKyMHToUFy+fBmA+mEcOHAgOnTogGvXrmHHjh0oKSnB1atXMWrUKGzduhVDhgxpdLn5+fmaDpxERERg4sSJDR7XvHlzp673xhtv4E9/+pPjfVxcHAYMGICQkBAcOXIE6enpAIBVq1bhxo0b+OKLLxAQwNvVE8xmM5YsWYIpU6YgMjJSdHV8AnNmjBzIEKMMMRARecXZbcCe94CL+2r8yIxwLMGTmGL9BJHf7wK+3wXseRdoex9w/6+Bjg87V0b3sep53tJtbOPON5mA4Agg2DPVIe3x974xsJ3FYN7dw7zJnwNZ4pMlDtIen0Z72IQJExwDJ/Hx8diwYQN69uzp+Pn169cxfvx47Ny5E2VlZRg3bhzOnTuH6Ohoj5QfGxuL3r17O762bduGpKSkRl83JiYG//rXvzxQQ2Dnzp3VBk5mzZqF//f//h+CgoIc31u1ahWmTJkCq9WK7du34y9/+QveeOMNj5RvdCEhIRg0aBBH2F3AnBkjBzLEKEMMRESaKs4FNs9Sl6qqQwhKMQj7EYLS6j+4uA9Y+eOG64/Ob3jfj9iu6oBLLQM0Hhffn8tqGRB/7xsD21kM5t09zJv8OZAlPlniIO0J3fPkhx9+QKdOnVBSUgI/Pz9s2bIFDz74oMvX+fLLL/Hoo49CURRERETg22+/dXoGhCdt3rwZI0aMAAAEBQXh8OHD6N69e43jioqK0KNHD5w/fx4A8Prrr+Mvf/lLo8rOzs6GzWZD27Ztq31/7ty5mDdvHoDG7XkSHx+PzMzMRtWxUp8+fXDo0CEAwPjx47Fq1apaj1u4cCGmT58OQJ35cv78+UbvEyN6nTwiIiIiEiQ7DVgxFrBcafy1IuKAZ9apAyT1ObsNWPlE48tryIRPnZ8RQ0RERETkI0Q/y3VjB0TPeeONNxxLTc2dO9etgRMAeOihhzBv3jwoigKLxVJtVoM3/fvf/3a8fu6552odOAGAsLAw/PGPf3S8X7RoEex2e6PKbtGiRY2BEz06dOiQY+DEz88P8+fPr/PYadOm4c477wQAWCwWfPTRR16po+xKSkqwdetWlJSUiK6Kz2DOjJEDGWKUIQYiIk1kpwHLRjg1cFKCEGzFIJSgnr9EtFwBlg5X90ypT8dhjV9OqyHdx3HgxKD4e98Y2M5iMO/uYd7kz4Es8ckSB2lP2OBJfn4+Vq5cCZPJhHbt2uG1115r1PVmz56Ndu3aQVEULF261OsbpxcWFmLnzp2O95MnT673+DFjxiA8PBwAkJubi2+++UbT+unF+vXrHa8ffPBBtGnTps5jTSYTnnvuOcf7//3vf1pWzTAqKiqQn5+PiooK0VXxGcyZMXIgQ4wyxEBE5HHFueqME2u+U4dXwIR8RKICDWyWbs0HPh6jXr8+w99WZ6poISJOXUKMDIm/942B7SwG8+4e5k3+HMgSnyxxkPaEDZ6sXbsWpaXqOsK/+93v4O/v36jrBQQE4PXXXwcAFBcX47PPPmt0HV2xb98+RzxhYWHo3bt3vceHhISgX79+jvdfffWVpvXTi6+//trxetCgQQ0eP3jwYMfrqjkm94WFhWH8+PEICwsTXRWfwZwZIwcyxChDDEREHrd5lktLdYWhBOOxEWFw4i8RLVeALa/Wf0xojLrEV0i003VwSki0et2G9l4hafH3vjGwncVg3t3DvMmfA1nikyUO0p6wwZM9e/YAAPz9/fGzn/3MI9ccM2aMYxDGlb09POH06dOO1927d0dAQECD59x11121nq9HdrsdX375Jf7617/ilVdewe9//3v8/e9/x+7du10a0KgaZ9X469KrVy/H6/Lycpw9e9a1ilMNdrsdmZmZjV4qzkiYM2PkQIYYZYiBiMijzm6rd3P42tjhj0y0hh1O/nHXyU/VcuoT2xWYvNlzM1Ai4tTrNbTnCkmNv/eNge0sBvPuHuZN/hzIEp8scZD2hA2eHD16FID6AL1p06YeuWbTpk1x1113QVEUHDlyxCPXdNaZM2ccr+Pj4506p+oeJRkZGR6vkyf98MMPePjhh/G73/0O7777Lv7yl7/gN7/5DQYOHIi4uDj83//9HwoLC+u9xtWrV5Gfn+9470yemjRpgubNmzve6z1PvqCwsBDLly9vsL3oJubMGDmQIUYZYiAi8qg977l8SiHCsNz0BArhwl8i7k1q+JjYrsD0feoeJY3RfZx6HQ6cGB5/7xsD21kM5t09zJv8OZAlPlniIO2ZFEVRRBR8++2348aNGxg9ejQ+/fRTj1133LhxWLduHZo3b46cnByPXbchTz75JNasWQMAmDFjBpKSGv4fqM8++wxjxowBoG74fuWK88sJOGvu3LmYN28eAOCBBx5waUZOZmYm2rVr5/TxnTp1wsaNG9GxY8daf3769Gl06dLF8T43N9epgbMePXrg5MmTAICFCxdi2rRpTtfpVunp6ejWrZvjfVpaGrp25f94EhEREUknJx1YcJ/3ypu+H4jt0vBxgDpTZW8ScGGv89eP7w/0n8nN4YmIiIjIMEQ/yxU286SgoAAA0KxZM49e97bbbqt2fW+pOlLZpEkTp86pepxeRzojIiIwadIkrF69GmfOnEFhYSFKS0tx6dIlfPrpp3jwwQcdx545cwaPPPIIrl27Vuu1bo1RZJ5CQkIQHh4OQF0OLD8/H5XjiGazGTabDQBQUlKCoqIiAOqUvqozZwoKClBWVgZA3WenuLgYAFBWVlbt/svPz3dMAywqKkJJibp+ts1mg9lsBgAoioL8/HyUl5c74rRarQCA0tJSWCwWADU3tLJYLI5l06xWqyM/jIkxMSbGxJgYE2NiTIaNKftbIO8CrPs/QCFC1Zjgh3xEovKvxswIhw2BakwIQRHU/960wx/5iLwZEyJQBnU53mKEoBghakwIQAEibsaESNgPfgDkXXAupo7DUDhuDaxTdgEDXkFpwhBYgtUlvRwb1gc3BdoPgqXPb1D6/DfA5M2wth0oTzvJeO8xJsbEmBgTY2JMjIkxMSZNYhJF2OBJ5YY8nh7kqGxYZx/Me0rlTQMAQUFBTp0THBzseF15c+pJXFwcLl++jKVLl+LJJ59Ex44dERYWhqCgILRu3Rpjx47Fl19+iUWLFsFkMgEAvv/+e7z++uu1Xq9qjgCxeerbty/Gjh0LALh27RqSkpIcH+glS5bg1KlTAIBdu3Zh06ZNAICsrKxqM4oWLFiAc+fOAQC2b9+O7du3AwDOnTuHBQsWOI5LSkpCVlYWAGDTpk3YtWsXAODUqVNYsmQJALWzSUpKcgw8rV27FikpKQCAY8eOYcWKFQDU+zspKclxn69YsQLHjh0DAKSkpGDt2rUNxrR9+3a8++67KCgokCYmrdtp8eLFePPNN3H16lVpYnK1nSrrUHk9GWK6tZ0+/PBDvP322ygoKPDZmIzQToyJMTEmxtRgTAt/DiT1QErqKazFCDUm3IYk01SUQv3vyiV4EqdwpxoT+mITHlJjQhySTFPxJl5EASKwAM/iHNSlZrfjAWzHA2pMiMcCPHszJtNUZB3ZCiT1cC2m8/nA0DdwrPNsrGg6E3g9C+ZfHEOSaSrMLxwDJm7AiouxOPZDiXztJOO95+WYCgoKkJSU5FjaWIaYZGynxsZUUFCAt99+Gx9++KE0MflCO3322Wd45513UFBQIE1M3mingoICvPXWW1LF5E47vfnmmygoKJAqpkr/+c9/MH/+fBQUFPh8TDK3k4wxCaMIcueddyp+fn7KwIEDPXrdgQMHKiaTSbnjjjs8et2GDB8+XAGgAFBmz57t1DmbN292nBMeHq5JvebMmeMo44EHHtCkDEVRlN/97neOcvz9/ZXs7Owaxxw8eNBxDAClpKTEqWv36dPHcc7f/va3RtUzLS1NAaCEhIQo4eHhSlpammK325W8vDyloqJCURRFKSgoUEpLSxVFUZTi4mKlsLBQURRFKSsrU/Ly8hzXys/PV2w2m6IoilJUVKQUFRUpiqIoNptNyc/PdxyXl5enlJWVKYqiKIWFhUpxcbGiKIpSWlqqFBQUKIqiKBUVFUpeXp5it9sVRVEUi8XiyI/ValXMZrOiKIpSXl6u5OXlKeXl5YqiKIrZbFasVquiKIpSUlKiWCwWRVGUemMqKChQjh07pthsNmli0rqdrl+/rpw+fVopLS2VJiZX28lqtSqHDx92xCFDTLe2040bN5QTJ04oNpvNZ2MyQjsxJsbEmBhTgzHNaaYocyKVkjnNFcucFooyJ1Kxz4lW8ua0VirmRCrKnEilYE5LpXTObYoyJ1IpnnO7UjgnVlHmRCplc5oqV+fEK6fn9FJsc2KU/DmtFNucGEWZE6kUzbldKZpzu6LMiXT8TPnxenlzWitlc5oqypxIthNj8lpMNptNOXz4sCMOGWKSsZ0aG5PNZlNOnDih3LhxQ5qYfKGd8vLylNTUVMVms0kTkzfayWazKWlpacrVq1elicnVdrp69apy+vRpR71liKlqO127dk05efKkYrPZfDom2dtJppgqn+VWfqWlpSneJGzPk4ceegg7d+5EcHAwcnNzPTJTpKSkBDExMbDZbBg8eDB27NjhgZo6R8Y9T1xRWFiI22+/3TEz5KOPPsIzzzxT7RjueUJEREREmpsbJbh87y4fTEREREQkK9HPcoUt2zVkyBAA6hpqntow/tNPP3VM+am8vrdU7rUCwOmN6rOzsx2vY2JiPF4nbwoPD8e9997reH/69Okax1TNEWDMPOlBcXEx1q9f71jvkBrGnBkjBzLEKEMMRESiFSME6zHMsb8JkV7x974xsJ3FYN7dw7zJnwNZ4pMlDtKesMGTRx55xPH6jTfeaPTNWlxcjDlz5jjeP/roo426nqs6derkeH3hwgWnzrl48aLjdefOnT1eJ2+Li4tzvL5+/XqNn99+++2Ijo52vHcmT1artdoG9DLkiYiIiIiIiIiIiIj0TdjgSa9evTBkyBAoioJLly5h9OjRsNvtbl2rvLwcY8eOxYULF2AymTB48GD06tXLwzWu309+8hPH65MnTzoVy9GjR2s931cVFRU5XoeFhdV6TNU4KzcNqk/VHPn7+6Njx46NqCEBQGhoKEaNGoXQ0FDRVfEZzJkxciBDjDLEQEQkWiisGIVtCIVVdFWI6sXf+8bAdhaDeXcP8yZ/DmSJT5Y4SHvCBk8A4M9//jP8/NQqfPnll+jbty/S0tJcukZ6ejr69u2Lbdu2AQD8/Pzw5z//2eN1bch9992H4OBgAOogwuHDh+s9vrS0FCkpKY733l5mTAtVB0NatmxZ6zGDBw92vHZm/5Vdu3Y5XlfNMbmvrKwMGRkZKCsrE10Vn8GcGSMHMsQoQwxERI328gn1q829DR9bizIEIAMdUIYA105s01ctl8hL+HvfGNjOYjDv7mHe5M+BLPHJEgdpT+jgyb333ov58+ejcs/6o0ePIjExEcOGDcPy5cuRkZFR63lnzpzBhx9+iEceeQQ9e/bE0aNHoSgKTCYT/vrXv1bbe8NbwsPDMXToUMf7ZcuW1Xv8Z599BovFAkDdx2PgwIFaVk9zO3bswKVLlxzvBw0aVOtxo0aNqnZOVlZWvdetmseq55L7uK6j65gzY+RAhhhliIGIqNGaxqtf8f3dOr0YTX7c86SJaycm9FfLJfIS/t43BrazGMy7e5g3+XMgS3yyxEHaMymVIxcCvfbaa5g/fz5MJpNjEKSSn58fIiMjER4ejsLCQpjNZlRUVDh+Xnm8oij47W9/i/nz54sIAQDwxRdf4Kc//SkAIDg4GEeOHEHXrl1rHFdcXIyePXviu+++A6DG/9e//lWTOs2dOxfz5s0DADzwwANOzfYAAJvNBgAICgpq8Nhr166hX79+OHfuHAB1aa60tDTHrKJb9enTB4cOHQIAPP300/j4449rPe7999/HtGnTAAARERE4f/48mjVr5lT965Keno5u3bo53qelpdXaRkRERETk43LSgQX3ea+86fuB2C7eK4+IiIiISHKin+UKnXlS6c0338TatWurbSYOqAMj5eXlyMvLw6VLl5CXl4fy8nLcOt4TFRWFNWvWCB04AYARI0ZgwIABANRluX7605/ixInqU/dv3LiBUaNGOQZOYmJiMHv27Fqvl5mZCZPJ5PhqaDaLJ12+fBkdOnTA/Pnz69zYXVEUfPHFF+jdu7dj4MRkMuFvf/tbnQMnAKoNFK1YsQKvvfZajWlya9aswcyZMx3vf/vb3zZ64ISIiIiIDCS2K9DWS4Mn8f05cEJEREREJBldDJ4AwOjRo3HhwgXMnz8f7dq1qzFAcitFUZCQkOB4uD927Fgv1bR+K1euRFxcHAB18CMxMRGDBw/G1KlT8fjjj6Nt27b48ssvAQABAQFYs2ZNjUEjdw0fPhyJiYnVvhYuXOj4+eHDh2v8PDExEZcvX671ellZWZg9ezYSEhLQrl07jBw5ElOmTMG0adMwevRotG7dGj/96U+rDa7Mnz8fw4cPr7eeQ4cOxf/93/853r/11ltISEjA+PHjMWnSJHTv3h1PPvkkSkpKAAAPPfQQfve73zUmNVRFfn4+5s2bh/z8fNFV8RnMmTFyIEOMMsRARORR9890+ZR8RGKe6TfIR6TzJ/V3vRyixuLvfWNgO4vBvLuHeZM/B7LEJ0scpD1dLNtVm4sXL2L37t3IzMxEbm4uLBYLIiIiEBMTg4SEBNx///2Ij9fnmsIZGRl46qmnkJqaWucxzZs3x9KlSzFixIg6j8nMzES7du0c75cuXYpJkybVeXxCQkKds0Tq8/333yMhIaHeshvSqlUr/Oc//8HIkSOdOl5RFPz5z3/GH//4x3o3Zxo/fjwWLVqEyEgX/ue1HqKneumB3W5HVlYWWrdujYAAFzdCNSjmzBg5kCFGGWIgIvK4tc8DaWudPtwOf2QhDq1xBQEob/iE7uOAMYsbUUEi9/D3vjGwncVg3t3DvMmfA1nikyUOIxD9LFe3gye+zmazYfXq1Vi1ahXS09ORk5OD6OhotG/fHqNHj8bkyZMbXIZK5OCJoihIT0/H/v37sW/fPqSnp+P69eu4ceMGiouLERkZibi4OPTu3RuPPvoofvaznyEwMNDlsk+fPo3Fixdj+/btuHTpEsrKyhAXF4d+/frhueeew4MPPujyNesj+gNHRERERPVQFKDUApSXAf6BQHAEUGU/RLcU56p7n1iueKaOVUXEAdP3AaExnr82EREREZHBiX6Wy8ETMhTRHzg9KCoqwqZNm/DYY48hLCxMdHV8AnNmjBzIEKMMMRCRAeWkAyfXAj8cAa4cB6z5N38WEg3E9QRa3a3O8HB3X5GcdGDp8OrXrkMRmmATHsJj+BJhKKn7wJBoYPJmdW8VIgH4e98Y2M5iMO/uYd7kz4Es8ckShxGIfpbLeUlEBuPn54fo6Gj4+elmyyPdY86MkQMZYpQhBiIykLPbgD3vARf31X2MNR/4fpf6tedddQP4+38NdHzYtbJiu6oDHR+PaXAGih8URMMMP9TzN2YRccAz6zhwQkLx974xsJ3FYN7dw7zJnwNZ4pMlDtIeZ56Qofx/9u4/Pqrqzv/4e0IIISQYUYyImhS3VPkltbVSEKVqq4LbL61QFa0/VlvF7lZbF227WxG7bdV2W7PbinaVH1XQCrpWWhR/giJi8QdKAsjWGhAlASGTzCSZTH7c7x+3jKD8SCZz58w95/V8PPIgP+becz7vc7jROdxzTa9WAgAAOK95l7R0RreeQ/IJI6dK597R/e2ymndJT9worVuU/bYBAAAAdIvp93JZXgMck0wmtXbtWiWTSdNdCQ0ycyMDG2q0oQYAlqut8p8/0pOFE8lf/Jg91t+OqzuKBvgPd5/2sFQ+bp8vSaq31mqYkvrY8/zKx0nTFvnHs3CCHMDvfTcwzmaQe3rIzf4MbKnPljoQPBZPAMckEgktX75ciUTCdFdCg8zcyMCGGm2oAYDFaqukeZMy9+D22Db/OSbdXUCRpKFn+9t4TX9ZGn+DNGSC/wwTSQn10XJ9UYk+A/3vj7/Bf90VS7u/XRgQIH7vu4FxNoPc00Nu9mdgS3221IHgsW0XnGL6Vi8AAAAnNe/y7xTJ1MLJnkoGSdNX9fxuEM+TknGpPSnlF0gFxVIkkpk+AgAAAOg20+/lcucJ4BjP85RIJMS6adeRmRsZ2FCjDTUAsNTSGcEsnEj+eZ+4sefniUSkPiXyigYo4fU+0OPigZzA7303MM5mkHt6yM3+DGypz5Y6EDwWTwDHNDQ06Pbbb1dDQ4PproQGmbmRgQ012lADAAttWtbzZ5wczLpFfjsZwLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY9suOMX0rV65oKOjQzt27NDAgQPVq1cv090JBTJzIwMbarShBgAWmnOutGVV8O2Uj/OfS9JDXEsRFsxVNzDOZpB7esjN/gxsqc+WOlxg+r3c/Ky1BCAn9OrVS0ceeaTpboQKmbmRgQ012lADAMvUVWdn4USSNr8k1a2Xyob16DRcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDy27QIcE4/HNW/ePMXjcdNdCQ0ycyMDG2q0oQYAlqjf7H+suS+77b7a8/a4liIsmKtuYJzNIPf0kJv9GdhSny11IHjceQI4Jj8/XxUVFcrP569/V5GZGxnYUKMNNQCwROUoM+2uuVea9J89OgXXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI9nnsAppvfJAwAAcMIth5hre2ZUikTMtQ8AAAAgI0y/l8u2XYBjWltbtXr1arW2tpruSmiQmRsZ2FCjDTUAQI8le7b9AtdShAVz1Q2Msxnknh5ysz8DW+qzpQ4Ez8i9SWeccUbgbUQiET377LOBtwOETTKZ1Nq1azV8+HD16dPHdHdCgczcyMCGGm2oAYBhnie1xqSONqlXb6lPSfju4mhPSj24BHItRVgwV93AOJtB7ukhN/szsKU+W+pA8Ixs25WXl6dIgP8T5nmeIpGIOjo6AmsD4WT6Vi8AAICcU1ctrVssvf+atO1NKRH96GeFpdKgE6XBn5NGTpXKhnXtnCa37frhVn/RBwAAAEComX4v19i2XZ7nBfYBYP86OzsVjUbV2dlpuiuhQWZuZGBDjTbUACCLNi2T5pwrzR4rrfyV9O6KvRdOJP/rd1f4P5/9Rf/1m54y0duuKyju0eFcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDwj23Y9//zzJpoFIKmxsVGVlZW67rrrVFpaaro7oUBmbmRgQ4021AAgC5p3SUtnSFWLu3/sllXSwlX+XSjn3iEVDdj36657y//z0W9J772Sfl+765gxPd5mjGspwoK56gbG2QxyTw+52Z+BLfXZUgeCZ2TbLsAU07d65YLOzk41Njaqf//+ysszdvNZqJCZGxnYUKMNNQAIWG2VtGCKFNvW83OVDJIueUQqO8B/Sz0zy79rJVvG3yCdeXOPTsG1FGHBXHUD42wGuaeH3OzPwJb6bKnDBabfy2V2AI7Jy8tTaWkpvxy6gczcyMCGGm2oAUCAaqukeZMys3Ai+eeZO9F/Zsr+jJySmba6akTP2+NairBgrrqBcTaD3NNDbvZnYEt9ttSB4DFDAMfEYjHdfffdisViprsSGmTmRgY21GhDDQAC0rzLv+Pk48806alEVHrgfP/8+1I2XDp2bGbb3J/ycV1/oP0BcC1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwWDwBHFNQUKDRo0eroKDAdFdCg8zcyMCGGm2oAUBAls7I3B0nHxfbJj1x4/5/fur1wbT7ceMy0w7XUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI9nnsAppvfJAwAAyLpNy6SF3wi+nWkPS0PP3vfPFl+Z3gPqu2rkVOn8e4M7PwAAAICsM/1ebn7WWkpTQ0ODVq5cqbVr1+rDDz9ULBZTZ2fnQY+LRCK67777stBDIFwSiYRWr16tMWPGqLCw0HR3QoHM3MjAhhptqAFAAFbemZ12Xqrc/+LJxF9Im18K5u6XkkHSuXdk7HRcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELycXTypr6/XTTfdpAULFiiRSKR1DhZPgE9qb29XTU2NPv/5z5vuSmiQmRsZ2FCjDTUAyLC6amnLquy0tfklqW79vp87UjRAuuQR/wHzmXzuSmGpf96iARk7JddShAVz1Q2Msxnknh5ysz8DW+qzpQ4ELye37aqpqdHpp5+urVu3qivdi0Qin3hdJBJRR0dHUF1ESJm+1QsAACAr6jf7f75UKb2axX9QdPJV0tjvSoeW7/vnddX+A+YzcQdKySB/4aSM/5YDAAAAbGT6vdycu/PE8zx97Wtf03vvvSdJGjVqlC6++GI99dRTevbZZxWJRDRnzhzFYjFt3rxZL7zwgtasWSNJKi4u1syZM3X44YebLAHIaR0dHdqxY4cGDhyoXr16me5OKJCZGxnYUKMNNQDIkMpRZtpdc6//cUvDvn9eNlyavsp/wPy6Rem3M3Kqv1VXBu842Y1rKcKCueoGxtkMck8PudmfgS312VIHgpdnugMft3jxYr355puKRCI655xz9Oqrr2rGjBk6/vjjU6+57LLL9M///M/6xS9+oVdeeUVr1qzRZz/7WcXjcVVWVuqUU07RZZddZrAKIHfFYjHdc889isViprsSGmTmRgY21GhDDQAcUDTAf7j7tIel8nHdO7Z8nDRtkX98AAsnEtdShAdz1Q2Msxnknh5ysz8DW+qzpQ4EL+e27Zo2bZoeeugh5eXl6Z133lF5uX/L/7/8y7/ot7/97X6342ppadGXv/xlrVq1SiNGjNBf/vIXHviDTzB9q1cu8DxPra2t6tOnjyKRiOnuhAKZuZGBDTXaUAOADLnlEMPt7+fOk32pWy9VLZbef036YO3ez0QpLJWOGi0N/pw0Ysq+n6eSYVxLERbMVTcwzmaQe3rIzf4MbKnPljpcYPq93Jzbtusvf/mLIpGITjrppNTCSVf07dtX8+bN0wknnKDq6motXLhQ//RP/xRgT4FwikQiLCx2E5m5kYENNdpQAwAHlQ2Tym72P/c8KRmX2pNSfoFUUCxl+X9ouZYiLJirbmCczSD39JCb/RnYUp8tdSB4Obdt144dOyRJJ5xwwl7fz8v7qKuJRGKfx/7DP/yDxo4dK8/z9NBDDwXXSSDEGhsbdeedd6qxsdF0V0KDzNzIwIYabagBgOMiEalPidTvMP9PA/8SkGspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3OLJ7sXRoqLi/f6/p5f79q1a7/Hf/rTn5Ykvf322wH0Dgi/wsJCTZgwgRX2biAzNzKwoUYbagAA07iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDm3bVf//v21a9cuNTc37/X9ww47LPX5X//6Vx111FH7PL6hwd9fefv27cF1EgixgoICjR492nQ3QoXM3MjAhhptqAFAhlz3lv/no9+S3nsle+0eM0b6+u+y114AuJYiLJirbmCczSD39JCb/RnYUp8tdSB4OXfnyXHHHSdJqq2t3ev7ez4I5rnnntvnsZ2dnXr99dclSUVFRQH1EAi3lpYWPfnkk2ppaTHdldAgMzcysKFGG2oAkCGHlvsf5eOy227FOL/dEONairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4sno0aPleZ7Wr1+/1/fHjBmjPn36SJLuvvvufd5Zcuedd+rdd99VJBLRiBEjstJfIGw6OzsVjUbV2dlpuiuhQWZuZGBDjTbUACDDRk7JbnsjstxeALiWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeBHP8zzTndjTQw89pGnTpikSiej//u//NGTIkNTPLrnkEi1cuFCRSESDBw/W9ddfr5EjR6q5uVmPP/645s+fr87OTkUiEf3mN7/R9OnTDVaCXFRdXb3XwlpVVdVedzUBAABYZ8650pZVwbdTPk66Ymnw7QAAAABwgun3cnPuzpOJEyeqoKBAkrR48eK9fnb77bfr0EMPlSS9//77mjFjhs455xx9/etf17x587R7Heikk07SVVddld2OAyHR3t6umpoatbe3m+5KaJCZGxnYUKMNNQDO8zwp0Sg17fT/zMS/czr1+p6foyvGZamdgHEtRVgwV93AOJtB7ukhN/szsKU+W+pA8HJu8aR///568MEHddddd2nYsGF7/Wzw4MF65plnVF5eLs/z9vlx2mmn6c9//rN69+5tqAIgt8Xjcc2fP1/xeNx0V0KDzNzIwIYabagBcFJdtfTMLGn+V6XbK6TbjpF+McT/8/YK//vPzJLq1h/sTPs29Ozgt9MaOVUa+pVg28gSrqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezm3b1RXJZFKPPPKInn32WX3wwQfKy8vTkCFD9I//+I/68pe/bLp7yGGmb/UCAABI2bRMWnln97bUOnasdOr3ur9Q0bxLmj1Wim3r3nFdUTJImr5KKhqQ+XMDAAAAcJbp93Lzs9ZSBhUUFOiiiy7SRRddZLorAAAAQPc075KWzpCqFh/8tR+3ZZW0cJV/p8e5d3R9waJogHTJI9LciVIi2v1296ew1D8vCycAAAAALJNz23YBCFZDQ4Nuu+02NTQ0mO5KaJCZGxnYUKMNNQDWq63y7wBJZ+FkT+sW+eepq+76MWXD/Qe6lwzqWdu7lQzyz1dm1128XEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8Fk8AxxQVFWny5MkqKioy3ZXQIDM3MrChRhtqAKxWWyXNm5S5rbNi2/w7Sbq7gDL973eu9MTIqf55LFs4kbiWIjyYq25gnM0g9/SQm/0Z2FKfLXUgeKF85gmQLtP75AEAAEfl4jNHNi2TXqqUNr/U9WPKx0njrrfm4fAAAAAAcpfp93Jz/pknnZ2d2rBhg2pqatTY2Ki2trYuH3vppZcG2DMgnJqbm/XUU0/pK1/5CivsXURmbmRgQ4021ABYa+mMYBZOJP+8T9wonX9v944berb/Ubfe30bs/dekD9bu/UyUwlLpqNHS4M9JI6ZIZcMy1+8cxbUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBy9nFk82bN+snP/mJFi1apHg83u3jI5EIiycAAAAwb9Oynj/j5GDWLfK30hp6dvePLRsmld3sf+55UjIutSel/AKpoFiKRDLbVwAAAAAIgZzctmvp0qW64IIL1NzcrHS7F4lE1NHRkeGeIexM3+oFAAAcNOdcacuq4NspH+c/wB0AAAAALGD6vdycu/Nky5Ytmjp1qlpaWlLfO/LII3XiiSfqsMMOU+/evQ32Dgi/trY2vfPOOzruuOP4+9RFZOZGBjbUaEMNgHXqqrOzcCL5zy6pW+/E1lpB4lqKsGCuuoFxNoPc00Nu9mdgS3221IHg5ZnuwMf98pe/VEtLiyKRiAYPHqw//elP+uCDD/TEE0/ogQce0Ny5c7v8AeCTmpub9dhjj6m5udl0V0KDzNzIwIYabagBsEb9Zv9jzX3ZbffV+/x2kTaupQgL5qobGGczyD095GZ/BrbUZ0sdCF7Obdt1wgkn6O2331bv3r21du1anXDCCaa7BIuYvtULAAA44pZDDLffYLZ9AAAAAOgh0+/l5tydJ++9954ikYgmTJjAwgkAAAAAAAAAAMi6nFs82b3P3Kc+9SnDPQHsFI1GNWvWLEWjUdNdCQ0ycyMDG2q0oQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgpdz23aNHj1a69at0wUXXKCFCxea7g4sY/pWr1zQ3t6urVu36uijj1Z+fr7p7oQCmbmRgQ012lADYA227QotrqUIC+aqGxhnM8g9PeRmfwa21GdLHS4w/V5uzs2Of/zHf9Rbb72ll19+2XRXACvl5+eroqLCdDdChczcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHg5dy2Xddcc4369++vLVu26MEHHzTdHcA6TU1Neuihh9TU1GS6K6FBZm5kYEONNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBybvFk8ODBmjdvnvLy8nT11Vfr6aefNt0lwCp5eXkqLS1VXl7O/fXPWWTmRgY21GhDDYA1rnvL/zjmlOy2e8wYv12kjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3PPPNmyZYsk6emnn9Y///M/q62tTeedd56mTp2qkSNH6pBDDlEkEunSuY499tggu4oQMr1PHgAAcMwzs6SVv8pee+NvkM68OXvtAQAAAEBATL+Xm3PPPKmoqNhrccTzPC1ZskRLlizp1nkikYja29sz3T0g9JLJpNavX69hw4apoKDAdHdCgczcyMCGGm2oAbDOyCnZXTwZMSV7bVmKaynCgrnqBsbZDHJPD7nZn4Et9dlSB4KXs/cm7b4hZvdCiud53f4A8EmJRELLly9XIpEw3ZXQIDM3MrChRhtqAKxTNlw6dmx22iofJ5UNy05bFuNairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXctl0fv/OkJ959992MnAf2MH2rFwAAcNCmZdLCbwTfzrRF0tCvBN8OAAAAAGSB6fdyc27brpqaGtNdAKzmeZ5aW1vVp0+fjC1U2o7M3MjAhhptqAGw0tCz/e20qhYH18bIqSycZAjXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC9nt+0CEIyGhgbdfvvtamhoMN2V0CAzNzKwoUYbagCsNfEXUsmgYM5dMkg6945gzu0grqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezm3bBQTJ9K1euaCjo0M7duzQwIED1atXL9PdCQUycyMDG2q0oQbAanXV0tyJUiKauXMWlkpXLPWfrYKM4FqKsGCuuoFxNoPc00Nu9mdgS3221OEC0+/lsngCp5j+CwcAAELA86TWmNTRJvXqLfUpkTJ1O39dtfTA+VJsW8/PVTJIuuQRFk4AAAAAWMn0e7mh2rartrZWVVVVevnll1VVVaXa2lrTXQJCJx6Pa968eYrH46a7Ehpk5kYGNtRoQw2AMXXV0jOzpPlflW6vkG47RvrFEP/P2yv87z8zS6pb37N2yoZL01f5zyjpiZFT/fOwcJJxXEsRFsxVNzDOZpB7esjN/gxsqc+WOhC8nHtg/MetXLlSs2fP1vLly/e5WHLkkUfqS1/6kq655hqdeuqpBnoIhEt+fr4qKiqUn5/zf/1zBpm5kYENNdpQA5B1m5ZJK++Utqza/2sSUendFf7Hyl9Jx46VTv1e+g9oLxognX+vvwDyUqW0+aWuH1s+Thp3PQ+HDxDXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC9nt+3auXOnrrzySi1ZskSSdKBuRv6+jcJXv/pV3XvvvTrssMOy0keEj+lbvQAAQI5o3iUtnSFVLU7/HCOn+g9qLxrQs77Urff78f5r0gdr934mSmGpdNRoafDnpBFTpLJhPWsLAAAAAELC9Hu5Oblt186dO3XqqadqyZIl8jxvr4WTwsJCHXbYYSosLEx9b/drHn/8cZ166qnauXOniW4DodDa2qrVq1ertbXVdFdCg8zcyMCGGm2oAciK2ipp9tieLZxI0rpF/nnqqnt2nrJh0pk3S5f+UbqpRvrhVmnG3/w/b6rxv3/mzSycZAnXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC8nF0+mTZumt99+O/X1ueeeq0ceeUS1tbVqbm7Wjh071NzcrLq6Oj366KOaNGlS6rWbNm3SxRdfbKLbQCgkk0mtXbtWyWTSdFdCg8zcyMCGGm2oAQhcbZU0b1JmHtgu+eeZO7HnCyi7RSL+A+r7HZbZB9Wjy7iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDm3bdczzzyjr3zlK4pEIurbt68eeOABTZ48+aDHPf7445o2bZqam5sViUS0bNkynXXWWcF3GKFi+lYvAABgUPMu/06RTC2c7KlkkP8A955u4QUAAAAAkGT+vdycu/PkoYceSn3+P//zP11aOJE+et7Jbg8++GCmuwZYobOzU9FoVJ2dnaa7Ehpk5kYGNtRoQw1AoJbOCGbhRPLP+8SNwZwbWcW1FGHBXHUD42wGuaeH3OzPwJb6bKkDwcu5xZOVK1dKko477jhddNFF3Tr2wgsv1D/8wz/I87zUeQDsrbGxUZWVlWpsbDTdldAgMzcysKFGG2oAArNpWc+fcXIw6xb57SDUuJYiLJirbmCczSD39JCb/RnYUp8tdSB4Obdt1yGHHKJ4PK6LL75Yv//977t9/KWXXqoHHnhAJSUlamhoCKCHCDPTt3rlgs7OTjU2Nqp///7Ky8u59dOcRGZuZGBDjTbUAARmzrnSllXBt1M+TrpiafDtIDBcSxEWzFU3MM5mkHt6yM3+DGypz5Y6XGD6vdz8rLXURW1tbZKkgoKCtI7ffdzu8wDYW15enkpLS013I1TIzI0MbKjRhhqAQNRVZ2fhRJI2vyTVrZfKhmWnPWQc11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv55bWjjjiCEnS+vXr0zp+93G7zwNgb7FYTHfffbdisZjproQGmbmRgQ012lADkFH1m/2PNfdlt91Xs9weMoprKcKCueoGxtkMck8PudmfgS312VIHgpdziyef/exn5Xme/vKXv2jt2rXdOvbNN9/UK6+8okgkotGjRwfSPyDsCgoKNHr06LTv7nIRmbmRgQ012lADkFGVo/yPbC9mrLk3u+0ho7iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDn3zJO5c+fqyiuvVCQS0dChQ/Xss8/qqKOOOuhx27Zt0xlnnKG3335bkUhE9913ny6//PLgO4xQMb1PHgAAyKJbDjHX9syoFImYax8AAAAAQs70e7k5d+fJN7/5TQ0ZMkSS9Pbbb2vUqFH6r//6L9XX1+/z9dFoVL/5zW904oknatOmTYpEIhoyZIguueSSbHYbCI1EIqHly5crkUiY7kpokJkbGdhQow01ANZIxk33AGniWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDl3OJJfn6+FixYoL59+yoSiWjXrl363ve+p7KyMo0cOVLnnXeeLrjgAp133nkaNWqUjjjiCF133XX68MMP5XmeioqKtGDBAuXn55suBchJ7e3tqqmpUXt7u+muhAaZuZGBDTXaUANgjfak6R4gTVxLERbMVTcwzmaQe3rIzf4MbKnPljoQvJzbtmu3F154QRdffLHef//91Pci+9j6YM/uDx48WAsXLtT48eOz0keEj+lbvQAAQBaZ3Lbrh1ulPiXm2gcAAACAkDP9Xm7O3Xmy22mnnaZ169bpxz/+sY488khJ/kLJxz8k6cgjj9TNN9+sdevWsXACHERHR4dqa2vV0dFhuiuhQWZuZGBDjTbUAFijoNh0D5AmrqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezi6eSFJpaalmzZqlDz74QNXV1XrggQf061//Wj/5yU/061//Wg888ICqq6v1wQcf6JZbblFpaanpLgM5LxaL6Z577lEsFjPdldAgMzcysKFGG2oAMuq6t/yPY07JbrvHjOFh8SHGtRRhwVx1A+NsBrmnh9zsz8CW+mypA8HL2W27gCCYvtUrF3iep9bWVvXp02efW+Hhk8jMjQxsqNGGGoBAPDNLWvmr7LU3/gbpzJuz1x4yimspwoK56gbG2QxyTw+52Z+BLfXZUocLTL+Xm9N3ngDIvEgkosLCQn45dAOZuZGBDTXaUAMQiJFTstveiCy3h4ziWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeAI4prGxUXfeeacaGxtNdyU0yMyNDGyo0YYagECUDZeOHZudtsrHSWXDstMWAsG1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxBHBMYWGhJkyYoMLCQtNdCQ0ycyMDG2q0oQYgMKden512xmWpHQSGaynCgrnqBsbZDHJPD7nZn4Et9dlSB4Jn5Jknt956615f33zzzfv9WU/seV5AMr9PHgAAMGjxlVLV4uDOP3KqdP69wZ0fAAAAABxi+r1cI4sneXl5e+0p19HRsd+f9cSe5wUk83/hckFLS4tWrFih008/XX379jXdnVAgMzcysKFGG2oAAtW8S5o9Vopty/y5SwZJ01dJRQMyf25kFddShAVz1Q2Msxnknh5ysz8DW+qzpQ4XmH4v19i2XZ7naX/rNrt/1pMP05LJpO6//35NnDhR5eXlKiws1KBBgzR27Fj98pe/1IcffpjxNjs6OvTWW2/pvvvu0/Tp0/X5z39eBQUFikQiikQimjBhQrfPWV9fr0WLFunaa6/V2LFjdcQRR6igoED9+/fXcccdpwsvvFALFixQW1tbl885YcKEVJ+6+rFy5cpu9x371tnZqWg0qs7OTtNdCQ0ycyMDG2q0oQZAkuR5UqJRatrp/5mp/7YrGiBd8ohUWJqZ8+1WWOqfl4UTK3AtRVgwV93AOJtB7ukhN/szsKU+W+pA8IzceTJr1qy9vp45c+Z+f9YTe543mzZu3KiLLrpIa9eu3e9rjjjiCM2dO1cTJ07MSJuPPfaYLr74YjU3N+/3NaeffrqWL1/epfPF43FddNFFeuqpp5RMJg/6+oqKCs2fP1+nnXbaQV87YcIErVixokv92O3FF1/Uqaee2q1j9sX0aiUAANiPumpp3WLp/dekbW9KiehHPysslQadKA3+nL81Vk8fyF5XLT1wfmbuQCkZ5C+clPHfEwAAAACQSabfy83PWkt7ONCihqkFj0zZunWrzjzzTH3wwQeSpEgkotNOO03HHXecduzYoWeeeUYtLS3avn27Jk+erCeffFJnnHFGj9uNRqMHXDjprng8rj/96U97fa+srEyf//zndeSRR6qtrU1r167VW2+9JUmqqanRmWeeqf/93//Veeed1+V2Jk+erMGDBx/0dUcddVT3CsB+tbe3a+vWrTr66KOVn2/kEhA6ZOZGBjbUaEMNcNCmZdLKO6Utq/b/mkRUeneF/7HyV9KxY6VTvycN/Up6bZYN97fYeuJGad2i9M4h+Qs5597BHSeW4VqKsGCuuoFxNoPc00Nu9mdgS3221IHgGdu2y1bTpk1LLZyUl5frjTfe0PLly3Xffffp8ccf15YtW3TmmWdKktra2jR16lRFo9GMtV9WVqbzzjtPs2bN0tKlS3Xdddf16HyHHnqorrvuOq1du1a1tbX605/+pHvvvVfz58/Xm2++qRdffFGf+tSnJPkXnosvvlh1dXVdPv91112n3/zmNwf9GDJkSI/qwEfi8bjmz5+veDxuuiuhQWZuZGBDjTbUAIc07/If4L7wGwdeONmXLaukhVOlR67yz5OOogH+w92nPSyVj+veseXjpGmL/ONZOLEO11KEBXPVDYyzGeSeHnKzPwNb6rOlDgTPyLZdtlq6dKkmTZokSSooKNCrr76qkSNHfuJ1TU1NGjVqlP72t79Jkn74wx/qZz/7WY/arq2tVTKZ1LHHHrvX92+55ZbUVmjd2bZr165dqqys1A033KD+/fsf8LU1NTU68cQT1djYKEn6wQ9+oJ///Of7ff2e23Y9//zzaT2LJV2mb/UCAACSaqukBVNya9usuvVS1d+3Dftg7Se3DTtqtL9t2IgpPd82DAAAAABwUKbfy825+5L+6Z/+SZJ01llnadq0ad0+/uGHH9aTTz6pSCSi++67L9PdO6Df/va3qc8vu+yyfS6cSFK/fv1066236pJLLpEk3XPPPbr11lt7dJvYkUcemfax+zJgwIAuP3+moqJC11xzje644w5J0p///OcDLp4AAACH1VZJ8ybtvTjRE7Ft0tyJ0hVLe7aAUjZMKrvZ/9zzpGRcak9K+QVSQbEUiWSmvwAAAACAUMi5bbvmzZun+fPna/Xq1Wkdv2bNGs2bN0/z5s3LbMcOIh6P69lnn019fcUVVxzw9eeff76Ki4sl+Xd5vPDCC4H2L2jjxn203UVNTY25juCgGhoadNttt6mhocF0V0KDzNzIwIYabagBlmve5d9xkqmFk90SUf8B8Olu4fVxkYjUp0Tqd5j/JwsnTuFairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4klYrVq1Sq2trZL8O0tOPvnkA76+sLBQX/ziF1NfP/fcc4H2L2iRPd5U6OjoMNgTHExRUZEmT56soqIi010JDTJzIwMbarShBlhu6YzMbNW1L7Ft/gPggR7iWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDl3LZdPbX7ES6RLP8LwQ0bNqQ+HzlyZJe24DrppJP09NNPf+L4MFq3bl3q82OOOabLx23cuFHr16/Xe++9p7a2Ng0YMEBDhw7V+PHjVVZWFkRXnde7d28df/zxprsRKmTmRgY21GhDDbDYpmX+M0WCtG6RNHKqNPTsYNuB1biWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeNbdefLhhx9KUmpLrGx5++23U5+Xl5d36Zg9H+6+cePGjPcpWzo7O3X//fenvj7rrLO6fOz06dP1ne98R7fddpv+8z//U//2b/+mqVOnatCgQfp//+//6c033wyiy05rbm7WY489pubmZtNdCQ0ycyMDG2q0oQZYbOWd2WnnpcrstANrcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwrFo8aWxs1FNPPaVIJLLXwkQ27Ny5M/V5V++Y2PMh77t2ZWiPbgPuuuuu1OJPXl6epk+f3uNzep6nxx9/XKeccor+53/+p8fn+7jCwsLUAltHR4ei0WjqrqXGxkYlk0lJUktLi5qamiRJ7e3tikajqXM0NDSora1Nkn/R3X3BbWtr22vPxGg0qvb2dklSU1OTWlpaJEnJZFKNjY2peqPRaGrLs3g8rkQiIUlqbW1VLBaT5C9URaNRdXZ2SpJisVhqu7hEIqF4PN6lmnb326aaghyn3X21qaZ0ximZTFpX057jFI/HU8eEuSbbx4maQlrTu69JW1apQ3mKqr+8v/ehUcVKqrdfkwrVpL5+TeqlqPp/VJNK1Pb3G6abVahmFfo1KV8NKvmoJvVX++bVUt16xoma0q5pz77aUpON40RNSvXdtppsHKee1tTR0ZHqqy01hWGcdn9uU03ZGKfOzk41NDRYVRP/HfHRODU2NqbOHeaabB8nG2syxejiya233vqJj93+8pe/7PPn+/r48Y9/rH/6p3/SsGHDVFtbK0k69dRTs1rL7gkgSX379u3SMXu+bs/jw6S6ulo//OEPU19feeWVGj58+AGPiUQiOv300/XrX/9aq1ev1q5du9TW1qZdu3bpxRdf1Pe+9z3169dPkv+X8Oqrr9aiRYsy2u8xY8ZoypQpkqQdO3aosrIy9Rd6zpw5Wr9+vSRpxYoVWrJkiSRp69atqqz86F+zzp49W++8844k6amnntJTTz0lSXrnnXc0e/bs1OsqKyu1detWSdKSJUu0YsUKSdL69es1Z86cVJ2VlZXasWOHJGnx4sVavXq1JOmNN97QggULJPkXlMrKytQFbMGCBXrjjTckSatXr9bixYsPWtOaNWvU0dGhoqIia2oKepwefPBBTZ48Wb169bKmpu6OU3t7uzZs2JD6pWpDTR8fp0cffVSDBw9WUVFRaGtyYZyoKWQ11W/W6uef1OJHH/Nr0mGqjFylVvXxa9IFWq9P+zVpjJboy35NGqTKyFUf1aRv6h35d/Y+pdP1lE73a1K5ZuubH9UUuUpbNUh69T4tefQPjBM1pVXT7373u9Qe2LbUZOM4UZO/X/uGDRtS/xDPhppsHKee1lRUVKTBgwfr0UcftaamMIzTs88+q+LiYhUVFVlTUzbGqaioSGPHjtXvfvc7a2rq7jjZ/t8R8+bN07Bhw1RUVBTqmmwfJxtrMsYzKBKJeHl5eXt9RCKRfX6/qx+RSMQrLCz0qqqqslrLGWec4UnyJHk//vGPu3TMs88+mzqmV69egfRr5syZqTZOP/30jJ67vr7e+4d/+IfU+T/96U97sVjsoMd9+OGHB33Nxo0bvSFDhqTOfdhhh3nRaLTHfa6qqvIkeYWFhV5xcbFXVVXltbe3e/X19V5nZ6fneZ7X0NDgtba2ep7nec3NzV48Hvc8z/Pa2tq8+vr61Lmi0aiXTCY9z/O8pqYmr6mpyfM8z0smk3v1tb6+3mtra/M8z/Pi8bjX3NzseZ7ntba2eg0NDZ7neV5nZ6dXX1/vtbe3e57nebFYzGtpafE8z/MSiYTX2NjoeZ7ndXR0ePX19V5HR4fneZ7X2NjoJRIJz/M8r6WlJZX/gWpqaGjw3njjDS+ZTFpTU9Dj9OGHH3obNmzwWltbrampu+OUSCS8V199NVWHDTV9fJx27tzpvfXWW14ymQxtTS6MEzWFrKaZ/b2WmQO92MwjPW9mf699ZqlXP/Nor3Nmf8+b2d9rmHmU1zrzMM+b2d9rnnmEF59Z5nkz+3ttMw/16mce7Xl/f1105mAvOXOA583s7zXNPMJrmnmE583s7yVnDvCiMwenXlc/82ivbeahnjezvxefWcY4UVNaNW3fvt3bsGFDqt821GTjOFGT//mrr76aqsOGmmwcp57WlEwmvbfeesvbuXOnNTWFYZzq6+u9tWvXeslk0pqasjFOyWTSq6qq8rZv325NTd0dJ9v/O2LHjh3eunXrvGQyGeqabB8nm2ra/V7u7o9sv+cf8TzP29eiSjbk5WX+xpdjjjlGd911lyZNmpTxcx/IpEmTtHTpUknSTTfdpNtuu+2gxzzxxBOaOHGiJP8ZLbtvc8qkW265RbNmzZIknX766Vq+fHlGzptIJHT22WfrhRdekCT1799fL774okaNGpWR80v+KueJJ56Y+hfUv/zlL3XDDTf06JzV1dUaMWJE6uuqqqqD3iljm4aGBs2ePVvTp0/XIYccYro7oUBmbmRgQ4021ADL3GJ4Ht7ScPDXAB/DtRRhwVx1A+NsBrmnh9zsz8CW+mypwwWm38s1uniy+039j38vEono5JNP1rnnnnvQc0QiERUWFuqwww7TiBEj9IUvfEGRSCSI7h7QBRdcoIcffliS9N3vfrdLtxU9+uijOv/88yX5zz/Ztm1bxvsVxOJJe3u7zj//fD3++OOS/OeHPPnkkzr99NN7fO6P++Y3v6kHHnhAknTmmWfqmWee6dH5TP+FAwDAKSyeAAAAAADSZPq93PystbQPM2fO/MT3dr/R/4UvfGGfP89Vhx12WOrzurq6Lh2z+/kskjRgwICM9ykInZ2duvzyy1MLJ/n5+Vq0aFEgCyeSdNZZZ6UWTzZs2BBIGwAAAAAAAAAA7MnoA+P35bTTTtNpp52mT3/606a70i2f+cxnUp9v3ry5S8ds2bIl9fnxxx+f8T4F4Zprrkk9CCgvL0+///3vdd555wXW3qBBg1Kff/jhh4G145JoNKpZs2YpGo2a7kpokJkbGdhQow01AIBpXEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8o3ee7EumnsmRbSeccELq83Xr1qm9vV35+QeO9/XXX9/n8bnqe9/7nv7nf/4n9fU999yjiy66KNA2m5qaUp/369cv0LZcUVxcrMsuu0zFxcWmuxIaZOZGBjbUaEMNAGAa11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv5+48CauxY8eqT58+kvw3/F999dUDvr61tVWrV69OfX3GGWcE2r+e+rd/+zfdeeedqa9//etf66qrrgq83TfeeCP1+VFHHRV4ey7Iz89XRUXFQRf38BEycyMDG2q0oQZY5rq3/I9jTsluu8eM8dsF0sC1FGHBXHUD42wGuaeH3OzPwJb6bKkDwcvJxZOnnnpKjz/+eLcfDv7MM8+kdVwmFBcX68wzz0x9PW/evAO+/tFHH1UsFpPkP+/ktNNOC7J7PfLTn/5UP/vZz1Jf33rrrbr++usDbzeZTKaedyJJEyZMCLxNFzQ1Nemhhx7a664eHBiZuZGBDTXaUAMsc2i5/1E+LrvtVozz2wXSwLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBy7nFk/Xr1+ucc87R1772Nf35z3/u1rF/+tOf9LWvfU3nnHOO3nnnnYB6uH/XXntt6vN58+apurp6n69rbm7WzTffnPr629/+ds6udFZWVurf//3fU1/feOON+vGPf5z2+eLxeJdf+6//+q969913U19fcsklabeLj+Tl5am0tFR5eTn31z9nkZkbGdhQow01wFIjp2S3vRFZbg9W4VqKsGCuuoFxNoPc00Nu9mdgS3221IHg5dwMWbx4cerzb33rW9069lvf+pY8z5PnefrDH/6Q6a4d1KRJkzR+/HhJ/rZc5513nt56a+8tI3bu3KnJkyfrr3/9qyT/rpObbrppn+erqalRJBJJfRzsbpZMmzNnjr73ve+lvv7Od76j22+/vUfn/PrXv64rr7xSL7zwgjo7O/f5mr/97W+aOnWq/vu//zv1vQsuuEBjxozpUdvw9e3bV+ecc4769u1ruiuhQWZuZGBDjTbUAEuVDZeOHZudtsrHSWXDstMWrMS1FGHBXHUD42wGuaeH3OzPwJb6bKkDwcu52x1eeOEFSVJFRYWGDeve//gOHz5cFRUV2rx5s1asWKEf/ehHQXTxgBYuXKgvfOEL2rZtm2pqajR69GidfvrpOu6447Rjxw4988wzam5uluTvr/fwww+rtLQ0I21PnDhRH3zwwV7fq62tTX3+6quvavTo0Z84bunSpZ94nsi6detSi1GS/7B2z/P0z//8z13qy3XXXadPf/rTn/h+MpnUnDlzNGfOHB1yyCE68cQTdcwxx6ikpETxeFzr16/X2rVr91pY+cIXvqD77ruvS+3i4JLJpNavX69hw4apoKDAdHdCgczcyMCGGm2oARY79Xpp4arg2xl3ffBtwGpcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELycWzzZsGGDIpHIPt/k74rPfvazqqmp0YYNGzLbsS46+uij9dxzz+miiy7S2rVr5Xmeli9fruXLl+/1uoEDB2ru3Ll7PSelp9avX6/Nmzfv9+dNTU168803P/H9ZDL5ie/t3LlzrwWMpqYm3XXXXV3uy5QpU/a5eLKnhoaG1GLZvvTu3VvXXnutbrvtNhUWFna5bRxYIpHQ8uXLNWTIEH5BdBGZuZGBDTXaUAMsNvRsfzutqsUHf226Rk6Vhn4luPPDCVxLERbMVTcwzmaQe3rIzf4MbKnPljoQvIi3+9aCHFFYWKi2tjZ961vf0t13393t46+55hr97ne/U2FhYeoODxOSyaQeeughPfjgg6qurlZdXZ1KS0s1ZMgQff3rX9cVV1yhww8//IDnqKmp0ac+9anU13PnztXll1++39fvvuumu959911VVFTs9b3ly5frS1/6UrfPtdvzzz+/zwe8b9++XatWrdLLL7+sNWvWaNu2bdq5c6fq6+tVWFioAQMGaOTIkRo/frwuvfRSDRo0KO0+7Et1dbVGjBiR+rqqqkrDhw/PaBsAAGA/mndJs8dKsW2ZP3fJIGn6KqloQObPDQAAAADIOtPv5ebcnSe9e/dWW1ubEolEWsene1ymFRQU6NJLL9Wll16a9jkqKirUnbWtmpqatNv6uAkTJnSr7a464ogjNHnyZE2ePDnj50bXeJ6n1tZW9enTR5FIxHR3QoHM3MjAhhptqAGWKxogXfKINHeilIhm7ryFpf55WThBBnAtRVgwV93AOJtB7ukhN/szsKU+W+pA8HLugfG778b4v//7v7SO37Rp017nAbC3hoYG3X777WpoaDDdldAgMzcysKFGG2qAA8qGS1cs9e8UyYSSQf75yriTFJnBtRRhwVx1A+NsBrmnh9zsz8CW+mypA8HLuW27vvrVr+pPf/qT8vPz9e6772rw4MFdPvb9999XRUWFOjs79eUvf1lPPvlkgD1FGJm+1SsXdHR0aMeOHRo4cKB69eplujuhQGZuZGBDjTbUgBzheVJrTOpok3r1lvqUSJn+F1nNu6QnbpTWLUr/HCOnSufewR0nyCiupQgL5qobGGczyD095GZ/BrbUZ0sdLjD9Xm7Obdv1la98RX/605/U0dGhGTNmaOHChV0+9oYbblBHR4cikYjOPvvsAHsJhFevXr105JFHmu5GqJCZGxnYUKMNNcCgumpp3WLp/dekbW/uva1WYak06ERp8Of8BYuyYT1vr2iAdP69/vleqpQ2v9T1Y8vHSeOu5+HwCATXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/ntu267LLLdOihh0qS/vCHP+if//mf1dbWdsBj2tra9J3vfEcPP/ywJKl///4HfLA64LJ4PK558+YpHo+b7kpokJkbGdhQow01wIBNy6Q55/oPcl/5K+ndFZ98Hkki6n9/5a+k2V/0X7/pqcy0P/Rsf9ut6S9L42+QhkzwF2v2VFjqf3/8Df7rrljKwgkCw7UUYcFcdQPjbAa5p4fc7M/AlvpsqQPBy7k7T0pKSvTTn/5U1157rSKRiGbPnq2lS5fqW9/6lr70pS9pyJAhKi4uVjwe17vvvqvnnntO//M//6PNmzdLkiKRiG699dbUAgyAveXn56uiokL5+Tn31z9nkZkbGdhQow01IIuad0lLZ0hVi7t/7JZV0sJVmd02q2yYVHaz/7nnScm41J6U8gukguLMbxsG7AfXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/nnnmy23e/+1395je/USQSked5ihzkf5h3l3HttdfqN7/5TTa6iBAyvU8eAAA5obZKWjBFim3r+blKBkmXPMID2wEAAAAAGWX6vdyc27Zrt//6r//SXXfdpeLiYkn+4siBPoqLi/Xb3/6WhRPgIFpbW7V69Wq1traa7kpokJkbGdhQow01IAtqq6R5kzKzcCL555k70X9mCmABrqUIC+aqGxhnM8g9PeRmfwa21GdLHQhezi6eSNI111yjzZs367bbbtOECRPUt2/fvX7et29fTZgwQbfffru2bNmi6dOnG+opEB7JZFJr165VMpk03ZXQIDM3MrChRhtqQMCad/l3nHz8mSY9lYhKD5zvnx8IOa6lCAvmqhsYZzPIPT3kZn8GttRnSx0IXs5u27U/sVhMsVhMJSUlKikpMd0dhIzpW70AADBq8ZXpPeOkq0ZOlc6/N7jzAwAAAACcYfq93Jy+82RfSkpKdNRRR7FwAqSps7NT0WhUnZ2dprsSGmTmRgY21GhDDQjQpmXBLpxI0rpFfjtAiHEtRVgwV93AOJtB7ukhN/szsKU+W+pA8EK3eAKgZxobG1VZWanGxkbTXQkNMnMjAxtqtKEGBGjlndlp56XK7LQDBIRrKcKCueoGxtkMck8PudmfgS312VIHghe6bbuAnjB9q1cu6OzsVGNjo/r376+8PNZPu4LM3MjAhhptqAEBqauWZo/NXnvTX5bKhmWvPSCDuJYiLJirbmCczSD39JCb/RnYUp8tdbjA9Hu5zA7AMXl5eSotLeWXQzeQmRsZ2FCjDTUgw+o3+x9r7stuu6/e57cLhBDXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC+nZ0hzc7PuueceTZ06VZ/+9Kd16KGHKj8/X7169TroR35+vunuAzkpFovp7rvvViwWM92V0CAzNzKwoUYbakCGVY7yP17N8uLJmnv9doEQ4lqKsGCuuoFxNoPc00Nu9mdgS3221IHg5ewKw6JFi3TNNdcoGo1KkthdDMiMgoICjR49WgUFBaa7Ehpk5kYGNtRoQw0AYBrXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC8nn3myYMECXXrppZL2XjSJRCKf+N7+vh+JRNTR0RF0VxEypvfJAwAgq245xHD7DWbbBwAAAACElun3cnNu266dO3fqmmuuked5ys/P1+233666ujp95zvfSS2O7H6oz7p16/Tb3/5Wo0aNkud5Ki4u1sKFC9XZ2cnCCbAfiURCy5cvVyKRMN2V0CAzNzKwoUYbagAA07iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeDm3eHLPPfeoqalJkUhEP/vZzzRjxgwNHDjwE68rLi7W8OHDNX36dL3++uv6+c9/rng8rosvvlj33nuvgZ4D4dDe3q6amhq1t7eb7kpokJkbGdhQow01AIBpXEsRFsxVNzDOZpB7esjN/gxsqc+WOhC8nNu268wzz9Tzzz+vQw45RNu3b1fv3r0lSf/yL/+i3/72twfcjuvmm2/Wf/zHf6hv37566623dNxxx2Wz6wgB07d6AQCQVWzbBQAAAAAIKdPv5ebcnScbNmxQJBLRmDFjUgsnH7e/xZN///d/16GHHqpEIqE5c+YE2U0gtDo6OlRbW8vWdt1AZm5kYEONNtSADLvuLf/jmFOy2+4xY/x2gRDiWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDl3OLJrl27JElHH330Xt/fcyGlpaVln8cWFBRowoQJ8jxPTzzxRHCdBEIsFovpnnvuUSwWM92V0CAzNzKwoUYbakCGHVruf5SPy267FeP8doEQ4lqKsGCuuoFxNoPc00Nu9mdgS3221IHg5dy2Xf369VMikdDVV1+tu+66K/X9W265RbfeeqsikYg2bNigoUOH7vP4b3/727r33nt1+OGHa/v27dnqNkLC9K1eucDzPLW2tqpPnz6KRCKmuxMKZOZGBjbUaEMNCEhdtTR7bPbam/6yVDYse+0BGcS1FGHBXHUD42wGuaeH3OzPwJb6bKnDBabfy825O08OP/xwSVJjY+Ne39/zTpR169bt9/jNmzdLEiuHwH5EIhEVFhbyy6EbyMyNDGyo0YYaEJCy4dKxWVo8KR/HwglCjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3OLJ8cff7w8z9Pf/va3vb4/evTo1OePPvroPo/dtm2bVq1aJUkaOHBgYH0EwqyxsVF33nnnJxYosX9k5kYGNtRoQw0I0KnXZ6edcVlqBwgI11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv5xZPxowZI8m/JWfPh/Z87nOf09FHHy3P8/SHP/xBCxYs2Ou4WCymyy+/XE1NTYpEIjr11FOz2m8gLAoLCzVhwgQVFhaa7kpokJkbGdhQow01IEBDz5ZGTAm2jZFTpaFfCbYNIGBcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELyce+bJypUrddpppykSiWj58uUaP3586me/+tWv9K//+q+pW6qGDx+ukSNHqrm5WStWrFBDQ4M8z1MkEtGLL76osWOzuLc3QsH0PnkAABjVvMt/9klsW+bPXTJImr5KKhqQ+XMDAAAAAJxj+r3cnLvzZNy4cTrqqKPkeZ7mz5+/18+uu+46ffnLX9bu9Z7q6mo99NBDevzxx1MLJ5L0ox/9iIUTYD9aWlr05JNPqqWlxXRXQoPM3MjAhhptqAEBKxogXfKIVFia2fMWlvrnZeEEFuBairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4kkkElFNTY1aWlo0e/bsvX7Wq1cvLVmyRD/4wQ/Ur18/eZ6318fgwYM1Z84c/eQnPzHUeyD3dXZ2KhqNqrOz03RXQoPM3MjAhhptqAFZUDZcumKpf6dIJpQM8s9Xxp2csAPXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/ntu3qqmQyqb/85S/64IMPlJeXpyFDhuizn/1saksvYF9M3+oFAEDOaN4lPXGjtG5R+ucYOVU69w7uOAEAAAAAZJzp93Jz7s6TriooKNCpp56qb3zjG5oyZYpOOukkFk6ALmhvb1dNTY3a29tNdyU0yMyNDGyo0YYakEVFA6Tz75WmPSyVj+veseXjpGmL/ONZOIFluJYiLJirbmCczSD39JCb/RnYUp8tdSB4Obd48v3vf1/f//739a//+q9qa2sz3R3AOvF4XPPnz1c8HjfdldAgMzcysKFGG2qAAUPP9rfdmv6yNP4GaciETz4TpbDU//74G/zXXbFUGvqV7PcVyAKupQgL5qobGGczyD095GZ/BrbUZ0sdCF7ObduVl5enSCSicePG6YUXXjDdHVjG9K1eAAB0medJrTGpo03q1VvqUyJl6y5bz5OScak9KeUXSAXF2WsbAAAAAACZfy83P2stdVH//v0Vi8U0dOhQ010BAADIrrpqad1i6f3XpG1vSonoRz8rLJUGnSgN/pz/rJGyYcH1IxLxF2v6BNcEAAAAAAC5LOe27Ro0aJAksWUXEJCGhgbddtttamhoMN2V0CAzNzKwoUYbanDWpmXSnHOl2WOllb+S3l2x98KJ5H/97gr/57O/6L9+01MmegtYjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCl3OLJ6eeeqo8z9Obb75puiuAlYqKijR58mQVFRWZ7kpokJkbGdhQow01OKd5l7T4SmnhN6Qtq7p37JZV0sKp0iNX+ecBkBFcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELyce+bJSy+9pPHjxysSiejFF1/U2LFjTXcJFjG9Tx4AACm1VdKCKVJsW8/PVTJIuuQRqYzfaQAAAAAAO5h+Lzfn7jwZN26cvv3tb8vzPF188cV65513THcJsEpzc7Mee+wxNTc3m+5KaJCZGxnYUKMNNTijtkqaNykzCyeSf565E/1npgDoEa6lCAvmqhsYZzPIPT3kZn8GttRnSx0IXs4tnkjSf//3f+vaa6/V5s2bNXr0aP3oRz/Sm2++qc7OTtNdAwAA6JnmXf4dJx9/pklPJaLSA+ezhRcAAAAAABmQc9t2DRkyJPX5e++9p46ODkUiEUlS7969deihh6pv374HPU8kEuGuFXyC6Vu9AADQ4iulqsXBnX/kVOn8e4M7PwAAAAAAWWD6vdycu/OkpqZGmzdv1ubNm9XZ2ZlaOPE8T8lkUtu3b0/9fH8fNTU1qqmpMVsIkKPa2tq0ceNGtbW1me5KaJCZGxnYUKMNNVhv07JgF04kad0ivx0AaeFairBgrrqBcTaD3NNDbvZnYEt9ttSB4OXc4onkL5R8/ONAP9vfawF8Evs6dh+ZuZGBDTXaUIP1Vt6ZnXZeqsxOO4CFuJYiLJirbmCczSD39JCb/RnYUp8tdSB4Obdt1+bNmzN2rvLy8oydC3YwfasXAMBhddXS7LHZa2/6y1LZsOy1BwAAAABABpl+Lzc/ay11EQseAADAGvV7/KOQNfdlt+1X75Mm/Wd22wQAAAAAwBLGtu164YUX9MILL/BQdyDLotGoZs2apWg0aroroUFmbmRgQ4021GCdylEffbya5cWTNTw0HkgH11KEBXPVDYyzGeSeHnKzPwNb6rOlDgTP2LZdeXl5ikQi+s53vqP/+q//2u/rtm3bph07dkiSRo0ala3uwVKmb/XKBe3t7dq6dauOPvpo5efn3M1nOYnM3MjAhhptqME6txxitv2ZUSkSMdsHIGS4liIsmKtuYJzNIPf0kJv9GdhSny11uMD0e7k5Pzt+9rOf6a677lIkElF7e7vp7gChl5+fr4qKCtPdCBUycyMDG2q0oQZkWDIu9Skx3QsgVLiWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeMa27eoOz/OUY8+1B0KrqalJDz30kJqamkx3JTTIzI0MbKjRhhqQYe1J0z0AQodrKcKCueoGxtkMck8PudmfgS312VIHgheKxRMAmZOXl6fS0lLl5fHXv6vIzI0MbKjRhhqQYfkFpnsAhA7XUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBC/nn3nyL//yL/rtb3+rSCSijo6OLPYQNjK9Tx4AwDE88wQAAAAAgLSYfi+X5TXAMclkUmvXrlUyyVYuXUVmbmRgQ4021GCd69766OOYU7Lb9jFjWDgB0sC1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxBHBMIpHQ8uXLlUgkTHclNMjMjQxsqNGGGqxzaPlHH+Xjstt2RZbbAyzBtRRhwVx1A+NsBrmnh9zsz8CW+mypA8Fj2y44xfStXgAAh9VVS7PHZq+96S9LZcOy1x4AAAAAABlk+r1c7jwBHON5nhKJhAytm4YSmbmRgQ012lCD1cqGS8dmafGkfBwLJ0CauJYiLJirbmCczSD39JCb/RnYUp8tdSB4LJ4AjmloaNDtt9+uhoYG010JDTJzIwMbarShBuuden122hmXpXYAC3EtRVgwV93AOJtB7ukhN/szsKU+W+pA8Ixv23XyySdr4sSJ+33dn//8Z61Zs0aRSEQzZ87sVhs333xzT7sJy5i+1SsXdHR0aMeOHRo4cKB69eplujuhQGZuZGBDjTbU4ITFV0pVi4M7/8ip0vn3Bnd+wHJcSxEWzFU3MM5mkHt6yM3+DGypz5Y6XGD6vVzjiydB4hkp+DjTf+EAAFDzLv/ZJ7FtmT93ySBp+iqpaEDmzw0AAAAAQBaZfi/X+LZdnucF8gFg3+LxuObNm6d4PG66K6FBZm5kYEONNtTghKIB0iWPSIWlmT1vYal/XhZOgB7hWoqwYK66gXE2g9zTQ272Z2BLfbbUgeDlm2r4tNNOC/zOEwCflJ+fr4qKCuXnG/vrHzpk5kYGNtRoQw3OKBsuXbFUeuD8zNyBUjLIXzgp425KoKe4liIsmKtuYJzNIPf0kJv9GdhSny11IHjGtu0CTDB9qxcAAHtp3iU9caO0blH65xg5VTr3Du44AQAAAABYxfR7uca37QKQXa2trVq9erVaW1tNdyU0yMyNDGyo0YYanFM0wH+4+7SHpfJx3Tu2fJw0bZF/PAsnQMZwLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEck0wmtXbtWiWTSdNdCQ0ycyMDG2q0oQZnDT3b38Zr+svS+BukIRM++UyUwlL/++Nv8F93xVJp6Fey31fAclxLERbMVTcwzmaQe3rIzf4MbKnPljoQPLbtglNM3+oFAECXeZ6UjEvtSSm/QCoolnheHAAAAADAEabfy+XOE8AxnZ2dikaj6uzsNN2V0CAzNzKwoUYbasAeIhGpT4nU7zD/TxZOgKzgWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeAI4prGxUZWVlWpsbDTdldAgMzcysKFGG2oAANO4liIsmKtuYJzNIPf0kJv9GdhSny11IHhs2wWnmL7VKxd0dnaqsbFR/fv3V14e66ddQWZuZGBDjTbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6nCB6fdy87PWEoCckJeXp9LSUtPdCBUycyMDG2q0oQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgsfSGuCYWCymu+++W7FYzHRXQoPM3MjAhhptqCGneJ6UaJSadvp/crMu4ASupQgL5qobGGczyD095GZ/BrbUZ0sdCB53ngCOKSgo0OjRo1VQUGC6K6FBZm5kYEONNtRgXF21tG6x9P5r0rY3pUT0o58VlkqDTpQGf04aOVUqG2aqlwACxLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPB45kncIrpffIAADlq0zJp5Z3SllVdP+bYsdKp35OGfiWwbgEAAAAA4CrT7+WybRfgmEQioeXLlyuRSJjuSmiQmRsZ2FCjDTVkXfMuafGV0sJvdG/hRPJfv3Cq9MhV/nkAWIFrKcKCueoGxtkMck8PudmfgS312VIHgsfiCeCY9vZ21dTUqL293XRXQoPM3MjAhhptqCGraquk2WOlqsU9O8+6Rf556qoz0y8ARnEtRVgwV93AOJtB7ukhN/szsKU+W+pA8Ni2C04xfasXACBH1FZJ8ybt/UyTniosla5YKpXxewUAAAAAgJ4y/V4ud54Ajuno6FBtba06OjpMdyU0yMyNDGyo0YYasqJ5l7RgSmYXTiT/fA+czxZeQMhxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEcE4vFdM899ygWi5nuSmiQmRsZ2FCjDTVkxdIZUmxbMOeObZOeuDGYcwPICq6lCAvmqhsYZzPIPT3kZn8GttRnSx0IHtt2wSmmb/XKBZ7nqbW1VX369FEkEjHdnVAgMzcysKFGG2oI3KZl/sPhgzbtYWno2cG3AyDjuJYiLJirbmCczSD39JCb/RnYUp8tdbjA9Hu53HkCOCYSiaiwsJBfDt1AZm5kYEONNtQQuJV3Zqedlyqz0w6AjONairBgrrqBcTaD3NNDbvZnYEt9ttSB4LF4AjimsbFRd955pxobG013JTTIzI0MbKjRhhoCVVctbVmVnbY2vyTVrc9OWwAyimspwoK56gbG2QxyTw+52Z+BLfXZUgeCx+IJ4JjCwkJNmDBBhYWFprsSGmTmRgY21GhDDYGo3+x/rLkvu+2+muX2AGQE11KEBXPVDYyzGeSeHnKzPwNb6rOlDgSPZ57AKab3yQMAGHDLIQbbbjDXNgAAAAAAIWb6vVzuPAEc09LSoieffFItLS2muxIaZOZGBjbUaEMN1uHfqAChw7UUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY/EEcExnZ6ei0ag6OztNdyU0yMyNDGyo0YYarJOMm+4BgG7iWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxbRecYvpWLwCAASa37ZrxN6nfYebaBwAAAAAgpEy/l8udJ4Bj2tvbVVNTo/b2dtNdCQ0ycyMDG2q0oQbr5BeY7gGAbuJairBgrrqBcTaD3NNDbvZnYEt9ttSB4LF4AjgmHo9r/vz5isfZSqaryMyNDGyo0YYarFNQbLoHALqJaynCgrnqBsbZDHJPD7nZn4Et9dlSB4LHtl1wiulbvQAABtRv9v989FvSe69kr91jxkhXLsteewAAAAAAWMT0e7nceRKQZDKp+++/XxMnTlR5ebkKCws1aNAgjR07Vr/85S/14YcfZrzNjo4OvfXWW7rvvvs0ffp0ff7zn1dBQYEikYgikYgmTJjQo/M/++yzuvTSSzV06FD169dPAwYM0KhRozRjxgxt3LgxrXNu2LBBM2bM0KhRozRgwAD169dPQ4cO1WWXXaZnn322R/0FAECSdGi5/1E+LrvtVmS5PQAAAAAAkDEsngRg48aNOuWUU3TppZfqiSee0JYtW9Ta2qra2lq9/PLLmjFjhoYPH66lS5dmrM3HHntM/fv314knnqirrrpKd999t1577TW1tbX1+NyNjY268MILddZZZ+n+++/X//3f/6m5uVn19fVat26dfvnLX2rUqFH6+c9/3q3z/vSnP9WJJ56oX/7yl1q3bp3q6+vV3Nys//u//9Pvf/97nXXWWZo2bZpisViPa8BHGhoadNttt6mhocF0V0KDzNzIwIYabaghUCOnZLe9EVluD0BGcC1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDw8k13wDZbt27VmWeeqQ8++ECSFIlEdNppp+m4447Tjh079Mwzz6ilpUXbt2/X5MmT9eSTT+qMM87ocbvRaFTNzc09Ps/HtbW16Wtf+5qee+651PdGjBihk046SYlEQi+++KK2bdumtrY2/ehHP1JbW5tuvvnmg5735ptv1k9+8pPU14MGDdL48eNVWFio1157TdXV1ZKkBx98UDt37tSf//xn5eczXTOhqKhIkydPVlFRkemuhAaZuZGBDTXaUEOgyoZLx46VtqwKvq3ycVLZsODbAZBxXEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8nnmSYaeddppefPFFSVJ5ebn++Mc/6sQTT0z9/MMPP9SFF16Y2pJqwIABeuedd1RaWtqjdufNm6crrrhCZWVlOvnkk1Mfy5YtU2VlpSTp9NNP1/Lly7t13j0XOQoLCzV37lxdeOGFqZ8nk0n9+7//u37xi19I8heLnn/+eZ1++un7Peezzz6rs846K/X1jBkz9B//8R8qKChIfe/BBx/UP/3TPymRSEiSZs2a1aVFmYMxvU8eAMCwTcukhd8Ivp1pi6ShXwm+HQAAAAAALGX6vVy27cqgpUuXphZOCgoKtGTJkr0WTiTp8MMP1x//+EcNGTJEkrRr1y7dcccdPW77nHPO0ebNm1VbW6slS5bo5ptv1rnnntujRZnt27frV7/6VerrO++8c6+FE8mv84477tAFF1wgSfI8Tz/84Q8PeN49f37hhRfqjjvu2GvhRJIuuugi/frXv059HdRzYlzU3Nysxx57LJA7lWxFZm5kYEONNtQQuKFnB7+d1sipLJwAIca1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxJIN++9vfpj6/7LLLNHLkyH2+rl+/frr11ltTX99zzz1qb2/vUdtHHnmkjj322B6d4+Pmz5+vpqYmSdLQoUP17W9/e7+vveOOO5SX50+nl19+WW+88cY+X7dmzRqtWbNGkpSXl3fAhaOrr75an/70pyVJsVhM999/f1p1AACwl4m/kEoGBXPukkHSuT3/RxEAAAAAAMAsFk8yJB6Pp7bikqQrrrjigK8///zzVVxcLMm/++SFF14ItH/peOyxx1KfX3755YpEIvt97bHHHrvXs1v+93//96DnPOuss3TMMcfs95yRSESXXXbZQc+J7mFfx+4jMzcysKFGG2rIiqIB0iWPSIWlmT1vYal/3qIBmT0vgKziWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeJIhq1atUmtrqyT/zpKTTz75gK8vLCzUF7/4xdTXez6QPRckEgmtXr069fWECRMOesyXvvSl1Of7q+f5559P+5x7Zoz0tbW1aePGjWprazPdldAgMzcysKFGG2rImrLh0hVLM3cHSskg/3xlPEcLCDuupQgL5qobGGczyD095GZ/BrbUZ0sdCB6LJxmyYcOG1OcjR45Ufn7+QY856aST9nl8Lnj77bfV2dkpyb8D5LOf/exBj+lKPXt+f8/X78+e7XZ0dGjTpk0HPQYHxr6O3UdmbmRgQ4021JBVZcOl6av8Z5T0xMip/nlYOAGswLUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBi3ie55nuhA2uvfZazZ49W5J0wQUX6KGHHjroMXfddZe+853vSJKGDRum6urqjPfrlltu0axZsyRJp59+upYvX96l4x5++OHUQ+DLyspUW1t70GPWr1+v4cM/euNo+/btGjhw4F5fl5WVpb7esGGDjj/++IOe94gjjtCOHTtS/Zo6Nf03uaqrqzVixIjU11VVVXv1GQDgqE3LpJcqpc0vdf2Y8nHSuOt5ODwAAAAAAAEw/V7uwW+PQJfs3Lkz9fmeCwQHcuSRR6Y+37VrV8b71BM9rUfya9pz8WTPc3b3vLsXT3ItJwCAJYae7X/UrZeqFkvvvyZ9sFZKRD96TWGpdNRoafDnpBFTpLJhZvoKAAAAAAACx7ZdGRKPx1Of9+3bt0vH7Pm6PY/PBT2t5+Pn2NfXJnMqLCxUcXGxJH87sGg0qt03YTU2NiqZTEqSWlpa1NTUJElqb29XNBpNnaOhoSG1N2Jzc3PqVr+2tjY1NDSkXheNRtXe3i5JampqUktLiyQpmUyqsbFRkuR5nqLRqDo6OlJ1JhIJSVJra6tisZgkqbOzU9FoNLWlWiwWSz0HJpFIpPI5UE21tbWaNWtWql821BT0OL333nuaNWuW6uvrrampu+O0a9cuzZo1K7WAaUNNHx+nrVu3pv5uhLUmF8Yp8JpKKqQzb1bbRYvVcM2b0g+3SjP+puj0arXf8Ffp0j+qacwNaun/qfDUZOM4URM1BVjTli1bUr8PbKnJxnGiJr+eWbNm6cMPP7SmJhvHqac17R7nrVu3WlNTGMbpgw8+SP0usKWmbIzT7vm6ZcsWa2rq7jjZ/t8Re9YX5ppsHycbazKFxZMM2T1pJKmgoKBLx/Tp0yf1+e7JmSt6Wo/0yZr2PGe6581UTmPGjNGUKVMkSTt27FBlZWXqL/ScOXO0fv16SdKKFSu0ZMkSSf4bq5WVlalzzJ49W++8844k6amnntJTTz0lSXrnnXdSW7hJUmVlZeo/dJcsWaIVK1ZI8rc5mzNnjiT/YlNZWZm6w2bx4sVavXq1JOmNN97QggULJPkXlMrKytQFbMGCBXrjjTckSatXr9bixYsPWtPrr7+uY445RsXFxdbUFPQ4PfLII7rsssvUu3dva2rq7jjt/uW3+08bavr4OC1ZskQnn3yyiouLQ1uTC+OU1ZruvlvqUyL1O0yVd9+nre+/H/6abBwnaqKmDNc0d+5cXXbZZSouLramJhvHiZqU+sdgu98EsaEmG8eppzUVFxfr5JNPTvXBhprCME4rVqzQCSecoOLiYmtqysY4FRcX6x//8R81d+5ca2rq7jjZ/t8RCxcu1Je+9CUVFxeHuibbx8nGmozxkBETJ070JHmSvJtuuqlLxyxdujR1THFxcSD9mjlzZqqN008/vcvH3XHHHanjTjnllC4d09zcnDpGkvfqq6/u9fO//OUve/28paWlS+f9whe+kDrml7/8ZZdr2JeqqipPkldYWOgVFxd7VVVVXnt7u1dfX+91dnZ6nud5DQ0NXmtra6qmeDzueZ7ntbW1efX19alzRaNRL5lMep7neU1NTV5TU5PneZ6XTCa9aDSael19fb3X1tbmeZ7nxeNxr7m52fM8z2ttbfUaGho8z/O8zs5Or76+3mtvb/c8z/NisVgqn0Qi4TU2Nnqe53kdHR1efX2919HR4Xme5zU2NnqJRMLzPM9raWnxYrGY53keNVETNVETNVETNVETNVETNVETNVETNVETNVETNVFTqGva/V7u7o+qqiovm3hgfIZccMEFevjhhyVJ3/3ud7u0Mvboo4/q/PPPl+Q/12Pbtm0Z71e6D4yfPXu2rr32WknSqFGj9Oabbx70mF27dumwww5Lfb1x40Z95jOfSX29YcMGDRs2bK/XH3rooQc976hRo7Ru3TpJ0t13362rr766SzXsi+mHDOWCpqYmLVmyRP/4j/+ofv36me5OKJCZGxnYUKMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljpcYPq9XLbtypA9Fw3q6uq6dExtbW3q8wEDBmS8Tz3R03qkT9a05znTPW+u5RRGeXl5Ki0tVV4ef/27iszcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHg5ZvugC32vMNi8+bNXTpmy5Ytqc+PP/74jPepJ/asZ/v27UokEiosLDzgMXvWM2DAAA0cOHCvnx9xxBEqLS1NPexn8+bNB607kUik9tSTci+nMOrbt6/OOecc090IFTJzIwMbarShBgAwjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCx/Jahpxwwgmpz9etW6f29vaDHvP666/v8/hc8JnPfCa1+up5ntauXXvQY7pSz57f3/3QoK6es1evXho6dOhBj8GBJZNJrV27Vslk0nRXQoPM3MjAhhptqAEATONairBgrrqBcTaD3NNDbvZnYEt9ttSB4LF4kiFjx45Vnz59JPn75r366qsHfH1ra6tWr16d+vqMM84ItH/dVVhYqDFjxqS+7sqzUlasWJH6fH/1fOlLX0r7nHtmjPQlEgktX75ciUTCdFdCg8zcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHg8cD4DJo0aZKWLl0qSbr66qt199137/e1Dz74oKZNmybJ3+Kqrq5O+fmZ30Ut3QfGS9IvfvEL3XjjjZL8O1E2bty439e+9957+tSnPqWOjg5J0muvvaaTTjrpE69bs2aNvvCFL0jy7ySpqanR0Ucfvd/zfuYzn9GmTZskSf/5n/+p73//+13u/76YfsgQAAAAAAAAAODgTL+Xy50nGXTttdemPp83b56qq6v3+brm5mbdfPPNqa+//e1vB7Jw0lOXXXaZ+vXrJ0l6++23de+99+73tTfddFNq4eSLX/ziPhdOJOnkk0/WySefLEnq6OjQD37wg/2e83e/+11q4aSkpESXXnppWnVgb57nKZFIiHXTriMzNzKwoUYbagAA07iWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeCyeZNCkSZM0fvx4Sf62XOedd57eeuutvV6zc+dOTZ48WX/9618l+Xed3HTTTfs8X01NjSKRSOpj3rx5gfb/44444oi97vT47ne/q4cffniv17S1tekHP/iBHnzwwdT3fv7znx/wvHv+fMGCBfrBD36gtra2vV7z8MMP6/rrr099/a//+q86/PDD0ykDH9PQ0KDbb79dDQ0NprsSGmTmRgY21GhDDQBgGtdShAVz1Q2Msxnknh5ysz8DW+qzpQ4Ej227Mmzr1q36whe+oG3btkmSIpGITj/9dB133HHasWOHnnnmGTU3N0uS8vPz9eSTT+rMM8/c57lqamr0qU99KvX13Llzdfnll++37YkTJ+qDDz7Y63u1tbWqq6uTJPXr10//8A//8Injli5dqqOOOmqf52xra9M555yj5557LvW9kSNH6qSTTlIikdALL7yQqlWSZs2atdddNfvz4x//WP/xH/+R+vqoo47S+PHjVVhYqNdee01VVVWpn335y1/W0qVLM3J3julbvXJBR0eHduzYoYEDB6pXr16muxMKZOZGBjbUaEMNe/E8qTUmdbRJvXpLfUqkSMR0rwBYzrprKazFXHUD42wGuaeH3OzPwJb6bKnDBabfy2XxJAAbN27URRddpLVr1+73NQMHDtTcuXM1adKk/b6mu4snFRUV2rx5c7f7++6776qiomK/P29oaNC3v/3tT9x1sqfevXvrlltu0Y9+9KMutel5nn7605/q1ltv/cRdJ3u68MILdc8996h///5dOu/BmP4LBwA4iLpqad1i6f3XpG1vSonoRz8rLJUGnSgN/pw0cqpUNsxULwEAAAAAQMBMv5fLtl0BOP744/XKK69o/vz5Ouecc3TMMceooKBARxxxhMaMGaM77rhD69evP+DCSS455JBD9Ic//EFPP/20LrnkEh133HEqKirSIYccohEjRuiGG27Qm2++2eWFE8m/I+ff//3f9eabb+r73/++RowYoUMOOURFRUU67rjjdMkll+jpp5/Wgw8+mLGFE/ji8bjmzZuneDxuuiuhQWZuZGBDjaGuYdMyac650uyx0spfSe+u2HvhRPK/fneF//PZX/Rfv+kpE70FYLFQX0vhFOaqGxhnM8g9PeRmfwa21GdLHQhe7j2l3BIFBQW69NJLe/SQ84qKim49uKimpibttrrirLPO0llnnZXRc55wwgn6z//8z4yeEweWn5+vioqKjGyD5goycyMDG2oMZQ3Nu6SlM6Sqxd0/dssqaeEq/y6Uc++QigZkvn8AnBPKaymcxFx1A+NsBrmnh9zsz8CW+mypA8Fj2y44xfStXgCAPdRWSQumSLFtB3/twZQMki55RCrjmg4AAAAAgA1Mv5fLtl2AY1pbW7V69Wq1traa7kpokJkbGdhQY6hqqK2S5k3KzMKJ5J9n7kT/mSkA0AOhupbCacxVNzDOZpB7esjN/gxsqc+WOhA8Fk8AxySTSa1du1bJZNJ0V0KDzNzIwIYaQ1ND8y7/jpOPP9OkpxJR6YHz/fMDQJpCcy2F85irbmCczSD39JCb/RnYUp8tdSB4bNsFp5i+1QsAIGnxlek946SrRk6Vzr83uPMDAAAAAIDAmX4vlztPAMd0dnYqGo2qs7PTdFdCg8zcyMCGGkNRw6ZlwS6cSNK6RX47AJCGUFxLATFXXcE4m0Hu6SE3+zOwpT5b6kDwWDwBHNPY2KjKyko1Njaa7kpokJkbGdhQYyhqWHlndtp5qTI77QCwTiiupYCYq65gnM0g9/SQm/0Z2FKfLXUgeGzbBaeYvtUrF3R2dqqxsVH9+/dXXh7rp11BZm5kYEONOV9DXbU0e2z22pv+slQ2LHvtAbBCzl9Lgb9jrrqBcTaD3NNDbvZnYEt9ttThAtPv5TI7AMfk5eWptLSUXw7dQGZuZGBDjTlbQ/1m/2PNfdlt99X7/HYBoBty9loKfAxz1Q2Msxnknh5ysz8DW+qzpQ4EjxkCOCYWi+nuu+9WLBYz3ZXQIDM3MrChxpytoXKU//FqlhdP1tzrtwsA3ZCz11LgY5irbmCczSD39JCb/RnYUp8tdSB4LJ4AjikoKNDo0aNVUFBguiuhQWZuZGBDjTbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDweOYJnGJ6nzwAcNIthxhuv8Fs+wAAAAAAoNtMv5fLnSeAYxKJhJYvX65EImG6K6FBZm5kYEONNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEc097erpqaGrW3t5vuSmiQmRsZ2FCjDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDy27YJTTN/qBQBOYtsuAAAAAADQTabfy+XOE8AxHR0dqq2tVUdHh+muhAaZuZGBDTXmbA3XveV/HHNKdts9ZozfLgB0Q85eS4GPYa66gXE2g9zTQ272Z2BLfbbUgeCxeAI4JhaL6Z577lEsFjPdldAgMzcysKHGnK3h0HL/o3xcdtutGOe3CwDdkLPXUuBjmKtuYJzNIPf0kJv9GdhSny11IHhs2wWnmL7VKxd4nqfW1lb16dNHkUjEdHdCgczcyMCGGnO+hrpqafbY7LU3/WWpbFj22gNghZy/lgJ/x1x1A+NsBrmnh9zsz8CW+mypwwWm38vlzhPAMZFIRIWFhfxy6AYycyMDG2rM+RrKhkvHZmnxpHwcCycA0pLz11Lg75irbmCczSD39JCb/RnYUp8tdSB4LJ4AjmlsbNSdd96pxsZG010JDTJzIwMbagxFDaden512xmWpHQDWCcW1FBBz1RWMsxnknh5ysz8DW+qzpQ4Ej8UTwDGFhYWaMGGCCgsLTXclNMjMjQxsqDEUNQw9WxoxJdg2Rk6Vhn4l2DYAWCsU11JAzFVXMM5mkHt6yM3+DGypz5Y6EDyeeQKnmN4nDwAgqXmX/+yT2LbMn7tkkDR9lVQ0IPPnBgAAAAAAWWP6vVzuPAEc09LSoieffFItLS2muxIaZOZGBjbUGJoaigZIlzwiFZZm9ryFpf55WTgB0AOhuZbCecxVNzDOZpB7esjN/gxsqc+WOhA8Fk8Ax3R2dioajaqzs9N0V0KDzNzIwIYaQ1VD2XDpiqX+nSKZUDLIP18ZdxMC6JlQXUvhNOaqGxhnM8g9PeRmfwa21GdLHQge23bBKaZv9QIAfEzzLumJG6V1i9I/x8ip0rl3cMcJAAAAAAAWMf1eLneeAI5pb29XTU2N2tvbTXclNMjMjQxsqDGUNRQNkM6/V5r2sFQ+rnvHlo+Tpi3yj2fhBECGhPJaCicxV93AOJtB7ukhN/szsKU+W+pA8Fg8ARwTj8c1f/58xeNx010JDTJzIwMbasx4DZ4nJRqlpp3+n0HerDr0bH/brekvS+NvkIZM+OQzUQpL/e+Pv8F/3RVLpaFfCa5PAJxkw+8DuIG56gbG2QxyTw+52Z+BLfXZUgeCx7ZdcIrpW70AIOfVVUvrFkvvvyZte1NKRD/6WWGpNOhEafDn/K2yyoYF2xfPk5JxqT0p5RdIBcVSJBJsmwAAAAAAICeYfi83P2stAQCA3LVpmbTyTmnLqv2/JhGV3l3hf6z8lXTsWOnU7wV390ckIvUpkfoEc3oAAAAAAID9YdsuwDENDQ267bbb1NDQYLoroUFmbmRgQ41p1dC8S1p8pbTwGwdeONmXLaukhVOlR67yzwMAFrDh9wHcwFx1A+NsBrmnh9zsz8CW+mypA8Fj8QRwTFFRkSZPnqyioiLTXQkNMnMjAxtq7HYNtVXS7LFS1eKeNbxukX+euuqenQcAcoANvw/gBuaqGxhnM8g9PeRmfwa21GdLHQgezzyBU0zvkwcAOaO2Spo3ae9nmvRUYan/EPcyrqsAAAAAAKBnTL+Xy50ngGOam5v12GOPqbm52XRXQoPM3MjAhhq7XEPzLmnBlMwunEj++R44ny28AISaDb8P4AbmqhsYZzPIPT3kZn8GttRnSx0IHosnAAC4ZukMKbYtmHPHtklP3BjMuQEAAAAAALKEbbvgFNO3egGAcZuW+Q+HD9q0h6WhZwffDgAAAAAAsJLp93K58wRwTFtbmzZu3Ki2tjbTXQkNMnMjAxtq7FINK+/MTmdeqsxOOwCQYTb8PoAbmKtuYJzNIPf0kJv9GdhSny11IHgsngCOYV/H7iMzNzKwocaD1lBXLW1ZlZ3ObH5JqlufnbYAIINs+H0ANzBX3cA4m0Hu6SE3+zOwpT5b6kDw2LYLTjF9qxcAGFG/2f/zpUrp1fuy1+7JV0ljvysdWp69NgEAAAAAgBVMv5ebn7WWAACAGZWjzLS75l7/45YGM+0DAAAAAACkiW27AMdEo1HNmjVL0WjUdFdCg8zcyMCGGm2oAQBM41qKsGCuuoFxNoPc00Nu9mdgS3221IHgsW0XnGL6Vq9c0N7erq1bt+roo49Wfj43n3UFmbmRgQ017reGWw4x1ymJO08AhIoNvw/gBuaqGxhnM8g9PeRmfwa21GdLHS4w/V4uiydwium/cABgBIsnAAAAAAAgZEy/l8u2XYBjmpqa9NBDD6mpqcl0V0KDzNzIwIYabagBAEzjWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeAI4Ji8vT6WlpcrL469/V5GZGxnYUKMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljoQPLbtglNM3+oFAEbUb/b/fPRb0nuvZK/dY8ZIX/+ddGh59toEAAAAAABWMP1eLstrgGOSyaTWrl2rZDJpuiuhQWZuZGBDjfut4dBy/6N8XHY7VDGOhRMAoWPD7wO4gbnqBsbZDHJPD7nZn4Et9dlSB4LH4gngmEQioeXLlyuRSJjuSmiQmRsZ2FDjQWsYOSW7HRqR5fYAIANs+H0ANzBX3cA4m0Hu6SE3+zOwpT5b6kDw2LYLTjF9qxcAGDfnXGnLquDbKR8nXbE0+HYAAAAAAICVTL+Xy50ngGM8z1MikRDrpl1HZm5kYEONXarh1Ouz05lxWWoHADLMht8HcANz1Q2Msxnknh5ysz8DW+qzpQ4Ej8UTwDENDQ26/fbb1dDQYLoroUFmbmRgQ41dqmHo2cFvpzVyqjT0K8G2AQABseH3AdzAXHUD42wGuaeH3OzPwJb6bKkDwWPbLjjF9K1euaCjo0M7duzQwIED1atXL9PdCQUycyMDG2rscg3Nu6TZY6XYtsx3omSQNH2VVDQg8+cGgCyw4fcB3MBcdQPjbAa5p4fc7M/AlvpsqcMFpt/LZfEETjH9Fw4AckZdtTR3opSIZu6chaX+c07KuK4CAAAAAICeMf1eLtt2AY6Jx+OaN2+e4vG46a6EBpm5kYENNXarhrLh/kJHyaDMNF4yiIUTAFaw4fcB3MBcdQPjbAa5p4fc7M/AlvpsqQPBY/EEcEx+fr4qKiqUn59vuiuhQWZuZGBDjd2uoWy4v8XWyKk9a3jkVP88LJwAsIANvw/gBuaqGxhnM8g9PeRmfwa21GdLHQge23bBKaZv9QKAnLVpmfRSpbT5pa4fUz5OGnc9D4cHAAAAAAAZZ/q9XO48ARzT2tqq1atXq7W11XRXQoPM3MggZ2v0PCnRKDXt9P88wL956FENQ8/2t92a/rI0/gZpyAT/GSZ7Kiz1vz/+Bv91Vyxl4QSAdXL29wHwMcxVNzDOZpB7esjN/gxsqc+WOhA87k0CHJNMJrV27VoNHz5cffr0Md2dUCAzNzLIqRrrqqV1i6X3X5O2vbn3Q90LS6VBJ0qDP+dvl1U2LPWjjNRQNkwqu9n/3POkZFxqT0r5BVJBsRSJpF0WAIRBTv0+AA6AueoGxtkMck8PudmfgS312VIHgse2XXCK6Vu9AOCANi2TVt4pbVnV9WOOHSud+j3uAAEAAAAAAFYx/V4u23YBjuns7FQ0GlVnZ6fproQGmbmRgdEam3dJi6+UFn6jewsnkv/6hVOlR65SZ/xD68cJAILmwu882IG56gbG2QxyTw+52Z+BLfXZUgeCx+IJ4JjGxkZVVlaqsbHRdFdCg8zcyMBYjbVV0uyxUtXinp1n3SI1zj7b+nECgKC58DsPdmCuuoFxNoPc00Nu9mdgS3221IHgsW0XnGL6Vq9c0NnZqcbGRvXv3195eayfdgWZuZGBkRprq6R5k/Z+pkkPdCqixj6D1f/yh5Q3aGRGzgkArnHhdx7swFx1A+NsBrmnh9zsz8CW+mypwwWm38tldgCOycvLU2lpKb8cuoHM3Mgg6zU275IWTMnYwokk5clTaetW5S2c6p8fANBtLvzOgx2Yq25gnM0g9/SQm/0Z2FKfLXUgeMwQwDGxWEx33323YrGY6a6EBpm5kUHWa1w6Q4pty+gpY+qnu3WJYrFG6YkbM3puAHCFC7/zYAfmqhsYZzPIPT3kZn8GttRnSx0IHosngGMKCgo0evRoFRQUmO5KaJCZGxlktcZNy3r+jJN9KFCbRqtaBWqT1i3y2wEAdIsLv/NgB+aqGxhnM8g9PeRmfwa21GdLHQgezzyBU0zvkwcAkqQ550pbVgXfTvk46YqlwbcDAAAAAACQYabfy+XOE8AxiURCy5cvVyKRMN2V0CAzNzLIWo111YEtnCTUR8v1RSXUx//G5pekuvWBtAUAtnLhdx7swFx1A+NsBrmnh9zsz8CW+mypA8Fj8QRwTHt7u2pqatTe3m66K6FBZm5kEHiN9Zv9jzX3BXN+Se3qpRodrXb1+uibrwbXHgDYyIXfebADc9UNjLMZ5J4ecrM/A1vqs6UOBI9tu+AU07d6AXDYLYcYbLvBXNsAAAAAAABpMP1eLneeAI7p6OhQbW2tOjo6THclNMjMjQxsqLFDearVQHV8/Nc7/04CALrMht8HcANz1Q2Msxnknh5ysz8DW+qzpQ4Ej8UTwDGxWEz33HOPYrGY6a6EBpm5kYENNcZUrHsi31RMxXv/IBk30yEACCEbfh/ADcxVNzDOZpB7esjN/gxsqc+WOhA8tu2CU0zf6pULPM9Ta2ur+vTpo0gkYro7oUBmbmQQeI1Z2LbLk9SqPuqjVu1VwYy/Sf0OC7x9ALCBC7/zYAfmqhsYZzPIPT3kZn8GttRnSx0uMP1ebn7WWgKQEyKRiAoLC013I1TIzI0MbKgxIqlQrZ/8QX5B1vsCAGFlw+8DuIG56gbG2QxyTw+52Z+BLfXZUgeCx7ZdgGMaGxt15513qrGx0XRXQoPM3MjAhhobVaw7daUaP75tV0Hxvg8AAHyCDb8P4AbmqhsYZzPIPT3kZn8GttRnSx0IHosngGMKCws1YcIEVti7gczcyCDwGq97y/845pRgzi//rpMJennvu0+OGSNxGzIAdJkLv/NgB+aqGxhnM8g9PeRmfwa21GdLHQgezzyBU0zvkwcAemaWtPJX2Wtv/A3SmTdnrz0AAAAAAIAMMP1eLneeAI5paWnRk08+qZaWFtNdCQ0ycyOD/dboeVKiUWra6f/Z039zMHJKz44/gBYV6klNUIv2+NczI4JrDwBs5MLvPNiBueoGxtkMck8PudmfgS312VIHgscD4wHHdHZ2KhqNqrOz03RXQoPM3MhgrxrrqqV1i6X3X5O2vSkloh+9sLBUGnSiNPhz0sipUtmw7jVUNlw6dqy0ZVUmuy9J6lREUfVXp/6+TVf5uO73DwAc58LvPNiBueoGxtkMck8PudmfgS312VIHgse2XXCK6Vu9AOS4TcuklXd2b2Hj2LHSqd+Thn6le+0s/Ea3u9dt0xZ1r18AAAAAAAA5wvR7uWzbBTimvb1dNTU1am9vN92V0CAzBzJo3qX2h69UzcLvq33LK907dssqaeFU6ZGrpOZdXTtm6NmBbKfVrl6q0dFqVy//rhgWTgCg26z/nQdrMFfdwDibQe7pITf7M7ClPlvqQPBYPAEcE4/HNX/+fMXjcdNdCQ0yszyD2ipp9ljF1z+l+ZFvKK5+6Z1n3SJp9lh/y6+umPgLqWRQem3tR1z9/Br6fUo6946MnhsAXGH17zxYhbnqBsbZDHJPD7nZn4Et9dlSB4LHtl1wiulbvQDkmNoqad6kvZ9p0lOFpdIVS/1nmxxMXbU0d6K59gEAAAAAAHKU6fdyufMEAOCm5l3SgimZXbiQ/PM9cH7XtvAqG+4vdGTqDpSSQSycAAAAAAAAZACLJ4BjGhoadNttt6mhocF0V0KDzCzNYOkMKbYt9WWDSnSbrlWDSnp+7tg26Ykbu/basuHS9FX+M0p6YuRUNVy8TLfNXWLXOAFAlln5Ow9WYq66gXE2g9zTQ272Z2BLfbbUgeCxeAI4pqioSJMnT1ZRUZHproQGmVmYwaZlUtXivb5VpBZN1jIVqSUzbaxb5LfTFUUDpPPvlaY9LJWP61475eOkaYuk8+9V0WFH2TVOAGCAdb/zYC3mqhsYZzPIPT3kZn8GttRnSx0IHs88gVNM75MHIEfMOVfasir4dsrH+dtodVfden9x5/3XpA/W7r21WGGpdNRoafDnpBFTpLJhmekrAAAAAABADjH9Xi53ngCOaW5u1mOPPabm5mbTXQkNMrMsg7rqfS6cNKtQj+lsNaswc21tfslfCOmusmHSmTdLl/5RuqlG+uFWacbf/D9vqvG/f+bNn1g4sWqcAMAQrqUIC+aqGxhnM8g9PeRmfwa21GdLHQgeiycAADfUb/Y/1tyX3XZfvc9vN12RiNSnROp3mP9nJJK5vgEAAAAAAGCf2LYrIMlkUn/4wx/04IMPqrq6WnV1dTr00EP1qU99Sl//+td1+eWX6/DDD8/ptiM9eIPusssu07x58/b5s4qKCm3e3L03Et977z0dffTRafdnN9O3egEw6JZDDLfPg+gAAAAAAAC6yvR7udx5EoCNGzfqlFNO0aWXXqonnnhCW7ZsUWtrq2pra/Xyyy9rxowZGj58uJYuTWMf/Bxue09HHnlkoOdH+tra2rRx40a1tbWZ7kpokJkbGbQpXxt1nNqUb7oraXNhnAAgaFxLERbMVTcwzmaQe3rIzf4MbKnPljoQvPC+Q5Sjtm7dqjPPPFMffPCBJP/ujdNOO03HHXecduzYoWeeeUYtLS3avn27Jk+erCeffFJnnHFGTrb9ne98p8ttV1dXa/ny5amvL7nkki4dd+mll6qkpOSgrysuLu5yX3Bgu/d1nD59ug45xPC/xA8JMnMjg2b11WM6W9N1vw5RzHR30uLCOAFA0LiWIiyYq25gnM0g9/SQm/0Z2FKfLXUgeGzblWGnnXaaXnzxRUlSeXm5/vjHP+rEE09M/fzDDz/UhRdeqGeffVaSNGDAAL3zzjsqLS0NddtTp07V4sWLJUknnXSSXnvttf2+ds9tu959911VVFT0uP2uMn2rFwCD2LYLAAAAAAAgNEy/l8u2XRm0dOnS1OJFQUGBlixZstfihSQdfvjh+uMf/6ghQ4ZIknbt2qU77rgj1G3X19dryZIlqa8vu+yyHp8TAAAAAAAAAABTWDzJoN/+9repzy+77DKNHDlyn6/r16+fbr311tTX99xzj9rb20Pb9kMPPaTW1lZJUu/evTVt2rQenQ/BikajmjVrlqLRqOmuhAaZuZFBVP01K/J9RdXfdFfS5sI4AUDQuJYiLJirbmCczSD39JCb/RnYUp8tdSB4bNuVIfF4XIcffnhqEWHVqlX64he/uN/XJxIJDRw4UPF4XJL07LPPpv3sE5NtS9KYMWP0yiuvSJImT56s//3f/z3g69m2y6z29nZt3bpVRx99tPLzeexRV5CZJRnU+9cdPfot6b1XPvHjdvXSVg3S0dqmfHVkrt1jxkhf/510aHnmzrkfVowTABjGtRRhwVx1A+NsBrmnh9zsz8CW+mypwwWm38vlzpMMWbVqVWrxol+/fjr55JMP+PrCwsK9Fjiee+65ULa9adOm1MKJxJZdYZCfn6+Kigp+OXQDmVmSwaHl/kf5uH3+OF8dqtDWzC6cSFLFuKwsnEiWjBMAGMa1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPxJEM2bNiQ+nzkyJFd+st30kkn7fP4MLU9f/781OeHH364Jk2a1K3jX3vtNVVWVurGG2/UjTfeqNtvv11LlixRfX192n3CgTU1Nemhhx5SU1OT6a6EBplZlsHIKfv8dpP66iF9VU3qm9n2Ruy7vSBYNU4AYAjXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI/ltQx5++23U5+Xl3ftXxgfe+yxqc83btwYurY7Ozt1//33p76eNm2aevfu3a1zTJmy7zcVe/furQsvvFC33HJL6gH3yIy8vDyVlpYqL4+1064iM8syKBsuHTtW2rJqr2/nyVOpGpWnDO5mWT5OKhuWufMdhFXjBACGcC1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwmCEZsnPnztTnZWVlXTrmyCOPTH2+a9eu0LX9/PPP67333kt9ncktu9ra2nT//ffrs5/9rJYsWZKx80Lq27evzjnnHPXtm+F/XW8xMrMwg1Ov/8S3+iqhc7RcfZXIXDvjPtlOkKwbJwAwgGspwoK56gbG2QxyTw+52Z+BLfXZUgeCx+JJhux++LqkLv/F2/N1ex4flrZ///vfpz4fOXLkXluBHUh+fr4mTZqku+++W6+//rqi0aja2tr04Ycf6umnn9aVV16ZuoOlsbFRU6dO1UsvvZRWH/ensLBQxcXFkqSOjg5Fo1F5npdqM5lMSpJaWlpSt/C1t7crGo2mztHQ0KC2tjZJUnNzs5qbmyX5Cz8NDQ2p10WjUbW3t0vybwtsaWmRJCWTSTU2NkqSPM9TNBpVR4f/rIV4PK5Ewn8Dt7W1VbFYTJJ/t080GlVnZ6ckKRaLpZ53k0gkUmN5oJoaGhr0yiuvKJlMWlNT0OP04Ycfau3atWptbbWmpu6OUyKR0KpVq1I/C31NQ89W5/Apiqq/OhWRJO1UqdZopJLqrYT6KK4ivyblKar+qftRGlWspPxrVIsKU9t8tauXour/UU2fuVBtn/oS4+TANYKaqIma7Kpp+/btWrt2rZLJpDU12ThO1OT3e9WqVamf2VCTjePU05qSyaTWrFmT+keTNtQUhnGqr6/XX/7yFyWTSWtqysY4JZNJvf7669q+fbs1NXV3nGz/74gdO3bo1VdfVTKZDHVNto+TjTWZwuJJhuyeNJJUUFDQpWP69OmT+nz35AxL2/F4XI888kjq6+7cdfLKK6/oT3/6k66++mp99rOf1SGHHKL8/HwddthhOuuss3TvvffqxRdf1GGHHSbJ/4t45ZVXpv6SZsKYMWNSW4bt2LFDlZWVqb/Qc+bM0fr16yVJK1asSN35snXrVlVWVqbOMXv2bL3zzjuSpKeeekpPPfWUJOmdd97R7NmzU6+rrKzU1q1bJUlLlizRihUrJEnr16/XnDlzUjVWVlZqx44dkqTFixdr9erVkqQ33nhDCxYskORfUCorK1MXsAULFuiNN96QJK1evVqLFy/uUk3PPPOMEomEVTUFOU7333+/li9froaGBmtq6u447dixQ08//XTqdTbU1Hjqj1UZuUqNKpEk/UFf1XM6VQn10WqdpMXyn+G0Q4epMnKVWuVfN+foAq3Xp/2aNEZL9GW/Jg1SZeQqv6MlgzR7cwXjlIlxsvDvEzVREzXldk2zZ8/W8uXLlUgkrKnJxnGiJv//A59++mm9++671tRk4zj1tKZEIqHnnntOf/jDH6ypKQzj9Oc//1nPPvusEomENTVlY5wSiYSef/55zZ4925qaujtOtv93xH333afnn39eiUQi1DXZPk421mSMh4yYOHGiJ8mT5N10001dOmbp0qWpY4qLi0PV9rx581LH5+fne9u2bev2OQ7mqaeeSrUhyVu8eHGPz1lVVeVJ8goLC73i4mKvqqrKa29v9+rr673Ozk7P8zyvoaHBa21t9TzP85qbm714PO55nue1tbV59fX1qXNFo1EvmUx6nud5TU1NXlNTk+d5npdMJr1oNJp6XX19vdfW1uZ5nufF43GvubnZ8zzPa21t9RoaGjzP87zOzk6vvr7ea29v9zzP82KxmNfS0uJ5nuclEgmvsbHR8zzP6+jo8Orr672Ojg7P8zyvsbHRSyQSnud5XktLixeLxTzP86iJmuyqqb7e81oaPC/+oVdfu8Vr+/vrMlLTple8jp+Ve97M/l7jzEFeYubhnjezv9cyc6AXm3mk583s77XPLPXqZx7tdc7s73kz+3sNM4/yWmce5nkz+3vNM4/w4jPLPG9mf69t5qFe/cyjPe/nx3pebZV740RN1ERN1ERN1ERN1ERN1ERN1ERN1ERN1JTBmna/l7v7o6qqysumiOd5GXwyrrsuuOACPfzww5Kk7373u11aGXv00Ud1/vnnS/KfQbJt27bQtH3mmWfqueeekyRNmjRJf/rTn7rZ664ZP368Vq5cKUm68sorde+99/bofNXV1RoxYkTq66qqKg0fPrxH5wwbz/PU2tqqPn36KBKJmO5OKJCZgQzqqqV1i6X3X5O2vSkloh/9rLBUGnSiNPhz0sipPX8ge1219MD58mLb1Ko+6qNWpV1hySDpkkf8h9IbwFwFgJ7jWoqwYK66gXE2g9zTQ272Z2BLfbbU4QLT7+WybVeG7N5iSpLq6uq6dExtbW3q8wEDBoSm7S1btuj5559PfZ3JB8V/3FlnnZX6fMOGDYG145KGhgbdfvvte+1xiAMjsyxmsGmZNOdcafZYaeWvpHdX7L1wIvlfv7vC//nsL/qv3/RU+m2WDZemr1LDZy7U7ZHvqGGP55Z0y8ip0vRVxhZOJOYqAGQC11KEBXPVDYyzGeSeHnKzPwNb6rOlDgQv33QHbPGZz3wm9fnmzZu7dMyWLVtSnx9//PGhafv+++9PPdTn0EMP1Ve/+tVuHd8dgwYNSn3+4YcfBtaOS0pKSnT11VerpKTEdFdCg8yykEHzLmnpDKlqcfeP3bJKWrjKX7w49w6pKI3F6KIBKvnGXbr61T+qpHqUtGVl148tHyeNu14a+pXut5thzFUA6DmupQgL5qobGGczyD095GZ/BrbUZ0sdCB6LJxlywgknpD5ft26d2tvblZ9/4Hhff/31fR6f623//ve/T31+4YUX7vXw+UxrampKfd6vX7/A2nFJr169dOSRR5ruRqiQWcAZ1FZJC6ZIsfS2LkxZt0iqWZn2tlm9evXSkad8XTrl61Lden8h5/3XpA/WfnLbsKNG+9uGjZjS823DMoi5CgA9x7UUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY9uuDBk7dmxqEaGpqUmvvvrqAV/f2tqq1atXp74+44wzQtH26tWrtWnTptTXQW7ZJUlvvPFG6vOjjjoq0LZcEY/HNW/ePMXjcdNdCQ0yCzCD2ipp3qSeL5zsFtsmzZ3oP8ekm/aqsWyYdObN0qV/lG6qkX64VZrxN//Pm2r87595c04tnEjMVQDIBK6lCAvmqhsYZzPIPT3kZn8GttRnSx0IHosnGVJcXKwzzzwz9fW8efMO+PpHH31UsVhMkv/MkdNOOy0Ubc+fPz/1+fHHH69TTjmle53thp07d+qPf/xj6usJEyYE1pZL8vPzVVFRcdC7k/ARMgsog+Zd/h0nH3+mSU8lotID5/vn74b91hiJSH1KpH6H+X/m8MPkmKsA0HNcSxEWzFU3MM5mkHt6yM3+DGypz5Y6ELyIt/vhFeixP//5zzrvvPMkSX369NFrr72m4cM/uXVMc3OzTjzxRP31r3+VJP3gBz/Qz3/+85xvu7W1VYMGDVJ9fb0k6ec//7l+8IMfdKuf8XhcxcXFB31dR0eHpkyZoscee0ySVFBQoE2bNqm8vLxb7X1cdXW1RowYkfq6qqpqnzkByILFV6b3jJOuGjlVOv/e4M4PAAAAAACAwJh+L5c7TzJo0qRJGj9+vCR/oeG8887TW2+9tddrdu7cqcmTJ6cWLwYMGKCbbrppn+erqalRJBJJfRzojpJMt70vjz/+eGrhJC8vT5dcckmXj91tzJgxuv766/Xaa6/t9zXr1q3TWWedlVo4kaTvfe97PV44gW/3tm2tra2muxIaZBZABpuWBbtwIvnPQNm0rMsvt2GcbagBAEzjWoqwYK66gXE2g9zTQ272Z2BLfbbUgeCxeJJhCxcu1KBBgyT5ix+jR4/Wl770JV111VX6f//v/+nYY4/V008/Lcm/Rezhhx9WaWlpKNre80HxZ555po4++uhu9zEej6uyslKf//znNXDgQH35y1/WpZdeqmuuuUbTpk3T8OHDNWrUKC1fvjx1zFe/+lX99Kc/7XZb2LdkMqm1a9cqmUya7kpokFkAGay8MzPnOZiXKrv8UhvG2YYaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQge23YFYOPGjbrooou0du3a/b5m4MCBmjt3riZNmrTf19TU1OhTn/pU6uu5c+fq8ssvz0rbH7d9+3YNHjxY7e3tkqQFCxZo2rRpXT5+t4qKCm3evLlLry0qKtK//du/6Qc/+IHy8jKzzmf6Vi8A8h/mPnts9tqb/nLOPdgdAAAAAAAAB2b6vVyeihOA448/Xq+88ooeeughPfjgg6qurlZdXZ1KS0s1ZMgQff3rX9cVV1yhww8/PDRtL1iwILVw0r9/f33ta19Lq38vvviiVq1apZdfflmvv/666urqtHPnTjU0NKioqEiHH364Ro8erQkTJuib3/xmxu7KwUc6OzvV2Nio/v37Z2xRynZklqEM6v++cLrmvsx1rCtevU8a+13p0ANv/WfDONtQAwCYxrUUYcFcdQPjbAa5p4fc7M/AlvpsqQPB484TOMX0amUuiEajqqys1HXXXcfiVBeRWYYyuOWQjPap++03HPDHNoyzDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6XGD6vVwWT+AU03/hcgGr691HZhnKIMcXT2wYZxtqAADTuJYiLJirbmCczSD39JCb/RnYUp8tdbjA9Hu5bNsFOCYvL49V9W4iMzcysKFGG2oAANO4liIsmKtuYJzNIPf0kJv9GdhSny11IHgsrQGOicViuvvuuxWLxUx3JTTIzI0MbKjRhhoAwDSupQgL5qobGGczyD095GZ/BrbUZ0sdCB6LJ4BjCgoKNHr0aBUUFJjuSmiQmRsZ2FCjDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDyeeQKnmN4nD3Bajj/zBAAAAAAAALnD9Hu53HkCOCaRSGj58uVKJBKmuxIaZJahDK57y/845pTMdawrjhnjt3sQNoyzDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDwWTwDHtLe3q6amRu3t7aa7EhpkJrW3tanmb++ovXG7lGiU0rlp8dBy/6N8XOY7eCAV4/x2D8KGcbahBgAwjWspwoK56gbG2QxyTw+52Z+BLfXZUgeCx7ZdcIrpW72AUKmrltYtlt5/Tdr2ppSIfvSzwlJp0InS4M9JI6dKZcO6d97ZYzPd2/2b/nL3+gcAAAAAAADjTL+Xy50ngGM6OjpUW1urjo4O010JDecy27RMmnOuv8Cx8lfSuyvUkWhUrQaqY/evjURUeneF//PZX/Rfv+mprp2/bLh0bJYWT8rHdXnhxIZxtqEGADCNaynCgrnqBsbZDHJPD7nZn4Et9dlSB4LH4gngmFgspnvuuUexWMx0V0LDmcyad0mLr5QWfkPasmqvH8VUrHsi31RMxfs+dssqaeFU6ZGr/PMczKnX97y/XTGu6+3YMM421AAApnEtRVgwV93AOJtB7ukhN/szsKU+W+pA8Ni2C04xfatXLvA8T62trerTp48ikYjp7oSCE5nVVkkLpkixbfv8sSepVX3UR606aAIlg6RLHvHvMDmQxVdKVYvT6W3XjJwqnX9vl19uwzjbUAMAmMa1FGHBXHUD42wGuaeH3OzPwJb6bKnDBabfy+XOE8AxkUhEhYWF/HLoBuszq62S5k3a78KJJEUkFXZl4UTyzzN3ov9skwOZ+At/oSUIJYOkc+/o1iE2jLMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljoQPBZPAMc0NjbqzjvvVGNjo+muhIbVmTXv8u842fNh8PvQqGLdqSvVuL9tuz4uEZUeOP/AW3gVDfDvUCks7Wpvu6aw1D9v0YBuHWbDONtQAwCYxrUUYcFcdQPjbAa5p4fc7M/AlvpsqQPBY/EEcExhYaEmTJigwsJC010JDaszWzrjgHec7FaoVk3QyypUa9fPHdsmPXHjgV9TNly6Ymnm7kApGeSf72Bbhu2DDeNsQw0AYBrXUoQFc9UNjLMZ5J4ecrM/A1vqs6UOBI9nnsAppvfJA3LKpmX+w+GDNu1haejZB35N8y5/oWXdovTbGTnV36qrm3ecAAAAAAAAIPeYfi+XO08Ax7S0tOjJJ59US0uL6a6EhrWZrbyzyy9tUaGe1AS1KI1/lfFS5cFfUzTAf7j7tIel8nHdO3/5OGnaIv/4Hiyc2DDONtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPDyTXcAQHZ1dnYqGo2qs7PTdFdCw8rM6qqlLau6/PJORRRVf3V27ZHxe9v8klS3XiobdvDXDj3b/6hbL1Utlt5/Tfpg7d7PZCkslY4aLQ3+nDRiStfO2wU2jLMNNQCAaVxLERbMVTcwzmaQe3rIzf4MbKnPljoQPLbtglNM3+oFGFW/+aPPX6qUXr0ve22ffJU06T/TO9bzpGRcak9K+QVSQbEUSWMRBwAAAAAAAKFh+r1ctu0CHNPe3q6amhq1t7eb7kpoWJNZ5aiPPrq5cNKuXqrR0WpXr/TaXnNvesdJ/kJJnxKp32H+nwEtnNgwzjbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDwWDwBHBOPxzV//nzF43HTXQkNMpPi6qf5kW8orn7pnyTHb3S0YZxtqAEATONairBgrrqBcTaD3NNDbvZnYEt9ttSB4LFtF5xi+lYvwKhbDjHb/g+3+neOAAAAAAAAAAdh+r1c7jwBAGRHe9J0DwAAAAAAAIAuYfEEcExDQ4Nuu+02NTQ0mO5KaJCZ1KAS3aZr1aAe3DmSX5C5DgXAhnG2oQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgsfiCeCYoqIiTZ48WUVFRaa7EhpkJhWpRZO1TEVqSf8kBcWZ61AAbBhnG2oAANO4liIsmKtuYJzNIPf0kJv9GdhSny11IHg88wROMb1PHmBU/eaPPn/0W9J7r2Sv7WPGSFcuy157AAAAAAAACDXT7+Vy5wngmObmZj322GNqbm423ZXQsCazQ8s/+igf161Dm1Wox3S2mlWYXtsV3WvPBBvG2YYaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQgeiycA4KKRU7Lb3ogstwcAAAAAAAD0ANt2wSmmb/UC0uZ5UmtM6miTevWW+pRIkUjPzjnnXGnLqsz070DKx0lXLA2+HQAAAAAAAFjD9Hu53HkCOKatrU0bN25UW1ub6a6EhrHM6qqlZ2ZJ878q3V4h3XaM9Ish/p+3V/jff2aWVLc+vfOfen2XX9qmfG3UcWpTfvfbGdf1dkyy4e+GDTUAgGlcSxEWzFU3MM5mkHt6yM3+DGypz5Y6EDwWTwDHsK9j92U9s03L/LtCZo+VVv5KeneFlIju/ZpE1P/+yl9Js7/ov37TU91rZ+jZXd5Oq1l9//7Mk77da2PkVGnoV7p3jCE2/N2woQYAMI1rKcKCueoGxtkMck8PudmfgS312VIHgse2XXCK6Vu9gANq3iUtnSFVLU7/HCOnSufeIRUN6Hqbs8dKsW3pt7k/JYOk6au63hcAAAAAAADg70y/l8udJwCQC2qr/EWMniycSNK6Rf556qq79vqiAdIlj0iFpT1r9+MKS/3zsnACAAAAAACAEGLxBHBMNBrVrFmzFI1GTXclNALPrLZKmjcpc3d/xLZJcyd2fQGlbLj/QPeSQft9SVT9NSvyfUXV/+DnKxnkn68sXHd12fB3w4YaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQge23bBKaZv9coF7e3t2rp1q44++mjl56fx8G8HBZpZLm2b1bxLeuJG/+6Vj2lXL23VIB2tbcpXx/7P0d1tw3KIDX83bKgBAEzjWoqwYK66gXE2g9zTQ272Z2BLfbbU4QLT7+WyeAKnmP4LB3zC4it7vlXXgYycKp1/b/eO2bRMeqlS2vxS148pHyeNuz40D4cHAAAAAABAbjP9Xi7bdgGOaWpq0kMPPaSmpibTXQmNwDLbtCzYhRPJv4tk07LuHTP0bH/brekvS+NvkIZMUFOfI/WQvqom9fVfU1gqDZng/3z6y/7rQ75wYsPfDRtqAADTuJYiLJirbmCczSD39JCb/RnYUp8tdSB43JcEOCYvL0+lpaXKy2PttKsCy2zlnZk93/68VOkviHRX2TCp7GZJUl5zs0qff0Z5p9wmlfSXCoqlSCTDHTXLhr8bNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPDYtgtOMX2rF5BSV+0/6yRbpr/sL4YAAAAAAAAAIWD6vVyW1wDHJJNJrV27Vslk0nRXQiOjmdVv9j/W3Nfzc3XHqz1rz4V5Y0ONNtQAAKZxLUVYMFfdwDibQe7pITf7M7ClPlvqQPBYPAEck0gktHz5ciUSCdNdCY2MZlY5yv/o4WJGt63p5kPjP8aFeWNDjTbUAACmcS1FWDBX3cA4m0Hu6SE3+zOwpT5b6kDw2LYLTjF9qxegWw4x1/bMqHXPKQEAAAAAAICdTL+Xy50ngGM8z1MikRDrpl1nTWbJeNqHWpPBAdhQow01AIBpXEsRFsxVNzDOZpB7esjN/gxsqc+WOhA8Fk8AxzQ0NOj2229XQ0OD6a6EhjWZtae/l6c1GRyADTXaUAMAmMa1FGHBXHUD42wGuaeH3OzPwJb6bKkDwWPbLjjF9K1euaCjo0M7duzQwIED1atXL9PdCYWOjg7t2L5dA/sXqpc6pV69pT4l6W2BZXLbrh9u9fudBhfmjQ012lADAJjGtRRhwVx1A+NsBrmnh9zsz8CW+mypwwWm38vNz1pLAHJCr169dOSRR5ruRjjUVUvrFqvX+6/pyG1vSonoRz8rLJUGnSgN/pw0cqpUNsxUL7uuoDjtQ12YNzbUaEMNAGAa11KEBXPVDYyzGeSeHnKzPwNb6rOlDgSPbbsAx8Tjcc2bN0/xePrPv7DepmXSnHOl2WOllb9S/N01mpf4suIq+ug1iaj07gpp5a+k2V/0X7/pqYOf+7q3/I9jTgms+/t0zJgePSzehXljQ4021AAApnEtRVgwV93AOJtB7ukhN/szsKU+W+pA8Fg8ARyTn5+viooK5edz49knNO+SFl8pLfyGtGVV6tv56lCFtipfHfs/dssqaeFU6ZGr/PPsz6Hl/kf5uAx2vAsqetaeC/PGhhptqAEATONairBgrrqBcTaD3NNDbvZnYEt9ttSB4PHMEzjF9D55yGG1VdKCKVJsW8/PVTJIuuQRqewAc6uu2r+zJVumvxyOrcUAAAAAAAAAmX8vlztPAMe0trZq9erVam1tNd2V3FFbJc2btN+Fk1YVaLU+q1YVdO18sW3S3In+Asn+lA2Xjs3S4kn5uB4vnLgwb2yo0YYaAMA0rqUIC+aqGxhnM8g9PeRmfwa21GdLHQgeiyeAY5LJpNauXatkMmm6K7mheZd/x8meD4P/mKR6a62GK6neXT9vIio9cP6Bt/A69fqun68nxvW8HRfmjQ012lADAJjGtRRhwVx1A+NsBrmnh9zsz8CW+mypA8Fj2y44xfStXshBi6+UqhYHd/6RU6Xz/397dx4eVXn///81JCYDSTBEdtCwKOKCoBVkEaWiIqgVBGRRQZSK2urPVlutfgWXutQVPmoBFVERQUABqYAKCKgsghUFBFE0QIAgAbKRPXN+f0w5TiTLZJLJydzn+biuXJ7JnOV+v+/DkZk3932/VnevDwAAAAAAANRBTn+Xy8gTwGV8Pp8yMjLk8/mcborzdnwUVOHCJ48y1FA+eap+jc1z/dcpz4Bn/GukhENCC6n/0zVyKjfcNybEaEIMAOA0nqWIFNyr7kA/O4O8h4a8mZ8DU+IzJQ6EH8UTwGWysrI0adIkZWVlOd0U530+MajdspSgSZ6xylJCaNf5YlL57zVI8i8u700M7dzl8Sb6z9sgqUZO54b7xoQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ73qAp/Pp6ysLDVs2FD16rm4fnpgqzQ5uAXbffIoSwlqqGzVU4iPzNvXVrxo+4Gt/jVSylm0vkoSWvgLJ81q7t52w31jQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPicAOnv8vl7gBcpl69ekpMTHTv/xyO7PL/bJgW9CH1ZClRWaEXTiRp4zT/dcvT7Czp9jX+NUqqo9NQ/3lqsHAiueO+MSFGE2IAAKfxLEWk4F51B/rZGeQ9NOTN/ByYEp8pcSD8uEMAl8nOztaUKVOUnZ3tdFOcMekc/8/G4Isn2YrTFN2gbMWFft0Nr/mvW5EGSf7F3UfOkZJ7Ve38yb2kkXP9x9fQVF2B3HDfmBCjCTEAgNN4liJScK+6A/3sDPIeGvJmfg5Mic+UOBB+0U43AEDtiomJUZcuXRQTE+N0UyJGjIrURVsVo6LauWCHfv6fA9/5F7Tf+5W0b5OUn/HrPt5EqWUXqdXvpLOHVDwlWA1ww31jQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPix5glcxel58lAHPHyiw9fPDO04y5IKc6TiQik6RoqJlzyemm0bAAAAAAAAUEc4/V0u03YBLpOfn6+VK1cqPz/f6aZEjHzFaqV6KF+xzjXC45FiE6S4k/z/reXCiRvuGxNiNCEGAHAaz1JECu5Vd6CfnUHeQ0PezM+BKfGZEgfCj+IJ4DLFxcVKSUlRcXGx002JGMWKUopaq1hRTjfFMW64b0yI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btgqs4PdQLdUCkTtsFAAAAAAAAuIjT3+Uy8gRwmZKSEqWlpamkpMTppjjj//vW/3PyBUEfUqJ6SlMTlVTnkXlyd/91I5Qb7hsTYjQhBgBwGs9SRAruVXegn51B3kND3szPgSnxmRIHwo/iCeAy2dnZmjp1qrKzs51uijMaJft/knsFfUi24jXVc6OyFR/6ddv08l83QrnhvjEhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/Ji2C67i9FCvusCyLBUUFCg2NlaeWl50vE45sFWa3DOoXS1JBYpVrAoUcsZuXys1OzPUox3nhvvGhBhNiAEAnMazFJGCe9Ud6GdnkPfQkDfzc2BKfKbE4QZOf5fLyBPAZTwej7xeL/9zaHaWdEpwxROPJG91CifJvSK6cCK5474xIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPwongAuk5WVpYkTJyorK8vpplSdZUn5WdLRQ/7/Vnfg3IV3B7VbluI1UbcoK9Rpu3oFd526LKLvmyCZEKMJMQCA03iWIlJwr7oD/ewM8h4a8mZ+DkyJz5Q4EH7RTjcAQO3yer3q06ePvF6v000JzoGt0uZ50t6vpP3fSPkZv77nTZRadJZa/U7qNLTqozs69JPOHiJtmVfhbl4VqI/WyquCKjdfnYZKHS6v+nF1TMTdNyEwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPxY8wSu4vQ8eaiCHR9Jn0+Udq8J/phTekoX/qVqxYrcw/61T7L3V7mJlUpoId2+RmqQVPPnBgAAAAAAAAzm9He5TNsFuExeXp6WLl2qvLw8p5tSttzD0rxbpHeuq1rhRPLv/85Q6b2x/vMEo0GSdMN7/lEs5ciTV0vVR3mqwr9I8Cb6z2tI4aTO3zc1wIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwo3gCuIzP51NGRoZ8Pp/TTTle2hb/KJBKptGq1Oa5/vMc2Brc/s3OksYs9o8UKYNPHmWooXzBLhmf0MJ/vmbmjGqq0/dNDTEhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/Ji2C67i9FAvVCBti/TGlaXXNKkub2LVihi5h6Ulf/cXX0LVaajU/2ljRpwAAAAAAAAATnD6u1xGngAuU1xcrJSUFBUXFzvdlF/lHpZmDqnZwonkP9/bg6s2hdfg16SRc6TkXvavixWlFLVWsaLKPza5lzRyrv94AwsndfK+qWEmxGhCDADgNJ6liBTcq+5APzuDvIeGvJmfA1PiMyUOhB/FE8BlcnJy9OabbyonJ8fppvxq8d/Cs2C75D/vkr9X7ZgO/fwjVm5fK/W+Rzkn99WbnuuUo7hf9/EmSu36SL3v8e83ZnHVFqqPMHXyvqlhJsRoQgwA4DSepYgU3KvuQD87g7yHhryZnwNT4jMlDoQf03bBVZwe6oUy7PjIvzh8uI2c4y+KhMqypMIcqbhQio6RYuIlT5BroAAAAAAAAACoEqe/y2XkCQBnfT6xdq7zxaTqHe/xSLEJUtxJ/v9SOAEAAAAAAACMRfEEcJnMzEw99dRTyszMdLop0oGt0u41tXOtXV9IB74L6dA6lTOHuCEHJsRoQgwA4DSepYgU3KvuQD87g7yHhryZnwNT4jMlDoQfxRPAZRo0aKCBAweqQYMGzjTgyK5ffzZMq91rbwzteo7nrA5wQw5MiNGEGADAaTxLESm4V92BfnYGeQ8NeTM/B6bEZ0ocCD/WPIGrOD1PHiQ9fKLD1+dfFQAAAAAAAAB1ndPf5TLyBHCZ3NxcLViwQLm5uU43xRkh1ItdnzO5IwcmxGhCDADgNJ6liBTcq+5APzuDvIeGvJmfA1PiMyUOhB/FEwDuUpjjdAsAAAAAAAAA1HFM2wVXcXqoF+T8tF1/+0mKO8nZNgAAAAAAAACokNPf5TLyBHCZoqIibd++XUVFRU43xRnRMVU+xPU5kztyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4UTwBXMb18zrGxFf5ENfnTO7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMiQPhx7RdcBWnh3pB0pFdv26//0dpz/rau/bJ3aVbPqq96wEAAAAAAAAIidPf5UbX2pUAQJIaJf+6ndyrdosnbXrV3rUAAAAAAAAARCym7QqTwsJCzZgxQwMGDFBycrK8Xq9atGihnj176tlnn1V6enqdv3ZKSoo8Hk+Vfk499dQqtXXbtm3629/+pnPOOUdJSUmKi4tThw4dNHr0aC1fvjyU8FGJjIwMPfLII8rIyHC6KVKnIbV7vbNDu16dyplD3JADE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KPabvCYPv27RoxYoQ2bdpU7j5NmzbV9OnTNWDAgDp77ZSUFLVt27ZK12/fvr1+/PHHoPZ9/PHH9cgjj1S4ONOIESM0depUJSQkVKkd5XF6qFddUFxcrNTUVLVu3VrR0XVg8Nnr/aXda8J/neRe0pjFIR1a53LmADfkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxOEGTn+XS/GkhqWmpuqCCy7Qvn37JEkej0cXXXSR2rdvr4MHD2rZsmXKy8uTJJ1wwglaunSpLrnkkjp57cDiSUJCgkaNGlVpG5o0aaIJEyZUut/48eP12GOP2a9btGih3r17y+v16quvvtLWrVvt9y6//HJ9+OGHNfIwc/oPHMqw4yPpnevCf52Rc6UOl4f/OgAAAAAAAACqzenvcimt1bCRI0faxYvk5GQtXLhQnTt3tt9PT0/X8OHDtXz5chUVFWno0KHauXOnEhMT6/S1k5KS9NJLL1W7jZK0fPnyUoWTv/3tb/rnP/+pmJgY+3ezZs3SzTffrPz8fH388cd64oknNH78+Bq5vtsdPXpUixYt0tVXX624uDinmyN16OefTmvLvPBdo9PQahVO6lzOHOCGHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDgQfqx5UoMWL16szz77TJIUExOjRYsWlSpeSFLjxo21cOFCtWvXTpJ0+PBhPf300xF97ar6xz/+YW8PHz5cTz/9dKnCieSfruuFF16wX4d7nRg3qVevnhITE1WvXgh//C1Lys+Sjh7y/7emBq4NeEZKaFEz5/qthBZS/+rd59XKmSHckAMTYjQhBgBwGs9SRAruVXegn51B3kND3szPgSnxmRIHwo9pu2rQlVdeqcWL/Wsq/PGPf9Qrr7xS7r4zZ87UDTfcIMk/quPAgQPVmpYqHNcOnLYrOTlZKSkpIbfvmA0bNqhbt26S/A+qlJQUnXzyyWXua1mWTj/9dP3www+SpOeff15/+ctfqnV9p4d6RaQDW6XN86S9X0n7v5HyM359z5sotegstfqdf3RHszOrd53pA0qfv7q8if51TprRxwAAAAAAAEAkcfq7XMprNSQnJ0fLly+3X48ZM6bC/QcPHqz4+HhJ/hEgq1evjshrV9WCBQvs7UsvvbTcwonkX7Nl9OjR9uv58+eHs2muUVhYqE2bNqmwsLDiHXd85F/MfXJP6fPnpZ9XHV/YyM/w//7z56XJPfz77/g4tIY1O8tf6KipESgJLWqscBJ0zgzmhhyYEKMJMQCA03iWIlJwr7oD/ewM8h4a8mZ+DkyJz5Q4EH4UT2rImjVrVFBQIEmKi4tT165dK9zf6/WqR48e9usVK1ZE5LWr6tNPP7W3+/TpU+n+v//97+3twDgRuvz8fK1cuVL5+fll75B7WJp3i38R991rqnby3Wukd4ZK7431n6eqmp0l3b7GP4qlOjoN9Z+nhkacVJozF3BDDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btqiGTJk3S3XffLUnq3r271q5dW+kx999/v/71r39Jkq699lq99957deragdN2tWrVStOnT9fGjRuVnp4ur9erxo0b6/zzz1e3bt0UGxsbVFsbNWqkjIwMSdLSpUvVr1+/CvfPy8tTgwYN7NfffvutOnXqFNS1yuL0UK86L22LNHOIlL2/+udKaCHd8F7oBYwdH0lfTJJ2fRH8Mcm9pF53V2txeAAAAAAAAADOc/q73NAX2UAp33//vb2dnJwc1DGnnHKKvb19+/Y6fe29e/fq8svL/kK6UaNGuuOOO3T//ffb04GV5ZdffrELJ8G2tX79+mrSpIkOHjxot7U6xRP415IpKChQbGysPB7Pr2+kbZHeuLLm1hzJ3u9fwyTUqbM69PP/HPhO2vK/NVf2bTp+zZWWXfxrrpw9pHprrlSg3Jy5iBtyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4MW1XDTl06JC93axZs6COad68ub19+HAIUxzVgWtL0pEjR/T444/r/PPP144dO8rdL7CdkjNthZSZmal//etfyszM/PWXuYf9I05qcrF2yX++tweHNoXXMc3OlPqOl0YtlO5Lkf6RKv3tJ/9/70vx/77v+LAVTqRycuYybsiBCTGaEAMAOI1nKSIF96o70M/OIO+hIW/m58CU+EyJA+FH8aSG5OTk2Nv169cP6pjA/QKPr0vXTkhI0E033aTZs2fr+++/V05OjgoKCrRnzx7NnTtXl156qb3v999/ryuuuMIeJVJRO8PR1qrwer32KJmSkhJlZGTo2Ax2WVlZ9oJReXl5Onr0qCSpuLi41MiZzMxMFRUVSZJyc3OVm5srSSoqKir18M3IyFBxcbEk6ejRo8rLy5PkX5wqKytLkr/inZGRoZKSEjvOY/MuFhQUKDs7W5Lk8/mUkZEhn88nScrOzrbXgcnPz7fzU1FM0dHRGjVqlBISEn6NafHfpOz9ylSCiv43IC1XXuXK649J0cpUwq8xqaGKFeWPSfWV97/9CnWCsuTPq/W//UqyD0hL/l4zMWVmyoqJl+JOUlaBpcL/5T/c/WRZlsaNG6f4+Pha66e6du/FxcVp5MiRiouLMyam3/aTJI0ZM0YJCQkRG5Mb+omYiImYiCncMZWUlGjcuHFKSEgwJiYT+4mY/J/VRo4caX9eMiEmE/upujElJCRozJgx9rlMiCkS+qlevXoaPXq0EhISjImpNvopISFBY8eOVUlJiTExVbWfTP97hM/n080336yEhISIjsn0fjIxJqdQPKkhgQsMxcTEBHVM4Dohx27OunTtFi1aaN++fZo+fbqGDRumDh06KC4uTjExMWrdurWGDBmiTz75RFOnTrWHuP3888/6xz/+UWk7a7qtVdW9e3cNGTJEknTw4EFNmjTJ/gP9+uuv67vvvpMkrVq1SosWLZIkpaamatKkSfY5Jk+erJ07d0qSPv74Y3388ceSpJ07d2ry5Mn2fpMmTVJqaqokadGiRVq1apUk6bvvvtPrr78uyf+wmTRpkl14mjdvntatWydJ+vrrrzVz5kxJ/gfKpEmT7AfYzJkz9fXXX0uS1q1bp3nz5lUa0+eff67169crKirq15i2+I+brBu1U/7p1D7WxfpYF/tjUrIm68ZfY/KMVapa+GPSZVql7v6YdJpe1zB/TIrVJM9YHdRJ0ua5mjfjlbDFFO5+evPNN9W8eXMVFxfXWj/VtXvv6NGjeuedd+z/iZkQ02/7afbs2dq3b5+ioqIiNiY39BMxERMxEVO4Y3rppZfUvHlzRUVFGROTif1ETFJUVJTeeecd7d+/35iYTOyn6sYUFRWlffv2afbs2cbEFAn9tHjxYm3fvl1RUVHGxFQb/RQVFaWoqCi99NJLxsRU1X4y/e8Rr7zyio4ePaqoqKiIjsn0fjIxJsdYqBEDBgyw5P/H9tZ9990X1DGLFy+2j4mPj4/Iax/zwAMP2OeLioqy0tLSjtvnyy+/tPeRZOXl5QV17m7dutnHPPvss9Vq55YtWyxJltfrteLj460tW7ZYxcXF1pEjRyyfz2dZlmVlZmZaBQUFlmVZVm5urpWTk2NZlmUVFRVZR44csc+VkZFhFRYWWpZlWUePHrWOHj1qWZZlFRYWWhkZGfZ+R44csYqKiizLsqycnBwrNzfXsizLKigosDIzMy3Lsiyfz2cdOXLEKi4utizLsrKzs+385OfnW1lZWZZlWVZJSYl15MgRq6SkxLIsy8rKyrLy8/Mty7KsvLw8Kzs727Isq8KYfvnlF+u1116zsrOz/TFNvcayJjS0rAkNrYwJrazCCUmWNaGhdXRCU+vohKaWNaGhVTghycqY0Mre78iE1lbRhEaWNaGhlTOhmZX7v/0KJpxkZU5oaVkTGlq+/+1XPCHRsiY0tLJf/UPYYgp3P+3bt8+aPn26lZWVVWv9VNfuvczMTOvVV1+1jzMhpt/20/79+61p06bZ+0diTG7oJ2IiJmIipnDHlJqaak2fPt3Kzs42JiYT+4mY/G179dVX7eNMiMnEfqpuTNnZ2da0adOs/fv3GxNTJPTTgQMH7M/NpsRUG/2UnZ1tvf7661ZqaqoxMVW1n0z/e8TevXvtz82RHJPp/WRSTMe+yz32s2XLFqs2eSzrf2NkUC3Dhg3TnDlzJEl33XVXUJWx999/X4MHD5bkX9fj2L8YiqRrH5OTk6OmTZvaI0NmzJihG264odQ+27Zt05ln/rouxeHDh9WoUaNKz33OOedo8+bNkqQpU6Zo3LhxIbdz69atOvvss+3XW7Zs0VlnhbCYeQTLz8/XunXr1L17d3kzd0qTe9bexW9fG9a1ScKlVM68Xqeb4wg35MCEGE2IAQCcxrMUkYJ71R3oZ2eQ99CQN/NzYEp8psThBk5/l8u0XTXkpJNOsrcPHDgQ1DFpaWn2dlJSUkRe+5j4+HhdcMEF9utt27Ydt09gOyXn2up2Xq9XfTq3lTfvgLRhWu1efGMtX6+GeL1e9enTx9X/Q3VDDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP4onNeT000+3t3ft2hXUMbt377a3O3bsGJHXDtSiRQt7Oz09/bj3mzZtqsTERPt1MG3Nz88vtQB9TbXVzQoKCrRu0mgVTDq/9osZG16r3evVkIKCAq1bt86ej9GN3JADE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KP4kkNOeOMM+ztzZs3q7i4uNJj/vvf/5Z5fCRdO9CxBYolKS4ursx9Aq91bNGgigS2MyoqSh06dKhGCyFJhYWF2qSzVKgTnGlABM4UWFhYqE2bNqmwsNDppjjGDTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPxY86SG5OTkqHHjxnbFcu3aterevXu5+xcUFKhJkybKzs6WJC1fvlyXXHJJxF070CmnnKI9e/ZIkp555hnde++9x+3z4IMP6oknnpAk9evXT0uXLq3wnE8++aQeeOABSVLv3r21evXqarXR6Xny6oyHT3Tu2v9IlWITnLs+AAAAAAAAgDrP6e9yGXlSQ+Lj49W3b1/79RtvvFHh/u+//75dvEhKStJFF10Ukdc+ZtmyZXbhRJL69OlT5n4DBw4sdUxqamqF5w2MJfBYhM7n8ylDDeWTx5kGFEdeVd/n8ykjI0M+n8/ppjjGDTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPwontSgO+64w95+4403tHXr1jL3y83N1fjx4+3Xt956q6Kjo+vUtQsLC4Meunbw4EHddttt9uszzjhD5513Xpn7du3aVV27dpUklZSU6P777y/3vK+88op27NghSUpISNCoUaOCag8qlpWVpUmescqSQ6M/omOcuW41ZGVladKkScrKynK6KY5xQw5MiNGEGADAaTxLESm4V92BfnYGeQ8NeTM/B6bEZ0ocCD+m7aphF110kT777DNJUps2bbRw4UKdc8459vuHDh3SiBEj9Mknn0jyj/zYuXNnqYXUj0lJSVHbtm3t19OnT9dNN91Ua9fu3bu37rzzTg0bNkzJycnH7WNZlhYvXqw//elP9uLvHo9H//nPfzRgwIBy27l8+XJdeuml9uv77rtPjz32mE444dc1OObMmaObbrpJeXl5kqRHHnmkVNEnVE4P9aoLfD6fsh5NVkNlq54c+OM/IUPyODTqJUQ+n09ZWVlq2LCh6tVzZ83ZDTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxuIHT3+VSPKlhqamp6tatm/bv3y/JX0y4+OKL1b59ex08eFDLli1Tbm6uJCk6OlpLly4tNeVWoKoWT8J57TZt2qhTp05q3LixTjjhBB08eFDr16/Xvn37Sh1X3lonv/XQQw/pn//8p/26ZcuW6t27t7xer7766itt2bLFfu+yyy7T4sWLqz06R3L+D1ydccRf7NL7f5T2rK+9657cXbrlo9q7HgAAAAAAAICI5PR3uZTWaljr1q21YsUKdenSRZJ/dMbKlSs1bdo0ffDBB3bxokmTJlqwYEG5xYu6du2UlBQtWrRI06dP1yuvvKL58+eXKpy0atVKCxcuDKpwIkmPPvpoqdEm+/bt07vvvqs333yzVOFk+PDhmjdvXo0UTuCXnZ2tKe8uUXZ0kpTcq3Yv3qaWr1dDsrOzNWXKFHutIDdyQw5MiNGEGADAaTxLESm4V92BfnYGeQ8NeTM/B6bEZ0ocCD++kQ6Djh07av369Zo9e7ZmzZqlrVu36sCBA0pMTFS7du107bXXasyYMWrcuHGdvXZycrI2b96stWvXas2aNdq6davS09N16NAh5ebmqmHDhmrRooW6du2q/v37a9CgQaWm3aqMx+PR//t//0+DBw/Wa6+9po8//lh79uxRUVGRWrRooR49emj06NGlpvdCzYiJiVGXLl0UExMjdRoiff587V387CG1d60aVCpnLuWGHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDgQfkzbBVdxeqhXnfR6f2n3mvBfJ7mXNGZx+K8DAAAAAAAAIOI5/V0u03YBLpOfn6+VK1cqPz/f/4sL766dC/eqpeuEwXE5cyE35MCEGE2IAQCcxrMUkYJ71R3oZ2eQ99CQN/NzYEp8psSB8KN4ArhMcXGxUlJSVFxc7P9Fh37hn06r01Cpw+XhvUYYHZczF3JDDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btgqs4PdSrzso9LE3uKWXvr/lzJ7SQbl8jNUiq+XMDAAAAAAAAMJLT3+Uy8gRwmZKSEqWlpamkpOTXXzZIkm54T/Im1uzFvIn+80Z44aTMnLmMG3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPhRPAFcJjs7W1OnTlV2dnbpN5qd5V/QPaFFzVwooYX/fM0if2RPuTlzETfkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ73qAsuyVFBQoNjYWHk8nuN3yD0sLfm7tHlu6BfpNFTq/3TEjzg5ptKcuYAbcmBCjCbEAABO41mKSMG96g70szPIe2jIm/k5MCU+U+JwA6e/y42utSsBqBM8Ho+8Xm/5OzRIkga/5i+AfDFJ2vVF8CdP7iX1ujuiF4cvS6U5cwE35MCEGE2IAQCcxrMUkYJ71R3oZ2eQ99CQN/NzYEp8psSB8GPaLsBlsrKyNHHiRGVlZVW8Y4d+/mm3bl8r9b5Hatfn+DVRvIn+3/e+x7/fmMXGFU6kKuTMYG7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMiQPhx8gTwGW8Xq/69OkTfIW92ZlSs/H+bcuSCnOk4kIpOkaKiZdcMLyxyjkzkBtyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4seYJXMXpefIAAAAAAAAAAJVz+rtcpu0CXCYvL09Lly5VXl6e002JGOTMHTkwIUYTYgAAp/EsRaTgXnUH+tkZ5D005M38HJgSnylxIPwongAu4/P5lJGRIZ/P53RTIgY5c0cOTIjRhBgAwGk8SxEpuFfdgX52BnkPDXkzPwemxGdKHAg/pu2Cqzg91AsAAAAAAAAAUDmnv8tl5AngMsXFxUpJSVFxcbHTTYkY5MwdOTAhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/CieAC6Tk5OjN998Uzk5OU43JWKQM3fkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ70AAAAAAAAAAJVz+rtcRp4AAAAAAAAAAAAEoHgCuExmZqaeeuopZWZmOt2UiEHO3JEDE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KP4gngMg0aNNDAgQPVoEEDp5sSMciZO3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPix5glcxel58gAAAAAAAAAAlXP6u1xGngAuk5ubqwULFig3N9fppkQMcuaOHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDgQfhRPAAAAAAAAAAAAAjBtF1zF6aFeAAAAAAAAAIDKOf1dLiNPAJcpKirS9u3bVVRU5HRTIgY5c0cOTIjRhBgAwGk8SxEpuFfdgX52BnkPDXkzPwemxGdKHAg/iieAyzCvY9WRM3fkwIQYTYgBAJzGsxSRgnvVHehnZ5D30JA383NgSnymxIHwY9ouuIrTQ70AAAAAAAAAAJVz+rtcRp4AAAAAAAAAAAAEoHgCuExGRoYeeeQRZWRkON2UiEHO3JEDE2I0IQYAcBrPUkQK7lV3oJ+dQd5DQ97Mz4Ep8ZkSB8KPabvgKk4P9aoLiouLlZqaqtatWys6Otrp5kQEcuaOHJgQowkxAIDTeJYiUnCvugP97AzyHhryZn4OTInPlDjcwOnvcimewFWc/gMHAAAAAAAAAKic09/lMm0X4DJHjx7V7NmzdfToUaebEjHImTtyYEKMJsQAAE7jWYpIwb3qDvSzM8h7aMib+TkwJT5T4kD4UTwBXKZevXpKTExUvXr88Q8WOXNHDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP6btgqs4PdQLAAAAAAAAAFA5p7/LpbwGuExhYaE2bdqkwsJCp5sSMciZO3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPiQPhRPAFcJj8/XytXrlR+fr7TTYkY5MwdOTAhRhNiAACn8SxFpOBedQf62RnkPTTkzfwcmBKfKXEg/Ji2C67i9FAvAAAAAAAAAEDlnP4ul5EngMtYlqX8/HxRNw0eOXNHDkyI0YQYAMBpPEsRKbhX3YF+dgZ5Dw15Mz8HpsRnShwIP4ongMtkZmbqX//6lzIzM51uSsQgZ+7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMiQPhx7RdcBWnh3rVBSUlJTp48KCaNGmiqKgop5sTEciZO3JgQowmxAAATuNZikjBveoO9LMzyHtoyJv5OTAlPlPicAOnv8uNrrUrAXVAQUFBqdc//vijQy1x3qFDh5xuQsQhZ+7IgQkxmhADADiNZykiBfeqO9DPziDvoSFv5ufAlPhMicNkv/3u9rff7YadBbjIggULLEmu/omPj7duuukmKz4+3vG2RMoPOXNHDkyI0YQY+OGHH36c/uFZyk+k/HCvuuOHfibvkfRD3szPgSnxmRKHG38WLFhQq98lM20XXGXhwoUaOHCg080AAAAAAAAAAFTBggULdM0119Ta9VgwHgAAAAAAAAAAIAAjT+AqGRkZWrVqlf365JNPVmxsrIMtAgAAAAAAAAD8VkFBgfbs2WO/vvjii5WYmFhr16d4AgAAAAAAAAAAEIBpuwAAAAAAAAAAAAJQPAEAAAAAAAAAAAhA8QQAAAAAAAAAACAAxRMAAAAAAAAAAIAAFE8AAAAAAAAAAAACUDwBAAAAAAAAAAAIQPEEAAAAAAAAAAAgAMUTAABghLVr12rw4MFq1qyZvF6v2rZtqzvuuEN79+51umkAAAAAADgqLS1Nb7/9tu6++25deOGFio+Pl8fjUZs2bZxuWp3lsSzLcroRAAAA1fHaa69p3Lhx8vl8at68uVq1aqUdO3YoOztbjRo10qeffqrOnTs73UwAAAAAABwxceJE/eUvfznu98nJyUpJSan9BkUARp4AAICItnnzZt12223y+Xx67rnntHfvXm3cuFH79u3TddddpyNHjmjQoEEqKChwuqkAAAAAADiiYcOG6tu3r+677z7NmTNHEydOdLpJdR4jTwAAQEQbMmSI3nvvPV133XV69913S72Xl5enjh07avfu3Zo8ebJuu+02h1oJAAAAAEDdMW/ePA0dOpSRJxVg5AkAAIhYR48e1YcffihJ+tOf/nTc+/Xr19eYMWMkSbNnz67VtgEAAAAAgMhF8QQAAFSopKRE3377raZNm6bbb79d559/vmJiYuTxeOTxeNSnT5+Qz11YWKgZM2ZowIABSk5OltfrVYsWLdSzZ089++yzSk9Pr/D4r7/+Wvn5+YqJiVH37t3L3OdY+9avXy+fzxdyWwEAAAAAKE9d/uyM0EQ73QAAAFB3LViwQNdff71yc3Nr/Nzbt2/XiBEjtGnTplK/T0tLU1pamtauXatnnnlG06dP14ABA8o8x44dOyRJp5xyimJiYsrc59RTT5Uk5efna9euXWrbtm3NBQEAAAAAcL26/tkZoWHkCQAAKFdGRkZY/vKXmpqqvn372n/583g8uvjii3XzzTfr6quvVv369SVJv/zyiwYOHKgVK1aUeZ7Dhw9Lkk466aRyr5WUlGRvHzlypIYiAAAAAADAr65/dkZoGHkCAAAq1axZM3Xt2tX++eijjzRp0qSQzzdy5Ejt27dPkpScnKyFCxeqc+fO9vvp6ekaPny4li9frqKiIg0dOlQ7d+5UYmJiqfPk5eVJUrmjTiTJ6/Xa2+H4yywAAAAAAFLd/eyM0FA8AQAA5briiiu0a9cunXLKKaV+v379+pDPuXjxYn322WeS/EWPRYsWqVOnTqX2ady4sRYuXKhzzjlHP/30kw4fPqynn35aTzzxRKn9jv0rm8LCwnKvl5+fb283aNAg5HYDAAAAAFCWuv7ZGaFh2i4AAFCu5s2bH/eXv+p6+eWX7e3Ro0cf95e/Y+Li4vToo4/ar6dOnari4uJS+zRq1EiSdOjQoXKvd2xqr8D9AQAAAACoKXX9szNCQ/EEAADUmpycHC1fvtx+PWbMmAr3Hzx4sOLj4yX5iyCrV68u9f7pp58uSdq9e3e5o09++OEHSf7pu5KTk0NuOwAAAAAAtaGmPzsjNBRPAABArVmzZo0KCgok+f91TNeuXSvc3+v1qkePHvbr3y5+d+6558rr9aqwsFDr1q0r8xyrVq2SJHXr1k316vFXHwAAAABA3VbTn50RGr5BAAAAtWbbtm32dqdOnRQdXfnya+edd16Zx0v+v0QOGDBAUukhzcfk5eVp+vTpkqRhw4aF1GYAAAAAAGpTTX92RmgongAAgFrz/fff29vBTqEVOG/s9u3bj3t//PjxioqK0pw5c/T888/L5/NJ8g9zvummm7R7924lJyfrlltuqWbrAQAAAAAIv3B8dkbVUTwBAAC1JnBh92bNmgV1TPPmze3twMXfj+ncubNefvll1atXT/fcc49atWql888/Xy1bttScOXOUmJio+fPnKzY2tvoBAAAAAAAQZuH47Lxnzx41btzY/rn55pvL/P2dd95Zzdabg+IJAACoNTk5OfZ2/fr1gzomcL/A4wONGzdOn332mQYOHKiSkhJt3rxZjRo10m233abNmzfr3HPPrV7DAQAAAACoJeH47FxSUqJDhw7ZP9nZ2ZIkn89X5u8hVT5ZGgAAQA3Jz8+3t2NiYoI6JnDESF5eXrn79ezZU/Pnzw+9cQAAAAAA1AHh+Ozcpk0bWZZV/ca5CCNPAABArfF6vfZ2YWFhUMcUFBTY28H+ixsAAAAAACIVn53rBoonAACg1sTHx9vbFY0iCRS4X+DxAAAAAACYiM/OdQPFEwAAUGtOOukke/vAgQNBHZOWlmZvJyUl1XibAAAAAACoS/jsXDdQPAEAALXm9NNPt7d37doV1DG7d++2tzt27FjjbQIAAAAAoC7hs3PdQPEEAADUmjPOOMPe3rx5s4qLiys95r///W+ZxwMAAAAAYCI+O9cNFE8AAECt6dmzp2JjYyVJR48e1caNGyvcv6CgQOvWrbNfX3LJJWFtHwAAAAAATuOzc91A8QQAANSa+Ph49e3b1379xhtvVLj/+++/r+zsbEn+OVsvuuiicDYPAAAAAADH8dm5bqB4AgAAatUdd9xhb7/xxhvaunVrmfvl5uZq/Pjx9utbb71V0dHRYW8fAAAAAABO47Oz8yieAACAWnXllVeqd+/ekvxDi6+66ip9++23pfY5dOiQBg4cqB9//FGS/1/O3HfffbXeVgAAAAAAnMBnZ+d5LMuynG4EAACouwYMGKB9+/aV+l1aWpoOHDggSYqLi9Opp5563HGLFy9Wy5YtyzxnamqqunXrpv3790uSPB6PLr74YrVv314HDx7UsmXLlJubK0mKjo7W0qVLSw1ZBgAAAACgLuGzs3kongAAgAq1adNGu3btqvJxP//8s9q0aVPu+9u3b9eIESO0adOmcvdp0qSJpk+friuvvLLK1wcAAAAAoLbw2dk8TH4GAAAc0bFjR61fv16zZ8/WrFmztHXrVh04cECJiYlq166drr32Wo0ZM0aNGzd2uqkAAAAAADiCz87OYeQJAAAAAAAAAABAABaMBwAAAAAAAAAACEDxBAAAAAAAAAAAIADFEwAAANjVEycAABhISURBVAAAAAAAgAAUTwAAAAAAAAAAAAJQPAEAAAAAAAAAAAhA8QQAAAAAAAAAACAAxRMAAAAAAAAAAIAAFE8AAAAAAAAAAAACUDwBAAAAAAAAAAAIQPEEAAAAAAAAAAAgAMUTAAAAAAAAAACAABRPAAAAAAAAAAAAAlA8AQAAAAAAAAAACEDxBAAAAAAAAAAAIADFEwAAAAAAAAAAgAAUTwAAAAAAAAAAAAJQPAEAAAAAAAAAAAhA8QQAAAAAAAAAACAAxRMAAAAAAAAAAIAAFE8AAAAAAAAAAAACUDwBAAAAAAAAAAAIQPEEAAAAAAAAAAAgAMUTAAAAAAAAAACAABRPAAAAAAAAAAAAAlA8AQAAAABUSWpqquLj4+XxeHTXXXeVuc/DDz8sj8cjj8ejhx9+uHYb6JCtW7cqKipKHo9Hjz/+uNPNAQAAQDVQPAEAAAAQlD59+thfhlf156abbnK6+ahB9957r44ePaqEhAQ99NBDTjcnKPfee699P7Zp00aWZYV0nsOHDys2NtY+1xtvvGG/d9ZZZ2nUqFGSpCeeeEJ79uypiaYDAADAARRPAAAAAABB+/LLL/Xuu+9Kkv70pz+pSZMmDrcoOKNHj7a3d+3apVWrVoV0ntmzZ6uwsFCSFBcXpyFDhpR6/8EHH1RUVJRyc3M1fvz40BsMAAAAR0U73QAAAAAAkadr167q1q1b0Pt37949jK1BbXrwwQclSbGxsbr77rudbUwVdOrUSeeee66+/vprSdJbb72lPn36VPk8b731lr09ePBgxcfHl3r/1FNP1eDBgzVnzhzNmDFD999/v04//fRqtR0AAAC1j+IJAAAAgCobMGCAa9axwK+++uorLVu2TJI0ZMgQNWvWzOEWVc3o0aPt4sl7772nl19+WfXr1w/6+B07dmj9+vWlzleW22+/XXPmzFFJSYmeffZZvfrqq9VrOAAAAGod03YBAAAAAIIyceJEe3vs2LHONSREI0eO1AknnCBJysrK0oIFC6p0fOCok1NOOUW///3vy9yvT58+OvXUUyVJb7/9ttLT00NrMAAAABxD8QQAAAAAUKnMzEzNmzdPktS8eXNddNFFDreo6po0aaL+/fvbrwOLIZWxLEtvv/22/frGG2+Ux+Mpd/+hQ4dKkvLz8zVr1qwQWgsAAAAnUTwBAAAA4Jg2bdrI4/HI4/EoJSVFkpSamqqHHnpInTt3VmJiouLi4tSxY0fdeeed2rVrV5XOX1RUpBkzZui6665Tu3btlJCQoLi4OLVt21YjRozQ/PnzZVlWhedYuXKl3cbANTIWL16sESNG6LTTTlN8fLw8Hk+pkRnH5OXl6YUXXlCvXr3UuHFj1a9fX+3bt9eIESO0fPnyCnNxzDXXXGO/9+STTwYd/4QJE+zjrr322qCPK8v777+v/Px8SdIf/vAH1atXcx8nv/nmG7Vo0cJu69VXX628vLwy912+fLluu+02nXXWWUpKSlJsbKxatmypfv366aWXXir3uGMCp9r65JNPlJaWFlQbV61aVer+GzVqVIX7Dxo0yN4OLLoAAAAgMrDmCQAAAIA6Y8GCBbrpppuUmZlZ6vfff/+9vv/+e02bNk1z587VlVdeWem5Vq5cqbFjx2rnzp3HvZeSkqKUlBTNnj1b3bt317x589SqVaug2piZmakxY8Zo/vz5le67efNmDRo06Lg2/PTTT/rpp580e/ZsjRs3Ti+++GKF5/njH/+oDz74QJI0ffp0/eMf/6j02j6fT2+88Yb9urrTbC1atMjevuSSS6p1rkCrV6/WH/7wB7vPR40apWnTpik6uvTH1T179mjUqFFauXLlcefYv3+/9u/fr48//lhPPvmkZs+erd69e5d5vauuukpJSUk6fPiwSkpK9M477+ivf/1rpe0MHKXSo0cPdejQocL9f/e73+nEE09UZmamNmzYoF9++UVNmzat9DoAAACoGyieAAAAAKgTli1bpttuu00lJSU65ZRT1KNHDzVs2FA///yzVq5cqeLiYuXl5em6667Tli1b1LZt23LPNXfuXF1//fUqKiqSJNWvX1/du3dXmzZtVK9ePe3YsUNr165VcXGx1q1bpx49emjDhg2VLoBuWZZuuOEG/ec//5HH49H555+vM888U5ZlacuWLaWmcfrxxx/Vt29fHTx40P5dp06d1KVLF9WrV0+bNm3SN998o6lTpyohIaHC6/bv318nn3yy9uzZox9++EGrV6+udNqsTz75RLt375YktW7dWldccUWF+1fE5/OVGiVTXmGiqhYuXKjhw4fbI1r++te/6tlnnz1uOqxt27apb9++2r9/vyTJ4/HovPPO05lnnqn69etr7969Wr16tbKzs7Vv3z5ddtllWrJkSZlrksTExGjEiBF6+eWXJfmLIpUVT/Ly8uwpy6TyF4oPVK9ePfXs2VNLliyRZVlatmyZRo4cWelxAAAAqBsongAAAACoE/785z/L6/VqypQpuv7660t9gb5161b169dPe/fuVW5urh577DG9/vrrZZ5n69atGj16tIqKiuTxeHTPPffowQcfVGJiYqn9fvrpJ40ePVqff/659uzZozFjxmjx4sUVtnHNmjUqLi5Wp06dNHPmTHXq1KnU+wUFBZL8RZZbbrnFLpycdNJJmjlzpvr161dq/xUrVmjEiBF67rnn7IXMyxIVFaWbb75ZjzzyiCRp2rRplRZPpk2bZm+PGTOmWtNsbd++XVlZWZKkxo0bq2XLliGfK7B948aNU0lJiSTpySef1P3333/cfkePHtXgwYPtwkn//v314osvqn379qX2y8rK0v3336/JkyeroKBA119/vbZt26YTTzzxuHOOHj3aLp5888032rx583F9GWj+/PnKzs6WJMXGxmrYsGFBxdilSxctWbJEkvTll19SPAEAAIggFE8AAAAAVNnixYuVnp4e9P6PPvqokpKSKtynsLBQCxYsKHOExFlnnaWpU6fqqquukuQfWfLKK68cN7WTJN111132uhfPPfec/vKXv5R5vXbt2mnp0qXq1q2bvvvuOy1ZskTr16/XBRdcUG4bi4uL1bx5c61YsUKNGzc+7v3Y2FhJ0kcffaTVq1dL8o9AWLhwoXr16nXc/pdccok+/PBDde/eXYWFheVeV5JuueUWPfbYY/L5fJo3b55efPFFNWzYsMx9Dx06pIULF0ryj9K4+eabKzx3Zb799lt7+/TTT6/WuSTpqaeesqcei4qK0pQpU8qdVuz555/Xtm3bJPnXEZk3b16ZhaCGDRvq3//+t3Jzc/Xmm29q//79mjJliu67777j9u3atavOOOMM+7xvvfWWnnnmmXLbGzhl1zXXXHNcIa48Z5xxhr39zTffBHUMAAAA6gaKJwAAAACqbMOGDdqwYUPQ+997772VFk+uuuqqCqeWGjBggJo3b660tDTl5ORo27Ztx40W+Oabb7RixQpJ0rnnnqu77767wmvGxcXpoYce0ogRIyRJM2fOrLB4Iknjx48vs3ASKHDUx/Dhw8ssnBxz/vnna9SoUZo+fXqF5zz55JN1xRVXaPHixcrNzdWsWbM0bty4MvedMWOGXYy59NJL1aZNmwrPXZmff/7Z3m7dunXI57EsS/fcc49eeOEFSf5i06xZs0otrh6oqKhIL730kr3vlClTKh1B88QTT+itt96SZVmaOXNmmcUTyT/65NhIl3feeUdPPfWUoqKijttv//79WrZsWanjghW4jk5KSkrQxwEAAMB5oY/bBgAAAIAaNHTo0Arf93g86ty5s/26rC+jA6fdGjFixHFrZ5QlcPHzzz//vNL9g5myadWqVfb2DTfcUOn+wewjSbfeequ9HVig+a3A96q7ULwkHThwwN4+6aSTQjpHcXGxRo8ebRdOGjZsqKVLl5ZbOJGkjRs36pdffpEk9e3bN6gF11u2bKmOHTtKkrZs2WIvRP9bN9xwg12I2bdvX6kCSaCZM2faU4s1b978uKnXKhJYZEtLSwv6OAAAADiPkScAAAAAqmzChAl6+OGHa/ScFa05cUzgF/fH1uAItHbtWnv7008/1a5duyo9p2VZ9vaePXsq3Ldt27aVjqDZu3dvqUXiKxvJIvmnkfJ4PKXaUparrrpKLVu21L59+7Rhw4Yy1+r48ssvtWXLFkn+L+8HDhxY6fUrc/ToUXu7QYMGVT4+NzdX11xzjV3catq0qZYsWaLzzjuvwuMC+zM1NVV//vOfg7peRkaGJH/fpqamlrnuSatWrXTppZfq448/luQfrVNWYSRwyq7rr7++zNEp5QnMVX5+vnw+X7XWngEAAEDtoXgCAAAAoE4o6wvu3wpcVL2oqOi49/ft22dvH1uouyqOHDlS4ftNmjSp9ByBhZMGDRpUWmyRpISEBJ144on2l/7lObZw/D//+U9J/hEmEydOLLVP4KiTG2+8UTExMZVevyoqK/CU5YUXXlBxcbEk//Rjy5cv12mnnVbpcYH9+e2335ZaeyVYFfXp6NGj7eLJ/PnzlZOTo/j4ePv9r7/+Wps3by61f1WEkisAAADUDfyTFwAAAAB1QjBTbFWmvCmagnVseqby1K9fv9Jz5OTk2NtVGaUR+KV9RcaOHWuPXnj77bdLLTSfm5ur2bNnl9q3JsTFxdnbeXl5VT4+sOh1+PBh7d+/P6jjqtufkuyiTVkGDRqkhg0bSvLnbt68eaXeDxx1cu655wY1OipQYK68Xi+jTgAAACIIf3MDAAAAYIzAL/nff/99WZZV5Z/qCiyC5ObmBn1c4NRYFUlOTtZll10mSTp06JAWLFhgvzd37lx7OrMePXrozDPPDPr6FWnevLm9nZ6eXuXj7777bl199dWS/HEOGDBAq1evrvS4wP686667QurPPn36lHv++vXrl1prZ8aMGfZ2cXGxZs2aZb+u6qgTqfQopMAcAgAAoO6jeAIAAADAGM2aNbO3nVqgO3CR8Nzc3EqnApP8o1Uqm7IrUHkLx9f0QvHHtG3b1t5OTU2t8vExMTGaN2/ecQWUzz77rMLjaqM/A4siK1eutNe9+eijj3TgwAFJ/pEzI0eOrPK59+7da2+3adOmeg0FAABAraJ4AgAAAMAYgYuzf/HFF460oXXr1qUKKOvXr6/0mI0bN1Zp1Msf/vAHeyTDsmXLtHv3bu3YscMuRsTHx+u6666rYsvLd84559jb33//fUjnOFZAueqqqyT5Cyj9+/evsIAS2J9r1qwJyxoiF154odq1aydJ8vl8evvttyWVnrKrf//+Qa1381vbtm2ztzt37lzNlgIAAKA2UTwBAAAAYIxjX8xL/mm7jo0cqG0XX3yxvT1z5sxK9z/2hX2woqOjNWbMGEn+L/ynT5+u119/3X5/+PDhQa+hEozTTz9dJ554oiT/VGGBIyqqIiYmRu+9916pAkpFI1B69eqlxMRESf4RL4sWLQrpuhXxeDwaNWqU/XrGjBnKzMzUBx98YP8ulCm7JOmbb76xt7t16xZ6IwEAAFDrKJ4AAAAAMEa3bt3sNS7y8vJ04403llpQvSKFhYVBTbEVjJtvvtnefuedd7Ru3bpy9/3vf/+rN998s8rXGDt2rDwejyRp+vTppc5Rk1N2SVK9evV0ySWX2K8///zzkM91rIBy5ZVXSvJPWVZeASU2NlZ33323/fqOO+6oUuEm2OLZqFGj7Fxu27ZNf//735Wfny9JSkpKKlWUC5bP59OaNWsk+Qs0l156aZXPAQAAAOdQPAEAAABglBdffNEedfHJJ5/ooosuqnDqrB07duixxx5TmzZtamyqr/79++vCCy+U5P8S/eqrr9ayZcuO22/lypUaMGCASkpKFBMTU6VrtGvXTn379pUk7dq1y14TpFOnTqWmu6opx9YrkaQVK1ZU61wxMTF6//33gyqg3HPPPTrrrLMk+dcQOf/88zV37lz5fL4yz52enq5XXnlF5513np555pmg2tO2bVv17t3bfv3KK6/Y2yNGjKhy30jSV199pczMTElS165d1bRp0yqfAwAAAM6JdroBAAAAACLP4sWLlZ6eHvT+DRo00NNPPx3GFv3q7LPP1qxZszRs2DDl5uZq/fr16t69u9q3b6/zzjtPSUlJys/P1y+//KJvv/025CmoKuLxePT666+rR48eOnTokNLT03XZZZepc+fO6tKliyT/lE6bNm2SJN17772aO3eudu3aJck/0iMYt95663FFmVtuuaXG4gh07bXX6o477lB+fr4++OADTZ48Oeh2luVYAeXaa6/Vhx9+aBdQlixZYheeJP/6LR988IEuvfRS/fzzz0pLS9N1112nxo0bq3v37mrevLksy9Lhw4f13Xff6YcffrALK4GjZSozevRorV69uszfh2L+/Pn29vXXXx/SOQAAAOAciicAAAAAqmzDhg3asGFD0PufeOKJtVY8kfxrn6xZs0a33HKLvvrqK0nSzp07tXPnznKPadOmjVq3bl1jbTjttNO0fPlyDRo0SD///LMkf8EkcB0MyV8AeeKJJ/TOO+/Yv2vYsGFQ1xg4cKCaNm2qX375RZJ/mqsbb7yxhiIo7cQTT9SQIUP09ttvKy0tTatXr7anSAvVsSm8Bg8ebBdQ+vfvf1wBpV27dtq4caNuu+02zZs3T5ZlKT09Xf/5z3/KPXdiYqI6deoUdFuGDh2qO++8U7m5ufbvzjjjDHXt2jWk2ObNmydJ8nq9GjlyZEjnAAAAgHOYtgsAAACAkTp37qyNGzfqo48+0u23365zzjlHjRs3VnR0tOLi4tSmTRv169dP48eP1xdffKGffvrJHhVSk23YsmWLnnvuOXXv3l1JSUnyer1q27athg0bpmXLlmnq1Kk64YQT7PVW6tWrF3Tx5IQTTii1HsegQYOUlJRUozEEClx/5NVXX62Rc8bGxh63Bkr//v2PW1clKSlJc+bM0bfffqsHHnhAPXv2VIsWLRQTEyOv16vmzZvrwgsv1F133aUPPvhA+/fvr9KokYSEBA0aNKjU70IddbJq1Sr98MMPkvyjTho3bhzSeQAAAOAcj2VZltONAAAAAAA3++GHH9ShQwdJUseOHbVt27agjrMsS+3bt7dHtixbtsxeByVcLr/8cn3yySeKjY1VSkqKmjdvHtbrRaJhw4Zpzpw5ioqK0pYtW9SxY0enmwQAAIAqYuQJAAAAADjs3XfftberMk3Up59+ahdO2rVrV6U1PkL12GOPSZIKCgo0ceLEsF8v0uzcuVPvvfeeJOmGG26gcAIAABChKJ4AAAAAgIN+/vlnPfvss/brqqyP8X//93/29rhx4+TxeGq0bWW54IILNGzYMEnSv//9bx08eDDs14wkjz/+uEpKStSgQQM9+uijTjcHAAAAIaJ4AgAAAABhcvnll2vp0qUqLi4u8/0PP/xQF154oTIzMyVJXbp00eWXXx7UuT/44AMtXLhQkn+9jrFjx9ZMo4Pw7LPPKi4uTtnZ2fZIFEjfffed3nrrLUnSAw88oFNOOcXhFgEAACBUrHkCAAAAAGFybCRIo0aNdN555+nkk09WTEyM0tPT9eWXXyo1NdXeNyEhQV988YU6depU5rl+/PFHvfTSSyopKdGOHTv0ySef6NjHuUcffVQPPfRQ+AMCAAAAXILiCQAAAACESbDTaJ122mmaO3euOnfuXO4+K1eu1O9///vjft+rVy+tWLFCMTExIbcTAAAAQGnRTjcAAAAAAEy1ZcsWLViwQGvWrNGuXbuUnp6uw4cPy+v1qkmTJurWrZuuuuoqDR8+XFFRUUGfNyYmRm3bttWwYcN0//33UzgBAAAAahgjTwAAAAAAAAAAAAKwYDwAAAAAAAAAAEAAiicAAAAAAAAAAAABKJ4AAAAAAAAAAAAEoHgCAAAAAAAAAAAQgOIJAAAAAAAAAABAAIonAAAAAAAAAAAAASieAAAAAAAAAAAABKB4AgAAAAAAAAAAEIDiCQAAAAAAAAAAQACKJwAAAAAAAAAAAAEongAAAAAAAAAAAASgeAIAAAAAAAAAABCA4gkAAAAAAAAAAEAAiicAAAAAAAAAAAABKJ4AAAAAAAAAAAAEoHgCAAAAAAAAAAAQgOIJAAAAAAAAAABAAIonAAAAAAAAAAAAASieAAAAAAAAAAAABKB4AgAAAAAAAAAAEIDiCQAAAAAAAAAAQACKJwAAAAAAAAAAAAEongAAAAAAAAAAAASgeAIAAAAAAAAAABCA4gkAAAAAAAAAAEAAiicAAAAAAAAAAAABKJ4AAAAAAAAAAAAEoHgCAAAAAAAAAAAQgOIJAAAAAAAAAABAgP8fVrAZQU+eET8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label=\"0.1-1 Hz\")\n", + "plt.errorbar(energies, covspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label=\"3-30 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional Covariance\");" + ] + }, + { + "cell_type": "markdown", + "id": "5e8e484f", + "metadata": { + "id": "5e8e484f" + }, + "source": [ + "This should largely be equivalent to the RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "c85620f9", + "metadata": { + "id": "c85620f9", + "outputId": "f24abf3e-fc16-4b0a-91cd-9c3fa5e61be2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:13<00:00, 3.03it/s]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:13<00:00, 2.96it/s]\n" + ] + } + ], + "source": [ + "rmsspec_01_1 = RmsSpectrum(events, freq_interval=[0.1, 1], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n", + "rmsspec_3_30 = RmsSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "658f5d53", + "metadata": { + "id": "658f5d53", + "outputId": "db261231-2c52-4840-ee73-1d17f8641d7c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjkAAAR9CAYAAAAEKyWvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3xTVf8H8E9G0zSdQBeWUTYKsgQFF0NQlOlABRmi4vYRB7gR3KgPio+IE0VluR6GgwdEivxkyZRZhhTaQmnpTtPs+/sj5JrQtE3aJDe5+bxfr77ITe843+89vQn33HOOQhAEAURERERERERERERERGFGKXUBiIiIiIiIiIiIiIiIGoKNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGGJjRxERERERERERERERBSW2MhBRERERERERERERERhiY0cREREREREREREREQUltjIQUREREREREREREREYYmNHEREREREREREREREFJbYyEFERERERERERERERGFJLXUBiGpTVlaGDRs2iMstW7ZEdHS0hCUiIiIiIiIiIiIiovOZTCbk5uaKy/3790dSUlJQjs1GDgpZGzZswOjRo6UuBhERERERERERERH5YPny5Rg1alRQjsXhqoiIiIiIiIiIiIiIKCyxkYOIiIiIiIiIiIiIiMISh6uikNWyZUu35eXLl6N9+/YSlSb4DAYDsrKyMGDAAOh0OqmLExaYMwe550Eu8cklDiIiqfA6SuGE9TUy8DxLg3n3HXMWGTmQS4xyiSMSHD161G3qgfPv7QYSGzkoZJ0/yXj79u3RpUsXiUoTfGazGVFRUbjoooug0WikLk5YYM4c5J4HucQnlziIiKTC6yiFE9bXyMDzLA3m3XfMWWTkQC4xyiWOSHT+vd1AUgiCIATtaEQ+2L9/P7p27Sou79u3L6IaOYiIiIiIiIiIiIjCgZT3cjknB1GIqq6uxurVq1FdXS11UcIGc+Yg9zzIJT65xEFEJBVeRymcsL5GBp5naTDvvmPOIiMHcolRLnFQYLGRgyhE2e12lJWVwW63S12UsMGcOcg9D3KJTy5xEBFJhddRCiesr5GB51kazLvvmLPIyIFcYpRLHBRYHK6KQhaHqyIiIiIiIiIiIiIKfRyuiohqsFqtyMnJgdVqlbooYYM5c5B7HuQSn1ziICKSCq+jFE5YXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBFKL0ej0WLlwIvV4vdVHCBnPmIPc8yCU+ucRBRCQVXkcpnLC+RgaeZ2kw775jziIjB3KJUS5xUGBxuCoKWRyuioiIiIiIiIiIiCj0cbgqIiIiIiIiIiIiIiIiH7GRgyhElZeX44033kB5ebnURQkbzJmD3PMgl/jkEgcRkVR4HaVwwvoaGXiepcG8+445i4wcyCVGucRBgcVGDqIQpdPpMHr0aOh0OqmLEjaYMwe550Eu8cklDiIiqfA6SuGE9TUy8DxLg3n3HXMWGTmQS4xyiYMCi3NyUMgK5DhugiDAbreD1Z+IqG4KhQJKpRIKhULqohARERERERFRiJJyTg51UI5CFAKsVisqKytRUVEBg8EgdXHqZbfbUVFRgYSEBCiV7HTlDebMQe55kEt84RZHdHQ0YmNjERcXB51Ox0YPIpKcwWDAmjVrcO211/LJPgp5rK+RgedZGsy775izyMiBXGKUSxwUWGzkoIig1+uRl5fHnhtERA1kMplgMplQUlICrVaLFi1aICoqSupiEREREREREVGE43BVFLL81cWJDRxERP6nVqvRsmVLaLVaqYtCRERERERERBKTcriq0B8fg6gRrFZr2DZwcN4Q3zFnDnLPg1ziC/c4rFYrcnNzw7b8RBT+LBYLDh06BIvFInVRiOrF+hoZeJ6lwbz7jjmLjBzIJUa5xEGBxeGqSNYqKytr3ICLiYlB06ZNERMTE9JjylutVhQXF6NZs2ZQq/mn6g3mzEHueZBLfOEShyAIsFgsqKqqQnl5udsXS6vVCr1ej/j4eAlLSESRymAwYPny5XjggQeQmJgodXGI6sT6Ghl4nqXBvPuOOYuMHMglRrnEQYHF4aooZPmji9OJEyfcJhmPiYlB69atQ7pxg4goVFmtVpw8eRImk0l8Ly4uDi1btpSwVEREREREREQkNQ5XRRQAgiC4NXAAQNOmTdnAQUTUQGq1Gk2bNnV7r6qqikNWEREREREREZFk2MhBsmW322u8FxMTI0FJGsZqteLUqVOwWq1SFyVsMGcOcs+DXOIL1zh0Op3bsiAIbOQgIkmUlZVh1qxZKCsrk7ooRPVifY0MPM/SYN59x5xFRg7kEqNc4qDAYiMHyZanm27h1ItDpVKhWbNmUKlUUhclbDBnDnLPg1ziC9c4lMqaXx08NSoTEQVaXFwcJk2ahLi4OKmLQlQv1tfIwPMsDebdd8xZZORALjHKJQ4KrNCd6ZQowikUCkRHR0tdjLDCnDnIPQ9yiU8ucRARSUWtViMzM1PqYhB5hfU1MvA8S4N59x1zFhk5kEuMcomDAos9OYhClM1mQ0lJCWw2m9RFCRvMmYPc8yCX+OQSBxGRVKqqqrB06VJUVVVJXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGCxkYMoRCkUCqhUqrAaYktqzJmD3PMgl/jkEgcRkVSUSiWSkpI8DqNHFGpYXyMDz7M0mHffMWeRkQO5xCiXOCiwFAJnC6UQtX//fnTt2lVc3rdvH7p06eL19larFUeOHHF7r0OHDlCrOUobEVFD8dpKREREREREROdr7L3cxmATGFEIKa+24J21h/HO2sOYsyYbb/68H3PWZOOdtYdRXm2Runghz263w2AwRPwkyHLPg1zik0scRERSMZvN2L17N8xms9RFIaoX62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iEKQIAiw2u0wVBthtdvBDlfeEQQBlZWVEZ8vuedBLvHJJQ4iIqkYjUZkZWXBaDRKXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGBxuCoKWZE2XFVRpQm7Tpbiux15qDJZYbX/86epVipw/cXN0SY5Fp3S45EcFy1hSYkokoXbtZWIiIiIiIiIAk/K4ap4R4JIYn8X6bH9RCnyS6thstpchqUSIAiAQgFY7UBeqQFFlSZsO16CjCYx6JPZFG2SYyUte7BVVFTgl19+wdq1a7F9+3YUFRXh7Nmz0Gg0aNKkCTp27IjevXtj5MiRuPzyy6UurmQEQYAgCFAoFDAajdi6dSs2b96MvXv3Ijs7G7m5uaioqIAgCEhMTET79u3Rr18/jB8/Hj179vR7eex2O/bs2YM//vgDe/bswYEDB3DixAmUlJTAYrEgPj4eGRkZ6N27N8aMGYOhQ4fWOaGYa3zOSbvPnj2LL774Aj/88AOOHz+O0tJSpKWloUuXLhg7dixuv/12REVF+S2mnJwctGnTRlw+fvw4MjMzvd4+MzMTJ06cAAAsWLAAkydP9lvZiIgihSAIMJlMiI6OFj8PiEIV62tk4HmWBvPuO+YsMnIglxjlEgcFFoerIpJItdmGX/aexordp5BfWg1BEFBSZUZplRlnKozIK63GyWI98kqrcabCiJyzVSipMkEQBOSXVmP5rnz8svc0qs02qUMJOIPBgNdeew2ZmZm4/fbb8dlnn2HPnj04deoUzGYz9Ho9cnNzsW7dOsyePRtXXHEFOnXqhCVLlkTkUEA2mw0FBQWw2WyYN28eBg4ciGeffRZLlizBzp07UVRUBJPJBLPZjKKiImzevBlz5sxBr169cPvtt6OkpMSv5dm5cyd69eqFRx55BJ9++ik2bdqE/Px8VFdXw2q1orS0FPv27cMXX3yBYcOGoU+fPti7d69X8QHAjz/+iIsuugjTpk3D5s2bUVBQAJPJhJMnT+KXX37BxIkT0bdvXxw+fNivcfkL5+QgImqY8vJyzJ49G+Xl5VIXhaherK+RgedZGsy775izyMiBXGKUSxwUWOzJQSSBokoTlu/Kh95khSAIOF1uREG5EQaLFVVmq7ie82l2i82OIr0JpQYLNCol0hO1aJ6oxaGCSuSVVmN0zwykxMtzCKuTJ09ixIgR+Ouvv9zeb9WqFbp164aUlBTxpveePXtw5swZAMDhw4cxbtw45ObmYvr06VIUXTIqlQopKSlQqVRu7+t0Olx44YVo164dkpKSYLVakZeXhy1btqCiogIAsGzZMhw4cAD/93//h4SEhICUrVOnTujYsSOaNWsGlUqFwsJC/Pnnn8jPzwfgaBS5+uqr8dtvv3nsWeIa35o1a3DjjTfCarWKMV5zzTVISUnBsWPH8Pvvv0MQBOzcuRPXXHMNtm7digsuuMDvcTVGXb1WiIiodvHx8bjvvvsQHx8vdVGI6sX6Ghl4nqXBvPuOOYuMHMglRrnEQYHFRg6iICuqNOG7HXkwWmyoNltxtKgKVSbHDdoolRJx0VGIVisRpXIMxSMIAiw2AekJWpRXW2G22XGyxIDiKjPapziGq/puRx5uuaSF7Bo6cnJy0K9fPxQUFAAAFAoFxo4di2effdbjmH6CIGD79u34z3/+g0WLFsFut8NgMAS72JJTKBTi0EwdOnTAq6++iuuuuw7du3f3OG+C0WjEu+++i+eeew52ux179+7Fs88+i/fff98v5UlMTMQTTzyB66+/Hn379kVsbM1h1gRBwMqVK3H33XejuLgYZWVlmDRpEvbs2VOjO6ozvuLiYtx2221iA8c111yDpUuXIjk5WVx3z549GDlyJE6ePIm8vDxMmDAB69at80tc/sLutkREDaNSqZCeni51MYi8wvoaGXiepcG8+445i4wcyCVGucRBgcXHR4mCqNpsw/Jd+TBabKg0WrDvVAWqTFaolQq0TYlFtxaJSNJFIUajgkqpgN1mhUqpQIxGhZZNdejZKgltU2KhVipQZbJi36kKVBotMFoc+5XT0FVmsxljxowRGzi0Wi1++OEHLFq0qNZJi+x2O9q0aYPPP/8ce/bscZvsKJLYbDacPXsWNpsNo0aNwrPPPotLLrmk1omhtVotnn76abz44ovie19++SWMRqNfytOhQwe8/fbbuOaaazw2cACOG/2jRo3CDz/8IL63d+9ebNq0qca6zvhef/11lJWVAQDatWuHlStXujVwAED37t2xatUqsdHnt99+w5o1a/wSl79wuCoioobR6/X44osvoNfrpS4KUb1YXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBFERZ2YXQm6yoNltxqKASNruAeK0a3VokITVeC+V5T3QrlectKxRIjdeiW4skxGvVsNkFHCqoRLXZCr3JiqzswmCGE1Bvvvkmtm/fLi4vXLgQo0ePrnMbhUIhTkTVtWtXbNmyBUOGDAlwSUOPax58cdddd4mvKysrcfToUX8XrV5XX3012rVrJy7v2rWrxjoKhQJKpRKfffaZ+N5LL70EnU7ncZ/dunXDpEmTxOV58+b5scRERCQVtVqNzMzMWhvxiUIJ62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iILk7yI9DhVUQhAEHC2qEhs4OqcnQKOu+aeoUCigUqk93qjWqJXonJ4gNnQcLaqCIDgaPP4uCv+W7erqarz33nvi8k033YRbb7213u2USiXi4+PFOQ5iY2NxxRVX1LnNiRMnMGPGDPTt2xdpaWnQaDRIS0tD37598eKLLyI3N7fWbQsLCxEVFXXuXKnEOSW80alTJygUjiHJvv32W6+388b5efBWSkqK23JlZaU/i9Wgcngqg1KpxI4dO8ReHPHx8bj55pvr3Oedd94pvl6zZg2qqqr8UlZ/8HSe7rzzTrF++PLjGicRkdxptVoMGDAAWq1W6qIQ1Yv1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxEQbL9RCkA4HS5URyiqkNqPFRKz0/bC4IAm80GQRA8/l7lsn2VyYqCCqPbccLZd999h6KiInH58ccf92o7u90OvV7v9fA/r776Kjp37oyXX34ZW7duRWFhISwWCwoLC7F161a89NJL6NixI2bPnu1x+9TUVLGniN1ux+LFi7067rZt23D48GEAjvkqRowY4dV23vI1D04HDhxwW87MzPRjqbxjtVpx5MiROstgt9vxv//9T1zu168foqPrno/m0ksvFXt6GI1GbN682T8F9gMOV0VE1DAmkwlbtmyByWSSuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMBiPx+iICiqNCG/tBqCIKCg3NEY0aqZzmMPDlc2m63Op/E1aiVaN9Ph76IqnC4zIj1Bi/zSapzVm5AcF76TkP/222/i61atWtXbG8NJEAQYDAbExMTUu+7DDz/sNmxRXFwcBg4ciPT0dBQUFGD9+vXQ6/UwGo14+umnUVBQgHfeeafGfsaPH49ffvkFALBo0SJMmzat3mMvWrRIfH3LLbf4/WkEX/LgZDab8fTTT4vLl19+OZo3b+7XcnnjlVdeQXFxMQBHT5yhQ4fWWEcQBLcGmV69etW736ioKFx88cXYunUrAODgwYMYPHiwn0rtf4MHD0ZcXFy96wmCgM8//xzV1dUAOIk5EUUWs9mM3bt3o0uXLvU2dhNJjfU1MvA8S4N59x1zFhk5kEuMcomDAouNHEQBVF5tAQDsOlkKk9WGkiozDBYrolRKxGvVMFndJwo3We2wujzVrVSrYRMEQBBgsnp+2jteq4ZCARgsjt4cTWM12HmiFJe1bQYASIyJClB0gbNx40bx9WWXXeb1diqVCqmpqfWu980337g1cNx5552YO3cuEhISxPcqKirw0EMP4euvvwYAvPvuu7jqqqtw0003ue1r9OjRiIuLg16vx549e7B///5aJ0YHHA1XS5cuFZfHjx/vdXze8jYPZrMZp0+fxsaNG/Hvf/8bu3fvBuAY/uk///mP38vlic1mQ3FxMXbs2IGPP/4Yy5cvB+C4WT9nzhw0adKkxjYqlQo5OTnicuvWrb06VqtWrcRGjkOHDjW67P7iqSFz/PjxXtWN5557Tmzg0Ol0+Ne//uX38hERhar4+Hjcf//9UheDyCusr5GB51kazLvvmLPIyIFcYpRLHBRYbOQgCqAF/3ccAHDwdAXKqy0orTKjymxFXHQU9uSW11jfarOLw04BgCAA4oPZQhnUKs+9OsoMFuhNFlRWW9EkVoO/i6qw/1QFAOCxIR39G1QQnDhxQnxdV4PB+ZxDfKlUqlqfaLfb7W49FsaMGYMFCxbUWD8hIQFffvklKisrsWLFCgDA9OnTMXr0aLeb0jqdDjfddBO+/PJLAMDXX3+N119/vdYyrl27FoWFjgniW7Vqhf79+3sdn7fqyoNarYbNZqtlS6Bjx474/vvv0bVrV7+Xy2nw4MFYt25drb9PSkrCRx99VOs8LIIgiL09ACAtLc2r46anp4uvS0pKvCytd1588UXEx8d7vb7r8Wsbkq4+ixYtwmuvvQbA0Sj01VdfoWfPng3aFxFROLLb7aioqEBCQoLP81ARBRvra2TgeZYG8+475iwyciCXGOUSBwUWawZRgAmCgCqTFQBgtjl6Y0TXM0yVYzucm5Oj/mM49+fcf5XJ2uAbp1KrqKiA1WoVl5OSkrze1mazobCwsM6b+GvWrMHx447GJ41Gg/fee6/WBhGFQoF58+YhKsrRG+bYsWNYu3ZtjfVcn7hfvHhxnbl39gwBgHHjxgVkeCFv8nA+lUqFZ599Fvv37w9oA0d9Ro0ahcOHD9c50bzNZnObkNzbYblc19Pr9Q0vpAdffvkl5s2b5/WPa/kbMifHli1bcPfdd4vLL7/8co1eRkREcldRUYG5c+eioqJC6qIQ1Yv1NTLwPEuDefcdcxYZOZBLjHKJgwKLPTmIAswmCLDaHTe9rTbHv1Gq+m9sKxQ49yR+/cdw7s+5f6tdgE0QoA7D8fldb/4C8GpeAifnME0qlarWdVzn+7jhhhvcnu73JCMjA0OHDsWqVasAAOvXr8d1113nts4111yD5s2b4/Tp0zh58iQ2btyIq6++usa+qqqqxOGYgMAMVQXUnYeHHnpIbPyoqqpCbm4utm3bhsrKSrz22mv45ptv8J///MfjXBj+Mnr0aHTu3BmAY8isM2fO4M8//8Tp06exYsUKbNiwAc8//zwef/xxj41AKpXKbcIxjUbj1XFdx+50DvEUCnx9EiU3NxejR48Wc3DHHXfgueeeC0TRiIhCWkJCAh599FG34SaJQhXra2TgeZYG8+475iwyciCXGOUSBwUWGzmIAsz1oX4BjgVvn973to3CuT/n/s8/bjg5f8gfX564VygUUKvrvqzt2rVLfH355Zd7td8rrrhCbOTYuXNnjd8rlUqMHTsWc+bMAeDoreGpkWP58uWoqqoCAPTs2dOnobh8UVce5s6dW+O9qqoqzJs3DzNmzMDRo0cxbNgwLFiwAJMmTQpI+R5++OEa79ntdixfvhyPPPIITp06hSeffBIHDx7Ep59+WmNdhUIBrVYLg8EAwNFQ4g3XhhFfJmX3xvHjx5GZmen1+pmZmeKwbL705qmqqsLIkSNx5swZAEC/fv3w2Wef+VRWIiK5UCqVPvX4JJIS62tk4HmWBvPuO+YsMnIglxjlEgcFFoerIgow1/uXCpxrjPCiBcKX4aqc+3Pu//zjhpOEhAS3G/RlZWVeb+vNME1FRUXia28nrHa9eX327FmP67j2yvjuu+883nhftGiRx/X9zdfhqmJjYzF9+nQsWbIEgKPB4f7778fff/9dY90XX3wRDz/8cK0/L774YoPKrFQqcdNNN2Hjxo3il5fPPvtMLNP58el0OnHZ214Zruv50kMo0LwdrkoQBIwfP16cIL5Vq1b473//69ZDhYgoklRWVuLDDz+s0QuUKBSxvkYGnmdpMO++Y84iIwdyiTFYceTr83Hxwos9/uTr8wN6bGo89uQgCjCVQgG1UgGrXYBapYDFJsBiE6CufUQlkULhXTuk5dwwVepzw1aplQqowrWVA47Gh2PHjgEADhw44PV2CoUCOp2uzifjXXuGxMbGerVf1/Vq+1B19szYv38/SktL8dNPP+HGG28Uf19YWCjO56FSqTBu3Divjt0Q3uTBkxtvvBHXXHMN1q1bB6PRiA8++ABvv/222zoLFy50mxj+fK1bt8asWbMaVG4AaNu2LZ544gm88MILAIB///vfGDt2rNs6CoUCzZo1ExucnL0a6lNQUCC+btq0aYPLKJVnn31WHO4sLi4Oq1at8nrSdSIiOdJoNOjRo4fXwxYSSYn1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxEAXTXlW0AAKkJp5BXakDO2SoU6U1IT9CiZVNdjfVNVjuQV+ZxX91aJNU6YXluiQFRagVS4qKRmRyLFk10GNH9Ar/FEWxXXnml2MixdetWr7dTKpX1PqHv+nvn0FH1cV3v/OG0XI0fPx7PPPMMAEevDddGjmXLlokTql9zzTX1zgXSGN7koTZDhgzBunXrAAB//PGHP4vlUxmcjRy7du1CdXW12/BSSqUSF154IbKzswGgzkYXVydPnhRfO+cECQXezMnx9ddf44033hDXX7RoEbp16xboohERhbTo6Gj07dtX6mIQeYX1NTLwPEuDefcdcxYZOZBLjHKJgwKLw1URBVBiTBQSY6LQJjkW0WoVUuKjoVYqUV5tRZRKiWi16rwfJdRKx49KoYBCsJ/rCaJEtNrT+ipEqRz7UyuVSImPRrRahTbJseKxw9GgQYPE1ydOnMCmTZu82s5ut6OysrLO4X9SUlLE1643veuSk5Mjvk5OTq51vTvuuEPsPfHjjz+ivLxc/N3XX38tvp4wYYJXx20ob/JQmyZNmoivi4uLa/w+JycHgiDU+uOaq4ZyLYPdbkdpaanb7+12O9q1aycuu86zUhur1Yq9e/eKyxdeeGGjy+kv9Z2nzZs345577hGXX3/9dYwcOTLQxSIiCnlGoxFZWVkwGo1SF4WoXqyvkYHnWRrMu++Ys8jIgVxilEscFFhs5CAKgo5pjqf/m+g00KiUsNjsOKs31bMVYLfXPyHHWb0JFpsdGpUSTXSOrnud0mvvbRAOxowZ49aY4JzQuz6CIMBkMtU550nPnj3F1942nriu16tXr1rXa9mypTjhuMlkwnfffQcAOHr0KLZt2wbAMfSVaw+PQPAmD7U5ffq0+FqqIZ1cy+CpHIIguD3FsXnz5nonH//zzz/Ficq1Wi369evnp9IG1smTJ3HjjTeKk6bfeeedmD59usSlIiIKDVarFTk5OWJPSaJQxvoaGXiepcG8+445i4wcyCVGucRBgcVGDqIgSImPRkaTGCgUCqQnagEAJ4sNMFtrf4JboVAgKiqqznkVzFY7ThQ7btw2T9JCoVAgo0kMkuPCeyLimJgY/Otf/xKXv//+e3z//ff1bqdSqZCcnAyVyjHhSVVVVY2GDNdeIj///DMKCwvr3OepU6fwyy+/eNzeE9cJxZ29N1x7cYwePdrruUAa6vw8+OLHH38UX0vV28G1DJmZmdBqtW6/V6lUGDVqFBITEwEAFRUV+OGHH+rc5xdffCG+HjJkSMDPgS9qG65Kr9dj5MiR4pwjV111FT766KNgFo2IKKTFxcXhzjvvbPAQjUTBxPoaGXiepcG8+445i4wcyCVGucRBgcVGDqIg6d3aMQRP80QtYqPVsNoFHCmshK3W3hoCBMEOwPPvbS7bx0arkZ7guBHcJzP8JlT2ZPr06W69JiZMmIBVq1bVuY0gCLBYLBAEAfv27UPfvn2xZs0at3WuvfZatGnjmCvFZDJh6tSpde7vkUcegcViAQC0a9cOgwcPrrMMY8aMEW/K//7778jLy8OiRYvc4gg0Zx70er1P3Tnnz5+P7du3i8s333yzX8rjadir2uzcuRPvv/9+nWVw9lBxHcJpxowZqK6u9rjPffv2uTVyPPTQQ16XJxg89bix2+0YP3489uzZAwBo06YNfvjhB060RkTkwmazoaCgADabTeqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCi40cREHSNiUOndPjoVAo0D4lFiqlApVGKw4VVHjs0SEIgNlsgacRh8xWOw4VVKDSaIVK6difQqFA5/R4tEkOnSfUGyM6OhrffvstUlNTAQDV1dUYPXo0Jk6ciIMHD3rcxmq1Yu3atZg4cSK6d++Offv21VhHqVSKEzgDwJIlSzBlyhTo9Xq39SorKzF58mS3HgJvvvlmvZNEJyYmYvjw4QAcN6qnTp2Ko0ePAgDS09PrbCSZOXMmFAqF+NNQNpsNRUVFOHToENq3b4+33noLubm5ta5fUFCAxx57zO3m/1VXXSXG0VjdunXDY489hp07d9a6jsFgwAcffIBBgwaJDTNNmjTBU089VWNdZ3zTpk1DUlISAODIkSMYNWpUjQaVv/76CyNGjBCHsxo4cCCuu+46v8TlL57m5Hj22WexYsUKAEBCQgJWrVpV53wwRESRqLKyEh999BEqKyulLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLAUQkMGbScKgv3796Nr167i8r59+9ClSxevt7darThy5Ijbex06dIBarfZbGX1Vbbbh6y0noDdZUWm04FCBoyeGSqlA62Y6xGvV2JPrnKxagCAAjnvdCvRslYQolRJn9SacKDaI23VOj0e8Ngpx0WqM79saMRrfhygKZTk5ORgxYkSNBovMzEx069YNycnJYqv+7t27xaF9nN5++2088cQTNfb78MMPY968eeJyfHw8Bg4ciLS0NBQWFmLdunVuDR9Tp07FO++841WZV6xYgdGjR9d4/7HHHqtzfpGZM2di1qxZ4nJDL8/OScD37Nnj1hsmMzMTXbt2RXJyMqKjo1FRUYFDhw7hr7/+cnsiolOnTli/fj2aN2/eoOOfLykpSZyEPTk5Gd27d0fz5s0RFxcHg8GAnJwc7NixA1VVVeI2cXFx+Pnnn3HVVVfVGp9CocCaNWswfPhwcWxOnU6HwYMHIyUlBceOHcOGDRvEPGZkZGDbtm244IILGh1TTk6O2CMIAI4fP47MzEyvt8/MzMSJEycAAAsWLMDkyZPdfu/ayHXJJZe4zUFSl759+7oNmRYIoXhtJaLI5JyDKjo6ulEPBxAFA+trZOB5lgbz7jvmLDJyIJcYgxVHvj4fQ78f6vF3q29ejYy4jIAdWy4aey+3MXhHgiiIYjQqjO6Zge925AEAul6QgKNFVagyWfF3URUUCqDMYEG0WokoleNpfsEuwGKzI7fEgPJqKyw2x1PfsdFqtE+JRYxGDW2UY79ya+AAHDeDN2/ejHfeeQdz5sxBWVkZAMdN5pycnFq36969O2bOnOmxsQEA3n//faSnp+OVV16ByWRCZWUlVq5cWWM9rVaLGTNm4JlnnvG6zDfccAOaNm2KkpISt/cDffPZydkTRKPRQKlUij0F6suZUqnE3XffjdmzZ6NJkyZ+K0909D9zxJw9exbr1q2rc/0BAwZg/vz56Ny5s8ffu/Z0ue666/DDDz/grrvuwtmzZ2EwGDyex549e2LJkiV+aeDwt/q+pO3YsQM7duzwal96vT5o9YyISGoKhaLGvE1EoYr1NTLwPEuDefcdcxYZOZBLjHKJgwKLw1URBVlKfDRuuaQF4qLViNGo0fWCBLRupoNGpYTFZofeZEFxlQmny43IK9HjdLkRxVUmFFQYYbHZoVEp0bqZDl0vSECMRo24aDVuuaQFUuLDe7LxusTFxeGFF15ATk4OFi9ejMmTJ6Nbt25IT0+HRqNBXFwcWrVqhSFDhuCxxx7Dtm3bsHv37lobOJyef/55ZGdn4/nnn0efPn2QnJwMtVqN5ORkXHrppXjhhReQnZ3tUwMHAERFReG2225ze+/CCy9061URSDabDWfOnEHnzp1RUFCARYsW4aGHHsJVV12FjIwMaLVaqFQqJCUloV27dhg9ejTeeustnDx5Eh9//LFfGzgAR+PKzz//jGeeeQbXXnst2rZti7i4OCiVSsTFxaFFixYYPHgwnnnmGezatQvr16+vtYHDNT5n75MRI0bgwIEDmD17Nvr27YvU1FRoNBq0bNkSQ4cOxcKFC7F161Z06tTJr3H5i6fhqoiIqH4VFRV49913UVFRIXVRiOrF+hoZeJ6lwbz7jjmLjBzIJUa5xEGBxeGqKGTJcbgqV9VmG7KyC3GowDGmoCAIKKgwYvfJMphtdlhtdtgFAUqFAmqVEp3T45ESH40mOo345Hfn9HgM6JQqyx4cDWG322E0GqHVauudO0PO5J4HucQXrnGE+rWViCKH2WzGgQMHcNFFF0Gj0UhdHKI6sb5GBp5naTDvvmPOIiMHcokxWHFwuKrG43BVRBEoRqPC9Rc3R6f0eGw/UYr80mo0jdWgSaznC3Zmciyi1Y7GjIwmMeiT2VQ2k4z7i1KphE6nk7oYkpN7HuQSn1ziICKSikajQY8ePaQuBpFXWF8jA8+zNJh33zFnkZEDucQolzgosMLn0VEimWqbEodbe7fEhH6t0atVEyTGREGtVEAQBFitVgiCALVSgRZNdLi0TVNM6Ncat/ZuyQYOD+x2O8rLyyN++B+550Eu8cklDiIiqVRXV2P16tWorq6WuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMBiTw6iEJEcF43L2jbD/lMVjgYOux3GaiO0MVqolUqM6H4BEmOipC5mSBMEATabDZE+Cp/c8yCX+OQSBxGRVOx2O8rKythYTGGB9TUy8DxLg3n3HXMWGTmQS4xyiYMCi3NyUMiS+5wcnpRXW7Dg/457/N1dV7ZhIwcRSS4cr61EREREREREdeGcHI3HOTmICACQGBOFx4Z0BOB4yttsNkOj+Weicaobc+Yg9zzIJT65xEFEJBWr1Yq8vDy0aNGCDa0U8lhfIwPPszSYd98xZ5GRA7nEKJc4KLA4JwdRiLLZbCguLobNZpO6KGGDOXOQex7kEp9c4iAikoper8fChQuh1+ulLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLA4XBWFrEgcroqIKNTx2kpERERERERyw+GqGk/K4arYk4OIiIiIiIiIiIiIiMISGzmIQpTVasXp06dhtVqlLkrYYM4c5J4HucQnlziIiKRSXl6ON954A+Xl5VIXhaherK+RgedZGsy775izyMiBXGKUSxwUWGzkIApRSqUSSUlJUCr5Z+ot5sxB7nmQS3xyiYOISCo6nQ6jR4+GTqeTuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMDiANpEIUqpVCImJkbqYoQV5sxB7nmQS3xyiYOISCpRUVHo3Lmz1MUg8grra2TgeZYG8+475iwyciCXGOUSBwUWHx8lClE2mw2lpaWw2WxSFyVsMGcOcs+DXOKTSxxERFIxGAxYvnw5DAaD1EUhqhfra2TgeZYG8+475iwyciCXGOUSBwUWGzmIiIiIiIiIiIiIiCgsKQRBEKQuBJEn+/fvR9euXcXlffv2oUuXLl5vb7VaceTIEbf3OnToALWao7QRETUUr61EREREREQkN/n6fAz9fqjH362+eTUy4jKCXKLw09h7uY3BnhxEIcput6O6uhp2u13qooQN5sxB7nmQS3xyiYOISCoWiwWHDh2CxWKRuihE9WJ9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdRiLLb7SgrK+MNUB8wZw5yz4Nc4pNLHEREUuH4zBROWF8jA8+zNJh33zFnkZEDucQolzgosDhcFYUsDldFRBR6eG0lIiIiIiIiueFwVY3H4aqIiIiIiIiIiIiIiIh8xEYOohBltVpx6tQpWK1WqYsSNpgzB7nnQS7xySUOIiKplJWVYdasWSgrK5O6KET1Yn2NDDzP0mDefcecRUYO5BKjXOKgwGIjB1GIUqlUaNasGVQqldRFCRvMmYPc8yCX+OQSBxGRVOLi4jBp0iTExcVJXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGBxAG2iUFJdBmyZDwBQAIh2/V3fB4CYpOCXKYwoFApER0fXv6LMyT0PcolPLnEQEUlFrVYjMzNT6mIQeYX1NTLwPEuDefcdcxYZOZBLjHKJgwKLPTmIQpRdsKO6uhp2wS51UcKGzWZDSUkJbDab1EWRlNzzIJf45BIHEZFUqqqqsHTpUlRVVUldFKJ6sb5GBp5naTDvvmPOIiMHcolRLnFQYLGRgygUCQIUdhsUghUKuw0QBKlLFBYUCgVUKhUUCoXURZGU3PMgl/jkEgcRkVSUSiWSkpKgVPK/NBT6WF8jA8+zNJh33zFnkZEDucQolzgosDhcFVGo0BcCuduAgr2AuQoKuwVa5++UUUB8GtCsHZDaBYhLkbKkIUupVCIxMVHqYkhO7nmQS3xyiYOISCoxMTEYOnSo1MUg8grra2TgeZYG8+475iwyciCXGOUSBwUWm8CIpHb2KLDra+DPz4C8PwFjGWC3QBAAm83u6MRhtwBlJ4ETm4E/P3WsX3xM6pIHXUVFBZYtW4Z77rkHPXr0QEZGBqKjoxEfH49WrVph8ODBePLJJ/HHH39IXVRJ2e12GAwG2O01hzpbt24dJk6ciI4dOyI2NhZNmzZFt27dMG3aNBw6dChgZTp+/Di++eYbTJ8+HQMHDkRCQgIUCoX444u64qvL2bNnsXr1arz88ssYOXIkLrjgArcyZGVl+bQ/b33xxRfiMVzHEfUmjpycHLcy5uTkBKSMREThyGw2Y/fu3TCbzVIXhaherK+RgedZGsy775izyMiBXGKUSxwUWOzJQSQVswE4uhY4c8CxLAiAoRgwlAA2M2CzQLBZAZUaUEU5GjXi0gBdM6As1/GTdhHQfgig0UkbS4AZDAa8++67ePvtt1FaWlrj92azGXq9Hrm5uVi3bh3+/e9/o2PHjpg5cyZuv/32iBsOSBAEVFZWuk1qXVFRgXvvvRfLli1zW9dgMKC0tBR79+7F3LlzMWvWLDzzzDN+K8vp06dx8cUXo7i42G/79BRffS6//HJs3rzZb2Xwh4bEQURE/zAajcjKykLbtm2h0WikLg5RnVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEEkBX0h8NcywKR3NG5U5Dt+LAbArAcAKACoVSoAgqPRo6oQqC4BVBogIcPxc+aAo4dHt9uAuFRJQwqUkydPYsSIEfjrr7/c3m/VqhW6deuGlJQU2Gw2FBQUYM+ePThz5gwA4PDhwxg3bhxyc3Mxffp0KYouGZVKhbS0NHHZYrHgxhtvxG+//Sa+17VrV/Tq1QtGoxEbN27E6dOnYbFY8Oyzz8JisWDGjBl+KYvJZPJrAwdQMz5vnDp1yq9l8IeGxEFERP9ISEjA1KlTpS4GkVdYXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBFGz6QmD3IsBidDRqFGWLDRtQaYDoeEAdDUEZBceIcnYo7BYg/gLHUFY2M1B6HKgqAlI6ObbbvQjocYfsGjpycnLQr18/FBQUAHBM1Dx27Fg8++yz6NKlS4317XY7/vzzT8ybNw+LFi0ShwOKNIIgQBAEcYijl19+WWzg0Gq1+Pzzz3H77beL65vNZjz//PN46623AAAzZ85E//790b9/f7+VKS4uDr169cKll16KPn36wGg0YtKkSQ3a1/nxeSsqKgpdu3ZFnz59xJ8ePXo0qAz+0NA4iIjIQRAEmEwmREdH8zpKIY/1NTLwPEuDefcdcxYZOZBLjHKJgwKLc3IQBZPZ4OjBYTECpgrg9B5HA4cyCmjWAbigJxDTBIjSAUo1zFYboFQ7lpu0Blr0caynjHJsd3qPYz8Wo2O/Zvnc0DebzRgzZozYwKHVavHDDz9g0aJFHhs4AEcjR8uWLbFgwQLs2bMHXbt2DWaRQ4azZ4vNZkNhYSHmzJkj/u7dd991a+AAAI1GgzfffBO33XYbAMcXCH8NWZWWloZ9+/ahvLwcGzZswFtvvYVbb70VrVq1avA+XePz1sqVK1FRUYGdO3fio48+wj333IPu3bs3uAz+0JA4iIjoH+Xl5Zg9ezbKy8ulLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEEUTEfXOoaoshiAM/sBuxWITnA0bsSnAwqXP0mFAlGaKMC1lVqhdKx3QU/HdnarYz8Wg2O/R9cGP6YAefPNN7F9+3ZxeeHChRg9enSd26hUKqSkpEClUqFr167YsmULhgwZEuCShh7XPCxcuBBVVVUAgI4dO+Lee++tdbs333wTSqWjDm7evBm7du1qdFliYmLQpUsXcb/+4Bqft7p16watVuu3MvhDQ+IgIqJ/xMfH47777kN8fLzURSGqF+trZOB5lgbz7jvmLDJyIJcY5RIHBRYbOYiC5exRxxwaguAYosrZwJHWFVDXnHhYAUCpUMBjRzx1tGM7Z0NHUbZjv2cOOI4T5qqrq/Hee++JyzfddBNuvfXWerdTKBSIiooSuy/GxsbiiiuuqHObEydOYMaMGejbty/S0tKg0WiQlpaGvn374sUXX0Rubm6t2xYWForHU6lUyM/P9zJCoFOnTuIwRd9++63X23nDNQ/Lly8X37/zzjvr7NrZqlUrDBo0SFz+73//69dy+cv55zlc+SuOzMxMsS758vPFF1/4JxAiIomoVCqkp6ezsZjCAutrZOB5lgbz7jvmLDJyIJcY5RIHBRYbOYiCJXeL49+K/H+GqErpDCg9X6QFQYDFYoEgCJ73p1Sd217t2F9Fvvtxwth3332HoqIicfnxxx/3ajubzYazZ896PfzPq6++is6dO+Pll1/G1q1bUVhYCIvFgsLCQmzduhUvvfQSOnbsiNmzZ3vcPjU1VewpYrfbsXjxYq+Ou23bNhw+fBgAkJiYiBEjRni1nbeceaiqqsKWLf/UhwEDBtS77cCBA8XXrhOVhxJfz3OokkscRERS0ev1+OKLL6DX66UuClG9WF8jA8+zNJh33zFnkZEDucQolzgosDjxOFEw6AuBslxHbwtnY0STTI89OP6hgEKpBDz35XBQRwNN2gDFRxz7TchwHEdfBMSl+DGA4HK9ud6qVat6e2M4KRQKryeievjhhzFv3jxxOS4uDgMHDkR6ejoKCgqwfv166PV6GI1GPP300ygoKMA777xTYz/jx4/HL7/8AgBYtGgRpk2bVu+xFy1aJL6+5ZZb/D6MkjMPhw8fht1uF9/r2bNnvdv26tVLfH3w4EG/lstffDnPocxfcUyaNAnFxcX1rldcXIylS5e6HZ+IKJyp1WpkZmZCreZ/aSj0sb5GBp5naTDvvmPOIiMHcolRLnFQYLF2EAVSdZnj39xtgNUIGIod82eoNIA2wfGeK6vRMfwUHE0bagUAwQoIqLmukzbBMVeHxQBUngJ0zYDcrUDmlY7fxyT5P64A27hxo/j6sssu83o7pVLp1RiN33zzjVsDx5133om5c+ciISFBfK+iogIPPfQQvv76awCOCbuvuuoq3HTTTW77Gj16NOLi4qDX67Fnzx7s37+/1onRAcfT+643msePH+91fN5y5uHIkSPie6mpqV41prhOCF5SUoKioiKkpIRWg5m35znU+SuOWbNm1buOxWLBtddeKy537ty53jluiIhCnVar9aqXIlEoYH2NDDzP0mDefcecRUYO5BKjXOKgwGIjB1EgbZnv+LdgL2AsAwwljqGlouOB/B0117dbgYpTABydPgTBDoVC+c/c48pa/mSrSwFTJWCsAHRNgbNHHMcEgIHP+DWkYDhx4oT4uq4Gg/PZ7XYYDAbodLpaJ7q22+14+umnxeUxY8ZgwYIFNZ5qT0hIwJdffonKykqsWLECADB9+nSMHj3abd86nQ433XQTvvzySwDA119/jddff73WMq5duxaFhYUAHA0K/fv39zo+bznz4DrkV1pamlfbpqenuy2XlJSEXCOHN+c5VJWUlODhhx8G4BiSzmq1Qq1W19qrorKy0i/Hfeihh5CVlQUAaNq0KVatWoXExES/7JuISComkwm7du1Cz549ER1dV+9YIumxvkYGnmdpMO++Y84iIwdyiVEucVBgsZGDKNAEATBXOV7bzI5/6xymStwQgiBAoRBQ55BVzv2ZKv/Zv7nKcdwwHI6moqICVqtVXE5KSvJ6W0EQYDAYEBMTU+s6a9aswfHjxwEAGo0G7733Xq03mBUKBebNm4eff/4ZFosFx44dw9q1a3Hddde5rTd+/HixkWPx4sV47bXXat2ns2cIAIwbNy4gQwY58+A6XmVdOXF1/nqhOOalN+c5VFVWVrr1IgqGd999F5988gkAICoqCt9//z3at28f1DIQEQWC2WzG7t270aVLF/6Hl0Ie62tk4HmWBvPuO+YsMnIglxjlEgcFVng9AksUjgQbYLc4XtvO/auMqnczhUIBlUrl3U1w5/6c+7dbHMcNQ+c/uR4XF+f1tiqVCqmpqVCpPE/mDrjP93HDDTfU6LlwvoyMDAwdOlRcXr9+fY11rrnmGjRv3hwAcPLkSbfhtlxVVVVh+fLl4nIghqoC/smD2WwW39NoNF5te/4Xhurqar+WzR+8Oc/ksHr1ajz55JPi8gcffMBuvkQkG/Hx8bj//vtlMYQhyR/ra2TgeZYG8+475iwyciCXGOUSBwUWGzmIAk0QXBcc/yjq/9MT4HhiXah3Tdf9uawteLVlyDn/Q8uXngTO4X+EOmLftWuX+Pryyy/3ar+uE5/v3Lmzxu+VSiXGjh0rLrv21nC1fPlyVFU5evX07NnTp6G4fOHMg2uDhWuDR11MJpPbcij2lvDmPIeq1q1bO/6uBQF2ux0WiwV2u1187/wfZ6+jhjhw4ABuu+022GyOBs/HHnsM99xzj79CISKSnN1uR1lZGex2u9RFIaoX62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iALNrSfGudeCFxdmQYDNZveusULcn8uxwnCoKsAxF4Za/c9IemVlZV5va7PZUFhYKN7U9cR1norWrVt7td/MzEzx9dmzZz2u49or47vvvvPYqLBo0SKP6/ubMw86nU58z9seGeev50tPmmB48cUX8dBDD2HKlCl46KGH8PDDD7v9vPjii1IX0Wve1NeGKi4uxogRI1BRUQHA0Wvp7bff9vtxiIikVFFRgblz54rXOqJQxvoaGXiepcG8+445i4wcyCVGucRBgcU5OYgCTaFyDCdltwCqKMe8Gc7XdW6ngEql9K6xwjkclnOfyijHccNU69atcezYMQCOp9G95c0wRq49Q2JjY73ar+t6tU0E7eyZsX//fpSWluKnn37CjTfeKP6+sLAQa9euFcs5btw4r47dEM48uE4YfubMGa+2LSgocFtu2rSpX8vWWAsXLnSbmP58rVu3xqxZs4JYooYL1LBbFosFN998M/7++28AQJcuXbB06dKwm6SdiKg+CQkJePTRR5GQkCB1UYjqxfoaGXiepcG8+445i4wcyCVGucRBgcVGDqJA6vuA49/4NKDsJFB8DKgqBOIvAJp46EVgNYovazRtXNATUGs9H6f0BKDSALGpQLN2QFIroOvNfglBCldeeaXYyLF161avt1MoFG69QDxx7ZngHDqqPq7r1TUG5Pjx4/HMM88AcPTacG3kWLZsmTih+jXXXFPvXCCN4cxD586dxfcKCwthNBqh1dZSh845efKk+Lpp06ZuDSXkX97U14Z44IEHsGHDBgBAcnIyVq1axbFLiUiWlEolkpKSpC4GkVdYXyMDz7M0mHffMWeRkQO5xCiXOCiw+FgnUSDFJDl+mrVzNFDEpQFKNWAsczRKqLU1f5RqQKmGoFDBbBUgKFSO9zytq9Y69mMsc6wTl+Z4r1m7f44dhgYNGiS+PnHiBDZt2uTVdt4M/+N60971hn5dcnJyxNfJycm1rnfHHXeIE8X/+OOPKC8vF3/nOk/HhAkTvDpuQznz0L59e/HpfUEQsHv37nq3dZ1z5MILLwxUERssJycHVqsVZ86cEeflcP1xPVehLhDDVc2ZMwefffYZAMdk8//973/Rpk0bv+2fiCiUVFZW4sMPP6y1lyVRKGF9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdRMKRe5PhX18zRKGEzA/rCejY6N1xVzT4d7vSFjv2pNI79A0BqYCa0DpYxY8a4NSbMmTPHq+0UCgV0Op3Y0OBJz549xdfeNp64rterV69a12vZsiWuvvpqAI4JvL/77jsAwNGjR7Ft2zYAjqGvXHt4BIIzDzExMejbt6/4flZWVr3bOnsAAO6NTaHEm/McDvwdx88//4xp06aJyx9//DGuvPJKv+ybiCgUaTQa9OjRAxqNRuqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCi40cRMEQlwoktXTMr5GQ4XivNAewmmrdRKFwjNlf5/1PqwkoPe54nZDh2CipJRAX3kMMxcTE4F//+pe4/P333+P777+vdzulUom4uDix90JVVVWNhgzXG/c///wzCgvrbmw6deoUfvnlF4/be+I6obiz94ZrL47Ro0d7PRdIQ7nmYfTo0eL7X3zxRZ3b5ebmYt26deKy67ah5PzzHK78Gcf+/fsxduxY2O12AMD06dMxadKkRu+XiCiURUdHo2/fvoiOjpa6KET1Yn2NDDzP0mDefcecRUYO5BKjXOKgwArvO0RE4aTluSfqEzIATZxjsvCiQ4Dd81A1ggBYbTYIQi37s9vObW917M/ZeNKqn//LLoHp06e79ZqYMGECVq1aVec2drsdlZWVsNvt2LdvH/r27Ys1a9a4rXPttdeKw/eYTCZMnTq11v0JgoBHHnkEFotjYvd27dph8ODBdZZhzJgx4rwXv//+O/Ly8rBo0SK3OALNNQ+TJk0SG1Wys7Px6aef1rrdU089JQ6d1K9fvzp7rUjJNb5w5q84zp49ixEjRqCiogIAMGrUKLz++uv+KCIRUUgzGo3IysqC0Wisf2UiibG+RgaeZ2kw775jziIjB3KJUS5xUGCxkYMoWJLbA2kXOXpbpHRyzKFhqgDO7KulR4cAwW4H4KGVw2pybGeqcOwnpZNjv2kXOebjkIHo6Gh8++23SE1NBQBUV1dj9OjRmDhxIg4ePOhxG7vdji1btuDOO+9E9+7dsW/fvhrrKJVKvPHGG+LykiVLMGXKFOj1erf1KisrMXnyZPzwww/ie2+++Wa9T90nJiZi+PDhYnmmTp2Ko0ePAgDS09PrbCSZOXMmFAqF+NNQgiDAZDJBEASkpqbi8ccfF3/3r3/9C998843b+haLBU8//TSWLFkivlffTfLMzEyxnHfeeWeDy9oQrvGFM3/EYTabcdNNN+H4cUePrm7duuHrr78O+14uRETesFqt4lxNRKGO9TUy8DxLg3n3HXMWGTmQS4xyiYMCSy11AYgiSvshQNm5ya7TugBn9jsaKk7tBJq0AbQJ4qoKhQJRUVHu2wt2xxwcpccdPTiUasd+onRAdJxj/zLStm1bbN26FSNGjMC+fftgt9vx1Vdf4auvvkJmZia6deuG5ORk2Gw2FBQUYPfu3Thz5ozbPuLj42vs99Zbb8Xvv/+OefPmAQA+/fRTLFu2DAMHDkRaWhoKCwuxbt06t4aPqVOn4qabbvKq3OPHjxfn43AdZmvs2LFQqVQ+58FXKpXKbU6TF154AX/88Qd+++03VFdX47bbbsMrr7yCXr16wWg04vfff8fp06fF9WfNmoX+/fv7rTwzZszAypUr3d47v1GpR48eNbZ76aWXMHLkyBrvnx+fN1auXIkZM2bUuc4999yDuLg4t/dGjhyJl156yadjeashcZxv8+bN2Lhxo7icmZmJp59+2qttJ0yYgMsuu6xRxyciklJcXFzQG9qJGor1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxEwaTRAd1uA3afG76oeXegKBsw64HiI4BCCVSXAupoCMooCFBAAQEKuwUoPQEYyxyTjAOOIapSOjkaOKK0jv1qdJKFFiiZmZnYvHkz3nnnHcyZMwdlZWUAgJycHOTk5NS6Xffu3TFz5sxa55V4//33kZ6ejldeeQUmkwmVlZU1bsQDgFarxYwZM/DMM894XeYbbrgBTZs2RUlJidv7rvN1BJIgCLBarVCr1WJj2Q8//IB7771X7MWxd+9e7N271227qKgozJw5E88++6xfy3Py5Ens2bOnznU8/f78/DmdH583SkpK6i3DsWPHarznqfHFXxoSh6d9uPJUh2vTu3dvNnIQUViz2WwoKipCSkpKUB4iIGoM1tfIwPMsDebdd8xZZORALjHKJQ4KLI5nQRRscalAjzscPS+idEDzHo5eHCqNowHDVAlUnQUqTsFemgtUnHIsV55y/F6lcazfvMc/PTh63OHYr0zFxcXhhRdeQE5ODhYvXozJkyejW7duSE9Ph0ajQVxcHFq1aoUhQ4Zg6tSp2Lp1K3bv3l3vxNnPP/88srOz8fzzz6NPnz5ITk6GWq1GcnIyLr30UrzwwgvIzs72qYEDcDQW3HbbbW7vXXjhhUGb48L5BcA5vwbgGEZr2bJlWLt2LcaPH4927dpBp9MhMTERXbt2xRNPPIE9e/b4vYEjEDzFF47kEgcRkVQqKyvx0UcfobKyUuqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCSyGE+6DmJFv79+9H165dxeV9+/ahS5cuXm9vtVpx5MgRt/c6dOgAtTpEOjCZDcDRtcCZA45lQXA0ZORtB2xmCDYLHPNxKKBQRQGpFwFxaYCumWP+DcAxB0f7IbLswdEQgiBAEIRGz2kR7uSeB7nEF65xhPy1lYgihnNuo+jo6LC6jlJkYn2NDDzP0mDefcecRUYO5BJjsOLI1+dj6PdDPf5u9c2rkRGXEbBjy0Vj7+U2Bu9IEElFowMuGgWkdgFytwBluY4GDF1TAECNy3azdoBa63id1BJo1U82k4z7S7jdLA4UuedBLvHJJQ4iIqkoFApotVqpi0HkFdbXyMDzLA3m3XfMWWTkQC4xyiUOCiwOV0UkteT2QM/xQJ97gBZ9AG0SoIyCIAgwm82OMfeVUUBSK6B1P8d6PcezgcMDm82GM2fORPzwP3LPg1zik0scRERSqaiowLvvvouKigqpi0JUL9bXyMDzLA3m3XfMWWTkQC4xyiUOCiz25CAKFXEpQOaVQMFex9BVdisUFgsQFQUo1UDXm4GYJKlLGdIUCgXi4+Mj/ul4uedBLvHJJQ4iIqlotVoMGDCAT/ZRWGB9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdRKFI45uGIUkVJXZKwolQqodNxfhK550Eu8cklDiIiqWg0GvTo0UPqYhB5hfU1MvA8S4N59x1zFhk5kEuMcomDAovDVRGFkpgkYOAzwMBnYO//FMp7PQh7/6cc77EXR73sdjvKy8tht9ulLoqk5J4HucQnlziIiKRSXV2N1atXo7q6WuqiENWL9TUy8DxLg3n3HXMWGTmQS4xyiYMCi40cRCFKEATYbDbHnBzkFebMQe55kEt8comDiEgqdrsdZWVlbCymsMD6Ghl4nqXBvPuOOYuMHMglRrnEQYGlEHh3hULU/v370bVrV3F537596NKli9fbW61WHDlyxO29Dh06QK3mKG1ERA3FaysRERERERHJTb4+H0O/H+rxd6tvXo2MuIwglyj8NPZebmOwJwdRiBIEASaTiU95+4A5c5B7HuQSn1ziICKSitVqRU5ODqxWq9RFIaoX62tk4HmWBvPuO+YsMnIglxjlEgcFFhs5iEKUzWZDcXExbDab1EUJG8yZg9zzIJf45BIHEZFU9Ho9Fi5cCL1eL3VRiOrF+hoZeJ6lwbz7jjmLjBzIJUa5xEGBxeGqKGRxuCoiotDDaysRERERERHJDYerajwOV0VEREREREREREREROQjNnIQhSir1YrTp09zzEEfMGcOcs+DXOKTSxxERFIpLy/HG2+8gfLycqmLQlQv1tfIwPMsDebdd8xZZORALjHKJQ4KLDZyEIUopVKJpKQkKJX8M/UWc+Yg9zzIJT65xEFEJBWdTofRo0dDp9NJXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGBxAG2iEKVUKhETEyN1McIKc+Yg9zzIJT65xEFEJJWoqCh07txZ6mIQeYX1NTLwPEuDefcdcxYZOZBLjHKJgwKLj48ShSibzYbS0lLYbDapixI2mDMHuedBLvHJJQ4iIqkYDAYsX74cBoNB6qIQ1Yv1NTLwPEuDefcdcxYZOZBLjHKJgwKLjRxERERERERERERERBSWFIIgCFIXgsiT/fv3o2vXruLyvn370KVLF6+3t1qtOHLkiNt7HTp0gFrNUdqIiBqK11YiIiIiIiKSm3x9PoZ+P9Tj71bfvBoZcRlBLlH4aey93MZgTw6iEGW321FdXQ273S51UcIGc+Yg9zzIJT65xEFEJBWLxYJDhw7BYrFIXRSierG+RgaeZ2kw775jziIjB3KJUS5xUGCxkYMoRNntdpSVlfEGqA+YMwe550Eu8cklDiIiqXB8ZgonrK+RgedZGsy775izyMiBXGKUSxwUWByuikIWh6siIgo9vLYSERERERGR3HC4qsaTcrgq3pEgCiG8oBIRERERERERERF5j8NVEZFsWK1WnDp1ClarVeqiSErueZBLfHKJg4hIKmVlZZg1axbKysqkLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEFEsqFSqdCsWTOoVCqpiyIpuedBLvHJJQ4iIqnExcVh0qRJiIuLk7ooRPVifY0MPM/SYN59x5xFRg7kEqNc4qDAYiMHUYg4XHoYn+/7vNbfP/3705i7cy6OlB6pdR05GTBgABQKRa0/8fHxaNWqFYYOHYrXXnsN+fn5UCgUiI6OhkKhqHPfM2fOrLG/xx57zKfy/fTTTzX2MWDAAK+2zcrKwoMPPojevXsjJSUFGo0GMTExSE1NRe/evTFu3Di888472L59OxoybZKnPJw6dQrffPMNpk+fjuuvvx6dO3dGYmIi1Go14uLi0Lp1a4wYMQLvvfceiouLfT6mNyoqKrB69WrMmjULt9xyC7p3745mzZpBo9FAq9UiPT0dAwYMwPPPP19jzof64nP6888/8eCDD+Kiiy5CQkICEhIScNFFF+HBBx/En3/+6feYXOuSt+ffacOGDdBqtVAqlfXWWSIiqkmtViMzM5NzAlFYYH2NDDzP0mDefcecRUYO5BKjXOKgwGIjB5HEfs/7HZN+mYSbV96MZdnLal1vd9FufLr3U9y08iZM+mUSfs/7PYilDD16vR65ubn43//+h+eeew5t2rTBiy++iOLiYthsNp/3t2TJEp+GDVq4cKHPxzh48CD69euHgQMHYv78+dixYwfOnj0Li8UCo9GIoqIi7NixA0uWLMHjjz+OPn364OKLL/b5ODabDSUlJW55uPbaa3HbbbfhrbfewurVq5GdnY2KigrYbDZUVVXh5MmT+PHHH/Hoo4+ibdu2mD9/vs/Hrc+zzz6L66+/HjNnzsT333+Pv/76CyUlJbBYLDCZTDhz5gw2bNiAV199FZ07d8bDDz8Mo9HoVXxmsxmPPvooLrvsMsyfPx8HDx5EZWUlKisrcfDgQcyfPx+XXXYZHnvsMVgsFr/H1hANqadERPSPqqoqLF26FFVVVVIXhaherK+RgedZGsy775izyMiBXGKUSxwUWGwCI5JImbEMr217Db8c/8XnbXcW7sTOdTtxQ5sb8MylzyBJm+T/AoaQPn364NJLL3V7r7y8HHv27MHevXsBABaLBS+99BKKiorw/vvv+3yMM2fO4H//+x+GDRtW77plZWVYtWqVT/vftWsXBg0a5DaGZFpaGnr37o309HQoFAoUFxdj3759OHr0qNiDoyFjTioUCqhUqlp7BzRv3hwXXnghWrRoAZ1Oh8rKShw6dAg7d+6EIAioqKjAgw8+iIKCAsyaNcvn43sjMTERF154Idq0aYOEhASYzWYcP34cW7ZsgdFohN1ux7x583Do0CGsXr3a7YkNT/FNmTIFX375pbjctm1b9O3bFwCwZcsW/P333xAEAe+++y4qKirw2WefBSQuX7D3BhFR4yiVSiQlJUGp5HNbFPpYXyMDz7M0mHffMWeRkQO5xCiXOCiw2MhBJIHskmw8+OuDKKwubNR+fj7+M7YXbMf8IfPRsUlHP5Uu9Nxwww2YOXOmx99t2rQJY8eOxcmTJwEA8+fPx1133YXevXt7te+LLroIBw4cAAB8+eWXXjVyfPPNN2IPA9fta2OxWDBu3DixweKCCy7AvHnzMHLkSI8f0kVFRVixYgW++uor/P33317F4UqpVCIxMdHtvVGjRuGpp57CgAED0LJlS4/b/f3337jvvvvw66+/AgBeeeUVDBs2rEYDU0P16tULc+bMwbXXXouLLrrI403+iooKzJw5E++88w4AYN26dXj33Xfx5JNP1hrfggULxAYOpVKJf//73/jXv/4l5tZut+O9997DE088AbvdjgULFqB///6YOHGiX+JqKH5BIyJqnJiYGAwdOlTqYhB5hfU1MvA8S4N59x1zFhk5kEuMcomDAot3WIiCLLskG3f9765GN3A4FVYXYvLqyThcetgv+ws3l19+OVasWOF2w/yjjz7yevuLL74Y3bt3BwCsXLkS5eXl9W7jHKoqKioKY8eOrXf95cuX49ChQwAcH87r16/H6NGja73JnZKSgnvuuQcbNmxAVlaWl5H8w263w2AwwG63i++9+uqrmDBhQq0NHICj98NPP/2Ezp07i/v55JNPfD5+be666y489thj6NKlS629GBISEjBnzhxMnjxZfO/88+kan8lkcmsAmz59OqZOneqWW6VSialTp2LatGniezNmzIDZbPZTZA3jen6IiMh3ZrMZu3fvlvx6TuQN1tfIwPMsDebdd8xZZORALjHKJQ4KLDZyEAVRmbEMD/76ICrMFX7db4W5Ag+sfQBlxjK/7jdc9OjRw23S540bN/q0/aRJkwAARqMR33zzTZ3rHjt2DJs2bQLg6GGSnJxc7/7XrFkjvh41ahQ6dvS+1027du28XtdJEARUVlY2aNJyjUaDO+64Q1zetWuXz/vwh7vuukt8ffToUej1enHZNb6VK1ciNzcXgGMIrBdeeKHWfc6YMQMJCQkAgBMnTuCnn34KUOm905DzQ0RE/zAajcjKyvI4fxNRqGF9jQw8z9Jg3n3HnEVGDuQSo1zioMBiIwdREL227TW/9eA4X2F1IV7f9npA9h0OevToIb4+deqUT9uOGzdOnPPBdV4HT1x/7+1wR/n5+eLr1q1b+1S2hlCpVEhLS4NKpWrQ9ikpKeLryspKfxWrwWU4vxyu8S1fvlx8/7bbboNOp6t1nzqdDrfeequ4/N///td/BW4Ab86PQqFo0E9DegAREYWbhIQETJ06VWzAJgplrK+RgedZGsy775izyMiBXGKUSxwUWGzkIAqS3/N+b9Ak4774+fjP+D3v94AeI1TFxMSIr31t3U9LS8O1114LAPjjjz9w/Phxj+sJgoCvvvoKANC0aVMMHz7cq/27Dp1U2779SRAE2O32BvcUcJ1jJDMz00+langZdDqdW6OHa3zr168X33ftzVObgQMHiq9/++03/xS2gdiTg4iocQRBgNFo5PWUwgLra2TgeZYG8+475iwyciCXGOUSBwUWGzmIguSzvZ8F5TgL9i0IynFCjWvvjbS0NJ+3d/bKEASh1t4cGzduFBspbrvtNmg0Gq/27Trk1KpVq+qdqLyxbDYbCgoKYLPZfN52//79+Oyzf+rqLbfc4s+iecU5+bjT6NGjxZ42wD/xlZSU4PTp0+L7vXr1qnffruvk5+ejosK/Q8f5wps5OR566CGvfoYNG+a2XW1znhARyUl5eTlmz57t1XxaRFJjfY0MPM/SYN59x5xFRg7kEqNc4qDAUte/ChE11uHSw9hZuDMox9pxZgeOlB5BhyYdgnK8UGC1WrFu3TpxuW/fvj7vY9SoUUhMTER5eTm++uorvPjiizXWachQVYDjJv17770HAKiursbVV1+Np556CuPGjUNGRobPZa2PSqVCSkqK18NV6fV6HDlyBMuXL8c777yDqqoqAED//v3dJgAPJJPJhNzcXKxbtw5vvvkm/v77bwBAeno63njjDbd1nfHt3On+N9WqVat6j3P+OtnZ2ejTp08jS98wtU087+r999+vd53y8nL069dPXL766qtx+eWXN6psREThID4+Hvfddx/i4+OlLgpRvVhfIwPPszSYd98xZ5GRA7nEKJc4KLDYyEEUQPl6x1wM32TXPZm1v32T/Q3u7HonACAjzv830UPNG2+8IU4+DQD33nuvz/vQarW49dZb8cknn+DYsWP4448/cMUVV4i/NxqN+O677wAAHTt29KkhZeDAgRgxYgRWrVoFACguLsb06dPx1FNPoWPHjrj00kvRu3dv9O3bF7169XLrtdAQCoUCUVFRtf7+66+/xoQJE+rcftKkSfjwww8bXZba5OXloWXLlnWuc9lll+Hbb7+tsZ4zvpKSEvG9hIQEtyHLaqPT6RAfHy/O8eG6j8Y6cuQIHn74Ya/Xd52rpaFsNhtuv/12HDx4EADQtm1b/PDDD3WefyIiuVCpVEhPT5e6GEReYX2NDDzP0mDefcecRUYO5BKjXOKgwGIjB1EADf1+qCTHXZq9FEuzlwIA9k7aK0kZAq2iogJ79uzB/PnzsWTJEvH9+++/H4MGDWrQPidOnIhPPvkEgKPXhmsjx/Lly8Wukb704nBavHgxJk6c6DbZtSAIyM7ORnZ2tjjXR2xsLIYPH4777rvPbf4IX9hsNpSWlqJJkyY+Tz7esmVLfP7557jmmmsadGx/iImJwRtvvIF//etfHn/vjM91qClvGjhc13U2cuj1+sYV1sWpU6cwb948v+3PG0888QRWr14NwNHQs2rVKjRr1iyoZSAikoper8d3332HW265BXFxcVIXh6hOrK+RgedZGsy775izyMiBXGKUSxwUWJyTg4hC3qxZs6BQKNx+EhMTcfXVV4sNHM2aNcPrr7+ON998s8HzEVx55ZVo27YtAOCbb76ByWQSf7dw4UIAjl4EdfWCqE1cXBx++OEH/PTTTxgyZEitQxVVVVVh2bJlGDRoEEaNGoXS0lKfj6VQKBAdHV1rHjp16iTO5fDAAw9g3Lhx6NGjBxQKBXJzczFkyBDcfPPNKCgo8PnY3oqLi3ObU2LixIm46qqroNVqUV1djUcffRS9evXCn3/+WWt8rhPMezs/CgBER0eLr6urqxsXiIQ+/vhjzJ07F4DjyZZly5bhoosukrhURETBo1arkZmZGbBeh0T+xPoaGXiepcG8+445i4wcyCVGucRBgcXaQURhT6VSYfbs2bj77rsbva8JEyZg1qxZKCsrw8qVKzFmzBgUFBRg7dq1ABzzVHgz90NtbrjhBtxwww0oKipCVlYWNm3ahB07dmDXrl01ehWsXLkSV111FTZv3uzT2JNKpbLO9fv06eNxHoojR45g6tSp+Pnnn/HDDz9gx44d+L//+z+0aNHC+wC9lJSU5HG+iZKSEsyePRtvvfUWdu3ahauvvhorV67EkCFDxHWc8el0OvE9s9ns9bFdG6986QFSn/79+yMrK8vr9bOyshrcWycrK8ttaKw5c+Zg6FBpeo4REUlFq9ViwIABUheDyCusr5GB51kazLvvmLPIyIFcYpRLHBRYbOQgopDXp08fXHrppeKyXq/HyZMnsWnTJphMJthsNtxzzz04duwYnn32Weh0Oq8mdfZk4sSJmDVrFgDHkFVjxozBokWLYLPZxN/7Q0pKCsaMGYMxY8YAcEyevmXLFnz++ef48ssvYbVaAQD79+/Hc889J05c7g273Q6DweBzHjp06IBVq1bh5ptvxvLly3HixAncfffd+N///ue23pEjR8QeBLVxNub4qmnTppg9ezbS09Px+OOPw2g04o477sDRo0eRkJBQIz4nX3pkuK4rZVdXu93eoO2OHj2Km2++GRaLBQBw33331Tq0FxGRnJlMJuzatQs9e/Z066VHFIpYXyMDz7M0mHffMWeRkQO5xCiXOCiwOFwVEYW8G264Ae+//77488UXX+C3335DTk4Oxo4dK673+uuvY8mSJRAEocHHatu2La688koAwOrVq1FUVIQvv/wSgGPS6ltuuaVxwdRCrVbjyiuvxGeffYYNGza43Xz/5JNPfLqJLwgCDAZDg/KgVCoxd+5ccairNWvWYN++fW7r5OfnY968eXX+bNu2zedju3r00UfRoUMHAHA7B8A/8TVt2lR8r6Kiwm34qtoYDAZxPg4AbvsItoacn/LycowYMUKcMH3QoEEee8QQEUUCs9mM3bt3+9Sbj0gqrK+RgedZGsy775izyMiBXGKUSxwUWGzkIKKwlZ6ejq+//hrXXXed+N7TTz/tNiF1Qzh7a1itVkyfPh1//fUXAODGG2/0adiohrr88svx7LPPistGo9Hj3BS1UalUSE1N9XnScadWrVqhU6dO4vIff/zRoP00hlKpdJv83LUMzvjOn3/ixIkT9e735MmTbsuucQabr+fHZrPhtttuw6FDhwA4et589913HJeUiCJWfHw87r///qB8NhM1FutrZOB5lgbz7jvmLDJyIJcY5RIHBRYbOYgCaPXNq7H65tXokdIjqMftmdpTPLbcKZVKfPrpp4iNjQXgmNPh1VdfbdQ+b731Vmi1WgDAF198Ib7vr6GqvHH+/AqnT5/2eltBEGC1WhvVo6VJkybi6+LiYrffDRgwAIIg1Pkzc+bMBh+7vjI440tISEDz5s3F93ft2lXvPnfu3Cm+zsjIEIfAkoKv5+exxx4Thw5LSkrCqlWr3HJERBRp7HY7ysrKGjz8H1Ewsb5GBp5naTDvvmPOIiMHcolRLnFQYLGRgyiAMuIykBGXgd7pvYN63N5pvcVjR4IWLVpg6tSp4vK8efNQUFDQ4P0lJiZi5MiRbu9dcMEFGDx4cIP36StnI4uTL+NO2mw2FBYWivOINIRro4pUQzrVVgbX+Fwn7vZm0u8NGzaIrwcNGuSfgjaQL1/QPvroI/znP/8B4Bja7Ntvv5W0FwoRUSioqKjA3LlzG92Dk8gXgiDAptfDWloKm17v9UMLrK+RgedZGsy775izyMiBXGKUSxwUWGzkIAqC69tcL+vjhYInnnhC7LpoNBrx5ptvNmp/5/fauOOOOxo8mXlD7Nmzx225VatWXm/b2OGq9u/fj5ycHHH5wgsvbNB+GsNsNmPNmjUey+Aa3+jRo8X3ly1bVufcJdXV1fjmm2/EZddtpeBtfVq/fj0eeeQRcfm9994LaoMbEVGoSkhIwKOPPipprzwKvoY2MjSGMfswCue8gxOTJ+Nw33443LsPjvS7HId798Hhvv1wYvJkFM55B8bDh2vdB+trZOB5lgbz7jvmLDJyIJcY5RIHBRYH8iYKgo5NOqJXai/sLNxZ/8qNdEnaJejQpEPAjxNqmjRpgkceeQSvvfYaAMeT78888wxSUlIatL+hQ4e6zYPRvn37Bpdtzpw56Natm9c3pg0GgxgHAKSlpaFHjx5eH0+hULjN01BcXIxmzZp5ta3RaMSDDz4oLqempooTsTdGeXk54uLivG54eeGFF3Dq1Clx+aabbhJfu8Y3cuRItGjRAnl5eSgrK8Orr76KV155xeM+X375ZZSVlQEAWrdujeHDhzcwGv9wTu5el6NHj+KWW26BxWIBADz88MN44IEHAl00IqKwoFQqkZSUJHUxKAiM2YdR8dNPqN77F4wHDsJeXi7+TpmYCO1FFyLm4m5IGD4M2o4d/XbcyqwsFH/6Kaq376h1HXt5OQybt8CweQuKP/4YMb0vQfKUKYjr399tPdbXyMDzLA3m3XfMWWTkQC4xyiUOCiz25CAKkrsvvjsox7mr611BOU4oevTRR8W5OQwGA/797383eF8qlQq9e/cWfxrzgbpt2zYMGTIEffr0wQcffIAzZ87Uuu7WrVvRv39/7N27V3zvqaee8qkXyfnDVb3yyisYMmQIvv/+exiNxlq3++OPP9C/f3/8/vvv4nuvvfZag3uEuFq/fj26dOmC+fPno6ioqNb1/v77b0yYMMGtJ8748eNx8cUXi8uu8UVHR2PWrFni715//XW89957bkNB2e12vPfee5g9e7b43ksvvQSNRtPouBqjvuHEysrKMHz4cJSUlAAArr32Wrz77rtBKBkRUXiorKzEhx9+iMrKSqmLQgFSmZWFnPHjcXzUKBR//DEMm7e4NXAA/zQyFH/8MY6PHIWc8eOhdxmesiGspaXIf+JJ5N3/QJ0NHJ5Ub9+B3PvuR/6T02AtLf0nFtbXiMDzLA3m3XfMWWTkQC4xyiUOCiz25CAKkqtbXI3r21yPX47/ErBj3NDmBlzd4uqA7T/UJScn495778U777wDwDE3x/Tp0yWbU+J827dvx/bt2/HQQw+hXbt26NKlC5KTk6FWq1FUVITdu3fj+PHjbtvceOONbkMVeUOhUECn04k9BQRBwK+//opff/0V0dHR6NKlC9q3b4+kpCTYbDYUFRVh586dyMvLc9vPo48+irvv9l/jXHZ2Nh588EE8/PDDaN++PS666CI0bdoUUVFRKC0txf79+7F//363ba644gp88MEHdcZ31113ISsrC1999RXsdjseffRRvPfee+jbty8AYMuWLTh27Ji4/eTJk4M6iXxt6uvJsWLFCmRnZ4vLqampePTRR73a96OPPooOHSKvRxcRRRaNRoMePXpI3mhN/mctLcWZV15FxU8/+bxt9fYdyN2+AwnDhyPtuWehbtLEp+2N2dnInXIvrIWFPh/bVcWPP8KwbRtafvIJtJ06sr5GCJ5naTDvvmPOIiMHcolRLnFQYLGRgyiInr30Wewo2IHC6sb9p8mT1JhUPHPpM37fbzhRKpV45pln8PHHH6Oqqgp6vR7vvPMOXn75ZUnLdc0112Dbtm1uDRjHjh1zu/F+vpiYGDzzzDN45pln3Iae8oZSqURcXJy47Dppuclkws6dO7FzZ+1Dp6WmpuKtt97ya0OAaxnsdjsOHz6Mw3WMW63RaPDEE0/ghRdeQExMjNvvzo8PAD799FMkJiZi3rx5EATBY34VCgUeeeQRvP32236IqPHq651z/hjjX3/9tdf7vuWWW9jIQUSyFx0dLTZok3wEqpHB22OfmDipRm+RhrIWFuLExIlo/eWX0HbqyPoaAXhdkoac8y4IAuxVVRAsFiiioqCMjfVq2Nv6yDln3oqEHMglRrnEQYHFRg6iIErSJmH+kPmYvHoyKswVfttvgiYB84fMR5I2yW/7DEd2ux1arRb333+/OFTVf/7zHzzxxBOSjt84ZcoUTJkyBfv27cOGDRuwZcsWHDp0CCdOnEB5eTkEQUB8fDzS09PRrVs3DBw4EGPGjEETH588dLLb7aiqqkJsbCyUSiVmz56NcePG4bfffsO2bdtw8OBB5ObmorKyEkqlEgkJCWjZsiV69uyJoUOHYsSIEW6NEv5w/fXXIzc3F2vWrMGWLVuwd+9eHD9+HGVlZbDZbIiPj0dqaiq6d++O/v3747bbbqt1HpHz4wMcjSL/+c9/MGHCBCxYsABZWVnIz88HAGRkZGDAgAG4++670adPH7/G1RiuQ2oREZHvjEYjtmzZgr59+0Kr1UpdHPKDQDcy1LluaSlyp9zrt2M72cvLkTtlCpp/swzbDx1ifZU5XpekIbe8B2MeIrnlrCEiIQeNiTFQDWwNEQnnihpPIZz/qChRiNi/fz+6du0qLu/btw9dunTxenur1YojR464vdehQwefn4oPhMOlh/HA2gf80qMjNSYV84fMR8cm/ptkMVzZbDaUlpaiSZMmfplHIlzJPQ9yiS9c4wjlaysRRRa9Xo/vvvsOt9xyS40efhR+rKWlOD5qdKN7cHiiTk1FmxXL6xy6Kv+JJxs0PJbXZRgxAn90uYj1VeZ4XZKGXPJemZWF4k8/9WkuoJjelyB5yhTE9e/v07HkkrPGiIQc+BqjMfswSpcuRdmSJR5/H9OzJ3R9+jSqga0hgnWu8vX5GPr9UI+/W33zamTEZQTs2HLR2Hu5jcFGDgpZcm7kAIAyYxle3/Y6fj7+c4P3cUObG/DMpc9EfA8OIgqeUL+2EhFReAp0I0PC8OHIePstj7+rzMpC3v0PBOzYTi0+nI/4AQMavH0oPVVLRP7TmHmInBo6DxHVLpKuucFsYAtlbORoPCkbOXhHgkgiSdokzL56Noa1HYYF+xZgxxnvP0wuSbsEd3W9K6InGfdEEARYrVao1WrZfvnwhtzzIJf45BIHEZFUbDYbioqKkJKSElY94sJdIG76VGZlBbSBA3DM0ZEwfJjHRobiTz8N6LEBwKZU4siXX6H7VVf5VF+DMWwN+Q+vS9II57xLNQ9ROOfMXzzlQG7X3PrOc2Ma2Kq370Du9h1BaWBjfSVvsJGDSGJXt7gaV7e4GkdKj+Cb7G+wNHupx/V6pvZE77TeuL7N9ejQhBMKe+L84EtNTY3op8rlnge5xCeXOIiIpFJZWYmPPvoIjz76qKRzb0WCQN/0CUYjAwCUfPpZjUYOY/Zhn55cbShjTAx+at0KGXv2IK1Xr3rX9+apWnt5OQybt8CweQuKP/5Ylk/Vhhtel6QRrnmXch6icM2ZP7nmQLV7tyyvuXWdZ6ka2BoiWPXVfqoA37xu9fy7fgVAR/bkCGUcropCltyHq/KEXeMaRxAECIIAhUIR0U/Gyz0PcokvXOMIx2srEcmTIAgwmUyIjo4Oq+toOAnG8BXG7MM4PmpUQ4voszYrV0CpixWXiz/7rNaxx/1JAGCJikLKLbfgghdn1Loeh60JTd72YArUdSmShs1piHD8PJB6HqJwzJm/CYKAqjNnUPbW26iU6TW3tvPs7wY2wPHQgzcNbA0RrPqae3gH9CPHe/xd3Mqv0bLjJQE7tlxwuCoiAgBkxGVg76S9UhcjbIXbzeJAkXse5BKfXOIgIpKKQqGAVquV5Nhyv+EYjOErzHn5AIDSpZ57MQdK6dJlKFu8OKjHBAAFAI3FgvIlS2pt5Aj1p2rlXu/P15AeTP68Lslt2JxAkvLzoKHOvPJqQBo4AEePjjOvvlbrPERAeObM30yHD+N0CF9z/cHTebaWliJ3yr1+beAAHD1dcqdMqbeBrSFYX8kbbOQgClE2mw1nz55FcnIyxxz0EnPmIPc8yCU+ucRBRCSViooKLFiwAHfddRcSEhICfrxIueEYrBvtxwYPbtT+G0qKBg4AMMTE4LfBgzHo11/FnpyupBy2pi6hVO+D1cjSmKHC7D17Nvq6xKHKfBfsz4PGknoeIiD8cuZvxuxsHLz3Pvx62WUY9Ouv0FVXN2p//rrm+pun8yx1A1tDRHp9Je+wkYMoRCkUCsTHx8v66Sh/Y84c5J4HucQnlziIiKSi1WoxYMCAgD/ZF0k3HEP1RrscRFks6LJvH6IsFtirDFDF/TNkVig+VRsq9T6YjSz+6MEUM3w4rrpxdIOuS+EyAXAoCtbngb9IOQ+RU7jlzJ+c11xVSYl4XfaHQPZkaKjzz3MoNLA1RCTXV/Ie5+SgkBWJc3IQEYU6XluJKFJE2twIwR4f/mDnC/1+nHDRYfMmt1zkP/FkQG86JQwf7vVTtaFS74MxH4wrf/VgAhz13ddha6Q+fn0ibaiyQJJiHqJw7l0YCKF0zQ22nPHjfbquNpSud2+0/vqrgB/H3zgnR+NJOSeHMihHISKf2e12lJeXw263S12UsMGcOcg9D3KJTy5xEBFJpbq6GqtXr0Z1I4eY8MSYnY3jo0Y3+iZIxY8/4vio0TBmH/ZTyQInGMNXRDKTRoNdvXrCpNFAEaUR3w/WU7WVWVn1rhcK9d5aWor8J55E3v0P+Hwjrnr7DuTedz/yn5wGa2mp19s5ezD5o/6bNBr82SIDh+++2+v4/Xl84J8eVI297hizD6Nwzjs4MXkyDvfth8O9++BIv8txuHcfHO7bDycmT0bhnHdgPCz99S2Qnwf+Ys7LhzkvX5J5iJxzILkKh5wFgus11/W67E/eXnODwfU8G7MPB6WBAwAM27f79doQqfWVfMNGDqIQJQgCbDYb2NnKe8yZg9zzIJf45BIHEZEUBEGApbISpUVFsFRW+vVaGqo3HAMplG60y5WgUKAqNhaCQgFlrE58P5jD1tQlFOq9FI0s/h4qzHmebZWVyJ0ypd7GlkAPVeZLY49TZVYWcsaPx/FRo1D88ccwbN5So3zOocqKP/4Yx0eOQs748dBv2OCv4vvMbrejrKwspB8eOjZ4MI4NHoyyJUuCetyyxYs9zoEUDjkLBNdrrut12d/qu+YGizEvHyWnC2CUqIHNXyK1vpJvOFwVhSwOV0VEFHp4bSUiqQRjbP5gD9nUUP4eOkaK4SukHK6q7dq1Yr5OTZuG6l27gnbsmF69kLl4EYDQGbYmFOq9v+eDARzXhfrmg5F62Bqpj+8qVIYqkyuph+i78NBBSY8fCkLlmhtMrHe+4XBVjcfhqoioBkEQYDKZ+JS3D5gzB7nnQS7xySUOIqJAq+2pYptSicLUVNiUSr89VRzKQzYFaugYqYavaPfrr2j366+I6dkzKMd2iunVC9EtW0DTIgOaFhnQ9ekTlOM666umd++QG7ZG6novVW+GQPRgcr0uAXX3YAqlHlShMFRZY1itVuTk5MBqtfp934IgwKbXw1paCpteL5vv7oHMWaip7Zp7/t+rv9V2zQ2mQMdYH3/9vURSfaWGYyMHUYiy2WwoLi6GzWaTuihhgzlzkHse5BKfXOIgIgqU+sbmN8bEIOuaQTDGxNT4XUPG5g+lG46uAjV0jNQ32oPdyOB0/vEShg0LynGd9VU1oH9IDVsTCvVeqkaWQAwV5um6VNuwNRyqzH/0ej0WLlwIvV7vl/2F03wkDeXvnIWy2q65dX2P8IfahgoLpkDHWB97lcEv+4mk+koNx+GqAsRsNmPZsmVYsmQJ9u/fjzNnzqBJkyZo06YNbrrpJtx5551ITk726zFzcnKwdu1abNiwAXv37sXJkyeh1+sRHx+PFi1aoF+/fhg3bhz69+/v9T597fauUqn81rLK4aqIiEIPr61EBPh/uKTzGbOzkTvlXr/cdFOnpqLlJ5/UOWQNIM2QTXUJ9NAxoTKERSgMHxLscx8quQekr/eVWVnIu/+BgB+/xYfzET9ggLgsdb2T+vhOoTBUmTcC/ZnjVJmVheJPP/XpbyKm9yVInjIFcfXcZwmlv/tIE8m5lzr2Dps3hdXwdRyuqvGkHK6KdyQC4NChQxg7dix2797t9n5BQQEKCgqwefNmvPXWW/j8889xww03NPp4u3btwv33349t27Z5/H1paSlKS0uxd+9efPzxxxgwYAAWLlyIVq1aNfrYRERERBQZgjEnhuM4/h2b3/lUcV1j80sxZFNdOfJXI0/Fjz/CsG2bV408UtF26oiY3pcE7Ua7p7w3u+ce5AXh+M2m3BPwY/giFOp9MHszxA8YIA4dI0UPpmZ33eWyLM3xNS0y3N4PRi8ab+cEOV+wPnOAxjUqV2/fgdztOzgfCZEHiiiN1EWgCMJGDj/Ly8vDNddcg1OnTgFw9IS4+uqr0a5dOxQVFeHXX39FdXU1CgsLMXr0aKxevRqDBg1q1DGzs7NrNHB07NgRXbt2RXJyMsrKyrBp0ybk5eUBALKystCvXz9s3LgRbdu29fo4Dz30UL3rqFQq3wpPtbJarSgqKkJKSgqfkPYSc+Yg9zzIJT65xEFE8ufNk63O4ZKcQyZ5+2Tr+XwZm79Kp8Oa64fi2l9WI9ZQ93AIzrH5z3+qWMobns1nvODxd1I08khN6kaG+AEDkDBsWECHbVKOGIH3N2/GAz16BOwY3pL6Rr/zRrsUjSzHRwa290Rt16WyxYtRtnhxQI9dF+fxXZ8oD9ZQZQnDh7n1oqlPQz5zbH0vw4/t2+OBRx5BYmKiT2UMVqNyu19/BQCcmjYN1bt2NepYvojp1QsXvPlmjffLy8sxf/58PPDAAz7nTC58+R4RrqSOURmr88t+WF/JG7yr4mfjxo0TGzhat26NFStWoHv37uLvz549i9tvvx3r1q2DxWLBmDFjcOzYMSQlJTX62O3bt8c999yD8ePHIyPD/QkNu92OL774Ao888ggMBgNOnTqFO+64A5s2bfK6m+f777/f6DKS95RKJZKSkqCUaIKocMScOcg9D3KJTy5xEEWyYA2fIdXxpXiy1ZeniqNNJly6ZSuiTSav1vf0VLFUY2WXLV7ssZEj0BMw+2voGH8LRiNDwvDhdTa6pT3/HAx//hmwYXtaTHsSo0tKoNP554ZPY0hZ78sWLxZv9krRyBJovl6XpBTsXjT1acxnjvDndvTOzUNZWTliffjMCWajsrNxT9enT1AbOXR9+tTowQMAOp0Oo0ePDolrUm0C/T0nnP5eG+rCH36ANi8Pbabci6Jnngl6A5u/zlc41FeSHhs5/Ojnn3/Gxo0bAQAajQarVq3CxRdf7LZOcnIyVqxYgW7duuHvv/9GSUkJ3nzzTbz2mufJ0LzRvHlzfP7555gwYUKtPSmUSiXuuusuNGnSBDfddBMAYMuWLVizZg2uu+66Bh+bAkepVCJGosmhwhVz5iD3PMglPrnEQRRpgjl8hpTHl2K4JF+fKlbbbMjIz/e5PL4+VRwogiDU+M9/KA8dE2iBbmRIe+7Zutdp0gQtP/kEJyZO9GsjkzIx0VH/U1PROTXVb/sNZ1I2sgRaQ65LUgiFocrcy9O4zxxn3g35+Tju5WeOVI3KCcOGofjjj/16zLokDPM8RHpUVBQ6d+4ctHJ4K5jfs8Ll77UxYjNbo2tmawBAlQQNbP4SjPpqzD4M01e1N4ZXv/A6Ci+7ImDf8anx+PioH82bN098PWnSpBoNHE6xsbF46aWXxOWPPvqoUZN19+/fH3feeadXQ0XdeOONuPTSS8XlnwLcPZUazmazobS0FDabTeqihA3mzEHueZBLfHKJgyhSVGZlIWf8eBwfNQrFH38Mw+YtNW6MOIfPKP74YxwfOQo548dDv2FD2B3f+WSrv242O59sNWYfrnM9X58qNmk02HbZZTBpfBvvueTTz3xaP1DsVe7DRgRr6JjKrKyAHqOhnI0MSj8PQ+FsZPDmyW5tp45o/eWXUPupMUKdmio+0W0wGLB8+XIYDAa0+/VXtPv1V8T07OmX43grplcvsRcFBUZDr0vBYs7LhzkvP6R60fjjM8c1795+5gSjUdkT5zxEwVDbPEQA3K5JdREEATa9HtbSUtj0egiCEIiiBvR7Tm3X3ED/vYbCNdf1PCcMGxbUY9fWwNYQ3tbXhnCte5bvVtW6nm3P/oB8xyf/YSOHn+j1eqxbt05cnjx5cp3r33zzzYiLiwMAlJSU4Pfffw9o+VxdccUV4uucnJygHZeIiIgo3FhLS5H/xJPIu/8Bn596rd6+A7n33Y/8J6fBWloaFscP9JOttZVDiqeKpSZYzG7LwRw6Bqj9pk+g1XXT559GhhS/HEudmuLzXCTaTh3RZsVyJAwf3qhjJwwfjjYrlns8tqZFBjQtMvz6lKs3ahu2hiLHscGDcWzwYJQtWRLU49bWi0aqzxypG5Wb3eN5fiB/q20eovoYsw+jcM47ODF5Mg737YfDvfvgSL/Lcbh3Hxzu2w8nJk9G4Zx3/PJZGozvObzmOoRKA1uokPo7PvkfGzn8ZNOmTTCdG8cvNjYWfeq5eGq1WvTr109c/u233wJaPleu3eL5BHHoUqlUaNKkCSdz9wFz5iD3PMglPrnEQSRnxuxsHB81utE3Qip+/BHHR42u96nSUDh+sJ9sbcxTxdFmMy7duhXRZnP9K5+ndOkycfJlqSii/nlyVIpGnlC96aPNSEKb50cgoU+bRh0noU8btHl+BLQZST5vq27SBBlvv4UWH86Hrndvn7bV9e6Nlh99iIy333LrPeJpPPFwfqqWPGvMdUnuPPUA8Ndnjqe819WbItiNyudzzkMUSPXNQ+TpmhTsXqvB/p5zfs4D/ffa2GuuP3rRnH+eQ72BrTb+npND6u/4FBhs5PCTgwcPiq8vvvhiqNX1T3fSq1cvj9sH2t69e8XXLVu29Hq733//HW+//TamTZuGp59+Gm+//TbWrl2LqqqqQBQzIpnz8nGw84Uef6T+j3g4sNvtqK6uht1ul7ookpJ7HuQSn1ziIJIrqYZskvL4UjzZ2piniq0qFfIzMmBtQGNx2eLFks0L4GQtLQ2JoWNC6ka7vhDYvQjqKCsyJlyCFre3hq6l1qf961pq0fL21siYcAnUUVZg9yLHfhsgvmsLtH7iOrR5fgSaDb0YsZ2bQ6lzH9ZEqdMgtnNzNBt6Mdo8PwKtn7gOcV1b1NiXxWLBoUOHYLFYxPf4VG3wtVm5MqA9mGq7Ljl7MIViD6pgCeQQfbXl3VNvilDpOZj2/HN+GxrvfN7MQ+R6TZLiiXYpvuecf81tzPeI+jT0muvvXjTnf/aEQgNbQ3j6DG0oqb/jU+CwkcNPsrOzxdetW7f2aptWrVqJrw8dOuT3Mnly8uRJt14jg334z13//v0xbdo0vP3225g9ezamTZuGa6+9FqmpqXjkkUdQGKCn/oi8ZbfbUVZWFvE3jeWeB7nEJ5c4iORIquEzpD6+1E+2+soUHY1tfS+DKTq6wfuQ8obj30OGhMTQMSFzo91sAP5aBliMgKkCOL0H8a2VaD2+Fdo83g/NrutadyPDdV3R5vF+aD2+FeJaK4HTexz7sRgd+zX7MI632QAcWAHs/RYoy4X2giSkDm6JVndkouPjHdHxsTbo8EhrdHysDTo+3hGt7shE6uCW0F6QBJTlAn9949je5Zi1jScuxVO1kXyjPbpD+4D2YKrtuuTswRSqPaiCIZBD9NX1eeD8zJGyUdnTA4tSz0PkvCaV7t0b9Cfapfye5XrN9cf3iFqP42NPhkD1ovH02SN1A1tD+GtODqm/41NgsZHDT4qLi8XXaWlpXm2Tnp4uvi4pKfF7mTx5/PHHxSGqWrVqhREjRjR6nwaDAe+//z569OiBLVu2NHp/kcqYfRjFn9X+n/5T06b5bdxLuVKr1WjevLlXPankTO55kEt8comDSI6kmoxUyuOHypOtvog1GHDj9z8gthH/4ZXyhqPUXIe9CInhK46uBUx6wGIAzuwH7FYgOgG4oCe0HTogdXQvtHp0CDq+fRs6vjMWHd66FR3fGYuOb9+GVo8OQeroXtB26ABc0NOxnd3q2I/F4Njv0bXeFVJfCGz/DDhzABAEoDwPyNsGFB0E9AVQWKqg0gBqnRIqDaCwVAH6Asfv87Y51hcEx/bbPxN7kSQmJuLpp59G4nk3NKV4qlbqG+1SNrI4h24OVM5ruy6d34MppHpQBUkgh+ir6/PA+ZkjZaNybT0H/5mHyD83nNWpqV7PQ5SYmIipN96I0gceDPoT7VJ+z3K95vrje4QnvvRkCHQvGk+fPVI3sDVEbZ+hvpL6Oz4FFhs5/ESv14uvY2JivNrGdT3X7QNl4cKF+P7778Xl119/HdH1tFhHR0fj1ltvxRdffIF9+/ahoqICZrMZBQUF+PHHH3HLLbeIXxRPnz6NYcOG4bCfb8JrtVpxknabzYaysjLxP2XO8gBAdXW1OHSW1WpFuUvLrCAI4jY2m01s6LHb7bBareJ6VqvVbT3nE9Z2u13cRhAEv65XuT4Lx++4A8dHjarzC1f1rl1uLfblv/0m7i/UYvJ1PdeyOtfr378/FApFrT/x8fFo1aoVrrvuOrz66qvIz8/3ugwvvvhijf1NnTrVp5hWrlxZYx8DBgyoMybnecrKysIDDzyASy65BCkpKdBoNIiJiUFqaip69+6NsWPHYs6cOdi+fbvbufVX/svLyzF//nwMHDgQLVq0QHR0NFq0aIGBAwfigw8+gF6v9/o8+VL3jEYj/vzzT8ybNw+TJ08Wh/Zz5u/OO+8MeN2zWq3Izs7GV199hUceeQSXX345dDqdWIbMzMyA/T0NGDBAPM7MmTN9imnGjBnitv379/f578nfMbleU+12u/gZdn7vlMrKSnG+KqPRKK7ny7W8rKxMLGt5ebnYRdlgMIhP8lgsFrdrfllZmRhjVVUVqqurAQBmsxkVFRViDGVlZWKMer0eRqMRAGAymVBZWcmYIjSmyqwslP7yC6piY8WyVul04lAGJo0GJo3jRo1VpUKVy9jAVbGxsCkdX6+N0dHieha1GoZz3/sEAKfXr0fZuZ6158d0+n//Q8VPP8GuUKAqNhb2c9+zqmO0sJxrFDVHRaFa6xjCx6ZUoio2Fs7b1YaYGHE9k0YD47nves71AMfTlvmrV8NiscCcl4+yo8dweumSRsXkul61VgtzVJS4XnWMo6yuMZUuXYbi7MN+i6mh58lZ9xKGDWt0TL6cJwwcELCYvD1PFYVFYt3T9OsH1bmJtgNV95w3fTxeI84eheXUfpRX24GibMBuRZmyGawpXQB1NKrMAqotjiNZ7ECVQg11nBbKaDXKTYDN7vid3izACA2Q1hUmdRIqzQqgKNtxjTixH/ZCx/9Tar1GlJ9G2eavIBgrAYsBFbn7YC4+AdjMqEYMqnStgJQLYW3eG2UplwEZvYGUC1GubQ2LIhqwmWE4mwtD3l7AYoDFUInyLV+JDR21XfeaTJ8G87lhhP1d9xRpaYh+5GGP172owYODWvdih17nKF9SIuzJzaDr08cvf0/eXiNsl1wi1j17yxZQXNqn0TF5c55sfftC0749gH/qnrZTR6gu7ROU656ud28YU1PFuufPa7kv56kkLw/64zkw5+Xj9NIlQa17Z5csDUhMvpyn2r4bmdLT0GbFciQMH96oupcwfDgu+GYZLBc0d8RUz3ejsrw85E65F5bKSr/WPbNej0MPPyzedD//ule4di0qfvopoHWv9Oefkbd6da3f9+Iefwzq1NSA1D1zy5ZIe+5Zr77DGrOzcWz0jTidldWoule0Zg0O3jIGxuzDXn8vV7Vtgybz54sNbI297gnNm6PpRx9C26ljyP5fIxTqnlz//+QpJimwkcNPnBUGADQaTR1r/sO1gcFZMQNl+/btuP/++8XlsWPHYty4cfVul5+fj2XLlmHSpEno0qUL4uPjERUVhbS0NAwbNgzffvstVq5cCe25P+iSkhI8+OCDfi173759ccsttwAAioqKMHfuXPEPb8GCBThw4AAAYMOGDVi1ahUAIC8vDx999JG4D9ebcxUVFeIfv8lkQlFRkbheYWGh+MdaXl4u/vEbjUacPXsWgOOCUVhYKF5YSktLxT9qg8Eg9uqx2WwoLCwULyzFxcXihaqqqgrFOTmOFvsHHoBxx06fclK9fQdOPfgQ8p54EtbS0pCJqfTcFxmr1YrCwkIx52fPnhX/RiorK8WLtNlsdhvmrKioSDy3zmPURq/XIzc3F2vWrMHzzz+PNm3a4IUXXkBBQYF4vmuLydM4jkuXLoXVavU6pk9r6V5dV0x//vkn+vbti4EDB+LDDz/Ezp07cfbsWVgsFhiNRhQVFWHHjh1YunQpnnjiCfTp0wcXX3yxz+fJWQbneXeN6bfffkP37t3x4IMPIisrC/n5+TCbzcjPz0dWVhYeeughdO/eHevXr/fqPHlb995++20kJibi0ksvxcMPPyw2nJ5/nr2pe1arFWfOnBE/dL2te7///juaNm2Kzp07Y+LEiXj//fexefPmGtffQP49uarrPJ0fk+v2zvoCeP/35O+YXBtDDAYDvv32W/E4c+fOFY+1aNEi7Nq1CwCwZcsWfPfdd2LZvL2Wz507Vyzr/PnzcezYMQDAmjVrsGbNGgDAsWPHMH/+fHG9uXPnIi8vDwCwatUqbDjXjfvAgQNYsGCBmIe5c+eKufjuu+/E3oi7du3CokWLGFOExlT86acoTk7GTyP/6e265vqhOHOuB+6enj2x59zTx2fS07Hm+qHiej+NHIHi5GQAwPZL++BA1y6OHLVsid/OPcVpiYrCTyNH4O+vF3mM6dtzeajW6fDTyBGoPvef6o39++N4u7YAgMOdOmHL5Zc7Yk9IwE8jR8By7j9kvw0ejLxzN0sPdO2C7edu4p0f08JNm3Ds2DEcGzwYK15+Gb//fbzRMVUkJDhyfvnlONypEwDgeLu22HjuaUbXmMoWL8bX8z9oVEz5LVrgp5EjxBsUDTlPzrqn7dQRhVdd2aiYvD1Put69sTgry6vzFIi654zph1Ur3ereujaZUKemBqzuOYev8HiNyN2CY6UC5u8wA2Y9oIzC3Jz2yNM7/ru66ogVG046vjMcKLJjwW7HdzmTDZi7zYIig+Nz/7uDVmzJswFKFXbZO2JRUWfArEdFcQHmbrOg4sgfAGq5RpgNKNqyFHM36WEyVAKn92BBbiYOVKcAzTpgg7U7VhVdAMQmI686GnN3AIiKAWKTMf9YOo7pegHNOmBNWSbWFDYDTu/BscIqzN+iB/5ahrLC05g7d644TLHrde/w6dP47dproUxM9GvdUyYmImb2bMz74guP172tp/Kx69ohQat7leee7nVe9xKGDWv035M3dc/pW5PRre7tPbc/f173qmJj8d8xt2DDwIFiTN+3yfT4+XR80KBGx+TNeWo25R7xM7fdr7/i4NSpODxwgNcxAY2/7sX06oUvPvsMvz/4II4NHozN2dl+ve5t7dcPK26+CVWxsR5jOvnLL36PydfzVNd3I3WTJsh4+y38NHIE9FdcAcD7urftuutw5onHkfH2W9ibk+P1d6PFH32MxdcMwpm0NL/XvZ8v7SM+0X7+972sc8NiBbrufbZ1a63f937ZuBEtP/kE+R07Nvp7hOt5yu/YEb9dey3UTZrU+x326wULcGLiJFTq9X6pe1vatsGJiRPx96bNbt/LP/jgA7z22msoKyurUfcWrPmf2MDWmOtewvDhKHvheXx/Lr5A/V9j1qxZKCsra/D/NUKh7sn1/0+eYpKCQnDtp0wNNmzYMPz8888AgKeeegpvvPFGvdv88ssvuOEGR7fRuLg48caSvx0/fhyXX345CgoKAADdunXDxo0bkXDuj9gfPvnkE9x7773i8vbt23HJJY0b23f//v3o2rUrtFot1Go1tmzZgs6dO6OyshKJiYlQKBSoqKiAVquFRqMRJ/CNjY0Ve3I4b/g5q3nHjh3FnicqlQp2ux12u10cLsZqtUKlUkGhUMBms0GhUECpVMJut0MQBKhUKgiCAJvN1qj1DAcPIu+++2HzQzc5dWoqMj76ENEdO0oaU2PWcy2rUqmEUqlE//798fvvvwMA+vTpg969e0N5rnXdbrejsrISe/bswd69e93y8fDDD+O9994DgFrL8OKLL+Kll16qkcsff/wRQ4cOrTem8vJyNG/e3K1xE3D0Plm/fr3HmPbs2YNBgwa5tWynpaWhd+/eSE9PhyAIKC0txb59+3D06FGxzmZkZODEiRM+5dVut8NkMiE6OhpKpVJcb+/evbjyyivFxoGoqCixN0deXh5+++038SZ2QkICfv/9d3Tv3r3O8+RspKiv7s2YMQMvv/xynXV50qRJ+Oyzz+rNP+C4Aa/RaMTjelP3fvvtN1xzzTV1lqF169bilwt//z0NGjRI/BLy4osvYsaMGR7Pk6f9vfjii2L+rr76aqxfv96nvydvz5M3MdlsNrHHnkKhgN1uR0ZGBpKSkmC321FRUYGEhAQolUpUVlZCo9EgOjoaRqMRVqsVcXFxsNlsXl/L9Xo9kpKSADgaYXQ6HaKiosQGId25J+MMBoPYfbmsrAxxcXFQq9WoqqqCUqlETEwMzGYzjEYjEhISIAgCysvLER8fD5VKBb1eD7VaDa1WC5PJBLPZjPj4eMYU4jGZTCbEKpWwmUyoNBqRlJ4OlUrV4JgMh4+g8LbbYFMqYYyJQey5BsYqnQ7RJhPUNpv4ZFu02QyrSgVTdLQ4zEFVbCy01dVQ2e0wRkdDIQiINpthUasdN7erqyEAMJxbr/3y/8J6wQViTOX79uPYhPGIqTbCrlCgWqdDjMEApSCgOkYLtcWKKKsV5qgo2FQqxBiNYll1VVVQwPFkX5TFgiirFSaNBoJCAa3J5DGmTl9/hbybbvZrTCq7HdVaLVQ2GzQWCyxqNaxR6oDEZFarcfqCC9AiLw8qu71B56nVju1i3Stetw45T04LeEytPvoQ9p49kXP5FV6dp0DUPZXdjgs2bEB0YoLbNSLq1GkcnzgBVVab386TkJSIZvM+QNolvTxfI/RF0O1fDIvVDkPubiQqqoBmHVAWlYY4DaBWKlBlFqBUADFRCphtAoxWICFa4bhGmIB4DaBSKqA3C1ArAa1aAZNVgLmiEPEVh2FXalCR0gcJWgWUl05BpaCteY04uQ620/tRWVWNxJI9UAhWVCibQpvWHproaFRbBNgFIFajgNUuQG8GkrSO/1eUGwXoooAolQKGahNQfAQ6ayksiIIhuRsS43SwJnfGIUUHtG/fHlqt1uN1T3O6ACenTEFFVVWj654iLQ0d581DVPt2dV73KjZuRMm/Hg143Ut89x2kDxlS41p+eOJE6PfuDfh1T9e7N5LmvV/j86n0hRkoWb3ab9c9lc2GM2lpSCgvR5zBgLjhwxH//HO1fubmPv8CrD/+2KhreV3nqfmgQch4+60an7nFH36Eqk8+Cdq1PPm++5D75Zd+icnTeaqKiUFZkyZILyiAXamU/PPJU0zdt27x+ruR9e+/UbDqR1gOHoB9716YqgxiTIrEBNi6dUPTCy9Ck+HD3L5HePt9r+jXX3Fi+lOoiotDk5ISmKOj/V73Yg0GtPhwPmw9eoh1r3jPX8idMCFo3yO6LF6EmE6dav0OW7Z3H/6cNQvNDxxo8PcI5zUiNikJaR98ALRqWe932KqCAhwdPwGavDy/1z1FejqSF36B5HNzBRcXF6O0tBSZmZnig22e6l7e6tUwLVoM859/en3dw2WXIWXCeCQPHhzw/2uUlZVBr9ejRYsWqKqq8vn/GqFW9+T8f8L8/Hx07doVTvv27UOXLl0QDGzk8JPbbrsN33zzDQDgX//6l1etVz/88ANuvvlmAI75OU6fPu33cp0+fRpXXXWVeNOubdu2+L//+z80b97cr8ex2+1o06YNTp48CQB4+eWX8fzzzzdqn85GDidf/zCsViuOHDni9l6HDh0kH//emJ2NExMn+XWiI2Viotdjb4aLAQMGuN0Qnjlzpsf1Nm3ahLFjx4p1D3D0mOjdu3et+545cyZmzZoFALjooovEVuhbb70Vy5Ytq7dsH3/8Me67774a2/fv3x9ZWVk11rdYLOjWrZv45N4FF1yAefPmYeTIkWLDjauioiKsWLECX331Ff7++2/k5ubWW6b6WCwWXHjhheK1oHv37li+fDkyMzPFdXJycjB69Gjs2bMHgKNRcP/+/X75m3HmvGXLlujTpw/69OmDSy+9FPPnzxefEJg0aRK++OKLRh+rNllZWRg4cCCaNGmC3r17i+XIzs7G008/DcDRyJGTkxOQ43tbpz1xrbO11bNgCdVrK0UOY/ZhVPz0E6r3/gXjgYNun6fKxERoL7oQMRd3Q8LwYbVPcHwe54SgxZ99FtSxupPGjUOzu+4Sl6U4vusE1FJwTkJ8ato0VJ97eiwYYnr1wgVvvlljIt78J55s9OSrdUkYPhwZb78FADjY+cKAHccbnQ8eEB/+EekLYfzxP8h95ydYyxvf01ydGIOWjw2DdvgjQNx5Y85Xlzn+zfk/IO9PwFAMnD0MqDSOeTUU531HshqBU7XUkQt6AmptzfcFu2MbmxlI7gjomgEt+gAXDndf7+xRxyTjggCc3u3oTRKdAKR1BZQq3wO324Az+xwTn2vigOY9AIUCuHgMkNy+zk2tpaU48+prqPjxR9+Pe07C8OFIe+5Zr8dFD2a9P19lVhby7n8gYMd2avnRhx7HyLeWluL4qNEBGaNdnZqKNiuW13kepDq+Mfswjo8a5fdj1qbNyhU4PjJ4xwtFFx466P3K+kKg8ABQcRpC5WnY9XoIVhsUahWUcXFQxDcHEpoDqV2AuBSfy5IzfnxQ5uHS9e6N1l9/Jfn3rPM/611F2jW3PsbDh1Hx088w7v0L1fsP1PieHdPlImgv7oaEYTd4/T1bSlLWveYzXgja8UJJY+/lNgbvSPhJs2bNxNdnzpzxahtnzwoAaNq0qd/LVFxcjCFDhog3NZs3b45ff/3V7w0cAKBUKjFo0CDxBuXBgz58gEcQa2kpcqfc69cGDgCwl5cjd8qUer9Ey9Hll1+OFStWoFevXmLvh48++qjORg5XF198MaKiorBnzx6sXLkS5eXl9U5mtXDhQgCOnhBjx47FCy/U/eG1fPlysYEjJiYG69evR8c6vhCkpKTgnnvuwT333CP+/frCZrOJcTh7PnzyySfivpo0aYLVq1cj/VxXXKfMzEz88ssv6NKlC0pLS3H48GEsWLDArZdWQ02ePBkPPPAA0tLS3N7/8ssvfd6Xp/i80b17dxw5cgTt27vfXAhkw0pdGhoHUaSqzMpC8aef1vmfcnt5OQybt8CweQuKP/4YMb0vQfKUKfVO/ljbhKCBVrZ4saSNDFI3cAAQbzzo+vTxuZHDGB2N7Zf2Qe9tf0J7rgu9t5wTIJ8v7fnnYNi2Fdaisz7tzxvqlGRxyCbgnwYeQJpGnhoNHGYD8NcyaNN0aDN9IM4s2oiKAw3vaZ5wUTzS7rgK6qY64K9lQO+7Ac0/Y5pjy7nhFwr2AsYywFByrnEhHsj38HdutwIVp2o/oLKW/9pWlwKmSsBYAeiaAmeP1GzkyHUM44CKfHG4LKR0blgDB+DYLqUzcGqnY38V+aiKycCq7/+LEeMfRKzLGPDnU8dGI+OuK5HQyoCStfthOOLd/y0BQNchDc2u7YK4a64EYuuee9FV2vPPwfDnnwG70e5a78/nnAQ40Df8avsccE7Ae2LiRL/8H815Xbr0UDbaeDEBr7+P71TfBMDaTh0R0/uSoN3oDvTN0MZ8HoSUs0cd16Oyfx5yUwBQaaMAOIYpgtUElOY4fk5sBpJaAq36Ac3aeXUI56TvwciZc9J3qRq4nN+zamtgqqqqwqr//Q8jZs1EwvBhKPn0Mxi2b/d6/7revdFsyj1eTzIOOL7PBvJ6BzjmXksYPgzxAwY4Yly1CiNGjKjzs8dJ27Gj+PcqCALsVQYIFjMUURooY3U1vzsEia9xOEn5HT9SGzmkxDk5/KTTuTHbAODEiRNebeP65Hnnzp39Wp6Kigpcd9112L9/PwAgOTkZv/76K9q0aePX47hybTxxjuNO7s688mpA/vMAANbCQnHcy0jTo0cPDBgwQFzeuHGjT9tPmjQJgGMIJGePrNocO3YMmzZtAgDccMMNSD43bmVdnOMpAsCoUaPqbOA4X7t23n1ZdaVQKMThh5zmzZsnvn7yySdrNHA4NW/eHE888YTH7RqjdevWNRo4GspTfN5o0qRJjQYOKTU0DqJIYy0tdcxhdf8DPt+Mqd6+A7n33Y/8J6eJE2BSaEoYNsznbRSCgNiqKiga0DE9YdgNHt9Xx0aj5SPXQKnzbo49byl1GrR85BqoXW48a1pkiD+6Pn38erz6eDze0bWASQ9YDFDrjyBjRDJa3N4Guva+PSWsa5+ClmPbIGNEMtT6I4DF4Njv0bU1VxYEwHxu3imbYxgNqL2/Oe8V5/6c+zdXOY7rpC903FAUBEcjBwA0yaxZDqsRyNno+cfqPoSpeNwm5/7vVZEPJQQkqYxQGkpqL6u+ENj+GXDmAOK7ZqD13V3Q5p5MNOuXiNjWWii17v99V2qViG2tRbN+iWhzTyZa390FcV0ygDMHHPvRe/f/DueNdmU9D/r4qr4b7U5pzz8nTn7rb/U1sgCOG/6tv/zSL2VQCALi7QJazZvndS97fx4fcMTsTS//Zvfc45fj1afZlMAfx5vPgzYrV6Ldr78i5tw8C8ES06uXW6O2R2YDcGCFo0eZ83pUddbRKHtqF3DiD0evtxN/OJbPHnH8XhAc6//1jWN7s6H2Q+Tlw5yXj9KljknYG/MZ6ovSpfWPlCAVpVKJpKQkKJVKxA8YgNb/z96dx0dR3/8Df82es5vdTUIuyEESjgBJQMBAwSrEGxFBxaMqonJ41uqvtlrb77et33pU7betbf2qiPdRtNoqFaXFarRaEEEQCJAAAiYBkhCSbDZ778zvj0822SS7m71nd/b9fDzySLLHfObzntnZ3XnP5/159RWUr38XObfcgowz5g47JioyM5Fxxlzk3HILyte/i9JXXwkrwQEAHQHm9oy1U2ufAzC4j+HiOA5KQwZU2dlQGjIk/d4aTT+kQoWTEo9GcsTIlCkDw813794Nt9s9YumOr74amGza9/nR6u3txcKFC7F9OzsRkJmZiY0bN6KysjJmbQRq1yuczGq6SHTGPt1Mnz4dH3/8MQDg2LEgV/n5ce211+Lee++F2+3Gyy+/jNWrVwd8rO/Ig+XLlw+a6DmQlpaW/r9L+2pjxpNCoRg0GuXgwYP9JbUA4MYbbwz6/BtvvLG/3NyuXbvwzTffYNy4cXFZ10gM7V+qimU/vKW4IkEfvkgyszc0oGn1zVFfIGB+7z1Yt25FybPPyqq0o5xEclWx1unEjK/CH/0Q9Krig5vA52lR+oP5aPrTR3BbPGEvfyiVQYmS788Hn6dlJ/orh1/Rarr4YnSsWRN1W6EaluQ5eZCdGBdFoL2BjZrQmmA8qxrG+UrYWzph3nYE9iMnYfu2A4LV2f9UhV4D3dgc8GW5MNWUgS/KHlyuqb2BlWtq3ctKq/iWaxI9gMAmEYen77dCHdvOepfnXb7gYif/vUmMpq0sSWHtYAkZpQbgTcMTF247i4s//pIcAFsOpwBcVujsx7GgNAc4+TWQVzL8sZY2YOdrgMvO1qO9AXBawOdw4M8eDWTkQ9QYIIhaiAIHTiFCwTnAOS1AbxtL4nQeBnrbgby+C/B2vgZMv254qTB/q9p3or1p9eqYXJSlys8P+Zgr1WgGX/ykCpS/+07UZWvyLrgA1WGUrYl1++GUzZF6FE0shfJ+oJ04ARzHRTRyMBqBRg72s7Sx0W4Oy0Cy1dwykJj1JYpsdJjTAlhOsOOVqYj9tO4Fur4Fpl3t9zU/9Ir2SN9Dw5UMo0YD0el0WLBgwaDb4jmSwTuKJhG8o2h0FRXD+piK/G2rZCf0WqE00LnRRKIkR4ycccYZ0Gq1cDgc6O3txbZt2zBnzpyAj3c4HP2z2wPAOeecE5P1sNvtWLx4MT7//HMAbKKaDRs2RD0JeCh2+HxQKCwsjHt7qSaRGft0THLodLr+v4dOCD6SgoICXHDBBXj//ffx+eef4/Dhw35HPYmiiFdeeQUAKzG3aNEiPP/88yMu3/dqg8OHD4e1bpEQBAF2ux08z/dPuO1VUVEx4uuzqKgIEydO7J934aOPPkqqJMfQ/qUqufSDkHiJ9RxW7rY2HF2+XHZzWEWr7O23oczMlGxODF85q1ahOYwv/y6VCs0lJShuaoLaHeDksx8Bryr2OdHPq0+gfEURWj8yw7ynK+RlD2WqzkLBOSao1CcAcbT/E/1IgtIxI5Rr4ouyWfICfSd9HO6B+vBa1fCTPn7KNSGzmLUzKMnhm2jv+3voXBzR6l+eT1tfPAMo+5IfCSqX5bT1Yq84HpVtB6EZWi6rr1QYXHaWGGqtZ+0p1GxUiSEf4BSsbM2wBvKA7FJ2orTzCOvD8a+Bgr761/5KhQUgxYl237alSrL0Pyc7G0W/eTyqsjWauXOxZ+9eVGZkQKMJb0RYLNoPN6GQyFJl8SzRN9L7gW+JPsmTyr4CJDcBsARGRj47Jmky2HFV8LDRaI6eqJObkb6HyonT6cTevXtRWVnp9/XqHckARHei2jsvhHcUTaJ0rnsDOT+5L2gfU8VI2yoZiS4not13SHgoyREjBoMB5557Lt5//30ArMZ7sCTHX//6V/T0sBq3o0aNwrx586JeB5fLhaVLl/af0NRqtXj33Xfx3e9+N+plj2T//v39JXwADCodRKTJ2KfCJFCx5Dt6I5KySMuXL8f7778PURTx8ssv4xe/+MWwx/z73//uT1JcffXVIb+5+pac+vvf/97/5hwvoiiip6cHWi27QtF3jpyZM2eGtIyZM2f2JzmSbY6dof1LVbHsR1FREe64446QHvv5559j586dUbdJSDzRHFaJoykthdKQkRRXthpra2E66zSY//11SMtwqdWor65GwYkTIZ+gMZ01PfBJwCEn+lUZPIpumQvTvvbI50aYnDfyif4+4SZ5IjUsyRNquaY+HMcNrg8fiLdcU8cBtlxTEWvH0j4wUe6g5AgHQGSThfs5lR8xUfBZvvfPvr8TVS7L0QO7W0SdpRjj9I3QiOLgvvuUCutPcGhNLFEUyvpwCsA4GtBlA+37BxIlY04bWL6fEUR+V1eCE+1eUiZZfBlra2GsrR0yAW89hG5z/2MUmSboqqqGTcBrNptRV1eHcePGRXwizn/78ZkAOJGjaHyP+bF+zxnp/cC3RJ/kSWWvEJObgygBqHVARm7Uyc1I3kPlxm63B3+9iiJ7bxA8LMmk1Ax53wqNlPNCZNx9V9THpGQw4rZKQpw6NdZTTijJEUO33377oCTHnXfe6XcGeavVip///Of9/998880jlrYaicfjwbXXXtvfvkqlwptvvonzojiYWiwWGAyGER9ntVpx4403wuNhw/lzc3NTbhhZvEiasV+xAgCCD42VCbfbjX/961/9/wdLMAayZMkSZGZmoru7G6+88orfJMfQUlWhuvTSS/GHP/wBAGCz2TBv3jzcd999uPbaa1FUFPvto1QqByV6Ghoa+v8OtVzW2LFj+//2TpqeLIb2L1XFsh8TJ07En/70pxEft3PnzkETrf/kJz+JSfskvbGh/L0QXS5wajUUGdHX7E3EHFZFv3k8LstPNYoMdgIkKa5sPXkQBYsnwbqrEe5u24jL0NtsWPT3v4fcpipTh4LFFWzExtAkQ5AT/capxTBOLQ6/ZJPXSCf6+yS8dIyti/0Op1zTsQAnJQtnACp++O0+5ZrQcwzQ5wBNXwBlZ7L7OSU7oSe42MgKj3Pg71jxlsPyLlOhZu0CCS2XZRJ7cHfRzr62nAPJiwClwlBQHf7E5yote14opcJG0H+ifecWmP/2Bux7G2A7dAyCdWCCYoVeC934QvCVk2C67Hvgp38nvPX11wUJkyxD8YVZ4JdMB84ugNhTDcFiGRjBZDCAM44BTGOA/IHXu8lkwt133x2b9hM0AbAUo2hi/Z4z0vvB0PccyZLKviRObob7HipHfl+vljagbS9gPs5Kgrl83gvVPGAY3fe6rxr2Pp6MjEZjzI5JUor22OrhAGUCqzR7uIHP2CRxKMkRQxdffDHOOuss/Pvf/4bD4cCiRYvw7rvvYtq0af2P6ejowDXXXIODBw8CYKM47rvvPr/LO3LkyKCSOS+88ILfWvqiKGLlypV46623ALDSOK+88goWL14cVX/Kyspw++2349prrw04Mfrnn3+O22+/Hbt27eq/7Ve/+lVIyZF0IGXG3lv7csr+5LoKPx5+/etfo6mpqf//YHNqBMLzPK666io8++yzOHToED7//PNBo6Dsdnv/a6yioiKsRMrZZ5+NSy65BH/v+xDZ0dGBe++9F/fddx8qKiowe/Zs1NTUYM6cOZg5c2bUSU9RFCGKIjiOA8dx6Ojo6L8v1JPqvhOTnzoVZIJMCQztXyp6//330d7e3v//SP3YunVr1G2eOHECixcv7p8/6dJLL8XDDz8c9XJJerI3NMK8YQNsu3fBvnffsKtL+cop0E2dBtOii8O+ulSKOay8JTSkLtkkRfve4w8/qQK6ySWw7W8a4VnR008e63+/aNoClYFHyU1TcfTpbRDswvDH+BDBrkRVu1wY6d1AwStQctNUqAz84JEUYZzo5wt04C8sB451QRTzIbhEiG4RnIqDQs2BK5o5cKLfN0EQ6ET/0JJFAAru+yGsn9fB3dU77L5oqbIyUHDv/xu4YctT7HeCyjXBbgb0o9iEuSd2A3NuY/cbC1gd+Y5DrPyKsZBdoTxUoHkvgMBJFgDoPDpQ9iVnPJA1dmBC7gSWyxJFEQ5BCS3nASf4zPUyQqmwsIVaKmwkJw8CTVvAdzWBr80HavODlyrr/AjYcQAYO5fFOUrG6mIY77kQ9voxoScXq6YBY4ujbtvbd3QNHA85YPAIJreDXUHfeQQ4uhnIKgHGzoU4ahwcDge0Wm1MP6ey9lWAhot83wgi0aNoYj2aItj7gb/RFJLPRxJKctNtB5q/9P/84lkDx7wIk5vhvIdGq3z9eij0esk/Zw0liuLA67Xj0LDX/TAuu9/XfSyOefHisfTCrVbF/JiUaIO2VRj9MKx/FQBw6Mf/DwUN7SM8OnZOVuSldLxTFSU5Yuz111/H7Nmzcfz4cRw5cgTTp0/H/PnzMX78eLS3t+PDDz+E1WoFMDDaIisrK6o2n3rqKbz00kv9/48fPx6fffYZPvvss5CeH+jq346ODvzqV7/Cr371KxQWFmLatGkoKCgAz/M4deoUtm/fjm+++WbQc+644w7ceuutkXeGkBCZzWZ8/fXXeOqpp/DnP/+5//bVq1dHPMfN8uXL8eyzzwJgozZ8kxzvvPMOuvtO4oUzisPr9ddfx/Lly/G3v/2t/zZRFNHQ0ICGhob+uT4yMjKwaNEi3HLLLRFPJO3xeNDW1ob8/HyoVCpYLJb++3znLgnG93G+z08GQ/uXir788kt8+WWALy1xYLfbcemll/YnA6dPn45XX32VPniRsPXU1aFj7dqgJyWE7m5YN2+BdfMWdKxZA13N6chdvTrkK2ulmMPKO+pRP70ysSWbTquKa/mOEdv3Kd8BSxtyzpmI5gQkOXLOnTB8JIPPSApe343Sa8eg6a2TcJsdAZdjzcjAhsWX4OL1f0dGb+CkgMqkRckVueD13eyEku9IighP9A+aG8ENwA42yiGcE/1+khyqk1+i5Pvn4OhvN0KwugL2KVwKvRol3z8HqpNfAvk+V/YmsFxT//KdvaxdXRb7P2c82/6GAsB2im0H5cThyQYVD4wL87ORKLDlKVRs+Sp+oD0goeWyusUMPNFcg7sKdyDLexIzzFJhIQulVFggTiu7Arx1b9/6iyz5Z+sE57RA6bKy2zgOUOsBjYFdSa7PYW10NQEFlcCE80OaB2Sk9vnCLPDnlQA2A0RHDhs56BbAqRRs5KDW2Nd+VvTtB+k7nH1X3I/Q927DeDzx/j7cddddUX/PT/QV5YkeRRPL0RTB3g8CjaZI5HwkwyRBcjPU99BYSNZJ37u7u/HEE0/groVTkGU5xG6M4HUf1TEvzrpOdeDJF1+M7JgUo3JdsdC/rcLsx8LNNwIArhnlwWXxWTW/Ps85idoEtkeY1Dw7lMSKi4vx0Ucf4ZprrsHOnTshiiLq6upQV1c36HF5eXl44YUXcO6550bdZtuQN+UDBw7019IPRSglTo4dOzZozoOhsrOz8dhjj2HVqiDDMQmJ0AMPPIAHHngg6GNycnLwox/9CPfccw+Uysg+HJ555pkYN24cvvnmG7z55pv4wx/+0D9fgjeRyHEcrr/++rCXbTAY8Ne//hXvv/8+fv/73+Nf//oXBGH4Faq9vb1444038MYbb2Dx4sV48cUXkR1mPWGlUom8vLz+OPhOxB5q/UrfeSJstpFLhiTS0P6Rka1cuRJffPEFADZKZ/369cjIoEnQSOjcnZ1offChiK54tG3bjqZt20O6ulOyOaz6ruY3nVaAjuBPiynTafms7b6TvZKUjPIZyWCckgvT9AKYd4Y+90TYbU4vgGFy7uCSRX3t+46k4PN5lN9/AVrf/hrmbd/6XRZvs+H8DzaCD/I+ZaoZi4Klp0HVvTdwySQpT/T7nizou7KXL8xC6bIyNL3+DdwWj//lhdO0QYmSa8vAF2YNv7I3geWa+pcvuFi7XvmV7IpYfQ47geJxspO7xtHDlxUuS9/EvEoNWz7A+n90M/s7geWyjCo3bhm9G0Y12Ml0l026UmHeBNNQljZWy99hGUi8mFsG9ltfoshOADot7AS8UsOSKaYitp91fQtMu3rEyY/DaZ8DawaavgSYq5f9xKL9GPXdaD6IW+aYYORsALJC77svPyNJhonjFeWJmhMklqMpAr0fBBtNkcj5SAaRKLk5dNRqKO+hsZC0k74DMHI29no1H2QHmEQf8xLAlJWNW265BUajMbQnJGm5LqPRGF4/hvisUoHLNkf/mSpUn1cq+qtPkMShJEccTJ48GV988QXWrVuHP//5z6ivr0drayuysrIwbtw4XH755bjpppuQm5sr9aoG1djYiM2bN2Pz5s34+uuv0d7ejpMnT/bP1ZGfn4/TTz8d5513Hr73ve9Br0++rDVJD0qlEo8++ihWrlwZ9bKuv/56PPDAA+jq6sL69etx5ZVX4sSJE9i0aRMAYP78+YPmqwjXwoULsXDhQrS3t6Ourg7/+c9/sH37duzYsWPYiIn169fjrLPOwubNm8N6M+c4Dmr1wJdznh/44ut0+vnA5ofDMXDlbKijPxJlaP9S0S9+8Qv88pe/DPnxv/zlL0dM9AXy4IMP4vW+8nU8z+Pdd99FSUlJRMsi6cne0ICm1TdHfaWj+b33YN261W+dbqnnsNIcYHMu8Z27oSvWwtYcePRArOhLePCdHwFb2oGz72ftF2VBNyEftoPxmY9kUPsTC8AXZg8byVBQY4W1EXBbY9+mSg8U1FhZ+Q1vySIvPyMpVOIeFJ2rhKmsAKe+6Ia1afCJX6UgILury3//SnjkfCcThvFKoGtP4JJJgHQn+n3nZQAGXdnLZ7tRvrIMrZ+7AiZ5QmGqGYuC76qg4t3+r+xNYLmm/uUPbdeQz07QdjWxk0Wdh9mJW112dCf93A62LIAtl+NYO4a8gVJZQMLKZSkz8jHaWy7ri6fZfVKVCus75gxiaQN2vsZOaLmsrOSNs++zqbfcl9YIaDLYFb2ChyXrHD0sbh4ni3dvO5A3iT1v52vA9OtCO+knZfsxbFuZNwmjNRywe13offeKwUiSWF5RPmhOEEGA0NMF0W4Dx+ugMGaBU0R/rIjVaAp/7wcjjqZAgucjiWQeJCHAhOCBjkdBkpv9o1b7RlMEew+NpaSc9B0ALG1Q7l6H0Ro7Szon+piXIGqTEaMzTSM/0De5OlKpNAnKdSmVykEltcPVlM9hbwlQGf8By9hbAjTlcbC6rchQ04WFiURJjjjRaDRYvnx5RGVtvMrKyiAO+uLh3y9/+cuwTpaFauLEiZg4cWJUfSAkFmbNmoXZs2f3/2+xWPDtt9/iP//5DxwOBzweD1atWoWDBw/innvuQXZ2dsRX+S9fvrz/ZPLLL7+MK6+8Eq+99ho8Hk///bGQl5eHK6+8EldeeSUANnn6li1b8MILL+Dll1+G280+0NbX1+NnP/tZ/8TlofB4POjs7OyPg+8cOaGOyvB9XLLNsbN//348/vjj4Hk+4JUR3mRSMhu6neLhr3/9K37+85/3///8888Pei0RMhJ7QwOOLr8hZlc4utvacHT5cpS+/PKgEwBSz2E15anl/Vfz58zJQvNb8RvJ4JXzncyBq/l9TnzknFuB5gQkOXLOrWAnPoBBIxlUGjdKFipw9O8iBEfsZmhUaDmULOSg0vSdsPEdyTDCSArjeD2M4/Wwtzth3muGvakHtpNAL8djyxlnYM5//oMM0Q7daC34Qh6mKQbweUNGLgYbSSHViX7feRn8XNmrKhqPopWjYZrdjFOb6mE9EPp+qZ9YgJwLqmCoLgZ6Tvi/shdIaLkm+FZ9H/r+XTJnIMnR285ONLXvj2zybYDFtn0/O0GoMbDlAuxkDDB4JEOCymVZtKPxVr0SV5xfAoOlTdoRREM5rWwUg8s+MHmx4GbJuewydsJuaDyUANQ6ICOXJYUsbezEl9MCHP8aKKhij9v1BlCzMvhJdynbj3HblqZ6vNU9FVdUiTCE0ncvqUfRBFqnviu6OcsJKONwRXesRlPY+IH3A53dPvJoCh8Jm49E6nmQ+pKb3tEUQ2MWL0k56Xvf697Sa8Nb9Q5ckVkPg8I+8LrnTf63CcBO8od5zJFy7rfe3l689dZbuOKKK/x/rw+UXLWeYscfjwvsswvHRjl2HGLvlwku12WxWIL3IwTvzlGgsin4fG+x8O4c9p7h9DgpyZFglOQghCS9hQsX+k3knThxAj/84Q/75+T49a9/jcmTJ0dUTspr3LhxOPPMM/HZZ59h48aNaG9vx8svsyt89Xo9rrjiioiXHYxKpcKZZ56JM888EytXrsSFF17YP7Lj2WefxaOPPhryiAqO4wZNyJWTk9N/X2traCdITpw40f/3qFGjQu1GQhw7dgzPP/980Mfk5uYmfZJj6HaKtR07duD666/vT5b/93//N6655pq4tEXkyd3ZiabVN8e0hAPA5uxoWr0a5e++E9LJh4Tpu5rfOF4P0wQO5oOxO8E/lGkCB8N4/UDZHp8TH8asLpgq1DA3xm4+hmHtV6hhyGwGdr4OjJ46bCQDn8Oh9Ht5aHr7ZOzKJS3NBc+fHF6yiFOFPJKCz9OAPysLMFshiiKsThFdrnZM+p4IvUYBLjM/8EmfQCWTOJV0J/p9Tz4HubLXOCUXxinzYT/WDfOX38B+4FvYWl2DJmZX8Aroxo4CX5YH0+ljwRdmsjvc9sBX9gIJLdfUv0yFmrXrK3cCO0nSupddEXv8674TzntYnflwTv67HSzB4TCz/SFvEtvGBZX+rzZNULksVUY2yjIFqAoqgbbtyVEqzOvgJnZy3WUdOMmvNYUee07B4qXLHoh9az0w5rSB5VcuCfx8KduPcdsqWy/KFCeg8uQDDm7kvgPSj6IZKsHlsmIxmkLp8SCvrQ1Kjyf4aIoAEjYfSRIkN72jKZxf7+qPWbwk5aTvQP/rXuWxoUzRBhVcg1/3wUbuAWEfc4aOokkU/axZUKlUKCsr8z+XZaDkqss6cAzq1zc/R28buyAgweW6gvYjRDsmKPBZpYgz98bvM/6/KznsmMCSHBplaKXCSexQkoOQOJIyY1/42GMJa08qo0ePxquvvopTp07hH//4BwDghz/8IRYvXhz2PBa+li9fjs8++wxutxv33nsvdu3aBQC47LLLIq4BGY4zzjgDP/3pT/HTn7Lh1Xa7HV9++SXmzZsX0vMVCsWg9Zw0aRI++OADAMDRo0dDWsa33w6Uxpg8eXKoq54QihgMjU8GQ7dTLJ04cQKLFy+G1crqzVx55ZURl7si6av1wYfiMhknwEZ0tD70MIp+83hclh8RnxMABd/lYD0mxq9k03d9TnR72/U58VFwphLWZlf82j+z7wSz98SHn5EMfL4W5SuK0PphB8x7I5+Q1FSZgYLzctg5HPPA8llT4uDfPu2PNJKC4zhkaN04R7vXe0vwFQlWMkmqE/1fPjeQYAnhyl4eAD/DDYx3QxQBwaVgeZq+1ecydYDCDgiNQPOQ9v1d2Xvp/7H7ElSuCRn57ARo1ligeunwx004n60HwK6Iba1nJ46OfcXqzPu7ot6XKPRdWXu470p8FVuOWg9oDWz5/iSoXBavVqB2eimQW9y3vklQKgzonwsGoshOrntP8kcyikalZc9r3cO2XXsDMGb68LlgkqX9OLTNt+5BraIJ6OwE+BH6Dkg/imboukhULiva0RQalwvVe/aENP9XMP7nI6mH0G3uf4wi0wRdVVVk85EkSXIzZ9Uq2G69DdV79sS27SGSctJ3n9c939mA2kxLwo45UsxJwvM8amtrh985UnJVa2T9U6jZMUgU2L5kLGSfVxJcritgP8L0/PkKVH7rwaihOZwYOGUAXjh/4HitV1FJ/0SjJAchcSRlxt7bttwpFAqsXbsWkydPRm9vL06dOoWHHnoIv/nNbyJe5lVXXYUf/OAHsNvtePHFF/tvT2TptgULFvQnOQDg+PHjIT9XEARYrVbo9XooFApMmTKl/74dIe6HX331Vf/fvs9PBvPmzUNPT09//1LV0O0UK3a7HUuWLEFzMzvDdfrpp+Oll16iSc9IWHrq6uJ6hR3A5ugwLboYxhh8YYkJn9eIilegZCFw9D0Rgj2GJZv4vpJNvM9r3tuuz4kPlbqvZFS82lf3lYzqH83gfySDSqdG0SX5MFVa/c6JEczAnBh9X/C8J1v8lSyKcCSFQ1Rhh7McMzSHoeUC1C33ClQyyTs3Q6gn+iPl70S/pe/kTgRX9nIch7AuEPR3ZS+fyWKQoHJNMBSwZeSM9z/xtUbPrgLd+Rr7f8xpAyddOg4AXUdDu6IdYCdf8yaxE7Fqni032EnXBJTLcrhF7DiVhRkOB7RA8pQK85kLBk4LO6GVNzmyfgPseXmTWXLKafE/F0yytB+Hth3Zk7HjQDNmZLRCO1LfAelH0XglQbmsaEZTqGbPwrELLsC4K6+EShv9yAi+MAv8kunA2QUQe6ohWCwQ3R5wKiUUBgM445i+Ul1hJlOSJLlprK0Ff/HF2HXwAMoPfQO1e4T30AiENOn79csgmHti1qbCZBy5TJnP695ht2FHbyFmjC6GNgHHHCnmJHE4HNixYwdmzJgBrfe1MVJy1W+5LiW7UCO7lH1GiFVyNUR++xGCjUs3AgB+8ulPsLN9Jyx6Dg9drcQDr3lgiGGVNgsPPHS1EhY9e4+dkT+Dvn9LIHXPDhGSQkwXX5zg9pK7TE+sFRcX4+677+7//8knnxxUbilcmZmZWLx48aDbCgsLcV4Ca8b7ThYOIKw3clEUYbVa+8sUnX32wAmJhoaGERMmx44dw4EDB/r/P+ecc0JuOxGG9i9VxasfK1aswNatWwGw/Xb9+vVJN3k8SX4da9cmpJ1Ta59LSDsh8V4ODwBKNSvZdGU2VIbYnHBUGZQovTIbfA7nv2zPkBMfrGRUQWzb/14Ba3/oiY8hfQcwcKUp2JwYpdeOQfmKIuTMMSKjCFAMeVtSaIGMUi1y5maifEURSq8dM5Dg8F2ev76P0H4gTlGFna4yOMUQrtsK1L4ui/3kjGcn4A0F7IS8vYuduFPx0f8oNf5P9HtJOfE5wMo1AcPLNcWCT7km6PvKZ+ZXBX68IZ9dBao1sATFmOlsFId3vczNQPs+oGUbK7nVso39b24eaCe7nD3PO4IjlKtKveWyOI4lRxSqgXJZbkd4fXY7Bq7q9SmX5RxVgZ0HmuF09sU9wv0+LCOVCvMzFwyyy4afXHfbgSP/9v/jb4SPSsu2A8CWK4qD54JJhvbj1LaT02CnfQycgiJ434HgI0nCHUXkvaJca2LLaW9gy23dy9oJxntFtzfZcnwnu0Lb+5oyFQN5U4CiGqDkO+x33hR2u/e12XmYPc9lZcvZ+VrExxFjbS1KX30F5evfRc4ttyDjjLlQZGYOeowiMxMZZ8xFzi23oHz9uxj95JPYZ7EMvL4idfIgsONVNtLu6Gag8wg4twNKXg2VgYeSV4NzOwbKdH25lj2+41Boyx+W3IRPMjJGQkluAsi6+y4cmTgRbnXsr30OadL3oiyU/vBCqDJj8z1FlalD6Q8vBF+UFfhBQ173TkHBXq9clGWFQj3mgY2iSQTvKBqn04mdO3cOfm0ESq4WzmBJ05ESb97kauGMgWNOa/3A6//gppj3x28/QlBkKEKRoQg1o2v6b2vK5/CL65Q4FaOpR08ZgF9cp0RT/sDrrKagJsgzSLzQSA5CEkCKjH26ueeee/CHP/wBPT09sNvteOyxx/Db3/424uUtX74cb775Zv//1113XUJHDXz99deD/h87dmzIz1UqlcjPH/gyP3HiRFRWVmLvXjb0/KWXXsJPfvKTgM9/6aWX+v+eOnUqxo0bF3LbiTC0f6kqHv341a9+1T9HjV6vx/r161FYWBjTNoj82RsaE/J+BQDWbdtgb2wcuIETATGBVz152wtwNT9fVIjy/xqN1rd2wLzt2+DLCsJUMxYFV8yAynmCzYkwtGzPlqf8XtXN56piWzJKIwA93uX3+c4t7Mt5CCMZ+GKAn8H+FkURgsMN0S2AUymg0KqCX7E2UsmiCEZSGAHcCgAI4WKSkdpP0LwMg070H93M/pZ64vMElWsCx7F2Rpqg2JDPrgL1ls3JLGbPD7Vsjnc/DLdsTpzLZRmnLsStp/etS7gjiGJdKszWxe4PMhfMsPaFAFd6B1q3QHPBlJ058Bgp249T20YlcOt0AMc8gMs5vG3fUUxSj6IBkqtc1hB8RUX/91pRFCH0WiG6nODUGigy9IPec3gAt956a0TtAEhcqa5kmQcJQHZJCW5ZthRHP/oQsUyzKPRalPzh18FHU/Ttd3yBHuX3no3W1/4N897IR3SYKo0ouO4sqEbp/e93AY55RrWGvV45B+D7Mo/1McfndZ/oOUmMRuPg14bUJQpH4GxuwaEAF5eu+PBDaCIs93xR+UVYu3vgIq6mfA4/WqnETZsEnBXFHB3/ruTwwvmK/hEcvu2RxKMkByEJkrNqFZoTcNIoUN1LucvOzsb3v/99PPLIIwCAZ555Bvfffz/y8kb4Ih3AggUL8OWXX/b/P2FC+G/QXr/97W8xbdq0kEeCWK1WPPzww/3/FxQUYPr06SG3J4oiPB4PlEpl/4f/22+/Hd///vcBAL/5zW9w0003oaCgYNhzT5w4MajU1x133BFyu4nir3+pKNb9eOutt/CLX/wCACtj8tJLL+H000+PerkkPTibW/r/7ly3LqFtd657A+MfvBwAcGzNP2D7NvKT+eHSlRhQePOFA18+/ZTtUeVORNHKWphmN+PUpnpYD7SGvHz9xALkXFAFQ3UxOwHavD9w2Z4AJz5UOn3sSka5+q5I9z3xYcgPr2RRHw5hnJMJpWRRmO0DgCCKMDsAkxZQBDuOhtK+lCf6pSpb5HsyIwHlmgCwiYlDodGzEjv5VQMTIGfksp+RRDoBcpzLZQkqHuauLphMJiiCHHMC7veKAF/dvSOGhgq233/MPi+HMhcMALYdzccCxy7QuvmbC+bE7oH7pWw/Tm0LImD2aGBynoLCaR7e9tn3sweGM5Kk+Uv4VTxr+Lb3XlHecYAt11Q0cEW5vwRjspTLGqkZAEpeBWg4v8ckQRBgNpvZ6yvcC9MSVapL6uTmEILdAnvHFyj5fxeg5U+b4O6OvnaPKpNHyZ3ng7duA5ynBU74+Ox3KssBFF2SC9O0XJzaZoH1oJ9RTwHoJ+QhZ5YBhrEALAcAo35g+b773Zan2O8hr3tBY4L56G6YlE4ofN+KY33M8b7u+yRyTpJhr41kSK5GQOA4dPX0IFcQIrr4tCK7AjPzZ+KrtoGy3BY9hz8uUeKzKgFLtgiobAp9eXtLgHfnKPonGfd1esHpmJg9Mex1JNGjJAchCZLojH06uuuuu/CHP/wBvb29sFqt+N///V/8+te/jmhZSqUSNTWxGWK4detW3HPPPaipqcFNN92EpUuX+k0wAMAXX3yB73//+9i9e+AL4H333RfWG7nH40FbWxvy8/OhUrHD/M0334zf/e53OHToEDo6OnDRRRfhb3/7G0pLBz5QHz16FJdddhlOnToFAKioqMDKlSsDtlNXVzeoFNbHH38ck8nARuKvf6kolv346quvcMMNN/SXvnrggQdwxRVXxGI1SZoIdMVUInS9/jrGPLUcEEXoi7QJTXLoi7XQjMoYuCHI1fzGqcUwTi2GvaUT5m1HYD9yErZvOyBYB06CKPQa6MbmgC/LhammDHyRz1WMwcr2hHDiw1gMGOcD9mPdMG//Fvajp2Br6hzefkk2+NJRMJ0+Fnzh4PIefk98eE+wSzGSwVcE7ZsdwBNbXbhrthpZAc71hNw+IN2Jfqmu7PWd1MNbrql1Lzs5f/zrgXJNoZ7s9HI7Bk52+pRrQkFl+ImH3Ansx9IOtNUD5uPsxKLL52ScmgcMo/vq41eNPFIkGG+5rF1vsP/HTB98wtM8dEb3IXxPeHIcK5fVd8LT3NWFJ554AnfddReysrLY40Pd71U8UHZWeH0Zab+PYC6YsPmbC8Z7NbyU7Xv/jkPbZo8GTxybgbvyNiML5uFtSz2Kxje5m+RXdMPSBrTtDel1b3arh7++Qm0j2OTLoSQ2Q518Werk5hDm3e/jic+6cdcMLcpvLETrptboR42eXwBVvnagZJG/BFeA/c54VjWM85Xsc9bWg7A3HIat1QnBPjDORMEroCvNA1+eP/A5S/CEtt/5OeaYORN7vRbuQJYqylJnQPBjju/DvHOSLF8Oobs7+nb7KDIzh81JYjabB14bKmdoydVwhZtcjYBNr8dTb74R/mvcx8qpK/HVv74advuOCSxZUdIu4rt7BUw4Bow7IQ6as8PCA9+M5nCwEPi8UoGmvMAX16yoXhHR+pHope7ZIUJSUCIz9ukoPz8ft99+Ox5//HEAbG6Oe++9F6NGjZJ4zZht27Zh27ZtuOOOOzB+/HhUVVUhNzcXKpUK7e3t2LlzJw4fPjzoOZdddhnuvPPOsNrxlkFSKge+nKjVarz99ts488wzYbFYsGPHDkycOBHnnnsuioqK0NzcjI8++gguFzsJYjKZ8Pbbb8c0ieBvNMq33w6Uf1m/fr3fx+zcuXPQ//76F6pVq1Zh25BJDL1JHYDNR+JvHdauXRuzpJdXNP0Y6o9//COsVisAwGAwoLW1tX/kzkj+9Kc/Rd0+kRYr4dAL0eUCp1ZDkZGRcqOcRFEEJ3pgmqJDx+bEtWuarGPzIXiFcDU/X5Tdn7wYKNnUNxlpoJJNI13NH8aJD34sD35sQXjtA4FPfITR94iEWrIogvZNWuCu2WqYgq1eOCWTEn2i35vcAqS5snfovhLnck2YcH7g547EkAcYavvaEfsSQR520lGp8VtvPvK24lMuy2Qy4a677oLJZBrcllSvO6nmghE9AKeStn3v33Fo26R04q7CHTDBAzj8tB3givKEjWLxvaI8lCu6wxlJEqsruk8eHBjBFYjLzl4rfXNjmEzFuGv5pYNfXyORqlSX1BcVAMDJgzD1HMRds1QwnaqHghdRdMUEmNqzcerDfeGPWj1vCgx5naEluEbY7/iibPCXTAVm2NnnHKcI0SOCU3JQaDhwJbMj2+/8HHNMag97vSpjkOAAgh9zhuAnVaD05ZfRtHp1TM4PqfLzUfLss+AnDS5dblILuOuWm2BSC8C3EiRXpyyKum8AoLNacdtVV4f3Gh9iXvE8XFR+ET44/IHf+5vyOKyb33f8E0XwTkDtAVxKwK5BSJ81FpYvxLzieRGvI4kOJTkISaBEZuzTEcdx+PGPf4z/+7//Q29vLywWC373u9/hV7/6laTrde6552Lr1q2DEhiHDh3CoUOBJ6jT6XS4//77cf/994edaOA4zu9zTjvtNPzzn//Eddddh8OHD8PlcmHjxo3DHjdu3Di89tprqK6uDqvdkQydZ2Sozs5OdHZ2jricQP0LxcGDB4Ouh8vl8nu/xWKJqL1gounHUL6Tl1ssFjz55JMhP5eSHKnJ3tAI84YNsO3eBfvefYPeUxSZmeArp0A3dRpMiy5OiXmaBIcbSjXA52mgK9bC1hzmRL8R0Jfw4PM0w6+wC+Nqfo7joOTVAIKcHAunbE+YJz5Cat8rlBMfUpcsCrN9BccFH8ERScmkRJ7oj6Rcl4oHxp2NsIyU4PKKc7mmSOvyD8Nxsb/if6g4lMtSKBT+rz6V6nUn1Vww3nalbj9ObSs4sKulhRH6LuUoFiD0clmRtBvpFd1RzIuhMDcjy9wM2I6EPhePVKW6pL6oAACatrD3UGcL4BpINBjHaGGcNjb80RQA4C4YOdEQ5n7HcRyU2hCS2KHsd36OOQqFAlmKGCU4gBCPOQP4SRUof/cdtD70MMzvvRdxs6ZFi1Dws5/6PR+k2PoMsrz/SJFcjVGSQyGKyDIao54n9aezf4rtJ7ajzTZCYonjYNcC4RRxy9fl4/7Z94/8QBI3lOQgJMESlbFPRx6PB6Io4pZbbumfdPyPf/wj7rnnnoiHNMbC6tWrsXr1auzZsweffPIJtmzZgv379+Po0aPo7u6GKIowGo0YPXo0pk2bhrPPPhtXXnklsiNMWnk8HnR0dCAnJ2fYKIG5c+di165dePnll/Hmm2+isbGx/7EVFRW46qqrsHz5chgMhlh0PS6C9S+VyKUfJLF66urQsXZt0InBhe5uWDdvgXXzFnSsWQNdzenIXb06qcsZim4PoGEfS3PmZKH5rdCvIIxUznf6SjkNvSpLyrI9Up/4kLpkUZjt9zhEvLbHjeuqVTAOPQkSackkqU70J8OVvUBcyzWlpBiWy+rp6cFrr72G6667DkbfiVOlet1JNReMt12p249T2z1uNV5rn4TrcuphDNS2lKNYpCyXFexkZ5TzYvToSvDa0VxcV10PY7B5MbykLtUVSnIznDJ14ST1+xINPXYBr+0z4LpcNYwFZYOONWGPpvDGIVCiwVsqUaoybYDfY06PW4XXOqpwXV4DjCqX/+WGI6RjzmCq7GwU/eZxmBZdjFNrn4N1SNWBYPQ1NchZvSroZ/z+z0pVShilLFEYAntDY8C5AW06Hk8/+SdckpOLMYsvifgiriw+C0+d/xRu2ngTzE5zRMvwx6Qx4anzn0IWnxWzZZLwcaIYJK1IiITq6+sHXUm+Z88eVFUF+ELmh9vtxoEDBwbdNnHixKSp4e/u7Ixrxj4dCYIAq9UKvV4fdYY/lck9DnLpX6r2I9mPrXLl7uxE64MPRTWvU7D3jH2Tp0SzelGr+N01UGpV7Muo4ELLX7+F+YD/4f2xYJqoRNHlY9lJoJLvAOcMKffotALbnmMnWwaVsFBFdzW/1sRO+gYqYQGwEy+7/8K+FB7f2XelXYQnXoDBtao1BnbiheOAaVf5P9kvZd/DbN/hFrHjhIAZoxXQqrjYtO8Vzgm3oSI90b/jVXZCqLuZrb9C3VeCKsoE17GvWCyyy9mVtVklwIxlwZ8XxRXVgco1yUaE5bIcDgd27NiBGTNmQKsdsk0T/br7+BHWj75jLnpOsD5l5LLtOVSwq3pNhYGv6nVZgd6TLEbG0QPHXO+cHFK1D8StbYegxA5LHmZoj0Jra/Xfd49roGSPd+SYqcj/MT7SvguegSvls8ay3yVzBk42+7uiW+fnO2Wk7Xuv6NYY2BXdfBZwzev+HxuDeTEcghI77EWYUZ4Hra4vsexvXgyvUI634U76Hu7xdu+77BjrsrLkZrgjSXzb9U1ujjmN7csFlYNHkngTXEc+A5q/hKPnFHZ8a8YMUye0xacNP8a47cCxHf7bDFQeURTYczxOILeCvScUz2L7GyDNfjd6at+6DT/mOHQF2OEoxQxDO7QKn8+dsT7mDP2cGYS9sRHmDe/DvnsXbPV7h43W1lVVgp86DaaLF4Z0ot+x6WH2WSlfgPaY97jTBEAEjGP8z/8Vaf89LqDnOIC+i2kA4Pq/jbg/h3IRl0ulwuHx41B+6Buo3e6oL+Jq7GzEbZtuG3lERwjydfl46vynUJFNFx4D0Z/LjQadkSBEIvHO2KcjhUKR1CMQEkXucZBL/+TSDxJ/9oYGNK2+OerRf+b33oN169YRR/9xChGikLg5PTiFCMX8O9mJn755CQouM8H6f3vgtsQ+0aEyKFFwWTVQPImd+KleOvxBUpbtkXo0hdQli8JoX6vJwJwxSkBwAr0xLpkUp3kZgpK6XJivOJRrko0Iy2VptVrMmTPH/52Jft1554ORYi4Y32OulO3HqW0tgDkA0CkAPcrhbW95SvpRLFJPOu8rRvNiaDuPYI7+W6D92MjzYiRLqa5Ez4M0ZD4YrfUU5ogWwJ6AkkWjp0q73829nf0/5HWvNRZiTnYJgJLBy4nXMS8EfEVFf/KCzbtnhehyglNroMjQhz3vnlbFYU6xEvAIPrcmsESgEPizfDgXcandblQ0NPb/b9u2HU3btkd84W9FdgXeXvw2Htn6CN4//H5Yz/W1sHwh7p99P43gSBKU5CBEYsbaWhhra2FvbETnujfQ9br/K1x0M2dCP2tWyBn7dCQIAnp7e5GRkZFSV8bHmtzjIJf+yaUfJL7sDQ04uvyGmM3j5G5rw9Hly1H68suDEh3jH7yc/SGKOLbmA9iawqlAGx2+SAdOl8VOfPTNS6DKL0LJVSdx9PXjg+pAR0vBK1By1Wio8osG5iXwnRfBl5Rle6SeAFrqkkUhtm8XlNhiHo05phPgfa/AjFXJpESf6Jc6wRVonWJUrind2e12bNmyBXPmzAHP+zlBlsjXnfe4J8VcMJHMRQMEPqGq4gNfUR6s/Ti1bXeL2NLsxhz0gA/UNqdkJ/EFF7uK2uMc+DtWvOWwvMtUqFm7gHTlsjzO4cexGM2LYVdnY8vBk5ijPwo+0LwYUpbqKjtz+OcNKS4q8Ek02F0CttgrMUd3CsGmtwpboESDlGXaArzu7b092NKrxJxiFXjVkORBrI85EeA4DkpDBoCMiJfBjkkezCmEz3ZOYHI1wEUa4V7E5VSr0ThpEioaGqBxDZQWC/UiLn+y+Cw8Ou9RXDzuYjy/53lsbw08kmSo0wtOx4rqFTTJeJKhJAchSYKvqEDOihUBkxyFjz0GTXFRgtcqtYiiCIfDAb1eZmURwiT3OMilf3LpB4kfd2cnmlbfHLMEh5fQ3Y2m1atR/u47/Vc9aXL6RhUJbuiLtAlNcuiLtQMnPnzmJeBHG1B67Rg0vXUSbnP0E5GrTFqUXJELfrRh5HkJvKS4mh+QfjSFlH0Po3233YkjDhNq0A5odPErmZTIE/1SJ7gCMeQBhtq+NiIr15Tu3G43jhw5gpqamsAPSvTrTuq5YEJtP5y5CUJtP05tuwXgyCknajLdgMZP21KPotnylHSTvg+9ojuG82K4FRocceehRt0JeDr9z4sxZCRDQidfPrEbONvPhMSJvqjAJ9Hg9gg44slDDWcJ3ka4AiUapNrvfNsd8rp3O9040u1ETWEMTo2GM/9VArkF4Ei3iJoxEiVXlZphD4vkIi6PUon2/HyMP3gQ8ElyAIEv4grVvOJ5mFc8Dwc6D+CN7c9j72fr8c1oDr26gc82GTYRE0dXY9bYM3BR+UWYmD0x7HZI/FGSgxAiG0qlErm5IVxdKXNyj4Nc+ieXfpD4aX3woahLVAXibmtD60MPo+g3jw++QxRhqjSgY0tsEyvBmKYYBk58DJl4m/ccRvlNxWj93AXztm8jb6NmLAq+q4KKF4NPvO2PVGV7pB5NAUhfsmiE9g0AbhwHAH7WJx4lkxJxoj8ZElwjibBcU7ozGAy48cYbR35gIl93Q4656DwMdB5hSZNo54LpPMz+DnbMlbL9OLVtUDhxY+4udoLcVD687TiPJAEw8hXlUpXLGpq48M5LYm5hxziFmo3g8H1ciPNiGDQcbpyuAdwTWVLYaWHLzSxm7Xgn/5ayZFIgiUxu+qyHQWHHjRmfAKoixHTbB0o0SF2mDRj2ujd0HsaNubsBxQywYnMRCvWYJwHDvNtxo3ewwZ7RiU+uDvlsFOlFXDq7HWd/9FHA+/1dxBWuidkTccPYK2BZ9w5EAHYN4FICag/AOwHj+h+jpOL0iJZNEoOSHIQkEU1xEabs3weAXeXtdruhUqnCrruYrihmjNzjIJf+yaUfJD566uqimmQ8FOb33oNp0cUw1tYO3Mhx4PM00BVrYWuOfvTESPQlPPg8zeATGkPmJVDBgqKF2TDNGodTH+6D9UBr6MufWICc86bAkNc5MPF2OPMS+JKibI/Uoymk7HsI7XscNrRbReTpOSi1usSWTIrnif5kSHCRmPN4PGhvb0deXh6UyhBO6iXqdSf1XDBSth+Htj1t+9Fu1yAvQwdlsLalHMUiVbks3yu6YzwvhkcQ+94PNFAGmhcDkLZkUjCJSm76fOfwiAq0C0bkCSKUsRxQESjRIHWZNi+f173HchLtvR7kte2HcrQE818lgEdjHHjvkSK5OkSkF3F5FAqYTSaYzGYoBf+lbANexBUBDoDOCeiiXhJJJEpyEJKkvF+E8vPzoVLRSzUUFDNG7nGQS//k0g8SHx1r1yaknVNrnxuS5GBfQHPmZKH5rdCTCZHK+U7m8BMfAeYlMOYBxh/Uwt5qhXnbEdiPnITt2w4IVmf/UxV6DXRjc8CX5cJUUwa+QB+beQl8Jbpsj9SjKXxJXbJoSPs9HW145smncdcdtyIrJ19eJZOSJcFFYqanpwfPPPMM7rrrLmRlZYX+xHi/7qSeC0bK9uPQdo/VjmdOzMBdM9zICta2VKNYpCyXZfe5cjvG82L02IFnvlLgrpkCsgLNiwEkR8mkYOKd3PRJNPRwRjzTewHu0m9GViy/ivhLNMz9PtsXpSrT5svndd9jqsAzh1S4q3AHsqSc/yqQGBzzB733SFyiMJqLuOw6HTZdtAAXr/87Mnp7Az7O70VcJG3QWRVCkpRSqcTo0aPpCu8wUMwYucdBLv2TSz9I7NkbGmHbFvrEd9GwbtsGe2MjeO9JDwAwFsBY+C1M+zfBvKczbm2bpo6CYf58v0PZg81LwGeXg198GsApIIoiBIcbotsDTqWEQts3Mso7L8Gx/bGdl2CoRJbtkXo0xVBSlyziOGTm5OO+++6DVquVV4LDK5kSXCRqmZmZA/trpOL1upN6Lhgp249x25lqFe473Q6t3jhy21KMYpGyXJZ3Tgwg5vNiZIrAfcVKaNs97BJsf/NijJ6aHCWTQhGP5OaQBFcmfwj3GbZAaxoNjIpzokHfVz5IyjJtvvpe95miiPtO74H2pDD4dc+bAvfd21Y85r8C2HLb9sbsc96g9x5v0lOiEoXRXMSl7+3FpW+9DfWQ+Tj8GXYRF0kblOQgJElxHEcnP8NEMWPkHge59E8u/SCx42xm5Ro6161LaLud697AmJ//98ANfV9AC648HdYjH8NtGaHEQgRUBiUKrpgZcCh7qPMScFojlJoMQK1kXzKt3Ymbl0AqUo+mSCIcx4HnA5xkkZNkS3CRiCT1/ir1XDBSth/jtrm8SeBDbVvKUSxSlMs6upn9HYd5MTgO4DmfzyuB5sVIlpJJ4YhVcnNIgoszFoC3nwIcXYkrWSTxSIJ+fa97budr4DkO0Ax53Ss1gKnY/+vefDw+nzNPHhy4oCEQl50lJTqPsDiGcEHDsPceiUoERnsRFwdAE0KCA/C5iKsi/EnISWqjJAchScrj8eDkyZPIzc0NrW4voZj1kXsc5NI/ufSDsPlVhN5eiC4XOLUaioyMiBJYh847Lw5rN7Ku118fnOTo+wKqyhuDku+V4Oir30Kw+699GwkFr0DJ90qgyhvT116AL6A0L8HIpB5NITGz2Yznn38eK1asgMk0wlWXckAJrpSW9Pur1MdcKduPYdtmJ/D8VjdWLF8CUyhtSzWKRcpJ3+MwL4bZrcHzrZVYUbAXJpXT/7wYs1ayviVDySQp9X3OMytH4flj07Eify9MiUo0SLnfDWXIh3n8Ejz/8mtYcZoOJqk+ZzqtA6UpAfb+Hmppyq4m9hOkNOWw954EJ1djdRGXVafDR+edh3M+/BB6m23Ex3euewM5K1ZAU1wUVbsktVCSg5AkxXEcjEYjXekdBooZI/c4yKV/culHurI3NMK8YQNsu3fBvncvhG5z/32KTBP4ykropk6DadHFEVxFJGJQiYO4EyGK4sC+6PMFlJ8wDqXXutD05omYjOhQGZQouWo0+AnjQv4CSvMSkEB4nkdtbW3yXh0fT2me4EpFKbG/Sn3MlbL9GLXNF05CbW4x+Jzi0NqVchSLVJO+x2FeDF7hRm1mM3iFe8jyfNrSGlk8kqVkklT6PufxHd+idowDvOhObKJBqv3ODz6nGLXnXghe0wx0NCT+mGdpY8lVh4W14U2yuKyBy7SZCtloTt8kS+telrjzk2Tx+94zUnI1huW6YnURl9rlQtWePSGVqwLYRVxdr7+OKfv3xaR9khooyUFIklIoFNDr6WRMOChmjNzjIJf+yaUf6aanrg4da9cGHW4tdJth3bwF1s1b0LFmDXQ1pyN39Wo2/0RIEp344iD0WqE0ZAzc5PMFlC9qR/kKJVo/MsO8pyviVkzVWSg4xwRVZmZYX0BpXgISiEajwfTp06VeDUJCkjL7q9THXCnbj0HbmpzxmB5uu1KNYpGqXFYc5sXQKARMN5wcuMHfvBjeE+jJUjJJSiVzoOlqwvSyHOC43n+iIZxSZeEkGkLZ70JtO8qJvzUaDabXzAYwe3C5qEQccyxtLLnpsrOkhje5CbD9R2tksVCoWQJOFNiIJGMhS6R5nCzJ0NvO+g2w5U2/btBr3+97z0jJVU7Bkjz+2u88OtA+kLCysGq3G+WHD8d8uUMpCkfjqvv9nyrfWBiDYwSJK0pyEJKkBEFAT08PjEYjFIrormxJFxQzRu5xkEv/5NKPdOHu7ETrgw/BvGFD2M+1bduOpm3bYVq0CAU/+ylU2dlxWMPoiC4nAJ8kx5AvoCr31yi6OBum6myc2maB9WB7yMvWT8hDziwDDGMR0RfQQetE8xIQHzabDZ988gnmz58PnU4n9eoQElTK7a9SH3OlbD+KtiPezlKNYpGiXFYc5sWweZT4xFyE+aYW6JQe//NiKDXs72QqmSSV3AmwZVfgk217MX/MJOhOJnA+GEC6Mm1DDHq9JvKY47SypKbL3hf3+r5+qIHsMjaSomXoBVVKtj9nl7KRR5Y2tt86LSxRVNCXTNv1BjuW9B0DAh6TgiVXXVY2UszRM3zdlRoW7wSXhXVoNNhbXYXKPfXQOp1xaYOkPkpyEJKkRFGEx+OBOGg4LwmGYsbIPQ5y6Z9c+pEO7A0NaFq9Gu620E/s+2N+7z1Yt36BkmfXgp8UqIRVoktVMZzaz4kFP19AjaVuGMuzYHdMgLm+B/ajHbB92wHBOvBlQ6HXQDc2B3xpDkxVRvDak1F9AR2G5iUgfQRBQFdXFwQhdnPGEBIvKbu/Sn3MlbL9CNqOajtLMYolkeWy5tw28HeM58UQnECXjYMwpgDQwP+8GL7bK5SSSfEayZAkhNJ56PpPAwSVLvGJBinLtPnGwN/rNRHHnIObWIkql3UgwaE1DSSYgu33ANsuxtEsMedNMLXWszh6l1+5JHAf+/saILnacwywm1nfPS70fz9Rqtl2MRQkvCysyHHozciASJ/zSRCcSGdXSJKqr69HdXV1//979uxBVVXoQz09Hg8aGxsH3TZhwgSo/Z3IIYQQEhKn04lDhw4Num3SpEmyHY1ib2jA0euvh2D2cyVThBQmI0pfeXVYomPf5CkAJ7IR4Z7EfYDnlCIm7dwJTu2ntvRIQ+kz8iFqDBBELUSBA6cQoeAc4JyW4F9AhwylJ4QQQsgQiRzFEmhuAI9z5OdGckX3N3WsZFTvSaB9H1tG8azhJ9XddqD5S//LKJ4VeF6M5i/ZuudNYUmi0rnAuNrBj9v7Ljux67KyK+GHnmgO1dCRDGNOY593Cir7TzQnrRA+50WUaAj1c16i97tkcPIgsPsvrL/Hd7J4a02DE2zh7PeCh43AcZjZdhgzncVj6pVsZEo46+VNroYqhOTqvslTQl9eHIQ7J0eLpQUL3l7g976NSzeiyEATmY8k2nO50aCRHES2/J1ws9lsKZPkEEURTqcTGo2GJiYOEcWMkXsc5NK/VO2H1Wod9D/HcSm1/uFwd3aiadWqmCY4AEAw96Bp1UqUr18/qHTV+AcvBwQXjq/5J6zNjpi2GYyukAcnBrjiNIQ64RyCVNFO1S+gJCW43W40NzejuLgYKhV9rSHJjfbX9BDT7ZzIUSyJLpcV43kx3IKIZrOIYhMHlffk+0jzYiRJySSpuN1uNJ+0orj6aqj2vs1uTNR8MF5SlWnzjUGij8tNW9hvcwvrn0LNEmuRTLoOsOflTWb7rdPClptZzNrJnRB6H6UuUTgCj0KBjtxc5Jw8CWWqjYgkCUOfrohscRwHvV4/6ITcqVOnYDQaU+KEnMfjQUdHB/Lz8+mLUIgoZozc4yCX/qViP9xuN06dOjXotoyMjJQ4pkai9X8egLv95MgPjIC7/SRaf/U/KPrt7/pv0+QYAMENXTGf2CRHMR/8i5XEX0AJCcRiseCll17CXXfdhaysLKlXh5CgaH9ND3HbzhwX3XwRoUhkuaxQ58UIsWSUxQm8tMuNu2aKyAp1XowkKZkklUH7qpSf86Qo09Yn4cdlSxvrn3fUCsDm4Ij2ta3SssRcxwG2XFMRa8fSDotbHV4fY5xcHf/hhwCAYz/+MWw7doTXLx92nQ51556Di9f/HRm9vSM+XjdzJgofeyzi9khqonJVJGnFYohTZ2cnTpw4Meg2nU6HUaNGged52ZZXIYSQWBFFES6XC729veju7obL5Rp0f3FxMYxGo0RrFz89dXVovvW2kR8YpeKnn4Kxtpb98/EjgCjCvv1THH7uaNzb9ipfVQr+ng9C+9ISp6HshBBCCEky8b6iO5SyPeEIVLZn2lXBP4OkY8mkQJLhc16SjiSIiq2L/T7yGStDZe0ATjay/adwhv8ybccCJAR85qIZRBTYczxOILeCJaCKZwFTFsW0K5Fq++3v0LFmTcLay7nlFuT/v7vDfh6Vq4oelasiJE6MRiNaW1sHTexrs9nQ0tIi4VoRQog8qFQqGAwGqVcjLjqe+lNC2jn19J8Gkhx9E3LyxgLo6l6E7VB8RpH40k/IAz//ytCvykryoeyEEEIIiZF4l8vKncCu/m/dy0ZBHP+6bwLlPdHPi5E3ia1fQeXIJ99pxOqAZPicl8gybYmy5Sn2+8RuwN4FWE/1JfWMQMv24Y8X3ID5WODlKQKcyrV1slFGdjOgHwWcPBBRkiMeJ/pNF1+c0CSH6eKFCWuLJA9KchBZU6lUKC4uRnNzM1Jt0JIoinC73VCpVLItBRNrFDNG7nGQS/9SvR8qlQolJSUpue4jsTc0wvZ1fULasu6sh72xEXxFBaDLYjfmjEfOhdPQ/H8fxb39nAunRnblnRy/gJKU093djaeeegq33XYbMjMzpV4dQoKi/TU9yHY7x6tcVozmxehub8ZTLZW4rWgvMsdUhD8vhoQlk6QSdF9Nls95cS7TltDXqyiyUmfAwCihWPdNpWVJDu/ynb3o7urCU08/LfkxiZ9UAV3N6bBt85PUCUGvXo9/XrQAF3ywERlD5ogcSl9Tw75bkbRDSQ4iewaDIWUTHR6PJ2Vq9ScLihkj9zjIpX+p2g+e51FcXAy1Wi31qsSUs5mN8ut85fmEttv5yovIueUOaIr7rorKr4RxajFMNWUwbzsSt3ZNs8pgqC72PxlnOBJRJ5wQP/R6PS699FLo9Sl81SxJG7S/pgfazmGK0bwYeihwacEx6AsrAW0U82Ikw0iGBAl5X5Xx57yEvl5FDyD0lf319P1WxPi7lHd53uULLui1qqQ5JuWsWoXmCJMcWocDs7d8Aa1j5HkLc1aviqgNkvpS78wKIREwGAyYMGECenp6YDabB01Gnqw4jgPP+6m1SAKimDFyj4Nc+pdq/dBqtcjIyIDBYIBer5flCI5D550HAFBoBACJm7PJ/O7b6PrL3zBl/z52Q99knAVXz4a18Rjc5hBqQodJZdKg4KrZgSfjJCQFqNVqTJ48WerVICQktL+mB9rOETDkA9OvY/NiAGwuDd95MczNwZ+v1ECdXYTJsZwXI1lGMsQR7asJjsGgC277/g42SikS/csbaEutVCTNdjbW1sJ08cUwb9gQ9nNVHg+KQig7b1q0CIb58yNZPSIDlOQgaUOlUiE7OxvZ2dkQRRGCICT1yA6bzYaPPvoI55xzDnQ6ndSrkxIoZozc4yCX/qVKPziOg0KhkGVSIxDRndi++m2vZA5UXU0oufMCHP3fDyDYPTFrT8ErUXLnBVAZeFZegZAUZbVa8c9//hMXXHBBUlyhSEgwtL+mB9rOEYpyXgyrG/hnowcXfKcS+qqLYjsvhkxHMtC+muAYDPouxQEQWbk1KGPXhij4LJ+x2h345/vJs50L/utnsH75JdxtbWE9z6HR4OsZM3Dajh3QOv1fAKbKz0fBz34ai9UkKYqSHCQtcRwHpTKGbyZxoFQqIYoilEplSpazkQLFjJF7HOTSP7n0Q35EiEKCkxxC3xcdX32TcfLYi9K7z0HTnz6C2xJ9okNlUKLk++eALx4V2mSchBBCCCGJEM28GKZCIFsBTIpxgoOQWOGUrJyU4AKU6r7RQX1/x4q3HJZ3mQo1G3mURFTZ2Sh59lkcXb4cQnd3zJaryMxEybPPQpWdHbNlktTDicl8KTtJa/X19aiuru7/f8+ePaiqirJuOCGEEBLAvslTAE4ERAlGrXAipuzbP/g2pxXY9hzgsMB96iRaX/s3zHt7Im7CVGlEwXVnQTUql5VyqFlJJwIIIYQQkpzSYF4MkiZsXez3nreBrm+BjkNsPhljIZBdOvzxbjtwbIf/ZRXOAFQBSh53HgV6jrF5bHLGA1ljgVkrw17dFksLFry9wO99G5duRJGhKOxlDmVvaETT6tVhj+jwR5Wfj5JnnwU/KfrJxhPRd7mT8lxu4gpOE0LC4nK5sH//frhcLqlXJWVQzBi5x0Eu/ZNLP2SHk+jaD3/teifjVPNQjcpF0a0Xovh7pdCXhDeXi76ER8n3SlF064UswRHpZJyEJBk6jpJUQvtreqDtHEOGPGBcLTD9GuC7dwNn/RD47l19v+9mt4+rBQx5FPcIUMwSGANdFvvJGc8SFIYCQKEC7F1spIWKH/6jUPn/8fdYFc+WY+9ijzEUsNtyxiftduYnVaD83XdgWrQopMe7lUq0FBXBPaQii2nRIpS/+05MEhwk9VGSg5AkZbVa8c4776TEJOnJgmLGyD0OcumfXPqRDERRhMdigbuzEx6LJbr5lkQOnDKxiQ5OGWT0iHcyTq0BUOthnDcPpXecgfJVZciZm4mMUh4KfvDHOQWvQEYpj5y5mShfVYbSO86AYd48Vr9aa2DLi2YyTkKSBB1HSSqh/TU90HaOE++8GBo9+z1krjiKe/goZhLEIL+S/dbnsKSExwlYoh/JAIAtx+Nky9Xn9LVXldTbWZWdjaLfPI7ip5+CvqYm6GMdWi22zvkOHFo2P46+pgYlzzyNot88TiWqSD8qV0WSFpWrIoQQEoi9oRHmDRtg270L9r17IXSb++9TZJrAV1ZCN3UaTIsuBl8R2pU9zrd+Bogijq35ALYm+8hPiBFdCY/Cmy+C5sqHg6ycdWAyToBNvNk3Gafo6IHQ2wvRLYBTKaDIyACnNfZPxtl/IqCgEphwPo3gIIQQQgghRAo7XmXzzXQ3A52H2bwZhTMGT27vtgPNX/p/fvGs4eWq3A7g2FeA4Aayy4HMYiCrBJixLKJVlKpkk72xEZ3r3kDX66/7vV83cyb0s2bBdPHCkL/fhYvKVUVPynO5NNMpIYQQQlJGT10dOtauhW3b9oCPEbrNsG7eAuvmLehYswa6mtORu3o1DPPnB1225uIfAwD0W4/B1vRFTNc7GP2M06BZdG/wBwWZjJMDoAz23KwSYOxcmmScEEIIIYQQKZXMYZ/jTUVAbzvgtADt+4GCakAR9BO9f4KHPV9wAxoDWy7APvunGL6iAjkrVgRMchQ+9hg0xZRkIIFRuSpCklRXVxceeOABdHV1Sb0qKYNixsg9DnLpn1z6kSjuzk603PMjNN96W9AEhz+2bdvRdMutaPnRj+Hu7Az8wL56uaYF50e3smEyLTiftR2K3AnsqqxZq4DSuUB2GZtjw5eaZ7eXzmWPm7GMEhxElug4SlIJ7a/pgbazNCju4aOYSRSD3AlsdDXHAXmT2BwaDjPQuoeNyAiH28Ge5zCz5eRNYsstqOz/7C+X7dybkYFHnlub8v0g8UUjOQhJUgaDATfccAMMBoPUq5IyKGaM3OMgl/7JpR+JYG9oQNPq1XC3tUe1HPN778G69QuUPLs26OR0/HfOh27CGtgOxqhGbhD6iQXgZ18Q/hMNeYChlv0tiqwGr+BhV4ApNcNqVRMiR3QcJamE9tf0QNtZGhT38FHMJIzBhPOBrm/Z3wVVQGs9S1Qc+4qVm+JNwZ8vCmwOjs7DbASHQsWW451/b8LABVty2c68zYZrFy5M+X6Q+KKRHIQkKZVKhbKyMqhUlIsMFcWMkXsc5NI/ufQj3uwNDTh6/fVRJzi83G3tOHr9MtgbGgM/yJCPnMtqY9LeSHIuq2UJi2iMMBknIXJFx1GSSmh/TQ+0naVBcQ8fxUzCGGj0wLSr2ehrrQkYcxorNSW4gY4DwLEdgK0TcFkBj4tdyORxsf87j7L5OjoODJSoGnMaW46aZ8v1mX9PLttZKQgoHVOY8v0g8UVJDkKSVG9vL9atW4fe3l6pVyVlUMwYucdBLv2TSz/iyd3ZiaZVqyCYe2K6XMHcg6ZVK4OWrjIuuR6mmrKYtjuUaVY5DEuuj2sbhMgZHUdJKqH9NT3QdpYGxT18FDOJY2DIB6Zfx0ZeqPXAmOlsFIdSw0Zq6LLZ7Up130htNfu/t42N4FZq2OPHTB8YwTH9OrbcZOljBDTFRZiyf9+wn7Hbt+Gvn/07ZfpBpEFJDkKSlEKhQFZWFhQKepmGimLGyD0OcumfXPoRT63/8wDc7Sfjsmx3+0m0/up/Aj8gdwIK7rweqkxdXNpXZepQ8H2aK4OQaNBxlKQS2l/TA21naVDcw0cxS4IYGPKBmpUDc3RkFgPFs4G8KYBhNBulwSkAcOy3xsBuz5vCHpdZPDAHR83KYQkOIAn6GCNy6QeJL04URVHqlSDEn/r6elRXV/f/v2fPHlRVVUm4RoQQQhKlp64OzbfeFvd2ip9+CsbaWv93Oq2wv/MYjv76bxCszpi1qdBrUPqTy8Bfeu+g4eSEEEIIIYSQNHTyINC0BehqCv05WSXA2Lkxv2iqxdKCBW8v8HvfxqUbUWQoiml7ySSd+x4rUp7LpRQYIUnK6XRi586dcDpjd2JN7ihmjNzjIJf+yaUf8dLx1J8S0s6pp4O0o9GDX3g7Su9dHLMRHapMHUrvXQx+4e2U4CAkSnQcJamE9tf0QNtZGhT38FHMkiwGuROAGcuAWauA0rlAdhmbY8OXmme3l85lj5sx8qjwpOpjKGxdwMePDPtxfvgwdm79T+r0g0iCZmwhJEnZ7XbU1dVh3Lhx0Gg0Uq9OSqCYMXKPg1z6J5d+xIO9oRG2r+sT0pZ1Zz3sjY3gKyr8P8CQD37RnSgfZULrKx/D/OXhiNsyzSpHwfVnQ3XGDX6HkxNCwkPHUZJKaH9ND7SdpUFxDx/FLEljYMgDDLXsb1Fk828Inr55OTSsPFUYkrKPoRBFQPSw3xwHu0uBus+3YNzk6tTqB0koKldFkhaVqyKEkPTibG4BAHQ8/Ud0vfVuwtrNuvIy5NxyBzTFQYYfO63AwU3o+fCfOLWpHtYDrSEvXz+xADkXVMFw7gXAhPNpBAchhBBCCCEkKUlWssnSBjRtBXa+Djh7AcE1cJ9CDVQuZiNX8qtYMigOqFxV9KQ8l0sjOQhJUqIowuFwQKvVggszW5+uKGaM3OMgl/7JpR+xdOi88wAACo2ARFbUNL/7Nrr+8jdM2b8v8IM0eqByCYz5VTCetQX2+l0wbzsC+5GTsH3bMWjODoVeA93YHPBluTDVlIGvmhaXermEpDs6jpJUQvtreqDtLA2Ke/goZukRg5Too+98JG47YO8a9hDR44Lj5LfQ9rSCO7o5bvORkNRGc3IQkqS6u7vx6KOPoru7W+pVSRkUM0bucZBL/+TSj3gQ3Yn9AB5We331cvlLf4z8H9yOsb9cjYonbkDF767BxMevQsXvrkHFEzdg7C9XI/8Ht4O/9Mch1cslhISPjqMkldD+mh5oO0uD4h4+ill6xCCp++i0AnvfBXb/hSU4RBGW7ia83/4VPmnbji9at2HriW34onUb/tHaiEe3KtDdeYqVsOpqAna9yZ7vtMZunezmyO4jSYHKVZGkle7lqjweD9rb25GXlwelUin16qQEihkj9zjIpX9y6Ucs7Zs8BYAIQIqrjERM2b8/wqdGXy+XEBI+Oo6SVEL7a3qg7SwNinv4KGbpEYNI+piQkk2WNmDXG4DDwr5LmVsAcwsc9i7s6hg+N6MgKjAmcxaKdCKUKjVgKmI/HAdoDcC0q2My52HLyX1YsOEqv/dtvPhNFOVOiboNuaNyVYSQYZRKJUaPHi31aqQUihkj9zjIpX9y6UfMcWB5Dinajfi5HKDSxmxVCCGhoeMoSSW0v6YH2s7SoLiHj2KWHjFIyj5a2oCdrwEuO+CyAu0NgNMCABAVapxQqWBRcLByCng4QCkCelFAdbYeSreTXVzWeRjobQfyJrFl7nwNmH5dTBIdJHVRuSpCkpTFYsGLL74Ii8Ui9aqkDIoZI/c4yKV/culHzHESDTCVql1CSMToOEpSCe2v6YG2szQo7uGjmKVHDJKuj04rG8HhsgMOM3D8a5bgUKiBnIlwjq5Ck1qFTqUSDgUHN8fBoeDQwRmw7vgkWPJrgJyJ7PFOC3u+w8yWt+uN2JauIimHkhyEJCmVSoWysjKoVDTgKlQUM0bucZBL/+TSj5gTOXDKxCYcOKUIiFReipBUQ8dRkkpof00PtJ2lQXEPH8UsPWKQdH08uImVqHJZgdZ6QHADWhNQOAMwjga4AKepOQ+KjW6olAr2uMIZ7HmCmy3HZWXLPbgpsf0hSSVJ9nJCyFA8z6O2tlbq1UgpFDNG7nGQS//k0o9YGv/g5YAo4tiaD2BrsiesXb5Qh8KbL0pYe4SQ2KDjKEkltL+mB9rO0qC4h49ilh4xSKo+njwItO5lc3C0NwwkOAqq2byGQSg4J+YWOcCrTOwGlZY9r3UPG8nR3gCMmc6Wn18F5E6Ibl1FEWoASlGEh+Pgim5pJEFoJAchScrhcGDLli1wOBxSr0rKoJgxco+DXPonl37EkubiH0Oz6F7op5+W0Hb1M06DZtG9CW2TEBI9Oo6SVEL7a3qg7SwNinv4KGbpEYOk6mPTFvbb3DJQoipv8ogJDgAQRDW+atXA4fYZ8a9Q9j1fxZZnbhncTrgsbdA2fYlLeixY0d2DVV3duKnbjFVd3VjR3QPd/veBb+oAS3tkyydxR0kOQpKU0+nEzp074XQ6pV6VlEExY+QeB7n0Ty79iCldFqDLgmnB+Qlt1rTgfNY2ISSl0HGUpBLaX9MDbWdpUNzDRzFLjxgkTR8tbUBXExvF4U1GZJexERkhEEU19p7UwOkZcodKC2SXs7/NLWz5XU3hJSJOHgR2vAp8+Rw0x3ai2O2GVhQGPUQrClB1twBHNwNfrmWP7zgUehskIThRFGmmTZKU6uvrUV1d3f//nj17UFVVJeEaEUIISQhLG45870rYDrbFvSn9xAKU/vkvgCEv7m0RQgghhBBCSDJrsbRgwdsL/N63celGFBmKQl+YrYv9PvIZ0PwlYO0ATjYCSg2bV2PIHBxmWwde/eZdv4taNm4JTLqc4XeIAnBsB+BxArkVgD4HKJ4FlJ0Z/EI2p5XN4dG6t285IiynDuLTb95HhiiCF0VwfVM32jkOs4rPhD6zjC2f65vPsaASmHA+oNGHHhOZk/JcLs3JQUiSEgQBZrMZJpMJCgUNugoFxYyRexzk0j+59CMuDPnIuawWzY+/Gfemci6rpQQHISmKjqMkldD+mh5oO0uD4h4+ill6xEDyPm55iv0+sRuwdwHWU6y0lNYItGwf/ni3ze9iRJFDd8shGLTfQMH5eYCtE3D0AHYzoB8FnDzA2jz7fv/rZWkDdr3BJiv3ji4xt0Bt70KeZ/BwEU4E9KIIZW8H4LSxBI2piP207gW6vgWmXQ0Y8kOPC4kLeb6KCZEBs9mMJ554AmazWepVSRkUM0bucZBL/+TSDy9RFOGxWODu7ITHYkG0A0WNS66HqaYsNisXgGlWOQxLro9rG4SQ+JHbcZTIG+2v6YG2szQo7uGjmKVHDJKij6IIOHvZ356+slkhlqnyEsQMPN82B2aPxv8DvMvzLt/Zy9r1x9IG7HyNJThcVuD4TqDzMOBxQlSocUKlwkGNGru0Wuzgtdil1eKgRg23IZ8lODxO9vjjO9nzHRa2PEv8qxCQ4KhcFUla6V6uSvKMewqimDFyj4Nc+ieHftgbGmHesAG23btg37sPQnd3/32KzEzwlVOgmzoNpkUXg6+oCHv57i9ex+Ef/Abubv9X9ERDlalD+R9+BNV3ro35sgkhiSGH4yhJH7S/pgfaztKguIePYpYeMYikjzEtV/XxI4DgBr7dzP7vagIgAsYxgFI97OFmtw2v9h4cdrsocljMV6FIy/kfyeFxAT3HAXBAVgm7bexc4Nz/Hvw4pxXY9hxLTDjMQGs9Wz+FGsgug1nB4dWDb/vtyrKJV7JyWZY2oPMIILjYpOcFVYDWBGgNQM3KtC9dReWqCCHDKBQKZGVlSb0aKYVixsg9DnLpXyr3o6euDh1r18K2zc8Q4z5Cdzesm7fAunkLOtasga7mdOSuXg3D/Pkht6OacSlK7mnE0V//DYI1dpPlKfQalNyzGKoZl8ZsmYSQxEvl4yhJP7S/pgfaztKguIePYpYeMUiKPg66tr7vby68pBLHichU2aHgdAEe4F2eT1v+ruk/uGlgBIc3waE1AXmT2WgQ6wgTlnMKwDga0GUD7fsHEiVjThtYfuWSsPpGYkeeqUpCZKCnpwdPP/00enp6pF6VlEExY+QeB7n0LxX74e7sRMs9P0LzrbcFTXD4Y9u2HU233IqWH/0Y7s7O0J6k0YNfeDtK710MVWaAD7RhUmXqUHrvYvALb0/7q2wISXWpeBwl6Yv21/RA21kaFPfwUczSIwZJ0UfOd+hF39+iENYiPIIer7bVoMc9fPTH4OX5tMUNGfJx8iCbQ0MUgfaGgQRHQXXY5bOg0rLnaU1sOe0NbLmte1k7RBKU5CAkSWk0GkyfPh0aTYCag2QYihkj9zjIpX+p1g97QwMOL7kU5g0bolqO+b33cHjJpbA3NIb2BEM++EV3ovxX18A0qzyqtk2zylH+q2vAL7qTJoYjRAZS7ThK0hvtr+mBtrM0KO7ho5ilRwySoo+ckpWDAgZKVAmu8BbBuVCpPwGNIkByxLs87/IVataur6Yt7Le5hU1+rlCzERyKIY8LlULZ93wVW565ZXA7JOFoTg6StNJ9Tg5CCEkW9oYGHF1+w6A5N6KlyMxE6csvg58U4lwdTitwcBN6PvwnTm2qh/VAa8ht6ScWIOeCKhjOvQCYcD6N4CCEEEIIIYQQP2I6J4eti/3e8zbQ9S3QcQjobQOMhUB26bCHm20dePWbd/0uatm4JWxODH86jwI9x4CMfCBnPJA1FqheCuiy2P2WNuDL59hoi+atbPLwnIms9JRv+9Z2vHrgL/7bn3glTPq84Xf0nAA6DrBJyYtnsxEks1YBBj+PTQNSnsulkRyEJCm73Y66ujrY7XapVyVlUMwYucdBLv1LlX64OzvRtPrmmCY4ADZnR9Pq1WGVrkLlEhiv/X8o/Z9VKP+vS5CzYCoyJo+BQj/4yiSFXoOMyWOQs2Aqyv/rEpT+zyoYrv0hq49KCQ5CZCNVjqOEALS/pgvaztKguIePYpYeMZC8j7os9pMzHlDxgKGAjXywd7GkgIof/KP0P+JEEDXYfMIIO7T+n2PvYss1FLDbcsazdm1d7KdpK+C2s0SIy8rm1uBN7DbfH0+QeSA9zuGPd9vZcjgFW27PMXZb0xexjiQJAU08TkiScrvdOHLkCGpqaqRelZRBMWPkHge59C9V+tH64ENwt7XFZdnutja0PvQwin7zeOhPyp0A5E4AP7Ed/Bn1gPk4xJ7jECwWiG4POJUSCoMBnHEMYBoD5Fel7VU0hMhdqhxHCQFof00XtJ2lQXEPH8UsPWKQNH3MrwSObgb0OSwp4XGy0RVDRlIEJCrR3KOC21+1KksbW55Sw5YPsO+AALDlKfb7xG6WCLGeYqWltEagxc8ck25b4HVorQdUAeaJtHUCjh7Abgb0o4CTB4Api0LrG4kZKldFkhaVqyKEEGn11NWh+dbb4t5O8dNPwVhbG/kCRJF9sBU8rDaqUjN8ojlCCCGEEEIIIUHFtFyVrx2vAl1NQHcz0HmYzYlROGPQpN9hl4tyO4BjX7HJv7PLgcxiIKsEmLGM3f/xI+y7YtMXbN6OnhPse2NGLqAePsLf7Lbh1V7/E4cvy5gAU6Akh8sK9J5k30ONo1nflr+Tlt9JqVwVIWQYj8eDEydOwOPxSL0qKYNixsg9DnLpXyr0o2Pt2oS0c2rtc9EtgOPYh2ONnv1Oww+ThKSjVDiOEuJF+2t6oO0sDYp7+Chm6RGDpOpjyRz221QEaAws6dC+n12oNgJRVKDNqoBH8LlOX/D0Pd/NlmfqS76MnTvkyZ6Bick9fb+9E6HHind53uULruClr0hcUJKDkCTV09ODZ555Bj09PVKvSsqgmDFyj4Nc+pfs/bA3NMK2zc8Q3jiwbtsGe2NjQtoihMhHsh9HCfFF+2t6oO0sDYp7+Chm6RGDpOpj7gSgoJJdkJY3ic2h4TADrXvYiIwgBFGP1/Ya0ePNG7gd7HkOM1tO3iS23IJKNh+Hr0EFjPr+5mJ8Orx/eUOSMCShqFwVSVrpXq5KFEU4HA5otVpwdFVySChmjNzjIJf+JWs/nM0tAICO555D15//nLB2s669FmN+/t8Ja48QkvqS9ThKiD+0v6YH2s7SoLiHj2KWHjGIpI9xK1cFAE4rsO05wGHpS3DUs5EYChWQXQ6zgsOrB9/20w/gynFXIs8wClxvOyt35X1eQRWgNQFaA1Czko3u9/r4Efa4bzez/7uaAIiAcQygHD6aI+JyVR4X0HMcAMfKZQHA9X8bVIorXUh5LpcmHickSXEcB57npV6NlEIxY+QeB7n0L1n7cei889gfnAggcR/2u/78GiU5CCFhSdbjKCH+0P6aHmg7S4PiHj6KWXrEIOn6qNED064Gdr7G/h9zGtDewCYD7zgAjceFEpcbFgUHK6eAhwOUIqAXBWT0NoPr/magDJTGwEZwqPWAmmfL1QyfZwOckpWTElwsseFxDvwdK95yWN5lKtRsfg6SUFSuipAkZTab8fvf/x5ms1nqVUkZFDNG7nGQS//k0o9YosGlhJBw0HGUpBLaX9MDbWdpUNzDRzFLjxgkZR8N+cD069jIC7UeGDOdTRqu1IATXBjtdmOC04VpDgdm2B2Y5nCgyKHBmm/GwewASx5kl7PnqfVsOdOvY8sdas5twNzbgcrFQPEsIL8SMBUCWWXs/6E/BUFGHBRU+X9O8Sy2PFMhW37xLNaeTEcHJTMayUFIkuJ5HrW1tcmVdU9yFDNG7nGQS/+Svh9igj+UiRyEXiuUhozEtksISVlJfxwlxAftr+mBtrM0KO7ho5ilRwySto+GfFZa6uAmoHUvkFkMmIrgOnUQ7V37kSGK4EURnMi+lro4F76bfRJ8/njAmDOQQCioBCac738EBwDostjvnPGApQ0wFAC2U4C9C1BOHD43R7DRF0oNoPITR1Fgy1Oo2PJV/PB5QUhCUJKDkCSl0Wgwffp0qVcjpVDMGLnHQS79S+5+JLZUVX+rTgcASnIQQkKT3MdRQgaj/TU90HaWBsU9fBSz9IhBUvdRowcqlwD5VUDTFqCrCYIuC0c0/stILRtrgkafy/7JKgHGzg09mZBfCRzdDOhzWLLC42RJD+Po6PthaWPLU2rY8gHWJ5JwVK6KkCRls9mwceNG2Gw2qVclZVDMGLnHQS79S+p+SDSyllNK0y4hJDUl9XGUkCFof00PtJ2lQXEPH8UsPWKQEn3MnQDMWAbMWgVn4XQ0q1RwDBlhYRd5fNSaC9voGmDWKvb4cEZLGPJZYoTjAFPfxOmdRwC3I7p1dzvYJOgAWy7XN/G4IS+65ZKI0EgOQpKUIAjo6uqCIAhSr0rKoJgxco+DXPqX1P3gRHAKQPQkLtvBKUUoeG3C2iOEpL6kPo4SMgTtr+mBtrM0KO7ho5ilRwxSqo+GPDhKZuHvRgMgilADUIoiPBwHhUeL76vyIIw9A8iIcOR/yRygq4klI3rb2WTn7fuBgmpAEcHVdoKHPV9ws0nQvcmTsXMjWz8SNU6kWT5Jkqqvr0d1dXX//3v27EFVFQ35IoSQeHK+9TNA8OD4mo2wNkd5ZUsY9CValH7wBaCiRAchhBBCCCGESKHF0oIFby/we9/GpRtRZChK3bb3vsvmQzFN1AABAABJREFUAHFZgeNfswSF1gTkTQZUWpit7Xj1wF/8PnXZxCth0veN0HA7WILDYWZzcYw5jU2CXlDJSnClMSnP5VK5KkKSlNvtxpEjR+B2u6VelZRBMWPkHge59C9Z+6HJMUCTa4KuJLFzY+hKMoJP9EYIIUMk63GUEH9of00PtJ2lQXEPH8UsPWIglz4qBAWONR2Lvh8Tzge0hr6ERBVLUDjMwLGvgJ4TbBLxYESBPe7YVwMJjoIqtjytgS2fSIaSHIQkKYvFgpdeegkWi0XqVUkZFDNG7nGQS/+Sth9zbgPm3g7TJZcktFnToktYDVNCCAlR0h5HCfGD9tf0QNtZGhT38FHM0iMGcukj7+Hx/pvvR98PjR6YdjWg5tkIjjGnsVJTghvoOADNiXqUuNzI9nigFUSoRBFaQUS2xwNldzPQ/CXQcWCgRNWY09hy1DxbrkYfmw6TiFC5KpK0qFwVIYRI6Js6HPnBL2A72Bb3pvQTC1D6xC+BcbVxb4sQQgghhBBCiH+yLlflZWkDdr0BOCyAKALmFsDcAoe9C7s66v0+ZVpOFbRqPas+YCoamGhca2AJDkN+bNYtxVG5KkIIIYQkl/xK5FxQPfLjYiDngiogn5LYhBBCCCGEEELizJAP1Kxkc2hwHJBZDBTPhmvUOLQrlbAqFBA4DiI4CBwHq0IBT0YOkDcFKJ7NHs9x7Pk1KynBkSQoyUFIkuru7savf/1rdHd3S70qKYNixsg9DnLpX9L3w5AP41lzYaopi2szplnlMJw5FzDkxbUdQoj8JP1xlBAftL+mB9rO0qC4h49ilh4xkEsfdW4dXv7Ty7Hth0bPJgmfeiWQVQJwHARdFo5o1KjXarCd12KbTovtvBb1Wg3cWaVARi5LbmSVANOuYs+nElVJQyX1ChBC/NPr9bj00kuh19MBM1QUM0bucZBL/1KiHyVzUHD1AVgPtMLdbYv54lWZOhRcNQsYOzfmyyaEyF9KHEcJ6UP7a3qg7SwNinv4KGbpEQO59NGpcGLehfPi04/cCezH0g7ngQ/QfPhvyPMI0PpMQu7gFHBnFgGFp7MKBHSBXlKiJAchSUqtVmPy5MlSr0ZKoZgxco+DXPqXEv3InQDV+JkoudOGo7/dCMHqitmiFXo1Su48D6rxM4Gc8TFbLiEkfaTEcZSQPrS/pgfaztKguIePYpYeMZBLHz0KD8omlkGtVsevEUMeHCWz8HejARBFqAEoRREejoMLwFWTFwK5U+LXPokalasiJElZrVa88847sFqtUq9KyqCYMXKPg1z6lzL9mHA++HElKP3hAqgy+ZgsUpXJo/SHC8CPKwEmnB+TZRJC0k/KHEcJAe2v6YK2szQo7uGjmKVHDMLtY2NnI17Y80LA+3/y6U/wxFdP4EDngVitYkg0Hg0+2fhJ4rYVx8HFcbArFHBxHCtRRZIejeQghBBCZEAURQi9vRBdLnBqNRQZGeBi8WFMowemXQ1eeA3l/7UYres2w7y9KeLFmU4vQcH35kKVnQVMu5pqmBJCCCGEEEKIhD5t/hTP7X4OX7V9FfRxO9t3Ymf7TqzdvRYz82di5dSVmFc8L0FrSUhwnCiKotQrQYg/9fX1qK6u7v9/z549qKqqknCNCCEkudgbGmHesAG23btg37sPgs9EbIrMTPCVU6CbOg2mRReDr6iIrjFLG7DrDcBhQc+uJpzauAPWw10hP11fnoWci2bCMLUY0BpYgsOQH906EUIIIYQQQgiJSJe9Cw9vfRgfHP4g4mUsLF+I+2ffjyw+K+r1abG0YMHbC/zet3HpRhQZiqJuI2j7J/dhwYar/Ld/8ZsoonJVI5LyXC6VqyIkSblcLuzfvx8uV+xq4MsdxYyRexzk0r9o+tFTV4cjy5bh8JIl6FizBtbNWwYlOABA6O6GdfMWdKxZg8OLl+DIsmWwfPJJ5CtsyAdqVgIFlTBOK0HpvYtR/l+LkHPueGSMz4SCVw56uIJXImN8JnLOHY/y/1qE0nsXswRHQSVbDiU4CCFRksv7AUkPtL+mB9rO0qC4h49ilh4xCNbHhlMNWLp+aVQJDgB4//D7WLp+KRo7G6NaTjBKQYkjB47IeluR6FGSg5AklQ71IWONYsbIPQ5y6V8k/XB3dqLlnh+h+dbbYNu2Paz2bNu2o+mWW9Hyox/D3dkZ7uoyGj1QuQSYeiWQVQK+aBTyr/guxv5oCSp+ey0qfncNJj5+FSp+dw0qfnstxv5oCfKv+C74olFAVgkw7Sr2fCpRRQiJAbm8H5D0QPtreqDtLA2Ke/goZukRg0B9bDjVgBX/WIE2W1tM2mmzteGmjTfFLdGhETT49B+fxn9b8abI7iNJgcpVkaRF5aoIIWSAvaEBTatvhrst+g+iqvx8lDz7LPhJ0Zawagfa6gHzccByAnDZB+5T84BhNGAaA+RXAYa86NoihBBCCCGEEBKVLnsXlq5fGrMEh698XT7eXvx2xKWrJC9XJXH7ciDluVyaeJwQQghJcvaGBhxdfsOwklSRcre14ejy5Sh9+eXoEh2GPMBQy/4WRcDjBAQPoFACSg0Qi4nPCSGEEEIIIYTExMNbH45LggNgIzoe2foIHp33aFyWT0gwVK6KkCTV1dWFBx54AF1dXVKvSsqgmDFyj4Nc+hdqP9ydnWhafXPMEhxeQnc3mlavjrx01VAcB6i0rBSVSksJDkJI3Mnl/YCkB9pf0wNtZ2lQ3MNHMUuPGAzt46fNn0Y9B8dI3j/8Pj5t/jSmy9S79Fj7v2tlva1I9CjJQUiSMhgMuOGGG2AwGKRelZRBMWPkHge59C/UfrQ++FBMSlT5425rQ+tDD8dl2YQQEm9yeT8g6YH21/RA21kaFPfwUczSIwZD+/jc7ucS0u7ze56P6fLsSjsWXrVQ1tuKRI+SHIQkKZVKhbKyMqhUVFUuVBQzRu5xkEv/QulHT10dzBs2xHU9zO+9h566uri2QQgh8SCX9wOSHmh/TQ+0naVBcQ8fxSw9YuDbx8bORnzV9lVC2t3euh0HOg/EbHmCQkBhSaGstxWJHiU5CElSvb29WLduHXp7e6VelZRBMWPkHge59C+UfnSsXZuQdTm1NjFX9BBCSCzJ5f2ApAfaX9MDbWdpUNzDRzFLjxgcbDuIF199EQfbDuLNhjcT2nYs29N6tNj0ziZZbysSPUpyEJKkFAoFsrKyoFDQyzRUFDNG7nGQS/9G6oe9oRG2bdsTsi7Wbdtgb2xMSFuEEBIrcnk/IOmB9tf0QNtZGhT38FHM0iMGV713FT5s+xBXvXcV3mh4I6Ftr2tYF7NlCRBgyDTIeluR6HGiKIpSrwQh/tTX16O6urr//z179qCqqkrCNSKEkPhzNrcAADqeew5df/5zwtrNuvZa5KxYAU1xUcLaJIQQQgghhBASH1Nfmipp+7uW7wLHcSE/vsXSggVvL/B738alG1FkiO93VanblwMpz+VSCoyQJOV0OrFz5044nU6pVyVlUMwYucdBLv0L1I9D552HQ+edl9AEBwB0vf46Dp13XkLbJISQaMjl/YCkB9pf0wNtZ2lQ3MNHMUuPGCgFJUp7SqEUlJK0b3VbY7IcpaBE455GWW8rEj1KchCSpOx2O+rq6mC326VelZRBMWPkHge59G/kfiR6oCUN7CSEpBa5vB+Q9ED7a3qg7SwNinv4KGbpEQONoEFlVyU0gkaS9p2e2CQlNIIGX23+StbbikSPylWRpEXlqggh6Wjf5CmStj9l/z5J2yeEEEIIIYQQEj2py1VtuXYLMtQZIT9e6nJRUrcvB1SuihAyjCiKsNvtoDxk6ChmjNzjIJf+yaUfhBAiFTqOklRC+2t6oO0sDYp7+ChmaRIDEVB71JIN2ter9LFZkAg47A55bysSNUpyEJKkuru78eijj6K7u1vqVUkZFDNG7nGQS/+C90OqD2/0oZEQkjrk8n5A0gPtr+mBtrM0KO7ho5ilRwz+cv5fsKRpCf5y/l8wPW96QtuekT8jrEnHg9G79XjlyVdkva1I9KhcFUla6V6uyuPxoL29HXl5eVAqpZkkKtVQzBi5x0Eu/QvUj32TpwCcCE4BiJ7YfCgMBacUIQrAlH37E9YmIYREQy7vByQ90P6aHmg7S4PiHj6KWXrEwLePf/r6T1i7e23C2l49dTV+MPMHYT0nULkoTuTw6rxXUVVaFddtReWqokflqgghwyiVSowePVq2b7bxQDFj5B4HufQvUD/GP3g5xj+wGLoxfELXR1fIY/wDixPaJiGEREMu7wckPdD+mh5oO0uD4h4+ill6xMC3jxeVX5TQtmPZnsiJyMnPkfW2ItGjJAchScpiseDFF1+ExWKRelVSBsWMkXsc5NK/QP3Q5BigyTFCV5zgJEcxD02OMaFtEkJINOTyfkDSA+2v6YG2szQo7uGjmKVHDHz7WJFdgZn5MxPS7ukFp2Ni9sSYLU/r1uK9N96T9bYi0aMkByFJSqVSoaysDCqVSupVSRkUM0bucZBL/4L2g1PCVJWV0PUxVWUBHF0ZQwhJHXJ5PyDpgfbX9EDbWRoU9/BRzNIjBkP7uHLqyoS0u6J6RUyXJ3ACxpSMkfW2ItGjOTlI0kr3OTkIIWnK1sV+73kbR375ImyHTsa9Sf2EPJT+4gageimgy4p7e4QQQgghhBBCEu/eT+/FB4c/iNvyF5YvxKPzHo3ouVLPiSF1+3JAc3IQQoZxOBzYsmULHA6H1KuSMihmjNzjIJf+BeyHLov95IxHzoXTErIuORdOBXLGU4KDEJJS5PJ+QNID7a/pgbazNCju4aOYpUcM/PXxp7N/inxdflzay9fl4/7Z98d8uSpBhT3b98h6W5HoUZKDkCTldDqxc+dOOJ1OqVclZVDMGLnHQS79G7Ef+ZUwTi2GqaYsruthmlUGQ3UxkE8j5QghqUUu7wckPdD+mh5oO0uD4h4+ill6xMBfH7P4LDx1/lMwaUwxbcukMeGp859CFp8V0+UCLMnRWN8o621FokflqkjSonJVhJC0t+NVuJsP4PCv3oHbHPsPdCqTBuX/fSlUxROBGctivnxCCCGEEEIIIcmnsbMRt226DW22tqiXla/Lx1PnP4WK7IqoliN1uSip25cDKldFCBlGEAR0dXVBEASpVyVlUMwYucdBLv0LqR8lc6Ay8Ci58wIo+NhOCq7glSi58wKoDDwwdm5Ml00IIYkgl/cDkh5of00PtJ2lQXEPH8UsPWIQrI8V2RV4e/HbWFi+MKo2FpYvxNuL3446wREMJ3Lo6e6R9bYi0aMkByFJymw244knnoDZbJZ6VVIGxYyRexzk0r+Q+pE7ASioBF88CqV3nwOVITaJDpVBidK7zwFfPAooqGTzcRBCSIqRy/sBSQ+0v6YH2s7SoLiHj2KWHjEYqY9ZfBYenfconjz3SZxecHpYyz694HQ8ee6TeHTeo3EpUeVL59bhjbVvyHpbkehRuSqStNK9XJUgCDCbzTCZTFAoKB8ZCooZI/c4JGv/RFGE0NsL0eUCp1ZDkZEBjuMCPj7kfjitwLbnAIcF7lMn0frav2He2xPxepoqjSi47iyoRuUCWgNQsxLQ6CNeHiGESCVZ3w8I8Yf21/RA21kaFPfwUczSIwbh9vFA5wG82fAm1jWs83v/jPwZqCmowUXlF2Fi9sRYr27AclGcyOHN899ExZiKuG4rKlcVPSnP5aoS0gohJGwKhQJZWVlSr0ZKoZgxco9DMvXP3tAI84YNsO3eBfvefRC6u/vvU2Rmgq+cAt3UaTAtuhh8xeDhuyH3Q6MHpl0N7HwNqlG5KLr1Qpj+8yVOfd4Ka5M95HXVl/DI+W4BDGfMAtR6QM2z5VKCgxCSopLp/YCQkdD+mh5oO0uD4h4+ill6xCDcPk7Mnogbq28MmOR45KxHJDnRL3IijJlG2SajSGzQ3kFIkurp6cHTTz+Nnp7Ir9hONxQzRu5xSIb+9dTV4ciyZTi8ZAk61qyBdfOWQQkOABC6u2HdvAUda9bg8OIlOLJsGSyffDKwjHD6YcgHpl/HRl6o9TDOm4fSO85A+aoy5MzNREYpDwU/+C1dwSuQUcojZ24myleVofSOM2CYN48lOLQGtjxDfkziQQghUkiG9wNCQkX7a3qg7SwNinv4KGbpEQO59JF38/jry39N+X6Q+KKRHIQkKY1Gg+nTp0Oj0Ui9KimDYsbIPQ5S9s/d2YnWBx+CecOGsJ9r27YdTdu2w7RoEQp+9lNo9Prw+mHIZ6WlDm4CWvcCmcXgZxaBn9wB2DohOnpYuSy3AE6lYOWytEZAlw3ocwBv6ayCSmDC+TSCgxCS8uT+fkfkhfbX9EDbWRoU9/BRzNIjBnLpo1vhRkVVRcr3g8QXJTkISVJarRZz5syRejVSCsWMkXscpOqfvaEBTatvhrutLarlmN97D9atW1Hy7LPh90OjByqXAPlVQNMWoKsJyMgFMnLBAQg6LXlWCTB2Lk0yTgiRDbm/3xF5of01PdB2lgbFPXwUs/SIgVz66Fa4UX16NbRardSrQpIYlasiJEnZ7XbU1dXBbg+95n66o5gxco+DFP2zNzTg6PIbok5weLnb2nBgxQp8+NbbkfUjdwIwYxkwaxVQOhfILmNzbPhS8+z20rnscTOWUYKDECIrcn+/I/JC+2t6oO0sDYp7+Chm6REDufRR7VFj+3+2p3w/SHxRkoOQJOV2u3HkyBG43W6pVyVlUMwYucch0f1zd3aiafXNw+bciJartxcHPvs37CdPRr4QQx4wrhaYfg3w3buBs34IfPeuvt93s9vH1bLHEUKIzMj9/Y7IC+2v6YG2szQo7uGjmKVHDOTSR4WowPGm4ynfDxJfnCiKotQrQYg/9fX1qK6u7v9/z549qKqqknCNCCHpqOWeH0U0B0eoTIsWoeg3j8dt+YQQQgghhBBCSChaLC1Y8PYCv/dtXLoRRYYiWbadDO3LgZTncmkkByFJyuPx4MSJE/B4PFKvSsqgmDFyj0Mi+9dTVxe3BIdHoUBnVhY6338fPXV1cWmDEELkTO7vd0ReaH9ND7SdpUFxDx/FLD1iIJc+ciKHjraOlO8HiS9KchCSpHp6evDMM8+gp6dH6lVJGRQzRu5xSGT/Otaujduy7TodNl20AHadDqfWPhe3dgghRK7k/n5H5IX21/RA21kaFPfwUczSIwZy6aPOrcPfXvlbyveDxBeVqyJJK93LVYmiCIfDAa1WC47jpF6dlEAxY+Qeh0T1z97QiMNLlsRt+SIAl1oNtcsFDkD5+nfBV1TErT1CCJEbub/fEXmh/TU90HaWBsU9fBSz9IhBJH1MynJVIvDuondRnlMe121F5aqiR+WqCCHDcBwHnudl+2YbDxQzRu5xiHf/nM0tcDa3oHPdurgs34sDoOlLcABA57o34GxuiWubhBAiJ3J/vyPyQvtreqDtLA2Ke/goZukRA9n0kQO0vHyTUSQ2KMlBSJIym834/e9/D7PZLPWqpAyKGSP3OMS7f4fOOw+HzjsPXX/+c1yW72XV6fDeJZfAqtMBALpefx2Hzjsvrm0SQoicyP39jsgL7a/pgbazNCju4aOYpUcM5NJHnVuHdc+uS/l+kPiiJAchSYrnedTW1oLnealXJWVQzBi5xyFx/YtvNUe1y4WqPXugdrkS0h4hhMiN3N/viLzQ/poeaDtLg+IePopZesRALn10KpyYOXdmyveDxJdK6hUghPin0Wgwffp0qVcjpVDMGLnHIXH9i+9QWLXbjfLDhxPWHiGEyI3c3++IvND+mh5oO0uD4h4+ill6xEAuffQoPKioroBGo5F6VUgSo5EchCQpm82GjRs3wmazSb0qKYNixsg9DnLpn0OjwY6ZM+CgD2qEEBIRubwfkPRA+2t6oO0sDYp7+Chm6REDufRR7VFj88ebU74fJL4oyUFIkhIEAV1dXRAEQepVSRkUM0bucUhM/+JfOkrkOPRmZEAcNHkalawihJBQyf39jsgL7a/pgbazNCju4aOYpUcM5NJHBRSwdFtSvh8kvjhRFOmMCklK9fX1qK6u7v9/z549qKqqknCNCCHJThRFCL29EF0ucGo1FBkZ4LjwykDtmzwF4ERwCkD0JK6EFKcUIQrAlH37E9YmIYQQQgghhBDi1WJpwYK3F/i9b+PSjSgyFMmy7WRoXw6kPJdLc3IQkqTcbjeam5tRXFwMlYpeqqGgmDFyj8PQ/tkbGmHesAG23btg37sPQnd3/2MVmZngK6dAN3UaTIsuBl9RMeLyxz94OSC4cHzNP2FtdsStHx6FAh25ucg5eRJKQYCukMeY1RfErT1CCJEbub/fEXmh/TU90HaWBsU9fBSz9IiBXPqoEBQ41nQMBRMLUrofJL6oXBUhScpiseCll16CxWKRelVSBsWMkXscvP078eGHOLJsGQ4vWYKONWtg3bxlUIIDAITublg3b0HHmjU4vHgJjixbBssnnwRdvibHAE2OEbpiPp7dgF2nQ92558Cu0wEAdMU8NDnGuLZJCCFyIvf3OyIvtL+mB9rO0qC4h49ilh4xkEsfeQ+P9998P+X7QeKLylWRpEXlqggh/rg7O9H64EMwb9gQ8TJMixah4Gc/hSo7e/idHz8CiCLs2z/F4eeORrGm4SlfVQp+5jzgnJ8mrE1CCCGEEEIIIcSLylVRuapoULkqQgghJAT2hgY0rb4Z7ra2qJZjfu89WLduRcmzz4KfNKSE1ZzbAAC8sQC6uhdhO3QyqrZCoZ+QB37+lUD10ri3RQghhBBCCCGEECInVK6KkCTV3d2NX//61+geUn6HBEYxY+QaB3tDA44uvwHdFgv+tvRy9Or1US3P3daGo8uXw97QOPgOXRb7yRmPnAunRdVGML16fX8/ci6cCuSMZ+0SQggJiVzf74g80f6aHmg7S4PiHj6KWXrEQC591Ll1ePlPL6d8P0h8UZKDkCSl1+tx6aWXQh/lidx0QjFj5BgHd2cnmlbfDKG7G1qHA7O3fAGtI/pJwYXubjStXg13Z+fwO/MrYZxaDFNNWdTt+OPtR171aBiqi4F8KsdHCCHhkOP7HZEv2l/TA21naVDcw0cxS48YyKWPToUT8y6cl/L9IPFFSQ5CkpRarcbkyZOhVqulXpWUQTFj5BiH1gcf6i9RpfJ4UNTSApXHE5Nlu9va0PrQw8PvMOQDWSUouHo2VCZNTNrypfJ4UNrTjqIra4CsEsCQF/M2CCFEzuT4fkfki/bX9EDbWRoU9/BRzNIjBnLpo0fhQdnEspTvB4kvSnIQkqSsViveeecdWK1WqVclZVDMGLnFoaeubtAk4w6NBlu/8x04NLFLPJjfew89dXXD7yiZA5WBR8mdF0DBK2PWHgC4TDrsuvoSOLVaYOzcmC6bEELSgdze74i80f6aHmg7S4PiHj6KWeAYtFhaMPWlqX5/WiwtEq1tZOSynTUeDT7Z+EnK94PEFyU5CCGEJLWOtWsT0s6ptc8NvzF3AlBQCb54FErvPgcqQ2wSHSqDEsW3nAVlhhbIm8Tm4yCEEEIIIYQQQgghYVNJvQKEEP+8tRNJ6ChmjJziYG9ohG3b9kG3aZ1OzP7ii5i3Zd22DfbGRvAVFYPvmHA+0PUt+NIxKL//QrS+9m+Y9/ZE3I6p0oiC686CalQuLtUagKqLolxzQghJT3J6vyPyR/treqDtLA2Ke/goZukRA7n00al0Yv6C+TQnBwmKRnIQkqRcLhf2798Pl8sl9aqkDIoZI2UcRFGEx2KBu7MTHosFoihGtBxncwuczS3oXLdu2H1upRItRUVwK2NbPgoAOte9MfxGjR6YdjWg5qEalYuiWy9E8fdKoS/hw1q2voRHyfdKUXTrhVCNyoVLocV+3Wy4OKorSgghkaD3fZJKaH9ND7SdpUFxDx/FLD1iIJc+KgUljhw4kvL9IPFFSQ5CkpRcaicmEsWMSXQc7A2NaPvt73D0ppvQOGcuGmtm4cDcM9BYMwuNc+bi6E03oe23v4O9sTHkZR467zwcOu88dP35z8Puc2i12DrnO3BotbHsBgCg6/XX/d9hyAemXwdoDYBaD+O8eSi94wyUrypDztxMZJTyUPCD31IVvAIZpTxy5maifFUZSu84A4Z58wC1HtAaYJ24BO/84+O0318JISRS9L5PUgntr+mBtrM0KO7ho5ilRwzk0keNoMGn//g05ftB4osTI73MlpA4q6+vR3V1df//e/bsQVVVlYRrRAjx1VNXh461a4eVkwpGV3M6clevhmH+/KCP2zd5SrSrF7HJ+/aC4zj/dzqtwMFNQOte9r8oAtYOwNYJ0dEDobcXolsAp1JAkZEBTmsEdNmAPgfwLrOgkpXA0tBQW0IIIYQQQghJJi2WFix4e4Hf+zYu3YgiQ1GC1yixpOy/1LGXun05kPJcLs3JQQghJCzuzk60PvgQzBs2hP1c27btaNq2HaZFi1Dws59ClZ0dhzWMjtBrhdKQ4f9OjR6oXALkVwFNW4CuJiAjF8jIBQcgaAGtrBJg7FyaZJwQQgghhBBCCCEkhqhcFSFJqqurCw888AC6urqkXpWUQTFj4hkHe0MDDi+5NKIEhy/ze+/h8JJLYW8IvYSVV29GBt685nvozQiQiIiS6HKO/KDcCcCMZcCsVUDpXCC7DFAPmaNDzbPbS+eyx81YNijBQfsrIYREh46jJJXQ/poeaDtLg+IePopZesRALn3Uu/RY+79rU74fJL5oJAchScpgMOCGG26AwWCQelVSBsWMiVcc7A0NOLr8Bgjd3TFZnrutDUeXL0fpyy+Dn1QR8vN4mw21//oIvM0Wk/UYilNrQn+wIQ8w1LK/RRHwOAHBAyiUgFIzUKLK31NpfyWEkKjQcZSkEtpf0wNtZ2lQ3MNHMUuPGMilj3alHQuvWpjy/SDxRSM5CElSKpUKZWVlUKkoFxkqihkTjzi4OzvRtPrmmCU4vITubjStXg13Z6efe0VwiuHTRikFAfltbVAKQkzXBQA4hQiFXhfhkzlApWUlrVTaoAkOgPZXQgiJFh1HSSqh/TU90HaWBsU9fBSz9IiBXPooKAQUlhSmfD9IfFGSg5Ak1dvbi3Xr1qG3t1fqVUkZFDMmHnFoffAhuNvaYrY8X+62NrQ+9PCg28Y/eDnG/8+l0BXywx5v12rx2Vlnwq7VxnxddEU8OMEV8+X6Q/srIYREh46jJJXQ/poeaDtLg+IePopZesRALn3UerTY9M6muPejyFCE3Tfs9vtDk44nP0pyEJKkFAoFsrKyoFDQyzRUFDMm1nHoqauLeg6OkZjfew89dXX9/2tyDNCM0kNXPDzJwYkiMnp7wYnDR3lES1fMs3JTCUD7KyGERIeOoySV0P6aHmg7S4PiHj6KWXrEIJX62NjZiBf2vOD3PgECvrZ8jTW71+BA54EErxlJFZwoxuEsESExUF9fj+rq6v7/9+zZg6qqKgnXiJD0dGTZMti2bY97O/qaGpS++gr75+NHAMEN+/ZPcPj5lri37VW+ogj8DzewclOEEEIIIYQQQtJKi6UFC95e4Pe+jUs3yv6K/kT3/9PmT/Hc7ufwVdtXIT9nZv5MrJy6EvOK58V0XUj0pDyXm/ypPELSlNPpxM6dO+F0OqVelZRBMWNiGQd7Q2NCEhwAYN22DfbGxoEbOCX4ggzoigcnHFwqFQ6Xl8MV43qc+hIefEEGmzA8AWh/JYSQ6NBxlKQS2l/TA21naVDcw0cxS48YJHMfu+xduPfTe3HHv+4YMcGhFJQo7SmFUlACAL5q+wp3/OsO3PfpfeiydyVgbUkqoCQHIUnKbrejrq4Odrtd6lVJGRQzJhZxcDa3wNncgs5162K4ZiPrXPcGnM0twJzbgLm3A5WLkXPxrEGPcanVqK+uhkutjmnbORfPAioXjzhheKzQ/koIIdGh4yhJJbS/pgfaztKguIePYpYeMUjWPjacasDS9UvxweEPQnq8RtCgsqsSGmHwBYnvH34fS9cvRWNnY4BnknRC5apI0qJyVYRIZ9/kKZK2P2X/PvbHN3XA0c1oWbMJ5h3H49aeaUYhim4+DyidC4yrjVs7hBBCCCGEEEKSF5Wrim//G041YMU/VsDsNEe1HF8mjQkvLHgBFdkVMVsmiQyVqyKEDCOKIux2OygPGTqKGSOrOORXAgAKrjkLKgMrTyUCcKrViFXvVAYVCq45s6+9xCVSZbWdCCFEAnQcJamE9tf0QNtZGhT38FHM0iMGydbHLnsXbv/w9vATHCKg9qgR6CSA2WnGbZtuo9JVaY6SHIQkqe7ubjz66KPo7u6WelVSBsWMkVUcDPlAVglURh4lq2ZCwStgzcjAO1cshTUjI+rFK3gFSlbNhMrIA1klgCEvBisdGlltJ0IIkQAdR0kqof01PdB2lgbFPXwUs/SIQbL18eGtD6PN1hb28/RuPZY0LYHerQ/4mDZbGx7Z+kg0q0dSHJWrIkkr3ctVeTwetLe3Iy8vD0qlUurVSQkUMyYWcUiaclUAcPIgsPsvgCjCvnMLjvz5ME4pDTCZzVAKQsRtqAxKlFw7Dvz0OWwejmlXATnjY7D2oaH9lRBCokPHUZJKaH9ND7SdpUFxDx/FLHAM5FSuKpLtHK/+f9r8Ke741x0RPZcTOZicJpg1Zohc8NPYT577JOYVz4uoHRI9KldFCBlGqVRi9OjRafuBIxIUM0Z2ccidABRUAhwHvvo0TFgxFqWFrqgSHKbKDJSvLAVffRpLcBRUJjTBAchwOxFCSILRcZSkEtpf0wNtZ2lQ3MNHMUuPGCRTH5/b/VzEzxU5Ed3a7hETHADw/J7nI26HpDZKchCSpCwWC1588UVYLBapVyVlUMyYmMYhhA8RMRWovQnnA1oDoNbDXjQNm2bXIvuKEuhLdGEtXl+iQ8kVBShaUghV+TRArWfLnXB+DFY+PLS/EkJIdOg4SlIJ7a/pgbazNCju4aOYpUcMkqWPjZ2N+Krtq4ifr3VrMf/4fGjd2hEfu711Ow50Hoi4LZK6VFKvACHEP5VKhbKyMqhU9DINFcWMTSzG2e0YW1AAzm6HmJEBjuPCXs74By8HABxb8w/Yvu2N9WoGpCsxoPDmC4ffodED064Gdr4GlU5EWZ4DWYWjwI9Xwd7uhHm/DfZWAbZjvRBsrv6nKXRq6AozwBcoYJqsA5+nATQGIG8SS3CoebZcTeDanvFC+yshhESHjqMkldD+mh5oO0uD4h4+ill6xEDqPrZYWgAAbza8GdVyBE5AO98OgQutmsObDW/ixuobU6q0GIkezclBkla6z8lBSKjsDY0wb9gA2+5dsO/dB8FnUjFFZib4yinQTZ0G06KLwVdUhLbQjx8BRBFtr2xAx+ZTcVrz4XLOGIX8ZRcD5/zU/wMsbcCuNwCHBRBFwNzCfjxOACzJIzhFiB4RnJKDQsMNJHmUGsBUxH44jo3gmHY1m9ycEEIIIYQQQkjak9OcHJGIZf+nvjQ1VqsVkd037Ja0/XREc3IQQoZxOBzYsmULHA6H1KuSMtItZj11dTiybBkOL1mCjjVrYN28BUJ3N1wqFRonVcClUkHo7oZ18xZ0rFmDw4uX4MiyZbB88kloDYgemKaEVw4qWqbJOkD0BH6AIR+OqcuwpTsXDg+AzGKgeDaQNwUwjAanNULJq6DSq6DkVeC0RsAwmt1fPJs93jsHR81KSRMc6ba/EkJIrNFxlKQS2l/TA21naVDcw0cxS48YyKWPKkGFCd0ToBLkO+qGRI+SHIQkKafTiZ07d8LpdEq9KikjXWLm7uxEyz0/QvOtt8G2bfvw+9UqHCkvh1s9/AOAbdt2NN1yK1p+9GO4OzuDNySK4PM00BWPXPcyFvQlPCsnNcIAQydU2HnCA2fFIiCrhCUtMnKB3IlA4Qyg9LtA2Znsd+EMdntGLntcVgkw7SqgcokkJaoG9SNN9ldCCIkXOo6SVEL7a3qg7SwNinv4KGbpEQO59FElqFBmKaMkBwmKylXFidPpxBtvvIE///nPqK+vR2trK7Kzs1FeXo7LL78cN954I3Jzc2Pa5pEjR7Bp0yZ88skn2L17N7799ltYLBYYjUYUFxdj7ty5uPbaazF//vyIlv/ll1/ihRdeQF1dHZqbmwEAxcXFqK2txU033YRZs2bFsjtUrooQP+wNDWhafTPcbW1RL0uVn4+SZ58FP8lPCauPHwEEN/DtZvQcsqL5rdao2xtJyRUFMIzXA2PnAuf+d+hPtLQDbfWA+ThgOQG47AP3qXk2ksM0BsivAgx5sV9xQgghhBBCCCGyQOWqqFwViZyU53IpBRYH+/fvxzXXXIOdO3cOuv3EiRM4ceIENm/ejMcffxwvvPACFi5cGHV7O3bswK233oqtW7f6vb+zsxOdnZ3YvXs31qxZg9raWrz00ksYO3ZsSMt3Op348Y9/jD/+8Y8YmhPbt28f9u3bh6effhp33XUXHnvsMajV6qj7RABBEGA2m2EymaBQ0KCrUMg9ZvaGBhxdfsOgOTf8ETgONr0eOqsViiB5bHdbG44uX47Sl1/2n+jglIBCDeN4PUwTlTAfCFJGKkqmiUqW4FCoWbtBDNvOhjzAUMvuFEU2P4fgARRKNg9HBBOvJ4Lc91dCCIk3Oo6SVEL7a3qg7SwNinv4KGb+Y9DY2Rh0kuyffPoT1IyuwcLyhZiYPTFRqxoxuWxnTuSgc+tgU9kgcnStPvEvdffwJNXc3Ixzzz23P8HBcRzmz5+PFStW4JJLLoFOx+rbt7W14dJLL8VHH30UdZsNDQ3DEhwVFRW4/PLLcfPNN+Oqq65CcXFx/311dXWYO3cuvvnmm5CWv3r1avzhD3/oT3CMGzcO1157La699lqMGzcOAJvs9/e//z1uvfXWqPtDGLPZjCeeeAJms1nqVUkZco6Zu7MTTatvHjHBAQA2vR4bFl8Cm37kckxCdzeaVq8eXrpqzm3A3NuBysVA8SwUXFYNlSF48iFSKoMSBZdVA8WzWHtzbw/6+KDbmeMAlZaVolJpkzbBAch7fyWEkESg4yhJJbS/pgfaztKguIePYjY4Bp82f4obPrgBS9cvxRsNbwR8zs72nVi7ey0uX385bvjgBnza/GkC1zh8ctnOOrcOC1sWQudO7JyhJLVQuaoYmzdvHv79738DAEpLS/Huu+/itNNO67//5MmT+N73vod//etfAIBRo0bh0KFDyMrKirjNdevW4ZprrsGECROwatUqLFu2DEVFg4ePCYKAF198EXfeeSesVisAYM6cOfjPf/4DLshJwOeffx4rV64EACgUCvzv//4vfvCDH/RngAVBwB/+8Afcc889EAQBAPDSSy9h+fLlEffHK93LVckl455Ico5Zyz0/gnnDhpAeG+pIDl+mRYtQ9JvHh9/xTR1wdDPQexL2vV/j6OvHIdiFMNY8OAWvQOm1Y8BXnsbmzSidC4yrDfocuWxnufSDEEKkQsdRkkpof00PtJ2lQXEPH8WMxaC5vRl/2vcnfHD0g4iXs7B8Ie6ffT+y+KzYrVyMRLKdY1muqsXSAoCNgNnZvjPk5w0V7kiOGfkz8MhZj8i+tFgykvJcbnoeyeLk/fff709waDQa/P3vfx+U4ACA3NxcvPvuu/0jIE6dOoXHHnssqnbHjBmDF154Afv378d99903LMEBsATFihUr8Oqrr/bftmXLFvzzn/8MuFyHw4Ff/vKX/f/fe++9uPvuuwcdGBUKBe6++278+Mc/7r/t5z//ecpPapQMFAoFsrKy0vYDRyTkGrOeurqQExwAoBBFZPT2hpzgAADze++hp65u+B35ley3Pgf8aANKrx0DlSk2E5GrTFqW4BhtAPQ5fe2N/OYnl+0sl34QQohU6DhKUgntr+mBtrM0KO7ho5gBB7oO4KZPbooqwQEA7x9+H0vXL0VjZ2OM1ix2pN7ORYYiFBmKUDO6JqrliJwIq9oacqmqmoIaSnCkofQ9msXBk08+2f/3DTfcgKlT/U+wk5GRgf/5n//p//+ZZ56B2+2OuN358+fjxhtvhFI5cimZyy67DLNnz+7/f0OQE6fr169HU1MTACAzMxP//d+BJwL++c9/DpPJBAA4evRo0OWS0PT09ODpp59GT0+P1KuSMuQas461a8N6vE3H458LLoRNx4f1vFNrnxt+oyEfyCphZZ9MReDzNCi/qRimmtDm9AnEVDMW5Tex5cFUxJafVRLSxOBy2c5y6QchhEiFjqMkldD+mh5oO0uD4h6+dI9Zw6kG3LbhNkw7OA28O7zvzf602dpw08abki7RkSzb+aLyi6J6Pu/mcV7LeSFvq2jbI6mJkhwxYrFY+ktQAcBNN90U9PFLly6FwWAAwEZzfPpp4ur4ffe73+3/+8iRIwEf98477/T/ffXVV0MfpL6/Xq/HVVdd1f//3/72t6jWkbDRQNOnT4dGo5F6VVKGHGNmb2iEbdv2sJ6jcrlRdvgwVK7wkqfWbdtgb/TzoaxkDvttKgI0Bqh4AUULs1F8Wy30EwvCakM/sQAlt9WiaGE2VLwIaAxsuQAwdm5Iy5DLdpZLPwghRCp0HCWphPbX9EDbWRoU9/Clc8y67F24/cPb0enuxBHDEbgVkV907MvsNOO2Tbehy94Vk+XFQrJs54rsCszMnxnx890Kd8jb6vSC01NiUngSe5TkiJH//Oc/cDgcANhIjVmzZgV9PM/zmDt34IReLCYgD5XvHBwejyfg4z7++OP+v2tra0dc7tlnn93/dyL7I1darRZz5syBVhub0kDpQE4xcza3wNncgs5168J+rtrtRkVDI9QRjBDrXPcGnM0tg2/MnQAUVLLRFnmTAIUKcJhhzOtE6Q9qUf5flyBnwVRkTB4DhX7whyeFXoOMyWOQs2Aqyv/rEpT+oBaGvE7AYWbLyZvElltQCeSMD2kd5bKd5dIPQgiRCh1HSSqh/TU90HaWBsU9fOkcs4e3Pow2WxvcCjcOZh6MWZIDYCM6Htn6SMyWF61k2s4rp66M+LnhbKsV1SsiboekNpXUKyAX+/bt6/976tSpUKlGDu3MmTOxadOmYc+Pt927d/f/XVJS4vcx3d3dOH78eP//M2eOnHH1fUxLS0v/5EYkMna7HVu2bMGcOXPA89EPn0wHcorZofPOi/i5TrUajZMmoaKhARqXK6zndr3+Orpefx1T9g85Jk04H+j6lv1dUAW01rNExbGvwGeXg198GsApIIoiBIcbovv/s/fn8W1Vd+L//7raJctbvCZ2FofsG9lIgZaQLrRZCqUNdKEQSihtoetMO0xp59fvdGYK5Tv9tKXz6Te0BQKdlgIllLIlZSkhZYaQZoMkEDtANjtx7MSWJVm7dH9/3FixY9mWbMlXun4/Hw8/bGs5555zj06c+77nvOMoFjMmu0ULrKoJ8LfBiYOQiGkBjpq5YHWB3a2VnyajnGejtEMIIfQi86goJDJexwY5z/qQfs/cWO2zbc3b2HxYy8FhjVuZ7p3OoZJDRM2Z/b95MM8dfo41U9ewvH551socruGc5zp3Hftu3Df0CzO0vH45qxpWJfs/E+meq9UNq/Oi34U+ZCVHljQ2NiZ/njx5clrvmTTp3J72Bw8ezPoxpXLs2LE+qyw+MsCF1N7tgb7HOpDzX3N+GSIzsViMI0eOjChfy1iTL32mqipxv59YZydxvx81gwTg2RA3m2mvriaeRp6etNlcsOAzYHWAvQTGX6htNZWIwZlD0Px36DiMEjiD2RzD4jRhNsdQAmeg47D2/JlD2uttbu399hKtvAWf0cpPU76c55EySjuEEEIvMo+KQiLjdWyQ86wP6ffMjdU+u3/fuTyUJtVEVagKk5r9S6MP7H8g62UOR76d5+8t+x7VzuqM35fOuap2VnPHsjtGcniiwCnqaF99M6jPfOYzPPbYYwB84xvf4J577hnyPU888QRr164FoLa2ts/KiVy55ppr2LRpE6AFJZqamlIuW9u8eTOrV68GoKSkhK6urrTKLykpSSY02rJlCx/72MeGfawHDhxg3rx5yd/379/P3Llzh12eELkUamzC++yzBPe9Seitt0n0+syYSktxzJmNc/4CSj6+BseMGUOW9/as2bk83CH1W8nRw98Gbz4KYT+oKnhbtK94ZOhCzWeTjPckGre7tQCHO/M/coQQQgghhBBCiHQ1dTax9qm1o1bfE1c9IbkhUmjqbOKmLTfhjXizVmaJrYSNKzcyo3zoay0it/S8lisrObLE7/cnf3Y6nWm9p/frer8/Vx566KFkgAPgrrvuGnBfvuG05/zXZqtNDocjmaQ9Ho/j8XiSd8Z7vV4iEe3iajAYpLu7G9Ci1R6PJ1lGV1cX0bPb9gQCAQKBAADRaLRPAMfj8SQj3N3d3QSDQQAikQherzYBq6qKx+NJ5jPx+/2EQiEAwuFwMsiTSCTweDwkEgkAfD5fMm9LKBRK9s9AbYrH4xw5ciRZrxHalOvzFAwGeeedd4jH46PWJt/WrTSuW8fbn/40Z379a3yv78DX6y6JbpeLiN9P4LXtnHjwQQ5ecy1Hrr+ezr/+ddA2hc8mBotaLATOfq5UoLuoiLhJm7qDDgcRqzX5uqBTW34aNZs5MX480bMrOYJOB9GzW+hFrFaCZ5epxk0muouK6Il0B5zO5OsGPE/uarqmX0u0YhYoCgFXHYGai6BqNlHXeLqUclBMgIIn7iBmKQZ3Ld1lcwjWXASl9UQS4C2eBktvRi2qyvg8xeNx3n333eT4yIexN5zPUzQa5dChQ8l68+3zZMQ5QtokbZI2GatN4XCYQ4cOJes1QpuMeJ6kTV3Jsg8dOpSs1whtMuJ5Gmmb4vE4x44dS9ZrhDYVwnnyer0cOXKEeDxumDbl+jx1dXXR2tpKJBIxTJsGOk9NJ5s40nGExxofwxq3Yo9r18HMCTM13TUoqpa31hlzYk5o/4e2xW3Y4rbk65yxc9e6XFEXpoT2f3J73I41bu3/OhUe3fsox7qO5aRN6Z6njo4Ojh8/Tjwez5vzNME6gY0rN1LjqMEVddFzQaJ3//c+T6aEiaJoEaXhUhRV6XeeesprcDfk3dgz4ucp3TbpQYIcWdIzYABsNtsgrzynd4ChZ2Dmys6dO/nKV76S/P1zn/sc11133YCvH057IDdtuvjii7nmmmsAaG9v55577kl+8B544AHeeustAF555RWefvppAJqbm/usptmwYQPvvvsuAM8//zzPP/88AO+++y4bNmxIvu6ee+6hubkZgKeffppXXnkFgLfeeosHHtCWG4bDYe655x7a29sBePzxx9m+fTsAe/bs4fe//z2gffDvueee5ETz+9//nj179gCwfft2Hn/88UHb5PP5eOihh/jzn/9smDbl+jz1HGvP5JzTNt13H//zgx/Q/JVb2RWLsXPZRQCcqazk2auuTB7r86tWcqq2FoA3Fi3ijUWLCO7cxa4f3cn/97OfEevsTNmmt+Zpke7miRP569lt5aJWK89edSXes7lutl96KU0zZwJw+IKp/O3yywHwlJfz6orL8ZSXA/C3yy/n8AVTAWiaOZPtl16qtb2khGevupLo2UDJXz/yEZrP5ukZ9Dzd/yDv2mbD/Gt5vtnB84cTUFTJu6apbGieAZPfD1M+wD0tF9LsXgCV03m6pYRXjiegbCJvOZbywKstYHMN6zz5fD5+97vf8frrrw99nvJ4jjh58iQPP/xwchVfvn2ejDhHSJukTdImY7Xp0KFDPPzww8n/rBmhTUY8T9ImrU0+n4+HH36YQ4cOGaZNRjxPI22Tz+dj48aNhmpTIZynP//5zzz00EP4fD7DtCnX5+mPf/wjv/rVrzh69Khh2jTQebrv/vv42sNf49HGR5njmcPi01o+2fGB8VzWflkyMHFFyxXUBGsAWNCxgAUdCwCoCdZwRcu5HJKrW1ZTEa4AYPHpxczxzAGgvrueFSdXAGBNWIlvi3Pdo9flpE3pnqdf/epXPPDAA/h8vrw6TzPKZ7Dh4g2sblmNNaFdj1hxcgX13fUAfc5TRbiCVS2ruOLkFThjzj7naXV0NTfbb2ZG+Qzd2zSS81RIn6d026QH2a4qS9asWcNzzz0HwD//8z/z4x//eMj39N4Syu12J/+Dlm2HDx/m0ksvpbW1FYAFCxbwt7/9bdCk4H/84x/59Kc/DUBNTU3yvUOpqamhra0N0D5IPdtxDUfPEieHw4HFYmH79u3MmjULn89HaWkpiqLg9XpxOBzYbDaCwSCJRIKioiJisRh+v5+ysjJAi4q6XC6sVmsyIupyuYhGowQCAUpLSwEtKup2u7FYLHR3d2MymXA6nUQiEUKhECUlJaiqSldXF8XFxZjNZvx+PxaLBYfDQTgcJhKJUFxcTCKRSCZfN5lM+Hw+bDYbdrudUChELBbD7XYTj8dTtslqteLxeLBarbjdbkO0KdfnKRwO09XVRVVVVbK8XLQp3NRE49e+jnLyJNZYjLDNhqooOMJh4iYTIaeTorPR7G6XC3s4jCUeT67OsEcixMxmwnY7pW43E3/zG0I11X3adOiSS7FHIkQtFqJWK65gEBUIFBXhCAYxJxIEHQ7M8Ti2aJSoxULMasEZDBFXFLwlJZR4vZhVlaDTgSUawxqLEbFaiZvNOEOh5LG6urtR0FZyWKNRrLEYU/bsTv88+U/j8r9HtKOFgKeVUrMW1feEVNwuB5bS8XRbKzBVz8ZZNXHEY09RFE6fPk1xcTEOhyMvxt5w2hSPxzl9+jSVlZWYzea8+zwZcY6QNkmbpE3GalM0GqWjo4Pq6moURTFEm4x4nqRNWptUVaWtrY1x48ZhtVoN0SYjnqeRtslut+P1elEUhZKSEkO0qRDOk9/vJxqNUlZWRjQaNUSbcn2eotEoVqs12X9GaNNA52nZ/cuImCLETXGscSsmTITNYUwJE+6oG6/NC4q2kqDndT2rOCLmCOaEGVvCRtCi3cjriroImUMkTAnscTsJEkTN0b6vU8EVcxG0BHnzC2/qNvY8Hg9msxm32528ETnfztMbvjfYeGAjb7W8NeB5csQdRE1RoqYozriTubVzuenCm1g6bmletsnIn6eh2tTS0qLbdlUS5MiSfM3JcfLkSS677LJkRHDq1Km8+uqrjB8/ftD3SU4OIVILNTZydN2NfXJujJSptJTJv/0tjpnn9o+MNLcAcOLb3yL4xv6s1TUU58L5TPjJz7DV1w2vAFXV8nMk4mAya3k4FCW7BymEEEIIIYQQQqRh/kPzda1/3437dK2/UBzqPMRjjY/xSOMjKZ9fVL2IpTVLWdWwSnKd5DHJyWEAFRUVyZ9PnTqV1nt6r44YN25c1o/pzJkzXHHFFckAx/jx43nxxReHDHBA3/Z4vd4+21cNJBAI9FmNkos2jSVer5ef//znyaVjYmi57rNYZyfHb/lSVgMcAImuLo7fckty6yoAW0URtooiXNMyT8odcDp55sork7k8MuG6oApbRVHG70tSFLDYwebSvucgwGGUz4ZR2iGEEHqReVQUEhmvY4OcZ31Iv2dO+kxbubHq+Ko++TaMppDO8/Ty6Xxh3hdSPueMObnw4IV8YdoXJMAhBlRwQY6TJ0/ywx/+kI985CPMnTuXxYsXc/XVV/OrX/0quaRHDzPP7osPcPTo0bTec+zYseTPs2bNyurxeL1ePvaxj3HgwAEAKisrefHFF2loaEjr/b3bA+m1qXd7UpUhMuNwOFixYgWOs0mixdBy3Wen/uNHxM5ux5ZtsbY2Tv3oznMPbN8A2zdQUnUi47Ks0Shz9+/HejZxVSZKqk9odecxo3w2jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnEDFFeKtM2yLJqIxyniOmCIsvWVzw7RC5ZdGz8scffzwZTVy9ejW1Z5PzDuTBBx/kq1/9anJVgaqqKIrCG2+8wdNPP82dd97Jww8/zPvf//6cH/v5Zs+enfx53759xGIxLJbBu3f37t0p3z9S3d3drF69ml27dgFQWlrKli1bmDNnTtpllJaWMn78+OQWWnv27BkyaNG7PXV1dYPm/BBDs9lsLFy4UO/DKCi57DPf1q14n302J2X38D7zDCUfX0PxihXaA6qKozyBs95OsDmcdjnWWIyGw4czrt810YGjLKFtOZXHjPLZMEo7hBBCLzKPikIi43VskPOsD+n3zEmfQdwU52hxejcpFyqjnOe4Kc6MeTOwnc1zKkQquq3k6Ozs5LOf/Sy33HILt99+O+Xl5YO+/o9//CPr168nGAzSO42IqqrJ348fP86qVavYv3/09q/vcemll2K32wEtyLBz585BXx8Oh5PZ7QE+9KEPZeU4QqEQV111Ff/zP/8DaIlqnn32WZYsWZJxWR/84AeTP2/dunXI17/yyivJn7PVnrEsGAyyZcuWZHIoMbRc9tmZ++7LepmpdNx3/7lf1DgkolRcXJZRGWGbjT2LFyUTnaer4n2lkIhq9eYxo3w2jNIOIYTQi8yjopDIeB0b5DzrQ/o9c2Opz7as3cKWtVtYWLWwz+PWuJULz1yINW7NSb2LqhexZe2WnJSdLqOcZ2vcymsvv1bw7RC5pVuQ46WXXiKRSABw4403JgMEqXR1dXHrrbcCoJzd3728vJyrrrqKT3/608ycOTO5qsPv9/PlL3859w04j9vt5sMf/nDy9wcffHDQ1z/xxBPJ/BXjxo1j+fLlIz6GaDTK2rVr+etf/wqA3W7nz3/+87BXtlx99dXJnx999NFBJ5NgMJhMvH7+e8XwJBIJPB5P8nMihparPgs1NhHcuSurZQ4ksHMnoaYm7ZezAdziC1yUTEs/t4WqKHQXFaFmkA+jZJqC+wJXn3rzlVE+G0ZphxBC6EXmUVFIZLyODXKe9SH9nrmx1Gd17jrq3HUsrV3a53ETJlwxF6YcXRpdWrOUOnddTspOl1HOswkT/i5/wbdD5JZuQY7XX389+fM111wz6Gs3bNhAR0dHMsDxuc99jmPHjvHkk0/yyCOP8Pbbb/PQQw9hNpsB2L59e5/yR8ttt92W/PnBBx9M5sM4XyAQ4Ac/+EHy9y996UtDbm01lHg8znXXXcdzzz0HgMVi4bHHHuMjH/nIsMu86qqrqK+vB8Dj8fCjH/1owNf++7//Ox6PB4DJkyfz8Y9/fNj1Ck1RURGf/exnKSoaQRLoMSabfRZpbkl+dT7ySBaOLn2djzyq/dArSFHzfhMWV3rvd4TDfOBvr+IIp7fFlcWllZ+Ug2Th2WSUz4ZR2iGEEHqReVQUEhmvY4OcZ31Iv2duLPbZqoZVfX4Pm8O8VvMaYXP6W0OPpD49GOU8h81hrrj6ioJvh8gt3YIcb7zxBgAlJSVccsklg77297//PYqioKoqM2bM4KGHHsLl6nu174YbbuBf//Vfk79v2rQp68c8lDVr1nDZZZcB2nZUH//4x3nzzTf7vObMmTNcffXVvPPOO4C2iuOf//mfU5Z35MgRFEVJfg20OkRVVW6++WYef/xxAEwmE//93//NVVddNaL22O12fvjDHyZ/v+uuu/jFL37RJ3KaSCT4xS9+wd1335187N/+7d9kn7wsiMViHDlyhFgspvehFIxs9tm7H/lI8svzhz9k4ejS53n4Ye0HxQwmbemspcjGxNUmTPahAxBxk4m26mripqGneJNdYeJqE5ais59Zk1WrN48Z5bNhlHYIIYReZB4VhUTG69gg51kf0u+ZG4t9NqN8BourFyd/NyVMVAWrMCWyf2l0Sc0SppdPz3q5mTLKeTYlTJw4fqLg2yFyS7cgx+HDh1EUhUWLFg36ulOnTiVXRCiKwj/+4z8OuOrhG9/4Bg6HAyCZdHu0Pfzww4wfPx7QghQLFy7kgx/8IF/84hf5xCc+waRJk3jhhReAc6stysrKRlTnhg0beOihh5K/X3DBBbz66qt87WtfS+trMOvXr+eGG24AtIDGN7/5TWbMmMH111/P9ddfz4wZM/jmN7+ZDHzcdNNNrFu3bkTtERq/389DDz2E3+/X+1AKRk+f+Xw+4n4/sc5O4n5/nzw+hUJ931fgkttgzlVQfxFUz8HRUMfkL87DUuoc9L0hp5OtH/4QIefgr7OUOpn8xXk4Guqgeo5Wz5yrtHrzmFE+G0ZphxBC6EXmUVFIZLyODXKe9SH9nrmx2mc3z785+bMj7uDyU5fjiDuyXs/6eeuzXuZwGOU8O+IOnnvsuYJvh8gtRdXp6l9paSl+v5/Pf/7z/Pa3vx3wdU888URyOytFUTh58iTV1dUDvv7yyy/nb3/7G/X19Rw7dizrx52OgwcP8rnPfY69e/cO+Jqqqio2btzImjVrBnzNkSNHaGhoSP6+ceNGvvCFL/R73b/+67/2WXGRqaGGQCQS4dvf/ja//OUvB3ytoih8/etf5yc/+QlWa3aSNh04cIB58+Ylf9+/fz9z587NStnCeEKNTXiffZbgvjcJvfU2ia6u5HOm0lIcc2bjnL+Ako+vwTFjxpDlvT1rdi4Pd0gzdu7E7C6C97bC0deg+zS0vw1mG7GyBZz64068fz887PJLLmqg5tqlWDxvQjwCVbOhqBImXwJTV2StHUIIIYQQQgghRL64fdvtbD68OWflr25Yzd3L7x76haKfFn8LKzetTPnclrVbdM9xIoam57XckSWCGIFAIABoCbsH8/e//x3QLqJPmzZt0AAHwNSpU/nb3/6WzA+hh1mzZvH666/zyCOP8Ic//IEDBw5w6tQpysrKmDp1Kp/61Ke46aabqKys1O0YM2Gz2fiv//ovbrjhBh544AG2bt1KS0sLAHV1daxYsYKbb76Ziy66SOcjFWORb+tWztx336CJwRNdXQRe207gte2c+fWvcS5dQuUtt+C+/PJRPNLMqNEIUKStsDj6GrgqwGyDeAQLXdStv4ySixroeOEAgUOn0i7XNb2Gio/OxT2vHnytWoDDbNPKB6iWQKIQQgghhBBCCGP63rLvsat1F23BtqyXXe2s5o5ld2S9XCHE0HTbrsp5dhsVn8836Ot27tyZ/Hnx4sWDvLJvuaFQaARHN3I2m41169axefNmjh07Rjgc5tSpU7z22mv80z/9U1oBjilTpqCqavIr1SoO0FZy9H5dpl/pWrZsGffeey8HDx7E5/Ph8/k4ePAg9957rwQ4cqCrq4sf//jHdPVakSDOiXV20vLt79D8lVuTAY5ul4s/rf0U3a7BM3QHd+7i+Je/Qst3/olYZ+doHG7GFOvZHBnuaiibqCUDLzl710LnEYiFKZ5fz+R//BgN/3IlFSvnUzRrPCaXrU8/mFw2imaNp2LlfBr+5Uom/+PHtABHLAydZ1eClNRp5ZdNBHeVLu3NhFE+G0ZphxBC6EXmUVFIZLyODXKe9SH9nrmx3GdljjI2XLGBaqWaq45ehTM2+DbP6SqxlbDhig2UOcqyUl42GOU8O2NOfvt/f1vw7RC5pdtKjoqKCrq7u2lqahrwNfF4nB07dqAoWqLdZcuWDVluzwqO8xOTC1FoXC4XV199tYzlFEKNjRy/5UvE2vreeWEPh1m2/XXs4XBa5XifeYbAjh1M/M1vcMwcegur0WQq6nXeJ14MnuNaMKK7HSJ+aD8INfPAZMZRV46jrhzQtp8LB6I4OxNccMlV2F3W5ByalIhr70/EwOY+FzyZdMkotW5kjPLZMEo7hBBCLzKPikIi43VskPOsD+n3zI31PptRPoP/Wvlf/OvT/0rEFBlxedXOajZcsYEZ5fl1XcEo5zliirD8Y8sLvh0it3RbybFgwQJUVWX37t2cOpV6q5VXXnkFn8+XXG2wfPnyIcvt2Uapqir/70YWYjBWq5VZs2ZlLceJUYQaGzm67sZ+AQ4ASzxOXUsLlng87fJibW0cXbeOUGPfgOsFL76Y/HIuWjTi486Ec/HivoGJymlQM0dbbVE1E0wWCHvh1H5tRUYviqLgKLIxt96Bo8jWP8ARC2vvC3u1cqpmauXWzIGKC0ahdSNnlM+GUdohhBB6kXlUFBIZr2ODnGd9SL9nTvoM5lTP4def/zUfu+BjIypndcNqNl21Ke8CHGCc8xw3xZkyfUrBt0Pklm5Bjg9+8IMAJBIJ/uVf/iXla372s58lf54wYQJLliwZtMx4PM7u3btRFIXp06dn72CF0EEgEODJJ59M5q8R2hZVx2/5Up+k4r2FbTZ2vO99hG22jMpNdHVx/JZb+mxdZauvS365Rnk7tpT1TbsC7G6wuqBm7rlAx4ndWm4NNZF8aSCq8mRjjEC013Z0akJ73Ynd5wIcNXO18uxurfwCYZTPhlHaIYQQepF5VBQSGa9jg5xnfUi/Z076TOuDrVu28v8s/X/45Yd/yZKawa85nm9JzRJ++eFfcvfyu/Nqi6rejHKebXEbr2x5peDbIXJLtyDHDTfcgMPhAOCBBx7gy1/+MocOHSISidDY2MhNN93Es88+C2h3Jq9bt27IMrdv3053dzcAF154Ye4OXgihi1P/8aOUKziyIdbWxqkf3ZnyuZIPXZyTOgdS8sEU20bZXLDgM2B1gL0Exl+obTWViMGZQ9D8d+g4DN2nIRrSghrRkPZ7x2Ht+TOHzm1RNf5CrRyrQyvXJss+hRBCCCGEEEKMPcvrl/Pgygd54qon+OzMzw74ukXVi7hl/i08cdUTPLjyQZbXD73jjBBidChqJpmns+zuu+/mjjvu6L+dSi+qqlJeXs6hQ4cYN27coOV9+ctf5je/+Q2KovDUU0+xZs2abB+yGEUHDhxg3rx5yd/379/P3LlzdTwioSff1q00f+XWnNdTf+8GilesgKDn3INHXuXId+4m+O7pnNfvmlbF5P+8HWZ/PPUL/G3w5qMQ9oOqgrdF+4qnsY+o2abl3+hJNG53awEOd3V2GyGEEEIIIYQQQhSgFn8LKzetTPnclrVbqHPXjfIRjR3S94VPz2u5uq3kALj99tu58cYbkzk3VFVNfvX8brPZ+N3vfjdkgKOzs5NHHnkERVGw2WxcfvnlOT9+IXIpGo1y8OBBotGo3oeSF87cd9+Qr4mZzbTU1REzm4ddT8d992s/bN9w7mvvw1QsGn6ZmahYaIK9Dw/8Anc1LL35XI6O0nqoXwZVs8FdCzY3UdXCwUA5UdWirdpw12rP1y/TXt+Tg2PpzQUZ4DDKZ8Mo7RBCCL3IPCoKiYzXsUHOsz6k3zMnfTY2+sAobTQnzBw5dKTg2yFyS9cgh6IobNy4kQcffJDZs2f3e3758uW88sorrFq1asiyfvrTnyaTlH/4wx/G7Xbn4pCFGDVG2TsxG0KNTQR37hrydWG7nR0Xv4+w3T7sugI7dxJq6pWEXFUh0k3xBS5Kpuc20FEy3Yz7AhdEurV6B2JzwZxPwPxroWyiFrQoqoTK6TBhEYHxF/Nk5wwC4y+GCYu0x4sqtdeVTYQFn9beX6BbVBnls2GUdgghhF5kHhWFRMbr2CDnWR/S75mTPhsbfWCUNtoSNrb9ZVvBt0Pklq7bVZ3vxIkTtLS0YDKZmDp1KuXl5Wm/9+jRo4RCIQAqKiqorKzM1WGKUSLbVYlIcwsAZ+6/H88f/jBq9ZZddx3jL7NovyRicOw1AGKtxzj8xzixHPy7anFBw7VmLLWTtAdu+BNY0gzW+Nuh7QB4T4K/VcvF0cPq0FZylIyH6rngrsr+wQshhBBCCCGEEAYgWybpR/q+8Ol5LdcyKrWkacKECUyYMGFY7508eXKWj0YIobd3P/IRXer1PPww4y9bp/3SKw5sccDE1SaOPgOJUCJr9ZkcJiau1spPSsTTL8BdBe4V2s+qquXnSMTBZNbycAyS90gIIYQQQgghhBBCiEKm63ZVQoiBeTwefvjDH+LxePQ+lILRXVTEY5/7LN1FRSMuK7nIrU+AQMFRoTD5M1VY3NnZusriNjP5M1U4KhSgV12mYZavKHj8QX5413/i8QcNGeAwymfDKO0QQgi9yDwqComM17FBzrM+pN8zJ302NvrAKG10RV3c93/uK/h2iNySIIcQecrtdnPjjTdKfpkMOIJBVrz0VxzB4IjLSoRj2g+KGUxW7Wez9t1RAQ3r6yiZM7JgSsmcIhrW1+GooE/5mKzaCoxhMvrYMUr7jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnY6MPjNLGkDnE6k+vLvh2iNzKq+2qhBDnWCwWpkyZovdhFBRzIkF1W1tWylIvXAflZdovxTXgOQZn3oXuNiiegKV8MnXToWT/CTpeaiTwTnvaZbumVVHxkVm4547XHug8qgU1iqqh4gIomzSiFRhGHztGaZ9R2iGEEHqReVQUEhmvY4OcZ31Iv2dO+mxs9IFR2pgwJZgwcQIWi1zGFgPTbXRs27Yt53UsX74853UIkSvd3d08/fTTXHnllRRlYfulsSBkt7Nz2UUs3fF3HOHwiMpSSqrAebbfKy4Afxu4ayDYASEPmKeDYqJ44VSKF04l1NKJd+cRQkdOEzx2hkQgkizL5LLhnFSBY0olJUun4KgrP1eRmtDKM1m08i0Orb4RMPrYMUr7jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnY6MPjNJGe9zOC0++wLWfvLag2yFyS7cgx4oVK1ByuFe8oijEYrGclS9ErplMJsrKyjCZZFe5dCmqSlF3N0qvZOHDZSpynfuleg4cfQ1cFdqKi3hEC3oU1yZf4qgrTwYvVFUlEY6hxuIoFjMmu2Xg+c7fppVntmnlA1TPHdmxG3zsGKV9RmmHEELoReZRUUhkvI4Ncp71If2eOemzsdEHRmljggTuUnfBt0PklqKqWbgaOAwmkwlFUchV9YqiEI/Hc1K2GB0HDhxg3rx5yd/379/P3Lkju/grCkukuQWAE//0TwT37Bm1ep2LFzPl4d/3fXDP78BzHLqaofOwljdjwiKw2IdfUSwMJ3ZDIgblDVBaD2UTYdH1I2uAEEIIIYQQQgghMtbib2HlppUpn9uydgt17rpRPqKxQ/q+8Ol5LVf3zcwURaGiogKz2az3oQiRVyKRCG+99RZz5szBZht+EupCZqvX/gFzXXRRWkGOqMVC88SJ1B8/jnUEK7lcF13U/8GJF2tBjpI66G6HiB/aD0LNPDANY/5KxLX3J2Jgc2vlAky6ZNjH3cPoY8co7TNKO4QQQi8yj4pCIuN1bJDzrA8j9nuuL/Yasc8yNRb6wChtNCfMNO1vompxVUG3Q+RWXqzzMZvNXHfddfzlL3/h5MmTWfsSopCFQiG2bt1KKBTS+1Aypqoqcb+fWGcncb9/xCu2StasSet1UauVA/PmEbVaR1jf6v4PVk6DmjlaQvCqmVoOjbAXTu3XVmRkIhbW3hf2auVUzdTKrZkz4nwcUNhjJx1GaZ9R2iGEEHqReVQUEhmvY4OcZ31Iv2dO+mxs9IFR2mhL2Nj92u6Cb4fILd22q7rooovYtWuXdhC99qpfsGAB69at47rrrqOmpkaPQxN5QrarKiyhxia8zz5LcN+bhN56m0RXV/I5U2kpjjmzcc5fQMnH1+CYMSPj8o9c/VGCB49n85BTcs2axOQn/5L6yUgAdt4PYf/ZAMcBbSWGyaJtN+WuBmWQ2LGa0HJwdB4+976auWAvAbsblt4MNtfA7xdCCCGEEEIIYXiybY9+pO/1I31f+PS8lqvbSo6///3vHDhwgNtvv526ujpUVUVVVd58802+853vMHHiRFavXs2jjz5KOJzhXdJCGICqqoRCoZzlrckW39atHLn+eg5/4hOc+fWvCby2vU+AAyDR1UXgte2c+fWvOXzVJzhy/fX4X3kl/Ur8bVR8aPqQL1OBiNXKSHqs4sPTwN+e+kmbCxZ8BqwOLTAx/kJtq6lEDM4cgua/Q8dh6D4N0aCWUDwa1H7vOKw9f+bQuS2qxl+olWN1aOVmKcBRKGNnuIzSPqO0Qwgh9CLzqCgkMl7HBjnP+pB+z5z02djoA8O0UYVwKFz47RA5pet2VbNnz+bHP/4xR48e5fnnn+f666/H5XKhqiqxWIy//OUvXHfdddTW1vKlL32Jv/3tb3oerhCjqquri7vvvpuu8wIG+SLW2UnLt79D81duJbhzV0bvDe7cxfEvf4WW7/wTsc7OQV7o0b6O76B4diUlCwdf3RUoKuLJa9YSKCrK6Hh6lCyswT2rEo6/PvCL3NWw8PPaygurC8Yv1FZxmG1aUMPbDO1vQ8tOrZyWndrv3mbtebNNe/34hdr77W6tPHf1sI45lXwfOyNllPYZpR1CCKEXmUdFIZHxOjbIedaH9HvmpM/GRh8YpY2umIv//uV/F3w7RG7ptl3VQLq7u9m0aRMPPfQQW7duTUbpera0mjJlCuvWreOGG25g6tSpeh6qyLGxvl1VPB6nvb2dqqoqzOZhJLbOoVBjI8dv+RKxtrYRl2Wprmbib36DY2aKLaxevkv73roPQh5iZ05z+GEfsUDqsuImE96SEkq8XsyJRGbH4YKG64qxVFSCoww+9/Dgb4gE4J0X4NRb2u+qCoEzEOzUkpJHA9pjiqIFM2xucJaDq0J7DLQcHNOuyPoWVfk8drLBKO0zSjuEEEIvMo+KQiLjdWyQ86wPI/Z7rrftMWKfZWqgPjDSlkmFdp4H6ntFVfjd8t8xd/LcgmjHWDYmt6saSFFREevWreOll17i6NGj/Md//AczZ85Mbmd15MgR/u3f/o3p06fzgQ98gN/85jcSyROGZDabqa2tzbsJPNTYyNF1N2YlwAEQa2vj6Lp1hBqbUr9AVSHSDYDFFmPiahMmu5LypeZEgnKPJ+MAh8muMHG1CYstpj0Q6dbqHYzNBXM+AfOvhbKJWuCiqBIqp8OERTD5/TDlA9r3CYu0x4sqtdeVTYQFn9ben4McHPk6drLFKO0zSjuEEEIvMo+KQiLjdWyQ86wP6ffMSZ+NjT4wShtVRaWiuqLg2yFyK++CHL3V19fzve99j7fffpvt27dz2223MW7cuGTA47XXXuMrX/kKEyZM4ODBg3ofrhBZ5ff7efDBB/H7/XofSlKss5Pjt3ypX86NkUp0dXH8lltSb12lxiER1X6OR3FUKEz+bDUWd/9/3IIOBy9/6EMEHY6067a4zUz+bDWOCgXiZ+tJRLWtpdJROQ0WXQ8XfREmXwLlU7QcG71ZHdrjky/RXrfoeqi4IO1jzFQ+jp1sMkr7jNIOIYTQi8yjopDIeB0b5DzrQ/o9c9JnY6MPjNJGe8zOM48+U/DtELll0fsA0rVs2TKWLVvGz372M5599lnuv/9+nn32WQBCoRCBwAD71whRoCwWC1OmTMFiyZ+P6an/+FHWVnCcL9bWxqkf3UndT/6z7xN9VlRoPzuq7TSsr+PUi2fwvtWdfNYcj1PV1oY5Hk+rzpI5RdR8pAKLHfCeKx+ARHplJLmrwL3i3DHHI1oZJrOWh0NJvfokF/Jx7GSTUdpnlHYIIYReZB4VhUTG69gg51kf0u+Zkz4bG31glDYmlATj68cXfDtEbhXc6Ni/fz+vvPIKf//735N5OoQwIofDwYoVK/Q+jCTf1q14zwYWc8X7zDOUfHwNxb3b3edzrgAqqAksTit1V1ZTMidAx+tdBI6HsEWjzNu/f8h6XBMdVLyvFPcFZ7eK6lnBQa+6TCNYBqkoaJETfeTb2Mk2o7TPKO0QQgi9yDwqComM17FBzrM+jNbvTZ1NPNb42IDPf3fbd1lau5TVDauZXj59WHUYrc+GYyz0gVHaGDVHWXLpEhwZ7Nohxp683q6qx8mTJ/nP//xPFixYwNKlS/nFL35Be3t7ctuqJUuWUFNTo/dhCpFV4XCY7du3Ew6H9T4UAM7cd9+o1NNx3/19H1DMYLJqP5vPfu/ZvgoovsDF5OvG07C+juJLyjmybAbxor7xW5MdiibbqbiklIb1dUy+bvy5AEfv8nrKN1m11RcFKt/GTrYZpX1GaYcQQuhF5lFRSGS8jg1ynvVhlH7f1ryNGzffyNqn1vJo46MDvm5v+17u23cfn3rqU9y4+Ua2NW/LuC6j9NlIjIU+MEobLQkL+3ftL/h2iNzK25UcwWCQJ554gt/+9rf89a9/JXE2kbB6duuaiRMn8vnPf55169Yxa9YsPQ9ViJyIRCLs3buXuXPnYrfrtyoAINTYRHDnrlGpK7BzJ6GmJhwzZsDFt2oPFteA5xiceRe626B4ApRP7vM+Rz2UzoWjbym8/9MXUqTGUGMJFIsJk90y+MqvzqNaUKOoWsuVUTZpVLeXyrZ8Gju5YJT2GaUdQgihF5lHRSGR8To2yHnWR6H3uyfk4c4dd7L58OaM37u7bTe7X9rN6obV3LHsDsocZWm9r9D7LBvGQh8YpY2WhIWmA01cuvjSgm6HyC1FVftseK+7l19+md/+9rc88cQTyYQyPYdYVFTEpz71KW688UY++MEPynZVBnfgwAHmzZuX/H3//v3MnTtXxyMaeyLNLQCcuf9+PH/4w6jVW3bddVSsX4+tvk574L2tcPQ16D4N7W9rAYn6i0DJwmI0NQHNf9dyaFTNhqJKLUH41BUjL1sIIYQQQgghhBhAY0cjt714G23Bkee+rHZWs+GKDcwon5GFIxu7WvwtrNy0MuVzW9Zuoc5dN8pHNHZI3xc+Pa/l5sVKjsbGRn7729/y+9//nuPHjwPnAhsmk4kPfehDrFu3jrVr1+JyuQYrSgjDSCQSeL1eSkpKMJn02Vnu3Y98RJd6PQ8/jOfhh5l98G3tgeo5WpDDVaEFOOIR8LdBcW2f9yVUFW8YSuxgSjcI6m/TyjPbtPIBqgs7mJYPYyeXjNI+o7RDCCH0IvOoKCQyXscGOc/6KNR+b+xoZP1f1uONeLNSXluwjZu23MTGlRuHDHQUap9l01joA6O0UVEVfF0+Eq5EQbdD5JZuI6Ojo4Nf/vKXvO9972POnDn8+Mc/5tixY8k8G7Nnz+bOO+/k6NGjvPDCC9xwww0S4BBjitfr5Z577sHrzc4fPAXNXQ1lE7UtpErORu47j0Cs736M3jDcsyOKN91tGmNh6Dys/VxSp5VfNhHcVVk7dD0YfewYpX1GaYcQQuhF5lFRSGS8jg1ynvVRiP3uCXm47cXbshbg6OGNeLn1hVvxhDyDv64A+yzbxkIfGKWNzpiTR+97tODbIXJLt+2q7HY7sViM3tVXVlby2c9+lnXr1rF06VI9DkvkkbG+XVU+RNzfnjVbl3p7JFdyAJx+B/b9EVQVTu6FiB/sJVAzD0xmIMOVHIk4nNoPYS/Y3DB+oRbkWPBpLS9HAcuHsZNLRmmfUdohhBB6kXlUFBIZr2ODnGd9FGK/377t9mHl4EjX6obV3L387gGfL8Q+y7ax0AeF1saBtqtSVIXHrniMGeNnFEQ7xrIxuV1VNBpFURQURWHOnDnccMMNrFmzBqvVCkBTU9OI65gxQ/YhFIXLZDJRVlY2rPeqqkqiuxs1GkWxWjEVFRV+DpvKaVAzB069BVUz4eQbWoDi1H6omgUWOyZFocyRRlmxMLQf1N5vsmjlKYpWfoEHOGBkY6cQGKV9RmmHEELoReZRUUhkvI4Ncp71UWj9vq15W04DHADPHX6ONVPXsLx+ecrnC63PcmEs9IFR2qgqKsWlxRLgEIPKi9Hx1ltvcccdd7BgwQJmz56dla85c+bo3SwhRsTn83Hvvffi8/nSen2osYm2n/6MozfdRNPFl9C09CIOXXIpTUsvouniSzh60020/fRnhLIQQNTNtCvA7garC2rmagGKsBdO7AZfK75QnHt3RfGFB1igpibA16q9vifAUTNXK8/u1so3gEzHTqExSvuM0g4hhNCLzKOikMh4HRvkPOuj0Pr9/n33j0o9D+x/YMDnCq3PcmEs9IFR2uiIOXjit08UfDtEbuVF4vEe2dg5S1GUrJQjhN5sNhsLFy7EZrMN+jrf1q2cue8+gjt3DfiaRFcXgde2E3htO2d+/WucS5dQecstuC+/PNuHnVs2Fyz4DOz9vfb7+AuhvVHbuurMIWzKcRYWT8YWNoGpSNvGKhGHSDeEfdB9Nsk4aFtUVc3UAhxWh1auzRh5f9IdO4XKKO0zSjuEEEIvMo+KQiLjdWyQ86yPQur3ps4mdrftHpW6dp3axaHOQ0wvn97vuULqs1wZC31glDbGTDFmzJ1R8O0QuaVbTo5cLzFSFIV4PJ7TOkRujfWcHEOJdXZy6j9+hPfZZ4ddRsnHP07N97+Hpbw85fOR5hYATvzTPxHcs2fY9WTKuXgxE/7f/xdbfV3qF/jb4M1HIezXcnR4W7SvngDGYMw2Lcl4T6Jxu1sLcLirs9sIIYQQQgghhBACLdcAwMb9G3m08dFRq/ezMz/LF+Z9gTr3AP+3FiKPDJSTA2DL2i0yjguAntdydduuKpFI5PRLAhyi0IVCIbZu3UooFOr/XGMjhz9x9YgCHADeZ57h8CeuJtSYegsrW30dtvo6XBddNKJ6MuW66KKBAxygBSSW3qzl0FAUKK2H+mWEymezNTCTkLkEFBOgaN9tbnDXQtVsqF+mvb4nB8fSmw0X4Bhs7BiBUdpnlHYIIYReZB4VhUTG69gg51kfhdDvKzetZOWmlaMa4AB4pPGRlBeNC6HPcm0s9IFR2miNW9n1v7sKvh0it/IiJ4cQor9YLMaRI0eIxWJ9Hg81NnJ03Y3E2tqyU09bG0fXrRsw0AFQsmZNVupKV8ma1UO/yOaCOZ+A+ddC2URQFGLOCo5Ey4nVLIDJ74cpH9C+T1gEldOhqFILbpRNhAWf1t5vkC2qehto7BiFUdpnlHYIIYReZB4VhUTG69gg51kf0u+Zkz4bG31glDaaVBMnj58s+HaI3NJtuyohhiLbVfUX6+zk8CeuzlqAozdLdTUNf35ywK2rjlx//aB5P7LFtXQpk3/335m/0d8ObQfAexL8rRDtFeG3OrSVHCXjoXouuKuyd8BCCCGEEEIIIcQg5j80X9f69924T9f6hUiHbFdV+PS8lptXiceFEOfE43Ha29upqqrCbDYDcOo/fpSTAAdoKzpO/ehO6n7ynymfr/jiF2kehSBHxS1fHN4b3VXEnZdpfVZZiZm4lnTcZNbycChKdg80j6UaO0ZilPYZpR1CCKEXmUdFIZHxOjbIedaH9HvmpM/GRh8YpY2KqnCm7Qy1ztqCbofILUNuV9XV1cUPf/hDvQ9DiBHx+Xz86le/wufzab9v3TriHBxD8T7zDL6tW1M+V7xiBSWrPpbT+ktWr8R9+eXDfn+yz/x+sNi1rags9jEV4ID+Y8dojNI+o7RDCCH0IvOoKCQyXscGOc/6kH7PnPTZ2OgDo7TRGXPyp//+U8G3Q+SWobar6ujo4Kc//Sn/9//+X3w+nyQfL3BjfbsqVVUJh8PY7XYURcmL7aJirz/M4W/8hFhXMOv1WkqdNPziO1jed92wyzi/z8Yqo/eDUdpnlHYIIYReZB4VhUTG69gg51kfhdDv+bZdVSH0Wa6NhT4otDYOuF2VCn/++J9pqGgoiHaMZXpeyzXESo729nb++Z//mSlTpnDXXXfh9Xr1PiQhRkxRFBwOB4qiEGpsGpUAB0Bg505CTSmSkJ9+B0vgKBO/9mFMjuwuDzQ5zEz82oexBI7C6XeGXU7vPhvLjN4PRmmfUdohhBB6kXlUFBIZr2ODnGd9FEK/b1m7hS1rt7CwauGo1ruoehFb1m7p93gh9FmujYU+MEwbFbA7CiNQI/STN0GO1tZWHnvsMX7+85/z4x//mI0bN/L2228P+p729nb+8R//kYaGBn7yk5/g9/uTz7lcrlwfshA55fV6+fn/+T+cbmyi85FHRrXuzkceJdLc0vfB49sBcBQHmHxdLRZ3dgIdFreZydfV4igO9KlnOLxeLz//+c/HfKDT6P1glPYZpR1CCKEXmUdFIZHxOjbIedZHIfR7nbuOOncdS2uXjmq9S2uWpkzWXAh9lmtjoQ+M0kZnzMkjv3mk4Nshckv3xOOHDx/mW9/6Fs8880zK59///vdz//33M3369ORjsViMu+66KxnYUFU1Gc1zuVzcdtttfOc73xmV4xciVxwOBzNefIkTGx/EGouNat2ehx/G8/DDzD54NtDobwPPcVBV8LbgqLLR8O3LOPXcUbx/PzzsekouaqBm9WQsoaPgbYGSOq0efzu4qzIuz+FwsGLFChwOx7CPyQiM3g9GaZ9R2iGEEHqReVQUEhmvY4OcZ30UUr+valjFffvuG9X6UimkPsuVsdAHRmljxBRh8SWLC74dIrd0zcnx1ltv8aEPfYj29nZ6DqP30qOexyZMmMDLL7/M9OnTOXLkCJ/61Kd44403ksENVVUpLi7mq1/9Kt/+9repqKjQpT0iu8Z6Tg6At2fN1rX+2Xte03448io0/x0CZ+B0E5htMGERKCZ8+0/Q8VIjgXfa0y7XNa2Kio/Mwj13PKgJOLEH4hGonAGuCqi/CKZ8AJxluWmYEEIIIYQQQgihgxs338jutt05r2dJzRIeXPlgzusRIlsGzMmBtuVbqlVJIr+MyZwcqqry+c9/nra2tn6P93z1OHHiBF/72tdobW3l8ssv54033kg+V1xczPe//32OHDnCnXfeKQEOYRjBYJA9ixcRttn0O4jtG7SvvQ9rQY7mneA9oQU7WnZB898pLmth8lo3DevrqLiklKLJDkyOvlOLyWGiaLKDiktKaVhfx+S1btylzVqZLbu08rwntPKb/67Vt31DxocbDAbZsmULwWD2E6MXEqP3g1HaZ5R2CCGEXmQeFYVExuvYIOdZH4XW7zfPv3lU6lk/b/2AzxVan+XCWOgDo7TRGrfy2suvFXw7RG7ptl3V5s2beeONN5IrMT75yU/yrW99i4ULF+J0Ojlx4gRbtmzhP/7jP2hububFF1/k2muv5fjx4yiKgqIofP3rX+cHP/gB48aN06sZQuRMIpGgu6gIVe/ESqoKkW7t53hE+26x93uZo8qGo6IEvCdQVUhETahxUMxgsoJSWgWmAaYcix3CvnPlR7q1ejOUSCTweDwkEomM32skRu8Ho7TPKO0QQgi9yDwqComM17FBzrM+Cq3fl9cvZ1XDKjYf3pyzOlY3rGZ5/fIBny+0PsuFsdAHRmmjCRP+Ln/Bt0Pklm7bVd18881s3LgRRVH45je/yU9/+tOUr2ttbeWiiy7ixIkTgLbSY9y4cfzpT3/isssuG81DFqNMtqvKg+2qNqyDRAyOnd22ynMcUKF4PJit/d+QiGkrMlIpmTBwkCMeBd9JQIGyidpjky6BD///RtoEIYQQQgghhBAFyMhb13hCHtY+tZa2YNvQL85QtbOaTVdtosxRlvWyhcglI3/mx4oxuV3Vrl27ACgtLeVHP/rRgK+rra3l+9//fnILK0VR2LhxowQ4hOHFYjHaqquJm3T7mGr6xEHP/qxk+ZiS5fWqaxjx11gsxpEjR4iNcqL2fGP0fjBK+4zSDiGE0IvMo6KQyHgdG+Q8Z09TZxMb928c8Pnvbvsu9+y+h0Odhwqy38scZWy4YgMltpKslltiK2HDFRuGDHAUYp9l21joA6O00ZQwceL4iYJvh8gt3a6etrS0oCgK73//+3E6nYO+dtWqVYCWlHzatGlceeWVo3GIQujK7/ez9cMfonrTJpyLFo1q3c7Fi7ngxRe1X/psl3X2ZzXLSwST5fWqaxjbdPn9fh566CH8fn92jqtAGb0fjNI+o7RDCCH0IvOoKCQyXscGOc8jt615GzduvpG1T63l0cZHB3zd3va93LfvPj711Kf48jNfLsh+n1E+g40rN1LtrM5KedXOajau3MiM8hlDvlbG6tjoA6O00RF38NxjzxV8O0Ru6bZdlc1mIx6Pc8stt3DvvfcO+tpYLIbNZkNRFK6++mo2bdo0Skcp9CTbVZ3T9tOfcebXvx61+iq+/GWq/+Fb8PJd2oqK469DIgq+Vi1vRlElWF393zjc7aqiAeg+DWYbFNdqSTwmvg8+9L2stUkIIYQQQgghRH7yhDzcuePOEeWpWN2wmjuW3VFw2zR5Qh7u2nEXzx1+bthlFGrbhehNtqsqfHpey9Ut8XgsFkNRFGw225CvtVjOHeb48eNzeVhC5KWSNWtGNchRsma19sPFt2rfi2vAcwzOvAvdbVA8AconZ6/CzqNagKOoGiougLJJMG9t9soXQgghhBBCFDRVVemOdhNNRLGarBRZi1CGsfpb5J/GjkZue/G2EeeneO7wc+xs3cmGKzaktZohX5Q5yrh7+d2smbqGB/Y/wK5Tu9J+75KaJayft37QJONCCDEW6LzZf+ZMeucnEGKUdHV18eMf/5iuri4cM2fgXLpkVOp1LV2KY8bZPwidZdpXxQVgcYC7RluNEfJoQQmLY+RfZptWnsmilW9xaPU5yzI+9t59NpYZvR+M0j6jtEMIIfQi86goJDJeh6eps4l7dt/DF5//Ih945ANc8odLWP7oci75wyV84JEP8MXnv5jMy5AP5DxnrrGjkfV/WT+iAIcz5uSqo1fhjDlpC7Zx05abaOpsyuJRjo7l9ct5cOWDPHHVE3x25mcHfN2i6kXcMv8WnrjqCR5c+eCwAhxDjdUWfwvzH5qf8qvF35JxffloLHxejdJGZ8zJb//vbwu+HSK3dFvJIYQYnMvl4uqrr8bl0raFqvjiF2nemf4dHcNVccsX+z9YPQeOvgauCi0oEY+Av03bWmqk/G1aeWabVj5A9fCWsp3fZ2OV0fvBKO0zSjuEEEIvMo+KQiLjNTPbmrdx/7772d22e8DXeCNeXj/5Oq+ffJ379t3H4urF3Dz/Zl3vaJfznBlPyMNtL96GN+IdUTkRU4SdlTuJmCKANjZufeFWNl21qSC3b5pePp0vzPsCjzQ+kvL5uy67a8Tb9shYHRt9YJQ2RkwRln9secG3Q+SWLIsQIk9ZrVZmzZqF1WoFoHjFCkrWrMlpnSUf/zjuyy/v/4S7GsomasnAS87+MdV5BGLhkVUYC0Pn4bOV12nll00Ed9Wwiju/z8Yqo/eDUdpnlHYIIYReZB4VhUTGa3o8IQ+3b7udr7701UEDHKnsbtvNV1/6Kv+87Z/xhDy5OcAhyHnOzJ077hzxFlUAcVOcE0UniJviycfagm3cteOuEZdtVDJWx0YfGKWNcVOcKdOnFHw7RG7pHuT45S9/idlsHvILtD0403197zweQhSiQCDAk08+SSAQSD5W8y/fx1JdnZP6LNXV1Hx/kETfEy/WvpfUgc2tJSJvPwiJ+MDvGUwifvb9Ma28nuDJpEuGVx6p+2wsMno/GKV9RmmHEELoReZRUUhkvA6tsaORtU+tHVHiadDyMqx9aq0u2xXJeU7ftuZtIz7XPWxxG0vbl2KL9835+tzh59jWvC0rdRiNjNWx0QdGaaMtbuOVLa8UfDtEbuke5AAteDHUl6IoyaRi6bxeVVWdWyVE9lnKy5n4m99gKinOarmmkmIm/uY3WMrLB35R5TSomaOttqiaqeXQCHvh1P7MV3TEwtr7wl6tnKqZWrk1c7R8HEIIIYQQQogxIxt5GXor5LwMY8X9++4flXoe2P/AqNQjhBBCX4qqUzQg1wnEFUUhHh/mHeYiLxw4cIB58+Ylf9+/fz9z5w4vV4Oh+NsIPfNfHP/Zs8S6giMuzlLqZOI/rMHx8a9r21INJhKAnfdD2H82wHFAW4lhskB5g/Z+ZZDPtprQcnB0Hj73vpq5YC8BuxuW3gw22WNRCCGEEEKIscIT8rD2qbVZC3D0Vu2sLti8DEbW1NnE2qfWjlp9T1z1BNPLp49afdnQ4m9h5aaVKZ/bsnbLiHNy5HP9erdd6EfOfeHT81qubns6vfzyy3pVLURBiEajvPvuu1xwwQXn9h2MBODNR3HUuGi4/YOc+v3f8L7lG3YdJXOKqfn8ZVjGueDNR4cOMthcsOAzsPf32u/jL4T2Roj44cwh8ByFomqwF4OtCExmbVuqSDeEfdB9Nsk4aFtUVc0EqwusDq3cEQY4UvbZGGT0fjBK+4zSDiGE0IvMo6KQyHgdWLbyMqTSk5fh7uV356T888l5HliLvyX582ONj2W1bHPCTE2whlPOU33ycvSu7/sXfz+rdRY6Gatjow+M0kZzwsyRQ0eonldd0O0QuaVbkOPyVMmNhRBJPXsn3nrrrZSWlmoPvvOCtooiGsDiP0TdlZWULKikY6efwDvtaZftmlZFxUVu3JMA/yEodp0rf84nBn+zuxoWfl4LigCMXwjeFu0rHgFv8+DvN9u0/Bs9icbtbi3AMdQqkjSk7LMxyOj9YJT2GaUdQgihF5lHRSGR8ZpaNvMyDOS5w8+xZuoaltcvz2k9IOd5MAPdnZ0NtoSNpaeX8kLdCwRN/Xc7eKTxEQlynEfG6tjoA6O00Zawse0v25g3dV5Bt0Pklm7bVQkxFNmu6jyn34F9fwRVhZN7tdUT9hKomQcmM6GWTrw7jxA6cprgsTMkApHkW00uG85JFTimVFKydAqOunJthUVPXgybWwtWKArMv1bLvzGUSEALipx6S/tdVSFwBoKd2rFFA9pjiqKt1rC5wVkOrgrtMdBycEy7QraoEkIIIYQQYgy6cfON7G7bnfN6ltQs4cGVD+a8HjGw+Q/N17X+N9e9mczzKoYm21UJPci5L3xjcrsqIUSGjm/XvntbtCCCyQpVs7QtoQBHXbkWvABUVSURjqHG4igWMya7pf8fdCaz9v4Tu7XyvC1QWq/Vk06Qw+bSVn1Uz9Xe4zkORZXa11DKJsKkSyTJuBBCCCGEEGNUU2fTqAQ4AHad2sWhzkMFl5dBZE8gFqDIWqT3YQghhMiR3Gb/FkIMm8fj4Yc//CEej0dL1u05rq2M8J7dy7R8CljsKd+rKApmhxWL24HZYR34jhWLXUsYDlq5qqrV409/6ysqp8Gi6+GiL8LkS7Tjsjr6vsbq0B6ffIn2ukXX5yTA0afPxjCj94NR2meUdgghhF5kHhWFRMbrOS3+Flr8LVnPyzCU0ahPzrM+XFEX1xy5Bld04B0CIvHIgM+NRTJWx0YfGKWNrqiL+/7PfQXfDpFbspJDiDzldru58bNrcZtjcHwHxELadlDRgJbXwlGiPTZSjhJQTFq5vhPadlLHX4cpHwBnWQYHXAXuFdrPqqrl50jEtRUjZtu5LapyyO12c+ONN+J2u3NeVz4zej8YpX1GaYcQQuhF5lFRSGS8npPL3AyDGY28DHKe9REyh3il5hVC5oH/f2wz20bxiPKfjNWx0QdGaWPIHGL1p1cXfDtEbkmQQ4g8ZbFYmHLiaTgBtO6DkAcCHWdzcRRDy67+b0rEwHsidYElE8A0wEc+2AlhH4S84BoHpw9pdX7wjuEdvKIMuMoklywWC1OmTBn1evON0fvBKO0zSjuEEEIvMo+KQiLjNT+oqprTvAxynvWRMCVodw6+G4HLInkge5OxOjb6wChtTJgSTJg4AYtFLmOLgcl2VULkqe7ubh45EKU7nIBIt/ZgzxLbbAcQesrrKT/Sra3GKDDd3d088sgjdHd3630oujJ6PxilfUZphxBC6EXmUVFIZLzmh0AsMKz3qaqKP+KnM9SJP+JHHeD/SnKeB7Zl7Zbk18KqhVkt2x63c8mpS7DHU/8/eVH1Ikk6fh4Zq2OjD4zSRnvczgtPvlDw7RC5JSEwIfKUyWSizKFgIg6JqPZg/Ox3kzXLlVn7lp+IghrPbh2jwGQyUVZWhsk0tuO3Ru8Ho7TPKO0QQgi9yDwqComM1/wQiUfSTj7d1NnE5sOb2Xd6H2+feRtvxJt8rsRWwuyK2cyvnM/qhtXJhOZyngdW565L/ry0dil72/dmrewECQKWAAkSKZ9fWrM0a3UZxWBjtamzadAcNt/d9l2W1i7tM/YL0Vj4vBqljQkSuEvdBd8OkVuKOtAtCELo7MCBA8ybNy/5+/79+5k7d66OR6SDl+/SAg/Ht2u/e45p30vqtFwX5xvudlWJ+LmE5mWTtO8TL4aP/GD4xy6EEEIIIYQQ55n/0Hzd6t5+3fYhgxzbmrdx/7772d22O+1yF1cv5ub5N7O8fvlIDzEvqapKd7SbaCKK1WSlyFo0opURTZ1NrH1qbRaPcHBPXPVEQV+MHy35MvZb/C0D5u7ZsnZLn4CZMBY594VPz2u5spJDiDwViUR4qzXOnAo4lyJNAVRQE0CKIMdwqT13vPT6Q7UAl/NGIhHeeust5syZg802dhPLGb0fjNI+o7RDCCH0IvOoKCQyXvPDYHkZPCEPd+64k82HN2dc7u623ex+aTerJ67mE8WfYOmFSwv+PPfczf9o46Mpn19YtXDYd/PPKJ/B4urFGV1MH4w5Yaa+u57mombipr47EiypWSIBjhR6z0mBRGDkY79hNXcsu4MyR1n2DzZHxsK8bJQ2mhNmmvY3UbW4qqDbIXJL1vkIkadCoRBbj8YJxc3ntpMyn/3es31VtvSU11O+yQpKFoMooyQUCrF161ZCoZDeh6Iro/eDUdpnlHYIIYReZB4VhUTG6zm5ysswlMHyMjR2NLL2qbXDusjb28uHX+bpF57mrda3RlSOnrY1b+PGzTey9qm1AwY4APa27+W+fffxqac+xY2bb2Rb87aM6rl5/s0jPdQkW8LGHM8cbIn+Fz/Xz1uftXqMpGdOOtB6ICtj/7nDz7H2qbU0dTZl6QhzbyzMy0Zpoy1hY/druwu+HSK3ZLsqkbdkuyog6NG+79+kbVV15l3oboPiCVA+OXv1dB4F3wkoqoaKC7Qtq+atBWdZ9uoQQgghhBBCiLPu2X0P9+27b9Tqu2X+LXxj8Tf6Pd7Y0cj6v6zvk3NjpEpsJWxcuZEZ5TOyVmaujWQlS49M7+a/fdvtI764PtTx3L387pyVX+jydezLlkX66gpGeeDVw6iqSlxVUVVtow+zonDzZVMpdWY5R2wvcu4Ln57XcmUlhxB5SlVVQooD1VGqBR4sDnDXaHk1Qh4w27THRvpltmnlmSxa+RaHVl8BBjhUVSUUCjHWY7dG7wejtM8o7RBCCL3IPCoKiYzX/lY1rNK9Pk/Iw20v3pa9i7wqWONWvGEvt75wK56QJzvl5li2VrJkejf/95Z9j2pn9YjqBJL9Tq+PV7WzmjuW3THysg2qM9jJ1//ydbzh7AU4ALyRwhn7Y2FezrSN7b4wr793hrdPetl1tJOdRzr7fH/6jRP8zzunOe0P5/jIz6NCOBQ29LkSIydBDiHyVFdXF3fffTddXV1QPUd70FWhBSXiEfC3Zacif5tWntmmlQ9QXZgrZvr02Rhm9H4wSvuM0g4hhNCLzKOikMh47a8nL8NoGCgvw5077qQtmKX/VwGumItPHP8ErpiLtmAbd+24K2tl50rP3fzZ6oe2YBs3bbkprUBHmaOMDVdsoMRWMqI6e/c7aKsJNlyxoaDyQ4y2H2/7Me9ven+yz7KpUMb+WJiX023je+1+Htt5nN9tP8ruY510BaPEEn0DCrGESnNngB2HO/jv147y2M7jHD7dncvDT3LFXPz3L//b0OdKjJwEOYTIU8XFxXz5y1+muLgY3NVQNlFbI1hydnle5xGIjTB6HgtD52Ht55I6rfyyieCuGlm5OunTZ2OY0fvBKO0zSjuEEEIvMo+KQiLjNbVs5mUYTKq8DNuat2V9q6SgJcgL418gaAkC2sqGTHNVjKasr2Q5K5O7+WeUz2Djyo0jWtHRu9+rndUFt1XYaNvWvI3NJzf3GavZlu9jH8bGvDxUG4OROJv3neTPe0/Q0hlEVVU6uiN0dkc45Q3R0hmkuTNAS2eQU94QR05309Gtraho6Qzy5J4WNu87STASz2k7gpYgn7zhk4Y+V2LkJMghRJ4ym83U1tZiNp9NAD7xYu17SR3Y3Fqy8PaDkBjmPyaJ+Nn3x7TyeoInky4Z+cHrpF+fjVFG7wejtM8o7RBCCL3IPCoKiYzX1JbXL8/5tlWrG1azvH55v8fv33d/1utSFZUuexeqcu4O6Af2P5D1erIl2ytZesvkbv4Z5TPYdNUmVjesHlZdPf2+auoqNl21SQIcQ7h/3/0px2q25fPYh7ExLw/WxnZfmN9tP8rBVh+qqnLCE2TPMQ/vtvvpjsSIxhOoZ/eAU1GJxhO0+8M0nfKz55iHEx4tKHKw1cfvth+l3Ze7LaxURaWiusLQ50qMnEWPSj/0oQ/lvA5FUXjppZdyXo8QueL3+3n88ce55pprcLvdUDkNaubAqbegaiacfAPCXji1H6pmgcWefuGxsBbgCHu1XBxVM7VVHDVztHwcBapfn41RRu8Ho7TPKO0QQgi9yDwqComM14F9b9n32NW6KycX2wfKy9DU2cTutt1Zr88es3Nx+8Vsr9pO2KJd8Nt1aheHOg+l3C5LT7lYyXK+5w4/x5qpa1IGmc5X5ijj7uV3s2bqGh7Y/wC7Tu1Ku55l5ctYcHIBNy++GbdDPl+D6Rn7qcZqtuXr2O8xFublgdrY7gvz+K5mQtE4wUiMd9q76Q7HALCaTbjtVuwWE1azgqIoqKpKNK5SW+KgKxgjEk9wrCPAme4I06qKAHh8VzPXLKmnqjiDa1NpssfsPPPoM3z+M5837LkSI6dLkGPr1q0oipKz8lVVzWn5QowGi8XClClTsFh6fUynXQGeY9rPNXPh1AEtUHFiN5Q3aNtaKYMs0FITWg6OzsPaCg6TRSvH6gK7Wyu/gKXsszHI6P1glPYZpR1CCKEXmUdFITHCeFVVle5oN9FEFKvJSpG1KCv/7+7Jy3DTlpuyum1SqrwMLf4WAB5rfCxr9fSWUBK0O9pJKIk+jz/W+BhfmPcF6tx1Oal3OHKxkiWVB/Y/kFaQo8fy+uUsr1/Ooc5DPNb4GI80PpLydYuqF7G0ZimrGlYx0TmR7du3Z/Xz1eJvYeWmlSmf27J2S16dy3ScP/YHGqvZ9ljjY3z/4u/ntI7hMsK8PJRUbQxG4jy5p4VQNI4vFOVgq494QsViUphU4aLYYeGN4+fnvlCwmGHiOBdTzSZO+8McOxOgOxxj/wkvs2q1baSe3NPC9RdPxmnL7oqLhJJgfP14Q58rMXKKqkNqepMp97tkKYpCPJ7bPeFEbh04cIB58+Ylf9+/fz9z5xZmQuys8rfB3t9DNATRALQ3QsSvPWe2QVE12IvBVgQms7YtVaQbwj7oPptkHLQtqqpmagEOqwMWfl4LkgghhBBCCCEE2l3fmw9vZt/pfbx95u0+QYgSWwmzK2Yzv3I+qxtWj/hu7abOJm594dasrOiodlaz4YoN/bYtmv/Q/BGXPRL7btyna/09mjqbWPvU2lGr74mrnhjW+NAz0GC0IIeeYz/TcW+0vs83m/ed5GCrj2BEC1DEEyrFDgvTq4uxWUyEY3H2HPOkfO+iSWXYLVoAIxJLcKjNhy8Uw2xSmDehBKfNwqzaYlbNHz+sY5NzX/j0vJarSwjs5Zdf1qNaIQpKOBxmz549LFq0CLu913I/d7UWkHjzUe338QvB26J9xSPgbR68YLNNy7/Rk2jc7oYFnzFEgGPAPhtjjN4PRmmfUdohhBB6kXlUFJJCG6/bmrdx/777B93SyRvx8vrJ13n95Ovct+8+Flcv5ub5N2d0135vPXkZ7tpxF88dfm64h87qhtXcseyOPis4RoslYWGKbwpHio8QM8VGvf6h5Holy0CGezd/nbsurQvkhfb5yoSqqkTiCRIJMJnAZjZlZQXVaI7VTHZbaepsGnR8fnfbd1lauzQrgVUjj5se57fxvXZ/MgfHO+3dyQDHrNoSzKbMxpXNYmJWbQkHW734QtqWV/MmlHCw1cfM2mKmVmVvWylLwsL+XfupvLjSsOdKjJwuQY7LL79cj2qFKCiRSIS9e/cyd+7c/pO4uxqW3gzvvKDl6Cit14IWgTMQ7NRWdkQDoKpaIMPq0lZuOMvBVaE9BloOjmlXgM01+g3MgUH7bAwxej8YpX1GaYcQQuhF5lFRSAplvHpCHu7cceewcjXsbtvN7pd2jyjIMJK8DEtqlrB+3vphB1mywZKwMMU/heai5rwMcgx0h3SuPdL4SE63LCqUz1e62n1hmk75aO0K0eYLE4qe26XEYTVTXWynttTBzNpiKt3Da+9ojtVALECRtWjQ16QTWAXY276Xve17sxJYNdq4SeX8Nu482gnAya4Q3eEYFpPC9OrijAMcPcxn3/9Gs4fucIxWb4jxpU52Hu3MepCj6UATly6+1LDnSoycLttVCZEO2a4qTaffgePbwXM8/feUTYRJlxR0knEhhBBCCCFE9jR2NHLbi7fldLuoTB3qPJTcLuutM2/12y5rTsUc5lfOZ1XDqrTu6h7r21Xp2f43171ZULlT9dg25712PzuPdtLSGUz7PXXlTi6aMo6GysGDCHqe+22f2Ua5ozzlcyMJrPbQc/VWIWn3hfnd9qOoqsqeYx4i8QRTq4qoLnb0eV2621X11uYL8V57NzaziUWTylAUhRsumZxxEE62qyp8Y267KiHE0BKJBF6vl5KSksHz2FRO07787dB2ALwnwd+q5ezoYXWAuxZKxkP1XHBX5b4BOki7zwzO6P1glPYZpR1CCKEXmUdFIcn38drY0cj6v6zPWuLvtmAbN225iY0rN44o0DG9fHoyeKGqKoFYgEg8gs1sw2Vx5d1Fc0VVcMacBC1BVEXuJ+0tnbv5hyvfP19DCUbibG1s42CrD9DGemcggicQpTsSIxiJk1DBpIDTZqbIZqHMZaXcZaOlM0hLZwuzaotZMbM67YTPozlWbWZbysezFVh97vBz7GzdmXFgtdDHTTo6u8P4fF6Ki0vYc6yTcCxOR3eEQDSG1Wyi2GEhHOubzzgcSxBLpE5IH46lfrzYYUFRIBDVVnOMK7Kx+2gnH51bm5V2KKqCr8tHwpUw7LkSIycjQ4g85fV6ueeee/B60/yPhrsKpq6AhZ+D938LLvtHeP83z37/lvb41BWGDXDAMPrMoIzeD0Zpn1HaIYQQepF5VBSSfB6vnpCH2168LWsBjh7eiJdbX7gVT8iTlfIURaHIWkS5o5wia1HeBTgAnDEnq1tW44w59T6UvBOJR3JWdrY/X02dTWzcv3HA57+77bvcs/seDnUeGnFdPXfX9+RJOOEJsueYh6ZTftp8YbrDWoADIKFCdzhOmy9M0yk/e455OOEJoqoqB1t9/G77Udp94bTqHc2x6rL03x67J7CajZVjcC6w2tTZlPZ78nlezpYH/nqAjb/6/3jgrwd4fFcze4552HvMQ2tXiM7uKG8c72LPMU+frzePa8+n+nrzuKff6/cc8/DG8S46u6O0doXYe/axx3cNkS82A86Yk0fve9TQ50qMnGxXJfLWWN+uaizcVZBt0mcao/eDUdpnlHYIIYReZB4VhSSfx+vt224f0VYxQ1ndsJq7l9+ds/Iz0ZN4+7vbvsve9r1ZL3+gu+MXVS/irsvu0n2rFT23LNp+3fa8X8mRbl6I3kaSF6LdF+bxXc2EonGCES1xc3dYy49hNZuodNsodlhx2cyYFIWEqhKIxPGFopz2R4jGtbvqi+wWplUV4bRZcFjNXLOknqrivtsEnT/2R2slx6LqRfx21W/7POYJeVj71NqsBTh6q3ZWs+mqTWltXZXP83K2/PT5g6jhANic7D7WRSyhcsobIhpPUFFkT7nyJxZP0OoNpSgNakscWMyp+yoYiXOmO4zVbKKmxIHFpPC7L74vo4D0QNtVKarCY1c8xozxMwx7roxCtqsaRFdXF6+++ip79+7l9OnT+Hw+EgMsm+pNURTuv//+UThCIXLDZDJRVlam92EUFOkzjdH7wSjtM0o7hBBCLzKPikKSr+N1W/O2nAY4QNtKZs3UNbomBO/RE2RYWrs0J0EOVVEJWAP9Hl9as1T3AIfeUt3Nny0j/XyNJC/E7rbd7H5pd8Z5IYKROE/uaSEU1YIWB1t9xBMqFpPCpAoXlW47phQXhx1WM+OKbEwc5+K0P8yxMwG6wzH2n/Ayq7YYgCf3tHD9xZP7XMA+f+wPNFazbWnN0n6P3bnjzpwEOEBb0XHXjrvSCqzm67ycTYpiQnG4iSUSxM4uCYrFte9Wc3ZXw/WU11N+LKESiSdS5vDIlKqoFJcWS4BDDCpvR0dnZydf+tKXmDBhAldddRU/+MEP+MUvfsHGjRt56KGHhvx68MEH9W6CECPi8/m499578fl8eh9KwZA+0xi9H4zSPqO0Qwgh9CLzqCgk+Tpe7983OjcGPrD/gVGpJ12rGlblpFxHzMFHWj6CI9Y3kW+u6svUlrVb2LJ2CwurFo5qvYuqF+V0e7GRfL4aOxpZ+9TaEQf7njv8HGufWpv2dklbG9vwh2MEI7FkgKPYYWFBfRnVxY6UAY7eTIpCdbGDBfVlFDssxBPallXBSAx/OMbWxtRBhJ6xONBYzbbzx/5oBVa3NW8b8nX5Oi9nUyISwL93M4nwuWT2KloQItufyZ7yesoHSOMe9bQ4Yg6e+O0Thj5XYuTyMshx5MgRFi5cyP33308wqO0vONgXkPIxIQqZzWZj4cKF2Gypk3SJ/qTPNEbvB6O0zyjtEEIIvcg8KgpJPo7Xps6mjLblGYldp3ZlJX9Btswon8Hi6sVZLzdminHEfYSYKZZ8bEnNkmTydL3Vueuoc9extLb/3fW5lOpu/mwa7udLr7wQ77X7kzk43mnvTgY4ZtWWYLNol+nCsTjb3zuT8qt3omibxcSs2pJkoOOd9u5kjo732v396u4Z+6nGaralGvv5FFjNx3k52xSTFWt1A4r53EY+CmeDEVm+dtpTXk/5ANlaeBEzxZgxd4ahz5UYubwLcqiqyic/+UmOHz+OqqosWLCAu+++mw9/+MOAFhncuHEjv/jFL/j2t7/NRRddlPwgud1u/vM//5ONGzfywAP5daeIEJmy2+1cfPHF2O32oV8sAOmzHkbvB6O0zyjtEEIIvcg8KgpJPo3XFn8LLf4WHmt8bFTrfazxsWRegHxw8/ybs15mzBTjndJ3+lw4Xj9vfdbrGanRXlmS6/qG8/nyhDzc9uJteCPZTWTsjXi59YVb8YQ8A75m59FOAE52hegOx7CYFKZXF2M2De/OenOv93eHY8l8Cj31nO/m+TenHKvZdv7Yz7fAaj7Ny7miWKzYJ8zCYrVhOTu+LGe3lYrGsxvk6Cmvp3yLScE2QP6OTMVMMeYtmWfocyVGLu9ycjz++OO88cYbKIrCxz72MZ566iksFgvHjh3jpZdeAuDGG2/s855du3bxpS99iT179nDPPffw/PPPM2vWLD0OX4isCYVCbN++nYsvvhiHI7dLSI1C+kxj9H4wSvuM0g4hhNCLzKOikOTTeE2V1HU0PNL4CI80PsK+G/fpUv/5ltcvZ1XDqqxunWONW5nunc6hkkNEzVFWN6zOi1wk5+u5m380LjiPxkqW4Xy+9MoL0e4L09Kp7VjS2qUFIyZVuJIrOIbLZjExucLFe+3dnPSEqC1x0NIZ5LQ/TKW774Xh5fXLWVW/iqP7jibHarb1Hvs9wU09AqtfmPeFAfPh5NO8nCvXLR3Pnp07WHTRMqpLHDR3Bjhyupt2f5jaEgcTx/XPlROOJaDZk7K8BfVl2AcYq8c7AlgtClVuO1Mqi6gvd2W8JVaduy7lvxE956ri4grDnisxcnm3kuNPf/oToK3Y2LBhAxbL0HGYJUuW8Oqrr3LppZfS3NzMpz/9aUKhUK4PVYicisViHDlyhFgsd3dWGI30mcbo/WCU9hmlHUIIoReZR0UhkfGan7637HtUO6uzVp5JNVEVqsKkmqh2VnPHsjuyVna25WIlSyqjsZIl08+XHnkhuoJRuoJR9hzrJByL0+oNEYjGUBQodlgIx+LnfSXOJovu/xWOJVK8Pk6xw4KiQCCqreYIx+LsPtpJV7B/EOObF36TCdEJmNTsXxY8f+yv3LSSlZtW8mjjo1mvazCPND4yaFB3LMzLRVaF1pbjFFkVGiqLsFvMVBXbsZhMdAVjWM0m7BbzeV8mLKbUX3ZLqtebsZq18iwmE1XFduwWMw2VRVlrx1g4V2LkFDXPElhMmzaNw4cPs2TJEnbs2JF8/Otf/zq//OUvURSFeDye8r3vvPMOs2fPJpFI8Jvf/Ib16/NvWahI34EDB5g3b17y9/379zN37lwdj0gIIYQQQgghCtv8h+brWn++rOTo0dTZxE1bbsrqtkUlthI2rtzIjPIZWSszF27fdntOL/avblidcjVDplRVJRJPkEhoe/zbzKYRJU2+cfONo7aK5cGVDwLwsxe0PB1vn/TSFYzS2R2hOxLDbbdS5rL2e28snkhuO3W+2hIHlgG2AfIEovjDUYpsFsqLbJQ6rcweX8I/XNF/LI7W2Jc5Jz+0+8L8bvtRVFVlzzEPkXiCqVVFVBf3XRkRjsXZc8yTsoxFk8qwW8z9Hm/zhXivvRub2cSiSWUoisINl0zut4pIGJ+e13LzbiVHe3s7ALNnz+7zuKlXtpqBVmlMmzaNSy+9FFVVeeSRR3J3kEKMgng8Tmtr64BBPdGf9JnG6P1glPYZpR1CCKEXmUdFIZHxmr9mlM9g48qNWVnRoagKDUoD911xX94HOCD7K1l6G+lKlnZfmP955zSbdjVz7yvv8f+9/C73vvLu2e/vsWlXM//zzmlO+8MZfb70zAuhqirdYe1O9Eg8ATDg1j/D1VNeT/nd4VjKBNPxeJyScAn3XXFf1sZAtbO6IIJ7PcbCvNy7jVXFdurKnSiKQm2pFtg4diZAJJYYUR2RWIKjZwIAjC9zoCgKdeXOrAY4xsK5EiOXd0GOngCG2+3u83jv3zs6OgZ8//Tp2l6PjY2NOTg6IUaPz+fjV7/6FT6fT+9DKRjSZxqj94NR2meUdgghhF5kHhWFRMZrfptRPoNNV21idcPqEZWzevxqlhxewnjL+CwdWW6VOcrYcMUGSmwlWS23xFbChis2UOYoy/i977X7eWzncX63/Sg7DndwrCNAKNr3wmYoGudYR4Adhzv479eO8of/aRzy89Xib6HF36JLXoienBRxVSWW0AIOsbNJmq3m4a9ISaWnvJ7yYwmVeIogR8+cNN4yPjtjv2E1m67aVDABDhgb8/L5bVw6uRyA8aUOiuwWYgmVQ20+4onhbfIT7/X+IruF2hIteHLRlHHZacBZY+FciZHLu+2qqqqq6OjoYN26dWzcuDH5+E9/+lO+853voCgKL7/8MsuXp07ede2117Jp0ybsdjvBYHC0DlvkwFjfrkpVVcLhMHa7fURLcccS6TON0fvBKO0zSjuEEEIvMo+KQpJP41W2jhnctuZtPLD/AXad2pX2e5bULGH9vPVcVndZ3pznTDR1NvGVF75Ce7B9xGVVOau494p7M77YHYzE2drYxsFW7SKmqqp0BiJ4AlG6IzGCkTgJFUwKOG1mimwWylxWyl02rYB4lFl14/jgrBqctv7b6eg97tdP2EQ0nmDX0U4AmjvP3vle6sRs6j9WhrtdVTyhcrJLuxZWX64llV4yuZzbV87q87pUc9JIxn5PkvFU9O77geacfJqXcyVVGzfvO8nBVh/BSIz9J7zEEyrFDgvTq4uxWUxpb1cViSU41ObDF4phNinMm1CC02ZhVm0xq+ZnN9A7Fs6VUeh5LXforN6j7IILLqCjo4PW1tY+j/fukL/+9a8pgxyJRILdu7Vlhy6XK7cHKkSOKYqCw+EY+oUiSfpMY/R+MEr7jNIOIYTQi8yjopDk03jdsnYLAN/d9l32tu8dtXoXVS/irsvuGrX6hmt5/XKW1y/nUOchNh/ezL7T+3jrzFt98haU2EqYUzGH+ZXzWdWwiunl05PP5ct5zkS5ZTJXV/2Ul9p/zXvBvw27nKnOy/hw1Zcot0zO6H3tvjBP7mnBf3ZrpZNdIVq7Qsktl3pLqNAdjtMdjtPmC2Mzm6gtdTC+1EHjKT8tnhBXL6qjqjj/cgH0vjaroKCint1KKnsXbXvuY1Z6lZnqmnCqOanevpjVlQ1MSjTytv8l3ur6XxSLF8V0LtmzmrBQY59BrX0WFzgvY17lTCY6snvX/mjJp3k5V1K1ccXMapo7tUDYrNpiDrZqgYo3mj1MrnBR7Bj8UnFCVTntD3P0TIB4QsVsUphVW4zTZsFtt7BiZva3wBsL50qMXN5tV7Vw4UJUVeWtt97q8/jFF1+M3a79I3XvvffS1tbW770///nPOXz4MIqi9IkaCVGIvF4vP//5z/F6s5cEzOikzzRG7wejtM8o7RBCCL3IPCoKSTbGq6qq+CN+OkOd+CP+lPvsp6POXUedu46ltUuHfSzDsbRmKXXuulGtcySml0/nG4u/wW8++hte/eyrbL9uO9s+s43t123n1c++ym8++hu+sfgbfQIchTgvtfvCPL6rmXjMxfuKvsZ09Zu4EtOHfmMvrsR0pqvf4n1FXyMec/H4rmbafeGM6veHY8k7y491BIjEE1jNJsaXOphRU8zCiWUsnlTOwollzKgpZnypA6vZRCSe4ER7B507/kzA78UfjmVU/2gyKwqWs6s2LGe3lYrGs7u5Sk95PeVbTArmFFGO3mM1GImzed9J/rz3BC2dQcosE6lXPkG47aMEm6+j+9g6uo/dQPexdQSbr2NK7BtMNV9DmWUiLZ1BntzTwuZ9JwlGUudL2LJ2C1vWbmFh1cKstnUoi6oXJYO6qRTi5zVTqdrotJm5elEdDquZYoeVeRNKKLJbiCdU3mvv5s3mLjyBKMFInFg8QTyhEosnCEbiHO8IsOeYh/fau5NbVM2bUEKxw4rDqpWbaiVVLtohxPnybiXHihUr+PWvf01zczPvvfceU6dOBaC0tJS1a9fy8MMP097eztKlS/nWt77F/PnzCQQCPPXUUzz00EPJcj772c/q1QQhssLhcLBixQqJVmdA+kxj9H4wSvuM0g4hhNCLzKOikAx3vDZ1NiVXE7x95u1+qwlmV8xmfuV8Vjes7nOxPR2rGlZx3777MnrPSKxqWDWi96uqSiSeIJEAkwlsZtOobVuiKApF1iKKrEWDvi5X85KqqnRHu4kmolhNVoqsRVlpezAS58k9LYSicXyhKAdbfVgTc5lmmkdZ2Rk8yg5OR9/hdPQ9Iqo/+T6b4qbSOpVK6zTK1GV4PBXEEir7T3iZVVsMwJN7Wrj+4smDXvBMVX88oWIxKUyqcFHptmNK0U6H1cy4IhsTx7k47Q9zvD3OqaKpdLeFmGlxpl3/aFr/gQYAqktO0NwZ4Mjpbtr9YWpLHEwc138nknAsAc2elGUtqC8bMGH58Y4AVotCldvOlMoi6stdXHnhhH6v6xmr/qjCs3uP9ltF44uESMT652pRgTP+KP6gv88qmoOtPpo7gylX0fQEN5fWLh3V1WNDBVbz/e+IbMx5A7WxqtjONUvqeXKPli9m3oQSWr0hTnpCBKIx/OEo/hRxQqtFwWIyYTObGF/moLZESzTutltyuoIq38+VyA95l5PD6/VSXV1NNBrlrrvu4vbbb08+19LSwoIFC/B4PAO+X1VVlixZwv/+7/9itVpH4YhFroz1nBxCCCGEEEKIsWlb8zbu33c/u9t2p/2exdWLuXn+zYPujX++GzffmFEdw7WkZgkPrnww4/e1+8I0nfLR2hWizRfuk4DaYTVTXWynttTBzNpiKt35tz3RSOQywNVjqL35e6iqSkwNEVejmBUrFsXR52LrcPfmT7f+oaRTf77khfifd06z43AHHd1hmk75sZpNLJpU1i+Yk25ehN4SqsqeYx6i8QQzatyMK7KzrGEc759WmbKcnlU0oWicYCTGO+3ddIe1rakSRNhzZhuKKQSmCCgqqAokbHyofjXdIQvRs9uJFdktTKsqwmmz4LCauWZJfcqL3U2dTax9am3afTZST1z1xLA/G6BPYHW057xUuXBavSH2HvMQiSeIxVVUVBQULGZtW6qqYjvlLluyL2bVFrNiZnXeBBSFviQnRy8lJSX84Q9/oK2tjbq6vhHXuro6XnzxRdauXcuRI0dSvn/58uU89thjEuAQBS8YDPLKK69w+eWX43Q69T6cgiB9pjF6PxilfUZphxBC6EXmUVFI0h2vnpCHO3fcyebDmzOuY3fbbna/tJvVDau5Y9kdlDnKhnzPzfNvZvdLuQ9yrJ+3PqPXv9fuZ+fRTlrO7hufSiga51hHgGMdAXYc7qCu3MlFU8bRUDn4aotcysa8lE6Ayxvx8vrJ13n95Ovct+++YQW43mv3c7DVh6qqvHN265lih4VZtSX9EmErioJVcWIldZtsFhOzaks42OrFF9Iuls+bUMLBVh8za4uZWuUeUf1DsapRGkLvcNQ6ia6oadD6VdWEovTP9ZEr59c3o6aYHYc7KHfZsJ3dbuu0P0x18cjvUD/tDxONJ7CZTcmE7DPPrqw5X0eXn4cefxbT+Dn446Z+q2jsNgtv+Dr6vkkBTDHqyu0UWYs57Q9z7EyA7nAsrVU8M8pnsLh68agFVocKcKT6vOoVWO095w0V4MpkzhtqTnLazKyaP56ZtcXJ+scV2SgvsqUsb0plUTLANppzrvzNJ9KRd0EOgE9+8pMDPrdo0SIOHjzIpk2beOmllzhx4gQmk4mpU6dy5ZVXcsUVV4zikQqRO4lEAo/HQyIxen+AFTrpM43R+8Eo7TNKO4QQQi8yj4pCks54bexo5LYXb6Mt2D//ZCaeO/wcO1t3suGKDcwonzHoa5fXL2dVw6phBVXStbphddoX31PdVdwZiOAJROmOxAhG4iRUMCnaxbkim4Uyl5Vyl42WziAtnS05uas43Tu6RzIvjXaAa+fRTgBOdoXoDsewmBSmVxf3CTBksprAfPb9bzR76A7HaPWGGF/qZOfRzpRBjmzWr6oqRLqZOr6IN0+FUtZ/bfUGADaf+hl+mobsn2wpZhqrqv8h+XtVsZ26cictnUFqSx1aoO5MgDKnLaPVK+eLxBIcPRMAYHyZttKmrtw54IX4V5vaCAd8EIlysD3SbxXN6UBowLrCsQTFNoXqYgdlTltyFc3BVh/zJmhbXG1tbEu5iiefAqu9P696BVZTzXkd3RE6uyMpV1IcOd2dXEmRzpyX7pw0tcrN1Co3p/1hGlt9TK8uzqvVc6P1N19XMMoDrx5O+dz6DzRQ6pQb6vNZ3m1XJUQP2a5KCCGEEEIIMRY0djSy/i/r+2xJNFIlthI2rtw4ZKDDE/Kw9qm1Iw6upFLtrGbTVZvSuuje7gvz5J6WfrkBIvGhL2r1zg2Qrf3hR/OO7mwFuEDr86ECXO2+ML/bfhT17PZGkXiCqVVF/VYTDGfLpDZfiPfau7Gd3YZJURRuuGRynz7So/7/fk2r75nm+2k35y6od77q+GrW1K/nHz86M/nYe+1+/rz3BKqq5THpDsf6rWLJpO3xhJpcRdOTCFpRFK5eVJfyAnw69Z8OePjjoT+krP/a6Z+j0lU2ZP2fWDghZYDr9m235zywevfyu9N67UgCqyPdrmmgOS8QjdHalTrIVFvqSObEyPacdz498yDpRYIcIyfbVQkh+onFYjQ3N1NfX4/FIh/VdEifaYzeD0Zpn1HaIYQQepF5VBSSwcarJ+Ththdvy2qAA7QtjW594dYhgwxljjI2XLGBm7bclPUgy4YrNqQd4BgoN4DVbKLSbaPYYcVlM2NSFBKqSiCiJas+7dfueD7WEeBMd4RpVdpF3cd3NQ+YG2AwI7mje2KZPeN5KdsBrrZgGzdtuSllgKsrGAVgz7FOwrE4Hd0RAtEYVrOJYoeFcCze5/XhWILYAHdOh2OpHy92WFAUtAu13hDjimzsPtrJ+6ZWJF+T7frVRBzVfwbFXTFg/QBxVaU4dtGoBjncsYuIn3dv8dQqN7NqiznY6mNaVRH7T3jProTwJldS2C1mLu7VZwM5Px/JtCotKf2s2uIBVxjsPNqJmojTdrKFQMiBxWzpt4omE5mu4vnesu+xq3VXzgKrdyy7I63XnuzsZtO2N4g4ykExpR1kaPOF0066PpCh5jy33YrdYsJqVlAUBVVVicZVakscdAVjac95I/lbSVGUlIFEPcjffCIdMjKEyFN+v5+HHnqIb37zm5SVlel9OAVB+kxj9H4wSvuM0g4hhNCLzKOikAw2Xu/ccWdOLvaBdsH7rh13DXlX84zyGWxcuZFbX7h11FYT9AhG4jy5p4VQVAtanJ8boNJt75eUGbTVFOOKbEwc58o4N8BAxzHSrbIaiuGNv/wh7XlptANcPXcov33SS1cwSmd3hO5IDLfdyhvHu/qVE4snaPUOsG2R6sFiTr29kicQxR+O4gvGKC+y8V57NwdOnGtjtuu3xoJMP/03DlVeRtTiTFn/7PElqCo41HpciekETIdSl5tFrsR0HGodqfZPWTGzmuazgbSegIcvFOONZg+TBxn3PRKqyml/mKNnAsQTKmaTFthw2iy47RZWzKxO+b52X5iWziCJcADn0f/BUnkZE6tLRrRVFmh5WSZXuHivvZuTnhC1JQ5aOoOc9of7rXTKl8Dqptff4czeF7DMX827XnISZEhlqDmv2GFJ8XlQsJhh4jgXU82mtOe8QvtbaaCVFImQH//upwumHUIfsl2VyFuyXZUQQgghhBDCyLY1b+OrL3015/X88sO/TCsvhifk4a4dd/Hc4eeGXVcmeSEANu87ycFWH8GIdrHu/NwA6Tr/jvZ5E0pw2izMqi1OmRugN722yhrtbXt+9kITqqqy62gnsYTKKW+IaDxBRZE9ZSBosCBDbYljwCBHMBLnTHcYq9lETYkDi0lhyeTy5MViveqPqyo7j3TiM73Jcdv/TfnebJoY+TrFifksnVLOP31sVr/nR7qCKXp2fBbZLUyrKsJps+CwmlNeaO9ZxfP6e2fYfayTju4I77b7sZpNLKgv7RdQORPs4s/vPZqyXZ+Y+hkqnKX9Hk+oKm82dxGNJ7igys24IhuLJ5Xz0bm1Kctp6mzSLbD6u+1H8YdjGQQZNIsmlWHtFWSI9QowFTusuO2WIQOrQ8156W5VNpI5L1/pvV2U3vUbgWxXNYhEIsHbb7/NkSNH8Hq9RKPRtN+7bt26HB6ZEEIIIYQQQggxfPfvu39U6nlg/wNpBTnKHGXcvfxu1kxdwwP7H2DXqV1p17GkZgnr561PO8k4aFtDHWz1oaoq77R3Jy/29c4NkC6bxcSs2pJkboB32ruZN6GEg60+ZtYWp9w2B/TbKmtb87acBjhAS0K/ZuqaPuckrqrEEtq9rrG49t1qzu4++z3l9ZQfS6jEVRWLouhav1lRsJgUihMLsIWWEHGkP74zZQstoZj5WEwK5gFWZFQV27lmST1P7mkBYN6EElq9IU56tADbya4QJwfYNgm0ANv4Mge1JUMH2DJdxROI+Qas9+BJLy5L6vulU62iGSjIMaN8Br9b9Ri3v/xD9na+PGB9Q1lY/kH+3w/+P4wvHnp7L9CSovvDMYKRWDLAcX6QYTAmZXhJ1yE/5rxCoKraZ1ZVQVEY8DMkRG95G+Q4evQo//7v/84f//hH/H5/xu9XFEWCHKKgdXV1sWHDBm699VZKS/vfJSH6kz7TGL0fjNI+o7RDCCH0IvOoKCSpxmtTZxO723aPSv27Tu3iUOchppdPT+v19fbFrK5sYFKikXeDf+N05B1OR98jop77v7lNcVNpnUqlbRoXOC9jXuVMJjrGZXRcO8/mSjjZFaI7HMNydm//0coNkO2tsg4eO8UFZ14jsXDVkFtl6RXg6r2Xh4r2S7aTCfeU11N+73pzUb8lHuSC06/xbuUlxMzOlPXfcMkUnFYz1SUnaO4M4G7/Arvi7xA3pb5jfyTMiVIWOr/A9Koy6stdXHnhhAFfW1Vs5/qLJye3Shtf6qS2xJGT5NeqqiYDeEo0wAfDu3jbcTGQvbvT7RYT/jDJVVDdZ1dHpTrH7b4wz+zpYrHza1RyMbu6/kRn4mDadZWbZrGk9FNMci7hmT1dXL3IPeQKqt5BhsMnTzPt5N84VXcZ02vHjUqQYbTnvEL6W6ndF2bPsU7ePumlOxxLBkMBHIkQv/j7Ji79+Oe48IIJ/bZAEwLyNMjx3HPP8ZnPfIZAIIDspiXGKpfLxdVXX43L5dL7UAqG9JnG6P1glPYZpR1CCKEXmUdFIek9Xlv82l3bjzU+NqrH8FjjY3xh3heoc9cN+Jrz81KUWSYy1XwN49QoExJRuiMB4moUs2KlyObCrVopM1sps5zLS5HOxVY4lxtAVdVkkt9JFa5+W1Slu3VLj0xyAwx1R/dQzr+j2x+00lIyl8kJM6ZwbMA7uvUMcPW+1qygoKKeve6SvUBHz3UcpVeZPfXmov64ycaJ0nnETbYB6y93WbFbzDRUFtHuCzOhpILTbd/kqO0nxJXAsOs+n1l1MTn6TSaUVyTrG2qLG6fNzKr545lZW5xMej+uyM64oqEv5PYkvR8oyXhvvVfRBBMW9ltmYLHa0mtYmlKtoonEE/0+p+evoOrqmM748D9SrrTQZX6NttgbmGwdKKZzu7moCStlpguwx6fijl2EQ62jK24hWKUFbtJZQdU7yOCLmVDK5jG1JvMAR49MAqvpznmZGmzOKy2Av5Xea/cnx304Fk9urdZbWLFialjGGyeDvNl2NKNxPxyykqQw5V2Q49ixY1x77bUEg8HkY7W1tVx44YVUVFRgtcr+Z2JssFqtzJrVf99OMTDpM43R+8Eo7TNKO4QQQi8yj4pC0nu8rnx4pS7H8EjjIzzS+Aj7btyX8vl08lIoOLDgABUC4QSBcJg2X7hPXoqDrT6aO4MDbpvTcwFrz7FOwrE4Hd0RAtEYVrOJYoel31Yx4ViCWCJ1boxwLPXjxQ4LigKBqHbRcVyRjd1HO/tsm5OrbWO6lGre7Qgzb4K93x3dege4gOSWTbGEisWsEI1rCZUtQ+dmT1v07AVuy9kL3r23bMpF/apixuc4l2g7Vf22s/k7ZtQUs+NwB+UuGyWmSUyOfIcWx38RVjuHfwBn2ZVy6sJfp8Q0iXKXFjyYeTYhdDqmVrmZWuXmtD9MY6uP1q4Qbb4woei5z4TDaqa62E5tqYOZtcUZ3dHe+x7iuGKi3VzBeFPqy4I2pYiq2McHeM4xYB2pVtGc//EdbAXVnIoZYJrIpncSgApKHEgAJlDNXD79OsY5S9NOvN3b+UEGVTFTUd+A3T6yQM9QgVW957x8/Vvp/KC6qqp0dEfo7Na2AYzFVVRUFBQsZoWyojKqQnHKXeaMg+rpGGwlicWkUF1ygobKoow/d2L05F2Q4yc/+QnBYBBFUZgwYQK/+tWvWL16td6HJcSoCwQCPP/883z0ox/N66h7PpE+0xi9H4zSPqO0Qwgh9CLzqNCDqqp0R7uJJqJYTVaKrEVpbbXTe7zmo9HMS5FpboDBkk+jegZMPj1UboBcbBszrdxG28G9tBbPoNVr63dH98pN+ga4Xv20tnqkZ8umI6e7afeHqS1xMHFc/3k0HEtAsydlmQvqy7APcAf68Y4AVotCldvOlMqifls2Zbt+NRomdvwNLBMvRLHaU9bf8zmtKrZTV+6kpTNIbamDSEc9F4R/QKB4E0fCrw7Yh0OZYv8ATt9aFLWI8WVajoy6cuewLoZWuu1UTtPep6raSohEAkwmLQ/HcLf36v02mxpjeuw9PPFZYBo4aJGpVKtoTOcNk6FWUJ0O9HzeFVD7X7bMNCfGQEEGhxLDeaKR0KSFKNZz5ymbQYb3Ta3Qdc77QENJXv6tNFBQPRCN0R2J9XmtigqxCPYTh3i3ZCZmqyPtoHo60llJEkuoNHcGaPeF2XG4I+crScTw5F2Q44UXXgDAYrHw/PPPM3v2bJ2PSAghhBBCCCHEWNXU2cTmw5vZd3ofb595G2/Em3yuxFbC7IrZzK+cz+qG1WnnvMgn2c5Lkc5d1b1zA/SsFBnogvlwDZYbIFdbZVktJtx27TLLUFtl6aFn26SeLZuqiu10BqJ0BWNMNZtSnmfL+Veoz7JbTP3aD5BQVbqCMSwmE1XF9pRbNmW7/oRqRlUUbBYzmE0p6+9t6eRyWjqDjC91cKY7Qne4iJrwei4ou4wDgT/TGnlrgB7sr9Y2h7lFV+PvnIYvEaPIbqG2RAsaXDQlsxw1qSiKkrKfh+P8VTTEtFUvtixumDLYKhrQJ/H2QEGGMqtKZyzKqZau5FZnkN0gw4ET2r8Xes55+WaooLrbbsVuMWE1KyiKgqqqJKIKzrgZi8lEOIOg+mAyXUly5HQ3VcV2yl2Zb88oRkfeBTmOHz+OoiisWLFCAhxiTOvZt1ekT/pMY/R+MEr7jNIOIYTQi8yjIte2NW/j/n33D5o7wRvx8vrJ13n95Ovct+8+Flcv5ub5N/dJ9Az5PV6znZdiqLuqoW9ugJ69+3v28s+WVLkBTvsj2Cym3G0bo1hwTH8fieYuwinu6M4XvbdssplNROIJTvvDVBf3vaPfbjFzcYbHfdofJhpPYDObBtyyKd3602Wy2nFOvxiANl9oyPqnVrmZVVvMwVYf06qK2H9Cu0iOZzofqf4h3Wozb/tf4q2u/0WxeFFM5+4sVxMWauwzqLXP4gLnZRQp9clxbzYpTKvSVnfNqi3Oq7u813+gAei9isZKu7+ICaOwiqf3ypPRTrzdI1WQwWxzcMI9b1j1pjJYYFWvOc9id+TVvz1DBdWLHZYUq1sUMDspm3QpVWbTsLYqO1+mK0micZV2f5jOQDSj7RnF6Mq7IIfVaiUYDNLQ0KD3oQihq2g0yrvvvssFF1wguWjSJH2mMXo/GKV9RmmHEELoRebRsWm420VlwhPycOeOO9l8eHPG793dtpvdL+1mdcNq7lh2B2WOMqDveM0netxVDX1zA/Ts3Z/t85gqN8DG/zmM1WzK2bYxihrHHT5DV7wEbySR8o7ufHD+lk3HOgIcOxOgzGkbURLkSCzB0TNaEu/BtmxKt/50gyxqPEbM00rCXZ1W/QArZlbT3Knlgu0JePhCMd5o9jC5opq5rk/xxrEQKfNCzL6eImsxp/1h3jjjIZ5QMZu0wIbTZsFtt7BiZnW/OvXUbxVPkZlYx2m83VVYq9w5XcXTQ4/E2z3nPlWQwWZKUBw6g99egaqM/E78VEGGuKpiURTd5rxwOMrhdw7lzd9KQwXVzw8091DUOPHOFmzjJmQcVD/fcFaSROMqtSUOuoKxjLZnFKMru2ujsmDy5MkAeL358weAEHoIBAI8+eSTBAIBvQ+lYEifaYzeD0Zpn1HaIYQQepF5dOxo6mzint338MXnv8gHHvkAl/zhEpY/upxL/nAJH3jkA3zx+S9yz+57ONR5aMR1NXY0svaptcMKcPT23OHnWPvUWpo6m4D8Ha+5uqvabFKSd1X3rqdH72t7PXv3Z3tblVS5ARQlt9vGmBMRJnTtx2WK9yk/H7eNWTq5HIDxpQ6K7BZiCZVDbdpFx+GI93p/Ols2ZbN+NRYm+M52Dp/qSLt+p83M1YvqcFjNFDuszJtQQpHdQjyhakGplgCJyDjUWBFq3IGacGrfY0W0dIbZc8zDe2cDg0V2C/MmlFDssOKwauXm6/Y1M2q0u95LrSoTuvaTiIU47Q9npeyBVvF0BaN0BaPJFVStXu2OeUUhuYKq91fP5yaVSDzR7/XhWLxfToxwLM7uo53J/AqpggxWNcqErv2YE5GstD9VkKGnXr3mvFAof/7tGSyoPlSgy5yIEHtvB2pMG6s9QfVih/aZfae9G1VVOdjq4712/4DlnL+SZP8Jb/LfvqlVRSyoL6XMZcVpM2MxmzCbFCxmE06bmYnjXCyaVMbUqiIsZ/+N01aBRQlFtXKDkdRBGjE68m4lx5VXXsmbb77Ja6+9pvehCKGr0tJSvvvd7+p9GAVF+kxj9H4wSvuM0g4hhNCLzKPGl83totLR2NHI+r+s75NzYyTagm3ctOUmNq7cyIzyGcnxumXtFgC+u+277G3fm5W60rGoehF3XXZX8nc976o+PzdANK7dKZul1ANA6twA5hxvGxMzO2ms+RDEExAK9bujG85e9FQtfbZAyjU1YQGlb30Dbdl0sNWb9lZlPSKxRMZbNmWz/pjZyfGJV2S8ZVRVsZ1rltTz5J4WAOZNKKHVG+KkJ4QvopKIlqV83ylvFLvZhM1sYnyZg9oSbdWI227J+21rzq2igeDsjxMbhVU8P3tBC/amu4IqEPMNWM/Bk15cltTBgcFyYpwfZFBRiZgc2uc1SwYKrIJ+c17VuPK8+VtpJEH1mNmJfcknMfXqsHS3KuttuCtJegxne0YxevIuyPGVr3yF//qv/+LYsWP84Q9/4HOf+5zehySEEEIIIYQQYpTkYruodOq87cXbshbg6OGNeLn1hVvZdNWm5LHUuesAWFq7dFSDHEtrllLnrkve2ZxJXoo3M9yb//y7qnvnpeifG6Cbdn+Y2lHIDdDuC6P2WikwmtvGqCpcW72BeEJl86mfEWTkK4/S5VKnsqr6W/0eH3zLpoGTzvdIqCqn/WGOngkMa8smvesH7aL/9RdPTiYgHl/qpLbEwfEulf2dXtSEHVW1gqqAoqIoUSrcViaUuCl32ZLnupASEPdPvB7jUJuvzzZ1meRjSWcVj56JtxVF0TWwmumcdybYxb7AMynruLT2M1Q4S1M+N1Q+FD3pGVTvodf2jGL05F2Qo66ujgcffJBrr72WL3/5y1RWVnLFFVfofVhCjDqPx8M999zDN7/5TcrKyvQ+nIIgfaYxej8YpX1GaYcQQuhF5lF95DonRmNHI7e9eBttwbYRlfPc4efY2bqTDVdsYEb5jCFff+eOO0dc50Dagm38+JUf49zu7DNeVzWs4r599+WkzlRWNawC4IFXDwPp31WdaV6KHgPdVf0PV2jnI5kboNhOZyBKVzDGVLMpp7kB2n3hlHd0a3dgj3wcW2NBpp/+G2+Pe//Z0vve0V1sriYaT+BSp41qkKNIvYAic1W/x3u2bHp8VzOgrWTo2Z/+vfZujncEqXTbKHZYcdnMmBSFhKoSiGhbvZz2R4ievaBcZLcwraoIp82S9pZN2arfGgsy8/TfsMxfjWsYW0Y5bWZWzR/PzNpidh7tpKUzSLnLgsl+OuXrJ1fYKbZpF1Dryp1cNGVcXiUZH8rUKjcNxfDGXx7hgvmrOXBGyfkqHr0Sb8dVlS9dNhXoH2SY4ExQefR5bBeuQbGfO9ZsBlavvHBC/3woQ8x5tgHm1J7nMpnz9P5baThB9Vii/3Zl1niQ8I7nUc87VzB4UL2n70G/pPdi9ORdkOPYsWMsXryYe++9l6997WusWrWKj3/841x77bXMnz+f0tLStP+InjRpUo6PVojccbvd3HjjjbjdMjmmS/pMY/R+MEr7jNIOIYTQi8yjo6eps4nNhzez7/Q+3j7zdp/VDiW2EmZXzGZ+5XxWN6xmevn0YdeT6+2iBrKteduIc3AMZfOJzfzb6n/rM15nlM9gcfXiQbfjypYlNUv6nBs976ruMaOmmB2HOyh32bCZTUTiCU77w1QXO84rJ/07ynsMlBtgx+GOnN7RHTPbOFK+lKBqBWL97ugGLdhRGr+IM5bcjrneSuLLGOgyymBbNkXiCU52hTjZNUCQC0a8ZVNW6i8vw1n9QSxF7hFtGTW1ys3UKjen/WEaW33Mrf02bb4woei5C7EOq5nqYju1pQ5m1hanTGpeCD68YDLNp64g4nAzy5rI+SoavRJvq2qKpOtngwyeqEL9nA9idRahmPpOANkKrPa+yJ7unDccA815bodZ17+VshVUN6kqttLFRFpDqEq03/NDBdXzYSWJyL28C3JMmTKlz0SnqipPP/00Tz/9dEblKIpCLDZ6e1wKkW0Wi4UpU6bofRgFRfpMY/R+MEr7jNIOIYTQi8yjuTeaOTFGc7uo892/7/6s1plKwpTgT2f+xCcsn+jz+M3zb2b3S7kPcqyft77P73reVd3jXG6AILWlDo6NQm6A0dkqq4LjHQEs1lC/O7ofePUwZkXBrUzElZhOwJT71RyuxHTcSn0yyJLKQFs2dQYieAJRuiMxgpE4CRVMirbyochmocxlzcqWTdmp3521LaMq3XYqp2kXKFVVJRJPkEiAyaQFVfJlC6CRKHbZ+cyHlvD4rmYUUzznq3hyuYKqx2A5MSB1kMFjLqPaNPII50BBht70mPMA3f9WykZQPaGY6LaNw6IMHHxKFVTP1kqSnudSGWglyUfn1mbURjFyeRfk6NGzb14yEqumTiwkhFF1d3fz9NNPc+WVV1JUVDhLX/UkfaYxej8YpX1GaYcQQuhF5tHc0SMnRq63i7prx13cvfzufs81dTaNykoKe9yO7U0b++bvY37d/OTjy+uX89HJK3n+6Jac1f2xyav6BZ30vKu6t3RyA2RiqNwAmW4bA5nd0Z2IhAi+uwO/fQYWk7XfHd29gyyvt65la9ePM25jppaVr+V9teO58sIJg74u1ZZN44rsjCsa+m7kbGzZNJL6a1wQevfvLL/06qznxFAUJeWd+4Wuu7ubl559mtUf/CjPN3qA3K7i0TMnRo/zgwwt7Z3EDu0lPPsS7M7+Qc50DRVk6G2057x8+FspG0F1mxphclcjraVziJv79+tAQXU9t2eUIMfoy7sgx6RJkwwRFRdipEwmE2VlZZgG+KNa9Cd9pjF6PxilfUZphxBC6EXm0dzQIyfGaGwX9dzh51gzdQ3L65fT4m9JPv5Y42M5rbdHggQBS4A/v/vnPkEOgEtKv8irph0EEh1Zr9dlGsfFpTf3ezwf7qoGbXugnoTT06qK2H/Cm/PcAJC7rbIURSFschBJgM3a/47uvkGWi3gncCnN0f9Nu/xM1VsvZWrRRf22zRnM+Vs2tXaFRnXLpuHUX2RO8IrvPfn3IAM9/4ZWlzi5/uLSnK7iyTzxtkLje6mPe9b4kowSb58f3OsdZOj0Wgl3O3jvdDcz6pw5CTKcb7TnvHz4WykbQfUEChGzA3WAlRyDBdX1TnovRk/eBTmOHDmi9yEIkRecTicrV67U+zAKivSZxuj9YJT2GaUdQgihF5lHs0+vnBijsV0UwAP7H2B5/XJWbhr9cRM1R3mj4g3eOPwG/7L8X5KPv9fu5/hphSvGfZ9n2n9AXOnOWp1mtYgrxn2f46cV3mv390mEmg93VfdYMbOa5s4gQPLiXy5zA0Duto2JKlbetU8jkVAHvaO7J8hy2bhbeLz1LaKKZ9h1DsSqlnHZuFuA/tvmpEPvLZsyrV/+PcjM+f+G5nIVj56Jt88P7vUOMkytLWd/YjbxqJrzwGpvQ815mAbfySaTOS8f/lbKRlA9plg56Z454Mq6wYLqem3PGIknDLkKLJ/lXZBDCKGJRCK89dZbzJkzB5vNpvfhFATpM43R+8Eo7TNKO4QQQi8yj2aXXjkxRmu7KIBdp3ZxqDP3ORBSMSfM1HfX01zU3Ofuzp1HOwEIB2qYHPk2x2y/IJaFC94WtYxJkW8QCdaATaunJ8gxOnkp0rurGrQ7w69eVMfju5oBcp4boEcuto15p7UTt7+FeGndoHd0nwuywDLnP/Na8N9JKIGM6xyISXXxPtc/4zSXDLhtTib03rJpqPrl34PMpeqzXK/i0SPxdio9QQY1HmWm9QxN4VJ8IZJBhmLH4JdKhxNY7W2oOS+SCJOIjEMxhcAUAUUFVYGEjZOeCEfbPWnPefnw2chGUN2sxikPncDvrEU19T8/gwXV9dqecYDUHiKHJMghRJ4KhUJs3bqVqVOnyh9qaZI+0xi9H4zSPqO0Qwgh9CLzaHaNdk6Mni2jRmu7qB6jXV8PW8LGHM8c2pxtBGIBiqzaHc0tnUFUVaW1K4RDredDxT/mnfjveS/4t2HXNdV5GdPMn6f5tImTnhC1JQ5aOoOc9oepdNtznpcC0r+rukdVsZ1rltTz5B5tXOQyN0Cyn3KwbUwwGKKh+12cU6YMeUd3T5BlRvl0PMHv0qj+NGsBrpn8I9PLpgMDb5tjJPLvQeYG67NcreLRK/H2+XqCDI/+byNK69vMmbmCd7vUZJDBajYxvtSRMrDa2hUadmD1/L4YaM4LRFUS0bKU72v3RXFZzWnPeXp/NrIVVLfGQ0z0HcF2wVQUW//3DRRUf+DVw7ptzyi7540+RZWM3iJPHThwgHnz5iV/379/P3PnztXxiIQQQgghhDCebc3b+OpLX815Pb/88C+TCbDnPzR/iFcb1zOfeIkyezmvv3eG3cc66eiO8G67H6vZxIL6UkyKQkt4N28F/kxb9O20y622zmaO6xPU2ReTUFXebO4iGk9wQZWbcUU2Fk8q531TK5KBhnZfmN9tP4qqquw55iESTzC1qigrd1W3+UK8196NzWxi0aQyFEXhhksmD3nXdzAST+YGAO3CUTZzA6Sq73fbj+IPx/CFohxs9SXvzB7JVlnFDituu4XrL5486HFs3neSg60+gpEYe0+coMX8B7zmHUMe90BK4suoi3+OhRMm4LRZmFVbzKr544ddnhDZ9l67nz/vPYGqquw/4aU7HKPYYemzgup0wMMfD/0h5fuvnf45Kl1lyd/jCW2rKV8oRpHdwrwJJSiKwtWL6gbdMgq0OfDJPS34z+ZP6B1YHcpwAquppJrzjnd18nTTS6gJO6pq1VZxKCqKEmXF5EuYUFIy7DlPL//zzml2HO6goztM0ynt37tFk8r6za/hWJw9xzwpy1g0qWzAoPqeY9rqlhk1bsYV2VnWMI73T6vkZy80oaoqu452EkuonPKGiMYTVBTZU/bXYInHa0scAyYeD0binOkOYzWbqClxYDEp/O6L7xuTOTn0vJZbUCs5WltbOX36ND6fj+LiYiorK6mtlWz1wphUVSUcDmO328fkxDgc0mcao/eDUdpnlHYIIYReZB7NntHOiTEmqWBNWImaojz6+kmsJg9vn/TSFYzS2R2hOxLDbbfyxvGus2+YSiX/gFtpwaO8Tpf6HnFrM5h6bWmUcOFSJ+FSGyiJL8MRqqPNB214APAEovjDUXzBGOVFNt5r7+bACS//cIWWHyVf7qruzWkz5zQ3QKr6srlV1gWVLpxmFbvFlNYd3b335p9XOx5L6y144svosDxPt6kp7XYUJWYwLvYxyliQ0bY5RiH/HmROrz4b7cTbg6l027hmYQ2vHemi8ZQ/J0nXh5Jqzit3WTDZT6d8/eQKO8U2bT5MZ87Ll8/GiLcqU1XUWATV7OjXjsG2KtNze0aZi0Zf3gc5Xn31VTZs2MDWrVtpbW3t93xtbS0f/OAH+cpXvsIHPvABHY5QiNzo6vr/s3fv8VHU9/74X7O72Vt2cyEXEhJJCHchCHIRqwasWgO2FsWjtrVF0fZU+Nn29HjtOcdW24ranip+a9FzEPC0tkiFeqmAAi1Sq4DcFBASlZsJhFw3u5u978zvjzUrmADZZHdn5zOv5+PBwyS7M5/P+/UZZ5P97HymE4sXL8YPf/hD5OXlqd0dTWBmMaLnIEp9otRBRKQWnkeTQ417YozMH5mW9jKJPWLH7MbZWFu2FibJCkWJLY0CIP6p4d7ePLEqZSiMzEHEHYit9S0FoSACCSZAsaA0x3bGT5ZaTAZ4g5/vv+uzTyufKhX3pfioOXY1RLbFdNb7UpxNqu8NcKpkLpWlBLvg2f4avn779/v0ie7eJ1kuhDM4AQGpEV7Te4iYjsKDIwgrn9+UPkvKhhOVMEUq4IhMhVUp6/eyOSLg60Hi1MzsXDfetpjPfO6xmAwDvidGt87OTjz1WQZjSnPSMrF6Jqee8/55+DD++HE75IgTUE5Z4k8KY0i+BWOLB/X5nJcp/28MdFI9KxpAaNcGmC/8GiSrI/7zc02qq7k8I6Vfxi5X1dbWhttvvx2vvfYaAPT4ZexU3bNj1157LZYuXYqCgoK09JFSS+/LVUWjUbS0tKCoqAhGoz5+OR0oZhYjeg6i1CdKHUREauF5dGC674mxfN9yvFj3YtravXn0zbh1/K2oXV2btja/6MWvvohcSy4A4P4t92NPy56UtykpEnJCOagqq8Ik838iIsvYcSR20/HGDj8UKGdcCqO/y2d0bych9qYPAEypzMc9V4857XmnLpm077gbUVmB02oa8Keqxw/JSeqSScm8N0BvkrFU1qhiO8YNknDekJKEzkvnWjZHgQIZQSgIQ0IWDLDE135P1rI5WsbXg8SpnVmLJ4iXdjYgEI7CH4rEr6ACABkh7G7b0uuNt79cPhtdAdMZ74lxw+TyPh/7vWWQjonVc2n0NqJ2dW3shtmKEYABgAxIUbxxw3qUOcr6vC+1x/lUfVmq7IzLVSkyLiiUYHXmQzLE6khkqbK+Ls/Yn+Wy+rs8o6i4XNUXtLW14dJLL0V9fX2PyQ2r1Yrs7Gx0dXUhEIj9otf9nFdffRWXXnop3n77bU50kOYZjUYux5YgZhYjeg6i1CdKHUREauF5dGDUmmRYWbcSK+tWqtJ2t4qcCmRnxd4AmVIyJS2THIqkoNPSiSmlUxBtA079M1fBZzcsTfLSFt37694/cHq73c71qer+3pci2UsmSZLU6xtMyZLupbJOVeS04JbpFfFJlt6XzZEgK9aULZujZXw9SJzamZ3tCipP6Mw33j7pDsNiNCRlcq+3DFJ10/X+kCQAUhRA9FxPPSO1x/lUA1qqTDLAkJ0Xn+BIdKmyTFyekZIvI+/1/s1vfhN1dXXx72fNmoXVq1ejqakJPp8PLS0t8Pl8OHnyJNasWYNrrrkm/tz6+np861vfUqPbREnl9XqxYsUKeL1etbuiGcwsRvQcRKlPlDqIiNTC8yj1l930+Trcs4bNSkublogFM07MwMzimQA+e/PqM92fyE/2Igvd++ve/xfb7da9ZJI1ywinNQvjh+Qg22JCVFZwqKULu4+5cLStC+1dIQTCUYQiMgLhKNq7QjjaFnv8UEtXfImq8UNy4LRmaXbJpKoiB26cch6+fXEFpg0bhKGD7LBmnV6DNcuIoYPsmDZsEL59cQVunHIehhVmD+i81D3J8vWJQ1CWb4MkSRiUbUFVkQPVZXmYNqwA06sKMG1YAarL8lBVFLvBbvebanMmlWFWdanm8k4Gvh4kLhMy657cG1PihCRJKM21YdLQPFQPKcA1Iy/BzIqLcFHpFEwtmYKLSqdgZsVFOC8vB6MGOzBpaB5Kc23xN7ZvmV6R8NVL58qge2LVZjbCYjJq8h4LmTDOp5o5uhgOiyl+lZ/RIMUn1Zs9AchneB00RoMIHfg7IkEfmj0BvN/gik9w9HVSfUpFPgCgNNeKbIsJkVOWV+yPZC3PSMmTcVdybNy4ERs2bIAkSbDZbPjDH/6AOXPm9PrcoqIizJkzB3PmzMGrr76Kb37zm/D5fNiwYQM2btyIK6+8Mr2dJ0oik8mEyspKmEwZ979pxmJmMaLnIEp9otRBRKQWnke1bf3c9QDSt1xUt0nFk057o2pU/ihcWHxhyu9LIksyTIUmjCochU04BqMkwWSQEJEVmIwSwlEF4aiCZF6oEI7G3rgxGWP1mgwSjGd4ky6Z96UQZcmk/nyiOxnnpXTej0QUfD1IXKZkpuYVVJmSQSplWo2934cotlTZoZYuSBLg8oVhMRmQZZQgSVLs/BtW4DXl4ePjXgSV2AtlovchyqSb3lNqZMZRfoqVKz+/dPl///d/zzjB8UXd9+P45je/CQD405/+xEkO0jSr1YqZM2eq3Q1NYWYxoucgSn2i1EFEpBaeR7Wte03xdC0X1W3K4Ck9fnZ79e3YtSm1kxxhYxjXf+V6WK1WzL90GACgOOc4Gjp8ONLahRZvECU5Vpw3yN5j22BEBhpcve53QnlerzcsB4BP233IMkkoclhQWZiN8nw7vnbBkDP2sW9LJp37vhQiLpnU16WyknleyqRlczIdXw8Sl2mZqTG5l2kZpEIm1ni2SXVfOAJvMAxvsOd2htwKmJSBLVV2ruUZndazv02eruUZqX8ybpLj7bffBgAMHz4c3/jGNxLa9uabb8aDDz6Ijz/+OL4fIq0KBoPYvXs3Jk2aBItF35/M6StmFiN6DqLUJ0odRERq4XlUDLOGzcLSvUvT2t4X1ZTX4CsVtXjz6PqUtXt12SyYG8wIFgWRa4sdr8MKs9HiCaLIaUGHL4xOfwRVRkOP+19YTEZcOqIoofZkRUGnPwKTwYAipwUWkxHDCrORa8s663ZqfqpaBKk6L6X6fiRax9eDxGVqZumc3MvUDJIpU2s806R6kzsAjz+CUFRGJKpAgQIJEiyGKCqix5FdPBz5zux+T6r390qScFTBp+0+dPojZ7zpvRaXZxRNxt2T48SJE5AkCdOnT+/X9t3bNTU1JbNbRGkXCoWwZ88ehEIhtbuiGcwsRvQcRKlPlDqIiNTC86gYupeLSofJgydjZP7IXh+7OPcO2A2pWUfbbhiEydnf7HG8jhrsBADk280wGw0IR2W09vbx1X5o9QYRjsowGw3It5sBAKNLnH3efiD3pdAznpfUwdwTp4XMUn1PDC1kMFCZXGPv9yEyIz/bjME5VpTl21Ceb0dZvg0lDhPy/MeRZzUM+D5E3VeSdN8bZPyQHFQU2OOvw95gGG1dwdjVJZ1+NLkD8e+7X1crCuwYPyQnfgXHDZPLNb08oygkJdl3Nxsgu92OYDCI2267DUuXJv6JnjvuuAPLli2D1WqFz+dLQQ8pXfbv34/x48fHv9+3bx/GjRunYo+IiIiIiMTQ6I0tE6HGPTEWXbYovlwVAKza/wZ+vuPulLf9X1P+GzeO+0qPnx9q8eKVPcfRFjqCv7Y8iKjUlbQ2jUo2vlr0MArMlfj6xCGoKnKc9viqHZ+iscOP4y4/jrX7YDJImFCel9Da4F8Uish4v8GFqKygosCO0lwbyvJtuHHKeQOqhUsmERGlXqO3EbWra3t9bP3c9ae9foqk1RvErqMdeGlnA7qCEUROuSG4ySBhVnUphhVmJ+0+RP5QNH4lCRB7jWtyB7DnmKvHlSQmY2xZqiKnRfjlGQdKzfdyM+5KjuLi2PplH374Yb+2796uez9EWiXLMlwuF2RZVrsrmsHMYkTPQZT6RKmDiEgtPI8OTJmjDGWOMkwp6XmPilSaMnhKzzdo/OejynZpStutsl0G+Mf2+tiOox0AgKBvMCpC/w6TkpeUNk1KHipC/46QfzAURcY7B471OF6nVOQDAEpzrci2mBCRFXzU7EFU7t9nEaOnbJ9tMaEkxwoAmFo58KtUUv2pahHwvKQO5p44ZqaPDLRUY6HDgouqCjC2NAeTK/IxpTI//t8Lh+aiptKOi6sGJWWCA0jsSpLBOVZUFmZjULZlwFeSUOpk3CTHpEmToCgKtm/fjj179iS07fvvv49t27ZBkiRMnDgxJf0jShe3243FixfD7Xar3RXNYGYxoucgSn2i1EFEpBaeR5Ojt3tUpLO9Fk8QjR1+XJRzO7KSNLnwRVlKHi7KmY/GDn+P5aC621cUBU2dAViVcnzZ+WhsUmQAqmyX4cvOR2FVynHCFYAc6MInf/8zjpxoOf15RQ6MKXFCkiSMKMqG0SDBE4jgYJMboUhib0qFIjIONrnhCURgNMT2J0mxT5/qfRmpdOF5SR3MPXHMTB8ZaLVGSZJgMhiQZTTAZDAAIT+WP/u7lNRx6vKMFw7NR64tCybD6ZP4JoOE8nwuz5jpMm65quXLl+P222+HJEkYNWoUNm3ahCFDhpxzuxMnTuDLX/4y6urqIEkSnnvuOdx6662p7zCljN6Xq5JlGW63Gzk5OTAYMm4+MiMxsxjRcxClPlHqICJSi57Po4qioCvchbAcRpYhC9lZ2QP6VP01f74Zx3z7k9jD3g21j8fr//InAECnPwwA2HaoDbuOdaC9K4QPW+vQYP1vRKXkLTtsVOwoD/w7zi8cjUHZZlw4NB8XVRXEHz+1/U9avMgyGjChPBcGSUJjcBc+9L2C5vCBPrdXnDUW59u/jjLLhZAVBR80dCIclTG80I78rCguHD4EV1ef/vetPxTFH7YehTcYgScQxsGm2JUYRoOEigI7Ch2WHjcjP5WsKGj1BnG0zRffbkyJE05rFhwWE26ZXsFPmqaJns9LamLuiWNmmZtBMperytQaz6TTH8aytw/3+LmiyLhhQgHKiwtSWkd3+4qiIKooUBRAkgCjJOH2y6qQa8tKWduiUPO9XFNaWknAt7/9bfzyl7/E4cOHUVdXhwkTJuDBBx/Et7/9beTn5/d4vsvlwh/+8Ac8/PDDaGtrgyRJqKqqwi233KJC74mSx2AwIC8vT+1uaAozixE9B1HqE6UOIiK16O08Wt9Rj3WH12Fv614caDsAd+jzTzPmmHMwtmAsqgurMXvY7DPeXLs3LZ4gRlu/npZJjtHWa9HqDaLQYYm/iXHghBud/jA6ukLoChVgkP1H6Mj5HSKSa8DtmZQ85LsXoMNXgD0+F/KzzTjU0oX9xz/P7vT2I3BYsvD+p52fPVqFQvwbHFIjXNI2dCqHEM1qAAynTMLIdtiVobArw5ATnQZroAzNHqAZsf67fGF4g2F4/BHkZ5tx2H28xySHzWzEnElleGlnAwBg/JAcfNzSha5gBIdauvBpux+FDjOc1izYzUYYJAmyosAXisITCKPVG0I4GrvqI9tiwoiibNjMJlizYvvlBEf66O28lCmYe+KYmT4y0FqNubYs/NtVo9TuRuxKEi7JqDkZN41nMpnwwgsvwGaLrYfW3t6Of/u3f8PgwYNRXV2Nr371q7jpppvw1a9+FRMmTEBxcTF++MMforW1FYqiwG6344UXXoDJlHHzN0QJ8Xg8eOaZZ+DxeNTuimYwsxjRcxClPlHqICJSi17Oo1satmDeunmY++pcLN27FNtObDttggMA3CE3tp3YhqV7l+L6V6/HvHXzsKVhy1n32+kPo9Mfxu5jHSg2TUSp8eJUloFS45dQbJqIXUc74ldxKIqCrmAEABD67E16h3QeqoIPIic6bUDt5USnoSr4IBzSeaftvysYQfdiBr21b+nlht9WpQyF4TnIbl8A58lfwtn0KBxNv4Cz6VE4T/4S5YEfoThyHaxKz0/XxvcX9qOq9V0EfF70tphCkdOCGyaXw2ExwWY2YfyQHFQU2GE2GhCOyjjRGUD9SQ/2fOrCrmMd2POpC/UnPTjRGUA4KsNsNKCiwI7xQ3JgM5vgsJhww+RyFDmTs3Y59Y1ezkuZhrknjpnpIwNRahSlDkqtjJwJuOiii7B27Vp861vfQmNjIxRFQSQSwYcfftjjhuSn/oJYVlaGP/7xj5g2bWC/EBNlArPZjIkTJ8JsNqvdFc1gZjGi5yBKfaLUQUSkFtHPo66AC49sfwTrDq9LeNtdzbuwa9MuzB42Gw9MewB51rwez/nilRSy7+uQcj+EYuzs8dyBkqK5kNuvxe4u12lXUkQVBZHPbrAdicb+m2WUYIID5eE74IlOQ5vpDfgMH/W5Lbs8EgWRWjjl6tgPjPJp+4/IsSUoTJJ0xvbPWgskQLGir5/v7N5fUDbAZRuCsGJEKCrDYup5dUWR04Jbpldgc10zDjZ5UJprQ0mOFR2+EFy+MLpCEfhDUcgKYJBiV4Bkm03Is2ch326OL1k2psSJmaOLeQWHCkQ/L2Uq5p44ZqaPDESpUZQ6KLUycpIDAGpqarB371488cQT+N///V80NTX1+okXACgpKcH3vvc9/OhHP9LUZVhEZ2OxWDB9+nS1u6EpzCxG9BxEqU+UOoiI1CLyebSuvQ4LNi5As795QPtZe3gtdjTtwJKrlmBUfs/lH069kiESscPe/q/wF/4WchLviWFQ7LC1/ysiih3A51dSSJKEU/+8UxD75tR7izjlCXCGJiCQyHJRX7iaont/3fuP1X36f8/UfjJ07y8iGdGeXRHr8lnuJ24zGzGruhSjS5zYcbQDjR1+DMq2YFD2ua/IKMu3YWrlIN4MVUUin5cyGXNPHDPTRwai1ChKHZRaGTvJAQB5eXl46KGH8NBDD+HAgQPYvXs3Wlpa4PV64XA4UFRUhEmTJmHs2LFqd5Uo6QKBALZu3Yrp06fDarWq3R1NYGYxoucgSn2i1EFEpBZRz6N17XWY/8b8HktS9Vezvxm3rb8Ny2uX95jo+OKVDEYMwXn+f0ej7f8l7Z4YZf670BEpQAQ9r6Q4dT5BggQFymcfbDt9osGqlKEwMgcRdyA2GSEFoSACCSZAsaA0xwaTsfeVmLs/KCedss/udvva/kB0t5+lRFHk+Rht2RXoyz1Tq4ocqCpyoNUbRF2TB02dATR7ggiEo/HnWLOMKHZaUJJrxegSJwodXJpKbaKelzIdc08cM9NHBqLUKEodlFoZPclxqrFjx3Iyg3QlEongyJEjmDJlitpd0QxmFiN6DqLUJ0odRERqUfM8qigKusJdCMthZBmykJ2VnZQrAFwBFxZsXJC0CY5u7pAbd264E6uvXX3a0lW9XclgRTmqgg+iKWsl3Mbt/W4zJzoNJeGbISEbgL/XKymMkgSTQUJEVmAySghHFYSjCnpZySku0eWiwp8tQ2X6bNkok0GC8bOx6k/7iepu32xUYA91wO0YCvMZJmR6U+iwoHBEbPJCURSEojJkGTAYALPRkPQrT2hg+PudOph74piZPjIQpUZR6qDUkpQzrQFFpLL9+/dj/Pjx8e/37duHcePGqdgjIiIiItKr+o56rDu8Dntb9+JA24HTJiJyzDkYWzAW1YXVmD1sNkbmj+xXG/duubdf9+Doq9nDZuOxmscAAE9sqEdElrHjSAcAoLEjNhFRkmONXxXhMXww4HtiRKIymtwBSJBQlm8DAEypzMf3aoYDAF57/zgaOnw40tqFFm8QJTlWnDfI3mO/wYiMDxpcvbY5oTyv1xuGA8Cn7T40uQMoclhQWZiN8nw7vnbBkPjjarR/y/SKXp9LRETU6G1E7eraXh9bP3c9yhxlvT5GlAnUfC9XM1dyEOlNNBpFS0sLioqKYDTypoF9wcxiRM9BlPpEqYOISC3pOo9uadiC5/Y+h13Nu874HHfIjW0ntmHbiW1YuncpLiy+ELdX346a8pqE2knlBAcQu0fHNVXXxPt1risZknFPjDNdSZFrywIADCvMRosniCKnBR2+MDr9EVQZDTB84QoFi8mIS0cUJVSvrCjo9EdgMhhQ5LTAYjJiWGF2vO20tp+dBVPQjYr8QQntg7SFv9+pg7knjpnpIwNRahSlDkqtvl8nS0Rp5fF48Oyzz8Lj8ajdFc1gZjGi5yBKfaLUQUSkllSfR10BF+7dci8Wblp41gmO3uxq3oWFmxbivi33wRVw9Wmb5/Y+149eJm7ZvmUAgPmXDsPtl1VhVnUpJg3Nw5gSJ0pyrThvkA2Thuad9u/i88bhyyW3Ynj0xxgZ+G+M8D2J4b5fY4TvSYwM/DdmF/0MVw+5DRefN67HtucNsqEk14oxJU5MGpqHWdWluP2yqnh/Rg12AgDy7WaYjQaEozJavcGk1NrqDSIclWE2GpBvNwMARpc4T3tOutrPNUXQ9f56lDmSsmvKUPz9Th3MPXHMTB8ZiFKjKHVQaqmyXNXDDz982vcPPvjgGR8biFP3S9qj9+WqFEVBMBiExWLhWrt9xMxiRM9BlPpEqYOISC2pPI/WtddhwcYFaPY3D3hfxbZiLLlqSY+bfp+qvqMec1+dO+C2+mrNtWviS2r98+NWbD/cjvauIOpPepFlNGDS0LweVzL0h6wo2H3MhXBUxqjBDgzKtmDasEG4ZEThac9bteNTNHb4cdzlx7F2H0wGCRPK82A+wxJQfRGKyHi/wYWorKCiwI7SXBvK8m24ccp5PZ6bjvZLcqwodRpx8/ThfN0XGH+/UwdzTxwzy9wMkrlcVabWmChR6tAD3S1X9bOf/ey0g/LUyYgvPjYQnOQgLZMkCVarVe1uaAozixE9B1HqE6UOIiK1pOo8Wtdeh/lvzE/azb+b/c24bf1tWF67/LSJjkZvY/zrVXWrktJWX62qW4X/mP4fAGJXMmw/3B6/kiH02ZUMxc6BZ9uXKykAYEpFPho7/CjNtaKtK4SuYAQfNXswpiQHRkPifxtGZQUfNXsQlRVkW0woyYnVMrWy96Wi0tG+JEmYPrKUb84Ijr/fqYO5J46Z6SMDUWoUpQ5KLdWWq1IUBWe6iKT7sYH8I9I6t9uNJ598Em53cv7A1gNmFiN6DqLUJ0odRERqScV51BVwYcHGBUmb4OjmDrlx54Y7T1u6qnZ1bfzfygMvJbW9c/nTgc8nVYqcFpTl2yBJEkpyY28gHGvzIRSRB9RGKCLjaFvs3h2lebE3+cvybSh0WHo8t6rIgTElTkiShBFF2TAaJHgCERxscifcj1BExsEmNzyBCIyG2P4kScKYEieGFWb3uk062q/KkfDKH/6Xr/uC4+936mDuiWNm+shAlBpFqYNSS5UrOX7605/26zEiPbFarZg5cyZnqxPAzGJEz0GU+kSpg4hILak4jz6y/ZGkLFHVm2Z/MxZtX4THah7r+aCU5g9pSbEPlnVfVaD2lRQAMHN0MRo6/ACAMSVOHGzywBOI4P0GFyoK7Ch0WM66hJasKGj1BnG0zYeorMBoiE1s2MwmOCwmzBxdfNY+p7z9caWosPB1X3T8/U4dzD1xzEwfGYhSoyh1UGqpck8Oor7Q+z05iIiIiCh9tjRswcJNC1PeztNXPI2a8hpUP1+d8rbOZus3tyI76/MrG9btPYGDTR74QxHsO+5GVFbgtJowstiZ0L0pQhEZHzV74lcyjB+SA5vZhDElTsyqLj3rti2eIF7a2YBAOAp/KIKPW7rQFYwAALKMBhQ6zHBas2A3G2GQJMiKAl8oCk8gjFZvCOFo7KqLbIsJI4qyYTObYM0y4obJ5Shy9ryCJNPaJyIiSuY9OYjSTc33clVbroqIzs7v92P9+vXw+/1qd0UzmFmM6DmIUp8odRARqSXZ59Hn9j6XlP2cy7J9y077Xq2PnAUjwdO+nzm6GA6LKT4h0b1k0/sNLjR7ApDP0VFZUdDsCeD9Bld8giORKymA2NJZN0wuj/dj/JAcVBTYYTYaEI7KONEZQP1JD/Z86sKuYx3Y86kL9Sc9ONEZiN/7o6LAHp9YcVhMCU0wpLJ9vu7rA8dZHcw9ccxMHxmIUqModVBqqbJcFRGdmyzLcLlckOWBrYesJ8wsRvQcRKlPlDqIiNSSzPNofUc9djXvSkKvzm3nyZ34qOOjz3+gGABJjdeC0/8UtJmNmDOpDC/tbAAAjB+SE7+S4VBLFz5t9/f7SoY5k8pgMxv71KsipwW3TK/A5rpmHGzyoDTXhpIcKzp8Ibh8YXSFIvCHopAVwCDF+p1tNiHPnoV8uzm+BNeYEidmji7uc7upbp+v+/rAcVYHc08cM9NHBqLUKEodlFoZt1zV/PnzAQBXXnklvvnNbya8/apVq7B+/XpIkoTnnkvPp7EoNbhcFRERERGlUqO3EQCwfN9yvFj3YtravXn0zVhZtxIAoMixyQbJEElb+4pswvZvvge7pedn3lo8Qby8uxHeYASKoqDJHcAJVwCh6LnfWDAbDSjNs6IkJ3ajcYfFhDmTyvq9VNOhFi92HO1AY0ffP7lZlm/D1MpBZ7zJuJbaJyIi/eFyVaRlar6Xm3FXcqxYsSL2C7HD0a9Jjvfeey++D05ykJZFIhE0NDSgvLwcJlPG/a+akZhZjOg5iFKfKHUQEaklGefRM72JkGor61biX4qXAIjdpHvdySfgx0fn2Cp57EoVjMbeb6Kt9pUUp6oqcqCqyIFWbxB1TR40dQbQ7AkiEI7Gn2PNMqLYaUFJrhWjS5wodCTv3hfJbJ+v+/rAcVYHc08cM9NHBqLUKEodlFq8JwdRhvJ6vXj++efh9XrV7opmMLMY0XMQpT5R6iAiUovWz6MOYxGcpmLkZhXDgRFpbduJETAbz/ynoM1sxKzqUnx94hCU5dsgSRIGZVtQVeRAdVkepg0rwPSqAkwbVoDqsjxUFTkwKNsCSZJQlm/DnEllmFVdOqAJjlMVOiy4ZEQh5k4ux/dnVGHB5cPx/RnDP/tvFeZOLsclIwqTOsGR7Pa1frxS33Cc1cHcE8fM9JGBKDWKUgelVsYtV2UwGCBJEhYuXIinnnoq4e3vvvtu/OY3v4HBYEAkkr5Lvin5uFwVEREREaVS9fPVqrX95nX/gD0rtqTRsu3vYNmR/y9tbc+v/C3+bcaMPj9frSspiIiI9IbLVZGWcbmqJGptbQUAOBwOlXtCRERERETUO6tZQa41CwAwrWwcXj8+FidDB1Lebon5fEwrS+yPzUKHBYUjYpMXiqIgFJUhy4DBELsPR/cSVUREREREahBquSq3240333wTkiRh6NChaneHaEA6Ozvx6KOPorOzU+2uaAYzixE9B1HqE6UOIiI1KIqC4y3HsejRRTjechwZdnF6n5iN5vjXowY7McFxXVrarXbMwegSZ7+3lyQJFpMRNrMRFpORExx9xNd9feA4q4O5J46Z6SMDUWoUpQ5KLVWv5Hj44YfP+Nj27dvP+vipwuEwGhsb8eabb6KpqQmSJOHSSy9NVjeJVGG32zFnzhzY7Xa1u6IZzCxG9BxEqU+UOoiI0qW+ox7rDq/D3ta9ONB2AF2BLgzOGYwX//oisq3ZGFswFtWF1Zg9bDZG5o9MaN+KYoAkySnqee/t2U2fn/+LnBZML70Un/gvxSH/2ylrt8p2GaaXXsolpVTA13194Dirg7knjpnpIwNRahSlDkotVe/J0X3/jVN1d6e/nwhSFAUWiwU7duzg/Rs0jvfkICIiIqItDVvw3N7nsKt5V5+3ubD4QtxefTtqymvO+ryH18UmFNadfAJeqX5A/UyEQxmFd29dfdrPDrV48eKuOrzc/GP45Pakt2k3DMKc4t/g5sljMKwwO+n7JyIiooHjPTlIy9R8L1f15aoURTnt35l+3td/5513Hl566SW+GU6a5/P58PLLL8Pn86ndFc1gZjGi5yBKfaLUQUSUKq6AC/duuRcLNy3sdYLDHDVjSssUmKPmHo/tat6FhZsW4r4t98EVcJ2xDaepGA5jEWzy8GR2/Zzs8ogeS2xVFTkwccgQfKXgP2GWkjsJYZay8ZWC/8TEIUM4waESvu7rA8dZHcw9ccxMHxmIUqModVBqqbpc1U9/+tMeP3vooYcgSRKmTp2KWbNmnXMfkiTBarWioKAA48ePx7Rp07guLBERERGRhtW112HBxgVo9jcPaD9rD6/FjqYdWHLVEozKH9Xrc6KKAmdkKlqM6wbUViIckakIRWVYTMbTfj5zdDEaOoZjNn6O9a0/R0DpGHBbVikftYX/haGO4Zg5unjA+yMiIiIiyjSqLlfVm+4lrBYuXIinnnpK7e70WygUwosvvog//elP2L9/P06ePIn8/HwMGzYM119/PW699VYUFhYmtc1oNIr9+/fjvffew44dO/Dee+/hgw8+QDgcBgDMmDEDmzdv7vP+jhw5gmHDhiXUh+HDh+Pjjz9OaJsz4XJVRERERPpT116H+W/MhzvkTto+c8w5WF67vMdExxMb6hGOyth5tANHzL+Cz/BR0to8E7s8EpWhe7DitmmwmY09Hm/xBPHSzga4gi78s+N/cTT4z363VWG5BJfkfxd5ljzcMLkcRU7ei4OIiCiTcbkq0jJdL1f1RTU1NaipqcHIkYndLDCTHDx4EBdddBG+853vYN26dTh27BiCwSCamprw7rvv4p577sG4ceOwdu3apLX58ssvIycnBxdccAHuuOMOPPPMM9i5c2d8goO0JxwO4+DBgxzDBDCzGNFzEKU+UeogIkomV8CFBRsX9GmCwygbMaRrCIxyz4mCL3KH3Lhzw529Ll3VfRF4QeTqRLvbLwWR2BsXhjP8JVbktOCGyeUotOXjioIf48r8B5BvGJNQG/mGMbgy/ye4ouDHKLTlc4IjA/B1Xx84zupg7oljZvrIQJQaRamDUivjJjk2b96Mv//977jrrrvU7kq/NDQ04IorrsCePXsAxJbTmjFjBubPn4+vfe1rsNlsAIDm5mbMmTMHf/vb35LSrsvlSunadE6nEwsXLjznv29/+9sp64PecM3BxDGzGNFzEKU+UeogIkqmR7Y/0uclqsyyGVNap8As97wnR2+a/c1YtH1Rj58bJQkmgwSnPAHmwOSE+psoc2AynHI1TAYJZuOZ/xQrclpwy/QKjClxYqhtCq4r+SXmFP4GoyxfR740DkbFfnoNih350jiMsnwdcwp/g+tKfomhtskYU+LELdMrOMGRAfi6rw8cZ3Uw98QxM31kIEqNotRBqZVxy1VpXU1NDf7xj38AACoqKvDKK6/gggsuiD/e2tqKm2++GZs2bQIADBo0CJ988gny8vIG1O6KFStw2223YfDgwZg6dWr83xtvvIHFixcDGNhyVRUVFThy5MiA+pgoLldFREREpB9bGrZg4aaFKW/n6SueRk15DQCg0x/7ROBr7x9HQ4cPH7WcxM7ofyJq6Ex6u0Y5F5ONv8DIosEoz7fjlukVfdruUIsXO452oLHDH/+ZoiiIKAFElTCMUhZMkvW0+xKW5dswtXIQbzJORESkMVyuirRMzfdyVb3x+Jm8+eabCAQCsNvtuPLKK/u83caNG+Hz+RLeLlnWrl0bn+Awm8147bXXUF1dfdpzCgsL8corr2DChAk4dOgQ2tvb8fjjj+ORRx4ZUNu1tbU4evQohg4detrPt23bNqD9EhERERGlw3N7n0tLO8v2LYtPcuTasgAAwwqz0eIJYkhOAVqbf4ij5l8jKiXv04JGxY6K8A8xJL8AFpMxocmHqiIHqoocaPUGUdfkQVNnAM2eIAJhG7IQu0rcmmVEsdOCklwrRpc4UejglRtEREREpB8Zt1zVhx9+iNraWlx33XV4/fXXE9r2r3/9K6677jrU1tbik08+SVEPz+zpp5+Ofz1v3rweExzdsrOz8fDDD8e/f/bZZxGJRAbUdklJSY8JDtI2l8uFhx56CC6XS+2uaAYzixE9B1HqE6UOIqJkqO+ox67mXQltYw/bccORG2AP28/95FPsPLkTH3WcfoPxUYOdAIB8uxk5hqGoCN0Ni5Sf0H7PxCLloyJ0N3IMQ5Fvjy2tNbrEmfB+Ch0WXDKiEHMnl+P7M6qw4PLh+P6M4Z/9twpzJ5fjkhGFnODIUHzd1weOszqYe+KYmT4yEKVGUeqg1Mq4SY6XXnop/vV3v/vdhLb97ne/C0VRoCgKXnzxxWR37ay8Xm98CSoAuO222876/Llz58LhcAAA2tvbsWXLlpT2j7TH4XBg3rx58eOEzo2ZxYiegyj1iVIHEdFANHob0ehtxKq6VQlvGzAG8NbgtxAwBhLedlXdKjR6G+PfFzktKMu3QZIklORaYVXKMTz4ICotlya871NVWi5FVfBBWJVylObFlpQqy7cNeCJCkiRYTEbYzEZYTMbTlqqizMTXfX3gOKuDuSeOmekjA1FqFKUOSq2Mm+TofrO/srIS559/fkLbjhs3DpWVlQCAt956K9ldO6t33nkHwWAQQOxKjalTp571+VarFRdffHH8+2TdgJzEYTKZUFlZCZMpI1eVy0jMLEb0HESpT5Q6iIgGonZ1LWpX1+LFusQ/oCQbZLTYWiAb5IS3XVm3ssd611MqYldulOZakW0xAXI2Bgfn44q8B1BiTuzvkhLz+bgi/ycYHJwPSc5GtsWEkhwrAGBq5aCE+0vax9d9feA4q4O5J46Z6SMDUWoUpQ5KrYyb5Dhw4AAkScLEiRP7tf2kSZOgKAoOHDiQ3I6dw6ntVVdX9+l/vAsvvLDX7TNRJBLBhg0bsGjRIvz7v/87/uM//gNPPPEE/vGPf8Qndyi5urq6sHLlSnR1dandFc1gZjGi5yBKfaLUQUSkFkvUgotPXgxLNDnLM1UVOTCmxAlJkjCiKBtGgwRPIAKvaySuzHsI1xU9gQmO6zHEPAFm6fRPEpolB4aYJ2CC43pcV/QErsx7CN6OEfAEIjAaYvuTJAljSpy8GbhO8XVfHzjO6mDuiWNm+shAlBpFqYNSK+OmwNra2gAARUVF/dq+e7vW1tak9akv6urq4l9XVFT0aZtT76Fx8ODBpPcpmRobG/GVr3yl18fy8/OxYMEC3H///bx0LIkMBgPy8vJgMGTcXGTGYmYxoucgSn2i1EFEpBYZMnwmH2QkfiXHmcwcXYyGDj8AYEyJEwebPPAEIni/wYWKgmJc6PwmDJIERVEQUQKIKmEYpSyYpNhSVLKioNUbxPttLkRlBUZDbGLDZjbBYTFh5ujipPWVtIWv+/rAcVYHc08cM9NHBqLUKEodlFoZN8mRlZWFcDiMQCDxtXUB9Hu7geqenAGAwYMH92mbkpKS+Nft7e1J71O6dHR04Je//CVeeuklvPrqqxg1apTaXRKCzWZDbW3tuZ9IccwsRvQcRKlPlDqISJ8URUFXuAthOYwsQxays7LTfl+IsDGM9wveT+o+bWYj5kwqw0s7GwAA44fk4OOWLnQFIzjU0oVP2/0odJjhtGbBbjbDIFkQlRV4QmF4AmG0ekMIR2OTLtkWE0YUZcNmNsGaFduvzWxMan9JO/i6rw8cZ3Uw98QxM31kIEqNotRBqZVxU2CFhYUAgI8++qhf29fX15+2n3Txer3xr202W5+2OfV5p26fSZxOJ2699VasXLkSdXV18Hq9CAaD+PTTT/HnP/8ZV155Zfy5dXV1qK2tRUtLS1L7YLVa41eIRKNRuFwuKIoCAHC73QiFQgAAv98fv3QtEonA5XLF99HZ2YlwOAwA8Pl88Pl8AIBwOIzOzs7481wuFyKRCIDY5XB+f+yTfKFQCG63G0Dsj3qXy4VoNAogNnbdk2vBYBAejwcAIMsyXC4XZDn2h67H44kv7RUIBOJjfqaaQqEQtm/fjo6ODmFqSvU4eb1evPvuuwiFQsLU1J9xCgQCeOedd+KPiVDTqeMUCoXw7rvvnlavFmsSfZxYE2tiTeLV9EHjB3hi6xO44807MOOPM/Dl338ZNS/W4OI/Xowrf38l7lh/BxbvWowPGj7oc00mOfaZq6xoFiyR2LJTkiLBHrYDsZJgi9hglI2fP++z5amyolkY6RoZf+zU55mjZpijZgCAUTbCFvn892572A6DbDjjOBU5LZh7YRmscgBWk4TxQ3JQmWOAVYoiHJVxssOLQ8dbsOdTF3YdbcP+wydQ39SJE50BKCEfLJKMigI7xhVbYUEYDosJ100sRVbUz2NPxzWFQiG888478cdEqEnEcRpoTaFQCO+99178Q5Ai1KSFcero6MD27dvjf0eLUFOqx6m9vR179uyB3+8XpqZEx8nn8+Gdd96JP5YpNYWCsf709rtRouPU0tKCHTt2IBQKaXacIpEImpubsWfPHoRCoYwZJ9HPEQOtSQ0ZN8lRXV0NRVHw3nvvobGxMaFtGxsb8d5770GSpIRvWj5Qp15BYjab+7SNxfL5+sHdB2YmKS0txfHjx7F8+XLcdNNNGDVqFLKzs2E2m1FeXo4bbrgBGzZswLPPPhv/5N7hw4fxwAMPJLUf06dPxw033AAgdoJevHhx/H+8ZcuW4cMPPwQQu9n8a6+9BgBoaGjA4sWL4/tYsmQJPvnkEwDAm2++iTfffBMA8Mknn2DJkiXx5y1evBgNDbFP7r322mvxG9h/+OGHWLZsGYDYSWHx4sXxyZyXXnoJW7duBQDs3r0bL7zwAoDY//iLFy+On2heeOEF7N69GwCwdetWvPTSS2etKRAIYNOmTXj99deFqSnV47R3715s2LABgUBAmJr6M04tLS3YsGFD/Hki1HTqOAUCAWzcuBE7d+7UdE2ijxNrYk2sSZyaXt/9Ouatm4ffvvBb7HxnJ7ad2IacjhzMPDETAJAlZ6HmcA0OHjuIpXuX4n/+8D+4//f3Y0vDlnPWVOmpBACM6ByF6S3TAQA5oRzMbpyNLDkLADDzxEyUd5UDAM53nY8LW2P3tSv2F+MC1wUwy7Hfva9qvAqD/bErqie0T8CE9gkAgMH+wbiq8ap4TbMbZ2NQoOis45RjBpq3/gVD7RFIkgRn0y6MMTZh1GAHyuWTqHTthkECsqJBjGz9B3JMYRQ7LRjpeR/nW9pQmmtD6EQ9pCPbcMv0CiDg5rGn85oCgQA2bNiAw4cPC1OTiOM00JoCgQD+9re/4cUXXxSmJi2M0+uvv45NmzYhEAgIU1Oqx+kvf/kLNm/ejMbGRmFqSnScDh8+HH//IJNqqt8X+/D2SPfIHr8bdU+A9HWcnnvuOfz9739HIBDQ7Dg1NDRgyZIl2Lx5MwKBQMaMk+jniIHWpAZJ6Z6KyRC//e1v8YMf/ACSJOGmm27CH//4xz5ve/PNN2PVqlWQJAm//vWv8W//9m8p7OnprrnmGqxduxYAcN999+HRRx895zbr1q3D7NmzAQAOhyM+m5ZMP/vZz/DQQw8BAGbMmIHNmzcnvQ0A+I//+A888sgjAACj0YjGxsY+L9t1Jvv378f48eNhtVphMpmwdetWjBkzBh6PB7m5uZAkCW63G1arFWazGX6/H7IsIzs7G5FIBF6vF3l5eQBis6J2ux1ZWVnxGVG73Y5wOAyfz4fc3FwAsVlRh8MBk8mErq4uGAwG2Gw2hEIhBAIB5OTkQFEUdHZ2wul0wmg0wuv1wmQywWq1IhgMIhQKwel0QpZluN1u5OTkwGAwwOPxwGw2w2KxIBAIIBKJwOFwIBqNsibWxJpYE2tiTayJNWVcTa6AC4veWoT1x9dDNsiwRC2QISNsDMMoG2GWzfCb/IAC2CN2+E1+KJICS8QCWYo9b/Z5s3FX9V0oLyrvtabfvLUTMBjx5vGnEJQOI2gKQlIk2CI2+Ew+QIpdoREyhBA1RJEVzYIBBgSNQRhkA6xRK3xZsf6f+rzuqzhCxtDpfcVnV3JI56G29Ie4e8aF5xyno+1+bK1rRJMnDMlkhhIJQ5HDMJjtUBQZStAHyWKHJBkgh3yQDFkoL8rBBaV2lOVaeOyxJtbEmlgTa2JNrKnPNbWGWnHtX6+N/c6jGE773Wj1TatR7izXXE0ijhNr6r2mxsZGjB8/Ht327duHcePGIR0ybpLD4/GgsrIyfonLnXfeiSeeeAJZWVln3CYcDuNHP/pRfHYrNzcXhw4dQn5+fjq6DAC46aabsGrVKgDAD37wgz7NXq1ZswZz584FELs/x4kTJ5Ler3RNcni9XhQXF8evSPn973+PW265ZUD77J7k6JbO/zEygaIoCAaDsFgsaV/jWquYWYzoOYhSnyh1EJGY6trrsGDjAjT7mwe8r2JbMZZctQSj8nvet+2JDfWIyDJeb1iGNtO6xHasxK4iCRvCQIKn0cLILMwun497rh7T521avUHUNXnQ1BlAsyeIQDgaf8yaZUSx04KSXCtGlzhR6LCcZU+kR3zd1weOszqYe+KYWeZm0OhtRO3q3u8/sX7uepQ5yvq8r0ytMVGi1KEHar6Xm3HLVTmdTvzyl7+Mr/W1ZMkSjB49GosWLcLWrVvR3NwMn8+H5uZmbNu2DYsWLcLo0aPxzDPPAAAkScLDDz+c1gkOACgoKIh/ffLkyT5t09TUFP960KBBSe9TOjkcDlx00UXx7w8cOKBib8TQ2dmJxx577LT19+jsmFmM6DmIUp8odRCReOra6zD/jflJmeAAgGZ/M25bfxvqO+p7fVxRgNzo1IT3a4/Y8fVPvw57xJ7wtjnRaUj0o16FDgsuGVGIuZPL8f0ZVVhw+XB8f8bwz/5bhbmTy3HJiEJOcFCv+LqvDxxndTD3xDEzfWQgSo2i1EGpZVK7A735/ve/jw8//BC//e1vIUkSjhw5gv/8z/886zbdkyJ33nkn7rrrrnR08zSjR4+Of3306NE+bXPs2LH412PG9P1TZJmqtLQ0/nVra6uKPRGD0+nEv/7rv8LpdKrdFc1gZjGi5yBKfaLUQURicQVcWLBxAdwhd1L36w65ceeGO7H62tXIs+ad9pgkAValHHZ5JHyGj/q8T7/Jjw2lG+LLUPWVXR4Jq1KGgXwQUJIkWEzG/u+AdIev+/rAcVYHc08cM8vMDOo76rGqbtUZH79/y/2YUjIFs4fNxsj8kefcXybW2B+i1EGplXFXcnR76qmn8Lvf/Q4OhwNAbBLjbP8cDgeefvpp/Pa3v1Wlv2PHjo1/vXfv3vjd7s9m165dvW6vVV1dXfGvs7OzVeyJGIxGI0pKSmA08g/ovmJmMaLnIEp9otRBRGJ5ZPsjSbuC44ua/c1YtH1Rj58bJQkmg4SCyNUJ7U+RFHRaOqFIiV2SURCphckgwcjlDiiN+LqvDxxndTD3xDGzzMpgS8MWzFs3D3NfnYsX61484/P2tOzB0r1Lcf2r12PeunnY0rDlrPvNpBoHQpQ6KLUydpIDiF3RcfToUTz66KOYOXMmbDbbaY/bbDbMnDkTjz32GI4dO4Y777xTpZ4CX/rSl2CxxC5N7+rqwo4dO876/GAwGL+7PQB8+ctfTmn/0mH37t3xr4cMGaJiT8Tg9XqxYsUKeL1etbuiGcwsRvQcRKlPlDqISBxbGrZg3eEE74uRoLWH1572B/n8S4fh9suqMKu6FDXlNSjERWfZ+nSWiAUzTsyAJdL35aEKMR015ZdhVnUpbr+sKqG+Ew0EX/f1geOsDuaeOGaWGRm4Ai7cu+VeLNy0ELuad517g1Psat6FhZsW4r4t98EVcPX6nEyoMRlEqYNSK6MnOQAgLy8P9957L/72t7+hq6sLnZ2daGhoQGdnJ7q6uvC3v/0N99xzT/yO9GpxOBy44oor4t+vWLHirM9fs2YNPB4PgNj9OGpqalLZvZTbuHEjPv300/j3M2fOVK8zgjCZTKisrITJlJGrymUkZhYjeg6i1CdKHUQkjuf2PpeWdpbtWxb/OteWhVxbFoYVZsNiMmKacz5MSl6f9iNLMlqsLZAluU/PNyl5mOa8DRaTEcMKs5Fry+pP94n6ha/7+sBxVgdzTxwzUz+DuvY6zH117oA/YLL28FrMfXVur/c+U7vGZBGlDkotSVESveUencnrr7+Or371qwAAi8WCnTt39noHeZ/PhwsuuAAff/wxAOD+++/HokU9L91Php/97Gd46KGHAAAzZszA5s2b+7RdKBQCAJjN5nM+t6WlBRdffDE++eQTALGlt/bt2weDYWBzaPv378f48ePj3+/bt6/XPImIiIhoYOo76jH31blpa2/NtWtOW0u6xRPEH7YehaIoeOfYPnxkehyy5EtaewbFjpGRe/GloeMhSRK+fXEFbxBOREREqqhrr8P8N+Yn9R5oOeYcLK9djlH5o5K2T6JEqflebsZfyaEl11xzDS677DIAseWovvrVr+KDDz447TltbW2YM2dOfIJj0KBBuO+++3rd35EjRyBJUvzfua4OSabjx49j+PDhePzxx894I3VFUfD6669j6tSp8QkOSZLw61//esATHPT5kmbBYFDtrmgGM4sRPQdR6hOlDiLStkZvIxq9jWe9yWUqrKpbhUZvY/z7IqcFZfk2SJKEYbkjUBm6+5xXdJhkE0Z0joBJPvun+kxKHipDd6MqbwQkSUJZvo0THJR2fN3XB46zOph74piZehm4Ai4s2LggqRMcAOAOuXHnhjtPW7pKlHEWpQ5KLV7nk2R//OMfMW3aNJw4cQJHjhzBxIkTMWPGDAwfPhwtLS3YuHEjfL7Yp9JMJhNWrVqVtKW2Zs+ejePHj5/2s6ampvjXO3bswMSJE3tst3bt2l7voWsNmFgAAN9HSURBVNHQ0ID77rsP9913HyorK1FdXY3CwkJkZWWhpaUF27Zt69He448/jtmzZyelHr0LhULYs2cPxo0bF7/fC50dM4sRPQdR6hOlDiLSttrVtaq0u7JuJVbWrcTeeXvjP5tSkY/GDj9Kc61o66qEKfgg2qyr0Iatve7DJJtQ6a1EQ3YDIoZIr88pwHQUBG9EriUPJTlWAMDUykHJL4joHPi6rw8cZ3Uw98QxM/UyeGT7I2j2N6dk383+ZizavgiP1TwGQJxxFqUOSi0uV5UCBw8exDe+8Q3s2bPnjM8pKirC8uXLcc0115zxOUeOHMGwYcPi3y9fvhy33nrrGZ9fWVl5xqsuzubw4cOorKw8a9vnUlZWht/97ne49tprE27/TLhcFREREVFqVT9frWr7p05yAMC6vSdwsMkDfyiCfcfdiMoKItb9cGW9iebwgT7vtzhrLPLDV8MYOB9Gg4TxQ3JgM5swpsSJWdWlyS6DiIiI6Jy2NGzBwk0LU97O01c8jZpybd/7l7RJzfdyM/pKDp/Ph9///vfYuHEj9uzZg9bWVng8HvRlXkaSJEQivX+iK9XGjBmDbdu2YeXKlfjTn/6E/fv34+TJk8jLy0NVVRWuv/563HbbbSgsLFSlf31RUVGBvXv34t1338U777yD/fv3o7W1FW1tbfD5fMjJyUFpaSmmTp2KWbNm4brrrkNWFm/emEyyLMPtdiMnJ4fLf/URM4sRPQdR6hOlDiKiZJo5uhgNHX4AwJgSJw42eYDAOAwOjceYvDa4pO1oDX+M1vAhhOUu2CI2+E1+ZBmyUZhVhcKsEchTpqHDVYCorMBokDCmxAmb2QSHxYSZo4tVrpD0iq/7+sBxVgdzTxwzUyeD5/Y+l5Z2lu1bhpryGmHGWZQ6KLUy9sj485//jPPOOw8LFizAmjVr8Mknn6CzsxOyLENRlD79U5PZbMZ3vvMdrFu3DseOHUMwGMTJkyfx7rvv4p577unTBEdlZeVp9ZztKg4gdvVFX7M59d8Xr+IAYpNE48ePx3e/+10sX74c27dvx6FDh9DZ2YlwOIy2tjbs27cPy5cvx4033sgJjhRwu91YvHgx3O7krtMoMmYWI3oOotQnSh1ERMlkMxsxZ1IZrFlGOK1ZGD8kB9kWE6Kygtb2QZBcszFWuhuznP+Duc7fYXbjbMx1/g6znP+DsdLdkFyz0do+CFFZQbbFhPFDcuC0ZsGaFduvzWxUu0TSKb7u6wPHWR3MPXHMLP0Z1HfUY1fzrrS0tfPkTnzU8ZEw4yxKHZRaGblc1QsvvIDvfOc7AHDaZIUkST1+dqafS5KEaDSa6q5SCul9uSrOVCeOmcWInoMo9YlSBxFpW6YtV9WtxRPEy7sb4Q1GoCgKmtwBnHAFEIrKnz9JkZEVDSJstADS5+dRs9GA0jwrSnKskCQJDosJcyaVocjJNZxJPXzd1weOszqYe+KYWfoyaPQ2AgCW71uOF+teTFk7X3Tz6JvxwLQHhBhnHq/aoeZ7uRl3ZLS1teH73/8+FEWByWTCY489hpMnT2LhwoXxSYzug3vv3r14+umnMWHCBCiKAofDgT/+8Y+QZZkTHKR5BoMBeXl5PIEngJnFiJ6DKPWJUgcRUSoUOS24ZXoFxpQ4IUkSSnNtmDQ0D6MGO1DstCDbYoTBYEDYZIPBYEC2xYhipwWjBjswaWgeSnNtkKTYUlW3TK/gBAepjq/7+sBxVgdzTxwzS18GtatrUbu6Nq0THACwsm6lMOMsSh2UWhl3dDz77LPo6uqCJEl45JFHcM8996CoqKjH8xwOB8aNG4c777wTu3btwqJFi+D1evGtb30LS5cuVaHnRMnl8XjwzDPPwOPxqN0VzWBmMaLnIEp9otRBRNq2fu56rJ+7HhOLJqa13UnFk7B+7vqzPsdmNmJWdSm+PnEIyvJjkxaDsi2oKnKguiwPU8psGO/ejillNlSX5aGqyIFB2RZIkoSyfBvmTCrDrOpSLlFFGYGv+/rAcVYHc08cM9NHBm63W4ga9TBWNHAZd+PxTZs2AQBycnLwgx/8oE/bSJKE++67D11dXfjFL36BH/7wh7j88ssxfPjwVHaVKKXMZjMmTpwIs9msdlc0g5nFiJ6DKPWJUgcRaVuZowwAMKVkCva07Elbu1MGT4m3fS5VRQ5UFTnQ6g2irsmDps4Amj1B+CNZyCoeBskQu+dGsdOCklwrRpc4UejglRuUWfi6rw8cZ3Uw98QxM31kEDFEhKhRD2NFA5dx9+QYMmQITp48ia985StYt25d/Od33XUXnn76aUiShFAoBKOx5yeyQqEQSktL4XK5cP/99+OXv/xlOrtOSab3e3IQERERpcu2hv24Y9PNaWtv2ZUrMbWs/7/XKYqCUFSGLAMGQ+w+HN336SMiIiLKFGre/2zLTVuQb81XrX3SH96T4xTt7e0AgPLy8tN+npWVFf/a7/f3uq3ZbMbMmTOhKMppEyREWhQIBLB582YEAgG1u6IZzCxG9BxEqU+UOohI2zr94di/zgIUZY1NS5vFWWPR4SpApz/c731IkgQlEsa2d/4BJRLmBAdlPL7u6wPHWR3MPXHMTB8ZyGFZiBr1MFY0cBk3ydF9hcapkxpAbPmqbsePHz/j9gUFBQCAhoaGFPSOKH0ikQiOHDmCSCSidlc0g5nFiJ6DKPWJUgcRaduytw9j2duH8dLOBli7rkhLm5auK/HSzgYse/vwgPbD8yhpCY9XfeA4q4O5J46Z6SMDM8xC1KiHsaKBy7jlqioqKtDQ0IBvfOMb+MMf/hD/+dKlS/G9730PkiRh1apVmDt3bq/bX3311diwYQMsFssZr/ggbeByVURERERnlowlm57YUA9FUbDzaAcisoKP8SxC1p0p6jFgDkzGCPwrTAYJkyvy8eOvjE5ZW0RERERqa/Q2AgDu33J/Wu9/Nql4Ev5v1v+lrT0iQN33cjPuxuNjxozBp59+ikOHDp3284kTJ8a/XrNmTa+THCdOnMA777wDACgqKkppP4lSLRqNoqWlBUVFRb3eg4Z6YmYxoucgSn2i1EFE6dXiCaL+5Oc33w6Eo/HH+nvz7aiiICLHPvdkcc1FuOhjKMbOpPddiubC4poL5AERWUF0gJ+14nmUtITHqz5wnNXB3BPHzNKXQZmjDAAwpWRKWic5pgyeIsw4i1IHpVbGLVc1ffp0ALGZn2j08z/aJk+ejPLyciiKghdffBEvvPDCadt5PB7ceuut6OrqgiRJuPTSS9Pab6Jk83g8ePbZZ+HxeNTuimYwsxjRcxClPlHqIKL0ONTixaodn+IPW49i++F2HGv3wR+KICT7EIi6EZJj3x9r92H74Xb8/t2jWLXjUxxu7Trnvk+da5AUO+zt/wqDYk9q/w2f7Vc6Zb8DvZ6c51HSEh6v+sBxVgdzTxwzS38Gs4bNSks7p7YnyjiLUgelVsYtV/X222+jpqYGkiRh8+bNuOyyy+KP/eY3v8Hdd98dvwx/3LhxqK6uhs/nw1tvvYXOzk4oigJJkvCPf/wDX/rSl9Qqg5JA78tVKYqCYDAIi8XCm2n2ETOLET0HUeoTpQ4iSi1/KIrNdc042BT7o64tdAQHPG+hOfQxPPIRRCVf/LlGxQ6noRLF5hE43zkTg8wVAIAxJU7MHF0Mm7nnJ9+e2FCPiCxjx5EOAEBjhx8KFOTntqHR9v8QkVwDrsGk5KHMfxc6OgsgQUJZvg0AMKUyH/dcPabf++V5lLSEx6s+cJzVwdwTx8zUyWDeunnY1bwr5e1MHjwZK2pXCDPOotShB1yu6hSXXHIJhgwZguPHj+P5558/bZLjhz/8Id544w1s2LABkiRh//792L9/f/zx7vman/zkJ5zgIM2TJAlWq1XtbmgKM4sRPQdR6hOlDiJKnRZPEC/vboQ3GMEx/w7s7FyDDrnu8yd84W+8qOSDS/kQruCHqA++inzDaEzOnQs0TUZDhx9zJpWhyNlzCSujJMFkkBCRFZiMEsJRBYbIEFQFH0RT1kq4jdv7XUNOdBpKwjcjHLEBCMJkjHXaZJBgHOAfqTyPkpbweNUHjrM6mHvimJk6GdxefTt2bUr9JMf88fMBiDPOotRBqZVxy1VJkoQjR47A7/djyZIlpz1mNBrx2muv4f7770d2djYURTntX1lZGZYtW4af//znKvWeKHncbjeefPJJuN1utbuiGcwsRvQcRKlPlDqIKDVaPEG8tLMBrf4ObGr7DTZ2LDp9gqMPOuQ6bOx4BJvafoNWfwde2tmAFk/wtOfMv3QYbr+sCrOqSzFpaB7GlDhRkmvFeYNsmDq0HF8rvRszc+9HcdbYhNouzhqLmbn342uld2Pq0HKcN8iGklwrxpQ4MWloHmZVl+L2y6oS2ucX8TxKWsLjVR84zupg7oljZupkUFNek/Jlq2YPm42a8hoA4oyzKHVQamXclRwAYDKZYDL13jWz2YxHHnkEP/vZz7B9+3YcP34cBoMBVVVVmDRpEi9bImFYrVbMnDmTs9UJYGYxoucgSn2i1EFEyecPRfHy7kYc932C9a2/QEDpGND+jgb/iZMnP0Rt4X/h5d0SbpleEV+6KteWBQAYVpiNFk8QRU4LOnxhdPojqDIaYJAkVJmmoip7KjrCx/CJ/x9oDX2M1vAhhBRvvA2z5EBhVhUKzSMw3HYZ8rOGxh+TFQWd/ghMBgOKnBZYTEYMK8yOt91fPI+SlvB41QeOszqYe+KYmXoZ/GTaT7CzaSea/c1J33exrRgPTHsg/r0o4yxKHZRaGXdPDqJuer8nBxEREenTur0n8M6ne7G29UGElHPfOLyvzFI2Zhf+HF86bzxmVZee9liLJ4g/bD0KRVGw+5gLoaiMqqJsFDt7/2NSURRElACiShhGKQsmyXrGDxs1ewI41NIFs9GASUPzIEkSvn1xBQodPZfOIiIiIhJdfUc9blt/G9yh5F2ZkGPOwfLa5RiVPypp+yRKlJrv5WbcclU//vGP8eMf/xh33303wuGw2t0hUo3f78f69evh9/vV7opmMLMY0XMQpT5R6iCi5DrU4sWe48fxZtsvkzrBAQAhpQtvtv0Ce44fx6EW72mPFTktKMu3QZIklOTGJjaOtfkQisi97kuSJGQZbLAac5BlsJ1xgiMUkXG0LXZz9NK82ERIWb4tKRMcPI+SlvB41QeOszqYe+KYmboZjMofheW1y1FsK07K/optxb1OcIgyzqLUQamVcZMcTz75JBYvXozt27cjK2tgl7ATaZksy3C5XJDl3t9coJ6YWYzoOYhSnyh1EFFy7Tjaga2dS+GT21Oyf5/cjq2dz2HH0Z5LYE2pyAcAlOZakW0xISIr+KjZg6jcvwu/o6dsn20xoSQnNnkytXJQ/ws4Bc+jpCU8XvWB46wO5p44ZqZ+BqPyR2H1tasxe9jsAe1n9rDZWH3t6l6v4FC7xmQRpQ5KrYxbriovLw8ejwe33XYbli5dqnZ3SEVcroqIiIj0pMUTxKLNa7Ch/ZGUt3XVoJ/gJ5df3+OKinV7T+Bgkwf+UAT7jrsRlRU4rSaMLHbCbOr756NCERkfNXvgCURgNEgYPyQHNrMJY0qcPZbKIiIiItKzLQ1bsGzfMuw8ubPP20wePBnzx8+P32ScKBNwuapTlJbG/ujhUlWkd5FIBEeOHEEkElG7K5rBzGJEz0GU+kSpg4gGrtMfRqc/jN3HOrDH85e0tPm+5y/Y1cvVHDNHF8NhMcUnJIwGCZ5ABO83uNDsCUA+x+ejZEVBsyeA9xtc8QmOMSVO2MwmOCwmzBydnGUZAJ5HSVt4vOoDx1kdzD1xzCyzMqgpr8GK2hVYc+0a3Dz65jM+b1LxJHy3+rtYc+0arKhdcc4JjkyqcSBEqYNSK+MmOS699FIoioL3339f7a4Qqcrr9eL555+H1+s995MJADPrJnoOotQnSh1ENHDL3j6MZW8fxvM73kVL+EBa2mwOH8D/7dja4+c2sxFzJpXBmmWE05qF8UNykG0xISorONTShd3HXDja1oX2rhAC4ShCERmBcBTtXSEcbYs9fqilK75E1fghOXBas2DNiu3XZjYmrQaeR0lLeLzqA8dZHcw9ccwsMzMYmT8St46/9YyPL7psEX5w4Q8wMn9kn/aXiTX2hyh1UGpl3HJV//znP3HZZZdBkiT84x//wJe+9CW1u0Qq4XJVRERElMkURUFXuAthOYwsQxays7LPeAPus3l43dtQFAV/O7EG7aaNKehp7wZFrsLm+f/da59bPEG8vLsR3mAEiqKgyR3ACVcAoei510I2Gw0ozbOiJCd2o3GHxYQ5k8pQ5Bz4zcaJiIiIRNbobUTt6tpeH1s/dz3KHGVp7hFR36n5Xq4pLa0k4JJLLsH3vvc9/M///A++9a1vYePGjRg+fLja3SIiIiIiQn1HPdYdXoe9rXtxoO0A3CF3/LEccw7GFoxFdWE1Zg+b3edP2f25+U4oshGKnJvWy6xb5Z0IRWVYTD2vrihyWnDL9ApsrmvGwSYPSnNtKMmxosMXgssXRlcoAn8oClkBDFLsCpBsswl59izk283xiZMxJU7MHF2c1Cs4iIiIiIiITpVxy1UBwP/7f/8PCxYswNGjRzFx4kT85Cc/wfvvvw9ZPvcnx4hE0dnZiUcffRSdnZ1qd0UzmFmM6DmIUp8odRDpxZaGLZi3bh7mvjoXS/cuxbYT206b4AAAd8iNbSe2Yenepbj+1esxb908bGnY0scWJEgm97mflkSSyY1o9MwXddvMRsyqLsXXJw5BWb4NkiRhULYFVUUOVJflYdqwAkyvKsC0YQWoLstDVZEDg7ItkCQJZfk2zJlUhlnVpSmb4OB5lLSEx6s+cJzVwdwTx8z0kYEoNYpSB6VWxl3JUVVVFf/aaDSiq6sLjz32GB577DFkZWUhPz8fNpvtnPuRJAmffPJJKrtKlFJ2ux1z5syB3W5XuyuawcxiRM9BlPpEqYNIdK6AC49sfwTrDq9LeNtdzbuwa9MuzB42Gw9MewB51ryzPFuGZEjvB3okQwQB2Qc7cs76vKoiB6qKHGj1BlHX5EFTZwDNniAC4Wj8OdYsI4qdFpTkWjG6xIlCR+qXpuJ5lLSEx6s+cJzVwdwTx8z0kYEoNYpSB6VWxt2Tw2Aw9LoucHc3+7LOsaIokCQJ0Wj0nM+lzMV7chAREZGa6trrsGDjAjT7mwe8r2JbMZZctQSj8kf1eKz6+WooCtCP23kM2Fs3voVBtkEJb6coCkJRGbIMGAyx+3D0534kRERERPQ53pODtEzN93IzcrkqRVF6/DvbY2d6LpGW+Xw+vPzyy/D5fGp3RTOYWYzoOYhSnyh1EImqrr0O89+Yn5QJDgBo9jfjtvW3ob6jvtfH1ZofsJj6d8WFJEmwmIywmY2wmIyqTHDwPEpawuNVHzjO6mDuiWNm+shAlBpFqYNSK+OWqzp8+LDaXSAiIiIiHXMFXFiwcUGPe24MlDvkxp0b7sTqa1f3unSVohggSelbskpRDLCbeNk/ERERERFpW8YtV0XUjctVERERkRru3XJvv+7B0Vezh83GYzWPxb9v9DYCAP797/dhf/v7KWv3i8YXTMSfvvr7tLVHRERERGfH5apIy3S5XNWWLVuwZcsW3hyc6AzC4TAOHjyIcDisdlc0g5nFiJ6DKPWJUgeRaLY0bEnpBAcArD28FlsatsS/L3OUocxRhovLpqa03S+6eEh620s2nkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQaqk2yTFz5kxcfvnlWLx48Vmfd+LECXzwwQf44IMP0tQzoszANQcTx8xiRM9BlPpEqYNINM/tfS4t7Szbt6zHz2YNm5WWttVqL9l4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGppdpyVQaDAZIkYeHChXjqqafO+Ly77roLv/vd7yBJEiKRSBp7SGrjclVERESUTvUd9Zj76ty0tbfm2jUYmT/ytJ/NWzcPu5p3pbztyYMnY0XtipS3Q0RERER9x+WqSMt0uVxVIhRFAW8dQkRERESp0OhtRKO3EavqVqW13VV1q+L34+h2e/XtaWl7/vj5aWmHiIiIiIgo1TQxyUGkRy6XCw899BBcLpfaXdEMZhYjeg6i1CdKHUQiqF1di9rVtXix7sW0truybmWPT+rVlNekfBmp2cNmo6a8JqVtpAPPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKEcDgfmzZsHh8Ohdlc0g5nFiJ6DKPWJUgcRJd9Ppv0ExbbilOy72FaMB6Y9kJJ9pxvPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKFMJhMqKythMpnU7opmMLMY0XMQpT5R6iCi5Muz5mHJVUuQY85J6n5zzDlYctUS5FnzkrpftfA8SlrC41UfOM7qYO6JY2b6yECUGkWpg1KLkxxEGaqrqwsrV65EV1eX2l3RDGYWI3oOotQnSh1ElBqj8kdhee3ypF3RUWwrxvLa5RiVPyop+8sEPI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1OIkB1GGMhgMyMvLg8HA/037ipnFiJ6DKPWJUgcRpc6o/FFYfe1qzB42e0D7mT1sNlZfu1qoCQ6A51HSFh6v+sBxVgdzTxwz00cGotQoSh2UWpKiKIoaDRsMBkiShIULF+Kpp5464/PuuusuPP3005AkCdFoNI09JLXt378f48ePj3+/b98+jBs3TsUeERERkYiqn68GACiyEZIhfb9vdre3d97ecz53S8MWLNu3DDtP7uzz/icPnoz54+cLcZNxIiIiIj1o9DaidnVtr4+tn7seZY6yNPeIqO/UfC+XU2BEGSoUCmHPnj0IhUJqd0UzmFmM6DmIUp8odRCJ4F+Kl+CGot8hWxme1nazleG4oeh3fXpuTXkNVtSuwJpr1+C71d/F9NLpPe7ZkWPOwfTS6fhu9Xex5to1WFG7QugJDp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGqpfseW7du34+GHHz7r493O9rzePPjgg/3uF5HaAoEANm/ejKqqKpjNZrW7ownMLEb0HESpT5Q6iETgNBUjIsuwKcPhQ33a2rUrw2E3FiW0zcj8kRiZPxIAoCgKfBEfQtEQzEYz7CY7JElKRVczEs+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLVUX64qlbi8lbZxuSoiIiJKhyc21CMclfHPY3txyJLYh2oGoir4U1wydDzurR2TtjaJiIiIKHNxuSrSMl0vV6UoSkr+EWmdoigIBAI8nhPAzGJEz0GU+kSpg0gUkgRYlXLY5ZFpac8uj4RVKYOOLrxIOp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGqptlxVTU2Nri6nJ0pUZ2cnFi9ejB/+8IfIy8tTuzuawMxiRM9BlPpEqYNIFEZJgskgoSByNXzmj1LeXkGkFiaDBCN/H+43nkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQaqm2XBXRueh9uapoNIqWlhYUFRXBaDSq3R1NYGYxoucgSn2i1EEkgk5/GADw2vvH0dDhwxvN/41WbEtZe4WYjquLf4zyfDu+dsEQ5NqyUtaWyHgeJS3h8aoPHGd1MPfEMbPMzSCZy1Vlao2JEqUOPdD1clVE1Duj0YiSkhKewBPAzGJEz0GU+kSpg0gEubYs5NqyMKwwGxaTEdOc82FS8lLSlknJwzTnbbCYjBhWmM0JjgHgeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFic5iDKU1+vFihUr4PV61e6KZjCzGNFzEKU+UeogUpOiKPCGvOgIdMAb8g54nd5Rg50AgMGOAgyP/AgGxZ6MbsYZFDuGR36EwY4CAMDoEmdS9683PI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1FLtnhxEdHYmkwmVlZUwmfi/aV8xsxjRcxClPlHqIEq3+o56rDu8Dntb9+JA2wG4Q+74YznmHIwtGIvqwmrMHjYbI/MTu4l4kdOCsnwbGjv8GJY7AuGOu3HM/BQikmvA/TYpeRga+gGqBo2AJEkoy7eh0GEZ8H71jOdR0hIer/rAcVYHc08cM9NHBqLUKEodlFq8JwdlLL3fk4OIiIg+t6VhC57b+xx2Ne/q8zYXFl+I26tvR015TZ+3OdTixSt7jkNRFOw77kZn0IU26yq0YWt/ug0AKMB0FARuRK4lD+OH5ECSJMyZVIZhhdn93icRERERiSeZ9+QgSjfek4OIeggGg9i6dSuCwaDaXdEMZhYjeg6i1CdKHUSp5gq4cO+We7Fw08KEJjgAYFfzLizctBD3bbkProCrT9tUFTkwpsQJSZIwoigbFoMTgwPzMQo/RHHW2ITaL84ai9H4EQYH5sNicGJEUTYkScKYEicnOJKA51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWpzkIMpQoVAIe/bsQSgUUrsrmsHMYkTPQZT6RKmDKJXq2usw99W5WHd43YD2s/bwWsx9dS7qO+r79PyZo4vhsJhgM5swpsQJo0GCKTAOg7t+jBr7o5iQfT2GmCfALDlO284sOTDEPAETsq9Hjf1RDO76MYyB82E0xCY2bGYTHBYTZo4uHlA9FMPzKGkJj1d94Dirg7knjpnpIwNRahSlDkotLldFGYvLVREREelXXXsd5r8x/7R7bgxUjjkHy2uXY1T+qHM+t8UTxEs7GxAIR+EPRfBxSxe6ghEAQJbRgEKHGQ6LCeasMBQpAkkxIRTOgjcYQas3hHBUBgBkW0wYUZQNm9kEa5YRN0wuR5GT9+IgIiIiop64XBVpGZerIqIeZFmGy+WCLMtqd0UzmFmM6DmIUp8odRClgivgwoKNC5I6wQEA7pAbd264s09LVxU5Lbhhcnn8io7xQ3JQUWCH2WhAOCrjRGcAHzV7sb8xiA8botjfGMRHzV6c6AwgHJVhNhpQUWDH+CE58Ss4OMGRXDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiJAdRhnK73Vi8eDHc7uS+wSMyZhYjeg6i1CdKHUSp8Mj2R9Dsb07Jvpv9zVi0fVGfnlvktOCW6RXxe3SU5towaWgeRg12oNhpQbbFCIMUe65BArItRhQ7LRg12IFJQ/NQmmuL34PjlukVnOBIMp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGpxuSrKWHpfrkqWZbjdbuTk5MBg4HxkXzCzGNFzEKU+UeogSrYtDVuwcNPClLfz9BVPo6a8ps/PP9TixY6jHWjs8Pd5m7J8G6ZWDuJNxlOE51HSEh6v+sBxVgdzTxwzy9wMkrlcVabWmChR6tADNd/LNaWlFSJKmMFgQF5entrd0BRmFiN6DqLUJ0odRMn23N7n0tLOsn3LEprkqCpyoKrIgVZvEHVNHjR1BtDsCSIQjsafY82KXclRkmvF6BInCh28ciOVeB4lLeHxqg8cZ3Uw98QxM31kIEqNotRBqcXpL6IM5fF48Mwzz8Dj8ajdFc1gZjGi5yBKfaLUQZRM9R312NW8Ky1t7Ty5Ex91fJTwdoUOCy4ZUYi5k8vx/RlVWHD5cHx/xvDP/luFuZPLccmIQk5wpAHPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKHMZjMmTpwIs9msdlc0g5nFiJ6DKPWJUgdRMjR6G9HobcSqulVpbXdV3So0ehv7vb0kSbCYjLCZjbCYjJAkKYm9o3PheZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFu/JQRlL7/fkICIi0ovq56tVbX/vvL2qtk9EREREBCT3nhxE6abme7m8koMoQwUCAWzevBmBQEDtrmgGM4sRPQdR6hOlDqJkSvdHb/hRH23jeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFic5iDJUJBLBkSNHEIlE1O6KZjCzGNFzEKU+UeogSqZ0r/bE1aW0jedR0hIer/rAcVYHc08cM9NHBqLUKEodlFpcrooyFperIiIi0gcuV0VERERExOWqSNu4XBUR9RCNRtHU1IRoNKp2VzSDmcWInoMo9YlSB1GyqPWxG37cR7t4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGpxUkOogzl8Xjw7LPPwuPxqN0VzWBmMaLnIEp9otRBlDSKAYpsSm+TsglQ+OuwVvE8SlrC41UfOM7qYO6JY2b6yECUGkWpg1KLy1VRxtL7clWKoiAYDMJisUDiouF9wsxiRM9BlPpEqYMoGR5e9zYiUQXrm5+A3/hR2tq1RUehtvhHePirl6WtTUoenkdJS3i86gPHWR3MPXHMLHMzSOZyVZlaY6JEqUMP1HwvN70flyOiPpMkCVarVe1uaAozixE9B1HqE6UOomRwmooRMciwKyPgR/omObKV4XBmFaWtPUounkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQavH6fKIM5Xa78eSTT8LtdqvdFc1gZjGi5yBKfaLUQZQsRknCIGVaWtscpFwEIz8Nplk8j5KW8HjVB46zOph74piZPjIQpUZR6qDU4pUcRBnKarVi5syZnK1OADOLET0HUeoTpQ6iZJh/6TAAQPH7Viw7NBYt4QMpb7M4ayyuGz0FX7tgSMrbotTgeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFu/JQRlL7/fkICIi0pt/ftyK1Qc2YEP7Iylv66pBP8HcsVfhkhGFKW+LiIiIiKgvknlPDqJ0U/O9XC5XRZSh/H4/1q9fD7/fr3ZXNIOZxYiegyj1iVIHkaIoCEai8IeiCEaiGMjnZ0YNduI862RUWS9NYg97qrJeivOskzG6xJnSdii1eB4lLeHxqg8cZ3Uw98QxM31kIEqNotRBqcXlqogylCzLcLlckGVZ7a5oBjOLET0HUeoTpQ7SpxZPEPUnPWjqDKDZE0QgHI0/Zs0yothpQUmuFaNLnCh0WPq83yKnBWX5NkyX70Djyf0IKh1J77tFysf0vDtQlm9LqG+UeXgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanF5aooY3G5KiIiosxyqMWLHUc70Njx+aeoFEVBWPFDViIwSCZkSTZIp9zMuyzfhqmVgzCsMLvPbbyy5zjaQkfw15YHEZW6ktZ/o5KNrxY9jAJzJeZMKutzn4iIiIiI0oHLVZGWqfleLq/kIMpQkUgEDQ0NKC8vh8nE/1X7gpnFiJ6DKPWJUgfpgz8Uxea6Zhxs8gAA2kJHcMDzFppDH8MjH0FU8sWfa1TscBoqUWwegfOdM4GOCjR2NGJMiRMzRxfDZjaeta2qIgfGlDhxsKkSX8n/GTZ0/BIRyTXgGkxKHq7K/w8UmCsxpsTJCQ4B8DxKWsLjVR84zupg7oljZvrIQJQaRamDUov35CDKUF6vF88//zy8Xq/aXdEMZhYjeg6i1CdKHSS+Fk8Qf9h6FAebPDjm34G/NP0Er7T+O+qDr8KlfHjaBAcARCUfXMqHqA++ipdbf4y/NP0Ex/w7cbDJgz9sPYoWT/Ccbc4cXQyHxYRSexVm5/8KudFpA6ohNzoNs/N/hVJ7FRwWE2aOLh7Q/igz8DxKWsLjVR84zupg7oljZvrIQJQaRamDUovLVVHG4nJVRERE6mrxBPHSzga4gi78s+N/cTT4z37vq8JyCS7J/y7yLHm4YXI5ipxnvx9Gd9uBcBT+UAQ7Wt5Bo7IWPsNHfW7TLo9EmXQNphRdDJvZBGuWsU9tExERERGpgctVkZZxuSoiIiIiyij+UBQv727Ecd8nWN/6CwQGeBPwo8F/4uTJD1Fb+F94ebeEW6ZXnHXpqiKnBTdMLsfLuxsBAJcOuQxN7qk45PoEbdJW+KUj8BuOQj7lShKDYodNroBNqUSBMh1VecNRkmOFJElwWEyYM6mMExxERERERESC4XJVRBmqs7MTjz76KDo7O9XuimYwsxjRcxClPlHqIHFtrmvGMe/HWNv64IAnOLoFlA6sbf0vHPN+gs11zed8fpHTglumV2BMiROSJKE014YvDR2HSwu+janW+3EhnsLY4FMYFfhvjA0+hQvxFKZa78elBd/Gl4aOQ2lu7CboY0qcuGV6BSc4BMPzKGkJj1d94Dirg7knjpnpIwNRahSlDkotXslBlKHsdjvmzJkDu92udlc0g5nFiJ6DKPWJUgeJ6VCLF3uOH8ebbb9ESOlK6r5DShfebPsF7MbfYHSJE1VFjrM+32Y2YlZ1KUaXOLHjaAcaO/wYlG3BoOzuCYv8M25blm/D1MpBvMm4oHgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanFSQ6iDJWVlYUxY8ao3Q1NYWYxoucgSn2i1EFi2nG0A1s7l8Int6dk/z65HVs7n8Pwow+cc5KjW1WRA1VFDrR6g6hr8qCpM4BmTxCBcDT+HGuWEcVOC0pyrRhd4kShg1duiIznUdISHq/6wHFWB3NPHDPTRwai1ChKHZRaXK6KKEP5fD68/PLL8Pl8534yAWBm3UTPQZT6RKmDxNPiCWLribdxyP92Sts55P8Htp54G63eYELbFTosuGREIeZOLsf3Z1RhweXD8f0Zwz/7bxXmTi7HJSMKOcGhAzyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiJAcRERGRznX6w/F/u491YI/nL2lp933PX7DraP/v9yFJEiwmI2xmIywmIyRJSmLviIiIiIiISAskRVEUtTtB1Jv9+/dj/Pjx8e/37duHcePGqdgjIiIiMT2xoT7+9Y7j+/EBHkxb2xfg5/jDvDlpa4+IiIiIKFM1ehtRu7q218fWz12PMkdZmntE1HdqvpfLKzmIMlQ4HMbBgwcRDofV7opmMLMY0XMQpT5R6iAxeCLN8ESa4Q6fRENkS1rb/jSyBfzMDfUHz6OkJTxe9YHjrA7mnjhmpo8MRKlRlDootTjJQZShuOZg4phZjOg5iFKfKHWQGP7cfGfs38m70CrvSmvbrfJOhKJyWtskMfA8SlrC41UfOM7qYO6JY2aZm0GZowx75+3t9V+iV3Fkao2JEqUOSi0uV0UZi8tVERERpUf189UAAEU2AQAkQyRtbSuyCdu/+R7sFlPa2iQiIiIiIqLk4nJVRERERJQB5LROcACxCZWAzE9lERERERERUf9wkoMoQ7lcLjz00ENwuVxqd0UzmFmM6DmIUp8odZBgJLWWjUrvxAqJgedR0hIer/rAcVYHc08cM9NHBqLUKEodlFpcrooylt6Xq4pEImhoaEB5eTlMJi7h0RfMLEb0HESpT5Q6SAzdy1WpZes3tyI7K1vVPpD28DxKWsLjVR84zupg7oljZvrIQJQaRalDD9R8L5eTHJSx9D7JQURElC6nTnIoigFSGq/oUBQD9s7bA0mS0tYmERERERERJRfvyUFEPXR1dWHlypXo6upSuyuawcxiRM9BlPpEqYPEsH7u+vi/8QXpvaqjunACJzioX3geJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanFa3yIMpTBYEBeXh4MBs5F9hUzixE9B1HqE6UOEkOZoyz+9cVlU7G//f20tX3xkKlpa4vEwvMoaQmPV33gOKuDuSeOmekjA1FqFKUOSi0uV0UZi8tVERERpV99Rz3mvjo3be2tuXYNRuaPTFt7RERERERElHxcroqIegiFQtizZw9CoZDaXdEMZhYjeg6i1CdKHaQ+WZbR5u/ECU8r2vydkOWB3U9jVP4oXFh8YZJ6d3aTB0/mBAf1G8+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLU4yUGUoQKBADZv3oxAIKB2VzSDmcWInoMo9YlSB6ljW8N+3LNpEa596duY9sIlmLnqUnxlzeWYuepSTHvhElz70rdxz6ZFeK9xf7/2f3v17Unuce/mj5+flnZITDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiclWUsbhcFRER0elW7X8Dz3+4HMd8fZ+8GGofh1vH3Y5/Of+qhNq6d8u9WHd4XaJd7LPZw2bjsZrHUrZ/IiIiIiIiSh8uV0VEPSiKgkAgAM5D9h0zixE9B1HqE6UOSo8TnjZ8+9Uf4Oc77k5oggMAjvn24+H3foxvv/oDnPC09Xm7n0z7CYptxYl2tU+KbcV4YNoDKdk36QfPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKE6Ozvx2GOPobOzU+2uaAYzixE9B1HqE6UOSr2tDftw3SvXY0/H3we0nz0df8d1r1yPbQ19myTJs+ZhyVVLkGPOGVC7X5RjzsGSq5Ygz5qX1P2S/vA8SlrC41UfOM7qYO6JY2b6yECUGkWpg1KLy1VRxtL7clXRaBQtLS0oKiqC0WhUuzuawMxiRM9BlPpEqYNSa2vDPvx/f/8ugrI3afu0GBx4+vKluKi8b6+p9R31uHPDnWj2Nw+47WJbMZZctQSj8kcNeF9EPI+SlvB41QeOszqYe+KYmT4yEKVGUerQAzXfy+UkB2UsvU9yEBGRvp3wtOG6V65HV7Q96fvONg7CX76+BqXOgj493xVwYdH2RVh7eG2/25w9bDYemPYAr+AgIiIiIiISEO/JQUQ9eL1erFixAl5v8j69KzpmFiN6DqLUJ0odlDr3/v2hlExwAEBXtB33/v2hPj8/z5qHx2oew9NXPI3Jgycn1NbkwZPx9BVP47GaxzjBQUnF8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLZPaHSCi3plMJlRWVsJk4v+mfcXMYkTPQZT6RKmDUmPV/jcGfA+Oc9nT8Xes2v8Gbhx3dZ+3qSmvQU15DT7q+AjrDq/D3ta9+LDtQ7hD7vhzcsw5OL/gfFQXVmPWsFkYmT8yFd0n4nmUNIXHqz5wnNXB3BPHzPSRgSg1ilIHpRaXq6KMxeWqiIhIr67588045uvbDcIHYqh9PF7/lz8NaB+KosAX8SEUDcFsNMNuskOSpCT1kIiIiIiIiLSAy1URUQ/BYBBbt25FMBhUuyuawcxiRM9BlPpEqYOSb1vD/rRMcADAMd8+vNc4sLYkSUJ2VjbyrfnIzsrmBAelDc+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLU4yUGUoUKhEPbs2YNQKKR2VzSDmcWInoMo9YlSByXPwdajONh6FMveH9iVFYla+v7KtLZHlCw8j5KW8HjVB46zOph74piZPjIQpUZR6qDU4nJVlLG4XBUREelJ9fPVAAA57IQhy5O2duWwE/vveCdt7REREREREZF4uFwVEfUgyzJcLhdkWVa7K5rBzGJEz0GU+kSpg5JLUQDJ6E9rm5LRz+OQNInnUdISHq/6wHFWB3NPHDPTRwai1ChKHZRanOQgylButxuLFy+G2+1WuyuawcxiRM9BlPpEqYOSTDFAMkTS2qRkiMAV9Ka1TaJk4HmUtITHqz5wnNXB3BPHzPSRgSg1ilIHpRaXq6KMpfflqmRZhtvtRk5ODgwGzkf2BTOLET0HUeoTpQ5Knurnq6HIprRPcgDAm9f/HaXOwrS3SzQQPI+SlvB41QeOszqYe+KYmT4yEKVGUerQAzXfyzWlpRUiSpjBYEBeXp7a3dAUZhYjeg6i1CdKHZRs6lyCbTGZVWmXaCB4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGpxekvogzl8XjwzDPPwONJ381ntY6ZxYiegyj1iVIHJZkkQ5HT+xkURTYhz+JIa5tEycDzKGkJj1d94Dirg7knjpnpIwNRahSlDkotTnIQZSiz2YyJEyfCbOana/uKmcWInoMo9YlSByXPn6/5K1766l9Rbh+d1nbL7aN52TdpEs+jpCU8XvWB46wO5p44ZqaPDESpUZQ6KLV4Tw7KWHq/JwcREenTPZsWYX3DH9PWXm35t/CrK+5PW3tEREREREQkHjXfy+XH9ogyVCAQwObNmxEIBNTuimYwsxjRcxClPlHqoOS7YfS1aW3vxjFfS2t7RMnC8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLU5yEGWoSCSCI0eOIBKJqN0VzWBmMaLnIEp9otRBgKIo8Ia86Ah0wBvyYqAXyV5UPg5D7en5tMtQ+3hMLeNVkqRNPI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1OJyVZSxuFwVERFlqvqOeqw7vA57W/fiQNsBuEPu+GM55hyMLRiL6sJqzB42GyPzRya8/1X738DPd9ydzC736sGpv8G/nH9VytshIiIiIiIisXG5KiLqIRqNoqmpCdFoVO2uaAYzixE9B1HqE6UOvdnSsAXz1s3D3FfnYunepdh2YttpExwA4A65se3ENizduxTXv3o95q2bhy0NWxJq58ZxV2Ni/uXJ7HoPE/Mv5wQHaRrPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMlBlKE8Hg+effZZeDwetbuiGcwsRvQcRKlPlDr0whVw4d4t92LhpoXY1bwroW13Ne/Cwk0Lcd+W++AKuPq83eOX/xTZxkEJ9rRvso2D8PjlP03JvonShedR0hIer/rAcVYHc08cM9NHBqLUKEodlFpcrooylt6Xq1IUBcFgEBaLBZIkqd0dTWBmMaLnIEp9otShB3XtdViwcQGa/c0D3lexrRhLrlqCUfmj+vT8bQ37sfDvdyAoewfcdjeLwYGnL1+Ki8r185pKYuJ5lLSEx6s+cJzVwdwTx8z0kYEoNYpShx5wuSoi6kGSJFitVp7AE8DMYkTPQZT6RKlDdHXtdZj/xvykTHAAQLO/Gbetvw31HfV9ev5F5ePw9OVLk3ZFR7ZxECc4SBg8j5KW8HjVB46zOph74piZPjIQpUZR6qDU4iQHUYZyu9148skn4Xa7z/1kAsDMuomegyj1iVKHyFwBFxZsXNDjnhsD5Q65ceeGO/u8dNVF5ePwl6+vGfA9OibmX46/fH0NJzhIGDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiJAdRhrJarZg5cyasVqvaXdEMZhYjeg6i1CdKHSJ7ZPsjSbuC44ua/c1YtH1Rn59f6izA7699Cv815dcYah9/7g1OMdQ+Hg9O/Q1+f+1TKHUWJNpVoozF8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLd6TgzKW3u/JQURE6tnSsAULNy1MeTtPX/E0asprEt7uvcb9WHXwNdR3fIhG/0en3bPDYnCgzDYSo/LPx41jvoapZXztJCIiIiIiotTiPTmIqAe/34/169fD7/er3RXNYGYxoucgSn2i1CGq5/Y+l5Z2lu1b1q/tppaNw6+uuB+v3PB/2P6tf+KtG/+JN6//O9668Z/Y/q1/4pUb/g+/uuJ+TnCQ0HgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQallUrsDRNQ7WZbhcrkgy7LaXdEMZhYjeg6i1CdKHSKq76jHruZdaWlr58md+KjjI4zMH9nvfRgMBgyy5SSxV0TawPMoaQmPV33gOKuDuSeOmekjA1FqFKUOSi0uV0UZi8tVERFROjV6GwEAy/ctx4t1L6at3ZtH34xbx9+KMkdZ2tokIiIiIiIiSiYuV0VEPUQiERw5cgSRSETtrmgGM4sRPQdR6hOlDpHUrq5F7eratE5wAMDKupWoXV2b1jaJRMDzKGkJj1d94Dirg7knjpnpIwNRahSlDkotTnIQZSiv14vnn38eXq/33E8mAMysm+g5iFKfKHUQEamF51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuijIWl6siIqJ0qn6+WtX2987bq2r7RERERERERP3F5aqIiIiIiIiIiIiIiIgSxEkOogzV2dmJRx99FJ2dnWp3RTOYWYzoOYhSnyh1EBGphedR0hIer/rAcVYHc08cM9NHBqLUKEodlFqc5CDKUHa7HXPmzIHdble7K5rBzGJEz0GU+kSpQ0SKbBS6PSJR8DxKWsLjVR84zupg7oljZvrIQJQaRamDUov35KCMxXtyEBFROj287m0oioK1TU/CZ6xPW7v26CjMLvkRfjr7srS1SURERERERJRMvCcHEfXg8/nw8ssvw+fzqd0VzWBmMaLnIEp9otQhEqepGHZjEWzK8LS2a1eGw24sSmubRCLgeZS0hMerPnCc1cHcE8fM9JGBKDWKUgelFic5iIiIiD6jKEBudGpa28yJTgOvqyUiIiIiIiLqHy5XRRmLy1UREVE6PbGhHhFZxo4jHThi/hV8ho9S3qZdHonK0D2YUpmPe64ek/L2iIiIiIiIiFKBy1URUQ/hcBgHDx5EOBxWuyuawcxiRM9BlPpEqUM0RkmCySChIHJ1WtoriNTCZJBglKS0tEckEp5HSUt4vOoDx1kdzD1xzEwfGYhSoyh1UGpxkoMoQ3HNwcQxsxjRcxClPlHqEMn8S4fh9suqMKu6FDXlNSjERSltrxDTUVN+GWZVl+L2y6pS2haRiHgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanF5aooY3G5KiIiUsM/P27F9sPtaPK04k33fYhIrqS3YVLy8JWcx1DiLMS0YYNwyYjCpLdBRERERERElC5croqIiIgoQ4wa7AQADHYUYHjkRzAo9qTu36DYMTzyIwx2FAAARpc4k7p/IiIiIiIiIj3hJAdRhnK5XHjooYfgcrnU7opmMLMY0XMQpT5R6hBRkdOCsnwbJEnCsNwRqAzdDZOSl5R9m5Q8VIbuRlXeCEiShLJ8GwodlqTsm0hveB4lLeHxqg8cZ3Uw98QxM31kIEqNotRBqcXlqihj6X25qkgkgoaGBpSXl8NkMqndHU1gZjGi5yBKfaLUIapDLV68suc4FEXBvuNudAZdaLOuQhu29nufBZiOgsCNyLXkYfyQHEiShDmTyjCsMDuJPSfSD55HSUt4vOoDx1kdzD1xzEwfGYhSoyh16IGa7+VykoMylt4nOYiISF3r9p7AwSYP/KEI9h13IyoriFj3w5X1JprDB/q8n+KsscgPXw1j4HwYDRLGD8mBzWzCmBInZlWXprACIiIiIiIiovTgPTmIqIeuri6sXLkSXV1dandFM5hZjOg5iFKfKHWIbOboYjgspviEhNEgwRQYh8FdP0aN/VFMyL4eQ8wTYJYcp21nlhwYYp6ACdnXo8b+KAZ3/Tg+wTGmxAmb2QSHxYSZo4tVqoxIDDyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiNT5EGcpgMCAvLw8GA+ci+4qZxYiegyj1iVKHyGxmI+ZMKsNLOxsAAOOH5ODjli50BSNobR+ELONsjHWY4XCaYM4KQ5EikBQTQuEseIMRtLpCaI3KABRkW0wYUZQNm9kEa1ZsvzazUd0CiTSO51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuijIWl6siIqJM0OIJ4uXdjfAGI1AUBU3uAE64AghF5XNuazYaUJpnRUmOFZIkwWExYc6kMhQ5ebNxIiIiIiIiEgeXqyKiHkKhEPbs2YNQKKR2VzSDmcWInoMo9YlShx4UOS24ZXoFxpQ4IUkSSnNtmDQ0D6MGO1DstCDbYoRBij3XIAHZFiOKnRaMGuzApKF5KM21QZJiS1XdMr2CExxEScLzKGkJj1d94Dirg7knjpnpIwNRahSlDkotTnIQZahAIIDNmzcjEAio3RXNYGYxoucgSn2i1JEJFEWBN+RFR6AD3pAXqbhI1WY2YlZ1Kb4+cQjK8mOTFoOyLagqcqC6LA/ThhVgelUBpg0rQHVZHqqKHBiUbYEkSSjLt2HOpDLMqi7lElVEScTzKGkJj1d94Dirg7knjpnpIwNRahSlDkotLldFGYvLVRER0ZnUd9Rj3eF12Nu6FwfaDsAdcscfyzHnYGzBWFQXVmP2sNkYmT8y6e23eoOoa/KgqTOAZk8QgXA0/pg1K3YlR0muFaNLnCh08MoNIiIiIiIiEpua7+XyxuNEGUpRFASDQVgssU8C07kxsxjRcxClPlHqSLctDVvw3N7nsKt51xmf4w65se3ENmw7sQ1L9y7FhcUX4vbq21FTXpO0fhQ6LCgcEZu8UBQFoagMWQYMhth9ODimRKnH8yhpCY9XfeA4q4O5J46Z6SMDUWoUpQ5KLS5XRZShOjs78dhjj6Gzs1PtrmgGM4sRPQdR6hOljnRxBVy4d8u9WLhp4VknOHqzq3kXFm5aiPu23AdXwJX0vkmSBIvJCJvZCIvJyF+8idKE51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuijKW3perikajaGlpQVFREYxGruHeF8wsRvQcRKlPlDrSoa69DnduvBMt/pYB76vIVoRnrnoGo/JHJaFnRKQmnkdJS3i86gPHWR3MPXHMTB8ZiFKjKHXogZrv5XKSgzKW3ic5iIgoNsFx2/r58ITd535yHzmzcrBi1nJOdBAREREREREliZrv5XK5KqIM5fV6sWLFCni9XrW7ohnMLEb0HESpT5Q6UskVcOFfN9yZ1AkOAPCE3fjem99PydJVRJQ+PI+SlvB41QeOszqYe+KYmT4yEKVGUeqg1OIkB1GGMplMqKyshMlkUrsrmsHMYkTPQZT6RKkjlX6+9ZdoCwx8iaretAVa8Iutj6Rk30SUHjyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiclWUsbhcFRGRfm1p2IKFmxamvJ2nr3gaNeU1KW+HiIiIiIiISGRcroqIeggGg9i6dSuCwaDaXdEMZhYjeg6i1CdKHany9K7/TUs7v9udnnaIKPl4HiUt4fGqDxxndTD3xDEzfWQgSo2i1EGpxUkOogwVCoWwZ88ehEIhtbuiGcwsRvQcRKlPlDpSob6jHh927ElLW/vb9+Cjjo/S0hYRJRfPo6QlPF71geOsDuaeOGamjwxEqVGUOii1uFwVZSwuV0VEpC+N3kYAwO92PYdXD/85be3OqfoXfH/S7ShzlKWtTSIiIiIiIiKRcLkqIupBlmW4XC7Isqx2VzSDmcWInoMo9YlSRzLVrq5F7epavPzxX9Pa7pqP/ora1bVpbZOIBo7nUdISHq/6wHFWB3NPHDPTRwai1ChKHZRanOQgylButxuLFy+G2+1WuyuawcxiRM9BlPpEqSMVJCm9lyGnuz0iSg6eR0lLeLzqA8dZHcw9ccxMHxmIUqModVBqcbkqylh6X65KlmW43W7k5OTAYOB8ZF8wsxjRcxClPlHqSKbq56uhKIAkpb9tRQH23bo3/Q0TUb/xPEpawuNVHzjO6mDuiWNm+shAlBpFqUMP1Hwv15SWVogoYQaDAXl5eWp3Q1OYWYzoOYhSnyh1JJ1iACQVLkNW+MsykdbwPEpawuNVHzjO6mDuiWNm+shAlBpFqYNSi3/RE2Uoj8eDZ555Bh6PR+2uaAYzixE9B1HqE6WO5FPrVxP+SkSkNTyPkpbweNUHjrM6mHvimJk+MhClRlHqoNTiX/REGcpsNmPixIkwm81qd0UzmFmM6DmIUp8odSSfDEVO74WmsfZ4EzsireF5lLSEx6s+cJzVwdwTx8z0kYEoNYpSB6UW78mRIqFQCC+++CL+9Kc/Yf/+/Th58iTy8/MxbNgwXH/99bj11ltRWFiY1Daj0Sj279+P9957Dzt27MB7772HDz74AOFwGAAwY8YMbN68ud/737RpE55//nls3boVjY2NsFgsKC8vx9VXX43bb78dY8aMSVIlMXq/JwcRkd48vO5tKIqCtU1PwmesT1u79ugozC75EX46+7K0tUlEREREREQkEjXfy+WVHClw8OBBXHTRRfjOd76DdevW4dixYwgGg2hqasK7776Le+65B+PGjcPatWuT1ubLL7+MnJwcXHDBBbjjjjvwzDPPYOfOnfEJjoFwu924+eabceWVV+L3v/89PvroI/h8PnR0dGDv3r349a9/jQkTJmDRokVJqIS6BQIBbN68GYFAQO2uaAYzixE9B1HqE6WOZPrhzIvwo8unY0LRBWlt94KiifjR5dPT2iYRDRzPo6QlPF71geOsDuaeOGamjwxEqVGUOii1OMmRZA0NDbjiiiuwZ88eAIAkSZgxYwbmz5+Pr33ta7DZbACA5uZmzJkzB3/729+S0q7L5YLP50vKvk4VDodx3XXX4cUXX4z/bPz48fjOd76DG2+8EaWlpfHn/eQnP8HDDz+c9D7oVSQSwZEjRxCJRNTuimYwsxjRcxClPlHqSKZcWxZybVm4amhtWtu9cmgtcm1ZaW2TiAaO51HSEh6v+sBxVgdzTxwz00cGotQoSh2UWlyuKslqamrwj3/8AwBQUVGBV155BRdc8PknUltbW3HzzTdj06ZNAIBBgwbhk08+QV5e3oDaXbFiBW677TYMHjwYU6dOjf974403sHjxYgD9W67qwQcfxM9//nMAgNVqxfLly3HzzTfHHw+FQvjP//xP/OpXvwIQm9T5+9//jhkzZgyoHoDLVRER6VWLJ4hv/PXbOBk6kPK2Sszn409f+z8UOiwpb4uIiIiIiIhIVFyuShBr166NT3CYzWa89tprp01wAEBhYSFeeeUVVFVVAQDa29vx+OOPD7jt2tpaHD16FE1NTXjttdfw4IMPYtasWQOaPGlubsZvfvOb+PdPPvnkaRMcQKzOxx9/HDfddBMAQFEUPPDAA/1ukz4XjUbR1NSEaDSqdlc0g5nFiJ6DKPWJUkcqFDktuLzkprS0NbPkJk5wEGkUz6OkJTxe9YHjrA7mnjhmpo8MRKlRlDootTjJkURPP/10/Ot58+ahurq61+dlZ2eftqzTs88+O+BLrkpKSjB06NAB7eOLnn/+eXR1dQEARo0ahe9973tnfO7jjz8OgyF2OL377rvYvXt3UvuiRx6PB88++yw8Ho/aXdEMZhYjeg6i1CdKHanyjfFXo8p2aUrbqLJdhm9WX53SNogodXgeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanF5aqSxOv1orCwEMFgEADwzjvv4OKLLz7j8wOBAIqKiuD1egEAmzZtwpe//OWk9+tnP/sZHnroIQCJL1d1ySWX4J133gEAPPLII+e8QuOqq67Cxo0bAQD/9V//NeD7c+h9uSpFURAMBmGxWCBJktrd0QRmFiN6DqLUJ0odqfTS7jr8at/34JPbk75vu2EQ7hn/P7hh0uik75uI0oPnUdISHq/6wHFWB3NPHDPTRwai1ChKHXrA5aoE8M4778QnOLKzszF16tSzPt9qtZ42CZKsG5AnSyAQwNatW+Pfz5w585zbXH755fGvM60eLZIkCVarlSfwBDCzGNFzEKU+UepIpWvGjcCc0p/CLDmSul+z5MCc0p/imnEjkrpfIkovnkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQanGSI0kOHPj85qjV1dUwmUzn3ObCCy/sdftMUFdXB1mWAcROJpMmTTrnNplcjxa53W48+eSTcLvdandFM5hZjOg5iFKfKHWkks1sxB0XXYLrSn4Bu2FQUvZpNwzCdSW/wB0XXQKb2ZiUfRKROngeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUQanFSY4kqauri39dUVHRp21OvYfGwYMHk96ngTi1nuLiYlit1nNuc2o97e3taGlpSUnf9MJqtWLmzJl9yp5imFmM6DmIUp8odaRakdOCf734UnyrfDGqbJcNaF9VtsvwrfLF+NeLL0WRkzcbJ9I6nkdJS3i86gPHWR3MPXHMTB8ZiFKjKHVQap37cgPqk7a2tvjXgwcP7tM2JSUl8a/b25O/3vhADLQeIFZTUVFRUvulJ2azGRMnTlS7G5rCzGJEz0GU+kSpIx2KnBZ895JqjKz7L2w4shl7vS+jKfRhn7cvMZ+PasccXFU5EzNHF/MKDiJB8DxKWsLjVR84zupg7oljZvrIQJQaRamDUotXciRJ9w3EAcBms/Vpm1Ofd+r2mWCg9XxxHwNhtVrhcMTWY49Go3C5XFAUBUDskrVQKAQA8Pv96OrqAgBEIhG4XK74Pjo7OxEOhwEAPp8PPp8PABAOh9HZ2Rl/nsvlQiQSAQB0dXXB7/cDAEKhUPyyOEVR4HK5EI1G43UGAgEAQDAYhMfjAQDIsgyXyxVf9svj8cTv2xIIBOL5nKkmv9+Pv/71r2htbRWmplSPU2dnJ1555RX4/X5haurPOHV1deGVV16J90mEmk4dJ7/fj1dffTXeJ63WJPo4Jbsmm9mILw214/uTa/Hdkb/GdXmPY6L1egwxT4BNyYEt8vlrUG6kCGWmCzDBcT2uy3sM8yt+ibsuvhZXjC5AONCVMTWJOE6siTWlsyaPxxN/3RelJhHHiTV1xrd/5ZVXTvs9QOs1iThOA62p+2+45uZmYWrSwji1trbir3/9K/x+vzA1pXqcWlpasH79eni9XmFq4u8RPcfp5MmTeP311+H3+zVdU1NTE9avXw+/3y/kOIlYkxo4yZEk3QcMEJth7AuL5fOlMroPzEwx0HqA5NU0ffp03HDDDQCAlpYWLF68OP4/3rJly/Dhh7FP87711lt47bXXAAANDQ1YvHhxfB9LlizBJ598AgB488038eabbwIAPvnkEyxZsiT+vMWLF6OhoQEA8Nprr+Gtt94CAHz44YdYtmwZgNhJYfHixfHluF566aX4Tdp3796NF154AUDsf/zFixfHTzQvvPACdu/eDQDYunUrXnrppbPWJMsyDh06hDfeeEOYmlI9TgcPHsS+ffsgy7IwNfVnnDo7O7Fnz574i6EINZ06TrIs48MPP8QHH3yg6ZpEH6dU1SS7T+LGKedhXNiHy0Ln43ujHsM3sn+Ba058Hd8cvBzfLvkDrmqYgW8U/hALLrgLIzwu5Ls/xrDC7IytScRxYk2sKV017dmzJ/7HmSg1iThOrCn2ZsKePXuEqknEcRpoTbIs49ixY/G+ilCTFsbpjTfewKFDh+J/J4hQU6rHqftDYyLVxN8jeo7T8uXLcfz4cciyrOmann322fgb8iKOk4g1qUKhpJg9e7YCQAGg3HfffX3aZu3atfFtHA5HSvr105/+NN7GjBkz+rzd448/Ht/uoosu6tM2Pp8vvg0AZceOHf3sdcy+ffsUAIrValUcDoeyb98+JRKJKB0dHYosy4qiKEpnZ6cSDAbj7Xu9XkVRFCUcDisdHR3xfblcLiUUCimKoihdXV1KV1eXoiiKEgqFFJfLFX9eR0eHEg6HFUVRFK/Xq/h8PkVRFCUYDCqdnZ2KoiiKLMtKR0eHEolEFEVRFI/Ho/j9fkVRFCUQCChut1tRFEWJRqNKR0eHEo1GFUVRFLfbrQQCAUVRFMXv9ysej0dRFIU1sSbWxJpY0wBrCgaDysnWNsUXjCiBcERpb2/XfE0ijhNrYk2siTWxJtbEmlgTa2JNrIk1sSZxa+p+L7f73759+5R0kRTls+tNaEBuuukmrFq1CgDwgx/8oE+zV2vWrMHcuXMBxO5nceLEiaT362c/+xkeeughAMCMGTOwefPmPm23ZMkSLFiwAAAwYcIEvP/+++fcpr29HQUFBfHvDx48iNGjRyfe6c/s378f48ePj3+/b98+jBs3rt/705pIJIKGhgaUl5fDZOLtc/qCmcWInoMo9YlSBxGRWngeJS3h8aoPHGd1MPfEMTN9ZCBKjaLUoQdqvpfL5aqS5NQ390+ePNmnbZqamuJfDxo0KOl9GoiB1gNkXk1a4/V68fzzz2fc/VoyGTOLET0HUeoTpY5uiqLAG/KiI9ABb8gLfoaCiFJNtPMoiY3Hqz5wnNXB3BPHzPSRgSg1ilIHpRav5EiSxYsX40c/+hGA2D0k3n333XNuc//99+Oxxx4DAFx//fVYvXp10vvV3ys53n//fUycOBEAIEkSfD4frFbrWbdZv349Zs2aBSA2wdHW1tbvfgO8koOIKNPVd9Rj3eF12Nu6FwfaDsAdcscfyzHnYGzBWFQXVmP2sNkYmT9SxZ4SERERERERUSqp+V4ur/FJkrFjx8a/3rt3LyKRyDkvodq1a1ev22eC0aNHw2AwQJZlKIqCPXv2YPr06WfdJpPrISKi5NnSsAXP7X0Ou5p3nfE57pAb205sw7YT27B071JcWHwhbq++HTXlNWnsKRERERERERGJjstVJcmXvvQlWCwWAEBXVxd27Nhx1ucHg8H43e0B4Mtf/nJK+5coq9V62qRGX64Aeeutt+JfZ1o9WtTZ2YlHH30UnZ2dandFM5hZjOg5iFKfFutwBVy4d8u9WLhp4VknOHqzq3kXFm5aiPu23AdXwJWaDhKRrmjxPEr6xeNVHzjO6mDuiWNm+shAlBpFqYNSi5McSeJwOHDFFVfEv1+xYsVZn79mzRp4PB4AsaWdamoy75Otc+bMiX99rno+/fRTbNq0qddtqX/sdjvmzJkDu92udlc0g5nFiJ6DKPVprY669jrMfXUu1h1eN6D9rD28FnNfnYv6jvok9YyI9Epr51HSNx6v+sBxVgdzTxwz00cGotQoSh2UWpzkSKIFCxbEv16xYgX279/f6/N8Ph8efPDB+Pff+973zrm0lRrmzZuH7OxsAEBdXR2WLl16xufed999iEajAICLL74YF154YVr6KLKsrCyMGTMGWVlZandFM5hZjOg5iFKfluqoa6/D/Dfmo9nfnJT9Nfubcdv62zjRQUQDoqXzKBGPV33gOKuDuSeOmekjA1FqFKUOSi1OciTRNddcg8suuwxAbDmqr371q/jggw9Oe05bWxvmzJmDjz/+GEDsKo777ruv1/0dOXIEkiTF/53raopkKy4uxo9//OP49z/4wQ+watWq054TDodx//33409/+lP8Z4sWLUpbH0Xm8/nw8ssvw+fzqd0VzWBmMaLnIEp9WqnDFXBhwcYFp91UPBncITfu3HAnl64ion7TynmUCODxqhccZ3Uw98QxM31kIEqNotRBqZV5lw9o3B//+EdMmzYNJ06cwJEjRzBx4kTMmDEDw4cPR0tLCzZu3Bj/n9JkMmHVqlXIy8tLStuzZ8/G8ePHT/tZU1NT/OsdO3Zg4sSJPbZbu3YthgwZ8v+zd+fxUZb3/v/fs2RmspKEJIRFSEAWlaggUNzQVm0BraJYl1bF7RytntNfTzdt++1ie6q1p63anlbtEXcr4q6nYCt6kLZWXBALyuLCYgIhAbInk8nM3L8/pkwTs06SyT1z3a/n45GHk8w993V9PteVe8x8uK+rx3N+73vf01//+le9/PLLamtr04UXXqj//M//1OzZsxUMBrVu3Trt3bs3fvxNN92kU045ZVjiAQDY7+bXbx62Ozg+qaatRre8fotuXXBrUs4PAAAAAADM57Isy7K7E6bZunWrLr74Ym3cuLHXY4qLi3XffffpzDPP7PWYnTt3qry8PP79fffdp8svv7zX48vKyrRr166E+7tjxw6VlZX1+nxDQ4P+9V//tdtdHJ1lZGTohz/8ob7zne8k3H5v3n33Xc2cOTP+/ebNm3XUUUcN2/kBAH1bV7lO1790fdLb+c1pv9GCCam3NxUAAAAAABgYOz/LZbmqJJgxY4bWr1+vBx54QAsXLtRhhx0mn8+nkpISzZ8/Xz/72c/03nvv9VngSCWjRo3SY489phdffFGXXHKJpkyZoqysLI0aNUozZ87U17/+db3zzjvDWuBAbCmwrVu3qqOjw+6upA1yFmN6HkyJLx3iWL5p+Yi0c+/me0ekHQBmSYfrKHAI89UZGGd7kPfEkTNn5MCUGE2JA8lFkSNJfD6fLrvsMq1evVq7d+9We3u79u3bp7/97W/65je/qaKion7PUVZWJsuy4l993cUhxe786Hz8QL/6uoujs9NPP10PPfSQPvjgA7W0tKi+vl6bNm3Sz3/+cx1xxBEDOgcGjjUHE0fOYkzPgynxpXoc2+u2a0PNhhFp6619b+n9uvdHpC0A5kj16yjQGfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFksVwUAI6+quUqSdN/m+/TYtsdGrN2Lpl+k787/7oi1BwAAAAAAho+dn+Wy8TgAAIhb+ORCW9pdsW0FRQ4AAAAAAJAwlqsCUlR9fb1uuukm1dfX292VtEHOYkzPgynxpXocI32fp2VJ3FwKIBGpfh0FOmO+OgPjbA/ynjhy5owcmBKjKXEguViuCinL6ctVhcNhVVZWasKECfJ6uelqIMhZjOl5MCW+VI2j4oEK29p+7YuvKTsj27b2AaSXVL2OAj1hvjoD42wP8p44cuaMHJgSoylxOAHLVQHoxuv1DnhTeMSQsxjT82BKfKbEMZxCkRBFDgADxnUU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GK5KiBFtbS0aMWKFWppabG7K2mDnMWYngdT4kvlOOy6xzPDnWFPwwDSUipfR4FPYr46A+NsD/KeOHLmjByYEqMpcSC5KHIAKcrtdis/P19uN7+mA0XOYkzPgynxpXQclltWdGRv9rSiXnldgRFtE0B6S+nrKPAJzFdnYJztQd4TR86ckQNTYjQlDiQXe3IgZTl9Tw4AsMOPVv9F4YilF2puU5vn/RFrNzMyTa9cslKZPs+ItQkAAAAAAIaHnZ/lUgIDUlQoFNLGjRsVCoXs7kraIGcxpufBlPhSNY5cb4lyM4qVZR0+ou1mW1PEP8wBkIhUvY4CPWG+OgPjbA/ynjhy5owcmBKjKXEgufg4AUhRwWBQa9euVTAYtLsraYOcxZieB1PiS+U4PC6XCq15I9pmofUp+Tz8bwmAgUvl6yjwScxXZ2Cc7UHeE0fOnJEDU2I0JQ4kF8tVIWWxXBUADJxlWWrpaFFHtEMZ7gxlZ2TL5XIlfJ6Gtg5J0vPv7NG9H31TtR1bhrur3ZRkHKErJv+XLpk/KeltAQAAAACA4WfnZ7kju6sogAGzLEvt7e3y+/2D+qDSichZjOl5MCW+4Yhje912rd6xWpv2b9KWA1vUGGqMP5fny9MRo49QRVGFFpcv1tSCqQM656jMDElSeVG2jq09Vy8eTH6R45jcc1VelJ30dgCYxZT3AzgD89UZGGd7kPfEkTNn5MCUGE2JA8nFuhBAimpoaNCtt96qhoYGu7uSNshZjOl5MCW+ocSxrnKdlq1epqXPLdU9m+7R+r3ruxQ4JKkx1Kj1e9frnk336LznztOy1cu0rnLdgNuYNiZXhwWO0+TASQn3LxGTAyfpsMBxml6am9R2AJjHlPcDOAPz1RkYZ3uQ98SRM2fkwJQYTYkDycVyVUhZTl+uKhKJqLa2VsXFxfJ4PHZ3Jy2QsxjT82BKfIOJoz5Yr5tfv1mrd6wedLuLyxfr2/O+rfxAfr/HrnzzY314oEZP7vsPtVt1g26zN35XgZaOuU1TRpfogjmHDfv5AZjNlPcDOAPz1RkYZ3uQ98SRM2fkwJQYTYnDCez8LJc7OYAU5fF4VFpaygU8AeQsxvQ8mBJfonFsO7hNS59bOqQChySt2rFKS59bqu112/s9ds6kAgXcuVo4+v/JYw3vclIeK1sLR/8/Bdy5mltWOKznBuAMprwfwBmYr87AONuDvCeOnDkjB6bEaEocSC6KHECKam5u1v3336/m5ma7u5I2yFmM6XkwJb5E4th2cJuu/OOVqmmrGZa2a9pqdMULV/Rb6JhcnKMZpbka7SvTZwt+KK+VPyzte618fbbghxrtK9OM0lz24wAwKKa8H8AZmK/OwDjbg7wnjpw5IwemxGhKHEguihxAivJ6vSorK5PX67W7K2mDnMWYngdT4htoHPXBel235rpue24MVWOoUV9+8cuqD9b3edyp00uU4/dqbNZkLS74L42KzBtSu6Mi87S44L80NmuycvxenTq9ZEjnA+BcprwfwBmYr87AONuDvCeOnDkjB6bEaEocSC725EDKcvqeHAAgSd9a960hL1HVl8Xli3Xrglv7PKa2qV1PvFWpYEdEbaGw3qx9VVXWKrW63x9wO1nRqRrvOlNzio9Xps+rQIZH5x83QcW5/qGGAAAAAAAAbMaeHAC6aW9v12uvvab29na7u5I2yFmM6XkwJb6BxLGucl1SCxxSbI+OdZXr+jymONev84+boBy/V5k+r04ad7JOyf2BpnfcpKLwImVHjpDbyuryGreVpezIESoKL9L0jpt0Su4PdNK4k5Tp8yrH76XAAWDITHk/gDMwX52BcbYHeU8cOXNGDkyJ0ZQ4kFwUOYAUFQqFtHHjRoVCIbu7kjbIWYzpeTAlvoHEsXzT8hHpy72b7+33mOJcvy6ZP0kzSnPlcrk0dlSmTph4lE4afanmBm7UbP1KR7T/StOCv9AR7b/SbP1KcwM36qTRl+qEiUdp7KhMuVwuzSjN1SXzJ1HgADBkprwfwBmYr87AONuDvCeOnDkjB6bEaEocSC6Wq0LKYrkqAE62vW67lj63dMTae+rspzS1YOqAjv2otllv7qpTVV3bgM8/viBTc8sK2WQcAAAAAAADsVwVgG6i0ajq6+sVjUbt7kraIGcxpufBlPh6i6OquUpVzVVauW3liPZn5baVqmquGtCxk4tzdMGcw3Tp8ZM0r7xQEwuzFMjwdDkmkOHRxMIszSsv1KXHT9IFcw6jwAFgWJnyfgBnYL46A+NsD/KeOHLmjByYEqMpcSC5KHIAKaqxsVF33HGHGhsb7e5K2iBnMabnwZT4eotj4ZMLtfDJhXps22Mj2p8V21Zo4ZMLE3pNUY5fJx5epKXHTdC1p0zWdZ+eomtPmfKP/07W0uMm6MTDi1SUw9JUAIafKe8HcAbmqzMwzvYg74kjZ87IgSkxmhIHkovlqpCynL5cVTQaVWNjo/Ly8uR2U48cCHIWY3oeTImvtzgqHqiwsVfSpmWbbG0fAAbKlPcDOAPz1RkYZ3uQ98SRM2fkwJQYTYnDCez8LNc7Iq0ASJjb7VZ+fr7d3Ugr5CzG9DyYEp8pcQCAXbiOIp0wX52BcbYHeU8cOXNGDkyJ0ZQ4kFyUv4AU1dTUpLvuuktNTU12dyVtkLMY0/NgSnymxAEAduE6inTCfHUGxtke5D1x5MwZOTAlRlPiQHJR5ABSlM/n07HHHiufz2d3V9IGOYsxPQ+mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBd7ciBlOX1PDgDOdGhPDsuSXK6Ra/dQe+zJAQAAAAAAEmXnZ7ncyQGkqGAwqLVr1yoYDNrdlbRBzmJMz4Mp8fUWx+Nn/q8eP/N/VZ4zs5dXJkd5ToUeP/N/R7RNABgKU94P4AzMV2dgnO1B3hNHzpyRA1NiNCUOJBdFDiBFhcNh7dy5U+Fw2O6upA1yFmN6HkyJr7c4Vr/drtVvt6ujZdKI9qejZZJWv90+om0CwFCY8n4AZ2C+OgPjbA/ynjhy5owcmBKjKXEguViuCimL5aoAONFtL26XZVn6y+5Nej/jphFrd1rHD3XixJn62menj1ibAAAAAADADCxXBaCbSCSi6upqRSIRu7uSNshZjOl5MCW+vuKIWJYyIuOVFZ06In3Jik6VNzJOEf7dA4A0Ysr7AZyB+eoMjLM9yHviyJkzcmBKjKbEgeSiyAGkqKamJt19991qamqyuytpg5zFmJ4HU+LrK45DtYbR4c+NSF9Ghxd2aRcA0oEp7wdwBuarMzDO9iDviSNnzsiBKTGaEgeSi+WqkLKcvlyVZVlqb2+X3++Xy+WyuztpgZzFmJ4HU+LrLY7bXtyucDSqN3fWSZLet+5SR+aGpPUjo+04TXVdI0maU1agb35uRtLaAoDhZMr7AZyB+eoMjLM9yHviyJkzcmBKjKbE4QQsVwWgG5fLpUAgwAU8AeQsxvQ8mBJfX3F4XC553bGf5zR/Qa7IqOT0ITJKOc3nS5K8bpc8aZ5TAM5iyvsBnIH56gyMsz3Ie+LImTNyYEqMpsSB5KLIAaSoxsZG3X777WpsbLS7K2mDnMWYngdT4ustjitPKtdVJ0/WooqxmjUxX0eOKdXE0FfkVfawtu9VtiaGvqIjx5Rq1sR8LaoYq6tOnjysbQBAMpnyfgBnYL46A+NsD/KeOHLmjByYEqMpcSC5KHIAKSoQCOjUU09VIBCwuytpg5zFmJ4HU+LrLY5RmRkalZmh8qJs+b0eFef6le06TJM7vqksd+GwtJ3lLtTkjm8q23WYinP98ns9Ki/K1qjMjGE5PwCMBFPeD+AMzFdnYJztQd4TR86ckQNTYjQlDiQXe3IgZTl9Tw4Azlbb1K6HX9sly7L09u56hSJRTSiK6oPII/qo7c+DPu/kzJN1uOdLqtzvls/j1qyJ+XK5XLr0+EkqyvEPYwQAAAAAAMAp2JMDQDdtbW164YUX1NbWZndX0gY5izE9D6bE118cxbl+jS/IlMvlUumo2L9YqT7o0Qm5X9EZhd9Rqe/IhNor9R2pMwq/oxNyv6K9Bz2SpLH5sXVNxxdkUuAAkHZMeT+AMzBfnYFxtgd5Txw5c0YOTInRlDiQXF67OwCgZ9FoVPX19YpGo3Z3JW2QsxjT85Cq8VmWpZaOFnVEO5ThzlB2RnafG6MNJI45kwpUVdemsaMCOtASUkt7WO/XNGlG6WwdVnSc6jp268O2P2t/6APt7/hIIas5/lqfK0dFGZNV5DtcUzJPVkHGREWilrZWNyoStZTt96o0L1Y8mVs2PMtgAcBIStX3A6AnzFdnYJztQd4TR86ckQNTYjQlDiQXy1UhZbFcFYBUt71uu1bvWK1N+zdpy4Etagz9cyO0PF+ejhh9hCqKKrS4fLGmFkwdVBurN+3V1uomtYXC2rwnVqDIDXg1tSRXPu8/b8i0LEthK6iI1SGPK0NeV6BLkSUUjur9miY1BcPyuF2aOS5PmT6vZpTmalHF2MEnAQAAAAAAOB7LVQHoJhwOa+fOnQqHw3Z3JW2QsxjT85AK8a2rXKdlq5dp6XNLdc+me7R+7/ouBQ5Jagw1av3e9bpn0z0677nztGz1Mq2rXBd/fqBxnDq9RDl+b7wg4XG71BQM653KetU0BRX9x79VcLlcynBnKuDJU4Y7M17giFqWapqCeqeyPl7gmFGaq0yfVzl+r06dXjLM2QGAkZEK7wfAQDFfnYFxtgd5Txw5c0YOTInRlDiQXBQ5gBTV3NysBx54QM3Nzf0fDEnk7BDT82BnfPXBen1r3bd0/UvXa0PNhoReu6Fmg65/6XrdsO4G1QfrBxxHps+jJbPGK5DhUW4gQzPH5Snb71Ukaumj2ha9vbteuw606GBLSMGOiELhqIIdER1sCWnXgdjzH9W2xJeomjkuT7mBDAUyYufN9HmGkhIAsI3p73cwC/PVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFksVwUglWw7uE3XrblONW01Qz5XSWaJ7jzjTk0rmDbg19Q2teuZt6vU3B6WZVmqbgxqb31QoUj/65L6PG6NzQ+oNC+2hFWO36sls8arOJfNxgEAAAAAwNCxXBUAACls28FtuvKPVw5LgUOSatpqdMULV2h73fYBv6Y4169L5k/SjNJcuVwujR2VqVkT8zVtTI5Kcv3K9nvk/scWHG6XlO33qCTXr2ljcjRrYr7GjootYTWjNFeXzJ9EgQMAAAAAABiBIgeQohoaGvTTn/5UDQ0NdnclbZCzGNPzMNLx1Qfrdd2a67rtuTFUHa0deui/H9Lumt0Dfk2mz6NFFWN1zrHjNL4gVrQozPZrcnGOKsbna175aM2fPFrzykerYny+JhfnqDDbL5fLpfEFmVoya7wWVYxliSoARjD9/Q5mYb46A+NsD/KeOHLmjByYEqMpcSC5vHZ3AEDPsrKytGTJEmVlZdndlbRBzmJMz8NIx3fz6zcP2x0cnYXcIb0++nWF3g3p1pJbE3rt5OIcTS7O0f7mdm2rblJ1Q1A1Te0KdkTixwQyYndylI4KaHppropyuHMDgFlMf7+DWZivzsA424O8J46cOSMHpsRoShxILvbkQMpiTw4AdltXuU7Xv3R90tv5zWm/0YIJC4Z0DsuyFIpEFY1KbndsHw6XyzVMPQQAAAAAAOgde3IA6Ka1tVXPPPOMWltb7e5K2iBnMabnYSTjW75pedLO7Yv4NKd2jnwRn+7dfO+Qz+dyueT3epTp88jv9VDgAGA809/vYBbmqzMwzvYg74kjZ87IgSkxmhIHkosiBwAAPdhet10bajaMSFtv7XtL79e9PyJtAQAAAAAAmITlqpCyWK4KgB2qmqskSfdtvk+PbXtsxNq9aPpFunzm5RqfM37E2gQAAAAAABgOLFcFoJuOjg5t3bpVHR0ddnclbZCzGNPzkOz4Fj65UAufXKgVW55IyvkP8UQ9GtcyTp6oR5L06JaVWvjkwqS2CQAmMf39DmZhvjoD42wP8p44cuaMHJgSoylxILkocgApijUHE0fOYkzPw4jF50rujY6+qE9z9s+RL+r7R3tJbQ4AjGP6+x3Mwnx1BsbZHuQ9ceTMGTkwJUZT4kBysVwVUhbLVQGwQ8UDFba2v2nZJlvbBwAAAAAASJSdn+V6R6QVAABGgGVZauloUUe0QxnuDGVnZMvlSvwWCcuSBvGyIeOfHQAAAAAAACSG5aqAFFVfX6+bbrpJ9fX1dnclbZCzGNPz8Mn4ttdt1x0b7tDVf7paJ604Scc/erwWPLZAxz96vE5acZKu/tPVumPDHXq/7v2BN2Il/+0xqyNL5+88X1kdWSPaLgCYwvT3O5iF+eoMjLM9yHviyJkzcmBKjKbEgeRiuSqkLKcvVxUOh1VZWakJEybI6+Wmq4EgZzGm5+FQfDu0Q/dvuV8bajYM+LWzS2brqoqrtGDCgl6PqXigQlY0ljeXOzzk/vbGHXVrdPtoHfAfUNQdjbe5+Yq3k9YmAJjE9Pc7mIX56gyMsz3Ie+LImTNyYEqMpsThBHZ+lkuRAynL6UUOAD2rD9br5tdv1uodqwd9jsXli/Xted9WfiC/23M/Wv0XRaKWVu+7TW2eBO7+GKLMyDQtGvNV3XTmySPWJgAAAAAAwHCw87Nc1sUAUlRLS4tWrFihlpYWu7uSNshZjMl52HZwmy566iLVv1Yvf8Q/6POs2rFKS59bqu1127s9l+st0aiMEuXo8KF0tV/+iF/H7zs+HkeuDteojJKktgkAJjH5/Q7mYb46A+NsD/KeOHLmjByYEqMpcSC5KHIAKcrtdis/P19uN7+mA0XOYkzNw7aD23TlH69UTbBGrd5WRRUd0vlq2mp0xQtXdCt0XHlSua46ebI+P+XMIZ2/P1FFu8Rx1pTFuurkyUltEwBMYur7HczEfHUGxtke5D1x5MwZOTAlRlPiQHKxXBVSFstVATikPlivpc8tVU1bzbCfuySzRE+e/WS3pav++sF+/eCN67QvtGXY2/ykUt+R+uHc3+jEw4uS3hYAAAAAAMBwY7kqAN2EQiFt3LhRoVDI7q6kDXIWY2Iebn795niBwxP1aFLTJHminmE5d01bjW55/ZZuP582JldH55w7LG30pHMcFTlLNL00N2ltAYCJTHy/g7mYr87AONuDvCeOnDkjB6bEaEocSC6KHECKCgaDWrt2rYLBoN1dSRvkLMa0PKyrXNdlk3Ff1Kcj64+UL+obtjZW7VildZXruvysONev+WNP0uTMk4atnc4OxXG47yTNH3uSinIGv8cIADiRae93MBvz1RkYZ3uQ98SRM2fkwJQYTYkDycVyVUhZLFcFQJKWrV6mDTUbkt7OcWOO0/0L7+/ys49qm/XYhm16puZrao0eHPY2s9yFWlLyS1103AyVF2UP+/kBAAAAAABGAstVAejGsiwFg0FRhxw4chZjUh62123vXuCwpIxIhjTM4b217y29X/d+l59NLs7RsePG6bOj/598ruEtQviUrc+OulHHjB1LgQMABsGk9zuYj/nqDIyzPch74siZM3JgSoymxIHkosgBpKiGhgbdeuutamhosLsraYOcxZiQh6rmKlU1V2nltpXdnssKZ+mcj89RVjhr2Nvtqb1Tp5doYs4ULS76sQKugmFpJ+Aq0OK878r79uuaXcoyVQAwGCa838E5mK/OwDjbg7wnjpw5IwemxGhKHEgulqtCynL6clWRSES1tbUqLi6WxzM8GyybjpzFmJCHigcqen3OZbmUF8pTo69Rlmv438I2LdvU7We1Te164q1K1bfX6691/6Nd7X8d9Pkn+U/UiQX/olEZufr0pICmlY1P23ECADuZ8H4H52C+OgPjbA/ynjhy5owcmBKjKXE4gZ2f5XpHpBUACfN4PCotLbW7G2mFnMWYngfLZanBn7x/wWFZllwuV5efFef6df5xE/TM2y6d5v6adrct0FsNT6suunXA5y1wz9Bxo87TxMzjlOP3asms8SrO5S4OABgs09/vYBbmqzMwzvYg74kjZ87IgSkxmhIHkovlqoAU1dzcrPvvv1/Nzc12dyVtkLMY0/PgD/t1yt5T5A8np0DQGm7t8efFuX5dMn+SZpTmamLmHJ1b+hMtKfqlpvnPUYHrKHmsrstneawsFbiO0jT/OVpS9EudW/oTTcw8TjNKc3XJ/EnKdHUYPU4AkGymv9/BLMxXZ2Cc7UHeE0fOnJEDU2I0JQ4kF3dyACnK6/WqrKxMXi+/pgNFzmJMz0PUFVVtoFZRVzQp5w9FQsrO6Hkj8EyfR4sqxmp6aa7e3FUn1U3SSaMvkxS7AyRsBRWxOuRxZcjrCnS5I2R8QabmlhXGNxkPRs0eJwBINtPf72AW5qszMM72IO+JI2fOyIEpMZoSB5KLPTmQspy+JwfgZH3tyZFsr33xtV6LHJ+0v7ld26qbVN0QVE1Tu4IdkfhzgQyPSnL9Kh0V0PTSXBXlsDQVAAAAAAAwk52f5bJcFZCi2tvb9dprr6m9vd3urqQNchZjSh4sS7Ki3f+lhjfq1eENh8vbw3NDbjPqVaYnc8DHF+X4deLhRVp63ARde8pkXffpKbr2lCn/+O9kLT1ugk48vKjHAocp4wQAduE6inTCfHUGxtke5D1x5MwZOTAlRlPiQHJR5ABSVCgU0saNGxUKhezuStogZzEm5OELJXdqafFvlWWVd3vOG/WqrLksKUWOLGuyOqKDu8HR5XLJ7/Uo0+eR3+vptnn5J5kwTgBgJ66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBfLVSFlsVwV4Fy3vbhdHZGoVlXdqwPe1SPWblF4kVZdeosyfZ4RaxMAAAAAACDdsVwVgG6i0ajq6+sVjSZnc2UTkbMYU/LgckmjInO7/9xyKasjSy6r7zslBiMvMk/uEXpnNGWcAMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILoocQIpqbGzUHXfcocbGRru7kjbIWYwpefC4XMpxHaas6NQuP88MZ2px1WJlhge+d8ZAZEWnKsc1QT7PyLw1mjJOAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kF8tVIWU5fbmqaDSqxsZG5eXlyT1S/7Q8zZGzGBPy0NDWIUl6/p09Wl/9F61t+Gn8OZflUmY4U23eNlmu4XsLO3XUjfpU6Um6ZP6kYTtnX0wYJwCwE9dRpBPmqzMwzvYg74kjZ87IgSkxmhKHE9j5We7w79oKYFi43W7l5+fb3Y20Qs5i7MyDZVlq6WhRR7RDGe4MZWdk97sBd09GZWZIksqLslXbNFcftJ6gyo5XY224LLVmtA5rvydknKDJ2XNVXpQ9rOftC/MVAIaG6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJRfkLSFFNTU2666671NTUZHdX0gY5ixnpPGyv2647Ntyhq/90tU5acZKOf/R4LXhsgY5/9HidtOIkXf2nq3XHhjv0ft37CZ972phcSdLJhf+iDCtfkhQIB3R61ekKhAPD0v8MK18nF/6LJGl6ae6wnHMgmK8AMDRcR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgu7uQAUpTP59Oxxx4rn89nd1fSBjmLGak8rKtcp+WblmtDzYZej2kMNWr93vVav3e97tl0j2aXzNZVFVdpwYQFA2qjONev8QWZqqqT5mXeoL+1/Vhhd0g7c3Yq7A4POQa3laVPZd2gTE+exhdkqijHP+RzDhTzFQCGhuso0gnz1RkYZ3uQ98SRM2fkwJQYTYkDycWeHEhZTt+TA0hV9cF63fz6zVq9Y/Wgz7G4fLG+Pe/byg/k93vsR7XNenbjHlmWpdf3vKdt+qXCrvpBt32I18rXdH1N88YdKZfLpSWzxo/oclUAAAAAAACmsPOzXJarAlJUMBjU2rVrFQwG7e5K2iBnMcnMw7aD27T0uaVDKnBI0qodq7T0uaXaXre932MnF+doRmmuXC6Xji6erunt39Wsg2coI5Ix6PbzIvM0teMHOrp4ulwul2aU5o54gYP5CgBDw3UU6YT56gyMsz3Ie+LImTNyYEqMpsSB5KLIAaSocDisnTt3Khwe+pI8TkHOYpKVh20Ht+nKP16pmraaYTlfTVuNrnjhigEVOk6dXqIcv1eZPq+OKC7W2GCZDgtdrezotITazI5O02Ghf9ekyL9oZulYZfq8yvF7der0ksGGMWjMVwAYGq6jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBfLVSFlsVwVkDrqg/Va+tzSYStwdFaSWaInz36y36Wrapva9cRblQp2RNQWCuuD2ha1tIcVdFWp2fuGwt5datJOdVgt8ddkuLKVqzJ5w5OUE56rgDVe2X6vDi/OVqbPq0CGR+cfN0HFuSO3FwcAAAAAAIBp7Pwsl43HgRQViURUW1ur4uJieTweu7uTFshZTDLycPPrNyelwCHF7ui45fVbdOuCW/s8rjjXr/OPm6Cn39qtSEuTjirN1b7mDu2tP0yBjvFShzRGlqJql6UOuZQht/xyySVJ8nncGpsfUGleQC6XSzl+r5bMGm9bgYP5CgBDw3UU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GK5KiBFNTU16e6771ZTU5PdXUkb5CxmuPOwrnLdkPfg6M+qHau0rnJdv8cV5/p19pGFannnBakjqLGjMjVrYr6mjclRSa5fOX6vMlwBeZWrDFdAOX6vSnL9mjYmR7Mm5mvsqMz4HhyXzJ9k6x0czFcAGBquo0gnzFdnYJztQd4TR86ckQNTYjQlDiQXy1UhZTl9uSrLstTe3i6/3y+Xy2V3d9ICOYsZ7jwsW71MG2o2DEPP+nbcmON0/8L7+z3uUHxVjR16a3e9quraBtzG+IJMzS0rHPFNxnvCfAWAoeE6inTCfHUGxtke5D1x5MwZOTAlRlPicAKWqwLQjcvlUiAQsLsbaYWcxQxnHrbXbR+RAockvbXvLb1f976mFkzt87hD8U0JBDSlJFf7m9u1rbpJ1Q1B1TS1K9gRiR8byPCoJNev0lEBTS/NVVFO6uy9wXwFgKHhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kBysVwVkKIaGxt1++23q7Gx0e6upA1yFjMceahqrlJVc5VWbls5jD3r38ptK1XVXNXnMZ+MryjHrxMPL9LS4ybo2lMm67pPT9G1p0z5x38na+lxE3Ti4UUpVeCQmK8AMFRcR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgu7uQAUlQgENCpp55KtToB5CxmOPKw8MmFkiQr6pFrBMvhj25ZqRXbVmjTsk29HtNXfC6XS35vemxExnwFgKHhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kBysScHUpbT9+QA7FTxQIUkybLccrmiI9buofb6KnIAAAAAAAAgtdj5WS7LVQEpqq2tTS+88ILa2ga+qbLTkbOY4czDSBY4BtqeKeNsShwAYBeuo0gnzFdnYJztQd4TR86ckQNTYjQlDiQXRQ4gRUWjUdXX1ysaHdkPmdMZOYsZrjzYdZ9ff+2aMs6mxAEAduE6inTCfHUGxtke5D1x5MwZOTAlRlPiQHKxXBVSFstVAYmzLEstHS3qiHYow52h7IxsuVyuhM9T8UCFrKhbLvfI/0+EFXVr8xXvjHi7AAAAAAAAGBw7P8tl43EgRYXDYVVWVmrChAnyevlVHQin5mx73Xat3rFam/Zv0pYDW9QcbNbo9tE64D+gnECOjhh9hCqKKrS4fLGmFkxN4MzufxQ6wknr+ydZ0f7HzZRxNiUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSi+WqgBTV3NysBx54QM3NzXZ3JW04LWfrKtdp2eplWvrcUt2z6R6t37tejaFGBSIBnbLvFAUiATWGGrV+73rds+kenffceVq2epnWVa7r99xfKLlTS0t+pSyrfAQi+acsa7KWlvyqz2NMGWdT4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrgopi+WqgJ7VB+t18+s3a/WO1YM+x+Lyxfr2vG8rP5Df4/O3vbhdlmXpfyuXq9Yz+HYSVRJZrDMnXKmvfXb6iLUJAAAAAACAobHzs1zu5ACANLLt4DYtfW7pkAockrRqxyotfW6pttdt7/H5K08q11UnT9bnp5w5pHYSddaUxbrq5Mkj2iYAAAAAAADSF0UOIEU1NDTopz/9qRoaGuzuStpIlZxZlqXmULPqgnVqDjVruG6Y23Zwm67845Wqaavp87jMcKbO3nW2MsOZfR5X01ajK164osdCx6jMDI3KzNC88UdpjO+IIfV7oEp9R2re+KM0KjOjz+NSZZyHypQ4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILnZrAVJUVlaWlixZoqysLLu7kjbszNknN/9uDDXGn8vz5Q1h8++Y+mC9rltzXZfz9ibkDunNojcVcof6PbYx1Kgvv/hlPXn2kz0uXTVtTK6OzjlXLx7cknCfE1WRs0TTS3P7Pc6U3w1T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILnYkwMpiz05kA7WVa7T8k3LtaFmw4BfM7tktq6quEoLJiwY8Gu+te5bQ16iqi+Lyxfr1gW39vjcyjc/1iMf3ayP2v6StPYnZ56sL03+ti6Yc1jS2gAAAAAAAEBysCcHgG5aW1v1zDPPqLW11e6upI2RzFl9sF7fWvctXf/S9QkVOCRpQ80GXf/S9bph3Q2qD9b3e/y6ynUJFTh8EZ/m1M6RL+Ib8GtW7VildZXrenxuzqQCzR91tbLchQM+XyKy3IWaP+oqzS0b2PlN+d0wJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KLIgcAJGikNv8+ZPmm5UNqZ6Du3Xxvjz+fXJyjY8eN02dH/z/5XNnD2qbPla3Pjv5/OnbcOJUXDe+5AQAAAAAAYD6Wq0LKYrkqpKJDm38PZG+Mgcrz5em+hfdpWsG0bs9tr9uupc8tHba2+vPU2U/1uGdIWyiih1/bpd3NH+qF/T9W0KobclsBV4EWFn1PE3Om6JL5k5Tp8wz5nAAAAAAAABh5LFcFoJuOjg5t3bpVHR0ddnclbSQ7Z4ls/p2IQ5t/d166qqq5SlXNVVq5bWXC5/NEPRrXMk6eaOJFg5XbVqqquarbzzN9Hi2ZNV7jsibrvDG3aZL/xITP3dkk/4k6b8xtGpc1WUtmjU+owGHK74YpcQCAXbiOIp0wX52BcbYHeU8cOXNGDkyJ0ZQ4kFwUOYAUxZqDiTuUs5aWFjWHmlUXrFNzqFnDdcPaza/frJq2mmE51yfVtNXoltdviX+/8MmFWvjkQq3Y8kTC5/JFfZqzf4580YHvyXHIo1tWauGTC3t8rjjXr/OPm6CizAKdNvprOr3g2ypwz0jo/AXuGTq94Ds6bfTXVJRZoPOPm6DiXH9C5zDld8OUOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6Wq0LKYrkqJGJ73Xat3rFam/Zv0pYDW7rcbZHny9MRo49QRVGFFpcv7nE5pv6sq1yn61+6fji73KPfnPYbLZiwQBUPVEiSLMstlyua9HYPOdTepmWbej2mLRTR2m012lrdJEk6GNql95peUW3oAzVGdyji+uf/eHisLOW5y1XsO1xH5p6iQt8kSdKM0lydOr2EJaoAAAAAAAAMYOdnud4RaQUAkmRd5Tot37RcG2o29HpMY6hR6/eu1/q963XPpns0u2S2rqq4SgsmLBhwOyO5+Xfnfo1kgWOg7WX6PFpUMVbTS3P15q46qW6SThp9mSTJsiyFraAiVoc8rgx5XQG5XK74a8cXZGpuWSGbjAMAAAAAAGBYsFwVkKLq6+t10003qb6+3u6upKT6YL2+te5buv6l6+MFjqyOLJ2/83xldWT1+doNNRt0/UvX64Z1N3TZB6M32+u291lEGU5v7XtL79e9L0ka7H12A81Dbwba7uTiHF0w5zBdevwkzSsv1MTCLGX6vMpwZyrgyVOGO1OZPq8mFmZpXnmhLj1+ki6Yc9iQCxym/G6YEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8nFclVIWU5friocDquyslITJkyQ18tNV51tO7hN1625rtv+GO6oW6PbR+uA/4Ci7oHdAVGSWaI7z7hT0wqmdfl5582379t8nx7b9tjQOz5AF02/SCu2rZAVdcs1wDg6G0weOrOibm2+4p2EXyfF7uQIRaKKRiW3W/J53F3u5BgOpvxumBIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNicMJ7PwslyIHUpbTixzo2baD23TlH6/ssufGUOX58nTfwvu6FDoO7YlhJysae/N2ucMj3ubmK94esTYBAAAAAACQ3uz8LJflqoAU1dLSohUrVqilpcXurqSM+mC9rltzXa8FDn/Er+P3HS9/xJ/QeRtDjfryi18e0NJVI+X84t9qacmvlGWVJ/zaweZBkrKsyVpa8quEXzeSTPndMCUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSiyIHkKLcbrfy8/PldvNresjNr9/cbYmqzqKKqtXbqqgSX6Kppq1Gt7x+y1C6N6wyPXkalVGiHB2e8GuHkodcHa5RGSUJv24kmfK7YUocAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kF8tVIWWxXBU6W1e5Tte/dH3S2/nNab/RggkLbF+u6n/PeUn5/gLd+/qrunfnv41Yu1eW/beunHeCRmVmjFibAAAAAAAASG8sVwWgm1AopI0bNyoUCtndlZSwfNPyfo/xRD2a1DRJnqhn0O3cu/neQb92OBVlZ2tUZobmjT9KY3xHJPTaweah1Hek5o0/KuULHKb8bpgSBwDYheso0gnz1RkYZ3uQ98SRM2fkwJQYTYkDyUWRA0hRwWBQa9euVTAYtLsrtttet10bajb0e5wv6tOR9UfKF/UNuq239r2l9+veH/Trh0uWN0uSNG1Mro7OOTeh1w42DxU5SzS9NDeh19jBlN8NU+IAALtwHUU6Yb46A+NsD/KeOHLmjByYEqMpcSC5WK4KKYvlqlDVXCVJum/zfXps22Mj1u5F0y/S5TMvj39/47obtbF244i1P6tklh5c9GD8+5VvfqxHPrpZH7X9JWltTs48WV+a/G1dMOewpLUBAAAAAAAAM7FcFYBuLMtSMBiUk+uQC59cqIVPLhx4gcOSMiIZ0hBTtmLbCo3PGR//mlM6Z2gnTNCcMV3bmzOpQPNHXa0sd+HATpBgHrLchZo/6irNLRvg+W1myu+GKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJBcFDmAFNXQ0KBbb71VDQ0NdnclbWSFs3TOx+coK5w15HN1fvNcVL5oyOdLxCfbm1yco2PHjdNnR/8/+VzZ/b4+kTz4XNn67Oj/p2PHjVN5Uf/nTgWm/G6YEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8nFclVIWU5frioSiai2tlbFxcXyeAa/kXY6q3igIqHjXZZLeaE8NfoaZbmGdml77YuvKTvjnx/6L1u9bED7ggzVcWOO0/0L7+/287ZQRA+/tku7mz/UC/t/rKBV1+s5BpqHgKtAC4u+p4k5U3TJ/EnK9KXHPDPld8OUOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocTsByVQC68Xg8Ki0t5QKeAMtlqcHfMOQChySFIqEu319VcdWQzzkQV868ssefZ/o8WjJrvMZlTdZ5Y27TJP+JvZ5jIHmY5D9R5425TeOyJmvJrPFpU+CQzPndMCUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSiyIHkKKam5t1//33q7m52e6upA1/2K9T9p4if9g/5HP5PL4u30/wz9bkzJOGfN6+TM48WRP8s3t9vjjXr/OPm6CizAKdNvprOr3g2ypwz+h2XF95KHDP0OkF39Fpo7+moswCnX/cBBXnDj1fI8mU3w1T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILm8dncAQM+8Xq/Kysrk9fJrOlBRV1S1gVpFXdEhnyvL23U/izd31Wn+qKtVFXxX7X0sFTVYfleB5o+6Sm/uqtPk4pxejyvO9euS+ZO0dluNVD1HEzPn6GBol95rekW1oQ/UGN2hqKsjngePlaU8d7mKfYfryNxTVOibJEmaUZqrU6eXpNUdHIeY8rthShwAYBeuo0gnzFdnYJztQd4TR86ckQNTYjQlDiQXe3IgZTl9T450ZlmWWjpa1BHtUIY7Q9kZ2XK5XAmfp6q5SpJ047obtbF24zD3snezSmbpwUUPxr+vbWrXw6/tkmVZenX3Zr3v/ZmirtZha89tZWlq+Fs6YeJMuVwuXXr8JBXl9H93xUe1zXpzV52q6triP7MsS2ErqIjVIY8rQ15XoEvuxxdkam5ZYdpsMg4AAAAAAIDUZ+dnuZTAgBTV3t6ut99+W7NmzZLfn/rLCW2v267VO1Zr0/5N2nJgixpDjfHn8nx5OmL0EaooqtDi8sWaWjB1QOccnzNekjSndM6AihzeqFdlTWXambtTYXd4UHFI0pwxc9TQ1hH//u3ddWoPR3SwJSSro1Tl1je0J/BrtUWHfkdHprtA44L/LitcqurGoAqzfdqwq06fPaq039dOLs7R5OIc7W9u17bqJlU3BFXT1K62Nq+iNbvkLZmizEyvSnL9Kh0V0PTS3AEVT1Jduv1u9MaUOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6KHECKCoVC2rhxo4466qiUvoivq1yn5ZuWa0PNhl6PaQw1av3e9Vq/d73u2XSPZpfM1lUVV2nBhAUDamNR+SLds+mefo/zRr0qay5TZXblkIoci8oX6d6/7Ih/v2VvoxraOlTXElJLKKwc/xgdFv2eqjNWqNHz+qDbyYvMU2nwIjW3+tXcHlRTW1gF2T59VNsyoCLHIUU5fhUdHpsjlmXpQH2DHl/xZ31h/gKNzh81qLtoUlm6/G70x5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILparQspiuarUVh+s182v36zVO1YP+hyLyxfr2/O+rfxAfr/HLlu9rM9CynA5bsxxun/h/brtxe2SYkWDt3bVKRy1tK8xqI5IVKOz/fG9LJrcf9cB7x/V6n5/wG1kRadqdHihcqMVkqS2UEQHWtqV4XFrTF5AXrdLD1/9KeOKEwAAAAAAADCTnZ/lukekFQAJi0ajqq+vVzQ69E20h9u2g9u09LmlQypwSNKqHau09Lml2l63vd9jr6q4qt9jXJZLWR1ZclmDLw5cOfPKLt9HLEvhaKwWHI7E/pvh+ef5c6NHqyz0TU1u/4EKQwvlaZ8mRbtuWq5olrIiM1QUXqTJ7T9QWeib8QJH5/MdOn84aikUGfy4p/LcGQ6mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBdFDiBFNTY26o477lBjY2P/B4+gbQe36co/XqmatpphOV9NW42ueOGKfgsdCyYs0KLyRX0ekxnO1OKqxcoMZw6qL4vLF3dbQqvzvW6WYt/0dIdFwBqvoo4lyj54nXL3/US51T9VTvV/Krf6p8rd9xNNCH5VJeFzFbDGd3vtofMdOr8kDeW9O1XnznAxJT5T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrgopy+nLVUWjUTU2NiovL09ud2rUI+uD9Vr63NJhK3B0VpJZoifPfrLPpav6a99luZQZzlSbt02WK7FL2yfbP7RcVTga1Zs7YxuMV9W1yZKl0ryAvJ7uYxKORFXdGOzx/L29pvPrXHJpfEGsQPPgVfPk93oSiuGQVJw7w8mU+EyJAwDswnUU6YT56gyMsz3Ie+LImTNyYEqMpsThBCxXBaAbt9ut/Pz8lLqA3/z6zUkpcEixOzpuef2WPo/JD+TrzjPuVJ4vr8fnLZel1ozWhAsceb483XnGnT0WWDwul7zu2J0W3n8sK9UR6fn8Xo9bEwqyevzqrcDR+XyHzu91u+Tr4/j+pOLcGU6mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBezA0hRTU1Nuuuuu9TU1GR3VyRJ6yrXDXkPjv6s2rFK6yrX9XnMtIJp+uXJv1O2p7Dbc4FwQKdXna5AODDgNrM9hfrlyb/TtIJpXX5+5UnluvKkcl118mQtqhirWRPzNaM0V6WjAjqsMFOzJuYP29dhhZkqHRXQjNJczZqYr0UVY4e06XiqzZ3hZkp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kByUeQAUpTP59Oxxx4rn89nd1ckScs3LR+Rdu7dfG+fz9c2tWvDBwGdU/xLTfKf2OW5sDusnTk7FXaHB9TWJP+JOqf4l9rwQUC1Te1dnhuVmRH/Ki/Klt/rUXGuX163Ww1tYWV43PJ7PUP+yvDEzud1u1Wc65ff61F5UXZiSfuEVJs7w82U+EyJAwDswnUU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GJPDqQsp+/JkUq2123X0ueWjlh7T539lKYWTO3287ZQRA+/tkvN7WE1BTu0tbpJ9XpHB71/Uou7743LO8uOTlNh+HPK19GaUZqr3ECGcvxeXTJ/kjJ93ffBqG1q18Ov7ZJlWXp7d71CkagmF2erJHfgd4z0pqYpqI9qW+TzuDVrYr5cLpcuPX6SinL8Qz43AAAAAAAAMBLYkwNAN8FgUGvXrlUw2PNG1iOhqrlKVc1VWrlt5Yi2u3LbSlU1V3X7+dptNWpuD6stFNbW6iZFopbG+Wbr3NKf6Nzi23Rs5nn6VOOnlRXN7/I6nytH43xH6+ic83Ru8W06t/QnGuebpUjU0tbqJrWFwmpuD2vttp73GynO9Wt8QaZcLpdKR8UKG7sPtCoUjg4pzlA4ql0HWiVJY/MDcrliG48PtcCRCnMnmUyJz5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILoocQIoKh8PauXOnwuGBLb2UDAufXKiFTy7UY9seG9F2V2xboYVPLuzys49qm7W1ukmWZemD2hZFopZyA17NKM2Tz+tWQcZEHZt9nsrCR+gLxb/WpaUP64tj7tOlpQ/rS6X3a2HRDzQn70sqyJgon9etGaV5yg14FYnGzmdZsYLHR7XNPfZpzqQCSdLYUQFl+70KRy29XxMrtAxGpNPrs/1elebFiidzy7rvNZKoVJg7yWRKfKbEAQB24TqKdMJ8dQbG2R7kPXHkzBk5MCVGU+JAcrFcFVIWy1XZr+KBClvb37RsU/zxyjc/VlVdm/bUt2n3wVZ53S4dPSFfPu/ga7WhcFTvVNYrErU0aXSWxo7K1PiCTF0w57Aej1+9aW/8zo/NexrjhZapJbkJ9SMUjur9miY1BcPyuF2aOS5PmT6vZpTmalHF2EHHAwAAAAAAANiB5aoAdBOJRFRdXa1IJGJ3V2xX29Suqro2WZal6obY7YkTR2d1KyxY0YgiLXWyogPLmc/r1qTRWZKkvfVBWZalqro27W9u7/H4U6eXKMfvjRckPG6XmoJhvVNZr5qmoKL91IyjlqWapqDeqayPFzhmlOYq0+dVjt+rU6eXDKjf/TF97pgSnylxAIBduI4inTBfnYFxtgd5Txw5c0YOTInRlDiQXBQ5gBTV1NSku+++W01NTXZ3xTYNbR1qaOvQ27vr1B6OqLoxqNaOsFwuKTfgVXs40vWrrUUt77yg9raW7s/18pUb8Mrlklo7wqpuDKo9HNGGXXU99ifT59GSWeMVyPAoN5ChmePylO2PLXn1UW2L3t5dr10HWnSwJaRgR0ShcFTBjogOtoS060Ds+Y/+sdRWtt+rmePylBvIUCAjdt6eNj0fDNPnjinxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFlOX67Ksiy1t7fL7/fL5XLZ0ge7l6u6ctyTkqQtexvV0NahupaQWkJh5fgzlJ+V0e34cDii/Y0tCssjfSJnpXkBeT0913XrWzvU3N6hbJ9XBdk+jcrM0O8um9Nrv2qb2vXM21Vqbg/H7i5pDGpvfVChSP8bkfs8bo3ND6g0L7bReI7fqyWzxqs4d2ibjXeWCnMnmUyJz5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxOYOdnud4RaQVAwlwulwKBgN3dsJ1lWWppj20udaiI4O9t/wuXS2FX4pc1v9et5vZ/nr/lH8WL3t48i3P9umT+JK3dVqOt1U0aOypTpXkB1bWGVN/aoZZQWG2hiKKW5HbF7gDJ9nmVn5Whgixf/LwzSnN16vSSYbuD4xDT544p8ZkSBwDYheso0gnz1RkYZ3uQ98SRM2fkwJQYTYkDycVyVUCKamxs1O23367Gxkbb+vDC0hf0wtIXdGzxsSPa7qySWXph6QuSpIhlKRyN3XAWjsT+m+HpufiQEQnq5PY35Ld63lOjN4fOd+j84ajV710ZmT6PFlWM1TnHjtP4gky5XC4VZvs1uThHFePzNa98tOZPHq155aNVMT5fk4tzVJgd+1cH4wsytWTWeC2qGDvsBQ4pNeZOMpkSnylxAIBduI4inTBfnYFxtgd5Txw5c0YOTInRlDiQXNzJAaSoQCCgU0891dZq9fic8ZKkOaVztLF244i1O2fMnH+0vV2dF9SzFPumtzssIm6vPvROVDjBS9uh8x06vyRF+195SpI0uThHk4tztL+5Xduqm1TdEFRNU7uCHf/cECuQ4VFJrl+lowKaXpqropzhW5qqJ6kwd5LJlPhMiQMA7MJ1FOmE+eoMjLM9yHviyJkzcmBKjKbEgeRiTw6kLKfvyZFKttdt19Lnlo5Ye0+d/ZSmFkzVbS9uVzga1Zs7YxuBV9W1yZLV6/4a4UhU1Y3BHs/Z154ch17nUuwuC0l68Kp58nsHd5eFZcXuBIlGJbc7tg8H60YCAAAAAADAVHZ+lstyVUCKamtr0wsvvKC2tja7u6JpBdM0u2T2iLR13JjjNLVgavx7j8slrztWIPD+Y1mpjkjPtVlPtEPTwx/Ja3Uk1Oah8x06v9ftkq+XgshAuFwu+b0eZfo88ns9I17gSKW5kwymxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBfLVQEpKhqNqr6+XtGBrpuUZFdVXKUNL21IejtXzrzyn49PKpckleTtUWVdq3bub1Ftc7tK8wI6rDCr22utjqDCEWlq+Ri5MgZ+G+PHB1uV4XWpOMevsqJsTSjISus7L1Jt7gw3U+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KL5aqQsliuKvV8a923tHrH6qSdf3H5Yt264NZuP//rB/v1+o6DOtjSru37mpXhcWvWxHy5h6EQEbUsvb27Xh2RqKaNiW0OPq+8UCceXjTkcwMAAAAAAABOwHJVALoJh8PauXOnwuGw3V2J+86876gksyQp5y7JLNG35327x+emjcmVJBVk+eTzuNURiWp/c3u346xoROGGfbKikW7P9WZ/c7s6IlH5PG4VZPkkSdNLcwcRQepIxbkznEyJz5Q4AMAuXEeRTpivzsA424O8J46cOSMHpsRoShxILoocQIpqbm7WAw88oObmZru7EpcfyNedZ9ypPF/esJ43z5enO8+4U/mB/B6fL871a3xBplwul0pHxZah2n2gVaFw11sVrVCbWt99WVZoYOs0hsJR7TrQKkkamx+QyxXbeLwoxz/4YFJAKs6d4WRKfKbEAQB24TqKdMJ8dQbG2R7kPXHkzBk5MCVGU+JAcrFcFVIWy1UNnmVZauloUUe0QxnuDGVnZA/rHhPrK9/V/7f2OrVEDg75XNmeQt1x6m/1qQl9j+1Htc16duMeWZalzXsa1dIeVm7AqxmlefK4E48tErW0tbpRTcGwsv1ezRyXJ5fLpSWzxqu8KHuw4QAAAAAAAACOY+dnuWw8Dhhie912rd6xWpv2b9KWA1vUGGqMP5fny9MRo49QRVGFFpcv1tSCqYNup7apXRs+COic4l/qr3X/o13tfx30uSb5T9SJBf+iDR8ENHlUu4pze7+DYnJxjmaU5mprdZMOL87W5j2xAsXW6kZNLcmVzzvwG9NC4ajer2lSUzAsj9ulw4tjRaAZpbkUOAAAAAAAAIA0wnJVQIpqaGjQT3/6UzU0NPR53LrKdVq2epmWPrdU92y6R+v3ru9S4JCkxlCj1u9dr3s23aPznjtPy1Yv07rKdQn3qS0U0TNvVynYEVFHKKC8pst1WOjflB2dltB5sqPTdFjo35XXdLk6QgEFO2LnbQv1vZfGqdNLlOP3KtPn1YzSXHncLjUFw3qnsl41TUGFg81qXP+Eou0tPb4+almqaQrqncr6eIFjRmmuMn1e5fi9OnV6cvYbGWkDnTvpypT4TIkDAOzCdRTphPnqDIyzPch74siZM3JgSoymxIHkYrkqpCynL1fV0dGhDz/8UFOmTFFGRka35+uD9br59Zu1esfqQbexuHyxvj3v273uhfFJqzft1dbqJrWFwtq8p1GRqKXcgFdTS3LVYlXqw7Y/a3/oA+3v+Egh659rJfpcOSrKmKwi3+Gaknmysl0TutxJMXNcXrxwsahibJ99qG1q1xNvVSrYEVFbKKwPalvU0h7+RzuWSl31Cowep6yAX26XS1HLUmsooqZgh/Y3h9QRie3jke336vDibGX6vApkeHT+cRP6vJMknfQ3d9KdKfGZEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2Jwwns/CyXIgdSltOLHH3ZdnCbrltznWraaoZ8rpLMEt15xp2aVtD33RiJ7IlhWZbCVlARq0MeV4a8rkC3PUF62xPjnGPHaXJxTp99qW1q1zNvV6m5PSzLslTdGNTe+qBCkWifr5Mkn8etsfkBlebF+pTj92rJrPHGFDgAAAAAAACAkWbnZ7ksVwWkqNbWVj3zzDNqbW3t8vNtB7fpyj9eOSwFDkmqaavRFS9coe112/s87s1ddZKkvQ1BtbSH5XW7NLUkt8dNv10ulzLcmQp48pThzuxx03NPp9e3tIdV3Rjs0k5finP9umT+JM0ozZXL5dLYUZmaNTFf00ZnaHLLe8r1RnSoW26XlO33qCTXr2ljcjRrYr7GjsqM78FxyfxJxhU4eps7pjAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEgudh4HEgj9cF6Xbfmum57bgxVY6hRX37xy3ry7Cd7XLqqtqldVXVtsbsmGmLFiImjsxLa7LsnPq9bk0Zn6aPaFu2tD6o0L6Cqujbtb25XUU7fhYdMn0eLKsZqemmu3txVp6q6NuVn+dUeyFDR2FFyZ/T++vEFmZpbVsgm4wAAAAAAAECaY7kqpCyWq+ruW+u+NaQ9OPqzuHyxbl1wa/z7hrYOSdL6jw5ow+46HWwJ6cPaZmV43Dp6wii5e7hDI1FRy9LfKxvUEYlqSnGOCrN9mj2xQJ+aPFqjMge+1uL+5nZtq25SdUNQNU3tCnb8cxPzQEbsTo7SUQFNL83tt4ACAAAAAAAAYODs/CyXOzmAFPXJjZXWVa5LaoFDklbtWKUzJ5+pBRMWSJLu/csOSdKWvY1qaOtQXUtILaGwcvwZeufjhmFrt761Q83tHWpqC6sg26ePalv07p5G/ccZfe8T0llRjl+jJrn14Yf79fmKybLcHkWjktsd24ejpyWzTGX6plymxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBd7cgAp6pNrDi7ftHxE2r13871dvrcsSy3tYUmKb+zt72WZqnAkqsq61h6/wn1sCn7ofIfO3/KPDcUTdShnbW1t8ns9yvR55Pd6HFXgkMxfr9KU+EyJAwDswnUU6YT56gyMsz3Ie+LImTNyYEqMpsSB5GK5KqQslqv6p+1127X0uaUj1t5TZz+lqQVTdduL2xWORvXmzthm4FV1bbJkqTQvIK+ne6EjHInGNxD/pN5e0/l1Lrk0viBTkjSnrEDf/NyMYYoIAAAAAAAAQLLY+Vkud3IAKayquUpVzVVauW3liLa7cttKVTVXSZI6l0Etxb4Z7jsjDp3v0Pk/2S4AAAAAAAAA9IQiB5Ci6uvrdc8v7tF5K87TY9seG9G2V2xboYVPLpQkda5nuPSPYsQwVyAOne/Q+T/Z7kDV19frpptuUn19/TD1LD2ZngdT4jMlDgCwC9dRpBPmqzMwzvYg74kjZ87IgSkxmhIHkosiB5CicnJy9MqYVxT09Lz800jxuFzyumMVB68n9t+OyPAWOQ6d79D5vW6XPIOocuTk5GjZsmXKyckZ1v6lG9PzYEp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kByee3ugKlCoZAee+wxPfroo3r33Xe1b98+FRQUqLy8XOedd54uv/xyFRUVpXTbO3fuVHl5eUJtT5kyRR988MFgu45OvF6vajNrbe3DlSfFxr8kb48q61q1c3+LapvbVZoX0GGFWcPWzscHW5Xhdak4x6+yomxNKMjS548Zl/B5vF6vysrKhq1f6cr0PJgSnylxAIBduI4inTBfnYFxtgd5Txw5c0YOTInRlDiQXNzJkQRbt27Vpz71KV122WVavXq1du/erfb2dlVXV+tvf/ubvvnNb+qoo47SqlWrjGobw6ulpUXH7zte/ojftj6MyszQqMwMlRdly+/1qDjXL6/brYa2sDI8bvm9niF/ZXhi5/O63SrO9cvv9ai8KFujMjMS7m9LS4tWrFihlpaWJGQjfZieB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSizs5hlllZaVOO+007dmzR1JsQ+UFCxZoypQpqq2t1Zo1a9TW1qaamhotWbJEL7zwgj7zmc+kfNu5ubm67LLL+j2uuLh4SDHgn9xut1q9rYoqandXNG1Mrl7fcVAFWT75PG6FIlHtb25XSW5gyOfe39yujkhUPo9bBVk+SdL00txBncvtdis/P19ut7Prt6bnwZT4TIkDAOzCdRTphPnqDIyzPch74siZM3JgSoymxIHkclnDvYOwwy1YsEB//vOfJUmTJk3Ss88+q2OOOSb+/P79+3XRRRfppZdekiQVFhbqww8/VH5+fsq13Xm5qkmTJmnnzp1D7mMi3n33Xc2cOTP+/ebNm3XUUUeNaB/sVvFAha3tb1q2Kf545Zsfq6quTXvq27T7YKu8bpeOnpAvn3fwbzKhcFTvVNYrErU0aXSWxo7K1PiCTF0w57Dh6D4AAAAAAACAEWDnZ7mUwIbRqlWr4kUGn8+n559/vkuRQZKKior07LPPavLkyZKkgwcP6mc/+1lat43kCIVC+tX0X+n5zz+vY4uPHdG2Z5XM0gtLX+jyszmTCiRJY0cFlO33Khy19H5NkyLRwdVJI51en+33qjQvdlfI3LLCQfc7FApp48aNCoVCgz6HCUzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJRZFjGP3mN7+JP162bJkqKnr+V/jZ2dn60Y9+FP/+7rvvVjgcTtu2kRzBYFDvvPaOCr2FmlM6Z0TbnjNmjsbnjO/ys8nFOZpRmiuXy6XDi7PlcbvUFAxra3WjQuHEltQKhaPaWt2opmBYHnfsfC6XSzNKc1VelD3ofgeDQa1du1bBYHDQ5zCB6XkwJT5T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrmqYNDc3q6ioSO3t7ZKkV199Vccff3yvxweDQRUXF6u5uVmS9NJLLw16b45ktc1yValje912LX1u6Yi199TZT2lqwdRuP28LRfTwa7vU3B5WU7BDW6tjd2J43C5NGp2lohy/3C5Xr+eNWpb2N7dr14HW+OtmlOYqN5ChHL9Xl8yfpEyfJ5mhAQAAAAAAABhmLFdlgFdffTVeZMjOztbcuXP7PD4QCHQpRLz88stp2TaSx7IsBYNBWZalaQXTNLtk9oi0e9yY43oscEhSps+jJbPGK5DhUW4gQzPH5Snb71Ukaumj2ha9vbteuw606GBLSMGOiELhqIIdER1sCWnXgdjzH9W2xJeomjkuT7mBDAUyYucdaoGjc86czPQ8mBKfKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJBcFDmGyZYtW+KPKyoq5PV6+33N7Nn//NC68+tTse1wOKwXX3xRt9xyi77+9a/ru9/9rm677Tb9+c9/jhdYMLwaGhp06623qqGhQZJ0VcVVI9LulTOv7PP54ly/zj9ugnL8XmX6YoWKSaOz5PO41RGJam9DUNv3NWnjx/XasLtOGz+u1/Z9TdrbEFRHJCqfx61Jo7M0c1yeMn1e5fi9Ov+4CSrO9Q+575/MmVOZngdT4jMlDgCwC9dRpBPmqzMwzvYg74kjZ87IgSkxmhIHkqv/T8MxINu2bYs/njRp0oBeM3HixPjjrVu3pnTbVVVV+uxnP9vjcwUFBbruuut04403KicnZ0Dto3+5ubm65pprlJubK0laMGGBji34tDbW/V/S2jy24NNaMGFBv8cV5/p1yfxJWrutRlurmzR2VKZK8wKqaw2pvrVDLaGw2kIRRS3J7YrdAZLt8yo/K0MFWT65/rGk1YzSXJ06vWTYlqj6ZM6cyvQ8mBKfKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJBcFDmGyYEDB+KPx4wZM6DXlJaWxh8fPHgwLduWpLq6Ov3kJz/RE088oeeee07Tpk0b0vkQ4/F4uozTR7XNOtK/TNvd76g1OrQx60mWu1BH+pfpo9pmTS7uv1iV6fNoUcVYTS/N1Zu76lRV16bCbL8Ks/u/I2N8QabmlhUOaZPxnnwyZ05leh5Mic+UOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6WqxomhzbxlqTMzMwBvabzcZ1fn0pt5+bm6vLLL9eKFSu0bds2NTc3q729XR9//LEef/xxnX766fFjt23bpoULF6q2tnYQUfQuEAjE7xCJRCKqr6+Pr8PX2NioUCgkSWpra1NLS4uk2PJa9fX18XM0NDSoo6NDktTa2qrW1lZJUkdHR5fb3err6xUOhyVJLS0tamtrkySFQiE1NjZKiq0FWF9fr0gkIimWv2AwKElqb29XU1OTJCkajaq+vl7RaFSS1NTUFF/aKxgMxvPeW0zNzc1avny5ampqJEmvf1QrX8ilWb5vym1lKTOcKU80dgeEL+KTL+KTJHmiHmWG/zm+WR1Zckdjv+r+iF8ZkYxux7mjWZrr+or8ytKbu+oSiml8XoYumHOYLpg1RseU+jWxMEt+jxQNNsdjyogGNT4vQ/PKC/WFY0t05hGxAsdwj9PBgwd1zz33qLm5ecTGSUq9udfY2Kh77rkn/joTYuo8Ts3NzbrnnnviBd50jcn0cSImYiImYkp2TPX19fH3fVNiMnGciKkh3rd77rkn/joTYjJxnIYaU3Nzs+69915VV1cbE1M6jFNNTY2WL1+u5uZmY2JK9jjt27dP999/vxoaGoyJif+P6D5Oe/bs0b333qvm5ua0jqmqqkr333+/mpubjRwnE2OyA0WOYXJowkiSz+cb0Gv8/n/+i/dDEzOV2h47dqz27Nmj++67TxdeeKGmTZum7Oxs+Xw+TZgwQeeff75efPFF3X333fHlh3bs2KFvf/vbg46lJ/Pnz9f5558vSaqtrdUdd9wR/8W799579d5770mSXnnlFT3//POSpMrKSt1xxx3xc9x555368MMPJUl/+tOf9Kc//UmS9OGHH+rOO++MH3fHHXeosrJSkvT888/rlVdekSS99957uvfeeyXFLgp33HFHvJjzxBNP6LXXXpMkvf3223rkkUckxX7x77jjjviF5pFHHtHbb78tSXrttdf0xBNP9BmT1+uVZVlas2aNapva9fHHlWre8LxamopVFvqGPrvnsxrTFrtz5+iDR+vog0dLksa0jdEZVWfEY1pctVij20dLkmbvn60j64+UJE1omaBT954qv6tAU9r/Q8UfblaktUFVdW169LGVCcf0/ua3tfut/9PS4ybo3CNy1bzheV0xf4Ku+/QUhbe8rGn+Bp14eJE2v/Va0sbpww8/1P79++X1ekdsnKTUm3ttbW2qqqqK/26bEFPncfJ6vaqvr4/3NV1jMn2ciImYiImYkh1TTU2Nqqqq4vvRmRCTieNETLGYvF6vqqqq4v+AyYSYTBynocbk9Xrl8/n09NNPGxNTOozTmjVrZFmWvF6vMTEle5z+8Ic/qKysTPX19cbExP9HdB+nBx98UHl5efJ6vWkd0z333KOysjJ5vV4jx8nEmGxhYVgsXrzYkmRJsm644YYBvWbVqlXx1+Tk5KRl24d85zvfiZ/P4/FY1dXVQz7n5s2bLUlWIBCwcnJyrM2bN1vhcNiqq6uzotGoZVmW1dDQYLW3t1uWZVmtra1Wc3OzZVmW1dHRYdXV1cXPVV9fb4VCIcuyLKulpcVqaWmxLMuyQqGQVV9fHz+urq7O6ujosCzLspqbm63W1lbLsiyrvb3damhosCzLsqLRqFVXV2eFw2HLsiyrqanJamtrsyzLsoLBoNXY2GhZlmVFIhGrrq7OikQilmVZVmNjoxUMBi3Lsqy2tjarqanJsiyrz5iqDzRYe2rrrD9u3mvd/L+brG898lfrvN/+xbrw7let7z/5f9bZj1xrzbx/pjV7+Wxr9vLZ1sz7Z1rH3HuMNfeeudbM+2daM++fac37n3nW0fcebc28f6Z13PLjrFnLZ8WPO/fB66zvP/+adeFdf7Uu/PWL1jcf22Ddsuo96/k3P7SqDzYmJSYTx4mYiImYiImYiImYiImYiImYiImYiImYiImYiMnJMR36LPfQ1+bNm62R4rKsf9xvgiG58MILtXLlSknSV77ylQFVr5566iktXbpUUmyPjL1796Zd24c0NzerpKQk/i+SH3roIV1yySVDOue7776rmTNnxr/fvHmzjjrqqCGdM520t7frthV/lK9kirbWtqmhrUN1LSG1hMLK8WcoPyu27FST++864P2jWt3vD/jcWdGpGh1eqNxohSSpvrVDze0dyvZ5VZDt06jMDB0xNk//cUZ67a/S3t6ut99+W7Nmzepyt5LTmJ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoShxPY+Vkuy1UNk9GjR8cf79u3b0CvObROpyQVFhamZduH5OTk6FOf+lT8+y1btgz5nE4XCoXUUbND0UiHWtpja+6FIrG18vzef/7q5kaPVlnom5rc/gMVhhbK0z5NimZ1PVk0S1mRGSoKL9Lk9h+oLPTNeIGj8/kOnb+lPax0rH+GQiFt3Lgxvj6gU5meB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEgeSy2t3B0wxffr0+ONdu3YN6DW7d++OP54xY0Zatt3Z2LFj44/3798/LOd0stzcXOUcu0jhaFThaOwOmXDkHxt5e1zdjg9Y41UUXqJwY1CWLMnVLkthueSVLL/G5mXK6+m5rnnofIfOH45aiqRhkSM3N1fXXnut3d2wnel5MCU+U+IAALtwHUU6Yb46A+NsD/KeOHLmjByYEqMpcSC5uJNjmBxxxBHxx5s2bYrvdt+XDRs29Pj6dGq7s5aWlvjj7OzsYTmnk0WjUUWDzYpGo/GfWYoVHg5t9N4bl1xyWQG5rRy5rIBc6uf4f5zv0PklKQ1rHIpGo6qvr++SMycyPQ+mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJBdFjmFywgknxNeFa2lp0Ztvvtnn8e3t7fHd7SXpM5/5TFq23dnbb78dfzxu3LhhOaeTNTY2qnnD81KoLf6zQ8WK4V5K6tD5OhdD+qmjpKTGxkbdcccdamxstLsrtjI9D6bEZ0ocAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kFxuPD6MzzzxTq1atkiRdc801uuuuu3o99tFHH9UXv/hFSbE9Mfbt2yevd/Crh9nZtiStWbNGZ5xxRvz7N954Q3PmzBnSOZ2+8Xg0GtVtf9go+TK1YXeDwlFL+xqD6ohENTrbr0yfp9trwpGoqhuDPZ6vNC/Q63JVbaGIDrS0K8Pj1pi8gLxul46bVKCvfXZ6j8enqmg0qsbGRuXl5cntdm4N1/Q8mBKfKXEAgF24jiKdMF+dgXG2B3lPHDlzRg5MidGUOJzAzs9yKXIMoz/84Q8666yzJEl+v19vvfVWjwPZ2tqqY445Rh988IEk6cYbb9Qtt9ySUm0f2szH5/P123Ztba2OP/54ffjhh5Jiy19t3rx5yBcepxc5JKmhrUOS9Pw7e1RZ16qd+1tU29yu0ryADivM6ufVA/fxwVZVNwZVnONXWVG2JhRk6fPHjNOozIxhawMAAAAAAACAmez8LJfy1zA688wzdfLJJ0uKLQl11lln6e9//3uXYw4cOKAlS5bEiwyFhYW64YYbejzfzp075XK54l/333//iLW9Z88eTZkyRT/72c963czcsiz94Q9/0Ny5c+MFDpfLpZ///OdUVodBU1OTHn1gudzhoMqLsuX3elSc65fX7VZDW1gZHrf8Xs+QvzI8sfN53W4V5/rl93pUXpSdlgWOpqYm3XXXXWpqarK7K7YyPQ+mxGdKHABgF66jSCfMV2dgnO1B3hNHzpyRA1NiNCUOJNfQ1ihCN7///e81b9487d27Vzt37tSxxx6rU045RVOmTFFtba3WrFmj1tZWSZLX69XKlSuVn5+fkm1XVlbqhhtu0A033KCysjJVVFSoqKhIGRkZqq2t1fr167Vnz54ur/nZz36mxYsXD0s8Tufz+XTsscfK5/Np2hifXt9xUAVZPvk8boUiUe1vbldJbmDI7exvbldHJCqfx62CrNidO9NLc4d8Xjt0zpmTmZ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KL5aqSYOvWrbr44ou1cePGXo8pLi7WfffdpzPPPLPXY3bu3Kny8vL49/fdd58uv/xyW9ruz/jx4/Xb3/5WZ5999oBf0x+Wq+pq5Zsfq6quTXvq27T7YKu8bpeOnpAvn3fwd82EwlG9U1mvSNTSpNFZGjsqU+MLMnXBnMOGsecAAAAAAAAATMZyVYaZMWOG1q9frwceeEALFy7UYYcdJp/Pp5KSEs2fP18/+9nP9N577/VZZLC77UmTJmnTpk363e9+p8svv1xz585VeXm58vLy5PV6VVhYqKOOOkqXX365HnvsMe3YsWNYCxyQgsGg1q5dq2AwtpH4nEkFkqSxowLK9nsVjlp6v6ZJkejg6pSRTq/P9ntVmhe7K2RuWeHwBGCDT+bMqUzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSeLz+XTZZZfpsssuG/Q5ysrKNJgbbYajbZfLpZkzZ2rmzJn6l3/5l0GfB4MXDoe1c+dOzZkzR5I0uThHM0pztbW6SYcXZ2vznkY1BcPaWt2oqSW5Cd3REQpH9X5Nk5qCYXncLh1enC2Xy6UZpbkqL8pOVkhJ98mcOZXpeTAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEguViuCimL5aq6awtF9PBru9TcHlZTsENbq2N3YnjcLk0anaWiHL/cLlevr49alvY3t2vXgdb462aU5io3kKEcv1eXzJ+kTJ9nBCMCAAAAAAAAkO5YrgpAN5FIRNXV1YpEIvGfZfo8WjJrvAIZHuUGMjRzXJ6y/V5FopY+qm3R27vrtetAiw62hBTsiCgUjirYEdHBlpB2HYg9/1FtS3yJqpnj8pQbyFAgI3bedC9w9JQzJzI9D6bEZ0ocAGAXrqNIJ8xXZ2Cc7UHeE0fOnJEDU2I0JQ4kF0UOIEU1NTXp7rvvVlNTU5efF+f6df5xE5Tj9yrTFytUTBqdJZ/HrY5IVHsbgtq+r0kbP67Xht112vhxvbbva9LehqA6IlH5PG5NGp2lmePylOnzKsfv1fnHTVBxrt+mSIdPbzlzGtPzYEp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kBysVwVUpbTl6uyLEvt7e3y+/1y9bAEVVsoorXbarS1uil+fF1rSPWtHWoJhdUWiihqSW5X7A6QbJ9X+VkZKsjyxc83ozRXp04vSfs7OA7pL2dOYXoeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHE5g52e5bDwOpCiXy6VAINDr85k+jxZVjNX00ly9uatOVXVtKsz2qzC7/zsyxhdkam5ZYVpvMt6T/nLmFKbnwZT4TIkDAOzCdRTphPnqDIyzPch74siZM3JgSoymxIHkYrkqIEU1Njbq9ttvV2NjY5/HTS7O0QVzDtOlx0/SvPJCTSzMUiCj650ZgQyPJhZmaV55oS49fpIumHOYcQUOaeA5M53peTAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEgubiTA0hRgUBAp5566oCr1UU5fhUdHruLw7IshSJRRaOS2y35PG5H3NKXaM5MZXoeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgu9uRAynL6nhwAAAAAAAAAkA7s/CyX5aqAFNXW1qYXXnhBbW1tdnclbZCzGNPzYEp8psQBAHbhOop0wnx1BsbZHuQ9ceTMGTkwJUZT4kByUeQAUlQ0GlV9fb2i0ajdXUkb5CzG9DyYEp8pcQCAXbiOIp0wX52BcbYHeU8cOXNGDkyJ0ZQ4kFwsV4WUxXJVAAAAAAAAAJD6WK4KQDfhcFg7d+5UOBy2uytpg5zFmJ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KLIgeQopqbm/XAAw+oubnZ7q6kDXIWY3oeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgulqtCymK5KgAAAAAAAABIfSxXBQAAAAAAAAAAkCCKHECKamho0E9/+lM1NDTY3ZW0Qc5iTM+DKfGZEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8lFkQNIUVlZWVqyZImysrLs7kraIGcxpufBlPhMiQMA7MJ1FOmE+eoMjLM9yHviyJkzcmBKjKbEgeRiTw6kLPbkAAAAAAAAAIDUx54cALppbW3VM888o9bWVru7kjbIWYzpeTAlPlPiAAC7cB1FOmG+OgPjbA/ynjhy5owcmBKjKXEguShyAAAAAAAAAACAtMRyVUhZLFcFAAAAAAAAAKmP5aoAdNPR0aGtW7eqo6PD7q6kDXIWY3oeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEguihxAimLNwcSRsxjT82BKfKbEAQB24TqKdMJ8dQbG2R7kPXHkzBk5MCVGU+JAcrFcFVIWy1UBAAAAAAAAQOpjuSoAAAAAAAAAAIAEUeQAUlR9fb1uuukm1dfX292VtEHOYkzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJxXJVSFlOX64qHA6rsrJSEyZMkNfrtbs7aYGcxZieB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEocT2PlZLkUOpCynFzkAAAAAAAAAIB2wJweAblpaWrRixQq1tLTY3ZW0Qc5iTM+DKfGZEgcA2IXrKNIJ89UZGGd7kPfEkTNn5MCUGE2JA8lFkQNIUW63W/n5+XK7+TUdKHIWY3oeTInPlDgAwC5cR5FOmK/OwDjbg7wnjpw5IwemxGhKHEgulqtCymK5KgAAAAAAAABIfSxXBaCbUCikjRs3KhQK2d2VtEHOYkzPgynxmRIHANiF6yjSCfPVGRhne5D3xJEzZ+TAlBhNiQPJRZEDSFHBYFBr165VMBi0uytpg5zFmJ4HU+IzJQ4AsAvXUaQT5qszMM72IO+JI2fOyIEpMZoSB5KL5aqQsliuCgAAAAAAAABSH8tVAejGsiwFg0FRhxw4chZjeh5Mic+UOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocSC6KHECKamho0K233qqGhga7u5I2yFmM6XkwJT5T4gAAu3AdRTphvjoD42wP8p44cuaMHJgSoylxILlYrgopy+nLVUUiEdXW1qq4uFgej8fu7qQFchZjeh5Mic+UOADALlxHkU6Yr87AONuDvCeOnDkjB6bEaEocTmDnZ7neEWkFGIT29vYu33/wwQc29cReBw4csLsLaYecxZieB1PiMyUOALAL11GkE+arMzDO9iDviSNnzsiBKTGaEofJPvnZ7Sc/200qC0hRzzzzjCXJsV85OTnW5ZdfbuXk5Njel3T5ImfOyIMp8ZkSB1988cWXXV9cR/lKpy/mqzO+GGfyni5f5MwZOTAlRlPicOLXM888M2KfI7NcFVLWs88+qyVLltjdDQAAAAAAAABAAp555hmdc845I9IWG48DAAAAAAAAAIC0xJ0cSFn19fV65ZVX4t8fdthh8vv9NvYIAAAAAAAAAPBJ7e3t+vjjj+Pfn3LKKcrPzx+RtilyAAAAAAAAAACAtMRyVQAAAAAAAAAAIC1R5AAAAAAAAAAAAGmJIgcAAAAAAAAAAEhLFDkAAAAAAAAAAEBaosgBAAAAAAAAAADSEkUOAAAAAAAAAACQlihyAAAAAAAAAACAtESRAwAAjLi//e1vWrp0qcaMGaNAIKDy8nJdd911qqqqsrtrAAAAAADYqrq6Wg8//LC++tWv6qSTTlJOTo5cLpfKysrs7lpKclmWZdndCQAA4Bz33HOPrrnmGkWjUZWWlmr8+PHavn27mpqaVFBQoP/7v//TMcccY3c3AQAAAACwxe23367/+I//6PbzSZMmaefOnSPfoRTHnRwAAGDEbNq0Sddee62i0ah+8YtfqKqqSm+++ab27NmjCy64QHV1dTr33HPV3t5ud1cBAAAAALBFXl6eTjvtNN1www1auXKlbr/9dru7lNK4kwMAAIyY888/X08++aQuuOACPfbYY12ea2tr04wZM7R7927deeeduvbaa23qJQAAAAAAqeOJJ57QF77wBe7k6AV3cgAAgBHR0tKiP/zhD5Kk66+/vtvzmZmZuuKKKyRJK1asGNG+AQAAAACA9ESRAwAAg0QiEf3973/X8uXL9eUvf1lz5syRz+eTy+WSy+XSqaeeOuhzh0IhPfTQQ1q8eLEmTZqkQCCgsWPH6oQTTtDPf/5z7d+/v8/Xv/322woGg/L5fJo/f36Pxxzq3/r16xWNRgfdVwAAAAAAepPKfzsjcV67OwAAAIbHM888oy996UtqbW0d9nNv3bpVF198sTZu3Njl59XV1aqurtbf/vY3/dd//Zfuu+8+LV68uMdzbN++XZI0ceJE+Xy+Ho85/PDDJUnBYFC7du1SeXn58AUBAAAAAHC8VP/bGYnjTg4AAAxRX1+flP9Jq6ys1GmnnRb/nzSXy6VTTjlFV155pT7/+c8rMzNTklRTU6MlS5bo5Zdf7vE8Bw8elCSNHj2617YKCwvjj+vq6oYpAgAAAAAAYlL9b2ckjjs5AAAwzJgxYzR37tz41x//+Efdcccdgz7fF7/4Re3Zs0eSNGnSJD377LM65phj4s/v379fF110kV566SV1dHToC1/4gj788EPl5+d3OU9bW5sk9XoXhyQFAoH442T8TycAAAAAAFLq/u2MxFHkAADAEAsXLtSuXbs0ceLELj9fv379oM+5atUq/fnPf5YUK048//zzqqio6HJMUVGRnn32WR199NH66KOPdPDgQf3sZz/TzTff3OW4Q/9qJRQK9dpeMBiMP87Kyhp0vwEAAAAA6Emq/+2MxLFcFQAAhigtLe32P2lD9Zvf/Cb+eNmyZd3+J+2Q7Oxs/ehHP4p/f/fddyscDnc5pqCgQJJ04MCBXts7tKRV5+MBAAAAABguqf63MxJHkQMAAPSoublZL730Uvz7K664os/jly5dqpycHEmxYsW6deu6PD99+nRJ0u7du3u9m+P999+XFFu2atKkSYPuOwAAAAAAI2G4/3ZG4ihyAACAHr366qtqb2+XFPvXJnPnzu3z+EAgoOOPPz7+/Sc3UZs1a5YCgYBCoZBee+21Hs/xyiuvSJLmzZsnt5v/TQEAAAAApLbh/tsZiePTAwAA0KMtW7bEH1dUVMjr7X8rr9mzZ/f4ein2P3uLFy+W1PVW3kPa2tp03333SZIuvPDCQfUZAAAAAICRNNx/OyNxFDkAAECPtm3bFn880KWjOq9runXr1m7Pf//735fH49HKlSv1y1/+UtFoVFLs9t7LL79cu3fv1qRJk3TVVVcNsfcAAAAAACRfMv52RmIocgAAgB513iB8zJgxA3pNaWlp/HHnTcQPOeaYY/Sb3/xGbrdbX//61zV+/HjNmTNH48aN08qVK5Wfn6+nn35afr9/6AEAAAAAAJBkyfjb+eOPP1ZRUVH868orr+zx5//+7/8+xN6bgSIHAADoUXNzc/xxZmbmgF7T+bjOr+/smmuu0Z///GctWbJEkUhEmzZtUkFBga699lpt2rRJs2bNGlrHAQAAAAAYIcn42zkSiejAgQPxr6amJklSNBrt8edO1/8CYQAAwJGCwWD8sc/nG9BrOt+B0dbW1utxJ5xwgp5++unBdw4AAAAAgBSQjL+dy8rKZFnW0DvnENzJAQAAehQIBOKPQ6HQgF7T3t4efzzQf8ECAAAAAEC64m9n+1HkAAAAPcrJyYk/7uuujM46H9f59QAAAAAAmIi/ne1HkQMAAPRo9OjR8cf79u0b0Guqq6vjjwsLC4e9TwAAAAAApBL+drYfRQ4AANCj6dOnxx/v2rVrQK/ZvXt3/PGMGTOGvU8AAAAAAKQS/na2H0UOAADQoyOOOCL+eNOmTQqHw/2+ZsOGDT2+HgAAAAAAE/G3s/0ocgAAgB6dcMIJ8vv9kqSWlha9+eabfR7f3t6u1157Lf79Zz7zmaT2DwAAAAAAu/G3s/0ocgAAgB7l5OTotNNOi39///3393n8U089paamJkmxNUUXLFiQzO4BAAAAAGA7/na2H0UOAADQq+uuuy7++P7779e7777b43Gtra36/ve/H//+X//1X+X1epPePwAAAAAA7MbfzvaiyAEAAHp15pln6uSTT5YUu6X2rLPO0t///vcuxxw4cEBLlizRBx98ICn2L1FuuOGGEe8rAAAAAAB24G9ne7ksy7Ls7gQAABgeixcv1p49e7r8rLq6Wvv27ZMkZWdn6/DDD+/2ulWrVmncuHE9nrOyslLz5s3T3r17JUkul0unnHKKpkyZotraWq1Zs0atra2SJK/XqxdeeKHLrboAAAAAAKQS/nY2C0UOAAAMUlZWpl27diX8uh07dqisrKzX57du3aqLL75YGzdu7PWY4uJi3XfffTrzzDMTbh8AAAAAgJHC385mYcEvAADQrxkzZmj9+vVasWKFHn30Ub377rvat2+f8vPzNXnyZJ133nm64oorVFRUZHdXAQAAAACwBX8724M7OQAAAAAAAAAAQFpi43EAAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAMFhlZaVycnLkcrn0la98pcdjfvjDH8rlcsnlcumHP/zhyHbQJu+++648Ho9cLpd+8pOf2N0dAAAADBJFDgAAAMBAp556avxD60S/Lr/8cru7j2H0jW98Qy0tLcrNzdX3vvc9u7szIN/4xjfi87GsrEyWZQ3qPAcPHpTf74+f6/77748/d9RRR+myyy6TJN188836+OOPh6PrAAAAGGEUOQAAAADAUK+//roee+wxSdL111+v4uJim3s0MMuWLYs/3rVrl1555ZVBnWfFihUKhUKSpOzsbJ1//vldnv/ud78rj8ej1tZWff/73x98hwEAAGAbr90dAAAAAJBcc+fO1bx58wZ8/Pz585PYG4yk7373u5Ikv9+vr371q/Z2JgEVFRWaNWuW3n77bUnSgw8+qFNPPTXh8zz44IPxx0uXLlVOTk6X5w8//HAtXbpUK1eu1EMPPaQbb7xR06dPH1LfAQAAMLIocgAAAACGW7x4sWP2WcA/vfXWW1qzZo0k6fzzz9eYMWNs7lFili1bFi9yPPnkk/rNb36jzMzMAb9++/btWr9+fZfz9eTLX/6yVq5cqUgkop///Of6n//5n6F1HAAAACOK5aoAAAAAwEC33357/PHVV19tX0cG6Ytf/KIyMjIkSY2NjXrmmWcSen3nuzgmTpyoT3/60z0ed+qpp+rwww+XJD388MPav3//4DoMAAAAW1DkAAAAAADDNDQ06IknnpAklZaWasGCBTb3KHHFxcVatGhR/PvORYv+WJalhx9+OP79pZdeKpfL1evxX/jCFyRJwWBQjz766CB6CwAAALtQ5AAAAAAwIGVlZXK5XHK5XNq5c6ckqbKyUt/73vd0zDHHKD8/X9nZ2ZoxY4b+/d//Xbt27Uro/B0dHXrooYd0wQUXaPLkycrNzVV2drbKy8t18cUX6+mnn5ZlWX2eY+3atfE+dt7DYdWqVbr44os1depU5eTkyOVydbnT4ZC2tjbddtttOvHEE1VUVKTMzExNmTJFF198sV566aU+c3HIOeecE3/ulltuGXD8P/jBD+KvO++88wb8up489dRTCgaDkqSzzz5bbvfw/en3zjvvaOzYsfG+fv7zn1dbW1uPx7700ku69tprddRRR6mwsFB+v1/jxo3T5z73Of33f/93r687pPMSUy+++KKqq6sH1MdXXnmly/y77LLL+jz+3HPPjT/uXBwBAABA6mNPDgAAAACD8swzz+jyyy9XQ0NDl59v27ZN27Zt0/Lly/X444/rzDPP7Pdca9eu1dVXX60PP/yw23M7d+7Uzp07tWLFCs2fP19PPPGExo8fP6A+NjQ06IorrtDTTz/d77GbNm3Sueee260PH330kT766COtWLFC11xzjX7961/3eZ5/+Zd/0XPPPSdJuu+++/Ttb3+737aj0ajuv//++PdDXV7q+eefjz/+zGc+M6RzdbZu3TqdffbZ8TG/7LLLtHz5cnm9Xf+0/Pjjj3XZZZdp7dq13c6xd+9e7d27V3/60590yy23aMWKFTr55JN7bO+ss85SYWGhDh48qEgkot///vf62te+1m8/O9/1cfzxx2vatGl9Hn/cccdp1KhRamho0BtvvKGamhqVlJT02w4AAADsR5EDAAAAQMLWrFmja6+9VpFIRBMnTtTxxx+vvLw87dixQ2vXrlU4HFZbW5suuOACbd68WeXl5b2e6/HHH9eXvvQldXR0SJIyMzM1f/58lZWVye12a/v27frb3/6mcDis1157Tccff7zeeOONfjfStixLl1xyif73f/9XLpdLc+bM0ZFHHinLsrR58+Yuyxd98MEHOu2001RbWxv/WUVFhY499li53W5t3LhR77zzju6++27l5ub22e6iRYt02GGH6eOPP9b777+vdevW9btc1Isvvqjdu3dLkiZMmKCFCxf2eXxfotFol7tOeisgJOrZZ5/VRRddFL9D5Gtf+5p+/vOfd1sGasuWLTrttNO0d+9eSZLL5dLs2bN15JFHKjMzU1VVVVq3bp2ampq0Z88enXHGGVq9enWPe2b4fD5dfPHF+s1vfiMpVrzor8jR1tYWX6pL6n3D8c7cbrdOOOEErV69WpZlac2aNfriF7/Y7+sAAABgP4ocAAAAABL2b//2bwoEArrrrrv0pS99qcsH3e+++64+97nPqaqqSq2trfrxj3+se++9t8fzvPvuu1q2bJk6Ojrkcrn09a9/Xd/97neVn5/f5biPPvpIy5Yt01/+8hd9/PHHuuKKK7Rq1ao++/jqq68qHA6roqJCjzzyiCoqKro8397eLilWDLnqqqviBY7Ro0frkUce0ec+97kux7/88su6+OKL9Ytf/CK+IXZPPB6PrrzySt10002SpOXLl/db5Fi+fHn88RVXXDGk5aW2bt2qxsZGSVJRUZHGjRs36HN17t8111yjSCQiSbrlllt04403djuupaVFS5cujRc4Fi1apF//+teaMmVKl+MaGxt144036s4771R7e7u+9KUvacuWLRo1alS3cy5btixe5HjnnXe0adOmbmPZ2dNPP62mpiZJkt/v14UXXjigGI899litXr1akvT6669T5AAAAEgTFDkAAAAAw61atUr79+8f8PE/+tGPVFhY2OcxoVBIzzzzTI93HBx11FG6++67ddZZZ0mK3anxu9/9rtuSRpL0la98Jb4vwy9+8Qv9x3/8R4/tTZ48WS+88ILmzZun9957T6tXr9b69ev1qU99qtc+hsNhlZaW6uWXX1ZRUVG35/1+vyTpj3/8o9atWycp9i/6n332WZ144ondjv/MZz6jP/zhD5o/f75CoVCv7UrSVVddpR//+MeKRqN64okn9Otf/1p5eXk9HnvgwAE9++yzkmJ3PVx55ZV9nrs/f//73+OPp0+fPqRzSdJPf/rT+JJbHo9Hd911V6/Laf3yl7/Uli1bJMX2uXjiiSd6LNjk5eXpt7/9rVpbW/XAAw9o7969uuuuu3TDDTd0O3bu3Lk64ogj4ud98MEH9V//9V+99rfzUlXnnHNOt4JZb4444oj443feeWdArwEAAID9KHIAAAAAhnvjjTf0xhtvDPj4b3zjG/0WOc4666w+l1RavHixSktLVV1drebmZm3ZsqXbv75/55139PLLL0uSZs2apa9+9at9tpmdna3vfe97uvjiiyVJjzzySJ9FDkn6/ve/32OBo7POd1FcdNFFPRY4DpkzZ44uu+wy3XfffX2e87DDDtPChQu1atUqtba26tFHH9U111zT47EPPfRQvGhy+umnq6ysrM9z92fHjh3xxxMmTBj0eSzL0te//nXddtttkmJFoUcffbTLJt2ddXR06L//+7/jx95111393pFy880368EHH5RlWXrkkUd6LHJIsbs5Dt058vvf/14//elP5fF4uh23d+9erVmzpsvrBqrzPi+f3EweAAAAqWvw90ADAAAAcKwvfOELfT7vcrl0zDHHxL/v6UPjzstNXXzxxd32duhJ5020//KXv/R7/ECWKnrllVfijy+55JJ+jx/IMZL0r//6r/HHnQspn9T5uaFuOC5J+/btiz8ePXr0oM4RDoe1bNmyeIEjLy9PL7zwQq8FDkl68803VVNTI0k67bTTBrRx97hx4zRjxgxJ0ubNm7ttYn/IJZdcEi+Y7Nmzp0sho7NHHnkkvqRWaWlptyXH+tK5GFZdXT3g1wEAAMBe3MkBAAAAGO4HP/iBfvjDHw7rOfvaE+GQzh+wH9ojorO//e1v8cf/93//p127dvV7Tsuy4o8//vjjPo8tLy/v946UqqqqLpuN93dniBRbPsnlcnXpS0/OOussjRs3Tnv27NEbb7zR414Sr7/+ujZv3iwp9iH7kiVL+m2/Py0tLfHHWVlZCb++tbVV55xzTrwIVVJSotWrV2v27Nl9vq7zeFZWVurf/u3fBtRefX29pNjYVlZW9rgvx/jx43X66afrT3/6k6TY3S89FTA6L1X1pS99qce7PXrTOVfBYFDRaHRIe6MAAABgZFDkAAAAAJCwnj6I/qTOm3N3dHR0e37Pnj3xx4c2fE5EXV1dn88XFxf3e47OBY6srKx+iyKSlJubq1GjRsU/nO/NoQ3I//M//1NS7I6N22+/vcsxne/iuPTSS+Xz+fptPxH9FWJ6cttttykcDkuKLbv10ksvaerUqf2+rvN4/v3vf++yN8hA9TWmy5Ytixc5nn76aTU3NysnJyf+/Ntvv61NmzZ1OT4Rg8kVAAAA7Mc/SwEAAACQsIEsLdWf3pYmGqhDyxL1JjMzs99zNDc3xx8nctdD5w/X+3L11VfH7wZ4+OGHu2xY3traqhUrVnQ5djhkZ2fHHx/a1D0RnYtTBw8e1N69ewf0uqGOp6R4caUn5557bnzz9tbWVj3xxBNdnu98F8esWbMGdLdRZ51zFQgEuIsDAAAgTfB/bQAAAABs0fnD+KeeekqWZSX8NVSdixWtra0Dfl3nJaH6MmnSJJ1xxhmSpAMHDuiZZ56JP/f444/Hl/E6/vjjdeSRRw64/b6UlpbGH+/fvz/h13/1q1/V5z//eUmxOBcvXqx169b1+7rO4/mVr3xlUON56qmn9nr+zMzMLnvBPPTQQ/HH4XBYjz76aPz7RO/ikLre1dM5hwAAAEhtFDkAAAAA2GLMmDHxx3Zt9Nx5s+nW1tZ+l8CSYnd/9LdUVWe9bUA+3BuOH1JeXh5/XFlZmfDrfT6fnnjiiW6Fjj//+c99vm4kxrNz8WLt2rXxfVn++Mc/xjdcz8jI0Be/+MWEz11VVRV/XFZWNrSOAgAAYMRQ5AAAAABgi86bfP/1r3+1pQ8TJkzoUuhYv359v6958803E7qL5Oyzz47fGbBmzRrt3r1b27dvjxcNcnJydMEFFyTY894dffTR8cfbtm0b1DkOFTrOOussSbFCx6JFi/osdHQez1dffTUpe1ycdNJJmjx5siQpGo3q4YcfltR1qapFixYNaD+WT9qyZUv88THHHDPEngIAAGCkUOQAAAAAYItDH6BLseWqDv1L/JF2yimnxB8/8sgj/R5/6IP1gfJ6vbriiiskxT6Yv++++3TvvffGn7/ooosGvMfHQEyfPj2+MfyBAwe63KGQCJ/PpyeffLJLoaOvOzpOPPFE5efnS4rdQfL8888Pqt2+uFwuXXbZZfHvH3roITU0NOi5556L/2wwS1VJ0jvvvBN/PG/evMF3EgAAACOKIgcAAAAAW8ybNy++B0NbW5suvfTSLhtz9yUUCg1oaamBuPLKK+OPf//73+u1117r9dgNGzbogQceSLiNq6++Or5Z+3333dflHMO5VJUkud1ufeYzn4l//5e//GXQ5zpU6DjzzDMlxZbq6q3Q4ff79dWvfjX+/XXXXZdQgWWgRa7LLrssnsstW7boW9/6loLBoCSpsLCwS/FsoKLRqF599VVJsULK6aefnvA5AAAAYA+KHAAAAABs8+tf/zp+F8OLL76oBQsW9Llk1Pbt2/XjH/9YZWVlw7bE1aJFi3TSSSdJin3Y/fnPf15r1qzpdtzatWu1ePFiRSIR+Xy+hNqYPHmyTjvtNEnSrl274ntWVFRUdFnmabgc2k9Dkl5++eUhncvn8+mpp54aUKHj61//uo466ihJsT0u5syZo8cff1zRaLTHc+/fv1+/+93vNHv2bP3Xf/3XgPpTXl6uk08+Of797373u/jjiy++OOGxkaS33npLDQ0NkqS5c+eqpKQk4XMAAADAHl67OwAAAAAguVatWqX9+/cP+PisrCz97Gc/S2KP/mnmzJl69NFHdeGFF6q1tVXr16/X/PnzNWXKFM2ePVuFhYUKBoOqqanR3//+90EvvdQXl8ule++9V8cff7wOHDig/fv364wzztAxxxyjY489VlJsKaONGzdKkr7xjW/o8ccf165duyTF7pwYiH/913/tVjy56qqrhi2Ozs477zxdd911CgaDeu6553TnnXcOuJ89OVToOO+88/SHP/whXuhYvXp1vEAkxfYXee6553T66adrx44dqq6u1gUXXKCioiLNnz9fpaWlsixLBw8e1Hvvvaf3338/XgDpfPdJf5YtW6Z169b1+PPBePrpp+OPv/SlLw3qHAAAALAHRQ4AAADAcG+88YbeeOONAR8/atSoEStySLG9OV599VVdddVVeuuttyRJH374oT788MNeX1NWVqYJEyYMWx+mTp2ql156Seeee6527NghKVbY6LxPgxQrVNx88836/e9/H/9ZXl7egNpYsmSJSkpKVFNTIym2vNOll146TBF0NWrUKJ1//vl6+OGHVV1drXXr1sWXBhusQ0tXLV26NF7oWLRoUbdCx+TJk/Xmm2/q2muv1RNPPCHLsrR//3797//+b6/nzs/PV0VFxYD78oUvfEH//u//rtbW1vjPjjjiCM2dO3dQsT3xxBOSpEAgoC9+8YuDOgcAAADswXJVAAAAAGx3zDHH6M0339Qf//hHffnLX9bRRx+toqIieb1eZWdnq6ysTJ/73Of0/e9/X3/961/10Ucfxe+yGM4+bN68Wb/4xS80f/58FRYWKhAIqLy8XBdeeKHWrFmju+++WxkZGfH9QNxu94CLHBkZGV32izj33HNVWFg4rDF01nl/jP/5n/8ZlnP6/f5ue3QsWrSo274fhYWFWrlypf7+97/rO9/5jk444QSNHTtWPp9PgUBApaWlOumkk/SVr3xFzz33nPbu3ZvQXRi5ubk699xzu/xssHdxvPLKK3r//fclxe7iKCoqGtR5AAAAYA+XZVmW3Z0AAAAAgHTx/vvva9q0aZKkGTNmaMuWLQN6nWVZmjJlSvxOkTVr1sT36UiWz372s3rxxRfl9/u1c+dOlZaWJrW9dHThhRdq5cqV8ng82rx5s2bMmGF3lwAAAJAA7uQAAAAAgAQ89thj8ceJLI/0f//3f/ECx+TJkxPag2KwfvzjH0uS2tvbdfvttye9vXTz4Ycf6sknn5QkXXLJJRQ4AAAA0hBFDgAAAAAYoB07dujnP/95/PtE9m/41a9+FX98zTXXyOVyDWvfevKpT31KF154oSTpt7/9rWpra5PeZjr5yU9+okgkoqysLP3oRz+yuzsAAAAYBIocAAAAAKDY0k4vvPCCwuFwj8//4Q9/0EknnaSGhgZJ0rHHHqvPfvazAzr3c889p2effVZSbD+Jq6++eng6PQA///nPlZ2draampvidHZDee+89Pfjgg5Kk73znO5o4caLNPQIAAMBgsCcHAAAAAEjxOysKCgo0e/ZsHXbYYfL5fNq/f79ef/11VVZWxo/Nzc3VX//6V1VUVPR4rg8++ED//d//rUgkou3bt+vFF1/UoT+9fvSjH+l73/te8gMCAAAAHIAiBwAAAABIA14+aurUqXr88cd1zDHH9HrM2rVr9elPf7rbz0888US9/PLL8vl8g+4nAAAAgH/y2t0BAAAAAEgFmzdv1jPPPKNXX31Vu3bt0v79+3Xw4EEFAgEVFxdr3rx5Ouuss3TRRRfJ4/EM+Lw+n0/l5eW68MILdeONN1LgAAAAAIYRd3IAAAAAAAAAAIC0xMbjAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAAASEsUOQAAAAAAAAAAQFqiyAEAAAAAAAAAANISRQ4AAAAAAAAAAJCWKHIAAAAAAAAAAIC0RJEDAAAAAAAAAACkJYocAAAAAAAAAAAgLVHkAAAAAAAAAAAAaYkiBwAAAAAAAAD8/+3ZAQkAAACAoP+v2xHoDYElyQEAAAAAACxJDgAAAAAAYElyAAAAAAAAS5IDAAAAAABYkhwAAAAAAMCS5AAAAAAAAJYkBwAAAAAAsCQ5AAAAAACAJckBAAAAAAAsSQ4AAAAAAGApLG/zEKmJ0S4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(energies, covspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=covspec_3_30.spectrum_error, fmt='o', label=\"Cov. 3-30 Hz\", alpha=0.5)\n", + "plt.errorbar(energies, covspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=covspec_01_1.spectrum_error, fmt='o', label=\"Cov. 0.1-1 Hz\", alpha=0.5)\n", + "plt.errorbar(energies, rmsspec_3_30.spectrum, \n", + " xerr=energies_err, yerr=rmsspec_3_30.spectrum_error, fmt='o', label=\"RMS 3-30 Hz\")\n", + "plt.errorbar(energies, rmsspec_01_1.spectrum, \n", + " xerr=energies_err, yerr=rmsspec_01_1.spectrum_error, fmt='o', label=\"RMS 0.1-1 Hz\")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional RMS\");" + ] + }, + { + "cell_type": "markdown", + "id": "e3f96dbf", + "metadata": { + "id": "e3f96dbf" + }, + "source": [ + "QED, except that the error bars in some points look underestimated. It is always recommended to test error bars with simulations, in any case, as analytic formulas are based on a series of assumptions (in particular, on the coherence) that might not be correct in real life." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "fa853e69", + "metadata": { + "id": "fa853e69" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:59<00:00, 1.49s/it]\n" + ] + } + ], + "source": [ + "from stingray.varenergyspectrum import LagSpectrum\n", + "covspec_3_30 = CovarianceSpectrum(events, freq_interval=[3, 30], \n", + " segment_size=segment_size, bin_time=bin_time,\n", + " energy_spec=energy_spec, norm=\"frac\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "1842eadc", + "metadata": {}, + "outputs": [], + "source": [ + "def variable_for_value(value):\n", + " for n,v in globals().items():\n", + " if id(v) == id(value):\n", + " return n\n", + " return None\n", + "\n", + "for func in [lagspec_3_30, lagspec_01_1, covspec_01_1, covspec_3_30]:\n", + " name = variable_for_value(func)\n", + " func.write(name + \".csv\", fmt=\"ascii\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61dc1445", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "X-ray Variability of an accreting BH with Fourier methods.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Transfer Functions/Data Preparation.html b/notebooks/Transfer Functions/Data Preparation.html new file mode 100644 index 000000000..3de227b88 --- /dev/null +++ b/notebooks/Transfer Functions/Data Preparation.html @@ -0,0 +1,193 @@ + + + + + + + + Setting Up Data — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[14]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+
+
[15]:
+
+
+
from stingray.simulator.transfer import TransferFunction
+
+
+
+
+

Setting Up Data

+

We use Image module from Python Imaging library to digitize 2-d plot from Uttley et al. (2014)

+
+
[16]:
+
+
+
from PIL import Image
+
+
+
+
+
[17]:
+
+
+
im = Image.open('2d.png')
+width, height = im.size
+
+
+
+

Initialize an intensity array.

+
+
[18]:
+
+
+
intensity = np.array([[1 for j in range(width)] for i in range(height)])
+
+
+
+

Below, we retrieve each pixel and then calculate darkness value. The perceived brightness is given by:

+

_0.2126R + 0.7152G + 0.0722*B_

+

To get darkness, the formula is corrected as follows:

+

_0.2126(255-R) + 0.7152(255-G) + 0.0722*(255-B)_

+
+
[19]:
+
+
+
for x in range(0, height):
+    for y in range(0, width):
+        RGB = im.getpixel((y, x))
+        intensity[x][y] = (0.2126 * (255-RGB[0]) + 0.7152 * (255-RGB[1]) + 0.0722 * (255-RGB[2]))
+
+
+
+

Invert along Y-axis to account for some conventions.

+
+
[20]:
+
+
+
intensity = intensity[::-1]
+
+
+
+
+
[21]:
+
+
+
np.savetxt('intensity.txt', intensity)
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Transfer Functions/Data Preparation.ipynb b/notebooks/Transfer Functions/Data Preparation.ipynb new file mode 100644 index 000000000..8533a974e --- /dev/null +++ b/notebooks/Transfer Functions/Data Preparation.ipynb @@ -0,0 +1,160 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting Up Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use `Image` module from Python Imaging library to digitize 2-d plot from Uttley et al. (2014)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "im = Image.open('2d.png')\n", + "width, height = im.size" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize an intensity array." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "intensity = np.array([[1 for j in range(width)] for i in range(height)])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, we retrieve each pixel and then calculate darkness value. The perceived brightness is given by:\n", + "\n", + "_0.2126*R + 0.7152*G + 0.0722*B_\n", + "\n", + "To get darkness, the formula is corrected as follows:\n", + "\n", + "_0.2126*(255-R) + 0.7152*(255-G) + 0.0722*(255-B)_" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "for x in range(0, height):\n", + " for y in range(0, width):\n", + " RGB = im.getpixel((y, x))\n", + " intensity[x][y] = (0.2126 * (255-RGB[0]) + 0.7152 * (255-RGB[1]) + 0.0722 * (255-RGB[2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Invert along Y-axis to account for some conventions." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "intensity = intensity[::-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "np.savetxt('intensity.txt', intensity)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/Transfer Functions/TransferFunction Tutorial.html b/notebooks/Transfer Functions/TransferFunction Tutorial.html new file mode 100644 index 000000000..65df07226 --- /dev/null +++ b/notebooks/Transfer Functions/TransferFunction Tutorial.html @@ -0,0 +1,391 @@ + + + + + + + + Contents — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the basics of creating TransferFunction object, obtaining time and energy resolved responses, plotting them and using IO methods available. Finally, artificial responses are introduced which provide a way for quick testing.

+
+
+

Setup

+

Set up some useful libraries.

+
+
[39]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import relevant stingray libraries.

+
+
[40]:
+
+
+
from stingray.simulator.transfer import TransferFunction
+from stingray.simulator.transfer import simple_ir, relativistic_ir
+
+
+
+
+

Creating TransferFunction

+

A transfer function can be initialized by passing a 2-d array containing time across the first dimension and energy across the second. For example, if the 2-d array is defined by arr, then arr[1][5] defines a time of 5 units and energy of 1 unit.

+

For the purpose of this tutorial, we have stored a 2-d array in a text file named intensity.txt. The script to generate this file is explained in Data Preparation notebook.

+
+
[41]:
+
+
+
response = np.loadtxt('intensity.txt')
+
+
+
+

Initialize transfer function by passing the array defined above.

+
+
[42]:
+
+
+
transfer = TransferFunction(response)
+transfer.data.shape
+
+
+
+
+
[42]:
+
+
+
+
+(524, 744)
+
+
+

By default, time and energy spacing across both axes are set to 1. However, they can be changed by supplying additional parameters dt and de.

+
+
+

Obtaining Time-Resolved Response

+

The 2-d transfer function can be converted into a time-resolved/energy-averaged response.

+
+
[43]:
+
+
+
transfer.time_response()
+
+
+
+

This sets time parameter which can be accessed by transfer.time

+
+
[44]:
+
+
+
transfer.time[1:10]
+
+
+
+
+
[44]:
+
+
+
+
+array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
+
+
+

Additionally, energy interval over which to average, can be specified by specifying e0 and e1 parameters.

+
+
+

Obtaining Energy-Resolved Response

+

Energy-resolved/time-averaged response can be also be formed from 2-d transfer function.

+
+
[45]:
+
+
+
transfer.energy_response()
+
+
+
+

This sets energy parameter which can be accessed by transfer.energy

+
+
[46]:
+
+
+
transfer.energy[1:10]
+
+
+
+
+
[46]:
+
+
+
+
+array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
+
+
+
+
+

Plotting Responses

+

TransferFunction() creates plots of time-resolved, energy-resolved and 2-d responses. These plots can be saved by setting save parameter.

+
+
[47]:
+
+
+
transfer.plot(response='2d')
+
+
+
+
+
+
+
+../../_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_26_0.png +
+
+
+
[48]:
+
+
+
transfer.plot(response='time')
+
+
+
+
+
+
+
+../../_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_27_0.png +
+
+
+
[49]:
+
+
+
transfer.plot(response='energy')
+
+
+
+
+
+
+
+../../_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_28_0.png +
+
+

By enabling save=True parameter, the plots can be also saved.

+
+
+

IO

+

TransferFunction can be saved in pickle format and retrieved later.

+
+
[50]:
+
+
+
transfer.write('transfer.pickle')
+
+
+
+

Saved files can be read using static read() method.

+
+
[51]:
+
+
+
transfer_new = TransferFunction.read('transfer.pickle')
+transfer_new.time[1:10]
+
+
+
+
+
[51]:
+
+
+
+
+array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])
+
+
+
+
+

Artificial Responses

+

For quick testing, two helper impulse response models are provided.

+
+

1- Simple IR

+

simple_ir() allows to define an impulse response of constant height. It takes in time resolution starting time, width and intensity as arguments.

+
+
[52]:
+
+
+
s_ir = simple_ir(dt=0.125, start=10, width=5, intensity=0.1)
+plt.plot(s_ir)
+
+
+
+
+
[52]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x112d48990>]
+
+
+
+
+
+
+../../_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png +
+
+
+
+

2- Relativistic IR

+

A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: time_resolution, primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default.

+
+
[53]:
+
+
+
r_ir = relativistic_ir(dt=0.125)
+plt.plot(r_ir)
+
+
+
+
+
[53]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x10cca92d0>]
+
+
+
+
+
+
+../../_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png +
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb b/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb new file mode 100644 index 000000000..4f5c6fe3a --- /dev/null +++ b/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb @@ -0,0 +1,514 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating TransferFunction object, obtaining time and energy resolved responses, plotting them and using IO methods available. Finally, artificial responses are introduced which provide a way for quick testing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set up some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction\n", + "from stingray.simulator.transfer import simple_ir, relativistic_ir" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A transfer function can be initialized by passing a 2-d array containing time across the first dimension and energy across the second. For example, if the 2-d array is defined by `arr`, then `arr[1][5]` defines a time of 5 units and energy of 1 unit.\n", + "\n", + "For the purpose of this tutorial, we have stored a 2-d array in a text file named `intensity.txt`. The script to generate this file is explained in `Data Preparation` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "response = np.loadtxt('intensity.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize transfer function by passing the array defined above." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(524, 744)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer = TransferFunction(response)\n", + "transfer.data.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By default, time and energy spacing across both axes are set to 1. However, they can be changed by supplying additional parameters `dt` and `de`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Time-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The 2-d transfer function can be converted into a time-resolved/energy-averaged response." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.time_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `time` parameter which can be accessed by `transfer.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, energy interval over which to average, can be specified by specifying `e0` and `e1` parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Energy-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Energy-resolved/time-averaged response can be also be formed from 2-d transfer function." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.energy_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `energy` parameter which can be accessed by `transfer.energy`" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.energy[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plotting Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction() creates plots of `time-resolved`, `energy-resolved` and `2-d responses`. These plots can be saved by setting `save` parameter. " + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD5CAYAAAA+0W6bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeYJVd55/85VTd3DjPTkzSjNJJGSEISiCAUjAUWwYRd\nk9bYYLC9XgdwxGDv2rLXYJDX4Ih/uyaYh7iYZFhEELYGJEAiCUkohxlpRqOZ6Znp6Xxjnd8f7zlV\n1a0Ot3u6+94evZ/nqefeW7fCuaHe89b3fc97QFEURVEURVEURVEURVEURVEURVEURVEURVEURVEU\nRVEURZlNIcBC08vxtWybWcuTKYqirEPsdedkmtrwuvvrsIZ2NVirEynrhn8B/merG7EA/w04DIwB\nfS1uy0pwGjCOOlNtjTHNLWuNGvBTixzwQWAfYuBuB65d4jH8reBs/ggxNOPANFBPvb5rec1dMlng\nr4GfBrqBkRU45h7k84ynlmetwHHnYx/w/NTrx4Au5v7OlTYhaHJpRbuUU4cMYhCuRAzcfwc+DexY\n4nHm8iXehRiaLuDXgO+kXl8wa9/V8kWGgAJw7zL3n+v/boHfIPksXcBtyzx+M1jU2153qAeurAVT\nwJ8hRhzgy8Be4JIF9rkY+BHisX8KMZCLMdtI7wH+Avg2MAmcAfwScI877sPAr6a2vxo4APwuIocc\nBN6Yev/FwN1u3wPA7wFnA/e5908A33DPzwVuBI6591+VOs6/AP8E3ABMuPM2yx7gzanXbwRuTr2O\ngP8KPIDcCfzDrP1/heTz3418zx9FJJMvIZ7+7wM73bH8tbgF+KL7PA8Cv5w65nVIh/wRd9yfAJcu\n4TMpy8Q0uaw1asBPbTYBuxADMhc54AuIQegD/hX4zyzvdv71iLHpBB5FDPNLkDuBXwLehxixdNu6\nEYP1ZuAfgR733gcRg98NnA/8B2LMdrv3e4BrgA7EeH8M2AC8Fng/cF7qPK9DNP1OpIOZi7muvfmk\npDQvAZ4BXAi8GvgZt/5VwJ8Cv+A+w8sQg/wLSOf6UsTT/19zHPNTbpvNwM8hdz4/lXr/Z4FPIt/B\nF3lyx6GsAqFpbllr1ICfumSBjyNe6APzbPNsRHb5W6ABfBb4/jLOZd157kW8yTri9e51738L+Dpw\nRWqfGvDn7rxfQTzkc9x7VcRwdwOjiJYPTza0L3Xn+Ig774+BzzHTC/8C8F33vDJH2w3wd4gXPQL8\nYNFPm/BuxBPeD9wEXOTW/zLwHuCH7vXDJHdFC7EdeC7wh8h3cAfwAeAXU9vcDHwV+c4/ljqnsoqo\nhKKsJQFyu14GfjO1/iskgbr/gni/j8/a91GWdze4f9brFwG3Ip7nCCKLDKTeP4YYXc8U4iWD3AW8\nGAn47UE6mrnYgQQcR1LLf0G8exAjN7tds7HAbyF3IH2IR90sh+Zp/zbEaC+VLUge8WRq3WPA1tTr\nw7POWUCv41XnJCSU7Ujnfjcieb1l1vu/h1wH/al170DuOO8DXrhQu5pLblTWEwaRIDYgRrCReu9F\ns7a9ipnGAcQoPrSM86blhjzizb8e+DfXhs/TfMfwA+AVQIgY108j2vFsHgO+ySJ/8mUyiUg0nqEl\n7LsfOGue9xaSZQ4iF3InckcC8rkPLOHcyipwEt51Dfgd5O6wE7kruxG5W90OvABxmjy7gde4x61I\nrGcXM52dGO25Tz3+CQnsvYy5JYM030Hkjrcgkst/Ap65zPOm/+I5txxF/ngvonkjmwV+HtF4G8jd\nQmOebf8f8ud+vdsvi7T/3Dna1GzbPT9Gvo8iYozfPMc2s4/hj/MBJEB5iVt3FkkHdBg4c55j7Ed+\nk79EOsELgTchUonSQk7CAz+E/JdAOuV7kTstgPcCb5u1/cuRGEcNuQN9CLhsvnapAT+12IEE/y5C\n/jheLnndPNvXECP1RkTSeDXiOS/GXAG+9OtxpFP4NCIJvA7xxOfbfjavR7TtUeTz/Pw8+00gHcNr\nESnoCcT45RZo51zMtc37EB36MPBhxIjaBfZJn+szwDuBTyAa+edIBh39JZLeOYJk4cw+1uuQzJSD\nbr8/QYK4830ezR9fAwLT3LIIO5FA/m2IoT4A3Dlrmy3MvOM6wJPvkmM0H1VRFGVh7PsumFttfmgi\n4qHJpA/92hELc9vVTpJ0268juvgLkA5+LxJ7OQb8PRI7+rjb7wNIQsDn5jq/auCKoiiLMJ93vasr\nYFdX8vprR+pzbZZF7mw/hmRFXYB443e497ch2vizkDvJ7al9t/HkRIOkXc00XlEU5alMYGxTyxz4\npIJ7gL9x6+5CMqVOd8sBJF5yGMntfy0iA56ODGD73nztUg9cURRlEU5Ca74ciencSTKe4Y+QlF5P\n2vLfg8SO7kESDH6dBeIcqoEriqIsjP3Hi8KmNvyNOxqg5WTn56ILzl9KcXVddNHlKbxc9bznWlaA\ndh2Jue4klDvuuhs7OdzqZsRc987rue6PZ6dytg5tz8JoexbmVGuP6diwIu1oV6li3RlwRVGUtaaJ\nHO+WoAZcURRlEdrVgK+FBr6PJALr02H6kXoADyBJ7b2p7Zsu5NIOXH3F5a1uwgy0PQuj7VkYbc/c\ntGs98LU4516k6Hx6tubrkToZ1yOlM/uAtyMFXD6B1LOYr5CLbScNXFGU9sVp4Cdr5+yHLm0uC+VN\nPzw1s1Bmf6CXITWccY+vcM+XVMhFURRlLWhXD3wtDLhFPOkfINNMgYxC8nWND5PUb15SIRdFUZS1\n4KmcRng5UiVuA6J73zfrfZ+zOR8rksepKIqyXNo0hrkmBvwJ9ziMFPW/DPG6h5CSp5uBI26bpgq5\nXPfO6+PnV19xOVdf2R6BDkVRWsueb32bPTfPN/Xp8mmFd90Mq92sEjKryjgyu8nXkVnTr0FKJ74H\nCV72MjOIeRlJEPMsZnrhGsRUFKUpViqI+fHLmgti/vz31jaIudoe+CbE6/bn+jhixH+AFGx5MxKs\nfLXbZkmFXBRFUdaCNnXA27ZdC6EeuKIoTbFSHvinntWcB/7a204tD1xRFGXd066erhpwRVGURWjX\nofRqwBVFURahXetuqwFXFEVZhHZNI2zXjkVRFKVtCE1zyxxsR2agvxv4CfAWt/5Vbl0DmQ8zTdMF\n/dQDVxRFWYR5JixuhhrwO8CPgU5k9vkbkYmNXwn871nb7wZe4x7nK+iXtGu5rVIURXmqEDS5zMEh\nxHgDTAD3IjWf7kPKac9mSQX91IAriqIswgoVs9oJXAzctsA2SyropxKKoijKIqyAp9sJfAZ4K+KJ\nL4V59Rs14IqiKIswn3d9xwnLnaOL6uNZ4LPAx4AvLLJtUwX9PGrAFUVRFiEzjwG/tM9waV/y5sce\ne1Ks0QAfROo7/c08h08f/YtIQb/3ItLJ2SRTUT65XQu2WlEURTmZPPDLgdeTzAsM8EdAHvh7YBD4\nsnvvRSyxoF+bpqcviBazUhSlKVaqmNWeq5pTwa/+ZrQS52sa9cCVVcFOj0BtCjs5DPUyNCowfhh6\ntoKNIMhAkIWoLs/z3RDmMJkC5DogU8CE2VZ/DEUB2nckphrwUxxbm8Z+/FexkycAqI2e4GM3PMih\n6WSbjizkA6hFEAYSce/KQmShmLEM5KAaQW/O0rAw1GGo1S3bdm3iyN5hejd2Mj4yzYYztxBks4SF\nIo1KmVzfICZXoDE5Rti7ETtxHNPZL1dDLg/VijSgUIJMDoIQawKIGhA1sGEGsgXId0AYQiYPo4eh\n0OWOUYTyhDxm8nKMqREo9srr2jSEWSiPQf9pMD0m56tNgwnkvUKnnK88Ic+DUDqUqA6FbtmuMgGV\nSQgz7vWk7Bs15HVUl8dsHmoV6aBqZch3Qr0ibQ1z8hnqNdk2k5XHIJTjhFn5rNYmnVqYlf2D0LU3\nl6wHeS9blPdA3vfrM3kI89CoQlQDEzor5NvijmEjd76s7IORztbaxGqZQNZj5THIYHybrJVjhNnk\nuX/PGIgi2S/MJu00IdiGHMtGblvv4fpzGjnObNLbBSHGrE0mdLvmW6sBPwWwUQOmj2OP3s/fvPrn\nqDSgEhmMk87yIeQC6MhAZxaKGdjVY+nKQF/O0p+HRyYMl5zZQSYbkslliBoRWEv3eRfSmBynMT1F\nbtuZADSOHyI840KoTHH6Mwz0bKJv9DBs2AljwxBmyGw8SwzW8F5CZySNjWCDHINMHqqTMHFMLvz+\n7TMNWq4kj4H7i4Y5qE7A5t3QtRnGD4qBKvQ4Q1aC6eNQ6BWjYBtivMK8M3whsXEK8+79mhw7yEh7\nTOCMUR7KI3LMICv7mBCTLWEbVWlHmJX93N2EyXZga1OJ8Q1C+XzZkuyfKWCCLLY2CYDJdSYGUH7F\nuCOwtSkxckFGDJQ3zNjE4NlIPk/agAXuedRwK4w7pnGdUsMZVfdonIE0KUMahEBn8t3ERtedM2ok\nv5ExrlNzx/SGGus6ooY8+u++XnHrIteJZPwfWNrpjx9mxPDPSK42ybbx5w3dP9zI72ntjPdWUslo\n12qEbdqsBVEN3BHtv5XPvOHl3HvCYN1PGRpLdxYK7trszEJHRox1zcKWoqWjELDlgjMZP/AEXVuH\nCAtFrLVkN2yFfFG8xHwx8XB7NopB9d5urSwGtzoJHQNy0U2fkMeBHTMbOT0GHX3iKQJkConXOnVc\n9s93J4baG5/yCSgNwPSI7JspJB5lmBOjmOuE8qhILt4YRTVMoQ9bHpH3a1NgAjGw9emU9+cI85gg\nxEZ16WRcO22jir88TJBBjFMOrMXWpmS7tPG1VjzoWllWBWEiFXkPu16R12nP1nus3rAFoRgvGyWe\nuzFiUL2RzRTEq27UpI2ZvGtGIzG41s0VbiPphOL3UoYb3LHdnVCQS4xxVEt+EyyYjKzzx4sNu9ve\n1p2Xn+oU3O8h57eugzGJoU4fY7ZH779T30n6uwf/HcSf1//u9Zmfyf02Qd9O4h9y+djv/FRzPvhz\nb1INXFmE6Ja/47Z3/wU3HgyI3M1daCwdGTHc3TnxrMsN6MnCUMGycUsn0+MV+rf0cezxETKd3fSe\n3UGQyRL0D4lxLnWJDBFWEzmha1CMT60MG06HsSMwuFOM0eDpsj7MQs+QGJJ6RSSKriGYPArdm8QA\nN6rJhVfoEV3ce3xBRvYDyHfJxV3oFe+1NpV41QDFfjHu1opBz3U4D9V5YWEOWx2HbEdiJIIMNqpj\ncl3YRgVjctj6NCZTdAa2Jp5u1h0nqmFMSkrxxth1HsZLEN7oGv9+XYx4w+3jJYdMRoytN4jWyneV\nNt6QyBBhNjFCtgGEMw1/VBeDmnWeua07gzVLkvDSCYhxjretJ222uN8lcOuzKWPqjKLJJJ2Jl1bi\nuwDkP2Od5x2kPHDsTE84qss677lHkRh1L5vZWtKB+c+f7rjSQrQ/d+Q62iB9N0Py260Q8xSqajlq\nwNcR0dH7+duXXsVo1QAhobH0ZS0FJ292ZOCMzohyw9CRsYQGBnuybH3WxdTHx+isVshv3EzHWTnR\na7sHqD9yF8HGHXDkUSh2y4HOejYcexTGjsLQ2VAeh+6NzhsfkousbxtMDEPXpuTiqkyI19yoycWT\n7xRDmik4XTWS1wD5HrnIigNiaDBi6Cvj4pHnOp0XviGRLkyAMQab65R9ohom34OdPALZIiZbig2W\nbVQxYS4x3JVRiEIx2o0qJtvhDKqV9tUriVHId83sUHzn442RN9yZQur234ohazgjFISJnu31dmmY\nHCPtpPljZwqJ7GAj8AWUvIRio5RH69pq5L8Qyycg5/QSjyfuKMLkeL7d4OQMk3i1NhJjHnv/NnU+\nZp7fd0BB6Lz0lCGNDX5K247Pmf5O3PdgQpHejIF6NZF/0sdMyz/ehNlGopl7Tz5YOfPWrhKKGvB1\ngJ0+zo2vOI/vDMstqEGMc28e+nJQj6A7axkqWmoRXLK7l4mRafpP30r52FGqR49gMhlyAxswHb3Y\nyRMShIoaZC64Uk6ycQeMH5OL5vh+2HiWGOAwJ7JIJg+dGyQgWOgWr7g0AOOHnIddg+4tMDksF2a+\nB6rjzijVE23Za9PZkiyTR8Srzpbk4s91iLEPXNDSNpxHXcLkOqA2jcl3YaePgwmxUQ3TsVEkkJQm\nbHIdsSRiyyOYjo1yZxB7gM7TrFeBKLkTMIHcVWRy8l5tOjHMOK86CBNZAlzHVEqMiDfqGGZ48UEO\nbJjSrSMgcN5jJOfzRsg23Oe3yTlsAzJF9xmyiYSS6xA5y3cwmULq+HaW8Q1S+rbzXKOUtm2t6yQC\nOV+UClJ63TvW0/3ncN+Dl4hA/jdRLfUvNkknEzgZyzaSTCR/1+A7EK+FBxnXgZrUNu7z+P2CEKy/\n+/Aef5SKBZw8J1GNcFVRA97mRLf8He9667uo24BcIN52Tw6ygXgFOzsiqpHh7KE8R4+X2TFUpFap\n072xBxNm6Nh2GmFHFyZfEq87V8D0bpTn9VoilUwcgw07xBj3DMHUqDxCEuTL5OX96ROyz/QIFPsA\nC41ALsYgIwalXoae02DqmBzDpQnGt/pe9igNYDJFCe7lOlPebka869qk6NQmcMbWOOMdiJRhJFBn\nch3OU2xgGzVMvjM2hpILPEua8IYgk0tJIe5OIpMX45DJidGtTcqdQ3065Yl7/GdxkkHUSDqtwHmY\nJnDvAzjZIszK9x96zzgdwHOGDee5ei0dHzCMUp2FTe4WfMaH9+7DbPJ9xlJPPZEb4uwVpzN7+aZe\nTTznuP2prJB0IDF+7jqOdKcWyx42OY7viHznhp25ve8c/P9uRrB2VszBy0q+3V5y8t/XCmaotKkD\n3rbZMQpgJ47w7t9+F3UrXnc2gFIGGlZS/kBkk60lizGwcUORnq0bKfb1kO3tJ9vTS6Z/EyabTy7Y\nrgHRaHMlSWUDMdQ7LhHjXOx2J49gehw6BsUTDzISdGzUoHOjaNNY8Z5zndC5SV53bHQGvyAG3l+U\n3hOtTWI6N824yKyNMLkusFYkDhOIHBJkMPluaFSwcbpaDlMacMG9AFudSCQFF8w06Ys3Dox5A+5v\nzyvOwGRSGSpVMR4+UJoO/nmDGR/ba9SpoFps5LzMUE9u9+M0PhBjXU+kjDjNMOd09GKiDXsD5Y1a\n2ntu1JL1ftvYqEVP1t29tJJO1fMBxch9Dr+NlzPi7JN6qiOYtS5tYH3sAJt8b+nAqv89/B1K/LsE\nyT7+db0i2/iOF2be2XjSWTDpTmEFCUxzy1qjBrxNsWMH+evnX0g1MhRDMd49OcnF3lqyXL4h4hXP\n28zOM3qJLGTzGXKFDOXjI+QGN5E743xM7ybYfCa1kWHYuksOPD0OZ14mMsHg6ZK3XJ6A6pRIJaU+\nuThr02LYS4MwdkiyPUr9Ip1UxuUCy5bE2FUnZzY+1ynasd8mzMmtv0uJs5XxmR4XYKNafKtssh3Y\n+JjGpeBlsLaBrZedNFKSd4v9iRfoDEScQZLWlb2x89p1Jk+SgWEk+Bhm3XsFMUT1cpKHjUk8ap8l\nYcK4I5mRtgjOcGeS5z5gmc7iCEKXqhgmhi/MuM5R7ixo+EBcyouFpFPMermEVMZGIHcP3iB6+QES\nOcuYJNgahEmHMcPXTBnXMJto4dYmOekzPlvaa3ffmdeqfVDTG98wmwQZTTizE40DoOkURZP8BnGA\nmJnetu/oguyKyickZ190WWtUQmlDom+8i0+/82+ZqAf05Ww8qGYgb7lkS4ZHj9UIQ8OxR48wPl5j\n5/lbsPU6ma5u8lt2Ek2MEh15jGBwK5w4THbnbjnw4DZ5rFWg0wUbe7fIusqkaNv1ilxcWy+U9ROH\nxagXehIvKVuUCzjfLcbb52I3quKB24as91qsD26FeZe2lxFpxMkfSV6wk1UyObkYjMFWJ11qn5FR\nmiDtDnOSURIPcsmKxBGEmEJPEqAzjSRAV5tO5B0/aCU9iMSnGDZq0uF4A+KNuU/hazg5Iqq5QJvb\nP9fhDFxdtquMOwPtUvDqLgc9bWhtI5ENGtXEYHpN2pDSp1PShc/vTudrx0FJJ9Nk8k6rdgYv8kbR\nHSMwiRQRH9N7y5F0QD6oGncEYeKl28jJNul9nWTidX8skPqOAZ8tlBhZZ3jDHDQayXeSzmOPBwa5\nu4Ugk9wVRfWkE/ASzQoP8NEgptIUtjbNX7zt74gI6M6K8c6563h7hyUIA56+ux+CENuoky9WiGo1\ncn0DZLq6sdPjBMUOKHbJSMcN28VgRw2X7mUlW6RekcySYm9yQZbH3YhA5y1PHIGNu2HscTFgxX65\ncEobZNBMdUK87ckj0LNDBr9UJ1JerPOYyieg2CeGu17G1muYYj+2Mi7ZIMZga9MuH7uGaQTY6WOY\n0gZMpoCtTsjAF6c323oFE2YxtpEEzoIs2LJo1kRggyRfPK1TB5nUiMVyEnz0erM33lEt6WACFyhM\nB9Pi/GqT6N4+AGgyyXcTSw0pKaM+LefwHmu9Kp1MOuCbfu49dLzxSud6O3yAMnRBP+8R2yg5xuxM\nGP85alOuY6vIObPFxEufocO7/dM6dZgjHrzkZQxIjKmPe/i7Fm/o/SAtL/XEv0822W52Dns8iCjl\noftH76V7rT/dGa0A7ZpGqBJKm/G5a3cSuUyTDnfNZ4ylK2vZeVoXX3+4xme/d4K77h4m09lNR38X\npW07qRw9TJArUJ8Yh4IYRUpdcGgv7LhYDrRlt6wvdicXc+eQG3rtZIUwK4HJbEkurNq0M+ipW+KJ\nQ1AZg45NYgTzPTA1nEgq1g2IqZcT3TpTAAwmW3KyRzJIw9Yrsn2uM+Xt+RzxEFPoTd3GV102yhRk\nCljbgGwBO3WMeECI11i9ph3VE5mnOpkYlUxe2ghODvHDz8vu7sEFZutuaDmBHNN7ymEmkRNiT9Zr\n0c5DbVSSc3ivNfAZJM4QxWlxqSCdMdIZ+DuFGQbJJJJLHIz0unc10bnTBtQfo15J9k2PckwPkIq9\n4VpinMEZfptqd0oTB2akCPrgY1qzhyQQ6j+fCZJRsD4YCzPvDNLGOx3UbFSJg6/xCNNUfvoKFjBp\nVw1cPfA2IvryH3P3iKEnZ8kHIpmc223JZw1hRnKgX3ZhB52bN9GYnqKwaQuN6Ukqw09QGNpKbeQo\n2V2XQEevDGm3Fs68BA78BHo3izEu9YoXlytB3044eIdkpPiLGyAzDljJ8Y7qSU0RLFTGMD3bseUT\ncrE7D1q8+LwUyQRsZQxTGhQ9OtcpHnamgK2OizGPg43uQo4y2PqYGOd6GVPokwu27kf5OY3TG6ds\nCWwUZ5+YTH6W1+pusW2UjFQ0zsutThIPXsm4EaL16UTC8ZIJyHa5DuL8Zt+R+EEw2ZJ0Zpmi+/5S\n2zScbOTbHdWdRFOX7602lWjxxkA9nb9tkrYFoWQE+hon8QAf12F5Kcan+tWrrq5KkEgQcQDTY2el\nE2blriFbSqXnZVIeswu6eonNG1W/byyZRMn3BklnGq9zEou1SSzA/2b+bsgyMxhsAjlu3FmlMmbi\nlMKU8Q4yxOmPK0SbOuBr4oGHSK3bL7nX/ciszA8AXwd6U9u+A3gQmfDzhWvQtrbBWsvn/voDBAaK\nIfTlLb056OrK0tFTYMOOQaYnqgy84pfIP++V5PoHKR8+SFStUthyGpnObkwYJkO5swWRTLacLxfq\n4YdkOe1SuQXv3gQnHoPBM6FvhxiUriFZ8l2JVpvJi0eeKcjrjg1SqwNg6qgEE61NZAenU5t8t0gf\nac/SGBlU4/KKbVVmlhIZxWWe1MvO6KXS6tJeVdRIOpo4t9x5mJVxMQC+JgkmGdnph4JPHU887SAL\nUTXlqUby2mv93qCnJRATEnvi4IxqUTqZ2JimvMTYI20kAbZMQXLk4wE61nUCTo6oTycDi2rTiXGM\ndWGfZuiDhu4cDefRzk4T9AFPH0BMp97F79kk1dMbQ58v7z+3zwf337eXdvx34UdOxsbUJt/l7ACp\nl3bSwVnvUccjKNPG2adumqRTSEskqYD4nJkqJ4kxpqllrVkLA/5WpDi5vz98O2LAdwH/7l4D7AZe\n4x6vBd6/Ru1rC+yX/pD7Rg1DRTHgWQODeUvf5l6GnvNcTEYKTE1+41Mc+cQ/su87d2LrNcJiCdO3\nierxYTJDO6kfeAgmT8DW82H380XX3rIbLnwRnH+tXGBDT5NBOIXuxOOqTsigHK8LB6ELSLqfbXJY\nLpLyKER1TL4H07tTBtDUy+JVe2PqtdIwL4NwMJhMXgy2kWCkLZ/AdA5BPAQ+I+cOsmJofWCrVia+\nGL1R83VFvPce+OBqQfYv9BLXEKmMJ0FEb6iDUAy1r6cSF3NK5TmHeXdsZ6AarvKfbSTbe625NikG\nvl4mLt6UHmTiL+xcKTGA/rz+nJlioiuns12Ml4QaybF8xou1yfuQ8vKdxBFLPT4tMCXBpNMC486x\nPrP9fl067923Md6/kXw+fz4/+CaWS7yRn5V26QtQpTNjvMFPB09j6SSlpfs7gLSk44OZ6d9xhfA3\nSYsta81qn3Ib8C/AO4HfBX4W8a6vAg4DQ8Ae4FzE+46A97h9vwpcB9w665inZDGr9zxTBs0UQthc\nspzdZdnQXyDMBHRvHqT49OdJtT8gDvx0DFC76WNk+zcm3uqZl8CRfTA5CptOl9vp7kHYdlFSRjVb\ngNFD0L/DZUuMyUXnC051bHSGuiaGZnpELqKCBDxNaQN2ajjxcFwQ0QQZMdjeG3cZJ3EwzN86+yyD\neOCIN9x1rG3Eoyhjo5WuOxJXt3Pn9VqyDxg2KomxShd0Sq+Lsz+8Tu2MTVw9L0gMuHE6eMNVPPRp\nfd44pL1un2nj2+G3t/VEi06POgTiwUTpsrHpFDjfHq8JR/WUHOK+03jou0kCgiZIRpF6jXu2R+6P\nFWd0ZBL5aHawNq4JYxNLFd9pmJnP0wFKT9xJzsoJb1Rnesr+vxJv6/0+fx6bfFZI9PpYpkn91zAE\n3VvczieFffAl4eJbAWd/ubES52ua1dbA3wf8AdCdWrcJMd64x03u+RZmGusDyJxwpzzRx3+Z6YZh\nqChZJ88cCslkAzbsPouwWCLo3UT1vh8y+rV/o2Ogi2xPP/XJCYpnnEf2witkNOX4MfG8K1Ow6Qwx\nHMVu6OjyVsaoAAAgAElEQVSHww/C8MOSOljqg+lRl0ZYFUPde5o8es9p+rhcEIVeMcZ+Xb4nMcCx\n9+c9Ml8DJBlKbfyQaQIwocseSckSQVYq++W7oFGXAT2hBO1svYzJdWDLoxL0hNjA2coEpmPQedfO\n8Lr88Ph1QKoDKGCnjkp6odeDvRH12m6QAeMNp9dxM+KpB9nEq4szU9x3ZdPGLEgZEJN0OqELlnrD\nSsrgQapTscml74OK6ZGjvqOZK7AZnz+le/vOID4vKZ28nDq2Ec24UYMgSgUto+S8aWloRgfTSLb3\nHUgsm/g2puSPuCP3302qI7KR/G8z+cRux9+TdTZ51nfm/2Oxcbfy+5nmDG6znIR3/SHgJcAR4AK3\n7jLgH5DJjuvItGnfd++9A3gTUp/gLYjMPC+rKVG8FGn07czfI/n7n/lY6L1TgmhkHxO330I+kKyT\nS/ojNu3axqaLdhOVpznw3R9R2XcvuW1n0rlpgLDUSX1ijOOPHebxm26ifvd3KH/rc1TuvEWCk6c9\nXYx4sRuOPCLedueAaN49W2HyOGw4V6SJqC71S8YeT4Zdg3jk+W65eCYOiSdZ6BPdNgixlbG4Tkk6\nc8DWpmJv1ZhABt0A2Ajri1kZI8+dxmp8YMxGcSlXWS85zKbQk3xZrjaJCULRsr2X6dMIsyXA6fF+\nWL8JIKphir1J8SlvWGpTyfNYEvAyQoakRKrz2P0Qc0j0/vhzBXIH42UUE7o64PnEWPqJEvxdhU8H\nTA+Q8XcBvmRsHLjFGdM6cWaNlyV8emM8oMnlZ/taIvGdi79jIdXRBUnRKK9/+w4Aks+brgEee8Cu\nzd5ox4HFKDlPHHD1f/h6oml7o9uoJtvPlsfi/W3yO8XaeD2pVpgOlPo4if8/rwBBEDS1zMGHEUk4\nzfXA/wAuBv7EvYZlyMir6YE/F3gZ8GKggHjhHyWRTg4BmxEjD/A4sD21/za37klc987r4+dXX3E5\nV195+Qo3fQ350nW89z9G2VJytbo7c4w+foTaIwfZ9gu/xmnnHpLb4COPEuRyNKanqIxNEIYB1loy\n3X1knv7TcqzpMbh3j2SV2Ah6h6T8a+eAXBD+lnrsgOix2RJgZCCOz4/2+d5RA1Psw44/IUHMMCsy\nha8THeZF+/UFpjo3YX0ecaYogUqXemgbVSkq1ZgADKbQg61OYVLFp8Bixw5g+s+WWifTxzDd25Lv\nyY+qjPO68+Idp2+ffd3peIBQQzxknyNdnUhkAmMTY+SzVxpebw/jNEVZX4k7AvFmvYZeSxl460ZQ\nBonRCfOyLpYIDPhh9PEIwpRHbwxxnZOIJMjpUx9hpsftP68nLUn4Gik+iJzWtX0GTTqwaO3MmYq8\nUffUnTGMtfHUIJz0IKJYrjKpjik14Cctv8xOO2zMkmfS+eOkAqNpjzvdlqjGnlu+y55bbktUlJVi\n+a7uzcDOWeueALxn0kti514OfBKoAfuAhxBvfbaMHLNWWs1VwO8jGvj1wDFE63478gHejvQ6n0Aa\nvBX4BnAWT/4ZTikNfOq6y/irLz7G6V1SUfD5F/djo4j84CaiSpnC+ZeJIW7UZOBNdUqGvlemYHCH\nXDjHH8c+/gDm/CsTY+CnCKtMwq6rxAiUx6S2if/zZ4vJhZdxWRlBmHjgKaNhcl0ySUKYkwyTegUm\nD2O6t8sw+HolHt5uo7qUcq2MxsY+Dlz6ofVRPdbLjcsFthOHMF2bEyMWT1TgjbK77U4PUvHPZ9fu\n9sbJj5iMB6U4z9gHE70xDt0oT1sHgkQSAnmdnjxghqzhtWt/nkyyr8m4QTuFxDuO64WETvfOJjKE\n9y5TOfIzBt14ycob6LSmnB5A473SIJv63rzG7fV0P2ox1ZFhxCNvuHak66j47yU+T2bmvrOP6X8X\nIKknMysW4WUUY+S7sr5jc4N60tkos+Mf/nU6PzyWfBJvPtj0NDh5O2f3vjK3+FbA6Z+vznW+nUgW\nnpdQdgC3gB+mynOA/cgs9bcCH3fbfQD4CvDZ+c63lnng3hC/G/g08Gakl3m1W3+PW38PiS50ykso\n139xv5tBx7KtZCntOBMThJjOPpk3cnIUdv8UPHE/0Q9uoDY2QuX4MQobNnHwzo+x8y1/AuUJpg8+\nRunMCfGUOvtdCViXgXDkQfHK+06TSoKNmnjgtiH1uH0ec/mEGJt8T3JBZ/KYMI8dOyCeOWCPPwSd\nQ2K8qxNS3tXlQNvatHju0yNSTXD6WJKdEF+QQJgVbdtnlwCmNCjGI8zIkOq4NrbzsPzFb0Kouxzq\netWlCvrJALyRdy5YHEzzxscmKYPY5DYdxNiC3JnUy4msEtc78TIL8t14fTyqujkunYEM83KsbFae\new+VlNGnkOzrvfu03lubcvVj/ACqIDF43rCnA7K+4647+cNn3vgOKs7uwXUs1STYCIkhjUjWNxJ5\nTL4j/91mkjox6TuJWP9G/gv+jizdbiPykcm5eU19+p9xspGPkaRoRXrebFa4CR9E9O3PA69CdPIX\nzLPtgjZwrQz4N90CcBy4Zp7t3uWWpwS2OhmXiN2QhwuueBrBwBbqBx8hs+Us7BMPYy68Bh6+DepV\ngme/kvymcyn0n4WtjrPzoZtgeC90DVB65jWSfXLhC+GhW2Xi33wpmYShPA6jB6Wmd21ajF+hTy7S\neB5J59H67BNncEXzLiRGouc08aAnD0uqoLttt/WyaOTVSTFA+S5MaUNsvE2xD6yVYfJ+NKbPqJgr\nf9hrqSaIZZgZenPsfTVm3qb7GiAzhmRnEsNjvCF1Bs2XQfXHSw+Z9wFH70X6Cn8GVwzK68BO2nHf\ngdQ2qaQ6IDvT265OJKVsjQ8F+awSk2jw3tOE1HeSmoWmXk88YR/IjdMDGyJl+TZ4fbsyKsfzcQP/\n3QQZMZZ+2rsZFRQhHlzjgoeLTSjcerO7cszXiXx3OOLW4SWnK15GYgM/g3jasAQZ2aMjMVvIv734\nDLKBoT8vkzE0JifIjBwms2EbVKcxp18kF+vmc+HHX4Xn/YrUEKlNiiRxzs/A1KeSioI7LhDjvWEH\nM+pVHHtUZtABuSAL3c6LdR5nw02DVhoUw+snEDYh2MkkjzjMSuaHNzb5bslOsQ1MoRdbq0n516iO\ndQWobKMiNUt8fQrA5EX+s7VJkVQaPmcaOa4xkmlSSOq0mLRs4XLPZwTC0vnLtXSGRTTDoEmtE++B\nI/v4EYg+ja9RS/af0QFAPL3c7EEkXgPPFpLOw1o3otN70OWkjSaQqoyNqvyW3vv2QdH4GKlMkHTq\npf8egozUifGedK5T7q5MKINLVuev+9Rjni/yORsDnrMx+S/8zb2NuTecyUOIrPxN4PnIoEaALyIy\n8nsRGfls4HsLHUgNeAt5dMLQlYXeHGzfvZWoVqU2OkKuezApE3pkLwxsg5e+Q2p/VMZkirGoIRkc\nz/hF7Hf+D/RtFsPTNSD1uyeGxVBveRqMPSHrfOGn6qTIIROHpZiVCaF7q5uxBqfrOv3Ua45hVrYv\n9Mj5Rx6Bjo2Yzs3x7brJd4u3DtLW2pRo4Y0aJnSpga44FZmCGO+ojrVWPosvpNSoudopzmutl8UD\nL/ZJDMDkk5TEXCkJvtlaUqPEz76DRWZrSeUb+5lv/IhCiDMcrNPybW3KzZkZYitT0u56EgQ0GXfn\nAYnGbCMJ7HqpYGrYpWFWYOygTJIR1aWcQc9WKPTKHUq+M6m06NrTDrKBknASv8cnEWM9iOjcfwL8\nKvCPSOGJafcaliEjqwFvMbkANuQttYkJChs2ktt6BhQ7k6j/0NmwaVfivRb7XV0RGdloin2SZVKd\nhKP74bQL4dCDMq/liSfEkFWmXEEqI4a91C9eZ6mfeJDG6H7ZJtcl521UZXh9dcLVAkkCbXbiMHRu\nFkNXn5b63VPHkjodTjfH1LBWpATr9Gtbm0o861jzdWmGGIwfwGMCKSXrb+d94avquMQIvMRTr0rQ\n1LhslyCMjbeN6pi4IxLvNZ5b03vITie35RPyuU0owVonIdiG6Lh2akLa67Ju7LEnXFphlAQNOwZE\nfij2y+/SMSifz4Sw+RIJAKthXpcEy69U9bp51j9rnvVLkpHVgLeI6OCPKDegPw9dOSgObSG3YQt2\n/JhMeQbO6z0Gu05ztUhEWzVOHjGFXpEfTn8u3PF56OyDo4/ClvNENunyendWgpfZInRvToyOv2X3\nqXDeW/RTm/kAlJ9goNgnj9PHJXA5cRiyJck2Sde9tpF4216KcfNdmmwHtjImaYLZDnA5zCZTjA09\nxsjdhfdIrZXXQRZbHkuyNUI3G4/Ls7ZuIgVbnUzymF2HASQyBDi9vpIEACtjkqFz5EG5Iyn1QJjD\n+logQRZ6d8hMQH4y5E0XqDF+KtGmv7Ua8FZx9w2UGzJwp6uvJMagewAzuA2OHYTejWKA+7fLwJhi\nn6slEsSRfMHKpL5bz5ec79HDMHJA9i1PyLyLJZdy2unKv9amxUhPHRPpxBtCSGSG8SfE0HcNYTo2\niVfqBkeY7m3YyWHxKHPO+64ed7PJS0aICbPi7WZLcf61nTgknZAfJFSbhCAbe8WAHKvYhy9IZCtj\n4gFHdaluWB2XbXzgszaVZLj4zmL6uHwGE8DkUXn/2KNSPqA8CV2DcPplMLAL070lDlaac9vzIlVa\nT5vabzXgLWP8KAZ4fMpQGC8zmMuLcevZKAa3f7tkGRT7iGtdxNkIPsBWE628OglbL4Xhz8ht/eAO\nGUI/ckDSCX0ZUmNg8piUiQ3zMsGmz7f26W1hHqaOQv8Z+Ip3tjySpIjlOrCjj0rAExLNu7RBjGmj\nCrXJJCjn85jB5Zpn3AhIJ3VkXObL1LBkw5gAxg5go7pkyQShBE7DHHbkYXm/PCqB1sq46MpTx2Hv\nHdDZK9LR5gslUBrmYPtz5I5FUU6Cdr3b0n92q2jUyYdw9kDIwLY+onqNMJuH4Udh63kSrPM1LzIF\nkQYyfsKB1DyOdZfjG0aS693jJhUeOyzbH7xbSsp62aR3u3jeBZdt0aikRlZOJ0PjfZZFZTw1oMan\n8JVku1yHzMZTHEjymKN6UuHQz1RDI6kjXZ1MZBqfF10Zk/X1cmoWGydtjB2UAGx1Cg49IG08/gT0\nbICeTTB0LmbXC+CK3wZaU9JTOfVp17+VGvBWYSO6spDJBtQrVTp7B10Nky6pY3L8AGw6WyoD1iYl\neBk1sJVRV7o1m+Qtu4wU27dNhtNnsjJt2tQxkQr8tlEdpqdk6Hx5NBn04gJzdGxMDLqfPzKqQbUm\nRro6IfJEkIWcm3W+0Ct5xX4IfqMqMoXvFEDe87JH1JB9Jofl9fRIktI3ekgM+RMPQNTAHnkUky/B\nz/wOZudVcP5/WjT3WFFWhTa14GrAW4gBil15Spu3iOH2oyj9LX9WUu0kQ0IGeUjOsMU0JMPDuFlb\nbKMGg2fDvlvFeJcnknzhkQPQuzUZWTj6uKQY5ktJjnTnkBSr8p6zH7QzcQR6d7giTY1kMEw8Gq+c\nGObp49LObElGdTZGpLPIdsg5Jo/KdhNHxFgfeogTt3wNY6Dn6pfBc9+M6RqC5/SpJ620FSeRhbKq\nqAFvFUFILoRapQFRRO2JvWQveQEMni5SQd9W2HCezN5eGoxzp0UmQAZwBPl4FJ4Jc9hCn/OkByS1\nMJMXzTvnRjBOjUCxRzJR/DDoyjgMnOUmJJ50NcFdbZSxAzJMvXwiGZnYqCa1q2uTYpzLo8nozjAL\nww9JHZaxw9KZNBqw7w6m9z9CkM2SP/siuPrXMZf/Fv2vWtmyn4qyGrSrQ6EGvFVYy0DeMjk6TefY\nCTpe9EY4tl+CcpvPleHvtalYOjGFHmx5FEr9kh+drj3hh6qHWeyJQ1IbfPsFkhIXZ6SMieH2s48f\nfwz6TxMDPXU0mRghzCVTW/XukHKy4OSWWjLCszoJx/fD5vPdNGVZGBmWzmL4YSh0Yu+5hanH9jJ1\nYpIN176S0i98EHIdbXsxKMp8tOtfVg14C5moGzafs4XiaWeJdt01KLJG72bxtrOleMZ2O31cBq80\napJf3XAzljeqELl/V5CRqdSsleP5nOaoDuPDsP8OqUx4bB8MnpEMm/cjNH3t6vKYGORsSYKHhW45\n3/SobFvslQ6gUYOjD0nueTaPvftbPH7b7VTLNc54z/8luPw36cp10NXSb1lRVoA2teBqwFuFMWSM\npT41SVSZIvBTdWXdZARdW4hneo8arnY3xKVGw0BGZPocaO+J92yGvd+T14UukTrCAHq3SDna44+J\nvJItiRedLsFaGReD7XOsR/ZJR1CZSEaGlsclwDo1SuORO2hMTnBi3342/szLCd70EU77jf6WfJ2K\nspq0qf1WA94ySj1UI0O92sDWanDiMGw9R/K/p0ck/zvbIduGWai5+SKzyVyNxteZ9h55FEH/mXDw\nJ2LAq9MiacRV9/LyvOCKUE2fIJ4ct2+HnLfULx5654DztrvFez/2GEwcp7b3Hsb37+fQgXF2f+Bm\nMv1nMqR51sopTrvKfnrltYp6lUJo6bvk2dA9INJJtgiH7ofTny350C7n21ZlujHrZ1h3Iwd9cai4\ndkh9GjCSgdK7JfHKa9MSSOzZKh51kIHRR10N60CKPx25T+bLnDwmXvmJgzKM/+hjbtLdKj/65BcI\nDVz0v7/BwIbzxPtXlKcAbWq/1YC3jHwH1chQfuxBCmcVYPA0WT+wI5lZ3E/lBaKFx4NfTBy0jCvu\nYTC+JnfvFjlGdUr09Nq0eNRjT8DATvG8bSQdxomDct5sEQ4/ANWyDAgaPQzD+6kdfYJHv38PZ73+\nF7j08wfcpMSK8tTCzD3fZctRA94qejdL4b7OLhg6U9L7goxUsHOV9ky2JPnd8TB3Nw1YmJrqKj3B\nq6vSZ/MdYpgLXXD/t2DjmeJF0ynyiK/uF4SS9dLhhqwffQymJ6juf5BDdz1Iox5x+vtu4Oy3Xdy2\nt5CKsha0699fDXir2P4MxmtQPvQ4+R/dSJDLEz79GslE6d4alz81QSj1tP0Q83jGmBBws+j4vG0/\ndP3EQfGgM3nIdzgDnYHuDXLuyePioR9+QLJUjh+AE4epHXyEg7ffx+OjdS7/13ul+p6iKG3rwLTn\nfcFTANN/JoGBbG8/2Z27Cc+/Qt6YdtNdRQ1sbQpro2QSBKd/W5ezbX3Z1CAjZVP9zPMDO1w+9l4Z\n8n7iIGDg/htFPpk4KoN6psdl2Prj91N55G4+d8PddPQWuPzfHlPjrShpTJPLGqMeeIswhR46s1Af\nGyU/flwmLp4ckcE2fgJaN3O5RaoJ2npZaoFENWwjwBg/q0wkEw9XxmSy2J6t8JMbZVi+n2vy4E8k\n++TYfgleTooObg/v4/s3fJdN3Rlee+OjqZlhFEXxqAauPInQWGyjDiU31GVqRApCWZnQwNamXODS\nyEw0uS5sVJPsFBsl1QpdlUCT63Lri1CrSnEsEEM+etjVIzlB/fGHCYslDv/wdr56f4U3/vW7CC77\n5VZ9DYrS/qiEoszm4j7L+PEpmByT1L+OAZloOKpLNgnGBTGNzB/p5BQT5tysPG7GHIBGFVsdd380\nC/miaN4Dp8msPbWynGP8OJnObvZ981aeODLNL33lDjXeirIYxjS3PJkPAYeBu1LrrgMOALe75UWp\n994BPAjcB7xwsWapAW8h2WxAsSuPLU/A3h9Iip+b1MC4kZcmzGJrLr/bT/yLlQkTgowYeBuJkc8U\nZaqwbEkCl9NjMgBn3M1KMz5CbWSYh2+8mZGpiIt/8zcxnZta+RUoyrrABGFTyxx8GLh21jqLzDx/\nsVu+4tbvBl7jHq8F3s8iNloNeAs5/S/+heNPjMnoyg074cCPpW62tZJ5ku+Sx6yUjCVy+eEY0cHr\nZRngU5uUgCYWE2Qw2Q6ivXdI6mC+Q3Ty6jTkChy7/2F+eBQu/fzjBC/8kxZ+ekVZRyzfA78ZGJnr\niHOsezkyi30N2Ac8BFy2ULNUA28hwdnXSnpSmJVl41nQs10Mro0kKJnviSc8kNnXJQtFZn0PZLi7\nn+QgzIm3HtUIzrtccrxH9kGjTnnvvUwcGubo0Wlec8N9OopSUZbAKqQR/hbwi8APgN8DTgBbgFtT\n2xwAti50EDXgLSYIAxn5OD4Mm3a5wlSh1Pc2AbZRkWyTbAFTr7oaKPlkNh4bJEFPNx2ayXdjs3nx\nuvNFanvv5oEf7eV7xwJ+5RsPYgo9Lf7UirLOmGcmqG/tL3Pz/vJSj/ZPwJ+75/8T+GvgzfNsaxc6\nkBrwFjM5VWfizlvpfE6P5HBPHoGuLa6uCTJgJ1fATg6LN+4nVbARECa3bUEogU1jZAaf44+7eSWn\nqR4b5oFxw5tefanMCK8oypIw88zIc9WOIlftKMav//LWsWYOdyT1/APAl9zzx4Htqfe2uXXzspoa\neAG4DfgxcA/wl259P3Aj8ADwdaA3tc+SIrCnAjuftpVMZ7ek+nUMytyTDT9RcU6CmW6iYFubTEZh\n+ronjZrkhter2OljMku8CaB3CCrTUJ3myN5hfu5NLyX81Y+37YgyRWlrlq+Bz8Xm1PNXkmSofBF4\nLZADTgfOBr630IFW0wMvAz8FTLnz3AI8D3gZYsCvB/4QeLtb0hHYrcA3gF1AtIptbDmliy7n6H/c\nQGFsWPTsqO4mE65LBcEgi40aUC9jCn3yJ3HlYU2Yi0dsEmRd+VkrnnejDlOjTO17gPFyhPm596p0\noijLZfmTaX8SuAoYBPYDfwpcDTwdkUf2Av/VbXsP8Gn3WAd+nRZLKG4kCTkgRKKxL0M+EMBHgD2I\nAZ8vApsW9U89Nu+i0HUT9G2RgTl+ooVMAbCSaZLrgFzJGetyMglDvZLkgbssFJwOzuhh6OrnG987\nzEtecrEab0U5CU5iJObr5lj3oQW2f5dbmqKZVr0XOL/ZA85x/B8jiew3AXcDm9xr3KNPRN6CRF09\ni0ZgTwmGziXb0yulX8cPi44dhIDFFPpkLszatHjU1kqVwozMVk+Yw+S7MaVBMfiBy2apTUGhkydu\n/CqTdUPmLf+v1Z9SUdY3KyuhrBjNGPB7gf+DaDG/BizFlYuQW4VtwJWIpJImVQ91Tha8fTglyHWQ\n37xDJiIe3CUatk8RdTPAy6Aemxp56Qy5q81tyydEB7cNyRPPd8PhfUSNiJ99pisVqyjKsjEmaGpZ\na5qRUP7ZLecCb0QE91vcupuaPM8o8GXgUsTrHgIOIWK+j8g2HYG97p3Xx8+vvuJyrr7y8iab0X4E\np11OtOuHcOQRmDiE2XCevBHmUrPpVAELQRaT705qgod57PQIJtshAU5rwboKhX2bGBursvV//G1L\n/liK0gr2fOvb7Ln52yt/4DYN/jergYeIAT8PGAbuAH4X8chfM88+g4gQfwIoAi8A/gyJtL4BeI97\n/ILb/ovAJxDJZisLRGCv++O3NdnsdcTwfghCySwJcxgbYSvjmCCLtXUpahXVXfqgEUmlIV64rYyJ\nhNKoyHvTI3B4H6EBM3RRqz+ZoqwZV18506H7s3f91Yocd740wlbTjAF/H/CzwH8A7yQxqu8B7l9g\nv81IkDJwy0eBf0eKt3waSVzfB7zabb/kCOwpw/aL4f7vQr5bvOnI1TexUvPbBNlkYuIgI4WrooZI\nKLYhOrnPYLEWalNElTLd/UWtdaIoK0Gb3sU2Y8DvBP47MDnHe89aYL+7gEvmWH8cuGaefZYUgT1l\n6NjI9KMPUqyXsY2qSCb5HCbfJSmBtoFtVJNZ6DGpuSmNGO/6tFQrzHdjGxWiaplMTrVvRVkR1rGE\ncidwzqx1o8CjiDyinCRm4GxJU6qMSwaJqwEeSyaZgisf20jqgDsPXQpYhdhMQTz2mmRu1icn6Nq6\necHzKorSHOt5Qod/RIKPd7rXFyDpgD3AfwO+tjpNe+pgTEDhgueITJLJA0gNlEyBOCPFTdoAiIce\nNdw8mDIvpjEhtiG1xJkeYeLwMIN//pW5T6goytJoUwmlmVYdRFIBL3XL04FHkKDk9QvspyyFZ7wK\nHvw2JsxjwqwYbxPIrZv3xI1x2Sc5Ga1pIzesPgtY2acyBtki3du3YfrPbPWnUpRTAmNMU8ta04wB\nPwfxuD33IBkpD/NUCTKuAWbDebD1fGx13AUkG7M2cLPRW5sENKMGhFlsoxLXTiFThGOPyPB7RVFW\nhsA0t6wxzUgodyPlDz+F3M+/GjHieWTYu7ICmNIAtjwupWQDKVYVyyahy0LJFp3MkkvklrorN4tN\nZuPp30n+0mtoyTTZinIK0q5jKZpp1RsQb/u3gbci8skbEOP9/NVr2lOQM56HKfaJt22TGl62PCYG\n21qZtKEyDoGTVzI5KT0b1aE8CrVJqE7IrPOKoqwMbTqUfjEPPAPcgAyB/19zvD++4i16KhPVsccf\nxnRvc3q3ZJuYQo8Mk3cGXF7bJKWw2AdRA9OxEVsZlf2e8aq2DbwoynqjXbNQFmtVHaln0rvIdspK\nUJ2A0oCTTdwISxvJXJhRQ9ZXxmWG+RlZKfVEM48aMsHxwC6t/a0oK4UJmlvWmGY08ElkUM6NJIN5\nLPCW1WrUU5ae7WKgsyVsdTIZyIPLPoka8ugNdmDlPffHsbWppBxtQWfeUZQVo02doWYM+Ofc4jNO\nDJp9siqY0gbssQexxX5MriRSSGNCHo0B4+qggAQ0a1PExr3uRmpisc6DVxRlZWjXu9lmDPi/ACXg\nNGSqM2WVMIVubL5L/izWuqnVMon+jZHXGfe+v2WzVgx8kJUAZ9/pbRs1V5R1yTrVwEFm0Lkd+Kp7\nfTFSOVBZDcKcGOl6hbhcepCRzBSspBRmnEduo3jyB0CmXQtzaPqgoqwwy89C+RBSQvuu1Lq/QuZZ\nuANRN9JzLCxpXuBmDPh1SNGqEff6duCMJvZTloHp3ekmMS466SSEepnYSNtIhs+DDNoxYZydAmBr\nk1qBUFFWmuUHMT8MXDtr3deRWc4uQiZ3f4dbn54X+Frg/Sxio5sx4DWeXLTqlJ5ouJWYjg3yJKq7\nGWceSt0AAA7uSURBVOjdQB6TkaVRn1HISmQVV3UwzGHyPap/K8pKE4TNLU/mZhLn13MjiQ29DZm8\nBuafF3j+ZjXR9LuBn0f08rOBvwe+08R+ynLJdYqRzpacdGKSgTveGzfGed8NVwsFJ7U4g68oysqx\negN53oSMtYFlzAvcjAH/LcTdryC9wxgyKlNZLbyObQJolJ2MUpEePlsU7zyencc6o46TXbJSelZR\nlJVjdfLA/xioIjORzceCGX/N5oH/kVuUNcDkOuRXq02Lzh013Ew8NTHmuY5ESjGhpBHahhhyo8Zb\nUVacebzrPQ8c55sPHl/OEd8IvBj46dS6pucF9jRztZ8D/D6wM7W9ReugrCom14EtnwAbuImKcyk9\n3N+uuZno/XMkFVFRlBVmHu/66nMGufqcwfj1n9/wcDNHuxb4A+AqoJxa3/S8wJ5mDPi/ItUIPwD4\nGqU6kGctCLIyMjPXKfKJjaA6Ll45OMMdymTGJhDNXFGUlWf5A3k+iRjqQWA/8KdI1kkOCWYCfBeZ\nA3jJ8wI306ofIhM5tAvWTg63ug1rhq1OJnVQ/AAfV0Y2/m1NINv4QUCKogBxVtfJXhS28f+9pKkN\nw1/78kqcr2maUd2/BPwGMst8f2pR1gCT63Dedz0ZtGMb8hi4DJWoDrmSGm9FWS2Wn0a4qjQjobwR\ncfV+f9b601e8NcqcmFwH4LxxXPqgaUggU71uRVl92rQ0RTMGfOdqN0JpDm/IAc31VpS1pE2dpIW6\nlbelnr9q1nvvWoW2KIqitCdtWg98oTO+LvV8dg74i1ahLYqiKO3JOp1STVEURVnHGriiKMpTm3Wo\ngV+ITFo8DlyQeu5fN8N24CakINZPSKZh60eS2B9ASium59xcUj1cRVGUVadN0wgXMuAh0OWWTOq5\nf90MNeB3kGJYz0byyc8D3o4Y8F3Av7vXsIx6uIqiKKvOOgxirgSHgB+75xPILBRbkVl+PuLWfwR4\nhXu+5Hq4iqIoq06bBjHXssvYiUzHdhuwCZlmCPfop5BZcj1cRVGUVadNPfC1CmJ2Ap8F3opo6Gn8\n1DLzoYWzFEVpLW0axFwLA55FjPdHgS+4dYeBIURi2Qwcceubqod73Tuvj59ffcXlXH3l5SveaEVR\n1h97vvVt9tz87ZU/cJumEa52t2IQjfsYEsz0XO/WvQcJYPa6x91IPdzLEOnkG8BZzPTCn1LVCBVF\nWT4rVo3wU29uasPwtR9cifM1zWp74JcDrwfuRGazB0kTfDdS9/bNSLDy1e69JdfDVRRFWXXCtU8R\nbIbVNuC3MH+g9Jp51r8LrbWiKEo78RTWwBVFUdY3baqBt2erFEVR2omTywN/K3AXMhr9rW7dQqPR\nm0YNuKIoymIsPw/8acAvA88ELgJeCpzJ/KPRl4QacEVRlMVYvgE/Fxm8WEYmhf8m8J+ZfzT6klAD\nriiKshjLL2b1E+AKRDIpAS9GxrfMNxp9SWgQU1EUZTGWH8S8Dxnv8nVgEqkN1Zi1zWKj0edFDbii\nKMpizGPA99z5GN+8a/9ie3/ILQDvRGo8zTcafWnNWs5OLUZHYiqK0hQrNhLzy29bfCsgfMn1c51v\nI2KgTwO+hpTW/mPmHo2+JNQDVxRFWYyTywP/DDCAlMn+dWCU+UejLwk14IqiKItxcgb8yjnWHWf+\n0ehNowZcURRlMdp0JKYacEVRlMVowXyXzaAGXFEUZTHUA1cURVmnBGrAFUVR1idaTlZRFGWdohKK\noijKOkUNuKIoyjpFJRRFUZR1StCeprI9W6UoitJOqISiKIqyTlEJRVEUZZ2iHriiKMo6RQ24oijK\nOkUlFEVRlHWKeuCKoijrFE0jVBRFWacE7SmhrPZ9wYeQyTvvSq3rB24EHkBmau5NvfcO4EFkJucX\nrnLbFEVRmsMEzS1rzGqf8cPAtbPWvR0x4LuAfyeZyHM38Br3eC3w/jVon6IoyuKcnAHvRebFvBe4\nB3gWCzuyTbPaBvJmYGTWupcBH3HPPwK8wj1/OfBJZOLPfcBDwGWr3D5FUZTFOTkD/rfADcB5wIWI\nwjCfI7skWuHhbkJkFdzjJvd8C3Agtd0BYOsatktRFGVujGlueTI9wBWInAxQR2aln8+RXRKtliis\nWxZ6X1EUpcWYJpcncTowjMjJPwL+Gehgfkd2SbQiC+UwMAQcAjYDR9z6x4Htqe22uXVP4rp3Xh8/\nv/qKy7n6ystXpaGKoqwv9nzr2+y5+dsrf+B5JjXe8/17+Ob371lozwxwCfCbwPeBv+HJcslijuy8\nrEVuzE7gS8AF7vX1wDHgPcgH6XWPu4FPILr3VuAbwFk8+YNZOzm86o1WFGX9Yzo2wMnbOdu46/82\ntWF4wWtmn28I+C7iiQM8D8m2OwP4KRJH9ibg3KU2bLUllE8C3wHOAfYDvwS8G3gBEn19vnsNEp39\ntHv8CvDrqISiKEo7sHwN/BBi+3a519cAdyNO7RvcujcAX1hWs5azU4tRD1xRlKZYMQ/87n9tasPw\n/FfNdb6LgA8AOeBhxJENEYf1NCTr7tXAiaU2TEdiKoqiLMpJiRV3AM+cY/01J3NQUAOuKIqyOFqN\nUFEUZZ1i5s5CaTVqwBVFURZDPXBFUZR1itYDVxRFWa+oB64oirI+UQlFURRlnaISiqIoyvrEqAeu\nKIqyTtE0QkVRlHWKeuCKoijrFdXAFUVR1ifqgSuKoqxT1IAriqKsV1RCURRFWZ+oB64oirJO0TRC\nRVGUdUqbeuDtKewoiqK0EyZobnkyBeA24MfIfL9/6db3AzcicwN/HZncfcmoAVcURVmM5U9qXEZm\nn386cKF7/jzg7YgB3wX8u3u9ZNSAK4qiLIppcpmTKfeYQyYzHgFeBnzErf8I8IrltEoNuKIoymIs\nX0IBsbM/Bg4DNwF3A5vca9zjpuU0S4OYiqIoi3JSQcwIkVB6gK8hMkoa65YlowZcURRlMebxrvd8\n5/vs+c4Pmj3KKPBl4FLE6x4CDgGbgSPLatZydmox1k4Ot7oNiqKsA0zHBjh5O2ejQ3c2tWEwdOHs\n8w0CdeAEUEQ88D8DfgY4BrwHCWD2soxApnrgiqIoq8dmJEgZuOWjSNbJ7cCngTcD+4BXL+fgasAV\nRVEWY/kDee4CLplj/XHgmmW3x9GOWSjXAvcBDwJ/2OK2KIqicJJphKtGuxnwEPgHxIjvBl4HnNfS\nFi3Cnm99u9VNmIG2Z2G0PQuj7ZmH5Q/kWVXazYBfBjyEaEI14FPAy1vZoMXYc3Ob/MEc2p6F0fYs\njLZnPtQDb4atwP7U6wNunaIoSus4uYE8q0a7BTGXlcyuKIqyqrRpNcJ2a9WzgesQDRzgHcgopvek\ntnkIOHNtm6UoyjrlDmQU5Mlgo6MPNLVhMLgL1tCutpsH/gPgbGAncBB4DRLITHPWGrdJUZSnOm3q\ngbebAa8Dv4mMVgqBDwL3trRFiqIobSdWCO3ZKkVRlPbBRsceamrDYOAsWEO72m5ZKIvRikE+H0IK\nz9yVWrfQbBrvcO27D3jhKrRnO0lJyp8Ab2lhm5Yz28hqfz8gd2+3A19qk/bsA+50bfpeG7SpF/gM\ncnd7D/CsFrbnHOR78cso8p9u9W82A2OCphZlfkIkgLkTyCJGYy0G+VwBXMxMA3498Db3/A+Bd7vn\nu127sq6dD7HyneQQSVCmE7gf+R5a1aaSe8wAtyKzjbTy+wH4XeDjwBfd61a3Zy9ikNK0sk0fAd7k\nnmeQMqet/o5wx30CcVLaoT0ea0f2NrWgmXTz8hzgq6nXb2eZ0xAtg53MNOD3kRRgH3KvQTyD9J3B\nV5HMmtXkC0hNhVa3qQR8Hzi/xW3ZBnwDqbnsPfBWfzd7gYFZ61rVph7gkTnWt/o7AvGmb26j9nis\nHdnX1MIaG/D15PO30yCf+WbT2IK0y7PabdyJ3B3c1sI2LWW2kbX4ft4H/AGSfupp9e9lkU7lB8Cv\ntLhNpwPDwIeBHwH/DHS0sD1pXgt80j1vh/Yk6FD6k6Zdb00W63VXq92dwGeBtwLjLWyTn21kG3Al\nS59tZCXb8lKkMP7tzB9IasXvdTnS0b4I+A1ElmtVmzJIdbz3u8dJnnwn24rvKAf8LPCv85yvFddY\nCh1Kf7I8jmhjnu3M7InXEj+bBsycTWN2G7e5dStNFjHeH0UklHZo01yzjax1W56LTBa7F/Hkno98\nR63+bp5wj8PA55GaP61q0wG3fN+9/gxiyA+1qD2eFwE/RL4jaP1vNhP1wE+a9CCfHDLI54sL7bCK\n/P/t3T9rFFEUhvEnGgUJqfxTWJlCG1ELbQRBC4WIYKE2FhL8EDZptLGzELS0FOwsYqGFiPgFjIii\noG20sNJCCOhYvLPcmASzWbO5O+H5wbKzYWEPw+bunXvPOTMHzLTHM5RBdI5cBu4kl6oHKVkHG2WM\n5Me/B+5WjmkPJTtgF3COzH5rnZ9Z8s891X7OC+BaxXggewOT7fEEWed9WzGmr2Qp8lD7+ixZ9npS\nKZ6eq5Tlk97n1oxnmdGcgXfNeZJ18YlsZmyGR6QqdJF88a+TjILnrJ7iNNvG94HcNmmjnSLLFvOU\n1KvpSjEdIeuo8yRN7kb795rnp+c05Qe+ZjxT5PzMk7TP3ve2ZkzHyAz8DfCYbGzWjGcC+Eb5oaNy\nPMs1zfeFvh5s8lKvPxmS9G9N82OhrzeOTe6HlePqNLla3g484O/eTv+lS0soklTJwEsoQ71JjQO4\nJK1l8E3Mod6kxgFcktY08Ax8qPUro9aNUJJGz+ApgkPd1HQAl6Q1jE3s6/ety4vqRql+RZK0DuPA\nZ0r9ymY14ZOq2k3Jc/9CZi2vyQznfsW4pPWqUb8ijYybpEWspCXMQlFX9HaRzlDaxN4iva1fkTSt\nS8AdUhX6lLLHcxx4SdoxPKP02JA6zQFcXTdFOiBeBB6Su7gcBX4CF0jjr3vAZeAEaaN6u0qk0gYz\nC0Vd1pCZ9i/SZ2QbuSE2pGHUAdK06TDpqwGpjOuvLloacQ7g6rrF9vk3qXRjyetxsvTyjrSalbYU\nl1DUZf1UV3wE9lJuu7WD9KSQOs8BXF3RLHle7RhWVr01ZFZ+hXSA67XgPTm8MCVJkiRJkiRJkiRJ\nkiRJkiRJkiRJW8oficN/jVry+kIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "transfer.plot(response='2d')" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcU/W9//HXzLAN67DIjgKj7KKgBUTQoGLBFXGrC2Kr\n9v5aH9Vae4va3jpqr4pVq9dWbd2KtLV1qV6xoqKXWMRdQdlRFtlBZZedye+Pz4lzCJmZzExOvifJ\n+/l45DEnJ8nJZwJzPvl8twMiIiIiIiIiIiIiIiIiIiIiIiIiIiIiaTcXOMF1EGkUAVYGcNyuQDlQ\nGMCxRQJRz3UAEjrbgZi33QTYBez37v8Q6OciqBy0HGiLfbbfANOAq4GtDmMSEanUMuAk10F4gvry\nEsFNheD/bNsBs4G7AohDJGUqZ6WmllNxIisDngEmY99sPwWOAG4E1gNfACN9r20BPAasAVYBt1H1\n/8Fy4MfAZ8Aib98Z2MlzEzATONL3/AnecbcCC31xNgTuA1Z7t98BDZK83wTv9/G737tVF38hcDfw\nJbAEOL2K3yvReuA1oK9v3xDgbez3nA2c6Hvscu89tgJLgYt9+2cCDwCbgQUcmNA7Ai8CX2Of6ZW+\nx8qAp4FJ3nHnAsf4Hq/ssy0AbgA+B74C/gG0TPH3FpEskqxC8O8rA3ZiJ/0i7GSyHEsIRdgJZ6nv\ntc8DDwHFwCHAe1gzVGXKgVeBEuykPgA7eX4HOxFd5sVTH+gJrADae689FOjubd+KnVzbeLeZ3j44\nsEI4DGu+aerdL8JO/oNSiP//YSfgTtgJcTrWHFRVhXCyt90ZS6a/9u53wk6uo7z7p3j3W2PNeFuw\nxAtWXfTxti8H9gLXerFfgCWGEu/xfwO/x5LhUcAGYIT3WBn2bzkK+2xvB97xHqvqs70W+2w7Yv8O\nDwN/q+R3FpEslkpCeNX32JnANuyEAtAMO6k3x05cu4BGvudfBPxfFe9fjp2w4x6i4kQetxDr5C7F\nksXJ2InJ73MqTq4Ap3q/BxzcZDQDGOdtj/ReSwrx/x8HJreRVN1ktBz7rLZ6z3ve99wJwJMJz38F\nS4CNsaphLJaY/C7HKiC/94BLgS7APiyhxN0OPOFtl2FVSlwfYIe3fTiVf7bzOfD/SAdgD2p9yEr6\nR5O62uDb3ol9k4357oN94z4MO5msxU5om7Bvk4d4z5mHnSC3Acf7juk/WR8GXO97/Sbs23UHrAnl\np9iJbT3wlLcf7NvrF77jrPD2JfM37EQP1hTzV997VxV/h4RYV1Ry/LgYcDaWLCPYSfVY33udn/B7\nHo99Q98BXIhVJGuAl7Bv8HGJCeELL7YOwEasAvLH2Ml3f71veweW/AqxpFjZZ9sVS2bxOOdjiadd\nNb+/hJASgmTKSmA31uzR0ru1oKIPoC9WUTTDmnTiYr7tFcB/+17fEks2//AefwoYjp1QY8BEb/8a\n7MQVd6i3L5lnsRN0J2AMFc0f1cW/1juu/z1S9W+s3T8e7wqsX8b/ezajotP5NazKaY9VSI/4juU/\nwYN9Fmu8WysqmsPiMa5KMcbKPtsVWPXlj7Ux9nlIllFCkExZi53I7sVOboVYM09N5jQ8gn0zHoQ1\nSzXBOm+bAj2wb9kNsRO3f7jsU8CvqOhD+DV2wk3mSyAK/Bnr/4h3ZlcX/9PANVT0IdxQg98LrNN7\nEDAY+AvW/HYq1hfQiIok1RarLJpg/QXf+H5PvMevwaqZ84FewMvYif9t4A7sM+oP/MB7r+pU9dk+\njDU9xRPgIcBZqf/aEiZKCFIXMQ78Bk819y/DOjTnY80Xz1DRUVnZ8f0+Aq7COkY3YiNlLvMea4id\n7L7ETt5tsM5tgN8AH2Idt59627+p4n3+hrWXJ3aOVhX/I1h/yife8Z9LctyqfIV1ysdH85wN3IQ1\nya3AmsoKsL/Z67Cmoa+xb+0/8h3nPazD+UtsFNS5WFMOWFNYV6xa+CeWGON9IFX9W1b12d6PjVx6\nDesPeYeKTniRgxQBs4Ap3v1W2CScxdh/opJKXiciNXM51ikuUiuZqBCuxb5Rxb9t3IAlhB7AG9S8\ntBYRkSzUGXgdG+scrxAWUjECId4pJiJ1Nx7roBYJpWewyUQnUpEQNvkeL0i4LyIijgTZZHQG1iE2\ni4qJSomSdWSJiIgDQa52OhQbfnYaNmyuOTbUbz3WVLQOm9yyIdmLS0tLY0uWLAkwPBGRnLQEm11e\nY0FWCDdh0+W7Ad/DhreNw4aojfeeMx54IdmLlyxZQiwWC/3t5ptvdh5DLsSoOBVn2G/ZEic2P6ZW\nMjkPId40dCe2zstibLLLnRmMQUREKpGpC+S86d3AJvSckqH3FRGRFGmmch1FIhHXIVQrG2IExZlu\nijO9siXOuqhs9E8YxLz2MBERSVFBQQHU8tyuCkFERAAlBBER8SghiIgIoIQgIiIeJQQREQGUEERE\nxKOEICIigBKCiIh4lBBERARQQhAREY8SgoiIAEoIeWXqVLjvPtdRiEhYaXG7PDJwIMyaBfpYRXKX\nFreTlDRq5DoCEQkzJYQ80rCh6whEJMyUEPJIvEJQk5GIJKOEkEf27LGfu3a5jUNEwinohNAIeA+Y\nDcwH7vD2lwGrgFnebVTAcQiwcaP93LbNbRwiEk71Aj7+LmAEsMN7r7eAYUAMuNe7SYbs2GE/t2+H\ntm3dxiIi4ZOJJiPvNEQDoAjY5N0P85DXnLR7NzRvrgpBRJLLREIoxJqM1gPTgXne/p8AnwCPASUZ\niCPv7dkDrVsrIYhIcplICOXA0UBn4AQgAjwEdPP2rwXuyUAceW/3biUEEalc0H0IfluAfwHHAlHf\n/keBKcleUFZW9u12JBIhEokEFlw+UEIQyT3RaJRoNJqWYwXdjt8G2AdsBoqBV4FbsGajdd5zrgO+\nA1yc8FotXZFmDRrABRfAiBFwxRWuoxGRINRl6YqgK4QOwCSsaaoQmAy8ATyJNRfFgGXAfwQcR94r\nL4e9e6FVKxtlJCKSKOiEMAcYmGT/ZQG/ryTYuxfq14emTeGbb1xHIyJhpJnKeWL3blvLqEkTJQQR\nSU4JIU/s2VORENRkJCLJKCHkid27rVNZFYKIVEYJIU+oyUhEqqOEkCf27FGFICJVU0LIE6oQRKQ6\nSgh5wt+prIQgIskoIeQJdSqLSHWUEEIkyJU61GQkItVRQgiJdeuge3coKLDtdNuxw5KBEoKIVEYJ\nISR++EO48EIYOBAWLUr/8XfsgOJiJQQRqZwSQgisXg0zZ8Ktt0KfPrBsWfrfY8cOaNzYbjt2BNs8\nJSLZSQkhBN56C4YPt07fbt1g+fL0v0c8IRQVWV/Czp3pfw8RyW5KCCHw5ZfQubNtd+0abIUAajYS\nkeSUEEIg3r4PwVcIoAXuRCQ5JYQQ2Lmz4mQdVIXgfw9VCCKSjBJCCPgrhE6dYO3a9Hf6qslIRKqj\nhBAC/m/vDRpYp++2bel9D3/S0VXTRCQZJYQQ8J+swa57vGlT+t8jnnRKStJ/fBHJfkEmhEbAe8Bs\nYD5wh7e/FTANWAy8BpQEGENW8FcIYAlh48b0vsfmzdC8uW23bp3+44tI9gsyIewCRgBHA/297WHA\nDVhC6AG84d3Pa4kVQsuW6f8Gv2EDtGtn261awddfp/f4IpL9gm4y2uH9bAAUAZuAs4BJ3v5JwJiA\nYwi9TFQI69dXJITWrZUQRORgQSeEQqzJaD0wHZgHtPPu4/1sF3AMoRd0hRCLWYXQtq3dV5ORiCRT\nL+Djl2NNRi2AV7FmI7+Yd0uqrKzs2+1IJEIkEkl7gGEQdIWwZYuNXIonnTZtbHa0iGS/aDRKNBpN\ny7GCTghxW4B/AcdgVUF7YB3QAdhQ2Yv8CSGXJRtllM6E4G8uAujYEdasSd/xRcSdxC/Lt9xyS62P\nFWSTURsqRhAVAyOBWcCLwHhv/3jghQBjyAqJFUK6m4z8zUVg6yatXp2+44tIbgiyQuiAdRoXerfJ\n2KiiWcDTwBXAcuCCAGPICpmuENq1s07lvXuhfv30vY+IZLcgE8IcYGCS/RuBUwJ836yT6QqhqMia\njVasgNLS9L2PiGQ3zVQOgaArhLVrD6wQAPr2hTlz0vceIpL9lBAc27vXhoX6m27SnRAWL4YePQ7c\nd+SRMHdu+t5DRLKfEoJjO3dadVBQULEv3U1GCxZA794H7jv0UFi1Kn3vISLZTwnBscT+A7A1h3bs\nsOqhrvbvh88+g549D9zfrp11NouIxCkhOJbYfwBWLZSU2IJ0dbVsmXUoN2ly4H4lBBFJpITgWLzJ\nKFG6+hGSNReBJYkNlU4JFJF8pITgmP86BX7pWoCusoSgCkFEEikhOLZrFzRqdPD+Dh1suGhdLVyY\nPCE0b259FDt2HPyYiOQnJQTH9u2DekmmB6ZrvaFPP7U5B4kKClQliMiBlBAc278/uISwdatVCMcc\nk/zxdu3UjyAiFZQQHNu3z5aSSJSOhDB9OgwZkrxJCqxjWRWCiMQpIThWVYVQ1xVJp06F0aMrf7xd\nO1i3rm7vISK5QwnBsaAqhFgMXnkFRo2q/Dnt26tCEJEKSgiOBdWHsHAhlJdDnz6VP0cJQUT8lBAc\nq6xCaNnShqR+803tjvvGG3DqqQeukZRITUYi4qeE4FhlFUJBgVUJtZ2LsGgR9OtX9XNUIYiInxKC\nY5VVCFC3ZqMlS6q/+I0qBBHxU0JwrLIKAeqWEJYurT4hqEIQET8lBMeqqxAuvRTmzavZMffvhy++\ngG7dqn6elq8QEb+gE0IXYDowD5gLXOPtLwNWAbO8WxWDI3NbVRXCjTfC4MEwc2bNjrl6ta2WmmwV\nVT8tXyEifpWcitJmL3AdMBtoCnwETANiwL3eLa9VVSG0a2cjhVaurNkxU+k/iItPgKuumhCR3Bd0\nhbAOSwYA24EFQCfvfhUDIvNHVRUC2KUuV6yo2TFrkhC6dbOL6IiIZLIPoSswAHjXu/8T4BPgMaAk\ng3GESlUVAmQmISxdWrPji0huCrrJKK4p8CxwLVYpPATc6j12G3APcEXii8rKyr7djkQiRCKRgMPM\nvOoqhC5datdkdM45qT23tNQmsYlIdopGo0Sj0bQcKxPNNvWBl4CpwH1JHu8KTAGOTNgfi8ViwUYW\nAnfeCZs2wcSJyR/fudNmLe/YYduJ10ZOtGoVjBkDDz4IgwZV//4ffwyXX27XTRCR7FdgyxPU6twe\ndJNRAdYkNJ8Dk0EH3/Y5wJyA4wityi6QE1dcbMNDH3gAmjat+ljbt1tF8dFHqTcZ9e0Ln30Gu3en\nHrOI5Kagm4yOBy4FPsWGlwLcBFwEHI2NNloG/EfAcYTW/v1V9yEAHH00/PSnth2LVb4+kX94aqtW\nqb1/w4bQqZPNW+jRI7XXiEhuCjohvEXyKmRqwO+bNfbtg/r1q37OmDEwbZptb90KLVokf97HH9v1\nD37+86oXtUvUvbt1LCshiOQ3zVR2rLpOZYDx4+Hcc+GII6yPIJnHH4eHH4bzz4eTTqpZDN27W0e0\niOQ3JQTHqht2CtaR/OyzNgS1squoXXGFDU9NpSM5UbxCEJH8poTgWCoVQlynTskrhG3bLGmsXWud\nxDVVWqqEICJKCM6lUiHEde5sFcLChdbJvGmT7Z83D3r1stVLa0MVgohA5iamSSVqUiF07gxXXw33\n3WejjXr0gEsugT/+sfqL4VQl3odQ1QgmEcl9SgiO1aRCOPVUm4F8111WFdx7r406+vOfYWodxm21\naGHDT7/8Etq2rf1xRCS7KSE4VpMKobQUnnvOtjt3ttFHmzdbh/OoOi4gXlpqVYISgkj+Uh+CYzWp\nEPwaNoQRI+CTT+CUU+oex4AB8NZbdT+OiGQvJQTHalIhJLr/fvj97yufqFYT55wDU6bU/Tgikr2U\nEByrbYUAtm7R1VenJ46hQ22m85496TmeiGQfJQTHUlnLKBOaN7d+hNmzq3+uiOQmJQTHysvDkRAA\njjsO3n7bdRQi4ooSgmP790NhSP4Vhg6Fd95xHYWIuBKSU1H+ClOFMHSoKgSRfKaE4FiYKoTSUti1\nq+aX7BSR3JDKqahPkn2RNMeRt8JUIRQUqNlIJJ+lkhCeBiZgl8NsDDwA3BlkUPkkTBUCqNlIJJ+l\ncioaDHQB3gHeB9YCQ4MMKp+EZdhp3HHHqUIQyVepJIR9wE6gGGgELAXKgwwqn4SpyQigf39bOK9c\n/8IieSeVhPA+sAs4FhgOXAw8k+LxuwDTgXnAXOAab38rYBqwGHgNKEk95NwStiajkhJbCmPFCteR\niEimpXIquhL4L2Av1lx0FpDqqjd7geuAvsAQ4GqgN3ADlhB6AG949/NS2CoEsKuuzZ/vOgoRybRU\nEsJ64NCE25spHn8dEF8MYTuwAOiEJZVJ3v5JwJgUj5dzwlYhAPTpY81GIpJfUlln82Ug5m03AroB\ni7Bv/TXRFRgAvAe0wxIN3s92NTxWzghbpzJYhaCRRiL5J5WEkHhxxoFY009NNAWeA64FtiU8FqMi\n4RygrKzs2+1IJEIkEqnh24ZfeXn4KoS+feGRR1xHISKpiEajRKPRtByrtlfQncvBiaIy9YGXgKnA\nfd6+hdjktnVAB6zjuVfC62KxWNI8kVOOOcauiXzssa4jqbB5sy2tvXWrrrEskm0K7I+2Vn+5qVQI\n1/u2C7EKYXWKxy8AHgPmU5EMAF4ExgMTvZ8vpHi8nBPGTuWSElsOe8UKOOww19GISKak0ljRDGvy\naQo0wL7tn53i8Y8HLgVGALO82yhspvNIbNjpSeTxzOcwdiqDdSxrpJFIfkmlQiirw/HfovKkk4Yr\nAWe/MFYIAP36waefwujRriMRkUypKiFUNdcghg0dlToKa4Vw4ol2veYJE1xHIiKZUlVCuKeKx3K/\ntzdDwjjsFOCUU2DcOOtYbt7cdTQikglVJYRlwBeZCiRfhXHYKUDTpnD88TBtGpx7rutoRCQTqjoV\n+Uf+PBd0IPkqrBUCwOmnw7/+5ToKEcmUVL+bdg80ijwW1k5lqEgIWvlUJD+EsLEiv4S1Uxmge3do\n3Ro+/NB1JCKSCVWdivpjy0xsA470bW8DtgYfWn4Ic4UAcMYZajYSyRdVJYQibFJaM6zzuZnvpnEn\naRLmCgEsIbz0kusoRCQTQnwqyg9h7lQGu8byypXw+eeuIxGRoCkhOBb2JqN69eDii2HyZNeRiEjQ\nlBAcC3uTEcB558Hzz7uOQkSCFvJTUe4Le4UAcNxxsGEDLFjgOhIRCZISgmPZUCEUFdmaRuPHw+7d\nrqMRkaCE+fIneXGBnIYNYcsWaNTIdSRVi8Ws6ai0FO66y3U0IlKZulwgRwnBsfr14ZtvoEED15FU\nb80a6NkTNm2yzmYRCZ+6JISQN1bkvrAPO/Xr2BE6dICFC11HIiJBUEJwKBazW9j7EPyOOQY++sh1\nFCIShCw6FeWe8nK7iH02Xcj+mGPg449dRyEiQVBCcCgbhpwmUoUgkruCTgiPA+uBOb59ZcAqYJZ3\nGxVwDKGVDUNOEw0YAJ98YrGLSG4J+nT0BAef8GPAvcAA7/ZKwDGEVjZ1KMeVlED79lYlaE6CSG4J\nOiHMADYl2Z9FrebBCevlM6szciQMHgzXXus6EhFJJ1eno58AnwCPASWOYnAuGysEgGuugf79bT6C\niOQOF9OLHgJu9bZvA+4Brkj2xLKysm+3I5EIkUgk4NAyKxs7lQF69YLHHoMrr3QdiYhEo1Gi0Wha\njpWJppuuwBTsqms1eSznZyp/+SX07g1ffeU6kprbvh3atoVt27IzqYnkqmybqdzBt30OB45AyivZ\nWiEANG0KhxwCy5e7jkRE0iXohPAU8DbQE1gJ/ACYCHyK9SGcCFwXcAyhlY3DTv0GDoRXX3UdhYik\nS5hH++R8k9HKlXatgVWrXEdSO7NmwahR8N570LWr62hEBLKvyUg82TrsNG7AALj5Zhg+XHMSRHJB\nFp+Osl+2Djv1+/GP4fDD4eWXXUciInWlhOBQNncq+116KfzhD7Bnj+tIRKQulBAcyvZO5biLLoLi\nYrjqKteRiEhd6LpXDuVKhdC4MUyaBN27w+bNtt6RiGSfHPh+mr1ypUIAaNUKTj4Znn3WdSQiUls5\ncjrKTrnQqex33nnw4ouuoxCR2lJCcChXmozivvtdiEZhxgz73UQkuyghOJRLTUZgzUZdusAJJ8Ab\nb7iORkRqKodOR9kn1yoEsOrgl7+EqVNdRyIiNaWE4FCuVQhgVcKYMUoIItkox05H2SXXOpXjBg6E\njRth2TLXkYhITSghOJTtaxlVprAQRo/WiCORbJODp6PskasVAthyFpMmuY5CRGpCCcGhXOxUjjvp\nJGs2+uAD15GISKqUEBzKxU7luMJCuOkmazr6619dRyMiqcjR01F2yOUKAeCHP4RnnrFhqPv2uY5G\nRKqjhOBQLlcIcSNG2GJ3LVrA2rWuoxGRquT46SjccrlT2W/GDBg7FiZPdh2JiFQl6ITwOLAemOPb\n1wqYBiwGXgPydrHkXB12mqhZM7jiCpgwAW67zXU0IlKZoE9HTwCjEvbdgCWEHsAb3v28lC8VAtj6\nRtdfD7feCitXuo5GRJIJOiHMADYl7DsLiI9QnwSMCTiG0Mr1TmW/wkK4+24YPx7+8Q/X0YhIMi4a\nLNphzUh4P9s5iCEU8qFTOdGVV8LEifDRR64jEZFEri+hGfNuSZWVlX27HYlEiEQiwUeUQflUIcQN\nGQJ33gk33givveY6GpHsF41GiUajaTlWQVqOUrWuwBTgSO/+QiACrAM6ANOBXkleF4vFKs0VOWHy\nZHj1VfjLX1xHklm7dkFxsW1/8gn07+82HpFcUlBQALU8t7tosHgRGO9tjwdecBBDKORTp7Jfo0aW\nBE86CR591HU0IhIXdEJ4Cngb6AmsBL4P3AmMxIadnuTdz0v5Muw0mUsugT/9Cf7+d9iUOOxARJwI\nug/hokr2nxLw+2aFfK0Q4kpLYdw4qxSmTYM2bVxHJJLf8vT7aTjkY6dyorvvhlGj4PjjbQTSihWu\nIxLJX0oIDuXjsNNEBQVw++02YW39etsWETfy/HTkVr43GcUVFMCFF8JDD8HTT8PSpfCTn8CWLa4j\nE8kvruch5LV87lROpnNnGDrU+haKi2HRIs1VEMkknY4cUoVwsHvvtUlrGzbAZ5/Bu++6jkgkfygh\nOKQK4WA9elg/QtOmcN11cP/9riMSyR86HTmkCqFqF18Mr7wCb77pOhKR/KCE4JCGnVatTRt48kn4\n3vfghRdsmY/t211HJZK71KnskIadVu/MM+GWW+Ccc6BXL2jZEl5/HRo3dh2ZSO7R6cghNRml5sor\nIRqFuXOhbVt44AHXEYnkJlUIDqlTOTWFhXDiibZ9xx129bUhQ+Doo6F+fVULIumi05FDqhBqrndv\nWyF1/Hjo2BEGDYJ9+1xHJZIblBAcUqdy7Zx9Nnz+OaxeDS1awEsvuY5IJDcoITikTuXaq1cPSkrg\nxz+GBx+EGTOsCUnVgkjtqQ/BIVUIdTd2LFx1FZxxhvUlRKNWPbRvD2PGuI5OJLsoITikCqHuiovh\n2WchFoOZM+EPf7A5CwC7d0ODBm7jE8kmOh05pE7l9DjtNDj9dFsY74UX4LHHYNgweOYZ15GJZBdV\nCA5p2Gl6nXaaNReVlsIRR9gM55ISSxYiUj2Xp6PlwKfALOB9h3E4owohvQoLLRkADB8Ov/kNXHaZ\nrYV06aXwi1+4jU8k7FxWCDEgAmx0GINT6lQO1ve/b0tdnH22fdZ79sDOndC1K/zsZ/acggKnIYqE\niusmo7z+c1SncvDGjIFPP7XO53nz4J13rON55kzrcP77311HKBIeriuE14H9wB+BRxzG4oSajDLj\n0EPtZyRit9at4eqroUkTmDLF9jVr5jBAkZBw+f30eGAAMBq4GhjuMBYn1KnsxrhxMG2a9StccAH8\n+teuIxIJB5cVwlrv55fA88AgYIb/CWVlZd9uRyIRIpFIhkLLDFUIbhQXW1UwfDjcdJNdpW3uXFsG\n4/XX7aI8Q4a4jlIkNdFolGg0mpZjuWrDbwwUAduAJsBrwC3ez7hYLBZzEFrmXHIJjB5t31TFnTlz\nbHLb22/DRRfBbbfBBx9YM9LKlXD44a4jFEldgY2UqNW53VWF0A6rCuIx/JUDk0FeUIUQDkceabe4\nhQuhW7eK+xddBH/8o0YkSe4L83/xnK8QLrgAzjvPfkq47N4Ny5dDly7WtFRUBJ07w//8jy27rb4f\nCatsrBAEDTsNs4YNoWdP2542DWbNsialHj2sUhg3DkaOtDkO9fRXJDlCpyOH1GSUHVq1gpNPhv/6\nL1izxuYzHHEE/Pa3cOqp8PXXNhv6V7/S8tuS3ZQQHNKw0+xTUmIzna+/3ia3fec7MGAAnHOOLaY3\ndqxVFHv3uo5UpOZU7DqkCiG7FRXBxIl2LYZmzezynhMn2ryGJUtg8GBo2hR++UvYvNlWYBUJM30/\ndUgVQm4YPtyu1tawoSWDd96Bp5+2DukVK2xZ7vPPt9VX27aFG26w1331Ffzud7a+kkgYqEJwSBVC\n7oovkxGL2e299+Caa+DJJ+EHP4ATTrDhrddfbwnhppv0BUHcU0JwSKud5r6CArsdd5xNdgP45z/h\nrLOsA/qJJywpfPghPP+8DUPu1Anuuefg/xuxmOZCSLD0fcQhDTvNT0OGwOLFdnW3yy+3zumRI23G\ndHk5PPKIrdL63e/CFVfAW2/B7bfb6qxpWqFAJClVCA6pySh/lZRYsxFAr152A3juOfjsM3j8cet7\nWLYMLrwQtm6Fhx6y+Q9dukD//jb09fDDYds2G/Z6yy02aU6ktsJcgOb8TOVhw+COO6xTUqQyO3fa\nzOmSEti1yyqGOXPscqHPP28X/rnwQuunePNNW9Zb8lddZiorITh03HHWVjx0qOtIJFtt22Z9C82a\nwZVXWqIYNMhmT/fvDyeeCB06WNLYtw8eftjmTQwbZqu7Su5RQshSgwfb2jiDB7uORHJBLAb33Qfr\n1llVsXYtvPGGTZIrL7c5ESNHWpPU2rX23LlzbdXdww6zJBL/k1PndfbSWkZZSp3Kkk4FBXDddQfu\n27QJ1q8OSryGAAAIB0lEQVS32+7dttQG2DWlzzvPrhx31FH2f3HECBsKW1AAN99scyr69YPJk625\nyp8kyssrRlBJ7gjzP2fOVwgDBsBjj8HAga4jkXwTi1kzUsOG9nPjRnj/fWje3CbTTZgAd94JL71k\n14o48kjYsMGSStOmVnUUF8PPf25JY88eGzXVr5/9f+7Tx57bpo3r3zT/qMkoSx11FEyaZLNcRcJq\n3z4b9dS7t41sWry4Yk7En/5kcyhWrrQlOpYutZna8+db5/bFF8Oxx9rzFy2yxDFlio2YGjHCksqa\nNZaYWre299u6FbZssdFUUnNKCFmqXz946qkDL84ikm3277cTfXGx3S8vtxVgt261k//LL9vJvqjI\nlhD/7W/hRz+y5qwePaw/o6jItgcNsol769bBo4/asaZOtcEXnTrBn/9so6uGDYNGjeynlh8/kBJC\nlurTx1bI7NvXdSQimRGvLPbutcrjww9txdhVq+CLL2DGDKsoCgrgwQctUTRubE1XLVrYaKqxY60K\n2bIFVq+uWDRw717r6zjtNEsW5eXWJ9KzpzWFvfIKjBpliWvwYKhf3+1nERQlhCzVsyf87/9WTEoS\nkeTiI6fat6+oRMCuajdjhiWOJk3g3Xdt5vfixXDIIZYcFiywTvWTT7ZFB/fvt2TQvLltb9tmVcaG\nDfY32bu3XUJ12zZLQJs3W79IvXo2VPzrr22k1tixtu+bbyyO2bOtGbhfP1efklFCyFJHHGHl9BFH\nuI5EJLdUte5TLGZNV/EKoWFDq1Y6drTmqAUL7ATftCls326VyZtvWsXx9tuWkLp1s+cWFlpC6NTJ\nOtBXroTRo62Zq08f6zcpLbW5ILGYVSznnmuLGQYlWxPCKOA+oAh4FJiY8HjOJ4Tu3e1iKqWlriMR\nkVTs32/Jo0EDO/k3bGhVROPG9vhdd1kn+bhxNlqrb1+7NsaqVVZN9OoFLVsG2ypQl4TgShHwOdAV\nqA/MBnonPCeWDaZPn17r1x56aCy2bFnaQqlUXWLMJMWZXoozvbIlTqDW36RdTYsahCWE5cBe4O/A\n2Y5iqZNoHZafzNT693WJMZMUZ3opzvTKljjrwlVC6ASs9N1f5e3LK1rtVETCxNUI3pRKmjPPDDqM\nulu0CD76qHav/fprjaEWkfBw1fEwBCjDOpYBbgTKObBj+XNA3a0iIjWzBDjcdRA1UQ8LuivQgOSd\nyiIikidGA4uwSuBGx7GIiIiIiEhYjQIWAp8BExzH8jiwHpjj29cKmAYsBl4DSnyP3YjFvRA4NUMx\nAnQBpgPzgLnANd7+MMXaCHgPax6cD9wRwhj9ioBZwBTvfhjjXA58isX5vrcvjHGWAM8CC7B/+8Eh\njLMn9jnGb1uwv6OwxRl/33nYeelvQMOQxllnqUxYy6ThwAAOTAh3Ab/wticAd3rbfbB462Pxf07m\nhvW2B+KLaDfFmuJ6hzBWbz4n9YB3gWEhjDHuZ8BfgRe9+2GMcxl2IvALY5yTgB942/WAFiGNM64Q\nWIt90QpbnF2BpVgSAPgHMD6EcabFccArvvs3eDeXunJgQlgItPO223v3wbKwv6J5BRtN5cILwCmE\nN9bGwAdAX8IZY2fgdWAEFRVCGONcBrRO2Be2OFtgJ7BEYYvT71RghrcdtjhbYV/4WmLJdQowMl1x\nhi1TZMOEtXZYMxLez/g/Qkcs3jhXsXfFqpr3CF+shdi3lfVUNHGFLUaA3wH/iQ2FjgtjnDEscX0I\nXOXtC1uc3YAvgSeAj4FHgCYhjNPve8BT3nbY4twI3AOsANYAm7GmorTEGbaEkG2r2VW3bkimf5+m\nwHPAtcC2JLG4jrUca9rqDJyAfQNPjMF1jGcAG7B25Mrm6YQhToDjseQ/Grgaa+JMjMN1nPWAgcCD\n3s9vOLjqD0OccQ2AM4FnKonDdZylwE+xL34dsb/5S5PEUas4w5YQVmPtdnFdODC7hcF6rCQD6ICd\nPODg2Dt7+zKlPpYMJmNNRhDeWLcA/wKOIXwxDgXOwppjngJOwj7TsMUJ1s4N9g38eWyNsLDFucq7\nfeDdfxZLDOsIV5xxo4GPsM8Uwvd5Hgu8DXwN7AP+iTW1h/XzrJMwTljrysGdyvE2uRs4uPOmAVYm\nLyFzM8ELgCexpg6/MMXahoqRD8XAv4GTQxZjohOp6EMIW5yNgWbedhNgJtb2HbY4wf6te3jbZV6M\nYYwTbKHN8b77YYvzKGwkYbH3fpOw6jBscaZNmCasPYW10+3B+ja+j3XqvE7y4V03YXEvBL6bwTiH\nYc0xs6kYNjcqZLEeibUhz8aGSv6ntz9MMSY6kYpRRmGLsxv2Wc7GThDxv5WwxQl2EvsA+AT7Rtsi\npHE2Ab6iItFCOOP8BRXDTidhrQNhjFNEREREREREREREREREREREREREREQkV7WmYv7GWmxm7Sxs\n+Y/fO4xLREQcuhlb+lok74RtLSORMIhP7Y9QsXRFGTYr9N/YhWnGAndjs66nYsuugK3PFMVWIH2F\nivVlREJPCUEkdd2wFVrPAv6CLTvcH9gJnI4tIfAAcC62CNkTwH87iVSkFupV/xQRwZYMngrsx9YO\nKgRe9R6bgy2C2AO76M/r3v4ibC0skayghCCSuj3ez3Jgr29/Ofa3VIAtOjY0w3GJpIWajERSk8qS\nwYuAQ6i4RGF9bPlhkayghCBysJjvZ7JtOPiqUzGsajgPmEjFUuTHBRemiIiIiIiIiIiIiIiIiIiI\niIiIiIiIiIiIiIiIiEP/H7DvjyvIf8HIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "transfer.plot(response='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8XPP9x/HXzb4nyCIEUSQNQmgr1DaIFI1UedBa+kOj\nvx9F+Pm1lajlolVKS2tptRESJZZIU2ubCBMVmhBiySIRCRHJTWLJRq4s8/vj8x1z7twlk3vnnPOd\nM+/n4zGPOcss3+/Mvec93+/3LCAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiTbAF+FoIr7sYOCaE1xVp\nkmZxF0BitRj4HFgbuP0xzgKViYy71eU+oBr7Lj4BpgD7RFMsKXcKhPKWAYYAHQO34SG8T/MQXjOr\nwt2SIgPchH0XOwEfAPfGWiIpGwoEqc85wIvAzdgv1feA4wLrOwP3AB8BHwLXk/t7OgeYBvweWAVc\nA2wPPAGsBmYAvwL+7R5/J3BL3vs/DlxaT9nS7vnTgPXA7sDXgcnAx8A84NTA408AZgNrXFn/L7Du\nJ8AC97x/AD3reL+BwDJqBs/3gTfcdDNgBPCuq+/DwHaBx/4IeN+tu6KeOtVlA/AoNVsIOwGPASuw\n7+TiwLqDgFexz3g58Du3vDfW/fUTYCn2nQU/g9bAbW7dUuBWoJVbl8I+s8uAKvfccwLPbeizHQLM\nAj7Fvqv+BdZbRGKwiPr7ss8BvgSGYRvC87GNRdbfgT8BbYFuwHTgvwPP3QhciG0s2wAPAQ+66X7Y\nL98X3OO/5V47u8Htim3ou9VTtjTW3dXPvX5nYAlwtpsfAKzEQgJsY36om+4MHOCmj3aPG4BtAP8I\nTA28T3AM4V1gUGDdo8Av3PQlwEvYxrol8GdXV4C9se6fw9x7/M59NkfXU7d7sXAFaA/cDzzn5psB\nM4ErgRZYEC4EBrv1LwNnuul2WJBBLhAewL6vfbFAyX7317nyd3W3aW4ZWCBsBCqxlt7x2HfT2a2v\n77M9AAuQb2Hf639hf2/ZoBERzyzGNlafBm7D3LpzsF/OWe2wjUp3oAf267VNYP3p5DZc52C/iLOa\nY+GyV2DZ9eRaCABzyG1wLwKebKDcz2MbqKwfkAuXrLuBq930+1hYdcp7zD3AjYH59q6cu7r5YCBc\n7x4P1p2zDtglUPbgBr6ne53mrgwPBta1w8YI6guE+4AvsO9iM7bB7+rWDaTm5wowEhjtpqdin0vX\nvMf0dnXpE1h2EzDKTS+kZutvMLbxBguEz6nZm1CFtUag/s/2T+RCJWsecATiLXUZlbcM8D2seyN7\nuyewfnlg+nN33wHYDfslvIxckPyZmr/olwSmu2G/aIPLPswry1jgLDd9FvbLGPe62QHvEfW8/m7Y\nxjIYbGdgwQVwCta1sRhrXRzslvek5gZ2PdZ1tDO1jQNOxn7hnoz9Us+WoTfWYsq+9xxgk3v/nnl1\n/dy9R30yWDfddu51q7Ff19l67pRXz5FYSIOFeR9gLtYt99281w5+Zh+Q6x7L/xw+cO+T9TEWKME6\ndHDT9X22u2HdR8Gy9qLuLjnxRIu4CyAlaQm2odqBmhuKoOBeNCuxDeQu5Fodu+Q9/m/AW8D+WFfP\nRLf8fHdr6PU/wH4dD67jcWD96idhv9gvBh7BWgEfYRvdrPZYnZZS2xxso3k8FjbBX/0fAOdiXTb5\nlmFdW1nt3Hs0JNt1tgQb5H8U+zW/BPvl3qee573ryga2oR6Pjd1k7Qq8E5j+yE1nP4e5dazbmvo+\n2w+AXwM3FPg64gG1EKQxe+gsAyZhg8Ydsb+jPai/O2AzMAHrzmiLbfB/RM2N+ofYxmUstiGr3oZy\nP4ltJM/CWi4tsb7rr7vpM7H+7c1YS2Oze944bEO+PzawegPwH2xjVpcHsYHuw7GNdNaf3XOzXU3d\ngKFuejw2uHoo1rq4job/7/K/j2exDf0F2DjNWmzsoi22Ed4X+KZ77FnkWmmrsc83GNhXuuftg3Xr\nPeyWj3PrsmMIV5NroTWkoc/2r1iQH+Tq1B5rsXSo/TIi4oNF1D4O4TG37mxq98tvJten3gm4C/vV\n+hnwGnBaA8/tim24V2MbthuxjV3QWdgG7MitlPt54Md5y/q411+B7c3zLLAfttF6BttTKvve3w48\n73+wDe7H2J5Nwa6SYH3BWjWbsb2lgiqA/8X6yNe41/tVYP1/UXMvo/doeFA5v+/9NKzV0hLrcnkQ\nC+VPsMHg7Gvdj/Xvr8VaW9lQ6o19rue511kG/Czw+q2BP2Ctgo+wPY6CexnlB+Qi955b+2y/g3Vd\nfepe92EUCGWvC/YraS7W7B6INWMnA/OxX5pdYiudxOUmau9ffzi1B02l6XpjgaAeAYndGHK/5lpg\nzcvfkttl73Jq7ukhydQX+8VegXUjrCT3Cxbs1+ZjWNeFFFdvFAjigc5Y8zjfPHJ7gOzo5iXZvokN\nKK/H/iYuD6zrh+3G+SLqUghDb6yrS4EgsRqA9Svei/Ux/xUbXPo08JiKvHkREYlB2L8YWgAHYoOP\nB2K/DkfkPaahE32JiEhEwj4O4UN3e8XNj8cOpFmOdRUtx/aaWJH/xD322COzcOHCkIsnIpI4C4E9\nG/PEsFsIy7HdErMH0gzCToT1BLZrIu5+Yv4TFy5cSCaTSeztmmuuib0Mqpvqp/ol74YdE9QoURyp\nfDF2Uq1WWHKdix1Q8wh2qP1icvuvi4hITKIIhDewo0bzDapjmYiIxES7ocUklUrFXYTQJLluoPqV\nuqTXryl8vtJUxvWHiYhIgSoqKqCR23a1EEREBFAgiIiIo0AQERFAgSAiIo4CQUREAAWCiIg4CgQR\nEQEUCCIi4igQRCRyFRWwalXcpZB8CgQRidSmTXb/+uvxlkNqUyCISKTWrrX7mTPjLYfUpkAQkUit\nXm33uv6VfxQIIhKpNWvsfvPmeMshtSkQRCRSCgR/KRBEJFLZQNiyJd5ySG0KBBGJVHYMQS0E/ygQ\nRCRSa9ZAx44KBB8pEEQkUmvWwHbbqcvIRwoEEYnUmjXQpYtaCD5SIIhIpDZsgA4dFAg+UiCISKQ2\nbID27dVl5CMFgohEasMGaNdOLQQfKRBEJFLZFoICwT8KBBGJVLaFoC4j/ygQRCRSaiH4S4EgIpHS\nGIK/WkTwHouBNcBmYCNwELA98DCwm1t/GvBZBGURkZipy8hfUbQQMkAKOAALA4ARwGSgDzDFzYtI\nGVCXkb+i6jKqyJsfCoxx02OAkyIqh4jETMch+CuqFsKzwKvAT9yyHkCVm65y8yJSBqqrNYbgqyjG\nEA4FlgHdsG6ieXnrM+4mImVAXUb+iiIQlrn7lcDfsXGEKmBHYDnQE1hR1xMrKyu/mk6lUqRSqRCL\nKSJRUJdRcaXTadLpdFFeK79vv9jaAc2BtUB7YBJwLTAI+Bi4CRtQ7kLtgeVMJqOGg0jSdOoETz8N\nF1wAb70Vd2mSp6KiAhq5bQ+7hdADaxVk3+sBLBReBR4BhpHb7VREyoC6jPwVdiAsAgbUsfwTrJUg\nImVk82bYtAnatFGXkY90pLKIRKa62sKgeXO1EHykQBCRyGzYoEDwmQJBRCKTDYRmzdRl5CMFgohE\nZsMGaN1aLQRfKRBEJDLBLiO1EPyjQBCRyAS7jNRC8I8CQUQio0FlvykQRCQy6jLymwJBRCKTPQ5B\nXUZ+UiCISGTUZeQ3BYKIREZdRn5TIIhIZLSXkd8UCCISGXUZ+U2BICKRUZeR3xQIIhKZ/HMZ6RpY\nflEgiEhksoFQUWE3BYJfFAgiEpnsye1AA8s+UiCISGSyLQTQwLKPFAgiEpn8QNDAsl8UCCISmWAg\nqMvIPwoEEYnM+vXQvr1Nq8vIPwoEEYnM+vXQoYNNq8vIPwoEEYnMunW5FoK6jPyjQBCRyKxbV7OF\noEDwiwJBRCKjLiO/KRBEJDLqMvKbAkFEIpPfQlAg+EWBICKRyGRqtxDUZeQXBYKIRKK6Glq2hBYt\nbF4tBP9EEQjNgdeBJ9z89sBkYD4wCegSQRlEJGbBPYxAg8o+iiIQLgHmANkT3Y7AAqEPMMXNi0jC\nBbuLQIPKPgo7EHoBJwCjgAq3bCgwxk2PAU4KuQwi4oHggDLoegg+CjsQbgV+DgQbhj2AKjdd5eZF\nJOGWLoUegf92BYJ/WoT42kOAFdj4Qaqex2TIdSXVUllZ+dV0KpUilarvZUTEd3PnQr9+uXkFQnGk\n02nS6XRRXqti6w9ptBuAHwGbgDZAJ2AC8C0sIJYDPYHnga/X8fxMRn8tIolx/vmw775w0UU2378/\nPPAA7LdfvOVKmoqKCmjktj3MLqMrgF2A3YEfAs9hAfE4cLZ7zNnAxBDLICKemD8f+vbNzauF4J8o\nj0PIfvU3Asdiu50e7eZFJOFWrYLu3XPzCgT/hDmGEDTV3QA+AQZF9L4i4olPPoHtt8/NKxD8oyOV\nRSQSCgT/KRBEJHRffGEHobVrl1umQPCPAkFEQvfpp7DDDhYCWQoE/ygQRCR0+d1FoEDwkQJBREKn\nQCgNCgQRCV1VFXTtWnOZAsE/CgQRCd3cufD1vPMRKBD8o0AQkdDNng17711zmQLBPwoEEQnd7Nmw\nzz41lykQ/KNAEJFQrV0LixcrEEqBAkFEQjVjBgwYAK1a1VyuQPCPAkFEQjVzJnzrW7WXKxD8o0AQ\nkVDNn197DyNQIPhIgSAioZo/H/r0qb1cgeAfBYKIhEqBUDoUCCISmjVrYN062Gmn2usUCP5RIIhI\naBYsgD33rHmW0ywFgn8UCCISmvq6i0CB4CMFgoiE5p13YK+96l6nQPCPAkFEQvPaa3DAAXWvUyD4\nR4EgIqHIZODll+Hgg+ter0DwjwJBREIxZ45dQ7lXr7rXKxD8o0AQkVA8/DCcckr96xUI/mkRdwFE\nJHmuugp+9SuYPr3+xygQ/FNIC2HvOpalilwOEUmI2bMtDKDuk9plKRD8U0ggPAJcDlQA7YDbgRvD\nLJSIlK6nn4aLL7ajlOs6IC1LgeCfQgJhILAL8DIwA1gGfDvMQolI6ZoxAw46CDp2bPhxCgT/FBII\nm4AvgLZAG+A9YEuYhRKR0jVjRsNdRVkKBP8UEggzgA3AN4HDgTOARwt4XhtgOjALmAP8xi3fHpgM\nzAcmAV22rcgi4qtFi6C6uv7TVQQpEPxTSCCcB1wFbMS6i4YCTxTwvA3AUcAAYD83fRgwAguEPsAU\nNy8iCTBlChx1VMNjB1kKBP8UEghVwK55t6kFvv7n7r4V0Bz4FAuUMW75GOCkQgsrIv7KZODuu+GH\nPyzs8QoE/xRyHMLTQPZrawPsDrwD7FPAc5sBrwF7AH8CZgM9sJDB3ffYhvKKiKdefBFWr4YTTyzs\n8QoE/xQSCPvmzR8IXFjg62/Buow6A//Cuo2CMuTCppbKysqvplOpFKlUqsC3FZEoTZkC118Pw4dD\nswLPf6BAKI50Ok06nS7KaxXQ01ent6kdFFtzFba30nnYgW3LgZ7A80Adl+Amk9Ffi0hJyI4ZrFgB\n3boV9pyTT4Yzz2z49Bay7Srsy2jUtr2QFsL/BaabYS2EpQU8ryu2y+pn2C6rxwLXAo8DZwM3ufuJ\n21BeEfFMJgMtW8JddxUeBqAWgo8KCYSO5Lp1NgFPAo8V8Lye2KBxM3e7H9ur6HXs6OdhwGLgtG0q\nsYh45fzzYeNGOO+8bXueAsE/hQRCZSNf+y2sNZHvE2BQI19TRIpk0SLrshk0CK67btufv2EDfPe7\n8NxzsN122/58BYJ/GgqEho41yGC7j4pIifra1+y+urpxgXD77fDqq/CXv8CwYdv+fAWCfxoKhN81\nsE5fo0hCtG+/bY+fOhUGDLCT2D30EBx/fOPet6ICtugkOF5pKBAWAe9HVRARiUfbtoU/9osvIJWC\niy6y1sFhhzX+fZs1UwvBNw3tMRzc+6eQQWQRKRHBX+Zr1uSWffhhw8+bNMnu77gDRo7c+hlNG6Iu\nI/8UegnNr4VaChGJ1GefQadO8I9/QFUV/OIXMHkynJa3z18mY8cWZE2fDiecYNOXXda0MigQ/KNr\nKouUoZUroUcPOxHdokVw882QTsOqVbBpEwwcCF9+CS+9ZI+rqrIWxLRpcMEFtodRmzZNK4MCwT8N\njSHsB6x1020D02CDyp3CKpSIhGv5cjuILNjlM306fPopLFli1zRYvBg++MDWjR9vQfHZZ3DEEdC6\nddPLoEDwT0OB0DyyUohIpJ5/Hg45pOay6dOtVbBwoc1fc43tRdSsGcyda62D226zrqZiUCD4R11G\nImXoySdhqDuSaOxY+OY34fPPrRXw5pu2/KGH7H7wYDt53QcfWOugWBQI/lEgiJSZ6mqYMyd3mcsf\n/QjuvDO3fuZM2Gmn3Py++8K8edCvHzQvYr+BAsE/hZy6QkQS5O23Yc89ax5/0L9/bnrePDjuOBg9\n2pZffDF0726BUEwKBP+ohSBSZh57DA4+uOayYDgsWGDnNwJrOey6K/z85zBkSHHLoUDwjwJBpIyM\nHQt/+xtce23tdevW2UZ/7VrYfXc46CD4el1XKikSBYJ/1GUkUiYyGbjlFhgzBnr2rL2+fXvYZReb\n7tbN9joKkwLBP2ohiJSJqVPtXERHHln/Y/r2tfttudBNYykQ/KMWgkgZWL4czjgD/vCHhq95vNtu\ndt+UcxQVSoHgH7UQRMrAtGl2rMGppzb8uOyeRBWNvdr6NlAg+EeBIFIG3nwT9t9/64/r2ze6jbQC\nwT8KBJEy8OqrhQVClBQI/lEgiCTcggV2srrBg+MuSU0KBP8oEEQSbtQo+PGPi3dSumJRIPhHexmJ\nJNz48TBhQtylqE2B4B+1EEQSbOVK+Pjjmucq8oUCwT8KBJEEe+kl+MY3Gj72IC4KBP94+GciIsXw\nhz/YNZLPOy/uktRNgeAfjSGIJNS998KkSQ2fqiJOCgT/qIUgkkBLl9oVzg49NO6S1E+B4B8FgkjC\nPPMM9OoFRx8NLTzuA1Ag+CfsQNgFeB6YDbwNDHfLtwcmA/OBSUCXkMshUjYuvRRatcpdM9lXCgT/\nhP37YSPwv8AsoAMwEwuCc939b4HLgRHuJiJN8NFHsGqVnebaxz2LghQI/gn7T2Y5FgYA64C5wM7A\nUGCMWz4GOCnkcoiUhalT4Ygj/A8DUCD4KMo/m97AAcB0oAdQ5ZZXuXkRaaJ0GlKpuEtRGAWCf6Ia\ncuoAPAZcAqzNW5dxt1oqKyu/mk6lUqRK5S9dJAabN9tupj/9adwlKYwCoTjS6TTpdLoorxXBZTBo\nCTwJPAPc5pbNA1JYl1JPbOA5/3LemYz+WkQKduWV8MIL1m0UxQVummrECOjcGUaOjLskyVJhX36j\n/gLC7jKqAO4B5pALA4DHgbPd9NnAxJDLIZJo77xjZzUdN640wgDUQvBR2F1GhwJnAW8Cr7tlI4Eb\ngUeAYcBi4LSQyyGSaBMmwCmnwM47x12SwikQ/BN2ILxI/a2QQSG/t0jZmDLFjj8oJQoE/5TAzmki\n0pA33rBA8Pk0FXVRIPhHgSBSwpYvh6OOguHDYbvt4i7NtlEg+EeBIFLC/vEPOOEEO9V1qVEg+EeB\nIFKiVq+2IDjmmLhL0jgKBP8oEERK1K9/bRvVIUPiLknjKBD84/HJcUWkPtXVcP/98Nxz0K1b3KVp\nnIoK2LIl7lJIkFoIIiUmk7HWwf77Q79+cZem8dRC8I9aCCIlZtQoeOwxeOqpuEvSNAoE/ygQRErI\nli1w443w4IPQu3fcpWkaBYJ/1GUkUkJeeAHatYODDoq7JE2nQPCPAkGkRKxaZWcIPffc0jmBXUMU\nCP5RIIiUiLFjoXt3uPDCuEtSHAoE/2gMQaQEvPAC/OxndlbT1q3jLk1xKBD8oxaCiOcyGTtX0U9/\nCscfH3dpikeB4B+1EEQ898orsH493H57MsYOshQI/lELQcRzN90Ew4YlKwxAgeAjtRBEPDZxIrz9\nNjzwQNwlKT4Fgn/UQhDx2LXXwq23Qps2cZek+BQI/lEgiHjqlFPsAjjHHRd3ScKhQPCPuoxEPLR0\nKTz7LCxZAs0S+rNNgeCfhP6piZS2e+6B00+HTp3iLkl4FAj+UQtBxDMLFsAdd0A6HXdJwqVA8I9a\nCCKeufpquOwy2HvvuEsSLgWCf9RCEPHIrbfCiy/C3XfHXZLwKRD8o0AQ8cSCBfCb38BrryV77CBL\ngeAfdRmJeGD1avjBD2DIEOjVK+7SREOB4B8FgogHHnwQXn8dzjgj7pJER4HgHwWCSMyqq2H0aBg/\nHgYNirs00VEg+CfsQBgNVAFvBZZtD0wG5gOTgC4hl0HEa3fdBV27wve+F3dJoqVA8E/YgXAvkH/g\n/QgsEPoAU9y8SFkaNw6uvNIujdmizHbxUCD4J+xA+Dfwad6yocAYNz0GOCnkMoh4af58u/DNxIlw\n5JFxlyZ6CgT/xDGG0APrRsLd94ihDCKxymTgiivgoovg2GPjLk08FAj+ibuRmnE3kbKRydhFb957\nD+6/P+7SxEeB4J84AqEK2BFYDvQEVtT3wMrKyq+mU6kUqVQq5KKJhOv996F3b5tesADato21OLFS\nIBRHOp0mXaQTX0VxUb7ewBNAfzf/W+Bj4CZsQLkLdQ8sZzL6a5GEufZa+P3vYeNG+PzzuEsTr9Gj\n4d//hnvvjbskyVJh11pt1LY97DGEccBLQF9gCXAucCNwLLbb6dFuXiTx/vMfeOopePhhWL8+7tLE\nTy0E/4TdZXR6PcvL6PAbERg1Cq66CvbfHw47zDaG5U6B4J+4B5VFEm/WLDvWYPJk6N9/648vFwoE\n/+jUFSIh2rQJ/vhHu/qZwqAmBYJ/1EIQCdH999ug6dSpcZfEPwoE/6iFIBKSTAbGjrVB5COOiLs0\n/lEg+EeBIBKCN96AH/7Q9iYaOjTu0vhJgeAfBYJIkX32mZ2OIpOBJ5+ENm3iLpGfFAj+USCIFNGj\nj8Iee8Ahh8Ajj0D37nGXyF8KBP9oUFmkSN58Ey680K56dnp9R+DIVxQI/lEgiDTR+vXw0kswciTc\ncAOcd17cJSoNCgT/qMtIpIkuuggGD4bNm2HYsLhLUzoUCP5RC0Gkkd591y59OXEifPQR7LCDTkmx\nLRQI/lEgiDTCli2w117Qvr21Dnr2jLtEpUeB4B91GYlsow8/tBBo3twGkK+5Ju4SlSYFgn8UCCLb\n4JVXYMAAu/3rX/CXv9gZTGXbKRD8oy4jka1YswZWrrTjCy65BG67Dc46K+5SlT4Fgn/UQhDZiiuu\ngD33hDvugBUr7JQU0nQKBP+ohSDSgDVrYMIEOPVUuPhiu+pZC/3XFIUCwT9qIYjUYfNmSKfhwAPh\n+9+HceNs19KBA+MuWXIoEPyj3zoiAdXVUFkJ991nG6vRo+H4423jpV1Li0uB4B+1EESwFsHw4XZw\n2dy5NnC8bBmccIIONguLAsE/aiFIWXv3XXjxRXj5ZQuCxYvt6GMJnwLBPwoEKVtr18KJJ9r0AQfA\n449Dly7xlqmcKBD8o0CQsrJ6NVx3nbUCRo+G73zHdieV6CkQ/KNAkLKxahVceqmdemKPPSwIvvOd\nuEtVvlq1skF88YcCQRJt2jS7hOUtt9gFbObMgeefh1Qq7pJJ5852nIf4Q4EgifPll/DEE3ah+5tv\ntvkrr4TTToMhQ6Bly7hLKGCBsHp13KWQIAWCJMbChfDPf8KoUdChA+y4ox1c1qkT9OsXd+kknwLB\nPz7vYZ3JaMRJtmLZMjuI7I47rCVw4olw9NFw5pk6fsB31dXQsaPd67sqngr7MBv1icbZQjgOuA1o\nDowCboqxLFIi1q2zM4/ed5+NBzzzjB1BPH48dO9ug8VSGlq3hmbNYMMGaNs27tIIxHekcnPgDiwU\n9gZOB8qqUZ9Op+MuQmiKWbf162HGDLj6ajvLaN++cPDB8NprcPjhtsfQggVwyCHRhUGSvzuItn5x\nDCwn/ftrirgC4SDgXWAxsBF4CPheTGWJRZL/KJtat/nzYdIk+OUvLQAGDoTrr4f99rMWQVWVDRoP\nHx7PgWRJ/u4g2vp16hT9OELSv7+miKvLaGdgSWD+Q0DnkSxzy5fbWUUrK6F/f2sB3HknzJoFw4ZB\nr15xl1CKTQPLfokrEAoaLc6eViCJ3nkHZs6MuxThaEzdMhnrBho82K4/cMwxuXXfK6u2Y3nZbju7\nCt0OO0T3no35+zz8cPjFL8Ipj0/iGts/GKjExhAARgJbqDmw/C6gIUIRkW2zENgz7kJsixZYoXsD\nrYBZlNmgsoiI5BwPvIO1BEbGXBYREREREfHVccA8YAFwecxlaazRQBXwVmDZ9sBkYD4wCQjuMDkS\nq+88YHBEZWyKXYDngdnA28BwtzwJdWwDTMe6MecAv3HLk1C3oObA68ATbj5J9VsMvInVb4ZblqT6\ndQHGA3Oxv9GBJKt+X2mOdSH1BlpSumMLhwMHUDMQfgtk91O4HLjRTe+N1bMlVu938f/SpjsCA9x0\nB6zrrx/JqWM7d98C+A9wGMmpW9ZlwAPA424+SfVbhG0gg5JUvzHAj910C6AzyarfVw4B/hmYH+Fu\npag3NQNhHtDDTe/o5sHSO9gS+ie2F1YpmQgMInl1bAe8AuxDsurWC3gWOIpcCyFJ9VsE5O/ImpT6\ndQbeq2N5UernW1LUdcDazjGVpdh6YN1IuPvsl7cTVs+sUqtzb6w1NJ3k1LEZ9quqilzXWFLqBnAr\n8HNsV++sJNUvgwXeq8BP3LKk1G93YCVwL/Aa8FegPUWqn2+BUC6nN83QcF1L5XPoADwGXAKszVtX\nynXcgnWJ9QKOwH5JB5Vy3YYAK7D+9fqOQyrl+gEciv1IOR64EOvCDSrl+rUADgTucvfrqd2L0uj6\n+RYIS7EBy6xdqJlupawKa8oB9MT+KaF2nXu5Zb5riYXB/ViXESSvjquBp4BvkJy6fRsYinWrjAOO\nxr7DpNQPYJm7Xwn8HTt3WlLq96G7veLmx2PBsJxk1K+GJB2w1pvag8rZvrwR1B70aYU1Bxfi93Uq\nwMo3Fut6CEpCHbuS20OjLfACcAzJqFu+I8mNISSlfu2Ajm66PTAN27MmKfUD+5vs46YrsbolqX41\nJOGAtXGHe0HkAAACCklEQVTAR8CX2JjIudheD89S925hV2D1nQeUwmXfD8O6VWZhXQ+vY7sLJ6GO\n/bG+2VnYros/d8uTULd8R5Lbyygp9dsd++5mYbtEZ7chSakfwP5YC+ENYAI20Jyk+omIiIiIiIiI\niIiIiIiIiIiIiIiIiN9K6gAFkSLYjB1fkDUOO6hHRETKTP45l4qhRQivKRI5385lJBKXxdhpAGZi\nLYi+bnl77IJH07EjmIe65edgR/lOwS5M0hZ4BDsz6gTsOgrfwI5SD57i4yfA78OqhIiIFG4TudNt\nvA6c6pYvws6MCXABdlphgBuAM910F+y0Ku2wQFhC7hQBPwP+5Kb3ATZiJx1rj502oLlbN82tF/GO\nmrpSbr7ATo1clwnu/jXgZDc9GDgR2+ADtAZ2xU4hPBn4zC0/FLjNTc8mN06xHnjOvcY87Cyxs5ta\nCZEwKBBEcqrd/WZq/m+cjF2TNmggtrEPqm8njVHAL7Fr4I5uYhlFQqMxBJGG/QsYHpjPti7yN/7T\ngNPc9N7YWVOzZmDnoT8D26tJxEsKBCk3bak5hnBDHY8JXnHqeqyb503sdMrX1vEYsCtYdcO6g653\n96sD6x8BXsxbJiIiCdQMG18A2AO7EHqw2+kJal+KU0REEqgjdtGSWdiFS7IXIsnumfRwTOUSERER\nERERERERERERERERERERERERKab/B5WvRS57HCkNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "transfer.plot(response='energy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By enabling `save=True` parameter, the plots can be also saved." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction can be saved in pickle format and retrieved later." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.write('transfer.pickle')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Saved files can be read using static `read()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer_new = TransferFunction.read('transfer.pickle')\n", + "transfer_new.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Artificial Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For quick testing, two helper impulse response models are provided." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1- Simple IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "simple_ir() allows to define an impulse response of constant height. It takes in time resolution starting time, width and intensity as arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEW1JREFUeJzt3W+MVNd9h/FnvAtpUmRTpAjXsOpaQBSo2gYrosRNlGlD\nW4ocaCMlGMVxa0c2L0rttFFCcKV6LfVF0sqKi5AxTUlCaydUxZaFJWzaKJ4qUVxsYoxtYClLSwNY\n2JZTpzGKFXZ3+uLcZYfxLnN3ZnaHO7/nI43m/jn3zjns8L1nzz0zC5IkSZIkSZIkSZIkSZIkSSqA\n1cAgcALYPMH+9wPPAG8Dn6/Z3gc8DRwBXgbumt5qSpLaoQcYAvqBWcALwNK6Mu8FPgj8NZcG/7XA\nB7LlOcDxCY6VJM2gq3KUWUEK/lPABWA3sK6uzOvAwWx/rXOkCwXAW8Ax4Lom6ypJaoM8wb8AOF2z\nfibbNlX9wHLgQBPHSpLaJE/wV9vwOnOAPcDdpJ6/JKlDenOUOUu6STumj9Trz2sW8CjwMPB4/c5F\nixZVT548OYXTSZKAk8DiZg7M0+M/CCwhDdXMBtYDeycpW5pgfSdwFHhgogNOnjxJtVrt2se9997b\n8TrYPtsXsX3d3LZqtQqwKEd+TyhPj38Y2ATsJ83w2Um6Sbsx27+DNHvnOeBqYJQ0pLOMNKPnFuBF\n4FBWfgvwVLMVliS1Jk/wAzyZPWrtqFk+x6XDQWO+T77fKiRJM8RQnmblcrnTVZhWtq/Yurl93dy2\nVtWPyXdCNRuvkiTlVCqVoMkMt8cvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEv\nScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY/JIUjMEvScEY\n/JIUjMEvScEY/JIUjMEvScEY/JIUTJ7gXw0MAieAzRPsfz/wDPA28PkpHitJmmGlBvt7gOPAKuAs\n8BywAThWU+a9wK8Afwj8L3D/FI4FqFar1eZbIEkBlUolaJzhE2rU418BDAGngAvAbmBdXZnXgYPZ\n/qkeK0maYY2CfwFwumb9TLYtj1aOlSRNk94G+1sZg3H8RrqCffaz8Nprna6FpqKvDx58sPXzNAr+\ns0Bf7euSeu555D52YGDg4nK5XKZcLud8CUnN+uY34bHH4Crn9hXCSy9VOH68Qk1cNq3RjYFe0g3a\njwGvAM8y8Q1agAHgp4zf3M17rDd3pRk2Ogo9Pem51NTtQXVaKzd3G/X4h4FNwH7SLJ2dpODemO3f\nAVxLmrFzNTAK3A0sA96a5FhJHTYyAr29hn5UV8KP3R6/NMN+9jOYNy89q5imczqnpC40PJx6/IrJ\n4JcCGhlJY/yKyeCXArLHH5vBLwVk8Mdm8EsBGfyxGfxSQAZ/bAa/FJDBH5vBLwU0POysnsgMfimg\nsU/uKiaDXwrIoZ7YDH4pIIM/NoNfCsjgj83glwIy+GMz+KWAnNUTm8EvBeSsntgMfikgh3piM/il\ngAz+2Ax+KSCDPzaDXwrI4I/N4JcCclZPbAa/FJCzemIz+KWAHOqJzeCXAjL4YzP4pYAM/tgMfikg\ngz82g18KyFk9sRn8UkDO6onN4JcCcqgnNoNfCsjgjy1P8K8GBoETwOZJymzN9h8Gltds3wIcAV4C\nvgW8q+maSmobgz+2RsHfA2wjhf8yYAOwtK7MGmAxsAS4E9iebe8H7gBuAH4tO9fN7ai0pNYY/LE1\nCv4VwBBwCrgA7AbW1ZVZC+zKlg8Ac4H5wP9lx7wH6M2ez7aj0pJaY/DH1ij4FwCna9bPZNvylPkx\ncD/wI+AV4E3gO61UVlJ7jIw4nTOyRtf8as7zlCbYtgj4HGnI5yfAvwCfBh6pLzgwMHBxuVwuUy6X\nc76spGbY4y+eSqVCpVJpy7ka/ejPAn01632kHv3lyizMtpWBHwBvZNsfA26kQfBLmn4Gf/HUd4rv\nu+++ps/VaKjnIOmmbT8wG1gP7K0rsxe4NVteSRrSeRU4nq2/m/QbwSrgaNM1ldQ2Bn9sjX70w8Am\nYD9pVs5O4BiwMdu/A9hHmtkzBJwHbsv2vQD8I+niMQo8D/x9G+suqUkGf2wTjc3PtGq1mvdWgqR2\nuOMOWLEiPauYSqUSNJnhfnJXCshZPbEZ/FJADvXEZvBLARn8sRn8UkAGf2wGvxSQwR+bwS8FZPDH\nZvBLAfmnF2Mz+KWA/NOLsRn8UkAO9cRm8EsBGfyxGfxSQAZ/bAa/FJDBH5vBLwXkrJ7YDH4pIGf1\nxGbwSwE51BObwS8FZPDHZvBLARn8sRn8UkAGf2wGvxSQs3piM/ilgJzVE5vBLwXkUE9sBr8UkMEf\nm8EvBWTwx2bwSwEZ/LEZ/FJAzuqJzeCXAnJWT2wGvxTM6Gh6vsr//WH5o5eCcXxfeYJ/NTAInAA2\nT1Jma7b/MLC8ZvtcYA9wDDgKrGy6ppLawuBXo+DvAbaRwn8ZsAFYWldmDbAYWALcCWyv2fd3wL7s\nmF8nXQAkdZDBr0bBvwIYAk4BF4DdwLq6MmuBXdnyAVIvfz5wDfAR4OvZvmHgJy3XWFJLDH41Cv4F\nwOma9TPZtkZlFgLXA68D3wCeB74GvKeVykpq3ciIUzmja3Tdr+Y8T2mC43qBG4BNwHPAA8CXgL+q\nP3hgYODicrlcplwu53xZSVNlj7+YKpUKlUqlLeeqD+x6K4EB0hg/wBZgFPhKTZmHgAppGAjSjeCP\nZud+htTzB/gwKfhvqnuNarWa9/oiqVWnT8ONN6ZnFVepVILGGT6hRkM9B0k3bfuB2cB6YG9dmb3A\nrdnySuBN4FXgHGkI6H3ZvlXAkWYqKal97PGr0Y9/mDRUs580w2cnaWbOxmz/DtKsnTWkm8Dngdtq\njv8z4BHSReNk3T5JHWDwq6lfE9rMoR5pBh07Bp/4RHpWcU3nUI+kLuMXtMngl4LxC9pk8EvBOMYv\ng18KxuCXwS8FY/DL4JeCMfhl8EvBOKtHBr8UjLN6ZPBLwTjUI4NfCsbgl8EvBWPwy+CXgjH4ZfBL\nwTirRwa/FIyzemTwS8E41CODXwrG4JfBLwVj8Mvgl4Ix+GXwS8E4q0cGvxSMs3pk8EvBONQjg18K\nxuCXwS8FY/DL4JeCMfhl8EvBGPwy+KVgRkaczhmdwS8FY49fBr8UjMGvPMG/GhgETgCbJymzNdt/\nGFhet68HOAQ80WQdJbWRwa9Gwd8DbCOF/zJgA7C0rswaYDGwBLgT2F63/27gKFBttbKSWmfwq1Hw\nrwCGgFPABWA3sK6uzFpgV7Z8AJgLzM/WF5IuDP8AlFqvrqRWGfxqFPwLgNM162eybXnLfBX4AjDa\nQh0ltZGzetToup93eKa+N18CbgJeI43vly938MDAwMXlcrlMuXzZ4pJaYI+/mCqVCpVKpS3najT8\nshIYII3xA2wh9d6/UlPmIaBCGgaCdCO4DNwFfAYYBn4BuBp4FLi17jWq1arD/9JM+eQn4VOfSs8q\nrlKpBE0OoTca6jlIumnbD8wG1gN768rsZTzMVwJvAueAe4A+4HrgZuC7vDP0Jc0we/xq9OMfBjYB\n+0kzfHYCx4CN2f4dwD7SDdwh4Dxw2yTnslsvXQEMfuX58T+ZPWrtqFvf1OAc/549JHWYwS8/uSsF\n459elMEvBeOfXpTBLwXjUI8MfikYg18GvxSMwS+DXwrG4JfBLwXjrB4Z/FIwzuqRwS8F41CPDH4p\nGINfBr8UjMEvg18KxuCXwS8F46weGfxSMM7qkcEvBeNQjwx+KRiDXwa/FIzBL4NfCsbgl8EvBVKt\nppu7zuqJzeCXAhkdhauuglKp0zVRJxn8UiAO8wgMfikUg19g8EuhGPwCg18KxeAXGPxSKAa/wOCX\nQnEqp8Dgl0Kxxy8w+KVQDH5B/uBfDQwCJ4DNk5TZmu0/DCzPtvUBTwNHgJeBu5quqaSWGfyCfMHf\nA2wjhf8yYAOwtK7MGmAxsAS4E9iebb8A/Dnwq8BK4E8nOFbSDDH4BfmCfwUwBJwiBfluYF1dmbXA\nrmz5ADAXmA+cA17Itr8FHAOua6nGkppm8AvyBf8C4HTN+plsW6MyC+vK9JOGgA5MrYqS2sVZPYJ8\nwV/Nea76r32qPW4OsAe4m9Tzl9QB9vgFkOctcJZ0k3ZMH6lHf7kyC7NtALOAR4GHgccneoGBgYGL\ny+VymXK5nKNakqbK4C+uSqVCpVJpy7nyfDlrL3Ac+BjwCvAs6QbvsZoya4BN2fNK4IHsuUQa+3+D\ndJN3ItVqNe8vFZJa8b3vwT33pGcVWyl9t3ZTX7Cd59o/TAr1/aQZPjtJob8x278D2EcK/SHgPHBb\ntu+3gFuAF4FD2bYtwFPNVFZSa+zxC/IFP8CT2aPWjrr1TRMc9338kJh0xTD4BYayFMrwsLN6ZPBL\noYyM2OOXwS+F4lCPwOCXQjH4BQa/FIrBLzD4pVAMfoHBL4XirB6BwS+F4qwegcEvheJQj8Dgl0Ix\n+AUGvxSKwS8w+KVQDH6BwS+F4qwegcEvheKsHoHBL4XiUI/A4JdCMfgFBr8UisEvMPilUAx+gcEv\nhWLwCwx+KZSREadzyuCXQrHHLzD4pVAMfoHBL4Vi8AsMfikUg19g8EuhGPwCg18KxVk9AoNfCsUe\nv8Dgl0Ix+AX5gn81MAicADZPUmZrtv8wsHyKx0qaIQa/oHHw9wDbSAG+DNgALK0rswZYDCwB7gS2\nT+HYrlepVDpdhWll+4qlPvi7rX21urltrWoU/CuAIeAUcAHYDayrK7MW2JUtHwDmAtfmPLbrdfub\nz/YVi8EvaBz8C4DTNetnsm15ylyX41hJM8g/vSiARqN91ZznKbVSiY9/vJWjr2zHj8MPf9jpWkwf\n21csL74Is2Z1uha60q0EnqpZ38I7b9I+BNxcsz4IzM95LKThoKoPHz58+JjSY4hp0gucBPqB2cAL\nTHxzd1+2vBL4jykcK0m6Av0BcJx0ddmSbduYPcZsy/YfBm5ocKwkSZKkKLrpA159wNPAEeBl4K5s\n+zzg34D/BP6VNN21yHqAQ8AT2Xo3tW8usAc4BhwFfpPuat8W0vvzJeBbwLsodvu+DrxKas+Yy7Vn\nCylrBoHfm6E6Nmuitv0t6b15GHgMuKZmX2Ha1kMaAuoHZlH8ewDXAh/IlueQhriWAn8DfDHbvhn4\n8sxXra3+AngE2Jutd1P7dgG3Z8u9pP9Y3dK+fuC/SGEP8M/AH1Ps9n2E9E0BteE4WXuWkTJmFunf\nYogr+ytrJmrb7zJe5y9T0LZ9iEtn/Xwpe3SLx4FVjM9ygnRxGOxYjVq3EPgO8NuM9/i7pX3XkIKx\nXre0bx6pM/JLpIvaE6QgKXr7+rk0HCdrT/2swqdIk1GuZP1c2rZafwQ8nC1PuW2dvCrk+XBYUfWT\nrtYHSG/CV7PtrzL+piyirwJfAEZrtnVL+64HXge+ATwPfA34RbqnfT8G7gd+BLwCvEkaEumW9o2Z\nrD3XkTJmTNHz5nbGZ1NOuW2dDP5qB197Os0BHgXuBn5at29s/m0R3QS8Rhrfn+wDe0VuXy9pRtqD\n2fN53vkbaJHbtwj4HKlTch3pfXpLXZkit28ijdpT1Lb+JfBz0n2ayVy2bZ0M/rOkG6Jj+rj0qlVE\ns0ih/0+koR5IvY5rs+VfJoVnEd1I+l6m/wa+DfwOqZ3d0r4z2eO5bH0P6QJwju5o3weBHwBvAMOk\nm4MfonvaN2ay92N93izMthXNn5A+O/Xpmm1Tblsng/8g6Rs9+0kf8FrP+A3DIioBO0mzQR6o2b6X\ndBON7Plxiuke0pvretIntb8LfIbuad850tDj+7L1VaQZME/QHe0bJI37vpv0Xl1Feq92S/vGTPZ+\n3Et6384mvYeXAM/OeO1as5o01LoOeLtme+Ha1k0f8Powaez7BdJwyCHSD2oe6YZoEafLTeajjF+k\nu6l9v0Hq8ddOl+um9n2R8emcu0i/oRa5fd8m3a/4OemifRuXb889pKwZBH5/Rms6dfVtu500XfN/\nGM+XB2vKF6ltkiRJkiRJkiRJkiRJkiRJkiRJktS9/h+lSqkVoCGKbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = simple_ir(dt=0.125, start=10, width=5, intensity=0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2- Relativistic IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: time_resolution, primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEACAYAAABMEua6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHiBJREFUeJzt3XmUVOWZx/Fv0Q0Csq+yaBpZBCIEJMEmQSgWFTTAxNhB\nYtSgjrjOzMlMgphRO05iNCee5KhxCUZjjIIRSYRIQEHKBVFEkUAABRoUcGFRUNka6J4/nmq7qG6o\nqu5bde+t9/c5557ablc/tNav337ue98LIiIiIiIiIiIiIiIiIiIiIiIiIiKh8DDwMbAqxX7fAA4D\nF2S9IhERqVWDNPZ5BBiTYp8C4E5gPhCpb1EiIlI36YT6y8CnKfa5AZgF7Kh3RSIiUmfphHoqXYAJ\nwP3xx5UevKeIiNSBF6H+W+BGLMwjqP0iIuKbQg/eYxAwM36/HTAWOATMSdype/fulRs3bvTg24mI\nOGUj0CPdnb0YqZ8KdItvs4BrSAp0gI0bN1JZWRn47dZbb/W9Blfq7Nq1ktLSYNcYpE11ulkn0D2T\nQE5npD4DGI6NwrcAtwIN4689mMk3E6ly4ABs2wafpjoELyIZSSfUJ2XwfpPrWoi45b33oLJSoS7i\nNS/aL3klGo36XUJawl5nWRlEIrB7d27rqU3Yf5ZBozr9lcuZKpXx/pAIv/sd3HsvtG8PL73kdzUi\nwRWJRCCDrNZIXXxRVgaDBqn9IuI1hbr4YtMmOOMMhbqI1xTq4guN1EWyQz11ybnKSmjZ0mbAdOgA\ne/dCo0Z+VyUSTOqpS+Dt2gWFhdC6NbRqFYwZMCL5QqEuOVdWBt262f3WrdWCEfGSQl1yrqwMTj3V\n7rdqpVAX8ZJCXXJu06bqUNdIXcRbCnXJucSReuvW6qmLeEmhLjmXHOoaqYt4R6EuOadQF8kehbrk\n1KFD8MEHcMop9lgHSkW8pVCXnHr/fejcGRrGV+TXSF3EWwp1yalNm6rnqIMOlIp4TaEuOZXYTweN\n1EW8plCXnFKoi2SXQl1yKjnUdaBUxFsKdckpjdRFsktL70pOtWkD774L7drZ44oKmwlTXg4FBf7W\nJhJEWnpXAmv3bjh8GNq2rX6uQQNo0QL27PGvLpF8olCXnKmazhhJGnOory7inXRC/WHgY2DVMV6/\nGFgJ/BNYAvT3pjTJN8n99Crqq4t4J51QfwQYc5zXy4BhWJj/H/B7D+qSPKRQF8m+dEL9ZeB4H7ml\nQFVH9HWga32Lkvx0vFDXWaUi3vC6p34FMM/j95Q8oZG6SPYVevheI4DLgW8da4fS0tIv70ejUaLR\nqIffXoKsshJWrYLevWu+pgOlItVisRixWKzOX5/u3MciYC7Q7xiv9wdmY733DcfYR/PUHbZ2LZx3\nno3Wk2e/3H47fPYZ3HGHP7WJBJkf89RPwQL9Bxw70MVxCxfCqFE1Ax3UfhHxUjrtlxnAcKAdsAW4\nFYivhs2DwC1Aa+D++HOHgMHelilht2gRTJxY+2s6UCriHS0TIFl3+DC0bw/r1kHHjjVfX7AA7roL\nnnsu97WJBJ2WCZDAeest6Nq19kAHHSgV8ZJCXbJu4UIYPfrYr6unLuIdhbpk3aJFdpD0WBTqIt5R\nT12yav9+6NABtm2z1Rhrc+gQNGlit7XNjhFxmXrqEiivvgr9+h070MHWU2/SBD7/PHd1ieQrhbpk\nVdX89FR0sFTEGwp1yapFi45/kLSK+uoi3lCoS9bs3m1z04uLU++rUBfxhkJdsiYWgyFD4IQTUu+r\ns0pFvKFQl6xJt58OGqmLeEWhLlmTan56Ih0oFfGGQl2yYskSm6M+YEB6+2ukLuINhbp4rrISfvpT\nuOUWKChI72sU6iLeUKiL5xYuhA8/hEsvTf9rdKBUxBsKdfFUZSXcdBPcdhsUZnCxRPXURbyhUBdP\nPfOMreFSUpLZ16n9IuINLy88LY47cgRuvhl++UtokOFwQaEu4g2N1MUzM2dC8+Zw/vmZf6166iLe\n0NK74olDh6BPH5g+HUaMyPzrDxyAli3tVsvvilTLdOldhbrUW3k5TJpk959+uu7v07gxfPIJNG3q\nTV0i+UDrqUtOHTgAF1xg/fQnnqjfe6mvLlJ/CnWps337YPx4aNYMnnoqvYW7jkehLlJ/CnWpk927\nYexY6NQJHn/crl5UXzpYKlJ/6YT6w8DHwKrj7HM3sB5YCQz0oC4JqE8/hdJS6NkTzjgDHnkk/aUA\nUtFIXaT+0gn1R4Axx3n9PKAH0BO4Crjfg7okYLZuhWnToEcP2LIFli6F3/wm8/nox6OzSkXqL52T\nj14Gio7z+njg0fj914FWQEdsdC8hdPAgbN4Mr70GL74IL71kbZGSEnjzTSgqys731UhdpP68OKO0\nC7Al4fFWoCsK9UDbtAnWr7fwTt527YKuXWHQIBg+HH70I+jb19tReW0U6iL159UyAclzKGudkF5a\nWvrl/Wg0SjQa9ejbSyY++ghOOw2GDbNRd1GRHfTs1s3ud+rkXZ88E506wRtv5P77igRJLBYjFovV\n+evTndBeBMwF+tXy2gNADJgZf7wOGE7NkbpOPgqI9estxDds8LuSo61dC2PG2F8LOqtUxPhx8tEc\noGrl7GJgN2q9BFp5OTRq5HcVNfXubScxrV/vdyUi4ZVO+2UGNvJuh/XObwWqZiU/CMzDZsBsAPYC\nk70vU7x08GD9TxTKhkgEzjkHnn8eevXyuxqRcEon1Celsc/19S1EcieooQ5w9tnw5JNw3XV+VyIS\nTjqj1EHl5cEN9VGjIBazVR9FJHMKdQcdPBjMnjpAhw42C2fZMr8rEQknhbqDgtx+AWvBPP+831WI\nhJNC3UFhCPXnnvO7CpFwUqg7KMg9dYChQ2HVKtizx+9KRMJHoe6gIPfUAZo0gSFDYPFivysRCR+F\nuoOC3n4B9dVF6kqh7qCgt19AfXWRulKoOyjo7ReA/v2tp755s9+ViISLQt1BYWi/NGgAo0erBSOS\nKYW6g8IQ6qAWjEhdKNQdFIaeOtgyvAsXaskAkUwo1B0Uhp462EUzevSAl1/2uxKR8FCoOygs7ReA\nceNg7ly/qxAJD4W6g8LSfoHqUNdFs0TSo1B3UJhG6gMGwIED8M47flciEg4KdQeFpacOdjWkb38b\n/v53vysRCQeFuoPCNFIH9dVFMqFQd1CYeuoAI0fCihXwySd+VyISfAp1B4Wp/QK2amM0CvPn+12J\nSPAp1B0UtvYLqAUjki6FuoPCGOrnnw8LFujsUpFUFOoOCltPHaBzZzj1VFiyxO9KRIItnVAfA6wD\n1gNTa3m9HTAfeBtYDfzQq+IkO8LWU6+iFoxIaqlCvQC4Fwv2vsAkoE/SPtcDK4ABQBS4Cyj0tErx\nVBjbL6CzS0XSkSrUBwMbgM3AIWAmMCFpnw+BFvH7LYBdwGHvShSvhbH9AjBwoP1CWr3a70pEgitV\nqHcBtiQ83hp/LtF04KvAB8BK4D89q06yIqztl0gELrwQnnrK70pEgitVmySdP3RvwvrpUaA78Dzw\nNeDz5B1LS0u/vB+NRolGo+lVKZ4Ka/sFoKQEJk+Gn/3MQl4k38RiMWKxWJ2/PtXHohgoxXrqANOA\nCuDOhH3mAb8AquYlLMIOqC5Peq/KSjVDA6GwEPbvh4YN/a4kc5WV8JWvwLx5cPrpflcjkn0RG72k\nPYRJ1X5ZDvQEioBGwERgTtI+64DR8fsdgdOAsnQLkNw6cgQqKizYw0gtGJHjSxXqh7HZLQuANcCT\nwFpgSnwDuB34OtZPXwj8BNAqHQFVXm799DC3LkpKYNYsv6sQCaZcfrTVfgmA3butfbFnj9+V1F1F\nhf0bFiyAvn39rkYku7xuv0ieCet0xkQNGsB3v6sWjEhtFOqOCfPMl0QlJQp1kdoo1B0T1jnqyYYM\nsVbS2rV+VyISLAp1x+TLSF0tGJHaKdQdkw899SpqwYjUpFB3TL60XwC++U27xN2aNX5XIhIcCnXH\n5Ev7BawFc/HF8NhjflciEhwKdcfkU/sF4NJLLdSPHPG7EpFgUKg7Jp9G6mDrv3ToAIsX+12JSDAo\n1B2TTz31KpdeCn/6k99ViASDQt0x+TZSB5g0CebMgS++8LsSEf8p1B2Tbz11gI4dYehQmD3b70pE\n/KdQd0w+tl9ALRiRKgp1x+Rj+wVg/HhYsQK2bEm9r0g+U6g7Jh/bLwCNG9vFMx5/3O9KRPylUHdM\nvo7UoboFo2X7xWUKdcfka08dbNmAgwdhefLVcUUcolB3TD6P1CMRuPxymD7d70pE/KNQd0y+9tSr\nXHGFrdwY5sv1idSHQt0x+TxSBzjpJDj7bPjzn/2uRMQfCnXH5HNPvcrVV8MDD+iAqbhJoe6YfB+p\nA4wYYW2mV1/1uxKR3FOoOybfe+pgB0ynTLHRuohr0gn1McA6YD0w9Rj7RIEVwGog5kVhkh0utF8A\nLrsM5s6FnTv9rkQkt1KFegFwLxbsfYFJQJ+kfVoBvwPGAacDF3pco3jIhfYLQNu2MGEC/PGPflci\nklupQn0wsAHYDBwCZgITkvb5PvA0sDX+WGOjAHOh/VLl6qvhwQehosLvSkRyJ1WodwESl0jaGn8u\nUU+gDbAYWA5c4ll14jlXRuoAxcXQtCksWuR3JSK5U5ji9XQmhTUEzgBGAU2BpcBrWA/+KKWlpV/e\nj0ajRKPRNMsUr7jSUwc7YHrddXD33TZ3XSQMYrEYsViszl8fSfF6MVCK9dQBpgEVwJ0J+0wFmsT3\nA3gImA/MSnqvykpNHPZdv362kmH//n5Xkhv790NREbz4IvTu7Xc1IpmLRCKQOqu/lKr9shxrrxQB\njYCJwJykfZ4BhmIHVZsCZwJr0i1AcsulnjpAkyZwzTXwm9/4XYlIbqQK9cPA9cACLKifBNYCU+Ib\n2HTH+cA/gdeB6SjUA8ul9kuVa6+Fv/wFtm/3uxKR7Et7SO8BtV8CoFMnePNN6NzZ70py66qr7N+c\ncFhHJBQybb8o1B3Tti28+67dumTdOhg+HDZvtpaMSFh43VOXPOPSlMZEvXvD4MG6OLXkP43UHdOw\nIezd615fHWwGzFVXwdq10EDDGQkJjdTlmCoq4MgRC3YXDRsGzZvDs8/6XYlI9ijUHVJebiP0SC7/\nPguQSAT+53/gjju01rrkL4W6Q1ztpycqKYFdu7R0gOQvhbpDXJyjnqygAG6+2aY2arQu+Uih7hDX\nziY9losugh074IUX/K5ExHsKdYeo/WIKCuCWWzRal/ykUHeI2i/VLrrIlg3QaF3yjULdIRqpV1Nv\nXfKVQt0h6qkfrWq0vnix35WIeEeh7hCN1I9WWGij9Vtu0Whd8odC3SHqqdc0aRLs2QNzkq8SIBJS\nCnWHaKReU0EB/OpXMHUqHDrkdzUi9adQd4h66rUbMwa6doXp0/2uRKT+FOoO0Ui9dpEI/PrXcNtt\n8NlnflcjUj8KdYeop35sAwbAuefCnXem3lckyBTqDlH75fh+/nN44AHYutXvSkTqTqHuELVfju/k\nk2HKFPjf//W7EpG6U6g7RO2X1G68ERYsgGXL/K5EpG4U6g7RSD21Fi2sr37NNXaVKJGwUag7RD31\n9FxyiV327v77/a5EJHPphPoYYB2wHph6nP2+ARwGLvCgLskCjdTTE4nAfffBz34GH37odzUimUkV\n6gXAvViw9wUmAX2Osd+dwHwyuOq15JZ66unr2xeuvNKuaSoSJqlCfTCwAdgMHAJmAhNq2e8GYBaw\nw8vixFtqv2Tm5pthyRJdz1TCJVWodwG2JDzeGn8ueZ8JQFUHUuvdBZTaL5lp2hTuvhuuvdZ+diJh\nUJji9XQC+rfAjfF9Ixyn/VJaWvrl/Wg0SjQaTePtxStqv2Ru/Hj44x9tCYFf/MLvasQFsViMWCxW\n569P1f8uBkqxnjrANKAC659XKUt4n3bAPuDfgeTFTCsrtWi1r773Pfjud2HiRL8rCZePP4avfQ2e\neQbOPNPvasQ1kUgEMjhWmar9shzoCRQBjYCJ1AzrU4Fu8W0WcE0t+0gAqKdeNx07Whvmsstg/36/\nqxE5vlShfhi4HlgArAGeBNYCU+KbhIh66nX3ve/Zol9aQkCCLpfTD9V+8dnIkfDTn8KoUX5XEk67\ndkG/fjBzJgwb5nc14gqv2y+SR9R+qZ+2bW0Vx8mT4Ysv/K5GpHYKdYeo/VJ/48fbKP2GG/yuRKR2\nCnWHKNS9cc89sHQpPPqo35WI1KRQd4jmqXujWTN46ilbQmDNGr+rETmaQt0h6ql7p18/W6K3pAT2\n7vW7GpFqCnWHqP3ircmTYdAg9dclWBTqDlH7xVtVS/QuXWpLCYgEQaq1XySPaKTuvWbN4OmnIRqF\n3r2huNjvisR1Gqk7RD317OjbFx55xNbVef99v6sR1+mMUkdUVEBBgd1GdBmTrLjrLvjzn+GVV+DE\nE/2uRvJFpmeUKtQdceAAtGypdcGzqbISrrgCdu+GWbOggf4OFg9omQCplVov2ReJ2MWqd+zQwl/i\nH4W6I3SQNDdOOAFmz7aR+j33+F2NuEizXxyh6Yy50749PPccnHUWtGkDF1/sd0XiEoW6IzRSz62i\nIpg/35Y7btMGxo71uyJxhdovjlBPPfe++lX429/sikmvvup3NeIKhbojNFL3x5Ah8Nhj8J3vwBtv\n+F2NuECh7gj11P1z7rnw0ENw/vnw2mt+VyP5TqHuCLVf/DVunK2/Pn48LFnidzWSzxTqjlD7xX9j\nx9oZp9/5Drz4ot/VSL5SqDtCoR4M55xjF64uKYF58/yuRvKRQt0R6qkHx8iRMGcOXH45/OEPflcj\n+Ubz1B2hnnqwFBfDSy9ZS2bLFrj1Vi20Jt5Id6Q+BlgHrAem1vL6xcBK4J/AEqC/J9WJZ9R+CZ5e\nvWz++rPP2kJghw75XZHkg3RCvQC4Fwv2vsAkoE/SPmXAMCzM/w/4vYc1igfUfgmmjh1h8WLYvt36\n7Tt2+F2RhF06oT4Y2ABsBg4BM4EJSfssBfbE778OdPWoPvGI2i/B1awZPPOMnaj09a/Dm2/6XZGE\nWTqh3gXYkvB4a/y5Y7kC0HH9gFH7JdgKCuD22+1CG2PGwJ/+5HdFElbpHCjN5MoWI4DLgW/V9mJp\naemX96PRKNFoNIO3lvpQqIfDhRdCnz7wb/9mZ5/edRc0aeJ3VZJLsViMWCxW569P53h7MVCK9dQB\npgEVwJ1J+/UHZsf321DL++jKRz6qml2R8HtVAmz3brj6avjXv2DGDDj9dL8rEr9k48pHy4GeQBHQ\nCJgIzEna5xQs0H9A7YEuPlNPPVxatbIw/+//hhEj4L777HJ5IqmkE+qHgeuBBcAa4ElgLTAlvgHc\nArQG7gdWAMs8r1TqRe2X8IlE4Ic/tLViHn7Y1o3Zts3vqiTo0p2n/g/gNKAH8Mv4cw/GN4ArgbbA\nwPg22MMaxQMK9fCqms8+aBAMGGArPmrULseiZQIcUV6ueeph1qiRHQ9ZtAgeeADOPhvKyvyuSoJI\noe4IjdTzQ//+Nivm3HPhG9+A226D/fv9rkqCRKHuCIV6/igshB//2E5SWrmy+rJ5askIKNSdoWUC\n8k9RETz9NPz+93DTTTZ6X7nS76rEbwp1R2hKY/4aPdrCfNw4C/aLL4aNG/2uSvyiUHeE2i/5rWFD\nuOEGWL8eeveGM8+E667TFEgXKdQdoVB3Q/PmcPPNsG6dLS/Qrx9MmaKZMi5RqDtCPXW3tGsHv/41\nvPMOtG8PgwfDJZfAqlV+VybZplB3hHrqbmrfHn7+c+ux9+1rK0COHGlL/R454nd1kg0KdUeo/eK2\nli1h2jTYtAmuvNKW+e3Vy0bzujBHflGoO0LtFwH7f+D734fXX4fHH4fVq6FnTygpgQULNHrPB7m8\n1K2W3vVRly6wbJndiiTas8dWhHzoIbus3qRJNi2yXz9dDDsIMl16V6HuiHbtbEZEu3Z+VyJBtmoV\nPPGEbc2b26j+wgutVSP+UKhLrZo3hw8+sFuRVCoqbGXIGTPgr3+F1q3hggtsGzBAI/hcUqhLrRo1\ngs8/18FSyVxFhbXuZs+27cABGDvWttGjoUULvyvMbwp1qaGyEho0sA+nRlhSH5WVdtbqP/4B8+bZ\naH7gQJsmOWqUncmqA/LeUqhLDQcP2mjq4EG/K5F8s3cvvPIKvPCCrfX+7rtQXAxDh8JZZ9lJTyee\n6HeV4aZQlxo++wy6drVbkWz65BO7/N4rr9i2ciX06WMj+MGDbevVy/5ylPQo1KWGnTttkaedO/2u\nRFyzf7+t+/7GGzY3ftky2LXLDrYOHFi99e6tts2xKNSlhm3bbISkFfskCHbuhBUr4O237XbFCti8\nGbp3h9NPt61vXwv6Hj0U9gp1qaGszGYpaKU+CaoDB+w8itWrba78unW2vfcenHKKtWx69Kjeune3\n512YzZVpqBdmrxQJCi0RIEHXuLG1ZAYMOPr58nJbjGz9etiwAdasgTlz7LmtW23Bsm7d7CpQJ59s\nQX/yybZ16QJt2rg34yudUB8D/BYoAB4C7qxln7uBscA+4IfACo/qEw9ohUYJq0aN7EBrnz41Xzt8\n2FqKmzfbtmULvPWWrUD5/vt2st3+/dC5s22dOsFJJ9nWqRN06GBb+/Z2my+zdFKFegFwLzAa2Aa8\nAcwB1ibscx7QA+gJnAncDxR7XmmOxGIxotGo32WklEmdfq7QGIafZxhqBNWZrLAQvvIV24YPr32f\nffss3Ldtg48+qt5eegnWro1RURFl+/bqlSrbtrWlNNq1s/utW9tov00bu9+qVfXWsmX11rBh1v+5\naUsV6oOBDcDm+OOZwASODvXxwKPx+68DrYCOwMeeVZlD+fjBUagfXxhqBNVZF02bVvfhk5WWxigt\njQJ2UtW+fTYzZ+fO6ttPP7Vpmh98YP3+3buP3j77zBZEa9jQzgVp0cKW4kjcmjWzvwKqbk880eqq\num3a1K5SVXVbtTVubLeZShXqXYAtCY+3YqPxVPt0JaShno/Ky9VTFzmeSKQ6cE85JbOvray0Ns+e\nPbYUR+L2xRd2gtYXX9i2Zw98+KE9V7Xt32/bvn22HThgW9XzmUoV6ulOV0k+FFHr140bl+a7+eid\nd2xebdBlUuf27VqdUSRbIpHqEXenTtl5/4z2T/F6MVCKHSwFmAZUcPTB0geAGNaaAVgHDKfmSH0D\n0D2z8kREnLcRO27picL4GxYBjYC3geTj0OcB8+L3i4HXvPrmIiLivbHAO9hIe1r8uSnxrcq98ddX\nAmfktDoREREREambMViffT0w1edaEj2M9f1XJTzXBngeeBd4Dpue6beTgcXAv4DVwH/Enw9arY2x\nKa1vA2uAX8afD1qdVQqwk+Tmxh8Hsc7NwD+xOpfFnwtana2AWdg05zXY7Lig1Xga9jOs2vZgn6Og\n1QnWDfkXlktPACcQsDoLsLZMEdCQ2nvyfjkLGMjRof4r4Cfx+1OBO3JdVC1OAqpOnm6GtcL6EMxa\nm8ZvC7FjK0MJZp0APwIex06mg2DWuQn7QCcKWp2PApfH7xcCLQlejYkaAB9ig6Wg1VkElGFBDvAk\ncBkBq3MIMD/h8Y3xLSiKODrU12EnToGF6bpcF5SGv2Fn+Aa51qbY2cdfJZh1dgUWAiOoHqkHsc5N\nQNuk54JUZ0sshJIFqcZk5wAvx+8Hrc422KCtNfYLci5wNgGr80JgesLjHwD3+FRLbYo4OtQ/Tbgf\nSXocBEXAe0BzgllrA+yvsc+x0QUEs86nsL/ShlMd6kGsswxrFywH/j3+XJDqHIC13B4B3sI+6ycS\nrBqTPQxcG78fxDqvwj4/24HH4s9lVGe2rz8S5rV2KwlW/c2Ap4H/xP6jJwpKrRXYB70rMAwbCScK\nQp3fxj4wKzj2eRpBqBPgW9gvn7HAdVjLMJHfdRZis93ui9/upeZf4n7XmKgRMA77pZ4sCHV2B/4L\nG7x1xj7zP0jaJ2Wd2Q71bVjvqsrJ2DICQfUx9ucNQCfswx8EDbFAfwxrv0BwawU7EPUsMIjg1flN\nbL2iTcAMYCT2cw1anWC9X4AdwF+xtZiCVOfW+PZG/PEsLNw/Ijg1JhoLvIn9PCFYP0uArwOvAruA\nw8BsrIWd0c8z26G+HFu9sQj7LTmR6gNTQTQHOzBB/PZvx9k3VyLAH7CZBb9NeD5otbaj+qh8E6wX\nuILg1XkTNrjoBlwEvABcQvDqbIq12cBaGudgrcIg1fkRtu5Tr/jj0djMjbkEp8ZEk7Bf5FWC9LME\n65UXY5+fCPbzXEMAf561nbwUBDOAD4By7H/MydiBioUEZOpQ3FCsrfE21VOyxhC8WvthfdW3sWl4\nP44/H7Q6Ew2nepARtDq7YT/Lt7GprFWfnaDV+TVspL4SG1m2JHg1gv1i3En1L0oIZp0/oXpK46PY\nX+lBrFNEREREREREREREREREREREREREREREREREwub/AU1lgzCZ356cAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = relativistic_ir(dt=0.125)\n", + "plt.plot(r_ir)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/Window Functions/window_functions.html b/notebooks/Window Functions/window_functions.html new file mode 100644 index 000000000..679f691ca --- /dev/null +++ b/notebooks/Window Functions/window_functions.html @@ -0,0 +1,730 @@ + + + + + + + + Window functions — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Window functions

+

Stingray now has a bunch of window functions that can be used for various applications in signal processing.

+

Windows available include: 1. Uniform or Rectangular Window 2. Parzen window 3. Hamming window 4. Hanning Window 5. Triangular window 6. Welch Window 7. Blackmann Window 8. Flat-top Window

+

All windows are available in stingray.utils package and called be used by calling create_window function. Below are some of the examples demonstrating different window functions.

+
+
[64]:
+
+
+
from stingray.utils import create_window
+
+from scipy.fftpack import fft, fftshift, fftfreq
+import numpy as np
+
+import matplotlib.pyplot as plt
+%matplotlib inline
+
+
+
+

create_window function in stingray.utils takes two parameters.

+
    +
  1. N : Number of data points in the window

  2. +
  3. window_type : Type of window to create. Default is uniform.

  4. +
+
+
+

Uniform Window

+
+
[65]:
+
+
+
N = 100
+window = create_window(N)
+
+
+
+
+
[66]:
+
+
+
plt.plot(window)
+plt.title("Uniform window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[66]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f0ccc50>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_7_1.png +
+
+
+
[67]:
+
+
+
nfft = 2048
+A = fft(uniform_window,nfft ) / (len(uniform_window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Uniform window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
+
+
+
+C:\Users\Haroon Rashid\Anaconda3\lib\site-packages\ipykernel\__main__.py:4: RuntimeWarning: divide by zero encountered in log10
+
+
+
+
[67]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f1b6e10>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_8_2.png +
+
+
+
+

Parzen Window

+
+
[68]:
+
+
+
N = 100
+window = create_window(N, window_type='parzen')
+
+
+
+
+
[69]:
+
+
+
plt.plot(window)
+plt.title("Parzen window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[69]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f1a8160>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_11_1.png +
+
+
+
[70]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Parzen window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[70]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f24b978>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_12_1.png +
+
+
+
+

Hamming Window

+
+
[71]:
+
+
+
N = 50
+window = create_window(N, window_type='hamming')
+
+
+
+
+
[72]:
+
+
+
plt.plot(window)
+plt.title("Hamming window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[72]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f360ba8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_15_1.png +
+
+
+
[73]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Hamming window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[73]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f2f6fd0>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_16_1.png +
+
+
+
+

Hanning Window

+
+
[74]:
+
+
+
N = 50
+window = create_window(N, window_type='hanning')
+
+
+
+
+
[75]:
+
+
+
plt.plot(window)
+plt.title("Hanning window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[75]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f34f470>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_19_1.png +
+
+
+
[76]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Hanning window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
+
+
+
+C:\Users\Haroon Rashid\Anaconda3\lib\site-packages\ipykernel\__main__.py:4: RuntimeWarning: divide by zero encountered in log10
+
+
+
+
[76]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f4715f8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_20_2.png +
+
+
+
+

Traingular Window

+
+
[77]:
+
+
+
N = 50
+window = create_window(N, window_type='triangular')
+
+
+
+
+
[78]:
+
+
+
plt.plot(window)
+plt.title("Traingualr window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[78]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f4397b8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_23_1.png +
+
+
+
[79]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Triangular window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[79]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f534470>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_24_1.png +
+
+
+
+

Welch Window

+
+
[80]:
+
+
+
N = 50
+window = create_window(N, window_type='welch')
+
+
+
+
+
[81]:
+
+
+
plt.plot(window)
+plt.title("Welch window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[81]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f629eb8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_27_1.png +
+
+
+
[82]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Welch window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
+
+
+
+C:\Users\Haroon Rashid\Anaconda3\lib\site-packages\ipykernel\__main__.py:4: RuntimeWarning: divide by zero encountered in log10
+
+
+
+
[82]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f738080>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_28_2.png +
+
+
+
+

Blackmann’s Window

+
+
[83]:
+
+
+
N = 50
+window = create_window(N, window_type='blackmann')
+
+
+
+
+
[84]:
+
+
+
plt.plot(window)
+plt.title("Blackmann window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[84]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f6b92e8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_31_1.png +
+
+
+
[85]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Blackmann window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[85]:
+
+
+
+
+<matplotlib.text.Text at 0x21d9083b2e8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_32_1.png +
+
+
+
+

Flat Top Window

+
+
[86]:
+
+
+
N = 50
+window = create_window(N, window_type='flat-top')
+
+
+
+
+
[87]:
+
+
+
plt.plot(window)
+plt.title("Flat-top window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[87]:
+
+
+
+
+<matplotlib.text.Text at 0x21d9081e470>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_35_1.png +
+
+
+
[88]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Flat-top window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[88]:
+
+
+
+
+<matplotlib.text.Text at 0x21d909314a8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_36_1.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Window Functions/window_functions.ipynb b/notebooks/Window Functions/window_functions.ipynb new file mode 100644 index 000000000..a32f5b53b --- /dev/null +++ b/notebooks/Window Functions/window_functions.ipynb @@ -0,0 +1,848 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Stingray` now has a bunch of window functions that can be used for various applications in signal processing.\n", + "\n", + "Windows available include:\n", + "1. Uniform or Rectangular Window\n", + "2. Parzen window\n", + "3. Hamming window\n", + "4. Hanning Window\n", + "5. Triangular window\n", + "6. Welch Window\n", + "7. Blackmann Window\n", + "8. Flat-top Window" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All windows are available in `stingray.utils` package and called be used by calling `create_window` function. Below are some of the examples demonstrating different window functions. " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.utils import create_window\n", + "\n", + "from scipy.fftpack import fft, fftshift, fftfreq\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`create_window` function in `stingray.utils` takes two parameters. \n", + "\n", + "1. `N` : Number of data points in the window\n", + "2. `window_type` : Type of window to create. Default is `uniform`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Uniform Window " + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGN5JREFUeJzt3X2UXXV97/H3xwREtCUouV5MgCBGNFirOEUUURDbi4py\nl0st+Ix6ufYigtV60dqLdumydalVqsJCRfCKoKWooPh0i4BYRYYHkfBQIyhJQAlaAaEFwe/9Y++R\n45iZ+SXkZCZz3q+1Zs35/fY+e39/k8n+zH44e6eqkCRpJg+Y7QIkSVsGA0OS1MTAkCQ1MTAkSU0M\nDElSEwNDktTEwNBISHJCkr8ZaP9Fkp8l+VWSh81mbVNJsm+Sa+/H+yvJozZlTRpt8XMY2hIkKWB5\nVa0a6HsH8KiqetkGLmsr4DZg76r6/iYtdA5Z389Muj/cw9AoejiwDbByQ9+Yjv9vNJL8xde8kGS/\nJGuSvCnJzUluSnLYwPSTk7wryaOBicM8v0xybj/9qUkuTnJr//2pA+89L8m7k3wbuBN4ZN/3riT/\n2h/WOjvJw5KcmuS2fhnLpqj1lCRv6l8v6Q8dHdG3d0vyiyQPmBjTwPt+nOTNSa7o6/xskm0Gpv9V\nP+4bk7x60jq3S/KpJOuS/CTJ2yeCr28/qX/90r6ePfr2a5J8YWP/XTS/GBiaT/4rsB2wBHgN8JEk\n2w/OUFX/BuzRNxdV1TOTPBT4MnAc8DDgA8CXJ53beDlwOPAHwE/6vkP6/iXAbsB3gE8CDwWuBo6d\nos7zgf36188ArgOePtD+VlX9Zor3vhg4ENgVeDzwKoAkBwJvBv4UWA48a9L7/pHuZ/PIfh2vACYC\ndaZ6zp+iFo0YA0Pzya+Bv62qX1fVOcCvgN0b3vdc4IdV9X+r6p6qOg24BnjewDwnV9XKfvqv+75P\nVtWPqupW4CvAj6rq/1XVPcA/AU+cYn3nA0/r/8J/OvBeYJ9+2kwb6OOq6saq+gVwNvCEvv/FfT1X\nVtUdwDsm3pBkAV24vbWqbq+qHwPvpwu7iXqe0b/eF3jPQNvA0G8ZGNpS3AtsNalvK7qQmPDzfmM9\n4U7gIQ3LfgT37TVM+AndnsOE1et5388GXv/HetrrXXdV/Qi4g25jvy/wJeDGJLsz8wb6pwOvB8f3\niEk1Do5nB7qf1U8mTZ8Y3/nAvkl2BBYAnwP26Q+pbQdcPk09GiEGhrYUNwDLJvXtyu9v6DfGjcAu\nk/p2BtYOtDf15YTnAy8Etq6qtX37lcD2bNwG+iZgp4H2zgOvb6EL1l0mTV8L0F9FdSdwJHBBVd1G\nF0yHAxdOc3hMI8bA0Jbis8DbkyztTwg/i+6Q0RmbYNnnAI9O8pIkC5P8ObCC7i//YTkfeD1wQd8+\nr29fWFX3bsTyPge8KsmKJNsycP6kX97ngHcn+YMkuwB/CXx6PfVM7N2cN6ktGRjaYvwt8K/AhcC/\n0x33f2lVXXl/F1xVPwcOAt4E/Bx4C3BQVd1yf5c9jfPpTqBPBMaFwLYD7Q1SVV8BPgicC6zqvw86\nku4w2HX9uj4DnDRNPZPbkh/ckyS1cQ9DktTEwJAkNTEwJElNDAxJUpOFs13AprTDDjvUsmXLZrsM\nSdpiXHLJJbdU1eKWeedVYCxbtozx8fHZLkOSthhJmj/86iEpSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVKToQVGkpOS3JzkyimmJ8lxSVYl\nuSLJnpOmL0hyWZIvDatGSVK7Ye5hnAwcOM30ZwPL+6/DgeMnTT8KuHoolUmSNtjQAqOqLgB+Mc0s\nBwOfqs53gUVJdgRIshR4LvDxYdUnSdows3kOYwmweqC9pu8D+CDwFuA3My0kyeFJxpOMr1u3btNX\nKUkC5uBJ7yQHATdX1SUt81fViVU1VlVjixcvHnJ1kjS6ZjMw1gI7DbSX9n37AM9P8mPgdOCZST69\n+cuTJA2azcA4C3hFf7XU3sCtVXVTVb21qpZW1TLgEODcqnrZLNYpSQIWDmvBSU4D9gN2SLIGOBbY\nCqCqTgDOAZ4DrALuBA4bVi2SpPtvaIFRVYfOML2AI2aY5zzgvE1XlSRpY825k96SpLnJwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUZWmAkOSnJzUmunGJ6khyXZFWSK5Ls2ffvlOSbSa5KsjLJUcOqUZLU\nbph7GCcDB04z/dnA8v7rcOD4vv8e4E1VtQLYGzgiyYoh1ilJajC0wKiqC4BfTDPLwcCnqvNdYFGS\nHavqpqq6tF/G7cDVwJJh1SlJajOb5zCWAKsH2muYFAxJlgFPBC7abFVJktZrzp70TvIQ4J+Bo6vq\ntmnmOzzJeJLxdevWbb4CJWnEzGZgrAV2Gmgv7ftIshVdWJxaVWdOt5CqOrGqxqpqbPHixUMrVpJG\n3WwGxlnAK/qrpfYGbq2qm5IE+ARwdVV9YBbrkyQNWDisBSc5DdgP2CHJGuBYYCuAqjoBOAd4DrAK\nuBM4rH/rPsDLgR8kubzve1tVnTOsWiVJMxtaYFTVoTNML+CI9fRfCGRYdUmSNs6cPektSZpbDAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNZkxMJJsm+Rv\nknysby9PctDwS5MkzSUtexifBO4CntK31wLvGlpFkqQ5qSUwdquq9wK/BqiqO/H245I0cloC4+4k\nDwIKIMludHsckqQR0vIApWOBrwI7JTmV7ol4rxpmUZKkuWfGwKiqbyS5FNib7lDUUVV1y9ArkyTN\nKVMGRpI9J3Xd1H/fOcnOVXXp8MqSJM010+1hvL//vg0wBnyfbg/j8cA49101JUkaAVOe9K6q/atq\nf7o9iz2raqyqngQ8ke7SWknSCGm5Smr3qvrBRKOqrgQeO7ySJElzUctVUlck+Tjw6b79UuCK4ZUk\nSZqLWgLjMOAvgKP69gXA8UOrSJI0J7VcVvufwD/0X5KkETVjYCS5nv5T3oOq6pFDqUiSNCe1HJIa\nG3i9DfAi4KHDKUeSNFfNeJVUVf184GttVX0QeO5mqE2SNIe0HJIa/MT3A+j2OFr2TCRJ80jLhv/9\nA6/vAa4HXjycciRJc1VLYLymqq4b7Eiy65DqkSTNUS2f9D6jse93JDkpyc1JrpxiepIcl2RVkisG\nD30lOTDJtf20YxpqlCQN2XR3q30MsAewXZIXDEz6Q7qrpWZyMvBh4FNTTH82sLz/ejLdhwGfnGQB\n8BHgT4E1wMVJzqqqqxrWKUkakukOSe0OHAQsAp430H878D9mWnBVXZBk2TSzHAx8qqoK+G6SRUl2\nBJYBqyYOgyU5vZ93aIHxzrNXctWNtw1r8ZI0VCse8Ycc+7w9hr6eKQOjqr4IfDHJU6rqO0NY9xJg\n9UB7Td+3vv4nT7WQJIcDhwPsvPPOm75KSRIw/SGpt1TVe4GXJDl08vSqesNQK2tUVScCJwKMjY39\n3ifSW2yOZJakLd10h6Su7r+PD2nda4GdBtpL+76tpuiXJM2i6Q5Jnd1/P2VI6z4LeH1/juLJwK1V\ndVOSdcDy/tLdtcAhwEuGVIMkqdF0h6TOZj03HZxQVc+fbsFJTgP2A3ZIsgY4lm7vgao6ATgHeA6w\nCriT7jbqVNU9SV4PfA1YAJxUVSvbhyRJGobpDkm97/4suKp+77zHpOkFHDHFtHPoAkWSNEdMd0jq\n/InXSbYGHkO3x3FtVd29GWqTJM0hLTcffC5wAvAjIMCuSf5nVX1l2MVJkuaO1psP7l9VqwCS7AZ8\nGTAwJGmEtNxL6vaJsOhdR/dpb0nSCGnZwxhPcg7wObpzGC+iu7/TCwCq6swh1idJmiNaAmMb4GfA\nM/r2OuBBdPeXKsDAkKQRMGNgVNVhm6MQSdLc1nKV1K7AkXR3kf3t/DN9cE+SNL+0HJL6AvAJ4Gzg\nN8MtR5I0V7UExn9W1XFDr0SSNKe1BMaHkhwLfB24a6Kzqi4dWlWSpDmnJTD+CHg58EzuOyRVfVuS\nNCJaAuNFwCO9f5QkjbaWT3pfSfdcb0nSCGvZw1gEXJPkYu47h1FVdfDwypIkzTUtgXHswOsA+9I9\nBU+SNEJmPCTVPxfjNuAg4GS6k90nDLcsSdJcM90jWh8NHNp/3QJ8FkhV7b+ZapMkzSHTHZK6BvgW\ncNDAszDeuFmqkiTNOdMdknoBcBPwzSQfS3IA3TkMSdIImjIwquoLVXUI3bO8vwkcDfyXJMcn+bPN\nVaAkaW5oOel9R1V9pqqeBywFLgP+99ArkyTNKS0f3Putqvr3qjqxqg4YVkGSpLlpgwJDkjS6DAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1GSogZHkwCTXJlmV5Jj1TN8+yeeTXJHke0keNzDtjUlW\nJrkyyWlJthlmrZKk6Q0tMJIsAD4CPBtYARyaZMWk2d4GXF5VjwdeAXyof+8S4A3AWFU9DliAz+CQ\npFk1zD2MvYBVVXVd/zzw04HJT+lbAZwLUFXXAMuSPLyfthB4UJKFwLbAjUOsVZI0g2EGxhJg9UB7\nTd836Pt0d8UlyV7ALsDSqloLvA+4ge6OubdW1deHWKskaQazfdL774BFSS4HjqS7seG9Sban2xvZ\nFXgE8OAkL1vfApIcnmQ8yfi6des2V92SNHKGGRhrgZ0G2kv7vt+qqtuq6rCqegLdOYzFwHXAs4Dr\nq2pdVf0aOBN46vpW0t8McayqxhYvXjyMcUiSGG5gXAwsT7Jrkq3pTlqfNThDkkX9NIDXAhdU1W10\nh6L2TrJtkgAHAFcPsVZJ0gyme0Tr/VJV9yR5PfA1uqucTqqqlUle108/AXgscEqSAlYCr+mnXZTk\nDOBS4B66Q1UnDqtWSdLMUlWzXcMmMzY2VuPj47NdhiRtMZJcUlVjLfPO9klvSdIWwsCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU2GGhhJDkxybZJVSY5Zz/Ttk3w+yRVJvpfkcQPTFiU5I8k1Sa5O\n8pRh1ipJmt7QAiPJAuAjwLOBFcChSVZMmu1twOVV9XjgFcCHBqZ9CPhqVT0G+GPg6mHVKkma2TD3\nMPYCVlXVdVV1N3A6cPCkeVYA5wJU1TXAsiQPT7Id8HTgE/20u6vql0OsVZI0g2EGxhJg9UB7Td83\n6PvACwCS7AXsAiwFdgXWAZ9MclmSjyd58PpWkuTwJONJxtetW7epxyBJ6s32Se+/AxYluRw4ErgM\nuBdYCOwJHF9VTwTuAH7vHAhAVZ1YVWNVNbZ48eLNVLYkjZ6FQ1z2WmCngfbSvu+3quo24DCAJAGu\nB64DtgXWVNVF/axnMEVgSJI2j2HuYVwMLE+ya5KtgUOAswZn6K+E2rpvvha4oKpuq6qfAquT7N5P\nOwC4aoi1SpJmMLQ9jKq6J8nrga8BC4CTqmplktf1008AHguckqSAlcBrBhZxJHBqHyjX0e+JSJJm\nR6pqtmvYZMbGxmp8fHy2y5CkLUaSS6pqrGXe2T7pLUnaQhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWqSqprtGjaZJOuAn2zk23cAbtmE5WwJRnHMMJrj\nHsUxw2iOe0PHvEtVLW6ZcV4Fxv2RZLyqxma7js1pFMcMoznuURwzjOa4hzlmD0lJkpoYGJKkJgbG\nfU6c7QJmwSiOGUZz3KM4ZhjNcQ9tzJ7DkCQ1cQ9DktTEwJAkNRn5wEhyYJJrk6xKcsxs1zMsSXZK\n8s0kVyVZmeSovv+hSb6R5If99+1nu9ZNLcmCJJcl+VLfHoUxL0pyRpJrklyd5CnzfdxJ3tj/bl+Z\n5LQk28zHMSc5KcnNSa4c6JtynEne2m/frk3y3+7Pukc6MJIsAD4CPBtYARyaZMXsVjU09wBvqqoV\nwN7AEf1YjwH+paqWA//St+ebo4CrB9qjMOYPAV+tqscAf0w3/nk77iRLgDcAY1X1OGABcAjzc8wn\nAwdO6lvvOPv/44cAe/Tv+Wi/3dsoIx0YwF7Aqqq6rqruBk4HDp7lmoaiqm6qqkv717fTbUCW0I33\nlH62U4D/PjsVDkeSpcBzgY8PdM/3MW8HPB34BEBV3V1Vv2SejxtYCDwoyUJgW+BG5uGYq+oC4BeT\nuqca58HA6VV1V1VdD6yi2+5tlFEPjCXA6oH2mr5vXkuyDHgicBHw8Kq6qZ/0U+Dhs1TWsHwQeAvw\nm4G++T7mXYF1wCf7Q3EfT/Jg5vG4q2ot8D7gBuAm4Naq+jrzeMyTTDXOTbqNG/XAGDlJHgL8M3B0\nVd02OK26a6znzXXWSQ4Cbq6qS6aaZ76NubcQ2BM4vqqeCNzBpEMx823c/TH7g+nC8hHAg5O8bHCe\n+TbmqQxznKMeGGuBnQbaS/u+eSnJVnRhcWpVndl3/yzJjv30HYGbZ6u+IdgHeH6SH9Mdbnxmkk8z\nv8cM3V+Ra6rqor59Bl2AzOdxPwu4vqrWVdWvgTOBpzK/xzxoqnFu0m3cqAfGxcDyJLsm2Zru5NBZ\ns1zTUCQJ3THtq6vqAwOTzgJe2b9+JfDFzV3bsFTVW6tqaVUto/u3PbeqXsY8HjNAVf0UWJ1k977r\nAOAq5ve4bwD2TrJt/7t+AN15uvk85kFTjfMs4JAkD0yyK7Ac+N7GrmTkP+md5Dl0x7kXACdV1btn\nuaShSPI04FvAD7jveP7b6M5jfA7Yme7W8C+uqskn1LZ4SfYD3lxVByV5GPN8zEmeQHeif2vgOuAw\nuj8Q5+24k7wT+HO6KwIvA14LPIR5NuYkpwH70d3G/GfAscAXmGKcSf4aeDXdz+XoqvrKRq971AND\nktRm1A9JSZIaGRiSpCYGhiSpiYEhSWpiYEiSmhgY2iIk+ev+TqRXJLk8yZOHvL7zkoxtwPwnJ1mb\n5IF9e4f+A4Obopb9Ju60u6kkOTrJK2aY54+SnLwp16stm4GhOS/JU4CDgD2r6vF0n+pdPf27ZsW9\ndNe7zymT707a35zv1cBnpntfVf0AWJpk5yGWpy2IgaEtwY7ALVV1F0BV3VJVNwIk+T9JLu6fgXBi\n/ynfiT2Ef0gy3j8P4k+SnNk/L+Bd/TzL+udFnNrPc0aSbSevPMmfJflOkkuT/FN/P671+SDwxn6D\nPPj+39lDSPLhJK/qX/84yXv6vabxJHsm+VqSHyV53cBi/jDJl/tnGpyQ5AHT1dYv9++TXAq8aFKd\nzwQurap7Bn5Wf5/ke0n+Lcm+A/OeTfcpecnA0Bbh68BO/cbso0meMTDtw1X1J/0zEB5Etycy4e6q\nGgNOoLtVwhHA44BX9Z/2Btgd+GhVPRa4DfhfgytOsgPwduBZVbUnMA785RR13gBcCLx8A8d3Q1U9\nge6T+CcDL6R7Zsk7B+bZCziS7rktuwEvaKjt51W1Z1WdPml9+wCTb8i4sKr2Ao6m++TwhHFgXyQM\nDG0BqupXwJOAw+lu2/3Zib/Qgf2TXJTkB3R/Oe8x8NaJ+4L9AFjZPxPkLrpbZUzckG11VX27f/1p\n4GmTVr833Ub620kup7tPzy7TlPse4K/YsP9bg3VeVFW3V9U64K4ki/pp3+uf23IvcFpf50y1fXaK\n9e1I93McNHEzykuAZQP9N9Pd/VVi4cyzSLOv31CeB5zXh8Mrk5wOfJTuKWurk7wD2GbgbXf1338z\n8HqiPfG7P/neOJPbAb5RVYc21vnDfuP94oHue/jdANnmd9+10XXOVNsdU/T/xzQ13Mvvbhe26eeX\n3MPQ3Jdk9yTLB7qeQHeDtYmN3i39sfsXbsTid+5PqgO8hO6Q0qDvAvskeVRfy4OTPHqGZb4bePNA\n+yfAiv6OoYvo7qS6ofbq76r8ALob7F24kbVBdxfXRzWu99HAlTPOpZFgYGhL8BDglCRXJbmC7jDM\nO/rHjn6MboP2Nbrb1W+oa+meb341sD1w/ODE/tDQq4DT+nV/B3jMdAusqpXApQPt1XR3Er2y/37Z\nRtR5MfBhuo399cDnN6a23lfoHuHaYn/gyxtcreYl71arkZXuUbVf6k+Yj5QknwfeUlU/nGaeBwLn\nA0+buKJKo809DGk0HUN38ns6OwPHGBaa4B6GJKmJexiSpCYGhiSpiYEhSWpiYEiSmhgYkqQm/x/6\n0mpI7TkJ/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Uniform window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcZUddNv587770Pt09PftkJwlbQkCRRZBFkCUIrwKC\nL1EU9eUVFF71RVFxiSg/QRZB2SWgifEVSNghQDbINiEJycwks+89Pb3dfb+3fn9U1Tl16pzqe+7M\ndPftmXo+n/70vXXrnFNn+z71XYsYY7CwsLCwsDAhstoDsLCwsLDob1iisLCwsLBYEpYoLCwsLCyW\nhCUKCwsLC4slYYnCwsLCwmJJWKKwsLCwsFgSligsLFYQRHQZET1MREUiekfIbRgRXbzcYwsDItpJ\nRC8Qn4mIPk9Ei0R0/yoPzQgi+lMi+sxpbvsCIjp2tse01hBb7QGcyyCiQwDWA2grzZcyxk6szogs\n+gB/DOCHjLGnB/1IRLcD+BJj7LQE21IQAv5LjLHNp3tMxtiVytfnAngJgM2MsfJZHOpZBWPs71Z7\nDGsdVqNYfryKMTag/PlIgojOK8I+385XwzYAO1d7EGcJ2wAcOh2SOM+fgTUHSxSrACLaLswJbyWi\nIwB+INp/loh+TEQ5InpEqvjitwuI6A5hsvgeEf0zEX1J/OZTj4noEBG9WHyOENH/JaL9RDRPRDcT\n0Zg2lrcQ0REimiOiP1P2ExWq+35x7AeJaAsRfZyIPqgd81Yi+kPDOTMiejsR7QWwV7Q9SZzLAhE9\nQUS/qvT/JSLaJY55nIj+j3quYkxz4jzfpGw3TEQ3ENEsER0movcSUUT8dh0R3U1E/yjMJQeJ6OXK\nttcR0QFxzIPafn+TiHaL7b5DRNuWuL+vFiaaHBHdTkSXi/YfAHghgH8mohIRXaptdz2A5ym//7Py\n84uJaK/Y58eJiE5nbN1ARO8Tz8cN4jrsJKJrlN8PEdGLieitAD4D4NlirH8lfv9tIton7umtRLRR\n2TboGWBE9L/EuRWJ6G+I6CLxHhTEWBKGsR4momeIz28S+7pSfH8rEX1VOSf5rnR73tNE9G/iWu4C\n8EztmJeLe5oT1+bVov0C0SaftU8T0Slluy8S0R+c7n1ZdTDG7N8y/QE4BODFAe3bATAANwDIAkgD\n2ARgHsAvgRP4S8T3CbHNPQA+BCAJ4PkAiuDmAgB4AYBjpmMDeCeAewFsFtt/EsCN2lg+LcbxNAB1\nAJeL3/8IwKMALgNA4vd1AJ4F4ASAiOg3DqACYL3hWjAA3wMwJo6TBXAUwG+Am0CvAjAH4ArRfxrA\n88TnUQBXK+faUq7FzwMoA7hM/H4DgFsADIpz2wPgreK36wA0Afw2gCiA3xPnQGI8BWU/GwBcKT5f\nC2AfgMvFWN8L4MeG87xUjOclAOLgpqZ9ABLi99sB/NYSz4zvd3Htvg5gBMBWALMAXnYaY/M9J/ox\nAbwPQA38OYwCeD+Aew3P1XUA7lZ++wVxD68W9+ZjAO40PQNK2y0AhgBcCf7sfR/AhQCGAewC8BbD\n+dwA4N3i86cA7Afwe8pvf6ick3xXtmPp5/3vAdwlxrgFwGPymon7uQ/AnwJIiPMtKs/MEQDPEJ+f\nAHBA2e8RAFettkw6bVm22gM4l//ES1UCkBN/XxXt8mG9UOn7JwC+qG3/HQBvEcKhBSCr/PYfCE8U\nuwG8SPltA7jAjClj2az8fj+AN4jPTwC41nB+uwG8RHz+3wC+ucS1YAB+Qfn+egB3aX0+CeAvxecj\nAH4HwJDW5wUB1+JmAH8OLtgaEGQjfvsdALeLz9cB2Kf8lhHjmgInihyA10EIMaXftyDIRnyPgJPi\ntoDz/HMAN2t9jwN4gfh+O06PKJ6rne//PY2x+Z4T/ZjgQvU25bcrAFQNz9V18BLFZwF8QPk+IJ6z\n7UHPgNL2HOX7gwD+RPn+QQAfNlyrtwK4VXkWfwvATeL7YbiTi/fBTxSm5/0ABAmL72+DSxTPA3AS\nYnIk2m4E8D7x+YsA3iWepycAfADA7wK4QDxbkaDzWAt/1vS0/HgNY2xE/L1G++2o8nkbgF8R6muO\niHLgzsINADYCWGReW/DhHsawDcBXlP3uBnewr1f6nFQ+V8BfcoDPqvYb9vsFAG8Wn98M/qIsBf18\nf0Y73zeBv2QAF9i/BOAwcZPbs5Vtg67FRnCtJg7vtTkMrq1JOOfJGKuIjwNif68Hf7GniegbRPQk\nZawfUca5AK6FqPuV2KgenzHWEecd1LcXmO5PL2NrgV8fHXFwgW46VorC+RT0cy+Ba8XqWI7qGwGY\nUT5XA74PIBh3AHgeEW0AnyTcDOA5RLQdXBt5eImxmq7nRm2M6rO0EcBRcU/V3+X53QFOxs8HcCc4\nAf+8+LtL225NwRLF6kIt3XsUXKMYUf6yjLG/BzfDjBJRVum/VflcBp8dA+B+BQAT2r5fru07xRg7\nHmKMRwFcZPjtSwCuJaKngZs+vtplX/r53qGNaYAx9nsAwBh7gDF2LYBJsd+blW2DrsUJcLNHE1x4\nqr+FOU8wxr7DGHsJODk/Dm6ekGP9HW2sacbYjwN2c0I9vvAlbAk7BnivURj0MrYjAMaJyBG8Ynzb\n0NvEwwT93LPgZkr13Hs9PyMYY/vAhfzvg5u4CuAE8DZwTed0BPM0+P2SUN+zEwC2SD+E8rs8vzvA\ntY4XiM93A3gOOFHccRpj6RtYougffAnAq4joF4k7kFPEHbebGWOHAewA8FdElCCi5wJ4lbLtHvBZ\n3yuIKA5up04qv/8rgOulk5OIJojo2pDj+gyAvyGiS4jjqUS0DgAYY8cAPACuSfw3Y6zaw/l+HcCl\nRPTrRBQXf88UzsKEcE4OM8aa4L4D/aWX1+J5AF4J4L8YY21wQrmeiAbF+b4L/NouCSJaT0TXCuFW\nBzcZymP+K4D3KI7SYSL6FcOubgbwCiJ6kbgX7xb7CxLcQZgBt8+HReixMcaOALgPwD8Q0QARJcF9\nUE1wH9aZ4kYAv0FETxf7/jsA9zHGDp2FfZtwB7jZUwri27XvveJm8Os5SkSbwUlI4j5wYvpj8by+\nAPw9vAkAGGN7wTWgN4NPggrg9/N1ZzCevoAlij4BY+wouGPyT8GdlUfBX2J5j34NwM+Amxb+EtxZ\nJ7fNA/hf4EL9OLiGoUZBfQTArQC+S0RFcKHwMyGH9iHwl+e74AL7s+BOQIkvAHgKupudPGCMFQG8\nFMAbwGdqJwH8A1yC+3UAh4ioAG4OepOy+UkAi2K7fwfwu4yxx8Vvvw9+/gfAZ3T/AeBzIYYUASeV\nE+DX+OfBnd1gjH1FjO0mMZ7HALw8aCeMsSfABcXHwDWcV4GHSDdCjAHg9+p/iKibj3br3MvYBF4P\nrqXtA39WXgTgFYyxWsjxLTWW28B9NP8NPjO/CPz+LifuAA9cuNPwvVf8Fbh2dRD8mXeea3EPXwV+\nfecAfALA/1SePXn8efE+y+8E4CenOZ6+AAknjMUaAxG9D8DFjLE3d+u7zON4PviMfRtbgYeJDElj\nFhYWywerUVicNoRp5Z0APrMSJGFhYbE6sERhcVognkSWA3f8fniVh2NhYbGMsKYnCwsLC4slYTUK\nCwsLC4slcU4U5hofH2fbt29f7WFYWFhYrCk8+OCDc4yxiW79zgmi2L59O3bs2LHaw7CwsLBYUyCi\nUImW1vRkYWFhYbEkLFFYWFhYWCwJSxQWFhYWFkvCEoWFhYWFxZKwRGFhYWFhsST6liiI6GXEl8fc\nR0T/d7XHY2FhYXG+oi+JQqyn8HHwKo1XAHgjEV2xuqOysLCwOD/Rr3kUzwJfsvIAABDRTeAluHed\nzYM02x1c/43dWCg3sH1dpvsG5xKIVnsEK47z74zPy9sMOk/uNAPDyXwNv/ncC3Dp+sFlPVa/EsUm\neJcjPAZt/QQiehv4SlbYulVdhCo8irUW/u3Hh5R9ntZu1hxseS8Li3MH64dSuPQl5ydRdAVj7FMA\nPgUA11xzzWmJvrFsAt98x/Pwyo/dhbe/8GK8+6WXndUxWlisJs7Hgp/nyym3Ogw/9/c/wJaxNN7x\nokuW/Xj9ShTH4V23djPCrzncE67YOITnXDyOrzx0HO96yaWg80WtsDjncT4+y+fLKd+zbw5zpTr+\n9jVXIhpZ/pPuS2c2+DrMlxDRBUSUAF9O8dblOtirnroRxxar2DNTWq5DWFhYWJw1/PDxU0jHo3jB\nZZMrcry+JArGWAt8gfTvANgN4GbG2M7lOt6zL1oHALj/4PxyHcLCwsLirOGBQwu4ausIUvHoihyv\nL4kCABhj32SMXcoYu4gxdv1yHmvzaBobhlO4/9Dich7GwsLC4oxRqrewe7qAa7aPrdgx+5YoVhJE\nhCdvGsbu6cJqD8XCwsJiSTx6LI8OA67eOrJix7REIfCkqUEcnCuj1myv9lAsLCwsjNh3qggAuGxq\neUNiVViiEHjS1BDaHYZ9p6xD28LCon+x71QJA8kYpoZSK3ZMSxQCF08OAAAOzpVXeSQWFhYWZuyb\nLeGiieyKhj9bohDYMpYGABxZqKzySCwsLCzM2HeqhIvExHalYIlCIJOIYWIwiSPzligsLCz6E7Vm\nGzOFOravy67ocS1RKNg6lrEahYWFRd9iplADAGwYXjn/BGCJwoMto2kcXbREYWFh0Z+YzkuiSK/o\ncS1RKFg/lMKpYv28LKZmYWHR/5jOVwEAU1ajWD1MDqXQaHWQrzZXeygWFhYWPrgahSWKVcPkYBIA\ncKpYX+WRWFhYWPhxMl/DUCqGbHJlC39bolCwXiSwSIeRhYWFRT9hOl9bcf8EYInCA0ejKFiNwsLC\nov8wX6pjfDCx4se1RKFgcogTxWzJEoWFhUX/YbHSxGjGEsWqIh2PIhGLIFexzmwLC4v+w0K5gbGs\nJYpVBRFhJB1HrtJY7aFYWFhYeNBqd1CoWY2iLzCSiVuNwsLCou+QrzbBGKxG0Q8YSSeQq1qNwsLC\nor+wKCwdo5YoVh/DVqOwsLDoQyyUuVwazcRX/NiWKDSMpOM2M9vCwqLvIH2n1kfRBxjJxB0Vz8LC\nwqJfUKq3AAADK5yVDVii8GEkk0Ct2bFrZ1tYWPQVyoIoVrp8B2CJwgfJ1pK9LSwsLPoBpTqfvFqN\nog8g2bpStxqFhYVF/6BcbyFCQCq+8mLbEoWGbCIKACg3uEZxqlDDHXtm7RoVFhYWK4pcpYHbds2g\n0+Gyp1RvIZuMgYhWfCyWKDRkhEYh7YHXff4BvOVz9+Pbj51czWFZWFicZ/j9Gx/Cb92wA/+54ygA\nThSrYXYCLFH4MJCUGkUbJ3JV7JouAAC++vDx1RyWhYXFeYS5Uh0/2jcHAPj6T08A4JPX1XBkA5Yo\nfMgkpI+ihR2HFwEAl0wO4CdHctb8ZGFhsSL4yeFFdBjwpKlB/PRYHowxx/S0GrBEoUGNejoyXwYA\nvPbqzZgt1jFj16mwsLBYAeyeLoIIeM1Vm1CstTBbrKNcbzkWj5WGJQoNGeHMrjTaOLJQweRgEldu\nHAIAHBLEYWFhYbGc2HOqiK1jGVw8MQCAr2xXrretj6JfIFW7cqOFIwsVbBnLYNu6DADgyEJlNYdm\nYWFxnuBErorNo2lMDfPlmafzNWt66ickYxEQAdVGG3OlBiYHk9g4kkY0Qjgyb4nCwsJi+TGd42tj\nbxBEcTJfRa3ZRjpuTU99ASJCMhZBvdVBrtLASCaBeDSCycEkZgq11R6ehYXFOY5Wu4NTxRo2DKcw\nlk0gHiXMFOuotzpIxixR9A1S8SiqjTZylSZGREnf8YGkXUvbwsJi2XGqWEeHARuG0yAiDIuK1o1W\nB4nY6ohsSxQBSMYiWCg30Oowp/b7xGASs0VLFBYWFsuL6Ty3XEiz05BYnrnR7iBpiaJ/kIpHcVKY\nmUZE7feJgSTmFI3iwGwJv3/jQ3j8ZGFVxmhhYXFu4IZ7DuH939rt5GktlPkyB+sGuOwZTsedSepq\naRSr40LvcyRjEZwUrD6SFqanwQTmSg10OgyRCOED334C3955EgvlOv79t352NYdrYWGxRnE8V8Vf\n3LITAPCci8bx/EsnnIXThoXsGU7HcXCOh+ZbjaKPkIxFHVYfSHEuHUkn0O4wlBstMMbw4/08vf6+\nAwt27QoLC4vTwvd2ujXk7twzCwA+osgmY1gU8ui8Igoi+v+I6HEi+ikRfYWIRpTf3kNE+4joCSL6\nxdUYXyoeQVUI/5QIRxtKc8Io1Fo4NF9BodbCLzxpEq0Oc+pBWVhYWPSCx04UMD6QxJM3DeGJmSIA\nlygGU5woMvEoCjVepPR8c2Z/D8CTGWNPBbAHwHsAgIiuAPAGAFcCeBmATxDRiseDqSFoKfF5SNy0\nQrWJA7MlAMBrr94EAHh8urjCI7SwsDgX8MTJIi7fMIhL1w9ijyCKQrWJwVQM0QgvJy6rRQA4v8Jj\nGWPfZYzJJeTuBbBZfL4WwE2MsTpj7CCAfQCetdLjU1k7nZAahUsUJ3JVAMAzto0iHiUcXbSJeBYW\nFr3j4FwZF00MYPu6LGYKddRbbeSrTcfsBLhLHwDnn0ah4jcBfEt83gTgqPLbMdHmAxG9jYh2ENGO\n2dnZszqgWMRdGESuJuVoFLUWTuRriEcJ6wdT2DSSxlFb2sPCwqJHlOotlOotTA2nMDmYBADMFut+\nooirGsU5RhREdBsRPRbwd63S588AtAD8e6/7Z4x9ijF2DWPsmomJibM5dMSjikah+yiERrF+KIVI\nhLBlLIOji1Wn//FcFa//5D24ecdRWFhYWABAo9XB737xQfz113Y5bTKycmoohckhThSnAogirZie\nzrnwWMbYi5f6nYiuA/BKAC9i7kIPxwFsUbptFm0rilhU1Si8Pop8tYmFcgMTYgYwMZjEgVm3quxn\n7zqI+w4uYNeJAn75qk0e0rGwsDg/8YPHZ/BtEeH0az+zBRdPDuKUyNVaP5TCoIiuPFWoo1Bt4uLJ\nAWdbuUYOACRWSZ6sVtTTywD8MYBXM8ZUu82tAN5AREkiugDAJQDuX+nxxSLuZZGqnmT1atNrQxwf\nSGK+XHeSZe49MA8AKNZb2HXCRkNZWFgAP3j8lPP5R/u4jJBJvR7TU6mOSqPtJQdFi0ieZ0UB/xnA\nIIDvEdHDRPSvAMAY2wngZgC7AHwbwNsZYyuepBAXGkUqHnEWMpdVZWsaUazLJlBrdlBptFFvtfH4\nyQKuffpGAMBOSxQWFhYAdk0X8NyLx7Eum8DOE3kALlGsH0p6gmVqzTbSCVc0xxULx2ppFKuSmc0Y\nu3iJ364HcP0KDseHmEMULnsTEdJqsUBJFAN8JjBXqqPdYegw4HmXTOAHu09ht82vsLA479HuMOw5\nWcJ1z9mOarPtrGuTqzSRjkeRScTAGEM8SijVW6hq5cRVckjEyLf/lYA1oAdA+hX02u/peBSVZhuF\nmqJRiHosc6WG8wBsW5fBlrEMjudcJ3e53sLb//0n+MxdB1biFCwsLFYBxVoTb7thB754zyGnbb5U\nR6PdwZaxDLaOZXB0gcuFfKXpBMkQEQZTcRRrTR9RqH7OaOQ88lH0O+SNSWlEkYpHcapQB2PAcMYt\n2AUAhVrTiX7aMprBxpG0k28BAF9+6Di+8eg0/vYbu53yIBYWFucW/mvHMXx31wz+/JadKNV5qti0\nEt20ZTSN6XwVzXbHF900kIxhodwAY15fRFzxUaih+ysJSxQBkDdDtQ0C3GcxW+Q3fUhEKQyKZJhS\nrYV5UV12fCCBzaNpj0Zx7/555/N9B9zPFhYW5w5++ITrtH7oyCIAb9nwiaEUOgxYrDRQqDWdaEqA\nE4WsEuvVKFw5FLFE0T+ICY0iQt6bkk5EsVhpOp8Bt2hgqd7CQrmB4XQcsWgEU8MpFGstlMWs4qEj\ni3jpFesRjZB1cltYnINgjGHniQJ+8cr1AOBEPZ7M8wnj1HAKY8ISsVBu+DSKwZRCFIlgH0WULFH0\nDeIG1k7Ho1iscLORrAElC3eVapwo1mX5gzCWdR+IequN6UINV2wcwkUTWc8aFs12B++86SH83Td3\nL9v5WFhYnF1M56t4w6fuwa2PnHDaZot1LJQbePaF67BhOIUnTvLaTdOFGhLRCMYyCYxmubyQRDFk\nIgqDj2KVXBR2PYogxAwhaKl4FEVRxVH6LzLxKIh43sRipYFRQRCjYuawWGmg2e6AMe672DqWwTEl\nk/vuvXO45WH+sP3yVZtw+YahZTsvCwuLs4NP3XkA9x5YwN6ZEl7xlA2IRsgxNW8Zy2DzaBonhCYx\nV2xg3UACkQg5E8jFchOFatMxYQPc9FRuyKrVanis1Sj6EtIm2HESxjlU57a8kZEIYSARQ7HWxEK5\n6RDEmJg5LFZcJ/fWdRlsGknjuEIUtys2zR/vt74LC4u1gDvE2hHz5YZTTdopyTGcwtRw2vmumpgc\n01OlgWqz7Sn455UvatkOlxxiNuqpfyCd2RpPeNRB9UYOpGIo1VrIVRoYEWtsyyVUF8sNzBTcqIeN\nI2kU6y0UatzXsXu6iGduH8X6oSQeO573HO8bP53Gfz947OyenIWFRWjkKg188LtPeAp/luotHJwr\n4xVP2QAAzno0JwQxbBxOY8NwCicLNTDGUFCIQsqF2WIdzTYzypR+Mz1ZogiAND1pPOFRB9XPg6mY\n47geEDME1WklV6cazSYwJRZMnxEP1YG5Ei4cH8AVG4Y8CXonclW8/T9+gnf/1yM+ArGwsFgZfOA7\nT+BjP9iHv7jlMadt70wRjAGvfOoGxCLk+CJO5qtIxiIYycSxfiiFWpOHwKq+iEQsgkQ04kRIpg2V\nYZPGPApreuobyGgn/Zaovgt1AZF0PIpqs80TZbT1K3LVJhYqDSSiEWQTUazL8kzuxUoThVoTc6UG\nLpjIYvNoxpN3cfsTbun023bPnNXzs7Cw6A7GGG4XNZru2jvnLHksw123rctiajjlfJ/O17BhOAUi\nwqiwLOQqTV90UzYZxZwgilQimCjUkFi1SKkeiblSMDqzieijIbYvMMbeexbH0xeQfKDflHjEX1UW\n4OxfqrfQbDNkxY2PRmTJjxby1SZGs3EQkWOaWig3HK1ig9AyCrUWirUmBlNxPHx0EeuyCYxk4j6N\n4kPf24Pd0wV85A1P9xQPs7CwOD3cs38e//Dtx/HX116Jp27mKzOfyNdwIl/Dsy4Yw/0HF7DvVAlP\n3jTsEMPGkRQ2DKcwLZzWC+WGU9JHEkO+2vRUcgD4GtjzJW5lSGtyRMLkwO5HjeJaAA92+Xvdcg9w\nNSALAerkrd48rxkq6piX0orgziajKDfampPbjYaaFbOKicEkNo2kAcCJnDgwW8ZFkwN4yqZhTxXa\nU8UaPvr9vfjerhknWsrCwuLM8P5v7cbDR3P48G17nTbppP7lq/jaadIXMZ2rIhWPYDjNTUxBTmv5\nf77Mq8HqGdhzXUxPJnPTakU9LTUd/SfG2BeW2piIRs/yePoCppsRi3rJwfkci2BeEEVWUSUziRgq\nMmw24w+blWvhTg4mnQdjtljHk6b4EokvuWI9JodSuPWRE2i2O4hHI7hrz5yz/3v2z+ONz9rqfH/8\nZAEPH8nhV6/ZsmoZnBYW/YxjixV8f/cpvOFZWxzzcb7axKNCa79n/zw6HYZIhHBonjuwn3/pBCIE\nHBMO7elCDRuH0yAiTA2l8L1dM2CMIV9t4tL1gwBc0/OJHCeRbFKdQMacEHm1SmzSUKojYvi8kjAS\nBWPsw902DtNnLUJGFpBuehK2wmiENO0iinzVm7EN8EXRy402yvUWxsYyzu/peBQLpYbzoI4PJCE9\nIgvlBqqNNubLDWwZy2BiIIkO46F3W8Yy2DVdQCoewfMumXAeboDbU9/yufsxU6gjHo3gdc/YDAsL\nCy9+/8aH8NCRHEr1Ft7+Ql7E+tFjeTAGvPppG3HrIydwZKGC7eNZHJ4rIxWPYONwChODScfkdDJf\nw/ohbi4eG0ig3uqg3uoEahRycSJVc8gkok4dqFRM1Si6m55WC0bTExGliOgtRPRq4vgTIvo6EX2E\niMZXcpArDaMzWzCIXhNeNUNlEt6ZQ6XRQqXR9mgaQ+kYSvUW5kp1xCKE4XRcScRpOGrpxGASm0a5\nSUrOQA7OlbF9XRZXbBjCwbmy42B7YqaImQLf7jtiJS2J47kqbrz/CJrtTu8Xw8JiDeLgXBn/+cAR\ndDpu7OJssY6HjuQAAN9V3pGD83yFylc8lYe7Pi6imGaKdUwNcef01HDaWT9isdLAmKgaLWs1LVYa\nKNVbjiYhiUJu49UcFGuE6sxW5IjqwF4tv4SKpUxPNwBoAsgCeDeAx8AXHHougH8DX8b0nIS8MTqR\ny5unt6tmqKymURRrLVQaLa/vIsGJIhblJEEk/wMLlabruxhIOuG0JwsuUVy+YRCbBYFM52u4YDyL\nBw/zAmRXbR3xOb/feeND2HF4kZdAfv5Fp3VNLCzWChhjeNOn78WJfA3xaASvvZpr1/K9eNqWEeye\nLqDV7iAWjeCQ0Byu2cYt6TL6cLZYE9o+MDWUxME5TiiFAM3h+GKVV5UW31PxKBLRiDN58zqtXUIw\n5UvElYSJ1Yp0UrGUM/sKxtibAPwPAJcxxt7OGPu2iHLassR2ax4RozM7OBHPkyijEMWAQaPIJKOo\nNNoo1VpOUcFohDCSjnONoiir0Cad2lGL5SYYY5jOV7FpJI3No9yUJR/qg7P8YX/ZlVM4ka85zvWF\ncgMPiiqW337Mq2k8djyPP7jpIRyZr8DCYi3iyz85hvd+9VGPtrx/tuQkv31LeealM/p1V29Co9Vx\nBP+RhQq2jGYwlk0gEYs4WsBcqeEQxcRgEnOlhuOL0Ini6CJ/h9SSHLyIqKgNZ3Baq0Shag79plEs\nRRQNAGCMtQDo4TUrvjzpSsI1PXlvkDQ9MS0Vz3PjNWd2qcZXrMpo7eV6CyUlQQ/gju4FJRpqfDCB\noVQcEXJV21qzg/GBpKNRyHIgB4RJavt4FoBrqvrJ4UUwBjxt8zB2nuCzKIm//voufPXhE/jH7z7h\nuwayOJmFRT+g2mgjLyo3S+QqDbzr5kfwpXuP4GtKcb77D/KJ0dM2eyMGjy5UMD6QdMJfD4sJ0myx\njvXCxLRMGVJlAAAgAElEQVRByYuYK9UxPuiuO5Ov8kWFmm3mIwq5jeq0ziSiwWGwsWDtQvVFeHMn\nwlyh5cVSRLGZiD5KRB9TPsvvm1ZofKsCeWNMGkWH6e3KUoVR1V8RxbxYiEQ1PXFNo41izUsUg6IU\niHSMj2Z4IbGRTAIL5QbmxEM3MZjEhLIYO8Bfgm2ilhQAHM/xl0DOml579WbUWx0cEN+LtaZjrrp7\n3xyYoibdeP8RPPP62/CJ2/eFul4WFsuJequNV37sLrzwg7c7Gc0AcO+BBefznXvcBNX9syWk4hG8\n9MopHM9VnffpeK6KTaNpTAlH9HRBIQThc1g/lMJMvoZmu4NcpeloFEOpONod5kQxSd+EJAqZE5XW\nynBIjSJtTKxTiEIhB9X0pAfVrAaWIoo/As+V2KF8lt//ePmHtnpwfRR61JPQKDTbk8r+8ag33K3e\n4jP4bFKPhuIaxWDK7/wu1VqIR8l5oEYzcSxWXCf3+EASqXgUmYSbvzFXqmNi0NU0jimaxlg2gads\nHgYAp2bNrhMFtDsML758EgvlhmeRpZvuPwIA+OI9hz3nenShgv/5ufvxg8dtprjF2Uenw/AXtzyG\nv/n6Ls9zd9+BBeyfLWOh3MA3FVPSQ0cWkYhG8LxLxh0HNAAcEtr1JZMDAIDDwll9fLGKzSNpTAwm\nEY0QZvK8FhMnCk4I4wNcq5dVon0mJvH+yO/SeS19EXphv4qoBmuq6aQSgikkth9gJArG2BeW+lvJ\nQa40upXw0H0U6s1OeOq1BNsis4kYKvW2z/TETVKupiGJaiwrNArFdwG4pqpmu4PFShMTAykMp+NI\nxSNOEtDRhQq2jmWwWUvok5rGq562EQDw+DR/0Qq1Jn56PI+RTBzT+ZrzAgDAJ+/cjzv3zOLPv7rT\n8yLXW218+LY9eORoznBFLSxcMMbwbz86iO/t8k44frx/HjfccxifvfsgHjvumozuPTCPWIQwmIw5\nq8YBfBK0bV0GT9k0jH2nSmiISdmhed6+YZg/8/JdOFmoYWo4hWiEMDGQxMlCDeVGm5tzB13NIV9t\noiSIQq43IwnhmPRFiLWupUl5oezXHFRzs8lH4fFF9IHmYMJS4bFfI6JbTX8rOciVRsQQ9WQqP27S\nKBJRhRxUQkhGuY+i1tIScaJco6i7Tm6AP7zFmltxVpYBGcsmsFhuOHbQ8cEEiAjrsklnJb7ZYh2T\ng0mMDySRiEYcn8bBuTIS0QiedcEYAG9GOGPAG57JE/nUXA1ZWvl4rupZU+Om+4/iw7ftxW/dsANt\nxS7HGMOX7j2Mhy2BnJdod4Lv/+17ZvG+r+3Cb9+ww+N3+NF+N5n0rn2uKemJk0VcPDmAq7aNOhMa\ngGsK28ez2L4ui1aHOVWaTxXq2DCcxvphLvxnCjXUmm1UGm0nDH1yKMkXGhLvjgwakb4I+a7JiZzu\ni5AkkIxFRLSi3xehkkZ6jYTBmrCU6ekfAXwQwEEAVQCfFn8lAPuXf2irB8dHobW7zmytXQ1rU258\nwuDkziZiKDdaKAZpFI7vwk35zyg+DcBdfnU0m8BCpekxSfH2uGMb5Q65JCIRwvrhpBPRcSxXxcaR\nFNYPppCIRdzoqTletuAlV/DlHA8JzSNfbeLoQtUprawSyPdF4bTZYt2ppAkA3999Cu/96mN4/Sfv\nQb3lxj8wxvD5Hx30RWFZrE1UGi186LtP4KfHvITwtUdO4L1ffQzXff5+zwTiDqXg5d37XHJ4+EgO\nT9sygk0jaQ8hHJwv44LxLC5bP4B9syUwxsAYw+H5CraNZZwQ8uk8J4RivYXxgQTGs0nEIoTpfM15\nH2RlBJ0QhhRTUqPVcSotyCgmPS9CaghEvKabo1GEKBueMITBqqTRb1jK9HQHY+wOAM9hjL2eMfY1\n8fdrAJ63ckNceUjTk58QgsNj1WKBHo0i5vVXSKQTUXQY0Gh1fDkYlXoLpXoTg6qmkYg6UVL8uyCK\nDA+nlS/BmLK63kK5gVa7g4WKG+I3lkk4msZcsY7JwRQiEcKmkTSOOURRQYSAp2waxkAy5jNVvfwp\nUyCCQwiMMTx0ZBE/eyHXTNQcDln1tt7q4IGDrslgx+FF/NXXduF3v/Sgk7kq9/W3X9+Fv7zlMZ8f\nqNXu2ITBFYRM5FRxaK6Mt3zufvxIEe4A8PkfHcJHf7AP77jxIc99+4GYQOQqTTyikMgDhxbwzO2j\niEbIU1r/0HwZF01k8aSpQWe54HaH4ajIlN44kkaj1cFCuYFivYV6q4P1QymnqObJQs0zaYpECBOD\nSWeJUsBdUGwoHUeh2nTeqUFNc5Cat5yUSc0/KIopk3CJImUoyWFyYHvKc6xF05OCLBFdKL8Q0QXg\nSXjnLEy3y5Rf4dUogokiEQ1+aNQ+mWQMlWYbharX9JRJxJy8i2wi6qioA4rzG4DjGB/NJJCrNLAg\nIq5khNSoMFUBPFpKhv5NipcJ4ElG6waSSMQinEAWvZrGk6aGMDmYdAhkvswdfy++fD0yiagTqw4A\nDx5exDNEEpNHA9ntrup3515X6Dx0NIfP3H0QX7jnMO4/6Ea0dDoMb/z0vXj+B37oiXoBgN3TBdzy\n8HEfsVh0x2yxji/ec8hHCv+14ygu/4tv4+YdRz3tH75tD+7YM4u/+fouT7tcpfHQfMWpjwQAOw4t\nOPd/pwhTZYzh4FwZT940jAvH3fXja802pvM1bF+XxdZ1GUdQz5X4Aj+bRtIOIUzna66/bjCB9bI9\nV/VEBgKu5pCruJGEarvuixjWfBGyXRJDUBRTN82ByCsjTCam1Vq9LgzCjOwPAdxORLcT0R0Afgjg\nncs7rP6Esfy4wc6YDEEgKmlkE1Ewxl+OgaRehbaFos+nIZzfYlbkLJqUTWC+3HC0B7mI0pjQNACu\nUUxITUMlkKIbAbJpNO2YpGRY4KaRtGc51wOzXNO4eHIAW0bd9cDbHW4auGb7KDaNpD0E8vDRRTxt\nywgyiahHA7lHWQpWXRZ254kCHji0iOl8zbOYfbvD8IZP3Yt33vQwblPIBwA+/sN9ePb7v499p0qe\n9sPzZXzktr0oi2sm0ekw7JkprgnCKdaanig1iYeOLOLTdx7wlK0AgH+9Yz9+9u++jz0zRU/7H/2/\nR/Dnt+zEx3/oDYP+7N0HwRjwubsPOm2MMfxI3JPHTxadiUWz3cEjR/N49oXrAMDRECqNFk7ka3jh\nZRMYSsWc9tkSr6a6fV0WF05kcUREEUnBvHUsgw3DKWGCbTrHGR9IOvWVZgo1hxDGB5IYTMaQiEU8\nAR+y3PeQIAT53I9qvohiXfgixCRLmqDk9ZXvVFp3Wse7O63lOx/XCCBmIIq16qMAADDGvg3gEnBy\neAd4lvZ3l3tgqwrD/aIuNaB0JAzRDQkDacj1c+dKdV+CnkMgKW9CT7XZRkHEiQ8Kv8ZQipcIKQr7\n66Di08hVGqi32ijUWopPI+HMlGZLDSemfExtL9YxmIwhnYhi02jGeZHkC75lLOMhluOLVTTaHVw4\nnsW2dRmnHwDsny3j0skBXL5hyEMgDx3J4aIJHtaoaiDSjp2MRfCTI64J45FjOSdGXvV3VBttfOT7\nezGdr+ELPz4EFe/58qP4p9v2+ITjv9yxHy/9pzvxmbsOetrvOzCPq//me/h/2pK0J3JVvPFT9+Ib\nP532tBdrTfzhfz6Mbz7qbW+0OnjPl3+KG0XosUSr3cG7bn4Y7//mbk97u8Pw65+9D6/9xI88M/5W\nu4PXfuLH+IV/vN0J+wS4wH7TZ+7D9d/cjVseOe457oe+uwcnCzV8/kfuuVUbbceEpGYvL5YbePxk\nEal4BI+fLDrP0Il8DbPFOn7pKVMAXEKQ9/kVT93gMSVJAtg+nsVFkwNO9r9MctsqopKkc/iUiK6b\nHEpiSolWcuueJZRyNl4TkyyBo/ocRqTPQUQxFTWtezgdFw7wuqddVlA4pbU7GkXZn2ktf4tpxULl\nO6/7Hkyhr2uSKIjoavmZMVZnjD0i/upBfc4l6BnZEtEupT10mExPpvaMeOA6zNtH5mDMFGua74J/\nPiVmUbJfJsmJRc7GJLmMZRMoN9rOSzDi+DTiWKzwEiFzxbqjtqtEIZ3iADdVyRdV/p8cTGLjSMoh\nkKPODDGLTSMugchZ4gUTWWwdc00MAF8W9pLJQVyxccjjFN87U8SG4RRecNmERwN58JCbgau2P3Is\n54RKPnDINWEtlhuOpqKGZsroLAC46QGvIP/E7fuxUG7go9/f62n/zF0Hcc+BefzlrTs9jtr/fOAo\nvvLQcfzBfz7sEfDfemwaN95/FO/58qMe89nd++bw5Z8cxyfvPOCx1+84tIC79s7hJ0dy+OHjrrb0\n8NEc9p4qod7qeNYjeex43onZv22X2//R43k0hG9HNec9ciyHZpvhqZuHcWC2hKrYdrcwBcny9fI+\nyKCGVz5VhFOLfocEWV02NYiNIymHIA7N8f/bxrKexX3ks7dhOIWp4RSKNe57mxMCeGIg6SbE5b2a\ngzQb5SpN5xquG9BMSXVvwMew8EVUGsK/Z/JFaJqDfO6lxp+IRRCLEMriOnn9D3wbVcsAXI1C1yDO\nNY3i80Q0SkRjpj8An12pgfYDTKU91FmEikQI01MYn4asSDtTqPvCbHl7Del41LGDylmRDBeU5CIj\nOE5q7aOZBNodhkKt5Uk+GsnEUWt2UG20MauZqiqNNmpN3p6KRzCQjGHDcBr5ahO1ZtslkCFeAfdU\nsY5Gq+MQydYxnkV+slBDq90BYwzHF6vYMpbG5lHeLgXw/tkSLpoYwGXrB3F4vuw4tffPljCWTeD5\nl05g76miI5ilwP3VazZj76mS0y61l6u3jmC/IhxnCnVM52uYHExi/2zZmZW2Owz3HeTEcmSh4nG8\n376HC+O5Ut1Z4AZwHbiNVgc/PZb3tQPejGKVBFQn8Z17Z50Jyf0K2cnPE4NJT96KzLK/Ztsodp5w\njysjkd74rC04MFd2BKY0yb32qk3oMF59GHBn/C+7kmsOe2ZKnvanbxnBYDLmmCJl+7YxTUMoitUb\nR1KYGuLtMrkNANZlXUI4qfocBpKO8A9KMk3EIihUmygIDUHNkDZpDvlqE+U6v9dyMiaJYTpf8yS3\nSmGfqzSRiEU8Sbfyt3Q86mmPx/hnNewVcN9nXT6YfRRrkyiG0X2Fu6Zx6zUMU/CBY2EyVJXV4SGE\nMNqF4bMU/POaSSrrEEjN5/wGeJlkwJ1dZZT+gNenAfDa+fVWxyEU6dtYEC+sdH6PKOsBzwoNhK8T\nnPC0A1ygbRhOgTEuPGT75GAKG0fSaHcYZop1zBbrqLc62DKWcdvFOA/O8fDIjSNpdJg7/gOzZWHa\nyjprdgDAnpkixrIJPO+SCbQ7zInYkgTyK9ds8QjHXdNcsP7qNbzW5U6R7MXLuHfwetH+mBDA5XoL\nB+fKePmTuTBVHbWPHc/jxZevF+2uwN55ooAXXDaBWISc4/ExFXHNtlFMDiY9ZrgnTpZw8cQArto6\n4qlXtHu6iM2jaTznonWe/vtnS1iXTeDnL53AofmKM7M+PF9BNhHFz186AcaA/afcQniJWAQ/d/G4\n6MfbD82XEY8Srto6igjB0QSOLFSQiEYwNcQ1AakhnirWEI0Qxgf4fZb3YK5YR4T4JGTDcIqHd4vS\n+kT8mZOa61ypjrlSHVFRcl9dRnRRrDcvn3tVc1AF/HA6jkKNE0UiGnFm+cPpOMqNNvLVJpKxiDOZ\nkkJ/rsQnX1Lwy3ckV214tAbA1TZURzagag4RrT3Y9GQyVa9JjYIxtp0xdiFj7IIl/p61koNdbXRb\np0KHNxEvOL8ijHlKPpi6SSqj2FO9pUC8GoUkBLfda39VZ1fq95GMu0ZGvtrCcNp1igPucq5upri7\nHvhssY5ELILBZGxJAgG4gHfWIR5Oe5aFrTW5P2VqmBML4DrWjy1WsFWpb+X4R3I1bB5NO2t5qMJu\nKBXDVVtHnO0BV3i+XNjfpdDcK4jk2qs2iu98dr33VAmM8az2eJSc8hFzpQYKtRZ+7qJ1WJdNOLkA\nzXYHh+bKuGLDEC6aGPDkCOybLeFi4a9R2/fPlnDJ+gE8aWrI44Q+Mi/KU6wfxHS+5mgIh+f5tZBF\nIaVJ5chCBVvXZd1qw+JaHJorY6sgZfXeH1vk1YkTsQjWD7kF8uSEIBIhbBhx12aYKzYwluU1yaYE\nUXQ6DHNl3h4VIaq8bx1zpQbGMgmHFAA4zma5H9meq/CopMGUK8jVaCW1eoFLIE3PpEl+ni3VfQX7\n+DEansWDJIHUmh1P8T7A9UsYTUzRYEuDLh8MBoi1SRTnM0y3S97IpaKeVKgPSK9aRBiTlHzwTxW9\nmoYsQHiqwGdvUvNw2wUhaDHipxwNhL+oquZQqjcdYlEJJFdpOsQhI0pylYZjqiIip10SCMCJQu3v\nxLkPJJzollmhaQDcdr1RKXjIGMNsieeC6OuNn8xXMTWktvPzPZGrYeNIWiEc3n86X0MmEcWl6wcR\nIZVw+P/Lp4YwmIo5QlMK4e3rsp7ZtTRBXTQ5gC1jrsP/6EIFrQ7DhRPe9nyFC8gLJ7LYPJp2hHi7\nw3BkoYILxnn7YqXpmMkOL3BC2DiScs4JgJN85rTn3WNvHUu7SWni2DOFGjYMpzCQjPFzk+HOJddH\nNaVqCErhvA0KgcyX3YnCxEASjXaHaw7FOtZl3RBVgBPCXKnu8SvI9mKt5Wiy8WgE2UTU0RxUwa9q\nFL72StNXaNPRHLR3RC4YlKs2jYmxukYh33OfiUlGN0X1/sG14aKmiaUlirUFU7VGU1VZ00xAbdeL\nBTqfQ4TNGvMuxENdqrc8sx9pqjpZqGEgEXOiLPy+i7hnP067pmkUak3Umh3Hp+GsxlfxvrCjiqlq\nsdLAqEhukprGoiCQVJwLAre96WTCrssmPOuKO4s4DSYdH8l8iRNUs80wMZj0ZOYCwLQghImBJOJR\ncgT7yUIVG4ZTGErFPXb26Txvj0f5LPq4015DKh7BSCbOQ4IdYuH/N46ksHE47XyXs+xNIylsHEk5\nwloK242i3SE00X/DMCevnCCE+VId7Q7DlJJMNp2volxvIVdpYvNo2qljNJ2vgjFuppsaTvvqG80J\nMh3LJJCIRpSKqQ3nem4YTjnrN6hrMEwNpZwxzpfrTsjp2AAPp+Zk7UbJydDSQpXfz3Vae77aRKHa\nxIjQTIfF/c9XmijWW07OAuDXHNT2nEMIbv+sssbLYMqvOcyX686ESW3PVZpaMhw5762fKCKiXdco\nhIlJkwOSQHyJuwZ50W+FAFVYougBJtNTGOeUqQZUKN+F0t80+wlyfs8W6771MQBXQOkahe781glE\n9pf/S3XviyyJYbHM186QROQ1YTUxmuE1qUYyrkaxqMS56z4QgBPFYCqGCIl2JdpKmrgWKw2U67w0\nyvohnnU+PuBGaE3nak7o5YYRVxM4ka85WsbGEVfwT+er2DicdtYpUHNKMokohtNxbBxJO4QjI3om\nBjmBnMhxIX5K8ctsGE47kT7S4bt+KOXRBE4V3f24hFBzsoInBpLYKNtzNRSqLbQ6DOMDCUwOJrlv\nIVdFSxSLXDfATTqTQ0mnYup82Y1imxhMOlFE88qMfySTcBLV5ooNTz2kVoehIkjNCX5QCCFfbTr3\nUdUcyg13YjGQ4PeTE0LTI+CHnDwHr+AfSsVQrHs1XIBrDq0Ow0Kl4TExyed/rtRwgj8AIBN3+6ga\nAhEhpUQ6qXCd0wYTk0+jCK7kcK45swEAYr3sNxPRX4jvW4nonPZNGJ3ZTngsBbbrCOWjCGFiMpqk\nDH2kLyJfbXpeAtkuBZoTEhgPJgQ12gpws1SlZiLrTzkVNsX/Qo0nB8r9SAGyqJkGhlIxRCOExUoD\n8+UG4lFeITQVj/Ja/krBQynsRjIJRzMB3PpWI1k+08yJvApZqmFEZKl3hBCZGHDLnOSUcibS3DI+\nkHCOOVOoO2aw9UMpR4DPFGvKWsopzBRqghBqSMYiGErFMDWcQq3ZQaHqEsLkUNIhhJP5qnNdJweT\nmBrign8mX1MIxNWWZgo1zJXdc54cctcjUdtj0QhGMzzhUhaqW6dEq+WqTRGx1nEE/0g6gXy16RKL\nYjIqVJsOsch1ouX9zAkNQS/FrWsCpvZIhBxC0Cspq1FMquaQTsRQlc+dhxD458Vyw7cmBMDNnqpG\noZbaSOgCPiY1h2CNQhfocROBxKRGoZuezq3wWIlPAHg2gDeK70UAH1+2EfUxnHUqtHYjURgWH1Ef\niDD+il4/d9M05ssNxCLkbCNnYCc1Qsg4xOJ1crux5k002h1nZpeMRRCNkPsii/ZYlM/4pUCQ7TxS\niudwLJYbjqYBcHMVXxeg6RnTSEYQgizJ4Ji3OIHkhHCUwknuv1hv8TWNM27kVq7K+0otB+BCU8bQ\n5xTz2UgmgbzINeHtbg5Kq8OEhlDH5JA3Amyx0sCpAje3qY79xUrTQyDyOLlq0yWQoZRjnuO5A25N\nr1Q8ilQ8gny16SFTgJt01PZxRRPIKUUk9exlmcmv+hAagjyCVnXLiVUXHULw+LRcAe9xTpt8DpqJ\nKZvkhKBrDplEFNVGG+V6K9g5XfWakkxZ06YV54AwJqZgH4WPQGQR0ZAaxVonip9hjL0dQA0AGGOL\nABLLOqpVhul2SVmv2xxNJVpMN75n7SKET8PbRzVVqaXOXU0jyNcxKwhBagwy5vyk5rtIRHny0Smt\nnYiQictyI01txhcVBNJ0nOUAPDNKacsGXLNHsdZChNwxSULwEwgveCgztWWEluwvy1m7BJIQArCD\nUr3lzJJHsnHkxCyam09cYmm0O6g02shVmm7/tBvRtVBuOLNxVfDLdm5uc4XmQonPfjMJb2SYJMGx\nTAKDqTiI5H68SWYjaa4tzSu5CbzdSxRjWtkKt+6RS7589i4qqWrBDNLHM6gRwkyhhg6Dojm65KgS\nQiIWQToedTQEPWm0Iispa+tNyzpmAxohVJpcI0oFrPci8x/U/UgkYt2LdwLue6g7rc3RTTIMNjhf\nQp9IGn0Ua7woYJOIohDykYgmAJyXZTzljdfXozDdYFM0lEejMBULDFG63LNtCAJRwwB1xzk3AXFB\nkZQlCaIRJGMRNxoqqRBCIuoLvwW4FiIXZVKdk1lR8FC3OTszxEbLIQOALwxTrHHhpYZBSg3Bqfrp\nONLjyCmE4NjHpQYitAdHwAuTVE7rP5pJoNHqoNr0EoIzsxeCdjjjFaZ5nxnG9b8Uam77iNJerLWc\nBXCcWXeV949HCak4vy9DqTjywjwHKIQgzm1R065ckvWW0B4R18jJXpZh0Ok4mm2mZPh7xyTDiNVs\nZ8Cf1eyu2eAlFrnPfLWJeqvjE/xl+bxo0Ur8uWj7tALGeIa/OVopWItQ31NTcAn/jffTTVIJoy8i\n2PTkEoWnua+d1iaEIYqPAvgKgEkiuh7A3QD+7mwcnIjeTUSMiMaVtvcQ0T4ieoKIfvFsHKf3cQW3\nywctLFGEMUmZ/A9xo4bQmxlKJZCIYm5SXwIp+KtNf3kCtYSy7hif0Xwdsn2uVEeHwedsrNRbvhll\nRswoy/WWYxpz270+EIBrEOV6C4VaC0TcIQpwYaf6KFzBH/eE36rtzTZzhJpjknKEYxWtDlMcsmpI\ncMMR+COKiUk1t6maQ6GqtGcVYqk1ndm7NCXx/k2hSZCzr5yYjcci5Mykh9O8vRwg+HPVhq9YpPRF\nSALpVs5CXgu3QJ7XFyVL08tzS8X5Ij7Oc6FNCE4V/e1p8XwxBp8pqdxoo9HqBJqSyo22hxAyCcM7\notZeUgR0NKJENxnyIkwaRVw3MYl2PezVXQAtnEbRz4h168AY+3ciehDAi8CtMq9hjO3usllXENEW\nAC8FcERpuwLAGwBcCWAjgNuI6FLGmL84/iqAnP+6Mzu4f69hs6pKa9QQQjiz5UvQ7rBAtbrR6vja\nM4moU/5A92vIME9Pe9IlkEyiu0BYKnyRr53BsHEk7mmvNvwaiDRJFGtNT+hvRpRcd01PrlDrMDd0\ndkTTBGRZbFXTANz1N1xC4L/PluooN9oewgEEIdSa7uxdseMXak1sGeMJb4NJ14Ff1K6FNCXVmm52\nvNxXrsK1EjWLeCQTx6G5im+dkiHRXyeQ4XTck8E+qGkIJ7SKqfL+yWsnTZdSoM8WAjTNeNSngQLi\nuZCmTa1d+oQ8PoRE1CmlogpyEyGopGEKJ9cFeSIaQbXT9juzTT6K2NKmJx2yNpw/jyK4fx9bnpYs\nCqjWdDoF4EYA/wFgRrSdKf4JwB/Da/K/FsBNogjhQQD7APRNhJXpRppufBiTlLqtSdPwfnYf3lg0\n4pCUSU02hfjp6rZsj0XIoxpnk1HHGectKxJzXnDd3yFt5t5lIXlYY7XZ9q7el+AEUmn4nZPS1zGk\naBQZsWC9LmQz8SiabYZcpYkIucf254jI3BEhBIVwdFY4E/uUs+shx5TE/x8VRe98jl1Rf0gXvjLS\nS/XjSKeySiyAa0rS24eE5mCKDCrVudlO3rfhtFg6t+othCfHIIMWZLusWjxT1KPeRDCDEPx63o0M\nUfaGo8Z8CZ283SUEvTKyNP95nqN4zH3ulGfbtPa0+k6ZFgnSM6JNCXTmqCeTL4J/18WA7ObPowgW\nu6ZipP2ApUxPDwLYIf7PAtgDYK/4/OCZHJSIrgVwnDH2iPbTJgDqainHRFvQPt5GRDuIaMfs7GxQ\nlxWD0fQUwsmtbmqKhjK1q9+N7UYCMUV6ePubXsx0Ioq6qNDqNQ3EXF+HlgS4WG6KfXr7V+otYYsO\nNj2ZSqurJil3vYC6p2ibDJt0ViZLeAlE2v2lfyTttHtnxbL/nDZblkI2X2mg0eo4pBaLRpCKR/hY\nNbKT2hXPRtb8OA1+bmr7QJJfo6DIoLIw2wVFAM2VeBkV+SykHcGvlXbRSmu70W0yH8cr+OU60Xp/\neWzTmg0OIUS9z5GsbuvVZM3+tKB2Ux/vpCzcpCnp+By0dhkGqzGCaZ0ak6naVMKjn2E0PTHGLgAA\nIgpQld4AACAASURBVPo0gK8wxr4pvr8cwGu67ZiIbgMwFfDTnwH4U3Cz02mDMfYpAJ8CgGuuuWaF\nVpvpLaMyjI9C7RNbghBM7XxfflNS3KBRyEqXpkgPU7v+m+lFziZdX4fubNRLN8v9VJrcFp1NeAVL\ntdFGtdHWFqnnM835ckMzbbmEkE74TRW68EorwlT97hCFQyxeITuv+WvcHBS+nyHNL1MSS9iqGkI6\nzs1nnOxi/vZay8nfkO3VpnD4J73nJovtecjUKclS8/mDAJ6IGYsoFVM1zcFHIFoZe2likmSa0a63\njJLzTCziMWdi4dUclIlIPIzgDzY3hck78oWvdnlHdEuBfG91jUK+w36NwpRwZ9Ao+leh6O6jAPCz\njLHfll8YY98iog9024gx9uKgdiJ6CoALADwiZn2bAfxEJPEdB7BF6b5ZtK0wlrYh6gk0Jh+FiSg8\nGoXaX3W2GbbVNQTZS3/Yk4bZkhP6Z5gtmTQT/bNpZpdWM141U5VcL8Frc46hXG+h2WaOgOPtPNO2\nWG95orWksFooN5zkNdkf4IJct3Xz9rpnYRkpNHUCkRm7khBSjglL6y/2GxUCVzdtyW3minUwBl9y\nWLXZCQwJnS83UNE0hJQgzVK97SGiTCKGdodhsdzwzurjroD3rIioaA5BFVNni7yCq9T4dNL0aHzJ\nmJNNr08IGkGEYHI2GyP9ugt+U7uJQHyCX5qeDNq1/v7K7U3RTbrckO+zL5zeIC/6mCdCRT2dIKL3\nEtF28fdnAE503coAxtijjLFJUZ12O7h56WrG2EkAtwJ4AxElxdrclwC4/3SPdbZhupEmoW5qV5tN\nZGKqN6ULfvkQ+kxMRsEfDWw3zq4MznNTeGHKMCv0CArNxNBs87PIapoDwJ3ByYB4+cVKw/OCy/b5\nsrY6oJKZG7R8pS74XeEoZ8sxbf/BZhWTQ9ZpV88tHkGl3kKj1fFlEVcbLdRa3hyBjNQo6v6cAkAQ\nQkLVrryEoI4H4L6FgQACmS/XkYq5azAkojw8VwYI6PetJdYLMd1nU72yMOajXiP6TH0iEXI0CZ0o\nIs55mqKYPM3O9v5qsHJ7zcRkcGb3sy/ChDBE8UYAE+Ahsl8BMAk3S/usgjG2E8DNAHYB+DaAt/dL\nxJMK/UabhDoZrq5KDuZQ3OB23W4qF/cxaQ5+U5LB9ORoINHAdn0RlzBVb70EEmxiMGXOSuHVbLPA\n7HK9mJsz4y/phOBqAh4TlhT8YrYstRaTqSoqQovdSC/vvqRfRk8Cc9q1scowXj3Es9rkC0J5SFC0\n+3wUSjVg3aEM+ElT9uEk69UCAF5aW72X0sQkoc6kVS3PE74doqZZ0pDP432OKLC/5/mKd3/u1N90\n05MU5LrpWB7blCjnW9rU8UV4mo2mJ9M7b5Ij/YAw4bEL4OtlLwuEVqF+vx7A9ct1vHAIdnl0qyqr\nw6RRqP275Wx0O1ab+Wd16vewUU+ORmFwfuumqoRB1Q81WzREsagzPk8ClYFYghKuyo12oOlprtTA\ntnUZ337my7y8hhQWPs1Bs78HR3RFHTOMLuBlnkZS659zNBDvtag02qhrGkU6wSPPctWGV1sSmkOh\n1vL0zyqC3+sn4O1MW9dEPRefCTMeQbEefqIQ5p4bk0ZDPEempFTT/gEu+KtNPyHI7/p76kQxGfqb\nVqzTNQeTM9uE/qWJEERBRD9EgORkjP3Csoyoj+EqmOHiosOYlcx9DGPQfpAPp+nh9Qn4blFSJmIx\nLPMIhHM2emaIBsGkzvi80VbBcfSmmj5BzmxANxfxR7/W7Di5EAAXBql4xMkp8WwTjzrluPXkQ5l3\noZvJ3AgwU7t3rPK4psV0wmTapzxaQHeTjwyz1hfGApaYKBjJIUS0UojS+qFMnkbnt64VRwG0jGtX\n+3wR4qvPOU3BJiy3YgMC23XhaX63g9v7AWGc2f9H+ZwC8DoAreUZTn/DeIO7OL+X3KehPaxGwYmD\n+R5ex3fRo+YQNBsL6t+r78I4+zM4G00CJAyBBPki9G1lFjFj/hXLMokYas0GohHyEFyQ6Up+lkIi\npY1JmgZTcVN78Mw+yC8DhFvQyhyAEGwikv1qzU54X5djxyfPfTOVm+l5zfhQWkrwRMQfGRgs4CVM\nmoMv3NVQkiNq0BxkP7/pqY8ZwYAwpic9Z+JHRNQ3DubVgI8YTKanEKn6vWoUvoeaZP9wmobJad0t\nEc/UPx71JugZZ4hqu8G2HKYGlnEBqIAZOGCuGEpEIhzVG36r9sso+RiAX4sIak9qJqOgsZoql6YN\npJY2mNuMZr4Qwld/LhJRThS+duc+G54LQ/Rc2HGYJg2m++zVTL1akfs5eMavm5jkvdUTqx3fhU/T\nMAStdMm0DssL/UwgYUxPahZ2BMAzAAwv24j6AoYbD6lKalEMPfoZwmwb1h9iiuEmg5osZ1dGE4NB\nAzGFEPqJqPuM0pwQRV37qxVAvYSjmK2WiLBSkYxFgolCfE9p7RlD6K/JHGYkLA8h9EYsPc/MQwhr\n/p2bZ3qdKCyVdxNmnXjTBKJXv4QKo0DXGEF+80++DM7saLCJyQmD9RnoTXJk7SGM6elBcEsGgZuc\nDgJ463IOql9hNj0FI0ztr14d5L5YbcNDbdI03FhwTT3vEg1lip7SX8owM0eTpqGGHYaKelHbDYJF\nhke2OsxY5C1lIMGU1l9un4xFPMLFZA7zag4hNIoQxNJzaKmmsZlqgBnzaLokYi71vKjP3pmYJE3n\npmsOEuZE19766zwku/kyrQ2mJ0ej0Pbbx4qDEWGI4nLGWE1tIKLkMo1nTcIYHnsGT0R4H0Vwu0nT\nkC+Lvnsn9M+wKIsxEU/bT5iX3ZwQFbB/7XOYmXOQua3VaYc3w3Xxy5hqAAFecjGRlzoOU96JqX8o\ngbuU5hAVhfB61RxCmp6ca7SU8zuEg91MDl7iC4KpdI7+Tsmv+n5ck5GugUing77f4OOZ3v5zNY/i\nxwFt95ztgfQXTOGxKzeCsE5u8/Kswf3dAmbB7aayBXq7FAj6OL3VcEMI+Jj64ofQQEK0+0s1GEhQ\nbG9eX0DTuozamEHLMYQBm3IK1PElQzmwDfkIS5Cm44syBTP4+kd9+1f7mUxVca1dPZ5J0zBNCNTr\not5boyYQUqMwTbK6EYgpikk/LBnezXNKoyCiKfCCfGkiugquTBgCkDFtdz5iOe672SRletiDHXWm\nipamdp+mEQ1+O+SLrL80uoBw+6umpO4C3hgGaRDK0Qg5UUwmwa/6N9Qx6UXe5Dn7NBCHWDRzmyRN\n8p6nul/POavtJj+LIbQ4zHVZKqegq3PapF31qIH4JhCx4OfZ48cwPAvq7YmGIArd5yADO6IGn4Z/\nP8Hvjvyq50vIX3yJuIFHO/d8FL8I4DrweksfUtqL4EX9zmH0ZkpajhmCUZ0NqebK734fRReNwqCx\n6A58k73X5GA0F21TXnyVKAyzblXg6LNZAicu08IyukbhFnkz9NfbTRqFaE/FvFFS6jmoGoVKZCoh\nxAwkYCw/b3AcR0RYb7MdvB6Jvh/1u1EDOQ1ntgp9vxLqNfbkF6l1zww10HqusWYwJfW68JiObnkR\na5EYdCxVPfYLAL5ARK9jjP33Co6pb7GSNsfQGoVsjwT3M5UhMK26ZepvXCBeazcSiMfE1H0WGSp6\nSnM2k1ApfBqFIBef4DeYnuSY4tpFNUZ6SWGqjSdm0igMIZ5mrUu9XsHXRS8bL/Nr9DpGp+20Nmlp\nBtLUZ/Wm58JUSVXtH4ZAVJgIxGR6MpmY9HeBOb8Hv4M+05NJLqxB5ljK9PRmxtiXAGwnonfpvzPG\nPhSw2TmNlcyoDKtRdLOD+k1MJpOU3E9wu7+mvqHdEInicUIabNTqC6vWD/Iu7qR+9msUfJ/BGoI/\nd0BoCAYNRDeXxJ1Zd7CmYXL4AmZ/jemzNwLMoFEYyMQ0BvW7L7HSoDmYHP6mMGtp3tFHYyKEMLkJ\nPWsORlIKZ6oy9ZePuk9772JpCE0gfYylTE9Z8X9gJQZi4UVYjeJstXfTHMKWJwjjSPQscu8Jj1Xb\ng80N6nUxzQT1maMU4Kb1CEyhwjoRSULwtfdqbjGYUvQ1nfXx6Ptcav0SaUfXycutmGoQ/CHDpo1h\n1qbnIvhSmIX6EvdZotd1YHzPi9Pf20++A752BDNFr2L/nHJmM8Y+Kf7/1coNp79xJqU6ej6WcRYV\nrt0ciRHc362dH6w5mJZz1IklTKy6+oJ7CMTgzA4dKiy8FLopyRH8BvOJ0fRk1EyCNQ1duzJdC5Uc\nowYSMCUfqoJcJU1dE5DErgcXmEq7yOP1Sgg6TAXyjCYm03rTqs+lx1yjnjUN3cQkxh42vN0YTut8\nDSaotYQwmdkTAH4bwHa1P2PsN5dvWKuN3sJjl0OV7HWdip41CoMN2Sj4Dcs5mkxSOsIkR5lm2sa4\neENYii7I5TH8JiYK7G9yfrump2ChqWtdutB19qPs12SGixnI1BxV5m2XtaR0DcGkaRhDfw1BDlKQ\nm8hRvxbdiEWH10cR2MVcnVm7RHIo+hjkGP1RUkuPTYcxsa7HoJh+RpiEu1sA3AXgNgB9tzbESsJ0\ne1fSR2EK2TPZQfWXxhTpYTIxRQztcoboNzH0Rlgmc0s4p2XwTM3kuzBqFD5CEEJTt9dL05MeHmvU\nKExCPfjcYtHg81fHYYwqMxCI3t5xaoBpEwWxX1NlVP1Uupsqw00gzKX4gycNKkwCV+8vx+IjBPH0\n+p3WQqPQ9uv6KPTnbmlLwxrkBR/CEEWGMfYnyz6SvkJvd3Y5noNeZyNhNQpzkhF5fpdwbc4Gs4op\nGkqD0SR1GoTg9PeZDMSxDNpLWFOSFPAmJ7ffvyOIQmNTk4PZlF1sjAAzhMcGja1buxy7qQaYKRrO\nFGZtIkf9WpyJRtGr6UkfqxyKPgZXc0Bge9jgFYdYfO+UYfvg5r6GQan34OtE9EvLPpK1gJAP5lk5\nVEiNwm3vjVh0IjLt17RKVzefhmk/S7X3WotH7+7OloPt8qb1CEwagimcVr8WkhD87d01CnVIsRCa\nRhgHuQrzhEC//xTY3xQl55qYDD4tw/PiG7fJR2HQLk19lmqXpOVrd5zWukbBYarIbNY0vJDvmK99\nDTJFGKJ4JzhZVImoQERFIios98D6EcZZ/jIcq/coJu93o+Yg/usCvhvRmDQNUzSUb3whZo7GEMqQ\n+5RCy2+LFu2akJXnZpp1+5ziJue06NdmukbRfZavCqOYwXdh8t2oMJVw8WsCsh3B/bWnOWbQohwT\nUweB7f7gh3BaoUSYyVevpid/uGuw6anTjRB6fOHP9fBYAABjbHAlBrIWsJJ5FGGP1c0OajI9mdbx\n1XdjVu+D23s2PYWwRYfVouQp6QJaCjPdFGReHVD01w5sMtv06sA35jyoJilDxnJYTTMaIXTazJ/P\n4GgOwedg0hx0yHadHE2aRq8abxh0WwdCouOYmEJqJg4hGDQN6M9RcH/3nTLM1tYQwkQ9XR3QnAdw\nmDF2Xq50p2M5TE/hNYpgU4LbX+vdo+bgqs/BQlPfW6/mI89sucey0b732+CjcGeUwY5dn+B3CCE4\nVFQfTq++FaPPRTU9Ge9TYHOAkCIAzH8sg4nJ0UANJOgT/F20PJ/pqcdJQBh0M5dKuJqmHgHG//t9\nDqJd22+v/U2nthZNT2Gc2Z8AcDWAR8X3pwB4DMAwEf0eY+y7yzW4fsNK3t9eZ/K9zth000C3KCu/\nqcJALCEIwbOfED6KsKYnIv4ymwok6pYgk10+YiCEiHG2LI7jG3fgsEOVnjDPlnsTuGaHqmnCEW57\npwaY4Vr4+ptCnM9AaoYlYpPT2pkoGHwRpjGbEFbbX4M8EcpHcQLAVYyxZzDGngHg6QAOAHgJgA8s\n5+D6DeS8HCt3LB29raVtDiENO+PrtRCi6SUwzUDDjCF0RJdhbPKrf3Yd3G5aiMZp1+zy5lLvp38+\nJtI0zlINSV29LrWr7ydqeOaNJCj7h/aBBe8nDMw5Qt7vJo1SjtDk5A7rk/RXk/X2XIvEoCMMUVzK\nGNspvzDGdgF4EmPswPINqz/RDzfcNGs5U9XeKOC7aRoGk5Rv/yHGYdY6gvub1kA2+WVCC3JjjgD/\nHzZHIGyyY1D/XvdpvL5hSdNpD3c8t6qw1m40PRmGtww+Cn3MMvnQHx4bnIHtRj1Baw8mBLc1+LnT\nca4m3O0kon8BcJP4/noAu8Qqd81lG1kfYzXvc1hB0U0g9Ho8n6HC4P3u1TSmwuSjCGuvjxDPCDUu\n7qRvbxibqQyFa27RjhsJ3n+vSWZq/541uR6ve9gJh/zqN1V2PwftCIbxGbqHgNFHYTA9mU1SwQSi\ng5kYxABXww3W9tYSwmgU1wHYB+APxN8B0dYE8MLlGlg/oh8mAmdaOx/Oi+99GUwRHUT6B89uAqKk\nejOZqAiTpevpr/sonKxz7dgGIWjys7imp+Dj+XJHztBM2K1dhVkM93qssOTbRaMwaA7hfWCn/1KF\nNc+64dHBmoOPWAz7Nzmtex1fP8iRXhEmPLYK4IPiT0fprI+oL2Co9YTgl2MlYXrGTDNB//ZLP6W9\nCopenZ9L4YyrhEolx0BqoQmkS4in0b+jE06P53MmuQMm85yJ+MPeJ3NIaZftQ/vAgvdzJtCvRdvx\nUQRrDr4xOBqI3h7c3xQN1Sup9zPChMdeAuD9AK4AkJLtjLELl3Fc/Yk+uL9nK8wwLNn1btI4fYEQ\nNrtYQhdWZkIgz39/u7Zf06zYGCrqPX7XcZ/RLNrQ3qNGEfY+ddv+TGt9nalpNMw+HROTT9MQ7YZw\nWl++hPgf1sndq5mwnxHG9PR5AP8CoAVuaroBwJeWc1Crj95m3SsJMghH05h0M0mvYzf7KOTxdXNO\n8H7CHLfX8h8m04DfxBQ8BoMiYC6VbTJJnYHTuleYNcreNjBl7JtCi8PnRfQ2UViOdynsc2QsCthj\nraduFoi1SAw6whBFmjH2fQDEGDvMGHsfgFcs77D6E45WvYqmp7ARPT3KDeM5dTMx+dVt02zrDMwq\nJh9FSKHUjUCMmoOvPIXof6aVUXuMz1cRVhMwmdWcMYTUTN1u+jkHj8+Nhgo3QVkJjULC56MwFQXs\nUj1Wx+mW9lhLCBP1VCeiCIC9RPS/ARzHebrqXT88B706Bc0Pt+7M7q0C5nI4ak0ILey6RLeEHYNJ\n2Ml2XaPoVmhPR9h1DoLHZvolnDmkW7s/aKGLNneGocLL8U6drWgov8ZqIBDxP+zCZmuRUMIWBcwA\neAeAZwD4dQBvWc5B9Sv6If6514Q7Hd21IoPGYtiP7yhGdf30r53ZKWw6Vo/tXb7r4zDlUfjs+8uQ\njdxzdFOvjnMWrAn4ckq6PIdnaqo6E4Q2PRmLAvL/Z2ouM+VdnJPObMbYA+JjCcBvLO9w+hv9eHtN\nCxFJ+Ir/9XgW3bKOw2cj93TYUNv6iwIabM7iv79sdPB+u4UK+53fvWkOZyQceyRiEwmaTExhrapd\nE+58/YP3sxxzL2NVWZ+PIrgdZ9n0ZAw5X0MwEgUR3brUhoyxV5/94Vh0Q68Jdyb0KhB8x+u1/xlF\n+oSdIRrGYJg5Kgfopdn44uuEsbKk6f3uOlLD3Y+eJxDdSnj4NJOz/1z0ClN0k2kpVHPGtsEkFfzY\n+bAGeWJJjeLZAI4CuBHAfVib53dW0Q8zgZ59FNr3kBaHrv0du7zeHtx9WWB2Wgf319v///bOPNqO\notrD3y83MyEJmSdCAkkwA0TkJkxhDiCDIJMgU4IiSxkVUUFcGmVFEcWBpz5lElARUQYRGQQkDkRk\nJiTwkCg4IA8eyCAKwYT9/ug6N+ee7j6nO/fMd39r3XX77K7u2tV9Tu2qXVW70oxl+g+8fOlK9Rk1\nZAA3nbqA4YP7lehRfaMZn8pZMI7J9+l5aJeCQeguzxLwsFGkRY9N+17E5BVaV1nHKFqRcoZiHFHg\nv/cCRwE/B35YHPept9EMvsWslUylZHlnbpXerutHVOqXr2cLMeZKqhC7p7Qy7Qr+lkysKBWL1j1B\nRx8xZ+KwyvfNQWZdu+TVcX9lNQhpLqymGN+LzW4K8tgYRcpCvEDWnkNqqMAmeBZ5SR3MNrN1Znar\nmS0CticK47EszHxyGkTeGRTpkS27kxY2Oj3f5B5FPW1p2lhEWkswXreVrxBK6bKNPSxjTyqK7K5H\nhfQpeefsWcb1COlTtsLNGhSwnsR7FBVWWqf00krpksbukzzW0QSPIjdlB7ND4L/9iXoVU4ALgetr\nr5aTRtb9JSpNlyz90hd2XXtzXffFA+nrK5L1qWeFkH91eFqPIluF0HWf2H3LJq8qeacrx3tRyeM1\necuQf21L46vHtAZE2grstHmwmcOPF+Q9fNbNQLnB7CuBOcDNwGfNbGXdtGpSWvEFx0jxLffvG7W2\n1q7L1wOJ375+Dyl9+mmyPPO0xpSaIuv4QCPIO5Uz8xhFSs8hbYwi78ZK9SRzOPG0PbMrpE/Nt4Ie\nrUC5dRTHANOJ1lEsl/Rq+PunpFd7mrGkUyX9j6RVks4vkp8tabWkJyTt09N82p2uHkJaaOSU9KUU\nuuX/KelRDOrXAcC/1qxLzj82RpGmafVJX1iXNrCb0qPIWMk2w88760ystPTrXYYZx7pIcyWl9Chq\nMSW4RqT1rgrEvy/JBqRA1unXrUhqj8LMehBooDySdgcOAuaa2RpJY4J8FnAkMBuYANwhaYaZJddS\nTuaQDqWUfocH9oted+kPffzwKA7k28ZtnHiffiXxD+o6mF1hQLVApZXZaS3HrNSzDsy/Ir42Lfyu\nnkbGhXil4TOagfU72ZXK8w1md8nTMmq+oucmSwiPWvAh4DwzWwNgZs8H+UHA1UH+lKTVwHzgd41R\ns/nZYswQnnn5dQb07egmXzBtFLc/9hxTRm7UTf6uuRP4+p1PcuDc8d3ku205hpN224L3L5jaTT5q\nyAB+ftoCNh/VPWrLmrVRz2PqqO73rye5/fUpPY3U+6fl18DWcd7KKO9sqKyTH1LVSGle9k8LDlWG\nX31sNzYaEK+iLjp220T9F+84hUefeSUm32naSO5e/WJMPmPsEO57+iX69e2uW6EXnTadtpT0R9Y+\nXYpGGYoZwM6SlgJvAGeGFeATgXuK0v0tyGJIOhE4EWDy5MlVVW70kAEAdG62STd5oQW7cNbYxOu2\nmzoiJuvoI2ZPGBqT7zN7LK+tWRuTf/HQrVj5TNyzd8vpO3Pf0/+Iyb9x1DY89JeXGb3xgG7y43bY\njH3njGPM0IHd5NPGDOHp8+IxHTv6iI+/823xQgGzJ8SneG4xeiM+tf9MDt6m++tp5PTYNB3yRwNN\nSdcE8+Tz76VeMs7SdR8S5fEMo3+pa05KPm/IYPZ3F89LNAibjUxuhOw9e1yifMmBsxPlly2ex+tv\nxp0SFx/XycpnXmVISd7nHbo1V/7uz7Hf8/t3nsoDf3mJQ98xqZt8u82jdEdv170eGr1x9Ns7an5y\n/XTA1uMT5VNGDk6UN5KaGQpJdxCtxSjlnJDvCKJpt/OAayTl2t/CzC4CLgLo7OysqumePHIwd5yx\nS6w13q+jD8vP2oORQ/rHrnl0yd6xVj3AHz+/X2Ie3zm2M1F+xLzJHDEvLp85figzx8cNztCB/dh1\nxuiYXFLMSFQTSZywc/yVNaMbJm2+fGpLsMIU4UZ6ErK6zwq61mJnuXJsSMDD3d82pgaarGdA347E\n3+bwwf1ZMH1UTD5qyADO2GtGTD5+2CCuP2mnRHlS42vYoH6JcoBHPrM3G/WP63TfOQsZnCC/95N7\n0ncDemXVomaGwswWpp2T9CHgOov6ufdKegsYRRSZdtOipJOCrO5MG5Psk58wfFCifOOB/RLlvY1C\nBVQPl1TegHfplWy22TCkyOs56yn/Arra9ILyuv2c7gwblFxflHoGCtSy0ZeFRrmebgB2B+6SNAPo\nD7wA3AhcJekrRIPZ04F7G6SjswF09BEXH9fJ3Elxd1W9SJu+mLZAr5S0+fXps11yKlgDejoNtkDe\nsCalYxrl8rvqhO0Yn9LQcpqbRhmKy4DLJK0E3gQWhd7FKknXAI8R7ah3ss94aj32ShnDqRe5W7VZ\nxy6awCCkUXHfiErXp64RyZdfOdfTjtPibh6nNWiIoTCzN4nWaSSdWwosra9GTr0Y0Lf2ftbMYclz\nx7vKV5nWk7TZRtVa11JphliXHuEZTxvTK/c2a1sa1aNweiHXnbQj44fV3teatvApdaOjks95V9o2\nA3lb/mlkXWldrqNy9YnbM90NRVvhhsKpG++YvEnlRFUgPuupsKK2OusomjF2T+ZpsCkL5dLoujzH\nGoLtNx+Z7eZOy9C4+VaOUyPyupjSYgDF0qXfIYtaNSU2gJ8ir0RWb9xG/aM25mZNOOffqT7eo3Aa\nzs9OWcDgAfG54xtK1lDclVrJeQd4G0lP96TOa1AmjxzMpYs6mZ+wyNRpP9xQOA1nqypPpc0ai8dS\n5On3bfzK7KwUVIq7pKLPeUN1JKXec2ZjZ7c59cNdT07bkeaGKSVt45qs920msi4OzDp7qcCAECxy\nUMJqYaf34D0Kp2m56oTteGNt/mU0Wd0tqfsLpKVPiRnVDPYjs7utS54tKOC+c8Zzxl7/4vidpvRE\nPafFcUPhNC0bukArdR+BvOvwMob8aAayTo/N63rq6CNO23N6T1Rz2gB3PTltR1pQwNLqNHUrzLRN\noFKDBTbecMS3NlWQZ7u+GY2f0zy4oXBajqO3m8zEMjGD8lbcWXsO+afN1o+8LqZS3r3NBKD2kVyd\n1sRdT07LsfTgrfJdkDK2UMn5kjMga0PJGzG3tOxbTxqeGhLbcbxH4bQ9eafB5o4B1YSGo0DMgDSx\nrk7z4obCaXvWD2ZnG4so0EIdilRK7URhS9JWKoPTeNz15LQNN526gLtXv5D7uqx+/DS70koDwV8+\nfC6X3f0U86b4imonO24onLZhzsRhzJkYX+Wd5npK3wc6eTptmryVGDdsIJ/cb2aj1XBaDHc9c/dt\nPQAADkdJREFUOW1P2kK5AvEw44X0tYmTVA+aUCWnhXFD4fQaYi6inIPWudM7TpvghsJpe75wyFbM\nHD+UcSmbJuWeNtsC7fWvHvF25k4a1hUO3HF6gn+LnLZnp2mjuOX0nWPyvBsXdclTNgNqJhbOGsvC\nBu9d7rQP3qNwej1ZewjueXJ6K24onF5L2nRXS5kmlTo9thm7FI5TRdxQOL2WtNlQaXtsF8i694Pj\ntAs+RuH0Ws7ZfyZr33qL3bfsWSC8gn3IG/qjGly6qJPfPJl/kaHj5MENhdNr2XTEYC5ZNC8mT3VJ\npfQ0GtmT2HPmWN+S1Kk57npynBRiLqkKC/ccp11xQ+E4PaQV1lU4Tk9wQ+E4JXRFm22wHo7TLLih\ncJyMpO5w5xbFaXPcUDhOCftvHW0LevA2E3NdV0uDsXjHKcyf6qHBncbgs54cp4SpozZK3BY0baOj\nekyPXXLg7Nrd3HEq4D0Kx8lI14Jt9zU5vQw3FI6TEzcTTm/DDYXjOI5TFjcUjlMl3CPltCtuKBwn\nK74y2+mluKFwnIysj/XkOL0LNxSOk5FNBvcHYOqoIYnnGxE91nHqga+jcJyMbDN5E65833y233xk\nzfK486O7eo/FaToa0qOQ9HZJ90h6WNL9kuYXnTtb0mpJT0japxH6OU4au8wYTf++yT+baoxdbDF6\nCJuPTu6xOE6jaFSP4nzgs2Z2i6T9wufdJM0CjgRmAxOAOyTNMLN1DdLTcRyn19OoMQoDhobjYcDf\nw/FBwNVmtsbMngJWA/MTrnccx3HqRKN6FB8GbpP0ZSJjtWOQTwTuKUr3tyCLIelE4ESAyZMn105T\nx3GcXk7NDIWkO4BxCafOAfYEPmJm10p6D3ApsDDP/c3sIuAigM7OTp9v4jiOUyNqZijMLLXil3Ql\ncHr4+GPgknD8DLBpUdJJQeY4TY9Pj3XalUaNUfwd2DUc7wE8GY5vBI6UNEDSVGA6cG8D9HMcx3EC\njRqj+ADwdUl9gTcIYw1mtkrSNcBjwFrgZJ/x5LQKHtrDaVcaYijM7LfAtinnlgJL66uR4ziOk4aH\n8HAcx3HK4obCcRzHKYsbCsdxHKcsbigcp4cU9tAe2M9/Tk574tFjHaeHjN54AB/bZ0sO2Hp85msu\nOHwuEzcZVEOtHKd6uKFwnCpw8u7TcqU/dNtJNdLEcaqP95Udx3GcsrihcBzHccrihsJxHMcpixsK\nx3EcpyxuKBzHcZyyuKFwHMdxyuKGwnEcxymLGwrHcRynLLI22JZL0v8Bf260HhvAKOCFRitRZ7zM\nvQMvc2uwmZmNrpSoLQxFqyLpfjPrbLQe9cTL3DvwMrcX7npyHMdxyuKGwnEcxymLG4rGclGjFWgA\nXubegZe5jfAxCsdxHKcs3qNwHMdxyuKGwnEcxymLG4o6ImmEpNslPRn+b1ImbYekhyTdVE8dq02W\nMkvaVNJdkh6TtErS6Y3QtSdIeqekJyStlnRWwnlJujCcXyHpHY3Qs5pkKPPRoayPSlouaW4j9Kwm\nlcpclG6epLWSDqunfrXCDUV9OQu408ymA3eGz2mcDjxeF61qS5YyrwU+amazgO2BkyXNqqOOPUJS\nB/BNYF9gFvDeBP33BaaHvxOB/66rklUmY5mfAnY1s62Ac2nxwd6MZS6k+yLwi/pqWDvcUNSXg4Ar\nwvEVwLuTEkmaBOwPXFInvWpJxTKb2bNm9mA4/ieRgZxYNw17znxgtZn9yczeBK4mKncxBwFXWsQ9\nwHBJ2TfZbj4qltnMlpvZS+HjPUCr7/+a5T0DnApcCzxfT+VqiRuK+jLWzJ4Nx/8LjE1J9zXg48Bb\nddGqtmQtMwCSpgDbAL+vrVpVZSLw16LPfyNu6LKkaSXyluf9wC011aj2VCyzpInAwbR4j7GUvo1W\noN2QdAcwLuHUOcUfzMwkxeYmSzoAeN7MHpC0W220rC49LXPRfYYQtcQ+bGavVldLp1FI2p3IUCxo\ntC514GvAJ8zsLUmN1qVquKGoMma2MO2cpOckjTezZ4PbIalruhNwoKT9gIHAUEnfN7NjaqRyj6lC\nmZHUj8hI/MDMrquRqrXiGWDTos+TgixvmlYiU3kkbU3kQt3XzF6sk261IkuZO4Grg5EYBewnaa2Z\n3VAfFWuDu57qy43AonC8CPhpaQIzO9vMJpnZFOBI4JfNbCQyULHMin5VlwKPm9lX6qhbtbgPmC5p\nqqT+RO/txpI0NwLHhdlP2wOvFLnkWpGKZZY0GbgOONbM/tAAHatNxTKb2VQzmxJ+vz8BTmp1IwFu\nKOrNecBekp4EFobPSJog6eaGalY7spR5J+BYYA9JD4e//Rqjbn7MbC1wCnAb0UD8NWa2StIHJX0w\nJLsZ+BOwGrgYOKkhylaJjGX+NDAS+FZ4p/c3SN2qkLHMbYmH8HAcx3HK4j0Kx3EcpyxuKBzHcZyy\nuKFwHMdxyuKGwnEcxymLGwrHcRynLG4oWhxJJumCos9nSlpSZx0uL0TJlHRJTwP6SZoiaWXKuS+F\nCLNf6kkezUR4fk9Vc4pl8TvpjUhaLOkbFdIcEaLAtnSE5nrgK7NbnzXAIZK+YGYv5L1YUt8wP7wq\nmNkJ1bpXCicCI8xsXbGw2uVoAB8zs580WolqIqmj9D01E2b2I0nPAWc2Wpdmx3sUrc9aovDNHyk9\nEVrmvwx7AtwZVsoWWpvflvR74HxJSyRdIek3kv4s6RBJ54d9BG4N4TWQ9GlJ90laKekiJQSzkbRM\nUqekA4sWzz0h6alwfltJv5L0gKTbChFUg/wRSY8AJycVVNKNwBDggdAaLC3HRpIuk3Svor08DgrX\nDZJ0taTHJV0v6feSOsO514ruf5iky8PxaEnXhvLeJ2mnIF8S8lgm6U+STiu6/rjwrB+R9D1JG4ee\nQuH5DS3+nIaksUHPR8LfjpI+J+nDRWmWKuzbIekT4V09Ium8hPulPfPTFO0BskLS1QnXLZb001DW\nJyV9pujcMeE5PyzpO4pCayPpNUkXhPe4Q8n9YvlJmi/pd+F9LZe0ZVHeNyjaw+RpSadIOiOku0fS\niJBumaSvBz1WSpqfUI7Ed+nkwMz8r4X/gNeAocDTwDCi1tGScO5nwKJw/D7ghnB8OXAT0BE+LwF+\nC/QD5gL/JorNA3A98O5wPKIo3+8B7yq632HheBnQWaLjNUSVfz9gOTA6yI8ALgvHK4BdwvGXgJVp\n5S06Li3H54FjwvFw4A/ARsAZRflsTWRcOxPudxhweTi+ClgQjicThRcpPKvlwACiWD4vhnLNDvmN\nKn5WwHeLnt+JwAUJZep6fuHzj4gCIwJ0hPc6BXgwyPoAfyRa9bxv0GdwSb6Xh/KUe+Z/BwYUnleC\nXouBZ0M+g4CVRLGMZhJ9t/qFdN8CjgvHBrwn5d3F8iP67vYNxwuBa4vyXg1sDIwGXgE+GM59tej5\nLAMuDse7EL434fpvlHuX4fNuwE2N/h03+5+7ntoAM3tV0pXAacDrRad2AA4Jx98Dzi8692Pr7ha4\nxcz+I+lRosrp1iB/lKiSAthd0seBwcAIYBVRhZFKSP+6mX1T0hxgDnB76Ix0AM9KGk5Ucfy6SNd9\nMxW+ezn2JgqoWHAlDCSqGHYBLgQwsxWSVmS470JgltZ3moYqim4L8HMzWwOskfQ8Uej0PYIuL4R8\n/hHSXkIUMv4G4HjgAxny3gM4LtxnHVEl+YqkFyVtE/J7yMxelLQQ+K6Z/bsk3wJbkvDMw7kVwA8k\n3RD0S+J2C8H8JF1HFAF2LbAtcF+45yDWB3tcRxTcMYmk/IYBV0iaTmRkintbd1m0P8k/Jb3C+u/a\no0QGv8APQ9l/HXptw0vyTXyXZvYaTibcULQPXwMeJGrBZuFfJZ/XAFgUHvk/FppbRHti9JU0kKjl\n2Glmf1U0YD6wXAahEjucqKIGELDKzEpdEqU/7DwUl0PAoWb2RMn9y11fHMOmuDx9gO3N7I2Ee60p\nEq2jzO/IzO5W5ALcjajnkzhIn5FLiFrK44DLMl6T+MwD+xO9m3cB50jayuLjPKUxfizc8wozOzvh\nnm9Y+rhELD+ine/uMrODFe1FsqwoffFzfqvo81t0f+ZJOhaT+C6d7PgYRZsQWpLXEMX9L7CcKMIl\nwNHAb3qQRaESfSG0rMvOqJG0GdG2kYebWaGX8wQwWtIOIU0/SbPN7GXgZUmF/QqO3kAdbwNOVajN\nQ+sb4NfAUUE2h+6t0eckzZTUh2jDmQK/INqprFCet1fI+5fA4ZJGhvQjis5dSeT+yGrE7wQ+FO7T\nIWlYkF8PvBOYR1RWgNuB4yUNTsgXUp55KO+mZnYX8Amilv0Q4uylaN/zQUS7E94d9DtM0phCnuF9\np1Imv2GsD9W9uPxjSeWIkMcCoqi8r5Scz/sunRLcULQXFxD5zQucSlSJrCCKznr6ht44VOYXE/mp\nbyMKuVyOxUS+7RvCQOPNFm0feRjwxTDY+TCwY0h/PPBNSQ8TtVg3hHOJXBcrJK0KnyHabWyIpMeB\nzwEPFF1zFtE4x3LWu2QgcuN1hoHXx4CyU1fNbBWwFPhVKFtxuPQfAJsQXCQZOJ3Izfdo0HVWyONN\n4C6iqKXrguxWolDX94dn120GT5ln3gF8P+TxEHBheMel3EvkSlpBNH5wv5k9BnwK+EX4bt0OVNrW\nNS2/84EvSHqIDfdwvBGu/zbdG0oFcr1LJ45Hj3V6HZKWAWeaWV3CXitaz3CQmR2bcv5yogHVstNj\nQ6v8QaJe2pNVVzSe32IiV+Mptc5rQ+npuwwuwTPN7IBq6tVueI/CcWqIpP8i2oPj3DLJXgHOVZkF\nd4oWMa4G7qyHkegNSDqCaNztpUbr0ux4j8JxHMcpi/coHMdxnLK4oXAcx3HK4obCcRzHKYsbCsdx\nHKcsbigcx3Gcsvw/9zNZB2vXBA8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(uniform_window,nfft ) / (len(uniform_window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Uniform window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parzen Window" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N, window_type='parzen')" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8lfX5//HXlQ0kECBhZLOX7DAUUNyioNYJbmu1fh21\nw7b2Z1s7vv12WrVVa6l7AnUhuLUCIjLC3hBCyGKEEQgJ2dfvj3Ogh0iSk5CT+4zr+Xich+e+z33u\n874xOVc+9+e+Px9RVYwxxhiAMKcDGGOM8R9WFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCVYUjDHG\nnGBFwZg2JiKTRGTrabxfRaRva2Yy5jgrCsZviUiuiBwTkaMisldEXhSRWKdznS5V/VJVBzidw5hT\nsaJg/N00VY0FRgGZwM+buwMRiWj1VMYEKSsKJiCoaiHwIXAGgIjcLiKbRaRURHJE5LvHtxWRySJS\nICI/FZE9wAsiMs/d4jj+qBOR29zbDxSRT0XkoIhsFZHrPPb1oog8JSLvuz9rmYj0OVVGEXlJRH7k\nfp7sPs1zr3u5j3v/YcfzebwvV0QeFJF1InJYRGaLSIzH6z8Wkd0iUiQi3673mZ1E5GURKRaRXSLy\ncxEJc7+2S0RGu5/f6M4zxL18h4i8ezr/T0xwsqJgAoKIpAKXAqvdq/YBU4GOwO3AYyIyyuMtPYAu\nQDpwl6pOU9VYd6vjWmAP8LmIdAA+BV4HugHTgadFZLDHvqYDvwY6A9nA7xqIuRCY7H5+DpADnO2x\n/KWq1jXw3uuAS4BewDDgNvdxXwI8CFwI9AMuqPe+vwOdgN7uz7jF/e/hTZ6FDWQxIcyKgvF374pI\nCbAY15fY/wGo6vuqukNdFgKfAJM83lcHPKKqlap67PhKEekPvARcp6r5uApLrqq+oKo1qroaeAtX\n4TjuHVVdrqo1wGvAiAayLgQmuv9SPxv4EzDB/VpTX8J/U9UiVT0IzPP4jOuAF1R1g6qWAb/yOJZw\nXAXrZ6paqqq5wKPAzR55znE/nwT83mPZioI5JSsKxt9dqarxqpquqvcc/4IXkSkistR9SqYEVysi\nweN9xapa4bkjEekEzAV+rqqL3avTgXEiUnL8AdyIq6Vx3B6P5+XAKTu7VXUHUIbrC30SMB8oEpEB\nNP0l3NBnJAH5Hq/t8nieAETWW7cLSHY/XwhMEpGeQDgwB5ggIhm4WhdrGsljQpR1wJmAIyLRuP6a\nvwWYq6rV7vPj4rGZ1ntPGK5TRF+o6kyPl/KBhap6YSvFWwhcA0SpaqGILARuxXXqqSVfwruBVI/l\nNI/n+4FqXIVtk8frhQCqmi0i5cD9wCJVPeLuY7kLWNzIqSwTwqylYAJRFBANFAM1IjIFuKiJ9/wO\n6AA8UG/9fKC/iNwsIpHuxxgRGdTCbAuB+4BF7uUF7uXFqlrbgv3NAW4TkcEi0h545PgL7v3NAX4n\nInEikg78EHj1FHmOt1IW1Fs25iRWFEzAUdVS4Hu4vhAPATcA7zXxthnAeOCQxxVIN7r3dRGuc/NF\nuE7j/BFX0WmJhUAc/y0Ki4H2HsvNoqofAo8D/8HVyf2fepvcj+uUVY77s14Hnm8kT/1lY04iNsmO\nMcaY46ylYIwx5gQrCsYYY06womCMMeYEKwrGGGNOCLj7FBISEjQjI8PpGMYYE1BWrly5X1UTm9ou\n4IpCRkYGWVlZTscwxpiAIiK7mt7KTh8ZY4zxYEXBGGPMCVYUjDHGnGBFwRhjzAlWFIwxxpzgs6Ig\nIs+LyD4R2dDA6yIifxORbPc0hKNOtZ0xxpi248uWwou4phdsyBRc0wv2wzW++z98mMUYY4wXfHaf\ngqoucs/w1JArgJfVNUzrUhGJF5GeqrrbV5mM8QVVpehwBTnFR8kpLqOiupZeCR3ondiBtC4diIqw\ns7QmcDh581oyJ08zWOBe942iICJ34WpNkJaWVv9lYxxRVlnDv7PyeXFJLrkHyk+5TVxMBNPHpHLr\nWRmkdG7fxgmNab6AuKPZPX3iTIDMzEybAMI4qrq2jqe/2MGzi3MorahhVFo8d0zqTd/EWPokdiA6\nMpzc/WXk7D/K55v38fxXuTz/VS6XDe3JL6cNJiG2pfP3GON7ThaFQk6eezbFvc4Yv7XrQBkPzFrD\nmvwSLhnSg++e05uRaZ2/sd3w1HiGp8bzrZEpFJUc46UlubywJJclO/bz52uHc+6Abg6kN6ZpTp7s\nfA+4xX0V0njgsPUnGH82d00hlz7xJTnFR3nyhpE8c/PoUxaE+pLi2/GzSwcx776JdO0Qze0vrODX\n8zZSU1vXBqmNaR6ftRRE5A1gMpAgIgW4JhyPBFDVZ4APgEtxzTtbDtzuqyzGnK6XluTyyHsbGZvR\nhcemjyA5vl2z9zGgRxxz75vAHz7cwgtf5bLncAVPTB9pHdHGr/jy6qMZTbyuwL2++nxjWss/F+7g\n9x9u4aLB3fn7DSOJjghv8b5iIsP51eVDSO3Snt/O30TVqyt56sZRxES2fJ/GtCb7E8WYRvz98+38\n/sMtTBuexFM3jjqtguDpjom9+O2VZ/D5ln3c+XIWFdW1rbJfY06XFQVjGvDvrHwe/XQbV41M5vHr\nRxAZ3rq/LjePT+dP1wzjy+37eeitdbgaz8Y4KyAuSTWmrWXlHuThdzZwVp+u/PGaYYSHiU8+57rM\nVPYeruDRT7fRr3sc957b1yefY4y3rCgYU0/+wXK++8pKkuJjePrGUa3eQqjvvvP6sn3fUf788Vb6\ndovl4iE9fPp5xjTGTh8Z46GiupY7X86iqraOZ28dQ3z7KJ9/pojwp2uGMTylE9+ftYZte0t9/pnG\nNMSKgjEe/vDhFrbsKeVvM0bSt1tsm31uTGQ4/7olk/ZR4XzvjdVU1ljHs3GGFQVj3BZuK+bFJbnc\ndlaGI3ccd+sYw5+uGcaWPaU8+sm2Nv98Y8CKgjEAHCyr4sF/r6V/91gemjLQsRznD+rOjePS+NeX\nOSzJ3u9YDhO6rCiYkKeq/OztdRwur+bx60c6fiPZzy8bTK+EDvxwzlpKyqsczWJCjxUFE/LeX7+b\njzfu5cGL+zM4qaPTcWgXFc4T14+k+Gglf/hwi9NxTIixomBC2pGKan4zbxNnJHfkjom9nY5zwtCU\nTtwxsRezVuSzIveg03FMCLGiYELaox9vpfhoJf/3raE+u0Gtpb5/QT+S49vx8DvrqbYRVU0bsaJg\nQtba/BJeXrqLW8anMywl3uk439A+KoJfXT6EbXuP8uyXO52OY0KEFQUTkmrrlIffXU9ibDQ/uniA\n03EadOHg7lw0uDtPfL6N/IOnnvLTmNZkRcGEpDlZ+WwoPMIvpg6mY0yk03Ea9avLhyCIdTqbNmFF\nwYSco5U1PPrJNjLTOzN1WE+n4zQpKb4dd53dm/fX72blLut0Nr5lRcGEnH8u3MH+o5U8fNkgRPyr\nc7kh3z2nN93iovnf9zfbENvGp6womJCy+/Ax/vVlDtOGJ3k1v7K/aB8VwYMXDWB1Xgnvr7epzI3v\nWFEwIeUvH2+jrg5+4sedyw25enQKA3vE8cePttiAecZnrCiYkLGp6Ahvry7g9gkZpHZp73ScZgsP\nEx6+bBD5B4/xyte7nI5jgpQVBRMy/vrpNmKjI7hncuDObjapXyIT+ybw9IIdlFXWOB3HBCErCiYk\nrM0v4bPNe7lzUm86tffvS1Cb8sOL+nOwrIoXl+Q6HcUEISsKJiQ89tk24ttHcvuEDKejnLZRaZ05\nd0AiMxflcKSi2uk4JshYUTBBb+WuQyzYWsx3z+5DnJ/fqOatH144gMPHqnl+sQ1/YVqXFQUT9P76\n6VYSYqO49ax0p6O0mqEpnbhocHee+3KnzblgWpUVBRPUluUc4KvsA9x9Th/aR0U4HadV/eDC/pRW\n1thgeaZVWVEwQe2pBTtIiI3ipvHB00o4blDPjkw5owcvfZ1rfQum1VhRMEFrfcFhFm0r5o6JvR2f\nYtNX7pncl9KKGl5davctmNZhRcEEracXZBMXE8FN49OcjuIzQ1M6cXb/RJ77cifHquwuZ3P6rCiY\noJS9r5SPNu7htrMyguaKo4bcO7kPB8qqmL0iz+koJghYUTBB6ekFO4iJCOf2Cb2cjuJz43p3ZUxG\nZ2YuyqGqxqbtNKfHp0VBRC4Rka0iki0iD53i9U4iMk9E1orIRhG53Zd5TGjIP1jO3DVF3DAujS4d\nopyO0ybuObcvRYcreHd1odNRTIDzWVEQkXDgKWAKMBiYISKD6212L7BJVYcDk4FHRSQ0fouNzzy3\neCdhAt+ZFPythOMm909kcM+OzPwyh7o6m2/BtJwvWwpjgWxVzVHVKmAWcEW9bRSIE9dMJ7HAQcBG\n+TItdri8mjlZ+UwbnkTPTu2cjtNmRIQ7z+5F9r6jLNxW7HQcE8B8WRSSgXyP5QL3Ok9PAoOAImA9\n8ICqfuOkqIjcJSJZIpJVXGw/8KZhry3fRXlVLXdO6u10lDY3dVgSPTrGMHNRjtNRTABzuqP5YmAN\nkASMAJ4UkY71N1LVmaqaqaqZiYmJbZ3RBIiqmjpe/CqXSf0SGNTzGz9GQS8yPIzbJ2Twdc4BNhQe\ndjqOCVC+LAqFQKrHcop7nafbgbfVJRvYCQz0YSYTxN5bW8S+0sqQbCUcN2NcGrHRETz7pbUWTMv4\nsiisAPqJSC935/F04L162+QB5wOISHdgAGA/zabZVJVnv8xhYI84JvVLcDqOYzrGRHL9mFTmrdtN\nUckxp+OYAOSzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8FzhKR9cDnwE9Vdb+vMpng9eX2/WzZU8p3\nJvXGdd1C6Do+Z4RNwmNawqfDRqrqB8AH9dY94/G8CLjIlxlMaHjhq50kxEYzbXhPp6M4LqVze6ac\n0YM3lufxwPn96BAdXKPDGt9yuqPZmNO2c38ZX2wt5qbxaURHBOfAd811+4QMSitqeMduZjPNZEXB\nBLyXluQSGS7cMC54B75rrlFpnRma3IkXl+SiajezGe9ZUTABrbSimjdXFjBtWBLd4mKcjuM3RITb\nJ2SQve8oX2UfcDqOCSBWFExAe2tlAUcra7j1rAyno/idy4b1JCE2iheX2MxsxntWFEzAqqtTXvp6\nF6PS4hmeGu90HL8THRHODePS+XzLPnYdKHM6jgkQVhRMwFq4rZid+8u4LQSGx26pm8alES5il6ca\nr1lRMAHr5a9z6RYXzZQzejgdxW916xjDpUN78ubKAsqrbKxJ0zQrCiYg5R0oZ8G2YmaMTSMy3H6M\nG3PLmemUVtQwd02R01FMALDfJhOQXlu2izARZoy1y1CbMjq9MwN7xPHK17vs8lTTJCsKJuBUVNcy\nOyufi4d0p0cnuwy1KSLCLWdmsGn3EVbllTgdx/g5Kwom4Ly/bjcl5dXcND7d6SgB44oRScRFR/Dq\n0l1ORzF+zoqCCTgvL91Fn8QOnNm7q9NRAkaH6AiuHp3C++t2s/9opdNxjB+zomACyrqCEtbml3Dz\n+PSQHw21uW4an0ZVbR1zsvKb3tiELCsKJqC8tjSPdpHhXDU6xekoAadvtzjO7N2V15bmUVtnHc7m\n1KwomIBxpKKa99YWccWIJDrGRDodJyDdOD6NwpJjLNpuc52bU7OiYALGu6sLOVZda6OhnoaLBvcg\nITaK15flOR3F+CkrCiYgqCqvLc1jaHInhqXYOEctFRURxrWZqXy+eS+7D9t0neabrCiYgLAq7xBb\n95ZaK6EVzBiTRp3C7BXW4Wy+yYqCCQivLcsjNjqCy4cnOR0l4KV1bc+kfgnMXpFPTW2d03GMn7Gi\nYPxeSXkV89ft5ooRSTbfcCu5cVwauw9X8MVW63A2J7OiYPzeW6sKqaqp48Zxdgdzazl/UHe6xUXz\n+jK7w9mczIqC8WuqyhvL8xieGs/gpI5OxwkakeFhXD8mlQXbiikssQ5n819WFIxfW7nrENn7jnLD\n2FSnowSd6zJd/6ZzrMPZeLCiYPza68tdHcxTh1kHc2tL7dKeSf0SmZOVb3c4mxOsKBi/dfhYNR+s\n383l1sHsMzPGpLL7cAULt+1zOorxE1YUjN+au6aQiuo6ZoyxexN85fxB3UmIjeKN5XYKybhYUTB+\nydXBnM8ZyR0ZmtLJ6ThBKyoijGtGp/KfLfvYd6TC6TjGD1hRMH5pXcFhNu8+wnRrJfjc9DGp1NYp\n/15Z4HQU4wesKBi/NGuFa4jsK0ZYB7OvZSS4JiyatSKPOutwDnlWFIzfKaus4b01RUwd1pM4GyK7\nTUwfm0r+wWMs2XHA6SjGYT4tCiJyiYhsFZFsEXmogW0mi8gaEdkoIgt9mccEhvfX7aasqpbpY+3U\nUVu5eEgP4ttHMmuFDakd6posCiLSXkR+ISL/ci/3E5GpXrwvHHgKmAIMBmaIyOB628QDTwOXq+oQ\n4NoWHIMJMrNW5NGvWyyj0myI7LYSExnOt0Ym88nGvRwsq3I6jnGQNy2FF4BK4Ez3ciHwv168byyQ\nrao5qloFzAKuqLfNDcDbqpoHoKp2sXSI27a3lFV5JVw/JtXmYG5j149Jpaq2jndWFzodxTjIm6LQ\nR1X/BFQDqGo54M1vazLgefFzgXudp/5AZxFZICIrReSWU+1IRO4SkSwRySoutlEdg9ms5flEhgtX\njbI5mNvawB4dGZEaz+wVeahah3Oo8qYoVIlIO0ABRKQPrpZDa4gARgOXARcDvxCR/vU3UtWZqpqp\nqpmJiYmt9NHG31TW1PL26gIuGtKDLh2inI4TkqaPSWXb3qOszi9xOopxiDdF4RHgIyBVRF4DPgd+\n4sX7CgHPUcxS3Os8FQAfq2qZqu4HFgHDvdi3CUKfbNxLSXk108fY4HdOmTo8ifZR4cxabh3OoarJ\noqCqnwJXAbcBbwCZqrrAi32vAPqJSC8RiQKmA+/V22YuMFFEIkSkPTAO2Ox9fBNMZq/IJzm+HRP6\nJDgdJWTFRkcwbVgS89bu5mhljdNxjAMaLAoiMur4A0gHdgNFQJp7XaNUtQa4D/gY1xf9HFXdKCJ3\ni8jd7m0242qFrAOWA8+q6obTPSgTePIPlrM4ez/XZaYSFmYdzE66fmwqx6prmb+2yOkoxgGNDT35\nqPu/MUAmsBZXB/MwIIv/Xo3UIFX9APig3rpn6i3/Gfiz95FNMPp3Vj5hAtdmWgez00amxtO/eyyz\nVuTbvSIhqMGWgqqeq6rn4mohjHJ39I4GRvLNvgFjWuz4uDtn908kKb6d03FCnohwXWYqa/JL2Lqn\n1Ok4po1509E8QFXXH19wn94Z5LtIJtQs2l7M7sMV1sHsR64alUJkuDDbZmULOd4UhXUi8qx7OIrJ\n7jub1/k6mAkds5fn07VDFOcN7O50FOPWpUMUFw3uwdurC6isqXU6jmlD3hSF24GNwAPuxyb3OmNO\n2/6jlXy2eS9Xj04hKsLGZ/Qn149JpaS8mk837XU6imlDTc5xqKoVwGPuhzGt6u1VBdTU6YlJ5I3/\nmNg3geT4dsxekW9zZIcQbwbE2ykiOfUfbRHOBDdVZfaKfDLTO9O3W6zTcUw9YWHCtZkpfLl9P/kH\ny52OY9qIN+31TGCM+zEJ+Bvwqi9DmdCwctchdhSXcZ11MPutazNTEcFmZQsh3tzRfMDjUaiqj+Ma\nq8iY0zJrRT6x0RFMHdbT6SimAcnx7Ti7XyL/zsqn1mZlCwnenD4a5fHIdN+N3GRfhDGNOVJRzfvr\ndjNteBLto+zHyZ9dPyaV3YcrWLTdRigOBd78Nj7q8bwG2Alc55s4JlTMW1vEsepauzchAFwwqDtd\nOkQxe3k+5w7o5nQc42PeFIU7VPWkjmUR6eWjPCZEzF6Rz8AecQxL6eR0FNOEqIgwrh6VzAtf5VJc\nWkliXLTTkYwPedPR/KaX64zxyqaiI6wrOMx0m10tYFw/JpWaOuXtVdbhHOwabCmIyEBgCNBJRK7y\neKkjrkHyjGmROVn5REWEceXI+hPxGX/Vt1scmemdmZ2Vz11n97ZiHsQaaykMAKYC8cA0j8co4E7f\nRzPBqKK6lndWF3LJkB7Et7fZ1QLJdWNSySkuY0XuIaejGB9qsKWgqnOBuSJypqp+3YaZTBD7cMNu\nDh+rZvpY62AONFOH9eQ38zYxa0UeY3t1cTqO8ZHGJtk5PuXmDSLyt/qPNspngsys5fmkd23P+F5d\nnY5imql9VASXj0jig/Wuwm6CU2Onj45Pi5kFrDzFw5hmySk+yrKdB7l+jM2uFqhmjEmjorqOuWts\nSpVg1djpo3nu/77UdnFMMJu9Ip/wMOGa0Ta7WqAamtKJIUkdeWN5PjePT7cO5yDU2NVH84AG72tX\n1ct9ksgEpaqaOt5cWcD5A7vRLc4uXgtk08ek8ou5G1lfeJhhKfFOxzGtrLGb1/7SZilM0Pts814O\nlFUxw+b8DXhXjEzmdx9s5o3l+VYUglBjp48WHn8uIlHAQFwth62qWtUG2UwQeWN5HkmdYji7f6LT\nUcxp6hgTyWVDk3hvTSE/v2wQHaJt7Kpg4s2AeJcBO3ANmf0kkC0iU3wdzASP/IPlLM7ezzWZqYRb\nB3NQmDE2lbKqWuavK3I6imll3gxz8ShwrqpOVtVzgHOxWdhMM8xekY+ADX4XREand6Zft1heX57v\ndBTTyrwpCqWqmu2xnAOU+iiPCTLVtXXMznKNrpkU387pOKaViAg3jEtjbX4JG4sOOx3HtCJvikKW\niHwgIreJyK3APGCFiFxVb0wkY77h8817KS6ttA7mIHTVyBSiI8J4fVme01FMK/KmKMQAe4FzgMlA\nMdAO1zhIU32WzASF15fn07NTDJMHWAdzsOnUPpLLhvVk7poiyiprnI5jWkmTlw2o6u1tEcQEn/yD\n5Xy5vZjvndePiHBv/v4wgeaGsWm8vaqQeWuLmG6twaDQZFFwT6hzP5Dhub3dvGaaMmtFHoJrLH4T\nnEand6Z/91jeWJ5nRSFIeHOB8bvAc7j6Eup8G8cEi+raOuZkFVgHc5ATEWaMTePX8zaxofAwZyTb\nTHqBzps2fYWq/k1Vv1DVhccfPk9mAtqnm1wdzDeMs78eg91VI1OIiQzjNetwDgreFIUnROQRETlT\nREYdf/g8mQlory7dRXJ8OybbRO9Br1P7SKYNS2LumkKOVNiQ2oHOm6IwFNdMa3/AdSPbo3g5LpKI\nXCIiW0UkW0QeamS7MSJSIyLXeLNf49+y9x1lyY4D3DAuze5gDhE3jU+nvKqWd1bZkNqBzps+hWuB\n3s0d70hEwoGngAuBAlz3NrynqptOsd0fgU+as3/jv15btovIcOG6TOtgDhXDU+MZltKJV5fu4pYz\nbUjtQOZNS2EDrnmam2sskK2qOe6CMgu44hTb3Q+8BexrwWcYP3Osqpa3VhZwyRk9SYyLdjqOaUM3\njUtn+76jLN950Oko5jR4UxTigS0i8rGIvOd+zPXifcmA58AoBe51J4hIMvAt4B+N7UhE7hKRLBHJ\nKi4u9uKjjVPmrS3iSEUNN1kHc8iZNjyJjjERvGodzgHNm9NHj3g8F2ASML2VPv9x4KeqWtdYc1NV\nZwIzATIzMxuc+Mc479Vlu+jfPdYmdg9B7aLCuXp0Cq8u3UVx6WBrKQaoJlsK7stPj+Aa0uJF4Dzg\nGS/2XQh4nlROca/zlAnMEpFc4BrgaRG50ot9Gz+0Nr+EdQWHuXGcnVMOVTeOS6e6VpmTZaOnBqoG\ni4KI9HdfiroF+DuQB4iqnquqf/di3yuAfiLSyz1Jz3TgPc8NVLWXqmaoagbwJnCPqr7b0oMxznrp\n61w6RIVz1ajkJrc1walvt1gm9k3g1aW7qKm1e10DUWMthS24WgVTVXWiuxDUertjVa0B7gM+BjYD\nc1R1o4jcLSJ3n05o43/2H61k/trdXD06hbiYSKfjGAfdcmY6uw9X8OmmvU5HMS3QWJ/CVbj+uv9C\nRD7CdfVQs84JqOoHwAf11p3y1JOq3tacfRv/Mmt5HlW1ddxyZobTUYzDzh/UnZTO7XhxSS5ThvZ0\nOo5ppgZbCqr6rqpOxzU38xfA94FuIvIPEbmorQIa/1dTW8erS/OY1C+Bvt1inY5jHBYeJtw8Pp1l\nOw+yZc8Rp+OYZvKmo7lMVV9X1Wm4OotXAz/1eTITMD7ZtJc9RyqslWBOuC4zleiIMF5assvpKKaZ\nmjXIvaoeUtWZqnq+rwKZwPPiklxSOrfjvIE2zpFx6dwhiitHJPPu6kIOl9t4SIHEZj4xp2Xz7iMs\n33mQW85Mt3GOzEluOSudY9W1zM6ym9kCiRUFc1qeW7yTdpHhNs6R+YYhSZ0Y26sLLy2xy1MDiRUF\n02L7Sit4b00R12amEN8+yuk4xg99Z2IvCkuO8fFGuzw1UFhRMC326te7qK6r4/YJvZyOYvzU+YO6\nk961Pc8uznE6ivGSFQXTIhXVtby6LI/zB3anV0IHp+MYPxUeJnx7Qi9W55Wwctchp+MYL1hRMC3y\nzupCDpZVccdEayWYxl0zOoWOMRE8v3in01GMF6womGZTVZ5bvJMhSR0Z39tGQzWN6xAdwYxxaXy4\nYTf5B8udjmOaYEXBNNuCbcVk7zvKHRN72Wioxiu3npmBiPDiklyno5gmWFEwzfbMgh306BjD1GFJ\nTkcxASIpvh3ThvXkjeV5lJQ3a2Zf08asKJhmWZV3iGU7D/KdSb2IirAfH+O9uyf3obyqlpe/tqEv\n/Jn9VptmeWbBDjq1i2TGWJtu0zTPwB4dOW9gN15cksuxKq9H4TdtzIqC8Vr2vlI+2bSXW89Mp0O0\nNzO5GnOyu8/pw8GyKpuZzY9ZUTBe++fCHGIiw7j1rAyno5gANSajM6PTOzNzUQ7VNvSFX7KiYLxS\nVHKMd9cUMn1MGl1jbUJ20zIiwv+c04fCkmO8v26303HMKVhRMF6ZuSgHVexmNXPazhvYjf7dY3nq\ni2zq6tTpOKYeKwqmSXuPVPD68jyuHpVCapf2TscxAS4sTLj/vH5s33eUDzZYa8HfWFEwTfrHgh3U\n1in3ntvX6SgmSFw6tCf9usXyxGfbrbXgZ6womEb9t5WQTFpXayWY1hEeJnzvfGst+CMrCqZRx1sJ\n953bz+lEPPffAAAUHklEQVQoJshYa8E/WVEwDdp3pII3rJVgfMRaC/7JioJp0JNfZFNjrQTjQ8db\nC499us2m7PQTVhTMKeXuL+P1ZXlMH5NqrQTjM+Fhwo8uGsCO4jLeXFngdByDFQXTgL98spXI8DAe\nON9aCca3Lh7SnZFp8Tz22TYbE8kPWFEw37CuoIT563Zz56RedOsY43QcE+REhJ9NGcTeI5W8sMRm\nZ3OaFQVzElXlDx9uoUuHKO48u7fTcUyIGNurCxcM6sY/FuzgUJnNt+AkKwrmJIu272fJjgPcf15f\n4mIinY5jQsiPLx5IWWUNT32R7XSUkGZFwZxQXVvH/87fRFqX9tw4Lt3pOCbEDOgRxzWjU3jp61x2\n7i9zOk7I8mlREJFLRGSriGSLyEOneP1GEVknIutFZImIDPdlHtO4V77exfZ9R/nF1ME2q5pxxIMX\nDyA6IpzfzNvodJSQ5bPffBEJB54CpgCDgRkiMrjeZjuBc1R1KPBbYKav8pjG7T9ayWOfbePs/olc\nMKib03FMiOoWF8MD5/fji63F/GfLXqfjhCRf/jk4FshW1RxVrQJmAVd4bqCqS1T1kHtxKZDiwzym\nEX/+aCvHqmr55dTBiIjTcUwIu/WsDPokduA38zZRWWOXqLY1XxaFZMBzzr0C97qG3AF8eKoXROQu\nEckSkazi4uJWjGgA1uaXMGdlPrdPyKBvt1in45gQFxURxiPThpB7oJznF+c6HSfk+MWJYxE5F1dR\n+OmpXlfVmaqaqaqZiYmJbRsuyNXU1vGLuRvo2iGa++1GNeMnzu6fyIWDu/O3z7eTf7Dc6TghxZdF\noRBI9VhOca87iYgMA54FrlDVAz7MY07hxSW5rCs4zCPTBtPRLkE1fuRXlw8hTODhdzegaqOothVf\nFoUVQD8R6SUiUcB04D3PDUQkDXgbuFlVt/kwizmFvAPl/OWTrZw/sBtTh/V0Oo4xJ0mOb8ePLx7A\nom3FzF1T5HSckOGzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8EugJPi8gaEcnyVR5zMlXl4XfXEy7C\nb688wzqXjV+6+cwMRqbF8+t5GzlwtNLpOCHBp30KqvqBqvZX1T6q+jv3umdU9Rn38++oamdVHeF+\nZPoyj/mvt1YV8uX2/fx0ykCS4ts5HceYUwoPE/549TCOVtbw2/mbnI4TEvyio9m0rcKSY/x63kZG\np3fmJrtz2fi5/t3juGdyX95dU8RHNhmPz1lRCDF1dcqDc9ZSW6f89brhhIXZaSPj/+47ry/DUjrx\n0Nvr2Xukwuk4Qc2KQoh5bvFOvs45wCPTBpPetYPTcYzxSmR4GI9dP4KK6lp+/OY6uxrJh6wohJDN\nu4/w54+3ctHg7lyXmdr0G4zxI30SY3n40kEs2lbMy1/vcjpO0LKiECLKKmv43hur6dgukt9fNdSu\nNjIB6abx6UwekMj/fbCZTUVHnI4TlKwohABV5f+9s57s4qM8fv0IusZGOx3JmBYREf5y7XDi20fy\nP6+t5PCxaqcjBR0rCiHg1aW7mLumiB9d2J+J/RKcjmPMaUmIjeapG0ZReOgYP/73WutfaGVWFILc\n6rxD/Gb+Js4b2I17Jvd1Oo4xrSIzowsPTRnIJ5v2MnNRjtNxgooVhSC290gF97y2iu4dY+zyUxN0\n7pjYi0uH9uCPH21h4TYbPbm1WFEIUuVVNXznpSwOH6vmnzePJr59lNORjGlVIsKfrhlO/+5x3Pfa\nKrbtLXU6UlCwohCE6uqU789aw8aiwzx5w0iGJHVyOpIxPhEbHcHzt40hJiqc219YQXGpjY90uqwo\nBKE/fLSFTzbt5RdTB3PewO5OxzHGp5Li2/HcrZkcKKvkrleyOFZls7WdDisKQebpBdnMXJTDLWem\nc9tZGU7HMaZNDEuJ54npI1mbX8Ldr66kqqbO6UgBy4pCEHnl61z+9NFWrhiRxCPThtgNaiakXDyk\nB3+4ahgLtxXzwKzV1NRaYWgJKwpB4q2VBfxi7kYuGNSdv1w7nHC70siEoOvGpPKLqYP5cMMefvrW\neurq7B6G5opwOoA5fXNW5PPQ2+uY0LcrT94wkshwq/UmdN0xsRdllTX89VPXZI5/vHooEfY74TUr\nCgHu+cU7+c38TUzql8DMmzOJiQx3OpIxjrv/vL4I8Oin2yivquHx6SOIjrDfDW9Y+QxQqsrfPt/O\nb+Zv4pIhPXj21kzaRdkPvTHguofh/vP78Uv3qaQ7X15JeVWN07ECghWFAFRVU8dP31rHXz/dxlUj\nk3nyhpH2V5Axp/Dtib3409XDWLy9mOv++TV7DtsEPU2xohBgDpVVcfNzy5iTVcD3zuvLX64dbudL\njWnEdWNSefbWTHYWl3HFU4tZX3DY6Uh+zb5NAsjGosNc+fRXrM4v4fHrR/DDiwbYeEbGeOG8gd15\n656ziAgL49p/LuGd1QVOR/JbVhQCgKryyte5fOvpJVRU1/LGneO5cmSy07GMCSgDe3Tk3XsnMCw5\nnh/MXstP3lxr/QynYFcf+blDZVX8v3fW8+GGPUwekMij1w63SXKMaaHEuGhev3Mcj3+2nacWZLM6\nr4Qnpo9kcFJHp6P5DWsp+ClVZf66Ii7460I+3bSXn00ZyPO3jrGCYMxpiggP48GLB/DKt8dxqLya\ny59czKOfbKWyxsZMAisKfqngUDnffWUl972+muTO7Zh3/0S+e04f6z8wphVN7JfApz84m8tHJPH3\n/2Rz2d8WsyzngNOxHCeBNpVdZmamZmVlOR3DJ0orqvnHgh08u3gnYQI/vLA/357Qy64uMsbHFmzd\nx8PvbKCw5BiXDOnBQ1MGkpHQwelYrUpEVqpqZpPbWVFwXnlVDa8vy+OZhTvYf7SKq0Ym8+DFA0iK\nb+d0NGNCxrGqWp5bnMPTC3ZQXVvHjLFpfPecPiQHye+hFYUAUFJexWvL8nhu8U4OllVxZu+uPDRl\nIMNT452OZkzI2nekgsc+28a/swoQgatGpvDdc3rTOzHW6WinxYqCn1JV1uSX8OrSPOavK6Kypo5z\nByRy33l9GZ3exel4xhi3gkPlzFyUw6wV+VTV1DGhb1duGpfOBYO7B+Sgk1YU/Ez2vlLmrd3N/HVF\n7Cguo31UOFeOTOamcel2OZwxfqy4tJLZK/J4Y3k+hSXH6NIhikvO6MHUYT0Z16trwAxTb0XBYWWV\nNSzPPcjCrcUs2l5MTnEZIjA2owuXj0ji8uFJxMVEOh3TGOOl2jplwdZ9vLO6kM837+NYdS1dO0Qx\nsV8C5/RPZGK/BLrFxTgds0F+URRE5BLgCSAceFZV/1DvdXG/filQDtymqqsa26c/FoVjVbVs31fK\nlj2lrC84zKq8Q2zefYQ6heiIMMb37sq5AxKZMrQn3Tv67w+NMcY75VU1/GfLPj7fvI9F24o5UFYF\nQGqXdoxK68yI1HgG9ujIgB5xdOkQ5XBaF8eLgoiEA9uAC4ECYAUwQ1U3eWxzKXA/rqIwDnhCVcc1\ntt+2KgqqSmVNHaUVNRypqObIsWoOHK2i+GglxaWVFB46Rv6hcvIOllNYcozj/4yx0REMT+3EqLTO\njMnowtheXWyOA2OCWF2dsrHoCEtzDrAq7xCr8g6x90jlidcTYqNI7dKetC7tSencju4dY0iMjSYh\nLppO7SLpGBNJXEwE7SLDfXovkrdFwZfDXIwFslU1xx1oFnAFsMljmyuAl9VVmZaKSLyI9FTV3a0d\nZuG2Yn47/78fraoooOpqFtbU1lFTp9TUKRXVtRyrrqWxepkQG01ql3aMTu/MNaNTGNgjjgE9OpLW\npX3AnGM0xpy+sDBhaEonhqZ0AlzfLcWllWzZU8rWPaVk7ztK3sFyVu46xLy1RTQ2Q2h0RBgxkeFE\nhocRGS5EhAvhIoSJIALTx6Rx59m9fXo8viwKyUC+x3IBrtZAU9skAycVBRG5C7gLIC0trUVhYqMj\nGNA97qR1IhAmQpi4bn2PCHP9T4iJCKddVDgxkeHExUTQqZ2rknftEE1iXDRdY6Ns/gJjzCmJCN06\nxtCtYwxn90886bXaOuVgWRX73WccXGchXGcjjlXVnviDtLr2v3+o1qlSp1CnSmKc74e5CYgB8VR1\nJjATXKePWrKP0emdGZ3euVVzGWNMc4SHCYlxrj8uB/V0Os2p+fJi20Ig1WM5xb2uudsYY4xpI74s\nCiuAfiLSS0SigOnAe/W2eQ+4RVzGA4d90Z9gjDHGOz47faSqNSJyH/AxrktSn1fVjSJyt/v1Z4AP\ncF15lI3rktTbfZXHGGNM03zap6CqH+D64vdc94zHcwXu9WUGY4wx3gu8ATyMMcb4jBUFY4wxJ1hR\nMMYYc4IVBWOMMScE3CipIlIM7Grh2xOA/a0YJ1CE4nGH4jFDaB53KB4zNP+401U1samNAq4onA4R\nyfJmQKhgE4rHHYrHDKF53KF4zOC747bTR8YYY06womCMMeaEUCsKM50O4JBQPO5QPGYIzeMOxWMG\nHx13SPUpGGOMaVyotRSMMcY0woqCMcaYE0KmKIjIJSKyVUSyReQhp/P4goikisgXIrJJRDaKyAPu\n9V1E5FMR2e7+b9DNNiQi4SKyWkTmu5dD4ZjjReRNEdkiIptF5MwQOe4fuH++N4jIGyISE2zHLSLP\ni8g+Edngsa7BYxSRn7m/27aKyMWn89khURREJBx4CpgCDAZmiMhgZ1P5RA3wI1UdDIwH7nUf50PA\n56raD/jcvRxsHgA2eyyHwjE/AXykqgOB4biOP6iPW0SSge8Bmap6Bq5h+acTfMf9InBJvXWnPEb3\n7/h0YIj7PU+7v/NaJCSKAjAWyFbVHFWtAmYBVzicqdWp6m5VXeV+XorrSyIZ17G+5N7sJeBKZxL6\nhoikAJcBz3qsDvZj7gScDTwHoKpVqlpCkB+3WwTQTkQigPZAEUF23Kq6CDhYb3VDx3gFMEtVK1V1\nJ675aca29LNDpSgkA/keywXudUFLRDKAkcAyoLvHjHZ7gO4OxfKVx4GfAHUe64L9mHsBxcAL7tNm\nz4pIB4L8uFW1EPgLkAfsxjVb4ycE+XG7NXSMrfr9FipFIaSISCzwFvB9VT3i+Zp7YqOguQ5ZRKYC\n+1R1ZUPbBNsxu0UAo4B/qOpIoIx6p0yC8bjd59GvwFUUk4AOInKT5zbBeNz1+fIYQ6UoFAKpHssp\n7nVBR0QicRWE11T1bffqvSLS0/16T2CfU/l8YAJwuYjk4joteJ6IvEpwHzO4/hosUNVl7uU3cRWJ\nYD/uC4CdqlqsqtXA28BZBP9xQ8PH2Krfb6FSFFYA/USkl4hE4eqUec/hTK1ORATXOebNqvpXj5fe\nA251P78VmNvW2XxFVX+mqimqmoHr/+t/VPUmgviYAVR1D5AvIgPcq84HNhHkx43rtNF4EWnv/nk/\nH1ffWbAfNzR8jO8B00UkWkR6Af2A5S3+FFUNiQdwKbAN2AE87HQeHx3jRFxNynXAGvfjUqArrqsV\ntgOfAV2czuqj458MzHc/D/pjBkYAWe7/3+8CnUPkuH8NbAE2AK8A0cF23MAbuPpMqnG1Cu9o7BiB\nh93fbVuBKafz2TbMhTHGmBNC5fSRMcYYL1hRMMYYc4IVBWOMMSdYUTDGGHOCFQVjjDEnWFEwfkVE\nHnaPgLlORNaIyDgff94CEfF68nMReVFECkUk2r2c4L5xrjWyTD4+ymtrEZHvi8gtTWwzVERebM3P\nNYHLioLxGyJyJjAVGKWqw3DdvZrf+LscUQt82+kQ9dUfGdM9YNy3gdcbe5+qrgdSRCTNh/FMgLCi\nYPxJT2C/qlYCqOp+VS0CEJFfisgK9xj6M913sx7/S/8xEclyzykwRkTedo85/7/ubTLccw685t7m\nTRFpX//DReQiEflaRFaJyL/dY0idyuPAD9xfup7vP+kvfRF5UkRucz/PFZHfu1s/WSIySkQ+FpEd\nInK3x246isj77nHxnxGRsMayuff7RxFZBVxbL+d5wCpVrfH4t/qjiCwXkW0iMslj23m47gg3Ic6K\ngvEnnwCp7i+sp0XkHI/XnlTVMeoaQ78drhbFcVWqmgk8g+vW/3uBM4DbRKSre5sBwNOqOgg4Atzj\n+cEikgD8HLhAVUfhulP4hw3kzAMWAzc38/jyVHUE8CWu8fKvwTXvxa89thkL3I9r3o8+wFVeZDug\nqqNUdVa9z5sA1B8oMEJVxwLfBx7xWJ8FTMKEPCsKxm+o6lFgNHAXrmGhZx//Sxs4V0SWich6XH8B\nD/F46/FxrNYDG9U1r0QlkMN/BwrLV9Wv3M9fxTUkiKfxuL6IvxKRNbjGlklvJO7vgR/TvN8hz5zL\nVLVUVYuBShGJd7+2XF3zftTiGupgohfZZjfweT1x/Tt6Oj5I4kogw2P9PlyjjpoQF9H0Jsa0HfeX\n4QJggbsA3Cois4Cncc22lS8ivwJiPN5W6f5vncfz48vHf8brj+dSf1mAT1V1hpc5t7u/oK/zWF3D\nyUUi5uR3tThnU9nKGlh/rJEMtZz8+x/j3t6EOGspGL8hIgNEpJ/HqhHALv77xbbffS79mhbsPs3d\nkQ1wA67TP56WAhNEpK87SwcR6d/EPn8HPOixvAsY7B6tMh7XCJ7NNdY9mm8YcL07Z0uygWv00L5e\nfm5/XAPMmRBnRcH4k1jgJRHZJCLrcJ0y+ZW6ppn8F64vrY9xDYXeXFtxzVm9Gddoov/wfNF9Guc2\n4A33Z38NDGxsh6q6EVjlsZwPzHHnnAOsbkHOFcCTuL7QdwLvtCSb24e4puz0xrnA+81Oa4KOjZJq\ngp64piad7+6kDiki8g7wE1Xd3sg20cBCYOLxK5VM6LKWgjHB7SFcHc6NSQMesoJgwFoKxhhjPFhL\nwRhjzAlWFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCf8fcGqGIouq0A4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Parzen window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYJFd57n9fp+nJYWd2NszmIGmVpVUCIZGERBQ5Y+MA\nxgabiwPRvsb2BV9jA8ZggcHmGhEtEAIBQiABCkhIYldxg1abd2Znd3Lomc7d5/5Rdaqrezqcmt1J\n2nqfp5/pqTpddarq1HnPl0UphQ8fPnz48DEbBBa6Az58+PDhY+nCJxEfPnz48DFr+CTiw4cPHz5m\nDZ9EfPjw4cPHrOGTiA8fPnz4mDV8EvHhw4cPH7OGTyI+fCxCiMhZIvK4iMRE5M8Mf6NEZPNc920p\nQ0Q+KiL/OcvfPl9E+k53n5Y6fBJZBBCRIyKSEJEp12fVQvfLx4Lig8CvlFLNSql/K90pIveIyB/O\nxYlFZL1NSHosHhGRD8/FueYbSqlPKqXm5L6dqfBJZPHglUqpJtenv7SBiIQWomMLhTPtekuwDti9\nwH1oU0o1AW8B/reI3OD1AGf4Mzwj4JPIIoZrRfgHInIM+KW9/UoReVBExkXkCRF5vus3G0TkXlsN\ncpeIfEFEvmHvmyGO26vMF9vfAyLyYRE5KCIjInKLiHSU9OV3ReSYiAyLyMdcxwnaqoKD9rl3isga\nEfl3Efl0yTlvF5EPVLhmJSLvFZH9wH5729n2tYyKyD4ReaOr/ctEZI99zuMi8pfua7X7NGxf59tc\nv2sVkZtFZEhEjorIX4tIwN73ThH5tYj8i4iMichhEXmp67fvFJFD9jkPlxz390Vkr/27n4nIuirP\n91Uistt+jveIyDn29l8CLwC+YEsCW0t+9wngea79X3DtfrGI7LeP+e8iIrPpmxtKqd9gEdp59nE+\nJyK9IjJpP+fnuc7xcRH5noh8Q0QmgXfafdFSzbT9jNfb7V8hltpu3B7TF7iOdURE/lJEnhSRCRH5\nHxGJVriXR0XkUvv72+xznGv//wci8gNX//T7UGtM14vIf9v3aw9wWck5z7Gf27j9HF9lb99gb9Pj\n6SsiMuj63ddF5H+Z3PslAaWU/1ngD3AEeHGZ7esBBdwMNAL1wGpgBHgZ1iLgOvv/Lvs3vwE+A9QB\n1wAx4Bv2vucDfZXODbwfeAjosX//H8C3S/ryFbsfFwIp4Bx7/18BTwFnAWLvXwZcDvQDAbtdJxAH\nuivcCwXcBXTY52kEeoHfA0LAxcAwsM1ufwJ4nv29HbjEda1Z1724FpgGzrL33wz8EGi2r+0Z4A/s\nfe8EMsC7gCDwx/Y1iN2fSddxVgLn2t9vBA4A59h9/WvgwQrXudXuz3VAGEt9dQCI2PvvAf6wypiZ\nsd++dz8G2oC1wBBwwyz6pp91yL7m59rP7EX2/rfbzzYE/AVwEoja+z5u37tXY43P+pJjfxK4z77m\ni4FB4Ar7Pv8u1nisc43NR4BV9njYC7ynQp9vBv7C/v5l4CDwx659H3D17xsl11lpTP9f4H773GuA\nXdjvj93/A8BHgQjwQqx3TY+LY8Cl9vd9wCHXcY8BFy/0vHPa5q+F7oD/cV6WKWDc/vzA3q4H+UZX\n2w8BXy/5/c/sF3At1sTZ6Nr3LcxJZK+eKOz/V9oTQsjVlx7X/keAN9vf9wE3Vri+vcB19vf3AXdU\nuRcKeKHr/zcB95e0+Q/gb+3vx4A/AlpK2jy/zL24BfgbrAkrjU1E9r4/Au6xv78TOODa12D3awUW\niYwDr2PmBPlTbCKy/w9gTb7rylzn3wC3lLQ9Djzf/v8eZkciV5dc74dn0Tf9rMeBMfv5/VmVvowB\nF9rfPw7cV6Hdm+zxphc8XwT+oaTNPuBa19h8u2vfp4AvVTj2HwC3u8bbHwLfsf8/SmFx8XFmkkil\nMX0Im4Tt/99NgUSeh0WeAdf+bwMft79/Hfhze8zss/v+HmCDfV8D5a5jKX58ddbiwauVUm3259Ul\n+3pd39cBb7DF5XERGQeuxprwVwFjSqlpV/ujHvqwDrjNddy9QA7odrU56foeB5rs72uwVn/l8DWs\n1Sv236/X6Efp9V5Rcr1vw3o5wZrMXwYcFUuNd5Xrt+XuxSosaShM8b05iiXlaTjXqZSK21+b7OO9\nCWtCOCEiPxGRs119/Zyrn6NYK3n3cTVWuc+vlMrb112urRdUej5e+qbRqZRqV0qdo1zGfVvFtNdW\nMY0DrVj3VKO39EAicjHwBeA1SqkhV5/+ouTZrsG6N7WupxT3As8TkZVYi4RbgOfaarNW4PEq11np\nHKtKrsU9XlYBvfZzc+/X9/NerIXMNViS1z1Y0vC1WIsi9++WNHwSWRpwp1ruxZJE2lyfRqXU/8VS\n7bSLSKOr/VrX92msVTVg2TGArpJjv7Tk2FGl1HGDPvYCmyrs+wZwo4hciKVO+UGNY5Ve770lfWpS\nSv0xgFLqt0qpG4Hl9nFvcf223L3ox1KHZbAmMfc+k+tEKfUzpdR1WMT9NJY6RPf1j0r6Wq+UerDM\nYfrd57dtF2tM+0DxPTKBl75VhG3/+CDwRqBdKdUGTGARUtm+iYh+Nu9VSj1W0qdPlPSpQSn1bY/X\nhlLqABYB/CmWJDSJRQ7vBn49y0n7BNYz0XC/S/3AGm33cO3Xz+9eLGnl+fb3X2OpBa+1/3/WwCeR\npYdvAK8UkevFMmZHxTIi9yiljgI7gL8TkYiIXA280vXbZ4CoiLxcRMJYevE61/4vAZ/QBlcR6RKR\nGw379Z/AP4jIFrFwgYgsA1BK9QG/xZJAblVKJTxc74+BrSLyDhEJ25/LbKNmxDaitiqlMli2itLJ\nQt+L5wGvAL6rlMphkc0nRKTZvt4/x7q3VSEi3SJyo01OKSw1pD7nl4CPuAy6rSLyhgqHugV4uYi8\nyH4Wf2Efz3RSHwA2Grb12rdqaMZSEw4BIRH530BLpcZieWd9D0uFdEvJ7q8A7xGRK+wx02iPzeZZ\n9Ausyfl9FCbpe0r+94pbsO5Zu4j0YBGUxsNYpPVBe0w+H+td+w6AUmo/kMCSvO+1SW0AS3L2ScTH\nwkEp1YtlJP0o1ovci2XU1s/yrViGylHgb7GMivq3E8CfYE34x7EkE7e31ueA24Gfi0gMy8h+hWHX\nPoP10v0cazL/LyxjpcbXgPOprcoqglIqBrwEeDPW6u8k8E8UyO8dwBGxPIHeg6Xq0jiJpa/vB76J\nZZR92t73p1jXfwhrlfgt4KsGXQpgEU4/1j2+FsvwjlLqNrtv37H7swt4abmDKKX2YU0wn8eSjF6J\n5eadNugDWM/q9bbn0Iw4kjLnM+5bDfwMuBNrQXIUSFJGfeVCD9aK/H9JcRzUWqXUDiznhS9gPacD\nWPao2eJeLJK7r8L/XvF3WNd4GGtcO2PXfk6vxLqHw8BNwO+4xpc+/4j9zur/BXh0lv1ZlBDbCOTj\nWQoR+TiwWSn19lpt57gf12Ct9NepeRh09srwG0qpnrk+lw8fZzJ8ScTHnMNW17wf+M/5IBAfPnzM\nH3wS8TGnECuAbhzLCP2vC9wdHz58nGb46iwfPnz48DFr+JKIDx8+fPiYNZ71ydE6OzvV+vXrF7ob\nPnz48LGksHPnzmGlVFetds96Elm/fj07duxY6G748OHDx5KCiBhlu/DVWT58+PDhY9bwScSHDx8+\nfMwaPon48OHDh49ZwycRHz58+PAxa/gk4sOHDx8+Zo0lRyIicoNYJVIPiMiHF7o/Pnz48HEmY0mR\niF3/4t+xMmduA94iItsWtlc+fPjwceZiqcWJXI5VtvQQgIh8Byst+p7TfaIHDwzzx998lJedv4Ku\nprraP/DhYzYQqd3Ghw8PyOTy3L1ngDddtoY/fJ6XkjOzw1IjkdUU1y7oo0y9CxF5N1ZFM9auXVu6\n2whff+goE4kM336k1z7mrA7jw0dF+GnrfMwl/s9P9vokMlsopb4MfBlg+/bts3pVb3rbJRwcmuYv\nvvsEe/on+Na7ruSy9R2ntZ8+fPjwcboQT2d57U0P0jsa51Ovv5AbzlsxL+ddUjYRrGp87prHPZjX\npPYEEWHz8iZu/r3LWdVWz19+9wmSmdxcnMqHDx8+Thmf+fkzPH0yxk1vv5SXX7CSYGB+1CdLjUR+\nC2wRkQ0iEsEqmXr7XJ6wtSHMP772fI6OxPmvXx+ey1P58OHDx6xwZHiarz5wmLdcvpZrt9bMmXha\nsaRIRCmVBd6HVed5L3CLUmr3XJ/3OZs6ecFZXfzXrw8TT2fn+nQ+fPjw4Qn/cd9BQsEAH7huy7yf\ne0mRCIBS6g6l1Fal1Cal1Cfm67zvfcFmRqfT/OCx/vk6pQ8fPnzUxMhUilt3HucNl/awvDk67+df\nciSyULh0XTtndTfz3Z29tRv78OHDxzzhR0/0k87l+Z2r1i/I+X0SMYSI8IbtPTx2bJyDQ1ML3R0f\nPnz4AOC2x/s5Z2ULZ61oXpDz+yTiAS87fyUAP989sMA98eHDhw84NhLnid5xXnPxqgXrg08iHrCq\nrZ7zVrdw916fRHz48LHwuPeZQQCu2zY/MSHl4JOIR7z4nG4ePTbG6HR6obviw4ePMxz3PjPEmo56\n1i9rWLA++CTiEVdv7kQpeOTw6EJ3xYcPH2cw0tk8Dx4c4dqtXcgC5mXyScQjLuhpIxoO8PDhkYXu\nig8fPs5gPNk3Tjyd4+rN8xtcWAqfRDwiEgpw6bp2HjrkSyI+fPhYODzeOw7AJevaFrQfPonMAtvX\ndfD0yUmmU370ug8fPhYGjx0bp6e9fkECDN3wSWQWOH91K0rBnhOTC90VHz58nKF47NgYF69tX+hu\n+CQyG5zf0wrAruMTC9wTHz58nIkYmEzSP5Hk4jULq8oCn0RmheXNdXQ21fGUTyI+fPhYAOzpt7Qg\nekG7kPBJZBYQEc5f3cLu4746y4cPH/OPfQMxALYuX5hUJ274JDJLbO1u5vDwNLm8X+PUhw8f84tn\nBmJ0t9TR2hBe6K74JDJbbOpqIp3L0zcWX+iu+PDh4wzD/oEptnYvvBQCPonMGpuWNwL4GX19+PAx\nr8jnFfsHY2xZBKos8Elk1tjY2QTAoaHpBe6JDx8+ziT0TyRIZvJsXt600F0BfBKZNdobI3Q0RnxJ\nxIcPH/OKY6OWCn3dAiZddMMnkVPAxs5GXxLx4cPHvKJvLAFAT3v9AvfEgk8ip4Ce9nr6JxIL3Q0f\nPnycQegbjRMQq77RYoBPIqeAVW31nBhP+m6+Pnz4mDf0jiVY2VpPOLg4pu/F0QsXROTjInJcRB63\nPy9z7fuIiBwQkX0icv1C9hMsEsnmFUOx1EJ3xYcPH2cIekfji0aVBYuQRGx8Vil1kf25A0BEtgFv\nBs4FbgBuEpHgQnZytf0gj4/7Ki0fPnzMD/rGEvS0Lw6jOixeEimHG4HvKKVSSqnDwAHg8oXs0Oo2\nn0R8+PAxf8jk8gzEks4CdjFgsZLIn4rIkyLyVRHRuY5XA72uNn32thkQkXeLyA4R2TE0NDRnndSG\nrf4KJJLM5Dg8PI1Svs3Ehw8fZhieSjE8VV5FPjqdRikrCexiwYKQiIjcLSK7ynxuBL4IbAQuAk4A\nn/Z6fKXUl5VS25VS27u65q50ZFNdiIZIsKxNZHAyyUs+ex8v+Jd7eN+3H/OJxIcPHzXxkydPcNU/\n/oIrP/kLfvLkiRn79VzTtYhIJLQQJ1VKvdiknYh8Bfix/e9xYI1rd4+9bUHR2VRXlkQ+9bN9nJxM\n8sbtPdyyo49rt3bxxu1ryhzBhw8fPiyC+NCtT7JtVStKKT5621Ncs7WT5mi4qA0sLhJZdOosEVnp\n+vc1wC77++3Am0WkTkQ2AFuAR+a7f6Xoaq6bIXqOx9P84LHjvPXytfzT6y7ggp5WvnTvQfK+K7AP\nHz4q4JsPH2U6neUzb7yQj7/qXCYSGe54qlgacUikySeRaviUiDwlIk8CLwA+AKCU2g3cAuwB7gTe\nq5TKLVw3LXQ2RWaQyF17BsjmFa+9ZDUiwu9etZ5DQ9M8emxsgXrpw4ePxYx8XnHro308d1Mnm7qa\nuHhNGxs7G/lxiUpraMqXRGpCKfUOpdT5SqkLlFKvUkqdcO37hFJqk1LqLKXUTxeynxqdTXUMT6WL\ntj14cISu5jrOX21VHbvu3G7CQeGuPQML0UUfPnwscuw5MUnvaIIbL1oFWIXvrtnaxY4jY2Ryeafd\nUCxFczRENLyg0Q1FWHQkstTQ2VTH6HS66EE/dmyMS9a2ISIAtETDXL6hg3ufmTtPMR8+fCxdPHBg\nGIBrthYcgS7f0EEik2OXqwz3UCy1qKQQ8EnklNHZFAFgLG5JI2PTaY6MxLloTXtRu8vWd7BvIMZk\nMjPvffThw8fixgMHR9i8vInulqiz7aI1bQDs7i+U4R6eSrGsMTLv/asGn0ROES31lufEZMIihwN2\navizVxYXjLlsfQdKwWPHxue3gz58+FjUUErx+LExLlvfUbR9ZWuUxkiQA4OFchOTySyt9T6JPKvQ\napPIRCILwGE7NfzGzsaidhetaSMglqrLhw8fPjT6xhJMJrOct7qlaLuIsLm7uZhEEhlnzlks8Enk\nFFEqiRwemSYcFCclikZjXYi1HQ3sH/CLWPnw4aOA3f2WzePcVa0z9m3uaioikYlEhpb6BQnvqwif\nRE4RBUnEJpGhadZ0NBAqk6Z58/JmnhmIVTxWLq+4c9cJfntkdG4668OHj3nFiYkEt+7sq5rpe0//\nJAGBs1fMrJm+ur2egViSTC5PNpdnKpVddJLI4qK0JYhSEjkxmZwhhWhs7W7inn2DpLN5IqGZJPPh\nW5/kuzv7APin153Pmy5bO0e99uHDx1yjfzzBy//tfsbiGVa0RPnxn11NZ5kgwYND06ztaCjrtruy\nNYpSlldWvb1/sZGIL4mcIlqixeqs4SoueFu7m8nmFYeHZ5bU3Xl0jO/u7OOdz1nPVRuX8X9+spex\n6XSZo/jw4WMp4BN37CWZyfPpN1zI8FSKL/zyQNl2R0amWV9iQ9VY0Wp5a52YSDoL1ZaoTyLPKkRC\nAerDQSYSGZSyClQtb46WbbvBHijHRuMz9n37kWM01YX44A1n8Tev2EYsmeX7jy14ajAfPnzMAoOT\nSe7cdZJ3XLWO113awysuWMmtj/aRzBQn2VBKcWwkzrqO8vVBVtguvycnkk54gC+JPAvRWh9mIpFh\nPJ4hnctXTNOsq5H1lpBILq/42e6TXH/uChoiIbatauGCnlZ+4JOIDx9LEj98vJ9cXvHmy6ykq6+9\npIdYMsuDB4eL2o1Op4mlsqxbVl4SWelIIglHEmlt8EnkWYeW+hCTyQyDNTJsdjRGaIgE6Rsrrj+y\nu3+CWDLLNVs7nW0v2dbNU8cn/NK7PnwsQdy3f4gty5vY2NUEWNHnkVCA3xwcKWp31F5QrltWXhJp\nrQ8TCQYYmkoRS1phBM3RxWXK9knkNKA+EiKezjEYSwKVC8aICD3t9fSNFUsiDx+yvLGu2rjM2abT\nH+h0CD58+FgaSGZyPHJ4lKu3FBaF0XCQS9a28dChYs9LrZVYW0GdJSK0NoSZTGSYTlkk0hjxSeRZ\nh4ZwkEQ6x1jcEjeXNVWOKF3dVj9DEtlzYpKVrVGWu1IebFvZQn04yBN91SPcdx4d47bHZupaffjw\ncfrx8KERfvj4cdLZfMU2Tx2fIJXN85xNnUXbL+hpY99AjGxJQkWg6N0vRVt9mPF4hoT9jtdHFk/y\nRfBdfE8LGiJBTkxkiNmGr+Yq3hPdLVF2uXLhAOw9MTnDRzwUDHDuqhae7JugEu7cdYL3fONRAL7/\n6HFu/v3LnaSPPnz4OL347o5e/up7TwJw53knueltl5R933bbCRN1Fm+Ns1c0k87mOTIyzebl1vs+\nFEsRCQVoqaKiamuwSCSetkikYZGRiC+JnAbUR4IkMjkm7dQn1VzwuprrGJlKkbMLVGVyeQ4OTXH2\nypYZbc/vaWV3/0TRykUjk8vzt7fv5rzVLfzV9Wdx//5hfvLUzHKaPnz4OHXEkhn+/sd7uGJDB+97\nwWZ+uuskDxwYKdt2z4lJljVG6G4pVmufvaLF3l8IOB6Kpehqqqu6+GutjzCeKJBINOSTyLMODZEg\n8XSWWDJDOChEw5Vva2dTHXlVyPrbP54gk1Mzcm0BnLeqlWTGWrmU4hd7BxmYTPGBF2/lPdduYmNn\nIzc/ePT0XZQPHz4c/OiJE8SSWT780rP50xdtpr0hzLcfOVa27e7+SbataplBDBu7rHf8qCtObDCW\nYnlL9dTubQ1hJuJpEuks9eEggcDi0jb4JHIa0GAb1ieTGZqj4aqrCu25pXWh2j6ypoxhbdNyy7Pj\n0NBMErlz1wmWNUa4dmsXwYDwukt7eOTI6AyjvQ8fPk4d33+0j7O6m7loTRt1oSCvvHAVv3h6gFS2\n2BaZzyv2D06VTWESDQfpaq4rsolqSaQaWuvDjiSy2FRZ4JPIaUF9xDKsTyayVXWbgJP2QJfU1ZO+\njiFxQwcnlka4K6V44OAIV2/pdHJ0vWRbNwD376/uzZVI53i8d7yqYdCHjzMFBwZjnJhIVG0TS2Z4\nrHec67Z1OwvEa7Z0kczkefRosePLYCxFOpuvGPexuq2evvG4q32ypiTSaKvL4+ncojOqg08ipwUN\n4SDZvGJ0Ou1k9a0EXcTKLYkEA+JEprrRWh+msykyg0QOD08zFEsVuQRvXt7EipYov67iEjyRyPDy\nz9/Pq//9AV73xQeJp7PG1+jDx7MN//aL/bz4M/dxzad+xa+eHqzY7pHDo+TyiudsLrxvV2zsICDw\n0KFiu8ixGi67Pe31HLclkXQ2z1g8Q1dTZc8ssEIIlK0C9yWRZyn06mAolqrpw73MlkRG7bxYfWMJ\nVrREy2b9BVi3rHGGTWSvbZg7z+X9ISJsX9/O41WKXn32rmc4OhLnT56/iaeOT/Dl+w7VuDIfPp6d\n2Hcyxr/e/QzXn9vNpq4mPnTrkzNUUxqPHB4lEgxwydpCtdLmaJiNXU3sOVHsaXnUflcrk0gDx8cT\n5POKcdsu2lElJAAK3lgjU2nqF1mMCCwQiYjIG0Rkt4jkRWR7yb6PiMgBEdknIte7tl8qIk/Z+/5N\nFpEva4P9YMfi6apGdYDmuhAihay/QzUMaytbo5ycSBZte/rkJMGAsNm2mWhc0NPK8fEEI1Mzo9xj\nyQzf3dHLqy9azQdvOJuXbOvm/z1wpOKL48PHsxn//eBh6kJB/ul1F/CRl53DYCzFnbtOlm2758Qk\nW1c0zciyu21lC3tK3PV7R+MExErhXg7dLXVkcoqJRMY4F1a9QyIpGspk+l1oLJQksgt4LXCfe6OI\nbAPeDJwL3ADcJCL6rn0ReBewxf7cMG+9rYE6O637ZDJTNp2zG4GA0FwXckhkdDpNR0PllciqtnpO\nTCRRSjnb9p6IsbGzcca5zl9t1WR+6vjM2JL79w8znc7xxu09ALzlirVMJDLcu2+o5vUN2vUMfPhY\n7BicTJZ1iXcjnc3z4ydO8NLzV9DWEOF5mztZ1Rrljgou8ntPxBz3XDfOWdnC8fFCTiuw1FkrW+sJ\nV9AsLHPZRCcN05joFPBj8UzZEhILjQXpkVJqr1JqX5ldNwLfUUqllFKHgQPA5SKyEmhRSj2krNn0\nZuDV89jlqtAPNpnJO4RSDa0N4WISaaxMIitaoqRs3anGMwMxzirj/aG3uSuhady/f5imuhCXrLNE\n8qs3d9JcF+JXNUjk47fv5vJP/ILrPnNvTQOkDx8LBaUUH/rek1z+yV9w/b/eVzXn3OO948RSWV6y\nbQVgLeyuPWs5DxwYmeFwMhRLMTyV4pwycVza8cWdUHVgMsWqtso2jk77XR+eSjvlI2qldtfqrEQm\nV5GcFhKLrUergV7X/332ttX299LtZSEi7xaRHSKyY2io9kr7VOFeHdSSRMASXyft1PGj0+mqOlE9\nIPvHrQk8m8vTP54om7CtozFCW0OYQ2XqlTxwYJirNi1zBmE4GOCKjR385mBlQ/yv9g3y3w8e4YZz\nVzAYS/EPP95T89p8+FgI/HTXSf5nRy+vuGAlvWMJPnnH3optf31gmIAU56q7enMnU6nsDBuHrkRa\nzmVX2z3cpR2GpirXEwLotPeNTBckkdYa5W7dHlmR0KLR4juYMxIRkbtFZFeZz41zdU4NpdSXlVLb\nlVLbu7q65vp0RILeSWQikWEqlSWdy7OsiiSystXSrWq7yEAsRTavWN1W3nC3sbORQ0PFkshEPMOx\n0TiXrmsv2n7lxmUcGYk7iSNL8dVfH2Zla5TPv/Vi/vB5G7njqZNlC2r58LHQ+M/7D7Gxq5HPvfli\n3nHlOn70RH/Fcf3I4RHOXdValFL9wjWWk0qpKri3SpbdNR3Wu1lEIjXiPvS7PhxLeZBECiRzRkki\nSqkXK6XOK/P5YZWfHQfWuP7vsbcdt7+Xbl8UcEsidTUM61AgEe2h1V7FJqKTOeq22j2wkuFuY1fT\njIn+6ZPW6qpUBaa9u3aXGAfB0tnev3+YN2xfQzgY4K2Xr0WEmjVOekfjvPebj/KR7z/p5BLz4WM2\n+ObDR3nHfz3MT2uk8zk0NMWjx8Z582VrCAaEt1y+lmxecceTM3+nlGJP/2SRZyNY8RvtDWF2leSq\n6x2LE6rggt8cDdPRGHFIJJXNMZHIVJVEtBF93GVYrxUW4HbrDQXOIBKZJW4H3iwidSKyAcuA/ohS\n6gQwKSJX2l5ZvwNUI6N5RRGJGOS1aaoLMZ3KMWITQ7Wsv9peMmq7Ax63A5Uq1XFf3VbvBDxp7Ksg\nkm9bZefyKUMiD9p1D1549nLAKtO5fV07v9pX2Z8+nc3zrpt3cPfeAf7nt7186NYnK7b14aMa7tx1\ngo/dtotHj47x3m89ymPHxiq2/aUd4/GKC1YBVszU+mUN3Fcm8LZ/IslkMuuMfQ0RYduqFp4eiBVt\n7xtLsLKtsgv+qrYoJ2xV81CNekJgJVZtiASJJbNMJrJEgoGadtT68OJWZ1VUxonIvxn8flIp9dde\nTyoirwE+D3QBPxGRx5VS1yuldovILcAeIAu8VymlfVD/BPhvoB74qf1ZFChWZ9Xm5YZIiOl0tlCp\nrL4yidQpO7oaAAAgAElEQVSHg9SFAk699f5xS0SvZLxb1RZFKRiYTDqpVJ4+GaO1PjxjNdUSDbO2\no2GGHhjggf3DtERDRZlIn7Opk8//cj8T8UzZ6mo/eaqfp0/G+NLbL2XfyRifvfsZnuqb4Pye1hlt\nffioBKUUn7pzH2d1N3PLH13FCz99D1/45QH+652XlW3/0KFR1i9rYJVrYXXN1i6+t7OPXF4RdOWa\n2msvmLatnGnj2NDZyI+eKJZeekfj9FRQHYOVgWJ4yno3TUgELG+sWDJDKBigORqqmXnbrd1Yauqs\nG4GdNT6vm81JlVK3KaV6lFJ1SqlupdT1rn2fUEptUkqdpZT6qWv7Dlsdtkkp9T7l9nldYBQZ1g0k\nEZ0mRReZaaqrbFgTEToaI446a3TailptqBB05NhQJgv64MND02zqaiw7WDd2NXKkjJ3jsd4xtq/v\nKHoBr9q0jLyCncdGZ7QHuOW3faxb1sBLtnXze1evpy4U4Hs7e8u21Tg5keTNX/4N133mXh45XP64\nPpY+JpMZ/vBrO7j2n3/Fz3aXj8fQ2Hl0jEPD07z7mo20NoR52xVr+cXTgwxOzrRx5POKRw6PcKXL\nSA5w0Zo24uncDPuglsrPKuOyu35ZIxOJjLNgA0sS0baPcrBIxCIPnVS1mnoarMWbJYlkjKoUuhep\nS02d9Vml1NeqfYD/mK+OLmZ4tYk0Rqw0Kdptt7GuOvG0N0ScAVrLJVjXZNbeXADHxxOsbi+/mlq/\nzCIRNyens3kODU3PUH85NpTjMyWXqVSW3x4Z5WXnryQQEFqiYV50znLu2HWSSnyvlOIvv/sET/ZN\nMJ3K8p5v7HT0xD6eXfi72/dwz75BBHj/dx4rcostxU93naQuFOCG8ywX3JeevxIoqK3cODoaZzKZ\nLYomh8JYLTWU943FWdYYKbtwW2/nuzpsR52ns3kGY6kiCacUmkSUUk4piFrBg5YkkiWZyVVcDLrh\nlj7Ci1CdVXHGU0r9a60fm7Q5E1CkzjKSRKyBo8XfapIIMEMSqerNZQ/4E7Y3Vz6vODGRqGhDWb+s\ngel0jiFXlPvBoSmyeTXDEN9UF2JDZyO7+mcGMz5yeIRsXnH15kI1t2u2dDEUS7G/TNwKWP76vz4w\nzF+85Cz+4x3bGZ1O8/Xf1E5n/+v9w3zu7v1+3MoCIpvL882Hj/K1B4/UTOZ5bCTO9x/r4w+u3sC3\n3nUl2Zziqw8crtj+oUMjXLqunUb7vTh7RTMrW6PcXyYv3L6TWrIoHqubupqIhgMznEZ6RxP0VEhJ\noj2wNMHpd66qy25TZEYEei1DeXM0TCxpVSo0SagYChaII7KU1FkiEhWR3xWRV4mFD4nIj0XkcyLS\nWel3ZyK8xok0uHJtAc7LUgntjRFHahmdTtNehUSa6kI0RIIM28cemkqRyamK3lzr7YCpoyOFlaF+\nMctF6W5b2eLk7nLjoUOjREKBIjfi59qE8puD5Yv3fG9nHw2RIG/c3sP5Pa1cvr6DWx/tqyi5APzq\n6UHe8dWH+ezdz/D6L/6mKFrYx/zh7360h4/dtou/vX13TQeK7z9mhXi987nrWdVWzw3nreAHjx13\nCrO5MRHPsOfEZJF6SkS4ZF35vHA6jmNLd3EKoGBAHCnbjb6xeNmM2QDdthQ/OGm9O1pN1VnFZVcT\nzPBUwWW3loqqIInkjWyo4cDStYncDLwE+H3gHmAt8AUghmXg9mEj5LIbmKQlcJNIJBSoOTCsGstm\n6iyw1F/am0vXLuipIImsKpFcwIp4DwbEKaLjxsauRvrG4jNWn3tPTLK1uzi/UE97PZ1NkbJpWADu\n2z/Eczd3OuWEX3nRKg4NTZcNlgRLqvqHH+9hU1cT337XlRwfT/DVX1de0Wo80TvO3/9oj29zqYKh\nWIpP3fk033nkWFUSB2vi/sbDR3nnc9bzvhds5rbHjrOrwjMGuHvvAJet63Dsddefu4KxeKasx9Wj\nvWMoBZet7yjafvGaNo6PJ2ZEou8biLG2o6GsWmjdsoai5KW5vOL4eII1FVS7zXUhouGAE1+ivSc7\nq3hPaoIZiqWZTGaJhgM1PTSbo2FiqSyJdK7I86oS3EWo3FLJYkG12WubUuptwOuBs5RS71VK3Wl7\nY62p8rszDkGPD1kP+KGpFI0G4myj7RIMtdVZYKm/tHFwyH4hKiV57G7Wq68CiRwftzILlyO39csa\nyStmFL96+mSMs7rLuU22lo1DOTYSp3c0wXM3FVacz7MllwcrpLN/5Mgoh4aned8LNnPVpmW86Ozl\nfPPho2VXtBoHBmO85SsP8dUHDvPWrzzE472Vsxy7MR5P18zBtNgxOp0mX+XeaGRzeX7nq49w0z0H\n+fD3n+Kmew5Wbf/dHb2EAsL7X7SFd12zkYZIkG8+XF4NOZHIsLt/siiN+jVbuxChbHnZZ2wp+JyV\n5e1xOuZJ4+DgFFtKEpFqrO9spHc04YwPKwecqiiJiAjLm6MMaEnEJqxljbXjPiaTGSYTmZqBg2B5\nXCbTOZLZHHUeEyouKXUWkAZQSmWB/pJ9fupXF9wrhaBBcmEtiQzHUjVVWQBNdUHSuTyTth61mjoL\nLPXXqK3+cmJRKrwILfXW6sudKfj4WBUbSqe1inOv8Ean0wzFUmVTQ5y3qoX9A7EZ2YIfPmxNIM9x\n2VDWLWtgVWuUhypIDHc8dYL6cJCXnGsV4HrNJasZnkqz82jlGILP3rWfoAh3feAa2hsj/MvPyqVs\nK8a/3v0MF/39Xbzw0/caV4ocjCUdHboJcnnlKallOpvncIkDRCXk85bDwiX/cBevvumBmiq/7+3s\nY++JSb709ku4/txu/v1XByr+Jp9X/OiJE1y7dTntjRFa68O88Ozl3LVnsCxh/fbwKEpRpJ5qrQ+z\nuauJx3tnPrd9AzG6W+poK/Fw0lLxwRL72vHxREVSWL+skbSdJggK7vGVxjZYWXYLkohNIlUkEa26\niiWzTCYzNe0hAPWRAIlMjqShJOLGUlNn9dgp1z/v+q7/r5i36kyEmzhCBvWPNYkMxpI1jepQMLzr\nl6GW90dHQ9iRRPTf9sbyvxERuluiDLjUBJY3V+UXE+DI8EwbSrmkkJuXN5HNK3pHi43gT5+MEQ0H\n2NRVWEWKCBf0tLG7gmrkoUMjXLahw5Hkrt3aRTgoZb12wLr2O3ef5K1XrGVLdzO//9wN/PrA8Ay3\nTzd2Hh3lX+/ez/PP6mJsOs3HbttVsa3G9x/t46p//CVX/uMvuHvPQM32sWSGTR+9gy0f+6mRim08\nnualn7uPF/zLPbzr5h1VJS+AHz5xnO/t7OPl569kd/8kn/55deK8ZUcvZ69o5vpzV/CnL9xCPJ3j\nh4+Xz0xwYGiKk5NJrreJHODF53QzPJUqK3E+3jtOMCBctKataPtFa9p4vHd8Bik+MxBja/fMcdTV\nVEdzNMRBV6noyWSGWDJb0XtKeyoO2FK2LpFQzVC+vDnq2ERGptJEQoGq76iWPGLJjFFlU7AkkWxe\nEUtljWwibiw1ddZfYcWC7HB91/9/cO67tnTgVmcFDEhE2w0yOWVkiNfSihazaxW+aneps0am0zTV\nharqabtbogzYkkg2l+fkZLLiaq2jMUIkFHBeTIBjo9aLrbOauqEN96UGzn0nY2xZ3lx07wDOXdXC\nkZH4jJQpY9NpnhmY4ooNBV15czTMeatbebSCJPLLpwfJ5RUvv8ByEX3VRVZE88+rTPRfvOcQHY0R\nbnrbJbzn+Zu495mhGSoUN4anUnz0tqe4aE0bm7ua+KvvPVGzYqSbmN51846y9V/c+OQde+kdTfCW\ny9dw995BbtlROfZGKcVNvzrIOStb+PxbLub1l/Rwy45ex6ZWit7ROI8eG+fGi1YjIpy3upVNXY3c\nVeEe/faIRXqXu56D/v5oGRvHvoEYG8qULTh3VQtj8UyRV2A+r9g/MMVZZUhERNjU1cRB1wLghBN4\nW36sLteq2pg2lNfOENHVXOfYXXSZhmrBgE2zkET0vYgls0benG4sKUnEIEbEh40im4gBibgHgomO\ns8khEeulqaUC62iIEEtlSWfzRob45c0FEX54Kk0ur1jRWj4i3pJc6oqCGY+PJQgIZX+zQUsuJdUZ\n91VIZ3/uasuu8vTJYg8wPUGVGlwvWdvOE33la8b/8ulBulvqnKj71W31bFvZUrEU6mQyw73PDPLa\ni1fTEAnx1svXEgwIP3qiVJtbwNd/c5R0Ns8/v/4C/uHV5zIWz3Drzr6K7Q8Mxrj9iX7e94LN/PwD\n1zCRyPDNh49VbD8YS3LbY8d56xVr+eRrzufCnla+ct+himqtp0/G2D84xVuvWEsgILz9ynUkM/mK\nxPmgncX5um3LnW0vPHs5Dx0aIZGeqbXecWSMzqa6osp9K1ujLG+uK2tvemYgVpYUNtl2jIODhXEx\nPJ0ilc2ztkyyQ7Cy5mpHEShI5pVIpNu2A5ZKItXeh9Z6y+idyyumUllaamTYDQcD1IeDTCYydvCg\niTorWPa7CZaUTUREfiQit1f6zGcnFzvc6qzSlXU5uHPlmHhzadIYdEik+sBrs1+S8Xja2JtrPKFt\nKNqtsXqNk4EiQ3yS7gqG+LaGMC3RUBGJjNk2lHKTy8ZOa3IpTSKpI41LDa4Xrmkjlc2zf3Cm2/Hj\nveNctr6jaCV5xcYOnugbL2uPuP+ZYTI55QS5tTdGuGJDBz/fXVly+clTJ7hy4zI2djVx6boOzl7R\nzI/KJP7T+MFj/QTEcnfd2t3M87Z08j+/7a1ICnfvGSSTU7zl8rWIWMkFDw1Pl3WzBvjFXquvL7Wv\n4bzVLaxoifLLveWJ87dHxmhvCBepFS/fsIxMTpWNB3qyb5yL1rQV3VOthiz1wounsxwbjZddLOjz\nuSWLWjYLXeVT36s+m0QqtW9viBAKiCOJjEynaY5Wl8odQ7mdZdtE3axddhOZnFHlQbcdxEQT4caS\nkkSAfwE+DRwGEsBX7M8UUN194wxDkWHdgEQiHklEi8xanVVrYDfb+2OprBGJtNlFsvJ55RiHO6p4\npHS3FDxYwEoKWelFFhF62hsc1QMUUmeXS6/d015PKCAz1F8HBqZY0RKdsdLTRFRaiGt4KsXx8QQX\n9hTr4i9d104yky+bdHLH0VGi4QAXuvT312ztYv/gVFmV05HhaQ4MTnH9uSucbS85dwU7jowWpc5w\n4+69A2xf3+G4hr7s/JUcH0/wzEB5O80v9g7Q017PVjsO4rpt3YhYxymH3x4Z46zuZuf4IsI1Wzt5\n+PBIWaLaedRKb+MmBW2/KI3LyOTyHB2JO31xY0t3E0dHpovI+dDQNEpR1ntqRUuUhkiwhESqSxYr\nWqOkc3lnjJ4YTxAKSEUbRyAgLG+ucxY8w1PV07SD9S6A5VUWS2ZpMpAsmqMhYqmMcdzHqZDIkrKJ\nKKXuVUrdCzxXKfUmpdSP7M9bgefNXxeXFoxIxJ3GwGBQaNI4aajO0u2nU1nG45mauXxa68MoZelo\nCyRS+TfdLcUrwv7xZNXUECtao0XqLz1ZlDPeh4IB1nQ0zFB/HRiamhFQBpYdJhQQJ+hM4yk7pXdp\n8kdNKuWMwI8eG+eCnrai1Z4Onny0TKDbDtsWc9Wm4uJGeUVZj7GTE0mePhnjxecUVEcvOMv6ft8z\nM4un5fKK3xwa4QVnLXcm+WVNdZzV3ezYJkrbP3p0jO3ri1OAXLy2nbF4piigFCxj8OHh6RlG767m\nOla1RmdIFkdHpsnmFZvLkMKmriYyOVWUzuS4/ZzXlIkQDwSEnvb6ovQ8tUhEG8p1TNPIlLVAqvbO\ndbVEHRvHyFS6qj0ECpKIrvfTbOL4YufCSmRyRqTgTo3k1bBuMl/MN0yuoFFENup/7BTtMy2oPgCz\nBGnFkoi5+KsjaGtJIppkplJZYsnaSd60O+V4Im1IInUkMjmm7ASSQ7EUy6t4vHS31JWov3QAZKV8\nXg1F3l9KKQ4MThWpXDQioQDrOxtnrOT32sbw0pTfq9vqaYgEZ6i/kpkce/onuHht8YR6/upWQgEp\n64762LExmutCbHb164Ieq/3OMkbmJ/osItrusuusaI2ypqO+rD3h0NAU8XRuRp+2r2/nsWPjM7y0\nDgxOEUtlZxQf0yShz6+hPZ3KkcKW7mYODRffUy3tlSeRxqJjgolkUV8U5No3lqCpLlTRw6m0QNto\n3ERVG2bcdncfi6dnuA6Xwl3vYyppps6qDwdIpHOks3kjEinKheVRPRUwCCGYb5hcwQeAe0TkHhG5\nF/gV8P657dbShcmYcJOIycpCr1z0BG8qiUwls0ync7VtKPrFiVuFsgJS2Fa2vSadeIZEOkcik6ta\n4re7JcrwVNpRdfSNJWiMBCsaLVe21RdJLkOxFPF0rmwEPcC6joYZCf2OjViJ9kqDvwIBYfPyJvaX\nkM6RkWkyOcW5q4oll2g4yPrORvadnKlueuzYOBetbStSZ0bDQbatauGJMqTwVN8EwYCwraRe94U9\nbWVJ5EktTZUUULpoTTtTqewMu1GhlGvx8bcsbyIcFMcVW6M6KTRxcHC6KPZDE0Q5Mt/gpM8pJpFo\nOEB7mbIBACtbokUk0j+eYFVbtKI3VLddykCPjbHptJGUrWNeTCQLtzprKpV1VMnVUB8OOjZF7yTi\njRRqpY1fCNSc8pRSd2IVh3o/8GdY0es/n+uOLVUEDSSRUEDQY6FWQRooDMwR20WxlvFOk8botOVp\nVYt09IszbldbbG+IVHVV1i/uWDxdCMiqof6Cgqtlvx2HUnGyaI4yOp12AhT1RLOqtfyKtqe93pFu\nNI6OxMvaXAC2LG+eIYkctifIjWXclLd2N3GgpH0ur9g/GJtBCGDZacrZOJ48PsHW7uYZE80FPa0c\nH0/MCFZ86vgEDZEgG0smbW0H2j8wkxREmEG2oWCAdcsai+wPun04KKwro27a2NVIIpMrIvPe0Tid\nTXVlx1NrfZj6cLCEFCw1Z6XnvLItyvBUoYDa0FTKccstBx3rpN2VxwwkkbYSEqlFCvraYklzw3p9\nJOjYwOpNcmGdQmr3xUch1b2zLtHflVIppdQT9idVro0PCyYR6yLiDCQTcVYTzVQqSyQUqBmL0lTn\nzRDvkEg8zVi8eoJHwFlZjsXNSvzqYlhFBs4q6q8VrdY+HfSlJ6ZKbser2+uJJbNFUdZHR6ZZt6y8\n5LK2o4GByVRRFL3O11Uu1mXL8maOjsZJZgrtj48lyORUWeloa3czw1OpGcb1fScnZ3iX6eMDM4Ig\n9w/G2NI9M5Zm8/ImRJhBVAeGpuhpry+7Gt7Y2VikagLLM2r9ssayVfv0fXDbpk5MJCsWQxMRx3tK\n4/h45cwHYNk4lMJxLx+r4QRSFwrSVBdidFqrpzIVg2g1WuvDTCYzlsuugXqqIWztH45Zz86k3kc0\nHHRKNZhJIlL2ezXoaWURCiJVJZH/JyLtItJR6QP813x1dKkgaDgo6uwX18TvOxIMFCQXk7gS7c1l\nv5y1ghN1ZUXtkWJsQ4kXbCjVDJaalPSkanmMVYkadiQXq/8n7ZTvKyuRiG1b0fXnU9kcJyaTRbEM\nRe1tg36/y2Ps0NA03S3lV9kbuxpRquBVBjj2glIpAQoZZd3G/kQ6x8BkyombcaOcuyvY0lSZa6iP\nBFnT3jBDmjo4OFVknyk6x/ImjgxPF+UDswoulb9HpdHeACcmEmVrjWusaI0WpefvH09UfGZQeM56\nsWNJwdVJoa0hzFjckrDH41YwYDW0NkRQylq4ZPOqpiRS78omAbUXYGCps7TWzyTuYzaSiJ5VlppN\npJXalQ39PNwlMAk2hIJdxMTFV0QcacSkfX04SEBwotBrqbM0aUylskYivJZcxqbTRi7BbskFdCRw\n5clCT1QnJwqSSCQUqLhKLZCCNYH1jSVQiookonMtHXcFrh0ennJiVMzaV5ZcHPuAi3Q0AZULpFvd\nXk8kFCiSFNJZK+fT+goquXXLGuh19UcpxdGROBsqXMOa9gayeeWoFMEi50qTvDZiu4n2RA0vvJUu\nQ7lSipHpdFWJs8O1GMnk8kwmszWl4I5Gq0DbZCJDXlGzvTaU6yDFWjaRSChAKCCFWj+GNhGNWhl8\noYREjCURq93io5AqNdaVUuvnsR/PGpiuFPTgMfXOiIaDJDN5o/YiQkMk5KSUqEUKdSFL0tEle7ur\n6KXBZYhPZMjaS7BqK8K2MpNFVUnEnngcSWQyyYqWygZXd00HKKjBKksu1kToTq7YP57k6i3ly+Ro\nSadvvJhEmqOhsragla31iBSTjjY4l1OxBQPC2o6GIqP08fEEeQVrK6jkVrfVs9cVQDiZsFxMK6mb\n3O6xq9rqSaRzjMUzFe9RfSRIW0PYUU/FkhliqWxVyWJFq+WFp6O9c3lVVc2pFwWj02nHg8okMHZs\nOu0YsttqSC56gaQlJCNSiASdsdRgIFm4pQ8Tl93ILLyzAmJnvV2ELLL4wh+XOEwlES3+mkgWUKiY\naNq+LhRwDPG1vLNEhIZwkOlUztIb13jRQsEA0XCA6ZRlhxCprjtuiYYIBoSxeNpRaVXz5mpriCBS\nIrlUmVz0RK4zFmvy7KywCl7ZGiUgBckll1cMTaUqqmqWN9cRDkoRKfSPJ+hpbyhLbJFQgOXNdUXG\nfifAsor6yG2UPuKQTgWVXFs9w1Mpx07T76j8KsRYtGnpzjrHiRrtwZIIdTu9Mq9UUgCs2hp5ZUV7\njxm4ijtqznjaMZabeFtp91uAprrqJOIkO3Xsg7WDBxsiBW8rE8nC7RxjkpXXXeLWdL4oSCKLj0V8\nEjnNMLWJ6EA901w42s3XmHTCQefFNKnjXB8JkciYqbPAkm6mUjkrqjcSqmrsFxHa6sOMxTOu1PSV\nJ4ugXaNd998KmKz88kfDlsFVrx51HYhK0cmhYID2hgjDTpLKFLm8cnItlSIQEFa1FXuADUymKrYH\na5J3k86x0TjN0VDFlfOqMjETQMUCSlqFp/vkkEIlSaSlvqidJpNK7aGY2LThuJoE6UgWtoMGVCeF\nxkiQcFAYnTZz0ABLkpi21a76GNWgx/6ABxtHQyTkSEYm75tbmjAxrLvtIOWcGsohsEQN63MGEXmD\niOwWkbyIbHdtXy8iCRF53P58ybXvUhF5SkQO2CnpF+HtNPPOApxAMVNS8OLNBdbqaNpOoGdabTGe\nzhnFlVjtQ8TTWaZTWaOaKG0N4SJDvEmQ2JgrSKzW5LKsKeJIXkNTKUIBqZoy32pfrP7qqqLG626O\nFhXuGphMVlX7rW5vKCKdwclUVZXcitYSd9dYCpHKOcy0Sq7fIRGbFCqom1rqrbLJup2W1qoFiS5r\nqnOVFLCeRTUyd1y/p10kUuU5i4hVhXM65bSvpZ6yFi/WuIPa9j6niqj9jE28repdCzCTRZ7X4EGv\nGSugoCZfjJNezSu266u/XUT+t/3/WhG5/BTPuwt4LXBfmX0HlVIX2Z/3uLZ/EXgXVszKFuCGU+zD\nnMAk7QkU1FmmpKDFXmN1lmtFZEoiY/GMUVwJ6GqLWabTWSPSaYqGmUrlnDrUtWqitDZEiiSR1hqT\ny7LGiENQw7EUnU11VaWjDld77YFUTbJY1hRxpKhsLs/wVHVJpLu5zpGMwJq0qxmZV7VZ7q66L0Ox\nFMsaIxVXqqV2oIGJJAGhYpyFVbWvkDlgzGDl39FYKLM8aiBZuG0c2g23pvdUvZUyJGarp2pVBmyM\nhEhmrAJtYE4i2qHATBIpeFvVmcR9eAweLlZnefTOMpxf5hMmV3ATcBXwFvv/GPDvp3JSpdRepVTt\nEnM2RGQl0KKUekhZeqCbgVefSh/mCuY2kdlJIiYuvlCSKdjgN/WRYMEjxbDaouXNlTNuP53KEktp\nXXaNmih2uop0Ns9UKmsgiRQm7eGpFJ3NtdtryWXQ0fdXliyWNblIaipNXlVv39EUIZ7OObVFhmxi\nq4TSaOxa7XWlSn0No3ZKj2qLmI7GiKOmGY1btqxqZN7eECGZyRNPZz3bOGoVQ9NonCFZmAXSmpKC\nNnrrBYCJC667jZEkUlQe26vkcgZIIsAVSqn3AkkApdQYUP0NPTVssFVZ94qITvS4GnAXaeijSnVF\nEXm3iOwQkR1DQzMT280ljP24HUnErL2eHNyrmGpwe4mYvAiNkZDLI8VUErG8uUw8XhojtuRiTCIR\nxhNpJ4CwVvzAssaCpDAaz1TV3QN0utsb2Gk6GusYs+uu69V8NVVQZ8kkXyvAUpPCqMs5oFr7lvoQ\noYA47cemMzVVQW7pazyepiUarjrpLXNJFmPxDJFgoKq3kvbaG4tnGE+kCQWk5nN21FO26tXUHf2k\n475uZhOZsCUpkwwRRS67HtOYmCwiQx5JB3DYYzEq8U2uICMiQexpT0S6gJrFoUXkbhHZVeZzY5Wf\nnQDWKqUuAv4c+JaIzMwrUQNKqS8rpbYrpbZ3dXV5/fkpwfQhFyJQzX6gycbYEB/yps6qjwSZiGuP\nFLMaJ9OpLFPJbM1gRihMFtqrptZk0VhneYuNO7ry6uuWlvqwUw3RJOlkR2MdEwlL0plMZIiEAlWN\nop1NVtDaWDzj6O+rBVi6VTvTqSzxdK4qKZSm9BiOVScREaHdRQomdiM3iRjVmXGCRC1vq/bGcNXx\n2hCx4pOccVEXqjm+m+oKi4tQQGqOPae2jmEgrSaEMS+Gco9SvLu9SdyH+56Yai5cv/bYfu5R++2H\nfwNuA5aLyCeA1wN/XetHSqkXe+2MnVIlZX/fKSIHga3AcaDH1bTH3rboYEoKWrIwHRJad2runeWt\nZklDJEjajmY2qnESsUghHKxeg9o5fp1luJ9KW6lbap1DqzmM4wHqLF15JpdnKlk70Z52MR6PW9JO\nLRuNW1KYMLDraIIZmU7RGrPaVatlUchHlkEpy+W4Vu2LZY0Rp+Tr6HSangqeXM45bBuHUorxeG3J\nxQkqjacZNSApEaGxzirQZKrmbKwLWYlCU1kaIsGa74+7VHRDJFjTRhC0iSlhu0KbZohwvhu8C5Gg\nm4K2oqcAACAASURBVBS8pnY3bG9rLhajJFLzKSulvikiO4EXYc15r1ZK7Z2LzthSzqhSKmenn98C\nHFJKjYrIpIhcCTwM/A7w+bnow3xBq728BieapI53twsGxMjYH/UouTTUBa3018G8sSFeSyJGNRoi\nIdLZvKNbr6kWcdW6NkndotONT+ra2DUlF5sUplKOc0C1etpum0V7Q217QkMkSCQYYCyeJpnJk87m\nazsTNFmeTWA5H5y/uoY6qyFCOptnOp1jLJ6umsIEiuvSxJKZmkZv/RtL8jJzuGiOhjza1qw2Q7GU\nUSAgWPc2lc0TDIihzaLwvphI5aeSldcj5yxCOaR6AkZ3jqxB4NvAt4ABe9usISKvEZE+LIP9T0Tk\nZ/aua4AnReRx4HvAe5RSuvrOnwD/CRzAqqz401Ppw0LDa0K1gouvofor4E395SYOE+N9Xch6MZOZ\nnFGUriaF8UTGiHQa7DbDTsBkLV15QR2UyORqBpU1O6STMZJEtLppIpHxKImkHc+jasQmIpYb9HTG\nUcvVqtfd0VjH6LQlWZgkztSkN5W0DOW1VIR6wo6lskynzFy/HbVlKmtoWwsybWdKMBkXWj01kcgY\nj23dD9P2blLw6uJrbOOwYbqI1An5F2NkQ7WnthOr7wKsBcbs723AMWDDbE+qlLoNS0VWuv1W4NYK\nv9kBnDfbcy4+aEnErLXWnZqsjMBliDclHY8ifDQcsNRfOe914k0miyZ7wtIeY7UigZ3qj7bBtZYk\noifoKTvqvpbqyJlQ7WzB0XCgajRzQyRIKCBM2kkt3eesBCcvlOPuWlua0hX1Utl87UA9p1iZlcKk\nUj0XDX0PtSv32rrq6jIo9rYyVWfl8oqR6ZTRuNALllgyU9Omo+ElT11R+2DtjNng3bDuhteEiovQ\nw7dqedwNSqmNwN3AK5VSnUqpZcArAL+eyCmiMHa8TfKmqym9IjJXf3kLmCoy3AfNVqhguWY2Gaxo\nZxhQa0wwesLVAX61SKSUFGpJIs22ZBNLmbUXEUdVU5Asaie2HI8XJJFa6qOmaMjpD9SOvWlyqfCm\nU7UdIpwKmXb7JgPJQl9z3DBo1T0uTNrrcZdXXiQLbzFWkaBX0nGndvcmiZhygs5wsVTTnlyplLpD\n/6OU+inwnLnr0pmBQmpns/YFycLbi2MqubiNgyYvj/u4JgFZus1EImOUj0hPcFoSqaX/1qv8E8aS\nSGGCnIjXJoUmd3sDEtG/mXIF0tUkkXpLEjFt31yn7UY68M5MWhux41xqEXM4GKAuFGAqnSWeytFg\nQv4R65qnDEgKCrY403FRFP/kNcbKY3uvxwfvkoJXSWQRarOMvLP6ReSvgW/Y/78N6J+7Lp1ZMNVx\nasO6aW6uoMcI94jHl7POYxyKniC0O20tNLpWqAGpPQHoCbRAImaSxWRSq3aqtw8GhIZIkKmUmQ0F\nrGR/MVsSEantjtpYFyKezhmrv5ziY4Z5oQrFysxiLKw+WCqz6bRhTjVbEklmckbqqTpHPZU1G0ce\nMzHA7EnBVDXlJgLPNotFSApeYXJX3wJ0YdkwbgOWU4he9zFLeI1ADdtuHKbirFf1l1djoldvLj1Z\n5JXZitDJeRRL0RCpHW/Q4EguhhNqtCDpKINVuT5mLJllMpE18lRqrgsRS2aYNEhSCdrIbK7+arL7\noHN61TJkN7nsUibtrT6FGI6ljCQXsGxXyUyOeNpMctGLi1xeeZaAjZ1GvL4LtnrKlA9Ma4KUg6nk\nUjCsz/pUcwYTF99RrPrqPk4j9GAwdfHTA9WrIX42kojJJF/nMQ7Fqxoi6gSJpY2rywEM2d5ctaLo\ngwGhPhw0NtyDvSp33FfNVuWDsaSRyzHYSS1TOWN1VmkZ5FqShRPtPamJ1kw9NWDfo1oZc8EyfCcz\neVLZvJF6yms802zUWbqduWq3sOAxgWnS1XLwKrksRptIzZEtIr+iQIQOlFIvnJMenWHwKlmYx5V4\ndAn26J3lniCMSKfIEG8+WcTTuarpRTSiEau9jvg2IQUr6aR5+6Zo2PGGMiWdQ0NZplKZmqopsCb1\ndC7PaDxtpP4qJYXaWQCKScesREDQpf4yUE+Fgk5gn+dx4aHKZyqb96Ce0vZBMycT/S7kDVnkVJIi\nGksiSp9r1qeaM5jYRP7S9T0KvA7Izk13zhzosWO6EHEi3D1KIqZZhb3aRCIe1QqzNcSDVeukZn/s\nOvTaU8lU2tHpMKIGq+zGSJBEOksinTNK5KfVX14kEbAy8jbV1VZ/OZLIhFkKkHAwQCQYcKQvU5da\nnbTRpFaGW7IwWcB4zfEGzIJEZmcTyRqSyClJIh4liyUpiSildpZsekBEHpmj/pwxcCqVGQ7AQlEa\nb4Z4U0Q82kTcmUtN40oKxzfXlVvtzfIRWXUgzPN/RcMBRxKJGpJOLJklmckbTagNEWtVPp3K1gzs\ng4I6amgqZeTZpO1GuriWkQ0iHHDyZ5kY1qOhoFMAyshWFvYqcXqTaMGlnjK2cXgjEb0A0261tWC6\nUCsH83ytylP7+YSJOssdnR4ALgVa56xHZxhMx58mD9P22hCfM1xNuV8wk6hbdxsz10yPhnhXG9OX\ntD5s5ecyPUd9JMjRkbjz3eT40+ks6VzeSJ0VDVskYpGOiTOB9TqOxdNG0pqesHXqkwbDPo0nzFV4\nUY/eUMU2i9NvE4FZeB56NKxrCdDQJHKK6iyvksjig4k6yx25ngUOA38wl506E+CkPZkjcVa/aDnD\nN8FrpG3QoyRyKoZ4UxLxugqOhoKOEdtkQq1zqXbqI2aTvFJWVLxRbIwtGYxNZ8wC7+x7OjqVpi4U\nMCL/aDjAUMw80ab7ORgFoXolHY/PDApJDr0ayk2lc+ddmBfD+ty2nw+YkMg5Sqmke4OI1LZ0+qgK\nr7mzvAYnan20qXHQq/or5JFEIkWSi5kBNRIKkLYT55lAT6p1oYCR2s8tfZiop+rDQUcVZGYfsNqM\nx9OGbs12MOB0io7GZuPjT6dzNVOkOL9xkdmckILXKn8exxG4k5F6c9k1XfV7lSxORZ1lnDvLeY0X\nH4uYPIUHy2z7zenuyJkGLVF4XVmYDnC9KjVVZ3kVq92kY7KCdL9opitI3c40vbbXdBVuIvBCCubt\nrX5Mp3Oe1FPJTN7MpuNRRQjeJUK3usnMzuTNxuFVonX/xtzGEZhxrqrHF2/qrFOyiRi2031ZjLmz\nKi5fRGQFVvXAehG5mML1tgC1M7H5qIrZqrNMoSWFvKFx0GsdBHd7k5fZa3uw7CgxssbEWUhvYebK\n6Z7wTG0i5b6btDfpk5uMTUgqHBQC4i2PVNSjq7W7HyaSS9hj+hy3Cs50XOgFj4mDhru9V09IY8P6\nvKqzFh+LVJOBrwfeiVUA6jOu7THgo3PYpzMKxisLj+ovLSmYkojX1VTIY82F2Ugi2ivL1F7jNV+Y\ne8IzMzK73I49Si4mffIa8CkiRG1ngvAspC+zRJunsFgwmOSL1KKGRKgnd2Mbh04Z5LFgnLlh3bBh\nGXgPNlx8qEgiSqmvAV8TkdfZKdp9zAGMB5GubGY4jAppVebGJdj98psQkFcbChTyhJkSnOdEewH3\nyt+bO6qJ5FKsCvKWXNBE/WWdwyYRU0kkXFDtmNxXr0GoIc+SiPdxoce26bjwWgDOYyJez6rgWWEp\nVjYUkbcrpb4BrBeRPy/dr5T6TJmf+fCIudJxiqPXnStJpPCmmbxEgaIVp5kawtFlG745XutGhD2m\n8PYqfbmJw4ykvJEOFOJbvOZIM81k4CZ/k9+4JRGv7U3J3yER05gp+xpM1aJBu0+GQvy8TuxLLdiw\n0f7bNB8dOVNhPAA9jh3HODhHboruycWrOO/V1dI0c/FsU367z2Xa3sw+4G2C9KrOAld6G4/tTUmn\nSA1pop7yKFnMxrDu1bNRk4dx2QWPC7D5nNiXlCSilPoP++/fzV93zkTMzajwKuF4lUTc7b2K8151\n095tIoaFuFwpv03Uiu6J14QIiyQXAxuKexI1May7z2ES1Q+ussmzIFq35Fb5+N6JUCNouBrxqp7y\nXG3Q46JofrRZphaa+YdJxHoX8C5gvbu9Uur3565bz344CdU8DkDj1dEpuOyawD1ZeCYRYzdlb2oL\nrzmS9PG9Gmjd56oGr7ExXttD4Tl4jrEwrpDpzfAdnIXa0vmtcRzHzHOZ9MnYZdejFD8fKCRgXHyi\niEmE0g+B+7HK5ObmtjtnHkwne68is8egW8/qLLeKyeu4Nne19Obf7zVORBOBV5ICs9VtsQ3FRBUU\nIBgQcnnlQZ0lM/pW6xxgrv5yLxZMIuK9uvi6YTqOCpKIWfuCy67h8R31lzfD/Xxg8VGIGYk0KKU+\ndDpPKiL/DLwSSAMHgd9TSo3b+z6ClVYlB/yZUupn9vZLgf8G6oE7gPcrU0fuRQgtUczVwsKresrr\nCqfYJjJHkojHTMQOKXhsb4qwR0nEq00ECpOEVyI0Lpus1VmzkETM2ntT+blhvKDymLy0sEgwtXHo\n8xg1n1/D+iJkEZOR9GMRedlpPu9dwHlKqQuAZ4CPAIjINuDNwLnADcBNIqKXcF/EUqttsT83nOY+\nLQjmyijndXXkOWL9FGwi5q6WHkkk5E395bX4kGfDuttTyaPR2JgUPKYACXkkHRPpo6i92/Xb87jw\n1s7YxdejJFIIBDZsb9juVOBUNlyEsojJCHk/FpEkRGRSRGIiMnkqJ1VK/VwppWuSPIQV0AhwI/Ad\npVRKKXUYOABcLiIrgRal1EO29HEz8OpT6cNiwVytLLwe17M6q4hEvJ3Lq0HU1DCq3UW9Vos0tTOF\nPa6yi1yIDa9BTxLm0po3byuvFS+9GqVDRWrOuZGGvaqzCmUUzNp7lXTmM4p8MUoiJvVEameCOzX8\nPvA/9vfVWKSi0Wdvy9jfS7eXhYi8G3g3wNq1a09nX0875mpQeH+BvR3f/eJ4l0TM2umJ1DztiTdd\ntld1VpFh3eCGuWMg5kzl59hEvLX3SjqmcF+zeA7a89bOvBaPo6Ayau9ZnWXW7LRgEXKIkXfWJWU2\nTwBHXdJEud/dDawos+tjSqkf2m0+hpVe/ptm3TWDUurLwJcBtm/fvqjtJl7FU2PjoONhMjcJGE/l\nt15tIqYTmVeDqJ5ITe+pVxdf98Rues1aKjJ3a/bonRXQhvU5Itp5UHNq8jCVnj1nzHayPZi2N2x4\nCtDv8VLLnaVxE3AJ8JT9//nALqBVRP5YKfXzcj9SSr242kFF5J3AK4AXuQzkx4E1rmY99rbjFFRe\n7u1LFl5rJnvP9mufx7D9qaWz9tbe2CDqeGd5WzV7XcWb3iOvRmP3BDxXqh19zV5tKHOWDucUvPaM\n75HXd6fkr2l702cwHxO7YxNZfBxiZBPpBy5WSl2qlLoUuAg4BFwHfGo2JxWRG4APAq9SSsVdu24H\n3iwidSKyAcuA/ohS6gQwKSJXivXEfgfL9XjJY6ka1k/tXGbt9IRnuhjWK1Ov2Vq99gcM1Vmu9t7V\nQh4lEY+G8rnK7nxKxGlaW8PxbDRtb8E4wt2jJDKfWIx9MpFEtiqldut/lFJ7RORspdShU2DgLwB1\nwF32MR5SSr1HKbVbRG4B9mCpud6rlNKxKX9CwcX3p/ZnyWK2wYammKuJvRw8G/E9qqeMI5kD3lbZ\nQY/qr6IJ0iRNiqvfnl2ujfvkTRLR5GRaZ8bU1qLhvk7vac69tfda0Ml0XBTUX4tvyl6MfTIhkd0i\n8kXgO/b/bwL22NUNM7M5qVJqc5V9nwA+UWb7DuC82ZxvMWPuDOv2F9PcWadSWGeOVpy6nemq3GvO\nI93eq8uxKQKzsA/oCc88it72SDOWpqz2piTiOTHnPNhECgsw0/banuCpO4uqANT/b+/M4+Uqqjz+\n/RGWBEKAQFhDCEtEISJOAoZVYKISQIIIAwqE4EgmAwiouPDBDzIwEYRhxmFcGGQwRKOIIssgq5Go\nIxMkQEgCiATQDzARATWIYCTJmT9u9Xs3L/3eq+ru2327+3w/n37vLnVvnbrbqTp16lSvIiwfMdWX\n6WSutueG3zNh25vAoUUJ1i0UVbNI9QZqZjiFojriay1z7FH1TD6U2reQ2hKJfY4qcqyKnTY50ZxV\nl9deZFaps/z1jrGIlCPRm6uZlLAhEuXi+wZwZfj15bWGS9RlFPVMNLNPJJXUDtFUb67o1lfiqLIy\nerClztpXuUaxzgT1PBbJQUALcj7oqcUX5M3VTNrSnCVpHHApsAcwtLLdzHYpUK6uIT52VhpFv8D1\nUE/Y+QHPmxpoL1Hp1DODXT1moYHo1YOxz1ExyqxqXon3OTZ9xTyV2rEeL0f4n3hcMyihDokyZ32D\nLOTIKjLz1RzgW0UK1U0U3bHejCk+U4n9WKxJ/Fgkj40JF7+oKYTzJIcjTyxzUXGemtpCTTRPRadP\n7BNJvabNpIQiRSmRYWY2D5CZ/cbMLgKOLFas7iF9sGFsKPi09M38WEQPvEvsZE6eEyVR0dbTWksO\ncBlZ5kqq1Ai4sSMsm9m5XNRYmgrxrbXa5GkGbWnOAlZKWg94StJZZIP8fLbDOkmtHRXlRtuTvoQ1\nzooHUXStPNGc1TMgMzFEeC2kByMsxhSU7nZbPoeLdO+s7H/qu1a+z3U5ZYoNwLgxcDYwATgFOLVI\nobqJ6EG6iYbdomt19RArW8XMlOzim9ixHm3OqqslEpeuIkmsV1TN7tXR5rKk09dF4oD1BPNXqLBF\ny5Hm8dZMSihSlHfWg2HxNeC0YsVxGkWZfNz7EquwKl6osa2qyguWPFlRXPK6FG2qq2xqOJz4uFNh\noY3NnBXZY5V6ckskLllLKGMo+H6ViKTbBjrQzI5uvDjdR9FmiDJGn4z9VlRaCNFKpPI/0fzVjAGZ\n6R5psZNYpXasF2tWq4f0MCbFpK+ka6azSSzt1hLZD3gO+A7wAOVW0G1H0R/3MnYKVoj9oCYrkTRL\nTc0j3Gsh9YMUGy8s1X6fHiwzLX09JLulp44TiTxvT2WkhJ+8Mr7WAymRbcmCLH4I+DDwQ+A7+Tha\nTv2kPhPRs7MlS9I84l18s/+p/QOpMZJiqadmmmrOio0X1tv6ijtvmfvK4seJZP9TW7TpLZe48zeT\nMiq2fp9UM1ttZneZ2anAJLLQJ/ODh5bTZMr48NRKfA2y0hJJO3+87TtN6TS1JZJo5iyqctFcF9+4\ndD0d5bGVkTVpDhqpgxmbSQlFGrhjPQRZPJKsNTIWuAq4uXixOp9Ub6tUUj8uzSS9TyTuC9zjNh0p\nR2qIpHq8deI7gdNMeKmDSjuhT6RC7DVaXVEKiQ4dJfxel1KmgTrW55BFzb0D+CczW9o0qZy6qdSu\nY+39zST2ZV6dXIMM5y/ow1fPWZPH7cSmD8li3ZQTfQma2yeSfJ/jzltpicS3JMurRcrodjxQS+Rk\n4M9k40TOzgkvwMxsRMGyOR1K/DiRkD61Bhndsgj/45LXRcp84GvMoj+QqWbOcrdE4tKlVhZWJ5pF\ni66M1EMZXff7VSJmVkIHt86jhM9p4aSadqJbIj228jg50t1j49LVw3rrqVcbRpBqtixsytoGUFRe\nq9eE83eCOauEHwxXFC2iVjNT+YxT6cS+B6mDDXs/pMV4ZzXlBa5xYFxRMdLKGDur19sq7ryr12Ra\nJLryklgZ6XZcibSYotxRK5SzY72YcSKprpm95qzu+VqUUnH25BWX7o+vZxOqbjZsg6j0lZZIamWk\njOasMuJKpEFM2GmLpPQn7jMGgBHDYmJgwgG7bQXAfrtuGZV+5PANQz47Jsl10LitotNO2mUk244Y\nOnjCPsS+zD0doonG8tT+hFJ9K7TOQtxhiaOxYyljS2T6AWMB2HrTuGfvsLduDcCkXeLencozfdyE\n0VHpKxyy+6jotGO33DhpeoAPv2tMkizNJO4L5gzK9/5hvyRT07mTx3HWYbv1zHk9GJN22ZKnZk2J\nTj98o/V5+gtHJH0Efn1ZWoT/G2bsl5S+QrQSqZizUgeJJbbuyqRDKhSl2MrcJxL7XMx8967MfPeu\n0ec9cNxWPHvpEdEKdItNNkx+d5bNmpJ0reZ98pD4kwOzjhnPxUfvmXRMs3Al0iCS5zaQeubHjiVW\ngVSoJ9ZTGUg2Z3VQoL2i6J24Ky19MyjycU1tgSXPRFnwuykpeo6ZZtMSc5akKyT9UtJiSTdL2jxs\nHyvpDUmLwu/q3DETJC2RtEzSVSqjm4LTUFJddtfUONiwjI9S4oiGhp+3J30TL00Z74MzOK3qE7kX\nGG9mewG/As7P7XvazPYOv5m57V8DTgfGhd/hTZPWaQlrEiel6m2JRKuR3N9yUdQHtczjRJz2pCVK\nxMzuMbNVYXUBMGAPlqTtgBFmtsAyX8Y5wDEFi+k0mE+9b/eeTs4YUudYT3X97MbvY3qfSDFy5PmX\n49/B+B187HK7UoY+kY8A382t7yxpEbAC+JyZ/QzYAXg+l+b5sK0qkmYAMwDGjCmvV0O3ceahuyWl\nX5M40rhC6lzaZWyKRJuzEu1ZRfcN1MJxE0Yne0I55aEwJSLpR2Th5PtygZndGtJcAKwC5oZ9y4Ex\nZvaKpAnALZKSXRLM7BrgGoCJEyeWcKSEE0OqeSp9Lu0ym7Pi0qUOjEufT6SMV8cpE4UpETObPNB+\nSdOBo4C/DSYqzGwlsDIsPyTpaeAtwAusbfIaHbY5HczqRHNW6lzabe68thbxbs3BO6sjYh84ZaBV\n3lmHA58Gjjaz13PbR0kaEpZ3IetAf8bMlgOvSpoUvLKmAbe2QHSniaxJHDyYGrCxzCPVo2VLNmel\ny+I4A9GqPpEvAxsB94aa0YLgiXUwcLGkN4E1wEwz+3045gxgNjAMuDP8nA5mTSVwXuKXrxNcfFNJ\nndmwzArUaS9aokTMrGoPq5ndBNzUz76FZPObOF3CpkOzxzN2kJX1DllPoow6pOgR627OchpFGbyz\nHKcq103fh7uW/pbtNhsWlb53sGGxQS2dgfn26e/ijb+ubrUYTpNwJeKUlu03H8ZHDtw5+bjoAIwl\n9s6KpYztif13jQ/i6bQ/HsXX6RgqI9xTY2eVsU8kOWR7dLryldVpb1yJOB1DZ0XxLVaqMs4z47Qn\nrkScjiE9im8Z1UcasTMaOk5RuBJxOobe0duJLZES6pIyR9t1nDyuRJyOoSd0fGR6VVkqC0UpBVc2\nTqNxJeJ0DFP33h6Ao8P/QfEPahR7bj+Cj09+S6vFcEqKu/g6HcOuo4anTfGb2IfSTGL7a5rRJfLD\nsw8qPhOnbfGWiNO11DjAvZSkOgl4f7zTKFyJOF1PKVsiJZTJcarhSsTpWspcGy9qjvWe87uSchqE\nKxGn6+mE8SKpSqHMCtRpL1yJOE4ZaX+95nQJrkScrqXM4dDL5J3lOAPhSsTpWoaEcL9bbbphiyVp\nHhutn73yIzfpnjI7xeLjRJyuZetNh3LZsW/nsLdu3WpR1qGoju9x22zKPx8zninjty0mA6frcCXi\ndDUn7jum1SKsRTO6Qk6etFMTcnG6BTdnOU6JSB0AWeZ+Hac7cCXiOCUkNhJxb/h7d+dyWkNLlIik\nSyQtlrRI0j2Sts/tO1/SMklPSnpfbvsESUvCvqvkb43TgdT6UPvL4LSKVrVErjCzvcxsb+B24EIA\nSXsAJwJ7AocDX5U0JBzzNeB0YFz4Hd50qR2nYDopnpfTHbREiZjZq7nVTeh9d6YCN5jZSjN7FlgG\n7CtpO2CEmS2wbCq3OcAxTRXacZpI8hzrrnWcFtEy7yxJs4BpwArg0LB5B2BBLtnzYdubYbnv9v7O\nPQOYATBmTLm8bxxnIFwXOO1GYS0RST+StLTKbyqAmV1gZjsCc4GzGpm3mV1jZhPNbOKoUaMaeWrH\nKZRec5arE6c9KKwlYmaTI5POBe4APg+8AOyY2zc6bHshLPfd7jidSaQOMY974rSYVnlnjcutTgV+\nGZZvA06UtJGknck60H9hZsuBVyVNCl5Z04Bbmyq045QYb7c4raJV3lmXBdPWYuC9wDkAZvYYcCPw\nOHAXcKaZrQ7HnAFcS9bZ/jRwZ9OldhzggN22LDyP2I7yyXtsA8DEsSMLlMZx+qclHetm9sEB9s0C\nZlXZvhAYX6RcjjMYSXO410Bqi+KgcaMKl8lxBsJHrDtOifBxIk674UrEcUqIB2Rw2gVXIo5TIlx1\nOO2GKxHHKRFuznLaDVcijlNC3JrltAuuRBynRLjucNoNVyKOU0I87InTLrgScRzHcWrGlYjjlBDv\nE3HaBVcijuM4Ts24EnEcx3FqxpWI4ziOUzOuRBzHcZyacSXiOI7j1IwrEccpERtvOKTVIjhOEi2Z\nT8RxuoW5H30XL7+2Mjr992buz7wnXmToBq5MnPbAlYjjFMgBu22VlH63rYez29bDC5LGcRqPm7Mc\nx3GcmnEl4jiO49SMKxHHcRynZlyJOI7jODXTEiUi6RJJiyUtknSPpO3D9rGS3gjbF0m6OnfMBElL\nJC2TdJV8EmrHcZyW06qWyBVmtpeZ7Q3cDlyY2/e0me0dfjNz278GnA6MC7/Dmyeu4ziOU42WKBEz\nezW3ugm9U0tXRdJ2wAgzW2BmBswBjilQRMdxHCeClvWJSJol6TngJNZuiewcTFk/kXRQ2LYD8Hwu\nzfNhW3/nniFpoaSFL730UsNldxzHcTKUVewLOLH0I2DbKrsuMLNbc+nOB4aa2eclbQQMN7NXJE0A\nbgH2BN4CXGZmk8MxBwGfMbOjIuR4CfhN/SVqKlsBL7daiCbjZe4OvMztw05mNmqwRIWNWK988COY\nC9wBfN7MVgIrw/EPSXqaTIG8AIzOHTM6bIuRY9CLUDYkLTSzia2Wo5l4mbsDL3Pn0SrvrHG51anA\nL8P2UZKGhOVdyDrQnzGz5cCrkiYFr6xpwK04juM4LaVVsbMuk7Q7sIbM1FTxwjoYuFjSm2HfTDP7\nfdh3BjAbGAbcGX6O4zhOC2mJEjGzD/az/Sbgpn72LQTGFylXibim1QK0AC9zd+Bl7jAK61h3AwaE\nIgAACjhJREFUHMdxOh8Pe+I4juPUjCsRx3Ecp2ZciZQASSMl3SvpqfB/iwHSDpH0iKTbmyljo4kp\ns6QdJd0n6XFJj0k6pxWy1oukwyU9GeK+fbbKfoV4cMtCTLm/aYWcjSSizCeFsi6RdL+kd7RCzkYy\nWJlz6faRtErScc2UryhciZSDzwLzzGwcMC+s98c5wBNNkapYYsq8Cvikme0BTALOlLRHE2Wsm+Cy\n/hVgCrAH8KEqZZhCb0y4GWRx4tqWyDI/C7zbzN4OXEKbdz5HlrmS7ovAPc2VsDhciZSDqcD1Yfl6\n+okLJmk0cCRwbZPkKpJBy2xmy83s4bD8JzLl2W+4m5KyL7DMzJ4xs78CN5CVPc9UYI5lLAA2D/Hi\n2pVBy2xm95vZH8LqAtYeTNyOxNxngI+ReaD+rpnCFYkrkXKwTRhQCfBbYJt+0n0J+DTZGJp2J7bM\nQDZNAPBO4IFixWo4OwDP5darxX2LSdNOpJbn72n/cV+DllnSDsAHaPOWZl9aNdiw6xgollh+xcxM\n0jp+15KOAn4XwsEcUoyUjaXeMufOM5ys9nZunwjQTpsj6VAyJXJgq2VpAl8ii/m3ppOmQ3Il0iQG\niiUm6UVJ25nZ8mDGqNbUPQA4WtIRwFBghKRvmdnJBYlcNw0oM5I2IFMgc83sBwWJWiQvADvm1qvF\nfYtJ005ElUfSXmSm2Slm9kqTZCuKmDJPBG4ICmQr4AhJq8zsluaIWAxuzioHtwGnhuVTqRIXzMzO\nN7PRZjYWOBH4cZkVSASDljnESfsv4Akz+9cmytZIHgTGSdpZ0oZk9+62PmluA6YFL61JwIqcqa8d\nGbTMksYAPwBOMbNftUDGRjNomc1sZzMbG97h7wNntLsCAVciZeEy4D2SngImh3UkbS/pjpZKVhwx\nZT4AOAU4TL1TJh/RGnFrw8xWAWcBd5M5BtxoZo9JmimpEjPuDuAZYBnwdbI4cW1LZJkvBLYEvhru\n68IWidsQIsvckXjYE8dxHKdmvCXiOI7j1IwrEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgS\n6VAkmaQrc+vnSbqoyTLMrkQqlXRtvcETJY2VtLSffVeESL9X1JNHmQjX79lGuojm70k3Imm6pC8P\nkuaEEIm3rSNlNwsfsd65rASOlXSpmb2cerCk9YPve0Mws4826lz9MAMYaWar8xsbXY4W8Ckz+36r\nhWgkkob0vU9lwsy+K+lF4LxWy9IOeEukc1lFFl774313hBr9j8N8DvPC6OFKLfVqSQ8Al0u6SNL1\nkn4m6TeSjpV0eZgD4q4QkgRJF0p6UNJSSdeoSmAgSfMlTZR0dG7g4JOSng37J0j6iaSHJN1diWIb\ntj8q6VHgzGoFlXQbMBx4KNQi+5ZjE0nXSfqFsrlYpobjhkm6QdITkm6W9ICkiWHfa7nzHydpdlge\nJemmUN4HJR0Qtl8U8pgv6RlJZ+eOnxau9aOSvilp09DCqFy/Efn1/pC0TZDz0fDbX9LFks7NpZml\nMO+KpM+Ee/WopMuqnK+/a362sjlcFku6ocpx0yXdGsr6lKTP5/adHK7zIkn/qSz0OZJek3RluI/7\n9TnfOvlJ2lfS/4b7db+k3XN536JsDppfSzpL0idCugWSRoZ08yX9e5BjqaR9q5Sj6r10EjEz/3Xg\nD3gNGAH8GtiMrFZ1Udj338CpYfkjwC1heTZwOzAkrF8E/A+wAfAO4HWyOEcANwPHhOWRuXy/Cbw/\nd77jwvJ8YGIfGW8kUwwbAPcDo8L2E4DrwvJi4OCwfAWwtL/y5pb7luMLwMlheXPgV8AmwCdy+exF\npngnVjnfccDssPxt4MCwPIYsJEvlWt0PbEQWF+mVUK49Q35b5a8V8I3c9ZsBXFmlTD3XL6x/lywI\nJcCQcF/HAg+HbesBT5ONBJ8S5Nm4T76zQ3kGuub/B2xUuV5V5JoOLA/5DAOWksWFehvZs7VBSPdV\nYFpYNuDv+rl36+RH9uyuH5YnAzfl8l4GbAqMAlYAM8O+f8tdn/nA18PywYTnJhz/5YHuZVg/BLi9\n1e9xO/zcnNXBmNmrkuYAZwNv5HbtBxwblr8JXJ7b9z1b29Rwp5m9KWkJ2YfrrrB9CdkHDOBQSZ8G\nNgZGAo+RfUz6JaR/w8y+Imk8MB64NzRihgDLJW1O9lH5aU7WKVGFX7sc7yULXlkxTwwl+2gcDFwF\nYGaLJS2OOO9kYA/1NrZGKIsyDPBDM1sJrJT0O7Lw9ocFWV4O+fw+pL2WLKz/LcBpwOkReR8GTAvn\nWU32AV0h6RVJ7wz5PWJmr0iaDHzDzF7vk2+F3alyzcO+xcBcSbcE+apxr4WgiZJ+QBaFdxUwAXgw\nnHMYvYE1V5MF0qxGtfw2A66XNI5MAeVbafdZNr/MnyStoPdZW0JWGajwnVD2n4bW3uZ98q16L83s\nNZxoXIl0Pl8CHiar+cbw5z7rKwEsC1/9poVqGtmcJutLGkpW45xoZs8p67wfOlAG4QN3PNlHHEDA\nY2bW18zR96VPIV8OAR80syf7nH+g4/PxgPLlWQ+YZGZ/qXKulblNqxng/TKznyszKx5C1mKq6jAQ\nybVkNextgesij6l6zQNHkt2b9wMXSHq7rduv1DdekoVzXm9m51c551+s/36QdfIjm+3wPjP7gLK5\nZObn0uev85rc+hrWvubVZMxT9V46aXifSIcTaqA3ks3ZUOF+siijACcBP6sji8oH9uVQIx/Q80fS\nTmTTiB5vZpXW0ZPAKEn7hTQbSNrTzP4I/FFSZa6Jk2qU8W7gYwpf+lBrB/gp8OGwbTxr12JflPQ2\nSeuRTSRU4R6y2ekq5dl7kLx/DBwvacuQfmRu3xwyk0qsgp8H/GM4zxBJm4XtNwOHA/uQlRXgXuA0\nSRtXyRf6ueahvDua2X3AZ8haBMNZl/dIGilpGNmslD8P8h0naetKnuF+98sA+W1Gbyj16QNfln45\nIeRxIFlk5BV99qfeS6cKrkS6gyvJ7PQVPkb2gVlMFiX3nFpPHD70Xyezi99NFhJ7IKaT2dJvCZ2e\nd1g2nehxwBdDx+siYP+Q/jTgK5IWkdV0a+ESMnPIYkmPhXXIZpgbLukJ4GLgodwxnyXrV7mfXjMP\nZKbBiaET+HFgQPdbM3sMmAX8JJQtH9J+LrAFwewSwTlkpsMlQdY9Qh5/Be4jixy7Omy7iywU+cJw\n7dbyNBrgmg8BvhXyeAS4KtzjvvyCzDy1mKy/YqGZPQ58DrgnPFv3AoNN89tffpcDl0p6hNotJn8J\nx1/N2pWoCkn30qmOR/F1nICk+cB5ZtaUsOTKxmtMNbNT+tk/m6xzd0AX31Cbf5isdfdUwwVdN7/p\nZObLs4rOq1bqvZfBzHiemR3VSLk6EW+JOE4LkPQfZHOoXDJAshXAJRpgsKGyAZzLgHnNUCDdgKQT\nyPr5/tBqWdoBb4k4juM4NeMtEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgScRzHcWrm/wFZ\n/Tb2voD4tQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Parzen window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hamming Window" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hamming')" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUZCJ5BQQiAhCaGDEBABBQQFbCx2XSu6\nrGv3VVfd3Xctq2t511UUFNF10dVVsQMWBKSJBQLSEkpCTSgJoUNIv98/ZpIds5QAmZwp9+e65mLO\nmTMzvwPk3HnOc87ziKpijDHGAIQ4HcAYY4zvsKJgjDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYY\nY6pYUTDmGEQkQ0SGOPj9fxCRN07xvUNEJLe2M5nAZ0XBOEZENovI8GrrbhKR75zK5ElVu6rqPAe/\n/6+qeqtT32+CkxUFY4wxVawoGJ8mIg+LyAYROSgimSIyxuO1m0RkkYi8ICL7RGSjiAxwr88RkXwR\nudFj+yki8oqIfCUih9zvbSUiL4rIXhFZKyJneGxf1ZIRkcdEZKqIvO3OkiEiaR7b9haRn92vfSgi\nH4jIk8fYpy0i0sf9/NcioiLS1b18i4h85vGd77ifJ7i3u1FEtopIgYj80eMzo9z7t1dEMoG+1b6z\ns4jMc/89ZYjIJe71ie51Ie7l10Uk3+N9/xKRe0/hn874KSsKxtdtAM4GmgCPA++ISGuP188EVgLN\ngX8D7+M6ICYD1wETRKShx/ZXAn8CWgDFwA/AMvfyR8Dfj5PlEvfnNwWmARMARCQC+BSYAkQD7wFj\njv4RAMwHhrifDwY2Aud4LM8/znsHAanAMODPItLZvf5RIMn9GAF4FsNwYDrwDRAL3AW8KyKpqroJ\nOABUFsNzgEMen3uiPCbAWFEwTvvM/ZvqPhHZB7zi+aKqfqiq21W1QlU/ALKAfh6bbFLVf6pqOfAB\nEA88oarFqvoNUIKrQFT6VFWXqmoRrgN5kaq+7fH+Mzi271T1S/e2/wJ6utf3B8KAl1S1VFU/ARYf\n53Pm4zrYgqvgPe2xfKKD8OOqekRVVwArPDJcCTylqntUNQd4yeM9/YGGwDOqWqKq3wIzgGs884hI\nK/fyR+7lRKCx+3tMkLCiYJz2K1VtWvkAbvd8UURuEJHlHkWjG67f6ivleTw/AqCq1dc1PM72x9u2\nup0ezwuBSBEJA9oA2/SXo0vmHOdz5gNnu1s8ocBUYKCIJOBqES0/iQyVedtU+84tHs/bADmqWlHt\n9TiPPENwtRIWAPNwFafBwMJq7zMBzoqC8Vki0h54HbgTaO4uGqsBcTTYf9sBxImIZ674Y22sqtm4\nDuh3AQtU9QCug/04XK2RUzkI76j2ne08nm8H4iv7DTxe3+Z+Ph9Xi2WI+/l3wEDs1FFQsqJgfFkD\nQIFdACJyM66Wgq/5ASgH7hSRMBEZzS9PcR3NfFzFrvKgO6/a8smaCjwiIs1EpC2uglPpJ1xF6Pci\nEu6+9+JiXP0jqGoWrlbSdcB8d5HKAy47jTzGT1lRMD5LVTOB53EddPOA7sAiR0MdhaqWAJcCtwD7\ncB1cZ+DqyD6W+UAjXKdrjrZ8sh7HdUpoE64O5X9Vy3cxMAoowNVvc4Oqrq2WZ7e7P6JyWXB1wpsg\nIjbJjjG1T0R+Aiap6j+dzmLMybCWgjG1QEQGu+95CHPfG9ED+NrpXMacrDCnAxgTIFJxnddvgOu+\ng8tVdYezkYw5eXb6yBhjTBU7fWSMMaaK350+atGihSYkJDgdwxhj/MrSpUsLVDXmRNv5XVFISEgg\nPT3d6RjGGONXRGTLibey00fGGGM8WFEwxhhTxYqCMcaYKlYUjDHGVLGiYIwxporXioKIvOmeDnH1\nMV4XEXlJRLJFZKWI9PZWFmOMMTXjzZbCFGDkcV4fBaS4H+OAV72YxRhjTA147T4FVV3gnknqWEYD\nb7tnq/pRRJqKSGsbL8b4gyMl5SzZvIflOfsoKz/KnDgidG7ViP4dmtOsQUTdBzTmFDl581ocv5w+\nMNe97r+KgoiMw9WaoF27dtVfNsbrSssrWJGzj0XZu1m0oYCft+6ltNw1bpgcZR64yiHFRKBL68YM\nTG7BgKTm9EuMpn6E390zaoKIX/zvVNXJwGSAtLQ0G8HP1Jm8A0VMnJvNx0tzOVxSjgh0bdOYsQMT\nGZDcgr4JzY56kC8tr2BlrquIfL+hgCmLNjN5wUbCQ4VhnVpy33kdSW3VyIE9Mub4nCwK2/jlnLJt\n+c+cscY4as/hEibN38Bb32+mvEIZ3SuO4Z1jOSupOU3rn/h0UHhoCH3aR9OnfTR3D0vhSEk56Vv2\nsGD9Lt5fnMPMzJ1c0rMN9w7vSGKLBnWwR8bUjJNFYRquOW3fB84E9lt/gnHa/iOl/GPhRv7x3SYK\nS8sZ0yuOe4an0L756R24oyJCOTslhrNTYrh9SDKTF25kyqLNzFi5g8t7t+Xu4SnENY2qpb0w5tR5\nbT4FEXkPGAK0wDW/7qNAOICqThIRASbgukKpELhZVU840l1aWpragHimtqkq//pxC89/s579R0q5\nsHtr7h2eQkpL753iyT9YxKvzNvDuj1sBuHFAex4YkUq9sFCvfacJXiKyVFXTTridv02yY0XB1LaD\nRaU89PFKvly1k7NTWvDQyE50i2tSZ9+/fd8Rxs/O4oP0HHq0bcLEa3sTH12/zr7fBAcrCsbUwNqd\nB7j9nWVs2VPIgyNS+e05HZCjXU5UB2Zm7OSBqSsICRFeuKon53Zq6UgOE5hqWhRsmAsTtD5emsuv\nJi7iYHEZ7956JrcNTnKsIACM6NqKGXcPIq5pFGOnpPO3mesor/CvX9qM/7OiYIJOUWk5j3yykvs/\nXEGv+KZ8cfcg+ndo7nQsANo3b8Antw/g6r7xTJibzfX/+IldB4udjmWCiBUFE1T2F5Zy1Ws/8N7i\nHG4fksQ7t5xJbKNIp2P9QmR4KM9c1oP/u7wHS7fs5aKXF5Kdf9DpWCZIWFEwQWN/YSm//sePrNlx\nkNeu78PvR3YiLNR3fwSuSIvn09sHUl4BV0/+iez8Q05HMkHAd38ijKlFlQVh/c5DvHZ9H0Z0beV0\npBrp0qYx7487E4CrJ/9ohcF4nRUFE/D2F5Zy3T9+qioIQzvFOh3ppCTHNqoqDNe8boXBeJcVBRPQ\nKgvCup0H/bIgVKosDKpWGIx3WVEwAWt/YSnXv+kqCJOu7+23BaFScmwj3vvNfwrDhl1WGEzts6Jg\nAtLh4jKuf/Mn1u5wFYRAuREspeV/CsPVk39ky+7DTkcyAcaKggk4FRXK/0xdzupt+3n1usApCJUq\nC0NpeQW3vpXOwaJSpyOZAGJFwQScF+dkMTMjjz9d2IVhnQOrIFRKadmIV67tzcaCw9z3wXIq7M5n\nU0usKJiA8sXKHbw0J4sr+rTl5oEJTsfxqgHJLfjzRV2YvSaf52etczqOCRB+MfOaMTWRsX0/D3y4\ngt7tmvLkmG6OjmNUV244qz1rdx5g4twNdGrVmIt7tnE6kvFz1lIwAaHgUDHj3l5K0/rhTLq+T9DM\nSSAiPH5JN/omNOPBj1awKne/05GMn7OiYPxeSVkFv3tnKQWHipl8fZrPjWXkbRFhIbx6XR+i60cw\n7l/p5B8scjqS8WNWFIxfU1UenbaaJZv38tzlPejetu4mx/ElLRrW4/Ub09hbWMLv3llGcVm505GM\nn7KiYPzah+m5VSOeju4V53QcR3Vt04Tnr+jF0i17eeqLNU7HMX7KioLxW1t2H+ax6Rn07xDN/een\nOh3HJ1zYozW3DErk7R+2MHdtvtNxjB+yomD8Ull5Bfd+sJzQEOHvV/YiNCTwrzSqqQdHpNKpVSMe\n/Ggluw/ZBD3m5FhRMH5pwtxsft66j6fGdKdN0yin4/iUyPBQXry6FweOlPLQx6vwt3nYjbOsKBi/\ns2zrXl7+NpsxZ8RxiV2Xf1SdWjXm9yNTmb0mj/eX5Dgdx/gRKwrGrxwuLuO+D5bTqnEkj4/u6nQc\nnzZ2YCKDklvwxPRMNhXYwHmmZqwoGL/yxPRMtu4p5O9X9qRxZLjTcXxaSIjwtyt6EhEWwr3v/0xp\neYXTkYwfsKJg/MbXq3fyQXoOvxucxJkdmjsdxy+0ahLJ05d2Z0Xufl6ek+V0HOMHrCgYv5B/oIhH\nPllJt7jG3Du8o9Nx/MoF3VtzeZ+2TJibzdIte5yOY3ycFQXjF/702WoKS8p58aoziAiz/7Yn69GL\nuxDXLIoHPlxJUand7WyOzX66jM+bmbGTbzLzuO+8jiTHNnQ6jl9qFBnO02N6sKngMK/MzXY6jvFh\nVhSMTztUXMajn2fQqVUjbhmU6HQcvzYopQVjzojj1fkbyM4/6HQc46OsKBif9reZ68g7WMRfL+1O\neKj9dz1df7qwMw3qhfGHT1bbbG3mqOynzPisFTn7eOuHzVx3Znt6t2vmdJyA0LxhPf4wqjOLN+/h\nw6V2U5v5b1YUjE8qK6/gkU9WEdOwHg+OtMHuatMVaW3plxjNX79cS4GNjWSqsaJgfNKU7zeTueMA\nj13S1W5Sq2Uiwl/HdKewpIwnZ2Q6Hcf4GCsKxufk7i3k+W/WM6xTLKO6tXI6TkBKjm3I74Yk89ny\n7SzM2uV0HONDvFoURGSkiKwTkWwRefgorzcRkekiskJEMkTkZm/mMb5PVXn08wwAHh/dFREbEttb\nbh+SRIcWDfjjp6vt3gVTxWtFQURCgYnAKKALcI2IdKm22R1Apqr2BIYAz4tIhLcyGd/39eqdzFmb\nz/3nd6Rts/pOxwlokeGhPDmmG1v3FPKSDYFh3LzZUugHZKvqRlUtAd4HRlfbRoFG4vp1sCGwByjz\nYibjwwpLynhiRiZdWjfmpgEJTscJCgOSWnBZ77a8vnCjjaRqAO8WhTjA85q3XPc6TxOAzsB2YBVw\nj6r+11COIjJORNJFJH3XLjv/Gahem7+RHfuLeOySroTZPQl15qFRqdQLC+WpL6zT2Tjf0TwCWA60\nAXoBE0SkcfWNVHWyqqapalpMTExdZzR1YPu+I7y2YAMX9mhNv8Rop+MEldhGkdwxNJnZa/Kt09l4\ntShsA+I9ltu613m6GfhEXbKBTUAnL2YyPurZr9eiCo+Msn9+J4wdlEC76Pr8ZUYmZTbvQlDzZlFY\nAqSISKK78/hqYFq1bbYCwwBEpCWQCmz0Yibjg5Zu2cvny7cz7pwO1rnskHphofzhgs6szzvEe4u3\nOh3HOMhrRUFVy4A7gZnAGmCqqmaIyG0icpt7s78AA0RkFTAHeEhVC7yVyfieigrliekZxDaqx22D\nk5yOE9RGdG1J/w7R/H3WevYXljodxzjEq30KqvqlqnZU1SRVfcq9bpKqTnI/366q56tqd1Xtpqrv\neDOP8T2fLd/Gitz9PDSyEw3qhTkdJ6iJCH++qCv7j5Qy3i5RDVpOdzSbIHa4uIxnv15Lz/imjDmj\n+oVpxgld2jTmqr7tePuHzWTnH3I6jnGAFQXjmEnzN5B3oJg/X9SFkBC7c9lX3H9+R6LC7RLVYGVF\nwTgid28hkxds5JKebejT3obF9iUtGtbjrmHJzF23i3nr8p2OY+qYFQXjiGe+WosIPGyXoPqkmwYk\nktDcdYlqqV2iGlSsKJg6tzxnHzNW7mDc2R1o0zTK6TjmKCLCQvjDBZ3ZsOswU9NtMp5gYkXB1ClV\n5dmv1tK8QQTj7BJUn3Zel5aktW/G+NlZHCmxUVSDhRUFU6cWZBXww8bd3HVuMg3tElSfJiI8PKoT\n+QeLeXPRJqfjmDpiRcHUmYoKVyshPjqKa89s73QcUwNpCdEM7xzLpPkb2FdY4nQcUwesKJg6M33l\ndjJ3HOD+81KJCLP/ev7iwRGdOFRcxivzNjgdxdQB+8k0daKkrILnv1lP59aNuaRnG6fjmJOQ2qoR\nl57Rlinfb2bbviNOxzFeZkXB1In3Fm9l655Cfj8y1W5U80P3nZcCCi/OWu90FONlVhSM1x0uLuPl\nb7M4MzGaIR1tPgx/1LZZfa4/qz0fL8slK++g03GMF1lRMF73xsJNFBwq4eFRnXDNvGr80R1Dk2kQ\nEcZzM9c5HcV4kRUF41W7DxUzecEGRnZtxRntbDgLfxbdIILfDu7ArMw8lm7Z43Qc4yVWFIxXTZib\nzZHSch4Ykep0FFMLxg5KJKZRPZ79ah2q6nQc4wVWFIzX5O4t5N0ft3JlWjzJsQ2djmNqQf2IMO4e\nlsLizXuYa4PlBSQrCsZrXp6TDQL3DE9xOoqpRVf3jadddH3+Pmu9tRYCkBUF4xWbCw7z0bJcru3X\njtZNbNC7QBIeGsLdw1JYve0AMzPynI5japkVBeMVL32bRXiocPtQG/QuEP2qVxs6tGjAC7PWU1Fh\nrYVAYkXB1Lrs/EN89vM2ru/fnthGkU7HMV4QFhrCPcNTWJd3kC9W7XA6jqlFVhRMrRs/J4vI8FBu\ns6GxA9pFPdqQEtuQF2evp9xaCwHDioKpVet2HmTGyu3cNCCB5g3rOR3HeFFoiHDfeR3ZsOsw01Zs\nczqOqSVWFEytemHWehpEhDHunA5ORzF1YGTXVnRu3Zjxs7Mos2k7A4IVBVNrVm/bz9cZOxk7KJGm\n9SOcjmPqQEiI8D/ndWTz7kI+WWathUBgRcHUmhdnr6dxZBi3DEp0OoqpQ8M7x9KzbRPGz8mipMxa\nC/7OioKpFctz9jF7TT7jzulAk6hwp+OYOiTi6lvYtu8IU9NznI5jTpMVBVMr/j5rPc3qh3PTQGsl\nBKPBHWPo3a4pE77Npqi03Ok45jRYUTCnbemWPSxYv4vfDk6iYb0wp+MYB4gI95+fys4DRby3eKvT\nccxpOGFREJH6IvK/IvK6ezlFRC7yfjTjL16cnUXzBhHccFZ7p6MYBw1Iak6/xGgmzd9grQU/VpOW\nwj+BYuAs9/I24EmvJTJ+ZemWvSzMKuC3gztQP8JaCcFMRLh3WAp5B4r5YIn1LfirmhSFJFV9DigF\nUNVCwKbPMoDr7uXmDSK4rr+1EgycldScvgnNeHXeBorLrLXgj2pSFEpEJApQABFJwtVyMEHu5617\nWbB+F785x1oJxkVEuGdYR3YeKGKqtRb8Uk2KwqPA10C8iLwLzAF+79VUxi+Mn5NFdIMIrrdWgvEw\nMLk5fdo34xVrLfilExYFVZ0FXArcBLwHpKnqPO/GMr5uec4+5q3bxa1nJ9LArjgyHkSEe4ensGN/\nER+m5zodx5ykYxYFEeld+QDaAzuA7UA797oTEpGRIrJORLJF5OFjbDNERJaLSIaIzD+VnTB1b/zs\n9TStH84NZyU4HcX4oEHJLejdrimvzttgdzn7meP9ive8+89IIA1YgauDuQeQzn+uRjoqEQkFJgLn\nAbnAEhGZpqqZHts0BV4BRqrqVhGJPdUdMXVnRc4+5q7bxYMjUu2+BHNUIsI9wzty45uL+WhpLtee\n2c7pSKaGjtlSUNWhqjoUVwuht6qmqWof4Axcl6WeSD8gW1U3qmoJ8D4wuto21wKfqOpW93faTOB+\n4KU5WTSJCrf7EsxxnZPSgl7xTZk4N9taC36kJh3Nqaq6qnJBVVcDnWvwvjjA8/KDXPc6Tx2BZiIy\nT0SWisgNR/sgERknIukikr5r164afLXxllW5+5mzNp9bByXSKNLGODLH5motpLBt3xE+WWZ9C/6i\nJkVhpYi84T73P8R9Z/PKWvr+MKAPcCEwAvhfEelYfSNVnexuqaTFxMTU0lebUzHe3Uq4cWCC01GM\nHxjSMYaebZswYW42pTbfgl+oSVG4GcgA7nE/Mt3rTmQbEO+x3Jb/Pu2UC8xU1cOqWgAsAHrW4LON\nA1Zv28/sNXncMiiRxtZKMDVQ2VrI3XuET22+Bb9Qk0tSi1T1BVUd4368oKpFNfjsJUCKiCSKSARw\nNTCt2jafA4NEJExE6gNnAmtOdidM3Xj52ywaRYZxk7USzEkYmhpLD3drwWZn8301GRBvk4hsrP44\n0ftUtQy4E5iJ60A/VVUzROQ2EbnNvc0aXDfGrQQWA2+4+yyMj1mz4wAzM/IYO9BaCebkiAh3nZvC\n1j2FfL58u9NxzAnU5HrCNI/nkcAVQHRNPlxVvwS+rLZuUrXl/wP+ryafZ5wzYW42DeuFMdbmSzCn\nYHjnWDq3bszEudn86ow4QkNs+DRfVZPTR7s9HttU9UVcHcMmSGTnH+TLVTu4cUB7mtS3VoI5eSLC\n3ecms7HgMDNWWmvBl52wpVDt7uUQXC0Hu2MpiEz4Npuo8FBuGdTB6SjGj43o2oqOLRsy4dtsLu7R\nhhBrLfikmhzcn/d4XgZsAq70ThzjazYVHGbaiu385uwORDeIcDqO8WMhIcKd56Zw93s/83XGTi7o\n3trpSOYoanJJ6i2Vdzer6nmqOg4o8XYw4xsmzs0mIiyEW8+2VoI5fRd2b02HmAa8NCeLigp1Oo45\nipoUhY9quM4EmK27C/n0521c2689MY3qOR3HBIDQEOHOocms3XmQ2WvynI5jjuKYp49EpBPQFWgi\nIpd6vNQY11VIJsC9Oj+b0BDht4OtlWBqzyU92zB+ThYvf5vNeV1aImJ9C77keC2FVOAioClwscej\nN/Ab70czTsrdW8hHS3O5um88LRvb7wCm9oSFhnDHkGRWbdvPvHU2lpmvOWZLQVU/Bz4XkbNU9Yc6\nzGR8wKT5GwC4bXCSw0lMIBrTO47xc7IYPyeLIakx1lrwIcebZKdyys1rReSl6o86ymccsHN/EVOX\n5HJ5n3jaNI1yOo4JQOGhIdw+NInlOfv4LrvA6TjGw/FOH1WOQZQOLD3KwwSoSfM3UK7K7UOslWC8\n5/I+bWndJJKX5mShalci+YrjnT6a7v7zrbqLY5yWf7CI9xZvZcwZccRH13c6jglg9cJCuW1wEo9O\ny+DHjXs4K6m505EMx7/6aDpwzPKtqpd4JZFx1OsLNlJaXsGdQ5OdjmKCwFV945k4N5uX5mRZUfAR\nx7uj+W91lsL4hIJDxbzz41Z+1SuOhBYNnI5jgkBkeCi/HZzEX2ZksnjTHvol1misTeNFx5ujeX7l\nA/gB2AvsAX5wrzMB5o2FmygqK+eOc62VYOrOtf3a0aJhBC9/m+V0FEPN5lO4ENgAvARMALJFZJS3\ng5m6tedwCW//sJmLe7QhKaah03FMEImKCGXcOR1YmFXA0i17nY4T9GoyzMXzwFBVHaKqg4GhwAve\njWXq2pvfbeJIaTl3WivBOODXZ7YnuoG1FnxBTYrCQVXN9ljeCBz0Uh7jgP2FpUz5fjMXdGtNx5aN\nnI5jglCDemHcenYi89btYkXOPqfjBLWaFIV0EflSRG4SkRuB6cASEbm02phIxk+9uWgTh4rLrJVg\nHHXDWQk0rR9urQWH1aQoRAJ5wGBgCLALiMI1DtJFXktm6sSBolLeXLSJEV1b0rl1Y6fjmCDWsF4Y\ntwxMZPaafFZv2+90nKB1wkl2VPXmughinPHWos0cLCrjrnNTnI5iDDcOTOD1hRt5+dssXrs+7cRv\nMLWuJtNxJgJ3AQme29vNa/7vUHEZb3y3ieGdY+kW18TpOMbQODKcsYMSeXF2Fmt2HLDWqwNqcvro\nM2Az8DKuK5EqH8bPvf3DZvYfKbVWgvEpNw9IpFG9MCZ8m33ijU2tq8kczUWqaqOiBpjDxWW8sXAT\nQ1Jj6Bnf1Ok4xlRpUj+cmwYmMGFuNuvzDtoVcXWsJi2F8SLyqIicJSK9Kx9eT2a86u0ftrDncAl3\nD7NWgvE9Ywcm0iAijPFz7EqkulaTlkJ34HrgXKDCvU7dy8YPHSouY/KCDQzuGEPvds2cjmPMf2nW\nIIKbBiQwcV4263YeJLWVtRbqSk1aClcAHVR1sKoOdT+sIPixt3/YzN7CUu4dbq0E47tuPbuytbDe\n6ShBpSZFYTWueZpNAHC1EjYyJDWGM6yVYHxY0/oR3DwwgS9X7WTtzgNOxwkaNSkKTYG1IjJTRKa5\nH597O5jxjre+38y+wlLuHd7R6SjGnNAtg1xXIo2fbX0LdaUmfQqPejwX4Gzgau/EMd50sKiU1xdu\n5NxOsfSyK46MH6hsLbz0bTaZ2w/QpY3dt+BtJ2wpuOdOOIBrSIspuDqYJ3k3lvGG/7QSrC/B+I9b\nBnWgUaT1LdSVYxYFEenovhR1La4b17YC4u5ofrnOEppacaColNcXbmJYp1h6tLVWgvEfTeqHM3Zg\nIjMz8sjYbmMiedvxWgprcbUKLlLVQe5CUF43sUxte2uR6+5l60sw/mjsoERXa8H6FrzueEXhUmAH\nMFdEXheRYbj6FIyfOeDuSxjeuSXd29oYR8b/NIkK55ZBiXyTmWcjqHrZ8eZo/kxVrwY6AXOBe4FY\nEXlVRM6vq4Dm9E1ZtJkDRWXWl2D82s0DE2kcaXc5e1tNOpoPq+q/VfVioC3wM/BQTT5cREaKyDoR\nyRaRh4+zXV8RKRORy2uc3NTIgaJS3li4kfO6tLSRUI1fc7UWOjArM49VudZa8Jaa3KdQRVX3qupk\nVR12om1FJBSYCIwCugDXiEiXY2z3LPDNyWQxNfPGgo3WSjAB4+ZBCTSJCufvs9Y5HSVgnVRROEn9\ngGxV3aiqJcD7wOijbHcX8DGQ78UsQangUDFvfLeJC3u0pmsbayUY/9c4MpzbBicxd90u0jfvcTpO\nQPJmUYgDcjyWc93rqohIHDAGePV4HyQi40QkXUTSd+3aVetBA9Wr8zZQVFrOfXbFkQkgNw5oT4uG\n9Xhu5jpU1ek4AcebRaEmXgQeUtWK423kPmWVpqppMTExdRTNv+3Yf4R//biFy3q3JTm2odNxjKk1\n9SPCuOvcZBZv2sPCrAKn4wQcbxaFbUC8x3Jb9zpPacD7IrIZuBx4RUR+5cVMQeOlOdmoqs2XYALS\n1f3iiWsaxd++sdZCbfNmUVgCpIhIoohE4BovaZrnBqqaqKoJqpoAfATcrqqfeTFTUNhccJip6Tlc\n268d8dH1nY5jTK2rFxbKPcNTWJm7n5kZeU7HCSheKwqqWgbcCcwE1gBTVTVDRG4Tkdu89b0GXpy9\nnvBQ4Y5zk52OYozXXHpGHB1iGvD8N+sor7DWQm3xap+Cqn6pqh1VNUlVn3Kvm6Sq/zWgnqrepKof\neTNPMFihjIrmAAATaElEQVS78wCfr9jOTQMSiW0U6XQcY7wmLDSE+89LJSv/ENNWVD8zbU6V0x3N\nppY9/816GkaEcdvgDk5HMcbrRnVrRZfWjXlhVhYlZce9XsXUkBWFALI8Zx+zMvP4zTkdaFo/wuk4\nxnhdSIjw4IhUtu4pZGp6zonfYE7IikIA+dvMdUQ3iGDsoESnoxhTZ4akxpDWvhkvf5tFUakN5Hy6\nrCgEiO83FPBddgG3D0miYb2aTKhnTGAQER4YkUregWLe/mGz03H8nhWFAFBRoTz95VpaN4nkuv7t\nnY5jTJ3r36E553SMYeLcDewvLHU6jl+zohAApq/czqpt+3ng/FQiw0OdjmOMIx4Z1YkDRaVMmGtD\na58OKwp+rqi0nOe+XkeX1o0Zc0bcid9gTIDq3LoxV/Rpy1vfbyFnT6HTcfyWFQU/99b3m9m27wh/\nvLAzISE2MZ4Jbv9zXiohIfDcTBta+1RZUfBjew+XMGFuNkNTYxiY3MLpOMY4rlWTSMad3YHpK7az\nPGef03H8khUFP/bSt1kcLi7jkQs6Ox3FGJ8xbnASLRpG8Ncv1thgeafAioKf2lxwmHd+3MJVfePp\n2LKR03GM8RkN64Vx33kdWbx5D7MybbC8k2VFwU89N3Mt4aEhNoGOMUdxVVo8ybENeeartZSW2/AX\nJ8OKgh9aumUvX67aybhzOhDb2Aa9M6a6sNAQHhnViY0Fh3l/8Van4/gVKwp+RlV56otMYhrV4zdn\n26B3xhzLuZ1i6d8hmhdnZ3GwyG5oqykrCn7m69U7WbZ1H/ef15EGNpyFMcckIvzxgi7sPlzCq/M2\nOB3Hb1hR8CNFpeU89eUaUls24oq0+BO/wZgg171tE8acEccb321iy+7DTsfxC1YU/Mir8zaQu/cI\nj13SlVC7Uc2YGnl4VCfCQ4Qnpmc6HcUvWFHwE1t3F/Lq/A1c3LMNZyU1dzqOMX6jZeNI7hmewpy1\n+cxZY5eonogVBT/xxIwMwkOEP9qNasactJsHJpIc25DHp2fanAsnYEXBD3y7No/Za/K5e1gKrZrY\nJajGnKzw0BCeuKQrW/cU8tr8jU7H8WlWFHxcUWk5j03LJCmmATcPtBnVjDlVA5JbcGGP1rwyL9tG\nUT0OKwo+bvKCjWzdU8gTo7sREWb/XMacjj9d2JnQEOGJGdbpfCx2lPFhOXsKmTg3mwu7t7ZRUI2p\nBa2bRHHXuSnMysxj7rp8p+P4JCsKPuwvMzIJEeGPF1rnsjG15ZZBiXSIacDj0zIoLrNO5+qsKPio\neevy+SYzj7uGJdOmaZTTcYwJGBFhITx2cVc27y7k9QXW6VydFQUfdKSknEenZZDYogG3DLLOZWNq\n2zkdYxjZtRUT5mbbnc7VWFHwQX/7Zh1bdhfy1Jhu1AsLdTqOMQHp0Uu6EB4Swu8/WklFhU3GU8mK\ngo9ZumUPby7axHX92zEgyTqXjfGW1k2i+NNFnflp0x7e/WmL03F8hhUFH1JUWs6DH66kTZMoHh5l\nncvGeNuVafGcndKCp79aa/cuuFlR8CEvzFrPxoLDPHtZDxrasNjGeJ2I8MxlPQgR4eFPVtqczlhR\n8Bk/b93L6ws3ck2/dgxKsdNGxtSVuKZRPHJBJxZl7+a9xTlOx3GcFQUfUFRazoMfraRV40j+cEEn\np+MYE3Su7deOAUnN+euXa9i274jTcRxlRcEHjJ+TRXb+IZ6+rAeNIsOdjmNM0BERnr2sBxWqPPxx\ncJ9GsqLgsBU5+3ht/gauTGvL4I4xTscxJmjFR9fn4VGdWJhVwNT04D2N5NWiICIjRWSdiGSLyMNH\nef3XIrJSRFaJyPci0tObeXyN67TRCmIa1eOPF3ZxOo4xQe+6M9tzZmI0T84I3tNIXisKIhIKTARG\nAV2Aa0Sk+pFvEzBYVbsDfwEmeyuPL3p8eibr8w7xzGU9aBJlp42McVpIiPDc5a7TSHf9exml5RVO\nR6pz3mwp9AOyVXWjqpYA7wOjPTdQ1e9Vda978UegrRfz+JTPl2/jvcVbuW1wEkNTY52OY4xxa9+8\nAc9c1oNlW/fx3NdrnY5T57xZFOIAzxNzue51x3IL8NXRXhCRcSKSLiLpu3btqsWIzsjOP8Qjn6yi\nb0IzHji/o9NxjDHVXNyzDdf3b8/rCzfxTcZOp+PUKZ/oaBaRobiKwkNHe11VJ6tqmqqmxcT4d2fs\nkZJy7nh3GZHhobx8TW/CQn3in8AYU82fLupM97gmPPDhiqC629mbR6RtQLzHclv3ul8QkR7AG8Bo\nVd3txTw+4c+fr2Z9/kFevKqXzbdsjA+rFxbKxGt7o8Ad/14WNHMveLMoLAFSRCRRRCKAq4FpnhuI\nSDvgE+B6VV3vxSw+4cP0HD5cmstdQ5M5xy4/NcbntWten/+7vCcrc/fz9JfB0b/gtaKgqmXAncBM\nYA0wVVUzROQ2EbnNvdmfgebAKyKyXETSvZXHaet2HuR/P1/NWR2ac89w60cwxl+M7NaKWwYlMuX7\nzXyxcofTcbxO/O3OvbS0NE1P96/acai4jNETvmP/kTK+vGcQsY3stJEx/qSkrIIrX/uB7PxDTL9r\nEIktGjgd6aSJyFJVTTvRdtbL6WUlZRX87p2lbN5dyEvX9LKCYIwfiggLYeKvexMeKtz8z8UUHCp2\nOpLXWFHwoooK5aGPV7Iwq4CnL+1uk+YY48fimkbxxo192XmgiLFTlnC4uMzpSF5hRcGLnp25lk9/\n3saDI1K5Mi3+xG8wxvi0Pu2bMfHa3mRsP8Dv3g3MO56tKHjJP77bxGvzN3LDWe25fUiS03GMMbVk\nWOeW/HVMNxas38VDHwXeiKo2vZcXTFuxnb/MyGRUt1Y8enFXRMTpSMaYWnRV33bkHyjm+VnriW0c\nycOjAmceFCsKtez77ALun7qcfonRvHBVL0JDrCAYE4juPDeZvINFTJq/gdhG9Rg7KNHpSLXCikIt\nWpm7j3H/WkqHFg15/YY0IsNDnY5kjPESEeHxS7qx62Axf/kik+YNIxjd63jDu/kH61OoJfPX7+Ka\nyT/SJCqcKWP72lDYxgSB0BBh/NVn0C8hmns/WM6b321yOtJps6JQCz5Mz2HslCW0a96AT24fQOsm\nUU5HMsbUkcjwUN4a24/zu7TkiRmZPPVFJhUV/tv5bEXhNKgqL83J4sGPVjIgqTlTf9uflo3t5jRj\ngk1keCiv/LoPN57lGm77ng+W++0AetancIrKyiv4389X897iHC7tHcczl/YgIsxqrDHBKjREeOyS\nrrRuGsUzX60l/0ARk29I87tTyXYUOwWFJWWM+9dS3lucwx1Dk3j+ip5WEIwxiAi3DU5i/NW9WLZ1\nL1dM+p7tfjbXsx3JTtLSLXsZPWER89bl8+SvuvHgiE52H4Ix5hdG94rjrZv7sWNfERe//B3TV2z3\nm5vcrCjU0OHiMh6blsHlk77ncHEZU27ux3X92zsdyxjjowYkt+CT2wcQ1yyKu977md+8nc6O/b7f\narChs2tg3rp8/vjparbvP8IN/dvz4MhONKxn3THGmBMrK6/gn4s28/ysdYSFhPDQqE78ul87Qur4\nxtaaDp1tReE49hwu4YnpGXy2fDvJsQ159rLu9GkfXSffbYwJLFt2H+YPn65iUfZu+iY04+lLe5Ac\n27DOvt+KwilSVZbn7OODJTlMX7GdkvIKfjckmTuGJlEvzO5QNsacOlXlw6W5PDkjk8Ml5QzrFMvV\n/eI5JyWGsFDvns2vaVGwcyBuew+X8OnP2/hgSQ7r8g4SFR7KRT1a85tzOtCxZSOn4xljAoCIcGVa\nPENSY3hj4SY+XprLN5l5tGocyRVpbbkyLZ746PrOZgy2lkJ5hbLzQBE5ewrZuqeQ3D2FrMs7yNy1\nuygpr6Bn2yZc1bcdF/dsTaNI/7q+2BjjX0rKKvh2bR7vL8lh/vpdqMKApOZ0b9uEdtH1iW9Wn3bR\n9WnTNOq0L3u300fVzF2bz+PTM9i27wil5f/Z5xCB1k2iOK9LS65Mi6dLm8a1GdcYY2pk274jfJSe\ny4yV29myu5ASjwl8Ko9TNw9M4NazO5zS59vpo2qiG0TQNa4JI7u1dlXg6CjaRdendZPTr8DGGHO6\n4ppGcc/wFO4ZnkJ5hZLncUYjZ+8RcvYUEtOontdzBE1LwRhjgllNWwr2K7IxxpgqVhSMMcZUsaJg\njDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYYY6pYUTDGGFPF725eE5FdwJZTfHsLoKAW4/iTYN13\n2+/gYvt9bO1VNeZEH+R3ReF0iEh6Te7oC0TBuu+238HF9vv02ekjY4wxVawoGGOMqRJsRWGy0wEc\nFKz7bvsdXGy/T1NQ9SkYY4w5vmBrKRhjjDkOKwrGGGOqBE1REJGRIrJORLJF5GGn83iLiLwpIvki\nstpjXbSIzBKRLPefzZzM6A0iEi8ic0UkU0QyROQe9/qA3ncRiRSRxSKywr3fj7vXB/R+VxKRUBH5\nWURmuJcDfr9FZLOIrBKR5SKS7l5Xa/sdFEVBREKBicAooAtwjYh0cTaV10wBRlZb9zAwR1VTgDnu\n5UBTBtyvql2A/sAd7n/jQN/3YuBcVe0J9AJGikh/An+/K90DrPFYDpb9HqqqvTzuTai1/Q6KogD0\nA7JVdaOqlgDvA6MdzuQVqroA2FNt9WjgLffzt4Bf1WmoOqCqO1R1mfv5QVwHijgCfN/V5ZB7Mdz9\nUAJ8vwFEpC1wIfCGx+qA3+9jqLX9DpaiEAfkeCznutcFi5aqusP9fCfQ0skw3iYiCcAZwE8Ewb67\nT6EsB/KBWaoaFPsNvAj8HqjwWBcM+63AbBFZKiLj3Otqbb/DTjed8S+qqiISsNchi0hD4GPgXlU9\nICJVrwXqvqtqOdBLRJoCn4pIt2qvB9x+i8hFQL6qLhWRIUfbJhD3222Qqm4TkVhglois9XzxdPc7\nWFoK24B4j+W27nXBIk9EWgO4/8x3OI9XiEg4roLwrqp+4l4dFPsOoKr7gLm4+pQCfb8HApeIyGZc\np4PPFZF3CPz9RlW3uf/MBz7FdXq81vY7WIrCEiBFRBJFJAK4GpjmcKa6NA240f38RuBzB7N4hbia\nBP8A1qjq3z1eCuh9F5EYdwsBEYkCzgPWEuD7raqPqGpbVU3A9fP8rapeR4Dvt4g0EJFGlc+B84HV\n1OJ+B80dzSJyAa5zkKHAm6r6lMORvEJE3gOG4BpKNw94FPgMmAq0wzXs+JWqWr0z2q+JyCBgIbCK\n/5xj/gOufoWA3XcR6YGrYzEU1y95U1X1CRFpTgDvtyf36aMHVPWiQN9vEemAq3UArtP//1bVp2pz\nv4OmKBhjjDmxYDl9ZIwxpgasKBhjjKliRcEYY0wVKwrGGGOqWFEwxhhTxYqC8Ski8kf3aJ8r3aNA\nnunl75snIjWe8FxEpojINhGp515u4b6BqjayDKkc7bO2iMi9InLDCbbpLiJTavN7jf+yomB8hoic\nBVwE9FbVHsBwfjlmla8oB8Y6HaI692jAnsthuHL++3jvU9VVQFsRaefFeMZPWFEwvqQ1UKCqxQCq\nWqCq2wFE5M8iskREVovIZPcdzJW/6b8gIukiskZE+orIJ+5x5Z90b5MgImtF5F33Nh+JSP3qXy4i\n54vIDyKyTEQ+dI+jdDQvAve5D7qe7//Fb/oiMkFEbnI/3ywiT1eOgS8ivUVkpohsEJHbPD6msYh8\nIa65PyaJSMjxsrk/91kRWQZcUS3nucAyVS3z+Lt6VlzzL6wXkbM9tp2O685gE+SsKBhf8g0Q7z5g\nvSIigz1em6CqfVW1GxCFq0VRqcQ9rvwkXLf33wF0A25y3+kJkAq8oqqdgQPA7Z5fLCItgD8Bw1W1\nN5AO/M8xcm4FvgOuP8n926qqvXDdeT0FuBzX3A+Pe2zTD7gL17wfScClNci2W1V7q+r71b5vILC0\n2rowVe0H3IvrbvdK6cDZmKBnRcH4DPe8AH2AccAu4IPK37SBoSLyk4iswvUbcFePt1aOY7UKyHDP\nrVAMbOQ/AyHmqOoi9/N3gEHVvr4/rgPxInENQ30j0P44cZ8GHuTkfoY8c/6kqgdVdRdQXDl+EbDY\nPe9HOfCeO+eJsn1wjO9rjevv0VPlQIFLgQSP9flAm5PYFxOgbOhs41PcB8N5wDx3AbhRRN4HXgHS\nVDVHRB4DIj3eVuz+s8LjeeVy5f/x6uO5VF8WXHMRXFPDnFnuA/SVHqvL+GWRiPzlu04554myHT7G\n+iPHyVDOL3/+I93bmyBnLQXjM0QkVURSPFb1wjW4V+WBrcB9Lv3yU/j4du6ObIBrcZ3+8fQjMFBE\nkt1ZGohIxxN85lPAAx7LW4AuIlLP/Zv/sFPI2c89mm8IcJU756lkA9fsc8k1/N6OuEbbNEHOioLx\nJQ2Bt0QkU0RW4jpl8ph7noDXcR20ZuIaCv1krcM1b/MaoBnwqueL7tM4NwHvub/7B6DT8T5QVTOA\nZR7LObhGqlzt/vPnU8i5BJiA64C+Cfj0VLK5fQWcU8PvHQp8cdJpTcCxUVJNwBPX9Jwz3J3UQUVE\nPgV+r6pZx9mmHjAf14xeZXUWzvgkaykYE9gextXhfDztgIetIBiwloIxxhgP1lIwxhhTxYqCMcaY\nKlYUjDHGVLGiYIwxpooVBWOMMVX+HwMypbVyYD+xAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hamming window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HcW5/z+vepcsS26S3LuNO2C66R1DSAIJLSGB8AOS\nkNzcEAIJaeTmphBCQggEcsGUUEIwhGZMMwZ3Y2Nb7t2SbFm2JEu2ZdX5/bG7R3tWZ6VjtaPyfp5H\nj87Ozu6+uzsz35l3ZmfEGIOiKIqitIaoSBugKIqidF9URBRFUZRWoyKiKIqitBoVEUVRFKXVqIgo\niqIorUZFRFEURWk1KiKK0smIyBgRWS0ilSLynTCPMSIysqNtizQiMlhEDotIdARteFtEbmrlsT8T\nkWfb26auTEykDejpiMhOoD9Q7woebYwpioxFShfgh8CHxpgpoXaKyEfAs8aYJ9r7wiIyFNgBxBpj\n6lzhTwEFxpj72vuax4MxZjeQEmEbLo7k9bsb2hLpHC43xqS4/poIiIj0KkHvbffrYQiQH2kjFKU9\nUBGJECIy1HZRfENEdgMf2OEzRWSRiJSLyOciMst1zDARWWC7QeaLyF+cprOIzBKRAs81dorIefbv\nKBH5kYhsE5GDIvKSiGR6bLlJRHaLyAERudd1nmgR+bF9bKWIrBSRPBF5RET+4Lnm6yLyPZ97NiJy\nh4hsAbbYYWPteykVkU0i8mVX/EtEZL19zUIR+YH7Xm2bDtj3eZ3ruHQRmSMiJSKyS0TuE5Eoe9/X\nROQTEfm9iJSJyA4Rudh17NdEZLt9zR2e894sIhvs4+aJyJBm3u8VIpJvv8ePRGScHf4BcDbwF9tt\nM9pz3APAGa79f3HtPk9EttjnfEREpDW2hYOIvCwi+0TkkIh8LCITXPueEpG/2m6fwyLyqYgMEJGH\n7OtvFJGprvg7ReS/RWSNiBwRkSdFpL99fKWIvCcifey4TlqMsbc/EpFf2teoFJF3RSTLde4b7Xd8\nUER+4k7znvsZZj83Jx38XUT2u/Y/IyJ3ua75Tft3S+llmLjyJJDlua5fOvi6iPzHFW+LiLzs2t4j\nIiFbql0OY4z+deAfsBM4L0T4UMAAc4BkIBHIAQ4Cl2AJ/Pn2drZ9zGLgQSAeOBOoxHJ7AMzCckeE\nvDbwXWAJkGsf/xjwT48tf7ftmAxUA+Ps/f8NrAXGAGLv7wucBBQBUXa8LOAo0N/nWRhgPpBpXycZ\n2AN8Hcu1OhU4AIy34+8FzrB/9wGmue61zvUszgKOAGPs/XOA14BU+942A9+w930NqAVuAaKB/2ff\ng9j2VLjOMxCYYP+eDWwFxtm23gcs8rnP0bY95wOxWO6rrUCcvf8j4JvNpJkm++1n9waQAQwGSoCL\nWmGb865jPOFPAb9ybd9sP7944CFgtSfuAWA6kIBVAdoB3Gg/019huevc6XAJlls3B9gPfGa/b+f4\n+0PZZz+LbfYzTbS3f2PvGw8cBk4H4oDf2++2SX6z4+8Gptu/NwHbaUzju4Gp3uffXHoJI0/6pgNg\nOFCOlc8HAbuw86+9rww7X3X1v4gb0NP/7Ax02E4w5cBcO9zJLMNdce8GnvEcPw+4CavgqAOSXfue\nJ3wR2QCc69o30M4cMS5bcl37lwHX2r83AbN97m8DcL79+07grWaehQHOcW1fAyz0xHmMxgJlN/At\nIM0TZ1aIZ/ES8BM7o9dgC5G971vAR/bvrwFbXfuSbLsGYIlIOXA1kOi55tvYQmRvR2EJ5pAQ9/kT\n4CVP3EJglr39Ea0TkdM99/ujVtjmvOtyz18NLhHxHJNhH5Nubz8F/N21/9vABtf2CUC5Jx1e59p+\nBXjUc7w3X7hF5D5X3NuBd+zfP8WuCLneZQ3+IvIM8H37XW8CfgvcBgyzn0GU65puEfFLLy3lyZbS\nwR5gGnAt8DhWnhuLVal6/XjKmUj+qTurc7jSGJNh/13p2bfH9XsI8CW76VsuIuVYtayBWLWVMmPM\nEVf8XcdhwxDgVdd5N2B19vd3xdnn+n2Uxg7OPKzaYCieBq63f1+PlVGbw3u/J3vu9zqsDApWYX4J\nsMt2GZziOjbUsxiE1RqKJfjZ7MKqATsE7tMYc9T+mWKf7xqsgmWviLwpImNdtv7JZWcpVuvFfV4H\np2bpXKPBvu9QcY8Hv/dzPLY5ZLnSZAZW4QcE3Je/Ect9WYElAhDsqil2/a4Kse3tHD/e+G787nsQ\nrvRkv8uDzZxnAVYF5EzgYyyxOMv+W2i/p2av704vtJwnW0oHbnsWeOxZ0Mx9dClURCKPexrlPVgt\nkQzXX7Ix5jdYrp0+IpLsij/Y9fsIVi0JsAoCINtz7os9504wxhSGYeMeYITPvmeB2SIyGcudMreF\nc3nvd4HHphRjzP8DMMYsN8bMBvrZ533JdWyoZ1GE5WapxSpY3fvCuU+MMfOMMedjCfdGLBefY+u3\nPLYmGmMWhThNkfv6dt9FXrg2EPyMwuF4bAuHr2K5yM4D0rFaB2AJU1diL5Z7FgARScRys/qxAKu/\naZb9+xPgNFpfaLeUJ1tKB46InGH/XoCKiNJGngUuF5EL7dpgglidyLnGmF3ACuDnIhInIqcDl7uO\n3QwkiMilIhKL5RePd+3/G/CA0+EqItkiMjtMu54Afikio8Rikoj0BTDGFADLsVogrxhjqo7jft8A\nRovIDSISa/+dKCLj7Hu8TkTSjTG1WH0V3pqi8yzOAC4DXjbG1GOJzQMikmrf7/exnm2z2J29s+1C\noRrLDelc82/APWJ3MIvVef8ln1O9BFwqIufa7+K/7POFW6gXY/nFw+V4bAuHVCx7D2JVTH7dhnN1\nJP/Cyi+nikgc8DOaETpjzBasVs/1WJWXCqxnfTWtKLTDyJMtpYMFWIMsEu18tBC4CEsIVx2vPZFC\nRaQLYYzZg1UD/DFWx+kerE5t5z19FTgZy11xP1YHsnPsISx/8RNYNZ0jgHu01p+A14F3RaQSq6Pz\n5DBNexArQ7yLVZg/idXJ6fA0lh+8JVdWEMaYSuACLJ9wEZbb4H9pFL8bgJ22S+U2LFeXwz6szsci\n4DngNmPMRnvft7HufztWbfN54B9hmBSFJThFWM/4LKyOVIwxr9q2vWDbsw4I+T2BMWYTVkH1Z6yW\n0eVYw7xrwrABrHf1RXs00MMtRT4e28JkDpYbphBYj5VWuhzGmHysd/0CVqvgMFanfXUzhy0ADtp5\nzdkWrI7+1tBcnmw2HRhjNts2L7S3K7DS7Kd2Zahb4IwwULohIvIzYKQx5vqW4nawHWdi1fSHmE5I\nUGINe37WGJPbUlyl9yAiKVgd5KOMMTsibU9vQVsiSpuwm+nfBZ7oDAFRFDcicrmIJNkuyN9jDUXf\nGVmrehcqIkqrsT+cKsfqhH4owuYovZPZWO7HImAU1rB0rcx0IurOUhRFUVqNtkQURVGUVtPjJ8HL\nysoyQ4cOjbQZiqIo3YqVK1ceMMZktxSvx4vI0KFDWbFiRaTNUBRF6VaISFgzYqg7S1EURWk1KiKK\noihKq1ERURRFUVqNioiiKIrSalREFEVRlFbT7URERC4SaxnVrSLyo0jboyiK0pvpViJir5HxCNYM\npeOBr4jI+MhapSiK0nvpbt+JnIS1VOV2ABF5AWvunPXtfaFPthzgm3OWMyUvg+lD+hAtXW09HkVR\nlKbsKati4ZYSvnXmCG4583iWpWkd3U1EcgheXrWAEGtiiMitwK0AgwcP9u4Oi2eX7OJYbQNLtpey\nZHupfd5WnUpRFKXD8U6D+MBbG1REWosx5nGshe+ZMWNGq2aYfPT6aVRU1fHBpmL+OH8LheVV/HL2\nRL56cutESVEUpaPYuv8wN/1jGSWHq/nm6cP48ow8BmcmtXxgO9DdRKQQa41ih1zCX7f6uBAR0pNi\nuWpqLueN68+3/7mKH7+6luT4aGZPyemISyqKohw3xRXHuPHJpdTUG1657VROyE3v1Ot3q451rLW8\nR4nIMHtN5WuxlnztUFITYvnb9dM5aWgmP3plLVv3H+7oSyqKorRIfYPhjuc+o7yqlqe+fmKnCwh0\nMxExxtQBdwLzgA3AS/Y6yx1OQmw0f/7qVBJio/ivl1bT0KDrsCiKElmeWrSTFbvK+OXsiUzM6XwB\ngW4mIgDGmLeMMaONMSOMMQ905rX7pyXw08vH83nBIV75rKAzL60oihLEwcPVPPjuJs4Z248vTIuc\ni73biUikmT05hyl5GTw4fzM1dQ2RNkdRlF7K3xZso6q2nh9fMhaJ4NBRFZHjJCpK+O55o9h76Biv\nf14UaXMURemFlB6pYc7iXVw5NYeR/VIjaouKSCuYNTqbsQNSeWLhdnSNekVROpt/rdxDdV0Dt501\nItKmqIi0BhHhuplD2LivkvyiikiboyhKL6KhwfDc0t2cNDST0f0j2woBFZFWc/mkgcRFR2kHu6Io\nncqqPWXsOniUa0/KazlyJ6Ai0koykuI4b3w//vN5kQ73VRSl03hn3T5io4XzxvePtCmAikibuGD8\nAA4crmFN4aFIm6IoSi/AGMPb6/Zx2sgs0hJiI20OoCLSJs4anU2UwAcb90faFEVRegFb9h+moKyK\nCycMiLQpAVRE2kCf5DimDu7Dgs0lkTZFUZRewJLtBwE4fWRWhC1pREWkjZw8LJP8wkNU1dRH2hRF\nUXo4S7YfJCcjkdw+iZE2JYCKSBuZMbQPdQ2G1XvKI22Koig9GGMMy3aUcvKwzIh+oe5FRaSNTB+c\nCcDKXaURtkRRlJ5MQVkVBw7XMG1In0ibEoSKSBtJT4plcGYSG/ZVRtoURVF6MBv2Wh82jx+UFmFL\nglERaQdG909ls4qIoigdyIa9lYjA2AGR/0rdjYpIOzBmQAo7Dhyhuk471xVF6RjW7z3E0L7JJMV1\nrQVpVUTagdH9U6lrMGwvORJpUxRF6aFsLznCyH4pkTajCSoi7cCIbOvF7jqoIqIoSvtjjKGgrIq8\nPkmRNqUJKiLtQE6GNWa7sPxYhC1RFKUnUnqkhqraevIyu873IQ4qIu1ARlIsSXHRFJZVRdoURVF6\nIAV22ZKrLZGeiYgwKCORwvKjx31sTV0DD7+/hV+/tYFDR2uD9m3df5gFm0uo11mCFaXbsGlfJQu3\nlAQtWGeM4YVlu7lv7lp2HDh+t7cjIo7XoyvRtbr5uzH9UuM5eLjGd/+mfZV878XVGOCha6Ywxh6m\n98s31vPMkl0A5Bcd4tlvnIyIsGjrAW76v2XU1huunDKIh66dCkBtfQO/+M96lu8s5dvnjOLSSQMD\n19hfcYxlO0s5Y1Q26YldY4ZPRenOGGP4eMsB0hJimDq48SO/grKj3P3KGmrrDf979SSGZSUD8G7+\nPr717EqMgRtmDuGXV04E4MXle/jRv9cC8MGG/bz3X2eRFBdDdV09d/9rDUt3lHLH2SO5fuaQkHaU\nHqkGIDs1viNvt1VoS6Sd6JMcR+mR0CJSXVfP/3tuJcUVxyiuOMZ3X1hFQ4PhwOFqnl+2m+tnDuZn\nl4/n060HWb6zDGMMv3hjPTkZiXzt1KHMXV3E8p3WF/FPfrKDZ5bsovxoLXe9uCpQqymuOMbFf1rI\nnc+v4qpHPqXyWGOr5u8fb+fM337I/76zMah2VHqkhqcX7WRdiKnsj9XW6zopSrfmWG19k+Wry4/W\nMGfxzibTFC3cUsL5Dy7gljkrgvLOA29u4KZ/LOOqvy7ilZXWAnTGGO56YTWrdpezoaiCO5//DGMM\n9Q2GB97awJj+qXx5Ri7PLNnF5uJKGhoMj3y0lWmDM3jpW6dQdOgYLyzbA8ATC3cwd3URKfEx3Dd3\nHZ/tLgt5L+W2l6IrVg67nIiIyM9EpFBEVtt/l7j23SMiW0Vkk4hcGEk7vfRNjuPgkRo27qtgT2mw\nW+vNNXvZXnKE335xEvdeMo6N+ypZvrOUt9bupb7BcMPMoXxpRh4JsVG8saaI9Xsr2LivklvOHM6P\nLh5LSnwML6/YQ0OD4alPd3LGqCxe//ZpCMKcxTsBePj9LVRW1/HTy8az/cARnl5khS/edpAH3tpA\ngzE8+tE2XltdBFgZ7MuPLeb+1/O56q+fBmWqpz7dwcT753HhQx+zv6JxsEBB2VG+/+JqfvP2Ro7V\nNn4TY4zho037WbT1QJPncqy2nqM1de30lJWeTn2D4VBVbZPw3QePMndVYZN9b6/dy23PrGT++uJA\nmDGG++auZexP3uHGfywLpNWaugaufXwJP30tny8+uihQMSs9UsMdz33G4eo6Pti4n1+/tRGAPaVH\nefLTHXxhag7Th/Thf+x0v66wghW7yvjhhWO4/4oJ5BdVsGR7KYu3HWTXwaPcec5IfnTxOGKjhVdW\nFrBqTxl7Squ4fuYQThqWyfiBabyxpoj6BsMzi3dx1uhs5t5xGtmp8Tz03pag+ztWW8/KXaWUV9WS\nFBdNXEyXK7K7nojY/NEYM8X+ewtARMYD1wITgIuAv4pIdCSNdNMnKY5DVbVc+vAnXPKnhZRUVgf2\nvbyigGFZyZwzth8XThxAXHQU720oZsn2gwzOTGLMgFSS42M4aVhflu8sY/E2a7rn88f1JyE2mrNG\nZ/Pp1oOsKTzEvopjXD0tl36pCZw9Npt31u2jrr6B1z8v4tITBnLz6cM4dURf/r2qEID/+3QHWSnx\nvPf9sxg7IJW/L9xu2bSygK37D/PbL06iT1Icv5tnZZydB47wizfWMzkvgz1lR/nFG+sBK3N/8+kV\nvPZ5EX9bsI3fvrMpcH9/nL+Zr/3fcr76xFKesM8P8NnuMk7+9ftM/cV83lm3LxBecayWO57/jKv+\n+imrXDUvYwwvLt/N/a+tY/fBYCHeUlzJC8t2U340uLVXVVPPyl1lIT/0LDtS06QmqoRHxbFaausb\nmoRv2ldJYXnwABJjDPPy9zF/fXHQ866tb+CRD7fyP28H9/cdrq7jO/9cxexHPmXlrsb3v7/yGBf8\ncQFTfvEuD87fHAjfXnKYSx9eyF0vrubLf1scEIWVu8q4/fnPeG9DMbc9u5L8IqtFPX99Mc8u2c3p\nI7NYuOUAT36yA4C5qwrZuK+S33zhBPqlxvM7Ow2/trqQimN1PHnTiVxzYh6vrCyg8lgtL68sQIAf\nXDiGO88eyYHD1SzedpA31hQRFx3FVdNyueQEKz+/v6GYhVtKiI0Wzhnbj0x7mYhF2w6ydIclVueM\n7QfA2WOz+bzgEKv3lLOv4hhXTB5EcnwM156YxydbSih2Vdy+9+Jqrn50MU9+sqNLtkKg64pIKGYD\nLxhjqo0xO4CtwEkRtilAcrylZ/UNhsrqusDa6zV1DazcXca5Y/shIqTExzBuUBrrCitYU3CIE3LT\nA+eYkpvOpn0VLN5mTffcLy0BgKmDMygsr2JevlUQnzzcmvTxlOF92XvoGO9t2E/lsTrOthPphRMG\nsL3kCNtKDrNwywEuOWEACbHRXDU1h/yiCvYequI/nxcxdkAqX5qey/Uzh/Dp1oPsrzjGP5fvJjpK\nePS6adx0ylDeWruXkspqPti4n437KvnjNVO4ZkYezy7dRemRGvZXHOPRBdu49ISBzBqTzR/nb+ZQ\nVS0NDYYf/msNKfExDM9O4e5X1nCk2mqRPPDGBt5Zt4+dB45w6zMrAy2Vl1cWcPcra3l68S6uf3Jp\nYHr9DXsruOzPn/Cjf6/ly481FiKHqmq59M8LufrRRUGFS0OD4dv/XMXUX87nuieWBgnMEwu3c8L9\n87hlzoqg8A837ueCPy7grhdWBU3rv2FvBTc8uZS7/7UmqEVVXHGM7724mh+/ujbI/VF5rJafvZ7P\nfXPXUuZyb9bUNfDg/M3c8++1QYVEQ4PhsQXb+O+XP2enq8PVGMPTi3Zy5/OfsaYg2PXy/NLd3PzU\ncj7cFLwY2gvLdvPFRxfx/NLdTcLP+cNH/OqN9UEuymeX7OKEn83jpn8s43B14709+ckOpvz8XWb9\n7qOgb58e+XArFz70MbN+92HQGjoPzt/Mt55ZyS1zVvDnD7YGwn/z9kZ+N28Tjy3Yzp3//CwgML9+\nawNvrCmioPQot85ZEUgXv3l7I3vKqjh9ZBYPv78l4GZ9cP5mEPjpZePZVFzJi8stV9DfP95O3+Q4\nFt59Nslx0fxtgVWBeXH5HgamJ/DU10/k9JFZ/HPZbowxvPZ5IUP7JnHNiXlcN3MIy3aWsvdQFW+u\n2cu4gWmMH5TG1dNyqKlvYMHmEj7deoDJeRkMykjklBF9SYiN4uMtJazYVcYJuemkJ8aSFBfD1MEZ\nrNxdxqo95ZyQkx74ovykoZnkFx1ixc4yhmUlk5EUB8Ck3AzqGwzP2X2hJw2z8vPlkwfRYOD9DdZ7\nLSg7ytuuypeKyPHxbRFZIyL/EBGnNysH2OOKU2CHNUFEbhWRFSKyoqSkcxaMSoxtbBRNyk0PNK/X\n762gpq4haObN8QPTWLm7jIKyKsa55sEZMyDNSkQb9wfNjzMxxxKaf39WQFZKPAMC4mKd03FpzbCv\nMSUvA4CXlu+hqraeU0dYC9icPsr6/9GmEj7bVcasMZawOTWkT7YeYMGmEmYMyaRfWgKXTbIS9Sdb\nS3g3fx/pibFcMnEA188cQk1dAx9t2s+ba/dSW2/4/gWjueu80Rypqefd/H0s21nK1v2H+cGFo/nV\nlRM5VFXLG2uKOHi4mn+vKuCGmUN4/MYZlFRW89pqa536P3+whSl5GTz7jZPZXXo0IMR/eHczyfEx\n/OrKiWwuPsxLK6xk8NiCbZYQnTmczwsO8ZxdeL7+eRH/+byI88b1Z9G2g/zjE+v5rCko51dvbiAv\nM4n564t59KNtgO3OeP4zKqrqmLu6iIfet2rBNXUNfPPpFazaXc5LK/fw67c2AFYBf+fzn/Gfz4v4\n57Ld3Dd3XeBd/fjVdTy1aCfPLd3NXS+uDoT//t1NPPz+Fl5Yvptb5qwIFOZPfrKD/3l7Iy+vLAhy\nvfz7s0Lufz2ft9bu5aZ/LOPgYatl+/6GYn786lo+2XqAbz2zkm0lhwFYtqOUH/17LZuKK/nxq2tZ\ntM1yLa4rPMQ9r66lqqaeJz7ZwYv2s9tSXMlPX1tHbp8kPt5Swp/es+5518Ej/PqtDcwYmknFsVp+\n/h+rJVpYXsVD723mnLH9GNI3mZ/MXRfo13v0o21cPnkQF00YwCMfbuXg4WoOHa1lzuKdXDMjj59c\nNp6FWw7w2e5yKo7V8q+VBVx70mAev3EGB4/UMHd1IZXHanlzzV6+PCOXR66bRmJsNC8u30PlsVrm\nry/mC1NzuPn0YUwYlMZrdvwPNu3nskmDGJieyKWTBvLBhmLKj9bw8ZYSLps0kJjoKC6bNJCCsirW\nFVawdHspF04cEJTmF245wJqCQ5xp541JuRnExUSxYmcZawsOceJQq4BPiI1m/MA01hdVsK7wEJNz\nM1z5NpUtxYfZXnI46IvyUf1TaDDWyqfu8PEDrQkU31y7l9SEmMDaIKP6pdAvNZ7F9sJTS7dbLRhH\nZFREXIjIeyKyLsTfbOBRYDgwBdgL/OF4z2+MedwYM8MYMyM7O7udrQ9Ngi0iqQkxnDK8L2sKyjlW\nW89ndnN9mmtkx4jsZGrqLFfBgPTGIXvuD4kGZiQEfg/pa40NL66oZmjfpMBaAsOzrREhi7YdJDE2\nmoHp1jFjBqQSHSW8/nlRYBtgVL9UYqKEt9fto67BMCXPEqfxA9NIiI1ixa4yNu6rDLR0JgxKIy0h\nxnKxbT/IqSP6EhMdxYRBaWQmx/Hp1oN8uvUAQ/smMSI7hcm56WSnxrNwywEWbC4hJko4f/wApg3O\nYGB6Ah9tKuHjLSXU1huunpbLjCF9GNI3iffWF5NfVMGe0ipumDmE00b2ZWS/FN5Zt49DVbV8sLHY\nqj2ePJgJg9KYu6oQYwz/WlnAOWP78+NLxlmdlnYN9fmluxmenczfb5zOqSP68tzSXRhjmLN4F6nx\nMbx02ymcN64/zyzeRX2D4dklu6iqrefZb57EFZMH8fyS3VTV1PPm2iIKy6v481em8pWTBvPS8gLK\nj9awbEcpy3eWcf/l47ntrBG8/nkRBWVH2VN6lDfWFHH7rBHcc/FYFmwuYW3BISqO1fLM4l18YWoO\nv//iZNYUHGLBlhJq6xt4fOF2zhiVxZybT2J36VFe/7wIYwyPfbyNCYPSePM7Z1B2tDbQunj84+3k\nZSay4L9nIRBw1Tz5yXYyk+P45O5z6J8Wz+MfW7XypxftJDE2mnnfO5PJuemB+M8t3U1sdBTPffNk\nLp80iBeW7+FYbT0vryjAGMOfvzKVm08bxoeb9lNUXsVrqwuprTf8/IoJfOfcUewuPcrSHVa/Xl2D\n4c6zR/Ltc0dSXdfAu+uLeSffqlxcP3MIX56RS1x0FG+v3cv7G4qpqWvg6mm5TBucwbCsZN7NL2bh\nlgNU1zUwe0oOaQmxnDk6iw827mfp9lKq6xq4aKI1CvHccf1ZtaecRdsOUlPXEBCD00dmc6SmnldX\nWXaePKwvYK33A/Dyyj3UNRim2hWsUf1SiI+JYu6qQmrqGwIVtdjoKMYNSGVe/j5q6hsY07+xMjey\nXwpLd1j2DMtq/F5jVP9UDlfXceBwDcOyGsViSN/kwO9B6Y35eUB6AlEC1XUN5GQkBvKziHDKiL4s\n2X4QYwyr9pSRGh/DrDFWGRbVhdYQcRMRETHGnGeMmRji7zVjTLExpt4Y0wD8nUaXVSGQ5zpNrh3W\nJUiMs0QkMTaak4ZlUltvLVT12e4yBqUnMMCTiBz6pzUO2RvkGgM+0CUu/VMTiIkSO37jsakJsfRN\ntprIuX0aE2NCbDQD0hLYe+gYcdFR5Nk1nbiYKIb0TeJj2xXhTNcSFSWMyE7h3Xyr9TTazjhRUcLo\n/qmsLThEQVlVoAYVFSVMGJTG5uJK8osqAi0iEWHa4Azyiw6xenc5E3LSSYmPsTLH8L58truMZTtK\nSU+MZcKgNESE00ZmsWxHKZ/aNeczRmchIswanc2yHaV8vLmEBgNn262mc8f2Y/WeclbsKmN/ZTUX\nTOgPwAUTBrCpuJKt+ytZubuMSyYORES41K6Jbis5zEeb9nPOuH6kxMdwxZRBHDxSw5qCct7fUMy0\nwX0Y2S/fi8YPAAAgAElEQVSVL83IpbK6jiU7DvJufjED0xOYNSaba0/Mo6a+gQ827mdefjHxMVF8\ncXoeXz1pMMbAO+v28ebavRgD180cwjUnDiY6SpiXv4/3NxRTVVvPDacM4Yopg0hNiOHd/H0s2X6Q\nkspqrp85hDNGZTE4M4l56/axcV8lm4sPc93JQxg3MI0Th/Zh3vp97K84xtIdpVwzI4+B6YmcP74/\n89cXc7TG6hC+amoO6YmxXDklh0+3HuBwdR3z8vdxyQkDSUuI5QvTctm6/zC7Dh5h/vpizhqdTWZy\nHFdOHUTlsTo+21XG+xv3c/KwvvRPS+CySQMxBj7ZcoCPNpVwQk46eZlJnDu2H9FRwqJtB/h4cwnD\nspIZMyCV8QPTGJiewKdbD7B420H6pcYzMSeN1IRYpg/pw7KdpazcZRWMU/MyEBFmDu/L6j3lfL6n\nnLjoqEANf/qQPhSWV/HxlhJErNY9wKScdIyx+hkBTrAL/wn29OiOq8txEw/LSiExNjowsmqcnYZj\noqMY3T+VRXb/46j+jYX/iH4p7D10LJCvAuHZjXFyXOHuOIMzG8XFnbfdlcXY6KhAPvZ+9zF9SB9K\nKqspLK9i1e5yJudlkJVinedobdec4LXLubNEZKBr8yrA8RW8DlwrIvEiMgwYBSzrbPv8SIixRKTB\nmEChunpPOat2lzPVs4jMgDS3iDT+djdXB7qEJipKAv5U7zhxJ4HlZQZ/yTrIbskMykggJrrxNTvj\n2aMEBvdtPGZEdgoHbJeJO7OM6p/CWts3PcLVJB/Zzwrfe+gYI7Iba1yj+qWy8+BRNu6rYFRQ0z6V\n4opqVu0uZ0z/VKJsURw3MI3K6joWbCphYHoC/VItu0/ITaemvoG31u4lylWITB3chwZDoNXhuBuc\n/88t3U19gwm0pmYOt2qkc1cVceBwDaeOsLad/x9vPsCawkOcZm9PH9KHmChhxc5Slmw/yGkjLVGb\nMCid1IQYVuyyWmUnDs0kMS6avMwk8jITWbGzjOU7ShmenUxORiLpibFMyctg0bYDLNtRRmpCDJNz\nM4iNjuLUEX2t4dw7SokSAtc4c3QWi7cfZJndEXuG7WI5Y1Q26woreH+j5Ss/fZRVMz1zVDYlldW8\n8plV+z5tpHUPp43Morbe+rit4lgdpwx3wq3/b63dR2F5VcBNMn1IJiKWO3NzcWWg9j4iO4WMpFiW\n7Swlv/AQUwdbBXxyfAzjBqayclcZawsPMdl+NyLCCTnprC+qYG3hISblpgcqNhNz0ti4r5LVe8qZ\nkJMWeP8TBqVxqKqWd9cXM3ZgamD00YRBjgu3kGFZySTHW/0Mzloa720opn9aPH3sStTgzCQSY6PZ\nuK+SpLho+tn5JDpKGNI3iSN2P5e7cuYu/PunNuY3d97LdeWrfi5RcH85npXcGJ5p2wONedN7TrAG\n4kCwxwFgap717BdtO8jGfZVMHZxBqn3v1SoiYfNbEVkrImuAs4HvARhj8oGXgPXAO8Adxpgu81Sd\nlkh9gyEzOY4hfZOYl29lVqcJ7dDHldD6uUQh1lXYu+MAxNuZyy06VjxLeLJSguM78TI953ESdmZy\nHPExjf047tZRblAtqzGzDHU1z4e7hMb9e2S/FOobDGVHa4PFyBaUjfsqGdEvuUn44u0HA+455zwA\n7+TvI7dPUsBd6NQY5+XvIy46KlDzC4TbHZFOa2pIZpLlSlm3Nyg8KyWerJQ43l2/D2NgrF1DTYqL\nYVT/VD7ZcoCyo7WB1ld0lDA5N4PP95Szbf/hQM0XrIy/pqCctYWHAoUAWAXkluLDrCkoZ0pehqvg\nTGd36VGW7SxldP9UUuxCYuKgdI7W1PPOun1kpcQF3oNzrbmrComNlsC2U6C+Zo/Ec2rxTm37P2us\ne57kqpXHRUfx2morvlOLT0+MZVjfZOauKqS+wQQKcKfF+d6GYo7U1DNxUOMgkHED0lixq4ziiuqg\nRZLGD0pj+4EjbCs5EnCjAowdkEZNXQPrCiuC+gec97HjwJGgWryTFg5X1wXV1gekJRAb3bRVHhUl\ngYK6X2p80PKxTnhmclzQEFknzcdGCxlJ7gpc8PUcMl1i4RaIrNTGPObkR+u8jddynx8stzc0ionD\n2IGpxMdE8ewSy9U6dXAGKXZcxwXe1ehyImKMucEYc4IxZpIx5gpjzF7XvgeMMSOMMWOMMW9H0k4v\nTiHnTFEyOTeDVbutUTXe5SzTEhoTlCM+Tc4XExzu5Ik+nsTY107YKfHeRGptuxM+QF9bbLyddH1d\nYpPkssktTu7Mku0KH5geumUVJEau/h63r3iIqzXktJIAhtu+ZWMIEpdB6YkkxkZTcayOoVlJRNsF\nc1pCLP3T4ik6dIyU+JiAOMdERzE8O5lt9jT9XsHLL7JWixsRJIrJfF7QtPU1PDuZ/KIKauobgsJH\nZKdQdOgY+yutPiv3+Sur68gvqgi6T6cQXbK9NEiYR7gEdUjf5EBB6MRfuqOUnIzEQOHkPJcVu8pI\niY8JVBiyUuJIS4jhc/vbH6eVGh0lDMtKZqO9gNow13MdmpVMke3Ccds6tG9y4EM39/scmtXYr+d2\nw7qFwF0A54RR63enneyUeOxXG2idgiUWzrY7HBpFoV+aT7inFe8cn2y7XB3cFS8nfUFwHnFGY0Kw\nEGR6RMHBPfAGIN7eTvCEx0ZHcUJOOmvs9Dclrw9xjhh1zS6Rrici3ZWEWOtROgMoJ7taHxM8y1k6\nNU+gMYH4nM/BSYTej43SEq1zObWVxmtY8TOTg8XCEZWYqODz9HXVrNwZqq9LhNyZxV0TCw5v/O3O\ndO7z+IW7C4XEuOhAM95dM4yKkoBbYZDHn+zEc/cPQaPfOSMpNkg83QWeu+B0T7c9zFXIu+O7BW9w\n39Bi6Y7jPqdbFN0F8/Cs0OG5fZICtW93yzApLiZQULvvWUQC185OjQ8qqJz7jJLgZx/k2nEVwu5n\n7HbnuAt/93tzt2jdhblbUNzncV/LXcjHREcF0pg7vnVM6PBAfI9Y9PFxBTtpwZsH/UZBucPdrfh4\nV55MTQh9bLxHLOKiG/svvTijK3MyEslMjiPGjqsd6z0cp3bovOZptv/4hJz0oAQHwYlOfBKGN3E5\nNaJYT4JvsFu4KfHB8Z2WiTe+UzC7a1gAGT4Zx+1Wc5/LLTruOH7h7haUW3Tcouh14WXagtS09WWF\ne2t9joD19bj2nO2+yd5wy9bkuOig5+3X+nKfN8id4fqdk5EUOtxVSLvD3YW3+7m4w6OjJFA7doe7\n7WsSbl/D23Hr3HPflPigNOCcXyT4ebufWbZLLPxcsn6i4C7A3aLjfv9eV61TIevvKfxT7II6OyU4\n3KlQZTUJD50XnPjeCU6TfLwDfl4Ddx72+6LcWyl0KnHeFgo0ei6cPisnblTX1BCdgLG9CIiInaCm\n5GXwqysncordYesmKozUEK6I1NsfcCXHB79Kp7ld7fGjJsUHu9284V5S4kMnEXd4mqsV5K6tuQvF\nmGb6exy8ouDUEL39Ok5B6D2PU7P2+pkD8b3h9vGxnozvvp47k/f16UANamX5tMT8Wm5u0Y2KEqKj\nhPoGE3RO55jiiuomzyLT556dZ+MVYKdl6i2AnfPGRkcFFYruZ+x+z+535W4RuN+/uyUS7CINPYmg\n93062cRbu3cqYcmeNOvE8xbkTt7wfoHv2OQN9xMLP3Fx462cOXjd006+TYxrKjrnj+/PfZeO44rJ\ng4LO2VVbIioi7YQzBNd5zyLiOyNnOHhrLk5CiosJTkgNdmL0Nsmdjrsqz4gOJyPUNMlQoZOCX8Zx\nh7sLHXcm8mZyh/TE0NfyuhGcjOYNdwp2bwHpdF42KVCTQhcu3gI5VLifr9xdoLqFwy2u7kLRHe5+\nRl6Rjo+J4mhNfZNw5316KwuOUHndmY6t3vjOs2nPZ+FOO+7+vmSfNBKq4ISmadix0Wur49rzVqic\ndOEtaxPs470VJ6dg94aHah2447cGb6XQuWaoa8VGR/HNM4YHtruodgRQd1Y74ST09nrfTTvWQ2cc\np3binSHKcaF5546KP86M49u094nvxq9pHxftk0m9wmnfm7dm6GSqRI/wOYWZ9zxOQerNjE58bw0v\nNSG0yLnD3YWiO9xdaLvflbcw9wt3BMYrCo6NXtscMfOKTsDf36QPzQr3jvRxavHecL+WqF+6cF/P\nm1YdvP1xjccGv4foFtJ8jCfcaaF4Z592CvA6b7jTEgkzL4TjQfDDmyad1o+3ryQUThbuqi0RFZF2\nIjrQEmmfF92kw81OSd4M5Te/YKBF5JE1JyF684NfM9ybUQPnCSNDxfoUFrExoY/13puz7RfudE46\nNLonQvu4/cM97ozY0AVnOCPpknwKBb9WmTfcKQC94uKIfrJHOJ078hb2TvrxvoPEQIEafM8Jvr78\n4+sfcBMT7fOefa7lfc+NLtzg8zitfu/7d+J7540MiIhnhyM63nC/vNAWvM+xzk6LfnnEjeNtCCNq\nROiiZnU/GmsLbTvPmaOtD8niPRnNKSz8andeGkfqBIf7jfSI8RORNtyQn9D43UOTGqe96XVzOIWK\n9/xObc9PFLy17IBrzyfci5/Lz22H3z2H07cEjbVlb7hf35cT32uzU8BGewragIjUh66te/HWoAPh\nYbh2fCsRPuLibaH49QNG+VTYGkUk+H06rSNvfauxwzp0Ras9cL4z8uZnR8T9hNZNQxdviWifSDvR\nNzmOCyf0D/JltoY/fGkyJZXVTQojR6T8akneUMeN5c1oUT7i4nfejqiV+bq5vP09dlnQZDCBnau8\nmcopJLzhfoWWX+ES71twtr7O5e8uDN2yaNJCMaHDAy1R7wt13Jyem3PEwtsn5tviaINrx7cSEaY7\nK8rHneVtXTs49+pN87E+HdPRUaHzQlvcVl7mfOMkiiuONbHJaRWHUykcNzCVs0Zn88OLxrSbXe2J\nikg7ERUlPHbDjDafJzs1PuQSmMYuXsJN3oEmsI9YeMXB153VESISZkukIeDC8w4msP57TWtoaP6e\nveEBQfXYEe1T42uLoHoLkZOHZbJ0R2mTe3O2vM/didb0vVn/vX1f0QERCQ4PCKdHXPyEPdyW7/EQ\nrjvLsdErLn55wU9PAy0XT3w/F3R7JnlrZoSm+dlpifhVcNzEx0Tz9M1dZtWLJqg7q5vQWMsKL75T\ni/crIP1qZV46oiUSrjvLuWdvodMokKHFxc/N4XfPTdwZfq29dnQnXDRxQLP7/a51vC4Nr1g4j9jb\nGPCrLHTM+w/PzemIRZP04vOe/RYgc2L5uXD9xKUjOXuMNfuw99uY7oi2RCLE2p9dcFzxW1qgz7vb\nz7XjHoLsxtdN1gF+WL9r+X0D4225+I1W8ROXloTTr4USCfzeGz7hfq4dP6J8noWfcHZES9TPneXt\nH3Des7evJNDi8Bzvny5CHxDlV4nohPd/13mjuWHmkCZTtHRHVEQihN/0CC0RbqHR4NMn0nieYBoL\n2laZ1S54xaLBZ0Sa32gVPxeec7Pe+H4Fqp87qz1pqVLg9x7CfT+NlYXg8Gif2ndntkT8BKtJZcHH\nhsb+Pjzx/dxcocO933YF7OuE9x8dJT1CQEBFpNvwl69O5e8LdwTNmArNuLf8+g18CuDoLjA/j3fo\nb6Am6tsn4hPuMygh/I7V47G6bfhVCnzD2/h6/PsBOq8l6kdTd2boSoFf34efy9cv3LdPrBXC+dsv\nTmrqDuglqIh0E4Znp/A/Xzgh7PgNPrU1vwLYz+XTmfiNwvK2DBp8Rmf533Po8MA9hznIoDNwrtxe\nr6Fpn0ho4ewIt9Xx0rRPxMJXFDzFf2P88IQ5xtedFZ69br48I6/lSD0U7Vjvofj51v3cXH7uj87E\nW5D5d6D7DPH1EUi/cKfFEQmfeEv4uXxacoO1eF6f2nd7DmttLU063AP3GhzufHPhbaE64d7hyoH3\n7yntAq9ZvOGRfxbdCW2J9FD8at+Oi8CbXxNiohmencxd541ucq7ff2ky4wamNgl/6JopIYcvfv20\noVTVNF0vLCcjkcLyKl+bm462ccKD4/n1fTT4tFzqfYTTr3+gM0SkJS3w3tvxFmy+Xk6fkU2RbImc\nPSabDzeVNLHp/ism8JO565rMUHzvpePITInjognBI9yuO3kI5Udr+X+zRgSFT8pLJyslnu950nZX\nn06ku6Ai0kPxKyzGD0xn7IBU7r10fFB4VJTwwX/NCnmuL07PDRl+5dSckOH3Xz4hZPi8750ZUlxe\nvf3UwFrXbs4ak83zS3cHTeoH/kN5/b4f8fOtO2IT7ki1DsG3Az10Z3KTw4/TVKeTOdxpb9qT5755\nMpuLK5uEP3r99MDCV27OGp3Nxz88u0l4RlIc91w8rkl4XEwU3zu/aSUoLSGWFfed1zTcXsL4u+eO\nCvcWlBCoiPRQAi0RT3hiXDTv3HVm5xuENZVHqOk/pg7uE1iX3s3Pr5jA7bNGkO6Zrfe7545iw96K\nwNrhDs4UHUmeazjfzHhbKI0uv+DrRtKz49cP0PrzBYuPX39Ca0TkS9NzmywMBfD5/Rc0mQQRrLXf\nTxuZ1SQ8ITaaAemtnyG3tURHCXPvOK3Tr9vTUBHp5vj5yP06n7sTsdFRQSv5OUzMSeeTu89pEv61\n04ZSXdfA108bGhTuiFBeZvC5/KaS6Qo+8eP9/iNcWhpkMKZ/U7fln66dErR8sMPvvjQ55DX8VgZU\neiYqIj2Uc8f152f/Wc81J/aeUSPxMdF8J4Rr4sShmTx2w3RmjckOCnem+hgVouDsaFr+utoTfrx9\nIj7RnZage414sNyZz3/zZMYMaPosZk8J7bbsyeT2SeSrJw+OtBndAhWRbo5fYZGXmcTO31zaucZ0\nYS6c0HSakczkOJ79xslMykuPgEUWfu8v7D4Rn/M6w2W9I5WG9E3mqa+fGFh61c2pIVxNvZVQLV0l\nNBEZ4isiXxKRfBFpEJEZnn33iMhWEdkkIhe6wqeLyFp738PSFXwOXQCnZumdaloJj9NHZTXpuAf4\n5ZUTefu7Z0TAIou2uiEvnzyIO88eyX9f2HTm11lj+vlOa68ox0ukUtI64AvAY+5AERkPXAtMAAYB\n74nIaGNMPfAocAuwFHgLuAh4uzON7or88KIx9EuL57JJgyJtSo/ihmaWNg7Vb9DeSJNvGkKLyszh\nfXl68S4meGYyiI2O4gchBERpG4/fMD3kLNu9mYiIiDFmA4TMGLOBF4wx1cAOEdkKnCQiO4E0Y8wS\n+7g5wJWoiJAUF8Pts0ZG2oxeQ/7PLwxrIaG2Em5L5OITBrLqJ+cHreeudBwXhHCL9na6mg8kB9jj\n2i6ww3Ls397wkIjIrSKyQkRWlJSUdIihSu8kOT4msE59e+AnFd7wiXZLIyOpqViogCiRpMNaIiLy\nHhBKtu81xrzWUdcFMMY8DjwOMGPGjF46LZrSmXxy99ntOpzae657Lx3PVdNyGdmv6VBbRYkkviIi\nIg+HcXyFMea+UDuMMU0/EW2ZQsA9JjXXDiu0f3vDFaVLEOp7lrbg1aO4mCim5GW06zUUpT1ozp01\nG1jZwt/V7WzP68C1IhIvIsOAUcAyY8xeoEJEZtqjsm4EOrQ1oygdSVsnUlSUrkJz7qw/GmOebu5g\nEWk6V0UYiMhVwJ+BbOBNEVltjLnQGJMvIi8B64E64A57ZBbA7cBTQCJWh3qv71RXuj6zxmSTX1Th\nu987uOQ7547id/M2dcja5orSEYjfR0w9hRkzZpgVK1ZE2gxFCeLvH2/ngbc2sO7nF4acT0xRIo2I\nrDTGzGgpnm91R0QSROQmEblCLO4WkTdE5E8iop+2KoqiKM32icwBLgBuBj4CBgN/ASqx3EqKorQS\n7+y6itJdaa4dPd4YM1FEYoACY8xZdvg7IvJ5J9imKD0enbtH6e401xKpATDG1AFFnn1NVxZSFEVR\neh3NtURy7W9FxPUbe7v3zQ2tKIqiNKE5Eflv12/v8CYd7qQobaCHD4pUehG+ItLSNyKKorQdXdBA\n6e40N+3Jf8B/CIkx5ooOsUhRFEXpNjTnzvq9/f8LWBMpPmtvfwUo7kijFEVRlO5Bc+6sBQAi8gfP\nV4v/ERHtE1GUNqBdIkpPIZwJepJFZLizYU+MmNxxJilK70H0SxGlmxPOpD3fAz4Ske1Yw3uHALd2\nqFWKoihKt6BFETHGvCMio4CxdtBGe/laRVEUpZfT3ASM05zfxphqY8zn9l91qDiKooSPfiei9BSa\na4n8n4jMovnpfZ4EprarRYrSi9DvRJTuTnMiko61emFzybykfc1RFEVRuhPNDfEd2ol2KIqiKN0Q\nXYNTUSKAriei9BRURBRFUZRWoyKiKIqitJoWRcReX/16EfmpvT1YRE7qeNMURVGUrk44LZG/Aqdg\nTbwI1hrrj3SYRYrSC9DvRJSeQjgicrIx5g7gGIAxpgyIa8tFReRLIpIvIg0iMsMVPlREqkRktf33\nN9e+6SKyVkS2isjDIjrCXun+aCpWujvhiEitiERjTzwqItlAQxuvuw5rivmPQ+zbZoyZYv/d5gp/\nFLgFGGX/XdRGGxRFUZQ2Eo6IPAy8CvQTkQeAT4Bft+WixpgNxphN4cYXkYFAmjFmiTHGAHOAK9ti\ng6IoitJ2wpmA8TkRWQmci/X1+pXGmA0daNMwEVkNHALuM8YsBHKAAlecAjssJCJyK/ZMw4MHD+5A\nUxVFUXo3zS2Pm+na3A/8073PGFPa3IlF5D2sFRG93GuMec3nsL3AYGPMQRGZDswVkQnNXScUxpjH\ngccBZsyYoV2YSpdF1xNRujvNtURWYvWDCDAYKLN/ZwC7gWHNndgYc97xGmPPEFxt/14pItuA0UAh\nkOuKmmuHKYqiKBHEt0/EGDPMGDMceA+43BiTZYzpC1wGvNsRxohItt2Jj72a4ihguzFmL1AhIjPt\nUVk3An6tGUVRFKWTCKdjfaYx5i1nwxjzNnBqWy4qIleJSAHW9ydvisg8e9eZwBq7T+RfwG0ut9nt\nwBPAVmAb8HZbbFCUSGL0QxGlhxDO8rhFInIf8Ky9fR1Q1JaLGmNexRrx5Q1/BXjF55gVwMS2XFdR\nuhr6nYjS3QmnJfIVIBur0H8V6Efj1+uKoihKLyacIb6lwHc7wRZF6TWoN0vpKbQoIiLyITRd/MAY\nc06HWKQovQj1ZindnXD6RH7g+p0AXA3UdYw5iqIoSnciHHfWSk/QpyKyrIPsURRFUboR4biz3F+u\nRwHTgfQOs0hRegHaJaL0FMJxZ7m/XK8DdgDf6EijFKW3oCsaKN2dcERknDHmmDtAROI7yB5FURSl\nGxHOdyKLQoQtbm9DFEVRlO5Hc7P4DsCabj1RRKbSOBoxDUjqBNsUpcei34koPYXm3FkXAl/DmjH3\nQVd4JfDjDrRJUXoN2iOidHd8RcQY8zTwtIhcbc9ppSiKoihBNOfOut4Y8ywwVES+791vjHkwxGGK\noihKL6I5d1ay/T+lMwxRlN6E0S9FlB5Cc+6sx+z/P+88cxSld6GfiSjdnXC+WM8GbgGGuuMbY27u\nOLMURVGU7kA4Hxu+BizEWia3vmPNURRFUboT4YhIkjHm7g63RFF6EfqdiNJTCOeL9TdE5JIOt0RR\neiE6d5bS3QlHRL6LJSRVIlIhIpUiUtHRhimKoihdn3DWE0ntDEMURVGU7keLLRERmRbib4SIhNOf\n4nfO34nIRhFZIyKvikiGa989IrJVRDaJyIWu8Okistbe97CoH0DpxmiXiNJTCMed9VdgCfB3+28J\n8DKwSUQuaOV15wMTjTGTgM3APQAiMh64FpgAXAT8VUSi7WMexRpqPMr+u6iV11YURVHaiXBEpAiY\naoyZboyZDkwBtgPnA79tzUWNMe8aY5x12pdgTfIIMBt4wRhTbYzZAWwFThKRgUCaMWaJMcYAc4Ar\nW3NtRVEUpf0IR0RGG2PynQ1jzHpgrDFmezvZcDPwtv07B9jj2ldgh+XYv73hIRGRW0VkhYisKCkp\naSczFUVRFC/h9Gvki8ijwAv29jXAent1w1q/g0TkPWBAiF33GmNes+Pci7Xk7nPHZXULGGMeBx4H\nmDFjhrqfla6Hfiii9BDCEZGvAbcDd9nbnwI/wBKQs/0OMsac19xJReRrwGXAubaLCqAQyHNFy7XD\nCml0ebnDFaXbokNDlJ5AOEN8q4A/2H9eDrfmoiJyEfBD4CxjzFHXrteB50XkQWAQVgf6MmNMvf2N\nykxgKXAj8OfWXFtRFEVpP8KZgHEU8D/AeCDBCTfGDG/Ddf8CxAPz7ZG6S4wxtxlj8kXkJWA9lpvr\nDmOMM1/X7cBTQCJWH8rbTc6qKIqidCrhuLP+D7gf+COW++rrhNch74sxZmQz+x4AHggRvgKY2Jbr\nKkpXQXtElJ5COGKQaIx5HxBjzC5jzM+ASzvWLEXp+WiXiNITCKclUi0iUcAWEbkTq0NbVztUFEVR\nwp6AMQn4DjAduAG4qSONUhRFUboH4YzOWm7/PIzVH6IoShvRz0SUnoKviIjI680daIy5ov3NUZTe\ng84hqvQEmmuJnII1Bck/sb7N0BSvKIqiBNGciAzAmmTxK8BXgTeBf7rn0VIURVF6N74d68aYemPM\nO8aYm4CZWDPqfmSP0FIUpQ0Y/VJE6SE027FuT7J4KVZrZCjwMPBqx5ulKD0f9Q8rPYHmOtbnYH0h\n/hbwc2PMuk6zSlEURekWNNcSuR44gvWdyHdcI0kEMMaYtA62TVEUReni+IqIMaZN82MpiuKPfiei\n9BRUKBQlQuhnIkpPQEVEURRFaTUqIoqiKEqrURFRlAigXSJKT0FFRFEihOiXIkoPQEVEURRFaTUq\nIoqiKEqrURFRlAig34koPQUVEUWJFNolovQAVEQURVGUVhMRERGR34nIRhFZIyKvikiGHT5URKpE\nZLX99zfXMdNFZK2IbBWRh0WXhVMURYk4kWqJzAcmGmMmAZuBe1z7thljpth/t7nCHwVuAUbZfxd1\nmjMOQFAAAA81SURBVLWK0s7oeiJKTyEiImKMedcYU2dvLgFym4svIgOBNGPMEmOMAeYAV3awmYrS\noWhTWukJdIU+kZuBt13bw2xX1gIROcMOywEKXHEK7LCQiMitIrJCRFaUlJS0v8WKoigK0MLKhm1B\nRN7DWqfdy73GmNfsOPcCdcBz9r69wGBjzEERmQ7MFZEJx3ttY8zjwOMAM2bMUL+BoihKB9FhImKM\nOa+5/SLyNeAy4FzbRYUxphqotn+vFJFtwGigkGCXV64dpijdE63aKD2ESI3Ougj4IXCFMeaoKzxb\nRKLt38OxOtC3G2P2AhUiMtMelXUj8FoETFeUdkPHFyo9gQ5ribTAX4B4YL49UneJPRLrTOAXIlIL\nNAC3GWNK7WNuB54CErH6UN72nlRRFEXpXCIiIsaYkT7hrwCv+OxbAUzsSLsURVGU46MrjM5SlF6H\ndokoPQUVEUWJELqeiNITUBFRFEVRWo2KiKIoitJqVEQUJQIYXVBE6SGoiChKhNDvRJSegIqIoiiK\n0mpURBRFUZRWoyKiKBFAu0SUnoKKiKJECO0SUXoCKiKKoihKq1ERURRFUVqNioiiRADtElF6Cioi\nihIhRD8UUXoAKiKKoihKq1ERUZQIoEN8lZ6CioiiRAh1Zik9ARURRVEUpdWoiCiKoiitRkVEUSKA\n0UG+Sg9BRURRIoV2iig9gIiIiIj8UkTWiMhqEXlXRAa59t0jIltFZJOIXOgKny4ia+19D4sOslcU\nRYk4kWqJ/M4YM8kYMwV4A/gpgIiMB64FJgAXAX8VkWj7mEeBW4BR9t9FnW61oiiKEkRERMQYU+Ha\nTKZxFojZwAvGmGpjzA5gK3CSiAwE0owxS4y1rugc4MpONVpR2hH9TkTpKcRE6sIi8gBwI3AIONsO\nzgGWuKIV2GG19m9vuKJ0W9Qfq/QEOqwlIiLvici6EH+zAYwx9xpj8oDngDvb+dq3isgKEVlRUlLS\nnqdWFEVRXHRYS8QYc16YUZ8D3gLuBwqBPNe+XDus0P7tDfe79uPA4wAzZsxQx4GiKEoHEanRWaNc\nm7OBjfbv14FrRSReRIZhdaAvM8bsBSpEZKY9KutG4LVONVpRFEVpQqT6RH4jImOABmAXcBuAMSZf\nRF4C1gN1wB3GmHr7mNuBp4BE4G37T1G6LTpKXekJREREjDFXN7PvAeCBEOErgIkdaZeiKIpyfOgX\n64qiKEqrURFRlAhg9EMRpYegIqIoEUK7RJSegIqIoiiK0mpURBRFUZRWoyKiKBFAe0SUnoKKiKJE\nCO0SUXoCKiKKoihKq1ERURRFUVpNxKaCV5TezIRBaVTV1LccUVG6OCoiihIBrjlxMNecODjSZihK\nm1F3lqIoitJqVEQURVGUVqMioiiKorQaFRFFURSl1aiIKIqiKK1GRURRFEVpNSoiiqIoSqtREVEU\nRVFajfT0FdZEpATYFWk7jpMs4ECkjehk9J57B3rP3YchxpjsliL1eBHpjojICmPMjEjb0ZnoPfcO\n9J57HurOUhRFUVqNioiiKIrSalREuiaPR9qACKD33DvQe+5haJ+IoiiK0mq0JaIoiqK0GhURRVEU\npdWoiHQBRCRTROaLyBb7f59m4kaLyCoReaMzbWxvwrlnEckTkQ9FZL2I5IvIdyNha1sRkYtEZJOI\nbBWRH4XYLyLysL1/jYhMi4Sd7UkY93ydfa9rRWSRiEyOhJ3tSUv37Ip3oojUicgXO9O+jkJFpGvw\nI+B9Y8wo4H1724/vAhs6xaqOJZx7rgP+yxgzHpgJ3CEi4zvRxjYjItHAI8DFwHjgKyHu4WJglP13\nK/BopxrZzoR5zzuAs4wxJwC/pJt3Pod5z068/wXe7VwLOw4Vka7BbOBp+/fTwJWhIolILnAp8EQn\n2dWRtHjPxpi9xpjP7N+VWOKZ02kWtg8nAVuNMduNMTXAC1j37mY2MMdYLAEyRGRgZxvajrR4z8aY\nRcaYMntzCZDbyTa2N+G8Z4BvA68A+zvTuI5ERaRr0N8Ys9f+vQ/o7xPvIeCHQEOnWNWxhHvPAIjI\nUGAqsLRjzWp3coA9ru0CmgphOHG6E8d7P98A3u5QizqeFu9ZRHKAq+jmLU0vMZE2oLcgIu8BA0Ls\nute9YYwxItJk3LWIXAbsN8asFJFZHWNl+9LWe3adJwWr9naXMaaifa1UIomInI0lIqdH2pZO4CHg\nbmNMg4hE2pZ2Q0WkkzDGnOe3T0SKRWSgMWav7cYI1dQ9DbhCRC4BEoA0EXnWGHN9B5ncZtrhnhGR\nWCwBec4Y8+8OMrUjKQTyXNu5dtjxxulOhHU/IjIJyzV7sTHmYCfZ1lGEc88zgBdsAckCLhGROmPM\n3M4xsWNQd1bX4HXgJvv3TcBr3gjGmHuMMbnGmKHAtcAHXVlAwqDFexYrtz0JbDDGPNiJtrUny4FR\nIjJMROKw3t3rnjivAzfao7RmAodcrr7uSIv3LCKDgX8DNxhjNkfAxvamxXs2xgwzxgy18/C/gNu7\nu4CAikhX4TfA+SKyBTjP3kZEBonIWxG1rOMI555PA24AzhGR1fbfJZExt3UYY+qAO4F5WAMDXjLG\n5IvIbf+/vXONsauq4vjv32lDW0pbB6t+UfliCFBfYSQWSYOkGokiWqc2EaxTowQVipIqGg1OaBBt\n06gIBG1TplSUpx0VsaUpHYpUoe9pC6lUwJhIMK1SrdARyvLDWteeuXPu7Z3bsUOn65fcZJ+999lr\nr73P3c9z1pZ0eUR7AHga2AMsAb44LJkdIhrU+VrgVOCWqNdNw5TdIaFBnUckafYkSZIkaZqciSRJ\nkiRNk51IkiRJ0jTZiSRJkiRNk51IkiRJ0jTZiSRJkiRNk53ICEWSSVpcuJ4vqfMY56GrYqlU0tKj\nNZ4o6TRJO2uELQpLv4uORsZriSi/Z4byFdFinZyISOqQdNMR4swOS7zHtaXsY0V+sT5y6QNmSrrB\nzPYO9mZJo+Pd9yHBzD43VGnV4DKg1cwOFT2HWo9h4Ktmdu9wZ2IokdRSXU+vJczsLknPA/OHOy/H\nAzkTGbm8gpvX/kp1QIzoH4rzHNbG18OVUeqtkh4DFkrqlLRc0iOS/ixppqSFcQbEqjBJgqRrJW2U\ntFPST1RiGEhSj6Q2SR8tfDi4W9IzEX62pIclbZa0umLFNvy3S9oOfKlMUUm/AiYAm2MUWa3HyZKW\nSXpcfhbLxXHfOEl3SnpS0kpJj0lqi7ADhfTbJXWFe4qk+0LfjZLeF/6dIaNH0tOS5hXunxNlvV3S\nCkmnxAyjUn4Ti9e1kPTGyOf2+J0r6TpJXy7EuV5x7oqka6Kutkv6bkl6tcp8nvwMl15Jd5bc1yHp\nl6HrU5K+XQi7NMp5m6Qfy02fI+mApMVRj9Oq0hsgT9I5kn4f9bVB0ukF2d3yM2ielXSFpKsj3h8k\ntUa8Hkk/jHzslHROiR6ldZkMEjPL3wj8AQeAicCzwCR8VNUZYb8GPhPuzwLd4e4C7gda4roT+B0w\nBngn8CJu5whgJfCxcLcW5K4ALiqk1x7uHqCtKo934x3DGGADMCX8ZwPLwt0LTA/3ImBnLX0L7mo9\nvgNcGu7JwB+Bk4GrC3LegXe8bSXptQNd4f4ZcF6434KbZKmU1QbgJNwu0r7Q66yQ9/piWQG3Fcrv\nMmBxiU7/K7+4vgs3QgnQEvV6GrAl/EYBf8K/BL8w8jO+Sm5X6FOvzP8KnFQpr5J8dQDPhZxxwE7c\nLtQZ+LM1JuLdAswJtwGfrFF3A+Thz+7ocM8A7ivI3gOcAkwB9gOXR9j3C+XTAywJ93TiuYn7b6pX\nl3F9PnD/cP+Pj4dfLmeNYMzsn5JuB+YBLxWCpgEzw70CWFgIu8f6LzX81sxelrQDb7hWhf8OvAED\neL+krwHjgVZgF96Y1CTiv2RmN0uaCkwF1sQkpgV4TtJkvFFZX8jrhQ0p31+PD+LGKyvLE2PxRmM6\ncCOAmfVK6m0g3RnAmTo82ZootzIM8Bsz6wP6JP0NN29/QeRlb8j5e8Rdipv17wbmAp9vQPYFwJxI\n5xDegO6XtE/Su0PeVjPbJ2kGcJuZvVglt8LplJR5hPUCd0jqjvyVscbCaKKkX+BWeF8BzgY2Rprj\nOGxY8xBuSLOMMnmTgOWS3oZ3QMVZ2jrz82X+JWk/h5+1HfhgoMLPQ/f1MdubXCW3tC7N7ABJw2Qn\nMvL5AbAFH/k2wr+rrvsAzM1Xv2wxTMPPNBktaSw+4mwzs7/IN+/H1hMQDdwsvBEHELDLzKqXOar/\n9IOhqIeAT5jZ7qr0691ftAdU1GcU8F4zO1iSVl/B6xB1/l9m9qh8WfF8fMZU+sJAgyzFR9hvApY1\neE9pmQcfxuvmIuCbkt5uA/eVqu0lWaS53My+UZLmQau9DzJAHn7a4Toz+7j8LJmeQvxiOb9auH6V\n/mVelscipXWZDI7cExnhxAj0bvzMhgobcCujAJcAjxyFiEoDuzdG5HXf/JH0VvwY0VlmVpkd7Qam\nSJoWccZIOsvMXgBekFQ5a+KSJvO4GrhS0dLHqB1gPfCp8JtK/1Hs85LOkDQKP0iowoP46XQVfd51\nBNkPAbMknRrxWwtht+NLKo128GuBL0Q6LZImhf9K4EPAe3BdAdYAcyWNL5ELNco89H2zma0DrsFn\nBBMYyAcktUoah59K+Wjkr13SGyoyo75rUkfeJA6bUu+oXyw1mR0yzsMtI++vCh9sXSYlZCdyYrAY\nX6evcCXewPTiVnKvajbhaOiX4Oviq3GT2PXowNfSu2PT8wHz40Tbge/Fxus24NyIPxe4WdI2fKTb\nDAvw5ZBeSbviGvyEuQmSngSuAzYX7vk6vq+ygcPLPOBLg22xCfwEUPf1WzPbBVwPPBy6FU3a3wG8\njlh2aYCr8KXDHZHXM0PGf4B1uOXYQ+G3CjdFvinKrt+bRnXKvAX4acjYCtwYdVzN4/jyVC++X7HJ\nzJ4AvgU8GM/WGuBIx/zWkrcQuEHSVppfMTkY999K/0FUhUHVZVJOWvFNkkBSDzDfzI6JWXL59xoX\nm9mna4R34Zu7dV/xjdH8Fnx299SQZ3SgvA58+fKK/7esZjnauoxlxvlm9pGhzNdIJGciSTIMSPoR\nfobKgjrR9gMLVOdjQ/kHnHuAtceiAzkRkDQb3+f7x3Dn5XggZyJJkiRJ0+RMJEmSJGma7ESSJEmS\npslOJEmSJGma7ESSJEmSpslOJEmSJGma/wL71//A3XXO4gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hamming window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hanning Window" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hanning')" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUYCodcQEggQehMCKiBFUMHG2pG1gbus\na/dVV91m2XVXXd0VBUV0XXR17Q2QFQFpYoEE6RASIJDQQugQ0u/3j5nEMQvJAJmcKffnuubKnDJz\nfgeSuec55XlEVTHGGGMAwpwOYIwxxn9YUTDGGFPBioIxxpgKVhSMMcZUsKJgjDGmghUFY4wxFawo\nGAOISKKIHBWRcAcz/FdEbj7N1z4mIm/VdCYTeqwoGL8hIlkiMrLSvFtE5Gtfb1tVt6tqrKqW+npb\nVWQYrapvOLV9Y8CKgjHGGA9WFExAEZGHRWSziBwRkfUicoXHsltE5GsReVZEDojIVhEZ7bF8oYj8\nSUSWul//pYg0cy9rJyIqIhHVretefpOIbBORfSLyhxO1ctzrJYnIQREJc0+/KiK5Hsv/LSL3emzz\nF17uS5KILHJnmws0q7Tdy0VknXvbC0Wkq3v+eBGZ6bFehoh84DGdLSJ9TuO/xgQJKwom0GwGzgMa\nAo8Db4lInMfys4F0XB+SzwD/FBHxWD4OGA+0AKKAB6rY1gnXFZFuwEvAz4E4d5b4E72Bqm4FDgNn\nuWcNAY6Wf0gDQ4FFJ9l+VfvyHyDNvexPQMW5CBHpBLwD3As0B2YDM0Ukyr2t80QkTERau/frXPfr\n2gOxwOoq/k1MkLOiYPzNp+5vtwdF5CCuD98KqvqBqu5U1TJVfQ/IAAZ4rLJNVV91nxt4A9eHdkuP\n5f9S1U2qehx4H6jqW/HJ1r0amKmqX6tqEfBHoKpOxBYBQ0WklXv6Q/d0EtAAWHWS151wX0QkEegP\n/EFVC1V1MTDT43XXAZ+r6lxVLQaeBWKAgaq6BTji3pchwBxgp4h0wVWglqhqWRX7YoKcFQXjb36m\nqo3KH8Dtngvdh21WehSNHvz00Mnu8ieqmu9+Gnui5UB+pWWVnWzd1kB2pe3sq+J9FgHDcH0ILwYW\n4voAru5D+GT70ho4oKrHPNbd5vG8tee0+/2z+bE145lnUaU8J2u1mBBhRcEEDBFpC7wK3Ak0dReN\ntYBU+cKatwto45ErBmhaxfqLcB3yGuZ+/jUwiNP/EN4FNBaReh7zEj2e7wTaeuQTIAHY4ZFnmDvT\nIvfDioIBrCiYwFIP12GaveA6aYqrpVDbPgQuE5GB7uP0j1FFYVLVDOA4cAOwSFUPA3uAqziND2FV\n3QakAo+LSJSIDAYu81jlfeASERkhIpHA/UAh8I17+SJgOBCjqjnAEmAUrsL2w6nmMcHFioIJGKq6\nHngO+BbXh2pPYKkDOdYBdwHv4vrWfhTIxfXBezKLgH2qmu0xLcCK04wxDteJ6P3Ao8CbHvnScRWg\nF4E8XAXjMvf5D1R1kzvzEvf0YWALsNTJ+zSMfxAbZMeYMyMiscBBINl9tZExActaCsacBhG5TETq\nuo/rPwusAbKcTWXMmbOiYMzpGYPrhO5OIBkYq9bsNkHADh8ZY4ypYC0FY4wxFSKcDnCqmjVrpu3a\ntXM6hjHGBJS0tLQ8VW1e3XoBVxTatWtHamqq0zGMMSagiMi26teyw0fGGGM8WFEwxhhTwYqCMcaY\nClYUjDHGVLCiYIwxpoLPioKIvC4iuSKy9iTLRUReEJFMEVktIn19lcUYY4x3fNlSmI6rO96TGY2r\ne4BkYCLwsg+zGGOM8YLP7lNQ1cUi0q6KVcYAb7r7i/lORBqJSJyq7vJVJmNqyvGiUpZn7Wdl9kFK\nSk8wcJoIXVvV55z2TWlcL6r2Axpzmpy8eS0ejyENgRz3vP8pCiIyEVdrgsTExMqLjfG54tIyVmUf\nZGnmPpZuzuOH7QcoLnX1GyYnGF6nvEsxEegW14BBHZsxsENTBiQ1oW5UwN0zakJIQPx2quo0YBpA\nSkqK9eBnas2ewwVMWZDJR2k5HCsqRQS6t27AhEFJDOzYjP7tGp/wQ764tIzVOa4i8s3mPKYvzWLa\n4i1EhgsjurTkvgs60blVfQf2yJiqOVkUduAaN7ZcG34cQ9YYR+0/VsTURZt545ssSsuUMX3iGdm1\nBed2aEqjutUfDooMD6Nf2yb0a9uEu0ckc7yolNRt+1m8aS/vLstmzvrdXN67NfeO7ERSs3rVvp8x\ntcXJojADuFNE3sU1rOAhO59gnHboeDH/XLKFf369lfziUq7oE889I5Np2/TMPrhjosI5L7k55yU3\n5/ZhHZm2ZAvTl2Yxa/Uuru7bhrtHJhPfKKaG9sKY0+ez8RRE5B1gGNAM13i6jwKRAKo6VUQEmIzr\nCqV8YLyqVtvTXUpKilqHeKamqSr//m4bz325iUPHi7mkZxz3jkwmuaXvDvHkHing5YWbefu77QDc\nPLAtD1zUmToR4T7bpgldIpKmqinVrhdog+xYUTA17UhBMQ99tJrZa3ZzXnIzHhrVhR7xDWtt+zsP\nHmfSvAzeS82mV5uGTBnXl4QmdWtt+yY0WFEwxgsbdx/m9rdWsG1/Pg9e1JlfDWmPnOhyolowZ91u\nHnh/FWFhwj+u6835XVo6ksMEJ2+LgnVzYULWR2k5/GzKUo4UlvD2L87mtqEdHCsIABd1b8WsuwcT\n3yiGCdNTeXZOOqVlgfWlzQQ+Kwom5BQUl/LIx6u5/4NV9EloxOd3D+ac9k2djgVA26b1+Pj2gYzt\nn8DkBZnc+M/v2Xuk0OlYJoRYUTAh5VB+Mde98i3vLMvm9mEdeOvWs2lRP9rpWD8RHRnOU1f14m9X\n9yJt2wEufXEJmblHnI5lQoQVBRMyDuUX8/N/fseGXUd45cZ+/GZUFyLC/fdP4JqUBD65fRClZTB2\n2vdk5h51OpIJAf77F2FMDSovCJt2H+WVG/txUfdWTkfySrfWDXh34tkAjJ32nRUG43NWFEzQO5Rf\nzA3//L6iIAzv0sLpSKekY4v6FYXh+letMBjfsqJgglp5QUjffSQgC0K58sKgaoXB+JYVBRO0DuUX\nc+PrroIw9ca+AVsQynVsUZ93fvljYdi81wqDqXlWFExQOlZYwo2vf8/GXa6CECw3giW3/LEwjJ32\nHdv2HXM6kgkyVhRM0CkrU/7v/ZWs3XGIl28InoJQrrwwFJeW8Ys3UjlSUOx0JBNErCiYoPP8/Azm\nrNvD7y/pxoiuwVUQyiW3rM9L4/qyJe8Y9723kjK789nUECsKJqh8vnoXL8zP4Jp+bRg/qJ3TcXxq\nYMdm/PHSbszbkMtzc9OdjmOCRECMvGaMN9btPMQDH6yib2Ij/nxFD0f7MaotN53blo27DzNlwWa6\ntGrAZb1bOx3JBDhrKZigkHe0kIlvptGobiRTb+wXMmMSiAiPX96D/u0a8+CHq1iTc8jpSCbAWVEw\nAa+opIxfv5VG3tFCpt2Y4nd9GflaVEQYL9/QjyZ1o5j471RyjxQ4HckEMCsKJqCpKo/OWMvyrAM8\nc3UverapvcFx/Emz2Dq8enMKB/KL+PVbKygsKXU6kglQVhRMQPsgNaeix9MxfeKdjuOo7q0b8tw1\nfUjbdoAnP9/gdBwToKwomIC1bd8xHpu5jnPaN+H+Czs7HccvXNIrjlsHJ/Hmt9tYsDHX6TgmAFlR\nMAGppLSMe99bSXiY8Pdr+xAeFvxXGnnrwYs606VVfR78cDX7jtoAPebUWFEwAWnygkx+2H6QJ6/o\nSetGMU7H8SvRkeE8P7YPh48X89BHawi0cdiNs6womICzYvsBXvwqkyvOiudyuy7/hLq0asBvRnVm\n3oY9vLs82+k4JoBYUTAB5VhhCfe9t5JWDaJ5fEx3p+P4tQmDkhjcsRlPzFzP1jzrOM94x4qCCShP\nzFzP9v35/P3a3jSIjnQ6jl8LCxOevaY3URFh3PvuDxSXljkdyQQAKwomYHyxdjfvpWbz66EdOLt9\nU6fjBIRWDaP565U9WZVziBfnZzgdxwQAKwomIOQeLuCRj1fTI74B947s5HScgHJxzziu7teGyQsy\nSdu23+k4xs9ZUTAB4fefriW/qJTnrzuLqAj7tT1Vj17WjfjGMTzwwWoKiu1uZ3Ny9tdl/N6cdbv5\ncv0e7rugEx1bxDodJyDVj47kr1f0YmveMV5akOl0HOPHrCgYv3a0sIRHP1tHl1b1uXVwktNxAtrg\n5GZccVY8Ly/aTGbuEafjGD9lRcH4tWfnpLPnSAF/ubInkeH263qmfn9JV+rVieC3H6+10drMCfn0\nr0xERolIuohkisjDJ1jeUERmisgqEVknIuN9mccEllXZB3nj2yxuOLstfRMbOx0nKDSNrcNvR3dl\nWdZ+Pkizm9rM//JZURCRcGAKMBroBlwvIt0qrXYHsF5VewPDgOdEJMpXmUzgKCkt45GP19A8tg4P\njrLO7mrSNSltGJDUhL/M3kie9Y1kKvFlS2EAkKmqW1S1CHgXGFNpHQXqi2vcxFhgP1Diw0wmQEz/\nJov1uw7z2OXd7Sa1GiYi/OWKnuQXlfDnWeudjmP8jC+LQjzg2T7Ncc/zNBnoCuwE1gD3qKrddhni\ncg7k89yXmxjRpQWje7RyOk5Q6tgill8P68inK3eyJGOv03GMH3H6zN1FwEqgNdAHmCwiDSqvJCIT\nRSRVRFL37rVf4GCmqjz62ToAHh/THVcj0vjC7cM60L5ZPX73yVq7d8FU8GVR2AEkeEy3cc/zNB74\nWF0yga1Al8pvpKrTVDVFVVOaN2/us8DGeV+s3c38jbncf2En2jSu63ScoBYdGc6fr+jB9v35vGBd\nYBg3XxaF5UCyiCS5Tx6PBWZUWmc7MAJARFoCnYEtPsxk/Fh+UQlPzFpPt7gG3DKwndNxQsLADs24\nqm8bXl2yxXpSNYAPi4KqlgB3AnOADcD7qrpORG4Tkdvcq/0JGCgia4D5wEOqmuerTMa/vbJoC7sO\nFfDY5d2JsHsSas1DoztTJyKcJz+3k84GInz55qo6G5hdad5Uj+c7gQt9mcEEhp0Hj/PK4s1c0iuO\nAUlNnI4TUlrUj+aO4R15+ouNLMnYy3nJdog2lNnXMeMXnv5iI6rwyOj/OaVkasGEwe1IbFKXP81a\nT4mNuxDSrCgYx6VtO8BnK3cycUh7O7nskDoR4fz24q5s2nOUd5ZtdzqOcZAVBeOosjLliZnraFG/\nDrcN7eB0nJB2UfeWnNO+CX+fu4lD+cVOxzEOsaJgHPXpyh2syjnEQ6O6UK+OT09xmWqICH+8tDuH\njhczyS5RDVlWFIxjjhWW8PQXG+md0Igrzqp8s7txQrfWDbiufyJvfptFZu5Rp+MYB1hRMI6Zumgz\new4X8sdLuxEWZncu+4v7L+xETKRdohqqrCgYR+QcyGfa4i1c3rs1/dpat9j+pFlsHe4a0ZEF6XtZ\nmJ7rdBxTy6woGEc89d+NiMDDdgmqX7plYBLtmrouUS22S1RDihUFU+tWZh9k1updTDyvPa0bxTgd\nx5xAVEQYv724K5v3HuP9VBuMJ5RYUTC1SlV5+r8baVoviol2Capfu6BbS1LaNmbSvAyOF1kvqqHC\nioKpVYsz8vh2yz7uOr8jsXYJql8TER4e3YXcI4W8vnSr03FMLbGiYGpNWZmrlZDQJIZxZ7d1Oo7x\nQkq7Jozs2oKpizZzML/I6TimFlhRMLVm5uqdrN91mPsv6ExUhP3qBYoHL+rC0cISXlq42ekophbY\nX6apFUUlZTz35Sa6xjXg8t6tnY5jTkHnVvW58qw2TP8mix0Hjzsdx/iYFQVTK95Ztp3t+/P5zajO\ndqNaALrvgmRQeH7uJqejGB+zomB87lhhCS9+lcHZSU0Y1sn66g9EbRrX5cZz2/LRihwy9hxxOo7x\nISsKxudeW7KVvKNFPDy6CyLWSghUdwzvSL2oCJ6Zk+50FONDVhSMT+07Wsi0xZsZ1b0VZyVadxaB\nrEm9KH41tD1z1+8hbdt+p+MYH7GiYHxq8oJMjheX8sBFnZ2OYmrAhMFJNK9fh6f/m46qOh3H+IAV\nBeMzOQfyefu77VybkkDHFrFOxzE1oG5UBHePSGZZ1n4WWGd5QcmKgvGZF+dngsA9I5OdjmJq0Nj+\nCSQ2qcvf526y1kIQsqJgfCIr7xgfrshh3IBE4hpap3fBJDI8jLtHJLN2x2HmrNvjdBxTw6woGJ94\n4asMIsOF24dbp3fB6Gd9WtO+WT3+MXcTZWXWWggmVhRMjcvMPcqnP+zgxnPa0qJ+tNNxjA9EhIdx\nz8hk0vcc4fM1u5yOY2qQFQVT4ybNzyA6MpzbrGvsoHZpr9Ykt4jl+XmbKLXWQtCwomBqVPruI8xa\nvZNbBrajaWwdp+MYHwoPE+67oBOb9x5jxqodTscxNcSKgqlR/5i7iXpREUwc0t7pKKYWjOreiq5x\nDZg0L4MSG7YzKFhRMDVm7Y5DfLFuNxMGJ9GobpTTcUwtCAsT/u+CTmTty+fjFdZaCAZWFEyNeX7e\nJhpER3Dr4CSno5haNLJrC3q3acik+RkUlVhrIdBZUTA1YmX2QeZtyGXikPY0jIl0Oo6pRSKucws7\nDh7n/dRsp+OYM2RFwdSIv8/dROO6kdwyyFoJoWhop+b0TWzE5K8yKSgudTqOOQM+LQoiMkpE0kUk\nU0QePsk6w0RkpYisE5FFvsxjfCNt234Wb9rLr4Z2ILZOhNNxjANEhPsv7MzuwwW8s2y703HMGai2\nKIhIXRH5g4i86p5OFpFLvXhdODAFGA10A64XkW6V1mkEvARcrqrdgWtOYx+Mw56fl0HTelHcdG5b\np6MYBw3s0JQBSU2YumiztRYCmDcthX8BhcC57ukdwJ+9eN0AIFNVt6hqEfAuMKbSOuOAj1V1O4Cq\nWreLASZt2wGWZOTxq6HtqRtlrYRQJiLcOyKZPYcLeW+5nVsIVN4UhQ6q+gxQDKCq+YA3w2fFA56/\nGTnueZ46AY1FZKGIpInITSd6IxGZKCKpIpK6d+9eLzZtasuk+a5Wwg3nWCvBwLkdmtK/XWNeXriZ\nwhJrLQQib4pCkYjEAAogIh1wtRxqQgTQD7gEuAj4g4h0qrySqk5T1RRVTWne3Mb49Rc/bD/A4k17\n+eUQayUYFxHhnhGd2H24gPettRCQvCkKjwJfAAki8jYwH/iNF6/bASR4TLdxz/OUA8xR1WOqmgcs\nBnp78d7GD0yan0GTelHcaK0E42FQx6b0a9uYl6y1EJCqLQqqOhe4ErgFeAdIUdWFXrz3ciBZRJJE\nJAoYC8yotM5nwGARiRCRusDZwAbv4xunrMw+yML0vfzivCTq2RVHxoOIcO/IZHYdKuCD1Byn45hT\ndNK/ZhHpW2lWef+4iSKSqKorqnpjVS0RkTuBOUA48LqqrhOR29zLp6rqBhH5AlgNlAGvqera090Z\nU3smzdtEo7qR3HRuO6ejGD80uGMz+iY24uWFm7k2JYGoCLslKlBU9RXvOffPaCAFWIXrBHMvIJUf\nr0Y6KVWdDcyuNG9qpem/AX/zPrJx2qrsgyxI38uDF3W2+xLMCYkI94zsxM2vL+PDtBzGnZ3odCTj\npZOWb1UdrqrDcbUQ+rpP9PYDzuJ/zw2YEPLC/AwaxkTafQmmSkOSm9EnoRFTFmRan0gBxJs2XWdV\nXVM+4T6809V3kYw/W5NziPkbc/nF4CTqR1sfR+bkXK2FZHYcPM7HK+zcQqDwpiisFpHX3N1RDHPf\n2bza18GMf5rkbiXcPKid01FMABjWqTm92zRk8oJMim28hYDgTVEYD6wD7nE/1rvnmRCzdsch5m3Y\nw62Dk2hgrQTjhfLWQs6B43xi4y0EhGrPEqpqAfAP98OEsBe/yqB+dAS3WCvBnILhnVvQy91auLJv\nPBHhdiWSP/OmQ7ytIrKl8qM2whn/sWHXYeas28OEQdZKMKdGRLjr/GS278/ns5U7nY5jquHN9YQp\nHs+jcfVk2sQ3cYy/mrwgk9g6EUyw8RLMaRjZtQVd4xowZUEmPzsrnvAwb7pPM07w5o7mfR6PHar6\nPK6+ikyIyMw9wuw1u7h5YFsa1rVWgjl1IsLd53dkS94xZq221oI/q7alUOnO5jBcLQe7YymETP4q\nk5jIcG4d3N7pKCaAXdS9FZ1axjL5q0wu69WaMGst+CVvPtyf83heAmwFrvVNHONvtuYdY8aqnfzy\nvPY0qRfldBwTwMLChDvPT+bud37gi3W7ubhnnNORzAl4cxnAreV3N6vqBao6ESjydTDjH6YsyCQq\nIoxfnGetBHPmLukZR/vm9XhhfgZlZep0HHMC3hSFD72cZ4LM9n35fPLDDsYNaEvz+nWcjmOCQHiY\ncOfwjmzcfYR5G/Y4HcecQFW9pHYBugMNReRKj0UNcF2FZILcy4syCQ8TfjXUWgmm5lzeuzWT5mfw\n4leZXNCtJSJ2bsGfVNVS6AxcCjQCLvN49AV+6ftoxkk5B/L5MC2Hsf0TaNnAvgOYmhMRHsYdwzqy\nZschFqbb8Lr+5qQtBVX9DPhMRM5V1W9rMZPxA1MXbQbgtqEdHE5igtEVfeOZND+DSfMzGNa5ubUW\n/MhJWwoiUj7k5jgReaHyo5byGQfsPlTA+8tzuLpfAq0bxTgdxwShyPAwbh/egZXZB/k6M8/pOMZD\nVYePyofFTAXSTvAwQWrqos2UqnL7MGslGN+5ul8b4hpG88L8DFTtSiR/UdXho5nun2/UXhzjtNwj\nBbyzbDtXnBVPQpO6TscxQaxORDi3De3AozPW8d2W/ZzboanTkQxVX300Ezhp+VbVy32SyDjq1cVb\nKC4t487hHZ2OYkLAdf0TmLIgkxfmZ1hR8BNV3dH8bK2lMH4h72ghb323nZ/1iadds3pOxzEhIDoy\nnF8N7cCfZq1n2db9DEiyvjadVtUYzYvKH8C3wAFgP/Cte54JMq8t2UpBSSl3nG+tBFN7xg1IpFls\nFC9+leF0FIN34ylcAmwGXgAmA5kiMtrXwUzt2n+siDe/zeKyXq3p0DzW6TgmhMREhTNxSHuWZOSR\ntu2A03FCnjfdXDwHDFfVYao6FBiOjcIWdF7/eivHi0u501oJxgE/P7stTepZa8EfeFMUjqhqpsf0\nFuCIj/IYBxzKL2b6N1lc3COOTi3rOx3HhKB6dSL4xXlJLEzfy6rsg07HCWneFIVUEZktIreIyM3A\nTGC5iFxZqU8kE6BeX7qVo4Ul1kowjrrp3HY0qhtprQWHeVMUooE9wFBgGLAXiMHVD9KlPktmasXh\ngmJeX7qVi7q3pGtcA6fjmBAWWyeCWwclMW9DLmt3HHI6TsiqdpAdVR1fG0GMM95YmsWRghLuOj/Z\n6SjGcPOgdry6ZAsvfpXBKzemVP8CU+O8GY4zCbgLaOe5vt28FviOFpbw2tdbGdm1BT3iGzodxxga\nREcyYXASz8/LYMOuw9Z6dYA3h48+BbKAF3FdiVT+MAHuzW+zOHS82FoJxq+MH5hE/ToRTP4qs/qV\nTY3zZozmAlW1XlGDzLHCEl5bspVhnZvTO6GR03GMqdCwbiS3DGrH5AWZbNpzxK6Iq2XetBQmicij\nInKuiPQtf/g8mfGpN7/dxv5jRdw9wloJxv9MGJREvagIJs23K5FqmzdFoSeukdae4sdDR171iyQi\no0QkXUQyReThKtbrLyIlInK1N+9rzszRwhKmLd7M0E7N6ZvY2Ok4xvyPxvWiuGVgO2av2UX6brst\nqjZ5UxSuAdqr6lBVHe5+nF/di0QkHJgCjAa6AdeLSLeTrPc08OWpRTen681vsziQX8y9I62VYPzX\nL84rby1scjpKSPGmKKzFNU7zqRoAZKrqFlUtAt4FxpxgvbuAj4Dc09iGOUWuVsIWhnVuzlnWSjB+\nrFHdKMYPasfsNbvZuPuw03FChjdFoRGwUUTmiMgM9+MzL14XD2R7TOe451UQkXjgCuDlqt5IRCaK\nSKqIpO7dawN9n4k3vsniYH4x947s5HQUY6p162DXlUiT5tm5hdrizdVHj3o8F+A8YGwNbf954CFV\nLatq4G5VnQZMA0hJSbFx+07TkYJiXl2yhfO7tKCPXXFkAkB5a+GFrzJZv/Mw3VrbfQu+Vm1LwT12\nwmFcXVpMB84Hpnrx3juABI/pNu55nlKAd0UkC7gaeElEfubFe5vT8GMrwc4lmMBx6+D21I+2cwu1\nparhODsB17sfecB7gKjqcC/fezmQ7L4jegeu1sU4zxVUNclje9OBWar66ansgPHO4YJiXl2ylRFd\nWtCrjbUSTOBoWDeSCYOSmDQ/g3U7D9G9td1970tVtRQ24moVXKqqg1X1RaDU2zdW1RLgTmAOsAF4\nX1XXichtInLbmYQ2p+6Npa67l+1cgglEEwYnuVoLdm7B56o6p3Alrm/3C0TkC1xXD538wP8JqOps\nYHaleSc89KSqt5zKexvvHXafSxjZtSU929i3LBN4GsZEcqu7T6S1Ow5ZX10+VNUYzZ+q6ligC7AA\nuBdoISIvi8iFtRXQnLnpS7M4XFBi5xJMQBs/KIkG0XaXs695c6L5mKr+R1Uvw3Wy+AfgIZ8nMzXi\ncEExry3ZwgXdWtq3KxPQXK2F9sxdv4c1OTbegq94c59CBVU9oKrTVHWErwKZmvXa4i3WSjBBY/zg\ndjSMieTvc9OdjhK0TqkomMCSd7SQ177eyiW94uyKDRMUGkRHctvQDixI30tq1n6n4wQlKwpB7OWF\nmykoLuU+u+LIBJGbB7alWWwdnpmTjqrdy1rTrCgEqV2HjvPv77ZxVd82dGwR63QcY2pM3agI7jq/\nI8u27mdJRp7TcYKOFYUg9cL8TFTVxkswQWnsgATiG8Xw7JfWWqhpVhSCUFbeMd5PzWbcgEQSmtR1\nOo4xNa5ORDj3jExmdc4h5qzb43ScoGJFIQg9P28TkeHCHed3dDqKMT5z5VnxtG9ej+e+TKe0zFoL\nNcWKQpDZuPswn63ayS0Dk2hRP9rpOMb4TER4GPdf0JmM3KPMWFW5r01zuqwoBJnnvtxEbFQEtw1t\n73QUY3xudI9WdItrwD/mZlBUUuZ0nKBgRSGIrMw+yNz1e/jlkPY0qhvldBxjfC4sTHjwos5s35/P\n+6nZ1b8xswjhAAAUCklEQVTAVMuKQhB5dk46TepFMWFwUvUrGxMkhnVuTkrbxrz4VQYFxV535GxO\nwopCkPhmcx5fZ+Zx+7AOxNbxZkA9Y4KDiPDARZ3Zc7iQN7/NcjpOwLOiEATKypS/zt5IXMNobjin\nrdNxjKl157RvypBOzZmyYDOH8oudjhPQrCgEgZmrd7JmxyEeuLAz0ZHhTscxxhGPjO7C4YJiJi+w\nrrXPhBWFAFdQXMozX6TTLa4BV5wV73QcYxzTNa4B1/RrwxvfbCN7f77TcQKWFYUA98Y3Wew4eJzf\nXdKVsLBTGhjPmKDzfxd0JiwMnpljXWufLisKAezAsSImL8hkeOfmDOrYzOk4xjiuVcNoJp7Xnpmr\ndrIy+6DTcQKSFYUA9sJXGRwrLOGRi7s6HcUYvzFxaAeaxUbxl883WGd5p8GKQoDKyjvGW99t47r+\nCXRqWd/pOMb4jdg6Edx3QSeWZe1n7nrrLO9UWVEIUM/M2UhkeJgNoGPMCVyXkkDHFrE89d+NFJda\n9xenwopCAErbdoDZa3YzcUh7WjSwTu+MqSwiPIxHRndhS94x3l223ek4AcWKQoBRVZ78fD3N69fh\nl+dZp3fGnMz5XVpwTvsmPD8vgyMFdkObt6woBJgv1u5mxfaD3H9BJ+pZdxbGnJSI8LuLu7HvWBEv\nL9zsdJyAYUUhgBQUl/Lk7A10blmfa1ISnI5jjN/r2aYhV5wVz2tfb2XbvmNOxwkIVhQCyMsLN5Nz\n4DiPXd6dcLtRzRivPDy6C5FhwhMz1zsdJSBYUQgQ2/fl8/KizVzWuzXndmjqdBxjAkbLBtHcMzKZ\n+Rtzmb/BLlGtjhWFAPHErHVEhgm/sxvVjDll4wcl0bFFLI/PXG9jLlTDikIA+GrjHuZtyOXuEcm0\namiXoBpzqiLDw3ji8u5s35/PK4u2OB3Hr/m0KIjIKBFJF5FMEXn4BMt/LiKrRWSNiHwjIr19mScQ\nFRSX8tiM9XRoXo/xg2xENWNO18COzbikVxwvLcy0XlSr4LOiICLhwBRgNNANuF5EulVabSswVFV7\nAn8CpvkqT6CatngL2/fn88SYHkRFWMPOmDPx+0u6Eh4mPDHLTjqfjC8/ZQYAmaq6RVWLgHeBMZ4r\nqOo3qnrAPfkd0MaHeQJO9v58pizI5JKecdYLqjE1IK5hDHedn8zc9XtYkJ7rdBy/5MuiEA9ke0zn\nuOedzK3Af0+0QEQmikiqiKTu3bu3BiP6tz/NWk+YCL+7xE4uG1NTbh2cRPvm9Xh8xjoKS+ykc2V+\ncTxCRIbjKgoPnWi5qk5T1RRVTWnevHnthnPIwvRcvly/h7tGdKR1oxin4xgTNKIiwnjssu5k7cvn\n1cV20rkyXxaFHYDnbbdt3PN+QkR6Aa8BY1R1nw/zBIzjRaU8OmMdSc3qcetgO7lsTE0b0qk5o7q3\nYvKCTLvTuRJfFoXlQLKIJIlIFDAWmOG5gogkAh8DN6rqJh9mCSjPfpnOtn35PHlFD+pEhDsdx5ig\n9Ojl3YgMC+M3H66mrMwG4ynns6KgqiXAncAcYAPwvqquE5HbROQ292p/BJoCL4nIShFJ9VWeQJG2\nbT+vL93KDeckMrCDnVw2xlfiGsbw+0u78v3W/bz9/Tan4/gNCbTh6lJSUjQ1NThrR0FxKRdPWkJh\nSRlz7htCrPWCaoxPqSo3vb6MtG0HmHPvEBKa1HU6ks+ISJqqplS3nl+caDYu/5i7iS15x3j6ql5W\nEIypBSLCU1f1IkyEhz9ebWM6Y0XBb/yw/QCvLtnC9QMSGZxsh42MqS3xjWJ45OIuLM3cxzvLsqt/\nQZCzouAHCopLefDD1bRqEM1vL+7idBxjQs64AYkM7NCUv8zewI6Dx52O4ygrCn5g0vwMMnOP8ter\nelE/OtLpOMaEHBHh6at6UabKwx+F9mEkKwoOW5V9kFcWbebalDYM7RQaN+YZ448SmtTl4dFdWJKR\nx/upoXsYyYqCg1yHjVbRvH4dfndJ5b4CjTG17Yaz23J2UhP+PCt0DyNZUXDQ4zPXs2nPUZ66qhcN\nY+ywkTFOCwsTnrnadRjprv+soLi0zOlItc6KgkM+W7mDd5Zt57ahHRjeuYXTcYwxbm2b1uOpq3qx\nYvtBnvlio9Nxap0VBQdk5h7lkY/X0L9dYx64sJPTcYwxlVzWuzU3ntOWV5ds5ct1u52OU6usKNSy\n40Wl3PH2CqIjw3nx+r5EhNt/gTH+6PeXdqVnfEMe+GBVSI3UZp9IteyPn61lU+4Rnr+uj423bIwf\nqxMRzpRxfVHgjv+sCJmxF6wo1KIPUrP5IC2Hu4Z3ZIhdfmqM30tsWpe/Xd2b1TmH+Ovs0Di/YEWh\nlqTvPsIfPlvLue2bcs9IO49gTKAY1aMVtw5OYvo3WXy+epfTcXzOikItOFpYwu1vpxFbJ5JJ1/ch\nPEycjmSMOQUPjepCn4RGPPTRarbmBfegPFYUfKyopIxfv5VG1r58Xri+Dy3q23kEYwJNVEQYU37e\nl8hwYfy/lpF3tNDpSD5jRcGHysqUhz5azZKMPP56ZU8bNMeYABbfKIbXbu7P7sMFTJi+nGOFJU5H\n8gkrCj709JyNfPLDDh68qDPXpiRU/wJjjF/r17YxU8b1Zd3Ow/z67eC849mKgo/88+utvLJoCzed\n25bbh3VwOo4xpoaM6NqSv1zRg8Wb9vLQh8HXo6oN7+UDM1bt5E+z1jO6Rysevaw7InZi2Zhgcl3/\nRHIPF/Lc3E20aBDNw6ODZxwUKwo17JvMPO5/fyUDkprwj+vsSiNjgtWd53dkz5ECpi7aTIv6dZgw\nOMnpSDXCikINWp1zkIn/TqN9s1hevSmF6MhwpyMZY3xERHj88h7sPVLInz5fT9PYKMb0iXc61hmz\ncwo1ZNGmvVw/7TsaxkQyfUJ/6wrbmBAQHiZMGnsWA9o14d73VvL611udjnTGrCjUgA9Ss5kwfTmJ\nTevx8e0DiWsY43QkY0wtiY4M540JA7iwW0uemLWeJz9fT1lZ4J58tqJwBlSVF+Zn8OCHqxnYoSnv\n/+ocWjawm9OMCTXRkeG89PN+3Hyuq7vte95bGbAd6Nk5hdNUUlrGHz5byzvLsrmybzxPXdmLqAir\nscaEqvAw4bHLuxPXKIan/ruR3MMFTLspJeAOJdun2GnILyph4r/TeGdZNncM78Bz1/S2gmCMQUS4\nbWgHJo3tw4rtB7hm6jfsDLCxnu2T7BSlbTvAmMlLWZiey59/1oMHL+pi9yEYY35iTJ943hg/gF0H\nC7jsxa+ZuWpnwNzkZkXBS8cKS3hsxjqunvoNxwpLmD5+ADec09bpWMYYPzWwYzM+vn0g8Y1juOud\nH/jlm6nsOuT/rQYJlOpVLiUlRVNTU2t1mwvTc/ndJ2vZeeg4N53TlgdHdSG2jp2OMcZUr6S0jH8t\nzeK5uelEhIXx0Ogu/HxAImG1fGOriKSpakq161lROLn9x4p4YuY6Pl25k44tYnn6qp70a9ukVrZt\njAku2/Yd47efrGFp5j76t2vMX6/sRccWsbW2fSsKp0lVWZl9kPeWZzNz1U6KSsv49bCO3DG8A3Ui\n7A5lY8zpU1U+SMvhz7PWc6yolBFdWjB2QAJDkpsTEe7bo/neFgWfHgMRkVHAJCAceE1Vn6q0XNzL\nLwbygVtUdYUvM53MgWNFfPLDDt5bnk36niPERIZzaa84fjmkPZ1a1ncikjEmyIgI16YkMKxzc15b\nspWP0nL4cv0eWjWI5pqUNlybkkBCk7rOZvRVS0FEwoFNwAVADrAcuF5V13usczFwF66icDYwSVXP\nrup9z7SlUFqm7D5cQPb+fLbvzydnfz7pe46wYONeikrL6N2mIdf1T+Sy3nHUjw6s64uNMYGlqKSM\nrzbu4d3l2SzatBdVGNihKT3bNCSxSV0SGtclsUldWjeKOePL3v2hpTAAyFTVLe5A7wJjgPUe64wB\n3lRXZfpORBqJSJyq1vjo2As25vL4zHXsOHic4tIfC2GYQFzDGMadnci1KQl0a92gpjdtjDEnFBUR\nxqgecYzqEceOg8f5MDWHWat38q+vsyjyGMCn/HNq/KB2/OK89j7N5MuiEA9ke0zn4GoNVLdOPPCT\noiAiE4GJAImJiacVpkm9KLrHN2RUjzhXBW4SQ2KTusQ1PPMKbIwxZyq+UQz3jEzmnpHJlJYpezyO\naGQfOE72/nya16/j8xwBcV2lqk4DpoHr8NHpvEfvhEZMGde3RnMZY4wvhIcJrRvF0LpRDGe3b1qr\n2/blV+QdgOfAxG3c8051HWOMMbXEl0VhOZAsIkkiEgWMBWZUWmcGcJO4nAMc8sX5BGOMMd7x2eEj\nVS0RkTuBObguSX1dVdeJyG3u5VOB2biuPMrEdUnqeF/lMcYYUz2fnlNQ1dm4Pvg95031eK7AHb7M\nYIwxxnt22Y0xxpgKVhSMMcZUsKJgjDGmghUFY4wxFQKul1QR2QtsO82XNwPyajBOIAnVfbf9Di22\n3yfXVlWbV/dGAVcUzoSIpHrTIVQwCtV9t/0OLbbfZ84OHxljjKlgRcEYY0yFUCsK05wO4KBQ3Xfb\n79Bi+32GQuqcgjHGmKqFWkvBGGNMFawoGGOMqRAyRUFERolIuohkisjDTufxFRF5XURyRWStx7wm\nIjJXRDLcPxs7mdEXRCRBRBaIyHoRWSci97jnB/W+i0i0iCwTkVXu/X7cPT+o97uciISLyA8iMss9\nHfT7LSJZIrJGRFaKSKp7Xo3td0gUBREJB6YAo4FuwPUi0s3ZVD4zHRhVad7DwHxVTQbmu6eDTQlw\nv6p2A84B7nD/Hwf7vhcC56tqb6APMMo9Nkmw73e5e4ANHtOhst/DVbWPx70JNbbfIVEUgAFApqpu\nUdUi4F1gjMOZfEJVFwP7K80eA7zhfv4G8LNaDVULVHWXqq5wPz+C64MiniDfd3U56p6MdD+UIN9v\nABFpA1wCvOYxO+j3+yRqbL9DpSjEA9ke0znueaGipceIdruBlk6G8TURaQecBXxPCOy7+xDKSiAX\nmKuqIbHfwPPAb4Ayj3mhsN8KzBORNBGZ6J5XY/vt00F2jP9RVRWRoL0OWURigY+Ae1X1sIhULAvW\nfVfVUqCPiDQCPhGRHpWWB91+i8ilQK6qponIsBOtE4z77TZYVXeISAtgrohs9Fx4pvsdKi2FHUCC\nx3Qb97xQsUdE4gDcP3MdzuMTIhKJqyC8raofu2eHxL4DqOpBYAGuc0rBvt+DgMtFJAvX4eDzReQt\ngn+/UdUd7p+5wCe4Do/X2H6HSlFYDiSLSJKIRAFjgRkOZ6pNM4Cb3c9vBj5zMItPiKtJ8E9gg6r+\n3WNRUO+7iDR3txAQkRjgAmAjQb7fqvqIqrZR1Xa4/p6/UtUbCPL9FpF6IlK//DlwIbCWGtzvkLmj\nWUQuxnUMMhx4XVWfdDiST4jIO8AwXF3p7gEeBT4F3gcScXU7fq2qVj4ZHdBEZDCwBFjDj8eYf4vr\nvELQ7ruI9MJ1YjEc15e891X1CRFpShDvtyf34aMHVPXSYN9vEWmPq3UArsP//1HVJ2tyv0OmKBhj\njKleqBw+MsYY4wUrCsYYYypYUTDGGFPBioIxxpgKVhSMMcZUsKJg/IqI/M7d2+dqdy+QZ/t4ewtF\nxOsBz0VkuojsEJE67ulm7huoaiLLsPLePmuKiNwrIjdVs05PEZlek9s1gcuKgvEbInIucCnQV1V7\nASP5aZ9V/qIUmOB0iMrcvQF7Tkfgyvmfql6nqmuANiKS6MN4JkBYUTD+JA7IU9VCAFXNU9WdACLy\nRxFZLiJrRWSa+w7m8m/6/xCRVBHZICL9ReRjd7/yf3av005ENorI2+51PhSRupU3LiIXisi3IrJC\nRD5w96N0Is8D97k/dD1f/5Nv+iIyWURucT/PEpG/lveBLyJ9RWSOiGwWkds83qaBiHwurrE/popI\nWFXZ3O/7tIisAK6plPN8YIWqlnj8Wz0trvEXNonIeR7rzsR1Z7AJcVYUjD/5Ekhwf2C9JCJDPZZN\nVtX+qtoDiMHVoihX5O5Xfiqu2/vvAHoAt7jv9AToDLykql2Bw8DtnhsWkWbA74GRqtoXSAX+7yQ5\ntwNfAzee4v5tV9U+uO68ng5cjWvsh8c91hkA3IVr3I8OwJVeZNunqn1V9d1K2xsEpFWaF6GqA4B7\ncd3tXi4VOA8T8qwoGL/hHhegHzAR2Au8V/5NGxguIt+LyBpc34C7e7y0vB+rNcA699gKhcAWfuwI\nMVtVl7qfvwUMrrT5c3B9EC8VVzfUNwNtq4j7V+BBTu1vyDPn96p6RFX3AoXl/RcBy9zjfpQC77hz\nVpftvZNsLw7Xv6On8o4C04B2HvNzgdansC8mSFnX2cavuD8MFwIL3QXgZhF5F3gJSFHVbBF5DIj2\neFmh+2eZx/Py6fLf8cr9uVSeFlxjEVzvZc4M9wf0tR6zS/hpkYj+6atOO2d12Y6dZP7xKjKU8tO/\n/2j3+ibEWUvB+A0R6SwiyR6z+uDq3Kv8gy3PfSz96tN4+0T3iWyAcbgO/3j6DhgkIh3dWeqJSKdq\n3vNJ4AGP6W1ANxGp4/7mP+I0cg5w9+YbBlznznk62cA1+lxHL7fbCVdvmybEWVEw/iQWeENE1ovI\nalyHTB5zjxPwKq4PrTm4ukI/Vem4xm3eADQGXvZc6D6Mcwvwjnvb3wJdqnpDVV0HrPCYzsbVU+Va\n988fTiPncmAyrg/0rcAnp5PN7b/AEC+3Oxz4/JTTmqBjvaSaoCeu4TlnuU9ShxQR+QT4japmVLFO\nHWARrhG9SmotnPFL1lIwJrg9jOuEc1USgYetIBiwloIxxhgP1lIwxhhTwYqCMcaYClYUjDHGVLCi\nYIwxpoIVBWOMMRX+H7AincKiXlzgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hanning window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4HGd9+D/fvbVa3Zdt2ZZv546TmBxcIRAgBEJCuQIE\nSCkNtNCmQAuFtlB+EEpbyhmuFCgkHGlSEgghJCEhd5w4dg7ftmTJsu772JV2V1rt+/tjZlazox17\nrcM6/H6eZx/tzrHzzmpmvu/3FqUUGo1Go9FMB898D0Cj0Wg0ixctRDQajUYzbbQQ0Wg0Gs200UJE\no9FoNNNGCxGNRqPRTBstRDQajUYzbbQQ0WjmGRHZLCIvikhURP42z32UiGyY67HNNSLyPhF5cJ7H\nEBORddPc91ER+fBsj2kxoYXISUZEjohI3LxwrdeK+R6XZl75NPCIUqpIKfVt58q5fFCJyBpTIPkc\ny38qIl+ei2PaUUr9Qin1hrk+znHGEFFKNc7nGBYzWojMD1eZF671andu4Lyplzqn2vk6qAP2zvcg\nNJrpoIXIAsE2I/wLETkK/MlcfrGIPC0igyLykoi8xrbPWhF5zDSD/FFEbhaRn5vrXiMirY5jHBGR\ny833HhH5RxE5LCJ9InKHiJQ7xvJBETkqIr0i8k+27/GKyOfMfaMislNEVonId0XkvxzHvEdEPuFy\nzkpEPiYi9UC9uew081z6ReSgiLzLtv2VIrLPPGabiPy9/VzNMfWa5/k+234lInKriPSISLOI/LOI\neMx114vIkyLyNREZEJEmEXmTbd/rRaTRPGaT43s/JCL7zf0eEJG6Y/x/3yoie83/46Micrq5/E/A\nZcDNpla6ybHfTcCrbOtvtq2+XETqze/8rojIdMaWDyJyp4h0isiQiDwuImfa1v3UPP7vzd/pWRFZ\nb1uvROSjucZq/f55busVkf8y/8dNIvJxyaFFmdv+uYj8zva5XkTutH1uEZEttmNuyPNcXi8iB8zf\n4WbA/pt7zGurWUS6zWuuxFz3MxH5lPm+1rr2zc/rzet9cT6PlVL6dRJfwBHg8hzL1wAKuBUoBAqA\nWqAPuBJD4L/e/Fxl7rMN+DoQBF4NRIGfm+teA7S6HRu4EXgGWGnu/0PgV46x/Lc5jnOBJHC6uf4f\ngN3AZoyb6FygArgQaAc85naVwChQ4/JbKOCPQLl5nEKgBfhzwAecB/QCZ5jbdwCvMt+XAefbzjVl\n+y0uBUaAzeb6W4HfAkXmuR0C/sJcdz0wDvwl4AX+yjwHMcczbPue5cCZ5vurgQbgdHOs/ww87XKe\nm8zxvB7wY5ivGoCAuf5R4MPHuGamrDd/u3uBUmA10ANcMY2xWf9rn2P5T4Ev2z5/yPz9gsA3gRcd\n2/aZ/38f8Avg9jzHej3wZJ7bfhTYh3HNlgEP5Rq7ue06YBDjvlkBNGPeD+a6ASavUwVsON65YFzP\nUeAd5v/xExjX3Ydtv1GD+f0R4C7gNtu635nv3wscBv7Xtu638/1smvYzbb4HcKq9MB7kMfMCHwR+\nYy63buZ1tm0/Y12EtmUPAB80b7AUUGhb90vyFyL7gdfZ1i3HeJj6bGNZaVu/HbjWfH8QuNrl/PYD\nrzfffxy47xi/hQJea/v8buAJxzY/BL5gvj8KfAQodmzzmhy/xR3Av2AIhjFMQWSu+wjwqPn+eqDB\nti5sjmsZhhAZBN4OFDiO+QdMQWR+9mAIzLoc5/kvwB2ObduA15ifH2V6QuSVjvP9x2mMzfpfDzpe\nY9iEiGOfUnOfEvPzT4Ef2dZfCRzIc6zXM1WIuG37J+AjtnWX4yJEzPUtwPnAtcAtGNfwaRiTlHsc\nx9xwvHMBPgA8Y1snQCuTQuRh4K9t6zczeU+txxRcwA8wrkFLqP0M+OSJPksWymtxqk+Ln2uUUqXm\n6xrHuhbb+zrgnaZaPygig8ArMR74K4ABpdSIbfvmExhDHXC37Xv3AxNAjW2bTtv7UYzZFcAqjJlU\nLn4GXGe+vw647TjjcJ7vRY7zfR/GAx2Mh/mVQLMYZrxLbPvm+i1WYMwe/WT/Ns0YWp5F5jyVUqPm\n24j5fe/GmAF3mCaO02xj/ZZtnP0YDxX791pYM2HrGGnzvHNteyK4/X9OZGwWlbZrshRjQgJkzEhf\nFcN8OYwxGQHjtz3eWPJdn8+2K8i+Xuzvc/EYxgTj1eb7RzG01EvNzzM6vjIkgH0MWf9n870PQxM/\njKGNbsEwT94LtIvI5jzGs6DRQmThYS+r3IKhiZTaXoVKqa9imHbKRKTQtv1q2/sRjFk1YDwIgCrH\nd7/J8d0hpVRbHmNswZhZ5eLnwNUici6GOeU3x/ku5/k+5hhTRCn1VwBKqeeUUlcD1eb33mHbN9dv\n0Y5hDhvHeLDa1+VzniilHlBKvR5DcB/AMPFZY/2IY6wFSqmnc3xNu/34po1/Vb5jIPs3yocTGVs+\nvBfDRHY5UIKhvYDNH3CS6MAwZVmsOs72lhB5lfn+MfITIsc6fuaYtv+jRdb/mUlrQZdtPO/AMGO2\nmZ8/iGGae3Ea41kQaCGysPk5cJWIvNGcDYbEcCKvVEo1AzuAL4pIQEReCVxl2/cQEBKRN4uIH8Mu\nHrSt/wFwk+VwFZEqEbk6z3H9CPiSiGwUg3NEpAJAKdUKPIehgfxaKRU/gfO9F9gkIu8XEb/5epmI\nnG6e4/tEpEQpNY7hq0g79rd+i1cBbwHuVEpNYAibm0SkyDzfT2L8tsdERGpE5GpTOCUxzJDWMX8A\nfFZMB7MYzvt3unzVHcCbReR15v/iU+b35ftQ78Kws+fLiYwtH4owxtuHMTH5ygy+aybcAdxoOqZL\nMcy9x+IxjKCFAvO6fAK4AsN/98I0jv974EwR+TPTmf+3TGrJAL8CPiFGwEsE43f6X6VUyjaejwOP\nm58fNT8/aV6nixItRBYwSqkWjBng5zAcjC0YTm3r//Ze4CIMc8UXMBzI1r5DwF9jPPDbMDQTe7TW\nt4B7gAdFJIrhZL8oz6F9HeOGfhDjYf5jDMe4xc+Aszm+KSsLpVQUeAOGDbsdw6zw70wKv/cDR0yT\nykcxTF0WnRg253YMZ+hHlVIHzHV/g3H+jcCTGKaan+QxJA+GwGnH+I0vxXC8o5S62xzb7eZ49gBv\nyvUlSqmDGKa972BoRldhhHmP5TEGMP5X7xAj0mpKHkmO4+U9tjy5FcM004bh2H5mBt81E/4b45rb\nhSEE7sOY6ed8ACulDmEI/ifMz8MY18BT03loK6V6gXcCX8UQqBuBp2yb/ATjmn8caAISGNeexWMY\nAtkSIk9iCOXHWcSI6djRLAFE5F8xHITXHW/bOR7HqzFm+nXqJFxgYoQ9/1wptfJ422qWDmKEYv9A\nKVV33I01c4bWRDSzimmuuREjwkXPUDSzhogUiJEr5BORWgzt++75HtepjhYimllDjAS6QQwn9Dfn\neTiapYcAX8QwW76AEVH4+XkdkUabszQajUYzfbQmotFoNJpps+SL3lVWVqo1a9bM9zA0Go1mUbFz\n585epVTV8bZb8kJkzZo17NixY76HodFoNIsKEcmrAoY2Z2k0Go1m2mghotFoNJppo4WIRqPRaKaN\nFiIajUajmTZaiGg0Go1m2iw6ISIiV4jRNrVBRP5xvsej0Wg0pzKLSoiYPTG+i1GR9AzgPSJyxvyO\nSqPRaE5dFlueyIUYrUwbAUTkdoxS6ftm+0BPN/Ty0Z/v5HWn17CqrOD4O2g0Gs0CYHRsggf3dfH+\ni+v4y1efSBua6bHYhEgt2e0oW8nRA0NEbgBuAFi9erVzdV7c9kwzw4kUd78w2XxOTnYfN41GozkB\n7KUQb7pvvxYi00UpdQtwC8DWrVunVWHye+87n9aBOF+9/wC/39XBJy7fxI2Xb5zVcWo0Gs1ssadt\niHf/cBsVkSD/9mdnc8m6ipNy3MUmRNrI7mm8kvz7VJ8QIsKq8jA3v+c8gj4P33joEFvXlPGKDZVz\ncTiNRqOZNiPJFB//5fOUFPi54yOXsKwkdNKOvagc6xi9uzeaPYwDGG1U75nLA4oIN11zNusqC/nH\nu3YxlnK29dZoNJr55dsP19PcP8rX373lpAoQWGRCxGx4/3HgAYyGNHcopfbO9XELAl7+5aozaOmP\nc/tzR+f6cBqNRpM3HUNxfvr0Ed52Xi0XnyQTlp1FJUQAlFL3KaU2KaXWK6VuOlnHfc2mKi5cU853\nH2lgfEJrIxqNZmHww8caSSvFJy7fNC/HX3RCZL4QEW549Tq6hpM8tK9rvoej0Wg0jI6l+PXOVq48\nezmrysPzMgYtRE6Ay06rpra0gNueyavMvkaj0cwp97zYTjSZ4rqL6+ZtDFqInABej/CuravY1thH\n13Bivoej0WhOcX7zYhvrqwrZWlc2b2PQQuQEefM5y1EKHtjbOd9D0Wg0pzA90STbm/p58zkrkHnM\nhNZC5ATZUB1hY3WE+3Z3zPdQNBrNKcyD+zpJK7jy7GXzOg4tRKbBFWctY3tTP0Px8fkeikajOUX5\n0/5u6irCbK4pmtdxaCEyDV6xoZK0gmcb++Z7KBqN5hQkNZHm2aZ+Xrmhcl5NWaCFyLQ4b3UpIb+H\npw9rIaLRaE4+L7UOEUumFkQZJi1EpkHQ5+Vla8p5qqF3voei0WhOQZ42nz3zkaHuRAuRaXLJ+grq\nu2MMjIzN91A0Gs0pxnPNA5y2rIjywsB8D0ULkemyZWUpALvahuZ5JBqN5lRCKcWu1kHONZ9B840W\nItPkrJUlAOxqGZznkWg0mlOJ1oE4g6PjnLOqZL6HAmghMm2KQ37WVxXyUqsWIhqN5uSxq9WwfpxT\nqzWRRc85K0vZrc1ZGo3mJLKrdZCA18PmZfObH2KhhcgM2FRTRNdwUicdajSak8a+jmE2LYsQ8C2M\nx/fCGMUiZWN1BICG7tg8j0Sj0ZwqHO6OsbF6YWghoIXIjNhYYwmR6DyPRKPRnAqMJFO0DyVYX1U4\n30PJsOCEiIj8p4gcEJFdInK3iJTa1n1WRBpE5KCIvHE+xwmwsixM0OehvktrIhqNZu5p6h0BYH1V\nZJ5HMsmCEyLAH4GzlFLnAIeAzwKIyBnAtcCZwBXA90TEO2+jxOgvsr4qQr02Z2k0mpPA4R7jWbO+\nWgsRV5RSDyqlUubHZ4CV5vurgduVUkmlVBPQAFw4H2O0s7aykKP9o/M9DI1GcwpwuDuGR6CuYn5a\n4eZiwQkRBx8C/mC+rwVabOtazWVTEJEbRGSHiOzo6emZ0wHWlhXQNhgnnVZzehyNRqM52j/K8pIC\ngr55NcJkMS9CREQeEpE9OV5X27b5JyAF/OJEv18pdYtSaqtSamtVVdVsDn0KtaUFjKXS9I4k5/Q4\nGo1G0z6UoLa0YL6HkYVvPg6qlLr8WOtF5HrgLcDrlFLWFL8NWGXbbKW5bF5ZWWb8Q1sH4lQXheZ5\nNBqNZinTPhjngnnsp56LBWfOEpErgE8Db1VK2Z0N9wDXikhQRNYCG4Ht8zFGO7WmEGkbiM/zSDQa\nzVImnVZ0DSdYXqI1keNxMxAE/mh27HpGKfVRpdReEbkD2Idh5vqYUmpiHscJkFEt2wa1ENFoNHNH\nbyzJ+IRiRenCsngsOCGilNpwjHU3ATedxOEcl6KQn6Kgj67hxHwPRaPRLGGsieqKBaaJLDhz1mKk\nIhKgL6abU2k0mrnDmqguK1lYmogWIrNARSRIb0xHZ2k0mrmjz+yiWhkJzvNIstFCZBaoKNSaiEaj\nmVusVtylYf88jyQbLURmgYpIkD6dJ6LRaOaQ/pFxCgNeQv6Fk2gIWojMCpWRAP0jY0zorHWNRjNH\nDI6OUVYYmO9hTEELkVmgojBAWsHAqDZpaTSauaF/dIxyLUSWJqVh4x87rDscajSaOWJgZIyysBYi\nS5JI0Ei3iSVTx9lSo9FopofWRJYwkZApRBIpHtzbyblffJBv/PHQPI9Ko9EsZl5qGeRlNz3EP9z5\nEgBDo+MUhxZcfrgWIrOBpYlEkym+/sdDDMXHufmRBlp0nxGNRjNNvnTvPnqiSe7c2cqBzmHi4xMU\nBrUQWZIUmbODlv5RDnRGue7i1UykFb/b1T7PI9NoNIuRtsE4O5oH+OAldQA8erCH8QlFOLCwwntB\nC5FZwdJEnmzoBeDNZ6/grNpiHjs4tw2xNBrN0uSRA90AfODla1hWHGJ7Uz8A4YDWRJYklk/kYGcU\nMFrmbq0rZ3fbkM4d0Wg0J8xLLYOUFwZYV1nImsowBzqGAbQmslQJ+rwEfB46hhJ4PUJVUZBzVpYw\nOjbB4Z7YfA9Po9EsMna1DnHuyhJEhJVlYdqHjOKLYe0TWbpYM4TqoiBej3BWbQkA+9qH53NYGo1m\nkTGWSlPfHc08Q2qKJwsuhhdYyRPQQmTWCHiNn7Km2CjTvLo8jAg09+kILY1Gkz+tA6OklWEWB7IS\nDMNBLUSWLEG/8VNaFTZDfi8rSgpo7huZz2FpNJpFhjXxrKsIA5MVMUA71k8IEfmUiCgRqbQt+6yI\nNIjIQRF543yOz0nQZ8wQIjabZV1FmCNaiGg0mhPAembUVRiaSGnBZOn3Qu1Yzw8RWQW8AThqW3YG\ncC1wJnAF8D0RWTC/qGXOcgqRozrhUKPRnABH+0cJB7xUmCVOimxZ6tZkdSGxIIUI8A3g04A9PvZq\n4HalVFIp1QQ0ABfOx+ByYZmz7EKkuihE38gY4xPp+RqWRqNZZPREk9QUhxARgKz+IT6vzNewXFlw\nQkRErgbalFIvOVbVAi22z63mslzfcYOI7BCRHT09Jyfhz+8xfkp7WYKqoiBKQb/ZkSw1kWZ0TBdp\n1Gg0k0ykFSO24q19sbGMFgKTE1TQQiSDiDwkIntyvK4GPgd8fibfr5S6RSm1VSm1taqqanYGfRzS\nylCa7MlAVUVGaF5PNEl8bILXf+NxLrrpYQ506rBfjUZjTCyv+9GznPvFB3n8kDHh7RtJZvVRD9lM\nWD7Pgpv3z48QUUpdrpQ6y/kCGoG1wEsicgRYCTwvIsuANmCV7WtWmssWBF6PMUPweyd/UrsQueuF\nVpp6R4gmU3zrofp5GaNGo1lYPHKwh22NfaTSipv/1ABAb2yMikhuTcR6ziwkFpRYU0rtVkpVK6XW\nKKXWYJiszldKdQL3ANeKSFBE1gIbge3zONwsrH+uXd2sLDSESG8syVMNvdSWFnD9y9fw8IFu4mMT\n8zJOjUazcPjNi21UFAb4yKXr2NHcTzQxzsDoGBUumohfm7Omj1JqL3AHsA+4H/iYUmrBPIk9phPM\nPlOwoiqiiRTPNw+ydU0Zrz2tmrFUmu1H+udlnBqNZmGglOLZxj4u3VzF+avLSCvYdrgPpaDKponY\nHetaEzlBTI2k1/b5JqXUeqXUZqXUH+ZzbE5MGYLP9k+2CjP2xJJ0DifYUBVhy+pSAHa3Dp70MWo0\nmoVD60Cc3tgY560q5YzlxQA8fbgPgDK7Y91nc6xrn8jSx2v7J/u9Hgr83kwFzpXlBRSH/KyrLGR3\n29B8DVGj0SwAdrUaz4BzV5WyorQAn0c41GVUArdHeXpsE1OtiZwC+Bz/5KKQj/0dxoWxqswoY7Ch\nOkJjj85k12hOZazM9A3VEbweoaY4REO3UfW7cAGWN3FDC5FZxjlTKAr56Bw2yjhbxRnXVBbS3D9K\nWvca0WhOWZr7RqgqCmbqYdUUB+mOJoGF2TfEDS1EZgkru3SqJjJZ96bYfF9XEWYslabDFC6ATkLU\naJY4ifGJrOoVR/tHWV0eznzOLrSohcgpSy5NxMJytK8oLQCgcygOwL/ff4AzPv8AP3js8EkapUaj\nOZkc6oryspse4opvPk7MzE5v6Y9nCxF7ocUF2HzKDdeRisi389h/WCn1z7M4nkWLJTqcQsSaUUSC\nvsy6ajMJsXs4SV8syS2PNwLw7Yfrec+FqymxXUwajWbx882HDhFNpIgmUtz9Qhvvu3A1HUNxVpSG\nMtuUhCfv+6WiiVwN7DzO6+1zPcDFghXiK47giYCZKFQcyi7MCNAdTfJkQy8TacUXrjqD0bEJHj3Y\nfVLGq9FoTg6J8QkeOdDDBy6pY3V5mMcO9jAYHyetyCpvUhyyC5EloIkA31BK/exYO4tI2SyPZ9Hi\nFnhnlYi3+0YqCgN4PUJ3NEFT7wjhgJfrLq7jWw/X82R9L1dvyVlXUqPRLEJ2HBkgPj7BZZurSYxP\n8PD+bvpHDAd6uS0fpCCwsJMK3XDVRJRS3zzezvlsc6qhHAFXVt0bu2/E4xEqCgP0RJM09o6wrqoQ\nv9fDllWlOn9Eo1li7Gk37unzV5exoTpC38gYh80Q/+xCi4vTRe06ahEJicgHReStYvAZEblXRL5l\n7zaoMbCis5xCJNOsKpSt9JWG/QzHUzT2xFhXGQHgjOXFHO6JMZbS/Uc0mqXCwc4oy4pDlIT9rDXv\n9R1m2SO7JmIvb7KYOJbouxWju+CHgEeB1cDNQBT46VwPbLHhpnxaJQsC3uyfujjkZ2B0jPbBOKvK\njWitTTVFjE8ojvZPJiImxidQTsmk0WgWLM579kBnlM3LioDJvulWtvpSFyJnKKXeB7wD2KyU+phS\n6n4zGmvVMfbT2AiYQsTvECIlBX5aB+KkFVSY1X4tYdLSb4T+PlnfyzlffJDrfvwsEzoxUaNZ8Ny+\n/Sinf/5+vnDPXsAostjcZ5isAapM81Vzn9E2294JNeRfYuYsYAxAKZUC2h3rFkz13IWG81EfdLFz\nlhT4aRs0hIXVO8Aqi9IyYFxg33r4EGOpNE819PHIAR21pdEsZBLjE3zlvv0oBbdua6alf5RoMsXo\n2ATLS4yIzJICP36vZKpYFNi0j+AS1ERWisi3ReQ7tvfWZx0+5MAK7XWanixNJO1YbveRlJmZqlVF\nQYI+D60DcQZHx3juyAB/+7qNVEYC3POSU45rNJqFxFMNvQwnUvzrVWcA8NihHrodJY88HsmYsEJ+\nT1ZxxYJFKkSOFeL7D7b3OxzrnJ9PeW549Xoe2t/N+XXZUc+WL8QpROwXjHVRiQiVkSC90SQvthil\n4i9eV05T7wjPNvWhlMo48DUazcJi+5F+Al4P77loNd9/7DA7mwdYU2GYsSwhAka4f9dwckouyLF8\nIpduqspKTFxIuAqR4+WIaLK5cG05R7765inLrWRDp0vDfsHYewdURAL0jYxxoNOo/HtWbQlb62L8\n7qV2OocTLC8pmIPRazSambK7dYjTlhcR9HnZVFPE4Z4YXQ5NBCb9IM6sdGfdPTs/+9CFczDi2eFY\nIb6/E5F73F5zOSgR+RsROSAie0XkP2zLPysiDSJyUETeOJdjmC0sf7rz+rAnFtmdaxWFAfpHxmgd\nGKU07Kc45GdTjRHZcagrltmuqXeEhu7o3A1co9G4MhQfZ3tTf6YSt1KK3W1DnFVbAsDaykKaekZs\nFbwn80GsnDGnEHEG3ywWjmXO+pr598+AZcDPzc/vAbrmakAichlGyZVzlVJJEak2l58BXAucCawA\nHhKRTQupRW4urLa5HocZym7OyjZtBTnYGaV1IM7KMiv014gtr++KcummKhq6Y1z5rSdIK8Vdf/1y\nzllZOtenodFoTFITad71g20c7Iryics3cePlG+kfGSOaSLGhyrhX11QUEk2maOodIeT3ZJmurElj\ngcOc5VuA/dPz4VgZ648ppR4DXqGUerdS6nfm673Aq+ZwTH8FfFUplTTHYYUlXQ3crpRKKqWagAZg\n4ep4JvkIEb/t4rHMWa0DcWrNar8VkSBFQR+tA0Y010+fbmJsIs2EUvzwsca5PgWNRmPjof3dHOyK\n4vUItz1zhIm0ykRa1poTP8t81dQ7QiSYXVDVqtAbdvhA/Auw9W0+5DPqQhFZZ30QkbVA4dwNiU3A\nq0TkWRF5TEReZi6vBVps27XiEiUmIjeIyA4R2dHT0zOHQz0+1nXh9IeHbKqs3VleUuAnmUrTNZTI\nKomwvDREu3mhPlHfy+WnV/OeC1fz2KEeneGu0ZxEHjvUTVHIx3+981x6Y2Psah2kzZzgWRO/KrNS\nd1PvSFbJI5g0YxUGHT6RRaqJ5FMq8hPAoyLSiJGYXQfcMJODishDGCYyJ/9kjqkcuBh4GXCHXYjl\ng1LqFuAWgK1bty6ILD1nQTW3cL5C8wKLJlNZJeGXlRTQMZRgYGSM5r5R3nfRalaVhfnls0fZ2z7E\neat1LUyN5mTwVEMfl6yrYOsa457b2z5MYtywqltCpNLM/eofGcsss7Byx5zRWEtWiCil7heRjcBp\n5qIDlqlpuiilLndbJyJ/BdyljISL7SKSBiqBNrIz5VeayxY0VmSv05zld7lg7M1oim1CZEVJiH3t\nQxzuMZzrG6ojbKw2HO77OoYzQqR1YJR97cO87vSaRVUJVKNZiOxpGyKaSHHJ+goAoolxjvaPcu2F\nq6gtLaAo5GN/xzBBn5dwwEup2RPEfu86NZGgGbHpjMZacuYsETnfem/6IV4yX8lc28wivwEuM79/\nExAAeoF7gGtFJGia1DYC2+fg+LOKVa7Eac5yi8SwR2rZNZGKiBG1ZQmR9VURVpZNXsQAI8kU7/rB\nNm64bSfffrh+Nk9DoznlqO+KcvV3n+I9//0MfzpgxBI1mtV311dFEBHWVRZytH+UvpEklZFgxjRt\nv48jQacQsXLHso+3WDWRY4m+/xGRMhEpd3sBP56DMf0EWCcie4DbgQ8qg73AHcA+4H7gYws9Mgsm\nNRHvFE0k908ftmsith4kpQUB0soo5iZiqM0iwpqKQo6atbYe2t9F+1CCSNDHrduOkEwt+J9Ho1mw\n/OSpI3jEyCz/xTNHAbImcWA40DuHEgyOjme0EDBMVW4VvK32EKl0ti9zKYb4lmB0LzyWeJx1r7VS\nagy4zmXdTcBNs33MucTKVHeas9xmHRGbs82uiVjvG3tGKA8H8JkX3Krygkxi4iMHuqmMBPnyNWfy\n0Z8/z0stQ1y4tnz2TkajOUVQSvH4oR5ee1o1y0sK+OX2o4yl0jT2jOD1SKY3+rKSENsa+ygM+qa0\ntS4K+egbGaPIoYn4TLOVszj3sZINFzLHCvFdo5Rap5Rae4zXgg+xnW9Sps7qNHc6S8NbWPZSyLal\nWjbWxt5h8Fn+AAAgAElEQVRYVvnolWVhoxpwWrG3fZgtq0q4eF0FIvBsY1/Wd48kUzM6F41mqTI6\nlsokDoJRSbttMM4rNlRy3upSxlJpDvfE6BhKUF0UzNTEqykOEU2k6BpOZPlBYPL+DTkz080JpLMU\n0mL1YS5O/WkRkZowVFanquqmiQRsVX/tWe2WqtzSH89U/QVYXhJiLJWmK5rgcE+MM5YXUxoOUFce\nZn/ncGa77z3awJlfeICv/uHAzE9Ko1lCPH90gAu+9BBX3fxkJsrKunfOXVnKGcuLjWUdw/TEkpnw\nXYBq833HUIJShxCxJoTOCaOliTh9Iou1Lp4WInOMpYlMESIukRj27ewXX7aTffIitrSSPW3DpBWs\nqTRSeDZUF1FvlkmJJVN88yHD0f6jJxrpjiamfT4azVLjvx48SHx8gr3tw/x+Vwcw6UBfV1VInVlE\nsaU/Tk80mREckB2F5TRnWZrF1Hs/dxfUxYoWInPMmKmJODUPN9XVHvrrt2kl9ou1zObAs4TIvnZj\n5rTM7FuwsSZCU+8IE2nDtjuWSvOVt51NKq14YO+cVa3RaBYVw4lxth3u469fs57lJSEe3NcJQGNP\njKqiIEUhPwGfh8pIgM5hQ4jYNZFcJmcnTiHizQiRpSFFjitEzP7q14nI583Pq0VE+0JOELuvA6YW\nZLQIuGgi9uREey6J1YtkX4fRbnOZWW6htrSAVFrRF0vyUssgAa+Hd25dybLi0BRfyZ62IQZGxqZx\nVhrN4mEirdjZPEB8bDJq8dnGftIKXrWxiovWlrPbbFvb2DvCusrJwhzLSkK0DyboN0N5LewRlM4E\nYss65cwJc/OJLFby0US+B1yCUXgRjB7r352zES0xPnjJGj5wSR0feXV20r0zWsvCzZxlb50Z9tuq\n/kYsIZKtiVjCpGMowb6OYTYti+D3eji/rpTdbUOZ/W/ffpS3fOdJrrr5SUbHtONds3T5yn37efv3\nn+ZDP30uowXsbh3EI3De6lLOWFFMu1kVoms4wQpbpvmy4gIae2OklUP7CNnDenM/TgO+3KbsXCLk\n8285g/+94eLpnuK8kI8QuUgp9TEgAaCUGsBIANTkQWHQx/+7+qws7eFY2E1Y9osv5LNrIrZeJKYm\n0tIfp8DvzVQLtYRJx1CCxp4RNpnZ7RurizjaP0pifAKlFLc83ogItA7EufeljmmepUazsBkcHeO2\nbc2IwLbGvsyk63DvCKvKw4T83kwFiMbeGL0OB3pVUYAWMx/Lfi/b70VnGZNJTSS3OcvpWAf40CvX\nctG6imme5fyQjxAZFxEvpuAUkSpAV/ybIZ58fCK291ltNAPZF661nT2pyRIi7YNxo5mV2RVtQ3UE\npQzHYetAnMbeEf71qjNZVV7AH/drX4lmafJ4fS9jE2l+9IGtiMDD+43i4E09k2Yr6x6p74qRGE9n\n6l9BtsZRaCvhbp/oOU3WFu6O9VPHnPVt4G6gWkRuAp4EvjKnozoFcPOJ2Ovn+Nyy2h1x55b2UZTD\nV1LfHWUirTIdEa0kqdaBUXY2DwDwsjXlXLKugueOTDbZSaYm+Pgvn+fG21/IhD1qNIuBXz57lHd8\n/2leMltMAzzX1E9R0MdrNlezrrKQ3W1DKKVo6h1hbaWRfW7dI7tMc2+VSxSWXROxCw6nOUuworOy\nb/bJyt6LM6TXyXGFiFLqF8CngX8DOoBrlFJ3zvXAljpuPhE3DcWOszezVfnXrol4PUJxyMe+DiOb\nfbnlKzH/dg0nONQVxecRNtVE2LKqjMHRcdqHDJX9tm3N3Lurg9++2M4vnz16gmen0cwPbYNxvnDP\nHnY0D/C5u3dnlh/sirJpWRFej3DmihL2tQ/TPzJGfHyCVeWG8CgO+QgHvOwxhUhFod2BntuEZRcQ\nbj3SnXkiS0V4WByrAKO9RlY38Cvgl0CXuUwzA2ZyHQUdjjrLvFXoEC6l4QCHu41cEWtWVRkJ4vUI\nncMJmvtHqS0rwOf1sKHamI01mNv/7qV2zl1ZwrkrS7jrhdbpD1ajOYnct6uD8QnFBy+pY2/7MC39\noyilONQVzbSZXldVSPtQnI4hI1/KujdEhOqiIE29Ro6I3YFeZDNn2Qsq2gVCvj6Rpcaxzm4nsMP8\n2wMcAurN9zvnfmhLGzlmSbJj48wxsdRrZ6G30rCfmFnqxLoJvB6hKhKkcyjJ0b7RjHnLLkTiYxPs\nbhvi0k1VvPa0Gva2DzMUH898790vtPL53+7JWqbRnGxu3XaEL9+7Lytk96nDvWysjvD+S+oAePpw\nL72xMQZHxzNtpleUFKAU7G03NA57yG5JgZ9owrhn7GYrux/SLUjGLTrL71vaQsQ1ZEgptRZARP4b\nuFspdZ/5+U3ANSdneEuXmZTJcVYEtnwkzkJvhTn6OoMx8+qNJekYinNWrVHSoSzsJxzw0j5ohASn\nFZxVW0Ik6EMpeLFlMNPf/VN3vERaGRm3X7rmrOmfiEYzTbY39fP53+4FjMnT312+CTCSbl+5sZJ1\nlREK/F4OdsbYvMy4xq0Jk+VA39U6VYjYfR9236Nd+3eWdrdw0zj8zpvd9KcvFaNWPiLyYkuAACil\n/gC8fO6GdGrg5hPJa1+XLonOGZL9JrCr5qVhP4PxcQZGxzMZ7yLCsuKQUYPLNGmdtqyYzcsME4Bl\n5rrnRaMP2GtPq+b/drbqcvOaeeH27UcpKfCzta6Mu19oQylFTzRJdzTJmStK8HiEDdUR6rujdJpm\nK6vvuZX/YeVL2aOw7KVLIi4O9IJAbt+HWxXepeYDcZKPEGkXkX8WkTXm65+A9rke2FJnJkLEac6y\nwgzDjp7N1sXu90rWTKq4wE/bwCgTaZWJ4gKoLg7SPZygdTCOiDFjKy8MUBr2Z/ooPNHQy5ZVpbzn\nwtXExycyEV4AT9T38JHbdmSyfjWamTI6luIff72Lr//xUCYkVinFEw29vHpTFW85ZznNfaN0Dieo\n7zKCSE43Jz5rKws50jeSqRVnCZEKc+LU1DOCSHb4bkmWJmITIjZTlVsHQrd7eonLkLyEyHuAKoww\n37uBaiaz1zXTRGZgJp3aatf4MmcUiKWJRIK+rNlQaYGf3phR5sQuRGqKQ3QOJ2gfjFNTFMLv9SAi\nxs3YO0I6rTjQEeXcVaVcuMaIrXipxRAY8bEJPvG/L/LA3i4+cceLWWW1NZrpcsvjjdz+XAvffrg+\nk9vRMZSgJ5rkwjVlnLOqFDBMU22DRmThyrLJXh/dw0k6hxL4PJIRHkUhPyIQTaYI+73ZOVj+ycq7\n2Tkgk+/d6t65LXcuVeTudrpYySfEt18pdaNS6jzzdaNSqv9kDG4pM6uaiCk8nMutmZTT4W6fbdl7\nk1RGgvTFxmgfjLPCtBuDER7cNZygdSBOfHyCzTVFlIT9LC8JcdAsmf1kg+HAvGbLChq6Y7xgi9HX\naKaDUoo7d7Tyyg2VVBQGuNs0pdabptWNNUWcbvo7DnVGaR9MIAI1JYaPo7ooSDKV5kjfCGWFgYyw\n8Hok4z8MO0zAVoSVU6u3m7OceR8WrkLETUNxOe/FRj4FGB8RkT85X3M1IBHZIiLPiMiLIrLDXuxR\nRD4rIg0iclBE3jhXYzgZzOQCcjrWrZvDaZMtyDjcs6uL2n0lZYXZ9uDRsQk6hxNZzsbqImNG19Rn\nlcc2olw21RRxyCw3/1RDLwV+L5+78nRE4Mn63sz+Tzf0svXLD/H/frdveiesWfI8WW9cI1/47Z7M\nsiN9o7QNxrnirGW8elMVzzUZc1fLP7exOkJBwEtlJEDbYJy2wVGqIsHMA98K3T3cPZLlEwQj/B2m\nJu5aEVZOrd4eeeUmFBZrU6mZko9R5e+BfzBf/wK8iBH6O1f8B/BFpdQW4PPmZ0TkDOBa4EzgCuB7\nZjmWRcnMHOvZny2h4nWsCJuzKmcZens8u/3msjSU1v54lrZSXRwkmkxxxIyftxIXV5eHMyaE/R3D\nnLa8iOriEBurI+xqNTQRpRT/+ru99MaS/OSpJg7YGmVpNGBcI1/+/T56Y0l+tq05c41Y19DWNWWc\nu7KE7qgRUdjQHaMs7M/01aktLaBt0Oz1UZw9+QGjL7o9zwMmnebOxF3r3nAKBLeSJnackzuLpWK2\nciMfc9ZO2+sppdQngdfM4ZgUUGy+L2HSiX81cLtSKqmUagIagEVbkn4mF5bzArdkh1MTsZyBzhI9\n9hvHXr7aEhxjE+msUMeaouyQSGuGt7w0xFB8nJFkioNdUU4zHZqblxVz0HRyHu6Jcagrxidfvwmf\nR/jdS9kxGTubBzJOe83SJ5ZM8fD+rqxSOvXdMQ50RvnU6zfh9Qj3mY2hDnfH8IjhILfCdA93j9A5\nFM+qsLuyLEzbQJzB+HiWj6+s0LiGU2mVlXEO9gRdh9nKvB8mHD69oEsOiB23ahNTfCJLzF2Yjzmr\n3PaqNM1IJXM4pr8D/lNEWoCvAZ81l9cCLbbtWs1lucZ8g2kK29HT0zOHQ50+M/KJTNl30tZrx3K4\nK0fR6YKAvcT8VCEC2RErlt/kUFeU0rA/s0+teSMf7IoyODrOWrOQ3eaaCK0DcUaSKZ5vNmaTbz5n\nOWevLGF706Q77aF9Xbz9+09z5bee4GjfaJ5nr1msKKX46G07+Yuf7eDv73wps/zpBsP0ec15tZy2\nrCjjT6vvjlFXUUjQ582UJmkdGKXb0V2wqihITyzJUHw8a/JjD9F15nZY5ilnuK7lQHcKEad5Kxfu\nPpHc2y+V0N98zFn2zPVtwKeAv5jJQUXkIRHZk+N1NfBXwCeUUquATwA/PtHvV0rdopTaqpTaWlVV\nNZOhzhkzMZ86ZzzWteg0W2WEiGPmY9c+st7bbqjiAt+U9w3dsayb1+pZ8uJR46a3QihXmUldHUNx\ndrUNUhTysbaikPNXl7GrdSjTd/5HTzYS9HlIptL8YntzPqeuWcTs6xjmyYZeQn4P9+3uyORv7OsY\npjISYFV5mHNWlvJSyyBKKQ73xFhfZUxMlhWH8HqE1oG4KUQmAz/KwgGiiRS90WRWn3O7L9DpE8nk\nVrmYs8YnsguV5zPpc8sTWTou9NzkI0ROV0qtU0qtVUptVEq9AXhuJgdVSl2ulDorx+u3wAeBu8xN\n72TSZNUGrLJ9zUpz2aJkJrMQpyYijr8W1uzJGW1bYI9/t4Uu2gWKXROx3sfHJ7KWWw2xLBu2JVSs\naqjtgwmO9I6yriqCxyNsrikimUrTNhhndCzF9qZ+Pvyqtbx6UxV/3DdZhl4pxRd+u4e/vHUHQ6O6\ntMpi5OY/1fO+Hz1DsxmMAUb5dRH4n+svJK2MiD4w2hKsN4M11lcVMpxIMTg6TsdQIqPt+rwelpeE\naO4fpS+W7fuwzFbDiVSWNm0vlBhxBJe4RWGFzPthfCL7psnHaZ5vnsgpZ84Cns6xbNtsD8RGO3Cp\n+f61GPW6AO4BrhWRoIisBTYC2+dwHHOKdU1eUFd2wvs6L2jrInVem35f7r4FdmFh12rspi27WcCt\nDLYV4XKg0/B/WBWCLcd751CCloFRVpUZD4I1prmrqXeEXa1DpBVsrSvnorXlNPaMZATGH/Z08rNt\nzfxxXxfffbTB9XfQLEz2tA3xtQcP8VRDH1+5b39m+a7WQdZXRbhobTlFIR/PHzUSVQ/3xFhv1m6z\ntNiGnhjRRIrq4kmNozISpLHH6C5YYYsqtPtBSsOT16rP68lMkpxh7hkh4uITSaWdmsjxzzvfPBHL\np2hVg1jsuNbOEpFlGD6HAhE5j8nfohgIz+GY/hL4loj4MLop3gCglNorIncA+4AU8DGl1KKtuSEi\n3Ps3r2R1xYn/lFPMWea/xpngF/AaN4Rz5uNs12mR1cfdpWSKfXZnmQ7qu7IrBVtmrdbBOO2Dca48\nezkAayqNcz3SO5LRxM6sLc6Y3Xa3DfHKjZXc82I71UVBtqwq5a7n2/jsm07LbD8wMsb+jmEuXleR\nV9l8zdxS3xVlQilOW1acWXb3C20EfB7etqWWu19sI5ZMEQn62NU6xCs3VOLxCGcsL+ZQZ5SBkTEG\nRsczjaFWmYmCViWEKluoeXlhgB1HDJ9axF5V16VdLRgmpiRThYV1rTvrXVl1rpz3TD6WA7fL0bnv\nuatKufOjl3CemSi52DlWz9Y3AtdjmI2+blseBT43VwNSSj0JXOCy7ibgprk69snmrNrpxSdMyRMx\nPzrNVtbMyHn9u9luQzaHu2trXpspzOf1UBT0EU2m8Igt29fnoTjk43BPjPEJldFMKguD+L1C53CS\nsVSacMBLVSTIRLUx8Ka+EV6xoYJnm/q4/PQaXramnAf3ddHQHWNjTRGpiTTv+uE26rtj/N3lGzNF\n9zTzw8HOKG/5zhNMpBV3fvTlGa36yfpeLlpbzlvOXc7/7mjhxaODnLGimO5okjNWGMKmriLMIwd7\nMuXYLbOVleS6O0djqLJwgGGzwq7dUR528evZcQoLy7HuvJdmkutxIibql61ZOt00XM1ZSqmfKaUu\nA65XSl1me71VKXWX236auceZJ2JdvE5zlnU/OG21bpqI3Zxl38bjkcxnZ5HHTBl6Z2mVcCCTV2KZ\nvTweoaLQqCB8tN8oQy8i1BSFCPk9NPeO0DGUYGB0nLNqS9i6xngoWWaPPx3opr47RsDr4cdPNOni\nj/PMj55oJK2M6+/WbUcAoyNmQ0+MLatKOWuFMUna2z5E64ARfWdV0l1dHqYnmqTFXF5pCovikB+v\nRzhkmkjtSa92U1WWELFNbKb29DCuyYA39z3g1GZ9mYjG2WOp68vHakp1nfl2jYh80vk6SePT5MAt\nqcnp+7BmVU6h46aJ2M1ZU2ZuGSHiaM0bnKzPZacs7M8IkTLbzW+VoW8bjGdmnx6PUFdeyJG+0Ux+\nyenLi6mrKCTg83C4x/ieRw/1EAn6+Na1W4gmU+w8kl388e3ff5r793TkPDfN9OkcSvD+Hz/LV/9w\nIHONpdOKRw5285ZzlvP282v50/5u0mlFY88IE2nFxpoiygoDLCsOcbArSuuAkZRaa/rHLN/Hi2Y4\nryUsPB6hvDBAc78hXLJNqbnNqnbnuFt3wal9zo3PzlvJKmmyVPqfnwyO5VgvNP9GgKIcL8084eZY\nd2JpIE6h49r3wJvbnGUcw/iOKZqIW32ucIARs1lQaYG9PleA3liS/pFkJroLjKz4nliSdjMDflV5\nAV6PsK6yMFPm4sWjg5xfV8arNlUhAs+aOSepiTSf+b9d7Gwe4DO/3s2I2YhLMzv85wMHeaK+lx88\ndphnGo3f/EjfCL2xMV6+voIL6sqMigZ9IxwyJwGbzS6Cq8oLaB+M02YKkZWlhvCwfB0HOozIPns5\n9orCAGMpw7GdJTgC9mgruyZiEyLO69b8O1WI5I5Gse4tLULy51jmrB+af7+Y63Xyhqhx4uZYd06e\nPBmfSH5CxI4zucpKvnLG1Wcyfx3CpSgrimtSE6mMBOmJJhkYzc4uNoo/GkLE65FMHsCaikKa+4zZ\n7eGeGJtrIkSCRt7JQdPk8fzRQdqHEnzgkjqG4uM8crA7ayz1XVGiCR0qfDyUUuxpG8rKJk+MT3Dv\nrnb+7PxaCgNe7jErDtTbes5Yvr297cM0m0mjVhDF8pIC2gcT9MSSBH2eTM6RVbLkUFeMoM+TJRTc\nAjnCLt0Fw353c5aFs7ugLxP+nn3TuOVWadzJJ2O9SkQ+JyK3iMhPrNfJGJwmN1PyRDKTquwrf9In\nkr2/MykxF05NxBIiziiXwkBuc5bdwWkXIiUFfrpMx7q9+GNFYcCsIJzIJJaBWc47mqSlf5RkKs3G\naqu0SlEmP+Wphl48Ap98/SaKQj6eapgs/njnjhZe/43Hufq7T2U9HDVT+dqDB3nLd57kQz99LmPO\neb55gGQqzZvPXs5F6yoy0VGWdri+OpKpVHC0f5Su4QQVhYFMrakVpQV0DMXpi41RFg5kJjSWFto2\nGDdLs09ek5aPQyTbxGr3fdg1X/u1NkWImF/r9IlYcyRnMIp7wqDGjXzyRH6LUebkIeD3tpdmnphS\nO8stOitTmNHhPMzjRnFT/53CJWxzrGctdzE92G9+u6+ksihIfHyCpt4RauxF9IqDRBOpTH2tlWb5\ni7qKQtoG40aPk85h1lQUUhoOsGVVaSayRynF9x49DBgJbQ/s7TzueZ+qRBPj/OTJIwA8fbiPve2G\ngLb+nr+6jHNWltDQEyOWTFHfFaW2tIBI0Ec44KMs7KdtME7XcDIrt2NZcZDxCcWRvpEpkwkLp5/N\nul4KA9nBGvbt7BqxvTS7a59zx/VsmXqdmojPpeGUxp18frGwUuozSqk7lFK/tl5zPjKNK85oK+uz\nW2y705wlecSLOIWFZQ5wHtsK/3Was6zZYcDnyTp+JEeyIti6zfWOZFcQLsoO+bQ+15aGGJ9Q9MaS\nHOqKZRK3NtcUUd8VYyKtaOwdoal3hC9dcxbLikNZQkQpxV3Pt/LgKShYjvSOcMvjhxkYGcsse/pw\nH/HxCX74/gsQgYf2GxUEGrpjVBQGKCsMcNqyIpQy9m8bjLOybLIIYm1ZAW0DcbqjiaxJgKVtHunN\nFiJ+WyKgs5JuOGMidQRx2LazT4zs19eU6Czzr5uPz3nP5KOla7LJR4jcKyJXzvlINHnj1Cwsm/Tm\nZZGs5ZZ5y6l45NNV0dl4x+Oi1Vg35xQNxbRTO49tFyIlObLinUX0rFpde0whYj2grNIqrYNxWvpH\nMyaVTWZplZb+0UxNr4vWlnPRunJ2Ng9kzDS/393BJ+94iRtu28lzR06dHmtjqTTX/892vnLfAT7z\n612Z5c829hPye7hsczWbqosyUVMNtmxyq2Ngpn6VTeNYUVJA51CC7uFkVoKg9T/uGxnL8oGBXeNw\nmEhtmoidoEtoup18gkZg8rp0RmEdT0u3C06NQT5C5EYMQRIXkWERiYqIbgoxjziv86vOXcHDn7qU\n155Wk7Xc8mM4VfR8isk5+0hbu0zJOTGFjd8xKGs26axBZDdnuZm87FnH1oOnvjtGOODNbLfcTErb\n2z5MKq0yJVesm7x9KM7e9mFCfg/rqyJsWVVK13CSnmgSgF88c5Sa4iDFIR+3bTt1ij8+Ud/Dkb5R\nNlZHeGh/F13DRrLfoa4om2uKCPg8nL2yJGPGauyJZepaWb9t68Ao3cPZlXTLCwP0j44xnBjPmhy4\nlSSByWvBmSBoaSDOulZu+U123JIF3c1Z2dv5jhF08uznXscfbnzVccdwqpFPP5EipZRHKVWglCo2\nPxcfbz/N7PNms3xIrsxY60a3kzLvkCkhwXkcy62kiJsm4myIZT0YnCW17YIjq8yKXYjkqCDc3DdK\neeGkY9bKK9hnPuwsM9cyW90uK6HR6xE2mLPpxt4REuMT7Gju55ottbzhzGU8Ud+TVTLm+aMD3Lur\nfdHnCuxpG+Ku51uz/gePHOwmEvTxH+84h7SCZxr7AENYWB0r11QYiYCDo0ZJklpTYJcU+CkMeDnY\nGSU+PpElRErDAfpiSUbHJrImCm7tBWBS05hSSdc0kTobQeUTVTg1/N1KNsy975RqDscwZ9UUh6Y0\ntwIyWvCpyrHKngAgIufnWDwENCuldED+SeSb127hy9eclff2aRchMp1eJtYeznvREiLOm8/N9GDV\n84Js+7WbJmJ/H8kRNpypIFySXUG4YyhB68BophbTmgrjRj/SO4Lf62F8QnHe6jKiiXH+b2crh3uM\n0ipHekd49w+3MT6hGH5bivdetDrneSx0eqJJ3vmDbcTHJ+gYSvCxyzYAsLttmLNqizm7toQCv5cX\njg5y+ek1tA8lJutXmYmAVl8Pq/SIiFBZFMzkgmSXJPFnZvWuORz+3A50N43DKcTzMWc5zVGW49x5\nfbpNEKYTnfWHG1/FmKN0/KlEPuas7wHPAP9tvp7BKNF+UETeMIdj0zjwez1ZYbHHw1UTmYHvcKo5\ny3gAOL/SzfSQVZPLTYjYe0K4ZCwHfV4KA14aHMUfCwJeSsN+OocStA7EMw/EFaUFBLwejvSNctgM\nTz19eVGmlpPVK/6OHS1MpBXVRUF+9vQRl19h4XPHjhYSqQmWFYe4/bmjKKUYn0izv2OYs2tL8Hk9\nbKqJcLgnlsntWGv27rB8Hy9YRRAd9auOZrLJJ/9PdlOV/X8Wsmuezn7mAZdKum6NofIQIlMmSCr3\ncuubndftdKKzQn7vFC3rVCKfX6wdOE8pdYFS6gJgC9AIvB6z/7lmYTLpE5kFTcTcxXmTZTSTKeUj\n3ByckxvaHyr22ahdWPi8Hlu0TrbiXBoOEE1OLchXHg7QMZQglkxlHoBej1AZCdATNep2eT3CitIC\n1ldFEJnMe3jsUA8Xri3nhlev42BXlI6heM7zWOg8erCbs2tL+JvXbaClP05T7wjNfaOMpdKcvtwQ\nnKvKwxztH6U7avhFrH4wVvDCPjObvCoy6UAvLwwwYJbst0dP2XvU2Ht3uDVAg0lh4TRnBUwz1oRL\nIuCxcNMk8r3kdZ7IiZOPENmklNprfVBK7QNOU0o1zt2wNLOBNTuyZuMWM9JEXIo/OsOG3W747OrA\ntjIrtu2dZgtLY4k4zB72Ga/T1HWkbyTz3qLSrNvV3D9KbWkBfq+HkN9LbWkBTb0xkqkJDnVF2bKq\njAvXGlVWn7PV5/qfp5p41w+3ZTLlFwJjqTSfvONFPnrbzky5l/GJNC+2DHLxugq2mOXG97QPTymC\nWFdh9Ca3nOuWwK0oNP5aWen28jRuRRCzSpLY/i/268CZw2H9z51mLusaSU2nMVSePT2Ot3/dNFo0\nnKoc1ycC7BWR7wO3m5/fDewTkSCga0ksYF6xoYLvve98Lj89O2prdvu758bN9GAXEPZImGPV7Qq5\n5BNYmkyB35v1gCkNB9jVaoQEO0urdA4lGB1LZUqOg9FEq3M4weHuEcYnFGeuKOb05cX4PMKBjmHe\neu4KmvtG+PLv9zORVnzhnj3cfsMlef0Oc83/7WzlrueNBp9nP13Cxy7bQHPfKOMTis01RWyqKcLv\nFdKjlzIAACAASURBVPa1D2f6lFtFEGtLw6TSKhOcYAUrFAS8FPi9GTNXxEVY2zXDApdIOztOYWFp\npc7Z/2QRxOz9Z3LdunUXzBWk8osPX8TGmqmBKprc5KOJXA80AH9nvhrNZePAZXM1MM3MERGuPHv5\nlIfyTDR21+5tLtVQndgd627f64ykmdREchd/nGLmKvBn/EHZdbus4o9jlNt8SzXFIbqGk5mZel1F\nGL/Xw+qKMI1mBeEH9nYykVa896LVPNPYT9vgwjBz/e6ldjbXFHH+6lLu32MkTjZ0G5rSxpoIfq+H\nFaUFtA6M0jYQx2erSzbZ3jhKgd+b9Tvafx+7uckuyIuCuZfnK0SsScSUcuweqxz7iWsi7uS/7ys2\nVGb1cNccm3xCfONKqf9SSr3NfH1NKTWqlEorpWInY5Ca2WUm/d2dN7wV5ZKvg9Jq2XssnELPalk6\nNYPZ+FzkqCAczuq+mK2J9Jud9OwaSk1xiM6hREYwWCXq11dFMuVWnmnsZ0N1hPdfXAfAtsN9xz2P\nuWZ0LMWO5n5es7mKSzdVs7ttiGhiPNNp0gr7ri01Kun2RJNURoKZh7FVObe+O5ZlsoLJ3zrk92Q9\nvAvdiiDalrtFUTl9Im79bnwumki+WrCdjAM9t79dMwvkU4Bxo4j8n4jsE5FG6zWTg4rIO0Vkr4ik\nRWSrY91nRaRBRA6KyBttyy8Qkd3mum/LTJ6EmhPG8nm43cjOxdYDwrncLV7fjtOfYn2F05yVyWw+\nRnmMskJ71JChofQ7sqdrio26XQc7o4T8nswsvLa0INN572BnlDOWF7O5poiikI8Xjk76SoBM6fK5\nJDWRzgpN3dM2zPiE4qJ15VlRZu1DcSojgczvs6LUqKQ7MDqepZlZvo/+kbGpWp5L1njYRXDYBYRb\nroVbwt+UAqEu5dhnUtbK7WGhnyIzJ59/y/8A38foa34ZcCvw8xkedw/wZ8Dj9oUicgZwLXAmcAXw\nPRGxrs7vY/Rf32i+rpjhGDTTwGlScMvHszQWp707nzBNN0HjnMmG3SoI51H51f4wtQTKgc4oNcWh\njKZWUxwilkzRHTW0lM3LivB4hE1mfS6Lrz94kNM/fz+3PTN3me9Heke4+N8e5g3feJyY6UC3tKSN\n1UWcZtYOO9gZNbPJs30+XdEEA6PZwrPIpXoA2EqSTDEhTm5nn8fZfSJuWqhbqPmUAqGZcuyzZ86a\nEuK7yBNJFxL5CJECpdTDgCilmpVS/wq8eSYHVUrtV0odzLHqauB2pVRSKdWE4Yu5UESWA8VKqWeU\n8d+/FbhmJmPQnBhuN/xkvH3uMGLnzZtXLxNn8Udv7rpdlo19ymzZ9kCzC6QiF5u/lVXdOjBKaY66\nXS+YNbisiJ1NNREOmX6HvliS7z56mIm04j/uPzBn5ea/+0gDvbEx6rtj3P18KwCHu41eHLWlBawo\nNZp4tQ2OmnWtsnM7lDJKtWdFV7nk4MDkb+oULvn0MHd72E+p4eZSINRVE5lFx3pm+ZJvXjv35CNE\nkiLiAepF5OMi8jaMbodzQS3QYvvcai6rNd87l+dERG4QkR0isqOnp2dOBnqq4qaJOG9Sy+zl1ETy\nyTp2aiLWzNSt5ErQETpqN7nYHfzZjY+mliXvjY1lF380H8S7W63ij8bsvq6ikMHRcWLJFA8f6GYi\nrfjsm04jmkjxZP1kL5PZIp1WPLC3k3dcsJL1VYU8uM+osHvYLFXi8Qhej1AVCdI1nKRrOOEoSWKc\nU080mSVEgj5v5rd2Cgu3tsfOUiQWgaxIOzeTp3OiYfx1bp75P89mdJaLsNDmrJmTbwHGMPC3wAXA\n+4EPHm8nEXlIRPbkeF09syEfH6XULUqprUqprVVVVXN9uFMC617L90bOFGx0qWV0LJyaiFtfFOvB\n5RxT2GbOsu+T1cjItk2xS30nK29iT7shRKxkvOWZ+lxxdrUOUhT08cGXryHg9bB9DioCH+iMMpxI\n8YoNFVy4tpxdrUMopWgbjLPKVlW2piRE13CCvpGxTLguZIc5lxTkdqBP8TdZmsgUIXL8JNJ8NRG3\na8lNCM3EnOUW4quZOcfNE1FKPWe+jQF/nu8XK6Uun8Z42oBVts8rzWVt5nvncs1JZqo5K3d0ltfF\nJ5IPrg8RZ8mVTI2l7O3CbnZ7e/Z0YPJhmCVEbMUfLQ2l3lFaxRImHUMJ9rYPc/qKYkJ+L2fVFk9x\nuM8GO5sNwbS1rpxYcoJfbW+hzYy2spIiAWqKguzvHGYirbI1rXDu8wNDsA6MjruWHnGWaXfzadmv\nCzefiFsfnCnN1DIhvs79c37ttHCGD2umj6sQEZF7jrWjUuqtsz8c7gF+KSJfB1ZgONC3K6UmzDL0\nFwPPAh8AvjMHx9e4YD2MnQ9yS0iMO54Ebv1H8mHKg8pFq7E0EWd3OrcHnT8rKz53ZFGu4o9tg3GK\ngr6MDyZT5HEwwdG+Ud5wppHMuXlZMffv6Tj2yU2Dwz0jFAa8rCwrYIMZttvQHWNgdDyrJEllUZCW\nfUaYslvJ/bAjOMEt18YyETpLo7v5tOzC2i06yylErI9TuwtaIb7Ksf3s+0Q0M+dYmsglGP6JX2E8\nuGft32D6Vb4DVAG/F5EXlVJvVErtFZE7gH0Y0WAfU0pZnsq/Bn4KFAB/MF+ak4xzkmmZQeJj2Q5l\n61kzHTu2W+l65/PL0lichfryKbmS3Zc7t1YSDhiZ8BNplfWQtXIqOk3TkSVU1lcVMjA6PiWZcaY0\n9Y5QV1GIiGRMaVa/D3txRHu0VVYioN9WENGlxIgz8u1EC2vamXH9qjnoLugmgLRsmTnHEiLLMIos\nvgd4L0Zf9V/Z62hNF6XU3cDdLutuAm7KsXwHkH8ddM2c4LwZz1lpdFU8c0Vxzu2mo4m4CR7ncm+e\nXews7PZ8+0MzZNNK7I5kEaHYNPfYc1HCAS8+j2RKoltl6NeZVXCbemOUF5ZztG+Uhw908fYLVp5Q\nldff7+ogHPRy2eZqAJr7RjhzRUnWsXa1GhFjlbYkQbey+aFAbuEJk1qAM9fG0kSmCujj/z/dHtj5\nTijcorMsXr6+Iq/vyRqT23ItRWaMqxAxNYD7gfvNOlnvAR4VkS8qpW4+WQPULGy2rinniU9fNqVt\nqJszfCY4be3Ww2ZKQqNLVrxduNiFiN1M5nQcFwYNITJFuBT4M4UYV5iaiKWRdA0nUUrxkZ/vZH/H\nMC+1DPLNa8/L6xwfOdDNx375PAD3/s0rOW1ZES0Dca40G5KF/F7Kwv5M6frspk+5c2LsTnNndJVl\nMZqioZi/VSqdnUQ5o1wNh2x3q1+V8YnkkCLbP/e6LG0xX5zXiKVZ5moypTkxjulYN4XHmzEEyBrg\n27hoEJrFxfffd/6sFZlzVgmGyVnkdB46brNDp4JhCappVRD2u4SqulQQdvoMSgr8NPUadbUs05UV\nAtxpOtz3dwxTGPBy764OPn/VmXmZuH61/SjhgJf4+AS/eaGNGy5dx0RaZcxYYJiwDps1vbI7QubW\nRLIDClzqV81h6RELN01kSlCGWJrIVCli7+t+IjivkXdvXUV8bIL3X1I3re/TTOJq4BSRW4FtwPnA\nF5VSL1NKfUkppaOilgBvOns5G6qLTni/fDN9J1waYuWD84Z36+/ucdFE8ull4maWce5r+UucQqQ4\n5MsUebR8EWVhPwGvh65ogp1mQ6d/f8c5pNIqr1pbifEJHq/v4R0XrORldeW80DJIb3QMICtktzjk\nz/y+2V0EcxdBtP8PQr7c2tyUrHG3CKkZZY1nf87UXZuShGitn/ahpjC1Da6HD79qnWveiyZ/juUl\nuw4jOupG4GkzOmpYRKIiMnxyhqdZKHz6is1A9sPsWGSEyDRmrlMym3F70OUWIm6OXbuW4TYrnlL8\n0Zc76S5X90URobo4SNdQgt1tQ1RGgrzx/7d37nF2VFW+//76ke7O+9UkIQkGBHlFeTWaCChi9AOC\n8hDEOwqCMzD4Qq+XC/pxrjI6MyqOL9RhRMYJoDPqiKBXGCMgDF4RJeGRhxkkCMwEoiQBEpJAku6s\n+0ft6q5T59Tp6tPn2Vnfz6c/XbVr135Ude9Ve+211zp8NuPHtfPbx4cXIv/5xxd4afceFh8wg0Pn\nTOI/N2xl47adAMxICpFE3YXRHttKpidJz0SGnCAW5st6hqOZiYzUumokQuS0V83huAOz10oasfRR\nTVVuM1NuTWQU7s6c0fDVdx45qt25teD0I+dy+pGZTgKKGNVMJGthNh2hMRYiRTOXDAGRmGVkfVEX\nq7PimUjh4DslYyCPI//t7B9gQXApf8jsSazNEchqbYgkePi+U3h2xy627xpg9VPRRsekl90pGWqr\nZNvzhCeGbNcj7YNmtpRMr4S8IWor4et/dnT5DA34d7r6nUex9N4neOXcKfWvvI7kCUrl1JmRDNbN\nyv4zJzBnSjefOPXQEd+b9f+e/jrOypcd82T4kaQolklHef9c3Z1tBSqwKT2dbHlxN5u37+To/aYB\ncMicydy6cgNmVrYNv3t6KxO7Opg3rWfQHX3scmXmhKQ6K2pLmwrNk5MCIu9MYsj1SOk1kbRCq5rq\nrCxmTe5m/vQePnXa4RXXVVx3/aXI/Onj+T+nHVb3euuNCxGnJvSMa+fXH39jRfdm6cizvmTT0mQ0\nWoTiWCbBP1emmqvQumdKTydPbt7BhudfYt4RkSA4sHciW17czXM7dpddXH9803Zevk/kC2vfIERi\nM+LkHpDuRMz5pFAqjBqZT5DGAjdtOZU5E6niwnqWdda4jjZ+eflJFddTiuaa148tXGXlNB1ZX+vp\nAS1emM1yp1EJ6ZnIuEHnj2khEp2nA2JNHd/Jfz27g/49Rm9Yx4jNn+PIiVk8/fyLzAvCI773yWd3\n0NPZnjJDjv1dlXZVAuVcj6TPVfB72PtHE9OjgSO5hx+qHS5EnKZnuP//9OXRqFzS1llDHoQL83Vl\nrJUk9x3EC+DzpkUm0Oufyw6pGztUjGO/x/dGu+UL64hVWOmBPmlplO0EsfT6UdFGzowNf1WdiVDa\nOqsWuAipHS5EnJYhvW8gyw19NdVZg2sGGQN22kQ06ZsqFihzc8xEnt2+i539ewbVWO1tGlz7SHvY\njetMm1vncUmSFi5ZIWqznmE1F9ZjajnAZ5kRO9XDhYjTsgw58CtMH83XclqdNWReXJgvVh2lnQcm\nTWhjVdfk7g66OtrYtG1XZr1PPx+F4Y2FCMDU4MI9S23Vn+p4nlgtxQK3dP9i0oKquvtEKi5qxHjw\nqdrhQsRperIGgFjl8/yOwsF5NPrv9va0uif6nf6KjgfstG+pUkJEEjMndrEp7PkoxZ+2RkJkVmJH\nduy2vcjDboYAyzMTyQoTm35mgxv+Mu6vaEaSdYvrs1oat85yWob0l+viA2ZwwkEzi8yIR6POymte\n3BXUVv0DhY1KzhqSDhFnTBzH5jIzkeeCIJyWiP0RuytJz0RiVyzpmUie0MNZFm5FayWUts4a39nO\nKQtnc96ikbsLqeU+keFwdVbtcCHiND1ZA0B3Zzs3/vlritJrobdPl5k5E+ksnokAzJgwbnD3eSme\n37EbgGkJE+CsGPKD6qyUAMujxstSKRXJn4yi2trENe8+Zth6StedZeJbUXEjwmVI7XB1ltMy5FWh\nVzN4UVaY3/irf6BoTaS0/6oZE7uGnYl0tKkgDsigKW+Rm/bofPdAoYfdPN3OjquRYVY9fJG5KZbt\n9VsUcRPf2uFCxGl64gE77zAwqljcOfMN+u1KpXcXbPhLBLvq7uSFl/ozy3tux26mju8sDOcb1Fjp\ngFGdGT7D8gyURTORwXtTZcXXq7j6PVIB5rQGDREiks6RtEbSHkl9ifQ3SVohaVX4fVLi2jEhfZ2k\nq+WfFnsNnz3rlbz3uP057sCZufJnORXMQ94/qywPwlmL2xO72tm2s589aVOywPM7dg1aY8XEAim9\nHpPlMywPaQGbvbA+8rK/9I4j+OZ52aquRlpnObWjUWsiq4GzgG+m0jcBbzWzpyUtBJYBsSOpa4CL\niEL13gacjIfI3SuYNbmbT741vw+iWPeeteu6HMVjZ3n3H2k9f9bidhwkasfugSKPwAAvvNRfEFQK\nhtZE0qq09gwBloe8wmFoJpK/7LOOnlf2evpZxU4lYys0pzVpyNszs7VQ/AdtZg8mTtcAPSEw1nRg\nspndF+67ATgDFyItyb9etKjAK221iQervgXTRnxveojNMnXNUpllzURiM93tO/tLCpEXdw8UbSqM\n1VlFM5HBYFwjJ2t2lk6OXf4fMnvkMWey6y6s5dI3HsR+08dzaojaWEuqqZZzCmnmT4C3Aw+Y2U5J\nc4H1iWvrGZqhOC3G4gpiZI+EcR1t/PRDx7Ng5oQR35vX79aQOivnTCQIjkf++ALX3P0Y7zvx5cya\n3M1X73iUQ+ZM4sVdA0xLqbNiK6ysmUglPsKyLKTSHLbvZH54yWKOmD91xHVkkW5uV0c75x67X9XK\nL0VXZzvbdw3UtI69nZoJEUl3ALNLXPqEmf14mHsPBz4PvLnCui8GLgbYb7/a/pGONZZeeCzPbs+2\nImoVFlYYwyFrgTlNe8ZsIMsFeyxEvnrno6x48jkmdnXwtiP35ct3/B6IXOcXha5tiw0KUkIkbmQF\nU5FM1yMlkvsWTB95BRXUXUt+8JeLuG3VHz2Weg2pmRAxsyWV3CdpHlEc9/PN7LGQ/BSQVLjOC2lZ\ndV8LXAvQ19fn89gRcOLB+zS6CQ0lc7G6yP1H4e+Y4dRZcdjcFU8+x/6JmdLjm7bz6tSgPRjnPKVM\nG5X1WZF1VlhYr4OFVCMC/R24zyQufWP1VHJOMU1l4itpKnAr8DEz+1WcbmYbgK2SFgWrrPOBsrMZ\nx6mIjH0iaYZmIqVVTWnS6yD/9ewOHt+0vSCtOHRt+Y2PlYzJxdZZFRRSIc0WrdOpDo0y8T1T0npg\nMXCrpGXh0geBA4FPSnoo/MSfxu8HrgPWAY/hi+pODcj6Ws67sJ41UKZdlzy95UUefaYwZG53aj/I\nYFFFIWpDXRV82jd017jLkDFJo6yzbiZSWaXT/wb4m4x7lgMLa9w0Zy+naL9Exvd+1j6RrHE9qeY6\ncJ+JrHtmG49t3M7Leyfw2MZoRpIWNBkypC7WWbXAt3aNTZpKneU4jSbvMBfnSw+MWbODpIv5BTOi\nIFVPbNrO3BCwCop3pmfRnmEZlgcfyJ1q40LEcRJkqaPSawdxvt39e0qmp0ma/saRDvv3GDOTDhfT\nM5F4j0qq8iGniaMXCIOL9i5bnApp5n0ijlN3shwwpgfyQ+ZM4sj5U7n85IML0vOos+IQuDAUEwUK\noyJCtjv22VO6OXL+VK44+ZDMfuRlcE3EpYhTIS5EHKcMWUNrV0c7t3zguKL0PDOR3kldg8dJIdKZ\nYR6cXhPp7ixddyW4/bszWlyIOE6CtBD4yJJXsH3XAO84dn5F98d0JiImTp+QECIJf1npeCBDs6Bc\nVQPwV6ceygG9I9+pX8ulkjYVhzB2xg4uRJym4WcfOYEnN+9oaBvSg+m0CeP4+3OOyH1/pvVTouAZ\niXWQyT2djGtvY9fAnuw45yOYL/zFCQfkzhsKj9o3srtGxB0ffT1rnt5awxqcRuJCxGkaDpk9mUNm\nT25oG0Y7mOZZ7J6eECI9ne10dURCpBru2EfK4I71GtZ1QO9EDuidWLPyncbi1lnOXsVr9p/OkkOz\nXbuMdld1nsE4ucje3dk+aBac1zKsmlz8upcD8IpZPsg7leEzEWev4vt/ubjs9Xpso0gKi+7OtoRX\n3lRbat8U3nTYLJ743Kl1qMkZq/hMxHES1EOFlFxA7+poHxQq6ZmI7wt0WgEXIo5TZ5T4rxvX0TY4\nA8kSGh5QyWlmXIg4Tp1JzkQ62jSozkovymf5znKcZsKFiOPUmaTaqrO9rYw6q/SOdcdpJnxh3XGq\nzJSeTt7z2gWZ15OyoqNdCYeKhflOPLgXgLcfMw/HaVZciDgOUXjadJCoSnn4U+WjOifVVp1tQ2si\n6ZnIy2ZMcMspp+lxIeI4wE3vey1PbK6OEBmOpLDoaNfgmkctI//9+uMn8ez2XTUr39l7cSHiOES7\nyJM7yWtJW0qdNeTavXZ1zpnSw5wpPbWrwNlraVR43HMkrZG0R1Jfiev7Sdom6bJE2jGSVklaJ+lq\neXQdp0VJ/ul2trWVTHecVqFR1lmrgbOAezKuf4niGOrXABcBB4Wfk2vWOsepMV8590guOmF/JnZ3\nDPqvqqU6y3FqRaNirK+F0l9eks4AHge2J9LmAJPN7L5wfgNwBsWCxnFagjOOmssZR80tSKtCoELH\nqTtNtU9E0kTgCuCvU5fmAusT5+tDWlY5F0taLmn5xo0bq99Qx6ki8ZqIz0ScVqRmQkTSHZJWl/g5\nvcxtVwJfNrNto6nbzK41sz4z6+vt7R1NUY5Tc1yIOK1MzdRZZrakgtteA5wt6SpgKrBH0kvATUBy\nx9U84KnRt9Jxmoe2ptILOE4+msrE18xOiI8lXQlsM7Ovh/OtkhYBvwHOB77WkEY6To3wmYjTijTK\nxPdMSeuBxcCtkpbluO39wHXAOuAxfFHdGWP4wrrTijTKOutm4OZh8lyZOl8OLKxhsxynIcSu3n2f\niNOKuBbWcRpMPdyeOE6tcCHiOE1CuwsRpwVxIeI4DSY28XUZ4rQiLkQcp0lo85V1pwVxIeI4DWbI\nd1aDG+I4FeBCxHEazKA6C5ciTuvhQsRxmgRfE3FaERcijtNgbPgsjtO0uBBxnCbBJyJOK+JCxHEa\njPlUxGlhXIg4TsMZXFl3nJbDhYjjNJiece2AW2c5rUlTuYJ3nLHM0guPZdvO/qL0G9/7Gm5dtYHe\nSV0NaJXjjA4XIo5TJ048eJ+S6QtmTuADbziwzq1xnOrg6izHcRynYlyIOI7jOBXjQsRxHMepmEaF\nxz1H0hpJeyT1pa69StKvw/VVkrpD+jHhfJ2kq+Vh4BzHcRpOo2Yiq4GzgHuSiZI6gO8Al5jZ4cCJ\nwO5w+RrgIuCg8HNyvRrrOI7jlKYhQsTM1prZIyUuvRlYaWYPh3ybzWxA0hxgspndZ1FA6huAM+rY\nZMdxHKcEzbYm8grAJC2T9ICky0P6XGB9It/6kFYSSRdLWi5p+caNG2vYXMdxnL2bmu0TkXQHMLvE\npU+Y2Y/LtOd44FhgB3CnpBXAlpHUbWbXAtcC9PX1uWcix3GcGlEzIWJmSyq4bT1wj5ltApB0G3A0\n0TrJvES+ecBTeQpcsWLFJklPVtCWRjIT2NToRtQZ7/Pegfe5dXhZnkzNtmN9GXC5pPHALuD1wJfN\nbIOkrZIWAb8Bzge+lqdAM+utWWtrhKTlZtY3fM6xg/d578D7PPZolInvmZLWA4uBWyUtAzCz54Av\nAfcDDwEPmNmt4bb3A9cB64DHgH+ve8Mdx3GcAhoyEzGzm4GbM659h0h9lU5fDiyscdMcx3GcEdBs\n1llOxLWNbkAD8D7vHXifxxgyD6vmOI7jVIjPRBzHcZyKcSHiOI7jVIwLkSZA0nRJt0t6NPyeViZv\nu6QHJf20nm2sNnn6LGm+pLsk/S445PxwI9o6WiSdLOmR4Dz0YyWuKzgVXSdppaSjG9HOapKjz+8K\nfV0l6V5JRzSindVkuD4n8h0rqV/S2fVsX61wIdIcfAy408wOAu4M51l8GFhbl1bVljx97gf+l5kd\nBiwCPiDpsDq2cdRIage+AZwCHAb8jxJ9OIUhx6IXEzkbbVly9vlx4PVm9krgM7T44nPOPsf5Pg/8\nvL4trB0uRJqD04Hrw/H1ZDiXlDQPOJVov0yrM2yfzWyDmT0Qjl8gEp6ZPtOalFcD68zsD2a2C/ge\nUd+TnA7cYBH3AVOD09FWZdg+m9m9YV8YwH0UeqRoRfK8Z4APATcBz9SzcbXEhUhzMMvMNoTjPwKz\nMvJ9Bbgc2FOXVtWWvH0GQNIC4CgijwWtxFzgvxPnpZyH5snTSoy0P39O628eHrbPkuYCZ9LiM800\nzeb2ZMxSziFl8sTMTFKR3bWk04BnzGyFpBNr08rqMto+J8qZSPT19hEz21rdVjqNRNIbiITI8Y1u\nSx34CnCFme0ZSzH1XIjUiXIOKSX9SdKc4CNsDqWnuscBb5P0FqAbmCzpO2b27ho1edRUoc9I6iQS\nIN81sx/VqKm15ClgfuK8lPPQPHlaiVz9kfQqItXsKWa2uU5tqxV5+twHfC8IkJnAWyT1m9kt9Wli\nbXB1VnPwE+A94fg9QJGrfDP7uJnNM7MFwDuBXzSzAMnBsH0OIZD/CVhrZl+qY9uqyf3AQZL2lzSO\n6N39JJXnJ8D5wUprEbAloeprRYbts6T9gB8B55nZ7xvQxmozbJ/NbH8zWxD+h38IvL/VBQi4EGkW\nPge8SdKjwJJwjqR9gzv8sUiePh8HnAecJOmh8POWxjS3MsysH/ggkYfqtcAPzGyNpEskXRKy3Qb8\ngci56LeInI22LDn7/ElgBvAP4b0ub1Bzq0LOPo9J3O2J4ziOUzE+E3Ecx3EqxoWI4ziOUzEuRBzH\ncZyKcSHiOI7jVIwLEcdxHKdiXIiMUSSZpC8mzi+TdGWd27A09lQq6brROk+UtEDS6oxrXwiefr8w\nmjqaifD8Hq+miWjyneyNSLpA0teHyXNu8MTb0p6y64XvWB+77ATOkvRZM9s00psldQTb96pgZn9R\nrbIyuBiYbmYDycRq96MB/G8z+2GjG1FNJLWn31MzYWbfl/Qn4LJGt6UV8JnI2KWfyL32/0xfCF/0\nvwjxHO4Mu4fjr9R/lPQb4CpJV0q6XtIvJT0p6SxJV4UYED8LLkmQ9ElJ90taLelalXAMJOluSX2S\n3pbYOPiIpMfD9WMk/YekFZKWxV5sQ/rDkh4GPlCqo5J+AkwEVoSvyHQ/Jkj6tqTfKorFcnq4r0fS\n9yStlXSzpN9I6gvXtiXKP1vS0nDcK+mm0N/7JR0X0q8Mddwt6Q+SLk3cf3541g9LulHSpDDDZg7F\nDgAABdpJREFUiJ/f5OR5FpJmhXY+HH5eK+nTkj6SyPO3CnFXJF0R3tXDkj5XorysZ36pohguKyV9\nr8R9F0j6cejro5I+lbj27vCcH5L0TUWuz5G0TdIXw3tcnCqvqD5Jr5b06/C+7pV0cKLuWxTFoHlC\n0gclfTTku0/S9JDvbklfDe1YLenVJfpR8l06I8TM/GcM/gDbgMnAE8AUoq+qK8O1/wu8Jxy/F7gl\nHC8Ffgq0h/Mrgf8HdAJHADuI/BwB3AycEY6nJ+q9EXhroryzw/HdQF+qjT8gEgydwL1Ab0g/F/h2\nOF4JvC4cfwFYndXfxHG6H38HvDscTwV+D0wAPpqo51VEgrevRHlnA0vD8b8Ax4fj/YhcssTP6l6g\ni8gv0ubQr8NDfTOTzwr458Tzuxj4Yok+DT6/cP59IieUAO3hvS4AHghpbcBjRDvBTwntGZ+qd2no\nT7ln/jTQFT+vEu26ANgQ6ukBVhP5hTqU6G+rM+T7B+D8cGzAOzLeXVF9RH+7HeF4CXBTou51wCSg\nF9gCXBKufTnxfO4GvhWOX0f4uwn3f73cuwznJwI/bfT/cSv8uDprDGNmWyXdAFwKvJi4tBg4Kxzf\nCFyVuPZvVqhq+Hcz2y1pFdHA9bOQvopoAAN4g6TLgfHAdGAN0WCSScj/opl9Q9JCYCFwe5jEtAMb\nJE0lGlTuSbT1lFydL+zHm4mcV8bqiW6iQeN1wNUAZrZS0soc5S4BDtPQZGuyIi/DALea2U5gp6Rn\niNzbnxTasinU82zIex2RW/9bgAuBi3LUfRJwfihngGgA3SJps6SjQn0PmtlmSUuAfzazHal6Yw6m\nxDMP11YC35V0S2hfKW634DRR0o+IvPD2A8cA94cyexhyrDlA5EizFKXqmwJcL+kgIgGUnKXdZVF8\nmRckbWHob20V0cdAzL+Gvt8TZntTU/WWfJdmtg0nNy5Exj5fAR4g+vLNw/bU+U4Ai9xX77bwmUYU\n06RDUjfRF2efmf23osX77nIVhAHuHKJBHEDAGjNLqznS//QjIdkPAW83s0dS5Ze7P+kPKNmfNmCR\nmb1UoqydiaQByvx/mdmvFKkVTySaMZU0GMjJdURf2LOBb+e8p+QzD5xK9G7eCnxC0iuteF0p7S/J\nQpnXm9nHS5T5kmWvgxTVRxTt8C4zO1NRLJm7E/mTz3lP4nwPhc+8VBuTlHyXzsjwNZExTvgC/QFR\nzIaYe4m8jAK8C/jlKKqIB9hN4Yu8rOWPpJcRhRE9x8zi2dEjQK+kxSFPp6TDzex54HlJcayJd1XY\nxmXAhxRG+vDVDnAP8GchbSGFX7F/knSopDaiQEIxPyeKThf358hh6v4FcI6kGSH/9MS1G4hUKnkF\n/J3A+0I57ZKmhPSbgZOBY4n6CnA7cKGk8SXqhYxnHvo738zuAq4gmhFMpJg3SZouqYcoKuWvQvvO\nlrRPXGd435mUqW8KQ67ULyj/WDI5N9RxPJFn5C2p6yN9l04JXIjsHXyRSE8f8yGiAWYlkZfcD1da\ncBjov0WkF19G5BK7HBcQ6dJvCYuet1kUTvRs4PNh4fUh4LUh/4XANyQ9RPSlWwmfIVKHrJS0JpxD\nFGFuoqS1wKeBFYl7Pka0rnIvQ2oeiFSDfWER+HdAWfNbM1sD/C3wH6FvSZf23wWmEdQuOfgwkepw\nVWjrYaGOXcBdRJ5jB0Laz4hckS8Pz67A0qjMM28HvhPqeBC4OrzjNL8lUk+tJFqvWG5mvwP+Cvh5\n+Nu6HRguzG9WfVcBn5X0IJVrTF4K9/8jhR9RMSN6l05p3Iuv4wQk3Q1cZmZ1cUuuaL/G6WZ2Xsb1\npUSLu2VNfMPX/ANEs7tHq97Q4vouIFJffrDWdVXKaN9lUDNeZmanVbNdYxGfiThOA5D0NaIYKp8p\nk20L8BmV2WyoaAPnOuDOegiQvQFJ5xKt8z3X6La0Aj4TcRzHcSrGZyKO4zhOxbgQcRzHcSrGhYjj\nOI5TMS5EHMdxnIpxIeI4juNUzP8HWIkMz2GBd4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hanning window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Traingular Window" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='triangular')" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVIW5//HPsxQBpTelo3SQusEaATWKESUYCwgk5iZR\nbIFoVNRf4tVYkptrQ1Q0idErKBgFG6Yo9s4urPQWehEWkCJtXXh+f8yZdVjZ3WHZs9O+79drXs4p\nc+Y5JHueOe17zN0REREByEp0ASIikjzUFEREpIiagoiIFFFTEBGRImoKIiJSRE1BRESKqClISjOz\nKmb2tZm1SnAdZ5vZyhCWe7yZfX0En19rZv0rsCRJc2oKUqmCDXj0dcDM9sQMDz/c5bn7fnc/xt1X\nh1Fvorn7cnc/JtF1SOaomugCJLPEbuCCX9a/cPe3SprfzKq6e2Fl1BaWdFgHyRzaU5CkYmZ3m9kU\nM3vezHYCI8zsFDP71My2mdkGMxtnZtWC+auamZtZm2B4YjD9H2a208w+MbO2Mcs/z8yWmNl2M3vE\nzD4ysytivvvpmHnbmZnHDP/CzBYGy/2Pmf2ilPVYa2Y3mdlcYNchpt9jZg8G748K9pjuC4aPMbO9\nZlb3EDV8aGZ3mtnHQR3/NLMGMdOvMLNVZrbZzMYW+84awb/NBjNbZ2YPmFn1YNpHZjY4eN8v+Dc9\nNxg+18xyyvrfTtKDmoIkoyHAc0BdYApQCIwGGgGnAQOBq0r5/OXAb4EGwGrg9wBm1gR4AbgpWNYK\noO9h1LUROB+oA/wSeMTMupcy/1DgPKDeIaa9B/QP3p8ErAfOCIZPBea7+/YSlns58FOgKXA0cAOA\nmZ0IjA+mNweaAcfGfO53QDbQHehF5N/y1kPU0w9YHlNPv2C6ZAA1BUlGH7r7a+5+wN33uPtMd//M\n3QvdfTnwJJENVUledPccd/8GmAT0DMYPAvLc/ZVg2oPA5niLCmpa7hFvAzOA75fykYfdfa277znE\ntI+BLmZWj8jG90mgrZnVouyN8F/dfam77wb+HrN+lwAvu/tH7r4PuA2wmM8NB/7b3fPdfRNwFzAy\nmPYe3/6bngHcFzOsppBB1BQkGa2JHTCzTmY23cy+NLMdRDZmjUr5/Jcx73cD0fMYzWKX7ZE0yLXx\nFmVmg8zsMzPbambbgHPKqGNNSRPc/WtgNpEN8BnAu8CnwCmUvRGOd/2+BrbGzNsMWBUzvIrIHgXA\nR0BXM2sMdAOeAY43s4ZAH+CDUuqRNKKmIMmoeHTvE8A8oJ271yFyGMS+86mybQBaRAfMzPh2owiR\nY/+1YoaPjZm3JvAikV/QTd29HvDvMuooK4L4PeBs4EQgNxg+j8ghnvJshDcALWNqPobIIbSo9UDr\nmOFWwDooaiB5wK+J7E19A3wG3AgscvevylGPpCA1BUkFtYHtwC4z60zp5xNK8zrQ28wuMLOqRM5T\nNI6Zngf0M7OWwWGd2BO1RwHVgXxgv5kNAs4qZx1R7wFXAHOCq5PeBa4EFrv71lI+V5K/A4ODE/NH\nAXdzcGN6HvidmTUK9gh+C0wsVs91fLuX8m6xYckAagqSCm4kcmJ1J5G9hinlWYi7bwQuAx4AtgAn\nEDmEsy+Y5Z/ANGAu8DnwasxntxH5FT2NyCGZi4k0mSPxIZE9k/eD4blETqq/X+InSuHuc4g0uheI\n7AF8ycGHmu4EviCy1zWHyJ7AfTHT3yPSgN8vYVgygOkhO5KpzKwKkUMqF7u7jpmLoD0FyTBmNtDM\n6gWHV34LfENkr0BEUFOQzHM6kWvw84FzgSHB5Zsigg4fiYhIDO0piIhIkZQLxGvUqJG3adMm0WWI\niKSU3Nzcze7euKz5Uq4ptGnThpwcZXOJiBwOM1tV9lw6fCQiIjHUFEREpIiagoiIFFFTEBGRImoK\nIiJSJLSmYGZPmdkmM5tXwnQLHg24zMzmmFnvsGoREZH4hLmn8DSRxyaW5DygffC6Eng8xFpERCQO\noTUFd3+fg5/6VNxg4P+CRxt+CtQzs+PCqkekou0uKGTKzNXsKdif6FJEKkwizyk05+DHFa7l4Kdg\nFTGzK80sx8xy8vPzK6U4kdK4Ozf9fQ63vDSXW16agzLEJF2kxIlmd3/S3bPdPbtx4zLv0hYJ3V8+\nWMH0uRvo07o+r36xnqc+WpnokkQqRCKbwjpinidL5Nm56xJUi0jcPvnPFv7wz0Wc1+1Y/n7VKZzT\npSn3vrGQz5ZvSXRpIkcskU3hVeAnwVVIJwPb3X1DAusRKdOG7Xu47rlZtGlYiz9d0oOsLOP+S3vQ\nukEtrn1uNht37E10iSJHJMxLUp8HPgE6mtlaM/u5mY0ys1HBLG8QedjJMuDPwDVh1SJSEfYV7ufq\nibPY+81+nhiZzTFHRfIka9eoxhMj+7C7oJCrJ+ZSUHggwZWKlF9oKanuPqyM6Q5cG9b3i1S0O19b\nQN6abUwY0Zt2TY45aFr7prX508U9uPa5Wdw9fQF3De6WoCpFjkxKnGgWSbQXctbw3GerGdXvBAZ2\nO/SV0+d3P45ffr8t//fJKqbOWlvJFYpUDDUFkTLMXbud//fyPE5r15DfnNOh1HlvGdiJk49vwK1T\n5zJ//fZKqlCk4qgpiJTiq10FjJqYS6OjqzNuaC+qVin9T6ZqlSzGX96b+rWqM2piLtt2F1RSpSIV\nQ01BpAT7Dzi/mjyb/J37eHxEHxoec1Rcn2t0zFE8NqI3X27fy+jJeew/oBvbJHWoKYiU4P5/L+aD\npZu5a3BXerSsd1if7d2qPndc0JX3luTz8FtLQqpQpOKpKYgcwr/mf8lj7/6HYX1bMrRvq3ItY/hJ\nrbikTwvGvb2MtxZsrOAKRcKhpiBSzH/yv+bGF76gR4u6/PeFXcu9HDPj9z/qRrfmdfj1C3ms3Lyr\nAqsUCYeagkiMXfsKGfVsLtWrZvH4iD4cVbXKES2vRrUqPD68D1WyjKuezWV3QWEFVSoSDjUFkYC7\nc/OLc/hP/teMH9aLZvVqVshyWzaoxbihvViyaSdjX5qrRFVJamoKIoFo8unNAztxartGFbrsMzo0\n5jfndOTVL9bzNyWqShJTUxDh4OTTq844PpTvuLrfCfwgSFT9fEVpz58SSRw1Bcl4xZNPzSyU74km\nqrZqUItrJs1SoqokJTUFyWglJZ+GpU6NakwIElWvmTRLiaqSdNQUJKNFk0//95Ie30k+DUuHprX5\nn4u7k7vqK+6evqBSvlMkXmoKkrFik0/PO/HQyadhGdS9mRJVJSmpKUhGOpzk07AoUVWSkZqCZJzD\nTT4NixJVJRmpKUhGKW/yaVhiE1XHTMnjgBJVJcHUFCSjPPBm+ZNPwxJNVH13cT4PzVia6HIkw6kp\nSMb49/wvefSd/zD0e+VPPg3L8JNacXGfFoybsZQZC5WoKomjpiAZYXmQfNr9CJNPw2Jm3B0kqo6Z\nokRVSRw1BUl7u/YVctWzuVQLkk9rVDuy5NOwxCaqjpqoRFVJDDUFSWvuzs0vRZJPHxnWi+YVlHwa\nlmii6uKNO7l1qhJVpfKpKUha+8sHK5g+ZwM3nduJ0yo4+TQsZ3RozI0/6MAreUpUlcqnpiBpK5p8\nOrDrsYzqF07yaViu6d+OszsrUVUqn5qCpKUN2/dw/fPR5NPuoSWfhiUry3jgsh60VKKqVDI1BUk7\n0eTTPQX7eWJkH2rXqJboksqlTo1qTBjRh137lKgqlUdNQdLOXUHy6Z8u6UG7JrUTXc4R6Xjst4mq\n9yhRVSqBmoKklb/nrGHSZ6u56ozj+WElJ5+G5YIezfj56W155pNVTJutRFUJl5qCpI1567Zz+8vz\nOPWEhtx0bsdEl1Ohxp7Xib5tI4mqC9bvSHQ5ksbUFCQtfLWrgKuejSSfPjIsccmnYalWJYtHL+9N\n3ZrVGDUxl+27v0l0SZKmQv3LMbOBZrbYzJaZ2dhDTK9vZtPMbI6ZfW5m3cKsR9JTsiWfhqVx7aN4\nfEQfNmzfw5gps5WoKqEIrSmYWRXgUeA8oAswzMy6FJvtNiDP3bsDPwEeDqseSV8PvrmED5Zu5s4k\nSj4NS+9W9fndBV15Z3E+DytRVUIQ5p5CX2CZuy939wJgMjC42DxdgLcB3H0R0MbMmoZYk6SZNxds\nZPw7y7gsuyXDkiz5NCwjTmrFj3u34OEZS3l7kRJVpWKF2RSaA2tihtcG42J9AVwEYGZ9gdZAi+IL\nMrMrzSzHzHLy8/NDKldSzfL8r7lhSh7dW9TlzsHJl3waFjPjniHd6NqsDmMm57FqixJVpeIk+mzc\nH4B6ZpYHXA/MBvYXn8ndn3T3bHfPbty4cWXXKElo175CRk3MpWoV47HhvZM2+TQsNapVYcKIPpgZ\nVz2by56C7/zZiJRLmE1hHdAyZrhFMK6Iu+9w95+5e08i5xQaA8tDrEnSgLtzy0tzWLbpax4Z1psW\n9WsluqSEaNmgFuOGRRNV5yhRVSpEmE1hJtDezNqaWXVgKPBq7AxmVi+YBvAL4H1310XYUqq/friC\n1+ds4DfnduT09qmRfBqWfh0ac8PZHXg5bz3PfLwy0eVIGqga1oLdvdDMrgP+BVQBnnL3+WY2Kpg+\nAegMPGNmDswHfh5WPZIePl2+hfv+sYhzuzbl6n4nJLqcpHDtgHZ8sXYbd09fSNfmdflemwaJLklS\nmKXaLmd2drbn5OQkugxJgA3b93DBIx9Sp2Y1Xrn2tJQNugvD9j3fMHj8h+wq2M/060+nSZ0aiS5J\nkoyZ5bp7dlnzJfpEs0hc9hXu55pJQfLpiNRNPg1L3ZrVeGJkNl/vVaKqHBk1BUkJv399AbNXR5JP\n2zdN7eTTsEQTVXNWfcW9byxMdDmSokI7pyBSUV7MXcvET9Mr+TQsF/RoRt6abfz1wxX0aFmXIb2+\nc9uPSKm0pyBJbd667dw+bS6nHJ9+yadhUaKqHAk1BUlaX+0qYNTEXBocXZ1HLk+/5NOwKFFVjoT+\nyiQp7T/gjJ6Sx6YdkeTTRmmafBqWxrWP4rHhSlSVw6emIEnpobeW8P6SfO4c3JWeaZ58GpY+rZWo\nKodPTUGSzpsLNvLI25mVfBoWJarK4VJTkKSyYvOujEw+DUvxRNWVm5WoKqVTU5CksWtfIaOezdzk\n07DEJqqOmpjL7oLCRJckSUxNQZJCNPl06aadGZ18GpaWDWrxSFGi6lwlqkqJ1BQkKUSTT286t1PG\nJ5+G5YwOjbnxBx14JW89TytRVUqgpiAJF00+Hdj1WEb1Oz7R5aS1a/q34+zOTbln+kJmrtya6HIk\nCakpSEJt2L6H656bRZuGtfjTJd0xs0SXlNaysowHLutBywa1uGbSLDbt2JvokiTJqClIwhQUHvg2\n+XSkkk8rS50a1Zgwoo8SVeWQ1BQkYe56fX5R8mm7Jko+rUxKVJWSKCVVEkLJp4mnRFU5FO0pSKVT\n8mnyUKKqFKemIJUqmnza8OjqjFfyacIpUVWK01+kVJr9B5xfTZ5dlHzaUMmnSUGJqhJLTUEqzYNv\nLuGDpZu5c3BXeij5NKn0aV2f3w3qwjuL8xn3thJVM5maglSKf8//kvHvKPk0mY04uTUX9W7OwzOW\n8s6iTYkuRxJETUFCtzz/a2584QslnyY5M+PeISfS+dg6jJ48m1VblKiaidQUJFS79hUyaqKST1NF\njWpVeGJkJFH1qmdz2VOwP9ElSSVTU5DQRJNPl236WsmnKaRlg1o8PLQnizfu5LZpSlTNNGoKEppo\n8ulvzu2o5NMU079jE244uwPTZq/j/z5ZlehypBKpKUgoosmn53ZtytX9Tkh0OVIO1w5ox9mdm/D7\n1xcoUTWDqClIhYsmn7ZuWIv/vaSHkk9TVFaWcf+lPWlRv6YSVTOImoJUqH2F+7lm0ix2F+zniRFK\nPk11dWtW44mR2Xy9t5Brn5vFN/uVqJru1BSkQv3+9QWR5NOLe9C+qZJP00HHY2vzx4u7M3PlV9wz\nXYmq6S7UpmBmA81ssZktM7Oxh5he18xeM7MvzGy+mf0szHokXNHk0yvPOJ7zuyv5NJ1c2KMZ/3Va\nW57+eCXTZq9NdDkSojKbgpnVMrPfmtmfg+H2ZjYojs9VAR4FzgO6AMPMrEux2a4FFrh7D6A/cL+Z\nVT/MdZAkEJt8erOST9PSrT9UomomiGdP4W/APuCUYHgdcHccn+sLLHP35e5eAEwGBhebx4HaFjkT\neQywFSiMp3BJHtHk0wZHV+cRJZ+mrWpVshh/eS8lqqa5eP56T3D3/wG+AXD33UA8l5M0B9bEDK8N\nxsUaD3QG1gNzgdHu/p0zWWZ2pZnlmFlOfn5+HF8tlWX/AWf0lDw27djHY8N700jJp2mtSe0aPDa8\ntxJV01g8TaHAzGoS+VWPmZ1AZM+hIpwL5AHNgJ7AeDOrU3wmd3/S3bPdPbtx48YV9NVSER56awnv\nL8nnjgu70KtV/USXI5WgT+sGSlRNY/E0hTuAfwItzWwSMAO4OY7PrQNaxgy3CMbF+hkw1SOWASuA\nTnEsW5LAmws28sjby7ikTwsuV/JpRlGiavoqsym4+5vARcAVwPNAtru/G8eyZwLtzaxtcPJ4KPBq\nsXlWA2cBmFlToCOwPN7iJXFWbN7FDVPy6Na8Dr//UTfdoJZhlKiavkpsCmbWO/oCWgMbiBz7bxWM\nK5W7FwLXAf8CFgIvuPt8MxtlZqOC2X4PnGpmc4nsgdzi7puPbJUkbLsLChn1bCT5dMKIPko+zVBK\nVE1PVlICopm9E7ytAWQDXxA5wdwdyHH3Uw75wZBlZ2d7Tk5OIr5aiCSf/mpyHtPnrOeZ/+rL99vr\nHE+me3fxJn729EwG92jGg5f11F5jkjKzXHfPLmu+EvcU3H2Auw8gsofQOzjR2wfoxXfPDUiGeOqj\nlbz2xXpuPKejGoIAkUTVX5/dgZfz1vPMxysTXY4coXhONHd097nRAXefR+QyUskwny3fwr1vLOSc\nLk25pr+ST+Vb1wWJqndPX6hE1RQXT1OYY2Z/MbP+wevPwJywC5PksnHHXq59bjatG9Ti/kuVfCoH\nU6Jq+oinKfwMmA+MDl4LgnGSIQoKD3D1xFx2FxTyxEgln8qh1a1ZjQkj+yhRNcXFc0nqXnd/0N2H\nBK8H3V0/AzLI3dMXMEvJpxKHTsfW4Q8/PlGJqimsalkzmNkKgruZY7n78aFUJEnlpdy1/N8nq/jl\n99sq+VTiMrhnc75Ys52nPlpBr1b1GNyzeLqNJLMymwKRy1GjagCXAA3CKUeSybx127lt2lxOPr4B\ntwzUjeYSv1t/2Il567dzy0tz6NC0Np2P+056jSSpeA4fbYl5rXP3h4DzK6E2SaBtuwu4elIk+XT8\n5b2VfCqH5TuJqnuUqJoq4nmeQu+YV3ZwN3I8exiSovYfcEZPzmPjdiWfSvlFE1XXb9vDDVPylKia\nIuLZuN8f876QSGjdpeGUI8ng4beW8N6SfO4Z0k3Jp3JE+rRuwG8HdeF3r8znkbeXMfrs9okuScoQ\nT1P4ubsfFFJnZm1DqkcS7K0FGxmn5FOpQCNPbk3e6m08NGMJ3VvWZUDHJokuSUoRz4HiF+McJylu\n5eZd/PoFJZ9KxTIz7hlyIp2OrcPo52ezesvuRJckpSgtJbWTmf0YqGtmF8W8riByFZKkkd0FhVz1\nbC5VsozHhyv5VCpWzepVeGJEkKg6UYmqyay0PYWOwCCgHnBBzKs38MvwS5PK4u6MfWkuSzbtZNzQ\nXrRsUCvRJUkaatWwFg8N7cmiL3dw+7S5lJTQLIlV4jkFd38FeMXMTnH3TyqxJqlkf/toJa9+sZ6b\nzu3IGR2UfCrhGdCxCWPO6sCDby2hZ6t6/OSUNokuSYopsSmY2c3u/j/A5WY2rPh0d/9VqJVJpfhs\n+RbuCZJPr+6n5FMJ3/VntmPO2m3c9doCuhxXh+w2uhc2mZR2+CgaXJID5B7iJSmuePJpVpZOLEv4\nsrKMBy6LSVTdqSi1ZFLik9eSlZ68VjEKCg8w7M+fsnDDDl659jQF3UmlW/TlDoY8+jHdmtfhuV+e\nTDXdNR+qeJ+8Vtrho9c4RBBelLtfWM7aJAncPX0Buau+YvzlvdQQJCGiiaqjJ+dx7xsLueOCroku\nSSj95rX/rbQqpFJNnfVt8umg7s0SXY5ksME9m5O3Zht/+2glPVsqUTUZlHb10XvR92ZWHehEZM9h\nsbsXVEJtEoL567dz61Qln0ryuO2HnZm/bocSVZNEPIF45wP/AcYB44FlZnZe2IVJxdu2u4BRE3Op\nX0vJp5I8qlXJYvzwXtSpoUTVZBDPVuF+YIC793f3fsAA4MFwy5KKduCAM2ZKJPn08RFKPpXk0qR2\nDR4foUTVZBBPU9jp7stihpcDO0OqR0Ly0IylvLs4nzsu7KLkU0lK0UTVGYs28cjby8r+gIQinpTU\nHDN7A3iByDmFS4CZZnYRgLtPDbE+qQBvLdjIuBlLlXwqSe+gRNUWdRnQSYmqlS2ePYUawEagH9Af\nyAdqEslBGhRaZVIhosmnJzavq+RTSXrRRNXOx9Zh9OTZrNqyK9ElZRzdvJbGdhcUMuTRj9m0cy+v\nXX86Leor6E5Sw5qtuxn0yIc0q1eTqVefSs3qSu09UvHevBbP1UdtzewBM5tqZq9GXxVTpoQlmny6\ndNNOxg3rpYYgKaVlg1o8HCSq3qZE1UoVzzmFl4G/Aq8BB8ItRypKbPLp99sr+VRST/+OTfj12R14\n4M0l9GxZj5+e2ibRJWWEeJrCXncfF3olUmFik0+v6a/kU0ld1w2IJKr+/vUFdG2mRNXKEM+J5ofN\n7A4zO8XMekdfoVcm5VI8+VQnliWVZWUZ91+qRNXKFE9TOJHIk9b+QORGtvuJMxfJzAaa2WIzW2Zm\nYw8x/SYzywte88xsv5npp0A5FRQe4OqJuewuKOSJkX2oXaNaoksSOWJ1a1Zjwsg+7NxbyHWTZvPN\nfh3FDlM8TeES4Hh37+fuA4LXmWV9yMyqAI8C5wFdgGFm1iV2Hnf/k7v3dPeewK3Ae+6+9fBXQyCS\nfDpr9Tb+dHEPJZ9KWokmqn6+civ3vrGw7A9IucXTFOYReU7z4eoLLHP35UGA3mRgcCnzDwOeL8f3\nCPBS7rfJp+d3Py7R5YhUuME9m/Oz09rwt49W8kreukSXk7biOdFcD1hkZjOBfcE4d/fSNvAAzYE1\nMcNrgZMONaOZ1QIGAteVMP1K4EqAVq10R25x89Zt57ZpczmprZJPJb0pUTV88ewp3AEMAe4FHgBm\nAu0quI4LgI9KOnTk7k+6e7a7ZzdurMsrY23bXcDVkyLJp48OV/KppDclqoavzC1I8FyFHUQiLZ4G\nzgQmxLHsdUDLmOEWwbhDGYoOHR22/Qec0ZPz+HL7Xh5T8qlkiGii6rqvlKgahhKbgpl1CC5FXQQ8\nAqwmEosxwN0fiWPZM4H2wR3R1Yls+L9zJ7SZ1SWSq/RKudYggz381hLeW5LPHRd0pbeSTyWDKFE1\nPKWdU1gEfAAMikZnm9mv412wuxea2XXAv4AqwFPuPt/MRgXTo3sbQ4B/u7uSrw7DWws2Mu7tZVzc\npwXDT9J5Fsk8PzmlNXlrgkTVlnUZ0FGJqhWhxEA8M/sRkV/3pwH/JHL10F/cvW3llfddCsSLJJ9e\nMP5DWjesxYujTqVGNYWFSWbaU7Cfix7/mHVf7eb1679Pq4bK+CrJEQfiufvL7j6UyLOZ3wHGAE3M\n7HEzO6fiSpXDsbugkKuezaVKlvH48D5qCJLRalavwoQRkYCFqybmsqdgf4IrSn3xnGje5e7PufsF\nRE4WzwZuCb0y+Y5o8umSTTsZN7QXLRvoV5FI64ZH8/CwXiz6cge3K1H1iB3W9Yvu/lVweehZYRUk\nJYsmn/7mnI6c0UGX5opEDejYhDFndWDq7HU8++mqRJeT0nRRe4r4fEXk9v4fdGnK1f2UfCpS3PVn\ntuOsTk2467UF5K5SWk55qSmkgI079nLNpFm0CpJPs7KUfCpSXFaW8cBlPWlevyZXT1SianmpKSS5\ngsIDXDNpFrsLCpkwsg91lHwqUqK6NasxYUQfduz9Romq5aSmkOTumb6A3FVf8T8Xd6eDkk9FytT5\nuDr88cfd+XzlVu57Y1Giy0k5agpJbNrstTzzySp+cXpbBnVvluhyRFLG4J7NueLUNjz10Qolqh4m\nNYUktWD9Dm6dGkk+HXuekk9FDtft53fme23qM/aluSz6ckeiy0kZagpJaNvuAq6amEO9mtUZf7mS\nT0XKo1qVLB69vDfH1KjKqGeVqBovbW2SzIEDzpgpkeTTR4f3pnFtJZ+KlFeTOjV4fHhv1ipRNW5q\nCknmoRlLeXdxJPm0T2sln4ocqew23yaqjn9HiaplUVNIIjMWbmTcjKVKPhWpYD85pTVDejXnwbeW\n8M7iTYkuJ6mpKSSJlZt3MWZKHt2a1+HuH3XDTDeoiVQUM+PeISfS6dg6jJmcx+otuxNdUtJSU0gC\nuwsKGTVRyaciYYomqro7o5SoWiI1hQRzd26dOpfFG5V8KhK21g2P5uGhvVj45Q5uf1mJqoeippBg\nT3+8klfy1nPjDzoo+VSkEgzo1ITRZ7Vn6qx1TFSi6neoKSTQzJVbuWf6Qs7u3JRr+rdLdDkiGeNX\nZ7bnzE5NuOt1JaoWp6aQINHk05YNavHAZUo+FalMWVnGg5f2pFm9mlwzSYmqsdQUEiCafPr13kIm\njFDyqUgi1K0VSVTdvkeJqrHUFBIgNvm047FKPhVJlM7H1eEPFylRNVbVRBeQaWKTTy/ooeRTkUT7\nUa/m5K3ZxlMfraBHy7oM7tk80SUllPYUKpGST0WSkxJVv6WmUEm27/6GURNzlXwqkoSUqPotbZkq\nQST5dDYbtu/hsRFKPhVJRrGJqje+kLmJqmoKleDhGUt5Z3E+v7ugK71bKflUJFllt2nA/zu/M28t\n3MSjGZqoqqYQsrcXbeThGUv5ce8WjFDyqUjS++mpbfhRz2Y88NYS3s3ARFU1hRCt2rKLMZPz6Nqs\nDvcMUfKpSCowM+67qDsdm9Zm9OQ81mzNrERVNYWQ7C4o5KpnczEzJoxQ8qlIKqlZvQpPjOyDu3PV\ns5mVqKqyU5RzAAANqUlEQVSmEIKDkk+HKflUJBW1bng0Dw3tyYINmZWoGmpTMLOBZrbYzJaZ2dgS\n5ulvZnlmNt/M3guznsoSm3zaT8mnIinrzE5NGXN2ZiWqhnZHs5lVAR4FfgCsBWaa2avuviBmnnrA\nY8BAd19tZk3CqqeyKPlUJL386sz2zFm7nbteX0CXZnXT/tnpYe4p9AWWuftydy8AJgODi81zOTDV\n3VcDuHtKn+rfpORTkbQTTVQ9rm5NrpmUm/aJqmE2hebAmpjhtcG4WB2A+mb2rpnlmtlPDrUgM7vS\nzHLMLCc/Pz+kco+Mkk9F0lfdWtV4YmSQqPpceieqJvpEc1WgD3A+cC7wWzPrUHwmd3/S3bPdPbtx\n4+Q8Rn/vGwvJUfKpSNoqSlRdsZU//CN9E1XDTEldB7SMGW4RjIu1Ftji7ruAXWb2PtADWBJiXRVu\n2uy1PP3xSn6u5FORtBZNVP3rhyvo0bIeF6bh33uYewozgfZm1tbMqgNDgVeLzfMKcLqZVTWzWsBJ\nwMIQa6pw0eTTvko+FckIt/2wM9mt63PLi3PSMlE1tKbg7oXAdcC/iGzoX3D3+WY2ysxGBfMsBP4J\nzAE+B/7i7vPCqqmiRZNP69asxqOX96aakk9F0l71qlk8Njx9E1Ut1W7IyM7O9pycnESXwYEDzs+f\nmcmHyzYz+cpT0v4yNRE52MyVWxn25Kf079iYJ0dmJ/3VhmaW6+7ZZc2nn7blFJt8qoYgknm+l6aJ\nqmoK5aDkUxGBgxNV30mTRFU1hcMUTT7tcpyST0UyXWyi6pjJeazekvqJqmoKh2FPwf6i5NMnRir5\nVEQOTlQdNTH1E1XVFOLk7oydOkfJpyLyHemUqKqmEKdo8ukNZyv5VES+68xOTRl9VuonqqopxOHb\n5NMmXDtAyacicmijz2rPgI6Nuev1BeSu+irR5ZSLmkIZDk4+7Zn01yKLSOJkZRkPXdYrpRNV1RRK\noeRTETlcqZ6oqqZQinumL1DyqYgctthE1fveSK1E1TBTUlPatNlreeaTVUo+FZFyiSaqPvXRCnq0\nrMvgnsUfJ5OctKdwCEo+FZGKEE1UHfvS3JRJVFVTKEbJpyJSUVIxUVVbvBgHDjhjpsxmw/Y9PDa8\nD41rH5XokkQkxTWpU4PHhvdm7Vd7uPGFPA4cSO4b29QUYhQlnw7qouRTEakw32vTgNtTJFFVTSEQ\nTT69qHdzRpzcOtHliEiaueLUNgwOElXfTeJEVTUFDk4+vXfIiUo+FZEKF0lUPZGOTWszenIea7Ym\nZ6JqxjcFJZ+KSGWpVb3qQYmqe79JvkTVjG4K7s6tQfLpw0N7KvlUREIXTVSdv34Ht0+bl3SJqhnd\nFJ75eCUvB8mn/Ts2SXQ5IpIhoomqL81ay8TPVie6nINkbFOYuXIrdyv5VEQSpChR9bX5SZWompFN\nIZp82qJ+Te6/VMmnIlL5iieq5u/cl+iSgAxsCrHJp0+MzKZuTSWfikhi1K1VjQkjoomqsyhMgkTV\njGsK976xkJxVX/FHJZ+KSBLo0qwO9110Ip+t2Mof/pH4RNWMagrTZq/l6Y9X8vPT23Khkk9FJEkM\n6dWCn57Smr98uILXvlif0Foypiko+VREktnt50fidW5+cQ6Lv9yZsDoypins3PsNbRsdo+RTEUlK\nByWqTsxlx97EJKpmzNbxpOMbMv3605V8KiJJq2mQqLpm625umPJFQhJVM6YpALr0VESS3reJqht5\n7N3KT1TNqKYgIpIKoomq97+5hPeW5Ffqd6spiIgkmYMTVWdXaqJqqE3BzAaa2WIzW2ZmYw8xvb+Z\nbTezvOD1uzDrERFJFbWqV2XCiD7sP1C5iaqhNQUzqwI8CpwHdAGGmVmXQ8z6gbv3DF53hVWPiEiq\nadPoaB66rHITVcPcU+gLLHP35e5eAEwGBof4fSIiaeeszpWbqBpmU2gOrIkZXhuMK+5UM5tjZv8w\ns66HWpCZXWlmOWaWk59fuSddREQSbfRZ7bmwRzOaVsIl9VVD/4bSzQJaufvXZvZD4GWgffGZ3P1J\n4EmA7Ozs5HoihYhIyLKyjHHDelXOd4W47HVAy5jhFsG4Iu6+w92/Dt6/AVQzs0Yh1iQiIqUIsynM\nBNqbWVszqw4MBV6NncHMjjUzC973DerZEmJNIiJSitAOH7l7oZldB/wLqAI85e7zzWxUMH0CcDFw\ntZkVAnuAoZ5sDywVEckglmrb4OzsbM/JyUl0GSIiKcXMct09u6z5dEeziIgUUVMQEZEiagoiIlJE\nTUFERIqk3IlmM8sHVpXz442AzRVYTirJ1HXXemcWrXfJWrt747IWlHJN4UiYWU48Z9/TUaauu9Y7\ns2i9j5wOH4mISBE1BRERKZJpTeHJRBeQQJm67lrvzKL1PkIZdU5BRERKl2l7CiIiUgo1BRERKZIx\nTcHMBprZYjNbZmZjE11PWMzsKTPbZGbzYsY1MLM3zWxp8N/6iawxDGbW0szeMbMFZjbfzEYH49N6\n3c2shpl9bmZfBOt9ZzA+rdc7ysyqmNlsM3s9GE779TazlWY218zyzCwnGFdh650RTcHMqgCPAucB\nXYBhZtYlsVWF5mlgYLFxY4EZ7t4emBEMp5tC4EZ37wKcDFwb/G+c7uu+DzjT3XsAPYGBZnYy6b/e\nUaOBhTHDmbLeA9y9Z8y9CRW23hnRFIC+wDJ3X+7uBcBkYHCCawqFu78PbC02ejDwTPD+GeBHlVpU\nJXD3De4+K3i/k8iGojlpvu4e8XUwWC14OWm+3gBm1gI4H/hLzOi0X+8SVNh6Z0pTaA6siRleG4zL\nFE3dfUPw/kugaSKLCZuZtQF6AZ+RAeseHELJAzYBb7p7Rqw38BBwM3AgZlwmrLcDb5lZrpldGYyr\nsPUO7clrkpzc3c0sba9DNrNjgJeAMe6+I3jaK5C+6+7u+4GeZlYPmGZm3YpNT7v1NrNBwCZ3zzWz\n/oeaJx3XO3C6u68zsybAm2a2KHbika53puwprANaxgy3CMZlio1mdhxA8N9NCa4nFGZWjUhDmOTu\nU4PRGbHuAO6+DXiHyDmldF/v04ALzWwlkcPBZ5rZRNJ/vXH3dcF/NwHTiBwer7D1zpSmMBNob2Zt\nzaw6MBR4NcE1VaZXgZ8G738KvJLAWkJhkV2CvwIL3f2BmElpve5m1jjYQ8DMagI/ABaR5uvt7re6\newt3b0Pk7/ltdx9Bmq+3mR1tZrWj74FzgHlU4HpnzB3NZvZDIscgqwBPufs9CS4pFGb2PNCfSJTu\nRuAO4GXgBaAVkdjxS929+MnolGZmpwMfAHP59hjzbUTOK6TtuptZdyInFqsQ+ZH3grvfZWYNSeP1\njhUcPvqNuw9K9/U2s+OJ7B1A5PD/c+5+T0Wud8Y0BRERKVumHD4SEZE4qCmIiEgRNQURESmipiAi\nIkXUFEREpIiagiQVM7s9SPucE6RAnhTy971rZnE/8NzMnjazdWZ2VDDcKLiBqiJq6R9N+6woZjbG\nzH5SxjwnmtnTFfm9krrUFCRpmNkpwCCgt7t3B87m4MyqZLEf+K9EF1FckAYcO1yVSJ3PlfY5d58L\ntDCzViGWJylCTUGSyXHAZnffB+Dum919PYCZ/c7MZprZPDN7MriDOfpL/0EzyzGzhWb2PTObGuTK\n3x3M08bMFpnZpGCeF82sVvEvN7NzzOwTM5tlZn8PcpQO5SHg18FGN/bzB/3SN7PxZnZF8H6lmd0X\nzcA3s95m9i8z+4+ZjYpZTB0zm26RZ39MMLOs0moLlvtHM5sFXFKszjOBWe5eGPNv9UeLPH9hiZl9\nP2be14jcGSwZTk1Bksm/gZbBBusxM+sXM228u3/P3bsBNYnsUUQVBLnyE4jc3n8t0A24IrjTE6Aj\n8Ji7dwZ2ANfEfrGZNQL+H3C2u/cGcoAbSqhzNfAhMPIw12+1u/ckcuf108DFRJ79cGfMPH2B64k8\n9+ME4KI4atvi7r3dfXKx7zsNyC02rqq79wXGELnbPSoH+D6S8dQUJGkEzwXoA1wJ5ANTor+0gQFm\n9pmZzSXyC7hrzEejOVZzgfnBsxX2Acv5Nghxjbt/FLyfCJxe7OtPJrIh/sgiMdQ/BVqXUu59wE0c\n3t9QbJ2fuftOd88H9kXzi4DPg+d+7AeeD+osq7YpJXzfcUT+HWNFgwJzgTYx4zcBzQ5jXSRNKTpb\nkkqwMXwXeDdoAD81s8nAY0C2u68xs/8GasR8bF/w3wMx76PD0f+PF89zKT5sRJ5FMCzOOpcGG+hL\nY0YXcnCTqHHwp8pdZ1m17Sph/J5SatjPwX//NYL5JcNpT0GShpl1NLP2MaN6Egn3im7YNgfH0i8u\nx+JbBSeyAS4ncvgn1qfAaWbWLqjlaDPrUMYy7wF+EzO8CuhiZkcFv/zPKkedfYM03yzgsqDO8tQG\nkafPtYvzezsQSduUDKemIMnkGOAZM1tgZnOIHDL57+A5AX8mstH6F5Eo9MO1mMhzmxcC9YHHYycG\nh3GuAJ4PvvsToFNpC3T3+cCsmOE1RJIq5wX/nV2OOmcC44ls0FcA08pTW+AfwBlxfu8AYPphVytp\nRympkvYs8njO14OT1BnFzKYBN7v70lLmOQp4j8gTvQorrThJStpTEElvY4mccC5NK2CsGoKA9hRE\nRCSG9hRERKSImoKIiBRRUxARkSJqCiIiUkRNQUREivx/gDjbhNwyqfkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Traingualr window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXecJUd5Lvy8J6eJOzObo3ICI4TAXIJMFGCQ74dtkfwh\ng40Dtrm2sQ02RtfwCZtLNCDbBGMLZNCVwSCECUKgnHclraRdabU5zOzkOWdOjvX9UaGr+3Sd6dHu\nzJzdref3m9+cU12nu7q7qt56nzcUMcZgYWFhYWFhQmilG2BhYWFh0d2wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOsIKCgsLCwuLjrCCwsLCwsKiI6ygsLA4ySCi84jocSLKE9GfBPwNI6Kzl7pthmvf\nRkTvXIlra22IiGewZZmv+24i+vFz/O3ZRHRGxBeQjaM4MRDRIQCrATS14nMZY2Mr0yKLlQYR/SuA\necbYnxqO3wngRsbY17QyBuAcxti+E7juywHISY8ApAAUtSoXMsaOPNfzLyWIKAKgDmArY+zQCjcn\nEIRg38sYo5Vuy1LDahQnB29mjGW0vzYhIQbCGYMz7X492Axg13JflDF2j+yDAC4Sxf1av3QJCSIK\nEdEpPwec4X1tWXDKd5JuBRFtEar0e4noCIBfiPKXENH9RJQlop1EdIX2m61EdJegLH5GRF8iohvF\nsSuI6JjnGoeI6DXic4iIPkRE+4lohohuJqJBT1veTURHiGiaiP5GO0+YiP5a/DZPRDuIaCMRXU9E\nn/Fc8wdEZFopMyJ6PxHtBbBXlJ0v7mWWiPYQ0W9q9d9IRLvFNUeJ6IP6vYo2TYv7fKf2uz4i+gYR\nTRHRYSL6iJzwiOgaIrqXiD5NRHNEdJCI3qD99hoiOiCuedBz3vcQ0dPidz8los0d3u9biGiXeI93\nEtEFovwXAH4FwJeIqEBE53p+dx2Al2vHv6Qdfg0R7RXnvJ6ISPtd4LZ1gng2HyeiB8C1jU2i7Bpx\n/BwiukO8r2ki+iYR9Wm/P0ZEf0ZETxJRjoi+TURx7fiHiWhcvM/fJY1O0q8jvv8Oce3K9HwfJ6J5\n0Wf/Vjt2tjjvbxMfW7f5/P4+IrpKfH6lqP968f31RLTd2wZy6K/fI6J94ll/QTtnmIg+R3x8HQBw\npeeaG4joh+LZ7SWi94jyFBFViGhAfL+WiOpElBbf/56IPt35za0wGGP27wT+ABwC8Bqf8i0AGIBv\nAEgDSAJYD2AGwBvBhfRrxfdh8ZsHAHwWQBzAKwDkwSkKALgCwDHTtQF8AMCDADaI338ZwLc9bfmq\naMfzAVQBXCCO/wWAJwGcB05ZPB/AKgCXAxgDEBL1hgCUAKw2PAsG4GcABsV10gCOAvhtABEALwAw\nDU6BAMBxAC8XnwcAXKrda0N7Fq8En9TOE8e/AeAWAD3i3p4F8F5x7BpwCuN3AYQB/IG4BxLtmdfO\nsxbAReLzVQD2AbhAtPUjAO433Oe5oj2vBRAF8JfitzFx/E4Av9Ohz7QdF8/uhwD6AWwCMAXgysW2\nzaf/RTzl94p+c4Foe0SUXaPd26sBxACMALgPwKe13x8D72drRB95Vt4LgF8Vz/oC8ay/LdqwRbv2\nNdq5fgfAneJzxFP3VeBaUQi8P04D+FVx7GxR99/A6bWkz/1/AsDnxOePAtgP4Drt2Gc6tOEWAH3i\nGc7CGWN/BK4pbhD3fjcApl3zPgBfBJAAcKlo8yvFsfsBXCU+/0K057XasTev9FzWsT+tdANO9T8x\n6AoAsuLv+6JcDtRtWt2/AvBNz+9/CuDd4JNDA0BaO/YtBBcUTwN4tXZsLfiEGdHaskE7/jCAt4nP\ne2Qn9rm/p7UO/UcAftThWTAAr9K+Xw3gHk+dLwO4Vnw+AuD3APR66lzh8yxuBvC34JN/DULYiGO/\npw32awDs046lRLvWgE9eWQBvhWdyAef236t9D4ELxc0+9/m3AG721B0FcIX4fieem6B4med+P7TY\ntml15Dv3ExQf9Sm7xnCeXwfwiPb9mOw34vtnAXxJfP4GgI9rx87HcxQUPu34EoBPic9SUGzqcP+v\nB/Co+Hy7uNa94vt9AN7SoQ0v0c7zXwA+KD7frb838AUfE5+3go83vc9+CsDXxOe/F88qCmAcwJ8C\n+P9E/6yAU4QrPp+Z/iz1dHLwa4yxfvH3a55jR7XPmwH8hqAWskSUBfAy8El9HYA5xphufDy8iDZs\nBvA97bxPgxvYV2t1xrXPJQAZ8Xkj+ArHDzcAeJf4/C4A31ygHd77fbHnft8JPmkDfMJ+I4DDxCm3\nX9Z+6/cs1oFrNVG4n81hcG1NQt0nY6wkPmbE+a4G8PsAjhPRfxPR+Vpb/1Fr5yy4FqKfV2Kdfn3G\nWEvct1/dxcD0fhbTtiA4ajpARGuI05ajRDQP4N/Bn3mQdq7znNt4nYVARL8sKL0pIsqBT+jednQ6\n/30ALiKiYQAXg/fjbUS0CsALAdzT4bdB70/vg+sATPv0WfmO7gJfAL0IwGMAfg6uKb8UwNOMsWyH\n9qw4rKBYejDt81FwjaJf+0szxv4BnIYZkLylwCbtcxF89QGA86UAhj3nfoPn3AnG2GiANh4FcJbh\n2I0AriKi54NTCt9f4Fze+73L06YMY+wPAIAx9ghj7CpwiuP74KtoCb9nMQauztfBJ0/9WJD7BGPs\np4yx14IL52fA6TjZ1t/ztDXJGLvf5zRj+vWFLWFj0DbA/YyCYDFtO9HrfxKclryEMdYLrqEF9eo5\nDk7LSGz0HHf1YTgLBj/cBOC7ADYyxvoAfM3bDrmU9wNjrADgcfCV++OMsTqAhwD8OYBnGGNznW/F\nF8fhvid9fI4BGPLps7JP3AdOpb0FXGg8CT7mrhTfuxpWUCwvbgTwZmFMCxNRgrjhdgNj7DCA7QD+\njohiRPQyAG/WfvssgAQRvYmIouA8dVw7/i8ArpNGTiIalsa8APgagI8LQyYR0fPEyguMsWMAHgHX\nJL7LGCsv4n5/COBcIvotIoqKvxcR0QXiHt9JRH1iEM8DaHl+L5/Fy8H57/9kjDXBBcp1RNQj7vfP\nwJ9tRxDRaiK6SgzmKjhlKK/5LwA+TEQXibp9RPQbhlPdDOBNRPRq8S7+XJwv6MQ9AWBbwLqLbduJ\nogd8Qs8R0UYAH1zEb28G8F7icSQpcIpOx+MA3kpESeJG/vcs0I5ZxliFiF4C4G2LaIfEXeB0qZyI\n7/R8XyxuBvC/iGi9GB9/JQ8wxg6Cj99PEFGciH4J3DZ3ozieB7ATwB+CL54YuOB63wm0Z9lgBcUy\ngjF2FNww+dfgxsqj4IZk+R7eAeDF4NTCteCcr/xtDryTfQ18lVIE54sl/hHADwDcRkR5cIPjiwM2\n7bPgg+A28An7X8GN0RI3ALgEC9NOLojB8TrwQT4GrtJ/Eo6A+y0AhwTF8fvgtJTEOIA58bv/APD7\njLFnxLE/Br//A+C897cAfD1Ak0LgQmUM/Bm/EtzYDcbY90TbbhLteQrAG/xOwhjbA07DfRFcw3kz\nuDGyFqANAH9Xv+71qjFhMW07CbgW3IkhB96fvhv0h4yxWwH8MziXvxd8FQ1wIQoAnwbXZibB31cn\n4f4HAP5e9OW/hlvbDIq7wAXO3Ybvi8U/g1NGT4Ivnr7jOX41gHPA++53APw1Y+xOT3vC4AJFfs+g\nMw3WFbABd10MIvrfAM5mjL1robpL3I5XgA/qzZ3U/ZN4vSvAjfgbFqpr0b0goksAPAogLuw4Fqco\nrEZh0RGCWvkAuPeGXVVYdAQR/U9BFw4C+AcAt1ghcerDCgoLI4gHkWXBDb+fX+HmWJwaeD84HbcP\n3O3z/SvbHIuTAUs9WVhYWFh0hNUoLCwsLCw64rRIpjU0NMS2bNmy0s2wsLCwOKWwY8eOacbY8EL1\nTgtBsWXLFmzfvn3hihYWFhYWCkQUKPuDpZ4sLCwsLDrCCgoLCwsLi46wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOqJrBQURXUl868x9RPShlW6PhYWFxZmKrhQUYq+F68EzZF4I4O1EdOHKtsrCwsLi\nzES3xlFcDr6d5QEAIKKbwNNz7z6ZF6k3W/jYrbsxU6zi7OHMwj+w4KCg+9hYAMF3/bHgsN0rGBgD\nnhzN4cNvOB/nrO5Z0mt1q6BYD/eWg8fg2VuBiN4HvukHNm3SN5oKjnylgW8+6MSb2A66MGxqMAuL\n7sILNw+csYJiQTDGvgLgKwBw2WWXPafpazAdw30fehWu/NzdeMV5w7j+HZee1DZaWFgsDjZJaTBM\n5at46T/8Aq+/aA3+8ArTLsYnD90qKEbh3pt2A4LvR7worO9P4u0v3oSv3XMAk/kKRnoSS3EZCwuL\nACCr1gfCf+44hkaL4YOvP29ZnllXGrPBtxk8h4i2ElEMfCvNHyzVxf6fS9ejxYDbd08u1SUsLCws\nThp+8tQ4Xrh5AFuH0styva4UFIyxBvgm6D8F8DSAmxlju5bqeuet7sGmwRR+8czEUl3CwsLC4qRg\nulDFk6M5XHHugklfTxq6lXoCY+xHAH60HNciIrx46yBuf3oCjDGr/lpYWHQt7t8/AwB4xTIKiq7U\nKFYCL9w8gLlSHQeniyvdFAsLCwsjdh7NIh4J4aJ1vct2TSsoBF64eQAA8OiR7Aq3xMLCwsKMJ4/l\ncOG6XkTCyzd9W0EhsG04g3gkhD3j8yvdFAsLCwtftFoMu8ZyuGR937Je1woKgXCIcNZwBnsnCyvd\nFAsLCwtfHJktoVhrLivtBFhB4cI5qzPYO2EFhYWFRXdC2lDPWuaUQ1ZQaDh3dQ9Gs2UUqo2VboqF\nhYVFG6SgWK74CQkrKDScNcwf/iHr+WRhYdGFODhdRE8igsF0bFmvawWFhg0DKQDAsbnyCrfEwsLC\noh2HZorYNpRe9lgvKyg0rO9PAgCOzZVWuCUWFhYW7Tg0U8TmVctLOwFWULjQn4oiHQtjNGs1CgsL\ni+5Cq8UwkatinVjQLiesoNBARFg/kMSopZ4sLCy6DLOlGmrNFtb0xpf92lZQeLC+P2ltFBYWFl2H\n8VwFALCmz2oUK451/Ukcz1lBYWFh0V2QgmJt3/LvmWMFhQfDPXHMleqoN1sr3RQLCwsLhePzVlB0\nDYZ7OP83U6itcEssLCwsHIznyoiECKsy1kax4hgSL2EqX13hllhYWFg4mJyvYigTRzi0/PvlWEHh\ngdQopgtWUFhYWHQP5kq1ZY/IlrCCwoNhq1FYWFh0IeZKdQykoytybSsoPJAaxZTVKCwsLLoIc8Ua\nBlJWo+gKJKJhJKIhZEvWmG1hYdE9mCtZQdFV6E/GkCvXV7oZFhYWFgCAZoshW65jwNoougd9ySiy\nJSsoLCwsugPz5ToYAwZS1kbRNehLRq1GYWFh0TWYFVS49XrqIvRaQWFhYdFFkDbTfmuj6B70p6KY\nt4LCwsKiSzBb5PPRoBUU3QNLPVlYWHQT5MK1NxlZketbQeGDvmQUxVrTJga0sLDoChRrDQBAOm4F\nRdegL8k9C6xWYWFh0Q0oVLmgyFhB0T2QL6NUba5wSywsLCz4XBQOEeKRlZmyraDwQToeBuCoexYW\nFhYriUK1gVQsDKLlzxwLWEHhi1RMaBRWUFhYWHQBitXGitFOgBUUvlAahaWeLCwsugDFWmPFDNmA\nFRS+sBqFhYVFN6FYbVpB0W1IC0FhNQoLC4tuQLHaQDoWXrHrW0Hhg5Q1ZltYWHQRClVLPXUdrEZh\nYWHRTSjVmmeeMZuIPkVEzxDRE0T0PSLq1459mIj2EdEeInr9SrQvEQ2BiNsoWi2GT/30Gdy2a3wl\nmmJhYXEGotZo4eM/3I3bd08A4NRT6gyknn4G4GLG2PMAPAvgwwBARBcCeBuAiwBcCeCfiGjZnw4R\nIRkNo1xr4u69U7j+jv143zd3oNawKT0sLCyWHrfuHMO/3nsQH/zOTjDGUK43zzxBwRi7jTEmDQAP\nAtggPl8F4CbGWJUxdhDAPgCXr0QbY5EQas0WHjo4q8p2HsuuRFMsLCzOMDxwYAYAkC3VMZaroNpo\nIbZCUdlAd9go3gPgx+LzegBHtWPHRFkbiOh9RLSdiLZPTU2d9EbFIyFU6y0cmi4iGeWS/NmJvDpe\nrDbwsVt340HxQi0sLCwWi1aL4R9v34tbHh91le8am1caxNNj82i2GOKR01CjIKLbiegpn7+rtDp/\nA6AB4D8We37G2FcYY5cxxi4bHh4+mU0H4GgUY7kKXrh5AMloGPsni+r4DQ8cwtfvO4g/uHGHzTJr\nYWHxnPCTXeP43O3P4gM3PY6xbBkAFx77Jwt47YWrAQCHZvi8c1pqFIyx1zDGLvb5uwUAiOgaAL8K\n4J2MMSZ+Ngpgo3aaDaJs2RGPhFFtNDGWLWN9fxJbh9I4OF1Qx3/8JDduz5XqeMJSUhYWFs8B0lgN\nAHfsmQQATBerqDVbeP6GfoQIODJbAoAVSwgIrJzX05UA/hLAWxhjJe3QDwC8jYjiRLQVwDkAHl6J\nNsbCIRSrTUzlq1jbn8CavgQm81UA3CNhz3geV1/GZdqDB2Y7ncrCwsLCFw8dnMUbLl6DgVQUT43m\nAADHsxUAwIaBJIYycSUoTkuNYgF8CUAPgJ8R0eNE9C8AwBjbBeBmALsB/ATA+xljKxLMEIuEMF3g\ngmEgFcNwJo4pISj2TxVQa7bw0rNXYX1/Ens124WFhYVFEJRqDYxmy7hwbS/OHskoavt4jlNQ6/qT\nGEjFMDnP551YeOUExYpEcDDGzu5w7DoA1y1jc3wRj4QwnuOSPROPYKQ3julCFc0WUxJ+21AG24bT\n2DdV6HQqCwsLizYcmubzyNbhNEazZdwmaCjJXIz0xtGXjOLANBcg8ehpaMw+1RGLhDBbrAEAMokI\nhnviaDFgtlhTAmRtfwJnDWdwcKoIx8xiYWFhsTCkkXrLqjQ2DqYwW6yhUm8iW+I7aw6kYuhNRhSz\nsZIahRUUBsSF1xMA9CQiGEzHAHBBMZYrIxYOYTAVw7r+BIq1JvJVmxfKwsIiOA4KTWHLUBrDmTgA\nYCpfRbZURyYeQTQcQq/Ylhk4A43ZpwJ0n+WeeBS9Cf7C8pU6xnMVrO6LIxQirO5NAAAmhJZhYWFh\nEQRT+Sp6EhFk4hEM93JBMZmvIluuoU8ICDnvAFZQdCV0D4NMIoKeBDfnzFfqmC3WsCrNX+waISjG\n562gsLCwCI7pQhVDQpPQNYpcqY7+FBcQCc0usZJeTyuXjrDLoUvvnkQELWGDyFcayJXriopa0ycE\nhdUoLCwsFgEuKPg8MtwjBEWhimxZFxTOPHRaRmaf6nBpFHFdo+CCQqqGUmDMlbjhu1ht4Kov3YsP\n3PTYMrfYwsKiW3F0toRXfuoOXH/HPlU2U3CYCTmf5Ct1ZEsO9ZTsEo3CCgoDdA+DeCSkuML5ct0l\nKDLxCCIhUp4KP35qHDuP5XDL42Nt8RVHZ0uYE55UFhYWpx8YY3j8aLZtG+Ub7j+EwzMlfP72Z1Ft\n8NCwmWINq4RGEY+EEA0T8pUGyrWm2hMnGbOCoqshX0osHAIRIR4JIRYOKUHRLwQFEaE/FUW2zAXF\nY0fm1DkeOeR8PjJTwqs/exde/dm7ULAeUhYWpyW+99gofu36+/An33YzCjIbbL3J8MzxPBrNFuZK\nNWWjICJk4hEUKg2U6k0lIBIRKyi6GpEQAQCiYf6fiNCTiGAsVwFjcLmt9SWjyAmN4qnRHH552yr0\nxCPYfTyn6vzoqeOoNVqYLdbw86cnYGFhcfrhP7cfAwDc/vSkisOqN1vYO1HAay7gSf72TRYwV6qD\nMSiNAgB6ElEUqg2Uapqg0DQKOSetBKygMCAc4o8molFQiWgYE8K7SRcUA6mYslEcni1h23Aa56/t\nwbPjTsT2A/tncNZwGulYGDsOO5qGhYXF6YFqo4lHj8zhkvV9AICdR3my0MMzRdSaLbzuotWIhgl7\nJwuKVdDdXzPxCHLlOmqNFlJRTj0lNC0iRFZQdB2kfNCleDIWRlYIBN3I1J+KYq5UR7nGoyrX9Sex\nvj+JMZGzBeCriEvW9+Hi9X3YeczRNCwsLE4PHJgqotpo4bdeshlEwBNinI+KJH9bVqWxti+J47ky\nChUuKNLaPtiZRETlk0vG+ASkp+0IW42i+xASLyWkvZxENIQ5QTHpgqInEUWx2lDJvNb2JbC2P4mJ\n+QpaLYZKvYnRbBnbhjM4d3UPDtrcUBYWpx0OTPFI64vW92J1T0LlhDuedeaFoUwM04Uq8lU+j2Q0\nQdGbiCjGIimM2VFt/gmvoEZhjKMgoi8E+P08Y+wjJ7E9XQOpSbg0iqijUeiBMMlYGKVaQ8VSrOlL\noFhtoN5kmC5UlXDZMpRGIhpqc7FljKHeZCtqrLKwsFgcap7tSeV+NVuH0tgwkMSxOS4oxnIVEPF5\nYbgnjoPTRRSr3PNJut0DXGhMibxOciGqaxGhFZweOl36KgA7Fvh761I3cKUg+UCdF0xEw6g3mfjs\nPLp0LIxSrakEwqp0HGv6kgCAifmqWiWs7Utg40AKAHeVBYBGs4X/+U/34/Wfv9t6Q1lYnCK4bdc4\nLvzoT3Djg4dV2ViuglXpGFKxCDYOpnBsjmsSk/MVrErHEQ2HMNzDtyso+GgUiWgYMreo3AZVt5Gu\npI2iU2T25xhjN3T6MRENnOT2dA2kJhEOuQWF3+dkLIJSrYlsmWsbvckIBkRk5VyppnjH4UxcRXyP\nZcu4eH0fHj44i8eF0eunT43jrS/cAIBrGX/xnSdwYKqAf7vmcvSlHKOXhYXF8uAnT43jo7c8hU++\n9Xn4lfNHVPnX7jmIRovha/ccwLteshkAT78hI6z5RmcVMMYwV6phMM3H71AmjrlSXcVdpT2CQkJq\nFDqj0ZU2CsbY5xf6cZA6pyrCBupJwqtRAFx7ALi7rAzBz5brKk3wUE9c+U1L17lHRdxFJETYftjZ\nKe/ZiQK+s+MYHj2SxXcePXZyb87CwiIQPn/7s5jMV/H5n+9VZdK7KRIiHJpxgmj13E2DqRjqTYZC\ntYFsqY7+JHeDlV5OMjecTj3paYOke6yLeupGryciShDRu4noLcTxV0T0QyL6RyIaWs5GrgRMxmzn\nsyM0UmJVMJ4rIxIiJKNh9ImOkRMaRTIaRjoWVik/ZkTnevp4HpsGU3jRlkHsPu5Ect+zd4qfOxbG\nA/tnluIWLSwsOmAyX8Ez43kkoiE8ecyJtt43WUCjxfDrQvt/+vg8AHfupgGZ2qcoMjmIhWMmIeeK\nCsIhcgkH/bOcX6Ia9dSVGgWAbwB4HYD3ALgTwCbwLUzzAP59qRu20pCahP5qomGDoBCfj+cq6E1G\nQUTKUJ0t1VWoPhEhEQ2jJ+5sRrJ/qoBzV2dw3poe7J3Iqw2Qdo3NY21fAq+7cLXaS9fCwmL5IMfd\nNS/dihYDnhTurnsnuNH6Lc9fBwDYN1UAYwzTeSfSWlJNM0W+v4SkoqVNYqZQQyoaBmlagu4KK1MI\nuTWKk3+PQdFJUFzIGHsngF8HcB5j7P2MsZ8IL6eNy9O8lYNU8/R960yCIh3nn8dzFSUgYpEQ0rEw\n5kp15Ct1V2DNYCaGmQLXKI7nKljXn8SGgSRKtSbmy3zVcmC6iG3DaVy4rhfj8xUV+Q0AdzwziY/d\nulvljLGwsDgx7DyaxUe+/yRmxAIOAPaIgNmrfokLBLkj3ahwd33+xn5EQoTxXAXFWhPlehNDPVJQ\n8P9zpRrmSjX0p7iGIW0SM8Vam5ejrlHIjBDyPwCXUFludBIUNQBgjDUAjHmOnfYzlJ+ap7+0hItP\nFOrkfMXFOfanYsiWa8hXGkrlBHjG2dliDeVaE7lyHat7E1grvKRkkN7BqQK2DWWwaZB7SR3Lci+p\nerOFP/yPR/H1+w7i5keOutp38/ajuPrLDyiPKgsLCzduevgIrv7yA2qyl/jQfz2JGx88guvv2K/K\nxrJl9CWjOGckg3CIcHSW/+Z4roz+VBTpeASrexMYz1UwKxZ+qwTlJDWI47kKqo2WlkSULypni9W2\njYh0jSLqo1GsJDoJig1E9AUi+qL2WX5fv0ztWzHIF6TvhS1d1SIhcrmtSWN2vtJQbm0Aty+Ua00U\nqg30uAJroshXG8qgtaY3gbX9zr4WxWoD85UG1g8ksb5fCArharfj8BzKdS6nf/HMpDpnvdnCtbfs\nwkMHZ/Hlu53ObmFhwVFtNHHtD/gY+erdB1T5xHxF2RnuFrZBgAuKdf1JRMIhrO1LqLiI8VxFLexW\n98YxPl/BfIVr/L1JN8UkPR7lHJGJ8+OzC2gUkbB0pumO2KpO7rF/oX3e7jnm/X7aQQkKrUxKeZ12\nAtwbiuifkyK+Il9p4JwRd2DNsbmSiq9Y3Ztw7ZQnO9dITxwbBniHlFrC7jHeoV9+zhCe1ozfjx/N\nKgFy797p53jXFhanL7YfmkO10QIA3LvPGSMyJ9PLzxnCffumUao1kIrxBKDrxMZk6/qTGBOpOCbm\nq1gtti5d3ZvAsxN5FQMlF4SSYpK2SOnFJGnqepO1bUSkCwppo4iEu1yjYIzd0OlvORu5ElDh8pqk\nkOH0XqowZvBcSEbDKNe5RpHxRGAWqg3Mi9Tk/akoBgSHmS3VVXTmUCaO/lQUsXBIle2bKqAvGcXL\nzxnC+HxFueZJQ9s1L92CQzMl5CuOTeOJY1n81XeeUIJJR73ZCv5QLCy6DK0W87XV3bpzDNf9t9uO\nt2uMj5H/95c348BUARWxsNovUm+85fnr0GKOsXosW1aa/lAmhlmRlWGuVMOgGK/9qSjmKw2Vu0mO\n83gkBCIoW6Skp/UAO69Goe+Bo7MX3YBO7rG3EtEPTH/L2ciVgK9GIV4sY+66uu0i7kntUa41Uag0\nlMoJ8M5UqHB6CeBUVCIaQiwSQrasBej1xEFEGEhHlUA4OFXEWcNpbB3KAIDKJ3NguoDeRASvOJd7\nLu8Zd7SNa3+wC/93+1F8/vZnXe3+v48cwcXX/hTf3WHjNCxOPbRaDL/55Qfw8k/eocYMAJRrTfzx\ntx/DV+85iP96dFSV750oYLgnjpdsW+USCAemChjKxHHB2l4AXEBU6tx+KCmmgVRMjcFcyXF37U1E\nMV+uK41y9SbxAAAgAElEQVRCCgIiQjoWcQSFmBdSMf+4CcDtii/nlFPBRvFpAJ8BcBBAGcBXxV8B\nwGlPgvu9ICndWx5JYdIoUrEwsuUaas1WW06XYq2p8kb1JiN8AySxr8W0plEA3INCBuhNzHN+dK1Q\niY+L/FIHp4vYNqwZv4VNY7pQxWNHuGp9xzMO/woAX73nIKqNFv75rtP+dVqchthxZA7bD89hMl/F\n9x9zBMKDB524I51iOjDNF1mbV8kxwhdZo9kyNg7yjM8AT8Uhtw2Qmv5gmm8lUGu0kK82nAC6ZBTV\nRkuNWZ05SMXCmC5W1WeACwDJSHg1iohLUIRc/1canainuxhjdwH4H4yxqxljt4q/dwB4+fI1cWXg\nZ8yWL82rUZippwim87zDpTUjtxQacpLvEa6z/akosqW6coV19uWOqgA9mSbAERRcIIxlK9gwkMQ6\n0dmlV8czwo5xxXnDGJ+vKIEznqtg3yRfYe2bLKhygAcafezW3S6tRGKmUHU9EwuLk4lCtaEoIR3f\nfOAQvqnlVQKAhw/yTAb9qagrq8HOo1kQAb9y3rCiZAHe59f1JZWWIMffVL6KkR5O8yaiIRzPlpHT\naGGAC4wWczR4WS6N12osa8xBKhbWqCc+/olIUUxejUJfnPqlEFpJBBFXaSLaJr8Q0VYA6aVrUneg\nkzHbq1HEwyZjdkgZmHVKSqqnY9kyeuIRdS3pTluoNvjWq6IjSY2iXGsiX21gpDeOwXQMsUjI09kT\nSMUiGEzHlKB4VuzbLX3BpXfH0+P8/zsu3wTAMZIDwOd+thdfv+8g/uZ7T7ru8449k7j8Ez/Hh77r\nLrewOBmYzFfwiv9zB970hXtctoW9E3n87S278Lfff8oVfLrzaBbbhtO44txh7DzqlB+YKmJ9fxIv\n3DyAI7MllGtNMMbUImsgFUUsElJeh5Ni7BAR1vQmMJGvqlxM/WqxFhPn5nSVEhQJZyyHQ+TK3pCK\nRZTA0dP/qG2W2zSK9ijsrrdRaPhTAHcS0Z1EdBeAOwB8YGmbtfKQxmxdJkgPBO96OhrRbRTujiKh\nG6oyWufybqmaLdUxX2koLQMABlPcRuF4Q/FOPSTiMUq1BgrVBoZ6eGde05vAhBAgh2aK6ElE8KIt\ngwCcFdFBYcB70/PWAgD2TDjaw93Pcopq++E5RY8B3Ae92WK4ecdRNQAk9k8VUK6d9uE1FicJh2eK\nLocLAPjxk+OYLdawf6qIe551KKM79jhu4Hc9O6Wdo4RtQxmcNZzB+HxFaSIHpgvYNpzBBpGpeTRb\nxny5gVqzpex+a/sSGMuWUW1wW8SICJTrT8WQLdWUoFC2iCQfs5LSleNW/h/LlpGOuSOtpYcTAJfb\nvNQkvF5PuvYgz7OSQXY6FhQUjLGfADgHXDj8CXiU9m1L3bCVhqNROGIhpqgnj41Cj9jWXn7CZxUB\nOKuLyXzVZbvoiUdQFJO+Xp4WNo0ZwXfKoJ6+VAzZUl3RW8PKpuFszcptGgms7k2AyG3T6ElEcM5I\nBsloGGNCA5nMVzCaLeMV5w4DgHLBZYzh/v0z2LwqBca4J5XE/fun8erP3IV3fO1B13PJlet4+1ce\nxHX/vdv7eC3OAIxly7jy83fj+jv2ucqfGs3hik/fiauuvw/NljOW7t03jbV9CURChB1HnO2CHzuS\nxeZVKWwdSitXVsYYDs8WsXlVChs9drnRuTI2ajTsWLaMyTzv9zK761CGa+nTghqSEdV9SW6czolM\n0JL+lYs+6X0oWQGpUUzmq4pekkhqC8WkT3oOr0bRLTSTHzp5PV0qPzPGqoyxneKv6lfndINjo3DK\npEbR8qgUevCdW6PwFxRyJZEt1ds3QKo2ka/UXW506XgEzRZTnVqubvqTUeTKNUwV+CCQnX0gHVN7\nY0zMc7U6Gg5hOBPHuLBpjM9XsL4/CSLCuv6EEhTSE+Stl/KYSklVjc9XkK808JuX8ewtOlV1604e\nuP/YkSz2a7v3ff+xUTxwYAZfvecgDk4XXc/srmenXMJGolhttGkrFt2DOc2WJdFotnDrzjFl0JX4\nj4cO45nxPD710z2uFDS3PjEGxjhFJFPsA5wmvXTzAM4eyeCZ407/OjhdxNnDGVy4rldRqVP5Kir1\nFjYNprBx0Ik1qjVamCvVMdKTwPoBx16na+MAFwC5smMPlBRTfyqKbNlJAy4FRTomczS5NxZKir2t\nc+V628Sf8oxtiVhkYRtFt6GTRvFvRDRARIOmPwD/ulwNXW6E/ARFyF+j0OGNo5DQO5HkMcv1pqt+\nOs73tShUPBqF6GSSU5Wutsr4LSZW5aGRiirj9OR8BSMiOGhtX8Jl05CrKx5M5KzGAODSTQPoiUcc\n91tBVb1gUz9W98bx7IQjEB7YP4Ntw9xs9fgRZ+Df/eyU8vC4f79DJeydyOPdX38YV11/nyu3TrnW\nxOs+dzde/Zm7XBMLADRbDC2vhLZYMjR9nvV3dhzDCz7+M3zuZ24363+//xD++NuP4Q9u3OEqv3PP\nlJr8Hj7kGJsfPDCLbUOivwhBUak3cXS2hLOGeYJM2b9aLSY8+viucWNZvr3wpJj4V/cmtE3CKkpY\njfTGFZ00na8qTWBY0xxy5bqivySF1C/Kix5315SgkaRxWi7wpAAo1ZouZgHwjvkgNopTU1D0YeEd\n7k7bpV9YcYRaWWhh3lDnHfWoyni4XaMAPFloYzxAL1du1ygAKG1AChG5+slX3J16IB1DrlxHvdnC\nVKGqVlFDmbjq6FP5qqKq1vQm1F4ax+ZKCIltG9f2J5RX1QGhEWwb4tyvFCzVRhOHZ0t448VrEY+E\n8My4sxLcfXwev/ZL69GTiCjNBABu2z0BgAvhO/Y4nPMdeyYxmi1julDFj546rsoZY3j31x/Gyz75\ni7ZV65fv2o/f+teHfFe6NpjQgd/Ef9uucVx1/X1qlS5x8/ajOPcjP8Ytj4+6yuVubt944JDrfLft\n4u/zkUNziuKpN1vYO1HAO1/MnSX2iH7BGMO+iTxece4wVqVjqvzobAktBpwlBMLEfAXNFsNUoYpq\no4VNq9LY0J9ETfTpaTXxxxQVO1N0bxIWDYeQiUcwpy2mpBG6T7iiy7Ejx5QUIMVaE0ktu6tkB6ZF\nP5Pf9cWg1+agu7bqQkDW62Sj6DZ0co/dwhjbxhjb2uHv8uVs7HIi5Cso5DHz79wZILWQfB+Nwls/\nrfGg3khuABjPuX21+5IxV2eXfKn00BjLllFvMpXyuC/FB4HuAQJIqooPgGPZsqKq1vQl1T7gk/MV\nhAjKNVcmLzwyUwJjwNkj3Ki4d5KvBAvVBo7nKjh7JIML1vQqN10AeOTQLM4eySATjyjOWZYnoiH0\nJiLYcdjhqJ8+nse9+6Yxlqvge1oA1Xyljr//8TO4Z+80vvXwEdd7uO6/d+PSj/2sjd76wc4xvOoz\nd7rcJgGuzfzkqeNtrpmtFsNDB2Z8XTZNgshvUpblftqoSVs6NldyUXkSB6YKvnuUfPZnz+JXv3hP\nmzD9xI+exkXX/sR1z4wx/N2tu7HzaBZf/IXbhvDlu/aj2WL46j1OPqR8pY4njmWxvj+JuVJdUYm1\nRguPHZ3DCzb1A+Dp8QFOF9WaLVy6aQDr+hIq+nkqX0Wx1sS24TTOXd2j+oue92xNXxKNFsNMoepJ\nZ+PYImZUEr44EtEwUrGwy+FDtznIxJyAM5b6kjzfWlYIEOk80peKgTGunbjztvlTT/pYbou0Fk4u\nsXDItbiU9aKe9Bzdkq7DD90RzdGF8FMalCcCzC805hIU7Z0D8OSG8uExvbYLqVHIFBwZ0Wl7kxHU\nmu3BPjKluXSRVXEaSe7Rka9yDxAZ0DeQiqHaaKFca2K6UHOoql43VbUqE0c4RFjfn8TxHKcADs1w\namrLUBrrBxzBckhpIDzA6eick9F2/1QB56/pwUXrerFb0zSeGs3h4nV9uGzLoGuCv3efs4mT7i9/\nn5bTSqe2yrUm/u2+Q8hXG/j3+w6p8laL4f/85BkcmCq2GVg/8aOn8fs3PopP/XSPq/yGBw7h6q88\niL+7dZerfMfhWTz/727DZ25z1z8wVcDl192Oa295ylUuXT//6FuPucrnK3W85rN34Te+/AAamuDJ\nlmq48vP34E1fuMeVeqVUa+DNX7wXb//qg66Jf7pQxRd+vhdPjc7jWw8dcdX/yt0HUKm3cMMDzrM4\nPFNS/eO+fdNKgE3OV7B/qohMPIJdY/OKgtk7WUCLAW97kbBRifd2ZLaEepPhKrE3g1wQyNxkm1el\nsG04o9xKpYDZsiqNdf36QsShktaKvGdjuYorS4Fc2ExrGoWyy6W4B6BDw7rp2XylgVg4pMaVtD1I\nqlVqFDK763Sh2qbty3LAGasmhxXAWSh6BYCkqLw71oW7xMPJD1ZQGOCnBgZ5kW51c3Eahcv4rWen\njcuNkcrIxCPKfiI1kMl8FWGxs55+HjkIe7WAvmKtqVIiS6O4HFSzpRqyWu784Z44pgtVtFrMRVWt\n7k2g1mghW66rSWxNb8JlA5H/1/XzKPLJfBX1ZgvVRhPH5srYNpzB5lUpFR0L8Eln61Aa24bSODJb\nUpPXnvECVvfG8doLV+MJbXLcfXweIQJ+87INeOJoTq3KHzk0i0aLIR0Lu7xnDs0UlWfMgwdn1Pmb\nLYYfPcmprh/sHHOt+m96mKdy//5jYy4N4psPHEap1hSTsKNt3PTIUcwUa7jhgcOulf33HxvFaLaM\n/37yOPZqVM9tuyZwcLqIHYfn8NBBRwjesWdSBJ+1VNsA4KEDsygKN+QfPuFk/3/wgKNh6NrG9kP8\n/tOxMLZrdoKdQhC//fKNmC3WFPUoBcA7XrwJjAHPiKBL6U79uovWIETAPnEPcuJ//kZuu5Ia0Jh4\n/2v7kljX7/QLaVtY25fAmr44JvNVNFsME4KyGumNY02fk0lZp5LU9sKlGmaKNcTFni8AsCoTw0yx\npmwOcnE0kOLacqFad2npUlDI/icFhfRUmi3WXOMxGuZxTZV6C0S6i2tILSq9xumoIV+TrO+dY05J\n6ulMh9/+tI6Nwvw7/WW7qCeXZ5T/3tumCG9Ho3C708pVzUSugkw8ojQeWd+J/HZsGoCPppGS2zby\nTVb01ViLAYVagwcl9UqqyhmwcjJclYlhTV8CuXIdpVrDoQx641jbnwRjfJI4NlcGY8DmwRQ2DKQw\nMV9FtdFEpd7ExHxVeLGkUKm3lAHywDTfm+OckQyO5ypaMrcCNq9K45IN/chXG2oSkpz7O1+yGYdn\nSioWRNIi73rJJmRLdbW/wMHpAmaKNVyyvg9T+aqiQfKVOvZM5HH2SAblelN5hDHGcM/eafTEI6g2\nWuq8ADfgy8nrUY0+u/vZaVX+yCGn/J69Uyrj6Hat/KEDs+hLRjHSE3cJx4cOziIaJpy7OuMqf/JY\nDrFwCFdfthG7xnKunRL5PW/GoZmSykl0YKoIIuCNl/A4GhmAKSf+N1y8BgCUUDs4XUQ4RNg2nMZI\nT0IJgsMzjoawpi+pFg7Hs3xb4OGeOEZ6Epgp1rjNQdMQ1vQm0BQU0+R8FZl4BKlYRG0jyj36nPrS\nWWOuVMd8uY4+sZsk4AiENptDyrFFuF3OHQeRWCSktHzpqTRTqLW5u+p2CT3OIaFsDv6CwqtpSHgF\nQ7ekFPfDgi0T+2W/i4g+Kr5vIqKTYpsgoj8nIqbvwU1EHyaifUS0h4hefzKu81zgJ9ylgOgsKJzP\nZurJn4ZyCRMf20Wh2nAZz2T5RN69YZLs0HLQSo8OuYqStECPx6aRLdWRLdbVgJS/y5XqmC3WVL1+\nbcBOF6oYSEW5TUNQBhPzVWXUHMo46UbGc46b4urehEqhPjpXViv9jS53RzmRS68Xt7/8AZEgcaM4\nj1wd7p8qYDAdw+UiyFDSY3vG8wiHCG9+ntzCkk+C+wRPLvdAlpSOjCGR0esyKnimyFe0bxeG2ifF\n6rzebGH/VAG/cdlGhAh4Uosi3jORx5UXr0VfMuouH8/jRVsHcdZwuq3+Ret68bwNfa7yfZN5nDWc\nwQs3D7oEwoFpHlNw8YY+zFecvU4OTRcxlInhMvEs9Il/fX8SZ4/w5JLSOeHQdBE98QguXt+HEDma\nwfh8BSM93ECsOzlM5vkGPP2pqIuqHM9VsLo3gXCIMNIbR7PFMFvkE380zLcKXq2l1p8raf1L9rty\nHdlSDcloWNkhYuEQFwiejMw9CZ6ROV9tIBENqUlaGqd5Yk59kSXTgNdc5XLszBRrbdsJyPGW8ggQ\nudhrzwbbeU+JNo3iFLdR/BOAXwbwdvE9D+D6E70wEW0E35P7iFZ2IYC3AbgIwJUA/omIwv5nWFqE\nOlBPnWwUuiYSMWgUUYNAiBk+m+pIlz25GpMwaRRy4vdqFJKCmilWka82lKDQB+y8tp2rU15z7RPs\npErnRsXBdAzRcEgdny3WNW+VuJoopvJuo+Vazd2xUm8iW6pjbZ8jWKRAcLaRbRcg24bS2DDorj+W\nLWNNbwJbhWumrC81hVdfMAIAOCrK5daXv3L+CCIhwuHZoqv+y84eQk8iogy1h2eKqDcZnrehD1tW\npRUNI5/HeWu46+e+ST5ZN5otHJgq4pyRDM5f06vKAT5hbxlK46yRDI7MlBStdlAIhLOG05ivODEn\nsr58RnLiPzhTxJZVaZXwTvaJY3MlbBpMYaSHT+bKPTpbwfqBJI+76YnjeNYRCNLddF2fszfDVL6K\noQyPdl7Tl1B052yJ7xMPOIGg8j3L+gPaAiVfaWjBbWFEQqTKZf8lIm5zKHL3VX0zsHQsomKQ9KwG\naW1PGD+BkC3VPLtV+kdTA87Y8woQOZ69Xkyyvmlh6aWyT3UbxYsZY+8HUAEAxtgcgNhJuPbnAPwl\n3BkxrgJwkwjwOwhgH4AV8awK+QiF0KKpJ3+NQq+TMLjXBREaUk2e9ax+2jSKhDtoSBnF5SYrcitX\nMcgltSQHLud4G8qrSlEAxTpmilU1Ich0B9kyFwhDslw7j049OFRCzYk6z8Rd7o66YHEibSsqDbS+\nudOoNqmt7kuoyVEaLEezZazrT2AoE0csElKC4thcGUOZONb3J5GMhlX9sWwZRMD6/iTW9idUfUm3\nbB3iE7CzGi855QNJdZ7DM7I8gw36Bjj5KmrNlqo/lquAMYZcuY65Uh1bVqWwXriEThc5l390tuya\n+EezZTDGcGyujE2DKa28ou5h42AK68S+CrKt3G2aOyes6U3guKg/XXC84db2JZVmonvJjfTGMTnf\nXn+kN45CtYFSrYFsqa7e+5BmhJ4paP1FX4iU6+0CodxOGQ2k+L4QhUpDLYgAvmgq1hoi/Y1bcyjX\nm5iv1N3lYrzMlWouKjhliKYGnMWet1xRTJ44ClMSUQnvYvRUt1HUxaqeAQARDQM4IQd1IroKwChj\nbKfn0HoA+kbQx2DYdpWI3kdE24lo+9TUlF+VE4LfK3OEhxn6qsDkHqvDqFEY4i5iPraLRou5y6WR\nWxgoJR/rCBBe3qsMeE5KEUBzIUw5eWwYcxsIAaiB3OehtubLdcyXGy4jOsAprKl8FZEQT6kuqYbZ\nYl0FCA6mY2qlOVuoqTaN9CRUfV3gjPQkkIiGkYlHlFCR2UB7ElH0JiJKgEgNJCQ8t+REPpmvYHUv\nX+VuGEhiNOtoIMNCqOj1J+bd9Jk8vzTIrhFCalTtiOYY/Nf188m30Wwpwby6L4F1fdxBYKZYU7TO\n+v4U1vU5wnG2yFPWr+tPYq3UELIVFGtNlOtNd1ZhIUCkwO5LRpGMhnFcCCN94l+jOSHw+k58zbhP\ngOZAKoZirYlao+Uql6m3c2UetyApStkP5is8j5n8rvpLxa2xymO5Ei/PaOU9Yi+XQtWtIaRjEaU5\neDUK2Wf8FlOVesvoUOK1Ucicbt7U39KryeT1xNqyw3F4maZTNeBO4gsAvgdghIiuA3AvgE8s9CMi\nup2InvL5uwrAXwP46Ik0nDH2FcbYZYyxy4aHh0/kVIEhJb6foVtCXyXoL9672pCIGymmxWkXcR9K\nSu7IpQx1Hk2jx6NpyIlW1nM8Q/jEJTnhnkQEREBOGA9lpLi+QsxX65rLIc+Qmy1zY3l/KoZQiJQA\nmSvVlF+8tHf0JiKYLVZdGojuL69y9/Rq+a20BIl6kOFssQbGGMbnK4ruGsrElBaj0yprNZfNsWxF\nTcjrhEswr1/BKpG91ytAiKC0k+lCVRjp5Za3XCviXj5VtSpf3ZNw0sPPlVXurqFMzJWvSN+nRG7R\nOZYrY1rzDOpJRJGJRzA+X1FeUzo1NKGV6xN/1je+hq/qWy2G2WIVq9IycZ7znqcLNSf3mPb+50o1\nRVHKfpAXO8H1eNy4c3JhkXR7Jcn4h17d/haPoFRr8H6XcGsUTdHOjJ6MTwiTuZI7xYZpAyFTZgVA\n2yPCEFHdZsw2bHQmcSrZKDrtmQ0AYIz9BxHtAPBq8MX0rzHGng7wu9f4lRPRJQC2AtgpPAc2AHhU\nGMhHAWzUqm8QZSsGXSao9/ocvJ4iJkHhop78BUI4RIiECI0WM2oX3v12IyFCrdFCNEyqTSlNIBA5\nRrhE1H/bRici3G3rCAlX3FKt6UpgKCcKyS1vE7vwyU2Z5kS5HPiJaBhpkbO/1mxiIBVVz2lVJs6N\nxgVH0wAc6kGWD6WdoMGZYk1pUWqVm4pirlRDpd5CrdFS2tBAKqYoocl8FZes7+PXSUVVDMh0oapo\nrUHhpw9wgaAnl8tXG6g2mpicr2BVmht8Jd0iXU/DIcKqjBYLoHlXre6NoyZcb2eKVcyXuefOUE9c\n8fAzxZqaWFdlYup5zBQcz6Ah7Z75BlhS4Gjl5bpL+MryXWM5FKoNVBstjTLkAZ2FWgMt5rxfqSnk\nytzt1OssMVfkGoX0nnMERV3kMYuK9x9CLBzCfLnRplFkEtIIXVe0GcDjHMayTRRr7RoFwLXQ1T0J\nrZyPl1qj5d4CIADl69Uc5GIv6pngTd5NMUO2aQkv9XRKahSenE6TAL4N4FsAJkTZcwJj7EnG2IiI\n/N4CTi9dyhgbB/ADAG8jorjY9+IcAA8/12udbChNokPKoZCBejIhZqCn2qM823lQU30iUmqze38M\nqYbXhf+34+KXiobbNAppA5kQE4uu0qdiYZTkfuBiwEbD3K8958Mt96WiyApbh74SlFHhuXJDTUAA\n1yy4u6M7F4/UHOQ2snJyWiXOI7UoucodTMcwW6yryHO5Gh5Mc4HTEu6Zrih1ueWlRp8MpGMo17kb\n71S+ghGhmfRrBlldM9HtL1IDCYdITZ6SPouECAOpmFOuGfyH0nFF/+U0V+ShTBwRoXXlynWXRiGv\nPafXV9QQDz6T0cjq3kRQmtqDIeVoCLVmSwlf5WYtnvlUngtgKczksz02x6P1+8R50jGugeYrjTbj\ndG8yitliFaVa05VyPx0Loyw0B/dmQBEUq402LybZZ2dLNWNiTtNCTK9vSruh/8YbQCcXYu3ZYGVg\nHXzhNV53YipWGp00ih3gUyIB2ARgTnzuB/dU2nqyG8MY20VENwPYDaAB4P2Msa7Z5EB2CO/GRX51\ngGAh+RGDwdtLVcUjIZ54zFDHr34e/gF9zRZzDTKAaxHTnv19I2G+4pucd2sUvH4YswXuG+92U4yq\nlaMuWHriERSqTe6t4t0WttrgAXIaZSBXlPlKAyFyVoYD6RhmS3UtsMoxsD9zfN5JZyIz7KZi2DU2\nr21tGVXnmStyakNfLQ+kYshXG6g3W66YEn3iz5brynNqUCvPlevKEUCf+Pnq2u1aLJM59iWjgoZz\nzjNdqCEWDqktclOxMOZKdSSiboHQn3ILR8d9mWtvcuIf1K69b6rQlvKlP8WFoNxF0TvxH1VBaVHf\n8oxHo5TGenmeUIiQiUf43tI1N5XUm4woSi8dd/cvqbHq/UsuRBot5hIC8rfc5uCvLRgFhUGL8FJB\npu1J5XTgLXdS/vjPA36eld0K45JX5HLaBuB2AG9mjA0xxlYB+FUAJ20/CqFZTGvfr2OMncUYO48x\n9uOTdZ1Ft8unTL7wTklM9VWCyS7hd05vfS/f6ZdxMm5Qn/VzeQdBxLD6ScXaNQqAc79SgLjKoxFl\nJ8h4vE/mSnXUm6xNsFREZlyvK2+pxgWIzhtn4mG+chQai9R+5H4Bkp7Rgwml9wwv1zSHorYRjTC4\nrkrH0GgxlbNK0h7SkD6eq6BSb6kJXObLmi3WhIdOu0CYL9fbzjNXqrn4d12jmK801Cq6Jx5BiKQA\nqaHXJ5gsV66DSBeOXBMoVLzPgieFLFTdwlRujCWFrNe2NOqxRXltVF6K0Sn3bgtaVu9cojcRxfh8\nBYy17ysthXjCowmUalyDc8UOif4CeFzFg2gOHjpXztP62NE9Fb0aRVTFRXg0gZB/fTm2TYKim91h\nvQhizH4JY+xH8ouYvF+6dE3qLuivMsgCQI+tCbJicGsgZuop7hP9aaKh9O9xr4ufIRe+XwI0gNNP\nWY9RHOCTgOTGvcF+jluuXh5BqS4nfjeFVaw1fDnnUrUh3Bq9fvEN5Ct17m8vnkFaUGHzlfbJsdpo\nGV1/ZRp170Qus+XK1bMTvS48dzSNBeD++K5YEy3dRE4TII6rsBQszqpbagheA67MV1SoNpCJOSlc\n+oQRulDlWpd8h9weVFMCRJ/485WGEpreiH2lIUiNQgoET4CmXL1Petys5X9pA9H7VI/mfeaiMKMR\nzBV5e/RNv1KxCPKVOlrMf9MvwN3/TSn9TUJD/67XISIlEMIhb31H09ZhEgjOnjYGrydDao9uRBBB\nMUZEHyGiLeLvbwCMLfirUxzSoPd2EZUbFPrLD7JiMMVdBNEoTHEa+vcg5wE8boGeRIUNoUJ5aSzl\nfusSLBFlaPb6pJdr7f7sMlCqWG26qId0XETatvnF882dvMbPdDzC04Qo11/p0eXey0OWy0nN6wGm\nBIiIlXAoI0Gr5MpotpimOegTvyZAklq6iYpj8JW2BSVYNF7eJRA8gkJO/K7yJLf7yGAyqYEo7cqT\nMdCcbHUAACAASURBVNWbwkWeK9PmtBB1HZfR2bKt3ngcKdTCIUI8ElIUllcTkN5cel9LuDQKt/tq\nvdne7+KulDeLEw6mNOD6OeV9AGaNwssUKEFhME6bGAhv/U6BvDI770phQa8n8Ijsa8FdZAHgbjhR\n2qctehJRHPqHN7lWA0Ekvi4cgmggen1daJg2NfEarWOREGqNltGHu01QGIKDdJogadAuvKp+tcE9\ndby79MmBrw9AnXP2aiDFGve2Sbs4ZxlR2y5YirV2AZLSJv5wiByDvGeVKyc5eY/HPYkT5f16Y0pS\nYiezCc+kKY9nyzWU6011Hp4/KIRCtaHyEkn0JKIoiKhq6f4q2zBfqaNca7q0q0w8gql8tS12oDfJ\nYwraYgeE0JwW6TJkHzBlIVYaQt5ti1Lu1B6vN+klJ+NJvFSS9A7T+1EiGlJR5PqEnRLec7KOfh6J\nIFq0O9vBwq7l+rna9oUgqVGQb32TMdtrkpQCxBxHEUyF8M5DK4Eg7rGz4Ptln5Fwb1K08IvVVwlB\nNkZ3UU+GbLP6ueKeCT4aItRg1hxMaQW8lJSe6TJI3EaygwCRA9/rjpgt1cGYRxAJgVCtuzWKVCwi\n9iSoqT2RZf0W426hfrsAHvckSNRz9/B28+9q0sz5T45eu0wq7q+ZSMEizyO9lORvZf6hXs9kWqo1\nXUGJsrwiPMk2pbV7FtHFhao7GlkKzULVs9GVFi/j9yxkyhfZV+XKX038cSlMvfE1jrdSKupQj17N\n0VdQRPimXED7AkLCZISOGdLym+IfTILFPEb8NYR2jUKOEW99/t+UDdYcR+H+3mm6CDKXLCUWFBRE\ndAd8bLuMsVctSYu6GI53bPubJ+IdwqQhmOCiqgzBeoDDc5oEiHG1FDUMDkO6gfY8Nv5aTsrACScN\nK0G5e5/eNoBPdoUK3x8j7VlFAzzVxLlrelz1AWC6WFVRyPz8zmrZz79+plB1CUGVin3eX1DMFt37\nDnjplh6NbolFQmqS7fHYZabyVVdUu7xGqc61JV2AJKOOa3HGQ7eVfbWxCCr1FnLlels5b2vV4zFk\neEYa9USarUO+Y0UNuYI6I8p2lfBM/JKqkloYr6P1C+396+UJg5uqOSjVUN+UkTnq3+fbBIXUEAwT\nv3fDITJQTyED9SQFh9em0cUmikDU0we1zwkAbwV3XT3j0OlFErg01TtXIOrJWMld3lR2Av8ciab9\nek3Uk0mAtG2yYshuqwsEfeCYNnJJGFaCqVhEBZvp1JOTtK3u0WTE5FWsYcuqtCqXrrUzxZqL5pH1\nZwo138y70p4iJ0snKNHNs0u6ZUrVd7dVraKj7glexmQkPNReSQS3eWk7JRDibgEi91KXGXr1Nkzm\neXp2b/nEfMUloJJKCLqfUVppXVWk9O0/xXmy5ToP+gy7Bf9Uvn3xomsXiZj/JG2KczD1HdPEb/xs\nijUKu8eOHHpet1ZZ7l2sye/eMaI0CmOSv2DG7G5GEOpph6foPiLqmiC4lUAno5NLUAToCEYfa09x\n06BRNH0MzYCZf5X12gSLYZMV3c1WV3/jhs2XTKp+ykAx6BOuPlHoK15XfTERzXkEiJzo54o1FfSm\n158pVtsoL14uPbrcmsaMgW6ZK7Z7gKWiYZUORF8Vp2NhFeOQ8EymMrGg14DrFzsgtbH2DKiO/eV8\nTevSy1frgkU9u5oKMOTPwolBGNCos1g4hHCI0GyxtoWFK7I57BZ23nZ471OfsE0begXJexY3CIS4\noW1GzaFt4pflJiN3MGN22KBReI9LrDS91AmhhSroEdpENCT2iOhbhrZ1HTq9SPIxgAWJtDStKtp+\ny/zrmzSNhbye2tVwf3VbCRavsVy3pxgGvmsyjZkmB6dcX6mZBFEq7j/w5STI05y0ayDTno1o9Ekz\npglBOQE66Uz0STDiaAgeumWu1G6odWkUbQb/ett5UrEIsmUexOji/WNhMMbb6g4y45/zlYav8K02\nWr7PrsXMOY28zhKSfjL1I+9n133qtJLLzhDACG3Y6CsQ9RRA6wA0o7VhnLbHS/jTvGrHuoDusaYd\n7rpXTASjnvQI7QaAgwDeu5SN6lY4imT7EiFEQBPuCX6x7rHu83nKDZ1LRonLzJYSzgbu/gPclBLZ\nu1oyGcVNmXFjBq7YRCvon91JFA1UlSHIMIjGkvSZxJqeCF+ZxyovdoLzTszSsOu+hrMnhXfidwSC\nWwPxcwlNxsKo1Fvi/tvvuerxbjPFFJi8fkz5jcIhUppDW/xONIR81RzQ6b1GTHMhdafTX1jrdFNM\n5FsnWILMYF5PpiSfzHNcQvbP9gm+s02jaVAp2mwUXSwpggiKCxhjFb2AiOKmyqczOnolCCuF3lkC\nudMaBIVBThjywzBjsI9XrVbusYYVopd/lZpGe2ZMfyN3EH92U+oRV5S64TwuW4dB64h7Jmvnc7tA\nKNebbZOgpHqiYXIJxKTh2qYJ2Oseqp9fLjJd5QZhanJRNvH4QdxJ22xU4RDKraaRkjTatELk6sOm\nBHmm92a0bxm11IU1Cm9CTb9rAWYjtNQAzJHWrmI1VtuM2V088S8WC1JPAO73KXvgZDfkVEAn24Ra\n8S/W68kgTdoEhaFTq05qMKSZXPxMK8Q23/EFjOJ6Hf383nKTpuHSKEx5rwznNxo/Dato7/4CevZc\nHZKiadsK02A3SZkEgsujx01h+Z0naaLnYv4TqImqWazBF3DeScyrOS5AYZoWHG2rcf3dGnZ7TBg0\nAVMuJv08nQSChDmVhvt7y0DzmtxdyUhhkev4QuhmG4VRoyCiNeCbBiWJ6AVwFrW9AFKm350J8BMY\nssSVwuNkUk+q3P/3Jo3CWy4HrJeS0uModMiJyRTQxz+bNAHd/uA/wF1J2EL+dYKkVjdx3XrbdI8k\n/VzeSVAKF9PeyN7PJqOtLlgSQQSLrjn4UE9AUE3OIEAMwlo/FjQozS+XGKAnzvOnbfi1w231vb8x\n3U+noFQJo0Aw2AS85Y5G4U9VeYkkNfYNmoYJKxxDtyh0op5eD+Aa8D0hPquV58E3Hjrj0CmOwi/f\ny4m4x5p8rL31Teqw2RfcRDGFxHWCaRSmFaJpIg+iLbgnE4MGEsBo6Ze7p95s99wxaVey3LQVJpF5\n0jX5/CcMVFXCpVH4n9OlaRjjCxbm5U3CV68XNCht0RqFYRGgf9ZX1KZ0Nq4+YnAVDzymqP26gNlG\nIat5s0ebqCfyHJeQAan6++52GAUFY+wGADcQ0VsZY99dxjadkuhPRVHOuTOiB4vM9i9vp574/6Cd\n3ZSGIGLQNOQA9w4C04QQNQzwmGGAm6kqf6rONJlEI/4TRSREKujRTyDUmz78u9EDLOT67y33ugrr\nHmAJw2rZXe6/unbx8gatK0jwmak8FNKE5iIFgslGYdJAvKtx/Z5dnyP+Y6TTPfiV6wisUZB/uZQU\nXu1aLaK81JM8v4lG9nyX59VjWbodnaindzHGbgSwhYj+zHucMfZZn5+d1ug079/0vpfgF89MuuiG\nIDB16nZjtv/Eb9IoFqak3PXl4PUKCqNgMUg4r3ul9zyAmRpx1wmgUUTd14qFQ8Il1E9DaBpjRBIG\nWqVNUIg2tUWvGzx0TNHCEZcAWVjrMlEyz8UWEZNC0+vdJJ6B0ZhtiMdpf9aGBYpRc/DvR7qgMWUs\nMNsifIuNmoZ3glcahSGwzssnODmd3NA3BtPxj29/AX64cwxnDWf8G9qF6DSrybDXU+duVhCbV6Xx\n2/9j66J/5115SZg0h6AahQoa8pzeNPEvnCrZfR7TADeWB1zx+pXrK23TeeRvvLED+rm8ex0bNQox\n8XsnooV4+Ygnetmk/cQMmkYQBwGTLcZLz0jtyo8aKtaai6aSvPWNgkXzhtJh2ubT1F9M8Ugu93PT\nxB+YzhV93uBybmqzKS6irdzzX2J9fxK/98qzfM/drehEPX1Z/P+75WtOd2MpvBIMcsLoX2VaLbVr\nFPJ/yFNusGkogeMud1IluweBaTVn0jSihoSHpq0njVRKB57d2eTeoCF0iDp3tdWgUSgNxGC7MJXz\nYyYB4q9RLNa+49XkoqEQas32rMKmuBgZ5Ww2ZgcTLMrW5e1Hi+wven19xa+XL3bnOBP11MY8Gbye\nnN95y00ahe/PT0kESQo4DOB3AWzR6zPG3rN0zepOLMV7X6zXk8lzo13TEBqFQUNos2nIcviXeweB\nd3UuYZoQXN46AXzeTRSTia/X22iKOvduOGNOhBjyvRd5D16qypRczuTKqWuRbg8tgxZlOI9JmALO\nJOWdyOW1jRO/QUPwCk1HKPvX92qgJs05iEZBIf9yk01gsTvKtXk9wd/ryeSk5GgUnnLlHmv44SmE\nIIT6LQDuAd8StWv2r14JLMULD+6h4a8mOzyo6fz+522jnkL+5zFqFIaB79VgnPMszKGbeGmTv3y7\nW2N7fcA88RsnxwWM2V4DbMTAy5sM/iYtyhSDYtLGTIZtwJnUgtiS9HsIGohp2lJXXq8ZUAM1LSz0\nvmDKdmDUHIyahvu7aZFl0ihkub8+AXhFyekgICSCCIoUY+yvlrwlpwA6Btw9Rxg9JQyderGrKLMa\n7t8Ok6bhXS0FNQxKuASCvi+xwevJZQg3THYme41X21HRwkYB4q+BmKgnrzCU9byZGoz0nCZowgZv\nIJegMMROmKg6AGgZkkW2DMklTRO/2SkiZChfeOIPUj9sEA6m8+gwL5qCahTyWv6ahncaMGkUWg3T\ngVMGCz914IdE9MYlb8kZClPHb1u1iILFB+j5T6Ym47f3LHJC8I6BxRoSTZxzpz04FnstkzA1Zf2U\nk6hXDpmCD81BiZJu8Xct9kJvRxCNwhSD4HZLdtNhJoHgd139Gm2CwuRmbfCScyhMN7weRBJGmkir\nr1cxncevDW3lBu+mdhsF63geL8xeT+7/pzKCCIoPgAuLMhHNE1GeiOaXumHdiKV44V4+XSLwxK/K\n3fVkZ29Xk58b9eSdBE3xH0YqwaA5BEl5EjTNialtsp4pj1Wbz/8CXlJemFyLg3iG6e/BaIswCJBO\nbZPajbfcmBJbalEG5wdTPI53FW2iNs1UpUkDWbi/mGBcTBmoJBP15O0vDvXkv/hqC8Q7DTQJiSD7\nUfQsVOdMwVK8di81IGF2j/U/T/B8Mv7nkXOR9zQL5bfxwjRITSthk11Ch4ltWGxUu5d6khNH+6RG\nrv+qXFFMnlgTycu3ggoKfy3KRD2ZvJ50mJ6FOU7Bf+Jv84aTgsKgpXmfhdJMvQuOE4h5COISG+ic\nnka1DJqDiXqSMMU4tY8RefzURxCvp0t9inMADjPGzqyd7pbgjZsm3MXyrGYBEqx8oTiKNorhBD1L\n1HW1eWyx1FNQzzA18D2TlUqcaEhn0m7MFs/CIxAc6gm+9b1w57daWKMwlesIsjIHnOdtes+LjfBv\np57ge57FJ+rTBUV7OzshqL1OaRRt5VKABCFcFk7tcTogyJP4JwAPAviq+HsQwH8C2ENEr1vCtnUd\nTqYq+eKtg52vZVi1GLPHBuRTveeTcFaC/uc3aRpeLNp2EUCjWLQbpCmAKuxPq7QnTvQ3cocMD0Ma\nm9vSnwSgnkzeUPocZUpzoqM9/by6gqvcuHfCAguFdqrK34BvsnUt1pitX48MQsOExRqtvfcs78m0\nb7337C87ewgAcPaIOzb5THOPHQPwXsbYLgAgogsBfAzAXwL4LwC3LV3zTl98472Xo1JrGY+bqCfz\npBnsurKaN7GhyQjpDHx/weKFmWIIolEYaLgTFEpiS+42KslJnOj9Pf8f82ogJkPtIg3+Zk1DEwja\n83JPlAs/R3ntVpMZM5oGTi4ptS6jjcLQj05wYWFCEIo1aByF0hyCaqbSRuGpfvWLNuJVF4xgpCfh\nKneop1NfUgQRFOdKIQEAjLHdRHQ+Y+xAN+dPXwqczNuNR8LG7JeAmWc3YbE2CpMR0kRJebHY1X8g\njcIwgS5WOJomhDaNQtEqwcoX8ttvFyDPXcAF3dDKVJ/3h/YNrcxxNPK/v2Zi2u/Eq1GYtLSgzhkn\nA6b35BWmDvXkfx6TBtJuzKY2IcHrnT4IIih2EdE/A7hJfL8awG6xy119yVrWhVjOF2+aBNtdtf0H\npsmnWwoU0+q3XaOQv/PW9z//ooOgaOE6Qb1YTOXOfua+1dtpmwXsQEGfxYkICrPtanHPt53CNLXB\nf6Fg1EAMGoWpfabJeJEKRSAEtZ+1FqlRSASVbSba9lREEBvFNQD2Afhf4u+AKKsD+JWlalg3Qk2y\ny7DhSNuAI/+BKbFY6skLOdmZIsLbr2cYRIbzmyZf/fyLFggBJwT5rX1vZKlp+K+W2+g5g+Zgsu+c\nqBHeD6YabbYlw7WUTcv4/oK1bSFtzhSns9B5TwaCeFIBmo0ioCPA4sf9aSAhBIK4x5YBfEb8eVE4\n6S3qYqzka1/o2osd+G31jNTT4q53IlSC0espKOcsyw0G/6BCz1ktw7f8RAXCYrWuIOc0Trht6w2p\nXZkEiLu+KZ2FKQeY8nrylC+2H50IgixKAGfRFdx7zt+YbYJjozj1EcQ99hwAfw/gQgCKiGOMbVvC\ndnU1VkKVNF3zuaq3bSk5FjBae09/omq5H4zRuwa9Nyhfb7oHZvBucWJHgrkEKwGyQDsWOk8gjWKB\nlXxb2wyahpE6DGgPWmih0H54+TSKIAIXWDhLbFtSQGWkCLj4UtVPfVERhHr6NwD/DKABTjV9A8CN\nS9mobkU3vG+T9ht4ZUbyPP7eKqY8Nt6bXywdFASL1igC2gBMBll13OAqajLUtgmERdtWfIsDTSim\nGkFtACZjttMG03UXRyW1G7P9z7s01FNAQSHbEFij4AiuUXTBhHGSEERQJBljPwdAjLHDjLH/DeBN\nS9us7oQpArMb4B0cDTHLte/j638PslbQleNi02oEwcmKzWhrs5oc3cXOROH5fUgKCv8AqnZjtr+Q\nXSwlFQSLjYg3pZs40bYtpJG0U5gn/1mYEDBOzomLMDShbeGyQH0vTh8xEczrqUpEIQB7ieiPAIzi\nTN31bgXfvLx00AleppNY3Rt31zfcg9n1z30diRNZFZuwELXTVh5wlboQBdAefMb/mz3Dgj2jxUav\nB0FQ6slkczDtUyJhEqbt7fBfcJjsOEEprZOBoFpKawHqyWjrCGz3C1TtlEAQQfEBACkAfwLg4wBe\nBeDdS9mobsVKvvhPvvV5+PRte3DJ+j7f496B+eevOxdDmf+/vTOPtqOo9vD3y80IZCAkEAgJQQlD\nwiRcIAxChKBMgiIICgqIRgUZVFCR93woCwcUn/rUh4gIOICogKgMAhIckEmEMLgUHuhSQQVUFJVA\n7t3vj66Te9Knq0/3PfPJ/ta663ZXV1ft6j5du2pX1a4J7L/1hoXSjy0mKtujaOTDb97K7GyZYgO1\ncdfq5dyWFB7kbuAhxU1PKTNJpGyKxI+Fr7qe7i2tmhmWHZ5Opeh4UjNI/y6uO+Wl3P+HZ2riVcyv\naRm+9uZd+O59j2fEL8catTLbzO4Kh88Cx7VWnN6gEy9+/gaT+cIbBqPX09/btLXGc8qS+TXxYqKv\nmtERURRRc0uNHO0zq8TWjtROg42lHylznVlPhU1MJU1mRShrwolY4XJMVQXliK6jyc636JqXZpB+\nFlttOIWtNpxSE294ODv+7pvNYPfglqOaWGNqTSCqKCRdk3ejmR3cSMaSTgJOJNk17/tm9p4QfgZw\nfAg/2cxuaCSfZhIz/3SSERNDuV9vurUcq2QjdWN8QVgpKYpRdkpobLZKfAZp2vSUnEc9o6bla2CR\nYVnKm56yTUCx9RVFWXV/pNdVeDC7BbVuWUVcNHrZ6bGxxlcvktej2BX4HXAZcAdNrAMkvQw4BNjO\nzFZIWj+ELwCOBBYCGwE3SdrczLpiC9ZunsVQVFFEvu+aSnEkfrlKuhXPqOxU3BpXDZXwSA8kRu3+\n4dn5jpieVg+fOmkcABtNXd29Q0O9rshnWHQKcb0eRZrYM6r3/muUacnfUSMUrvhLblA02h5Fv/t6\nmgXsC7wOeD3wfeCyar9PDfB24KNmtgLAzP4cwg8BLg/hj0l6BNgZ+FkT8myYbn7dxWdiZEeMmWdG\nZvpkt7rTtGJwsuzUyrKKpeizq7t2IBU+afwA28+ZxpSgMOrJV4T0FrmxNEc2qErdP+qcVye2q1ts\nJlGjz74MRRsrw5FedLPS7ybLQ6NEJ5KZ2ZCZXW9mxwCLSNx4LAsznxplc+Clku6QdKuknUL4bJJe\nTIXfh7AaJC2VdLeku5988skmiFSfbuxQxNyP1yP2gRdeWNWCWU8xyvo3Kjv4nSb2fdeb9ZSV/tCw\n1U6/bahHkU3MPUnMFUysB1m0bouVITZ7ruykiHYQG8yOxx8d3VhvlCV3MDs4/juQpFcxD/gMcFWR\nhCXdRNIrSXNmyHc6iQLaCbhCUqmV3mZ2AXABwODgYB/p7tFR9LcYMz2NbPOYHT8d3s4eRYyoS4aC\n899jLb6YiaHeLJYshTY0bIX9JBWhrAmn5n2G/0Vbu+mFmSNyZKczsno5X44KrTA9FSU2LlcvfuH0\nS8rTzeQNZl8KbA1cC3zQzB4ok7CZLclJ++3AlZZ82XdKGgZmkKzRmFMVdeMQ1hX0g60xRsWePnf6\nWpnXi856auczKrqrW3yDmuxeVGwQcjSDk8NWqygaITouUzMNVpnhI6JYZvw0K4eSeOnd/mJlqjyj\noj3TTo77jZieisUv+/5jGx31Ink9iqOBf5Ksozi56oUKMDOrnW9WnKtJ3IHcImlzYDzwFHAN8HVJ\nnyQZzJ4P3NlAPk2lG7uQ5QfWEtItxcF50zn/6B1ZvMXM1cLruSuvCS+4KrYZFHU0F+sh1LdRF3u4\nee9gZUaPopHKMTqYXVSBrDI9ZcdPv+8Xwq5P6b26R9zVZ8+eK2p6Gg03nLpnk1KKmOfyo5duDHXz\nJJiiRBWFmbXyk78IuEjSA8DzwDGhd/GgpCuAh0h8S53YLTOeup3C3dycH+1+W2dZCsNtBT+OVrhk\niOaVqh2feyGp1NaekP2zrlUg+d5D08QqwTyGh2s3D2qEMmavrPgx01Ms3edXJs801qOImjDT+Tax\nNtli1uSmpDMckbUeJfVKX1BkZXbTMbPnSXosWdfOAc5pr0RrHkXtrZUK4fmh+Lat1TRTTUwYO4YV\nK4tvFzt2QDw/NGJGqzBiDomYniI7n6WJOQ/NUxxDZlFnh6Oh0UqtokSLijRzcuICZsY641cLj41R\nDUeUbzsbEEUpaxoa9WD2KO/rJjqiKJzmUfZHOGJ6Ksb0tZMK4oWIothl0+mrnTezQvjhaYv57dP/\njF5PV1ZXnrAbdzz6l8J7HdczPdUOfsfWmkRFZOWQNXX1cWmzRyr+Jw7fjq/e/lt2mLtuofvfue/m\nLJw9lb02X90kWW+6a3ozqHrKcnCTYvI0k9jYVTR+WcXSR10KVxQ9TmxLyhgLN0qGlhZkuDTIYt56\na3Hqkvkcsn3tLOU73r9PTes975v79JHb15gw8pg9bRKzp02KXk/3BLacNYUtZ9WWK7Yye8iybdT1\nnmQZm/OwWVOngBbVOaum7Kae0czJE3jnvptH70v/jiaOG+Dg7TYqLN9uL57Bm3bflLfutfokxvE5\n7/2O9+/DlInjasI/fti2bDg1/v7TTF97PH/55/OF41ceZfHB6XLxqwY1eh5XFCWo/EDmRGYGNYOX\nzp/Bjx9+qnD8i4/bicvu/F1uhVrNyxfOYtlpi5k3Y+1C8SVx6pLsimWDKRkbyud8FFnKphEaXSg1\nXHHFHmsdp87jnlTjeQ4NW03ruhHKLvZqtcmnZgOsMeIDr1xQEy+vV5X1OwI4fHBOZniMW09fnGuq\nTHPZ0kVcdc8faho7Mfbecn0u/MljLHrReoXirzMhSXf7jacVlqlbcUVRggljBzj/6B3ZYW7xF3/r\n6YuZOG6gcPyvHL9LKZk2W38y/3lQ7YeZR1ElMRraaYsu21JPy/aKhbO47oE/1jqMi+07MIoG4lCz\nB7NT5/tvnZShaPxG43UzkyeOo8ww95azpnDGAcUnb+622Qwe+8gBhZX1rKkT+c6Ju5cafP/q8buw\n0bRsxdlJXFGUJG9mUBabrNe6SrkbqXxCk0oox1HnVXL2SbpR+6qXzGb/bWYxYexAZvy0fT82j77e\nYHYr11F87vU7rNqkKite2amZZc3qfWSGL0TZ57ndnHK9iT3m13qt7QZcUThNZezAGN6z3xbss+UG\nLc+ruBmmMghZGz+tJPKo9Aynr7X6DKB6pqfmKorUbKIxYnxO+sXHNMqa8ZL/RcfGAM559dZsvkFz\nprY67cUVhdN0Tli8WadFyKTsoGWaXV+0Hh88eCGH7lB8rCXx9VS8Er586aKWKpampTsKY9VRu2zS\nAkmcduCKwlljKD/4nT4Xx+w2rzZeThrvfvkWbLVh8VZ00YHSonTQlZLTR7iicPqeVTOACs7MLWNO\nqcfxe2zatLRGQ9mWf9Gid+H6OaeFtNEzj+N0hpGdycouVisYrwsrzbJrBEZLPy0qc+K4onD6ntZX\nZl2oKQKN7lMSY/LExBixZQmzmtO7uOnJ6Tg3vWvPUmtNWk1st79epFUl2HjdtfjG0kVs2weLyZz6\nuKJwOs5m67enVdrorKdG0+0EZfdSL8MuTR54d7oXNz05fU9k07W68fuBblZiTu/gisLpeyzmkqMO\nReN3c13sisJpBq4oHKdBunkso+zakWZODXb6B1cUTt8zUvWVc/nRDxRVE5WtTpu5yZLTP/hgttNz\nXPHWXfnNU/ENjWoY7ZaXRffMLpdsW6j0cor2KE7aez7Dw8brdpnbSrGcHsUVhdNz7LzpdHZO7ayX\nR9nB7ApdbFEqTFFFsc6EsZx5YDl39c6ag5ueHCeFldx3oqsVSjfL5vQMrigcJ4WNcoJsNyqMbpTJ\n6T1cUTh9j0X2xq5H8emxlX3LSyXvOD2DKwqn7xntGEVRurHV3oUiOT2MKwqn77GSs568Z+A4vIbK\nOgAADbdJREFUq+OKwul79tlqfQCmThpX6r5uXkhXj8re7uMH/BN3Gsenxzp9z5kHbMXb93ox01J7\nXccYbYeim/TKhw/dhtP326KrvPI6vYs3N5y+Z+zAGNafMrFw/NFOj+0mk9W4gTGsP7l4mR0nD1cU\njhOj6KynbupKOE4LcEXhOClGu47CcfoVVxSOE6GXfT05TjNxReE4KUY71uAWKKdfcUXhOBEKr8zu\nwsFsx2kmrigcp0GKmqgcp1dxReE4Ebz6d5wEVxSOk6LsDnc+NuH0O74y23FSHD44h6vvfZyjFm1S\n6r5WKoz3H7Aljz5ZYlc/x2kiHVEUkrYHzgcmAiuBE8zsznDtDOB4YAg42cxu6ISMzprLBlMmctO7\n9iocv6IfWjmYvXTPF7cuccepQ6d6FOcCHzSz6yQdEM4XS1oAHAksBDYCbpK0uZkNdUhOx3GcNZ5O\njVEYMCUcTwUeD8eHAJeb2Qozewx4BNi5A/I5Tml8rMLpVzrVozgVuEHSJ0iU1W4hfDZwe1W834ew\nGiQtBZYCzJ07t3WSOo7jrOG0TFFIugmYlXHpTGAf4J1m9m1JrwW+BCwpk76ZXQBcADA4OOhLnRzH\ncVpEyxSFmUUrfkmXAqeE028CF4bjPwBzqqJuHMIcp+vxldlOv9KpMYrHgcq0kr2Bh8PxNcCRkiZI\n2hSYD9zZAfkcx3GcQKfGKN4CfFrSWOA5wliDmT0o6QrgIZJpsyf6jCenV/DBbKdf6YiiMLOfADtG\nrp0DnNNeiRzHcZwY7sLDcRzHycUVheM0CR/MdvoVVxSO4zhOLq4oHKdJ+GC206+4onAcx3FycUXh\nOI7j5OKKwnGahA9mO/2KKwrHcRwnF1cUjtMkfDDb6VdcUTiO4zi5uKJwHMdxcnFF4TgNomBzmjjO\nPyenP+mU91jH6RtmTp7A6a/YgoO23bDwPecdvh2z153UQqkcp3m4onCcJnDiyzYrFf81O27cIkkc\np/l4X9lxHMfJxRWF4ziOk4srCsdxHCcXVxSO4zhOLq4oHMdxnFxcUTiO4zi5uKJwHMdxcnFF4TiO\n4+Qi6wMn+pKeBH7baTlGwQzgqU4L0Wa8zGsGXubeYBMzm1kvUl8oil5F0t1mNthpOdqJl3nNwMvc\nX7jpyXEcx8nFFYXjOI6TiyuKznJBpwXoAF7mNQMvcx/hYxSO4zhOLt6jcBzHcXJxReE4juPk4oqi\njUiaLulGSQ+H/+vmxB2Q9AtJ32unjM2mSJklzZF0i6SHJD0o6ZROyNoIkvaT9CtJj0h6X8Z1SfpM\nuL5c0g6dkLOZFCjzUaGs90u6TdJ2nZCzmdQrc1W8nSStlHRYO+VrFa4o2sv7gJvNbD5wcziPcQrw\ny7ZI1VqKlHkl8G4zWwAsAk6UtKCNMjaEpAHgc8D+wALgdRny7w/MD39Lgf9tq5BNpmCZHwP2MrNt\ngLPp8cHegmWuxPsY8IP2Stg6XFG0l0OAS8LxJcCrsiJJ2hg4ELiwTXK1krplNrMnzOyecPwPEgU5\nu20SNs7OwCNm9qiZPQ9cTlLuag4BLrWE24Fpkopvst191C2zmd1mZn8Np7cDvb7/a5H3DHAS8G3g\nz+0UrpW4omgvG5jZE+H4j8AGkXifAt4DDLdFqtZStMwASJoHvAS4o7ViNZXZwO+qzn9PraIrEqeX\nKFue44HrWipR66lbZkmzgVfT4z3GNGM7LUC/IekmYFbGpTOrT8zMJNXMTZZ0EPBnM/u5pMWtkbK5\nNFrmqnTWIWmJnWpmf2+ulE6nkPQyEkWxR6dlaQOfAt5rZsOSOi1L03BF0WTMbEnsmqQ/SdrQzJ4I\nZoesrunuwMGSDgAmAlMkfdXMjm6RyA3ThDIjaRyJkviamV3ZIlFbxR+AOVXnG4ewsnF6iULlkbQt\niQl1fzN7uk2ytYoiZR4ELg9KYgZwgKSVZnZ1e0RsDW56ai/XAMeE42OA76QjmNkZZraxmc0DjgR+\n2M1KogB1y6zkq/oS8Esz+2QbZWsWdwHzJW0qaTzJe7smFeca4I1h9tMi4Jkqk1wvUrfMkuYCVwJv\nMLNfd0DGZlO3zGa2qZnNC9/vt4ATel1JgCuKdvNRYF9JDwNLwjmSNpJ0bUclax1Fyrw78AZgb0n3\nhr8DOiNuecxsJfAO4AaSgfgrzOxBSW+T9LYQ7VrgUeAR4IvACR0RtkkULPMHgPWAz4d3eneHxG0K\nBcvcl7gLD8dxHCcX71E4juM4ubiicBzHcXJxReE4juPk4orCcRzHycUVheM4jpOLK4oeR5JJOq/q\n/DRJZ7VZhosrXjIlXdioQz9J8yQ9ELn28eBh9uON5NFNhOf3WDOnWFa/kzURScdK+mydOEcEL7A9\n7aG5HfjK7N5nBXCopI+Y2VNlb5Y0NswPbwpm9uZmpRVhKTDdzIaqA5tdjg5wupl9q9NCNBNJA+n3\n1E2Y2Tck/Qk4rdOydDveo+h9VpK4b35n+kJomf8w7Alwc1gpW2ltni/pDuBcSWdJukTSjyX9VtKh\nks4N+whcH9xrIOkDku6S9ICkC5ThzEbSMkmDkg6uWjz3K0mPhes7SrpV0s8l3VDxoBrC75N0H3Bi\nVkElXQOsA/w8tAbT5Vhb0kWS7lSyl8ch4b5Jki6X9EtJV0m6Q9JguPZsVfqHSbo4HM+U9O1Q3rsk\n7R7Czwp5LJP0qKSTq+5/Y3jW90n6iqTJoadQeX5Tqs9jSNogyHlf+NtN0ocknVoV5xyFfTskvTe8\nq/skfTQjvdgzP1nJHiDLJV2ecd+xkr4TyvqwpP+qunZ0eM73SvqCEtfaSHpW0nnhPe6aSq8mP0k7\nS/pZeF+3SdqiKu+rlexh8htJ75D0rhDvdknTQ7xlkj4d5HhA0s4Z5ch8l04JzMz/evgPeBaYAvwG\nmErSOjorXPsucEw4fhNwdTi+GPgeMBDOzwJ+AowDtgP+ReKbB+Aq4FXheHpVvl8BXlmV3mHheBkw\nmJLxCpLKfxxwGzAzhB8BXBSOlwN7huOPAw/Eylt1nC7Hh4Gjw/E04NfA2sC7qvLZlkS5Dmakdxhw\ncTj+OrBHOJ5L4l6k8qxuAyaQ+PJ5OpRrYchvRvWzAr5c9fyWAudllGnV8wvn3yBxjAgwEN7rPOCe\nEDYG+D+SVc/7B3nWSuV7cShP3jN/HJhQeV4Zch0LPBHymQQ8QOLLaCuS39a4EO/zwBvDsQGvjby7\nmvxIfrtjw/ES4NtVeT8CTAZmAs8AbwvX/rvq+SwDvhiO9yT8bsL9n817l+F8MfC9Tn/H3f7npqc+\nwMz+LulS4GTg31WXdgUODcdfAc6tuvZNW90scJ2ZvSDpfpLK6foQfj9JJQXwMknvAdYCpgMPklQY\nUUL8f5vZ5yRtDWwN3Bg6IwPAE5KmkVQcP6qSdf9ChV+9HC8ncahYMSVMJKkY9gQ+A2BmyyUtL5Du\nEmCBRjpNU5R4twX4vpmtAFZI+jOJ6/S9gyxPhXz+EuJeSOIy/mrgOOAtBfLeG3hjSGeIpJJ8RtLT\nkl4S8vuFmT0taQnwZTP7VyrfCluQ8czDteXA1yRdHeTL4kYLzvwkXUniAXYlsCNwV0hzEiPOHodI\nnDtmkZXfVOASSfNJlEx1b+sWS/Yn+YekZxj5rd1PovArXBbK/qPQa5uWyjfzXZrZsziFcEXRP3wK\nuIekBVuEf6bOVwBY4h75BQvNLZI9McZKmkjSchw0s98pGTCfmJdBqMQOJ6moAQQ8aGZpk0T6wy5D\ndTkEvMbMfpVKP+/+ah821eUZAywys+cy0lpRFTREzndkZj9VYgJcTNLzyRykL8iFJC3lWcBFBe/J\nfOaBA0nezSuBMyVtY7XjPGkfPxbSvMTMzshI8zmLj0vU5Eey890tZvZqJXuRLKuKX/2ch6vOh1n9\nmWfJWE3mu3SK42MUfUJoSV5B4ve/wm0kHi4BjgJ+3EAWlUr0qdCyzp1RI2kTkm0jDzezSi/nV8BM\nSbuGOOMkLTSzvwF/k1TZr+CoUcp4A3CSQm0eWt8APwJeH8K2ZvXW6J8kbSVpDMmGMxV+QLJTWaU8\n29fJ+4fA4ZLWC/GnV127lMT8UVSJ3wy8PaQzIGlqCL8K2A/YiaSsADcCx0laKyNfiDzzUN45ZnYL\n8F6Slv061LKvkn3PJ5HsTvjTIN9hktav5Bned5Sc/KYy4qr72PzHEuWIkMceJF55n0ldL/sunRSu\nKPqL80js5hVOIqlElpN4Zz1ltAmHyvyLJHbqG0hcLudxLIlt++ow0HitJdtHHgZ8LAx23gvsFuIf\nB3xO0r0kLdbRcDaJ6WK5pAfDOSS7ja0j6ZfAh4CfV93zPpJxjtsYMclAYsYbDAOvDwG5U1fN7EHg\nHODWULZqd+lfA9YlmEgKcAqJme/+IOuCkMfzwC0kXkuHQtj1JK6u7w7PbrUZPDnPfAD4asjjF8Bn\nwjtOcyeJKWk5yfjB3Wb2EPAfwA/Cb+tGoN62rrH8zgU+IukXjN7C8Vy4/3xWbyhVKPUunVrce6yz\nxiFpGXCambXF7bWS9QyHmNkbItcvJhlQzZ0eG1rl95D00h5uuqC1+R1LYmp8R6vzGi2NvstgEjzN\nzA5qplz9hvcoHKeFSPofkj04zs6J9gxwtnIW3ClZxPgIcHM7lMSagKQjSMbd/tppWbod71E4juM4\nuXiPwnEcx8nFFYXjOI6TiysKx3EcJxdXFI7jOE4urigcx3GcXP4fOGc3BGgZWBkAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Triangular window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Welch Window" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='welch')" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX9x/HXJ4MkEJIACSuDhL1nCCAq4MSJ+hNExa2I\no9X+bKudtr/W2tbWWqui1oEWFaniqihOEGWGDQISVgYjCSHMDJJ8fn/cA71ECAFyc+74PB+P++De\nc849532AnE++Z3y/oqoYY4wxAGFuBzDGGOM/rCgYY4w5woqCMcaYI6woGGOMOcKKgjHGmCOsKBhj\njDnCioIJKSIyRUR+X4/lZovI7Q287etF5JNT/G66iKiIRDRkJmNqs6Jg/JqI/ExEPqo1bcNxpo1v\n3HQnR1VfU9UL3M5hTF2sKBh/9xVwhoiEA4hIOyASGFBrWmdnWWPMabCiYPzdYjxFoL/z+SzgS2B9\nrWkbVXUbgIh0F5FPRaRERNaLyLjjrVxExojIchHZKyIbRWS01+wOIvKNiOwTkU9EJPE465gjIv/j\nvB/unOa5xPl8rogsd97fLCJfe31PRWSS08opFZGnRUSceeEi8hcRKRaRTcAltbbZXkTed/YxR0Tu\ncKZHi0jZ4awi8gsRqRKROOfz70TkiRP9pZvQZUXB+DVVrQQWAmc7k84G5gJf15r2FYCINAM+BV4H\nWgPjgWdEpGftdYtIFvAq8BMgwVnPFq9FrgNucdbTBPjxcWLOAUY670cAm7yyjXDmH8+lwGCgLzAO\nuNCZfoczbwCQCVxd63vTgHygvTPvDyJyjqqW4ymkI7y2vxUYXs88JsRZUTCBYA7/PciehacozK01\n7fCB7lJgi6q+rKpVqroMeBsYe4z13ga8pKqfqmqNqhao6jqv+S+r6neqWgZM578tk2PlO3wQPht4\nlKMPynUdhP+oqqWqmounBXR4G+OAJ1Q1T1VLnHUCICKpeA7yD6pquaouB14AbvTO41yU7gs86XyO\nxlOA7DSbOS4rCiYQfAWcKSItgSRV3QDMw3OtoSXQm/8e6DoAQ5zTMaUiUgpcD7Q9xnpTgY11bHeH\n1/uDQOxxlpsPdBWRNngO6q8Cqc4pnCzqPggfbxvtgTyveVu93rcHSlR1X635yc77wy2XgcAqPC2n\nEcBQIEdVd9WRx4Q4u73NBIL5QDyeUyrfAKjqXhHZ5kzbpqqbnWXzgDmqen491psHdDrdcKp6UESW\nAPcBq1W1UkTmAf+L51pH8SmsdjueonVYmtf7bUBLEWnuVRjSgALn/TygG3Alnr+Lb0UkDbgYO3Vk\nTsBaCsbvOadvsvEcZOd6zframeb9m/h/8PzWfoOIRDqvwSLS4xirfhG4xbkYHCYiySLS/RRjzgHu\n5b8H3dm1Pp+s6cAPRSRFRFoADx2eoap5eA78jzoXlvviORU21Zl/EFgC3OO1/XnApNPIY0KEFQUT\nKObgueD7tde0uc60I0XB+c35AjwXmLfhOT3zJyCq9gpVdRGeC8l/A/Y42+hwGvmae2Wp/flk/ROY\nBawAlgIzas2/FkjHs4/vAA+r6me18kQCixoojwkRYoPsGGOMOcxaCsYYY46womCMMeYIKwrGGGOO\nsKJgjDHmiIB7TiExMVHT09PdjmGMMQFlyZIlxaqadKLlAq4opKenk52d7XYMY4wJKCKy9cRL2ekj\nY4wxXqwoGGOMOcKKgjHGmCOsKBhjjDnCioIxxpgjfFYUROQlESkUkdXHmS8i8qQzlOBKERnoqyzG\nGGPqx5cthSnA6DrmXwR0cV4Tgck+zGKMMaYefPacgqp+JSLpdSwyBnhVPd20LhCRBBFpp6rbfZXJ\nmNNRU6PsOlDJjj3l7NjreRXvq+B4PQ23aNaEtnHRtImPpm1cNK2bRxERbmdsjX9z8+G1ZI4ebjDf\nmfa9oiAiE/G0JkhLS6s925gGt+fgIZbnl7Iiz/Nat2MfhfvKOVT9/QIg8v3vH6tOiEBSbBSdkmLp\nl5pA/9R4+qe2oG18tA/2wJhTExBPNKvq88DzAJmZmTYAhGlwxfsr+OzbnSzYtIsV+XvYXHwA8BzI\nOyfFkpnegvYJMZ7f/OOiaRcfTdv4aBJjowgP+35VUFVKDlSyY285O/eWs2NPBTv2lrO9tIz1O/fx\n4tebjhSYNnFR9E9NYHB6S87v2YYOrZo16r4b483NolDA0WPQpvDfMWaN8bn83QeZtWYns9bsIHtL\nCTUKrZtHMSAtgbGZKfRPSaB3Sjxx0ZEnvW4RoVVsFK1io+jVPv5788sPVbN2+15W5JWy3HnNWrOT\n33+4lu5tmzO6d1su7NWW7m2bI8dqihjjI24WhfeBe0VkGjAE2GPXE4yvlRyoZHp2Hh+u3M6qgj0A\ndGvTnHvP6cKFvdrQs11coxyEoyPDGZDWggFpLY5Myys5yKw1O5i1Zgd//3wDT3y2gbSWTbmoT1uu\nz+pAWqumPs9ljM+G4xSRN4CRQCKwE3gYz5ixqOqz4vnJewrPHUoHgVtU9YQ93WVmZqp1iGdO1uqC\nPbwybwvvrdhGZVUN/VITuMj5bTwj0f9O1xTtq+DTb3fy8ZodzMspplqVUd1ac9MZ6ZzVOZGwY5yy\nMqYuIrJEVTNPuFygjdFsRcHUV2VVDR+t3s6r87eyZOtuYiLDuWpgMjedkU7XNs3djldvO/aU8/qi\nXF5fmEvx/go6JjbjhmEduHpQCs1P4dSWCU1WFEzIOlRdw7TFeTz1xQZ27q0gvVVTbhiWztWDUoiP\nCdyDaEVVNR+v3sGUeVtYlltKsybh3DI8g4kjOp7SdQ8TWqwomJBTU6N8sHIbj3/6HVt3HWRwegvu\nHtmZEV2Tgu50y8r8Up77ahMfrtxOQtNI7h7ZiRuHpRMdGe52NOOnrCiYkKGqzF5fxJ9nrWft9r10\nb9ucB0d3Z2S3pKC/c2d1wR4em7WeOd8V0TYumvvP68LVg1LsITnzPVYUTEhYs20Pv33/WxZtKSGt\nZVMeuKArl/VtH3QtgxOZv3EXf561jmW5pXRMbMYvL+3BOd3buB3L+BErCiaolVVW88Tn3/HC3M20\naBrJfed15ZrMVJpEhO5vyKrKp9/u5M+z1pNTuJ9L+7bj4ct6kdQ8yu1oxg/UtygExBPNxnj7ekMx\nv3h3FVt3HWRcZgo/v7gHCU2buB3LdSLCBb3aMrJba56ds5Gnvsjhq++K+MUlPRiXmRr0p9JMw7CW\nggkYuw9U8vsP1/L20nzSWzXlD1f14YxOiW7H8ls5hfv5+YxVLNpSwtCOLXn0qr5++UyGaRx2+sgE\nlY9X7+AX76xiT9khJp7dkR+e28XutKmHmhrlzew8/jBzLRVVNTxwflfuOKtjyF1zMXb6yASJ8kPV\nPDpzLa/M30qf5Him3j6EHu3i3I4VMMLChGuz0ji3e2t+9d5qHv1oHd9s3MXj4/qRGGvXGsz3he5V\nOeP3Nhcf4H8mz+OV+Vu5/cwM3r7rDCsIp6h1XDTPThjEI1f2ZsGmXVz897nM37jL7VjGD1lRMH7p\nveUFXPrkXApKy3jhxkx+eWnPkL6zqCGICNcP6cC7dw8nNiqC619YwBOffUd1TWCdQja+ZT9lxq+U\nVVbz0NsruW/acnq0i2PmD8/ivJ52v31D6tk+jg9+cCZj+ifzxGcbmPDCQgr3lrsdy/gJKwrGb2wr\nLeOqyfN4MzuPe0Z1YtrEobRPiHE7VlBqFhXB4+P68djVfVmeV8rFT37NstzdbscyfsCKgvELK/NL\nueLpb8grOchLNw3mJxd2t64afExEGJuZynv3DiemSRjjn1/AhyttSJNQZz91xnUfr97OuOfmExke\nxtt3ncGo7q3djhRSurZpzrt3D6dPcjz3vL6Up77YQKDdqm4ajhUF4xpVZfLsjUyaupQe7eJ4957h\ndGsbOOMcBJNWsVFMvX0IY/q35y+ffMcD/15BRVW127GMC+w5BeOKyqoafvnuKqZn53Np33b8ZWw/\nexjNZdGR4TxxTX86Jsbyt8++I7+kjGdvGETLZtaFSCixloJpdPsrqrj55UVMz87nh+d05snxA6wg\n+AkR4b7zuvDktQNYnl/Klc98Q+6ug27HMo3IioJpVHsOHuL6FxaycHMJfx3bj/+9oJt1ueCHLu/X\nnjfuGErpwUOMe24+OYX73Y5kGokVBdNoivdXMP6fC1i7bS+Trx/I/wxKcTuSqcOgDi2YNnEoVTU1\nXPPcfNZu3+t2JNMIrCiYRrFjTznXPDefzcX7eeGmTC7o1dbtSKYeerSLY/qdw2gS4blldXleqduR\njI9ZUTA+l1dykLHPzWPn3gpevXUIZ3dNcjuSOQkdk2KZfucw4mMimfDCQhZusj6TgpkVBeNTG4v2\nM+65+ewtq+K124eQldHS7UjmFKS2bMq/Jw2jbXw0N728iK++K3I7kvERKwrGZ3IK93PNc/M5VF3D\ntIlD6Zea4HYkcxraxEXz5sShdEyM5fZXsvlyXaHbkYwPWFEwPpFXcpAJLywEhDfvHGZdXgeJVrFR\nvHHHULq1bc6kqUtYYKeSgo4VBdPgCveWM+HFhZQdqmbq7Vl0Sop1O5JpQPFNI3nl1izSWjbltimL\nWWEXn4OKFQXToHYfqGTCiwsp2lfBlFsG072ttRCCUctmTZh6+xBaxjbhppcXsX7HPrcjmQZiRcE0\nmH3lh7jp5UVs2XWQF27KZEBaC7cjGR9qExfNa7cNJSoijAkvLmRL8QG3I5kGYEXBNIiyympueyWb\nb50H087olOh2JNMI0lo1ZeptQ6iqruH6FxayfU+Z25HMabKiYE5bZVUNd722hMVbSnj8mv6c28NG\nSgslXdo059Vbh7C3zNOFSfH+CrcjmdNgRcGcFlXloRkrmb2+iEeu6MPl/dq7Hcm4oE9KPC/ePJht\npWXcNmUxZZXW7Xag8mlREJHRIrJeRHJE5KFjzI8XkQ9EZIWIrBGRW3yZxzS8p77IYcbSAu4/rwvX\nDUlzO45xUVZGS54cP4CVBXv40ZvLqamxgXoCkc+KgoiEA08DFwE9gWtFpGetxe4BvlXVfsBI4K8i\nYp23B4j3lhfw10+/48oBydx3bhe34xg/cEGvtvzi4h58vGYHf/p4ndtxzCnw5SA7WUCOqm4CEJFp\nwBjgW69lFGguIgLEAiVAlQ8zmQaSvaWEn/x7JVkZLfnj//TB809oDNx2ZgZbdh3gua820aFVM2tB\nBhhfnj5KBvK8Puc707w9BfQAtgGrgPtUtab2ikRkoohki0h2UZH1ueK2LcUHuOPVbJJbxPDchEFE\nRdgAOea/RITfXNaLEV2T+NV7q62fpADj9oXmC4HlQHugP/CUiHzvaSdVfV5VM1U1MynJeth0U+nB\nSm6dshgFXrp5MC1sqEZzDBHhYTx13QC6tI7lnteW2sNtAcSXRaEASPX6nOJM83YLMEM9coDNQHcf\nZjKnobKqhjv/tYT83WU8f0MmGYnN3I5k/Fjz6EheunkwMU3CuXXKYgr3lbsdydSDL4vCYqCLiGQ4\nF4/HA+/XWiYXOBdARNoA3YBNPsxkTsOv31vNws0l/PnqvtYFtqmX9gkxvHjTYEoOVDLx1SVUVNmt\nqv7OZ0VBVauAe4FZwFpguqquEZFJIjLJWex3wBkisgr4HHhQVYt9lcmcujcW5TJtcR73jOrEFQNq\nXxoy5vj6pMTz+Lh+LM8r5f8++PbEXzCu8uXdR6jqTGBmrWnPer3fBlzgywzm9C3PK+Xh99Zwdtck\n/vf8bm7HMQHooj7tuHNER56bs4l+qQmMy0w98ZeMK9y+0Gz83K79Fdw9dQmt46L4+zX9CQ+zW0/N\nqfnJBd04o1Mrfvnualbl73E7jjkOKwrmuKqqa/jBG8vYdaCSZycMsjuNzGmJCA/jH9cOILFZEyZN\nXcLuA5VuRzLHYEXBHNdjn6xn3sZd/P6K3vROjnc7jgkCrWKjmDxhEEX7KvjhtGVUW1cYfseKgjmm\nj1Zt57k5m7h+SBpj7fyvaUD9UhP47ZhezN1QzOOfrnc7jqnFioL5npzCffz43yvon5rAry+r3V2V\nMafv2qw0rslM5ekvN/LJmh1uxzFerCiYo5RVVnPX1KXENAln8oSB1oWF8ZnfjulF35R4Hpi+gryS\ng27HMQ4rCuYov/vwW3KK9vPENQNoFx/jdhwTxKIjw3n6uoEg8MNpyzhU/b1uz4wLrCiYIz5atZ3X\nF+Zy59mdOLOLDadpfC+1ZVP+cGUfluWW8sRn37kdx2BFwTgKSst48O2V9EtN4IELurodx4SQy/q1\n55rMVJ6ZvZF5OdahgdusKBiqqmu4f9oyahSeHN+fyHD7b2Ea18OX9yQjsRk/mr6cEnt+wVX202/4\nxxc5LN6ym99f0ZsOraznU9P4mjaJ4MnxA9h94BA/fWsFqvb8glusKIS4RZtL+McXG7hqYLJ1dGdc\n1Ts5nocu6s5nawt5df5Wt+OELCsKIaz0YCX3T1tGWsum/N+Y3m7HMYZbhqczqlsSj8xcy9rte92O\nE5KsKIQoVeWht1dRuK+CJ68dQGyUTzvMNaZeRITHxvYjPiaSH7yxjLJKG3+hsVlRCFHvLCvg4zU7\n+PGF3eibkuB2HGOOSIyN4vFx/cgp3M9js6wbjMZmRSEE7dhTzm/eX0NmhxbccVZHt+MY8z1ndUni\nxmEdeHneZhZu2uV2nJBiRSHEqCo/m7GSyuoaHhvbz8ZHMH7rwdHdSW3RlJ+8tZIDFVVuxwkZVhRC\nzL+z8/lyfREPje5ORqLdfmr8V7OoCP4yth95uw/yp4/XuR0nZFhRCCEFpWX87j/fMiSjJTcOS3c7\njjEnlJXRklvOyODV+Vv5xp52bhRWFEKE526jlVSr8tjV/Qiz00YmQPzkwm5kJDbjp2+tZF/5Ibfj\nBD0rCiHi9UW5zN1QzM8v7kFaq6ZuxzGm3mKahPOXsf3YvqeMP8y000i+ZkUhBOSVHOSRD9dyZudE\nrh+S5nYcY07aIOdOuTcW5TLnuyK34wQ1KwpBrqZG+elbKwkT4U9X90XEThuZwPSj87vSuXUsD761\nkj1ldhrJV6woBLlpi/OYv2kXv7ykB8kJNmiOCVzRkeH8dWw/CveV88eP7DSSr1hRCGKF+8p59KO1\nDOvYimsGp7odx5jT1i81gVuHZ/DGolwWbylxO05QsqIQxP7vg2+pqKrhkSt722kjEzR+dH5XkhNi\n+PmMVVRW2RCeDc2KQpD6cn0h/1m5nXtHdaZjUqzbcYxpMM2iIvjdFb3YULif5+ZsdDtO0LGiEIQO\nVlbxy3dW07l1LJNGdHI7jjEN7pzubbikTzv+8WUOm4r2ux0nqFhRCEJPfLaBgtIyHr2qD00i7J/Y\nBKeHL+tJVEQYv3hntY3U1oDsiBFk1mzbw4tfb+barFQGp7d0O44xPtM6LpoHR3dn/qZdzFha4Hac\noOHToiAio0VkvYjkiMhDx1lmpIgsF5E1IjLHl3mCXXWN8rMZq2jRtAkPje7hdhxjfO66rDQGdWjB\n7z/8lpIDlW7HCQonLAoi0lREfiUi/3Q+dxGRS+vxvXDgaeAioCdwrYj0rLVMAvAMcLmq9gLGnsI+\nGMer87ewMn8Pv76sJ/FNI92OY4zPhYUJf7iyD/vKq3jkw7VuxwkK9WkpvAxUAMOczwXA7+vxvSwg\nR1U3qWolMA0YU2uZ64AZqpoLoKqF9Uptvmf7njL+Mms9Z3dN4rK+7dyOY0yj6da2ORPP7sjbS/OZ\nZz2pnrb6FIVOqvpn4BCAqh4E6nPTezKQ5/U535nmrSvQQkRmi8gSEbnxWCsSkYkiki0i2UVF1u/J\nsfz+P2upqlEeucKeSTCh54fndqFDq6b86r3V9uzCaapPUagUkRhAAUSkE56WQ0OIAAYBlwAXAr8S\nka61F1LV51U1U1Uzk5KSGmjTwWNeTjEfrtrO3SM7k9rSekA1oSc6MpxfX9qTjUUHeGXeFrfjBLT6\nFIWHgY+BVBF5Dfgc+Gk9vlcAePetkOJM85YPzFLVA6paDHwF9KvHuo2jqrqG33ywhpQWMdw5wsZb\nNqHr3B5tGNUtib9/voHCveVuxwlYJywKqvopcBVwM/AGkKmqs+ux7sVAFxHJEJEmwHjg/VrLvAec\nKSIRItIUGALY1aKT8K8FW/lu535+dWlPoiPD3Y5jjKt+fVkvKqtq+KMN33nKjlsURGTg4RfQAdgO\nbAPSnGl1UtUq4F5gFp4D/XRVXSMik0RkkrPMWjytkJXAIuAFVV19ujsVKor3V/D4p99xVpdELujZ\nxu04xrguI7EZt52VwYylBSzZutvtOAFJjvckoIh86byNBjKBFXguMPcFslV12DG/6GOZmZmanZ3t\nxqb9zoNvreTtpfl8fP/ZdG5t/RsZA3Cgoopz/jqb1s2jefee4YTb0LMAiMgSVc080XLHbSmo6ihV\nHYWnhTDQudA7CBjA968NmEa2Iq+U6UvyuGV4uhUEY7w0i4rg5xf3YFXBHqZn5534C+Yo9bnQ3E1V\nVx3+4JzescdlXVRTozz8/hoSY6P44bld3I5jjN+5vF97stJb8tis9ew5aKO0nYz6FIWVIvKC0x3F\nSOfJ5pW+DmaO7+2l+SzPK+Wh0d1pHm1PLhtTm4jwm8t7UXqwksc/Xe92nIBSn6JwC7AGuM95fetM\nMy7YW36IP328noFpCVw5oPazgMaYw3q2j+P6IR3414KtrNux1+04AaM+t6SWq+rfVPVK5/U3VbWb\ngF3yj883sOtABb+9vDdhdgHNmDo9cEFX4mIi+c37a6x77XqqT4d4m0VkU+1XY4QzR8vddZAp87Yw\ndlAKfVLi3Y5jjN9LaNqEB87vyoJNJXy21rpWq4+IeizjfQtTNJ6eTK2jfhf8adY6IsLCeOCCbm5H\nMSZgjM9K4+V5W3j0o7WM7JZEZLgNI1OX+pw+2uX1KlDVJ/D0VWQa0ZKtu/lw5XYmnt2RNnHRbscx\nJmBEhofxs4t6sKnoANMW5bodx++dsKVQ6+nlMDwth/q0MEwDUVX+MHMtSc2jmHi29W9kzMk6r0dr\nhmS05G+fbWDMgGTi7K6946pPO+qvXq9HgYHAOF+GMkf7ePUOlmzdzQPnd6VZlNVjY06WiPCLS3pQ\ncqCSZ2dvdDuOX6vPEeY2VT3qwrKIZPgoj6nlcOde3do0Z2xm6om/YIw5pr4pCVzRvz0vfr2ZCUM7\n0D4hxu1Ifqk+LYW36jnN+MDUBVvZuusgP7u4u/XhYsxp+vGF3VDgL5/YA23Hc9yWgoh0B3oB8SJy\nldesODx3IRkf23PwEE9+sYGzuiQyoqsNLmTM6Upp0ZRbh2fw3FcbuXV4Br2T7dbu2upqKXQDLgUS\ngMu8XgOBO3wfzTw9O4c9ZYf42UU9bIhNYxrI3aM6kRATySMfrrUH2o7huC0FVX0PeE9Ehqnq/EbM\nZIC8koNM+WYLVw9MoWf7OLfjGBM04qIjuf+8rjz8/hq+XF/IOd1tLBJvdQ2yc3jIzetE5Mnar0bK\nF7L+PGs9YWHYg2rG+MB1Q9LISGzGH2auo6q6xu04fqWu00eHh8XMBpYc42V8ZHXBHj5YsY3bz+xI\n23i7fGNMQ4sMD+PB0d3IKdzPjGU2PIy3uk4ffeD8+UrjxTEAf/1kPfExkdxhD6oZ4zMX9mpL35R4\n/v7ZBsb0b09UhI1xDnXfffQBcNyrMKp6uU8ShbjFW0r4cn0RD47uTnyMPXVpjK+ICD+5sBs3vLiI\nNxbmcvNwe/wK6n547S+NlsIAnu4sHvt4PUnNo7jpjA5uxzEm6J3ZOZGhHVvy1Jc5jBucStMm1mNA\nXWM0zzn8AuYDu4ESYL4zzTSwrzYUs2hLCT84p7P95zSmERxuLRTvr+Tlb7a4Hccv1Gc8hUuAjcCT\nwFNAjohc5OtgoUZVeWzWOlJaxDB+cJrbcYwJGYM6tOTc7q15bs5GG8+Z+neIN0pVR6rqCGAU8Dff\nxgo9H6/eweqCvdx/XleaRFh/78Y0pgcu6Mbe8iqen2ud5dXn6LNPVXO8Pm8C9vkoT0iqrlH+8sl6\nOreOtXGXjXFBz/ZxXN6vPS99vYWifRVux3FVfYpCtojMFJGbReQm4ANgsYhcVatPJHOK3llWwMai\nA/z4gq7W6Z0xLvnR+V2prK7h6S9zTrxwEKtPUYgGdgIjgJFAERCDpx+kS32WLERUVFXzt0+/o09y\nPBf2aut2HGNCVkZiM8ZlpvD6wlzydx90O45rTniLi6re0hhBQtWbi/MoKC3j0av6WKd3xrjsB+d0\n4e2lBTz5+Qb+fHU/t+O4oj53H2WIyOMiMkNE3j/8aoxwwa6sspp/fJHDkIyWnNUl0e04xoS89gkx\n3DC0A28tyWdj0X6347iiPqeP3gW2AP/g6KE5zWl6beFWivZV8MAF3ayVYIyfuGtkJ6Iiwnnqi9C8\ntlCfJ6TKVdV6RW1g5Yeqee6rTZzRqRVZGS3djmOMcSTGRnHDsA68MHcTPzinMx2TYt2O1Kjq01L4\nu4g8LCLDRGTg4ZfPkwW51xfmUrSvgvvO7eJ2FGNMLXec1ZEmEWE8FYJ3ItWnKPTBM9LaH/nvqaN6\n9YskIqNFZL2I5IjIQ3UsN1hEqkTk6vqsN9CVH6rm2TkbGdqxJUM6tnI7jjGmlqTmUUwY0oH3lm9j\nS/EBt+M0qvoUhbFAR1UdoaqjnNc5J/qSiIQDTwMXAT2Ba0Wk53GW+xPwyclFD1zTFuVSuK+C+87t\n6nYUY8xxTBzRkYgwCbnWQn2Kwmo84zSfrCwgR1U3qWolMA0Yc4zlfgC8DRSewjYCTvmhaibP2UhW\nRkuGdbJWgjH+qnXzaK4f0oF3lhWwdVfotBbqUxQSgHUiMsvrltT36vG9ZCDP63O+M+0IEUkGrgQm\n17UiEZkoItkikl1UVFSPTfuv6dl57Nxbwf12LcEYvzfJaS2E0lPO9SkKD+M5cP8BeBxYDHRuoO0/\nATyoqnUOkqqqz6tqpqpmJiUlNdCmG19FVTWTZ29kcHoLayUYEwBax0VzbVYaM5YWkFcSGk85n7Ao\nOGMn7MXTpcUU4Bzg2XqsuwBI9fqc4kzzlglME5EtwNXAMyJyRT3WHZCmZ+ezfU85953b1Z5LMCZA\n3DWyE2EV3iM/AAATtUlEQVQh1Fo4blEQka7Orajr8Dy4lguIc6H5H/VY92Kgi/NEdBNgPHDUk9Cq\nmqGq6aqaDrwF3K2q757qzviziqpqJn+Zw6AOLRje2VoJxgSKNnHRXJeVxltL8kOitVBXS2EdnlbB\npap6plMIquu7YlWtAu4FZgFrgemqukZEJonIpNMJHYj+nZ3Ptj3l3HduF2slGBNgJo3oRJgIz8wO\n/tZCXU80X4Xnt/svReRjPHcPndTRTFVnAjNrTTvmqSdVvflk1h1IKqtqmDx7IwPSEqyPI2MCUNv4\naMZnpfL6wlzuGdWZlBZN3Y7kM3WN0fyuqo4HugNfAvcDrUVksohc0FgBg8E7y/IpKC3jh9ZKMCZg\n3TXS01p4bs4mt6P4VH0uNB9Q1ddV9TI8F4uXAQ/6PFmQqK5Rnp2ziV7t4xjZNXDvnDIm1LWLj+Gq\ngclMz84L6tHZTmowYFXd7dweeq6vAgWbWWt2sLn4AHeP7GytBGMC3J0jOlFZXcPL32x2O4rP2Ajx\nPqSqPDM7h4zEZozubaOqGRPoMhKbcXHvdvxr/lb2lh9yO45PWFHwobkbilldsJc7z+5oYy8bEyTu\nGtmJfRVVTF2w1e0oPmFFwYcmz95Im7gorhyYfOKFjTEBoXdyPGd3TeKlr7dQfqjed+kHDCsKPrIs\ndzfzN+3ijrM6EhUR7nYcY0wDumtEJ4r3V/DvJfluR2lwVhR85JnZG4mPiWR8VprbUYwxDWxox5YM\nSEvg+a82UlVdZ9dtAceKgg9s2LmPT7/dyU1npBMbVZ8RT40xgUREuGtEJ/JKyvhw1Xa34zQoKwo+\nMHnORmIiw7n5jHS3oxhjfOS8Hm3o0jqWybM3oqpux2kwVhQaWP7ug7y/fBvjs1Jp2ayJ23GMMT4S\nFibcNbIT63bs44t1wTNGmBWFBvbPrzYh4hn42xgT3C7r157khBieCaLWghWFBlS8v4Jpi/O4on8y\n7RNi3I5jjPGxyPAwJp7dkSVbd7N4y2634zQIKwoN6NV5W6isruHOEZ3cjmKMaSTjMlNp1awJk4Ok\nW20rCg2krLKafy3Yynk92tC5dazbcYwxjSSmSTg3Dkvny/VF5BTuczvOabOi0EDeWprP7oOH7FqC\nMSFowtA0oiLCeGFu4HeUZ0WhAdTUKC99vZm+KfEMTm/hdhxjTCNrFRvFVQNTmLGsIOC71bai0AA+\nX1fI5uID3H5WR+se25gQdduZGVRW1fCvAO8oz4pCA/jn3E0kJ8RwsXWPbUzI6tw6lnO7t2bqgq0B\n3VGeFYXTtDK/lEWbS7hleDoR4fbXaUwou/2sjpQcqOTtpYHbUZ4dxU7TP+dupnlUBNcMTnU7ijHG\nZUM7tqR3chwvzt1MTU1gPsxmReE0FJSWMXPVdsZnpdI8OtLtOMYYl4kId5zVkU3FBwK26wsrCqfh\n5a89t5/dPDzD5STGGH9xcZ92tIuP5p9zN7kd5ZRYUThFe8sPMW1xHpf0aUeydWlhjHFEhodxy/B0\nFm4uYVX+HrfjnDQrCqfozUV57K+osofVjDHfMz4rjdioiIBsLVhROAWHqmt4+ZvNDMloSZ+UeLfj\nGGP8TFx0JNcMTuXDVdvZVlrmdpyTYkXhFHy0egfb9pRbK8EYc1y3DE8HYMq8La7mOFlWFE7Bi19v\npmNiM87p3trtKMYYP5XSoikX9W7LGwtzOVBR5XacerOicJKW5e5mRV4pNw9PJyzMurQwxhzfLcMz\n2FdRxYwAepjNisJJmjJvC82jIrhqYIrbUYwxfm5gWgJ9U+KZMm9LwIzM5tOiICKjRWS9iOSIyEPH\nmH+9iKwUkVUiMk9E+vkyz+kq3FvOzFXbGZuZSmxUhNtxjDF+TkS4+Yx0NhYd4OucYrfj1IvPioKI\nhANPAxcBPYFrRaRnrcU2AyNUtQ/wO+B5X+VpCK8tzKWqRrlxWAe3oxhjAsQlfduRGNuEKd9scTtK\nvfiypZAF5KjqJlWtBKYBY7wXUNV5qnp4YNMFgN+ek6moqua1hbmM6taa9MRmbscxxgSIqIhwrstK\n44v1hWzddcDtOCfky6KQDOR5fc53ph3PbcBHx5ohIhNFJFtEsouKihowYv3NXLWd4v0V3HxGuivb\nN8YEruuHdiBchFfn+/9YC35xoVlERuEpCg8ea76qPq+qmaqamZSU1LjhHFPmbaVjUjPO7JzoyvaN\nMYGrTVw0F/Vpx/TFeX5/e6ovi0IB4N2fdIoz7Sgi0hd4ARijqrt8mOeUHbkN9Qy7DdUYc2puPiM9\nIG5P9WVRWAx0EZEMEWkCjAfe915ARNKAGcANqvqdD7OcFrsN1RhzugLl9lSfFQVVrQLuBWYBa4Hp\nqrpGRCaJyCRnsV8DrYBnRGS5iGT7Ks+pKtxbzocr7TZUY8zpCZTbU316TUFVZ6pqV1XtpKqPONOe\nVdVnnfe3q2oLVe3vvDJ9medUvLYwl2q121CNMacvEG5P9YsLzf7KbkM1xjSkQLg91YpCHew2VGNM\nQ/P321OtKNTBbkM1xjQ0f7891YrCcazML2VFXik3Du1gt6EaYxrUTcM6sK+iivdXbHM7yvdYUTiO\n1xbkEhMZzlWD7DZUY0zDGtShBd3bNmfqgq1+d3uqFYVj2FN2iPdWFDCmf3vioiPdjmOMCTIiwvVD\nO7Bm216W55W6HecoVhSOYcbSfMoP1TBhqN2GaozxjSsHJNOsSThTF+S6HeUoVhRqUVVeW5hLv9QE\neifHux3HGBOkYqMiuGJAMv9ZuY3Sg5VuxznCikItCzaVkFO4nwlD0tyOYowJchOGdqCiqoa3lvhP\nf0hWFGqZunAr8TGRXNavvdtRjDFBrke7OAZ1aMFrC3OpqfGPC85WFLwU7itn1uodXD0ohejIcLfj\nGGNCwIShaWwuPsC8jf7RSbQVBS/TF+dRVaNcb6eOjDGN5KLe7WjRNJKpC/zjCWcrCo7qGuWNRXkM\n79yKjkmxbscxxoSI6MhwxmWm8unanezcW+52HCsKh81eX0hBaRkThthtqMaYxnXdkDSqa5Rpi/JO\nvLCPWVFwTF2wldbNozivZxu3oxhjQkyHVs04u2sSbyzKpaq6xtUsVhSAvJKDzP6uiPFZaUSG21+J\nMabxTRiSxo695Xy+rtDVHHYEBF5flIsA4wennnBZY4zxhXO6t6ZdfLTrF5xDvihUVtUwfXEe5/Zo\nQ/uEGLfjGGNCVER4GOMHpzF3QzFbit0bgCfki8In3+5g14FKuw3VGOO68VmphIcJ0xa7d8E55IvC\nm4vzSE6I4ewuSW5HMcaEuDZx0ZzTvTVvLcnnkEsXnEO6KOSVHGTuhmLGZabaQDrGGL8wfnAqxfsr\n+HytOxecQ7ooTM/OI0xgbKYNpGOM8Q8juibRNi6aNxe706V2yBaFquoapmfnMaJrkl1gNsb4jYjw\nMMZmpjDnuyK2lZY1+vZDtijMXl/Ezr0VjM+yC8zGGP8yLjMVxXM2o7GFbFGYtjiPxNgozune2u0o\nxhhzlNSWTTmzcyL/zs6nupG71A7JorBzbzlfri9kbGaKPcFsjPFL4wenUVBaxtwNRY263ZA8Ir61\nxFN9r8m0J5iNMf7p/J5taNmsCW828jMLIVcUamqUaYtzGdaxFemJzdyOY4wxx9QkIoz/GZjMp9/u\npGhfRaNtN+SKwvxNu8grKWN8lrUSjDH+7ZrBaVTVKDOWNt4YziFXFN5YlEt8TCQX9mrrdhRjjKlT\n59axDE5vwZuL81BtnAvOIVUUSg5U8smanVw5INnGYDbGBITxg9PYVHyAhZtLGmV7Pi0KIjJaRNaL\nSI6IPHSM+SIiTzrzV4rIQF/mmbE0n8rqGjt1ZIwJGBf3aUfz6IhGu+Dss6IgIuHA08BFQE/gWhHp\nWWuxi4AuzmsiMNlXeVSVaYvz6J+aQPe2cb7ajDHGNKiYJuFc0T+Zmau2s+fgIZ9vz5cthSwgR1U3\nqWolMA0YU2uZMcCr6rEASBCRdr4IszR3NzmF+7nWWgnGmAAzPiuViqoa3l1e4PNt+bIoJAPe7Z18\nZ9rJLoOITBSRbBHJLio69Qc5zu6axKV925/y940xxg292sczpn97WjRr4vNtRfh8Cw1AVZ8HngfI\nzMw8pUvwgzq05NVbsxo0lzHGNJa/jx/QKNvxZUuhAPA+V5PiTDvZZYwxxjQSXxaFxUAXEckQkSbA\neOD9Wsu8D9zo3IU0FNijqtt9mMkYY0wdfHb6SFWrROReYBYQDrykqmtEZJIz/1lgJnAxkAMcBG7x\nVR5jjDEn5tNrCqo6E8+B33vas17vFbjHlxmMMcbUX0g90WyMMaZuVhSMMcYcYUXBGGPMEVYUjDHG\nHCGN1R1rQxGRImDrKX49EShuwDiBJFT33fY7tNh+H18HVU060YoCriicDhHJVtVMt3O4IVT33fY7\ntNh+nz47fWSMMeYIKwrGGGOOCLWi8LzbAVwUqvtu+x1abL9PU0hdUzDGGFO3UGspGGOMqYMVBWOM\nMUeETFEQkdEisl5EckTkIbfz+IqIvCQihSKy2mtaSxH5VEQ2OH+2cDOjL4hIqoh8KSLfisgaEbnP\nmR7U+y4i0SKySERWOPv9W2d6UO/3YSISLiLLROQ/zueg328R2SIiq0RkuYhkO9MabL9DoiiISDjw\nNHAR0BO4VkR6upvKZ6YAo2tNewj4XFW7AJ87n4NNFfCAqvYEhgL3OP/Gwb7vFcA5qtoP6A+MdsYm\nCfb9Puw+YK3X51DZ71Gq2t/r2YQG2++QKApAFpCjqptUtRKYBoxxOZNPqOpXQEmtyWOAV5z3rwBX\nNGqoRqCq21V1qfN+H54DRTJBvu/qsd/5GOm8lCDfbwARSQEuAV7wmhz0+30cDbbfoVIUkoE8r8/5\nzrRQ0cZrRLsdQBs3w/iaiKQDA4CFhMC+O6dQlgOFwKeqGhL7DTwB/BSo8ZoWCvutwGciskREJjrT\nGmy/fTrIjvE/qqoiErT3IYtILPA2cL+q7hWRI/OCdd9VtRroLyIJwDsi0rvW/KDbbxG5FChU1SUi\nMvJYywTjfjvOVNUCEWkNfCoi67xnnu5+h0pLoQBI9fqc4kwLFTtFpB2A82ehy3l8QkQi8RSE11R1\nhjM5JPYdQFVLgS/xXFMK9v0eDlwuIlvwnA4+R0SmEvz7jaoWOH8WAu/gOT3eYPsdKkVhMdBFRDJE\npAkwHnjf5UyN6X3gJuf9TcB7LmbxCfE0CV4E1qrq416zgnrfRSTJaSEgIjHA+cA6gny/VfVnqpqi\nqul4fp6/UNUJBPl+i0gzEWl++D1wAbCaBtzvkHmiWUQuxnMOMhx4SVUfcTmST4jIG8BIPF3p7gQe\nBt4FpgNpeLodH6eqtS9GBzQROROYC6ziv+eYf47nukLQ7ruI9MVzYTEczy9501X1/0SkFUG8396c\n00c/VtVLg32/RaQjntYBeE7/v66qjzTkfodMUTDGGHNioXL6yBhjTD1YUTDGGHOEFQVjjDFHWFEw\nxhhzhBUFY4wxR1hRMH5FRH7h9Pa50ukFcoiPtzdbROo94LmITBGRAhGJcj4nOg9QNUSWkYd7+2wo\nInK/iNx4gmX6iMiUhtyuCVxWFIzfEJFhwKXAQFXtC5zH0X1W+Ytq4Fa3Q9Tm9Abs/TkCT87X6/qe\nqq4CUkQkzYfxTICwomD8STugWFUrAFS1WFW3AYjIr0VksYisFpHnnSeYD/+m/zcRyRaRtSIyWERm\nOP3K/95ZJl1E1onIa84yb4lI09obF5ELRGS+iCwVkX87/SgdyxPAj5yDrvf3j/pNX0SeEpGbnfdb\nROTRw33gi8hAEZklIhtFZJLXauJE5EPxjP3xrIiE1ZXNWe+fRGQpMLZWznOApapa5fV39SfxjL/w\nnYic5bXsB3ieDDYhzoqC8SefAKnOAesZERnhNe8pVR2sqr2BGDwtisMqnX7ln8XzeP89QG/gZudJ\nT4BuwDOq2gPYC9ztvWERSQR+CZynqgOBbOB/j5MzF/gauOEk9y9XVfvjefJ6CnA1nrEffuu1TBbw\nAzzjfnQCrqpHtl2qOlBVp9Xa3nBgSa1pEaqaBdyP52n3w7KBszAhz4qC8RvOuACDgIlAEfDm4d+0\ngVEislBEVuH5DbiX11cP92O1CljjjK1QAWzivx0h5qnqN877qcCZtTY/FM+B+BvxdEN9E9ChjriP\nAj/h5H6GvHMuVNV9qloEVBzuvwhY5Iz7UQ284eQ8UbY3j7O9dnj+Hr0d7ihwCZDuNb0QaH8S+2KC\nlHWdbfyKczCcDcx2CsBNIjINeAbIVNU8EfkNEO31tQrnzxqv94c/H/4/Xrs/l9qfBc9YBNfWM+cG\n5wA9zmtyFUcXieijv3XKOU+U7cBxppfVkaGao3/+o53lTYizloLxGyLSTUS6eE3qj6dzr8MHtmLn\nXPrVp7D6NOdCNsB1eE7/eFsADBeRzk6WZiLS9QTrfAT4sdfnrUBPEYlyfvM/9xRyZjm9+YYB1zg5\nTyUbeEaf61zP7XbF09umCXFWFIw/iQVeEZFvRWQlnlMmv3HGCfgnnoPWLDxdoZ+s9XjGbV4LtAAm\ne890TuPcDLzhbHs+0L2uFarqGmCp1+c8PD1Vrnb+XHYKORcDT+E5oG8G3jmVbI6PgLPrud1RwIcn\nndYEHesl1QQ98QzP+R/nInVIEZF3gJ+q6oY6lokC5uAZ0auq0cIZv2QtBWOC20N4LjjXJQ14yAqC\nAWspGGOM8WItBWOMMUdYUTDGGHOEFQVjjDFHWFEwxhhzhBUFY4wxR/w/H6igK+FfyYwAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Welch window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeYZFd55/95K1dXV+cwWROUhQCBEBhMBhMMyGkXbGBh\nvQs2Bi+/BRsMmF17sRzWNrZZwQK2scGkFWAwJgkEiiiMRkgahZFGEztM51hdOZzfH/eeW/feqttT\n0zM9HeZ8n6efrjo3nVv33PM9bxalFAYGBgYGBitBaK07YGBgYGCwcWFIxMDAwMBgxTAkYmBgYGCw\nYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWDEMiBgbrGCJymYg8JCIZEflvLR6jROTi1e7bmUJE\nTojIK1rY75z3X0Q+LSIfXeGxbxeRu85lfzYTDImsI9gvWV5Ellx/29a6XwZrig8Atyql0kqpT/g3\nishtIvJfV+PCInKziHzQ9X27PcE3a9uyGn04V1BK/bZS6mNr3Y/NCEMi6w+vV0q1u/5O+XcQkcha\ndGytcKHdrw8XAY+t0bXvAF7k+v4i4IkmbU8ppcbPZ8cM1g8MiWwAiMhue7X3X0RkCPiJ3f48Eblb\nROZF5GEReYnrmD0icrutBvmRiNwoIl+0t71EREZ813BUDSISEpE/EJGjIjIjIjeJSI+vL28TkSER\nmRaRj7jOExaRD9vHZkTkARHZKSKfFJG/9l3z2yLy3wPuWYnIu0XkKeApu+1y+15mReRJEfmPrv1f\nKyKP29ccFZHfc9+r3adp+z7f7DquU0S+ICJTInJSRP5QREL2treLyF0i8lciMicix0XkNa5j3y4i\nx+xrHved9zdF5JB93M0ictEyz/cNIvKY/RxvE5Er7PafAC8FbrSl0kt9x90AvNC1/UbX5leIyFP2\nOT8pIrKCvt0BvED/Hva1/ha41td2h+vcrxNL/TZvj82nB9xz03HSSv9d50iIJbn32d8/IiIVEemw\nv39MRP7W/vzPIvIn9mc9Jt4vIpMiMiYi/9l13l57bC6KyH5gn++6zxeR+0Vkwf7/fLv9pSLyiGu/\nH4nI/a7vd4rILwX81hsXSinzt07+gBPAK5q07wYU8AUgBSSB7cAM8FqsxcAr7e/99jH3AB8H4lir\nxQzwRXvbS4CRoGsD7wXuBXbYx38G+IqvL39v9+MZQBG4wt7++8AjwGWA2Nt7geuAU0DI3q8PyAGD\nAb+FAn4E9NjXSQHDwH8GIsA1wDRwpb3/GPBC+3M38CzXvVZcv8WLgSxwmb39C8C/AWn73g4D/8Xe\n9nagDLwDCAPvsu9B7P4sus6zFbjK/nw9cAS4wu7rHwJ3B9znpXZ/XglEsdRXR4CYvf024L8uM2Ya\nttu/3XeALmAXMAW8egV9iwN54Br7+6PAXuCnvrb/ZH++BpgEnmv/Xm/DGlfxJmOs6Tg5Xf+b9PEO\n4Fftzz8EjgKvcW37ZfvzPwN/4hsT/8v+zV+LNRa77e1fBW6yn/HTgFHgLntbDzAHvNX+/X7d/t6L\nNU4LWGM7CkzYx6btbXl9j5vpb807YP5cD8N6yZaAefvvW3b7bvvF2uva94PAv/iOv9l+cXfZL0nK\nte3LtE4ih4CXu7ZtxZpMI66+7HBt3w+8yf78JHB9wP0dAl5pf34P8L1lfgsFvMz1/Y3Anb59PgP8\nT/vzEPBbQIdvHz1huH+Lm4CPYk10JWwisrf9FnCb/fntwBHXtja7X1vsCWYe+FUg6bvm97GJyP4e\nsiepi5rc50eBm3z7jgIvsb/fxspI5Od99/sHZ9o31/nfizV5Dtttf+5qq+ljgf8LfMx3/JPAi5uM\nseXGSWD/m+z7MeAT9tgct/v150AC16RNI4nkgYjrPJPA8+wxUQYud237U+ok8lZgv68P9wBvtz/f\nCfyKfa4f2n1/NZZEefBs54j1+GfUWesPv6SU6rL//KLvsOvzRcB/sMX9eRGZB34ea8LfBswppbKu\n/U+eQR8uAr7pOu8hoAoMuvZx68BzQLv9eSfWarAZPg+8xf78FuBfTtMP//0+13e/b8aa0MGazF8L\nnBRLjfdzrmOb/RbbqK8YT/q2bXd9d+5TKZWzP7bb53sj8NvAmIh8V0Qud/X171z9nMVabbvPq7HN\nfX2lVM2+72b7ngmCns+Z9A3qdpEXYkkgAHe52oaVUrr/FwHv9z2jnVj36Mdy42S5/vtxOxYpPAtL\nsvkRlrT5PKwFwEzAcTNKqUqTa/RjEZJ77LnHxzYa3yX3mNH9eZH9+Ta7Py+2v286GBLZWHCnXB7G\nkkS6XH8ppdSfY6l2ukUk5dp/l+tzFmtVDVj6aayXx33u1/jOnVBKjbbQx2F8OmQXvghcLyLPwFKn\nfOs05/Lf7+2+PrUrpd4FoJS6Xyl1PTBgn/cm17HNfotTWOqwMtbk597Wyn2ilLpZKfVKLOJ+AkvF\np/v6W76+JpVSdzc5zSn39W3d/85W+4D3N2oFZ9I3sEjkhViT4p1220+BF9htd7j2HQZu8J27TSn1\nlYB+BI2TM8HdWCqxX8YaH49jPcPXsrJJewpLcnXbZ9zvjud5ubbr5+UnkdsxJGKwTvFF4PUi8irb\nSJmwDYY77JXhAeCPRSQmIj8PvN517GEgISK/KCJRLL143LX908AN2uAqIv0icn2L/foH4GMicolY\neLqI9AIopUaA+7EkkG8opfJncL/fAS4VkbeKSNT+e46IXGHf45tFpFMpVcayVdR8x+vf4oXA64Cv\nKaWqWGRzg4ik7ft9H9ZvuyxEZFBErrfJqYilhtTX/DTwIRG5yt63U0T+Q8CpbgJ+UURebj+L99vn\nC5rU/ZjAslO0ijPpG1iqmi4syfFOAKXUHNZk+xa8JPL3wG+LyHPtZ5+yx1i6yXkDx8mZwJYOHwDe\nTX2SvhtLQjzjSdseE/8K/JGItInIlVgqYo3vYY3D3xCRiIi8EbgSa3zqa1+GZQPcr5R6DFuKxvtb\nbRoYEtmgUEoNYxlJP4z1Qg9jGSv1M/0NrIE7C/xPLAOyPnYB+B2sF3kUSzJxe2v9HfBt4IciksEy\nsj+3xa59HGti/CHWZP6PWEZFjc8DV3N6VZYHSqkM8AvAm7BWg+PAX1Anv7cCJ0RkEWsCebPr8HEs\n4+cp4EvAbyulnrC3/S7W/R/DUtN8GfhcC10KYRHOKazf+MVYhneUUt+0+/ZVuz+PAq9pdhKl1JNY\nk/H/wZKMXo/l5l1qoQ9gPatfE8vTqiGOpMn1Wu6bvX8Wa5KO2ftq3Ikl9d3h2vcAlhPCjVi/9xEs\nu1IznG6cnAlux1JL7nd9T7PySfs9WKqtcSxbyj/pDbZ67HVYZD+D5QjxOqXUtL09C/wMeMz1DO8B\nTiqlJlfYn3UNsY1BBpscIvJHwMVKqbecbt9V7seLsFb6F6nzMPjEcnv+olJqx2pfy8DgQoSRRAzO\nG2x1zXuBfzgfBGJgYLD6MCRicF4gVgDdPJYR+m/XuDsGBgbnCEadZWBgYGCwYhhJxMDAwMBgxdj0\nie36+vrU7t2717obBgYGBhsKDzzwwLRSqv90+216Etm9ezcHDhxY624YGBgYbCiISEtZLow6y8DA\nwMBgxTAkYmBgYGCwYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWjA1HIiLyarFKox4RkT9Y6/4Y\nGBgYXMjYUCRi1734JFbW0SuBX7dTNRsYGBgYrAE2WpzIdVjVyo4BiMhXsdKhP36uL3T3kWl+72sP\n8/pnbCMe2VBcu/khstY9MPDBPJH1hXuPzfCLT9/Kf/q53at+rY1GItvxlq0coUmdCxF5J/BOgF27\ndvk3t4Qv3TfEqYUCn7njmH3OFZ3G4BzDpHozMGgN9x2fNSSyUiilPgt8FuDaa69d0bRz429cw2se\n2cLvfuVB3vZzu/mjN1x1TvtoYGBgcK5x4MQsv/bpe3j9M7bxl7/29PNyzY2mpxnFW/t4B63Xoj4j\niAive/o23vLci/jCPSc4OZNdjcsYGBgYnDP8yXcPsaUjwV/86tUkouHzcs2NRiL3A5eIyB4RiWGV\nSv32al7wPS+7mHBI+KefnljNyxgYGBicFQ6OzPPQ8Dzvesk+2mLnT8m0oUhEKVXBqn98M3AIuEkp\n9dhqXnOwI8Grn7aVbz00SrlaW81LGRgYGKwYX9k/RDIa5peftf28XndDkQiAUup7SqlLlVL7lFI3\nnI9rvuEZ25jPlbn76Mz5uJyBgYHBGaFaU9z82AS/cNUgHYnoeb32hiORtcALL+kjFQvzw8fG17or\nBgYGBg14eGSe2WyJl18xeN6vbUikBSSiYZ67t5d7jCRiYGCwDvGTQ5OEQ8KLLzltDalzDkMiLeL5\n+3o5Np1lbCG/1l0xMDAw8OC+4zNcvb2Tzrbzq8oCQyIt43l7ewHYf3x2jXtiYGBgUEe5WuPgyALP\n2tW9Jtc3JNIiLtuSJh4J8cjIwlp3xcDAwMDBobFFipUaz7qoa02ub0ikRUTDIa7c1sFBQyIGBgbr\nCA8OzQNwjZFE1j+esaOLR08tUK2ZBE4GBgbrA4+fWqQ3FWNbZ2JNrm9I5AxwxdY0uVKVkbncWnfF\nwMDAAIDDkxkuGWxH1ihLrCGRM8DFA2kAjkwurXFPDAwMDEApxZGJJS6x56a1gCGRM8DFA+0APGVI\nxMDAYB1gYrFIpljhksH2NeuDIZEzQGcyykA6biQRAwODdYGnJjMARhLZSNjX387RKUMiBgYGa4+j\n9oJWa0nWAoZEzhA7e5KMzpmodQMDg7XH8FyeRDREX3tszfpgSOQMsaO7jclMkUK5utZdMTAwuMAx\nOpdnR3fbmnlmgSGRM8b2riQAp+aNNGJgYLC2GJnPsaM7uaZ9MCRyhtAPbNSQiIGBwRpjZC7vLGzX\nCoZEzhDbbRIZMXYRAwODNcRSscJ8rsyO7rY17YchkTPElo4EITHqLAMDg7XFmD0Hbetam3QnGoZE\nzhCRcIieVJypTHGtu2JgYHABQ89BA2lDIhsO/ek400uGRAwMDNYO09kSwJq694IhkRWhrz1mJBED\nA4M1xYy9kO1tj69pPwyJrACWJFJa624YGBhcwJheKhIOCV3J818S1w1DIitAf7tlE1HK1BUxMDBY\nG8wslehJxQiF1i7QEAyJrAj96Tilao3FQmWtu2JgYHCBYnqpRN8aq7LAkMiK0N1mGbLmskalZWBg\nsDaYXiquuVEdDImsCJ22DnIhX17jnhgYGFyomMkW6U0ZEmmAiPyliDwhIgdF5Jsi0uXa9iEROSIi\nT4rIq9aqj51thkQMDAzWFvO5Ml1thkSa4UfA05RSTwcOAx8CEJErgTcBVwGvBj4lIuG16KCRRAwM\nDNYSSimWihXSichad2X9kYhS6odKKW2xvhfYYX++HviqUqqolDoOHAGuW4s+GhIxMDBYS+RKVZSC\n9rghkdPhN4Hv25+3A8OubSN2WwNE5J0ickBEDkxNTZ3zThkSMTAwWEssFa11dvuFKomIyC0i8miT\nv+td+3wEqABfOtPzK6U+q5S6Vil1bX9//7nsOgCJaJh4JMSiTSJz2RL3HJ2hVjNxIwYGBquDI5NL\nPDVh1VTP2OEF60ESWZMeKKVesdx2EXk78Drg5aoe0TcK7HTttsNuWxOk4hGypQpKKX7z8/fz4NA8\nH3rN5fzWi/etVZcMDAw2KYZmcrz2E3dSrSl+9N9f5EgixibSBCLyauADwBuUUjnXpm8DbxKRuIjs\nAS4B9q9FHwGS0TC5UpWh2RwPDs0D8C/3njRR7AYGBuccX7l/iFKlRrWm+NZDp1hyJJG1TXkC65BE\ngBuBNPAjEXlIRD4NoJR6DLgJeBz4AfBupdSaFTpPxcPkilXuOToDwG+9aC8jc3kOTyytVZcMDAw2\nKW59YpIXXNzL1ds7OXBilqWipUpfD+qsdUciSqmLlVI7lVLPtP9+27XtBqXUPqXUZUqp7y93ntVG\nMhYhV65ydGqJeCTEf7jW0rQ9NDy3lt0yMDDYZMiVKhyeyPDsi3q4dDDNsamsYxMx6qwNjLZomHyp\nwsmZHLt62tjblyKdiPDwyMJad83AwGAT4dDYIjUFV2/v5KLeNsYXC04W8fUgiax9DzYoUvEwp+bL\nZAo5LuptIxQSLh5o5/hUdq27ZmBgsInw+JjlkXXVtg5yJUsCOTS2CFgOPmsNI4msEMlYhHy5ylSm\nyECHVZ5yd2+KkzOGRAwMDM4dhmayxCMhtnYm2GLPNSdnc4RDQiyy9lP42vdgg6ItGiZbrDCfL9Nt\n59La3Zvi1EKBQnnN7P0GBgabDMOzeXZ0JxEReu2svRMLBWLh9TF9r49ebEC0xcNMZopUa4qupPVg\nd/e1AXByJrfcoQYGBgYtY3gux84ea27RZSjGFwvrQgoBQyIrRlusnvtRZ/Xd1pUErAdsYGBgcC4w\nPJtjZ7dFIl1tMcQuZGhIZIMjHqmTiK5xPJC2qoxNGhIxMDA4B8iXqiwWKmzptGwh4ZCQilnGdKPO\n2uCIuh6gzuk/kLYe9GSmuCZ9MjAw2FyYyVpzibv4lNaCxI0ksrERDYvzWQf8JGNh0vEIU4ZEDAwM\nzgHmslZkeo+LRLRbr1FnbXC4H2AyWldt9afjTC1ZJDKbLfHiv7yVX/rkTylWjMeWgYHB8vjM7Ue5\n6n/8gO8eHANckki7m0Ss+caQyAaHW52VcJFIRzLqpIj/yv4hTs7keGh4npsfmzjvfTQwMNg4WCpW\n+NtbniJbqvI3txwGrIUoQE8q7uzXZmwimwPuB+jWTXa1RZ1iVXcfnebKrR30p+Pc/Nj4ee+jgYHB\nxsE9R2fIl6u84ooBjkwuMbFYqJOIq5Z6KmYkkU2BaKS5JNKZtEikVlMcHF7gWRd18dw9PTxkp4s3\nMDAwaIYDJ2aJRUK87fm7AXhiPMNMtkQkJHQk6+lNtGeoMaxvcMRchnX3w9QkMrVUJFOscNlgmmfs\n6GJ0Ps/0kjG4GxgYNMeTExn29bfztG2d1vfxReZzJbraoojU5xu9gF0vksjaZ+/aoHDbREKh+gPu\ntG0iI3NW1Pr27iThkLXv0ckl+trjGBgYGPjx1MQS1+7upjsVo6styshcnmyx2pCpN2rPNzFXrNpa\nYn1Q2QZENMCo1ZmMUlPw5LhVnGp7Vxu7e+10KLMmHYqBgUEjlooVRufzXDqYBqzA5YnFAtlixTGk\na+i5Z70Y1o0kskIEiZI6ZuTwhJW+eVtXgmQ0TCQkJsOvgYFBU5yazwM4ObIG0gkmM0XikZDj0qsR\nCWtJZH2QyProxQZEkCSStFcNo/N5YuEQ7fEIkXCILZ0JTs3X06EopUy2XwODCxS1mqJWU873CTtV\nkk71PpCOM7lYJFeqNtQM0XOPMaxvcERcdhA32mxPrfGFAh3JukFsIB1nMlMnkQ98/SBP/+Mfcsfh\nqdXvrIGBwbrBUrHCyz9+Oz/35z92nG0mFq3/gx2WzbS/I85UpshSseLkytLQ2TKC5qDzDUMiK0Q4\niERsH+6xhYLHLa/fXllY2/J87YERSpUaN/7kyOp31sDAYN3g3x4a5fh0lonFIjcdGAbqkojOv9eR\niFKq1pjLljwZw6EuiQTNQecbhkRWCAl4fm226Dm9VKTTzu4L1uDQ6VC09PGqqwZ5YGiOxUJ5dTtr\nYGCwbnDL4xNc1NvGFVs7+OmRacAikY5EhKRNGB22bXUuV25QZ0W0Kn19cIghkZUiFMAinjojLhLp\nT8eZz5UpVqocGsuQioV56/N2U60pHjSBiAYGFwweGV3kObt7uHp7B4fGMiilmFysl9kGSCfqc4ff\nsK5j1Nw2lbVEoHeWiHyiheMXlVJ/eA77s2EQRCLuZIwdroGgS+gu5iscGlvksi1prtzWAcBTExle\nfGn/KvbWwMBgPWAqU2R6qcgVWzsICdx0YISppSLz+ZIntYlbFR7k4lutnZ8+nw7LufheD/yP0xz/\nB8AFSSJBLtrxaH2DeyB02FLJYqHM6Hye5+zuoScVo689zpPjmVXtq4GBwfrAE+OLAFyxJU3Bzuw9\nOpdnMV9hW1ddEmmP1xegfi8src6qqXUuiQB/o5T6/HIHi0j3Oe7PhoEESCLuAKBmUsl8rszEYoFB\nW3Td25fyBCHWaop7js3w9B2dHpHWwMBgY0Epxf7js1wymHbqgQzZ7/qe/pSTXHF8ocBioczlibRz\nrHvu8MeDaO+s6jpRZwXaRJRSf3u6g1vZZ7MiSJ3lfuDuErpaKjk5k6VcVWy1y11u7UowtpB39rvx\n1iO8+R/u4x1fOLAa3TYwMDhP+Or9w7zxs/fyxs/c40z44wsFwiFhIJ1ga2cSsDw5F/NlR1sBXo2G\nPzJdzz2V9U4iIpIQkbeJyBvEwgdF5Dsi8nci0rfaHROR94uIcl9LRD4kIkdE5EkRedVq92E5BHnX\neeuMuFRbtlTxpB3JriWRbV1JxhcKVGsKpRRfe8By+bv32CzHp02Eu4HBRsWX7xsC4KnJJR4atpxn\nxhYK9LfHCYeE7rYosUiIsYU8mWLF8cgCSLgWoEGBzUEeoucby3lnfQH4BeA3gduAXcCNQAb459Xs\nlIjstK895Gq7EngTcBXwauBTIrJmGciCJBF3AJBXErFI5OS0Jc7qSmXbupKUq4rppSLDs3mGZ/O8\n80V7AUwgooHBBsVCrswjowv85gv2AHDvsRnAcuXdYmshRITeVIyh2RxKESyJ+NRZWv5YJxyyLIlc\nqZR6M/BrwGVKqXcrpX5ge2PtXOV+/Q3wAeq/F1iG/q8qpYpKqePAEeC6Ve5HIEIBoojbVtJMEhm1\nc+ToHFv9NplMLxUdo9trnraFvvY4j4wunPuOGxgYrDoeO2W9uy+5rJ/dvW08Pma922MLBSe1CVhh\nAMOz3jkBTiOJ2Ab1jSCJlACUUhXglG/bqiV9EpHrgVGl1MO+TduBYdf3Ebut2TneKSIHROTA1NTq\nrOZbCRZ1SyKJaAgRGLcjU7XRvNt265vLlp2kjZcMprlia9ohFQMDg40FTRpXbutgd1+KE7Zq2nKq\nqZeD6EhGnTnB7crrlkT83ll1SWR9sMhy3lk77FgRcX3G/t508m4VInILsKXJpo8AH8ZSZa0YSqnP\nAp8FuPbaa1fF+hRuYRngHggiQjIaZipjRa3rVUe37bUxlysxMpenrz1OezzCJQNpvrJ/CKUUIsJc\ntsTb/mk/WzsTfOrNz143KQ8MDC50/L/7h/jEj4/wv66/ipdfMQhYWbz72uP0tcfZ3Zti//FZKtUa\nmUKFLlc8SFcy6nhpucnCbUxf7zaR5Ujk912f/a5CZ+U6pJR6RbN2Ebka2AM8bKuFdgA/E5HrgFG8\narQddtuaIMjF1424r2hMMhomV6oiAu32qsORRHIlW19qrVJ2dCfJl6vM5cr0pGJ85f4hDo4scHBk\ngduenHQGq4GBwdqhVKnxFz94ktlsib/4wRPOezm2UGB7t+V9tbOnjVypysicpbZyZ7Lw2kHq84Vb\nXR4Ne+eadRIe4iCQRE4XI7IaUEo9Agzo7yJyArhWKTUtIt8GviwiHwe2AZcA+893HzVaU2d5VxC6\nFnt7LOIMki47kn0uW2Z8sci2zrrXFlh1BnpSMW59YpLLt6QZmctzy6EJQyIGBusAB07MMpstcd2e\nHvYfn2VyscBAR4LxhQL7+tsB6LPtntrb0k0c7jRJiYDU7n7Dug4yXCeCyLJpT/4dr2HbA6XUG1al\nR8HXe0xEbgIeByrAu5VSa1aQI8g7yw2/ykkb2t0GtGg4RDoRYS5XYnKxwDW7ugDYbpPI6HyeK7d2\n8MjoAr9x3UUcn17iZydNri0Dg/WAB23X3fe89GL+0/H9PHByjtdcvZXxhQIvuNiKTuhNWdqFYzaJ\nuCURd1ChWxJxI1idtT5oZDl11l/Z/38Fy37xRfv7rwMTq9kpDaXUbt/3G4Abzse1T4cg7yw3/CSi\nM3S2J7w/ezoeYbFQZiZbcmqwD9pqrcnFAsNzOQrlGpcOtpOIhrjzqWmKlaqjLvvZ0BxDMzmuf+a2\ndTOwDAw2Gx4anufo5BK/fM125/1/dHSB3b1tXLvbSt5xbDpLplAmU6w4AcXanf/YlFUy20MiLkkk\nqMhUg4vvBlJn3Q4gIn+tlLrWtenfReSCD6duRZ3ln8/1qiPhW3Gk4hGn1ogOOKrbSsoctQffJYPt\ntMUjVGqKY1NZrtjawWy2xJs+cy+lao1KTfFrz95xNrdlYGDQBAu5Mv/x0/dQqtaoKsV/vNYyz56c\nybGnL0VbLMJAOm7XCbGrFPpIpK7Oqk+7HkkkgET8Wg/HO2udrBdbSQWfEpG9+ouI7AFSq9eljYFW\n1Fn+fTR5+AdLKh5xUp9oVZdWc81mS4wvWASzrSvJLrsG86htpPvJE5OU7HSe//bQmvkZGBhsanz/\n0THnPfv3h+sRD8NzOacu+u6+FCdnsszlrPpAOl+Wzs57csYKNHbnxHNLIv7FpYZfo6Ecm8j6YJHl\n1Fka/x24TUSOYdlyLgLeuaq92gBoxcXWTyI6mt0vnqbiYY5MWtKGO3tnTyrmeG2JQJ+dLgHqQYt3\nH52mrz3G9c/czr/cc5JSpdZwfgMDg7PDfcdnGUjHedVVW/jGz0aoVGtkS1UyhQo7uy0S2dKR4ODI\nPAs2iWi1VSQcIhENMZO1FoNu6aM1SaR5nzaMJKKU+gGWJ9R7gf+GFb3+w9Xu2HpHKw/Q//B1Cme/\n628qFmGpWAG8Rvfuthiz2RKTmQK9qTjRcIi+VJxYJMQpm0Semljiiq0dPH1HJ6VqzVF9Adx3bIb/\n76sPOgRlYGCwPCrVGjd893E+eau3bPXDw/M8c2cXz9zZRa5U5cRMlmE7I+8O25W3JxVjZqnEQt4i\nEXc9ofZ4hELZkmTcZOGxiQRIIq1oPdYSyyVgfJb+bKcaedj+Kzbb50JDKw/Wb+TW/t7+rJztrvKX\nXhKJ2pJIkYG0ZWgPhYQtHQnGFgrUaoojk0tcOpjmyq1WgatDdqRstab44DcO8q2HTvHH//7YCu7Q\nwODCw7cfPsXf33mcv7z5SQ6cmAWgXK1xYibLZVvS7Om3NPknZ3KML1i2D+2O39ceI1OsOGWw3QZ0\nd4nboKAh4LuPAAAgAElEQVTCQEmkQZ1l/V8v1LKcJPJPItItIj1Bf8A/nq+Orje0ZhPxfo+ErJ/b\nr25yR7a7SaQjGSVTqDCXKzn6VairuaaXiuTLVXb3pbioN4VIXe/6xPgiJ2ZyDHbEufvojCNiGxgY\nBOO7B8foa48RC4f4waPjgJW+vaZgZ3cbu3stEjkxk2M2Z0Wa63ez1/asPD7VGA+SsoOLIyGp10jH\nOxcEufL65xHFxsmd1Qk8cJq/C3ZmasU7y2830TYR/4rDrd7y1laOkC1WWSpUAiUUgMG0peIaSMcd\nW8mBE3MAfPDVl1OtKR4YmnWOL5SrfOm+k5ycManmDS5MFCtV/t/9Qx71b62m2H9illdeuYWrtndw\ncMRKouiorXqSdLdFScXCDM/mmLdJRKcu6rX/H5teIh2PeN5/rW3wG8/9WolmaPDO0pLIOmGR5Vx8\nd5/Hfmw4tPIAGwzr4eaG9SAdaSoWJlusEAmJR+XVnYpxeGLJcSV01ybRtpInxjN0t0V5xZWDzveX\nXW59vvEnR7jx1iPs7m3jx+9/icnDZXDB4dO3HeNvbjnMju4kt//+SwmHhFMLeTKFCldv7yQaFr7x\nwAhKKYbnLBLZ2d2GiNCfjjObLZGIhomFQ6Tsd1arr0bm8p5FH0BbvLlnZrQFJxj/VLPOwkRacvE1\nWCH8D1+LsX4S8VZDrH9OxSPky1UW8mWPhNLTZnttZbwkst1FIidnsuzuS9GRiLK9K+nUcVdK8Y2f\njQCWSP7g0Ny5uFUDgw0DpRQ3HbASgo/M5Z2CUTqOY3dfG/v628mWqkwvlRidyxOSetxHTyrGTLbI\nXLZEdyrqLCi13WN6qUgi1lzi8EsiQSosN4KSva6XpZ8hkVWEXxKJBrj4BhnatPSRL1c9Ue7dqRi5\nUtWpQ6Bz8/S1x5mxM4KenMk5+tuLetsckXxkLs/YQoH3vfJSwHJd1KhUa/zlzU/wL/eeXOktGxis\nKzw6usAHv37QUyV0ZC7P6Hye99vvwN1HpgGcdO17+9o9aYdmsiW622LOhN/bHmdmqcRcruQEBUP9\nfS1XlaceCNTf+QZJJHzmGg21zqpSGRJZRfgfftg2rEd86iM3qbjVZG6Pjg6fwR2sAd4ejzgSTndb\njEyhQrFSZWwh77wIlprLklp0sZwXXdrP3r4UB0fqebi+/fApPnnrUT76rUd51BTEMtjgUErxvpse\n4v8dGOaj33rUadfF3l56+QA7upNOyerj0zmS0TCDHXHH42p0Lm+Rhcuxpa89xvRSicVC2ePG6/HA\nijbXNvjdeFuRRPzzSG2dBRue9g7s+upvEZH/YX/fZadmNzgN/KYGverwDwp/3IiGuzKi2yaidbAT\nCwWvwT1ll+CdyVFTdQllW1eSiUyBcrXGUdtz5NLBdvYNtHNsqr5C+/eHT9GZjBISHM8UjWyx4qjK\nDAzWG3KliuNUovHkRIbDE0v0pGLcfXSaTMHyA6qrrVJcOpjmqQnLuD62kGdbVwIRcRZgYwt5ZrMl\nutsag4BzparHhul+R/2SSDxAEmnJyzNgll4ndvWWJJFPAT+HlXgRrBrrn1y1Hm0i+P27tWHdb5QP\nijB3k4tbnaVXPGOLea/B3Rat9UuhXQ63dSZQyqqqNjKXpzcVoy0WYV9/OydmslSqNZRSPDQ8z6uv\n2sLV2zu57/iMc95Cucqr/vYOXvyXt3okFwOD9YBqTfErn7qbn/+Ln/BTWzUF8MBJy973+6+6jJqC\nA/b3E9NZ+tNW8bc9fSm7xrliZqmeALUjaXlXzWZLzOfKHrVVOhGlWlPMZkveVO7RkOOk0iCJODYR\nb7tfK9EMQUSzTjikJRJ5rlLq3UABQCk1B8SWP8QAgtVZ/ocfmL3TJeq2NVnxTCwUPZKI9lfXEeo6\n8Ztun8+VGZnLOcVydvW0Ua4qJjNFRufzzOXKPG1HJ8/c2cWhsYyTo+fHhyYZmctTrio+f3ejvaRW\nW2/+IgabFZVqrWG83XtshifGMygF/3z3Caf94PACXW1RXvu0rQActp1LTsxk2WPbC7d0JMiXq2SK\nFaaXivTZQb0iQlcyyny+zGzWG6elF3FTmaJHEhERpyZIkE3Eb1hfSfoktYFqrGuURSSM7VkmIv1A\nbVV7tUngHx/ay6Lmy+UcKIlE3Qb3+uDThFKq1mh36WR1gasjtu+7XlVpfe5stsSp+bqtRFdRnFgs\nOEGKF/e3s7e/naVixSnle9eRaToSEV511SD3HqtLKAB//v0nuPyjP+Dmx7zqLwODc425bImX/fXt\nvPJvbndUUwC3H54iFg7xy9ds575jM1Rtkjk+k+Xi/nY626L0pGKcsOOiRubyTtLEAbve+cRCgaml\nIn0usuhsi7KQKzOfL9PpUmelbRIpVmqexR24bR/NbSL+uJBWSkr41VnrLRV8KyTyCeCbwICI3ADc\nBfzpqvZqk6BRErH+V30rqUiA0jMWENkalCZFt4/Yfu2aVNwleGddNUsG0pbL4mSm6ByzozvpVGTT\nZHRwZJ6n7+jieXt7GZ3PO+keZrMl/uHOY5SqNW78iTfXEFi1UIyUYrASzGZLFCvemnP/+uAoQ7M5\njk5l+dZD9Uy6B0fmuWJbBy+4uI/FQsWxeYzO5Z28Vrt72zg2lXXUVv22xLHFdo8fnsuRKVScdwOs\n92ZqqUipUnMizsFrQG+LeeNBYkGSiL0IbHD7Pyt11voQRVpJwPgl4APAnwFjwC8ppb622h3bKNA5\nq5rB/+z1qqOq/CTSfDC4PTncJOIWidNNBrSWIDSpaKPgbNZKDqfJRceXTNq2knBI2NqZcF68sXmL\nBJ6aXOKKrWkuG0wDOFG+9x6boVJTvPzyAR4ZXXCuC3DT/cNc96c/5sPffCTg1zEwaI6fHpnm2j/5\nEW/9x/2O6gbgx4cmuHxLmu1dScctF6xA2qu2dbDPzmt1Ytqy840vFthhZ9jd3t3G+GKBTLFCqVpz\nnE4G7HdAq4C7XBJHVzLqlGhwSxypePMsvOBWWzWXRCpV77u/kpISV2235pynbe887bHnA8slYHTn\nyJoEvgJ8GZiw2y543P+RV/CNdz0/cHuDJKLVWb7VeTjAVzwwUVvUbStplEQmM0VE6qshHUmrvba6\n2uppGkJi7T+2UGAgHScSDtVF/EyBaXsltqunjb22hKIrtP3s5BzxSIh3vMgqN+M2un/yNksyuenA\nMHN27Iq+95sODDvJ7QwuXMxlS/zjXcedzAsan73jGDUF+4/POuVnazXFIyMLXLu7m+v29DhG86Vi\nhflcmV09bezps0jk+HSW8cUC1Zpy7H997TGmM0VmlqyxqO2F2nV+zJau3Q4snW1RxmzXeG8mCbdU\n0jyo0O/Kq9/lcoMW4sxz8L3s8kHu/MBLefXTtpz22POB5SSRB4AD9v8p4DDwlP35gdXv2vpHfzru\nGVx+tJpOJGgguaUPT1R72OsR4v4cEihVarRFw47kE7ELXGmdcJdNKqGQkE5EWcyXmXMZD9tiEdJ2\ntcVhu/jVju42BjviJKNhTtj2k6NTS+ztb+fKbdbKSPvbD8/mOGmX660py6ai8a2HRvnA1w/yps/e\ny8xSXXIBa6Iw6q/NiWbP9SPfeoSPfedx3n/Tw05bqVLj3mMz/MqztgNwz1HLBjcylydTrPC0bZ1c\nMtjOZKZIplB2irNt70rS1Rajqy3KydmsExe13cmwGydbqjpBt7ruuc4Eocki5VuUVex+e2uhu9MU\n+dVZdvVSn51Te2YqnxaiFZtIsxRL2qazHhBIIkqpPUqpvcAtwOuVUn1KqV7gdcAFX0+kFQRJqv5B\nEUQ28YB0KB6Duy9QUb8E/sHdHo84cR46ngQsV8bFQoVZX/Rtf0ecyUzBsZVs704iIgx2xJ2V4/Hp\nLHvt1CpbOxOOa7FOI/Fff34vsUjII6F8/QEr5Uqlprj5sQmnPV+q8tpP3MmL/+pWpn3kYrCx8ZFv\nPsLVf3Qz97mcMhYLZef533Vk2llQHBpbpFip8YorBtnTl3LGks5ftbsvxd4+SyI+MZ1jdL4+PgH6\n2+NMZ0rM2gWgtMTRb9s6DtsLHb1gikVCxCMhR23ltje6F4hudZbHa9Inceg32S+JaK2E3yjeiiSy\n3tGKYf15Sqnv6S9Kqe8DwTocAwdBtZH9CDSsB5BIkMEd6one/GJ2WyzsrM46k3Wy6LAlkflc2aMP\n1i+jFv/7Xcb4yUyRak0xPJdnd5+1ItrZ3eaQ1LGpLCJWTfh9/e0ctsmlUq3x4NA8b3/+bvraYx6V\n1s2PjfPEeIbh2Txf3T/k6ftN9w/zji8ccF50g/UHpRR/9r1D/ME3DnoM4idnsnzpviGypSqfvO2o\n037/8VmqNcUfvOZyAO49Zo2FY9PWWNE1co7atgq3xKHH3MnZrNO+wyVxTC8VmbdLH+iFUV/a+q+l\ncX/JhWbqLE8FQteiLMg+CfV33O+2r8nC75m5GZKftkIip0TkD0Vkt/33EeDUaY8yCE7h7NsvaCAF\nkYVbBPZHu+v9/F4jqXi9emK7J51KvWaJm0Q6k1EWC2XmcyVCUk+10t8RZypTZC5XolpTjofXls6E\n8yIem15iW2eSRDTMpYPtjtHyyNQS+XKVa3Z1cc2ubh5ySSi3HJpgsCPOVds6uOOpuvprIVfmw998\nhB89PsHf3fKU556eHM/w+197mCfGF5v+fgbnHoVylRu++zg33T/sab/32CyfueMYX71/mH/92ajT\nrp/lSy/r575jMxTKFsE8YcdsvPHanYQEnrSf4dBMHhHLS3BHT5KRuTy1mmJ03mof7EgwaI+5qUyR\n8cUC4ZA4XlV96ThTS0WnzrkmEf1fL6RSPg/HSdspxOt51VwScb9z/txX+tX0Sxj6nfVLIusl1uNs\n0AqJ/DrQj+Xm+01ggHr0usEyCFxktOjm5yaXoFiSxmSOtiTis9W4db0JXxGsuZzlteWPys3Yaq6u\ntpjTl4F0nMnFguOJpV0lt3YlGF8oWKmzZ3Nc1GutFnd0Jx0jp05wt6+/nYsH2hmayVGpWiFHj51a\n5Jqd3Tx/Xy8PDc87btA/fmKCSk2xpy/FLYcmPTrlD3/zEb72wAgf+PpBz71OZYr87lce5N8eGsVg\nZTgxneU9X/4Ztz4x6Wn/0n1D/P2dx/nANw46zxPgB4+OkYiG6E/H+fGhuprywaE5BtJx3vicXRQr\nNSeb9LGpLIMdcbpTMXb1tDnpeE7OZtnSkSARDbOrp41StcZEpsDofJ4Bu25OZzJKNCxMZSyJoysZ\ndSZpS4IuMp8vEYuEnLGuJQ/tnu51k/eWsdVwSx/JAE/JiI9EdC4sv60jKEZsvbjpng1acfGdVUq9\nVyl1jf33XqWUca1pAX7bhwpQaAVJIm41V1CitrivXUsvfoO/W73lFsE7klFOzedRylvOsyMZsQzu\nPjVXbypGtlR11Ahuf/tStcZstsTUUr2c75bOJNWaYnqpyJBt1NzV28bu3jYqNcWp+QLZYoUTM1mu\n3NbBJYNpSpWaYwB9eHie9niEd75oL9NLRWeyGZ3P88DJOXpTMQ6OLHhUXZ+89Qj//vApfu9rDzPr\n8gzLFiv8yqd+yts+t59y1RsvO71U3NRJJ6cyRSf5phufv/sEP/8XP+Eul/QHcMP3DvGdg2P83tce\ndoge4PuPjDku47e4yOKBoTmefVE3r7higP3HZx2yPzaV5eKBdi4ZtGOPbKn02PSSY9vY19/uuI0P\nz+Yco7F2z7UyT+edpIghW/KYyhQbAgF7263xObFQoLutnqa9PW7toyUXt7qpo0lKIfASh1cScZGI\nTxUdDUhtpN9x/wxwQUgiInKriPzE/3c+OrfR4SeHujqrNcO6uz2opkBQZGzKp85yr6oSnkqKEbKl\nqr2Pt8JiplhhOlOkxyehQD2JnbaVaEPlXK7M5GLR8b/fav8fXygwNJujMxmlIxHlIqfMaJbhuRxK\n1SUUgKfsyebRU4tcubWDq22f+Kdsw+hDQ5Yq7AOvvgyA+2ydulKK7z4yxo7uJOWq4s6nppy+f/X+\nYX42NM/th6c8CSaLlSqv+8RdvO7/3MUdh+v7A/zwsXHe9rn9Tu169zHfOXiqqRPAXLbUQFKngz8A\nVd/L9FKxwaOnVlP84NFxh2g1SpUav/e1h/nYdx73HFOsVLn+xrv4xU/cxe2u+8sWK/zVzU8yMpfn\nr3/0pNOeL1W54/AUWzsTzGRLTs6pYqXKQ8PzvOm6XeztTznZCyrVGocnlrhyaweXb+lgsWBlO1BK\ncWxqib39KS7qaSMaFue5Hp/OOvXKt3YlHGeNsYWC41GlKwXOLJWYy5ad72AtXqaXiizYkoiGljhG\n5vJ0JWMN7TrflXuS95BFAHEkAwzrfklEv9sN2Sp0g1+dxcZHK+qs3wN+3/77KPAQluuvwWkQpM5q\nCEIMIAi3mitoxeJPoxCUdiHIu8vzorglFPulG53PeyQR/TKenLVIRKvAtBQzPJejWKk55KIL+Ywt\nFJhYLLLV/q4jhacyRccgv7Ur4dRA0RPk8eks+wba2WtPOHol+8joAtGw8IZnbCcWDnHI1qmPzueZ\nyhR5xwv3ko5HPPVSbntykn39Kbrboh41zS2PTzJuT2JfdNVSqVRrfOhfH+H2w1P86fcOeX7Pj//o\nMO/58oO84wsHPBP2o6MLPO/PfszrPnGXh0hKlRrX33gXL/zfP2lwbf7Qvz7CM//4hw2xM5/48RGu\n/ZNb+JsfHfa0f+GeE/z2Fx/gTZ+913ONbz98iq8/MMI/3nXcQxa3PD7JqYXG+7v/xCyZYoXr9vTw\n0PC8o6I8ODJPsVJzjN66X0cml6jUFFdu7eCKLR2Ow8TQbI5SpcZlWzociePwxBJzuTKLhQp7+tqJ\nhENO5c1ipcp8ruwsMAbSCeZyZUqVmidPlfas0upWd83y7raYlRwxX3LinsCltloseIzkFnFYn90q\nK6h7UsUiIY8ayhOb5Vp4uffxSyL6Go3ZKgLUWZtAFGlFnfWA6++nSqn3AS9ZzU6JyO+KyBMi8piI\n/G9X+4dE5IiIPCkir1rNPpwLtBKNCsEEEfKQyOljSaBOFv7BrfcT8RKKWyrxqLlsiWNiseAx0mtJ\nZNznzaJJRHvTaDVXt5P8seSZIHSiu6mlIqMun/7utiixSIiJTIFcqcJstsSO7iRtsQjbOhOOBHR8\neoldPW0kY2F297U5Ke21SuoZO7u4cluHo4Ov1RQ/OznH8/f18dw9vU4QG1iR9+3xCL/27B3sPzHr\nxDTcf2KOmWyJvX0p7jk64zgmVGvKMR4/ODTPMZdt4F/uOWnp/icy3PZkfSL/3iNjPDyyYHmfuYzS\nw7M5vrJ/iEyxwidvraeOqVRrfO6nxwH43E9PeMji63ZlytH5PPe7iOcHj44xkLZieX58qE6S9xyb\ndu7v/hN1VdMDJ+cIh4Tfeck+lKr/djre57o9PWzvSjpkod1jL9+S5pLBdobncuRLVScF+87uZH0R\nMJdzFgK7bPXUYNqSOKZtjz89BrTqc2QuR65UdcaIXqBYmXRLHsmiI2k7hGS9kohWW01mih7bn4jQ\nbo/jlJ9E9MLLtyBzSxl+iSOovU4i3v0cF1/f8RufQlpTZ/W4/vrsyXvV4u1F5KXA9cAzlFJXAX9l\nt18JvAm4Cng18Ck7MeS6RUNtZKeYjG+/s7hGQ6ld+0Xwe404kbSRkIeQ3MThlkT0iq5cVU3bT80X\nSEbDzgpLrwa13UNLL5pc5vNlZpaKTnr6VCxMMhpmOlNkbD5PxNZzO7EoCwVHQqknjEw4JYFH5+tJ\n9Pb21XXqOhByX3+Kvf0pJ7p+fLFAtlTlsi1pLt2S5sRM1vEUenhknqfv6OQ5u7uZz5UdN1Ado/D+\nX7iMik1CYAVZTmWK/O7LLgbg7qP1+IfbDk/yqqsGSURDnrTkdxyeojcV4+rtnfzEJQXd+qT1+WWX\nD3DvsVmHLB4cnmchX+aXnrmNpWLFufZCrsyjo4v8zkv2EQmJY8tQSvHg0DwvvrSf6/b0sN8lgT04\nNM8zd3bx7Iv0/Vm/0eGJDLt727hmVzdQ95h6YjxDRyLClo4El21JO+QxYlfS3GlHhysFo/M55zlt\n60rSn44jgk0WXueLAduzb1o7ZbTX2wGH8DWJJKJhUrEwE/az80vEi4Uyiz4JRY/PUqXWkJJESxxB\nJOJ/l9x2yCDnl6hvsabJIkhl7VdNbgJBpCV1ljty/R7g/cB/WcU+vQv4c6VUEUAppd+464GvKqWK\nSqnjwBFgXRfHCkycJv7vKx9JfluJfhH8K6SgVNTu1Zo3Ere5PjhIXaDJYmTOG7SVioWJhISFfJmZ\nbMnRa4sIfekY00tFq+hPqu4BZq1Y6xKKNqgOdljt+jo6x9e2rqQjGQ3P5uhqi5JORNnb185czorG\n15LK3v4Ulw2mUcpSzyilODK5xGVb0lxi5wbT+z4+tsj2riTP22tl+dH6fG2gft3Tt9HdFuVx+/tk\nxlLZXbenl2fu7PJIOw8MzfGc3T1ct6eHR0cXHBvIQ8Pz9LXH+dVn7SBfrvL4KUst95gtFbzzRfsA\nyzak+wTw3L29XDzQ7kz8k5kiM9kSV23r4PKtaY5NLzl1Yo5PZ7lksJ3Lt9i5z9x2ib52OpNRtnQk\nHFXh6FyeXb1tiAi7etocSePUQoHeVIxENOzkXRtfsJ6TiEXy0XCI3lTcQyI6T5X1/FztNrno6HEt\n8bjTrve0xxzpszPpJ5EKuXK1aZkEaBzrmiz8AYJaVeV3Xokso7bS8NszHRIJ8MBsNKxvfBZphUSu\nUErttSPYL1FK/QJw/yr26VLghSJyn4jcLiLPsdu3A27n9BG7rQEi8k4ROSAiB6ampprtcl4QWBvZ\nh7MZR0EFrhrUWboojr/iWoAkkgj4rNVcs9mSL97Em0FYE4yI0JmMMrNUJFOoeCYIKzCs5Lhpagx0\nWL7+OurYSZaXtianXMnKl6TJZaAjTq5UZalY8ZCLjmIeWyhwfKZeP3tnj9V+yq6fnStVuainzakx\noSWRo5NLXDrYTm97nJ5UjCOT9ZV6LBxiX3+KiwfqcTCHxqztV27t4NLBNMdskiqUqwzN5rh8a5rL\nt6QpVmqctK9xaCzD07ZbEz/Uk1s+MZ6hJxXjiq1pelIxpxaGjom5wia9p+w+aWK4dDDNxf3tlKuK\nodkck5kiuVKVPX0pR600NJujVlOcmMmxxw7c29aVcDzcxhbybO2sS3+ZQoWlYsVq7/LatMYXC0wu\nFuhNxZ1JeLAjzviCS22lYzgaUo9Yz1UvTLQU63Y170hEnf3dkkhHIkqpUqNaUy2NW+t78wWWXjz5\nJRGPOitIEglUZzWPE9mMWX1aIZG7m7TdczYXFZFbROTRJn/XAxGgB3geljH/JjlDulZKfVYpda1S\n6tr+/v6z6epZwT/u9Pjxi7pnsxbx/zKaLILquPtflKCXzm03aabOAq/bcCQcIhULOzmI3ATTmYw6\n9Uq6PSoJywPMMo76Ah3tKHrrmHrG1Uyh4rgX96W8OvXJxYJnAnTaMwWmFguExFKtaGP/+GLB43bc\nnYrRmYw6JDI6n3fcTPf0pZx7GJnLs707SSQc4uKBdsftWJ9rT1+Kff3tZOyaLFblPKv9Ulva0VLQ\n8GyO3b0pdna3EQ6Js+o+Np1lX38KEeGSgXYnLf/wbJ5kNEx/Os7F/e0Mz+YplKuMzNdznOlEmSdm\nsk6fd/W00ZOKkYqFGZrNMZcrUarUHFXhVpc0N7ZQYJv9G2lHiPGFAuMLBbZ01MkFLLXVXK5EjyuV\nTr8d8De9VKQ9HnHGVUfSm+xQq6HaHek2b48Lr8utlj6blYgG/xhuPm6hLnH43414gPTuXogF5biK\nBLje+wUXffjGlzsaEQnaICJbsFb6SRG5hvr9dwBnlf1LKfWKZa77LuBflaU83C8iNaAPGAV2unbd\nYbetW7TKfWcj0vpXPHV1VnPDul/8TgSQhcdWEmue5sHv5ZKMhZ3VZzrujjmJOt5PHiO9nc+rWBZP\nQrmORJQFO0ZFXNHyWorRE6022jsp7TNFZrNlnn2RnS9JG+8zRaaWivSk4lZ0cypOJCSMLxScc2qp\nZktHgsnFIkvFCgv5sqfd8QCbqxf22t6VZDZbolC2YmeiYWEgHXeCLYdmc8zYsSp7+lIOwY0vFpjL\nlVkqVtjZ00YsEmJHd9K5t7GFPM+ybRXbu5KOO+2p+byTx0xLBVOZIqNzeUelpLNCTy4WycYtu8/W\nTuuY7d2Wh9SUY6+ou2L/+NAE2WKFTKHCVtd9g0Uic7kSz9jR5YyDdDxSD/hzSQ+dySjHp7PMZUue\nPG3aKUN7imki0GNl0iYLv3oqb9uughY83iSkzdWwUJc4wr4Z3vG88ue1CjCme/YJUGf538vNEFQY\nhOUkkVdhGbV3AB8H/tr+ex/w4VXs07eAlwKIyKVYpXingW8DbxKRuIjsAS4B9q9iP1aMwY5403Yn\nTqTBc2Pl1/KfS5OEX8zWqgb//sEvZnM1l1tCaUYiGm4pxZ2byN2eiodZKlQa1FkdySjFSo3JxQId\niahzT1qVVld7WN+1usTKmVRPJOkuujW5WA+ADIWEwQ4rwn7Gr3Kx7TRjjrHYdkPtiDuT3KirOuSA\nKwXH6LwVEBcKie/a1r1v7UzSm4oRDQun5guOmmZnt5fAajXF+ELBIZzBTitfWa2mOOUKuht0qZRG\n5/MMphPEIiHHYD2xWGwwbvem4lZAqC/jwJbOBIVyzZHC/G62s7lSQ361Dic1TmOsxmLeIsj2eKPR\ne3zBkqb0QicRDREJiRMrEpT4MIgs4q2qs04jifg1TUEBvm4EeWf54Ugim5BLAiURpdTngc+LyK8q\npb5xHvv0OeBzIvIoUALeZkslj4nITcDjQAV4t1Kqusx51gzf/J0X8Nip4HxOjd5ZZyOJND93kIuv\nH0FqK48bsKtdxIr2LVZqDV4ubdGIvX/IIwm1RcOUKpbXUdKTajtKtlihXKt5o+V1LMpMzqf+qrdD\n3f21YCcAACAASURBVCNMt4/NF6jUlDMBJmNh2uMRppcsSURPmGBNkrO5EjPZEiJ1lVl/e5wHhuYa\nJ9mOhCOdTC8VGeyskwtYap2JhYKzctftk4sFZrNW/rGeVIxQSNjSmWB8Ie9cQ5NBfzrOY6cWmV4q\nUq4qtnfVVUqVmmI6a9V9uWJLh9Mnfe0Z1/3FIiF6UjEmMwWKFYuE9STf0x7j0KnFhvtz4ny0/cH+\nrol7crFAsVLzSBwdySiLeSvv2jN3drmeX9Sxo7S7FxMuzz732BER2hMRR33ZrEYOeGM1ghY5Cc+4\n9UkcWhIJcDrxe061kmHX/54FSSIrecVved+LnIXLesZy6qy3KKW+COwWkff5tyulPr4aHVJKlYC3\nBGy7AbhhNa57LrGtK+msFt0ISntydqsTn/He/t9gPLQn9YbSvAHFrpZVC9gk4g90TNj7uVef/uO9\nqoowGZ0U0pdVFSyJo8818ev2k/ZE1+MzzPoDIMGauDIFK97kYttWANakuZAvM5st0pWsSzt9dvbi\n+bzfHmP1w7Jl1KUgtyptLldyIu572mJEQuK0a1UaWJP/uE0u7vvoT9susD7pSF9jYqFo1X1xvJ2s\n7eMLBWZ9UoLlhFCkbFfx0zr93lSMmWzJkVC0pOEuXOb+7n4W4DduWxLHfL5Ml09tVakpppdKjpQF\n3tQju3z1MNIuEnGTQirA2ypIKnGP50abSHN7oZba/XaPII+sZsdq6G8NhnXH9bd1XDyQ5uKB9Bkc\nsTZY7ldK2f/bgXSTP4MzhLPQOQcyrR7vDcZ7+xpBhnV/eU73SxAPWMUF+dv7iUq7TrptKNa5Akgk\n0XyC0Kvf8cVC05WsXi3riS4ViyBSnwDdHmDtiQhL9qo47XNJXsiXmVkqObErYLmd5svVeu0Vm0R0\noJv2qnJSjLtUaXO5kmOn0fmdJjNFpjIljxTUmYyxkLeSW7r725+Os1SsOAZmverX20fnc1RqyiMl\nhAQW8mWPGs861nJOmFkqOS60YKmzLPK07E26vLK+1gmflJeIholFQnXpz6d21JUvOxLu9nqyQ3+2\nXLAWMv5SBZpgEtGQx27ncUEPkI79EodGkGHdbxfUNhL/xN+KTcR/rqBgw02oxXKwnDrrM/b/Pz5/\n3bkw4B9QrVQ3aziHCCgVmOTRb1gPSrvg1vu6z+VWHQSv6LzX0BKHX0LxJrLzqrM03GoI92TjzfNV\nj6KPR+qTTSgktMcjjt3FTRaWB1iZpUKlQdpZzJetKHqfSyk0rrz1xFhXpUU919LJKt3qt662qKP+\n0m7Kuv3Q2CKz2RLxSMghVk1IRyez3ms32ILqROWuTOn3fNNkq/sOOFLM8GyO9njEeeZ+dZZbvdiZ\njDZt70hEHTtGW6zxOVnqrEYSgUZ7mjay+0sYxMLNVVhB6iw3/Kl/NCn4AwT1gsv/FrZmWPeeq273\nbO7iuxkRSCIaItIPvAPY7d5fKfWbq9etzYkgF/GzGV7+sam1VX4xux4x693fv59/f4BogFuwfxWm\nX+aYLxbFLZmkAozvgQb+JoGOOV/0MngntKTPu2dsIU+lpjykpSWRpWLFsS24rzE8myMeCdXdUwMm\n8kQ0TCwcYnTeSnff7cvjpKWg7S71ZmcyynzOKvjVk4o5E04QgTWomnx2Ip2jyp9DKlOoEBJxnAOs\na2g327wjhXiuMeslMH2MDjh0SxYdSVfyziZ51/z7+0vPuqElZT8hxFqQjv0GdI2GDLuh5jYRPY6r\n/gVWC+qs0xnSnf1Oe6aNi1biRP4NK83JLcB3XX8GZwqd9sQ/wM7Cc8NvlNfvQZBO1m+XaUXv6z9X\nkG5Zr9z8RvxkgH2llSAxf24vTXr+yUZPmv5t6USkHrviU2eVq4rZbMnTJ20DGJ7Le20rzkTeZJJN\nRhia9Xo1WdeuS0FuwuxMRsmWqkwvFX2Gam/QnVah+dsbgvHmGmNwOhKW55RfGtAT+cRiMTDjQCQk\nnmfQmYxSKFuOEe72dIC9IsimEQqJ8/wCo8ljy5FIkE2ktWhyTR5BNpGG0rUtSCKtlsDezDitJAK0\nKaU+uOo9uYDQGGx45kY3FUBIWt4Jcv1tkEQCvLbcCA7O8qsFmieyc3tktQWWGQ1YcfrtK5Ew5Wql\nKYk0u0Y6EXGM981W3mMLBc8KWZ9n1BX5DnUpQa/I3TaAdCLqVMxzT9jt8QhHpyoNrq6agMYXCt4y\nrYl6JmR3QaVk1Eod09S4nYw4Eorf/rBUrBANh7zSQLwuibg9qrSbbaWmPNIfeH9PjwdfC4uA9rif\nLKzn15DzrQUS8eSyCsiw64Z/8RO1x3GQTcSv6m1lgRXkWRn0Lm9GcmlFEvmOiLx21XtyASBInVX3\nIW99gAXZ6INqlgTl7mnFjdH/0kUDouKjAZKI+3tQtcbACSkgTYt/JRtUhc4/qdf3b54nTKti8uWq\npz0RDRENixM97T9mslkwpTteosmq/9RCvmlespG5PB2Jur1CRKyATdvm45W0ok5pV/+5lLLT0yQa\nSbKmoN1FhCJ16cO/sg8i+CAPviAvP3BlzG0YI2H7WN/+AbEa0YBx5EYQWTRI0AELrJVIIkHv+CbM\nduKgFRJ5LxaR5EVkUUQyImKKWq8AQcGGZ6MwbZBqgnS0AVlEW0lXH1Qbwf+SBqmzgojKW68hSG3R\nfBLyux17Iu89dhcXiSSaE02gbcZFYCLiGIz96fTTiairsJe3Xdf6dq/INZllChWfFGSdv1SpNdx3\npx2A6b+/jkTUcdv2k4tzvVijJAJeycx97/6VfXBgn+uZRZpLBkHxSv5AviAVaRBBeB1Cmu4SuMjx\nR6wHOZ0EFYJbDsEaAgubTw5pQZ2llDLuvOcYjRyyEnWW9d8vcevVq99IqF8I/2orqKricvvoF8Rv\nlNcTht87K5BEgogjgBCs/ZobYPXkFnbp3f3n9daZb+4x5lXXNLftJCLeynhpDzkFeSNFXfs0d3le\nzlgctM1NTkESmNe43Zw8oU6A/vsOtEW4PfgCIsuDVKFBxdSC0vX44ZYSgib7hjrnoeY2Ef29toLs\niMFqK+/3oOSrmwGteGc9q0nzAnBSKVU5913avAgKNjyblAit6mQ12fh70Mpqy69R0Nf0r+iC1FlB\nagEPibhXrwESivW9uTrLkVCi3gk+FhBMGTSRL+c6qo/3E1uQ44CHRNwxMQFp9oPidPzfE0HkG3Af\n7msv57rtJslm1xbx/p7BqXHqn/0LEL0tuJiaTxIJUme52gPLS/vjPgIkaJz3rzWp3ruPz7HltPuf\n/pwbDa0Y1j8FPAt4xP5+NfAo0Cki71JK/XC1OrfZEKTOOrsEjK3tV5dEfOqsFhSarZTvhfrk31iX\noflFvBNSQMBYkCTSJIq+abvrvO7rBednCpYG9OSa8E+AQa6nrsk0SGJwXzsUEhLREIVyrclEbn2P\nhiWQZIPS1gRJV0FedP5nodv9BB2kgnS3+xcQ0cjydrMGFVRL6qwgScT7XY/8oBogfrTyXrb65vrf\nu82EVmwip4BrlFLPVko9G3gmcAx4JfC/lz3SoCkaVjzO/zMnk1b5x/HOCmhv5Vg/GiaIUPMJIigW\nJUid5UbQZJpsqCFfn+iatfuvFxQAGQ5JvfZKgDTg914KWt0HSVpB17au0VzSCmoPqgfjnsjd/XAT\naVBZgCCbSFCf/J/d125QhdJ8jGgDekMxtQBJxH3eViURbTsKiuFYkSbgDI/ZjNl8WyGRS5VSj+kv\nSqnHgcuVUsdWr1ubE4HBhnUWOWO0KsXUDeu+9hUY1jWCJBE//GovDY93VsCKM0ht1TiZNreVxAIm\n01bUVkGTZtD+EKyecl+7LUAKcp87kMCWmci9HlLNySwUEmcSdUeDu8/VeG2r3T/5JgLu2z0O/FKo\nONduLon4x2cs0sIiJ2B8+sml5tgR/Wor7QV32ks1oEGdFeAduXnlkNbUWY+JyP8Fvmp/fyPwuIjE\ngfKq9WwTIriy4Zkb1p1jW9wvSJ21Ehffertf4tATgT/JY/Pj4+HmE4/3nM29dfyTUFBhoaCJ/HRq\nnUyh0ro0EKlPsp5cZAHXSCxDIo40EKBKC0pB4++Xuz3ITdZvQA8iaP1bB1XRhGBp0z++tAeUf9Gg\nx1JjmYQWVEoBu/jHrR6XjYG49nnOpZQQaHE/d5dYL2hFEnk7Vj3z/8/+O2a3lbHrfhicGc5lxHor\nLxmcJ3WW/b0hU3DA8VHXKjOoG41J8UJN+6Qncv+140GqHM9q2XcuvepvUPc0l3Z0ezgkgfnHglRb\ngUQVGB8T7DkVpM7y2xV0H/1ErPfzT/DRgEhvt5QRKA34xki1ps/pt5vphVRzj6rlELzIaVGddQ4n\n9sA4kU0sirTi4punXpDKj6Vz3qNNjMBU8M7/1bOJOETV0H7m6iz9Mga5Svrdi4MM6+6JJIgMGwId\nXUkX3XCyFPtIpBV7gF8K0t1vCHwL9AyzvvufXxCBeaWV5oQUZNwOUu8td94gu0KDcduxBXmvoX8f\n/xNyXy9woRG4APFeWz/PlUgigS6+vnZHnRUQqLUZPafOB1px8b0E+DPgSsDJ5KaU2ruK/dqcCNCX\nno1OtlVJ5GxE9UbdsmraHnHUWd7jA5M8uvoedB8NNR60JOJPaeHkP/JLIl7vp/r+wR5EzYL3rHM1\nn+DrlfGCr+2esL0uyP77WN7ms5xNJMhzyk8WEtAelNdKk4s/jCLSgodUY9Em67+f1xxJJCCwdTkE\nZcgNGrfB6qzVw2YmqFbUWf8E/F+saoIvBb4AfHE1O3WhYjXHmX6XV+JOHPQy+lUSQeqsoInA/fK3\nmg01yNc/SF0XZLB3r5D92VodvX1AKvGGYlz2pOuXgpazuzjX9huYAzzDtAQWpGrywyuhBNhEGs4V\natpXfd+NEubpx5KfoIMq/7WqkjoTtLr4caeXOVs4EesN7Wd96nWLVkgkqZT6MSBKqZNKqT8CfnF1\nu7U5EZzvauUjrNVx36rE0gxBuuVWE9m1Uqs6UJ3VEADWnESiAdGUQZOQe8JoqJNtTwF+ctH34V/5\nBmWBDbLBePZpsFdY//1utnrV35BUsIVgPD9ZBHlI6WP8j0K3+yO6W3mujTEZug/NScT/tM5m3Daq\ns5rbRFZDEgkipM0okLTinVUUkRDwlIi8BxjFqnZosEI0rFJ0+wpemKCXzE9LZzN4/RO5nkv8K9HT\nTRDLIWiXhuI+jjqkNUmktTrZARNawGTq/z2C7i/IvbjZOU/X7kzkLUoD7nb/tfUiIMi43UhUAZJI\nS0Wbmi8C/N0O+s1beX6tXluP28Y4rdWf2oPsoZsBrUgi7wXagP8GPBt4K/C21ezUZkWQxJGKRRhI\nx/mTX3raGZ+zdcP6WdhdfKNE34ffOBpkvA9SuXiu0aJhPUgdEgmwibRCYI1G3ubHOpPsMl5KzfaH\n5dJ3NCck/+6Bnm8tBOP5ySIUIM1pT6r/v70zj7ekqu7999dNzyPdNA3dTTNJkG4QkQtpwEiDjTIo\nCAFBBYTkyQdEweThQEgITx4xwfhieNEYJAoYI0GRIYogIgQjYWgUmumDtBIVxAE0IFGm7pU/ap97\nT1fVPrdOnaoz3fX9fO7n1nT2WrvqnL1qr7X32tkGPhLrKpDuIBYTybiz2nRzFaHoEN9ORkfGSBe1\ncsk8Zk6dzJmv36k6IX1CkdFZd4fN54CT61VnuGnMTp6Zyp46eZK465w1pcqMpmzIXFeqeCBn5m/D\niERdRZvuF1qXIaJfzGOSDczGGvIiDV2+UYgPL97080VWh4w19mn9Yr2B0SSBGVfh+O669DVJ2Zb5\nkjSec3aYbfK/TMqceEwk//rM97aDL276s+MN8a1zrY95M6bw0IcPrq38XhI1IpKua/VBMzu8enWG\nm9NW78j0KZM5bq9tKiuz6Ne+kx9IJkC5Mf94TKcib5NRH3LErx1L552ZB1OgFxRzKWXcWW0Gf4sY\nsKJB3s1G3VnFZLfSY9IkYEP8rT8bM8iXUWj4baZ+jf/F3LBl0rHHPtuYo5KZsV6hO6tMePNTx7+G\nZZvPrEyHbtOqJ7IP8GPgC8CdDGdMqKtMnzKZ01bvWGmZhdOeRFxNZWSMjc5Kuwtiny8hNJBuCEaT\n6GXiFflv6mVGEI3KjgwvbjRGY7IjLqUCBiybWyohrfZo/UoEt2NzL7K91db3If14ixiR9P2PLd8c\nHZ1XxOEeIeaGzQ7WCP/Li8rQznf+4F23rlBy92llRLYiSbL4NuDtJOuqf6E5j5bTe7oxOitNrDdg\nkcBlJxQd+jnWMLbvU88Ef1NljpUVzmfcdbGeSAnZsZhBIy5RQkbRuFJjv2hvoEgDn4lLjMoa/7Ot\nZJf57OjorJTeVcZEhjmAHiP6NTCzDWZ2g5m9E1hFkvrk1jBCy+kTio7OalBFAx+bsT46yqxCmdnh\n0PlljjW+m15frCeS/zMo6taJ9WSKyI75/LPB7fzPF3GZFQ0kN2Sme5TRVOsFnmusp5T+bKwXW+XQ\n9NiM9VjSxE4Yxmy9MVoG1kOSxcNIeiPbARcBV9evllOUTIMduW40rUQFMhs/unTjaWO/xkI6FSHb\nk8hffrTdSWzNxBr72Jt6+upYluJyvaBQj8gcnHRwu0gbW3Q4bUNmZpnYUeuSLrf9XtB4y8em6eSd\nJ/1ysGFUdsSITJx2v1KirzGSLgf+g2RBqv9jZnuZ2flm9kSdCkl6taQ7JN0raa2kvZvOnS1pvaRH\nJL2xTj0GhcxbVfS69suelcow22Dc0VkVvoVlJoxtzD8+uh9pMFuReVuOupRi9c2nSA8sFniODYHN\nxCVKDFqIuf4aZIP3+eUW+U7F5moUHbpbphe7aM40IPv9jcVEnM5o1RM5HvhvknkiZzQ9TAFmZnNr\n0ulCEqP1NUmHhv3VklYAxwErgSXANyT9jpltqEmPwSDye8j2UNr/4dxy1mp+9MvfZI5HYyKRcjr5\nzRYdwhxrfIvUO56WJV9GrBdUhni8Iv+67How7cscm6ux6fFGNdJ+/VispIyRHIuJFFO8TP2uPX0/\nfvrs8xn9YkN8q4xjbLtwFt9e/zTzZkyprMx+J2pEzKyDcREdYUDDQM0jWVkR4AjgCjN7AXhM0npg\nb5Le0tByw/t+r+UInKI/skmRBrAVW86dzpZzp2eON3oDmZ7IqM+5uIzxyDZCkUzI4zSMZYitQBmT\nXYai631HDV1H8aZ8A5Y2VJ1M+Cs6fDo6OqtE/ZbMn8GS+TMyx2Mz1mMjxspw7ptWsGaXLdlt2byO\nyxoUiqQ96TbvA26U9Nck7rZ9w/GlwB1N1z0ejmWQdApwCsDy5cvr07QLvHKr1h2+wt39Chv2sVEu\n+Q18poEomeLeLOetMeK/Hs9FU4bY8OK0jE4an8zKf5EyY+8RZURbxNg39tPDiMeMS/tv7BkDFJk1\nHqNKz1NjmHR8gmbnMqZPmcyBr1zceUEDRE+MiKRvkAwhTnMO8Hrgj8zsKklvBf4RaGs6t5ldDFwM\nMDIyMtRj7mLf+3Yq/fFjX83cGcW/ChsjvuU6MpXGYj6ZdPqN/xX0RGINeYxJkaG/rVi+YCY/+uVv\nchIwxtxZ+UN8O+uJbLofM9AdpR6JPL/i7qzqrMiHj9iVpfNnsP/vLNpUp6FuIeqnJ0bEzKJGIQT0\nzwy7XwQuCdtPAM1TvZeFYxOabAygfd6yR26HLsrozN98b1bOeint66RQXrq3szEyAqxxXZmYSIxY\nLyh7XaMXVJzbPnBA7vGYMRxtjNOpR0rc3HYTfnZiRDK91UgvqI6Jqmm2mD2Ncw5bkTke60E7xehV\n3KMVPwH2D9sHAo+G7euA4yRNk7Q9sBNwVw/06yva/+J3/kuJurMib7JlJI6mfC8YWB8NFkeC4WUo\nmrcpllSwDLEiomldOumJFLyuyhjXqOyi7qwuzreYSHM7qqQfYyLvAv5W0mbA84TYhpk9KOlK4CGS\nBbJOn/Ajs8hxScQurLDL/sqt5nD795/OrFNRxxtdZgpGdFZ8rCfSPmMupWK+8/Gub0t2+B8Lbmcm\nApZ4DYxls431UGKjs8rQ+I4UHQBRhwFL4/NEOqPvjIiZ/TtJyvm8cxcAF3RXo/4m9vZU5+/hUyfs\nyUM/eZY50zcdxjjWwHXeFYnFJeKz4hv/06606txZ8esawkuLypCNS4wjuw3GjEXqeL6nMGrAytDu\nSKhW1932/gP47Uudv0c2etZuQ8rRd0bEaY+iDV1j9u5W86Z1LHPu9Cms2mFh9HyVb3RF8x/FGsBO\nVMm66/Ibm9i8izLE2umxwHo6JlJCxngNeWbUVvXNaxWjs5YvrCbzbWN548YkRac93IgMOEVTai+Y\nNZW/OXZ39nvFFrXpEu0llBziC9nG5oWXkqj+wlnpH3xkeHENvaA0dQwvzg4jbi27HdodqjsWj+m8\nKxJzHcUD6/X3D3bZei4X/v6reOPKvAGjzni4ERlwInPVcjlyj2W16hLLi1SuIU/GZ6V7HH/25hVs\nu3BmxhjGkuvV4c4qmvyxSmITAavMBhAzEq1GZ130tj2YWiDlfYONke9Ir3lrhWv8TDTciAw43XhT\na5dKJ/ylGrCl82dw9qG7ZK7bGElp0QmxIH16idrRVCVdiAJn056Uj4nEEgDHJlPm9RYO331J2/Lz\nZDiDSz8O8XUGlKhLokxhbQ6bbXfuQ0vREdnTgu/8xZc35l5fJPX7eIznaap0smHqycRkdzJPJCrb\nbcjQ4EZkyOjl5Nt203y3ot0iRgPuNY6QmhoGJ7yYWtqw0ZBX2djGXIKZdc7LiBwnx1k2pUwJGTHR\nXZhU6HQXd2cNKb34TVa5KNVVp+3Ldff9JDMXJSq7wiR6DdJFzZme/Fwy82NqkJ3RJTaUO8icMSU/\nbX/LMosOYS5hRf7hhD356TPPZ4777PDhw43IkNKLHkmVy+PuunQeuy4tngm1GwHbNbss5v1v3Jnj\nV22bK7sKI1Lmuf3FkbuxaocFbcuIPafMPJESkw1jI53qWEXQ6S1uRIaMfvxpdkOnKnsDjQYuE8Se\nJE4/4BWZ6xuB9jpiB6M6tSj67b9bLlN1usjY0N9uxEQ8CeLg4jERpzLqWJSqKGM9ke6b0YZ7a6fF\ns2uTMXta8r63/RazOi4rmvZkvPQfVcxY77wIp8/wnsiA8oYVi/n6Qz/rtRqbsHJJsvbJXtsVd61U\nxe7L5iPBqfvv0HXZW86dzuV/sDd7LJ/fcVmx3sA2C2by2ZP3qvTeFrW3UydPYt6MKZx9yCs7lhmb\n9T+eLu2467rB7svmcd/jz/Rajb7AjciA8sl3vKaSvEFVsmqHhdz1J6/PrIbYDf/35rOm8thHDquk\nrDKdmdel1qiogwN23rKSctpe02OSuO/P31CJ7Abt3ON7zz2IGVPbHzhQJ188dV9eSo3Sm6i4ERlQ\nNps8iTktls3tFXnL6TrtU6dbLhZ/iK0HU6nsEp+ZP3Nq5Xp0ytTNJmUWFJuo+F1w6qcfo/0FGNZg\n72g69oLrwVQsPMgY0C+Fk8GNiOOk2DZkh+2FC6WbdqsXzbinXR8+3J3l1M6gvXT+9TG7c9Rrnq5k\nJFTbRFLal+H6M34vX0QXJkfGmBVGmaWHDQ9rr28i4EZkyBjZbnM+f+eP2HnxnF6rMkqrpurSk/fi\npQ391YLMmT6l52nBq2jfV4TRckVljM4m71x0lItPHOHae59g+YJq1gLpBss2n9FrFfoaNyJDxpF7\nLON3t1/IkvmD8cVfXdGIo2GhijU7xpeREJ3wV2MPZen8Gbx7dXbCZr/2Vu899yAPoI+DG5EhpN8M\niAdR26cbw6I99cj49OPIsH7DTazjTDTGy+LbPU2cIcCNiFM7E71R2mFR8QD9QSsWA7DzVvWlUGmQ\n7iH2dhmBHgp3OsLdWU7tTGRv1vf+7yFtrcdx5B7LOHjl1rUOLx6dJ1JwPRHHaYUbEcepkTJB2W7N\nT8nERHrYHXDDNbi4O8upHQ/g9hejM9MLrrHuOK1wI+I4E4zYCpQelnDK4EbEqZ1+cFUsnjut1yr0\nDbH1RF6x5exN/jtOEXoSE5F0DHAesAuwt5mtbTp3NvCHwAbgDDO7MRzfE7gUmAFcD5xpscUXHKeJ\nb33gAOZOn9JrNfqOtHE/fPcl7LhodlvLEjtOr3oiDwBHAbc1H5S0AjgOWAkcDHxSUiPK+PfAu4Cd\nwt/BXdPWGWi2WTCTeTPdiDSIrSciyQ2I0zY9MSJm9rCZPZJz6gjgCjN7wcweA9YDe0vaGphrZneE\n3sflwFu6qLLTAf3gznIcpx76LSayFPhx0/7j4djSsJ0+noukUyStlbT2F7/4RS2KOs6g0sssvs7w\nUVtMRNI3gLxUqOeY2bV1yQUws4uBiwFGRkY8btJjfMhof+I2xKmC2oyIma0p8bEngG2a9peFY0+E\n7fRxx3FK4j0Rpwr6zZ11HXCcpGmSticJoN9lZk8Cz0papSThz4lArb0Zpzq8repP+umx+DjLwaUn\nRkTSkZIeB/YBvirpRgAzexC4EngIuAE43cw2hI+9G7iEJNj+feBrXVfcKUU/NVYObDV3OuDG3amG\nnswTMbOrgasj5y4ALsg5vhbYtWbVnAnEV894LU8992Kv1eg6XzptH+754a/6ap2XPlLFaRNPwOjU\nTj81Vs2sXDIx50Qs23wmyzYfnOVpnf6m32IijuM4zgDhRsSpnf7shziOUwVuRBzHcZzSuBFxaqdP\nQyKO41SAGxGndvo1sO44Tue4EXEcx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzHcUrjRsRx\nHMcpjRsRx3EcpzRuRBzHcZzSuBFxHMdxSuNGxHEcxymNGxHHcXrO5ElJapypk71JGjR8USqnK5z7\nphXss+PCXqvh9CmH7bY1Dz/5a07bf8deq+K0icys1zrUysjIiK1du7bXajiO4wwUku4xs5HxrvO+\no+M4jlMaNyKO4zhOadyIOI7jOKVxI+I4juOUxo2I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO3DnV\nxAAACq5JREFU45Rm6CcbSvoF8MNe69EmWwBP9VqJLuN1nhh4nQeHbc1s0XgXDb0RGUQkrS0yU3SY\n8DpPDLzOw4e7sxzHcZzSuBFxHMdxSuNGpD+5uNcK9ACv88TA6zxkeEzEcRzHKY33RBzHcZzSuBFx\nHMdxSuNGpA+QtEDSTZIeDf83b3HtZEnflfSVbupYNUXqLGkbSbdIekjSg5LO7IWunSLpYEmPSFov\n6UM55yXponB+naTX9ELPKilQ53eEut4v6XZJu/dCzyoZr85N1+0l6WVJR3dTv7pwI9IffAi42cx2\nAm4O+zHOBB7uilb1UqTOLwP/28xWAKuA0yWt6KKOHSNpMvAJ4BBgBfC2nDocAuwU/k4B/r6rSlZM\nwTo/BuxvZrsB5zPgweeCdW5c91fA17urYX24EekPjgAuC9uXAW/Ju0jSMuAw4JIu6VUn49bZzJ40\ns++E7V+TGM+lXdOwGvYG1pvZD8zsReAKkro3cwRwuSXcAcyXtHW3Fa2QcetsZreb2a/C7h3Asi7r\nWDVFnjPAe4GrgJ93U7k6cSPSHyw2syfD9k+BxZHrPg58ANjYFa3qpWidAZC0HbAHcGe9alXOUuDH\nTfuPkzWERa4ZJNqtzx8CX6tVo/oZt86SlgJHMuA9zTSb9VqBiYKkbwBb5Zw6p3nHzExSZty1pDcB\nPzezeyStrkfLaum0zk3lzCZ5e3ufmT1brZZOL5F0AIkReW2vdekCHwc+aGYbJfVal8pwI9IlzGxN\n7Jykn0na2syeDG6MvK7ufsDhkg4FpgNzJf2TmR1fk8odU0GdkTSFxIB83sy+XJOqdfIEsE3T/rJw\nrN1rBolC9ZH0KhLX7CFm9nSXdKuLInUeAa4IBmQL4FBJL5vZNd1RsR7cndUfXAe8M2y/E7g2fYGZ\nnW1my8xsO+A44Jv9bEAKMG6dlfza/hF42Mz+Xxd1q5K7gZ0kbS9pKsmzuy51zXXAiWGU1irgmSZX\n3yAybp0lLQe+DJxgZt/rgY5VM26dzWx7M9su/Ia/BLx70A0IuBHpF/4SOEjSo8CasI+kJZKu76lm\n9VGkzvsBJwAHSro3/B3aG3XLYWYvA+8BbiQZGHClmT0o6VRJp4bLrgd+AKwHPg28uyfKVkTBOp8L\nLAQ+GZ7r2h6pWwkF6zyUeNoTx3EcpzTeE3Ecx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzH\ncUrjRmRIkWSSPta0f5ak87qsw6WNTKWSLuk0eaKk7SQ9EDn30ZDp96OdyOgnwv17rMohos3PZCIi\n6SRJfzfONceGTLwDnSm7W/iM9eHlBeAoSR8xs6fa/bCkzcLY90ows/9VVVkRTgEWmNmG5oNV16MH\nvN/MvtRrJapE0uT0c+onzOxfJP0MOKvXugwC3hMZXl4mSa/9R+kT4Y3+m2E9h5vD7OHGW+qnJN0J\nXCjpPEmXSfqWpB9KOkrShWENiBtCShIknSvpbkkPSLpYOYmBJN0qaUTS4U0TBx+R9Fg4v6ekf5N0\nj6QbG1lsw/H7JN0HnJ5XUUnXAbOBe8JbZLoesyR9RtJdStZiOSJ8boakKyQ9LOlqSXdKGgnnnmsq\n/2hJl4btRZKuCvW9W9J+4fh5Qcatkn4g6Yymz58Y7vV9kj4naU7oYTTu39zm/RiSFgc97wt/+0r6\nsKT3NV1zgcK6K5I+GJ7VfZL+Mqe82D0/Q8kaLuskXZHzuZMkXRvq+qikP286d3y4z/dK+gclqc+R\n9Jykj4XnuE+qvIw8SXtL+o/wvG6XtHOT7GuUrEHzn5LeI+mPw3V3SFoQrrtV0t8GPR6QtHdOPXKf\npdMmZuZ/Q/gHPAfMBf4TmEfyVnVeOPevwDvD9h8A14TtS4GvAJPD/nnAvwNTgN2B35DkOQK4GnhL\n2F7QJPdzwJubyjs6bN8KjKR0vJLEMEwBbgcWhePHAp8J2+uA14XtjwIPxOrbtJ2ux18Ax4ft+cD3\ngFnAHzfJeRWJ4R3JKe9o4NKw/c/Aa8P2cpKULI17dTswjSQv0tOhXiuDvC2a7xXw2ab7dwrwsZw6\njd6/sP8vJEkoASaH57od8J1wbBLwfZKZ4IcEfWam5F4a6tPqnv8EmNa4Xzl6nQQ8GeTMAB4gyQu1\nC8l3a0q47pPAiWHbgLdGnl1GHsl3d7OwvQa4qkn2emAOsAh4Bjg1nPubpvtzK/DpsP06wvcmfP7v\nWj3LsL8a+Eqvf8eD8OfurCHGzJ6VdDlwBvDbplP7AEeF7c8BFzad+6Jt6mr4mpm9JOl+kobrhnD8\nfpIGDOAASR8AZgILgAdJGpMo4frfmtknJO0K7ArcFDoxk4EnJc0naVRua9L1kEKV37QebyBJXtlw\nT0wnaTReB1wEYGbrJK0rUO4aYIXGOltzlWQZBviqmb0AvCDp5yTp7Q8MujwV5PwyXHsJSVr/a4CT\ngXcVkH0gcGIoZwNJA/qMpKcl7RHkfdfMnpa0Bvismf0mJbfBzuTc83BuHfB5SdcE/fK4yULSRElf\nJsnC+zKwJ3B3KHMGY4k1N5Ak0swjT9484DJJO5EYoOZe2i2WrC/za0nPMPZdu5/kZaDBF0Ldbwu9\nvfkpubnP0syewymMG5Hh5+PAd0jefIvw36n9FwAsSV/9koXXNJI1TTaTNJ3kjXPEzH6sJHg/vZWA\n0MAdQ9KIAwh40MzSbo70j74dmush4PfN7JFU+a0+35wPqLk+k4BVZvZ8TlkvNB3aQIvfl5l9W4lb\ncTVJjyl3wEBBLiF5w94K+EzBz+Te88BhJM/mzcA5knazbFwpnS/JQpmXmdnZOWU+b/E4SEYeyWqH\nt5jZkUrWkrm16frm+7yxaX8jm97zPB2byX2WTnt4TGTICW+gV5Ks2dDgdpIsowDvAL7VgYhGA/tU\neCNvOfJH0rYky4geY2aN3tEjwCJJ+4RrpkhaaWb/BfyXpMZaE+8oqeONwHsVWvrw1g5wG/D2cGxX\nNn2L/ZmkXSRNIllIqMHXSVana9Tn1ePI/iZwjKSF4foFTecuJ3GpFDXwNwOnhXImS5oXjl8NHAzs\nRVJXgJuAkyXNzJELkXse6ruNmd0CfJCkRzCbLAdJWiBpBsmqlN8O+h0tacuGzPC8o7SQN4+xVOon\ntb4tUY4NMl5Lkhn5mdT5dp+lk4MbkYnBx0j89A3eS9LArCPJkntm2YJDQ/9pEr/4jSQpsVtxEokv\n/ZoQ9LzekuVEjwb+KgRe7wX2DdefDHxC0r0kb7plOJ/EHbJO0oNhH5IV5mZLehj4MHBP02c+RBJX\nuZ0xNw8krsGREAR+CGg5/NbMHgQuAP4t1K05pf3ngc0JbpcCnEniOrw/6LoiyHgRuIUkc+yGcOwG\nklTka8O922SkUYt7Phn4pyDju8BF4RmnuYvEPbWOJF6x1sweAv4U+Hr4bt0EjLfMb0zehcBHJH2X\n8h6T58PnP8WmL1EN2nqWTj6exddxApJuBc4ys66kJVcyX+MIMzshcv5SkuBuyyG+4W3+OyS9u0cr\nVzQr7yQS9+V76pZVlk6fZXAznmVmb6pSr2HEeyKO0wMk/X+SNVTOb3HZM8D5ajHZUMkEzvXAzd0w\nIBMBSceSxPl+1WtdBgHviTiO4zil8Z6I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO45TGjYjjOI5T\nmv8BB6iJV+uXCzUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Welch window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Blackmann's Window" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='blackmann')" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX6//H3nU4ghJLQUkiA0JsYQGmCDVTsDTusK+ta\ndl3Lrtvd/a1bv/aGggqWFbE37ArSBZReAwmEHmpCQvr9+2NO2DESGCCTM+V+XddcmVNmzudAMvec\nc57zPKKqGGOMMQARbgcwxhgTOKwoGGOMOcyKgjHGmMOsKBhjjDnMioIxxpjDrCgYY4w5zIqCCQgi\nMllE/naS7zFcRLbUV6ZAIyIHRaTDCb52hoj8tL4zmdBjRcE0CBHJE5FDzgfbPhH5SETS3M4VTFS1\niapudDuHCW1WFExDulBVmwBtgZ3AEy7nMcbUYkXBNDhVLQXeBLofabmINBeRD0WkwDmq+FBEUr2W\ntxCRF0Vkm7P83Tre5xciskpEUmtOLYnIr0Vkl4hsF5FLROR8EVknIntF5Hderx0gIvNEZL+z7pMi\nEuO1XEXkVhFZ76zzlIiIs2ysiMwWkf9z8uWKyHl1ZBwnIh94Ta8XkTe8pvNFpK/XNjs5zyc72/xI\nRIpEZIGIdPR63TkiskZEDojIk4B4LYsQkT+IyCbn3+IlEUl0lk0RkXuc5ynONm93pjs6/072uRHC\n7D/XNDgRiQeuBubXsUoE8CLQHkgHDgFPei1/GYgHegCtgEeOsI0/AWOBM1S15jpDGyAOSAH+BEwE\nrgdOBYYCfxSRTGfdKuBXQBJwOnAWcFutzYwG+gO9gauAkV7LBgJrndf/G3i+pmjUMhMY6nxQtwNi\nnO3hXD9oAiw7wusAxgB/AZoDOcCDzuuSgLeBPzjb3wAM9nrdWOcxAqjZRs2/70xguPP8DGAjMMxr\nepaqVteRx4QCVbWHPfz+APKAg8B+oALYBvTyWj4Z+Fsdr+0L7HOetwWqgeZHWG84sBV4GJgNJNZa\ndgiIdKYTAAUGeq2zGLikjgx3Ae94TSswxGt6GnC/83wskOO1LN5Zv00d750P9MPzIf8c8C3QFRgH\nvF9rm528/r0meS07H1jjPL8RmO+1TIAtwE+d6S+B27yWd3H+T6KAjsA+PIV5AvAzYIuz3hTgbrd/\nl+zh34cdKZiGdImqNsPzbf0OYKaItKm9kojEi8izzumNQuAboJmIRAJpwF5V3VfHNpoB44F/qOqB\nWsv2qGqV8/yQ83On1/JDeL41IyKdndNWO5wMf8fzrdvbDq/nJTWvrb1MVUucp97LvdV8Ox/mPJ+B\n51v5Gc50Xerafjs8haZm++o97Szf5DW9CU9BaK2qG4BiPIV4KPAhsE1EuviQx4QAKwqmwalqlaq+\njecUzZAjrHIPnm+vA1W1Kf87fSF4PtxaiEizOt5+H57TOi+KyOA61vHFM8AaIMvJ8Du8zsvXs5qi\nMNR5PhPfikJdtuMpngA4p628W3ptw3NqrkY6UMn/CuRM4AogRlW3OtM34TlNteQE8pggYkXBNDjx\nuBjPh8zqI6ySgOdb+34RaQH8uWaBqm4HPgaedi5IR4vIMO8Xq+oM4DrgbREZcIIxE4BC4KCIdAV+\nfoLv44uZeM7vN1LP9Y9ZwCigJfD9CbzfR0APEblMRKKAX+C5nlLjNeBXIpIpIk3wHAW9rqqVXnnu\nwHOEBp4jlzuA2V5HWiZEWVEwDekDETmI58P2QeAmVV15hPUeBRoBu/FcjP6k1vIb8JwDXwPswnO+\n/wdU9XPgJ842+51A1nuBa4EiPBekXz+B9/CJqq7Dc71lljNdiOcC75wT+RBW1d3AlcA/gT1AFjDH\na5UX8Fys/wbIBUqBO72Wz8RTFGuKwmw810W+wYQ88ZxuNMYYY+xIwRhjjBcrCsYYYw6zomCMMeYw\nKwrGGGMOi3I7wPFKSkrSjIwMt2MYY0xQWbx48W5VTT7WekFXFDIyMli0aJHbMYwxJqiIyKZjr2Wn\nj4wxxnixomCMMeYwKwrGGGMOs6JgjDHmMCsKxhhjDvNbURCRF5yh/lbUsVxE5HERyRGRZSfYaZkx\nxph65M8jhcl4uv+ty3l4em/MwjMoyjN+zGKMMcYHfrtPQVW/EZGMo6xyMfCSMyrUfBFpJiJtnf7y\njQl4ObuK+GTFDsorfzxksYgwuFMS/TOac+ShmY0JTG7evJbCD4cI3OLM+1FREJHxeI4mSE9Pb5Bw\nxhxJZVU1X67ZxUvz8piTsweAI33mq8JjX66na5sEbhqUwcV92xEfE3T3ipowFBS/par6HJ4BzcnO\nzrYBIEyD23OwjNcX5fPq/M1s3X+Idolx3DeyC2P6p9GySeyP1j9UXsV7S7YyZd4mfvv2cv4xfTVX\nZadx/WntyUhq7MIeGOMbN4vCVn44bmyqM8+YgKGqTJi5kUe+WEd5ZTWDO7XkTxd256yurYiKrPuS\nXKOYSMYMSOfq/mks3rSPKfM2MXluHpNm53JVdip/vbgncdGRDbgnxvjGzaLwPnCHiEwFBgIH7HqC\nCSSlFVXc/9Yy3l2yjfN6tuHuczqT1TrhuN5DRMjOaEF2Rgt2XdCNibM2MnFWLut3HeTZG06lVUKc\nn9Ibc2L8VhRE5DVgOJAkIlvwDL4eDaCqE4DpwPlADlACjPNXFmOO167CUm55eTFL8/dz38gu3Da8\n40lfMG7VNI7fX9CdfunNuXvaUi5+cg4Tb8ymZ0piPaU25uQF3RjN2dnZar2kGn9avuUAt7y0iMLS\nCh6+qi+jerap922s2HqA8S8tYl9JBQ9d1Yfze7Wt920Y401EFqtq9rHWszuajfHy4bJtXPnsXCIj\nhDdvHeSXggDQMyWRd+8YTLe2Cdz26nc89sV6gu0LmglNVhSMcTz3zQbu+O/39GyXyHt3DKZ7u6Z+\n3V6rhDheG38al/VL4ZEv1vGr15dQXW2FwbgrKJqkGuNv05dv5+/T13BBr7Y8fHUfYqMapmVQbFQk\nD13Zh4yWjXn483WkNo/n3pFdGmTbxhyJFQUT9lZsPcDd05ZwSnozHrqq4QpCDRHhzjM7sW3/IZ78\nOoes1k24uG9Kg2YwpoadPjJhbVdhKbe8tIgW8TE8e8Oprt07ICL89eKeDMhswX1vLmNJ/n5Xchhj\nRcGErdKKKsa/vJj9JRVMvCnb9XsGYqIimHD9qbRKiOWWlxax/cAhV/OY8GRFwYQlVeX+tzzfyB+5\nug892gXGvQItGsfw/E39KSmr5JaXFnGovMrtSCbMWFEwYemZmRt4d8k27jmnM6N6BtY9Al3aJPD4\nNaewclsh976x1JqqmgZlRcGEnc9W7uA/n67lwj7tuOPMTm7HOaKzurXm/lFd+Wj5dh77cr3bcUwY\nsaJgwsr2A4e4Z9pSeqUk8p8regf0WAfjh3Xgsn4pPPrFeuZt2ON2HBMmrCiYsKGq/OGdFVRUV/PE\nNacEfC+lIsKDl/QivUU8v317mV1fMA3CioIJGx8s286Xa3Zx77ldaN8yOMY0aBQTyT8v70XenhIe\n/WKd23FMGLCiYMLC3uJyHnh/JX3SmjFucKbbcY7LoI5JXDMgjYmzNrJsi92/YPzLioIJC3/9YCVF\npRX8+/LeREYE7nWEutx/XjeSE2L59ZvLjjgmtDH1xYqCCXlfrdnJu0u2cdvwTnRpc3yD5ASKxEbR\n/O2SXqzZUcSzMze4HceEMCsKJqQVlVbw+3dW0Ll1E24b0dHtOCflnO6tGd27LU98lcP6nUVuxzEh\nyoqCCWn/+mQNOwpL+dflvRu8ozt/eOCiHsTHRvKbt5ZRZd1sGz+womBC1oKNe3hl/mZ+MjiTU9Kb\nux2nXiQ1ieXPF3bnu837eWlenttxTAiyomBCUlllFfe/vZy0Fo2459zObsepV5f0TWF4l2T+/cla\ntuwrcTuOCTFWFExIemnuJnJ3F/O3S3oRHxNaw4aICA9e2gtF+c+na92OY0KMFQUTcvaXlPPEV+s5\no3MyZ3ROdjuOX6Q0a8TNQzJ5b8k2lm854HYcE0KsKJiQ8/SMDRSVVXL/eV3djuJXPzujIy0ax/D3\n6autJ1VTb6womJCSv7eEyXPyuLxfKt3aNnU7jl81jYvmF2d2Yt7GPcxYV+B2HBMirCiYkPLw5+sQ\nIeQuLtfl2oHtyWgZzz+nr7EmqqZeWFEwIWPF1gO88/1Wbh6SSdvERm7HaRAxURH8elRX1u4s4q3F\nW9yOY0KAFQUTElSVv09fTfP4aG4dHtx3Lh+v83q2oW9aMx76fK11r21OmhUFExJmritg7oY9/OKs\nLJrGRbsdp0GJCL87vxs7C8t4YU6u23FMkLOiYIJeVbXyz4/XkN4inusGtnc7jisGZLbgnO6teWbG\nBvYcLHM7jgliVhRM0Hvruy2s2VHEr0d1ISYqfH+lfzOqK4cqqnjcxnQ2JyF8/4JMSDhUXsXDn62j\nT1ozLujV1u04rurUqglj+qfx6oLN5O4udjuOCVJWFExQe3XBJnYUlvK787oiEnyD59S3X56dRUxU\nhA3daU6YX4uCiIwSkbUikiMi9x9heaKIfCAiS0VkpYiM82ceE1pKK6p49puNDOrYkoEdWrodJyC0\nSojj+tPa88HSbXa0YE6I34qCiEQCTwHnAd2Ba0Ske63VbgdWqWofYDjwkIjE+CuTCS2vL8ynoKiM\nO8/McjtKQPnp0EyiIyN4+usct6OYIOTPI4UBQI6qblTVcmAqcHGtdRRIEM9xfxNgL1Dpx0wmRJRV\nVjFh5gb6ZzTntA4t3I4TUFolxHHNgHTe+X4r+Xuta21zfPxZFFKAfK/pLc48b08C3YBtwHLgl6r6\no1HJRWS8iCwSkUUFBdbHi4G3v9vK9gOl3Hlmll1LOIKfndGBCBEm2HjO5ji5faF5JLAEaAf0BZ4U\nkR/1Yqaqz6lqtqpmJyeHZlfIxncVVdU8PSOHPqmJDM1KcjtOQGqb2IgrslN5Y9EWdhwodTuOCSL+\nLApbgTSv6VRnnrdxwNvqkQPkAqHd37E5ae8t2Ub+3kN2lHAMPz+jI9WqdrRgjos/i8JCIEtEMp2L\nx2OA92utsxk4C0BEWgNdgI1+zGSCXFW18vTXOXRv25SzurVyO05AS2sRz6WnpPDat5vZVWRHC8Y3\nfisKqloJ3AF8CqwGpqnqShG5VURudVb7f8AgEVkOfAn8RlV3+yuTCX4fLd/Oxt3F3HlmJztK8MHt\nIzpRUVXN87OsTyTjG78OXquq04HpteZN8Hq+DTjXnxlM6KiuVp78aj2dWzdhZI82bscJChlJjbmo\nTztenr/p8EhtxhyN2xeajfHZZ6t2sG7nQW4f0YmICDtK8NXtIzpxqKKKF2bb0YI5NisKJiioKk98\nlUNmUmNG927ndpygktU6gfN6tmHK3DwOHKpwO44JcFYUTFD4eu0uVm4r5LbhHYm0o4TjdseILIrK\nKpk8J8/tKCbAWVEwQWHCjI2kNGvEJafUvv/R+KJ7u6ac3a0VU+bl2ehs5qisKJiAtyR/P9/m7eXm\nIZ4+fcyJGT+sI3uLy3nrOxvL2dTN/sJMwJs4ayMJcVFc1T/t2CubOvXPaE6f1ESen51LdbW6HccE\nKCsKJqDl7y3h4+XbuW5ge5rE+rUFdcgTEW4Z1oHc3cV8sXqn23FMgLKiYALa87NziYwQxg7KcDtK\nSBjVow2pzRsxcZZ1HGCOzIqCCVgHSiqYtiifi/qk0CYxzu04ISEqMoKbh2SyMG8f32/e53YcE4Cs\nKJiA9eq3mygpr+KnQzPdjhJSrspOo2lcFJOs6wtzBFYUTEAqq6xi8pw8hmYl0a3tj3pTNyehcWwU\n153Wno9XbGfzHhuEx/yQFQUTkN5fso1dRWWMH9bB7SghaeygDCIjhBfm2NGC+SErCibgqCqTZuXS\ntU0CQzrZIDr+0LppHBf1SeH1hfnsLyl3O44JIFYUTMD5Zv1u1u4s4pahHax7bD+6ZVgmhyqqeHXB\nZrejmABiRcEEnInfbKR101gu7GMd3/lT1zZNGdY5mclz8yirtK4vjIcVBRNQVm47wOyc3YwbnElM\nlP16+tv4oR0oKCrjvSXb3I5iAoT91ZmA8vysXBrHRHLNgHS3o4SFwZ1a0rVNApNmbUTVur4wVhRM\nANlVWMoHy7ZxZXYaiY2i3Y4TFkSEnw7twLqdB5mTs8ftOCYAWFEwAeOV+ZuorFbr0qKBXdinLUlN\nYqx5qgGsKJgAUeq0gjmzSysykhq7HSesxEZFcu3A9ny1Zhe5u4vdjmNcZkXBBIQPlm5jT3E54wZb\nlxZuuP60dKIjhSlz89yOYlxmRcG4TlV5cU4enVs3YXCnlm7HCUutEuK4sHc73liUT2GpjeMczqwo\nGNd9m7uXVdsLGTso025Wc9G4wZkUl1fxxiIbmS2cWVEwrntxTh7N4qO51MZfdlWv1ESy2zdnytw8\nqmxktrBlRcG4Kn9vCZ+t2sGY/uk0iol0O07YGzc4k817S/hqzS63oxiXWFEwrnp5/iZEhBtPb+92\nFAOM7NGadolxvGjNU8OWFQXjmpLySqZ+u5lRPdrQrlkjt+MYPCOz3XB6BnM37GHNjkK34xgXWFEw\nrnnru60UllYybnCG21GMl2sGpBEXHcHkOXluRzEusKJgXFFdrUyek0uvlERObd/c7TjGS7P4GC49\nJZV3vt/K3mIbayHcWFEwrpiVs5sNBcWMG5xhzVAD0LjBGZRVVvPatzbWQrixomBc8eKcXJKaxHJB\n77ZuRzFH0Lm1Z9S7l+dtoqKq2u04pgEdsyiISLyI/FFEJjrTWSIy2pc3F5FRIrJWRHJE5P461hku\nIktEZKWIzDy++CYYbSw4yIy1BVx/WjqxUdYMNVCNG5zBjsJSPl25w+0opgH5cqTwIlAGnO5MbwX+\ndqwXiUgk8BRwHtAduEZEutdapxnwNHCRqvYArvQ9uglWL83bRHSkcO1AGzMhkI3o0or2LePtgnOY\n8aUodFTVfwMVAKpaAvhyEngAkKOqG1W1HJgKXFxrnWuBt1V1s/PedsdMiCsqreDNxVsY3bsdrRLi\n3I5jjiIiQrjx9AwWbdrHiq0H3I5jGogvRaFcRBoBCiAiHfEcORxLCpDvNb3FmeetM9BcRGaIyGIR\nufFIbyQi40VkkYgsKigo8GHTJlC9tXgLB8squcnGTAgKV2anEh8TyWTrPTVs+FIU/gx8AqSJyKvA\nl8Cv62n7UcCpwAXASOCPItK59kqq+pyqZqtqdnJycj1t2jS06mplyrxN9E1rRt+0Zm7HMT5oGhfN\n5f1SeX/pNvYc9OW7oAl2xywKqvo5cBkwFngNyFbVGT6891YgzWs61ZnnbQvwqaoWq+pu4Bugjw/v\nbYLQN+sLyN1dbDerBZmbBrWnvLKaqQvzj72yCXp1FgUR6VfzANoD24FtQLoz71gWAlkikikiMcAY\n4P1a67wHDBGRKBGJBwYCq09kR0zgmzw3j+SEWM7rac1Qg0mnVgkMzbLmqeEi6ijLHnJ+xgHZwFI8\nF5h7A4v4X2ukI1LVShG5A/gUiAReUNWVInKrs3yCqq4WkU+AZUA1MElVV5zMDpnAVNMM9a6zs4iJ\nsttjgs3YQRncPGURn67cweje7dyOY/yozqKgqiMARORtoJ+qLnemewIP+PLmqjodmF5r3oRa0/8B\n/nNcqU3QsWaowa2meeqUuXlWFEKcL1/ZutQUBADnm3w3/0UyoeZgWSVvLt7CBb3aWjPUIBURIdxw\nWnsW5lnz1FDnS1FYJiKTnDuPhzt3Ni/zdzATOmqaoY4dnOl2FHMSrsxOIz4mkinWPDWk+VIUxgEr\ngV86j1XOPGOOqbpamTI3z5qhhoDERp7mqe9Z89SQ5kuT1FJVfURVL3Uej6hqaUOEM8Hvm/UFbNxd\nzFi7WS0kWPPU0OdLh3i5IrKx9qMhwpngN8Vphnp+L2uGGgpqmqe+Mt+ap4YqX04fZQP9ncdQ4HHg\nFX+GMqEhd3cxX68t4LqB6dYMNYSMHZTB9gPWe2qo8uX00R6vx1ZVfRRPtxTGHNXkObnWDDUE1TRP\nfdF6Tw1Jvpw+6uf1yHZuPjvaTW/GUOj0hnqh9YYaciIihJtOz2Dxpn0s27Lf7TimnvlyTP+Q1+Mf\nQD/gKn+GMsFv2sJ8isurGGfNUEPSldmpNImNsqOFEORLUbhZVUc4j3NUdTxgo3mbOlVVK1Pm5ZHd\nvjm9UhPdjmP8ICEumitOTeXDZdvYVWiNEUOJL0XhTR/nGQPAl6t3kr/3ED8ZYkcJoWzsoAwqq5VX\n5m9yO4qpR3VeGxCRrkAPIFFELvNa1BRPJ3nGHNELc3JJadaIc7u3djuK8aOMpMac1bUVry7YzG0j\nOhEXbeNth4KjHSl0AUYDzYALvR79gFv8H80Eo9XbC5m/cS83nN6eqEhrhhrqxg3OZE9xOR8s3eZ2\nFFNPjtZL6nvAeyJyuqrOa8BMJoi9OCeXuOgIxvRPO/bKJugN6tiSLq0TeHFOHlecmoqIL8O3m0B2\ntEF2aobcvFZEHq/9aKB8JojsOVjGu0u2cVm/VJrFx7gdxzQAEWHs4AxWbS9kQe5et+OYenC04/ua\nEdAWAYuP8DDmB177djPlldWMs36Owsqlp6TQPD6aF+fkuh3F1IOjnT76wPk5peHimGBVXlnNy/M3\nMTQriazWCW7HMQ0oLjqSawakM2HmBvL3lpDWIt7tSOYkHO300Qci8n5dj4YMaQLfxyu2s7OwjJ/Y\nzWph6YbT2yMivDQvz+0o5iQdrbuK/2uwFCbovTAnjw5JjTmjc7LbUYwL2iY24ryebZi6MJ+7zu5M\n41jrCSdY1XmkoKozax7APGAfsBeY58wzBoDvNu9jaf5+bhqUQUSEtT4JV+MGZ1JUWslb321xO4o5\nCb50iHcBsAFPl9lPAjkicp6/g5ng8fysXBLiorj81FS3oxgX9UtvRp+0ZrwwO5eqanU7jjlBvnaI\nN0JVh6vqGcAI4BH/xjLBYvOeEj5esZ3rBraniZ0yCGsiwvihHcjbU8Lnq3a6HcecIF+KQpGq5nhN\nbwSK/JTHBJkX5uQSGSE23KYBYGSP1qS1aMSkWTY4Y7DypSgsEpHpIjJWRG4CPgAWishltfpEMmFm\nf0k50xblc2GfdrRJtO6wDERFRvCTwZks2rSP7zbvczuOOQG+FIU4YCdwBjAcKAAa4ekHabTfkpmA\n9+qCzZSUV3HL0A5uRzEB5KrsNJrGRdnRQpA65klgVR3XEEFMcCmrrGLK3DyGZiXRrW1Tt+OYANI4\nNorrTmvPszM3sHlPCekt7Wa2YOJL66NMEXlYRN62m9dMjfeXbGNXUZkdJZgjGjsog8gI4QXr+iLo\n+NJc5F3geTzXEqr9G8cEA1Vl0qxcurZJYGhWkttxTABq3TSOi/qk8PrCfO46O8s6SAwivlxTKFXV\nx1X161o3tJkw9c363azdWcRPh3awrpJNnW4ZlsmhiipeXbDZ7SjmOPhSFB4TkT+LyOki0q/m4fdk\nJmBN/GYjrZvGclGfdm5HMQGsa5umDM1KYvLcPMoqq9yOY3zkS1HohWektX/iuZHtIXzsF0lERonI\nWhHJEZH7j7JefxGpFJErfHlf455V2wqZnbObsYMyiYmykdXM0Y0f1oGCojLeW2IjswULX64pXAl0\nUNXy43ljEYkEngLOAbbgubfhfVVddYT1/gV8djzvb9wxadZG4mMiuXZAuttRTBAY0imJrm0SmDRr\nI1fayGxBwZeveivwjNN8vAYAOaq60SkoU4GLj7DencBbwK4T2IZpQNsPHOL9pdu4un8aifHRbscx\nQUBEuGVoB9btPMjMdQVuxzE+8KUoNAPWiMinXk1S3/PhdSlAvtf0FmfeYSKSAlwKPONrYOOeyXPy\nqFa1MRPMcbmwTztaN43luW/sZrZg4Mvpoz97PRdgKDCmnrb/KPAbVa0+2mGliIwHxgOkp9tpCzfs\nLynnlfmbGN27nY2sZY5LTFQENw/J5O/T1/D95n2ckt7c7UjmKI55pOA0Py3E06XFZOBMYIIP770V\nSPOaTnXmecsGpopIHnAF8LSIXHKEDM+paraqZicn2yAubnhxTh7F5VXcPqKT21FMELpuYHuaxUfz\n1Nc5x17ZuKrOIwUR6Qxc4zx2A68DoqojfHzvhUCWiGTiKQZjgGu9V1DVw+chRGQy8KGqvns8O2D8\n72BZJZPn5nFO99Z0aWPjL5vj1zg2inGDMnnki3Ws3l5oXaMEsKMdKazBc1QwWlWHqOoTgM+NjVW1\nErgD+BRYDUxT1ZUicquI3HoyoU3DemX+Jg4cquAOO0owJ2HsoAyaxEbZ0UKAO9o1hcvwfLv/WkQ+\nwdN66Ljak6nqdGB6rXlHPPWkqmOP571NwyitqGLSrFyGZiXRJ+1EGqEZ45EYH831p7Xn2W82cHfB\nQTokN3E7kjmCo43R/K6qjgG6Al8DdwGtROQZETm3oQIad72+MJ/dB8vsWoKpFzcPySQmMoJnZmxw\nO4qpgy8XmotV9b+qeiGei8XfA7/xezLjuvLKap6duYHs9s0ZmNnC7TgmBCQnxHLNgHTe+X4rW/aV\nuB3HHMFx9VOgqvuclkBn+SuQCRzvfr+VbQdKuf3MTnYnqqk344d1QAS7byFAWec15oiqqpVnZm6g\nZ0pThne2ZsCm/rRr1ojLTkll6sJ8dhWVuh3H1GJFwRzRR8u3k7u7mNuH21GCqX8/H96Ryqpqnp9l\ng/AEGisK5keqq5Wnv86hU6smjOzRxu04JgRlJDVmdO92vDJ/E/tLjquvTeNnVhTMj3y5ZhdrdhRx\n2/CORETYUYLxj9tHdKK4vIoX5+S5HcV4saJgfkBVefKr9aS1aGSD6Bi/6tImgXO6t+bFObkUlla4\nHcc4rCiYH/hs1U6WbjnAnSOyiIq0Xw/jX788K4vC0komWUukgGF/9eawqmrloc/W0iG5MZf1Szn2\nC4w5ST1TErmgV1smzc5l98Eyt+MYrCgYLx8s3ca6nQe5+5zOdpRgGsyvzulMaUWV3eUcIOwv3wBQ\nUVXNw5+vo3vbppzfs63bcUwY6dSqCZf3S+Xl+ZvYfuCQ23HCnhUFA8C0Rfls3lvCfSO7WIsj0+B+\neXYWqsr3Nn0sAAAUtUlEQVTjX1oPqm6zomAoraji8S/Xk92+OcO72N3LpuGlNo/nuoHtmbYon7zd\nxW7HCWtWFAwvz9vEzsIy7h3Zxe5eNq65bURHoiOFR75Y53aUsGZFIcwVlVbw9IwchmYlcVqHlm7H\nMWGsVUIc4wZn8v7SbazeXuh2nLBlRSHMvTA7j30lFdw3sovbUYzhZ8M60CQ2ioc+s6MFt1hRCGP7\nisuZOGsjo3q0oXeqjapm3NcsPoafDevAF6t38t3mfW7HCUtWFMLYhJkbKC6v5J5zO7sdxZjDxg3O\npGXjGP7v07VuRwlLVhTC1JZ9JUyem8elfVPIap3gdhxjDmscG8VtIzoxd8MeZqzd5XacsGNFIUz9\nY/oaROAeu5ZgAtD1p6WT0TKev364ivLKarfjhBUrCmFo3oY9fLR8O7ee0ZGUZo3cjmPMj8RGRfKH\nC7qzsaCYl+bluR0nrFhRCDOVVdX85YOVpDRrxM+GdXQ7jjF1OqtbK87onMxjX6ynoMg6y2soVhTC\nzGsL81mzo4jfnd+NRjGRbscxpk4iwh9Hd+dQRZVddG5AVhTCyP6Sch76bC0DM1twfi8bZtMEvk6t\nmjB2UAbTFuezfMsBt+OEBSsKYeSRz9dReKiCBy7qYd1ZmKDxi7OzaNk4hgc+WImquh0n5FlRCBNr\ndxTxyoLNXDswnW5tm7odxxifNY2L5r6RXVi8aR/vLdnmdpyQZ0UhDKgqf/lgJU1io7jnHGuCaoLP\nlaem0SslkX98vJriskq344Q0Kwph4NOVO5i7YQ93n9OZ5o1j3I5jzHGLiBAeuKg7OwvLeHqGjbng\nT1YUQlxpRRV/+2g1XVoncN3AdLfjGHPCTm3fgkv6tmPirFw27ylxO07IsqIQ4h75fB1b9h3izxd1\nt3GXTdC7/7xuREcIv3tnuV109hO/fkqIyCgRWSsiOSJy/xGWXyciy0RkuYjMFZE+/swTbr7fvI+J\nszZyzYA0BnVMcjuOMSetTWIcv7ugG7NzdjN1Yb7bcUKS34qCiEQCTwHnAd2Ba0Ske63VcoEzVLUX\n8P+A5/yVJ9yUVlRx35vLaN00jt+e383tOMbUm2sHpDOoY0se/Gg1W/cfcjtOyPHnkcIAIEdVN6pq\nOTAVuNh7BVWdq6o1nabPB1L9mCesPPblenJ2HeQfl/WiaVy023GMqTciwr8u7021Kve/tcxOI9Uz\nfxaFFMD7+G6LM68uNwMfH2mBiIwXkUUisqigoKAeI4ampfn7eXbmBq7KTmV4l1ZuxzGm3qW1iOe3\n53Vl1vrdTFtkp5HqU0BceRSREXiKwm+OtFxVn1PVbFXNTk5ObthwQaassop731hKq4Q4fn9B7bN1\nxoSO6wa257QOLfjbh6vZfsBOI9UXfxaFrUCa13SqM+8HRKQ3MAm4WFX3+DFPWHjiyxzWO6eNEhvZ\naSMTuiIihH9f3ofKauW3b1trpPriz6KwEMgSkUwRiQHGAO97ryAi6cDbwA2qaiN1n6TlWw7wzMwN\nXN4vlRFd7bSRCX3pLeP5zaguzFhbwJuLt7gdJyT4rSioaiVwB/ApsBqYpqorReRWEbnVWe1PQEvg\naRFZIiKL/JUn1JVXVnPvG0tp2TiGP42200YmfNx4egYDMlrw1w9XseNAqdtxgp5frymo6nRV7ayq\nHVX1QWfeBFWd4Dz/qao2V9W+ziPbn3lC2X8+XcPanUX8/dJeJMbbaSMTPiIihH9f0ZuKqmrueWMJ\nVdV2GulkBMSFZnNyPlmxnYmzcrn+tHTO7t7a7TjGNLiMpMb85aIezMnZw6Nf2Jnok2FFIchtLDjI\nvW8so09aM/5op41MGLu6fzpXZafyxFc5fLVmp9txgpYVhSBWUl7Jz1/5juhI4enr+hEbZcNrmvD2\n14t70r1tU+6auoT8vdZp3omwohCkVJXfv7OCdbuKeGzMKaQ0a+R2JGNcFxcdyYTrTwXg1lcWU1pR\n5XKi4GNFIUi9smAz73y/lV+d3Zlhne2GPmNqpLeM5+Gr+rJyWyEPvL/S7ThBx4pCEFqSv5+/frCS\n4V2SuWNEJ7fjGBNwzu7emttHdGTqwnymWW+qx8WKQpDZW1zOba8splVCHI9e3ZeICHE7kjEB6e5z\nujC4U0v++N4KVmw94HacoGFFIYiUVlTx81cWs/tgOROuP5Vm8Ta0pjF1iYwQHhtzCs3jY/jZy4vt\nxjYfWVEIEpVV1dzx3+/5Nm8v/7myN71SE92OZEzAS2oSy8QbszlwqIIbnl/A/pJytyMFPCsKQaC6\nWvnNW8v5YvVO/nJRDy7ue7QeyI0x3nqlJvLcjaeyaW8JY19cSHFZpduRApoVhQCnqvx9+mre+m4L\nvzq7MzeenuF2JGOCzqCOSTxxzSks27KfW19ZTFmlNVWtixWFAPf0jA1Mmp3L2EEZ/OIsa2lkzIka\n2aMN/7y8N7PW7+bu15daH0l1iHI7gKnbfxds5j+fruWSvu340+juiFhLI2NOxlXZaewvKefv09eQ\nGB/Ng5f0tL+rWqwoBKiPlm3n9+8u58yurfjPlX2s6akx9WT8sI7sK6ngmRkbaNYomvtGdrHC4MWK\nQgD674LN/OHd5Zya3pynru1HdKSd5TOmPv16ZBf2l5Tz9IwNlJRX8cfR3Ym0L16AFYWAoqo8/Pk6\nnvgqhxFdknny2n40irFO7oypbyLCg5f0onFMFJNm57LjQCmPjulLXLT9vdlX0ABRUVXNvW8s44mv\nchjTP42JN2bTONZqtjH+EhEh/GF0d/44ujufrtrBdZMWsK/Y7mOwohAAikor+MnkhYebnf7jsl5E\n2SkjYxrEzUMyeerafizfeoDLJ8wN+y637ZPHZTsLS7n62fnM3bCHf1/Rm1+enWUXvYxpYOf3assr\nNw9kz8FyLn16Lsu3hG9fSVYUXPRt7l4ufWoOeXuKeWFsf67KTnM7kjFha0BmC976+enERkVw9XPz\nePu7LaiG370MVhRcUF5Zzb8/WcPVz80jOiqCaT87nTNsTARjXNepVQLv3DaIHu2acve0pdzx2vdh\n11+SXclsYDm7irjr9SWs2FrImP5p/HF0d7ugbEwAadU0jqnjT+fZbzbw8GfrWJy3j/+7sg9DspLc\njtYg7EihgagqL83L44LHZ7NtfynP3nAq/7y8txUEYwJQZIRw2/BOvHv7YBrHRnL98wv4fx+uCovh\nPe0TqQFs2lPMn95bycx1BQzvksy/r+hNq4Q4t2MZY46hZ0oiH945lH9+vJrnZ+cye/1u/n5ZL05t\n39ztaH4jwXYhJTs7WxctWuR2DJ8UFJXx5FfreXXBZqIjI/jd+V25/rT21rrImCA0Y+0ufv3mMnYV\nlTGyR2vuG9mVTq2auB3LZyKyWFWzj7meFYX6d7CskonfbGTirI2UVVZzdf80fnlWFq2b2tGBMcGs\nuKySF2bn8uw3Gykpr+Sq7DTuOrszbRID/2/bioILyiqrmPptPo9/uZ49xeWc36sN957bhQ7JwfNt\nwhhzbHsOlvHU1xt4eX4eESKMG5zJrWd0COghcq0oNKB1O4uY+m0+b3+/hf0lFZzeoSW/Oa8rfdOa\nuR3NGONH+XtLeOTzdbyzZCsxkRGc36stV/dPY2Bmi4A7TWxFwc+Kyyr5aNl2Xlu4me837yc6Uji3\nRxuuG5DO6R1bBtwvhDHGf9buKOLl+Xm89/02isoqyUxqzNX907i8XyrJCbFuxwOsKPjFjgOlzM7Z\nzez1BXyxehcHyyrpmNyYawakc+kpKbRsEhj/+cYYdxwqr+Kj5dt5feFmFubtIypCOKNzMsM6JzO4\nUxIdkxu79oXRikI9OFBSwbd5e5mTs5tZ6wvYUFAMQIvGMYzo0ooxA9LIbt/cjgqMMT+Ss8tzWvmT\nlTvYsu8QAG2axjG4UxJDslpyeockWjeNbbDPj4AoCiIyCngMiAQmqeo/ay0XZ/n5QAkwVlW/O9p7\n1ldRUFUOVVRRXFZFYWkFm/eUsKHgIBsKitno/Nx9sAyAuOgIBma2ZEinJAZ3SqJrmwQbCc0Y47PN\ne0qYnbObOTm7mbNhN/tLKgBIiIuiY3ITOiQ3pmNyEzomNyYzqQnN4qNpHBtFfHRkvX3WuF4URCQS\nWAecA2wBFgLXqOoqr3XOB+7EUxQGAo+p6sCjve+JFoUZa3fx1w9XUVxWSUlZFcXllRxp3O7m8dF0\ncP5zOiQ3oXdqIqe2b05slA2+YYw5edXVyqrthSzM28vGgmI2FBxkY0ExOwpLj7h+fEwkjWOjaBIb\nxbUD0rllWIcT2q6vRcGfdzQPAHJUdaMTaCpwMbDKa52LgZfUU5nmi0gzEWmrqtvrO0zTRtF0a9OU\nxrH/+weOj4miSWwkTeKiSGseT4fkJrRoHLhNyowxwS8iQuiZkkjPlMQfzD9YVkluQTF5e4opLK2g\nuKySg2VVni+y5Z7nDXHR2p9FIQXI95regudo4FjrpAA/KAoiMh4YD5Cenn5CYfqlN6ffdaF7a7ox\nJrg1iY2iV2oivVITj72yHwVFh3iq+pyqZqtqdnKydTFtjDH+4s+isBXwHjUm1Zl3vOsYY4xpIP4s\nCguBLBHJFJEYYAzwfq113gduFI/TgAP+uJ5gjDHGN367pqCqlSJyB/ApniapL6jqShG51Vk+AZiO\np+VRDp4mqeP8lccYY8yx+XU8BVWdjueD33veBK/nCtzuzwzGGGN8FxQXmo0xxjQMKwrGGGMOs6Jg\njDHmsKDrEE9ECoBNJ/jyJGB3PcYJJuG677bf4cX2u27tVfWYN3oFXVE4GSKyyJe+P0JRuO677Xd4\nsf0+eXb6yBhjzGFWFIwxxhwWbkXhObcDuChc9932O7zYfp+ksLqmYIwx5ujC7UjBGGPMUVhRMMYY\nc1jYFAURGSUia0UkR0TudzuPv4jICyKyS0RWeM1rISKfi8h652fIjTYkImki8rWIrBKRlSLyS2d+\nSO+7iMSJyLcistTZ778480N6v2uISKSIfC8iHzrTIb/fIpInIstFZImILHLm1dt+h0VRcMaLfgo4\nD+gOXCMi3d1N5TeTgVG15t0PfKmqWcCXznSoqQTuUdXuwGnA7c7/cajvexlwpqr2AfoCo5xu6EN9\nv2v8EljtNR0u+z1CVft63ZtQb/sdFkUBr/GiVbUcqBkvOuSo6jfA3lqzLwamOM+nAJc0aKgGoKrb\nVfU753kRng+KFEJ839XjoDMZ7TyUEN9vABFJBS4AJnnNDvn9rkO97Xe4FIW6xoIOF629Bi/aAbR2\nM4y/iUgGcAqwgDDYd+cUyhJgF/C5qobFfgOPAr8Gqr3mhcN+K/CFiCx2xq+Hetxvv46nYAKPqqqI\nhGw7ZBFpArwF3KWqhSJyeFmo7ruqVgF9RaQZ8I6I9Ky1POT2W0RGA7tUdbGIDD/SOqG4344hqrpV\nRFoBn4vIGu+FJ7vf4XKkEO5jQe8UkbYAzs9dLufxCxGJxlMQXlXVt53ZYbHvAKq6H/gazzWlUN/v\nwcBFIpKH53TwmSLyCqG/36jqVufnLuAdPKfH622/w6Uo+DJedCh7H7jJeX4T8J6LWfxCPIcEzwOr\nVfVhr0Uhve8ikuwcISAijYBzgDWE+H6r6m9VNVVVM/D8PX+lqtcT4vstIo1FJKHmOXAusIJ63O+w\nuaNZRM7Hcw6yZrzoB12O5Bci8howHE9XujuBPwPvAtOAdDzdjl+lqrUvRgc1ERkCzAKW879zzL/D\nc10hZPddRHrjubAYiedL3jRV/auItCSE99ubc/roXlUdHer7LSId8BwdgOf0/39V9cH63O+wKQrG\nGGOOLVxOHxljjPGBFQVjjDGHWVEwxhhzmBUFY4wxh1lRMMYYc5gVBRNQROT3Tm+fy5xeIAf6eXsz\nRMTnAc9FZLKIbBWRWGc6ybmBqj6yDK/p7bO+iMhdInLjMdbpJSKT63O7JnhZUTABQ0ROB0YD/VS1\nN3A2P+yzKlBUAT9xO0RtTm/A3tNReHL+92ivU9XlQKqIpPsxngkSVhRMIGkL7FbVMgBV3a2q2wBE\n5E8islBEVojIc84dzDXf9B8RkUUislpE+ovI206/8n9z1skQkTUi8qqzzpsiEl974yJyrojME5Hv\nROQNpx+lI3kU+JXzoev9+h980xeRJ0VkrPM8T0T+UdMHvoj0E5FPRWSDiNzq9TZNReQj8Yz9MUFE\nIo6WzXnff4nId8CVtXKeCXynqpVe/1b/Es/4C+tEZKjXuh/guTPYhDkrCiaQfAakOR9YT4vIGV7L\nnlTV/qraE2iE54iiRrnTr/wEPLf33w70BMY6d3oCdAGeVtVuQCFwm/eGRSQJ+ANwtqr2AxYBd9eR\nczMwG7jhOPdvs6r2xXPn9WTgCjxjP/zFa50BwJ14xv3oCFzmQ7Y9qtpPVafW2t5gYHGteVGqOgC4\nC8/d7jUWAUMxYc+KggkYzrgApwLjgQLg9Zpv2sAIEVkgIsvxfAPu4fXSmn6slgMrnbEVyoCN/K8j\nxHxVneM8fwUYUmvzp+H5IJ4jnm6obwLaHyXuP4D7OL6/Ie+cC1S1SFULgLKa/ouAb51xP6qA15yc\nx8r2eh3ba4vn39FbTUeBi4EMr/m7gHbHsS8mRFnX2SagOB+GM4AZTgG4SUSmAk8D2aqaLyIPAHFe\nLytzflZ7Pa+Zrvkdr92fS+1pwTMWwTU+5lzvfEBf5TW7kh8WibgfvuqEcx4rW3Ed8w8dJUMVP/z7\nj3PWN2HOjhRMwBCRLiKS5TWrL57OvWo+2HY759KvOIG3T3cuZANci+f0j7f5wGAR6eRkaSwinY/x\nng8C93pNbwK6i0is883/rBPIOcDpzTcCuNrJeSLZwDP6XCcft9sZT2+bJsxZUTCBpAkwRURWicgy\nPKdMHnDGCZiI50PrUzxdoR+vtXjGbV4NNAee8V7onMYZC7zmbHse0PVob6iqK4HvvKbz8fRUucL5\n+f0J5FwIPInnAz0XeOdEsjk+Bob5uN0RwEfHndaEHOsl1YQ88QzP+aFzkTqsiMg7wK9Vdf1R1okF\nZuIZ0auywcKZgGRHCsaEtvvxXHA+mnTgfisIBuxIwRhjjBc7UjDGGHOYFQVjjDGHWVEwxhhzmBUF\nY4wxh1lRMMYYc9j/ByIchgUrJJgtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Blackmann window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8FdXZx79P9j0hISwBQtgREFEQcF+qdauitX1datVq\ntS5t7f62tW/tpt03W6u1m1L3XVQQQVlERPZ9CSFsCSEJAUISQtbz/jEzN3Mn9yaXkOTmhuf7+dzP\nnTlzZs5zZs45v7PNGTHGoCiKoigdISrcBiiKoiiRi4qIoiiK0mFURBRFUZQOoyKiKIqidBgVEUVR\nFKXDqIgoiqIoHUZFRFG6EBEZIyJrRaRKRL4e4jlGREZ2tW12WLtE5JITvMZPROSZzrKpJyEi54nI\nthM4v9ueZbhQEelE7AxZKyLVrl9OuO1Swsr3gAXGmFRjzKPegyKyUES+3BUBi0ieXYg5abFURP4m\nIrFdEV5vxBjzoTFmTLjt6MmoiHQ+VxtjUly/fV4PIhITDsPCxckWXw9DgU1htiHDGJMCnAqcBdwf\nZnuUXoSKSDfgqhHeKSJ7gA9s9+kislREDovIOhG50HXOMBFZZHeDzBORvzpdBiJyoYgUecLwdUuI\nSJSIfF9EdohIhYi8JCKZHltuE5E9InJARB50XSdaRH5on1slIqtEZIiIPCYiv/eEOUtEvhkkzkZE\n7heR7cB2222sHZeDIrJNRP7H5f9KEdlsh1ksIt9xx9W26YAdzy+4zksXkZkiUi4iu0XkRyISZR+7\nXUSWiMjvROSQiOwUkStc594uIoV2mDs9171DRLbY580VkaFtPN9rRGST/RwXisgptvsHwEXAX+2W\nwGjPeQ8D57mO/9V1+BIR2W5f8zERkY7Y5sYYUwbMA8YFicdUEfnYDrPETnNxruPjXc+vVER+GOAa\nsSLyvIi8KiJxYnV1vSwiz9j3eYOIjBaRH4hImYjsFZFPu87/kh23KvvZfMV1zEkL37bPLRGRL7mO\nP2Xfq3fs8z8RkRFB4vq0iHzb3h7kpFd7f4Qdxyjx5DU7/X1HRNaLSKWIvCgiCa7j37Xt2icid3jC\nbCut7haRyfb2F2x7xtv7d4rIG4Gfag/AGKO/TvoBu4BLArjnAQaYCSQDicAgoAK4EkvML7X3s+1z\nPgb+AMQD5wNVwDP2sQuBomBhAw8Ay4DB9vl/B5732PIP247TgDrgFPv4d4ENwBhA7ONZwFRgHxBl\n++sLHAX6B7kXBqvAyrTDSQb2Al8CYoDTgQPAONt/CXCevd0HOMMV10bXvbgAqAHG2MdnAm8CqXbc\n8oE77WO3Aw3AXUA0cK8dB7HtOeK6zkBgvL09AygATrFt/RGwNEg8R9v2XArEYnVfFQBx9vGFwJfb\nSDOtjtv37m0gA8gFyoHLO2Cb86xj7P0cYB1wR5B0MxmYbl83D9gCfMM+lmo/o28DCfb+NPvYT4Bn\n7Of8DvAUEO06dgy4zL7uTGAn8KB9v+4CdrrsuQoYYT+jC7DSmDct/Mw+90r7eB/7+FNYeWiqHdaz\nwAtB7s0dwFv29s3ADuBF17E3A+U1+34tt+9lpn2P7rGPXQ6UAhOw0tdz9v0fGUJanQl8295+0rbn\nXtexb4a7fAuahsNtQG/62QmsGjhs/96w3Z3MPNzl93+B/3rOnwvchlVwNALJrmPPEbqIbAE+5To2\nEKswjXHZMth1fDlwo729DZgRJH5bgEvt7a8Cs9u4Fwa42LV/A/Chx8/fgYfs7T3AV4A0j58LA9yL\nl4D/wxKGemwhso99BVhob98OFLiOJdl2DbAz+WHgeiDRE+YcJ3Pb+1FYhdXQAPH8P+Alj99i4EJ7\nfyEdE5FzPfH9fgdsc561kx4NsNR9jwlS8bGPfQN43d6+CVgTxN9PgFnAIuBRQDzH5rn2r8bKI47I\npNp2ZQS59hvAA660UIstirZbGTDd3n4K+Kfr2JXA1iDXHQEcsu/fE3a6KbKPPQ18K1Bes+/XLa79\n3wBP2Nv/Bn7lOjbajttI2k+rdwKzXPnsy9gCCOzGFtKe+NPurM7nWmNMhv271nNsr2t7KPB5u+vg\nsIgcBs7FKvBzgEPGmBqX/93HYcNQ4HXXdbcATUB/l5/9ru2jQIq9PQSrFhSIp4Fb7O1bgP+2Y4c3\nvtM88f0CVoEOVmF+JbBbrG68s1znBroXOVitoVj8781urFaegy+expij9maKfb0bgHuAErsLZKzL\n1j+77DyIVTN2X9chxx2+MabZjncgv8dDsOdzPLY59DXGZGCJ6EdYlZVW2N1Mb4vIfhE5AjyCdY+h\n7XQBVgtmIlYh6l3VtdS1XQscMMY0ufZx4iciV4jIMrs76TBWmujrOr/CGNPo2nffGwh+3/wwxuzA\nakFOwupSfBvYJyJjsFpAi9qIa7AwcvBP8+502V5aXQScJyIDsQTnJeAcEckD0oG1bdgTVlREuhd3\n5tqL1RLJcP2SjTG/wuo26CMiyS7/ua7tGqwCAbDGMYBsz7Wv8Fw7wRhTHIKNe7FqaYF4BpghIqdh\ndae010/rje8ij00pxph7AYwxK4wxM4B+9nVfcp0b6F7sw+oOa8AqWN3HQoknxpi5xphLsYR7K1YX\nn2PrVzy2Jhpjlga4zD53+PbYxZBQbcD/HoXC8djmH5AxtVi19eki0jeAl8ex7sMoY0wa8EMsgXLC\nHd7G5d8Dfgm8LyL92/AXFBGJB14FfofVTZoBzHbZ0NksAj6H1fVYbO/fhtWd2pFCuwTr2Tu482yb\nadUYU4AlSF8DFhtjjmCJ1d3AErty0iNREQkfzwBXi8hlYg1mJ9iDeIONMbuBlcBP7cHJc7G6ARzy\ngQQRuUqs6Zo/whovcHgCeNgZcBWRbBGZEaJd/wR+LiKjxGKiiGQBGGOKgBVYLZBX7UIpVN4GRovI\nF+3B11gROVNETrHj+AURSTfGNGCNVXgzjXMvzgM+A7xs12ZfsuOaasf3W1j3tk1EpL+IzLDFqQ6r\ni8UJ8wngB66BzXQR+XyQS70EXCUin7Kfxbft67VbqNuU0nbh7OV4bPPDLqS/iFU4VQTwkop176vt\nVtm9rmNvAwNF5BsiEm/f72nuk40xv8Hqdn0/iEi1RxxWOi4HGsWaBPHptk85IRZhdcsutvcX2vtL\nXC2l4+El4HYRGSciScBDzoEQ06pjj9MKWujZ75GoiIQJY8xerEHSH2Jlmr1Yg9rOM7kZmIbVXfEQ\n1uCac24lcB9WgV+M1TJxz9b6M1Yf9XsiUoU1yO6X4dvgD1iJ/T2sAuVfWAOmDk9jTRVtryvLD2NM\nFVaBcCNW7X0/8GtaxO+LwC67G+UerK4uh/1Y/df7sAZL7zHGbLWPfQ0r/oXAEqxC7N8hmBSFlYn3\nYd3jC7ALTWPM67ZtL9j2bASuCHQRY8w2rK69v2DVNq/GmuZdH4INYD2rz4k106rVeyQBwgvZNheH\nRaQaS7DOAq4J0OUE8B2sdFeF1Sp70RVuFdbkgauxnsd2rJlnXvt+jtWSnC/2jMBQscP4Olb6O2Tb\nMut4rnGcLMISTkdElmC18BcHPaMNjDFzgD9hzb4ssP/dtJdWvfZ493skEjgtKT0NEfkJ1iyPW9rz\n28V2nI9VexoapCDq7PAuxJpQMLirw1IU5fjRlogSMnZ3zQNYM2C09qEoioqIEhpivUB3GGsQ+k9h\nNkdRlB6CdmcpiqIoHUZbIoqiKEqH6fUL4/Xt29fk5eWF2wxFUZSIYtWqVQeMMdnt+ev1IpKXl8fK\nlSvDbYaiKEpEISIhrZKh3VmKoihKh1ERURRFUTqMioiiKIrSYVREFEVRlA6jIqIoiqJ0mIgTERG5\nXKxPqxaIyPfDbY+iKMrJTESJiP3djMewVi0dB9wkIgG/F60oiqJ0PZH2nshUrM+dFgKIyAtYy6lv\n7uyAlmw/wB1PryAvK4npw7PISIzt7CAURVE6lcZmw6rdh9i07wj3XTSC+y4c2eVhRpqIDML/85NF\nBPhOhojcjfVFMHJzc72HQ+KZZbupb2wmv7Sa/NJq17U7dDlFUZQuI9ASiL95d5uKSEcxxjwJPAkw\nZcqUDq0w+fgtZ1BT38S2/VW8tW4fL67YS5TAT64Zz+enDGn/AoqiKN3AjvJq7n1mFfml1Zw7si83\nT8vlzLxM+qbEdUv4kSYixfh/w3gwoX/L+rgQEVLiY5g8tA+Th/bhznOH8b1X1vPdV9azq6KG73x6\nDKLNEkVRwsjynQe58+kVxEZH8a/bpvCpUzr0efsTIqIG1rG+7z1KRIaJSBzWp1a78vOZPoZkJjHz\nzqncNHUIjy3YwV8+KOiOYBVFUQKyvugwdzy1guzUeN68/5ywCAhEWEvEGNMoIl8F5gLRwL+NMZu6\nK/zY6CgevvZU6hsNf5iXz9CsJGZMGtRdwSuKogBQduQYdzy1koykWJ778nQGpCeEzZaIEhEAY8xs\nYHa4wo+KEn59/ansOVjDD1/bwIRB6YzITgmXOYqinGQ0NRu+/sIaqusaePbL54ZVQCDyurN6BDHR\nUTx60+nExUTx3ZfX0dysX4dUFKV7+O/Hu1hWeJCfz5jAmAGp4TZHRaSjDExP5MGrxrF6z2FeWrm3\n/RMURVFOkJLKWn47dxvnj87mc5MHh9scQEXkhLj+jEFMG5bJr97dStWxhnCboyhKL+d3c/NpbDY8\nfO2EHjM7VEXkBBARHrzqFA4fbeDfS3aF2xxFUXoxBWVVvL6miFvPGsqQzKRwm+NDReQEmTg4g0vH\n9eefSwqpPKqtEUVRuoY/zt9OYmw093bDW+jHg4pIJ/CNS0ZRdayRF1bsCbcpiqL0QvYePMqcDSXc\nctZQMpO75030UFER6QTG56QzbVgm/122myadqaUoSifzzLLdiAi3nZUXblNaoSLSSdx+dh5Fh2p5\nf0tpuE1RFKUXUVvfxPPL93D5+AHkZCSG25xWqIh0EpeO60//tHheWKHTfRVF6TzmbSnlyLFGbpk+\nNNymBERFpJOIiY5ixqRBLM4v51BNfbjNURSll/DGmmJy0hOYNiwz3KYEREWkE7nmtBwamw1zNu4P\ntymKovQCKqrrWJRfzjWTBhEV1TPeC/GiItKJjM9JY0R2MrPWdcnq9IqinGTM21xKU7PhmtNywm1K\nUFREOhER4bLxA1ix6xBH9A12RVFOkA+2lpGTnsApA8O/RlYwVEQ6mYvG9qOp2bBk+4Fwm6IoSgRT\n19jEkoIDXDS2X49Z4iQQKiKdzOlDMkhLiGHB1rJwm6IoSgSzfOdBjtY3cfHYfuE2pU1URDqZmOgo\nzhudzZKCAxijLx4qitIxlmw/QFx0FGeP6BtuU9pERaQLmDYsk5LKYxQfrg23KYqiRCgrdh3k1MHp\nJMZFh9uUNlER6QKmDLXmc6/cdSjMliiKEokca2hiY/ERpgztE25T2kVFpAsYMyCV1PgYlu86GG5T\nFEWJQDYUV1Lf1MxkFZGTk+goYVJuBuv2Hg63KYqiRCCrdlu9GCoiJzHjBqaxvbSahqbmcJuiKEqE\nsWnfEQZlJJKVEh9uU9pFRaSLOGVgGvVNzRSW14TbFEVRIoz8/VWMHdBzXzB00+NERER+IiLFIrLW\n/l3pOvYDESkQkW0iclk47WyPcTlpAGwuqQyzJYqiRBL1jc3sKK9mTISISEy4DQjCH40xv3M7iMg4\n4EZgPJADzBeR0caYpnAY2B7D+yYTEyVsL60OtymKokQQhQeqaWw2ESMiPa4l0gYzgBeMMXXGmJ1A\nATA1zDYFJSY6isF9Etl98Gi4TVEUJYLYaXeBj8hOCbMlodFTReRrIrJeRP4tIs70hEGA+4tPRbZb\nK0TkbhFZKSIry8vLu9rWoORmJbOnQkVEUZTQKTpkvaQ8JDMpzJaERlhERETmi8jGAL8ZwOPAcGAS\nUAL8/nivb4x50hgzxRgzJTs7u5OtD52hmUnsrtCBdUVRQqfo0FFSE2JIT4wNtykhEZYxEWPMJaH4\nE5F/AG/bu8XAENfhwbZbjyU3M4kjxxqprG2ImAShKEp4KTpUy+A+kdEKgR7YnSUiA1271wEb7e1Z\nwI0iEi8iw4BRwPLutu946JdmzfEur6oLsyWKokQKRYdqGZSRGG4zQqYnzs76jYhMAgywC/gKgDFm\nk4i8BGwGGoH7e+rMLIfslBYRGdkvMgbJFEUJLweq65iS1/PfVHfocSJijPliG8ceBh7uRnNOiL6p\nlogcqNaWiKIo7WOM4XBtA32S4sJtSsj0uO6s3kTfFBURRVFC58ixRpqaDRlJkTOGqiLShWQkxhIl\nUFFdT1OzfqBKUZS2OXy0HkBbIopFVJSQHBfDkx8WMu7H7zJ/c2m4TVIUpQdSWdvAxb9fyOV/+hCA\nPsnaElFskuNjqG9spq6xmUc/2N5l4RhjmL+5lMX55a0+y/vB1lKe+mgn1XWNfu4FZVW8uGKPr/bj\nUFvfxMc7Kqjx+AerptSsrSqlB1F5tKFVS98Yw5o9hyg6dLSV+9xN+5m/udQvnxhjeG/Tfp5euouj\n9f7pfteBGl5ZVUTl0YYui8PLK/dSWF5DbYM1VyhDWyKKQ3ysdYtFYH1RpW+676GaeqqOHX+i/PP8\n7Ux4aC53zVzJsYaWyWm/fncbX565klv/vZzHF+3wub+0ci93PLWSn7y1mbueXunLOJv3HeGqR5fw\nv69u4HNPfOy7VnVdI9c+9hE3/WMZV/9lCUdcNv5k1iYm/WweV/91iZ/wfLC1lPN/s4A7nlpBZW2L\n/32Ha3nghTX8+M2NfgLW0NTMfz7ayZOLd1DX6D/BbtXuQ7y7sYRGzxL6B2vq2Vhc2Uogm5sNB2v8\nRVA5cbz32aGmrrFVIQtQfLiWgrKqVu4biip5Z30J9Y3+z3PB1jJ+N3dbq0LeSq8rWrXaH1+4g7N+\n+T4/fWuTn22/fncrp/3sPa7482IqXGOPv3hnC9f9bSkX/24RH++o8Ln/7r1tfOW/q/jyzJX85YMC\nn/vzy/dy939X8dCsTXzlv6t8YeSXVnHlox/ynZfXcd3fPvJLxzM/3sXEn8zlxic/Pu402NRsKD5c\n6wtnUb7/yhpJPfyTuG5URLqYmjqrkLx2krVCy8biShZsK2PaI+8z/ZH3WbrjQKtz/rVkJ9Memc+M\nxz6isLxlAcf5m0v54/x8xgxIZd7mUv78vtWy2VNxlCcX7+Czpw/i0nH9efT97VRU19HY1Mxv527j\nzLw+PHT1OD4urGDBtjIA/jAvn+T4GB657lQKyqp57pM9ADyzbDfbSqv46kUj2VVRw99tQVpacICn\nlu7i4rH92Lq/ij/OywegorqOrz23BoNhcX45v5y9BbAKoXueWcXsDSXM/Hg3P5m1yRePR2Zv4adv\nbeaR2Vv5wWsbfO5vr9/H9Y8v5Z5nVvN9l3t+aRUX/W4hn/nLEv731fU+98raBmY89hFn/HweP3x9\ngy9DNjcbvv/qesb8aA4PvbnRr9CZ+fEuLvjtAn7+9ma/FtXi/HI+9/hSHpm9xU/A8kuruHvmSn45\ne4tfQVhWdYzvv7qeX87e4ifmNXWN/HLOFh5+Z3Mr4XxsQQE/fWuT30QLYwxPL93Fg69vYK9nnbWX\nV+7lOy+vY/O+I37ub63bx/3PrmbJdv+08+7G/dz27+W8tHKvn/v8zaV89m8f8du5W/3i/MHWUi7+\n/ULue3aVnzAs2FrG5F/M5/I/LfazacHWMqb8Yj5TH/ZPtwu2lnHhbxdwyR8W84/FhX7uMx5bwv3P\nrearz632PYcF28r40lMr+OuCAm58cpkv7EX55XzvlfUsKTjAPc+sIr/UEqWlOw7w63e3khAbzX8+\n2sXLq4oAWLv3MI8v3MEFo7PZeaCG387d5ntm/1qyk2sn5ZCTkcBDs6w0UHbkGE8sKmTGpByumDCA\nvy4o4EB1HfWNzfxpfj7ThmXy4JWn8OH2AywpsOL3x3n5xEQJv7l+IoUHanh66S7AyscPzdrEsOwU\nVu85zP+9udEX74amZn7w2gYm/ew97nt2lV/FCloqauf86gO+8/J6mpsNq3cf4oYpLe9Sx0ZHTtEc\nOZZGKNV1VgI6d2RfwErgj7yzhQHpCfRPS+DbL62jtr6lEHp1VRE/f3szeVnJ7D14lK/8d5WvUHti\n0Q5yM5N48e7pXH1aDs98vJu6xibeWFuMAb5z2Ri+eclojjU08+6m/SwrPEh5VR13nDOMW6YPpU9S\nLG+s2cfBmnoWbivj85MHc/O0XCYOTufNtdbL/899soezhmfxncvGcPHYfry8sghjDM8t30NmchyP\n33IGMybl8OrqYo41NPHyqiJq6pv4z+1nctPUXF5bXUzl0QaWFR5kfVElv7h2Al8+dxivrS5i3+Fa\nyo4c49lle7hhyhDuuWAEr60uprC8mqZmwy/e3sLEwencdtZQXllVxMZiaxn9X7yzhSiB688YzEsr\ni1i+0/rs8GMLCti4r5JLTunHc5/sYaFdm3t1dREvrNjL2AGpPP3xbt7ZUALAmj2H+PGbm2g2hn8t\n2ekrbEuPHOMr/11FQXk1Ty4u5D8f7QKs71x/6T8rWJRfzt8XF/KoLdrGGO59ZjUvrtzL3xcX8rO3\nN/ue3w9f38DfFxXyjw938u2X1vrc/zAvn9/O3cZ/PtrlV9Od+fFuHpq1iWc/2cOt/17ua5nN3lDC\nd19ZzyurirjlX5/4arqfFFbwtefXMGdjCXc8tYIddiVj6/4j3P/capYVVvC9V9bzkV0IFh06yn3P\nrmZHeQ2PLdjB8yusykJ5lSX+x+qbmLNxP7+ba1UKauoa+caLa0lPjKXoUC0PvmEVjnWNTXz3lfUM\n7pNIdmo833tlPQ1NzTQ3G370xkaG903h/NHZ/Pa9bZQdOYYxhkdmb2FEdgpfuWA4720u5RP7uf15\n/naG9U3m6TumUnSolhdXWM/hH4sLGZSRyIffu4iE2GifID29dBdZyXHMeeA8xuek+Z7PzI93kRof\nw2NfOIPPTR7C62uKqa5r5NVVRcRECf/3mXHcd+FI8kur2Vh8hLfXl9DUbPjaxSN54JJR1Dc2M2fj\nfhbnl1NWVcc9F4zg1rOHkp4Yy5tr93Gopp65m/Zz87Sh/M+ZQzh7RBav2AL27Cd7SIiJ5r93TuWu\n84Yxe0OJb528Jxbu4PnlezgzL5P3NpXy9efX+Lee5mxl075KLhqTzauri3h/axk19U2cOjjd5yc2\nKnKK5sixNEJx0s6QzCSyU+OZt7mU7WXV3H3+cH5x3QRKKo8xa51VgB9raOJX725l8tA+PHfXdH5x\n7QS2l1Uzb3MpZVXHWLn7EDecOYSY6CiunZRDVV0jnxQeZMG2Mk4fkkFORiKnDExlSGYii/PL+XB7\nOXHRUVw0th+x0VFcMDqbZYUVfFJYQWOz4bIJAwC45JT+rCuqZGNxJXsOHuVy2/3T4wZQVlXHttIq\nFuWX8+lx/YmPiebq03Kormtk5a5DzNtcysTB6Yzsl8r1kwdT39TMwvwy3lq/j5T4GGZMGsTN03Jp\nNvD+llLe3bSf+qZm7jp/OHeck4cIvL2+hGWFFew/cox7LhjBty8bQ1x0FK+vKWZ/5TE+3F7ObWfn\n8fB1E0iNj+HllXtpaGrm5ZV7ufLUgTx+y2T6pcbzvKs1NXZAKq/eezbD+ybz3493A/DU0l1kJMUy\n54HzmTg43VcYPbPMEuNZ95/LeaP68q8lO2lqNsxat4/iw7X8+/Yz+czEgTy1dJc1XlRYwardh3jk\nulO59ayhvLhiL+VVdew6UMOba/dx/0Uj+OYlo5m7qZTtpVVU1zUyc+kuZkzK4ZefPZVVuw/xUUEF\njU3NPLFoB9OGZfKf289k54Ea3lpnCd7jC3cwql8Kb3/tXA7W1PPsMisOjy3cQXZqPIu+exFRUVar\nFeDJRYXEx0Sx+HsXMTA9gSfsFuRTH+2i2RjmPHAeZ+Rm8I/FhRhjeHW1Jf4z75zKZ08fzPPL93C0\nvpHX1xRTWdvA7z5/GvdeOILF+eUUllfzwZYyDlTX8eBVp/D9K8ZSdKiWJdsPsKywguLDtXz14pE8\ndPU46hubeWt9CRuLj7C9rJo7zh3GNy8ZTXJcNG+u3cfuihrW7j3MjWcO4YLR2YwbmMY760s4UF3H\n0h0HuO70QfRPS+DT4/rz3uZSjtY3smBrOddMyiEhNpoZk3LYUnKE4sO1LM4v55Jx/UmJj+GqUwdS\n19jMil0HWbitnLNGZJGVEs+l4/ojAgu3lbEov5xR/VIY2S+VMf2tfPLxjgMs3VFBfEwUZ4/MIj4m\nmnNH9uXD7eUs3VFBs4FLx/UHrP+dB2rYXVHDuxtL+PT4/qQlxHLztKEYA3M37aeusYl/LtnJpeP6\n849bp/DDK09hUX45C7dZFZyK6jpeXLmXG84cwp9uOJ3oKPGJ5dCslqVOYmOkk0uirkNFpItxRCQu\nJoqcjERWur6dfNbwLIZnJ/PqaktE5m7aT3lVHd+6dDTRUcJl4weQlRzHu5v2+/p1zx9lLSh51ogs\nRGD5zoNs2neEKXmZAIgIpw3OYNO+I2zcV8nYgakkxFr9q6fn9qGsqo65m/YTGy2Mtz+cddqQDMCq\nXQG+t2WnDbeu+dKKIqqONfq+9zx5aB8r7F0H2VBcybRhlr8JOWkkxUWzavchVu46yOShfUiIjWZY\n32QGZSSydEcFHxUcYEhmIiP7pdAvLYFTBqTxyc4KPt5RQXSUcMHobNISYpk2PNPn3xi4bPwAEmKj\nuWhsPxbll7Nu72EOHW3g6okDiY2O4vIJA1i8vZySylrWFVUyY9IgYqKj+MxpOSzfdZCDNfW8v6WM\ny8cPICU+huvPGMy20ip2V9Qwd9N+pg3LIjcric9PGcL+I8dYu/cwczaUMLhPImePyOLmqblU1zWy\neHs5szeUkBgbzbWTBvGFaUNpaja8t3k/szdaAvCFaUO5eVouUbZAzt9cSk19E7eelcdnzxhEclw0\n724qYfmug5RUHuPWs/K4cEw2QzITeXdjCTvKq9lQXMnN03KZMCidqXmZvLtpP5W1DSzZXs7/TBnM\nkMwkLh8/gNkbSmhoambe5lKunphD/7QEPnvGID4qOMCRYw3M3byfC8f0Iycjkf+ZMoRdFUfZXlbN\nnA0lnJ7JcwIoAAAgAElEQVSbwch+qVx3+iBqG5pYWlDBgq1lDOubzOShfbjmtBzA6uqbt6WUrOQ4\nzhuVzQWjs0mKi2bBtjI+2FpGXEwUl47rz4jsFEb1S2HhtjI+LLAKTee5nTcqmw+3l/vSsVMwXzQ2\nmzV7D/sK7IvG9gPg3FF9qaxt4PU1xdQ3NTN9eBYAZ4+wWvSvririQHU90+00OnloH2KihEXbyskv\nq/Kl1T7JceRlJbNxn1VJctK6k0/W7a1kQ/FhTh2UTnyMk08yKD1Sx6L8MmKjhYl2C+FMO4+9vb6E\nQ0cbOMu2aVBGIqP6pfBhwQEW5x+gsraBm6flAvDFs4bSLzWe55ZbeWve5lLqG5v54vQ80pNiGd0/\nleW7rBba0MxkX7kRoy0RxaGx2eqKiouOop/9BntcdBSj+qUgIlw+fgCrdx+ipq6RdzfuJzs13pc4\no6OE80b15eMdFazZc5jkuGjfFxOT4mIYmpnEnI3WoKUjCGB9VbHoUC0rdh5i3MAWd+dzm7M37mdE\ndoov00ywz317/T5EWr5jMKRPEomx0cxat8/yN8jKTGkJsQzLSmbW2mLqG5t97jHRUZw6KJ1Vuw+x\nvayaSa4MO2FQGvmlVWzdX8XEwRk+m6bk9WHtnsOs2XuIsQNSSY63FlGYNCSD/NIqPi6sICU+htH9\nLdtPz83wCSHAGbktwnasoZmXVljdDVOHWe5T8zIxxip0qusafcLo/C/OLye/tJqzR1j33Ln3q3Yf\nZPWew5w3qi8iwuS8PsRFR9kCeYgzh2WSGBfN6P4p9E2JZ+Uuy31UvxRyMqwun7ED0li5+yCf7DxI\nakIMk4ZkEB8TzfThWXxUUMGKnYcQgfNGW2GcPyqbj3dU+Lrrzh+dbf/3ZdO+I8zbXEqzaalInD2y\nL4ePNvDGmmKq6ho5b7RVwJ4zoi/Nxho72XuwlnNH2nGz47g4v5xN+4744nrmsD7ERgsrdx9i+a6D\nvgJ7SGYSgzIS+WTnQdbuPczpuX2IjhISYqOZODid9UWVrCs6zIScNF9F5YzcPmzad4T1eysZmpVE\nZrI1y2jikHSr9VJwgNSEGIb1tQrMUwel09RseG11EVGCL706aerllUW+9AAwsl8KUQJzNlrP30kX\niXFWZeWdDSUYA+NzWrqGxuWksTj/ABU19X75YXxOOsWHa9lQXOn37Y5R9jXnbiplaFayb3zCCftV\nu0vLESRne0vJEVbuOkhcdJQvPcVGR3HNaTks3FZGdV0j728tY5DdYwAwpn9LuM5ae9Z52hJRbJp9\nLRHxiUh2ajwxdsKcPjyLxmbDqt2HWLqjgovGZBMV1ZKAxuekU1ZVx+o9hxienUK069jo/qnssD9g\n417106nR1Dc1k+NayC3Xbi7XNzYzMD3B556ZHEdyXDRVxxoZlJHoKxCiooRhfZN9A8GD+7Rca2hW\nErvsPuDhfVsywvDsZDbtO4Ix/s3zkf1S2FFew+6Ko4zom+znXlPfxCeFBxnTv+VLbuNz0mhqNry7\ncT9jBqT64n2qXbi8trqYfqnx9Euz4uEI00sr99qFkeVv4hDr3xkLcPyN6pdKYmw0zy+3+uOd/ujs\n1HgG90nknQ1Wzd8pzOJjLAFfvvMg28uqmWi7iwhn5Gawbu9hNhRX+vVrTx7ax1fTnTQkwxeHCYPS\n2VVRw8rdBxnVL4W0hFife409RpGeGMtw+z6Nt8N6e72/mJ+Ra8XF6aefYBecTuH2xppiv/NzM5Po\nkxTLa6uLaWw2vnsRHxPN8L4pfFRwgKpjjb4CznkO64sqKSyv8d17gLEDrErBlpIqvwJ77MBUDtbU\n81HBAb8C+5QBTkWlhFMGpCEivusALNxWztCsZBLtWUkjslOIiRLW7j1MfExLBSwhNpq8rGS2lFiT\nDbxpz5n96F7AcFhWsm/q7CBXGnbS87GGZvJcaXJEtrVdWdvg23bCzs1MovBAje9+Oozpn0p5VR0L\nt5UzLifNV0EDqzLQ0GQNnq/efYjpw7N88R+Qnmg/gyhfvgMdWFcCEBcd7VsO3l3jcFoW728ppbK2\ngUlD/BdeG223HtYXVfoVyoCfQAxwiYJ7Ozu1Jaz+qQm+gsztR0R813ILBUB/29aU+BhSE1pegHJ/\nMMcdH7e7W9iG+WX2lu28LCuTNjYbBmYktDq3uq4xoBBW1NT72Tq4TyJRYk01zU6N9xVGaQmx9E2J\no7C8BpGWjB8dJQzNSmKzXRi5a6LD+iazbu9hAEa63Edkp7B272Gamg2jXDXIEf1SKDxQQ3lVnZ8Q\njshOprqukY3FR1oJqjHw4fYDvvg77mC1FPKyknwFjWPDwm3lDExP8LXWcjOTiY4SPtl5kNho8d2P\n5PgYBqYnsGKX1XXqiJGIMDw7xRdnt02jB6SywZ7I4LZpRL8Uig/X+u6xw6j+KRytb6K6rtGvYHbu\nY1VdIwPT/SsdDu605362/VxpNTpK6G9XEAb1SfTdC2cfICMplnTX8iAD0lquOzBIfnCH4bY7J8Pt\nJ7B9gM+mtIQY33OAlme3rbSq1RcJz7C7f9/dtJ+KmnomDEpzXS+eQMRoS0TxEhcT5SuEU1yJLys5\njj5JsbyzwWqej3N1SwHkuTJfrudLZ+7C2505gmWaqCghya7t9HdlOGgRG6f7oeX8hFbX9PrLcm33\nTQ6cSd1i5rbb7e7OsO4CK8ctiinxxMVYydZdSMVGR/n2B3ji5ghbVnK8Xw0vN4gQBivw3O7u+zc0\nM4i7q3Y7xCWow121W7fQDu8b2H1QRqIvzsNcfqxxtgRfXGJccXPCS02I8XtWfvfVdb/dNXe3iLgL\nY7+COUiB7Y7/gPT4gO7ugjMuJsq3xlw/z3Nz4uZdFt1ZHTvLm1Zd52cEERe3H/f5qQkteTIuJopE\nO58EC8ObH9zpxx1vsPL7wLQE37sv7oqGk/4bPO9F6ewspRVxMVEkx1sJs9k13U/Ev8vIm2GcDAa0\n+rBVdoq7D7XlUfZxZSB3rQqsGn8gd0fYvGv29E2NaxWW2190lPgVXn2CiIt7212oueOX4xIFd1wH\nelpNmXbY3ozcNyWwe5YtbN5an7PKcp+kWL/uB7dN7vvkJ4SpgYXQz911HbcouP27C/U+SXE4FW63\nAEdFCX3te+a+vttW7/N0nlu/1Hi/WrzjPzkumjRXwem2yb3khju8gX6thsCC0t+vMG3x7661eysw\nThjeuDlvbXsL8iz7ObdKq7Z7lOAXZ3d83M/E3bJOivNf0NxpsfdpValy0pJ/HPzE03MMIK9vMmV2\nV5v7Pjr5zm0v4Nel3dNREekm4mKiiAvSz+kkwLjoqFYZxp35kuL9E3qwryUmuvpWvX4S7DfovW/E\nBhMRJ6N50rivpudN6m6BiI9pia+7YM5MCiwo7tqgO1NlegTMaep7C500O67eDO7Y6s3cjth6/bvv\nQaLrPvmJs+scd0HjrpH28RPLlm339ft6WopOGvGKdpa97y3UHIH0tiCd+926oLXcUxNiPeLS4s9d\noPoLahDhdN0Ld3rzPp9A50LLILLX3UmTyZ5079yDRE8adsaWvKvypLnEIs6VJt3pLdkjIk5Fz3v/\nnGt58487TXvTE3hbsS3xdOIYyQu0qoh0E3HRUX4J2I2Tefqnx7dZA0mK9RT8CYE/B+MuHLx9q47A\nxHtscWzzZlgno3mb205h0ehJ/OmJgYXAbau7H9s9USAhNvBSD954O7Z6M7JTc03xFjp2eF5BzUiM\n87tey3UCi7O7QPF2STpkp7gmLLj8u++ru9WYEu8fh/h2nkNmkNq3d8E+R1RSPWkk0/ZX2+C/3Iw7\nbu5n4r5n7sqJ+7ru5+B+5sGW7kj0PE/nfiR7/Dstd+/zdPajPXklWH7wVr684brDcoiy4+EVKsef\nt9B351uvoEOL2KfGx/iJtLcFFImoiHQTsdHiK6y8yxI5Cay95Z+9Cd2buQLhFREnk3sLTqfw8k4t\ndAoCb0XJ3f3jJpgQuAuOYC2yoOfGeQtaWwi9omrfD+91fIvZBWlNHa0PXqAGvI7XPdEtFi1hu+32\nFuY+/55CxOka9D5rJ82kewTOibPbBre79zk74tTsSYRe0fJdx2W3u6B0C0RCkLTgTSNO2vLa5KTR\nGE+6cNKM1zan4PUW5MEK5IQglTc33jAcm7xjE44/b+XJTaC84YixNy1H0lTeYKiIdBMiEnTaXlpi\n4IztxZtJgrVs3HgzgbPrPdexzZsxHfdoT39WsLCDZWR3rdHb/+vgzWAOThdci01iu3taKLa7t5Xl\nFHjBCh3vqsRBW0TB7ItrCc9bO3YIVkh73Z004K0g+Ao1TxpybPW6t4hF4PC8cfaKVnt2u59hfGzg\ntOB9DkIQEYlyKjAe/0EqPM5zaGzyj8PxVk4CXbO1TZ50HyQ/+PkJkDcc8feKj1c4I5HIb0v1cF65\n5yw+tBfKC1bw+mo3TW2LiDejhzKX3NsScZrp3tqSk7ajvGIR3bIKsRtvAeHg7ao4HoLVGL2FgCMG\nXv9OTdlbkDvnt25N2S1DT3jBnlOwwtJdeAUTyGCtRq+7U7h7C28njBhP3Hzib7wC6RS0/t2QTteg\n13+w1kSwgtlNsLTQ6n5J4Gu2CKR/3IKtJBwT5DkHe26hiYj3+RjbNk8FJsbJD8FFJND9cFoitZ5W\nr/d5zrxjqu8dmEhBRaSLmZKX6VuSxMk83ryREqSLwUtibOCCpS1a1e6ccz0J3Qnbmzccf63EJUiG\nDVYTD4VgLRGvMDli4C0cnNqht8XhtGS89zeYKATrYghWGLVVoPjCCtZyiw8ct9bdXIFbIr6gTeAW\npNc2p1D0tlCDvZcQSkUlWPy9FZVgac95bt6lPpwoeWv9Thrzjh8Ge26hpEmvH+c5eK8Z64TdxiUD\n5Y1UXzeYv6g74TpRPH90tm+lgkgh8ttSEUSwdOeIgbeg9uJtiYTUneUpBFpaIqGJgOPfO209mICF\nUJ4GJVht2CsuTm3dGwenUPG2OKId44OM63hrvMHuTTD7QsFb0Drvinjvo1PIeLvwHBO9hb0jjN4C\n1ffcvCIS5Yw/BG7ReDmRSkGr5xOke6rFhsBhmVZtRdu2oBWe47EyMM599d4Xx5K28mqg+CUG6VJ1\nnkNb3WM9HRWRMODNFC0Di20nJG+TO5RaYqtCQJxz/d2dxO3NHI6l0R4VCVYQtCeEbRFsZpq38HYy\nuLdl4ITtbXE4l23VEolxWij+4cVFBxaLzhwE/eL0oW0e994Lx0Zvbb052HOz4+pNIsEGsbtimY1W\nYyJBurNa0lho9zdYWvWN33WCijj31fvM2+stgMCVEN/4m+d053lG0nshXsIiIiLyeRHZJCLNIjLF\nc+wHIlIgIttE5DKX+2QR2WAfe1RC6UOIEEIZrIPWLRGn3/uW6bkhh+VkPG9eCFajnTQkgzH9U7n3\nghH+NgcVkZBNCRnv1E3nZcLWImL9eweNnQFdb5yd7iyvqAeLW3cmuWCi4O1DbxnL8j+/yScigQva\nWI97Vyyz4RWqYN1ZJkhXast5gePsfR59kuKYODidv9x0escM9rPJ+veKtrNO2Dn2opaBCJR+gk3K\niA6he6ynE64xkY3AZ4G/ux1FZBxwIzAeyAHmi8hoY0wT8DhwF/AJMBu4HJjTnUZ3FU5Caq8G5a2R\nJ8RGs+b/Lg36XkMg8rKSKSirDjCw7tTu/P2nJ8Yy95vnt7pOdxa03lryfReOJC0h1m/5EGgpYL21\nvWAtkWBjVKF0E54o7VVovRWKFpEnoLv3vgcraH1prVVf//HH+WczxlN65FjI/oPNtvLZGqTD1yvy\nwVpZcTFRzPrquSHb0xa+7iyPrcP6JrP2x5f6vcDoJVBXb7DxvhYRiVwVCYuIGGO2QMACZwbwgjGm\nDtgpIgXAVBHZBaQZY5bZ580EriXCRMRZePCzpw/2c2+wZ2W1V3gFavJ632Bujz/ccBofbT/gW8jQ\nwRnvCzUxhzKof6L85abTW30CFqwlzZ1lzd3ced5w9hw8yu3n5Pm5O/fNW27HBhGR7py77y04ja/w\n9/cXTBSCzaoL3s1l/XtFo604f/vS0UxwrU7scOtZeQH9P3bzGXywtayVu68lEqQ7K+igoYdgrayO\n8M7Xz8Uz1g24BtYDhBHsfSGHQBWpYC0R517ccc6wdiztufS02VmDgGWu/SLbrcHe9roHRETuBu4G\nyM0NvaunqxmQnsDOX17ZKpE5n0R1LyjoZuyAVLbur+oUG9ISYrni1IGt3IO1RILRHSJy9Wk5XG1/\nGCkU0hNj+dONrbsypuZlkpkcx30X+nfJBdPL7miJtEfrMZHjG/tw/Hu1wRm493ZfRUcJI/ultOq2\nBPjap0Ydl+1XTRzIVRNbp7GR/VNYs+dwq8Lf150V5HpeoQ02JtIR3MvYuwk2sN4Wp+dmsGbP4YDH\nnF4Eb76Ji4li16+uCjqdORIIKiIi8mgI5x8xxvwoyPnzgQEBDj1ojHkzRPs6hDHmSeBJgClTpvSo\npxOolnLB6Gzuv2gEd5/XOgMDvHrv2VTXNXapXcFqusFwCrmp9lcNT4T53zqfmrqm9j12kD7Jcaz+\nv0tbuTs1ymtP9xeq7hDIYDi339udZXwtDn//wQpUn7vnBGctrBmT/OtgIsL8b13QYbtD4V+3ncm6\nvYf9Fj4Ed9xCS3vOYpYTA7SOOotgs+Ha4tkvT+NIbeB8GhUl/PSa8b4PfnmJ5CHetloiM4Aft3P+\n94GAImKMuaQD9hQDQ1z7g223Ynvb694riImO4ruXjQ16PDk+Juibw52FM8gcbHprIBZ858Kgi+wd\nDyP7pbbvqQtIiY9h408va7U2V7C++84kWM0mmFgEa4kEE39n0kGgBRg3/vSyVutUdQeZyXG+z9+6\nccY8Qi1HJw/tw+yvn+f7UmdX0JGWSFJcTJtrYd12dt6JmtUjaatk+qMx5um2ThaRPm0d7wCzgOdE\n5A9YA+ujgOXGmCYROSIi07EG1m8F/tLJYZ/UfP+KsWQlx3FVgK6uYLi/bRGpBHuT/M83TvL7kl+X\nEaTgDNad1XqsJHA35JWnDmR/5TFuCTCVOJQ118JBsIH1QHi/u9Mef7np9FarBLdFTLTQ2GxazYZT\nWhM0NRlj/tTeyaH4CYSIXIclAtnAOyKy1hhzmTFmk4i8BGwGGoH77ZlZAPcBTwGJWAPqETWo3t08\n9aUzKakMfeZMWkIs3/70mC60CH712VODzlLpaXi7e9y4l03vKoK2ODwF7Xi7MHW+rOcQHSXcdf7w\nrjOwE/n19RP56wcFvu/edwXHM7YG8Nq95zBvc2mvWNuqq2lrTCQBuAE4BLwFfA84D9gB/NwY03ra\nTIgYY14HXg9y7GHg4QDuK4EJHQ3zZOPCMa27DcLNjVN7ziSHjrLsB5/qFCFsbyC19ZhI4BbH5yYP\nZtKQDEb1D0+XYGcwuE8Sv7p+YtDjwd5Y70rG5aQdd2vnZKUtmZ0JfBq4A1gI5AJ/BaqwWgSKctIx\nID0h6MfAOkLQF+w8OdOZBOB9wVJEIlpAlMinrc7RccaYCSISAxQZY5ypG++KyLpusE1RIobnvjyt\nU7s+vC2R31w/kbdG7evSGUk9leMZK1G6n7ZEpB7AGNMoIvs8x7puPqaiRCBnj+zbqdfzjon0SY4L\n+nKfooSTtkRksP2uiLi2sfeDjzoqinLCRPBrA8pJRlsi8l3X9krPMe++oigdwKsVU4dl8uH2AxG9\nlpJyctHWFN823xFRFKV9lj/4KY7VB1icKQhP3DKZPQeP9oilVxQlFNqa4vsWwV+sxRhzTZdYpCi9\niH6pCQHdg83wTY6P4ZSBOrVUiRza6s76nf3/Waw1sJ6x928CSrvSKEVRFCUyaKs7axGAiPzeGOP+\ncNRbIqJjIorSCUTywnuKAqF92TBZRHzrJ4jIMCDyF01SFEVRTphQVmL7JrBQRAqxJpMMxf5Wh6IE\n4usXj9R+/XYIx1Iekca9F45gz8Gj/M+ZQ9r3rISNdkXEGPOuiIwCnLXKt9pfHlSUgHyrixdy7E1o\nZ1ZwslLiefLWKe17VMJK0O4sETnD2TbG1Blj1tm/ukB+FEVRlJOPtloi/xGRC2m7svQvoPX3SBVF\nUZSTgrZEJB1YRdsiUt655ijKyUEEf1JbUfxoa4pvXjfaoSgnJTrDV4l0dG0FRVEUpcOoiChKGNDe\nLKW3oCKiKGFEP7ikRDrtiohY3CIiP7b3c0VkatebpiiKovR0QmmJ/A04C2vhRbC+sf5Yl1mkKIqi\nRAyhiMg0Y8z9wDEAY8whIO5EAhWRz4vIJhFpFpEpLvc8EakVkbX27wnXsckiskFECkTkUdGV65QI\nRqf4Kr2FUESkQUSisccCRSQbCP0rO4HZiLXE/OIAx3YYYybZv3tc7o8DdwGj7N/lJ2iDooQdrQop\nkU4oIvIo8DrQT0QeBpYAj5xIoMaYLcaYbaH6F5GBQJoxZpkxxgAzgWtPxAZFURTlxAllAcZnRWQV\n8Cmst9evNcZs6UKbhonIWqAS+JEx5kNgEFDk8lNkuwVERO7GXmk4Nze3C01VFEU5uWnr87iZrt0y\n4Hn3MWPMwbYuLCLzsb6I6OVBY8ybQU4rAXKNMRUiMhl4Q0TGtxVOIIwxTwJPAkyZMkV7n5Uehy4F\nr/QW2mqJrMIaBxEgFzhkb2cAe4BhbV3YGHPJ8RpjrxBcZ2+vEpEdwGigGBjs8jrYdlMURVHCSNAx\nEWPMMGPMcGA+cLUxpq8xJgv4DPBeVxgjItn2ID721xRHAYXGmBLgiIhMt2dl3QoEa80oiqIo3UQo\nA+vTjTGznR1jzBzg7BMJVESuE5EirPdP3hGRufah84H19pjIK8A9rm6z+4B/AgXADmDOidigKOFE\np/gqvYVQPo+7T0R+BDxj738B2HcigRpjXsea8eV1fxV4Ncg5K4EJJxKuovQ0dIqvEumE0hK5CcjG\nKvRfB/rR8va6oiiKchITyhTfg8AD3WCLoiiKEmG0KyIisoAAK1cbYy7uEosURVGUiCGUMZHvuLYT\ngOuBxq4xR1FOLnQpeCXSCaU7a5XH6SMRWd5F9iiKoigRRCjdWe4316OAyUB6l1mkKIqiRAyhdGe5\n31xvBHYCd3alUYrS2zH6oojSSwhFRE4xxhxzO4hIfBfZoygnFfqeiBLphPKeyNIAbh93tiGKoihK\n5NHWKr4DsJZbTxSR08E3jSQNSOoG2xSl16K9WUpvoa3urMuA27FWzP2Dy70K+GEX2qQoJw3am6VE\nOkFFxBjzNPC0iFxvr2mlKIqiKH601Z11izHmGSBPRL7lPW6M+UOA0xRFUZSTiLa6s5Lt/5TuMERR\nTiZ0SETpLbTVnfV3+/+n3WeOopxciM7xVSKcUN5YzwbuAvLc/o0xd3SdWYqiKEokEMrLhm8CH2J9\nJrepa81RlJMDneKr9BZCEZEkY8z/drkliqIoSsQRyhvrb4vIlV1uiaKchOiIiBLphCIiD2AJSa2I\nHBGRKhE50tWGKYqiKD2fUL4nktodhijKyYTRSb5KLyGU2VlnBHCuBHYbY/QLh4pyAugMXyXSCaU7\n62/AMuAf9m8Z8DKwTUQ+3ZFAReS3IrJVRNaLyOsikuE69gMRKRCRbSJymct9sohssI89KjrBXlEU\nJeyEIiL7gNONMZONMZOBSUAhcCnwmw6GOw+YYIyZCOQDPwAQkXHAjcB44HLgbyISbZ/zONb7KqPs\n3+UdDFtRFEXpJEIRkdHGmE3OjjFmMzDWGFPY0UCNMe+5usKWYa0UDDADeMEYU2eM2QkUAFNFZCCQ\nZoxZZqxPws0Eru1o+IoSbvQ9EaW3EMp7IptE5HHgBXv/BmCz/XXDhk6w4Q7gRXt7EJaoOBTZbg32\nttc9ICJyN3A3QG5ubieYqChdg/bKKpFOKC2R27FaBN+wf4W2WwNwUbCTRGS+iGwM8Jvh8vMg1nfb\nn+14FFpjjHnSGDPFGDMlOzu7My+tKIqiuAhlim8t8Hv756W6jfMuaeu6InI78BngU3YXFUAxMMTl\nbbDtVkxLl5fbXVEiEu3NUnoL7bZERGSUiLwiIptFpND5nUigInI58D3gGmPMUdehWcCNIhIvIsOw\nBtCXG2NKgCMiMt2elXUr1ppeiqIoShgJZUzkP8BDwB+xuq++RGjdYG3xVyAemGf3CS8zxtxjjNkk\nIi8Bm7G6ue43xjiLPt4HPAUkAnPsn6IoihJGQhGRRGPM+yIixpjdwE9EZBXw444GaowZ2caxh4GH\nA7ivBCZ0NExFURSl8wlFROpEJArYLiJfxRqL0K8dKsqJoHN8lV5CqAswJgFfByYDXwRu60qjFOVk\nQGf3Kr2BUGZnrbA3q7HGQxRFURQFaENERGRWWycaY67pfHMURVGUSKKtlshZwF7geeAT9Ps5itJp\n6IiI0ltoS0QGYC2yeBNwM/AO8Lx7HS1FUTqO1sqU3kDQgXVjTJMx5l1jzG3AdKylTxbaM7QURVEU\npe2BdXuRxauwWiN5wKPA611vlqL0bnSGr9JbaGtgfSbWy32zgZ8aYzZ2m1WKchKgK/gqvYG2WiK3\nADVY74l83ZXgBTDGmLQutk1RFEXp4QQVEWPMia6PpSiKovRyVCgUJQwYneSr9BJURBQlTOiIiNIb\nUBFRFEVROoyKiKIoitJhVEQUJQzoeyJKb0FFRFHChL4movQGVEQURVGUDqMioihhQHuzlN6Cioii\nhAnRSb5KL0BFRFEURekwKiKKoihKhwmLiIjIb0Vkq4isF5HXRSTDds8TkVoRWWv/nnCdM1lENohI\ngYg8KroEqhLB6BRfpbcQrpbIPGCCMWYikA/8wHVshzFmkv27x+X+OHAXMMr+Xd5t1ipKV6DVIKUX\nEBYRMca8Z4xptHeXAYPb8i8iA4E0Y8wyY4wBZgLXdrGZiqIoSjv0hDGRO4A5rv1hdlfWIhE5z3Yb\nBBS5/BTZbgERkbtFZKWIrCwvL+98ixVFURSgnc/jnggiMh8YEODQg8aYN20/DwKNwLP2sRIg1xhT\nIa8meHkAAA6xSURBVCKTgTdEZPzxhm2MeRJ4EmDKlCna+6z0OHQpeKW30GUiYoy5pK3jInI78Bng\nU3YXFcaYOqDO3l4lIjuA0UAx/l1eg203RYlYdEhE6Q2Ea3bW5cD3gGuMMUdd7tkiEm1vD8caQC80\nxpQAR0Rkuj0r61bgzTCYriiKorjospZIO/wViAfm2TN1l9kzsc4HfiYiDUAzcI8x5qB9zn3AU0Ai\n1hjKHO9FFSVi0N4spZcQFhExxowM4v4q8GqQYyuBCV1pl6J0J/qmk9Ib6AmzsxRFUZQIRUVEURRF\n6TAqIooSBnRIROktqIgoSpjQpeCV3oCKiKIoitJhVEQUJQwYXcZX6SWoiChKmNApvkpvQEVEURRF\n6TAqIoqiKEqHURFRlDCgQyJKb0FFRFHChA6JKL0BFRFFURSlw6iIKIqiKB1GRURRwoAOiSi9BRUR\nRQkToi+KKL0AFRFFURSlw6iIKEoY0Cm+Sm9BRURRwoR2Zim9ARURRVEUpcOoiCiKoigdRkVEUcKA\n0Um+Si9BRURRwoUOiii9gLCIiIj8XETWi8haEXlPRHJcx34gIgUisk1ELnO5TxaRDfaxR0Un2SuK\nooSdcLVEfmuMmWiMmQS8DfwYQETGATcC44HLgb+JSLR9zuPAXcAo+3d5t1utKIqi+BEWETHGHHHt\nJtOyCsQM4AVjTJ0xZidQAEwVkYFAmjFmmbG+KzoTuLZbjVaUTkTfE1F6CzHhClhEHgZuBSqBi2zn\nQcAyl7ci263B3va6B7v23cDdALm5uZ1ntKJ0Itofq/QGuqwlIiLzRWRjgN8MAGPMg8aYIcCzwFc7\nM2xjzJPGmCnGmCnZ2dmdeWlFURTFRZe1RIwxl4To9VlgNvAQUAwMcR0bbLsV29ted0VRFCWMhGt2\n1ijX7gxgq709C7hRROJFZBjWAPpyY0wJcEREptuzsm4F3uxWoxWlk9EJhkpvIFxjIr8SkTFAM7Ab\nuAfAGLNJRF4CNgONwP3GmCb7nPuAp4BEYI79UxRFUcJIWETEGHN9G8ceBh4O4L4SmNCVdimKoijH\nh76xrihhwOgcX6WXoCKiKGFCh0SU3oCKiKIoitJhVEQURVGUDqMioihhQEdElN6CioiihAkdElF6\nAyoiiqIoSocJ2wKMinIyMz4njdr6pvY9KkoPR0VEUcLADWfmcsOZusK0Evlod5aiKIrSYVREFEVR\nlA6jIqIoiqJ0GBURRVEUpcOoiCiKoigdRkVEURRF6TAqIoqiKEqHURFRFEVROoz09o/jiEg51id4\nI4m+wIFwG9HNaJxPDjTOkcNQY0x2e556vYhEIiKy0hgzJdx2dCca55MDjXPvQ7uzFEVRlA6jIqIo\niqJ0GBWRnsmT4TYgDGicTw40zr0MHRNRFEVROoy2RBRFUZQOoyKiKIqidBgVkR6AiGSKyDwR2W7/\n92nDb7SIrBGRt7vTxs4mlDiLyBARWSAim0Vkk4g8EA5bTxQRuVxEtolIgYh8P8BxEZFH7ePrReSM\ncNjZmYQQ5y/Ycd0gIktF5LRw2NmZtBdnl78zRaRRRD7XnfZ1FSoiPYPvA+8bY0YB79v7wXgA2NIt\nVnUtocS5Efi2MWYcMB24X0TGdaONJ4yIRAOPAVcA44CbAsThCmCU/bsbeLxbjexkQozzTuACY8yp\nwM+J8MHnEOPs+Ps18F73Wth1qIj0DGYAT9vbTwPXBvIkIoOBq4B/dpNdXUm7cTbGlBhjVtvbVVji\nOajbLOwcpgIFxphCY0w98AJW3N3MAGYai2VAhogM7G5DO5F242yMWWqMOWTvLgMGd7ONnU0ozxng\na8CrQFl3GteVqIj0DPobY0rs7f1A/yD+/gR8D2juFqu6llDjDICI5AGnA590rVmdziBgr2u/iNZC\nGIqfSOJ443MnMKdLLep62o2ziAwCriPCW5peYsJtwMmCiMwHBgQ49KB7xxhjRKTVvGsR+QxQZoxZ\nJSIXdo2VncuJxtl1nRSs2ts3jDFHOtdKJZyIyEVYInJuuG3pBv4E/K8xpllEwm1Lp6Ei0k0YYy4J\ndkxESkVkoDGmxO7GCNTUPQe4RkSuBBKANBF5xhhzSxeZfMJ0QpwRkVgsAXnWGPNaF5nalRQDQ1z7\ng2234/UTSYQUHxGZiNU1e4UxpqKbbOsqQonzFOAFW0D6AleKSKMx5o3uMbFr0O6snsEs4DZ7+zbg\nTa8HY8wPjDGDjTF5wI3ABz1ZQEKg3TiLldv+BWwxxvyhG23rTFYAo0RkmIjEYT27WR4/s4Bb7Vla\n04FKV1dfJNJunEUkF3gN+KIxJj8MNnY27cbZGDPMGJNn5+FXgPsiXUBARaSn8CvgUhHZDlxi7yMi\nOSIyO6yWdR2hxPkc4IvAxSKy1v5dGR5zO4YxphH4KjAXa2LAS8aYTSJyj4jcY3ubDRQCBcA/gPvC\nYmwnEWKcfwxkAX+zn+vKMJnbKYQY516JLnuiKIqidBhtiSiKoigdRkVEURRF6TAqIoqiKMr/t3eu\nMXZVVRz//TttaEtpy2jVLypfDAGqaBiJRdIgqUaiiNQpTQTr1CjRCEVJFY1GJzSItmlUBIPSlCkV\n5SF2UJSWpnQoMgqlj5lOIRUUjIkE0yqjFTrCsPyw1nH23Dn39s7t2KHT/Utuss/e++y1H+fu5zlr\nNUweRDKZTCbTMHkQyWQymUzD5EFkgiLJJK1OrpdLaj/KeegoNJVKWnOkyhMlnSKpr0rYqtD0u+pI\nZLyWiPp7ZixfEU3b5HhEUpukGw8TZ3Fo4j2mNWUfLfIX6xOXAWChpOvNbP9ob5Y0Od59HxPM7NNj\nlVYVLgeazWww9RzrcowDXzKzn493JsYSSU2V7fRawszulPQ8sHy883IskFciE5dXcPXaX6wMiBn9\ng2HPYUt8PVzMUm+W9CiwUlK7pHWSHpb0Z0kLJa0MGxAbQyUJkr4habukPkk/VoliIEldklokfST5\ncHCfpGci/CxJD0naIWlTocU2/Hsk9QCfLyuopF8CM4AdMYusLMeJktZKekxui+WiuG+apDskPSlp\ng6RHJbVE2MEk/VZJHeGeI+meKO92Se8N//aQ0SXpT5KWJfcvibrukbRe0kmxwijqb2Z6XQ1Jb4x8\n9sTvHEnXSvpCEuc6hd0VSddEW/VI+nZJetXqfJnchkuvpDtK7muTdG+U9SlJ30zCLot63i3pR3LV\n50g6KGl1tOO8ivRGyJN0tqTfRXt1Szo1kd0pt0HzrKQrJF0d8X4vqTnidUn6fuSjT9LZJeUobcvM\nKDGz/JuAP+AgMBN4FpiFz6raI+xXwCfD/SmgM9wdwH1AU1y3A78FpgBnAi/ieo4ANgAfDXdzInc9\ncGGSXmu4u4CWijzehQ8MU4BuYE74LwbWhrsXmB/uVUBftfIm7spyfAu4LNyzgT8AJwJXJ3LegQ+8\nLSXptQId4f4pcG6434KrZCnqqhs4AdeLdCDKdUbIe31aV8CtSf1dDqwuKdP/6i+u78SVUAI0Rbue\nAuwMv0nAH/EvwS+I/EyvkNsR5alV538FTijqqyRfbcBzIWca0IfrhToNf7amRLwfAkvCbcAlVdpu\nhDz82Z0c7gXAPYnsp4GTgDlAP/DZCPtuUj9dwC3hnk88N3H/jbXaMq7PA+4b7//xsfDL21kTGDP7\np6TbgGXAS0nQPGBhuNcDK5Owu234VsP9ZvaypD14x7Ux/PfgHRjA+yR9GZgONAN78c6kKhH/JTO7\nSdJcYC6wORYxTcBzkmbjncq2JK8X1FX44eX4AK68stiemIp3GvOBGwDMrFdSbx3pLgBO19Bia6Zc\nyzDAr81sABiQ9Ddcvf35kZf9IefvEXcNrta/E1gKfKYO2ecDSyKdQbwD7Zd0QNK7Qt4uMzsgaQFw\nq5m9WCG34FRK6jzCeoHbJXVG/srYbKE0UdIvcC28rwBnAdsjzWkMKdYcxBVpllEmbxawTtLb8AEo\nXaVtNbcv8y9J/Qw9a3vwyUDBz6Ls22K1N7tCbmlbmtlBMnWTB5GJz/eAnfjMtx7+XXE9AGCuvvpl\ni2kabtNksqSp+Iyzxcz+Ij+8n1pLQHRwi/BOHEDAXjOr3Oao/NOPhrQcAj5mZvsq0q91f6oPKC3P\nJOA9ZnaoJK2BxGuQGv8vM3tEvq14Hr5iKn1hoE7W4DPsNwFr67yntM6DD+FtcyHwNUlvt5HnSpX6\nkizSXGdmXy1J85BVPwcZIQ+3drjVzC6W25LpSuKn9fxqcv0qw+u8LI8ppW2ZGR35TGSCEzPQu3Cb\nDQXduJZRgEuBh49ARNHB7o8Zec03fyS9FTcjusjMitXRPmCOpHkRZ4qkM8zsBeAFSYWtiUsbzOMm\n4EpFTx+zdoBtwMfDby7DZ7HPSzpN0iTckFDBA7h1uqI87zyM7AeBRZJeF/Gbk7Db8C2Vegf4LcDn\nIp0mSbPCfwPwQeDdeFkBNgNLJU0vkQtV6jzK+2Yz2wpcg68IZjCS90tqljQNt0r5SOSvVdIbCpnR\n3lWpIW8WQ6rU22pXS1UWh4xzcc3I/RXho23LTAl5EDk+WI3v0xdciXcwvbiW3KsaTTg6+lvwffFN\nuErsWrThe+mdcej5G3Nzoq3Ad+LgdTdwTsRfCtwkaTc+022EFfh2SK+kvXENbmFuhqQngWuBHck9\nX8HPVboZ2uYB3xpsiUPgJ4Car9+a2V7gOuChKFuq0v524GRi26UOrsK3DvdEXk8PGf8BtuKaYwfD\nbyOuivzxqLthbxrVqPMm4CchYxdwQ7RxJY/h21O9+HnF42b2BPB14IF4tjYDhzPzW03eSuB6Sbto\nfMfkUNx/M8MnUQWjastMOVmLbyYTSOoClpvZUVFLLv9e4yIz+0SV8A78cLfmK74xm9+Jr+6eGvOM\njpTXhm9fXvH/ltUoR9qWsc243Mw+PJb5mojklUgmMw5I+gFuQ2VFjWj9wArV+NhQ/gHn08CWozGA\nHA9IWoyf8/1jvPNyLJBXIplMJpNpmLwSyWQymUzD5EEkk8lkMg2TB5FMJpPJNEweRDKZTCbTMHkQ\nyWQymUzD/Be7EGrwo8OjJAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Blackmann window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flat Top Window" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='flat-top')" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOWV4P3fUWmXbO3etFiWLGO8bxgLbIPZwmIgGwmB\nZICkx/12epLQ05l0Mt096fTbebt73nRCd0imA0kI3UmAQCAEYgKGgDdkY9ngfZElL7Ika7UsWbuq\nzvxRV1AotizLVbq1nO/nUx/Vrbp177mS6tRT5z73eURVMcYYE/3i3A7AGGPM+LCEb4wxMcISvjHG\nxAhL+MYYEyMs4RtjTIywhG+MMTHCEr5xnYgUi4iKSLzbsQSTiLwiIg+M8bV/JyI/D3ZMJrZZwjfj\nRkSOi0iPiJwLuE27xG1cLyKnLrJOWHyAqOptqvqkmzEYE8gSvhlvd6pqesCt3u2AjIkVlvBN2BGR\nh0TkoIh0ikiNiPyp83ga8Aow7SLfEDY5P9uddcpFJE5E/kZETohIk4j8h4hkONsd+kawTkTqRaRB\nRL56gdhmiEi7iMQ5y4+LSFPA8/8pIg87998SkT9x7j8oIltE5DsickZEjonIbcO2u9E55g1A7rD9\n3iUi+519vyUiVwb8rl4KWK9KRJ4NWK4VkUWj/uWbqGYJ34SjJmAtMBF4CPieiCxR1S7gNqD+It8Q\nVjs/M511KoAHndsaoARIBx4d9ro1QBlwC/BXInLT8A2r6jGgA1gcsK9zQwkYuA7YeIHjuho4jD+Z\n/2/gJyIiznO/BHY6z/2/wPu1fxGZBTwFPAzkAeuBl0Qk0dnXKucDbRqQCJQ7rxs6zj0XiMfEGEv4\nZrz9xmmltovIb863gqr+TlWr1W8j8Bqw6jL3ez/wXVWtUdVzwDeAe4fV+b+lql2quhd4AvjMBba1\nEbhORKY4y885yzPwf0jtvsDrTqjq46rqBZ4EpgKTRaQIuAr4W1XtU9VNwEsBr/s08DtV3aCqA8B3\ngBTgGlWtATqBRfg/fF4F6kVkNv4Pn82q6hvl78hEuajqFWEiwkdV9fWRVnBKHd8EZuFvlKQCe0dY\n/1zA4pwLrDYNOBGwfAL////kgMdqhz0//wLb2gjcBZzCXz56C/gc0MvICfb00B1V7XYa9+n4W/Vn\nnG8wgfsvPF/squoTkVogPyCe64GZzv12/Mm+nAt/2zAxyFr4JqyISBLwa/yt2Mmqmom/hDFU+vij\n4V2HnQQ+eb51gHpgesByETAINAY8Vjjs+QudUN6I/xvH9c79LcC1jFzOGUkDkOWcowjc/3ljd8pA\nhUBdQDzXOzFtdG7XXUY8JkpZwjfhJhFIApqBQae1f0vA841AztAJ1wtoBnz4a/VDngL+wjk5mg78\nf8AzqjoYsM7fikiqiMzFf+7gmfNtXFWrgB7gs8BGVe1w4voEY0iwqnoCqAS+JSKJIrISuDNglV8B\nd4jIjSKSAPwl0Ae87Ty/Ef/5hxRVPQVsBm4FcoB3LzUeE72spGPCiqp2isiX8Se5JPy17N8GPH9I\nRJ4CakTEA8wZfuLWKZd8G9jqJMhbgZ/iL41sApLx17q/NGz3G4Gj+BtC31HV10YIdSOwQlVrA5Zn\nA7vGcNgA9+Gv67cBFcB/AJnO8RwWkc8C38dfxnkPf/fWfuf5I05Za7Oz3CEiNUCzc77AGADEJkAx\nsU5EioFjQMKwFr8xUcVKOsYYEyMs4RtjTIywko4xxsQIa+EbY0yMCKteOrm5uVpcXOx2GMYYEzF2\n7tzZoqp5o1k3rBJ+cXExlZWVbodhjDERQ0ROXHwtPyvpGGNMjLCEb4wxMcISvjHGxAhL+MYYEyMs\n4RtjTIywhG+MMTHCEr4xxsSIsOqHb0y4eG3/afbVnT3vc4unZ7HmiknjHJExl88SvjHDvPDuKf7i\nGf+0tO9PMe5Q9T/2o88u5Za5U87zamPClyV8YwK8Xd3C157bQ3lJDk9+fjmJ8R+uevb0e7n38W18\n+el3eXpdOYsKM12K1JhLZzV8YxxHGjv50//cSXFOGv/+uaV/lOwBUhI9/OSBZUyakMwXfraDk63d\nLkRqzNhYwjcGaOro5aEndpCc4OGJh64iIyXhguvmpifxxENX4VXlwSfe4UxX/zhGaszYWcI3Ma+r\nb5DPP7mDM939PPHgVRRkpV70NaV56Tz+X5Zxqr2Hdf9ZSe+ATR1rwp8lfBPTBr0+vvTUuxyo7+AH\n9y1hXn7GqF97VXE23/3UQnYcP8NXn92Nz2eTCZnwZidtTUz7u5f284dDTXz7Y/NYM/vSu1quXTCN\nujM9/OMrh8jPSuEbt10ZgiiNCQ5r4ZuYteN4Gz/fdpJ1q0u4/+rpY97OutUl3Hd1ET/aWMOB+o4g\nRmhMcFnCNzHrRxtryEpN4C9umnVZ2xER/uojs0lN9PD45pogRWdM8FnCNzHpaNM5Xj/YyOfKi0lJ\n9Fz29jJSE7j3qiJe2l1PfXtPECI0Jvgs4ZuY9OPNNSTFx/FA+dhLOcN9fmUxCvx0y7GgbdOYYLKE\nb2JOU2cvz++q45NLC8hJTwradguyUlm7YCpPvXOSsz0DQduuMcFiCd/EnCffPs6Az8efrCoJ+rbX\nrS6hq9/LL7efDPq2jblclvBNTOnqG+Tn207ykTlTmJGbFvTtz52WwcqZuTyx9Rh9g3YxlgkvlvBN\nTHlmRy1newZYd13wW/dD1q0uoamzjxffqw/ZPowZC0v4JmYMen38ZMsxrirOYklRVsj2s6oslyun\nTuTxTTV29a0JK5bwTcz43d4G6tp7WLe6NKT7ERHWrZ5BVdM53jrSFNJ9GXMpLOGbmKCqPLaphtK8\nNG4cwxAKl2rtgmlMy0jmRxvtQiwTPizhm5jwdnUr++s7+K+rSoiLk4u/4DIleOL4/MoZbD/Wxu7a\n9pDvz5jRsIRvYsKPNtWQm57ERxfnj9s+711exITkeB7bZK18Ex4s4Zuod/h0J5uONPPQtcUkJ1z+\nMAqjlZ4Uz/1XT+eVfQ3UttnMWMZ9lvBN1HvxvTo8ccJnlheN+74/Vz4dn8JLe6yLpnFfyBO+iHhE\n5F0ReTnU+zJmOFVl/d4GrinNITstcdz3n5+ZwuKiTNbvbRj3fRsz3Hi08L8CHByH/RjzRw42dHK8\ntZvb5091LYbb501lX12HTXhuXBfShC8iBcAdwI9DuR9jLuSVfQ3ECdwyZ7JrMdw6b8r7sRjjplC3\n8B8Bvgb4LrSCiKwTkUoRqWxubg5xOCaWqCq/29vAipKcoI6KeakKs1NZUJDB+n2nXYvBGAhhwheR\ntUCTqu4caT1VfUxVl6nqsry8vFCFY2LQkcZz1DR3uVrOGXL7/Knsrm3n1Bkr6xj3hLKFfy1wl4gc\nB54GbhCRn4dwf8Z8yPq9DYjAR+ZOcTsUbnPKOr+3Vr5xUcgSvqp+Q1ULVLUYuBf4g6p+NlT7M2a4\nV/Y1sLw4m7wJ7pVzhkzPSWPutInWW8e4yvrhm6h0tKmTI43nwqKcM+T2+VPZdbLd5rw1rhmXhK+q\nb6nq2vHYlzEA6/eeRuSDHjLhwMo6xm3WwjdRaf3eBpZNz2LyxGS3Q3lfSV46s6dMsO6ZxjWW8E3U\nqWk+x6HTndw2L3zKOUNunz+VyhNnaOzodTsUE4Ms4Zuo84pTMgmncs6Q2+dPQdXKOsYdlvBN1Fm/\nt4HFRZlMy0xxO5Q/MnPSBMompVtvHeMKS/gmqpxo7WJ/fQe3h2E5Z8ht86fyzvE2mjv73A7FxBhL\n+CaqDJVzbpsffuWcIXfMn4oqvLrfyjpmfFnCN1Fl/d4GFhZkUJCV6nYoFzRrcjoleWlW1jHjzhK+\niRq1bd3sOXWW28LoYqvzERFunzeVbTWttJ6zso4ZP5bwTdQYKpGEc/1+yG3zp+BTeO1Ao9uhmBhi\nCd9EjbcONzNrcjpFOeFbzhkyZ+pE8jNT2HjYhgQ348cSvokKPf1e3jnexuqyyBhiW0RYVZbL1uoW\nBr0XnC7CmKCyhG+iwvZjrfQP+lg1KzISPsCqsjw6ewfZfard7VBMjLCEb6LCpiMtJMbHcfWMbLdD\nGbVrZ+YQJ7DxSIvboZgYYQnfRIXNVc1cPSOb5ASP26GMWmZqIgsKMtlcZXV8Mz4s4ZuIV9/eQ1XT\nOVaV5bodyiVbPSuP3bXtnO0ecDsUEwMs4ZuIt6XKXxJZHUH1+yGry3LxKWyttrKOCT1L+Cbibaxq\nZtKEJK6YPMHtUC7ZosJMJiTFs+mIlXVM6FnCNxHN61O2Hm1hVVkeIuJ2OJcs3hPHNTNz2FzVgqq6\nHY6JcpbwTUTbV3eW9u4BVs+KvPr9kNWz8qhr76GmpcvtUEyUs4RvItpQKWTlzAhO+M7FYlbWMaFm\nCd9EtM1VLczLn0hOepLboYxZYXYqM3LT2FxlJ25NaFnCNxGrs3eAXSfPRMxwCiNZVZZLRXUrfYNe\nt0MxUcwSvolYFdWtDPqUVVGQ8FeX5dEz4GXniTNuh2KimCV8E7E2VTWTmuhh6fQst0O5bCtKc4iP\nEzbZMAsmhCzhm4i1uaqF8pIcEuMj/984PSmepdOzbJgFE1KR/04xMelEaxcnWrsjcjiFC1k9K4/9\n9R02ubkJGUv4JiJtiuDhFC5k6MNr61Er65jQsIRvItKmI83kZ6YwIzfN7VCCZt60DLJSE6w/vgkZ\nS/gm4gx4fVRUt7J6VmQOp3AhcXHCyrI8NtkwCyZELOGbiPPuyXbO9Q2yOorq90NWl+XScq6Pgw2d\nbodiopAlfBNxNlc1EydwTQQPp3AhQ9cUWG8dEwohS/gikiwi74jIbhHZLyLfCtW+TGzZXNXCwsJM\nMlIS3A4l6KZkJDNrcjpb7MStCYFQtvD7gBtUdSGwCLhVRFaEcH8mBpzrG2Rv3VmuKc1xO5SQuaY0\nl8rjZ+gf9LkdiokyIUv46nfOWUxwbnYmylyWHcfa8PqU8pLoK+cMWVGSQ8+Al92n2t0OxUSZkNbw\nRcQjIu8BTcAGVd1+nnXWiUiliFQ2N1vd0oysoqaVBI9ExXAKF7KiJBsR/1hBxgRTSBO+qnpVdRFQ\nACwXkXnnWecxVV2mqsvy8qLnIhoTGhXVrSwuyiIl0eN2KCGTmZrIlVMmWsI3QTcuvXRUtR14E7h1\nPPZnotPZ7gH21Z+lvCR66/dDyktz2HnyDL0DNlyyCZ5Q9tLJE5FM534KcDNwKFT7M9Fv+7FWVP3J\nMNqVl+TQP+hj10kbLtkETyhb+FOBN0VkD7ADfw3/5RDuz0S5ippWkuLjWFyU6XYoIbe8JJs4gW1W\n1jFBFB+qDavqHmBxqLZvYk9FdStLp2eRFB+99fshE5MTmJ+fQUWNJXwTPHalrYkIbV39HDrdGRP1\n+yErSnN4r7adnn6r45vgsIRvIsJ2p6UbC/X7IeUlOQx4lcoTbW6HYqKEJXwTESpqWklJ8LCgIPrr\n90OuKs4mPk6se6YJGkv4JiJUVLeyrDgrKqYzHK20pHgWFFgd3wRP7Lx7TMRq7uyjqulcTJVzhpSX\n5rDn1FnO9Q26HYqJApbwTdjbNlS/j6ETtkPKS3Lx+pQdx62Oby7fRRO+iKSKyN+KyOPOcpmIrA19\naMb4VdS0kp4Uz/z8DLdDGXdLp2eR4BHrj2+CYjQt/CfwD3Vc7izXAf8QsoiMGWZbdSvLZ2QT74m9\nL6QpiR4WF2ZZHd8ExWjeQaWq+r+BAQBV7QaiZyJRE9YaO3qpaemKyXLOkBWlOeyrO0tH74DboZgI\nN5qE3++MhaMAIlKKv8VvTMgNdUmMxRO2Q8pLcvApvFNjdXxzeUaT8L8J/B4oFJFfAG8AXwtpVMY4\nKqpbmZgcz5VTJ7odimsWF2WSGB9nZR1z2S46lo6qbhCRXcAK/KWcr6iqTbhpxkVFTStXl+TgiYvd\nKmJygoelRVl2AZa5bBds4YvIkqEbMB1oAOqBIucxY0Kqrr2Hk23dMV2/H1JemsPB0x20d/e7HYqJ\nYCO18P/F+ZkMLAN242/hLwAq+aDXjjEhYfX7D5SX5vDdDbCtpo1b501xOxwToS7YwlfVNaq6Bn/L\nfokzDeFS/EMe141XgCZ2VVS3kpWawBWTJ7gdiusWFmSSkuB5/yI0Y8ZiNCdtr1DVvUMLqroPuDJ0\nIRkDqsq2mlZWlOQQF8P1+yGJ8XEsK7Y6vrk8o0n4e0TkxyJyvXN7HNgT6sBMbKtt66GuvcfKOQFW\nlORwuLGT1nPWK9qMzWgS/kPAfuArzu2A85gxIVNR4+8IZidsPzD04bfN+uObMRpNt8xe4HvOzZhx\nUVHdSm56EjMnpbsdStiYn59BWqKHipoW7lgw1e1wTAS6aMIXkWM4V9kGUtWSkERkYp6qUlHTyoqS\nbESsfj8kwRPHVTOyrY5vxmw0k5gvC7ifDNwDZIcmHGPgWEsXjR19Vr8/j/KSHN463ExTRy+TJia7\nHY6JMBet4atqa8CtTlUfAe4Yh9hMjKqI4fHvL2boQ9CGWTBjMZqSTuBVtXH4W/yj+WZgzJhUVLcy\neWISM3LT3A4l7MydlsGE5Hi21bRy96J8t8MxEWY0iftfAu4PAseAT4UmHBPr/P3v21g5M8fq9+fh\niROutjq+GaPRJPwvqGpN4AMiMiNE8ZgYd7TpHC3nrH4/khUlObx+sImGsz1MzUhxOxwTQUbTD/+5\nUT5mzGX7oH6f63Ik4ev9Or618s0lumALX0RmA3OBDBH5eMBTE/H31jEm6CqqW8nPTKEw21quF3Ll\nlIlkpiZQUd3Kx5cUuB2OiSAjlXSuANYCmcCdAY93Av81lEGZ2OTz+cfPuWH2ZKvfjyBuqI5vPXXM\nJbpgwlfVF4EXRaRcVSvGMSYTow43dnKme8Dq96NQXpLDq/sbqW3rpjA71e1wTIQYqaTzNWfy8vtE\n5DPDn1fVL4c0MhNzhob+tYR/ceWl/nMc22paLeGbURuppHPQ+Vk5HoEYU1HdSlF2KvmZVr+/mFmT\n08lOS6SippV7lhW6HY6JECOVdF5yfj45lg2LSCHwH8Bk/GPxPKaq/zqWbZno5/Mp24+18ZG5k90O\nJSKICCtKstlW3Yqq2jkPMyojlXRe4jyDpg1R1bsusu1B4C9VdZeITAB2isgGVT0wtlBNNDvQ0MHZ\nHqvfX4rykhzW7z3NybZupufYVcnm4kYq6Xzncjasqg34p0dEVTtF5CCQj388fWM+ZJv1v79kgf3x\nLeGb0RippLNx6L6IJAKz8bf4D6tq/6XsRESK8c+Fu/08z60D1gEUFRVdymZNFKmobmVGbhpTMuwS\nj9EqzUsnb0ISFTWt3Lvc3jvm4i56pa2I3AFUA/8GPAocFZHbRrsDEUkHfg08rKodw59X1cecCdKX\n5eXljT5yEzUGvT7eOdbGChsd85L46/g5VDh1fGMuZjRDK/wLsEZVr1fV64A1jHL2KxFJwJ/sf6Gq\nz489TBPN9td30Nk3aPX7MSgvyaGps4+ali63QzERYDQJv1NVjwYs1+C/2nZE4u828BPgoKp+d4zx\nmRgwdMXoihKbV+dS2bg65lKMJuFXish6EXlQRB4AXgJ2iMjHh42xM9y1wOeAG0TkPed2ezCCNtGl\norqVmZPSmTTB6veXqjgnlSkTk22YBTMqoxkeORloBK5zlpuBFPzj6yhw3lKNqm4BrHOwGdGA18eO\n4218wgYBGxMRobw0h81VzdYf31zURRO+qj40HoGY2LTnVDvd/V6r31+G8tIcXni3jsONncyeMtHt\ncEwYG80UhzOALwHFgeuP4sIrYy5q05EWROAaS/hjtnKm/9qFLVUtlvDNiEZT0vkN/pOvLwG+0IZj\nYs2Woy0sKMgkMzXR7VAi1rTMFErz0thc1cKfrCpxOxwTxkaT8HtV9d9CHomJOR29A7xX286fXVfq\ndigRb1VZHk/vOEnfoJekeI/b4ZgwNZpeOv8qIt8UkXIRWTJ0C3lkJupVVLfi9Smrymw4hcu1qiyX\n3gEfO4+fcTsUE8ZG08Kfj9O9kg9KOuosGzNmW6paSE30sLgoy+1QIt7VJTnExwmbj7ZwzUz7ADXn\nN5qEfw9Qcqnj5xhzMZurmllRkkNi/Gi+aJqRpCfFs6Qoi81VzfzVrbPdDseEqdG80/bhn9fWmKCp\nbevmeGu3lXOCaFVZLvvrO2jrsraZOb/RJPxM4JCIvCoiv3VuL4Y6MBPdthxtAbCEH0Qry3JRha3O\n79aY4UZT0vlmwH0BVgH3hiYcEys2VzUzZWIypXnpbocSNRYUZDIxOZ7NVc3cuXCa2+GYMHTRFr4z\nLn4HsBb4Gf6Ttf8e2rBMNPP6lK1HW1lVlmtDAQSRJ064dmYuW6pabLhkc14XTPgiMsvpjnkI+D5w\nEhBVXaOq3x+3CE3U2Vd3lrM9A6y0ck7QrSzLpf5srw2XbM5rpBb+Ifyt+bWqutJJ8t7xCctEs81V\nzQBca90Hg27VTP8kQpuPNLsciQlHIyX8j+Ofk/ZNEXlcRG7ERr80QbC5qoW50yaSm57kdihRpygn\nlek5qe+fFDcm0AUTvqr+RlXvxT+X7ZvAw8AkEfk/InLLeAVooktX3yC7Tp6xck4IrZyZS0V1KwNe\nG/rKfNhoTtp2qeovVfVOoAB4F/irkEdmotL2Y60MeJXVZTZ/caisKsujq9/Luyfb3Q7FhJlLusRR\nVc84k47fGKqATHTbXNVCUnwcS6fbcAqhUl6aQ5zAliqr45sPs2vazbjaXNXC8hnZJCfYiI6hkpGS\nwMLCTDZVWR3ffJglfDNuGs72cLTpnJVzxsGqsjz2nGrnbPeA26GYMGIJ34ybzU6L007Yht6qslx8\nCm9XWyvffMASvhk3W6payE1PYvaUCW6HEvUWFWaSnhTPZuueaQJYwjfjwudTth5tseEUxkmCJ44V\nJTlssTq+CWAJ34yLAw0dtHb1vz/htgm9VWW5nGzr5kSrDbNg/Czhm3Hx1uEmwIZDHk+rZ/lPjr95\nqMnlSEy4sIRvxsWGA40sLMxk0sRkt0OJGTNy0yjNS2PDwUa3QzFhwhK+CbnGjl52nzrLLXMmux1K\nzLl5zhS217Rxtse6ZxpL+GYcbDjgb2Fawh9/t8ydzKBP3y+pmdhmCd+E3GsHGinOSWXmJJvdarwt\nKsgkb0ISr+23so6xhG9CrLN3gIrqFm6eM9m6Y7ogLk646cpJvHW4ib5Bm84i1lnCNyG18UgzA17l\n5jlT3A4lZt08ZzJd/V4qqlvdDsW4zBK+CakNBxrJTku00TFddE1pLqmJnvfPpZjYFbKELyI/FZEm\nEdkXqn2Y8Dbg9fGHQ03cOHsSnjgr57glOcHDdbPy2HCgEZ/PJjePZaFs4f8MuDWE2zdhbntNG529\ng9xsvXNcd/OcyTR19rGn7qzboRgXhSzhq+omoC1U2zfhb8OB0yQnxLHKhkN23Q3Ot6wNB067HYpx\nkes1fBFZJyKVIlLZ3Gwz9EQLVWXDgUZWleWRkmiTnbgtMzWR5cXZVsePca4nfGfKxGWquiwvz1qC\n0WJ/fQf1Z3utnBNGbp4zmSON5zjeYoOpxSrXE76JTq8daCRO4MbZk9wOxTiGPnytlR+7LOGbkNhw\noJGl07PISU9yOxTjKMxOZfaUCZbwY1gou2U+BVQAV4jIKRH5Qqj2ZcJLbVs3Bxs6uMUutgo7t8yd\nQuWJNtq6+t0OxbgglL10PqOqU1U1QVULVPUnodqXCS+vO8PxWv0+/NwyZzI+hTdsyOSYZCUdE3Sv\n7W+kbFI6xblpbodihpk7bSLTMpJ5zco6MckSvgmq9u5+3jneZq37MCUi3DRnMpurmunpt8HUYo0l\nfBNUbx5uwutTbplr9ftwdcucKfQO+Nhy1CY4jzWW8E1Qvby7gSkTk1mQn+F2KOYCri7JJiMlgZf3\n1LsdihlnlvBN0DR19vLWkWY+tiSfOBssLWwleOK4a+E0fr/vtE19GGMs4ZugeWFXHV6fcs/SArdD\nMRdxz7IC+gZ91sqPMZbwTVCoKr+qrGXp9CxK8mwqw3A3Pz+DKyZP4FeVp9wOxYwjS/gmKN6tbae6\nucta9xFCRLhnWQG7a9upaux0OxwzTizhm6B4tvIUyQlx3LFgqtuhmFH66OJ84uOEZ3daKz9WWMI3\nl62n38vLu+u5fd5UJiQnuB2OGaXc9CTWzJ7E87vqGPD63A7HjANL+Oayvbr/NJ19g3xymZVzIs09\nSwtoOdfHxsM2F0UssIRvLtuzO2spzE5hxYwct0Mxl2jN7Enkpify7M5at0Mx48ASvrkstW3dbD3a\nyieXFFrf+wiU4InjY4vzeeNgEy3n+twOx4SYJXxzWX696xQi8Iml+W6HYsbonmWFDPqU37xb53Yo\nJsQs4Zsx8/mU53ae4prSHAqyUt0Ox4zRrMkTWFiQwXM7T6GqbodjQsgSvhmzbcdaOXWmh3uWFrod\nirlMn1xWyKHTneyr63A7FBNClvDNmD1XeYoJSfF8xEbGjHh3LZhGYnycnbyNcpbwzZh09g6wfl8D\naxdOIyXR43Y45jJlpCbwkblTePG9enoHbJz8aGUJ34zJy3sa6B3wcY/1vY8a9ywt4GzPgE1yHsUs\n4ZtLpqr8cvtJSvPSWFyY6XY4JkiunZnLtIxkfrn9pNuhmBCxhG8u2ZuHm9hbd5Y/WVWCiPW9jxae\nOOHzK2dQUdPKO8fa3A7HhIAlfHNJVJVHXq+iICuFT9rImFHn/qunk5uexPc2HHE7FBMClvDNJXnj\nYBN7Tp3lSzfMJMFj/z7RJiXRw59dX0pFTSvbalrdDscEmb1jzaipKo+8cYSi7FQ+vsRa99Hq/quL\nmDTBWvnRyBK+GbUNBxrZV9dhrfsol5zg4YvXl7L9WBtvV7e4HY4JInvXmlHx+ZTvvV5FcU4qH1ts\n4+ZEu3uXFzFlYjKPbKiy4RaiiCV8MyqvHTjNwYYOvnRDGfHWuo96yQkevrimlHeOt7H1qNXyo4W9\nc81F+Xz+njkzctO4e9E0t8Mx4+TTVxUyNSOZ771+xFr5UcISvrmo3+8/zaHTnXz5xpnWuo8hSfEe\nvrhmJjtPnGFzldXyo4G9e82IfD7lX1+voiQvjbsWWu0+1nxqWQHTrJUfNSzhmxGt39fA4cZOvnJj\nGR6b0SqDof+MAAAP2klEQVTmJMV7+PMbZvLuyXY2HrF5byNdSBO+iNwqIodF5KiIfD2U+zLB1zfo\n5ZHXq5g5KZ21C6x2H6vuWVpIfmYK391whEGvz+1wzGUIWcIXEQ/wA+A2YA7wGRGZE4p9dfUN0tPv\npW/Qy4DXh8+n9vUzCP7plUMcbTrHN26bba37GJYYH8fXbr2CPafO8m9vVLkdTsRTVXw+ZcDro3fA\nS0+/l+7+wXHZd3wIt70cOKqqNQAi8jRwN3Ag2Dta9g+v03OeMbzjBOI9cSTHx5Gc4HFu/vupiR4y\nUxLJSksgMzWRrNQEMlMSyU5LJD8rhcLsVNKTQvnrCW+v7j/NE1uP8+A1xdx45WS3wzEuu3tRPpur\nWvj+m0dZPiOHlWW5bofkmo7eAWrbuqlv76Wtq4/27gHOdA/Q3t3Pme5+2rsH6Bnw0jvgpXfA5/z0\n0jvoY9Drw3eetmjehCR2/PVNIY89lBktHwicPucUcPXwlURkHbAOoKioaEw7+upHrqB/0IfP+eT0\nKXiHfYr2DvjoHfzgj9DVN0h18znOnPD/oQbP81fITE2gMCuVwuwUCrNSmT11AvOmZVCSlx7VLd7a\ntm7+x7O7mZ+fwTdun+12OCZM/P3dc9ld287Dz7zH+q+sZNKEZLdDCplBr4/q5i721p3l8OkOatt6\nqD3TzakzPZztGfij9RM88n7DMSMlgey0RJLjP2hgJid4SEqII9ETh4jgESFOIC5O8MQJaeM0iZDr\nTVhVfQx4DGDZsmVjqsN8YeWMy42Brn4vZ7r6ae3qp+6M/49b29ZN7ZkeDp3u5PWDTfQP+uuXqYke\n5kydyLz8DObnZ3BVcTZFOdExiXf/oI8vPfUuqvCD+5aQFG+zWRm/1MR4fnD/Eu56dAsPP/0e//mF\nq6Oi4aOqHGvpovLEGfbVnWVv3VkONnTQO+B/vyfFx1HgfOtfUpT1/v38zBRy0hPJSk0kNdETEUOF\nhzLh1wGBs1sXOI+FHREhPSme9KR4CrNTWXSeST0CP/H3ObdndtTys7ePA1Cck8rqWXmsLsujvDSH\ntAgtB/3/rx7ivdp2fnj/kqj5EDPBM2vyBP7+rnl87dd7ePQPR/nKTWVuhzQmHb0DvH20lU1VzWw6\n0sypMz0ApCV6mDstg/uWT2d+wUTm52cwIzd6vtGHMivtAMpEZAb+RH8vcF8I9xdS8Z44rpgygSum\nTHh/HHivT6luPsfbR1vYVNXCs5Wn+I+KEyR4hCVFWdx45STWLpjGtMwUl6MfnTcONvL45mN8bsV0\nbp8/1e1wTJi6Z1kBFTWt/OsbR1g+I5vy0hy3QxqV2rZuXtpTz5uHmth1sh2vT0lL9FBemsufri6h\nvDSXktw04qIkuZ+PhLI3i4jcDjwCeICfquq3R1p/2bJlWllZGbJ4Qq1v0MvO42fYWNXMpiMtHGzo\nAOCq4izuWjiN2+dPJSc9yeUoz6+uvYc7/m0z0zJSeP6L15CcYKUcc2FdfYPc+egWOnsHWf/lVeRN\nCM//66aOXl7e08Bvd9fzXm07APPzM1g9K5fVZXksmZ4V8SO/ishOVV02qnXDqftipCf84Y63dPHy\nnnp+u7ueI43n8MQJ187M5e6F07ht/hRSE8Oj7NM74OX+H2/nUEMHL395FTNy09wOyUSAgw0dfPQH\nW1k+I5ufPHAVifHhkTg7ewdYv7eBF9+rZ1tNKz6FOVMncufCady5cCoFWdFVqrSEH4YOne7gt+/V\n89KeemrbekhPiufOhVO5Z1khiwszXTvhc7K1mz/7xU7213fw/c8s5s6FdoGVGb2n3znJ15/fy9Lp\nWTx632KmZrhTvlRVdhw/wzM7alm/t4GeAS8zctO4c+E07lo4lZmTJrgS13iwhB/GVJXKE/5/zN/t\n8f9jlk1K59NXFfKxxfnjWvJ5bf9p/vLZ3QjwvU8vsv72Zkx+t6eBrz23m6QED498ehGrZ+WN276b\nOnp5btcpnq08xbGWLqchNY1PLStgkYsNqfFkCT9CnOsb5OXd9TxTWcu7J9uJjxPWzJ7EJ5bks2b2\npJB1iRzw+vjOq4f50aYa5udn8MP7l1CYHV1fc834qm4+xxd/vosjTZ18+YYyvhzCsZd6B7xsONDI\n87tOsamqBa9PWV6czaeuKuT2MCqVjhdL+BGoqrGTZ3ee4oV362ju7CMjJYG1C6by8SUFLCkKXkul\nsaOX//bLXew4fobPrZjO36y90vram6Do6ffy17/Zy/O76lhVlssjn14UtG+sPp+y43gbz++qY/3e\nBjr7BpmakcxHF+dzz9ICSvLSg7KfSGQJP4INen1srW7l+V2neHX/aXoHfBTnpHLTlZO5dmYuy2dk\nX3Iff1XlcGMnbxxs4omtx+jq8/JPn5jP3YtsuGMTXKrKMztq+V+/3U92aiIPXVvMjVdOojQv/ZIb\nLR29A2yvaWPr0RZeP9jIqTM9pCZ6uG3eVD6xJJ8VJTlR3YVytCzhR4nO3gF+v+80L75XzzvH2uj3\n+oiPExYVZnLNzFyuKc1h5qR0UhM9JMd7PvTP3zvgZVtNK3841MQbB5uoa/dfWLKkKJN//sQCyiZH\n70ks4759dWf5ny/sZc+pswBMz0nlhtmTuHH2ZJbPyP5Qjx6fT+kZ8NLd76WqsZOt1S1sPdrK3rqz\neH1KUnwcV5fk8LHF0/jI3Ngr2VyMJfwo1DvgpfL4GbZWt/D20Rb21p39o0GYUhP9g8KlJHpoPddP\nd7+X5IQ4Vs7M48YrJ3HD7ElMnhi945+Y8FPf3sMbh5r4w8FGtla30j/oIz0pnqy0BLr7/El++MCH\nnjhhYUEG187M5ZrSXBYXZdp1ISOwhB8DzvYMsL2mldMdvXT3+9843X2DdDvDrU5IjmfNFZMoL82x\nN4sJC939g7x9tJW3jjTR1ecNaKDEk5roIS3RQ35WClcVZzMhOcHtcCOGJXxjjIkRl5Lww+PSOGOM\nMSFnCd8YY2KEJXxjjIkRlvCNMSZGWMI3xpgYYQnfGGNihCV8Y4yJEZbwjTEmRoTVhVci0gycGOPL\nc4GWIIYTKey4Y4sdd2wZzXFPV9VRTUIQVgn/cohI5WivNosmdtyxxY47tgT7uK2kY4wxMcISvjHG\nxIhoSviPuR2AS+y4Y4sdd2wJ6nFHTQ3fGGPMyKKphW+MMWYElvCNMSZGRHzCF5FbReSwiBwVka+7\nHU8oichPRaRJRPYFPJYtIhtEpMr5meVmjMEmIoUi8qaIHBCR/SLyFefxaD/uZBF5R0R2O8f9Lefx\nqD7uISLiEZF3ReRlZzlWjvu4iOwVkfdEpNJ5LGjHHtEJX0Q8wA+A24A5wGdEZI67UYXUz4Bbhz32\ndeANVS0D3nCWo8kg8JeqOgdYAfy58zeO9uPuA25Q1YXAIuBWEVlB9B/3kK8ABwOWY+W4Adao6qKA\n/vdBO/aITvjAcuCoqtaoaj/wNHC3yzGFjKpuAtqGPXw38KRz/0ngo+MaVIipaoOq7nLud+JPAvlE\n/3Grqp5zFhOcmxLlxw0gIgXAHcCPAx6O+uMeQdCOPdITfj5QG7B8ynkslkxW1Qbn/mlgspvBhJKI\nFAOLge3EwHE7ZY33gCZgg6rGxHEDjwBfA3wBj8XCcYP/Q/11EdkpIuucx4J27PGXG50JH6qqIhKV\n/WxFJB34NfCwqnaIyPvPRetxq6oXWCQimcALIjJv2PNRd9wishZoUtWdInL9+daJxuMOsFJV60Rk\nErBBRA4FPnm5xx7pLfw6oDBgucB5LJY0ishUAOdnk8vxBJ2IJOBP9r9Q1eedh6P+uIeoajvwJv7z\nN9F+3NcCd4nIcfwl2htE5OdE/3EDoKp1zs8m4AX8ZeugHXukJ/wdQJmIzBCRROBe4LcuxzTefgs8\n4Nx/AHjRxViCTvxN+Z8AB1X1uwFPRftx5zkte0QkBbgZOESUH7eqfkNVC1S1GP/7+Q+q+lmi/LgB\nRCRNRCYM3QduAfYRxGOP+CttReR2/DU/D/BTVf22yyGFjIg8BVyPf8jURuCbwG+AXwFF+IeW/pSq\nDj+xG7FEZCWwGdjLBzXd/4m/jh/Nx70A/wk6D/6G2a9U9e9FJIcoPu5ATknnq6q6NhaOW0RK8Lfq\nwV9u/6WqfjuYxx7xCd8YY8zoRHpJxxhjzChZwjfGmBhhCd8YY2KEJXxjjIkRlvCNMSZGWMI340JE\n/toZ9XGPMxLg1SHe31siMurJn0XkZyJSJyJJznKuc/FPMGK5fmjUx2ARkYdF5L9cZJ35IvKzYO7X\nRDZL+CbkRKQcWAssUdUFwE18eAykcOEFPu92EMM5o8IGLsfjj/OXI71OVfcCBSJSFMLwTASxhG/G\nw1SgRVX7AFS1RVXrAUTkf4nIDhHZJyKPOVfWDrXQvycilSJyUESuEpHnnTHB/8FZp1hEDonIL5x1\nnhOR1OE7F5FbRKRCRHaJyLPOuDzn8wjwF05CDXz9h1roIvKoiDzo3D8uIv84NH65iCwRkVdFpFpE\n/p+AzUwUkd+Jf+6GfxeRuJFic7b7zyKyC7hnWJw3ALtUdTDgd/XP4h8//4iIrApY9yX8V6waYwnf\njIvXgEInGf1QRK4LeO5RVb1KVecBKfi/CQzpd8YE/3f8l5P/OTAPeNC5+hDgCuCHqnol0AF8MXDH\nIpIL/A1wk6ouASqB/36BOE8CW4DPXeLxnVTVRfivCP4Z8En8Y/d/K2Cd5cCX8M/bUAp8fBSxtarq\nElV9etj+rgV2DnssXlWXAw/jvwJ7SCWwCmOwhG/GgTOu+1JgHdAMPDPUQgbWiMh2EdmLv+U6N+Cl\nQ+Mi7QX2O2Pj9wE1fDBoXq2qbnXu/xxYOWz3K/An2a3iH2r4AWD6COH+I/A/uLT3RmCc21W1U1Wb\ngb6h8XCAd5x5G7zAU06cF4vtmQvsbyr+32OgoUHldgLFAY83AdMu4VhMFLPhkc24cBLdW8BbTnJ/\nQESeBn4ILFPVWhH5OyA54GV9zk9fwP2h5aH/3eFjgwxfFvxjyX9mlHFWOcn3UwEPD/LhD4DkD79q\nzHFeLLauCzzeM0IMXj78vk521jfGWvgm9ETkChEpC3hoEf5BoIaSVotTu/7kGDZf5JwUBrgPf0km\n0DbgWhGZ6cSSJiKzLrLNbwNfDVg+AcwRkSSnxX7jGOJc7ozqGgd82olzLLGBf9avmaPc7yz8Iy4a\nYwnfjIt04EnxT0S+B38Z4++ccd4fx5+QXsU/3PWlOox/ntuDQBbwfwKfdEorDwJPOfuuAGaPtEFV\n3Q/sCliuxT9a4T7n57tjiHMH8Cj+ZH0MeGEssTleAVaPcr9rgN9dcrQmKtlomSZiiX/Kw5edE74x\nRUReAL6mqlUjrJMEbMQ/i9LguAVnwpa18I2JTF/Hf/J2JEXA1y3ZmyHWwjfGmBhhLXxjjIkRlvCN\nMSZGWMI3xpgYYQnfGGNihCV8Y4yJEf8Xqz66jDo2m7oAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Flat-top window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HNW5uN9PvVuSJTfJstw7GCxsh15DTUwNNUAgEH5A\nINyUG1IJCZcU0kjh4pBcILSQQscU04wxNi7YuNuybFmWZFmSVW1LVjm/P2ZmNTvSSmtZ0mrX3/s8\n++zMmfbN7sz5zlfOOWKMQVEURVF6Q1SoBVAURVHCF1UiiqIoSq9RJaIoiqL0GlUiiqIoSq9RJaIo\niqL0GlUiiqIoSq9RJaIogwQRmSwia0SkQUTuCvIYIyIT+lmuG0VkSX9eIxSISKOIjOvlse+LyFf7\nWqZwRJVIiBCRnSJy0H6Qnc+oUMulhJTvAO8ZY1KNMQ97N/ZnxSUi+bZCcj+Pa3txnvtE5Kke9hkU\nSskYk2KMKQq1HOFOTKgFOMr5gjFmUXc7iEiMMaZ1oAQKNUfb/XoYAzwXYhnSj+LfX+kFaokMMlwt\nwptFZBfwrl0+T0SWikitiKwVkdNdx4wVkQ9sN8jbIvJHpzUoIqeLyG7PNXaKyNn2cpSIfFdEtotI\ntYg8LyKZHlluEJFdIlIlIt93nSdaRL5nH9sgIqtEZLSI/ElEfu255ssick+AezYicoeIbAO22WVT\n7HvZJyJbRORLrv0vEJGN9jVLReRb7nu1Zaqy7/Na13FDRORJEakUkWIR+YGIRNnbbhSRJSLykIjU\niMgOETnfdeyNIlJkX3OH57w3icgm+7g3RWRMN//vF0Vkg/0/vi8iU+3yd4EzgD/aVsAkz3EPAKe4\ntv/RtflsEdlmn/NPIiK9kS1YROT3IlIiIvX2f36KXX4e8D3gykCWjH2//wt8zt6n1i7v6b/5yH6u\n60Rks4icFUC2r4jIK671bSLyT9d6iYjMspd9rkARedz+7V6z/+PlIjLeddw59nXr7N/e/RtH2fIW\ni8he+z6G2NueEJFv2ss5zrNur4+3n+/wroeNMfoJwQfYCZzdRXk+YIAngWQgEcgBqoELsBT/OfZ6\ntn3Mx8BvgHjgVKABeMredjqwO9C1gbuBZUCuffyjwLMeWf5iy3Es0AxMtbd/G1gHTMZ6qY4FhgJz\ngDIgyt4vCzgADA/wWxjgbSDTvk4yUAJ8BctaPg6oAqbZ+5cDp9jLGcDxrnttdf0WpwH7gcn29ieB\nl4BU+962Ajfb224EWoBbgGjg/9n3ILY89a7zjASm28vzgUJgqi3rD4ClAe5zki3POUAslvuqEIiz\nt78PfLWbZ6bTdvu3exVIB/KASuC8Xsjm/NcxXWy7EVjiWr/O/p9jgG8Ce4AEe9t92M9eN/fhd74g\n/5tW4B77d7sSqAMyuzj3OKAW6z0ZBRRjP//2tho6nksDTLCXH8d6p+bY9/U08Jzr+W0ALrevf48t\nz1ft7TfZv/M4IAX4D/B317ZX7OVrgO3AP1zbXgp1XXTEdVmoBThaP1gVeaP9wNcCL9rlzss8zrXv\nfzsPpavsTeAGu+JoBZJd254heCWyCTjLtW0kVmUa45Il17X9E+Aqe3kLMD/A/W0CzrGX7wRe7+a3\nMMCZrvUrgQ89+zwK/Nhe3gV8DUjz7HN6F7/F88APsRTDIWxFZG/7GvC+vXwjUOjalmTLNQJLidQC\nlwGJnmsuxK7s7PUoLIU5pov7/CHwvGffUuB0e/19eqdETvbc73d7IZvzX9e6Pt9y/TZLupGrBjjW\nXr6Pw1QiQf43ZYB4nsMvBzh/CXA8cBWwwN53Claj5GXPb+dWIo+5tl0AbLaXrweWubYJsJsOJfIO\ncLtr+2Q63qHx9u8ThWWBfY0OpfYE8F/B1hmD9RPeZlT4c7ExJt3+XOzZVuJaHgNcYbsram0XwMlY\nFf4ooMYYs9+1f/FhyDAGeMF13k1AGzDctc8e1/IBrNYWwGisllVXPIHVYsX+/nsPcnjvd67nfq/F\nqtDBqswvAIrFcuN9znVsV7/FKKzWZCz+v00xlpXn4LtPY8wBezHFPt+VwG1Aue3ymOKS9fcuOfdh\nVTLu8zo4LWPnGu32fXe17+EQ6P85HNkcslzP5ENd7SAi37JdZHX2eYdg/b5d7XuKdATqNwS6Jj3/\nN6XGrnld2wMlonyA1aA41V5+H8sqPc1eD0Sg33EUrufTlsP9vPr9r/ZyDJblvR3L+pyF5Y58FSgT\nkclByBMWqBIZvLhfmBIsSyTd9Uk2xvwcy7WTISLJrv3zXMv7sVrVgBXHALI95z7fc+4EY0xpEDKW\nYLW0uuIpYL6IHIvlTnmxh3N57/cDj0wpxpj/B2CMWWGMmQ8Ms8/7vOvYrn6LMix3WAtWxereFsx9\nYox50xhzDpbi3ozl4nNk/ZpH1kRjzNIuTlPmvr4duxgdrAz4/0bBcDiyBYUd//gO8CUgwxiTjuVa\ncmIEfjIaYz60/7sUY8z0APcRzH+T44710PG/doWjRE6xlz8gOCUSiHKs/wnw+98c/P5XOrwDFS55\nLsdyW5ba6zdguWLX9EKeQYUqkfDgKeALInKuWMHsBLGCyLnGmGJgJfATEYkTkZOBL7iO3QokiMiF\nIhKL5RePd23/X+ABJ+AqItkiMj9IuR4DfioiE8XiGBEZCmCM2Q2swLJA/m2MOXgY9/sqMElEviwi\nsfbnBBGZat/jtSIyxBjTghWraPcc7/wWpwAXAf80xrRhKZsHRCTVvt//wvptu0VEhovIfFs5NWO5\nIZ1r/i9wr4hMt/cdIiJXBDjV88CFInKW/V980z5fsJV6BZbfPVgOR7ZgScWqICuBGBH5EZDmkTG/\nh2BxBZArInEAQf43w4C77GfhCqyGyesBzv8BVpJCov0cfgichxXH+fSw7tbiNWC6iFwqIjHAXXRY\nxQDPAveIleCSAvwPVtzDyXL7AMulu9hef99eX2Lfe1ijSiQMMMaUYAVJv4f18pZgBbWd/+8aYC6W\nu+LHWEFK59g64HasCr8UyzJxZ2v9HngZeEtEGrCC7HODFO03WC//W1iV+V+xAuMOTwAz6dmV5Ycx\npgH4PJZPuwzLzfALOpTfl4GdIlKP5WK61nX4HiwfdBlWcPQ2Y8xme9vXse6/CFiCFTv6WxAiRWFV\namVYv/FpWIF3jDEv2LI9Z8uzHji/q5MYY7Zgufb+gNX6/gJWmvehIGQA67+6XKxMq079SLq4XtCy\nHQZvAm9gNU6KgSb8XTtOJlS1iKwOcI53gQ3AHhGpsst6+m+WAxOxfrcHgMuNMdVdndwYsxVL0X9o\nr9fb5/2oN5W2MaYKuAL4OVbwfSLwkWuXv2E944uBHVi/yddd2z/AUr6OElmC5R1YTAQg/m5GJRIQ\nkfuwAobX9bRvP8txKlZrcowZgAdNrLTnp4wxuf19LWXgEJEbsYLYJ4daFqUzaoko/YLtrrkbK+NF\nWyqKEqGoElH6HLE6lNViBaF/F2JxFEXpR9SdpSiKovQatUQURVGUXhPxAzBmZWWZ/Pz8UIuhKIoS\nVqxatarKGJPd034Rr0Ty8/NZuXJlqMVQFEUJK0QkqJEv1J2lKIqi9BpVIoqiKEqvUSWiKIqi9BpV\nIoqiKEqvUSWiKIqi9JqwUyIicp5Y06UWish3Qy2PoijK0UxYKRF7Low/YY1EOg24WkSmhVYqRVGU\no5dw6ycyB2sK0yIAEXkOa4j0jX19ofc27+Urj68gOkqIiRJio6OIiRaS42LIzUhkXHYy2SnxPZ9I\nURSlHzjY0sa2vY2U7DtA9f5DHDzURnNrx9Q63zh7It84e1K/yxFuSiQH/7kLdtPF3BcicitwK0Be\nXp53c1A888kuANraDW3txvfn1B5oobT2IMt37PNcs1eXURRFCZrDGerwd4u2qRLpLcaYBcACgIKC\ngl6NMPmX6wtobze0thta2tppbTO0tLfT2NRKSc0BNpc3sHR7FUsKq2hpM5w1ZRj3XjCV8dkpPZ9c\nURTlMDhwqJUFi4tYsLiIA4famDoyjVMnZXHc6AzyMpPITo0nKS6ahNhooqMGtkUbbkqkFP+5jXMJ\nfn7qwyYqSoiLEuJiOkJHWSnx5Gclc8rEbG45dRzVjc08s3wXjy4u4vzffch/nz+Fm07KR9Q0URSl\nD1hbUstdz31KcfUBLpg5gttPn8CMnCGhFstHWA0Fb89vvBU4C0t5rACuMcZsCHRMQUGBGYixs6oa\nm/nuv9exaFMFXzh2FL++4lg/5aMoinK4vLSmlG/9cy3ZKfH85spZzBs3dMCuLSKrjDEFPe0XVpaI\nMaZVRO7Emuc5GvhbdwpkIMlKiecv18/mkQ+288s3tlB3sIW/XD+b+JjoUIumKEoY8tSyYn7w4nrm\njs3k0S/PJj0pLtQidUnYNZWNMa8bYyYZY8YbYx4ItTxuRITbT5/ALy6byeKtlfzX82tpbw8fS09R\nlMHBa5+V88OX1nPWlGE8cdOcQatAIMwskXDhyhPyqD3QwoMLNzMuK5lvfn5yqEVSFCVMWF9axz3P\nr2F2XgZ/uvZ4EmIHtzcj7CyRcOHWU8dxxexc/vheIUu2VYVaHEVRwoCGphbufGY1Q5PjWHB9waBX\nIKBKpN8QEX4yfzrjs1O45/k11B1sCbVIiqIMcu5/ZSMlNQd5+OrjyEwevC4sN6pE+pGkuBh+d+Us\nqhub+dWbm0MtjqIog5hlRdX8c9Vubj11HCfkZ4ZanKBRJdLPzMgZwg0n5vP08l2sKakNtTiKogxC\nWtra+cGL68nNSOSuMyeGWpzDQpXIAPBf50xiaHI8P1+4iXDql6MoysDwz5W7KdzbyI8umkZi3OCP\ng7hRJTIApCbEcscZ41lWtI+l26tDLY6iKIOIppY2/vDuNo7LS+ecacNDLc5ho0pkgLh6Th4jhyTw\n0Ftb1BpRFMXHs5/soryuiW9/fnJYDpekSmSASIiN5vbTx/PprlpW76oJtTiKogwC2toNf12yg4Ix\nGZw4ISvU4vQKVSIDyGWzc0lLiOFvS3aGWhRFUQYBizZVsLvmIDedPDbUovQaVSIDSFJcDFfPyeON\nDXsorT0YanEURQkxj3+0k5z0RD4fhrEQB1UiA8x188bQ1m74z6rdoRZFUZQQUlTZyMdF1Vw3bwwx\n0eFbFYev5GHK6Mwk5o7N5IVPSzXArihHMS9+WkqUwKXH54RalCNClUgIuOz4XIqq9mvnQ0U5SjHG\n8MKaUk6akMXwtIRQi3NEqBIJAefPHEF8TBQvftpvkzIqijKIWb2rhpJ9B7l4VnhbIaBKJCSkJsRy\n2qRs3t5YoS4tRTkKWbhuD3HRUXx+evgG1B1UiYSIs6cNp6yuiQ1l9aEWRVGUAebdzXuZN34oqQmx\noRbliFElEiLOnDIMEStPXFGUo4eiykaKqvZz1pRhoRalT1AlEiKyUuI5Pi+DdzfvDbUoiqIMIM47\nf6YqEeVIOXlCFutL63TCKkU5ilhSWMW47GRGZyaFWpQ+QZVICJk3bijtBlbs2BdqURRFGQBa29pZ\nubOGeeOGhlqUPkOVSAg5Li+duJgoPi7S4eEV5WhgY3k9jc2tzB0bPjMX9oQqkRCSEBvN8XnpLFMl\noihHBcuLLK+DWiL9iIjcJyKlIrLG/lzg2naviBSKyBYROTeUcvYVx+dlsGVPA00tbaEWRVGUfmZl\n8T7yMpPCvpe6m0GnRGx+a4yZZX9eBxCRacBVwHTgPODPIhJe80h2wTG56bS2GzaWa38RRYl01pfW\nc0zukFCL0acMViXSFfOB54wxzcaYHUAhMCfEMh0xzgO1bnddiCVRFKU/qdl/iNLag8zMUSUyEHxd\nRD4Tkb+JSIZdlgOUuPbZbZd1QkRuFZGVIrKysrKyv2U9IkYOSSArJZ61u3UwRkWJZNaXWQ3FGapE\njhwRWSQi67v4zAceAcYBs4By4NeHe35jzAJjTIExpiA7O7uPpe9bRITpo9LYXN4QalEURelH1pda\nLuvpo9JCLEnfEhOKixpjzg5mPxH5C/CqvVoKjHZtzrXLwp4Jw1JYvqOa9nZDVJSEWhxFUfqBbRUN\njEhLID0pLtSi9CmDzp0lIiNdq5cA6+3ll4GrRCReRMYCE4FPBlq+/mDCsBSaWtp1ylxFiWC2V+1n\nXHZyqMXoc0JiifTAL0VkFmCAncDXAIwxG0TkeWAj0ArcYYyJiLzYicNSACjc2xgxQyEoitKBMYai\nykbmzxoValH6nEGnRIwxX+5m2wPAAwMozoAwwaVEzoiQQdkURemgqvEQDU2tjMtKCbUofc6gc2cd\njaQnxZGaEMPumgOhFkVRlH5gR9V+gIh0Z6kSGSTkpCdqTERRIpQy+92ORHe1KpFBQk56IrtrVIko\nSiRSVme92yMiaLgTB1Uig4ScjERfa0VRlMhiT10TaQkxJMcPujD0EaNKZJCQk55IfVMrDU06QZWi\nRBrldU2MSk8MtRj9giqRQUJWSjwA1Y2HQiyJoih9zZ66JkYMiTxXFqgSGTRkJlu9WPcdUCWiKJFG\nZUMz2XZDMdJQJTJI8CkRtUQUJeKoO9hCelJsqMXoF1SJDBJ8SmS/KhFFiSSaW9s42NLGkERVIko/\nMjTFUiLVLiXS2tbO3vqmUImkKEov2N/cSr0rQabuoLWsSkTpV5LiYoiLjvI9cK1t7Xzp0Y+Z8z/v\n8PA720IsnaIowfDZ7lrm/c87zH3gHT6z5wiqt9/pNFUiSn+TGBfNwUOtALy2rpzVu2oZm5XM7xZt\npXBvY4ilUxSlO4wx/PClDcTHRhEbLfz27a2AWiLKAJIcF82BQ9bAxO9u3ktWSjzPf+1zREcJzyzf\nFWLpFEXpjrW761hbUss950ziqjl5fFRYzcFDbapElIEj0aVEVhXXMHdcJtmp8ZwxeRhvrC/HGBNi\nCRVFCcTr68qJjRYuOmYUBWMyONTWzuY99TS1tAOWyzoSUSUyiEiKi+G1deXc8481lNUeZHyWNeLn\nqZOyKatr8o0EqijK4GPJtirmjM1kSGIsU0ZYU+A+vnQntz+9GoCY6MictVSVyCDCmRr3hU9LaTeQ\nm2GN+HnShCwAPtmxL2SyKYoSmAOHWtm8p57ZeRkAjBiSgAi8tKbMt09sVGRWt5F5V2HKvv3Nfuu5\nmdZYO2Myk0iKi2bznoYez1HZ0Myf3itk6fYqv/K3N1Zw3u8W870X1nGotd1v2566Jr+UREWJRNra\nDTuq9tPW7u8WfnltGef+djH3vbyBdte2ivom/vjuNlbs7Lnxtm53He0GZuWlAxAXE+UbysghNiYy\nLZHIdNKFKXUH/CtyZ5iEqChh8ohUNu+p7/b4lrZ2rntsOVsqGogSeO7WzzFnbCZltQe585nVDEmM\n5ZnluxiZlsDXz5oIwN+W7OCnr20kJT6Gp26ey7Gj033nqz1wiJY2Q3ZqZA7XoEQmTS1tVDY0+83d\ncai1nWsfW8aKnTXMHZvJ32+eS1xMFEWVjXzr+bUMSYrl8aU7GZuVzA0n5tPU0sZVC5axo2o/MVHC\n87d9juNtK6MrCiut7EnHjQUwNDmOyoaOhmGMWiJKf+NtIbmHjZ4yIpWtFd2n+b7waSlbKhr49RXH\nMiw1gd+/Y6UYPrWsmNZ2w39uP5Gzpgzj8aU7OdTaTkV9Ew8u3MS8sUNJjY/hu/9Z5wvef7itknkP\nvsO8B9/hhU93+13HGENTS0RMb6+EMa1t7TS3+j+HZbUHOevXH3DKL9/jxy+t95X/30c7WLGzhkuO\ny2H5jn08+4mV7fjkx8WIwGt3ncyc/EweW1KEMYaX1pSyo2o/f7j6ODKT4/jNW1u7lWVX9QHiYqL8\n5gtJjIv22ydWYyJKf9PSjRIZnZnEvv2HOGD3I+mK1z4rJ39oEpcen8OXCnL5eHs1tQcOsWhTBXPH\nZpKbkcQVBaOp3n+IT3fV8J/VpbS0GR68dCZ3nz2RTeX1fFpSS1u74d7/rGNUeiIzc4bwwxc3UGsP\nDFnZ0Mz5v/+Q6T9+kwWLt/fPD6EoPbCxrJ4Tf/4ux93/Nm9vrPCVP7hwMzUHDnH+jBE88XExq4r3\nYYzhuRUlzB2byW+vnMWxo9N5bkUJ7e2GhevLOX1yNsNSE7jk+BxK9h1kS0UDr9rv0kXHjOSauXl8\ntL2KvQ2BR4/YWb2f0RmJvrgmQJT4K43Y6MisbiPzrsKUTpaIqyUz0h5Gek9d1w/ywUNtfLy9mrOn\nDkdEOG1yNu0GFm3ay9aKRl9w/sQJQ4kS+LiomiWFlUwZkUp+VjLnTR9JdJTw7qa9LN1exe6ag3zz\nnMk8cMkMGptbeeWzcgB+8cZmiqr2MzsvgwcXbmZTueViM8bws1c3csIDi/jNW1s0HVnpE5YVVXP6\nr97j8keW+oYAam83fPtfa+3kk0S+86+17G9upaqxmYXryrl6Th4PXXEsqfExPL9iN9v2NrKjaj/z\nZ+UA8Plpw+0GUw0V9c2cPnkYACfb78iKnTWsLq7hlInZiAhnTx2OMbC0sDqgnMXVBxgz1H/+dO87\noNlZSr/jVSIxrpbLiDQryB5IiWzaU8+htnbmjM0EOnyzr6y1skOmjkwFIC0hljFDk9myp4G1JXWc\nkG/tPyQplmkj01hTUsvS7dXERgtnThnGtJFpjMtO5u2NFTQ0tfDK2jKuLBjNX64vID4miqeWFQPw\n6mflPLZkB0MSY3n43ULecrUOF2+t5PJHlvLg65s63aOiALyzqYLLH1nKQ29u8QW3G5tb+fqzn9Lc\n2s6Gsnq+/6Llnvq0pJYNZfV859zJPHDJTGoOtPDG+j18uK2S1nbDJcflkBwfw8kTs1i8rZJPd9UA\nMG9cpt/308ssl9aMUUMASyGlxMfwxvpy9h9q45hcq3zKiFQSY6NZU1IbUP499U2MSu9+vhDNzupD\nROQKEdkgIu0iUuDZdq+IFIrIFhE511U+W0TW2dseFpHIVOsBcCyRMpcS+Xh7Ncfd/xa/fmsLm8ut\nzK2pIy3lkRwfQ25GIh9srQRg0vBU33Hjs5NZVlRNY3MrE4al+MqnjkxlU3k9q4prmD5qCIlx0YgI\nc8dmsmZXDcuK9tHc2s4FM0cyJCmWs6YMZ9GmCowx/P3jYsZlJ/P6XaeQPzSJvy7ZAVgZLrc9tYpt\next5dHERf11S5Lve3oYmvvfCOn7xxmaNsRwlvL6unK8/+ykfFXZkD5bsO8D/e3o12/Y28sf3Cnlu\nRQlgNYAqG5r5w9XHccup43h7YwVltQdZuK6cuJgozp85gtl5GWSnxvPelr18smMfaQkxvndg9pgM\nyuua+GBrJakJMYy1+10578Jr6yzreuJw6x0QESYNT+Ej2+Jw3o2Y6CimjUpjY3k9q4r3UfCzRfz0\n1Y0++dvbDXUHW8hIiuv23t2urkgiVKpxPXApsNhdKCLTgKuA6cB5wJ9FxPHpPALcAky0P+cNmLSD\ngAx7qPjKhmZK9h0A4E/vFVJzoIVH3t/O6l01JMRGkZvRMQVnvsu8dqcbjstOocbOBBuX3bHPpOGp\nvnjJpOEdyuWY3HTqm1p59bMyogSOHW210OaNy6SivpkNZfV8snMfXzhmFHExUVx6fC6f7NhHVWMz\nTy/fxcGWNl6+8yROnZTNgsVFtLS1Y4zhjqdX8+wnu3jk/e3c73kpn1m+iz+8s01Tj8MQYwwvry3j\nN29t8ctOWlZUze1Pr+bVz8r4yuMrKLIzmpwGxxvfOIXj8tJ57EMruP36OisuMXtMBl88diRgDQe0\nsriGWaPTSU2IJSpKKBiTwYayerbsaWDaqDSi7craUQIfbKkkLzMJp92ZmhDL0OQ4mlvbGZocR0Js\nh9s4J6Mjo8s9E2FeZhKlNQd55P3tVDU289clOyivO0jN/kPs2ncAYzoPa3K0WN0hUSLGmE3GmC1d\nbJoPPGeMaTbG7AAKgTkiMhJIM8YsM5aj8Ung4gEUOeSkxscgYsUkTvnleywtrOLjomrm5GfS2m5Y\nuK6c4WkJuA00JzU3NlqIj+n4q4e5UnZzXS+No4Ba2oxfufMyLly/h/HZKb7hG46zUx6ftsf1clxj\nJ00YClhDt7y7uYITxmQyZmgy18zJo6rxECt31vDJjn2s2FnDT+fP4MYT8/nHihLKag8C8MgH2/ne\nC+v49dtbuePp1X6+5Y1l9TyzfJcv0K+EDmMMb6zfw+vryv36V/xndSl3PfspD79byA1/+4TWNqtf\n0sPvbGN4WjyLv30GAvzfRztpb7fOcfqkbEYOSeTS43IoqtrPtr2NrNi5j9MnD0NEGJ+dwtDkOFbv\nqmFTeT3H5AzxXW/i8FSKq/eztaLRZ21Ax3O7/1AbOZ75zR0F4U1fd94NEf+GV25GImV1B1lWtI/j\n7L4gi7dWcvGfP+L0h94HIN1jiRwdKqQbJWK7jHr6/KyP5ckBSlzru+2yHHvZWx5I9ltFZKWIrKys\nrOxjEUNDVJSQ4srW+t2ibbS1G750wmjAelGGeV6ILHuOkuT4GD/l4kyABZDpevCHu9IT3RaNs3yo\ntZ0cV7ljxbz6mRV3mWm/2DNyhhAbLSwtrGJDWT0n2krllIlZRAks3V7F2xsriIuJ4rLjc7nxxHza\n2g1vbtjDwUNt/O/72zln2nB+/IVpfLitiqXbLffCZ7trufhPH/G9F9Zx5aPL/NI7Dx5qY2lhFQ1q\nufQ5xhhWFe9jd80Bv/I/vFvIbU+t4vanV/PQW1absK3d8Ms3N3N8Xjq/v2oWG8vreWtjBfv2H+Lj\nomqunpPH6Mwkzpk2nIXr91BU1cie+ibOnjocgM+Nt4Lb/169m6aWdt8zJWL1lVq8tZLm1nafCwpg\n4rAU2o0VQ3EHt93P8yivEknrXokkxET7ZVPlpCdi7Gt8qWA0SXHRPPNJCcXVHb9JeoQOsNgT3Vki\n84FVPXwuC3SwiCwSkfVdfOb3nfhdY4xZYIwpMMYUZGdn9/flBowYl0/1E7sX7azR6b4Wk/eFyEyO\n73ScVd6hOFITOhST+3h3vvuwVGsIB4DhqR3lSXExZKXE09DUSmp8DEPs6T/jY6IZnZnEok17MaYj\nyJ8cH8P47BQ2ldezbEc1BWMySIyLJj8rmXFZyXy4rYrF2yppaG7lxhPzuWZuHqnxMby0phSAh97a\nSlpiLA8ZTFGsAAAgAElEQVReOpMtFQ38w/adN7W0cekjS7nmseVc+PCSTrND7m9uPWpcC0dKQ1NL\np6yiH720gcse+Zgzf/0Bq4qt525vQxN/fLeQC2aO4AvHjuKxD3ewt6GJ5Tuqqahv5uaTx/GFY0aR\nnRrPG+v3sHR7FcZY48ABfG78UDubag8Ax9gu0rFZySTERvGKPVzIlJEdsbyJw1KosqePdisIt9tp\npGs5NjqKONsCH5bm/244VoP3nXGmsPX26XBbJflDkxkzNJm1nkC7d/rbyIyAdKY7JfJbY8wT3X2A\nRwMdbIw52xgzo4vPS91csxQY7VrPtctK7WVveUTx4h0n8e1zJwfc3tBk9RFxP+A56YmMGGIrEc8w\nCynxlq/Xm4PgNrvdwT63pZPiUi7RUUKK7cIantZ1y234EP/MlPyhyZTa7im3i2HqyDQ2ltVTuLfR\nFwAFOHZ0OpvK61mxYx9xMVEU5GcQHxPNqZOy+aiwmurGZpZsq+SqE0Zz9Zw8ZuSk8a9VlnH61LJi\nNpXX8/UzJ1Bae5A/vNsxideCxduZed+bnPPbD6jQWSIDYozVN2jmfW9x1YJlvv5Ia0pq+fuyYi49\nLofslHjuf8WKXS1ct4dDbe3cc/Ykvn7mBA61tfP2xgo+2Frpy+yLihJOmZDF0u1VrNlVS0JslM8N\ndWyu5RL656rdxEZb7iqwnrUJw1J8CSQjh3RYECP8ljuet6GuRpE3uJ1gK5HUeP/BOdISrfW0BP+K\nP9Veb/U0OtwTSo0YkuCzzqNd70+gSae+9flJ3PeFaV1uiwQCKhFjzO96OjiYfQ6Tl4GrRCReRMZi\nBdA/McaUA/UiMs/Oyroe6E4ZhSWzRqdzxxkTAm53HuxpduWbEBtFYly0T3l4H2Kns6K3RZTk6Unb\nUd7xoiV7Xro2u3WaneavLJwW3kiPEnG71sYMTfJbLqtroqml3S+oP2VEKuV1TSwprGLGqDTiYywZ\nZ41Op7T2IG9trKDdwBlTrJbsudNGsK60jroDLfxndSmzRqfzzc9P5sKZI3nh01IOtbZTVNnIgws3\nU5CfSXltEz95ZYPveqW1B7nlyZXc9eynVDf6j1kWyRhjePSD7Xzp0Y95Y/0eX/nbGyt49pNdnDop\nm+U79vHXD61g979X7SYhNor7L57BzSePZe3uOnZU7WfRpgomDEth4vBUJg5LISc9kY8Kq1i3u46p\nI9N8vbWnjUqz4mDFNeQPTfalrTv//a59BxgxJMHPdeSks8dGCxmu1n0gSznLVe61BuLs58g7DLvT\nYIqL8a8Cnee+pc1/fDm3xZ6VEud7vt1u34QY//fKUUMnTcjixpPGEql0FxNJEJEbROSLYvHfIvKq\niPxeRLKO5KIicomI7AY+B7wmIm8CGGM2AM8DG4E3gDuMMY7j+3bgMaxg+3Zg4ZHIEM7k2mMCRdsW\nhvOCxHteCEdZeHvOBlIi7hfK23JzWlzeDBTHNeZ1Czjmf3xMlF/2i7tlOdblv3aslc17Gvz82jPs\nlus/VpQQHSVMG2mtz87PwBh4b8teNpbXc840y6d+wcyR1B5oYU1JLf9YWUJMlPCna47nKyfls3D9\nHirqmzDGcOczq1m8tZKF68v59r8+85N9W0UDy4qqw77D5M6q/SzZVuXnynt5bZnVSbSsnq8/u5rt\ndobU35cVMzozkb/dUMCpk7L5x8oSjDG8tXEPp08aRkp8jO83Xry1knWldRSMsRIrRITpo9LYvKeB\nzXsafI0cgPF2cHtNSa1fo8FxhUJnC9qxdi03audEEfB/Dt3PanqiN83Wundvo8j9TLpJtMu93k93\nAy0xNtpnsbitoEADLEZ6b4Tu3FlPAp8HbgLeB/KAPwINwONHclFjzAvGmFxjTLwxZrgx5lzXtgeM\nMeONMZONMQtd5Sttd9h4Y8ydJtzf8CMgy35wnR/AqfzjPS0hZ8C3hFj/vzkxwAvkxvvSOeeO8/iK\nHXdAimf/oXZQ/5CnRed2h7lbkG73hLt151gxa0pqGZOZ5GvhTreVyT9XWXGRWfbAkSfkWxXb6l01\nfLi1itljrH4E82flYIyVIrqquIZPd9Xyoy9M455zJvHu5r1sLLN63r+3eS/n/f5DrlqwjJ+80pF2\nHG4sL6rm879dzHV/Xc5//9tSksYY/vReIZOHp/LON09DEP7+cTF1B1v4eHs1F8wcSUx0FBfMGMHu\nmoMsKayior7Z1zkvNyORjKRY3tm8l9oDLUx3ZUhNHpFKUeV+9u0/5Pf/jXO5Mt0DIkJH4kegBojz\nDDmkuawBd8XsXnZbDNChDJLj/Z/5ONvyaW3zr0acd6XdU724zxsTHeVbd7uz4iJ0WJOe6O6upxlj\nrgUuByYbY+4wxrxhjPkB/nELZYAZar9kTgc9J3DuNc1jAymXIB52r7XivKfe8X+cl9NrBTktRa+q\nT3X5oN3+6xEBMsOGpyX4YkDu4OiQpFiyUuJ8HcMmj7ACsENT4slJT2R1cQ2b9tQzZ6yVGTZpeApZ\nKfGs3FnDO5v3EhMlfPHYUVx9Qh5Rgm/myJ++tpFxWclcdnwujy/d6VMuAIs2VvCLNzb7+ukMBlra\n2vnrkh088v523/NgjOFHL21gWFo8V88Zzb9W7WZ9aR07qw+wtaKR6+blMSwtgTOmZPP2xgo+3VVD\na7vhtImWq9BJ3X5+pRVzmtFFhhRYUxQ4uONebmtzqMvKcLfaocP15B0y3Wn1e1vw3oZKV3jfAaet\n6XVnOZV/W7t/I8exULzPrbfh5SiRFpcSivVcO7Ltjw66q00OARhjWoEyzzbtXhxCnAfYeXydF8I7\nNk+sXe61RKKD6DnrfYGdNa8ScV6uzi6zrl94d0Xg9l+7g/1OVpkjq6NshnviMU7aZlx0lF8FNS47\nmfe3VmJMR18Bx+WysbyelTv3cUzuEFITYslIjuO4vAw+LKzis911FFXu55ZTx/Gji6YRFxPls3Q+\n2FrJV59cySPvb+eqBctobA48EOZA8sBrm/jpqxv5xRub+aE9LMiGsnq2VDRw5xkTuPeCqcRFR/Hy\n2jKW2L3ET7aVxZyxQymtPcj7WyylMN0e/mNcdjJx0VEstHt0O0FvgLFZHctu69GtCEa6hv9wj//m\nDXo7rievcnGe72bPKAZe67grvErEiSN6G0XOO+B1WwWy0r0Zjo6MrS4l5LVEjhZXSXdKJNfuC/IH\n17KzHrCPhtL/OBWx01pyMqzavW+E/dzHx3rdXIffRnJ0hPcldZRNsK1Gt1vArZDc5/W6HhyrxqtE\nHF/68CHxftcfnZnkm3jL7U6ZMjKVwr0NbK1oZLJr3oeZOUPYsqeBj4ssq+b0ydkMSYrllAlZvLt5\nLwB/fHcbeZlJPP3VuZTWHuRpe8wwsGa1W72rptNkX31N4d4GX8YbWMOF/H1ZMdfOzeOWU8byr9W7\nKdl3gDc37CE6SjhvxgjSEmI5YWwGi7daY0hlp8aTb7sIj7XHhnppTSkjhyT4UrRjo6PIG5pEa7sh\nLibKT9m7Eybc6d5uJTLMVe7+X7xKJMmxYj3Pp1Phe11K3mevKzo926brcsdC8YYr4mO7vob3+U6M\ntZ5jt7c20Ci9kW6RdPevfBurL8hK17Kz/p3+F00JhNfvG+Mzzf1fOqdS87qavFbD4eB9UZyX0fvu\nOi+j91LBtCZT4/2D906rMcvjI3d86SPT/DuSuSs0d0/l3IwkWtqscY7GZ7vTjlM5cKiN1z4rZ3Rm\noq8SPGFsJsXVB9ha0cCKnTV8qSCXkyZkMXtMBi98amWYNzS1cNEflnDpn5dyzV+W9ZsieezDIs7+\nzWJO/9V7LNlmWRQL15fT1m647bTxXDN3DMbAok0VrCmpZcqIVJ91NzMnne2VjWzf28j47GRfhZhv\nK9iaAy2dsus6gtvxAYPbTpos+P83gRI3UjzPrTMgobeCd7KcvG2iYIZSDxTE9pY7p/buHSjg7sVx\nsbrT7YOx8COR7lJ8e+ojooSIFE8l6ygFb257s0+J9IElYr9uXpPduaT33fXFaTz7B+PX9loiTjDd\n62pwKslMjzvEXaG5ldbINP+xkBzG2e6adaV1fuONOb2lnZGKnd7Un582nM17Gtjb0MTjH+2kqHI/\nN56Yz8riGt++fUlFfRO/fHMLp07KJjcjiZ+8sgFjDIs27WXayDRGZyYxNiuZ0ZmJrNxZw7rSOp/s\nYLn0WtoMa3fX+bmjrHGjrP/HG9x2rAzvKAhu15O7Ynb/zoEqYm8Hvuhoxw3r/4wkxAawRHoRuHbO\n0MlA8T23XgsjOCXiKIxgFEeku7UCvtEi8grd3L8x5ov9IpHSI94WXYd/1//vcgLUp07yz8juzWii\ngdxZPpdagAl4vC9+MC4Jr6JxWqzeY7vKkAEY6oqpuI9xZ4O5M3/cQX13BpETT3llbRnRUVZMBaDA\nyQArruXFNaXMG5fJfV+czvrSOp5aXsxNJ/dtn4B/rCihpa2dn82fwYeFlXz/hfVsLK9nQ2kdVxR0\n5LhMGZHG6l011B5o8UundS+PzuywzESEzKQ4yuqaOgW3A6Vue589B3fl67V8HaI9Q6E7DQ3v4+iL\n4XWyRHrf0vc+n4EqNue5ddKZA+HsF6nDux8O3TULH7K/LwVGAE/Z61cDFV0eoQwIXnfWZHto6zxP\nCuX0UUP46LtnMsrjqugNHYF178tovY7ebBYnyB+M0vCS5LVWAmWG2RZKqyfDJlBF51ZObv+8u6Ic\n7Rp4MjslnriYKGoOtJCTnuhrITt9VZbvqGZ75X4un21V5F+cNYofvbSB7ZWNjM9OYfWuGt7bvJfL\nZ+d2mrAoEM2tbfz942LiY6O5dk4eUVHCO5v3cmxuOnlDkzgzxppA6fkVJew/1Ma0UR2xnUnDU3yz\n/Ll7d7v7YWQl+yuF1IRYqGvqpCycLDrvbx7IknQ3TAJZIl4LODqAGzaQJXIk7qJOSiRATATgk++f\n1ak/lIP33QsqSSVIGcOVgErEGPMBgIj82hjjnvPjFRFZ2e+SKQHxdgS8oiCXCcNTON5OzXTjHb30\nSPFWKk6GlNe6cfqo9GZKUG9l46x5FZITkBXPa5oS33Ul5q4A3C4wd6XndtdERQkj0hLYte+AX3px\nYlw0w1LjedWe7dEZ1dWZPXJVcQ1x0VFcvWAZza3t/HPlbt6859SAFZObn7yykWfsUZGbW9q48oTR\nfLa7lrvPmghYVlNmchxvbrCUhTtxwD3IoDvG4ba6vD26nUrQG/R2FLE3xuOdN7wrAlWs3vJALqWO\nvhr+xx9Jp71ABoP32QH/xAA3737zNJ8L1enRHqmzFR4OwbzhySIyzlmxhyMJrlml9ClT7L4Q3hdZ\nRLpUIH1JRxaWf/llx+fygwuncttp4/zKnfqiN5aIt9UYqI+K4yrzVhDBpBcHalF7rRhn2I0Rnsyw\nvMwk31wZThxl7NBkUuNjWFtSy5Mf76TdGB798mz21Dfxfx/t6PJ6bnZU7eeZ5bu4+eSxnDh+KH9b\nsoPNexowBt8seyLClBGp7LHHAXNnrLldUm553b9Hhid+5DxL3v/JcU953T5HMk94oFictzQuumtL\nBOD3V83i3W+edtjX7myJOOXBn2Ncdoqv8eF0UozUedMPh56jnHAP8L6IFGH932OAW/tVKqVLnr1l\nHkVV+zsFygcS73sdHSV89ZRxnfZzOmH1Rol4W6y+oL7nXE4r0NuaDPRiu7OGArWWvdljaQHSi3Mz\nEllZXEN0lPhcQVFRVme8wr2N1B1sYd64oZw7fQQnTRjKS2vKuPusid22pv+1qoQogVtPHceSbVV8\n859redHOAnOnJLstDreF5DcsSNLhuWO8FbwT1/D+30fSK7uzJdK1S8lpFHQ1JoUzT/rh4lUi7d24\ns4LBcaFGRwlLv3smtQcCT0Fw1AbWHYwxb4jIRGCKXbTZGHP0jFg3iMhIjmN2cpzv5TsSV1V8TBRf\nnjcm6P3/duMJ/H3ZzqCv6aSIHs41HAK1Dju5uQJYR4ECsIGGynDjtVAcF5TXFeW4NYalxvtVjnlD\nk3h7QwUNza1cONOaje+iY0Zx73/W2f1TUgnEe5srmTM2k+FpCb4Jvl5fV05stPjFtZyMqfSkWL8G\nhXs+C+9ggA5eBRvry5DyupSc4w+/r0YgYjwmY6A0W6e1f91hPDu/u3JWtx1Avc/UmVOG8eDCzVx4\nzKigr+HGse5y0hMZZX+OVrrLzjreGLMawFYaa7vbRxk4RIS/3lDg62HcG7b87PzD2n/yiFR+dvHM\noPdPT4pj588v7NUghp16y9urXoujo4+KJx5zBK1lrxJJCuDucSwUbwpsbnoiDXZlNtbOijpxvDX0\nysrifQGVSH1TC5v21HPXmVbsIzcjkXg7qD9qSNcDEXqVqlv2QIq0c3Db6avRdRZdb/pqBCLam5QR\nICaSFBfDzp9feFjnvvi47i0U7zUmDk897Gu4OWViFg9dcSwXHTOyx30jPWrS3RPxfyKSISKZgT7A\nXwdKUMWfs6YO9xt2YrDSFyOYOqcwnlaxc25v8Df2CLJ4vB3lHAXldeOkeYaecRjaRUfHvMwkhibH\nsWZXLYFYW1KLMR1TDEdFiS/bzps55VhFLZ7BA91ZbYF+d6+CdX6qTn047N28cYkjCSR7FdiRupSC\nwWlo9HVHQBHh8tm5QXdOjGS6c2cNweqh3t2vHxlzzw4yhiTGasDOhWOBeI2akydkkRIfw40n5fuV\nH4klEqiSDGSJeBWYO+vLmUpYxJpoyRl2vSsK91rbJo3o6AyYlRLPtr2NnZSIE7dp9YyQHExHuc7D\nfzjl3sEDu/7Nk+NiGDUkgW+cM6nHa3nxVuTtASyR/iAUnckvnpXDZ7vrIt7V1V2Kb/4AyqG4WP3D\nc0ItwqCiwxLxJzM5jvU/ObfT/kfSWo4O4ErznjM5zhmAz18qd4qwu0/GuOwUFq4vD3jdosr9pMbH\n+PXpyEh25qzwKBH72i2eawdTUXYKbjvl0V3fd1d9NZbee1bPF+qCztlZXQ+Z0x+EYk6Pr5yUz3Xz\nxhxRHCkcCCY7SxlgjtYxeAJx++kT+Hh7tW9q1Z5wehH35nfsXNl03SJ3Kgav0nEPde/uOzMuK5na\nAy3UHWjpMnOqeN8B8rOS/a7vBO+9Kd2Brh1MRentYR0ortSbSvfsqcM7jcjrJmA/kQGIGoRiXigR\nIS7ARFWRhCoRJSQ4weZg+Nz4oRT+zwVB7+/49289tXPqcU90Si92rCCPFnGu4a2ckgJ0dHRScV9d\nV8a/V+3mhxdNY+rINO5+7lOmjkyjurG5Uxqxk23lbcn6lEgvlKTX4nDwlk60h3w5nJTax24o6Ha7\n12V23owRPLeixDeMTH8S+VV56FAlogw4R5IVEwwx0VHseDB4peOmU+s+wH6BKvJAI9g6vaC//4I1\n58ev39rKZbNzeHNDBW9uqCBKYKprWlnoiHEESmHuTes62OD2qPREiv7ngl6NsxYI7291+uRh/f4s\nOET6FLWhpEdnnT2/+nUi8iN7PU9E5vS/aIrSe0SkVxWHeN6IQPEYX295zzUCdcbzBsc/2bHPN84V\nWEFmryvIlyAQoMNfb4b0DxRY7+pcfalAurr2QOAMqKke4v4jGEvkz0A7cCZwP9Yc6/8GTuhHuZQQ\n8cY3TqGxaXDM2hcKvJaIgzcmEqiCDZQZ5p4f/NRJ2SzeWsmbGyqYk5/JJzv3AZ2HtHcu4Q1uO5l7\nvXJnBbJEDvtMh09fK6Vg+PvNc1lVvC/gUDjKkRNM2sBcY8wdQBOAMaYGCBw9U8KaKSPSKLD7KhyN\neCtZp4XujYnk2mmbV54w2q88UCc/dx+OgjFWDKCt3TBlZEfnQ68S6YjH+J/LGf/q+s8d/mgAnSZn\nCtRtPELITo3nvBk9dwhUek8w6rlFRKKxjWoRycayTBQl4vAaIufNGMGTHxczz5MIMCwtgY33n9up\nb4Y3eOyQ5NrPGUwR/Ifv97aWHQXm7TU+JDGWjfef22XrOiZKOH3ysC5l6Iru3FmKEgzBKJGHgReA\nYSLyAHA58IN+lUo5KnngkhksL9oXUhm87qwTx2cFDP4GqsS7wu3KmTS8w/rITo0nJT6GxubWgO6p\nrkazDeSeOZwsNksu67s/Vcjvr5rFy2vK+vEKSigJZgDGp0VkFXAW1rN2sTFm05FcVESuAO4DpgJz\njDEr7fJ8YBOwxd51mTHmNnvbbOBxIBF4Hbjb9GZgJmXQcu3cMVw79/BdNIfDQ1ccG3DmPTjyPjrB\n+P3dQ2WkxMdYmV7NnV1hA2EdPHTFsSxYXNSvLsz5s3J6PfquMvjpbgBG91O1F3jWvc0YcyRNxvVY\nMyY+2sW27caYWV2UPwLcAizHUiLnAQuPQAblKOTy2bndbh+IVFB37/fk+Bif8ugcj7G++7OtlJuR\nxP3zZ/Tb+ZXIpztLZBVWHESAPKDGXk4HdgFje3tRx5IJ9oUVkZFAmjFmmb3+JHAxqkSUMMTdazwl\nPibgLJApdu93dy94RRlsdDd21lgAEfkL8IIx5nV7/XysCry/GCsia4A64AfGmA+BHGC3a5/ddlmX\niMit2BNn5eXl9aOoSqRw7Oh01pYEHmX3cPjTNcczdWTgeUO8lkhMAEvkkuNyqDvYwrVzj/wZHpIY\nS93BwBMnKUpvCSawPs8Yc4uzYoxZKCK/7OkgEVkEjOhi0/eNMS8FOKwcyDPGVNsxkBdFZHoQMvph\njFkALAAoKCjQuInSI0/dPIeK+r6Za+3CHuaYcAffk+OifRlSnYdjF24+udcGvx/vf+t0Go7i/j9K\n/xGMEikTkR8AT9nr1wI9ploYY84+XGHsya+a7eVVIrIdmASUAm5ndq5dpih9QmpC7IC5jUSE9KRY\nag+0EBcT5ZsnJTpAenBfkJEc12l+dUXpC4J5aq8GsrHSfF8AhtllfY6IZNt9UhCRccBEoMgYUw7U\ni8g8sQIp1wOBrBlFGfTcfdZE33LHnB7aV0MJP4JJ8d0H3N2XFxWRS4A/YCmn10RkjTHmXOBU4H4R\nacHq0HibKwvsdjpSfBeiQXUljHEnXPmUyBHMg6IooaJHJSIi79F5/DmMMWf29qLGGMeq8Zb/G2tc\nrq6OWQloLqISUQjiS+EN1NtdUQYzwcREvuVaTgAuAzRCpyh9hNNCU3eWEo4E485a5Sn6SEQ+6Sd5\nFOWowG3aqztLCWeCcWe5e65HAbOB4OYpVRSlewRXdpYqESX8CMad5e653grsAG7uT6EUJdJxD2XS\nriPpKmFMMEpkqjGmyV0gIvGBdlYUJXhEOtxZqkKUcCSYdJClXZR93NeCKMrRijMvu84DroQj3Y3i\nOwJrfKpEETmOjoZSGpAU6DhFUbrmiZvm0NDUefyqJ2+aw2vryjvNw64o4UB37qxzgRuxhhj5jau8\nAfheP8qkKBHJaZOyO5UJkJ+VzB1nTBh4gRSlD+huFN8ngCdE5DK7E6CiKH2ETqemRArdubOuM8Y8\nBeSLyH95txtjftPFYYqiHAYaB1HCne7cWcn2d8pACKIoiqKEH925sx61v38ycOIoytGB6TwcnaKE\nJcH0WM/Gmts8372/Meam/hNLUY4O1JmlhDvBdDZ8CfgQWAS09a84iqIoSjgRjBJJMsb8d79LoihH\nEZqdpUQKwfRYf1VELuh3SRTlKESTs5RwJxglcjeWIjkoIvUi0iAi9f0tmKJEMmqIKJFCMPOJpA6E\nIIpyNCIaWlfCnGCys47vorgOKDbG6AyHiqIoRzHBBNb/DBwPrLPXZwLrgSEi8v+MMW/1l3CKEqlo\nYF2JFIKJiZQBxxljZhtjZgOzgCLgHOCX/SmcokQ6GlhXwp1glMgkY8wGZ8UYsxGYYowp6j+xFCWy\n0R7rSqQQjBLZICKPiMhp9ufPwEZ7dsPOkyMEgYj8SkQ2i8hnIvKCiKS7tt0rIoUiskVEznWVzxaR\ndfa2h0VHrlMURQk5wSiRG4FC4Bv2p8guawHO6OV13wZmGGOOAbYC9wKIyDTgKmA6cB7wZxGJto95\nBGv4lYn257xeXltRFEXpI4JJ8T0I/Nr+eGnszUU9wfhlwOX28nzgOWNMM7BDRAqBOSKyE0gzxiwD\nEJEngYuBhb25vqKEGg2sK5FCj5aIiEwUkX+JyEYRKXI+fSjDTXQogxygxLVtt12WYy97ywPJfKuI\nrBSRlZWVlX0oqqL0LeqUVcKdYNxZ/4flSmrFcl89CTzV00EiskhE1nfxme/a5/v2eZ/unfhdY4xZ\nYIwpMMYUZGd3npJUURRF6RuC6SeSaIx5R0TEGFMM3Cciq4AfdXeQMebs7raLyI3ARcBZxviM+1Jg\ntGu3XLus1F72liuKoighJBhLpFlEooBtInKniFzCEc52KCLnAd8BvmiMOeDa9DJwlYjEi8hYrAD6\nJ8aYcqBeRObZWVnXYw1RryhhjQ57ooQ7wVgidwNJwF3AT4EzgRuO8Lp/BOKBt+1M3WXGmNuMMRtE\n5HlgI5ab6w5jjDOHye3A40AiVgxFg+pK2GI0sq5ECMFkZ62wFxuBr/TFRY0xE7rZ9gDwQBflK4EZ\nfXF9RRksaGBdCXcCKhERebm7A40xX+x7cRRFUZRwojtL5HNY6bbPAsvR6aAVpc9Qb5YSKXSnREZg\nDbJ4NXAN8BrwrHscLUVRjgxtmSnhTsDsLGNMmzHmDWPMDcA8rKFP3heROwdMOkVRFGVQ021g3R5k\n8UIsayQfeBh4of/FUpTIRr1ZSqTQXWD9SaxsqNeBnxhj1g+YVIpylKCDUSvhTneWyHXAfqx+Ine5\nHnYBjDEmrZ9lU5SIRQPrSqQQUIkYY4Lpza4oyhGgdogS7qiiUBRFUXqNKhFFCQE6Pa4SKagSUZQQ\nonF1JdxRJaIoIUAD60qkoEpEUUKIpvgq4Y4qEUVRFKXXqBJRlBCg3iwlUlAloiiKovQaVSKKoihK\nr1EloiihQNOzlAhBlYiihAhNzFIiAVUiihIC1A5RIgVVIooSItQQUSIBVSKKoihKr1EloighQOPq\nSlLEdDIAAA92SURBVKQQEiUiIr8Skc0i8pmIvCAi6XZ5vogcFJE19ud/XcfMFpF1IlIoIg+Ljheh\nhDn6CCuRQKgskbeBGcaYY4CtwL2ubduNMbPsz22u8keAW4CJ9ue8AZNWUfoYHQpeiRRCokSMMW8Z\nY1rt1WVAbnf7i8hIIM0Ys8wYY4AngYv7WUxF6VfUDlEigcEQE7kJWOhaH2u7sj4QkVPsshxgt2uf\n3XZZl4jIrSKyUkRWVlZW9r3EiqIoCtDNHOtHiogsAkZ0sen7xpiX7H2+D7QCT9vbyoE8Y0y1iMwG\nXhSR6Yd7bWPMAmABQEFBgfoNlEGHBtaVSKHflIgx5uzutovIjcBFwFm2iwpjTDPQbC+vEpHtwCSg\nFH+XV65dpihhi8bVlUggVNlZ5wHfAb5ojDngKs8WkWh7eRxWAL3IGFMO1IvIPDsr63rgpRCIriiK\norjoN0ukB/4IxANv22mOy+xMrFOB+0WkBWgHbjPG7LOPuR14HEjEiqEs9J5UUcIF9WYpkUJIlIgx\nZkKA8n8D/w6wbSUwoz/lUpSBRDQ/S4kABkN2lqIcdWhgXYkUVIkoSqhQQ0SJAFSJKIqiKL1GlYii\nhAAd9kSJFFSJKEqIUG+WEgmoElGUUKCGiBIhqBJRlBChPdaVSECViKIoitJrVIkoSghQb5YSKagS\nUZQQoT3WlUhAlYiiKIrSa1SJKEoIMDruiRIhqBJRlBCh2VlKJKBKRFFCgBoiSqSgSkRRQoQaIkok\noEpEURRF6TWqRBQlBKg3S4kUVIkoSogQjawrEYAqEUVRFKXXqBJRlBCg2VlKpKBKRFFChDqzlEhA\nlYiihACd2VCJFEKiRETkpyLymYisEZG3RGSUa9u9IlIoIltE5FxX+WwRWWdve1g0KqmEO/oEKxFA\nqCyRXxljjjHGzAJeBX4EICLTgKuA6cB5wJ9FJNo+5hHgFmCi/TlvwKVWFEVR/AiJEjHG1LtWk+lI\nm58PPGeMaTbG7AAKgTkiMhJIM8YsM9bIdU8CFw+o0IrSh2hgXYkUYkJ1YRF5ALgeqAPOsItzgGWu\n3XbbZS32srdcUcIW9WYpkUC/WSIiskhE1nfxmQ9gjPm+MWY08DRwZx9f+1YRWSkiKysrK/vy1Iqi\nKIqLfrNEjDFnB7nr08DrwI+BUmC0a1uuXVZqL3vLA117AbAAoKCgQB0HyqBEc0OUSCBU2VkTXavz\ngc328svAVSISLyJjsQLonxhjyoF6EZlnZ2VdD7w0oEIriqIonQhVTOTnIjIZaAeKgdsAjDEbROR5\nYCPQCtxhjGmzj7kdeBxIBBbaH0UJS3RmQyVSCIkSMcZc1s22B4AHuihfCczoT7kUZSBRb5YSCWiP\ndUVRFKXXqBJRlBCgziwlUlAloighQr1ZSiQQss6GinI0M31UGgcPtfW8o6IMclSJKEoIuPKEPK48\nIS/UYijKEaPuLEVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVR\nFKXXqBJRFEVReo1E+pDUIlKJNdx8OJEFVIVaiAFG7/noQO85fBhjjMnuaaeIVyLhiIisNMYUhFqO\ngUTv+ehA7znyUHeWoiiK0mtUiSiKoii9RpXI4GRBqAUIAXrPRwd6zxGGxkQURVGUXqOWiKIoitJr\nVIkoiqIovUaVyCBARDJF5G0R2WZ/Z3Szb7SIfCoirw6kjH1NMPcsIqNF5D0R2SgiG0Tk7lDIeqSI\nyHkiskVECkXku11sFxF52N7+mYgcHwo5+5Ig7vla+17XichSETk2FHL2JT3ds2u/E0SkVUQuH0j5\n+gtVIoOD7wLvGGMmAu/Y64G4G9g0IFL1L8HccyvwTWPMNGAecIeITBtAGY8YEYkG/gScD0wDru7i\nHs4HJtqfW4FHBlTIPibIe94BnGaMmQn8lDAPPgd5z85+vwDeGlgJ+w9VIoOD+cAT9vITwMVd7SQi\nucCFwGMDJFd/0uM9G2PKjTGr7eUGLOWZM2AS9g1zgEJjTJEx5hDwHNa9u5kPPGkslgHpIjJyoAXt\nQ3q8Z2PMUmNMjb26DMgdYBn7mmD+Z4CvA/8G9g6kcP2JKpHBwXBjTLm9vAcYHmC/3wHfAdoHRKr+\nJdh7BkBE8oHjgOX9K1afkwOUuNZ301kRBrNPOHG493MzsLBfJep/erxnEckBLiHMLU0vMaEW4GhB\nRBYBI7rY9H33ijHGiEinvGsRuQjYa4xZJSKn94+UfcuR3rPrPClYrbdvGGPq+1ZKJZSIyBlYSuTk\nUMsyAPwO+G9jTLuIhFqWPkOVyABhjDk70DYRqRCRkcaYctuN0ZWpexLwRRG5AEgA0kTkKWPMdf0k\n8hHTB/eMiMRiKZCnjTH/6SdR+5NSYLRrPdcuO9x9womg7kdEjsFyzZ5vjKkeINn6i2DuuQB4zlYg\nWcAFItJqjHlxYETsH9SdNTh4GbjBXr4BeMm7gzHmXmNMrjEmH7gKeHcwK5Ag6PGexXrb/gpsMsb8\nZgBl60tWABNFZKyIxGH9dy979nkZuN7O0poH1LlcfeFIj/csInnAf4AvG2O2hkDGvqbHezbGjDXG\n5Nvv8L+A28NdgYAqkcHCz4FzRGQbcLa9joiMEpHXQypZ/xHMPZ8EfBk4U0TW2J8LQiNu7zDGtAJ3\nAm9iJQY8b4zZICK3icht9m6vA0VAIfAX4PaQCNtHBHnPPwKGAn+2/9eVIRK3TwjyniMSHfZEURRF\n6TVqiSiKoii9RpWIoiiK0mtUiSiKoii9RpWIoiiK0mtUiSj/v71zjbGrquL4799pQ1tKW0arflH5\nYghQRcNILJIGSTUSRaROaSJYp0aJRihKqmg0OqFBtE2jIhiUpkypKA+xg6K0NKVDkVEofcx0Cqmg\nYEwkmFYZrdARhuWHtY6z5865t3duxw6d7l9yk3323mev/Th3P89ZK5PJZBomDyITFEkmaXVyvVxS\n+1HOQ0ehqVTSmiNVnijpFEl9VcJWhabfVUci47VE1N8zY/mKaNomxyOS2iTdeJg4i0MT7zGtKfto\nkb9Yn7gMAAslXW9m+0d7s6TJ8e77mGBmnx6rtKpwOdBsZoOp51iXYxz4kpn9fLwzMZZIaqpsp9cS\nZnanpOeB5eOdl2OBvBKZuLyCq9f+YmVAzOgfDHsOW+Lr4WKWerOkR4GVktolrZP0sKQ/S1ooaWXY\ngNgYKkmQ9A1J2yX1SfqxShQDSeqS1CLpI8mHg/skPRPhZ0l6SNIOSZsKLbbh3yOpB/h8WUEl/RKY\nAeyIWWRlOU6UtFbSY3JbLBfFfdMk3SHpSUkbJD0qqSXCDibpt0rqCPccSfdEebdLem/4t4eMLkl/\nkrQsuX9J1HWPpPWSTooVRlF/M9Prakh6Y+SzJ37nSLpW0heSONcp7K5IuibaqkfSt0vSq1bny+Q2\nXHol3VFyX5uke6OsT0n6ZhJ2WdTzbkk/kqs+R9JBSaujHedVpDdCnqSzJf0u2qtb0qmJ7E65DZpn\nJV0h6eqI93tJzRGvS9L3Ix99ks4uKUdpW2ZGiZnl3wT8AQeBmcCzwCx8VtUeYb8CPhnuTwGd4e4A\n7gOa4rod+C0wBTgTeBHXcwSwAfhouJsTueuBC5P0WsPdBbRU5PEufGCYAnQDc8J/MbA23L3A/HCv\nAvqqlTdxV5bjW8Bl4Z4N/AE4Ebg6kfMOfOBtKUmvFegI90+Bc8P9FlwlS1FX3cAJuF6kA1GuM0Le\n69O6Am5N6u9yYHVJmf5Xf3F9J66EEqAp2vUUYGf4TQL+iH8JfkHkZ3qF3I4oT606/ytwQlFfJflq\nA54LOdOAPlwv1Gn4szUl4v0QWBJuAy6p0nYj5OHP7uRwLwDuSWQ/DZwEzAH6gc9G2HeT+ukCbgn3\nfOK5iftvrNWWcX0ecN94/4+PhV/ezprAmNk/Jd0GLANeSoLmAQvDvR5YmYTdbcO3Gu43s5cl7cE7\nro3hvwfvwADeJ+nLwHSgGdiLdyZVifgvmdlNkuYCc4HNsYhpAp6TNBvvVLYleb2grsIPL8cHcOWV\nxfbEVLzTmA/cAGBmvZJ660h3AXC6hhZbM+VahgF+bWYDwICkv+Hq7c+PvOwPOX+PuGtwtf6dwFLg\nM3XIPh9YEukM4h1ov6QDkt4V8naZ2QFJC4BbzezFCrkFp1JS5xHWC9wuqTPyV8ZmC6WJkn6Ba+F9\nBTgL2B5pTmNIseYgrkizjDJ5s4B1kt6GD0DpKm2ruX2Zf0nqZ+hZ24NPBgp+FmXfFqu92RVyS9vS\nzA6SqZs8iEx8vgfsxGe+9fDviusBAHP11S9bTNNwmyaTJU3FZ5wtZvYX+eH91FoCooNbhHfiAAL2\nmlnlNkfln340pOUQ8DEz21eRfq37U31AaXkmAe8xs0MlaQ0kXoPU+H+Z2SPybcXz8BVT6QsDdbIG\nn2G/CVhb5z2ldR58CG+bC4GvSXq7jTxXqtSXZJHmOjP7akmah6z6OcgIebi1w61mdrHclkxXEj+t\n51eT61cZXudleUwpbcvM6MhnIhOcmIHehdtsKOjGtYwCXAo8fAQiig52f8zIa775I+mtuBnRRWZW\nrI72AXMkzYs4UySdYWYvAC9IKmxNXNpgHjcBVyp6+pi1A2wDPh5+cxk+i31e0mmSJuGGhAoewK3T\nFeV552FkPwgskvS6iN+chN2Gb6nUO8BvAT4X6TRJmhX+G4APAu/GywqwGVgqaXqJXKhS51HeN5vZ\nVuAafEUwg5G8X1KzpGm4VcpHIn+tkt5QyIz2rkoNebMYUqXeVrtaqrI4ZJyLa0burwgfbVtmSsiD\nyPHBanyfvuBKvIPpxbXkXtVowtHR34Lvi2/CVWLXog3fS++MQ8/fmJsTbQW+Ewevu4FzIv5S4CZJ\nu/GZbiOswLdDeiXtjWtwC3MzJD0JXAvsSO75Cn6u0s3QNg/41mBLHAI/AdR8/dbM9gLXAQ9F2VKV\n9rcDJxPbLnVwFb51uCfyenrI+A+wFdccOxh+G3FV5I9H3Q1706hGnTcBPwkZu4Aboo0reQzfnurF\nzyseN7MngK8DD8SztRk4nJnfavJWAtdL2kXjOyaH4v6bGT6JKhhVW2bKyVp8M5lAUhew3MyOilpy\n+fcaF5nZJ6qEd+CHuzVf8Y3Z/E58dffUmGd0pLw2fPvyiv+3rEY50raMbcblZvbhsczXRCSvRDKZ\ncUDSD3AbKitqROsHVqjGx4byDzifBrYcjQHkeEDSYvyc7x/jnZdjgbwSyWQymUzD5JVIJpPJZBom\nDyKZTCaTaZg8iGQymUymYfIgkslkMpmGyYNIJpPJZBrmv/jnK9qSdwCGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Flat-top window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/objects.inv b/objects.inv new file mode 100644 index 000000000..105a1ed6c Binary files /dev/null and b/objects.inv differ diff --git a/pulsar.html b/pulsar.html new file mode 100644 index 000000000..5fdb83a85 --- /dev/null +++ b/pulsar.html @@ -0,0 +1,137 @@ + + + + + + + + Analysing Pulsar Data — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Analysing Pulsar Data

+

The subpackage stingray.pulse implements a set of tools for +analysing (X-ray) pulsar data, in particular periodicity searches.

+

Many of these methods are generally applicable for searchsing for +and analysing strictly periodic signals (with a possible frequency +derivative) in the presence of instrumental noise.

+

Below, we show examples of how this functionality can be implemented and +used in practice.

+ +
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/py-modindex.html b/py-modindex.html new file mode 100644 index 000000000..a0a2c9f34 --- /dev/null +++ b/py-modindex.html @@ -0,0 +1,143 @@ + + + + + + + Python Module Index — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+ + +

Python Module Index

+ +
+ s +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ s
+ stingray +
    + stingray.deadtime.fad +
    + stingray.deadtime.model +
    + stingray.gti +
    + stingray.io +
    + stingray.modeling.scripts +
    + stingray.pulse +
    + stingray.stats +
    + stingray.utils +
+ + +
+
+
+
+
+
+

  + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/search.html b/search.html new file mode 100644 index 000000000..f9a97f1c4 --- /dev/null +++ b/search.html @@ -0,0 +1,112 @@ + + + + + + + Search — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+ +

Search

+ + + + +

+ Searching for multiple words only shows matches that contain + all words. +

+ + +
+ + + +
+ + + +
+ +
+ + +
+
+
+
+
+
+

  + Back to Top

+

+ © Copyright 2023, Stingray Developers.
+ Created using Sphinx 7.2.6.   + Last built 07 Oct 2023.
+

+
+ + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 000000000..255bf292d --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["_zenodo", "acknowledgements", "api", "citing", "contributing", "core", "dataexplo", "deadtime", "history", "index", "modeling", "notebooks/Bexvar/Bexvar tutorial", "notebooks/Bispectrum/bispectrum_tutorial", "notebooks/CrossCorrelation/cross_correlation_notebook", "notebooks/Crossspectrum/Crossspectrum_tutorial", "notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray", "notebooks/Deadtime/Check FAD correction in Stingray", "notebooks/Deadtime/Check dead time model in Stingray", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data]", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data]", "notebooks/EventList/EventList Tutorial", "notebooks/Lightcurve/Analyze light curves chunk by chunk - an example", "notebooks/Lightcurve/Lightcurve tutorial", "notebooks/LombScargle/LombScargleCrossspectrum_tutorial", "notebooks/LombScargle/LombScarglePowerspectrum_tutorial", "notebooks/LombScargle/Very slow variability with Lomb-Scargle methods", "notebooks/Modeling/ModelingExamples", "notebooks/Multitaper/multitaper_example", "notebooks/Powerspectrum/Powerspectrum_tutorial", "notebooks/Pulsar/Phase Dispersion Minimization", "notebooks/Pulsar/Pulsar search with epoch folding and Z squared", "notebooks/Simulator/Concepts/Inverse Transform Sampling", "notebooks/Simulator/Concepts/PowerLaw Spectrum", "notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF", "notebooks/Simulator/Concepts/Simulator", "notebooks/Simulator/Lag Analysis", "notebooks/Simulator/Power Spectral Models", "notebooks/Simulator/Simulator Tutorial", "notebooks/Spectral Timing/Spectral Timing Exploration", "notebooks/Transfer Functions/Data Preparation", "notebooks/Transfer Functions/TransferFunction Tutorial", "notebooks/Window Functions/window_functions", "pulsar", "simulator"], "filenames": ["_zenodo.rst", "acknowledgements.rst", "api.rst", "citing.rst", "contributing.rst", "core.rst", "dataexplo.rst", "deadtime.rst", "history.rst", "index.rst", "modeling.rst", "notebooks/Bexvar/Bexvar tutorial.ipynb", "notebooks/Bispectrum/bispectrum_tutorial.ipynb", "notebooks/CrossCorrelation/cross_correlation_notebook.ipynb", "notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb", "notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb", "notebooks/Deadtime/Check FAD correction in Stingray.ipynb", "notebooks/Deadtime/Check dead time model in Stingray.ipynb", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb", "notebooks/EventList/EventList Tutorial.ipynb", "notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb", "notebooks/Lightcurve/Lightcurve tutorial.ipynb", "notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb", "notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb", "notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb", "notebooks/Modeling/ModelingExamples.ipynb", "notebooks/Multitaper/multitaper_example.ipynb", "notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb", "notebooks/Pulsar/Phase Dispersion Minimization.ipynb", "notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb", "notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb", "notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb", "notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb", "notebooks/Simulator/Concepts/Simulator.ipynb", "notebooks/Simulator/Lag Analysis.ipynb", "notebooks/Simulator/Power Spectral Models.ipynb", "notebooks/Simulator/Simulator Tutorial.ipynb", "notebooks/Spectral Timing/Spectral Timing Exploration.ipynb", "notebooks/Transfer Functions/Data Preparation.ipynb", "notebooks/Transfer Functions/TransferFunction Tutorial.ipynb", "notebooks/Window Functions/window_functions.ipynb", "pulsar.rst", "simulator.rst"], "titles": ["<no title>", "Acknowledgements", "Stingray API", "Citing Stingray", "Get Help, Report Bugs or Contribute", "Core Stingray Functionality", "Data Exploration", "Dealing with dead time", "History", "Stingray: Next-Generation Spectral Timing", "The Stingray Modelling Interface", "Baysian Excess Variance (Bexvar)", "Bispectrum Tutorial", "CrossCorrelation", "Cross Spectra", "Quicklook NuSTAR data with Stingray", "Fourier Amplitude Difference correction in Stingray", "Check Stingray\u2019s dead time model", "Dynamical Power Spectra (on fake data)", "Dynamical Power Spectra (on real data)", "Contents", "R.m.s. - intensity diagram", "Creating a light curve", "Lomb Scargle Cross Spectra", "Lomb Scargle Power Spectra", "Observations with frequent data gaps", "The Stingray Modeling API Explained", "Install Stingray in colab", "Power spectrum example", "Phase Dispersion Minimization in Stingray", "Simulate a dataset", "Inverse Transform Sampling", "Simulating Light Curves from Power Law Power Spectra", "Simulating event times with the inverse CDF method", "Outline", "Contents", "Contents", "Contents", "Load events and plot light curve", "Setting Up Data", "Contents", "Window functions", "Analysing Pulsar Data", "Stingray Simulator (stingray.simulator)"], "terms": {"stingrai": [0, 1, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21, 23, 24, 25, 28, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42], "releas": [0, 3, 4, 8, 30], "doi": [0, 2, 9, 27], "citat": [0, 3, 8, 9, 14, 28], "v1": [0, 2, 3], "1": [0, 2, 3, 4, 5, 11, 12, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43], "2": [0, 2, 3, 5, 11, 12, 15, 16, 17, 19, 20, 21, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43], "10": [0, 2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 40], "5281": [0, 3], "zenodo": [0, 3], "7970570": [0, 3], "link": [0, 2, 3, 4, 9, 27, 30], "bibtex": [0, 3], "7135161": [0, 3], "0": [0, 2, 3, 4, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43], "6394742": [0, 3], "v0": [0, 2, 3], "3": [0, 2, 3, 4, 5, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 41, 43], "4881255": [0, 3], "3898435": [0, 3], "3242835": [0, 3], "3242829": [0, 3], "3242825": [0, 3], "3239519": [0, 3], "thank": [1, 2], "you": [1, 2, 3, 4, 8, 9, 13, 14, 22, 23, 24, 26, 27, 28, 29, 37], "jetbrain": 1, "free": [1, 2, 4, 26, 27, 30], "us": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42], "pycharm": 1, "particip": [1, 4], "googl": 1, "summer": 1, "code": [1, 2, 3, 8, 16, 22, 26, 38, 43], "2018": [1, 2, 8, 16, 38], "2020": [1, 5], "under": [1, 2, 4, 7, 8, 19, 26], "open": [1, 2, 3, 4, 8, 9, 19, 27, 39], "astronomi": [1, 2, 8, 13, 20, 26], "2017": [1, 2, 8], "python": [1, 2, 4, 8, 9, 11, 20, 27, 39], "softwar": [1, 3, 4, 8, 38], "foundat": 1, "2016": [1, 8, 11, 26], "timelab": 1, "librari": [2, 3, 4, 9, 13, 19, 20, 22, 26, 27, 34, 35, 36, 37, 39, 40, 43], "seri": [2, 5, 14, 32, 33, 38, 43], "method": [2, 4, 5, 8, 11, 14, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 37, 38, 40, 42], "For": [2, 4, 8, 9, 12, 13, 14, 15, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 35, 38, 40, 43], "astronom": [2, 8, 9, 26, 27], "x": [2, 5, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 36, 38, 39, 42], "rai": [2, 5, 7, 8, 15, 16, 22, 25, 26, 42], "These": [2, 4, 6, 8, 36, 37, 40, 43], "defin": [2, 4, 8, 11, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 35, 36, 40], "basic": [2, 4, 5, 8, 16, 20, 26, 37, 40], "relat": [2, 9], "common": [2, 8, 12, 13, 16, 26, 27, 43], "type": [2, 12, 14, 20, 22, 23, 24, 26, 27, 28, 31, 41], "typic": [2, 9, 14, 17, 26, 28, 30], "appli": [2, 4, 8, 12, 14, 16, 22, 28, 38], "includ": [2, 4, 8, 9, 12, 20, 23, 24, 26, 37, 41, 43], "read": [2, 4, 5, 8, 11, 15, 20, 25, 38, 40, 43], "write": [2, 4, 5, 26, 38, 40, 43], "current": [2, 4, 11, 12, 18, 19, 22, 27, 34, 36, 43], "implement": [2, 4, 7, 8, 9, 10, 11, 19, 22, 26, 27, 29, 30, 33, 34, 42], "ar": [2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 37, 38, 40, 41, 42, 43], "event": [2, 4, 6, 8, 9, 15, 16, 17, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 43], "none": [2, 11, 14, 15, 17, 18, 19, 21, 23, 24, 26, 27, 28, 35, 38], "count": [2, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 43], "err": [2, 14, 21, 22, 26, 27, 28], "input_count": [2, 22], "true": [2, 8, 11, 14, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 37, 38, 40], "err_dist": [2, 8, 22, 27, 28], "poisson": [2, 5, 11, 12, 13, 14, 18, 21, 22, 25, 26, 28, 29, 37, 38], "bg_count": [2, 11], "bg_ratio": [2, 11], "frac_exp": [2, 11], "mjdref": [2, 5, 8, 16, 20, 38], "dt": [2, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 40, 43], "skip_check": [2, 20, 22, 23, 24, 27, 28], "fals": [2, 8, 16, 17, 21, 22, 23, 24, 26, 27, 30, 33, 37, 38], "low_memori": 2, "mission": [2, 6, 7, 8, 9, 15, 20, 22, 25], "instr": [2, 20], "header": [2, 8, 19, 20], "other_kw": 2, "sourc": [2, 3, 4, 8, 11, 20, 21, 23, 24, 26, 34, 38, 43], "make": [2, 4, 8, 9, 13, 14, 15, 20, 22, 23, 24, 25, 26, 27, 28, 31, 34], "light": [2, 5, 6, 8, 9, 11, 12, 15, 16, 19, 25, 26, 29, 30, 33, 34, 35, 43], "curv": [2, 5, 6, 8, 9, 11, 12, 15, 16, 19, 25, 26, 29, 30, 31, 33, 34, 35, 43], "object": [2, 4, 5, 8, 11, 12, 18, 21, 22, 26, 30, 35, 38, 40], "from": [2, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43], "an": [2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 37, 38, 39, 40], "arrai": [2, 5, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 40, 43], "stamp": [2, 5, 11, 12, 13], "iter": [2, 4, 8, 11, 14, 26, 27, 28, 36, 37, 43], "astropi": [2, 4, 5, 8, 9, 14, 19, 21, 22, 26, 27, 33, 36, 38], "unit": [2, 4, 13, 14, 20, 23, 24, 27, 28, 30, 38, 40], "quantiti": [2, 17, 21, 26], "A": [2, 4, 5, 8, 9, 11, 12, 14, 17, 20, 22, 25, 26, 28, 29, 30, 37, 40, 41, 43], "list": [2, 3, 4, 8, 9, 11, 14, 15, 20, 22, 26, 28, 30, 37, 38, 43], "must": [2, 4, 22, 26, 30], "can": [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 33, 36, 37, 38, 40, 41, 42, 43], "cast": [2, 26, 38], "np": [2, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43], "float": [2, 8, 9, 11, 21, 23, 24, 26, 27, 30, 31, 38], "ha": [2, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 36, 37, 38, 41, 43], "valu": [2, 4, 5, 8, 11, 12, 13, 14, 17, 18, 22, 23, 24, 26, 28, 30, 32, 33, 34, 36, 37, 38, 39, 40, 43], "attribut": [2, 5, 8, 12, 13, 14, 19, 20, 22, 26, 28, 37], "doe": [2, 4, 13, 17, 20, 22, 25, 26, 29, 30, 38], "e": [2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 25, 26, 27, 29, 30, 33, 38, 43], "g": [2, 4, 8, 9, 14, 15, 16, 17, 20, 21, 22, 25, 26, 29, 30, 31, 33, 34, 35, 38, 39, 43], "option": [2, 4, 8, 11, 12, 13, 14, 20, 22, 23, 24, 26, 27, 28, 35, 37, 38, 43], "default": [2, 4, 8, 11, 12, 13, 14, 17, 22, 23, 24, 26, 27, 28, 29, 37, 38, 40, 41, 43], "each": [2, 4, 9, 11, 13, 14, 15, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 35, 37, 38, 39, 43], "bin": [2, 5, 8, 11, 17, 18, 19, 20, 23, 24, 26, 29, 30, 31, 37, 38, 43], "correspond": [2, 3, 15, 16, 19, 26, 27, 29, 30, 31, 32, 33, 35, 37], "note": [2, 4, 14, 15, 16, 17, 20, 22, 25, 26, 27, 28, 29, 30, 31, 34, 38], "input": [2, 8, 9, 11, 14, 17, 20, 21, 22, 23, 24, 26, 27, 28, 30, 33, 34, 43], "rang": [2, 9, 14, 19, 22, 25, 26, 28, 29, 30, 34, 35, 37, 39, 43], "second": [2, 12, 13, 14, 20, 22, 23, 27, 28, 29, 38, 40], "otherwis": [2, 4, 13, 20, 23, 26, 38], "uncertainti": [2, 8, 11, 14, 22, 23, 24, 26, 27, 43], "rage": 2, "If": [2, 3, 4, 8, 9, 11, 12, 14, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 38], "we": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43], "assum": [2, 11, 15, 17, 20, 22, 26, 27, 29, 30, 43], "distribut": [2, 5, 8, 11, 14, 17, 20, 26, 29, 30, 31, 32, 33, 37, 43], "calcul": [2, 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 21, 26, 27, 28, 29, 30, 33, 34, 35, 39], "error": [2, 5, 8, 9, 11, 13, 14, 17, 20, 23, 24, 25, 26, 27, 38], "averag": [2, 8, 9, 14, 18, 19, 22, 23, 24, 26, 27, 28, 30, 33, 38, 40, 43], "lower": [2, 4, 11, 18, 19, 25, 33, 38], "upper": [2, 4, 8, 25], "sigma": [2, 27, 29, 30], "confid": [2, 23, 24, 25, 26], "interv": [2, 5, 9, 11, 14, 15, 20, 25, 26, 27, 28, 30, 31, 37, 38, 40], "poissonian": 2, "mean": [2, 4, 13, 14, 15, 21, 22, 25, 26, 27, 28, 29, 30, 33, 35, 36, 37, 38, 43], "equal": [2, 11, 13, 14, 18, 22, 23, 24, 26, 27, 34, 38], "bool": [2, 21, 26], "d": [2, 9, 14, 17, 22, 25, 26, 27, 28, 29, 30, 34, 35, 37, 39, 40, 43], "gti0_0": 2, "gti0_1": 2, "gti1_0": 2, "gti1_1": 2, "good": [2, 4, 5, 9, 14, 20, 25, 26, 27, 28, 30], "thei": [2, 4, 11, 14, 20, 21, 22, 23, 24, 26, 27, 40], "have": [2, 4, 5, 8, 9, 13, 14, 15, 16, 19, 20, 22, 23, 24, 26, 28, 29, 30, 34, 35, 37, 38, 40, 43], "indic": [2, 11, 15, 22, 23, 24, 25, 26, 27], "safe": [2, 22], "dure": [2, 4, 8, 15, 22, 25, 27, 30], "analysi": [2, 3, 4, 8, 9, 12, 15, 22, 26, 27, 37, 38], "str": [2, 21, 22, 26, 27, 34], "appropri": [2, 4, 22, 26, 37, 38, 40], "assumpt": [2, 17, 22, 26, 38], "keep": [2, 4, 14, 23, 24], "zero": [2, 8, 11, 13, 14, 20, 24, 26, 27, 28, 34, 36, 38, 41], "numpi": [2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43], "background": [2, 5, 10, 25, 38], "detect": [2, 8, 18, 25, 29], "extract": [2, 11], "region": [2, 11], "area": [2, 11], "ratio": [2, 10, 11, 15, 20, 43], "factor": [2, 23, 24, 34, 38], "which": [2, 3, 4, 8, 9, 12, 13, 14, 15, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 43], "should": [2, 4, 8, 9, 11, 13, 14, 15, 20, 21, 22, 23, 24, 26, 29, 30, 38], "scale": [2, 11, 12, 22, 25, 34, 38], "within": [2, 4, 8, 9, 20, 22, 27, 29], "apertur": 2, "fraction": [2, 8, 11, 14, 17, 21, 22, 23, 24, 26, 28, 33, 38, 43], "expos": [2, 11], "mjd": [2, 20, 22], "refer": [2, 4, 5, 8, 9, 13, 14, 15, 17, 20, 22, 23, 35, 38], "most": [2, 4, 8, 9, 12, 13, 14, 16, 22, 26, 27, 29, 30, 36], "high": [2, 8, 15, 16, 17, 25, 26, 30, 38], "energi": [2, 5, 8, 9, 15, 22, 31, 37, 38, 43], "median": [2, 22, 30], "diff": [2, 17, 30, 38], "resolut": [2, 13, 14, 18, 19, 20, 22, 23, 24, 27, 28, 29, 30, 40, 43], "same": [2, 4, 11, 13, 14, 20, 22, 23, 25, 26, 27, 28, 29, 30, 33, 35, 37, 38, 43], "dimens": [2, 20, 40], "specifi": [2, 5, 8, 12, 13, 20, 22, 23, 24, 26, 27, 36, 37, 38, 40, 43], "width": [2, 13, 14, 23, 24, 28, 30, 33, 35, 37, 38, 39, 40], "user": [2, 4, 8, 10, 11, 13, 14, 15, 20, 22, 26, 27, 28, 30, 34, 41], "alreadi": [2, 15, 22, 26, 27, 29, 30], "sort": [2, 5, 8, 16, 17, 20, 23, 24, 27], "contain": [2, 4, 5, 8, 12, 15, 22, 23, 24, 26, 37, 40], "infinit": [2, 25, 26], "nan": 2, "point": [2, 3, 4, 11, 13, 14, 16, 20, 22, 23, 24, 26, 28, 29, 34, 35, 37, 38, 41], "your": [2, 3, 4, 8, 9, 13, 14, 22, 26, 27], "own": [2, 10, 22, 26], "risk": 2, "all": [2, 4, 5, 8, 9, 14, 15, 16, 20, 22, 23, 24, 26, 27, 28, 30, 34, 37, 41, 43], "lazili": 2, "evalu": [2, 11, 26, 29, 30], "countrat": [2, 22], "countrate_err": [2, 22], "_not_": 2, "store": [2, 4, 8, 13, 19, 20, 27, 37, 40], "memori": [2, 8], "everi": [2, 4, 21, 29, 30], "request": [2, 4, 8, 9], "record": [2, 22], "nicer": [2, 8, 9, 15, 16, 38], "instrument": [2, 7, 14, 16, 20, 22, 25, 28, 38, 42], "onboard": [2, 15, 20, 25], "The": [2, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 42], "full": [2, 8, 9, 13, 26, 37, 38, 43], "origin": [2, 4, 8, 18, 19, 20, 22, 27, 28, 31, 37, 43], "fit": [2, 4, 8, 9, 10, 19, 20, 21, 38, 42], "file": [2, 4, 5, 8, 9, 15, 19, 20, 40], "relev": [2, 4, 12, 15, 20, 22, 23, 24, 26, 35, 36, 37, 40], "intern": [2, 4, 9, 14, 22, 28], "ani": [2, 4, 8, 14, 20, 22, 26, 28, 33, 37, 38], "keyword": [2, 8, 19, 20, 22, 26, 27, 29], "argument": [2, 12, 13, 20, 22, 30, 37, 40, 43], "ignor": [2, 8, 22, 25, 26, 38], "ndarrai": [2, 14, 20, 26, 27], "midpoint": 2, "bin_lo": 2, "bin_hi": 2, "per": [2, 4, 14, 22, 28, 41], "counts_err": [2, 21, 22, 37], "meanrat": [2, 22, 28, 37, 38], "rate": [2, 5, 8, 11, 14, 16, 17, 18, 22, 28, 38], "meancount": [2, 21, 22], "n": [2, 11, 12, 13, 14, 18, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 41, 43], "int": [2, 8, 9, 16, 17, 18, 20, 21, 26, 27, 29, 30, 31, 34, 35], "number": [2, 8, 9, 13, 14, 17, 18, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 38, 41], "date": [2, 4, 22], "tstart": [2, 16, 17, 20, 22, 35], "86400": [2, 22], "give": [2, 11, 13, 14, 21, 22, 28, 29, 30, 37, 38, 43], "start": [2, 4, 5, 8, 11, 16, 20, 21, 22, 26, 27, 28, 30, 32, 33, 34, 35, 37, 38, 40], "observ": [2, 5, 7, 9, 11, 12, 15, 22, 26, 27, 30, 38], "tseg": [2, 17, 18, 20, 22, 30], "total": [2, 11, 14, 20, 22, 23, 24, 26, 27, 28], "durat": [2, 13, 20, 22], "string": [2, 4, 8, 12, 23, 24], "It": [2, 4, 5, 9, 11, 17, 20, 22, 23, 24, 25, 26, 27, 37, 38, 40], "propag": [2, 22], "spectrum": [2, 5, 6, 7, 8, 9, 15, 16, 19, 20, 22, 23, 24, 29, 30, 31, 32, 35], "detector_id": 2, "detector": [2, 15, 16, 22, 25], "recod": 2, "photon": [2, 5, 8, 13, 14, 15, 16, 17, 23, 24, 27, 28, 30, 34, 38], "xmm": [2, 9, 15], "chandra": 2, "analyze_lc_chunk": [2, 21, 22], "segment_s": [2, 5, 8, 15, 16, 18, 19, 25, 35, 38], "func": [2, 22, 38], "fraction_step": 2, "kwarg": [2, 27], "analyz": [2, 5, 9, 15, 38], "segment": [2, 5, 14, 18, 19, 23, 27, 28, 38], "length": [2, 4, 11, 13, 14, 16, 17, 20, 21, 22, 23, 24, 26, 27, 28, 30, 37, 38, 43], "accept": [2, 4, 8, 21, 22, 24, 26, 27], "singl": [2, 4, 11, 14, 22, 23, 24, 26, 27, 28, 31, 37, 38, 43], "plu": [2, 18, 26], "possibl": [2, 3, 4, 20, 22, 25, 26, 30, 42, 43], "addit": [2, 4, 5, 17, 25, 37, 40, 43], "return": [2, 11, 14, 16, 17, 21, 22, 26, 28, 29, 30, 32, 33, 38], "tupl": [2, 14, 20, 22, 28], "result": [2, 5, 9, 16, 17, 21, 26, 28, 29, 34, 38, 43], "where": [2, 4, 11, 14, 16, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 37, 38, 43], "both": [2, 3, 4, 5, 8, 12, 13, 21, 22, 24, 26, 28, 30, 33, 34, 38, 40], "start_tim": [2, 22], "boundari": [2, 26], "stop_tim": [2, 22], "element": [2, 21, 27], "step": [2, 4, 17, 20, 25, 26, 38], "less": [2, 4, 8, 13, 14, 38], "move": [2, 8], "window": [2, 5, 8, 9, 25, 27], "thi": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 42, 43], "between": [2, 4, 8, 13, 14, 17, 19, 22, 25, 26, 27, 29, 33, 38, 43], "5": [2, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 43], "shift": [2, 5, 13, 23], "half": [2, 8, 27], "present": [2, 9, 29], "pass": [2, 5, 13, 20, 22, 25, 26, 27, 30, 36, 37, 40, 43], "exampl": [2, 3, 4, 5, 6, 10, 11, 14, 19, 20, 22, 23, 24, 25, 26, 29, 37, 38, 40, 41, 42], "import": [2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "arang": [2, 11, 12, 13, 14, 17, 20, 21, 22, 27, 28, 29, 30, 31, 33], "zeros_lik": [2, 21, 28, 30], "lc": [2, 9, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 43], "mean_func": 2, "lambda": [2, 26, 30], "stop": [2, 8, 21, 22], "re": [2, 4, 5, 21, 25, 26, 34, 38], "len": [2, 13, 14, 17, 19, 21, 22, 26, 27, 28, 29, 30, 31, 34, 35, 41], "allclos": [2, 20], "apply_gti": [2, 8, 15, 22, 25, 38], "inplac": [2, 8, 25], "filter": [2, 15, 16, 17, 21, 22, 35, 37, 38, 43], "fall": [2, 22], "recalcul": [2, 30], "overwrit": 2, "new": [2, 4, 16, 18, 19, 22, 25, 26, 27, 30, 37, 43], "one": [2, 4, 5, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 36, 38], "apply_mask": [2, 15], "mask": [2, 21], "self": [2, 12, 22, 26, 30], "4": [2, 3, 4, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 41, 43], "nustar": [2, 7, 9, 16, 17, 20], "bubuattr": 2, "222": 2, "111": 2, "333": 2, "newlc0": 2, "newlc1": 2, "array_attr": 2, "extend": [2, 9, 19, 20, 26], "stingrayobject": 2, "specif": [2, 3, 4, 8, 14, 26, 31, 36, 37], "baselin": [2, 5, 21, 29, 30], "lam": 2, "p": [2, 12, 14, 18, 20, 26, 27, 28, 29, 30, 36], "niter": [2, 26], "offset_correct": 2, "account": [2, 4, 26, 35, 37, 39, 43], "smooth": [2, 21, 37], "larger": [2, 13, 14, 17, 22, 26, 28, 30, 38], "stiffer": 2, "1e2": 2, "1e9": 2, "asymmetri": 2, "smaller": [2, 4, 22, 25, 26], "more": [2, 4, 8, 12, 13, 14, 15, 16, 17, 20, 22, 23, 24, 25, 26, 27, 28, 31, 36, 37, 38, 40, 43], "horizont": [2, 33, 34], "001": [2, 13, 15, 16, 17, 18, 21, 25, 30, 32, 38], "necessari": [2, 4, 9], "align": [2, 4, 20], "run": [2, 4, 9, 11, 17, 26, 27, 38], "goe": 2, "below": [2, 4, 8, 9, 10, 13, 16, 17, 26, 27, 31, 34, 35, 39, 41, 42], "set": [2, 4, 5, 8, 9, 10, 12, 15, 19, 22, 23, 24, 26, 27, 29, 30, 32, 35, 37, 40, 42, 43], "done": [2, 4, 8, 9, 11, 13, 14, 15, 16, 17, 21, 22, 26, 28, 37, 43], "so": [2, 4, 13, 14, 17, 20, 21, 22, 25, 26, 27, 38], "middl": 2, "nois": [2, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 37, 38, 42, 43], "bexvar": [2, 5, 8], "find": [2, 9, 19, 22, 26, 30, 31, 34, 35], "sampl": [2, 5, 8, 11, 14, 15, 23, 24, 25, 26, 28, 29, 37, 38, 41, 43], "bayesian": [2, 9, 10, 11], "excess": [2, 21], "varienc": 2, "requir": [2, 4, 9, 11, 13, 21, 22, 26, 33], "its": [2, 4, 11, 22, 23, 24, 25, 26, 29, 30, 33, 37, 38, 43], "lc_bexvar": 2, "check_lightcurv": [2, 22], "variou": [2, 4, 5, 8, 9, 20, 26, 37, 41], "check": [2, 4, 5, 7, 8, 9, 14, 15, 23, 24, 26, 27, 28], "slow": [2, 9, 23, 24], "sure": [2, 4, 9, 22, 25, 26, 27, 31], "about": [2, 4, 8, 22, 25, 26, 27, 37], "estimate_chunk_length": [2, 22], "arg": 2, "deprec": [2, 8], "alia": 2, "estimate_segment_s": 2, "min_total_count": [2, 22], "100": [2, 4, 11, 12, 14, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 33, 38, 41], "min_time_bin": 2, "reason": [2, 4, 17, 23, 24, 26, 38], "chunk": [2, 22, 38], "choos": [2, 18, 29, 30, 38], "given": [2, 8, 9, 11, 13, 14, 19, 20, 22, 26, 27, 29, 33, 34, 39, 43], "minimum": [2, 4, 8, 22, 23, 24, 29, 30], "condit": [2, 7, 22, 26], "satisfi": [2, 11, 22], "150": [2, 17, 22, 26], "slightli": [2, 8, 15, 22, 26, 30, 38], "complex": [2, 14, 22, 23, 26, 27, 32, 33, 38], "1000": [2, 12, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 33], "random": [2, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 37, 43], "size": [2, 4, 11, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 32, 33, 34, 38, 39], "min_total_bin": [2, 22], "40": [2, 12, 13, 14, 17, 20, 22, 26, 38, 40], "8": [2, 4, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 33, 34, 35, 37, 38, 41], "static": [2, 20, 40], "from_astropy_t": [2, 20], "t": [2, 3, 4, 9, 22, 23, 24, 26, 27, 29, 30, 34], "creat": [2, 4, 5, 8, 9, 12, 18, 19, 21, 26, 29, 30, 34, 35, 36, 38, 41], "tabl": [2, 8, 20, 38], "least": [2, 5, 16, 17, 22, 23, 24, 26, 27, 29, 30], "column": [2, 19, 20, 38], "name": [2, 4, 20, 27, 36, 37, 38, 40, 43], "like": [2, 4, 5, 9, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 37, 43], "main_array_attr": 2, "rest": [2, 8, 20, 36], "form": [2, 4, 11, 17, 22, 26, 32, 33, 34, 40], "while": [2, 5, 16, 22, 25, 26, 28, 30, 36, 43], "attr": 2, "meta": [2, 20], "strongli": 2, "advis": 2, "standard": [2, 8, 10, 16, 20, 22, 25, 26, 30, 33, 37, 43], "want": [2, 4, 9, 13, 22, 23, 24, 26, 30, 31], "pi": [2, 12, 13, 14, 15, 18, 20, 23, 24, 27, 28, 29, 30, 32, 34, 38], "etc": [2, 4, 14, 16, 20, 22, 28, 37], "from_astropy_timeseri": [2, 20, 22], "stingraytimeseri": 2, "timeseri": [2, 8, 20, 22, 27], "call": [2, 4, 11, 12, 13, 20, 22, 25, 26, 37, 41], "dictionari": [2, 26], "from_lightkurv": 2, "lk": 2, "lightkurv": [2, 5, 8], "join": [2, 4, 5, 9, 15, 16, 22, 25], "two": [2, 4, 5, 15, 16, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36, 37, 40, 41], "union": 2, "non": [2, 7, 8, 12, 14, 23, 24, 38], "overlap": [2, 14, 20, 22, 27, 38], "part": [2, 8, 13, 14, 20, 22, 23, 24, 25, 27, 32, 34, 38], "individu": [2, 4, 22], "case": [2, 4, 8, 13, 14, 15, 17, 20, 22, 25, 26, 27, 28, 29, 30, 35, 37, 38, 43], "also": [2, 4, 8, 9, 10, 12, 13, 14, 15, 16, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 34, 37, 40, 43], "ideal": 2, "suppos": 2, "lc_new": [2, 20, 22, 37, 43], "time1": 2, "15": [2, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 34, 35, 37, 38, 39], "count1": 2, "300": [2, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 33, 38], "400": [2, 11, 17, 19, 26, 36, 37], "time2": 2, "20": [2, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 26, 27, 28, 34, 35, 37, 38, 39, 41], "25": [2, 12, 13, 14, 18, 20, 22, 26, 27, 28, 30, 34, 35, 37, 38], "30": [2, 12, 13, 18, 20, 22, 24, 25, 26, 27, 30, 38], "count2": 2, "600": [2, 20, 22, 34], "1200": 2, "800": [2, 19, 20], "lc1": [2, 13, 14, 23, 34], "lc2": [2, 13, 14, 23, 34], "make_lightcurv": [2, 17, 19, 22], "toa": [2, 19], "use_hist": 2, "out": [2, 3, 4, 14, 16, 20, 23, 24, 26, 27, 28, 32, 38, 43], "arriv": [2, 5, 8, 13, 19, 29, 30], "than": [2, 4, 14, 15, 17, 22, 25, 26, 27, 28, 29, 30, 38], "nativ": [2, 22], "taken": 2, "either": [2, 4, 23, 24, 26, 27], "first": [2, 4, 9, 12, 14, 15, 19, 20, 22, 23, 24, 26, 28, 29, 31, 34, 35, 37, 38, 40], "last": [2, 14, 20, 22, 26, 28, 34], "divis": [2, 8, 22], "integ": [2, 8, 9, 22, 23, 24, 43], "drop": [2, 8, 15, 22], "avail": [2, 4, 8, 9, 12, 36, 37, 38, 40, 41], "histogram": [2, 17, 30, 31], "instead": [2, 4, 8, 15, 20, 22, 26], "bincount": [2, 31], "might": [2, 4, 9, 14, 15, 17, 20, 22, 25, 26, 36, 38], "advantag": [2, 9], "veri": [2, 4, 8, 9, 13, 15, 17, 20, 21, 22, 26, 29, 30, 31], "short": [2, 4, 25, 26], "dataset": [2, 5, 6, 8, 9, 11, 16, 23, 25, 26, 42], "meta_attr": 2, "plot": [2, 5, 6, 9, 11, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41, 43], "witherror": 2, "label": [2, 12, 13, 14, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38], "axi": [2, 13, 14, 18, 19, 22, 23, 24, 28, 30, 33, 34, 35, 38, 39], "titl": [2, 12, 16, 17, 18, 22, 27, 32, 34, 35, 38, 41, 43], "marker": [2, 22], "save": [2, 8, 20, 22, 37, 40], "filenam": [2, 20, 22, 26], "matplotlib": [2, 4, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43], "graph": 2, "y": [2, 13, 14, 23, 24, 26, 27, 28, 33, 34, 38, 39], "bar": [2, 8, 9, 11, 25, 27, 29, 38], "boolean": [2, 22, 23, 24, 27], "whether": [2, 4, 22, 23, 24, 27], "errorbar": [2, 14, 21, 26, 35, 37, 38], "xlabel": [2, 11, 15, 17, 18, 20, 21, 22, 25, 27, 29, 30, 31, 32, 33, 34, 35, 38, 41, 43], "ylabel": [2, 11, 15, 17, 18, 20, 21, 22, 25, 27, 29, 30, 31, 32, 33, 34, 35, 38, 41, 43], "properti": [2, 4, 5, 12, 16, 21, 26, 27, 37, 38, 43], "figur": [2, 15, 16, 17, 18, 20, 21, 22, 26, 27, 29, 30, 33, 34, 35, 38], "xmin": [2, 22], "xmax": [2, 22], "ymin": [2, 22], "ymax": [2, 22], "pyplot": [2, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43], "line": [2, 4, 8, 13, 15, 17, 25, 26, 27, 29, 31, 33, 34, 35, 36, 37, 38, 40], "style": [2, 18, 19, 22, 23, 24], "color": [2, 13, 14, 15, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 38], "combin": [2, 4, 22, 27], "format": [2, 4, 5, 8, 17, 18, 19, 22, 23, 27, 30, 40], "bo": 2, "blue": [2, 13, 14, 23, 24, 25, 28, 29], "circl": 2, "see": [2, 4, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 35, 37, 38], "imag": [2, 19, 20, 23, 24, 39], "depend": [2, 5, 22, 26, 27, 28, 37, 43], "classmethod": 2, "fmt": [2, 8, 14, 15, 21, 25, 26, 35, 38], "format_": 2, "gauss": [2, 16, 22, 27, 28], "fits_kwarg": 2, "support": [2, 3, 6, 8, 9, 12, 13, 14, 20, 22, 26, 27, 43], "pickl": [2, 5, 8, 37, 40], "recommend": [2, 4, 9, 14, 20, 27, 28, 38], "long": [2, 4, 7, 13, 14, 15, 17, 22, 25, 27, 28], "term": [2, 15, 17, 20, 25, 27, 29], "storag": 2, "hea": [2, 15, 20, 38], "heasarc": [2, 9], "compat": [2, 5, 8, 9, 15, 26, 43], "writer": [2, 4, 20], "ascii": [2, 8, 20, 38], "ecsv": [2, 8, 20], "hdf5": [2, 8, 20], "need": [2, 4, 8, 9, 11, 13, 14, 15, 17, 20, 22, 23, 24, 26, 27, 29, 36, 37, 38, 43], "interfac": [2, 8, 9, 26], "enhanc": [2, 4, 20, 43], "csv": [2, 20, 27, 38], "serial": 2, "metadata": [2, 20], "signific": [2, 4, 26, 29], "loss": [2, 27], "inform": [2, 4, 8, 12, 16, 22, 26, 27, 30], "lose": [2, 20], "care": [2, 9, 20, 25, 26, 30], "path": 2, "just": [2, 4, 8, 9, 21, 25, 26, 27, 30, 38], "becaus": [2, 3, 14, 15, 21, 22, 26, 28, 29, 30], "peopl": [2, 38], "gaussian": [2, 8, 9, 14, 21, 22, 26, 28, 29, 42], "document": [2, 11, 14, 15, 19, 22, 26], "lcurve_from_fit": 2, "onli": [2, 4, 5, 11, 13, 14, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 38, 43], "ogip": [2, 20, 25], "rebin": [2, 5, 8, 14, 15, 22, 23, 27, 28, 34, 35, 38], "dt_new": [2, 18, 19], "f": [2, 4, 5, 14, 17, 19, 20, 28, 29, 30, 32, 33, 36, 38], "sum": [2, 9, 17, 22, 26, 27, 30, 31, 33, 38], "multipl": [2, 4, 14, 16, 17, 22, 27, 28, 31, 37, 43], "previou": [2, 9, 14, 22, 28], "awar": [2, 22], "cut": [2, 17, 22, 26, 30, 35], "off": [2, 22, 25, 35], "left": [2, 14, 19, 22, 27, 28, 30, 33, 38], "over": [2, 22, 26, 27, 29, 30, 38, 40], "old": [2, 22], "substitut": 2, "revers": [2, 22], "increas": [2, 15, 17, 21, 25, 27], "decreas": [2, 17], "get": [2, 11, 14, 15, 22, 25, 26, 28, 30, 31, 32, 34, 35, 37, 38, 39], "chang": [2, 4, 18, 22, 26, 28, 37, 38, 40, 43], "accordingli": [2, 8, 22], "200": [2, 13, 14, 15, 21, 22, 26, 27, 28, 29, 30, 35], "sort_count": [2, 22], "accord": [2, 11, 22, 27, 30, 34, 35], "split": [2, 5, 29, 31, 38], "min_gap": [2, 22], "min_point": [2, 22], "gap": [2, 6, 22], "sometim": [2, 8, 22, 38], "abl": [2, 4, 16], "separ": [2, 4, 13, 15, 22], "evenli": [2, 22, 25, 27], "along": [2, 5, 17, 22, 26, 38, 39], "those": [2, 9, 20, 22, 26, 27], "allow": [2, 4, 8, 10, 14, 20, 23, 24, 26, 28, 37, 40], "do": [2, 4, 9, 14, 15, 20, 22, 25, 26, 27, 28, 29, 30, 37, 38, 43], "produc": [2, 5, 8, 15, 17, 18, 22, 26, 30, 37, 43], "contigu": [2, 8, 22], "identifi": [2, 11], "fewer": 2, "lc_split": [2, 22], "6": [2, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 41, 43], "7": [2, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 35, 37, 38, 41], "11": [2, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 30, 35, 37, 38], "12": [2, 9, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 35, 37, 38], "13": [2, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 25, 26, 27, 28, 30, 35, 37, 38], "rand": [2, 20, 22, 23, 24], "shape": [2, 18, 20, 22, 26, 27, 30, 31, 32, 34, 36, 37, 38, 40, 43], "split_lc": 2, "split_by_gti": [2, 22], "continu": [2, 3, 8, 21, 29, 30], "list_of_lc": 2, "to_astropy_t": [2, 20], "convert": [2, 8, 9, 13, 20, 22, 23, 24, 29, 40], "to_astropy_timeseri": [2, 20, 22], "to_lightkurv": [2, 22], "featur": [2, 4, 5, 7, 22, 34, 43], "instal": [2, 4, 5, 26, 38], "pip": [2, 27, 38], "importerror": [2, 4, 26], "rais": [2, 4, 8, 22, 26], "packag": [2, 4, 8, 9, 11, 12, 13, 22, 26, 38, 41], "truncat": [2, 5, 9, 37, 43], "index": [2, 5, 9, 19, 21, 26, 36], "take": [2, 4, 9, 11, 12, 22, 23, 24, 26, 27, 33, 34, 37, 38, 40, 41], "befor": [2, 4, 9, 12, 14, 17, 20, 22, 26, 27, 28, 34, 37], "after": [2, 14, 16, 20, 22, 27, 28, 34, 35], "end": [2, 11, 20, 22, 26, 27, 29, 30, 34, 37, 40], "exclus": 2, "treat": [2, 20, 33], "actual": [2, 5, 25, 26, 30], "9": [2, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 35, 36, 37, 38], "50": [2, 11, 12, 13, 14, 18, 20, 21, 22, 26, 29, 30, 38, 40, 41], "60": [2, 17, 22, 25, 26], "70": [2, 20, 22, 26, 27, 41], "80": [2, 14, 16, 17, 20, 22, 26, 34, 38, 41], "90": [2, 22, 26, 27], "ncount": [2, 16, 20], "high_precis": 2, "ephem": 2, "timeref": [2, 20], "timesi": [2, 20], "gener": [2, 4, 5, 8, 10, 11, 13, 14, 16, 20, 22, 26, 27, 28, 29, 33, 40, 42, 43], "associ": [2, 14, 22, 23, 24, 28], "commonli": [2, 9], "occur": [2, 26], "when": [2, 4, 8, 9, 13, 15, 20, 22, 23, 24, 25, 26, 27, 29, 30, 37, 43], "similar": [2, 12, 13, 22, 23, 26, 27, 30, 34, 43], "kev": [2, 20, 34, 35, 38], "desir": [2, 27, 43], "channel": [2, 4, 9, 14, 15, 23, 34, 35], "annot": 2, "precis": [2, 16, 30], "float128": [2, 20], "deal": [2, 9, 27, 37, 43], "fast": [2, 8, 23, 24, 30], "epic": [2, 9], "pn": 2, "solarsystem": [2, 20], "system": [2, 4, 8, 9, 15, 20, 26, 27], "tdb": [2, 20], "jpl": 2, "ephemeri": 2, "barycent": [2, 15, 20], "de430": 2, "apply_deadtim": [2, 16], "deadtim": [2, 15, 16, 17], "get_deadtime_mask": 2, "new_event_list": 2, "additional_output": 2, "return_al": 2, "detail": [2, 4, 12, 13, 14, 17, 20, 25, 26, 27, 43], "05": [2, 12, 13, 14, 16, 17, 25, 26, 27], "07": [2, 12, 13, 17], "08": [2, 11, 13, 20, 38], "filt_ev": 2, "retval": 2, "verbos": [2, 4, 16], "expect": [2, 4, 14, 17, 22, 25, 26, 28, 29, 30, 34, 37], "evt": [2, 15, 25, 38], "newev0": 2, "newev1": 2, "filter_energy_rang": [2, 38], "energy_rang": 2, "use_pi": 2, "place": [2, 26], "modifi": [2, 20, 22, 26], "copi": [2, 3, 4, 22, 25, 26, 30, 33, 38], "e1": [2, 40], "e2": 2, "from_lc": [2, 8, 17, 20], "creation": [2, 8, 22, 27, 37], "ev": [2, 16, 20], "empti": [2, 22], "cross": [2, 6, 8, 9, 20, 34, 35], "append": [2, 8, 20, 34], "remain": [2, 34], "were": [2, 8, 25, 26, 28], "arbitrari": 2, "stoke": 2, "polarimetr": 2, "convent": [2, 39], "being": [2, 22, 23, 24, 28], "differ": [2, 4, 5, 7, 8, 9, 12, 14, 15, 17, 20, 22, 26, 29, 34, 35, 36, 37, 38, 41], "final": [2, 4, 9, 20, 21, 26, 35, 37, 38, 40, 43], "rougher": 2, "ev_new": 2, "well": [2, 4, 9, 10, 14, 15, 22, 25, 26, 27, 30, 34], "some": [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 18, 20, 21, 22, 25, 27, 34, 35, 37, 38, 39, 40, 41], "recogn": 2, "reconstruct": 2, "dict": 2, "further": [2, 4, 8, 11, 26, 27, 38], "load_events_and_gti": 2, "heasoft": [2, 5, 6, 15], "simulate_energi": [2, 20], "use_splin": 2, "assign": [2, 20, 31, 37], "versu": [2, 17, 38], "flux": [2, 18, 21, 22, 25, 27, 29, 31, 33, 43], "across": [2, 29, 40], "interpret": [2, 9, 20, 38, 43], "center": [2, 25, 27, 36], "longer": [2, 4, 5, 38], "proper": [2, 9, 20, 21, 25], "edg": 2, "similarli": [2, 22, 23, 24, 26], "uniformli": [2, 8, 14, 28, 33, 38], "spectra": [2, 8, 9, 12, 16, 26, 43], "exact": [2, 17], "simulate_tim": [2, 20, 30], "bin_tim": [2, 14, 28, 29, 30, 38], "randomli": 2, "invers": [2, 14, 20, 26, 30, 43], "cdf": [2, 20, 43], "prefer": 2, "intrins": [2, 11, 21], "add": [2, 4, 8, 9, 13, 14, 20, 22, 26, 27, 28, 29, 34, 35, 37, 38], "them": [2, 4, 11, 14, 22, 23, 24, 27, 35, 37, 38, 40], "approxim": [2, 17, 21, 23, 24, 26, 27, 29, 30, 31, 34, 38], "spline": [2, 24], "avoid": [2, 4, 8, 14, 25, 26, 27, 28, 34], "effect": [2, 7, 11, 15, 26, 27, 43], "maintain": [2, 25, 30, 43], "backward": [2, 43], "shallow": [2, 30], "But": [2, 22, 30], "been": [2, 4, 9, 14, 16, 22, 23, 27, 28, 34, 43], "alter": [2, 21], "let": [2, 5, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 33, 38], "": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 43], "In": [2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 26, 27, 28, 29, 30, 32, 35, 37, 38, 43], "to_lc": [2, 15, 16, 20, 25, 38], "to_lc_it": 2, "lc_gen": 2, "to_lc_list": 2, "lc_list": 2, "containig": 2, "importantli": 2, "variant": 2, "power": [2, 7, 8, 9, 14, 15, 16, 23, 25, 29, 30, 38], "data1": [2, 23], "data2": [2, 23], "norm": [2, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 37, 38], "frac": [2, 14, 17, 20, 23, 24, 27, 28, 29, 30, 38], "power_typ": [2, 23, 24], "fullspec": [2, 23, 24], "save_al": 2, "classical_signific": 2, "threshold": [2, 9, 29, 42], "trial_correct": 2, "comput": [2, 11, 14, 22, 23, 24, 26, 27, 31, 34, 35], "classic": [2, 34], "underli": [2, 26, 38], "follow": [2, 3, 4, 8, 9, 11, 13, 14, 17, 20, 22, 23, 26, 27, 28, 29, 30, 31, 32, 34, 36, 39, 43], "chi": [2, 26, 27, 29, 30], "squar": [2, 8, 9, 14, 21, 23, 24, 25, 26, 27, 28, 42], "2m": 2, "degre": [2, 26, 27, 29, 30], "freedom": [2, 26, 27, 30], "m": [2, 5, 14, 16, 17, 23, 24, 26, 27, 28, 29, 30, 38], "fulfil": 2, "leahi": [2, 8, 9, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 30, 37, 38], "normal": [2, 4, 5, 8, 9, 11, 12, 14, 19, 20, 21, 22, 23, 24, 26, 32, 33, 36, 38, 41], "There": [2, 4, 9, 13, 14, 20, 22, 23, 24, 26, 28, 37], "variabl": [2, 4, 5, 8, 9, 11, 15, 18, 22, 25, 26, 34, 35, 38, 43], "period": [2, 8, 9, 12, 15, 16, 18, 25, 26, 27, 29, 30, 42], "signal": [2, 8, 12, 13, 14, 18, 23, 24, 26, 27, 28, 29, 30, 34, 35, 38, 41, 42], "determin": [2, 4, 23, 24], "aperiod": 2, "larg": [2, 8, 9, 20, 21, 22, 26, 27, 38], "spuriou": [2, 30], "posit": [2, 4, 12, 14, 20, 22, 23, 24, 26, 28, 33, 35, 43], "pile": 2, "up": [2, 4, 9, 14, 15, 22, 26, 30, 38, 40, 43], "By": [2, 12, 18, 22, 26, 37, 40], "numer": [2, 9, 17], "question": [2, 4, 26], "respect": [2, 4, 17, 22, 30, 38], "trial": [2, 29, 30], "frequenc": [2, 5, 9, 12, 13, 15, 17, 19, 23, 24, 25, 26, 29, 32, 33, 35, 36, 38, 41, 42, 43], "report": [2, 9], "potenti": 2, "flag": 2, "though": [2, 26, 31], "applic": [2, 23, 24, 26, 35, 41, 42], "someth": [2, 22, 25, 26, 38], "meaning": [2, 26, 29], "pval": [2, 26, 29], "vaughan": [2, 14, 21, 26, 38], "nowak": [2, 14], "1996": 2, "measur": [2, 8, 11, 14, 17, 21, 22, 25, 26, 29, 38], "linear": [2, 14], "correl": [2, 5, 8, 9, 11, 12, 14], "simultan": [2, 14], "coh": [2, 14, 38], "http": [2, 4, 9, 12, 13, 22, 23, 24, 27], "iopscienc": 2, "iop": 2, "org": [2, 4, 12, 13, 22], "articl": 2, "1086": [2, 27], "310430": 2, "pdf": [2, 12, 26, 43], "from_ev": [2, 8, 14, 15, 16, 17, 25, 28, 38], "events1": [2, 14], "events2": [2, 14], "silent": [2, 17], "use_common_mean": [2, 38], "intermedi": 2, "nyquist": [2, 25, 27, 38], "periodogram": [2, 7, 8, 9, 15, 16, 22, 26, 29, 30], "ab": [2, 14, 23, 24, 27, 28, 38, 41], "absolut": [2, 4, 8, 9, 14, 23, 24, 27, 28, 38], "rm": [2, 5, 6, 8, 9, 14, 23, 24, 28, 29, 30, 33, 35, 36, 37, 43], "83": [2, 20, 22, 26, 41], "unnorm": [2, 8, 21, 27], "alston": 2, "2013": [2, 26], "here": [2, 4, 5, 9, 11, 12, 14, 15, 17, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 34, 35, 37, 38, 43], "basi": [2, 8, 25], "neg": [2, 12, 14, 22, 23, 24, 26, 28, 34, 35], "silenc": 2, "progress": [2, 9, 43], "real": [2, 5, 14, 15, 23, 24, 27, 32, 33, 34, 38], "could": [2, 4, 14, 17, 27, 28], "throw": 2, "regard": [2, 4], "don": [2, 4, 22], "from_lc_iter": [2, 8], "iter_lc1": 2, "iter_lc2": 2, "cs_all": 2, "output": [2, 9, 13, 17, 20, 22, 26, 34, 37, 43], "from_lightcurv": [2, 8, 14, 17, 28, 37], "from_time_arrai": [2, 8], "times1": [2, 14], "times2": [2, 14], "gti0": 2, "gti1": 2, "initial_check": 2, "initi": [2, 8, 14, 20, 23, 24, 28, 34, 37, 38, 39, 40, 43], "bad": [2, 15, 25], "ev1": [2, 16, 20, 25], "ev2": [2, 16, 20, 25], "c": [2, 8, 9, 13, 14, 15, 16, 20, 22, 25, 26, 29, 30, 34, 35, 38, 41], "ac": [2, 13], "typeerror": [2, 22], "traceback": [2, 22], "recent": [2, 9, 22], "valid": [2, 13, 15, 20, 27], "valueerror": [2, 4], "blabla": 2, "without": [2, 4, 8, 11, 13, 16, 22, 26, 27], "pleas": [2, 3, 4, 8, 9, 15, 20, 22, 26, 27], "phase_lag": [2, 14], "phase": [2, 5, 8, 9, 12, 13, 23, 27, 28, 30, 34, 35, 38, 42], "lag": [2, 5, 6, 8, 9, 12, 15, 25, 35, 37], "delai": [2, 30, 34, 35, 37, 43], "cycl": [2, 41], "ax": [2, 13, 14, 17, 23, 24, 26, 27, 28, 30, 33, 34, 35, 38, 40], "amplitud": [2, 7, 8, 9, 13, 14, 15, 18, 21, 23, 24, 26, 27, 28, 29, 30, 33, 38, 41, 43], "v": [2, 14, 27, 38], "fill": [2, 22], "df": [2, 14, 18, 19, 23, 24, 26, 27, 28, 29, 30, 35], "bin_c": 2, "subclass": [2, 26], "newli": [2, 9], "too": [2, 17, 21, 22, 26], "rebin_log": [2, 14, 15, 25, 28, 37, 38], "01": [2, 11, 12, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 30, 38], "logarithm": [2, 5, 15], "nu_j": 2, "nu_": 2, "j": [2, 24, 26, 27, 29, 30, 38, 39], "steer": 2, "new_spec": 2, "time_lag": [2, 13, 14, 35, 38], "phi": 2, "math": [2, 21, 30], "tau": [2, 17], "nu": [2, 27, 30], "to_norm": 2, "instanc": [2, 4, 11, 26], "popul": 2, "transform": [2, 5, 14, 22, 23, 24, 25, 26, 27, 28, 43], "scipi": [2, 4, 9, 10, 13, 17, 21, 23, 24, 26, 27, 33, 34, 41], "fft": [2, 8, 9, 27, 29, 30, 32, 33, 37, 41, 43], "sign": [2, 8], "band": [2, 8, 14, 23, 27, 38], "interest": [2, 4, 8, 14, 22, 23, 25, 29, 36, 38], "among": 2, "complet": [2, 11, 27], "magnitud": [2, 12, 23, 24, 38, 41], "OR": [2, 27], "construct": [2, 4, 5, 9, 23, 24, 37], "skip": [2, 4, 22, 23, 24, 27], "speed": [2, 9, 23, 24], "trust": [2, 25], "freq": [2, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 37, 38, 41], "mid": [2, 14, 17, 20, 23, 24, 25, 26, 27, 28, 38], "power_err": [2, 23, 24, 27], "sqrt": [2, 14, 21, 23, 24, 27, 28, 33, 38], "realiz": [2, 23, 24, 26, 27], "k": [2, 17, 22, 23, 25, 26, 27, 29, 30, 33, 38], "scheme": [2, 23, 27], "nphots1": [2, 14, 23, 28], "nphots2": [2, 14, 23], "definit": [2, 26, 29, 30, 33], "_initialize_empti": 2, "_initialize_from_any_input": 2, "try": [2, 4, 9, 12, 14, 19, 20, 22, 25, 26, 27, 28, 29, 30, 32, 38], "understand": [2, 11, 26, 43], "__init__": [2, 4, 26, 30, 38], "base": [2, 4, 8, 10, 16, 18, 26, 33, 34, 38, 43], "powerspectrum_from_xxxx": 2, "_normalize_crossspectrum": 2, "unnorm_pow": [2, 25, 27], "nd": [2, 20], "co": [2, 16, 30], "imaginari": [2, 8, 14, 23, 24, 27, 32, 33, 38], "_rms_error": 2, "strictli": [2, 29, 42], "absenc": 2, "r": [2, 5, 11, 15, 17, 20, 25, 27, 29, 30, 31, 32, 33, 34, 35, 38, 39], "delta": [2, 11, 22, 27, 30, 35, 43], "delta_rm": 2, "ones": [2, 11, 22], "compute_rm": [2, 8], "min_freq": [2, 19, 23, 24], "max_freq": [2, 19, 23, 24, 25, 26], "poisson_noise_level": 2, "white_noise_offset": [2, 8], "bound": [2, 22, 26, 30], "rms_err": 2, "level": [2, 4, 14, 15, 16, 17, 27, 28, 34, 38], "pd": [2, 8, 15, 16, 17, 25, 27, 37, 38], "poissoin_noise_level": 2, "idealcas": 2, "normalis": 2, "outsid": [2, 4, 22], "subtract": [2, 5, 9, 23, 24, 25, 28, 38], "white": [2, 15, 16, 26, 29], "tso": 2, "intersect": 2, "caus": [2, 26, 27, 34], "happen": [2, 8, 25, 26], "iter_lc": 2, "collect": [2, 14, 28], "from_panda": 2, "datafram": 2, "panda": [2, 8, 27], "from_xarrai": 2, "xarrai": [2, 8], "get_meta_dict": 2, "modulation_upper_limit": 2, "fmin": 2, "fmax": 2, "95": [2, 7, 20, 22, 26], "limit": [2, 8, 17, 25, 27], "sinusoid": [2, 18, 29, 30], "modul": [2, 4, 8, 9, 11, 13, 17, 18, 22, 26, 29, 38, 39, 43], "To": [2, 4, 8, 9, 13, 15, 19, 20, 26, 34, 35, 37, 38, 39], "describ": [2, 3, 4, 11, 16, 20, 22, 26, 30, 36, 37, 38], "overlin": [2, 21, 30], "sin": [2, 12, 13, 14, 18, 23, 24, 27, 28, 29, 30], "harmon": [2, 25, 27, 30], "sum_l": 2, "a_l": 2, "lx": 2, "equival": [2, 14, 20, 22, 26, 28, 38], "stat": [2, 8, 26, 27, 29, 30], "power_upper_limit": 2, "amplitude_upper_limit": 2, "formula": [2, 23, 24, 27, 30, 38, 39], "anoth": [2, 4, 5, 9, 17, 22, 23, 27, 38], "search": [2, 8, 9, 10, 16, 42], "nonzero": 2, "maximum": [2, 4, 9, 10, 12, 18, 19, 23, 24, 25, 27, 29, 30, 38], "pmea": 2, "probabl": [2, 9, 17, 19, 20, 26, 29, 31, 33], "hz": [2, 12, 13, 14, 15, 17, 18, 19, 23, 24, 25, 27, 28, 29, 30, 34, 35, 38], "100000": [2, 26], "nphot": [2, 24, 27], "30000": 2, "99": [2, 20, 22], "1016": [2, 20], "reader": [2, 20], "dealt": 2, "box": 2, "With": [2, 17, 38, 43], "whose": [2, 22, 25, 30, 34], "variablenam": 2, "obj": 2, "to_panda": 2, "to_xarrai": 2, "normali": [2, 27], "choic": [2, 26, 27, 30], "overrid": 2, "especi": 2, "compris": 2, "And": [2, 5, 9, 26], "finit": [2, 27], "equat": [2, 29], "bendat": 2, "piersol": 2, "2011": 2, "__": [2, 4, 22, 23, 24], "lag_err": 2, "would": [2, 4, 20, 25, 26, 30, 31, 34, 35, 37, 38], "wavelength": [2, 38], "compar": [2, 5, 9, 17, 20, 26, 29], "lost": [2, 22, 27], "introduc": [2, 8, 22, 26, 27, 40], "artifact": 2, "show": [2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 19, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 42, 43], "batch": 2, "execut": [2, 4, 27, 30], "mani": [2, 4, 5, 6, 8, 20, 25, 26, 28, 29, 42], "pdss": [2, 16], "ram": 2, "medium": 2, "down": [2, 26], "wai": [2, 3, 4, 6, 9, 13, 14, 15, 20, 22, 23, 24, 26, 27, 28, 30, 37, 38, 40, 43], "select": [2, 4, 20, 27], "large_data": 2, "dynamicalpowerspectrum": [2, 8, 15, 18, 19], "rebin_frequ": [2, 18, 19], "df_new": [2, 18, 19], "oper": [2, 4, 5, 9, 14, 20, 25, 26, 30], "replac": [2, 26, 27], "exist": [2, 4, 8, 21, 22, 25, 26], "dyn_p": [2, 18, 19], "rebin_tim": [2, 18, 19], "time_new": 2, "dynspec_new": 2, "trace_maximum": [2, 18, 19], "max_posit": 2, "often": [2, 16, 22, 25, 26, 27], "spectrogram": 2, "divid": [2, 12, 14, 26, 28, 38, 41], "matrix": [2, 8, 18, 19, 26], "trace": [2, 5], "quasi": [2, 9, 15, 26], "whatev": 2, "mode": [2, 5, 29], "doc": [2, 4, 9, 13, 22, 23, 24], "varianc": [2, 8, 21, 28, 29], "perfect": [2, 8, 17], "anticorrel": [2, 8], "gaskel": 2, "peterson": 2, "1987": [2, 30], "gardner": [2, 8], "19": [2, 12, 13, 14, 18, 19, 20, 22, 26, 27, 28, 30, 34, 37, 38, 39], "html": [2, 9, 13, 23, 24], "corr": [2, 13], "against": [2, 12], "time_shift": [2, 13, 22], "auto": [2, 8, 18, 19], "cal_timeshift": [2, 13], "correlation_lag": 2, "version": [2, 3, 4, 8, 26, 38, 43], "max": [2, 13, 17, 18, 19, 22, 28, 30, 33, 34, 41], "alwai": [2, 3, 4, 9, 13, 17, 20, 26, 38], "fad": [2, 8, 15, 16], "smoothing_alg": [2, 16], "smoothing_length": [2, 16], "toler": [2, 8, 16, 22], "strict": [2, 16], "output_fil": 2, "return_object": 2, "bachetti": [2, 8, 16, 27], "huppenkothen": [2, 3, 8, 16, 26, 27], "apj": [2, 14, 16, 28], "853l": [2, 16], "21": [2, 12, 13, 14, 16, 18, 19, 20, 22, 26, 27, 32, 37, 38, 39], "independ": [2, 16, 27, 29, 30, 37, 38, 43], "respons": [2, 9, 25, 38, 41], "paper": [2, 9, 17, 27, 38], "caveat": 2, "talk": [2, 4, 9, 17, 18, 19, 22, 23, 24, 25], "enough": [2, 4, 16, 29], "better": [2, 4, 13, 17, 19, 20, 27, 30], "content": [2, 5, 43], "pds1": [2, 16], "pds2": [2, 16], "cospectrum": [2, 15, 16], "ptot": [2, 16], "kei": 2, "abov": [2, 5, 9, 14, 16, 20, 22, 26, 27, 30, 34, 35, 37, 38, 40], "averagepowerspectrum": 2, "averagecrossspectrum": 2, "diagnost": 2, "scatter": [2, 15, 17, 21, 23, 24], "algorithm": [2, 8, 11, 17, 23, 24, 26], "now": [2, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 25, 26, 28, 29, 30, 35, 37, 38, 41], "print": [2, 4, 13, 14, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 38], "outcom": 2, "rel": [2, 4, 9, 13, 14, 27, 28], "success": [2, 4], "stdtheor": 2, "std": [2, 21, 33], "average_corrected_fourier_diff": 2, "decid": [2, 8], "what": [2, 4, 14, 22, 26, 28, 29, 37], "met": [2, 22], "runtimeerror": 2, "warn": [2, 8, 9, 14, 22, 26, 27, 38], "extens": [2, 9, 19, 20, 26], "automat": [2, 4, 9, 20, 26], "fine": [2, 31], "calculate_fad_correct": [2, 16], "ligthtcurv": 2, "get_periodograms_from_fad_result": 2, "fad_result": 2, "kind": [2, 14, 28], "r0": [2, 17], "td": [2, 17], "tb": [2, 17], "eq": [2, 17], "39": [2, 3, 12, 13, 14, 15, 18, 20, 22, 23, 24, 26, 27, 28, 38, 40], "zhang": [2, 7], "a0": 2, "38": [2, 3, 12, 13, 20, 22, 26], "b": [2, 11, 12, 15, 17, 26, 27, 32, 38, 39], "45": [2, 12, 20, 22, 26, 40], "gn": 2, "34": [2, 11, 12, 13, 16, 20, 22, 26, 27], "check_a": [2, 17], "max_k": [2, 17], "save_to": 2, "test": [2, 5, 8, 10, 11, 17, 25, 34, 38, 40], "behav": [2, 17, 22, 27], "ak": 2, "2tb": 2, "infti": 2, "43": [2, 11, 20, 22, 26, 34, 40], "check_b": [2, 17], "factori": 2, "array_lik": 2, "answer": 2, "exactli": [2, 17, 22, 25, 26, 28], "arithmet": 2, "rapidli": 2, "gamma": [2, 36], "nf": 2, "onc": [2, 4, 9], "largest": [2, 13, 26], "process": [2, 8, 9, 11, 16, 23, 24, 26, 27, 38, 41], "dtype": [2, 15, 20, 21, 30, 31], "int64": [2, 31], "special": [2, 9, 22, 26], "arr": [2, 40], "24": [2, 11, 12, 13, 14, 15, 18, 20, 22, 26, 27, 37, 38], "120": [2, 20, 22, 24], "h": [2, 8, 9, 27, 34], "35": [2, 12, 13, 14, 20, 22, 26], "heavisid": 2, "pds_model_zhang": [2, 17], "limit_k": [2, 17], "incid": [2, 4, 17], "inner": 2, "loop": [2, 4, 26, 31], "adequ": [2, 17], "r_det": 2, "r_i": [2, 11], "r_in": 2, "r_0": 2, "safe_b": 2, "riski": 2, "realli": [2, 22], "tempor": [2, 5], "modern": [2, 8, 27], "maxlag": [2, 12], "bias": [2, 12], "indirect": 2, "tripl": 2, "3rd": [2, 12], "cumul": [2, 12, 31, 33], "side": [2, 12, 30, 33, 34, 38], "uniform": [2, 12, 16, 17, 20, 26, 31, 43], "parzen": [2, 12, 43], "ham": [2, 12, 43], "han": [2, 12, 43], "triangular": [2, 12, 41], "welch": [2, 12, 27, 43], "blackman": 2, "flat": [2, 11, 12, 15, 22, 26, 30, 43], "top": [2, 4, 8, 10, 12, 14, 19, 27, 28, 33, 34, 38, 43], "unbias": [2, 12], "biphas": 2, "explain": [2, 7, 9, 10, 36, 40], "invcoupl": 2, "compon": [2, 4, 14, 18, 23, 24, 26, 27, 38], "thoma": 2, "maccaron": 2, "depart": 2, "physic": [2, 4, 26, 27, 34, 38, 43], "41051": 2, "scienc": [2, 8, 23, 24, 25, 26, 27], "build": [2, 4, 26], "texa": 2, "tech": 2, "univers": [2, 26], "lubbock": 2, "tx": 2, "79409": 2, "1051": 2, "school": [2, 8], "southampton": 2, "so16": 2, "4e": [2, 11], "rao": 2, "gabr": 2, "introduct": [2, 9, 29], "bispectr": 2, "bilinear": 2, "lectur": 2, "volum": [2, 20], "brilling": 2, "fienberg": 2, "gani": 2, "hartigan": 2, "krickeberg": 2, "editor": 2, "springer": [2, 27], "verlag": 2, "york": 2, "ny": 2, "1984": 2, "matlab": 2, "www": 2, "mathwork": 2, "com": [2, 9, 27], "matlabcentr": 2, "fileexchang": 2, "bisp3cum": 2, "cum3": [2, 12], "2976": 2, "1024": [2, 27, 32, 35, 36, 43], "1408": 2, "144": 2, "bispec_mag": [2, 12], "26336794": 2, "0032": 2, "16": [2, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 34, 35, 37, 38, 39, 43], "bispec_phas": [2, 12], "65946229e": 2, "25347190e": 2, "14": [2, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 26, 27, 28, 30, 35, 37, 38, 39, 43], "46944695e": 2, "00000000e": [2, 12], "00": [2, 12, 14, 15, 16, 17, 18, 19, 20, 25, 26, 28, 35, 38], "14159265e": [2, 12], "row": [2, 27], "vector": 2, "bispec": 2, "plot_cum3": [2, 12], "z": [2, 8, 9, 11, 29, 42], "optionalm": 2, "plt": [2, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43], "displai": [2, 27], "plot_mag": [2, 12], "plot_phas": [2, 12], "band_interest": 2, "ref_band_interest": 2, "covari": [2, 6, 9, 25, 26], "pre": [2, 26, 36], "made": [2, 8, 17, 20, 22, 27], "pair": 2, "ahead": 2, "highest": [2, 26], "mai": [2, 4, 9, 22, 26, 27, 35, 37], "suppli": [2, 37, 40, 43], "comparison": [2, 26], "altern": [2, 8, 37, 38, 43], "exclud": [2, 11], "put": [2, 22, 26, 30], "deviat": [2, 22, 29, 43], "purpos": [2, 4, 22, 26, 37, 40], "wilkinson": 2, "uttlei": [2, 14, 34, 35, 39], "2009": 2, "accret": [2, 25, 34, 38], "disc": 2, "hard": [2, 15, 26], "state": [2, 4, 8, 22, 27], "black": [2, 4, 6, 8, 9, 14, 15, 21, 25, 26, 27, 28, 34, 37, 38, 40], "hole": [2, 6, 15, 21, 25, 34, 37, 38, 40], "binari": [2, 6, 9, 15, 20, 21], "monthli": 2, "notic": [2, 14, 15, 26, 27, 28, 37], "royal": [2, 27], "societi": [2, 27], "397": [2, 20], "666": [2, 20], "676": 2, "1111": 2, "1365": 2, "2966": 2, "15008": 2, "notebook": [2, 4, 6, 9, 12, 14, 15, 20, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 40, 43], "repositori": [2, 4, 9, 38], "unnorm_covar": 2, "energy_covar": 2, "covar": 2, "covar_error": 2, "_": [2, 4, 26, 27, 29, 30, 38, 39], "abstract": 2, "freq_interv": [2, 38], "energy_spec": [2, 38], "ref_band": [2, 38], "return_complex": 2, "instanti": [2, 22, 26, 27, 35, 37, 43], "itself": [2, 3, 9, 13, 22, 26], "f0": [2, 30], "f1": 2, "emin": 2, "emax": 2, "provid": [2, 8, 9, 10, 11, 12, 22, 23, 24, 25, 26, 30, 34, 38, 40, 43], "encod": [2, 26], "lin": 2, "whole": [2, 14, 27, 38], "energy_interv": [2, 38], "e00": 2, "e01": 2, "e10": 2, "e11": 2, "spectrum_error": [2, 38], "rmsspectrum": [2, 8, 38], "lagspectrum": [2, 8, 38], "fvar": [2, 21], "helper": [2, 26, 37, 40], "a_from_pf": 2, "puls": [2, 8, 29, 42], "profil": [2, 8, 29, 30, 43], "2a": 2, "henc": [2, 22, 26, 27, 34, 35, 37], "pf": 2, "a_from_ssig": 2, "ssig": 2, "et": [2, 3, 5, 8, 11, 14, 21, 26, 28, 30, 34, 35, 38, 39], "al": [2, 3, 5, 8, 11, 14, 21, 26, 28, 30, 34, 35, 38, 39], "1983": [2, 14, 28, 30], "theoret": [2, 5, 26, 27, 38], "2_n": [2, 8, 9, 30], "2021b": 2, "fft_corr": 2, "nyq_ratio": 2, "94": [2, 22], "insid": [2, 4, 8, 38], "close": [2, 13, 15, 25, 26, 27, 30], "ad": [2, 3, 4, 8, 36, 37], "f_": [2, 21, 27, 30], "nyq": [2, 33], "peak": [2, 9, 29, 34, 36, 37, 40, 42], "obtain": [2, 11, 20, 22, 26, 27, 30, 32, 33, 34, 38, 43], "adjac": 2, "qpo": [2, 9, 10, 25], "concentr": [2, 27], "773": [2, 20], "know": [2, 4, 14, 22, 26, 27], "decai": [2, 34, 37, 40], "f_nyq": 2, "aup": 2, "aup_nyq": 2, "isclos": 2, "aup_corr": 2, "classical_pvalu": 2, "nspec": 2, "supersed": 2, "pds_probabl": 2, "practic": [2, 5, 14, 17, 22, 28, 35, 37, 42], "educ": 2, "clear": 2, "explicit": [2, 4, 26, 28, 31], "oscil": [2, 9, 15, 26, 30, 38], "wa": [2, 8, 14, 15, 17, 20, 22, 25, 26, 27, 28, 29, 30, 38], "null": [2, 26, 29], "hypothesi": [2, 26, 29], "That": [2, 9, 22, 25, 26, 27], "overal": [2, 26], "bonferroni": 2, "mathemat": [2, 27], "formul": [2, 11], "groth": 2, "1975": 2, "idl": 2, "anna": 2, "l": [2, 11, 17, 25, 26, 27, 29, 30, 38], "watt": 2, "matter": [2, 20, 22, 27], "narrow": 2, "even": [2, 7, 25, 30], "consist": [2, 4, 8, 30], "equivalent_gaussian_nsigma": 2, "tail": [2, 11], "characterist": 2, "turn": [2, 4, 13, 14, 22, 26, 27, 28], "awai": [2, 15, 34], "statement": [2, 4], "pulsat": [2, 9, 42], "brute": 2, "forc": [2, 8], "integr": [2, 26, 30], "densiti": [2, 15, 16, 17, 25, 29, 30], "mpmath": 2, "nsigma": 2, "inf": [2, 11], "15865525393145707": 2, "atol": 2, "0013498980316301035": 2, "865877e": 2, "22096e": 2, "0567e": 2, "138": [2, 20], "fold_detection_level": [2, 30], "nbin": [2, 29, 30], "epsilon": [2, 29, 30], "ntrial": [2, 29, 30], "fold": [2, 9, 26, 29, 42], "detlev": 2, "epoch": [2, 9, 20, 29, 38, 42], "fold_profile_logprob": 2, "certain": [2, 13, 19, 22, 29, 30], "due": [2, 8, 13, 15, 25, 27, 34], "logp": 2, "fold_profile_prob": 2, "p_multitrial_from_single_tri": 2, "p1": [2, 34, 37], "multi": [2, 8, 26], "binomi": 2, "sai": [2, 26, 27, 35], "geq": 2, "sum_": [2, 27, 29, 30, 38], "binom": 2, "simpli": [2, 4, 13, 25, 26], "reject": [2, 4, 26], "p_single_trial_from_p_multitri": 2, "u": [2, 4, 11, 12, 15, 16, 17, 20, 23, 24, 26, 27, 28, 29, 30, 33, 38], "entir": [2, 4, 22], "procedur": [2, 4, 8, 17, 30], "_epsilon_": 2, "low": [2, 11, 14, 16, 17, 25, 27, 38], "howev": [2, 4, 14, 16, 17, 22, 26, 28, 34, 37, 40, 43], "incorrect": [2, 26, 27, 30], "invert": [2, 22, 39], "problem": [2, 4, 25, 26, 27, 38], "hit": [2, 16], "known": [2, 14, 25, 28, 29, 30], "\u0161id\u00e1k": 2, "pds_detection_level": 2, "n_summed_spectra": 2, "n_rebin": 2, "la": 2, "dof": [2, 26], "pf_from_a": 2, "pf_from_ssig": 2, "round": [2, 20], "pf_upper_limit": 2, "pfup": 2, "phase_dispersion_detection_level": [2, 8, 29], "nsampl": [2, 26, 29], "dispers": [2, 8, 9, 42], "minim": [2, 8, 9, 26, 42], "phase_dispersion_logprob": [2, 8], "beta": [2, 29, 37, 43], "czerni": [2, 29], "schwarzendorf": 2, "1997": [2, 14, 29], "pdm": [2, 29], "phase_dispersion_prob": [2, 8, 29], "power_confidence_limit": 2, "preal": 2, "adapt": [2, 4, 8, 27], "1994": 2, "noncentr": 2, "cl": 2, "84": [2, 20, 22, 23, 26, 41], "127": [2, 14, 20, 24, 28], "176": 2, "ncx2": 2, "rather": [2, 4, 22, 26, 27, 29], "As": [2, 4, 16, 20, 22, 25, 26, 28, 29, 30, 34, 38], "look": [2, 4, 5, 9, 14, 15, 19, 22, 23, 24, 25, 26, 28, 29, 37, 38], "involv": [2, 9, 13, 27], "partial": 2, "cancel": [2, 22], "psig": 2, "pup": 2, "75": [2, 22, 26, 28, 41], "ssig_from_a": 2, "ssig_from_pf": 2, "z2_n_detection_level": [2, 30], "buccheri": [2, 30], "1971": 2, "fundament": [2, 27], "z_2": [2, 30], "z2_n_logprob": 2, "z2": 2, "z2_n_probabl": 2, "append_gti": 2, "touch": [2, 4, 9], "bin_intervals_from_gti": 2, "map": [2, 8], "next": [2, 8, 22, 27], "spectrum_start_bin": 2, "spectrum_stop_bin": 2, "border": [2, 15], "start_bin": 2, "stop_bin": 2, "check_gti": [2, 22], "wrong": 2, "displac": 2, "check_separ": 2, "mutual": 2, "28": [2, 13, 20, 22, 23, 26, 27, 38], "create_gti_from_condit": [2, 15, 38], "safe_interv": [2, 38], "sec": [2, 13], "irregular": [2, 5], "create_gti_mask": 2, "min_length": 2, "return_new_gti": 2, "g0_0": 2, "g0_1": 2, "g1_0": 2, "g1_1": 2, "new_gti": [2, 15, 38], "nx2": 2, "consid": [2, 4, 8, 11, 14, 30, 38], "create_gti_mask_complet": 2, "constant": [2, 26, 29, 34, 35, 37, 38, 40], "create_gti_mask_jit": 2, "gti_mask": 2, "compil": 2, "cross_gti": 2, "gti_list": 2, "usual": [2, 14, 16, 22, 25, 26, 27, 29, 30], "cross_two_gti": [2, 25, 38], "gti2": 2, "newgti": 2, "generate_indices_of_gti_boundari": 2, "yield": [2, 26, 28], "gti00": [2, 22], "gti01": [2, 22], "gti10": [2, 22], "gti11": [2, 22], "g0": [2, 25], "g1": [2, 25], "startidx": 2, "stopidx": 2, "55": [2, 22, 26, 38], "val": [2, 30], "generate_indices_of_segment_boundaries_bin": 2, "t0": [2, 14, 23, 24, 26, 28], "t1": [2, 14, 26, 28, 34, 37], "generate_indices_of_segment_boundaries_unbin": 2, "again": [2, 13, 14, 20, 26, 27, 34], "get_bti": 2, "cover": [2, 4, 20, 35, 36, 37, 40], "sens": [2, 25, 27], "earlier": [2, 30], "later": [2, 4, 9, 22, 26, 27, 34, 37, 40, 43], "bti": 2, "get_gti_extensions_from_pattern": 2, "lchdulist": 2, "name_pattern": 2, "match": [2, 25, 26], "pattern": [2, 30], "io": [2, 19, 38, 43], "hdulist": 2, "ext_list": 2, "s1": 2, "s2": 2, "hdu1": 2, "tablehdu": 2, "from_column": 2, "gti005xx": 2, "hdu2": 2, "gti00501": 2, "gtiextn": 2, "gti005": 2, "get_gti_from_all_extens": 2, "accepted_gtistr": 2, "det_numb": 2, "stdgti": 2, "retriev": [2, 20, 37, 39, 40, 43], "stdgti05": 2, "250": [2, 17], "350": [2, 11, 20], "get_gti_from_hdu": 2, "gtihdu": 2, "hdu": 2, "get_gti_length": 2, "1001": [2, 20], "3000": [2, 17, 20, 30], "3020": 2, "get_total_gti_length": 2, "minlen": 2, "exposur": [2, 8, 12, 13, 14, 27, 28], "1021": [2, 20], "1020": [2, 20], "gti_border_bin": [2, 38], "shorter": [2, 13, 25, 38], "18": [2, 12, 13, 14, 17, 18, 19, 20, 22, 23, 26, 27, 28, 30, 34, 37, 38, 39], "invalid": [2, 8, 38], "ones_lik": [2, 22, 27, 30], "join_gti": 2, "extrem": [2, 27], "timestamp": [2, 13, 14, 18, 20, 27, 28], "cumsum": [2, 31, 33], "load_gti": 2, "fits_fil": 2, "gtistr": 2, "load": [2, 5, 6, 8, 9, 14, 15, 19, 27], "time_intervals_from_gti": [2, 38], "1e": [2, 15, 17, 26, 38], "spectrum_start_tim": 2, "spectrum_stop_tim": 2, "common_nam": 2, "str1": 2, "str2": 2, "strip": 2, "letter": [2, 4], "few": [2, 4, 7, 9, 22, 29], "common_str": 2, "get_file_extens": 2, "fname": [2, 38], "zip": [2, 15, 16, 25, 26, 27, 32, 33, 34, 35], "gz": [2, 38], "ciao": 2, "tar": 2, "tutti": 2, "get_key_from_mission_info": 2, "info": [2, 4, 8, 17], "inst": 2, "databas": 2, "entri": [2, 4, 27, 34], "nest": [2, 11, 17, 26], "ecol": 2, "bla": 2, "m1": 2, "bu": 2, "ghghg": 2, "high_precision_keyword_read": 2, "hdr": 2, "mjdrefi": [2, 20], "mjdreff": [2, 20], "dict_lik": 2, "structur": [2, 29], "doubl": 2, "went": 2, "timecolumn": 2, "ratecolumn": 2, "ratehdu": 2, "fracexp_limit": 2, "outfil": 2, "noclobb": 2, "outdir": 2, "handl": [2, 8, 31], "still": [2, 3, 4, 8, 17, 25, 27, 43], "additional_column": 2, "gti_fil": 2, "hdunam": 2, "ev_list": 2, "additional_data": 2, "additional_colum": 2, "t_start": 2, "t_stop": 2, "pi_list": 2, "raw": [2, 20, 27, 28, 38], "cal_pi_list": 2, "calibr": [2, 8, 10, 15], "easili": [2, 4, 8, 9, 20, 26, 29], "regardless": [2, 4], "setup": [2, 5, 27, 43], "energy_list": 2, "fpma": [2, 20], "debug": [2, 4, 37], "id": [2, 20, 38], "ccd": 2, "compos": 2, "ex": 2, "comma": 2, "denot": [2, 11, 22, 26, 27], "extern": 2, "noth": [2, 35], "return_limit": 2, "tstop": [2, 20], "mkdir_p": 2, "mkdir": 2, "found": [2, 21, 26, 29, 30, 38], "directori": [2, 4, 9], "stackoverflow": 2, "600268": 2, "read_header_kei": 2, "read_mission_info": 2, "xselect": 2, "mdb": 2, "ref_mjd": 2, "fail": [2, 8], "longdoubl": 2, "rough_calibr": 2, "rough": [2, 26], "convers": [2, 22], "betwenn": 2, "work": [2, 3, 4, 8, 9, 20, 23, 24, 26, 27, 31, 35, 43], "ixp": [2, 7], "insensit": 2, "asdf": 2, "savefig": [2, 21, 22, 33], "blank": 2, "png": [2, 22, 39, 43], "raster": 2, "bbox_inch": 2, "tight": 2, "remov": [2, 4, 8, 34], "undesir": 2, "whitepac": 2, "around": [2, 4, 18, 26, 29, 30, 34], "split_numb": 2, "decim": 2, "number_i": 2, "number_f": 2, "right": [2, 4, 14, 20, 25, 27, 28, 30, 33, 38], "baseline_": [2, 21], "return_baselin": 2, "asymmetr": 2, "control": [2, 4], "how": [2, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 23, 24, 25, 26, 28, 29, 30, 31, 32, 42], "much": [2, 4, 8, 13, 14, 17, 26, 28, 29, 30, 38, 43], "local": [2, 4, 26, 27, 38], "slope": [2, 34, 37, 40], "y_subtract": 2, "trend": 2, "perform": [2, 8, 9, 10, 22, 26, 30, 37, 43], "offset": [2, 13, 14, 22, 27, 28], "scan": 2, "ysub": 2, "check_isallfinit": 2, "_check_isallfinite_numba": 2, "numba": [2, 8, 9], "isfinit": [2, 26], "contiguous_region": 2, "2d": [2, 12, 39, 40], "idx": [2, 22, 27], "i0_0": 2, "i0_1": 2, "i1_0": 2, "i1_1": 2, "coupl": 2, "block": [2, 20, 34], "4494404": 2, "consecut": [2, 17], "create_window": [2, 12, 41], "window_typ": [2, 41], "rectangular": [2, 12, 41], "blackmann": [2, 12, 43], "excess_vari": [2, 21], "2003": [2, 21], "mnra": [2, 21], "345": [2, 20, 21], "1271": [2, 21], "three": [2, 9, 13, 14, 20, 21, 22, 26, 28, 34], "sigma_": [2, 11, 21], "intens": [2, 5, 15, 17, 35, 37, 39, 40, 43], "nx": [2, 21], "dfrac": [2, 21, 30], "var": [2, 18, 21, 27, 35], "norm_x": [2, 21], "var_x": [2, 21], "var_xs_err": [2, 21], "find_nearest": 2, "closest": 2, "abigail": [2, 8, 27], "steven": [2, 8, 27], "through": [2, 4, 8, 15, 22, 25, 34, 35, 37, 43], "get_random_st": 2, "random_st": 2, "mersenn": 2, "twister": 2, "pseudo": 2, "seed": [2, 17, 21, 26, 27], "randomst": 2, "mtrand": 2, "is_int": 2, "is_iter": 2, "ness": 2, "is_it": 2, "is_str": 2, "portabl": 2, "isstr": 2, "decis": 2, "look_for_array_in_arrai": 2, "array1": 2, "array2": 2, "subset": [2, 4], "array3": 2, "nearest_power_of_two": 2, "nearest": 2, "x_nearest": 2, "optimal_bin_tim": 2, "fftlen": [2, 17], "tbin": 2, "vari": [2, 30, 35, 43], "propos": [2, 4], "order_list_of_arrai": 2, "poisson_symmetrical_error": 2, "optim": [2, 23, 24, 26], "frequentist": [2, 26], "symmetr": 2, "lookup": 2, "poisson_conf_interv": 2, "randint": 2, "err_low": 2, "err_high": 2, "asarrai": [2, 25, 38], "err_thisfun": 2, "assert": 2, "rebin_data": 2, "dx_new": 2, "yerr": [2, 14, 21, 26, 35, 37, 38], "dx": 2, "throughout": [2, 22, 27], "xbin": 2, "ybin": 2, "ybin_err": 2, "step_siz": 2, "ybinerr": 2, "rebin_data_log": 2, "y_err": 2, "particularli": [2, 7, 8, 26], "dx_old": 2, "wrt": 2, "simon": [2, 8, 27], "messag": [2, 4, 27], "monitor": 2, "design": [2, 8, 9, 26, 43], "remind": 2, "watch": 2, "him": 2, "her": 2, "thrown": [2, 14, 22, 28], "standard_error": 2, "sem": 2, "subpackag": [2, 4, 26, 42], "parametr": [2, 9, 26], "focus": [2, 4], "rudimentari": [2, 22], "loglikelihood": [2, 26], "templat": 2, "sever": [2, 22, 26], "gaussianloglikelihood": 2, "poissonloglikelihood": 2, "psdloglikelihood": [2, 8, 26, 38], "cannot": [2, 14, 16, 21, 22, 25, 26, 28], "sinc": [2, 4, 9, 13, 14, 20, 21, 22, 26, 28, 37, 38, 42, 43], "coordin": [2, 4, 20, 26], "dimension": [2, 20], "fittablemodel": 2, "sub": [2, 4, 23, 24, 26], "docstr": [2, 4], "whenev": [2, 4], "coordint": [2, 26], "npar": [2, 26], "par": [2, 26], "subsequ": [2, 17, 34, 35, 37, 43], "loglik": [2, 26, 38], "routin": [2, 26, 27], "deriv": [2, 26, 42, 43], "elsewher": 2, "singular": 2, "laplaceloglikelihood": 2, "laplac": 2, "lai": 2, "varieti": 2, "prior": [2, 11, 26], "set_logprior": [2, 26], "help": [2, 7, 9, 22, 26, 27, 30], "theta": [2, 26, 27, 38], "our": [2, 3, 8, 9, 14, 17, 18, 19, 22, 25, 26, 28, 29, 34], "gather": [2, 4], "margin": 2, "space": [2, 4, 8, 26, 27, 33, 38, 40], "abscissa": 2, "principl": [2, 14, 28, 33, 34], "ordin": 2, "repres": [2, 4, 23, 24, 26, 29, 34, 35], "sivia": 2, "skill": 2, "tutori": [2, 4, 5, 6, 7, 9, 11, 13, 14, 20, 22, 23, 24, 25, 26, 28, 38, 40], "2006": 2, "gelman": 2, "andrew": 2, "vol": [2, 27], "boca": 2, "raton": 2, "fl": 2, "usa": 2, "chapman": 2, "hall": 2, "crc": 2, "2014": [2, 14, 35, 39], "von": 2, "toussaint": 2, "udo": 2, "infer": [2, 26], "review": [2, 4, 21, 25, 34], "943": [2, 20], "hogg": 2, "david": [2, 27], "w": [2, 27, 30, 32, 37, 43], "calculu": 2, "arxiv": [2, 12, 21], "1205": 2, "4446": 2, "logposterior": [2, 26], "logprior": [2, 26], "hand": [2, 14, 26, 27, 28, 30], "lpost": [2, 26], "gaussianposterior": 2, "param_nam": [2, 26], "item": [2, 26, 38], "imposs": 2, "poissonposterior": 2, "primari": [2, 4, 34, 37, 40], "intend": [2, 11, 12, 13], "conceiv": 2, "psdposterior": [2, 26], "exponenti": [2, 17, 26, 34], "laplaceposterior": 2, "emce": [2, 9, 10, 26], "markov": [2, 26], "chain": [2, 26], "mont": [2, 11, 26], "carlo": [2, 11, 26], "psdparest": [2, 26, 38], "advanc": [2, 4, 8, 15, 22], "parameterestim": [2, 26, 38], "fitmethod": [2, 26, 38], "bfg": [2, 26, 38], "max_post": [2, 26, 38], "via": [2, 4, 22, 26], "mcmc": [2, 9, 26], "parametricmodel": 2, "posteriori": [2, 26], "calibrate_lrt": [2, 26], "lpost1": [2, 26], "lpost2": [2, 26], "t2": [2, 14, 26, 28, 34, 37], "nsim": [2, 26], "nwalker": [2, 26], "500": [2, 15, 16, 19, 21, 22, 26, 38], "burnin": [2, 26], "namestr": [2, 26], "aim": [2, 4, 22, 26], "simpler": [2, 26], "analyt": [2, 26, 38], "fix": [2, 4, 26, 30], "priori": 2, "istru": 2, "fake": [2, 5, 20, 26], "pvalu": 2, "stuff": [2, 4], "compute_lrt": [2, 26], "lrt": 2, "res1": [2, 26], "optimizationresult": [2, 26], "res2": [2, 26], "scipy_optimize_opt": 2, "ml": [2, 38], "directli": [2, 14, 22, 26, 28], "summari": [2, 5, 11, 26], "cov": [2, 26, 38], "thread": 2, "print_result": [2, 26], "pool": 2, "Its": [2, 37, 40], "walker": [2, 26], "slower": [2, 15, 25], "chanc": [2, 4, 22], "converg": [2, 11], "discard": [2, 14, 27, 28, 38], "parallel": 2, "samplingresult": 2, "summar": 2, "simulate_lrt": 2, "s_all": [2, 26], "task": [2, 4, 9, 10, 26], "calibrate_highest_outli": [2, 26], "outlier": [2, 26], "t_r": [2, 26], "mathrm": [2, 29, 38], "sampler": 2, "fed": 2, "emploi": [2, 27], "surfac": [2, 26], "achiev": 2, "burn": [2, 26], "disk": [2, 34], "reproduc": [2, 4, 7, 20, 26, 38], "2010": [2, 20, 21, 26], "0910": 2, "2706": 2, "1212": 2, "1011": 2, "plotfit": [2, 26], "save_plot": [2, 26], "best": [2, 3, 4, 8, 26, 30, 38], "residu": [2, 26, 30], "compet": 2, "simulate_highest_outli": 2, "ndim": 2, "max_y_al": 2, "guess": [2, 26], "_generate_data": 2, "lrt_sim": [2, 26], "organ": [2, 4], "access": [2, 4, 8, 9, 27, 40, 43], "regress": 2, "fiddli": 2, "optimizeresult": 2, "getlogg": 2, "els": [2, 26, 27], "logger": 2, "1109": [2, 27], "tac": 2, "1974": 2, "1100705": 2, "projecteuclid": 2, "euclid": 2, "ao": 2, "1176344136": 2, "p_opt": [2, 26, 38], "diagon": 2, "mfit": [2, 26], "devianc": [2, 26], "aic": [2, 26], "akaik": [2, 26], "criterion": [2, 26], "bic": [2, 26], "merit": [2, 26], "sexp": 2, "ssd": 2, "sob": 2, "_compute_covari": 2, "hessian": [2, 26], "root": [2, 4, 9, 22, 27], "chosen": [2, 13, 26], "statsmodel": [2, 9], "approx_hess": 2, "_compute_criteria": 2, "criteria": 2, "_compute_model": 2, "_compute_statist": 2, "print_summari": [2, 26], "screen": [2, 27], "ci_min": 2, "ci_max": 2, "handi": 2, "ensemblesampl": 2, "percentil": 2, "credibl": 2, "ss": 2, "1177011136": 2, "flatten": [2, 4, 27, 38], "acor": 2, "themselv": 2, "rhat": 2, "weight": [2, 27, 29, 30], "sequenc": 2, "rubin": 2, "ci": [2, 4, 26], "_check_converg": 2, "never": [2, 4], "heurist": 2, "far": [2, 30, 34], "1202": 2, "3665": 2, "_compute_rhat": 2, "_infer": 2, "percentag": 2, "plot_result": [2, 26], "fig": [2, 13, 14, 23, 24, 26, 27, 28, 30], "triangl": 2, "corner": [2, 9], "github": [2, 4, 9, 27, 38], "dfm": 2, "py": [2, 4, 8, 9, 13, 22, 26, 27, 38, 41], "particular": [2, 9, 22, 25, 27, 38, 42], "successfulli": 2, "therefor": [2, 21, 30], "effici": [2, 22, 27], "photon_arriv": [2, 22], "10000": [2, 18, 21, 31, 37], "pl": [2, 26], "powerlaw1d": [2, 26, 33], "x_0": [2, 26, 33, 38], "p_alpha": [2, 26], "alpha": [2, 15, 16, 17, 18, 19, 25, 26, 27, 29, 30, 33, 38], "p_amplitud": [2, 26], "script": [2, 4, 8, 17, 26, 30, 40], "fit_crossspectrum": 2, "starting_par": [2, 26], "lorentzian": [2, 38], "possibli": [2, 8], "centroid": 2, "extra": [2, 4, 7, 9], "attempt": 2, "amplitude_i": 2, "x_0_i": 2, "fwhm_i": 2, "amplitude_": 2, "amplitude_0": [2, 26], "x_0_0": [2, 26], "fwhm_0": [2, 26], "amplitude_1": [2, 26], "x_0_1": [2, 26], "fwhm_1": [2, 26], "amplitude_2": [2, 26], "explan": [2, 26, 27], "parest": [2, 26, 38], "fit_lorentzian": [2, 26], "nlor": [2, 26], "fit_whitenois": [2, 26], "Be": 2, "x_0_2": [2, 26], "fwhm_2": [2, 26], "whitenois": [2, 26], "lorentz1d": [2, 26, 38], "const1d": [2, 26, 38], "linspac": [2, 18, 23, 24, 26, 27, 32, 33, 34], "fwhm": [2, 26, 36, 38], "repeat": [2, 17, 30], "readi": [2, 26, 37], "optimum": 2, "fit_powerspectrum": [2, 26], "nfreq": [2, 26], "alpha_0": [2, 26], "model_to_test": [2, 26], "submodul": [2, 8], "broadli": 2, "sincsquaremodel": 2, "ef_profile_stat": 2, "epoch_folding_search": [2, 30], "128": [2, 20, 30, 31], "expocorr": 2, "fdot": [2, 30], "fgrid": 2, "fdgrid": 2, "grid": [2, 30, 33, 38], "fftfit": [2, 8], "prof": 2, "quick": [2, 9, 26, 40], "use_bootstrap": 2, "fftfit_kwarg": 2, "simpl": [2, 4, 12, 20, 25, 26, 27, 29, 35, 43], "mean_amp": 2, "std_amp": 2, "mean_phas": [2, 30], "std_phase": 2, "bootstrap": [2, 11], "fftfit_error": 2, "fit_gaussian": [2, 30], "stddev": [2, 30], "ti": [2, 30], "fit_sinc": [2, 30], "amp": [2, 20, 30], "obs_length": [2, 29, 30], "sincfit": 2, "fold_ev": [2, 29, 30], "frequency_deriv": 2, "opt": [2, 22], "unbin": [2, 22], "fddot": [2, 30], "phase_bin": 2, "profile_err": [2, 29, 30], "ref_tim": 2, "solut": [2, 25], "ef": [2, 29, 30], "get_toa": 2, "additional_phas": 2, "Of": [2, 20, 26], "toastd": 2, "nstep": 2, "get_orbital_correction_from_ephemeris_fil": 2, "mjdstart": 2, "mjdstop": 2, "parfil": 2, "ntime": [2, 30], "de405": 2, "return_pint_model": 2, "orbit": [2, 25], "motion": 2, "understood": [2, 15], "pint": [2, 9], "tempo": 2, "tempo2": 2, "correction_sec": 2, "deorbit": 2, "correction_mjd": 2, "interpol": [2, 13, 17, 18, 19, 21, 23, 24, 33], "htest": 2, "nmax": 2, "datatyp": [2, 20], "de": [2, 27, 38, 40], "jager": 2, "89": [2, 20, 22, 26], "221": 2, "180d": 2, "2021": [2, 4, 11, 38], "2012": [2, 38], "11397": 2, "p_to_f": 2, "period_deriv": 2, "vice": [2, 22], "versa": [2, 22], "third": [2, 4], "fourth": 2, "pdot": 2, "pddot": 2, "zeroth": 2, "pdm_profile_stat": 2, "sample_var": 2, "stellingwerf": [2, 29], "1978": [2, 27, 29], "phase_dispersion_search": [2, 8, 29], "5000": [2, 12, 15], "phase_exposur": 2, "expo": 2, "lowest": [2, 27], "phaseogram": [2, 9, 42], "nph": [2, 30], "nt": [2, 30], "32": [2, 9, 12, 13, 20, 22, 26, 30], "ph0": 2, "pepoch": [2, 30], "phaseogram_ax": 2, "plot_kwarg": 2, "appear": [2, 4], "spin": 2, "phaseogr": [2, 30], "additional_info": [2, 30], "latter": 2, "return_plot": [2, 30], "plot_phaseogram": [2, 30], "time_bin": 2, "unit_str": 2, "nxm": 2, "pcolormesh": [2, 30], "plot_profil": [2, 29, 30], "shown": [2, 29, 30], "pulse_phas": 2, "to_1": 2, "search_best_peak": [2, 30], "best_x": 2, "best_stat": 2, "sinc_square_deriv": 2, "d_amplitud": 2, "d_mean": 2, "d_width": 2, "sinc_square_model": 2, "sqvalu": 2, "pytest": [2, 4, 9, 27], "main": [2, 3, 4, 9, 20, 27], "docs_path": 2, "rst": [2, 4, 9], "cpu": [2, 27], "core": [2, 4, 9, 22, 23, 24], "machin": [2, 8], "xdist": 2, "plugin": 2, "pastebin": 2, "upload": 2, "pdb": 2, "post": [2, 4], "mortem": 2, "pep8": [2, 4], "disabl": [2, 4], "remote_data": 2, "mark": [2, 27], "remot": [2, 4, 9], "diagnos": 2, "sporad": 2, "failur": 2, "skip_doc": 2, "doctest": 2, "test_path": 2, "locat": [2, 4, 8, 9, 27], "z_n": [2, 30], "245": [2, 20], "z2_n": 2, "deprecationwarn": 2, "z_n_binned_ev": 2, "z_n_binned_events_al": 2, "z_n_event": 2, "z_n_events_al": 2, "z_n_gauss": 2, "z_n_gauss_al": 2, "z_n_search": [2, 30], "nharm": [2, 30], "mostli": [2, 8, 25, 38], "wise": 2, "small": [2, 4, 8, 9, 13, 16, 17, 22, 26, 30], "ineffect": 2, "transfer": [2, 39, 40], "stochast": [2, 26, 38], "red_nois": [2, 37], "visual": [2, 11, 17, 19, 27, 29, 30, 34, 35], "todo": [2, 22], "improv": [2, 4, 15, 19, 23, 24], "red": [2, 13, 14, 15, 17, 18, 19, 23, 24, 25, 26, 27, 28, 43], "leakag": [2, 27, 43], "count_channel": [2, 37, 43], "delete_channel": [2, 37, 43], "delet": [2, 4, 27, 37, 43], "get_all_channel": 2, "belong": [2, 26, 37], "get_channel": [2, 35, 37, 43], "seg_siz": 2, "transferfunct": [2, 39, 43], "relativistic_ir": [2, 37, 40, 43], "t3": [2, 14, 28, 34, 37], "p2": [2, 34, 37], "rise": [2, 34, 37, 40], "realist": [2, 37, 40, 43], "impuls": [2, 9, 40], "relativist": 2, "secondari": [2, 30, 34, 37, 40], "simple_ir": [2, 35, 37, 40], "emiss": 2, "direct": [2, 4, 27], "law": [2, 26], "param": [2, 26, 33, 38], "lag_delai": 2, "simulate_channel": [2, 35, 37, 43], "descript": [2, 4], "stingrayerror": 2, "currenc": 3, "academ": 3, "world": [3, 4], "ensur": [3, 26], "data": [3, 8, 11, 12, 13, 14, 16, 20, 23, 24, 26, 28, 29, 34, 37, 38, 40, 41, 43], "lead": [3, 22, 26], "public": [3, 4, 9, 26], "ask": [3, 4], "project": [3, 4, 9, 34], "carri": [3, 16, 20, 43], "isn": [3, 22, 26, 34], "unreleas": 3, "concept": [3, 26, 27], "1490116": 3, "resolv": [3, 8, 9, 43], "latest": [3, 4, 26], "2019": [3, 11, 16, 27, 38], "astrophys": [3, 8, 20, 27], "journal": [3, 27], "881": [3, 27], "clipboard": 3, "1393": 3, "joss": 3, "i": [3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 43], "love": 4, "hear": 4, "encount": [4, 38, 41], "chat": 4, "hesit": 4, "easiest": [4, 15], "page": [4, 9, 20, 34], "ve": [4, 9, 22, 25, 26], "advic": 4, "suggest": [4, 20, 26, 27], "contact": 4, "slack": 4, "group": [4, 8, 20, 27], "mail": 4, "send": 4, "email": 4, "encourag": [4, 27], "readm": 4, "Then": [4, 21, 33, 38], "fork": [4, 9], "primer": 4, "git": [4, 9, 27], "jupyt": [4, 9], "familiar": 4, "yourself": [4, 9, 22], "go": [4, 9, 17, 26, 38], "tackl": 4, "slide": 4, "9th": [4, 8], "microquasar": [4, 8], "workshop": [4, 8], "great": [4, 25], "thing": [4, 8, 14, 28, 29, 38], "begin": [4, 22, 27, 29], "hello": 4, "appreci": 4, "proudli": 4, "believ": 4, "ye": [4, 25], "qualiti": 4, "research": 4, "easi": [4, 9, 20, 21, 26], "transpar": [4, 6, 8, 25], "discuss": 4, "submit": [4, 9], "built": [4, 10, 14, 28], "amaz": 4, "programm": 4, "unrel": 4, "effort": [4, 8], "coder": [4, 8], "tester": 4, "contributor": 4, "everyon": 4, "experienc": [4, 8], "inexperienc": 4, "welcom": [4, 9], "written": [4, 26, 29], "commit": 4, "pull": 4, "break": [4, 8, 26, 36], "branch": 4, "anyth": [4, 9], "eg": 4, "bugfix": 4, "issue20": 4, "refactor": 4, "lightcurv": [4, 8, 9, 11, 12, 13, 14, 15, 17, 21, 23, 24, 28, 29, 30, 32, 34, 35, 36, 37, 38, 43], "merg": [4, 9, 20], "rebas": 4, "frequent": [4, 6, 27], "One": [4, 9, 13, 20, 22, 26, 37, 43], "logic": 4, "yourusernam": 4, "usernam": [4, 9], "stingraysoftwar": [4, 9, 27], "conceptu": [4, 30, 31], "readabl": [4, 31], "histori": [4, 9, 20], "easier": [4, 26], "why": 4, "did": [4, 8, 17], "regularli": [4, 22], "fetch": 4, "virtual": 4, "environ": 4, "edit": 4, "sphinx": [4, 9], "modif": 4, "trivial": [4, 22], "towncrier": [4, 8, 9], "push": 4, "pr": [4, 9], "super": [4, 22], "everyth": [4, 20], "togeth": [4, 14, 15, 20, 21, 26, 28], "other": [4, 5, 8, 14, 15, 16, 20, 22, 25, 26, 30, 37, 38], "revis": 4, "major": [4, 13, 14, 23, 24, 26, 28, 33, 38], "manag": [4, 8, 9], "affili": 4, "17": [4, 9, 12, 13, 14, 17, 18, 19, 20, 22, 23, 26, 27, 28, 30, 34, 35, 37, 38, 39], "function": [4, 8, 9, 10, 11, 13, 14, 19, 21, 22, 23, 24, 27, 28, 32, 33, 34, 37, 40, 42], "affect": [4, 16, 22], "guid": 4, "pure": [4, 26, 38], "stylist": 4, "indent": 4, "four": 4, "mix": 4, "tab": [4, 27], "charact": 4, "unless": 4, "unread": 4, "ugli": 4, "word": 4, "my_new_method": 4, "economi": 4, "class": [4, 5, 8, 9, 10, 11, 12, 13, 20, 21, 22, 26, 27, 30, 34, 37, 43], "camelcas": 4, "mynewclass": 4, "inlin": [4, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], "comment": [4, 20, 26, 27, 31], "variable_nam": 4, "linter": 4, "checker": 4, "infrastructur": [4, 8], "flake8": [4, 8], "command": [4, 8, 9, 30, 31, 37, 43], "e101": 4, "w191": 4, "w291": 4, "w292": 4, "w293": 4, "w391": 4, "e111": 4, "e112": 4, "e113": 4, "e30": 4, "e502": 4, "e722": 4, "e901": 4, "e902": 4, "e999": 4, "f822": 4, "f823": 4, "formatt": 4, "except": [4, 8, 9, 26, 29, 37, 38], "modulenam": 4, "clearer": 4, "oppos": 4, "sp": 4, "mpl": [4, 17, 21, 29, 30, 33, 38], "wherev": 4, "packagenam": 4, "tool": [4, 8, 9, 15, 26, 30, 42, 43], "namespac": 4, "mechan": 4, "get_valu": [4, 30], "set_valu": 4, "computation": [4, 30], "expens": [4, 30], "dessert": 4, "dummi": 4, "inherit": 4, "init": 4, "layout": 4, "scenario": [4, 35], "explicitli": [4, 22, 26], "custom": [4, 8, 10, 22], "nondescript": 4, "favor": 4, "ioerror": 4, "warning_class": 4, "redirect": 4, "log": [4, 8, 11, 14, 23, 24, 26, 27, 28], "catch": [4, 15], "kb": 4, "exce": 4, "host": [4, 9], "parti": 4, "internet": 4, "numpydoc": 4, "restructur": 4, "text": [4, 12, 15, 18, 20, 21, 23, 24, 27, 32, 38, 40, 41], "usag": [4, 25], "verbatim": 4, "adher": 4, "pypi": 4, "fragment": 4, "idea": [4, 22], "api": [4, 8, 9, 10, 43], "reflow": 4, "draft": 4, "preview": 4, "framework": [4, 8, 10, 26, 43], "tox": [4, 9], "compliant": [4, 8], "subdirectori": 4, "folder": [4, 9], "foster": 4, "harass": 4, "experi": [4, 16, 43], "ag": 4, "bodi": 4, "ethnic": 4, "gender": 4, "ident": [4, 16, 25], "express": [4, 11, 14, 15, 28, 33, 38], "nation": 4, "person": 4, "race": 4, "religion": 4, "sexual": 4, "orient": 4, "behavior": 4, "inclus": 4, "languag": 4, "Being": 4, "viewpoint": 4, "gracefulli": 4, "critic": [4, 26], "empathi": 4, "toward": [4, 8], "member": [4, 8], "unaccept": 4, "imageri": 4, "unwelcom": 4, "attent": [4, 14], "troll": 4, "insult": 4, "derogatori": 4, "polit": 4, "attack": 4, "privat": 4, "publish": 4, "electron": [4, 27], "address": 4, "permiss": 4, "conduct": 4, "inappropri": 4, "profession": 4, "clarifi": 4, "fair": 4, "correct": [4, 7, 8, 9, 15, 17, 20, 22, 26, 29, 30, 38, 39], "action": 4, "wiki": 4, "ban": 4, "temporarili": 4, "perman": 4, "deem": 4, "threaten": 4, "offens": 4, "harm": 4, "offici": [4, 8, 15, 38], "social": 4, "media": [4, 27], "act": [4, 26], "appoint": 4, "onlin": [4, 26], "offlin": 4, "represent": [4, 9, 26, 29], "abus": 4, "team": [4, 8], "investig": [4, 15], "complaint": 4, "respond": 4, "circumst": [4, 22], "oblig": 4, "confidenti": 4, "polici": 4, "who": [4, 26], "faith": 4, "face": 4, "temporari": 4, "repercuss": 4, "leadership": 4, "coven": 4, "product": [5, 8, 9, 10, 15, 22, 26, 27], "eventlist": [5, 8, 14, 15, 16, 17, 21, 23, 24, 25, 28, 30, 38], "time": [5, 8, 11, 12, 13, 15, 16, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 37, 43], "roundtrip": [5, 8], "simul": [5, 8, 17, 26, 34, 35, 38, 39, 40, 42], "negat": 5, "concaten": [5, 33], "gti": [5, 8, 14, 15, 16, 17, 20, 21, 25, 28, 29, 30, 38], "diagram": 5, "averagedpowerspectrum": [5, 8, 15, 16, 17, 18, 21, 25, 38], "normaliz": 5, "geometr": [5, 38], "drifit": 5, "overlai": 5, "dynamicpowerspectrum": 5, "maximun": 5, "averagedcrossspectrum": [5, 8, 15, 16, 21, 25, 35, 38], "coher": [5, 6, 8, 9, 27], "crosscorrel": [5, 8], "yet": [5, 14, 26, 27], "lingcurv": 5, "bispectrum": 5, "demonstr": [5, 11, 13, 20, 26, 34, 37, 41], "baysian": 5, "colab": 5, "multitap": 5, "spectral": [5, 8, 14, 20, 23, 24, 25, 26, 37], "estim": [5, 8, 10, 11, 17, 22, 29, 30, 38], "seem": [5, 15, 26, 38], "decent": 5, "jackknif": 5, "jk_var_deg_freedom": 5, "linearli": [5, 14, 28], "uneven": [5, 22], "kepler": [5, 22], "springford": 5, "lombscarglecrossspectrum": [5, 25], "lombscarglepowerspectrum": [5, 23, 25], "quicklook": [6, 26, 38], "model": [6, 7, 8, 9, 21, 25, 27, 30, 33, 35, 40], "paralyz": 7, "fourier": [7, 8, 10, 14, 23, 24, 25, 27, 28, 37, 38], "brief": [8, 11], "overview": 8, "art": 8, "capabl": [8, 22], "revolut": 8, "develop": [8, 22], "agre": 8, "platform": 8, "At": 8, "xspec": 8, "isi": 8, "sherpa": 8, "wide": 8, "domain": 8, "proprietari": 8, "goal": 8, "guidelin": 8, "program": 8, "therebi": 8, "gui": 8, "ultim": 8, "commun": 8, "eas": [8, 26, 34, 35, 37, 43], "learn": [8, 22, 37], "techniqu": [8, 9, 25], "statist": [8, 9, 11, 14, 16, 19, 22, 26, 27, 29, 30], "hendric": [8, 15, 30], "graphic": 8, "dave": 8, "daniela": [8, 27], "matteo": [8, 27], "maltpynt": 8, "rxte": [8, 9, 17], "spectroscopi": [8, 9], "migliari": [8, 27], "paul": [8, 27], "balm": [8, 27], "explor": [8, 9, 11, 27, 38], "commiss": 8, "esa": 8, "accompani": 8, "716": [8, 20], "is_sort": 8, "723": 8, "730": [8, 20], "712": 8, "alloc": 8, "unneed": 8, "_al": 8, "issu": [8, 15, 16], "724": [8, 20], "725": [8, 20], "726": [8, 20], "crash": [8, 27], "727": 8, "reorder": 8, "contribut": [8, 9, 38], "721": [8, 11], "697": [8, 20], "logo": 8, "favicon": 8, "707": 8, "workflow": [8, 9], "codestyl": 8, "configur": [8, 16], "pyproject": 8, "toml": 8, "pep": 8, "e203": 8, "w503": 8, "715": [8, 20], "scrollbar": 8, "sidebarwrapp": 8, "718": 8, "simplifi": 8, "mock": 8, "coverag": 8, "731": [8, 20], "elimin": [8, 21, 30], "confus": [8, 38], "tl": 8, "dr": 8, "pulsar": [8, 9, 29, 30], "taper": 8, "lomb": [8, 9], "scargl": [8, 9], "modlat": 8, "powerspectrum": [8, 12, 15, 17, 19, 21, 22, 25, 26, 37], "frame": 8, "usabl": 8, "central": 8, "crossspectrum": [8, 15, 21, 34, 35, 37, 38], "from_lc_list": 8, "complexcovariancespectrum": 8, "covariancespectrum": [8, 38], "vastli": 8, "lot": [8, 26], "psd": [8, 9, 26], "legaci": 8, "varenergyspectrum": [8, 38], "reus": 8, "machineri": 8, "rmsenergyspectrum": 8, "friendlier": 8, "pyfftw": [8, 9, 38], "streamlin": 8, "crosssp": 8, "fly": 8, "slice": [8, 22], "incorrectli": 8, "64": [8, 15, 19, 20, 21, 22, 26, 41], "plephem": 8, "rare": 8, "0beta": 8, "faster": [8, 9], "correctli": [8, 26], "ftool": 8, "unevenli": [8, 22, 27], "o": [8, 14, 21, 22, 23, 24, 27, 30, 35, 38], "rehaul": 8, "speedup": [8, 30], "dead": [8, 9, 15, 16], "acceler": 8, "ap": 8, "2nd": 8, "severo": 8, "ochoa": 8, "mine": 8, "european": 8, "week": 8, "adass": 8, "meet": 8, "proceed": [8, 27], "aa": 8, "16th": 8, "incorpor": 9, "pipelin": [9, 15], "pca": 9, "fpm": 9, "newton": [9, 15], "xti": 9, "_and_": 9, "dynam": [9, 37, 40], "likelihood": [9, 10, 11, 38], "bispectra": [9, 12], "studi": [9, 25, 27], "think": 9, "usefulli": 9, "bicoher": 9, "colour": 9, "bit": [9, 14, 22, 28], "On": [9, 20, 30], "cach": 9, "highli": [9, 27], "tbb": 9, "tqdm": [9, 17, 27], "fastest": 9, "west": 9, "h5py": [9, 27], "pyyaml": 9, "gpmodel": 9, "ll": [9, 14, 22, 23, 24, 26, 27, 28], "jax": 9, "jaxn": 9, "tensorflow": 9, "tinygp": 9, "etil": 9, "typing_extens": 9, "nvidia": 9, "gpu": 9, "order": [9, 11, 12, 20, 25, 26, 27, 30, 34, 38, 43], "enabl": [9, 10, 27, 40], "jinja2": 9, "docutil": 9, "nbsphinx": 9, "pandoc": 9, "ipython": [9, 22], "22": [9, 12, 13, 14, 18, 19, 20, 22, 26, 27, 32, 37, 38], "anaconda": 9, "miniconda": 9, "forg": 9, "rememb": [9, 14], "bug": 9, "clone": [9, 27], "recurs": [9, 27], "cd": [9, 27], "navig": 9, "upstream": 9, "test_io": 9, "build_doc": 9, "makefil": 9, "doesn": [9, 26], "invok": 9, "_build": 9, "analys": [9, 22, 35], "higher": [9, 12], "util": [9, 12, 21, 22, 27, 38, 41], "changelog": 9, "feedback": 9, "cite": 9, "acknowledg": 9, "posterior": [10, 11], "paramet": [10, 11, 12, 20, 21, 22, 27, 30, 35, 36, 37, 38, 40, 41, 43], "ish": 10, "conveni": 10, "time_del": 11, "src_count": 11, "106": [11, 20, 22], "87": [11, 22, 26, 41], "115": [11, 20, 22], "148": [11, 20], "129": [11, 20, 31], "204": 11, "722": [11, 20, 38], "696": [11, 20], "701": [11, 20], "703": [11, 20], "695": 11, "01474": 11, "01158": 11, "01214": 11, "01308": 11, "010877": 11, "01177": 11, "01058": 11, "01138": 11, "37416": 11, "21713": 11, "37937": 11, "50140": 11, "11617": 11, "39221": 11, "64275": 11, "31160": 11, "bexvar_distribut": 11, "prepar": [11, 26, 40], "ultranest": 11, "live": [11, 26], "until": [11, 27, 34, 35], "2e": 11, "4040": [11, 31], "eval": 11, "3622": 11, "5046": 11, "eff": 11, "77": [11, 20, 22, 26, 41], "9595": 11, "5051": 11, "logz": 11, "86": [11, 20, 22, 26, 41], "0784": 11, "strategi": [11, 26], "ess": 11, "1590": 11, "gt": [11, 12, 13, 14, 15, 17, 18, 21, 22, 25, 26, 27, 28, 29, 32, 33, 35, 36, 37, 40, 41], "kl": 11, "47": [11, 12, 20, 22, 26, 40], "06": [11, 12, 13, 27], "nat": 11, "lt": [11, 12, 13, 14, 15, 17, 18, 21, 22, 25, 26, 27, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41], "evid": 11, "dlogz": 11, "budget": 11, "09": [11, 17], "856": [11, 20], "156": [11, 20], "093": 11, "010": 11, "insert": [11, 14, 28], "logmean": 11, "575": [11, 20], "461": 11, "020": [11, 30], "logsigma": 11, "227": [11, 14, 20, 22, 28], "028": 11, "018": 11, "constraint": [11, 27], "hist": [11, 17], "quantil": 11, "buchner": 11, "scriptstyl": 11, "c_i": 11, "t_i": [11, 22], "f_i": 11, "36": [11, 12, 13, 20, 22, 26], "8486": 11, "3615": 11, "5101": 11, "76": [11, 15, 20, 22, 26, 41], "8985": 11, "5125": 11, "41": [11, 13, 20, 22, 26, 38, 40], "09729": 11, "1692": 11, "46": [11, 12, 20, 22, 26, 40], "331": 11, "174": [11, 20], "092": 11, "335": [11, 20], "517": [11, 20], "383": 11, "081": 11, "029": 11, "236": [11, 20], "213": 11, "074": 11, "section": [11, 14, 22, 36, 38], "\ud835\udc37": 11, "\ud835\udc46_1": 11, "\ud835\udc35_1": 11, "\ud835\udc46_\ud835\udc41": 11, "\ud835\udc35_\ud835\udc41": 11, "s_i": 11, "b_i": 11, "th": [11, 27], "\ud835\udc46_\ud835\udc56": 11, "\ud835\udc35_\ud835\udc56": 11, "sim": [11, 21, 26, 30, 35, 36, 37, 43], "\ud835\udc43\ud835\udc5c\ud835\udc56\ud835\udc60\ud835\udc60\ud835\udc5c\ud835\udc5b": 11, "\ud835\udc45_\ud835\udc46": 11, "\ud835\udc61_\ud835\udc56": 11, "\ud835\udc45_\ud835\udc35": 11, "\ud835\udc5f": 11, "\ud835\udc53_\ud835\udc56": 11, "\u03b4\ud835\udc61": 11, "\ud835\udc45_b": 11, "unknown": [11, 27], "\ud835\udc45_": 11, "\ud835\udc41\ud835\udc5c\ud835\udc5f\ud835\udc5a\ud835\udc4e\ud835\udc59": 11, "\ud835\udc4f\ud835\udc52\ud835\udc65\ud835\udc63\ud835\udc4e\ud835\udc5f": 11, "prescript": 11, "uninform": 11, "mlfriend": 11, "ho": 12, "ploi": 12, "visit": [12, 13], "1308": 12, "3150": 12, "bispecphas": 12, "3885": 12, "0915": 12, "1685": 12, "5085": 12, "8135": 12, "0675": 12, "2708": 12, "0229": 12, "1426": 12, "0567": 12, "2328": 12, "5162": [12, 13], "0652": 12, "3058": 12, "1968": 12, "5492": 12, "0209": 12, "2484": 12, "0063": 12, "3999": 12, "9821": 12, "4989": 12, "5011": 12, "2348": 12, "2379": 12, "0426": 12, "3096": 12, "5704": 12, "1084": 12, "8632": 12, "0999": 12, "3613": 12, "3823": 12, "0872": 12, "864": [12, 20], "1870122": 12, "78649295": 12, "29941723": 12, "10990858": 12, "90975859": 12, "49707597": 12, "53408125": 12, "44275685": 12, "73419771": 12, "91909148": 12, "40576093": 12, "99063169": 12, "9523207": 12, "31681": 12, "34404789": 12, "93438197": 12, "05536311": 12, "92827099": 12, "61153784": 12, "09535492": 12, "84009298": 12, "98535468": 12, "6746004": 12, "71227576": 12, "35566037": 12, "00797853": 12, "60576409": 12, "69373893": 12, "83780286": 12, "72630968": 12, "87985137": 12, "32007463": 12, "93123174": 12, "60598497": 12, "51743271": 12, "262": 12, "65814471e": 12, "39758950e": 12, "49083269e": 12, "35797260e": 12, "22623935e": 12, "13514588e": 12, "35308043e": 12, "65460441e": 12, "17269495e": 12, "39881603e": 12, "84719564e": 12, "70902436e": 12, "50042861e": 12, "76818268e": 12, "16177187e": 12, "02": [12, 14, 15, 17, 19, 20, 22, 25, 26, 28, 38], "76512372e": 12, "97853199e": 12, "45401552e": 12, "64851065e": 12, "51373516e": 12, "32816666e": 12, "45429375e": 12, "86246989e": 12, "08272440e": 12, "10623774e": 12, "97776986e": 12, "96295975e": 12, "83162811e": 12, "34000660e": 12, "30996608e": 12, "24358981e": 12, "contour": 12, "demostr": [12, 13], "lighturv": 12, "0001": [12, 13, 17, 30], "noisi": [12, 13, 14, 27, 28], "500000": [12, 13], "00000001": 12, "4800": 12, "4600": 12, "4400": 12, "4200": 12, "0021": 12, "0022": 12, "0023": 12, "0024": 12, "0025": 12, "16469688e": 12, "04": [12, 17, 20, 30, 38], "15175317e": 12, "07527932e": 12, "12465067e": 12, "49891250e": 12, "13491830e": 12, "01378025e": 12, "84909091e": 12, "76499980e": 12, "03093430e": 12, "39169834e": 12, "06733571e": 12, "56900080e": 12, "36904080e": 12, "64739272e": 12, "07642325e": 12, "40724231e": 12, "20972054e": 12, "10825598e": 12, "57445478e": 12, "50738698e": 12, "53088049e": 12, "06758132e": 12, "50761732e": 12, "70732731e": 12, "15575763e": 12, "26276548e": 12, "46966498e": 12, "49049233e": 12, "93111630e": 12, "96629892e": 12, "00897434e": 12, "37940654e": 12, "25908665e": 12, "04722751e": 12, "95122973e": 12, "48985545e": 12, "59418559e": 12, "40950546e": 12, "28946188e": 12, "77547458e": 12, "58282563e": 12, "16597857e": 12, "08264564e": 12, "62145798e": 12, "20770115e": 12, "74011370e": 12, "04301082e": 12, "42455829e": 12, "16520488e": 12, "25699675e": 12, "10270301": 12, "09674684": 12, "1026435": 12, "10278492": 12, "09607422": 12, "09961388": 12, "10090391": 12, "10316149": 12, "09881147": 12, "10027435": 12, "09052907": 12, "10086312": 12, "09964639": 12, "09224589": 12, "10189853": 12, "09783874": 12, "1029246": 12, "10003251": 12, "1003841": 12, "09654483": 12, "10021589": 12, "10265071": 12, "09913028": 12, "10406698": 12, "10248613": 12, "12079938": 12, "10038381": 12, "09376602": 12, "09916139": 12, "10218425": 12, "09798569": 12, "10296954": 12, "10377357": 12, "10144925": 12, "09848511": 12, "09731673": 12, "10031293": 12, "09733791": 12, "10085873": 12, "09769191": 12, "10021328": 12, "1000008": 12, "10362033": 12, "10352851": 12, "09763424": 12, "10249754": 12, "09752426": 12, "09520164": 12, "09959243": 12, "12395456": 12, "10188173": 12, "23": [12, 13, 14, 18, 19, 20, 22, 26, 27, 32, 37, 38], "44942123e": 12, "67988284e": 12, "06544878e": 12, "03": [12, 14, 15, 17, 20, 26, 30, 38], "24304742e": 12, "69267453e": 12, "80410887e": 12, "18875941e": 12, "85154750e": 12, "17338081e": 12, "03821918e": 12, "09489717e": 12, "05358508e": 12, "01625879e": 12, "05403388e": 12, "17686452e": 12, "56746832e": 12, "17353559e": 12, "69020683e": 12, "54447950e": 12, "03814639e": 12, "43660863e": 12, "37971533e": 12, "42017522e": 12, "42720920e": 12, "17025084e": 12, "00982277e": 12, "53439701e": 12, "63874625e": 12, "10637611e": 12, "41131565e": 12, "95500843e": 12, "98681684e": 12, "23914953e": 12, "75100800e": 12, "88428578e": 12, "87537903e": 12, "53613857e": 12, "47624077e": 12, "86162981e": 12, "76731089e": 12, "30828311e": 12, "86531767e": 12, "16465064e": 12, "30165990e": 12, "71187242e": 12, "00694116e": 12, "16511843e": 12, "98737477e": 12, "87738671e": 12, "09922507e": 12, "39146079e": 12, "26": [12, 13, 14, 20, 22, 26, 27, 37, 38], "29": [12, 13, 17, 20, 22, 26, 38], "window_nam": 12, "cont": 12, "contourf": 12, "cmap": [12, 30], "cm": 12, "spectral_r": 12, "colorbar": [12, 18, 19, 30], "0x1ac8b7e8e80": 12, "mag_plot": 12, "phase_plot": 12, "37": [12, 13, 20, 22, 26, 38], "0x1ac8bbfe710": 12, "0x1ac8bdc15f8": 12, "48": [12, 20, 22, 26, 40], "52": [12, 16, 20, 21, 22, 26, 40], "font_manag": [13, 14, 23, 24, 28], "font_prop": [13, 14, 23, 24, 28], "fontproperti": [13, 14, 23, 24, 28], "03125": [13, 14, 27, 28], "sine": [13, 14, 23, 24, 27, 28], "wave": [13, 14, 23, 24, 27, 28], "ct": [13, 14, 17, 23, 24, 27, 28], "radian": [13, 14, 27, 28], "signal_1": [13, 14], "signal_2": [13, 14], "noisy_1": [13, 14], "noisy_2": [13, 14], "320": [13, 20], "subplot": [13, 14, 21, 23, 24, 27, 28, 30, 33, 38], "figsiz": [13, 14, 15, 16, 17, 21, 23, 24, 26, 27, 28, 29, 30, 33, 38], "lw": [13, 14, 18, 19, 23, 24, 26, 28, 29, 30, 33], "set_xlabel": [13, 14, 23, 24, 27, 28, 38], "set_ylabel": [13, 14, 21, 23, 24, 27, 28, 38], "tick_param": [13, 14, 23, 24, 28], "labels": [13, 14, 17, 23, 24, 28, 33, 38], "minor": [13, 14, 23, 24, 28, 33, 38], "lightvurv": 13, "cr": 13, "201": [13, 20], "553125": 13, "1412": 13, "10121094": 13, "2828": 13, "54304688": 13, "3948": 13, "95050781": 13, "5370": 13, "02359375": 13, "5750": 13, "04355469": 13, "6222": 13, "50101563": 13, "6664": 13, "92722656": 13, "5969": 13, "0503125": 13, "6770": 13, "80464844": 13, "visula": 13, "haroon": [13, 41], "rashid": [13, 41], "anaconda3": [13, 38, 41], "lib": [13, 22, 38, 41], "site": [13, 22, 38, 41], "26645768025078276": 13, "ink": 13, "cr1": 13, "639": 13, "660": 13, "1790": 13, "3026": 13, "4019": 13, "5164": 13, "6647": 13, "8105": 13, "7023": 13, "6012": 13, "83333333333333348": 13, "poission": 13, "accur": [13, 15, 16, 26, 29], "900": [13, 14], "constructor": [13, 27], "86241768e": 13, "71238867e": 13, "42481318e": 13, "41372717e": 13, "88497623e": 13, "35622831e": 13, "82748324e": 13, "29874082e": 13, "77000087e": 13, "24126319e": 13, "71252762e": 13, "18379395e": 13, "65506201e": 13, "12633160e": 13, "59760255e": 13, "06887466e": 13, "54014775e": 13, "01142163e": 13, "48269612e": 13, "95397103e": 13, "42524618e": 13, "89652137e": 13, "03677964e": 13, "08390712e": 13, "13103454e": 13, "17816189e": 13, "22528916e": 13, "27241631e": 13, "31954335e": 13, "36667023e": 13, "41379696e": 13, "46092350e": 13, "50804985e": 13, "55517598e": 13, "60230186e": 13, "64942750e": 13, "69655286e": 13, "74367792e": 13, "79080268e": 13, "83792710e": 13, "88505118e": 13, "93217489e": 13, "97929821e": 13, "02642113e": 13, "07354363e": 13, "12066568e": 13, "16778727e": 13, "21490839e": 13, "26202900e": 13, "30914910e": 13, "27": [13, 20, 22, 26, 27, 37, 38], "9999999999766942e": 13, "2495504991004161": 13, "autocorrealt": 13, "lighrcurv": 13, "31": [13, 20, 22, 26], "33": [13, 16, 20, 22, 26], "12500000e": 13, "12499978e": 13, "12499911e": 13, "12499800e": 13, "12499645e": 13, "12499445e": 13, "12499201e": 13, "12498912e": 13, "12498579e": 13, "12498201e": 13, "9999": 13, "9998": 13, "maxim": [13, 26, 29], "0000099997734535e": 13, "00487599": 13, "00485198": 13, "99992797": 13, "999": [13, 20, 22], "998": [13, 20], "997": [13, 26], "42": [13, 20, 22, 23, 24, 26, 40], "manipul": [14, 23, 24, 28], "ipynb": [14, 28], "wish": [14, 23, 24, 28], "0x7f7aa3d518b0": 14, "clariti": [14, 28, 30], "nomin": [14, 28, 29], "dai": [14, 20, 27], "pai": [14, 27], "from_lc_it": [14, 28], "lc_iterable1": 14, "lc_iterable2": 14, "lc_iterablex": 14, "lazi": 14, "bunch": [14, 26, 41], "five": [14, 23, 24], "125": [14, 28, 35, 36, 37, 40, 43], "375": [14, 28], "625": [14, 20, 28], "3264": 14, "54599394": 14, "1077": 14, "46450232j": 14, "1066": 14, "6390401": 14, "2783": 14, "16358879j": 14, "3275": 14, "00416926": 14, "196": [14, 20], "64355198j": 14, "8345": 14, "12445869": 14, "6661": 14, "52326503j": 14, "5916": 14, "3705245": 14, "3602": 14, "05210672j": 14, "twice": [14, 28, 30], "256": [14, 15, 16, 20, 25, 27, 28], "spike": [14, 19, 28], "cs_amplitud": 14, "mod": [14, 38], "ax1": [14, 28, 30, 38], "sharex": [14, 21, 28, 30, 38], "set_yscal": [14, 27, 28], "bottom": [14, 28, 30, 33, 38], "spine": [14, 28], "set_linewidth": [14, 28], "chop": [14, 28], "fancier": 14, "1600": [14, 28], "long_dt": [14, 28], "long_exposur": [14, 28], "long_tim": [14, 28], "long_signal_1": 14, "long_signal_2": 14, "multipli": [14, 27, 28, 30, 32, 38], "long_noisy_1": 14, "long_noisy_2": 14, "long_lc1": 14, "long_lc2": 14, "set_xlim": [14, 27, 28, 38], "remaind": [14, 28], "incomplet": [14, 28], "artefact": [14, 28], "avg_c": 14, "200it": [14, 28], "12346": 14, "54it": 14, "necess": 14, "nnumber": 14, "291": 14, "76338464": 14, "640": [14, 20], "48290689j": 14, "182": [14, 20], "72485752": 14, "81942269j": 14, "293": [14, 20], "42490539": 14, "276": [14, 20], "16187738j": 14, "771": 14, "98935476": 14, "595": 14, "89062793j": 14, "361": 14, "32859119": 14, "101": [14, 20, 22], "50371039j": 14, "pop": 14, "significantli": 14, "test_c": 14, "40it": [14, 38], "7645": 14, "47it": [14, 38], "avg_cs_amplitud": 14, "266": [14, 28], "160l": [14, 28], "meanrate_1": 14, "meanrate_2": 14, "belloni": [14, 28, 38], "hasing": [14, 28, 38], "1990": [14, 27, 28, 38], "l33": [14, 28], "miyamoto": [14, 28, 38], "1992": [14, 28, 38], "391": [14, 20, 28], "l21": [14, 28], "No": [14, 16, 17, 28], "avg_cs_leahi": 14, "avg_cs_frac": 14, "avg_cs_ab": 14, "15141": 14, "07it": 14, "12807": 14, "43it": 14, "13023": 14, "36it": 14, "ax2": [14, 28], "ax3": [14, 28], "set_titl": [14, 27, 28], "tight_layout": [14, 27, 28, 33], "although": [14, 28, 34], "syntax": [14, 20, 22, 28], "lin_rb_c": 14, "spectum": 14, "log_rb_c": 14, "log_rb_freq": [14, 28], "broad": [14, 38], "arev": 14, "72": [14, 20, 21, 22, 26, 38, 41], "literatur": [14, 27], "0015231682473469295763529": 14, "53": [14, 20, 22, 26, 40], "semilogi": [14, 17, 25], "30it": [14, 16], "264": [14, 20], "86it": 14, "freq_lag": 14, "freq_lags_err": 14, "freq_plag": 14, "freq_plags_err": 14, "hline": 14, "linestyl": [14, 33, 34, 35, 38], "dash": 14, "semilogx": [14, 15, 38], "axvlin": [14, 17, 25, 27, 29, 30, 34, 35], "xlim": [14, 17, 25, 29, 30, 33, 38], "ylim": [14, 15, 17, 18, 19, 25, 30, 33, 35, 38], "zorder": [14, 15, 17, 21, 25, 28, 29, 30], "legend": [14, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38], "rad": [14, 38], "axhlin": [14, 17, 29, 30, 34, 35, 37, 38], "lagenergyspectrum": 14, "varenergi": 14, "474": [14, 20], "l43": 14, "14681": 14, "05it": 14, "err_coh": 14, "h1743": 15, "322": [15, 20], "reduc": [15, 26, 27], "ran": 15, "barycorr": 15, "solar": [15, 22, 26], "load_ext": [15, 16, 17, 21, 25, 26, 28, 29, 30, 33, 37, 38], "autoreload": [15, 16, 17, 21, 25, 26, 28, 29, 30, 33, 37, 38], "eva": 15, "nustar_a_src": [15, 25], "evb": 15, "nustar_b_src": [15, 25], "sake": [15, 38, 43], "all_ev": 15, "satellit": [15, 20, 25], "acquir": 15, "earth": [15, 25], "occult": [15, 25], "saa": 15, "passag": 15, "bad_time_interv": 15, "axvspan": [15, 25], "6500": [15, 31], "straight": 15, "4800005": [15, 20], "float32": [15, 20], "rmf": 15, "aggress": 15, "5200": 15, "79": [15, 20, 22, 26, 41], "soft": 15, "hard_ev": 15, "soft_ev": 15, "hard_lc": 15, "soft_lc": 15, "hardness_ratio": 15, "despit": 15, "pretti": [15, 26, 27], "stabl": [15, 30], "238it": 15, "177": 15, "96it": [15, 38], "loglog": [15, 21, 25, 26, 37, 38], "nice": [15, 18, 25, 29], "78": [15, 20, 22, 26, 41], "00it": 15, "line2d": [15, 17, 25, 26, 33, 35, 36, 37, 40], "0x7fe8c0e7d8b0": 15, "cs_reb": [15, 25, 38], "deeper": 15, "filter_for_deadtim": [16, 17], "busi": [16, 27], "particl": [16, 25], "greatli": 16, "astrosat": 16, "def": [16, 17, 21, 22, 26, 29, 30, 32, 33, 38], "generate_ev": 16, "ctrate": [16, 38], "5e": [16, 17, 25], "25600": 16, "58000": [16, 20], "100it": 16, "98": [16, 19, 20, 22], "20it": [16, 18, 38], "134": 16, "62it": 16, "61it": 16, "97it": 16, "ev1_dt": 16, "ev2_dt": 16, "pds1_dt": 16, "pds2_dt": 16, "ptot_dt": 16, "cs_dt": 16, "154": [16, 20], "167": 16, "133": 16, "60it": 16, "67": [16, 17, 20, 22, 26, 41], "74it": 16, "freq_f": 16, "pds1_f": 16, "pds2_f": 16, "cs_f": 16, "ptot_f": 16, "99it": 16, "spec": 16, "spec_dt": 16, "spec_f": 16, "seen": [16, 17, 20, 22, 25], "lc1_dt": 16, "lc2_dt": 16, "93it": [16, 28], "verifi": [17, 20, 26, 34], "seaborn": [17, 18, 19, 21, 23, 24, 26, 27, 29, 30], "sn": [17, 26, 27], "gridspec": [17, 21, 30, 38], "dz": 17, "set_context": 17, "set_styl": 17, "whitegrid": 17, "set_palett": [17, 26, 27], "colorblind": [17, 26], "rcparam": [17, 21, 29, 30, 33, 38, 43], "dpi": [17, 21, 27, 33, 38], "font": [17, 21, 33, 38, 43], "xtick": [17, 33, 38], "ytick": [17, 33, 38], "1209432": 17, "simulate_ev": 17, "filter_kwarg": 17, "events_dt": 17, "diff_dt": 17, "hist_dt": 17, "bins_mean": 17, "fill_between": [17, 27], "t_": 17, "distanc": 17, "r_": [17, 27], "det": [17, 29, 30], "tau_d": 17, "015": 17, "0005": 17, "deadtimes_plot": 17, "new_rat": 17, "plateau": 17, "complic": [17, 20], "008": 17, "exp": [17, 26, 34], "Will": 17, "nevent": 17, "200000": 17, "logspac": 17, "log10": [17, 30, 41], "bintim": 17, "4096": 17, "lc_dt": 17, "zh_f": 17, "zh_p": 17, "predict": [17, 26], "updat": [17, 26, 33, 38], "50it": 17, "37it": 17, "2000": [17, 20, 22, 31], "20000": 17, "drawstyl": [17, 20, 25, 38], "khz": 17, "4000it": 17, "4140": 17, "55it": 17, "ok": 17, "summat": 17, "prone": 17, "000": 17, "depict": 17, "thorough": 17, "impli": 17, "quit": [17, 22, 27, 29], "wiggl": [17, 25], "8000": 17, "presenc": [17, 26, 42], "tell": [17, 22], "a_k": 17, "somewhat": 17, "counter": 17, "intuit": 17, "safe_a": 17, "had": [17, 26], "1600it": 17, "3214": 17, "76it": 17, "interp1d": [17, 21, 33], "deadtime_fun": 17, "bounds_error": [17, 21], "fill_valu": [17, 21], "extrapol": [17, 21], "0x7f8c9ed78100": 17, "imperfect": [17, 25], "3402": 17, "34it": 17, "0x7f8c6f9bd0d0": 17, "__version__": 18, "dev273": 18, "g6908e954": 18, "big": [18, 22], "evolut": 18, "24hz": 18, "130": [18, 31], "drift": 18, "160": [18, 20], "zoom": [18, 30], "33it": 18, "19390": 18, "87it": 18, "0x16960b7c0": 18, "dp": 18, "17010": 18, "17857": 18, "31it": 18, "extent": [18, 19], "min": [18, 19, 21, 23, 24, 29, 30, 31], "imshow": [18, 19], "aspect": [18, 19, 27], "vmax": [18, 19], "powerspecttrum": 18, "0x16969f910": 18, "3333333333333333": 18, "dps_new_f": 18, "dps_new_t": 18, "max_po": 18, "c3": 18, "hertz": 18, "fuction": 18, "0x1698d2a70": 18, "auxiliari": 19, "emr_clean": 19, "timedel": 19, "collumn": 19, "witha": 19, "dynspec": 19, "01901704e": 19, "32485459e": 19, "14704363e": 19, "76872866e": 19, "49269045e": 19, "60522187e": 19, "93960257e": 19, "48892516e": 19, "39280288e": 19, "23511732e": 19, "27550837e": 19, "06261843e": 19, "64619904e": 19, "58266627e": 19, "42614944e": 19, "16952148e": 19, "54994270e": 19, "56956463e": 19, "69311108e": 19, "18784072e": 19, "57151667e": 19, "09923562e": 19, "40274378e": 19, "53108287e": 19, "95675687e": 19, "47939959e": 19, "84930818e": 19, "99674579e": 19, "48585951e": 19, "49068264e": 19, "84156884e": 19, "65514790e": 19, "17385519e": 19, "54942692e": 19, "99801389e": 19, "03835451e": 19, "vmin": [19, 30], "700": [19, 20], "850": 19, "powerspectrun": 19, "65535": 19, "104": [19, 20, 22], "0625": 19, "rebinnin": 19, "755": [19, 20], "782hz": 19, "782": [19, 20], "740": [19, 20], "fluctut": 19, "danger": 19, "futur": [19, 26, 30, 36, 43], "stai": 19, "tun": 19, "flexibl": 20, "stick": 20, "fulli": [20, 22, 26], "interoper": 20, "ecosystem": 20, "energytim": 20, "float64float64": 20, "timedelta": 20, "timeenergi": 20, "objectfloat64": 20, "787037037037037e": [20, 22], "060": 20, "2731481481481482e": 20, "053": 20, "5462962962962965e": 20, "054": 20, "282407407407408e": 20, "0520": 20, "ordereddict": 20, "cours": [20, 26], "back": [20, 22], "table_ev": 20, "table_t": 20, "suffici": 20, "bewar": [20, 35], "roundrip": 20, "necessarili": 20, "80000000": 20, "23635569": 20, "80000001": 20, "47479323": 20, "78458866": 20, "80000002": 20, "78943624": 20, "80000003": 20, "42859936": 20, "80000004": 20, "07943003": 20, "80000006": 20, "09310323": 20, "80000007": 20, "18041813": 20, "80000008": 20, "17602143": 20, "20403489": 20, "55197": 20, "00076601852": 20, "80001025": 20, "receiv": 20, "come": [20, 22, 26, 38, 43], "becom": [20, 22, 34, 35], "preserv": 20, "ev3": 20, "trip": 20, "ev4": 20, "cat": 20, "omap": 20, "buffer": 20, "qufbqufbq0fscgdauurhrnbuoefbqufbqufbz0fkzvlhvuf4agfal0fbqt0": 20, "xtension": 20, "bintabl": 20, "bitpix": 20, "naxi": 20, "naxis1": 20, "naxis2": 20, "pcount": 20, "gcount": 20, "tfield": 20, "field": [20, 34], "ttype1": 20, "tform1": 20, "1d": 20, "ttype2": 20, "tform2": 20, "1j": 20, "extnam": 20, "edwig": 20, "bubbl": 20, "telescop": 20, "instrum": 20, "obs_id": 20, "00000000001": 20, "targ_id": 20, "target": [20, 25], "ra_obj": 20, "deg": 20, "dec_obj": 20, "dec": 20, "ra_nom": 20, "ascens": 20, "correctionsdec_nom": 20, "declin": 20, "ra_pnt": 20, "ra": [20, 31], "dec_pnt": 20, "pa_pnt": 20, "angl": [20, 34], "roll": [20, 30], "equinox": 20, "celesti": 20, "coord": 20, "radecsi": 20, "fk5": 20, "tassign": 20, "clock": 20, "julian": [20, 22], "pathlength": 20, "clockapp": 20, "gnd": 20, "sware": 20, "timeunit": 20, "elaps": [20, 22], "livetim": 20, "1025": 20, "timezero": 20, "transport": 20, "acom": 20, "376": 20, "359": 20, "bibcod": 20, "2001a": 20, "359h": 20, "jan": 20, "tt": 20, "meo": 20, "fv": 20, "2015": [20, 26], "17t14": 20, "schema": 20, "56": [20, 22, 26, 27], "23635569215": 20, "039997": 20, "786": 20, "47479322553": 20, "9999995": 20, "78458866477": 20, "656": 20, "789436236024": 20, "181": 20, "428599357605": 20, "92": [20, 22], "308": 20, "079430028796": 20, "839996": 20, "906": 20, "559998": 20, "974": 20, "180418133736": 20, "8799996": 20, "107": [20, 22, 25], "176021426916": 20, "239998": 20, "991": 20, "204034894705": 20, "801": 20, "80000009": 20, "69214613736": 20, "178": 20, "80000010": 20, "36281684041": 20, "393": 20, "78324916959": 20, "124": [20, 22], "80000011": 20, "8733625412": 20, "492": 20, "80000013": 20, "92633379996": 20, "216": 20, "80000014": 20, "204483643174": 20, "68": [20, 22, 26, 41], "26073910296": 20, "627": 20, "80000015": 20, "256171390414": 20, "96": [20, 22, 24], "59": [20, 22, 26, 38], "80000018": 20, "08373501897": 20, "309": 20, "83911728859": 20, "668": 20, "80000019": 20, "98157013953": 20, "319996": 20, "918": 20, "80000020": 20, "76013682783": 20, "404": 20, "80000021": 20, "14855520427": 20, "80000022": 20, "02460347116": 20, "704": 20, "80000023": 20, "50157275796": 20, "562": 20, "61806283891": 20, "400001": 20, "220": 20, "80000024": 20, "97833034396": 20, "519997": 20, "80000025": 20, "95996727049": 20, "66": [20, 22, 26, 41], "80000026": 20, "16019311547": 20, "543": 20, "80000027": 20, "089139238": 20, "399998": 20, "995": 20, "80000028": 20, "596908301115": 20, "453": 20, "80000031": 20, "065731182694": 20, "874": 20, "10555113852": 20, "920": 20, "80000032": 20, "516511276364": 20, "567": 20, "808356150985": 20, "80000033": 20, "18797942996": 20, "879": 20, "85146795213": 20, "225": [20, 22], "80000034": 20, "861510172486": 20, "460": 20, "80000038": 20, "22435864806": 20, "3600001": 20, "44": [20, 22, 26, 38, 40], "39090189338": 20, "337": 20, "80000042": 20, "41919325292": 20, "522": 20, "80000043": 20, "69195660949": 20, "80000045": 20, "52997684479": 20, "88": [20, 22, 26, 41], "507": 20, "80000052": 20, "78282105923": 20, "950": 20, "919592529535": 20, "80000054": 20, "28180256486": 20, "318": 20, "80000056": 20, "48970986903": 20, "4399996": 20, "146": 20, "80000057": 20, "49698485434": 20, "9599996": 20, "159": [20, 27], "80000058": 20, "55781446397": 20, "494": 20, "80000059": 20, "284333616495": 20, "159996": 20, "839": 20, "80000060": 20, "359298199415": 20, "501": 20, "80000063": 20, "666031733155": 20, "871": 20, "80000064": 20, "78927731514": 20, "843": 20, "80000067": 20, "341705307364": 20, "612": [20, 34], "80000068": 20, "267971634865": 20, "263": [20, 27], "80000070": 20, "24889309704": 20, "80000072": 20, "99266758561": 20, "80000073": 20, "4422865361": 20, "81521306932": 20, "670": 20, "80000074": 20, "7710172981": 20, "512": 20, "80000076": 20, "15446573496": 20, "61943152547": 20, "818": 20, "80000078": 20, "37191092968": 20, "186": 20, "80000079": 20, "364117503166": 20, "80000080": 20, "12182110548": 20, "312": 20, "4114151746": 20, "80000083": 20, "704568862915": 20, "614": [20, 34], "80000084": 20, "38392549753": 20, "488": [20, 38], "49645087123": 20, "7599998": 20, "73323458433": 20, "80000085": 20, "518022567034": 20, "2799997": 20, "80000086": 20, "06328216195": 20, "936": 20, "80000087": 20, "00356020033": 20, "332": 20, "108956605196": 20, "241": 20, "3983823657": 20, "199997": 20, "1015": 20, "80000088": 20, "44739763439": 20, "664": 20, "72279639542": 20, "80000089": 20, "15565529466": 20, "1017": 20, "80000090": 20, "20357654989": 20, "93": [20, 22], "7642698288": 20, "317": 20, "80305439234": 20, "968": 20, "80000091": 20, "500082850456": 20, "421": [20, 22], "80000092": 20, "158643990755": 20, "766": 20, "89413803816": 20, "80000094": 20, "805209457874": 20, "879997": 20, "932": 20, "80000095": 20, "04941494763": 20, "765": 20, "80000096": 20, "56686630845": 20, "720": [20, 38], "91533789039": 20, "719997": 20, "853": 20, "80000098": 20, "67825654149": 20, "693": 20, "92884159088": 20, "199999": 20, "390": 20, "80000099": 20, "199268594384": 20, "908": 20, "80000100": 20, "14995288849": 20, "935947969556": 20, "288": 20, "80000102": 20, "76762147248": 20, "80000103": 20, "05724072456": 20, "816": 20, "80000104": 20, "193173110485": 20, "80000107": 20, "33343601227": 20, "40127386153": 20, "166": 20, "56737007201": 20, "954": 20, "80000109": 20, "40503971279": 20, "51361806691": 20, "770": 20, "80000111": 20, "27798360586": 20, "465": 20, "80000112": 20, "93057106435": 20, "519": 20, "80000113": 20, "545409321785": 20, "71510283649": 20, "876": 20, "80000115": 20, "363516911864": 20, "80000116": 20, "62624913454": 20, "568": 20, "80000117": 20, "5390470773": 20, "247": 20, "80000118": 20, "313546299934": 20, "210": 20, "64352825284": 20, "294": 20, "80000119": 20, "64161340892": 20, "70217871666": 20, "102": [20, 22], "87085522711": 20, "604": [20, 22, 34], "80000120": 20, "67677563429": 20, "9200001": 20, "80000121": 20, "80093438923": 20, "80000122": 20, "09129279852": 20, "545517489314": 20, "793": 20, "93073017895": 20, "304": 20, "80000123": 20, "276563555": 20, "889": 20, "80000125": 20, "506356075406": 20, "6568851918": 20, "079998": 20, "887": 20, "80000127": 20, "336458325386": 20, "121": 20, "45361994207": 20, "259": 20, "80000128": 20, "36573840678": 20, "80000129": 20, "43040788174": 20, "319": 20, "80000130": 20, "30537183583": 20, "80000131": 20, "993975520134": 20, "708": 20, "80000132": 20, "51598034799": 20, "505": 20, "877141192555": 20, "231": 20, "80000134": 20, "958766937256": 20, "353": 20, "80000136": 20, "26415735483": 20, "193": 20, "271308645606": 20, "921": 20, "491618439555": 20, "824": 20, "59682570398": 20, "81391918659": 20, "80000137": 20, "111403808": 20, "99286413193": 20, "165": 20, "80000140": 20, "02283409238": 20, "735": 20, "80000141": 20, "585879951715": 20, "413": 20, "88128243387": 20, "651": 20, "80000142": 20, "301297202706": 20, "80000144": 20, "258596763015": 20, "80000146": 20, "35952179134": 20, "208": 20, "431891173124": 20, "93531550467": 20, "778": 20, "80000147": 20, "86272408068": 20, "80000148": 20, "20213320851": 20, "311": 20, "998638793826": 20, "229": [20, 22], "80000150": 20, "13331639767": 20, "163": 20, "40001221001": 20, "759": 20, "51030369103": 20, "80000158": 20, "27798460424": 20, "565826013684": 20, "454": 20, "80000160": 20, "18738743663": 20, "440001": 20, "321": 20, "80000162": 20, "67192919552": 20, "253": 20, "80000163": 20, "52692268789": 20, "896": 20, "80000164": 20, "03886182606": 20, "781": 20, "495729878545": 20, "80000165": 20, "17495532334": 20, "80000166": 20, "38718263805": 20, "80000168": 20, "38902553916": 20, "596": 20, "80000169": 20, "68685694039": 20, "549": 20, "713349059224": 20, "437": 20, "80000170": 20, "805011570454": 20, "986": 20, "80000172": 20, "42077590525": 20, "43760578334": 20, "80000174": 20, "10814335942": 20, "892": 20, "15144339204": 20, "729": 20, "80246704817": 20, "83830589056": 20, "548": 20, "80000176": 20, "110384613276": 20, "795": 20, "43801294267": 20, "137": 20, "80000177": 20, "71353569627": 20, "938": 20, "80000178": 20, "329968214035": 20, "80000180": 20, "91684667766": 20, "80000181": 20, "358734831214": 20, "584": 20, "80000182": 20, "17984089255": 20, "2385392189": 20, "80000183": 20, "21093174815": 20, "173": 20, "68284714222": 20, "558": 20, "80000184": 20, "32184153795": 20, "809": 20, "80000187": 20, "16848820448": 20, "285": 20, "80000188": 20, "89809964597": 20, "80000189": 20, "59268042445": 20, "80000190": 20, "39239893854": 20, "987773641944": 20, "161": 20, "80000191": 20, "39765946567": 20, "206": 20, "63218219578": 20, "895": 20, "7998701334": 20, "897": 20, "80000194": 20, "591946706176": 20, "80000195": 20, "17524069548": 20, "60482543707": 20, "80000197": 20, "01553657651": 20, "80000198": 20, "18857589364": 20, "280": 20, "80000199": 20, "30817961693": 20, "464": 20, "80000200": 20, "066078454256": 20, "6800001": 20, "80000201": 20, "68090777099": 20, "261": 20, "80000202": 20, "814891934395": 20, "418": [20, 22], "80000203": 20, "25650832057": 20, "359997": 20, "969": 20, "48255087435": 20, "817": 20, "80000204": 20, "7061804533": 20, "826": 20, "80000207": 20, "248482748866": 20, "80000208": 20, "40996426344": 20, "679": 20, "54558329284": 20, "80000212": 20, "2733836025": 20, "945": 20, "80000213": 20, "37501113117": 20, "551": 20, "80000214": 20, "05003093183": 20, "76189556718": 20, "346": 20, "94751133025": 20, "806": 20, "80000215": 20, "30322690308": 20, "606552898884": 20, "399": 20, "80000216": 20, "67295819521": 20, "721879810095": 20, "510": [20, 22], "80000217": 20, "02722400427": 20, "3199997": 20, "143": 20, "80000218": 20, "21801964939": 20, "118": [20, 23, 31], "80000223": 20, "690936505795": 20, "973": 20, "80000224": 20, "71057784557": 20, "88408643007": 20, "737": 20, "80000225": 20, "81306296587": 20, "485": 20, "80000228": 20, "288003221154": 20, "351": 20, "80000229": 20, "47965101898": 20, "828": 20, "982017084956": 20, "607": [20, 34], "80000230": 20, "13939705491": 20, "373": 20, "207446575165": 20, "80000233": 20, "628895014524": 20, "785": 20, "858214601874": 20, "882": 20, "80000235": 20, "58721217513": 20, "80000236": 20, "03008031845": 20, "80000239": 20, "206377997994": 20, "119999": 20, "738": 20, "80000240": 20, "66440632939": 20, "814": 20, "80000241": 20, "05537928641": 20, "299": 20, "80000242": 20, "91226673126": 20, "433": 20, "80000243": 20, "34091578424": 20, "521": 20, "80000246": 20, "23444570601": 20, "980": 20, "39591316879": 20, "80000248": 20, "63243843615": 20, "80000249": 20, "259784281254": 20, "199": 20, "85402186215": 20, "80000250": 20, "17666938901": 20, "80000251": 20, "49163559079": 20, "50295473635": 20, "570": 20, "80000252": 20, "06601053476": 20, "272911697626": 20, "913": 20, "985514968634": 20, "930": 20, "80000253": 20, "836741268635": 20, "80000255": 20, "06581965089": 20, "1003": 20, "60727831721": 20, "80000256": 20, "902037888765": 20, "455": 20, "80000258": 20, "60432396829": 20, "1019": 20, "80000260": 20, "50080451369": 20, "75552198291": 20, "249": 20, "88460493088": 20, "80000261": 20, "36898006499": 20, "80000262": 20, "92271217704": 20, "415": 20, "99845524132": 20, "544": 20, "80000263": 20, "33590015769": 20, "984": 20, "80000264": 20, "96524555981": 20, "192": 20, "80000265": 20, "84508921206": 20, "80000266": 20, "91673760116": 20, "71": [20, 22, 26, 41], "80000268": 20, "235334053636": 20, "529": 20, "80000271": 20, "489329367876": 20, "559": 20, "64101035893": 20, "857": 20, "98798702657": 20, "239": 20, "80000273": 20, "71523039043": 20, "865": 20, "80000275": 20, "30799421668": 20, "779": 20, "81958813965": 20, "643": 20, "80000276": 20, "46777294576": 20, "635": 20, "80000277": 20, "24329108": 20, "360001": 20, "244": 20, "80254943669": 20, "80000278": 20, "42643971741": 20, "427": 20, "52543953061": 20, "8399997": 20, "78952820599": 20, "591": 20, "80000279": 20, "13904826343": 20, "32166413963": 20, "47431126237": 20, "825": [20, 31], "80000281": 20, "05502511561": 20, "315": 20, "66787202656": 20, "412": 20, "735276550055": 20, "314": 20, "80000283": 20, "60641156137": 20, "272": 20, "80000284": 20, "68940325081": 20, "528": 20, "771769434214": 20, "140": 20, "80000285": 20, "59601339698": 20, "898": 20, "80000287": 20, "934347867966": 20, "899": 20, "80000288": 20, "457227408886": 20, "594": 20, "84559759498": 20, "886": 20, "80000289": 20, "283936053514": 20, "772": 20, "74665103853": 20, "80000290": 20, "772457659245": 20, "879882499576": 20, "443": 20, "80000291": 20, "225027650595": 20, "506": 20, "23198154569": 20, "80000293": 20, "356203347445": 20, "758": 20, "80000296": 20, "29710520804": 20, "80000297": 20, "10793355107": 20, "80000298": 20, "52665117383": 20, "93143287301": 20, "80000299": 20, "927507817745": 20, "80000300": 20, "818491622806": 20, "80000302": 20, "07161732018": 20, "72473844886": 20, "868": 20, "80000305": 20, "32900521159": 20, "73": [20, 22, 26, 27, 41], "93047915399": 20, "80000306": 20, "89711469412": 20, "80000309": 20, "568026304245": 20, "80000310": 20, "67230030894": 20, "419": [20, 22], "80000311": 20, "17736788094": 20, "37703952193": 20, "463": 20, "80000313": 20, "92710117996": 20, "80000316": 20, "52630840242": 20, "6399999": 20, "51": [20, 22, 26, 40], "576121881604": 20, "61531569064": 20, "991498693824": 20, "733": 20, "80000318": 20, "496204048395": 20, "759574487805": 20, "603": [20, 22, 34], "99812464416": 20, "564": 20, "80000323": 20, "19316992164": 20, "951": 20, "76615965366": 20, "6799998": 20, "80000324": 20, "23196092248": 20, "80000325": 20, "30946139991": 20, "302": 20, "49627235532": 20, "976": 20, "76096495986": 20, "80000326": 20, "018922537565": 20, "80000328": 20, "51117782295": 20, "763": 20, "80000330": 20, "33366891742": 20, "489": 20, "80000331": 20, "37347571552": 20, "80000332": 20, "161390304565": 20, "54631538689": 20, "893": 20, "80000333": 20, "515790537": 20, "80000335": 20, "46171656251": 20, "655": 20, "80000336": 20, "63410934806": 20, "933": 20, "80000339": 20, "03143580258": 20, "16872346401": 20, "80000340": 20, "030776798725": 20, "41478018463": 20, "533760264516": 20, "80000341": 20, "72407652438": 20, "80000344": 20, "206543818116": 20, "582": 20, "78012427688": 20, "784": 20, "80000345": 20, "00482337177": 20, "26880034804": 20, "290": 20, "654379203916": 20, "819": 20, "975308820605": 20, "80000346": 20, "41354955733": 20, "157": 20, "86677853763": 20, "80000347": 20, "32460169494": 20, "35750260949": 20, "360": 20, "80000349": 20, "31582227349": 20, "907": 20, "80000351": 20, "124539494514": 20, "446": 20, "80000352": 20, "37143753469": 20, "80000353": 20, "196565657854": 20, "80000354": 20, "17744512856": 20, "732": 20, "80000355": 20, "20202793181": 20, "955": 20, "60426925123": 20, "963": 20, "82318587601": 20, "370": 20, "80000356": 20, "5162641108": 20, "219": 20, "80000357": 20, "642409190536": 20, "63": [20, 22, 23, 26], "80000359": 20, "16175606847": 20, "152": 20, "8546615839": 20, "80000362": 20, "5537327677": 20, "480": 20, "92154058814": 20, "80000363": 20, "773983463645": 20, "999996": 20, "960": 20, "80000365": 20, "48620200157": 20, "80000368": 20, "489620789886": 20, "450": 20, "80000369": 20, "631684705615": 20, "679996": 20, "1002": [20, 27], "80000370": 20, "6534255296": 20, "939": 20, "80000371": 20, "82940942049": 20, "820": 20, "80000373": 20, "43823419511": 20, "692": 20, "8585408777": 20, "80000374": 20, "209455892444": 20, "821": 20, "64683301747": 20, "80000375": 20, "620239943266": 20, "769": 20, "80000378": 20, "87894229591": 20, "860": 20, "97707155347": 20, "80000379": 20, "42757484317": 20, "917373120785": 20, "183": 20, "80000381": 20, "10625052452": 20, "891": 20, "80000382": 20, "077453806996": 20, "039999": 20, "736": 20, "17598539591": 20, "812": 20, "22633959353": 20, "606": [20, 34], "22792515159": 20, "650": 20, "55412106216": 20, "80000383": 20, "94620233774": 20, "888": 20, "80000384": 20, "37110866606": 20, "80000387": 20, "30780394375": 20, "471": 20, "87746040523": 20, "588": 20, "80000388": 20, "37795352936": 20, "80000389": 20, "268874913454": 20, "890": 20, "80000392": 20, "62231977284": 20, "80000393": 20, "17818275094": 20, "248": 20, "43643279374": 20, "80000395": 20, "12563699484": 20, "77989049256": 20, "122": [20, 22], "80000396": 20, "31284117699": 20, "761": 20, "80000399": 20, "1847140342": 20, "54459910095": 20, "381": 20, "80000400": 20, "72491231561": 20, "476": 20, "80000403": 20, "17735889554": 20, "54358610511": 20, "478": 20, "80000404": 20, "22769507766": 20, "47602318227": 20, "479996": 20, "1022": 20, "67004515231": 20, "80000408": 20, "95574080944": 20, "139": 20, "80000410": 20, "03962627053": 20, "378": 20, "75551979244": 20, "80000412": 20, "09823872149": 20, "219870209694": 20, "81054663658": 20, "509": 20, "80000414": 20, "8682410419": 20, "571": 20, "80000415": 20, "37962676585": 20, "658": 20, "80000416": 20, "70795631409": 20, "574": 20, "80000417": 20, "1444568038": 20, "80000418": 20, "38563929498": 20, "80000420": 20, "47344271839": 20, "53409618139": 20, "622": [20, 34], "80564555526": 20, "863403081894": 20, "109": [20, 22, 26], "942480519414": 20, "855": 20, "80000422": 20, "02582614124": 20, "171": 20, "79813404381": 20, "279": 20, "80000424": 20, "42955330014": 20, "81564453244": 20, "4799995": 20, "147": 20, "80000425": 20, "28199738264": 20, "867245197296": 20, "803": 20, "80000426": 20, "62731541693": 20, "80000427": 20, "133511930704": 20, "323": 20, "36044855416": 20, "135": 20, "80000428": 20, "54412809014": 20, "349": 20, "88726851344": 20, "80000429": 20, "38063727319": 20, "80000432": 20, "95051422715": 20, "80000434": 20, "64868846536": 20, "80000435": 20, "51728320122": 20, "80000436": 20, "24377171695": 20, "80000437": 20, "577606111765": 20, "197": 20, "80000438": 20, "05216662586": 20, "811": 20, "70308248699": 20, "80000442": 20, "052734196186": 20, "644": 20, "764658123255": 20, "80000443": 20, "238895997405": 20, "80000445": 20, "098355308175": 20, "325": 20, "80000446": 20, "023702159524": 20, "16962249577": 20, "233": 20, "80000448": 20, "83636845648": 20, "7999997": 20, "155": 20, "80000450": 20, "061449572444": 20, "188": 20, "52947856486": 20, "762": 20, "55909974873": 20, "80000451": 20, "879113674164": 20, "80000452": 20, "064453706145": 20, "212": 20, "13652163744": 20, "618": [20, 34], "9472001791": 20, "845": 20, "80000453": 20, "03071194887": 20, "80000454": 20, "07206726074": 20, "80000456": 20, "48143340647": 20, "80000458": 20, "18602730334": 20, "80000459": 20, "0324331224": 20, "4572635144": 20, "920432657": 20, "80000464": 20, "06256014109": 20, "33307418227": 20, "80000466": 20, "34134361148": 20, "631": 20, "80000467": 20, "24169912934": 20, "363": 20, "884447038174": 20, "80000468": 20, "7550342083": 20, "228": [20, 22], "80000469": 20, "84887549281": 20, "523": 20, "8745007813": 20, "958": 20, "80000472": 20, "20344258845": 20, "645": 20, "30986727774": 20, "756": 20, "80000473": 20, "21885484457": 20, "694500654936": 20, "80000476": 20, "0327218622": 20, "96122226119": 20, "942": 20, "80000480": 20, "92292739451": 20, "80000481": 20, "06054444611": 20, "37218731642": 20, "569": 20, "933602169156": 20, "98567260802": 20, "982": 20, "80000482": 20, "9210729748": 20, "972": 20, "80000483": 20, "857440814376": 20, "80000484": 20, "32165810466": 20, "80663745105": 20, "689": 20, "80000486": 20, "771085351706": 20, "80000487": 20, "217004179955": 20, "990593642": 20, "683": 20, "80000491": 20, "276099190116": 20, "910": 20, "747016862035": 20, "80000493": 20, "35879443586": 20, "590": 20, "80000494": 20, "31928488612": 20, "80000495": 20, "14925374091": 20, "4605127275": 20, "80000496": 20, "37845928967": 20, "85824956": 20, "457": 20, "80000497": 20, "20662690699": 20, "858": 20, "80000502": 20, "43506611884": 20, "605": [20, 34], "71769653261": 20, "388": 20, "80815401673": 20, "80000504": 20, "42526854575": 20, "495": 20, "80000505": 20, "48890078068": 20, "80000506": 20, "024649724364": 20, "508": 20, "17142087221": 20, "74": [20, 22, 26, 41], "80000508": 20, "07841642201": 20, "71263246238": 20, "749": 20, "80000509": 20, "140583753586": 20, "663": 20, "95569059253": 20, "642": 20, "80000510": 20, "86728909612": 20, "80000512": 20, "479585409164": 20, "80000516": 20, "56570722163": 20, "794": [20, 21], "99862577021": 20, "80000517": 20, "344923987985": 20, "238": 20, "80000519": 20, "38823206723": 20, "243": 20, "57560668886": 20, "85": [20, 22, 26, 41], "58020955324": 20, "791": 20, "80000520": 20, "51779472828": 20, "3999996": 20, "546872377396": 20, "203": 20, "80000521": 20, "153368234634": 20, "42145887017": 20, "63308496773": 20, "275": 20, "80000523": 20, "057834371924": 20, "169": 20, "80000525": 20, "05073848367": 20, "224": 20, "80000527": 20, "819232299924": 20, "691": 20, "80000531": 20, "12523216009": 20, "80000532": 20, "10568276048": 20, "80000533": 20, "20108996332": 20, "385": 20, "80000534": 20, "29738210142": 20, "547": 20, "340845018625": 20, "417": 20, "83431440592": 20, "87653042376": 20, "1008": 20, "895185917616": 20, "80000535": 20, "94042633474": 20, "456": 20, "80000537": 20, "48509004712": 20, "80000538": 20, "26394830644": 20, "80000540": 20, "002261936665": 20, "903": 20, "1134250015": 20, "306": 20, "80000546": 20, "718622386456": 20, "84028501809": 20, "424": 20, "80000547": 20, "30754908919": 20, "80000549": 20, "5327937603": 20, "657": 20, "80000550": 20, "56298401952": 20, "685": 20, "60222132504": 20, "80000552": 20, "734096348286": 20, "923": 20, "80000553": 20, "922179594636": 20, "80000555": 20, "44246518612": 20, "80000558": 20, "82404534519": 20, "947059229016": 20, "80000559": 20, "282619684935": 20, "80000560": 20, "58969677985": 20, "70387540758": 20, "80000561": 20, "323437169194": 20, "407": 20, "80000562": 20, "679025664926": 20, "646": 20, "80000563": 20, "71705073118": 20, "95132599771": 20, "80000564": 20, "861919119954": 20, "541": 20, "80000565": 20, "76752875745": 20, "78528097272": 20, "583": 20, "80000566": 20, "29958720505": 20, "757": 20, "80000567": 20, "06900238991": 20, "80000569": 20, "15245625377": 20, "252": 20, "80000570": 20, "583770141006": 20, "80000571": 20, "260604158044": 20, "80000572": 20, "77767854929": 20, "576": 20, "80000574": 20, "140301436186": 20, "51526069641": 20, "80000577": 20, "082364201546": 20, "849": 20, "80000578": 20, "60487310588": 20, "103": [20, 22], "80000579": 20, "25371134281": 20, "63681046665": 20, "80000581": 20, "21821717918": 20, "80000582": 20, "04014620185": 20, "513": 20, "80000583": 20, "46193483472": 20, "5199995": 20, "198": [20, 26], "80000586": 20, "03360375762": 20, "80000589": 20, "798507750034": 20, "753": 20, "80000591": 20, "46542161703": 20, "97941620648": 20, "230": 20, "80000593": 20, "13316428661": 20, "356": 20, "80000594": 20, "042805209756": 20, "91821274161": 20, "80000595": 20, "397889867425": 20, "763835296035": 20, "131": [20, 31], "80000596": 20, "830532982945": 20, "80000598": 20, "901824980974": 20, "739": 20, "80000599": 20, "64194495976": 20, "682": 20, "80000600": 20, "793473765254": 20, "80000602": 20, "10744164884": 20, "55246156454": 20, "80000603": 20, "4955958724": 20, "80000606": 20, "650620505214": 20, "80000608": 20, "090855017304": 20, "80000609": 20, "993093535304": 20, "80000610": 20, "186307400465": 20, "80000611": 20, "37006236613": 20, "83906060457": 20, "459": 20, "8572294265": 20, "95349282026": 20, "1006": 20, "80000613": 20, "84575891495": 20, "540": 20, "80000617": 20, "17802332342": 20, "24794691801": 20, "35718101263": 20, "732587218285": 20, "80000618": 20, "9578525275": 20, "681": 20, "80000619": 20, "30346444249": 20, "941": 20, "80000621": 20, "2265856415": 20, "414": 20, "38765838742": 20, "735619053245": 20, "787": 20, "80000623": 20, "792137786746": 20, "901": 20, "85770910978": 20, "80000626": 20, "21549396217": 20, "80000627": 20, "16449086368": 20, "788": 20, "80000628": 20, "88948699832": 20, "80000630": 20, "68285809457": 20, "789920687675": 20, "80000632": 20, "821838498116": 20, "881889894605": 20, "581": 20, "80000634": 20, "78217072785": 20, "467": 20, "80000635": 20, "002951964736": 20, "802": 20, "41563603282": 20, "88681785762": 20, "80000637": 20, "371477141976": 20, "848": 20, "80000642": 20, "38429802656": 20, "80000643": 20, "78843893111": 20, "80000644": 20, "600917607546": 20, "882760211825": 20, "217": 20, "80000645": 20, "594902947545": 20, "190": 20, "93502403796": 20, "439999": 20, "371": 20, "80000646": 20, "383003011346": 20, "53795617819": 20, "80000647": 20, "63100332022": 20, "531": 20, "80000648": 20, "47574129701": 20, "80000649": 20, "00771085918": 20, "1012": 20, "114930674434": 20, "80000650": 20, "1061706841": 20, "532": 20, "80000655": 20, "68533721566": 20, "577": 20, "80000657": 20, "16480255127": 20, "258827999234": 20, "33367057145": 20, "851": 20, "80000658": 20, "74945259094": 20, "80000660": 20, "18671748042": 20, "396": 20, "63745248318": 20, "810": 20, "80000661": 20, "82945792377": 20, "90170559287": 20, "389": 20, "80000662": 20, "26141363382": 20, "64840815961": 20, "80000663": 20, "12676268816": 20, "324": 20, "227578774095": 20, "80000664": 20, "475006356835": 20, "552283763885": 20, "80000665": 20, "17621576786": 20, "80000666": 20, "08528217673": 20, "937": 20, "80000670": 20, "71755500138": 20, "153": 20, "80000671": 20, "198174357414": 20, "132": 20, "80000673": 20, "345912232995": 20, "815": 20, "80000674": 20, "87888632715": 20, "842": [20, 31], "80000676": 20, "18293096125": 20, "251": 20, "64919489622": 20, "80372226238": 20, "746": 20, "80000678": 20, "275382354856": 20, "255": [20, 39], "80000680": 20, "48982979357": 20, "616": [20, 27, 34], "80000684": 20, "38221885264": 20, "80000685": 20, "43452076614": 20, "80000686": 20, "74407067895": 20, "81872756779": 20, "80000688": 20, "30932036042": 20, "1018": 20, "81981065869": 20, "80000691": 20, "197261437774": 20, "80000692": 20, "15807239711": 20, "80000693": 20, "03427194059": 20, "80000694": 20, "3066085726": 20, "880": 20, "962600558996": 20, "971": 20, "80000697": 20, "02309130132": 20, "922": 20, "80000698": 20, "11148573458": 20, "499": 20, "516439035535": 20, "967": 20, "80000699": 20, "06620439887": 20, "80000701": 20, "39014860988": 20, "654": 20, "87561401725": 20, "80000702": 20, "62369687855": 20, "988359063864": 20, "80000705": 20, "296378955245": 20, "433091163635": 20, "246": 20, "599841311574": 20, "8400002": 20, "80000709": 20, "3684746474": 20, "265": 20, "77955941856": 20, "7199998": 20, "794584959745": 20, "240": 20, "846471622586": 20, "80000711": 20, "9785169363": 20, "445": 20, "80000712": 20, "899810910225": 20, "80000713": 20, "0795609951": 20, "76596863568": 20, "872": 20, "80000716": 20, "780457377434": 20, "511": [20, 27], "80000717": 20, "29924210906": 20, "80000720": 20, "5562723279": 20, "277": 20, "58715964854": 20, "80000722": 20, "03180555999": 20, "03699606657": 20, "478862181306": 20, "709": 20, "80000723": 20, "87889204919": 20, "80000724": 20, "7961999625": 20, "80000726": 20, "34677195549": 20, "80000727": 20, "47035036981": 20, "80000728": 20, "90236452222": 20, "80000729": 20, "3514444083": 20, "80000730": 20, "33039654791": 20, "65": [20, 22, 26, 38, 41], "81428743899": 20, "80000731": 20, "42920610309": 20, "359999": 20, "369": 20, "80000732": 20, "61377693713": 20, "80000733": 20, "754086226225": 20, "387": 20, "79874679446": 20, "991308033466": 20, "917": 20, "80000734": 20, "417156770825": 20, "80000738": 20, "45621095598": 20, "237": 20, "80000739": 20, "78259626031": 20, "904296547174": 20, "694": 20, "80000742": 20, "26487219334": 20, "58448088169": 20, "410": 20, "80000743": 20, "84713715315": 20, "80000745": 20, "445721656084": 20, "704266637564": 20, "80000746": 20, "49740232527": 20, "80000748": 20, "3739194572": 20, "979": 20, "80000749": 20, "18420062959": 20, "949": 20, "238480210304": 20, "36030867696": 20, "344": 20, "80000751": 20, "06558699906": 20, "55830208957": 20, "947": 20, "80000752": 20, "70824530721": 20, "72337460518": 20, "881983697414": 20, "698": 20, "80000753": 20, "15865902603": 20, "76198838651": 20, "80000754": 20, "23456764221": 20, "3275937736": 20, "854": 20, "80000755": 20, "37613813579": 20, "624": 20, "80000756": 20, "66476659477": 20, "80000758": 20, "372802481055": 20, "80000759": 20, "07206888497": 20, "892510056496": 20, "80000761": 20, "603752076626": 20, "80000762": 20, "42036630213": 20, "235": [20, 38], "80000765": 20, "06811144948": 20, "754": 20, "382397055626": 20, "846": 20, "4667224288": 20, "992": 20, "93857854605": 20, "80000767": 20, "26963350177": 20, "7786257714": 20, "80000770": 20, "32975102961": 20, "145": [20, 33, 38], "80000771": 20, "69804634154": 20, "80000773": 20, "945546999574": 20, "80000774": 20, "221253693104": 20, "80000775": 20, "89942243695": 20, "80000777": 20, "312041819096": 20, "77507701516": 20, "79259891808": 20, "269": 20, "80000779": 20, "33480271697": 20, "526": 20, "554390221834": 20, "885": 20, "80000780": 20, "81437155604": 20, "933462917805": 20, "80000781": 20, "15924490988": 20, "26206161082": 20, "72611118853": 20, "80000782": 20, "172751545906": 20, "80000783": 20, "125701248646": 20, "926": 20, "80000785": 20, "342386975884": 20, "36341136694": 20, "92007930577": 20, "80000786": 20, "1086602211": 20, "279999": 20, "392": 20, "253573834896": 20, "80000787": 20, "553292140365": 20, "768": 20, "658161982894": 20, "80000790": 20, "072870031": 20, "80000792": 20, "274298503995": 20, "443054273725": 20, "398": 20, "46565423906": 20, "808876529336": 20, "807": 20, "80000795": 20, "87703709304": 20, "91278010607": 20, "80000797": 20, "14426906407": 20, "26987493038": 20, "80000798": 20, "51847578585": 20, "80000799": 20, "48481544852": 20, "881970733404": 20, "80000803": 20, "51909430325": 20, "423": 20, "731096595526": 20, "764": 20, "883781552315": 20, "983": 20, "80000805": 20, "29773187637": 20, "306009307504": 20, "80000807": 20, "21232941747": 20, "257": 20, "80000808": 20, "28512185812": 20, "454649567604": 20, "523783952": 20, "1004": 20, "80000809": 20, "73774009943": 20, "80000810": 20, "001270249486": 20, "86777666211": 20, "993": 20, "80000811": 20, "438306853175": 20, "114": [20, 22], "80000812": 20, "21489995718": 20, "665": 20, "80000815": 20, "07969661057": 20, "699": 20, "974775359035": 20, "80000816": 20, "16485761106": 20, "704811513424": 20, "80518731475": 20, "81600318849": 20, "1599998": 20, "80000819": 20, "00975045562": 20, "48453132808": 20, "80000821": 20, "329228281975": 20, "180": 20, "52698163688": 20, "80000822": 20, "00912617147": 20, "80000824": 20, "46000294387": 20, "223": 20, "66023361683": 20, "242": 20, "80000825": 20, "05113039911": 20, "585": 20, "80000827": 20, "12451052666": 20, "4073446542": 20, "80000828": 20, "5048404783": 20, "914": 20, "622610628605": 20, "63124883175": 20, "560": 20, "80000829": 20, "2215629518": 20, "475": 20, "66059269011": 20, "80000830": 20, "33870181441": 20, "80000831": 20, "20006233454": 20, "21613633633": 20, "339": 20, "80000832": 20, "059845909476": 20, "423598602414": 20, "80000833": 20, "69929590821": 20, "835": [20, 27], "80000834": 20, "46965831518": 20, "989": 20, "80000836": 20, "12533031404": 20, "71061439812": 20, "78514607251": 20, "449": 20, "80000837": 20, "03853216767": 20, "282": 20, "80000839": 20, "699784219265": 20, "80000841": 20, "037233412266": 20, "80000843": 20, "41804847121": 20, "847": 20, "80000844": 20, "98050430417": 20, "80000845": 20, "57550364733": 20, "80000850": 20, "37028862536": 20, "561": 20, "423752725124": 20, "80000851": 20, "28334981203": 20, "615449771285": 20, "395": 20, "654990166426": 20, "935": 20, "67317868769": 20, "268": 20, "80000852": 20, "59776712954": 20, "80000854": 20, "87065626681": 20, "80000855": 20, "74864292145": 20, "329": 20, "829678565264": 20, "142": 20, "80000856": 20, "83493223786": 20, "80000858": 20, "589912459254": 20, "617": [20, 34], "80000859": 20, "1553748399": 20, "18091611564": 20, "44560496509": 20, "496": 20, "509354412556": 20, "592": 20, "80000860": 20, "59416265786": 20, "80000861": 20, "303189352155": 20, "96652762592": 20, "80000863": 20, "23499922454": 20, "466": 20, "80000864": 20, "197188302875": 20, "136": 20, "80000865": 20, "590956673026": 20, "72700405121": 20, "80000866": 20, "084478631616": 20, "50517678261": 20, "780": 20, "850857138634": 20, "80000867": 20, "7263391763": 20, "80000868": 20, "06848114729": 20, "80000869": 20, "2763479501": 20, "80000870": 20, "65760450065": 20, "80000871": 20, "05340576172": 20, "542": 20, "80000873": 20, "14886234701": 20, "916": 20, "80000874": 20, "297571882606": 20, "861": 20, "73376466334": 20, "80000879": 20, "41517931223": 20, "80000881": 20, "185400635004": 20, "80000882": 20, "22257082164": 20, "80000884": 20, "97935457528": 20, "80000885": 20, "29664757848": 20, "80000886": 20, "4507638216": 20, "905": 20, "80000888": 20, "94126729667": 20, "80000889": 20, "59991361201": 20, "80000890": 20, "74508482218": 20, "80000893": 20, "32567283511": 20, "43082770705": 20, "56059738994": 20, "80000894": 20, "35489681363": 20, "80000897": 20, "77023650706": 20, "536": 20, "80000899": 20, "03790041804": 20, "37754881382": 20, "420": [20, 22], "80000900": 20, "8128515929": 20, "80000901": 20, "414481043816": 20, "468": 20, "48123975098": 20, "93236474693": 20, "972453475": 20, "80000902": 20, "81782488525": 20, "80000903": 20, "59163464606": 20, "92151616514": 20, "297": 20, "80000904": 20, "27971172333": 20, "254": 20, "998699590564": 20, "379": 20, "80000905": 20, "63441582024": 20, "648124307394": 20, "80000906": 20, "234885290265": 20, "80000907": 20, "07798694074": 20, "189": 20, "80000908": 20, "87027671933": 20, "598": [20, 34], "80000909": 20, "368400886655": 20, "811767444015": 20, "641": 20, "80000910": 20, "33445057273": 20, "60975474119": 20, "80000911": 20, "29370170832": 20, "823": 20, "80000913": 20, "69095006585": 20, "80000914": 20, "1802495867": 20, "632": 20, "66017211974": 20, "80000916": 20, "50571863353": 20, "718121901155": 20, "80000919": 20, "645673155785": 20, "80000920": 20, "63476088643": 20, "432": 20, "80000922": 20, "45012420416": 20, "172": 20, "80000925": 20, "23763982952": 20, "267": 20, "80000926": 20, "283655911684": 20, "6409278512": 20, "734": 20, "80000928": 20, "05741724372": 20, "80000933": 20, "627166330814": 20, "946": 20, "76277536154": 20, "80000934": 20, "16055440903": 20, "80000935": 20, "81169986725": 20, "572": 20, "80000936": 20, "16736589372": 20, "44196587801": 20, "602": [20, 22, 34], "549025550485": 20, "80000938": 20, "685712620616": 20, "80000939": 20, "08911083639": 20, "866": 20, "80000940": 20, "29467050731": 20, "80000941": 20, "77238176763": 20, "80000942": 20, "128024578094": 20, "283": 20, "38229085505": 20, "484": 20, "80000944": 20, "63000917435": 20, "80000945": 20, "404179006815": 20, "718157589436": 20, "168": 20, "91892364621": 20, "80000948": 20, "791864678264": 20, "85667587817": 20, "80000949": 20, "93122699857": 20, "80000950": 20, "1588781476": 20, "502268999815": 20, "80000951": 20, "22832208872": 20, "487": 20, "838016077876": 20, "80000952": 20, "52954874933": 20, "626723498106": 20, "502": 20, "80000956": 20, "18126910925": 20, "38345962763": 20, "554": 20, "80000957": 20, "466738790274": 20, "80000959": 20, "38979135454": 20, "80000960": 20, "34404800832": 20, "80000962": 20, "452562466264": 20, "80000964": 20, "24332383275": 20, "80000966": 20, "99032564461": 20, "669": 20, "80000967": 20, "36089865863": 20, "80000968": 20, "338882282376": 20, "597": 20, "875151097775": 20, "80000969": 20, "143758147955": 20, "80000971": 20, "409240707755": 20, "80000974": 20, "77004908025": 20, "80595380068": 20, "919": 20, "80000975": 20, "64050154388": 20, "975": [20, 27, 30], "95903091133": 20, "80000980": 20, "43536031246": 20, "572394132614": 20, "80000981": 20, "61112074554": 20, "74807231128": 20, "966": 20, "80000983": 20, "25735516846": 20, "869": 20, "80000985": 20, "01507012546": 20, "20637777448": 20, "80000986": 20, "77888666093": 20, "80000988": 20, "17710210383": 20, "92275629938": 20, "384": 20, "80000990": 20, "097374781966": 20, "79127365351": 20, "503": 20, "80000991": 20, "06344228983": 20, "80377283692": 20, "80000993": 20, "049590453506": 20, "80000994": 20, "441833391786": 20, "867": 20, "527631640434": 20, "80000995": 20, "25695282221": 20, "504": 20, "29652753472": 20, "99297225475": 20, "80000996": 20, "40901064873": 20, "841": 20, "557712092996": 20, "80000997": 20, "22821688652": 20, "405183792114": 20, "93263950944": 20, "80000998": 20, "813208565116": 20, "80000999": 20, "3882278502": 20, "59336720407": 20, "80001000": 20, "09518702328": 20, "80001001": 20, "49414373934": 20, "672": 20, "80001002": 20, "54425382614": 20, "80001003": 20, "1178855896": 20, "428": 20, "56476637721": 20, "80001005": 20, "884933292866": 20, "202": 20, "80001007": 20, "618157073855": 20, "80001009": 20, "596397176385": 20, "80001015": 20, "068401411176": 20, "44013249874": 20, "80001017": 20, "39824913442": 20, "813": 20, "49642172456": 20, "91779854894": 20, "95813263953": 20, "281": 20, "80001018": 20, "01935687661": 20, "80001023": 20, "587887212634": 20, "69297429919": 20, "floor": [20, 27], "arguabl": 20, "technic": [20, 27], "60459939": 20, "8644437": 20, "47100837": 20, "54281243": 20, "80725171": 20, "47032653": 20, "recov": [20, 27, 32], "50000": 20, "49": [20, 22, 26, 38, 40], "properli": 20, "2040": 20, "4020": [20, 31], "2070": [20, 31], "84164641": 20, "62741142": 20, "68169619": 20, "70867585": 20, "92065534": 20, "93644725": 20, "26749277": 20, "45959615": 20, "01137686": 20, "86366818": 20, "63048041": 20, "26300006": 20, "sr": 21, "glob": [21, 33, 38], "character": [21, 27], "agn": 21, "plant": 21, "1404": 21, "7498": 21, "mchardi": 21, "2010lnp": 21, "203m": 21, "powerlaw": [21, 26], "rescal": [21, 38], "ndimag": 21, "gaussian_filter1d": 21, "1034232": 21, "counts_cont": 21, "counts_cont_init": 21, "renorm": 21, "ten": [21, 31], "1e10": 21, "base_func": 21, "003": [21, 25], "83292539": 21, "83104461": 21, "82542772": 21, "26625716": 21, "25516327": 21, "24864925": 21, "0x106983978": 21, "excvar": 21, "wrap": [21, 26, 35], "lc_mean_var": 21, "lc_actual_var": 21, "mean_lc": 21, "mean_ctvar": 21, "var_nx": 21, "var_nxs_err_a": 21, "var_nxs_err_b": 21, "var_nxs_err": 21, "fvar_err": 21, "elif": 21, "fvar_fun": 21, "norm_exc_var_fun": 21, "exc_var_fun": 21, "rate_fun": 21, "rate_err": 21, "evar": 21, "evar_err": 21, "nvar": 21, "nvar_err": 21, "xerr": [21, 38], "0x1140ab588": 21, "tmean": 21, "ax_lc": 21, "ax_mean": 21, "ax_evar": 21, "ax_nvar": 21, "ax_fvar": 21, "0x118bf6eb8": 21, "filterwarn": [22, 26], "55000": 22, "event_arrival_tim": 22, "mention": 22, "91": [22, 26], "108": [22, 26], "manual": [22, 23, 24, 27], "loadtxt": [22, 40], "txt": [22, 27, 39, 40], "toggl": 22, "mean_countr": [22, 29, 30], "113": 22, "110": 22, "97": [22, 25, 26, 33, 38], "mean_count": 22, "impos": 22, "mind": 22, "downstream": 22, "mean_flux": 22, "std_flux": 22, "loc": [22, 25, 33], "flux_err": 22, "reliabl": 22, "scientif": [22, 38], "flare": [22, 26, 38], "artifici": [22, 26, 43], "span": 22, "000e": 22, "995e": 22, "lc_rand": 22, "lc_sum": 22, "599": [22, 34], "609": [22, 34], "lc_neg": 22, "lc_slice": 22, "lc_1": 22, "lc_2": 22, "lc_long": 22, "Or": [22, 26, 31], "lc_cut": 22, "1500": 22, "1499": 22, "lc_rebin": 22, "new_lc_long": 22, "new_lc": 22, "cyan": 22, "drawn": [22, 27, 31], "sampledata": [22, 34, 35, 37, 43], "54": [22, 26, 38], "sample_data": [22, 34, 35, 37, 43], "behaviour": 22, "hstack": [22, 33], "57": [22, 26, 27, 38], "badli": 22, "58": [22, 26], "7e2c226c1569": 22, "miniconda3": 22, "env": 22, "stingraydev": 22, "python3": [22, 38], "dev267": 22, "gc5fd28c": 22, "d20210122": 22, "py3": 22, "egg": 22, "aren": [22, 27], "422": 22, "searchsort": 22, "226": 22, "arbitrarili": 22, "91254": 22, "61": [22, 26, 27], "mjdref_new": 22, "change_mjdref": 22, "91274": 22, "62": [22, 26], "lc_shift": 22, "610": [22, 34], "1010": 22, "69": [22, 26, 41], "lc_tmp": 22, "adjust": 22, "caution": [22, 26], "81": [22, 26, 41], "82": [22, 26, 41], "estimated_chunk_length": 22, "theori": 22, "guarante": [22, 26], "analyze_by_chunk": 22, "simplest": 22, "chunk_length": 22, "myfunc": 22, "Not": 22, "lc_result": 22, "10090": 22, "10830": 22, "9370": 22, "10120": 22, "10180": 22, "10190": 22, "9910": 22, "9610": 22, "9880": 22, "10600": 22, "amount": [22, 33, 38], "complementari": 22, "tess": 22, "star": 22, "exoplanet": 22, "126": [22, 27], "105": 22, "119": [22, 31], "112": [22, 38], "117": 22, "rountrip": 22, "lc_back": 22, "to_stingrai": 22, "convet": 22, "timecount": 22, "objectint64": 22, "0100": 22, "1574074074074073e": 22, "0592": 22, "3148148148148147e": 22, "0598": 22, "472222222222222e": 22, "0585": 22, "6296296296296294e": 22, "05113": 22, "0594": 22, "944444444444444e": 22, "0599": 22, "101851851851852e": 22, "05108": 22, "259259259259259e": 22, "05101": 22, "00010416666666666667117": 22, "lombscargl": [23, 24, 27], "make_interp_splin": [23, 24], "2pi": 23, "default_rng": [23, 24], "standard_norm": [23, 24], "y2": [23, 27], "y01": 23, "y02": 23, "spline1": 23, "spline2": 23, "t01": 23, "lightblu": 23, "orang": [23, 29], "05163902": [23, 24], "15491705": [23, 24], "25819509": [23, 24], "36147313": [23, 24], "46475116": [23, 24], "31032111": 23, "52192914j": 23, "18701964": 23, "6050907j": 23, "96655765": 23, "2054288j": 23, "8747486": 23, "95292067j": 23, "16601064": 23, "1110093j": 23, "kept": [23, 24], "press": [23, 24], "rybicki": [23, 24], "oversampl": [23, 24, 29, 30], "hold": 23, "sharei": [23, 24, 27], "y0": 24, "lp": 24, "49526224": 24, "05686691": 24, "589673": 24, "2231466": 24, "42053746": 24, "ev_tot": 25, "addition": [25, 27, 40], "south": 25, "atlant": 25, "anomali": 25, "damag": 25, "switch": 25, "protect": 25, "stripe": 25, "lc_10": 25, "grei": [25, 33, 38], "convolv": 25, "vertic": [25, 27, 33, 34, 35], "ev_tot_dirti": 25, "deepcopi": [25, 38], "pds_dirti": 25, "pds_dirty_reb": 25, "005": [25, 35, 37], "continuum": 25, "pollut": 25, "treatment": 25, "timescal": 25, "certainli": 25, "pds_reb": [25, 38], "258it": 25, "1671": 25, "53it": 25, "clean": [25, 38], "dirti": 25, "diverg": 25, "trick": 25, "fortun": 25, "jake": 25, "van": 25, "der": 25, "pla": 25, "maxfreq": 25, "ls_reb": 25, "1e6": 25, "connect": 25, "3e": [25, 30], "littl": [25, 38], "somewher": 25, "born": 25, "proxi": 25, "moment": [25, 26, 27], "lsc": 25, "lscs_reb": 25, "72it": [25, 35], "0x177fb2290": 25, "depth": [26, 27], "anyon": 26, "terminologi": 26, "wider": 26, "confusingli": 26, "superclass": 26, "straightforward": 26, "metric": 26, "candid": [26, 29, 30], "modular": 26, "thought": 26, "variat": [26, 29, 33], "fairli": [26, 30], "solv": 26, "constrain": [26, 30], "THESE": 26, "FOR": 26, "prettier": 26, "gaussian1d": 26, "ko": 26, "errorbarcontain": [26, 37], "artist": [26, 37], "former": 26, "compound": 26, "plc": 26, "pick": 26, "white_nois": 26, "_fitter_to_model_param": 26, "psd_shape": 26, "chisquar": 26, "0x7ff22998cfd0": 26, "logmin": 26, "1e16": 26, "mean_model": 26, "__call__": 26, "test_par": 26, "4835": 26, "88214847462": 26, "2869": 26, "5582486265116": 26, "2375": 26, "704120812954": 26, "feel": [26, 27], "plai": 26, "haven": 26, "andsimpli": 26, "2183": 26, "789677035487": 26, "stuck": 26, "minima": 26, "maxima": 26, "global": [26, 29, 38], "72916493": 26, "09193061": 26, "10372265": 26, "78311696": 26, "7300253": 26, "55312843": 26, "2189": 26, "2204": 26, "512942872433": 26, "0x7ff259161910": 26, "72916": 26, "78312": 26, "00000": 26, "09193": 26, "73003": 26, "10372": 26, "55313": 26, "4367": 26, "579354": 26, "1079": 26, "682849": 26, "5f": 26, "082932": 26, "3f": 26, "69267": 26, "121618": 26, "6000": [26, 31], "000000": 26, "544512": 26, "wrapper": 26, "broken": 26, "bpl": 26, "brokenpowerlaw1d": 26, "bplc": 26, "x_break_0": 26, "alpha_1_0": 26, "alpha_2_0": 26, "bplc_start_par": 26, "loglike_bplc": 26, "plc_opt": 26, "bplc_opt": 26, "2374827070098036": 26, "knowledg": 26, "consequ": 26, "analog": 26, "p_whitenois": 26, "61635344021062": 26, "2412": 26, "2493594640564": 26, "2610": 26, "865712904267": 26, "infin": [26, 36], "2534": 26, "0567826161864": 26, "383646559789373": 26, "2184": 26, "6739536386162": 26, "290307078827": 26, "4f": 26, "8949": 26, "0762": 26, "0690": 26, "0636": 26, "0547": 26, "0149": 26, "89491": 26, "07623": 26, "06898": 26, "06363": 26, "05471": 26, "01489": 26, "845867": 26, "2188": 26, "688941098666": 26, "2203": 26, "412206935612": 26, "1104": 26, "686605": 26, "108011": 26, "75870": 26, "935552": 26, "unlik": [26, 29], "formal": 26, "improp": 26, "upgrad": 26, "came": 26, "psd_modeling_test": 26, "autocorrel": 26, "640200": 26, "r_hat": 26, "33858822": 26, "00779588": 26, "00477259": 26, "sd": 26, "92699673203164": 26, "5826084748010877": 26, "001167475075788": 26, "916405947428704": 26, "0850162824299567": 26, "08840420643721274": 26, "945198565812": 26, "236054242762929": 26, "059927524015745": 26, "06916995745141118": 26, "944976347964247": 26, "172179088048585": 26, "6402000000000001": 26, "92699673": 26, "08501628": 26, "05992752": 26, "00116748": 26, "94519857": 26, "94497635": 26, "91640595": 26, "23605424": 26, "17217909": 26, "modeling_tutorial_mcmc_corn": 26, "lie": 26, "imagin": 26, "thu": [26, 38, 43], "alon": 26, "inflat": 26, "fisher": 26, "protassov": 26, "2002": 26, "_generate_model": 26, "oder": 26, "model_data": 26, "reset": [26, 30], "_generate_psd": 26, "sim_p": 26, "model_spectrum": 26, "model_pow": 26, "_compute_pvalu": 26, "obs_val": 26, "obs_valu": 26, "ntail": 26, "lrt_ob": 26, "multivari": 26, "mvn": 26, "multivariate_norm": 26, "rv": 26, "enumer": 26, "sim_lpost1": 26, "sim_lpost2": 26, "parest_sim": 26, "surpris": 26, "hundr": 26, "bent": 26, "p_alpha1": 26, "p_alpha2": 26, "p_x_break": 26, "xbreak": 26, "lpost_bplc": 26, "2230": 26, "14039643262": 26, "burst": 26, "magnetar": 26, "ingli": 26, "approach": [26, 27, 35, 37], "broadband": 26, "max_j": 26, "d_j": 26, "m_j": [26, 38], "max_pow": 26, "max_ind": 26, "_compute_highest_outli": 26, "79715722": 26, "overhead": 26, "everydai": 26, "life": [26, 38], "occasion": 26, "0x7ff1f9f77b80": 26, "14539343": 26, "07102572": 26, "00200532": 26, "0x7ff22a4fe640": 26, "432x288": 26, "96093418": 26, "0699128": 26, "00198643": 26, "0x7ff2396417f0": 26, "ps_new": 26, "49011854e": 26, "06004236e": 26, "00733295e": 26, "54780918e": 26, "89830161e": 26, "10287737e": 26, "01732386e": 26, "49528676e": 26, "72319819e": 26, "99444430e": 26, "cool": 26, "lorentzian_test": 26, "47811631e": 26, "65200027e": 26, "35036166e": 26, "03665876e": 26, "89162600e": 26, "20693953e": 26, "05461311e": 26, "49865621e": 26, "36152472e": 26, "99437422e": 26, "click": 27, "grai": [27, 29, 30], "cell": 27, "captur": 27, "kill": 27, "getpid": 27, "kernel": 27, "restart": 27, "finish": 27, "set_them": 27, "husl": 27, "home": [27, 38], "dhruv": 27, "repo": 27, "largememori": 27, "userwarn": [27, 38], "autoregress": 27, "exemplifi": 27, "context": [27, 43], "coeff": 27, "7607": 27, "8106": 27, "6535": 27, "9238": 27, "coeffici": [27, 36], "ar4": 27, "freq_analyt": 27, "freqz": 27, "worn": 27, "psd_analyt": 27, "conj": 27, "lfilter": 27, "lc_ar4": 27, "sorri": 27, "inconveni": 27, "price": 27, "inher": 27, "prewhiten": 27, "apporach": 27, "thomson": 27, "1982": 27, "orthogon": 27, "tradit": 27, "amongst": 27, "eigenspectrum": 27, "superior": 27, "retain": 27, "nw": 27, "bandwidth": 27, "kmax": 27, "dpss_taper": 27, "eigval": 27, "dpss": 27, "sym": 27, "return_ratio": 27, "data_multitap": 27, "tile": 27, "col": 27, "palett": 27, "color_palett": 27, "tapered_data": 27, "axes_row": 27, "fontsiz": [27, 33, 38, 43], "pad": 27, "severli": 27, "attenu": 27, "portion": [27, 35, 37, 43], "accentu": 27, "025": 27, "rfftfreq": [27, 37, 43], "linewidth": [27, 33, 38], "npower": 27, "yscale": 27, "fft_tapered_data": 27, "rfft": 27, "psd_tapered_data": 27, "suptitl": 27, "eigenspectra": 27, "thin": 27, "003906": 27, "sidelob": 27, "bare": [27, 30], "lobe": [27, 30], "x_1": 27, "x_2": 27, "x_n": 27, "stationari": 27, "x_t": 27, "sdf": 27, "cdot": 27, "equiv": 27, "n_": [27, 30], "hat": [27, 29, 34], "mt": 27, "_k": 27, "h_": 27, "2_": [27, 30], "2k": 27, "amt": 27, "proport": 27, "2_k": 27, "lambda_k": 27, "eigenvalu": 27, "eigenvector": 27, "b_k": 27, "exhaust": 27, "topic": 27, "showcas": 27, "dft": 27, "low_bia": 27, "2nw": 27, "1976": 27, "jack": 27, "knife": 27, "mtp": 27, "0x7fed1f89f130": 27, "slateblu": 27, "green": [27, 34, 35], "spectrun": 27, "multitaper_norm_pow": 27, "nitim": 27, "chi2": 27, "0009765625": 27, "float64": 27, "38213649959974": 27, "x_i": 27, "theta_": [27, 29], "subdivid": 27, "setminu": 27, "x_": [27, 29], "x_k": 27, "subscript": 27, "bullet": 27, "widehat": 27, "kindli": 27, "dist": 27, "mtp_stingrai": 27, "jk_p": 27, "ppf": 27, "jk_limits_stingrai": 27, "p975": 27, "p025": 27, "l1": [27, 30], "l2": [27, 30], "ln": [27, 38], "mtp_rebin": 27, "0068359375": 27, "lc_poisson": 27, "popular": 27, "conjunct": 27, "everth": 27, "kepler_data": 27, "read_csv": 27, "githubusercont": 27, "tree": 27, "koi2133": 27, "times_kp": 27, "flux_kp": 27, "lc_kepler": 27, "mtls_kepler": 27, "sy": 27, "wall": 27, "mtl": 27, "ls_freq": 27, "aviod": 27, "ls_psd": 27, "reduct": 27, "aaron": 27, "gwendolyn": 27, "eadi": 27, "american": 27, "205": 27, "3847": 27, "1538": 27, "3881": 27, "ab7fa1": 27, "omar": 27, "hammad": 27, "usman": 27, "mahmood": 27, "khan": 27, "4357": 27, "ab258d": 27, "ieee": 27, "1055": 27, "1096": 27, "ui": 27, "adsab": 27, "harvard": 27, "edu": 27, "1982ieeep": 27, "1055t": 27, "holocen": 27, "climat": 27, "philosoph": 27, "transact": 27, "london": 27, "330": 27, "601": [27, 34], "1098": 27, "rsta": 27, "0041": 27, "unequ": 27, "llc": 27, "447": 27, "462": 27, "1007": 27, "bf00648343": 27, "ii": [27, 43], "160554": 27, "slepian": 27, "prolat": 27, "spheroid": 27, "discret": 27, "bell": [27, 30, 31], "institut": 27, "electr": 27, "engin": 27, "1371": 27, "1430": 27, "7305": 27, "tb02104": 27, "magazin": 27, "pp": 27, "juli": 27, "2007": 27, "msp": 27, "4286561": 27, "0x17fc10fd0": 28, "lc_iter": 28, "nsize": 28, "875": 28, "75294222e": 28, "37192421e": 28, "62062702e": 28, "42273987e": 28, "26707856e": 28, "14262683e": 28, "46986106e": 28, "35172244e": 28, "04574831e": 28, "88638843e": 28, "46127864e": 28, "24027874e": 28, "95907471e": 28, "46905530e": 28, "42916439e": 28, "58020047e": 28, "04922773e": 28, "14088855e": 28, "89197375e": 28, "48148529e": 28, "32409725e": 28, "72418140e": 28, "10604734e": 28, "98258473e": 28, "75462401e": 28, "24000263e": 28, "06137267e": 28, "07517074e": 28, "14917349e": 28, "59646030e": 28, "30278344e": 28, "09102366e": 28, "17910753e": 28, "49240044e": 28, "32466747e": 28, "46833517e": 28, "93866299e": 28, "93997974e": 28, "97441653e": 28, "28610905e": 28, "93970456e": 28, "72920344e": 28, "52529974e": 28, "42552369e": 28, "00538316e": 28, "14413850e": 28, "65733555e": 28, "16733137e": 28, "85338470e": 28, "56565439e": 28, "60825816e": 28, "83059003e": 28, "84807029e": 28, "35749643e": 28, "52661012e": 28, "73415923e": 28, "64107250e": 28, "31206307e": 28, "20321939e": 28, "08750811e": 28, "61234244e": 28, "15633604e": 28, "60363976e": 28, "24498998e": 28, "71646651e": 28, "38371881e": 28, "32514629e": 28, "67607504e": 28, "77957522e": 28, "92787087e": 28, "35553415e": 28, "94034115e": 28, "16770721e": 28, "76130715e": 28, "34584431e": 28, "72348179e": 28, "14572517e": 28, "41890460e": 28, "64121258e": 28, "96499122e": 28, "52679951e": 28, "58201128e": 28, "05541840e": 28, "76982654e": 28, "81558230e": 28, "09665960e": 28, "52309943e": 28, "00115328e": 28, "81888737e": 28, "46916554e": 28, "78900280e": 28, "10837621e": 28, "05428845e": 28, "79144555e": 28, "45542292e": 28, "14645129e": 28, "47936328e": 28, "43060457e": 28, "85238243e": 28, "86842673e": 28, "07492195e": 28, "11192195e": 28, "18724669e": 28, "11165001e": 28, "71594888e": 28, "22251145e": 28, "21393967e": 28, "85809743e": 28, "66578478e": 28, "52801220e": 28, "39963588e": 28, "83710679e": 28, "29760812e": 28, "04827673e": 28, "46966187e": 28, "58682373e": 28, "11398498e": 28, "53864807e": 28, "49293643e": 28, "48889204e": 28, "55536424e": 28, "34814529e": 28, "31907922e": 28, "49852755e": 28, "75140990e": 28, "00289904e": 28, "72042936e": 28, "7984": 28, "long_sign": 28, "long_noisi": 28, "long_lc": 28, "avg_p": 28, "50515": 28, "52it": 28, "avg_ps_leahi": 28, "avg_ps_frac": 28, "avg_ps_ab": 28, "56159": 28, "56752": 28, "64it": 28, "43677": 28, "02it": 28, "lin_rb_p": 28, "log_rb_p": 28, "long_norm": 28, "long_lc_gauss": 28, "avg_ps_gauss_leahi": 28, "avg_ps_gauss_frac": 28, "avg_ps_gauss_ab": 28, "46520": 28, "67it": 28, "39276": 28, "19it": 28, "43715": 28, "71it": 28, "sb": [29, 30], "reli": 29, "contrast": 29, "ij": 29, "_j": 29, "203501": [29, 30], "pulsed_fract": [29, 30], "strike": 29, "balanc": 29, "regular": 29, "ph": [29, 30], "wherea": 29, "fold_profil": 29, "recogniz": 29, "implemen": 29, "df_": [29, 30], "t_1": [29, 30], "t_0": [29, 30], "df_min": [29, 30], "pdmstat": 29, "dip": 29, "schwarzenberg": 29, "pdm_det_level": 29, "lev": [29, 30], "cand_freqs_ef": [29, 30], "cand_freqs_z": [29, 30], "2_1": [29, 30], "0x7f8680267130": 29, "deepest": 29, "min_idx": 29, "argmin": 29, "8313536003155265": 29, "221416326686607e": 29, "sum_i": 30, "p_i": 30, "efstat": 30, "fact": 30, "visibl": 30, "phi_j": 30, "t_j": 30, "sum_j": 30, "w_j": 30, "obviou": 30, "rule": 30, "thumb": 30, "zstat": 30, "surviv": 30, "moreov": 30, "nearbi": 30, "z_detlev": 30, "ef_detlev": 30, "cand_stat_ef": 30, "cand_stat_z": 30, "saw": 30, "ob": 30, "fg": 30, "height_ratio": 30, "ax0": [30, 38], "shift_phaseogram": 30, "delay_fun": 30, "phaseogram_new": 30, "phase_delai": 30, "delayed_bin": 30, "rint": 30, "interactive_phaseogram": 30, "pha": 30, "binx": 30, "bini": 30, "dfdot": 30, "widget": 30, "slider": 30, "button": 30, "radiobutton": 30, "subplots_adjust": 30, "tob": 30, "delta_df_start": 30, "df_order_of_mag": 30, "delta_df": 30, "delta_dfdot_start": 30, "dfdot_order_of_mag": 30, "delta_dfdot": 30, "pcolor": 30, "magma": 30, "axcolor": 30, "lightgoldenrodyellow": 30, "axfreq": 30, "facecolor": 30, "axfdot": 30, "axpepoch": 30, "sfreq": 30, "valinit": 30, "sfdot": 30, "spepoch": 30, "new_phaseogram": 30, "set_arrai": 30, "ravel": 30, "set_xdata": 30, "canva": 30, "draw_idl": 30, "resetax": 30, "hovercolor": 30, "on_click": 30, "on_chang": 30, "_dummy_reset_button_ref": 30, "new_phaseogr": 30, "henphaseogram": 30, "interactivephaseogram": 30, "ev_tim": 30, "l3": 30, "recalcax": 30, "button_recalc": 30, "dfreq": 30, "draw": [30, 31, 32, 34], "times_delai": 30, "ip": 30, "evolv": 30, "almost": 31, "anywai": 31, "afterward": 31, "prob": 31, "cum_prob": 31, "08120179": 31, "2452294": 31, "5091352": 31, "75274056": 31, "91595615": 31, "thousand": 31, "49834338": 31, "31993222": 31, "35882619": 31, "15837646": 31, "22595417": 31, "85575223": 31, "85203039": 31, "78380252": 31, "04170078": 31, "am": [31, 34], "readbl": 31, "mayb": 31, "gen_energi": 31, "argwher": 31, "astyp": 31, "minlength": 31, "1652": 31, "2626": 31, "2466": 31, "1589": 31, "plot1": 31, "plot2": 31, "guassian": 32, "a1": 32, "a2": 32, "f_conj": 32, "conjug": 32, "f_inv": 32, "ifft": 32, "flicker": [32, 37, 43], "0xcbec4a8": 32, "walk": [32, 37, 43], "0xd188198": 32, "axisbelow": [33, 38], "title_fonts": [33, 38], "195": [33, 38], "wspace": [33, 38], "reserv": [33, 38], "hspace": [33, 38], "height": [33, 37, 38, 39, 40], "find_invers": 33, "irfft": 33, "scale_lc": 33, "lc_mean": 33, "lc_std": 33, "timmerkoenig": 33, "pds_shape": 33, "pds_size": 33, "rescaled_flux": 33, "timmer": 33, "koenig": 33, "pds_model": 33, "0x7fd1916a8e50": 33, "cdf_from_lc": 33, "cdf_time": 33, "cdf_valu": 33, "cdf_invers": 33, "prob_val": 33, "cdf_lc": 33, "jpg": 33, "simulate_with_inverse_cdf": 33, "event_tim": 33, "3809308": 33, "10856514": 33, "71888075": 33, "54479831": 33, "87783205": 33, "45405823": 33, "66623686": 33, "62832368": 33, "72111516": 33, "25882679": 33, "h_zero": 34, "convolut": [34, 37, 43], "fftconvolv": 34, "s_mod": 34, "0075": 34, "cutoff": [34, 35], "v_cutoff": [34, 35], "h_cutoff": [34, 35], "time_delai": [34, 35], "warp": 34, "refelect": 34, "instantan": 34, "flash": 34, "steep": 34, "travel": 34, "gradual": 34, "farther": 34, "receiev": 34, "radiat": 34, "bend": 34, "strong": 34, "gravit": 34, "emerg": 34, "reflect": 34, "view": 34, "lens": 34, "sight": 34, "utlei": 34, "h_primari": 34, "h_rise": 34, "h_secondari": 34, "h_decai": 34, "608": 34, "t_mod": 34, "lc_input": 34, "lc_output": 34, "611": 34, "cross_spectrum": 34, "613": 34, "unabl": 34, "soon": [34, 35], "615": 34, "619": 34, "620": 34, "621": 34, "s_ir": [35, 37, 40], "0x7fdec2fedcd0": 35, "crosss": 35, "0050": 35, "13it": 35, "3156": 35, "lag_": [35, 38], "situat": [35, 37], "react": [35, 37], "incom": [35, 37], "h1": 35, "h2": 35, "v_cut": 35, "h_cut": 35, "apart": 36, "x0": 36, "generalized_lorentzian": [36, 37], "0x7f86b4348910": 36, "smoothbknpo": [36, 37], "0x7f86b44f96a0": 36, "illustr": 37, "poisson_level": [37, 38], "sim_poi": 37, "lorenzian": 37, "smooth_count": 37, "lc_poi": 37, "0x7fccd1d29c10": 37, "0x7fccd3f9b9a0": 37, "0x7fccd359b610": 37, "0x7fccd5485b80": 37, "0x7fccd6506550": 37, "0x7fccb6d9b4f0": 37, "0x7fccb6dfddc0": 37, "whom": 37, "0x7fccd66015e0": 37, "mimick": [37, 40], "paramat": [37, 40], "r_ir": [37, 40], "0x7fccd65955e0": 37, "head": 37, "0x7fccb763d340": 37, "0x7fccd6629640": 37, "spectrotempor": 38, "outburst": 38, "maxi": 38, "1820": 38, "070": 38, "wang": 38, "marco": 38, "shell": 38, "show_progress": 38, "avg_cs_from_ev": 38, "avg_pds_from_ev": 38, "get_average_ctr": 38, "ni1200120106_0mpu7_cl_bari": 38, "pupperemeritu": 38, "lc_raw": 38, "bartlett": 38, "neglig": 38, "mu": 38, "1m": 38, "periodogam": 38, "65it": 38, "69it": 38, "sub_band": 38, "events_ref": 38, "events_sub": 38, "32it": 38, "runtimewarn": [38, 41], "dre": 38, "dim": 38, "dg": 38, "power_over_2n": 38, "seg_pow": 38, "dphi": 38, "gsq": 38, "bsq": 38, "2761": 38, "cbook": 38, "1333": 38, "complexwarn": 38, "barret": 38, "neighbour": 38, "mathcal": 38, "avg": 38, "2ml": 38, "p_j": 38, "s_j": 38, "unimport": 38, "l_j": 38, "fit_model": 38, "7000": 38, "21599547079995": 38, "fitmod": 38, "95227938e": 38, "97518942e": 38, "11961192e": 38, "42093997e": 38, "98070633e": 38, "06300000e": 38, "65743398e": 38, "set_ylim": 38, "heavili": 38, "2627it": 38, "2906": 38, "coh_": 38, "countspectrum": 38, "kara": 38, "geomspac": 38, "lagspec_3_30": 38, "1e4": 38, "lagspec_01_1": 38, "energies_err": 38, "freq_01_1": 38, "freq_3_30": 38, "covspec_3_30": 38, "covspec_01_1": 38, "track": 38, "unfold": 38, "countsp": 38, "rmsspec_01_1": 38, "rmsspec_3_30": 38, "03it": 38, "qed": 38, "underestim": 38, "variable_for_valu": 38, "digit": 39, "pil": 39, "im": 39, "pixel": 39, "dark": 39, "perceiv": 39, "bright": 39, "_0": 39, "2126": 39, "7152": 39, "0722": 39, "b_": 39, "rgb": 39, "getpixel": 39, "savetxt": 39, "524": 40, "744": 40, "time_respons": 40, "e0": 40, "energy_respons": 40, "transfer_new": 40, "0x112d48990": 40, "time_resolut": 40, "0x10cca92d0": 40, "fftpack": 41, "fftshift": 41, "fftfreq": 41, "0x21d8f0ccc50": 41, "nfft": 41, "2048": 41, "uniform_window": 41, "db": 41, "ipykernel": 41, "__main__": 41, "0x21d8f1b6e10": 41, "0x21d8f1a8160": 41, "0x21d8f24b978": 41, "0x21d8f360ba8": 41, "0x21d8f2f6fd0": 41, "0x21d8f34f470": 41, "0x21d8f4715f8": 41, "traingualr": 41, "0x21d8f4397b8": 41, "0x21d8f534470": 41, "0x21d8f629eb8": 41, "0x21d8f738080": 41, "0x21d8f6b92e8": 41, "0x21d9083b2e8": 41, "0x21d9081e470": 41, "0x21d909314a8": 41, "searchs": 42, "interact": 42, "certainti": 43, "crucial": 43, "assess": 43, "recip": 43, "famili": 43, "san": 43, "serif": 43, "tahoma": 43, "hire": 43, "simplic": 43, "ir": 43, "curveand": 43, "di": 43, "erent": 43, "retreiv": 43, "chan": 43, "outlin": 43, "iii": 43, "iv": 43, "traingular": 43}, "objects": {"stingray": [[2, 0, 1, "", "AutoCorrelation"], [2, 0, 1, "", "AveragedCovariancespectrum"], [2, 0, 1, "", "AveragedCrossspectrum"], [2, 0, 1, "", "AveragedPowerspectrum"], [2, 0, 1, "", "Covariancespectrum"], [2, 0, 1, "", "CrossCorrelation"], [2, 0, 1, "", "Crossspectrum"], [2, 0, 1, "", "DynamicalPowerspectrum"], [2, 0, 1, "", "Lightcurve"], [2, 0, 1, "", "Powerspectrum"], [2, 3, 1, "", "coherence"], [2, 4, 0, "-", "gti"], [2, 4, 0, "-", "io"], [2, 4, 0, "-", "pulse"], [2, 4, 0, "-", "stats"], [2, 4, 0, "-", "utils"]], "stingray.AutoCorrelation": [[2, 1, 1, "", "cal_timeshift"], [2, 1, 1, "", "plot"]], "stingray.AveragedCrossspectrum": [[2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.AveragedPowerspectrum": [[2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "compute_rms"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "modulation_upper_limit"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.CrossCorrelation": [[2, 1, 1, "", "cal_timeshift"], [2, 1, 1, "", "plot"]], "stingray.Crossspectrum": [[2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_norm"], [2, 2, 1, "", "type"]], "stingray.DynamicalPowerspectrum": [[2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "compute_rms"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "modulation_upper_limit"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_frequency"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "rebin_time"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 1, 1, "", "trace_maximum"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.Lightcurve": [[2, 1, 1, "", "analyze_lc_chunks"], [2, 1, 1, "", "apply_gtis"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "baseline"], [2, 1, 1, "", "bexvar"], [2, 1, 1, "", "check_lightcurve"], [2, 1, 1, "", "estimate_chunk_length"], [2, 1, 1, "", "estimate_segment_size"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_astropy_timeseries"], [2, 1, 1, "", "from_lightkurve"], [2, 1, 1, "", "join"], [2, 1, 1, "", "make_lightcurve"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "sort"], [2, 1, 1, "", "sort_counts"], [2, 1, 1, "", "split"], [2, 1, 1, "", "split_by_gti"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_astropy_timeseries"], [2, 1, 1, "", "to_lightkurve"], [2, 1, 1, "", "truncate"]], "stingray.Powerspectrum": [[2, 1, 1, "", "_initialize_empty"], [2, 1, 1, "", "_initialize_from_any_input"], [2, 1, 1, "", "_normalize_crossspectrum"], [2, 1, 1, "", "_rms_error"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "compute_rms"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "modulation_upper_limit"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.bispectrum": [[2, 0, 1, "", "Bispectrum"]], "stingray.bispectrum.Bispectrum": [[2, 1, 1, "", "plot_cum3"], [2, 1, 1, "", "plot_mag"], [2, 1, 1, "", "plot_phase"]], "stingray.deadtime": [[2, 4, 0, "-", "fad"], [2, 4, 0, "-", "model"]], "stingray.deadtime.fad": [[2, 3, 1, "", "FAD"], [2, 3, 1, "", "calculate_FAD_correction"], [2, 3, 1, "", "get_periodograms_from_FAD_results"]], "stingray.deadtime.model": [[2, 3, 1, "", "A"], [2, 3, 1, "", "A0"], [2, 3, 1, "", "B"], [2, 3, 1, "", "Gn"], [2, 3, 1, "", "check_A"], [2, 3, 1, "", "check_B"], [2, 3, 1, "", "factorial"], [2, 3, 1, "", "h"], [2, 3, 1, "", "heaviside"], [2, 3, 1, "", "pds_model_zhang"], [2, 3, 1, "", "r_det"], [2, 3, 1, "", "r_in"], [2, 3, 1, "", "safe_B"]], "stingray.events": [[2, 0, 1, "", "EventList"]], "stingray.events.EventList": [[2, 1, 1, "", "apply_deadtime"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "filter_energy_range"], [2, 1, 1, "", "from_lc"], [2, 1, 1, "", "join"], [2, 1, 1, "", "read"], [2, 1, 1, "", "simulate_energies"], [2, 1, 1, "", "simulate_times"], [2, 1, 1, "", "sort"], [2, 1, 1, "", "to_lc"], [2, 1, 1, "", "to_lc_iter"], [2, 1, 1, "", "to_lc_list"]], "stingray.exceptions": [[2, 0, 1, "", "StingrayError"]], "stingray.gti": [[2, 3, 1, "", "append_gtis"], [2, 3, 1, "", "bin_intervals_from_gtis"], [2, 3, 1, "", "check_gtis"], [2, 3, 1, "", "check_separate"], [2, 3, 1, "", "create_gti_from_condition"], [2, 3, 1, "", "create_gti_mask"], [2, 3, 1, "", "create_gti_mask_complete"], [2, 3, 1, "", "create_gti_mask_jit"], [2, 3, 1, "", "cross_gtis"], [2, 3, 1, "", "cross_two_gtis"], [2, 3, 1, "", "generate_indices_of_gti_boundaries"], [2, 3, 1, "", "generate_indices_of_segment_boundaries_binned"], [2, 3, 1, "", "generate_indices_of_segment_boundaries_unbinned"], [2, 3, 1, "", "get_btis"], [2, 3, 1, "", "get_gti_extensions_from_pattern"], [2, 3, 1, "", "get_gti_from_all_extensions"], [2, 3, 1, "", "get_gti_from_hdu"], [2, 3, 1, "", "get_gti_lengths"], [2, 3, 1, "", "get_total_gti_length"], [2, 3, 1, "", "gti_border_bins"], [2, 3, 1, "", "join_gtis"], [2, 3, 1, "", "load_gtis"], [2, 3, 1, "", "time_intervals_from_gtis"]], "stingray.io": [[2, 3, 1, "", "common_name"], [2, 3, 1, "", "get_file_extension"], [2, 3, 1, "", "get_key_from_mission_info"], [2, 3, 1, "", "high_precision_keyword_read"], [2, 3, 1, "", "lcurve_from_fits"], [2, 3, 1, "", "load_events_and_gtis"], [2, 3, 1, "", "mkdir_p"], [2, 3, 1, "", "read_header_key"], [2, 3, 1, "", "read_mission_info"], [2, 3, 1, "", "ref_mjd"], [2, 3, 1, "", "rough_calibration"], [2, 3, 1, "", "savefig"], [2, 3, 1, "", "split_numbers"]], "stingray.modeling": [[2, 0, 1, "", "GaussianLogLikelihood"], [2, 0, 1, "", "GaussianPosterior"], [2, 0, 1, "", "LaplaceLogLikelihood"], [2, 0, 1, "", "LaplacePosterior"], [2, 0, 1, "", "LogLikelihood"], [2, 0, 1, "", "OptimizationResults"], [2, 0, 1, "", "PSDLogLikelihood"], [2, 0, 1, "", "PSDParEst"], [2, 0, 1, "", "PSDPosterior"], [2, 0, 1, "", "ParameterEstimation"], [2, 0, 1, "", "PoissonLogLikelihood"], [2, 0, 1, "", "PoissonPosterior"], [2, 0, 1, "", "Posterior"], [2, 0, 1, "", "SamplingResults"], [2, 4, 0, "-", "scripts"], [2, 3, 1, "", "set_logprior"]], "stingray.modeling.GaussianLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.GaussianPosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.LaplaceLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.LaplacePosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.LogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.OptimizationResults": [[2, 1, 1, "", "_compute_covariance"], [2, 1, 1, "", "_compute_criteria"], [2, 1, 1, "", "_compute_model"], [2, 1, 1, "", "_compute_statistics"], [2, 1, 1, "", "print_summary"]], "stingray.modeling.PSDLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.PSDParEst": [[2, 1, 1, "", "calibrate_highest_outlier"], [2, 1, 1, "", "calibrate_lrt"], [2, 1, 1, "", "compute_lrt"], [2, 1, 1, "", "fit"], [2, 1, 1, "", "plotfits"], [2, 1, 1, "", "sample"], [2, 1, 1, "", "simulate_highest_outlier"], [2, 1, 1, "", "simulate_lrts"]], "stingray.modeling.PSDPosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.ParameterEstimation": [[2, 1, 1, "", "calibrate_lrt"], [2, 1, 1, "", "compute_lrt"], [2, 1, 1, "", "fit"], [2, 1, 1, "", "sample"], [2, 1, 1, "", "simulate_lrts"]], "stingray.modeling.PoissonLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.PoissonPosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.Posterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.SamplingResults": [[2, 1, 1, "", "_check_convergence"], [2, 1, 1, "", "_compute_rhat"], [2, 1, 1, "", "_infer"], [2, 1, 1, "", "plot_results"], [2, 1, 1, "", "print_results"]], "stingray.modeling.scripts": [[2, 3, 1, "", "fit_crossspectrum"], [2, 3, 1, "", "fit_lorentzians"], [2, 3, 1, "", "fit_powerspectrum"]], "stingray.pulse": [[2, 0, 1, "", "SincSquareModel"], [2, 3, 1, "", "ef_profile_stat"], [2, 3, 1, "", "epoch_folding_search"], [2, 3, 1, "", "fftfit"], [2, 3, 1, "", "fit_gaussian"], [2, 3, 1, "", "fit_sinc"], [2, 3, 1, "", "fold_events"], [2, 3, 1, "", "get_TOA"], [2, 3, 1, "", "get_orbital_correction_from_ephemeris_file"], [2, 3, 1, "", "htest"], [2, 3, 1, "", "p_to_f"], [2, 3, 1, "", "pdm_profile_stat"], [2, 3, 1, "", "phase_dispersion_search"], [2, 3, 1, "", "phase_exposure"], [2, 3, 1, "", "phaseogram"], [2, 3, 1, "", "plot_phaseogram"], [2, 3, 1, "", "plot_profile"], [2, 3, 1, "", "pulse_phase"], [2, 3, 1, "", "search_best_peaks"], [2, 3, 1, "", "sinc_square_deriv"], [2, 3, 1, "", "sinc_square_model"], [2, 3, 1, "", "test"], [2, 3, 1, "", "z_n"], [2, 3, 1, "", "z_n_binned_events"], [2, 3, 1, "", "z_n_binned_events_all"], [2, 3, 1, "", "z_n_events"], [2, 3, 1, "", "z_n_events_all"], [2, 3, 1, "", "z_n_gauss"], [2, 3, 1, "", "z_n_gauss_all"], [2, 3, 1, "", "z_n_search"]], "stingray.simulator.simulator": [[2, 0, 1, "", "Simulator"]], "stingray.simulator.simulator.Simulator": [[2, 1, 1, "", "count_channels"], [2, 1, 1, "", "delete_channel"], [2, 1, 1, "", "delete_channels"], [2, 1, 1, "", "get_all_channels"], [2, 1, 1, "", "get_channel"], [2, 1, 1, "", "get_channels"], [2, 1, 1, "", "powerspectrum"], [2, 1, 1, "", "read"], [2, 1, 1, "", "relativistic_ir"], [2, 1, 1, "", "simple_ir"], [2, 1, 1, "", "simulate"], [2, 1, 1, "", "simulate_channel"], [2, 1, 1, "", "write"]], "stingray.stats": [[2, 3, 1, "", "a_from_pf"], [2, 3, 1, "", "a_from_ssig"], [2, 3, 1, "", "amplitude_upper_limit"], [2, 3, 1, "", "classical_pvalue"], [2, 3, 1, "", "equivalent_gaussian_Nsigma"], [2, 3, 1, "", "fold_detection_level"], [2, 3, 1, "", "fold_profile_logprobability"], [2, 3, 1, "", "fold_profile_probability"], [2, 3, 1, "", "p_multitrial_from_single_trial"], [2, 3, 1, "", "p_single_trial_from_p_multitrial"], [2, 3, 1, "", "pds_detection_level"], [2, 3, 1, "", "pds_probability"], [2, 3, 1, "", "pf_from_a"], [2, 3, 1, "", "pf_from_ssig"], [2, 3, 1, "", "pf_upper_limit"], [2, 3, 1, "", "phase_dispersion_detection_level"], [2, 3, 1, "", "phase_dispersion_logprobability"], [2, 3, 1, "", "phase_dispersion_probability"], [2, 3, 1, "", "power_confidence_limits"], [2, 3, 1, "", "power_upper_limit"], [2, 3, 1, "", "ssig_from_a"], [2, 3, 1, "", "ssig_from_pf"], [2, 3, 1, "", "z2_n_detection_level"], [2, 3, 1, "", "z2_n_logprobability"], [2, 3, 1, "", "z2_n_probability"]], "stingray.utils": [[2, 3, 1, "", "baseline_als"], [2, 3, 1, "", "check_isallfinite"], [2, 3, 1, "", "contiguous_regions"], [2, 3, 1, "", "create_window"], [2, 3, 1, "", "excess_variance"], [2, 3, 1, "", "find_nearest"], [2, 3, 1, "", "get_random_state"], [2, 3, 1, "", "is_int"], [2, 3, 1, "", "is_iterable"], [2, 3, 1, "", "is_string"], [2, 3, 1, "", "look_for_array_in_array"], [2, 3, 1, "", "nearest_power_of_two"], [2, 3, 1, "", "optimal_bin_time"], [2, 3, 1, "", "order_list_of_arrays"], [2, 3, 1, "", "poisson_symmetrical_errors"], [2, 3, 1, "", "rebin_data"], [2, 3, 1, "", "rebin_data_log"], [2, 3, 1, "", "simon"], [2, 3, 1, "", "standard_error"]], "stingray.varenergyspectrum": [[2, 0, 1, "", "ExcessVarianceSpectrum"], [2, 2, 1, "", "LagEnergySpectrum"], [2, 2, 1, "", "RmsEnergySpectrum"], [2, 0, 1, "", "VarEnergySpectrum"]], "stingray.varenergyspectrum.ExcessVarianceSpectrum": [[2, 1, 1, "", "array_attrs"], [2, 5, 1, "", "energy"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 2, 1, "", "main_array_attr"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "read"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 1, 1, "", "write"]], "stingray.varenergyspectrum.VarEnergySpectrum": [[2, 5, 1, "", "energy"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_xarray"], [2, 2, 1, "", "main_array_attr"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:attribute", "3": "py:function", "4": "py:module", "5": "py:property"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "function", "Python function"], "4": ["py", "module", "Python module"], "5": ["py", "property", "Python property"]}, "titleterms": {"acknowledg": 1, "stingrai": [2, 3, 4, 5, 8, 9, 10, 15, 16, 17, 22, 26, 27, 29, 43], "api": [2, 26], "data": [2, 4, 5, 6, 9, 15, 18, 19, 22, 25, 27, 39, 42], "class": [2, 14, 23, 24, 28], "lightcurv": [2, 5, 18, 19, 20, 22, 27], "eventlist": [2, 20], "fourier": [2, 5, 9, 16], "product": 2, "crossspectrum": [2, 5, 14], "coher": [2, 14, 38], "powerspectrum": [2, 5, 18, 27, 28], "averagedcrossspectrum": [2, 14], "averagedpowerspectrum": [2, 28], "dynam": [2, 5, 18, 19], "crosscorrel": [2, 13], "autocorrel": [2, 5, 13], "dead": [2, 7, 17], "time": [2, 6, 7, 9, 14, 17, 18, 19, 20, 22, 27, 33, 38, 40], "correct": [2, 16], "higher": 2, "order": 2, "spectral": [2, 6, 9, 27, 36, 38, 43], "bispectrum": [2, 12], "covariancespectrum": 2, "averagedcovariancespectrum": 2, "varenergyspectrum": 2, "rmsenergyspectrum": 2, "lagenergyspectrum": 2, "excessvariancespectrum": 2, "util": 2, "statist": 2, "function": [2, 5, 12, 18, 26, 30, 36, 41, 43], "gti": [2, 22], "i": [2, 18, 27, 37], "o": 2, "other": [2, 3, 9, 23, 24, 27], "model": [2, 10, 17, 26, 36, 37, 38, 43], "log": 2, "likelihood": [2, 26], "posterior": [2, 26], "paramet": [2, 23, 24, 26], "estim": [2, 26, 27], "auxiliari": 2, "conveni": [2, 26], "pulsar": [2, 42], "simul": [2, 9, 20, 21, 29, 30, 32, 33, 36, 37, 43], "except": 2, "cite": 3, "doi": 3, "paper": 3, "us": [3, 9, 27, 37, 43], "refer": [3, 27], "get": [4, 9, 43], "help": 4, "report": 4, "bug": [4, 8], "contribut": 4, "issu": [4, 9], "provid": 4, "feedback": 4, "involv": 4, "develop": [4, 9], "guidelin": 4, "workflow": 4, "code": 4, "compat": [4, 20, 22], "depend": [4, 9, 14, 34, 35], "style": 4, "convent": 4, "standard": 4, "output": 4, "warn": 4, "error": [4, 22], "configur": 4, "document": [4, 8, 9], "test": [4, 9, 26, 27], "updat": [4, 30], "maintain": 4, "changelog": [4, 8], "commun": 4, "our": 4, "pledg": 4, "respons": [4, 34, 35, 37, 40, 43], "scope": 4, "enforc": 4, "attribut": [4, 23, 24, 27], "core": 5, "work": [5, 22], "event": [5, 33, 38], "analysi": [5, 35, 43], "powerspectra": 5, "power": [5, 17, 18, 19, 24, 26, 27, 28, 32, 36, 37, 43], "spectra": [5, 14, 18, 19, 23, 24, 28, 32], "cross": [5, 13, 14, 23, 25, 38], "bispectra": 5, "bayesian": [5, 26], "excess": [5, 11], "varianc": [5, 11, 27], "multi": 5, "taper": [5, 27], "periodogram": [5, 6, 17, 25, 27, 38], "lomb": [5, 6, 23, 24, 25, 27], "scargl": [5, 6, 23, 24, 25, 27], "explor": 6, "A": [6, 18, 27], "quick": 6, "look": [6, 18, 27], "nustar": [6, 15], "observ": [6, 20, 25], "nicer": 6, "studi": 6, "veri": 6, "slow": 6, "variabl": [6, 21], "deal": 7, "histori": 8, "previou": 8, "project": 8, "merg": 8, "v1": 8, "1": [8, 9, 13, 14, 22, 23, 24, 28, 40], "2": [8, 9, 13, 14, 18, 22, 23, 24, 28, 40], "2023": 8, "05": 8, "25": 8, "new": [8, 9], "featur": [8, 9, 18], "fix": 8, "intern": 8, "chang": 8, "2022": 8, "10": 8, "02": 8, "improv": [8, 27], "0": 8, "03": 8, "29": 8, "v0": 8, "3": [8, 9, 13], "2021": 8, "31": 8, "2020": [8, 27], "06": 8, "17": 8, "2019": 8, "11": 8, "present": 8, "next": 9, "gener": [9, 18, 36], "current": 9, "capabl": 9, "handl": 9, "method": [9, 22, 33, 43], "seri": [9, 27], "futur": 9, "plan": 9, "platform": 9, "specif": 9, "instal": [9, 27], "instruct": 9, "via": 9, "conda": 9, "pip": 9, "from": [9, 13, 20, 22, 32], "sourc": 9, "bleed": 9, "edg": 9, "version": 9, "environ": 9, "contributor": 9, "suit": 9, "build": 9, "start": [9, 19, 43], "advanc": 9, "addit": [9, 22], "inform": 9, "indic": 9, "tabl": 9, "The": [10, 25, 26, 27, 43], "interfac": 10, "baysian": 11, "bexvar": 11, "theoret": 11, "background": [11, 26], "tutori": [12, 43], "plot": [12, 13, 22, 27, 38, 40], "anoth": [12, 13], "exampl": [12, 13, 27, 28, 30, 43], "window": [12, 41, 43], "demonstr": 12, "creat": [13, 14, 20, 22, 23, 24, 27, 28, 37, 40, 43], "two": [13, 14, 23], "light": [13, 14, 20, 21, 22, 23, 24, 27, 28, 32, 36, 37, 38], "curv": [13, 14, 20, 21, 22, 23, 24, 27, 28, 32, 36, 37, 38], "object": [13, 14, 20, 23, 24, 27, 28, 37, 43], "abov": 13, "correl": 13, "differ": [13, 16, 27], "lag": [13, 14, 34, 38, 43], "mode": 13, "yet": 13, "longer": 13, "lingcurv": 13, "pass": [14, 23, 24, 28], "both": [14, 23, 27], "properti": [14, 22, 23, 28], "specifi": [14, 28], "segment_s": [14, 28], "normaliz": [14, 28], "spectrum": [14, 17, 18, 25, 26, 27, 28, 34, 37, 38, 43], "re": [14, 22, 27, 28], "bin": [14, 22, 27, 28], "frequenc": [14, 18, 27, 28, 30, 34], "And": [14, 28], "we": [14, 18, 28], "can": [14, 27, 28], "logarithm": [14, 28], "geometr": [14, 28], "phase": [14, 29], "energi": [14, 20, 34, 35, 40], "quicklook": 15, "amplitud": 16, "check": [17, 22], "": [17, 18, 21, 27, 41], "non": 17, "paralyz": 17, "reproduc": 17, "zhang": 17, "95": 17, "extra": 17, "fake": 18, "visual": 18, "zom": 18, "thi": [18, 27], "It": 18, "like": 18, "have": [18, 27], "least": 18, "let": [18, 27], "actual": 18, "onli": 18, "one": 18, "drifit": 18, "along": 18, "rebin": [18, 19], "trace": [18, 19], "overlai": 18, "real": 19, "all": 19, "dynamicpowerspectrum": 19, "maximun": 19, "content": [20, 35, 36, 37, 40], "setup": [20, 21, 35, 36, 37, 40], "photon": [20, 22], "arriv": [20, 22], "roundtrip": 20, "astropi": 20, "format": 20, "load": [20, 38], "write": [20, 22, 37], "an": [20, 43], "x": 20, "rai": 20, "heasoft": 20, "pickl": 20, "transform": [20, 31], "join": 20, "r": 21, "m": 21, "intens": [21, 34], "diagram": 21, "rm": [21, 38], "rate": 21, "arrai": 22, "stamp": 22, "count": 22, "distribut": [22, 27, 28], "good": 22, "interv": 22, "oper": 22, "subtract": 22, "negat": 22, "index": 22, "concaten": 22, "truncat": 22, "sort": 22, "sampl": [22, 27, 31], "irregular": 22, "mjdref": 22, "shift": [22, 30], "calcul": [22, 38], "baselin": 22, "split": 22, "analyz": 22, "segment": 22, "lightkurv": 22, "read": [22, 37], "file": 22, "lombscarglecrossspectrum": 23, "lombscarglepowerspectrum": 24, "frequent": 25, "gap": 25, "explain": 26, "some": 26, "maximum": 26, "fit": [26, 30], "ratio": 26, "calibr": 26, "ish": 26, "qpo": 26, "search": [26, 29, 30], "lorentzian": 26, "colab": 27, "multitap": 27, "individu": 27, "now": 27, "see": 27, "domain": 27, "represent": 27, "here": 27, "psd": 27, "summari": 27, "result": 27, "while": 27, "seem": 27, "decent": 27, "compar": 27, "As": 27, "seen": 27, "bia": 27, "valu": 27, "contain": 27, "normal": [27, 28], "f": 27, "jackknif": 27, "jk_var_deg_freedom": 27, "linearli": 27, "poisson": 27, "uneven": 27, "tempor": 27, "kepler": 27, "dataset": [27, 29, 30], "springford": 27, "et": 27, "al": 27, "first": [27, 30], "3000": 27, "point": 27, "But": 27, "how": 27, "doe": 27, "classic": 27, "zoom": 27, "dispers": 29, "minim": 29, "pulsat": [29, 30], "epoch": 30, "fold": 30, "z": 30, "squar": 30, "threshold": 30, "peak": 30, "sinc": 30, "gaussian": 30, "phaseogram": 30, "interact": 30, "row": 30, "second": 30, "overplot": 30, "line": 30, "puls": 30, "solut": 30, "full": 30, "invers": [31, 33], "law": [32, 36, 37, 43], "cdf": 33, "outlin": 34, "simpl": [34, 40], "delta": 34, "impuls": [34, 35, 37, 43], "more": 34, "realist": 34, "With": 34, "same": 34, "vari": 34, "posit": 34, "initi": 35, "lorenzian": 36, "smooth": 36, "broken": 36, "ii": 37, "user": [37, 43], "defin": [37, 43], "iii": 37, "pre": [37, 43], "iv": 37, "channel": [37, 43], "covari": 38, "set": 39, "up": 39, "transferfunct": 40, "obtain": 40, "resolv": 40, "io": 40, "artifici": 40, "ir": 40, "relativist": 40, "uniform": 41, "parzen": 41, "ham": 41, "han": 41, "traingular": 41, "welch": 41, "blackmann": 41, "flat": 41, "top": 41, "analys": 42, "introduct": 43, "import": 43, "concept": 43, "avail": 43, "transfer": 43}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Acknowledgements": [[1, "acknowledgements"]], "Stingray API": [[2, "stingray-api"]], "Data Classes": [[2, "data-classes"]], "Lightcurve": [[2, "lightcurve"]], "EventList": [[2, "eventlist"]], "Fourier Products": [[2, "fourier-products"]], "Crossspectrum": [[2, "crossspectrum"]], "Coherence": [[2, "coherence"], [14, "Coherence"]], "Powerspectrum": [[2, "powerspectrum"]], "AveragedCrossspectrum": [[2, "averagedcrossspectrum"]], "AveragedPowerspectrum": [[2, "averagedpowerspectrum"]], "Dynamical Powerspectrum": [[2, "dynamical-powerspectrum"]], "CrossCorrelation": [[2, "crosscorrelation"], [13, "CrossCorrelation"]], "AutoCorrelation": [[2, "autocorrelation"], [13, "AutoCorrelation"]], "Dead-Time Corrections": [[2, "module-stingray.deadtime.fad"]], "Higher-Order Fourier and Spectral Timing Products": [[2, "higher-order-fourier-and-spectral-timing-products"]], "Bispectrum": [[2, "bispectrum"]], "Covariancespectrum": [[2, "covariancespectrum"]], "AveragedCovariancespectrum": [[2, "averagedcovariancespectrum"]], "VarEnergySpectrum": [[2, "varenergyspectrum"]], "RmsEnergySpectrum": [[2, "rmsenergyspectrum"]], "LagEnergySpectrum": [[2, "lagenergyspectrum"]], "ExcessVarianceSpectrum": [[2, "excessvariancespectrum"]], "Utilities": [[2, "utilities"]], "Statistical Functions": [[2, "module-stingray.stats"]], "GTI Functionality": [[2, "module-stingray.gti"]], "I/O Functionality": [[2, "module-stingray.io"]], "Other Utility Functions": [[2, "module-stingray.utils"]], "Modeling": [[2, "modeling"]], "Log-Likelihood Classes": [[2, "log-likelihood-classes"]], "Posterior Classes": [[2, "posterior-classes"]], "Parameter Estimation Classes": [[2, "parameter-estimation-classes"]], "Auxiliary Classes": [[2, "auxiliary-classes"]], "Convenience Functions": [[2, "convenience-functions"], [26, "Convenience-Functions"]], "Pulsar": [[2, "pulsar"]], "Simulator": [[2, "simulator"]], "Exceptions": [[2, "exceptions"]], "Citing Stingray": [[3, "citing-stingray"]], "DOI": [[3, "id1"]], "Papers": [[3, "papers"]], "Other Useful References": [[3, "other-useful-references"]], "Get Help, Report Bugs or Contribute": [[4, "get-help-report-bugs-or-contribute"]], "Reporting Bugs and Issues, Getting Help, Providing Feedback": [[4, "reporting-bugs-and-issues-getting-help-providing-feedback"]], "Getting Involved with Development": [[4, "getting-involved-with-development"]], "Contributing to Stingray": [[4, "contributing-to-stingray"]], "Contribution Guidelines": [[4, "contribution-guidelines"]], "Contribution Workflow": [[4, "contribution-workflow"]], "Coding Guidelines": [[4, "coding-guidelines"]], "Compatibility and Dependencies": [[4, "compatibility-and-dependencies"]], "Coding Style and Conventions": [[4, "coding-style-and-conventions"]], "Standard output, warnings, and errors": [[4, "standard-output-warnings-and-errors"]], "Data and Configuration": [[4, "data-and-configuration"]], "Documentation and Testing": [[4, "documentation-and-testing"]], "Updating and Maintaining the Changelog": [[4, "updating-and-maintaining-the-changelog"]], "Testing Guidelines": [[4, "testing-guidelines"]], "Community Guidelines": [[4, "community-guidelines"]], "Our Pledge": [[4, "our-pledge"]], "Our Standards": [[4, "our-standards"]], "Our Responsibilities": [[4, "our-responsibilities"]], "Scope": [[4, "scope"]], "Enforcement": [[4, "enforcement"]], "Attribution": [[4, "attribution"]], "Core Stingray Functionality": [[5, "core-stingray-functionality"]], "Working with Event Data": [[5, "working-with-event-data"]], "Working with Lightcurves": [[5, "working-with-lightcurves"]], "Fourier Analysis": [[5, "fourier-analysis"]], "Powerspectra": [[5, "powerspectra"]], "Dynamical Power Spectra": [[5, "dynamical-power-spectra"]], "Cross Spectra": [[5, "cross-spectra"], [14, "Cross-Spectra"]], "Cross- and Autocorrelations": [[5, "cross-and-autocorrelations"]], "Bispectra": [[5, "bispectra"]], "Bayesian Excess Variance": [[5, "bayesian-excess-variance"]], "Multi-taper Periodogram": [[5, "multi-taper-periodogram"]], "Lomb Scargle Crossspectrum": [[5, "lomb-scargle-crossspectrum"]], "Lomb Scargle Powerspectrum": [[5, "lomb-scargle-powerspectrum"]], "Data Exploration": [[6, "data-exploration"]], "A quick look at a NuSTAR observation": [[6, "a-quick-look-at-a-nustar-observation"]], "Spectral timing exploration with NICER": [[6, "spectral-timing-exploration-with-nicer"]], "Studying very slow variability with the Lomb-Scargle periodogram": [[6, "studying-very-slow-variability-with-the-lomb-scargle-periodogram"]], "Dealing with dead time": [[7, "dealing-with-dead-time"]], "History": [[8, "history"]], "Previous projects merged to Stingray": [[8, "previous-projects-merged-to-stingray"]], "Changelog": [[8, "changelog"]], "v1.1.2 (2023-05-25)": [[8, "v1-1-2-2023-05-25"]], "New Features": [[8, "new-features"]], "Bug Fixes": [[8, "bug-fixes"]], "Documentation": [[8, "documentation"]], "Internal Changes": [[8, "internal-changes"]], "v1.1.1 (2022-10-10)": [[8, "v1-1-1-2022-10-10"]], "Bug fixes": [[8, "id1"], [8, "id3"], [8, "id7"]], "v1.1 (2022-10-02)": [[8, "v1-1-2022-10-02"]], "New": [[8, "new"], [8, "id5"]], "Improvements": [[8, "improvements"], [8, "id6"]], "v1.0 (2022-03-29)": [[8, "v1-0-2022-03-29"]], "v0.3 (2021-05-31)": [[8, "v0-3-2021-05-31"]], "v0.2 (2020-06-17)": [[8, "v0-2-2020-06-17"]], "v0.1.3 (2019-06-11)": [[8, "v0-1-3-2019-06-11"]], "v0.1.2": [[8, "v0-1-2"]], "v0.1.1": [[8, "v0-1-1"]], "v0.1 (2019-05-29)": [[8, "v0-1-2019-05-29"]], "Presentations": [[8, "presentations"]], "Stingray: Next-Generation Spectral Timing": [[9, "stingray-next-generation-spectral-timing"]], "Features": [[9, "features"]], "Current Capabilities": [[9, "current-capabilities"]], "1. Data handling and simulation": [[9, "data-handling-and-simulation"]], "2. Fourier methods": [[9, "fourier-methods"]], "3. Other time series methods": [[9, "other-time-series-methods"]], "Future Plans": [[9, "future-plans"]], "Platform-specific issues": [[9, "platform-specific-issues"]], "Installation instructions": [[9, "installation-instructions"]], "Dependencies": [[9, "dependencies"]], "Installation": [[9, "installation"]], "Installing via conda": [[9, "installing-via-conda"]], "Installing via pip": [[9, "installing-via-pip"]], "Installing from source (bleeding edge version)": [[9, "installing-from-source-bleeding-edge-version"]], "Installing development environment (for new contributors)": [[9, "installing-development-environment-for-new-contributors"]], "Test Suite": [[9, "test-suite"]], "Building the Documentation": [[9, "building-the-documentation"]], "Using Stingray": [[9, "using-stingray"]], "Getting started": [[9, "getting-started"], [43, "getting-started"]], "Advanced": [[9, "advanced"]], "Additional information": [[9, "additional-information"]], "Indices and tables": [[9, "indices-and-tables"]], "The Stingray Modelling Interface": [[10, "the-stingray-modelling-interface"]], "Baysian Excess Variance (Bexvar)": [[11, "Baysian-Excess-Variance-(Bexvar)"]], "Bexvar: Theoretical background": [[11, "Bexvar:-Theoretical-background"]], "Bispectrum Tutorial": [[12, "Bispectrum-Tutorial"]], "Plots": [[12, "Plots"]], "Another Example": [[12, "Another-Example"], [13, "Another-Example"], [13, "id1"]], "Window Functions for Bispectrum": [[12, "Window-Functions-for-Bispectrum"]], "Plot Window": [[12, "Plot-Window"]], "Another Window demonstrated": [[12, "Another-Window-demonstrated"]], "CrossCorrelation Example": [[13, "CrossCorrelation-Example"]], "1. Create two light curves": [[13, "1.-Create-two-light-curves"], [14, "1.-Create-two-light-curves"], [23, "1.-Create-two-light-curves"]], "2. Create a CrossCorrelation Object from two Light curves created above": [[13, "2.-Create-a-CrossCorrelation-Object-from-two-Light-curves-created-above"]], "3. Plot Cross Correlation for Different lags": [[13, "3.-Plot-Cross-Correlation-for-Different-lags"]], "Modes of Correlation": [[13, "Modes-of-Correlation"]], "Yet another Example with longer Lingcurve": [[13, "Yet-another-Example-with-longer-Lingcurve"]], "2. Pass both of the light curves to the Crossspectrum class to create a Crossspectrum object.": [[14, "2.-Pass-both-of-the-light-curves-to-the-Crossspectrum-class-to-create-a-Crossspectrum-object."]], "Properties": [[14, "Properties"], [14, "id1"], [22, "Properties"], [23, "Properties"], [28, "Properties"]], "2. Pass both light curves to the AveragedCrossspectrum class with a specified segment_size.": [[14, "2.-Pass-both-light-curves-to-the-AveragedCrossspectrum-class-with-a-specified-segment_size."]], "Normalizating the cross spectrum": [[14, "Normalizating-the-cross-spectrum"]], "Re-binning a cross spectrum in frequency": [[14, "Re-binning-a-cross-spectrum-in-frequency"]], "2. And we can logarithmically/geometrically re-bin a cross spectrum": [[14, "2.-And-we-can-logarithmically/geometrically-re-bin-a-cross-spectrum"]], "Time lags / phase lags": [[14, "Time-lags-/-phase-lags"]], "1. Frequency-dependent lags": [[14, "1.-Frequency-dependent-lags"]], "2. Energy-dependent lags": [[14, "2.-Energy-dependent-lags"]], "Quicklook NuSTAR data with Stingray": [[15, "Quicklook-NuSTAR-data-with-Stingray"]], "Fourier Amplitude Difference correction in Stingray": [[16, "Fourier-Amplitude-Difference-correction-in-Stingray"]], "Check Stingray\u2019s dead time model": [[17, "Check-Stingray's-dead-time-model"]], "Non-paralyzable dead time": [[17, "Non-paralyzable-dead-time"]], "Paralyzable dead time": [[17, "Paralyzable-dead-time"]], "Periodogram - non-paralyzable": [[17, "Periodogram---non-paralyzable"]], "Reproduce Zhang+95 power spectrum? (extra check)": [[17, "Reproduce-Zhang+95-power-spectrum?-(extra-check)"]], "Dynamical Power Spectra (on fake data)": [[18, "Dynamical-Power-Spectra-(on-fake-data)"]], "Generate a fake lightcurve": [[18, "Generate-a-fake-lightcurve"]], "Visualizing the lightcurve": [[18, "Visualizing-the-lightcurve"]], "Zomming in..": [[18, "Zomming-in.."]], "A power spectrum of this lightcurve..": [[18, "A-power-spectrum-of-this-lightcurve.."]], "It looks like we have at least 2 frequencies.": [[18, "It-looks-like-we-have-at-least-2-frequencies."]], "Let\u2019s look at the Dynamic Powerspectrum..": [[18, "Let's-look-at-the-Dynamic-Powerspectrum.."]], "It is actually only one feature drifiting along time": [[18, "It-is-actually-only-one-feature-drifiting-along-time"]], "Rebin time": [[18, "Rebin-time"], [19, "Rebin-time"]], "Let\u2019s trace that drifiting feature.": [[18, "Let's-trace-that-drifiting-feature."]], "Overlaying this traced function with the Dynamical Powerspectrum": [[18, "Overlaying-this-traced-function-with-the-Dynamical-Powerspectrum"]], "Dynamical Power Spectra (on real data)": [[19, "Dynamical-Power-Spectra-(on-real-data)"]], "All starts with a lightcurve..": [[19, "All-starts-with-a-lightcurve.."]], "DynamicPowerspectrum": [[19, "DynamicPowerspectrum"]], "Trace maximun": [[19, "Trace-maximun"]], "Contents": [[20, "Contents"], [35, "Contents"], [36, "Contents"], [37, "Contents"], [40, "Contents"]], "Setup": [[20, "Setup"], [35, "Setup"], [36, "Setup"], [37, "Setup"], [40, "Setup"]], "Creating EventList from Photon Arrival Times": [[20, "Creating-EventList-from-Photon-Arrival-Times"]], "Roundtrip to Astropy-compatible formats": [[20, "Roundtrip-to-Astropy-compatible-formats"], [20, "id1"]], "Loading and writing EventList objects": [[20, "Loading-and-writing-EventList-objects"]], "Loading an EventList from an X-ray observation in HEASoft-compatible format": [[20, "Loading-an-EventList-from-an-X-ray-observation-in-HEASoft-compatible-format"]], "Roundtrip to pickle objects": [[20, "Roundtrip-to-pickle-objects"]], "Transforming a Lightcurve into an EventList.": [[20, "Transforming-a-Lightcurve-into-an-EventList."]], "Simulating EventList from Lightcurve": [[20, "Simulating-EventList-from-Lightcurve"]], "Creating a light curve from an EventList object": [[20, "Creating-a-light-curve-from-an-EventList-object"]], "Simulating Energies": [[20, "Simulating-Energies"]], "Joining EventLists": [[20, "Joining-EventLists"]], "R.m.s. - intensity diagram": [[21, "R.m.s.---intensity-diagram"], [21, "id1"]], "Setup: simulate a light curve with a variable rms and rate": [[21, "Setup:-simulate-a-light-curve-with-a-variable-rms-and-rate"]], "Creating a light curve": [[22, "Creating-a-light-curve"]], "1. Array of time stamps and counts": [[22, "1.-Array-of-time-stamps-and-counts"]], "2. Photon Arrival Times": [[22, "2.-Photon-Arrival-Times"]], "Error Distributions in stingray.Lightcurve": [[22, "Error-Distributions-in-stingray.Lightcurve"]], "Good Time Intervals": [[22, "Good-Time-Intervals"]], "Operations": [[22, "Operations"]], "Addition/Subtraction": [[22, "Addition/Subtraction"]], "Negation": [[22, "Negation"]], "Indexing": [[22, "Indexing"]], "Methods": [[22, "Methods"]], "Concatenation": [[22, "Concatenation"]], "Truncation": [[22, "Truncation"]], "Re-binning": [[22, "Re-binning"]], "Sorting": [[22, "Sorting"]], "Plotting": [[22, "Plotting"]], "Sample Data": [[22, "Sample-Data"]], "Checking the Light Curve for Irregularities": [[22, "Checking-the-Light-Curve-for-Irregularities"]], "MJDREF and Shifting Times": [[22, "MJDREF-and-Shifting-Times"]], "Calculating a baseline": [[22, "Calculating-a-baseline"]], "Working with GTIs and Splitting Light Curves": [[22, "Working-with-GTIs-and-Splitting-Light-Curves"]], "Analyzing Light Curve Segments": [[22, "Analyzing-Light-Curve-Segments"]], "Compatibility with Lightkurve": [[22, "Compatibility-with-Lightkurve"]], "Reading/Writing Lightcurves to/from files": [[22, "Reading/Writing-Lightcurves-to/from-files"]], "Lomb Scargle Cross Spectra": [[23, "Lomb-Scargle-Cross-Spectra"]], "2. Pass both of the light curves to the LombScargleCrossspectrum class to create a LombScargleCrossspectrum object.": [[23, "2.-Pass-both-of-the-light-curves-to-the-LombScargleCrossspectrum-class-to-create-a-LombScargleCrossspectrum-object."]], "Parameters": [[23, "Parameters"], [24, "Parameters"]], "Other Parameters": [[23, "Other-Parameters"], [24, "Other-Parameters"]], "Attributes": [[23, "Attributes"], [24, "Attributes"]], "Lomb Scargle Power Spectra": [[24, "Lomb-Scargle-Power-Spectra"]], "1. Create a light curve": [[24, "1.-Create-a-light-curve"], [28, "1.-Create-a-light-curve"]], "2. Pass the light curve to the LombScarglePowerspectrum class to create a LombScarglePowerspectrum object.": [[24, "2.-Pass-the-light-curve-to-the-LombScarglePowerspectrum-class-to-create-a-LombScarglePowerspectrum-object."]], "Observations with frequent data gaps": [[25, "Observations-with-frequent-data-gaps"]], "The Lomb-Scargle periodogram": [[25, "The-Lomb-Scargle-periodogram"]], "The Cross spectrum": [[25, "The-Cross-spectrum"]], "The Stingray Modeling API Explained": [[26, "The-Stingray-Modeling-API-Explained"]], "Some background": [[26, "Some-background"]], "Likelihoods and Posteriors": [[26, "Likelihoods-and-Posteriors"]], "Maximum Likelihood Fitting": [[26, "Maximum-Likelihood-Fitting"]], "Likelihood Ratios": [[26, "Likelihood-Ratios"]], "Bayesian Parameter Estimation": [[26, "Bayesian-Parameter-Estimation"]], "Calibrating Likelihood Ratio Tests": [[26, "Calibrating-Likelihood-Ratio-Tests"]], "Bayesian-ish QPO Searches": [[26, "Bayesian-ish-QPO-Searches"]], "Fitting a power spectrum with some model": [[26, "Fitting-a-power-spectrum-with-some-model"]], "Fitting Lorentzians": [[26, "Fitting-Lorentzians"]], "Install Stingray in colab": [[27, "Install-Stingray-in-colab"]], "Multitaper Spectral Estimator Example": [[27, "Multitaper-Spectral-Estimator-Example"]], "### Creating a light curve": [[27, "###-Creating-a-light-curve"]], "The Multitaper Periodogram": [[27, "The-Multitaper-Periodogram"]], "Let\u2019s have a look at the individual tapers.": [[27, "Let's-have-a-look-at-the-individual-tapers."]], "Now let\u2019s see their frequency domain representations (here PSD)": [[27, "Now-let's-see-their-frequency-domain-representations-(here-PSD)"]], "Summary of Multitaper Spectral Estimation": [[27, "Summary-of-Multitaper-Spectral-Estimation"]], "Creating a Multitaper object": [[27, "Creating-a-Multitaper-object"]], "The results": [[27, "The-results"]], "While it seems decent, lets compare with Powerspectrum": [[27, "While-it-seems-decent,-lets-compare-with-Powerspectrum"]], "As can be seen, there is improvement in both the variance and the bias.": [[27, "As-can-be-seen,-there-is-improvement-in-both-the-variance-and-the-bias."]], "Attributes of the Multitaper object": [[27, "Attributes-of-the-Multitaper-object"]], "A look at the values contained in these attributes.": [[27, "A-look-at-the-values-contained-in-these-attributes."]], "A look at the different normalizations": [[27, "A-look-at-the-different-normalizations"]], "Other attributes with the S(f) estimates": [[27, "Other-attributes-with-the-S(f)-estimates"]], "A summary of the jackknife variance estimate": [[27, "A-summary-of-the-jackknife-variance-estimate"]], "A look at jk_var_deg_freedom": [[27, "A-look-at-jk_var_deg_freedom"]], "Linearly re-binning a power spectrum in frequency": [[27, "Linearly-re-binning-a-power-spectrum-in-frequency"]], "Poisson distributed lightcurve": [[27, "Poisson-distributed-lightcurve"]], "Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve": [[27, "Comparing-Powerspectrum-and-Multitaper-on-poisson-distributed-lightcurve"]], "Time series with uneven temporal sampling: Multitaper Lomb-Scargle": [[27, "Time-series-with-uneven-temporal-sampling:-Multitaper-Lomb-Scargle"]], "Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )": [[27, "Testing-the-Multitaper-Lomb-Scargle-on-a-Kepler-dataset-(used-in-A.-Springford-et-al.-(2020)-)"]], "Plotting the first 3000 data points of the kepler lightcurve": [[27, "Plotting-the-first-3000-data-points-of-the-kepler-lightcurve"]], "But how does this compare to the classical Lomb-Scargle Periodogram?": [[27, "But-how-does-this-compare-to-the-classical-Lomb-Scargle-Periodogram?"]], "Zooming in": [[27, "Zooming-in"]], "References": [[27, "References"]], "Power spectrum example": [[28, "Power-spectrum-example"]], "2. Pass the light curve to the Powerspectrum class to create a Powerspectrum object.": [[28, "2.-Pass-the-light-curve-to-the-Powerspectrum-class-to-create-a-Powerspectrum-object."]], "2. Pass the light curve to the AveragedPowerspectrum class with a specified segment_size.": [[28, "2.-Pass-the-light-curve-to-the-AveragedPowerspectrum-class-with-a-specified-segment_size."]], "Normalizating the power spectrum": [[28, "Normalizating-the-power-spectrum"]], "Re-binning a power spectrum in frequency": [[28, "Re-binning-a-power-spectrum-in-frequency"]], "2. And we can logarithmically/geometrically re-bin a power spectrum": [[28, "2.-And-we-can-logarithmically/geometrically-re-bin-a-power-spectrum"]], "Power spectra of normal-distributed light curves": [[28, "Power-spectra-of-normal-distributed-light-curves"]], "Phase Dispersion Minimization in Stingray": [[29, "Phase-Dispersion-Minimization-in-Stingray"]], "Simulate a dataset": [[29, "Simulate-a-dataset"], [30, "Simulate-a-dataset"]], "Pulsation search with Phase Dispersion Minimization": [[29, "Pulsation-search-with-Phase-Dispersion-Minimization"]], "Pulsation search with epoch folding.": [[30, "Pulsation-search-with-epoch-folding."]], "Z-squared search": [[30, "Z-squared-search"]], "Thresholding": [[30, "Thresholding"]], "Fit peak with Sinc-squared and Gaussian functions": [[30, "Fit-peak-with-Sinc-squared-and-Gaussian-functions"]], "Phaseogram": [[30, "Phaseogram"]], "Examples of interactive phaseograms": [[30, "Examples-of-interactive-phaseograms"]], "First: shift the rows of the phaseogram interactively": [[30, "First:-shift-the-rows-of-the-phaseogram-interactively"]], "Second: overplot a line with a pulse frequency solution, then update the full phaseogram": [[30, "Second:-overplot-a-line-with-a-pulse-frequency-solution,-then-update-the-full-phaseogram"]], "Inverse Transform Sampling": [[31, "Inverse-Transform-Sampling"]], "Simulating Light Curves from Power Law Power Spectra": [[32, "Simulating-Light-Curves-from-Power-Law-Power-Spectra"]], "Simulating event times with the inverse CDF method": [[33, "Simulating-event-times-with-the-inverse-CDF-method"]], "Outline": [[34, "Outline"]], "Lag-frequency Spectrum": [[34, "Lag-frequency-Spectrum"]], "Simple Delta Impulse Response": [[34, "Simple-Delta-Impulse-Response"]], "More realistic impulse response": [[34, "More-realistic-impulse-response"]], "Energy Dependence": [[34, "Energy-Dependence"]], "With same intensity and varying position": [[34, "With-same-intensity-and-varying-position"]], "With same position and varying intensity": [[34, "With-same-position-and-varying-intensity"]], "Initializing": [[35, "Initializing"]], "Analysis": [[35, "Analysis"]], "Energy Dependent Impulse Responses": [[35, "Energy-Dependent-Impulse-Responses"]], "Power Spectral Models": [[36, "Power-Spectral-Models"]], "Generalized Lorenzian Function": [[36, "Generalized-Lorenzian-Function"]], "Smooth Broken Power Law Model": [[36, "Smooth-Broken-Power-Law-Model"]], "Light Curve Simulation": [[36, "Light-Curve-Simulation"], [37, "Light-Curve-Simulation"]], "Creating a Simulator Object": [[37, "Creating-a-Simulator-Object"], [43, "creating-a-simulator-object"]], "(i) Using power-law spectrum": [[37, "(i)-Using-power-law-spectrum"]], "(ii) Using user-defined model": [[37, "(ii)-Using-user-defined-model"]], "(iii) Using pre-defined models": [[37, "(iii)-Using-pre-defined-models"]], "(iv) Using impulse response": [[37, "(iv)-Using-impulse-response"]], "Channel Simulation": [[37, "Channel-Simulation"], [43, "channel-simulation"]], "Reading/Writing": [[37, "Reading/Writing"]], "Load events and plot light curve": [[38, "Load-events-and-plot-light-curve"]], "Calculate periodogram and cross spectrum": [[38, "Calculate-periodogram-and-cross-spectrum"]], "Periodogram modeling": [[38, "Periodogram-modeling"]], "Lags and coherence": [[38, "Lags-and-coherence"]], "Spectral timing": [[38, "Spectral-timing"]], "Covariance and RMS spectrum": [[38, "Covariance-and-RMS-spectrum"]], "Setting Up Data": [[39, "Setting-Up-Data"]], "Creating TransferFunction": [[40, "Creating-TransferFunction"]], "Obtaining Time-Resolved Response": [[40, "Obtaining-Time-Resolved-Response"]], "Obtaining Energy-Resolved Response": [[40, "Obtaining-Energy-Resolved-Response"]], "Plotting Responses": [[40, "Plotting-Responses"]], "IO": [[40, "IO"]], "Artificial Responses": [[40, "Artificial-Responses"]], "1- Simple IR": [[40, "1--Simple-IR"]], "2- Relativistic IR": [[40, "2--Relativistic-IR"]], "Window functions": [[41, "Window-functions"]], "Uniform Window": [[41, "Uniform-Window"]], "Parzen Window": [[41, "Parzen-Window"]], "Hamming Window": [[41, "Hamming-Window"]], "Hanning Window": [[41, "Hanning-Window"]], "Traingular Window": [[41, "Traingular-Window"]], "Welch Window": [[41, "Welch-Window"]], "Blackmann\u2019s Window": [[41, "Blackmann's-Window"]], "Flat Top Window": [[41, "Flat-Top-Window"]], "Analysing Pulsar Data": [[42, "analysing-pulsar-data"]], "Stingray Simulator (stingray.simulator)": [[43, "stingray-simulator-stingray-simulator"]], "Introduction": [[43, "introduction"]], "Simulate Method": [[43, "simulate-method"]], "Using Power-Law Spectrum": [[43, "using-power-law-spectrum"]], "Using User-defined Model": [[43, "using-user-defined-model"]], "Using Pre-defined Models": [[43, "using-pre-defined-models"]], "Using Impulse Response": [[43, "using-impulse-response"]], "Tutorials": [[43, "tutorials"]], "Important Concepts": [[43, "important-concepts"]], "The Simulator Object": [[43, "the-simulator-object"]], "Available Spectral Models": [[43, "available-spectral-models"]], "An Example Lag Analysis": [[43, "an-example-lag-analysis"]], "Transfer Functions": [[43, "transfer-functions"]], "Window Functions": [[43, "window-functions"]]}, "indexentries": {"a() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.A"]], "a0() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.A0"]], "autocorrelation (class in stingray)": [[2, "stingray.AutoCorrelation"]], "averagedcovariancespectrum (class in stingray)": [[2, "stingray.AveragedCovariancespectrum"]], "averagedcrossspectrum (class in stingray)": [[2, "stingray.AveragedCrossspectrum"]], "averagedpowerspectrum (class in stingray)": [[2, "stingray.AveragedPowerspectrum"]], "b() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.B"]], "bispectrum (class in stingray.bispectrum)": [[2, "stingray.bispectrum.Bispectrum"]], "covariancespectrum (class in stingray)": [[2, "stingray.Covariancespectrum"]], "crosscorrelation (class in stingray)": [[2, "stingray.CrossCorrelation"]], "crossspectrum (class in stingray)": [[2, "stingray.Crossspectrum"]], "dynamicalpowerspectrum (class in stingray)": [[2, "stingray.DynamicalPowerspectrum"]], "eventlist (class in stingray.events)": [[2, "stingray.events.EventList"]], "excessvariancespectrum (class in stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum"]], "fad() (in module stingray.deadtime.fad)": [[2, "stingray.deadtime.fad.FAD"]], "gaussianloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.GaussianLogLikelihood"]], "gaussianposterior (class in stingray.modeling)": [[2, "stingray.modeling.GaussianPosterior"]], "gn() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.Gn"]], "lagenergyspectrum (in module stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.LagEnergySpectrum"]], "laplaceloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.LaplaceLogLikelihood"]], "laplaceposterior (class in stingray.modeling)": [[2, "stingray.modeling.LaplacePosterior"]], "lightcurve (class in stingray)": [[2, "stingray.Lightcurve"]], "loglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.LogLikelihood"]], "optimizationresults (class in stingray.modeling)": [[2, "stingray.modeling.OptimizationResults"]], "psdloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.PSDLogLikelihood"]], "psdparest (class in stingray.modeling)": [[2, "stingray.modeling.PSDParEst"]], "psdposterior (class in stingray.modeling)": [[2, "stingray.modeling.PSDPosterior"]], "parameterestimation (class in stingray.modeling)": [[2, "stingray.modeling.ParameterEstimation"]], "poissonloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.PoissonLogLikelihood"]], "poissonposterior (class in stingray.modeling)": [[2, "stingray.modeling.PoissonPosterior"]], "posterior (class in stingray.modeling)": [[2, "stingray.modeling.Posterior"]], "powerspectrum (class in stingray)": [[2, "stingray.Powerspectrum"]], "rmsenergyspectrum (in module stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.RmsEnergySpectrum"]], "samplingresults (class in stingray.modeling)": [[2, "stingray.modeling.SamplingResults"]], "simulator (class in stingray.simulator.simulator)": [[2, "stingray.simulator.simulator.Simulator"]], "sincsquaremodel (class in stingray.pulse)": [[2, "stingray.pulse.SincSquareModel"]], "stingrayerror (class in stingray.exceptions)": [[2, "stingray.exceptions.StingrayError"]], "varenergyspectrum (class in stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum"]], "_check_convergence() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults._check_convergence"]], "_compute_covariance() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_covariance"]], "_compute_criteria() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_criteria"]], "_compute_model() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_model"]], "_compute_rhat() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults._compute_rhat"]], "_compute_statistics() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_statistics"]], "_infer() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults._infer"]], "_initialize_empty() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._initialize_empty"]], "_initialize_from_any_input() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._initialize_from_any_input"]], "_normalize_crossspectrum() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._normalize_crossspectrum"]], "_rms_error() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._rms_error"]], "a_from_pf() (in module stingray.stats)": [[2, "stingray.stats.a_from_pf"]], "a_from_ssig() (in module stingray.stats)": [[2, "stingray.stats.a_from_ssig"]], "amplitude_upper_limit() (in module stingray.stats)": [[2, "stingray.stats.amplitude_upper_limit"]], "analyze_lc_chunks() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.analyze_lc_chunks"]], "append_gtis() (in module stingray.gti)": [[2, "stingray.gti.append_gtis"]], "apply_deadtime() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.apply_deadtime"]], "apply_gtis() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.apply_gtis"]], "apply_mask() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.apply_mask"]], "apply_mask() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.apply_mask"]], "array_attrs() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.array_attrs"]], "array_attrs() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.array_attrs"]], "array_attrs() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.array_attrs"]], "array_attrs() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.array_attrs"]], "array_attrs() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.array_attrs"]], "array_attrs() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.array_attrs"]], "baseline() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.baseline"]], "baseline_als() (in module stingray.utils)": [[2, "stingray.utils.baseline_als"]], "bexvar() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.bexvar"]], "bin_intervals_from_gtis() (in module stingray.gti)": [[2, "stingray.gti.bin_intervals_from_gtis"]], "cal_timeshift() (stingray.autocorrelation method)": [[2, "stingray.AutoCorrelation.cal_timeshift"]], "cal_timeshift() (stingray.crosscorrelation method)": [[2, "stingray.CrossCorrelation.cal_timeshift"]], "calculate_fad_correction() (in module stingray.deadtime.fad)": [[2, "stingray.deadtime.fad.calculate_FAD_correction"]], "calibrate_highest_outlier() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.calibrate_highest_outlier"]], "calibrate_lrt() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.calibrate_lrt"]], "calibrate_lrt() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.calibrate_lrt"]], "check_a() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.check_A"]], "check_b() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.check_B"]], "check_gtis() (in module stingray.gti)": [[2, "stingray.gti.check_gtis"]], "check_isallfinite() (in module stingray.utils)": [[2, "stingray.utils.check_isallfinite"]], "check_lightcurve() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.check_lightcurve"]], "check_separate() (in module stingray.gti)": [[2, "stingray.gti.check_separate"]], "classical_pvalue() (in module stingray.stats)": [[2, "stingray.stats.classical_pvalue"]], "classical_significances() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.classical_significances"]], "classical_significances() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.classical_significances"]], "classical_significances() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.classical_significances"]], "classical_significances() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.classical_significances"]], "classical_significances() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.classical_significances"]], "coherence() (in module stingray)": [[2, "stingray.coherence"]], "coherence() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.coherence"]], "coherence() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.coherence"]], "coherence() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.coherence"]], "coherence() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.coherence"]], "coherence() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.coherence"]], "common_name() (in module stingray.io)": [[2, "stingray.io.common_name"]], "compute_lrt() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.compute_lrt"]], "compute_lrt() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.compute_lrt"]], "compute_rms() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.compute_rms"]], "compute_rms() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.compute_rms"]], "compute_rms() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.compute_rms"]], "contiguous_regions() (in module stingray.utils)": [[2, "stingray.utils.contiguous_regions"]], "count_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.count_channels"]], "create_gti_from_condition() (in module stingray.gti)": [[2, "stingray.gti.create_gti_from_condition"]], "create_gti_mask() (in module stingray.gti)": [[2, "stingray.gti.create_gti_mask"]], "create_gti_mask_complete() (in module stingray.gti)": [[2, "stingray.gti.create_gti_mask_complete"]], "create_gti_mask_jit() (in module stingray.gti)": [[2, "stingray.gti.create_gti_mask_jit"]], "create_window() (in module stingray.utils)": [[2, "stingray.utils.create_window"]], "cross_gtis() (in module stingray.gti)": [[2, "stingray.gti.cross_gtis"]], "cross_two_gtis() (in module stingray.gti)": [[2, "stingray.gti.cross_two_gtis"]], "delete_channel() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.delete_channel"]], "delete_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.delete_channels"]], "ef_profile_stat() (in module stingray.pulse)": [[2, "stingray.pulse.ef_profile_stat"]], "energy (stingray.varenergyspectrum.excessvariancespectrum property)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.energy"]], "energy (stingray.varenergyspectrum.varenergyspectrum property)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.energy"]], "epoch_folding_search() (in module stingray.pulse)": [[2, "stingray.pulse.epoch_folding_search"]], "equivalent_gaussian_nsigma() (in module stingray.stats)": [[2, "stingray.stats.equivalent_gaussian_Nsigma"]], "estimate_chunk_length() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.estimate_chunk_length"]], "estimate_segment_size() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.estimate_segment_size"]], "evaluate() (stingray.modeling.gaussianloglikelihood method)": [[2, "stingray.modeling.GaussianLogLikelihood.evaluate"]], "evaluate() (stingray.modeling.laplaceloglikelihood method)": [[2, "stingray.modeling.LaplaceLogLikelihood.evaluate"]], "evaluate() (stingray.modeling.loglikelihood method)": [[2, "stingray.modeling.LogLikelihood.evaluate"]], "evaluate() (stingray.modeling.psdloglikelihood method)": [[2, "stingray.modeling.PSDLogLikelihood.evaluate"]], "evaluate() (stingray.modeling.poissonloglikelihood method)": [[2, "stingray.modeling.PoissonLogLikelihood.evaluate"]], "excess_variance() (in module stingray.utils)": [[2, "stingray.utils.excess_variance"]], "factorial() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.factorial"]], "fftfit() (in module stingray.pulse)": [[2, "stingray.pulse.fftfit"]], "filter_energy_range() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.filter_energy_range"]], "find_nearest() (in module stingray.utils)": [[2, "stingray.utils.find_nearest"]], "fit() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.fit"]], "fit() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.fit"]], "fit_crossspectrum() (in module stingray.modeling.scripts)": [[2, "stingray.modeling.scripts.fit_crossspectrum"]], "fit_gaussian() (in module stingray.pulse)": [[2, "stingray.pulse.fit_gaussian"]], "fit_lorentzians() (in module stingray.modeling.scripts)": [[2, "stingray.modeling.scripts.fit_lorentzians"]], "fit_powerspectrum() (in module stingray.modeling.scripts)": [[2, "stingray.modeling.scripts.fit_powerspectrum"]], "fit_sinc() (in module stingray.pulse)": [[2, "stingray.pulse.fit_sinc"]], "fold_detection_level() (in module stingray.stats)": [[2, "stingray.stats.fold_detection_level"]], "fold_events() (in module stingray.pulse)": [[2, "stingray.pulse.fold_events"]], "fold_profile_logprobability() (in module stingray.stats)": [[2, "stingray.stats.fold_profile_logprobability"]], "fold_profile_probability() (in module stingray.stats)": [[2, "stingray.stats.fold_profile_probability"]], "from_astropy_table() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.from_astropy_table"]], "from_astropy_table() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.from_astropy_table"]], "from_astropy_table() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.from_astropy_table"]], "from_astropy_table() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.from_astropy_table"]], "from_astropy_table() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.from_astropy_table"]], "from_astropy_table() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.from_astropy_table"]], "from_astropy_table() (stingray.varenergyspectrum.varenergyspectrum method)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.from_astropy_table"]], "from_astropy_timeseries() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.from_astropy_timeseries"]], "from_events() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_events"]], "from_events() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_events"]], "from_events() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_events"]], "from_events() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_events"]], "from_events() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_events"]], "from_lc() (stingray.events.eventlist static method)": [[2, "stingray.events.EventList.from_lc"]], "from_lc_iterable() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_lc_iterable"]], "from_lc_iterable() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_lc_iterable"]], "from_lc_iterable() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_lc_iterable"]], "from_lc_iterable() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_lc_iterable"]], "from_lc_iterable() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_lc_iterable"]], "from_lightcurve() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_lightcurve"]], "from_lightcurve() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_lightcurve"]], "from_lightcurve() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_lightcurve"]], "from_lightcurve() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_lightcurve"]], "from_lightcurve() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_lightcurve"]], "from_lightkurve() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.from_lightkurve"]], "from_pandas() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.from_pandas"]], "from_pandas() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.from_pandas"]], "from_pandas() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.from_pandas"]], "from_pandas() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.from_pandas"]], "from_pandas() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.from_pandas"]], "from_pandas() (stingray.varenergyspectrum.varenergyspectrum method)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.from_pandas"]], "from_time_array() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_time_array"]], "from_time_array() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_time_array"]], "from_time_array() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_time_array"]], "from_time_array() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_time_array"]], "from_time_array() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_time_array"]], "from_xarray() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.from_xarray"]], "from_xarray() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.from_xarray"]], "from_xarray() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.from_xarray"]], "from_xarray() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.from_xarray"]], "from_xarray() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.from_xarray"]], "from_xarray() (stingray.varenergyspectrum.varenergyspectrum method)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.from_xarray"]], "generate_indices_of_gti_boundaries() (in module stingray.gti)": [[2, "stingray.gti.generate_indices_of_gti_boundaries"]], "generate_indices_of_segment_boundaries_binned() (in module stingray.gti)": [[2, "stingray.gti.generate_indices_of_segment_boundaries_binned"]], "generate_indices_of_segment_boundaries_unbinned() (in module stingray.gti)": [[2, "stingray.gti.generate_indices_of_segment_boundaries_unbinned"]], "get_toa() (in module stingray.pulse)": [[2, "stingray.pulse.get_TOA"]], "get_all_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.get_all_channels"]], "get_btis() (in module stingray.gti)": [[2, "stingray.gti.get_btis"]], "get_channel() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.get_channel"]], "get_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.get_channels"]], "get_file_extension() (in module stingray.io)": [[2, "stingray.io.get_file_extension"]], "get_gti_extensions_from_pattern() (in module stingray.gti)": [[2, "stingray.gti.get_gti_extensions_from_pattern"]], "get_gti_from_all_extensions() (in module stingray.gti)": [[2, "stingray.gti.get_gti_from_all_extensions"]], "get_gti_from_hdu() (in module stingray.gti)": [[2, "stingray.gti.get_gti_from_hdu"]], "get_gti_lengths() (in module stingray.gti)": [[2, "stingray.gti.get_gti_lengths"]], "get_key_from_mission_info() (in module stingray.io)": [[2, "stingray.io.get_key_from_mission_info"]], "get_meta_dict() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.get_meta_dict"]], "get_meta_dict() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.get_meta_dict"]], "get_meta_dict() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.get_meta_dict"]], "get_meta_dict() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.get_meta_dict"]], "get_meta_dict() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.get_meta_dict"]], "get_orbital_correction_from_ephemeris_file() (in module stingray.pulse)": [[2, "stingray.pulse.get_orbital_correction_from_ephemeris_file"]], "get_periodograms_from_fad_results() (in module stingray.deadtime.fad)": [[2, "stingray.deadtime.fad.get_periodograms_from_FAD_results"]], "get_random_state() (in module stingray.utils)": [[2, "stingray.utils.get_random_state"]], "get_total_gti_length() (in module stingray.gti)": [[2, "stingray.gti.get_total_gti_length"]], "gti_border_bins() (in module stingray.gti)": [[2, "stingray.gti.gti_border_bins"]], "h() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.h"]], "heaviside() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.heaviside"]], "high_precision_keyword_read() (in module stingray.io)": [[2, "stingray.io.high_precision_keyword_read"]], "htest() (in module stingray.pulse)": [[2, "stingray.pulse.htest"]], "initial_checks() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.initial_checks"]], "initial_checks() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.initial_checks"]], "initial_checks() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.initial_checks"]], "initial_checks() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.initial_checks"]], "initial_checks() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.initial_checks"]], "is_int() (in module stingray.utils)": [[2, "stingray.utils.is_int"]], "is_iterable() (in module stingray.utils)": [[2, "stingray.utils.is_iterable"]], "is_string() (in module stingray.utils)": [[2, "stingray.utils.is_string"]], "join() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.join"]], "join() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.join"]], "join_gtis() (in module stingray.gti)": [[2, "stingray.gti.join_gtis"]], "lcurve_from_fits() (in module stingray.io)": [[2, "stingray.io.lcurve_from_fits"]], "load_events_and_gtis() (in module stingray.io)": [[2, "stingray.io.load_events_and_gtis"]], "load_gtis() (in module stingray.gti)": [[2, "stingray.gti.load_gtis"]], "logposterior() (stingray.modeling.gaussianposterior method)": [[2, "stingray.modeling.GaussianPosterior.logposterior"]], "logposterior() (stingray.modeling.laplaceposterior method)": [[2, "stingray.modeling.LaplacePosterior.logposterior"]], "logposterior() (stingray.modeling.psdposterior method)": [[2, "stingray.modeling.PSDPosterior.logposterior"]], "logposterior() (stingray.modeling.poissonposterior method)": [[2, "stingray.modeling.PoissonPosterior.logposterior"]], "logposterior() (stingray.modeling.posterior method)": [[2, "stingray.modeling.Posterior.logposterior"]], "look_for_array_in_array() (in module stingray.utils)": [[2, "stingray.utils.look_for_array_in_array"]], "main_array_attr (stingray.varenergyspectrum.excessvariancespectrum attribute)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.main_array_attr"]], "main_array_attr (stingray.varenergyspectrum.varenergyspectrum attribute)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.main_array_attr"]], "make_lightcurve() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.make_lightcurve"]], "meta_attrs() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.meta_attrs"]], "meta_attrs() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.meta_attrs"]], "meta_attrs() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.meta_attrs"]], "meta_attrs() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.meta_attrs"]], "meta_attrs() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.meta_attrs"]], "meta_attrs() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.meta_attrs"]], "mkdir_p() (in module stingray.io)": [[2, "stingray.io.mkdir_p"]], "modulation_upper_limit() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.modulation_upper_limit"]], "modulation_upper_limit() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.modulation_upper_limit"]], "modulation_upper_limit() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.modulation_upper_limit"]], "module": [[2, "module-stingray.deadtime.fad"], [2, "module-stingray.deadtime.model"], [2, "module-stingray.gti"], [2, "module-stingray.io"], [2, "module-stingray.modeling.scripts"], [2, "module-stingray.pulse"], [2, "module-stingray.stats"], [2, "module-stingray.utils"]], "nearest_power_of_two() (in module stingray.utils)": [[2, "stingray.utils.nearest_power_of_two"]], "optimal_bin_time() (in module stingray.utils)": [[2, "stingray.utils.optimal_bin_time"]], "order_list_of_arrays() (in module stingray.utils)": [[2, "stingray.utils.order_list_of_arrays"]], "p_multitrial_from_single_trial() (in module stingray.stats)": [[2, "stingray.stats.p_multitrial_from_single_trial"]], "p_single_trial_from_p_multitrial() (in module stingray.stats)": [[2, "stingray.stats.p_single_trial_from_p_multitrial"]], "p_to_f() (in module stingray.pulse)": [[2, "stingray.pulse.p_to_f"]], "pdm_profile_stat() (in module stingray.pulse)": [[2, "stingray.pulse.pdm_profile_stat"]], "pds_detection_level() (in module stingray.stats)": [[2, "stingray.stats.pds_detection_level"]], "pds_model_zhang() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.pds_model_zhang"]], "pds_probability() (in module stingray.stats)": [[2, "stingray.stats.pds_probability"]], "pf_from_a() (in module stingray.stats)": [[2, "stingray.stats.pf_from_a"]], "pf_from_ssig() (in module stingray.stats)": [[2, "stingray.stats.pf_from_ssig"]], "pf_upper_limit() (in module stingray.stats)": [[2, "stingray.stats.pf_upper_limit"]], "phase_dispersion_detection_level() (in module stingray.stats)": [[2, "stingray.stats.phase_dispersion_detection_level"]], "phase_dispersion_logprobability() (in module stingray.stats)": [[2, "stingray.stats.phase_dispersion_logprobability"]], "phase_dispersion_probability() (in module stingray.stats)": [[2, "stingray.stats.phase_dispersion_probability"]], "phase_dispersion_search() (in module stingray.pulse)": [[2, "stingray.pulse.phase_dispersion_search"]], "phase_exposure() (in module stingray.pulse)": [[2, "stingray.pulse.phase_exposure"]], "phase_lag() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.phase_lag"]], "phase_lag() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.phase_lag"]], "phase_lag() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.phase_lag"]], "phase_lag() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.phase_lag"]], "phase_lag() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.phase_lag"]], "phaseogram() (in module stingray.pulse)": [[2, "stingray.pulse.phaseogram"]], "plot() (stingray.autocorrelation method)": [[2, "stingray.AutoCorrelation.plot"]], "plot() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.plot"]], "plot() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.plot"]], "plot() (stingray.crosscorrelation method)": [[2, "stingray.CrossCorrelation.plot"]], "plot() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.plot"]], "plot() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.plot"]], "plot() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.plot"]], "plot() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.plot"]], "plot_cum3() (stingray.bispectrum.bispectrum method)": [[2, "stingray.bispectrum.Bispectrum.plot_cum3"]], "plot_mag() (stingray.bispectrum.bispectrum method)": [[2, "stingray.bispectrum.Bispectrum.plot_mag"]], "plot_phase() (stingray.bispectrum.bispectrum method)": [[2, "stingray.bispectrum.Bispectrum.plot_phase"]], "plot_phaseogram() (in module stingray.pulse)": [[2, "stingray.pulse.plot_phaseogram"]], "plot_profile() (in module stingray.pulse)": [[2, "stingray.pulse.plot_profile"]], "plot_results() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults.plot_results"]], "plotfits() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.plotfits"]], "poisson_symmetrical_errors() (in module stingray.utils)": [[2, "stingray.utils.poisson_symmetrical_errors"]], "power_confidence_limits() (in module stingray.stats)": [[2, "stingray.stats.power_confidence_limits"]], "power_upper_limit() (in module stingray.stats)": [[2, "stingray.stats.power_upper_limit"]], "powerspectrum() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.powerspectrum"]], "print_results() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults.print_results"]], "print_summary() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults.print_summary"]], "pulse_phase() (in module stingray.pulse)": [[2, "stingray.pulse.pulse_phase"]], "r_det() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.r_det"]], "r_in() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.r_in"]], "read() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.read"]], "read() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.read"]], "read() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.read"]], "read() (stingray.lightcurve class method)": [[2, "stingray.Lightcurve.read"]], "read() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.read"]], "read() (stingray.events.eventlist class method)": [[2, "stingray.events.EventList.read"]], "read() (stingray.simulator.simulator.simulator static method)": [[2, "stingray.simulator.simulator.Simulator.read"]], "read() (stingray.varenergyspectrum.excessvariancespectrum class method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.read"]], "read_header_key() (in module stingray.io)": [[2, "stingray.io.read_header_key"]], "read_mission_info() (in module stingray.io)": [[2, "stingray.io.read_mission_info"]], "rebin() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.rebin"]], "rebin() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.rebin"]], "rebin() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.rebin"]], "rebin() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin"]], "rebin() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.rebin"]], "rebin() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.rebin"]], "rebin_data() (in module stingray.utils)": [[2, "stingray.utils.rebin_data"]], "rebin_data_log() (in module stingray.utils)": [[2, "stingray.utils.rebin_data_log"]], "rebin_frequency() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin_frequency"]], "rebin_log() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.rebin_log"]], "rebin_log() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.rebin_log"]], "rebin_log() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.rebin_log"]], "rebin_log() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin_log"]], "rebin_log() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.rebin_log"]], "rebin_time() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin_time"]], "ref_mjd() (in module stingray.io)": [[2, "stingray.io.ref_mjd"]], "relativistic_ir() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.relativistic_ir"]], "rough_calibration() (in module stingray.io)": [[2, "stingray.io.rough_calibration"]], "safe_b() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.safe_B"]], "sample() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.sample"]], "sample() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.sample"]], "savefig() (in module stingray.io)": [[2, "stingray.io.savefig"]], "search_best_peaks() (in module stingray.pulse)": [[2, "stingray.pulse.search_best_peaks"]], "set_logprior() (in module stingray.modeling)": [[2, "stingray.modeling.set_logprior"]], "simon() (in module stingray.utils)": [[2, "stingray.utils.simon"]], "simple_ir() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.simple_ir"]], "simulate() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.simulate"]], "simulate_channel() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.simulate_channel"]], "simulate_energies() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.simulate_energies"]], "simulate_highest_outlier() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.simulate_highest_outlier"]], "simulate_lrts() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.simulate_lrts"]], "simulate_lrts() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.simulate_lrts"]], "simulate_times() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.simulate_times"]], "sinc_square_deriv() (in module stingray.pulse)": [[2, "stingray.pulse.sinc_square_deriv"]], "sinc_square_model() (in module stingray.pulse)": [[2, "stingray.pulse.sinc_square_model"]], "sort() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.sort"]], "sort() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.sort"]], "sort_counts() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.sort_counts"]], "split() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.split"]], "split_by_gti() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.split_by_gti"]], "split_numbers() (in module stingray.io)": [[2, "stingray.io.split_numbers"]], "ssig_from_a() (in module stingray.stats)": [[2, "stingray.stats.ssig_from_a"]], "ssig_from_pf() (in module stingray.stats)": [[2, "stingray.stats.ssig_from_pf"]], "standard_error() (in module stingray.utils)": [[2, "stingray.utils.standard_error"]], "stingray.deadtime.fad": [[2, "module-stingray.deadtime.fad"]], "stingray.deadtime.model": [[2, "module-stingray.deadtime.model"]], "stingray.gti": [[2, "module-stingray.gti"]], "stingray.io": [[2, "module-stingray.io"]], "stingray.modeling.scripts": [[2, "module-stingray.modeling.scripts"]], "stingray.pulse": [[2, "module-stingray.pulse"]], "stingray.stats": [[2, "module-stingray.stats"]], "stingray.utils": [[2, "module-stingray.utils"]], "test() (in module stingray.pulse)": [[2, "stingray.pulse.test"]], "time_intervals_from_gtis() (in module stingray.gti)": [[2, "stingray.gti.time_intervals_from_gtis"]], "time_lag() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.time_lag"]], "time_lag() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.time_lag"]], "time_lag() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.time_lag"]], "time_lag() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.time_lag"]], "time_lag() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.time_lag"]], "to_astropy_table() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_astropy_table"]], "to_astropy_table() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_astropy_table"]], "to_astropy_table() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_astropy_table"]], "to_astropy_table() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.to_astropy_table"]], "to_astropy_table() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_astropy_table"]], "to_astropy_table() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.to_astropy_table"]], "to_astropy_timeseries() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.to_astropy_timeseries"]], "to_lc() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.to_lc"]], "to_lc_iter() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.to_lc_iter"]], "to_lc_list() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.to_lc_list"]], "to_lightkurve() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.to_lightkurve"]], "to_norm() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_norm"]], "to_norm() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_norm"]], "to_norm() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.to_norm"]], "to_norm() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_norm"]], "to_norm() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_norm"]], "to_pandas() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_pandas"]], "to_pandas() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_pandas"]], "to_pandas() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_pandas"]], "to_pandas() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_pandas"]], "to_pandas() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.to_pandas"]], "to_xarray() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_xarray"]], "to_xarray() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_xarray"]], "to_xarray() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_xarray"]], "to_xarray() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_xarray"]], "to_xarray() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.to_xarray"]], "trace_maximum() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.trace_maximum"]], "truncate() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.truncate"]], "type (stingray.averagedcrossspectrum attribute)": [[2, "stingray.AveragedCrossspectrum.type"]], "type (stingray.averagedpowerspectrum attribute)": [[2, "stingray.AveragedPowerspectrum.type"]], "type (stingray.crossspectrum attribute)": [[2, "stingray.Crossspectrum.type"]], "type (stingray.dynamicalpowerspectrum attribute)": [[2, "stingray.DynamicalPowerspectrum.type"]], "type (stingray.powerspectrum attribute)": [[2, "stingray.Powerspectrum.type"]], "write() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.write"]], "write() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.write"]], "write() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.write"]], "write() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.write"]], "write() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.write"]], "write() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.write"]], "z2_n_detection_level() (in module stingray.stats)": [[2, "stingray.stats.z2_n_detection_level"]], "z2_n_logprobability() (in module stingray.stats)": [[2, "stingray.stats.z2_n_logprobability"]], "z2_n_probability() (in module stingray.stats)": [[2, "stingray.stats.z2_n_probability"]], "z_n() (in module stingray.pulse)": [[2, "stingray.pulse.z_n"]], "z_n_binned_events() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_binned_events"]], "z_n_binned_events_all() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_binned_events_all"]], "z_n_events() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_events"]], "z_n_events_all() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_events_all"]], "z_n_gauss() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_gauss"]], "z_n_gauss_all() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_gauss_all"]], "z_n_search() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_search"]]}}) \ No newline at end of file diff --git a/simulator.html b/simulator.html new file mode 100644 index 000000000..7a71f2d21 --- /dev/null +++ b/simulator.html @@ -0,0 +1,403 @@ + + + + + + + + Stingray Simulator (stingray.simulator) — stingray v1.1.2.dev406+g17fbaf0f + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Stingray Simulator (stingray.simulator)

+
+

Introduction

+

stingray.simulator provides a framework to simulate light curves with given variability distributions. In time series experiments, understanding the certainty is crucial to interpret the derived results in context of physical models. The simulator module provides tools to assess this uncertainty by simulating time series and spectral data.

+

Stingray simulator supports multiple methods to carry out these simulation. Light curves can be simulated through power-law spectrum, through a user-defined or pre-defined model, or through impulse responses. The module is designed in a way such that all these methods can be accessed using similar set of commands.

+
+

Note

+

stingray.simulator is currently a work-in-progress, and thus it is likely +there will still be API changes in later versions of Stingray. Backwards +compatibility support between versions will still be maintained as much as +possible, but new features and enhancements are coming in future versions.

+
+
+
+

Getting started

+

The examples here assume that the following libraries and modules have been imported:

+
>>> import numpy as np
+>>> from stingray import Lightcurve, sampledata
+>>> from stingray.simulator import simulator, models
+
+
+
+

Creating a Simulator Object

+

Stingray has a simulator class which can be used to instantiate a simulator +object and subsequently, perform simulations. We can pass on arguments to +this class class to set the properties of the desired light curve.

+

The simulator object can be instantiated as:

+
>>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+
+
+

Here, N specifies the bins count of the simulated light curve, mean specifies +the mean value, dt is the time resolution, and rms is the fractional rms amplitude, +defined as the ratio of standard deviation to the mean.. Additional arguments can be +provided e.g. to account for the effect of red noise leakage.

+
+
+

Simulate Method

+

Stingray provides multiple ways to simulate a light curve. However, all these methods follow a common recipe:

+
>>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+>>> lc = sim.simulate(2)
+
+
+
+
+

Using Power-Law Spectrum

+

When only an integer argument (beta) is provided to the simulate method, that integer defines the shape of the power law spectrum. Passing beta as 1 gives a flicker-noise distribution, while a beta of 2 generates a random-walk distribution.

+
from matplotlib import rcParams
+rcParams['font.family'] = 'sans-serif'
+rcParams['font.sans-serif'] = ['Tahoma']
+
+import matplotlib.pyplot as plt
+from stingray.simulator import simulator
+
+# Instantiate simulator object
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+# Specify beta value
+lc = sim.simulate(2)
+
+plt.plot(lc.counts, 'g')
+plt.title('Random-walk Distribution Simulation', fontsize='16')
+plt.xlabel('Counts', fontsize='14', )
+plt.ylabel('Flux', fontsize='14')
+plt.show()
+
+
+

(Source code, png, hires.png, pdf)

+
+_images/simulator-1.png +
+
+
+

Using User-defined Model

+

Light curve can also be simulated using a user-defined spectrum, which can be +passed on as a numpy array.

+
from matplotlib import rcParams
+rcParams['font.family'] = 'sans-serif'
+rcParams['font.sans-serif'] = ['Tahoma']
+
+import matplotlib.pyplot as plt
+from stingray.simulator import simulator
+
+# Instantiate simulator object
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+# Define a spectrum
+w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]
+spectrum = np.power((1/w),2/2)
+# Simulate
+lc = sim.simulate(spectrum)
+
+plt.plot(lc.counts, 'g')
+plt.title('User-defined Model Simulation', fontsize='16')
+plt.xlabel('Counts', fontsize='14')
+plt.ylabel('Flux', fontsize='14')
+plt.show()
+
+
+

(Source code, png, hires.png, pdf)

+
+_images/simulator-2.png +
+
+
+

Using Pre-defined Models

+

One of the pre-defined spectrum models can be used to simulate a light curve. +In this case, model name and model parameters (as list iterable) need to be +passed on as function arguments.

+
+
+

Using Impulse Response

+

In order to simulate a light curve using impulse response, we need the original light curve and impulse response. Stingray provides TransferFunction class which can be used to obtain time and energy averaged impulse response by passing in a 2-D intensity profile as the input. A detailed tutorial on obtaining impulse response is provided here.

+

Here, for the sake of simplicity, we use a simulated impulse response.

+
from matplotlib import rcParams
+rcParams['font.family'] = 'sans-serif'
+rcParams['font.sans-serif'] = ['Tahoma']
+
+import matplotlib.pyplot as plt
+from stingray import sampledata
+from stingray.simulator import simulator
+
+# Obtain a sample light curve
+lc = sampledata.sample_data().counts
+# Instantiate simulator object
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+# Obtain an artificial impulse response
+ir = sim.relativistic_ir()
+# Simulate
+lc_new = sim.simulate(lc, ir)
+
+plt.plot(lc_new.counts, 'g')
+plt.title('Impulse Response based Simulation', fontsize='16')
+plt.xlabel('Counts', fontsize='14')
+plt.ylabel('Flux', fontsize='14')
+plt.show()
+
+
+

(Source code, png, hires.png, pdf)

+
+_images/simulator-3.png +
+

Since, the new light curve is produced by the convolution of original light curveand impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter full. However, at times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to filtered. For a more detailed analysis on lag-frequency spectrum, follow the notebook here.

+
+
+
+

Channel Simulation

+

The simulator class provides the functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where we can create a di↵erent simulation channel for each energy range. The module provides options to count, retrieve and delete channels.:

+
>>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+>>> sim.simulate_channel('3.5 - 4.5', 2)
+>>> sim.count_channels()
+1
+>>> lc = sim.get_channel('3.5 - 4.5')
+>>> sim.delete_channel('3.5 - 4.5')
+
+
+

Alternatively, assume that we have light curves in the simulated energy channels 3.5 - 4.5, 4.5 - 5.5 and 5.5 - 6.5. These channels can be retreived or deleted in single commands.

+
>>> sim.count_channels()
+0
+>>> sim.simulate_channel('3.5 - 4.5', 2)
+>>> sim.simulate_channel('4.5 - 5.5', 2)
+>>> sim.simulate_channel('5.5 - 6.5', 2)
+>>> chans = sim.get_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5'])
+>>> sim.delete_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5'])
+
+
+
+
+

Tutorials

+
+

Important Concepts

+ +
+
+

The Simulator Object

+ +
+
+

Available Spectral Models

+ +
+
+

An Example Lag Analysis

+ +
+
+

Transfer Functions

+ +
+
+

Window Functions

+ +
+
+
+ + +
+
+
+
+ +
+
+ + + \ No newline at end of file